Umbilical Cord Blood Stem Cells as a Beneficial Option in Cell-Based Therapy and Regenerative Medicine

Abstract

Stem cells are unique cells obtained from a broad range of tissues with different features related to proliferation capability and differentiation capacity. As one of the most important stem cell types in medicine today, umbilical cord blood-derived stem cells (UCB-SCs) are more practical choice than embryonic stem cells because their use does not involve ethical issues. For example, these cells are a powerful tool used in cell-based therapy and regenerative medicine to treat cancer and neurological, autoimmune, cardiovascular, and blood diseases. In this article, we perform a mini review of umbilical cord blood–derived stem cells as a beneficial option in cell-based therapy and regenerative medicine.

Keywords: Umbilical cord blood-derived stem cells; Umbilical cord blood-derived MSCs; Umbilical cord blood-derived HSCs; Regenerative medicine; Cell-based therapy

Abbreviations: UCB-SCs: Umbilical Cord Blood-Derived Stem Cells; HSCs: Hematopoietic Stem Cells; MSCs: Mesenchymal Stem Cells; UCB-MSCs: Umbilical Cord Blood-Derived Mesenchymal Stem Cells; UCB-MSCs: Umbilical Cord Blood-Derived MSCs; hUCB-MSCs: Human Umbilical Cord Blood-derived MSCs; GvHD: Graft-versus-Host Disease; HIV: Human Immunodeficiency Virus.

Introduction

Umbilical cord blood

Umbilical cord blood used to be regarded as waste material after childbirth [1]. In the last decades, however, it has been found to contain valuable biomaterials such as stem cells [2-5]. These potentially lifesaving cells in umbilical cord blood are called hematopoietic stem cells (HSCs) [6,7]. This blood contains mesenchymal stem cells (MSCs) as well [8-10] (Figure 1).

Umbilical cord blood-stem cells benefits and features

Both of the abovementioned stem cells derived from umbilical cord blood could be used to repair and restore damaged tissues and treat diseases such as cancer, blood and neurological disorders, and immune deficiencies because of their tremendous proliferation and differentiation potential and great regenerative capacity [11-26]. In addition, these candidate cells have a great paracrine mechanism on other cells [27]. This biological mechanism could increase stem cells’ regenerative capacity [27].

Besides these biological mechanisms, umbilical cord blood-derived MSCs (UCB-MSCs) have few immunological properties because they naturally express little class I MHC and lack HLA-DR and both CD80 and CD86 proteins [28-32]. A number of studies have shown that UCB-MSCs have initial immunomodulatory effect and are compatible with safety systems [28-32]. These mechanisms are unknown, but evidence shows that paracrine factors secreted by these candidate cells could be involved in this process [28-30]. UCB-MSCs immunomodulatory effects on the immune system provide by the number of paracrine factors [27-30]. These factors not only inhibit T-cell proliferation but also often increase anti-inflammatory cytokine secretions [28-30]. Owing to this regulatory effect, UCB-MSCs regulate immune responses with anti-inflammatory effects and expand production [30]. Consequently, the use of these candidate cells in the allogenic form could be suggested as an immunologically safe treatment in the field of regenerative medicine [30] (Figure 2).

Similar to MSCs derived from bone marrow, UCB-MSCs can differentiate into multilineage cells (e.g., adipocyte, chondrocyte and osteocyte) at induced differentiation conditions in vitro (Figure 2) [28]. In addition to UCB-MSCs, hematopoietic stem cells are other stem cells derived from umbilical cord blood that can generate red blood cells, white blood cells, and platelets [33].

Figure 1: This figure schematically demonstrates the different types of stem cells from umbilical cord blood.
Umbilical Cord Blood Stem Cells as a Beneficial Option in Cell-Based Therapy and Regenerative Medicine

(Umbilical Cord Blood Stem Cells as a Beneficial Option in Cell-Based Therapy and Regenerative Medicine)

(Figure 3). Furthermore, UCB-HSC could be differentiated into hematological cells and non-hematological cells in physiologic and pathological condition, respectively [34].

