"Vector bundles" over quantum Heisenberg manifolds.

Beatriz Abadie

Abstract: We construct, out of Rieffel projections, projections in certain algebras which are strong-Morita equivalent to the quantum Heisenberg manifolds $D_{c,\bar{\hbar}^{\mu\nu}}$. Then, by means of techniques from the Morita equivalence theory, we get finitely generated and projective modules over the algebras $D_{c,\bar{\hbar}^{\mu\nu}}$. This enables us to show that the group $Z + 2\mu Z + 2\nu Z$ is contained in the range of the trace on $K_0(D_{c,\bar{\hbar}^{\mu\nu}})$.

Preliminaries. Let G be the Heisenberg group,

$$
G = \left\{ \begin{pmatrix} 1 & y & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\},
$$

and, for a positive integer c, let H_c be the subgroup of G obtained when x, y, and cz are integers. The Heisenberg manifold M_c is the quotient G/H_c.

Non-zero Poisson brackets on M_c that are invariant under the action G on M_c by left translation can be parametrized by two real numbers μ and ν, with $\mu^2 + \nu^2 \neq 0$ ([RF3]).

For each positive integer c and real numbers μ and ν as above, Rieffel constructed ([RF3]) a deformation quantization $\{D_{c,\bar{\hbar}^{\mu\nu}}\}_{\bar{\hbar} \in \mathbb{R}}$ of M_c in the direction of the Poisson bracket $\Lambda_{\mu\nu}$.

Since $D_{c,\bar{\hbar}^{\mu\nu}}$ is isomorphic to $D_{c,1,\bar{\hbar}^{\mu\nu}}$, and we will not need to keep track of the Planck constant $\bar{\hbar}$, we absorb it from now on into the parameters μ and ν. Thus we will use $D_{c,\mu\nu}$ to denote $D_{c,1,\bar{\hbar}^{\mu\nu}}$.

As shown in [RF3], the algebra $D_{c,\mu\nu}$ can be described as the generalized fixed-point algebra of the crossed-product $C_0(\mathbb{R} \times T) \rtimes_{\lambda Z} Z$, where $\lambda_{p}(x, y) = (x + 2p\mu, y + 2p\nu)$, for all $p \in \mathbb{Z}$, under the action ρ of Z defined by

$$(\rho_{p}\Phi)(x, y, p) = e(ckp(y - p\nu))\Phi(x + k, y, p),$$

where $k, p \in \mathbb{Z}$, $\Phi \in C_c(\mathbb{R} \times T \times \mathbb{Z})$, and, for any real number x, $e(x) = \exp(2\pi ix)$.

1 The material of this work is part of the author’s Ph.D dissertation, submitted to the University of California at Berkeley in May 1992.
The action ρ defined above corresponds to the action ρ defined in [Rf3, p.539], after taking Fourier transform in the third variable to get the algebra denoted in that paper by \(A_\hbar \), and viewing \(A_\hbar \) as a dense *-subalgebra of \(C_0(R \times T) \times_\lambda Z \) via the embedding \(J \) defined in [Rf3, p.547]. Equivalently, \(D^c_{\mu \nu} \) is the closure in the multiplier algebra of \(C_0(R \times T) \times_\lambda Z \) of the *-subalgebra \(D_0 \) consisting of functions \(\Phi \in C(R \times T \times Z) \) which have compact support on \(Z \) and satisfy

\[
\Phi(x + k, y, p) = e(-ckp(y - p\nu))\Phi(x, y, p),
\]

for all \(k, p \in Z \), and \((x, y) \in R \times T \) (\(D_0 \) is the image under the embedding \(J \) mentioned above of the subalgebra denoted by \(C^\rho \) in the proof of [Rf3, Thm.5.4]).

There is a faithful trace ([Rf3]) \(\tau_D \) on \(D^c_{\mu \nu} \) defined for \(\Phi \in D_0 \), by

\[
\tau_D(\Phi) = \int_{T^2} \Phi(x, y, 0) dxdy.
\]

It can be shown ([Ab2]) that the algebra \(D^c_{\mu \nu} \) is strong-Morita equivalent to the generalized fixed-point algebra \(E^c_{\mu \nu} \) of the crossed product \(C_0(R \times T) \times_\sigma Z \) under the action \(\gamma \) of \(Z \), where \(\sigma_k(x, y) = (x - k, y) \) and

\[
(\gamma_p \Phi)(x, y, k) = e(-ckp(y - p\nu))\Phi(x - 2p\mu, y - 2p\nu, k),
\]

for \(k, p \in Z \) and \(\Phi \in C_c(R \times T \times Z) \).

