Stabilization and time resolved measurement of the frequency evolution of a modulated diode laser for chirped pulse generation

K Varga-Umbrich, J S Bakos, G P Djotyan, P N Ignácz, B Ráczkevi, Zs Sörlei, J Szegedi and M Á Kedves

Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós ut 29-33, H-1121 Budapest, Hungary

E-mail: varga.u.karoly@wigner.mta.hu

Received 27 February 2016
Accepted for publication 24 March 2016
Published 13 April 2016

Abstract
We have developed experimental methods for the generation of chirped laser pulses of controlled frequency evolution in the nanosecond pulse length range for coherent atomic interaction studies. The pulses are sliced from the radiation of a cw external cavity diode laser while its drive current, and consequently its frequency, are sinusoidally modulated. By the proper choice of the modulation parameters, as well as of the timing of pulse slicing, we can produce a wide variety of frequency sweep ranges during the pulse. In order to obtain the required frequency chirp, we need to stabilize the center frequency of the modulated laser and to measure the resulting frequency evolution with appropriate temporal resolution. These tasks have been solved by creating a beat signal with a reference laser locked to an atomic transition frequency. The beat signal is then analyzed, as well as its spectral sideband peaks are fed back to the electronics of the frequency stabilization of the modulated laser. This method is simple and it has the possibility for high speed frequency sweep with narrow linewidth that is appropriate, for example, for selective manipulation of atomic states in a magneto-optical trap.

Keywords: chirped pulse, external cavity diode laser, frequency sidebands locking, laser stabilization, modulated frequency

Introduction
The tunability of external cavity diode lasers to hyperfine atomic resonance transitions makes them useful tools for cooling, trapping and manipulating the atoms [1–5]. These lasers have narrow linewidth of about 1 MHz and can be stabilized to an atomic transition. Some experiments for coherently manipulating the atomic states (for example population transfer, mechanical momentum transfer) often require frequency chirped light pulses [6, 7]. The experiments have also shown that the efficiency of the adiabatic population transfer processes in multilevel atoms strongly depends on the actual range and rate of the frequency sweep during the pulse [7]. Efficient coherent processes can only be induced by laser pulses of carefully adjusted frequency evolution, therefore the range and rate of the frequency chirp have to be properly stabilized and monitored during the experiment.

In the case of femtosecond laser pulses it is well known that frequency chirping can be achieved simply by inserting dispersive elements into the optical path [8], however, in the range of nanosecond pulse lengths, these methods are not feasible and active modulation of the frequency is needed. A straightforward way to produce frequency chirp and light pulse modulation is to couple an electro optic-phase modulator and an electro-optic amplitude modulator in series with the laser. The amplitude modulator should be chirp-free (patterned...
on a so-called X-cut substrate), not to introduce additive frequency modulation [9, 10]. Since large phase modulation is needed for practical purposes, it is realized by multiple passes through the modulator within an optical loop [9]. Frequency modulation spectroscopy has been realized by using an external phase modulator and it was used for measuring weak absorptions and dispersions [11]. An alternative method for frequency chirping includes an electro-optic crystal inside the external cavity resonator [12, 13].

It is possible to create chirped light pulses by applying only one electro-optic amplitude modulator with Z-cut crystals which have the property of producing frequency sweep synchronously, proportional to the amplitude modulation [14]. However, in this case the frequency excursion is bond with the amplitude variation, so they cannot be varied independently. Similar parasitic phase modulation occurs in the phase shifting interferometry, where the nonlinear response of a piezoelectric transducer (PZT) leads to chirped signal detection [15].

In the cases mentioned above, i.e. when the laser diode is operated at a constant current, the laser frequency can be stabilized by one of the typical spectroscopic methods [1, 16–18], where some part of the laser light passes through an absorption cell. The narrow absorption signal is used for side-locking or peak-locking by an electronic controller of the laser frequency. Pound–Drever–Hall technique is an improved method for frequency stabilization [19], where the frequency is measured with a Fabry–Pérot cavity by detecting the derivative of the sharp reflection lines and this result is fed back to the laser PZT to maintain the frequency. This method has a large bandwidth and makes it possible to narrow the laser’s linewidth below 1 Hz [20]. A robust frequency stabilization technique uses the Zeeman-shift in atomic Doppler broadened absorption signals which offers large recapture range and rarely loses lock even in an extremely noisy environment [21].

