MADM based Optimal Nodes Deployment for WSN with Optimal Coverage and Connectivity

Prince Rajpoot1, Pragya Dwivedi2
Assistant Professor, REC Ambedkar Nagar, Akbarpur, UP, India1
Assistant Professor, MNNIT Allahabad, Prayagraj, UP, India2
E-mail: princeraj2904@gmail.com

Abstract. It is the digital era that provides importance for the research in Wireless Sensor Network (WSN). Different issues with different solutions are suggested by many authors. The realistic deployment having restrictions for cost, area coverage, Cluster Head (CH) coverage, and sink connectivity for WSN that demands an estimation of total count of sensors for deployment with the conditions for CH coverage and sink connectivity. Area coverage means how much portion of total area is sensed by deployed sensors nodes. CH coverage means the sensor node is able to transfer the sensed data to its CH without amplification and sink connectivity means that the CHs are connected with the sink and able to send the data directly without amplification. AHP is a Multi Attribute Decision Making (MADM) method that is used for the selection of best choice having less cost and efficient coverage and connectivity.

1. Introduction
WSN is a group of small sensors that do sense the environment for particular reason and provide the information to sink. One node may have one or more sensors. As the applications increased, area of deployment is also maximized toward remote areas. This creates the un-reachability of humans frequently, so the replacement of battery is also not possible. This leads to the temporary network that works until the battery discharged. To maximize the data collection time, we need to optimize the energy in such a way so that data can be sensed and transferred for long period of time. Clustering provides comparative larger lifetime to network. CH coverage and connectivity plays an important role in clustering. Total count of nodes and area coverage are also considerable factors for cost efficiency and maximum area coverage respectively. So, here we are considering total four factors for network deployment. Our aim is to provide optimal solution for network deployment having 100\% area coverage with optimal count, optimal CH coverage, and optimal Sink connectivity. Optimal count helps to reduce the total cost of deployment and we need to put small amount of sensors. So this count should be minimized, due to this, cost is a non-beneficiary factor. Maximum CH coverage reduces the energy required for transferring the data from neighbour nodes to CH. So we need higher value for this factor, due to this, CH coverage is a beneficiary attribute. Finally, maximum BS connectivity helps CHs to transmit the data to the sink with minimum power requirement. So high value is needed for this factor, due to this, BS connectivity is a beneficiary factor. So finally among four factors, we need 100\% area coverage with minimum nodes having maximum CH coverage and sink connectivity. The layout of next sections are as follows: Section II represents the literature present on the WSN communication and layout. Section III illustrated our approach in detail, where as, the
results of simulation are provided and compared in section IV. Conclusion is illustrated in section V.

2. Related Work
As we discussed before that WSN is a lime light field in research. Many works are being carried out by many authors and delivered a lot of methods for optimal data collection and deployment in WSN. It can be represent in following manner:

LEACH [2] is the base for efficient protocols that is based on probability with TDMA method for forming the schedule for packet passing. It selects the CHs based on a threshold value and probability to select as a CH and use signal intensity to connect with other nodes. It also rotates the authority of CH among all nodes and assigns a time schedule to transmit the data. But it uses some randomness in the phases, due to this, unbalancing occurs during clustering and power consumption.

LEACH-C [2] reduces some limitations of LEACH and provides constrain on minimum energy. It verifies that the nodes are of high power, so that they may able to process the data. H-LEACH enhances the clusters by partitioning the network in optimal number and LEACH verifies the CH selection with rotation in each part. Aaditya et al. verified the optimal CH authority in each part of H-LEACH and verifies the optimal clusters.

HADCC is an approach to determine a path in clustering form suggested by Aslam [5]. In it, the nodes are placed in two levels: inner and outer. The inner level contains the circle form for advance sensors positions. Sink is having the responsibility of choosing the CHs. Many factors have been used for this like: Total and remaining power, distance etc. CSMA method assigns schedule for data transfer.

