A peer-reviewed version of this preprint was published in PeerJ on 16 April 2018.

View the peer-reviewed version (peerj.com/articles/4636), which is the preferred citable publication unless you specifically need to cite this preprint.

Morozov SY, Milyutina IA, Erokhina TN, Ozerova LV, Troitsky AV, Solovyev AG. (2018) TAS3 miR390-dependent loci in non-vascular land plants: towards a comprehensive reconstruction of the gene evolutionary history. PeerJ 6:e4636
https://doi.org/10.7717/peerj.4636
TAS3 miR390-dependent loci in non-vascular land plants:
Towards a comprehensive reconstruction of the gene evolutionary history

Sergey Y. Morozov Corresp. 1, Irina A. Milyutina 1, Tatiana N. Erokhina 2, Liudmila V. Ozerova 3, Alexey V. Troitsky 1, Andrey G. Solovyev 1, 4

1 Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
2 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
3 Tsitsin Main Botanical Garden, Russian Academy of Science, Moscow, Russia
4 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia

Corresponding Author: Sergey Y. Morozov
Email address: morozov@genebee.msu.su

Trans-acting small interfering RNAs (ta-siRNAs) are transcribed from protein non-coding genomic loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified SGS3-coding sequences in charophytes and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants.
TAS3 miR390-dependent loci in non-vascular land plants: towards a comprehensive reconstruction of the gene evolutionary history

Sergey Y. Morozov¹, Irina A. Milyutina¹, Tatiana N. Erokhina², Liudmila V. Ozerova³,
Alexey V. Troitsky¹, Andrey G. Solovyev¹,⁴

¹Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
²Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russian Federation
³Tsitsin Main Botanical Garden, Russian Academy of Science, Moscow, Russian Federation
⁴Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation

Corresponding author: Sergey Y. Morozov, morozov@genebee.msu.su

Keywords: silencing; small interfering RNA; trans-acting RNA; ARF genes; micro RNA; bryophytes; charophyte algae

Subjects: bioinformatics, plant science, genomics, molecular biology

Abbreviations: dsRNA – double-stranded RNA; miRNA – microRNA; siRNA – small interfering RNA; ssRNA – single-stranded RNA; tasiARF - trans-acting siRNA specific for ARF gene; ta-siRNA - trans-acting siRNA
ABSTRACT
Trans-acting small interfering RNAs (ta-siRNAs) are transcribed from protein non-coding genomic loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetrakidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified SGS3-coding sequences in charophytes and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants.

INTRODUCTION
Plant chromosomal loci of trans-acting small interfering RNAs (ta-siRNAs) and microRNAs (miRNAs) encode non-protein-coding and protein-coding precursor transcripts, which are synthesized by RNA polymerase II and include cap-structures and poly-(A) tails. In plants, primary miRNA transcripts forming internal imperfect hairpins are processed by a protein complex including DCL1, HYL1 and SERRATE to give RNA duplexes with 2-nucleotide 3'-overhangs, which are then terminally methylated by specific RNA methylase HEN1. One strand of such duplexes, being typically of 21 nucleotides in length and representing a mature miRNA, is selectively recruited to an effector complex targeting a specific RNA for AGO-mediated edonucleolytic cleavage or translational repression (Rogers and Chen, 2013; Axtell, 2013; Bologna and Voinnet, 2014; Borges and Martienssen, 2015; Chorostecki et al., 2017).
Some specific microRNAs are able to initiate production of ta-siRNAs (more generally phasiRNAs) by an step-by-step cleavage of long dsRNA precursors representing dicing of the dsRNA from a defined start point which generates siRNAs in a “phased” pattern. These PHAS loci include non-coding TAS genes and genes encoding penta-tricopeptide repeat-containing proteins (PPRs), nucleotide-binding and leucine-rich repeat-containing proteins (NB-LRRs), or MYB transcription factors (Allen and Howell, 2010; Zhai et al., 2011; Xia et al., 2013; Fei et al., 2013; Axtell, 2013; Yoshikawa, 2013; Zheng et al., 2015; Komiya, 2017; Liu et al., 2018; Deng et al., 2018). Biogenesis of ta-siRNAs includes initial AGO-dependent miRNA binding at single or dual sites of the precursor transcripts and their subsequent cleavage. The further process is dependent on plant RNA-dependent RNA polymerase 6 (RDR6) and SGS3 proteins participating in the formation of dsRNA, which is then cleaved in a sequential and phased manner by DCL4 with assistance of DRB4 (dsRNA binding protein). The resulting ta-siRNAs (mostly of 21 bp in length), similar to miRNAs, are methylated by HEN1 protein (Allen and Howell, 2010; Axtell, 2013; Fei et al., 2013; Yoshikawa, 2013; Bologna and Voinnet, 2014; Komiya, 2017; Deng et al., 2018).

Arabidopsis TAS3a transcript, first identified by Allen et al. (2005), gives rise to two near-identical 21-nucleotide tasiARFs targeting the mRNAs of some ARF transcription factors (ARF2, ARF3/ETT and ARF4). Most angiosperm TAS3 primary transcripts are recognized by miR390 and cleaved by AGO7 at the 3’ target site, whereas the 5’ miRNA target site is non-cleaveable. However, the number of miR390 cleavage sites, organization of tasiARF sequence blocks and phasing registers may vary among different TAS3 genes of vascular plants (Allen and Howell, 2010; Axtell, 2013; Fei et al., 2013; Zheng et al., 2015; Xia et al., 2013; 2017; de Felippes et al., 2017; Komiya, 2017; Deng et al., 2018). Moreover, miR390 may additionally target and inhibit protein-coding gene transcripts, such as StCDPK1 related to auxin-responsive pathway (Santin et al., 2017).

Previously, we described a new method for identification of plant TAS3 loci based on PCR with a pair of oligodeoxyribonucleotide primers mimicking miR390. The method was found to be efficient for dicotyledonous plants, cycads, conifers, and mosses (Krasnikova et al., 2009; 2011; 2013; Ozerova et al., 2013). Importantly, at that time the structural and functional information on bryophyte TAS3 loci was available only for the model plant Physcomitrella patens (Arif et al., 2013), and we used our PCR-based approach as a phylogenetic profiling tool.
to identify relatives of *P. patens* TAS3 loci in 26 additional moss species of class Bryopsida and several mosses of classes Polytrichopsida, Tetraphidopsida and Andreaeopsida. Moreover, we found a putative pre-miR390 genomic sequence for an additional moss class, Oedipodipsida (Krasnikova et al., 2013). Our studies revealed that a representative of Marchantiophyta (liverwort *Marchantia polymorpha*, class Marchantiopsida) could also encode a candidate miR390 gene and a potential TAS3-like locus (Krasnikova et al., 2013). This finding extended the known evolutionary history of TAS3 loci to the proposed most basal land plant lineage (Ruhfel et al., 2014; Bowman et al., 2017). In addition, we sequenced putative pre-miR390 genomic locus for *Harpanthus flotovanus* (Marchantiophyta, class Jungermanniopsida) (Krasnikova et al., 2013). Later, our findings of TAS3-like and miR390 loci were experimentally confirmed in the studies of the transcriptomes of Marchantiophyta plants *M. polymorpha* (Lin et al., 2016; Tsuzuki et al., 2016) and *Pellia endiviifolia* (class Jungermanniopsida) (Alaba et al., 2015).

New genomic and transcriptomic sequence data for basal Viridiplantae appeared in NCBI (http://ncbi.nlm.nih.gov/sra) and Phytozome (http://www.phytozome.net) databases prompted us to perform new experimental and *in silico* analyses of TAS3 loci in basal taxons of Viridiplantae. In this paper, we identified previously unrecognized TAS3 loci in classes Sphagnopsida and Anthocerotopsida, as well as composite TAS6/TAS3 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. Additionally, we revealed SGS3-coding sequences in charophytes and analyzed their evolutionary links.

MATERIALS AND METHODS

Dried material for *Sphagnum angustifolium* and *S. girgensohnii* were taken from herbarium at Department of Biology, Moscow State University. Total DNA was extracted from dry plants using the Nucleospin Plant Extraction Kit (Macherey-Nagel, Germany) according to the protocol of the manufacturer. For PCR amplification, the following primers were used: a forward primer Spha-TASP (5’-GGCGRTAWCCYTACTGAGCTA-3’) and reverse primer Spha-TASM (5’-TAGCTCAGGAGRGATAMMBMRA-3’). For PCR, 30 cycles were used with a melting temperature of 94°C – 3’, and the next steps are as follows: an annealing temperature 94°C – 20”, 65°C –20”, 58°C –30”, and an extending temperature of 72°C followed by a final extension at 72°C for 5’. PCR products were separated by electrophoresis of samples in a 1.5% agarose gel
and purified using the Gel Extraction Kit (Qiagen, Germany). For cloning, the PCR-amplified DNA bands isolated from gel were ligated into pGEM-T (Promega). The resulting clones were screened by length in 1.5% agarose gel. The plasmids were used as templates in sequencing reactions with an automated sequencer (Applied Biosystems) 3730 DNA Analyzer with facilities of “Genom” (Moscow, Russia).

Sequences for comparative analysis were retrieved from NCBI (http://www.ncbi.nlm.nih.gov/), Phytozome (http://www.phytozome.net) and 1000 Plant Transcriptome Project (“1KP”) (http://1kp-project.com/blast.html). Sequence similarities were analysed by NCBI Blast at http://blast.ncbi.nlm.nih.gov/BlastAlign.cgi. The presence of open reading frames within retrieved sequences was analysed at http://web.expasy.org/translate/. The nucleic acid sequences and deduced amino acid sequences were analyzed and assembled using the NCBI. Conserved domains in the amino acid sequences were identified using the CD-Search of the NCBI. COBALT, the constraint-based alignment tool for multiple protein sequences (http://www.ncbi.nlm.nih.gov/tools/cobalt/) was used for multiple sequence alignments and phylogenetic analyses; neighbor-joining tree was obtained with the use of default parameters.

RESULTS

TAS3 loci in Bryophyta (classes Sphagnopsida and Takakiopsida)

It is commonly accepted that mosses of classes Sphagnopsida and Takakiopsida represent most basal lineages in Bryophyta (Shaw et al., 2010; 2011; Rosato et al., 2016). Previously, using primers, which have allowed us to detect pre-miR390 and TAS3 loci in Bryopsida and some other moss classes, we failed to identify pre-miR390 and TAS3 genes in genus Sphagnum. However, a predicted sequence of pri-miR390 from Sphagnum fallax was recently reported (Xia et al., 2017). This finding prompted us to re-evaluate the occurrence of TAS3-like loci in Sphagnopsida. To this end, we designed a new pair of degenerated PCR primers Spha-TASP and Spha-TASM, which differed from those used previously (Krasnikova et al., 2011; 2013). As a positive control, we used plasmid DNA carrying cloned TAS3 gene of Andreaea rupestris, a representative of basal Bryophyta (Krasnikova et al., 2013). Like the positive control, two total DNA probes from Sphagnum angustifolium and S. girgensohnii gave a single main PCR product of the expected size (Fig. 1). Cloning and sequencing of these PCR fragments revealed two
TAS3-like primary structures having 285 (S. angustifolium) and 292 (S. girgensohnii) bases in length and exhibiting 96% identity (e-value = 2e-131). We named these loci as Sphan-285 and Sphgi-292, (Fig. 2, Fig. S1 and Table 1).

