RESEARCH ARTICLE

Genome Sequence of *Bacillus endophyticus* and Analysis of Its Companion Mechanism in the *Ketogulonigenium vulgare-Bacillus* Strain Consortium

Nan Jia¹,², Jin Du¹,², Ming-Zhu Ding¹,², Feng Gao³*¹, Ying-Jin Yuan¹,²*²

¹ Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China, ² SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China, ³ Department of Physics, Tianjin University, Tianjin, 300072, PR China

* fgao@tju.edu.cn (FG); yjyuan@tju.edu.cn (YJY)

Abstract

Bacillus strains have been widely used as the companion strain of *Ketogulonigenium vulgare* in the process of vitamin C fermentation. Different *Bacillus* strains generate different effects on the growth of *K. vulgare* and ultimately influence the productivity. First, we identified that *Bacillus endophyticus* Hbe603 was an appropriate strain to cooperate with *K. vulgare* and the product conversion rate exceeded 90% in industrial vitamin C fermentation. Here, we report the genome sequencing of the *B. endophyticus* Hbe603 industrial companion strain and speculate its possible advantage in the consortium. The circular chromosome of *B. endophyticus* Hbe603 has a size of 4.87 Mb with GC content of 36.64% and has the highest similarity with that of *Bacillus megaterium* among all the bacteria with complete genomes. By comparing the distribution of COGs with that of *Bacillus thuringiensis, Bacillus cereus* and *B. megaterium, B. endophyticus* has less genes related to cell envelope biogenesis and signal transduction mechanisms, and more genes related to carbohydrate transport and metabolism, energy production and conversion, as well as lipid transport and metabolism. Genome-based functional studies revealed the specific capability of *B. endophyticus* in sporulation, transcription regulation, environmental resistance, membrane transportation, extracellular proteins and nutrients synthesis, which would be beneficial for *K. vulgare*. In particular, *B. endophyticus* lacks the Rap-Phr signal cascade system and, in part, spore coat related proteins. In addition, it has specific pathways for vitamin B12 synthesis and sorbitol metabolism. The genome analysis of the industrial *B. endophyticus* will help us understand its cooperative mechanism in the *K. vulgare-Bacillus* strain consortium to improve the fermentation of vitamin C.
Introduction

The microbial ecosystem of *Ketogulonigenium vulgare* and *Bacillus* strains has been widely used in the two-steps vitamin C fermentation processes [1]. In bacterial communities, *K. vulgare* is responsible for the conversion of sorbose to 2-keto-L-gulonic acid (2-KLG), the precursor of vitamin C. *Bacillus* strains (e.g., *B. megaterium*, *B. cereus* and *B. thuringiensis*) are co-cultured to stimulate the growth of *K. vulgare* [2]. Moreover, different 2-KLG yields and productivities were observed in the consortium with different companion strains [3]. Clearly, the varied growth characteristics of the different companion strains might produce different effects on the fermentation process. Researchers are always looking for the best strains to cooperate with *K. vulgare*, and we identified that *B. endophyticus* Hbe603 is the appropriate strain because the product conversion rate exceeded 90% in industrial vitamin C fermentation. *B. endophyticus* is an aerobic, Gram-positive, non-motile, rod-shaped, endospore-forming bacterium, which was first isolated from the inner tissues of cotton plants [4]. It has been extensively applied for promoting plant-growth [5] and decolorizing textile effluents [6]. Knowledge on industrial strains will help us further understand the natural variation and the possible differences among *Bacillus* strains and their communication with *K. vulgare*.

The interaction and communication between *Bacillus* strains and *K. vulgare* have been investigated by metabolomic and proteomic analysis [7–10]. Further analysis of the genetic makeup and complementation are needed to understand the consortium. Genome sequence analysis could provide further information to distinguish the differences between strains and determine the symbiotic relationship between the microorganisms at the gene level. For example, the genome analysis of the UCYN-A cyanobacteria found the absence of numerous major metabolic pathways and the necessary electron transport capacity to generate energy, which suggests that this strain must depend on other organisms to obtain critical nutrients [11]. The genome analysis of *Syntrophus aciditrophicus* provided a glimpse on its composition and identified that the electron transfer and energy transducing systems were used for the syntrophic life [12].

Currently, the genome-wide research on the *B. endophyticus* strain is still scarce and only one draft genome sequence of *B. endophyticus* 2102 has been published [13]. Here, we report a 4.87 Mb circular chromosome of *B. endophyticus* Hbe603, which is used as the companion strain in the vitamin C industrial fermentation process. Through the comparative genome analysis of *B. endophyticus* with other species, we found evidence of its special features, such as sporulation, transcription regulation, environmental resistance, membrane transportation, extracellular protein release and nutrients synthesis. Likewise, we speculate its companion mechanism in the *K. vulgare*-Bacillus strain consortium.

Materials and Methods

Strains and cultivation conditions

The *B. endophyticus* Hbe603 strain was cultured in 250 mL flasks with 50 mL of seed medium (30°C, 250 rpm) supplied with D-sorbitol (2%) for 35 h to determine the sporulation and growth curve. The seed medium contains 3 g/L beef extract, 3 g/L yeast powder, 3 g/L corn steep liquor, 0.2 g/L MgSO₄, 1 g/L KH₂PO₄, 1 g/L urea and 10 g/L peptone.