Another process uses the sink in the mid of the deployed area and the area is partitioned into optimal parts such that every part is having equal amount of energy [6]. After this, total 5% of total nodes are chosen as CHs. Probability and transmission power are used for clustering. Now the CHs communicate with other CHs with any partition restriction.

Another approach uses the concept of multi-hop [7], in which the maximum power nodes are placed near to sink and low power nodes placed far from the sink. This concept uses to reduce the effect of black hole problem since every packet pass through nearest nodes.

Subhasis et al. provided a hierarchy based node deployment in which each node has two parents except the root. This algorithm starts with finding the level for each node with its residual energy in next phase. After this, the nodes are divided into active node or inactive node. Active node finds two parents to connect and inactive node remains in sleep mode. Last phase is of data transmission.

Delaney et al. [9] proposed a metrics based route finding approach and balance the distance in routes. It uses and takes the support of routing matrices of nodes and find efficient route.

Halder et al. [10] provided routing and clustering process using the model of Archimedes spiral. This spiral is start from the center and make a view of turn till the end point. This spiral is used to calculate the distance between two nodes and also helps to maintain about equal distance among the nodes. Gujman et al. [11] provided ON/OFF capacity nodes for lifetime increment with low and high energy nodes.

Lee et al. [12] suggested an approach that uses semi-distribution method in which four levels are used as upper and lower. Upper level CHs are chosen in centralized manner, whereas, CHs are chose in distribution form in lower level. First sink is there then after grid head level 2, after it, level1 CHs are there and at last level 0 nodes are placed. Level 0 nodes sense the surroundings and transfer it to the level 1 and forwarded to sink via grid head.

Sanjay [13] proposed clustering for integrated network in which the area is partitioned into some regions with centralized sink. Now, CHs are chosen using its weight and also change the
responsibility in continuous fashion. PRRP method [14] is suggested by Zoman et al. in which the grid form is used for area division. Due to this, every node position got known and reduces the energy needed in searching process. Krishna et al. [15] provided two layered deployment approach in which they compared the two deployment approach. One is when inner deployment be in circular form and outer is in hexagonal form whereas in other the outer form is of pentagonal. Both the layers is having different CHs and hierarchical transmission takes place. Shubham et al. [16] suggested optimized clustering to this paper using divisional method. Some surveys [17], [18] are also performed regarding node deployment strategies. Many other authors also suggested many methods for efficient communication [19], [20], [21], [22], [23]. Some approaches by [24], [25], [26] also suggested intra cluster transmission using many efficient routes. Matrix method is also proposed by [27] to select best population for next generation. Many conflicting attributes are also suggested and applied with MADM approaches for load balance by [28] and for energy balanced by [29]. But these techniques can be applied with high computational sensor networks. Some algorithms for low computation network with lower attributes and simple calculations are also suggested by [30], [31], [32], [33], [34], [35], [36], [37], [38]. Neetu et. al [39] provides efficient communication to supervise the gas pipeline using clustering. Fuzzy tool can also be a option taken by [40], [41], [42], [43] for selection of optimal CHs that are able to perform data transfer with minimum use of energy. Here, we have proposed a method that uses AHP protocol that chose best alternative solution for node deployment with 100% area coverage, low cost, higher CH coverage and higher sink connectivity. The approach is explained in detail in next section.

3. Proposed Approach

We have proposed an AHP based method that provides a way to chose best node deployment with maximum area coverage, connectivity and less cost among many options. The Figure ?? shows the working of proposed algorithm in step by step process as a flow chart of complete procedure.

Table 1 shows the parameters to generate network and deploy the nodes.

