FUNCTORIAL CHARACTERIZATIONS OF MITTAG-LEFFLER MODULES

CARLOS SANCHO, FERNANDO SANCHO AND PEDRO SANCHO

ABSTRACT. We give some functorial characterizations of Mittag-Leffler modules and strict Mittag-Leffler modules.

1. Introduction

Let \(R \) be a commutative (associative with unit) ring. Let \(\mathcal{R} \) be the covariant functor from the category of commutative \(R \)-algebras to the category of rings defined by \(\mathcal{R}(S) := S \) for any commutative \(R \)-algebra \(S \). Let \(M \) be an \(R \)-module. Consider the functor of \(R \)-modules, \(\mathcal{M} \), defined by \(\mathcal{M}(S) := M \otimes_R S \), for any commutative \(R \)-algebra \(S \). \(\mathcal{M} \) is said to be the functor of quasi-coherent \(R \)-modules associated with \(M \). It is easy to prove that the category of \(R \)-modules is equivalent to the category of functors of quasi-coherent \(R \)-modules. Consider the dual functor \(\mathcal{M}^* := \text{Hom}_R(\mathcal{M}, \mathcal{R}) \) defined by \(\mathcal{M}^*(S) := \text{Hom}_S(M \otimes_R S, S) \). \(\mathcal{M}^* \) is called an \(R \)-module scheme. In general, the canonical morphism \(M \to \mathcal{M}^{**} \) is not an isomorphism, but, surprisingly, \(M = \mathcal{M}^{**} \) (see 2.14). This result has many applications in Algebraic Geometry (see [7]), for example the Cartier duality of commutative affine groups and commutative formal groups.

In [2], we proved that an \(R \)-module \(M \) is a projective module of finite type iff \(\mathcal{M} \) is a module scheme. In [9], we proved that \(M \) is a flat \(R \)-module iff \(\mathcal{M} \) is a direct limit of module schemes. It is also proved that \(M \) is a flat Mittag-Leffler module iff \(\mathcal{M} \) is the direct limit of its submodule schemes. In [10], we proved that \(M \) is a flat strict Mittag-Leffler module (see [4], for definition and properties) iff \(\mathcal{M} \) is the direct limit of its submodule schemes, \(\mathcal{M} = \lim_{\to} N_i^* \), and the morphisms \(\mathcal{M}^* \to N_i \) are epimorphisms.

The definition of a Mittag-Leffler module is slightly elaborated (see [11, Tag 0599]). Mittag-Leffler conditions were first introduced by Grothendieck in [5], and deeply studied by some authors, such as Raynaud and Gruson in [6]. Every module is a direct limit of finitely presented modules. Roughly speaking, we prove that a module \(M \) is a Mittag-Leffler module iff \(\mathcal{M} \) is a direct limit of finitely presented functors of submodules.

Let \(P \) be an \(R \)-module. \(P \) is a finitely presented module iff

\[
\text{Hom}_R(P, \lim_{\to} N_i) = \lim_{\to} \text{Hom}_R(P, N_i),
\]

Date: Junio, 2017.
for any direct system \(\{N_i\} \) of \(R \)-modules (see [13]). We will say that a functor of \(R \)-modules, \(P \), is an FP-functor if

\[
\text{Hom}_R(P, \lim_{i} N_i) = \lim_{i} \text{Hom}_R(P, N_i)
\]

for every direct system of quasi-coherent modules \(\{N_i\} \). Module schemes are FP-functors. We prove the following theorem.

Theorem 1.1. \(M \) is an FP-functor of \(R \)-modules iff \(M^* \) is the cokernel of a morphism \(F: \oplus_i P_i^* \to \oplus_j Q_j^* \), where \(P_i, Q_j \) are finitely presented \(R \)-modules, for every \(i,j \).

Let \(\{N_i\} \) be the set of the finitely generated submodules of \(M \). Let \(\tilde{N}_i := \text{Im}[N_i \to M] \), for any \(N_i \). Then, \(M = \lim_{\to i} \tilde{N}_i \). We prove the following theorems.

Theorem 1.2. Let \(M \) be an \(R \)-module. The following statements are equivalent:

1. \(M \) is a Mittag-Leffler module.
2. \(\tilde{N}_i \) is an FP-functor, for any \(i \).
3. \(M \) is a direct limit of FP-functors of \(R \)-submodules.
4. The kernel of every morphism \(R^n \to M \) is isomorphic to a quotient of a module scheme.
5. The kernel of every morphism \(N^* \to M \) is isomorphic to a quotient of a module scheme, for any \(R \)-module \(N \).

Theorem 1.3. Let \(M \) be an \(R \)-module. The following statements are equivalent:

1. \(M \) is a strict Mittag-Leffler module.
2. \(\tilde{N}_i \) is an FP-functor and the natural morphism \(M^* \to \tilde{N}_i^* \) is an epimorphism, for any \(i \).
3. \(M \) is an \(R \)-module of some \(R \)-module \(\prod_r P_r \), where \(P_r \) is a finitely presented modules, for every \(r \).
4. The cokernel of every morphism \(M^* \to R^n \) is isomorphic to an \(R \)-submodule of a quasi-coherent module.
5. The cokernel of every morphism \(M^* \to N \) is isomorphic to an \(R \)-submodule of a quasi-coherent module, for any \(R \)-module \(N \).

2. Preliminaries

Let \(R \) be a commutative ring (associative with a unit). All the functors considered in this paper are covariant functors from the category of commutative \(R \)-algebras (always assumed to be associative with a unit) to the category of sets. A functor \(\mathcal{X} \) is said to be a functor of sets (resp. groups, rings, etc.) if \(\mathcal{X} \) is a functor from the category of commutative \(R \)-algebras to the category of sets (resp. groups, rings, etc.).

Notation 2.1. For simplicity, we shall sometimes use \(x \in \mathcal{X} \) to denote \(x \in \mathcal{X}(S) \). Given \(x \in \mathcal{X}(S) \) and a morphism of commutative \(R \)-algebras \(S \to S' \), we shall still denote by \(x \) its image by the morphism \(\mathcal{X}(S) \to \mathcal{X}(S') \).

An \(R \)-module \(M \) is a functor of abelian groups endowed with a morphism of functors

\[
R \times M \to M
\]
satisfying the module axioms (in other words, the morphism \(R \times M \to M \) yields an \(S \)-module structure on \(M(S) \) for any commutative \(R \)-algebra \(S \)). Let \(M \) and \(M' \) be two \(R \)-modules. A morphism of \(R \)-modules \(f: M \to M' \) is a morphism of functors such that the morphism \(f_S: M(S) \to M'(S) \) defined by \(f \) is a morphism of \(S \)-modules, for any commutative \(R \)-algebra \(S \). We shall denote by \(\text{Hom}_R(M, M') \) the family of all the morphisms of \(R \)-modules from \(M \) to \(M' \).

Remark 2.2. Direct limits, inverse limits of \(R \)-modules and kernels, cokernels, images, etc., of morphisms of \(R \)-modules are regarded in the category of \(R \)-modules.

One has

\[
\begin{align*}
(\text{Ker} f)(S) &= \text{Ker} f_S, \\
(\text{Coker} f)(S) &= \text{Coker} f_S, \\
(\text{Im} f)(S) &= \text{Im} f_S,
\end{align*}
\]

(\text{lim}_{i \in I} M_i)(S) = \lim_{i \in I} (M_i(S)), \quad (\text{lim}_{j \in J} M_j)(S) = \lim_{j \in J} (M_j(S)),

(where \(I \) is an upward directed set and \(J \) a downward directed set). \(M \otimes_R M' \) is defined by \((M \otimes_R M')(S) := M(S) \otimes_S M'(S)\), for any commutative \(R \)-algebra \(S \).

Definition 2.3. Given an \(R \)-module \(M \) and a commutative \(R \)-algebra \(S \), we shall denote by \(M|_S \) the restriction of \(M \) to the category of commutative \(R \)-algebras, i.e.,

\[
M|_S(S') := M(S'),
\]

for any commutative \(S \)-algebra \(S' \).

We shall denote by \(\mathbb{H}\text{om}_R(M, M')^{[1]} \) the \(R \)-module defined by

\[
\mathbb{H}\text{om}_R(M, M')(S) := \text{Hom}_S(M|_S, M'|_S).
\]

Obviously,

\[
(\mathbb{H}\text{om}_R(M, M'))|_S = \mathbb{H}\text{om}_S(M|_S, M'|_S).
\]

Notation 2.4. Let \(M \) be an \(R \)-module. We shall denote \(M^* = \text{Hom}_R(M, R) \).

Proposition 2.5. Let \(M \) and \(N \) be two \(R \)-modules. Then,

\[
\text{Hom}_R(M, N^*) = \text{Hom}_R(N, M^*), \quad f \mapsto \tilde{f},
\]

where \(\tilde{f} \) is defined as follows: \(\tilde{f}(n)(m) := f(m)(n) \), for any \(m \in M \) and \(n \in N \).

