Electrochemical analysis in charge-transfer science: The devil in the details

Omar O’Mari1 and Valentine I. Vullev1,2,3,4

Abstract
It is easy to carry out electrochemical analysis. It is demanding, however, to do it right, as inherent challenges, emerging from details in the data collection and the result interpretation, frequently present themselves. In pertinence to electron–donor–acceptor interactions, herein, we focus on voltammetrically obtained electrochemical potentials and their immense utility for extracting important characteristics of molecular analytes. Recommendations how to address key pending challenges, based on recent developments in electroanalytical and charge-transfer science, accompany the discussions on undesired impacts from irreversibility of oxidation and reduction, supporting electrolytes, choices of reference, liquid junctions, and ‘nonideality’ of molecular shapes. As the wide implications of charge transfer are indisputable, using the tools at our disposal for improving the reliability of electroanalysis is crucial for advancing modern science and engineering.

Addresses
1 Department of Bioengineering, University of California, Riverside, CA 92521, USA
2 Department of Chemistry, University of California, Riverside, CA 92521, USA
3 Department of Biochemistry, University of California, Riverside, CA 92521, USA
4 Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA

Keywords
Charge transfer, Cyclic voltammetry, Reference electrode, Born solvation, Liquid junction, Effective radius.

Introduction
Heterogeneous charge transfer (CT) is the principal drive for electrochemical transformations. At the same time, electrochemical analysis is of utmost importance for evaluating the energetics of CT processes, such as electron transfer and hole transfer (HT). In particular, the electrochemical potentials of a donor and an acceptor are crucial for estimating the thermodynamic driving force ($-\Delta G^{(0)}$) of CT between them [1].

Along with optical excitation energy, ϵ_{00}, the reduction potentials of the acceptor ($E_{A,\text{red}}^{(0)}$) and of the oxidized donor ($E_{D,\text{ox}}^{(0)}$) define $-\Delta G^{(0)}$ of photoinduced CT, as the Rehm–Weller equation implements [2,3]:

$$\Delta G^{(0)}_{\text{PCT}}(\epsilon) = F \left(E_{D,\text{ox}}^{(0)} - E_{A,\text{red}}^{(0)} \right) - \epsilon_{00} + \Delta G_{\text{chem}}(\epsilon, \epsilon_{D,\text{ox}}, \epsilon_{A,\text{red}}) + W(\epsilon)$$

(1a)

It is not to be confused with the Rehm–Weller equation that describes an empirical relationship between CT rate constants and driving forces that do not reveal Marcus inverted behavior [2,4].

The last term, W, accounts for the Coulombic interaction between the donor and the acceptor that, in this case, are non-radical species with initial charges x and y, respectively, separated at center-to-center distance R_{DA} [3]:

$$W(\epsilon) = \frac{n^{(y-x-n)}q^2}{4\pi \epsilon_0 \epsilon_{DA}}$$

(1b)

The Born solvation term corrects for the interactions of the donor and the acceptor with the media, which for transferring n electrons is [3]:

$$W(\epsilon) = \frac{n^{(y-x-n)}q^2}{4\pi \epsilon_0 \epsilon_{DA}}$$
Herein, we introduce a concise overview of the electroanalytical techniques yield can prove quite misleading for CT analysis. The broad accessibility to cyclic voltammetry (CV), along with the ease of CV measurements, has made CV the principal experimental technique for obtaining electrochemical potentials [5–9]. As facile as CV and other voltammetry measurements are, inherent systematic errors in interpreting the potentials that electroanalytical techniques yield can prove quite misleading for CT analysis.

The zero-to-zero energy, \(\varepsilon_{00} \), or optical excitation energy, correlates with the difference between the LUMO and the HOMO of the photoexcited species. Upon excitation of the donor, therefore, \(F \left(E_{D}^{(0)} \right| [D] \varepsilon_{D}) - E_{A}^{(0)} \right| [A] \varepsilon_{A}) \) \(- \varepsilon_{00} \) represents the energy difference between the LUMO of the acceptor and the LUMO of the donor, and eq. (1a) yields the driving force of photoinduced ET, \(\Delta G_{\text{PET}}(0) \) [1,12,13]. For electrically excited acceptor, on the other hand, \(F \left(E_{D}^{(0)} \right| [D] \varepsilon_{D}) - E_{A}^{(0)} \right| [A] \varepsilon_{A}) \) \(- \varepsilon_{00} \) correlates with the energy difference between the HOMO of the acceptor and the HOMO of the donor,
and eq. (1a) estimates the driving force of photoinduced HT, \(-\Delta G_{\text{HT}}^{(0)}\) [1,12,13].