Here, first we see whether the network is covering whole area or not. For this, first we calculate

\[
\text{Cover}_{\text{percent}} = \frac{\sum_{x=0}^{x_{\text{max}}} \sum_{y=0}^{y_{\text{max}}} SC(x,y)}{x_{\text{max}} \cdot y_{\text{max}}} \cdot 100
\]

Table 1. Factor Values for network deployment

Factor	Values
Size	200m x 200m
Sensor Position	Variable
Prime Power of sensor	1J
Sensor Nodes	Variable
and

\[
SC(x_1, y_1) = \begin{cases}
1 & \text{if } \exists \ p \in (1..N), \quad D(x_p,y_p),(x_1,y_1) \leq R_{\text{Sense}} \\
0 & \text{otherwise}
\end{cases}
\]

where \(SC(x_1,y_1)\) - supervise condition of point \((x_1,y_1)\)

We find the alternatives with different count and position of nodes. Now, our aim is to chose the best alternative having minimum cost with maximum CH coverage and sink connectivity. For this we have used AHP algorithm that ranks the alternatives and provides best solution among them that would satisfy all the constraints with better conditions. Per unit cost contains sensor cost, LIPO battery cost, and GPS device cost for each sensor node, so when we calculate the cost of sensor, it comes around 7350 Rs. per unit. There are following steps that can determine the complete approach.

Step I: Generate the alternatives and calculate the values of factors-

S.No.	Nodes	Cost	Area Cover	CH Cover	BS Connect
1	100	735000	98.2	100	50
2	100	735000	98.2	95	90
3	100	735000	100	95	80
4	100	735000	100	92	60
5	100	735000	100	94	50
6	100	735000	100	92	50
7	100	735000	100	95	80
8	100	735000	100	97	80
9	120	882000	100	100	40
10	120	882000	100	97.5	60
11	120	882000	100	100	50
12	120	882000	100	97.5	60
13	130	955500	100	100	50
14	130	955500	100	99.23076923	60
15	130	955500	100	99	80
16	130	955500	100	98.46153846	70
17	130	955500	100	100	60
18	150	1102500	100	100	50
19	150	1102500	100	100	80
20	150	1102500	100	99.33333333	80

Table 2 shows the values for different alternatives having different node count with the cost, area coverage, CH coverage and sink connectivity. Now we will apply the AHP algorithm and rank the alternatives, finally we will select the best alternative and the corresponding CHs for the final transmission of data. The next step explains the complete AHP process.

Step II: Apply MADM Approaches for rank the solutions:

3.1. **Apply AHP method to rank the solutions**

Step A.a: **Normalization**- Normalized matrix (NM) is calculated as:

For beneficiary factors:

\[
\text{Norm_value}_i = \frac{\text{Value_Factor}_i}{\text{Max_value_Factor_in_All_CH}}
\]

(2)
For Non-beneficiary factors:

\[\text{Norm}_{\text{value}}{i} = \frac{\text{Min}_{\text{value,Factor in All CHs}}}{\text{Value}_{\text{Factor},i}} \] \hspace{1cm} (3)

Step A.b: Compute Relative Importance Matrix RW - It shows the relative importance of the factors with each other. In our proposed method, it is formed as:

	cost	coverage	connectivity
cost	1	1.7	1.3
coverage	0.59	1.00	0.91
connectivity	0.77	1.10	1.00

Table 3. RW Matrix for attributes

Step A.c: Compute Geometric Mean - It is calculated as row wise and is calculated as:

\[G_{\text{Mean}k} = \left(\prod_{k=1}^{N} \text{RW}_{pq} \right)^{1/N}, p = 1, 2, \ldots, m \quad \text{and} \quad q = 1, 2, \ldots, m \] \hspace{1cm} (4)

where \(\text{RW} \) is the relative weight importance matrix and \(m \) is the number of factors.

