Incidence and antimicrobial susceptibility of *Escherichia coli* isolated from beef (meat muscle, liver and kidney) samples in Wa Abattoir, Ghana

Frederick Adzitey

Abstract: *Escherichia coli* of beef origin has been responsible for a number of foodborne infections. This study determined the incidence of *Escherichia coli* and coliforms in beef (meat muscle, liver and kidney) samples produced in the Wa Abattoirs of Ghana. The study also sought to determine the antimicrobial susceptibility of *Escherichia coli* isolated from the beef samples. The isolation of *Escherichia coli* and coliform counts was done according to the USA-FDA Bacteriological Analytical Manual. Anti-microbial susceptibility test was performed using the disc diffusion method and the results interpreted using the CLSI guidelines. A total of 150 beef samples made up of 50 livers, 50 kidneys and 50 meat muscle were examined. The incidence of *Escherichia coli* was highest in liver (98.0%), followed by kidney (92.0%) and meat muscle (88.0%). Coliform count was also highest in liver (3.341 log cfu/cm²), followed by meat muscle (2.098 log cfu/cm²) and liver (2.096 log cfu/cm²). The *Escherichia coli* (n = 45) isolated from the beef samples were highly resistant to teicoplanin (97.78%). Susceptibility ≥80% was observed for amoxicillin/clavulanic, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin and suphamethoxazole/trimethoprim. The multiple antibiotic resistance (MAR) index ranged from 0.11 (resistant to one antibiotic) to 0.56 (resistant to five antibiotics). Multidrug resistance was observed in 26.66% of the isolates. This study revealed that beef samples in the Wa abattoir are contaminated by *Escherichia coli* and coliforms. The *Escherichia coli* isolates were susceptible to most of the antimicrobials examined.

ABOUT THE AUTHOR

Frederick Adzitey is an Associate Professor in Meat Science and Technology. He holds a PhD in Food Safety and MSc in Meat Science and Technology. He teaches meat science and food safety related courses. He has experience in the isolation, antimicrobial resistance and molecular characterization of foodborne pathogens.

PUBLIC INTEREST STATEMENT

This work investigated the incidence and antimicrobial resistance of *Escherichia coli* in beef samples. Beef muscle, liver and kidney are consumed by most Ghanaians. The liver in particular is considered a delicacy and commands a higher price. The presence of *Escherichia coli* and coliforms suggests that slaughtering of cattle and dressing of the carcasses were done or exposed to unsanitary condition. Furthermore, consumers of beef are at risks of *Escherichia coli* infection. *Escherichia coli* infections resulting from the consumption of beef from the Wa abattoir can be treated using amoxicillin/clavulanic, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin and suphamethoxazole/trimethoprim, but not teicoplanin.
1. Introduction

Beef is the edible flesh obtained from the carcass of cattle. The part of the carcass considered as edible also differ among countries. For instance, in some countries, the kidney, liver, heart, lungs, offals, tongue among others are used as pet foods, but are edible by humans in other countries. Meats such as beef, pork, chicken, goat, grasscutter and chevon are consumed in Ghana (Adzitey, 2013; Nkegbe, Assuming-Bediako, Aikins-Wilson, & Hagan, 2013). Among these meats, beef was the most preferred meat by consumers in the Wa municipality, followed by chicken, chevon, mutton, pork and guinea fowl (Mahaboubil-Haq & Adzitey, 2016). Beef serves as a source of nutrients such as proteins, fats, vitamins (vitamin B3, B6, B12) and minerals (zinc, selenium, phosphorus, iron) (Arnarson, 2019; Williams, 2007). Beef is also considered as red meat due to its high iron content (Arnarson, 2019; Williams, 2007).

The nutrient contents of meat make it an idea medium for the growth of microorganisms including *Escherichia coli*. *Escherichia coli* are gram-negative, rod-shaped, facultative anaerobe bacteria of the Enterobacteriaceae family (Feng, Weagant, Grant, & Burkhardt, 2017). Some strains of *Escherichia coli* are pathogenic and cause foodborne illness in humans when ingested. In the United States of America, Beach (2019) reported that *Escherichia coli* outbreaks associated with ground beef hit nearly 200 in 10 States. The symptoms of *Escherichia coli* infection include abdominal cramps, blooding diarrhea, nausea, fever and vomiting (Mayo Foundation for Medical Education & Research, 2019). In severe cases, pneumonia, urinary tract infections, central nervous system problems and kidney failure especially in children, older people and immune-compromised individuals can occur (Brazier, 2017).

