ACTUARIAL APPLICATIONS AND ESTIMATION OF EXTENDED CREDITRISK

WORKING PAPER 17-11

Jonas Hirz, Uwe Schmock and Pavel V. Shevchenko
ACTUARIAL APPLICATIONS AND ESTIMATION OF EXTENDED CREDITRISK$^+$

JONAS HIRZ1, UWE SCHMOCK2, AND PAVEL V. SHEVCHENKO3*

1Department of Financial and Actuarial Mathematics, TU Wien, Wiedner Hauptstr. 8/105-1, 1040 Vienna, Austria; e-mail: hirz@fam.tuwien.ac.at

2Department of Financial and Actuarial Mathematics, TU Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria; email: schmock@fam.tuwien.ac.at

3Department of Applied Finance and Actuarial Studies, Macquarie University, NSW, 2109, Australia; e-mail: pavel.shevchenko@mq.edu.au

*Corresponding author

Abstract

We introduce an additive stochastic mortality model which allows joint modelling of underlying death causes. Estimation procedures are retrieved where high dimensionality makes the usage of MCMC necessary. We then give the link to an extended version of the credit risk model CreditRisk$^+$ which allows for various portfolio applications. It allows risk aggregation in credit, life insurance and annuity portfolios, as well as it can be used for P&L derivation with applications to partial internal models. The proposed model provides an efficient, numerically stable algorithm for an exact calculation of the one-period profit and loss distribution where mortality trends, statistical fluctuations and parameter risk are considered. As required by many regulators, risk measures and their sensitivities with respect to model parameters for the one-period P&L distribution such as value-at-risk and expected shortfall. Numerous examples, based on Australian data, are provided.

Keywords: Stochastic mortality model, extended CreditRisk$^+$, risk aggregation, partial internal model, mortality risk, longevity risk, Markov chain Monte Carlo.

Date: January 20, 2017.

J. Hirz acknowledges financial support from the Australian Government via the 2014 Endeavour Research Fellowship, as well as from the Oesterreichische Nationalbank (Anniversary Fund, project number: 14977) and Arithmetica. P. V. Shevchenko acknowledges support from CSIRO Australia, CSIRO-Monash Superannuation Research Cluster, and Australian Research Council’s Discovery Projects funding scheme (project number DP160103489).
1. Introduction

Stochastic modelling of mortality has become increasingly important especially after new regulatory requirements such as Solvency II allowed the use of internal stochastic models which provide a more risk-sensitive evaluation of capital requirements and the ability to derive accurate P&L attributions to different sources of risk. Benefits for companies which make use of actuarial tools such as internal models depend crucially on the accuracy of predicted death probabilities and the ability to extract different sources of risk. So far, life insurers and pension funds typically use deterministic life tables obtained from crude death rates and then apply some forecasting model or use generation life tables. Afterwards, artificial risk margins are often added to account for risks associated with longevity, size of the portfolio, selection phenomena, estimation and various other sources. Such approaches often lack a stochastic foundation and are certainly not consistently appropriate for all companies.

Moreover, deriving profit and loss (P&L) distributions of large credit, life and pension portfolios typically is a very challenging task. In applications, Monte Carlo is the most commonly used approach as it is easy to implement for all different kinds of stochastic settings whereas it has shortcomings in fineness and speed. Motivated by numerical trials, we found that the credit risk model extended CreditRisk$^+$ (ECRP), as introduced in Schmock [29, Section 6], is an exceptionally efficient as well as flexible alternative to Monte Carlo and, simultaneously, fits into life actuarial settings as well. Coming from credit risk, this model allows flexible handling of dependence structures within a portfolio via common stochastic risk factors. Extended CreditRisk$^+$ relies on Panjer recursion which, unlike Monte Carlo, does not require simulation and, thus, allows an efficient implementation to derive P&L distributions exactly given input data and chosen granularity associated with discretisation. In particular, the speed up for deriving sensitivities, i.e. derivatives, of risk measures with respect to model parameters using Panjer recursion will even be an order of magnitude larger as it is extremely difficult to calculate sensitivities (via finite differencing) using Monte Carlo.

In particular, our precise method can enhance pricing of retirement income products and derivation of P&L distributions with applications to partial internal models in the underwriting risk module.

In Section 2 we introduce an additive stochastic mortality model, starting from classical approaches such as the Lee–Carter model [18] or see Cairns et al. [4] for a comprehensive overview over different stochastic mortality models. It allows joint modelling of underlying stochastic death causes based on Poisson assumptions where dependence is introduced via common stochastic risk factors. Given suitable mortality data, in Section 3 we provide several methods to estimate model parameters including matching of moments, a maximum a posteriori approach and maximum likelihood as well as Markov chain Monte Carlo (MCMC). Death and population data are usually freely available on governmental websites or at statistic bureaus. Due to the high-dimensionality of our problem, we suggest the use of MCMC. Note that MCMC can become time-consuming, in particular for settings with common stochastic risk factors. However, it is one of the few statistical approaches for joint parameter estimation in high-dimensional settings, and estimation of model parameters does usually not have to be done on a frequent basis.

In Section 4 we estimate model parameters for Australian death data which results in a setting with 362 model parameters, where trends, trend acceleration/reduction and cohort effects are estimated. Further applications include forecasting of central mortality rates and expected future life time.
In Section 5 we then introduce the extended CreditRisk model, see Schmock [29, Section 6], which is a collective risk model corresponding one-to-one to our proposed stochastic mortality model. As the name suggests, it is a credit risk model used to derive loss distributions of credit portfolios and originates from the classical CreditRisk model which was introduced by Credit Suisse First Boston [2] in 1997. Within credit risk models it is classified as a Poisson mixture model. Identifying default with death makes the model perfectly applicable for actuarial applications. Extended CreditRisk provides a flexible basis for modelling multi-level dependencies and allows a fast and numerically stable algorithm for risk aggregation. In the ECRP model, deaths are driven by independent stochastic risk factors. The number of deaths of each policyholder is assumed to be Poisson distributed with stochastic intensity. Thus, serving as an approximation for the true case with single deaths, each person can die multiple times within a period. But, with proper parameter scaling, approximations are very good and final loss distributions are accurate due to Poisson approximation, cf. Barbour et al. [1] or Vellaisamy and Chaudhuri [34] and the references therein. Another great advantage of the ECRP model is that it automatically incorporates many different sources of risks, such as trends, statistical volatility risk and parameter risk.

Section 6 briefly illustrates validation and model selection techniques. Model validation approaches are based on our assumed dependence and independence structures. All tests suggest that the model suitably fits Australian data.

In a nutshell, this paper demonstrates the following:

(a) Our introduced stochastic mortality model is closely related to classical approaches but allows for joint modelling of underlying death causes.

(b) Model parameters can be jointly estimated from available data.

(c) The link to the ECRP model is pointed out which allows for multiple portfolio applications, including calculation of P&L in life insurance portfolios exactly via Panjer recursion instead of a Monte Carlo method, and partial internal model applications in the (biometric) underwriting risk module.

(d) The ECRP model directly incorporates various sources of risk including trends, longevity, mortality risk, statistical volatility and estimation risk. In particular, it is possible to quantify the risk of statistical fluctuations within the next period (experience variance) and parameter uncertainty (change in assumptions).

2. An Alternative Stochastic Mortality Model

2.1. Basic definitions and notation. Following standard actuarial notations and definitions, cf. Pitacco [23] or Cairns et al. [1], let $T_{a,g}(t)$ denote the random variable of remaining life time of a person aged $a \geq 0$ and of gender $g \in \{m, f\}$ at time/year $t \in U := \{1, \ldots, T\}$. Then, survival probabilities and death probabilities over a time frame $\tau \geq 0$ are given by $\tau p_{a,g}(t) = \mathbb{P}(T_{a,g}(t) > \tau)$ and $\tau q_{a,g}(t) = \mathbb{P}(T_{a,g}(t) \leq \tau)$, respectively. For notational purposes we write $q_{a,g}(t) := 1 - p_{a,g}(t)$.

Deterministic force of mortality (theory for the stochastic case is also available) at age $a + \tau$ with gender g of a person aged a at time t is given by the derivative $\mu_{a+\tau,g}(t) := -\frac{\partial}{\partial \tau} \log \tau p_{a,g}(t)$. Henceforth, the central death rate of a person aged a at time t and of gender g is given by a weighted average of the force of mortality

$$m_{a,g}(t) := \frac{\int_0^1 s q_{a,g}(t+s) \mu_{a+g,s}(t+s) \, ds}{\int_0^1 s q_{a,g}(t+s) \, ds} = \frac{q_{a,g}(t)}{\int_0^1 s q_{a,g}(t+s) \, ds} \approx \frac{q_{a,g}(t)}{1 - q_{a,g}(t)/2}.$$
If \(\mu_{a+s,g}(t + s) = \mu_{a,g}(t) \) for all \(0 \leq s < 1 \) and \(a,t \in \mathbb{N}_0 \), i.e. under piecewise constant force of mortality, we have \(m_{a,g}(t) = \mu_{a,g}(t) \) as well as \(q_{a,g}(t) = 1 - \exp(-m_{a,g}(t)) \).

Furthermore, let \(N_{a,g}(t) \) denote the number of recorded deaths in year \(t \) of people having age \(a \) and gender \(g \), as well as define exposure to risk \(E_{a,g}(t) \) as the average number of people in year \(t \) having age \(a \) and gender \(g \). The latter can often be retrieved from statistical bureaus or be approximated by the age-dependent population in the middle of a calendar year. Estimates for these data in Australia (with several adjustment components such as census undercount and immigration taken into account) are available at the website of the Australian Bureau of Statistics. Considering underlying death causes \(k = 0, \ldots, K \), which are to be understood as diseases or injury that initiated the train of morbid events leading directly to death, let \(N_{a,g,k}(t) \) denote the actual number of recorded deaths due to death cause \(k \) in year \(t \) of people having age \(a \) and gender \(g \). Note that \(N_{a,g}(t) = N_{a,g,0}(t) + \cdots + N_{a,g,K}(t) \).

Data on ICD-classified (short for International Statistical Classification of Diseases and Related Health Problems) death counts can be found for many countries. For Australia, for example, these data can be found at the Australian Institute of Health and Welfare classified by ICD-9 and ICD-10.

2.2. Some classical stochastic mortality models

Starting with a simple model, assume that deaths in year \(t \) of people having age \(a \) and gender \(g \) are Poisson distributed \(N_{a,g}(t) \sim \text{Poisson}(E_{a,g}(t)m_{a,g}(t)) \). In this case the maximum likelihood estimate for the central death rate is given by \(\hat{m}_{a,g}(t) = \hat{N}_{a,g}(t)/E_{a,g}(t) \), where \(\hat{N}_{a,g}(t) \) is the actual recorded number of deaths.

The benchmark stochastic mortality model considered in the literature is the traditional Lee–Carter model, cf. Lee and Carter [18], where the logarithmic central death rates are modelled in the form

\[
\log \hat{m}_{a,g}(t) = \alpha_{a,g} + \beta_{a,g}\kappa_t + \varepsilon_{a,g,t}
\]

with independent normal error terms \(\varepsilon_{a,g,t} \) with mean zero, common time-specific component \(\kappa_t \), and age and gender specific parameters \(\alpha_{a,g} \) and \(\beta_{a,g} \). Using suitable normalisations, estimates for these parameters and \(\kappa_t \) can be derived via the method of moments and singular value decompositions, cf. Kainhofer et al. [16] Section 4.5.1. Forecasts may then be obtained by using auto-regressive models for \(\kappa_t \). Note that Fung et al. [7] provide joint estimation of parameters and latent factor \(\kappa_t \) in the Lee-Carter model via a state-space framework using MCMC. Instead of using one common time factor \(\kappa_t \), various variations of this classical approach with multiple time factors and cohort components have been proposed in the literature; for review, see Cairns et al. [4].

Instead of modelling central death rates with normal error terms as in the Lee–Carter approach, Brouhns et al. [3] propose to model death counts via Poisson regression where error terms are replaced by Poisson random variables. In this case \(N_{a,g}(t) \sim \text{Poisson}(E_{a,g}(t)m_{a,g}(t)) \) where, in the simplest case, \(\log m_{a,g}(t) = \alpha_{a,g} + \beta_{a,g}\kappa_t \). Correspondingly, assuming that we want to forecast central death rates for different underlying death causes \(k \), it is natural to assume \(N_{a,g,k}(t) \sim \text{Poisson}(E_{a,g}(t)m_{a,g,k}(t)) \) where \(\log m_{a,g,k}(t) = \alpha_{a,g,k} + \beta_{a,g,k}\kappa_{k,t} \). However, in this case, it is not difficult to see that \(m_{a,g,0}(t) + \cdots + m_{a,g,K}(t) \neq m_{a,g}(t) \), in general, and thus

\[
\mathbb{E}[N_{a,g}(t)] \neq \sum_{k=0}^K \mathbb{E}[N_{a,g,k}(t)]
\]

since \(N_{a,g}(t) \sim \text{Poisson}(E_{a,g}(t)(m_{a,g,0}(t) + \cdots + m_{a,g,K}(t))) \).
In light of this shortcoming, we will introduce an additive stochastic mortality model which, as will turn out in a later section, fits into the risk aggregation framework of extended CreditRisk\(^+\), see Schmock [29].

