Endoscopic naso-pancreatic stent-guided single-branch resection of the pancreas for multiple intraductal papillary mucinous adenomas

Tamotsu Kuroki, Yoshitsugu Tajima, Ryuji Tsutsumi, Noritsugu Tsuneoka, Amane Kitasato, Tomohiko Adachi, Takashi Kanematsu

Abstract

In benign or low-grade malignant pancreatic tumors, complete removal of the lesion is sufficient for a cure, and thus minimal resection techniques with preservation of the pancreatic functional reserve have advantages over more extended pancreatic resections. However, a high incidence of postoperative pancreatic fistula in such procedures has been reported. Moreover, branch-type intraductal papillary mucinous neoplasms of the pancreas tend to locate in the head of the pancreas, and show less malignant potential. We describe an endoscopic naso-pancreatic stent-guided single-branch resection of the pancreas for branch-type multiple intraductal papillary mucinous adenomas, along with a gastric wall-covering method for the prevention of pancreatic leakage.

© 2006 The WJG Press. All rights reserved.

Key words: Intraductal papillary mucinous neoplasm; Single-branch resection; Gastric wall-covering method

INTRODUCTION

Intraductal papillary mucinous neoplasm (IPMN) of the pancreas is characterized by dilatation of the main and/or branch pancreatic ducts, mucin-secretion, and intraductal papillary growth. IPMNs are classified into three types, a main pancreatic duct type, branch type, and mixed type. The branch type IPMN is more frequently located in the head of the pancreas, and shows less malignant potential. Therefore, several new surgical procedures for minimal resection of the pancreas with pancreatic functional reserve have been proposed, including duodenum-preserving pancreatic head resection, segmental pancreatectomy and single-branch resection of the pancreas. Single-branch resection is a minimally invasive surgical procedure for the resection of the pancreas because it requires no reconstruction for the main pancreatic duct or the common bile duct. In addition, single-branch resection should avoid injury to the main pancreatic duct which could cause a postoperative pancreatic fistula. Although several surgical techniques and devices have been advocated to avoid breaking the main pancreatic duct, the incidence of pancreatic fistula is still relatively high. We report herein a case of successful single-branch resection for two IPMNs within the head of the pancreas under the guidance of intraoperative pancreatography by using an endoscopic naso-pancreatic drainage (ENPD) tube along with a gastric wall-covering technique for the prevention of pancreatic leakage.
the pancreatic juice was negative for malignant cells. K-ras
point mutation at codon12 was detected in the pancreatic
juice. Consequently, the cystic lesions were diagnosed as
a branch-type intraductal papillary mucinous neoplasm
(IPMN) and the patient was considered a candidate for
surgery.

Under general anesthesia, we placed a 5F-size
ENPD tube (Olympus, Tokyo Japan) for intraoperative
pancreatography prior to laparotomy. The ENPD tube
was inserted deep into the main pancreatic duct for
approximately 10 cm through the orifice. After an upper
abdominal midline incision, the gastrocolic ligament was
divided and the pancreas exposed. The duodenum was
mobilized to facilitate access to the head of the pancreas.
The communicating branches between the cystic lesions
and main pancreatic duct were carefully evaluated by using
intraoperative US and pancreatography (Figure 2), and a
single-branch resection for both cystic tumors was then
performed. During the resectioning of the cystic tumors,
the ENPD tube in the main pancreatic duct was clearly
and easily detected by intraoperative US, and thus both
the direction and position of the main pancreatic duct
and the correlation between the cystic tumors and main
pancreatic duct were correctly identified. The two cystic
tumors were dissected along the border of the tumor and
the surrounding normal pancreatic parenchyma, and then
the confluences of the pancreatic branch ducts and main
pancreatic duct were ligated using a 4-0 non-absorbable
monofilament suture. Intraoperative frozen section
histological examination of the dissected pancreatic ducts
revealed a disease-free margin. After removal of the
tumors, pancreatography through the ENPD tube was
performed and revealed no injury to the main pancreatic
duct or leakage from the transected pancreatic branch
ducts. Because a mixture of indigocarmine and contrast
material was used for the pancreatography, we were able
to detect any minor pancreatic leakage as a blue spot at the
cut surface of the pancreas and close the leaking points
appropriately with 4-0 absorbable monofilament sutures.
After pancreatic resection, the ENPD tube was used for
the drainage of the pancreatic duct. It was not necessary to
perform any reconstruction of the digestive tract (Figure 3).
To prevent pancreatic leakage from the small pancreatic
branches at the cut surface of the pancreas, the “gastric
wall-covering method” was performed as follows: each
cut surface after resection of the two cystic tumors was
fixed to the posterior wall of the gastric body by suturing
between the pancreatic parenchyma and the seromuscular
layer of the stomach with 4-0 absorbable monofilament.
The operating time was 225 min, and blood loss was
240 mL. Histological diagnosis was intraductal papillary
mucinous adenoma of the pancreas. The ENPD tube was
removed on the 14th postoperative day. The postoperative
course was uneventful, and the patient was discharged
home on the 25th postoperative day with no endocrine or
exocrine pancreatic insufficiency.

