A new genus, a new species and taxonomic notes in Oxycoleini Martins & Galileo, 2003 (Coleoptera, Cerambycidae, Cerambycinae)

Francisco Eriberto de Lima Nascimento¹³; Juan Pablo Botero¹⁴ & Humberto Lezama²

¹ Universidade de São Paulo (USP), Museu de Zoologia (MZUSP). São Paulo, SP, Brasil.
² Universidad de Costa Rica (UCR), Escuela de Agronomía, Centro de Investigaciones en Protección de Cultivos (CIPROC), Museo de Insectos. San José, Costa Rica. E-mail: oncideres@gmail.com
³ ORCID: http://orcid.org/0000-0002-5047-8921. E-mail: eribnascimentofl@gmail.com
⁴ ORCID: http://orcid.org/0000-0002-5547-7987. E-mail: jp_bot@yahoo.com

Abstract. *Oxylopsebus* Clarke, 2008 is considered as a junior synonym of *Oxycoleus* Lacordaire, 1868. *Equescollum* is proposed as a new genus for *E. birai* sp. nov. from Costa Rica, which is described and illustrated.

Key-Words. Costa Rica; New species; Synonymy; Taxonomy.

INTRODUCTION

The genus *Oxycoleus* Lacordaire, 1868 was originally described in Molorchini Gistel, 1848. Julio (1997) revised *Oxycoleus* and proposed a key to species of the genus. Later, Martins & Galileo (2003) proposed Oxycoleini to allocate exclusively *Oxycoleus*, especially due to the modified abdomen of the females. Currently, *Oxycoleus* is composed of 14 species distributed in the Neotropical region (Monné, 2018).

Herein, we describe and illustrate *Equescollum* gen. nov. proposed to allocate *E. birai* sp. nov. and *Oxylopsebus* Clarke, 2008 is considered a junior synonym of *Oxycoleus*.

MATERIAL AND METHODS

The photos were taken at Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil (MZSP) with a Canon EOS Rebel T3i DSLR camera (Taichung, Taiwan), Canon MP-E 65 mm f/2.8 1-5X macro lens, controlled by Zerene Stacker AutoMontage software (http://zerenesystems.com/cms/stacker). The measurements were taken in millimeters with an ocular Hensoldt/Wetzlar – Mess 10 (Taufkirchen, Germany) in the Leica MZ6 stereomicroscope (Wetzlar, Germany). The plates were produced through Inkscape 0.48.4, edited with the GIMP (GNU Image Manipulation Program). The morphological terms follow Lawrence et al. (2010). The taxonomic history follows Monné (2018) and Tavakilian & Chevillotte (2018).

The acronyms used in the text are as follows:

BMNH – The Natural History Museum, London, United Kingdom.
DZUP – Coleção de Entomologia Pe. Jesus Santiago Moure, Departamento de Zoologia, Universidade Federal do Paraná, Paraná, Brazil.
MICR – Museo de Insectos, CIPROC, Escuela de Agronomía, Universidad de Costa Rica.
MZSP – Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil.

RESULTS

Cerambycinae

Oxycoleini Martins & Galileo, 2003

Oxycoleus Lacordaire, 1868

Oxycoleus Lacordaire, 1868: 484; Bates, 1880: 41; Julio, 1997: 2 (rev.); Martins & Galileo, 2003: 54 (rev.); Monné, 2005: 426 (cat.); Monné, 2012: 42 (cat.); Monné, 2018: 626 (cat.).

Stenoptrellus Bates, 1870: 314; Bates, 1880: 41 (syn.).

Oxylopsebus Clarke, 2008: 62; Monné, 2012: 42 (cat.); Monné, 2018: 628 (cat.).

Remarks

Lacordaire (1868) established *Oxycoleus* to allocate *O. clavipes* Lacordaire 1868 (monotypy),
and reported on elytral shape (translated): “Elytra slightly longer than half of the abdomen, dehiscent almost from their base, obliquely narrowed at the inner side and very acute apically […] It is obviously close to the Stenopterus, but differs in the shape of the elytra, legs and abdomen of female…”. In describing the genus Stenoptellus (currently synonymous of Oxycoleus), Bates (1870) also mentioned that his species had dehiscent elytra. Later, Bates (1880) commented on Oxycoleus: “A curious genus of the Molochrina group, with abbreviated triangular elytra’ and synonymized Oxycoleus and Stenoptellus with Merionoeda Pascoe, 1858.

