Nonlinear Vibrations Analysis and Dynamic Responses of a Vertical Conveyor System Controlled by a Proportional Derivative Controller

Y. S. HAMED1,2, HAMMAD ALOTAIBI1, AND E. R. EL-ZAHAR3,4

1Department of Mathematics and Statistics, Faculty of Science, Taif University, Taif 21974, Saudi Arabia
2Department of Engineering Mathematics, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
3Department of Mathematics, College of Sciences and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
4Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt

Corresponding author: E. R. El-Zahar (er.elzahar@psau.edu.sa)

ABSTRACT In this paper, we introduce a nonlinear vibrations analysis and dynamic responses of a vertical conveyor system under multi excitation forces. By adding the nonlinear proportional derivative controller (NPD) to the vibrating motion of the vertical vibration conveyor, the energy was transferred between uncontrolled and controlled system. We calculate the approximate solutions of the vibrating system utilizing the method of multiple scales. In addition, we investigate the stability at worst resonance cases using phase plane technique, equations of frequency response, and averaging method. The vertical vibration conveyor behavior was studied numerically at the values of its different parameters. The results exhibit the efficiency of NPD control unit to avoid the oscillations of the vertical conveyor system. Numerical simulations have been carried out using MAPLE and MATLAB software’s to ensure the fidelity of our results. Comparisons are made between analytical and numerical results. Also, findings of the present work are discussed in details and compared with published works.

INDEX TERMS Vertical shaking conveyor, vibrations, nonlinear proportional derivative control (NPD).

I. INTRODUCTION

In the field of electronics and mechanics, many researchers have examined oscillations of mechanical systems with periodic loads. Vertical conveyors are considered as efficient samples of control different parameter types for this problem. They have some features such as simple structure, energy used less, and low maintenance cost. The passive control technique is used to investigate the behavior of the system in the presence of multi types of excitation forces [1]–[3]. The dynamic behavior of the inclined cable resonance in the presence of harmonic excitation is discussed by [4]. Others have investigated the nonlinear behavior of the string beam system with multiple excitations at the case 1:1 internal resonance; they showed that there are jump phenomena in the curves of the frequency response [5]. The stability analyses and numerical response of a nonlinear-coupled pitch-roll ship system in the presences of parametric with harmonic excitation forces were studied [6]. The straight vibrations of the vertical conveyor are checked in different stocking conditions [7]. The nonlinear analysis of the unbalanced mass of a vertical conveyor elevator, dynamic characteristics such as effects of excited excitations amplitude, nonlinearity, and damping are studied at primary resonance [8]. Shaking conveyors were investigated analytically and numerically applying the method of multiple scales at primary, super-harmonic and sub-harmonic resonances with cubic nonlinear spring and a vibration exciter (ideal and non-ideal). Numerical simulations showed that the important dynamic characteristics of the system and presented a periodic behavior for these conditions [9]–[11]. The mathematical study and nonlinear dynamic analysis of the vertical conveyor oscillations under different excitations were introduced [12]–[15]. The vertical conveyor analysis was investigated using unit control of positive position feedback and negative velocity feedback controls [16], [17]. The vibrations of the vertical conveyor are depressed using the nonlinear saturation controller (NSC), where the system subjected to external excitation [18]. The modified vertical
The model of vertical shaking conveyor with a spring of cubic nonlinearity and linear damping are shown in Figure 1, consisting of an elastically cylinder having a helical track, four equal unbalanced masses\(P \) give torsional and vertical oscillations for the cylinder, and an electric motor to transfer the equal unbalanced masses \(P \) give torsional and vertical oscillations for the cylinder, and an electric motor to transfer the energy, the stability, and bifurcation analyses using Poincaré maps and averaging method technique. The horizontally supported Jeffcott-rotor system oscillations was eliminated with nonlinear PD controller at primary resonance [22]. Study of nonlinear damping system oscillations was eliminated with nonlinear PD controller. The horizontally supported Jeffcott-rotor system oscillations was eliminated with nonlinear PD controller at primary resonance [22]. Study of nonlinear damping system oscillations was eliminated with nonlinear PD controller. The horizontally supported Jeffcott-rotor system oscillations was eliminated with nonlinear PD controller at primary resonance [22]. Study of nonlinear damping system oscillations was eliminated with nonlinear PD controller. The horizontally supported Jeffcott-rotor system oscillations was eliminated with nonlinear PD controller at primary resonance [22]. Study of nonlinear damping system oscillations was eliminated with nonlinear PD controller.

Proceeding as in Ref. [13], we modified the governing equation of the motion for vertical shaking conveyor as:

\[
\ddot{x}_1 + 2\varepsilon\mu_1\dot{x}_1 + \alpha_1^2\dot{x}_1 + \varepsilon\alpha_1x_1^3 \\
= \varepsilon f_1 (\cos \Omega_1t + \sin \Omega_1t) + \varepsilon f_2 (\cos \Omega_2t) (\sin \Omega_3t) \\
- \varepsilon (px_1 + dx_1) - \varepsilon \left(\alpha_3\dot{x}_1 + \alpha_4x_1\dot{x}_1^3\right),
\]

(1)

\[
\ddot{x}_2 + 2\varepsilon\mu_2\dot{x}_2 + \alpha_2^2\dot{x}_2 + \varepsilon\alpha_2x_2^3 \\
= \varepsilon f_3 (\cos \Omega_1t + \sin \Omega_1t) + \varepsilon f_4 (\cos \Omega_2t) (\sin \Omega_3t) \\
- \varepsilon (px_2 + dx_2) - \varepsilon \left(\alpha_3\dot{x}_2 + \alpha_4x_2\dot{x}_2^3\right).
\]

(2)

With the initial conditions \(x_1(0) = 0.01, \dot{x}_1(0) = 0.01, \)
\(x_2(0) = 0.01 \) and \(\dot{x}_2(0) = 0.01 \), where \(x_1 \) and \(x_2 \) are the vertical and angular position of the trough of the conveyor system. \(\varepsilon \) is a small perturbation parameter. \(\mu_1 \) and \(\mu_2 \) are the damping coefficients of the vertical and angular springs, \(\alpha_1 \) and \(\alpha_2 \) are the nonlinear spring coefficients of the vertical and torsional spring, \(\omega_1, \omega_2, \Omega_1, \Omega_2, \) and \(\Omega_3 \) are natural and excitation frequencies of the vertical shaking conveyor respectively, \(f_1, f_2, f_3, \) and \(f_4 \) are excitation and tuned force amplitudes of the vertical shaking conveyor respectively, \(p, d, \alpha_3, \) and \(\alpha_4 \) are linear and nonlinear coefficients of proportional derivative controller.