Proof. \(\text{Hom}_R(M, N^*) = \text{Hom}_R(M \otimes_R N, R) = \text{Hom}_R(N, M^*) \).

□

Proposition 2.6. \([1] 1.15\)** Let \(M \) be an \(R \)-module, \(S \) a commutative \(R \)-algebra and \(N \) an \(S \)-module. Then,

\[
\text{Hom}_S(M|_S, N) = \text{Hom}_R(M, N).
\]

In particular,

\[
M^*(S) = \text{Hom}_R(M, S).
\]

\footnote{In this paper, we shall only consider well-defined functors \(\mathbb{H}\text{om}_R(M, M') \), that is to say, functors such that \(\text{Hom}_S(M|_S, M'|_S) \) is a set, for any \(S \).}
2.1. Quasi-coherent modules.

Definition 2.7. Let M (resp. N, V, etc.) be an R-module. We shall denote by \mathcal{M} (resp. \mathcal{N}, \mathcal{V}, etc.) the R-module defined by $\mathcal{M}(S) := M \otimes_R S$ (resp. $\mathcal{N}(S) := N \otimes_R S$, $\mathcal{V}(S) := V \otimes_R S$, etc.). \mathcal{M} will be called the quasi-coherent R-module associated with M.

$\mathcal{M}|_S$ is the quasi-coherent S-module associated with $M \otimes_R S$. For any pair of R-modules M and N, the quasi-coherent module associated with $M \otimes_R N$ is $\mathcal{M} \otimes_R \mathcal{N}$.

Proposition 2.8. \cite{1, 1.12] The functors

\[
\text{Category of } R\text{-modules} \rightarrow \text{Category of quasi-coherent } R\text{-modules}
\]

\[M \mapsto \mathcal{M}\]

\[\mathcal{M}(R) \mapsto M\]

establish an equivalence of categories. In particular,

\[\text{Hom}_R(\mathcal{M}, \mathcal{M}') = \text{Hom}_R(M, M').\]

Let $f: M \rightarrow N$ be a morphism of R-modules and $\hat{f}: \mathcal{M} \rightarrow \mathcal{N}$ the associated morphism of R-modules. Let $C = \text{Coker } f$, then $\text{Coker } \hat{f} = C$, which is a quasi-coherent module.

Proposition 2.9. \cite{1, 1.3] For every R-module \mathbb{M} and every R-module M, it is satisfied that

\[\text{Hom}_R(\mathbb{M}, \mathbb{M}) = \text{Hom}_R(M, M(R)), f \mapsto f_R.\]

Notation 2.10. Let \mathbb{M} be an R-module. We shall denote by \mathbb{M}_{qc} the quasi-coherent module associated with the R-module $M(R)$, that is,

\[\mathbb{M}_{qc}(S) := M(R) \otimes_R S.\]

Proposition 2.11. For each R-module \mathbb{M} one has the natural morphism

\[\mathbb{M}_{qc} \rightarrow \mathbb{M}, m \otimes s \mapsto s \cdot m,\]

for any $m \otimes s \in \mathbb{M}_{qc}(S) = M(R) \otimes_R S$, and a functorial equality

\[\text{Hom}_R(\mathcal{N}, \mathbb{M}_{qc}) = \text{Hom}_R(\mathcal{N}, \mathbb{M}),\]

for any quasi-coherent R-module \mathcal{N}.

Proof. Observe that $\text{Hom}_R(\mathcal{N}, \mathbb{M}) \cong \text{Hom}_R(N, M(R)) \cong \text{Hom}_R(\mathcal{N}, \mathbb{M}_{qc})$. \hfill \square

Obviously, an R-module \mathbb{M} is a quasi-coherent module iff the natural morphism $\mathbb{M}_{qc} \rightarrow \mathbb{M}$ is an isomorphism.

Theorem 2.12. \cite{1, 1.8] Let M and M' be R-modules. Then,

\[\mathcal{M} \otimes_R \mathcal{M}' = \text{Hom}_R(\mathcal{M}, \mathcal{M}'), m \otimes m' \mapsto m \circ m',\]

where $m \circ m'(w) := w(m) \cdot m'$, for any $w \in \mathcal{M}$.

Note 2.13. In particular, $\text{Hom}_R(\mathcal{M}, \mathcal{M}') = M \otimes_R M'$, and it is easy to prove that the morphism $f = \sum m_i \otimes m'_i \in \text{Hom}_R(\mathcal{M}, \mathcal{M}') = M \otimes_R M'$ factors through the quasi-coherent module associated with the submodule $\langle m'_i \rangle \subseteq M'$.
If we make $M' = \mathcal{R}$ in the previous theorem, we obtain the following theorem.

Theorem 2.14. \(\text{[III, §1, 2.5] [1, 1.10]}\) Let M be an \mathcal{R}-module. Then, $\mathcal{M} = M^{**}$.

Definition 2.15. Let \mathcal{M} be an \mathcal{R}-module. We shall say that \mathcal{M}^* is a dual functor. We shall say that an \mathcal{R}-module \mathcal{M} is reflexive if $\mathcal{M} = \mathcal{M}^{**}$.

Example 2.16. Quasi-coherent modules are reflexive.

2.2. \mathcal{R}-module schemes.

Definition 2.17. Let \mathcal{M} be an \mathcal{R}-module. \mathcal{M}^* will be called the \mathcal{R}-module scheme associated with \mathcal{M}.

Definition 2.18. Let \mathcal{N} be an \mathcal{R}-module. We shall denote by \mathcal{N}_{sch} the \mathcal{R}-module scheme defined by $\mathcal{N}_{sch} := ((\mathcal{N}^*)_{qc})^*$.

Proposition 2.19. Let \mathcal{N} be a functor of \mathcal{R}-modules. Then, we have a canonical morphism $\mathcal{N} \to \mathcal{N}_{sch}$ and

\[
\text{Hom}_{\mathcal{R}}(\mathcal{N}, \mathcal{M}^*) = \text{Hom}_{\mathcal{R}}(\mathcal{N}_{sch}, \mathcal{M}^*), \quad \text{for any module scheme } \mathcal{M}^*.
\]

\[
\text{Hom}_{\mathcal{R}}(\mathcal{N}_{sch}, \mathcal{M}) = \mathcal{N}^*(R) \otimes_{\mathcal{R}} M, \quad \text{for any quasi-coherent module } \mathcal{M}.
\]

Proof. $\text{Hom}_{\mathcal{R}}(\mathcal{N}, \mathcal{M}^*) = \text{Hom}_{\mathcal{R}}(\mathcal{M}, (\mathcal{N}^*)_{qc}) = \text{Hom}_{\mathcal{R}}(\mathcal{N}_{sch}, \mathcal{M}^*)$, and $\text{Hom}_{\mathcal{R}}(\mathcal{N}_{sch}, \mathcal{M}) = (\mathcal{N}^*)_{qc}(R) \otimes_{\mathcal{R}} M = \mathcal{N}^*(R) \otimes_{\mathcal{R}} M$.

Let $\{U_i\}_{i \in I}$ be an open covering of a scheme X. We shall say that the obvious morphism $Y = \coprod_{i \in I} U_i \to X$ is an open covering.

Definition 2.20. Let \mathcal{F} be a functor of sets. \mathcal{F} is said to be a sheaf in the Zariski topos if for any commutative \mathcal{R}-algebra S and any open covering $\text{Spec} S_1 \to \text{Spec} S$, the sequence of morphisms

\[
\mathcal{F}(S) \longrightarrow \mathcal{F}(S_1) \longrightarrow \mathcal{F}(S_1 \otimes_{S} S_1)
\]

is exact.

Example 2.21. \mathcal{M} is a sheaf in the Zariski topos.

Let \mathcal{F}_1 and \mathcal{F}_2 be sheaves in the Zariski topos. If $f: \mathcal{F}_1 \to \mathcal{F}_2$ is a morphism of \mathcal{R}-modules, it is easy to check that $\text{Ker} f$ is a sheaf in the Zariski topos.

Theorem 2.22. \(\text{[9, 1.28]}\) Let $\{\mathcal{F}_i\}$ be a direct system of sheaves of \mathcal{R}-modules. Then, $\text{Hom}_{\mathcal{R}}(\mathcal{N}^*, \lim_{i} \mathcal{F}_i) = \lim_{i} \text{Hom}_{\mathcal{R}}(\mathcal{N}^*, \mathcal{F}_i)$.

2.3. From the category of \mathcal{R}-algebras to the category of \mathcal{R}-modules.

Notation 2.23. Let $\mathcal{F} = \mathcal{N}^*$ be a dual functor of \mathcal{R}-modules. We can consider the following functor from the category of \mathcal{R}-modules to the category of \mathcal{R}-modules $\mathcal{F}(N) := \text{Hom}_{\mathcal{R}}(\mathcal{N}, \mathcal{N}) \longrightarrow \text{Hom}_{\mathcal{R}}(\mathcal{N}^*, \mathcal{F})$, for any \mathcal{R}-module N.
Examples 2.24. $\overline{\mathcal{M}}(N) = \text{Hom}_R(M, N)$. $\mathcal{M}(N) = M \otimes_R N$.

