Clinical features and risk factors associated with severe COVID-19 patients in China

Ning Jiang1, Yan-Nan Liu1, Jing Bao1, Ran Li1, Wen-Tao Ni1, Xing-Yu Tan1, Yu Xu1, Li-Ping Peng2, Xiao-Rong Wang3, Yi-Ming Zeng4, Dai-Shun Liu5, Qing Xue6, Jia-Shu Li7, Ke Hu8, Ya-Li Zheng9, Zhan-Cheng Gao2

1Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China; 2Department of Respiratory and Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; 3Department of Respiratory and Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; 4Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China; 5Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Zunyi, Zunyi, Guizhou 563000, China; 6Department of Respiratory and Critical Care Medicine, Ningde People’s Hospital, Ningde, Fujian 352000, China; 7Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Zunyi, Zunyi, Guizhou 563000, China; 8Department of Respiratory and Critical Care Medicine, The People’s Hospital of Xiamen University, Xiamen, Fujian 361111, China.

Abstract
Background: Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread throughout the world. In this study, we aimed to identify the risk factors for severe COVID-19 to improve treatment guidelines.

Methods: A multicenter, cross-sectional study was conducted on 313 patients hospitalized with COVID-19. Patients were classified into two groups based on disease severity (nonsevere and severe) according to initial clinical presentation. Laboratory test results and epidemiological and clinical characteristics were analyzed using descriptive statistics. Univariate and multivariate logistic regression models were used to detect potential risk factors associated with severe COVID-19.

Results: A total of 289 patients (197 nonsevere and 92 severe cases) with a median age of 45.0 (33.0, 61.0) years were included in this study, and 53.3% (154/289) were male. Fever (192/286, 67.1%) and cough (170/289, 58.8%) were commonly observed, followed by sore throat (49/289, 17.0%). Multivariate logistic regression analysis suggested that patients who were aged ≥ 65 years (OR: 2.725, 95% confidence interval [CI]: 1.317–5.636; P=0.007), were male (OR: 1.878, 95% CI: 1.002–3.202, P=0.049), had comorbid diabetes (OR: 3.314, 95% CI: 1.126–9.758, P=0.030), cough (OR: 3.427, 95% CI: 1.752–6.706, P<0.001), and/or diarrhea (OR: 2.629, 95% CI: 1.109–6.231, P=0.028) on admission had a higher risk of severe disease. Moreover, stratification analysis indicated that male patients with diabetes were more likely to have severe COVID-19 (71.4% vs. 28.6%, χ²=8.183, P=0.004).

Conclusions: The clinical characteristics of those with severe and nonsevere COVID-19 were significantly different. The elderly, female patients with COVID-19, diabetes, and presenting with cough and/or diarrhea on admission may require close monitoring to prevent deterioration.

Keywords: Clinical feature; Coronavirus disease 2019; Diabetes; Risk factor; Severe acute respiratory syndrome coronavirus 2

Introduction
Coronavirus disease 2019 (COVID-19) refers to an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has resulted in huge economic losses and already become a global threat. Most patients diagnosed with COVID-19 present with fever and cough, which are the most common symptoms.[1-3] The clinical spectrum of COVID-19 appears to be wide, encompassing severe pneumonia, acute respiratory distress syndrome, or multiple organ failure and death.[1] Although the disease is mild in most cases, the proportion with severe COVID-19 is 24.3%.[4] As of July 22, 2020, the global mortality rate was estimated to be 4.1% according to the WHO,[5] far below that reported with severe acute respiratory syndrome (SARS; more than 10%) and the Middle East respiratory syndrome (>35%).[6] Previous studies of COVID-19 have included single site studies, such as in Wuhan,[1,2,7,8]
Beijing, and Shenzhen, and multi-center studies primarily focusing on epidemiological and clinical features. Few publications have focused on severe cases specifically. The rapidly increasing number of patients, especially those with severe or critical COVID-19, has created a major public health challenge. It is therefore urgent that critical patients be studied and identified early, medical resources be allocated rationally, and treatment plans be adjusted in a timely manner to enhance the efficacy and reduce the risk of death resulting from COVID-19.

Therefore, this multi-center cross-sectional study was conducted. We analyzed the laboratory test results and epidemiological and clinical characteristics of 313 patients hospitalized with COVID-19 across 12 provinces/municipalities in China to identify risk factors and clinical features associated with severe COVID-19, with the intention of providing guidance for early diagnosis and timely treatment.

Methods

Ethical approval

The protocol for this study was approved by the Institutional Ethics Review Board of Peking University People’s Hospital (No. 2020PH0051–01). Written informed consent was waived by the Ethics Review Board due to the urgent need for clinical data collection and investigation.

Study design and participants

In this retrospective study, the sample size was calculated based on the assumed proportion of severe cases among all COVID-19 subjects (assumed to be 0.25 based on a previous study), with a type I error level of 0.05. Hence, the sample size was estimated to be 306 for this study.

