BAYESCAS AS AN UNCERTAINTY AWARE VERSION OF CG∗
TIM W. REID†, ILSE C. F. IPSEN†, JON COCKAYNE‡, AND CHRIS J. OATES§

Abstract. The Bayesian Conjugate Gradient method (BayesCG) is a probabilistic generalization of the Conjugate Gradient method (CG) for solving linear systems with real symmetric positive definite coefficient matrices. Our CG-based implementation of BayesCG under a structure-exploiting prior distribution represents an ‘uncertainty-aware’ version of CG. Its output consists of CG iterates and posterior covariances that can be propagated to subsequent computations. The covariances have low-rank and are maintained in factored form. This allows easy generation of accurate samples to probe uncertainty in downstream computations. Numerical experiments confirm the effectiveness of the low-rank posterior covariances.

Key words. Symmetric positive semi-definite matrix, Krylov space method, Gaussian probability distribution, Bayesian inference, covariance matrix, mean, Moore-Penrose inverse, projectors in semi-definite inner products

AMS subject classifications. 65F10, 62F15, 65F50, 15A06, 15A10

1. Introduction. The solution of linear systems

\[Ax = b, \]

with symmetric positive definite coefficient matrix \(A \in \mathbb{R}^{n \times n} \) is an important problem in computational science and engineering. For large and sparse matrices \(A \), the preferred solver is the Conjugate Gradient method (CG) [26, 31]. This is a Krylov subspace method that, starting from a user-specified initial guess \(x_0 \), produces iterates \(x_m \) that, the user hopes, ultimately converge to the solution \(x^* \). In practice, CG is terminated early, once the residual \(\| b - Ax_m \| \) is sufficiently small in some norm. Early termination introduces a source of uncertainty since the solution \(x^* \) has not been exactly computed.

We seek to create an ‘uncertainty aware’ version of CG that models the uncertainty in our knowledge of \(x^* \) due to early termination. From the UQ perspective, this represents an instance of model discrepancy with epistemic uncertainties. Our motivation is to understand how the accuracy of the CG output \(x_m \) affects downstream computations in a computational pipeline [12, Section 5], [25], that is, sequences of computations where the output of one computation is the input to another [7, 23, 40, 43, 44]. Traditional normwise CG error estimates are inadequate, because subsequent computations may not be able to make effective use of them. In contrast, a probabilistic model of the uncertainty, in the form of a distribution, can be propagated so that downstream computations can sample from the distribution to probe the effect of uncertainty on their own computations.

This is the mission of probabilistic numerics1: Modelling the uncertainty in de-
terministic computations with a probabilistic treatment of the errors [25, 42]. The
origins of probabilistic numerics can be traced back to Poincaré [42], while a rigorous modern perspective is established in [12]. Probabilistic numerical methods have been developed for Bayesian optimization [38], subsequently applied to hyperparameter optimization in machine learning [46]; numerical integration [4, 14, 29], sparse Cholesky decompositions [45], and solution of ordinary and partial differential equations [8, 34, 41, 52].

In the context of linear solvers, probabilistic solvers posit a prior distribution representing initial epistemic uncertainty about a quantity of interest, which can be the solution [1, 7, 9, 53] or the matrix inverse [1, 2, 24]. They then condition on the finite amount of information obtained during \(m \) iterations to produce a posterior distribution that reflects the reduced uncertainty [9, Section 1.2], [42]. The interpretation of CG as a probabilistic solver was pioneered in the context of optimization [24], followed by the development of the Bayesian Conjugate Gradient method (BayesCG) [9] as a general purpose solver in statistics. However, current versions of BayesCG have two drawbacks: they are computationally expensive; and their posterior distributions do not model the uncertainty accurately.

1.1. Contributions and outline. We propose an efficient uncertainty-aware CG implementation in the form of BayesCG (Algorithm 3.1), and establish its proper foundation within probabilistic numerics (sections 2 and 3).

We design a new Krylov prior distribution for BayesCG, which is motivated by the Krylov subspace prior [9, section 4.1], which is a non-singular structured prior based on Krylov spaces, whose posterior distributions are expensive and not always meaningful. In contrast, our new Krylov prior is generally singular, depends on quantities computed by CG, and produces low-rank posteriors that lend themselves to efficient sampling in downstream computations. We proceed in two steps.

1. Extension of BayesCG to singular prior covariances (section 2).
 We show that under reasonable assumptions, the theoretical and computational properties of BayesCG from [9] extend to prior covariances that are singular. This extension to singular priors paves the way for an efficient BayesCG implementation that produces meaningful posteriors. Auxiliary results and technical proofs are postponed to the end (Appendices A and B).

2. Introduction of the new Krylov prior and its properties (section 3).
 This singular prior covariance exploits structure and adapts to BayesCG, with posteriors whose means are identical to the corresponding CG iterates, and whose covariances describe a realistic level of uncertainty. The posterior covariances are maintained in factored form, and are therefore highly accurate and easy to approximate, as confirmed by numerical experiments (section 4).

1.2. Notation. Bold uppercase letters, like \(\mathbf{A} \), represent matrices, with \(\mathbf{I} \) denoting the identity. The Moore-Penrose inverse of \(\mathbf{A} \) is \(\mathbf{A}^\dagger \). Bold lowercase letters, like \(\mathbf{x}_n \), represent vectors; italic lowercase letters, like \(\alpha \), scalars; and italic uppercase letters, like \(\mathbf{X}_0 \), random variables. A multivariate Gaussian distribution with mean \(\mathbf{x} \) and covariance \(\Sigma \) is denoted by \(\mathcal{N}(\mathbf{x}, \Sigma) \), and \(\mathbf{X} \sim \mathcal{N}(\mathbf{x}, \Sigma) \) is a Gaussian random variable. We assume exact arithmetic throughout the theoretical sections 2 and 3.

2. Introduction to BayesCG with singular priors. We extend the applicability of BayesCG from definite to semi-definite prior covariances, and discuss the theory (section 2.1), recursive computation of posterior distributions (section 2.2), and choices for prior distributions (section 2.3).
2.1. Theoretical properties of BayesCG under singular priors. We derive expressions for the BayesCG posterior means and covariances under singular priors (Theorem 2.1), express the posteriors in terms of projectors (Theorem 2.4), and establish the optimality of the posterior means (Theorem 2.6). The proofs are analogous to earlier proofs for non-singular priors in [1, 9], and relegated to Appendix A and the supplement.

BayesCG computes posterior distributions $N(x_m, \Sigma_m)$ by conditioning the prior $N(x_0, \Sigma_0)$ on information from $m \leq n$ linearly independent search directions S_m. Specifically, the posterior is the distribution of the random variable $X \sim N(x_0, \Sigma_0)$ conditioned on the random variable $Y = S^T_m A X$ taking the value $S^T_m A x^*$. The conditioning relies on two properties of Gaussian distributions:

(i) Stability: linear transformations of Gaussians remain Gaussian [39, Section 1.2].

(ii) Conjugacy: posteriors from Gaussian priors conditioned under linear information remain Gaussian [51, Theorem 6.20].

We start with the extension of BayesCG to singular priors.

Theorem 2.1 (Extension of [9, Proposition 1]). Let $N(x_0, \Sigma_0)$ be a prior with a symmetric positive semi-definite covariance $\Sigma_0 \in \mathbb{R}^{n \times n}$. Let $m \leq \text{rank}(\Sigma_0)$, and let the matrix of search directions $S_m \equiv [s_1 \cdots s_m] \in \mathbb{R}^{n \times m}$ have linearly independent columns so that $\Lambda_m \equiv S^T_m A \Sigma_0 A S_m$ is non-singular. Then the BayesCG posterior $N(x_m, \Sigma_m)$ has mean and covariance

\begin{align}
 x_m &= x_0 + \Sigma_0 A S_m \Lambda_m^{-1} S^T_m (b - A x_0) \\
 \Sigma_m &= \Sigma_0 - \Sigma_0 A S_m \Lambda_m^{-1} S^T_m A \Sigma_0
\end{align}

Proof. See supplement. □

Remark 2.2. Theorem 2.1 requires the existence of search directions that produce a nonsingular Λ_m, and the purpose this theorem is to derive an expression for how to compute the posterior distribution resulting from any valid set of search directions. Section 2.2 presents the recursive computation of search directions that make Λ_m nonsingular, while the supplement presents an example of a non-recursive construction.

Next we derive explicit expressions for the posterior covariances in terms of orthogonal projectors onto $\text{range}(\Sigma_0 A S_m)$. To this end we exploit the close relation between Gaussian conditioning and orthogonal projections [1, Section 3]; and generalize the notion of projector [48, page 111] to semi-definite inner products to allow for singular priors Σ_0.

Definition 2.3 ([28, section 0.6.1]). Let $B \in \mathbb{R}^{n \times n}$ be symmetric positive semi-definite, and $P \in \mathbb{R}^{n \times n}$. If $P^2 = P$ and $(BP)^T = BP$, then P is a B-orthogonal projector, with $(I - P)^T BP = 0$.

Now we are ready to express the posterior distributions in Theorem 2.1 in terms of Σ_0^\dagger-orthogonal projectors.

Theorem 2.4 (Extension of [10, Proposition 3]). Under the assumptions of Theorem 2.1

\begin{equation}
 P_m \equiv \Sigma_0 A S_m \Lambda_m^{-1} S^T_m A \Sigma_0^\dagger
\end{equation}

is a Σ_0^\dagger-orthogonal projector onto $K_m \equiv \text{range}(\Sigma_0 A S_m)$.

If additionally $x_* - x_0 \in \text{range}(\Sigma_0)$, then the posterior satisfies
\[
x_m = (I - P_m)x_0 + P_m x_* \\
\Sigma_m = (I - P_m)\Sigma_0, \quad P_m \Sigma_m = 0.
\]

Proof. See Appendix A. \]

Theorem 2.4 expresses the posterior mean x_m as the sum of two projections: the projection of the solution x_* onto range(P_m), and the projection of the prior mean x_0 onto the complementary space range(P_m)$. As for the posterior covariance Σ_m, it is the projection of the prior covariance Σ_0 onto the complementary space range(P_m)$.

Remark 2.5. Theorem 2.4 implies that $P_m x_m = P_m x_*$ and $P_m \Sigma_m P_m^T = 0$. As a consequence, if $X \sim N(x_m, \Sigma_m)$, then the distribution of $P_m (X - x_*)$ is Gaussian with mean $P_m x_m - P_m x_* = 0$ and covariance $P_m \Sigma_m P_m^T = 0$. Thus, within range(P_m), there is no uncertainty in our knowledge of x_*. We can interpret the posterior as a conjecture about the unknown location of x_* in the complementary subspace range(P_m)$.

Theorem 2.4 implies the following optimality for the posterior mean: It is the vector closest to the solution x_* in the affine space $x_0 + K_m$, with K_m as in Theorem 2.1.

Theorem 2.6 (Extension of [1, Proposition 4]). Under all the assumptions of Theorem 2.4, the posterior mean satisfies
\[
x_m = \arg\min_{x \in x_0 + K_m} (x_* - x)^T \Sigma_0^i (x_* - x).
\]

Additionally, $(x_* - x_m)^T \Sigma_0^i (x_* - x_m) = 0$ if and only if $x_m = x_*$.

Proof. See Appendix A. \]

Theorems 2.1, 2.4, and 2.6 assume that the search directions are chosen so that Λ_m is non-singular. The additional assumption $x_* - x_0 \in \text{range}(\Sigma_0)$ in Theorems 2.4 and 2.6 guarantees this nonsingularity for the specific search directions computed by BayesCG, as will be shown in Theorem 2.11.

2.2. Recursive computation of BayesCG posteriors under singular priors. We extend the recursions for posterior distributions under nonsingular prior covariances in [9] to singular ones, and present three results for the efficient implementation of BayesCG: New recursions for the posterior covariances (Theorem 2.7) and the search directions (Theorem 2.8); and a proof that the search directions are well-defined (Theorem 2.11).

The residuals of the posterior means are defined as
\[
r_m \equiv b - A x_m, \quad 0 \leq m.
\]

Theorem 2.7 (Extension of Proposition 6 in [9]). Under the assumptions of Theorem 2.1 if, in addition, the search directions S_m are $A \Sigma_0 A$-orthogonal, then the posterior means and covariances admit the recursions
\[
x_j = x_{j-1} + \frac{\Sigma_0 A s_j}{s_j^T A \Sigma_0 A s_j} \left(s_j^T r_{j-1} \right), \quad 1 \leq j \leq m,
\]
and
\[
\Sigma_j = \Sigma_{j-1} - \frac{\Sigma_0 A s_j (\Sigma_0 A s_j)^T}{s_j^T A \Sigma_0 A s_j}, \quad 1 \leq j \leq m.
\]
The denominators $(\Lambda_m)_{jj} = s_j^T A \Sigma_0 A s_j$ in (2.6) and (2.7) are non-zero because Theorem 2.1 assumes that Λ_m is non-singular.

Next is a Lanczos-like recurrence for the $A \Sigma_0 A$-orthogonal search directions from [9, Proposition 7].

Theorem 2.8 ([9, Proposition 7] and [11, Proof of Proposition 7, Proposition S4, and Section S2]). *If the search directions*

\begin{equation}
(2.8) \quad s_1 = r_0 \neq 0, \quad s_j = r_{j-1} - \frac{r_{j-1}^T r_{j-1}}{r_{j-2}^T r_{j-2}} s_{j-1}, \quad 2 \leq j \leq m,
\end{equation}

satisfy the assumptions of Theorem 2.1, then they are an $A \Sigma_0 A$-orthogonal basis for the Krylov space

\begin{equation}
(2.9) \quad K_m(A \Sigma_0 A, r_0) \equiv \text{span}\{r_0, A \Sigma_0 A r_0, \ldots, (A \Sigma_0 A)^{m-1} r_0\},
\end{equation}

while the residuals r_0, \ldots, r_{m-1} are an orthogonal basis for $K_m(A \Sigma_0 A, r_0)$.

The maximal number of search directions in (2.8) can be less than n, because they are a basis for the Krylov subspace $K_m(A \Sigma_0 A, r_0)$ whose maximal dimension can be less than n.

Definition 2.9 (Section 2 in [3], Definition 4.2.1 in [31]). *Let $B \in \mathbb{R}^{n \times n}$ be symmetric positive semi-definite and let $w \in \mathbb{R}^n$ be a non-zero vector. The grade of w with respect to B, or the invariance index for (B, w) is the maximal dimension $1 \leq K \leq n$ of the Krylov space,*

\[K_K(B, w) = K_{K+i}(B, w), \quad i \geq 1. \]

Remark 2.10. *In Theorem 2.8, if K is the grade of r_0 with respect to $A \Sigma_0 A$, then $s_{K+1} = 0$, $r_K = 0$, while $s_j \neq 0$ and $r_{j-1} \neq 0$ for $1 \leq j \leq K$. Additionally, $K \leq \text{rank}(\Sigma_0)$.*

In the following theorem, we show that with the additional assumption that $x_* - x_0 \in \text{range}(\Sigma_0)$, the $A \Sigma_0 A$-orthogonal search directions from Theorem 2.8 satisfy the assumptions of Theorem 2.1.