Step A.d: Enumerate Weights in Matrix Form - Matrix contains weight of all factors is enumerated as:

\[\text{Weight}_{Mk} = \frac{G_{\text{Mean}k}}{\sum_{j=1}^{N} G_{\text{Mean}j}} \] \hspace{1cm} (5)

It should verify that \(\sum_{k=1}^{N} \text{Weight}_{Mk} = 1 \)

Table 4. Weight\(_{M3 \times 1}\) Matrix for attributes

0.425661937
0.265248859
0.309089204

Step A.e: Consistency Verification of Weights - Following steps are used to verify the consistency of our calculated weights:

Step A.e.1: Enumerate Consistency Matrix1 as:

\[(CM1)_{N \times 1} = (RW)_{n \times n} \ast (G_{\text{Mean}})_{n \times 1} \] \hspace{1cm} (6)

Step A.e.2: Enumerate Consistency Matrix2 as:
\[(CM_2)_{N*1} = \frac{(CM_1)_{N*1}}{(Weight_M)_{N*1}} \]

(7)

Enumerated consistency matrix 2 for proposed approach is:

\(CM_{2,3} \) Matrix for attributes
3.00324589
3.007364497
3.004310686

Step A.e.3: Enumerate \(\lambda_{max} \)

\[\lambda_{max} = \frac{\sum_{p=1}^{N} (CM_2)_p}{N} \]

(8)

Enumerated \(\lambda_{max} \) for proposed approach is: 3.004999924

Step A.e.4: Enumerate Consistency Index-

\[Cont_Index = \frac{\lambda_{max} - N}{N-1} \]

(9)

Enumerated Consistency Index for proposed approach is: 0.002499962

Step A.e.5: Enumerate Consistency Ratio-

\[Const_Ratio = \frac{Cont_Index}{RI} \]

(10)

where \(RI \) = Random Index.

\(Const_Ratio \) should be less than 0.1 for error less than 10%.

Enumerated Consistency Ratio for proposed approach is: 0.00480762. Means total error is 0.48%.

Since it is less than 0.1, so our enumerated weights are acceptable.

Step A.f: Enumerate Efficiency Value for Each Alternative- Following two methods are used to enumerate efficiency value for each alternative. Simple Additive Weighting (SAW) or Weighted Product Method (WPM) uses these weights to compute the values of \(P_i \).

1) SAW Method: It is known as Simple Additive Weighting method. It enumerates efficiency value for alternative as:

\[EV_k = \sum_{k=1}^{N} (Weight_M)_k \ast (NM)_{jk}, j = 1, 2, .., m \]

(11)

2) WPM Method: It is known as Weighted Product Method. It enumerates efficiency value for alternative as:
\[EV_k = \prod_{k=1}^{N} (\text{Weight}_M)_k \ast (NM)_{jk}, j = 1, 2, \ldots, m \] (12)

In proposed approach, we have used SAW method to enumerate efficiency value.

Step A.g: Rank the Solutions using Efficiency Value - After ranking the final rank for each solution or alternative in proposed approach is shown in Table 6:

Pop Num	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Rank	8	1	3	6	9	10	4	2	18	14	16	12	5	17	15	7	11	19	20	13

3.2. **TOPSIS method to rank the solutions**

Rank the patients as higher value of condition \(C_{\text{worst}} \) using TOPSIS is shown in Table 7.

Pop Num	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Rank	12	1	3	9	13	14	4	2	20	11	18	10	5	19	15	6	8	16	17	7

3.3. **PROMETHEE method to rank the solutions**

Rank the patients using PROMETHEE is shown in Table 8.

Pop Num	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Rank	5	1	3	8	14	16	4	2	11	13	10	6	7	19	17	9	15	18	20	12

4. **Results and Analysis**

We have simulated our approach on WSN modeled by using MATLAB tool that gives realistic support to perfect vision of data transfer and energy consumption with death of nodes. We have applied our approach on homogeneous network having equal amount of prime power with equal characteristics of nodes for energy depletion. A node is known to be dead of the energy becomes less than the threshold value this threshold value is equal to the energy required to send the packet to a distance where no amplification is needed for packet transmission. We have compared among Proposed algorithm, Base Algorithm [16], SNPCM [15], and LEACH [2].