2.3. An additive stochastic mortality model

To be able to model different underlying death causes, or, more generally, different covariates which show some common death behaviour (however, we will restrict to the first case in this paper), let us assume common stochastic risk factors \(\Lambda_1(t), \ldots, \Lambda_K(t)\) with corresponding age-dependent weights \(w_{a,g,k}(t)\) which give the age-dependent susceptibility to the different risk factors and which satisfy

\[
 w_{a,g,0}(t) + \cdots + w_{a,g,K}(t) = 1.
\]

Remark 2.1. Risk factors introduce dependence amongst deaths of different policyholders, i.e. if risk factor \(\Lambda_k(t)\) takes large or small values, then the likelihood of death due to \(k\) increases or decreases, respectively; simultaneously for all policyholders depending on the weight \(w_{a,g,k}(t)\). Weights \(w_{a,g,0}, \ldots, w_{a,g,K}\) indicate the vulnerability of of people aged \(a\) to risk factors \(\Lambda_1(t), \ldots, \Lambda_K(t)\). Risk factors are of particular importance when we want to forecast death causes. For a practical example, assume that a new, very effective cancer treatment is available such that fewer people die from lung cancer. This situation would have a longevity effect on all policyholders. Such a scenario would then correspond to the case when the risk factor for neoplasms shows a small realised.

Definition 2.2 (Additive stochastic mortality model). Given risk factors \(\Lambda_1(t), \ldots, \Lambda_K(t)\) with unit mean, assume

\[
 N_{a,g,k}(t) \sim \text{Poisson}(E_{a,g}(t)m_{a,g}(t)w_{a,g,k}(t)\Lambda_k(t)), \quad k = 1, \ldots, K,
\]

being conditionally independent of all \(N_{a,g,k'}(t)\) with \(k \neq k'\). Idiosyncratic deaths \(N_{a,g,0}(t)\) with \(k = 0\) are assumed to be mutually independent and independent of all other random variables such that

\[
 N_{a,g,0}(t) \sim \text{Poisson}(E_{a,g}(t)m_{a,g}(t)w_{a,g,0}(t)).
\]

In this case, in expectation, deaths due to different underlying death causes add up correctly, i.e.

\[
 E[N_{a,g}(t)] = E_{a,g}(t)m_{a,g}(t) = E_{a,g}(t)m_{a,g}(t)\sum_{k=0}^{K} w_{a,g,k}(t) = \sum_{k=0}^{K} E[N_{a,g,k}(t)]
\]

as \(E[\Lambda_k(t)] = 1\) by assumption.

Remark 2.3. Alternatively, if \(K = 0\), it is possible to replace the Poisson assumption by \(N_{a,g,0}(t) \sim \text{Binomial}(E_{a,g}(t), m_{a,g}(t))\), as done in Section 4.2 for illustration purposes.

Remark 2.4. If risk factors are independent and gamma distributed (as in the case of classical CreditRisk\(^+\)), then, unconditionally, deaths \(N_{a,g,k}(t)\) have a negative binomial distribution. Then, variance of deaths is given by \(\text{Var}(N_{a,g,k}(t)) = m_{a,g}(t)w_{a,g,k}(1 + m_{a,g}(t)w_{a,g,k}\sigma_k^2(t))\) with \(\sigma_k^2(t)\) denoting the variance of \(\Lambda_k(t)\). Analogously, for all \(a \neq a'\) or \(g \neq g'\),

\[
 \text{Cov}(N_{a,g,k}(t), N_{a',g',k}(t)) = m_{a,g}(t)m_{a',g'}(t)w_{a,g,k}(t)w_{a,g',k}(t)\sigma_k^2(t). \tag{2.5}
\]

This result will be used in Section 6 for model validation. A similar result also holds for the more general model with dependent risk factors, see Schmock [29, Section 6.5].
To account for trends in death probabilities and shifts in death causes over time, we introduce the following parameter families. First, let F_{Lap} denote the cumulative Laplace distribution function with mean zero and variance two, i.e.,

$$F_{\text{Lap}}(x) = \frac{1}{2} + \frac{1}{2} \text{sign}(x) \left(1 - \exp(-|x|)\right), \quad x \in \mathbb{R},$$

and trend acceleration and trend reduction with parameters $(\zeta, \eta) \in \mathbb{R} \times (0, \infty)$ is given by

$$T_{\zeta, \eta}(t) = (T_{\zeta, \eta}^*(t) - T_{\zeta, \eta}^*(t_0))/(T_{\zeta, \eta}^*(t_0) - T_{\zeta, \eta}^*(t_0 - 1))$$

with normalisation parameter $t_0 \in \mathbb{R}$ and

$$T_{\zeta, \eta}(t) = \frac{1}{\eta} \arctan(\eta(t - \zeta)), \quad t \in \mathbb{R}.$$

(2.7)

The normalisation above guarantees that parameter β can be compared across different data sets. Given $x < 0$, (2.6) simplifies to an exponential function.

Definition 2.8 (Trend families for central death rates and weights). Central death rates for age a, gender g in year t are given by

$$m_{a,g}(t) = F_{\text{Lap}}\left(\alpha_{a,g} + \beta_{a,g} T_{\zeta_{a,g}, \eta_{a,g}}(t) + \kappa_{t-a}\right),$$

(2.9)

where parameters $\alpha_{a,g}, \beta_{a,g}, \zeta_{a,g}, \kappa_{t-a} \in \mathbb{R}$ and $\eta_{a,g} \in (0, \infty)$; as well as, for $k \in \{0, \ldots, K\}$, weights are given by

$$w_{a,g,k}(t) = \frac{\exp\left(u_{a,g,k} + v_{a,g,k} T_{\phi_k, \psi_k}(t)\right)}{\sum_{j=0}^{K} \exp\left(u_{a,g,j} + v_{a,g,j} T_{\phi_j, \psi_j}(t)\right)},$$

(2.10)

with parameters $u_{a,g,0}, v_{a,g,0}, \phi_0, \ldots, u_{a,g,K}, v_{a,g,K}, \phi_K \in \mathbb{R}$ and $\psi_0, \ldots, \psi_K \in (0, \infty)$.

Thus, in practical situations, this assumption yields an exponential evolution of death probabilities in (2.9) modulo trend reduction and cohort effects κ_{t-a} (t - a refers to the birth year). Vectors α and u can be interpreted as intercept parameters for death probabilities and weights, respectively. Henceforth, β and v are trend parameters. Expression (2.7) is used for a trend reduction technique which is motivated by Kainhofer et al. [16, Section 4.6.2] and ensures that weights and death probabilities are limited as $t \to \infty$. Conceptionally, the parameter η gives the speed of trend reduction and the parameter ζ on the other hand gives the shift on the S-shaped arctangent curve, i.e., the location of trend acceleration and trend reduction. Trend reduction function (2.7) gives roughly a linear function of t if parameter η is small, and in this case we can replace $T_{\zeta_{a,g}, \eta_{a,g}}(t)$ by t to provide a simpler setting guaranteeing easier estimation. Thus, it gets obvious that (2.9) is motivated by the Lee–Carter model, cf. Lee and Carter [18]. In our model, parameter κ_{t-a} models cohort effects for groups with the same year of birth. This factor can also be understood in a more general context, in the sense that a cohort effect may model categorical variates such as smoker/non-smoker, diabetic/non-diabetic or country of residence. Moreover, cohort effects could be used for modelling weights $w_{a,g,k}(t)$ but is avoided here as sparse data does not allow proper estimation. Even more restrictive, in applications we often fix ϕ and ψ or other parameters to reduce dimensionality to suitable levels. Note that in the ECRP model every other deterministic trend family can be assumed. A clear trend reduction in mortality improvements can be observed in Japan since 1970, see, for example, Pasdika and Wolff [22, Section 4.2], and also for females in Australia. Since particularly Japan has a very old population, it seems reasonable to assume trend reduction techniques for long-term forecasts in other countries.
Remark 2.11 (Long-term projections). Long-term projections of death probabilities using (2.9) give, for all policyholders \(i \in \{1, \ldots, m \} \),
\[
\lim_{t \to \infty} m_{a,g}(t) = F^{\text{Lap}} \left(\alpha_{a,g} + \beta_{a,g} \frac{\pi}{2 \eta_{a,g}} \right).
\]
Likewise, long-term projections for weights using (2.10) are given by, for all \(k \in \{1, \ldots, K \} \),
\[
\lim_{t \to \infty} w_{a,g,k}(t) = \frac{\exp \left(u_{a,g,k} + v_{a,g,k} \frac{\pi}{2 \psi_k} \right)}{\sum_{j=0}^{K} \exp \left(u_{a,g,j} + v_{a,g,j} \frac{\pi}{2 \psi_j} \right)}.
\]
Thus, given weak trend reduction, i.e. \(\psi_k \) close to zero, weights with the strongest trend will tend to dominate in the long term. If we a priori fix the parameter for trend reduction \(\psi_k \) at suitable values, this effect can be controlled. Alternatively, different parameter families for weights can be used, e.g. linear families. Note that, by definition, weights across risk factors \(k = 0, 1, \ldots, K \) always sum up to one which is why overall mortality \(q_{a,g}(t) \) is not influenced by weights and their trends in our proposed model.

3. Parameter Estimation

In this section we provide several approaches for parameter estimation in our proposed model from Definitions 2.2 and 2.8 given publicly available data based on the whole population of a country. We develop the following four estimation approaches: maximum likelihood, maximum a posteriori, matching of moments and MCMC. Whilst matching of moments estimates are easy to derive but less accurate, maximum a posterior and maximum likelihood estimates cannot be calculated by deterministic numerical optimisation, in general. Thus, we use MCMC as a slower but very powerful alternative.

McNeil et al. [21, Section 8.6] consider statistical inference for Poisson mixture models and Bernoulli mixture models. They briefly introduce moment estimators and maximum likelihood estimators for homogeneous groups in Bernoulli mixture models. Alternatively, they derive statistical inference via a generalised linear mixed model representation for mixture models which is distantly related to our setting. In their ‘Notes and Comments’ section the reader can find a comprehensive list of interesting references. Nevertheless, most of their results and arguments are not directly applicable to our case since we use a different parametrisation and since we usually have rich data of death counts compared to the sparse information of company defaults.

In order to be able to derive statistically sound estimates, we make the following simplifying assumption for time independence:

Definition 3.1 (Time independence). Given Definition 2.2 consider discrete-time periods \(U := \{1, \ldots, T \} \) with time index \(t \in U \), assume that all random variables at time \(t \in U \) are independent of random variables at any different point in time \(s \neq t \) in \(U \). Moreover, risk factors are assumed to be independent and, for each for each \(k \in \{1, \ldots, K \} \), \(\Lambda_k(1), \ldots, \Lambda_k(T) \) are identically gamma distributed with mean one and variance \(\sigma_k^2 \).

The assumptions made above seem suitable for Austrian and Australian data, as shown in Section 6 via model validation. In particular, serial dependence is mainly captured by trend families in death probabilities and weights.

For estimation of life tables we usually assume \(K = 0 \) or \(K = 1 \) with \(w_{a,g,1} = 1 \) for all age groups and genders. For estimation and forecasting of death causes, we identify risk factors with underlying death causes. Note that for fixed \(a \) and \(g \), Equation (2.10) is invariant under a constant shift of parameters \((u_{a,g,k})_{k \in \{0, \ldots, K \}} \) as well as \((v_{a,g,k})_{k \in \{0, \ldots, K \}} \) if \(\phi_0 = \cdots = \phi_K = 0 \).
and $\psi_0 = \cdots = \psi_K$ for the latter. Thus, for each a and g, we can always choose fixed and arbitrary values for $u_{a,g,0}$ and $v_{a,g,0}$, for example, if $\phi_0 = \cdots = \phi_K$ and $\psi_0 = \cdots = \psi_K$ for the latter case.

3.1. Estimation via maximum likelihood.**

We start with the classical *maximum likelihood* approach. The likelihood function can be derived in closed form but, unfortunately, estimates have to be derived by MCMC as deterministic numerical optimisation quickly breaks down due to high dimensionality.