Theorem 2.11. *Let $N(x_0, \Sigma_0)$ be a prior with symmetric positive semi-definite $\Sigma_0 \in \mathbb{R}^{n \times n}$, K the grade of r_0 with respect to $A \Sigma_0 A$, and $m \leq K$. If $x_* - x_0 \in \text{range}(\Sigma_0)$, then the search directions from Theorem 2.1 produce a nonsingular Λ_m, and S_m is $A \Sigma_0 A$-orthogonal.*

Proof. Recursive computation of the BayesCG posteriors requires the search directions $S_m = [s_1 \cdots s_m]$ to be $A \Sigma_0 A$-orthogonal, so that $\Lambda_m = S_m^T A \Sigma_0 A S_m$ is diagonal [9, Section 2.3]. Furthermore, if $s_j \notin \text{ker}(\Sigma_0 A)$, $1 \leq j \leq m$, then Λ_m has non-zero diagonal elements and is nonsingular.

In the following induction proof we show that the search directions are $A \Sigma_0 A$-orthogonal and that $s_i \notin \text{ker}(\Sigma_0 A)$ and $s_i \neq 0$, $1 \leq i \leq m$. Since A and Σ_0 are symmetric, $\text{ker}(\Sigma_0 A) = \text{ker}(\Sigma_0 A^T) = \text{ker}(((A \Sigma_0)^T)^T)$ is the orthogonal complement of $\text{range}(A \Sigma_0)$ in \mathbb{R}^n. Therefore, we can show $s_i \notin \text{ker}(\Sigma_0 A)$ by showing $s_i \in \text{range}(A \Sigma_0)$ and $s_i \neq 0$, $1 \leq i \leq m$.

By assumption $m \leq K$, so Remark 2.10 implies $r_i \neq 0$, $1 \leq i \leq m - 1$.

Proof. See Appendix A.
Induction basis. The assumption \(x^* - x_0 \in \text{range}(\Sigma_0) \) implies
\[
r_0 = b - Ax_0 = A(x^* - x_0) \in \text{range}(A\Sigma_0).
\]
Thus \(s_1 = r_0 \in \text{range}(A\Sigma_0) \), and \(r_0 \neq 0 \) by assumption. Thus \(s_1 \neq 0 \), \(s_1 \notin \ker(\Sigma_0 A) \), and \(\Lambda_1 = s_1^T A\Sigma_0 A s_1 \neq 0 \).

Induction hypothesis. Assume that \(s_i, r_i \in \text{range}(A\Sigma_0) \), \(s_i, r_i \neq 0 \), and \(\Lambda_i \) is nonsingular, \(1 \leq i \leq m - 1 \). This, along with Theorem 2.8 implies that \(s_1, \ldots, s_{m-1} \) are \(A\Sigma_0 A \)-orthogonal so that \(\Lambda_{m-1} \) is a diagonal matrix.

Induction step. Applying the induction hypothesis \(s_{m-1}, r_{m-1} \in \text{range}(A\Sigma_0) \) to (2.8) gives
\[
s_m = r_{m-1} - \frac{r_{m-1}^T r_{m-1}}{r_{m-2}^T r_{m-2}} s_{m-1}.
\]
Hence \(s_m \in \text{range}(A\Sigma_0) \). Multiply (2.10) on the left by \(r_{m-1}^T \) and insert \(s_{m-1}^T r_{m-1} = 0 \) from Lemma B.1 into the last summand to get
\[
r_{m-1}^T s_m = r_{m-1}^T r_{m-1},
\]
where \(r_{m-1} \neq 0 \) implies \(s_m \neq 0 \). Then \(s_m \in \text{range}(A\Sigma_0) \) and \(s_m \neq 0 \) imply \(s_m \notin \ker(\Sigma_0 A) \).

The induction hypothesis, Theorem 2.8, and (2.10) imply that the search directions \(s_1, \ldots, s_m \) are non-zero and \(A\Sigma_0 A \)-orthogonal. Thus \(\Lambda_m \) is nonsingular diagonal, which implies that \(s_i \notin \ker(\Sigma_0 A) \), \(1 \leq i \leq m \); and with Lemma A.1 that \(x^* - x_m \in \text{range}(\Sigma_0) \), thus \(r_m = A(x^* - x_m) \in \text{range}(A\Sigma_0) \).

Remark 2.12. The assumption \(x^* - x_0 \in \text{range}(\Sigma_0) \) in Theorem 2.11, which holds automatically if the prior covariance \(\Sigma_0 \) is nonsingular, is required to guarantee the nonsingularity of the diagonal matrices \(\Lambda_m \).

The statistical interpretation of the assumption \(x^* - x_0 \in \text{range}(\Sigma_0) \) is that the solution \(x^* \) must live in the support of the prior, that is, \(\text{in the subspace of } \mathbb{R}^n \) where the probability density function of \(\mathcal{N}(x_0, \Sigma_0) \) is nonzero.

Theorems 2.7, 2.8, and 2.11 form the basis for the BayesCG Algorithm 2.1, which differs from the original BayesCG [9, Algorithm 1] only in the computation of the posterior covariances as a sequence of rank-1 downdates rather than just a single rank-m downdate at the end. Algorithm 2.1 is a Krylov space method; for nonsingular priors \(\Sigma_0 \) this was established in [9, Section 3], while for singular priors this follows from (2.9) and Theorem 2.6. To show the similarity of BayesCG Algorithm 2.1 to CG, we present the most common implementation of CG in Algorithm 2.2; it is the original version due to Hestenes and Stiefel [26, Section 3].

The posterior means in Algorithm 2.1 are closely related to the CG iterates in Algorithm 2.2. In the special case \(\Sigma_0 = \Lambda^{-1} \), the BayesCG posterior means are identical to the CG iterates [9, Section 2.3]. The relationship between CG and BayesCG is discussed further in [5, 9, 10, 11, 30], and the results are summarized in the supplement.

2.3. Choice of BayesCG prior distribution. The mean \(x_0 \) in the prior \(\mathcal{N}(x_0, \Sigma_0) \) corresponds to the initial guess in CG, while the covariance \(\Sigma_0 \) can be any symmetric positive semi-definite matrix that satisfies \(x^* - x_0 \in \text{range}(\Sigma_0) \). Nonsingular priors examined in [9, Section 4.1] include

- **Inverse prior** \(\Sigma_0 = \Lambda^{-1} \): The posterior means in Algorithm 2.1 are equal to the CG iterates.
- **Natural prior** \(\Sigma_0 = \Lambda^{-2} \): The posterior means in Algorithm 2.1 converge in a single iteration.
Algorithm 2.1 Bayesian Conjugate Gradient Method (BayesCG)

1: **Input:** spd $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $x_0 \in \mathbb{R}^n$
2: spd $\Sigma_0 \in \mathbb{R}^{n \times n}$ so that $x_0 - x_0 \in \text{range}(\Sigma_0)$
3: $r_0 = b - Ax_0$ \blacktriangleright define initial values
4: $s_1 = r_0$
5: $m = 0$
6: while not converged do \blacktriangleright iterate through BayesCG Recursions
7: $m = m + 1$
8: $\alpha_m = (r_{m-1}^T r_{m-1}) / (s_m^T A \Sigma_0 A s_m)$
9: $x_m = x_{m-1} + \alpha_m \Sigma_0 A s_m$
10: $\Sigma_m = \Sigma_m - \Sigma_0 A s_m (\Sigma_0 A s_m)^T / (s_m^T A \Sigma_0 A s_m)$
11: $r_m = r_{m-1} - \alpha_m A \Sigma_0 A s_m$
12: $\beta_m = (r_m^T r_m) / (r_{m-1}^T r_{m-1})$
13: $s_{m+1} = r_m + \beta_m s_m$
14: end while
15: **Output:** x_m, Σ_m

Algorithm 2.2 Conjugate Gradient Method (CG)

1: **Input:** spd $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $x_0 \in \mathbb{R}^n$
2: $r_0 = b - Ax_0$ \blacktriangleright define initial values
3: $v_1 = r_0$
4: $m = 0$
5: while not converged do \blacktriangleright iterate through CG Recursions
6: $m = m + 1$
7: $\gamma_m = (r_{m-1}^T r_{m-1}) / (v_m^T A v_m)$
8: $x_m = x_{m-1} + \gamma_m v_m$
9: $r_m = r_{m-1} - \gamma_m A v_m$
10: $\delta_m = (r_m^T r_m) / (r_{m-1}^T r_{m-1})$
11: $v_{m+1} = r_m + \delta_m v_m$
12: end while
13: **Output:** x_m

- Identity prior $\Sigma_0 = I$: The prior is easy to compute, but the posterior means in Algorithm 2.1 converge slowly.
- Preconditioner prior $\Sigma_0 = (M^T M)^{-1}$ where $M \approx A$: This prior approximates the natural prior.
- Krylov subspace prior Σ_0: This prior is defined in terms of a basis for the Krylov space $K(A, r_0)$.

Figure 2.1 illustrates the convergence of posterior means and covariances from Algorithm 2.1 under the priors $\Sigma_0 = A^{-1}$ and $\Sigma_0 = I$. In both cases the posterior means converge faster than the posterior covariances, suggesting that the covariances are unreasonably pessimistic about the size of the error $x_* - x_m$. Section 3.3 presents a detailed discussion of the relation between the trace of the posterior covariance and the error $x_* - x_m$ in the posterior means.

The example below presents a prior of minimal rank that comprises a maximal amount of information.

Example 2.13. If $x_0 \neq x_*$, then $\Sigma_0 = (x_* - x_0)(x_* - x_0)^T$ is a rank-one
covariance that satisfies \(x^* - x_0 \in \text{range}(\Sigma_0) \). All rank-one prior covariances for BayesCG are multiples of this prior.

To see this, note that Theorem 2.11 and \(A^{-1}r_0 = x^* - x_0 \) imply termination of Algorithm 2.1 under this prior in a single iteration,

\[
x_1 = x_0 + \frac{1}{r_0^T A^{-1} r_0} \underbrace{A^{-1} r_0 r_0^T A^{-1}}_{\Sigma_0} \underbrace{A r_0 (r_0^T r_0)}_{\Sigma_0} = x_0 + x^* - x_0 = x^*.
\]

3. Prior distributions informed by Krylov subspaces. Motivated by the ‘Krylov subspace prior’ [9, section 4.1], we introduce a new ‘Krylov prior’ (section 3.1), derive expressions for the Krylov posteriors (section 3.2), ensure the Krylov posteriors accurately model uncertainty in \(x^* \) (section 3.3), and develop a practical Krylov posterior and an efficient implementation of BayesCG as a uncertainty-aware version of CG (section 3.4).

3.1. General Krylov prior. We introduce our new Krylov prior (Definition 3.1) and show that the BayesCG Krylov subspace under the Krylov prior is identical to the CG Krylov subspace (Lemma 3.2). This Krylov prior is impractical because its computation amounts to the direct solution of (1.1), however it is the foundation for the efficient low-rank approximations in section 3.4.

The new Krylov prior is defined in terms of the maximal CG Krylov subspace \(\mathcal{K}_K(A, r_0) \), where \(K \) is the grade of \(r_0 \) with respect to \(A \) (Definition 2.9). The \(A \)-orthonormal versions of the search directions \(\tilde{v}_m \) in Algorithm 2.2 are

\[
\tilde{v}_m \equiv v_m / \sqrt{v_m^T A v_m}, \quad 1 \leq m \leq K.
\]

As columns of

\[
V \equiv [\tilde{v}_1 \cdots \tilde{v}_K] \in \mathbb{R}^{n \times K} \quad \text{with} \quad V^T A V = I_K
\]

they represent an \(A \)-orthonormal basis for \(\text{range}(V) = \mathcal{K}_K(A, r_0) \) [26, Theorem 5.1].

Definition 3.1. The (general) Krylov prior is \(\mathcal{N}(x_0, \Gamma_0) \), where the mean \(x_0 \) is an initial guess for \(x^* \), and the covariance matrix is

\[
\Gamma_0 \equiv V \Phi V^T \in \mathbb{R}^{n \times n}
\]
where V is as defined in (3.2) and $\Phi \equiv \text{diag}\left(\phi_1 \phi_2 \cdots \phi_K\right) \in \mathbb{R}^{K \times K}$ with $\phi_i > 0$, $1 \leq i \leq K$. The Krylov prior is ‘general’ because the diagonal elements of Φ are unspecified.

The results in this section and in section 3.2 are valid for any choice of positive diagonal elements in Φ. A specific choice of diagonal elements is presented in section 3.3.

The Krylov prior covariance has $\text{rank}(\Gamma_0) = K$ and is singular for $K < n$, hence the need for singular priors in section 2. Fortunately, Γ_0 is a well-defined BayesCG prior, because it satisfies the crucial condition in Theorem 2.11, $x_* - x_0 \in \mathcal{K}_K(A, r_0) = \text{range}(V) = \text{range}(\Gamma_0)$.

Intuition. We give two different interpretations of the decomposition (3.3).

1. Hermitian eigenvalue problem $A^{1/2} \Gamma_0 A^{1/2} = W \Phi W^T$, where Φ contains the positive eigenvalues, and the eigenvector matrix $W \equiv A^{1/2} V$ has orthonormal columns with $W^T W = I_K$.
2. Non-Hermitian eigenvalue problem $\Gamma_0 AV = V \Phi$ with eigenvalues and eigenvectors

 \begin{equation}
 (3.4) \quad \Gamma_0 A \tilde{v}_m = \phi_m \tilde{v}_m, \quad 1 \leq m \leq K.
 \end{equation}

 This is the property to be exploited in section 3.2.

We show that the BayesCG Krylov subspace under the Krylov prior is identical to the CG Krylov subspace.

Lemma 3.2. If Γ_0 is the Krylov prior in Definition 3.1, then

$$
\mathcal{K}_m(A, r_0) = \mathcal{K}_m(A \Gamma_0 A, r_0), \quad 1 \leq m \leq K.
$$

Consequently, K is also the grade of r_0 with respect to $A \Gamma_0 A$ is K.

Proof. An induction proof shows that the Krylov subspaces are the same for the first K dimensions. Then we prove that the grade of r_0 with respect to $A \Sigma A$ is K.