From February 22 to March 29, 2020, we collected information of 313 patients hospitalized for COVID-19 from 25 designated hospitals across 12 provinces/municipalities in China. During the study period, the management of COVID-19 patients was more standardized than during the onset of the disease, including diagnosis, laboratory tests, and daily documents (eg, case report form). All participants recruited from the hospitals were laboratory-confirmed cases with positive high-throughput sequencing or real-time reverse-transcription polymerase chain reaction (RT-PCR) assay results from respiratory secretions. Patients were classified into four groups (mild, moderate, severe, and critical) according to the “Diagnosis and Treatment Protocol for Novel Coronavirus Infection-Induced Pneumonia Version 6 (Trial)” established by the National Health Commission of the People’s Republic of China.

Data collection

Patient data were extracted from electronic medical records using a standardized data collection form, the modified translated version of the WHO/International Severe Acute Respiratory and Emerging Infection Consortium case record form for severe acute respiratory infections. These data, including demographics, clinical features (including smoking history, exposure history, comorbidities, and signs and symptoms), laboratory findings, and radiological characteristics, were collected on the day of hospital admission. Information concerning the treatments applied during hospitalization was collected, and the outcomes were defined as of March 29, 2020, to secure data validity and quality, the study team and tools were established. A coordinator was designated to manage the local medical records in each hospital. All information was extracted from the medical records by the coordinator and entered into SO JUMP (https://www.wjx.cn/), a professional online platform for designing, distributing, and collecting data. All data were cross-checked by a team of experienced respiratory clinicians. If any core data were missing, a query was immediately sent to the coordinator, who would then contact the patient’s attending clinicians and update the data in SO JUMP.

Laboratory procedures and treatments

SARS-CoV-2 RNA was detected by the local centers for disease control and prevention, health institutions, and hospitals. Laboratory confirmation was conducted using real-time RT-PCR. Sputum and throat swab specimens collected from patients were analyzed using real-time RT-PCR for SARS-CoV-2 RNA within three hours. Virus detection was performed twice at least 24 h apart.

Laboratory examinations included a complete blood count, a blood chemistry (including liver and renal function, creatine kinase, and glucose), myocardial enzymes, procalcitonin, and C-reactive protein. Radiological assessments were conducted using chest X-rays or computed tomography (CT). Each patient was examined on the day of admission to the designated hospital.

Noninvasive and invasive ventilation were applied based on the severity of hypoxemia. Other treatments, including the administration of inotropes/vasopressors, neuromuscular blocking agents, renal replacement therapy and the use of extracorporeal membrane oxygenation (ECMO) were also applied for some patients.

Definitions

To better understand the clinical features, and to provide guidance for the early diagnosis and timely treatment of severe COVID-19, we combined mild and moderate cases into the nonsevere group and the severe and critical cases into the severe group. According to the “Diagnosis and Treatment Protocol for Novel Coronavirus Infection-Induced Pneumonia Version 6 (Trial)” the criteria for discharge were as follows: absence of fever for at least three days, substantial improvement in both lungs on chest CT, clinical remission of respiratory symptoms, and two lower respiratory tract specimens negative for SARS-CoV-2 RNA obtained at least 24 h apart. Exposure history was defined as exposure to live/dead animals, exposure to
people with COVID-19 infection, or exposure to people who had recently visited Wuhan.

Statistical analysis

For continuous variables, the Shapiro-Wilk normality test was performed for each. Normally distributed continuous variables are presented as means and standard deviations. Continuous variables that are not normally distributed are presented as medians (Q1, Q3). The t tests or Wilcoxon rank-sum tests were then applied. Categorical variables are summarized as counts and percentages, and χ² or Fisher exact tests were used. Univariate and multivariate logistic regression models were performed to detect potential risk factors associated with severe COVID-19. The statistically significant risk factors from the univariate logistic regression analysis, along with sex and age, were included in the final multivariate models. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were included in the univariate and multivariate regression analyses. All analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, North Carolina, USA). The statistical significance level was set at 0.05.

Results

Demographic and clinical characteristics

By March 29, 2020, a total of 313 laboratory-confirmed COVID-19 patients were recruited from 25 hospitals across 12 provinces/municipalities in China. For this study, three with duplicated information, four with missing data (eg, sex, age), and 17 who did not meet the clinical classification criteria were excluded from the final analysis. Therefore, 289 patients were included in this retrospective study [Figure 1].

The demographic and clinical features of the patients are shown in Table 1. The patients were aged from one month to 91 years, the median age was 45.0 (33.0, 61.0) years, 20.4% (59/289) were aged ≥ 65 years, and there were slightly more male patients (154/289, 53.3%). Of the 289 patients, 98 (33.9%) were residents of Wuhan, Hubei province, 8 (2.8%) were from other areas in Hubei province, and 183 (63.3%) were from outside of Hubei province. A history of recent travel to an epidemic area, contact with confirmed cases of COVID-19, and contact with wildlife was documented in 56.5% (157/278), 50.0% (97/194), and 1.0% (2/208) of the patients, respectively. The most common symptoms in the laboratory-confirmed patients were fever (192/286, 67.1%) and cough (170/289, 58.8%), followed by sore throat (49/289, 17.0%), shortness of breath (42/289, 14.5%), fatigue/malaise (42/289, 14.5%), diarrhea (38/289, 13.1%), myalgia (35/289, 12.1%), headache (30/289, 10.4%), runny nose (23/289, 8.0%), vomiting/nausea (21/289, 7.3%), chest pain (19/289, 6.6%), arthralgia (15/289, 5.2%), wheezing (11/289, 3.8%), bleeding (6/289, 2.1%), and abdominal pain (5/289, 1.7%). Only one patient (1/289, 0.3%) developed altered consciousness. Moreover, the most common comorbidity was diabetes (25/289, 8.7%), followed by chronic cardiovascular disease (18/289, 6.2%) and chronic pulmonary disease (12/289, 4.2%).