Observe that $\overline{\mathcal{F}}(S) = \mathcal{F}(S)$, for any commutative R-algebra S. Given an R-module N, consider the R-algebra $R \oplus N$, where $(r, n) \cdot (r', n') := (rr', rn' + r'n)$. It is easy to check that

$$\mathcal{F}(R \oplus N) = \mathcal{F}(R) \oplus \mathcal{F}(N),$$

and $\overline{\mathcal{F}}(N) = \text{Ker}(\mathcal{F}(R \oplus N) \to \mathcal{F}(R))$.

Let \mathcal{F}, \mathcal{F}' and \mathcal{F}'' be dual functors of R-modules. Then, $\mathcal{F} \to \mathcal{F}' \to \mathcal{F}''$ is an exact sequence of morphisms of R-modules iff $\overline{\mathcal{F}}(N) \to \overline{\mathcal{F}'}(N) \to \overline{\mathcal{F}''}(N)$ is an exact sequence of morphisms of R-modules, for any R-module N.

Lemma 2.25. The obvious morphism

$$\text{Hom}_R(\prod_{i \in I} R, N) \to \text{Hom}_R(\oplus_{i \in I} R, N), \; g \mapsto g|_{\oplus_{i \in I} R}$$

is injective.

Proof. Write $M = \oplus_{i \in I} R$. Then,

$$\text{Hom}_R(\prod_{i \in I} R, N) = \text{Hom}_R(\mathcal{M}^*, N) \cong M \otimes_R N = \oplus_{i \in I} N \subseteq \prod_{i \in I} N = \text{Hom}_R(\oplus_{i \in I} R, N).$$

\[\square\]

Proposition 2.26. Let $\{M_i\}_{i \in I}$ be a set of dual functors of R-modules and let N be an R-module. Then,

$$\text{Hom}_R(\prod_{i \in I} M_i, N) = \oplus_{i \in I} \text{Hom}_R(M_i, N)$$

In particular, $(\prod_{i \in I} M_i)^* = \oplus_{i \in I} M_i^*$ and if M_i is reflexive, for any i, then $\prod_{i \in I} M_i$ is reflexive.

Proof. If $f|_{\oplus_{i \in I} M_i} = 0$, then $f = 0$: Given $m = (m_i)_{i \in I} \in \prod_{i \in I} M_i$, define

$$g: \prod_{i \in I} R \to N, \; g((r_i)) := f((r_i \cdot m_i)).$$

Observe that $g|_{\oplus_{i \in I} R} = 0$, hence $g = 0$, by Lemma 2.25. Therefore, $f = 0$.

Obviously,

$$\oplus_{i \in I} \text{Hom}_R(M_i, N) \subseteq \text{Hom}_R(\prod_{i \in I} M_i, N).$$

Let $f \in \text{Hom}_R(\prod_{i \in I} M_i, N)$ and $J := \{i \in I: f_i := f|_{M_i} \neq 0\}$. For each $j \in J$, let R_j be a commutative R-algebra and $m_j \in M_j(R_j)$ such that $0 \neq f_j(m_j) \in N \otimes_R R_j$. Let $S := \prod_{j \in J} R_j$. The obvious morphism of R-algebras $S \to R_i$ is surjective, and this morphism of R-modules has a section. Hence, the natural morphism $\pi_i: M_i(S) = \overline{M_i}(S) \to \overline{M_i}(R_i) = M_i(R_i)$ has a section of R-modules. Let $m'_i \in M_i(S)$ be such that $\pi_i(m'_i) = m_i$. The morphism of S-modules $g: \prod_{j \in J} S \to N \otimes_R S, \; g((s_j)) := f((s_j \cdot m'_j))$ satisfies that $g|S \neq 0$, for every factor $S \subseteq \prod_{j \in J} S$. Then, $\# J < \infty$ by Lemma 2.25.

Finally, define $h := \sum_{j \in J} f_j \in \oplus_{i \in I} \text{Hom}_R(M_i, N)$, then $f = h$.

\[\square\]

Let $\{F_i\}_{i \in I}$ be a set of reflexive functors, then $\oplus_{i \in I} F_i$ is a reflexive functor and $\overline{\oplus_{i \in I} F_i} = \oplus_{i \in I} \overline{F_i}$.
3. Quasi-coherent modules associated with finitely presented modules

Let M be an R-module. There exists an R-module N such that $M = N^*$ iff M is an R-module projective of finite type (see [2]). In other words, $M = M_{sch}$ iff M is an R-module projective of finite type. $M = M_{sch}$ iff

$$M \otimes_R N' = \overline{M}(N') = \overline{M}_{sch}(N') = \text{Hom}_R(M^*, N')$$

for any R-module N'.

Theorem 3.1. The morphism $M^*_{qc} \to M^*$ is an epimorphism iff M is a projective module of finite type.

Proof. \Rightarrow) The morphism $\overline{M^*_{qc}} \to \overline{M^*}$ is an epimorphism. Then, the morphism

$$M^* \otimes_R N \to \text{Hom}_R(M, N)$$

is surjective, for every R-module N. Let $N = M$. Then, there exist $w_i \in M^*$ and $m_i \in M$, $i = 1, \ldots, r$, such that $\sum_i w_i \otimes m_i \to Id$. Therefore, $\sum_i w_i(m)m_i = m$, for every $m \in M$. Let $f: M \to R^r$, $f(m) := (w_i(m))$ and $g: R^r \to M$, $g(a_i) := \sum_i a_i m_i$. Observe that $(g \circ f)(m) = g((w_i(m))) = \sum_i w_i(m)m_i = m$, that is, $g \circ f = Id$ and M is a direct summand of R^r.

\square

Corollary 3.2. A morphism $N \to M^*$ is an epimorphism iff M is a projective module of finite type and the morphism $N \to M^*$ is an epimorphism.

Proof. \Rightarrow) $N \to M^*$ factors through the morphism $M^*_{qc} \to M^*$, which is an epimorphism because $N \to M^*$ is an epimorphism. Then, M is a projective module of finite type and the morphism $N \to M^*$ is an epimorphism.

\Leftarrow) The morphism $N \to M^*_{qc}$ is an epimorphism because $N \to M^*$ is an epimorphism. The morphism $M^*_{qc} \to M^*$ is an isomorphism because M is a projective module of finite type. Then, $N \to M^*$ is an epimorphism.

\square

Lemma 3.3. Let $f: V_2 \to V_1$ be a morphism of R-modules between quasi-coherent modules. Then, f is an epimorphism iff $f^*: V_1^* \to V_2^*$ is a monomorphism.

Proof. \Leftarrow) Coker f is the quasi-coherent module associated with to Coker f_R, and $(\text{Coker } f)^* = \ker f^* = 0$. Then, Coker $f = (\text{Coker } f)^* = 0$.

\square

Proposition 3.4. If

$$0 \to V_2^* \xrightarrow{f} V_1^* \xrightarrow{g} M \to 0$$

is an exact sequence of morphisms of functors of R-modules, then M is a projective module of finite type.

Proof. 1. M is a finitely generated R-module, by Note 2.13

2. Given an R-module N, if we take $\text{Hom}_R(-, N)$ on the above exact sequence we obtain the exact sequence

$$0 \to \text{Hom}_R(M, N) \to V_2 \otimes N \to V_1 \otimes N \to 0$$

by Proposition 2.3 and Lemma 3.3

3. Consider an exact sequence of morphisms of R-modules

$$0 \to N_1 \to N_2 \to N_3 \to 0$$
We obtain the diagram

\[
\begin{array}{ccccccccc}
0 & \to & \text{Hom}_R(M, N_1) & \to & V_2 \otimes N_1 & \to & V_1 \otimes N_1 & \to & 0 \\
 & & \uparrow & & \uparrow & & \uparrow & & \\
0 & \to & \text{Hom}_R(M, N_2) & \to & V_2 \otimes N_2 & \to & V_1 \otimes N_2 & \to & 0 \\
 & & \uparrow & & \uparrow & & \uparrow & & \\
0 & \to & \text{Hom}_R(M, N_3) & \to & V_2 \otimes N_3 & \to & V_1 \otimes N_3 & \to & 0 \\
\end{array}
\]

By the snake lemma, \(\text{Hom}_R(M, N_2) \to \text{Hom}_R(M, N_3)\) is surjective. Then, \(M\) is a projective module of finite type.

Proposition 3.5. Let \(M\) be an \(R\)-module. \(M\) is a finitely presented \(R\)-module iff there exists an exact sequence of functors of \(R\)-modules

\[
\begin{array}{ccccccc}
V^*_1 & \xrightarrow{i} & V^*_2 & \xrightarrow{\pi} & M & \to & 0 \\
\end{array}
\]

Proof. \(\Leftarrow\) 1. \(M\) is a finitely generated \(R\)-module, by Note 2.13.