A. PERTURBATION ANALYSIS

Using the method of multiple scales [31, 32] to obtain the solutions for (1)–(2) in the form:

\[
x_1(t; \varepsilon) = x_{10}(T_0, T_1) + \varepsilon x_{11}(T_0, T_1) + O(\varepsilon^2),
\]

(3)

\[
x_2(t; \varepsilon) = x_{20}(T_0, T_1) + \varepsilon x_{21}(T_0, T_1) + O(\varepsilon^2).
\]

(4)

The derivatives can be written in the following:

\[
\frac{d}{dt} = D_0 + \varepsilon D_1 + \ldots
\]

\[
\frac{d^2}{dt^2} = D_0^2 + 2\varepsilon D_0D_1 + \ldots
\]

(5)

For the first-order approximation, let us introduce the two time scales and the derivatives, where \(T_n = \varepsilon^n \) and \(D_n = \partial / \partial T_n, \) (for \(n = 0, 1 \)). We substitute equations (3)-5 into

...
(1) and (2) and equate the coefficients of equal powers of \(\varepsilon \) leads to

\[
O(\varepsilon^0):
\begin{align*}
(D_0^2 + \omega_0^2)_{x10} &= 0, \quad (6a) \\
(D_0^2 + \omega_0^2)_{x20} &= 0, \quad (6b)
\end{align*}
\]

\[
O(\varepsilon^1):
\begin{align*}
(D_0^2 + \omega_1^2)_{x11} &= -2D_0D_1x_{10} - 2\mu_1D_0x_{10} - \alpha_1x_{10}^3 \\
&\quad + f_1(\cos \Omega_1t + \sin \Omega_1t) + f_2(\cos \Omega_2t) (\sin \Omega_2t) \\
&\quad - px_{10} - dD_0x_{10} - \alpha_3x_{10}^2 (D_0x_{10}) - \alpha_4x_{10} (D_0x_{10})^2, \quad (7a)
\end{align*}
\]

\[
\begin{align*}
(D_0^2 + \omega_2^2)_{x21} &= -2D_0D_1x_{20} - 2\mu_2D_0x_{20} - \alpha_2x_{20}^3 \\
&\quad + f_3(\cos \Omega_1t + \sin \Omega_1t) + f_4(\cos \Omega_2t) (\sin \Omega_2t) \\
&\quad - px_{20} - D_0x_{20} - \alpha_3x_{20}^2 (D_0x_{20}) - \alpha_4x_{20} (D_0x_{20})^2. \quad (7b)
\end{align*}
\]

We have written the solutions of equation (6) in the form:

\[
\begin{align*}
x_{10} &= A_1 \exp (i\omega_1T_0) + \tilde{A}_1 \exp (-i\omega_1T_0), \quad (8a) \\
x_{20} &= A_2 \exp (i\omega_2T_0) + \tilde{A}_2 \exp (-i\omega_2T_0), \quad (8b)
\end{align*}
\]

where \(A_1, A_2 \) are complex functions in \(T_1 \). Inserting equation (8) into equation (7) with eliminating the secular terms \(e^{\pm i\omega_0T_0} \) and \(e^{\pm 2i\omega_0T_0} \), the solutions of equation (7) will be in the form:

\[
\begin{align*}
x_{11} &= \left(\alpha_1 + i\alpha_3\omega_1 - \alpha_4\omega_1^2 \right) \frac{A_1^3}{8\omega_1} \exp (3i\omega_1T_0) \\
&\quad + \left(\frac{1}{2} - i \right) \left(\frac{f_1}{(\omega_1^2 - \Omega_1^2)} \right) \exp (i\Omega_1T_0) \\
&\quad - \left(\frac{i\tilde{f}_2}{4(\omega_1^2 - (\Omega_2 + \Omega_3)^2)} \right) \exp (i(\Omega_2 + \Omega_3)T_0) \\
&\quad + \left(\frac{i\tilde{f}_2}{4(\omega_1^2 - (\Omega_2 - \Omega_3)^2)} \right) \exp (i(\Omega_2 - \Omega_3)T_0) + cc, \quad (9a)
\end{align*}
\]

\[
\begin{align*}
x_{21} &= \left(\alpha_2 + i\alpha_3\omega_2 - \alpha_4\omega_2^2 \right) \frac{A_2^3}{8\omega_2} \exp (3i\omega_2T_0) \\
&\quad + \left(\frac{1}{2} - i \right) \left(\frac{f_3}{(\omega_2^2 - \Omega_2^2)} \right) \exp (i\Omega_2T_0) \\
&\quad - \left(\frac{i\tilde{f}_4}{4(\omega_2^2 - (\Omega_2 + \Omega_3)^2)} \right) \exp (i(\Omega_2 + \Omega_3)T_0) \\
&\quad + \left(\frac{i\tilde{f}_4}{4(\omega_2^2 - (\Omega_2 - \Omega_3)^2)} \right) \exp (i(\Omega_2 - \Omega_3)T_0) + cc. \quad (9b)
\end{align*}
\]

where \(cc \) are complex conjugates. The resonance cases are classified into:

(A) **Primary resonance**: \(\Omega_1 \cong \omega_1, \Omega_1 \cong \omega_2 \),

(B) **Sub-harmonic resonance**: \(\Omega_1 \cong 3\omega_1, \Omega_1 \cong 3\omega_2 \),

(C) **Super-harmonic resonance**: \(\Omega_1 \cong \frac{\omega_1}{2}, \Omega_1 \cong \frac{\omega_2}{2} \),

(D) **Combined resonance**: \((\Omega_2 \pm \Omega_3) \cong \omega_1, (\Omega_2 \pm \Omega_3) \cong \omega_2 \).

