The capacity region of the two-receiver vector Gaussian broadcast channel with private and common messages

Yanlin Geng, Chandra Nair

February 2, 2012

Abstract

We develop a new method for showing the optimality of the Gaussian distribution in multiterminal information theory problems. As an application of this method we show that Marton’s inner bound achieves the capacity of the vector Gaussian broadcast channels with common message.

1 Introduction

Channels with additive Gaussian noise are a commonly used model for wireless communications. Hence computing the capacity regions or bounds on the capacity regions for these classes of channels are of wide interest. Usually these bounds or capacity regions are represented using auxiliary random variables and distributions on these auxiliary random variables. Evaluations of these bounds then becomes an optimization problem of computing the extremal auxiliary random variables. In several instances involving Gaussian noise channels, it turns out that the optimal auxiliaries and the inputs are Gaussian. However proving the optimality of Gaussian distributions are usually very cumbersome and involve certain non-trivial applications of the entropy-power-inequality(EPI), and the perturbation ideas behind its proof.

For the two-receiver vector Gaussian broadcast channel with private messages, the capacity region was established[14] by showing that certain inner and outer bounds match. This argument was indirect, and hence the approach has been hard to generalize to other situations. In the following sections we develop a novel way of proving the optimality of Gaussian input distribution for additive Gaussian noise channels. There are many potential straightforward applications of this new approach which will yield new results as well as recover the earlier results in a simple manner. For the purpose of this article, we will restrict ourselves to two-receiver vector Gaussian channels. We will recover the known results for the private messages case and obtain the capacity region in the presence of a common message as well.

1.1 Preliminaries

Broadcast channel[4] refers to a communication scenario where a single sender, usually denoted by X, wishes to communicate independent messages (M_0, M_1, M_2) to two receivers Y_1, Y_2. The goal of the communication scheme is to enable receiver Y_1 to recover messages (M_0, M_1) and receiver Y_2 to recover messages (M_0, M_2); both events being required to occur with high probability. For introduction to the broadcast channel problem and a summary of known work one may refer to Chapters 5, 8, and 9 in [6].

A broadcast channel is characterized by a probability transition matrix $q(y_1, y_2|x)$. The following broadcast channel is referred to as the vector additive Gaussian broadcast channel

$$Y_1 = G_1 X + Z_1$$
$$Y_2 = G_2 X + Z_2.$$

In the above $X \in \mathbb{R}^t$, G_1, G_2 are $t \times t$ matrices, and Z_1, Z_2 are Gaussian vectors independent of X.

Remark 1. We assume, w.l.o.g. that $Z_1, Z_2 \sim \mathcal{N}(0, I)$.

A product broadcast channel is a broadcast channel whose transition probability has the form $q_1(Y_{11}, Y_{21} | X_1) \times q_2(Y_{12}, Y_{22} | X_2)$. A vector additive Gaussian product broadcast channel can be represented as

$$
\begin{bmatrix}
Y_{11} \\
Y_{12} \\
Y_{21} \\
Y_{22}
\end{bmatrix}
=
\begin{bmatrix}
G_{11} & 0 \\
0 & G_{12} \\
G_{21} & 0 \\
0 & G_{22}
\end{bmatrix}
\begin{bmatrix}
X_1 \\
X_2
\end{bmatrix}
+
\begin{bmatrix}
Z_{11} \\
Z_{12} \\
Z_{21} \\
Z_{22}
\end{bmatrix}.
$$

In the above $Z_{11}, Z_{12}, Z_{21}, Z_{22}$ are independent Gaussian vectors, also independent of X_1, X_2.

Remark 2. In this paper we assume that all our channel gain matrices are invertible. Since the set of all matrices are dense (with respect to say, Frobenius norm) by continuity, our capacity results extend to non-invertible cases.

We present some simple claims regarding additive Gaussian channels which will be useful later.

Claim 1. Consider the following vector additive Gaussian product channel with identical components

$$
Y_1 = GX_1 + Z_1 \\
Y_2 = GX_2 + Z_2
$$

Further let Z_1, Z_2 be independent and distributed as $\mathcal{N}(0, I)$. Define

$$
\tilde{X} = \frac{1}{\sqrt{2}}(X_1 + X_2), \quad X' = \frac{1}{\sqrt{2}}(X_1 - X_2), \quad \tilde{Y} = \frac{1}{\sqrt{2}}(Y_1 + Y_2), \quad Y' = \frac{1}{\sqrt{2}}(Y_1 - Y_2).
$$

Then $I(X_1, X_2; Y_1, Y_2) = I(\tilde{X}, X'; \tilde{Y}, Y')$.

Proof. The proof is a trivial consequence of the fact that $h(\tilde{Y}, Y') = h(Y_1, Y_2)$ and $h(\tilde{Y}, Y' | \tilde{X}, X') = h(Z_1, Z_2) = h(Y_1, Y_2 | X_1, X_2)$ where $Z = \frac{1}{\sqrt{2}}(Z_1 + Z_2), Z' = \frac{1}{\sqrt{2}}(Z_1 - Z_2)$.

Remark 3. An interesting consequence of Gaussian noise is that \tilde{Z} and Z' are again independent and distributed according to $\mathcal{N}(0, I)$. Hence \tilde{Y}, Y' can be regarded as the outputs of the Gaussian channel when the inputs are distributed according to \tilde{X}, X'. This observation is peculiar to additive Gaussian channels.

Claim 2. In vector additive Gaussian product broadcast channels with invertible channel gain matrices, the random variables Y_{11} and Y_{22} are independent if and only if X_1 and X_2 are independent.

Proof. Here we prove the non-trivial direction. Suppose Y_{11} and Y_{22} are independent. We know that $Y_{11} = G_{11}X_1 + Z_{11}$ and $Y_{22} = G_{22}X_2 + Z_{22}$ where Z_{11}, Z_{22} are mutually independent and independent of the pair X_1, X_2. Taking characteristic functions we see that

$$
E \left(e^{i(t_1 Y_{11} + t_2 Y_{22})} \right) = E \left(e^{i t_1 \tilde{Y}_{11}} \right) E \left(e^{i t_2 \tilde{Y}_{22}} \right) = E \left(e^{i t_1 \tilde{Z}_{11}} \right) E \left(e^{i t_2 \tilde{G}_{11} X_1} \right) E \left(e^{i t_2 \tilde{G}_{22} X_2} \right) E \left(e^{i t_2 \tilde{Z}_{22}} \right).
$$

On the other hand

$$
E \left(e^{i(t_1 Y_{11} + t_2 Y_{22})} \right) = E \left(e^{i t_1 \tilde{Z}_{11}} \right) E \left(e^{i(t_1 \tilde{G}_{11} X_1 + t_2 \tilde{G}_{22} X_2)} \right) E \left(e^{i t_2 \tilde{Z}_{22}} \right).
$$

Since $E \left(e^{i t_1 \tilde{Z}_{11}} \right), E \left(e^{i t_2 \tilde{Z}_{22}} \right) > 0 \forall t_1, t_2$ we have that

$$
E \left(e^{i(t_1 \tilde{G}_{11} X_1 + t_2 \tilde{G}_{22} X_2)} \right) = E \left(e^{i t_1 \tilde{G}_{11} X_1} \right) E \left(e^{i t_2 \tilde{G}_{22} X_2} \right), \forall t_1, t_2.
$$

Hence $G_{11}X_1$ and $G_{22}X_2$ are independent; since G_{11} and G_{22} are invertible, X_1 and X_2 are independent.
2 Optimality of Gaussian via factorization of concave envelopes

We devise a new technique to show that Gaussian distribution achieves the maximum value of an optimization problem, subject to a covariance constraint. Though some of the results have been known earlier\cite{10}, the technique presented here allows us to obtain much broader results.

The main idea behind the approach is to show that if a certain X (say zero mean) achieves the maximum value of an optimization problem, then so does $\frac{1}{\sqrt{2}}(X_1 + X_2)$ and $\frac{1}{\sqrt{2}}(X_1 - X_2)$; where X_1, X_2 are two i.i.d. copies of X. Further we will show that $\frac{1}{\sqrt{2}}(X_1 + X_2)$ and $\frac{1}{\sqrt{2}}(X_1 - X_2)$ have to be independent as well, which forces the initial distribution to be Gaussian, see Theorem\cite{3} and Corollary\cite{3} in Appendix\cite{A.1} Alternately, one can repeat averaging procedure inductively and use central limit theorem to conclude that Gaussian distribution achieves the maximum. To show the first step we go to the two-letter version

Consider a product channel consisting of two identical components of the point-to-point channel described above: $q(Y_1|X_1) \times q(Y_2|X_2)$. We call the below claim as the factorization property of mutual information.

Claim 3. The following inequality holds for the product channel

$$I(X_1, X_2; Y_1, Y_2) \leq I(X_1; Y_1) + I(X_2; Y_2).$$

Further if equality is achieved at some $p(x_1, x_2)$ then X_1, X_2 must be independent.

Proof. The proof is essentially a consequence of the following equality for product channels

$$I(X_1, X_2; Y_1, Y_2) = I(X_1; Y_1) + I(X_2; Y_2) - I(Y_1; Y_2).$$

Further, if equality holds then Y_1, Y_2 must be independent, which from Claim\cite{2} implies that X_1 and X_2 are independent. \hfill \square

Let $p_*(x)$ be a zero mean distribution that achieves $V(K)$.

Claim 4. Let $(X_1, X_2) \sim p_*(x_1)p_*(x_2)$ be two i.i.d. copies of $p_*(x)$. Then the following distributions $X = \frac{1}{\sqrt{2}}(X_1 + X_2), X' = \frac{1}{\sqrt{2}}(X_1 - X_2)$ also achieve $V(K)$. Further the random variables X, X' are independent.

