Cranial Deformity, Reconstruction of Cranium

Israa Anwar Abd al-Hameed1*
Ali Salim Mahmood1
Yasir Adil Taka3
1Dentistry College, Mosul University, Mosul, Iraq
2Department of Maxillofacial Surgery, Al-Jumhory Teaching Hospital, Mosul, Iraq
3Department of Surgery, Mosul College of Medicine, Mosul University, Mosul, Iraq

Abstract
Cranioplasty is defined as the surgical repair of acquired defects or congenital deformities of the cranium. It is performed mainly for anatomical reconstruction, brain protection, and cosmetics, but evidence has shown that there is also improvement of brain physiology. The aims of this paper are to describe a technique to fabricate polymethylmethacrylate prostheses by hand during operation and at the same time describe the surgical outcomes of this procedure. Between the years 2007 and 2011, 20 patients were complaining from cranial bone defect due to many causes underwent cranioplasty operation in Mosul Medical Center/IRAQ for reconstructed the defect using the polymethylmethacrylate that fabricated by hand during the operation. The operations were done by the same maxillofacial surgeon with different neurosurgeons. Age of patients extended from 14 years to 42 years with mean 33.2 years. The main cause of cranial defect was trauma resulting from missiles injuries that involved 14 patients and formed 70%. During the follow-up, all patients were satisfied with the cosmetic result and no revision for cosmetic reasons was required. One patient developed infection in one of stainless steel wire postoperatively that controlled by hand during the operation and at the same time describe the surgical outcomes of this procedure.

Keywords
Cranioplasty; Cranial deformity; Cranium; Traumatic cranial injury

Introduction
Cranioplasty is the surgical intervention to repair cranial acquired defects or congenital deformities. The aim of cranioplasty is not only a cosmetic issue and reduce headaches due to previous surgery or injury, also the repair of cranial defects improve brain physiology, protect the brain and increases the social performances [1-5]. With emerging evidence for the benefit of early decompressive craniectomy for ischemic stroke [6] diffuse traumatic brain injury [7], and skull-infiltrating tumours [8] the cranioplasty surgery has widely increased. The first goals are get good biocompatibility, defect closure with accurate fitting of the plastic material to the bone borders and mainly a satisfying cosmetic result is get [9]. Materials utilized for cranial reshaping include bone, auto/allografts, distinct biomaterials, and even osteoinductive growth factors [10]. Polymethylmethacrylate (PMMA), a conventional transparent thermoplastic is one of the most popular alloplastic biomaterials, and even osteoinductive growth factors [10]. Polymethylmethacrylate (PMMA), a conventional transparent thermoplastic is one of the most popular alloplastic materials used in treatment of cranial defect during and after World War II [11,12]. PMMA has advantage that it can be moulded during surgery into the shape of the cranial defect. Performing a cranioplasty poses a challenge to neurosurgeons, plastic reconstructive surgeons, and maxillofacial surgeons since the procedure often comprises very large skull defects. The most postoperative complications may include haemorrhage, cerebrospinal fluid (CSF) leaks and infections which due to foreign material implantation while the seizures, and neurological deficits are less common. [13-15].

Aim
The aims of this study to describe a technique to fabricate PMMA prostheses by hand during operation and at the same time describe the surgical outcomes of this procedure.

Materials and Methods
Between the years 2007 and 2011, 20 patients were complaining from cranial bone defect due to many causes underwent Cranioplasty operation in Mosul Medical Center/IRAQ for cranial reshaping using the polymethylmethacrylate (Figure 1) that fabricated...
by hand during the surgery. All patients examined by CT scan for the cranium before the operation (Figure 2). Under general anaesthesia, the soft tissue of scalp is reopened and dissected from the dura to explain the borders of bone defect and freed from any adjacent tissue. The edges of cranial defect prepared by using acrylic bur to bevelling them and bed formation for the prosthesis to prevent slippage it inside the cranium (Figure 3). The polymethylmethacrylate (PMMA) was prepared by mixing the liquid with powder then waiting 3 minutes before reach the material to dough stage for fabricated the prosthesis by the hands on the site of defect (Figure 4), when the thermal reaction started the splint should be removed away from the defect site to prevent morbidity on brain, then we remove the excess and shaping the prosthesis using acrylic bur; finally, fixation the prostheses using stainless steel wire and closed the flap (Figures 5 & 6) and follow-up for 2 years was done.