(E) **Simultaneous resonance**: we consider any combination of the above resonance cases as simultaneous resonance.

B. The Averaging Method

Utilizing the averaging method [31, 32] for equations (1) and (2) to get the frequency response equations, when \(\varepsilon = 0 \), the equations (1) and (2) are written as:

\[
\begin{align*}
\ddot{x}_1 + \omega_1^2x_1 &= 0, \quad (10a) \\
\ddot{x}_2 + \omega_2^2x_2 &= 0. \quad (10b)
\end{align*}
\]

The equations (10a) and (10b) have solutions in the form:

\[
\begin{align*}
x_1 &= a_1 \cos (\omega_1t + \varphi_1), \quad (11a) \\
x_2 &= a_2 \cos (\omega_2t + \varphi_2). \quad (11b)
\end{align*}
\]

where \(a_i, \varphi_i \) and \(\omega_i \) (for \(i = 1, 2 \)) are constants. From equation (10), we get:

\[
\begin{align*}
\dot{x}_1 &= -\omega_1a_1 \sin (\omega_1t + \varphi_1), \quad (12a) \\
\dot{x}_2 &= -\omega_2a_2 \sin (\omega_2t + \varphi_2). \quad (12b)
\end{align*}
\]

When \(\varepsilon \neq 0 \) is a small enough, we take \(a_i \) and \(\varphi_i \) (for \(i = 1, 2 \)) are functions in time \(t \) for equations (1) and (2) and equations (11a) and (11b) are differentiated with time \(t \) yields:

\[
\begin{align*}
\dot{\ddot{x}}_1 &= \ddot{a}_1 \cos (\omega_1t + \varphi_1) - \omega_1a_1 \sin (\omega_1t + \varphi_1) \\
&\quad - \omega_1a_1 \dot{\varphi}_1 \sin (\omega_1t + \varphi_1), \quad (13a) \\
\dot{\ddot{x}}_2 &= \ddot{a}_2 \cos (\omega_2t + \varphi_2) - \omega_2a_2 \sin (\omega_2t + \varphi_2) \\
&\quad - \omega_2a_2 \dot{\varphi}_2 \sin (\omega_2t + \varphi_2). \quad (13b)
\end{align*}
\]

Comparing equations (12a), (13a) and equations (12b), (13b), we get:

\[
\begin{align*}
\ddot{a}_1 \cos (\omega_1t + \varphi_1) - a_1\dot{\varphi}_1 \sin (\omega_1t + \varphi_1) &= 0, \quad (14a) \\
\ddot{a}_2 \cos (\omega_2t + \varphi_2) - a_2\dot{\varphi}_2 \sin (\omega_2t + \varphi_2) &= 0. \quad (14b)
\end{align*}
\]

Differentiating equations (12a) and (12b) with respect to \(t \), we obtain:

\[
\begin{align*}
\dddot{x}_1 &= -\omega_1\ddot{a}_1 \sin (\omega_1t + \varphi_1) - a_1^2 \dot{\varphi}_1 \cos (\omega_1t + \varphi_1) \\
&\quad - \omega_1a_1 \ddot{\varphi}_1 \cos (\omega_1t + \varphi_1), \quad (15a) \\
\dddot{x}_2 &= -\omega_2\ddot{a}_2 \sin (\omega_2t + \varphi_2) - a_2^2 \dot{\varphi}_2 \cos (\omega_2t + \varphi_2) \\
&\quad - \omega_2a_2 \ddot{\varphi}_2 \cos (\omega_2t + \varphi_2). \quad (15b)
\end{align*}
\]

Inserting equations (11), (13) and (15) into equations (1a) and (1b), we obtain:

\[
-\dddot{a}_1 \omega_1 \sin (\omega_1t + \varphi_1) - a_1^2 \dot{\varphi}_1 \omega_1 \cos (\omega_1t + \varphi_1)
\]
\begin{align}
-2\varepsilon_1\omega_1 a_1 \sin(\omega_1t + \varphi_1) + \frac{3\varepsilon_1^2}{4} a_1^3 \cos(\omega_1t + \varphi_1) \\
+ \frac{3\varepsilon_1}{4} a_1^4 \cos(3\omega_1t + 3\varphi_1) - \varepsilon f_2 (\cos(\Omega_2t) + \sin(\Omega_2t)) \\
- \frac{\varepsilon f_2}{2} \sin((\Omega_2 + \Omega_3)t) + \frac{\varepsilon f_2}{2} \sin((\Omega_2 - \Omega_3)t) \\
+ \varepsilon \alpha_2 a_1 \sin(\omega_1t + \varphi_1) \\
- \varepsilon \alpha_2 \omega_1 \sin(\omega_1t + \varphi_1) - \frac{\varepsilon \alpha_2 \omega_1^2}{4} a_1^2 \sin(\omega_1t + \varphi_1) \\
- \varepsilon \alpha_2 \omega_1 \frac{a_1^3}{4} \sin(3\omega_1t + 3\varphi_1) + \frac{\varepsilon \alpha_2 \omega_1^2}{4} a_1^2 \cos(\omega_1t + \varphi_1) \\
- \frac{\varepsilon \alpha_2 \omega_1^2}{4} a_1^2 \cos(3\omega_1t + 3\varphi_1), \tag{16a}
\end{align}

