The dynamics of the gravitational two-body problem at fourth post-Newtonian order and at quadratic order in the Newton constant

Stefano Foffa1 and Riccardo Sturani2,3

(1) D\'epartement de Physique Th\'eorique and Centre for Astroparticle Physics, Universit\'e de Gen\`eve, CH-1211 Geneva, Switzerland

(2) Dipartimento di Scienze di Base e Fondamenti, Universit\'a di Urbino, I-61029 Urbino, Italy

(3) INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Italy

*Electronic address: stefano.foffa@unige.ch, riccardo.sturani@uniurb.it

We derive the conservative part of the Lagrangian and the energy of a gravitationally bound two-body system at fourth post-Newtonian order, up to terms quadratic in the Newton constant. We also show that such terms are compatible with Lorentz invariance and we write an ansatz for the center-of-mass position. The remaining terms carrying higher powers of the Newton constant are currently under investigation.

PACS numbers: 04.20.-q, 04.25.Nx, 04.30.Db

Keywords: classical general relativity, coalescing binaries, post-Newtonian expansion

I. INTRODUCTION

The post-Newtonian approximation to the 2-body problem in General relativity represents the common approach to study the bound object dynamics in the weak curvature, slow motion regime, see \cite{1} and \cite{2} for reviews. The interest in detailed analytical study of the gravitationally bound two-body problem has been revived by several concurrent factors.

On the experimental side the era of gravitational wave astronomy is expected to start in a few years by with the advent of the advanced gravitational wave detectors LIGO and Virgo \cite{3}. Among other signals, these detectors will be sensitive to gravitational waves emitted
by coalescing binaries, making urgent to derive the equation of motion of binary black holes with the highest possible accuracy. The knowledge of accurate template waveform is needed for matched filtering techniques, commonly used in data analysis, whose output is particularly sensitive to the time varying phase of the signal which must be computed with $O(1)$ precision [4].

On the theoretical side, since few years now stable numerical-relativity (NR) waveforms emitted in the last $O(10)$ orbits of a binary system (plus merger and ring-down to a final Kerr black hole) are available, see e.g. [5] for a recent review. As NR waveforms cannot be extended too early in the inspiral phase, during which binary constituents are far apart and non-relativistic, it appears natural to combine PN and NR results to construct complete waveform models: the highest possible accuracy on the analytical PN side is required in order to reduce the number of cycles of the NR waveforms needed to build complete, reliable waveforms [6].

On the theoretical analytical side, before the present paper, the Hamiltonian ruling the conservative dynamics of a gravitationally bound, spin-less binary system, has been computed at third PN order in [7] in the Arnowitt-Deser-Misner (ADM) coordinates, calculation later confirmed by [8–10] in harmonic coordinates, and by [11], where a different resolution of the source singularity has been adopted. In [12] the Hamiltonian formalism in ADM coordinates has been exploited to derive the Hamiltonian in at first order in G_N and at all orders in momenta.

The Lagrangian of the gravitationally bound two body system has been recently re-derived at third PN order in [13], with the use of an algorithm (according to a strategy first proposed in [14]) automatizing the decomposition of the problem into the sum of terms associated to Feynman diagrams according to the effective field theory (EFT) approach developed in [15], see [16] for a review. The application of the EFT methods to the PN approximation of General Relativity has also made possible the derivation of new results, mainly for spinning system, in both the conservative [17] and dissipative dynamics [18].

Following on our previous work [13], the main result of this paper is the computation of the two-body effective action for the conservative dynamics at 4PN order and up to terms quadratic in Newton’s constant G_N, and thus represents a decisive step towards the computation of the full Hamiltonian dynamics at 4PN order. Using the virial relation $v^2 \sim G_N M/r$, being $r(v)$ the relative distance distance (velocity) of the binary constituents
with M the total mass, the terms contributing to the 4PN order can be parametrized as $G_N^{5-n}v^{2n}$ with $0 \leq n \leq 5$.

The remaining terms at 4PN not presented here involve 569 Feynman graphs whose computation requires the evaluation of integrals among which the most complicated ones are few integrals analogous to 4-loop momentum integral in quantum field theory. The computation of the full Lagrangian at 4PN order is well under way and will be the subject of a future publication. We also note that the 4PN conservative contribution of the radiation-reaction force has been computed in [19] and re-derived within EFT methods in [20].

The paper is organized as follows. In sec. II the fundamental gravity Lagrangian relevant for the two-body dynamics in the PN approximation is laid down and in sec. III we give a brief overview of the effective field theory methods for gravity, which are applied in the rest of the paper to the evaluation of the relevant Feynman graphs giving contribution to the 4PN order up G_N^2. In sec. IV standard techniques are applied to get rid of terms quadratic in the accelerations, in order to obtain a Lagrangian with terms at most linear in the acceleration. In sec. V the energy is derived and in sec. VI the Lorentz invariance is checked for and the center-of-mass position of the two-body system derived, always at $O(G^2)$ order. We summarize and conclude in sec. VII.

II. SHORT-SCALE LAGRANGIAN

We perform our calculation in the EFT framework along the lines of [13]; in this section we resume our notations. The starting point is the action

$$S = S_{EH} + S_{GF} + S_{pp},$$

the first and third terms being, respectively, the usual Einstein-Hilbert action [30] and the world-line point particle action

$$S_{EH} = 2\Lambda^2 \int d^{d+1}x\sqrt{-g} \, R(g), \quad S_{pp} = -\sum_{i=1,2} m_i \int d\tau_i = -\sum_{i=1,2} m_i \int \sqrt{-g_{\mu\nu}(x_i)dx_i^\mu dx_i^\nu},$$

with

$$\Lambda^{-2} \equiv 32\pi G_N L^{d-3}.$$ (3)

As dimensional regularization will be needed in the computation, L is a reference length scale which must cancel out from physical results and G_N is the standard 3+1-dimensional
Newton constant. As to the gauge fixing term S_{GF}, we follow \[21\]:
\[
S_{GF} = -\Lambda^2 \int d^{d+1}x \sqrt{-g} \Gamma_{\mu} \Gamma^\mu,
\]
(4)
with $\Gamma^\mu = \Gamma^\mu_{\alpha\beta} g^{\alpha\beta}$, which corresponds to the same harmonic gauge adopted in \[1\]. Still following \[21\], we adopt the standard Kaluza-Klein (KK) parametrization of the metric \[22\] (a somehow similar parametrization was first applied within the framework of a PN calculation in \[23\]):
\[
g_{\mu\nu} = e^{2\phi/\Lambda} \left(\begin{array}{cc} -1 & A_j/\Lambda \\
A_i/\Lambda & e^{-c_d\phi/\Lambda} \gamma_{ij} - A_i A_j/\Lambda^2 \end{array} \right),
\]
(5)
with $\gamma_{ij} = \delta_{ij} + \sigma_{ij}/\Lambda$, $c_d = 2^{(d-1)/(d-2)}$ and i, j running over the d spatial dimensions. In terms of the metric parametrization \(5\), each world-line coupling to the gravitational degrees of freedom ϕ, A_i, σ_{ij} reads
\[
S_{pp} = -m \int d\tau = -m \int dt \ e^{\phi/\Lambda} \sqrt{\left(1 - \frac{A_i}{\Lambda} v^i\right)^2 - e^{-c_d\phi/\Lambda} \left(v^2 + \frac{\sigma_{ij}}{\Lambda} v^i v^j \right)},
\]
(6)
and its Taylor expansion provides the various particle-gravity vertices of the EFT.

Also the pure gravity sector $S_{bulk} = S_{EH} + S_{GF}$ can be explicitly written in terms of the KK variables; we report here only those terms which are needed for the full 4PN calculation (only a part of which is performed in the present work):
\[
S_{bulk} \supset \int d^{d+1}x \sqrt{-\gamma} \left\{ \frac{1}{4} \left[(\nabla^2 \sigma)^2 - 2(\nabla \sigma)_{ij}^2 - (\dot{\sigma}^2 - 2(\dot{\sigma}_{ij})^2) e^{-c_d\phi/\Lambda} \right] - c_d \left[(\nabla \phi)^2 - \dot{\phi}^2 e^{-c_d\phi/\Lambda} \right] - \frac{F^2}{2} + (\nabla A)^2 \frac{2}{\Lambda^2} e^{-c_d\phi/\Lambda} + \frac{2}{\Lambda^2} \left[(F_{ij} A^i \dot{A}^j + A A \nabla^2 \phi) e^{-c_d\phi/\Lambda} - c_d \dot{\phi} \ddot{A} \vec{A} \nabla \phi \right] + 2c_d \left(\phi \nabla \cdot \vec{A} - \vec{A} \nabla \phi \right) + \dot{\sigma}_{ij} \frac{\dot{\sigma}_{ij}}{\Lambda} \left(-\delta_{ij} \dot{A}_i \ddot{A}_j - 2A_k \ddot{A}_k \right) - c_d \dot{\phi}^2 \frac{\ddot{A}_i}{\Lambda^2} \right\}
\]
(7)
The form \(7\) of the gravitational action \[31\] is in agreement with the one derived in \[24\].

III. INTEGRATING OUT GRAVITY

We have now all the ingredients to obtain a 2-body effective action S_{eff} with manifest power counting in G_N and v at the desired (fourth) post-Newtonian order. This can be done
by integrating out the graviton fields from the full action derived above
\[S_{\text{eff}} = \int D\phi D\sigma_{ij} DA_k \exp[i(S_{EH} + S_{GF} + iS_{pp})], \] (8)
to obtain an effective action \(S_{\text{eff}} \) in terms of the particle positions and their derivatives. As usual in field theory, the functional integration can be perturbatively expanded in terms of Feynman diagrams involving the gravitational degrees of freedom as internal lines \cite{32}, regarded as dynamical fields emitted and absorbed by the point particles which are taken as non-dynamical sources.

In order to allow manifest \(v \) scaling it is convenient to work with the space-Fourier transformed fields
\[W^a_p(t) \equiv \int d^dx W^a(t,x)e^{-ip \cdot x} \with W^a = \{ \phi, A_i, \sigma_{ij} \}. \] (9)

The fields defined above are the fundamental variables in terms of which we are going to construct the Feynman graphs; the action governing their dynamics can be found from eqs. (6,7).

By looking in particular at the quadratic parts, one can explicitly write the propagators:
\[P[W^a_p(t_a)W^b_{p'}(t_b)] = \frac{1}{2} P^{aa} \delta_{ab} (2\pi)^d \delta^d(p + p') P(p^2, t_a, t_b) \delta(t_a - t_b), \] (10)
where
\[P^{\phi\phi} = -\frac{1}{c_d}, \quad P^{A_i A_j} = \delta_{ij}, \quad P^{\sigma_{ij} \sigma_{kl}} = -(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} + (2 - c_d) \delta_{ij} \delta_{kl}) \]

and
\[P(p^2, t_a, t_b) = \frac{i}{p^2} \left(1 + \frac{\partial_{t_a} \partial_{t_b}}{p^2} + \frac{\partial^2_{t_a} \partial^2_{t_b}}{p^4} \ldots \right) \] (11)
is the full relativistic propagator, which have been expanded as an instantaneous non-relativistic part plus insertion terms involving time derivatives (which after hitting the \(e^{ip \cdot x} \) factors bring in extra \(v \) factors) and the infinite series is truncated at the some finite order in every Feynman diagram.

