The Present State of “Solid” under-Platform Damper Mechanics at AERMEC - POLITO

M M Gola¹, C Gastaldi
DIMEAS Politecnico di Torino, Italy
AERMEC LABORATORY - http://www.aermec-dimec.polito.it

¹Corresponding author: muzio.gola@polito.it

Abstract. The numerical simulation of friction-damped blades in turbomachinery applications requires knowledge of contact parameters to be introduced in contact models. The equilibrium and kinematics of dampers are dominated by phenomena occurring at the two interfaces between the damper and the corresponding blade platforms. A precise knowledge of parameter values is vital to ensure trustworthy predictions of blades vibration frequency and of the available amount of amplitude damping. Test rigs developed at the AERMEC lab. during the last decade are presented, and reasons for their improvements are explained. These test rigs have the primary purpose to allow direct observations of contact forces and displacements, and the ensuing estimate of contact parameters. The reliability of the measurements and of their processing is demonstrated through a worked out example.

1. Introduction
As openly stated in [1] development of models for dynamic analysis of bladed disks with friction dampers are going on since over thirty years, yet, under-platform damper (UPD) models have been developed (at 2008) “only for dampers of simple geometric shape for the so-called wedge or cottage-roof dampers” Such cottage roof dampers have however been modified in a number of ways, witnessed by the many patents available, not all of them investigated in depth, at least openly, in the scientific literature. A deviation from the basic cottage-roof shape has been introduced in order to allow a safe contact to be obtained not only in ideal “In-Phase” (IP) relative motion between blade platforms, but also in the “Out-of-Phase” (OOP) motion. This problem is evident, for instance, back in 1998 [2], when, while using a cottage roof damper, Şanliturk et al. introduce a correction factor in the contact stiffness to reflect the damper rolling effect due to edge contact. However, the obvious correction is to use a flat-curved solid damper having one of the two contact surfaces in cylindrical form, thus allowing a perfect mating with the under-platforms.

There are several papers on the subject, passing through the comparative study of wedge-shaped dampers compared with others having a couple of curved contacts [3, 4], through a comparison between cottage-roof and fully cylindrical [5, 6]. And through others which is not possible to properly mention in this short paper. Worth noticing that a mixed geometry damper having one surface flat and the opposite cylindrical finally appears. A notable work is [7], where the following useful information is found (quoted) “The idea of combining the advantages of both mentioned damper types results in an asymmetrical damper with a flat contact surface on one side and a curved contact surface on the other. This damper type is already used in Siemens PG gas turbines since 1985 ... “. A laboratory damper which, although apparently different but in fact having the same mechanics is
studied in [8, 9, 10, 11]. Followed by the combined experimental-theoretical studies on proper flat-curved dampers performed in the AERMEC laboratory [12, 13, 14, 15, 16].

Paper [1] compares flexible-thin dampers with a cottage-roof solid damper having flat surfaces on both sides, and - on the same line - probably the latest work at the time of writing this paper [17] studies both theoretically and experimentally a test rig on which a flat-flat is again inserted. In all cases of this nature, two arrays of a large number of contact points are modelled so that they can take into account stick, slip, and separation during the vibration cycle. The last feature allows lift-off to be modelled, which entails, if lift-off does not occur, satisfaction of equilibrium to in-plane rotation of the damper and consequent correct position of the resultant forces on the opposite contact surfaces.

As a matter of fact, the damper can undergo two types of rolling / lift-off with concentration of contact at the edges of the surface: one due to intentional angle mismatch which can occur in OOP, as described above, the second due to the position of the resultant contact force which reaches the contact surface edge, as it may happen in IP platform motion if measures have not been taken to avoid it [2, 11, 15]. Such measures are clear and easily governed ex-ante, and independently of the amount of platform displacement, if a flat-curved damper is adopted [15]. Not so in the case the flat-flat damper.

