History review of aircraft performance improvement

A Bobkov1,2 and M Krivenko1

1Komsomolsk-na-Amure State University, Lenin Prospect, 27, Komsomolsk-on-Amur, 681013, Russia

2E-mail: bobkov822@yandex.ru

Abstract. This paper is a review of trends in performance improvement of all-purpose military remotely piloted aircrafts in the last years. The review results are intended for use by designers of such aircrafts. Performance improvement of a machine, aircrafts in particular, is aimed at cost-effective optimization. The fundamental of a design specification for a new all-purpose aircraft is drafting requirements to its military characteristics. It is required to determine if an aircraft requires new or improvement of existing functions that influence the aircraft’s weight taking into account novel technologies to appear soon. No look-ahead analytic base available makes it difficult to determine needs and capacities of the future engineering period. This paper focuses on an analysis of the past period to forecast the aircraft engineering future. A history chart is built to show the design improvements of all-purpose military remotely piloted aircrafts starting from 2005.

1. Introduction
A study of aircraft performance allows finding principles to be used for selecting a right aircraft design concept when developing a design specification [1–4]. A new design of a military remotely piloted aircraft (“aircraft”) must consider many interconnected requirements, among them are: target load, flying distance, course speed, take-off and landing characteristics [5–12]. Each factor has qualitative constituents achievable by increased aircraft’s size and take-off weight, specific wing load, improved aircraft’s aerodynamic and weight characteristics and engine capacity [10, 13].

The review of aircraft performance evolution is the review of design innovations improving the aircraft’s performance and eventually its functions [14].

2. Aircraft Performance Improvements
Selection of specific performance measures of an aircraft design depends on its purpose, operation conditions, manufacture and maintenance costs and other factors [2–4]. Let us look at typical measures.

2.1. Transport Performance
The aircraft’s transport performance defines the ability to transport a target load to a point. It can be evaluated by delivery parameters such as consumed power, capacity, flying duration and distance [15, 17–19]. In terms of “transportation-costs”, the process efficiency must be studied: hourly capacity $m_{\text{thw}} \cdot V$ or flying capacity $m_{\text{thw}} \cdot L$ where m_{thw} is a target load weight, kg; V is course speed, m/s; L is flying distance, m. Then the transport performance TP can be found by formula [10] taking into account consumed power:
\[TP = m_{thw} \cdot V^2 \cdot L. \]

Therefore, the squared target load delivery speed is most important in improving the transport performance.

2.2. Aircraft Engineering Level
Engineering level of an aircraft is evaluated by comparing its performance with previous designs. As high engineering level can be achieved not only by innovations but also by an increased weight, then the compared aircrafts must be of a similar type and same weight. Engineering level (EL) increase is a full differential of function of several variables \(d\text{EL} \) of the aircraft design and transportation process:

\[d\text{EL} = \frac{\partial \text{EL}}{\partial W} dW + \frac{\partial \text{EL}}{\partial m_{\text{tw}}} dm_{\text{tw}} + \frac{\partial \text{EL}}{\partial V} dV + \frac{\partial \text{EL}}{\partial L} dL + \frac{\partial \text{EL}}{\partial m_0} dm_0, \]

where \(W \) is effective performance probability, unsized [20]; \(m_0 \) is the aircraft maximum take-off weight, kg.

3. Example of All-Purpose Aircraft Performance Improvement History

The example uses a known all-purpose reconnaissance and strike MQ-1B Predator 2005 [16], ref. figure 1. Predator has a traditional aerodynamic design with a one-beam body and aft propeller and with a reverse V-tail and Rotax engine.

\[\text{Figure 1. Reconnaissance and Strike MQ-1B Predator.} \]

Target load (radiotronics and missiles) is placed in the fuselage and on external slings. This aircraft is a classic MALE-aircraft (Medium Altitude Long Endurance), a prototype of most of other developed all-purpose aircrafts. Table 1 contains transport functions of four MALE-aircrafts with the design trends from 2005 to 2015.
Table 1. Aircraft Transport Functions.

Parameter	MQ-1B Predator	Heron 1	Hermes 900	Dozor-600
Year	2005	2007	2011	2015
Maximum take-off weight, kg	1020	1250	970	720
Maximum payload, kg	204	250	300	120
Course speed, kph	130	130	130	130
Flying distance, km	1100	1000	1500	3700
Engine	Rotax 914 F	Rotax 914 F	Rotax 914 F	Rotax 914 F

Figure 2 illustrates a history chart of the aircraft’s main transport efficiency elements represented as: L/Lr is flying distance; m0/(m0)r is maximum take-off weight; mwt/m0 is specific take-off weight where “r” refers to MQ-1B Predator. Figure 2 illustrates a trend chart of increased flying distance with the same course speed. Maximum take-off weight and target load weight show an unclear reduction tendency. The course speed is the same for all aircrafts due to gasoline reciprocating engine Rotax 914 the screw jack ram is based on. The screw jack ram is not likely to be changed. For low flying speeds, such screw jack ram design is more efficient comparing to gas-turbine engines: screw or reactive. Figure 3 illustrates a change of the integral parameter of the aircraft transport efficiency TP that is calculated by formula (1). Aircraft transport performance has been improved by 2.8 times in 10 years of the design upgrading.

