NOTE ON BRENDLE-EICHMAIR’S PAPER
“ISOPERIMETRIC AND WEINGARTEN SURFACES IN THE SCHWARZSCHILD MANIFOLD”

HAIZHONG LI, YONG WEI, AND CHANGWEI XIONG

Abstract. In this short note, we show that the assumption “convex” in Theorem 7 of Brendle-Eichmair’s paper [4] is unnecessary.

1. Introduction

For \(n \geq 3 \), let \(\lambda : [0, \bar{r}) \to \mathbb{R} \) be a smooth positive function which satisfies the following conditions (see [4]):

(H1) \(\lambda'(0) = 0 \) and \(\lambda''(0) > 0 \).

(H2) \(\lambda'(r) > 0 \) for all \(r \in (0, \bar{r}) \).

(H3) The function
\[
2 \frac{\lambda''(r)}{\lambda(r)} - \frac{(n - 2) - \lambda'(r)^2}{\lambda(r)^2}
\]

is non-decreasing for \(r \in (0, \bar{r}) \).

(H4) \(\frac{\lambda''(r)}{\lambda(r)} + \frac{1 - \lambda'(r)^2}{\lambda(r)^2} > 0 \) for all \(r \in (0, \bar{r}) \).

Now we consider the manifold \(M = \mathbb{S}^{n-1} \times [0, \bar{r}) \) equipped with a Riemannian metric \(\bar{g} = dr \otimes dr + \lambda(r)^2 g_{\mathbb{S}^{n-1}} \). Let \(\Sigma \) be a closed embedded star-shaped hypersurface in \((M, \bar{g}) \), where star-shaped means that the unit outward normal \(\nu \) satisfies \(\langle \partial_r, \nu \rangle \geq 0 \). Denote by \(\sigma_p \) the \(p \)-th elementary symmetric polynomial of the principal curvatures. In fact, for this manifold \((M, \bar{g}) \) Brendle and Eichmair proved the following theorem

Theorem 1 (Theorem 7 of [4]). Let \(\Sigma \) be a closed embedded hypersurface in the manifold \((M, \bar{g}) \) that is star-shaped and convex. If \(\sigma_p \) is constant, then \(\Sigma \) is a slice \(\mathbb{S}^{n-1} \times \{ r \} \) for some \(r \in (0, \bar{r}) \).

In this note, we show that the assumption “convex” in Theorem [4] is unnecessary. That is we have

Theorem 2. Let \(\Sigma \) be a closed, embedded and star-shaped hypersurface in the manifold \((M, \bar{g}) \). If \(\sigma_p \) is constant, then \(\Sigma \) is a slice \(\mathbb{S}^{n-1} \times \{ r \} \) for some \(r \in (0, \bar{r}) \).

\[\text{Date: May 3, 2014.}\]
\[\text{The research of the authors was supported by NSFC No. 11271214.}\]
Note that the conditions (H1)-(H4) are all satisfied on the de Sitter-Schwarzschild manifolds (see [4]). So we have the following Corollary

Corollary 3. Let Σ be a closed, embedded and star-shaped hypersurface in the de Sitter-Schwarzschild manifold (M, \bar{g}). If σ_p is constant, then Σ is a slice $\mathbb{S}^{n-1} \times \{r\}$ for some $r \in (0, \bar{r})$.

2. **Proof of Theorem 2**

In this section, by observing the existence of an elliptic point on Σ and some basic facts about the function σ_p, we can remove the assumption “convex”.

Let $X = \lambda(r) \partial_r$. It is easy to see that X is a conformal vector field satisfying $\nabla X = \lambda' \bar{g}$. Following the argument as Lemma 5.3 in [1], we have

Lemma 4. Let $\psi : \Sigma \to (M, \bar{g})$ be a closed hypersurface. Then there exists an elliptic point x on Σ, i.e., all the principal curvatures are positive at x.