Gounelle (1911) described Tethlimena gahani (currently Oxycoleus gahani), and commented on the elytral shape (translated): “…elytra base wider than prothorax, base truncated, subparallel-sided from humeri to about middle, then gradually widened, and then narrowly arched at posterior quarter, sutural angle, obtuse…”.

As we can see in the Gounelle’s description, the elytral shape of O. gahani does not agree with the typical elytral shape (dehiscent), and this probably led other authors to describe species with non-dehiscent elytra in Oxycoleus.

Later, Melzer (1933) described a variation of the Gounelle species, Tethlimena Gahani var. tristis (currently O. tristis), and commented (translated): “I have a specimen collected by Mr. A. Maller in Mafra (Santa Catarina) which, except for coloring, agrees well with the original description of this species […] Although the difference in color is remarkable, I think nonetheless that it is only a new variety that I call: var. tristis”.

Posteriorly, Zajciw (1964) described Merionoeda (Merionoeda) latipennis, which was later transferred to Oxycoleus by Monné & Giesbert (1992).

Julio (1997) revised the genus and summarized the shape of the elytra as follows (translated): “Elytra reaching or not the abdominal apex, slightly narrowed at middle, dehiscent, carinate (except in O. obscurus, O. tristis and O. gahani). Julio (1997) considered T. gahani var. tristis as a distinct species, and considered O. latipennis Zajciw, 1964 synonymous of O. tristis. Some years later, when proposing Oxycoleini (hitherto composed only by Oxycoleus), Martins & Galileo (2003) described the elytral shape as “usually dehiscent”.

Oxylopsebus was described by Clarke (2008) to allocate O. brachypterus Clarke, 2008. According to the author, Oxylopsebus differs specially by the strongly dehiscent elytra and commented: “…apart from the elytra, the differences between Oxylopsebus and Oxycoleus are less obvious…” The other characteristics mentioned are: “…scape is strongly curved (a character shared with Oxycoleus tristis); prosternal process laminiform at base, spatulate at apex and reaching well beyond coxal cavities (not flattened and acumenate, and failing to reach beyond coxal cavities); mesosternal process half as wide as coxae and excavate at apex (not almost as wide as coxae and truncate at apex); legs are very similar in both genera, longer in Oxycoleus, but in Oxylopsebus the hind legs are considerably larger than the others and all the tibiae curved, not just the metatibiae as in Oxycoleus. Finally, the elytra of the Oxycoleini not only almost cover the abdomen, but also opaque, and closely and coarsely punctured throughout (shortened, semi-translucent, and sparsely punctured in Oxylopsebus)”.

Probably, Clarke (2008) did not have access to other species of the genus, neither photos of the holotypes, and compared its new species only with the species deposited at MZSP (all with non-dehiscent elytra). One evidence of this is the key separating Oxycoleus from Oxylopsebus. In the former, the elytra would be parallel-sided and almost covering the abdomen, while in Oxylopsebus, the elytra would be shorter and acumenate (Clarke, 2008).

We are, therefore, considering the monotypic genus Oxylopsebus as synonymous of Oxycoleus, because the former has the typical elytral shape of Oxycoleus and the other generic characteristics do not separate them.

Oxycoleus brachypterus (Clarke, 2008), comb. nov. (Fig. 9)

Oxylopsebus brachypterus Clarke, 2008: 66, 6 figs; Wappes, Arias & Nearns, 2009: 3 (holotype); Wappes & Arias, 2016: 8 (holotype).

Material examined: Two paratypes: BOLIVIA, Santa Cruz: Hotel Flora & Fauna, 5 km SSE Buena Vista, 17°29’96”S, 63°39’13”W, 420 m, 30.VIII.2005, R. Clarke & S. Zamalloa col., flying to/on flowers of “Barbasquillo” vine (MZSP); female, 08.IX.2005, R. Clarke & S. Zamalloa col., flying to/on flowers of “Barbasquillo” vine (MZSP).