![Figure 2](image-url)

Figure 2. Historic All-Purpose Aircraft Performance Trends.

![Figure 3](image-url)

Figure 3. All-Purpose Aircraft Transport Performance Trends.
4. Conclusion
The study of all-purpose aircraft performance improvement trends with the study of performance changing trends shows that the new military aircrafts have not demonstrated a brainstorm design. Yet, engineering based on the aircraft development trends is quite promising.

References
[1] Yeager C M, Mishin V F and Lisacek N K 1983 Aircraft Design: Textbook for universities (Moscow: Engineering) p 616
[2] Pankov S E The Role of military technologies in the development of the armament system of the Armed Forces of the Russian Federation: Department of advanced interspecies research and special projects of the Ministry of defense of the Russian Federation (http://federalbook.ru/files/OPK/Soderjanie/OPK-10/III/Pankov.pdf)
[3] Simonavicius D P, Hot D N and Filippov V V 2017 Innovative activity in the Armed Forces of the Russian Federation Proceedings of the all-army scientific and practical conference (Saint Petersburg: Military Academy of communications) pp 270–272
[4] Tseplyaeva T P and Morozova O V 2009 Stages of development of unmanned aerial vehicles Open information and computer integrated technologies (Kharkov: National aerospace University) pp 10–16
[5] Fetisov V S, Neugodnikova L M, Adamovskiy V V and Krasnoperov R A 2014 Unmanned Aviation: Terminology, Classification, Current State (Ufa: Foton) p 217
[6] Grebenikov A G, Myalitsa A K and Parfenyuk V V 2008 General Views and Characteristics of Unmanned Aircrafts: Guide Book (Kharkov: National Aerospace University “Kharkov Aviation Institution”) p 377
[7] Preobrazhenskiy N 2014 World market of UAVs Military-industrial courier (http://vpk.name/news/104319_mirovoi_ryinok_bespilotnikov.html) p 521
[8] Yuferev S Prospects for the development of Russian UAVs ARMY. MAN. INFO (http://armyman.info/stat/15140–perspektivy-razvitiya-rossiyskih-bpla.html)
[9] Kondratev A 2011 Prospects of development and application of unmanned and robotic means of armed struggle in the armed forces of leading foreign countries Zarubezhnoe voennoe obozrenie 5 14–21
[10] Petrash V Ya and Turkin I K 2011 Review of Perspectives of Unarmed Aircraft Improvement Trends Trudy MAI 49 17
[11] Vavrinyuk S A, Antonov A N and Sheludko M S 2017 Innovative activity in the Armed Forces of the Russian Federation Proceedings of the all-army scientific and practical conference (Saint Petersburg: Military Academy of communications) pp 73–76
[12] Boitsov A I and Yakovitsky S A 2017 Concept of combined use of manned and unmanned aerial vehicles in the US army Innovative activity in the Armed Forces of the Russian Federation. Proceedings of the all-army scientific and practical conference (Saint Petersburg: Military Academy of communications) pp 61–65
[13] Golubev I S and Levochkin S B 2008 Aircraft Quality and Competitive Ability (Moscow: MAI) p 223
[14] Myshkin L V 2006 Forecasting the development of aviation technology: theory and practice (Moscow: Fizmatlit) p 304
[15] Pripadchev A D, Sultanov N Z, Shatalova T N and Tikhonova O A 2009 Economic Evaluation of Passenger Airplanes: Text Book (Orenburg: State Educational Institution Orenburg State University) p 121
[16] General Atomics MQ-1 Predator Warrior Lodge Media https://warriorlodge.com/pages/general-atomics-mq-1-predator
[17] Petrash V L, Kovalenko A I and Kuchumov D V 2006 Project evaluation of the extension of the far border of the zone of application for saving the mass of AIRCRAFT (Moscow: MAI) p 96
[18] Sheinin V M 1962 Weight and transport efficiency of passenger aircraft (Moscow: Oborongiz
[19] Antonov O K and Tolmachev V I 1968 Transport plane today and tomorrow *Aviation and cosmonautics* pp 18–22

[20] Wentzel E S 1969 *Probability theory. Fourth edition, stereotypical* (Moscow: Nauka) p 576