Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials

Hannes Hübener1, Michael A. Sentef2, Umberto De Giovannini1,3, Alexander F. Kemper4 & Angel Rubio1,2

Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, Na3Bi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet–Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance.
Creating and controlling phases of matter is a central goal of condensed matter physics. Recent advances in ultrafast spectroscopy1,2 open a route towards engineering new phases with pump laser fields acting on a solid to form emergent light-matter coupled states. As an example, circularly polarized light has been shown to open a band gap and produce Floquet–Bloch states on the surface of an equilibrium topological insulator3,4 and form a Floquet–Chern insulating state in graphene in the limit of continuous driving5,6 and for finite pulse durations7. The discovery of topological states in Dirac materials has triggered a lot of interest in particular in emergent Dirac, Weyl9 and Majorana fermions10,11. Topological states of matter are controlled by symmetries12–14. Traditionally, the symmetries of materials can be influenced only to a certain extent and only on slow timescales via strain, doping or static magnetic or electric fields. By contrast, Floquet engineering15 allows to dynamically break symmetries and modify the topology of band structures16 on ultrafast timescales.

Massless fermions in 3D Dirac and Weyl semimetals have recently attracted considerable interest. Examples include the Dirac semimetal materials Na\textsubscript{3}Bi17,18 and Cd\textsubscript{3}As\textsubscript{2}19–23 and the Weyl semimetal states in transition-metal monophosphides26–28 first discovered in Ta\textsubscript{3}As\textsubscript{2}29–35. Besides the fundamental importance of Weyl semimetal materials as condensed matter realizations of elementary Weyl fermions, this interest is also due to the intrinsic stability of 3D Weyl points (WPs), which are chiral and host left- or right-handed Weyl fermions, giving rise to unusual material properties, such as negative magnetoresistance36–38 huge magnetoresistance39 or the anomalous Hall effect40–43. WPs can alternatively be viewed as magnetic monopoles in momentum space with positive or negative chiral charges and host non-zero Chern numbers for some closed momentum space surfaces13,14. The topological protection of massless fermions in a Weyl semimetal against weak perturbations is controlled by the WP splitting in the Brillouin zone44, as the chiral WPs can only be destroyed by chirality mixing, which requires two opposite chirality WPs to meet26. The massless fermions in a Dirac semimetal, by contrast, require additional crystal symmetries to be stable and are destroyed, for instance, by breaking rotational symmetry17.

Here we propose a route towards ultrafast Floquet engineering of laser-induced topologically stable WPs starting from the 3D Dirac semimetal Na\textsubscript{3}Bi by \textit{ab initio} electronic structure calculations using time-dependent density functional theory (TDDFT)45,46. We show that a Floquet–Weyl semimetal is dynamically created by breaking time-reversal symmetry. This symmetry breaking is achieved by applying circularly polarized classical laser fields with varying field strengths. Importantly, our strategy goes beyond the use of model tight-binding Hamiltonians and light coupling via Peierls substitution, as the TDDFT scheme automatically deals with the electronic properties and dynamical screening of the material and includes both Peierls phases for hopping terms and intra-atomic dipole (and higher multipole) transitions on equal footing47. In fact our theoretical framework shows effects that are not captured by simple four band models. For example, the splitting of degenerate Dirac bands into bands supporting a Floquet–Weyl point under a pump field does not occur symmetrically in all cases as would be predicted by models, and under linearly polarized pumping, the dynamical electron–electron interaction can induce a symmetry breaking field that destroys the Dirac point and opens a gap.

Results

Theory. To illustrate the basic idea behind the concept of dynamically driven Floquet–Weyl semimetal, we briefly discuss the minimal model in which Floquet WPs arise from a 3D Dirac point and then move to a fully \textit{ab initio} description of the real material Na\textsubscript{3}Bi, where the dynamical electronic interactions of all valence electrons in the full Brillouin zone are taken into account. In a 3D Dirac semimetal, the Dirac point is a fourfold degenerate state at the Fermi level, and the low energy bands around this point obey a massless Dirac equation. Solutions to the massless Dirac equation are composed of two Weyl fermions with opposite chiralities, and the massless 4×4 Dirac Hamiltonian can be written as a combination of uncoupled left- and right-handed 2×2 Weyl Hamiltonians,

$$
\hat{H}_{\text{Dirac}}(k) = \begin{pmatrix} H_{\text{Weyl}}(k) & 0 \\ 0 & H_{\text{Weyl}}(k)^* \end{pmatrix}, \quad H_{\text{Weyl}}(k) = v_F k \cdot \sigma,
$$