2. Let \(f: L = R^n \to M\) be an epimorphism, \(K := \text{Ker} f \subseteq L\), and \(\tilde{f}: L \to M\) and \(i': K \to L\) the associated morphisms. There exists a morphism \(g: V^*_2 \to L\) such that \(\tilde{f} \circ g = \pi\), because \(\text{Hom}_R(V^*_2, L) \cong V^*_2 \otimes_R L \to V^*_2 \otimes_R M\) is surjective. We can suppose that \(g\) is an epimorphism, replacing \(V^*_2\) by \(V^*_2\) and \(L\). Consider the exact sequences of morphisms

\[
\begin{array}{ccccccc}
K & \to & L & \to & M & \to & 0 \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{Hom}_R(V^*_1, K) & \xrightarrow{\cong} & \text{Hom}_R(V^*_1, L) & \xrightarrow{\cong} & \text{Hom}_R(V^*_1, M) \\
V_1 \otimes_R K & \xrightarrow{\cong} & V_1 \otimes_R L & \xrightarrow{\cong} & V_1 \otimes_R M & \to & 0 \\
\end{array}
\]

There exists a morphism \(g': V^*_1 \to K\) such that \(i' \circ g' = g \circ i\). The morphism \(g'_R\) is surjective because \(g_R\) is surjective. Then, \(g'\) is an epimorphism and \(K\) is a finitely generated module, by Note 2.13. Hence, \(M\) is a finitely presented module.

\(\square\)

Proposition 3.6. [11, Tag 058L] If \(0 \to M_1 \xrightarrow{i} M_2 \xrightarrow{\pi} M_3 \to 0\) is an exact sequence of functors of \(R\)-modules and \(M_3\) is a finitely presented module, then this exact sequence splits.

Proof. Let \(V^*_1 \xrightarrow{i} V^*_2 \xrightarrow{\pi} M_3 \to 0\) be an exact sequence of \(R\)-modules and let \(V^*_0 := \text{Ker} i\) \((V_0 := \text{Coker}[V_2 \to V_1])\). Let \(i_0: V^*_0 \to V^*_1\) the inclusion morphism. Then,

\[
0 \to V^*_0 \xrightarrow{i_0} V^*_1 \xrightarrow{i} V^*_2 \xrightarrow{\pi} M_3 \to 0
\]
is an exact sequence, and if we take $\text{Hom}_R(\mathcal{M}, \mathcal{N})$, for any quasi-coherent \mathcal{R}-module \mathcal{N}, the sequence

$$
\begin{array}{c}
0 \longrightarrow \text{Hom}_R(\mathcal{M}_3, \mathcal{N}) \longrightarrow \text{Hom}_R(\mathcal{V}_2^*, \mathcal{N}) \longrightarrow \text{Hom}_R(\mathcal{V}_1^*, \mathcal{N}) \longrightarrow \text{Hom}_R(\mathcal{V}_0^*, \mathcal{N}) \longrightarrow 0
\end{array}
$$

(\ast)

is exact.

Let $f: \mathcal{V}_2^* \to \mathcal{M}_2$ be a morphism such that $\pi' \circ f = \pi$. Let $g: \mathcal{V}_1^* \to \mathcal{M}_1$ be the morphism such that the diagram

$$
\begin{array}{c}
0 \longrightarrow \mathcal{M}_1 \longrightarrow \mathcal{V}_2^* \longrightarrow \mathcal{V}_1^* \longrightarrow \mathcal{V}_0^* \longrightarrow 0
\end{array}
$$

is commutative. Observe that $i' \circ g \circ i_0 = f \circ i \circ i_0 = 0$, then $g \circ i_0 = 0$. By the exact sequence (\ast), there exists a morphism $f': \mathcal{V}_2^* \to \mathcal{M}_1$ such that $g = f' \circ i$. Therefore, $f - i' \circ f'$ is zero over \mathcal{V}_1^*. Then, there exists a morphism $s: \mathcal{M}_3 \to \mathcal{M}_2$ such that $f - i' \circ f' = s \circ \pi$. Then, $\pi = \pi' \circ f = \pi' \circ (f - i' \circ f') = \pi' \circ s \circ \pi$ and $\pi' \circ s = \text{Id}$.

\[\Box\]

Proposition 3.7. Let P be a finitely presented R-module, $M \to P$ an epimorphism and $f: \mathcal{M} \to \mathcal{P}$ the associated morphism. Consider the exact sequence of morphisms of R-modules

$$
\begin{array}{c}
0 \to \text{Ker} f \to \mathcal{M} \to \mathcal{P} \to 0
\end{array}
$$

Then, the sequence of morphisms of R-modules

$$
\begin{array}{c}
0 \to \mathcal{P}^* \to \mathcal{M}^* \to (\text{Ker} f)^* \to 0
\end{array}
$$

is exact. More generally, the sequence of morphisms of R-modules

$$
\begin{array}{c}
0 \to \text{Hom}_R(\mathcal{P}, \mathcal{N}) \to \text{Hom}_R(\mathcal{M}, \mathcal{N}) \to \text{Hom}_R(\text{Ker} f, \mathcal{N}) \to 0
\end{array}
$$

is exact, for any R-module N.

Finally, $\text{Ker} f$ is a reflexive functor of R-modules.

Proof. We have to prove that every morphism $g: \text{Ker} f \to \mathcal{N}$ lifts to a morphism $\mathcal{M} \to \mathcal{N}$. It is equivalent to prove that the exact sequence of morphisms of R-modules

$$
\begin{array}{c}
0 \to \mathcal{N} \to \mathcal{N} \oplus \mathcal{M} \to \mathcal{P} \to 0
\end{array}
$$

splits. $\mathcal{N} \oplus \mathcal{M}$ is the quasicoherent \mathcal{R}-module associated with the cokernel of the morphism $\text{Ker} f_R \to N \oplus M$, $k \mapsto (k, -g_R(k))$. By 3.6 this exact sequence splits.

Finally, the sequence of morphisms of R-modules

$$
\begin{array}{c}
0 \to (\text{Ker} f)^{**} \to \mathcal{M}^{**} \to \mathcal{P}^{**} = \mathcal{P}
\end{array}
$$

is exact, then $(\text{Ker} f)^{**} = \text{Ker} f$.

\[\Box\]
4. FP-functors

Definition 4.1. We shall say that a functor of R-modules \mathcal{M} is an FP-functor if
\[
\Hom_R(\mathcal{M}, \lim_{i} \mathcal{N}_i) = \lim_{i} \Hom_R(\mathcal{M}, \mathcal{N}_i)
\]
for every direct system of quasi-coherent modules $\{\mathcal{N}_i\}$.

Example 4.2. Module schemes are FP-functors:
\[
\Hom_R(\mathcal{M}^*, \lim_{i} \mathcal{N}_i) = \lim_{i} \Hom_R(\mathcal{M}^*, \mathcal{N}_i).
\]

Theorem 4.3. Let \mathcal{F}_1 and \mathcal{F}_2 be FP-functors of R-modules and $f: \mathcal{F}_1 \to \mathcal{F}_2$ a morphism of R-modules. Then, $\text{Coker } f$ is an FP-functor of R-modules.

Proposition 4.4. Let P be a finitely presented module and $\{\mathcal{M}_i\}$ a direct system of R-modules. Then,
\[
\Hom_R(P, \lim_{i} \mathcal{M}_i) = \lim_{i} \Hom_R(P, \mathcal{M}_i).
\]
In particular, P is an FP-functor.

Proof. By (2.10), $\Hom_R(P, \lim_{i} \mathcal{M}_i) = \lim_{i} \Hom_R(P, \mathcal{M}_i(R)) = \lim_{i} \Hom_R(P, \mathcal{M}_i)$.

Proposition 4.5. Let M be an R-module. M is a finitely presented module iff M is an FP-functor of R-modules.

Proof. \Leftarrow) Any R-module is a direct limit of finitely presented modules. Write $M = \lim_{i} P_i$, where P_i is a finitely presented module, for any i. Then, $\text{Id}: M \to M$ factors through a morphism $f_i: M \to P_i$, for some i. Then, M is a direct summand of P_i, and it is finitely presented.

\Rightarrow) It is an immediate consequence of Proposition 4.4.

Recall Notation (2.23).

Proposition 4.6. \mathcal{M} is an FP-functor iff \mathcal{M}^* commutes with direct limits of R-modules.

