Introduction

Perfluorooctanesulfonic acid (PFOS), a perfluorinated compound, is a synthetic compound. Since PFOS has excellent qualities in terms of surface activity, water repellency, oil repellency, thermal resistance, chemical resistance, and rub resistance, it has been broadly applied broadly as a fire fighting foam, coating agent for items such as carpet, clothing, paper, and leather, commercial stain-preventing agent, metal cleaner, and aviation hydraulic fluids. As such, PFOS is of high value for both industrial and consumer uses; however, PFOS is not easily degraded and remains in the environment or the human body for a long period of time [1,2].

A cerebellar test in rats showed that PFOS caused neurotoxicity and decreased the survival rate of infant rats in pregnant rats, causing reproductive toxicity. A recent study reported 6.06 ng/mL as the mean blood concentration of PFOS in Koreans [3]. Thus, PFOS was listed as a persistent organic pollutant during the 4th Conference of the Parties in the Stockholm Convention held in Geneva, Switzerland, May 2009, and was officially announced on August 26, 2010 after public comment periods of the countries directly involved. In South Korea (hereafter Korea), the enforcement ordinance for the Persistent Organic Pollutants Control Act was revised on April 11, 2011, listing PFOS and PFOS salts as persistent organic pollutants and strictly limiting their production, export, and use.

Study on the biodegradation of perfluorooctanesulfonate (PFOS) and PFOS alternatives

Bongin Choi1, Suk-Hyun Na1, Jun-Hyo Son1, Dong-Soo Shin2, Byung-Taek Ryu3, Kyun-Suk Byeon2, Seon-Yong Chung1

1Department of Environment and Energy Engineering, Chonnam National University College of Engineering, Gwangju; 2Department of Chemistry, Changwon National University, Changwon; 3Environmental Safety Center, Korea Environmental Corporation, Incheon, Korea

Objectives In this study, we investigated the biodegradation features of 4 perfluorooctanesulfonate (PFOS) alternatives developed at Changwon National University compared to those of PFOS.

Methods Biodegradation testing was performed with microorganisms cultured in the good laboratory practice laboratory of the Korea Environment Corporation for 28 days following the Organization for Economic Cooperation and Development guidelines for the testing of chemicals (Test No. 301 C).

Results While C8F17SO3Na, PFOS sodium salt was not degraded after 28 days, the 4 alternatives were biodegraded at the rates of 20.9% for C15F9H21SO2Na2, 8.4% for C17F9H25SO2Na2, 22.6% for C23F18H28SO2Na2, and 23.6% for C25F17H32O13S3Na3.

Conclusions C25F17H32O13S3Na3, C23F18H28SO2Na2, and C15F9H21SO2Na2 were superior to PFOS in terms of biodegradation rates and surface tension, and thus they were considered highly applicable as PFOS alternatives. Environmental toxicity, human toxicity, and economic feasibility of these compounds should be investigated prior to their commercialization.

Keywords Perfluorooctanesulfonate, Alternatives, Persistent organic pollutants
Although 3M voluntarily suspended its PFOS production in 2002 and developed alternatives including perfluorobutanesulfonate with a reduced number of carbon chains, a fully replaceable material for PFOS has not been developed. The present study investigated the biodegradation features of 4 types of PFOS alternatives developed by Vijaykumar et al. [4] and compared these molecules to PFOS.

Materials and Methods

Test Substances

Test substances for biodegradation testing included 4 types of PFOS alternatives synthesized in the laboratory of professor Dong Soo Shin at Changwon National University and included C₁₇F₉H₂₈S₂O₅Na₂ (molecular weight [MW], 610.42), C₁₇F₉H₂₈S₂O₅Na₂ (MW, 638.47), C₂₅F₁₃H₂₅S₂O₅Na₂ (MW, 884.54), and C₂₅F₁₇H₃₂S₉O₁₁N₃ (MW, 1028.65) as well as C₆F₇SO₃Na (MW, 522.11), a PFOS in sodium salt.