Proof. Let $h = \pi_I \circ \psi : \Sigma \to I$ be the height function on Σ, where π_I is the projection $\pi_I(r, \theta) = r$. At any point $x \in \Sigma$, we have

$$\nabla h = (\nabla r)^\top = (\partial_r)^\top.$$ \hspace{1cm} (1)

Let $\{e_1, \cdots, e_{n-1}\}$ be a local orthonormal frame on Σ, and assume that the second fundamental form $h_{ij} = \langle \nabla_{e_i} \nu, e_j \rangle$ is diagonal with eigenvalues $\kappa_1, \cdots, \kappa_{n-1}$. Then

$$\nabla_{e_i} \nabla h = \nabla_{e_i} (\frac{1}{\lambda(h)} \lambda(h) \partial_r)^\top$$

$$= -\frac{\lambda'}{\lambda} (\nabla_{e_i} h) \partial_r^\top + \frac{1}{\lambda} \nabla_{e_i} (\lambda \partial_r^\top).$$ \hspace{1cm} (2)

Note that $X = \lambda \partial_r$ is a conformal vector field, we have

$$\nabla_{e_i} (\lambda \partial_r^\top) = \nabla_{e_i} (\lambda \partial_r - \langle \lambda \partial_r, \nu \rangle \nu)$$

$$= (\nabla_{e_i} (\lambda \partial_r - \langle \lambda \partial_r, \nu \rangle \nu))^\top$$

$$= \lambda' e_i - \langle \lambda \partial_r, \nu \rangle \kappa_i e_i.$$ \hspace{1cm} (3)

Substituting (3) into (2) gives that

$$\nabla_{e_i} \nabla h = -\frac{\lambda'}{\lambda} (\nabla_{e_i} h) \partial_r^\top + \frac{1}{\lambda} (\lambda' - \langle \lambda \partial_r, \nu \rangle \kappa_i) e_i.$$ \hspace{1cm} (4)

Now we consider the maximum point x of h. We have $\nabla h = 0, \nu = \partial_r$ and $\nabla^2 h \leq 0$ at x. Then from (4), we get

$$\kappa_i \geq \frac{\lambda'}{\lambda} > 0, \quad i = 1, \cdots, n - 1,$$

i.e., x is an elliptic point of Σ. \hfill \square
Remark 5. If we assume that the closed embedded hypersurface Σ in M satisfies $\langle \partial_r, \nu \rangle > 0$, then Σ can be parametrized by a graph on \mathbb{S}^{n-1} (see [5]):

$$\Sigma = \{(r(\theta), \theta) : \theta \in \mathbb{S}^{n-1}\}.$$

Define a function $\varphi : \mathbb{S}^{n-1} \to \mathbb{R}$ by $\varphi(\theta) = \Phi(r(\theta))$, where $\Phi(r)$ is a positive function satisfying $\Phi' = 1/\lambda$. Let φ_i, φ_{ij} be covariant derivatives of φ with respect to $g_{\mathbb{S}^{n-1}}$. Define $v = \sqrt{1 + |\nabla \varphi|^2_{g_{\mathbb{S}^{n-1}}}}$. Then the same calculation as in Proposition 5 in [5] gives that the second fundamental form of Σ has the expression

$$h_{ij} = \frac{\lambda'}{v \lambda} g_{ij} - \frac{\lambda}{v} \varphi_{ij},$$

where g_{ij} is the induced metric on Σ from (M, \bar{g}). At the maximum point x of φ, we have $\varphi_i = 0, \varphi_{ij} \leq 0$. Then we have $h_{ij} \geq \frac{\lambda'}{\lambda} g_{ij}$, i.e., x is an elliptic point of Σ. Note that the maximum point x of φ is also a maximum point of r.

Recall that for $1 \leq k \leq n - 1$ the convex cone $\Gamma_k^+ \subset \mathbb{R}^{n-1}$ is defined by

$$\Gamma_k^+ = \{ \vec{\kappa} \in \mathbb{R}^{n-1} | |\sigma_j(\vec{\kappa})| > 0 \text{ for } j = 1, \ldots, k \},$$

or equivalently

$$\Gamma_k^+ = \text{component of } \{ \sigma_k > 0 \} \text{ containing the positive cone.}$$

It is clearly that Γ_k^+ is a cone with vertex at the origin and $\Gamma_k^+ \subset \Gamma_{j}^+$ for $j \leq k$.

