Aluminum-Centered Tetrahedron-Octahedron Transition in Advancing Al-Sb-Te Phase Change Properties

Mengjiao Xia1,3*, Keyuan Ding1,3*, Feng Rao1, Xianbin Li2, Liangcai Wu1 & Zhitang Song1

1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China, 2State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China, 3Graduate University of the Chinese Academy of Sciences, Beijing 100080, China.

Group IIIA elements, Al, Ga, or In, etc., doped Sb-Te materials have proven good phase change properties, especially the superior data retention ability over popular Ge2Sb2Te5, while their phase transition mechanisms are rarely investigated. In this paper, aiming at the phase transition of Al-Sb-Te materials, we reveal a dominant role of local structure changes around the Al atoms based on ab initio simulations and nuclear magnetic resonance evidences. By comparing the local chemical environments around Al atoms in respective amorphous and crystalline Al-Sb-Te phases, we believe that Al-centered motifs undergo reversible tetrahedron-octahedron reconfigurations in phase transition process. Such Al-centered local structure rearrangements significantly enhance thermal stability of amorphous phase compared to that of undoped Sb-Te materials, and facilitate a low-energy amorphization due to the weak links among Al-centered and Sb-centered octahedrons. Our studies may provide a useful reference to further understand the underlying physics and optimize performances of all IIIA metal doped Sb-Te phase change materials, prompting the development of NOR/NAND Flash-like phase change memory technology.

Phase change memory (PCM) has been considered to be the most promising candidate for the next generation nonvolatile memory due to its prominent advantages, such as fast switching speed, good endurance, good scalability, and compatibility with complementary metal oxide semiconductor (CMOS) technology 1. Electrical pulse with nanosecond width is able to induce the reversible phase transition between the amorphous (highly resistive, Reset) and the crystalline (lowly resistive, Set) states. The high-to-low resistance contrast is used to store the information data 2.

As the flagship phase change material system, Ge-Sb-Te alloys can be regarded as the combination of GeTe (GT) and Sb2Te3 (ST) along the pseudobinary tie-line. The two binary construction units have small lattice parameter deviations (2.2% for hexagonal lattice and 1.0% for rocksalt lattice) 3. In the rocksalt Ge2Sb2Te5 (GST), Ge-centered and Sb-centered octahedrons resemble each other because of their resonant bonds by sharing p valence electrons between Ge (Sb) and six vertex Te atoms 4. Such "twins-like" construction units, from atomic and electronic configurations perspectives, facilitate the homogeneous and meanwhile stable phase composition for both amorphous (a-) and crystalline (c-) GST even after more than 100 million times repetitive Reset-Set operations. The rationale to dope Ge element into a-ST also lies in that the spontaneous crystallization of pure a-ST at low temperature cannot guarantee the long-term stability of a-phase 5,6. The a-ST is swiftly crystallized via reordering its defective or destructive Sb-centered octahedrons 7. While crystallization of Ge doped a-ST needs to rearrange the majority of Ge atoms from tetrahedral to octahedral sites via overcoming ~2.3 eV energy barrier 8. Thereby the rigidity of a-phase network is significantly enhanced, restraining the easy structure reordering.

Many efforts, imitating the construction principles of GST or Ge doped ST alloys, have been made to design homogeneous M-Sb-Te (M = dopant element) alloys. Namely, it attempts to design superior new phase change materials by devising "twins-like" M-centered and Sb-centered octahedrons. They are expected to coexist in a uniform crystal lattice, since improving uniformity is a crucial factor for prolonging PCM cyclability.

For instance, if M is the transition metal without p valence electrons in its outer shell, e.g., Ti, it covalently bonds (non-resonant bonds) with surrounding six Te atoms in an octahedral configuration. Such rigid atomic motif changes little during phase transition 9. Indeed the analogous Ti-centered and Sb-centered octahedrons (~11%...
hexagonal lattice parameter mismatch between TiTe$_2$ and ST) still favor stacking in a single uniform lattice\(^9\). However, the major part of structure change in Ti-Sb-Te (TST) is argued to be the order-disorder of Sb-centered motifs surrounding the robust Ti-centered octahedrons, which is qualitatively different from that of GST\(^6\).