Lemma 3.2 (Likelihood function). Given Definitions 2.2, 2.8 and 3.1, define

$$
\hat{N}(t) := \sum_{a=1}^A \sum_{g \in \{1, m\}} \hat{N}_{a,g,k}(t), \quad k \in \{0, \ldots, K\} \text{ and } t \in U,
$$

as well as $\rho_{a,g,k}(t) := E_{a,g}(t) m_{a,g}(t) w_{a,g,k}(t)$ for all a and g and

$$
\rho_k(t) := \sum_{a=1}^A \sum_{g \in \{1, m\}} \rho_{a,g,k}(t).
$$

Then, the likelihood function $\ell(\hat{N} | \theta_m, \theta_w, \sigma)$ of parameters $\theta_m := (\alpha, \beta, \zeta, \eta) \in E$, as well as $\theta_w := (u, v, \phi, \psi) \in F$ and $\sigma := (\sigma_k) \in [0, \infty)^K$ given $\hat{N} := (\hat{N}_{a,g,k}(t)) \in N_0^{A \times 2 \times (K+1) \times T}$ is given by

$$
\ell(\hat{N} | \theta_m, \theta_w, \sigma) = \prod_{t=1}^T \left(\left(\prod_{a=1}^A \prod_{g \in \{1, m\}} e^{-\rho_{a,g,0}(t)} \frac{\rho_{a,g,0}(t) \hat{N}_{a,g,0}(t)}{\hat{N}_{a,g,k}(t)!} \right) \times \prod_{k=1}^{K+1} \left(\frac{\Gamma(1/\sigma_k^2 + \hat{N}_k(t))}{\Gamma(1/\sigma_k^2)(\sigma_k^2)^{1/\sigma_k}(1/\sigma_k^2 + \rho_k(t))^{1/\sigma_k^2} + \hat{N}_k(t)} \prod_{a=1}^A \prod_{g \in \{1, m\}} \frac{\rho_{a,g,k}(t) \hat{N}_{a,g,k}(t)}{\hat{N}_{a,g,k}(t)!} \right) \right). \tag{3.3}
$$

Proof. Following our assumptions, by straightforward computation we get

$$
\ell(\hat{N} | \theta_m, \theta_w, \sigma) = \prod_{t=1}^T \left(\left(\prod_{a=1}^A \prod_{g \in \{1, m\}} e^{-\rho_{a,g,0}(t)} \frac{\rho_{a,g,0}(t) \hat{N}_{a,g,0}(t)}{\hat{N}_{a,g,k}(t)!} \right) \times \prod_{k=1}^{K+1} \mathbb{E} \left[\mathbb{P} \left(\bigcap_{a=1}^A \bigcap_{g \in \{1, m\}} \{ N_{a,g,k}(t) = \hat{N}_{a,g,k}(t) \} \bigg| \Lambda_k(t) \right) \right] \right),
$$

where $\ell(\hat{N} | \theta_m, \theta_w, \sigma) = \mathbb{P}(N = \hat{N} | \theta_m, \theta_w, \sigma)$ denotes the probability of the event $\{ N = \hat{N} \}$ given parameters. Taking expectations in the equation above gives

$$
\mathbb{E} \left[\mathbb{P} \left(\bigcap_{a=1}^A \bigcap_{g \in \{1, m\}} \{ N_{a,g,k}(t) = \hat{N}_{a,g,k}(t) \} \bigg| \Lambda_k(t) \right) \right] = \left(\prod_{a=1}^A \prod_{g \in \{1, m\}} \frac{\rho_{a,g,k}(t) \hat{N}_{a,g,k}(t)}{\hat{N}_{a,g,k}(t)!} \right) \int_0^\infty e^{-\rho_k(t) x_t} x_t^{\frac{1}{\sigma_k^2}-1} e^{-x_t/\sigma_k^2} \frac{1}{\Gamma(1/\sigma_k^2)(\sigma_k^2)^{1/\sigma_k}} dx_t.
$$

The integrand above is a density of a gamma distribution—modulo the normalisation constant—with parameters $1/\sigma_k^2 + \hat{N}_k(t)$ and $1/\sigma_k^2 + \rho_k(t)$. Therefore, the corresponding
integral equals the multiplicative inverse of the normalisation constant, i.e.,
\[
\left(\frac{1/\sigma_k^2 + \rho_k(t)\lambda_k(t)}{\Gamma(1/\sigma_k^2 + \lambda_k(t))} \right)^{-1}, \quad k \in \{1, \ldots, K\} \text{ and } t \in \{1, \ldots, T\}.
\]

Putting all results together gives (3.3).

Since the products in (3.3) can become small, we recommend to use the log-likelihood function instead. For implementations we recommend to use the log-gamma function, e.g., the \texttt{lgamma} function in ‘R’ see [25].

Definition 3.4 (Maximum likelihood estimates). Recalling (3.3), as well as given the assumptions of Lemma 3.2, maximum likelihood estimates for parameters θ_m, θ_w and σ are defined by
\[
(\hat{\theta}_m^{MLE}, \hat{\theta}_w^{MLE}, \hat{\sigma}^{MLE}) := \arg \sup_{\theta_m, \theta_w, \sigma} \ell(\hat{N} | \theta_m, \theta_w, \sigma) = \arg \sup_{\theta_m, \theta_w, \sigma} \log \ell(\hat{N} | \theta_m, \theta_w, \sigma).
\]

Deterministic optimisation of the likelihood function may quickly lead to numerical issues due to high dimensionality and due to the flat surface. In ‘R’ the deterministic optimisation routine \texttt{nlsnb}, see [25], gives stable results in simple examples. Our proposed alternative is to switch to a Bayesian setting and use MCMC as described in Section 3.3.

3.2. Estimation via a maximum a posteriori approach. Secondly we propose a variation of maximum a posteriori estimation based on Bayesian inference, cf. Shevchenko [30] Section 2.9]. If risk factors are not integrated out in the likelihood function, we may also derive the posterior distribution of the risk factors as follows. One main advantage of this approach is that estimates for risk factors are obtained which is very useful for scenario analysis and model validation. Furthermore, handy approximations for estimates of risk factor realisations and variances are obtained.

Lemma 3.5 (Posterior density). Given Definitions 2.2, 2.8 and 3.1, consider parameters $\theta_m := (\alpha, \beta, \zeta, \eta) \in E$, $\theta_w := (u, v, \phi, \psi) \in F$, as well as risk factors $\lambda := (\lambda_k(t)) \in (0, \infty)^{K \times T}$ of risk factors $\Lambda := (\Lambda_k(t)) \in (0, \infty)^{K \times T}$, as well as data $\hat{N} := (\hat{N}_{a,g,k}(t)) \in \mathbb{N}_0^{A \times 2 \times (K+1) \times T}$. Assume that their prior distribution is denoted by $\pi(\theta_m, \theta_w, \sigma)$. Then, the posterior density $\pi(\theta_m, \theta_w, \lambda, \sigma | \hat{N})$ of parameters given data $N = \hat{N}$ is up to constant given by
\[
\pi(\theta_m, \theta_w, \lambda, \sigma | \hat{N}) \propto \pi(\theta_m, \theta_w, \sigma) \pi(\lambda | \theta_m, \theta_w, \sigma) \ell(\hat{N} | \theta_m, \theta_w, \lambda, \sigma)
\]
\[
= \prod_{t=1}^{T} \left(\prod_{a=1}^{A} \prod_{g \in \{f,m\}} e^{-\rho_{a,g,0}(t) \rho_{a,g,0}(t) \hat{N}_{a,g,0}(t)} \frac{\rho_{a,g,0}(t) \lambda_{a,g,0}(t)}{\hat{N}_{a,g,0}(t)!} \prod_{k=1}^{K} \left(\frac{e^{-\lambda_k(t)/\sigma_k^2} \lambda_k(t)^{1/\sigma_k^2-1}}{\Gamma(1/\sigma_k^2)(\sigma_k^2)^{1/\sigma_k^2}} \right) \frac{\rho_{a,g,k}(t) \lambda_k(t) \lambda_k(t) \lambda_k(t) \hat{N}_{a,g,k}(t)}{\hat{N}_{a,g,k}(t)!} \right) \pi(\theta_m, \theta_w, \sigma),
\]

where $\pi(\lambda | \theta_m, \theta_w, \sigma)$ denotes the prior density of risk factors at $\Lambda = \lambda$ given all other parameters, where $\ell(\hat{N} | \theta_m, \theta_w, \lambda, \sigma)$ denotes the likelihood of $N = \hat{N}$ given all parameters and where $\rho_{a,g,k}(t) = E_{a,g}(t) m_{a,g}(t) w_{a,g,k}(t)$.

Proof. The first proportional equality follows by Bayes’ theorem which is also widely used in Bayesian inference, see, for example, Shevchenko [30] Section 2.9]. Due to the assumptions
on risk factors, we have
\[
\pi(\lambda \mid \theta_m, \theta_w, \sigma) = \prod_{k=1}^{K} \prod_{t=1}^{T} \left(\frac{e^{-\lambda_k(t)/\sigma_k^2} \lambda_k(t)^{1/\sigma_k^2 - 1}}{\Gamma(1/\sigma_k^2)} \right).
\]
If \(\theta_m \in E, \theta_w \in F, \lambda \in (0, \infty)^{K \times T} \) and \(\sigma \in [0, \infty)^K \), then note that
\[
\ell(n \mid \theta_m, \theta_w, \lambda, \sigma) = \prod_{a=1}^{A} \prod_{g \in \{f,m\}} \prod_{t=1}^{T} \left(\frac{e^{-\rho_{a,g} \theta(t)} \rho_{a,g} \theta(t) \nabla_{a,g} \theta(t)}{N_{a,g,0}(t)!} \right).
\]
which then gives (3.6) by straightforward computation as in Lemma 3.2.

The approach described above may look like a pure Bayesian inference approach but note that risk factors \(\lambda_k(t) \) are truly stochastic and, therefore, we refer to it as a maximum a posteriori estimation approach. There are many reasonable choices for prior distributions of parameters which include (improper) uniform priors \(\pi(\theta_m, \theta_w, \sigma) := 1_E(\theta_m)1_F(\theta_w)1_{(0,\infty)^K}(\sigma) \) to smoothing priors as given in Section 4.2. Having derived the posterior density, we can now define corresponding maximum a posteriori estimates.

Definition 3.7 (Maximum a posteriori estimates). Recalling (3.6), as well as given the assumptions of Lemma 3.8, maximum a posteriori estimates for parameters \(\theta_m, \theta_w, \lambda \) and \(\sigma \), given uniqueness, are defined by
\[
(\hat{\theta}_m^{\text{MAP}}, \hat{\theta}_w^{\text{MAP}}, \hat{\lambda}^{\text{MAP}}, \hat{\sigma}^{\text{MAP}}) := \arg \sup_{\theta_m, \theta_w, \lambda, \sigma} \pi(\theta_m, \theta_w, \lambda, \sigma \mid \hat{N}) = \arg \sup_{\theta_m, \theta_w, \lambda, \sigma} \log \pi(\theta_m, \theta_w, \lambda, \sigma \mid \hat{N}).
\]

Again, deterministic optimisation of the posterior function may quickly lead to numerical issues due to high dimensionality and due to the flat surface of the posterior function which is why we recommend MCMC. However, we can provide handy approximations for risk factor and variance estimates.

Lemma 3.8 (Conditions for maximum a posteriori estimates). Given Definition 3.7, estimates \(\hat{\lambda}^{\text{MAP}} \) and \(\hat{\sigma}^{\text{MAP}} \) satisfy, for every \(k \in \{1, \ldots, K\} \) and \(t \in U \),
\[
\hat{\lambda}_k^{\text{MAP}}(t) = \frac{1/\hat{(\sigma}_k^{\text{MAP}})^2 - 1 + \sum_{a=1}^{A} \sum_{g \in \{f,m\}} \hat{N}_{a,g,k}(t)}{1/\hat{(\sigma}_k^{\text{MAP}})^2 + \sum_{a=1}^{A} \sum_{g \in \{f,m\}} \rho_{a,g,k}(t)}
\]
if \(1/\hat{(\sigma}_k^{\text{MAP}})^2 - 1 + \sum_{a=1}^{A} \sum_{g \in \{f,m\}} \hat{N}_{a,g,k}(t) > 0 \), as well as
\[
2 \log \hat{\sigma}_k^{\text{MAP}} + \frac{\Gamma(1/\hat{(\sigma}_k^{\text{MAP}})^2)}{\Gamma(1/\hat{(\sigma}_k^{\text{MAP}})^2)} \frac{1}{T} \sum_{t=1}^{T} (1 + \log \hat{\lambda}_k^{\text{MAP}}(t) - \hat{\lambda}_k^{\text{MAP}}(t))
\]
where, for given \(\hat{\lambda}_k^{\text{MAP}}(1), \ldots, \hat{\lambda}_k^{\text{MAP}}(T) > 0 \), (3.10) has a unique solution which is strictly positive.

Proof. First, set \(\pi^*(\hat{N}) := \log \pi(\theta_m, \theta_w, \lambda, \sigma \mid \hat{N}) \). Then, for every \(k \in \{1, \ldots, K\} \) and \(t \in U \), differentiating \(\pi^*(\hat{N}) \) gives
\[
\frac{\partial \pi^*(\hat{N})}{\partial \lambda_k(t)} = \frac{1/\sigma_k^2 - 1}{\lambda_k(t)} - \frac{1}{\sigma_k} + \sum_{a=1}^{A} \sum_{g \in \{f,m\}} \left(\frac{\hat{N}_{a,g,k}(t)}{\lambda_k(t)} - \rho_{a,g,k}(t) \right).
\]
Setting this term equal to zero and solving for $\Lambda_k(t)$ gives \eqref{equation:3.9}. Similarly, for every $k \in \{1, \ldots, K\}$, we obtain

$$
\frac{\partial \pi^*_k(\bar{N})}{\partial \sigma^2_k} = \frac{1}{\sigma^2_k} \sum_{t=1}^{T} \left(\log \sigma^2_k - 1 + \frac{\Gamma'(1/\sigma^2_k)}{\Gamma(1/\sigma^2_k)} - \log \lambda_k(t) + \lambda_k(t) \right).
$$

Again, setting this term equal to zero and rearranging the terms gives \eqref{equation:3.10}.

