Transactivation: a mechanism to increase the signalling diversity of activated G protein-coupled receptors and receptor tyrosine kinases

G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) are major classes of cell surface receptors extensively targeted in drug discovery programmes due to their critical roles in health and disease. GPCRs are seven transmembrane spanning receptors that bind a structurally diverse range of ligands [1]. Activation stabilises GPCR conformations favouring downstream signalling via heterotrimeric G proteins (G\(\alpha\) and G\(\beta\)\(\gamma\) subunits). Four main classes of G proteins exist: G\(s\), G\(i/o\), G\(_{q/11}\), G\(_{12/13}\) that direct signalling via distinct effector proteins such as adenylyl cyclase, phospholipase C and Rho GTPases. GPCR activation also promotes the recruitment of GPCR kinases (GRKs) that phosphorylate the GPCR C terminus. This in turn enhances recruitment of \(\beta\)-arrestin which uncouples GPCR/G protein complexes, promoting GPCR desensitisation and endocytosis in addition to G protein-independent signalling pathways; however, the functional significance of this in physiology has been debated [2]. RTKs typically consist of a large extracellular ligand binding domain, a transmembrane domain and an intracellular catalytic kinase domain. RTKs notably bind growth factors such as epidermal growth factor (EGF)
and vascular endothelial growth factor (VEGF). Ligand binding typically induces dimerisation of receptor monomers triggering trans-autophosphorylation of C terminal tyrosines residues that act as recruitment sites for intracellular adaptor proteins, such as Src, phosphoinositide 3-kinases (PI3K) and phospholipase C (PLC). These adaptors can themselves be phosphorylated due to the intrinsic kinase activity of RTKs, increasing and diversifying the network of signalling pathways available from activation of a single receptor. RTK-mediated signalling is typically responsible for driving cell proliferation, migration and survival via extracellular signal-regulated kinases 1/2 (ERK1/2), focal adhesion kinase (FAK) and protein kinase A/Akt mediators [3].

GPCRs and RTKs were believed to act as independent signalling entities, until seminal work by Ullrich and colleagues [4] revealed rapid tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) in response to known GPCR agonists. This phenomenon, termed transactivation, is characterized by altered RTK activation and downstream signalling directly attributable to GPCR/RTK interactions. Transactivation offers a mechanism to increase the number and breadth of signalling networks available within each cell, by integrating the diversity of GPCRs and GPCR ligands with the vast signalling networks mediated by activated RTKs [5].

Transactivation of the EGFR has been observed with Class A and Class B GPCR partners including but not limited to the β1, β2 and α1-adrenoceptors (AR), adenosine A1 and A3 receptors, μ opioid receptor, muscarinic M1 and the AT1R angiotensin receptor [reviewed in 6]. Evidence of transactivation has been observed in a range of cell types for other RTK family members, such as the vascular endothelial growth factor receptors (VEGFRs), fibroblast growth factor receptors (FGFRs), platelet-derived growth factor receptor (PDGFR), insulin-like growth factor receptor-1 (IGFR-1) and the insulin receptor (IR) [7]. Recent reviews have extensively covered the beneficial roles of transactivation in regulating cardioprotection [6] and vital central nervous system functions [3]. However, disadvantageous signalling as a consequence of transactivation has been identified such as progression from acute to chronic pain (μ opioid/EGFR in opioid-induced hyperalgesia [8]), proliferation of human hyperplastic prostatic cells (α1-AR/EGFR [9]), gastric cancer cell migration (CXCR4/EGFR [10]), poor patient prognostic and increased lymphatic spread in HER2+ breast cancer patients (cannabinoid receptor 2 (CB2R/HER2 [11]) and underlying tumour re-occurrence following anti-VEGF/VEGFR2 therapeutics (sphingosine 1-phosphate receptor/VEGFR2 [12]). In this short review, we focus on recent examples revealing new insights into the molecular mechanisms involved, and highlight some of the new technologies, beyond traditional biochemical techniques, used to investigate transactivation.

Ligand-dependent and independent mechanisms of transactivation

RTKs can be activated by GPCRs in a ligand-dependent or independent manner (Figure 1). Ligand-dependent transactivation occurs via matrix metalloproteinases (MMPs) or a disintegrin and metalloproteinases (ADAMs) and has been extensively characterised for the EGFR [5]. MMPs or ADAMs cleave RTK pro-ligands bound to extracellular matrix components such as heparin binding EGF (Hb-EGF). These cleaved ligands then bind to cell surface RTKs triggering downstream signalling. Activation of MMPs or ADAMs occurs as a consequence of GPCR activation; however, the exact mechanisms are not fully known but are proposed to involve Gβγ subunits [13] or Src [14–16].