Removing \(\varepsilon_{00}\) from eq. (1a) allows for evaluation of the driving force for CT between a donor and an acceptor, when both are in their ground electronic states [1]. It proves immensely important for estimating the driving forces of each of the discreet CT steps in long-range electron hopping from reduced species \(D^-\) to the LUMO of \(A\):

\[
\Delta G_{\text{ET}}^{(0)}(\varepsilon) = F\left(E_{D}^{(0)}(\varepsilon_D) - E_{A}^{(0)}(\varepsilon_A) \right)
+ \Delta G_S(\varepsilon_D, \varepsilon_A) + W(\varepsilon) \tag{2a}
\]

and hole hopping from oxidized species \(A^+\) to the HOMO of \(D\):

\[
\Delta G_{\text{HT}}^{(0)}(\varepsilon) = F\left(E_{D}^{(0)}(\varepsilon_D) - E_{A}^{(0)}(\varepsilon_A) \right)
+ \Delta G_S(\varepsilon_D, \varepsilon_A) + W(\varepsilon) \tag{2b}
\]

As conveniently illustrative as these MO ways of thinking are, the correlations between the electrochemical potentials and the energy levels of the frontier orbitals warrant a great deal of caution. Strictly speaking, electrochemical potentials represent energy differences between the reduced and oxidized states. Similarly, \(\varepsilon_{00}\) represents the energy of transitions between ground and excited states. That is, the electrochemical and spectroscopic measurements yield energy differences between different states rather than between different frontier orbitals. While this consideration unveils

Figure 1

Cyclic voltammograms with the characteristic potentials designated. Cyclic voltammograms showing (a–c) reversible oxidation of 4-fluoro-5-(piperidin-N-yl)anthranilamide (Fpi) and (d–f) irreversible oxidation of 4-(piperidin-N-yl)anthranilamide (4Pip). Samples are dissolved in \(\text{CH}_2\text{Cl}_2\) in the presence of 50 mM \(\text{N}((\text{n-C}_4\text{H}_9)_4\text{PF}_6\), as reported in the study reported by Larsen-Clinton et al. [15]. The voltammograms illustrate the following: (a,d) the anodic, \(I_c\), Ohmic, \(I_O\), and Faradaic, and \(I_f\) currents (b,e) the anodic, \(E_a\), cathodic, \(E_c\), and half-wave, \(E^{(1/2)}\), potentials, along with the peak, \(E^{(p)}\), and edge, \(E^{(e)}\), potentials; and (c,f) comparison of the inflection, \(E^{(i)}\) and half-peak potentials, \(E^{(p/2)}\), with \(E^{(1/2)}\). The values of \(E^{(i)}\) are obtained from the second derivatives of the voltammograms, that is, at the potentials where \(\frac{d^2V}{dt^2} = 0\), whereas \(\frac{dE}{dt} = \text{constant}\).
shortcomings of the Koopmans’ theorem, it actually validates the use of electrochemical potentials for analyzing the thermodynamics of CT as eqs. (1) and (2) implement.

Estimating electrochemical potentials when samples “misbehave”

Standard electrochemical potentials, \(E^{(0)} \), as extensively obtained from CV measurements, provide key characteristics of the electronic properties of donors and acceptors. Using the average between the anodic and cathodic potentials, i.e., the half-wave potential, \(E^{(1/2)} \), has become an accepted representation of \(E^{(0)} \). Values of \(E^{(1/2)} \) are only attainable, however, when oxidation and reduction are reversible or at least, partially reversible [5,14].

When irreversible behavior prevails, it is popular to report peak potentials, \(E^{(p)} \), or edge potentials, \(E^{(e)} \), as estimates of \(E^{(0)} \) (Figure 1a,b,d,e). As cyclic voltammograms of reversible processes reveal, however, \(E^{(p)} \) inherently overestimates \(E^{(1/2)} \) of oxidation and underestimates \(E^{(1/2)} \) of reduction (Figure 1b) [5]. Similarly, \(E^{(e)} \) underestimates \(E^{(1/2)} \) of oxidation, and overestimates \(E^{(1/2)} \) of reduction (Figure 1b) [5].