A two letter version of a channel $q(y|x)$ is a product channel consisting of identical components $q(y_1|x_1) \times q(y_2|x_2)$.
Proof. Let $\tilde{Y} = \frac{1}{\sqrt{2}} (Y_1 + Y_2)$, $Y' = \frac{1}{\sqrt{2}} (Y_1 - Y_2)$. The claim is a consequence of Claim 3 and the following observations:

$$
2V(K) = I(X_1; Y_1) + I(X_2; Y_2)
= I(X_1, X_2; Y_1, Y_2)
= (a) I(\tilde{X}, \tilde{X}'; \tilde{Y}, \tilde{Y}')
\leq I(\hat{X}, \hat{Y}) + I(X; Y')
\leq V(K) + V(K) = 2V(K).
$$

Here the first equality comes because $p_*(x)$ achieves $V(K)$, the second one because X_1 and X_2 are independent. Equality (a) is a consequence of Claim 1. Inequality (b) is a consequence of Claim 3 and the last inequality follows from the following:

$$
E(\tilde{X}\tilde{X}^T) = E(X'X'^T) = \frac{1}{2} (E(X_1X_1^T) + E(X_2X_2^T)) \leq K,
$$

and the definition of $V(K)$. Since the extremes match, all inequalities must be equalities. Hence (b) must be an equality, which implies from Claim 3 that \tilde{X}, \tilde{X}' are independent. Similarly we require $I(\hat{X}; \hat{Y}) = I(X'; Y') = V(K)$ as desired. \hfill \square

Hence we have shown that $X \sim p^*(x)$ that achieves a maximum has the following property: If (X_1, X_2) are i.i.d. copies each distributed according to $p_*(x)$, then $X_1 + X_2$ and $X_1 - X_2$ are also independent. Thus from Theorem 3 and Corollary 3, Appendix A.1, we have that $X \sim N(0, K')$ for some $K' \leq K$. Alternately, one could also use the following approach: For any $X \sim p^*(x)$ (assume zero mean) that achieve the maximum, we know that $\frac{1}{\sqrt{2}} (X_1 + X_2)$ also achieves the maximum. Hence proceeding by induction, we can use Central limit theorem to deduce that the Gaussian distribution also achieves the maximum. This alternate approach is elaborated for the next example in Appendix 3.

Remark 6. For this example, we can use the monotonicity of the $\log | \cdot |$ function to deduce that $K' = K$. In the examples that follow below we do not have any such monotonicity. Hence, we will only establish that the optimizing distribution is a Gaussian, which is sufficient for our purposes.

2.2 Example 2: Difference of mutual informations

Consider a vector additive Gaussian broadcast channel. For $\lambda > 1$ let the following function of $p(x)$ be defined by

$$
s_\lambda(X) := I(X; Y_1) - \lambda I(X; Y_2).
$$

Let $s_\lambda(X|V) := I(X; Y_1|V) - \lambda I(X; Y_2|V)$.

Further define

$$
S_\lambda(X) := \mathcal{C}(s_\lambda(X))
$$

denote the upper concave envelope of $s_\lambda(X)$. It is a straightforward exercise to see that

$$
\mathcal{C}(s_\lambda(X)) = \sup_{V \rightarrow X \rightarrow Y_1, Y_2} I(X; Y_1|V) - \lambda I(X; Y_2|V) = \sup_{p(v|x)} s_\lambda(X|V).
$$

We also define $S_\lambda(X|V) := \sum_v p(v)S_\lambda(X|V = v)$ for finite V and its natural extension for arbitrary V.

Remark 7. We will try to keep the language simple in the main body of this paper. In the Appendix we will deal with the various technical issues with due diligence.

For a product broadcast channel $q_1(y_{11}, y_{21}|x_1) \times q_2(y_{12}, y_{22}|x_2)$ let $S_\lambda(X_1, X_2)$ denote the corresponding upper concave envelope. The following claim is referred to as the “factorization of $S_\lambda(X_1, X_2)$”.

2The upper concave envelope of a function $f(x)$ is the smallest concave function $g(x)$ such that $g(x) \geq f(x), \forall x$.
Claim 5. The following inequality holds for product broadcast channels
\[S_\lambda(X_1, X_2) \leq S_\lambda(X_1 | Y_{22}) + S_\lambda(X_2 | Y_{11}) \leq S_\lambda(X_1) + S_\lambda(X_2). \]

For additive Gaussian noise broadcast channels if \(p(v|x_1, x_2) \) realizes \(S_\lambda(X_1, X_2) \), i.e. \(S_\lambda(X_1, X_2) = S_\lambda(X_1, X_2 | V) \), and equality is achieved above i.e. \(S_\lambda(X_1, X_2) = S_\lambda(X_1) + S_\lambda(X_2) \), then all of the following must be true:

1. \(X_1 \) and \(X_2 \) are conditionally independent of \(V \)
2. \(V, X_1 \) achieves \(S_\lambda(X_1) \)
3. \(V, X_2 \) achieves \(S_\lambda(X_2) \).

Proof. For any \(p(v|x_1, x_2) \) observe the following
\[I(X_1, X_2; Y_{11}, Y_{12}|V) - \lambda I(X_1, X_2; Y_{21}, Y_{22}|V) \]
\[= I(X_1; Y_{11}|V) + I(X_2; Y_{12}|V, Y_{11}) - \lambda I(X_1; Y_{22}|V) - \lambda I(X_1; Y_{21}|V, Y_{22}) \]
\[= I(X_1; Y_{11}|V, Y_{22}) + I(X_2; Y_{12}|V, Y_{11}) - \lambda I(X_1; Y_{22}|V) - \lambda I(X_1; Y_{21}|V, Y_{22}) - (\lambda - 1) I(Y_{11}; Y_{22}|V) \]
\[\leq S_\lambda(X_1 | Y_{22}) + S_\lambda(X_2 | Y_{11}) - (\lambda - 1) I(Y_{11}; Y_{22}|V) \]
\[\leq S_\lambda(X_1) + S_\lambda(X_2) - (\lambda - 1) I(Y_{11}; Y_{22}|V) \]
\[\leq S_\lambda(X_1) + S_\lambda(X_2). \]

Since equality holds all inequalities are tight. Hence \(Y_1 \) and \(Y_2 \) are conditionally independent of \(V \) implying that \(X_1 \) and \(X_2 \) are conditionally independent of \(V \) (Claim 1). Hence
\[I(X_1; Y_{11}|V, Y_{22}) - \lambda I(X_1; Y_{22}|V) = I(X_1; Y_{11}|V) - \lambda I(X_1; Y_{22}|V) = S_\lambda(X_1), \]
\[I(X_2; Y_{12}|V, Y_{11}) - \lambda I(X_2; Y_{22}|V, Y_{11}) = I(X_2; Y_{12}|V) - \lambda I(X_2; Y_{22}|V) = S_\lambda(X_2). \]

This completes the proof. \(\square \)

2.2.1 Maximizing the concave envelope subject to a covariance constraint

Consider an Additive Gaussian Noise broadcast channel \(q(y_1, y_2|x) \). For \(K \geq 0 \), define
\[V_\lambda(K) = \sup_{X \in \mathbb{X}^2} S_\lambda(X). \]

Claim 6. There is a pair of random variables \((V_*, X_*)\) with \(|V_*| \leq \frac{t(t+1)}{2} + 1 \) such that
\[V_\lambda(K) = S_\lambda(X_*, V_*). \]

Proof. This is a technical claim that shows that the supremum is indeed attained. The details are present in the Appendix. \(\square \)

The goal of this section is to show that a single Gaussian distribution achieves \(V_\lambda(K) \), i.e. we can take \(V \) to be trivial and \(X \sim \mathcal{N}(0, K') \), \(K' \preceq K \). (This result is known and was first shown by Liu and Vishwanath using perturbation based techniques. We use this here as a non-trivial illustration of our technique and then our final result in the next section is new.)

Consider a product channel consisting of two identical components \(q(Y_{11}, Y_{21}|X_1) \times q(Y_{12}, Y_{22}|X_2) \).

Notation: In the remainder of the section we assume that \(p_\mu(v, x) \) achieves \(V_\lambda(K) \), \(|V| = m \leq \frac{t(t+1)}{2} + 1 \) and \(X_\mu \) be a centered random variable (zero-mean) distributed according to \(p(X|V = v) \). Further let \(K_v = E(X_\mu X_\mu^T) \). Then we have \(\sum_{v=1}^m p_\mu(v) K_v \preceq K \) and in particular that \(K_v \)'s are bounded.

Claim 7. Let \((V_1, V_2, X_1, X_2) \sim p_\mu(v_1, x_1)p_\mu(v_2, x_2) \) be two i.i.d. copies of \(p_\mu(v, x) \). We assume that \(|V| \leq \frac{t(t+1)}{2} + 1 \). Let
\[\tilde{V} = (V_1, V_2), \quad \tilde{X} | (\tilde{V} = (v_1, v_2)) \sim \frac{1}{\sqrt{2}} (X_{v_1} + X_{v_2}), \quad X' | (\tilde{V} = (v_1, v_2)) \sim \frac{1}{\sqrt{2}} (X_{v_1} - X_{v_2}). \]

In the above we take \(X_{v_1} \) and \(X_{v_2} \) to be independent random variables. Then the following hold:
1. \tilde{X}, X' are conditionally independent given \tilde{V}.

2. \tilde{V}, \tilde{X} achieves $V_\lambda(K)$.

3. \tilde{V}, X' achieves $V_\lambda(K)$.

Proof.

$$2V_\lambda(K) = s_\lambda(X_1|V_1) + s_\lambda(X_2|V_2) \tag{a} = s_\lambda(\tilde{X}, X'|\tilde{V}) \leq \lambda s_\lambda(\tilde{X}, X') \leq S_\lambda(\tilde{X}, X') \leq S_\lambda(\tilde{X}) + S_\lambda(X') \leq V_\lambda(K) + V_\lambda(K) = 2V_\lambda(K).$$

Here the first equality comes because $p_\lambda(v, x)$ achieves $V_\lambda(K)$, the second one because (V_1, X_1) and (V_2, X_2) are independent. Equality (a) is a consequence of Claim 1 and definition of λ. Inequality (c) is a consequence of Claim 5 and the last inequality follows from the following:

$$E(\tilde{X}\tilde{X}) = E(X'X'^T) = \sum_{v_1, v_2} p_\lambda(v_1)p_\lambda(v_2) \frac{(K_{v_1} + K_{v_2})}{2} = \sum_{v=1}^m p_\lambda(v)K_v \leq K,$$

and the definition of $V_\lambda(K)$. Since the extremes match, all inequalities must be equalities. Hence (b) must be an equality, $p(\tilde{v}, \tilde{x}, x')$ achieves $S_\lambda(\tilde{X}, X')$; and since (c) is also equality from Claim 5 we conclude that \tilde{X}, X' are conditionally independent of \tilde{V}. Furthermore, we also obtain that $p(\tilde{v}|X)$ achieves $S_\lambda(\tilde{X})$, which from the last inequality matches $V_\lambda(K)$. Similarly for $p(\tilde{v}|X')$.

As a consequence, X_{v_1}, X_{v_2} are independent random variables and $(X_{v_1} + X_{v_2}), (X_{v_1} - X_{v_2})$ are also independent random variables. Thus from Corollary 3 (in Appendix A.1) X_{v_1}, X_{v_2} are Gaussians, having the same distribution as $X_v \sim \mathcal{N}(0, K')$. Since v_1, v_2 are arbitrary, all X_{v_i} are Gaussians, having the same distribution as X_v. Then

$$V_\lambda(K) = \sum_{i=1}^m p_\lambda(v_i)s_\lambda(X_{v_i}) = \sum_{i=1}^m p_\lambda(v_i)s_\lambda(X_v) = s_\lambda(X_v).$$

Hence we obtain the following theorem.

Theorem 1. There exists $X_* \sim \mathcal{N}(0, K'), K' \leq K$ such that $V_\lambda(K) = s_\lambda(X_*)$.

