Improvement of the method of relative measurements using a lever micrometer when setting up the end measures block

G N Temasova¹, Yu G Vergazova, P V Golînitks, U Yu Antonova and A N Samordin¹

Department of Metrology, Standardization and Quality Management, Russian State Agrarian University – Moscow State Agrarian University named after K A Timiryazev, Moscow, 127550, Russia

¹E-mail: temasova@rgau-msha.ru

Abstract. The foundations of the modern approach to quality management at enterprises also include elements of metrological support, which gives a certain effect from control. Universal measuring instruments for linear quantities are widely used in single and small-scale production, as well as in the repair of machines, it is with them that engineers first get acquainted when conducting laboratory measurements. Versatile measuring instruments also include a lever micrometer that can be used for absolute and relative measurements. The article discusses the issues of improving the method of relative measurements of deviations using a lever micrometer with deviations outside the measurement range of the reader, and provided that the tolerance does not go beyond the measurement. Using the technique of relative measurements with a lever micrometer will allow you to quickly perform a large number of measurements in a short time with the required accuracy.

1. Introduction

Metrological support of production is one of the urgent tasks of improving the quality of machine-building products [1, 2]. At present, new approaches to the repair and metrological support of production are being developed [3], measurement methods are being improved [4], and the calculation of losses at the tolerance of control products [5]. In addition, the accuracy normalization standards are improved.

Improving calculations in the field of accuracy standards, tolerances and landings of critical joints with gaps [6,7], with interference [8,9], as well as the use of new high-precision technological equipment leads to tougher tolerances, and in some cases - to the need to use incomplete methods interchangeability [10-12]. Consequently, the requirements for the accuracy of measuring instruments are also increasing [13]. In the repair industry, where universal measuring instruments are mainly used, for example, to control the crankshaft journal [14], the use of a conventional micrometer is already unacceptable, it already requires the use of a lever micrometer, the error of which is less. It is also recommended to use it for flaw detection of worn parts surfaces [15]. And when using the adjustment according to the end measurements, the error from the microscrew is eliminated, which can further increase the measurement accuracy, which will reduce the losses during control [16, 17].
2. Method of relative measurements with a lever micrometer

The lever micrometer is one of the unique measuring instruments that can be used for both absolute and relative measurements. To determine the actual deviation from the nominal size, use the lever micrometer for parts whose tolerance value does not exceed the reading range of the reader.

The device can be configured to detect the actual deviation from the nominal size in two ways:

- by the block of end measures;
- by micro screw.

Let us consider the technique of adjusting a lever micrometer using gage blocks. When adjusting the micrometer with finite measures, it is not necessary to calibrate and zero the micrometer.

Select the size of the final measure block according to the following recommendations. If the maximum absolute value of the limit deviation does not exceed half of the reference range of the reference device, it is recommended that the device be adjusted to the size of the end measure block \(L_{bl} \) equal to the nominal size \(d_n \):

\[
L_{bl} = d_n. \tag{1}
\]

If the size tolerance is less than the reading range of the reader, and one of the maximum deviations exceeds half of the reading range, then the block of finite measures is selected equal to the average size:

\[
L_{bl} \approx d_a = \frac{d_{max} + d_{min}}{2}. \tag{2}
\]

The limit values of the deviations of the part from the dimensions of the end measuring unit are determined and the deviation indicators are set in accordance with them:

\[
es' = d_{max} - L_{bl}, \tag{3}
\]
\[
ei' = d_{min} - L_{bl}. \tag{4}
\]

Determine the deviation of the block of end dimensions from the nominal:

\[
e_{el} = L_{bl} - d_n. \tag{5}
\]

By rotating the micro screw, the measuring surfaces of the heels are raised to a position where the end measures can freely fit between them.

Between the measuring surfaces of the heels, a block of end measures is inserted and, by rotating the drum, the scale arrow is set to zero. Fix the micro screw with a locking ring (stopper). When the stop is pressed, the block of measuring blocks is removed, and the measured part is inserted instead.

The actual deviation of the part size is calculated as the algebraic sum of the deviation of the block size of the end measures from the nominal size \(e_{el} \) and the reading of the reader arrow when measuring \(- X\):

\[
e_x = e_{el} + X. \tag{6}
\]

The part is considered suitable if the actual deviation is within the tolerance. With this approach, the time for monitoring is significantly reduced, since you do not need to turn the micro-screw and read the readings on it. And when you use the adjustable arrows on the scale of the device, the control process will be even faster.

3. Results of relative measurements using the lever micrometer when setting up the end measures block

Let's consider the measurement method using the example of controlling the dimensions of parts with different deviations (table 1) with a lever micrometer MP-50.
Table 1. Controlled dimensions with deviations.

Symbolic size designation (mm)	Designation of dimensions with deviations (mm)	Maximum allowed size (mm)	Minimum allowable size (mm)	Size tolerance (μm)	Permissible measurement error (μm)
1 30 f 7	30−0.010 0.014	29.980	29.959	21	6
2 30 g 7	30−0.007 0.028	29.993	29.972	21	6
3 30 j 7	30+0.013 0.008	30.013	29.992	21	6
4 30 c 7	30−0.010 0.013	29.890	29.869	21	6
5 30 d 7	30−0.008 0.026	29.935	29.914	21	6
6 30 e 7	30−0.004 0.001	29.960	29.936	21	6
7 30 h 7	30−0.021	30.000	29.979	21	6
8 30 p 7	30+0.043 0.022	30.043	30.022	21	6
9 30 k 7	30+0.023 0.002	30.023	30.002	21	6
10 30 m 7	30+0.029 0.008	30.029	30.008	21	6

Adjust the lever micrometer for relative measurement. Measure the size and deviation. Record the measurement results in table 2.