Peatmosses S. angustifolium and S. girgensohnii belong to subgenera Cuspidata and Acutifolia, respectively (Shaw et al., 2010, 2016). To extend search for TAS3-like loci inside genus Sphagnum we performed bioinformatics analysis of the nucleotide sequences in databases available at NCBI (Sequence Read Archive) and Phytozome (version 12.1). Phytozome has recently released genome assembly of bog moss S. fallax (version 0.5). Bog moss belongs to subgenus Cuspidata and represents the most closely related moss to S. angustifolium (Shaw et al., 2016). BLASTN search at Phytozome allowed us to reveal a TAS3-like locus (supercontig super_37), which has 100% identity to the TAS3 locus of S. angustifolium sequenced in this study (Fig. S1 and Table 1). Unexpectedly, we found an additional TAS3-like locus in S. fallax (transcript Sphfalx0293s0011, supercontig super_293). This TAS3 locus in bog moss has 277 nucleotides in length and showed only a distant relation to the S. angustifolium TAS3 (Fig. 2, Fig. S1 and Table 1).

To further analyze Sphagnopsida TAS3-related loci, we used BLAST analysis of Sequence Read Archive (SRA), which is the NCBI database collecting sequence data obtained by the use of next generation sequence (NGS) technology. Assembly of sequence reads of S. recurvum (subgenus Cuspidata) retrieved by BLAST search using S.fallax sequences as queries revealed two TAS3 loci (Table 1). The first locus (Sphre-283) is 283 nucleotides in length and has 98% identity to Sphan-285. The second locus (Sphre-277) shows 98% identity to Sphfalx0293s0011 (Table 1, Fig. S1). These findings indicate that two distant TAS3 loci in species of a particular subgenus of genus Sphagnum are extremely similar.

We also analyzed the SRA database of subgenus Sphagnum (Shaw et al., 2010, 2016). It was found that S. magellanicum belonging to this subgenus also encode two TAS3 loci called Sphma-285 (285 nt size) and Sphma-286 (286 nt size) (Fig. S1 and Table 1). Unlike S. fallax and S. recurvum, in S. magellanicum TAS3 loci are more similar, showing 86% identity (Fig. 2). Both Sphma-285 and Sphma-286 had 85% identity to Sphan-285 (Fig. 2). It was found that TAS3-like locus (Sphpa) from one more representative of subgenus Sphagnum (S. palustre) exhibited 98% identity to Sphma-285 (Fig. S1 and Table 1). The SRA database also contained sequence reads of two representatives from subgenus Subsecunda (Shaw et al., 2010, 2016). Our
BLAST analysis and subsequent assembly of retrieved reads revealed a single TAS3 locus in *S. cribrosum* (Sphcri, 291 nt size) showing 95% identity to Sphan-285 and 81% identity to Sphma-286 (Fig. 2, Fig. S1 and Table 1) and a partial TAS3-like sequence in *S. lescurii* (Fig. S1 and Table 1).

Analysis of the SRA database of *Takakia lepidozioides* (class Takakiopsida) allowed us to reveal only one TAS3-like sequence (Takle-207) (Fig. S1 and Table 1). The same sequence was revealed in a longer assembly which was found recently upon search of 1KP database (Xia et al., 2017).

Comparison of sequence organization between TAS3 loci in Bryophyta

Since Takakiopsida and Sphagnopsida are most basal sister lines to all other Bryophyta (Shaw et al., 2010, 2011; Rosato et al., 2016), it was very interesting to compare the structural organization of Takakiopsida and Sphagnopsida TAS3 loci with other classes of Bryophyta. Our previous detailed analysis of approximately 40 TAS3 loci in Bryophyta (Krasnikova et al., 2011; 2013) showed that the general structure of moss TAS3 is similar in all taxa and fits the structural organization of *Physcomitrella patens* genes, comprising dual miR390 target sites on the 5’ and 3’ borders and internal monomeric tasiAP2 sequence followed by tasiARF sequence positioned in 20-30 bases. We revealed that phylogenetic tree of TAS3-like loci in Bryophyta showed clear subdivision of their sequences into two main clades (see Fig. 5 in Krasnikova et al., 2013). The first group was formed by a cluster of sequences close to *P. patens* TAS3 species PpTAS3a, PpTAS3d, and PpTAS3f, and the second one – by those close to PpTAS3b, PpTAS3c, and PpTAS3e. The recent paper on the structure of TAS3 loci in lower land plants (Xia et al., 2017) has shown the structure-functional basis for this phylogenetic subdivision. TAS3 species of the first group (PpTAS3a/PpTAS3d/PpTAS3f cluster) were shown to form class III of TAS3-like loci and contain, in addition to the previously reported tasiAP2 and tasiARF-a2 sequences, newly discovered tasiARF-a3 sequence positioned 5’ according to tasiAP2. Among TAS3 species of basal Bryophyta, *Andreaea rupestris* locus 13-Aru (Krasnikova et al., 2013) belongs to class III (Fig. 3). Two other *A. rupestris* TAS3 loci, 14-Aru and WOGB_2010369, belong to the PpTAS3b/PpTAS3c/PpTAS3e cluster which represents TAS3 class II containing only tasiAP2 and tasiARF-a2 sequences (Xia et al., 2017) (Fig. 4). The mentioned above tasiARF sequences, tasiARF-a2 and tasiARF-a3, showed no sequence similarity suggesting their independent origins.
These tasiRNAs were found to be formed from different strands of the TAS3 dsRNA intermediate and target different regions of ARF genes (Xia et al., 2017). Inhibition of production of both tasiARF RNAs in *P. patens* resulted in obvious developmental defects exhibited, in particular, as alterations in gametophore initiation, protonemal branch determinacy and caulonemal differentiation (Plavskin et al., 2016).

Comparison of nucleotide sequences between TAS3 species of several moss classes revealed in many plants obvious similarity of nucleotide sequence blocks including tasiAP2 site and immediate upstream 21 bp block occurring in the same 21-bp-phase (Fig. 5). We hypothesized that this sequence block may correspond to novel previously unrecognized ta-siRNA in many moss species. Moreover, we found that this hypothetical ta-siRNA might be cleaved from TAS3, and its minus-strand is complementary to uncharacterized well-conserved, protein-coding moss mRNA (Fig. S2).

BLAST comparison of *T. lepidozioides* TAS3 with known Bryopsida loci showed that Takle-207 (see above) belongs to class II of TAS3 with typical positioning of tasiAP2 and tasiARF-a2 sequences (Fig. 6 and Fig. S1). On the other hand, none of Sphagnopsida TAS3-like sequences (Table 1) showed conventional internal structural organization of the most moss TAS3 species. The only recognizable conserved site, except miR390-targeting regions, was identified as tasiARF-a2 sequence, which was found to be conserved between two very distant TAS3 loci in *S. fallax* and *S. recurvum* (Fig. 2).

TAS3 loci in Anthocerotophyta

Taking into account the finding of TAS3-like loci in classes Sphagnopsida and Takakiopsida and previously published data (Krasnikova et al., 2013; Xia et al., 2017), one can conclude that the only remaining blind-spot in land plants with respect to TAS3 is represented by phylum Anthocerotophyta. Relationships between liverworts, mosses and hornworts are still obscure. Moreover, the question remains which bryophyte phylum is a sister line to all other land plants (Qiu, 2008; Shaw et al., 2011; Harrison, 2017). Recent analysis, in which three bryophyte lineages were resolved, revealed that a clade with mosses and liverworts could form a sister group to the tracheophytes, whereas the hornworts is sister line to all other land plants (Wickett et al., 2014). However, analyses of the plastid genome sequences suggested another branching order of the phylogenetic tree, with hornworts rather than moss/liverwort clade being a sister
group to tracheophytes (Lewis et al., 1997; Samigullin et al., 2002; Ruhfel et al., 2014; Lemieux et al., 2016). Moreover, some very recent nuclear gene comparisons also suggested that liverworts might be closer to a common ancestor of land plants, and hornworts could be a sister clade to tracheophytes (Rosato et al., 2016; Bowman et al., 2017).

Analysis of the SRA database of Anthocerotophyta revealed a TAS3-like sequence in *Folioceros fuciformis* (family Anthocerotaceae). Unexpectedly, the discovered TAS3-like sequence (Folfu) was found to be 244 nucleotides in length and obviously similar to Bryophyta class III TAS3 species (Fig. 7, Fig. S3 and Table 2). The identity of Folfu to some moss TAS3 sequences exceeds 80% being therefore even higher than between some related Bryopsida species (Fig. 3). Thus these data clearly indicate a close relation of TAS3 in Anthocerotophyta to Bryophyta TAS3 (excepting Sphagnopsida).

TAS3 loci in Marchantiophyta

Some of the recent molecular phylogenetic reconstructions suggested that Marchantiophyta species could represent a sister clade to all other land plants (see above). Therefore, finding and comparative analyses of TAS3 loci in this taxon represented a significant interest for understanding early events in TAS3 evolution. In contrast to class Marchantiopsida, where putative TAS3 and pre-miR390 loci were previously identified (Krasnikova et al., 2013; Lin et al., 2016; Tsuzuki et al., 2016), for class Jungermanniopsida only potential pre-miR390 loci were found in *Pellia endiviifolia* and *Harpanthus flotovianus* (Krasnikova et al., 2013; Alaba et al., 2015). Assuming that miR390 was found to be among eight most conserved miRNA species in land plants (Xia et al., 2013; You et al., 2017; Liu et al., 2018), Jungermanniopsida could be expected to encode TAS3 loci.

To detect new potential TAS3 loci, we performed BLAST analysis of the SRA database for species of class Jungermanniopsida using *Marchantia polymorpha* TAS3 sequence (1-Mpo) as a query. Using this approach we revealed a set of reads and assembled a single TAS3-like locus (Pelen-192) for *Pellia endiviifolia* (192 nt size). In addition, TAS3 locus of 226 nucleotides in length was found in *Metzgeria crassipilis* (Meter-226) (Fig. 8, Table 2, Fig. S3). The latter locus was also recently revealed in a search of 1KP database (Xia et al., 2017).

TAS3 1-Mpo sequence was further used for BLAST analysis of other Marchantiopsida sequences available at the NCBI SRA database. As a result, we retrieved sequence reads and...
assembled five full-length TAS3-like sequences in *Plagiochasma appendiculatum* (Plaap-247), *Dumortiera hirsuta* (Dumhi-243), *Marchantia emarginata* (Marem-262), *Ricciocarpos natans* (Ricna-235) and *Conocephalum japonicum* (Conja-252) (Fig. 8, Table 2, Fig. S3). Recent bioinformatics analysis of 1KP database revealed three additional full-length TAS3-like sequences in *Conocephalum conicum*, *Lunularia cruciata* and *Marchantia paleaceae* (Xia et al., 2017) (Table 2). Thus, totally 11 TAS3-like loci have been found in Marchantiophyta.

Comparative sequence analysis showed that structural organizations of Marchantiopsida and Jungermanniopsida TAS3 loci were quite similar, whereas Marchantiophyta species were obviously different from those of Bryophyta. These TAS3 species were found to contain two conserved sequence blocks presumably corresponding to functional ta-siRNAs. One of these blocks was found in the vicinity of the 3’-terminal miR390 binding site and corresponded to Bryopsida tasi-AP2 sequence (Krasnikova et al. 2013), whereas another one (tasiARF-a1), unique among lower land plants, was located closer to the 5’-terminal miR390 binding site in Marchantiopsida and Jungermanniopsida TAS3 (Tsuzuki et al., 2016; Xia et al., 2017) (Fig. 8, Fig. S3).