On the other hand, group IIIA metals like Al\(^{11-15}\), Ga\(^{16-18}\), and In\(^{9,20}\) with one p valence electron have also been successfully incorporated in M-Sb-Te alloys. In comparison with Ge (resonant bonding with Te) in c-GST and Ti (covalent bonding with Te) in c-TST, IIIA cation M may introduce a sort of in-between electronic configuration with Te) in c-GST and Ti (covalent bonding with Te), incorporated in M-Sb-Te alloys. In comparison with Ge (resonant bonding with Te) and (covalent bonding with Te) for GST\(^6\), and \(\overline{5}\) for 3D Set-Reset speed (\(\sim 30\) ns for GST), and \(\overline{10}\) ns Set-Reset speed (\(\sim 30\) ns for GST)\(^{13,14}\), and \(\overline{60}\)% reduced Reset energy\(^{14}\). Hence in the present work, we set Al-Sb-Te as an example to discuss its possible phase transition mechanism and extend to other IIIA M-Sb-Te materials. To elucidate the role of Al atoms in the transition process, \textit{ab initio} simulations and nuclear magnetic resonance (NMR) measurements were carried out to study the chemical environment change of Al atoms in a- and c-Al-Sb-Te phases. A reversible Al-centered tetrahedron-octahedron transition is believed to play a major role in improving performances of Al-Sb-Te based PCM devices.

Figure 1 shows the X-ray diffraction (XRD) results of crystallized ST, A$_{0.36}$Sb$_2$Te$_3$ (A$_{0.36}$ST), and A$_{0.69}$Sb$_2$Te$_3$ (A$_{0.69}$ST) films annealed at 300°C for 3 min. Si (2 1 1) peak of the single crystal Si substrate is used for alignment to get a precise position of other diffraction peaks. All the films show rhombohedral structure ($R\overline{3}$m space group) with no separated Te, Al-Sb, or Al-Te phase observed, which indicates crystalline Al doped ST (Al$_x$ST) can have a homogeneous phase\(^{11,12}\). The diffraction peaks of c-Al$_x$ST are broader and weaker than those of c-ST, implying an obvious inhibition of grain growth after Al doping. As shown in the inset of Figure 1, the (0 1 5) peak positions gradually shift to higher 2 theta (2\(\theta\)) as Al content increases (28.13° for ST, 28.16° for A$_{0.36}$ST, and 28.28° for A$_{0.69}$ST). According to Bragg’s diffraction law: $2\sin\theta = n\lambda$, different values of θ (the angle between the incident ray and the scattering crystal planes) correspond to varied values of d (interplanar spacing), and reflect the change of lattice parameters. The d shortening between (0 1 5) planes indicates the probability of Al atoms entering the ST lattice since Al has smaller atomic radius than those of Sb and Te, which may also generate extra lattice stress between the crystal planes. It shall be correlated to the discrepancies between local chemical environments before and after Al replacements.

Rather than modelling the exact experimental composition, we used \textit{ab initio} simulation to calculate the formation energy (E^f) of a single Al atom at various lattice sites in a 60-atom c-ST supercell, so as to examine the effects of Al introducing and compare the relative stability among different Al occupancies. The E^f of Al is given by\(^{21}\):

$$E^f = E_{\text{tot}}(\text{Al$_x$ST}) - E_{\text{tot}}(\text{ST}) - \mu_{\text{Al}} + \mu_X$$