Applications of umbilical cord blood-stem cells in research study

An animal-based study showed that the human umbilical cord's mesenchymal stem cells may be useful in treatments for alleviating the symptoms of preeclampsia [36]. In this study, human umbilical cord cells were collected, extracted, and cultured [36]. The results of these experiments demonstrated that umbilical cord blood's mesenchymal stem cells have the ability to affect preeclampsia symptoms in the mice [36]. Additionally, the blood pressure reduced and fetal weight symptoms associated with the disease increased after treatment [36]. Finally, the outcomes of this study demonstrated that the transfer of UCB-MSC may be useful for the treatment of preeclampsia [36].

Treatment using UCB-MSCs has shown promise for treating diabetes mellitus in a rat model, particularly in regard to the vitreous humor and the blood-retinal barrier [37]. Furthermore, it has been demonstrated that MSCs derived from human umbilical cord blood (hUCB-MSCs) may have a positive effect on murine experimental colitis [38].

Three experiments carried out on two dimensional conditions have illustrated that UCB-HSC could have better maintained under specific condition, such as hypoxic condition [39-41]. However, some studies described that 3D culture systems could be used in proliferation and differentiation of UCB stem cells for tissue engineering applications [42-44].

Therefore, during various experiments, HSC stem cells were proliferated and expanded on a variety of three-dimensional (3D) conditions, including electrospun polyethersulfone nanofibers, 3D collagen gels, PCL, PLGA, fibrin, collagen, hydroxapatite ceramic scaffolds, macroporous PEG hydrogels and so on [42-45].

In an in vitro study, chondrogenic differentiation ability of human UCB-MSCs was evaluated in four different scaffolds during 4 weeks [46]. Considering the obtained outcome in this study, it was identified that human fibroblast-derived matrix (hFDM) had the best effect on the cell differentiation and mesenchymal condensation in vitro [46].

An in vitro experiment also confirmed that the UCB-MSCs could be induced to differentiate toward osteoblast lineage on 2D and 3D environment [47]. In this study, the osteogenic differentiation of UCB-MSCs was accelerated on both 2D and 3D environment by single and dual growth factors delivery using nanoparticles-in-microcapsules [47].

Umbilical cord blood-stem cell in the clinical study

Most of the clinical trials related to UCB-MSCs are in phases I and II, in which the safety and efficacy of treatment is determined [48]. The efficacy of treatment for all studies based on UCB-MSCs has shown no serious adverse events or side effects [1].

Citation: Kowsari A, Jafarian Z, Qomi RT, Sheikholeslami A, Kalhor N, et al. (2017) Umbilical Cord Blood Stem Cells as a Beneficial Option in Cell-Based Therapy and Regenerative Medicine. J Stem Cell Res Ther 3(2): 00094. DOI: 10.15406/jsrt.2017.03.00094
Recently, stem cells derived from umbilical cord blood have been clinically transplanted into patients with severe thalassemia and some types of cancer, including malignant and non-malignant disorders [49-51]. Thus far, it appears that, worldwide, more than 600,000 transplants have been performed using stem cells obtained from umbilical cord blood [7]. It is important to mention that most completed or ongoing clinical trials are still in the early phases (phase I and II) [48]. As a result, the outcomes of these studies are not yet clear.

