This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Crystallization of BaF$_2$ from Droplets of a Phase Separated Glass—Evidence of Core-Shell Structure by ASAXS

Armin Hoell$^1$, Vikram Singh Raghuwanshi$^1$, Christian Bocker$^2$, Andreas Herrmann$^3$, Christian Rüssel$^2$, Thomas Höche$^4$

$^1$Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany.

$^2$Otto-Schott-Institut, Friedrich Schiller Universität Jena, Fraunhoferstraße 6, 07743 Jena, Germany.

$^3$Kazuo Inamori School of Engineering, New York State College of Ceramics, Alfred University, 2 Pine Street, Alfred, NY, 14802, USA.

$^4$Nanomaterials & Nanoanalytics, Center for Applied Microstructure Diagnostics CAM, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1, 06120 Halle, Germany.

Abstract

Glasses with the mol% compositions $1.88 \text{Na}_2\text{O} \cdot 15.04 \text{K}_2\text{O} \cdot 7.52 \text{Al}_2\text{O}_3 \cdot 69.56 \text{SiO}_2 \cdot 6.00 \text{BaF}_2$ and $1.88 \text{Na}_2\text{O} \cdot 15.03 \text{K}_2\text{O} \cdot 7.52 \text{Al}_2\text{O}_3 \cdot 69.52 \text{SiO}_2 \cdot 6.00 \text{BaF}_2 \cdot 0.05 \text{SmF}_3$ were studied using X-ray diffraction, transmission electron microscopy, and anomalous small-angle X-ray scattering. While the glass doped with samarium showed liquid/liquid phase separation of droplets with sizes of around 100 nm, the glass without samarium did not. The samples were annealed at 580 °C or at 600 °C which led to the crystallization of cubic BaF$_2$. The X-ray diffraction patterns showed strongly broadened lines. Hence, the BaF$_2$ crystals possess sizes in the nm range. Anomalous small-angle X-ray scattering (ASAXS) gave evidence of a core shell structure. In agreement with earlier studies, it is assumed that the shell acts as diffusion barrier that hinders crystal growth. Surprisingly, the cores and shells from the crystallization of the homogeneous glass and from the second glass which is Sm-doped and shows liquid/liquid phase separation both possess similar dimensions, even though the origin of the
barrier is very different. The doped samples show long luminescence lifetimes of nearly 5 ms at a wavelength of 600 nm which is nearly as large as in fluoride phosphate glasses.

1. Introduction:

In the past few years, the formation of nano crystals from glasses was intensively studied [1-4]. It has been shown that a prerequisite for the formation of nano crystals is a core shell structure [5, 6]. This can be achieved if during the course of nucleation and subsequent crystal growth the core gets successively enriched in network modifying oxides or other less mobile components. That leading to increased viscosity in the depleted residual glassy phase [7-9]. This results in a drastic decrease in the diffusion coefficients in the shell and to a deceleration of crystal growth. In some cases the crystals do not grow any further within the time scale of the experiments of some ten hours [10-13]. A very narrow crystal size distribution is observed, which is even narrower than the Lifshitz-Slyozov-Wagner (LSW) distributions obtained from Ostwald ripening [14, 15] predicts. Previously, these core shell structures were predicted based on the chemical composition of the glass and the formed crystalline phases as well as the measured changes in the glass transition temperatures of partially crystalline samples. In the past decade new aberration-corrected transmission electron microscopes (TEM) have been developed that are able to detect the shell directly using electron energy loss spectroscopy (EELS) [16] or energy-dispersive X-ray spectrometry (EDXS) [17-19]. Moreover, the formed core shell structures were also confirmed with the data from anomalous small-angle X-ray scattering (ASAXS) [20].

Up to now, core shell structures were predominantly observed during homogeneous nucleation of rare earth fluorides [18] and of earth alkaline fluorides [8-16, 20-23]. These fluoride nano crystals are good hosts for rare earth elements with interesting luminescence and up-conversion properties. The narrow size distribution is an important prerequisite for
transparency in the visible light spectrum, which is required for applications in optics and photonics.

In lithium aluminosilicates, ZrTiO₄ acts as nucleation agent. The first step of the nucleation process is the formation of an amorphous droplet-like phase, subsequently ZrTiO₄ precipitates. This also leads to the formation of a core shell structure [7, 24]. The formation of liquid/liquid phase separation with a droplet structure is observed in the case of some oxyfluoride glasses [21, 22]. Already minor quantities of rare earth elements may lead to phase separation. It has been shown for an oxyfluoride glass from which BaF₂ can be precipitated that an addition of rare earth oxides in a concentration as small as 0.05 mol% leads already to the formation of a droplet phase separation [23].

In the present paper, the effect of 0.05 mol% SmF₃ on the crystallization of a glass with the composition of 1.88Na₂O·15.04K₂O·7.52Al₂O₃·69.56SiO₂·6BaF₂ is studied predominantly using the methods XRD, ASAXS and TEM.

