Floating-Point Multiplication
Using Neuromorphic Computing

Karn Dubey Urja Kothari Shrisha Rao

Abstract

Neuromorphic computing describes the use of VLSI systems to mimic neuro-biological architectures and is also looked at as a promising alternative to the traditional von Neumann architecture. Any new computing architecture would need a system that can perform floating-point arithmetic. In this paper, we describe a neuromorphic system that performs IEEE 754-compliant floating-point multiplication. The complex process of multiplication is divided into smaller sub-tasks performed by components Exponent Adder, Bias Subtractor, Mantissa Multiplier and Sign OF/UF. We study the effect of the number of neurons per bit on accuracy and bit error rate, and estimate the optimal number of neurons needed for each component.

Keywords: IEEE 754, floating point arithmetic, neuromorphic computing, Neural Engineering Framework (NEF)

1 Introduction

Neuromorphic computing has recently become prominent as a possible future alternative to the traditional Von Neumann architecture (Zargham, 1996) of computing. Some of the problems that are commonly faced when working with classical CMOS-based Von Neumann machines are the limitations on their energy efficiencies, and also the absolute limits to speed and scaling on account of physical limits (Mead, 1990; Koch and Segev, 2003). Though Moore’s Law held for long and made possible rapid and sustained progress in hardware performance (Moore, 1965), it is now quite clear that this will not last. Hence, there is a need to look for alternative computing architectures, including neuromorphic computing (aand Youjie Li et al., 2017; Kim et al., 2015; Esser et al., 2016). The Von Neumann architecture also has an inherent problem, commonly called the “Von Neumann bottleneck,” because of the limited bandwidth between the CPU and the main
device memory. Thus, newer architectures often avoid a wide gap between processing and main memory (Monroe, 2014; Moore, 1965).

Rapid growth in cognitive applications is one of the important motivations for interest in neuromorphic computing, which promises the ability to perform a high number of complex functions through parallel operation. Neural solutions are possible for machine learning problems that involve complex mathematical calculations (Eliasmith, 2013; Pastur-Romay et al., 2017). There have been some attempts to develop systems of computation on neuromorphic architectures (Koch and Segev, 2003; Gosmann and Eliasmith, 2016) but not much has been done in the specific area of numerical computations, particularly for floating-point arithmetic.

Floating-point arithmetic (IEEE, 2019) is ubiquitous in scientific as well as general computing. It is a basic operation that should be supported by any computational architecture. In this paper, we describe a system which can perform the multiplication of two IEEE 754-compliant floating-point numbers on a neuromorphic architecture. Our work is an extension to George et al. (2019) who showed how floating point addition can be achieved using neuromorphic computing. We have designed a modular architecture which performs the conventional multiplication process (Erle et al., 2009), but instead of logic gates it uses groups of neurons as the basic unit. The architecture is easily scalable to double-precision floating-point numbers.

The system is designed on the basis of the Neural Engineering Framework (NEF) which, as the name suggests, provides a basic framework to develop a neuromorphic system. For the implementation, simulation and testing of our design we used Nengo (Nengo, 2014, Bekolay et al., 2014), a graphical and scripting-based software package for simulating large-scale neural systems. To use Nengo, we define groups of neurons called ensembles, and then form connections between them based on what computation (Nengo, a,b) should be performed.

The architecture is divided into four components: Exponent Adder, Bias Subtractor, Mantissa Multiplier, and Sign/Overflow and Underflow. The Exponent Adder uses a stage-wise adder which takes 8-bit exponents and produces an 8-bit output along with carry. The Bias Subtractor takes the output of the Exponent Adder and subtracts the bias and produces 8-bit output. The subtraction is done using 2’s complement method. The Mantissa Multiplier is the core of our system design; it follows a stage-wise process, taking two 23-bit mantissa inputs, and outputs a 23-bit resultant mantissa (see Section 3.3). Our system also indicates if there is an overflow or underflow during the exponent addition process (see Section 3.5).
We used two performance analysis metrics: Mean Absolute Error (MAE) and Mean Encoded Error (MEE) to estimate the performance of our system. We have also observed the effect on accuracy by varying number of neurons of each component in our system.

The rest of the paper is structured as follows. We first give a brief description of the IEEE 754 floating-point multiplication process in Section 2.1 and then briefly describe the Neural Engineering Framework (NEF) and its three basic principles: representation, transformation and dynamics, in Section 2.2. After this we explain the overall architecture in Section 3 using Figure 3. The performance analysis metrics in Section 4 deal with the two metrics that we have used to evaluate our system: the Mean Absolute Error (MAE) and Mean Encoded Error (MEE). In Section 4.1 we describe the relationship between the number of neurons and accuracy, and in Section 4.2 we describe the relationship between the number of neurons and bit error. In Section 4.3 we describe how we estimated the optimal number of neurons required for all the ensembles, and list them in Table 1. Finally, we present the conclusions of our work in Section 5.