For existence and uniqueness, given estimates $\hat{\lambda}_k^{\text{MAP}}(1), \ldots, \hat{\lambda}_k^{\text{MAP}}(T) > 0$, let $k \in \{1, \ldots, K\}$ be fixed and note that the right side in the equation is strictly negative unless $\hat{\lambda}_k^{\text{MAP}}(1) = \ldots = \hat{\lambda}_k^{\text{MAP}}(T) = 1$ in which case there is no variability in the risk factor, i.e., $\sigma^2_k = 0$. Then, note that $f(x) := \log x - \Gamma'(x)/\Gamma(x)$, for all $x > 0$, is continuous—$\Gamma'(x)/\Gamma(x)$ is known as digamma function or ψ-function.

$$
\frac{1}{2x} < f(x) < \frac{1}{2x} + \frac{1}{12x^2}, \quad x > 0,
$$

which follows by Qi et al. \cite{24} Corollary 1] together with $f(x+1) = 1/x + f(x)$ for all $x > 0$. As we want to solve $-f(1/x) = -c$ for some given $c > 0$, note that $f(0+) = \infty$, as well as $\lim_{x \to \infty} f(x) = 0$. Thus a solution of Equation \eqref{equation:3.10} has to exist for given $\hat{\lambda}_k^{\text{MAP}}(1), \ldots, \hat{\lambda}_k^{\text{MAP}}(T) > 0$. Furthermore,

$$
f'(x) = \frac{1}{x} - \sum_{i=0}^{\infty} \frac{1}{(x+i)^2} < \frac{1}{x} - \int_x^{\infty} \frac{1}{z^2} \, dz = 0, \quad x > 0,
$$

where the first equality follows by Chaudhry and Zubair \cite{5}. This implies that $f(x)$ and $(-f(1/x))$ are strictly decreasing. Thus, the solution of \eqref{equation:3.10} is unique. \hfill \Box

Using Lemma \ref{lemma:3.8} it is possible to derive handy approximations for risk factor and variance estimates, given estimates for weights and death probabilities which can be derived by matching of moments as given in Section \ref{section:3.4} or other models such as Lee–Carter. If $\sum_{a=1}^{A} \sum_{g \in \{f,m\}} \hat{N}_{a,g,k}(t)$ is large, it is reasonable to define

$$
\hat{\lambda}_k^{\text{MAPappr}}(t) := \frac{-1 + \sum_{a=1}^{A} \sum_{g \in \{f,m\}} \hat{N}_{a,g,k}(t)}{\sum_{a=1}^{A} \sum_{g \in \{f,m\}} \rho_{a,g,k}(t)}
$$

as an approximative estimate for $\lambda_k(t)$ where $\rho_{a,g,k}(t) := E_{a,g}(t) m_{a,g}(t) w_{a,g,k}(t)$. Having derived approximations for λ, we can use \eqref{equation:3.10} to get estimates for σ. Alternatively, note that due to \eqref{equation:3.11}, we get

$$
-2 \log \hat{\sigma}_k^{\text{MAP}} - \frac{\Gamma'(1/(\hat{\sigma}_k^{\text{MAP}})^2)}{\Gamma(1/(\hat{\sigma}_k^{\text{MAP}})^2)} = \frac{(\hat{\sigma}_k^{\text{MAP}})^2}{2} + \mathcal{O}((\hat{\sigma}_k^{\text{MAP}})^4).
$$

Furthermore, if we use second order Taylor expansion for the logarithm, then the right hand side of \eqref{equation:3.10} gets

$$
\frac{1}{T} \sum_{t=1}^{T} (\hat{\lambda}_k^{\text{MAP}}(t) - 1 - \log \hat{\lambda}_k^{\text{MAP}}(t)) = \frac{1}{2T} \sum_{t=1}^{T} (\hat{\lambda}_k^{\text{MAP}}(t) - 1)^2 + \mathcal{O}((\hat{\lambda}_k^{\text{MAP}}(t) - 1)^3).
$$

This approximation is better the closer the values of λ are to one. Thus, using these observations, an approximation for risk factor variances σ^2 is given by

$$
(\hat{\sigma}_k^{\text{MAPappr}})^2 := \frac{1}{T} \sum_{t=1}^{T} (\hat{\lambda}_k^{\text{MAPappr}}(t) - 1)^2,
$$

\hfill \eqref{equation:3.13}
which is simply the sample variance of $\hat{\lambda}_{k}^{\text{MAP}}$. Note that $|\hat{\lambda}_{k}^{\text{MAP}}(t) - 1| < |\hat{\lambda}_{k}^{\text{MAPapp}}(t) - 1|$, implying that (3.13) will dominate solutions obtained by (3.10) in most cases.

3.3. Estimation via MCMC. As we have already outlined in the previous sections, deriving maximum a posteriori estimates and maximum likelihood estimates via deterministic numerical optimisation is mostly impossible due to high dimensionality (several hundred parameters). Alternatively, we can use MCMC under a Bayesian setting. Introductions to this topic can be found, for example, in Gilks et al. [11], Gamerman and Lopes [8], as well as Shevchenko [30] Section 2.11. We suggest to use the random walk Metropolis–Hastings within Gibbs algorithm which, given that the Markov chain is irreducible and aperiodic, generates sample chains that converge to the stationary distribution, cf. Tierney [33] and also Robert and Casella [26] Sections 6–10. However, note that various MCMC algorithms are available.

MCMC requires a Bayesian setting which we automatically have in the maximum a posteriori approach, see Section 3.2. Similarly, we can switch to a Bayesian setting in the maximum likelihood approach, see Section 3.1 by simply multiplying the likelihood function with a prior density of parameters. MCMC generates Markov chains which provide samples from the posterior distribution where the mode of these samples then corresponds to an approximation for the maximum a posteriori estimate. More stable estimates in terms of mean squared error are obtained by taking the mean over all samples once MCMC chains sample from the stationary distribution, cf. Shevchenko [30] Section 2.10. Taking the mean over all samples as an estimate, of course, can lead to troubles if posterior distributions of parameters are, e.g., bimodal, such that we end up in a region which is highly unlikely. Furthermore, sampled posterior distribution can be used to estimate parameter uncertainty. The method requires a certain burn-in period until the generated chain becomes stationary. Typically, one tries to get average acceptance probabilities close to 0.234 which is asymptotically optimal for multivariate Gaussian proposals as shown in Roberts et al. [27]. To reduce long computational times, one can run several independent MCMC chains with different starting points on different CPUs in a parallel way. To prevent overfitting, it is possible to regularise, i.e., smooth, maximum a posteriori estimates via adjusting the prior distribution. This technique is particularly used in regression, as well as in many applications, such as signal processing. When forecasting death probabilities in Section 4.2, we use a Gaussian prior distribution with a certain correlation structure.

Also under MCMC, note that ultimately we are troubled with the curse of dimensionality as we will never be able to get an accurate approximation of the joint posterior distribution in a setting with several hundred parameters.

3.4. Estimation via matching of moments. Finally, we provide a matching of moments approach which allows easier estimation of parameters but which is less accurate. Therefore, we suggest this approach solely to be used to obtain starting values for the other, more sophisticated estimation procedures. In addition, matching of moments approach needs simplifying assumptions to guarantee independent and identical random variables over time.

Assumption 3.14 (i.i.d. setting). Given Definitions 2.2, 2.8 and 3.1, assume death counts $(N_{a,g,k}(t))_{t \in U}$ to be i.i.d. with $E_{a,g} := E_{a,g}(1) = \cdots = E_{a,g}(T)$ and $m_{a,g} := m_{a,g}(1) = \cdots = m_{a,g}(T)$, as well as $w_{a,g,k} := w_{a,g,k}(1) = \cdots = w_{a,g,k}(T)$.
To achieve such an i.i.d. setting, transform deaths $N_{a,g,k}(t)$ such that Poisson mixture intensities are constant over time via

$$N'_{a,g,k}(t) := \left[\frac{E_{a,g}(T) m_{a,g}(T) w_{a,g,k}(T)}{E_{a,g}(t) m_{a,g}(t) w_{a,g,k}(t)} N_{a,g,k}(t) \right], \quad t \in U,$$

and, correspondingly, define $E_{a,g} := E_{a,g}(T)$, as well as $m_{a,g} := m_{a,g}(T)$ and $w_{a,g,k} := w_{a,g,k}(T)$. Using this modification, we manage to remove long term trends and keep $E_{a,g}(t)$, $m_{a,g}(t)$ and $w_{a,g,k}(t)$ constant over time.

Estimates $\tilde{m}_{a,g}^{MM}(t)$ for dental death rates $m_{a,g}(t)$ can be obtained via minimising mean squared error to crude death rates which, if parameters ζ, η and κ are previously fixed, can be obtained by regressing

$$(F^\text{Lap})^{-1}\left(\frac{\sum_{k=0}^{K} \tilde{N}'_{a,g,k}(t)}{E_{a,g}} \right) - \kappa_{a-t}$$

on $T_{a,g,\eta_{a-g}}(t)$. Estimates $\hat{\phi}_{a,g,k}^{MM}, \hat{\psi}_{a,g,k}^{MM}$ for parameters $u_{a,g,k}, v_{a,g,k,} \phi_k, \psi_k$ via minimising the mean squared error to crude death rates which again, if parameters ϕ and ψ are previously fixed, can be obtained by regressing $log(\hat{N}'_{a,g,k}(t)) - log(E_{a,g} \tilde{m}_{a,g}^{MM}(t))$ on $T_{\phi_k, \psi_k}(t)$. Estimates $\hat{\phi}_{a,g,k}^{MM}$ are then given by (2.10).

Then, define unbiased estimators for weights $W^*_{a,g,k}(t) := N'_{a,g,k}(t)/m_{a,g} g_{a,g}$, as well as

$$\tilde{W}^*_{a,g,k} := \frac{1}{T} \sum_{t=1}^{T} W^*_{a,g,k}(t).$$

In particular, we have $E[\tilde{W}^*_{a,g,k}] = E[W^*_{a,g,k}(t)] = w_{a,g,k}$.

Lemma 3.15. Given Assumptions 3.1, define

$$\hat{\Sigma}_{a,g,k} = \frac{1}{T-1} \sum_{t=1}^{T} (W^*_{a,g,k}(t) - \tilde{W}^*_{a,g,k})^2,$$

for all $a \in \{1, \ldots, A\}$, $g \in \{f, m\}$ and $k \in \{0, \ldots, K\}$. Then,

$$E[\hat{\Sigma}^2_{a,g,k}] = \text{Var}(W^*_{a,g,k}(1)) = \frac{\text{Var}(N'_{a,g,k}(1))}{E_{a,g} m_{a,g}} + \sigma_k^2 w_{a,g,k}^2. \quad (3.16)$$

Proof. Note that $(W^*_{a,g,k}(t))_{t \in U}$ is assumed to be an i.i.d. sequence. Thus, since $\hat{\Sigma}_{a,g,k}$ is an unbiased estimator for the standard deviation of $W^*_{a,g,k}(1)$ and $\tilde{W}^*_{a,g,k}$, see Lehmann and Romano [19 Example 11.2.6], we immediately get

$$E[\hat{\Sigma}^2_{a,g,k}] = \text{Var}(\tilde{W}^*_{a,g,k}(1)) = \text{Var}\left(\frac{N'_{a,g,k}(1)}{E_{a,g} m_{a,g}} \right).$$

Using the law of total variance as in [29] Lemma 3.48, as well as Definition 5.6[6] gives

$$E_{a,g} m_{a,g}^2 E[\hat{\Sigma}^2_{a,g,k}] = E[\text{Var}(N'_{a,g,k}(1)|\Lambda_k)] + \text{Var}(E[N'_{a,g,k}(1)|\Lambda_k]).$$

Since $\text{Var}(N'_{a,g,k}(1)|\Lambda_k) = E[N'_{a,g,k}(1)|\Lambda_k] = E_{a,g} m_{a,g} w_{a,g,k} \Lambda_k$ a.s., the equation above gives the result. \hfill \Box

Having obtained Equation (3.16), we may define the following matching of moments estimates for risk factor variances.
Definition 3.17 (Matching of moments estimates for risk factor variances). Given Assumption 3.1, the matching of moments estimate for σ_k for all $k \in \{1, \ldots, K\}$ is defined as

$$
(\hat{\sigma}_k^{\text{MM}})^2 := \max \left\{ 0, \frac{\sum_{a=1}^{A} \sum_{g \in \{f, m\}} (\hat{\sigma}_{a,g,k}^2 - \frac{w_{a,g,k}^{\text{MM}}(T)}{E_{a,g}^{\text{MM}}(T)})}{\sum_{a=1}^{A} \sum_{g \in \{f, m\}} (w_{a,g,k}^{\text{MM}}(T))^2} \right\},
$$

where $\hat{\sigma}_{a,g,k}^2$ is the estimate corresponding to estimator $\hat{\Sigma}_{a,g,k}^2$.

4. Applications

4.1. Prediction of underlying death causes. As an applied example for our proposed stochastic mortality model, as well as for some further applications, we take annual death data from Australia for the period 1987 to 2011. We fit our model using the matching of moments approach, as well as the maximum-likelihood approach with Markov chain Monte Carlo (MCMC). Data source for historical Australian population, categorised by age and gender, is taken from the Australian Bureau of Statistics and data for the number of deaths categorised by death cause and divided into eight age categories, i.e., 50–54 years, 55–59 years, 60–64 years, 65–69 years, 70–74 years, 75–79 years, 80–84 years and 85+ years, denoted by a_1, \ldots, a_8, respectively, for each gender is taken from the AIHW. The provided death data is divided into 19 different death causes—based on the ICD-9 or ICD-10 classification—where we identify the following ten of them with common non-idiosyncratic risk factors: ‘certain infectious and parasitic diseases’, ‘neoplasms’, ‘endocrine, nutritional and metabolic diseases’, ‘mental and behavioural disorders’, ‘diseases of the nervous system’, ‘circulatory diseases’, ‘diseases of the respiratory system’, ‘diseases of the digestive system’, ‘external causes of injury and poisoning’, ‘diseases of the genitourinary system’. We merge the remaining eight death causes to idiosyncratic risk as their individual contributions to overall death counts are small for all categories. Data handling needs some care as there was a change in classification of death data in 1997 as explained at the website of the Australian Bureau of Statistics. Australia introduced the tenth revision of the International Classification of Diseases (ICD-10, following ICD-9) in 1997, with a transition period from 1997 to 1998. Within this period, comparability factors were produced. Thus, for the period 1987 to 1996, death counts have to be multiplied by corresponding comparability factors.