where E_{tot} is the total energy per supercell with or without Al, μ_{Al} is the chemical potential of Al, μ_X is the chemical potential of (Sb, Te), or 0 for $X = \text{Al}_{0.69}$ (Al replacing Sb), $\text{Al}_{1.0}$ (Al replacing Te), or Al (Al interstitial). There are 5 possible sites for Al in the ST lattice. The most stable site (the lowest $E^f = -0.35$ eV) is to replace Sb (Al$_{0.69}$) with six Te nearest neighbors. To identify the bonding chemistry between Al and Te, Figure 2 shows the charge density difference (CDD)\(^{22}\) of the relaxed structure of the Al$_{0.69}$ model. In the Sb-centered octahedron (Figure 2b), there are three strong bonds binding Sb with 3-coordinated Te atoms, while three weak bonds are formed among Sb and other 6-coordinated Te atoms. In contrast, in the Al-centered one (Figure 2c), all the six bonds between Al and Te are relatively stronger with noticeable charge accumulation at the bond center. The tighter Al-Te bonds have shorter lengths than those of Sb-Te bonds, as shown in Table 1. To compensate for the strong Al-Te bonds, three Te-Sb bonds (in the opposite bonding direction of Al-Te) in the adjacent layer without the Al are significantly elongated and weakened, as indicated in Figure 2a by dashed lines. Note that the elongated Te-Sb bonds in c-Al$_x$ST result in a larger lattice constant c, decreasing the interplanar distance of (0 1 5) planes (3.218 Å for c-ST and 3.204 Å for c-Al$_{0.69}$ST), as shown in Figure 3. It is consistent with our analyses on the XRD results in Figure 1 and further confirms that Al atoms can occupy the Sb positions in c-ST lattice. In addition, such weakened Te-Sb bonds can be easily deformed to accommodate the lattice mismatch and relieve the tensile stress brought by the Al-centered octahedron. During amorphization, these fragile Te-Sb bonds are easily to be ruptured to break the long-range order, leading to a low-energy Reset operation.

![Figure 1](image1.png)
Figure 1 | The X-ray diffraction (XRD) results of Al doped Sb$_2$Te$_3$. XRD curves of 300°C annealed Sb$_2$Te$_3$, A$_{0.36}$Sb$_2$Te$_3$, and A$_{0.69}$Sb$_2$Te$_3$ films on Si (1 0 0)/SiO$_2$ substrates. Position change of peak (0 1 5) is shown enlarged in inset image, which suggests that the doped Al atoms enter the Sb$_2$Te$_3$ lattice and change the lattice parameters.

![Figure 2](image2.png)
Figure 2 | Bond chemistry of Al doped crystalline Sb$_2$Te$_3$. (a) Hexagonal lattice of Al doped Sb$_2$Te$_3$ shown by charge density difference. (b) and (c) are the Sb- and Al-centered octahedrons. The isosurface value is fixed at $+0.005$ e$^{-}\cdot$bohr3 ($a_0 =$ bohr). The formation of six strong Al-Te bonds weakens three adjacent Te-Sb bonds in opposite bonding direction of Al-Te bonds [dashed lines in (a)].
To be noted that, in comparison with Al-Te bonds, the even stronger Ti-Te bonds in c-TST break all nine Te-Sb bonds in the adjacent layer without the Ti\(^6\). One may notice that the CDD on Al-Te bond is slightly weaker than that of Ti-(covalent) bond in Ti-centered octahedron\(^5\). Unlike the 3d\(^2\)Z\(^4\) electronic configuration of Ti, the only \(p\) valence electron of Al (3s\(^2\)3p\(^1\)) may account for the less covalent components of Al-Te bond. Namely, a small portion of Al 3p-Te 5p bonding contributes resonant component to the Al-Te bond. This is also found from the Ga-Te and In-Te bonds in the quintuple layered (c-ST-like) lattice\(^2\). That is, cation M with more \(p\) valence electrons (larger \(p\)-\(p\) bonding component in M-Te bond) shall reduce the rigidity of M-centered octahedron and ease the local structure distortion to surrounding c-ST lattice\(^2\).

Figure 4 shows the calculated atomic structure of a-Al\(_{0.36}\)ST by using the melt-quench molecular dynamics (MD) technique. The average coordination number (CN) and the peak of bond angle distribution (BAD) of Al are 4.08 and 108\(^\circ\) in a-Al\(_{0.36}\)ST, respectively, as shown in Table 2, which agrees well with the standard tetrahedral configuration (CN = 4 and BAD peak = 109\(^\circ\)). The BAD peaks for Sb and Te are 92\(^\circ\) and 91\(^\circ\), and the CNs are 3.74 and 2.82, respectively, both demonstrating the possible configuration of defective octahedrons\(^7\). The polyhedrons in Figure 4 highlight the Al-centered tetrahedrons (mostly Al-Te\(^4\)) in a-Al\(_{0.36}\)ST. One can also find a few Al-Sb “wrong bonds” from Sb-Al-Te\(^3\) tetrahedrons. Our previous X-ray photoelectron spectroscopy analyses already confirmed the existence of Al-Sb and Al-Te bonds in a-Al\(_{x}\)ST\(^1\)\(^2\)\(^3\)\(^4\).