(1)

where v_F is the Fermi velocity, $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ are Pauli pseudospin matrices, k measures momentum relative to the Dirac point and $H_{\text{Weyl}}(k)$ is a right-handed Weyl Hamiltonian, while $H_{\text{Weyl}}(k)^*$ is its left-handed (time-reversed) partner, leading to eigenoperators with definite chirality. The 3D Dirac point thus consists of two degenerate WPs. In this case, the chiralities compensate each other because the WPs are at the same point in momentum space. Moreover, the WPs in a 3D Dirac semimetal are destroyed by any chirality-mixing perturbation that leads to a hybridization of the subblocks in equation (1). By contrast, in a Weyl semimetal the left- and right-handed WPs are split in momentum space and are thus not susceptible to chirality-mixing perturbations.

Starting from a 3D Dirac semimetal, see Fig. 1a, one can induce phase changes by lifting the fourfold degeneracy of the 3D Dirac point, either by introducing a mass term or by separating the degenerate WPs in momentum space. A mass term in the Dirac equation opens a gap and can stem from breaking rotational symmetry as induced by applying strain, leading to a topological insulator17.

The separation of the WPs into a Weyl semimetal can be achieved by breaking time-reversal symmetry via an external driving, as shown in Fig. 1b. For the sake of the simplicity of the model but without losing generality, we introduce the coupling to a time-dependent external gauge field via Peierls substitution in equation (1), which amounts to $k \rightarrow k - A(t)$, where A is the time-dependent vector potential of the applied circularly polarized light, for example, $A(t) = A_0(0, \cos(\Omega t), \sin(\Omega t))$ for polarization in the y–z plane. This treatment only takes into account the electric field of the laser pulse and neglects its magnetic component, which is negligible here but can also be straightforwardly included in the \textit{ab initio} calculation. The resulting time-dependent Hamiltonian $H(t) = H(k - A(t))$ describes the dynamics of the driven model system. From here on, we suppress the momentum argument k for brevity.

After transient effects have decayed, the system is in a stationary but non-equilibrium state of light-matter coupling that is periodic in time. Such a state can be analysed by Floquet theory, where the time dependence is described by mapping to a Hilbert space of time-independent multi-photon Hamiltonians, each projected onto a multiple of the photon frequency, thus consisting of two degenerate WPs. In this case, the chiralities compensate each other because the WPs are at the same point in momentum space. Moreover, the WPs in a 3D Dirac semimetal are destroyed by any chirality-mixing perturbation that leads to a hybridization of the subblocks in equation (1). By contrast, in a Weyl semimetal the left- and right-handed WPs are split in momentum space and are thus not susceptible to chirality-mixing perturbations.
Floquet bands. In the high-frequency limit, one can decouple the zero-photon dressed states from the other states, amounting to a simple time average, and add multi-photon states perturbatively\(^5,48\),

\[
\hat{H}_{eff} = \hat{H}^{00} + \frac{1}{\Omega} \left[\hat{H}_{A}^{01}, \hat{H}^{00} \right].
\]

(3)

where \(\hat{H}^{00}\) is the zero order (cycle-averaged) Hamiltonian and \(\hat{H}_{A}^{01}\) are the single photon dressed Hamiltonians, cf equation (2). This Floquet downfolding has the advantage that one recovers the original Hilbert space of the electronic system and the resulting effective Hamiltonian \(\hat{H}_{eff}\) of this simple model retains an analytical form. Thus, for the the Dirac Hamiltonian, equation (1), and \(y-z\) circularly polarized light, the downfolded effective Floquet–Hamiltonian reads

\[
\hat{H}_{eff} = \begin{pmatrix}
\hat{H}_{Weyl}(k) + \frac{\left\langle \nu_s A_0 \right\rangle^2}{\Omega} \sigma_x & 0 \\
0 & \hat{H}_{Weyl}(k)^* - \frac{\left\langle \nu_s A_0 \right\rangle^2}{\Omega} \sigma_x
\end{pmatrix}
\]

(4)