2 Background

First we briefly discuss the floating-point multiplication process as per the IEEE 754 standard (Erle et al., 2009), then we describe the Neural Engineering Framework (NEF) which we have used to design, simulate and evaluate our system (Steward, 2012).

2.1 IEEE 754 floating-point multiplication

Figure 2 illustrates the overall process of multiplication of two floating-point numbers Input1 and Input2 represented in binary format. Figure 1 is an example of how a 32-bit floating-point number is represented according to the IEEE 754 standard (IEEE, 2019). A sign bit is used to represent whether the number is positive or negative. 8 and 23 bits are used to represent
the exponent and mantissa values respectively. While designing this system we assumed that both inputs, i.e., the two floating-point numbers, are represented according to the IEEE 754 standard in binary representation.

In Figure 2, the exponents E_1 and E_2 are added. The Bias value (127) is subtracted from the sum of E_1 and E_2. The difference is placed in the Exponent field (see Figure 1). Each mantissa is of 24 bits (23 bits + 1 hidden bit). Mantissa M_1 and M_2 are multiplied and give a 48 bit output; if the 48th bit is 1 then the result is normalized by right shifting and incrementing the resultant exponent (if it is 0, then nothing further is to be done). To find the resultant mantissa, we take the first 24 bits (23 bits + 1 hidden bit). The resultant sign field is the XOR of the two sign bits S_1 and S_2.

For a better understanding of the above algorithm, see Yi and Ding (2009).

2.2 Neural Engineering Framework

The Neural Engineering Framework (NEF) (Stewart, 2012; Voelker and Eliasmith, 2017; Voelker et al., 2017) is a computational framework which is used for mapping computations to the biological network of spiking neurons. It provides a general way to generate circuits that have analytically determined synaptic weights to provide the desired functionality. NEF consists of three principles: representation, transformation, and dynamics (Nengo, Elia-smith and Anderson, 2002). Using these principles we can implement NEF for constructing complex neural models.
2.2.1 Representation

Neural representations are defined by the combination of nonlinear encoding and weighted linear decoding. (We use the notation given by Stewart (2012).) If \(x \) is the value represented by a neural ensemble and \(e_i \) is the encoding vector for which that neuron fires most strongly, then activity \(a_i \) for each neuron can be represented as follows:

\[
a_i = G_i[\alpha_i e_i \cdot x + b_i], \quad i = 1 \ldots n
\]

where \(G \) is neural non-linearity, \(\alpha_i \) is the gain parameter, and \(b_i \) is the constant background bias current for the neuron. Given an activity, estimating the value of \(x \) can be done by finding a linear decoder \(d_i \).

\[
\hat{x} = \sum a_i d_i
\]

Decoding weights \(d_i \) can be seen as a least-squares minimization problem, as \(d_i \) is set of weights that minimizes the difference between \(x \) and its estimate (Stewart, 2012).

\[
d = \Gamma^{-1} \Upsilon
\]

\[
\Gamma_{ij} = \Sigma_x a_i a_j
\]

\[
\Upsilon_j = \Sigma_x a_j x
\]

2.2.2 Transformation

Section 2.2.1 shows how to encode and decode a vector in the distributed activity of a population of neurons. To perform computation, these neurons need to be connected and information needs to be transferred from one group of neurons to another. This is done via synaptic connections. In other words, we want our connections to compute some functions. Transformation is used for approximation of these functions (Stewart, 2012). Transformation is another weighted linear decoding for approximating function \(f(x) \); the decoded weights \(d^{f(x)} \) can be computed as:

\[
d^{f(x)} = \Gamma^{-1} \gamma f(x)
\]

\[
\Gamma_{ij} = \Sigma_x a_i a_j
\]

\[
\Upsilon_j f(x) = \Sigma_x a_j f(x)
\]

In general, the more non-linear and discontinuous function is, the lower is the accuracy of its computation. Accuracy also depends on other factors...
like neuron properties, number of neurons, and the encoding method. The NEF is using the same trick seen in support vector machines (Cristianini and Shawe-Taylor, 2000) to allow complex functions to be computed in a single set of connections as we choose c_i, α_i and b_i. The function $f(x)$ is constructed by a linear sum of tuning curves of neurons, so a wider variety of tuning curves leads to better function approximation (Stewart, 2012).