One of the most popular methods to modulate the laser frequency is to use acusto-optical modulators (AOM). In this case we need to stabilize a constant frequency laser in a known way. The AOMs can produce \~10 MHz \(\mu s^{-1}\) chirp rate which is appropriate for producing cold atoms in superposition states [22, 23]. In our investigations we need higher frequency chirp, that is why we modulate the laser frequency with the diode laser’s current.

To produce frequency modulated laser pulses on the nanosecond time scale one has to modulate the frequency of the laser diode in combination with an external device, e.g. an amplitude modulator, for pulse shaping. The injection current modulation is fast enough to achieve tens of MHz repetition rate of the laser frequency modulation, but the optical frequency change is limited by modes hops. To reach the required frequency range one has to vary the external resonator length with a PZT [24]. Moreover the optical feedback from the grating narrows the linewidth to below 1 MHz and the PZT of the grating is controlled by an electronic system for frequency tuning and locking. However, the PZT is not an appropriate device for operating on the nanosecond time scale because of mechanical reasons, that is why the current modulation seems to be the only approach to creating the desired frequency modulated signal in the nanosecond range of duration.

Current modulation causes both intensity and frequency modulation. Intensity modulation can be alleviated by injection locking of a separate laser with the modulated light [25, 26], where the slave laser reproduces the frequency modulation only.

The stabilization of the frequency evolution of a modulated laser requires more complicated solutions. The carrier frequency has to be locked to an appropriate reference frequency in this case. There are several papers on the mean frequency stabilization of current modulated semiconductor lasers using the modulation sidebands of a Fabry–Pérot interferometer as frequency references for the feedback loop [27–29]. In those setups, however, the speed of the frequency modulation is limited by the ringing of the Fabry–Pérot interferometer for light pulses shorter than the transition time of the interferometer [24]. This ringing is caused by the oscillations of the field inside the interferometer, and results in non-monotonic frequency change of the transmitted light pulse [30].

In the present paper we describe an experimental system for generating frequency chirped laser pulses of controlled frequency evolution, for coherent population transfer experiments in rubidium atoms. For this purpose, pulse lengths of 3–10 ns and chirp rates between 10 and 100 MHz ns\(^{-1}\) values are needed under our experimental conditions [7]. Frequency modulation is achieved by sinusoidal modulation of the diode laser current, and the pulses are sliced by an X-cut substrate amplitude modulator for chirp-free operation. For stabilization the spectral lines of the beat signal between the modulated and a stabilized constant frequency laser are used, in order to overcome the limitation of ringing effects in a Fabry–Pérot interferometer.

Frequency lock of a modulated laser

In our measurements two single mode diode lasers are used for the realization of the stabilized chirped-pulse system. The experimental arrangement is illustrated in figure 1.

The reference light source (ECDL1) is an EOSI 2001 (linewidth: 100 kHz) external cavity diode laser with a Littmann–Metcalf resonator stabilized by saturation absorption spectroscopy to the \(F = 3 \rightarrow F'\) hyperfine transitions of the D2 line of \(^{85}\)Rb at 780 nm wavelength [4]. The sub-Doppler absorption signal is provided by a rubidium vapour cell and it is held on the top-of-fringe by a lock-in amplifier.