DISCUSSION

The branch type of IPMN of the pancreas shows a more
favorable prognosis than invasive ductal adenocarcinoma
of the pancreas. In the benign or low-grade malignant
IPMN, complete tumor resection is sufficient for a cure[1,2].
Therefore, several organ-preserving techniques, including
duodenum-preserving pancreatic head resection, have
been advocated in the surgical treatment for IPMN in the
head of the pancreas[3]. The advantage of duodenum-

Figure 1 MRCP showing two cystic lesions in the head of the pancreas (arrows).

Figure 2 Intraoperative pancreatography using an ENPD tube demonstrates a
communicating duct between the main pancreatic duct and cystic lesion.

Figure 3 Operative photograph shows the pancreas after completion of the
single-duct resection of the pancreas for multiple IPMNs. Arrows indicate the cut
surface after pancreatic resection.

www.wjgnet.com
Duodenum-preserving pancreatic head resection requires a reconstruction of the main pancreatic duct and/or common bile duct. In addition, another challenge when performing the duodenum-preserving pancreatic head resection is preserving the blood supply to the duodenum. Therefore, single-branch resection of the pancreas for multiple IPMNs has been performed as an ultimate organ-preserving surgery[5]. In the present case, we developed single-branch resection of the pancreas using an ENPD tube for multiple branch-type IPMNs as an ideal pancreas-preserving surgery. The most important advantage of the single-branch resection is both the complete preservation of the main pancreatic duct and the complete removal of the lesions. The insertion of an ENPD tube was useful for identifying the pancreatic duct in order to prevent injury to the main pancreatic duct. The ENPD tube in the main pancreatic duct is easily detectable using intraoperative US, and it can demonstrate a repeated intraoperative pancreatography. The first benefit of intraoperative pancreatography using an ENPD tube is that the identification of the anatomical relationship between the cystic lesions and main pancreatic duct can be confirmed not only by a radiological image, but also by a direct palpation. In addition, we used a mixture of a dye and contrast medium for the intraoperative pancreatography, which allowed us to identify the pancreatic leakage directly as a visible blue point by detecting the dye leakage. Pancreatic leakage is the most frequent complication and is still responsible for most mortality after pancreatic surgery[6]. In particular, the incidence of pancreatic leakage following partial resection of the pancreas is high. In the present case, a novel surgical procedure, a “gastric wall-covering method,” was performed to prevent pancreatic leakage[7]. The concept of the gastric wall-covering method is that the opening small pancreatic ducts at the cut surface as a cause of pancreatic leakage were covered completely with the gastric wall. As shown in our patient, the multiple partial resections of the pancreas had a wide cut surface. Therefore, the gastric wall-covering method is useful for the prevention of pancreatic leakage from the opening of the small pancreatic branch ducts at the cut surface.

In conclusion, single-branch resection of the pancreas, without reconstruction of the pancreatobiliary tract, is the most ideal, least invasive pancreatic resection for a low-grade malignant neoplasm, including multiple IPMNs. ENPD tube-guided pancreatectomy is an improved technique that allows the surgeon to more accurately determine the precise location and correlation of tumors and pancreatic ducts.

REFERENCES
1 Tanaka M. Intraductal papillary mucinous neoplasm of the pancreas: diagnosis and treatment. Pancreas 2004; 28: 282-288
2 Kimura W. IHPBA in Tokyo, 2002: surgical treatment of IPMT vs MCT: a Japanese experience. J Hepatobiliary Pancreat Surg 2003; 10: 156-162
3 Takada T, Yasuda H, Amano H, Yoshida M. A duodenum-preserving and bile duct-preserving total pancreatic head resection with associated pancreatic duct-to-duct anastomosis. J Gastrointest Surg 2004; 8: 220-224
4 Nakagohri T, Kenmochi T, Kainuma O, Tokoro Y, Kobayashi S, Asano T. Inferior head resection of the pancreas for intraductal papillary mucinous tumors. Am J Surg 2000; 179: 482-484
5 Sata N, Koizumi M, Tsukahara M, Yoshizawa K, Kurihara K, Nagai H. Single-branch resection of the pancreas. J Hepatobiliary Pancreat Surg 2005; 12: 71-75
6 Kuroki T, Tajima Y, Kanematsu T. Surgical management for the prevention of pancreatic fistula following distal pancreatectomy. J Hepatobiliary Pancreat Surg 2005; 12: 283-285
7 Kuroki T, Tajima Y, Tsutsumi R, Mishima T, Kitasato A, Adachi T, Kanematsu T. Inferior branch-preserving superior head resection of the pancreas with gastric wall-covering method for intraductal papillary mucinous adenoma. Am J Surg 2006; 191: 823-826

S- Editor Liu Y L- Editor Zhu LH E- Editor Ma WH