Equescollum gen. nov.

Type species: Oxycoleus birai sp. nov., monotypy, present designation.

Etymology: From Latin, Eques (= horsemans) and Collum (= neck), referring to the narrative of how the specimen was collected by Bates (1885): “A single specimen of this species flew on to Mr. Champion’s neck while he was travelling on horseback through the forest of Chorcha.” Neuter gender.

Description: Eyes finely faceted; distance between upper eye lobes at least twice largest width of one upper eye lobe; antennal tubercles slightly, gradually elevate from median grove; antennae 11-segmented, filiform, longer in male, scape with inner siniform projection at apex.

Prothorax bell-shaped. Pronotum tuberculate. Prosternal process laminiform; procoxal cavities closed behind. Elytra dehiscent, with lateral carina; humeri slightly projected, epipleura gradually reduced posteriorly; elytral apex acuminate.

Metamofera and metatibiae with granulated surface, curved at base; femora pedunculate-clavate. Pro- and mesotarsomere I about as long as II+III; metatarsomere I slightly longer than II+III.
Equescollum birai sp. nov.
(Figs. 1-8; 11)

Merionoeda culicina; Bates, 1885: 287, pl. 20, fig. 18 (not Stenoptrellus culicinus Bates, 1870).

Description: Female. General integument dark brown; flagellomeres brownish; mouthparts (except mandibles) reddish brown; elytra with anterior half light brown, gradually darker toward margins; metaventrite with large reddish-brown triangular shaped area from anterior median margin (between metacoxal cavities), gradually diverging posteriorly, reaching metanepisternum; metacoxae and abdominal ventrites I-II reddish brown, ventrites III-IV reddish brown centrally, gradually dark brown toward margins, V-VI entirely dark brown.

Head: Frons coarsely, densely punctate (except postclypeus), with short thick blackish setae, densely distributed, not obscuring integument, with sparse yellowish setae interspersed; frontoclypeal sulcus deeply marked; postclypeus smooth, setae and punctures sparsely distributed. Median groove deeply marked frontally, from frontoclypeal sulcus to level of posterior margins of an-
teneral sockets, margins smooth and glabrous. Genae rounded. Labrum slightly brownish toward apex, surface coarsely punctate, with elongate yellowish setae sparsely distributed; maxillary palpomere IV and labial palpomere III securiform; mandibles coarsely, sparsely punctate dor-sally. Area between antennal tubercles coarsely punctate, with short blackish setae, densely distributed, not obscuring integument. Area behind upper eye lobes coarsely, densely punctate, punctures sparser than on frons. Gulamentum punctate near lower eye lobes margins, remaining areas glabrous and smooth. Distance between upper eye lobes about 2.5 times largest width of upper eye lobe. Antennae about 1.8 times elytral length, reaching elytral apex, not reaching abdominal apex. Scape gradually widened distally, inner distal side with elongate rhombus projection; sparsely punctate; punctures sparser distally; surface with sparse, short erect blackish setae. Flagellomeres slightly, gradually widened toward apex, XI fusiform; surface with dense brownish pubescence, not obscuring integument; antennomeres III-VI with subdecumbent brownish setae on inner side. Antennal formula (ratio) based on length of antennomere III: scape = 1.43; pedicel = 0.36; IV = 1.43; V = 1.43; VI = 1.29; VII = 1.14; VIII = 1.07; IX = 1.0; X = 0.93; XI = 1.07.