Remark: Notice that we never used the precise form of $S_\lambda(X)$ but just used that the implications of Claim 5. In the next section we will define a new concave envelope that will also satisfy a condition similar to Claim 5 and then establish the optimality of Gaussian.

Corollary 1. If $X \sim \mathcal{N}(0, K)$ then there exists $X_* \sim \mathcal{N}(0, K'), K' \leq K$ such that $S_\lambda(X) = s_\lambda(X_*) = V_\lambda(K)$.

Proof. Clearly from Theorem 1 and definition of $V_\lambda(K)$ we have

$$S_\lambda(X) \leq V_\lambda(K) = s_\lambda(X_*).$$

On the other hand let $X' \sim \mathcal{N}(0, K - K')$ be independent of X_*. Note that $X \sim X' + X_*$ and

$$S_\lambda(X) = \sup_V s_\lambda(X|V) \geq s_\lambda(X|X') = s_\lambda(X_*).$$
2.3 Example 3: A more complicated example

The function we considered in the previous section can be used determine the capacity region of vector Gaussian broadcast channel with only private messages 10 (see Section 3.1). The function we consider in this section will enable us to determine the capacity region of vector Gaussian broadcast channel with common message as well (see Section 3.2).

For $\lambda_0, \lambda_1, \lambda_2 > 0$ and for $\alpha \in [0, 1]$ (and $\bar{\alpha} := 1 - \alpha$) consider the following function of $p(x)$ defined by

$$t_\lambda(x) := -\lambda_0 \alpha I(x; y_1) - \lambda_0 \bar{\alpha} I(x; y_2) + (\lambda_1 + \lambda_2) I(x; y_2) + \lambda_1 S_{\lambda_1 + \lambda_2}(X).$$

Further let

$$T_\lambda(x) := C(t_\lambda(x))$$

denote the upper concave envelope of $t_\lambda(x)$. It is easy to see that

$$C(t_\lambda(x)) = \sup_{p(w|x)} -\lambda_0 \alpha I(x; y_1|w) - \lambda_0 \bar{\alpha} I(x; y_2|w) + (\lambda_1 + \lambda_2) I(x; y_2|w) + \lambda_1 S_{\lambda_1 + \lambda_2}(X|w).$$

For a product broadcast channel $q_1(y_{11}, y_{21}|x_1) \times q_2(y_{12}, y_{22}|x_2)$ let $T_\lambda(x_1, x_2)$ denote the corresponding upper concave envelope. The following claim is referred to as the “factorization of $T_\lambda(x_1, x_2)$”.

Claim 8. When $\lambda_0 > \lambda_1 + \lambda_2$ the following inequality holds for product broadcast channels

$$T_\lambda(x_1, x_2) \leq T_\lambda(x_1|y_{22}) + T_\lambda(x_2|y_{11}) \leq T_\lambda(x_1) + T_\lambda(x_2).$$

For additive Gaussian noise broadcast channels if $p(w,x_1,x_2)$ realizes $T_\lambda(x_1, x_2)$ and equality is achieved above then all of the following must be true

1. X_1 and X_2 are conditionally independent of W
2. W, X_1 achieves $T_\lambda(x_1)$
3. W, X_2 achieves $T_\lambda(x_2)$.

Proof. Observe the following

$$-\lambda_0 \alpha I(x_1, x_2; y_{11}, y_{12}|w) - \lambda_0 \bar{\alpha} I(x_1, x_2; y_{21}, y_{22}|w) + (\lambda_1 + \lambda_2) I(x_1, x_2; y_{21}, y_{22}|w)$$

$$+ \lambda_1 S_{\lambda_1 + \lambda_2}(x_1|x_2, y_{11}, y_{12}|w)$$

$$\leq -\lambda_0 \alpha I(x_1; y_{11}|w) - \lambda_0 \alpha I(x_2; y_{12}|w, y_{11}) - \lambda_0 \bar{\alpha} I(x_2; y_{22}|w) - \lambda_0 \bar{\alpha} I(x_1; y_{21}|w, y_{22})$$

$$+ (\lambda_1 + \lambda_2) I(x_2; y_{22}|w) + (\lambda_1 + \lambda_2) I(x_1; y_{21}|w, y_{22}) + \lambda_1 S_{\lambda_1 + \lambda_2}(x_1|x_2, y_{11}, y_{12})$$

$$\leq -\lambda_0 \alpha I(x_1; y_{11}|w, y_{22}) - \lambda_0 \alpha I(x_2; y_{12}|w, y_{11}) - \lambda_0 \bar{\alpha} I(x_2; y_{22}|w, y_{11}) - \lambda_0 \bar{\alpha} I(x_1; y_{21}|w, y_{22})$$

$$+ (\lambda_1 + \lambda_2) I(x_2; y_{22}|w, y_{11}) + (\lambda_1 + \lambda_2) I(x_1; y_{21}|w, y_{22}) + \lambda_1 S_{\lambda_1 + \lambda_2}(x_1|x_2, y_{11}, y_{12})$$

$$\leq T_\lambda(x_1|y_{22}) + T_\lambda(x_2|y_{11}) - (\lambda_0 - \lambda_1 - \lambda_2) I(y_{11}; y_{22}|w)$$

$$\leq T_\lambda(x_1) + T_\lambda(x_2) - (\lambda_0 - \lambda_1 - \lambda_2) I(y_{11}; y_{22}|w).$$

Since equality holds, using Claim 4 we have X_1 and X_2 are conditionally independent of W. Further using this and the equality observe that

$$-\lambda_0 \alpha I(x_1; y_{11}|w, y_{22}) - \lambda_0 \bar{\alpha} I(x_1; y_{21}|w, y_{22}) + (\lambda_1 + \lambda_2) I(x_1; y_{21}|w, y_{22}) + \lambda_1 S_{\lambda_1 + \lambda_2}(x_1|x_2, y_{11}, y_{12})$$

$$= -\lambda_0 \alpha I(x_1; y_{11}|w) - \lambda_0 \bar{\alpha} I(x_1; y_{21}|w) + (\lambda_1 + \lambda_2) I(x_1; y_{21}|w) + \lambda_1 S_{\lambda_1 + \lambda_2}(x_1|x_2, y_{11}, y_{12})$$

$$= T_\lambda(x_1).$$

Similarly for X_2. This completes the proof.
For $K \geq 0$, define
\[
\hat{V}_\lambda(K) = \sup_{X \in \mathcal{X}(X^T) \leq K} T_\lambda(X).
\]

Claim 9. There exists a pair (W_*, X_*) with $|W_*| \leq \frac{t(t+1)}{2} + 1$ such that $\hat{V}_\lambda(K) = t_\lambda(X_*|W_*)$.

Notation: In the remainder of the section we assume that $p_*(w, x)$ achieves $\hat{V}_\lambda(K)$, $|W| = m \leq \frac{t(t+1)}{2} + 1$ and X_w be a centered random variable (zero-mean) distributed according to $p(X|W = w)$. Further let $K_w = E(X_wX_w^T)$. Then we have $\sum_{w=1}^m p_*(w)K_w \leq K$ and in particular that K_w’s are bounded.

Claim 10. Let $(W_1, W_2, X_1, X_2) \sim p_*(w_1, x_1)p_*(w_2, x_2)$ be two i.i.d. copies of $p_*(w, x)$. We assume that $|W| \leq \frac{t(t+1)}{2} + 1$. Let
\[
\tilde{W} = (W_1, W_2), \quad \tilde{X}|(\tilde{W} = (w_1, w_2)) \sim \frac{1}{\sqrt{2}}(X_{w_1} + X_{w_2}), \quad X'|(\tilde{W} = (w_1, w_2)) \sim \frac{1}{\sqrt{2}}(X_{w_1} - X_{w_2}).
\]

In the above we take X_{w_1} and X_{w_2} to be independent random variables. Then the following hold:

1. \tilde{X}, X' are conditionally independent given \tilde{W}.
2. \tilde{W}, \tilde{X} achieves $\hat{V}_\lambda(K)$.
3. \tilde{W}, X' achieves $\hat{V}_\lambda(K)$.

Proof.
\[
2\hat{V}_\lambda(K) = t_\lambda(X_1|W_1) + t_\lambda(X_2|W_2) = t_\lambda(X_1, X_2|W_1, W_2) \overset{(a)}{=} t_\lambda(\tilde{X}, X'|\tilde{W}) \overset{(b)}{\leq} T_\lambda(\tilde{X}, X') \overset{(c)}{\leq} \hat{V}_\lambda(K) + \hat{V}_\lambda(K) = 2\hat{V}_\lambda(K).
\]

The proof mirrors that of Claim 7. Here the first equality comes because $p_*(w, x)$ achieves $\hat{V}_\lambda(K)$, the second one because (W_1, X_1) and (W_2, X_2) are independent. Equality (a) is a consequence of Claim 3, inequality (c) is a consequence of Claim 8 and the last inequality follows from the following:
\[
E(\tilde{X}X^T) = E(X'X'^T) = \sum_{w_1, w_2} p_*(w_1)p_*(w_2) \frac{(K_{w_1} + K_{w_2})}{2} = \sum_{w=1}^m p_*(w)K_w \leq K,
\]
and the definition of $\hat{V}_\lambda(K)$.

Since the extremes match, all inequalities must be equalities. Hence (b) must be an equality, $p(\tilde{w}, \tilde{x}, x')$ achieves $T_\lambda(\tilde{X}, X')$; and since (c) is also equality from Claim 8 we conclude that \tilde{X}, X' are conditionally independent of \tilde{W}. Furthermore, we also obtain that $p(\tilde{w}|\tilde{X})$ achieves $T_\lambda(\tilde{X})$, which from the last inequality matches $\hat{V}_\lambda(K)$. Similarly for $p(\tilde{w}|X')$. \(\square\)

As a consequence, X_{w_1}, X_{w_2} are independent random variables and $(X_{w_1} + X_{w_2}), (X_{w_1} - X_{w_2})$ are also independent random variables. Thus from Corollary 3 (in Appendix A.1) X_{w_1}, X_{w_2} are Gaussians, say having the same distribution as $X_w \sim \mathcal{N}(0, K)$. Since w_1, w_2 are arbitrary, all X_{w_i} are Gaussians, having the same distribution as X_w. Then
\[
\hat{V}_\lambda(K) = \sum_{i=1}^m p_*(w_i)t_\lambda(X_{w_i}) = \sum_{i=1}^m p_*(w_i)t_\lambda(X_{w_i}) = t_\lambda(X_w).
\]

Hence we obtain the following theorem.
Theorem 2. There exists $X_* \sim \mathcal{N}(0, K')$, $K' \preceq K$ such that $\hat{V}_\lambda(K) = t_\lambda(X_*).