Although theoretically necessary on the ground of contact indeterminacy, and although at AERMEC lab. we maintain that it should be adopted on the grounds of sound design and mechanical predictability, we must honestly acknowledge that flat-curved contact surface, usually but not exclusively in the cylindrical shape having a line contact with the platform, is deemed really necessary. Patent EP1249576 of 2002 [17] claims that a wedge shaped damper having contact faces subtending an angle lower - about 10 degrees - than the platforms’ angle allows a further vibration damping mechanism (called “percussive alternate contact”) to arise from the oscillations of the damper, added to the main sliding mechanism. It is all too evident, however, that this should entail the introduction of a percussive dissipation model in the simulation software. However, already in [2], but also in [11], it was seen on experimental grounds that the overall damping capability is greatly reduced by damper rolling, a fatal blow to its desirability.

This problem was implicitly known to the inventor of a 1992 US Patent [18], where the claim concerns a damper, wedge shaped in cross section and provided with a pad on one side and two pads on another side. The pads are located such that they do not lift off the platform surfaces for conditions up to the maximum coefficient of friction even in the most severe IP motion [18].

What differentiates the AERMEC approach from all others in studies of damper mechanics and optimisation is the adoption of an original and innovative test rig named “Piezo+Damper Rig I”. Devices simulating bevelled platform surfaces are arranged in such a way that one is put in OOP or IP motion (or their combinations) by a couple of orthogonal piezo actuators, while the opposite one is supported by an orthogonal couple of load cells. This design allows platform displacements and forces to be directly measured; a laser arrangement is added that measures damper displacements and rotations, relating them to platform displacements and contact forces [9, 10, 11]. It was, and still is, believed that this is the most accurate way to determine contact parameters (normal and tangential contact stiffness, friction coefficient) and check, at the same time, the observed damper kinematics against the predictions of any numerical model.

All other approaches rely on measuring the frequency response of blades, where the FRF of the blade is the object of experimental observation, and the results are compared with those from a model: this is the case from the early pioneering 1980 studies [19] through the decades down to the latest 2017 achievements [20]. Contact parameters are typically tuned so that the experimental FRF of a damped blade matches its numerical counterpart. This procedure is very debatable, as it is well known that there exist multiple combinations of the four normal and tangential contact stiffness values which produce a satisfactory match between a given experimental FRF and its numerical counterpart [21].

It is interesting to remark a growing interest in using damper kinematics as a means to better understand contact conditions. In [20] a laser measurement of damper kinematics is also introduced much in the way already adopted by AERMEC in 2010 [10] and used throughout its following papers [11, 12, 13, 16]. Allowing for the differences in approach, what nonetheless makes this Imperial
Colleges and Rolls Royce initiative [20] akin to the AERMEC line on damper testing are the twin objective, i.e., to improve the fidelity of damper modelling and to rigorously assess processes needed for reliable predictions.

2. Test Rigs available at AERMEC

Table 1 summarises the main features of the test rigs in use at the AERMEC lab.

Figure 1 shows the “Piezo+Damper Rig I” in the initial 2009 version, where the load cells on the right dummy platform are loaded through a “tripod” arranged parallel to the direction of the piezo actuators. The load cells are pre-loaded by means of a wire pulled through a pulley and dead-weights (not visible) arrangement [11]. The piezo actuators, hardly visible on the left and up, realize the platform motion through decoupling parallelograms. Figure 2 shows a detail of load cells in the later 2013 version, stiffened for higher operating frequency and tripod rotated by 45°. In “Piezo+Damper Rig I” the load measuring load cells are Dytran 1051V2, subject to leakage and thus unable to measure the static force component, thus requiring lengthy and annoying load removal procedure [11] in order to get the total force value which is necessary for equilibrium calculations. In the later rigs these load cells were replaced by KISTLER 9323AA load cells with charge amplifiers which do not filter out the static component of the measured force.

Table 1. Capabilities of AERMEC test rigs for solid dampers
Scope
Input motion
FRF of blade
Frequency range
Contact pressure (flat-on-flat)
Temperature
In 2014 AERMEC started the design of new test rig mechanically assembled the following year [22], presently used for investigations on real turbine blades [23], with capabilities and main results described also in [24]. In short, this test rig named “Damper+Blade Rig” allows a combination of FRF measurement on a blade, in principle not a dummy but a real customer’s blade, with the direct measurement of forces transmitted between damper and platforms, gaining the advantages of both methods.