As indicated in Table 1, 197 (68.2%) and 92 (31.8%) of the patients were classified into the nonsevere and severe group, respectively. Between the two groups, the following parameters were significantly different: age (40.0 [30.0, 50.0] years vs. 60.0 [45.5, 69.5] years, Z = 43.912, P < 0.001); region of residence (P = 0.001); prevalence of contact with confirmed cases (54.9% vs. 31.7%, χ² = 6.958, P = 0.008); presence of cough (50.3% vs. 77.2%, χ² = 18.763, P < 0.001), shortness of breath (10.2% vs. 23.9%, χ² = 9.561, P = 0.002), and diarrhea (10.2% vs. 19.6%, χ² = 4.866, P = 0.027); arterial oxygen saturation (SaO₂) > 93% (100.0% vs. 64.4%, χ² = 60.797, P < 0.001); and arterial partial pressure of oxygen (PaO₂)/fraction of inspired oxygen (FiO₂) > 300 mm Hg (100.0% vs. 16.1%, χ² = 51.142, P < 0.001). Compared to the nonsevere group, the patients in the severe group more commonly had comorbidities, including diabetes (17.4% vs. 4.6%, χ² = 13.049, P < 0.001), chronic cardiac disease (14.1% vs. 2.5%, χ² = 14.430, P < 0.001), chronic kidney disease (4.3% vs. 0.5%, P = 0.037), and chronic hematologic disease (3.3% vs. 0%, P = 0.032). Tachypnea (respiratory rate > 24 breaths per min) (19.8% vs. 1.2%, χ² = 29.090, P < 0.001) and a history of smoking (5.4% vs. 1.0%, P = 0.035) were also more common in the severe group than in the nonsevere group.

Laboratory and radiological findings

The laboratory and radiological findings of patients diagnosed with COVID-19 are listed in Table 2. Most patients (164/239, 68.6%) had normal peripheral white blood cell counts [4(9–14)×10⁹/L] on admission. Lymphopenia was observed in 40.8% (95/233) of the patients. Procalcitonin < 0.5 ng/mL and C-reactive protein ≥ 10 mg/mL occurred in 76.4% (84/110) and 57.0% (90/158) of the patients, respectively. Severe cases had more prominent laboratory abnormalities, such as reduced hemoglobin levels (64.9% vs. 45.8%, χ² = 6.397, P = 0.011), lymphopenia (54.2% vs. 33.3%, χ² = 9.650, P = 0.002) and elevated creatinine (11.6% vs. 2.1%, P = 0.019), blood urea nitrogen (18.4% vs. 5.2%, P = 0.038), glucose (42.9% vs. 25.3%, χ² = 4.166, P = 0.041), procalcitonin (40.8% vs. 9.8%, χ² = 14.449, P < 0.001), and C-reactive protein (71.2% vs. 48.5%, χ² = 7.772, P = 0.005) levels, as compared with nonsevere cases.

Although there were no statistically significant differences in chest CT or radiography results between the severe and nonsevere cases, for patients infected with COVID-19, the most common patterns on chest CT were ground-glass opacities (184/211, 87.2%) and infiltration (136/184, 73.9%), followed by air bronchogram (59/184, 32.1%) and interlobular septal thickening (57/185, 30.8%). The chest CTs of two patients are shown in Supplementary Figure 1, http://links.lww.com/CM9/A524.

Treatments and outcomes

In our study, three kinds of anti-infection medications were used to treat patients with COVID-19 [Table 3]. Antivirals, antibiotics, and antifungals were used in 95.8% (253/264), 62.2% (155/249) and 8.1% (20/247) of patients, respectively. Antibiotics (67.4% vs. 49.3%, χ² = 7.091,
$P = 0.008$) were used more often in nonsevere group, while antifungal agents (21.6% vs. 2.3%, $\chi^2 = 25.969$, $P < 0.001$) were used more often in the severe group. In addition, noninvasive and invasive mechanical ventilation, renal replacement therapy, inotropes/vasopressors, neuromuscular blocking agents, and ECMO were only used in the severe group.

As of March 29, 2020, five patients had died during hospitalization, 154 patients were discharged, 51 patients were still hospitalized, and eight patients were transferred to other designated hospitals [Table 3]. The percentages of patients who were discharged in nonsevere and severe groups were 75.7% (112/148) and 60.0% (42/70), respectively, while the percentages of patients who were
Table 1: Characteristics of patients with COVID-19.