2.2.3 Dynamics

Dynamics of the neural systems can also be modeled in NEF using control-theoretic state variables. However, NEF also provides a direct method for computing dynamic functions of the form:

$$\frac{dx}{dt} = F(x) + H(u)$$ \hspace{1cm} (9)

where x is the value getting represented, u is some input, and F and G are some arbitrary functions.

3 System Architecture

We have designed a system that performs floating-point multiplication according to the IEEE standard (IEEE, 2019). Figure 3 illustrates the system architecture. The two inputs are represented as (S_1,M_1,E_1) and (S_2,M_2,E_2) and the output is represented as $(S_{out},M_{out},E_{out})$. Here S_i represents the sign bit, M_i represents the mantissa bit, and E_i represents the exponent bit, where $i \in \{1,2,\ldots,\text{out}\}$. This representation follows the IEEE-754 32-bit floating point standard (IEEE, 2019). Each of the components is described in the following subsections.

3.1 Simulation

For simulation we use the Leaky Integrate-and-Fire (LIF) neural model. We create the neural ensembles using the Nengo library to represent input information. The values of two properties, radius and dimension of the ensemble are set in the same way as George et al. (2019). We have also used the same encoding scheme as George et al. (2019) to transfer the output of one ensemble as an input to another ensemble. For the AND ensemble (Section 3.3) we have used the following encoding scheme:

$$E(\hat{x}_i) = \begin{cases}
1, & \hat{x}_i \geq 1.5 \\
0, & \text{otherwise}
\end{cases}$$ \hspace{1cm} (10)
3.2 Exponent Adder

As shown in Figure 3, the Exponent Adder takes three inputs: E_1, E_2 and a normalization bit produced by the Mantissa Multiplier (see Section 3.3). It performs addition of 8-bit E_1, E_2 and Normalization bit (as C_{in}) produces an 8-bit output E' and a carry bit C_{out}. To implement this stage-wise addition process, we construct a network that takes two inputs (the corresponding bits of two exponents, i.e., a_i and b_i, where $0 \leq i \leq 7$, and represent them using two different ensembles, say $A_{ensemble}$ and $B_{ensemble}$. These two ensembles are then connected to another ensemble, say $C_{ensemble}$, through synaptic connections. Now the sum of $A_{ensemble}$ and $B_{ensemble}$ is represented by $C_{ensemble}$. The adder is implemented in same way as in prior literature (George et al., 2019; Nengo, a). The C_{out} bit produced by the Exponent Adder is used in the calculation of overflow and underflow (see Section 3.5).

3.3 Mantissa Multiplier

The Mantissa Multiplier component is the core of our system. It is a stage-wise process. Figure 5 shows its working. We use an AND ensemble and adders as building blocks for multiplication (see Figure 4). The AND Ensemble is used to implement neuromorphic AND logic. The encoding scheme for it is given in (10). In the AND ensemble we connect two inputs. If both inputs are 1 then the output is more than 1.5, so the output is set to 1;
Figure 4: Building block of Mantissa Multiplier component consisting of AND Ensemble and Adder

Figure 5: Process for multiplication of floating point numbers
otherwise it is 0. The working and connection of each block at every stage is described below in detail by taking two mantissa A and B:

- Each block j of stage i is given four inputs A_i, B_j, sum s_{in} produced by block $(j + 1)$ of stage $(i - 1)$ and carry c_{in} from block $(j - 1)$ of stage i, where $0 \leq i, j \leq 23$.

- As shown in Figure 5, the last block of each stage i takes c_{out} of the previous stage’s last block as s_{in}.

- The AND Ensemble of each block of every stage performs AND operation on A_i and B_j and outputs A_iB_j.

- The adder of blocks performs 3-bit addition of A_iB_j, s_{in} and c_{in} and produces s_{out} and c_{out} ([George et al., 2013](#) [Nengo, a](#))

- s_{out} and c_{out} produced as outputs are fed as input to the next stage and next block respectively.

The first block of every stage is given c_{in} as 0. The output obtained at each stage ensemble is encoded and fed to the next stage ensemble as input. Encoding of the output at each stage helps to filter and boost up the output signal. At each stage the first block’s s_{out} represents the output bit of the mantissa as shown in Figure 5. At the end of this process we get a 48-bit product. If the 48th bit is 1, then we set the normalization bit, right shift the product by one, which thereby results in incrementing the exponent by one (see Section 3.2). The resultant product is in the 1.M form as per IEEE standard. We take the first 23 bits from M and stores it as a resultant mantissa M_{out}.