Test Methods and Microorganisms

Biodegradation testing was performed following the Organization for Economic Cooperation and Development (OECD) guidelines for the testing of chemicals (Test No. 301 C).

Microorganisms used for the test were collected from 10 sites in Korea such as municipal sewage treatment plants, industry waste water treatment plants, rivers, lakes, and the sea, and cultured in the good laboratory practice laboratory of the Korea Environment Corporation for at least 1 month.

Test Equipment

An OxiTop Control (OxiTop Control 100, WTW, Weilheim, Germany) was used to measure the biodegradation rate according to the test method in the OECD guidelines for the testing of chemicals (Test No. 301 C).

The OxiTop Control measures biochemical oxygen demand (BOD) in real-time based on pressure changes within a tightly closed test bottle. The machine is composed of test bottles, measurement heads, a remote controller, and an agitation system.

Biodegradation Test

One type of PFOS sodium salt (C₆F₇SO₃Na) and 4 alternatives (C₁₇F₉H₂₈S₂O₅Na₂, C₁₇F₉H₂₈S₂O₅Na₂, C₂₅F₁₃H₂₅S₂O₅Na₂, C₂₅F₁₇H₃₂S₉O₁₁N₃) were subjected to biodegradation testing.

A total of 0.015 g each of the 5 test substances (C₆F₇SO₃Na, C₁₇F₉H₂₈S₂O₅Na₂, C₁₇F₉H₂₈S₂O₅Na₂, C₂₅F₁₃H₂₅S₂O₅Na₂, C₂₅F₁₇H₃₂S₉O₁₁N₃) was transferred into bottles #1 to #5, and then 150 mL of deionized water (DW) was added to each bottle.

For bottles #6 to #20, each of the 5 test substances (C₁₇F₉H-

Biodegradation Testing was performed following the Organiza
tion for Economic Cooperation and Development (OECD) guidelines for the testing of chemicals (Test No. 301 C).

Microorganisms used for the test were collected from 10 sites in Korea such as municipal sewage treatment plants, industry waste water treatment plants, rivers, lakes, and the sea, and cultured in the good laboratory practice laboratory of the Korea Environment Corporation for at least 1 month.

Test Equipment

An OxiTop Control (OxiTop Control 100, WTW, Weilheim, Germany) was used to measure the biodegradation rate according to the test method in the OECD guidelines for the testing of chemicals (Test No. 301 C).

The OxiTop Control measures biochemical oxygen demand (BOD) in real-time based on pressure changes within a tightly closed test bottle. The machine is composed of test bottles, measurement heads, a remote controller, and an agitation system.

Biodegradation Test

One type of PFOS sodium salt (C₆F₇SO₃Na) and 4 alternatives (C₁₇F₉H₂₈S₂O₅Na₂, C₁₇F₉H₂₈S₂O₅Na₂, C₂₅F₁₃H₂₅S₂O₅Na₂, C₂₅F₁₇H₃₂S₉O₁₁N₃) were subjected to biodegradation testing.

A total of 0.015 g each of the 5 test substances (C₆F₇SO₃Na, C₁₇F₉H₂₈S₂O₅Na₂, C₁₇F₉H₂₈S₂O₅Na₂, C₂₅F₁₃H₂₅S₂O₅Na₂, C₂₅F₁₇H₃₂S₉O₁₁N₃) was transferred into bottles #1 to #5, and then 150 mL of deionized water (DW) was added to each bottle.

