CONTRACTIBLE OPEN MANIFOLDS WHICH EMBED IN NO
COMPACT, LOCALLY CONNECTED AND LOCALLY
1-CONNECTED METRIC SPACE

SHIJIE GU

Abstract. This paper pays a visit to a famous contractible open 3-manifold W^3
proposed by R. H. Bing in 1950’s. By the finiteness theorem [Hak68], Haken proved
that W^3 can embed in no compact 3-manifold. However, until now, the question
about whether W^3 can embed in a more general compact space such as a compact,
locally connected and locally 1-connected metric 3-space was unknown. Using the
techniques developed in Sternfeld’s 1977 PhD thesis [Ste77], we answer the above
question in negative. Furthermore, it is shown that W^3 can be utilized to pro-
duce counterexamples for every contractible open n-manifold ($n \geq 4$) embeds in a
compact, locally connected and locally 1-connected metric n-space.

1. Introduction

Counterexamples for every open 3-manifold embeds in a compact 3-manifold have
been discovered for over 60 years. Indeed, there are plenty of such examples even for
open manifolds which are algebraically very simple (e.g., contractible). A rudimen-
tary version of such examples can be traced back to [Whi35] (the first stage of the
construction is depicted in Figure 9) where Whitehead surprisingly found the first ex-
ample of a contractible open 3-manifold different from \mathbb{R}^3. However, the Whitehead
manifold does embed in S^3. In 1962, Kister and McMillan noticed the first counterex-
ample in [KM62] where they proved that an example proposed by Bing (see Figure
1) doesn’t embed in S^3 although every compact subset of it does. In the meantime,
they conjectured that Bing’s example is a desired counterexample, i.e., such example
embeds in no compact 3-manifold. This conjecture was confirmed later by Haken
using his famous finiteness theorem [Hak68] stating that there is an upper bound on
the number of incompressible nonparallel surfaces in a compact 3-manifold. Similar
examples can readily derive from Haken’s finiteness theorem (or see [MW79, Thm.
2.3]). In 1977, an interesting example (see Figure 10) was given in Sternfeld’s PhD
dissertation [Ste77]. Instead of using Haken’s finiteness theorem, Sternfeld applied

Date: May 2nd, 2020.
2010 Mathematics Subject Classification. Primary 57M10, 54E45, 54F65; Secondary 57M25,
57N10, 57N15.
Key words and phrases. Contractible manifold, covering space, trefoil knot, Whitehead double,
Whitehead manifold.
covering space theory to produce a contractible open n-manifold ($n \geq 3$) that embeds in no compact n-manifold\footnote{It doesn’t appear that Haken’s finiteness theorem can be used to produce high-dimensional examples.}. His constructions can be viewed as a modification of Bing’s\footnote{A connection between Bing’s and Sternfeld’s examples are illustrated in §7.}, but he claimed that his examples cannot embed as an open subset in any compact, locally connected and locally 1-connected metric space, which is much more general than a compact manifold. More importantly, at the time of writing, Sternfeld’s constructions are the only known examples of such phenomenon in high dimensions.

Remark 1. There is an error in Sternfeld’s dissertation which directly affects his whole argument. In the process of proving our main theorem, we correct this error, thereby, confirming the validity of his example (see Remark 2 in §4 for details).

It is natural to ask if Bing’s example can embed in a more general compact space, say, a compact absolute neighborhood retract or compact, locally connected and locally 1-connected 3-dimensional metric space. Here we answer the above question in negative.

Theorem 1.1. W^3 embeds as an open subset in no compact, locally connected, locally 1-connected metric space. In particular, W^3 embeds in no compact 3-manifold.

Making use of the high-dimensional construction developed in [Ste77], we extend Theorem 1.1 to all finite dimensions.

Theorem 1.2. There exists a contractible open n-manifold W^n ($n \geq 4$) which embeds as an open subset in no compact, locally connected, locally 1-connected metric n-space. Hence, W^n embeds in no compact n-manifold.