The next step is to to lay down and compute all the relevant Feynman diagrams; this has been done by means of a new version of the Mathematica code \cite{25}, including the use of the FeynCalc software \cite{26}, which has been used to reproduce the 3PN Lagrangian \cite{13}.
Figure 1: The three diagrams contributing at order G_N. The ϕ, A and σ propagators are represented respectively by blue dashed, red dotted and green solid lines. Propagators and vertices must be considered at appropriate ν order to pick the 4PN contribution of these graphs.

A. Order G_N

The three relevant diagrams at this order are shown in fig. 1, the typical graph contribution A to the effective action (8) has the following form:

$$A \sim G_N m_1 m_2 L^{d-3} \int_{p,t_1,t_2} \sum_n \left(\frac{\partial_{t_1} \partial_{t_2}}{p^{2(n+1)}} \right)^n e^{i p \cdot (x_1 - x_2)} V_1 V_2,$$

(12)

where integration is performed over times $t_{1,2}$ and the measure of momentum integration is $d^d p / (2\pi)^d$, n is an integer number with $n \leq 4$, $x_{1,2} \equiv x_{1,2}(t_{1,2})$, and $V_{1,2} \equiv V_{1,2}[v_{1,2}(t_{1,2})]$ are the appropriate point particle vertices, expanded at the appropriate order in $v_{1,2}$, which can be read from eq. (6). The integrations can be performed via standard Fourier formulae and do not lead to any divergence in dimensional regularization.

We report below the result of the sum of the diagrams (the value of every single diagram of this paper is available on a Mathematica notebook at [27]); symmetrization under exchange
of particles + (1 ↔ 2) is understood throughout all this paper

\[
\mathcal{L}^{\text{PN}}_{G_N} = \frac{G_N m_1 m_2}{r} \left\{ v_1 a_1 \left[\frac{3}{16} (v_1 v_2)^2 v_1^2 - v_2^2 \left(\frac{49}{64} v_1^2 + \frac{123}{64} v_2^2 \right) - \frac{33}{32} v_1^3 v_2 v_2^3 \right] + v_1 v_2 \left(\frac{1}{16} v_1^2 + \frac{5}{32} v_1^3 v_2 + \frac{13}{32} v_1^2 v_2^2 + \frac{77}{96} v_2^3 \right) + v_1 v_2 \left(\frac{1}{16} v_1^2 + \frac{5}{32} v_1^3 v_2 + \frac{13}{32} v_1^2 v_2^2 + \frac{77}{96} v_2^3 \right) \right] r + v_1 a_1 v_2 \left[v_1^2 \left(\frac{123}{32} v_1^2 + \frac{93}{32} v_2^2 \right) - \frac{33}{16} v_1 v_2 v_2^3 - v_2^2 \left(\frac{23}{32} v_1^2 + \frac{77}{96} v_2^3 \right) \right] r + r a_1 \left[\frac{123}{128} v_1^4 v_2^2 + \frac{16}{16} (v_1 v_2)^3 + \frac{1}{32} v_1^2 (v_1 v_2)^2 - \frac{49}{64} v_1^4 v_2 v_2 + \frac{75}{128} v_1^3 - \frac{23}{64} v_1^2 v_2^2 \right] + (v_1 v_2)^2 \left(\frac{3}{32} v_1^2 + \frac{5}{32} v_1^3 v_2 + \frac{5}{64} v_2^2 \right) + v_2^2 v_1 v_2 \left(\frac{17}{32} v_1^2 + \frac{7}{16} v_1^2 v_2^3 + \frac{13}{32} v_2^2 \right) - v_2^2 \left(\frac{57}{128} v_1^2 + \frac{31}{64} v_1^2 v_2^2 + \frac{53}{128} v_2^2 \right) - v_2 v_1 \left(65 \frac{64}{64} v_1^2 + \frac{11}{16} v_1^2 v_2^2 + \frac{15}{32} v_1^2 \right) v_2^2 + v_2^2 \left(\frac{65}{128} v_1^4 + \frac{15}{32} v_1^3 v_2^2 + \frac{27}{64} v_1^2 v_2^2 + \frac{11}{32} v_1^2 \right) v_2^4 + v_2^4 \left(\frac{15}{128} v_1^4 v_2^2 + \frac{5}{64} v_1^4 v_2^3 \right) \right] r + \frac{75}{128} v_1^6 - \frac{1}{32} (v_1 v_2)^4 + \frac{203}{128} v_1^6 v_2^2 - \frac{5}{4} v_1^6 v_2 v_2 + \frac{1}{16} (v_1 v_2)^3 v_1^2 + \frac{3}{256} v_1^4 v_2^4 + \frac{3}{4} v_1^4 v_1 v_2 v_2^2 + (v_1 v_2)^3 \left(\frac{1}{32} v_1^2 - \frac{5}{64} v_2^3 \right) \right] v_1^2 + (v_1 v_2)^2 \left(\frac{3}{32} v_1^2 + \frac{5}{32} v_1^3 v_2 - \frac{27}{64} v_2^2 \right) + v_1 v_2^2 \left(\frac{17}{32} v_1^2 + \frac{3}{8} v_2^3 \right) v_1^2 + v_1 v_2 \left(\frac{3}{4} v_1^2 + \frac{15}{64} v_1^2 v_2^2 + \frac{15}{32} v_1^3 v_2^2 + \frac{3}{4} v_2^4 \right) + \frac{21}{64} v_1^4 v_2^4 - v_1 v_2 \left(\frac{65}{64} v_1^4 v_2^4 + \frac{11}{16} v_1^3 v_2^2 + \frac{15}{32} v_1^2 v_2^2 + \frac{3}{4} v_2^4 \right) + v_1 v_2 \left(\frac{65}{128} v_1^2 + \frac{31}{32} v_1^2 v_2^2 + \frac{3}{4} v_2^4 \right) v_2^2 + v_1 v_2 \left(\frac{65}{128} v_1^4 - \frac{5}{32} v_1^2 v_2^2 - \frac{5}{64} v_1^2 v_2^2 + \frac{3}{32} v_2^4 \right) v_1^3 + \frac{35}{256} v_1^4 v_2^4 \right\} + \mathcal{L}^{\text{PN}}_{G_N}, \quad (13)
\]

where } r \equiv |x_1 - x_2|, v_{1,2}^r \equiv v_{1,2} \cdot (x_1 - x_2)/r, a_{1,2}^r \equiv a_{1,2} \cdot (x_1 - x_2)/r, \text{ and terms depending}
quadratically on accelerations and their derivatives have been isolated in