Characteristics	All patients (n = 289)	Nonsevere (n = 197)	Severe (n = 92)	Statistics	P
Age (years)	45.0 (33.0, 61.0)	40.0 (30.0, 50.0)	60.0 (45.5, 69.5)	43.912†	<0.001
Age (years)	45.0 (33.0, 61.0)	40.0 (30.0, 50.0)	60.0 (45.5, 69.5)	43.912†	<0.001
0–14	8 (2.8)	7 (3.6)	1 (1.1)	–	–
15–29	48 (16.6)	41 (20.8)	7 (7.6)	–	–
30–49	115 (39.8)	93 (47.2)	22 (23.9)	–	–
50–64	59 (20.4)	35 (17.8)	24 (26.1)	–	–
≥ 65	59 (20.4)	21 (10.7)	38 (41.3)	–	–
Sex	3.117	0.077			
Male	154 (53.3)	98 (49.7)	56 (60.9)	3.117†	0.077
Female	135 (46.7)	99 (50.3)	36 (39.1)	3.117†	0.077
Smoking history	7 (2.4)	2 (1.0)	5 (5.4)	–	0.035
Healthcare worker	389 (23/233)	247 (22/177)	142 (1/56)	5.417†	0.020
Region of residence	98 (33.9)	58 (29.4)	40 (43.5)	–	0.001
Wuhan	98 (33.9)	58 (29.4)	40 (43.5)	–	0.001
Other cities in Hubei Province	8 (2.8)	2 (1.0)	6 (6.5)	–	0.001
Cities outside Hubei Province	183 (63.3)	137 (69.5)	46 (50.0)	–	0.001
Exposure history	192/286 (67.1)	141/194 (72.7)	53/92 (57.6)	6.497†	0.011
Contact with confirmed cases	97/194 (50.0)	84/153 (54.9)	13/41 (31.7)	6.958†	0.008
Contact with wildlife	2/208 (1.0)	2/155 (1.3)	0 (0)	–	1.000
Comorbidity	25 (8.7)	9 (4.6)	16 (17.4)	13.049†	<0.001
Chronic cardiac disease	18 (6.2)	5 (2.5)	13 (14.1)	14.430†	<0.001
Chronic pulmonary disease	12 (4.2)	5 (2.5)	7 (7.6)	–	0.058
Chronic kidney disease	3 (1.7)	1 (0.5)	4 (4.3)	–	0.037
Malignant neoplasm	5 (1.7)	3 (1.5)	2 (2.2)	–	0.655
Chronic hematologic disease	3 (1.0)	3 (1.5)	3 (3.3)	–	0.312
Chronic liver disease	3 (1.0)	3 (1.5)	0 (0)	–	0.554
Obesity	3 (1.0)	2 (1.0)	1 (1.1)	–	1.000
Dementia	2 (0.7)	2 (1.0)	0 (0)	–	1.000
Malnutrition	1 (0.3)	0 (0)	1 (1.1)	–	0.318
Signs and symptoms	42 (14.5)	30 (10.4)	12 (13.0)	0.018†	0.894
Fever	23/286 (8.1)	18/208 (8.7)	5/78 (6.5)	0.111†	0.739
Cough	38 (13.1)	30 (10.4)	8 (9.1)	0.018†	0.894
Sore throat	35 (12.1)	30 (10.4)	5 (5.4)	1.173†	0.279
Fatigue/malaise	20 (7.0)	15 (5.6)	5 (5.4)	1.173†	0.279
Shortness of breath	19 (6.6)	16 (8.1)	3 (3.3)	2.413†	0.120
Myalgia	15 (5.2)	13 (6.6)	2 (2.2)	–	0.157
Headache	11 (3.8)	6 (3.0)	5 (5.4)	–	0.335
Diarrhea	6 (2.1)	5 (2.5)	1 (1.1)	–	0.668
Headache	5 (1.7)	3 (1.5)	2 (2.2)	–	0.655
Abdominal pain	1 (0.3)	1 (0.5)	0 (0)	–	1.000
Altered consciousness	45/256 (17.6)	28/170 (16.5)	17/86 (19.8)	0.428†	0.513
Heart rate (>100 beats per min)	19/258 (7.4)	2/172 (1.2)	17/86 (19.8)	0.428†	0.513
Respiratory rate (>24 breaths per min)	206/238 (86.6)	148/148 (100.0)	58/90 (64.4)	60.797†	<0.001
PaO2/FiO2 (>300 mmHg)	43/69 (62.3)	38/38 (100.0)	5/31 (16.1)	51.142†	<0.001