We write $\sigma_0 = 1, \sigma_k = 0$ for $k > n - 1$, and denote $\sigma_{k;i}(\vec{\kappa}) = \sigma_k(\vec{\kappa})|_{\kappa_i=0}$, i.e., $\sigma_{k;i}(\vec{\kappa})$ is the k-th elementary symmetric polynomial of $(\kappa_1, \ldots, \kappa_{i-1}, \kappa_{i+1}, \ldots, \kappa_{n-1})$. Then we have the following classical result (see, e.g., [10] Lemma 2.3, [6,9]).

Lemma 6. If $\vec{\kappa} \in \Gamma_k^+$, then $\sigma_{k-1;j}(\vec{\kappa}) > 0$ for each $1 \leq i \leq n - 1$ and

$$\sigma_{j-1} \geq \frac{j}{n-j} \left(\frac{n-1}{j}\right)^{1/j} \sigma_j^{(j-1)/j}, \text{ for } 1 \leq j \leq k. \quad (5)$$

The following Lemma shows that on connected closed hypersurface in (M, \bar{g}), the positiveness of σ_p implies that the principal curvatures $\vec{\kappa} \in \Gamma_p^+$.

Lemma 7. Let Σ be a connected, closed hypersurface in (M, \bar{g}). If $\sigma_p > 0$ on Σ, then we have $\sigma_j > 0$ on Σ for each $1 \leq j \leq p - 1$.

Proof. We believe that the proof of this Lemma can be found in literature, for example, see the proof of Proposition 3.2 in [3]. For convenience of the readers, we include the proof here. Lemma 4 implies that there exists an elliptic point x on Σ. By continuity there exists an open neighborhood \mathcal{U} around x such that the principal curvatures are positive in \mathcal{U}. Hence σ_k are positive in \mathcal{U} for each $1 \leq k \leq n - 1$. Denote by \mathcal{G}_j the connected component of the set $\{ x \in \Sigma : \sigma_j|_x > 0 \}$ containing \mathcal{U}.

Claim 8. For each j, we have $\mathcal{G}_{j+1} \subset \mathcal{G}_j$.

Proof of the Claim. For each \(k \), define the open set
\[
\mathcal{V}_k = \bigcap_{j=1}^k G_j.
\]
It suffices to show that \(\mathcal{V}_k = G_k \). Since \(\sigma_j > 0 \) in \(\mathcal{V}_k \) for \(1 \leq j \leq k \), Lemma 6 implies that at each point of this open set \(\mathcal{V}_k \) the inequalities (5) hold. By continuity (3) also hold at the boundary of \(\mathcal{V}_k \). If a point \(y \) of the boundary of \(\mathcal{V}_k \) belongs to \(G_k \), then (5) implies \(y \in G_j \) for each \(j \leq k \) and therefore belongs to \(\mathcal{V}_k \). This shows that the boundary of \(\mathcal{V}_k \) is contained in the boundary of \(G_k \). Since by definition \(\mathcal{V}_k \subset G_k \) and they are both open sets, \(G_k \) is connected, we have \(\mathcal{V}_k = G_k \). This completes the proof of the Claim. \(\square \)