As GPCRs lack intrinsic tyrosine kinase activity, ligand-bound GPCRs indirectly activate RTKs via intracellular protein kinases such as Src, PI3K and Pyk [3]. These effector proteins directly induce RTK activation via phosphorylation of tyrosine or serine/threonine residues. For example, Src-mediated phosphorylation of EGFR has been observed following activation of the corticotropin releasing factor receptor 1 (CRF1R) with this transactivation critical for CRF-stimulated ERK1/2 signalling [17]. Mediators can also play simultaneous roles in direct RTK activation and transactivation (e.g. Src at CXCR4 and EGFR [15]).

Another mechanism of transactivation is via production of second messengers, notably reactive oxygen species (ROS). NADPH Oxidase produced ROS has been shown to mediate transactivation between formyl peptide receptor 1 (FPR1) with VEGFR2 [18], EGFR [19] and TrkA [20] as well as the formyl peptide receptor 2 (FPR2) with HGF [21]. The multiple RTKs activated by ROS have led to speculation that ROS may be a mechanism for global transactivation [5] supported by recent evidence of ROS-mediated dual transactivation of EGFR and HER2 by neurotensin 1 receptors [22].

Though currently less extensively observed, transactivation can be bidirectional. For example, the lysophosphatidic acid receptor 1 (LPA) and EGFR can reciprocally transactivate and induce proliferation of prostate cancer cells [23]. However, this same positive crosstalk can be suppressed by activation of another GPCR, the free fatty acid receptor (FFA4 [23]). Formation of RTK/GPCR complexes can also alter effector protein coupling to the GPCR partner as seen for the CB2R. In response to tetrahydrocannabinol (THC), the CB2R typically couples to Gβγ11; however, when complexed with HER2, CB2R coupling switches to Gi or Gα subtypes [11]. This suggests HER2/CB2R is a
unique pharmacological entity compared to CB2R that promotes pro-tumoral signalling. RTK-mediated GPCR transactivation is typically more complex than GPCR/RTK and can include tyrosine phosphorylation of GPCRs and GRKs by RTKs or modulation of GPCR serine/threonine phosphorylation by protein kinases (reviewed in Ref. [24]). A recent example of this is internalised EGFR (induced by EGF), which can indirectly mediate inhibition of dopamine D3 receptor signalling by promoting tyrosine phosphorylation of GRK2, subsequently inhibiting D3 signalling, endocytosis and degradation [25]. To add further complexity, different RTKs can induce phosphorylation of the same GPCR but at differing residues (in this instance...
tyrosines), as observed at the β2-AR following ligand activation of the IR [26] or IGF-1R [27].

Challenges remain in unravelling signalling directly attributable to transactivation alone, complicated by RTKs also utilising 'classical' GPCR signalling mediators such as G proteins, β-arrestins and GRKs (reviewed in Ref. [7]). For example, Gqαi is critical to VEGFR2 clathrin-mediated endocytosis, with knockout of Gqαi retaining VEGFR2 at the cell surface and decreasing downstream VEGFR2 driven signalling [28]. Gβγ is implicated in regulating EGFR endocytosis, and mediating interaction of internalised EGFR/Src/GRK complexes [25]. GRKs can also directly regulate RTK-driven signalling (seen for the IGF-1R), and with different GRK subtypes exhibiting opposing effects at the same receptor [29], potentially by modulating changes in the lifespan of β-arrestin association. Interestingly, following transactivation (Src and MMP dependent) of the IGF-1R by the vasopressin 2 receptor (V2R), it is the engagement of β-arrestin with IGF-1R and not V2R that is critical for vasopressin stimulated ERK1/2 signalling [16], with suggestions that RTK/β-arrestin interactions may be applicable to other GPCRs.

Many signalling effectors, such as Src, PI3K, ERK1/2 and MAPK can act as convergence points for multiple signalling pathways, including those that are GPCR or RTK mediated, making it more difficult to tease out signalling events directly attributable to transactivation. RTK inhibitors, such as AG1478 (EGFR), have been useful for 'silencing' the RTK component of trans-activation; however, they often lack selectivity. Transactivation has largely been confirmed using indirect biochemical measures of signalling pathways (e.g. phosphorylation ERK1/2) at endogenous unmodified receptors. Although, they often lack dynamic, temporal or spatial resolution, these readouts can still reveal static spatial detail such as differential subcellular ERK1/2 and Akt activation in fractionated mouse hearts and cardiomyocytes as a result of isoprenaline-induced βAR-mediated EGFR transactivation [30].

