Effect of an integrated control strategy for schistosomiasis japonica in the lower reaches of the Yangtze River, China: an evaluation from 2005 to 2008

Le-Ping Sun1, Wei Wang1, You-Sheng Liang1*, Zeng-Xi Tian2, Qing-Biao Hong1, Kun Yang1, Guo-Jing Yang1, Jian-Rong Dai1 and Yang Gao3

Abstract
Background: Schistosomiasis japonica remains a major public health concern in China. There are many interventions implemented to control the transmission of the disease. The purpose of the present study was to investigate the effects of an integrated control strategy for schistosomiasis control.

Methods: An integrated control strategy for schistosomiasis japonica with emphasis on removing cattle from snail-infested grasslands, providing farmers with mechanized farm equipment, improving sanitation by supplying tap water and building lavatories and latrines and providing boats with fecal-matter containers was implemented in 107 villages of the lower reaches of the Yangtze River, Jiangsu Province, China, during a 32-month period from May 2005 to 2008, and the effectiveness was investigated.

Results: Following the effects of the comprehensive control, the snail habitat, infected snail habitat, snail infection rate, and S. japonicum prevalence in both humans and livestock all appeared a declining trend year by year, with reductions of 47.88%, 94.29%, 92.55%, 96.94%, and 100% compared with those before the comprehensive control. In addition, all of the 17 counties achieved the infection control in 2007, and 7 reached the criteria of transmission control in 2008. The confirmed snail habitats reduced from 107 to 20, and the acute infections have also been controlled for 2 successive years since 2007.

Conclusions: The integrated control strategy for schistosomiasis japonica is effective to control the transmission of S. japonicum.

Keywords: Schistosomiasis, Schistosoma japonicum, Oncomelania hupensis, Integrated control, Effect evaluation, The Yangtze River

Background
Human infection by the blood-fluke Schistosoma japonicum (Platyhelminthes: Trematoda) remains a major public health concern in the People’s Republic of China, the Philippines, and parts of Indonesia [1-6]. In China, concerted control effects since the 1950s have dramatically reduced the number of the areas endemic for the parasite as well as the burden of disease among humans [7-10]. Nevertheless, in the remaining core endemic regions, mainly located along the middle and lower reaches of the Yangtze River and some mountainous areas of provinces of Yunnan and Sichuan, over 0.7 million people are estimated to be infected, with a further 30 million at risk of infection [11]. And currently in China, more than 80% of all human S. japonicum infections are concentrated in the marshland and lake regions of Jiangsu, Jiangxi, Anhui, Hunan and Hubei provinces where the interruption of transmission has been proved particularly difficult to be achieved [12,13].
Jiangsu province is located in the lower reaches of the Yangtze River in the east of China. Following the effect of flood of the upper reaches of the Yangtze River during the annual monsoon season [14,15], the marshlands along the Yangtze River operate in a “winter-land, summer-water” cycle, and vast grass-covered marshlands emerge after floodwaters recede, resulting in ideal breeding sites for Oncomelania hupensis survival and reproduction [16-18]. Historically, Jiangsu province suffered from a high prevalence of schistosomiasis japonica. After more than two decades of active comprehensive control with an emphasis on snail control by means of environmental improvement and mollusciciding, the province achieved the transmission control of the disease in 1976 [9,10,19]. Since the middle 1980s, the global strategy of schistosomiasis control has shifted from transmission control to morbidity control [20], following the development of the highly effective and safe schistosomicidal agent praziquantel [21,22]. In Jiangsu province, the praziquantel-based control strategy has been implemented on a large scale in all endemic areas since the late 1980s [23], particularly during the period of World Bank Loan Project for Schistosomiasis Control [24], which resulted in reduced morbidity caused by the parasite [25]. However, following the termination of the World Bank Loan Project for Schistosomiasis Control and the repeated flooding by the Yangtze River in the 1990s [15,16,19,26,27], acute human schistosomiasis cases were detected again and the area inhabited by infected O. hupensis snails started to increase [25,28]. Furthermore, surveillance studies suggest that chemotherapy-based programs, even those in combination with large-scale mollusciciding against snails, are unlikely to have much further impact upon prevalence levels among humans [11,12].