Measurement of cell density and analysis of D-sorbitol

The cell density was measured as optical density at 600 nm (OD₆₀₀) with a spectrophotometer, and cells were observed under a phase contrast microscope. D-sorbitol in the broth was analyzed by HPLC (Waters Corp., Massachusetts, USA) with a refractive index detector. In
addition, 5 mM H$_2$SO$_4$ was used as the eluent on the Aminex HPX-87H column (BioRad, CA) at 65°C with a flow rate of 0.6 mL/min.

DNA extraction and quality control

A genome sample was extracted using a Bacteria DNA Kit (QIAGEN) according to the manufacturer’s instructions. Briefly, cells were lysed with lysozyme and treated with proteinase K. The lysate was then treated with 20% sodium dodecyl sulfate and cetyltrimethylammonium bromide. Afterwards, the DNA was extracted with phenol/ chloroform. Then, the DNA was precipitated with ethanol and sodium acetate and it was washed twice with 70% ethanol. Each sample was treated with RNaseA at 37°C for 30 min to allow RNA degradation. The quality of the DNA was assessed by spectrophotometer and gel electrophoresis. DNA samples with a 260/280 nm absorbance ratio of 1.8–2.0 and a 260/230 nm absorbance ratio of 2.0–2.2 were considered pure. Only high molecular weight pure DNA samples were used for the construction of the library and sequencing.

Sequencing and assembly

Each SMART bell sequencing library was constructed using 500 ng size-selected DNA with the Pacific Biosciences DNA Template Prep Kit 2.0. The binding of SMRT bell templates to polymerases was conducted using the DNA/Polymerase Binding Kit P5 and v2 primers. Sequencing was carried out on the Pacific Bioscience RS II platform using C3 reagents with 120 min movies. The .h5 files resulting from the PacBio sequencing were used directly for the assembly process. The raw reads were processed into subreads by removing the adaptors and filtered using SMRT Analysis 2.2 (http://www.pacb.com/devnet/) with minSubReadLength = 500 and readScore > 0.75. The filtered subreads were used in the HGAP assembly process. An in-house Perl script was used to calculate the distribution of subread lengths and identify the range of lengths that would give a coverage around 10. These length values were chosen as the seed length in the HGAP assembly process [14]. For *B. endophyticus* HBe603, seed length 6K-14K was chosen. A separate assembly process was done for each seed length. The HGAP assembly process was done as follows: 1) Reads shorter than the seed length were aligned to the longer reads using BLASR [15]. The errors on the long reads were corrected using the aligned reads; 2) The high quality corrected reads were assembled based on overlapping sequences to obtain a draft assembly; 3) All the reads were mapped to the draft assembly, which polished the assembly to obtain the final genomic sequence. The HGAP parameters used were genomeSize = 5000000, xCoverge = 15, defaultFrgMinLen = 500, ovlErrorRate = 0.06, ovlMinLen = 40, merSize = 14. The seed length that gave the least contigs were chosen as the final assembly. The assembled sequences were checked by BLAST to the NCBI database whether the contigs show similarity to known genomes or plasmids. For circular chromosome, we ran BLAST against itself to identify the redundant sequences at the end. The redundant sequences from the 3’ end were clipped and the connected part was examined by PCR.

Genome annotation and bioinformatics analysis

The *de novo* gene prediction of the genome sequence was performed by GeneMarkS [16]. The gene function was annotated by using BLAST [17] against Kyoto Encyclopedia of Genes and Genomes database KEGG [18], SWISS-PROT [19] and Clusters of Orthologous Groups of proteins database (COG) [20]. The tRNAs and rRNAs were predicted by tRNAscan-SE [21] and RNAmmer [22], respectively. The essential genes were predicted by ZCURVE 3.0 [23] and DEG 10 [24], respectively. The subcellular location of proteins and the signal peptides were commented by PSORT [25] and SignalP 4.0 [26], respectively. The origin of replication (*oriC*)
and putative DnaA boxes were identified using Ori-Finder [27]. CVTree, a whole genome-based, alignment-free composition vector (CV) method was performed for the phylogenetic analysis [28], and a phylogenetic tree was generated using the MEGA program [29]. The GC-Profile was used to compute the GC content variation in DNA sequences and predict the genomic islands [30]. The circular chromosome map was created using the program CGView [31]. The sequence similarity was analyzed using ACT (the Artemis Comparison Tool) [32].

Nucleotide sequence accession numbers

The sequence of the *B. endophyticus* Hbe603 chromosome has been deposited in GenBank under the accession number CP011974.

Results and Discussion

General genomic properties

The *B. endophyticus* Hbe603 chromosome is 4.87 Mb with GC content of 36.64% and contains 5,038 annotated genes (Fig 1, Table 1 and S1 Table). We detected four prophages in *B. endophyticus* Hbe603 using PHAge Search Tool (PHAST) [33] (S1 Fig). In the four prophages, most of the small proteins are annotated as hypothetical proteins that may play important roles in response to specific environmental stresses and host adaptation [34]. The other functional genes encode 59 phage-like proteins, two phage integrases and two transposases. Besides the prophage regions, the complete chromosome sequence of *B. endophyticus* Hbe603 has the high consistency with the draft sequence of *B. endophyticus* 2102 (S2 Fig). In addition to the published companion strains *B. thuringiensis* [35], *B. cereus* [36] and *B. megaterium* [37], we identified that *B. endophyticus* Hbe603 is the appropriate strain to cooperate with *K. vulgare* and the product conversion rate exceeded 90% in industrial vitamin C fermentation. Through a whole genome-based phylogenetic analysis, we can conclude that *B. endophyticus* is a closer companion strain to *B. megaterium* QM B1551 [38] than *B. cereus* ATCC 14579 [39] and *B. thuringiensis* Al Hakam [40] (Fig 2). By comparing the distribution of COG classification among the four strains, we could assess their gene function distributions and their genetic relationships (Fig 3). In the *B. endophyticus* Hbe603 genome, the number of genes related to cell envelope biogenesis (M) and signal transduction mechanisms (T) is lower than that in the other three strains, while the number of genes related to carbohydrate transport and metabolism (G), energy production and conversion (C) and lipid transport and metabolism (I) is similar to that in *B. megaterium* and higher than those in the other two strains (S2 Table). Overall, *B. endophyticus* Hbe603 has unique properties with regards to protein function and is more similar to *B. megaterium* than the other strains. Interestingly, *B. megaterium* has been used for industrial vitamin C production in Jiangshan Pharmaceutical Co. Ltd., China [41]. Since both strains can become industrial companion strains, they presumably show common characteristics to have a better interaction with *K. vulgare*.