Data are presented as median (Q1, Q3), n (%), or n/N (%). COVID-19: Coronavirus disease 2019; PaO2/FiO2: Arterial partial pressure of oxygen/fraction of inspired oxygen; SaO2: Arterial oxygen saturation; –: Not applicable. *Z values. †x2 values.
Laboratory findings	All patients (n = 289)	Nonsevere (n = 197)	Severe (n = 92)	χ²	P
Hemoglobin (g/L)				6.397	0.011
<130	97/181 (53.6)	49/107 (45.8)	48/74 (64.9)		
≥130	84/181 (46.4)	58/107 (54.2)	26/74 (35.1)		
White blood cell count (×10⁹/L)				4.552	0.103
<4	57/239 (23.8)	44/158 (28.7)	13/81 (16.0)		
4–9.9	164/239 (68.6)	104/158 (65.8)	60/81 (74.1)		
≥10	18/239 (7.5)	10/158 (6.3)	8/81 (9.9)		
Lymphocyte count (×10⁹/L)				9.650	0.002
<1.8	95/233 (40.8)	50/150 (33.3)	45/83 (54.2)		
≥1.8	138/233 (59.2)	100/150 (66.7)	38/83 (45.8)		
Neutrophil count (×10⁹/L)				2.336	0.126
<1	29/209 (13.9)	22/132 (16.7)	7/77 (9.1)		
≥1	180/209 (86.1)	110/132 (83.3)	70/77 (90.9)		
Platelet count (×10⁹/L)				-	0.070
<100	8/184 (4.3)	2/157 (1.9)	6/77 (7.8)		
≥100	176/184 (95.7)	105/157 (98.1)	71/77 (92.2)		
Alanine aminotransferase (U/L)				2.043	0.153
<40	147/196 (75.0)	92/117 (78.6)	55/79 (69.6)		
≥40	49/196 (25.0)	25/117 (21.4)	24/79 (30.4)		
Aspartate aminotransferase (U/L)				3.258	0.071
<40	144/178 (80.9)	88/103 (85.4)	56/75 (74.7)		
≥40	34/178 (19.1)	15/103 (14.6)	19/75 (25.3)		
Total bilirubin (μmol/L)				0.724	0.395
<17.1	136/170 (80.0)	79/96 (82.3)	57/74 (77.0)		
≥17.1	34/170 (20.0)	17/74 (17.7)	17/74 (23.0)		
Creatinine (μmol/L)				-	0.019
<133	153/163 (93.9)	92/94 (97.9)	61/69 (88.4)		
≥133	10/163 (6.1)	2/96 (2.1)	8/69 (11.6)		
Blood urea nitrogen (mmol/L)				-	0.038
<7.5	122/134 (91.0)	91/96 (94.8)	31/38 (81.6)		
≥7.5	12/134 (9.0)	5/96 (5.2)	7/38 (18.4)		
Glucose (mmol/L)				4.166	0.041
<7.0	92/133 (69.2)	68/91 (74.7)	24/42 (57.1)		
≥7.0	41/133 (30.8)	23/91 (25.3)	18/42 (42.9)		
Creatine kinase (U/L)				3.160	0.075
<185	133/151 (88.1)	81/88 (92.0)	52/63 (82.5)		
≥185	18/151 (11.9)	7/88 (8.0)	11/63 (17.5)		
Myoglobin (ng/mL)				2.854	0.091
<7.5	60/79 (75.9)	29/34 (85.3)	31/45 (68.9)		
≥7.5	19/79 (24.1)	5/34 (14.7)	14/45 (31.1)		
Troponin T (ng/mL)				0.315	0.574
<0.1	36/50 (72.0)	20/29 (69.0)	16/21 (76.2)		
≥0.1	14/50 (28.0)	9/29 (31.0)	5/21 (23.8)		
Procalcitonin (ng/mL)				14.449	<0.001
<0.5	84/110 (76.4)	55/61 (90.2)	29/49 (59.2)		
≥0.5	26/110 (23.6)	6/61 (9.8)	20/49 (40.8)		
C-reactive protein (mg/L)				7.772	0.005
<10	68/158 (43.0)	51/99 (51.5)	17/59 (28.8)		
≥10	90/158 (57.0)	48/99 (48.5)	42/59 (71.2)		
Radiological findings					
Ground-glass opacity	184/211 (87.2)	133/151 (88.1)	51/60 (85.0)	0.365	0.546
Infiltration	136/184 (73.9)	97/135 (71.9)	39/49 (79.6)	1.117	0.291
Air bronchogram	59/184 (32.1)	43/136 (31.6)	16/48 (33.3)	0.048	0.827
Interlobular septal thickening	57/185 (30.8)	41/137 (29.9)	16/48 (33.3)	0.193	0.660
Reversed halo sign	27/182 (14.8)	24/136 (17.6)	3/46 (6.5)	3.367	0.066
Mosaic sign	16/183 (8.7)	14/137 (10.2)	2/46 (4.3)	-	0.365
Tractive bronchiectasis	8/184 (4.3)	7/136 (5.1)	1/48 (2.1)	-	0.683

Data are presented as n/N (%). COVID-19: Coronavirus disease 2019; -: Not applicable.
still hospitalized were 20.3% (30/148) vs. 30.0% (21/70), who had transferred to other facilities were 4.1% (6/148) vs. 2.9% (2/70), and who had died were 0 vs. 7.1% (5/70), respectively, in nonsevere group and severe group.