Antimicrobials are normally used to treat infections either in animals or humans caused by microorganisms. The use of antimicrobials in the treatment of farms animals has been linked to the development of multdrug-resistant microorganisms which is a threat to public health (Hoelzer et al., 2017; Mouiche et al., 2019). *Escherichia coli* isolated from beef samples has been reported to show different resistances to a number of antimicrobials including erythromycin, tetracycline, ampicillin, gentamicin, sulfamethoxazole/trimethoprim, chloramphenicol, cefuroxime and ceftriaxone (Adzitey, 2015a; Anning, Dugbatey, Kwakye-Nuako, & Asare, 2019; Aslam & Service, 2006; Saud et al., 2019).

There are reports indicating that beef samples collected from various parts of Ghana are contaminated by *Escherichia coli*. For examples, *Escherichia coli* in beef samples were reported by Antwi-Agyei and Moalekuu (2014) in Kumasi metropolis, Adzitey (2015a) in Techiman municipal, Adzitey (2015b) in Tamale metropolis, Anachinaba, Adzitey, and Teye (2015) in Bolgatanga municipal, Twum (2016) in Birim North District and Yafetto, Adator, Ebuako, Ekloho, and Afeti (2019) and in Cape Coast, all in Ghana. The occurrence of *Escherichia coli* in beef samples produced in the Wa municipality of Ghana has not been reported. Therefore, this study was carried out to determine the occurrence of *Escherichia coli* and their resistance to antimicrobials in the Wa municipality of Ghana.

2. Materials and Methods

2.1. Location of study

This study was carried out at the Wa municipality of Ghana. The municipality lies within latitudes 1°40ʹN to 2°45ʹN and longitudes 9°32ʹW to 10°20ʹW (Ghana Statistical Service, 2014). The municipality has a total estimated land size of 579.86 square kilometres and a population of 107,214 (Ghana Statistical Service, 2014). It shares boundaries with Nadowli District to the north, Wa East District to the east and to the west and the south Wa West District.
2.2. Collection and preparation of beef samples
In all 150 swabs consisting of fifty (50) each of liver, kidney and meat muscle were randomly collected from the Wa abattoir. Approximately, 10 cm² beef surfaces were swabbed, transported on ice and analyzed immediately on reaching the Laboratory.

2.3. Determination of coliforms in beef samples
This was done using a modified procedure of Maturin and Peeler (2001) and Adzitey, Ekli, and Abu (2019). Beef swabs were inoculated in 10 ml of 1% Buffered Peptone Water (Oxoid Limited, Basingstoke, UK). This was used to make serial dilutions from 10⁻¹ to 10⁻⁵. Each dilution was plated on MacConkey Agar (Oxoid Limited, Basingstoke, UK) and incubated at 37°C for 24 h. Coliforms were counted and the load calculated using the formula:

\[N = \frac{\sum C}{(1 + n_1) + (0.1 + n_2)} \cdot (d) \]

where
- \(N \) = Number of colonies per cm²
- \(\sum C \) = Sum of all colonies on all plates counted
- \(n_1 \) = Number of plates in first dilution counted
- \(n_2 \) = Number of plates in second dilution counted
- \(d \) = Dilution from which the first counts were obtained

2.4. Isolation of Escherichia coli from beef samples
The method of the USA Food and Drug Administration-Bacteriological Analytical Manual with slight modification was used (Adzitey, 2015a; Feng et al., 2017). Thus, beef swabs were placed in 10 ml Buffered Peptone Water and incubated at 37°C for 24 h. After incubation, the aliquots were plated on Levine’s Eosin-methylene Blue Agar and incubated at 37°C for 24 h. Potential Escherichia coli colonies were seen as dark centered and flat, with or without metallic sheen. Such colonies were grown on Trypticase Soy Agar and incubated at 37°C for 24 h to obtain pure colonies. They were then identified and confirmed using Gram staining, growth on MacConkey Agar, growth in Brilliant Green Bile Broth and Escherichia coli latex agglutination test. All media and reagents used were purchased from Oxoid Limited, Basingstoke, UK.