As for the quantum Heisenberg manifolds case, \(E^c_{\mu \nu} \) can also be described (see [Ab2]) as the closure in the multiplier algebra of \(C_0(R \times T) \times_\sigma Z \) of the *-algebra \(E_0 \) consisting of functions \(\Phi \in C(R \times T \times Z) \), with compact support on \(Z \) and such that

\[
\Phi(x - 2p\mu, y - 2p\nu, k) = e(ckp(y - p\nu))\Phi(x, y, k),
\]

for all \(k, p \in Z \), \((x, y) \in R \times T \). The equivalence \(D^c_{\mu \nu} \)-\(E^c_{\mu \nu} \) bimodule \(X \) constructed in [Ab2] is the completion of \(C_c(R \times T) \) with respect to either one of the norms induced by the \(D^c_{\mu \nu} \) and \(E^c_{\mu \nu} \)-valued inner products given by

\[
< f, g >_D(x, y, p) = \sum_{k \in Z} e(ckp(y - p\nu))f(x + k, y)\overline{g(x - 2p\mu + k, y - 2p\nu)}
\]

and

\[
< f, g >_E(x, y, k) = \sum_{p \in Z} e(-ckp(y - p\nu))\overline{f(x - 2p\mu, y - 2p\nu)}g(x - 2p\mu + k, y - 2p\nu),
\]
respectively, where \(f, g \in C_0(R \times T) \), \(\Phi \in D_0 \), \(\Psi \in E_0 \), \((x, y) \in R \times T \), and \(k, p \in \mathbb{Z} \).

In what follows we produce finitely generated and projective modules over the algebras \(D_{\mu \nu} \). To do this we apply to the Morita equivalence structure described above the methods for constructing projections provided by the Morita equivalence theory. Finally, we get a partial description of the range of the trace at the level of \(K_0(D_{\mu \nu}) \).

Remark 1 First notice that both \(D_0 \) and \(E_0 \) have identity elements \(I_D \) and \(I_E \), respectively, defined by

\[
I_D(x, y, p) = \delta_0(p) \quad \text{and} \quad I_E(x, y, k) = \delta_0(k),
\]

for \((x, y) \in R \times T \) and \(k, p \in \mathbb{Z} \).

Therefore, by [Rf2, Prop. 1.2], if \(P \) is a projection in \(E_0 \), then \(XP \) is a projective finitely generated left module over \(D_{\mu \nu} \), and the corresponding projection in \(M_m(D_{\mu \nu}) \) is given by

\[
Q = \begin{pmatrix}
<y_1, x_1>_D & \ldots & <y_m, x_1>_D \\
\vdots & \ddots & \vdots \\
<y_1, x_m>_D & \ldots & <y_m, x_m>_D
\end{pmatrix}
\]

where, for \(i = 1, \ldots, m \), \(x_i, y_i \in XP \) are such that \(P = \sum_{i=1}^m <x_i, y_i>_E \).

On the other hand ([Rf4, Prop. 2.2]), the trace \(\tau_D \) on \(D_{\mu \nu} \) induces a trace \(\tau_E \) on \(E_{\mu \nu} \) via

\[
\tau_E(<f, g>_E) = \tau_D(<g, f>_D).
\]

A straightforward computation shows that for \(\Psi \in E_0 \) we have

\[
\tau_E(\Psi) = \int_0^{2\mu} \int_0^1 \Psi(x, y, 0) dx dy.
\]

Then, in the notation above we get

\[
\tau_D(Q) = \sum_{i=1}^m \tau_D(<y_i, x_i>_D) = \sum_{i=1}^m \tau_E(<x_i, y_i>_E) = \tau_E(P).
\]

Theorem 1 The bimodule \(X \) is a finitely generated and projective \(D_{\mu \nu} \)-module of trace \(2\mu \). If \(\nu \in [0, 1/2] \), and \(\mu > 1 \), then there is a finitely generated projective \(D_{\mu \nu} \)-submodule of \(X \) with trace \(2\nu \).
Proof:

Let us take \(P = I_E \), in the notation of Remark \(\text{[1]} \). Then \(X = XP \) is finitely generated and projective and its trace is \(\tau E(I_E) = 2\mu \).