Corollary 2. If $X \sim \mathcal{N}(0, K)$ then there exists $X_{1*} \sim \mathcal{N}(0, K_1)$ and an independent random variable $X_{2*} \sim \mathcal{N}(0, K_2)$, $K_1 + K_2 = K'$ such that $T_\lambda(X) = t_\lambda(X_{1*} + X_{2*}) = \hat{V}_\lambda(K)$ and $S_{\lambda + \lambda_2}(X_{1*} + X_{2*}) = s_{\lambda_1, \lambda_2}(X_{1*}) = V_{\lambda_1, \lambda_2}(K_1 + K_2).

Proof. Clearly from Theorem 2 and definition of $\hat{V}_\lambda(K)$ we have

$$T_\lambda(X) \leq \hat{V}_\lambda(K) = t_\lambda(X_*).$$

On the other hand let $X' \sim \mathcal{N}(0, K - K')$ be independent of X_*. Note that $X \sim X' + X_*$ and

$$T_\lambda(X) = \sup_{W} t_\lambda(X|W) \geq t_\lambda(X'|X') = t_\lambda(X_*).$$

Now splitting of X_* into X_{1*}, X_{2*} is possible by Corollary.

3 Two capacity regions

3.1 Vector Gaussian Broadcast channel with private messages

Consider a vector Gaussian broadcast channel with only private message requirements. Let C be the capacity region. For $\lambda > 1$ we will seek to maximize the following expression

$$\max_{(R_1, R_2) \in \mathcal{C}} R_1 + \lambda R_2.$$

The case for $\lambda < 1$ is dealt with similarly (with roles of (Y_1, Y_2) interchanged). The case for $\lambda = 1$ follows by continuity.

Here we consider the Korner-Marton outer bound and Marton’s inner bound (both from [11]) to the capacity region of the broadcast channel.

Bound 1. The union of rate pairs (R_1, R_2) satisfying

$$R_2 \leq I(V; Y_2)$$
$$R_1 \leq I(X; Y_1)$$
$$R_1 + R_2 \leq I(V; Y_2) + I(X; Y_1|V)$$

over all $V \to X \to (Y_1, Y_2)$ forms an outer bound to the broadcast channel.

Denote this region as O.

Bound 2. The union of rate pairs (R_1, R_2) satisfying

$$R_2 \leq I(V; Y_2)$$
$$R_1 \leq I(U; Y_1)$$
$$R_1 + R_2 \leq I(U; Y_1) + I(V; Y_2) - I(U; V)$$

over all $(U, V) \to X \to (Y_1, Y_2)$ forms an inner bound to the broadcast channel.

Denote this region as I.

One can adapt these inner and outer bounds to additive Gaussian setting by introducing a power constraint, i.e. an upper bound on the trace of the covariance matrix, $\text{tr}(K)$. However let us put a covariance constraint on X and denote I_K, C_K, O_K to be the corresponding inner bound, capacity region, and the outer bound.

Clearly we have

$$\max_{(R_1, R_2) \in I_K} R_1 + \lambda R_2 \leq \max_{(R_1, R_2) \in C_K} R_1 + \lambda R_2 \leq \max_{(R_1, R_2) \in O_K} R_1 + \lambda R_2.$$
To exhibit the capacity region we will show that

\[
\max_{(R_1, R_2) \in \mathcal{O}_K} R_1 + \lambda R_2 \leq \max_{(R_1, R_2) \in \mathcal{I}_K} R_1 + \lambda R_2.
\]

Thus Marton’s inner bound and Korner-Marton’s outer bound will match in this setting, and therefore also with the usual trace constraint.

Observe that

\[
\max_{(R_1, R_2) \in \mathcal{O}_K} R_1 + \lambda R_2 \leq \sup_{V \to Y \to (Y_1, Y_2)} \lambda(I(V; Y_2) + I(X; Y_1|V))
\]

\[
= \sup_{V \to Y \to (Y_1, Y_2)} \lambda(I(X; Y_2) + I(X; Y_1|V) - \lambda(I(X; Y_2|V))
\]

\[
\leq \max_{X: E(XX^T) \leq K} \lambda(I(X; Y_2) - \lambda(I(X; Y_1|V) - \lambda(I(X; Y_2|V))
\]

\[
\leq \max_{X: E(XX^T) \leq K} \lambda(I(X; Y_2) + V_\lambda(K).
\]

We know that the first term is maximized (Section 2.22 when \(X \sim \mathcal{N}(0, K)\) and \(V_\lambda(K)\) is achieved by \(s_\lambda(X)\) where \(X_s \sim \mathcal{N}(0, K')\), \(K' \leq K\). Now let \(V_s \sim \mathcal{N}(0, K' - K')\) be independent of \(X_s\) and let \(X = V_s + X_s\). Observe that this choice attains both maxima simultaneously. Hence

\[
\max_{(R_1, R_2) \in \mathcal{O}_K} R_1 + \lambda R_2 \leq \lambda(I(V_s; Y_2) + I(X; Y_1|V_s) = \lambda(I(V_s; Y_2) + I(X_s; Y_1|V_s).
\]

Lemma 1 (Dirty paper coding). Let \(X = V_s + X_s\) and \(V_s, X_s\) be independent Gaussians with covariances \(K - K', K'\) respectively. Then there exists \(U_s\) jointly Gaussian with \(V_s\) such that

\[
I(X; Y_1|V_s) = I(U_s; Y_1) - I(U_s; V_s).
\]

Here \(Y_1 = GX + Z\), where \(Z \sim \mathcal{N}(0, I)\) is independent of \(V_s, X_s\).

Proof. This well-known identification stems from the celebrated paper[3]. Set \(U_s = X_s + AV_s\) where \(A = K'G^T(GK^2G^T + I)^{-1}\) and this works (see Chapter 9.5 of [6]).

Now using \(U_s\) as in the above lemma, we obtain

\[
\max_{(R_1, R_2) \in \mathcal{O}_K} R_1 + \lambda R_2 \leq \lambda(I(V_s; Y_2) + I(X_s; Y_1|V_s)
\]

\[
= \lambda(I(V_s; Y_2) + I(U_s; Y_1) - I(U_s; V_s).
\]

However using Marton’s inner bound any rate pair satisfying \(R_2 = I(V; Y_2), R_1 = I(U; Y_1) - I(U; V)\) such that \(E(XX^T) \leq K\) belongs to \(\mathcal{I}_K\). Hence

\[
\max_{(R_1, R_2) \in \mathcal{O}_K} R_1 + \lambda R_2 \leq \lambda(I(V_s; Y_2) + I(U_s; Y_1) - I(U_s; V_s) \leq \max_{(R_1, R_2) \in \mathcal{I}_K} R_1 + \lambda R_2.
\]

Thus the inner and outer bound match for vector Gaussian product channels establishing its capacity region.

3.2 Vector Gaussian Broadcast channel with common message

Consider a vector Gaussian broadcast channel with common and private message requirements. Let \(C\) be the capacity region. Assume \(\lambda_0 > \lambda_1 + \lambda_2\). We will seek to maximize the following expression

\[
\max_{(R_0, R_1, R_2) \in C} \lambda_0 R_0 + \lambda_1 R_1 + (\lambda_1 + \lambda_2) R_2.
\]
Remark 8. The case of maximizing $\lambda_0 R_0 + (\lambda_1 + \lambda_2) R_1 + \lambda_2 R_2$ can be dealt with similarly. On the other hand if $\lambda_0 \leq (\lambda_1 + \lambda_2)$ then it suffices to consider the private messages capacity region. Actually the setting $\lambda_0 \geq 2\lambda_1 + \lambda_2$ can be deduced from the degraded message sets capacity region and this is also known; however this will be subsumed in our treatment. Hence the setting we are considering is the only interesting unestablished case.

In this section we consider the UVW outer bound\[12] and Marton’s inner bound\[11] to the capacity region of the broadcast channel with private and common messages.

Bound 3 (UVW outer bound). The union of rate triples (R_0, R_1, R_2) satisfying

$$R_0 \leq \min\{I(W; Y_1), I(W; Y_2)\}$$
$$R_0 + R_1 \leq \min\{I(W; Y_1), I(W; Y_2)\} + I(U; Y_1|W)$$
$$R_0 + R_2 \leq \min\{I(W; Y_1), I(W; Y_2)\} + I(V; Y_2|W)$$
$$R_0 + R_1 + R_2 \leq \min\{I(W; Y_1), I(W; Y_2)\} + I(V; Y_2|W) + I(X; Y_1|V, W)$$
$$R_0 + R_1 + R_2 \leq \min\{I(W; Y_1), I(W; Y_2)\} + I(U; Y_1|W) + I(X; Y_2|U, W)$$

over all $(U, V, W) \rightarrow X \rightarrow (Y_1, Y_2)$ forms an outer bound to the broadcast channel.

As before, denote this region as O.

Bound 4 (Marton’s inner bound). The union of rate pairs (R_1, R_2) satisfying

$$R_0 \leq \min\{I(W; Y_1), I(W; Y_2)\}$$
$$R_0 + R_1 \leq I(U; W; Y_1)$$
$$R_0 + R_2 \leq I(V; W; Y_2)$$
$$R_0 + R_1 + R_2 \leq \min\{I(W; Y_1), I(W; Y_2)\} + I(U; Y_1|W) + I(V; Y_2|W) - I(U; V|W)$$

over all $(U, V) \rightarrow X \rightarrow (Y_1, Y_2)$ forms an inner bound to the broadcast channel.

Denote this region as I.