According to data obtained from ClinicalTrials.gov, more than 180 clinical trials have demonstrated the widespread use of umbilical cord blood stem cells for the treatment of diseases [48]. These clinical studies are verified based on the recent results of the most recent studies. One of the most important clinical trials focuses on neurological disorders such as autism, cerebral palsy, spinal cord damage, hearing loss and hypoxic ischemic encephalopathy, as well as autoimmune medical conditions including multiple sclerosis, lupus, diabetes mellitus, Crohn’s disease, graft-versus-host disease (GVHD), and rheumatoid arthritis (Figure 4) [52]. Cardiovascular diseases such as congenital heart disease, ischemic stroke, and myocardial infarction have also been treated using these candidate cells (Figure 4) [52]. Additionally, inherited disorders such as human immunodeficiency virus (HIV), thalassemia, sickle cell disease, and severe combined immunodeficiency can be treated by UCB-MSCs [52]. In addition to these diseases, UCB-MSCs also were used for treat orthopedic problems, including articular cartilage defects and knee articular cartilage injury [52].

![Figure 4](image-url)

Figure 4: This figure schematically demonstrates the application of umbilical cord blood stem cells for regenerative medicine approach.

Conclusion

The future holds great promise for the use of umbilical cord blood stem cells. In the transplantation discipline, collection of data from clinical trials will continue to improve knowledge, thereby assisting to enhance survival rates. Recent medical progress have illustrated that these candidate cells could be used to treat the similar disease as the hematopoietic stem cells available in bone marrow but without some of the drawbacks of these type of transplant. These candidate cells are currently used to treat approximately 80 diseases including cancer, immune deficiencies, cardiovascular diseases, neurological disorders, and blood diseases.

References

1. Malgieri A, Kantzari E, Patrizi MR, Gambardella S (2010) Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med 3(4): 248-269.
2. Waller-Wise R (2011) Umbilical cord blood: information for childbirth educators. J Perinat Educ 20(1): 54-60.
3. Armon BA, Maternal/Fetal Medicine Committee, Society of Obstetricians and Gynaecologists of Canada (2005) Umbilical cord blood banking: implications for perinatal care providers. J Obstet Gynaecol Can 27(3): 263-290.
4. Bordet S, Nguyen TM, Knoppers BM, Issai R (2010) Use of umbilical cord blood for stem cell research. J Obstet Gynaecol Can 32(1): 58-61.
5. Bojanić I, Golubić Cepulić B (2006) Umbilical cord blood as a source of stem cells. Acta Med Croatica 60(3): 215-225.
6. McKenna D, Sheth J (2011) Umbilical cord blood: current status & promise for the future. Indian J Med Res 134: 261-269.
7. Ballen KK, Verter F, Kurtzberg J (2015) Umbilical cord blood donation: public or private? Bone Marrow Transplant 50(10): 1271-1278.
8. Gong X, Wang P, Wu Q, Wang S, Yu L, et al. (2016) Human umbilical cord blood derived mesenchymal stem cells improve cardiac function in cTnT(R141W) transgenic mouse of dilated cardiomyopathy. Eur J Cell Biol 95(1): 57-67.
9. Matsumoto T, Mugishima H (2009) Non-hematopoietic stem cells in umbilical cord blood. Int J Stem Cells 2(2): 83-89.
10. Zarrabi M, Mousavi SH, Abroun S, Sadeghi B (2014) Potential uses for cord blood mesenchymal stem cells. Cell J 15(4): 274-281.
11. Achyut BR, Varma NR, Arbab AS (2014) Application of Umbilical Cord Blood Derived Stem Cells in Diseases of the Nervous System. J Stem Cell Res Ther pii: 1000202.
12. Park SK, Won JH (2009) Usefulness of umbilical cord blood cells in era of hematopoiesis research. Int J Stem Cells 2(2): 90-96.
13. Iafolla MA, Tay J, Allan DS (2014) Transplantation of umbilical cord blood-derived cells for novel indications in regenerative therapy or immune modulation: a scoping review of clinical studies. Biol Blood Marrow Transplant 20(1): 20-25.
14. Bari S, Seah KK, Poon Z, Cheung AM, Fan X, et al. (2015) Expansion and homing of umbilical cord blood hematopoietic stem and progenitor cells for clinical transplantation. Biol Blood Marrow Transplant 21(6): 1008-1019.
15. Damien P, Allan DS (2015) Regenerative Therapy and Immune Modulation Using Umbilical Cord Blood-Derived Cells. Biol Blood Marrow Transplant 21(9): 1545-1554.
Umbilical Cord Blood Stem Cells as a Beneficial Option in Cell-Based Therapy and Regenerative Medicine