2. Experimental Procedure

Glasses with the compositions (in mol%) 1.88 Na₂O·15.04 K₂O·7.52 Al₂O₃·69.56 SiO₂·6 BaF₂ (denoted as sample A) and 1.88 Na₂O·15.03 K₂O·7.52 Al₂O₃·69.52 SiO₂·6 BaF₂·0.05 SmF₃ (denoted as sample B) were studied. They were melted from reagent grade Al(OH)₃, K₂CO₃, Na₂CO₃, BaF₂, BaCO₃ and SiO₂ (quartz) in quantities of 200 g in a platinum crucible at 1590 °C, kept for 1.5 h. The glass melt was cast on a copper block and transferred to a furnace preheated to 450 °C. The furnace was subsequently switched off and the glass samples were allowed to cool down slowly. This was done to reduce mechanical stresses. The temperature of 450 °C was below the glass transition temperatures of the studied glasses (473 °C for glass A and 485 °C for glass B) and hence nucleation should not occur. For crystallization, compact sample pieces of these glasses were annealed for 20 h at temperatures of 580 or 600 °C.
From annealed and subsequently powdered samples, XRD-patterns were recorded using a Siemens D5000 diffractometer with CuKα radiation (λ = 0.154 nm), a step size of 0.02° and a 10 s time/step ratio. The measurement was carried out with a grain size fraction <63 μm.

The glass transition temperature T_g was measured by dilatometry on cylindrically shaped samples using a Netzsch DIL 402 PC equipped with a silica-glass measurement system. A heating rate of 5 K/min was applied. Differential Scanning Calorimetry, DSC was performed with a Linseis DSC PT-1600 and a heating rate of 10 K/min.

The microstructures of the glasses were further studied by transmission electron microscopy (TEM, Hitachi H 8100) using a replica technique. A carbon-platinum-iridium film was evaporated on the surface and subsequently removed by floating off on acid (mixture of hydrofluoric and nitric acid) while the film retains the original topography [25]. This technique is suitable to visualize liquid/liquid phase separation in glasses.

Additionally, TEM analyses from the bulk material were performed with a FEI TITAN³ G2 80-300 microscope equipped with a high-angle annular dark field detector (HAADF, Fischione Model 3000). For elemental analyses, energy-dispersive X-ray spectroscopy (EDXS) was performed using a Super-X EDX detector, equipped with four silicon drift detectors (FEI Company).

In order to prepare electron transparent samples, the mechanical wedge-polishing approach was applied. First, a dedicated grinding and polishing tool (Multiprep, Allied company) was used. After finishing this preparation, low-energy Ar⁺ ion broad-beam milling (precision ion polishing system PIPS, Gatan company) was performed followed by a selective carbon coating for mitigation of electrostatic charging [26].

The as prepared and annealed glass samples were studied by SAXS and ASAXS. The thicknesses of the on both sides polished sample sheets varied between 30 and 50 μm, which is required to achieve a sufficiently high X-ray transmission. The SAXS measurements were conducted at 4900 eV, an energy far below the Barium L₃ X-ray absorption edge (Ba L₃).
ASAXS experiments were carried out on all samples by using 4 different energies close to the Ba L₃ absorption edge (5247 eV) at the 7T-MPW-SAXS beamline at BESSY II, Helmholtz Zentrum Berlin (HZB) Synchrotron, Berlin, Germany. X-ray energies of 4900, 5177, 5234 and 5244 eV were used. For data collection, we used a gas filled multi-wire proportional counter (MWPC) area detector with quadratic pixels having sizes of 207 mm². Samples were measured at both, long distance (3745 mm; detector far from the sample) and short distance (800 mm; detector close to the sample), in order to achieve the widest possible q range. Samples were measured under vacuum conditions, to reduce air scattering and to increase the mean free path length. The measured curves were corrected for transmission, photon flux and pixel sensitivities of the detector. Dead time correction for the detector and solid angle correction were applied. The magnitude of the q axis is calibrated by a silver-behenate standard sample (1st peak at q=1.0763 nm⁻¹). A glassy carbon standard sample was used to calibrate the SAXS curves into differential scattering cross section units.

UV-VIS-NIR spectra were recorded with a Shimadzu UV-3102 PC Spectrophotometer in a wavelength range from 200 to 3200 nm. Luminescence emission spectra were recorded with a spectrofluorometer RF 5301 PC (Shimadzu, Japan). The luminescence lifetimes were measured for the strongest luminescence transition of Sm³⁺ (600 nm) by a custom-made setup. It consists of a pulsed nitrogen laser at 337 nm (MSG 800, LTB Lasertechnik Berlin, Germany) for excitation, a monochromator (H.25, Jobin Yvon, France) for wavelength selection, a photomultiplier tube (R5929, Hamamatsu, Japan) as detector and, for data acquisition, an oscilloscope (TDS2012, Tektronix, USA). All measurements were conducted at room temperature.
Table 1 Chemical compositions of the studied samples

| Sample | Na₂O  | K₂O  | Al₂O₃ | SiO₂   | BaF₂  | SmF₃ |
|--------|-------|------|-------|--------|-------|------|
| A      | 1.88  | 15.04| 7.52  | 69.56  | 6.00  | _    |
| B      | 1.88  | 15.03| 7.52  | 69.52  | 6.00  | 0.05 |