2.5. Antimicrobial susceptibility test of Escherichia coli
The disc diffusion method of Bauer, Kirby, Sherris, and Turk (1966) was used for antimicrobial susceptibility test. The Escherichia coli isolates were tested against 30 µg amoxycillin/clavulanic acid (AMC), 15 µg azithromycin (AZM), 30µg ceftriaxone (CRO), 30 µg chloramphenicol (C), 5ug ciprofloxacin (CIP), 10ug gentamicin (CN), 30 µg teicoplanin (TEC), 30ug tetracycline (TE) and 22 µg (SXT) suphamethoxazole/trimethoprim. Pure cultures of Escherichia coli were grown in Trypticase Soy Broth (Oxoid Limited, Basingstoke, UK) for 18 h at 37°C. The turbidity was adjusted to 0.5 McFarland standard using sterile Trypticase Soy Broth and plated on Müller Hinton agar (Oxoid, Basingstoke, UK). Antibiotic discs were placed on the Muller Hinton agar and incubated at 37°C for 24 h. Inhibitions were measured and the results interpreted using Clinical Laboratory Standard Institute (2017). Multiple antibiotic resistance (MAR) index was determined as described by Krumperman (1983) using the formula: \(a/b \), where “\(a \)” represents the number of antibiotics to which a particular isolate was resistant and “\(b \)” the total number of antibiotics tested.

2.6. Statistical analysis
Prevalence data were analyzed using binary logistic generalized linear model of Statistical Package for Service Solutions Program Version 20.0. Statistical difference was done using wald chi-square. Data for total coliforms were analyzed using ANOVA of Genstat Edition Version 12. All means were separated at 5% significant level.
3. Results and discussion

3.1. Total coliform count of beef samples

The total coliform count of the beef samples is presented in Table 1. From Table 1, beef liver (3.341 log cfu/cm²) had the highest coliform count, followed by meat muscle (2.098 log cfu/cm²) and kidney (2.096 log cfu/cm²). Coliform count of liver samples was significantly higher (P < 0.05) than that of meat muscle and kidney. There was no significant difference (P > 0.05) between meat muscle and kidney samples. Although coliforms are generally not harmful, their presence in the beef samples indicates the presence of potential pathogenic microorganisms. The presence of the coliforms also means that cattle were exposed to unsanitary condition during slaughtering and portioning of beef into various parts. Feng et al. (2017) indicated that coliforms are used as an indication of fecal contamination or processing under unsanitary environment. Studies have indicated that butchers or people involved in the slaughtering and selling of meats in Ghana do not observe strict hygienic practices in their operations (Adzitey, Sulleyman, & Kum, 2020; Adzitey, Sulleyman, & Mensah, 2018; Sulleyman, Adzitey, & Boateng, 2018). In Egypt, Darwish, Atia, El-Ghareeb, and Elhelaly (2018) found coliforms in the following beef muscles; chucks (2.75 ± 0.22 MPN/cm²), round (2.55 ± 0.32 MPN/cm²) and masseter (3.55 ± 0.25 MPN/cm²) which is comparable to this study. Kim and Yim (2016) observed coliform counts of 0.37 log cfu/g in meat samples collected from Korea, which was lower than the coliform counts observed in this study. However, higher fecal coliform counts of 2.14 x10⁷ ml/cfu (7.33 log cfu/ml) as compared to this study were reported in beef samples collected from Kumasi, Ghana (Antwi-Agyei & Maalekuu, 2014).