Risk factors for patients with severe COVID-19

The univariate analysis results [Table 4] showed that older age (≥ 65 years; OR, 5.898; 95% CI: 3.192–10.900; \(P < 0.001 \)) and smoking history (OR, 5.603; 95% CI: 1.066–29.450; \(P = 0.042 \)) were associated with severe COVID-19, and being a health care worker (OR, 1.878; 95% CI: 1.002–3.220; \(P = 0.049 \)), having contact with confirmed patients (OR, 3.818; 95% CI: 1.848–7.924; \(P = 0.010 \)) were less likely to be associated with severe COVID-19. Patients with chronic cardiac disease (OR, 6.319; 95% CI: 2.180–18.310; \(P = 0.001 \)) and diabetes (OR, 4.398; 95% CI: 1.863–10.380; \(P = 0.001 \)) were also more likely to be in the severe group. In addition, the presence of fever (OR, 0.511; 95% CI: 0.304–0.859; \(P = 0.011 \)), cough (OR, 3.347; 95% CI: 1.909–5.867; \(P < 0.001 \)), respiratory rate > 24 breaths per min (OR, 20.933; 95% CI: 4.711–93.067; \(P < 0.001 \)), and laboratory results, including higher hemoglobin (OR, 0.458; 95% CI: 0.249–0.842; \(P = 0.012 \)) and lymphocyte count (OR, 0.422; 95% CI: 0.244–0.731; \(P = 0.002 \)) were associated with the severity of COVID-19; and elevated glucose (OR, 2.218; 95% CI: 1.024–4.802; \(P = 0.043 \)), blood urea nitrogen (OR, 4.110; 95% CI: 1.216–13.890; \(P = 0.023 \)), creatinine (OR, 6.033; 95% CI: 1.239–29.370; \(P = 0.026 \)), procalcitonin (OR, 6.322; 95% CI: 2.286–17.480; \(P < 0.001 \)), and C-reactive protein levels (OR, 2.625; 95% CI: 1.320–5.221; \(P = 0.006 \)) were associated with severe COVID-19.

To further analyze the risk factors for severe COVID-19, multivariate regression models were used. The results indicated that being ≥ 65 years old (OR, 2.725; 95% CI: 1.317–5.636; \(P = 0.007 \)), male (OR, 1.878; 95% CI: 1.002–3.520; \(P = 0.049 \)), having comorbid diabetes (OR, 3.314; 95% CI: 1.126–9.758; \(P = 0.030 \)) or chronic cardiac disease (OR, 3.533; 95% CI: 0.989–12.642; \(P = 0.052 \), marginal significance), and presenting with cough (OR, 3.427; 95% CI: 1.752–6.706; \(P < 0.001 \)) and/or diarrhea (OR, 2.629; 95% CI: 1.109–6.231; \(P = 0.028 \)) on admission were significantly positively correlated with severe COVID-19. Moreover, COVID-19 patients with and without comorbid diabetes were stratified by sex for both groups [Supplementary Table 1, http://links.lww.com/CM9/A524], and male patients with diabetes were found to be more likely to develop severe COVID-19 (71.4% vs. 28.6%; \(\chi^2 = 8.183; P = 0.004 \)).

Discussion

This multi-center retrospective study covered 313 laboratory-confirmed COVID-19 patients from 23 hospitals across 12 provinces/municipalities in China. Our study included patients from a vast area of China, not only Wuhan, and the definition of COVID-19 from Diagnosis and Treatment Protocol for Novel Coronavirus Infection-Induced Pneumonia Version 6 (Trial) was used. However, the cases were divided into two groups instead of four (severe vs. nonsevere) according to our study objective, which was to better understand the clinical features of COVID-19 and provide guidance to improve early diagnosis and timely treatment of severe cases.

A total of 40.8% of patients in this study were aged ≥ 50 years. This finding is consistent with previous studies, which have shown that older age is as an important predictor of severe illness or even death in COVID-19,

Items	All patients (n = 289)	Nonsevere (n = 197)	Severe (n = 92)	\(\chi^2 \)	\(P \)
Treatments					
Antiviral treatment	253/264 (95.8)	168/177 (94.9)	85/87 (97.7)	–	0.348
Antibiotic treatment	155/249 (62.2)	120/178 (67.4)	35/71 (49.3)	7.091	0.008
Antifungal treatment	20/247 (8.1)	4/173 (2.3)	16/74 (21.6)	25.969	<0.001
Noninvasive ventilation	62/270 (23.0)	62/89 (69.7)	0 (0)	–	0.002
Invasive ventilation	61/270 (22.2)	6/89 (6.7)	0 (0)	–	0.002
Renal replacement therapy	4/270 (1.5)	0 (0)	4/89 (4.5)	–	0.002
Inotropes/vasopressors	4/270 (1.5)	0 (0)	4/89 (4.5)	–	0.002
Neuromuscular blocking agents	4/270 (1.5)	0 (0)	4/89 (4.5)	–	0.002
ECMO	2/270 (0.7)	2/89 (2.2)	0 (0)	–	0.002