We now find a projection \(P \) in \(E_0 \) with \(\tau E(P) = 2\nu \), when \(\nu \in [0, 1/2] \) and \(\mu > 1 \), which ends the proof, in view of Remark \(\text{[1]} \).

So let us consider self-adjoint elements \(P \) of the form:

\[
P(x, y, p) = f(x, y)\delta_1(p) + h(x, y)\delta_0(p) + \overline{f}(x - 1, y)\delta_{-1}(p),
\]

where \(h \) and \(f \) are bounded functions on \(R \times T \) and \(h \) is real-valued. Our next step is to get functions \(f \) and \(h \) such that \(P \) is a projection in \(E_{\mu \nu}^c \).

Now,

\[
(P * P)(x, y, p) = \sum_{q \in \mathbb{Z}} P(x, y, q)P(x + q, y, p - q),
\]

and it follows that \(P * P = P \) if and only if, for all \((x, y) \in R \times T\):

1) \(f(x, y)f(x + 1, y) = 0 \)

2) \(f(x, y)[h(x + 1, y) + h(x, y) - 1] = 0 \)

3) \(|f(x, y)|^2 + |f(x - 1, y)|^2 = h(x, y)(1 - h(x, y)) \).

We also want \(P \) to be in \(E_0 \), so we require

\[
P(x, y, p) = e(cp(y + \nu))P(x + 2\mu, y + 2\nu, p), \text{ that is}
\]

4) \(f(x, y) = e(c(y + \nu))f(x + 2\mu, y + 2\nu) \)

and

5) \(h(x, y) = h(x + 2\mu, y + 2\nu) \).

It was shown on \(\text{[11], 1.1} \) that for any \(\zeta \in [0, 1/2] \) there are maps \(F, H \in C(T) \) such that:

1) \(F(t)F(t - \zeta) = 0 \)

2) \(F(t)[1 - H(t) - H(t - \zeta)] = 0 \)

3) \(H(t)[1 - H(t)] = |F(t)|^2 + |F(t + \zeta)|^2 \)

4) \(\int_T H = \zeta \)

4
5)’ \(0 \leq H(t) \leq 1 \) for any \(t \in T \) and \(F \) vanishes on \([1/2, 1]\).

Let us assume that \(\nu \in [0, 1/2] \), \(\mu > 1 \) and let \(F \) and \(H \) be functions satisfying 1)’-5)’ for \(\zeta = \nu / \mu \).

Translation of \(t \) by \(\zeta \) in equations 1)’-5)’ plays the same role as translation of \(x \) by 1 in equations 1)-5), which suggests taking \(\zeta x \) as the variable \(t \).

However, the variable \(y \) will play an important role in getting \(f \) and \(h \) to satisfy 4) and 5), for which we need to take \(t = 1/2 + y - \zeta x \).

So let
\[
 h(x, y) = H(1/2 + y - \zeta x),
\]
so \(h \) is in \(C(R \times T) \), and it is real-valued and bounded.

Also,
\[
 h(x + 2\mu, y + 2\nu) = H(1/2 + y + 2\nu - \zeta x - 2\nu) = H(1/2 + y - \zeta x) = h(x, y),
\]
so \(h \) satisfies 5).

Now, for \((x, y) \in [0, 2\mu] \times [0, 1]\), set
\[
 f(x, y) = \begin{cases}
 F(1/2 + y - \zeta x) & \text{if } y \leq x/(2\mu) \\
 e(c(y + \nu))F(1/2 + y - \zeta x) & \text{if } y \geq x/(2\mu)
 \end{cases}
\]

To show \(f \) is continuous it suffices to prove that \(F(1/2 + y - \zeta x) = 0 \) when \(y = x/(2\mu) \), and that follows from the fact that \(F \) vanishes on \([1/2, 1]\), and from the conditions on \(\mu \) and \(\nu \).

Now, since \(f(x, 1) = f(x, 0) \), \(f \) is continuous on \([0, 2\mu] \times T\). We want to extend \(f \) to \(R \times T \) by letting
\[
 f(x + 2\mu, y) = e(-c(y - \nu))f(x, y - 2\nu),
\]
so as to have \(f \) satisfy 4). We only need to show that
\[
 f(2\mu, y) = e(-c(y - \nu))f(0, y - 2\nu) \text{ for any } y \in T.
\]

For an arbitrary \(y \in R \), let \(k, l \in Z \) be such that \(y + k, y - 2\nu + l \in [0, 1] \).