The effective gauge field acts on the the \(x\)-component of the wave vector and results in a shift in the position of each of the originally degenerate WPs by \(\pm \left\langle \nu_s A_0 \right\rangle^2/\Omega\) along the \(k_x\) direction in momentum space creating a Floquet–Weyl semimetal. This mechanism of light-induced effective gauge fields that alters the topology of the material is the central effect discussed in this paper. By solving the full \(ab\ initio\) multi-photon Floquet–Hamiltonian without resorting to a high-frequency expansion or model parameters, we show that this effect occurs in real 3D Dirac semimetals and has the same dependence on amplitude and frequency but with a different prefactor. However, owing to asymmetry of the bands in the actual material Na\(_3\)Bi, it can also lead to a non-symmetric shift of the two WPs in energy away from the Fermi level, one upwards and the other one downwards, forming a topological Weyl metal. Thus, by controlling amplitude, polarization and envelope of the driving field, one can engineer different nontrivial Floquet topological phases. In particular, the same mechanism can be used to induce the Floquet–Weyl semimetal phase in systems that initially have a finite gap. Applying strain to a 3D Dirac semimetal opens a gap that can subsequently be closed by applying the driving field and with sufficient field strength the Weyl semimetal can be recovered, implying the possibility of Floquet engineering a non-equilibrium metal-insulator transition.

For a realistic description of the 3D-Dirac semimetal Na\(_3\)Bi (see Fig. 1) and its insulating strained version under the influence of a periodic driving field, we use the first principles formalism of TDDFT\(^{45-47,49}\). In this approach, the electronic density is propagated in real time according to the time-dependent Kohn-Sham Hamiltonian, which accounts for electron–ion and electron–electron interactions through the time-dependent Hartree and the Kohn-Sham exchange and correlation potentials. The external gauge field is naturally included in the theory up to all orders as a time-dependent phase, as are the electronic multipoles to all orders. The time-dependent electronic structure from TDDFT is then further processed using the Floquet expansion (see Methods). This Floquet TDDFT method represents a powerful and flexible tool to analyse and interpret time-dependent simulations, retaining both the rigorous \(ab\ initio\) description of the electronic ground and time-dependent excited states while allowing for the readily accessible quasi-static picture of Floquet theory. The emergent Floquet bands can be viewed as snapshots of the electronic structure, time-averaged over the fast oscillation period of the external driving field but time-resolved on the slower timescale of the pump pulse duration. This interpretation naturally reflects the measurement process in pump-probe photoemission spectroscopy\(^7,50\).

Both the carrier acceleration via Peierls substitution and the optical dipole transitions are automatically included in the TDDFT time propagation. For example, the observed asymmetric band splitting in the Weyl metal case would not follow from a simple tight-binding model but would require including dipole transitions that are \(a\ priori\) unknown for such a model and would therefore have to be retrofitted. Moreover, by comparing the full TDDFT results including the exchange-correlation potential with a noninteracting time propagation, we find that the induced Hartree and exchange-correlation potentials do not have a crucial role for the effects described in this paper. Hence, the results are indeed generic. However, we stress that, for different setups and effects beyond the ones discussed here, electron–electron or electron–phonon interactions may indeed become important and will be accounted for by our theoretical approach. The Floquet TDDFT framework introduced here will equally well apply to these situations and many more.

In the picture of photon-dressed states, Floquet sidebands are created as replicas of the original bands, spaced by the photon energy and periodically repeated in quasi-energy, in an enhanced Hilbert space including multiphoton processes. In practice, these replicas will be observed if the sidebands are occupied\(^5,7\), but they do not influence the physics discussed in this paper, in contrast to a different recent proposal for emergent Floquet–Weyl points at sideband crossings\(^51\). Importantly, the main effect exploited in our work is due to off-resonant photon absorption, which is why the photon frequency is a freely tunable parameter that allows one to move the Floquet sidebands, for instance,
Floquet–Weyl points induced by circularly polarized light. Applying time-reversal symmetry breaking fields to a 3D Dirac material lifts the degeneracy of the Dirac point into WPs leading to two distinct Floquet–Weyl cones emerging from each Dirac point in the Brillouin zone. In Fig. 2, we illustrate this effect using circularly polarized light with two different polarization planes. Although the k_x and k_z directions in the Brillouin zone of Na$_3$Bi are equivalent, and both showing symmetrical Dirac cones in the equilibrium phase, the dispersion of the Dirac cone along the k_z direction is asymmetric\(^\text{17}\), see Fig. 1a. This leads to qualitatively different behaviour of the driven system along the k_z direction as opposed to the symmetric effect in the k_x-k_y plane. Circularly polarized light in the y-z plane splits the the Floquet WPs along the k_z direction forming a Floquet–Weyl semimetal, as shown in Fig. 2c. Conversely, with light polarized in the x-y plane the Floquet WPs split along the k_x direction, cf. Fig. 2f.