3.2. Distribution of Escherichia coli in beef samples

The distribution of Escherichia coli in the beef samples is also shown in Table 1. Beef liver 49 (98.0%), kidney 46 (92.0%) and meat muscle 44 (88.0%) were contaminated by Escherichia coli. The contamination of beef liver by Escherichia coli was significantly higher (P < 0.05) than that of meat muscle but not kidney. Furthermore, contamination of kidney and meat muscles by Escherichia coli did not differ significantly (P > 0.05) from each other. The contamination of the beef samples by Escherichia coli means that lapses occurred during beef production (Adzitey, 2015a, 2015b). Walls, chopping boards, knives, chopping tables, floor and personnel/butchers are among the sources by which Escherichia coli cross-contaminated beef (Adzitey, 2015a; Darwish et al., 2018). Albarri et al. (2017) found that 9 (56.25%) meat samples collected from Adana, Turkey were contaminated by Escherichia coli. Aslam and Service (2006) isolated 36 Escherichia coli from washed beef carcasses in a commercial beef processing plant in Canada. In Ethiopia, internal beef carcass obtained from the processing plant (0.5%) and beef carcasses at retail shops (0.8%) were contaminated by Escherichia coli (Abdissa et al., 2017). The distribution of Escherichia coli in the chuck, round and masseter muscles of beef were 20%, 10%, and 50%, respectively, in Egypt (Darwish et al., 2018). Rahimi, Kazemeini, and Salajegheh (2012) in Iran found that 4.7% of meat samples were positive for Escherichia coli O157, and the prevalence was highest in beef samples (8.2%), followed by water buffalo (5.3%), sheep (4.8%), camel (2.0%), and goat (1.7%). This study found a higher incidence of Escherichia coli in beef samples compared

Sample	No. of samples examined	No (%) positive	Coliforms (log cfu/cm²)
Kidney	50	46 (92.0)bc	2.096bc
Liver	50	49 (98.0)ab	3.341ab
Muscle	50	44 (88.0)c	2.098c
Overall	150	139 (92.7)	2.51

*No.: number of samples positive for Escherichia coli; Values in the same column with different superscripts are significantly different (P < 0.05) and vice versa.
with studies by Albarri et al. (2017), Aslam and Service (2006), Abdissa et al. (2017), Darwish et al. (2018) and Rahimi et al. (2012).

3.3. Antimicrobial susceptibility testing of Escherichia coli

The antimicrobial resistance of 45 randomly selected Escherichia coli isolates is presented in Tables 2 and 3. Overall, the Escherichia coli isolates were highly resistant to teicoplanin (97.78%); however, they were susceptible (\geq80%) to amoxicillin/clavulanic, ceftriaxone chloramphenicol, ciprofloxacin, gentamicin, and suphamethoxazole/trimethoprim. Escherichia coli from kidney samples were more resistant to the antimicrobials followed by liver and meat muscle. Ciprofloxacin (32.0%), suphamethoxazole/trimethoprim (17.1%), gentamicin (1.8%), ceftriaxone (0.9%), chloramphenicol (0.9%) and tetracycline (0.9%) are among the antimicrobials used by farmers in Wa, municipality as prophylactics and to treat animal diseases (Ekli, 2019). The antimicrobial susceptibility results observed in this study are comparable to other studies. Escherichia coli of beef origin obtained from Techiman municipality, Ghana were 44.44%, 68.89% and 44.44% resistant to tetracycline, erythromycin and chloramphenicol, respectively, but 95.56%, 82.22% and 75.56% susceptible to ciprofloxacin, suphamethoxazole/trimethoprim and gentamicin, respectively (Adzitey, 2015a). Resistance to amoxicillin-clavulanic acid, chloramphenicol and tetracycline were 2%, 2.45% and 38%, respectively, for Escherichia coli of beef origin (Aslam & Service, 2006). Abdissa et al. (2017) observed 100% susceptibility of Escherichia coli obtained from beef carcasses to chloramphenicol, ciprofloxacin, tetracycline and trimethoprim-sulfamethoxazole, but resistance to ampicillin (100%). In Egypt, Darwish et al. (2018) reported resistance of Escherichia coli from beef to be 23.8% (chloramphenicol), 42.8% (ciprofloxacin), 1.8% (gentamicin), 0.9% (ceftriaxone) and 0.9% (tetracycline). The multiple antibiotic (MAR) index ranged from 0.11 (resistant to one antibiotic) to 0.56 (resistant to five antibiotics). The Escherichia coli isolates were resistant to zero (2.22%), one (46.67%), two (24.44%), three (22.22%), four (2.22%) and five (2.22%) antimicrobials. The Escherichia coli isolates also exhibited eleven (11) different resistance patterns. The resistance pattern Tec (that is resistant to only teicoplanin) was the most common and was exhibited by twenty-one (21) isolates. This was followed by the resistance pattern AzmTec (azithromycin-teicoplanin, exhibited by 6 isolates) and TecTeSxt (teicoplanin-tetracycline-suphamethoxazole/trimethoprim, exhibited by 5 isolates). Multidrug resistance (26.67%) was observed among the beef Escherichia coli isolates. Escherichia coli (K17) isolated from kidney exhibited the highest resistance, being resistant to 5 different antibiotics (CipTeCTeSxt), while Escherichia coli (L9) isolated from liver was resistant to none of the antimicrobials. The results of this study also revealed that some Escherichia coli isolates from liver, kidney and muscle exhibited the same resistance patterns. Such isolates are phenotypically similar and related at that level, but could differ at the molecular level. Escherichia coli of beef origin exhibited twenty-five (25) resistance patterns with MAR index ranging from 0.11 to 0.78 (Adzitey, 2015a). Furthermore, 14, 13, 3 and 1 Escherichia coli isolates were resistant to three, four, five and seven antimicrobials, respectively (Adzitey, 2015a). Aslam and Service (2006) found that Escherichia coli isolated from washed beef carcasses were resistant to zero (27%), one (8%), two (2%), three (0%), and four (0%) antimicrobials. Anning et al. (2019) observed that 4.8% of Escherichia coli from meat sources were multidrug resistance to cefuroxime-chloramphenicol-ampicillin. Saud et al. (2019) reported overall multidrug resistance of 69.81% for Escherichia coli isolated from meat. Resistance to zero (13.21%), one (16.98%), two (33.96%), three (15.09%), four (20.75%), five (0.00%) and six (0.00%) antimicrobials was also reported (Saud et al., 2019).