Table 2. The results of the measurements.

End measure block size (mm)	Deviation of the end size block from the nominal dimensions (mm)	Readings of the arrow of the reader during measurement	The actual deviation when setting the device according to the end measures (mm)	Actual size (mm)	Measurement error (μm)	Conclusion of suitability
1	29.97	+0.004	−0.026	29.974	4.5	suitable item
2	30	−0.030	−0.030	29.970	4.5	unsuitable item
3	30	+0.002	+0.002	30.002	4.5	suitable item
4	29.88	+0.007	−0.113	29.887	4.5	suitable item
5	29.92	+0.007	−0.073	29.927	4.5	suitable item
6	29.95	−0.014	−0.064	29.936	4.5	unsuitable item
7	30	−0.013	−0.013	29.987	4.5	suitable item
8	30.03	−0.009	+0.021	30.021	4.5	unsuitable item
9	30	+0.017	+0.017	30.017	4.5	suitable item
10	30	+0.015	+0.015	30.015	4.5	suitable item

In figure 1 shows a diagram for measuring size; the circuit for taking other measurements will look similar.
Relative measurements with a lever micrometer, provided that the tolerance does not exceed the measurement limits, can be carried out fairly quickly. To do this, it is necessary to adjust the device according to the block of measuring blocks to the nominal or average size, after which it will be possible to carry out a large number of measurements and process the results. As a result, we will save time and material resources, which is especially important at the present time.

4. Conclusion
Thus, the method of adjusting the lever micrometer is determined in case of deviations outside the measurement range of the reader, and provided that the tolerance does not exceed the measurement limits.

References
[1] Leonov O A and Shkaruba N Zh 2020 Development of the management system for metrological assurance of measurements JOP Conference Series: Metrological Support of Innovative Technologies (Krasnoyarsk: Institute of Physics and IOP Publishing Limited) 1515 032010
[2] Temasova G N et al. 2020 Method for calculating savings from using a more accurate measuring instruments JOP Conference Series: Metrological Support of Innovative Technologies (Krasnoyarsk: Institute of Physics and IOP Publishing Limited) 1515 032022
[3] Leonov O A, Shkaruba N Zh and Kataev Yu V 2020 Measurement risk management method at machine-building enterprises JOP Conference Series: II International Scientific Conference on Applied Physics, Information Technologies and Engineering (Krasnoyarsk: Institute of Physics and IOP Publishing Limited) 1679 052060
[4] Leonov O A and Shkaruba N Zh 2020 Influence of measurement error for the results of defection of parts hole-type JOP Conference Series: II International Scientific Conference on Applied Physics, Information Technologies and Engineering 1679 052054
[5] Leonov O A and Shkaruba N Zh 2020 Theoretical basis of selection of measurement measures in control of linear sizes JOP Conference Series: II International Scientific Conference on Applied Physics, Information Technologies and Engineering 1679 052081
[6] Leonov O A and Shkaruba N Zh 2020 Calculation of Fit Tolerance by the Parametric Joint Failure Model Journal of Machinery Manufacture and Reliability 49(12) 1027-32
[7] Leonov O A and Shkaruba N Zh 2019 A parametric failure model for the calculation of the fit tolerance of joints with clearance Journal of Friction and Wear 40(4) 332-6
[8] Leonov O A, Shkaruba N Zh and Vergazova Yu G 2019 Determining the tolerances in fitting for

Figure 1. Dimension measurement implementation diagram $30 f^{730^\circ} 0.020$. $-$ 0.041 $-$ 0.020.
Joints with interference *Russian Engineering Research* **39**(7) 544-7

[9] Erohin M N *et al.* 2019 Calculation of fits for cylindrical connections with key for reducers in agricultural machinery *Engineering for rural development* **14** 469-74

[10] Erohin M N *et al.* 2020 Assessing the Relative Interchangeability in Joints with Preload *Russian Engineering Research* **40**(6) 469-72

[11] Leonov O A *et al.* 2020 Quality Control in the Machining of Cylinder Liners at Repair Enterprises *Russian Engineering Research* **40**(9) 726-31

[12] Golinitskiy P V *et al.* 2020 Assessment of the influence of measurement error on the quality of selective assembly *IOP Conference Series: Metrological Support of Innovative Technologies* (Krasnoyarsk: Institute of Physics and IOP Publishing Limited) **1515** 052021

[13] Leonov O A and Shkaruba N Zh 2013 Investigation of costs and losses in the control of the crankshaft journal in the conditions of repair production *Vestnik MGAU* **2** 71-4

[14] Leonov O A, Bondareva G I and Shkaruba N Zh 2013 Quality assessment of measuring processes in repair production *Vestnik MGAU* **2** 36-8

[15] Shkaruba N Zh 2007 Improvement of the technique of micrometry and defecation of crankshaft necks *Vestnik MGAU* **3** 36-8

[16] Leonov O A and Shkaruba N Zh 2012 Algorithm for selecting measuring instruments for quality control according to technical and economic criteria *Vestnik MGAU* **2** 89-91

[17] Leonov O A and Antonova U Yu 2018 Methodology for calculating the savings from using a more accurate measuring device in the manufacture and repair of machines *Vestnik MGAU* **4** 42-6