Genetic analysis of *B. endophyticus*’ companion effect on *K. vulgare*

Genes related to the sporulation process. Several researchers have indicated that the spore stability of *Bacillus* strains plays an important role in stimulating the propagation of *K. vulgare* and the accumulation of 2-KLG [9,42]. During the process of the spore formation, cells burst and release intracellular metabolites that significantly promote the growth of *K. vulgare*. Thus, we analyzed the genes related to the different sporulation stages to understand the sporulation process and the regulation mechanism of *B. endophyticus* Hbe603 (S3 Table). Current research on the process and mechanism of sporulation mainly focus on the model strain *B.*
The lifecycle of *B. subtilis* is generally summarized in seven steps: vegetation (stage zero and I), stage II, stage III, stage IV, stage V, spore maturation (stage VI and VII) and spore germination [43,44]. About 140 genes related to the sporulation cycle were identified by the genome annotation of *B. endophyticus* Hbe603, and most of them have a high similarity to *

Fig 1. Circular genome visualization of *B. endophyticus* Hbe603. Circles from the outside to the inside show the positions of protein-coding genes (blue), tRNA genes (red) and rRNA genes (pink) on the positive (circle 1), and negative (circle 2) strands. Circles 3–5 show the positions of BLAST hits detected through blastx comparisons of *B. endophyticus* Hbe603 against *B. megaterium* QM B1551 (circle 3), *B. megaterium* DSM 319 (circle 4) and *B. megaterium* WSH-002 (circle 5). The height of the shading in the BLAST results rings is proportional to the percentage of identity of the hit. Circles 6 and 7 show plots of GC content and GC skew plotted as the deviation from the average for the entire sequence.

doi:10.1371/journal.pone.0135104.g001
Table 1. General features of the genome sequence of B. endophyticus Hbe603 and 2102.

Feature	B. endophyticus Hbe603	B. endophyticus 2102
Length of sequence (bp)	4865574	5107189
G+C content (%)	36.64	36.40
Protein-coding gene number	5038	5186
rRNA number	33	7
tRNA number	81	49

doi:10.1371/journal.pone.0135104.t001

Fig 2. Phylogenetic analysis of B. endophyticus Hbe603 with other species. The phylogenetic tree of B. endophyticus Hbe603 was constructed using CVTree with parameters K = 6 and Type = aa. The neighbor-joining tree was constructed using the MEGA5 program based on the CVTree results. Note that Geobacillus kaustophilus HTA426 was included as an outgroup.

doi:10.1371/journal.pone.0135104.g002
those in *B. subtilis*. These data confirm the complete sporulation ability of *B. endophyticus* Hbe603. At the initial stage of the spore formation, *spo0H* and *spo0A* encode a related regulatory factor, which is capable of regulating the cell growth and initializing the spore formation [45]. The histidine kinases KinA, KinD and KinE [46,47] respond to environmental stimulation and then phosphorylate Spo0A to form a two-component sensing system until the spore formation process begins. In addition, the genes related to spore coat formation in *B. endophyticus* Hbe603 were compared with those in other *Bacillus* strains to analyze the properties of the spores. Among the genes related to the outside spore coat, *B. endophyticus* Hbe603 only has *cotA* and *cotE*, and lacks *cotB*, *cotC*, *cotG*, *cotM*, *cotO*, *cotY* and *ytxO*, which are annotated in *B. subtilis*. *B. megaterium* only has *cotB* and *cotE*, and many similarities exist between the two species with regards to the structure of the outside spore coat. Among the inside spore coat genes, *B. endophyticus* Hbe603 has *cotD*, *cotJA*, *cotJB*, *cotJC*, *cotF*, *yutH*, *yaaH*, *yheC* and *yheD*, and lacks *cotH*, *ymaG*, *cotT*, *yxeE*, *yeeK* and *ysnD*, which are annotated in *B. subtilis*. In addition, there are three operons, *cgeAB*, *cgeCDE* and *spsABCDEFHJKLM*, which encode a glycosyl transferase in *B. subtilis* and participate in the spore coat glycosylation [48]. *B. thuringiensis* lacks *spsD*, and *B. cereus* only has *spsI*, *spsJ* and *spsK* [49]. *B. endophyticus* Hbe603 and *B. megaterium* completely lack these three operons, and that deficiency may improve the hydrophobicity of spores and their gathering ability, thus, enhancing the affinity between spores and...
nonspecific surfaces [50]. *B. endophyticus* Hbe603 and *B. megaterium* lack related genes rendering this type of spore characteristics potential beneficial effects in synergistic actions.