The strategy of our proof heavily relies on the techniques and results from Sternfeld’s dissertation [Ste77]. Succinctly speaking, the key is to show that the union of W^3 and a 3-ball (advertised as a knot complement K_j) has a finite cover which contains infinitely many pairwise disjoint incompressible surfaces. Many results from [Ste77] will not be re-proved here, but we will take shortcuts afforded by knot theory and software GAP [GAP18] in this work.

The outline of this paper is: §2 gives a detailed review of the construction of Bing’s example and discusses its crucial connection with a knot space K_j. That is, showing Bing’s example can embed in no compact, locally connected and locally 1-connected metric space is equivalent to showing $\pi_1(K_j)$ is not finitely generated. Towards that goal, in §3 we find the Wirtinger presentation of $\pi_1(K_j)$ and in §4, we define an important surjection of $\pi_1(K_j)$ onto A_5. Meanwhile, we fix an error in Sternfeld’s dissertation. §5 paves the road for §6 by showing that the key ingredient is to focus on an object called a cube with a trefoil-knotted hole. §6 proves Theorem 1.1 by using results obtained from §2-§5. The proof of Theorem 1.2 is presented at the end of this section. In §7, we discuss some related questions of this work.
2. The construction of a 3-dimensional example

First, we reproduce the example originally proposed by Bing, i.e., a 3-dimensional contractible open manifold W^3. Let $\{T_l\mid l = 0, 1, 2, \ldots\}$ be a collection of disjoint solid tori standardly embedded in S^3. Let the solid torus T'_l be embedded in $\text{Int} T_l$ as in Figure 1.\(^3\) Let the oriented simple closed curve α_l, β_l, γ_l, and δ_l be as shown in Figure 1. The curves α_l and β_l are transverse in ∂T_l, and meet at the point $q_l \in \partial T_l$. In a similar fashion, the curves γ_l and δ_l are transverse in $\partial T'_l$, and meet at the point $p_l \in \partial T'_l$. For $l \geq 1$, let $L_l = T_l \setminus \text{Int} T'_l$. Define an embedding $h_{l+1}^l : T_l \rightarrow T'_{l+1}$ so that T_l is carried onto T'_{l+1} with $h_{l+1}^l(\alpha_l) = \delta_{l+1}$ and $h_{l+1}^l(\beta_l) = \gamma_{l+1}$. W^3 is the direct limit of the T_l’s and denoted as $W^3 = \lim_{l \rightarrow \infty} (T_l, h_{l+1}^l)$. That is equivalent to view W^3 as the quotient space: $\sqcup_l T_l \xrightarrow{\partial} W^3$, where $\sqcup_l T_l$ is the disjoint union of the T_l’s and q is the quotient map induced by the relation \sim on $\sqcup_l T_l$. If $x \in T_l$ and $y \in T_j$, then $x \sim y$ if there exists a k larger than i and j such that $h_k^l(x) = h_k^j(y)$, where $h_k^l = h_l^{t-1} \circ h_{l-1}^{t-2} \circ \ldots \circ h_{s+2}^1 \circ h_s^1$ for $t > s$. Let $\iota_l : T_l \hookrightarrow \sqcup_l T_l$ be the obvious inclusion map. The composition $\iota_l \circ \iota_l$ embeds T_l in W^3 as a closed subset. The injectivity follows from the injectivity of h_k^l. It is closed since for $j > l$ the set $h_j^l(T_l)$ is closed in T_j. Let $T_l^* = \iota_l(T_l)$, T_l^* is embedded in T_{l+1}^* just as the way $h_{l+1}^l(T_l)$ ($= T_{l+1}^*$) is embedded in T_{l+1}. Hence, Figure 1 can be viewed as a picture of the embedding of T_l^* in T_{l+1}^*. In general, for $k > l$, T_l^* is embedded in T_k^* just as $h_k^l(T_l)$ is embedded in T_k.