Data are presented as \(n/N (%) \). COVID-19: Coronavirus disease 2019; ECMO: Extracorporeal membrane oxygenation; –: Not applicable.
Parameters	Univariate	Multivariate
Baseline characteristics		
Age (≥ 65 years vs. < 65 years)	5.898	2.725
Sex (male vs. female)	1.571	1.878
Smoking history (yes vs. no)	5.603	2.252
Healthcare worker (yes vs. no)	0.128	
Region of residence		
Wuhan	1.000	
Other cities in Hubei Province	4.350	
Cities outside Hubei Province	0.487	
Exposure history		
Recently visited epidemic area (yes vs. no)	1.565	1.638
Contact with confirmed patients (yes vs. no)	0.381	
Comorbidities		
Diabetes (yes vs. no)	4.398	3.314
Chronic cardiac disease (yes vs. no)	6.319	3.533
Chronic pulmonary disease (yes vs. no)	3.162	
Chronic kidney disease (yes vs. no)	8.909	
Malignant neoplasm (yes vs. no)	1.437	
Obesity (yes vs. no)	1.072	
Signs and symptoms		
Fever (yes vs. no)	0.511	0.541
Cough (yes vs. no)	3.347	3.427
Sore throat (yes vs. no)	0.649	
Fatigue/malaise (yes vs. no)	0.954	
Shortness of breath (yes vs. no)	2.781	
Diarrhea (yes vs. no)	2.153	
Myalgia (yes vs. no)	1.504	
Headache (yes vs. no)	1.492	
Rhinitis (yes vs. no)	0.572	
Vomiting/nausea (yes vs. no)	0.847	
Chest pain (yes vs. no)	0.381	
Arthralgia (yes vs. no)	0.315	
Wheezing (yes vs. no)	1.830	
Bleeding (yes vs. no)	0.422	
Abdominal pain (yes vs. no)	1.437	
Respiratory rate (>24 breaths per min vs. ≤24 breaths per min)	20.933	4.711
Heart rate (>100 beats per min vs. ≤100 beats per min)	1.249	0.641
Laboratory parameters		
Hemoglobin (≥130 g/dL vs. <130 g/dL)	0.458	
WBC count (4.0×10^9–9.9×10^9/L vs. <4.0×10^9/L)	1.953	5.867
WBC count (≥10.0×10^9/L vs. <4.0×10^9/L)	1.387	
Lymphocyte count (≥1×10^9/L vs. <1×10^9/L)	0.422	
Neutrophil count (≥1.8×10^9/L vs. <1.8×10^9/L)	2.000	1.986
Platelet count (≥100×10^9/L vs. <100×10^9/L)	0.225	
Alanine aminotransferase (≥40 U/L vs. <40 U/L)	1.606	1.805
Aspartate aminotransferase (≥40 U/L vs. <40 U/L)	1.990	2.000
Total bilirubin (≥17.1 mmol/L vs. <17.1 mmol/L)	1.386	0.792
Creatinine (≥2133 μmol/L vs. <133 μmol/L)	6.033	
Blood urea nitrogen (≥7.5 mmol/L vs. <7.5 mmol/L)	4.110	4.078
Glucose (≥7.0 mmol/L vs. <7.0 mmol/L)	2.218	
Creatine kinase (≥185 U/L vs. <185 U/L)	2.448	
Myoglobin (≥75 ng/mL vs. <75 ng/mL)	2.619	
Troponin T (≥0.1 ng/mL vs. <0.1 ng/mL)	0.694	
Procalcitonin (≥0.5 ng/mL vs. <0.5 ng/mL)	6.322	
C-reactive protein (≥10 mg/L vs. <10 mg/L)	2.625	

CI: Confidence interval; COVID-19: Coronavirus disease 2019; OR: Odds ratio; WBC: White blood cell; –: Not applicable.
sex hormones play a role in reducing susceptibility to viral, bacterial, and fungal infections in female. In addition, 50% of patients diagnosed with COVID-19 in this study had a history of exposure to confirmed cases, which is consistent with previous studies showing that COVID-19 infection is spread by human-to-human transmission.[1,2,17]

Consistent with other studies,[7,8,17] severe COVID-19 was found to occur more often in those with comorbid chronic cardiac disease or diabetes in our study. It has also been associated with more serious outcomes in influenza and other respiratory viral infections.[22] Patients with diabetes usually have weaker immune function,[23] suggesting that daily blood glucose control and supportive immune system therapies should be maintained to effectively reduce the severity of this disease in these patients.

The most common symptoms in this study were fever and cough, which is consistent with previous findings.[1-3] In our study, presenting with fever, cough, shortness of breath, and diarrhea, and a higher respiratory rate (≥ 24 breaths per min) were more frequently found in severe COVID-19 cases than in nonsevere cases. These results suggest that patients with these symptoms on admission should be closely monitored to achieve better outcomes.

In terms of laboratory tests, lymphopenia was more commonly observed in patients with severe COVID-19 in this study. This was consistent with a previous study,[17] which suggested that SARS-CoV-2 might selectively attack lymphocytes, initiating a series of immune responses. Moreover, higher levels of glucose, blood urea nitrogen, and creatinine were observed in severe COVID-19 cases, which was consistent with the finding that patients with diabetes are more likely to have severe COVID-19. Analogous to the report by Guan et al,[13] we found that patients with severe COVID-19 were more likely to have procalcitonin ≥ 0.5 ng/mL and C-reactive protein ≥ 10 mg/L, suggesting the potential for serious outcomes from severe COVID-19. Hence, early identification and timely treatment of severe cases is essential.