3.4 Bias Subtractor

As shown in Figure 3, this component subtracts the bias from the result which we get from exponent addition. The subtraction is done using the 2’s complement method ([Lilja and Sapatnekar, 2005](#)). This is achieved by taking the 2’s complement of the bias and then performing addition. To perform 2’s complement, we design a converter, which takes 8-bit bias and represents it using a neural ensemble. We take a 1’s complement of bias by flipping its bits, and then take the 8-bit adder and add 1 to 1’s complement of bias. The final output is stored as a resultant exponent E_{out}.
Figure 6: Accuracy vs. Number of neurons/Ensemble Graph of Mantissa Multiplier

3.5 S_{out} and OF/UF

This component computes S_{out} bit of the output along with OF/UF (overflow/underflow) flag which can then be used for rounding. It computes output sign bit S_{out} by performing a neuromorphic XOR operation on two sign bits S_1 and S_2 (George et al., 2019). Overflow is indicated by setting the OF/UF flag as 1 if a carry is found during exponent addition.

4 Observations and Results

We simulated the individual components of the system and integrated them to arrive at fully functional IEEE floating point multiplication. We probed the outputs of each component at a time interval of 10ms and computed errors in each of them. We used the following two techniques for evaluating the performance of each component.

Mean Absolute Error = $\frac{\sum |\text{Computed val} - \text{Actual val}|}{\text{number of values}}$

Accuracy = $(1 - \text{Mean Absolute Error}) \times 100$

The Mean Absolute Error is the measure of the absolute difference between the actual bit value and the value computed by our system, averaged over all the bits. In our case MAE obtains due to approximating a discontinuous function using NEF, plus noise and randomness in spiking neurons.
Mean Encoded Error = $\frac{\sum |\text{Actual bit } \oplus \text{Encoded val}|}{\text{number of bits}}$

We encoded the output value of each component and compare it with actual bit value. In other words we calculated hamming distance between the encoded bit value and actual bit value then averaged it over all the bits.

4.1 Accuracy versus number of neurons

Figure [6] illustrates the accuracy of the Mantissa Multiplier. (For the Bias Subtractor and Exponent Adder we get very similar graphs.)

We varied the number of neurons starting from 100 to maximum of 800 per bit, and observed the accuracy across all components. We observed that the accuracy initially increases with the number of neurons but after some threshold value of neurons, increase in accuracy is not significant. In the Mantissa Multiplier component we can see that accuracy increases rapidly until the number of neurons reach 300; after that there is no significant improvement.

4.2 Bit error v/s number of neurons:

For each Mantissa Multiplier component we observed that bit error is high when the number of neurons is very low. In the Mantissa Multiplier, when the number of neurons are below 200, we got 1 bit error out of 48 bits which is roughly equivalent to 2%. After increasing the number of neurons to 300 we get no bit errors. For the Exponent Adder and Bias Subtractor we get no bit errors even for number of neurons below 200.

4.3 Total number of neurons

We observed in Section 4.1 that the accuracy increases with an increase in the number of neurons. We estimated the optimal number of neurons required in all for all ensembles, as in Table [1].

5 Conclusion

In this paper we describe an approach to build an IEEE-754 standard floating point unit using neuromorphic hardware with spiking neurons. Such
Table 1: Number of neurons for each ensemble

Component	Number of neurons
Exponent Adder	300
Bias Subtractor	300
Mantissa Multiplier	600
Sign and OF/UF	100

devices can mimic aspects of the brain’s structure, and may be an energy-efficient alternative to the classical Von Neumann architecture. Such a neuroromorphic floating-point unit is a critical step in developing an alternative, neuroromorphic CPU architecture.

Our architecture comprises a complex floating-point multiplication process. The most complex part of the process is the Mantissa Multiplier, which we have realized successfully by using stage-wise multiplication and a robust encoding scheme. The architecture is easily scalable to double-precision floating point numbers also. We have checked the presence of overflow and underflow errors which than can be handled separately. We have studied the affect of number of neurons on accuracy and bit error. Finally we derive the optimal number of neurons required for each component, giving an indication of the hardware resources required to implement this approach.

References

Qian Wang and Youjie Li, Botang Shao, Siddhartha Dey, and Peng Li. Energy efficient parallel neuroromorphic architectures with approximate arithmetic on FPGA. *Neurocomputing*, 221:146–158, January 2017.

Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence Stewart, Daniel Rasmussen, Xuan Choo, Aaron Voelker, and Chris Eliasmith. Nengo: a Python tool for building large-scale functional brain models. *Frontiers in Neuroinformatics*, 7, January 2014.