Genes related to the regulation of transcription. Compared to *K. vulgare*, companion *Bacillus* strains have a stronger ability of responding and adapting to environmental changes, and the transcriptional regulation system plays an important role. *B. endophyticus* Hbe603 has nearly 300 genes related to regulation, including 17 sigma factor encoding genes (Table 2). As a general regulatory factor, sigma-B controls a large number of pressure-responsive related proteins. Previous research has reported two types of regulation mechanisms of sigma-B in *Bacillus* strains, i.e., that of *B. subtilis* [51] and that of *B. cereus* [49]. The genes related to the regulation of sigma-B in *B. endophyticus* Hbe603 are similar to those in *B. Subtilis*. During unstressed conditions, the anti-sigma factor RsbW directly combines with sigma-B, while the anti-anti-sigma factor RsbV is in the phosphorylated state and is unable to combine with RsbW [52]. In addition, RsbU dephosphorylates RsbV and releases sigma-B to initiate its transcriptional activity at ambient state. Likewise, a series of cascade factors can regulate the activity of RsbU phosphorylation, such as RsbX, RsbT, RsbS and the Rsb family of proteins (RsbRA, RsbRB and RsbRD). However, we could not find the regulatory factor RsbP in *B. endophyticus* Hbe603, which is responsible for the energy pressure in *B. subtilis* [53]. The sigma factor ECF (extracytoplasmic function) can induct extracellular environment stress and regulate the signal response. A total of seven related genes were detected in *B. endophyticus* Hbe603. Similarly, *B. subtilis* has seven genes, *B. cereus* has ten and *B. thuringiensis* has thirteen genes [49]. Among the seven sigma factors, we found two sigma-M factors, which can respond to high salt concentration and regulate the strain to adapt to high osmotic pressures in the environment [54]. Sigma-C, Sigma-V, Sigma-X and Sigma-W respond to temperature, lysozyme, iron and bacteriocin toxins, respectively. In addition of being important regulation factors, the Rap family proteins commonly exist in *Bacillus* strains and are combined with the signal peptide Phr to form the Rap-Phr signal cascade system [55]. This signal cascade system responds to cell density and regulates the initiation of sporulation. *B. subtilis* contains eleven Rap-encoding genes.

Table 2. Predicted sigma factors in *B. endophyticus* Hbe603.

Locus	Sigma Factor	Annotation
Be_0112	sigma-H	sporulation and competence, cytochrome biogenesics, generation of potential nutrient sources, transport, and cell wall metabolism
Be_0199	sigma-W	resistance to bacteriocins and cell envelope- damaging compounds
Be_0276	sigma-B	general stress response
Be_0926	sigam-I	control of a class of heat shock genes
Be_1343	sigma-C	response to temperature upshift
Be_1353	sigam-M	response to high concentration of salt
Be_3347		response to iron
Be_4015		
Be_3821	sigma-D	regulation of flagella, motility, chemotaxis and autolysis
Be_3924	sigma-G	transcription of sporulation genes
Be_3925	sigma-E	transcription of sporulation genes
Be_4047	sigma-F	transcription of sporulation genes
Be_4212	sigma-A	major sigma factor of RNA polymerase
Be_4265	sigma-K	RNA polymerase sporulation-specific sigma factor
Be_4753	sigma-L	utilization of arginin, acetoin and fructose, required for cold adaptation
Be_4938	sigma-V	response to lysozyme

doi:10.1371/journal.pone.0135104.t002
and seven Phr-encoding genes, and the number of related genes is slightly lower in *B. cereus* and *B. thuringiensis*. Nonetheless, only one related protein PhrA was detected in *B. endophyticus* Hbe603 and it has a high similarity with that of *Agrobacterium tumefaciens*. Hence, *B. endophyticus* Hbe603 may contain other pathways to respond to cell density and to initiate spore formation. These characteristics might be attributed to its specific communication pattern and its better companion ability.

Genes related to Environmental resistance. Previous research identified that reduced glutathione could significantly improve the growth of *K. vulgare* [56], and a proteomic analysis revealed its high demand for antioxidant protection [10]. *B. endophyticus* Hbe603 has a strong environmental resistance and relieves the stress of *K. vulgare* [9]. *B. endophyticus* Hbe603 contains a complete heat shock system, Clp, which is associated with high temperature tolerance. That system contains the chaperone ClpB, ATPase subunit ClpE [57], ClpP, ClpX [58], protein degradation subunits ClpY and ClpQ, and the CtsR global response protein [59]. Moreover, *B. endophyticus* Hbe603 has eight Na⁺/H⁺ antiporter related genes, the cluster mrpABCDEFG and nhaC. The mrp complex contains seven Na⁺/H⁺ antiporter subunits, which are associated with cell tolerance in alkaline environments. This complex responds to proton motive force in the cell membrane, where H⁺ is transported to the inside of the cells, and Na⁺ is pumped out [60]. The NhaC protein plays an important role in maintaining a stable pH environment, and it has a high similarity with that of *Bacillus pseudofirmus* OF4. This strain is an alkali resistant microorganism that can grow in pH ranging from 7.5 to 11.4 [61]. In addition, the yhaU/khtT gene clusters were detected in *B. endophyticus* Hbe603 that encode K⁺/H⁺ antiporters and pump out K⁺ to maintain a stable pH in alkaline environments [61]. The ability of *B. endophyticus* Hbe603 to adapt the alkaline environment of the industrial fermentation process might be related with the above mechanism. Microorganisms also need to absorb large quantities of K⁺ to maintain an osmotic balance in a high permeability pressure environment. *B. endophyticus* Hbe603 has the complete Ktr system to perform this function, which includes the ktrAB, ktrC and ktrD operon [62]. Several studies have shown that *B. megaterium* increases the proline synthesis pathway in high salt conditions [63]. Accordingly, the proHJA gene cluster is present in the *B. endophyticus* Hbe603 genome and has the ability to complete the synthesis of proline. In addition, glycine betaine is an effective protective agent against osmotic pressure. Interestingly, *B. endophyticus* Hbe603 contains two copies of glycine betaine synthetic enzymes GbsA and a GbsB, two copies of the glycine betaine transporter OpuD, and two operons encoding the glycine betaine/choline ABC transporter. Based on this complex system, *B. endophyticus* Hbe603 could be adapted to highly variable environments.