A few years ago, we introduced the utility of the potentials at the first inflection points \((E^{(0)}) \) on the anodic and cathodic waves of, respectively, irreversible oxidation and reduction, as estimates for \(E^{(1/2)} \) [16,17]. Actually, in pulse polarography, \(E^{(1/2)} \) is defined as the potential at the half-height currents, \(i^{(1/2)} \), of the sigmoid voltammograms (corrected for the Ohmic slopes), i.e., \(E^{(1/2)} = E_{i^{(1/2)}} \) where \(i^{(1/2)} = i_{\text{max}} - i_{\text{min}} \) and for reversible behavior, \(E^{(1/2)} = E(\partial^2i/\partial E^2 = 0) = E^{(0)} \). Recent analysis shows that these inflection potentials, \(E^{(0)} \), indeed, offer the best representations of \(E^{(1/2)} \) (Figure 1c) [5]. The half-peak potentials, \(E^{(1/2)} \), represent another good estimator for \(E^{(0)} \) from irreversible voltammograms [6,18]. The estimation of \(E^{(1/2)} \) values, however, depends on the current/voltage baseline and the peak values. Hence, \(E^{(1/2)} \) cannot hold too well for complex voltammographic waves when they appear broad with multiple peaks or when the capacitance and ohmic currents are comparable to the Faradaic signals (Figure 1a,d) [5]. Thus, \(E^{(0)} \) conduces to be a better representation of \(E^{(1/2)} \) than \(E^{(1/2)} \) (Figure 1c,f).

To be or not to be … an electrolyte

The answer is ‘to be.’ Supporting electrolytes of ions, which are inactive within the electrochemical windows of the analyses, are essential for sufficiently high conductance of sample solutions in nonionic liquids. High sample resistance increases the Ohmic currents and affects the working electrode (WE) polarization, causing deviations of \(E^{(1/2)} \) from \(E^{(0)} \) (Figure 1a,d) [3,7].

Supporting electrolytes affect \(\varepsilon_D \) and \(\varepsilon_A \), especially for solutions in low-polarity solvents and requires extra care for estimating the CT driving forces (eq. (1) and (2)) [3,19]. Therefore, we extrapolate the reduction potentials for neat solvents, i.e., \(E^{(1/2)} \) for \(C_D = 0 \), from the dependence of \(E^{(1/2)} \) on \(C_D \) (Figure 2a) [3,16,20–22]. This approach allows \(\varepsilon_D \) and \(\varepsilon_A \) to adopt well-defined published values for the used solvents, rather than the electrolyte solutions, improving the reliability of the thermodynamic CT analysis [23,24].

What makes reference electrodes trustworthy?

On their own, values of potentials are not truly useful. Conversely, differences between potentials (measured under identical conditions) and potentials reported against reproducibly reliable references are crucially important for science and engineering [25].

Reliable reference electrodes (REs) provide the baseline for comparing results from different measurements. In setups with three and more electrodes [26–28], the voltage differences between REs and the WEs quantify the potentials that drive the electrochemical transformations of interest. Therefore, a RE has to maintain a stable potential during measurements. The high impedance of REs keeps the currents through them negligibly minute and prevents detectable voltage drops. The counter electrodes serve as sinks for the current through WEs.

To ensure reproducibility, REs are usually compartmentalized heterogeneous systems connected with the electrochemical cells via liquid junctions and electrolyte bridges. Inherent physical and chemical characteristics of redox couples are fundamental for designing reliable REs. Redox couples of metal electrodes, M, and their cations \(M^{z+} \), in electrolytes saturated with counterions, \(X^- \), where \(MX_z \) has immensely low solubility, are an excellent choices for reliable REs. The presence of solid \(MX_z \) in \(X^- \)-saturates solutions ensures the constant activity of \(M^{z+} \) in the liquid phase, \(a_{M^{z+}} \), which depends on the MX-solubility product, \(K_{sp} = a_{M^{z+}} a_{X^-}^{z-} \). Maintaining a constant level of \(a_{X^-} \) is key for reproducibly stable REs, the potentials of which depend on \(K_{sp}(MX_z) \) and the standard electrode potential of M, \(E^{(0)}_{M^{z+}|M^-} \). Saturated calomel electrode (SCE) and silver/silver chloride (Ag/AgCl) electrode are the best example of such REs that have become standards for reporting electrochemical potentials vs. them [25].
Broadening of electrochemical applications places demands on shifting to organic-based references and decreasing the sizes of all electrodes. Encompassing a high-impedance connection via a single metal wire, pseudo-reference electrodes (PREs) have proven invaluable for miniaturizing the electrochemical setups. The potentials of PREs, however, strongly depend on their surrounding environment. It warrants careful calibration of PREs with internal standards, and reproduction of at least some of the measurements against a well-characterized RE.