Case 1: Sensors=500; Sink=0,0
Case 2: Sensors=500; Sink=150,50

Pop Num	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Rank	12	1	3	9	13	14	4	2	20	11	18	10	5	19	15	6	8	16	17	7

Pop Num	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Rank	5	1	3	8	14	16	4	2	11	13	10	6	7	19	17	9	15	18	20	12

7
5. Conclusion
 Proposed algorithm provided efficient deployment of sensor in the field in such a way that the whole area can be sensed by at least one sensor means 100% area coverage must be provided to the network. It also gave the possible smallest amount of nodes for the coverage, that minimizes the cost with the constraint of effective data collection. The effectiveness of data collection is confirmed by the maximum CH coverage and sink connectivity. Maximization of CH coverage confirms the minimization of the distance to CHs from all the respective nodes that minimized the power consumption from nodes to CHs. Whereas, the maximization of sink connectivity confirms the minimization of distance from CHs to the sink that reduces the power consumption for data transfer from CHs to the sink. Finally, the results also support the effectiveness of the proposed approach.

6. References
[1] Kumar R, Dubey K, Chaudhary H, Rajpoot P, Mishra S and Yaduvanshi R. 2019. Energy Distribution based Cluster Head Selection to Enhance the Lifetime of WSN, International Conference on Advances in Electrical, Electronic and System Engineering (ICAEESE 2019), IEEE. (In press)
[2] Heinzelman WB, Chandrakasan AP and Balakrishnan H, 2002. An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on wireless communications, 1(4), pp.660-670.
[3] Kumar R and Rajpoot P, 2018, May. Optimized H-LEACH algorithm for clustering to improve lifetime of WSN. In 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) (pp. 2393-2398). IEEE.
[4] Rajpoot P, 2017. Data aggregation and distance based approach to boost life span of WSN. International Journal of Engineering Technology Science and Research, IJETSR 4(11).
[5] Aslam M, Munir E U, Bilal M, Asad M, Ali A, Shah T, and Bilal S, 2014. HADCC: hybrid advanced
distributed and centralized clustering path planning algorithm for WSNs, In 2014 IEEE 28th International Conference on Advanced Information Networking and Applications, pp. 657-664. IEEE.

[6] Chen C, Liu X, Qi H, Zhao L, and Ren Z, 2015. A security enhancement and energy saving clustering scheme in smart grid sensor network, IEEE 16th International Conference on Communication Technology (ICCT), pp. 848-855. IEEE.

[7] Cheng B C, Yeh H H, and Hsu P H, 2011. Schedulability analysis for hard network lifetime wireless sensor networks with high energy first clustering, IEEE transactions on reliability 60.3: 675-688.

[8] Dash S, Mallick S S, Hansdah R C, and Swain A R, 2015. A distributed approach to construct hierarchical structure for routing with balanced energy consumption in wns, In 2015 IEEE 29th International Conference on Advanced Information Networking and Applications, pp. 382-388. IEEE.

[9] Delaney D T, Higgs R, and OHare G M P, A stable routing framework for tree-based routing structures in WSNs, IEEE Sensors Journal 14.10: 3533-3547.

[10] Halder S, and Ghosal A, 2015. Lifetime maximizing clustering structure using archimedes’ spiral based deployment in WSNs, IFIP/IEEE International Symposium on Integrated Network Management (IM), IEEE.

[11] Guzman-Medina C A, Rivero-Angeles M E, and Orea-Flores I Y, ON/OFF protocol for the life extension of low energy level nodes in wireless sensor networks, International Conference on Computing Systems and Telematics (ICCSAT), IEEE.

[12] Lee J S, and Kao T Y, 2016. An improved three-layer low-energy adaptive clustering hierarchy for wireless sensor networks, IEEE Internet of Things Journal 3.6: 951-958.

[13] Kumar S, 2015. Energy efficient clustering algorithm for WSN, 2nd International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 990-993).

[14] Zaman N, Low T J, and Alghamdi T, 2015. Enhancing routing energy efficiency of wireless sensor networks, IEEE Sensors Journal 14.10: 3533-3547.