3. Results

The prepared glasses were optically transparent without visible striae. The densities of both glasses were 2.603 g/cm³ and equal within the limits of error. The glass transition temperatures determined by dilatometry were 473 °C and 485 °C for the glasses A and B, respectively. Unfortunately, exothermic peaks were not detected by DSC, supposedly due to the small volume concentrations of formed crystals.

3.1. XRD and Electron Microscopy

In a previous preliminary report [32], it has already been shown that the undoped glass is homogenous, while the Sm-doped glass shows liquid/liquid phase separation. Figure 1 shows TEM replica micrographs of a SmF₃ doped (sample B) and an undoped sample A. In the sample with SmF₃, heterogeneities are observed of sizes around 100 nm. Since the non-thermally treated sample is X-ray amorphous (Fig. 2), these heterogeneities are liquid/liquid phase separation with droplet structure. By contrast, the sample without SmF₃ did not show any signs of heterogeneities and hence phase separation [20]. The droplet size distribution in the SmF₃ containing sample B is apparently narrow. This sample is transparent for visible light. It would already show notable light scattering in case of droplets with sizes in the range of 200-400 nm.
Fig. 1 TEM micrographs (replicas from etched surface) of glassy samples A without SmF$_3$ (left) and sample B with 0.05 mol% SmF$_3$ (right) (see also Ref. [23]).

The thermally treated annealed samples were also optically transparent. The attributed XRD-patterns of samples A and B are shown in Fig. 2. Within the limitations of XRD, both as prepared glass samples were amorphous. Both samples heat treated at 580 °C for 20 h show similar XRD-patterns. Besides an intense and broad background at around $2\theta = 26^\circ$ due to a high quantity of amorphous phase, distinct lines attributable to crystalline cubic BaF$_2$ (JCPDS Nr. 4-452) are observed (marked by asterisks). The lines are notably broadened which is a hint at small crystallites with sizes in the few nm range. The mean crystallite size in the case of sample A is $(12.3 \pm 0.5)$ nm as calculated from the FWHM of the peaks using Scherrer’s equation. For sample B with the addition of a small amount of samarium fluoride, the crystal size is $(11.1 \pm 0.4)$ nm and hence slightly smaller. The $2\theta$-values of the XRD lines do not differ noticeably and hence the lattice constants are not different within the performed experiment. Thus, the XRD-patterns do not allow to conclude on the incorporation of samarium into the BaF$_2$ lattice.
Fig. 2 XRD-patterns of the sample without SmF$_3$ (Sample A) and the sample with 0.05 mol% SmF$_3$ (Sample B). Patterns of the as cast glass and of samples thermally treated at 580 °C for 20 h are shown. The peaks marked by an asterisk are attributed to cubic BaF$_2$ (JCPDS Nr. 4-452).

Figure 3 presents TEM-micrographs of Sample B (with Sm), thermally treated at 580 °C for 20 h. Discrete structures with sizes in the range from 20 to 40 nm are observed. These structures are homogeneously distributed within the sample.

Fig. 3 TEM micrograph of Sample B annealed for 20 h at 580 °C. Left: bright field image, Right: HAADF image in a higher magnification.
In Fig. 4, a HAADF-micrograph recorded in STEM mode of a Sample B is shown together with the corresponding EDXS mappings of Sm, Ba and F. Concerning the EDXS mappings of Ba and F, it is clear that the crystalline structures observed in the HAADF micrographs shown in Figs. 3 and 4 are enriched in Ba and F. Considering the XRD-patterns presented in Fig. 2, the heterogeneities consist of nano crystalline BaF$_2$. Concerning the EDXS mapping of Sm, a certain enrichment of Sm in the BaF$_2$ crystals can be stated. Noteworthy is that SmF$_3$ occurs in a concentration of only 0.05 mol%. Accordingly, the BaF$_2$ crystals should be doped with Sm$^{3+}$, which is assumed to be incorporated at Ba$^{2+}$ sites. Charge compensation should occur via Ba$^{2+}$ vacancies.

![Fig. 4 HAADF micrograph (bottom right) taken in STEM mode of a Sample B, thermally treated for 20 h at 580 °C the corresponding EDXS mappings of Sm (top left), Ba (top right) F (bottom left).](image)
3.2. Anomalous Small-Angle X-Ray Scattering

Figure 5 (left) shows SAXS curves calibrated to differential scattering cross sections for sample A, thermally treated at 600 °C for 20 h and for sample B, crystallized at 580 °C for 20 h. Both SAXS curves are showing the same pattern between the 0.2 < q < 3 nm⁻¹, which indicates the size distribution of BaF₂ nanoparticles. However, the upturn in the SAXS curve (at q < 0.2 nm⁻¹) for sample B (with Sm) reveal the formation of additional larger sized particles or of aggregates of BaF₂ nanoparticles or the formation of surface fractals. The upturn follows the power law of q⁻³.