The frequency modulated laser (ECDL2) is a Toptica DL 100 external cavity diode laser with a Littrow resonator, and the feeding current is modulated with a function generator (FG) through a Bias-T coupler. The laser was typically operated at a DC current of about 60–70 mA, and the AC modulation amplitude was up to about 10 mA, i.e. a modulation index of about 0.1–0.15 was applied. The resulting frequency excursion was up to about 200 MHz; compared with the modulation frequency of 20 MHz of the feeding current it corresponds to a modulation index of about 10. In addition to the resulting frequency modulation, the intensity of the laser radiation also became modulated by about 10–30%. The lasers are mounted on metal heat sinks with Peltier-element cooling. It was necessary to operate the lasers at a temperature between 18 °C
beamsplitters.
digital oscilloscope; PD1, PD2: fast photodiodes; BS1-BS6: slicing the pulses from the cw radiation of ECDL2; OSC: fast
the center frequency of ECDL2; AM: amplitude modulator for
CE: control electronics (including a PID regulator) for stabilizing
laser frequency; FG: function generator; SPA: spectrum analyzer;
(FREQ.Stable); ECDL2: modulated laser locked to the reference
measurement of the frequency of a modulated external cavity diode
lasers. We used the spectrum analyzer to filter out a selected
frequency peak and put out the signal for the stabilizing elec-
tronics of the laser. Since the measurements were performed
near the rubidium atomic resonance where the reference
laser’s frequency is locked, there is always a peak in the beat
spectrum which falls into the spectrum analyzer bandwidth,
so we can choose it for stabilization.

By switching off the frequency sweep of the spectrum ana-
lyzer it is used as a bandpass filter which gives a positive or
negative voltage on its ‘Y’ output according to the input beatsignal frequency being below or above the adjusted bandpass
filter middle point. The wavelength tuning can be achieved by
moving the bandpass window through the spectrum and lock-
ing different sidebands. The narrow and noisy peaks in the
Fourier spectrum are smoothed by the built-in electronic filter
in order to make them appropriate for stabilization.

While top-of-fringe locking would be possible to lock the
signal level with a lock-in amplifier, we applied side-of-fringe
locking for stabilization, because the laser has a PID-module
(proportional, integral, differential-filter). This electronic
module produces a feedback current proportional to the dif-
ference of the ‘Y’ output of the spectrum analyzer and a refer-
ence level set previously. The feedback loop is able to correct
the frequency drift and low frequency noise due to thermal
and mechanical instabilities. The output signal of this stabi-
lization electronics is then coupled to the frequency control
inputs of the diode laser, i.e. the piezo voltage which deter-
mines the angle of the grating of the resonator, as well as the
feed current of the laser diode.

In principle, any peak could be selected, so this method
can also be used for stabilization as far as some hundreds of
MHz from an atomic resonance if it is necessary. Moreover,
the selected peak can be shifted by electronic mixing inside
the spectrum analyzer that means fine wavelength tunability
within the 100 MHz range. This versatility is useful for exam-
ple in capturing atoms in optical traps, where the frequency
and 19 °C to obtain single mode operation while the room
temperature in the laboratory was set to be 21 °C during the
experiments.

Beams from the lasers were joined at a beamsplitter (BS3)
and the beat wavefront with an optical power of 0.1–1 mW was
split in two (by BS4) and observed by two fast photo detec-
tors (PD1: Menlo Systems APD110: 1–800 MHz, and PD2:
New Focus 1591: 4.5 GHz bandwidth). One of the signals was
then registered by a Tektronix DPO7104 digital oscilloscope
(1.0 GHz bandwidth; OSC), and the other one was analyzed by a
Takeda Riken 110 spectrum analyzer (120 MHz bandwidth;
TS). The Fourier spectrum of the interference signal (figure 2)
is produced in this spectrum analyzer and the narrow spectral
lines can be used for frequency stabilization. The error signal
is generated from the intensity of the beat note and it is
not sensitive to the phase difference between the laser fields.
This sensitivity in not required for our application, because in
the experiments concerning population transfer between the
quantum states of alkali metals the relative phase of the driving
laser pulses is not an important factor. Therefore, we could
develop a simple frequency stabilization scheme without the
need of phase locking techniques.