\begin{align}
- \dot{a}_2 \omega_2 \sin(\omega_2t + \varphi_2) - a_2 \dot{\varphi}_2 \omega_2 \cos(\omega_2t + \varphi_2) \\
- 2\varepsilon_2 \omega_2 \dot{a}_2 \sin(\omega_2t + \varphi_2) + \frac{3\varepsilon_2^2}{4} a_2^3 \sin(\omega_2t + \varphi_2) \\
+ \frac{3\varepsilon_2}{4} a_2^4 \cos(3\omega_2t + 3\varphi_2) - \varepsilon f_3 (\cos(\Omega_2t) + \sin(\Omega_2t)) \\
- \frac{\varepsilon f_3}{2} \sin((\Omega_2 + \Omega_3)t) + \frac{\varepsilon f_3}{2} \sin((\Omega_2 - \Omega_3)t) \\
+ \varepsilon \alpha_2 \omega_2 \cos(\omega_2t + \varphi_2) - \varepsilon \alpha_2 \omega_2 \sin(\omega_2t + \varphi_2) \\
- \frac{\varepsilon \alpha_2 \omega_2^3}{4} a_2^3 \sin(\omega_2t + \varphi_2) \\
- \frac{\varepsilon \alpha_2 \omega_2^2}{4} a_2^2 \sin(3\omega_2t + 3\varphi_2) + \frac{\varepsilon \alpha_2 \omega_2^2}{4} a_2^2 \cos(\omega_2t + \varphi_2) \\
- \frac{\varepsilon \alpha_2 \omega_2^2}{4} a_2^2 \cos(3\omega_2t + 3\varphi_2). \tag{16b}
\end{align}

Substituting equations (14a)-(14b) into equations (16a)-(16b) and then solving them for \(\dot{a}_1, \dot{a}_2, \dot{\varphi}_1\) and \(\dot{\varphi}_2\) yields

\begin{align}
\dot{a}_1 = -\varepsilon \mu_1 a_1 \{1 - \cos(2\omega_1t + 2\varphi_1) \}
+ \frac{\varepsilon \alpha_1 a_1^3}{8\omega_1} \{2 \sin(2\omega_1t + 2\varphi_1) + \sin(4\omega_1t + 4\varphi_1) \}
- \varepsilon f_1 \frac{a_1^3}{2\omega_1} \{\cos((\Omega_1 + \omega_1)t + \varphi_1) - \cos((\Omega_1 + \omega_1)t - \varphi_1) \}
- \cos((\Omega_1 - \omega_1)t - \varphi_1) + \cos((\Omega_1 - \omega_1)t + \varphi_1) \\
+ \varepsilon \alpha_1 a_1 \sin(2\omega_1t + 2\varphi_1) \\
- \varepsilon \alpha_1 \frac{a_1^3}{2} \{1 - \cos(2\omega_1t + 2\varphi_1) \}
- \frac{\varepsilon \alpha_2 \omega_1^4 a_1^3}{8} \times \{\sin(4\omega_1t + 4\varphi_1) - \sin(2\omega_1t + 2\varphi_1) \}, \tag{17a}
\end{align}

\begin{align}
\dot{a}_2 = -\varepsilon \mu_2 a_2 \{1 - \cos(2\omega_2t + 2\varphi_2) \}
+ \frac{\varepsilon \alpha_2 a_2^3}{8\omega_2} \{2 \sin(2\omega_2t + 2\varphi_2) + \sin(4\omega_2t + 4\varphi_2) \}
+ \varepsilon f_2 \frac{a_2^3}{2\omega_2} \{\cos((\Omega_2 + \omega_2)t + \varphi_2) - \cos((\Omega_2 + \omega_2)t - \varphi_2) \}
- \cos((\Omega_2 - \omega_2)t + \varphi_2) + \cos((\Omega_2 - \omega_2)t - \varphi_2) \\
+ \varepsilon \alpha_2 a_2 \sin(2\omega_2t + 2\varphi_2) \\
- \varepsilon \alpha_2 \frac{a_2^3}{2} \{1 - \cos(2\omega_2t + 2\varphi_2) \}
- \frac{\varepsilon \alpha_2 \omega_2^4 a_2^3}{8} \times \{\sin(4\omega_2t + 4\varphi_2) - \sin(2\omega_2t + 2\varphi_2) \}, \tag{18a}
\end{align}

\begin{align}
\dot{\varphi}_1 = -\varepsilon \mu_1 \varphi_1 \{1 - \cos(2\omega_1t + 2\varphi_1) \}
+ \frac{\varepsilon \alpha_1 \varphi_1^3}{8\omega_1} \{3 + 4 \sin(2\omega_1t + 2\varphi_2) \}
+ \varepsilon f_1 \frac{\varphi_1^3}{2\omega_1} \{\cos((\Omega_1 + \omega_1)t + \varphi_1) + \cos((\Omega_1 - \omega_1)t + \varphi_1) + \sin((\Omega_1 - \omega_1)t + \varphi_1) + \sin((\Omega_1 + \omega_1)t + \varphi_1) \}
+ \varepsilon \alpha_1 \varphi_1 \sin(2\omega_1t + 2\varphi_1) \\
- \varepsilon \alpha_1 \frac{\varphi_1^3}{2} \{1 - \cos(2\omega_1t + 2\varphi_1) \}
- \frac{\varepsilon \alpha_1 \omega_1^4 \varphi_1^3}{8} \times \{\sin(4\omega_1t + 4\varphi_1) - \sin(2\omega_1t + 2\varphi_1) \} , \tag{17b}
\end{align}

\begin{align}
\dot{\varphi}_2 = -\varepsilon \mu_2 \varphi_2 \{1 - \cos(2\omega_2t + 2\varphi_2) \}
+ \frac{\varepsilon \alpha_2 \varphi_2^3}{8\omega_2} \{3 + 4 \sin(2\omega_2t + 2\varphi_2) \}
- \varepsilon f_2 \frac{\varphi_2^3}{2\omega_2} \{\cos((\Omega_2 + \omega_2)t + \varphi_2) + \cos((\Omega_2 - \omega_2)t - \varphi_2) + \sin((\Omega_2 - \omega_2)t + \varphi_2) + \sin((\Omega_2 + \omega_2)t - \varphi_2) \}
+ \varepsilon \alpha_2 \varphi_2 \sin(2\omega_2t + 2\varphi_2) \\
- \varepsilon \alpha_2 \frac{\varphi_2^3}{2} \{1 - \cos(2\omega_2t + 2\varphi_2) \}
- \frac{\varepsilon \alpha_2 \omega_2^4 \varphi_2^3}{8} \times \{\sin(4\omega_2t + 4\varphi_2) - \sin(2\omega_2t + 2\varphi_2) \} , \tag{18b}
\end{align}