Figure 5 shows the NMR spectra of a- and c-Al\(_{0.36}\)ST materials. Usually, there are two coordination environments for Al atoms in chalcogenide materials\(^2\)\(^4\)\(^5\): fourfold coordination Al(4) and sixfold coordination Al(6). The NMR chemical shifts corresponding to octahedrons\(^7\). The polyhedrons in Figure 4 highlight the Al-centered octahedron and ease the local structure distortion to surrounding c-ST lattice\(^2\).

Figure 5 shows the NMR spectra of a- and c-Al\(_{0.36}\)ST materials. Usually, there are two coordination environments for Al atoms in chalcogenide materials\(^2\)\(^4\)\(^5\): fourfold coordination Al(4) and sixfold coordination Al(6). The NMR chemical shifts corresponding to octahedrons\(^7\). The polyhedrons in Figure 4 highlight the Al-centered octahedron and ease the local structure distortion to surrounding c-ST lattice\(^2\).

Table 1: Short and long bond lengths in optimized crystalline Al\(_{0.36}\)Sb\(_2\)Te\(_3\)

Bond length (Å)	Al-Te	Sb-Te
2.83, 2.92	3.03, 3.19	

Figure 3 | Lattice structures of crystalline Sb\(_2\)Te\(_3\) and Al doped Sb\(_2\)Te\(_3\). The crystalline structure of Sb\(_2\)Te\(_3\) and Al doped Sb\(_2\)Te\(_3\) are optimized and reveal differences in lattice constants (\(a\) and \(c\)) and the changed \(d\) spacing between (0 1 5) planes. Adjacent weakened Te-Sb bonds are also shown in dashed lines.

Figure 4 | The Al-centered tetrahedrons in amorphous Al\(_{0.36}\)Sb\(_2\)Te\(_3\). The amorphous structure of Al\(_{0.36}\)Sb\(_2\)Te\(_3\) depicts that a majority of the Al are bonded with Te and fourfold coordinated in the tetrahedral-like geometry, which are highlighted as red polyhedrons.

Table 2: The average coordination number and most possible bond angle for each element in amorphous Al\(_{0.36}\)Sb\(_2\)Te\(_3\)

Element	Al	Sb	Te
Average coordination number	4.08	3.74	2.82
Peak position of the bond angle distribution (\(\text{°}\))	108	92	91
the wise way is to use IIIA M-Sb-Te PCM as a substitute for conventional NOR/NAND Flash memory which prefers good data retention, low power consumption, and fast response speed over cyclability.

In Summary, through experimental and theoretical studies, the Al-centered tetrahedron-octahedron rearrangements in phase transition of Al-Sb-Te system are described. We believe the reconfiguration of Al-centered motifs and its impact on surrounding Sb-centered motifs may simultaneously play the dominant roles to thermally stabilize the amorphous phase, reduce the amorphization energy, and affect the PCM device cyclability. We expect the performances of IIIA M-Sb-Te based PCM device to be further improved upon a thorough investigation of the physical nature of this material system.

Methods
Sample preparation and experimental details. The ST and Al ST films in this work were prepared by physical vapor deposition method via co-sputtering pure Al and ST alloy targets at room temperature. The as-deposited Al x ST and Al x ST films are amorphous. The XRD tests were carried out on 500-nm-thick films deposited on the SiO2/Si substrates using PANalytical X’Pert PRO diffractometer with a Cu Kα (λ = 0.15418 nm) radiation source. A mass of ~20 mg Al x ST powder scratched from glass substrate was used for magic-angle-spinning (MAS) NMR measurements recorded with respect to Al(NO3)3 aqueous solution as an external reference. All c-3.2 mm HXY probehead (in double resonance mode). A MAS zirconia rotor with a cutoff was chosen to be 320 eV for all models and a 2-fs time step was used for the MD. The a-picture of Al x ST was obtained by melt-quench process. An initially c-centered structure containing 180 atoms was first melted at 2300 K, and then gradually quenched down to 1100 K (about 200 K above the melting temperature of ST) at a quenching rate of ~50 K ps−1. The liquid structure was further equilibrated for 9 ps at 1100 K. To generate the a-structure, the liquid structure was subsequently quenched to 300 K at a rate of ~50 K ps−1. Finally, the system was retained at 300 K for 9 ps.