The main output beam of the modulated laser was then
passed through an integrated Lithium-Niobate amplitude mod-
ulator (AM: Photline NIR-MX800) which sliced the appro-
riately shaped pulses from the continuous wave radiation.
This beam, after amplification, was sent to the experiment for
inducing the coherent adiabatic transitions in rubidium atoms.
The length, shape and timing parameters of the pulses sliced by
the amplitude modulator were regularly measured by option-
ally coupling some part of the beam (by the beamsplitters
BS5 and BS6) into the PD2 photodetector. The interference
of the modulated beam with the reference one was measured
before the pulse slicer using the continuous radiation, because
it would have been difficult to detect the beat frequency dur-
ing the short, few-nanosecond pulses. Therefore, this time we
did not measure the effect of the amplitude modulator on the
phase structure of the pulses. However, just in order to mini-
mize such effects, we chose an ‘X-cut’ (chirp-free) amplitude
modulator which has a nominal chirp parameter less than 0.1.
In separate measurements we have checked that the frequency
modulating effect of this modulator was negligible indeed. It
is also worth noting that, in the case of the population trans-
fer experiments in the magneto-optical trap, residual leakage
of the radiation through the amplitude modulator between the
pulses can cause undesired effects to the atomic populations.
Therefore, whenever such problems were encountered, we
installed two intensity modulators connected in series providing
a contrast ratio of about 2000 which proved to be high
enough for these studies.

To avoid the overlap between the interference spectrum
lines it is necessary to apply a beat frequency larger than the
width of the lines, that is, in the MHz range for external cavity
lasers. We used the spectrum analyzer to filter out a selected
frequency peak and put out the signal for the stabilizing elec-
tronics of the laser. This sensitivity in not required for our application, because in
the experiments concerning population transfer between the
quantum states of alkali metals the relative phase of the driving
laser pulses is not an important factor. Therefore, we could
develop a simple frequency stabilization scheme without the
need of phase locking techniques.

The main output beam of the modulated laser was then
passed through an integrated Lithium-Niobate amplitude mod-
ulator (AM: Photline NIR-MX800) which sliced the appro-
riately shaped pulses from the continuous wave radiation.
This beam, after amplification, was sent to the experiment for
inducing the coherent adiabatic transitions in rubidium atoms.
The length, shape and timing parameters of the pulses sliced by
the amplitude modulator were regularly measured by option-
ally coupling some part of the beam (by the beamsplitters
BS5 and BS6) into the PD2 photodetector. The interference
of the modulated beam with the reference one was measured
before the pulse slicer using the continuous radiation, because
it would have been difficult to detect the beat frequency dur-
ing the short, few-nanosecond pulses. Therefore, this time we
did not measure the effect of the amplitude modulator on the
phase structure of the pulses. However, just in order to mini-
mize such effects, we chose an ‘X-cut’ (chirp-free) amplitude
modulator which has a nominal chirp parameter less than 0.1.
In separate measurements we have checked that the frequency
modulating effect of this modulator was negligible indeed. It
is also worth noting that, in the case of the population trans-
fer experiments in the magneto-optical trap, residual leakage
of the radiation through the amplitude modulator between the
pulses can cause undesired effects to the atomic populations.
Therefore, whenever such problems were encountered, we
installed two intensity modulators connected in series providing
a contrast ratio of about 2000 which proved to be high
enough for these studies.

To avoid the overlap between the interference spectrum
lines it is necessary to apply a beat frequency larger than the
width of the lines, that is, in the MHz range for external cavity
lasers. We used the spectrum analyzer to filter out a selected
frequency peak and put out the signal for the stabilizing elec-
tronics of the laser. Since the measurements were performed
near the rubidium atomic resonance where the reference
laser’s frequency is locked, there is always a peak in the beat
spectrum which falls into the spectrum analyzer bandwidth,
so we can choose it for stabilization.

By switching off the frequency sweep of the spectrum ana-
lyzer it is used as a bandpass filter which gives a positive or
negative voltage on its ‘Y’ output according to the input beat
signal frequency being below or above the adjusted bandpass
filter middle point. The wavelength tuning can be achieved by
moving the bandpass window through the spectrum and lock-
ing different sidebands. The narrow and noisy peaks in the
Fourier spectrum are smoothed by the built-in electronic filter
in order to make them appropriate for stabilization.