The use of resonance energy transfer techniques to measure the real-time recruitment of adaptor proteins in transactivation

There remains a need to quantify the real-time location and dynamics of transactivation specific signalling. Proximity-based techniques such as bioluminescence resonance energy transfer (BRET) or Förster Resonance Energy Transfer (FRET) offer exquisite spatial and temporal sensitivity for investigating protein–protein interactions in live cells due to the need for close proximity of donor/acceptor pairings (within 10 nm of each other) [31]. The use of a FRET-based biosensor illustrated the importance of phosphorylation by PI3K in regulating Src activity during transactivation of β2-AR/EGFR [32]. Furthermore, a BRET-based assay has highlighted the complexity of AT1R transactivation of insulin receptors as the protein kinase (ERK1/2 vs. PKC) mediator was found to differ between insulin receptor substrates [33]. BRET has also investigated the real-time kinetics of fluorescently tagged β-arrestin2 recruitment to β2-AR/IR complexes in response to isoprenaline [34] and at NanoLuc tagged β2-AR in the presence of VEGFR2 (Figure 2A [35]). The profile of β-arrestin2 recruitment to β2-AR was altered following agonist co-stimulation when compared to β2-AR agonist alone and required the presence of activated VEGFR2 (Figure 3A). In both cases β-arrestin was only seen with GPCR stimulation [34,35]. However Grb2 recruitment to AT1R/EGFR complexes measured using BRET revealed different extents depending on which receptor partner was activated, with rapid recruitment seen with EGF and only partial recruitment with the AT1R agonist angiotensin II [36]. Grb2 recruitment to AT1R/EGFR complexes in these cells (HEK293T) was shown to be independent of Gqαi or β-arrestin, whereas previous observations in COS-7 cells or ventricular cardiomyocytes showed dependence on Gqαi activation for AT1R/EGFR mediated hypertrophy [37]. These discrepancies may reflect differences in proximal (direct effector protein recruitment) versus indirect (e.g. downstream pathway activation) measures of transactivation [36].

However, it is also becoming increasingly clear that transactivation mechanisms may differ between cell types due to changes in the expression levels or repertoire of signalling components present. Functional genomic approaches (at AT1R/EGFR complexes in HMEC-LST cells [38]) and DNA microarray gene expression studies (α2B-AR in vascular smooth muscle cells [39]) have begun to provide new unbiased methods for identifying mediators involved.

Physical complex formation between GPCRs and RTKs

The formation of oligomeric complexes between GPCRs and RTKs is now accepted as a regulator of transactivation [2]. These complexes may represent a mechanism to localise signalling components together to increase the efficiency of transactivation and resultant downstream signalling. Discrete complexes also raise the potential for cooperativity across putative GPCR/RTK interfaces; however, evidence for this is still largely speculative. Observations of complex formation have largely been derived from co-immunoprecipitation assays, which cannot definitively confirm physical complexes, their cellular location or lifespan. In contrast, the exquisite spatial sensitivity and dynamism of BRET and FRET techniques have recently been used to investigate GPCR or RTK oligomerisation in real time (reviewed in Ref. [31], summarised in Table 1).
FRET has confirmed the formation of 5-hydroxytryptamine receptor 1A (5-HT1A; GPCR) complexes with FGFR1 [40] supporting physiological evidence for these complexes and their role in neuronal plasticity [41]. BRET studies have also revealed the formation of heteromeric complexes between the β2-AR and IR that could underlie the counter-regulatory effects of insulin and catecholamines in glucose metabolism [42]. FRET has also shown isoprenaline-induced dissociation of β2-AR/EGFR complexes which internalise to distinct endocytic compartments [32]. Constitutive and dynamic agonist-induced complexes of AT1R/EGFR [36] and β2-AR/VEGFR2 [35] have also been revealed using BRET. β2-AR/VEGFR2 complexes, as measured by BRET, were also observed with endogenously expressed β2-AR (using CRISPR/Cas9 gene edited HEK293T cells) and in human umbilical vein endothelial cells (HUVECs [35]). Interestingly significantly increased BRET was observed between adenosine A2A and FGF1 following concomitant agonist stimulation [43], consistent with previous biochemical observations in PC12 adrenal medulla cells where synergistic ERK1/2 phosphorylation was only observed with dual activation of A2A and FGFR-1 [44]. Dissociation of complexes upon GPCR stimulation has also been observed with BRET studies of CB2R/HER2 in response to THC [11].