Antiviral drugs and antibiotics were more commonly used for patients with COVID-19 in this study, which was similar to some previous findings.[1,2,17] Antibiotics were used more often in nonsevere COVID-19 cases, whereas antifungal drugs were used more in severe COVID-19 cases. Other medications administered in more severe COVID-19 cases included inotropes/vasopressors and neuromuscular blocking agents. This suggests that these drugs should be available for prompt treatment in COVID-19 patients. Furthermore, Richardson et al.[24] reported that baricitinib may be a potential treatment option for COVID-19, and Wang et al.[25] found that remdesivir and chloroquine could effectively inhibit SARS-CoV-2 in vitro. However, Wang et al.[26] carried out a randomized, double-blind, placebo-controlled, multicenter trial with severe COVID-19 patients and the results showed that remdesivir was not significantly associated with clinical benefits. In the current study, 62 patients with severe COVID-19 received noninvasive ventilation and 6 patients with severe COVID-19 received invasive ventilation, whereas no patients with nonsevere COVID-19 received either treatment. Renal replacement therapy and ECMO were also only used in severe COVID-19 patients. Based on the above results, we suggest that comprehensive therapies are necessary in patients with severe COVID-19.

This study, however, has some limitations. First, due to the heavy workload of front-line physicians, not all patients hospitalized for COVID-19 during the study period from these 25 hospitals were included. Additionally, a much more comprehensive understanding of COVID-19 could have been obtained if patients from other provinces/municipalities in China were included. Second, since our study was conducted soon after the onset of COVID-19, a full picture of the disease could not be obtained. Therefore, the 289 cases included in this study might not be generalizable, especially since there were few mild or asymptomatic cases included in this study. Hence, the study might be biased towards more severe COVID-19.

Third, in this study, the valid response rates were 80.6% (233/289) and 67.1% (194/289) for whether being a healthcare worker and having closely contact with confirmed cases, respectively. There might be a potential bias for the analysis of those two risk factors. Therefore, interpretation of these two risk factors needs to be cautious. Further observations of the natural history of COVID-19 are needed, particularly from outbreaks outside of China, to obtain more information on the epidemiological and clinical features of COVID-19.

In conclusion, we identified that fever and cough were the most two common symptoms in patients with COVID-19, while the latter was more likely to be associated with severe COVID-19. Elevated procalcitonin level (≥ 0.5 ng/mL) and C-reactive protein (≥ 10 mg/L) were also potential risk factors for severe COVID-19. Patients with diabetes, especially men, more often developed severe COVID-19, potentially resulting in poor clinical prognosis. Therefore, further investigations that include rigorous observations and comprehensive therapies for patients diagnosed with severe COVID-19 are necessary.

Funding
This project was supported by the grants from Emergency Research Project on COVID-19 Prevention and Control, Xiamen University (Nos. 20720200017 and 20720200032).

Conflicts of interest
None.

References
1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7.
2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
3. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032.
4. Sun PF, Qie SY, Liu ZJ, Ren JZ, Xi JN. Clinical characteristics of 5732 patients with 2019-nCoV infection. SSRN Electronic Journal.
5. Coronavirus disease 2019 (COVID-19) situation report-184. Geneva: World Health Organization, 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200722-covid-19-sitrep-184.pdf?sfvrsn=7680210a_2. [Accessed July 23, 2020.]

6. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019;11:59. doi: 10.3390/v11010059.

7. Wang D, Hu B, Hu C, Zhou F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061–1069. doi: 10.1001/jama.2020.1585.

8. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)35656-3.

9. Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z, et al. Characteristics of COVID-19 infection in Beijing. J Infect 2020;80:401–406. doi: 10.1016/j.jinf.2020.02.018.

10. Wang Y, Liu Y, Liu L, Wang X, Lao N, Li L. Clinical outcomes in 55 patients with severe acute respiratory syndrome coronavirus 2 who were asymptomatic at Hospital Admission in Shenzhen, China. J Infect Dis 2020;221:1770–1774. doi: 10.1093/infdis/jiaa119.

11. Yang W, Cao Q, Qin L, Wang X, Cheng Z, Pan A, et al. Clinical characteristics and initial febrile durations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang, China. J Infect 2020;80:388–393. doi: 10.1016/j.jinf.2020.02.016.

12. Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, et al. COVID-19 with different severities: a multicenter study of clinical features. Am J Respir Crit Care Med 2020;201:1380–1388. doi: 10.1164/rccm.202002-0445OC.

13. Chen X, Tang Y, Mo Y, Li S, Lin D, Yang Z, et al. A diagnostic model for coronavirus disease 2019 (COVID-19) based on radiological and clinical features: a multi-center study. Eur Radiol 2020;30:4893–4902. doi: 10.1007/s00330-020-06829-2.

14. Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. New York: A John Wiley & Sons, Inc.; 2004.

15. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 1998;17:857–872. doi: 10.1002/(sici)1097-0258(19980430)17:8<857::aid-sta437>3.0.co;2-e.

16. Diagnosis and Treatment Protocol for Novel Coronavirus Infection-Induced Pneumonia Version 6 (Trial). Beijing: National Health Commission of the People’s Republic of China. Available from: http://www.nhc.gov.cn/yzygj/s7535p/202002/208334a208326dd202094d20329d202351d202007da202008afec202002.shtml. [Accessed April 28, 2020.]

17. Cao JL, Wu WJ, Cheng WL, Yu L, Liu YX, et al. Clinical features and short-term outcomes of 102 patients with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis 2020;71:748–755. doi: 10.1093/cid/ciaa2433.