4. Conclusion

This work report for the first time on the incidence and antimicrobial resistance of Escherichia coli from beef samples in the Wa municipality of Ghana. Overall, 2.51 log cfu/cm² and 92.7% of the beef samples were contaminated by coliforms and Escherichia coli, respectively. Escherichia coli isolates were highly resistant to teicoplanin but susceptibility to amoxycillin/clavulanic, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin and suphamethoxazole/trimethoprim. Multidrug
Antimicrobial	Kidney			Liver			Meat muscle			Overall		
	R (%)	I (%)	S (%)	R (%)	I (%)	S (%)	R (%)	I (%)	S (%)	R (%)	I (%)	S (%)
AMC	0.00	13.33	86.67	0.00	13.33	86.67	6.67	13.33	80.00	2.22	13.33	84.44
Azithromycin 15 µg (AZM)	13.33	0.00	86.67	26.67	6.67	66.67	33.33	20.00	46.67	24.44	8.89	66.67
Ceftriaxone 30 µg (CRO)	6.67	6.67	86.67	6.67	0.00	93.33	0.00	0.00	100.00	4.44	2.22	93.33
Chloramphenicol 30 µg (C)	6.67	0.00	93.33	0.00	0.00	100.00	6.67	0.00	93.33	4.44	0.00	95.56
Ciprofloxacin 5 µg (CIP)	6.67	0.00	93.33	0.00	0.00	100.00	0.00	13.33	86.67	2.22	4.44	93.33
Gentamicin 10 µg (CN)	0.00	33.33	66.67	0.00	13.33	86.67	6.67	6.67	86.67	2.22	17.78	80.00
Teicoplanin 30 µg (TEC)	100.00	0.00	0.00	93.33	6.67	0.00	100.00	0.00	0.00	97.78	2.22	0.00
Tetracycline 30 µg TE	26.67	0.00	73.33	20.00	0.00	80.00	40.00	6.67	53.33	28.89	2.22	68.89
SXT	26.67	6.67	66.67	6.67	0.00	93.33	20.00	0.00	80.00	17.78	2.22	80.00