TAS6 loci in Bryophyta

Previous studies of *P. patens* revealed three novel non-coding PHAS loci (TAS6) which were located in rather close genomic proximity to PpTAS3 loci (PpTAS3a, PpTAS3d, and PpTAS3f) and expressed as common RNA precursors with these TAS3 species (Cho et al., 2012; Arif et al., 2012, 2013). Moreover, miR529 and miR156 were suggested to influence accumulation of ta-siRNAs specific not only for TAS6, but also for PpTAS3a (Cho et al., 2012). We have found that localization of TAS6 loci close to TAS3 genes in common transcripts was not unique for *P. patens* (subclass Funariidae), since these loci were also found to be encoded by three other mosses of subclasses Bryidae and Dicranidae (Krasnikova et al., 2013).

For further search of the combined TAS6/TAS3 loci, we performed bioinformatics analysis of 1KP database. Although nucleotide sequences of miR156 and related miR529, as well as their recognition sites in RNA transcripts, are highly conserved among land plants (Morea et al., 2016; Axtell & Meyers, 2018), the internal sequences between dual miR156/miR529 recognition sites show little or no similarity even between different TAS6 loci of *P. patens* (Arif et al., 2012). So we used, as queries for BLAST search, the individual full-
length TAS6/TAS3 loci including most characterized locus encoding PpTAS3a (Fig. 9), as well as those for PpTAS3d and PpTAS3f. First, it was found that in addition to four previously found Bryopsida species, encoding TAS6/TAS3 loci, these loci could be revealed in basal subclasses Timmiidae (Timmia austriaca) and Diphysciidae (Diphysciuim foliosum) (Shaw et al., 2011) (Table 3, Fig. S4). List of TAS6/TAS3 loci in other moss subclasses was also significantly extended: we found 18 new loci in Bryidae, seven loci in Dicranidae and four loci in Funariidae (Table 3, Fig. S4). These novel loci showed recognizable but varying sequence similarities to the PpTAS3a-containing locus (Fig. 9). Second, most importantly, putative TAS6/TAS3 loci were revealed in 4 basal classes of Bryophyta, namely, Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida (Table 3, Fig. S4). These novel loci had a similar organization to Bryopsis TAS6/TAS3 species (Fig. 9). However, no TAS6-specific sequence signatures were found in the vicinity of genomic S. fallax and M. polymorpha TAS3 loci upon analysis of the corresponding Phytozome genome contigs.

Phylogeny of SGS3 as a characteristic molecular component of TAS3 pathway

It was shown that some species green algae could encode ancient types of dicer-like proteins, RDRs, and AGOs. On the other hand, no encoded SGS3 proteins were revealed for these algae (Zheng et al., 2015). Since SGS3 was found to be essential for production of tasiARF RNAs in moss P. patens (Plavskin et al., 2016), we performed sequence to identify possible SGS3 genes in charophytes. For identification of SGS3 protein orthologs among land nonvascular plants and charophytes, we used as a query the most conserved region of P. patens SGS3 including short zinc binding zf-XS domain and RNA recognition XS domain (Bateman, 2002; Zhang & Trudeau, 2008). Importantly, the short N-terminal zf-XS domain is characteristic for functional SGS3 proteins, since the XS domain-containing protein of Selaginella moellendorfii lacking TAS-generating machinery (Banks et al., 2011) possesses no zf-XS domain upstream of XS domain and instead contains the C-terminal RING zf region (see NCBI accession XP_002979112). However, it should be noted that the lack of TAS3 pathway and SGS3 is not universal for lycophytes (Xia et al., 2017).

In addition to class Bryopsida, SGS3 protein sequences were revealed for members of classes Marchantiopsida, Jungermanniopsida, Anthocerotopsida, Takakiopsida and Sphagnopsida (Fig. 10 and Fig. S5). Most importantly, search for the SGS3 coding sequences in
transcriptomes of four charophyte classes (Zygnemophyceae, Coleochaetophyceae, Charophyceae, and Klebsormidiophyceae) also revealed the SGS3-like proteins in representatives of all these taxa (Fig. 10, Fig. S5, Fig. S6). This observation was in agreement with the fact that SGS3-like coding sequence was found in the fully sequenced and annotated genome of *Klebsormidium nitens* (NCBI accession GAQ92898) (Hori et al., 2014). Moreover, the characteristic motifs of land plant SGS3 proteins (Bateman, 2002) were revealed in the protein sequences from charophyte algae (Fig. S5, Fig. S6).

Importantly, in the dendrogram based on comparisons of 24 aligned SGS3 protein sequences, the position of charophytes (Fig. 10) corresponded to the commonly accepted Viridiplantae phylogenetic tree (Shaw et al., 2011; Delwiche & Cooper, 2015; Harrison, 2017), where class Zygnemophyceae (*Spirogyra pratensis*) was a sister group for all land plants. Bryophytes represent the first branching lineage in a land plant subtree of SGS3 proteins, where ferns and Gymnosperms are clustered as the separate monophyletic groups (Fig. 10). It has become clear that evolving the SGS3-like genes was not directly connected to the appearance of TAS loci in Viridiplantae, since Chlorophyta species, lacking SGS3, encode not only critical enzyme machinery including DCLs, RDRs, and AGOs (You et al., 2017), but also PHAS loci (Zheng et al., 2015). Despite our extensive searches, no SGS3 genes could be identified also in brown and red algae, and this is in agreement with previously published data on green algae (Zheng et al., 2015).

DISCUSSION

It was proposed that the earliest function of TAS3 could contribute to the production of ta-siRNAs targeting ARF genes, and, since green algae encode no ARF genes, TAS3 likely appeared first in land plants (Xia et al., 2017). However, very recent extensive comparative sequence analysis showed that charophyte algae representing the sister group to all land plants (colonized terrestrial environments approximately 480 million years ago) could encode ARF-like proteins including all sequence domains typical for bryophyte and angiosperm ARFs (Mutte et al., 2017). Moreover, our current data showed that TAS3-like loci are encoded by the representatives of all main taxa among non-vascular plants. These observations suggest that the TAS3 evolution started in a common ancestor of land plants, likely belonging to a still unknown lineage of charophytes. Identification of the canonical motifs of land plant SGS3 in charophyte
370 proteins (see above) indirectly supports this speculation. However, it should be kept in mind that
371 evolving the SGS3-like genes could not be connected solely to the appearance of PHAS loci in
372 Viridiplantae, since green algae and brown algae species were found to encode not only essential
373 silencing machinery enzymes including DCLs, RDRs and AGOs, but also PHAS loci (Billoud et
374 al., 2014; Zheng et al., 2015; Singh et al., 2015; Zhang et al., 2016; Dueck et al., 2016; You et
375 al., 2017; Cock et al., 2017). Finally, it can be proposed that the failure to identify charophyte
376 TAS3 loci may be related to (i) the incompleteness of the available sequence data; (ii) evolving
377 by charophytes the one-hit TAS3 genes (de Felippes et al., 2017); or (iii) the use of miRNA
378 species with sequences other than land plant miR390 for TAS precursor processing.

380 ACKNOWLEDGEMENTS
381 We thank researchers who contributed samples used in this study to the 1KP initiative. The work
382 of S. Morozov, T. Erokhina and A. Solovyev was supported by the Russian Science Foundation
383 (grant 17-14-01032). The work of I. Milyutina and A. Troitsky was supported by the Russian
384 Foundation for Basic Research (grant 18-04-00574-a). The work of L. Ozerova was supported by
385 the State Assignment of MBG RAS on the base of the Unique Scientific Installation “The Fund
386 Greenhouse”.

388 Author Contributions
389 Sergey Y. Morozov conceived and designed the experiments, analyzed the data, prepared figures
390 and/or tables, wrote the paper, reviewed drafts of the paper.
391 Irina A. Milyutina conceived and designed the experiments, performed the experiments,
392 contributed reagents/materials/analysis tools.
393 Tatiana N. Erokhina and Lydmila V. Ozerova performed the experiments, contributed
394 reagents/materials/analysis tools, prepared figures and/or tables, reviewed drafts of the paper.
395 Alexey V. Troitsky and Andrey G. Solovyev conceived the experiments, analyzed the data,
396 wrote the paper, reviewed drafts of the paper.

398 DNA Deposition
399 The following information was supplied regarding the deposition of DNA sequences: The new
400 sequences generated for this study are available as a nexus file in the Supplemental Material. All
sequences used in this study are available on GeneBank (new sequences accession numbers MF682529 and MF682530).

REFERENCES

Alaba S, Piszczalka P, Pietrykowska H, Pacak AM, Sierocka I, Nuc PW, et al. 2015. The liverwort Pellia endiviifolia shares microtranscriptomic traits that are common to green algae and land plants. New Phytology 206:352–367. DOI: 10.1111/nph.13220.

Allen E, Xie Z, Gustafson A, Carrington J. 2005. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221.

Allen E, Howell M. 2010. miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Seminars in Cell and Developmental Biology 21:798–804. DOI 10.1016/j.semcdb.2010.03.008.

Arif MA, Fattash I, Ma Z, Cho SH, Beike AK, Reski R, Axtell MJ, Frank W. 2012. DICER-LIKE3 activity in Physcomitrella patens DICER-LIKE4 mutants causes severe developmental dysfunction and sterility. Mol. Plant 5:1281-1294. doi: 10.1093/mp/sss036.

Arif MA, Frank W, Khraiwesh B. 2013. Role of RNA interference (RNAi) in the Moss Physcomitrella patens. Int. J. Mol. Sci. 14:1516-1540. doi: 10.3390/ijms14011516.

Axtell MJ. 2013. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 64:137–159. DOI 10.1146/annurev-arplant-050213-035728.

Axtell MJ & Meyers BC. 2018. Revisiting criteria for plant miRNA annotation in the era of big data. Plant Cell doi: 10.1105/tpc.17.00851.

Bateman, A. 2002. The SGS3 protein involved in PTGS finds a family. BMC Bioinformatics 3: 21. doi: 10.1186/1471-2105-3-21.

Banks JA, Nishiyama T, Hasebe M et al., 2011. The selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960-963.

Billoud B, Nehr Z, Le Bail A, Charrier B. 2014. Computational prediction and experimental validation of microRNAs in the brown alga Ectocarpus siliculosus. Nucleic Acids Res. 42:417-429. doi: 10.1093/nar/gkt856.

Bologna N, Voinnet O. 2014. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol. 65:473-503. DOI 10.1146/annurev-arplant-050213-035728.
Borges F & Martienssen RA. 2015. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell. Biol. 16:727-741. doi: 10.1038/nrm4085.

Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R et al. 2017. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell 171:287-304.e15. doi: 10.1016/j.cell.2017.09.030.

Cho SH, Coruh C, Axtell MJ. 2012. miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens. Plant Cell 24:4837–4849. doi: 10.1105/tpc.112.103176.

Chorostecki U, Moro B, Rojas AML, Debernardi JM, Schapire AL, Notredame C, Palatnik JF. 2017. Evolutionary Footprints Reveal Insights into Plant MicroRNA Biogenesis. Plant Cell 29:1248-1261. doi: 10.1105/tpc.17.00272.

Cock JM, Liu F, Duan D, Bourdareau S, Lipinska AP, Coelho SM, Tarver JE. 2017. Rapid Evolution of microRNA Loci in the Brown Algae. Genome Biol. Evol 9:740-749. doi: 10.1093/gbe/evx038.

Delwiche CF & Cooper ED. 2015. The evolutionary origin of terrestrial life. Curr. Biol 25:R899–R910

Deng P, Muhammad S, Cao M, Wu L. 2018. Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants. Plant Biotechnology Journal. doi: 10.1111/pbi.12882.

Dueck A, Evers M, Henz SR, Unger K, Eichner N, Merkl R, Berezikov E, Engelmann JC, Weigel D, Wenzl S, Meister G. 2016. Gene silencing pathways found in the green alga Volvox carteri reveal insights into evolution and origins of small RNA systems in plants. BMC Genomics 17:853.