Impose a covariance constraint K on X and denote I_K, C_K, O_K to be the corresponding inner bound, capacity region, and the outer bound respectively. Trivially we have

$$\max_{(R_0, R_1, R_2) \in I_K} \lambda_0 R_0 + \lambda_1 R_1 + (\lambda_1 + \lambda_2) R_2 \leq \max_{(R_0, R_1, R_2) \in C_K} \lambda_0 R_0 + \lambda_1 R_1 + (\lambda_1 + \lambda_2) R_2 \leq \max_{(R_0, R_1, R_2) \in O_K} \lambda_0 R_0 + \lambda_1 R_1 + (\lambda_1 + \lambda_2) R_2.$$
We know that the first term is maximized (Section 2.3) when \(X \sim \mathcal{N}(0, K) \) and \(\hat{V}(K) \) is achieved by \(t(K X_1 + X_2) \) where \(X_1, X_2 \) are independent and \(X_1 \sim \mathcal{N}(0, K_1), X_2 \sim \mathcal{N}(0, K_2), K_1 + K_2 \leq K \), and \(S_{\hat{V}}(X_1 + X_2) = \hat{V}(X_1) \). See Theorem 2 and Corollary 2. Now let \(W_\ast \sim \mathcal{N}(0, K - (K_1 + K_2)) \) be independent of \(X_1, X_2 \), and let \(X = W_\ast + X_1 + X_2 \). Observe that this choice attains both maxima simultaneously. For conforming to more standard notation, let us call \(V_\ast = X_2 \), thus \(X = W_\ast + X_1 + V_\ast \). Thus

\[
\begin{align*}
\max_{\langle R_0, R_1, R_2 \rangle \in \Omega_K} \lambda_0 R_0 + \lambda_1 R_1 + (\lambda_1 + \lambda_2) R_2 \\
\leq \alpha_0 \lambda_0 I(X; Y_1) + \bar{\alpha}_0 I(X; Y_2) = \alpha_0 \lambda_0 I(X; Y_1|W_\ast) - \bar{\alpha}_0 I(X; Y_2|W_\ast) + (\lambda_1 + \lambda_2) I(X; Y_1|W_\ast) - (\lambda_1 + \lambda_2) I(X; Y_2|W_\ast)
\end{align*}
\]

Thus

\[
\begin{align*}
\max_{\langle R_0, R_1, R_2 \rangle \in \Omega_K} \lambda_0 R_0 + \lambda_1 R_1 + (\lambda_1 + \lambda_2) R_2 \\
\leq \alpha_0 \lambda_0 I(W_\ast; Y_1) + \bar{\alpha}_0 I(W_\ast; Y_2) + (\lambda_1 + \lambda_2) I(V_\ast; Y_2|W_\ast) + \lambda_1 I(U_\ast; Y_1|W_\ast) - I(U_\ast; V_\ast|W_\ast)
\end{align*}
\]

Now using Lemma 1 choose \(U_\ast = X_1 + \hat{A} V_\ast \) as before to have

\[
I(X_1; Y_1|V_\ast, W_\ast) = I(U_\ast; Y_1|W_\ast) - I(U_\ast; V_\ast|W_\ast).
\]

Hence

\[
\begin{align*}
\max_{\langle R_0, R_1, R_2 \rangle \in \Omega_K} \lambda_0 R_0 + \lambda_1 R_1 + (\lambda_1 + \lambda_2) R_2 \\
\leq \alpha_0 \lambda_0 I(W_\ast; Y_1) + \bar{\alpha}_0 I(W_\ast; Y_2) + (\lambda_1 + \lambda_2) I(W_\ast; Y_2|W_\ast) + \lambda_1 I(U_\ast; Y_1|W_\ast) - I(U_\ast; V_\ast|W_\ast)
\end{align*}
\]

Since the above holds for all \(\alpha \in [0, 1] \), we have

\[
\max_{\langle R_0, R_1, R_2 \rangle \in \Omega_K} \lambda_0 R_0 + \lambda_1 R_1 + (\lambda_1 + \lambda_2) R_2 \\
\leq \min_{\alpha \in [0, 1]} \max_{\langle U, V, W \rangle \rightarrow X=(Y_1, Y_2)} \alpha \lambda_0 I(W; Y_1) + \bar{\alpha} \lambda_0 I(W; Y_2) + (\lambda_1 + \lambda_2) I(V; Y_2|W) + \lambda_1 I(U; Y_1|W) - \lambda_1 I(U; V|W).
\]

To complete the proof that the inner and outer bounds match we present the following Claim 11 (essentially established in [7]). We will defer the proof of this claim to the Appendix A.2

Claim 11. We claim that

\[
\begin{align*}
\min_{\alpha \in [0, 1]} \max_{\langle U, V, W \rangle \rightarrow X=(Y_1, Y_2)} \alpha \lambda_0 I(W; Y_1) + \bar{\alpha}_0 I(W; Y_2) + (\lambda_1 + \lambda_2) I(V; Y_2|W) + \lambda_1 I(U; Y_1|W) - \lambda_1 I(U; V|W)
\end{align*}
\]

\[
= \min_{\langle U, V, W \rangle \rightarrow X=(Y_1, Y_2)} \lambda_0 \min\{I(W; Y_1), I(W; Y_2)\} + (\lambda_1 + \lambda_2) I(V; Y_2|W) + \lambda_1 I(U; Y_1|W) - \lambda_1 I(U; V|W).
\]

Now using Marton’s inner bound we can always achieve the following triples: \(R_0 = \min\{I(W; Y_1), I(W; Y_2)\} \), \(R_1 = I(U; Y_1|W) - I(U; V|W) \). Hence

\[
\begin{align*}
\max_{\langle R_0, R_1, R_2 \rangle \in \Omega_K} \lambda_0 R_0 + \lambda_1 R_1 + (\lambda_1 + \lambda_2) R_2 \\
\leq \max_{\langle U, V, W \rangle \rightarrow X=(Y_1, Y_2)} \lambda_0 \min\{I(W; Y_1), I(W; Y_2)\} + (\lambda_1 + \lambda_2) I(V; Y_2|W) + \lambda_1 I(U; Y_1|W) - \lambda_1 I(U; V|W)
\end{align*}
\]

Hence Marton’s inner bound and UVW outer bound match and further the boundary is achieved via Gaussian signaling. To get a explicit characterization of the Gaussian signaling region (established as capacity here) please see the region given by equations (2) – (4) in [15].
4 Conclusion

We developed a new method to show the optimality of Gaussian distributions. We illustrated this technique for three examples and computed the capacity region of the two-receiver vector Gaussian broadcast channel with common and private messages. We can see several other problems where this technique can have immediate impact. Some of the mathematical tools and results in the Appendix can also be of independent interest.

Acknowledgement

A lot of this work was motivated by the work on the discrete memoryless broadcast channel; a lot of which was jointly developed with Amin Gohari. The authors are also grateful to Venkat Anantharam, Abbas El Gamal, Amin Gohari, and Young-Han Kim for their comments on early drafts and suggestions on improving the presentation.

The work of Chandra Nair was partially supported by the following grants from the University Grants Committee of the Hong Kong Special Administrative Region, China: a) (Project No. AoE/E-02/08), b) GRF Project 415810. He also acknowledges the support from the Institute of Theoretical Computer Science and Communications (ITCSC) at the Chinese University of Hong Kong.

References

[1] Dennis D Boos, A converse to scheffe’s theorem, Annals of Statistics 13 (1985), no. 1, 423–427.
[2] L.N.H. Bunt, Bijdrage tot de theorie der convexe puntverzamelingen, Ph.D. thesis, Univ. Groningne, Amsterdam, 1934.
[3] M. Costa, Writing on dirty paper (corresp.), Information Theory, IEEE Transactions on 29 (1983), no. 3, 439 –441.
[4] T Cover, Broadcast channels, IEEE Trans. Info. Theory IT-18 (January, 1972), 2–14.
[5] R. Durrett, Probability: Theory and examples, second ed., Duxbury Press, 1996.
[6] Abbas El Gamal and Young-Han Kim, Network information theory, Cambridge University Press, 2012.
[7] Y Geng, A Gohari, C Nair, and Y Yu, The capacity region of classes of product broadcast channels, Proceedings of IEEE International Symposium on Information Theory (2011), 1549–1553.
[8] S. G. Ghurye and Ingram Olkin, A characterization of the multivariate normal distribution, The Annals of Mathematical Statistics 33 (1962), no. 2, pp. 533–541 (English).
[9] Mahesh Godavarti and Alfred O. Hero, Convergence of differential entropies, IEEE Transactions on Information Theory 50 (2004), no. 1, 171–176.
[10] Tie Liu and P. Viswanath, An extremal inequality motivated by multiterminal information-theoretic problems, Information Theory, IEEE Transactions on 53 (2007), no. 5, 1839 –1851.
[11] K Marton, A coding theorem for the discrete memoryless broadcast channel, IEEE Trans. Info. Theory IT-25 (May, 1979), 306–311.
[12] C Nair, A note on outer bounds for broadcast channel, Presented at International Zurich Seminar (2010).
[13] V. Yu Protasov and M. E. Shirokov, Generalized compactness in linear spaces and its applications, MATHEMATICS 200 (2009), no. 5, 697–722.
[14] H. Weingarten, Y. Steinberg, and S. Shamai, The capacity region of the gaussian multiple-input multiple-output broadcast channel, Information Theory, IEEE Transactions on 52 (2006), no. 9, 3936 –3964.
[15] On the capacity region of the multi-antenna broadcast channel with common messages, Information Theory, 2006 IEEE International Symposium on, july 2006, pp. 2195 –2199.
A Some known results

A.1 A characterization of Gaussian distribution

Theorem 3 (Theorem 1 in [8]). Let \(X_1, \ldots, X_n \) be \(n \) mutually independent \(t \)-dimensional random column vectors, and let \(A_1, \ldots, A_n \) and \(B_1, \ldots, B_n \) be non-singular \(t \times t \) matrices. If \(\sum_{i=1}^{n} A_i X_i \) is independent of \(\sum_{i=1}^{n} B_i X_i \), then the \(X_i \) are normally distributed.

Remark 9. In this paper we only use \(A_i, B_i \) as multiples of \(I \). In this case, the theorem follows from an earlier result of Skitovic. There were scalar versions of this known since the 30s, including Bernstein’s theorem. The proof relies on solving the functional equations satisfied by the characteristic functions.

Corollary 3. If \(X_1 \) and \(X_2 \) are zero-mean independent \(t \)-dimensional random column vectors, and if \(X_1 + X_2 \) and \(X_1 - X_2 \) are independent then \(X_1, X_2 \) are normally distributed with identical covariances.

Proof. The fact that \(X_1, X_2 \) are normally distributed follows from Theorem 3. Now observe that \(\text{E}(\langle X_1 + X_2 \rangle \langle X_1 - X_2 \rangle^T) = \text{E}(X_1 + X_2) \text{E}(X_1 - X_2)^T = 0 \). On the other hand

\[
\text{E}(\langle X_1 + X_2 \rangle \langle X_1 - X_2 \rangle^T) = \text{E}(X_1 X_1^T) - \text{E}(X_2 X_2^T).
\]

\qed

A.2 Min-max theorem

We reproduce the following Corollary from the Appendix of [7] (full version can be found in arXiv).

Corollary 4 (Corollary 2 in arXiv version of [7]). Let \(\Lambda_d \) be the \(d \)-dimensional simplex, i.e. \(\alpha_i \geq 0 \) and \(\sum_{i=1}^{d} \alpha_i = 1 \). Let \(P \) be a set of probability distributions \(p(u) \). Let \(T_i(p(u)), i = 1, \ldots, d \) be a set of functions such that the set \(A \), defined by

\[
A = \{(a_1, a_2, \ldots, a_d) \in \mathbb{R}^d : a_i \leq T_i(p(u)) \text{ for some } p(u) \in P\},
\]

is a convex set.

Then

\[
\sup_{p(u) \in P} \min_{\alpha \in \Lambda_d} \sum_{i=1}^{d} \alpha_i T_i(p(u)) = \min_{\alpha \in \Lambda_d} \sup_{p(u) \in P} \sum_{i=1}^{d} \alpha_i T_i(p(u)).
\]

We will now show how one can use the Corollary 4 to establish Claim 11.