16. Wagner JE, Brunstein CG, Boitano AE, DeFor TE, McKenna D, et al. (2016) Phase I/II Trial of StemRegenin-1 Expanded Umbilical Cord Blood Hematopoietic Stem Cells Supports Testing as a Stand-Alone Graft. Cell Stem Cell 18(1): 144-155.

17. Fu L, Liu Y, Zhang D, Xu J, Guan H, et al. (2015) Beneficial effect of human umbilical cord-derived mesenchymal stem cells on an endotoxin-induced rat model of pre eclampsia. Exp Ther Med 10(5): 1851-1856.

18. Wang LL, Yu Y, Guan HB, Qiao C (2016) Effect of Human Umbilical Cord Mesenchymal Stem Cell Transplantation in a Rat Model of Preeclampsia. Reprod Sci 23(8): 1058-1070.

19. Meng HB, Song J, Zhou R, Hua J, Yao L, et al. (2013) Therapeutic effect of human umbilical cord-derived mesenchymal stem cells in rat severe acute pancreatitis. Int J Clin Exp Pathol 6(12): 2703-2712.

20. Roua S, Pujal JM, Gálvez-Montón C, Bayes-Genis A (2015) The role and potential of umbilical cord blood in an era of new therapies: a review. Stem Cell Res Ther 6: 123.

21. El Omar R, Beroud J, Stolz JF, Menu P, Velot E, et al. (2014) Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng Part B Rev 20(5): 523-544.

22. Ruggeri A, Cicieri F, Gluckman E, Labopin M, Rocha V (2010) Eurocord and Acute Leukemia Working Group of the European Blood and Marrow Transplant Group. Alternative donors hematopoietic stem cells transplantation for adults with acute myeloid leukemia: Umbilical cord blood or haploidentical donors? Best Pract Res Clin Haematol 23(2): 207-216.

23. Ballen KK, Gluckman E, Brzozmeyer HE (2013) Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122(4): 491-498.

24. Serenci M, Murgi E, Valle V, Tamburini A, Pellegreni MG, et al. (2016) Sibling cord blood donor program for hematopoietic cell transplantation: the 20-year experience in the Rome Cord Blood Bank. Cytoskeleton Mol Dis 57: 71-73.

25. Hordyjewska A, Popiołek Ł, Hovecka A (2015) Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology 67(3): 387-396.

26. Wu J, Sun Y, Block TJ, Marinkovic M, Zhang ZL, et al. (2016) Umbilical cord blood-derived non-hematopoietic stem cells retrieved and expanded on bone marrow-derived extracellular matrix display pluripotent characteristics. Stem Cell Res Ther 7(1): 195-202.

27. Pineault N, Abu-Khader A (2015) Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol. 43(7): 498-513.

28. Nagamura-Inoue T, He H (2014) Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J Stem Cells 6(2): 195-202.

29. Friedman R, Betancur M, Boiselle L, Tuncer H, Cetrulo C, et al. (2007) Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biol Blood Marrow Transplant 13: 1477-1486.

30. Deuse T, Stubbendorf M, Tang-Quan K, Phillips N, Kay MA, et al. (2011) Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant 20(5): 655-667.

31. Prasanna S, Gopalakrishnan D, Shankar SR, Vasandran AB (2010) Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differently. PLoS One 5: e9016.

32. Lee M, Jeong SY, Hah J, Kim M, Jin HJ, et al. (2014) Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biochem Biophys Res Commun 446(4): 983-989.

33. van de Ven C, Collins D, Bradley MB, Morris E, Cairo MS (2007) The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration. Exp Hematol 35(12): 1753-1765.