For organic samples, ferrocenium/ferrocene, $\text{Fc}^+|\text{Fc}$, pair is the most widely used standard. The immense stability of the ferrocenium ion ensures that ferrocene undergoes reversible or quasi reversible oxidation in a broad variety of electrolyte solutions at experimentally accessible potentials [3,5]. The immense utility of ferrocene for calibrating electrochemical setups has led to the use of $\text{Fc}^+|\text{Fc}$ as a reference. Reporting electrochemical potentials vs. $\text{Fc}^+|\text{Fc}$, however, is fundamentally wrong. The Fc^+ reduction potential strongly depends on the electrolyte composition [3]. That is, $\text{Fc}^+|\text{Fc}$ potential does not have the invariance of an RE. Therefore, while ferrocene is one of the best internal standards, reporting an electrochemical potential vs. $\text{Fc}^+|\text{Fc}$ indubitably warrants the disclosure of Fc^+ reduction potential measured against an RE under the exact same conditions.

The hidden menace of liquid junctions

Liquid junctions (LJs) and electrolyte bridges provide electrical contacts between solutions in different compartments of electrochemical setups, while preventing cross-contamination. Ion transport across an LJ, along with solvent differences, produces LJ electrical potentials (E_{LJ}) [29,30]. The measured voltage difference between the WE and the RE, thus, encompasses the potential across the surface of the WE, needed for the analysis, along with the E_{LJ} values of the LJs between the two electrodes.

The ion diffusion across LJs, driven by concentration gradients, usually contributes only a few mV to E_{LJ}, which is one-to-two orders of magnitude smaller than the contribution from the diffusion induced by differences in chemical potential [29]. Also, the contributions of the ion transport to E_{LJ} are inversely proportional to the ion charge [29]. Therefore, supporting electrolytes of multi-charged ions with a small propensity for transport through the LJs offers a means for decreasing the undesired E_{LJ}.

The contributions of the solvent differences to E_{LJ} vary widely, e.g., 40 and 100 mV for $\text{H}_2\text{O}|\text{CH}_3\text{CN}$ and $\text{H}_2\text{O}|\text{CHCl}_3$.
DMF junctions, respectively [29]. Placing immiscible solvents across a junction can induce not only a huge potential drop, but also a complete shutdown of the electrical connection. Therefore, employing electrolyte bridges with two or more LJs while keeping solvent miscibility in mind, e.g., water|CH$_3$CN|CH$_2$Cl$_2$, eliminates the enormous E_{LJ} that a single junction between immiscible solvents may produce, e.g., water|CH$_2$Cl$_2$.

Size matters ... in an inverse manner

While the donor and acceptor radii, r_D and r_A, are key for CT analysis (eq. (1c)), most redox species are not spherical. Computed generalized Born radii, r_{GB}, which account for the spatial distribution of the partial charges in redox species of any shape, offer an excellent representation of r_D and r_A [19,31]. Conversely, electrochemistry provides an experimental means for estimating effective radii, r_{eff}, of redox moieties, also, regardless their shapes [16,19]. Both, r_{GB} and r_{eff}, represent radii of spherical ions with homogeneously distributed charges that experience the same solvation energy as the analyzed non-spherical species [19].

The dependence of reduction potentials on medium polarity provides information about r_{eff}. Specifically, r_{eff} is inversely proportional to the slopes of linear fits of $E^{(1/2)}$ vs. ε^{-1}, i.e., $r_{eff} = (8\pi F \varepsilon_0 \text{slope})^{-1}$ (Figure 2b). This inverse relationship between potentials and the radii, however, compromises the reliability of r_{eff} estimates for large redox species. For r_{eff} exceeding 10 Å, the difference between the reduction potentials for electrochemically feasible polar and non-polar solvents drops under about 0.1 V (Figure 3).