Thorax. Prothorax as long as wide; sides narrowed an-teriorly, with slightly raised tubercle; posterior half with elevated tubercle; posterior fifth narrowed. Pronotum with six tubercles: four elliptical, two anterolateral, deep-ly marked anteriorly, and two posterolateral (largest), deeply marked at inner side and posteriorly; and two median tubercles, an elongate between anterolateral tubercles, and another elliptical, between lateroposteri-or tubercles. Pronotal disc with blackish pubescence between tubercles, posterior fifth with whitish pubescence. Prosternum transversely elevated at anterior fifth; cen-tral area coarsely punctate, with sparse whitish pubes-cence on central area and on posterior half. Mesoventrite coarsely, confluent punctate, especially on mesoventral process, with short, sparse, subdecumbent whitish setae (not obscuring integument); mesoventral process width about half diameter of mesocoxal cavity, apex semicircu-larly notched. Mesepisternum and mesepimeron with fine, sparse punctures, poorly marked, surface with short sparse subdecumbent whitish setae (not obscuring in-tegument). Metaventrite with sparse punctures, poorly marked, with short moderately abundant subdecumbent whitish setae on blackish area (not obscuring integument); reddish-brown area smooth, almost glabrous with sparse subdecumbent whitish setae, especially on an-terior median margin; metathoracic discrism reaching anterior median margin; metanepisternum with short, moderately abundant, subdecumbent whitish setae in-terspersed with elongate yellowish setae sparsely distrib-uted. Scutellum length half its width; with whitish pubes-cence not obscuring integument. Elytra: Dehiscent from posterior half; humeri rounded and slightly projected for-ward; elytral sides with anterior two-thirds gradually con-vergent, posterior third coplanar with dorsal area, parallel-sided; posterior dorsal half with well-marked carina; surface coarsely, densely punctate, with sparse whitish pubescence evenly distributed. Legs: Coxae with sparse whitish pubescence; profemora with peduncle about one third clave length, meso- and metatibiae with peduncle about half clave length; surface with sparse, erect yellowish setae; apex transversely truncate; pro- and mesotibiae with short, decumbent yellowish setae on inner distal half, remaining areas with sparse, erect, elongate brownish setae; metatibiae strongly arched, coarsely granulat-ed-punctate, with sparse, erect, elongate brownish setae.

Abdomen: With 5 ventrites. Ventrites with sparse, erect yellowish setae, denser laterally. Ventrite I length about 2.3 times largest length of ventrite II, gradually widened pos-teriorly. Ventrite II gradually widened posteriorly, aligned with ventrite I, posterior margin semicircular, about 0.3 length of I laterally, posterior half with transverse semicir-cular depression, anterior median margin with row of elon-gate yellowish setae posteriorly directed; sideward with row (about 1/10 the total width of the ventrite) of thicker, longer setae (about twice median setae), strongly arched toward middle; median posterior margin (2/5 the total width of the ventrite) with row of elongate yellowish con-choidal setae; internal area of depression with abundant, thickened, short yellowish conchoidal setae, evenly dis-tributed (not obscuring integument). Ventrite III with sides gradually convergent posteriorly, forming angle at postero-lateral area, about half length of II laterally, posterior margin semicircular (posteriorly divergent); large semicircular area (posteriorly divergent) less sclerotized centrally, with row of elongate brownish setae posteriorly, posteriorly di-rec ted at anterior margin of less sclerotized area. Ventrite IV trapezoidal, about 0.7 length of III laterally, slightly notched posteriorly, with elongate brownish setae laterally and on posterior margin, remaining area with sparse white pubes-cence. Ventrite V strongly notched, about half length of IV laterally, with elongate brownish setae laterally.

Male: Antennae about 2.5 times elytral length, surpass-ing elytral apex, reaching abdominal apex. Abdomen with 6 ventrites, ventrite II without modifications.

Dimensions (mm): Holotype, female, total length, 7.4; prothoracic length, 1.3; anterior prothoracic width, 1.0; posterior prothoracic width, 1.2; widest protho-racic width, 1.3; humeral width, 1.5; elytral length, 3.3. Paratypes, males (n = 2), total length, 5.1-7.0; prothoracic length, 1.0-1.2; anterior prothoracic width, 0.7-0.8; poste-rior prothoracic width, 0.9-1.0; widest prothoracic width, 1.0-1.1; humeral width, 1.2-1.4; elytral length, 2.4-3.0.