A disadvantage of RET-based studies is they cannot necessarily show the cellular location of GPCR/RTK complexes. Fluorescence imaging of co-localised GPCRs with RTKs has been limited by the paucity of selective

Using bioluminescence resonance energy transfer to investigate GPCR/RTK complex formation and adaptor protein recruitment. RTKs can be tagged at their N terminus with a luminescent protein (e.g. NanoLuc; termed the ‘donor’; blue hexagon) at both monomers, whereas a fluorescent tag (e.g. ‘SnapTag’ termed the ‘acceptor’; green rectangle) can be attached to the N terminus of a GPCR (a). The substrate for the luminescent protein is then oxidised, producing energy in the form of photons. If donor and acceptor tagged receptors are in sufficiently close proximity (<10 nm), non-radiative transfer of this energy occurs to excite the acceptor fluorophore. The ratio of fluorescence and luminescence emissions allows a BRET ratio to be determined. BRET can also be used to investigate adaptor protein recruitment to a GPCR/RTK complex (b), for example, using a GPCR tagged at its C terminus with a luminescence protein (blue hexagon) and a fluorescently tagged adaptor protein (in this case β-arrestin2-YFP; green circle).
antibodies for GPCR subtypes. The use of proximity ligation assays (PLA) has circumvented this in some ways with notable recent observations of endogenous heterocomplexes of 5-HT1A/FGFR-1 in rat hippocampal pyramidal neurons [40] and rat hippocampal astrocytes [45], muscarinic acetylcholine receptor 1 (M1)/FGFR1 complexes in hippocampal neurons [46], constitutive thyroid stimulating hormone receptor (TSHR) and IGF-1R in Graves orbital fibroblasts [47] and CB2R/HER2 complexes in HER2+ breast cancer patient biopsies [11]. Although PLA can provide improved spatial resolution, it is limited to use with fixed permeabilized cells and cannot reveal real-time changes. The use of genetically encoded fluorescent protein tags (e.g., GFP), or exogenously labelled tags (e.g., SnapTag or HaloTag) has allowed cellular co-localisation of GPCR/RTKs to be visualised both in absence or presence of ligands [35]. Questions remain as
Table 1
Summary of GPCR/RTK complexes detected using fluorescence- or luminescence-based techniques.

GPCR	RTK	Cell type	Technique used	Reference
5-HT1A	FGFR1	HEK293 cells (FRET, PLA), rat dorsal and median raphe nuclei (PLA)	FRET, PLA	[40]
5-HT1A	FGFR1	HEK293T cells, rat hippocampal cultures	PLA	[41]
5-HT1A	FGFR1	Rat brain dorsal hippocampus (astrocytes)	PLA	[45]
M1	FGFR1	Rat hippocampus and cerebral cortex	PLA	[46]
TSHR	IGF-1R	Graves orbital fibroblasts	PLA	[47]
β2-AR	IR	HEK293T cells	BRET	[42]
β2-AR	EGFR	HEK293T cells	FRET	[32]
AT1R	EGFR	HEK293T cells, CHO K1 cells, NIH-3T3, primary vascular smooth muscle cells	BRET	[36]
β2-AR	VEGFR2	HEK293 cells, HUVECs	BRET	[35]
Adenosine A2A	FGFR1	HEK293T cells	BRET	[43]
CB2R	HER2	HEK293T cells (BRET, bimolecular fluorescence complementation), Her2+ breast cancer patient biopsies (PLA)	BRET, PLA, bimolecular fluorescence complementation	[11]

BRET = bioluminescence resonance energy transfer.
FRET = fluorescence resonance energy transfer.
PLA = proximity ligation assay.
to whether changes in endocytosis of one partner may modulate transactivation. Stimulation with insulin can induce insulin receptor mediated internalisation of the β2-AR [42]. Insulin, acting via the IR, has been shown to stimulate internalisation of the β2-AR via IR-mediated phosphorylation of specific tyrosine residues in the β2-AR C terminus enhancing association with endocytosis components such as Grb2 [48]. Similarly, the β1 agonist dobutamine has been shown to induce partial internalisation of EGFR (β1-AR/EGFR [14]). The S1PR is able to promote VEGFR2 angiogenic signalling by regulating selective tyrosine phosphorylation of VEGFR2 via Gβ2 activation of the protein kinase c-Abl. Interestingly this retains VEGFR2 at the cell surface altering the kinetics of VEGFR2 driven Rac signalling from a transient to sustained profile. This results in increased migration of tumour-associated endothelial cells and ultimately tumour angiogenesis [12; Figure 3C]. Dual labelling of β2-AR/VEGFR2 revealed constitutive cell surface co-localisation [35]. Stimulation with receptor selective ligands resulted in co-endocytosis into early endosomal compartments which co-localised with immunolabelled Rab5 endosomes and reconciled with BRET data showing altered and sustained β-arrestin2 recruitment at these complexes (Figure 3B). This is interesting in light of the increasing appreciation of the importance of endosomal signalling in the spatiotemporal control of signalling for GPCRs [49] and RTKs [50].