Now we continue the proof of Lemma 7. We will show that \(G_{p-1} \) is closed. Pick a point \(y \) at the boundary of \(G_{p-1} \). By continuity \(\sigma_{p-1} \geq 0 \) at \(y \). Then Claim 8 implies that \(\sigma_j \geq 0 \) at \(y \) for each \(1 \leq j \leq p-1 \). If \(\sigma_{p-1} = 0 \) at \(y \), by hypothesis \(\sigma_p > 0 \) and using Lemma 6, we have
\[
0 = \sigma_{p-1} \geq \frac{p}{n-p} \left(\frac{n-1}{p} \right)^{1/p} \sigma_{p-1}^{(p-1)/p} > 0,
\]
which is a contradiction. This implies \(\sigma_{p-1} \neq 0 \) at \(y \), and \(y \) belongs to the interior of \(G_{p-1} \). Therefore \(G_{p-1} \) is closed. Since it is also open, and then \(G_{p-1} = \Sigma \) by the connectedness of \(\Sigma \). Then Claim 8 shows that \(G_j = \Sigma \) for each \(1 \leq j \leq p-1 \), this implies \(\sigma_j > 0 \) for \(1 \leq j \leq p-1 \) on \(\Sigma \) and completes the proof of Lemma 7. \(\square \)

Now we can prove Theorem 2. As in [4], it suffices to prove the Heintze-Karcher-type inequality and Minkowski-type inequality.

If \(\sigma_p \) is a constant on \(\Sigma \), then Lemma 3 implies \(\sigma_p = \text{const} > 0 \). Denote by \(\vec{\kappa} = (\kappa_1, \ldots, \kappa_{n-1}) \) the principal curvatures of \(\Sigma \). Then Lemma 7 implies \(\vec{\kappa} \in \Gamma^+_1 \) on \(\Sigma \). Thus \(\vec{\kappa} \in \Gamma^+_1 \) and \(\Sigma \) is mean convex. So the Heintze-Karcher-type inequality
\[
(n-1) \int_\Sigma \frac{\lambda'}{H} \geq \int_\Sigma \langle X, \nu \rangle
\]
can be obtained as in [2].

On the other hand, we can prove

Proposition 9 (Minkowski-type inequality). For \(1 \leq p \leq n-1 \), suppose that \(\Sigma \) is star-shaped and \(\sigma_p > 0 \). Then
\[
p \int_\Sigma \langle X, \nu \rangle \sigma_p \geq (n-p) \int_\Sigma \lambda' \sigma_{p-1}
\]

Proof. Let \(\xi = X - \langle X, \nu \rangle \nu \) and \(T^{(p)}_{ij} = \frac{\partial \sigma_p}{\partial h_{ij}} \). Then
\[
\nabla_i \xi_j = \nabla_i X_j - \langle X, \nu \rangle h_{ij} = \lambda' \delta_{ij} - \langle X, \nu \rangle h_{ij}
\]
Therefore
\[
\sum_{i,j=1}^{n-1} \nabla_i (\xi_j T_{ij}^{(p)}) = \lambda' \sum_{i=1}^{n-1} T_{ii}^{(p)} - \sum_{i,j=1}^{n-1} T_{ij}^{(p)} (X, \nu) h_{ij} + \sum_{i,j=1}^{n-1} \xi_j \nabla_i T_{ij}^{(p)} - n \sum_{i=1}^{n-1} T_{ii}^{(p)} - n \sum_{i,j=1}^{n-1} T_{ij}^{(p)} (X, \nu) + \sum_{i,j=1}^{n-1} \xi_j \nabla_i T_{ij}^{(p)}
\]

(8)

Next as the proof of Proposition 8 in [4], we can get
\[
\sum_{i,j=1}^{n-1} \xi_j \nabla_i T_{ij}^{(p)} = -n - p \sum_{j=1}^{n-1} \sigma_{p-2,j} (\bar{k}) \xi_j Ric(e_j, \nu)
\]

By direct calculation, we have
\[
Ric(e_j, \nu) = - (n-2) \left(\frac{\lambda''(r)}{\lambda(r)} + \frac{1 - \lambda'(r)^2}{\lambda(r)^2} \right) \xi_j \langle \partial_r, \nu \rangle.
\]

Thus, using the assumption “star-shaped” \(\langle \partial_r, \nu \rangle \geq 0 \) and the condition (H4), we have \(\xi_j Ric(e_j, \nu) \leq 0 \) for each \(1 \leq j \leq n - 1 \). On the other hand, from Lemma 7 and Lemma 6, \(\bar{k} \in \Gamma^+_{p-1} \) on \(\Sigma \) and \(\sigma_{p-2,j} (\bar{k}) > 0 \) for each \(1 \leq j \leq n - 1 \). Therefore we have
\[
\sum_{i,j=1}^{n-1} \xi_j \nabla_i T_{ij}^{(p)} \geq 0.
\]

(9)

Putting (9) into (8) and integrating on \(\Sigma \), we get the Proposition 8. □

Once obtaining the Heintze-Karcher-type inequality (6) and the Minkowski-type inequality (7), we can go through the remaining proof as in [4], which completes the proof of Theorem 2.