Type material: Holotype female from COSTA RICA, San José: Mora El Rodeo (Fila Diamante, 1.000 m), 22.I.2006, M.A. Zumbado LN col. (MZSP). Paratypes, COSTA RICA, Guanacaste (3 km SE R. Naranjo), male, 16-31.I.1993, F.D. Parker col. (MZSP). Puntarenas: Estación Biológica Las Cruces (OET), San Vito, Coto Brus, 1.000 m, male, 01-05. II.1998, H.J. Lezama & F.T. Hovore col. (MICR); Península de Osa (Rancho Quemado), male, I.1993 (Malaise trap), E. Quesada col. (MZSP).
Figures 6-11. (6-8) Equescollum birai: (6) holotype female, head; (7-8) paratypes male, respectively dorsal habitus and ventral habitus. (9) Oxycoleus brachypterus, dorsal habitus. (10) Oxycoleus culicinus, holotype, dorsal habitus. (11) drawing of Equescollum birai, dorsal habitus.
Etymology: The new species is named in honor of the late Ubirajara R. Martins de Souza (Bira).

Remarks: Bates (1870) described *Stenoptellus culicinus* (currently *Oxycoleus culicinus*) based on a single female with elytra pale ochre (Fig. 10). Subsequently, Bates (1885) reported and figured from Panama (Fig. 5) a specimen misidentified as *O. culicinus*. We can notice in the illustration by Bates (1885) that the specimen has a spine-shaped projection in the scape.

Some evidences indicate that a specimen deposited at BNMH (Fig. 4), which was examined through photography at Bezark (2018), and in a slide (made by Pe. Jesus Santiago Moure) is the same specimen used to make the illustration in Bates (1885) (Fig. 5). Its projection is in the same position, at the apex of the scape and is also forward. However, this projection is located on the inner side of the scape, and the Bates’s specimen was badly positioned. It is also possible to note that some antennomeres are absent (Fig. 5), and the same occurs in this specimen, glued on a card. We believe that this specimen collected by Bates (1885) is an undescribed species (described herein).

The presence of projection in the scapes is unique in the tribe. However, we find relevant to make some comparisons with some *Oxycoleus* species. *Equescolium birai* differs from the true *O. culicinus* (Fig. 10) (both species identified as *O. culicinus* by Bates (1885)) especially by the presence of projection in the scapes (absent in *O. culicinus*). We have specimens of both sexes with projection in the scapes; therefore, it cannot be a sexual dimorphism. Besides the shape of scape, the elytra in *Equescolium birai* sp. nov. is light brown on the anterior half, gradually darker toward margins (pale ochre in *O. culicinus*), and strongly acuminate apically (subrounded in *O. culicinus*).

Equescolium birai is similar to *O. brachypterus* (Fig. 9), by the desinent elytra, acuminate apically, and by general integument color. Besides the scapes, the new species have granulations in the metatibiae (generic features) absent in *O. brachypterus*.

ACKNOWLEDGMENTS

We thank Antonio Santos-Silva (MZSP) for providing valuable corrections of a draft of this manuscript. Thanks to Larry Bezark for sending and allowing use of the photos from his website. We also thank the Taxonline Project (Projeto Taxonline – Rede Paranaense de Coleções Biológicas), in particular to Paulo Alvarenga (DZUP) and Dr. Norma Giambarmesi Ganhó (DZUP) for sending the slides used in this work, that belong to the Coleção de Imagens de material-tipo J.S. Moure (CITIMOURE) of the entomological collection Pe. J.S. (DZUP). The first author thanks the grant 2017/15283-9, São Paulo Research Foundation (FAPESP). The second author also thanks São Paulo Research Foundation (FAPESP) for the grant 2017/17898-0.

Authors’ contributions statement

The three authors also equally contributed to the identification, description, and illustration present in the work.

REFERENCES

Bates, H.W. 1870. Contributions to an insect fauna of the Amazon Valley (Coleoptera: Cerambycidae). The Transactions of the Entomological Society of London, 1870: 243–335.

Bates, H.W. 1880. Biologia Centrali-Americana, Insecta, Coleoptera. London. v. 5, p. 17-152.

Bates, H.W. 1885. Biologia Centrali-Americana, Insecta, Coleoptera, suppl. to Longicornia. London. v. 5, p. 249-436.