Ab-initio theoretical simulation. The theoretical investigations were performed by employing the ab initio calculations based on the density functional theory (DFT)4. The Vienna Ab-initio Simulations Package (VASP)5 was used for the first-principles calculations. The projector augmented wave (PAW) pseudopotentials were used to describe electron-ion interactions. For the exchange-correlation energies between electrons, the Perdew-Burke-Ernzerhof (PBE) function was employed. The energy cutoff was chosen to be 320 eV for all models and a 2-fs time step was used for the MD. The a-picture of Al x ST was obtained by melt-quench process. An initially c-centered structure containing 180 atoms was first melted at 2300 K, and then gradually quenched down to 1100 K (about 200 K above the melting temperature of ST) at a quenching rate of ~50 K ps−1. The liquid structure was further equilibrated for 9 ps at 1100 K. To generate the a-structure, the liquid structure was subsequently quenched to 300 K at a rate of ~50 K ps−1. Finally, the system was retained at 300 K for 9 ps.

1. Atwood, G. Phase-change materials for electronic memories. Science 321, 210–211 (2008).
2. Wuttig, M. Phase-change materials: towards a universal memory? Nat. Mater. 4, 265–266 (2005).
3. Silva, J. L. F. D., Walsh, A. & Lee, H. Insights into the structure of the stable and metastable (GeTe)x(Sb2Te3)1-x compounds. Phys. Rev. B 78, 224111; DOI:10.1103/PhysRevB.78.224111 (2008).
4. Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008).
5. Yu, J. L. et al. Effects of Ge doping on the properties of Sb2Te3 phase-change thin films. Appl. Surf. Sci. 253, 6125–6129 (2007).
6. Rao, F. et al. Si–Sb–Te materials for phase change memory applications. Nanotechnology 22, 145702; DOI:10.1088/0957-4484/22/14/145702 (2011).
7. Caravati, S., Bernasconi, M. & Parrinello, M. First-principles study of liquid and amorphous Sb2Te3. Phys. Rev. B 81, 014201; DOI:10.1103/PhysRevB.81.014201 (2010).
8. Tominaga, J. et al. What is the origin of activation energy in phase-change film? Jpn. J. Appl. Phys. 48, 03A053; DOI:10.1143/JJAP.48.03A053 (2009).
9. Zhu, M. et al. One order of magnitude faster phase change at reduced power in Ti–Sb–Te. Nat. Commun. 5, 4086; DOI:10.1038/ncomms5086 (2014).
10. Schmid, B., Rostek, R., Mortensen, C. & Johnson, D. Synthesis of (Sb2Te3)X(TiTe2)Y superlattices. Phys. Rev. B 78, 224111; DOI:10.1103/PhysRevB.78.224111 (2008).
11. Raoux, S., Salinga, M., Jordan-Sweet, J. L. & Kellock, A. Effect of Al and Cu doping on the crystallization properties of the phase change materials Sb2Te3 and GeSb. J. Appl. Phys. 101, 044909; DOI:10.1063/1.2654556 (2007).
12. Peng, C. et al. Performance improvement of Sb2Te3 phase change material by Al doping. Appl. Surf. Sci. 257, 10667–10670 (2011).
13. Peng, C. et al. Al0.36Sb2Te3 material for phase change memory application. Appl. Phys. Lett. 99, 043105; DOI:10.1063/1.3616146 (2011).
14. Ren, K. et al. Pseudobinary Al2Te4–Sb2Te3 material for high speed phase change memory application. Appl. Phys. Lett. 100, 052105; DOI:10.1063/1.3680580 (2012).
15. Kao, K. F., Lee, C. M., Chen, M. J., Tsai, M. J. & Chin, T. S. Ga2Te3Sb5—a candidate for fast and ultralong retention phase-change memory. *Adv. Mat.* **21**, 1695–1699 (2009).

16. Cheng, H. Y., Raoux, S. & Jordan-Sweet, J. L. The crystallization behavior of stoichiometric and off-stoichiometric Ga–Sb–Te materials for phase-change memory. *Appl. Phys. Lett.* **98**, 121911; DOI:10.1063/1.3570636 (2011).

17. Cha, Y. C. et al. Characteristics of TeGa2Sb5 thin films for phase-change memory. *IEEE Transactions on Magnetics* **47**, 637–640 (2011).