Genes related to the membrane transport system. The metabolic cooperation in the *K. vulgare*-*B. megaterium* consortium has been investigated by cultivating them in the same soft agar plate [64]. We found that *B. megaterium* swarmed along the trace of *K. vulgare* on the agar plate. A metabolomics analysis has detected a number of metabolites exchange among *K. vulgare* and the *Bacillus* strain [8], where the transport system of the membranes plays an important role [65]. *B. endophyticus* Hbe603 contains 31 phosphotransferase system (PTS) related genes, which are used for carbohydrate transportation. That number of genes is greater than those in *B. subtilis* (25 genes), *B. cereus* (18 genes) and *B. thuringiensis* (20 genes) [49]. The phosphotransferase system of *B. endophyticus* Hbe603 includes three copies of the Chr catabolite repression protein (HPr- like protein) [66], HPr kinase PtsH [67] and HprK [68]. Other proteins are included in the Glc, Lac, Fru, Man and other families (Table 3). It is interesting to remark that *B. endophyticus* Hbe603 shows a good growth on seed medium supplied with D-sorbitol (2%) as the sole source of carbon and energy (Fig 4). We annotated the D-sorbitol dehydrogenases and a glucitol/sorbitol-specific transport protein adjacent to it. Furthermore, Sorbose reductase is also annotated and has a high similarity with that of *Candida*.

Table 3: Genes related to the membrane transport system.

Gene Name	Function	Characteristics	
GlcABCDG	Glucose transport		
LacABCDG	Lactose transport		
FruABCDG	Fructose transport		
ManABCDG	Mannose transport		
GalABCDG	Galactose transport		
SucABCDG	Sucrose transport		
RhaABCDG	Rhamnose transport		
ManABCDG	Mannitol transport		
GlcABCDG	Glucitol transport		
SorABCDG	Sorbitol transport		
GalABCDG	Galactitol transport		
We speculate that the reductase may react with D-sorbitol as well. As the substrate of vitamin C fermentation, D-sorbitol can be consumed by *B. endophyticus* and may have an important influence on the final conversion rate. Hence, further research on these enzymes will be important to facilitate molecular modifications. Moreover, *B. endophyticus* Hbe603 contains almost 130 ABC transporter related proteins that are mainly used for transportation of peptides (15 proteins), amino acids (15 proteins), ions (35 proteins) and phosphate (8 proteins). In addition, we found 30 uncharacterized ABC transporters, which probably contributes to bacterial drug or antibiotic resistance [69].

Proteins released into the extracellular environment. A previous study has found that two extracellular proteins of *B. megaterium* can promote cell growth and acid production of *K. vulgare*. Their molecular weights are 30–50kD and more than 100kD, respectively [70]. With the help of protein localization analysis, the proteins that *B. endophyticus* Hbe603 released into the extracellular environment were detected. In addition to the sporulation and flagellar related proteins, we found extracellular esterase, aminopeptidase and polysaccharide deacetylase,
which can digest large molecular substances in the environment of *K. vulgare*. Additionally, two copies of superoxide dismutase were annotated, which can remove superoxide and protect *K. vulgare* from oxidative injury.

Genes related to nutrients synthesis. Previously, the metabolic model of *K. vulgare* was constructed on a genome-scale [71]. *K. vulgare* lacks genes for several pathways such as central metabolism, amino acids metabolism, fatty acids metabolism and vitamins biosynthesis, which might actually impede its growth. Previous studies showed that the addition of L-cysteine to a flask culture of *K. vulgare* increased cell growth, 2-KLG titer and the intracellular level of coenzyme A by 25.6%, 35.8%, and 44.7%, respectively [72]. Moreover, the addition of L-glycine, L-proline, L-threonine, L-isoleucine and gelatine increased the 2-KLG productivity by 20.4%, 17.2%, 7.2%, 11.8% and 23.4%, respectively [73]. *B. endophyticus* Hbe603 has a relative complete metabolic capacity involved in the supply of amino acids for *K. vulgare*, especially L-glycine, L-cysteine, L-methionine, L-tryptophan that *K. vulgare* cannot synthesize by itself [74]. In addition, a previous study has shown that *K. vulgare* cannot synthesize many B vitamins by itself [74]. We found that *B. endophyticus* Hbe603 has vitamin synthesis pathways for B1, B2, B3, B5, B6, B7, B9 and B12, which could be supplied to *K. vulgare*. As one of the first biotechnological vitamin B12 producers, *B. megaterium* has two distinct and an isolated cbiP gene to construct the whole vitamin B12 synthetic pathway [38,75]. *B. endophyticus* Hbe603 also has these two distinct genes, but they differ in where the cbiP (also called cobQ) is inserted. The schematic of genes related to the synthesis of vitamin B12 in *B. endophyticus* Hbe603 is presented by Easyfig [76] (Fig 5). Further studies will detect the effect of vitamin B12 production on this genetic difference, and *B. endophyticus* is expected to be a suitable engineered strain for the production of vitamin B12. Several cofactors are also supplied by *Bacillus* strains to *K. vulgare* in co-culture conditions [71], and we found numerous oxidoreductase-like proteins in *B. endophyticus*.