Induction basis. Since one-dimensional Krylov subspaces are independent of the matrix,

$$
\mathcal{K}_1(A, r_0) = \text{span}\{r_0\} = \mathcal{K}_1(A \Gamma_0 A, r_0).
$$

Induction hypothesis. Assume that

$$
\mathcal{K}_i(A, r_0) = \mathcal{K}_i(A \Gamma_0 A, r_0), \quad 1 \leq i \leq m - 1.
$$

With $V_{1:m-1} = \begin{bmatrix} \tilde{v}_1 & \tilde{v}_2 & \cdots & \tilde{v}_{m-1} \end{bmatrix}$ in (3.2) this implies

$$
(3.5) \quad \text{range}(V_{1:m-1}) = \mathcal{K}_{m-1}(A, r_0) = \mathcal{K}_{m-1}(A \Gamma_0 A, r_0).
$$

Induction step. From (3.5) follow the expressions for the direct sums,

$$
(3.6) \quad \mathcal{K}_m(A, r_0) = \text{span}\{r_0\} \oplus \text{range}(A V_{1:m-1}) \quad \text{and} \quad (3.7) \quad \mathcal{K}_m(A \Gamma_0 A, r_0) = \text{span}\{r_0\} \oplus \text{range}(A \Gamma_0 A V_{1:m-1}).
$$

Then (3.4) and the non-singularity of Φ imply

$$
\text{range}(A \Gamma_0 A V_{1:m-1}) = \text{range}(A V_{1:m-1} \Phi_{1:m-1}) = \text{range}(A V_{1:m-1}).
$$
Combining this with (3.6) and (3.7) completes the induction,

\[
K_m(A, r_0) = \text{span}\{r_0\} \oplus \text{range}(AV_{1:m-1}) \\
= \text{span}\{r_0\} \oplus \text{range}(A\Gamma_0 AV_{1:m-1}) = K_m(A\Gamma_0 A, r_0).
\]

Maximal Krylov space dimension. If K' is the grade of r_0 with respect to $A\Gamma_0 A$,
then the induction implies

\[
K' \geq \dim(K_K(A\Sigma_0 A, r_0)) = \dim(K_K(A, r_0)) = K.
\]

On the other hand, $\text{rank}(A\Gamma_0 A) = K$ implies $K' \leq K$. Therefore $K' = K$.

3.2. General Krylov posteriors. We show (Theorem 3.3) that under the Krylov prior,
the BayesCG posteriors have means that are identical to the CG iterates, and covariances that can be factored as in Definition 3.1. This represents the foundation for an efficient implementation of BayesCG (Remark 3.4).

Define appropriate submatrices of V and Φ,

\[
V_{i:j} \equiv [\tilde{v}_i \cdots \tilde{v}_j], \quad \Phi_{i:j} \equiv \text{diag}(\phi_i \cdots \phi_j), \quad 1 \leq i < j \leq K.
\]

In particular, $V = V_{1:K}$ and $\Phi = \Phi_{1:K}$.

Theorem 3.3. Let $N(x_0, \Gamma_0)$ be the Krylov prior in Definition 3.1, and let $N(x_m, \Gamma_m)$ be the posteriors from BayesCG Algorithm 2.1, $1 \leq m \leq K$. Then the posterior means x_m are identical to the corresponding CG iterates in Algorithm 2.2, and the posterior covariances can be factored as

\[
\Gamma_m = V_{m+1:K} \Phi_{m+1:K} (V_{m+1:K})^T, \quad 1 \leq m < K,
\]

and $\Gamma_m = 0$ for $m = K$.

Proof. We first derive the equality of the posterior means, and then the factorizations of the covariances.

Posterior means. The idea is to show equality of the BayesCG posterior means under Krylov and inverse priors since, per the discussion in [9, Section 2.3] and section 2.3, BayesCG posterior means under the inverse prior are identical to CG iterates.

From Theorem 2.1, and the ‘equivalence’ of Algorithm 2.1 under $\Sigma_0 = A^{-1}$ and Algorithm 2.2 follows that the BayesCG posterior means under the inverse prior are equal to

\[
x_m = x_0 + V_{1:m} V_{1:m}^T r_0.
\]

Similarly, Theorem 2.1 implies that the BayesCG posterior under the Krylov prior are equal to

\[
x_m = x_0 + \Gamma_0 A\tilde{S}_m (\tilde{S}_m^T A\Gamma_0 A\tilde{S}_m)^{-1} \tilde{S}_m^T r_0.
\]

where the columns of \tilde{S}_m are the search directions from Algorithm 2.1 under the Krylov prior. To show the equality of (3.10) and (3.11), we need to relate \tilde{S}_m and $V_{1:m}$ and then include the Krylov prior Γ_0.

With the submatrices defined as in (3.8) we conclude from (3.2) and Lemma 3.2 that

\[
\text{range}(\tilde{S}_m) = \mathcal{K}_m(A\Gamma_0 A, r_0) = \text{range}(V_{1:m}),
\]
where the columns of $\tilde S_m$ are $A\Gamma_0A$-orthogonal. To show that the columns of $V_{1:m}$ are also $A\Gamma_0A$-orthogonal, exploit the fact that they are A-orthonormal and apply Definition 3.1,
\[
V_{1:m}^T A\Gamma_0 A V_{1:m} = V_{1:m}^T A V \Phi V^T A V_{1:m} = \Phi_{1:m},
\]
which is a diagonal matrix. We have established that the columns of $\tilde S_m$ and $V_{1:m}$ are $A\Gamma_0A$-orthogonal, with respective leading columns being multiples of r_0, thus are $A\Gamma_0A$-orthogonal bases of $K_m(A\Gamma_0A, r_0)$. Therefore the columns of $V_{1:m}$ are multiples of the columns of $\tilde S_m$. That is
\[
(3.12) \quad \tilde S_m = V_{1:m} \Delta
\]
for some non-singular diagonal matrix $\Delta \in \mathbb{R}^{m \times m}$. Substitute (3.12) into the third interpretation (3.4) of the Krylov prior,
\[
\Gamma_0 A \tilde S_m = \Gamma_0 A V_{1:m} \Delta = V_{1:m} \Phi_{1:m} \Delta
\]
and this in turn into the second summand of (3.11). Then the non-singularity and diagonality of both Δ and Φ lead to the simplification
\[
(3.13) \quad x_m = x_0 + V_{1:m} \Phi_{1:m} \Delta (\Delta \Phi_{1:m} \Delta)^{-1} \Delta V_{1:m}^T r_0 = x_0 + V_{1:m} V_{1:m}^T r_0,
\]
which is (3.10).

Posterior covariances. Substituting (3.12) into Theorem 2.1 and simplifying as in (3.13) gives
\[
\Gamma_m = \Gamma_0 - \Gamma_0 A \tilde S_m (\tilde S_m^T A \Gamma A \tilde S_m)^{-1} \tilde S_m^T A \Gamma_0 = V \Phi V^T - V_{1:m} \Phi_{1:m} \Phi_{1:m}^T = V_{m+1:K} \Phi_{m+1:K} \Phi_{m+1:K}^T.
\]

Remark 3.4. Theorem 3.3 implies that the posteriors from BayesCG under the Krylov prior have means that can be computed with CG, and covariances can be maintained in factored form without any arithmetic operations. This is the key to the efficient implementation of BayesCG in section 3.4.

3.3. Krylov posteriors that capture CG convergence.
We present a Krylov prior with specific diagonal elements (section 3.3.1), discuss the calibration of BayesCG under this prior (section 3.3.2) and its relation to existing CG error estimation theory (section 3.3.3).

3.3.1. Specific Krylov prior. We choose a specific diagonal matrix Φ for the Krylov prior (Definition 3.6), so that the Krylov posteriors accurately model the uncertainty in our knowledge of x_* due to the error $x_* - x_m$. We derive error estimates from samples of the posteriors (Lemma 3.5) and then relate them to CG errors (Theorem 3.7).

Let us start with a general posterior distribution $\mathcal{N}(x, \Sigma)$. If it indeed accurately modeled the uncertainty in x_* due to the approximation error $x_* - x$, then we would expect the difference between samples of $\mathcal{N}(x, \Sigma)$ and its posterior mean x to be close to the actual error,
\[
(3.14) \quad \mathbb{E} \left[\|X - x\|_A^2 \right] = \|x_* - x\|_A^2 \quad \text{where} \quad X \sim \mathcal{N}(x, \Sigma).
\]
The squared A-norm error $\|X - x\|_A^2$ is a quadratic form, whose expected value has an explicit expression.
Lemma 3.5. If $X \sim \mathcal{N}(\mathbf{x}, \Sigma)$ is a Gaussian random variable with mean $\mathbf{x} \in \mathbb{R}^n$ and symmetric positive semi-definite covariance $\Sigma \in \mathbb{R}^{n \times n}$, then
\begin{equation}
E[||X - \mathbf{x}||_A^2] = \text{trace}(A\Sigma).
\end{equation}

Proof. The proof relies on the expected value of a quadratic form in Appendix B. Set $Z \equiv X - \mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$ and apply Lemma B.2 to $Z^T A Z$,
\begin{align*}
E[||X - \mathbf{x}||_A^2] &= E[||Z||_A^2] = E[Z^T A Z] = \text{trace}(A\Sigma).
\end{align*}
Thus, $\text{trace}(A\Sigma)$ has the potential to be an error indicator. We present a specific diagonal matrix for the Krylov prior Γ_0 in Definition 3.1, so that its posterior covariances produce meaningful error estimates trace($A\Gamma$).

Definition 3.6. The (specific) Krylov prior is $\mathcal{N}(\mathbf{x}_0, \Gamma_0)$, where the mean \mathbf{x}_0 is an initial guess for \mathbf{x}_*, and the covariance matrix is
\begin{equation}
\Gamma_0 = V\Phi V^T \in \mathbb{R}^{n \times n}
\end{equation}
where V is defined in (3.2) and $\Phi \equiv \text{diag}(\phi_1, \phi_2, \ldots, \phi_K) \in \mathbb{R}^{K \times K}$ has diagonal elements
\begin{equation*}
\phi_i = \gamma_i ||\mathbf{r}_{i-1}||_2^2, \quad 1 \leq i \leq K,
\end{equation*}
where $\gamma_i = r_{i+1}^T r_{i-1} / \mathbf{v}_i^T A \mathbf{v}_i$ are the step sizes in line 7 of CG Algorithm 2.2.

Now we show that the posterior covariances from BayesCG under the specific Krylov prior reproduce the CG error.

Theorem 3.7. Let $\mathcal{N}(\mathbf{x}_0, \Gamma_0)$ be the Krylov prior in Definition 3.6, and $\mathcal{N}(\mathbf{x}_m, \Gamma_m)$ be the posteriors from BayesCG Algorithm 2.1, $1 \leq m \leq K$. Then
\begin{equation*}
\text{trace}(A\Gamma_m) = ||\mathbf{x}_* - \mathbf{x}_m||_A^2, \quad 1 \leq m \leq K.
\end{equation*}

Proof. Apply Lemma 3.5 to the specific Krylov prior in Definition 3.6. From the cyclic commutativity of the trace and A-orthonormality of the columns of V follows
\begin{equation}
\text{trace}(A\Gamma_m) = \text{trace}(A\mathbf{V}_{m:K}\Phi_{m:K}(\mathbf{V}_{m:K})^T)
= \text{trace}((\mathbf{V}_{m:K})^T A \mathbf{V}_{m:K} \Phi_{m:K}) = \text{trace}(\Phi_{m:K}).
\end{equation}
The diagonal matrix Φ for the specific Krylov prior in Definition 3.6 is chosen so that $\text{trace}(\Phi_{m:K}) = ||\mathbf{x}_* - \mathbf{x}_m||_A^2$. Remember that the reduction in the squared A-norm error from iteration m to $m + d$ of Algorithm 2.2 equals [26, Theorem 6.1] and [31, Theorem 5.6.1]
\begin{equation}
||\mathbf{x}_* - \mathbf{x}_m||_A^2 - ||\mathbf{x}_* - \mathbf{x}_{m+d}||_A^2 = \sum_{i=m+1}^{m+d} \gamma_i ||\mathbf{r}_{i-1}||_2^2, \quad 0 \leq m < m + d \leq K.
\end{equation}
Setting $d = K - m$ gives $\mathbf{x}_K = \mathbf{x}_*$ and
\begin{equation*}
||\mathbf{x}_* - \mathbf{x}_m||_A^2 = \sum_{i=m+1}^{K} \gamma_i ||\mathbf{r}_{i-1}||_2^2, \quad 0 \leq m \leq K.
\end{equation*}
Combine this equality with (3.17) to conclude $\phi_i = \gamma_i ||\mathbf{r}_{i-1}||_2^2, 1 \leq i \leq K$. Thus, the specific Krylov posteriors have covariances that converge at the same speed as their means.
3.3.2. Calibration of BayesCG under the specific Krylov prior. A probabilistic numerical linear solver is considered calibrated if its posterior distribution accurately models the uncertainty in x_* due to the approximation error $x_* - x_m$. Calibration of general probabilistic methods is discussed in [6] and of linear solvers in [7]. We briefly discuss how Lemma 3.5 and Theorem 3.7 contribute to better calibration of BayesCG under the specific Krylov prior.

Previous probabilistic extensions of CG do not produce posteriors that accurately model the uncertainty in x_*. For instance, Figure 2.1 illustrates that BayesCG under the priors $\Sigma_0 = A^{-1}$ and $\Sigma_0 = I$ has errors $\|x_* - x_m\|_A^2$ that converge faster than $\text{trace}(A\Sigma_m)$. Furthermore, according to Lemma 3.5, the estimators $\text{trace}(A\Sigma_m)$ from posterior samples are inaccurate and do not reflect the true error $\|x_* - x_m\|_A^2$. In other words, the posteriors do not accurately model uncertainty in x_*. Our approach towards designing posteriors that accurately model the uncertainty in x_* relies on a judicious choice of the diagonal matrix Φ for the specific Krylov prior, so that sampling from the posteriors produces accurate error estimates. This can be viewed as a scaling of the posterior covariance that forces $\text{trace}(\Phi_{m,K}) = \|x_* - x_m\|_A^2$. Alternative approaches for improving posteriors via scaling of the posterior covariances include [9, Section 4.2], [13, Section 7], and [53, Section 3].

Empirical evidence demonstrating that BayesCG under the specific Krylov prior produces posterior samples with accurate error estimates suggests but does not guarantee that it accurately models the uncertainty in x_*. A rigorous investigation of the calibration of BayesCG under the specific Krylov prior is the subject of a separate paper.

3.3.3. Relation to CG error estimation. The purpose of Lemma 3.5 is to motivate a choice of Φ so that BayesCG under the specific Krylov prior accurately models the uncertainty in x_* due to the approximation error $x_* - x_m$.

Effective CG error estimation is a well researched area, with most effort focused on the absolute A-norm error. One option [49] is to run d additional CG iterations and apply (3.18) to obtain the underestimate [49, Equation (4.9)],

$$\sum_{i=m+1}^{m+d} \gamma_i \|r_{i-1}\|_2^2 \leq \|x_* - x_m\|_A^2.$$

(3.19)

The rationale is that the error after $m + d$ iterations has become negligible compared to the error after m iterations, especially in the case of fast convergence. The number of additional iterations d is usually called the ‘delay’ [37, Section 1], and larger values of d lead to more accurate error estimates.