Results

Age of patients extended from 14 years to 42 years with mean 33.2 years, the male was 17 patients that formed 85% while the female was only three patients that found in 15% (Table 1). The most cause of cranial defect was trauma resulting from missiles injuries that involved 14 patients and formed 70% while cranial defect due to tumour was involved four patients that presented in 20% and lastly the cranial decompression involved two patients.

	Male	%	Female	%
	17	85%	3	15%

Table 1: Sex incidence
and formed 10% (Table 2). During the follow-up, all patients were satisfied with the cosmetic result. No revision for cosmetic reasons was required. One patient developed an infection in one of stainless steel wire postoperatively that controlled and resolved the problem by removing this wire only. Thus, the perioperative morbidity was 5%. We recorded that there is no deterioration in neurological status and neuropathies (chronic pain after wound healing), postoperatively. Patients showed well tolerated with prosthesis material in all cases.

Discussion

The majority of patients were males while the most common cause of cranial defect was due to traumatic cranial injury by missiles injuries. When time and cost are the goal, this procedure is a cheap and safe way to treat cranial defect. Infection is the common cause of complication in cases of allograft implants, but there was a very low rate with the procedure that described in this paper. The benefits of cranioplasty on neurologic function are also validated. This technique has proven to be easy, safe and has excellent results.

Conclusion

This technique is quick and easy to perform, and provide a cheap and safe way produces a strong implant with very good cosmetic result.

References

1. Dujovny M, Aviles A, Agner C, Fernandez P, Charbel FT. Cranioplasty: cosmetic or therapeutic? Surg Neurol. 1997;47:238-241.
2. Isago T, Nozaki M, Kikuchi Y, Honda T, Nakazawa H. Sinking skin flap syndrome: A case of improved cerebral blood flow after cranioplasty. Ann Plast Surg. 2004;53:288-292.
3. Kuo JR, Wang CC, Chio CC, Cheng TJ. Neurological improvement after cranioplasty - analysis by transcranial doppler ultrasonography. J Clin Neurosci. 2004 Jun;11(5):486-489.
4. Millard DR Jr, Yates BM. Practical variations of cranioplasty. Am J Surg. 1964 Jun;107:802-809.
5. Winkler PA, Stummer W, Linke R, Krishnan KG, Tatsch K. Influence of cranioplasty on postural blood flow regulation, cerebrovascular reserve capacity, and cerebral glucose metabolism. J Neurosurg. 2000 Jul;93(1):53-61.
6. Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol. 2007 Mar;6(3):215-222.
7. Tagliaferri F, Zani G, Iaccarino C, Ferro S, Ridolfi L, et al. Decompressive craniectomies, facts and fiction: a retrospective analysis of 526 cases. Acta Neurochir (Wien). 2012 May;154(5):919-926.
8. Schebes K, Hohne J, Gassner HG, Brawanski A. Preformed titanium cranioplasty after resection of skull base meningiomas-a technical note. J Craniomaxillofac Surg. 2013 Dec;41(8):803-807.
9. Dujovny M, Aviles A, Agner C, Fernandez P, Charbel FT. Cranioplasty: cosmetic or therapeutic? Surg Neurol. 1997 Mar;47(3):238-241.
10. Spetzger U, Vougioukas V, Schipper J. Materials and techniques for osseous skull reconstruction. Minim Invasive Ther Allied Technol. 2010 Apr;19(2):110-121.
11. Neovius E, Engstrand T. Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg. 2010 Oct;63(10):1615-1623.
12. Elkins CW, Cameron JE. Cranioplasty with acrylic plates. J Neurosurg. 1946;3:199-205.
13. Woolf JI, Walker AE. Cranioplasty: Collective review. Int Abs Surg. 1945;81:1-23.
14. Chang V, Hartzfeld P, Langlois M, Mahmood A, Seyfried D. Outcomes of cranial repair after craniectomy. J Neurosurg. 2010;112:1120-1124.
15. Godil SS, Shamim MS, Enam SA, Qidwai U, Qadeer M, et al. Cranial reconstruction after decompressive craniectomy: Prediction of complications using fuzzy logic. J Craniofac Surg. 2011;22:1307-1311.

Table 2: Causes of cranial defect

Cause	%
Trauma	70%
Tumor	20%
Decompression	10%

Table 2: Causes of cranial defect