Fei Q, Xia R, Meyers B. 2013. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400-2415.

de Felippes FF, Marchais A, Sarazin A, Oberlin S, Voinnet O. 2017. A single miR390 targeting event is sufficient for triggering TAS3-tasiRNA biogenesis in Arabidopsis. Nucleic Acids Res. 45:5539-5554. doi: 10.1093/nar/gkx119.

Harrison CJ. 2017. Development and genetics in the evolution of land plant body plans. Philosophical Transactions of the Royal Society B: Biological Sciences 372 DOI: 10.1098/rstb.2015.0490.

Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N, Seo M, Sato S, Yamada T, Mori H, Tajima N. 2014. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun. 5:3978. doi: 10.1038/ncomms4978.
Krasnikova M, Milyutina I, Bobrova V, Troitsky A, Solovyev A, Morozov S. 2009. Novel miR390-dependent trans-acting siRNA precursors in plants revealed by a PCR-based experimental approach and database analysis. Journal of Biomedicine and Biotechnology. Article ID 952304. doi: 10.1155/2009/952304.

Krasnikova M, Milyutina I, Bobrova V, Ozerova L, Troitsky A, Solovyev A, Morozov S. 2011. Molecular diversity of mir390-guided trans-acting siRNA precursor genes in lower land plants: experimental approach and bioinformatics analysis. Sequencing. Article ID 703683. doi: 10.1155/2011/703683.

Krasnikova M, Goryunov D, Troitsky A, Solovyev A, Ozerova L, Morozov S. 2013. Peculiar evolutionary history of miR390-guided TAS3-like genes in land plants. Scientific World Journal. Article ID 924153. doi: 10.1155/2013/924153.

Komiya R. 2017. Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing. J Plant Res. 130:17-23. DOI 10.1007/s10265-016-0878-0.

Lemieux C, Otis C, Turmel M. 2016. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae. Front. Plant Sci. 7:697. doi: 10.3389/fpls.2016.00697.

Lewis LA., Mishler BD, Vilgalys R. 1997. Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene rbcL, Mol. Phylogenet. Evol., 7: 377-393.

Lin PC, Lu CW, Shen BN, Lee GZ, Bowman JL, Arteaga-Vazquez MA, Liu LY, Hong SF, Lo CF, Su GM, Kohchi T, Ishizaki K, Zachgo S, Althoff F, Takenaka M, Yamato KT, Lin SS. 2016. Identification of miRNAs and Their Targets in the Liverwort Marchantia polymorpha by Integrating RNA-Seq and Degradome Analyses. Plant Cell Physiology 57:339-358. doi: 10.1093/pcp/pcw020.

Liu H, Yu H, Tang G, Huang T. 2018. Small but powerful: function of microRNAs in plant development. Plant Cell Reports doi: 10.1007/s00299-017-2246-5.

Morea EG, da Silva EM, e Silva GF, Valente GT, Barrera Rojas CH, Vincentz M, Nogueira FT. 2016. Functional and evolutionary analyses of the miR156 and miR529 families in land plants. BMC Plant Biology 16:40. doi: 10.1186/s12870-016-0716-5.

Mutte S, Kato H, Rothfels C, Melkonian M, Wong G K-S, Weijers D. 2017. Origin and evolution of the nuclear auxin response system. bioRxiv 220731; doi: https://doi.org/10.1101/220731

Ozerova L, Krasnikova M, Troitsky A, Solovyev A, Morozov S, 2013. TAS3 genes for small ta-siARF RNAs in plants belonging to subtribe Senecioninae: occurrence of prematurely terminated RNA precursors. Mol Gen Mikrobiol Virusol (Moscow), 28:79-84.
Plavskin Y, Nagashima A, Perroud PF, Hasebe M, Quatrano RS, Atwal GS, Timmermans MC. 2016. Ancient trans-Acting siRNAs Confer Robustness and Sensitivity onto the Auxin Response. Dev. Cell 36:276-289. doi: 10.1016/j.devcel.2016.01.010.

Samigullin TK, Yacentyuk SP, Degtyaryeva GV, Valieho-Roman KM, Bobrova VK, Capesius I, Martin WF, Troitsky AV, Filin VR, Antonov AS. 2002. Paraphyly of bryophytes and close relationship of hornworts and vascular plants inferred from chloroplast rDNA spacers sequence analysis, Arctoa 11: 31-43.

Qiu YL. 2008. Phylogeny and evolution of charophytic algae and land plants. J. Syst. Evol. 46, 287–306. doi:10.3724/SP.J.1002.2008.08035.

Rogers K, Chen X. 2013. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell, 25:2383-2399. DOI 10.1105/tpc.113.113159.

Rosato M, Kovářík A, Garilleti R, Rosselló JA. 2016. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants. PLoS One 11:e0162544. doi: 10.1371/journal.pone.0162544.

Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. 2014. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol. 14:23. doi: 10.1186/1471-2148-14-23.

Santin F, Bhogale S, Fantino E, Grandellis C, Banerjee AK, Ulloa RM. 2017. Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development. Physiol. Plant 159:244-261. doi: 10.1111/plp.12517.

Shaw AJ, Cox CJ, Buck WR, Devos N, Buchanan AM, Cave L, Seppelt R, Shaw B, Larrain J, Andrus R, Greilhuber J, Temsch EM. 2010. Newly resolved relationships in an early land plant lineage: Bryophyta class Sphagnopsida (peat mosses). American Journal of Botany 97:1511–1531. doi: 10.3732/ajb.1000055.

Shaw AJ, Szövényi P, Shaw B. 2011. Bryophyte diversity and evolution: windows into the early evolution of land plants. American Journal of Botany 98:352–369. doi: 10.3732/ajb.1000316.

Shaw AJ, Devos N, Liu Y, Cox CJ, Goffinet B, Flatberg KI, Shaw B. 2016. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss). Ann. Bot. 118:185-196. doi: 10.1093/aob/mcw086.
565 Singh RK, Gase K, Baldwin IT, Pandey SP. 2015. Molecular evolution and diversification of the Argonaute family of proteins in plants. *BMC Plant Biology* 15:23. doi: 10.1186/s12870-014-0364-6.

568 Tsuzuki M, Nishihama R, Ishizaki K, Kurihara Y, Matsu M, Bowman JL, et al. 2016. Profiling and Characterization of Small RNAs in the Liverwort, *Marchantia polymorpha*, Belonging to the First Diverged Land Plants. *Plant Cell Physiology* 57: 359–372. doi: 10.1093/pcp/pcv182.

573 Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. *Proc. Natl. Acad. Sci. U S A* 111:E4859-68. doi: 10.1073/pnas.1323926111.

577 Xia R, Meyers BC, Liu Z, Beers EP, Ye S, Liu Z. 2013. MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA Biogenesis in Eudicots. *Plant Cell* 25:1555–1572. doi: 10.1105/tpc.113.110957.

580 Xia R, Xu J, Meyers BC. 2017. The emergence, evolution, and diversification of the miR390 TAS3 ARF pathway in land plants. *Plant Cell* 29:1232-1247. doi: 10.1105/tpc.17.00185.

583 You C, Cui J, Wang H, Qi X, Kuo L-Y, Ma H, et al. 2017. Conservation and divergence of smallRNA pathways and microRNAs in plants. *Genome Biology* 18:158 doi: 10.1186/s13059-017-1291-2.

586 Yoshikawa M. 2013. Biogenesis of trans-acting siRNAs, endogenous secondary siRNAs in plants. *Genes Genet Syst*. 88:77–84.

590 Zhai J, Jeong D, De Paoli E, Park S, Rosen B, Li Y, González A, Yan Z, Kitto S, Grusak M, Jackson S, Stacey G, Cook D, Green P, Sherrier D, Meyers M. 2011. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. *Genes Dev.* 25:2540-2553. DOI 10.1101/gad.177527.111.

594 Zhang D, Trudeau VL. 2008. The XS domain of a plant specific SGS3 protein adopts a unique RNA recognition motif (RRM) fold. *Cell Cycle* 7:2268-2270.

597 Zheng Y, Wang Y, Wu J, Ding B, Fei Z. 2015. A dynamic evolutionary and functional landscape of plant phased small interfering RNAs. *BMC Biol.* 13:32. doi: 10.1186/s12915-015-0142-4.
FIGURE LEGENDS

Figure 1: Analysis of PCR products in 1.5% agarose gel. Amplification of genomic DNA sequences flanked by miR390 and miR390* sites. PCR products were obtained on genomic DNAs with degenerate primers. *Sphagnum angustifolium* (1), *Sphagnum girgensohnii* (2), *Andreaea rupestris* (3). (M), DNA size markers including bands ranging from 100 bp to 1000 bp with 100 bp step (Sibenzyme).

Figure 2: Pairwise sequence comparisons of some available nucleotide sequences of TAS3-like loci from mosses of genus *Sphagnum*. BLASTN was used at NCBI blast site. The miR390 target sites are in yellow, and putative tasiARF-a2 site is in green.

Figure 3: Pairwise sequence comparisons of selected available nucleotide sequences of TAS3-like loci from mosses with class III TAS3 locus 13-Aru of *Andreaea rupestris*. BLASTN was used at NCBI blast site. The miR390 target sites are in yellow; putative tasiARF-a2 site is in green; tasiAP2 is in blue, and tasiARF-a3 is shaded.

Figure 4: Pairwise sequence comparisons of selected available nucleotide sequences of TAS3-like loci from mosses with class II TAS3 loci 14-Aru (A) and WOGB_2010369 (B) of Andreaea rupestris. BLASTN was used at NCBI blast site. The miR390 target sites are in yellow; putative tasiARF-a2 site is in green; tasiAP2 is in blue.

Figure 5: Multiple sequence alignments of nucleotide sequence blocks including tasiAP2 site and preceding 21 bp site of putative ta-siRNA of *Andreaea rupestris* TAS3-like locus WOGB_2010369. BLASTN was used at 1KP blast site. For the complete TAS3 transcript sequences see Xia et al., 2017. The putative tasiAP2 site is in blue, and preceding putative tasiRNA site is in violet. Andreaea1 - *Andreaea rupestris* WOGB_2010369; Andreaea2 - *Andreaea rupestris* WOGB_2002765; Tetraphis1 - *Tetraphis pelluccida* HVBQ_2019753; Tetraphis2 - *Tetraphis pelluccida* HVBQ_2011866; Tetrathi3 - *Tetraphis pelluccida* HVBQ_2005644; Plagiommum - *Plagiommum_insigne* BGXB_2010105; Leucohryum – *Leucohryum glaucum* RGKI_2062694; Racomitrium - *Racomitrium_varium* RDOO_2117129; Philonotis - *Philonotis_fontana* ORKS_2058791; Dicranum - *Dicranum_scoparium* NGTD_2078536;
Encalypta - Encalypta_streptocarpa KEFD_2058811; Ceratodon - Ceratodon_purpureus
FFPD_2044193; Niphotrichum - Niphotrichum_elongatum ABCD_2000143; Funaria - Funaria
sp. XWHK_2042016; Schwetschkeop – Schwetschkeopsis fabronia IGUH 2166854;
Aulacomnium - Aulacomnium_heterostichum WNGH_2088134; Syntrichia – Syntrichia princeps
GRKU_2074985; Diphyscium1 - Diphyscium_foliosum AWOI_2069791; Diphyscium2 -
Diphyscium_foliosum AWOI_2006305; Hypnum - Hypnum_subimponens LNSF_2068452;
Pohlia - Pohlia_nutans GACA01023180; Bryum - Bryum_argenteum GCZP01053768.