The estimate (3.19) also coincides with the lower bound from Gaussian quadrature [49, Section 3]. Other lower and upper bounds for the A-norm error based on quadrature formulas and tunable with a delay include [17, 18, 19, 35, 36, 37, 49, 50].

3.4. Practical specific Krylov posteriors. We define low rank approximations of specific Krylov posterior covariances (Definition 3.8), and present an efficient CG-based implementation of BayesCG (Algorithm 3.1). It approximates the Krylov posteriors from delay iterations, thereby avoiding explicit computation of the Krylov prior, and inherits the fast convergence of CG.

The following low-rank approximations are based on the factored form of the Krylov posteriors in Theorem 3.3 and make use of the submatrices defined in (3.8).
Definition 3.8. Let \(\mathcal{N}(\mathbf{x}_0, \Gamma_0) \) be the specific Krylov prior from Definition 3.6 with posteriors

\[
\Gamma_m = V_{m+1:K} \Phi_{m+1:K} (V_{m+1:K})^T, \quad 1 \leq m < K.
\]

For \(1 \leq d \leq K - m \), extract the leading rank-\(d \) submatrices from \(V_{m+1:K} \) and \(\Phi_{m+1:K} \), and define the rank-\(d \) approximate Krylov posteriors as \(\mathcal{N}(\mathbf{x}_m, \hat{\Gamma}_m) \) with

\[
\hat{\Gamma}_m = V_{m+1:m+d} \Phi_{m+1:m+d} (V_{m+1:m+d})^T.
\]

Remark 3.9. We view (3.20) as approximations of the posteriors resulting from the full-rank prior. Instead, we could also view (3.20) as posteriors from rank-(\(m + d \)) approximations of the prior \(\mathcal{N}(\mathbf{x}_0, \hat{\Gamma}_0) \) with \(\hat{\Gamma}_0 = V_{1:m+d} \Phi_{1:m+d} (V_{1:m+d})^T \). This interpretation of (3.20) is discussed in the supplement. However, from a practical point of view, explicit computation of \(\hat{\Gamma}_0 \) is too expensive and it is not necessary.

Following the same argument as Theorem 3.7, one can express the underestimate (3.19) for the CG error in terms of the posterior covariance,

\[
\text{trace}(\mathbf{A} \hat{\Gamma}_m) = \sum_{i=m+1}^{m+d} \gamma_i \| \mathbf{r}_{i-1} \|_2^2 \leq \| \mathbf{x}_* - \mathbf{x}_m \|_2^2.
\]

If the posterior distribution accurately models the uncertainty in the solution, then we expect (3.14) to hold. This means the accuracy of the uncertainty from the approximate Krylov posterior is related to the accuracy of the underestimate (3.19).

Algorithm 3.1 represents an efficient computation of BayesCG under rank-\(d \) approximate Krylov posteriors, and consists of two loops\(^2\):

1. Run CG until convergence in iteration \(m \) and compute the posterior mean \(\mathbf{x}_m \).
2. Run \(d \) additional CG iterations and compute the factors \(V_{m+1:m+d} \) and \(\Phi_{m+1:m+d} \) of the rank-\(d \) approximate posterior \(\hat{\Gamma}_m \).

Correctness. Theorem 3.3 asserts that posteriors of BayesCG under the Krylov prior have means that are identical to CG iterates, and covariances that can be maintained in factored form involving submatrices of \(V \) and \(\Phi \) from Definition 3.6. The rank \(d \) of \(\hat{\Gamma}_m \) has the same purpose as the ‘delay’ in CG error estimation: a small number of additional iterations to capture the error, and \(\text{trace}(\mathbf{A} \hat{\Gamma}_m) = \text{trace}(\Phi_{m+1:m+d}) \) is equal to the error underestimate (3.19). As a termination criterion one can choose the usual residual norm, or a statistically motivated criterion.

Computational cost. Algorithm 3.1 performs fewer arithmetic operations than Algorithm 2.1. Specifically, Algorithm 3.1 runs \(m + d \) iterations of Algorithm 2.2, and a total of \(m + d \) matrix vector products with \(\mathbf{A} \) and storage of at most \(d + 2 \) vectors. This is less than Algorithm 2.1, which requires \(2m \) matrix vector products with \(\mathbf{A} \), \(m \) matrix vector products with \(\Sigma_0 \), and storage of \(m + 2 \) vectors.

In addition, Algorithm 2.1 requires reorthogonalization to ensure positive semi-definiteness of the posterior covariances [9, Section 6.1]. In contrast, Algorithm 3.1 maintains the Krylov posteriors in factored form, thus (i) ensuring symmetric positive semi-definiteness by design; and (ii) reducing the cost of sampling, because the factorizations \(\Sigma_m = \Phi_m \Phi_m^T \) are readily available without any computations. The

\(^2\) The partition of Algorithm 3.1 into two loops is for the purpose expositional clarity. Alternatively, everything could have been merged into a single loop with a conditional.
Algorithm 3.1 BayesCG under rank-\(d\) approximations of specific Krylov posterior covariances

1: Inputs: spd \(A \in \mathbb{R}^{n \times n}\), \(b \in \mathbb{R}^{n}\), \(x_0 \in \mathbb{R}^{n}\), \(d \geq 1\)
2: \(r_0 = b - Ax_0\)
3: \(v_1 = r_0\)
4: \(m = 0\)
5: while not converged do
 ▷ CG recursions for posterior means
 6: \(m = m + 1\)
 7: \(\eta_m = v_m^T Av_m\)
 8: \(\gamma_m = (r_{m-1}^T r_{m-1})/\eta_m\)
 9: \(x_m = x_{m-1} + \gamma_i v_i\)
10: \(r_m = r_{m-1} - \gamma_i Av_i\)
11: \(\delta_m = (r_m^T r_m)/(r_{m-1}^T r_{m-1})\)
12: \(v_{m+1} = r_m + \delta_m v_m\)
13: end while
14: \(d = \min\{d, K - m\}\)
15: \(V_{m+1:m+d} = 0_{n \times d}\)
16: \(\Phi_{m+1:m+d} = 0_{d \times d}\)
17: for \(j = m + 1 : m + d\) do
 ▷ \(d\) additional iterations for posterior covariance
 18: \(\eta_j = v_j^T Av_j\)
 19: \(\gamma_j = (r_{j-1}^T r_{j-1})/\eta_j\)
 20: \(V_j = v_j/\eta_j\)
 21: \(\Phi_j = \gamma_j\|r_{j-1}\|_2^2\)
 ▷ store column \(j\) of \(V\)
22: \(r_j = r_{j-1} - \gamma_j Av_j\)
23: \(\delta_j = (r_j^T r_j)/(r_{j-1}^T r_{j-1})\)
24: \(v_{j+1} = r_j + \delta_j v_j\)
25: end for
26: Output: \(x_m\), \(V_{m+1:m+d}\), \(\Phi_{m+1:m+d}\)

Last point is important, since the posterior is propagated to subsequent computations which sample from it to probe the effect of the uncertainty in the linear solve. So far, analytical propagation of the posterior has proved elusive, and empirical propagation is our only option.

4. Numerical experiments. We present numerical experiments to compare (i) Algorithm 3.1 under full or rank-\(d\) approximations of specific Krylov posteriors with (ii) Algorithm 2.1 under the inverse prior. After describing the experimental set up (section 4.1), we apply the algorithms to two matrices: a matrix of small dimension (section 4.2), and one of larger dimension (section 4.3).

4.1. Set up of the numerical experiments. We describe the linear systems in the experiments, reorthogonalization in the algorithms, and sampling from the posterior distributions.\(^3\)

Linear systems. We consider two types of symmetric positive-definite linear systems \(Ax_* = b\): one with a dense matrix \(A\) of dimension \(n = 100\), and the other with a sparse preconditioned matrix \(A\) of dimension \(n = 11948\). We fix the solution \(x_*\), and compute the right hand side from \(b = Ax_*\).

\(^3\)The Python code used in the numerical experiments can be found at https://github.com/treid5/ProbNumCG_Supp
For \(n = 100 \), the matrix is \(A = QDQ^T \) [22, Section 2], where \(Q \) is a random \(^4\) orthogonal matrix with Haar distribution [47, Section 3], and \(D \) is a diagonal matrix with eigenvalues [20]

\[
(4.1) \quad d_{ii} = (10^3)^{(i-1)/99}, \quad 1 \leq i \leq 100.
\]

The condition number is \(\kappa(A) = 10^3 \), and the solution \(x_\ast \) is sampled from \(\mathcal{N}(0, A^{-1}) \).

For \(n = 11948 \), the matrix \(A = L^{-1}BL^{-T} \) is a sparse preconditioned matrix where \(B \) is \texttt{BCSSTK18} from the Harwell-Boeing collection [33], and \(L \) is the incomplete Cholesky factorization [21, Section 11.1] of the diagonally shifted matrix

\[
\tilde{B} = B + 9.0930 \cdot 10^8 \cdot \text{diag}(B) \quad \text{with} \quad \max_{1 \leq i \leq n} \left\{ -b_{ii} + \sum_{j \neq i} b_{ij} \right\} = 9.0930 \cdot 10^8.
\]

The shift forces \(\tilde{B} \) to be diagonally dominant. We compute the factorization of \(\tilde{B} \) with a threshold drop tolerance \(10^{-6} \) to make \(L \) diagonal. The condition number is \(\kappa(A) \approx 1.57 \cdot 10^6 \), and the solution \(x_\ast = 1 \) is the all ones vector.

Reorthogonalization. Since the posterior covariances in Algorithm 2.1 become indefinite when the search directions lose orthogonality, reorthogonalization of the search directions is recommended in every iteration, [9, Section 6.1] and [11, Section 4.1]. Following [22, Section 2], we reorthogonalize the residual vectors instead, as it has the additional advantage of better numerical stability in our experience. Reorthogonalization consists of classical Gram-Schmidt performed twice because it is efficient, easy to implement, and produces vectors orthogonal to almost machine precision [15, 16].

Sampling from the Gaussian distributions. We exploit the stability of Gaussians, see section 2.1, to sample from \(\mathcal{N}(x, \Sigma) \) as follows. Let \(\Sigma = FF^T \) be a factorization of the covariance with \(F \in \mathbb{R}^{n \times d} \). Sample a standard Gaussian vector \(Z \sim \mathcal{N}(0_d, I_d) \); multiply it by \(F \); and add the mean to obtain \(X \equiv x + FZ \sim \mathcal{N}(x, FF^T) \).

By design, the rank-\(d \) approximate Krylov posteriors are maintained in factored form

\[
\tilde{\Gamma}_m = F_m F_m^T \quad \text{where} \quad F_m \equiv V_{m+1:m+d} \Phi_{m+1:m+d}^{1/2} \in \mathbb{R}^{n \times d}.
\]

For all other posteriors \(\Sigma_m \), we factor the matrix square root [27, Chapter 6] of the matrix absolute value [27, Chapter 8] of \(\Sigma_m \). Factoring the absolute value of \(\Sigma_m \) enforces positive semi-definiteness of the posteriors which may be lost if BayesCG is implemented without reorthogonalization.

Convergence. We display convergence of the mean and covariance with \(\|x_\ast - x_m\|_A^2 \) and trace(\(A \Sigma_m \)). In addition, we sample from the posterior, \(X \sim \mathcal{N}(x_m, \Sigma_m) \) and compare the resulting estimate \(\|X - x_m\|_A^2 \) to the error \(\|x_\ast - x_m\|_A^2 \). If the samples \(X \) are accurate estimates, then the posterior distribution is likely to be a reliable indicator of the uncertainty in the solution \(x_\ast \).

\(^4\)The exact random matrix can be reproduced with the python files in our code repository because we specified the random seed.

\(^5\)Most scientific computing packages come with built in functions for sampling from \(\mathcal{N}(0, I) \). In Matlab and Julia the function is \texttt{randn} and in Python it is \texttt{numpy.random.randn}.

\(^6\)The matrix absolute value of \(B \in \mathbb{R}^{n \times n} \) is \(\text{abs}(B) = (B^T B)^{1/2} \). If \(B \) is symmetric positive semi-definite, then \(\text{abs}(B) = B \). Otherwise, the square root of the absolute value is \(\text{abs}(B))^{1/2} = VS^{1/2}V^T \), where \(B = USV^T \) is a SVD.
4.2. Matrix with small dimension. We compare Algorithm 2.1 under the inverse prior, with Algorithm 3.1 under full or rank-5 approximate Krylov posteriors when applied to the matrix with small dimension $n = 100$.

Figure 4.1 illustrates that the posterior means converge at the same speed, regardless of reorthogonalization. However, without reorthogonalization, the convergence is slower.

Algorithm 2.1 under the inverse prior. The posterior covariances converge more slowly than the squared errors of the means. Without reorthogonalization, the posterior covariances are indefinite, and the error estimates from the posterior samples diverge from $\text{trace}(A\Sigma_m)$ and violate Lemma 3.5. Thus, posteriors from BayesCG under the inverse prior are not reliable indicators of uncertainty.

Algorithm 3.1 under full or approximate Krylov priors. The quantity $\text{trace}(A\Sigma_m)$ equals the error for full rank Krylov posteriors, while it underestimates the error for rank-5 approximate posteriors. Error estimates from samples of Krylov posteriors are significantly more accurate than those from the inverse posteriors. Thus, posteriors from BayesCG under (approximate) Krylov priors are more reliable indicators of uncertainty.

4.3. Matrix with larger dimension. We compare Algorithm 3.1 under rank-1 and rank-50 approximate Krylov posteriors, when applied to the matrix with large dimension $n = 11948$.

Figure 4.2 illustrates that the traces of the posterior covariances underestimate the error. However, the trace of the rank-50 approximate Krylov covariance is more accurate, because CG error estimates (3.19) are more accurate for larger delays [49,
Section 4. As expected, error estimates from rank-50 posterior samples are more tightly concentrated around the true error than those of rank-1 posterior samples. Thus, BayesCG under higher rank approximate posteriors produces more reliable indicators of uncertainty.

5. Conclusion. BayesCG is our 'uncertainty-aware' version of CG, that is, a probabilistic numerical extension of CG that produces a probabilistic model of the uncertainty about our knowledge of the solution \(x^* \) due to early termination of CG. Under our Krylov prior, BayesCG produces iterates that are identical to those of CG (in exact arithmetic), thus converges at the same speed as CG; and its posterior distributions can be cheaply approximated. Samples from the Krylov posterior and its low rank approximations produce accurate error estimates, thus represent realistic indicators of the uncertainty about \(x^* \).

Future work. In a forthcoming paper, we focus on the statistical aspects of BayesCG under the Krylov prior. More specifically, we quantify the approximation error of low rank approximate Krylov posteriors and investigate the calibration of BayesCG under low-rank approximate Krylov posteriors.