Proof. It is an immediate consequence of the equality
\[
\Hom_R(\mathcal{M}, \lim_{i} \mathcal{N}_i) = \mathcal{M}^*(\lim_{i} \mathcal{N}_i).
\]

Proposition 4.7. Let M be an R-module and let $N \subseteq M$ be an R-submodule. Let \tilde{N} be the image of the obvious morphism $N \to M$. \tilde{N} is an FP-functor iff there exist finitely presented modules P and P' and an exact sequence of morphisms of R-modules
\[
0 \to \tilde{N} \to P \to P' \to 0
\]
(and in particular, N is isomorphic to a finitely generated submodule of P).
Proof. \(\Rightarrow\) Write \(M = \lim \limits_{\to} P_i\), where \(\{P_i\}\) is a direct system of finitely presented \(R\)-modules. Then, \(\mathcal{M} = \lim \limits_{\to} \mathcal{P}_i\) and for some \(i\) the morphism \(\tilde{N} \to \mathcal{M}\) factors through an injective morphism \(\tilde{N} \to \mathcal{P}_i\). Consider the composite morphism \(\mathcal{N} \to \tilde{N} \to \mathcal{P}_i\).

\[\text{Coker}[\tilde{N} \to \mathcal{P}_i] = \text{Coker}[\mathcal{N} \to \mathcal{P}_i] =: Q\] is quasi-coherent. Then we have the exact sequence of morphisms

\[0 \to \tilde{N} \to \mathcal{P}_i \to Q \to 0\]

By 4.3, \(Q\) is an FP-functor. By 4.5, \(Q\) is a finitely presented \(R\)-module. We are done.

\(\Leftarrow\) By 3.7, the sequence of morphisms of \(R\)-modules

\[0 \to P'^* \to P^* \to (\text{Ker } f)^* \to 0\]

is exact. \(P'^*\) and \(P^*\) commute with direct limits of \(R\)-modules, therefore \((\text{Ker } f)^*\) commutes with direct limits of \(R\)-modules. Hence, \(\text{Ker } f\) is an FP-functor by Proposition 4.6.

\(\square\)

Proposition 4.8. Let \(P\) be a finitely presented module and \(f: \mathcal{M} \to \mathcal{P}\) an epimorphism. Then, \(\text{Ker } f\) is an FP-functor iff \(M\) is a finitely presented module.

Proof. \(\Rightarrow\) By Proposition 3.7, the rows of the diagram

\[
\begin{array}{cccccc}
0 & \to & \text{Hom}_R(P, \lim \limits_{\to} N_i) & \to & \text{Hom}_R(M, \lim \limits_{\to} N_i) & \to & \text{Hom}_R(\text{Ker } f, \lim \limits_{\to} N_i) & \to & 0 \\
\text{Hom}_R(\mathcal{P}, \lim \limits_{\to} N_i) & & \text{Hom}_R(\mathcal{M}, \lim \limits_{\to} N_i) & & \text{Hom}_R(\text{Ker } f, \lim \limits_{\to} N_i) & & 0 \\
\end{array}
\]

are exact, then \(\text{Hom}_R(\mathcal{M}, \lim \limits_{\to} N_i) = \lim \limits_{\to} \text{Hom}_R(\mathcal{M}, N_i)\). Then, \(\mathcal{M}\) is an FP-functor and \(M\) is a finitely presented \(R\)-module, by Proposition 4.6.

\(\Leftarrow\) It is an immediate consequence of Proposition 4.7. \(\square\)

Theorem 4.9. \(\mathbb{M}\) is an FP-functor of \(R\)-modules iff \(\mathbb{M}^*\) is the cokernel of a morphism \(F: \oplus_i P_i^* \to \oplus_j Q_j^*\), where \(P_i, Q_j\) are finitely presented \(R\)-modules, for every \(i, j\).

Proof. \(\Leftarrow\) \(\oplus_i P_i^* = \text{Coker } F\) commutes with direct limits and \(\mathbb{M}\) is a FP-functor, by 4.6.

\(\Rightarrow\) Choose a set \(A\) of representatives of the isomorphism classes of finitely presented \(R\)-modules. Let \(B\) be the set of the pairs \((P^*, g)\), where \(P \in A\) and \(g \in \text{Hom}_R(P^*, \mathbb{M}^*)\). The obvious morphism

\[G: \oplus_{(P^*, g) \in B} P^* \to \mathbb{M}^*\]
is an epimorphism: Let Q be a finitely presented module and $g^* \in \mathbb{M}^*(Q) = \text{Hom}_R(Q^*, M^*)$. Obviously, through the morphism $g^*: Q^* \to M^*$, Id_Q is mapped to g^*. Hence, the morphism

$$\bigoplus_{(P^*, g) \in B} P^*(Q) \to \mathbb{M}^*(Q)$$

is surjective. Every module is a direct limit of finitely presented R-modules. Let K be a field. In [1, 2.2], it has been proved that reflexive FP-functors of K-modules are module schemes.

Lemma 4.13. Let P and P' be finitely presented modules and $f: P \to P'$ an epimorphism. Then,

1. $\text{Hom}_R(\bigoplus_i N_i^*, \text{Ker } f) = \text{Hom}_R((\bigoplus_i N_i^*)_{\text{sch}}, \text{Ker } f)$.
2. $\text{Ker } f_R$ is a finitely generated R-module and the morphism $(\text{Ker } f)_Q \to \text{Ker } f$ is an epimorphism. Let L be a finite free module and let $\pi: L \to \text{Ker } f$ an epimorphism. There exists an exact sequence of morphisms of R-modules

$$V^* \to L \xrightarrow{\pi} \text{Ker } f \to 0$$

Proof. (1) Given a finitely presented R-module, Q, we have that

$$\text{Hom}_R(\bigoplus_i N_i^*, Q) = \bigoplus_i \text{Hom}_R(N_i^*, Q) \xrightarrow{\text{Id}} \prod(N_i \otimes_R Q) = (\prod N_i) \otimes_R Q \xrightarrow{\text{Id}} \text{Hom}_R((\bigoplus_i N_i^*)_{\text{sch}}, Q).$$

Write $N = \bigoplus_i N_i^*$. From the commutative diagram of exact rows

$$
\begin{array}{cccccc}
0 & \longrightarrow & \text{Hom}_R(N, \text{Ker } f) & \longrightarrow & \text{Hom}_R(N, P) & \longrightarrow & \text{Hom}_R(N, P') \\
& & \| & \| & \| & \\
0 & \longrightarrow & \text{Hom}_R(N_{\text{sch}}, \text{Ker } f) & \longrightarrow & \text{Hom}_R(N_{\text{sch}}, P) & \longrightarrow & \text{Hom}_R(N_{\text{sch}}, P')
\end{array}
$$

- Proposition 4.11. If P is an FP-functor of R-modules, then $P|_S$ is an FP-functor of S-modules, for any commutative R-algebra.

Proof. Let $\{N_i\}$ be a direct system of S-modules. Then,

$$\text{Hom}_S(P|_S, \text{lim } N_i) \xrightarrow{\text{Id}} \text{Hom}_R(P, \text{lim } N_i) = \lim \text{Hom}_R(P, N_i) \xrightarrow{\text{Id}} \text{Hom}_S(P|_S, N_i) \xrightarrow{\text{Id}}$$

Corollary 4.10. Let K be a field and M an K-module. M is an FP-functor iff M^* is quasi-coherent.

- Proposition 4.12. Let P be an FP-functor. Then,

$$\text{Hom}_R(P, \text{lim } N_i) = \lim \text{Hom}_R(P, N_i).$$

Corollary 4.12. Let P be an FP-functor. Then,

$$\text{Hom}_R(P, \text{lim } N_i) = \lim \text{Hom}_R(P, N_i).$$

Lemma 4.13. Let P and P' be finitely presented modules and $f: P \to P'$ an epimorphism. Then,

1. $\text{Hom}_R(\bigoplus_i N_i^*, \text{Ker } f) = \text{Hom}_R((\bigoplus_i N_i^*)_{\text{sch}}, \text{Ker } f)$.
2. $\text{Ker } f_R$ is a finitely generated R-module and the morphism $(\text{Ker } f)_Q \to \text{Ker } f$ is an epimorphism. Let L be a finite free module and let $\pi: L \to \text{Ker } f$ an epimorphism. There exists an exact sequence of morphisms of R-modules

$$V^* \to L \xrightarrow{\pi} \text{Ker } f \to 0$$

Proof. (1) Given a finitely presented R-module, Q, we have that

$$\text{Hom}_R(\bigoplus_i N_i^*, Q) = \bigoplus_i \text{Hom}_R(N_i^*, Q) \xrightarrow{\text{Id}} \prod(N_i \otimes_R Q) = (\prod N_i) \otimes_R Q \xrightarrow{\text{Id}} \text{Hom}_R((\bigoplus_i N_i^*)_{\text{sch}}, Q).$$

Write $N = \bigoplus_i N_i^*$. From the commutative diagram of exact rows

$$
\begin{array}{cccccc}
0 & \longrightarrow & \text{Hom}_R(N, \text{Ker } f) & \longrightarrow & \text{Hom}_R(N, P) & \longrightarrow & \text{Hom}_R(N, P') \\
& & \| & \| & \| & \\
0 & \longrightarrow & \text{Hom}_R(N_{\text{sch}}, \text{Ker } f) & \longrightarrow & \text{Hom}_R(N_{\text{sch}}, P) & \longrightarrow & \text{Hom}_R(N_{\text{sch}}, P')
\end{array}
$$
we obtain that $\text{Hom}_R(\oplus_i N^*_i, \text{Ker } f) = \text{Hom}_R(\oplus_i N^*_i)_{sch}, \text{Ker } f)$.