[15] Krishna R K, and Ramanjaneyulu B S, 2018. A Strategic Node Placement and Communication Method for Energy Efficient Wireless Sensor Network. Proceedings of 2nd International Conference on Micro-Electronics, Electromagnetics and Telecommunications, Springer, Singapore.

[16] Singh S H, Verma K R and Rajpoot P, 2018, May. Partition based strategic node placement and efficient communication method for WSN. 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) (pp. 1807-1812). IEEE.

[17] Thakur A, Prasad D, and Verma A. 2017. Deployment Scheme in Wireless Sensor Network: A Review. International Journal of Computer Applications 163.5.

[18] Saha S, 2018. Sensor Node Placement Methods Based on Computational Geometry in Wireless Sensor Networks: A Review. International Research Journal of Engineering and Technology (IRJET).

[19] Aderohunmu F A, and Deng J D, 2009. An enhanced stable election protocol (sep) for clustered heterogeneous wsn, Department of Information Science, University of Otago, New Zealand.

[20] Naemi S, Ghadghazi H, Chow C O, and Ishii H, 2012. A survey on the taxonomy of cluster-based routing protocols for homogeneous wireless sensor networks, Sensors 12, no. 6: 7350-7409.

[21] Almalkawi I T, Zapata M G, and Al-Karaki J N, 2011. A secure cluster-based multipath routing protocol for WMSNs, Sensors 11, no. 4: 4401-4424.

[22] Saleh A M S, Ali B M, Rasid M F A, and Ismail A, 2012. A self-optimizing scheme for energy balanced routing in wireless sensor networks using sensorant, Sensors 12, no. 8: 11307-11333.

[23] Tufail A, Qamar A, Khan A M, Baig W A, and Kim K H, 2013. WEAMRA weighted energy aware multipath reliable routing mechanism for hotline-based WSNs, Sensors 13, no. 5: 6295-6318.

[24] Yaqqob M M, Israr I, Javaid N, Khan M A, Qasim U, and Khan Z A, 2012. Transmission delay of multi-hop heterogeneous networks for medical applications, In 2012 Seventh International Conference on Broadband, Wireless Computing, Communication and Applications, pp. 428-433. IEEE.

[25] Javaid N, Qasim U, Khan Z A, Khan M A, Latif K, and Javaid A, 2013. On energy efficiency and delay minimization in reactive protocols in Wireless Multi-hop Networks, In 2013 Saudi International Electronics, Communications and Photonics Conference, pp. 1-4. IEEE, 2013.

[26] de Freitas E P, Heimfarth T, Pereira C E, Ferreira A M, Wagner F R, and Larsson T, 2009. Evaluation of coordination strategies for heterogeneous sensor networks aiming at surveillance applications, In SENSORS, 2009 IEEE, pp. 591-596. IEEE.

[27] Rajpoot Pand Dwivedi P, 2018, January. Matrix Method for Non-Dominated Sorting and Population Selection for Next Generation in Multi-Objective Problem Solution. 8th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 670-676). IEEE.

[28] Rajpoot P and Dwivedi P, 2020. Optimized and load balanced clustering for wireless sensor networks to increase the lifetime of WSN using MADM approaches. Wireless Networks, 26(1), pp.215-251.
[29] Rajpoot P and Dwivedi P, 2019. Multiple parameter based energy balanced and optimized clustering for WSN to enhance the Lifetime using MADM Approaches. *Wireless Personal Communications, 106*(2), pp.829-877.

[30] Rajpoot P, Singh S H, Verma R, Dubey K, Pandey S K and Verma S, 2020. Multi-factor-Based Energy-Efficient Clustering and Routing Algorithm for WSN. *Soft Computing: Theories and Applications* (pp. 571-581). Springer, Singapore.