Figure 6: Pairwise sequence comparisons of selected available nucleotide sequences of TAS3-
like loci from mosses with TAS3 of Takakia lepidozioides. BLASTN was used at NCBI blast
site. The miR390 target sites are in yellow; putative tasiARF-a2 site is in green; tasiAP2 is in
blue.

Figure 7: Pairwise sequence comparisons of selected available nucleotide sequences of TAS3-
like loci from mosses with TAS3 of hornwort Folioceros fuciformis. BLASTN was used at
NCBI blast site. The miR390 target sites are in yellow; putative tasiARF-a2 site is in green;
tasiAP2 is in blue; tasiARF-a3 is shaded.

Figure 8: Pairwise sequence comparisons of selected available nucleotide sequences of TAS3-
like loci from non-vascular plants with TAS3 of Marchantia polymorpha. BLASTN was used at
NCBI blast site. The miR390 target sites are in yellow; putative tasiARF-a1 site is in brown;
tasiAP2 is in blue.

Figure 9: Pairwise sequence comparisons of selected nucleotide sequences of TAS6/TAS3-like
loci from mosses with TAS6/TAS3 of Physcomitrella patens precursor RNA (accession
JN674513). BLASTN was used at 1KP blast site. The miR390 target sites are in yellow; putative
miR156/miR529 sites are underlined; tasiAP2 is in blue; putative tasiARF-a2 site is in green;
tasiARF-a3 is shaded.

Figure 10: The phylogenetic tree based on sequence alignment of the conserved region of SGS3
amino acid sequences in selected lower plant species. Neighbor-joining tree was obtained at
http://www.ncbi.nlm.nih.gov/tools/cobalt/ with the use of default parameters. The scale bar denotes the estimated number of amino acid substitutions per site. *K. flaccidum* was used as outgroup.
Figure 1

Analysis of PCR products in 1.5% agarose gel.

Amplification of genomic DNA sequences flanked by miR390 and miR390* sites. PCR products were obtained on genomic DNAs with degenerate primers. *Sphagnum angustifolium* (1), *Sphagnum girgensohnii* (2), *Andreaea rupestris* (3). (M), DNA size markers including bands ranging from 100 bp to 1000 bp with 100 bp step (Sibenzyme).
Figure 2 (on next page)

Pairwise sequence comparisons of some available nucleotide sequences of TAS3-like loci from mosses of genus *Sphagnum*.

BLASTN was used at NCBI blast site. The miR390 target sites are in yellow, and putative tasiARF-a2 site is in green.
Sphagnum angustifolium VS Sphagnum girgensohnii (E-value: 2e-131)

| Sphagn-285 | 59 | TGTGTG----GTTTTTTAATGCTTTTATAGAAAGGAAGCTGAATTGATAGGGTTTACA | 114 |
| Sphagn-286 | 60 | TTGTTGTAATGCTTTTATAGAAAGGAAGCTGAATTGATAGGGTTTACA | 114 |

Sphagnum fallax (E-value: 1e-28)

| Sphalfx super_37 | 1 | TACCTTTGCAAATTTGTTACTCTATCTATGACCTGCAAATTTGTTACTCTATCTATGACCTGCAA | 244 |
| Sphalfx0293s0011 | 1 | CATCTTTGCAAATTTGTTACTCTATCTATGACCTGCAAATTTGTTACTCTATCTATGACCTGCAA | 252 |

Sphagnum magellanicum (E-value: 1e-91)

| Sphaln-285 | 59 | TGTGAT--GTTTTTTAATGCTTTTATAGAAAGGAAGCTGAATTGATAGGGTTTACA | 114 |
| Sphaln-286 | 60 | TTGTTGTAATGCTTTTATAGAAAGGAAGCTGAATTGATAGGGTTTACA | 114 |

Sphagnum cribrosum VS Sphagnum magellanicum (E-value: 9e-76)

| Sphcri | 1 | TACCTTTGCAAATTTGTTACTCTATCTATGACCTGCAAATTTGTTACTCTATCTATGACCTGCAA | 244 |
| Sphaln-285 | 1 | CATCTTTGCAAATTTGTTACTCTATCTATGACCTGCAAATTTGTTACTCTATCTATGACCTGCAA | 252 |
Sphagnum angustifolium \textit{vs} Takakia lepidozioides (SKQD_2076588)

\begin{verbatim}
Sphcri 179 ACATGACAAACATGTTGTTCCTCATCTCATGATCACCTGCA-GACCTACCCTTGAGACAA 237
Sphma-286 174 ACATGATAAAAAGAAATTCATCATTTCATGACCTCCTGCACAACCT-CCTTCGAGATAA 232
Sphcri 238 AATGTTTGCACATTATTGCAACATCTTGTCAATTTAGTTATCACTCCTGAGCTA 291
Sphma-286 233 AATGTTTGCACATTATTGAAACATCTCGTCAATTTAGTTATCACTCCTGAGCTA 286

Sphagnum angustifolium \textit{vs} Takakia lepidozioides (SKQD_2076588)

Sphan-285 1 GGCGGTAACCCTTCTGAGCTAAG 23
Takakia 1 GGCGCTAACCTTCCTGAGCTAAG 23
Sphan-285 208 CCTGCAGACCTACCCTTGAGACAAAATGTTTGCACATTATTGCAACATC-TTGTCAATTT 266
Takakia 247 CCAGCCGTCCTACCCTTGGTACAAGGGGACTGCAACTTTTTGCGCCATCCTTGTAAATTT 325
Sphan-285 267 AGTTATCACTCCTGAGCTA 285
Takakia 324 GTTTATCACTCCTGAGCTA 325
\end{verbatim}
Figure 3 (on next page)

Pairwise sequence comparisons of selected available nucleotide sequences of TAS3-like loci from mosses with class III TAS3 locus 13-Aru of *Andreaea rupestris*.

BLASTN was used at NCBI blast site. The miR390 target sites are in yellow; putative tasiARF-a2 site is in green; tasiAP2 is in blue, and tasiARF-a3 is shaded.
Physcomitrella patens cluster TAS3a (accession BK005825) (E-value: 3e-34)

Query	Sbjct
GGCGGTAACCCTTCTGAGCTAAG	GGCGTTATCCCTGCTGAGCTGAG
CATCTTCJAGGGCAAGGTTGTTAAGCACCTTATGTCGAGCAC---CCTGCCCAACAGGCTTAGCT	CACCTTCJAGGGCGGTAGTTAAGATGGACACACACTCT---ACGCGAGACCTCTAG
ACAGCTCCACTGAGTTAGTGCTTTAGCTGCTCCGACACATCACAGAAGCAG	ATGGCTCCAATAGGGGATGAGTGCTTTACACTTCGCCCAGCCAGTC
TGGCTAGCTATGACCAGGTTAGCTGAGATGGGCTCTCCCTGGTGATAGA	GCCCGGAACGACGTCTTGTTAGCGGGGTGTTAAGCACTTGAGTGCAACACTCCGGCCAG
GCCCGTAACCCTTCTGAGCTAAGTAAGCTGGGGGTGGGTGGAGCCAAGTAGAGGAGGTTT	GCCCTGCCTACCTACCCTTGTGATACGAGCCTCGCAGATTCCTGCGTGGCCCGTGTCGG
GTA-GTGCGCA----TCTTGTAGGCAAGGTGTTAAGCACTTTAGTGCGAGAC-CCTGCCACAAGACGCTAGCT	TTGTATATCAC
ACCCTTGGAACAGGCGTGTGCTTTAGCTGCTCCGACACATCACAGAAGCAG	ATATA CACTCCCTGGAGCTA

Tetraphis pellucida clone 80-Tpe (accession KC812753) (E-value: 1e-40)

Query	Sbjct
GGCGGTAACCCTTCTGAGCTAAGTAAGCTGGGGGTGGGTGGAGCCAAGTAGAGGAGGTTT	GGCGGTATCCCTGCTGAGCTAAGCAAGGGGGAGGTTGGTCGCGGGGC---ACTAGT--AGG
TGTAGTGCACATCTGTAGCGGAGAGTGGTGAGTGCAACACTACGTGAGCGACCCTGCCACAGA	ATAGGTGCGCAGACGTCTTGTTAGCGGGGTGTTAAGCACTTGAGTGCAACACTCCGGCCAG
GCCCGTAACCCTTCTGAGCTAAGTAAGCTGGGGGTGGGTGGAGCCAAGTAGAGGAGGTTT	GCCCTGCCTACCTACCCTTGTGATACGAGCCTCGCAGATTCCTGCGTGGCCCGTGTCGG
GTA-GTGCGCA----TCTTGTAGGCAAGGTGTTAAGCACTTTAGTGCGAGAC-CCTGCCACAAGACGCTAGCT	TTGTATATCAC
ACCCTTGGAACAGGCGTGTGCTTTAGCTGCTCCGACACATCACAGAAGCAG	ATATA CACTCCCTGGAGCTA

Encalypta rhaptocarpa clone 31-Erh (accession KC791769) (E-value: 1e-31)

Query	Sbjct
GGCGGTAACCCTTCTGAGCTAAGTAAGCTGGGGGTGGGTGGAGCCAAGTAGAGGAGGTTT	GGCGGTATCCCTGCTGAGCTAAGCAAGGGGGAGGTTGGTCGCGGGGC---ACTAGT--AGG
TGTAGTGCACATCTGTAGCGGAGAGTGGTGAGTGCAACACTACGTGAGCGACCCTGCCACAGA	ATAGGTGCGCAGACGTCTTGTTAGCGGGGTGTTAAGCACTTGAGTGCAACACTCCGGCCAG
GCCCGTAACCCTTCTGAGCTAAGTAAGCTGGGGGTGGGTGGAGCCAAGTAGAGGAGGTTT	GCCCTGCCTACCTACCCTTGTGATACGAGCCTCGCAGATTCCTGCGTGGCCCGTGTCGG
GTA-GTGCGCA----TCTTGTAGGCAAGGTGTTAAGCACTTTAGTGCGAGAC-CCTGCCACAAGACGCTAGCT	TTGTATATCAC
ACCCTTGGAACAGGCGTGTGCTTTAGCTGCTCCGACACATCACAGAAGCAG	ATATA CACTCCCTGGAGCTA

Andreaea rupestris locus 2010369 (accession WOGB_2010369) (E-value: 2e-42)

Query	Sbjct
GGCGGTAACCCTTCTGAGCTAAGTAAGCTGGGGGTGGGTGGAGCCAAGTAGAGGAGGTTT	GGCGGTATCCCTGCTGAGCTAAGCAAGGGGGAGGTTGGTCGCGGGGC---ACTAGT--AGG
TGTAGTGCACATCTGTAGCGGAGAGTGGTGAGTGCAACACTACGTGAGCGACCCTGCCACAGA	ATAGGTGCGCAGACGTCTTGTTAGCGGGGTGTTAAGCACTTGAGTGCAACACTCCGGCCAG
ACCCGAAGCAGGTACGCTAGCTACTACGGGAGGAG---ACTAGT--AGG	
ACCCGAAGCAGGTACGCTAGCTACTACGGGAGGAG---ACTAGT--AGG	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26545v1 | CC BY 4.0 Open Access | rec: 20 Feb 2018, publ: 20 Feb 2018
Figure 4 (on next page)

Pairwise sequence comparisons of selected available nucleotide sequences of TAS3-like loci from mosses with class II TAS3 loci 14-Aru (A) and WOGB_2010369 (B) of Andreaea rupestris.