RET and imaging studies have mostly used model cell systems due to the need to modify receptors with luminescent or fluorescent labels, which risk artefacts of receptor overexpression, although future use with CRISPR/Cas9 may mitigate this. In endogenous systems the extent of transactivation may be dependent on expression levels of each partner; however, interestingly BRET studies of angiotensin II-induced transactivation of EGFR by AT1R in HEK293T cells using overexpressed receptors revealed transactivation only represented a subset of the total signalling capacity of EGFR (estimated at ~20% [36]). GPCR/RTK complex formation may therefore represent a subset of RTKs arranged in membrane microdomains or within intracellular compartments that facilitate close proximity and the formation of discrete complexes with their partner GPCR. Advanced imaging techniques with single cell/receptor sensitivity such as fluorescence correlation spectroscopy (FCS) and total internal reflection fluorescence microscopy (TIRF-M) have illustrated that receptors are not homogenously expressed on the surface of cells, but are within discrete membrane regions [51]. This localises components of signalling within microdomains, bringing different signalling mediators into close proximity, facilitating greater efficiency of receptor-effector coupling. These specialised microdomains termed ‘lipid rafts’ are linked to the actin cytoskeleton [52]. Signalling as a consequence of transactivation of CBR1/FGFR1 complexes has been shown to emanate from lipid rafts in embryonic cortical neurons [53]. As many GPCRs and RTKs are known to localise to caveolin containing lipid rafts [54], it is likely that other GPCR/RTK complexes may also exist here.

Unravelling GPCR/RTK complex formation is further complicated by RTK heterodimerisation. Recent FRET studies have indicated that RTK homo and heterodimers have similar strength of interactions, highlighting the potential influence that RTK heterodimer may have upon transactivation [55]. The increasing acceptance of GPCR homo and heteromerisation (albeit likely to be relatively transient) may also further complicate understanding of transactivation signalling networks [56]. GPCR/RTK complexes may also be components of larger macromolecular complexes containing other membrane bound proteins such as integrins, extracellular matrix glycoproteins and co-receptors (e.g. Neuropilin-1 for VEGFR2 [57]). Investigation of the influence of these proteins on GPCR/RTK complex formation, organisation, lifetime and signalling is still in its infancy. The altered signalling seen with GPCR/RTK transactivation suggests that co-targeting of GPCR/RTK macromolecular complexes may represent new therapeutic avenues; wholesale inhibition of RTK signalling can often result in considerable off-target effects due to the integral role RTKs play in physiological processes. The use of lower concentrations of RTK inhibitors in conjunction with ‘trans-inhibition’ of GPCR partners may provide a mechanism to modulate RTK-driven signalling to overcome some of these off-target issues.

Conclusion

GPCRs have been shown to exploit the intrinsic kinase activity and vast signalling networks available to RTKs, whereas proteins previously defined as ‘GPCR signalling mediators’ are now known to also be integral signalling partners for RTKs (e.g. G proteins, β-arrestins). This bidirectional transactivation between GPCRs and RTKs allows integration of signalling inputs to increase the number and diversity of signalling outcomes available. The advancement of fluorescence- and luminescence-based techniques has allowed the identification of GPCR/RTK complexes whose dynamics, localisation and distinct pharmacological profiles can be quantified in real time. Studies of cooperativity across GPCR and RTK interfaces are still relatively understudied; however, advancements in techniques that offer increased real-time spatial and temporal resolution will allow this phenomenon to be teased apart from signalling crosstalk and may open up new opportunities to co-target GPCR/RTK complexes in drug discovery.

Conflict of interest statement

Nothing declared.
This paper highlights how the activation of one GPCR (neurotensin receptor 1) can effectively lead to the activation of multiple RTKs (in this case in non small cell lung carcinoma cells). The authors therefore conclude that receptor coupling to RTKs can influence their signalling and that RTK localisation can be being global mediators of transactivation and may have considerable influence on signalling in pathological conditions characterised by pro-tumoral signalling outcomes. These data showed that in vitro and in vivo, HER2/CB2R complexes decreased following incubation with pTyr951 VEGFR2 with VEGF results in altered signalling to that observed for internalized VEGFR2 most notably a switch in the kinetics of Rac signalling from a transient profile to sustained signalling for pTyr951 VEGFR2. A schematic summarising these results is seen in Figure 3C.

13. Overland AC, Insel PA: Heterotrimeric G proteins directly regulate MMP14/membrane type-1 matrix metalloprotease: a novel mechanism for GPCR-EGFR transactivation. J Biol Chem 2015, 290:9941–9947, https://doi.org/10.1074/jbc.C115.670735.