Proof of Claim 11

Proof. We take \(P \) as the set of \(p(u, v, w, x) \) that satisfy the covariance constraint. Here we take \(d = 2 \) and set

\[
\begin{align*}
T_1(p(u, v, w, x)) &= \lambda_0 I(W; Y_1) + \lambda_1 I(U; Y_1 | W) + (\lambda_1 + \lambda_2) I(V; Y_2 | W) - \lambda_1 I(U; V | W) \\
T_2(p(u, v, w, x)) &= \lambda_0 I(W; Y_2) + \lambda_1 I(U; Y_2 | W) + (\lambda_1 + \lambda_2) I(V; Y_1 | W) - \lambda_1 I(U; V | W)
\end{align*}
\]

It is clear that the set

\[
A = \{(a_1, a_2) : a_1 \leq T_1(p(u, v, w, x)), a_2 \leq T_2(p(u, v, w, x))\}
\]

is a convex set. (In the standard manner, choose \(\bar{W} = (W, Q) \), and when \(Q = 0 \) choose \((U, V, W, X) \sim p_1(u, v, w, x) \) and \(Q = 1 \) choose \((U, V, W, X) \sim p_2(u, v, w, x) \)). Hence from Corollary 4 we have

\[
\begin{align*}
\min_{\alpha \in [0,1]} \sup_{(U, V, W) \to X \to (Y_1, Y_2)} \alpha \lambda_0 I(W; Y_1) + \alpha \lambda_1 I(W; Y_2) + (\lambda_1 + \lambda_2) I(V; Y_2 | W) + \lambda_1 I(U; Y_1 | W) - \lambda_1 I(U; V | W) \\
&= \sup_{(U, V, W) \to X \to (Y_1, Y_2)} \min_{\alpha \in [0,1]} \alpha \lambda_0 I(W; Y_1) + \alpha \lambda_1 I(W; Y_2) + (\lambda_1 + \lambda_2) I(V; Y_2 | W) + \lambda_1 I(U; Y_1 | W) - \lambda_1 I(U; V | W) \\
&= \sup_{(U, V, W) \to X \to (Y_1, Y_2)} \lambda_0 \min\{I(W; Y_1), I(W; Y_2)\} + (\lambda_1 + \lambda_2) I(V; Y_2 | W) + \lambda_1 I(U; Y_1 | W) - \lambda_1 I(U; V | W).
\end{align*}
\]

\qed
B Existence of maximizing distributions

The aim of this section is to give formal proofs of Claims 6 and 9 as our arguments critically hinge on proving properties of maximizing distributions. Our basic topological space consists of Borel probability measures on \(\mathbb{R}^t \) endowed with the weak-convergence topology. This is a metric space with the Levy-Prokhorov metric defining the distance between two probability measures.

Remark 10. For the proofs in this section, it is not necessary to know the precise definition of the metric; but just that the topological space is a metric space and hence normal. Notation wise, most of the time we use random variables \(X \) instead of the induced probability measure to represent points on this space. We will also try to state the various theorems that we employ in this section as and when we use them.

B.1 Properties of Additive Gaussian noise

In this section, we will establish certain properties of distributions obtained according to \(Y = X + Z \), where \(X \) and \(Z \) are independent and \(Z \sim \mathcal{N}(0, I) \). For simplicity of notation, we consider the scalar case. The authors are confident that these results are known in literature but could not find the relevant sources by a quick Google search.

Let \(\tilde{F}(x) = P(X \leq x) \) (where the inequality is coordinate wise. Note that \(0 \leq \tilde{F}(x) \leq 1 \). Then we see that since \(f_z(z) \) has a density, we have

\[
P(Y \leq y) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \tilde{F}(y - z) dz.
\]

Thus we have

\[
P(Y \leq y + \delta) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \tilde{F}(y + \delta - z) dz = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-(z+\delta)^2/2} \tilde{F}(y - z) dz.
\]

By Dominated convergence theorem stated below (to justify interchange of derivative and integration) \(Y \) has a density given by

\[
f_Y(y) = \lim_{\delta \to 0} \frac{1}{\delta} (P(Y \leq y + \delta) - P(Y \leq y)) = \int_{-\infty}^{\infty} \frac{-z}{\sqrt{2\pi}} e^{-z^2/2} \tilde{F}(y - z) dz.
\]

Hence

\[
|f_Y(y)| \leq \int_{-\infty}^{\infty} \left| \frac{z}{\sqrt{2\pi}} \right| e^{-z^2/2} dz = \frac{2}{\sqrt{2\pi}}.
\]

Again by Dominated convergence theorem we have

\[
f_Y'(y) = \int_{-\infty}^{\infty} \frac{z^2 - 1}{\sqrt{2\pi}} e^{-z^2/2} \tilde{F}(y - z) dz.
\]

Thus

\[
|f_Y'(y)| \leq \int_{-\infty}^{\infty} \frac{|z^2 - 1|}{\sqrt{2\pi}} e^{-z^2/2} dz \leq 2.
\]

Remark 11. Thus \(Y \) has a bounded density and a bounded first derivative of the density. In the vector case, similarly we have a bounded density and a uniformly bounded \(L_1 \) norm for \(\nabla f_Y(y) \).

Next, we state a general lemma which relates weak convergence to convergence of densities.

Lemma 2 (Lemma 1 in [1]). *Suppose that \(Y_n \) and \(Y \) have continuous densities \(f_n(y), f(y) \) with respect to the Lebesgue measure on \(\mathbb{R}^t \). If \(Y_n \Rightarrow Y \) and

\[
\sup_n |f_n(y)| \leq M(y) < \infty, \quad \forall y \in \mathbb{R}^t
\]

and

\[
f_n \text{ is equicontinuous, i.e. } \forall y, \epsilon > 0, \exists \delta(y, \epsilon), n(y, \epsilon)
\]
such that \(|y - y_1| < \delta(y, \epsilon) \) implies that \(|f_n(y) - f_n(y_1)| < \epsilon \forall n \geq n(y, \epsilon) \), then for any compact subset \(C \) of \(\mathbb{R}^l \)

\[
\sup_{y \in C} |f_n(y) - f(y)| \to 0 \text{ as } n \to \infty.
\]

If \(\{f_n\} \) is uniformly equicontinuous, i.e. \(\delta(y, \epsilon), n(y, \epsilon) \) do not depend on \(y \) and \(f(y_n) \) do not change whenever \(|y_n| \to \infty \) then

\[
\sup_{y \in \mathbb{R}^l} |f_n(y) - f(y)| = \|f_n(y) - f(y)\|_{\infty} \to 0 \text{ as } n \to \infty.
\]

Claim 12. Let \(\{X_n\} \) be any sequence of random variables and let \(Y_n = X_n + Z \). Let \(f_n(y) \) represent the density of \(Y_n \). Then the collection of functions \(\{f_n(y)\} \) is uniformly bounded and uniformly equicontinuous.

Proof. The uniform bound on density is clear from Remark 11. To see the uniform equicontinuity observe that by mean value theorem

\[
|f_n(y + \delta) - f_n(y)| = |\nabla f_n(y') \cdot \delta| \leq \|\nabla f_n(y')\|_1 \|\delta\|_2 \leq \sqrt{n} \|\nabla f_n(y')\|_1 \|\delta\|_2
\]

where \((a) \) follows from Holder’s inequality. Now the uniform bound on \(L_1 \) norm of \(\nabla f_Y(y) \) from Remark 11 yields the desired equicontinuity. \(\square \)

Definition 1. A collection of random variables \(X_n \) on \(\mathbb{R}^l \) is said to be tight if for every \(\epsilon > 0 \) there is a compact set \(C_\epsilon \subset \mathbb{R}^l \) such that \(P(X_n \notin C_\epsilon) \leq \epsilon \), \(\forall n. \)

Lemma 3. Consider a sequence of random variables \(\{X_n\} \) such that \(E(X_n X_n^T) \preceq K, \ \forall n. \) Then the sequence is tight.

Proof. Define \(C_{\epsilon} = \{x : \|x\|_2 \leq \frac{tr(K)}{\epsilon}\} \). By Markov’s inequality \(P(\|X_n\|^2 > \frac{tr(K)}{\epsilon}) \leq \frac{E(\|X_n\|^2)}{\frac{tr(K)}{\epsilon}} \leq \epsilon, \ \forall n. \) \(\square \)

Theorem 4 (Prokhorov). If \(\{X_n\} \) is a tight sequence of random variables in \(\mathbb{R}^l \) then there exists a subsequence \(\{X_{n_k}\} \) and a limiting probability distribution \(\xi \), such that \(X_{n_k} \overset{w}{\Rightarrow} \xi. \)

Lemma 4. Let \(X_n \overset{w}{\Rightarrow} X_* \) and let \(Z \sim N(0, I) \) be pairwise independent of \(\{X_n\}, X_* \). Let \(Y_n = X_n + Z, Y_* = X_* + Z \). Further let \(E(X_n X_n^T) \preceq K, E(X_* X_*^T) \preceq K \). Let \(f_n(y) \) denote the density of \(Y_n \) and \(f_*(y) \) denote the density of \(Y_* \). Then

1. \(Y_n \overset{w}{\Rightarrow} Y \)
2. \(f_n(y) \to f_*(y) \) for all \(y \)
3. \(h(Y_n) \to h(Y) \).

Proof. The first part follows from pointwise convergence of characteristic functions (which is equivalent to weak convergence) since \(\Phi_{Y_n}(t) = \Phi_{X_n}(t)e^{-\|t\|^2/2} \). The second part (a stronger claim that weak convergence) comes from Lemma 2. We have uniform equicontinuity since \(\nabla f_n(y) \) has a uniformly bounded \(L_1 \) norm (see Remark 11). Bounded \(L_1 \) norm of \(\nabla f_n(y) \) also implies that \(f_*(y_n) \to 0 \) whenever \(|y_n| \to \infty \) (A reason: if a point has density \(> \epsilon \) then it has a neighbourhood depending only on \(\epsilon \) where the density is bigger than \(\epsilon/2 \), hence this implies that this neighbourhood has a lower bounded probability measure depending only on \(\epsilon \). This cannot happen at infinitely many points of a sequence \(y_n \) such that \(|y_n| \to \infty \). The third part comes from Theorem 5 (below) in a direct manner as the densities are uniformly bounded, the second moment \((\kappa = 2) \) is uniformly bounded by \(tr(K) \), and the pointwise convergence from the second part. \(\square \)

Theorem 5 (Theorem 1 in [2]). Let \(\{Y_i \in \mathbb{C}^l \} \) be a sequence of continuous random variables with pdf’s \(\{f_i\} \) and \(Y_* \) be a continuous random variable with pdf \(f_* \) such that \(f_i \to f_* \) pointwise. Let \(\|y\| = \sqrt{y y^T} \) denote the Euclidean norm of \(y \in \mathbb{C}^l \). If \(1 \) max\{sup \(f_i(y) \), sup \(f_*(y) \)\} \leq F \forall i \) and \(2 \) max\{\int \|y\|^p f_i(y) dy, \int \|y\|^p f_*(y) dy\} \leq L \) for some \(\kappa > 1 \) and for all \(i \) then \(h(Y_i) \to h(Y_*) \).