Further information from the SAXS curves was extracted by fitting the whole shapes of the curves with the spherical core shell model in combination with the Gaussian size distribution of particles, using the software SASfit. The evaluated fitting parameters on the particle core size and shell thickness are given in Table II. The distribution of core (BaF₂) particles in both samples is shown in Fig. 5 (Right). The volume weighted mean diameters are fairly similar and centred at 11.2 nm for the crystallized Sample A and at 11.0 nm for Sample B (table 2). The thicknesses of the shells are 2.7 and 2.5 nm, respectively.
Fig. 5  Left: SAXS scattering curves recorded from the annealed samples A and B using an energy of 4900 eV. Right: Size distributions of the core of the particles. Sample A, was crystallized at 600 °C for 20 h, Sample B was crystallized at 580 °C for 20 h.

ASAXS measurements were conducted to reveal the elemental distribution of Ba atoms in the core, the composition of the shell and densities of the core, shell and the remaining glass matrix. ASAXS experiments were performed on sample A and sample B near the Ba X-ray absorption edge (5247 eV), more precisely at the 4 energies 4900, 5177, 5234 and 5244 eV (Fig. 6). Both samples show significant contrast variations (ASAXS effect) near the Ba absorption edge which indicates the presence of Ba atoms in the nanoparticles and evidencing the core shell structure.

The contrast variation values from the ASAXS curves were evaluated by fitting them with a spherical core shell model using the SASfit program and the procedure published previously [20]. Fitting the experimentally evaluated contrast values with the theoretically calculated values reveals the chemical composition and densities of core, shell and the remaining glass matrix. The evaluated parameters are provided in Table II.
Fig. 6 ASAXS scattering curves recorded from sample A annealed at 600°C for 20 h (right) and sample B annealed at 580°C for 20 h (left) using X-ray energies close the absorption edge of Ba. X-ray energies used are 4900, 5177, 5234 and 5244 eV.

Since the scattering curves strongly depend on the energy near the Ba-absorption edge, the particles that give rise to X-ray scattering, are strongly enriched in Ba. According to the XRD-patterns they consist of BaF₂. Therefore, the scattering curves were fitted assuming a BaF₂ core and an SiO₂ shell.

Table 2 Core radii and shell thicknesses, densities and volume fractions of sample A and sample B crystallized for 20 h at 600 and 580°C, respectively.

|                        | Sample A | Sample B |
|------------------------|----------|----------|
| Total particle Radius in nm | 8.4      | 8.0      |
| Core Radius in nm       | 5.6      | 5.5      |
| Shell Thickness in nm    | 2.7      | 2.5      |
| Density of Core in g/cm³ | 4.5      | 4.5      |
| Density of Shell in g/cm³ | 2.3      | 2.3      |
| Density of Matrix in g/cm³ | 2.4      | 2.4      |

3.3. Spectroscopic Measurements

Fig. 7 shows UV-VIS-NIR transmission spectra of the Sm-doped glass B, not annealed (black curve) and thermally annealed at 580°C for 20 h (red curve). In the spectral range from 1000 to 3200 nm, the spectra are practically identical and show the absorption lines typical for Sm³⁺ containing glasses. The wavelength and line widths attributed to the absorption lines did obviously not change noticeably during crystallization. At wavelengths in the range from 350 to 1000 nm, the transmission of the crystallized sample is somewhat smaller. The difference between the two curves increases with decreasing wavelength. This is a hint at a small extend of light scattering. The transmission at wavelengths of 350 and 500 nm of Sample A is around 82 and 92 %, while it is 70 and 87 % for Sample B, respectively. For the most potential
applications (besides as an active laser component for the visible range), the slight scattering is not of importance. For example as light converters for blue LEDs to produce white light, slight scattering is not disadvantageous, and also for the use as active laser material in the infrared, scattering of visible light has not a negative effect.

Fig. 7 UV-VIS-NIR transmission spectra of the as cast glass B (black) and glass B after thermal treatment at 580 °C for 20 h (red).