\[
\mathcal{L}_{G_N}^{m_2} = G_N m_1 m_2 r \left\{ \left[\frac{31}{11520} \ddot{a}_1 \ddot{a}_2 - \frac{1}{2304} \dddot{a}_1 \dddot{a}_2 \right] r^4 + \left[\frac{1}{96} \dddot{a}_1 \dddot{a}_2 v_1 - \frac{7}{288} \dddot{a}_1 v_2 - \frac{23}{288} \dddot{a}_2 v_1 \right] r^3 \right.
\]
\[
+ \left[\left(\frac{1}{32} v_1 v_2 - \frac{133}{576} v_1^2 - \frac{91}{576} \dddot{a}_1 r - \frac{91}{192} v_1 \dddot{v}_2 - \frac{11}{96} \dddot{v}_2 \right) \dddot{a}_1 \dddot{a}_2 + \left(\frac{11}{192} v_2 - \frac{1}{32} v_1 v_2 + \frac{5}{192} a_1 r \right) \right]
\]
\[
+ \left[\frac{5}{192} v_1 r^2 + \frac{1}{96} v_1 \dddot{v}_2 \right] \dddot{a}_1 a_2 + \left(\frac{9}{32} v_1 a v_2 - \frac{6}{64} v_1 \dddot{a}_1 v_1 \dddot{r} - \frac{7}{48} v_2 \dddot{a}_1 v_1 \dddot{r} + \frac{59}{576} \dddot{a}_2 a_1 r + \frac{3}{64} a_1 a_1 r \right) \dddot{a}_2
\]
\[
+ \frac{1}{32} v_2 \dddot{a}_1 v_1 \dddot{a}_2 - \frac{2}{9} v_1 \dddot{a}_1 v_1 \dddot{a}_2 + \frac{1}{9} v_1 \dddot{a}_1 v_2 \dddot{a}_2 \right] r^2 + \left[\left(\frac{59}{64} a_1 v_2 r + \frac{29}{64} a_1 v_2 r - \frac{19}{192} v_2 a_1 r \right)
\]
\[
+ \frac{37}{64} v_1 a_1 r + \frac{85}{64} v_1^2 v_1 + \frac{55}{64} v_1 v_2 + \frac{5}{32} v_1 v_2 \dddot{v}_1 + \frac{59}{384} (v_1^3 + v_2^3) + \frac{29}{128} (v_1 \dddot{v}_2 + v_2 \dddot{v}_1) a_2 \dddot{a}_1
\]
\[- \frac{37}{64} a_1 a_2 r + \frac{67}{384} a_2 r + \left\{ \frac{27}{64} v_1 a_2 - \frac{145}{64} v_2 a_1 - \frac{59}{64} \dddot{v}_2 \right\} v_1
\]
\[
+ \left\{ \frac{13}{64} v_1 a_2 - \frac{27}{64} v_2 a_1 - \frac{35}{64} v_2 a_2 \right\} v_2 \dddot{v}_1 \dddot{a}_1 + \left\{ \frac{37}{64} v_2 a_1 - \frac{53}{64} v_2 a_2 - \frac{145}{64} v_1 a_1 - \frac{3}{64} v_1 a_2 \right\} v_1^r
\]
\[
+ \left\{ \frac{3}{64} (v_2 a_1 - v_1 a_2) - \frac{27}{64} v_1 a_1 - \frac{67}{64} v_2 a_2 \right\} v_2^r - \frac{19}{192} a_1 a_2 r + \frac{67}{384} a_2^2 r \right] v_2 \dddot{a}_1 r
\]
\[
+ \left[\left(\frac{59}{64} a_1 a_2 + \frac{27}{128} a_2^2 - \frac{5}{64} a_1 a_2^2 \right) v_1^r + \left(\frac{29}{64} a_1 a_2 + \frac{29}{128} a_2^2 - \frac{3}{64} a_1 a_2^2 \right) v_2^r
\]
\[
+ \frac{27}{64} v_1 a_2 a_1 r + \frac{17}{64} v_2 a_2 a_1 r - \frac{13}{64} v_1 a_2 a_2 r \right) r + \left(\frac{27}{64} v_2^2 + \frac{5}{32} v_1 v_2 + \frac{13}{64} v_2^2 + \frac{13}{32} \dddot{v}_2 v_1 \right) v_1 a_2
\]
\[
+ \left(\frac{37}{64} v_2^2 + \frac{27}{64} \dddot{v}_2 \right) v_2 a_2 + \left(\frac{9}{32} v_1 v_2 - \frac{51}{64} v_2 - \frac{17}{64} v_1 \dddot{v}_2 - \frac{15}{32} \dddot{v}_2 v_1 \right) v_2 a_2 + \left(\frac{5}{32} v_1 v_2 \dddot{v}_1 - \frac{11}{64} v_1 \dddot{v}_1^r
\]
\[
- \frac{9}{64} v_1^2 v_2^r + \frac{5}{192} v_1^r + \frac{3}{64} \dddot{v}_1 v_2^r \right) a_2^2 \right] r a_1^r + \left[\left(\frac{37}{64} v_2^2 - \frac{19}{384} a_1 a_2 + \frac{145}{128} a_2^2 + \frac{1}{8} a_1 a_2 \right) a_1 a_2
\]
\[
+ \frac{67}{768} a_2^2 a_2 - \frac{3}{256} a_1 a_2^2 - \frac{5}{128} a_1 a_2^3 \right) r^2 + \left[\left(\frac{27}{64} v_1 a_2 - \frac{145}{64} v_2 a_1 - \frac{59}{64} v_2 a_2 \right) v_1^r
\]
\[
+ \left(\frac{13}{64} v_1 a_2 - \frac{27}{64} v_2 a_1 - \frac{35}{64} v_2 a_2 \right) v_2^r \right] r a_1^2 + \left[\left(\frac{111}{32} v_1 a_1 v_1^r + \frac{7}{32} v_2^r v_1 a_1 - \frac{17}{32} v_2 a_1 v_1^r
\]
\[
- \frac{5}{32} v_2 a_1 v_1^r \right) \left(\frac{181}{64} v_1^2 - \frac{5}{32} v_1 v_2 - \frac{3}{32} v_2^2 + \frac{231}{128} v_1^2 + \frac{25}{64} v_1^r v_2 - \frac{3}{128} v_2^r \right) a_1^r r a_1^2
\]
\[
+ \frac{65}{64} v_1 v_2 + \left(\frac{11}{64} v_1 a_2 - \frac{15}{64} v_2 a_2 \right) v_2^r
\]
\[
+ \left(\frac{11}{64} v_1 v_2 - \frac{27}{128} v_1^2 + \frac{3}{128} v_2^2 + \frac{15}{128} v_1^2 + \frac{5}{64} v_1 v_2 + \frac{3}{128} v_2^2 \right) a_1^2 \right] r a_1^2
\]
\[
+ \left[\left(\frac{15}{64} v_2 a_1 v_1^r - \frac{27}{64} v_1 a_1 v_1^r + \frac{3}{64} v_2 a_1 v_2^r - \frac{21}{64} v_1 a_1 v_2^r \right) r a_1^2 a_2 + \left(\frac{3}{128} v_2 a_1 - \frac{27}{64} v_1 a_1 \right) v_2 a_1 r a_1^2
\]
\[
+ \left(\frac{2 v_1 a_2 - \frac{145}{64} v_2 a_1 - \frac{5}{2} v_2 a_2 \right) v_1 a_1 + \left(\frac{37}{128} v_2 a_1 - \frac{5}{16} v_1 a_2 + \frac{49}{32} v_2 a_2 \right) v_2 a_1 \right] r a_1^2
\]
\[
+ \left[\left(\frac{299}{128} v_1^4 - \frac{1}{4} (v_1 v_2)^2 - \frac{19}{32} v_2^2 v_1 v_2 + \frac{17}{64} v_1 v_2^3 + \frac{303}{128} v_1 v_2^3 + \frac{45}{64} v_1^2 v_2^2 + \frac{17}{128} v_2^2 \right) v_1^2
\]
\[+ \frac{5}{64} (v_1^r + v_2^r) v_1 v_2 v_1^r - \left(\frac{43}{192} v_1^{r^2} + \frac{5}{24} v_1 v_2^r + \frac{13}{128} v_2^{r^2} \right) v_1^r a_1 a_2 + \left[\frac{13}{32} v_1^2 v_1 v_2 - \frac{53}{128} v_1^4 - \frac{7}{64} v_1^2 v_2^2 \right] v_1^r a_1 a_2 \]
\[+ \left(\frac{27}{64} v_1^{r^2} + \frac{11}{32} v_1 v_2^r + \frac{3}{32} v_2^{r^2} \right) v_1^r - \left(\frac{11}{32} v_1 + \frac{1}{8} v_2 \right) v_1 v_1 v_2 - \left(\frac{15}{128} v_1 v_1 v_2^r + \frac{5}{32} v_2^r \right) v_1^3 \]}
\[+ \left[\left(\frac{19}{32} v_1 v_2 - \frac{23}{32} v_1^2 - \frac{73}{64} v_2^r \right) v_1^r + \left(\frac{17}{16} v_1 v_2 - \frac{123}{64} v_1^r \right) v_2^r + \frac{9}{64} v_1^3 v_2^r + \frac{21}{64} v_1 v_2^r + \frac{15}{32} v_1 v_2^r \right) v_1 a_1 a_2 \]
\[+ \left(\frac{25}{64} v_1^2 + \frac{5}{32} v_1 v_2 + \frac{13}{32} v_2^2 \right) v_1^r + \left(\frac{43}{64} v_1^2 + \frac{3}{16} v_1 v_2 \right) v_2^r - \frac{5}{64} v_1^3 v_2^r - \frac{13}{64} v_1 v_2^r - \frac{11}{32} v_1 v_2^r \right) v_2 a_1 a_2 \]
\[+ \left(\frac{65}{96} v_1 v_2 - \frac{77}{32} v_2^2 \right) v_2 v_1 a_2 + \left[\frac{161}{16} v_1^2 - \frac{5}{8} v_1 v_2 + \frac{47}{16} v_2^2 + 2 v_1^2 + \frac{13}{8} v_1 v_2^r + \frac{49}{32} v_2^2 \right] v_1 a_1 v_1 a_2 \]
\[+ \left(\frac{59}{32} v_1 v_2 + v_1^2 v_2^2 \right) - \frac{145}{64} (v_1^2 + v_1^2) + \frac{27}{64} (v_1^2 + v_2^2) \right] v_1 a_1 v_2 a_1 + \left[\frac{119}{64} v_1 v_2 - \frac{177}{32} v_1^2 - \frac{5}{2} v_1^2 \right] v_1 a_1 v_2 a_2 \]
\[+ \left[\frac{65}{64} (v_1^2 + v_1^2) - \frac{17}{128} (v_1 v_2 + v_1 v_2^2 - v_2^2) \right] v_2 a_1 v_2 a_2 . \]

(14)

The rationale for this separation is that such terms can be further reduced via the double zero trick (see e.g. [28]) which consists in writing, for instance

\[a_1 \cdot a_2 = (a_1 - e q_1 + e q_1) \cdot (a_2 - e q_2 + e q_2) = (a_1 - e q_1) \cdot (a_2 - e q_2) + e q_1 \cdot a_2 + a_1 \cdot e q_2 - e q_1 \cdot e q_2 \]

(15)

\[\equiv (a_1 - e q_1) \cdot (a_2 - e q_2) + (a_1 \cdot a_2)_{2} . \]

being \(e q_{1,2}\) the value of \(a_{1,2}\) in terms of \(r, v_1, v_2\) as dictated by the equations of motion at the desired PN order. Since the first term on the last line of eq. (15) gives a vanishing contribution to the equations of motion, it can be dropped from the Lagrangian, thus leaving only terms linear in the accelerations, which however carry higher powers of \(G_N\), as \(e q_{1,2} = O(G_N)\). The standard form of the 3PN Lagrangian, as it is for instance reported in eq. (174) of [1], is obtained via reiterated use of this trick.

B. Order \(G^2_N\)

The 23 diagrams contributing at \(O(G^2_N)\) are shown in figure 2. These diagrams are either factorizable into two single-graviton exchanges, or give a contribution \(A\) to the effective
Figure 2: The diagrams contributing at order G_N^2 arranged in 4 lines. Diagrams in the n^{th} line enter the dynamics at nPN order. Propagators and vertices must be considered at appropriate order to pick the 4PN contribution of these diagrams.

The action of the type:

$$A \sim G_N^2 m_1^2 m_2 L^{2(d-3)} \sum_{n_a, n_b, n_2} \int_{t, t_1a, t_1b, t_2} (i\partial_{t_1a})^{2n_a} (i\partial_{t_1b})^{2n_b} (i\partial_{t_2})^{2n_2} V_{1a} V_{1b} V_2$$

$$\times \int_{p, q} \frac{e^{i[(p-q) \cdot x_1(t_1a) + q \cdot x_1(t_1b) - p \cdot x_2(t_2)]}}{(p - q)^{2(n_a+1)} q^{2(n_b+1)} p^{2(n_2+1)}} V_{bulk} \delta(t - t_{1a}) \delta(t - t_{1b}) \delta(t - t_2),$$

(16)

with the $n_i \leq 3$ and $V_{bulk} \equiv V_{bulk}[p, q, \partial_{t1a}, \partial_{t1b}, \partial_{t2}]$ being the bulk vertices describing the appropriate three-graviton interaction.