APPENDIX A. FURTHER REMARK

Finally we give a remark about the generalization of Theorem 2. For \(n \geq 3 \), let \((N, g_N) \) be a compact Einstein manifold of dimension \(n - 1 \) satisfying \(Ric_N = (n-2)Bg_N \) for some constant \(B \). Moreover, let \(\lambda : [0, \bar{r}) \to \mathbb{R} \) be a smooth positive function which satisfies the following conditions:

(H1)’ \(\lambda'(0) = 0 \) and \(\lambda''(0) > 0 \).
(H2)’ \(\lambda'(r) > 0 \) for all \(r \in (0, \bar{r}) \).
(H3)’ The function
\[
2 \frac{\lambda''(r)}{\lambda(r)} - (n-2) \frac{B - \lambda'(r)^2}{\lambda(r)^2}
\]

is non-decreasing for \(r \in (0, \bar{r}) \).
(H4)’ \(\frac{\lambda''(r)}{\lambda(r)} + \frac{B - \lambda'(r)^2}{\lambda(r)^2} > 0 \) for all \(r \in (0, \bar{r}) \).
Let manifold \(M = N \times [0, \bar{r}) \) with a Riemannian metric \(\bar{g} = dr \otimes dr + \lambda(r)^2 g_N \). By use of the similar arguments as proof of Theorem 2, we can obtain the following generalization of Theorem 2

Theorem 10. Let \(\Sigma \) be a closed, embedded and star-shaped hypersurface in the manifold \((M, \bar{g})\). If \(\sigma_p \) is constant, then \(\Sigma \) is a slice \(N \times \{r\} \) for some \(r \in (0, \bar{r}) \).

References

[1] L. J. Alias and A. G. Colares, *Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker spacetimes*, Math. Proc. Cambridge Philos. Soc., **143** (2007), 703-729.

[2] S. Brendle, *Hypersurfaces of constant mean curvature in Desitter-Schwarzschild space*, arXiv:1105.4273.

[3] J. L. M. Barcos and A. G. Colares, *Stability of Hypersurfaces with Constant r-Mean Curvature*, Annals of Global Analysis and Geometry **15** (1997), 277-297.

[4] S. Brendle and M. Eichmair, *Isoperimetric and Weingarten surfaces in the Schwarchild manifold*, arXiv:1208.3988, to appear in J. Diff. Geom.

[5] S. Brendle, P.-K. Hung, and M.-T. Wang, *A Minkowski-type inequality for hypersurfaces in the Anti-deSitter-Schwarzschild manifold*, arXiv: 1209.0669.

[6] L.A. Caffarelli, L. Nirenberg, and J. Spruck, *Dirichlet problem for nonlinear second order elliptic equations III, Functions of the eigenvalues of the Hessian*, Acta Math. **155** (1985), 261-301.

[7] L. Gårding, *An inequality for hyperbolic polynomials*, J. Math. Mech. **8**(159), 957-965.

[8] Y. Ge, H. Li, H. Ma and J. Ge, *Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures*, Indiana Univ. Math. J. **58** (2009), 853-868.

[9] M. Lin and N.S. Trudinger, *On some inequalities for elementary symmetric functions*, Bull. Aust. Math. Soc. **50** (1994), 317-326.

[10] W.-M. Sheng, N. S. Trudinger and X.-J. Wang, *The Yamabe problem for higher order curvatures*, J. Diff. Geom., **77** (2007), 515-553.