Proposition 2.1. W^3 is a contractible open connected 3-manifold.

Proof. By the construction described above, W^3 is an expanding union of T_l^*’s, hence, connected. The interior of each $h_k^l(T_l)$ is open in T_j, so $\text{Int} T_l^*$ is open in W^3. Since T_l^* is contained in $\text{Int} T_{l+1}^*$, W^3 is an open 3-manifold.

To show the contractibility of W^3, we first triangulate W^3 by choosing for each T_l ($l \geq 0$), a simplicial subdivision such that each embedding h_k^l ($k \geq 0$) is simplicial with respect to the chosen subdivision of its domain and range. Let $H : W^3 \times [0, 1] \rightarrow W^3$ be the contraction to be constructed. Define H inductively on the skeleton of $W^3 \times [0, 1]$. Pick $p \in W^3$ to be the point to which we want to contract. Map each vertex cross $[0, 1]$ to a path beginning at the vertex and ending at p. Let $\Delta^{(1)}$ be a 1-simplex of W^3. Define the restrictions $H|_{\Delta^{(1)} \times \{0\}}$ to be the identity and $H|_{\Delta^{(1)} \times \{1\}}$ to be the constant map taking all points to p. Note that $\partial \Delta^{(1)}$ lies in the 0-skeleta of W^3. H has already been defined on $\partial \Delta^{(1)} \times [0, 1] = \partial \Delta^{(1)} \times [0, 1])$. Note that T^*_l contracts in T_{l+1}^* (see Figure 1). H can be extended to the rest of $\Delta^{(1)} \times [0, 1]$ by the fact that $H|_{\partial \Delta^{(1)} \times [0, 1]}$ contracts in W. Doing this for all 1-simplexes so H is well-defined on the 1-skeleta cross $[0, 1]$. One can do this for 2- and 3-skeleta cross $[0, 1]$ inductively. □

\(^3\)Changing the cube with a trefoil-knotted hole C_l as shown in Figure 1 can result in different contractible open manifold. For instance, one can replace C_l by a cube with a square-knotted hole. Proposition 2.1 is true for all contractible manifolds constructed in such fashion.
Definition 2.1. A topological space X is locally 1-connected at the point $x \in X$ if for each neighborhood U of x there is a neighborhood V of x, $V \subset U$, such that every loop in V contracts in U. We say that X is locally 1-connected if X is locally 1-connected at each of its points.

The approach of proving Theorem 1.1 does not rely on Haken’s finiteness theorem [Hak68]. Instead, we take advantage of the covering space argument in [Ste77].

Suppose there is a compact, locally connected, locally 1-connected metric space U such that U contains W^3 as an open subset. By taking the component of U containing W^3 we may assume that U is connected. Then the following result assures that $\pi_1(U \setminus \text{Int} T^*_t)$ must be finitely generated.

Lemma 2.2. [Ste77, Lemma 1.1, P.7] If X is a compact, connected, locally connected, locally 1-connected metric space, then $\pi_1(X)$ is finitely generated.

Instead of working on $\pi_1(U \setminus \text{Int} T^*_t)$ directly, it is easier to focus on a knot space $K_j = S^3 \setminus \text{Int} h^0_j(T_0)$ ($j \geq 1$).\footnote{In [Ste77], K_i (instead of our K_j) denotes the knot space corresponding to his 3-dimensional example W. In addition, K_i is homeomorphic to an amalgamation A_i in his thesis. At the end of this section, we also decompose K_j into an amalgamation (see (2.1)).} Combining with Claim 2, we have an observation as follows.
Claim 1. \(\pi_1(K_j) \) is a homomorphic image of \(\pi_1(U \setminus \text{Int } T_0^*) \).