Bezark, L.G. 2018. A photographic Catalog of the Cerambycidae of the New World. Available at: https://apps2.cdfa.ca.gov/publicApps/plant/bycidDB/wsearch.asp?w=n. Access in: 24/08/2018.

Clarke, R.O.S. 2008. *Oxylopsebus brachypterus*: a new genus and species of Oxycoleini (Coleoptera, Cerambycidae, Cerambycinae) from Bolivia. Papéis Avulsos de Zoologia, 48(9): 61-67.

Gounelle, E. 1911. Liste des cérambicides de la région de Jatay, Etat de Goyaz, Brésil. Annales de la Société Entomologique de France, 80: 1-150.

Julio, C.E.A. 1997. Descrições, sinonimia, novo status, novas combinações e chave para as espécies brasileiras de Oxycoleus Lacordaire, 1869 (Coleoptera, Cerambycidae, Cerambycinae, Molorchini). Boletim do Museu Nacional, Nova Série Zoologia, 381: 1-11.

Lacordaire, J.T. 1868. Histoire Naturelle des Insectes. Genera des Coleoptères, ou exposé méthodique et critique de tous les genres proposés jusqu’ici dans cet ordre d’insectes. Paris, Librairie Encyclopédique de Roret. v. 8, 552p.

Lawrence, J.F.; Beutel, R.G.; Leschen, R.A.B. & Ślipiński, A. 2010. Glossary of morphological terms. pp. 9-20. In: Leschen R.A.B.; Beutel R.G. & Lawrence J.F. (Eds.). Handbook of Zoology. Coleoptera, Beetles, Vol. 2: Morphology and Systematics (Eleotridea, Bostrichiformia, Cucujiformia partim). Berlin, Walter de Gruyter. 76p.

Martins, U.R. & Galileo, M.H.M. 2003. Tribo Oxycoleini, pp. 51-63. In: Martins, U.R. (Org.). Cerambycidae Sul-americanos (Coleoptera) Taxonomia. Curitiba, Sociedade Brasileira de Entomologia. v. 6, 232p.

Melzer, J. 1933. Cerambycides neotrópicos, novos ou pouco conhecidos. Revista de Entomologia, Rio de Janeiro, 3(3): 367-382.

Monné, M.A. 2005. Catalogue of the Cerambycidae (Coleoptera) of the Neotropical Region. Part I. Subfamily Cerambycinae. Zootaxa, 946: 1-765.

Monné, M.A. 2012. Catalogue of the type-species of the genera of the Cerambycidae, Disteniidae, Oxyphoridae and Vesperidae (Coleoptera) of the Neotropical Region. Zootaxa, 3213: 1-183.

Monné, M.A. 2018. Catalogue of the Cerambycidae (Coleoptera) of the Neotropical region. Part I. Subfamily Cerambycinae. Available at: http://cerambycat.com. Access in: 24/08/2018.

Monné, M.A. & Giebultowicz, J.M. 1999. Nomenclatural notes on Western Hemisphere Cerambycidae (Coleoptera). *Insecta Mundi*, 6(2): 249-255.

Tavares, G.L. & Chevillotte, H. 2018. Titan: base de données internationales sur les Cerambycidae ou Longicornes. [Internet]. Version 3.0. http://titan.gbif.org/index.html. Access in: 24/08/2018.

Wappes, J.E. & Arias, J.L. 2016. Updated list of Coleoptera holotypes in Museo de Historia Natural, Noel Kempff Mercado, Universidad Autónoma "Gabriel Rene Moreno", Santa Cruz de la Sierra, Bolivia. Insecta Mundi, 497: 1-27.

Wappes, J.E.; Arias J.L. & Nairns, E.H. 2009. List of Coleoptera holotypes in Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma "Gabriel Rene Moreno", Santa Cruz de la Sierra, Bolivia. *Insecta Mundi*, 81: 1-8.

Zajciw, D. 1964. Revisão das espécies brasileiras do gênero Merionoeda Pascoa (Col., Cerambycidae). *Studia Entomologica*, 7(1-4): 247-256.