AMC, amoxycillin/clavulanic acid 30 µg (AMC); SXT, suphamethoxazole/trimethoprim (SXT); S, susceptible; I, intermediate; R, resistance.
No.	Escherichia coli code	Source	Antibiotic resistant profile	Number of antibiotics	MAR index
1	K32	Kidney	AzmTec	2	0.22
2	K10	Kidney	AzmTecSxt	3	0.33
3	K17	Kidney	CipTecCTeSxt	5	0.56
4	K3	Kidney	Tec	1	0.11
5	K7	Kidney	Tec	1	0.11
6	K15	Kidney	Tec	1	0.11
7	K20	Kidney	Tec	1	0.11
8	K38	Kidney	Tec	1	0.11
9	K47	Kidney	Tec	1	0.11
10	K48	Kidney	Tec	1	0.11
11	K50	Kidney	Tec	1	0.11
12	K12	Kidney	TecCro	2	0.22
13	K35	Kidney	TecTe	2	0.22
14	K23	Kidney	TecTeSxt	3	0.33
15	K45	Kidney	TecTeSxt	3	0.33
16	L7	Liver	AzmTec	2	0.22
17	L18	Liver	AzmTecCro	3	0.33
18	L20	Liver	AzmTecSxt	3	0.33
19	L24	Liver	AzmTecTe	3	0.33
20	L3	Liver	Tec	1	0.11
21	L12	Liver	Tec	1	0.11
22	L23	Liver	Tec	1	0.11
23	L30	Liver	Tec	1	0.11
24	L34	Liver	Tec	1	0.11
25	L36	Liver	Tec	1	0.11
26	L38	Liver	Tec	1	0.11
27	L42	Liver	Tec	1	0.11
28	L46	Liver	Tec	1	0.11
29	L13	Liver	TecTe	2	0.22
30	L9	Liver	0	0	0.00
31	M3	Muscle	AmcTecTecC	4	0.44
32	M11	Muscle	AzmTec	2	0.22
33	M20	Muscle	AzmTec	2	0.22
34	M29	Muscle	AzmTec	2	0.22
35	M48	Muscle	AzmTec	2	0.22
36	M12	Muscle	AzmTec	3	0.33
37	M6	Muscle	Tec	1	0.11
38	M25	Muscle	Tec	1	0.11
39	M43	Muscle	Tec	1	0.11
40	M49	Muscle	Tec	1	0.11
41	M34	Muscle	TecCn	2	0.22
42	M44	Muscle	TecTe	2	0.22

(Continued)
resistance was also observed in some of the Escherichia coli isolates. Beef in the Wa municipality should be well cooked before consumption due to the high contamination rate by Escherichia coli. Further work to characterize Escherichia coli by molecular means is recommended.

Acknowledgements
The author acknowledges the University for Development Studies for providing laboratory space for this work. The author is also grateful to Rejoice Ekli for her role in sampling and recording of results.

Funding
This work was funded by the author.

Author details
Frederick Adzitey
E-mail: adzitey@yahoo.co.uk
ORCID ID: http://orcid.org/0000-0002-8814-0272
1 University for Development Studies, Department of Veterinary Science, Box TL 1882, Tamale, Ghana.

Competing interests
The author declares no competing interests.

Availability of data
All data have been analyzed and presented in tables within this paper. Raw data will be made available on request.

Authors contribution
Frederick Adzitey financed this work, carried out the experiment and wrote the manuscript.

Consent for publication
The author has read and approves the final manuscript. Frederick Adzitey: adzitey@yahoo.co.uk

Citation information
Cite this article as: Incidence and antimicrobial susceptibility of Escherichia coli isolated from beef (meat muscle, liver and kidney) samples in Wa Abattoir, Ghana, Frederick Adzitey, Cogent Food & Agriculture (2020), 6: 1718269.