For bottles #6 to #20, each of the 5 test substances (C₁₇F₉H-

Results

The degradation rate of aniline, the control substance, was 73.7% on the 7th day and 83.6% on the 14th day, confirming the normal states of the microorganisms used in the study (if the degradation rate is 40% or more on the 7th day and 65% or more on the 14th day, the microorganisms were considered to be normal based on the criteria of the OECD guidelines for the testing of chemicals, Test No. 301 C). For C_{18}F_{37}SO_{3}Na, the sodium salt PFOS, the mean BODs were 6.53, 17.60, and 30.57 mg/L on the 7th, 14th, and 28th days, respectively. The BODs of the group without test substance (blank) were 13.20, 24.10, and 35.80 mg/L on the 7th, 14th, and 28th days, respectively. When C_{15}F_{33}H_{11}S_{2}O_{3}Na_{2} was tested, the BODs were 20.60, 42.70, and 54.97 mg/L on the 7th, 14th, and 28th days, respectively. The mean BODs of C_{17}F_{35}H_{13}S_{2}O_{3}Na_{2} were 19.90, 31.10, and 44.53 mg/L on the 7th, 14th, and 28th days, respectively. When C_{25}F_{41}H_{17}S_{2}O_{3}Na_{3} was added, the mean BODs were 18.83, 35.20, and 49.80 mg/L on the 7th, 14th, and 28th days, respectively. C_{25}F_{41}H_{17}S_{2}O_{3}Na_{3} addition resulted in mean BOD values of 26.53, 43.10, and 56.30 mg/L on the 7th, 14th, and 28th days, respectively (Table 1).

When the degradation rates were calculated using the biodegradation calculating formula, C_{18}F_{37}SO_{3}Na, PFOS sodium salt showed a negative value, indicating that no degradation occurred over the 28 days. The biodegradation rate of C_{15}F_{33}H_{11}S_{2}O_{3}Na_{2} was 8.1%, 20.2%, and 20.9% on the 7th, 14th, and 28th days, respectively. The biodegradation rate of C_{17}F_{35}H_{13}S_{2}O_{3}Na_{2} was 6.6%, 6.8%, and 8.4% on the 7th, 14th, and 28th days, respectively. In addition, the biodegradation rate of C_{25}F_{41}H_{17}S_{2}O_{3}Na_{3} was 14.7%, 21.0%, and 22.6% on the 7th, 14th, and 28th days, respectively. Finally, the biodegradation rate of C_{25}F_{41}H_{17}S_{2}O_{3}Na_{3} was 15.5%, 22.2%, and 23.6% on the 7th, 14th, and 28th days, respectively (Table 2).

Microorganisms capable of degrading the 4 PFOS alternatives were isolated and identified based on their DNA sequences. The DNA sequences of C_{18}F_{37}H_{11}S_{2}O_{3}Na_{2}-degrading microorganisms showed 99% and 96% homology with those of Pandorea oxalitivorans andRalstonia solanacearum,respectively. For C_{15}F_{33}H_{11}S_{2}O_{3}Na_{2}, the DNA sequences showed 99% homology with the sequences of Flectobacillus roseus andSphingomonas echinoides. Microorganisms degrading C_{17}F_{35}H_{13}S_{2}O_{3}Na_{2} showed 100% of homology with both Dyadobacter fermentans andPseudomonas umsorgensis. Those of C_{25}F_{41}H_{17}S_{2}O_{3}Na_{3} showed 99% homology withBacillus cereus andAchromobacter denitrificans (Figure 1).

Table 1. BOD and ThOD of PFOS alternatives and PFOS sodium salt

Chemicals	BOD (mg/L)	ThOD (mg/L)	
	7 d	14 d	28 d
Test substances+DW	0.0	0.0	0.0
C_{18}F_{37}SO_{3}Na, PFOS	6.53±0.06	17.60±0.10	30.57±0.25
C_{15}F_{33}H_{11}S_{2}O_{3}Na_{2}	20.60±0.30	42.70±0.20	54.97±0.35
C_{17}F_{35}H_{13}S_{2}O_{3}Na_{2}	19.90±0.90	31.10±1.10	44.53±0.15
C_{25}F_{41}H_{17}S_{2}O_{3}Na_{3}	18.83±0.35	35.20±0.30	49.80±0.20
C_{25}F_{41}H_{17}S_{2}O_{3}Na_{3}	25.53±0.55	43.10±0.40	56.30±1.00
Blank	13.2	24.1	35.8

Values are presented as mean±standard deviation.