Death cause	Factor	Death cause	Factor	Death cause	Factor	Death cause
Infectious	1.25	Neoplasms	1.00	Endocrine	1.01	Mental
Nervous	1.20	Circulatory	1.00	Respiratory	0.91	Digestive
Genitourinary	1.14	External	1.06	Not elsewhere	1.00	

Trends are considered as described above where cohort and trend reduction parameters are fixed a priori with values $t_0 = 1987$, $\kappa = 0$, $\zeta = \phi = 0$ and $\eta = \psi = \frac{1}{150}$, where the last value is based on mean trend reduction in death probabilities with the stated parameter combination. For a more advanced modelling of trend reduction see Figure 4.3. Thus, within the maximum-likelihood framework, we end up with 394 parameters, with 362 to be optimised. For matching of moments we follow the approach given in Section 3.4.
factor variances are then estimated via Approximations (3.12) and (3.13) of the maximum a posteriori approach as they give more reliable results than matching of moments.

Based on 40 000 MCMC steps with burn-in period of 10 000 we are able to derive estimates of all parameters where starting values are taken from matching of moments, as well as (3.12) and (3.13). Tuning parameters are frequently re-evaluated in the burn-in period. The execution time of our algorithm is roughly seven hours on a standard computer in ‘R’. Running several parallel MCMC chains reduces execution times to several minutes. However, note that a reduction in risk factors (e.g. one or zero risk factors for mortality modelling) makes estimation much quicker. As an illustration, Figure 4.1 shows MCMC chains of

![MCMC chains and corresponding density histograms for the variance of risk factor for deaths due to external causes of injury and poisoning](image)

Figure 4.1. MCMC chains and corresponding density histograms for the variance of risk factor for deaths due to external causes of injury and poisoning σ^2_9 (left) and $\alpha^2_{2,f}$ (right).

the variance of risk factor for external causes of injury and poisoning σ^2_9, as well as of the parameter $\alpha_{2,f}$ for death probability intercept of females aged 55 to 59 years. We observe in Figure 4.1 that stationary distributions of MCMC chains for risk factor variances are typically right skewed. This indicates risk which is associated with underestimating variances due to limited observations of tail events.

Table 4.2 shows estimates for risk factor standard deviations using matching of moments, Approximation (3.13), as well as mean estimates of MCMC with corresponding 5% and 95% quantiles, as well as standard errors. First, Table 4.2 illustrates that (3.12) and (3.13), as well as matching of moments estimates for parameters α, β, u and v are close to mean MCMC estimates. Risk factor standard deviations are small but tend to be higher for death causes with just few deaths as statistical fluctuations in the data are higher compared to more frequent death causes. Solely estimates for the risk factor standard deviation of mental and behavioural disorders give higher values. Standard errors, as defined in Shevchenko [30]
Table 4.2. Estimates for selected risk factor standard deviations σ using matching of moments (MM), Approximation (3.13) (appr.) and MCMC mean estimates (mean), as well as corresponding standard deviations (stdev.) and 5% and 95% quantiles (5% and 95%).

Risk Factor	MM	appr.	mean	5%	95%	stdev.
infectious	0.1932	0.0787	0.0812	0.0583	0.1063	0.0147
neoplasms	0.0198	0.0148	0.0173	0.0100	0.0200	0.0029
mental	0.1502	0.1357	0.1591	0.1200	0.2052	0.0265
circulatory	0.0377	0.0243	0.0300	0.0224	0.0387	0.0053
respiratory	0.0712	0.0612	0.0670	0.0510	0.0866	0.0110
external	0.1044	0.0912	0.1049	0.0787	0.1353	0.0176

Section 2.12.2 with block size 50, for corresponding risk factor variances are consistently less than three%. We can use the approximation given in (3.9) to derive risk factor estimates over previous years. For example, we observe increased risk factor realisations of diseases of the respiratory system over the years 2002 to 2004. This is mainly driven by many deaths due to influenza and pneumonia during that period.

Table 4.3. Selected estimated weights in years 2011 and 2031 for ages 80 to 84 years. 5 and 95% MCMC quantiles are given in brackets.

Risk Factor	2011, male	2031, male	2011, female	2031, female
neoplasms	0.327 (0.328)	0.385 (0.392)	0.263 (0.267)	0.295 (0.319)
circulatory	0.324 (0.330)	0.169 (0.181)	0.340 (0.348)	0.145 (0.158)
respiratory	0.106 (0.111)	0.090 (0.101)	0.101 (0.104)	0.129 (0.139)
endocrine	0.047 (0.049)	0.073 (0.085)	0.053 (0.055)	0.071 (0.074)
nervous	0.044 (0.047)	0.058 (0.068)	0.054 (0.057)	0.080 (0.089)
infectious	0.015 (0.016)	0.020 (0.027)	0.015 (0.016)	0.019 (0.028)
mental	0.042 (0.046)	0.115 (0.130)	0.063 (0.068)	0.168 (0.188)

Assumption (2.10) provides a joint forecast of all death cause intensities, i.e. weights, simultaneously—in contrast to standard procedures where projections are made for each death cause separately. Throughout the past decades we have observed drastic shifts in crude death rates due to certain death causes over the past decades. This fact can be be illustrated by our model as shown in Table 4.3. This table lists weights $w_{a,g,k}(t)$ for all death causes estimated for year 2011, as well as forecasted for years 2021 and 2031 using (2.10) with MCMC mean estimates for ages 60 to 64 years (left) and 80 to 84 years (right). Model forecasts suggest that if these trends in weight changes persist, then the future gives a whole new picture of mortality. First, deaths due to circulatory diseases are expected to decrease whilst neoplasms will become the leading death cause over most age categories. Moreover, deaths due to mental and behavioural disorders are expected to rise massively for older ages. High uncertainty in forecasted weights is reflected by wide confidence intervals (values in brackets) for the risk factor of mental and behavioural disorders. These confidence intervals
are derived from corresponding MCMC chains and, therefore, solely reflect uncertainty associated with parameter estimation. Note that results for estimated trends depend on the length of the data period as short-term trends might not coincide with mid- to long-term trends. Further results can be found in [31].

4.2. Forecasting death probabilities. Forecasting death probabilities and central death rates within our proposed model is straightforward using (2.9). In the special case with just idiosyncratic risk, i.e., \(K = 0 \), death indicators can be assumed to be Bernoulli distributed instead of being Poisson distributed in which case we may write the likelihood function in the form

\[
\ell^B(\hat{N} | \alpha, \beta, \zeta, \eta, \kappa) = \prod_{t=1}^{T} \prod_{a=1}^{A} \prod_{g \in \{t, m\}} \left(\frac{E_{a,g}(t)}{\tilde{N}_{a,g,0}(t)} \right) m_{a,g}(t) \tilde{N}_{a,g,0}(t)(1 - m_{a,g}(t))E_{a,g}(t) - \tilde{N}_{a,g,0}(t),
\]

with \(0 \leq \tilde{N}_{a,g,0}(t) \leq E_{a,g}(t) \). Due to possible overfitting, derived estimates may not be sufficiently smooth across age categories \(a \in \{1, \ldots, A\} \). Therefore, if we switch to a Bayesian setting, we may use regularisation via prior distributions to obtain stabler results. To guarantee smooth results and a sufficient stochastic foundation, we suggest the usage of Gaussian priors with mean zero and a specific correlation structure, i.e.,

\[
\pi(\alpha, \beta, \zeta, \eta, \kappa) = \pi(\alpha) \pi(\beta) \pi(\zeta) \pi(\eta) \pi(\kappa) \text{ with}
\]

\[
\log \pi(\alpha) := -c_\alpha \sum_{g \in \{t, m\}} \left(\sum_{a=1}^{A-1} (\alpha_{a,g} - \alpha_{a+1,g})^2 + \varepsilon_\alpha \sum_{a=1}^{A} \alpha_{a,g}^2 \right) + \log(d_\alpha), \quad c_\alpha, d_\alpha, \varepsilon_\alpha > 0,
\]

(4.1)

and correspondingly for \(\beta, \zeta, \eta \) and \(\kappa \). Parameters \(c_\alpha \) (correspondingly for \(\beta, \zeta, \eta \) and \(\kappa \)) is a scaling parameter and directly associated with the variance of Gaussian priors while normalisation-parameter \(d_\alpha \) guarantees that \(\pi(\alpha) \) is a proper Gaussian density. Penalty-parameter \(\varepsilon_\alpha \) scales the correlation amongst neighbour parameters in the sense that the lower it gets, the higher the correlation. The more we increase \(c_\alpha \) the stronger the influence of, or the believe in the prior distribution. This particular prior distribution penalises deviations from the ordinate which is a mild conceptual shortcoming as this does not accurately reflect our prior believes. Setting \(\varepsilon_\alpha = 0 \) gives an improper prior with uniformly distributed (on \(\mathbb{R} \)) marginals such that we gain that there is no prior belief in expectations of parameters but, simultaneously, lose the presence of variance-covariance-matrices and asymptotically get perfect positive correlation across parameters of different ages. Still, whilst lacking theoretical properties, better fits to data are obtained by setting \(\varepsilon_\alpha = 0 \). For example, setting \(\varepsilon_\alpha = \varepsilon_\beta = 10^{-2} \) and \(\varepsilon_\zeta = \varepsilon_\eta = \varepsilon_\kappa = 10^{-4} \) yields a prior correlation structure which decreases with higher age differences and which is always positive as given in the left of Figure 4.2. There exist many other reasonable choices for Gaussian prior distributions. For example, replacing graduation terms \((\alpha_{a,g} - \alpha_{a+1,g})^2 \) in (4.1) by higher order differences of the form \(\left(\sum_{\nu=0}^{k} (-1)^{\nu} \binom{k}{\nu} \alpha_{a,g+\nu} \right)^2 \) yields a penalisation for deviations from a straight line with \(k = 2 \), see middle plot in Figure 4.2 or from a parabola with \(k = 3 \), see right plot in Figure 4.2. The usage of higher order differences for graduation of statistical estimates goes back to the Whittaker–Henderson method. Taking \(k = 2, 3 \) unfortunately yields negative prior correlations amongst certain parameters which is why we do not recommend their use. Of course, there exist many further possible choices for prior distributions. However, in our example, we set \(\varepsilon_\alpha = \varepsilon_\beta = \varepsilon_\zeta = \varepsilon_\eta = \varepsilon_\kappa = 0 \) as this yields accurate results whilst still being reasonably smooth.
Figure 4.2. Correlation structure of Gaussian priors with penalisation for deviation from ordinate (left), straight line (middle) and parabola (right).

An optimal choice of regularisation parameters $c_\alpha, c_\beta, c_\zeta, c_\eta$ and c_κ can be obtained by cross-validation.

Figure 4.3. Logarithm of death probabilities (top) for 2013 in Australia and forecasts for 2063 as well as parameters $\alpha, \beta, \zeta, \eta, \kappa$.

Results for Australian data from 1971 to 2013 with $t_0 = 2013$ are given in Figure 4.3. Using MCMC we derive estimates for logarithmic central death rates $\log m_{a,g}(t)$ with corresponding
forecasts, mortality trends $\beta_{a,g}$, as well as trend reduction parameters $\zeta_{a,g}, \eta_{a,g}$ and cohort effects κ_{a-t}. As we do not assume common stochastic risk factors, the MCMC algorithm we use can be implemented very efficiently such that 40,000 samples from the posterior distribution of all parameters are derived within a minute. We observe negligible parameter uncertainty due to a long period of data. Further, regularisation parameters obtained by cross-validation are given by $c_\alpha = 500$, $c_\beta = c_\eta = 30,000c_\alpha$, $c_\zeta = c_\alpha/20$ and $c_\kappa = 1,000c_\alpha$.

We can draw some immediate conclusions. Firstly, we see an overall improvement in mortality over all ages where the trend is particularly strong for young ages and ages between 60 and 80 whereas the trend vanishes towards the age of 100, maybe implying a natural barrier for life expectancy. Due to sparse data the latter conclusion should be treated with the utmost caution. Furthermore, we see the classical hump of increased mortality driven by accidents around the age of 20 which is more developed for males.

Secondly, estimates for $\zeta_{a,g}$ suggest that trend acceleration switched to trend reduction throughout the past 10 to 30 years for males while for females this transition already took place 45 years ago. However, note that parameter uncertainty (under MCMC) associated with $\zeta_{a,g}$ is high, particularly if estimates are not regularised. Estimates for $\eta_{a,g}$ show that the speed of trend reduction is much stronger for males than for females. Estimates for κ_{a-t} show that the cohort effect is particularly strong (in the sense of increased mortality) for the generation born between 1915 and 1930 (probably associated with World War II) and particularly weak for the generation born around 1945. However, considering cohort effects makes estimation and forecasts significantly less stable for the used data, which is why we recommend to set $\kappa_{a-t} = 0$.

Based on forecasts for death probabilities, expected future life time can be estimated. To be consistent concerning longevity risk, mortality trends have to be included as a 60-year-old today will probably not have as good medication as a 60-year-old in several decades. However, it seems that this is not the standard approach in the literature. Based on the definitions above, expected (curtate) future life time of a person at date T is given by $e_{a,g}(T) = E[K_{a,g}(T)] = \sum_{k=1}^{\infty} k p_{a,g}(T)$, where survival probabilities over $k \in \mathbb{N}$ years are given by $k p_{a,g}(T) := \prod_{j=0}^{k-1} (1 - q_{a+j,g}(T + j))$ and where $K_{a,g}(T)$ denotes the number of completed future years lived by a person of particular age and gender at time T. In Australia we get a life expectancy of roughly 83 years for males and 89.5 for females born in 2013, see Table 4.4. Thus, comparing these numbers to a press release from October 2014 from the Australian Bureau of Statistics saying that ‘Aussie men now expected to live past 80’ and ‘improvements in expected lifespan for women has since slowed down, increasing by around four years over the period - it’s 84.3 now’, our results show a much higher life expectancy due to the consideration of mortality trends.