References
Abdissa, R., Haile, W., Fite, A. T., Beyi, A. F., Agga, G. E., Edao, B. M., ... Goddeeeris, B. M. (2017). Prevalence of Escherichia coli O157: H7 in beef cattle at slaughter and beef carcasses at retail shops in Ethiopia. BMC Infectious Diseases, 17, 277. doi:10.1186/s12879-017-2372-2
Adzitey, F. (2013). Animal and meat production in Ghana – An overview. The Journal of World’s Poultry Research, 3, 01–04.
Adzitey, F. (2015a). Antibiotic resistance of Escherichia coli isolated from beef and its related samples in Techiman Municipality of Ghana. Asian Journal of Animal Sciences, 9, 233–240. doi:10.3923/ajas.2015.233.240
Adzitey, F. (2015b). Prevalence of Escherichia coli and Salmonella spp. in beef samples sold at Tamale Metropolis, Ghana. International Journal of Meat Science, 5, 8–13. doi:10.3923/ijmeat.2015.8.13
Adzitey, F., Ekli, R., & Abu, A. (2019). Prevalence and antibiotic susceptibility of Staphylococcus aureus isolated from raw and grilled beef in Nyankpala community in the northern region of Ghana. Cogent Food & Agriculture, 5, 1671115. doi:10.1080/23311932.2019.1671115
Adzitey, F., Sulleyman, K. W., & Kum, P. K. (2020). Knowledge and practices of meat safety by meat sellers in the Tamale Metropolis of Ghana. Food Protection Trends, 40, 40–47.
Adzitey, F., Sulleyman, K. W., & Mensah, S. S. (2018). Knowledge and practices of meat safety by meat sellers in the Kumasi Metropolis of Ghana. Research & Reviews: Journal of Food Science and Technology, 7, 34–41.
Albarri, O., Var, I., Meral, M., Bedir, B., Heshmati, B., & FatihKöksal. (2017). Prevalence of Escherichia coli isolated from meat, chicken and vegetable samples in Turkey. Journal of Biotechnology Science Research, 4, 214–222.
Anachinaba, I. A., Adzitey, F., & Teye, G. A. (2015). Assessment of the microbial quality of locally produced meat (beef and pork) in Bolgatanga Municipal of Ghana. Internet Journal of Food Safety, 17, 1–5.
Anning, A. S., Dugbatey, A. A., Kwakye-Nuako, G., & Anning, A. S. (2019). Antibiotic susceptibility pattern of enterobacteriaceae isolated from raw meat and Ghanaian coin currencies at Cape Coast metropolis, Ghana: The public health implication. The Open Microbiology Journal, 13, 139–145. doi:10.2174/1874285801913010138
Antwi-Agyei, P., & Maalekuu, B. K. (2014). Determination of microbial contamination in meat and fish products sold in the Kumasi metropolis (A case study of Kumasi central market and the Bantama market). Merit Research Journal of Agricultural Science and Soil Sciences, 2, 038–046.
Arnarsdottir, A. (2019). Beef 101: Nutrition facts and health effects. Retrieved from https://www.healthline.com/nutrition/foods/beef
Aslam, M., & Service, C. (2006). Antimicrobial resistance and genetic profiling of Escherichia coli from a commercial beef packing plant. Journal of Food Protection, 69, 1508–1513. doi:10.4315/0362-028X-69.7.1508

Table 3. (Continued)

No.	Escherichia coli code	Source	Antibiotic resistant profile	Number of antibiotics	MAR index
43	M22	Muscle	TecTeSxt	3	0.33
44	M28	Muscle	TecTeSxt	3	0.33
45	M39	Muscle	TecTeSxt	3	0.33
Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turk, M. (1966). Antibiotic susceptibility testing by a standardized single disc method. American Journal of Clinical Pathology, 45, 493–496. doi:10.1093/ajcp/45.4_ts.493

Beach, C. (2019). Escherichia coli count nears 200 as outbreak hits 10 states; ground beef implicated. Retrieved from https://www.foodsafetynews.com/?s=E.+coli+outbreak+in+beef

Brazier, Y. (2017). What to know about Escherichia coli infection? Retrieved from https://www.medicalnewstoday.com/articles/68511.php

Clinical and Laboratory Standards Institute. (2017). Performance Standards for Antimicrobial Susceptibility Testing (27th ed.). Wayne, PA, USA: Edition Informational Supplement M100-S27. CLSI.

Darwish, W. S., Atia, A. S., El-Ghareeb, W. R., & Elhelaly, A. E. (2018). Prevalence of multidrug resistant shiga toxin-producing Escherichia coli in cattle meat and its contact surfaces. Journal of Food Quality and Hazards Control, 5, 146–153. doi:10.29252/jfqhc.5.4.6

Ekli, R. (2019). Antibiotic residues and prevalence of resistant Salmonella species in beef obtained from Wa abattoir (MPhil Thesis submitted to Department of Animal Science). University for Development Studies.