In a separate paper, we assess the effect of CG accuracy in a computational pipeline in the form of a randomized algorithm for generalized singular value decomposition [44] with applications to hyper-differential sensitivity analysis [23].

Appendix A. Proofs of Theorems 2.4, 2.6 and 2.7.

Proof of Theorem 2.4. The proof is inspired by the proof of [10, Proposition 3] for nonsingular \(\Sigma_0 \). For singular \(\Sigma_0 \), we replace the inverse by the Moore-Penrose inverse which satisfies

\[
\Sigma_0 = \Sigma_0 \Sigma_0^\dagger \Sigma_0.
\]

The assumption \(x^* - x_0 \in \text{range}(\Sigma_0) \) implies that there exists \(y \in \mathbb{R}^n \) so that

\[
x^* - x_0 = \Sigma_0 y = \Sigma_0 \Sigma_0^\dagger \Sigma_0 y = \Sigma_0 \Sigma_0^\dagger (x^* - x_0).
\]

The proof proceeds in four steps.

Range of \(P_m \). On the one hand (2.3) implies

\[
\text{range}(P_m) = \text{range}\left(\Sigma_0 AS_m \Lambda_m^{-1} \Sigma_0^T A \Sigma_0 \Sigma_0^\dagger\right) \subset \text{range}(\Sigma_0 AS_m).
\]
On the other hand (2.3) and (A.1) imply

\[P_m \Sigma_0 A S_m = \Sigma_0 A S_m \Lambda_m^{-1} S_m^T A \Sigma_0 \Sigma_0^\dagger \Sigma_0 A S_m = \Sigma_0 A S_m \]

so that \(\text{range}(\Sigma_0 A S_m) \subset \text{range}(P_m) \).

Combining the two inclusions gives \(\text{range}(P_m) = K_m \equiv \text{range}(\Sigma_0 A S_m) \).

\(P_m \) is a \(\Sigma_0^\dagger \)-orthogonal projector. The above implies

\[(A.3) \quad P_m^2 = P_m \Sigma_0 A S_m \Lambda_m^{-1} S_m^T A \Sigma_0 \Sigma_0^\dagger = \Sigma_0 A S_m \Lambda_m^{-1} S_m^T A \Sigma_0 \Sigma_0^\dagger = P_m. \]

Thus \(P_m \) is a projector. The \(\Sigma_0^\dagger \)-orthogonality of \(P_m \) follows from the symmetry of \(\Sigma_0^\dagger P_m \).

Posterior mean. From (2.1), (A.2), and (2.3) follows

\[x_m = x_0 + \Sigma_0 A S_m \Lambda_m^{-1} S_m^T A (x_\ast - x_0) = x_0 + \Sigma_0 A S_m \Lambda_m^{-1} S_m^T A \Sigma_0 \Sigma_0^\dagger (x_\ast - x_0) = (I - P_m)x_0 + P_m x_\ast. \]

Posterior covariance. From (2.2), (A.1) and (2.3) follows

\[\Sigma_m = \Sigma_0 - \Sigma_0 A S_m \Lambda_m^{-1} S_m^T A \Sigma_0 \]

\[= \Sigma_0 - \Sigma_0 A S_m \Lambda_m^{-1} S_m^T A \Sigma_0 \Sigma_0^\dagger \Sigma_0 = (I - P_m) \Sigma_0. \]

Multiply \(\Sigma_m \) on the left by \(P_m \) and apply (A.3) to obtain \(P_m \Sigma_m = P_m (I - P_m) \Sigma_0 = 0. \)

The proof of Theorem 2.6 relies on the next three results related to semi-definite inner product spaces and orthogonal projectors in those spaces.

Lemma A.1. Under the assumptions of Theorem 2.1, if \(x_\ast - x_0 \in \text{range}(\Sigma_0) \), then \(x_\ast - x_m \in \text{range}(\Sigma_0) \), \(1 \leq m \leq n \).

Proof. Subtract from \(x_\ast \) both sides of the posterior mean (2.1),

\[x_\ast - x_m = (x_\ast - x_0) - \Sigma_0 A S_m \Lambda_m^{-1} S_m^T A (x_\ast - x_0), \quad 1 \leq m \leq n. \]

The first summand \(x_\ast - x_0 \) is in \(\text{range}(\Sigma_0) \) by assumption, and the second one by design, hence so is the sum.

Lemma A.2. Let \(B \in \mathbb{R}^{n \times n} \) be symmetric positive semi-definite. If \(z \in \text{range}(B) \), then \(z^T B z = 0 \) if and only if \(z = 0 \).

Proof. Since \(B \) is symmetric positive semi-definite, we can factor \(FF^T = B \), where \(F \) has full column rank. Let \(w = F^T z \). From \(z \in \text{range}(B) = \text{range}(F) \), and \(\text{range}(F) = \text{ker}(F^T) \perp \) follows that \(w = F^T z = 0 \) if and only if \(z = 0 \). Therefore \(w^T w = z^T B z = 0 \) if and only if \(z = 0 \).

Lemma A.3. Let \(X \subseteq \mathbb{R}^n \) be a subspace, \(B \in \mathbb{R}^{n \times n} \) symmetric positive semi-definite, and \(v \in \mathbb{R}^n \). If \(P \) is a \(B \)-orthogonal projector onto \(X \), then

\[\arg \min_{x \in X} (v - x)^T B (v - x) = \{ x \in X : (x - P v)^T B (x - P v) = 0 \}. \]
If additionally $X \subseteq \text{range}(B)$, then

$$\arg\min_{x \in X} (v - x)^T B(v - x) = P v.$$

Proof. After proving the general case, we show that the minimizer is unique if $X \subseteq \text{range}(B)$.

General case. Denote the induced semi-norm by $|z|^2_B = z^T B z$. Since P is a projector onto X, we can write $x = P x$ for $x \in X$. Add and subtract $P v$ inside the norm to obtain a Pythagorean-like theorem,

$$|v - x|^2_B = |(I - P) v + P(v - x)|^2_B$$

$$= |(I - P)v|^2_B + |P(v - x)|^2_B + 2v^T (I - P)^TB (P(v - x)) = 0$$

$$= |(I - P)v|^2_B + |Pv - x|^2_B.$$

Since the first summand is independent of x, the minimum is achieved if the second summand is zero.

Uniqueness. Since P is a projector onto X, $P v \in X$. From $X \subseteq \text{range}(B)$ follows $P v \in \text{range}(B)$ and $x \in \text{range}(B)$. With Lemma A.2 this implies: $|Pv - x|^2_B = 0$ if $Pv = x$.

Proof of Theorem 2.6. This is similar to [1, Proof of Proposition 4]. Minimizing (2.4) over the affine space $x_0 + K_m = x_0 + \text{range}(\Sigma_0 AS_m)$ is equivalent to shifting by x_0 and minimizing over K_m,

$$\min_{x \in x_0 + K_m} (x_* - x)^T \Sigma_0^x(x_* - x) = \min_{x \in K_m} ((x_* - x_0) - x)^T \Sigma_0^x((x_* - x_0) - x).$$

Since Σ_0 is symmetric, the Σ_0^x-orthogonal projector P_m from Theorem 2.4 satisfies $\text{range}(P_m) = K_m \subseteq \text{range}(\Sigma_0) = \text{range}(\Sigma_0^x)$. Therefore, Lemma A.3 implies

$$\arg\min_{x \in K_m} ((x_* - x_0) - x)^T \Sigma_0^x((x_* - x_0) - x) = P_m(x_* - x_0).$$

From Theorem 2.4 and $K_m = \text{range}(P_m)$ follows $x_m - x_0 = P_m(x_* - x_0) \in K_m$. Thus $x_m \in x_0 + K_m$ is the minimizer.

The symmetry of Σ_m and Lemmas A.1 and A.2 imply that $(x_* - x_m)^T \Sigma_0^x(x_* - x_m) = 0$ only if $x_m = x_*$. □

Proof of Theorem 2.7. Recursion (2.6) was shown in [9, Proposition 6]. The following proof for (2.7) is analogous to [11, Proof of Proposition 6]. From (2.2) follows that the posterior covariance at iteration i amounts to a rank-i downdate of the prior,

$$\Sigma_i = \Sigma_0 - \Sigma_0 AS_i \Lambda_i^{-1} (\Sigma_0 AS_i)^T, \quad 1 \leq i \leq m.$$

Here Λ_i is diagonal due to the $A \Sigma_0 A$-orthogonality of the search directions, hence a rank-i downdate can be computed as a recursive sequence of i rank-1 downdates,

$$\Sigma_i = \underline{\Sigma_0 - \Sigma_0 AS_{i-1} \Lambda_{i-1}^{-1} (\Sigma_0 AS_{i-1})^T} - \Sigma_0 AS_i (\Sigma_0 AS_i)^T / s_i^T A \Sigma_0 AS_i.$$

Appendix B. Auxiliary results.
Lemma B.1 (Lemma S3 in [11]). Under the assumptions of Theorem 2.7,

\[s^T_j r_i = 0, \quad 1 \leq j \leq i \leq m. \]

Lemma B.2 (Sections 3.2b.1–3.2b.3 in [32]). Let \(Z \sim \mathcal{N}(x, \Sigma) \) be a Gaussian random variable with mean \(x \in \mathbb{R}^n \) and covariance \(\Sigma \in \mathbb{R}^{n \times n} \), and let \(B \in \mathbb{R}^{n \times n} \) be symmetric positive definite. The mean and variance of \(Z^T B Z \) are

\[
\mathbb{E}[Z^T B Z] = \text{trace}(B\Sigma) + x^T B x,
\]

\[
\mathbb{V}[Z^T B Z] = 2 \text{trace}((B\Sigma)^2) + 4 x^T B \Sigma B x.
\]

Acknowledgments. We thank Eric Hallman, Joseph Hart, and the members of the NCSU Randomized Numerical Analysis RTG for helpful discussions. We are also most grateful to the reviewers for their recommendations that helped to ensure mathematical correctness and improve exposition.

REFERENCES

[1] S. Bartels, J. Cockayne, I. C. F. Ipsen, and P. Hennig, Probabilistic linear solvers: a unifying view, Stat. Comput., 29 (2019), pp. 1249–1263, https://doi.org/10.1007/s11222-019-09897-7.
[2] S. Bartels and P. Hennig, Probabilistic approximate least-squares, in Proc. 19th Int. Conf. Artificial Intelligence and Statistics, vol. 51 of Proc. Machine Learning Research, MLR Press, 2016, pp. 676–684.
[3] M. Berljafa and S. Güttel, Generalized rational Krylov decompositions with an application to rational approximation, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 894–916, https://doi.org/10.1137/140999801.
[4] F.-X. Briol, C. J. Oates, M. Girolami, M. A. Osborne, and D. Sejdinovic, Probabilistic Integration: A Role in Statistical Computation?, Statist. Sci., 34 (2019), pp. 1–22, https://doi.org/10.1214/18-STS660.
[5] D. Calvetti, Contributed discussion for “A Bayesian conjugate gradient method”, Bayesian Anal., 14 (2019), pp. 937–1012, https://doi.org/10.1214/19-BA1145.
[6] J. Cockayne, M. M. Graham, C. J. Oates, and T. J. Sullivan, Testing whether a learning procedure is calibrated, 2021, https://arxiv.org/abs/2012.12670. arXiv:2012.12670.
[7] J. Cockayne, I. C. F. Ipsen, C. J. Oates, and T. W. Reid, Probabilistic iterative methods for linear systems, J. Mach. Learn. Res., 22 (232) (2021), pp. 1–34.
[8] J. Cockayne, C. Oates, T. Sullivan, and M. Girolami, Probabilistic numerical methods for PDE-constrained Bayesian inverse problems, AIP Conference Proceedings, 1853 (2017), p. 060001, https://doi.org/10.1063/1.4985359.
[9] J. Cockayne, C. J. Oates, I. C. F. Ipsen, and M. Girolami, A Bayesian conjugate gradient method (with discussion), Bayesian Anal., 14 (2019), pp. 937–1012, https://doi.org/10.1214/19-BA1145. Includes 6 discussions and a rejoinder from the authors.
[10] J. Cockayne, C. J. Oates, I. C. F. Ipsen, and M. Girolami, Rejoinder for “A Bayesian conjugate gradient method”, Bayesian Anal., 14 (2019), pp. 937–1012, https://doi.org/10.1214/19-BA1145.
[11] J. Cockayne, C. J. Oates, I. C. F. Ipsen, and M. Girolami, Supplementary material for ‘A Bayesian conjugate-gradient method’, Bayesian Anal., (2019), https://doi.org/10.1214/19-BA1145SUPP.
[12] J. Cockayne, C. J. Oates, T. J. Sullivan, and M. Girolami, Bayesian probabilistic numerical methods, SIAM Rev., 61 (2019), pp. 756–789, https://doi.org/10.1137/17M1139357.
[13] V. Fanaskov, Uncertainty calibration for probabilistic projection methods, Stat. Comput., 31 (2021), pp. Paper No. 56, 17, https://doi.org/10.1007/s11222-021-10031-9, https://doi.org/10.1007/s11222-021-10031-9.
[14] A. Gesnner, O. Kanjilal, and P. Hennig, Integrals over Gaussians under linear domain constraints, in Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, S. Chiappa and R. Calandra, eds., vol. 108 of Proceedings of Machine Learning Research, 2020, pp. 2764–2774, http://proceedings.mlr.press/v108/gesnner20a.html.
L. Giraud, J. Langou, M. Rozložník, and J. van den Eshof, *Rounding error analysis of the classical Gram-Schmidt orthogonalization process*, Numer. Math., 101 (2005), pp. 87–100, https://doi.org/10.1007/s00211-005-0615-4.

L. Giraud, J. Langou, and M. Rozložník, *The loss of orthogonality in the Gram-Schmidt orthogonalization process*, Comput. Math. Appl., 50 (2005), pp. 1069–1075, https://doi.org/10.1016/j.camwa.2005.08.009.

G. H. Golub and G. Meurant, *Matrices, moments and quadrature in Numerical analysis 1993 (Dundee, 1993)*, vol. 303 of Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, 1994, pp. 105–156.

G. H. Golub and G. Meurant, *Matrices, moments and quadrature. II. How to compute the norm of the error in iterative methods*, BIT, 37 (1997), pp. 687–705, https://doi.org/10.1007/BF02510247.

A. Greenbaum and Z. Strakoš, *Estimates in quadratic formulas*, Numer. Algorithms, 8 (1994), pp. 241–268, https://doi.org/10.1007/BF02142693.

A. Greenbaum, *Estimating the attainable accuracy of recursively computed residual methods*, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 535–551, https://doi.org/10.1137/S0895479895284944.

A. Greenbaum, *Iterative methods for solving linear systems*, vol. 17 of Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997, https://doi.org/10.1137/1.9781611970937.

A. Greenbaum and Z. Strakoš, *Predicting the behavior of finite precision Lanczos and conjugate gradient computations*, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 121–137, https://doi.org/10.1137/0613011.