(2) By 3.7 the sequence of morphisms of R-modules

$$0 \to P^* \to P^* \to (\text{Ker } f)^* \to 0$$

is exact. By 4.3 $(\text{Ker } f)^*$ is an FP-functor.

Ker f_R is a finitely generated R-module and the morphism $(\text{Ker } f)_{qc} \to \text{Ker } f$ is an epimorphism. Hence, there exist a finite free module L and an epimorphism $\pi: L \to \text{Ker } f$. Ker π is equal to the quasi-coherent functor of modules associated with $\text{Coker } \pi$, which is a finitely presented module. By 4.7, Im $\tilde{\gamma}$ is an FP-functor. Then,

$$\text{Im} \tilde{\gamma} = \text{Im} \tilde{\gamma}$$

is an FP-functor.

5. MITTAG-LEFFLER MODULES

Definition 5.1. [11] Tag 0599 Let M an R-module. M is said to be a Mittag-Leffler module if for every finite free R-module F and morphism of R-modules $f: F \to M$, there exists a finitely presented R-module Q and a morphism of R-modules $\gamma: F \to Q$ such that Ker $[F \otimes_R N \to M \otimes_R N] = \text{Ker } [F \otimes_R N \to Q \otimes_R N]$ for every R-module N, that is, the kernel of the associated morphism $\tilde{f}: F \to M$ is equal to the kernel of the associated morphism $\tilde{\gamma}: F \to Q$, that is, we have a commutative diagram

\[
\begin{array}{ccc}
\mathcal{F} & \xrightarrow{f} & \mathcal{M} \\
\downarrow \tilde{\gamma} & & \downarrow \tilde{\gamma} \\
\text{Im } \tilde{\gamma} = \text{Im } \tilde{\gamma} & & Q
\end{array}
\]

Theorem 5.2. Let M be an R-module. M is a Mittag-Leffler module iff for every finitely generated R-submodule $N \subseteq M$ the image of the morphism $N \to M$ is an FP-functor of R-modules.

Proof. \Rightarrow) Let $N \subseteq M$ be a finitely generated submodule. Let F be a finite free module and an epimorphism $F \to N$. Let f be the composite morphism $F \to N \to M$. Let Q be a finitely presented module and $\gamma: F \to Q$ a morphism of R-modules, such that the images of the associated morphisms $\tilde{f}: F \to M$ and $\tilde{\gamma}: F \to Q$ are equal. Observe that Coker $\tilde{\gamma}$ is equal to the quasi-coherent functor of modules associated with Coker g, which is a finitely presented module. By 4.7, Im $\tilde{\gamma}$ is an FP-functor. Then,

$$\text{Im}[N \to M] = \text{Im } \tilde{f} = \text{Im } \tilde{\gamma}$$

is an FP-functor.
\[\text{\(\Leftarrow\)} \] Let \(F \) be a finite free module, \(f : F \to M \) a morphism of \(R \)-modules and \(N := \text{Im} f \subseteq M \). Consider the associated morphism \(\tilde{f} : F \to M \). Obviously \(\text{Im} \tilde{f} \) is equal to the image of the morphism \(N \to M \). Then, \(\text{Im} \tilde{f} \) is an FP-functor.

Write \(M = \varprojlim P_i \), where \(P_i \) is a finitely presented \(R \)-module, for every \(i \). Then, \(\text{Hom}_R(\text{Im} \tilde{f}, M) = \text{Hom}_R(\text{Im} \tilde{f}, \varprojlim P_i) = \varprojlim \text{Hom}_R(\text{Im} \tilde{f}, P_i) \)

Hence, there exist an \(i \) and a morphism \(\text{Im} \tilde{f} \to P_i \) such that the composite morphism \(\text{Im} f \to P_i \to M \) is the inclusion morphism. Hence, the morphism \(\text{Im} \tilde{f} \to P_i \) is a monomorphism and we have the commutative diagram

\[\begin{array}{ccc}
 & & M \\
 & \nearrow \searrow & \\
F & \rightarrow & \text{Im} \tilde{f} \\
 & \searrow \nearrow & \\
 & & P_i \\
\end{array} \]

Hence, \(M \) is a Mittag-Leffler module.

\[\text{\(\Rightarrow\)} \] Let \(\mathcal{M} \) be an \(R \)-module. \(\mathcal{M} \) is a Mittag-Leffler module iff \(\mathcal{M} \) is a direct limit of FP-functors of \(R \)-submodules.

Proof. \(\Leftarrow \) Let \(\mathcal{M} \) be the direct limit of a direct system of FP-functors of submodules \(\{P_j\} \). Let \(L = \mathbb{Z}^n \) be a finite free module. A morphism \(f : L \to \mathcal{M} = \varprojlim P_i \), factors through a morphism \(g : L \to P_j \), by Proposition 4.4. Any \(R \)-module is a direct limit of finitely presented modules, write \(M = \varprojlim P_i \), where \(P_i \) is a finitely presented \(R \)-module, for every \(i \). Then, each canonical morphism \(P_j \to \mathcal{M} = \varprojlim P_i \), factors through a morphism \(P_j \to P_i \) for some \(i \). Hence, we have a commutative diagram

\[\begin{array}{ccc}
 L & \rightarrow & \text{Im} f \\
 \downarrow & & \downarrow \\
 P_j & \rightarrow & P_i \\
\end{array} \]

Then, \(M \) is a Mittag-Leffler module.

\(\Rightarrow \) Let \(\{M_i\} \) be the set of all the finitely generated submodules of \(M \). Let \(\tilde{M}_i \) be the image of the morphism \(M_i \to \mathcal{M} \). By Theorem 5.2 \(\tilde{M}_i \) is an FP-functor for any \(i \). We have the morphisms \(M_i \to \tilde{M}_i \to \mathcal{M} \). Taking direct limits we have

\[\mathcal{M} = \varprojlim M_i \overset{\text{Id}}{\longrightarrow} \varprojlim \tilde{M}_i \overset{\text{Id}}{\longrightarrow} \mathcal{M} \]

Then, \(\varprojlim \tilde{M}_i = \mathcal{M} \).
Corollary 5.4. \[\text{[11 Tag 059H]}\] Let \(M\) be an \(R\)-module. \(M\) is a Mittag-Leffler module if and only if the natural morphism \(M \otimes_R \prod_{i \in I} Q_i \to \prod_{i \in I}(M \otimes_R Q_i)\) is injective, for every set of \(R\)-modules \(\{Q_i\}_{i \in I}\).

Proof. \(\Rightarrow\) Let \(\{M_j\}\) be the set of the submodules of \(M\) and \(\tilde{M}_j\) the image of the morphism \(M_j \to M\). Then, \(M = \text{lim}_j \tilde{M}_j\). Then,

\[
\begin{align*}
M & \otimes_R \prod_{i} Q_i \cong \text{Hom}_R((\oplus_i Q_i^*)_{\text{sch}}, M) \\
& \xrightarrow{\text{[2.19]} \text{Hom}_R((\oplus_i Q_i^*)_{\text{sch}}, \tilde{M}_j)} \\
& \xrightarrow{\text{[2.22]} \text{Hom}_R((\oplus_i Q_i^*)_{\text{sch}}, \tilde{M}_j)} \\
& \text{lim}_j \text{Hom}_R((\oplus_i Q_i^*)_{\text{sch}}, \tilde{M}_j) = \text{lim}_j \text{Hom}_R(Q_i^*, \tilde{M}_j) = \text{Hom}_R(Q_i^*, M) \\
& = \prod_i (M \otimes_R Q_i)
\end{align*}
\]

\(\Leftarrow\) Let \(L\) be a finitely generated \(R\)-module and \(L \to M\) a morphism of \(R\)-modules. By Theorem 5.2 we have to prove that the image of the associated morphism \(f : L \to M\) is an FP-functor. Let \(L'\) be a free \(R\)-module and \(L' \to L\) an epimorphism. Obviously, the image of the composite morphism \(L' \to L \to M\) is equal to the image of the morphism \(L \to M\). Then, we can suppose that \(L\) is a finite free module.