Fig. 8 shows the luminescence emission spectra (excitation at 402 nm) of the prepared glass B as well as of a sample B crystallized at 580 °C for 20 h in a wavelength range from 250 to 600 nm. Four emission lines typical for Sm$^{3+}$ are observed at 562 nm: $^4G_{5/2} \rightarrow ^6H_{5/2}$, at 600 nm: $^4G_{5/2} \rightarrow ^6H_{7/2}$, at 645 nm: $^4G_{5/2} \rightarrow ^6H_{9/2}$ and at 706 nm: $^4G_{5/2} \rightarrow ^6H_{11/2}$. The most intense emission band was observed at 600 nm and the second most intense at 645 nm corresponding to the transitions $^4G_{5/2} \rightarrow ^6H_{7/2}$ (orange) and $^4G_{5/2} \rightarrow ^6H_{9/2}$ (red), respectively. The emission spectrum of the glass and the crystallized sample do not differ much. All lines are located at the same wavelengths and the intensities are approximately the same.
Fig. 8  Luminescence emission spectra of the as cast glass B (black) and glass B thermally treated at 580 °C for 20 h (red).

The semi logarithmic plot of the luminescence emission decay curves of the $^4G_{5/2} \rightarrow ^4H_{5/2}$ emission are shown in Fig. 9 for the as cast sample B, and samples B crystallized at 520 °C for 20 h and at 580 °C for 20 h. Additionally, a decay curve for an almost pure fluoride glass (in the literature usually denoted as FP03) with the composition 10 MgF$_2$, 28 CaF$_2$, 23 SrF$_2$, 36 AlF$_3$, 3 Sr(PO$_3$)$_2$ is shown for comparison. All samples have the same doping concentration of Sm$^{3+}$ of $1 \times 10^{19}$ Sm$^{3+}$/cm$^3$. These curves provide information on the lifetime of the $^4G_{5/2}$ excited state of the rare-earth ion in the respective host glass composition. A straight line in the semi logarithmic scale represents a mono-exponential decay. The slope of these lines represents the reciprocal luminescence lifetimes. For all studied samples, approximately a mono-exponential decay is observed, which indicates homogeneously distributed Sm$^{3+}$ ions and low concentration quenching. The luminescence lifetimes of the studied samples and the fluoride phosphate glass sample FP03 for comparison are summarized in Table 3. The lifetimes of the investigated samples are somewhat smaller than for the fluoride phosphate sample, an almost pure fluoride glass.
Fig. 9  Semi logarithmic luminescence decay curves at 600 nm of the as cast sample B and samples with the composition B thermally treated at 520 °C for 20 h and at 580 °C for 20 h, as well as of an almost pure fluoride glass, FP03, for comparison.

Table 3 Luminescence lifetimes of the glass B and crystallized samples in comparison to the fluoride phosphate glass FP03

|                | Thermal treatment | Luminescence lifetime (ms) |
|----------------|-------------------|---------------------------|
| Glass B        | no                | 4.89                      |
| Glass B        | 520 °C/20 h       | 4.60                      |
| Glass B        | 580 °C/20 h       | 4.97                      |
| FP03           | no                | 6.20                      |

4. Discussion

Although glass B contains only 0.05 mol% SmF₃, the structure was very different from that of the sample without samarium (glass A). While the glass doped with samarium showed phase separation with droplets with sizes of around 100 nm, the glass without samarium did not. Thermal treatment leads to the crystallization of cubic BaF₂ in both glasses. The XRD patterns show strongly broadened lines attributed to a mean crystallite sizes of around 11 nm, as calculated from the XRD-line broadening. This crystallite sizes are comparable with the size of the crystals observed in the TEM micrographs. The effect of time and temperature on
the size of the crystals is comparably small as already discussed in Ref. [12]. However, the effect is notably more pronounced than in previously studied glasses, in which during annealing, CaF$_2$ is precipitated [11, 27]. For sample A, previous studies using advanced TEM measurements gave evidence of the formation of core shell structures [20]. Using SAXS and ASAXS, the existence of such a shell is confirmed. In the SmF$_3$-doped sample annealed at 580 °C for 20 h, SAXS and ASAXS show also a core shell structure. In both cases, the shell is enriched in SiO$_2$ and hence is attributed to a layer of higher viscosity with respect to the matrix. The size of the BaF$_2$ cores is around 11 nm and approximately the same for both glasses A and B. The crystallite sizes as determined by XRD line broadening are 12.3 and 11.1 nm, for samples A and B, respectively. In this context, it should be noted that XRD measures the size of a particle with translational symmetry. SAXS and ASAXS analyse the whole shape of a small-angle scattering curve to get size distributions of regions having almost the same electron density, means chemical composition, and do not require crystalline regions only. If a periodic lattice has a highly distorted outer layer (but approximately the same chemical composition), then XRD determines the periodic size. SAXS would determine the size including a distorted layer as an example. Hence it cannot be expected that exactly the same results from these two methods are obtained.