BLASTN was used at NCBI blast site. The miR390 target sites are in yellow; putative tasiARF-a2 site is in green; tasiAP2 is in blue.
Andreaea rupestris locus 2010369 (accession WOGB_2010369) (E-value: 5e-16)

Query	Sbjct	
1	GGCGGTACCTCTGAGCTAGCTGATGCTACTGTCCGGCGGCACTAGTA	54
90	.CTTTATGTGAGACCCCTGCTTCCATCAGAAGTGTTGGGCTAGGGTGATGAGTGGCAGTAGGAGC	149
150	TTAGGACATCGGACCTCATACCAAAATTGCTCTGCTGCTATCCATCCTTA	209
210	TCGGACAGGGGGCGCACTTTGCTAGGGTGCAGCTATACCTCCTGTA	268
269	GCTA	272
248	GCTA	251

Tetraphis pellucida clone 73-Tpe (accession KC812754) (E-value: 2e-28)

Query	Sbjct	
1	GGCGGTATCCCTGAGCTAGCTGATGCTACTGTCCGGCGGCACTAGTA	56
60	TACCACCTCCTAAGCGAGACGATACTTGCACCCTTTAGTGTGAGACCCTGCTTCCATTCA	117
61	GGGAACACCCTGAAAATGTAGGAGTGTTCCCGGTTAGTGCAAGGCCAACCTTCCAATAG	120
118	CTAGGAATGCTGGGCTAGGGTGAGATGTGGCTTCCGTAAGCAACTCATGCGAGCTCAACCCTT	176
121	TTAGGGAATAGCTGAGAGCTGCTGCCATCGCACAAGGGCAACGGCACTCACATCCC	180
177	CCTGCTACTCCCTGAGAGCTCTTGCTACCTCGCCGACAGGG--GGGGCA-TAGCTTGC	233
234	TATGCTGCCCTTGCTAGTTGCTATACCTCCTGAGCTA	272
240	T---CGGCCCTTGTTGTTTTGTCTATCACTCCTGAGCTA	275

Physcomitrella patens cluster TAS3b (accession BK005826) (E-value: 2e-08)

Query	Sbjct	
1	GGCGGTAACCTCTGAGCTAGCTGATGCTACTGTCCGGCGGCACTAGTA	56
130	GCCGGATGGGTAGAGTGGCTTGGCAAGCACTCTCATCAAAATTGGCTTCGCTCAGGCTACTCCCTCAGGCGAGCCACCTCCGCTACCTGCAGGGCAACGGCAACGGCTATTGGC-TGGCACCGCTACTGGAACGGCAGTTTGC-CAACGGCAGCTACCTCCTGAGCTA	189
190	GCCGGATGGGTAGAGTGGCTTGGCAAGCACTCTCATCAAAATTGGCTTCGCTCAGGCTACTCCCTCAGGCGAGCCACCTCCGCTACCTGCAGGGCAACGGCAACGGCTATTGGC-TGGCACCGCTACTGGAACGGCAGTTTGC-CAACGGCAGCTACCTCCTGAGCTA	114
191	GCCGGATGGGTAGAGTGGCTTGGCAAGCACTCTCATCAAAATTGGCTTCGCTCAGGCTACTCCCTCAGGCGAGCCACCTCCGCTACCTGCAGGGCAACGGCAACGGCTATTGGC-TGGCACCGCTACTGGAACGGCAGTTTGC-CAACGGCAGCTACCTCCTGAGCTA	248
115	AACACACGCAAGGCCTGCTAGCTGAGGACAGGGGGCTAGGCT-TCGCTCTGCTGCTTCGCTTGGC-TGGCACCGCTACTGGAACGGCAGTTTGC-CAACGGCAGCTACCTCCTGAGCTA	172
249	AGTGTGCTTACACCTCTGAGCTA	272
173	GTTTGCTACACCTCTGAGCTA	196

Tetraphis pellucida clone 80-Tpe (accession KC812753) (E-value: 2e-20)

Query	Sbjct	
1	GGCGGTAACCTCTGAGCTAGCTGATGCTACTGTCCGGCGGCACTAGTA	56
1	GGCGGTAACCTCTGAGCTAGCTGATGCTACTGTCCGGCGGCACTAGTA	55
Bartramia halleriana clone 29-Bha (accession KC812746) (E-value: 1e-23)

Query 1
```
GGCGGTATCCCTGCTGAGCTAAGCAAGGGGG--AGGTTGGTCGCGGGGCACTAGTGA-GGC
```
Sbjct 1
```
GGCGCTATCCCTCCTGAGCTGAGAAAGAAGGCAAGGGGCCCCTCCGGGGGCGATTATGGT
```

Query 58
```
AGTGGATTCCTTGACGGTGGGGTGGGA-GTTCTTTAGTGCGA-GACCCTGTCGCAAG
```
Sbjct 59
```
CGGGAACACCCTGAAAATGTTAGGAGTGTTCCCGGTTTAGTGCAAGGCCCCACTTCCAAT
```

Tetraphis pellucida clone 73-Tpe (accession KC812754) (E-value: 1e-13)

Query 1
```
GGCGGTATCCCTGCTGAGCTAAGCAAGGGGGAGG-TTGGTCGCGGGGCACTAGTAGGCGT
```
Sbjct 1
```
GGCGGTAACCCTCCTGAGCTAAGTGGGTAGGGGGCTTGGTCGCGGGGCACTAGTACACG-
```

Query 115
```
ACGTCAGCTATGGCTCCCTAGGGTGTGATGAGTGCTTTAGCCAGCACCCTTACGTTACC
```
Sbjct 116
```
AGTTAGGGATGAGCCATTTAGGGTGTGATGAGTGCTTTAGGCAGCA-CTTTCTCAAACC
```

Timmia austriaca clone 2061439 (accession ZQRI_2061439) (E-value: 3e-29)

Query 1
```
GGCGGTATCCTCTTGAGCTAAGCAAGGGGG--AGGTTGGTCGCGGGGCACTAGTGA-GGC
```
Sbjct 1
```
GGCGCTATCCTTCCTGAGCTGAGAAAGAAGGCAAGGGGCCCCTCCGGGGGCGATTATG
```

Query 115
```
ACGTCAGCTATGGCTCCCTAGGGTGTGATGAGTGCTTTAGCCAGCACCCTTACGTTACC
```
Sbjct 116
```
AGTTAGGGATGAGCCATTTAGGGTGTGATGAGTGCTTTAGGCAGCA-CTTTCTCAAACC
```

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26545v1 | CC BY 4.0 Open Access | rec: 20 Feb 2018, publ: 20 Feb 2018
Sbjct 179 AGGCCACCTACCCTTGTGACAT---GGGCA-CCGCAGATCCCTGCGCTGCCCTTGTC-GG 233
Query 231 TCGATTATCACTCCTGAGCTA 251
Sbjct 234 TTGTATATCACTCCTGAGCTA 254
Multiple sequence alignments of nucleotide sequence blocks including tasiAP2 site and preceding 21 bp site of putative ta-siRNA of *Andreaea rupestris* TAS3-like locus WOGB_2010369.

BLASTN was used at 1KP blast site. For the complete TAS3 transcript sequences see Xia et al., 2017. The putative tasiAP2 site is in blue, and preceding putative ta-siRNA site is in violet.

*Andreaea1 - Andreaea rupestris WOGB_2010369; Andreaea2 - Andreaea rupestris WOGB_2002765; Tetraphis1 - Tetraphis_pellucida HVBQ_2019753; Tetraphis2 - Tetraphis_pellucida HVBQ_2011866; Tetraphis3 - Tetraphis_pellucida HVBQ_2005644; Plagiomnium - Plagiomnium_insigne BGXB_2010105; Leucobryum - Leucobryum glaucum RGKI_2062694; Racomitrium - Racomitrium_varium RDOO_2117129; Philonotis - Philonotis_fontana ORKS_2058791; Dicranum - Dicranum_scoparium NGTD_2078536; Encalypta - Encalypta_streptocarpa KEFD_2058811; Ceratodon - Ceratodon_purpureus FFPD_2044193; Niphotrichum - Niphotrichum_elongatum ABCD_2000143; Funaria - Funaria sp. XWHK_2042016; Schwetschkeop - Schwetschkeopsis fabronia IGUH 2166854; Aulacomnium - Aulacomnium_heterostichum WNGH_2088134; Syntrichia - Syntrichia princeps GRKU_2074985; Diphyscium1 - Diphyscium_foliosum AWOI_2069791; Diphyscium2 - Diphyscium_foliosum AWOI_2006305; Hypnum - Hypnum_subimponens LNSF_2068452; Pohlia - Pohlia_nutans GACA01023180; Bryum - Bryum argenteum GCZP01053768.
Species	Sequence	Length
Andreaea1	AAGACGTCAGCTATGGCTCCCTAGGGTGTGATGAGTGCTTTA	43
Andreaea2	AAGACGCTAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	190
Tetraphis1	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	137
Tetraphis2	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	182
Tetraphis3	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	440
Plagiomnium	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	315
Leucobryum	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	1006
Racomitrium	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	304
Philonotis	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	314
Dicranum	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	58
Encalypta	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	1099
Ceratodon	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	192
Niphotrichium	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	455
Funaria	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	250
Schwetschkeop	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	1632
Aulacomnium	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	278
Syntrichia	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	154
Diphysci1m	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	1047
Diphysci2m	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	486
Hypnum	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	1485
Pohlia	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	38
Bryum	AAGACGTCAGCTATGGCTCCGTAGGGTGTGATGAGTGCTTTA	240
Figure 6 (on next page)

Pairwise sequence comparisons of selected available nucleotide sequences of TAS3-like loci from mosses with TAS3 of *Takakia lepidodzioides*.

BLASTN was used at NCBI blast site. The miR390 target sites are in yellow; putative tasiARF-a2 site is in green; tasiAP2 is in blue.
Sbjct 129 TAGGGTGATGAGTGCTTTACCAGGCGCTCATCCTCTACCCAGCCCACCTACCCCTGTG 188
Query 149 ACAAGGGGACTGCAACTTT--TTGCGCCATCCTTGTAAATTTGTTTATCACTCCTGAGCTA 207
Sbjct 189 ACATGGG--CCGCTCCCTTCCGCGGCGGCGGCGGTGCAA-TTGTCTATCACTCCTGAGCTA 246
Figure 7 (on next page)

Pairwise sequence comparisons of selected available nucleotide sequences of TAS3-like loci from mosses with TAS3 of hornwort *Folioceros fuciformis*.

BLASTN was used at NCBI blast site. The miR390 target sites are in yellow; putative tasiARF-a2 site is in green; tasiAP2 is in blue; tasiARF-a3 is shaded.
Timmia austriaca clone 9-Tau (accession KC812755) (E-value: 2e-44)

Query 3 CGTTATCTTCCTGAGCTGAGAAAGAAGGCAAGGG-----TGGGGGTGGCG----TGGCG 53
Sbjct 3 CGCTACCCCTTCTGAGCTGAGAAAGAAGGCAAGGGGCCCCTCCGGG-GGCGATTATGGTG 61
Query 54 G-GCGGC-GCCTTGTTAACGGGGTGTTAAGCACCAACGGACGCC-CTGGCAGCCTCAGAC 110
Sbjct 62 GAGCGGATGCCTTGTTAGCGGGGTGTTAAGCACTTGAGTACGACACTCGGGCCCTT-GAC 120
Query 111 GCCACCCACGGCTCCGTAGGGTGTGATGAGTGCTTTACCTAGCGCTCAGCCCCTGGCGAG 170
Sbjct 121 CTCCGTACATGGCTTCGTAGGGTGTGATGAGTGCTTTACCCGGCGCTCATCCACTGCCCAG 180
Query 171 GCCACCCACGGCTCCGTAGGGTGTGATGAGTGCTTTACCTAGCGCTCAGCCCCTGGCGAG 230
Sbjct 181 GCCACCCACGGCTCCGTAGGGTGTGATGAGTGCTTTACCTAGCGCTCAGCCCCTGGCGAG 240
Query 231 TCACCTCCIGAGCTA 244
Sbjct 241 TCACCTCCIGAGCTA 254
Pairwise sequence comparisons of selected available nucleotide sequences of TAS3-like loci from non-vascular plants with TAS3 of *Marchantia polymorpha*.