Consider the dual morphism \(f^* : M^* \to L^*\). Coker \(f^*\) is an FP-functor, by 4.3, and \(\text{Ker} f = (\text{Coker} f^*)^*\). By Theorem 4.3 there exists an epimorphism \(\pi : \oplus_i Q_i^* \to \text{Ker} f\). Consider the commutative diagram

\[
\begin{array}{ccc}
\oplus_i Q_i^* & \xrightarrow{\text{[2.19]} \text{Hom}_R((\oplus_i Q_i^*)_{\text{sch}}, M)} & L \\
& \text{Im} f & \text{M} \\
& \text{(\oplus_i Q_i^*)_{sch}} & \text{[(\oplus_i Q_i^*)_{sch} \to L]} = \text{Im} f
\end{array}
\]

\(\text{Hom}_R((\oplus_i Q_i^*)_{\text{sch}}, M) \cong M \otimes_R \prod_i Q_i \to \text{lim}_i (M \otimes_R Q_i) = \text{Hom}_R(\oplus_i Q_i^*, M)\). Then, the morphism \((\oplus_i Q_i^*)_{\text{sch}} \to M\) is zero and

\[
\text{Coker}[(\oplus_i Q_i^*)_{\text{sch}} \to L] = \text{Im} f
\]

\((\oplus_i Q_i^*)_{\text{sch}}\) and \(L\) are FP-functors, then \(\text{Im} f\) is an FP-functor by 4.3.

\[\square\]

Lemma 5.5. Let \(M\) be a Mittag-Leffler module, and \(N_1 \subseteq N_2 \subseteq M\) two finitely generated submodules. Let \(\tilde{N}_1 \subseteq \tilde{N}_2\) be the images of the morphisms \(N_1, N_2 \to M\). The dual morphism \(\tilde{N}_2^* \to \tilde{N}_1^*\) is an epimorphism.

Proof. \(M\) is equal to a direct limit of finitely presented modules, \(M = \text{lim}_i P_i\). The morphism \(\tilde{N}_2 \to M\) factors through a morphism \(\tilde{N}_2 \to P_i\), which is a monomorphism. \(\text{Coker}[\tilde{N}_2 \to P_i] = \text{Coker}[N_2 \to P_i]\), which is the quasi-coherent module associated with \(P' = \text{Coker}[N_2 \to P_i]\). We have the exact sequence

\[
0 \to \tilde{N}_2 \to P_i \to P' \to 0
\]

\[\square\]
By Proposition 3.7, the morphism $P_i^* \to \tilde{N}_2^*$ is an epimorphism. Consider the composite morphism $\tilde{N}_1 \to \tilde{N}_2 \to P_i$. Coker[$\tilde{N}_1 \to P_i$] = Coker[$N_1 \to P_i$], which is the quasi-coherent module associated with $Q' = \text{Coker}[\tilde{N}_1 \to P_i]$. Again by Proposition 3.7, the morphism $P_i^* \to \tilde{N}_1^*$ is an epimorphism. Then, the morphism $\tilde{N}_2^* \to \tilde{N}_1^*$ is an epimorphism.

Let $\{F_i\}$ be a direct system of finitely presented modules, so that $M = \lim_{\to} F_i$. M is a strict Mittag-Leffler module iff for every commutative R-algebra S and index i there exists $j \geq i$ such that $\text{Im}[M^*(S) \to F_i^*(S)] = \text{Im}[F_j^*(S) \to F_i^*(S)]$ (see [9 II 2.3.2]).

Theorem 5.6. Let M be an R-module. M is a strict Mittag-Leffler module iff for every finitely generated submodule $N \subseteq M$ the image \tilde{N} of the associated morphism $N \to M$ is an FP-functor and the morphism $M^* \to \tilde{N}^*$ is an epimorphism.

Proof. Let $\{F_i\}$ be a direct system of finitely presented R-modules, so that $M = \lim_{\to} F_i$. Let $\{N_k\}$ be the set of the finitely generated submodules of M, and let \tilde{N}_k be the image of the morphism $N_k \to M$. Then, $M = \lim_{\to} \tilde{N}_k$.

\Rightarrow) Let S be a commutative R-algebra. We have to prove that the morphism $M^*(S) \to \tilde{N}^*(S)$ is an epimorphism. The morphism $\tilde{N} \to M$ factors through some morphism $F_i \to M$, because \tilde{N} is an FP-functor (M is a Mittag-Leffler module). There exists $j \geq i$ such that $\text{Im}[M^*(S) \to F_i^*(S)] = \text{Im}[F_j^*(S) \to F_i^*(S)]$. $M = \lim_{\to} \tilde{N}_k$. The morphism $F_j \to M$ factors through some morphism $\tilde{N}_k \to M$, by Proposition 4.4. We have the morphisms

$$M^*(S) \to \tilde{N}_k^*(S) \to F_j^*(S) \to F_i^*(S) \to \tilde{N}^*(S)$$

Then,

$$\text{Im}[M^*(S) \to F_i^*(S)] \subseteq \text{Im}[\tilde{N}_k^*(S) \to F_j^*(S)] \subseteq \text{Im}[F_j^*(S) \to F_i^*(S)]$$

$$= \text{Im}[M^*(S) \to F_i^*(S)]$$

Hence, $\text{Im}[\tilde{N}_k^*(S) \to F_i^*(S)] = \text{Im}[M^*(S) \to F_i^*(S)]$ and $\text{Im}[M^*(S) \to \tilde{N}^*(S)] = \text{Im}[\tilde{N}_k^*(S) \to \tilde{N}^*(S)]$.

\Leftarrow) Consider a commutative R-algebra S and an index i. The morphism $F_i \to M$ factors through some morphism $\tilde{N}_k \to M$, by Proposition 4.4. The morphism $\tilde{N}_k \to M$ factors through some morphism $F_j \to M$ (because \tilde{N}_k is an FP-functor). We have the morphisms

$$M^*(S) \to F_j^*(S) \to \tilde{N}_k^*(S) \to F_i^*(S)$$

From the commutative diagram

$$\begin{array}{ccc}
\text{Im}[M^*(S) \to F_i^*(S)] & \xrightarrow{\cong} & \text{Im}[\tilde{N}_k^*(S) \to F_i^*(S)] \\
\text{Im}[F_j^*(S) \to F_i^*(S)] & & \text{Im}[F_j^*(S) \to F_i^*(S)]
\end{array}$$
we have that Im[\mathcal{M}^*(S) \to \mathcal{F}^*_j(S) = \text{Im}[\mathcal{F}^*_j(S) \to \mathcal{F}^*_i(S)].

\textbf{Corollary 5.7.} \(M \) is a strict Mittag-Leffler module iff \(M \) is an \(R \)-submodule of some \(R \)-module \(\prod_r P_r \), where \(P_r \) is a finitely presented \(R \)-module, for every \(r \).

\textit{Proof.} \(\Leftarrow \) Let \(P \) be a finitely presented \(R \)-module. Then,

\[\text{Hom}_R(\oplus_i N_i^*, P) \overset{\text{def}}{=} \prod_i (N_i \otimes P) = (\prod_i N_i) \otimes P \overset{\text{def}}{=} \text{Hom}_R((\oplus_i N_i^*)_{sch}, P) \]

Hence, \(\text{Hom}_R(\oplus_i N_i^*, \prod_r P_r) = \text{Hom}_R((\oplus_i N_i^*)_{sch}, \prod_r P_r) \). Consider a monomorphism \(\mathcal{M} \hookrightarrow \prod_r P_r \) and the commutative diagram,

\[\begin{array}{ccc}
\prod_i (N_i \otimes M) & \rightarrow & \text{Hom}_R(\oplus_i N_i^*, \mathcal{M}) \\
\downarrow & & \downarrow \\
(\prod_i N_i) \otimes M & \rightarrow & \text{Hom}_R((\oplus_i N_i^*)_{sch}, \mathcal{M}) \\
\end{array} \]

Then, \(\prod_i (N_i \otimes M) \to (\prod_i N_i) \otimes M \) is injective. By \(\text{5.4} \) \(M \) is a strict Mittag-Leffler module.

\(\Rightarrow \) Write \(M = \lim_i P_i \), where \(P_i \) is a finitely presented \(R \)-module, for any \(i \).

Consider the natural morphism \(P_i \to \mathcal{M} \) and let \(\tilde{P}_i \) the image of this morphism. The morphism \(\tilde{P}_i \hookrightarrow \mathcal{M} \), factors through a morphism \(\tilde{P}_i \to \mathcal{P}_{f(i)} \), for some \(f(i) > i \), because \(\tilde{P} \) is an FP-functor, by the hypothesis. \(\mathcal{M}^* \to \tilde{P}_i^* \) is an epimorphism, by the hypothesis again. Hence, \(\mathcal{M}^* \to \tilde{P}_i^* \) is an epimorphism. Then, there exists a morphism \(s_{f(i)}: \mathcal{M} \to \mathcal{P}_{f(i)} \) such that the diagram

\[\begin{array}{ccc}
\tilde{P}_i & \rightarrow & \mathcal{M} \\
\downarrow & \searrow & \downarrow \\
\mathcal{P}_{f(i)} & \rightarrow & \mathcal{M} \\
\end{array} \]

is commutative. Now it is easy to check that the morphism \(\mathcal{M} \to \prod_i \mathcal{P}_{f(i)} \), \(m \mapsto (s_{f(i)}(m)) \) is a monomorphism.

\[\square \]

\textbf{Theorem 5.8.} Let \(M \) be an \(R \)-module. The following statements are equivalent

1. \(M \) is a Mittag-Leffler module.
2. The kernel of every morphism \(\mathcal{R}^n \to \mathcal{M} \) is isomorphic to a quotient of a module scheme.
3. The kernel of every morphism \(\mathcal{N}^* \to \mathcal{M} \) is isomorphic to a quotient of a module scheme, for any \(R \)-module \(N \).