While top-of-fringe locking would be possible to lock the
signal level with a lock-in amplifier, we applied side-of-fringe
locking for stabilization, because the laser has a PID-module
(proportional, integral, differential-filter). This electronic
module produces a feedback current proportional to the dif-
ference of the ‘Y’ output of the spectrum analyzer and a refer-
ence level set previously. The feedback loop is able to correct
the frequency drift and low frequency noise due to thermal
and mechanical instabilities. The output signal of this stabi-
lization electronics is then coupled to the frequency control
inputs of the diode laser, i.e. the piezo voltage which deter-
mines the angle of the grating of the resonator, as well as the
feed current of the laser diode.

In principle, any peak could be selected, so this method
can also be used for stabilization as far as some hundreds of
MHz from an atomic resonance if it is necessary. Moreover,
the selected peak can be shifted by electronic mixing inside
the spectrum analyzer that means fine wavelength tunability
within the 100 MHz range. This versatility is useful for exam-
ple in capturing atoms in optical traps, where the frequency

Figure 1. Schematic experimental setup for the stabilization and
measurement of the frequency of a modulated external cavity diode
laser. ECDL1: reference laser stabilized by saturation spectroscopy
(FREQ.Stable); ECDL2: modulated laser locked to the reference
laser frequency; FG: function generator; SPA: spectrum analyzer;
CE: control electronics (including a PID regulator) for stabilizing
the center frequency of ECDL2; AM: amplitude modulator for
slicing the pulses from the cw radiation of ECDL2; OSC: fast
digital oscilloscope; PD1, PD2: fast photodiodes; BS1-BS6:
beamsplitters.
blueshift of the counterpropagating radiation in the frame of the escaping atoms can be easily compensated by setting the laser frequency below the atomic resonance frequency.

The operation of the stabilization scheme was first inspected without modulating the locked laser. Long beat signals consisting of 50 million points were recorded and the Fourier spectra of the signals were calculated for sections of different lengths. The bandwidth of the signals of different lengths was determined by fitting a Lorentzian function to the spectra (it should be noted that for long sections of the unstabilized signals the spectra deviated from a Lorentzian shape due to random drifts; the increase of the calculated bandwidths, however, indicate the significant changes in the difference frequency.). The dependence of the obtained bandwidth values on the length of the signal sections demonstrates the timescale of the stabilization procedure. The results with and without locking can be seen in figure 3(a) (The frequency of the reference laser was not stabilized in this case.). The same effect is demonstrated in a more common representation of the Allan deviation as a function of the averaging time of the frequency measurement (sigma–tau plot) in figure 3(b).

The comparison reveals that the locking is efficient since the variation of the frequency of the stabilized laser does not increase significantly with time after about 0.2–0.3 ms, in contrast to the unlocked case. After this time the laser frequencies start to show a random-walk-like deviation from the original value in the unstabilized case. This result also shows the timescale of the feedback which is about 0.2–0.3 ms where the two curves diverge and approximately corresponds to the frequency limit of the piezo actuator of the grating of the laser resonator.

Measurement of the modulated frequency evolution

In order to check the efficiency of the stabilization method, as well as to determine the frequency evolution of the laser radiation during the nanosecond pulses, we performed time resolved measurement of the modulated laser’s frequency. Since the feed current of the laser was modulated sinusoidally with a frequency \(f_{\text{mod}} \), we expected a sinusoidal variation of the laser frequency too (provided that the modulation amplitude was small enough to avoid mode-hops): \(\nu_{\text{mod}} = \nu_{0} - \nu_{\text{mod}} \cdot \sin(2\pi \cdot f_{\text{mod}} \cdot t + \varphi_{\text{m}}) \). The parameters of the function describing the frequency variation were determined by least squares fitting of the appropriate mathematical function to the interference signal recorded by the digital oscilloscope OSC [31].