BLASTN was used at NCBI blast site. The miR390 target sites are in yellow; putative tasiARF-a1 site is in brown; tasiAP2 is in blue.
Tetraphis pellucida clone 80-Tpe (accession KC812753) (class Tetraphidopsida)

Query	Sbjct
`GGCGGTATCC-TTCTTGAGCTAA`	`GGCGGTAACCCTTCTGAGCTA`
`AGGGTGTAACCCTTCTGAGCTA`	`AGGGTGTAACCCTTCTGAGCTA`
`TGCCTATCCTCTGAGCTA`	`TGCCTATCCTCTGAGCTA`
`TGCCTATCCTCTGAGCTA`	`TGCCTATCCTCTGAGCTA`

Takakia lepidozioides (accession SKQD-2076588) (class Takakiopsida)

Query	Sbjct
`GGCGGTATCCTTCTTGAGCTA`	`GGCGCTAACCTTCCTGAGCTA`
`AGGGTGTAACCCTTCTGAGCTA`	`AGGGTGTAACCCTTCTGAGCTA`
`TATCACTCTCTGAGCTA`	`TATCACTCTCTGAGCTA`
`TATCACTCTCTGAGCTA`	`TATCACTCTCTGAGCTA`

Folioceros fuciformis (accession SRX2779513) (class Anthocerotopsida)

Query	Sbjct
`GGCGGTATCCTTCTTGAGCTAAAGAGA`	`GGCGTTATCCTTCCTGAGCTGAGAAAGA`
`AGGGTGTAACCCTTCTGAGCTA`	`AGGGTGTAACCCTTCTGAGCTA`
`TATCACTCTCTGAGCTA`	`TATCACTCTCTGAGCTA`
`TATCACTCTCTGAGCTA`	`TATCACTCTCTGAGCTA`

Marchantia emarginata (accession SRX1952816) (class Marchantiopsida) (E-value: 6e-60)

Query	Sbjct
`GGGTATCCTTCTTGAGCTA---AAA---AGATGTAGCTTCCTGCTACGTACACGACA`	`GGGTATCCTTCTTGAGCTAGGAAGAAGGAGATGTAGCTTCCTGCTACGTACACGACA`
`CTTCATTTGAGACTTAGTTTGGGAGAAACTGTTGCGAACTTAGCTCAGGAGGCTGGGAGTCACACACCCCTGGTTAGCATGGGGTGTGATGAGTG`	`CTTCATTTGAGACTTAGTTTGGGAGAAACTGTTGCGAACTTAGCTCAGGAGGCTGGGAGTCACACACCCCTGGTTAGCATGGGGTGTGATGAGTG`
`CCGGATCCCTTCCTTGAGCTA---AAA---AGATGTAGCTTCCTGCTACGTACACGACA`	`CCGGATCCCTTCCTTGAGCTA---AAA---AGATGTAGCTTCCTGCTACGTACACGACA`
`CTTCATTTGAGACTTAGTTTGGGAGAAACTGTTGCGAACTTAGCTCAGGAGGCTGGGAGTCACACACCCCTGGTTAGCATGGGGTGTGATGAGTG`	`CTTCATTTGAGACTTAGTTTGGGAGAAACTGTTGCGAACTTAGCTCAGGAGGCTGGGAGTCACACACCCCTGGTTAGCATGGGGTGTGATGAGTG`

Conocephalum japonicum (accession SRX1952810) (class Marchantiopsida) (E-value: 1e-25)

Query	Sbjct
`GGGTATCCTTCTTGAGCTA---AAA---AGATGTAGCTTCCTGCTACGTACACGACA`	`GGGTATCCTTCTTGAGCTAGGAAGAAGGAGATGTAGCTTCCTGCTACGTACACGACA`
`CTTCATTTGAGACTTAGTTTGGGAGAAACTGTTGCGAACTTAGCTCAGGAGGCTGGGAGTCACACACCCCTGGTTAGCATGGGGTGTGATGAGTG`	`CTTCATTTGAGACTTAGTTTGGGAGAAACTGTTGCGAACTTAGCTCAGGAGGCTGGGAGTCACACACCCCTGGTTAGCATGGGGTGTGATGAGTG`
`CCGGATCCCTTCCTTGAGCTA---AAA---AGATGTAGCTTCCTGCTACGTACACGACA`	`CCGGATCCCTTCCTTGAGCTA---AAA---AGATGTAGCTTCCTGCTACGTACACGACA`
`CTTCATTTGAGACTTAGTTTGGGAGAAACTGTTGCGAACTTAGCTCAGGAGGCTGGGAGTCACACACCCCTGGTTAGCATGGGGTGTGATGAGTG`	`CTTCATTTGAGACTTAGTTTGGGAGAAACTGTTGCGAACTTAGCTCAGGAGGCTGGGAGTCACACACCCCTGGTTAGCATGGGGTGTGATGAGTG`

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26545v1 | CC BY 4.0 Open Access | rec: 20 Feb 2018, publ: 20 Feb 2018
Ricciocarpos natans (accession ERX337127) (class Marchantiopsida) (E-value: 3e-20)

Query

1. GGCATACCTTCTTGAGCTA---AA---AGATGTAGCT---TCGGTCTACTCTCTCTCAAGCAATCT
2. GGGATATCCTTCTTGAGCTAGGAGGAACGAGATGTAGCTGTTCCTGCTAGCTACATCTCAC
3. CACATCTCATTTGAATGTTCAAACCTTTAGTGACTGAATCGAATACTAAAGTTAATTTGA
4. TTGACTTCAATAGAGACTAGTTTGCGGGAGAAACTGT-GCCAGTT---AGCAGGAGGGTG
5. ACGACTCATGTCTCGTTTGTGTGTTCAAATC---AG------------------AAGTCAAT

Subject

63. TCTACAGACGACGTCTGTGGTAATGTGCA-------------TG--TC----AC--AAT
106. TTAATTGGACT-TCAATAGAGACTAGTTTGCGGGAGAAACTGTGCCAGTTAGCAGGAGGG
102. TTAATTGGATGATCAAC-GAGATAAATGTGTTGGATGGACTCTCCTGGCTAGCATGAGGG
119. CTTCAATAGAGACTAGTT-TGCGGGA--GAAAC--TGTGCCAGTTAGCAGGAGGGTGTGATGAGTGCTT
114. --T-GATAC---------GGACAC-CTCTGCC---TAAAATGAGGGTGTGATGAGTGCTT

Dumortiera hirsuta (accession SRX1126014) (class Marchantiopsida) (E-value: 2e-39)

Query

3. CGGTATCCTTCTTGAGCTA---A---AA---AGATGTAGCT---TCGGTCTACTCTCTCAAGCAATCT
51. ACGCATCTCATTTGAATGTTCAAACCTTTAGTGACTGAATCGAATACTAAAGTTAATTTGA
55. CACATCTCATTTGAATGTTCAAACCTTTAGTGACTGAATCGAATACTAAAGTTAATTTGA
63. TCTACAGACGACGTCTCGTTTGTGTGTTCAAATC---AG------------------AAGTCAAT

Subject

62. CATTTGAATGTTCAAACCTTTAGTGACTGAATCGAATACTAAAGTTAATTTGA
63. CTTTGTAATCTCTCAGGAGAC-AGACGTGAGGGACAGAGACCTTTTGC----TAGCATGAGGGTGTGA
102. CAACACAGACGACGTCTCGTTTGTGTGTTCAAATC---AG------------------AAGTCAAT
106. TTGACTTCAATAGAGACTAGTTTGCGGGAGAAACTGTGCCAGTTAGCAGGAGGGTGTGATGAGTGCTT
115. CTTCAATAGAGACTAGTT-TGCGGGA--GAAAC--TGTGCCAGTTAGCAGGAGGGTGTGATGAGTGCTT
129. TGAGTGCTTTACCAGG-CAAGGGTTCACGTCCTTTTCTCCCATTGCCTATGTCTAGGCTC
114. CCATCTCATTTGAATGTTCAAACCTTTAGTGACTGAATCGAATACTAAAGTTAATTTGA
118. CTTTGGTATCTTCAAATC---AGAATATGATTCGAAGATACACGAGATAAATTTGG-----

Plagiochasma appendiculatum (accession SRX1741567) (class Marchantiopsida) (E-value: 5e-34)

Query

3. CGGTATCCTTCTTGAGCTA---A---AA---AGATGTAGCT---TCGGTCTACTCTCTCAAGCAATCT
51. ACGCATCTCATTTGAATGTTCAAACCTTTAGTGACTGAATCGAATACTAAAGTTAATTTGA
63. TCTACAGACGACGTCTCGTTTGTGTGTTCAAATC---AG------------------AAGTCAAT
111. TTGACTTCAATAGAGACTAGTT-TGCGGGA--GAAAC--TGTGCCAGTTAGCAGGAGGGTGTGATGAGTGCTT
115. CTTCAATAGAGACTAGTT-TGCGGGA--GAAAC--TGTGCCAGTTAGCAGGAGGGTGTGATGAGTGCTT
129. TGAGTGCTTTACCAGG-CAAGGGTTCACGTCCTTTTCTCCCATTGCCTATGTCTAGGCTC
170. TGAGTGCTTTACCAGG-CAAGGGTTCACGTCCTTTTCTCCCATTGCCTATGTCTAGGCTC
174. TGAGTGCTTTACCAGG-CAAGGGTTCACGTCCTTTTCTCCCATTGCCTATGTCTAGGCTC

Subject

62. CATTTGAATGTTCAAACCTTTAGTGACTGAATCGAATACTAAAGTTAATTTGA
63. CATGTCTCATTTGTATGTTCAAA---------------TC-AA----AAA-TTAATTTGA
102. CAACACAGACGACGTCTCGTTTGTGTGTTCAAATC---AG------------------AAGTCAAT
106. TTGACTTCAATAGAGACTAGTTTGCGGGAGAAACTGTGCCAGTTAGCAGGAGGGTGTGATGAGTGCTT
115. CTTCAATAGAGACTAGTT-TGCGGGA--GAAAC--TGTGCCAGTTAGCAGGAGGGTGTGATGAGTGCTT
129. TGAGTGCTTTACCAGG-CAAGGGTTCACGTCCTTTTCTCCCATTGCCTATGTCTAGGCTC
170. TGAGTGCTTTACCAGG-CAAGGGTTCACGTCCTTTTCTCCCATTGCCTATGTCTAGGCTC
174. TGAGTGCTTTACCAGG-CAAGGGTTCACGTCCTTTTCTCCCATTGCCTATGTCTAGGCTC
178. TGAGTGCTTTACCAGG-CAAGGGTTCACGTCCTTTTCTCCCATTGCCTATGTCTAGGCTC
Metzgeria crassipilis (accession ERX337128) (class Jungermanniopsida)

Pellia endiviifolia (accession SRX726500) (class Jungermanniopsida)
Figure 9 (on next page)

Pairwise sequence comparisons of selected nucleotide sequences of TAS6/TAS3-like loci from mosses with TAS6/TAS3 of *Physcomitrella patens* precursor RNA (accession JN674513).