Figure 3

Polarity dependence of reduction potentials. Variations of the polarity dependence of the reduction potentials of oxidized donors on their effective radii, r_{eff}, for $n = 1$ and $x = 0$ (eq. (1)).

Figure 4

Polarity dependence of the potential differences for the donor-acceptor case presented in Figure 2. (a) Dependence of the potential differences on the concentration of the supporting electrolyte, C_{ui}, showing the extrapolations for neat solvents, that is, for $C_{ui} = 0$. (b) Dependence of the potential differences, extrapolated for $C_{ui} = 0$, on the solvent polarity, expressed as the inverse static dielectric constant, along with the estimated sum of inverse radii, $S_{1/r}$ (eq. (3b)).
As important as \(r_A \) and \(r_D \) are, it is their inverse values, \(r_A^{-1} \) and \(r_D^{-1} \), that CT analysis implements (eq. (1c)). As we showed, when it is possible to measure the reduction potentials of the acceptor and the oxidized donor for the same media, i.e., \(\Delta E_A = \Delta E_D = \Delta E \), the separate values for \(r_A \) and \(r_D \) become redundant, as a rearrangement of eq. (1) reveals for \(n = 1 \) and \(x = y = 0 \) [12]:

\[
\Delta G_{CT}^{(0)}(\varepsilon) = F\Delta E^{(0)}(\varepsilon) - r_0 + W(\varepsilon) \tag{3a}
\]

\[
\Delta E^{(0)}(\varepsilon) = \frac{q^2}{8\pi F\varepsilon_0} S_{1/r} \left(\frac{1}{\varepsilon} \right) \tag{3b}
\]

where \(\Delta E^{(0)}(\varepsilon) = \left(E^{(0)}_{D+1}(\varepsilon) - E^{(0)}_{A-1}(\varepsilon) \right) \) and \(S_{1/r} = r_A^{-1} + r_D^{-1} \).

The polarity dependence of \(\Delta E^{(1/2)} \) produces the sum of inverse radii, \(S_{1/r} \) (Figure 4). Not only \(S_{1/r} \) is essential for implementing such simplified driving-force calculations (eq. (3)), but also employing \(E^{(1/2)}_{D+1} \) and \(E^{(1/2)}_{A-1} \) from measurements, using the same electrolyte solutions, eliminates from \(\Delta E^{(1/2)} \) the systematic errors from the liquid-junction potentials. In addition to improving the precision of obtaining \(S_{1/r} \), in comparison with that for attaining \(r_D \) and \(r_A \) for large species, the implementation of \(S_{1/r} \) extends beyond the CT thermodynamics. Outer-sphere, or medium, reorganization energy, \(\lambda_m \), is directly proportional to \(S_{1/r} \) [12]:

\[
\lambda_m = \frac{\gamma q^2 q^2}{8\pi F\varepsilon_0} \left(\frac{1}{2} S_{1/r} \right) \tag{4}
\]

The calculations of \(\lambda_m \) employ a model of Born solvation originating from orientational and nuclear/vibrational polarization, as implemented by the Pekar factor, \(\gamma = n_m^{-2} - \varepsilon_m^{-1} \) [1,13,23]. Therefore, \(S_{1/r} \) is an excellent representation of the sum of the inverse radii in eq. (4).

After a Born-solvation analysis of electrochemical potentials produces \(S_{1/r} \) (Figure 4b).

Conclusions

As an intricate part of charge-transfer science, the importance of electrochemical analysis cannot be overstated. Energy science, photoredox- and electrocatalysis, biomedical sensor development, environmental engineering and (opts)electronics are some of the areas that are strongly contingent on CT, and place demands for high-fidelity electrochemistry. Without losing sight of the big picture, therefore, paying attention to details, when gathering, implementing, and interpreting electrochemical results, is essential for advancing this broad range of areas of science and engineering.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this publication.

Acknowledgements

Support was provided by the USA National Science Foundation (grant CHE 1800602), the American Chemical Society Petroleum Research Fund (grant 60651-ND4), and the USA National Institutes of Health, National Eye Institute (grant R01 EY027440).

References

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF.

2. Espinoza EM, Rybicka-Jasinska K, Vullev VI: Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020, 22: 21583–21629, https://doi.org/10.1039/D0CP01556C.