Since the constant and the chirped frequency laser fields are linearly polarized plane waves, we get the following expression for the detected interference intensity:

\[
I = I_{r} + I_{m} + 2 \sqrt{I_{r} I_{m}} \cdot \delta \cdot \cos\left(\frac{\nu_{\text{mod}}}{f_{\text{mod}}} \cos(2\pi \cdot f_{\text{mod}} \cdot t + \varphi_{\text{m}}) \right) + 2 \pi \cdot \Delta \nu \cdot t + \Delta \varphi \tag{1}
\]

where the first term \(I_{r} \) is the intensity of the reference laser beam alone, \(I_{m} = I_{0} + I_{\text{mod}} \cdot \cos(2\pi \cdot f_{\text{mod}} \cdot t + \varphi_{t}) \) is the time dependent intensity of the modulated laser beam, and the \(\delta \) modulation index is the interference ‘efficiency’ that takes into account the imperfect overlap of the two beams. \(\Delta \nu = \nu_{0} - \nu_{t} \) represents the difference between the carrier frequency (in other words, the constant component or mid-value of the frequency) of the modulated laser and the reference laser’s frequency. This is the physical quantity we would like to stabilize in our experiments.

In order to fully characterize the frequency evolution of the modulated laser radiation, we also have to determine the amplitude: \(\nu_{\text{mod}} \), and phase: \(\varphi_{\text{m}} \) of the frequency modulation. To complete the fitting procedure, all the remaining parameters also have to be determined. The intensity signals of the two lasers \((I_{r}, I_{m}) \) were measured separately too, and the interference efficiency value \((\delta) \) was calculated from the beat signal detected without modulation of the ECDL2. \(f_{\text{mod}} \) is known in advance and can also be obtained precisely from......
the oscilloscope signal of the driving current. The fitting procedure is used to calculate $\Delta \nu$, ν_{mod}, φ_{m}, and $\Delta \varphi$, the latter being the phase difference between the two optical fields. The result of the calculation together with the measured interference intensity is demonstrated in figure 4 showing an actual beat signal together with the fitted curve.

The evolution of the modulated laser’s frequency during the chirped pulse is of primary importance from the point of view of the coherent atomic excitation in the experiment. Therefore, the phase of the modulated laser’s frequency variation had to be carefully synchronized with the timing of the pulse slicing. The output pulse train from the amplitude modulator was regularly measured by coupling this beam into the fast photodetector PD2, and the phases of the signals were synchronized by the driving modulation of the function generator. The frequency chirp during the modulated laser’s pulses determined by this measurement procedure is illustrated in figure 5, where the pulse shape can be seen together with the reconstructed frequency evolution. The resulting chirp rate during the pulse was between 10^{-10}–100 MHz ns$^{-1}$ which, according to earlier studies [7], is in the range of optimum values for inducing adiabatic passage in rubidium atoms. Although the evolution of the frequency during the pulse is not strictly linear, it is appropriate for generating the adiabatic transitions, provided it is monotonous and the rate is not varying too rapidly. Moreover, by proper timing of the pulse slicing, a nearly linear range can be selected on the frequency evolution curve.