\section{Periodic Solutions}

This section defines two detuning parameters \(\sigma_1\) and \(\sigma_2\) in terms of \((\Omega_1 = \omega_1 + \varepsilon \alpha_1)\) and \((\Omega_2 = \omega_2 + \varepsilon \alpha_2)\) to investigate the stability of the system at the resonances.
(primary $\Omega_1 \cong \omega_1$ and combined $\Omega_2 - \Omega_3 \cong \omega_2$), and the slowly varying parts and constant terms are only in equations (17)–(18), so we get:

$$\dot{\theta}_1 = \sigma_1 = \frac{p}{2\omega_1} - \frac{3\sigma_1 a_1^2}{8} - \frac{\alpha_4 a_1 a_2}{8} + \frac{f_1}{2\omega_1 a_1} \sin \theta_1 + \frac{f_1}{2\omega_1} \cos \theta_1,$$

$$\dot{\sigma}_1 = \frac{\sigma_1}{2}\left(\frac{p}{2\omega_1} - \frac{3\sigma_1 a_1^2}{8} - \frac{\alpha_4 a_1 a_2}{8} + \frac{f_1}{2\omega_1 a_1} \sin \theta_1 + \frac{f_1}{2\omega_1} \cos \theta_1\right),$$

$$\dot{\theta}_2 = \sigma_2 = \frac{p}{2\omega_2} - \frac{3\sigma_2 a_2^2}{8} - \frac{\alpha_4 a_2 a_3}{8} + \frac{f_4}{4\omega_2} \cos \theta_2,$$

$$\dot{\sigma}_2 = \frac{\sigma_2}{2}\left(\frac{p}{2\omega_2} - \frac{3\sigma_2 a_2^2}{8} - \frac{\alpha_4 a_2 a_3}{8} + \frac{f_4}{4\omega_2} \cos \theta_2\right).$$

where $\theta_1 = \sigma_1 T_1 - \varphi_1$ and $\theta_2 = \sigma_2 T_2 - \varphi_2$.

D. Stability Analyses and Equilibrium Solutions

The steady-state solution occurs when, $\dot{\sigma}_1 = \dot{\sigma}_2 = \dot{\theta}_1 = \dot{\theta}_2 = 0$ and the steady-state solutions are given by:

$$\mu_1 a_1 + \frac{da_1}{2} + \frac{\alpha_3 a_1^3}{8} = \frac{f_1}{2\omega_1} \sin \theta_1 - \frac{f_1}{2\omega_1} \cos \theta_1,$$

$$\sigma_1 = \frac{\sigma_1}{2}\left(\frac{p}{2\omega_1} - \frac{3\sigma_1 a_1^2}{8} - \frac{\alpha_4 a_1 a_2}{8} + \frac{f_1}{2\omega_1 a_1} \sin \theta_1 + \frac{f_1}{2\omega_1} \cos \theta_1\right),$$

$$\mu_2 a_2 + \frac{da_2}{2} + \frac{\alpha_3 a_2^3}{8} = \frac{f_4}{4\omega_2} \cos \theta_2,$$

$$\sigma_2 = \frac{\sigma_2}{2}\left(\frac{p}{2\omega_2} - \frac{3\sigma_2 a_2^2}{8} - \frac{\alpha_4 a_2 a_3}{8} + \frac{f_4}{4\omega_2} \cos \theta_2\right).$$

By solving equations (21)-(22) for the fixed points, we obtained

$$\sigma_1^2 = \left(\frac{p}{\omega_1} + \frac{3\alpha_1 a_1^2}{4\omega_1} + \frac{\alpha_4 a_1 a_2}{8}\right) \sigma_1 + \left(\mu_1^2 + \mu_1 d + \frac{p^2}{4\omega_1^2} + \frac{\alpha_4^2}{4\omega_1^2}\right) \sigma_1 = 0,$$

$$\sigma_2^2 = \left(\frac{p}{\omega_2} + \frac{3\alpha_2 a_2^2}{4\omega_2} + \frac{\alpha_4 a_2 a_3}{8}\right) \sigma_2 + \left(\mu_2^2 + \mu_2 d + \frac{p^2}{4\omega_2^2} + \frac{\alpha_4^2}{4\omega_2^2}\right) \sigma_2 = 0.$$
III. RESULTS AND DISCUSSIONS

To investigate the numerical results of system equations (1) and (2), the algorithm of Runge-Kutta of the fourth-order is applied. Also, we studied the stability of the vertical conveyor system with the averaging method and frequency response function, and the different parameters effects on the controlled system behavior were examined. Finally, we investigated the comparison between the analytical results with the numerical ones.

A. SYSTEM BEHAVIOR BEFORE CONTROL

The system behavior was studied numerically at the worst resonance cases by considering the following parameters:

\[\begin{align*}
\mu_1 &= 0.00825, \mu_2 = 0.01875, \\
\alpha_1 &= 0.005, \alpha_2 = 0.0083, \\
f_1 &= 0.1, f_2 = 0.005, f_3 = 0.15, f_4 = 0.003, \\
\omega_1 &= 2.25, \\
\omega_2 &= 2.292, p = 1, d = 0.05, \alpha_3 = -0.05, \alpha_4 = -0.0025.
\end{align*} \]

In figure 2, we introduce the phase plane and time histories of the two modes of vertical conveyor system before control at primary and combined condition: \(\Omega_1 \cong \omega_1 \) and \(\Omega_2 - \Omega_3 \cong \omega_2 \). With this figure, the responses of the two modes of the conveyor system \(x_1 \) and \(x_2 \) are nearly about 3 and 1 respectively, and phase planes show multi-limit cycle.

B. SYSTEM BEHAVIOR AFTER CONTROL

Figure 3 simulates the time histories for the two modes of vertical conveyor system after applying the linear and nonlinear proportional-derivative controller at primary and combined resonance \(\Omega_1 \cong \omega_1, \Omega_2 - \Omega_3 \cong \omega_2 \). In this figure, we suppressed the output steady amplitudes from about 3, and 1 to about 0.14, and 0.1755, respectively and the controller reduced the vibrations of the two modes of the controlled system by about 95.33% and 82.45% from its value before controllers, respectively and, the efficiency of the controllers \(E_a \) are nearly about 22 for \(x_1 \) and 6 for \(x_2 \).