Steering Floquet–Weyl points. In a pump-probe experiment, there are two different timescales at play, the time of the period of oscillation and the time of the modulation of the amplitude owing to the shape of the pump pulse. The pump duration is typically orders of magnitude longer than the oscillation of the field and hence the pulse shape has no effect on the formation of Floquet–Weyl points at any given time during the pumping. In our calculations, we observe that the Floquet limit is reached after two cycles of the driving field, and thus this assumption.
holds even for relatively short pulses of 100 fs. However, the changing of the envelope amplitude over time will change the position of the WPs according to Fig. 2. This means that on the timescale of pulse envelopes, yielding a time-dependent band structure that is accessible through time- and angle-resolved photoemission spectroscopy. Two time-delayed (Δτ) pump laser pulses, circularly polarized in y−z and x−z directions, respectively, drive the Floquet–Weyl points in the k_y−k_z plane of the BZ. (b) The varying field strength during the laser pulses leads to dancing Floquet–Weyl points with trajectories controlled by Δτ given in units of the FWHM of pulse envelopes.

Discussion

Our work demonstrates how topological properties in solids can be Floquet engineered. Floquet TDDFT predicts distinct Weyl semimetal, Weyl metal and topological insulator Floquet band structures that can be measured with time-resolved photoemission spectroscopy. The splitting of Floquet–Weyl points controlled by laser driving illustrates how the concept of separation of chiral particles in momentum space inspires the Floquet engineering of topologically stable states. Regarding anomalous transport properties, we envision that THz magneto-transport might be able to detect effects of Floquet–Weyl fermions near the Fermi level, for instance, the anomalous negative magneto-resistance corresponding to the chiral Adler–Bell–Jackiw anomaly36–38, the recently demonstrated chiral magnetic effect53, a proposed chiral pumping effect with an axial current54 or huge magnetoresistance for the Floquet–Weyl metal with hole and electron Fermi surfaces59 arising for x−y polarization. Our predictions can be directly checked in pump-probe angle-resolved photoemission experiments, which can measure the transient Floquet band structures3,4. These experiments could additionally even provide evidence about topological features implied by topological insulator, Dirac semimetal and Weyl semimetal materials, for example, Fermi arc surface states of Weyl semimetal or surface states in topological insulators. Furthermore, a recent work55 proposes measurement of the Wigner distribution as a means to identify non-trivial Floquet phases.

In terms of method development, we have introduced the framework of Floquet TDDFT as a tool for the first principles prediction of Floquet engineered bands and topologies.
Methods

Units of field amplitudes. The amplitudes of the vector potentials discussed in the text can be converted to electric field strength as $E = -\partial A / \partial t - A \times \Omega$ assuming that the envelope is constant. This leads to a conversion of 1 [a.u./c] = 0.015789 V/Å eV. For the frequency of $\omega_0 = 1.5$ eV used here, this corresponds to a conversion of all amplitudes A given in the text as 1 [a.u./c] = 0.020649 V/Å = 2.06498 MV cm$^{-1}$.

Floquet TDDFT. According to the Floquet theorem, the solutions of the time-dependent Schrödinger equation $i \partial_t \psi(t) = H(t) \psi(t)$ with a Hamiltonian that is periodic in time, that is, $H(t + T) = H(t)$, can be obtained by computing the eigenstates of a static Hamiltonian in the Hilbert space of multi-photon dressed states. This static Hamiltonian follows from performing a Floquet–Bloch expansion of the time-dependent solutions of the Schrödinger equation $\psi(t) = \sum \exp(-i(t + m\Omega)t)|\mu_m\rangle$, where $\Omega = 2\pi / T$, ϵ is the Floquet quasi-energy, and $|\mu_m\rangle$ is the corresponding nth Floquet eigenfunction, which does not depend on time. The time-dependent Schrödinger equation then reduces to the static equation