In order to validate the efficiency of the developed stabilization technique, numerous measurement series have been completed both with and without switching on the frequency lock.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{(a) Spectral bandwidth values of the beat frequency obtained for the two lasers without modulation. The frequency spread calculated for time intervals of different lengths is displayed versus the length of the period, for the stabilized (stars) and unstabilized (circles) cases. (b) Sigma–tau plot representation of the frequency stability of the lasers: the Allan deviation (σ) as a function of the integration time of the phase measurement (τ), for the same pair of beat signals as in figure (a), in the stabilized (stars) and unstabilized (circles) cases.}
\end{figure}
The interference signals were recorded every few seconds for several minutes, i.e. some hundreds of measurement points were taken. The carrier frequency values of the modulated laser were then reconstructed by the fitting procedure described above. The results of these experiments are illustrated in figure 6 where the mid-frequency values obtained in a series of 100 points with and without stabilization can be seen. The figure shows that the frequency variation is significantly less in the stabilized case compared with the case of no stabilization. As it can be seen in figure 6, the frequency is drifting for the free-running laser with a rate equal to 47 kHz s⁻¹, and the total frequency drift was 14.1 MHz in 300 s, which is not acceptable in precise applications. At the same time, the frequency of the locked laser drifted 440 kHz in 300 s, which corresponds to 1.4 kHz s⁻¹ drift rate. The standard error values of the drift rate parameters obtained with linear fits to the carrier frequencies were 3 kHz s⁻¹ and 2 kHz s⁻¹ for the unstabilized and stabilized cases, respectively. Similar results have been obtained in repeated measurement series too: the frequency drift without stabilization was several
times 10 kHz s⁻¹ (50 kHz s⁻¹ or even higher), while only a few kHz s⁻¹ in the stabilized case. The remaining drift with stabilization is not significant compared to the standard error of this parameter in these measurements, however, it can be more precisely eliminated by developing the controlling scheme of the feedback by applying a more complicated arrangement to realize top-of-fringe locking using lock-in techniques.

Conclusion

We have realized a simple, versatile and robust method of frequency locking of an external cavity diode laser to produce frequency chirped narrowband light pulses in the nanosecond time scale. In our setup the speed of the frequency chirp is not limited by the ringing of the Fabry–Pérot resonator. To overcome this limitation, the frequency modulated laser light is mixed with another frequency stabilized laser light and the lines of the beat spectrum are used for stabilization. The stabilized frequency can be shifted in the hundred MHz range by tuning the bandpass filter to ensure the appropriate frequency for atom-optic experiments. The frequency evolution of the stabilized laser is measured by evaluating the beat signal with the reference laser radiation. The long term stability of the mid-frequency of the modulated laser has been demonstrated experimentally.

Acknowledgment

The financial support from the Hungarian Academy of Sciences in the frame of the Program of Excellence and the Hungarian-French TET _12_FR-1-2013-0019 Project are gratefully acknowledged.