Nello Cristianini and John Shawe-Taylor. *An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods*. Cambridge University Press, 2000. doi: 10.1017/CBO9780511801389.
Chris Eliasmith. *How to Build a Brain: A Neural Architecture for Biological Cognition*. Oxford Series on Cognitive, Models and Architectures, September 2013. ISBN 9780199794546.

Chris Eliasmith and Charles H. Anderson. *Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems*. MIT Press, 2002. ISBN 97802626050715.

Mark A. Erle, Brian J. Hickmann, and Michael J. Schulte. Decimal Floating-Point Multiplication. *IEEE Trans. Comput.*, 58(7):902–916, July 2009. doi: 10.1109/TC.2008.218.

Steven K. Esser, Paul A. Merolla, John V. Arthur, Andrew S. Cassidy, Rathinakumar Appuswamy, Alexander Andreopoulos, David J. Berg, Jeffrey L. McKinstry, Timothy Melano, Davis R. Barch, Carmelo di Nolfo, Pallab Datta, Arnon Amir, Brian Taba, Myron D. Flickner, and Dharendra S. Modha. Convolutional networks for fast, energy-efficient neuromorphic computing. *PNAS*, 113(41):11441–11446, October 2016. URL http://www.pnas.org/content/113/41/11441.

Arun M. George, Rahul Sharma, and Shrish Rao. IEEE 754 Floating-Point Addition for Neuromorphic Architecture. *Neurocomputing*, 366:74–85, November 2019. URL http://doi.org/10.1016/j.neucom.2019.05.093.

Jan Gosmann and Chris Eliasmith. Optimizing semantic pointer representations for symbol-like processing in spiking neural networks. *PLoS ONE*, 11, February 2016. URL https://doi.org/10.1371/journal.pone.0149928.

IEEE. IEEE Standard for Floating-Point Arithmetic, July 2019. URL http://doi.org/10.1109/IEEESTD.2008.4610935.

Yongtae Kim, Yong Zhang, and Peng Li. Energy Efficient Approximate Arithmetic for Error Resilient Neuromorphic Computing. *IEEE Trans. VLSI Syst.*, 23(11):2733–2737, November 2015. doi: 10.1109/TVLSI.2014.2365458.

Christof Koch and Idan Segev, editors. *Methods in Neuronal Modeling: From Ions to Networks*. MIT Press, Cambridge, MA, 2 edition, January 2003.

David J. Lilja and Sachin S. Sapatnekar. *Designing Digital Computer Systems with Verilog*. Cambridge University Press, 2005.
Carver Mead. Neuromorphic Electronic Systems. Proc. IEEE, 78(10):1629–1636, October 1990.

Don Monroe. Neuromorphic computing gets ready for the (really) big time. Communications of the ACM, 57(6):13–15, 2014.

Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8):114–117, April 1965.

Nengo. Addition example. https://www.nengo.ai/nengo/examples/addition.html. Accessed June 27, 2020.

Nengo. Multiplication example. https://www.nengo.ai/nengo/examples/basic/multiplication.html. Accessed June 27, 2020.

Nengo. Documentation. nengo.ai/documentation. Accessed June 27, 2020.

L. A. Pastur-Romay, A. B. Porto-Pazos, F. Cedron, and A. Pazo. Parallel computing for brain simulation. Current Topics in Medicinal Chemistry, 17(14):1646–1668, 2017. ISSN 1568-0266/1873-4294. doi: 10.2174/1568026617666161104105725. URL http://www.eurekaselect.com/node/147056/article.

Terrence C. Stewart. A technical overview of the neural engineering framework. AISB Quarterly, 35, October 2012. URL http://compneuro.uwaterloo.ca/files/publications/stewart.2012d.pdf.

Aaron R. Voelker and Chris Eliasmith. Methods for applying the Neural Engineering Framework to neuromorphic hardware. arXiv:1708.08133 [q-bio.NC], August 2017.

Aaron R. Voelker, Ben V. Benjamin, Terrence C. Stewart, Kwabena Boahen, and Chris Eliasmith. Extending the Neural Engineering Framework for nonideal silicon synapses. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, May 2017.

Kui Yi and Yue-Hua Ding. 32 bit Multiplication and Division ALU Design Based on RISC Structure. In Twenty-First International Joint Conference on Artificial Intelligence (IJCAI 2009), Hainan Island, China, April 2009.

Mehdi Zargham. Computer Architecture. Prentice Hall, 1996.