A third rig at an advanced commissioning stage, named “Piezo+Damper Rig II”, is substantially an improved version of the first one, however incorporating the latest improvements. All the rigs described in this paper are intended for solid dampers, while strip damper experimental investigations require a completely different approach.

3. Experimental capabilities

Table 2 summarises the parameters which are either directly measured or derived through equilibrium and kinematic calculations, together with the standard deviations of their estimates. Within the narrow limits of this paper it will suffice to prove tangibly that measurements can be very accurate and reliable, thus making the ensuing determination of contact parameters reliable. As described in [13], by pointing two laser beams on the bottom of the damper, Figure 3a, its rotation and its displacements in a direction along the beams can be determined, while the orthogonal component comes from the constraint condition requiring the contact point to move along the platform surface direction.

Table 2. parameters either observed or derived on the basis of damper equilibrium and kinematics

Estimated parameters	Standard deviation values
OBSERVED	
Right Contact Forces	3% (=0.5 N) forces
Platforms relative displ.	0.08 μm
Damper rotation	5% (=0.6·10⁻⁴ rad) kinematics
Damper vertical displ.	0.08 μm
Damper tangential relative displ. at the contact	0.08 μm
DERIVED	
Left Contact Forces + force application point	3-5% (=0.7-0.9 N), 0.5 mm forces
T/N force ratios	<4% (right), <9% (left)
From damper rotation and displacement kinematics the motion at the contact is derived [13], as explained by Figure 3b. An example of such results is shown in Figure 4a, where the red line represents the tangential relative damper-platform displacement. The same \(t_{RD} - t_{RP} \) displacement is directly observed by pointing to laser beams at the contact location, Figure 3a. As shown in Figure 4b the observed and the derived displacement do match extremely well. Thus the tangential displacement vs. the corresponding variation of tangential force, observed as well, gives a very reliable estimate for the tangential contact stiffness \((k_T = 30 \pm 7 \text{ N/\(\mu\text{m}\)}) \) for a cylindrical contact length of 8 mm. The same values are obtained for this damper when coupled to a blade on the “Damper+Blade Rig” [23, 24].

4. Conclusion

The test rigs developed so far for the simultaneous and direct experimental observation of forces exchanged between a solid damper and the contacting blade platforms and damper kinematics, have been presented. At the same time, the main reasons for their improvements have been highlighted. Methods currently in use for the determination of contact parameters have been concisely reviewed and commented. It has once more been stressed that contact parameter tuning through FRFs is an undetermined problem, since the same result may depend on parameter combinations. One example for all has been put forward, showing how direct experimental observation can be devised to the purpose of determining tangential contact stiffness. The tangential force directly observed by means of load cells is related to the corresponding tangential damper-platform relative displacement which is either observe directly or derived from an independent reconstruction of damper kinematics. Both methods produce results with a striking degree of similarity. This cross-confirmation between two
independent determinations of the same parameter makes the whole process very trustworthy. References are provided which allow the reader to explore how similar methods can be applied to the determination of all other contact parameters.