Remark 12. This theorem is relatively straightforward. One gets \(\lim \inf h(Y_i) \geq h(Y_*) \) coming due to upper bound on densities and \(\lim \sup h(Y_i) \leq h(Y_*) \) due to the moment constraints. Similar kind of result can be found in Appendix 3A of [2].

We now have the tools to prove Claim 6.
Proof of Claim 13

Proof. Define

$$v_\lambda(K) = \sup_{X: E(XX^T) = K} s_\lambda(X).$$

Let X_n be a sequence of random variables such that $E(X_nX_n^T) = K$ and $s_\lambda(X_n) \uparrow v_\lambda(K)$. By the covariance constraint (Lemma 3) we know that the sequence of random variables X_n forms a tight sequence and by Theorem 4 there exists X_K^* and a convergent subsequence such that $X_n \xrightarrow{w} X_K^*$. From Lemma 4 we have that $h(Y_{1n}), h(Y_{2n}) \rightarrow h(Y_{1K}^*), h(Y_{2K}^*)$ and hence $s_\lambda(X_K^*) = v_\lambda(K)$. Thus $V_\lambda(K)$ can be obtained as a convex combination of $s_\lambda(X_K^*)$ subject to the covariance constraint.

It takes $\frac{(t+1)}{2}$ constraints to preserve the covariance matrix and one constraint to preserve $s_\lambda(X|V)$. Hence by Bunt-Carathedory’s theorem we can find a pair of random variables (V_*, X_*) with $|V_*| \leq \frac{t(t+1)}{2} + 1$ such that $V_\lambda(K) = s_\lambda(X_*|V_*)$.

B.2 Continuity in a pathwise sense on concave envelopes

In this section we will establish the validity of Claim 13. For this we need more tools and results from analysis.

Claim 13. For $\lambda > 1$, there exists C_λ such that $s_\lambda(X) \leq C_\lambda$.

Proof. We know from Theorem 1 that if $E(XX^T) \preceq K$ then

$$s_\lambda(X) \leq S_\lambda(X) \leq V_\lambda(K) \leq s_\lambda(X_K^*)$$

for some $X_K^* \sim \mathcal{N}(0, K')$, $K' \preceq K$. This implies that

$$\sup_X s_\lambda(X) \leq \sup_{K \succeq 0: X \sim \mathcal{N}(0, K)} I(X; Y_1) - \lambda I(X; Y_2).$$

Let $\Sigma_i = (G_i^T G_i)^{-1}$, $i = 1, 2$. For $X \sim \mathcal{N}(0, K)$, we have

$$2I(X; Y_1) - 2\lambda I(X; Y_2) = \log |I + G_1 K G_1^T| - \lambda \log |I + G_2 G_2^T|$$

$$= \log |I + K G_1^T G_1| - \lambda \log |I + K G_2^T G_2|$$

$$= - \log |\Sigma_1| + \lambda \log |\Sigma_2| + \log |\Sigma_1 + K| - \lambda \log |\Sigma_2 + K|.$$

To bound the last two terms, we use the min-max theorem on eigenvalues: Let $\mu_j(A)$ be the j-th smallest eigenvalue of symmetric matrix $A \in \mathbb{R}^{t \times t}$. We have

$$\mu_j(A) = \min_{L_j} \max_{0 \neq u \in L_j} \frac{u^T A u}{u^T u} = \max_{L_{i+j}, 0 \neq u \in L_{i+j}} \min_{0 \neq u \in L_{i+j}} \frac{u^T A u}{u^T u},$$

where L_j is a j dimensional subspace of \mathbb{R}^t. From this theorem we have

$$\mu_j(K) + \mu_1(\Sigma) \leq \mu_j(K + \Sigma) \leq \mu_j(K) + \mu_1(\Sigma), \quad j = 1, 2, \ldots, t.$$

Hence

$$\log |\Sigma_1 + K| - \lambda \log |\Sigma_2 + K| = \sum_{j=1}^{t} \log \frac{\mu_j(K + \Sigma_1)}{(\mu_j(K + \Sigma_2))^\lambda} \leq \sum_{j=1}^{t} \log \frac{\mu_j(K) + \mu_1(\Sigma_1)}{(\mu_j(K) + \mu_1(\Sigma_2))^\lambda} \leq t \cdot \log \frac{\mu^* + \mu_1(\Sigma_1)}{(\mu^* + \mu_1(\Sigma_2))^\lambda},$$

where $\mu^* = \max\{0, \frac{1}{\lambda}(\mu_1(\Sigma_2) - \lambda \mu_1(\Sigma_1))\}$.

3We need to use Bunt’s extension of Caratheodory’s theorem as we no longer have compactness of the set required for the usually referred extension due to Fenchel. We can also use vanilla Caratheodory at the expense of one extra cardinality.
For $m \in \mathbb{N}$ the set $A_m := \{ X : \text{E}([X]^2) \leq m \}$ is a closed subset of the topology space. This is because if $X_n \overset{w}{\to} X$, then $\text{E}([X_n]^2) \leq \liminf_n \text{E}([X_n]^2)$ (by definition of weak convergence and monotone convergence theorem by considering continuous and bounded functions $f_n(x) = \min\{x^2, n\}$).

We defined $S_\lambda(X) = \mathcal{C}(s_\lambda(X)) = \sup_{V \to X \sim (Y, \bar{Y})} s_\lambda(X|V)$. Taking $V = X$ we observe that $S_\lambda(X) \geq 0$. Define $\bar{s}_\lambda(X) = \max\{s_\lambda(X), 0\}$. Now note that $S_\lambda(X) = \mathcal{C}(\bar{s}_\lambda(X))$, since $S_\lambda(X) \geq 0$.

Let $S^m_\lambda(X)$ be $\bar{s}_\lambda(X)$ restricted to A_m. Let $S^m_\lambda(X)$ be the continuous extension of $\bar{s}_\lambda(X)$ from A_m on to \mathcal{P}. This exists due to Tietze Extension Theorem (produced below).

Theorem 7. Tietze Extension Theorem. Let A be a closed subset in a normal topological space, then every continuous map $f : A \to \mathbb{R}$ can be extended to a continuous map on the whole space.

Consider a sequence $X_n \in A_m$ such that $X_n \overset{w}{\to} X_*$. Since the second moments are uniformly bounded, similar arguments as in Claim[3] will imply that $S^m_\lambda(X_n) \to S^m_\lambda(X_*)$. Further observe that the function $\bar{s}_\lambda(X)$ is bounded and non-negative since $\bar{s}_\lambda(X)$ is bounded (above by C_λ and non-negative).

The following result follows from a recent result in [13]. The convex hull of a function $f(X)$ is the lower convex envelope, or equivalently $-\mathcal{C}(-f(X))$, where $\mathcal{C}(\cdot)$ is the upper concave envelope used in this article.

Theorem 7. For the set of Borel probability measures on \mathbb{R}^d endowed with the weak-convergence topology, the convex hull of an arbitrary bounded and continuous function is continuous.

Proof. This theorem is obtained directly from Corollary 5 and Theorem 1 in [13].

An immediate corollary which follows from the fact that convex hull of $f(X) \equiv -\mathcal{C}(-f(X))$ is the following:

Corollary 5. For the set of Borel probability measures on \mathbb{R}^d endowed with the weak-convergence topology, the upper concave envelope of an arbitrary bounded and continuous function is continuous.

Now define $S^m_\lambda(X)$ to be concave envelope of $s^m_\lambda(X)$. From Corollary[3] we have that $S^m_\lambda(X)$ is continuous; Further since $s^m_\lambda(X)$ is bounded and non-negative, so is $S^m_\lambda(X)$. Continuity in particular implies that

$$\text{if } X_n \overset{w}{\to} X_*, \text{ then } S^m_\lambda(X_n) \to S^m_\lambda(X_*) \quad (1)$$

Claim 14 (Continuity in a pathwise sense). If $X_n \overset{w}{\to} X_*$ and $E(X_nX_n^T), E(X_*X_*^T) \leq K$, then $S_\lambda(X_n) \to S_\lambda(X_*)$.

Proof. The proof is essentially validating the interchange of limits between m, n in (1). We show a uniform convergence (in m) of $S^m_\lambda(X_n) \to S_\lambda(X_*)$ and this suffices to justify the interchange as follows: Given $\epsilon > 0$ choose $M_\epsilon > 0$ such that $|S_\lambda(X_n) - S^m_\lambda(X_n)| < \epsilon$ whenever $m \geq M_\epsilon$ (such an M_ϵ exists by uniform convergence). This implies that $\forall m \geq M_\epsilon$ we have

$$S_\lambda(X_n) \leq S^m_\lambda(X_n) + \epsilon, \limsup_n S_\lambda(X_n) \leq S^m_\lambda(X_*) + \epsilon, \liminf_n S_\lambda(X_n) \geq S^m_\lambda(X_*) - \epsilon.$$

Similarly $\forall m \geq M_\epsilon$

$$S^m_\lambda(X_n) \geq S_\lambda(X_n) - \epsilon, \limsup_n S^m_\lambda(X_n) \geq S^m_\lambda(X_*) - \epsilon, \liminf_n S^m_\lambda(X_n) \geq S^m_\lambda(X_*) - \epsilon.$$

Hence $S_\lambda(X_n) \to S_\lambda(X_*)$ provided we show the uniform convergence (in m) of $S^m_\lambda(X_n) \to S_\lambda(X_n)$. Given $\epsilon > 0$ consider a V such that $S_\lambda(X_n) \leq s_\lambda(X_n|V) + \frac{\epsilon}{4}$. Observe that V induces a probability measure on the space of all probability measures. We now bound the induced probability measure on distributions such that $E([X]^2) \geq m$. Since $E([X]^2) \leq tr(K)$, from Markov’s inequality the mass of the induced measure on the probability measures such that $E([X]^2) \geq m$ is at most $\frac{tr(K)}{m}$. Hence their contribution to $s_\lambda(X_n|V)$ is at most $\frac{C_\lambda tr(K)}{m}$, where C_λ is the global upper bound on $s_\lambda(X)$. Thus by taking m large enough we can make this smaller than $\frac{\epsilon}{4}$. Hence

$$S^m_\lambda(X_n) \geq s^m_\lambda(X_n|V) \geq s_\lambda(X_n|V) - \frac{\epsilon}{4} \geq S_\lambda(X_n) - \frac{\epsilon}{2}.$$

Similar argument (taking V' such that $S^m_\lambda(X_n) \leq s^m_\lambda(X_n|V') + \frac{\epsilon}{4}$) also shows that $S_\lambda(X_n) \geq S^m_\lambda(X_n) - \frac{\epsilon}{2}$. Hence for all $m > \frac{4C_\lambda tr(K)}{\epsilon}$ we have that $|S_\lambda(X_n) - S^m_\lambda(X_n)| \leq \epsilon$ uniformly in n as desired.