![Fig 4. Growth features of the *B. endophyticus* Hbe603 strain. A). Growth curve the *B. endophyticus* Hbe603 strain grown in seed medium with D-sorbitol (2%). The Y axis represents the average OD$_{600}$ of triplicate bacterial cultures at each time point. B). Extracellular concentration of D-sorbitol. Data are averages of three independent experiments.](https://doi.org/10.1371/journal.pone.0135104.g004)
endophyticus for the transfer of electrons generated in the cytoplasm. Five putative ferredoxins, two flavodoxins, ten thioredoxins, nine putative nitroreductases, four NADH:flavin oxidoreductases, and 16 quinol/ubiquinol oxidase were annotated in B. endophyticus. Overall, B. endophyticus Hbe603 has a relative complete metabolic capacity for the supply of amino acids, vitamins and cofactors for K. vulgare.

The schematic of B. endophyticus’ companion mechanism in K. vulgare-Bacillus strain consortium is presented in Fig 6 B. endophyticus Hbe603 has complex transcriptional regulation systems combined with its ability for spore formation and stress resistance. In addition, B. endophyticus Hbe603 has rich ABC transporters and proteins related to the PTS system for specific substrate transportation and communication with K. vulgare at a metabolic level. Likewise, the proteins that B. endophyticus Hbe603 releases into the extracellular environment may digest large molecular substances and remove superoxide for K. vulgare. With the sporulation process, B. endophyticus Hbe603 further releases abundant nutrients (amino acids, vitamins and cofactors) for the growth and the 2-KLG production of K. vulgare. B. endophyticus Hbe603 lacks the Rap-Phr signal cascade system and partly spore coat related proteins. In contrast, B. endophyticus Hbe603 has specific pathways for vitamin B12 synthesis and sorbitol metabolism. Overall, B. endophyticus provides essential functions that K. vulgare lacks to reach its maximum growth rate and acts as an alternative source of environmental nutrients in the consortium.

Conclusions

In summary, we report the chromosome sequence of B. endophyticus Hbe603 and its annotation, which provide a better-defined genetic background for gene expression and regulation mechanism studies, especially a genome scale metabolic network construction. This
comparative genome analysis provides the species-specific characters of *B. endophyticus* Hbe603 with respect to other *Bacillus* strains. The corresponding genome analysis will have an enormous impact on our understanding of *K. vulgare*-Bacillus strain consortium and will help us find more appropriate companion strain in the future.

Supporting Information

S1 Fig. Schematic representing the prophages of *B. endophyticus* Hbe603.

(TIF)

S2 Fig. Comparisons of the sequence similarity between *B. endophyticus* Hbe603 and *B. endophyticus* 2102 with the Artemis Comparison Tool.

(TIF)

S1 Table. Genome annotation of *B. endophyticus* Hbe603.

(XLSX)
S2 Table. COG category distribution of *B. endophyticus* Hbe603.

(DOC)

S3 Table. Predicted genes related to sporulation in *B. endophyticus* Hbe603.

(DOC)

Author Contributions

Conceived and designed the experiments: YJY NJ FG. Performed the experiments: NJ JD. Analyzed the data: FG NJ MZD. Contributed reagents/materials/analysis tools: FG YJY. Wrote the paper: NJ FG MZD YJY.

References

1. Yin GL, He JM, Ren SX, Song Q, Ye Q, Lin YH, et al. Production of vitamin C precursor-2-keto-L-gulonic acid from L-sorbose by a novel bacterial component system of SCB329-SCB933. J Ind Microbiol. 1997; 27: 1–7.

2. Takagi Y, Sugisawa T, Hoshino T. Continuous 2-keto-L-gulonic acid fermentation from L-sorbose by *Ketogulonicigenium vulgare* DSM 4025. Appl Microbiol Biot. 2008; 82: 1049–1056.

3. Yang WC, Han LT, Wang ZY, Xu H. Two-helper-strain co-culture system: a novel method for enhancement of 2-keto-L-gulonic acid production. Biotechnol Lett. 2013; 35: 1853–1857. doi: 10.1007/s10529-013-1292-5 PMID: 23881329

4. Reva ON, Smirnov VV, Priest FG. *Bacillus endophyticus* sp. nov., isolated from the inner tissues of cotton plants (*Gossypium* sp.). IJSEM. 2002; 52: 101–107. PMID: 11837291

5. Figueiredo MVB, Martinez CR, Burity HA, Chanway CP. Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (*Phaseolus vulgaris* L.). World J Microbiol Biotechnol. 2008; 24: 1187–1193.

6. Prasad A, Rao KVB. Physicochemical analysis of textile effluent and decolorization of textile azo dye by *Bacillus Endophyticus* strain VITABR13. Environ Biotechnol. 2011; 2: 55–62.

7. Du J, Zhou J, Xue J, Song H, Yuan YJ. Metabolic profiling elucidates community dynamics of the *Ketogulonicigenium vulgare-Bacillus megaterium* consortium. Metabolomics. 2012; 8: 960–973.