\textit{Proof.} \(1 \Rightarrow 2 \) Let \(g: \mathcal{R}^n \to \mathcal{M} \) be a morphism of \(R \)-modules. By Theorem \(\text{5.6} \) \(\text{Im} g \) is an FP-functor. By Proposition \(\text{4.4} \) \(\text{Im} g \) is the kernel of an epimorphism \(\mathcal{P} \to \mathcal{P}' \), where \(P \) and \(P' \) are finitely presented \(R \)-modules. By Lemma \(\text{4.13} \) there exists an exact sequence of morphisms of \(R \)-modules

\[\mathcal{V}^* \to \mathcal{R}^n \to \text{Im} g \to 0 \]

Then, \(\text{Ker} g = \text{Ker}[\mathcal{R}^n \to \text{Im} g] \) is a quotient of \(\mathcal{V}^* \).
\((2) \Rightarrow (3)\) Let \(L\) be a free module and \(g: \mathcal{L}^* \to \mathcal{M}\) be a morphism of \(\mathcal{R}\text{-}\)modules. Consider the dual morphism \(g^*: \mathcal{M}^* \to \mathcal{L}\). Observe that \(g^*\) factors through a finite free direct summand \(\mathcal{L}'\) of \(\mathcal{L}\). Then, \(g\) factors through \(\mathcal{L}'^*\) and

\[
\text{Ker } g \cong (\mathcal{L}/\mathcal{L}')^* \times \text{Ker}[\mathcal{L}'^* \to \mathcal{M}].
\]

Hence, \(\text{Ker } g\) is a quotient of a module scheme.

Let \(N\) be an \(\mathcal{R}\text{-}\)module and let \(f: N^* \to \mathcal{M}\) be a morphism of \(\mathcal{R}\text{-}\)module. Let \(L\) be a free \(\mathcal{R}\text{-}\)module, \(j: L \to N\) be an epimorphism and \(N' := \text{Ker } j\). The morphism \(\text{Hom}_\mathcal{R}(\mathcal{L}^*, \mathcal{M}) = M \otimes L \to M \otimes N = \text{Hom}_\mathcal{R}(N^*, \mathcal{M})\) is surjective. Hence, there exists a morphism \(g: \mathcal{L}^* \to \mathcal{M}\)

\[
\begin{array}{ccc}
\mathcal{L}^* & \xrightarrow{g} & \mathcal{M} \\
\downarrow & & \downarrow \\
\mathcal{L}^* & \xrightarrow{f} & \mathcal{M}
\end{array}
\]

is commutative. Let \(\pi: \mathcal{V}^* \to \text{Ker } g\) be an epimorphism and let \(h\) be the composite morphism \(\text{Ker } g \to \mathcal{L}^* \to \mathcal{N}^*\). Observe that \(\text{Ker } f = \text{Ker } h\). Let \(W^* = \text{Ker}(h \circ \pi)\). The morphism \(W^* = \text{Ker}(h \circ \pi) \xrightarrow{\sim} \text{Ker } f = \text{Ker } f\) is an epimorphism, because \(\pi\) is an epimorphism.

\((3) \Rightarrow (1)\) Let \(f: \mathcal{R}^n \to \mathcal{M}\) a morphism of \(\mathcal{R}\text{-}\)module. There exists an epimorphism \(\pi: \mathcal{V}^* \to \text{Ker } f\). Then, \(\text{Im } f = \text{Coker } \pi\) is an FP-functor by 4.3. Then, \(\text{Mittag-Leffler module by } 5.2\)

\[
\boxed{\text{Proposition 5.9. Let } \mathcal{M} \text{ be an } \mathcal{R}\text{-}\text{module. The following statements are equivalent}}
\]

\((1)\) \(\mathcal{M}\) is a strict Mittag-Leffler module.

\((2)\) The cokernel of every morphism \(\mathcal{M}^* \to \mathcal{R}^n\) is isomorphic to an \(\mathcal{R}\text{-}\text{submodule of a quasi-coherent module.}\)

\((3)\) The cokernel of every morphism \(\mathcal{M}^* \to N\) is isomorphic to an \(\mathcal{R}\text{-}\text{submodule of a quasi-coherent module, for any } \mathcal{R}\text{-}\text{module } N.}\)

\[
\text{Proof. } (1) \Rightarrow (2)\) Let \(f: \mathcal{M}^* \to \mathcal{R}^n\) a morphism. Consider the dual morphism \(f^*: \mathcal{R}^n \to \mathcal{M}\). The morphism \(\mathcal{M}^* \to (\text{Im } f^*)^*\) is an epimorphism, by 5.6

\[
\text{There exists an exact sequence of morphisms}
\]

\[
\mathcal{V}^* \to \mathcal{R}^n \to \text{Im } f^* \to 0
\]

by 5.8 Then, \(0 \to (\text{Im } f^*)^* \to \mathcal{R}^n \to \mathcal{V}\) is exact and \(\text{Coker } f = \text{Coker}[\text{Im } f^* \to \mathcal{R}^n]\) is an \(\mathcal{R}\text{-}\text{submodule of } \mathcal{V}\).

\((2) \Rightarrow (3)\) Dually, proceed as (2) \(\Rightarrow (3)\) in 5.8

\((3) \Rightarrow (2)\) It is obvious.

\((2) \Rightarrow (1)\) Let \(\phi: \mathcal{P} \to \mathcal{P}'\) be a morphism of \(\mathcal{R}\text{-}\text{modules. It is easy to check that}

\[
(\text{Coker } \phi)^* = \text{Ker } \phi^*.
\]

Let \(f: \mathcal{R}^n \to \mathcal{M}\) a morphism of \(\mathcal{R}\text{-}\text{modules. Consider the dual morphism } f^*: \mathcal{M}^* \to \mathcal{R}^n\). \(\text{Coker } f^*\) is an FP-functor, by 4.3. By the hypothesis, there exists a monomorphism \(i: \text{Coker } f^* \to \mathcal{V}\). By 4.7 there exist finitely presented \(\mathcal{R}\text{-}\text{modules and an exact sequence of morphisms}

\[
0 \to \text{Coker } f^* \to \mathcal{P} \to \mathcal{P}' \to 0
\]
By [3.7] the natural morphism $P^* \to (\text{Coker } f^*)^* = \text{Ker } f$ is an epimorphism. Let h be the composite morphism $P^* \to \text{Ker } f \to R^*$. Then, $\text{Im } f = \text{Coker } h$, which is an FP-functor by [4.3] and $\text{Ker } h^* = \text{Im } f^*$. Observe that

$$(\text{Im } f)^* = (\text{Coker } h)^* = \text{Ker } h^* = \text{Im } f^*$$

Hence, the morphism $M^* \to (\text{Im } f)^*$ is an epimorphism and M is a strict Mittag-Leffler by [5.6]. □

References

[1] ÁLVAREZ, A., SANCHO, C., SANCHO, P., Algebra schemes and their representations, J. Algebra 296/1 (2006) 110-144.
[2] ÁLVAREZ, A., SANCHO, C., SANCHO, P., Characterization of Quasi-Coherent Modules that are Module Schemes, Communications in Algebra (2009),37.5,1619 Â— 1621.
[3] DEMAZURE, M.; GABRIEL, P., Introduction to Algebraic Geometry and Algebraic Groups, Mathematics Studies 39, North-Holland, 1980.
[4] GARFINKEL, G.S., Universally torsionless and trace modules, Trans. Amer. Math. Soc. 215 (1976) 119-144.
[5] GROTHENDIECK, A. EGA, III. Math. Inst. Hautes Etudes Scient. 11 (1961)
[6] GRUSON, L., RAYNAUD, M., Critères de platitude et de projectivité, Inventiones math. 13, 1-89 (1971).
[7] NAVARRO, J., SANCHO C., SANCHO, P., Affine functors and duality 2012 arXiv:0904.2158v4
[8] RAYNAUD, M., Flat modules in algebraic geometry Compositio Mathematica 24 n1 1972.
[9] SANCHO C.,SANCHO F.,SANCHO, P., Geometric characterization of flat modules 2017 arXiv:1609.08327v4
[10] SANCHO C.,SANCHO F.,SANCHO, P., Flat SML modules and reflexive functors 2017 arXiv:1609.08327v4
[11] Stacks Project Version e789af, compiled on Oct 25, 2016.