This is surprising because the as melted glass A is not phase separated, while glass B shows phase separation. It can be assumed that in both cases, the shell acts as a diffusion barrier which hinders further crystal growth. In the case of sample B, first a liquid droplet enriched in barium, fluoride, SiO$_2$ and possibly Al$_2$O$_3$ is formed. During the course of the crystallization, BaF$_2$ is formed inside the droplet and SiO$_2$ as well as possibly Al$_2$O$_3$ is expelled. It should be noted that stresses appear simultaneously with the formation of the core shell structure. These stresses can hardly relax because the composition of the shell is attributed to a higher glass transition temperature which is above the crystallization temperature applied.
It is remarkable that an addition of a SmF$_3$ concentration as small as 0.05 mol% gives rise to drastic changes in the crystallization mechanism. It should further be mentioned that similar structures, in our case BaF$_2$ nano crystals with SiO$_2$ enriched shells do not allow to conclude on similar crystallization mechanisms.

It is further surprising that the luminescence lifetimes for a Sm$^{3+}$ emission at 600 nm are in the range of 5 ms. This is much longer than in silicate glasses, which usually show luminescence lifetimes of about 2-3 ms depending on their chemical composition [28, 32, 33]. For alumosilicate glasses, fluorescence lifetimes are in the range of 2.2 to 3.8 ms [28, 29], while for tellurite glasses 0.6 to 1.8 ms [30] and for ZnO-Al$_2$O$_3$-BaO-B$_2$O$_3$ glasses 0.9 to 2.7 ms [31] were determined. Up to now, only fluoride phosphate glasses were reported to possess longer fluorescence lifetimes. Most probably, the coordination of Sm$^{3+}$ by fluoride leads to a notable increase in the fluorescence lifetime. These fluoride phosphate glasses are very difficult to prepare in high homogeneity, while oxyfluorosilicate glasses are much easier to prepare. In the case of the phase separated glass B, both Sm and fluoride are enriched in the droplet phase which should favor a coordination of Sm$^{3+}$ with fluoride. Long lifetimes are generally observed in fluoride glasses, however, at similar doping concentrations their lifetimes are even somewhat longer [32]. Two conclusions can be drawn from these observations: Firstly, the Sm$^{3+}$ ions are incorporated into a fluoride rich environment in the investigated samples, probably the fluoride rich droplets formed by phase separation. The somewhat lower luminescence lifetime could be a hint to an increased local Sm$^{3+}$ concentration and therefore result from a slight concentration quenching. Earlier investigations show, that similar lifetimes of about 5 ms were measured for fluoride glasses with a doping concentration of $1 \times 10^{20}$ Sm$^{3+}$/cm$^3$ [32]. This would imply that Sm$^{3+}$ is accumulated in the droplets. Indeed it is well known that rare earth ions prefer a fluoride rich environment over a silicate phase [34, 35].
The melting of glasses, with high fluoride concentrations such as fluoride phosphate glasses, however, is a serious technological challenge and a high homogeneity is very difficult to achieve, because of heavy fluoride evaporation. Hence, the preparation of fluoride containing nano glass ceramics with similar spectroscopic properties is advantageous because they are much easier to produce.

It should be noted that luminescence of transition or rare earth cations is an effect also observed in liquids and hence not necessarily connected to the solid state. By contrast to luminescence caused by nano size semiconductors, nano size effects of rare earth containing compounds have never been reported.

5. Conclusions

Using X-ray diffraction, transmission electron microscopy and anomalous small-angle X-ray scattering a glass with the mol% composition 1.88 Na₂O·15.04 K₂O·7.52 Al₂O₃·69.56 SiO₂·6.00 BaF₂ as well as a glass doped with only 0.05 mol% SmF₃ were studied. While the undoped glass was homogeneous, the samarium doped glass showed droplet phase separation with a droplet size of around 100 nm as proved by TEM. Thermal treatment of the samples led to the crystallization of cubic BaF₂. ASAXS gave evidence of a core shell structure. The spherical particles of the undoped and the doped sample had diameters of around 11 nm, while the shell had a thickness of 2.6 nm. Surprisingly, both the cores and shells possess hence similar dimensions if crystallized from the homogeneous glass and the phase separated glass. It should be noted, however, that the origin of the barrier is very different. In both cases, it is assumed that the shell acts as diffusion barrier that hinders crystal growth. The core sizes determined by ASAXS were in excellent agreement with the crystallite sizes calculated from the strongly broadened XRD-lines using Scherrer’s equation. The samarium doped sample shows strong luminescence. The luminescence lifetimes were nearly 5 ms at 600 nm and hence unusually long.
Acknowledgement:

We thank HZB for the allocation of synchrotron radiation beamtime at the ASAXS instrument at the 7T-MPW-SAXS beamline at BESSY II.
References