8. Ding MZ, Zou Y, Song H, Yuan YJ. Metabolic analysis of cooperative adaptation between co-cultured *Bacillus cereus* and *Ketogulonicigenium vulgare*. PLOS ONE. 2014; 9(4): e94889. doi: 10.1371/journal.pone.0094889 PMID: 24728527

9. Ma Q, Zhou J, Zhang WW, Meng XX, Sun JW, Yuan YJ. Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C. PLOS ONE. 2011; 6(10): e26108. doi: 10.1371/journal.pone.0026108 PMID: 22016820

10. Ma Q, Zhang WW, Zhang L, Qiao B, Pan CS, Yi H, et al. Proteomic analysis of *Ketogulonicigenium vulgare* under glutathione reveals high demand for thiamin transport and antioxidant protection. PLOS ONE. 2012; 7(2): e32156. doi: 10.1371/journal.pone.0032156 PMID: 22384164

11. Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, et al. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature. 2010; 464: 90–94. doi: 10.1038/nature08786 PMID: 20173737

12. McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, et al. The genome of *Syntrophus aciditrophicus*: life at the thermodynamic limit of microbial growth. PNAS. 2007; 104: 7600–7605. PMID: 17442750

13. Lee Y-J, Lee S-J, Kim SH, Lee SJ, Kim B-C, Lee H-S, et al. Draft genome sequence of *Bacillus endophyticus* 2102. J Bacteriol. 2012; 194: 5705–5706. PMID: 23012284

14. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013; 10(6): 563–569. doi: 10.1038/nmeth.2474 PMID: 23644548

15. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics. 2012; 13: 238. doi: 10.1186/1471-2105-13-238 PMID: 22988617

16. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001; 29(12): 2607–2618. PMID: 11410670
17. Altschul SF, Gish W. Local alignment statistics. Methods Enzymol. 1996; 266: 460–480. PMID: 8743700
18. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006; 34: D354–D357. PMID: 16381885
19. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000; 28: 45–48. PMID: 10592178
20. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003; 4: 41. PMID: 12969510
21. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997; 25: 0955–0964.
22. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. RfNAmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007; 35(9): 3100–3108. PMID: 17452365
23. Hua Z-G, Lin Y, Yuan Y-Z, Yang D-C, Wei W, Guo F-B. ZCURVE 3.0: identify prokaryotic genes with higher accuracy as well as automatically and accurately select essential genes. Nucl. Acids Res. 2015; 43 (W1): W85–W90. doi: 10.1093/nar/gkv491 PMID: 25977299
24. Luo H, Lin Y, Gao F, Zhang CT, Zhang R. DEG 10, an updated version includes both protein-coding genes and non-coding genomic elements. Nucleic Acids Res. 2014; 42, 574–580.
25. Nakai K, Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci. 1999; 24: 34–35. PMID: 10087920
26. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011; 8: 785–786. doi: 10.1038/nmeth.1701 PMID: 21959131
27. Gao F, Zhang CT. Ori-Finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinformatics. 2008; 9: 79. doi: 10.1186/1471-2105-9-79 PMID: 18237442
28. Xu Z, Hao BL. CTVtree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. Nucleic Acids Res. 2009; 37: W174–W178. doi: 10.1093/nar/gkp278 PMID: 19398429
29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28: 2731–2738. doi: 10.1093/molbev/msr121 PMID: 21546353
30. Gao F, Zhang CT. GC-Profile: a web-based tool for visualizing and analyzing the variation of GC content in genomic sequences. Nucleic Acids Res. 2006; 34: W686–W691. PMID: 16845098
31. Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics. 2005; 21: 537–539. PMID: 15479716
32. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J. ACT: the Artemis Comparison Tool. Bioinformatics. 2005; 21(16): 3422–3423. PMID: 15976072
33. Zhou Y, Liang YJ, Lynch KH, Dennis JJ, Wishart DS. PHAST: A Fast Phage Search Tool. Nucleic Acids Res. 2011; 39(suppl 2): W347–W352.
34. Wang FY, Xiao JF, Pan LL, Yang M, Zhang GQ, Jin SG, et al. A systematic survey of mini-proteins in bacteria and archaea. PLOS ONE. 2008; 3(12): e4027. doi: 10.1371/journal.pone.0004027 PMID: 19107199
35. Li Y, Zhou B, Liu YP, Ceng S, Chen HQ, Chen Y, et al. Study on new strains in fermentation of Vitamin C. Wei sheng wu xue za zhi. 2001; 22: 26–27, 32.
36. Yuan ZY, Wei DZ, Xin GL, Yuan WK. Coimmobilization of Gluconobacter oxydans and Bacillus cereus for biocconversion of 2-keto-L-gulonic acid. Ann N Y Acad Sci. 1992; 672: 628–633.
37. Xu A, Yao J, Yu L, Lv S, Wang J, Yan B, et al. Mutation of Gluconobacter oxydans and Bacillus megaterium in a two-step process of L-ascorbic acid manufacture by ion beam. J Appl Microbiol. 2004; 96: 1317–1323. PMID: 15139924
38. Eppinger M, Bunk B, Johns MA, Edirisinghe JN, Kutumbaka KK, Koenig SSK, et al. Genome sequences of the biotechnologically important Bacillus megaterium strains OM B1551 and DSM319. J Bacteriol. 2011; 193: 4199–4213. doi: 10.1128/JB.00449-11 PMID: 21705586
39. Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatchv P, et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature. 2003; 423: 87–91. PMID: 12721630
40. Challacombe JF, Altherr MR, Xie G, Bhotika SS, Brown N, Bruce D, et al. The complete genome sequence of Bacillus thuringiensis AI Hakam. J Bacteriol. 2007; 189: 3680–3681. PMID: 17337577
41. Liu LM, Li Y, Zhang J, Zou W, Zhou ZM, Liu J, et al. Complete genome sequence of the industrial strain *Bacillus megaterium* WSH-002. J Bacteriol. 2011; 193: 6389–6390. doi: 10.1128/JB.00666-11 PMID: 22038958