We now have the tools to prove Claim[3].
Proof of Claim 9

Proof. From Claim 12 and using similar arguments as in the proof of Claim 8 we see that \(\hat{V}_\lambda(K) \) can be obtained as a convex combination of \(t_\lambda(X_n^\kappa) \) subject to the covariance constraint. It takes \(\frac{t(t+1)}{2} \) constraints to preserve the covariance matrix and one constraint to preserve \(t_\lambda(X|W) \). Hence by Bunt-Caratheodory’s theorem we can find a pair of random variables \((W_s, X_s)\) with \(|W_s| \leq \frac{t(t+1)}{2} + 1 \) such that \(\hat{V}_\lambda(K) = t_\lambda(X_s|W_s) \).

Indeed the proof technique we used carries over almost verbatim to establish this general lemma, which could be useful in other multi-terminal situations.

Lemma 5. Consider the space of all Borel probability distributions on \(\mathbb{R}^t \) endowed with the topology induced by weak convergence. If \(f(X) \) is a bounded real-valued function with the following property, \(P \): for any sequence \(\{X_n\} \) that satisfies the two properties (i) \(\exists \kappa > 1, s/t \ E(|X_n|^\kappa) \leq B \forall n \) (i.e. sequence has a uniformly bounded \(\kappa \)-th moment) and (ii) \(X_n \Rightarrow X_n \), we have \(f(X_n) \rightarrow f(X) \); then the same properties holds for \(F(X) = C(f(X)) \), its upper concave envelope; i.e. \(F(X) \) is bounded and satisfies \(P \).

Proof. The boundedness of \(F(X) \) is immediate. To show that \(F(X) \) satisfies property \(P \), we use the same argument as earlier. Consider a sequence \(\{X_n\} \) with a uniformly bounded \(\kappa \)-th moment such that \(X_n \Rightarrow X_n \). First, restrict \(f \) to \(A_m \) (set of all distributions whose \(\kappa \)-th moment is upper bounded by \(m \)) and observe that this induces a continuous (by property \(P \) of \(f \)) and bounded function on the topology induced by weak convergence) from this closed set, \(A_m \), to reals. Now we extend this restricted function by the Tietze extension theorem to obtain \(f^m(X) \), a continuous and bounded function on the whole space. Then from Corollary 3 we see that the concave envelope of \(f^m(X) \), denoted by \(F^m(X) \) is bounded and continuous. Finally one can establish a uniform convergence (in \(n \)) of \(F^m(X_n) \rightarrow F(X_n) \) and hence conclude that \(F(X_n) \rightarrow F(X) \).

C Alternate path to Theorem I

Below, we will give an elementary proof of Theorem 1 without invoking Corollary 3.

Corollary 6. For every \(l \in \mathbb{N}, n = 2^l \), let \((V^n, X^n) \sim \prod_{i=1}^n p_s(V_i, X_i)\). Then \(\hat{V}, X_n \) achieves \(V_\lambda(K) \) where \(\hat{V} = (V_1, V_2, \ldots, V_n) \) and \(X_n \) is \(\frac{1}{\sqrt{n}} (x_1 + x_2 + \cdots + x_n) \). We take \(X_{v_1}, X_{v_2}, \ldots, X_{v_m} \) to be independent random variables here.

Proof. The proof follows from induction using Claim 7.

Consider \((V^n, X^n) \sim \prod_{i=1}^n p_s(V_i, X_i)\), where \(p_s(v, x) \) achieves \(V_\lambda(K) \). Let \(V = \{1, \ldots, m\} \) where \(m \leq \frac{t(t+1)}{2} + 1 \). Now consider \((V^n, X_n) \) where \(X_n \) is \(\frac{1}{\sqrt{n}} (x_1 + x_2 + \cdots + x_n) \). Again we take \(X_{v_1}, X_{v_2}, \ldots, X_{v_m} \) to be independent random variables.

As is common in information theoretic arguments, we are going to consider typical sequences and atypical sequences. Let us define typical sequences in the following fashion:

\[
T^{(n)}(V) := \{ v^n : \|\{i : v_i = v\} - np_s(v)\| \leq n\omega_\kappa p_s(v), \ \forall v \in \{1 : m\} \}
\]

where \(\omega_\kappa \) is any sequence such that \(\omega_\kappa \rightarrow 0 \) as \(n \rightarrow \infty \) and \(\omega_\kappa \sqrt{n} \rightarrow \infty \) as \(n \rightarrow \infty \). For instance \(\omega_\kappa = \frac{\log n}{\sqrt{n}} \).

Note that (using Chebychev’s inequality)

\[
P(\|\{i : v_i = v\} - np_s(v)\| > n\omega_\kappa p_s(v)) \leq \frac{1 - p_s(v)}{p_s(v)\omega_\kappa^2 n}.
\]

Hence \(P(v^n \notin T^{(n)}(V)) \rightarrow 0 \) as \(n \rightarrow \infty \).

Consider any sequence of typical sequences \(v^n \in T^{(n)}(V) \). Consider a sequence of induced distributions \(\hat{X}_n \sim \hat{X}_n|v^n \).

Claim 15. \(\hat{X}_n \Rightarrow \mathcal{N}(0, \sum_{v=1}^m p_s(v)K_v) \)
Proof. For given v^n, let $A_n(v) = |\{i : v_i = v\}|$. We know that $A_n(v) \in np_* (v) (1 \pm w_n), \forall v$. Consider a $c \in \mathbb{R}^l$ with $\|c\| = 1$. Let $\tilde{X}_{n,i}^c \sim \frac{1}{\sqrt{n}} c^T \cdot X_{v_i}$ and $\tilde{X}_{n,i}^c$ be independent random variables. Note that $\sum_{i=1}^n \tilde{X}_{n,i}^c \sim c^T \tilde{X}_n$.

Note that
\[
\sum_{i=1}^n E((\tilde{X}_{n,i}^c)^2) = \frac{1}{n} \sum_{v} A_n(v) c^T K_v c \to c^T \left(\sum_{v} p_*(v) K_v \right) c.
\]
\[
\sum_{i=1}^n E((\tilde{X}_{n,i}^c)^2 | \tilde{X}_{n,i}^c) > \epsilon_1) = \frac{1}{n} \sum_{v} A_n(v) E(\epsilon^T \tilde{X}_n, X_{\epsilon}^T c; c^T \tilde{X}_n, X_{\epsilon}^T c \geq n \epsilon_1^2) \leq \sum_{v} p_*(v) (1 + \omega_n) E(\epsilon^T \tilde{X}_n, X_{\epsilon}^T c; c^T \tilde{X}_n, X_{\epsilon}^T c \geq n \epsilon_1^2) \to 0.
\]

In the last convergence we used that K_v‘s are bounded, and hence $c^T \tilde{X}_v$ has a bounded seconded moment. Hence from Lindedeberg-Feller CLT\footnote{We adopt the notation in Theorem (4.5), Chapter 2 in [5].} we have $\sum_{i=1}^n \tilde{X}_{n,i}^c \to \mathcal{N}(0, c^T \sum_{v} p_*(v) K_v c)$. Hence $\tilde{X}_n \to \mathcal{N}(0, \sum_{v} p_*(v) K_v)$ (Cramer-Wold device).

The next claim shows a uniform convergence of the conditional laws to the Gaussian.

Claim 16. Given any $\delta > 0$, there exists N_0 such that $\forall n > N_0$ we have for all $v^n \in T(n)(V)$
\[
s_\lambda(\tilde{X}_n | v^n) - s_\lambda(X^*) \leq \delta,
\]
where $X^* \sim \mathcal{N}(0, \sum_{v} p_*(v) K_v)$.

Proof. Assume not. Then we have a subsequence $v^{nk} \in T(nk)(V)$ and distributions $\tilde{X}_{nk} | v^{nk}$ such that
\[
s_\lambda(\tilde{X}_{nk} | v^{nk}) > s_\lambda(X^*) + \delta, \forall k.
\]
However from Claim 16 we know that $\tilde{X}_{nk} | v^{nk} \overset{w}{\to} X^*$ and from Lemma 4 we have $s_\lambda(\tilde{X}_{nk} | v^{nk}) \to s_\lambda(X^*)$, a contradiction.

Theorem 8. There is a single Gaussian distribution (i.e. no mixture is required) that achieves $V_\lambda(K)$.

Proof. We know from Corollary\footnote{We adopt the notation in Theorem (4.5), Chapter 2 in [5].} that For every $l \in \mathbb{N}$, $n = 2^l$, the pair V^n, \tilde{X}_n achieves $V_\lambda(K)$. Hence
\[
V_\lambda(K) = \sum_{v^n} p_*(v^n) s_\lambda(\tilde{X}_n | v^n) = \sum_{v^n \in T(n)(V)} p_*(v^n) s_\lambda(\tilde{X}_n | v^n) + \sum_{v^n \not\in T(n)(V)} p_*(v^n) s_\lambda(\tilde{X}_n | v^n).
\]
For a given v^n, let $\tilde{X} \sim X_n | v^n$. Then note that $E(\tilde{X}X^T) \preceq \sum_{v \in V} K_v$. Thus $s_\lambda(\tilde{X}) \leq I(\tilde{X}; Y_1) \leq C$ for some fixed constant C that is independent of v^n. Thus using Claim 16 we can upper bound $V_\lambda(K)$ for large n by
\[
V_\lambda(K) = \sum_{v^n \in T(n)(V)} p_*(v^n) s_\lambda(\tilde{X}_n | v^n) + \sum_{v^n \not\in T(n)(V)} p_*(v^n) s_\lambda(\tilde{X}_n | v^n)
\leq \sum_{v^n \in T(n)(V)} p_*(v^n) (s_\lambda(X^*) + \delta) + C \sum_{v^n \not\in T(n)(V)} p_*(v^n)
= P(v^n \in T(n)(V)) (s_\lambda(X^*) + \delta) + C P(v^n \not\in T(n)(V)).
\]
Here $X^* \sim \mathcal{N}(0, \sum_{v} p_*(v) K_v)$. Since $P(v^n \in T(n)) \to 1$ as $n \to \infty$ we get $V_\lambda(K) \leq s_\lambda(X^*) + \delta$; but $\delta > 0$ is arbitrary, hence $V_\lambda(K) \leq s_\lambda(X^*)$. The other direction $V_\lambda(K) \leq s_\lambda(X^*)$ is trivial from the definition of $V_\lambda(K)$ and the fact that $\sum_{v} p_*(v) K_v \leq K$.