$$\sum_{\mu} \gamma^m_{\epsilon} |\mu_m\rangle = i |\epsilon_{\mu_m}\rangle$$

for each ϵ, where the γ^m_{ϵ} is a static Hamiltonian

$$\gamma^m_{\epsilon} = \frac{1}{T} \int dt e^{i(t - s)\Omega} H(t) + \delta_{\epsilon m} m \Omega$$

defined in the infinite Hilbert space of multi-photon (that is, multiples of Ω) components. Thus Floquet theory offers a way of analysing periodically driven systems. In principle, the full description of the system requires the diagonalization of the full Floquet–Hamiltonian while in practice one truncates the photon number depending on the problem at hand. In this work, we found that the contributions of two-photon terms and beyond had a negligible effect on the bands considered here.

The motivation to perform Floquet analysis is to project the time dependence of the driven system to a static picture. Although this is usually used to obtain an analytical expression that exposes the physical mechanism, we use it here literally as a tool to analyse time-dependent data. TDDFT gives the real-time evolution of the electronic density by propagating the Kohn-Sham states under any kind of static or time-dependent perturbation. The time evolution operator is built from the Kohn-Sham Hamiltonian H_{KS} with explicitly time-dependent external fields V_{ext}:

$$H_{KS}(t) = T + V_0 + V_{ext}[n(t)] + V_{ext}[n(t)] + V_{ext}(t)$$

where T and V_0 are the kinetic energy and static potential, while the Hartree potential V_{H} and the exchange and correlation potential V_{xc} dynamically depend on the density $n(t)$ during the time evolution. For extended systems, we use the velocity gauge concept introduced in ref. 47 to treat, within the dipole approximation, the response of extended periodic systems to an arbitrary time-dependent perturbation. Within the velocity gauge, the external potential arises in the Hamiltonian from the substitution $p \rightarrow p - A(t)/c$ leading to the terms $1/2(p - A(t)/c)^2 = T + 1/2(A(t)/c)^2 - p \cdot A(t)/c = T + V_{ext}(t)$ (in atomic units).

Besides the fact that the physical properties of the system over time can be then derived from the time-dependent density, it is obvious that this approach also generates a Hamiltonian at each time step. If the system is driven by a periodic external field or finds itself in an otherwise periodically oscillating state, such as phonon modes, this Hamiltonian fulfills the Floquet condition of periodicity and can be used directly in equation (2). Hence, Floquet analysis provides an approach of processing real-time propagation results from TDDFT to obtain spectral information that is richer than the instantaneous Kohn-Sham eigenvalues.

Furthermore, it provides a setting to discuss time-dependent band structures on timescales accessible in pump-probe experiments. Finally, electron correlation effects beyond independent particles in driven systems are thus within reach, paving the way for the study of nonlinear laser field and collective excitation effects, such as the coupling to phonons, or exciton and plasmon formation in realistic Floquet-driven complex materials.
References

1. Orenstein, J. Ultrafast spectroscopy of quantum materials. Phys. Today 65, 44–50 (2012).

2. Zhang, J. & Averitt, R. Dynamics and control in complex transition metal oxides. Annu. Rev. Mater. Res. 44, 19–43 (2014).

3. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of
et al.

4. Mahmood, F.

5. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 85, 014203 (2012).

6. Kitagawa, T., Oka, T., Brataas, A., Fu, L. & Demler, E. Transport properties of
et al.

7. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac
et al.

8. Liu, Z. K. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15, 27–31 (2016).

9. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi
et al.

10. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Rev. B 105, 010502 (2017).

11. Fu, L. & Kane, C. L. Superconducting proximity effect and majorana fermions
et al.

12. Kitaev, A. in Floquet topological insulator and topological phase transitions in A3Bi (2014).

13. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and topological quantum wells. Nat. Phys. 7, 490–495 (2011).

14. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

15. Liu, Z. K. et al. Discovery of a three-dimensional topological dirac semimetal, Na3Bi3. Science 343, 864–867 (2014).

16. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in CdsAs, Phys. Rev. B 88, 125427 (2013).

17. Ali, M. N. et al. The crystal and electronic structures of CdsAs, the three-dimensional electronic analogue of graphite. Inorg. Chem. 53, 4062–4067 (2014).

18. Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Comm. 5, 3786 (2014).

19. Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13, 677–681 (2014).

20. Liang, T. et al. Ultrafast chirality and giant magnetoresistance in the Dirac semimetal CdsAs, Nat. Mater. 14, 280–284 (2015).

21. Borisenko, S. et al. Experimental realization of a three-dimensional dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

22. Jeon, S. et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal CdsAs2, Nat. Mater. 13, 851–856 (2014).

23. Wang, H., Feng, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

24. Huang, S.-M. et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

25. Liu, Z. K. et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15, 27–31 (2016).

26. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi
et al.

27. Lv, B. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

28. Xu, B. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

29. Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

30. Wang, L. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

31. Shekhar, C. et al. Extremely large magnetoresistance and ultrafast mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645–649 (2015).

32. Fu, L.-Y., Lu, Y.-M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 87, 054219 (2013).

33. Bornemann, G. & Hafezi, M. Observation of chiral fermions: photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 110, 026805 (2013).

34. Nielsen, H. B. & Ninomiya, M. Absence of neutrinos on a lattice. Nucl. Phys. B 185, 20–40 (1981).

35. Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

36. Marques, M., Maitra, N., Nogueira, F., Gross, E. & Rubio, A. (eds) Fundamentals of Time-Dependent Density Functional Theory-Lecture Notes in Physics, Vol. 837 (Springer, 2012).

37. Bertsch, G. F., Iwata, J.-I., Rubio, A. & Yakab, K. Real-space, real-time method for the dielectric function. Phys. Rev. B 62, 7998–8002 (2000).

38. Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139–226 (2015).

39. Andrade, X. et al. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Phys. Chem. Chem. Phys. 17, 3137–3139 (2015).

40. Frericks, K. J., Krishnamurthy, H. R. & Pruschke, T. Theoretical description of time-resolved photoemission microscopy: application to pump-probe experiments. Phys. Rev. Lett. 102, 136401 (2009).

41. Zhou, J.-Y. & Liu, B.-G. Floquet Weyl fermions in a circularly-polarised-light-irradiated three-dimensional stacked graphene systems. Phys. Rev. Lett. 93, 205435 (2015).

42. Weng, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet Weyl semimetal induced by off-resonant light. EPL (Europhys. Lett.) 105, 17004 (2014).

43. Li, Q. et al. Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016).

44. Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016).

45. Kolodrubetz, M., Fregoso, B. M. & Moore, J. E. Nonadiabatic bulk-surface oscillations in driven topological insulators. Phys. Rev. B 94, 195124 (2016).

46. Hartwigen, C., Goedecker, S. & Hutter, J. Separativ n-liquid surfaces of the double semi-space. Physical properties of ab-transition-metal monophosphides. Phys. Rev. B 58, 3641–3662 (1998).

47. Hübscher, H., De Giovannini, U. & Rubio, A. Floquet-bandstructures of circular driven Na3Bi. Novel Materials Discovery (NoMaD) Repository Available at http://dx.doi.org/10.17172/NOMAD/2016.11.07-1 (2016).

Acknowledgements

We are grateful to Fenxi Tang for stimulating discussions and a critical reading of our manuscript and to Abhishek Vishwanath for helpful discussions. We acknowledge financial support from the European Research Council (ERC-2015-AdG-694097), Groups Consolidados (IT578-13), Spanish grant (FIS2013-46159-C3-1-P), AFSOR Grant No.
FA2386-15-1-0006 AOARD 144088, COST Action MP1306 (EUSpec). H.H. acknowledges support from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7-PEOPLE-2013-IEF project No. 622934. A.F.K. thanks the Aspen Center for Physics (supported by National Science Foundation grant PHY-1066293) for their hospitality during part of this work. M.A.S. acknowledges support by the Deutsche Forschungsgemeinschaft through the Emmy Noether programme.

Author contributions

H.H. and M.A.S. designed the model and the computational framework and analysed the data. H.H. and U.D.G. carried out the implementation. H.H. performed the calculations. H.H. and M.A.S. wrote the manuscript with input from all authors. A.F.K. and A.R. conceived the study and were in charge of overall direction and planning.

Additional information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Hübener, H. et al. Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials. *Nat. Commun.* 8, 13940 doi: 10.1038/ncomms13940 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/