In 2005, the Jiangsu province proposed two goals for schistosomiasis control. First, by 2007, all of the 22 counties that were endemic for S. japonicum reached the criteria for infection control, and more than 50% of the counties reached the criteria for transmission control or transmission interruption. Second, by 2010, all of the schistosome-endemic counties reached the criteria for transmission control [29,30]. To achieve these two targets, since May, 2005, the Jiangsu province, according to the current local schistosomiasis epidemics, implemented an integrated control strategy for schistosomiasis japonica. Particularly emphasized were removing cattle from snail-infested grasslands, providing farmers with mechanized farm equipment, improving sanitation by supplying tap water and building lavatories and latrines, providing boats with fecal-matter containers, and other routine interventions like health education, snail control, and praziquantel-based synchronous chemotherapy for both infected humans and livestock [31].

In the present study, we describe the implementation of the integrated strategy and investigate the effectiveness of the strategy adopted in 107 villages from 17 counties along the lower reaches of the Yangtze River, Jiangsu province, during a 32-month period from May, 2005 to December, 2008.

Methods

Study area

A total of 107 villages from 17 counties of Jiangsu province were included in the current study (Figure 1), where S. japonicum-infected snails were detected during the period between March, 2003 and April, 2005. The study areas had a total of 273,533 residents, 1323 bovine (including 971 cattle), 4379 sheep, 142 sluices and 103 river courses. Currently, 319 cases with advanced schistosomiasis were found and 977 cases with chronic schistosomiasis were identified from 2001 to 2005 [32]. From 2003 to April, 2005, a total of 266 sites infested with infected snails were detected in the study areas, with areas of 2877.85 hm².

Interventions to control sources of S. japonicum infection

During the study period from May, 2005 through 2008, considering that cattle were identified as the primary source of S. japonicum [33,34], all the 971 cattle were replaced with small farm machines to eliminate cattle as a source of infection to snails. And 8554 domestic animals (including bovine, sheep, pigs, dogs) were raised in pens to reduce or avoid the contamination of the grassland. To reduce humans as a source of infection in snails, the following interventions were implemented to attempt to reduce the transmission. A total of 725 households were supplied with tap water, 1907
fetal-matter container were supplied to the mobile boat fishermen and 75129 public latrines with three-cell septic tanks were constructed, so that human feces could be disposed of on land instead of directly into the lake.

Comprehensive control of snail habitats
A comprehensive approach was employed to control snails by mollusciciding together with environmental modification. Over the 32-month study period, a total of 12671.52 hm² of snail habitats were treated with molluscicides like niclosamide. Environmental improvement such as constructing fish ponds, digging new ditches, building fruit trees and filling of infested areas was carried out by health sections, together with water resources development and agricultural and forestry projects. During the study period, 4173.55 hm² of snail habitats underwent environmental modification, 44 sluices were re-built for prevention of snail spread, and 217.4 km long river banks were hardened using concrete.

Other routine control interventions
During the study period in all villages, some routine control activities were undertaken to control *S. japonicum* infection. These interventions included synchronous chemotherapy for both infected humans and livestock, and health education focusing on avoidance of snail-infested areas and associated lake water. From 2005 to 2008, 0.21 million people including 3922 boat fishermen were examined for schistosomiasis infections using serological screening with dipstick dye immunoassay (DDIA) [35-37], followed by the miracidium hatching test [32], 7264 high-risk populations were treated with praziquantel at a single oral dose of 40 mg/kg for expanded chemotherapy, and 0.55 million persons received health education by means of cartoons, videotapes, comic-style booklets, billboards, sessions and other media.

Infection in humans and livestock
During the period of schistosomiasis non-transmission of each year, more than 90% of individuals aged 6-60 years in each study village were screened for *S. japonicum* antibodies using the DDIA technique [35-37], and the miracidium hatching test was employed in those seropositive individuals for definitive diagnosis of infections [32]. The miracidium hatching test was used for detecting infection of *S. japonicum* in livestock [32]. The seroprevalence and parasitological prevalence of *S. japonicum* were recorded and calculated.