Then,
\[
 f(2\mu, y) = F(1/2 + y + k - 2\nu) = F(1/2 + y - 2\nu), \text{ and }
\]
\[
 f(0, y - 2\nu) = f(0, y - 2\nu + l) = e(c(y - \nu + l))F(1/2 + y - 2\nu) =
\]
\[
 = e(c(y - \nu))f(2\mu, y),
\]

5
as wanted, and f, extended to $R \times T$ as above, satisfies 4). It remains to show that f and g satisfy 1), 2) and 3):

1) $|f(x, y)f(x + 1, y)| = |F(1/2 + y - \zeta x)F(1/2 + y - \zeta x - \zeta) = 0$, by 1)'.

2) $|f(x, y)[h(x + 1, y) + h(x, y) - 1]| = |F(1/2 + y - \zeta x)[H(1/2 + y - \zeta x - \zeta) + H(1/2 + y - \zeta x) - 1]| = 0$, by 2)'.

3) $|f(x, y)|^2 + |f(x - 1, y)|^2 = |F(1/2 + y - \zeta x)|^2 + |F(1/2 + y - \zeta x + \zeta)|^2 = H(1/2 + y - \zeta x)[1 - H(1/2 + y - \zeta x)] = h(x, y)(1 - h(x, y))$, by 3)'.

Therefore P is a projection on E_0. Besides,

$$\tau_E(P) = \int_0^{2\mu} \int_T h(x, y)dydx = \int_0^{2\mu} (\int_T H(1/2 + y - \zeta x)dy)dx = \int_0^{2\mu} \zeta = 2\mu \zeta = 2\nu$$

by 5)'.

Q.E.D.

The following propositions enable us to extend the previous results by dropping the restrictions on μ and ν.

Notation: In Propositions 1 and 2, Π denotes the faithful representation of $D_{\mu, \nu}^c$ on $L^2(R \times T \times Z)$ obtained by restriction of the left regular representation of the multiplier algebra of $C_0(R \times T) \times \lambda Z$ on $L^2(R \times T \times Z)$, i.e.

$$(\Pi_\phi \xi)(x, y, p) = \sum_{q \in Z} \Phi(x + 2p\mu, y + 2p\nu, q)\xi(x, y, p - q),$$

for $\Phi \in D_0$, $\xi \in L^2(R \times T \times Z)$, and $(x, y, p) \in R \times T \times Z$.

Notice that Π is faithful because Z is amenable ([Pd, 7.7.5 and 7.7.7]).

Proposition 1 There is a trace-preserving isomorphism between $D_{\mu, \nu}^c$ and $D_{\mu+k, \nu+l}^c$ for all $k, l \in Z$.

Proof:

It is clear that $\Phi \mapsto \Phi$ is an isomorphism between $D_{\mu, \nu}^c$ and $D_{\mu, \nu+l}^c$, so let us assume $l = 0, k = 1$.

Let $J : D_{\mu+1, \nu}^c \longrightarrow D_{\mu, \nu}^c$ be defined at the level of functions in D_0 by:

$$(J\Phi)(x, y, p) = e(c(4p^3\nu/3 - p^2 y))\Phi(x, y, p).$$
It is easily checked that $J\Phi \in D_{\mu\nu}^c$ for all $\Phi \in D_{\mu+1,\nu}^c$. Besides, the unitary operator $U : L^2(R \times T \times Z) \rightarrow L^2(R \times T \times Z)$ given by

$$U\xi(x, y, p) = e(c(-4p^3\nu/3 - p^2y))\xi(x, y, p)$$

intertwines Π_Φ and $\Pi_{J\Phi}$:

$$(\Pi_{J\Phi}U\xi)(x, y, p) = \sum_{q \in \mathbb{Z}} \Phi(x + 2p(\mu + 1), y + 2p\nu, q)U\xi(x, y, p - q) =$$

$$= \sum_{q \in \mathbb{Z}} e(-2pcq(y + (2p - q)\nu)e(c((-4\nu/3)(p - q)^3 - (p - q)^2y)).$$

$$\cdot \Phi(x + 2p\mu, y + 2p\nu, q)\xi(x, y, p - q) =$$

$$= e(c(-4\nu p^3/3-p^2y)) \sum_{q \in \mathbb{Z}} e(c(4q^3\nu/3-q^2(y+2p\nu))\Phi(x+2p\mu, y+2p\nu, q)\xi(x, y, p-q) =$$

$$= (U\Pi_{J\Phi}\xi)(x, y, p).$$

Also,

$$\tau(J\Phi) = \int_0^1 \int_T J\Phi(x, y, 0) = \int_0^1 \Phi(x, y, 0) = \tau(\Phi).$$

Q.E.D.