These integrals can be expressed in terms of standard ones, eventually after some integration by parts, leading to the following total result:
\[
\mathcal{L}_{4PN}^{G_N} = \frac{G_N^2 m_1^2 m_2}{r^2} \left\{ v_1 a_1 \left[v_2 \left(\frac{28}{15} v_1^r + \frac{133}{10} v_2^r \right) - v_1 v_2 \left(\frac{56}{10} v_1^r + \frac{314}{15} v_2^r \right) \right] + v_2 a_1 \left[v_1^2 \left(\frac{47}{15} v_1^r - \frac{157}{15} v_2^r \right) + v_1 v_2 \left(\frac{229}{15} v_2^r - \frac{29}{15} v_1^r \right) \right] + v_2^2 \left(\frac{41}{20} v_1^r - \frac{133}{10} v_2^r - 103 v_1^r v_2^r + 304 v_1^2 v_2^2 - \frac{93}{5} v_1^r v_2^2 + \frac{133}{15} v_2^3 \right) \right\} r \\
+ a_1^r \left[\frac{49}{6} v_1^r + \frac{117}{10} (v_1 v_2)^2 + \frac{469}{30} v_2^4 + \frac{293}{30} v_2^2 - \frac{293}{15} v_1^r v_2^2 - \frac{937}{60} v_1^r v_2^2 \right] + v_1 v_2 \left(\frac{148}{15} v_1^r v_2^2 - \frac{79}{15} v_1^r + \frac{101}{15} v_2^2 \right) + v_2 \left(\frac{332}{15} v_1^r v_2^2 - \frac{383}{15} v_1^r v_2^2 + \frac{112}{15} v_1^r v_2^2 + \frac{112}{15} v_1^r v_2^2 \right) \right\} r \\
+ a_2^r v_1^2 \left[\frac{34}{5} v_1^r v_2^2 - \frac{229}{15} v_1^r v_2^2 + \frac{133}{15} v_1^r v_2^2 - \frac{121}{10} v_1^2 \right] \right\} r + \frac{181}{30} v_1^6 - 8 (v_1 v_2)^3 + \frac{115}{32} v_6 + \frac{707}{60} v_1^4 v_2^4 \\
- \frac{707}{30} v_1^4 v_1 v_2 + \frac{43}{2} (v_1 v_2)^2 v_1^2 + \frac{67}{4} (v_1 v_2)^2 v_2^2 + \frac{105}{16} v_2^4 v_1^2 - \frac{105}{8} v_1 v_2 v_4 - \frac{43}{2} v_1^2 v_1 v_2 v_2^2 \\
+ v_1^2 \left(\frac{326}{15} v_1^r v_2^2 - \frac{163}{10} v_1 r v_2^2 - \frac{157}{10} v_1^r v_2^2 \right) + v_2^2 \left(\frac{3}{16} v_1^r v_2^2 - \frac{21}{8} v_1 r v_2^2 - \frac{3}{8} v_1 r v_2^2 \right) - 9 (v_1 v_2)^2 v_1^r v_2^r \\
+ v_1 v_2 v_2^2 v_1^r \left(\frac{128}{5} v_1^r v_2^4 + \frac{418}{15} v_1 r v_2^4 + \frac{314}{15} v_2^4 \right) + v_1^2 v_2^2 \left(\frac{443}{30} v_1^r v_2^2 - \frac{64}{5} v_1^r v_2^2 - \frac{133}{10} v_2^2 \right) \\
+ v_1 v_2 v_2^2 v_1^r \left(\frac{9}{2} v_1^r v_2^2 + \frac{1}{2} v_2^2 \right) + v_2^2 v_1^r \left[\frac{68}{5} v_1^r v_2^2 - \frac{484}{15} v_1^r v_2^2 + \frac{851}{15} v_1^r v_2^2 - \frac{724}{15} v_1^r v_2^2 + \frac{266}{15} v_2^4 \right] \\
- v_1 v_2 v_2^3 v_1^r \left(\frac{241}{30} v_1^r v_2^4 + 2 v_2^2 \right) + v_2^2 v_1^r \left(\frac{5}{4} v_1^r v_2^2 + v_1^2 v_2^2 - \frac{1}{2} v_2^2 \right) \\
+ v_1^4 \left(\frac{136}{25} v_1^r v_2^2 + \frac{3}{2} v_2^2 - \frac{161}{25} v_1^r v_2^2 \right) \right\} + \mathcal{L}_{6N}^G, \quad (17)
\]
where terms involving more than one power of accelerations and their derivatives are:

\[
\mathcal{L}_{G_N}^{v_2} = \frac{G_N^2 m_1^2 m_2}{r^2} \left\{ \left[\left(\frac{3517}{3600} - \frac{38}{15} \log \tilde{r} \right) \dot{a}_1 \dot{a}_2 + \left(\frac{4}{15} \log \tilde{r} - \frac{7}{75} \right) \ddot{a}_1 \ddot{a}_2 - \frac{1}{10} \dot{a}_1 \dot{a}_1 - \frac{14}{45} \dot{a}_1 \dddot{a}_1 \right] r^2 + \left[\left(\frac{68}{15} \log \tilde{r} - \frac{332}{225} \right) v.a_1 \dot{a}_2 - \frac{17}{3} v.a_1 \dddot{a}_1 + \left(\frac{24}{5} \log \tilde{r} - \frac{923}{600} \right) v.a_2 \dddot{a}_1 \right] \right\} \\
+ a_2 \dot{a}_1 \left[\left(\frac{24}{5} \log \tilde{r} - \frac{283}{100} \right) v_i^r v_2^r + \left(\frac{148}{15} \log \tilde{r} - \frac{3581}{1800} \right) v_2^r \right] r - r a_2 \dddot{a}_1 \left(\frac{6}{5} v_1^r + \frac{19}{30} v_2^r \right) \\
+ a_2^2 \left[\left(\frac{38}{15} \log \tilde{r} - \frac{857}{225} \right) r a_2^r - \frac{39}{10} r a_1^r + \left(\frac{44}{5} \log \tilde{r} - \frac{191}{18} \right) v_1^r + \left(\frac{19}{18} - \frac{22}{3} \log \tilde{r} \right) v_1 v_2 \right] \\
+ \left(\frac{11}{3} \log \tilde{r} - \frac{19}{36} \right) v_2^r - \frac{15}{2} v_1^r v_2^r + 15 v_1^r v_2^2 - \frac{23}{6} v_2^2 \right] + a_1 a_2 \left[\left(\frac{28}{3} \log \tilde{r} + \frac{377}{72} \right) r a_1^r \right] \\
+ \left(\frac{332}{225} - \frac{68}{15} \log \tilde{r} \right) r a_2^r + \left[\left(\frac{268}{15} \log \tilde{r} - \frac{4211}{1800} \right) v_1^r + \left(\frac{32}{5} \log \tilde{r} + \frac{124}{25} \right) v_1 v_2 \right] \\
+ \left(\frac{158}{15} \log \tilde{r} + \frac{253}{3600} \right) v_2^r + \frac{241}{3} v_1^r v_2^2 + \frac{417}{30} v_1^r v_2 + \frac{1727}{60} v_2^r \right] - \frac{2}{3} r a_2 a_2^r + a_2 r^2 \left[\frac{1}{6} v_1^2 + \frac{2}{3} v_1 v_2 \right] \\
+ \frac{1}{3} v_2^2 + \frac{3}{2} v_1^2 - \frac{2}{3} v_1^r v_2^r + \frac{7}{6} v_2^2 \right] + a_1 a_2 \left[\frac{1}{15} v_1 v_2 - \frac{19}{5} v_2^2 + \frac{173}{60} v_1 v_2 + \frac{11}{10} v_2^2 + \frac{67}{15} v_1 v_2^2 - \frac{56}{15} v_1^2 \right] \\
+ a_1 r \left[\frac{2}{3} v_2 a_1 a_2 \right] + \frac{2}{3} v_1 v_2 v_2 + a_2 \left[\frac{31}{15} v_1^r + \frac{59}{15} v_2^r \right] - \frac{11}{6} v_2 a_2 v_1^2 \right] \\
+ a_2 r \left[v_1 a_1 \left(\frac{94}{15} v_1^r - \frac{413}{30} v_2^r \right) - \frac{11}{6} v_2 a_1 v_1^r \right] + \left(\frac{22}{3} \log \tilde{r} - \frac{158}{9} \right) (v_1 a_1)^2 + \frac{65}{3} v_1 a_2 a_2^r \right] \\
- \frac{65}{6} (v_2 a_1)^2 + \left(\frac{128}{5} \log \tilde{r} - \frac{267}{200} \right) v_1 a_1 v_2 + \left(\frac{44}{3} \log \tilde{r} - \frac{347}{72} \right) v_2 a_2 v_1 a_2 \right\} + \mathcal{L}_{pole}^{(d-3)} \right. ,
\]

We write separately the divergent terms:

\[
\mathcal{L}_{pole} = - \left(G_N^2 m_1^2 m_2 \right) \left\{ \left[\frac{2}{15} \dddot{a}_1 \dddot{a}_2 - \frac{19}{15} \dot{a}_1 \dot{a}_2 \right] r^2 + \left[\left(\frac{34}{15} v_1 a_1 \dddot{a}_1 + \frac{12}{5} v_2 a_2 \dddot{a}_1 \right) \right] \right\} \\
+ a_2 \dot{a}_1 \left[\frac{12}{5} v_1^r \left(\frac{74}{15} v_2^r \right) \right] r + \left[\frac{71}{60} r a_1^r + \frac{9}{10} r a_2^r + \frac{511}{60} v_1^r - \frac{313}{60} v_2 \right] a_2 + \frac{11}{3} (v_1 a_1)^2 \\
+ \left[\frac{14}{3} r a_1^r - \frac{34}{15} v_1^r + \frac{134}{15} v_2^r \right] a_1 a_2 + \frac{64}{5} v_1 a_1 v_2 + \frac{22}{3} v_2 a_1 v_2 a_1 \right\} ,
\]

with \(v \equiv v_1 - v_2 \) and \(\tilde{r} \equiv \sqrt{4 \pi e \gamma_{\tilde{r}} \frac{L}{L}} \) (\(\gamma \approx 0.577216 \) is the Euler-Mascheroni constant). \(\mathcal{L}_{G_N}^{v_2} \) is not relevant to determine the 4PN Lagrangian up to \(G_N^2 \) because it gives rise to \(O(G_N^3) \) terms via the double zero trick. As to its divergent part \(\mathcal{L}_{pole} \), it will have to be canceled by an appropriate world-line redefinition, analogously to what happens at 3PN, thus leaving a finite result in the \(d \to 3 \) limit. It is however not possible to determine the exact form of such redefinition at this point, as it must be further constrained by the knowledge of the poles occurring at higher powers of \(G_N \).
IV. THE 4PN LAGRANGIAN LINEAR IN ACCELERATIONS UP TO G_N^2

Before we can write the Lagrangian linear in accelerations up to term of order G_N^2, that is the 4PN extension of the standard formula reported in [1], we have to take into account the manipulations that led to such standard formula. At lower PN orders the double zero trick have been repeatedly used, and its effect at 4PN order must be computed.