[31] Sharma V, Rajpoot P, Gupta A, Dubey K, Pandey N and Verma N, 2019. Heterogeneous Clustering for Energy Optimization in Wireless Sensor Networks, *In 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence)* (pp. 587-592). IEEE.

[32] Dubey K, Kumar P, Pathak P, Kumar S, Rajpoot P and Pandey S K, 2019, March. A Survey on Fundamental of Wireless Sensor Network with Various Issues in Optimization. *3rd International Conference on Computing Methodologies and Communication (ICCMC)* (pp. 288-293). IEEE.

[33] Dubey K, Sharma V, Gupta A, Srivastava A, Mishra S and Rajpoot P, 2019, March. Load Balanced Clustering protocol for lifetime enhancement of WSN. *3rd International Conference on Computing Methodologies and Communication (ICCMC)* (pp. 282-287). IEEE.

[34] Yadav A K, Rajpoot P, Kumar P, Dubey K, Singh S H, and Verma K R, 2019. Multi Parameters Based Heterogeneous Clustering Algorithm for Energy Optimization in WSN, *In 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence)* (pp. 587-592). IEEE.

[35] Rajpoot P, Dwivedi P and Dubey K, 2019, July. Power Balanced Efficient Clustering Algorithm for WSN. *International Conference on Communication and Electronics Systems (ICCES)* (pp. 585-589). IEEE.

[36] Rajpoot P, Dubey K, Kumar V, Prajapati A, Kumar S and Mishra S, 2019, March. An enhanced approach for energy optimization using protocol based on multi factors. *3rd International Conference on Computing Methodologies and Communication (ICCMC)* (pp. 300-305). IEEE.

[37] Dubey K, Yadav A K, Kumar P, Shekhar P, Rajpoot P and Kumar S, 2019, March. Power Optimization Algorithm for Heterogeneous WSN using Multiple Attributes. *3rd International Conference on Computing Methodologies and Communication (ICCMC)* (pp. 294-299). IEEE.

[38] Prajapati A, Kumar V, Rajpoot P, Dubey K, Singh S H and Verma N, 2019, January. Multi-Objective Heterogeneous Clustering Approach for Efficient-Energy Optimization in WSN. *9th International Conference on Cloud Computing, Data Science & Engineering (Confluence)* (pp. 85-91). IEEE.

[39] Verma N, Pandey N and Rajpoot P, 2018, May. Energy Efficient Protocol to Supervise Overground Pipelines using WSN. *2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEI2T)* (pp. 1818-1823). IEEE.

[40] Anjali, Nidhi, Dubey K, Rajpoot P, Singh A K, KumarA and Yaduvanshi R, 2019, July. Fuzzy based Technique for Nodes Coverage with Load Balancing Data collection using Multiple Conflicting Factors. *International Conference on Communication and Electronics Systems (ICCES)* (pp. 579-584). IEEE.

[41] Dubey K, Verma K, Mishra S, Rajpoot P, Yaduvanshi R and Kumar S, 2019. Optimization of Data Collection process in Heterogeneous WSN using Fuzzy and Multi-Attribute based Load Balancing Approach, *International Conference on Advances in Electrical, Electronic and System Engineering (ICAEESE 2019)*, IEEE. (In press)

[42] Maurya AK, Dubey K, Pandey A, Rajpoot P, Mishra S and Yaduvanshi R, 2019, Relative Distance Based Fuzzy Clustering Approach for Wireless Sensor Networks, *International Conference on Advances in Electrical, Electronic and System Engineering (ICAEESE 2019)*, IEEE. (In press)

[43] Saini R, Dubey K, Rajpoot P, Gautam S and Yaduvanshi R, 2020. Lifetime Maximization of Heterogeneous WSN using Fuzzy-based Clustering. *Recent Advances in Computer Science and Communications* 13: 1. https://doi.org/10.2174/2666255813999200824123409

Acknowledgment

This work would not have been possible without the financial support of TEQIP-III, Rajkiya Engineering College, Ambedkar Nagar.