Proposition 2 There is a trace-preserving isomorphism between $D_{\mu\nu}^c$ and $D_{-\mu,-\nu}^c$.

Proof:

Let $J : D_{\mu\nu}^c \rightarrow D_{-\mu,-\nu}^c$ be defined, at the level of functions, by:

$$(J\Phi)(x, y, p) = \Phi(-x, -y, p).$$

It is easily checked that $J\Phi \in D_{-\mu,-\nu}^c$. Besides, the unitary operator $U : L^2(R \times T \times Z) \rightarrow L^2(R \times T \times Z)$ defined by

$$(U\xi)(x, y, p) = \xi(-x, -y, p)$$

intertwines Π_Φ and $\Pi_{J\Phi}$:

$$[\Pi_{J\Phi}(U\xi)](x, y, p) = \sum_{q \in \mathbb{Z}} (J\Phi)(x - 2p\mu, y - 2p\nu, q)\xi(-x, -y, p - q) =$$
\[
\sum_{q \in \mathbb{Z}} \Phi(-x + 2p\mu, -y + 2p\nu, q)\xi(-x, -y, p - q) = \\
= (\Pi_{\Phi}\xi)(-x, -y, p) = (U\Pi_{\Phi}\xi)(x, y, p).
\]

Finally, \(J \) preserves the trace:

\[
\tau(J\Phi) = \int_{T^2} \Phi(-x, -y, 0) = \tau(\Phi).
\]

Q.E.D.

Theorem 2 The range of the trace on \(K_0(D_{\mu\nu}^c) \) contains the set \(\mathbb{Z} + 2\mu\mathbb{Z} + 2\nu\mathbb{Z} \).

Proof:

We obviously have \(\mathbb{Z} \subseteq \tau(K_0(D_{\mu\nu}^c)) \), since \(D_{\mu
u}^c \) has an identity element. Besides, it follows from Theorem 1 that \(2\mu\mathbb{Z} \subseteq \tau(K_0(D_{\mu\nu}^c)) \). So it only remains to show that \(2\nu\mathbb{Z} \subseteq \tau(K_0(D_{\mu\nu}^c)) \).

Let \(k \in \mathbb{Z} \) be such that \(\nu' = \pm\nu + k \) and \(\nu' \in [0, 1/2] \). Then one can find \(l \in \mathbb{Z} \) and \(\mu' = \pm\mu + l \) such that \(\mu' \geq 1 \). Thus, by Propositions 1 and 2 we have that \(\tau(K_0(D_{\mu'\nu'}^c)) = \tau(K_0(D_{\mu\nu}^c)) \).

Now, by Theorem 1 there is a projection in \(M_m(D_{\mu'\nu'}^c) \) for some positive integer \(m \) with trace \(2\nu' = \pm 2\nu + 2k \), which ends the proof.

Q.E.D.

Remark. It can be shown ([Ab1]) that the inclusion in the previous theorem is actually an identity.

Acknowledgement. I am glad to thank my thesis advisor, Marc Rieffel for his constant support and for many helpful suggestions and comments.

References

[Ab1] Abadie, B. Ph. D. Dissertation. University of California at Berkeley, 1992.

[Ab2] Abadie, B. *Generalized fixed-point agebras of certain actions on crossed products.*

In preparation.
[Pd] Pedersen, G. *C*-algebras and their automorphism groups. Academic Press, London/New York/San Francisco (1979).

[Rf1] Rieffel, M. *C*-algebras associated with irrational rotations. Pacific Journal of Mathematics Vol. 93, 2, (1981), 415-429.

[Rf2] Rieffel, M. Projective modules over higher dimensional non-commutative tori. Can. J. Math. Vol. XL No 2. (1988) 257-338.

[Rf3] Rieffel, M. Deformation quantization of Heisenberg manifolds. Commun. Math. Phys. 122 (1989), 531-562.

Centro de Matemática
Eduardo Acevedo 1139
CP 11200
Montevideo-Uruguay.
e-mail: abadie@cmat.edu.uy