A. 2PN double zeros evaluated on 2PN equations of motion

The following 2PN term quadratic in the accelerations

$$\mathcal{L}^{2-2PN} = \frac{G_N m_1 m_2 r}{16} (15a_1 \cdot a_2 - a_1^r a_2^r)$$

produces the 2PN and 3PN contributions duly included in the standard 3PN Lagrangian, and the following 4PN term:

$$\left(\mathcal{L}_{4PN}^{2-2PN}\right)_{2PN} = \frac{G_N^2 m_1^2 m_2}{r^2} \left\{ v_2 a_1 \left[v_1^2 \left(\frac{75}{8} v_1^r - \frac{15}{2} v_2^r \right) - \frac{15}{2} v_1 v_2 v^r - \frac{15}{8} v_2 v_1^2 - \left(\frac{45}{4} v_2^r - \frac{135}{16} v_1^r \right) v_1^r + a_1^r \left[\frac{187}{32} v_1^4 + \frac{7}{2} (v_1 v_2)^2 - 7v_1^2 v_2 + v_2^2 \left(\frac{1}{8} v_2^r - \frac{11}{4} v_1^r \right) v_1^r \right] \right. + v_1 a_1 \left(\frac{15}{2} v_1 v_2 v^r + \frac{15}{8} v_2 v_1^2 \right) + a_1^r \left[\frac{187}{32} v_1^4 + \frac{7}{2} (v_1 v_2)^2 - 7v_1^2 v_2 + v_2^2 \left(\frac{1}{8} v_2^r - \frac{11}{4} v_1^r \right) v_1^r \right] \right. + v_2^2 \left(\frac{1}{2} v_2^r - \frac{1}{2} v_1^r \right) + \frac{75}{32} v_1^6 + \frac{135}{32} v_1^4 v_1 v_2 + \frac{15}{8} v_1^4 v_2 + v_2^4 \left(\frac{315}{16} v_1^2 v_2 - \frac{555}{32} v_1^2 - \frac{15}{4} v_2^2 \right) \right. + v_1 v_2 \left(\frac{585}{32} v_1^r - \frac{45}{8} v_2^r \right) v_1^r - \frac{45}{8} v_1^2 v_2 v_1^r + v_2^2 \left(\frac{453}{32} v_2^r - \frac{315}{8} v_1^r v_2 + \frac{45}{2} v_2^r \right) v_1^2 \right. + \frac{87}{32} v_2 v_1^2 + \frac{261}{80} v_1^r v_2^r \right\} + \mathcal{O}(G_N^3).$$

B. 3PN double zeros evaluated on 1PN equations of motion

The following 3PN terms quadratic in accelerations

$$\mathcal{L}^{2-3PN} = (G_N m_1 m_2) \left\{ \left(\frac{1}{96} a_1^r a_2^r - \frac{23}{288} a_1^r a_2 \right) r^2 + \left(\frac{15}{32} a_2^r a_1 - \frac{1}{32} a_2 a_2^r \right) v_1^r + v_2^r \right\} \left[\frac{7}{16} r v_a a_1^r + \frac{1}{2} r v_a a_2 \right]$$

$$- \frac{1}{32} a_1^r a_2 + a_2^r \left(\frac{29}{32} r a_1^r - \frac{5}{16} v_1 v_2 + \frac{55}{32} v_2^r + \frac{29}{32} v_2^r + \frac{7}{16} v_1 v_2 \right)$$

$$+ a_1^r a_2 \left(\frac{3}{16} v_1 v_2 - \frac{3}{2} v_1^2 + \frac{1}{2} v_1^2 v_2 + \frac{3}{2} v_2^2 \right) + a_1^r v_a a_2^r \left(\frac{41}{32} v_1^r + \frac{13}{32} v_2^r \right) - \frac{1}{8} a_1^r v_a a_2 v_2$$

$$+ \frac{47}{16} v_1 a_1 v_2 - \frac{47}{32} v_1 a_1 v_2 + \frac{17}{32} v_2 a_1 v_1 a_2 \right\}$$

$$+ \mathcal{O}(G_N^3).$$
generate (as well as several 3PN terms) the following contribution:

\[
\left(L_{4PN}^{2-3PN} \right)_{2} = \frac{G_{N}^{2} m_{1} m_{2}}{r^{2}} \left\{ v_{1} \cdot a_{1} \left[v_{1} \cdot v_{2} \left(\frac{245}{24} v_{r}^{1} - \frac{271}{24} v_{r}^{2} \right) + v_{2}^{2} \left(\frac{407}{24} v_{r}^{2} - \frac{71}{8} v_{r}^{1} \right) \right] r + v_{1} \cdot a_{1} \left[v_{1} \cdot v_{2} \left(\frac{355}{48} v_{r}^{1} - \frac{35}{24} v_{r}^{2} \right) + v_{1} \cdot v_{2} \left(\frac{91}{24} v_{r}^{2} - \frac{139}{12} v_{r}^{1} \right) + v_{2}^{2} \left(\frac{85}{8} v_{r}^{2} - \frac{407}{24} v_{r}^{1} \right) + \frac{61}{24} v_{r}^{3} \right] r + a_{1} \left[\frac{689}{192} v_{r}^{1} \left(\frac{17}{6} v_{r}^{2} - \frac{21}{8} v_{r}^{1} v_{r}^{1} v_{r}^{2} + \frac{16}{3} v_{r}^{3} v_{r}^{2} \right) + v_{1} \cdot v_{2} \left(\frac{67}{24} v_{r}^{2} - \frac{31}{6} v_{r}^{1} v_{r}^{2} - \frac{253}{12} v_{r}^{1} \right) \right] r + \frac{23}{8} v_{r}^{2} - \frac{205}{48} v_{r}^{1} v_{r}^{2} + \frac{169}{32} v_{r}^{1} v_{r}^{2} - \frac{215}{96} v_{r}^{2} \right) + v_{1} \cdot v_{2} \left(v_{r}^{1} v_{r}^{2} + \frac{55}{6} v_{r}^{1} v_{r}^{2} - \frac{337}{96} v_{r}^{2} \right) + v_{1} \cdot v_{2} \left(\frac{481}{96} v_{r}^{2} + \frac{151}{24} v_{r}^{1} v_{r}^{2} - \frac{339}{32} v_{r}^{1} \right) + v_{2}^{2} \left(\frac{169}{32} v_{r}^{2} + \frac{205}{48} v_{r}^{1} v_{r}^{2} - \frac{23}{8} v_{r}^{2} \right) - \frac{91}{6} v_{r}^{1} v_{r}^{2} v_{r}^{4} + v_{2}^{2} \left(\frac{67}{12} v_{r}^{4} + \frac{737}{24} v_{r}^{3} v_{r}^{2} - \frac{151}{12} v_{r}^{1} v_{r}^{2} v_{r}^{2} - \frac{99}{8} v_{r}^{3} v_{r}^{2} + \frac{23}{6} v_{r}^{4} \right) - \frac{91}{5} v_{r}^{1} v_{r}^{5} \right} + \mathcal{O}(G_{N}^{3}) (23)
\]
C. 4PN double zeroes from $O(G)$ graphs

Finally, acting with the double zero trick on $\mathcal{L}_{G_N}^{a^2}$ reported in eq. (14), gives

\[\left(\mathcal{L}_{G_N}^{a^2} \right)_{2^2} = \frac{G_N^2 m_1^2 m_2}{r^2} \left\{ v_1 a_1 \left[v_1 v_2 \left(\frac{65}{48} v_1^r + \frac{137}{48} v_2^r \right) - v_2^2 \left(\frac{81}{32} v_1^r + \frac{665}{96} v_2^r \right) \right] r
+ v_2 a_1 \left[v_1^2 \left(\frac{95}{96} v_2^r - \frac{65}{96} v_1^r \right) + v_1 v_2 \left(\frac{103}{48} v_1^r + \frac{25}{48} v_2^r \right) + v_2^2 \left(\frac{113}{32} v_1^r + \frac{665}{96} v_2^r \right) \right] r
+ \frac{557}{96} v_1 r_3 + \frac{39}{32} v_1^2 v_2 - \frac{121}{96} v_1^r v_2^r - \frac{37}{32} v_2^3 \right\} r
+ a_1^r \left[\frac{185}{384} v_1^4 + \frac{23}{16} v_1 v_2^2 + \frac{89}{192} v_2^4 - \frac{13}{16} v_1^2 v_2 v_2^2 \right] r + v_2 \left(\frac{499}{96} v_1 r_2 - \frac{673}{192} v_1^2 v_2^2 - \frac{49}{192} v_2^2 \right) + v_2 \left(\frac{52}{3} v_1^r - \frac{73}{12} v_1^r v_2^r - \frac{19}{24} v_2^2 \right) \right\} r
+ v_1^2 \left(\frac{9}{8} v_2^2 - \frac{71}{24} v_1 r_2 + \frac{5}{12} v_2^2 \right) + v_2 \left(\frac{805}{96} v_1^r v_2^2 + \frac{1}{6} v_1^r v_2^r - \frac{375}{16} v_1^r v_2 - \frac{7}{192} v_2^3 \right) \right\} r
+ a_2^r v_1^2 \left[\frac{419}{384} v_1^4 + \frac{147}{64} v_1^r v_2^2 - \frac{121}{96} v_1^2 v_2^2 - \frac{111}{64} v_2^2 \right] r + v_2^4 \left(\frac{95}{32} v_1^2 v_2^2 - \frac{281}{48} v_1^r v_2^r - \frac{53}{48} v_2^2 \right)
+ v_1^2 \left(\frac{149}{96} v_2^2 + \frac{205}{96} v_1 r_2 - \frac{19}{48} v_2^2 \right) + v_2^2 \left(\frac{523}{32} v_1^r v_2^r - \frac{523}{32} v_1^r v_2^r \right) \right\} r
+ v_1^2 v_2 \left(\frac{111}{64} v_2^2 + \frac{121}{96} v_1^r v_2^2 - \frac{147}{64} v_2^2 \right) + \frac{2615}{192} v_1 v_2 v_2^4 \right\} r
+ v_2^2 \left(\frac{281}{24} v_1^r v_2^2 - \frac{2443}{192} v_2^4 - \frac{121}{12} v_1^r v_2^2 - \frac{5}{24} v_1^r v_2^2 - \frac{37}{16} v_2^2 \right) + \frac{523}{32} v_1^r v_2^5 \right\} r + \mathcal{O}(G_N^3) \right\} .
\]

D. Result of the double zero procedure

Summing up all the contributions, we have:

\[\mathcal{L}_{4PN}^4 = \frac{7}{256} v_1^{10} + \mathcal{L}_{G_N}^{4PN} + \mathcal{L}_{G_N}^{4PN} + \mathcal{O}(G_N^3) , \]

(25)
where $\hat{L}_{GN}^{4PN} \equiv L_{GN}^{4PN} - L_{GN}^{2}$ can be read directly in eq. (13), while \hat{L}_{GN}^{4PN} receives contributions from the eqs. (21, 23, 24), and reads:

\[
\hat{L}_{GN}^{4PN} = \frac{G_{N}^{2}m_{1}^{2}m_{2}}{r^{2}} \left\{ v_{1}a_{1} \left[v_{2}^{2} \left(\frac{3733}{160} v_{1}^{r} - \frac{3679}{480} v_{2}^{r} \right) + \frac{3679}{240} v_{1}^{r} - \frac{8849}{240} v_{2}^{r} \right] \right\} r \\
+ v_{2}a_{1} \left[v_{2}^{2} \left(\frac{9229}{480} v_{1}^{r} - \frac{8849}{480} v_{2}^{r} \right) + \frac{6499}{240} v_{1}^{r} - \frac{4529}{240} v_{2}^{r} \right] r \\
+ v_{2}^{2} \left(\frac{2293}{160} v_{1}^{r} - \frac{3733}{160} v_{2}^{r} \right) - \frac{3341}{480} v_{1}^{2} v_{2}^{r} - \frac{10223}{480} v_{1}^{r} v_{2}^{2} - \frac{3781}{160} v_{1}^{r} v_{2}^{2} + \frac{4621}{480} v_{2}^{3} \right] r \\
+ a_{1}^{2} \left[\frac{6943}{384} v_{1}^{2} + \frac{1331}{80} (v_{1} v_{2})^{2} + \frac{2931}{320} v_{2}^{4} + \frac{7193}{480} v_{1}^{2} v_{2}^{2} - \frac{7193}{240} v_{1} v_{2}^{2} - \frac{5593}{240} v_{1} v_{2} v_{2}^{2} \right] r \\
+ v_{1}^{2} \left(\frac{2063}{96} v_{1} v_{2}^{r} - \frac{2099}{192} v_{1}^{2} - \frac{3059}{192} v_{2}^{2} \right) + v_{1} v_{2} \left(\frac{59}{60} v_{1}^{r} - \frac{23}{60} v_{2}^{r} + \frac{247}{30} v_{1} v_{2}^{2} \right) r \\
+ v_{2}^{2} \left(\frac{7}{5} v_{1} v_{2}^{r} - \frac{59}{120} v_{1}^{2} - \frac{139}{20} v_{2}^{2} \right) + v_{2}^{2} \left(\frac{2197}{240} v_{1}^{2} - \frac{6661}{480} v_{1}^{2} v_{2}^{2} + \frac{1337}{240} v_{1} v_{2}^{2} + \frac{1333}{960} v_{2}^{3} \right) \right\} r \\
+ a_{2}^{2} v_{1}^{2} \left[\frac{3021}{320} v_{1}^{2} - \frac{9983}{480} v_{1}^{2} v_{2} + \frac{4621}{320} v_{2}^{2} - \frac{13549}{1920} v_{2}^{2} \right] r + \frac{20389}{1920} v_{1}^{6} - 8 (v_{1} v_{2})^{3} + \frac{115}{32} v_{1}^{6} \\
+ \frac{28429}{1920} v_{1}^{4} v_{2}^{2} - \frac{29929}{960} v_{1} v_{2} + \frac{43}{2} (v_{1} v_{2})^{2} v_{1}^{2} + \frac{67}{4} (v_{1} v_{2})^{2} v_{2}^{2} + \frac{105}{16} v_{1}^{2} v_{2}^{2} - \frac{105}{8} v_{1} v_{2} v_{2}^{2} \\
- \frac{43}{2} v_{1} v_{1} v_{2} v_{2}^{2} + v_{2}^{2} \left(\frac{1267}{30} v_{1} v_{2}^{r} - \frac{6283}{240} v_{1}^{2} - \frac{1961}{80} v_{2}^{2} \right) + v_{2}^{2} \left(\frac{3}{16} v_{1} v_{2}^{r} - \frac{21}{8} v_{1}^{2} - \frac{3}{8} v_{2}^{r} \right) \\
- 9 (v_{1} v_{2})^{2} v_{1}^{r} + v_{2}^{2} v_{1} v_{2} \left(\frac{5501}{160} v_{1}^{2} - \frac{9283}{240} v_{1}^{2} v_{2}^{2} + \frac{11923}{480} v_{2}^{2} \right) + v_{1} v_{2} v_{2}^{2} v_{2}^{r} \left(\frac{9}{16} v_{1}^{r} + \frac{1}{2} v_{2}^{r} \right) \\
+ v_{1} v_{2}^{2} \left(\frac{9743}{480} v_{1} v_{2}^{r} - \frac{4941}{320} v_{1}^{2} - \frac{4621}{320} v_{2}^{2} \right) + v_{2}^{2} v_{1} v_{2} \left(\frac{5}{4} v_{1}^{r} + v_{1} v_{2}^{r} - \frac{1}{2} v_{2}^{r} \right) \\
+ v_{2} \left[\frac{6597}{320} v_{1} v_{2}^{r} - \frac{3061}{60} v_{1}^{3} v_{2}^{r} + \frac{9403}{120} v_{1}^{2} v_{2}^{r} - \frac{1217}{20} v_{1}^{r} v_{2}^{2} + \frac{4621}{240} v_{2}^{4} \right] - v_{1} v_{2} v_{2}^{r} \left(\frac{6587}{960} v_{1}^{r} + 2 v_{2}^{r} \right) \\
+ v_{1}^{4} \left(\frac{3227}{800} v_{1} v_{2}^{r} + \frac{3}{2} v_{2}^{r} - \frac{4027}{800} v_{1} v_{2}^{r} \right) \right\}. \tag{26}
\]

The above formula, along with the term explicitly written in equation (13), is the main result of this paper.
V. ENERGY

The following expression for the Energy is derived from the Lagrangian via a generalized Legendre transform:

\[
E^{4PN} = \frac{63}{256} m_1 v_1^{10} + \frac{G N m_1 m_2}{r} \left\{ \frac{525}{128} v_1^8 + \frac{1}{32} (v_1 v_2)^4 - \frac{1291}{128} v_1^6 v_2 + \frac{3}{32} v_1^2 (v_1 v_2)^3 + 373 \frac{v_1^4 (v_1 v_2)^2 + 765 v_1^4 v_2^2 - 1511 \frac{v_1^4 v_2 v_2^2 + 3 v_1^2 (v_1 v_2)^2 v_2^2 + (v_1 v_2)^3}{2} + \frac{3}{32} \left(\frac{1}{8} v_1 + v_2 \right) v_1^r - v_1^6 \left(\frac{181}{128} v_1^r + \frac{295}{128} v_2 \right) v_2 + v_1^4 v_1 v_2 \left(\frac{501}{128} v_1^r + \frac{35}{32} \left(\frac{1}{2} + \frac{1}{8} v_2 \right) \right) + v_1^4 v_2^2 \left(\frac{185}{128} v_1^r + \frac{231}{64} \frac{v_1^r v_2 + 3 v_1^4 v_2}{2} + \frac{v_1^2 (v_1 v_2)^2}{2} \right) + \frac{267}{128} v_1^r + \frac{23}{32} \right(\frac{1}{8} v_1^r v_2 - \frac{1}{32} v_1^2 - \frac{1}{16} v_2^2 \right) + v_1^2 v_1 v_2^2 \left(\frac{333}{64} v_1^r + \frac{3}{8} v_2 \right) + v_1^4 v_1 v_2^2 \left(\frac{165}{128} v_1^r + \frac{135}{128} v_1^r v_2 + \frac{55}{64} v_1^3 v_2 + v_1^2 \right) + v_1^r v_1 v_2^2 \left(\frac{411}{128} v_1^r + \frac{99}{64} v_1^r v_2 + \frac{3}{4} v_2 \right) \right) \right] + \frac{85}{128} v_1^r + \frac{5}{16} v_2^3 \right) v_1^r - v_1^r \left(\frac{165}{128} v_1^r + \frac{135}{128} v_1^r v_2 + \frac{55}{64} v_1^3 v_2 + v_1^2 \right) + v_1^2 \left(\frac{201}{4} v_1^r v_2 + \frac{293}{2} v_2^3 \right) \right\} \right] \right] + \frac{G N m_1 m_2^2}{r^2} \left\{ \frac{45}{2} v_1^6 - 65 (v_1 v_2)^3 + \frac{575}{32} v_2^6 - 104 v_1^5 v_2 + \frac{201}{4} v_1^4 v_2 + \frac{293}{2} v_2^2 (v_1 v_2)^2 \right\} + \frac{469}{4} (v_1 v_2)^2 v_2^2 + \frac{609}{16} v_1^3 v_2^2 - 76 v_1 v_2 v_2^2 + \frac{305}{2} v_1^5 v_2 v_2^2 + v_1^4 \left(\frac{5451}{64} v_2^2 - \frac{2171}{64} v_2^2 - \frac{175}{4} v_2^2 \right) \right\} + \left(v_1 v_2 \right)^2 \left(\frac{2025}{16} v_1^2 v_2 - \frac{1461}{16} v_1^2 v_2 - \frac{77 v_2^2}{2} \right) + v_1^2 \left(\frac{2021}{32} v_1^2 v_2 - \frac{949}{32} v_1^2 - \frac{371}{8} v_2^2 \right) \right\} + v_1 v_2^2 \left(\frac{817}{16} v_1^2 - \frac{779}{16} v_1^2 v_2 + \frac{371}{8} v_2^2 \right) + v_1^2 \left(\frac{769}{32} v_1^2 + \frac{4683}{32} v_1^2 v_2^2 + \frac{3735}{32} v_1^3 \right) \right\} + \frac{10615}{96} v_1^2 v_2^3 + \frac{125}{4} v_2^4 \right) \right] + v_1 v_2 \left(\frac{2659}{16} v_1^3 v_2 - \frac{2969}{16} v_1^2 v_2 + \frac{1741}{16} v_1^2 v_2^3 + \frac{125}{4} v_2^4 - \frac{811}{16} v_1^4 \right) \right]} + \frac{v_2^2}{32} v_1^3 v_2^2 + \frac{3775}{32} v_1^2 v_2^3 - \frac{1699}{64} v_1^2 v_2^4 - \frac{1941}{320} v_2^5 \right) \right] + \mathcal{O}(G_N^3). \tag{27}
\]

In the above expression (which is conserved up to order G^2 if gravitational radiation is neglected) accelerations have been systematically substituted via the equations of motion,
truncated at the appropriate PN order.

VI. LORENTZ INVARIANCE AND CENTER-OF-MASS POSITION

A. Boosts

As discussed in [10], the post-Newtonian dynamics must inherit the symmetries of the fundamental theory, thus has to show invariance under Lorentz boosts, which in this framework are implemented by the following transformation

$$\delta \vec{x}_{1,2} = -\vec{V} t + (V \cdot x_{1,2}) \vec{v}_{1,2} + \mathcal{O}(V^2),$$

(28)

where V^i is the boost velocity.

Requiring that the equations of motion are invariant under boosts impose that the Lagrangian variation under the transformation given by eq. (28) consists only of a time derivative plus possibly double zero terms:

$$\delta \mathcal{L}^{APN} = V \cdot \dot{\mathcal{Z}}^{APN} + \text{double zeroes},$$

(29)