3. Espinoza EM, Clark JA, Soliman J, Derr JB, Morales M, Vullev VI: Practical aspects of cyclic voltammetry: how to estimate reduction potentials when irreversibility prevails. J Electrochem Soc 2019, 166:H3175–H3187, https://doi.org/10.1149/2.024190jes.

4. Braslavsky SE: Glossary of terms used in photochemistry. Pure Appl Chem 2007, 79:293–465, https://doi.org/10.1351/ pac200779030293.

5. Espinoza EM, Clark JA, Soliman J, Derr JB, Morales M, Vullev VI: Practical aspects of cyclic voltammetry: how to estimate reduction potentials when irreversibility prevails. J Electrochem Soc 2019, 166:H3175–H3187, https://doi.org/10.1149/2.024190jes.

6. Sandford C, Edwards MA, Klunder KJ, Hickey DP, Li M, Barman K, Sigman MS, White HS, Minteer SD: A synthetic chemist’s guide to electroanalytical tools for studying reaction mechanisms. Chem Sci 2019, 10:6404–6422, https://doi.org/10.1039/c9sc01545k.

7. Eigrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL: A practical beginner’s guide to cyclic voltammetry. J Chem Educ 2018, 95:197–206, https://doi.org/10.1021/acs.jchemed.7b00361.

8. Roberts JG, Sombers LA: Fast-scan cyclic voltammetry: chemical sensing in the brain and beyond. Anal Chem 2018, 90:500–504, https://doi.org/10.1021/acs.analchem.7b04732.

This publication outlines the importance of cyclic voltammetry for neurobiology and biomedical research.

Current Opinion in Electrochemistry 2022, 31:100862

www.sciencedirect.com
Koopmans T: The classification of wave functions and eigenvalues to the single electrons of an atom. *Physica* 1934, 1: 104–113, https://doi.org/10.1016/S0031-8914(34)90011-2.

Muchová E: Slavíček P: beyond Koopmans’ theorem: electron binding energies in disordered materials. *J Phys: Condens Matter* 2019:31, https://doi.org/10.1088/1361-648x/aaf130.043001/1-043001/19.

This article reviews computational advances for evaluation of ionization energies, addressing some of the inherent limitations of the Koopmans’ theorem.

Ortowski R, Clark JA, Derr JB, Espinoza EM, Mayther MF, **Staszewska-Krajewska O, Winkler JR, Jadrezejewska H, Szumna A, Gray HB, Vluliev VI. Role of intramolecular hydrogen bonds in promoting electron flow through amino acid and oligopeptide conjugates. *Proc Natl Acad Sci USA* 2021, 118, https://doi.org/10.1073/pnas.2026462118.e2026462118.

This publication, after introducing for the first time the concept of the molecular hydrogen bonds in promoting electron flow in proteins, demonstrates its utility in the implementation of electrochemical methods for charge-transfer analysis.

Dipole-induced effects on charge transfer and charge transport. Why do molecular electrets matter? *Can J Chem* 2018, 96: 843–858, https://doi.org/10.1139/cjc-2017-0389.

Winter RF: Half-wave potential splittings de1/2 as a measure of electronic coupling in mixed-valent systems: triumphs and defeats. *Organometallics* 2014, 33:4517–4536, https://doi.org/10.1021/om500209x.

Larsen-Clinton JM, Espinoza EM, Mayther MF, Clark J, Tao C, Bao D, Larino CM, Wurch M, Lara S, Vluliev VI. Fluorinated aminoanthranilamides: non-native amino acids for bringing protomic approaches to charge-transfer systems. *Phys Chem Chem Phys* 2017, 19:7871–7876, https://doi.org/10.1039/c7cp00432.

Larsen JM, Espinoza EM, Hartman JD, Lin C-K, Wurch M, Maheshwari P, Kaushal RK, Marsella MJ, Beran GJO, Vluliev VI. Building blocks for biospired electrets: molecular-level approach to materials for energy and electronics. *Pure Appl Chem* 2015, 87:779–792, https://doi.org/10.1515/pac-2015-0109.

Espinoza EM, Larsen JM, Vluliev VI. What makes oxidized N-acylanthranilamides stable? *J Phys Chem Lett* 2016, 7: 758–764, https://doi.org/10.1021/acs.jpclett.5b02881.