[1] G.H. Beall, L.R. Pinckney, Nanophase Glass-Ceramics, J. Am. Ceram. Soc., 82 (1999) 5-16.
[2] M.J. Dejneka, The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non-Cryst. Solids, 239 (1998) 149-155.
[3] M. Mortier, A. Monterville, G. Patriarche, G. Maze, F. Auzel, New progresses in transparent rare-earth doped glass-ceramics, Opt. Mater., 16 (2001) 255-267.
[4] Y. Yu, D. Chen, Y. Wang, F. Liu, E. Ma, A new transparent oxyfluoride glass ceramic with improved luminescence, J. Non-Cryst. Solids, 353 (2007) 405-409.
[5] S. Hendy, Light scattering in transparent glass ceramics, Appl. Phys. Lett., 81 (2002) 1171-1173.
[6] A. Edgar, Core-shell particle model for optical transparency in glass ceramics, Appl. Phys. Lett., 89 (2006) 041909.
[7] C. Patzig, T. Höche, M. Dittmer, C. Rüssel, Temporal Evolution of Crystallization in MgO–Al2O3–SiO2–ZrO2 Glass Ceramics, Cryst. Growth Des., 12 (2012) 2059-2067.
[8] C. Bocker, C. Rüssel, I. Avramov, Transparent Nano Crystalline Glass-Ceramics by Interface Controlled Crystallization, Int. J. Appl. Glass Sci., 4 (2013) 174-181.
[9] C. Bocker, I. Avramov, C. Rüssel, Viscosity and diffusion of barium and fluoride in Na2O/K2O/Al2O3/SiO2/BaF2 glasses, Chem. Phys., 369 (2010) 96-100.
[10] K. Shinozaki, T. Honma, K. Oh-ishi, T. Komatsu, Morphology of CaF2 nanocrystals and elastic properties in transparent oxyfluoride crystallized glasses, Opt. Mater., 33 (2011) 1350-1356.
[11] C. Rüssel, Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 Glasses, Chem. Mater., 17 (2005) 5843-5847.
[12] C. Bocker, C. Rüssel, Self-organized nano-crystallisation of BaF2 from Na2O/K2O/BaF2/Al2O3/SiO2 glasses, J. Eur. Ceram. Soc, 29 (2009) 1221-1225.
[13] R. Wurth, C. Rüssel, The crystallization of (Pb, Yb, Er)F3 nano particles from glasses with the composition 20 SiO2·13.5 B2O3·6 Al2O3·10 PbO·6.6 CdO 20 PbF2·13.3 CdF2·10 YbF3·0.5 ErF3, Solid State Sci., 13 (2011) 1132-1136.
[14] C. Bocker, I. Avramov, C. Rüssel, The effect of stresses during crystallization on the crystallite size distributions, J. Eur. Ceram. Soc, 31 (2011) 2861-2866.
[15] C. Bocker, S. Bhattacharyya, T. Höche, C. Rüssel, Size distribution of BaF2 nanocrystallites in transparent glass ceramics, Acta Mater., 57 (2009) 5956-5963.
[16] C. Bocker, I. Avramov, C. Rüssel, Experimental evidence of high pressure during crystallization of glass – The formation of an orthorhombic high-pressure BaF2 phase, Sci. Mater., 62 (2010) 814-817.
[17] E. Kleebusch, C. Rüssel, C. Patzig, Th. Höche, Evidence of epitaxial growth of high-quartz solid solution on ZrTiO4 nuclei in a Li2O-Al2O3-SiO2 glass, J. Alloys Compounds, 748 (2018) 73-79.
[18] A. de Pablos-Martín, F. Muñoz, G.C. Mather, C. Patzig, S. Bhattacharyya, J.R. Jinschek, Th. Höche, A. Durán, and M.J. Pascual, KLaF₄ Nanocrystallisation in Oxyfluoride Glass-Ceramics, CrystEngComm 15 (2013) 10323-10332.

[19] A. de Pablos-Martin, C. Patzig, Th. Höche, A. Duran, and M.J. Pascual, Distribution of Thulium in Tm³⁺-Doped Oxyfluoride Glasses and Glass-Ceramics, CrystEngComm, 15 (2013) 6979-6985.

[20] V.S. Raghuwanshi, A. Hoell, C. Bocker, C. Rüssel, Experimental evidence of a diffusion barrier around BaF₂ nanocrystals in a silicate glass system by ASAXS, CrystEngComm, 14 (2012) 5215.

[21] S. Bhattacharyya, T. Höche, N. Hemono, M.J. Pascual, P.A. van Aken, Nanocrystallization in LaF₃–Na₂O–Al₂O₃–SiO₂ glass, J. Cryst. Growth, 311 (2009) 4350-4355.

[22] C. Bocker, J. Wiemert, C. Rüssel, The formation of strontium fluoride nano crystals from a phase separated silicate glass, J. Eur. Ceram. Soc, 33 (2013) 1737-1745.

[23] J.R. Barros, C. Bocker, C. Rüssel, The effect of Er³⁺ and Sm³⁺ on phase separation and crystallization in Na₂O/K₂O/BaF₂/BaO/Al₂O₃/SiO₂ glasses, Solid State Sci., 12 (2010) 2086-2090.

[24] V.S. Raghuwanshi, C. Rüssel, and A. Hoell, Crystallization of ZrTiO₄ Nanocrystals in Lithium-Alumino-Silicate Glass Ceramics: Anomalous Small-Angle X-ray Scattering Investigation, Crystal Growth & Design, 14 (2014) 2838–2845.