As the boost transformation does not depend on G_N (nor on d), Lorentz invariance can be checked to some extent order by order in Newton’s constant; we find indeed that the above eq. (29) is compatible with $\dot{\mathcal{Z}}^{APN} = \frac{5}{128} v_1^8 \vec{x}_1 + \dot{\mathcal{Z}}^{APN}_{G^N} + \mathcal{Z}^{APN}_{G^N} + \mathcal{O}(G^3_N)$, where

$$\dot{\mathcal{Z}}^{APN}_{G^N} = \frac{G m_1 m_2}{r} \left\{ \left[\frac{11}{4} v_1^4 v_2 + (v_1, v_2) \left(\frac{1}{4} v_2^2 - \frac{3}{16} v_1^3 \right) \right] + v_1^4 \left(\frac{49}{64} v_1^3 + \frac{123}{64} v_2^2 \right) - 3 v_1^2 v_1 v_2 v_2^2 \right\}$$

$$- \frac{123}{32} v_1^2 v_2 v_1 + v_1 v_2 \left(\frac{19}{32} v_1^4 v_2^2 - \frac{5}{32} v_1^2 v_2^2 + \frac{5}{12} v_1^2 v_2^2 - \frac{1}{16} v_1^3 \right) + v_2 \left(\frac{23}{32} v_2^2 - \frac{77}{96} v_1^3 \right) v_1^2$$

$$- \frac{1}{16} v_1^2 v_1 v_2 v_2^2 + \left(\frac{13}{64} v_1^4 v_1^2 + \frac{11}{64} v_1^3 v_2 + \frac{5}{32} v_1^2 v_2^2 + \frac{1}{8} v_1 v_2^3 + \frac{1}{16} v_2^4 \right) v_1^2$$

$$+ \left[v_2 a_1 \left(\frac{1}{4} v_1 v_2 - v_1^2 - \frac{15}{8} v_2^2 + \frac{3}{8} v_1 v_2 + \frac{5}{12} v_2^2 \right) v_2 + v_1 a_1 \left(\frac{11}{4} v_1^2 - 2 v_1 v_2 + \frac{15}{8} v_2^2 \right) v_2^2 \right]$$

$$+ a_1^2 \left(\frac{3}{8} v_1 v_2 v_1^2 - v_2^2 \left(\frac{5}{8} v_1^2 + \frac{1}{2} v_1 v_2^2 + \frac{5}{16} v_2^2 \right) + \frac{1}{8} v_1 v_2^3 + \frac{1}{16} v_2^4 \right) + \frac{11}{16} v_1^6 + \frac{1}{16} (v_1 v_2)^2$$

$$- \frac{15}{16} v_1^4 v_2^2 - \frac{13}{16} v_1^4 v_1 v_2 + v_1^2 v_2 - \frac{1}{32} v_1 v_1 v_2^2 v_2 - v_1^4 \left(\frac{7}{16} v_2 + \frac{11}{16} v_1 \right) v_2^r + v_1^2 v_1 v_2 \left(\frac{11}{16} v_2 + v_1 \right) v_2^r$$

$$- v_1^2 v_2^2 \left(\frac{5}{8} v_1 + \frac{23}{32} v_2 \right) v_2^r + (v_1 v_2)^2 \left(\frac{11}{64} v_2^2 - \frac{11}{64} v_1^2 + \frac{5}{16} v_1 v_2^2 \right) - v_1 v_2^2 v_1^2 v_2^2 + \frac{11}{16} v_2 v_2^2$$

$$+ v_2^2 \left(\frac{1}{8} v_1^3 + \frac{5}{8} v_2^2 \right) v_2^r + v_1 v_2 \left(\frac{19}{16} v_1^4 v_2^2 - \frac{15}{32} v_1^2 v_2^2 - v_1 v_2^3 - \frac{19}{16} v_2^4 \right) - \frac{5}{32} v_1 v_2^2 v_2^2 \right\} \vec{x}_1,$$

(30)
and

\[
\tilde{Z}_{G_N^2} = \frac{G^2 m_1 m_2}{r^2} \left\{ \frac{m_2}{24} \left[\frac{235}{48} v_1 v_2 v_2^r + \frac{235}{48} v_2^2 v_1 + \frac{29}{24} v_1^r v_2^2 \right] \tilde{v}_1 \right. \\
+ m_1 \left[\frac{v_1}{480} \left(v_1 + \frac{8849}{480} v_2^2 \right) + \frac{235}{12} v_1 v_2 v_2^r - \frac{3341}{480} v_1 v_2^r + \frac{10223}{480} v_1^2 v_2^r - \frac{9983}{480} v_1^r v_2^2 + \frac{4621}{480} v_2^r \right] \tilde{v}_1 \\
+ v_1^2 \left(\frac{161}{24} v_1^2 - \frac{223}{24} v_2^r + \frac{37}{24} v_2^2 \right) - \frac{147}{16} v_1 v_2 v_2^r + \left(\frac{10841}{2880} v_1 - \frac{29}{6} v_2^r \right) v_2^3 \tilde{v}_1 \\
+ \frac{v_2}{24} \left(\frac{-235}{48} v_1 v_2 v_2^r - a_{1}^r \left(\frac{235}{48} v_2^2 + \frac{29}{24} v_2^r \right) - \frac{145}{16} v_1^4 - \frac{463}{24} \left(v_1 v_2 \right)^2 - \frac{25}{16} v_2^4 + \frac{19}{2} v_1^r v_2 \right) \\
+ v_1 v_2 \left(\frac{97}{6} v_1 - \frac{11}{3} v_2 \right) v_2^r + \frac{35}{6} v_1^2 v_2 - \frac{4187}{960} v_2^r \left(v_2^r \right) \tilde{v}_1 \right) \right\} ,
\] (31)

where the sum over particle exchange $1 \leftrightarrow 2$ is understood as usual.

More exactly, we find that eq. (29) holds up to order G_N if we assume that the following terms

\[
\frac{G_N m_1 m_2}{r} \left[a_1 a_2 \left(\frac{1}{4} v_1 v_2 - v_2^2 - \frac{15}{8} v_1^2 + \frac{3}{8} v_1^r v_2^r + \frac{5}{12} v_1^2 \right) v_2^r + \frac{15}{4} v_1 a_1 v_2 a_2 v_1^r + \\
+ \frac{1}{4} v_2 a_1 v_2 a_2 v_1^r + v_1 a_1 a_2^r \left(\frac{11}{4} v_1^2 - 2 v_1 v_2 + \frac{15}{8} v_2^2 - \frac{5}{8} v_1^2 - v_1^r v_2 - \frac{5}{4} v_2^r \right) \\
+ v_2 a_1 a_2^r \left(\frac{1}{4} v_1 v_2 - v_1^2 - \frac{15}{8} v_2^2 + \frac{3}{8} v_1^2 + \frac{3}{4} v_1^r v_2^r + \frac{5}{4} v_2^r \right) \\
+ a_1^r a_2^r \left(\frac{3}{4} v_1^r v_2^r - \frac{5}{8} v_2^r - \frac{1}{2} v_2^2 + \frac{1}{4} v_2^r + \frac{3}{8} v_1^r v_2^r \right) v_1^r - v_1 a_1 v_1 a_2 \left(\frac{15}{4} v_1^r + 2 v_2^r \right) \right] \tilde{r}
\] (32)

are part of the double zero structure displayed at the right hand side of the same equation. Although we cannot be sure that this is indeed the case without knowing also the G_N^3 part of the Lagrangian, it is non-trivial consistency check that only terms quadratic in the accelerations appear above and that the G_N^2 terms are also consistent with the presence of a double zero structure whose terms quadratic in the accelerations are the ones given in (32).

In its turn, Lorentz invariance at G_N^2 order requires the following $O(G_N^2)$ terms quadratic in acceleration

\[
\frac{G_N^2 m_1^2 m_2}{r^2} \left\{ \left[a_1^r a_2^r \left(\frac{29}{12} v_1^r - \frac{17}{3} v_2^r \right) + \frac{235}{24} \left(a_2^r v_1 a_1 + v_1 a_1 a_2 \right) - \frac{40}{3} v_2 a_2 a_1^r \right] \tilde{r} \right\}
\] (33)
are part of a double zero structure. While an actual check will be performed only after the
determination of the 4PN G_N^3 and G_N^4 dynamics, it is however a non-trivial that only terms
quadratic in accelerations are left out of $Z_{G_N}^{4PN}$. Note that in deriving these results we had
to take into account the 1PN corrections to the double zero terms which are already present
at 3PN.
B. Center of mass position

Still following \([10]\), we can use the result of the previous subsection, and the fact of having a Lagrangian linear in acceleration, to determine the center-of-mass position at order \(G_N^2\).

\[
\bar{G}^{APN} = \frac{35}{128} m_1 v_1^2 \bar{x}_1 + \frac{G_N m_1 m_2}{r} \left\{ \begin{array}{l}
\left[515 \frac{v_1^6}{128} + \frac{1}{16} (v_1 v_2)^3 - \frac{433}{64} v_1^4 v_1 v_2 + \frac{381}{128} v_1^4 v_2^2 + \frac{251}{128} v_1^2 v_2^4 \\
- \frac{161}{32} v_1^2 v_1 v_2^2 - \frac{75}{128} v_1^4 + \frac{97}{32} v_1^2 (v_1 v_2)^2 + \frac{67}{32} (v_1 v_2)^4 v_2 - \frac{123}{64} v_1 v_2 v_2^4 \\
- v_1^4 \left(\frac{53}{128} v_1^3 \frac{v_2^2}{64} + \frac{31}{64} v_1^2 v_2 - \frac{225}{128} v_1^2 v_2^2 \right) + (v_1 v_2)^2 \left(\frac{5}{32} v_1^2 \frac{v_2^2}{16} + \frac{9}{32} v_1 v_2^2 - \frac{29}{32} v_2^2 \right) \\
+ v_2^4 \left(\frac{53}{128} v_2^3 \frac{v_1^2}{64} - \frac{31}{64} v_1^2 v_2 - \frac{31}{128} v_2^2 \right) - v_1^2 v_2 \left(\frac{23}{64} v_1^3 \frac{v_2^2}{16} + \frac{23}{32} v_1 v_2^2 + \frac{157}{64} v_2^2 \right) \\
+ v_1^2 v_2 \left(\frac{13}{32} v_1^2 \frac{v_2^2}{16} + \frac{7}{16} v_1 v_2 + \frac{33}{32} v_2^2 \right) + v_1^2 v_2 \left(\frac{7}{32} v_1^2 \frac{v_2^2}{16} + \frac{13}{16} v_1 v_2 + \frac{77}{32} v_2^2 \right) \\
- v_1 v_2 \left(\frac{11}{64} v_1^3 \frac{v_2^2}{16} + \frac{5}{32} v_1^2 v_2 + \frac{15}{16} v_1^2 v_2^2 + \frac{11}{64} v_1 v_2^3 + \frac{65}{64} v_2^4 \right) \\
+ v_1^2 \left(\frac{27}{128} v_1^4 \frac{v_2^2}{64} + \frac{11}{32} v_1^3 v_2 + \frac{27}{64} v_1^2 v_2^2 + \frac{15}{32} v_1^2 v_2^3 + \frac{137}{128} v_2^4 \right) \\
+ v_2^2 \left(\frac{15}{128} v_1^4 \frac{v_2^2}{64} + \frac{9}{32} v_1^3 v_2 + \frac{33}{64} v_1^2 v_2^2 + \frac{27}{32} v_1^2 v_2^3 - \frac{27}{128} v_2^4 \right) \\
- \frac{5}{128} v_1^6 - \frac{5}{64} v_1^5 v_2 - \frac{15}{128} v_1^4 v_2^2 - \frac{5}{32} v_1^3 v_2^2 - \frac{25}{128} v_1^2 v_2^4 - \frac{15}{64} v_1 v_2^5 - \frac{5}{128} v_2^6 \right\} \bar{x}_1 \\
+ \frac{G_N^2 m_1 m_2}{r} \left\{ m_2 \left[\frac{5631}{320} v_1^4 + \frac{2091}{80} (v_1 v_2)^2 + \frac{9083}{960} v_2^4 - \frac{10153}{240} v_1^2 v_1 v_2 + \frac{9473}{480} v_1^2 v_2^2 - \frac{7193}{240} v_2 v_2^2 \right] + v_1^2 \left(\frac{2}{5} v_1 v_2 - \frac{31}{5} v_1^2 - \frac{239}{120} v_2^2 \right) \right\} \bar{x}_1 \\
+ \frac{G_N^2 m_1 m_2}{r} \left\{ m_2 \left[\frac{129}{80} (v_1 v_2)^2 - \frac{2931}{320} v_2^4 - \frac{7}{240} v_1^2 v_1 v_2 - \frac{1973}{480} v_1^2 v_2^2 + \frac{2983}{240} v_1 v_2^2 \right] + v_1^2 \left(\frac{167}{60} v_1^2 + \frac{1037}{120} v_1 v_2^2 - \frac{139}{30} v_2^2 \right) + v_2^2 \left(\frac{1409}{120} v_1^2 - \frac{273}{20} v_1 v_2^2 + \frac{139}{20} v_2^2 \right) + \frac{49}{320} v_2^4 \right\} \bar{x}_1 \\
+ \frac{G_N^2 m_1 m_2}{r} \left\{ m_2 \left[\frac{9229}{480} v_1^2 - \frac{8849}{480} v_2^2 \right] + v_1^2 \left(\frac{6499}{240} v_2^2 - \frac{5429}{240} v_1^2 \right) + v_2^2 \left(\frac{2293}{160} v_1^2 - \frac{3733}{160} v_2^2 \right) + \frac{49}{320} v_2^4 \right\} \bar{x}_1 \\
+ \frac{G_N^2 m_1 m_2}{r} \left\{ m_2 \left[\frac{3341}{480} v_1^2 + \frac{10223}{480} v_2^2 - \frac{3781}{160} v_1^2 v_2^2 + \frac{4621}{480} v_1^2 v_2^2 \right] \right\} \bar{x}_1 + O(G_N^3) \right\} \bar{x}_1 \right\}
\end{array} \right\} \bar{x}_1
\right\}
\end{align}
\]
As for the Energy, accelerations appearing at different PN orders have been systematically substituted via the equations of motion, truncated at the appropriate PN order.