Feng, P., Weagant, S. D., Grant, M. A., & Burkhardt, W. (2017). Bacteriological analytical manual (BAM), Chapter 4: Enumeration of Escherichia coli and the coliform bacteria. Retrieved from https://www.fda.gov/investigations-inquiries-answers/bacteriological-analytical-manual-bam-4-enumeration-escherichia-coli-and-coliform-bacteria

Ghana Statistical Service. (2014). 2010 population and housing census. Retrieved from http://www2.stats.ghanagov.gh/docfiles/2010_District_Report/Upper%20West/WA%20MUNICIPAL.pdf

Hoelzer, K., Wong, N., Thomas, J., Talkington, K., Jungman, E., & Coukell, A. (2017). Antimicrobial drug use in food-producing animals and associated human health risks: What, and how strong, is the evidence? BMC Veterinary Research, 13, 211. doi:10.1186/s12917-017-1131-3

Kim, J. H., & Yim, D. G. (2016). Assessment of the microbiological level for livestock products in retail meat shops implementing HACCP system. Korean Journal for Food Science of Animal Resources, 36, 594–600. doi:10.5851/kosfa.2016.36.5.594

Krumperman, P. H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of food. Applied and Environmental Microbiology, 46, 165–170. doi:10.1128/AEM.46.1.165-170.1983

Mahaboubi-Haq, M., & Adzitey, F. (2016). Meat production and consumption in the Wa Municipality of Ghana. International Food Research Journal, 23, 1338–1342.

Maturin, L., & Peeler, J. T. (2001). Bacteriological analytical manual, chapter 3: Aerobic plate count. Retrieved from https://www.fda.gov/food/laboratory-methods-food/bam-aerobic-plate-count

Mayo Foundation for Medical Education and Research. (2019). Escherichia coli – Overview. Retrieved from https://www.mayoclinic.org/diseases-conditions/e-colisymptoms-causes/syc-20372058

Mouche, M. M. M., Moffo, F., Akoachere, J. T. K., Okah-Nnane, N. H., Mapie fou, N. P., Ndze, V. N., … Awah-Ndukum, J. (2019). Antimicrobial resistance from one a health perspective in Cameroon: A systematic review and meta-analysis. BMC Public Health, 19, 1135. doi:10.1186/s12889-019-7450-5

Nkengbe, E., Assuming-Bediako, N., Aikins-Wilson, S., & Hagan, A. (2013). Meat consumption trends in some selected households in Accra Ghana. Asian Journal of Agriculture and Food Sciences, 01, 151–157.

Rahimi, E., Kazemeini, H. R., & Salajegheh, M. (2012). Escherichia coli O157:H7/ NM prevalence in raw beef, camel, sheep, goat, and water buffalo meat in Fars and Khuzestan provinces. Iran Veterinary Research Forum, 3, 13–17.

Saud, B., Paudel, G., Khichoju, S., Bajracharya, D., Dhungana, A., Awasthi, M. S., & Shrestha, V. (2019). Multidrug-resistant bacteria from raw meat of buffalo and chicken. Nep. Veterinary Medicine International, 7, 7960268.

Sulleyman, K. W., Adzitey, F., & Boateng, E. F. (2018). Knowledge and practices of meat safety by meat sellers in the accra metropolis of Ghana. International Journal of Veterinary Science, 7, 167–171.

Twum, E. (2016). Microbial quality of fresh beef sold in the Brim North District of the Eastern Region of Ghana (Masters Dissertation). Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. Retrieved from http://ir.knust.edu.gh/xmlui/handle/123456789/20192?show=full

Williams, P. G. (2007). Nutritional composition of red meat. Nutrition and Dietetics, 64, S113–S119. doi:10.1111/j.1440-1746.2007.01111.x

Yafetto, L., Adator, E. H., Ebukoz, A. A., Ekloh, E., & Afeti, F. Y. (2019). Microbial quality of raw beef and chevon from selected markets in Cape Coast, Ghana. Journal of Biology and Life Science, 10, 78–97. doi:10.5296/jbls.v10i1