J. Hart, B. van Bloemen Waanders, and R. Herzog, *Hyperdifferential sensitivity analysis of uncertain parameters in PDE-constrained optimization*, Int. J. for Uncertain. Quantif., 10 (2020), pp. 225–248, https://doi.org/10.1016/j.intuq.2020.03.248.

P. Hennig, *Probabilistic interpretation of linear solvers*, SIAM J. Optim., 25 (2015), pp. 234–260, https://doi.org/10.1137/140955501.

P. Hennig, M. A. Osborne, and M. Girolami, *Probabilistic numerics and uncertainty in computations*, Proc. A., 471 (2015), pp. 20150142, 17.

M. R. Hestenes and E. Stiefel, *Methods of conjugate gradients for solving linear systems*, J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436, https://doi.org/10.6028/jres.049.044.

N. J. Higham, *Functions of matrices. Theory and computation*, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008, https://doi.org/10.1137/1.9780898717778.

R. A. Horn and C. R. Johnson, *Matrix Analysis*, Cambridge University Press, second ed., 2013.

T. Karvonen, C. J. Oates, and S. Sarkka, *A Bayes-Sard cubature method*, in Advances in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds., vol. 31, Curran Associates, Inc., 2018, https://proceedings.neurips.cc/paper/2018/file/6775a0635c302542da2c32aa19d86be0-Paper.pdf.

L. Li and E. X. Fang, *A Bayesian conjugate gradient method*, Bayesian Anal., 14 (2019), pp. 937–1012, https://doi.org/10.1214/19-BA1145.

J. Liesen and Z. Strakos, *Krylov Subspace Methods: Principles and Analysis*, Oxford University Press, 2013.

A. M. Mathai and S. B. Provost, *Quadratic forms in random variables: Theory and applications*, Dekker, 1992.

Matrix Market, *BCSSTK18: BCS Structural Engineering Matrices (linear equations)* R.E. Ginna Nuclear Power Station, https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc2/bcsstk18.html.

T. Matsuda and Y. Miyatake, *Estimation of ordinary differential equation models with discretization error quantification*, SIAM/ASA J. Uncertain. Quantif., 9 (2021), pp. 302–331, https://doi.org/10.1137/19M1278405.

G. Meurant, *The computation of bounds for the norm of the error in the conjugate gradient algorithm*, Numer. Algorithms, 16 (1997), pp. 77–87 (1998), https://doi.org/10.1023/A:1019178811767. Sparse matrices in industry (Lille, 1997).

G. Meurant and P. Tichý, *On computing quadrature-based bounds for the A-norm of the error in conjugate gradients*, Numer. Algorithms, 62 (2013), pp. 163–191, https://doi.org/10.1007/s11075-012-9591-9.

G. Meurant and P. Tichý, *Approximating the extreme Ritz values and upper bounds for the A-norm of the error in CG*, Numer. Algorithms, 82 (2019), pp. 937–968, https://doi.org/10.1007/s11075-019-00738-x.
[38] J. Moˇckus, On Bayesian methods for seeking the extremum, in Optimization Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974, G. I. Marchuk, ed., Berlin, Heidelberg, 1975, Springer Berlin Heidelberg, pp. 400–404.

[39] R. J. Muirhead, Aspects of multivariate statistical theory, John Wiley & Sons, Inc., New York, 1982. Wiley Series in Probability and Mathematical Statistics.

[40] J. Nocedal and S. J. Wright, Numerical optimization, Springer Series in Operations Research and Financial Engineering, Springer, New York, second ed., 2006.

[41] C. J. Oates, J. Cockayne, R. G. Aykroyd, and M. Girolami, Bayesian probabilistic numerical methods in time-dependent state estimation for industrial hydrocyclone equipment, J. Amer. Statist. Assoc., 114 (2019), pp. 1518–1531, https://doi.org/10.1080/01621459.2019.1574583.

[42] C. J. Oates and T. J. Sullivan, A modern retrospective on probabilistic numerics, Stat. Comput., 29 (2019), pp. 1335–1351, https://doi.org/10.1007/s11222-019-09902-z.

[43] N. Petra, H. Zhu, G. Stadler, T. Hughes, and O. Ghattas, An inexact Gauss-Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model, J. Glaciology, 58 (2012), p. 889–903, https://doi.org/10.3189/2012JoG11J182.

[44] A. K. Saibaba, J. Hart, and B. van Bloemen Waanders, Randomized algorithms for generalized singular value decomposition with application to sensitivity analysis, Numer. Linear Algebra Appl., (2021), p. e2364, https://doi.org/10.1002/nla.2364.

[45] F. Sch¨afer, T. J. Sullivan, and H. Owhadi, Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity, Multiscale Model. Simul., 19 (2021), pp. 688–730, https://doi.org/10.1137/19M129526X.

[46] J. Snoek, H. Larochelle, and R. P. Adams, Practical Bayesian optimization of machine learning algorithms, in Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2, NIPS’12, Red Hook, NY, USA, 2012, Curran Associates Inc., p. 2951–2959.

[47] G. W. Stewart, The efficient generation of random orthogonal matrices with an application to condition estimators, SIAM J. Numer. Anal., 17 (1980), pp. 403–409, https://doi.org/10.1137/0717034.

[48] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, San Diego, 1990.

[49] Z. Strakoˇs and P. Tich´y, On error estimation in the conjugate gradient method and why it works in finite precision computations, Electron. Trans. Numer. Anal., 13 (2002), pp. 56–80.

[50] Z. Strakoˇs and P. Tich´y, Error estimation in preconditioned conjugate gradients, BIT, 45 (2005), pp. 789–817, https://doi.org/10.1007/s10543-005-0032-1.

[51] A. M. Stuart, Inverse problems: a Bayesian perspective, Acta Numer., 19 (2010), pp. 451–559, https://doi.org/10.1017/S0962492910000061.

[52] F. Tronarp, H. Kersting, S. S¨arkk¨a, and P. Hennig, Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective, Stat. Comput., 29 (2019), pp. 1297–1315, https://doi.org/10.1007/s11222-019-09900-1.

[53] J. Wenger and P. Hennig, Probabilistic linear solvers for machine learning, 2020, https://arxiv.org/abs/2010.09691. arXiv:2010.09691.
SUPPLEMENTARY MATERIALS: BAYESCG AS AN UNCERTAINTY AWARE VERSION OF CG*

TIM W. REID†, ILSE C. F. IPSEN†, JON COCKAYNE‡, AND CHRIS J. OATES§

SM1. Outline of Supplementary Materials. We present the proof of Theorem 2.1 (section SM2), discuss more theoretical properties of BayesCG (section SM3), and examine the performance of the Krylov posterior as a CG error estimate (section SM4).

SM2. Proof of Theorem 2.1. We present an example of search directions that satisfy the assumptions of Theorem 2.1 (Example SM2.1); review the conjugacy and stability of Gaussian distributions (Lemmas SM2.2 and SM2.3); present the proof of Theorem 2.1; and discuss the relation between the solution x^* and the random variable $X \sim \mathcal{N}(x_0, \Sigma_0)$ (Remark SM2.4).

Existence of search directions satisfying the assumptions of Theorem 2.1. The example below illustrates a non-recursive way to select search directions S_m so that $\Lambda_m = S_m^T A \Sigma_0 A S_m$ is nonsingular. The purpose of this example is to show that at least one set of search directions S_m exists that satisfies the assumptions of Theorem 2.1.

Example SM2.1. Let $\Sigma_0 = U D U^T$ be a singular value decomposition of the prior covariance Σ_0, and let $m \leq \text{rank}(\Sigma_0)$. Distinguish the leading m columns of U, and the leading nonsingular $m \times m$ principal submatrix of D

$$U_{1:m} = [u_1 \ u_2 \ \cdots \ u_m] \quad \text{and} \quad D_{1:m} \equiv \text{diag}(d_1 \ d_2 \ \cdots \ d_m),$$

and define the search directions $S_m \equiv A^{-1}U_m$. Then the equality

$$\Lambda_m = S_{1:m}^T A \Sigma_0 A S_{1:m} = U_{1:m}^T A^{-1} A \Sigma_0 A A^{-1} U_m = U_{1:m}^T \Sigma_0 U_m = D_m$$

and $m \leq \text{rank}(\Sigma_m)$ imply that D_m, hence Λ_m, is nonsingular.

This example shows that at least one set of search directions exists that satisfying the assumptions of Theorem 2.1. This example is necessary because Theorem 2.11 only shows that the recursively computed search directions from Theorem 2.8 satisfy the assumptions of Theorem 2.1 for $m \leq K \leq \text{rank}(\Sigma_0)$, where K is the grade of r_0 with respect to $A \Sigma_0 A$. In practice, it is best to compute the BayesCG posterior with the recursively computed search directions, even if $K < \text{rank}(\Sigma_m)$. There is no reason to compute more than K of these search directions because they cause the posterior mean at K iterations to be $x_K = x^*$.

Funding: The work was supported in part by NSF grant DMS-1745654 (TWR, ICFI), NSF grant DMS-1760374 and DOE grant DE-SC0022085 (ICFI), and the Lloyd’s Register Foundation Programme on Data Centric Engineering at the Alan Turing Institute (CJO).

†Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA, (twreid@alumni.ncsu.edu, ipsen@ncsu.edu)
‡Department of Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, UK (jon.cockayne@soton.ac.uk)
§School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK (chris.oates@ncl.ac.uk)

*Submitted to the editors
Review of stability and conjugacy of Gaussian distributions. The proof of Theorem 2.1 relies on the stability and conjugacy of Gaussian distributions.

Lemma SM2.2 (Stability of Gaussian distributions [SM14, Section 1.2]). Let \(X \sim \mathcal{N}(\mathbf{x}, \mathbf{\Sigma}) \in \mathbb{R}^n \) be a Gaussian random variable with mean \(\mathbf{x} \in \mathbb{R}^n \) and covariance \(\mathbf{\Sigma} \in \mathbb{R}^{n \times n} \). If \(\mathbf{y} \in \mathbb{R}^n \) is a vector and \(\mathbf{F} \in \mathbb{R}^{m \times n} \) is a matrix, then \(Z = \mathbf{y} + \mathbf{F} \mathbf{X} \) is again a Gaussian random variable distributed as

\[
Z \sim \mathcal{N}(\mathbf{y} + \mathbf{F} \mathbf{x}, \mathbf{F} \mathbf{\Sigma} \mathbf{F}^T).
\]

Lemma SM2.3 (Conjugacy of Gaussian distributions [SM15, Section 6.1], [SM19, Corollary 6.21]). Let \(\mathbf{X} \sim \mathcal{N}(\mathbf{x}, \mathbf{\Sigma}) \) and \(\mathbf{Y} \sim \mathcal{N}(\mathbf{y}, \mathbf{\Sigma}_y) \) be Gaussian random variables. The jointly Gaussian random variable \([\mathbf{X}^T \ \mathbf{Y}^T]^T \) has the distribution

\[
\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}, \begin{bmatrix} \mathbf{\Sigma}_x & \mathbf{\Sigma}_{xy} \\ \mathbf{\Sigma}_{yx} & \mathbf{\Sigma}_y \end{bmatrix} \right),
\]

where \(\mathbf{\Sigma}_{xy} \equiv \text{Cov}(\mathbf{X}, \mathbf{Y}) = \mathbb{E}[(\mathbf{X} - \mathbf{x})(\mathbf{Y} - \mathbf{y})^T] \) and the conditional distribution of \(\mathbf{X} \) given \(\mathbf{Y} \) is

\[
(X \mid Y) \sim \mathcal{N}\left(\mathbf{x} + \mathbf{\Sigma}_{xy} \mathbf{\Sigma}_y^{-1}(\mathbf{Y} - \mathbf{y}), \mathbf{\Sigma}_x - \mathbf{\Sigma}_{xy} \mathbf{\Sigma}_y^{-1} \mathbf{\Sigma}_{yx} \right).
\]

Proof of Theorem 2.1. Since \(m \leq \text{rank}(\mathbf{\Sigma}_0) \), we can choose search directions \(\mathbf{S}_m \) with linearly independent columns so that \(\mathbf{\Lambda}_m \) is nonsingular, see Example SM2.1. Then the proof reduces to that of [SM5, Proof of Proposition 1].

Let the random variable \(X_0 \sim \mathcal{N}(\mathbf{x}_0, \mathbf{\Sigma}_0) \) represent the prior belief about the unknown solution \(\mathbf{x}_0 \), and let the random variable \(Y_m = \mathbf{S}_m^T \mathbf{A} \mathbf{x}_0 \) represent the implied prior belief about the unknown values \(\mathbf{S}_m^T \mathbf{A} \mathbf{x}_0 \) before they are computed. The posterior is the conditional distribution \((X_0 \mid Y_m = \mathbf{S}_m^T \mathbf{A} \mathbf{x}_0) \) [SM3, Proposition 1]. Thus, we first determine the conditional distribution \((X_0 \mid Y_m) \) and then substitute \(Y_m = \mathbf{S}_m^T \mathbf{A} \mathbf{x}_0 \).

The joint distribution of \(X_0 \) and \(Y_m \) is

\[
\begin{bmatrix} X_0 \\ Y_m \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{x}_0 \\ \mathbb{E}[Y_m] \end{bmatrix}, \begin{bmatrix} \mathbf{\Sigma}_0 & \mathbb{E}(X_0, Y_m)^T \\ \mathbb{E}(X_0, Y_m) & \mathbb{E}(Y_m, Y_m) \end{bmatrix} \right).
\]

The mean and covariance of \(Y_m \) follow from Lemma SM2.2,

\[
\mathbb{E}[Y_m] = \mathbf{S}_m^T \mathbf{A} \mathbf{x}_0 \quad \text{and} \quad \text{Cov}(Y_m, Y_m) = \mathbf{S}_m^T \mathbf{\Sigma}_0 \mathbf{A} \mathbf{S}_m = \mathbf{\Lambda}_m,
\]

while the linearity of the expectation implies for the covariance that

\[
\text{Cov}(X_0, Y_m) = \mathbb{E}[(X_0 - \mathbf{x}_0)(\mathbf{S}_m^T \mathbf{A}(X_0 - \mathbf{x}_0))^T] = \mathbf{\Sigma}_0 \mathbf{A} \mathbf{S}_m.
\]

Substituting all of the above into \((\text{SM2.1})\) gives

\[
\begin{bmatrix} X_0 \\ Y_m \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mathbf{x}_0 \\ \mathbf{S}_m^T \mathbf{A} \mathbf{x}_0 \end{bmatrix}, \begin{bmatrix} \mathbf{\Sigma}_0 & \mathbb{E}(X_0, Y_m)^T \\ \mathbb{E}(X_0, Y_m) & \text{Cov}(Y_m, Y_m) \end{bmatrix} \right).
\]

Thus we can invoke Lemma SM2.3 to conclude that the conditional distribution for \((X_0 \mid Y_m)\) is a Gaussian \(\mathcal{N}(\mathbf{x}_m, \mathbf{\Sigma}_m) \) with mean and covariance

\[
\mathbf{x}_m = \mathbf{x}_0 + \mathbf{\Sigma}_0 \mathbf{A} \mathbf{S}_m \mathbf{A}_m^{-1}(Y_m - \mathbf{S}_m^T \mathbf{A} \mathbf{x}_0)
\]
\[
\mathbf{\Sigma}_m = \mathbf{\Sigma}_0 - \mathbf{\Sigma}_0 \mathbf{A} \mathbf{S}_m \mathbf{A}_m^{-1} \mathbf{S}_m^T \mathbf{A} \mathbf{\Sigma}_0.
\]
At last, substitute \(Y_m = S^T_m \mathbf{A} \mathbf{x}_* = S^T_m \mathbf{b} \) to obtain \((X_0 \mid Y_m = S^T_m \mathbf{A} \mathbf{x}_*) \).