14. Noma T, Lemaire A, Naga Prasad SV, et al.: Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest 2007, 117: 2445–2458, https://doi.org/10.1172/JCI31901.

15. Kasina S, Scherer PA, Hall CL, Macoska JA: ADAM-mediated amphiregulin shedding and EGFR transactivation. Cell Prolif 2009, 42:799–812, https://doi.org/10.1111/j.1365-2184.2009.00645.x.

16. Oligny-Longré G, Corbani M, Zhou J, Hogue M, Guillon G, Bouvier M: Engagement of j-arrestin by transactivated insulin-like growth factor receptor is needed for V2 vasopressin receptor-stimulated ERK1/2 activation. Proc Natl Acad Sci Unit States Am 2012, 109:6374–6375, https://doi.org/10.1073/pnas.1124221012.

17. Parra-Mercado GK, Fuentes-Gonzalez AM, Hernandez-Aranda J, Diaz-Carouzeguez M, Dautzenberg FM, Catt KL, Haugter RL, Olives-Reyes JA: CRF1 receptor signalling via the ERK1/2- MAP and Akt kinase cascades: roles of Src, EGFR receptor, and PI3-kine mechanisms. Front Endocrinol 2019, 10, 869, https://doi.org/10.3389/fendo.2019.00869.

18. Cattaneo F, Castaldo M, Parisi M, Faraonio R, Esposito G, Ammendola R: Formyl peptide receptor 1 modulates endothelial cell functions by NADPH oxidase-dependent VEGFR2 transactivation. Oxid Med Cell Longev 2018, 2018:2609847, https://doi.org/10.1155/2018/2609847.

19. Cattaneo F, Iaccio A, Guerra G, Montagnani S, Ammendola R: NADPH-oxidase-dependent reactive oxygen species mediate EGFR transactivation by FPR1 in WKY/Mvm-stimulated human lung cancer cells. Free Radic Biol Med 2011, 51- 1126–1136, https://doi.org/10.1016/j.freeradbiomed.2011.05.040.

20. Castaldo M, Zollo C, Esposito G, Ammendola R, Cattaneo F: NOX2-Dependent reactive oxygen species regulate formyl-peptide receptor 1-mediated TrkA transactivation in SH-SY5Y cells. Oxid Med Cell Longev 2019, 2019:2051235, https://doi.org/10.1155/2019/2051235.

21. Cattaneo F, Parisi M, Ammendola R: WKY/Mvm-induced cross-talk between FPR2 and HGFR receptor in human prostate epithelial cell line PNT1A. FEBS Lett 2013, 587:1536–1542, https://doi.org/10.1016/j.febslet.2013.03.036.

22. Moody TW, Lee L, Ramos-Alvarez J, Jensen RT: Neurotensin receptors regulate transactivation of the EGFR and HER2 in a reactive oxygen species-dependent manner. Eur J Pharmacol 2019, 865:172735, https://doi.org/10.1016/j.ejphar.2019.172735.

23. Hopkins MM, Liu Z, Meier KE: Positive and negative cross-talk between lysophosphatidic acid receptor 1, free fatty acid
receptor 4, and epidermal growth factor receptor in human prostate cancer cells. J Pharmcol Exp Theraput 2016, 359: 124–133, https://doi.org/10.1124/jpet.116.233379.

24. García-Sáinz JA, Romero-Ávila MT, Medina Ldel C: Dissecting how receptor tyrosine kinases modulate G protein-coupled receptor function. Eur J Pharmocol 2010, 648:1–5, https://doi.org/10.1016/j.ejphar.2010.08.049.

25. Sun N, Zhang X, Guo S, Le HT, Zhang X, Kim KM: Molecular mechanisms involved in epidermal growth factor receptor-mediated inhibition of dopamine D3 receptor signaling. Biochim Biophys Acta Mol Cell Res 2018, 1865:1187–1200, https://doi.org/10.1016/j.bbamac.2018.06.001.

26. Valiquette M, Parent S, Loisel TP, Bouvier M: Mutation of tyrosine-141 inhibits insulin-promoted tyrosine phosphorylation and increased responsiveness of the human beta 2-adrenergic receptor. EMBO J 1995, 14:5542–5549.

27. Karoor V, Malbon C: Insulin-like growth factor receptor-1 stimulates phosphorylation of the β2-adrenergic receptor in vivo on sites distinct from those phosphorylated in response to insulin. JBC 1996, 271:29347–29352, https://doi.org/10.1074/jbc.271.46.29347.