Table 4.4. Curtate future life time $e_{a,g}(T)$ for males and females in 2013.

age in 2013	0 (newborn)	20	40	60	80
male	83.07	63.33	43.62	24.44	8.26
female	89.45	69.05	48.20	27.76	9.88
5. A Link to the Extended CreditRisk$^+$ Model and Applications

5.1. The ECRP model. In this section we establish the connection from our proposed stochastic mortality model to the risk aggregation model extended CreditRisk$^+$, as given in Schmock [29, Section 6].

Definition 5.1 (Policyholders and number of deaths). Let $\{1, \ldots, E\}$ with $E \in \mathbb{N}$ denote the set of people (termed as policyholders in light of insurance applications) in the portfolio and let random variables $N_1, \ldots, N_E: \Omega \to \mathbb{N}_0$ indicate the number of deaths of each policyholder in the following period. The event $\{N_i = 0\}$ indicates survival of person i whilst $\{N_i \geq 1\}$ indicates death.

Definition 5.2 (Portfolio quantities). Given Definition 5.1, the independent random vectors $Y_1, \ldots, Y_E: \Omega \to \mathbb{N}^d_0$ with $d \geq 1$ dimensions denote portfolio quantities within the following period given deaths of policyholders, i.e., on $\{N_i \geq 1\}$ for all $i \in \{1, \ldots, E\}$, and are independent of N_1, \ldots, N_E.

Remarks 5.3. (Portfolio quantities).
(a) For applications in the context of internal models we may set Y_i as the best estimate liability, i.e. discounted future cash flows, of policyholder i at the end of the period. Thus, when using stochastic discount factors or contracts with optionality, for example, portfolio quantities may be stochastic.
(b) In the context of portfolio payment analysis we may set Y_i as the payments (such as annuities) to i over the next period. We may include premiums in a second dimension in order to get joint distributions of premiums and payments.
(c) For applications in the context of mortality estimation and projection we set $Y_i = 1$.
(d) Using discretisation which preserves expectations (termed as stochastic rounding in Schmock [29, Section 6.2.2]), we may assume Y_i to be $[0, \infty)^d$-valued.

Definition 5.4 (Aggregated portfolio quantities). Given Definitions 5.1 and 5.2, aggregated portfolio quantities due to deaths are given by

$$S := \sum_{i=1}^{E} \sum_{j=1}^{N_i} Y_{i,j},$$

where $(Y_{i,j})_{j \in \mathbb{N}}$ for every $i \in \{1, \ldots, E\}$ is an i.i.d. sequence of random variables with the same distributions as Y_i.

Remark 5.5. In the context of annuities, for example, S is the sum of all annuity payments and premiums which need not be paid and are received, respectively, in the following period due to deaths of policyholders. Then, small values of S, i.e., the left tail of its distribution, is the part of major interest and major risk.

It is a demanding question how to choose the modelling setup such that the distribution of S can be derived efficiently and accurately. Assuming N_i to be Bernoulli distributed is not suitable for our intended applications as computational complexity explodes. Therefore, to make the modelling setup applicable in practical situations and to ensure a flexible handling in terms of multi-level dependence, we introduce the ECRP model which is based on extended CreditRisk$^+$, see Schmock [29, Section 6].
Definition 5.6 (The ECRP model). Given Definitions 5.1, 5.2, the ECRP model satisfies the following additional assumptions:
(a) Consider independent random common risk factors \(\Lambda_1, \ldots, \Lambda_K; \Omega \to [0, \infty) \) which have a gamma distribution with mean \(e_k = 1 \) and variance \(\sigma^2_k > 0 \), i.e., with shape and inverse scale parameter \(\sigma^{-2}_k \). Also the degenerate case with \(\sigma^2_k = 0 \) for \(k \in \{1, \ldots, K\} \) is allowed. Corresponding weights \(w_{i,0}, \ldots, w_{i,K} \in [0, 1] \) for every policyholder \(i \in \{1, \ldots, E\} \). Risk index zero represents idiosyncratic risk and we require \(w_{i,0} + \cdots + w_{i,K} = 1 \).
(b) Deaths \(N_{i,0}, \ldots, N_{E,0}; \Omega \to \mathbb{N}_0 \) are independent from one another, as well as all other random variables and, for all \(i \in \{1, \ldots, E\} \), they are Poisson distributed with intensity \(m_i \), i.e.,
\[
\mathbb{P}\left(\bigcap_{i=1}^{E} \{ N_{i,0} = \hat{N}_{i,0} \} \right) = \prod_{i=1}^{E} e^{-m_i} \frac{(m_i \hat{N}_{i,0})^{\hat{N}_{i,0}}}{\hat{N}_{i,0}!}, \quad \hat{N}_{i,0}, \ldots, \hat{N}_{E,0} \in \mathbb{N}_0.
\]
(c) Given risk factors, deaths \((N_{i,k})_{i \in \{1, \ldots, E\}, k \in \{1, \ldots, K\}}; \Omega \to \mathbb{N}_0^{E \times K} \) are independent and, for every policyholder \(i \in \{1, \ldots, E\} \) and \(k \in \{1, \ldots, K\} \), they are Poisson distributed with random intensity \(m_i w_{i,k} \Lambda_k \), i.e.,
\[
\mathbb{P}\left(\bigcap_{i=1}^{E} \bigcap_{k=1}^{K} \{ N_{i,k} = \hat{N}_{i,k} \} \bigg| \Lambda_1, \ldots, \Lambda_K \right) = \prod_{i=1}^{E} \prod_{k=1}^{K} e^{-m_i} \frac{(m_i w_{i,k} \Lambda_k)^{\hat{N}_{i,k}}}{\hat{N}_{i,k}!}, \quad \text{a.s.},
\]
for all \(n_{i,k} \in \mathbb{N}_0 \).
(d) For every policyholder \(i \in \{1, \ldots, E\} \), the total number of deaths \(N_i \) is split up additively according to risk factors as \(N_i = N_{i,0} + \cdots + N_{i,K} \). Thus, by model construction, \(\mathbb{E}[N_i] = m_i (w_{i,0} + \cdots + w_{i,K}) = m_i = -\log(1 - q_i) \).

Given Definition 5.1 central death rates are given by \(m_i = \mathbb{E}[N_i] \) and death probabilities, under piecewise constant death rates, are given by \(q_i = 1 - \exp(-m_i) = \mathbb{P}(N_i \geq 1) \).

Remark 5.7. Assuming that central death rates and weights are equal for all policyholders for the same age and gender, it is obvious that the ECRP corresponds one-to-one to our proposed stochastic mortality model, as given in Definition 2.2 if risk factors are independent gamma distributed.

In reality, number of deaths are Bernoulli random variables as each person can just die once. Unfortunately in practice, such an approach is not tractable for calculating P&L distributions of large portfolios as execution times explode if numerical errors should be small. Instead, we will assume the number of deaths of each policyholder to be compound Poisson distributed. However, for estimation of life tables we will assume the number of deaths to be Bernoulli distributed. Poisson distributed deaths give an efficient way for calculating P&L distributions using an algorithm based on Panjer’s recursion, also for large portfolios, cf. Schmook [29, Section 6.7]. The algorithm is basically due to Giese [10] for which Haaf et al. [15] proved numerical stability. The relation to Panjer’s recursion was first pointed out by Gerhold et al. [9, Section 5.5]. Schmook [29, Section 5.1] generalised the algorithm to the multivariate case with dependent risk factors and risk groups, based on the multivariate extension of Panjer’s algorithm given by Sundt [32]. The algorithm is numerically stable since just positive terms are added up. To avoid long execution times for implementations of extended CreditRisk+ with large annuity portfolios, greater loss units and stochastic rounding, see Schmook [29, Section 6.2.2], can be used.

However, the proposed model allows for multiple (Poisson) deaths of each policyholder and thus approximates the ‘real world’ with single (Bernoulli) deaths. From a theoretical
point of view, this is justified by the Poisson approximation and generalisations of it, see for example Vellaisamy and Chaudhuri [34]. Since annual death probabilities for ages up to 85 are less than 10%, multiple deaths are relatively unlikely for all major ages. However, implementations of this algorithm are significantly faster than Monte Carlo approximations for comparable error (Poisson against Bernoulli) levels.

Table 5.1. Quantiles, execution times (speed) and total variation distance (accuracy) of Monte Carlo with 50 000 simulations, as well as the ECRP model given a simple portfolio.

quantiles	1%	10%	50%	90%	99%	speed	accuracy
Monte Carlo, $w_{i,0} = 1$	450	472	500	528	552	22.99 sec.	0.0187
annuity model, $w_{i,1} = 1$	449	471	500	529	553	0.01 sec.	0.0125
Monte Carlo, $w_{i,1} = 1$	202	310	483	711	936	23.07 sec.	0.0489
annuity model, $w_{i,1} = 1$	204	309	483	712	944	0.02 sec.	≤ 0.0500

As an illustration we take a portfolio with $m = 10 000$ policyholders having death probabilities $q := q_i = 0.05$ and payments $Y_i = 1$. We then derive the distribution of S using the ECRP model for the case with just idiosyncratic risk, i.e., $w_{i,0} = 1$, and for the case with just one common stochastic risk factor Λ_1 with variance $\sigma_1 = 0.1$ and no idiosyncratic risk, i.e., $w_{i,1} = 1$. Then, using 50 000 simulations of the corresponding model where N_i is Bernoulli distributed or mixed Bernoulli distributed given truncated risk factor $\Lambda_1 | \Lambda_1 \leq \frac{1}{q}$, we compare the results of the ECRP model to Monte Carlo, respectively. Truncation of risk factors in the Bernoulli model is necessary as otherwise death probabilities may exceed one. We observe that the ECRP model drastically reduces execution times in ‘R’ at comparable error levels and leads to a speed up by the factor of 1000. Error levels in the purely idiosyncratic case are measured in terms of total variation distance between approximations and the binomial distribution with parameters $(10 000, 0.05)$ which arises as the independent sum of all Bernoulli random variables. Error levels in the purely non-idiosyncratic case are measured in terms of total variation distance between approximations and the mixed binomial distribution where for the ECRP model we use Poisson approximation to get an upper bound. The total variation between those distributions is 0.0159 in our simulation and, thus, dominates the Poisson approximation in terms of total variation. Results are summarised in Table 5.1.

5.2. Application I: Mortality risk, longevity risk and Solvency II application. In light of the previous section, life tables can be projected into the future and, thus, it is straightforward to derive best estimate liabilities (BEL) of annuities and life insurance contracts. The possibility that death probabilities differ from an expected curve, i.e. estimated parameters do no longer reflect the best estimate and have to be changed, contributes to mortality or longevity risk, when risk is measured over a one year time horizon as in Solvency II and the duration of in-force insurance contracts exceeds this time horizon. In our model, this risk can be captured by considering various MCMC samples ($\hat{\theta}^h$)$_{h=1,...,m}$ (indexed by superscript h) of parameters $\theta = (\alpha, \beta, \zeta, \eta, \kappa)$ for death probabilities, yielding distributions of BELs. For example, taking $D(T, T + t)$ as the discount curve from time $T + t$ back to T.
and choosing an MCMC sample $\hat{\theta}^h$ of parameters to calculate death probabilities $q^h_{a,g}(T)$ and survival probabilities $p^h_{a,g}(T)$ at age a with gender g, the BEL for a term life insurance contract which pays 1 unit at the end of the year of death within the contract term of d years is given by

$$A^T_{a,g}(\hat{\theta}^h) = D(T, T + 1)q^h_{a,g}(T) + \sum_{t=1}^{d} D(T, T + t + 1) \cdot t p^h_{a,g}(T) q^h_{a+t,g}(T + t). \quad (5.8)$$

In a next step, this approach can be used as a building block for (partial) internal models to calculate basic solvency capital requirements (BSCR) for biometric underwriting risk under Solvency II, as illustrated in the following example.

Consider an insurance portfolio at time 0 with $n \in \mathbb{N}$ whole life insurance policies with lump sum payments $C_i > 0$, for $i = 1, \ldots, n$, upon death at the end of the year. Assume that all assets are invested in an EU government bond (risk free under the standard model of the Solvency II directive) with maturity 1, nominal A_0 and coupon rate $c > -1$. Furthermore, assume that we are only considering mortality risk and ignore profit sharing, lapse, costs, reinsurance, deferred taxes, other assets and other liabilities, as well as the risk margin. Note that in this case, basic own funds, denoted by BOF, are given by market value of assets minus BEL at time t, respectively. Then, the BSCR at time 0 is given by the 99.5% quantile of the change in basic own funds over the period $[0, 1]$, denoted by ΔBOF, which can be derived by, see (5.8).

$$\Delta$BOF = BOF_0 - D(0, 1)BOF_1 = A_0 \left(1 - D(0, 1)(1 + c) \right) - \sum_{i=1}^{n} C_i A^0_{a,g}(\hat{\theta})$$

$$+ \frac{D(0, 1)}{m} \sum_{h=1}^{m} \left(\sum_{i=1}^{n} C_i A^1_{a+1,g}(\hat{\theta}^h) + \sum_{i=1}^{n} \sum_{j=1}^{N^h} C_i (1 - A^1_{a+1,g}(\hat{\theta}^h)) \right). \quad (5.9)$$

where $\hat{\theta} := \frac{1}{m} \sum_{h=1}^{m} \hat{\theta}^h$ and where N^h_1, \ldots, N^h_n are independent and Poisson distributed with $E[N^h_i] = q^h_{a_i,g}(0)$ with policyholder i belonging to age group a_i and of gender g_i. The distribution of the last sum above can be derived efficiently by Panjer recursion. This example does not require a consideration of market risk and it nicely illustrates how mortality risk splits into a part associated with statistical fluctuation (experience variance: Panjer recursion) and into a part with long-term impact (change in assumptions: MCMC). Note that by mixing N_i with common stochastic risk factors, we may include other biometric risks such as morbidity.