References

[1] Wieman C E and Hollberg L 1991 Using diode lasers for atomic physics Rev. Sci. Instrum. 62 1
[2] Pechkis J A, Carini J L, Rogers C E III, Gould P L, Kallush S and Kosloff R 2011 Coherent control of ultracold ⁸⁷Rb trap-loss collisions with nonlinearly frequency-chirped light Phys. Rev. A 83 063403
[3] Wright M J, Pechkis J A and Carini J L 2006 Probing ultracold collisional dynamics with frequency-chirped pulses Phys. Rev. A 74 063402
[4] Affolderbach C and Mileti G 2005 Tuneable, stabilised diode lasers for compact atomic frequency standards and precision wavelength references Opt. Lasers Eng. 43 291
[5] Tretjakov D B, Beterov I I, Entin V M, Yakshina E A, Ryabtsev I I, Dyubko S F, Alekseev E A, Pogrebnyak N L, Bezuglov N N and Arimoto E 2012 Effect of photoions on the line shape of the Förster resonance lines and microwave transitions in cold rubidium rydberg atoms J. Exp. Theor. Phys. 114 11–24
[6] Vitanov N V, Halfmann T, Shore B W and Bergmann K 2001 Laser-induced population transfer by adiabatic passage techniques Ann. Rev. Phys. Chem. 52 763–809
[7] Bakos J S, Djotyan G P, Ignaczi P N, Kedves M A, Serényi M, Söllei Zs, Szüzeti J and Töth Z 2007 Acceleration of cold Rb atoms by frequency modulated light pulses Eur. Phys. J. D 44 141–9
[8] Tracy E B 1969 Optical pulse compression with diffraction gratings IEEE J. Quantum Electron. 5 454–8
[9] Rogers C E III, Wright M J, Carini J L, Pechkis J A and Gould P L 2007 Generation of arbitrary frequency chirps with a fiber-based phase modulator and self-injection-locked diode laser J. Opt. Soc. Am. B 24 1249
[10] Miao X, Wertz E, Cohen M G and Metcalf H 2007 Strong optical forces from adiabatic rapid passage Phys. Rev. A 75 011402
[11] Bjorklund G C 1980 Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions Opt. Lett. 5 15–7
[12] Repasky K S, Switzer G W and Carlsten J L 2002 Design and performance of a frequency chirped external cavity diode laser Rev. Sci. Instrum. 73 3154
[13] Cole Z and Mohan R K 2004 Optical frequency chirp generation by swept sideband injection locking J. Lumin. 107 146
[14] Bakos J S, Djotyan G P, Ignaczi P N, Kedves M A, Ráczkévi B, Söllei Zs and Szüzeti J 2009 Generation of frequency-chirped laser pulses by an electro-optic amplitude modulator Opt. Lasers Eng. 47 19
[15] Langoju R, Patil A and Rastogi P 2007 A novel approach for characterizing the nonlinear phase steps of the pzt in interferometry Opt. Lasers Eng. 45 258
[16] Galzerano G and Laporta P 2006 Frequency-stabilized seed laser system for dial applications around 0.94 μm Opt. Lasers Eng. 44 677
[17] Wu S, Liu Z and Liu B 2007 Automatic laser frequency stabilization to iodine absorption line Opt. Lasers Eng. 45 530
[18] Torii Y, Tashiro H, Ohtsubo N and Aoki T 2012 Laser phase and frequency stabilization using atomic coherence Phys. Rev. A 86 033805
[19] Black E D 2001 An introduction to Pound–Drever–Hall laser frequency stabilization Am. J. Phys. 69 79
[20] Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L and Ye J 2012 A sub-40 mHz-linewidth laser based on a silicon single-crystal optical cavity Nat. Photon. 6 687
[21] Corwin K L, Lu Z T, Hand C F, Epstein R J and Wieman C E 1998 Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor Appl. Opt. 37 3295
[22] Wojciechowski A, Corsini E, Zachorowski J and Gawlik W 2010 Nonlinear Faraday rotation and superstition-state detection in cold atoms Phys. Rev. A 81 053420
[23] Sycz K, Wojciechowski A M and Gawlik W 2014 Magneto-optical effects and rf magnetic field detection in cold rubidium atoms J. Phys. Conf. Ser. 497 012006
[24] Ricci L, Weidmüller M, Esslinger T, Hemmerich A, Zimmermann C, Vlutic V, König W and Hänsch T W 1995 A compact grating-stabilized diode laser system for atomic physics Opt. Commun. 117 541
[25] Sasaki K, Yoneyama T, Nakamura T, Sato S and Takeyama A 2006 Semiconductor laser based, injection locking maintaining broad linewidth generated by a direct current modulation of a master laser Rev. Sci. Instrum. 77 096107
[26] Szymaniec K, Ghezali S, Cognet L and Clairon A 1997 Injection locking of diode lasers to frequency modulated source Opt. Commun. 144 50
[27] Nielsen C J and Jacobsen G 1983 Frequency stabilization of singlencodem semiconductor lasers at 830 nm and 1.3 μm J. Opt. Commun. 4 122
[28] Tsuchida H and Mitsubishi Y 1987 Frequency stabilisation of a modulated semiconductor laser Electron. Lett. 23 1147
[29] Lee H S, Oh C H, Yang S H and Chung N S 1990 Frequency stabilization of a directly modulated semiconductor laser Rev. Sci. Instrum. 61 2478
[30] Fee M S, Danzmann K and Chu S 1992 Optical heterodyne measurement of pulsed lasers: Toward high-precision pulsed spectroscopy Phys. Rev. A 45 4911
[31] White R T, He Y, Orr B J, Kono M and Baldwin K G H 2004 Control of frequency chirp in nanosecond-pulsed laser spectroscopy J. Opt. Soc. Am. B 21 1577