28. Sun J, Huang W, Yang SF, et al.: Gx11 and Gx3mediate VEGF-induced VEGFR2 endocytosis, signaling and angiogenesis. Theranostics 2018, 8:4695–4709, https://doi.org/10.7150/thno.26203.

29. Zheng H, Worrall C, Shen H, et al.: Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci U S A 2012, 109:7055–7060, https://doi.org/10.1073/pnas.1118359110.

30. Grisanti L, Talarico JA, Carter RL, et al.: β-Adrenergic receptor-mediated transactivation of epidermal growth factor receptor decreases cardiomyocyte apoptosis through differential subcellular activation of ERK1/2 and Akt. J Mol Cell Cardiol 2014, 72:39–51, https://doi.org/10.1016/j.yjmcc.2014.02.009.

31. Stodlart DA, Kilpatrick LE, Hill SJ: NanoBRET approaches to study ligand binding to GPCRs and RTKs. Trends Pharmcol Sci 2018, 39:136–147, https://doi.org/10.1016/j.tips.2017.10.006.

32. Watson LJ, Alexander KM, Mohan ML, et al.: Phosphorylation of Src by phosphoinositide 3-kinase regulates beta-adrenergic receptor-mediated EGFR transactivation. Cell Signal 2016, 28:1580–1592, https://doi.org/10.1016/j.cellsig.2016.05.006.

33. Sanni Samra Joke, Kulahin Nikolaj, Jorgensen Rasmus, Lynge Christina, Gammeltoft Steen, Hansen Jakob Lerche: A bioluminescence resonance energy transfer 2 (BRET2) assay for monitoring seven transmembrane receptor and insulin receptor kinases. J. Receptors and Signal Transduction 2017, 37:590–599, https://doi.org/10.1080/10799893.2017.1369123.

34. Susiec M, Sencanski M, Glisic S, et al.: Functional characterization of β2-adrenergic and insulin receptor heteromers. Neuropharmacology 2019, 152:78–89, https://doi.org/10.1016/j.neuropharm.2019.01.025.

35. Klippen LE, Alcobia DC, White CW, et al.: complex formation between VEGFR2 and the β2-adrenergic receptor. Cell Chem Biol 2019, 26:830–841, https://doi.org/10.1016/j.chembiol.2019.02.014.

36. O’Brien SL, Johnstone EKM, Devost D, et al.: BRETT-based assay to monitor EGFR transactivation by the AT1R reveals Gα11, protein-independent activation and AT1R-EGFR complexes. Biochem Pharmacol 2018, 158:232–242, https://doi.org/10.1016/j.bcp.2018.10.017.

This paper is a great illustration of how a RTK (the EGFR) can negatively modulate a GPCR (Dopamine D3 receptor) via a protein typically associated with GPCRs – the Gβγ subunit. In order to mediate its inhibition of the D3 receptor, the EGFR (activated by EGF) must first internalize which requires Src recruitment to EGFR that is mediated by Gβγ. Complexes of internalised EGFR and Src (facilitated by Gβγ) phosphorylate GRK2 at tyrosine residues. pTyr-GRK2 then binds to the dopamine D3 at a specific threonine residue (Thr142) in the second intracellular loop, which uncouples D3R from G proteins and promotes receptor endosmosis and lysosomal degradation.

This paper is an example of how BRET can be used as a co-transmitter through adenosine A(2A) receptor to demonstrate a direct interaction between β2-adrenoceptor and insulin receptor by BRET and bioinformatics. PloS One 2014, 9, e112664, https://doi.org/10.3737/journal.pone.0112664.

40. Borroto-Escuela DO, Narvaez M, Pérez-Alema, et al.: Evidence for the existence of FGFR1-5-HT1A heteroreceptor complexes in the midbrain raphe 5-HT system. Biochem Biophys Res Commun 2015, 456:489–493, https://doi.org/10.1016/j.bbrc.2015.03.049.

41. Mandić D, Drinovec L, Glisic S, Veljkovic N, Nehr J, Vrecl M: Demonstration of a direct interaction between β2-adrenergic receptor and insulin receptor by BRET and bioinformatics. PLoS One 2014, 9, e112664, https://doi.org/10.3737/journal.pone.0112664.

44. Flajolet M, Wang Z, Futter M, Shen W, Nuangchamnong N, Flajolet M, Wang Z, Futter M, Shen W, Nuangchamnong N, Brient SL, Johnstone EKM, Devost D, et al.: NanoBRET approaches to study ligand binding to GPCRs and RTKs. Trends Pharmacol Sci 2018, 39:136–147, https://doi.org/10.1016/j.tips.2017.10.006.