Table 2. Biodegradation of perfluoroctanesulfonate (PFOS) alternatives and PFOS sodium salt

Chemicals	Biodegradation (%)		
C_{18}F_{37}SO_{3}Na, PFOS	0.0	0.0	0.0
C_{15}F_{33}H_{11}S_{2}O_{3}Na_{2}	8.1	20.2	20.9
C_{17}F_{35}H_{13}S_{2}O_{3}Na_{2}	6.6	6.8	8.4
C_{25}F_{41}H_{17}S_{2}O_{3}Na_{3}	14.7	21.0	22.6
C_{25}F_{41}H_{17}S_{2}O_{3}Na_{3}	15.5	22.2	23.6

Figure 1. Separated bacteria strains from perfluoroctanesulfonic acid (PFOS) alternatives.
Discussion

C₈F₁₇SO₃Na, the PFOS sodium salt, was not degraded by microorganisms over the 28-day experimental period. The biodegradation rates of C₂₃F₁₇H₃₂O₁₃S₃Na₃ and C₁₅F₉H₂₁O₈S₂Na₂, which have 3 times as many carbons but similar numbers of fluorines (17 and 18), were 22.6% and 23.6%, respectively, showing the highest degradation rates. The next highest biodegradation rate was 20.9% of C₁₅F₉H₂₁O₈S₂Na₂, which contained 15 carbon atoms and only 9 fluorine atoms. PFOS has superior features in surface activity, water repellency, and oil repellency because of its low surface tension. When surface tension was measured at the same concentration (500 mg/L) using a tensiometer (KSV Sigma 702, Biolin Scientific, Stockholm, Sweden), the surface tension of the 4 PFOS alternatives was 20.94 to 28.17 mN/m, whereas that of the PFOS sodium salt C₈F₁₇SO₃Na was 46.18 mN/m. Taken together, the 3 substances (C₂₃F₁₇H₃₂O₁₃S₃Na₃, C₁₅F₉H₂₁O₈S₂Na₂, C₁₅F₉H₂₁O₈S₂Na₂), which showed biodegradation rates of higher than 20%, were determined to be highly applicable as PFOS alternatives. However, they should be investigated further to determine their environmental toxicity, human toxicity, and economic feasibility before commercialization as PFOS alternatives.

Acknowledgements

This study was funded by the Korea Environmental Industry and Technology Institute, the Ministry of Environment (KME, 412-111-008).

Conflict of Interest

The authors have no conflicts of interest associated with material presented in this paper.

ORCID

Bongin Choi
http://orcid.org/0000-0002-4563-8337
Suk-Hyun Na
http://orcid.org/0000-0001-6148-7308
Jun-Hyo Son
http://orcid.org/0000-0002-3611-7193
Dong-Soo Shin
http://orcid.org/0000-0002-7948-0419
Byung-Taek Ryu
http://orcid.org/0000-0003-2931-6060
Kyun-Suk Byeon
http://orcid.org/0000-0002-2097-3825
Seon-Yong Chung
http://orcid.org/0000-0001-8664-9625

References

1. Martin JW, Muir DC, Moody CA, Ellis DA, Kwan WC, Solomon KR, et al. Collection of airborne fluorinated organics and analysis by gas chromatography/chemical ionization mass spectrometry. Anal Chem 2002;74(3):584-590.
2. Higgins CP, Field JA, Criddle CS, Luthy RG. Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environ Sci Technol 2005;39(11):3946-3956.
3. Suh C, Lee CK, Lee SR, Park MH, Lee JT, Son BC, et al. Concentration of PFOA and PFOS in whole blood and factors controlling their exposure among Koreans. J Environ Health Sci 2012;38(2):105-117 (Korean).
4. Vijaykumar BV, Premkumar B, Jang K, Choi BI, Falck JR, Sheldralee GN, et al. Environmentally benign perfluorooctanesulfonate alternatives using a Zn/Cul mediated Michael-type addition in imidazolium ionic liquids. Green Chem 2014;16(5):2406-2410.