C. ENERGY TRANSFER IN THE VERTICAL CONVEYOR SYSTEM

Figures 4(a, b) show the transfer of energy between the two modes of the vertical conveyor system at primary and combined resonance case \(\Omega_1 \cong \omega_1, \Omega_2 - \Omega_3 \cong \omega_2 \). These figures show that the energy is transferred from uncontrolled system to the system after applying the PD controller.

D. CURVES OF FREQUENCY RESPONSE FOR THE CONTROLLED SYSTEM

This section investigates the stability zone, frequency response curves, and several parameters effect of the controlled system. The solid and dot lines refer to the stable and unstable curves respectively, but the yellow region refers to stability zone regions.

The output of the controlled system amplitudes decreased with increasing the values of damping \(\mu_1 \), control parameters \(\alpha_3 \), and \(d \) as shown in figures 5(a, c, e). Furthermore, for...
FIGURE 3. The amplitude of conveyor system and its phase plane with PD controller at primary and combined resonance case \(\Omega_1 \cong \omega_1, \Omega_2 - \Omega_3 \cong \omega_2 \).

negative and positive values of \(\alpha_1 \) and \(\alpha_4 \), figures 5(b, d) depict the jump phenomena, multi solutions, soft and hard spring due to bent the curves to the right and left respectively. As shown in figure 5(f), increasing the value \(p \) shifts the curves of the controlled system to the right, which is useful in the controller performance. In addition, the controlled system response increased with increasing the values of the amplitude force \(f_1 \) as shown in figures 5(g).

The controlled system behavior decreased with the increase of the damping \(\mu_2 \) and the control parameter \(d \) as shown in figures 6(a, b). Also, with the increased values of the control parameter \(p \), the curves are shifted to the right as showed in figure 6(c). Also, the controlled system amplitudes are directly proportional with increasing of the amplitude force \(f_4 \) as shown in figures 6(d).

FIGURE 4. Transfer of energy between the two modes of system before and after control at primary and combined resonance case \(\Omega_1 \cong \omega_1, \Omega_2 - \Omega_3 \cong \omega_2 \).

F. COMPARISON OF ANALYTICAL AND NUMERICAL SIMULATION

In this section, we investigated the validation between the numerical simulation for the system equations (1), (2) with perturbation solution of equations (23) and (24) at different values of system parameters \(p, d, \alpha_3 \) and \(\alpha_4 \) at primary and combined resonance case \(\Omega_1 \cong \omega_1, \Omega_2 - \Omega_3 \cong \omega_2 \) as shown in figure 7. The red line indicates the solution of perturbation, while the blue line refers to numerical simulations. In these figures, we observe a good agreement between the analytical results with the numerical ones.

G. COMPARISON WITH PUBLISHED WORK

This section presents a comparison between our work and previous publish works.
FIGURE 5. Effect of different controlled system parameters on frequency response curves at some values of (a) The damping coefficient μ_1 (b) The nonlinear parameter α_1 (c) The control parameter α_3 (d) The control parameter α_4 (e) The control parameter d (f) The control parameter ρ (g) The amplitude force f_1.
a. Bayroğlu [8] studied the vertical conveyor vibration without any controller at primary resonance and harmonic excitation force via multiple scales method.

b. Bayroğlu [13] presented a mathematical study and nonlinear dynamic analysis of the vertical conveyor oscillations presented in Ref. [8] at primary, sub-harmonic, and super-harmonic responses.

c. EL-Sayed, and Bauomy [16] investigated the vertical conveyor analysis for Ref. [13] with adding PPF controllers at simultaneous primary and internal resonances. The controller reduced the vibrations of both modes by about 99.88% and 99.97% and the efficiency of the controller E_a are about 850 and 3400, respectively.

d. Hamed et al. [17] investigated the vertical conveyor analysis for Ref. [13] with adding a unit control of negative velocity feedback and parametric excitation force at simultaneous primary and principle parametric resonances. The controller reduced the vibrations of both modes by about 99.83% and 99.73% and the efficiency of the controller E_a are about 600 and 400, respectively.

e. Amer et al. [18] investigated the vertical conveyor analysis for Ref. [13] with adding NSC controllers at simultaneous primary and internal resonances. The controller reduced the vibrations of both modes by about 58.33% and 75% and the efficiency of the controller E_a are about 2.4 and 4, respectively.

f. Bauomy and EL-Sayed [19] investigated the vertical conveyor analysis for Ref. [13] with adding multi parametric excitation forces at two different simultaneous sub-harmonic, and combined resonances without any control.

g. In our work, we examined nonlinear vibrations analysis and dynamic responses of a vertical conveyor system for Ref. [13] with adding multi tuned excitation forces using the nonlinear proportional derivative (NPD) controller. Also, we investigate how the energy transfers between uncontrolled and controlled system as shown in figure 4. The stability is analyzed by applying the method of averaging. In the numerical results, the controller reduced the vibrations of the two modes of controlled system by about 95.33% and 82.45% from its value before controllers, respectively and, the
efficiency of the controllers E_a are nearly about 22 for x_1 and 6 for x_2 as shown in Figure 3.