45. Narváez M, Andrade-Talavera Y, Valladolid-Acebes I, et al.: Determination of the exact molecular requirements for type 1 angiotensin receptor- and adrenergic receptor tyrosine kinase transactivation and cardiovascular hypertrophy. Hypertension 2011, 57:973–980, https://doi.org/10.1161/HYPERTENSIONAHA.111.166710.

46. Brandt SM, John HW, Qian H, et al.: Determination of the exact molecular requirements for type 1 angiotensin receptor by BRET and bioinformatics. PLoS One 2014, 9, e112664, https://doi.org/10.3737/journal.pone.0112664.

47. Hultinen A, Hongisto V, Laito A, Löyttyniemi E, Pijnenburg D, Scheinin M: Gene expression profiles and signaling mechanisms in β2-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC Syst Biol 2017, 11:65; https://doi.org/10.1186/s12918-017-0439-8.

48. George AJ, Purdue BW, Gould CM, et al.: A functional siRNA screen identifies genes regulating angiotensin II-mediated EGFR transactivation. J Cell Sci 2013, 126:5377–5390, https://doi.org/10.1242/jcs.128290.
46. Di Liberto V, Borroto-Escuela DO, Frinchi M, Verdi V, Fuxe K, Belluardo N, Mudò G: Existence of muscarinic acetylcholine receptor (mAChR) and fibroblast growth factor receptor (FGFR) heteroreceptor complexes and their enhancement of neurite outgrowth in neural hippocampal cultures. *Biochim Biophys Acta Gen Subj* 2017, 1861:235–245, https://doi.org/10.1016/j.bbagen.2016.10.026.

47. Krieger CC, Boutin A, Jang D, *et al*.: Arrestin-β-1 physically scaffolds TSH and IGF1 receptors to enable crosstalk. *Endocrinology* 2019, 160:1468–1479, https://doi.org/10.1210/en.2019-00055.

48. Karoor V, Wang L, Wang HY, Malbon CC: Insulin stimulates sequestration of beta-adrenergic receptors and enhanced association of beta-adrenergic receptors with Grb2 via tyrosine 350. *J Biol Chem* 1998, 273:33035–33041, https://doi.org/10.1074/jbc.273.49.33035.

49. Thomsen ARB, Jensen DD, Hicks GA, Bunnett NW: Therapeutic targeting of endosomal G-protein-coupled receptors. *Trends Pharmacol Sci* 2018, 39:879–891.

50. Weddell JC, Imoukhuede PI: Integrative meta-modeling identifies endocytic vesicles, late endosome and the nucleus as the cellular compartments primarily directing RTK signaling. *Integr Biol (Camb)*. 2017, 9:464–484, https://doi.org/10.1039/c7ib00011a. DOI: 10.1016/j.tips.2018.08.003.

51. Briddon SJ, Kilpatrick LE, Hill SJ: Studying GPCR pharmacology in membrane microdomains: fluorescence correlation spectroscopy comes of age. *Trends Pharmacol Sci* 2018, 39:879–891.

52. Head BP, Patel HH, Insel PA: Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. *Biochim Biophys Acta* 2014, 1838:532–545, https://doi.org/10.1016/j.bbamem.2013.07.018.

53. Asimaki O, Leondaritis G, Lois G, Sakellaridis N, Mangoura D: Cannabinoid 1 receptor-dependent transactivation of fibroblast growth factor receptor 1 emanates from lipid rafts and amplifies extracellular signal-regulated kinase 1/2 activation in embryonic cortical neurons. *J Neurochem* 2011, 116:866–873, https://doi.org/10.1111/j.1471-4159.2010.07030.x.

54. Forrester SJ, Kawai T, O’Brien S, Thomas W, Harris RC, Eguchi S: Epidermal growth factor receptor transactivation: mechanisms, pathophysiology, and potential therapies in the cardiovascular system. *Annu Rev Pharmacol Toxicol* 2016, 56:627–653, https://doi.org/10.1146/annurev-pharmtox-070115-095427.

55. Paul MD, Grubb HN, Hristova K: Quantifying the strength of heterointeractions among receptor tyrosine kinases from different subfamilies: implications for cell signaling [published online ahead of print, 2020 May 27]. *J Biol Chem* 2020, https://doi.org/10.1074/jbc.RA120.013639.

56. Ferré S, Casadó V, Devi LA, *et al*.: G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. *Pharmacol Rev* 2014, 66:413–434, https://doi.org/10.1124/pr.113.008052.

57. Niland S, Eble JA: Neuropilins in the context of tumor vasculature. *Int J Mol Sci* 2019, 20:639, https://doi.org/10.3390/ijms20030639.