Below we discuss the relation between the solution vector \(\mathbf{x}_* \) and the random variable \(X \) from the proof of Theorem 2.1

\textbf{Remark SM2.4.} \textit{The solution vector \(\mathbf{x}_* \) is a deterministic value, but we do not know its true value. The prior distribution \(\mathcal{N}(\mathbf{x}_0, \Sigma_0) \) models the initial epistemic uncertainty in \(\mathbf{x}_* \), that is, the uncertainty in our knowledge of the true value of \(\mathbf{x}_* \). The random variable \(X \sim \mathcal{N}(\mathbf{x}_0, \Sigma_0) \) in the proof of Theorem 2.1 is a surrogate for \(\mathbf{x}_* \).}

When we compute \(\mathbf{x}_* \) with an iterative linear solver, we gain more information about the true value of \(\mathbf{x}_* \). Since we gain information about \(\mathbf{x}_* \), we can update the surrogate for \(\mathbf{x}_* \) by conditioning \(X \) on the new information. In BayesCG, the information we gain is that \(Y \equiv S^T_m \mathbf{A} \mathbf{X} \) takes the value \(S^T_m \mathbf{b} \). Therefore, our updated surrogate is \(X \mid Y = S^T_m \mathbf{b} \), and it is distributed according to the posterior distribution \(\mathcal{N}(\mathbf{x}_m, \Sigma_m) \). The posterior distribution models the uncertainty remaining \(\mathbf{x}_* \) after we obtained the additional information about it.

\textbf{SM3. Additional Theoretical Properties of BayesCG.} We discuss the relationship between BayesCG and CG (section SM3.1), present an alternative proof of Theorem 3.3 (section SM3.2), and present an alternative definition of \(\Phi \) that has the same convergence properties as in section 3.3 (section SM3.3).

\textbf{SM3.1. Relationship Between BayesCG and CG.} We discuss the relationship between BayesCG and CG. The posterior mean from Algorithm 2.1 is closely related to the approximate solution from CG. For nonsingular \(\Sigma_0 \), BayesCG can be interpreted as CG applied to a right-preconditioned linear system. Specifically, [SM8] showed the posterior means \(\mathbf{x}_i \) in Algorithm 2.1 are equal to the iterates of Algorithm 2.2 applied to the right preconditioned system

\begin{equation}
\mathbf{A} (\Sigma_0 \mathbf{A}) \mathbf{w}_* = \mathbf{b} \quad \text{where} \quad \mathbf{w}_* = (\Sigma_0 \mathbf{A})^{-1} \mathbf{x}_*.
\end{equation}

It can be seen in (SM3.1) that if \(\Sigma_0 = \mathbf{A}^{-1} \), then the BayesCG posterior mean is equal to the approximate solution computed by CG. This was originally shown in [SM3, Section 2.3] and can also be seen by comparing Algorithms 2.1 and 2.2. Additionally, if \(\Sigma_0 = \mathbf{A}^{-1} \), then the search directions in Algorithms 2.1 and 2.2 are equal as well.

Similarly to CG, the termination criterion in Algorithm 2.1 can be the usual relative residual norm, or it can be statistically motivated [SM2, Section 2], [SM4, Section 1.3].

The similarity of BayesCG (Algorithm 2.1) and CG (Algorithm 2.2) strongly suggests that both algorithms have similar finite precision behavior. The search directions in Algorithm 2.1 lose orthogonality through the course of the iteration, thereby slowing down the convergence of the posterior means [SM3, Section 6.1], similar to what happens in CG [SM9, Section 5.8], [SM11, Section 5]. In addition, loss of orthogonality causes loss of semi-definiteness in the posterior covariances \(\Sigma_m \), prohibiting their interpretation as covariance matrices since covariance matrices must be positive semi-definite [SM3, Section 6.1]. The remedy recommended in [SM3, Section 6.1] is reorthogonalization of the search directions.

\textbf{SM3.2. Alternative Version of Theorem 3.3.} We present an alternative version of Theorem 3.3, the theorem that shows the Krylov posterior means are equal
to CG iterates. This version additionally shows the search directions computed in Algorithm 2.1 under the Krylov prior are equal to the search directions in Algorithm 2.2.

The alternative version of Theorem 3.3 also verifies the claim in Remark 3.9 that the approximate Krylov posterior (3.20) can be viewed as as the posterior from the rank- \((m + d)\), \(1 \leq d \leq K - m\), approximation of the prior \(\mathcal{N}(x_0, \hat{\Gamma}_0)\) with

\[
\hat{\Gamma}_0 = V_{1:m+d} \Phi_{1:m+d} (V_{1:m+d})^T.
\]

Similarly to Theorem 3.3, the alternative version of the theorem relies on (3.4). Equation (3.4) remains true for the approximate posterior:

\[
\hat{\Gamma}_0 A \hat{v}_i = \phi_i \hat{v}_i, \quad 1 \leq i \leq m + d.
\]

Theorem SM3.1. Let \(s_i\) and \(x_i\), \(1 \leq i \leq m\) be the search directions and posterior means computed in \(m\) iterations of Algorithm 2.1 starting from the prior \(\mathcal{N}(x_0, \hat{\Gamma}_0)\). Similarly, let \(v_i\) and \(z_i\), \(1 \leq i \leq m\) be the search directions and solution iterates computed in \(m\) iterations of Algorithm 2.2 starting at initial guess \(z_0\). If \(z_0 = x_0\), then

\[
(s_i, x_i, v_i) \quad \text{for} \quad 1 \leq i \leq m.
\]

Proof. We give an induction proof to establish the equality of iterates and search directions. In this proof we denote by

\[
q_i = b - Az_i, \quad 0 \leq i \leq m,
\]

the residuals in Algorithm 2.2.

Induction base: The equality of the initial iterates follows from the assumption that \(z_0 = x_0\). This, in turn, implies the equality of the corresponding residuals and search directions,

\[
s_1 = r_0 = b - Ax_0 = b - Az_0 = q_0 = v_1.
\]

Induction hypothesis: Assume equality of the first \(m\) search directions and iterates,

\[
x_i = z_i, \quad 0 \leq i \leq m - 1, \quad \text{and} \quad s_i = v_i, \quad 1 \leq i \leq m.
\]

The equality of the iterates implies the equality of the residuals

\[
r_i = b - Ax_i = b - Az_i = q_i, \quad 0 \leq i \leq m - 1.
\]

Induction step: Show \(x_m = z_m\) and \(s_{m+1} = v_{m+1}\) via the recursions from Algorithms 2.1 and 2.2.

Iterates. Apply \(z_{m-1} = x_{m-1}\) from (SM3.5) and \(q_{m-1} = r_{m-1}\) from (SM3.6) to the iterate from Algorithm 2.2,

\[
z_m = z_{m-1} + \frac{q_{m-1} q_{m-1}^T}{s_{m}^T A s_{m}} v_m = x_{m-1} + \frac{r_{m-1} r_{m-1}^T}{s_{m}^T A s_{m}} v_m.
\]

Apply \(s_m = v_m\) from (SM3.5) the iterate from Algorithm 2.1 and simplify with (SM3.3),

\[
x_m = x_{m-1} + \frac{r_{m-1} r_{m-1}^T}{s_{m}^T A s_{m}} \Gamma_0 A s_{m} = x_{m-1} + \frac{\phi_m r_{m-1} r_{m-1}^T}{s_{m}^T A s_{m}} v_m = z_m,
\]

which proves the equality of the iterates, and implies equality of the residuals \(r_m = q_m\).
Search Directions. Apply \(s_m = v_m \) from (SM3.5), and \(r_m = q_m \) to the search direction from Algorithm 2.2,
\[
s_{m+1} = r_m + \frac{r_m^T r_m}{r_{m-1}^T r_{m-1}} s_m = q_m + \frac{q_m^T q_m}{q_{m-1}^T q_{m-1}} v_m = v_{m+1},
\]
which proves the equality of the search directions.

Showing that the posterior covariance under the approximate Krylov prior is
\[
\hat{\Gamma}_m = V_{m+1;m+d} \Phi_{m+1;m+d} (V_{m+1;m+d})^T
\]
follows the same argument as in Theorem 3.3.

Theorem SM3.1 shows that the search directions under the approximate Krylov prior are not in \(\ker(\hat{\Gamma}_0 A) \). This is important to show because the approximate Krylov posterior does not satisfy the condition \(x_* - x_0 \in \text{range}(\hat{\Gamma}_0) \) from Theorem 2.11 which guarantees \(s_i \not\in \ker(\hat{\Gamma}_0 A) \).

THEOREM SM3.2. The diagonal elements of \(\Phi \) in Theorem 3.7 are equal to
\[
\phi_i = (\hat{v}_i^T r_0)^2 = (\hat{v}_i^T A(x_* - x_0))^2, \quad 1 \leq i \leq K.
\]

Proof. From Theorem 3.7, we have that \(\phi_i = \gamma_i \| r_{i-1} \|^2_2, \quad 1 \leq i \leq K \). Substituting \(\gamma_i = r_{i-1}^T r_{i-1} / (v_i^T A v_i) \) from Algorithm 3.1 into \(\phi_i \) results in
\[
\phi_i = \frac{\| r_{i-1} \|^2_2}{v_i^T A v_i}, \quad 1 \leq i \leq K.
\]

From the previous equation and \(v_i^T r_{i-1} = \| r_{i-1} \|^2_2, \quad 1 \leq i \leq K \), [SM9, (2.5.37)] follows
\[
\phi_i = \frac{(v_i^T r_{i-1})^2}{v_i^T A v_i}, \quad 1 \leq i \leq K.
\]

Applying the normalization \(\hat{v}_i = v_i / \sqrt{v_i^T A v_i} \) and the fact \(\hat{v}_i^T r_{i-1} = \hat{v}_i^T r_0, \quad 1 \leq i \leq K \), [SM3, (11)] to the previous equation gives
\[
\phi_i = (\hat{v}_i^T r_{i-1})^2 = (\hat{v}_i^T r_0)^2, \quad 1 \leq i \leq K.
\]

Equation (SM3.7) provides a geometric interpretation of \(\Phi \). It shows that \(\phi_i \) is the squared \(A \)-norm length of error \(x_* - x_0 \) in the direction \(\hat{v}_i, \quad 1 \leq i \leq K \).

In finite precision, the definition of \(\Phi \) in Theorem 3.7 and Algorithm 3.1 is preferable over (SM3.7). This is because (3.18) in Theorem 3.7 requires only local orthogonality of CG [SM18, Section 10], while (SM3.7) requires global orthogonality due to its reliance on the equalities \(v_i^T r_{i-1} = \cdots = v_i^T r_0 \).

SM4. Error Estimation and the Krylov Posterior. We investigate performance of estimating the error in CG by sampling from the Krylov posterior distribution. We do this with the sampling based error estimate
\[
S \equiv \| X - x_m \|^2_A, \quad X \sim \mathcal{N}(x_0, \hat{\Gamma}_0),
\]
introduced in section 3.3. Additionally, in section SM4.1 we develop a \(\alpha \)% credible interval of (SM4.1) that can be computed without sampling. In section SM4.2, we compare the performance of section SM4.1 and its analytic credible interval to two existing CG error estimation techniques.

Remark SM4.1. Even though we are estimating CG error in this section, we remind the reader that the purpose of (SM4.1) in sections 3.3 and 4 in the main part of paper is not to estimate the error, it is to determine if the posterior is informative.

SM4.1. Credible Interval of Sampling Based Error Estimate. The exact distribution of the sampling based error estimate (SM4.1) is a generalized chi-squared distribution and does not have a known closed form. We present an approximation that avoids the cost of sampling without losing accuracy. Compared to the many existing approximations [SM1, SM7, SM20] for distributions of Gaussian quadratic forms, our approximation is simple and designed to be computable within CG.

First we approximate (SM4.1) by a Gaussian distribution \(\mathcal{N}(\mu, \sigma^2) \). Because (SM4.1) is a quadratic form, we can compute its mean and variance [SM10, Sections 3.2b.1–3.2b.3] (see also Lemma B.2). From Lemma 3.5, Theorem 3.7, and (3.19) follows that

\[
\mu \equiv \text{trace}(\hat{A}\hat{\Gamma}_m) = \sum_{i=m+1}^{m+d} \gamma_i \|r_{i-1}\|_2^2 \approx \|x_* - x_m\|.
\]

Following a similar argument with the variance formula in Lemma B.2 gives

\[
\sigma^2 \equiv 2 \text{ trace}((\hat{A}\hat{\Gamma}_m)^2) = 2 \sum_{i=m+1}^{m+d} \gamma_i^2 \|r_{i-1}\|_2^4.
\]

Next we determine an ‘\(\alpha \)% credible interval’ of \(\mathcal{N}(\mu, \sigma^2) \) for some \(0 < \alpha < 100 \). A credible interval is a band around the mean \(\mu \) whose width is a multiple of the standard deviation \(\sigma \). Since \(\mu \) is an underestimate of the error, we only need the upper one-sided upper credible interval \([\mu, S(\alpha)] \) where

\[
S(\alpha) \equiv \mu + h(\alpha) \sigma \quad \text{and} \quad h(\alpha) \equiv \sqrt{2} \text{erf}^{-1}(\alpha/100).
\]

The error function \(\text{erf} \) is associated with the integral over the probability density of the normal distribution, and \(\text{erf}^{-1} \) is its inverse\(^1\), that is \(\text{erf}^{-1}(\text{erf}(z)) = z \).

The one-sided credible interval \([\mu, S_\alpha] \) becomes wider for large \(\alpha \), and narrower for small \(\alpha \). In section SM4.2 we select the popular choice \(\alpha = 95 \), and illustrate that \([\mu, S(95)] \) represents an estimate whose quality is comparable to (SM4.1).

SM4.2. Numerical Experiments. We perform numerical experiments to illustrate the accuracy of credible interval bound \(S(95) \) by comparing it to the mean and samples of the sampling based error estimate (SM4.1), an empirical version of the credible interval, and state-of-the-art CG error estimators from [SM12, SM13]. After describing the setup for the numerical experiments, we present results for matrices with small dimension and large dimension, followed by a summary.