IV. CONCLUSION

Vibrating conveyors are widely used in elevators, iron and steel industry, metallurgy industry, chemical plants, feed-stock, small parts for processing equipment and production lines to transport a wide range of bulk materials and particles. The nonlinear vibrations analysis and dynamic responses of a vertical conveyor system under multi excitation forces were studied. The approximate solutions and resonance cases of vibrating system were calculated utilizing the method of multiple scales, the approximate solutions of higher orders are very complicated due to the nonlinearity and its degree and therefore software’s algorithms should be used. The stability, vertical vibration conveyor behavior was achieved numerically at different parameter values of the system. From the overall study, we concluded:

1. The output steady amplitudes for the two modes of controlled system are nearly about 95.33% and 82.45% from its value before controllers, respectively.
2. The efficiency of the controller E_a for the two modes of controlled system is about 22 and 6.
3. The output steady amplitudes of controlled system are monotonous decreasing function in the damping μ_1, μ_2, the controller parameters α_3, d and monotonous increasing function in the amplitude force f_1, f_2.
4. The Hopf bifurcations, saddle-node, and jump phenomena were appeared for varying the controller nonlinearity α_1 and α_2.
5. For the best performance of the controller, the natural frequency ω_1 must be adjusted to the measured Ω_1 value and the natural frequency ω_2 must be adjusted to the measured $\Omega_2 - \Omega_3$ value for the two modes of controlled system respectively.
6. Increasing the values μ_1, μ_2, d, and α_3 have tightened the energy channel between the controller and the system modes specifically which is useful in the controller performance.
7. Increasing the controller value p, shifts the curves to the right which is a problem for the controller performance.
8. The analytical results are well agreement with the numerical simulations.

In future work, we can study the proposed system via multi controller such as, modified positive position feedback (MPPF), nonlinear saturation controller (NSC) and nonlinear proportional integral derivative (NPID) controller. Moreover, the suggested controlled system encourages the experimental studies to present a design algorithm, analysis, and the computational complexity of the controller design.

APPENDIX A

As in Ref. [13]:

Apply subsequently Lagrange’s equation to obtain action equations for vertical conveyor:

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} - \frac{\partial V}{\partial \dot{q}_i} = Q_i.$$ \hspace{1cm} (A.1)

where q_i and Q_i are respectively the coordinates and forces. The kinetic energy is denoted by T which is given as:

$$T = \frac{1}{2} m \dot{z}^2 + \frac{1}{2} I \dot{\psi}^2.$$ \hspace{1cm} (A.2)

where m and I are respectively the trough mass and inertia moment of the conveyor. The potential energy (V) is given by:

$$V = \frac{1}{2} k_1 \dot{z}^2 + \frac{1}{4} k_2 \dot{z}^4 + \frac{1}{2} k_4 \psi^2 + \frac{1}{3} k_7 \psi^4.$$ \hspace{1cm} (A.3)

where the vertical and angular positions are donated by z and ψ respectively. The nonlinear constants of the vertical and angular springs are given by k_1, k_2, k_4, k_7. The Rayleigh dissipation function D is

$$D = \frac{1}{2} c_z \dot{z}^2 + \frac{1}{2} c_\psi \dot{\psi}^2.$$ \hspace{1cm} (A.4)

where the vertical and angular springs damping constants are denoted by c and c_ψ, respectively. By using the Lagrange’s equation for two coordinates $q_1 = z$ and $q_2 = \psi$, we obtain the following equations of motion as:

$$m \ddot{z} + c_z \dot{z} + k_1 z + k_2 z^3 = \sum P_z.$$ \hspace{1cm} (A.5)
\[I_z \ddot{\psi} + c_B \dot{\psi} + k_{11} \dot{\psi} + k_{12} \psi^3 = \sum M_z. \]
(A.6)

where \(\sum P_z \) and \(\sum M_z \) are respectively the total forces and its moment of the unbalanced masses, and represented by the following equations:

\[\sum P_z = 2P (\cos \theta + \sin \varphi) = 2m_0r_0\Omega^2 (\cos \Omega t + \sin \Omega t), \]
(A.7)

\[\sum M_z = 2Pb (\cos \theta + \sin \varphi) = 2m_0r_0\Omega^2 b (\cos \Omega t + \sin \Omega t). \]
(A.8)

where the force of unbalanced masses is \(P = 2m_0r_0\Omega^2 \), and the unbalanced mass, radius and angular frequency of the unbalanced mass are respectively denoted by \(m_0 \), \(r_0 \), \(\Omega \). Also, \(\theta = \varphi = \Omega t \) are the constant angular velocities of unbalanced masses.

To obtain the vertical and angular movement equations of the vertical conveyor, we substitute equations (A.7) and (A.8) into equations (A.5) and (A.6), gives

\[m\dddot{z} + c\ddot{z} + k_1z + k_2\dot{z}^2 = 2m_0r_0\Omega^2 (\cos \Omega t + \sin \Omega t) \]
(A.9)

\[I_z \dddot{\psi} + c_B \dddot{\psi} + k_{11} \dddot{\psi} + k_{12} \dot{\psi}^3 = 2m_0r_0\Omega^2 b (\cos \Omega t + \sin \Omega t) \]
(A.10)

Dividing (A.9) by \(m \) and (A.10) by \(I_z \), we obtain:

\[\dddot{z} + \frac{c}{m} \ddot{z} + \frac{k_1}{m} z + \frac{k_2}{m} \dot{z}^2 = \frac{2m_0r_0\Omega^2}{m} (\cos \Omega t + \sin \Omega t), \]
(A.11)

\[\dddot{\psi} + \frac{c_B}{I_z} \dddot{\psi} + \frac{k_{11}}{I_z} \dddot{\psi} + \frac{k_{12}}{I_z} \dot{\psi}^3 = \frac{2m_0r_0\Omega^2 b}{I_z} (\cos \Omega t + \sin \Omega t). \]
(A.12)

Equations (A.11) and (A.12) can be written as

\[\dddot{z} + 2\mu_1 \dot{z} + \omega_1^2 z + \omega_1^2 \dot{z}^2 = f_1 (\cos \Omega t + \sin \Omega t) \]
(A.13)

\[\dddot{\psi} + 2\mu_2 \dot{\psi} + \omega_2^2 \dot{\psi} + \omega_2^2 \dot{\psi}^3 = f_3 (\cos \Omega t + \sin \Omega t) \]
(A.14)

where

\[\omega_1^2 = \frac{k_1}{m}, \quad \epsilon = \frac{1}{m}, \quad \mu_1 = \frac{c}{m}, \quad \alpha_1 = \frac{k_2}{m}, \quad f_1 = 2m_0r_0\Omega^2 \]

\[\omega_2^2 = \frac{k_{11}}{I_z}, \quad \epsilon = \frac{1}{I_z}, \quad \mu_2 = \frac{c_B}{I_z}, \quad \alpha_2 = \frac{k_{12}}{I_z}, \quad f_3 = 2m_0r_0\Omega^2 b \]