34. Ilic D, Micre C, Lazic E (2012) Umbilical cord blood stem cells: clinical trials in non-hematological disorders. Br Med Bull 102: 43-57.

35. Kanji S, Pompili VJ, Das H (2011) Plasticity and maintenance of hematopoietic stem cells during development. Recent Pat Biotechnol 5(1): 40-53.

36. Wang LL, Yu Y, Guan HB, Qiao C (2016) Effect of Human Umbilical Cord Mesenchymal Stem Cell Transplantation in a Rat Model of Preeclampsia. Reprod Sci 23(8): 1058-1070.

37. Dong M, Zhang W, Chen S, Wang JM, Duan HF, et al. (2017) The protective effect of human umbilical cord mesenchymal stem cells-induced neutl stem cells in the vitreous on the blood-retinal barrier in diabetic rats. Zhonghua Yan Ke Za Zhi (1): 53-58.

38. Kim HS, Yun JW, Shin TH, Lee SH, Lee BC, et al. (2015) Human umbilical cord blood mesenchymal stem cell-derived PGE2 and TGF-β1 alleviate atopic dermatitis by reducing mast cell degranulation. Stem Cells 33(4): 1254-1266.

39. Roy S, Tripathy M, Mathur N, Jain A, Mukhopadhyay A (2012) Hypoxia improves expansion potential of human cord blood-derived hematopoietic stem cells and marrow repopulation efficiency. Eur J Haematol 88(5): 396-405.

40. Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC (2003) Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112(1): 126-135.

41. Ivanovic Z, DelloSbarba P, Trimoreau F, Faucher JL, Praloran V (2000) Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent. Transfusion 40(12): 1482-1488.

42. Wendt D, Marsano A, Jakob M, Heberer M, Martin I (2003) Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol Bioeng 84(2): 205-214.

43. Raic A, Rödding L, Kalbacher H, Lee-thedieck C (2014) Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials 35(3): 929-940.

44. Ferreira MS, Jahnhen-Dechent W, Labude N, Bovi M, et al. (2012) Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials 33(29): 6987-6997.

45. Gluckman E, Ruggeri A, Volt F, Cunha R, Boudjedir K, et al. (2011) Milestones in umbilical cord blood transplantation. Br J Haematol 154: 441-447.

46. Kim IG, Ko J, Lee HR, Do SH, Park K (2016) Mesenchymal cells condensation-inducible mesh scaffolds for cartilage tissue engineering. Biomaterials 85: 18-29.
47. Subbiah R, Hwang MP, Van SY, Do SH, Park H, et al. (2015) Osteogenic/angiogenic dual growth factor delivery microcapsules for regeneration of vascularized bone tissue. Adv Healthc Mater 4(13):1982-1992.

48. Amir Ali Hamidieh, Tahereh Rostami, Mohammadreza Ostadali, Maryam Behfar, Ashraf Sadat Hosseini, et al. (2017) Outcomes of Unrelated Donor Hematopoietic Stem Cell Transplantation for Pediatric Patients: The First Report From Iran. Biology of Blood and Marrow Transplantation 23(3): S122.

49. Amir Ali Hamidieh, Maryam Behfar, Amir Eslami, Shahr Babaki Ashraf sadat Hosseini, et al. (2016) TBI-Free Pediatric Hematopoietic Stem Cell Transplantation in Iran: Two Decades of Practice. Biology of Blood and Marrow Transplantation 22(3): S321-S322.

50. Ghavamzadeh A, Alimoghaddam K, Jahani M, Hamidieh AA, Mousavi SA, et al. (2010) Hematopoietic Stem Cell Transplantation For Major Thalassemia: Nineteen Years Experience In Iran. Biology of Blood and Marrow Transplantation 16(2): S159.

51. El-Badri N (2017) Advances in stem cell therapy: bench to bedside. Cham: Humana Press, USA.