18. Jang, M. H. et al. Effect of In incorporated into SbTe on phase change characteristics resulting from changes in electronic structure. *Appl. Phys. Lett.* **96**, 052112; DOI:10.1063/1.3308479 (2010).

19. Kim, Y. T. & Kim, S. I. Comparison of thermal stabilities between Ge–Sb–Te and In–Sb–Te phase change materials. *Appl. Phys. Lett.* **103**, 121906; DOI:10.1063/1.4821855 (2013).

20. Hsu, Y. S., Her, Y. C., Cheng, S. T. & Tsai, S. Y. Thermal- and laser-induced order–disorder switching of In-doped fast-growth Sb20Te80 phase-change recording films. *IEEE Transactions on Magnetics* **43**, 936–938 (2007).

21. Zhang, S. B. & Northrup, J. E. Chemical potential dependence of defect formation energies in GaAs application to Ga self-diffusion. *Phys. Rev. Lett.* **67**, 2339–2342 (1991).

22. Kolobov, A. V., Fons, P., Tominaga, J. & Ovshinsky, R. O. Vacancy-mediated transitions of Ge70Sb30 phase-change recording memory. *Appl. Phys. Lett.* **103**, 025501; DOI:10.1103/PhysRevLett.106.025501 (2011).

23. Shchennikov, V. V., Savchenko, K. V. & Popova, S. V. Electrical properties of the high-pressure phases of gallium and indium tellurides. *Phys. Solid State** **42**, 1036–1040 (2000).

24. Murugavel, S. & Asokan, S. Local structure and electrical switching in chalcogenide glasses. *Phys. Rev. B* **58**, 3022–3025 (1998).

25. Murugavel, S. & Asokan, S. Al coordination in bulk Al13Te8 glasses from solid-state NMR. *Phys. Rev. B* **57**, 33–36 (1998).

26. Caravati, S., Bernasconi, M., Kühne, T. D., Krack, M. & Parrinello, M. Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials. *Appl. Phys. Lett.* **91**, 171906; DOI:10.1063/1.2816676 (2007).

27. Liu, X. Q. et al. New structural picture of the Ge2Sb2Te5 phase-change alloy. *Phys. Rev. Lett.* **106**, 025501; DOI:10.1103/PhysRevLett.106.025501 (2011).

28. Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. *Nat. Mater.* **3**, 703–708 (2004).

29. Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P. & Wuttig, M. Structural transformations of GeSb2Te2 films studied by electrical resistance measurements. *J. Appl. Phys.* **87**, 4130–4134 (2000).

30. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. *Phys. Rev.* **136**, B864–B871 (1964).

31. Kresse, G. & Hafner, J. *Ab initio* molecular dynamics for liquid metals. *Phys. Rev. B* **53**, 558–569 (1996).

32. Blochl, P. E. Projector augmented-wave method. *Phys. Rev. B* **50**, 17953–17979 (1994).

33. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865–3868 (1996).

34. Yamada, N., Ohno, E., Nishituchi, K., Akahira, N. & Takao, M. Rapid-phase transitions of GeTe-Sb 2Te3, pseudobinary amorphous thin films for an optical disk memory. *J. Appl. Phys.* **69**, 2849–2856 (1991).

Acknowledgments

This work was supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA09020402), National Key Basic Research Program of China (2013CB901900, 2011CB60607, 2011CB932804), National Integrate Circuit Research Program of China (2009ZX02023-003), National Natural Science Foundation of China (61176122, 61106001, 61261160500, 61376060, 11104109, 11374119), Science and Technology Council of Shanghai (13DZZ2295700, 13ZR144700). The supercomputer time was provided by HPCC at JLU.

Author contributions

M.X. and X.L. performed the AIMD calculations. K.D. and F.R. prepared the film samples and carried out the XRD, NMR and so on. F.R. and X.L. carried out theoretical analysis and together wrote this paper with help from all co-authors. The project was initiated and conceptualized by F.R., L.W. and Z.S.

Additional information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Xia, M. et al. Aluminum-Centered Tetrahedron-Octahedron Transition in Advancing Al-Sb-Te Phase Change Properties. *Sci. Rep.* 5, 8548; DOI:10.1038/srep08548 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/