\(^1\)The function \text{erfinv} is implemented in Matlab, Python’s \texttt{scipy.special} library, and Julia’s \texttt{SpecialFunctions} package.
SM4.2.1. Setup for the Numerical Experiments. We describe the setup for the numerical experiments. These estimates are plotted in each iteration m, but we suppress the explicit dependence on m to keep the notation simple.

One-sided Credible Interval. We plot the upper 95% one-sided credible interval. This interval is the band between the mean μ from Theorem SM4.2 and bound $S(95)$ from (SM4.3) with $\sqrt{2}\text{erf}(0.95) = 1.96$,

$$\mu = \sum_{i=m+1}^{m+d} \gamma_i \|r_i\|_2^2 \quad \text{and} \quad S(95) = \mu + 1.96 \sqrt{2 \sum_{i=m+1}^{m+d} \gamma_i^2 \|r_{i-1}\|_2^2}.$$

While μ represents the known underestimate (3.19), we are not aware of other estimates of the type $S(95)$. As mentioned in Remark 3.3.3, the mean μ is equal to the CG error estimate derived from Gaussian quadrature [SM18, Section 3].

We also plot empirically computed credible interval $[\hat{\mu}, \hat{S}(95)]$ with bounds from the 10 samples of (SM4.1), where

$$\hat{\mu} = \frac{1}{10} \sum_{i=1}^{10} s_i \quad \text{and} \quad \hat{S}_{95} = \hat{\mu} + 1.96 \sqrt{\frac{1}{9} \sum_{i=1}^{10} (s_i - \hat{\mu})^2}.$$

Gauss-Radau Estimates. We employ two different estimates.

(a) Gauss-Radau Upper bound [SM12, Section 4].

This is an upper bound on CG error computed with the CGQ algorithm [SM12, Section 4]. It requires a user-specified lower bound on the smallest eigenvalue of A.

(b) Gauss-Radau Approximation [SM13, Sections 6 and 8.2].

This is an approximation of the Gauss-Radau upper bound (a) and it can underestimate the error [SM13, Section 8.2]. It does not require a bound for the smallest eigenvalue of A, and instead approximates the smallest Ritz value of the tridiagonal matrix in CG [SM13, Section 5].

Both error estimates require running d additional CG iterations to be computed. The additional amount of iterations is called the delay and is analogous to the rank of the approximate Krylov posterior covariance matrix. The Gauss-Radau approximation (b) does not require a delay, however we use a delay by computing the estimate with the Ritz value from iteration $m + d$. More discussion about CG error estimates can be found in Remark 3.3.3 in the main part of the paper.

Relative Accuracy of Estimates. We plot the relative difference between an estimate E and the squared A-norm error $\|x_* - x_m\|_A^2$,

$$\rho(E) = \frac{|E - \|x_* - x_m\|_A|}{\min\left\{E, \|x_* - x_m\|_A^2\right\}},$$

where E can be μ, $S(95)$, or one of the Gauss-Radau estimators. The minimum in the denominator avoids favoring underestimate or overestimates, so that smaller values $\rho(E)$ indicate more accurate estimators E.

Inputs. The linear systems $Ax_* = b$ have a size $n = 48$ or $n = 11948$ symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$, solution vector of all ones $x_* = 1 \in \mathbb{R}^n$, and right-hand side vector $b = A1$. The initial guess $x_0 = 0 \in \mathbb{R}^n$ is the zero vector.

2The Python code used in the numerical experiments can be found at https://github.com/treid5/ProbNumCG_Supp
Figures SM4.1 and SM4.2 display the squared A-norm error $\|x^* - x_m\|_A^2$ and the estimates over 120 iterations. The delay used to compute the error estimates and posterior covariance rank is $d = 4$.

Figure SM4.1 plots the samples s_i from (SM4.1) on the left, and the empirical upper credible interval $[\hat{\mu}, \hat{S}(95)]$ from (SM4.5) on the right. Both underestimate the error in the initial period of slow convergence, cover the error during fast convergence, and underestimate the error once maximal attainable accuracy has been reached. The upper credible intervals appear deceptively thinner because of the logarithmic scale on the vertical axis.

The left part of Figure SM4.2 plots the credible interval $[\mu, S(95)]$ from (SM4.4); as well as the Gauss-Radau bound (a) and approximation (b). The Gauss-Radau bound is computed with a lower bound of $9.99 \cdot 10^{-2}$ for the smallest eigenvalue 0.1 of A. The upper credible interval $[\mu, S(95)]$ behaves like its empirical version $[\hat{\mu}, \hat{S}(95)]$ in Figure SM4.1, and therefore represents an accurate approximation. The Gauss-Radau bound (a) overestimates the error, and the Gauss-Radau approximation (b) underestimates the error when convergence is slow and overestimates it when convergence is fast. Note that the bound $S(95)$ underestimates the error during slow convergence and overestimates it during fast convergence.

The right part of Figure SM4.2 plots the relative accuracy (SM4.6) for the mean μ from (SM4.4), the bound $S(95)$ from (SM4.4), the Gauss-Radau bound (a) and the Gauss-Radau approximation (b). During the initial period of slow convergence, the bound $S(95)$ starts out as the most accurate until iteration 75 when the Gauss-Radau bound (a) becomes the most accurate. During fast convergence, after iteration 90, the mean μ is most accurate.

SM4.2.2. Matrix with Small Dimension. We first examine the error estimates on a size $n = 48$ random matrix $A = QDQ^T$ [SM6, Section 2], where Q is a random orthogonal matrix with Haar distribution [SM16, Section 3] and D is a diagonal matrix with eigenvalues [SM17]

$$d_{ii} = 0.1 + \frac{i - 1}{n - 1} \left(10^4 - 0.1\right) (0.9)^{n-i}, \quad 1 \leq i \leq 48.$$

The eigenvalue distribution is chosen to increase round off errors in CG, and is similar to the one in [SM18, Section 11] for testing (3.19). The two-norm condition number is $\kappa_2(A) = 10^5$.

Figures SM4.1 and SM4.2 display the squared A-norm error $\|x^* - x_m\|_A^2$ and the estimates over 120 iterations. The delay used to compute the error estimates and posterior covariance rank is $d = 4$.

The left part of Figure SM4.2 plots the credible interval $[\mu, S(95)]$ from (SM4.4); as well as the Gauss-Radau bound (a) and approximation (b). The Gauss-Radau bound is computed with a lower bound of $9.99 \cdot 10^{-2}$ for the smallest eigenvalue 0.1 of A. The upper credible interval $[\mu, S(95)]$ behaves like its empirical version $[\hat{\mu}, \hat{S}(95)]$ in Figure SM4.1, and therefore represents an accurate approximation. The Gauss-Radau bound (a) overestimates the error, and the Gauss-Radau approximation (b) underestimates the error when convergence is slow and overestimates it when convergence is fast. Note that the bound $S(95)$ underestimates the error during slow convergence and overestimates it during fast convergence.

The right part of Figure SM4.2 plots the relative accuracy (SM4.6) for the mean μ from (SM4.4), the bound $S(95)$ from (SM4.4), the Gauss-Radau bound (a) and the Gauss-Radau approximation (b). During the initial period of slow convergence, the bound $S(95)$ starts out as the most accurate until iteration 75 when the Gauss-Radau bound (a) becomes the most accurate. During fast convergence, after iteration 90, the mean μ is most accurate.
Figure SM4.2: Squared A-norm error $\|x^* - x_m\|_A^2$ and relative accuracy versus iteration m for the matrix A with eigenvalue distribution (SM4.7). On the left: upper credible interval $[\mu, S(95)]$ from (SM4.4), Gauss-Radau bound (a), and Gauss-Radau approximation (b). On the right: relative accuracy ρ from (SM4.6) for the mean μ and bound $S(95)$ from (SM4.4) as well as the Gauss-Radau bound (a) and approximation (b).

Figure SM4.3: Squared A-norm error $\|x^* - x_m\|_A^2$ versus iteration m for the matrix A based on BCSSTR18. On the left: samples s_i from (SM4.1). On the right: empirical upper credible interval $[\hat{\mu}, \hat{S}(95)]$ from (SM4.5).

SM4.2.3. Matrix with Large Dimension. We now examine the error estimates on the same $n = 11948$ matrix as in section 4.3.

Figures SM4.3 and SM4.4 display the squared A-norm error $\|x^* - x_m\|_A^2$ and the estimates over 2,700 iterations. The delay and posterior covariance has rank is $d = 50$.

Figure SM4.3 plots the samples s_i from (SM4.1) on the left, and the empirical credible interval $[\hat{\mu}, \hat{S}(95)]$ from (SM4.5) on the right. Both behave as in Figure SM4.1 and closely underestimate the error.

The left part of Figure SM4.4 plots the credible interval $[\mu, S(95)]$ from (SM4.4); as well as the Gauss-Radau bound (a) and approximation (b). The Gauss-Radau bound is computed with a lower bound of $9 \cdot 10^{-14}$ for the smallest eigenvalue of A. Again, the behavior is similar as in Figure SM4.2.

The right part of Figure SM4.4 plots the relative accuracy (SM4.6) for the mean μ from (SM4.4), the bound $S(95)$ from (SM4.4), and the Gauss-Radau approximation (b). As before, the bound $S(95)$ is generally the most accurate, followed by the
mean μ.

SM4.2.4. Summary of the Experiments. Numerical experiments confirm that the sampling based error estimate (SM4.1) performs as expected. In particular, the upper credible interval $[\mu, S(95)]$ in (SM4.4) is an accurate approximation of the empirical upper credible interval $[\hat{\mu}, \hat{S}(95)]$ in (SM4.5).

The speed of convergence impacts the effectiveness of (SM4.1) as an error estimate. The credible interval $[\mu, S(95)]$ (SM4.4) depends on the mean μ, and the distance between μ and the error depends on convergence speed. As a consequence, the mean and credible interval are far from the error when convergence is slow.

Convergence speed can also affect the Gauss-Radau approximation (b). The convergence rate of the smallest Ritz value to the smallest eigenvalue is usually related to convergence of the A-norm error [SM13, Section 8.1 and Figures 3 and 4]. Slow convergence of the A-norm means the Ritz value has not converged to the smallest eigenvalue, and this causes the Gauss-Radau approximation (b) to be less accurate.

In general, the bound $S(95)$ tends to underestimate the error during slow convergence and to cover the error during fast convergence. The distance between $S(95)$ and the error is competitive with the Gauss-Radau estimates.

REFERENCES

[SM1] T. Y. Al-Naffouri, M. Moinuddin, N. Ajeeb, B. Hassibi, and A. L. Moustakas, *On the distribution of indefinite quadratic forms in Gaussian random variables*, IEEE Trans. Commun., 64 (2016), pp. 153–165.

[SM2] D. Calvetti, *Contributed discussion for “A Bayesian conjugate gradient method”*, Bayesian Anal., 14 (2019), pp. 937–1012, https://doi.org/10.1214/19-BA1145.

[SM3] J. Cockayne, C. J. Oates, I. C. F. Ipsen, and M. Girolami, *A Bayesian conjugate gradient method (with discussion)*, Bayesian Anal., 14 (2019), pp. 937–1012, https://doi.org/10.1214/19-BA1145. Includes 6 discussions and a rejoinder from the authors.

[SM4] J. Cockayne, C. J. Oates, I. C. F. Ipsen, and M. Girolami, *Rejoinder for “A Bayesian conjugate gradient method”*, Bayesian Anal., 14 (2019), pp. 937–1012, https://doi.org/10.1214/19-BA1145.

[SM5] J. Cockayne, C. J. Oates, I. C. F. Ipsen, and M. Girolami, *Supplementary material for ‘A Bayesian conjugate-gradient method’*, Bayesian Anal., (2019), https://doi.org/10.1214/19-BA1145SUPP.

[SM6] A. Greenbaum and Z. Strakoš, *Predicting the behavior of finite precision Lanczos and
conjugate gradient computations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 121–137, https://doi.org/10.1137/0613011.

[SM7] D. JENSEN AND H. SOLOMON, A Gaussian approximation to the distribution of a definite quadratic form, J. Amer. Statist. Assoc., 67 (1972), pp. 898–902.

[SM8] L. LI AND E. X. FANG, Invited discussion for “A Bayesian conjugate gradient method”, Bayesian Anal., 14 (2019), pp. 937–1012, https://doi.org/10.1214/19-BA1145.

[SM9] J. LIESEN AND Z. STRAKOŠ, Krylov Subspace Methods: Principles and Analysis, Oxford University Press, 2013.

[SM10] A. M. MATHAI AND S. B. PROVOST, Quadratic forms in random variables: Theory and applications, Dekker, 1992.

[SM11] G. MEURANT AND Z. STRAKOŠ, The Lanczos and conjugate gradient algorithms in finite precision arithmetic, Acta Numer., 15 (2006), pp. 471–542, https://doi.org/10.1017/S096249290626001X.

[SM12] G. MEURANT AND P. TICHÝ, On computing quadrature-based bounds for the A-norm of the error in conjugate gradients, Numer. Algorithms, 62 (2013), pp. 163–191, https://doi.org/10.1007/s11075-012-9591-9.

[SM13] G. MEURANT AND P. TICHÝ, Approximating the extreme Ritz values and upper bounds for the A-norm of the error in CG, Numer. Algorithms, 82 (2019), pp. 937–968, https://doi.org/10.1007/s11075-018-0634-8.

[SM14] R. J. MUIRHEAD, Aspects of multivariate statistical theory, John Wiley & Sons, Inc., New York, 1982. Wiley Series in Probability and Mathematical Statistics.

[SM15] D. V. OUELLETTE, Schur complements and statistics, Linear Algebra Appl., 36 (1981), pp. 187–295, https://doi.org/10.1016/0024-3795(81)90232-9.

[SM16] G. W. STEWART, The efficient generation of random orthogonal matrices with an application to condition estimators, SIAM J. Numer. Anal., 17 (1980), pp. 403–409, https://doi.org/10.1137/0717034.

[SM17] Z. STRAKOŠ, On the real convergence rate of the conjugate gradient method, Linear Algebra Appl., 154/156 (1991), pp. 535–549, https://doi.org/10.1016/0024-3795(91)90393-B.

[SM18] Z. STRAKOŠ AND P. TICHÝ, On error estimation in the conjugate gradient method and why it works in finite precision computations, Electron. Trans. Numer. Anal., 13 (2002), pp. 56–80.

[SM19] A. M. STUART, Inverse problems: a Bayesian perspective, Acta Numer., 19 (2010), pp. 451–559, https://doi.org/10.1017/S0962492910000001.

[SM20] G. G. TZIRITAS, On the distribution of positive-definite Gaussian quadratic forms, IEEE Trans. Inform. Theory, 33 (1987), pp. 895–906.