The vertical shaking conveyor equations for (A.13) and (A.14) with taking \(z = x_1 \) and \(\psi = x_2 \) as:

\[x_1 + 2\epsilon \mu_1 x_1 + \omega_1^2 x_1 + \epsilon \omega_1^2 x_1^2 = \epsilon f_1 (\cos \Omega t + \sin \Omega t), \]
(A.15)

\[x_2 + 2\epsilon \mu_2 x_2 + \omega_2^2 x_2 + 2\epsilon \omega_2^2 x_2^2 = 2\epsilon f_3 (\cos \Omega t + \sin \Omega t). \]
(A.16)

Then we modified equations (A.15) and (A.16) into equations (1) and (2) as presented inside this manuscript.

APPENDIX B

\[l_1 = \left(-\mu_1 - \frac{d}{2} - \frac{3\alpha_2^2 \epsilon^2}{8} \right), \]

\[l_2 = \left(\frac{f_1}{2\omega_1} (\cos (\theta_1t) + \sin (\theta_1t)) \right), \]

\[l_3 = \left(-\frac{3\alpha_1 \alpha_2}{4\omega_1} - \frac{\alpha_1 \alpha_2}{4\omega_1} - \frac{f_1}{2\omega_1^2} (\cos (\theta_1t) + \sin (\theta_1t)) \right), \]

\[l_4 = \left(\frac{f_1}{2\omega_1^2} (\cos (\theta_1t) - \sin (\theta_1t)) \right), \]

\[l_5 = \left(-\mu_2 - \frac{d}{2} - \frac{3\alpha_2^2 \epsilon^2}{8} \right), \]

\[l_6 = - \left(\frac{f_4}{4\omega_2} \sin (\theta_2t) \right), \]

\[l_7 = \left(\frac{3\alpha_2^2 \epsilon^2}{4\omega_2} + \frac{\omega_2^2 \epsilon^2}{4\omega_2^2} - \frac{f_4}{4\omega_2} \sin (\theta_2t) \right), \]

\[l_8 = \left(\frac{f_4}{4\omega_2^2} \cos (\theta_2t) \right) \theta_{21}, \]

\[r_1 = \left(-l_1 - l_4 - l_5 - l_8 \right), \]

\[r_2 = \left(-l_1 l_4 + l_1 l_5 + l_1 l_8 - l_2 l_4 + l_4 l_5 + l_4 l_8 + l_5 l_8 - l_6 l_7 \right), \]

\[r_3 = \left(-l_1 l_4 l_5 - l_1 l_4 l_8 - l_1 l_5 l_8 + l_1 l_6 l_7 + l_2 l_3 l_5 + l_2 l_3 l_8 \right) \]

\[-l_4 l_5 l_8 + l_4 l_6 l_7, \]

\[r_4 = \left(-l_1 l_4 l_5 - l_1 l_4 l_8 - l_1 l_5 l_8 + l_2 l_3 l_5 + l_2 l_3 l_8 \right). \]

ACKNOWLEDGMENT
The authors would like to thank the valuable comments and suggestions of the referees for improving the manuscript.

REFERENCES

[1] W. A. A. El-Ganaini, M. M. Kamel, and Y. S. Hamed, “Vibration reduction in ultrasonic machine to external and tuned excitation forces,” *Appl. Math. Model.*, vol. 33, no. 6, pp. 2853–2863, Jun. 2009.

[2] M. M. Kamel, W. A. A. El-Ganaini, and Y. S. Hamed, “Vibration suppression in ultrasonic machining described by non-linear differential equations,” *J. Mech. Sci. Technol.*, vol. 23, no. 8, pp. 2038–2050, Aug. 2009.

[3] M. M. Kamel, W. A. A. El-Ganaini, and Y. S. Hamed, “Vibration suppression in multi-tool ultrasonic machining to multi-external and parametric excitations,” *Acta Mechanica Sinica*, vol. 25, no. 3, pp. 403–415, Jun. 2009.

[4] M. M. Kamel and Y. S. Hamed, “Nonlinear analysis of an elastic cable under harmonic excitation,” *Acta Mechanica*, vol. 214, nos. 3–4, pp. 315–325, 2010.

[5] Y. S. Hamed, M. Sayed, D.-X. Cao, and W. Zhang, “Nonlinear study of the dynamic behavior of a string-beam coupled system under combined excitations,” *Acta Mechanica Sinica*, vol. 27, no. 6, pp. 1034–1051, Dec. 2011.

[6] M. Sayed and Y. S. Hamed, “Stability and response of a nonlinear coupled pitch-roll ship model under parametric and harmonic excitations,” *Nonlinear Dyn.*, vol. 64, no. 3, pp. 207–220, May 2011.

[7] H. Bayroğlu, “Computational dynamic analysis of unbalanced mass of vertical conveyor-elevator,” *AIP Conf.*, vol. 899, no. 1, p. 712, 2007.

[8] H. Bayroğlu, “Nonlinear analysis of unbalanced mass of vertical conveyor-elevator,” *AIP Conf.*, vol. 1400, no. 1, p. 66, 2011.

[9] G. F. Alşyverşiçi, “Nonlinear analysis of shaking conveyors with single-mass: crank-and-rod exciters,” *AIP Conf.*, vol. 1400, no. 1, p. 60, 2011.

[10] G. F. Alşyverşiçi, H. Bayroğlu, and G. Ünal, “Nonlinear response of vibrational conveyors with non-ideal vibration exciter: Primary resonance,” *Nonlinear Dyn.*, vol. 69, no. 4, pp. 1611–1619, Sep. 2012.

[11] H. Bayroğlu, G. F. Alşyverşiçi, and G. Ünal, “Nonlinear response of vibrational conveyors with nonideal vibration exciter: Superharmonic and subharmonic resonance,” *Math. Problems Eng.*, vol. 2012, pp. 1–12, Mar. 2012.