[25] W. Vogel, Glass Chemistry, Springer, Berlin, 1994.

[26] Th. Höche, J.W. Gerlach, and T. Petsch, Static-Charging Mitigation and Contamination Avoidance by Selective Carbon Coating of TEM Samples, Ultramicroscopy, 106 (2006) 981-985.

[27] A. Hoell, Z. Varga, V. S. Raghuwanshi, M. Krumrey, C. Bocker and C. Rüssel, ASAXS study of CaF₂ nanoparticles embedded in a silicate glass matrix, J. Appl. Cryst. 47 (2014) 60–66.

[28] A. Herrmann, M. Tewelde, S. Kuhn, M. Tiegel, C. Rüssel, The Effect of Glass Composition on the Luminescence Properties of Sm³⁺ doped Alumino Silicate Glasses. Journal of Non-Crystalline Solids 502 (2018) 190-197.

[29] R. Turki, M. Zekri, A. Herrmann, C. Rüssel, R. Maalej, K. Damak, Optical properties of peralkaline aluminosilicate glasses doped with Sm³⁺, Journal of Alloys & Compounds 806 (2019) 1339-1347.

[30] P. Yasaka, R. Rajaramakrishna, W. Wongwan, P. Yamchumporn, H.J. Kim, J. Kaewkhao, Development of ZnO–BaO–B₂O₃–TeO₂ glass doped with Sm³⁺ for orange emitting material, Solid State Sciences, 98 (2019) 106041.

[31] L. Yuliantini, R. Hidayat, M. Djamal, K. Boonin, P. Yasaka, E. Kaewnuam, J. Kaewkhao, Development of Sm³⁺ doped ZnO-Al₂O₃–BaO-B₂O₃ glasses for optical gain medium, Journal of Non-Crystalline Solids 482 (2018) 86–92.

[32] A. Herrmann, D. Ehrt, Time-resolved fluorescence measurements on Dy³⁺ and Sm³⁺ doped glasses. Journal of Non-Crystalline Solids 354 (2008) 916-926.

[33] D. Ehrt, H. T. Vu, A. Herrmann, G. Völksch, Luminescent ZnO-Al₂O₃-SiO₂ glasses and glass ceramics. Advanced Materials Research 39/40 (2008) 231-236.
[34] A. Herrmann, M. Tylkowski, C. Bocker, C. Rüssel, Preparation and Luminescence Properties of Glass-Ceramics Containing Sm$^{3+}$-Doped Hexagonal NaGdF$_4$ Crystals. Journal of Materials Science 48 (2013) 6262-6268

[35] A. Herrmann, M. Tylkowski, C. Bocker, C. Rüssel, Cubic and Hexagonal NaGdF$_4$ Crystals Precipitated from an Aluminosilicate Glass: Preparation and Luminescence Properties. Chemistry of Materials 25 (2013) 2878-2884
Figure Captions

Fig. 1 TEM micrographs (replicas from etched surface) of glassy samples A without SmF₃ (left) and sample B with 0.05 mol% SmF₃ (right) (see also Ref. [23]).

Fig. 2 XRD-patterns of the sample without SmF₃ (Sample A) and the sample with 0.05 mol% SmF₃ (Sample B). Patterns of the as cast glass and of samples thermally treated at 580 °C for 20 h are shown. The peaks marked by an asterisk are attributed to cubic BaF₂ (JCPDS Nr. 4-452).

Fig. 3 TEM micrograph of Sample B annealed for 20 h at 580 °C. Left: bright field image, left: HAADF image in a higher magnification.

Fig. 4 HAADF micrograph (bottom right) taken in STEM mode of a Sample B, thermally treated for 20 h at 580 °C the corresponding EDXS mappings of Sm (top left), Ba (top right) F (bottom left).

Fig. 5 left: SAXS scattering curves recorded from the annealed samples A and B using an energy of 4900 eV. Right: Size distributions of the core of the particles. Sample A, was crystallized at 600 °C for 20 h, Sample B was crystallized at 580 °C for 20 h.

Fig. 6 ASAXS scattering curves recorded from sample A annealed at 600°C for 20 h (right) and sample B annealed at 580 °C for 20 h (left) using X-ray energies close the absorption edge of Ba. X-ray energies used are 4900, 5177, 5234 and 5244 eV.

Fig. 7 UV-VIS-NIR transmission spectra of the as cast glass B (black) and glass B after thermal treatment at 580 °C for 20 h (red).

Fig. 8 Luminescence emission spectra of the as cast glass B (black) and glass B thermally treated at 580 °C for 20 h (red).

Fig. 9 Semi logarithmic luminescence decay curves at 600 nm of the as cast sample B and samples with the composition B thermally treated at 520 °C for 20 h and at 580 °C for 20 h, as well as of an almost pure fluoride glass, FP03, for comparison.