Consider a portfolio with 100 males and females at each age between 20 and 60 years, each having a 40-year term life insurance, issued in 2014, which provides a lump sum payment between 10000 and 200000 (randomly chosen for each policyholder) if death occurs within these 40 years. Using MCMC samples and estimates based on the Austrian data from 1965 to 2014 as given in the previous section, we may derive the change in basic own funds from 2014 to 2015 by (5.9) using the extended CreditRisk+ algorithm. The 99.5% quantile of change in BOFs, i.e. the SCR, is lying slightly above one million. If we did not consider parameter risk in the form of MCMC samples, the SCR would decrease by roughly 33%.

5.3. Application II: Impact of certain health scenarios in Portfolios. Analysis of certain health scenarios and their impact on portfolio P&L distributions is straightforward. As an explanatory example, assume $m = 1600$ policyholders who distribute uniformly over all age categories and genders, i.e., each age category contains 100 policyholders with
corresponding death probabilities, as well as weights as previously estimated and forecasted for 2012. Annuities $X_i = Y_i$ for all $i \in \{1, \ldots, m\}$ are paid annually and take deterministic values in $\{11, \ldots, 20\}$ such that ten policyholders in each age and gender category share equally high payments. We now analyse the scenario, indexed by ‘scen’, that deaths due to neoplasms are reduced by 25% in 2012 over all ages. In that case, we can estimate the realisation of risk factor for neoplasms, see (3.9), which takes an estimated value of 0.7991. Running the ECRP model with this risk factor realisation being fixed, we end up with a loss distribution L_{scen} where deaths due to neoplasms have decreased. Figure 5.1 then shows probability distributions of traditional loss L without scenario, as well as of scenario loss L_{neo} with corresponding 95% and 99% quantiles. We observe that a reduction of 25% in cancer crude death rates leads to a remarkable shift in quantiles of the loss distribution as fewer people die and, thus, more annuity payments have to be made.

![Figure 5.1. Loss distributions of L and L_{scen} with 95 and 99% quantiles.](image)

5.4. **Application III: Forecasting central death rates and comparison with the Lee–Carter model.** We can compare out-of-sample forecasts of death rates from our proposed model to forecasts obtained by other mortality models. Here, we choose the traditional Lee–Carter model as a proxy as our proposed model is conceptionally based on a similar idea. We make the simplifying assumption of a constant population for out-of-sample time points.

Using the ECRP model it is straightforward to forecast central death rates and to give corresponding confidence intervals via setting $Y_j(t) := 1$. Then, for an estimate $\hat{\theta}$ of parameter vector θ run the ECRP model with parameters forecasted, see (2.9) and (2.10). We then obtain the distribution of the total number of deaths $S_{a,g}(t)$ given $\hat{\theta}$ and, thus, forecasted death rate $\hat{r}_{a,g}(t)$ is given by $\mathbb{P}(\hat{m}_{a,g}(t) = N/E_{a,g}(T)) = \mathbb{P}(S_{a,g}(t) = N)$, for all $N \in \mathbb{N}_0$.

Uncertainty in the form of confidence intervals represent statistical fluctuations, as well as random changes in risk factors. Additionally, using results obtained by Markov chain Monte Carlo (MCMC) it is even possible to incorporate parameter uncertainty into predictions. To account for an increase in uncertainty for forecasts we suggest to assume increasing risk factor variances for forecasts, e.g., $\hat{\sigma}_k^2(t) = \sigma_k^2(1 + d(t - T))^2$ with $d \geq 0$. A motivation for this approach with $k = 1$ is the following: A major source of uncertainty for forecasts lies in an unexpected deviation from the estimated trend for death probabilities. We may therefore assume that rather than being deterministic, forecasted values $m_{a,g}(t)$ are beta distributed (now denoted by $M_{a,g}(t)$) with $\mathbb{E}[M_{a,g}(t)] = m_{a,g}(t)$ and variance $\sigma_M^2(t)$ which
is increasing in time. Then, given independence amongst risk factor Λ_1 and $M_{a,g}(t)$, we may assume that there exists a future point t_0 such that

$$\sigma^2_{M,a,g}(t_0) = \frac{m_{a,g}(t_0)(1 - m_{a,g}(t_0))}{1/\sigma^2_t + 1}.$$

In that case, $M_{a,g}(t)\Lambda_1$ is again gamma distributed with mean one and increased variance $m_{a,g}(t_0)\sigma^2_t$ (instead of $m^2_{a,g}(t_0)\sigma^2_t$ for the deterministic case). Henceforth, it seems reasonable to stay within the family of gamma distributions for forecasts and just adapt variances over time. Of course, families for these variances for gamma distributions can be changed arbitrarily and may be selected via classical information criteria.

Using in-sample data, d can be estimated using (3.3) with all other parameters being fixed. Using Australian death and population data for the years 1963 to 1997 we estimate model parameters via MCMC in the ECRP model with one common stochastic risk factor having constant weight one. In average, i.e., for various forecasting periods and starting at different dates, parameter d takes the value 0.22 in our example. Using fixed trend parameters as above, and using the mean of 30 000 MCMC samples, we forecast death rates and corresponding confidence intervals out of sample for the period 1998 to 2013. We can then compare these results to crude death rates within the stated period and to forecasts obtained by the Lee–Carter model which is shown in Figure 5.2 for females aged 50 to 54 years. We observe that crude death rates mostly fall in the 90% confidence band for both procedures. Moreover, Lee–Carter forecasts lead to wider spreads of quantiles in the future whilst the ECRP model suggests a more moderate increase in uncertainty. Taking various parameter samples from the MCMC chain and deriving quantiles for death rates, we can extract contributions of parameter uncertainty in the ECRP model coming from posterior distributions of parameters.

![Figure 5.2. Forecasted death rates using the ECRP model (AM) and the Lee–Carter model (LC).](image-url)
fluctuations and random changes in risk factors decreases from 63% in 1998 to 20% in 2013. Adding the increase in uncertainty for forecasts gives a roughly constant contribution of 72% which implies that δ becomes the main driver of risk in the long term. On top of that, parameter uncertainty leaves a constant contribution of 28%.

5.5. **Considered risks.** Regulators often require security margins in life tables when modelling annuity or certain life insurance products and portfolios to account for different sources of risk, including trends, volatility risk, model risk and parameter risk, cf. Kainhofer et al. [16] as well as Pasdika and Wolff [22].

In the ECRP model, mortality trends are incorporated via families for death probabilities which are motivated by the Lee–Carter model. It is straightforward to arbitrarily change parameter families such that it fits the data as in the case when trends change fundamentally. If other families for weights are used, one always has to check that they sum up to one over all death causes. Note that for certain alternative parameter families, mean estimates obtained from Markov chain Monte Carlo do not necessarily sum up to one anymore. Changing model parameter families may also be necessary when using long-term projections since long-term trends are fundamentally different from short-term trends. Further estimation and testing procedures for trends in composite Poisson models in the context of convertible bonds can be found in Schmock [28]. Trends for weights are particularly interesting insofar as the model becomes sensitive to the change in the vulnerability of policyholders to different death causes over time. Cross dependencies over different death causes and different ages can occur. Such an effect can arise as a reduction in deaths of a particular cause can lead to more deaths in another cause, several periods later, as people have to die at some point. Furthermore, the ECRP model captures unexpected, temporary deviations from a trend with the variability introduced by common stochastic risk factors which effect all policyholders according to weights simultaneously.

Assuming that the model choice is right and that estimated values are correct, life tables still just give mean values of death probabilities over a whole population. Therefore, in the case of German data it is suggested to add a gender non specific due to legal reasons and it is set to 7.4% to account for the risk of random fluctuations in deaths, approximately at a 95% quantile, see German Actuarial Association (DAV) [6, Section 4.1]. In the ECRP model this risk is captured automatically by risk aggregation. As a reference to the suggested security margin of 7.4% on death probabilities, we can use the same approach as given in Section 5.4 to estimate quantiles for death rates via setting $Y_j = 1$. These quantiles then correspond to statistical fluctuations around death probabilities. We roughly observe an average deviation from death probability of 8.4% for the 5% quantile and of 8.7% for the 95% quantile of females aged 55 to 60 years in 2002, i.e., these values are in line with a security margin of 7.4%.

The risk of wrong parameter estimates, i.e. that realised death probabilities deviate from estimated values, can be captured using MCMC as described in Section 3.3 where we sample from the joint posterior distributions of the estimators. As our proposed extended CreditRisk$^+$ algorithm is numerically very efficient, we can easily run the ECRP model for several thousand samples from the MCMC chain to derive sensitivities of quantiles, for example. Note that parameter risk is closely linked to longevity risk. To cover the risk of fundamental changes in future death probabilities, 5.4 provides an approach where future risk factor variances increase over time.

Modelling is usually a projection of a sophisticated real world problem on a relatively simple subspace which cannot cover all facets and observations in the data. Therefore,
when applying the ECRP model to a portfolio of policyholders, we usually find structural
differences to the data which is used for estimation. There may also be a difference in
mortality rates between individual companies or between portfolios within a company since
different types of insurance products attract different types of policyholders with a different
individual risk profile. In Germany, for these risks a minimal security margin of ten% is
suggested, see Pasdika and Wolff [22, Section 2.4.2]. Within the ECRP model, this risk can
be addressed by using individual portfolio data instead of the whole population. Estimates
from the whole population or a different portfolio can be used as prior distributions under
MCMC which, in case of sparse data, makes estimation more stable. Another possibility
for introducing dependency amongst two portfolios is the introduction of a joint stochastic
risk factor for both portfolios. In that case, estimation can be performed jointly with all
remaining (except risk factors and their variances) parameters being individually estimated
for both portfolios. In contrast to the whole population, observed mortality rates in insurance
portfolios often show a completely different structure due to self-selection of policyholders.
In particular, for ages around 60, this effect is very strong. In Germany, a security margin
for death probabilities of 15% is suggested to cover selection effects, see DAV [6, Section
4.2]. In the literature, this effect is also referred to as basis risk, cf. Li and Hardy [20]. As
already mentioned, instead of using a fixed security margin, this issue can be tackled by
using portfolio data with estimates from the whole population serving as prior distribution.
Again, dependence amongst a portfolio and the whole population can be introduced by a
joint stochastic risk factor in the ECRP model.

Alternatively, in Kainhofer et al. [16, Sections 4.7.1] it is suggested that all these risks
are addressed by adding a constant security margin on the trend. This approach has the
great conceptional advantage that the security margin is increasing over time and does not
diminish as in the case of direct security margins on death probabilities.

5.6. Generalised and alternative models. Up to now, we applied a simplified version
of extended CreditRisk$^+$ to derive cumulative payments in annuity portfolios. A major
shortcoming in this approach is the limited possibility of modelling dependencies amongst
policyholders and death causes. In the most general form of extended CreditRisk$^+$ as
described in Schmock [29, Section 6], it is possible to introduce risk groups which enable
us to model joint deaths of several policyholders and it is possible to model dependencies
amongst death causes. Dependencies can take a linear dependence structure combined with
dependence scenarios to model negative correlations as well. Risk factors may then be
identified with statistical variates such as average blood pressure, average physical activity
or the average of smoked cigarettes, etc., and not directly with death causes. Moreover,
for each policyholder individually, the general model allows for losses which depend on the
underlying cause of death. This gives scope to the possibility of modelling—possibly new—life insurance products with payoffs depending on the cause of death as, for example,
in the case of accidental death benefits. Including all extensions mentioned above, a similar
algorithm may still be applied to derive loss distributions, see Schmock [29, Section 6.7].

Instead of using extended CreditRisk$^+$ to model annuity portfolios, i.e., an approach based
on Poisson mixtures, we can assume a similar Bernoulli mixture model. In such a Bernoulli
mixture model, conditionally Poisson distributed deaths are simply replaced by conditionally
Bernoulli distributed deaths. In general, explicit and efficient derivation of loss distributions
in the case of Bernoulli mixture models is not possible anymore. Thus, in this case, one
has to rely on other methods such as Monte Carlo. Estimation of model parameters works
similarly as discussed in Section [3]. Poisson approximation suggests that loss distributions
derived from Bernoulli and Poisson mixture models are similar in terms of total variation distance if death probabilities are small.

6. Model Validation and Model Selection

In this section we propose several validation techniques in order to check whether the ECRP model fits the given data or not. Results for Australian data, see Section 4.1, strongly suggest that the proposed model is suitable. If any of the following validation approaches suggested misspecification in the model or if parameter estimation did not seem to be accurate, one possibility to tackle these problems would be to reduce risk factors.

6.1. Validation via cross-covariance. For the first procedure, we transform deaths $N_{a,g,k}(t)$ to $N'_{a,g,k}(t)$, see Section 3.4, such that this sequence has constant expectation and can thus be assumed to be i.i.d. Then, sample variances of transformed death counts, cumulated across age and gender groups, can be compared to MCMC confidence bounds from the model. In the death-cause-example all observed sample variances of $N_k(t)$ lie within 5%- and 95%-quantiles.