42. Zhu YB, Liu J, Du GC, Zhou JW, Chen J. Sporulation and spore stability of *Bacillus megaterium* enhance *Ketogulonigenium vulgare* propagation and 2-keto-L-gulonic acid biosynthesis. Bioresour Technol. 2012; 107: 399–404. doi: 10.1016/j.biortech.2011.12.080 PMID: 22257860

43. Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST, et al. The program of gene transcription for a single differentiating cell type during sporulation in *Bacillus subtilis*. PLOS Biol. 2004; 2(10): e328. PMID: 15393836

44. Paredes CJ, Alsaker KV, Papoutsakis ET. A comparative genomic view of clostridial sporulation and *Eichenberger P*, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST, et al. The program of gene transcription for a single differentiating cell type during sporulation in *Bacillus subtilis*. PLOS Biol. 2004; 2(10): e328. PMID: 15393836

45. Britton RA, Eichenberger P, Gonzalez-Pastor JE, Fawcett P, Monson R, Losick R, et al. Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of *Bacillus subtilis*. J Bacteriol. 2002; 184: 4881–4890. PMID: 12169164

46. Jiang M, Shao WL, Perego M, Hoch JA. Multiple histidine kinases regulate entry into stationary phase and sporulation in *Bacillus subtilis*. Mol Microbiol. 2000; 38: 535–542. PMID: 11069677

47. LeDeaux JR, Yu N, Grossman AD. Different roles for KinA, KinB, and KinC in the initiation of sporulation and Clp-mediated proteolysis in Gram-positive bacteria is...
64. Zhou J, Ma Q, Yi H, Wang LL, Song H, Yuan YJ. Metabolome profiling reveals metabolic cooperation between *Bacillus megaterium* and *Ketogulonicigenium vulgare* during induced swarm motility. Appl Environ Microbiol. 2011; 77: 7023–7030. doi: 10.1128/AEM.05123-11 PMID: 21803889

65. Ma Q, Zou Y, Lv YJ, Song H, Yuan YJ. Comparative proteomic analysis of experimental evolution of the *Bacillus cereus-Ketogulonicigenium vulgare* co-culture. PLOS ONE. 2014; 9(3): e91789. doi: 10.1371/journal.pone.0091789 PMID: 24619085

66. Galinier A, Haiech J, Kilhoffer M-C, Jaquinod M, Stülke J, Deutscher J, et al. The *Bacillus subtilis* crh gene encodes a HPr-like protein involved in carbon catabolite repression. PNAS. 1997; 94: 8439–8444. PMID: 9237995

67. Deutscher J, Reizer J, Fischer C, Galinier A, Saier MH, Steinmetz M. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the *ptsH* gene confers catabolite repression resistance to several catabolic genes of *Bacillus subtilis*. J Bacteriol. 1994; 176: 3336–3344. PMID: 8195089

68. Martin-Verstraete I, Deutscher J, Galinier A. Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the *Bacillus subtilis* levanase operon. J Bacteriol. 1999; 181: 2966–2969. PMID: 10217795

69. van Veen HW, Callaghan R, Soceneantu L, Sardini A, Konings WN, Higgins CF. A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene. Nature. 1998; 391: 291–295. PMID: 940694

70. Feng S, Zhang Z, Zhang C. Effect of *Bacillus megaterium* on *Glucobacter oxydans* in mixed culture. Ying Yong Sheng Tai Xue Bao. 2000; 11: 119–122. PMID: 11766567

71. Ye C, Zou W, Xu N, Liu LM. Metabolic model reconstruction and analysis of an artificial microbial ecosystem for vitamin C production. J Biotechnol. 2014; 182: 61–67. doi: 10.1016/j.jbiotec.2014.04.027 PMID: 24815194

72. Huang Z, Zou W, Liu J, Liu LM. Glutathione enhances 2-keto-L-gulonic acid production based on *Ketogulonicigenium vulgare* model iWZ663. J Biotechnol. 2013; 164: 454–460. doi: 10.1016/j.jbiotec.2013.01.007 PMID: 23376843

73. Liu LM, Chen KJ, Zhang J, Liu J, Chen J. Gelatin enhances 2-keto-L-gulonic acid production based on *Ketogulonicigenium vulgare* genome annotation. J Biotechnol. 2011; 156: 182–187. doi: 10.1016/j.jbiotec.2011.08.007 PMID: 21924300

74. Zhang J, Zhou JW, Liu J, Chen KJ, Liu LM, Chen J. Development of chemically defined media supporting high cell density growth of *Ketogulonicigenium vulgare* and *Bacillus megaterium*. Bioreourc Technol. 2011; 102: 4807–4814. doi: 10.1016/j.biortech.2010.12.042 PMID: 21296571

75. Wolf JB, Brey RN. Isolation and genetic characterizations of *Bacillus megaterium* cobalamin biosynthesis-deficient mutants. J Bacteriol. 1986; 166: 51–58. PMID: 3082859

76. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011; 27(7): 1009–1010. doi: 10.1093/bioinformatics/btr039 PMID: 21278367