BLASTN was used at 1KP blast site. The miR390 target sites are in yellow; putative miR156/miR529 sites are underlined; tasiAP2 is in blue; putative tasiARF-a2 site is in green; tasiARF-a3 is shaded.
2058811 Encalypta streptocarpa (accession KEFD_2058811)

Query	Sbjct
1	212
58	272
109	329
160	388
615	855
671	911
731	968
791	1028
849	1086

2058791 Philonotis fontana (accession ORKS_2058791)

Query	Sbjct
1	1046
613	424
672	424
732	424
792	424
850	424

2050742 Hedwigia ciliata (accession YWNF_2050742)

Query	Sbjct
1	1037

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26545v1 | CC BY 4.0 Open Access | rec: 20 Feb 2018, publ: 20 Feb 2018
2069791 *Diphyscium foliosum* (accession AWOL_2069791)

Query 1

```
ACTCTTCATATGTGCTCTCTCTCTTCACTGTCAAGACCTCGCTT
```

Sbjct 302

```
ACTCTTCAGATGTGTTCTCTCTTCTCACTGTCATGACCCCACTT
```

Query 568

```
CGATGTTACGGTTGTAGCCAATTCTTGTTGCACTTAGATTTCCACTGGGCGTTATCCCTC
```

Sbjct 853

```
CGATGGTTGGATGTAGTCACTTCTTGTAAGTAGTACCTTCAGGCGGTATCCTTC
```

Query 628

```
TTGAGCTGAGAAAGAGGCCAAGGCCCT--TAGGG--CAGAAATAGGTGAAGCTGACG
```

Sbjct 908

```
CTGAGCTGAGAAAGAGGCCAAGGCCCT--TAGGG--CAGAAATAGGTGAAGCTGACG
```

Query 683

```
TCATGGCTCTTAGCGGGTGTAAGCAATATGGAATCCATCTACTACGC--AGACCCCTAG
```

Sbjct 961

```
TG---TTGT-AGACTGTGTGTTAGACACATGAGTGTAACACATCGG-GCTAAGACGTCAG
```

Query 741

```
CTATGGCTCTTAGCGGGTGTAAGCAATATGGAATCCATCTACTACGC--AGACCCCTAG
```

Sbjct 1016

```
CTATGGCTCTTAGCGGGTGTAAGCAATATGGAATCCATCTACTACGC--AGACCCCTAG
```

Query 801

```
CTACCTTGTTAGCGGGTGTAAGCAATATGGAATCCATCTACTACGC--AGACCCCTAG
```

Sbjct 1076

```
CTACCTTGTTAGCGGGTGTAAGCAATATGGAATCCATCTACTACGC--AGACCCCTAG
```

Query 860

```
TCCTGAGCTA
```

Sbjct 1135

```
TCCTGAGCTA
```
Figure 10

The phylogenetic tree based on sequence alignment of the conserved region of SGS3 amino acid sequences in selected lower plant species.

Neighbor-joining tree was obtained at http://www.ncbi.nlm.nih.gov/tools/cobalt/ with the use of default parameters. The scale bar denotes the estimated number of amino acid substitutions per site. *K. flaccidum* was used as outgroup.
Table 1 (on next page)

List of the putative TAS3 loci in Sphagnopsida and Takakiopsida
Table 1. List of the putative TAS3 loci in Sphagnopsida and Takakiopsida

Plant species	Locus name	Subgenus	Length	Sequence source
Sphagnum angustifolium	Sphan-285	*Cuspidata*	285 nts	MF682529
S. girgensohnii	Sphgi-292	*Acutifolia*	292 nts	MF682530
S. fallax	contig super 37	*Cuspidata*	285 nts	SRX2120232
S. fallax	Sphfalx0293s0011	*Cuspidata*	277 nts	Sphfalx0293s0011*
S. recurvum	Sphre-283	*Cuspidata*	283 nts	SRX1513231
S. recurvum	Sphre-277	*Cuspidata*	277 nts	SRX1513231
S. magellanicum	Sphma-285	*Sphagnum*	285 nts	SRX2330962
S. magellanicum	Sphma-286	*Sphagnum*	286 nts	SRX2330962
S. palustre	Sphpa	*Sphagnum*	partial	SRX1516347
S. cribrosum	Sphcri	*Subsecunda*	291 nts	ERX443237
S. lescurii	Sphle	*Subsecunda*	partial	ERX337183
Takakia lepidozoides	Takle-207	Not applicable	207 nts	ERX2100030 SKQD-2076588**

* - PHYTOZOME accession; ** - 1KP accession (Xia et al., 2017). Different sphagnum subgenera are colored specifically.
Table 2 (on next page)

List of the putative TAS3 loci in Anthocerotophyta and Marchantiophyta
Table 2.
List of the putative TAS3 loci in Anthocerotophyta and Marchantiophyta

Plant species	Class/subclass	Order	Length (nts)	Sequence source
Folioceros fuciformis	Anthocerotopsida/Anthocerotidae	Anthocerotales	244	SRS2162762
Marchantia polymorpha	Marchantiopsida/Marchantiidae	Marchantiales	256	KC812742
- Mpo				
Marchantia emarginata	Marchantiopsida/Marchantiidae	Marchantiales	262	SRX1952816
Conocephalum japonicum	Marchantiopsida/Marchantiidae	Marchantiales	252	SRX1952810
Ricciocarpos natans	Marchantiopsida/Marchantiidae	Marchantiales	235	ERX337127
Dumortiera hirsuta	Marchantiopsida/Marchantiidae	Marchantiales	243	SRX1126014
Plagiochasma appendiculatum	Marchantiopsida/Marchantiidae	Marchantiales	247	SRX1741567
Conocephalum conicum	Marchantiopsida/Marchantiidae	Marchantiales	248	ILBQ_2006554*
Lunularia cruciata	Marchantiopsida/Marchantiidae	Lunulariales	220	TXVB_2071521*
Marchantia paleacea	Marchantiopsida/Marchantiidae	Marchantiales	257	HMHL_2051051*
Metzgeria crassipilis	Jungermannopsida/Metzgeriidae	Metzgeriales	226	ERX337128
Pellia endiviifolia	Jungermannopsida/Pelliidae	Pelliales	192	SRX726500

* - 1KP accession (Xia et al., 2017).
Table 3 (on next page)

List of the putative TAS6/TAS3 loci of Bryophyta in transcribed sequences found in 1KP database
Table 3. List of the putative TAS6/TAS3 loci of Bryophyta in transcribed sequences found in 1KP database

Plant species	Class/subclass	Order	Length* and type	Sequence source	
Timmia austriaca	Bryopsida/Timmiidae	Timmiales	TAS6/TAS3 (874nts)	ZQRI-2061439, ZQRI-2063082	
Thuidium delicatum	Bryopsida/Bryidae	Hypnales	TAS6/TAS3 (837nts)	EEMJ-2003175	
Hypnum subimponens	Bryopsida/Bryidae	Hypnales	TAS6/TAS3 (823nts)	LNSF-2068452	
Pseudotaxiphyllum elegans	Bryopsida/Bryidae	Hypnales	TAS6/TAS3 (1590nts)	QKQO-2009669	
Anomodon attenuatus	Bryopsida/Bryidae	Hypnales	TAS6/TAS3 (843nts)	QMWB-2059873	
Anomodon rostratus	Bryopsida/Bryidae	Hypnales	TAS6/TAS3 (829nts)	VBMM-2003482	
Schwetschkeopsis fabronia	Bryopsida/Bryidae	Hypnales	TAS6/TAS3 (854nts)	IGUH-2166854	
Leucodon sciuroides	Bryopsida/Bryidae	Hypnales	TAS6/TAS3 (852nts)	ZACW-2016434	
Fontinalis antipyretica	Bryopsida/Bryidae	Hypnales	TAS6/TAS3 (1410nts)	DHWX-2007057	
Rhytidiadelphus loreus	Bryopsida/Bryidae	Hypnales	TAS6/TAS3 (830nts)	WSPM-2009782	
Rhynchostegium serrulatum	Bryopsida/Bryidae	Hypnales	TAS6/TAS3 (853nts)	JADL-2047695	
Climacium dendroides	Bryopsida/Bryidae	Hypnales	TAS6/TAS3 (809nts)	MIRS-2012325	
Callichergon cordifolium	Bryopsida/Bryidae	Hypnales	TAS6 (95nts)	TAVP-2006322	
Neckera douglasii	Bryopsida/Bryidae	Hypnales	TAS6/TAS3 (839nts)	TMAJ-2023603	
Plagiommium insigne	Bryopsida/Bryidae	Bryales	TAS6/TAS3 (914nts)	BGXB-2010105	
Orthotrichum lyrilli	Bryopsida/Bryidae	Orthotrichales	TAS6 (192nts)	CMEQ-2080784	
Hedwigia ciliata	Bryopsida/Bryidae	Hedwigiales	TAS6/TAS3 (877nts)	YWNF-2050742	
Philonotis fontana	Bryopsida/Bryidae	Bartramielles	TAS6/TAS3 (893nts)	ORKS-2058791	
Aulacomnium heterostichum	Bryopsida/Bryidae	Rhizogoniales	TAS6/TAS3 (863nts)	WNGH-2088134	
Scouleria aquatic	Bryopsida/Dicranidae	Scouleriellas	TAS6/TAS3 (partial)	BPSG-2088977	
Syntrichia princeps	Bryopsida/Dicranidae	Pottiales	TAS6/TAS3 (partial)	GRKU-2074985	
Leucobryum glaucum	Bryopsida/Dicranidae	Dicranales	TAS6/TAS3 (763nts)	RGKI-2062694	
Leucobryum albidum	Bryopsida/Dicranidae	Dicranales	TAS6/TAS3 (763nts)	VMXJ-2128109	
Dicranum scoparium	Bryopsida/Dicranidae	Dicranales	TAS6 (105nts)	NGTD-2092412	
Species	Order	Family	Subclass	TAS6/TAS3 (nts)	Accession
-------------------------------	----------------------------	---	-------------------	-----------------	-----------
Ceratodon purpureus	Bryopsida/Dicranidae	Pseudoditrichales		TAS6/TAS3 (1121nts)	FFPD-2005850
Racomitrium varium	Bryopsida/Dicranidae	Grimmiales		TAS6/TAS3 (724nts)	RDOO-2117129
Physcomitrium sp.	Bryopsida/Funariidae	Funariales		TAS6 (partial)	YEPO-2071108
Physcomitrium sp.	Bryopsida/Funariidae	Funariales		TAS6 (178nts)	YEPO-2000016
Physcomitrium sp.	Bryopsida/Funariidae	Funariales		TAS6/TAS3 (821nts)	YEPO-2016361
Encalypta streptocarpa	Bryopsida/Funariidae	Encalyptales		TAS6/TAS3 (883nts)	KEFD-2058811
Diphyscium foliosum	Bryopsida/Diphysciidae	Diphyscales		TAS6/TAS3 (832nts)	AWOI-2069791
Tetraphis pellucida	Tetraphidopsida	Tetraphidales		TAS6 (partial)	HVBQ-2112923
Atrichum angustatum	Polytrichopsida	Polytrichales		TAS6/TAS3 (810nts)	ZTHV-2082998
Andreaea rupestris	Andreaeopsida	Andreaeales		TAS6/TAS3 (869nts)	WOGB-2010369
Takakia lepidozoides	Takakiopsida	Takakiales		TAS6/TAS3 (1040nts)	SKQD-2076588

* - The length indicates total size of TAS6-TAS3 complex element (from the 5’ miR529 target site in TAS6 to 3’ miR390 target site in TAS3) or isolated TAS6 (between miR529 and miR156 target sites).