Roth HG, Romero NA, Nicewicz DA: Experimental and calculated electrochemical potentials of common organic molecules for applications to single-electron redox chemistry. *Synlett* 2016, 27:714–723, https://doi.org/10.1055/s-0035-1561297.

Bao D, Ramu S, Contreras A, Upadhyayula S, Vasquez JM, Beran G, Vluliev VI. Electrochemical reduction of quinones: interfacing experiment and theory for defining effective radii of redox moieties. *J Phys Chem B* 2010, 114:14467–14479, https://doi.org/10.1021/jp101730e.

Purc A, Espinoza EM, Nazir R, Romero JJ, Skonieczny K, Jeżewski A, Larsen JM, Gryko DT, Vluliev VI. Gating that suppresses charge recombination—the role of mono-N-arylated diketopyrrolopyrrole. *J Am Chem Soc* 2016, 138:12826–12832, https://doi.org/10.1021/jacs.6b04974.

Ryu HG, Mayther MF, Tamayo J, Azarrias C, Espinoza EM, Banasiewicz M, Lukasiewicz LG, Poronik YM, Jeżewski A, Clark J, Derr JB, Ahn KH, Gryko DT, Jacquemin D, Vluliev VI. Bidirectional solvatofluorochromism of a pyrrolo[3,2-b]pyrrole-diketopyrrolopyrrole hybrid. *J Phys Chem C* 2018, 122:13424–13434, https://doi.org/10.1021/acs.jpcc.7b11194.

Espinoza EM, Xia B, Darabedian N, Larsen JM, Nunez V, Bao D, Mac JT, Botero F, Wurch M, Zhou F, Vluliev VI. Nitropyrene Photoprobes: Making Them, and What Are They good for? *Eur J Org Chem* 2016:343–356, https://doi.org/10.1002/ejoc.201501339.

Bao D, Upadhyayula S, Larsen JM, Xia B, Georgieva B, Nunez V, Espinoza EM, Hartman JD, Wurch M, Chang A, Lin C-K, Larkin J, Vasquez K, Beran GJO, Vluliev VI. Dipole-mediated rectification of intramolecular photoinduced charge separation and charge recombination. *J Am Chem Soc* 2014, 136:12966–12973, https://doi.org/10.1021/ja505616n.

Krzeszewski M, Espinoza EM, Cervinka C, Derr JB, Clark J, Borchardt D, Beran GJO, Gryko DT, Vluliev VI. Dipole effects on electron transfer are enormous. *Angew Chem, Int Ed* 2018, 57:12365–12369, https://doi.org/10.1002/anie.201802637.

This publication demonstrates the effect of a molecular dipole on the electrochemical potentials of charge-transfer species.

Trasatti S: The absolute electrode potential: an explanatory note. Recommendations 1986. *Pure Appl Chem* 1986, 58:955–966, https://doi.org/10.1351/pac198658070955.

This article briefly introduces the concept of electrochemical potentials and defines their current proper use.

Jiang SP: Placement of reference electrode, electrolyte thickness and three-electrode cell configuration in solid oxide fuel cells: a brief review and update on experimental approaches. *J Electrochem Soc* 2017, 164:F834–F844, https://doi.org/10.1149/2.133170jes.

Gamero-Quijano A, Molina-Osorio AF, Peljo P, Scanlon MD: Closed bipolar electrochemistry in a four-electrode configuration. *Phys Chem Chem Phys* 2019, 21:9627–9640, https://doi.org/10.1039/c9cp00774a.

This perspective discusses the benefits of four-electrode-cell configurations for bipolar electrochemistry.

Tian H, Li Y, Shao H, Yu H-Z: Thin-film voltammetry and its analytical applications: a review. *Anal Chim Acta* 2015, 855:1–12, https://doi.org/10.1016/j.aca.2014.06.030.

Izutsu K: Liquid junction potentials between electrolyte solutions in different solvents. *Anal Chem* 2011, 83:685–694, https://doi.org/10.1021/ac101728l.

Senanayake G, Muir DM: Studies on the liquid junction potential corrections of electrolytes at aqueous + mixed solvent boundaries. *J Electroanal Chem Interfacial Electrochem* 1987, 237:149–162, https://doi.org/10.1016/0022-0728(87)85228-2.

Cramer CJ, Truhlar DG: A universal approach to solvation modeling. *Acc Chem Res* 2008, 41:760–768, https://doi.org/10.1021/ar80019z.