VII. CONCLUSIONS

We have computed the the conservative dynamics of a binary system within the framework of the post-Newtonian approximation to general relativity at fourth post-Newtonian order up to terms quadratic in the Newton constant. By a systematic use of the effective field theory methods for non-relativistic general relativity proposed by Goldberger and Rothstein it has been possible to automatize the computation and derive the effective Lagrangian by summing the contributions of several Feynman diagrams. We have also computed the energy function and verified Lorentz invariance, giving a non-trivial consistency check of our calculations.

This work is the first ingredient for the complete determination of the 4PN dynamics.

After the publication on the arXiv of the first version of this paper, [29] appeared where the 4PN Hamiltonian has been computed in ADM coordinates in the center of mass frame, up to terms $O(G_N^2)$ and with the inclusion of some the $O(G_N^3)$ terms that could be determined by imposing Lorentz invariance. A direct comparison of the two results can be made by computing the gauge invariant energy of circular orbits $E(x, \nu)$, depending only on the symmetric mass ratio $\nu \equiv m_1 m_2 / m^2$, being $m = m_1 + m_2$, and on the PN expansion parameter $x \equiv (G_N m \omega)^{2/3}$, with ω the rotation angular frequency. We find perfect agreement with the new 4PN coefficients proportional to ν^3 and ν^4 reported in [29].

Acknowledgments

RS wishes to thank the theoretical physics department of the University of Geneva for kind hospitality and support during the preparation of part this work. SF wishes to thank the physics department of the University of Urbino for hospitality during the preparation of part of this work. The work of SF is supported by the FNS.

[1] L. Blanchet, Living Rev. Relativity 5, (2002), URL: http://www.livingreviews.org/lrr-2002-3.
[2] T. Futamase and Y. Itoh, Living Rev. Relativity 10, (2007), URL: http://www.livingreviews.org/lrr-2007-2.

[3] A. Abramovici et al., Science 256, 325 (1992), http://www.ligo.caltech.edu A. Giazotto, Nucl. Instrum. Meth. A 289, 518 (1990), http://www.virgo.infn.it.

[4] C. Cutler et al., Phys. Rev. Lett. 70 (1993) 2984 arXiv:astro-ph/9208005.

[5] J. Winicour, "Characteristic Evolution and Matching", Living Rev. Relativity 15, (2012), http://www.livingreviews.org/lrr-2012-2

[6] F. Ohme, M. Hannam and S. Husa, Phys. Rev. D 84 (2011) 064029 arXiv:1107.0996 [gr-qc].

[7] P. Jaranowski and G. Schäfer, Phys. Rev. D 57 (1998) 7274 arXiv:gr-qc/9712075 [Erratum-ibid. D 63 (2001) 029902]; P. Jaranowski and G. Schäfer, Phys. Rev. D 60 (1999) 124003 arXiv:gr-qc/9906092; T. Damour, P. Jaranowski and G. Schäfer, Phys. Lett. B513 (2001) 147-155 arXiv:gr-qc/0105038; T. Damour, P. Jaranowski and G. Schäfer, Phys. Rev. D 62 (2000) 021501 arXiv:gr-qc/0003051 [Erratum-ibid. D 63 (2001) 029903].

[8] L. Blanchet, T. Damour and G. Esposito-Farese, Phys. Rev. D 69, 124007 (2004) arXiv:gr-qc/0311052.

[9] L. Blanchet and G. Faye, Phys. Lett. A 271 (2000) 58 arXiv:gr-qc/0004009.

[10] V. C. de Andrade, L. Blanchet and G. Faye, Class. Quant. Grav. 18 (2001) 753 arXiv:gr-qc/0011063.

[11] Y. Itoh and T. Futamase, Phys. Rev. D68 (2003) 121501 arXiv:gr-qc/0310028; Y. Itoh, Phys. Rev. D69 (2004) 064018 arXiv: gr-qc/0310029.

[12] T. Ledvinka, G. Schaefer and J. Bicak, Phys. Rev. Lett. 100 (2008) 251101 arXiv:0807.0214 [gr-qc].

[13] S. Foffa and R. Sturani, Phys. Rev. D 84 (2011) 044031 arXiv:1104.1122 [gr-qc].

[14] Y. -Z. Chu, Phys. Rev. D 79 (2009) 044031 arXiv:0812.0012 [gr-qc].

[15] W. D. Goldberger and I. Z. Rothstein, Phys. Rev. D 73 (2006) 104029 arXiv:hep-th/0409156.

[16] W. D. Goldberger, “Les Houches lectures on effective field theories and gravitational radiation”, Proceedings of Les Houches summer school - Session 86: Particle Physics and Cosmology: The Fabric of Spacetime, arXiv:hep-ph/0701129.

[17] R. A. Porto and I. Z. Rothstein, Phys. Rev. Lett. 97 (2006) 021101 gr-qc/0604099; R. A. Porto, gr-qc/0701106, R. A. Porto and I. Z. Rothstein, Phys. Rev. D78 (2008) 044012 arXiv:0802.0720 [gr-qc] [Erratum-ibid. D 81 (2010) 029904]; R. A. Porto and I. Z. Rothstein,
Phys. Rev. D78 (2008) 044013 [arXiv:0804.0260 [gr-qc]] [Erratum-ibid. D 81 (2010) 029905];
R. A. Porto, Phys. Rev. D73 (2006) 104031 [arXiv:gr-qc/0511061]. M. Levi, Phys. Rev. D 85 (2012) 064043, [arXiv:1107.4322 [gr-qc]].

[18] W. D. Goldberger and I. Z. Rothstein, Phys. Rev. D 73, (2006) 104030 [hep-th/0511133].
R. A. Porto, Phys. Rev. D 77 (2008) 064026 [arXiv:0710.5150 [hep-th]], W. D. Goldberger
and A. Ross, Phys. Rev. D 81 (2010) 124015 [arXiv:0912.4254 [gr-qc]], R. A. Porto, A. Ross
and I. Z. Rothstein, JCAP 1103 (2011) 009 [arXiv:1007.1312 [gr-qc]], R. A. Porto, A. Ross
and I. Z. Rothstein, arXiv:1203.2962 [gr-qc].

[19] L. Blanchet and T. Damour, Phys. Rev. D37 (1988) 1410; L. Blanchet, Phys. Rev. D47
(1993) 4392-4420.

[20] S. Foffa and R. Sturani, arXiv:1111.5488 [gr-qc].

[21] J. B. Gilmore and A. Ross, Phys. Rev. D 78, 124021 (2008) [arXiv:0810.1328 [gr-qc]].

[22] B. Kol and M. Smolkin, Class. Quant. Grav. 25, 145011 (2008) [arXiv:0712.4116 [hep-th]];
B. Kol and M. Smolkin, Phys. Rev. D 77, 064033 (2008) [arXiv:0712.2822 [hep-th]].

[23] L. Blanchet and T. Damour, Annales Poincare Phys. Theor. 50 (1989) 377.

[24] B. Kol and M. Smolkin, Phys.Rev. D85, 044029 (2012) [arXiv:1009.1876 [hep-th]].

[25] Wolfram Research, Inc., Mathematica, Version 7.0.0, Champaign, IL (2007).

[26] R. Mertig, M. Bohm and A. Denner, Comput. Phys. Commun. 64, 345 (1991).

[27] http://theory.physics.unige.ch/foffa/research/research.html

[28] T. Damour and G. Schäfer, Gen. Rel. Grav. 17, 879-905 (1985).

[29] P. Jaranowski and G. Schafer, Phys. Rev. D 86 (2012) 061503 [arXiv:1207.5448 [gr-qc]].

[30] We adopt the “mostly plus” convention $\eta_{\mu\nu} \equiv \text{diag}(-, +, +, +)$, and the Riemann and Ricci
tensors are defined as $R^\mu_{\nu\rho\sigma} = \partial_\rho \Gamma^\mu_{\nu\sigma} + \Gamma^\mu_{\alpha\rho} \Gamma^\alpha_{\nu\sigma} - \rho \leftrightarrow \sigma$, $R_{\mu\nu} \equiv R^\alpha_{\mu\alpha\nu}$.

[31] $\hat{\Gamma}^i_{jk}$ is the connection of the purely spatial metric γ_{ij}, $F_{ij} \equiv A_{j,i} - A_{i,j}$ and indices must be
raised and contracted via the d-dimensional metric tensor γ, although in the last three lines of
eq. 7 one can use just δ_{ij} as neglected terms are not needed at 4PN order; on the other hand
all the spatial derivatives are meant to be simple (not covariant) ones and, when ambiguities
might raise, gradients are always meant to act on contravariant fields (so that, for instance,
$\nabla \cdot \vec{A} \equiv \gamma^{ij} A_{i,j}$ and $F_{ij}^2 \equiv \gamma^{jk} \gamma^{ij} F_{ij} F_{kl}$).

[32] As we focus on the conservative part of the dynamics, internal lines in Feynman diagrams
correspond to the so-called potential gravitons and no gravitational radiation is emitted.