6.2. Validation via independence. Number of deaths for different death causes are independent within the ECRP model as independent risk factors are assumed. Thus, for all $a, a' \in \{1, \ldots, A\}$ and $g, g' \in \{f, m\}$, as well as $k, k' \in \{0, \ldots, K\}$ with $k \neq k'$ and $t \in U$, we have $\text{Cov}(N_{a,g,k}(t), N_{a',g',k'}(t)) = 0$. Again, transform the data as above and subsequently normalise the transformed data, given $\text{Var}(N'_{a,g,k}(t)|\Lambda_k(t)) > 0$ a.s., as follows:

$$N^*_{a,g,k}(t) := \frac{N'_{a,g,k}(t) - \mathbb{E}[N'_{a,g,k}(t)|\Lambda_k(t)]}{\sqrt{\text{Var}(N'_{a,g,k}(t)|\Lambda_k(t))}} = \frac{N'_{a,g,k}(t) - m_{a,g} q_{a,g} w_{a,g,k} \Lambda_k(t)}{\sqrt{m_{a,g} q_{a,g} w_{a,g,k} \Lambda_k(t)}}.$$

Using the conditional central limit theorem as in Grzenda and Ziȩba [13], we have $N^*_{a,g,k}(t) \rightarrow N(0,1)$ in distribution as $m_{a,g}(t) \rightarrow \infty$ where $N(0,1)$ denotes the standard normal distribution. Thus, normalised death counts $n^*_{a,g,k}(t)$ are given by

$$n^*_{a,g,k}(t) = \frac{n'_{a,g,k}(t) - m_{a,g} q_{a,g} w_{a,g,k} \hat{\Lambda}_k(t)}{\sqrt{m_{a,g} q_{a,g} w_{a,g,k} \hat{\Lambda}_k(t)}},$$

with $\hat{\Lambda}_0(t) := 1$. Then, assuming that each pair $(N^*_{a,g,k}(t), N^*_{a',g',k'}(t))$, for $a, a' \in \{1, \ldots, A\}$ and $g, g' \in \{f, m\}$, as well as $k, k' \in \{0, \ldots, K\}$ with $k \neq k'$ and $t \in U$, has a joint normal distribution with some correlation coefficient ρ and standard normal marginals, we may derive the sample correlation coefficient

$$R_{a,g,a',g',k,k'} := \frac{\sum_{t=1}^{T} (N^*_{a,g,k}(t) - \bar{N}^*_{a,g,k})(N^*_{a',g',k'}(t) - \bar{N}^*_{a',g',k'})}{\sqrt{\sum_{t=1}^{T} (N^*_{a,g,k}(t) - \bar{N}^*_{a,g,k})^2 \sum_{t=1}^{T} (N^*_{a',g',k'}(t) - \bar{N}^*_{a',g',k'})^2}},$$

where $\bar{N}^*_{a,g,k} := \frac{1}{T} \sum_{s=1}^{T} N^*_{a,g,k}(s)$. Then, the test of the null hypothesis $\rho = 0$ against the alternative hypothesis $\rho \neq 0$ rejects the null hypothesis at an δ-percent level, cf. Lehmann and Romano [19] Section 5.13, when

$$\frac{|R_{a,g,a',g',k,k'}|}{\sqrt{(1 - R_{a,g,a',g',k,k'}^2)/(T - 2)}} > K_{\delta,T}, \quad (6.1)$$
with \(K_{\delta,T} \) such that \(\int_{K_{\delta,T}}^\infty t_{T-2}(y)\,dy = \delta/2 \) where \(t_{T-2} \) denotes the density of a \(t \)-distribution with \((T - 2) \) degrees of freedom.

Applying this validation procedure on Australian data with ten death causes, we get that 88.9\% of all independence tests, see (6.1), are accepted at a 5\% significance level. Thus, we may assume that the ECRP model fits the data suitably with respect to independence amongst death counts due to different causes.

6.3. Validation via serial correlation

Using the same data transformation and normalisation as in Section 6.2, we may assume that random variables \((N_{a,g,k}^*(t))_{t \in U} \) are identically and standard normally distributed. Then, we can check for serial dependence and autocorrelation in the data such as causalities between a reduction in deaths due to certain death causes and a possibly lagged increase in different ones. Note that we already remove a lot of dependence via time-dependent weights and death probabilities. Such serial effects are, for example, visible in the case of mental and behavioural disorders and circulatory diseases.

Many tests are available most of which assume an autoregressive model with normal errors such as the Breusch–Godfrey test, see Godfrey [12]. For the Breusch–Godfrey test a linear model is fitted to the data where the residuals are assumed to follow an autoregressive process of length \(p \in \mathbb{N} \). Then, \((T - p)R^2\) asymptotically follows a \(\chi^2 \) distribution with \(p \) degrees of freedom under the null hypothesis that there is no autocorrelation. In ‘R’, an implementation of the Breusch–Godfrey is available within the function \texttt{bgtest} in the ‘lmtest’ package, see [36].

Applying this validation procedure to Australian data given in Section 4.1, the null hypothesis, i.e., that there is no serial correlation of order 1, 2, \ldots, 10, is not rejected at a 5\% level in 93.8\% of all cases. Again, this is an indicator that the ECRP model with trends for weights and death probabilities fits the data suitably.

6.4. Validation via risk factor realisations

In the ECRP model, risk factors \(\Lambda \) are assumed to be independent and identically gamma distributed with mean one and variance \(\sigma^2_k \). Based on these assumptions, we can use estimates for risk factor realisations \(\lambda \) to judge whether the ECRP model adequately fits the data. These estimates can either be obtained via MCMC based on the maximum a posteriori setting or by Equations (3.9) or (3.12).

For each \(k \in \{1, \ldots, K\} \), we may check whether estimates \(\hat{\lambda}_k(1), \ldots, \hat{\lambda}_k(T) \) suggest a rejection of the null hypothesis that they are sampled from a gamma distribution with mean one and variance \(\sigma^2_k \). The classical way is to use the Kolmogorov–Smirnov test, cf. Lehmann and Romano [19, Section 6.13] and the references therein. In ‘R’ an implementation of this test is provided by the \texttt{ks.test} function, see [25]. The null hypotheses is rejected as soon as the test statistic \(\sup_{x \in \mathbb{R}} |F_T(x) - F(x)| \) exceeds the corresponding critical value where \(F_T \) denotes the empirical distribution function of samples \(\hat{\lambda}_k(1), \ldots, \hat{\lambda}_k(T) \) and where \(F \) denotes the gamma distribution function with mean one and variance \(\sigma^2_k \).

Testing whether risk factor realisations are sampled from a gamma distribution via the Kolmogorov–Smirnov test as described above gives acceptance of the null hypothesis for all ten risk factors on all suitable levels of significance.

6.5. Model selection

For choosing a suitable family for mortality trends, information criteria such as AIC, BIC, or DIC can be applied straight away. The decision how many risk factors to use cannot be answered by traditional information criteria since a reduction in risk factors leads to a different data structure. It also depends on the ultimate goal. For example, if the development of all death causes is of interest, then a reduction of risk factors...
is not wanted. On the contrary, in the context of annuity portfolios several risk factors may be merged to one risk factor as their contributions to the risk of the total portfolio are small.

7. Conclusion

We introduce an additive stochastic mortality model which is able to jointly model different underlying death causes. Estimation procedures, based on publicly available data, are developed. We then give the link to extended CreditRisk\(^+\) which provides a useful actuarial tool with numerous portfolio applications P&L derivation in annuity and life insurance portfolios as well as (partial) internal model applications. Yet, there exists a fast and numerically stable algorithm to derive loss distributions exactly, even for large portfolios. Compared to the Lee–Carter model, we have a more flexible framework and can directly extract several sources of uncertainty. Straightforward model validation techniques are available.

References

[1] A. D. Barbour, L. Holst, and S. Janson, *Poisson Approximation*, Oxford Studies in Probability, vol. 2, Oxford University Press, 1992.
[2] Credit Suisse First Boston, *Creditrisk\(^+\): A credit risk management framework*, Tech. report, CSFB, 1997.
[3] N. Brouhns, M. Denuit, and J. K. Vermunt, *A Poisson log-bilinear regression approach to the construction of projected lifetables*, Insurance: Mathematics and Economics 31 (2002), no. 3, 373–393.
[4] A. J. G. Cairns, D. Blake, K. Dowd, G. D. Coughlan, D. Epstein, A. Ong, and I. Balevich, *A quantitative comparison of stochastic mortality models using data from England and Wales and the United States*, North American Actuarial Journal 13 (2009), no. 1, 1–35.
[5] A. Chaudhry and S. M. Zubair, *On a Class of Incomplete Gamma Functions with Applications*, Taylor & Francis, 2001.
[6] DAV-Unterarbeitsgruppe Todesfallrisiko, *Herleitung der Sterbetafel DAV 2008 T für Lebensversicherungen mit Todesfallcharakter*, Blätter der DGVFM 30 (2009), no. 1, 189–224 (German).
[7] S. Fung, G. Peters, and P. V. Shevchenko, *A state-space estimation of the Lee–Carter mortality model and implications for annuity pricing*, in Weber et al. [35], pp. 952–958.
[8] D. Gamerman and H. F. Lopes, *Markov chain Monte Carlo*, second ed., Texts in Statistical Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2006, Stochastic simulation for Bayesian inference.
[9] S. Gerhold, U. Schmock, and R. Warnung, *A generalization of Panjer’s recursion and numerically stable risk aggregation*, Finance and Stochastics 14 (2010), no. 1, 81–128.
[10] G. Giese, *Enhancing CreditRisk\(^+\)*, Risk 16 (2003), no. 4, 73–77.
[11] W. R. Gilks, S. Richardson, and D. Spiegelhalter, *Markov Chain Monte Carlo in Practice*, Chapman & Hall/CRC Interdisciplinary Statistics, Taylor & Francis, 1995.
[12] L. G. Godfrey, *Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables*, Econometrica 46 (1978), no. 6, 1293–1301.
[13] W. Grzenda and W. Zięba, *Conditional central limit theorem*, International Mathematical Forum 3 (2008), no. 29–32, 1521–1528.
[14] M. Gundlach and F. Lehrbass (eds.), *CreditRisk\(^+\) in the Banking Industry*, Springer Finance, Springer-Verlag, Berlin, 2004.
[15] H. Haaf, O. Reiß, and J. Schoenmakers, *Numerically stable computation of CreditRisk\(^+\)*, in Gundlach and Lehrbass [14], pp. 69–77.
[16] R. Kainhofer, M. Predota, and U. Schmock, *The new Austrian annuity valuation table AVÖ 2005R*, Mitteilungen der Aktuarvereinigung Österreichs 13 (2006), 55–135.
[17] E. J. Kontoghiorghes (ed.), *Handbook of Parallel Computing and Statistics*, Statistics: Textbooks and Monographs, vol. 184, Chapman & Hall/CRC, Boca Raton, FL, 2006.
[18] R. D. Lee and L. R. Carter, *Modeling and forecasting U.S. mortality*, Journal of the American Statistical Association 87 (1992), no. 419, 659–671.
[19] E. L. Lehmann and J. P. Romano, *Testing Statistical Hypotheses*, third ed., Springer Texts in Statistics, Springer-Verlag, 2005.
[20] J. S.-H. Li and Hardy M. R., *Measuring basis risk in longevity hedges*, North American Actuarial Journal 15 (2011), no. 2, 177–200.

[21] A. J. McNeil, R. Frey, and P. Embrechts, *Quantitative Risk Management*, Princeton Series in Finance, Princeton University Press, Princeton, NJ, 2005, Concepts, techniques and tools.

[22] U. Pasdika and J. Wolff, *Coping with longevity: The new German annuity valuation table DAV 2004 R*, 2005, Presented at the living to 100 and beyond symposium, sponsored by the Society of Actuaries.

[23] E. Pitacco, M. Denuit, S. Haberman, and A. Olivieri, *Modelling longevity dynamics for pensions and annuity business*, Oxford University Press, 2009.

[24] F. Qi, Cui R.-Q., Chen C.-P., and Guo B.-N., *Some completely monotonic functions involving polygamma functions and an application*, Journal of Mathematical Analysis and Applications 310 (2005), no. 1, 303–308.

[25] R Core Team, *R: A language and environment for statistical computing*, R Foundation for Statistical Computing, Vienna, Austria, 2013.

[26] C. P. Robert and G. Casella, *Monte Carlo Statistical Methods*, second ed., Springer Texts in Statistics, Springer-Verlag, New York, 2004.

[27] G. O. Roberts, A. Gelman, and W. R. Gilks, *Weak convergence and optimal scaling of random walk Metropolis algorithms*, The Annals of Applied Probability 7 (1997), no. 1, 110–120.

[28] U. Schmock, *Estimating the value of the WinCAT coupons of the Winterthur insurance convertible bond: A study of the model risk*, ASTIN Bulletin 29 (1999), no. 1, 101–163.

[29] ———, *Modelling Dependent Credit Risks with Extensions of Credit Risk+ and Application to Operational Risk*, http://www.fam.tuwien.ac.at/~schmock/notes/ExtensionsCreditRiskPlus.pdf, Lecture Notes, Version April 29, 2016.

[30] P. V. Shevchenko, *Modelling Operational Risk using Bayesian Inference*, Springer-Verlag, 2011.

[31] P. V. Shevchenko, J. Hirz, and U. Schmock, *Forecasting leading death causes in Australia using extended CreditRisk+, in Weber et al. [35], pp. 966–972.

[32] B. Sundt, *On multivariate Panjer recursions*, ASTIN Bulletin 29 (1999), no. 1, 29–45.

[33] L. Tierney, *Markov chains for exploring posterior distributions*, The Annals of Statistics 22 (1994), no. 4, 1701–1762, With discussion and a rejoinder by the author.

[34] P. Vellaisamy and B. Chaudhuri, *Poisson and compound Poisson approximations for random sums of random variables*, Journal of Applied Probability 33 (1996), no. 1, 127–137.

[35] T. Weber, M. J. McPhee, and R. S. Anderssen (eds.), *Modsim2015, 21st international congress on modelling and simulation: Proceedings*, Modelling and Simulation Society of Australia and New Zealand, 2015.

[36] A. Zeileis and T. Hothorn, *Diagnostic checking in regression relationships*, R News 2 (2002), no. 3, 7–10.