References
[1] Petrov E P 2008 Explicit finite element models of friction dampers forced response analysis of bladed discs J. Eng. Gas Turbines Power 130 022502-11
[2] Şanlitürk K Y, Ewins D J and Stanbridge A B 1999 Under-platform dampers for turbine blades: theoretical modelling, analysis and comparison with experimental data J. Eng. Gas Turbines Power 123 919-929
[3] Jareland M H 2001 A parametric study of a cottage roof damper and comparison with experimental results. Proc. ASME, Turbo Expo: Power for Land, Sea, and Air June 4–7 2001 New Orleans 4 V004T03A038
[4] Jareland M H 2001 Experimental investigation of a platform damper with curved contact areas Proc. ASME Design Eng. Technical Conference September 2001 Pittsburgh DETC2001/VIB-21391
[5] Panning L, Sextro W and Popp K 2000 Optimization of interblade friction damper design Proc. ASME Turbo Expo: Power for Land, Sea, and Air, May 8-11 2000 Munich 4 V004T03A068-8
[6] Panning L, Sextro W and Popp K 2003 Spatial dynamics of tuned and mistuned bladed disks with cylindrical and wedge-shaped friction dampers Int. Jour. Rotating Machinery 9 219–228
[7] Panning L, Popp K, Sextro W, Götting F, Kayser A and Wolter I 2004 Asymmetrical under-platform dampers in gas turbine bladings: theory and application Proc. ASME, Turbo Expo : Power for Land, Sea, and Air June 14-17 2004 Vienna 6 269-280
[8] Firrone C M 2009 Measurement of the kinematics of two under-platform dampers with different geometry and comparison with numerical simulation J. of sound and vibration 323 313-333
[9] Gola M M, Braga dos Santos M and Liu T 2010 Design of a New Test Rig to Evaluate Under-Platform Damper Performance Proc. 10th Biennial Conf. ASME Engineering Systems Design and Analysis July 12-14 2010 Istanbul 5 85-94
[10] Gola M M, Braga dos Santos M and Liu T 2012 Measurement of the scatter of under-platform damper hysteresis cycle: experimental approach. Proc. ASME Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf. August 12-15 2012 Chicago 1 359-369
[11] Gola M M and Liu T 2014 A direct experimental–numerical method for investigations of a laboratory under-platform damper behaviour Int. Jour. Solids and Structures 51 4245–59
[12] Gola M M and Gastaldi C 2014 Understanding complexities in under-platform damper mechanics Proc. ASME Turbo Expo Power for Land, Sea, and Air June 16-20 2014 Dusseldorf 7A V07AT34A002-12
[13] Gola M M and Gastaldi C 2014 Latest investigations on under-platform damper inner mechanics Int. Conf. on Science and Technology Problems and Prospects of the Propulsion Engineering Development June 25-27 2014 Samara 238-249
[14] Gastaldi C and Gola M M 2016 On the relevance of a microslip contact model for under-platform dampers Int. Jour. Mechanical Sciences 115-116 145-56
[15] Gastaldi C and Gola M M 2016 Pre-optimization of asymmetrical under-platform dampers Jour. Eng. Gas Turbines and Power 139 012504-9
[16] Gastaldi C and Gola M M 2017 Estimation accuracy vs. engineering significance of contact parameters for solid dampers Global Power and Propulsion Society Forum January 16-18 2017 Zurich 1-7
[17] Stuart Y and Goodman P J 2002 Vibration damper for a gas turbine Patent EP1249576
Bobo M 1992 Vibration damping of gas turbine engine buckets US Patent 5,156,528
Griffin J H 1980 Friction damping of resonant stresses in gas turbine engine airfoils J. Eng. Power 102 329-333
Pesaresi L, Salles L, Jones A, Green J S, Schwingshackl C W 2017 Modelling the nonlinear behaviour of an under-platform damper test rig for turbine applications Mech. Syst. Signal Pr. 85 662–679
Gastaldi C and Gola M M 2015 A random sampling strategy for tuning contact parameters of under-platform dampers Proc. ASME. Turbo Expo: Power for Land, Sea, and Air June 15-19 2015 Montreal 7B V07BT33A004-12
Gola M M 2015 Overview of test rigs at AERMEC Lab 4th Workshop on Joints Modelling October 2015 Dartington UK
Botto D, Umer M, Gastaldi C and Gola M M 2017 An experimental investigation of the dynamic of a blade with two under platform dampers Proc. of ASME Turbo Expo June 26-30 2017 Charlotte NC USA
Botto D, Umer M, Gastaldi C and Gola MM 2017 Experimental study of under-platform damper kinematics in presence of blade dynamics Int. Conf. on Aerospace Technology, Communications and Energy Systems September 28-30 2017 Samara