Effect evaluation of snail control
From 2005 to 2008, once-yearly (from April to May) a snail survey was carried out by means of a systematic sampling technique along the river banks and in marshland and ditches around the study villages [32]. A snail collection device made of iron wire and consisting of a 0.1 m² square frame was placed every 20 m along the survey line. All snails within the frame were collected, enumerated, crushed and examined for *S. japonicum* infection using a microscopy. Various indices were recorded, namely snail habitats, density of living snails, density of infected snails and the snail infection rate.

Ethical approval
This study was approved by the Ethics Review Committee of Jiangsu Province, Jiangsu Institute of Parasitic Diseases, and National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention.

Statistical analysis
All data were entered in Excel (Microsoft Corporation; Redmond, WA, USA) and all statistical analyses were performed using the statistical software Statistical Package for the Social Sciences Version 13.0 (SPSS Inc., Chicago, IL, USA). Differences of proportions were tested for statistical significance with the chi-square test. A *P*-value < 0.05 was considered significant.

Results
S. japonicum infections in humans and livestock
The prevalences of *S. japonicum* were 0.57%, 0.2%, 0.13%, 0.03%, 0.01% and 0.02%, respectively in humans, and 0.4%, 0.37%, 0.1%, 0.04%, 0.01% and 0 in livestock from 2003 to 2008 (Table 1, Figure 2). Between 2003 and 2008, the annual acute infections were 116, 38, 11, 2, 0 and 0, presenting a significant declining trend. After the implementation of the integrated schistosomiasis control strategy, the seroprevalence, parasitological prevalence and prevalence of *S. japonicum* in humans reduced by 81.17%, 90.35% and 96.94%, respectively, and 100% of reductions in prevalence of livestock and bovine and acute infections were also achieved (Table 2), in comparison with those rates before the implementation of the integrated strategy (all *P* values < 0.01).

S. japonicum infections in snails
From 2003 to 2008, the confirmed snail habitats out of all field survey sites were 80, 90, 60, 44, 41 and 20, respectively. The total area of snail habitats was reduced from 7243.06 hm² to 3775.26 hm², and the area where infected snails were detected decreased from 2173.93 hm² to 124.19 hm² over the study period. The prevalences of *S. japonicum* infections in the snails collected from 2003 to 2008 were 0.31%, 0.16%, 0.13%, 0.21%, 0.09% and 0.02%, respectively (Table 3). After the implementation of the integrated strategy, the snail host and *S. japonicum* infections in snails were controlled.
Table 1 *S. japonicum* prevalence in humans and livestock and acute infections in the 107 villages in a pilot control program of Jiangsu Province, from 2003 to 2008

Year	No. people examined	No. infected people	Prevalence of residents (%)	No. acute infections	No. livestock detected	No. infected livestock	Prevalence of livestock (%)
				Total	In: bovine detected	Total	
2003	140868	802	0.57	116	9849	5424	0.4
2004	237443	478	0.2	38	9526	4956	0.37
2005	229979	298	0.13	11	15928	3900	0.1
2006	264357	90	0.03	2	16170	2724	0.04
2007	305719	45	0.01	0	14215	2198	0.01
2008	252323	44	0.02	0	13705	1604	0.0

Sun et al. Parasites & Vectors 2011, 4:243 http://www.parasitesandvectors.com/content/4/1/243

Figure 2 Evolution of average *S. japonicum* prevalence in humans, livestock and *O. hupensis* snails in the study villages from 2003 to 2008.
achieved. In addition, the new strategy provided a novel pattern for control of schistosomiasis, namely integrating all kinds of resources and boosting the whole villages.

With the gradual decline of schistosomiasis, the Chinese government has implemented a stratified control pattern based on villages with different intensities of *S. japonicum* infection [33,34]. However, the stratification is mainly based on the infection rates of *S. japonicum* in both humans and livestock, which is increasingly meaningless in areas with low infection intensities [42,43]. Since 2005, we targeted the 107 villages of the province (belonging to 17 counties) where infected snails were detected between March, 2003 and April, 2005, and carried out a comprehensive control strategy for schistosomiasis japonica in the field for a successive four years. Following the effects of the comprehensive control, the snail habitat, infected snail habitat, snail infection rate, and *S. japonicum* prevalence in both humans and livestock all appeared a declining trend year by year, with reductions of 47.88%, 94.29%, 92.55%, 96.94%, and 100% compared with those before the comprehensive control. In addition, all of the 17 counties achieved the infection control in 2007, and 7 reached the criteria of transmission control in 2008. The confirmed snail habitats reduced from 107 to 20, and the acute infections have been controlled for a successive 2 years since 2007. It is indicated that the integrated schistosomiasis control strategy with emphasis on elimination of the snail host reduces of 47.88%, 94.29%, 92.55%, 96.94%, and 100% compared with those before the comprehensive control. In contrast, since May, 2005, when the government initiated the integrated control program, the snail habitats reduced dramatically, the prevalence in humans, livestock and snails quickly decreased to a low level, and the acute infections were eliminated. In 2006, a higher snail infection rate was observed compared with those in 2004 and 2005, this was because molluscingiding was not effectively implemented in 1 of 107 villages, leading to a failure in the control of snail control. However, all of the other indicators like the snail habitat, infected snail habitat, number of villages with infected snails, reduced compared with those in both 2004 and 2005.

Conclusions

The integrated control strategy for schistosomiasis japonica described here is effective to control the transmission of *S. japonicum*, and it established a new schistosomiasis control pattern that integrates multi-sector resources. Further studies should be carried out to investigate the effects of the strategy in other schistosome-endemic regions of China with comparable ecological, cultural and socio-economic characteristics.

Acknowledgements

This project received the grants from the National Important Sci-tech Special Projects (2008ZX10004-011), the National Science & Technology Pillar Program of China (2009BAI78B06 and 2009BAI78B07), the National Natural Science Foundation of China (81071379), Jiangsu Province’s Outstanding Medical Academic Leader Program (LJ201132), the Department of Health, Jiangsu Province (X200912 and X201103), the Jiangsu Provincial Scientific Foundation of Prevention Medicine (Y201031) and Jiangsu Society for Editors of Scientific and Technical Periodicals (JKQJX006).

Author details

1Jiangsu Institute of Parasitic Diseases, 117 Yangxiang, Meiyuan, Wuxi 214064, Jiangsu Province, People’s Republic of China. 2Jiangsu Provincial Department of Health, 42 Zhongyang Road, Nanjing 210008, Jiangsu Province, People’s Republic of China. 3Yangzhou Municipal Center for Disease Control and Prevention, 35 Yanfu East Road, Yangzhou 225002, Jiangsu Province, People’s Republic of China.

Authors’ contributions

LPS and YSL conceived and designed the study. LPS collected the data. LPS, WW, ZXT, QBH, GYY, KY, JRD implemented the study. LPS and WW carried out the statistical analysis and prepared the manuscript. YSL revised and finalized the manuscript. All of the authors read and approved the final version of the manuscript.
comprehensive control for schistosomiasis in key villages of Jiangsu Province. Chin J Schisto Control 2009, 21:285-289, (in Chinese).

42. Zhou XN, Jiang QW, Sun LP, Wang TP, Hong Q8, Zhao GM, Wen LY, Yin ZC, Wu XH, Lin DD. Schistosomiasis control and surveillance in China. Chin J Schisto Control 2005, 17:161-165, (in Chinese).

43. Zhou XN, Jia TW, Guo JG, Wang LY, Jiang QW. Management model and its evolution in schistosomiasis control programme of China. Chin J Schisto Control 2010, 22:1-4, (in Chinese).

44. Yuan H. Achievement and experiences of schistosomiasis control in China. Chin J Epidemiol 1999, 2:3-6, (in Chinese).

doi:10.1186/1756-3305-4-243

Cite this article as: Sun et al: Effect of an integrated control strategy for schistosomiasis japonica in the lower reaches of the Yangtze River, China: an evaluation from 2005 to 2008. Parasites & Vectors 2011 4:243.