Proof. Let \(p_j \) and \(p'_j \) be quotient maps in the commutative diagram (see Figure 2). The inclusion, \(\iota_j \), followed by \(p_j \) induces the map \(g_j \) since the restriction of \(p_j \) on \(T_j^* \setminus \text{Int } T_0^* \) is to collapse \(\partial T_j^* \) to a point. It’s not hard to see that \(g_j \) is actually a homeomorphism. Since \(\partial T_j^* \) is collared in \(T_j^* \setminus \text{Int } T_0^* \), Lemma 5.4 implies that \(p'_j \) induces a surjection on fundamental groups. By the commutativity of the diagram 2, \(p'_j = g_j^{-1}p_j \iota_j \), where \(p'_j \), \(g_j \), \(p_j \) and \(\iota_j \) are the homomorphisms induced by maps \(p'_j \), \(g_j \), \(p_j \) and \(\iota_j \) respectively. Since \(p'_j \) is a surjection, \(g_j^{-1}p_j \) is also a surjection. Hence, \(\pi_1((T_j \setminus \text{Int } T_0^*)/\partial T_j^*) \) is a homomorphic image of \(\pi_1(U \setminus \text{Int } T_0^*) \). According to the construction of \(W^3 \), the pair \((T_j^* \setminus \text{Int } T_0^*) \) is homeomorphic to the pair \((T_j, h_j^0(T_0))\). Then the claim follows from Claim 2. \(\Box \)

Since the rank\(^5\) of a group must be at least as large as that of any homomorphic image, it suffices to show that the rank of \(\pi_1(K_j) \) is unbounded.

The space \(K_j \) is advertised as “knot space” because it can be viewed as a knot complement. To see that, we need the construction based on two important tools in producing knots. The first one is

Definition 2.2. Let \(K_P \) be a non-trivial knot in \(S^3 \) and \(V_P \) an unknotted solid torus in \(S^3 \) with \(K_P \subset V_P \subset S^3 \). Let \(K_C \subset S^3 \) be another knot and let \(V_C \) be a tubular neighborhood of \(K_C \) in \(S^3 \). Let \(h : V_P \to V_C \) be a homeomorphism and let \(K_W \) be \(h(K_P) \). We say \(K_C \) is a companion of any knot \(K_W \) constructed (up to knot type) in this manner. If \(h \) is faithful, meaning that \(h \) takes the preferred longitude\(^6\) and meridian of \(V_P \) respectively to the preferred longitude and meridian of \(V_C \), We say \(K_W \) is an untwisted Whitehead double of \(K_C \). Otherwise, \(K_W \) is a twisted Whitehead double. For instance, Figure 3 is a 3-twisted Whitehead double of a trefoil knot. The pair \((V_P, K_P)\) is the pattern of \(K_W \).

The second tool is based on a type of connected sum of a pair of manifolds \((M_1^m, N_1^n) \#(M_2^m, N_2^n)\), where \(N_i^n \) is a locally flat submanifold of \(M_i^m \). Treat the above pair as \((S^3, k_1) \#(S^3, k_2)\) where \(k_i \) are tame knots. Removing a standard

\(^5\)When we say the rank of a group \(G \), denoted by \(\text{Rank } G \), it means the smallest cardinality of a generating set for \(G \).

\(^6\)"Preferred longitude" means that \(K_W \) has writhe number zero.
ball pair \((B_3^1, B_1^1)\) from \((S^3, k_1)\) and gluing the resulting pairs by a homeomorphism
\(h : (\partial B_3^2, \partial B_1^2) \to (\partial B_3^1, \partial B_1^1)\) to form the pair connected sum. For convenience, we use \(k_1 \# k_2\) other than pairs of manifolds. See [Rol76] for details.

To help readers get a better feeling about group \(\pi_1(K_j)\), we show that \(\pi_1(K_j)\) is isomorphic to \(\pi_1((T_j \setminus \text{Int } h_j^0(T_0))/\partial T_j)\). Geometrically, \(K_j\) is the space obtained by sewing the solid torus \(S^3 \setminus \text{Int } T_j\) to \(T_j \setminus \text{Int } h_j^0(T_0)\) along \(\partial T_j\). We decompose \(S^3 \setminus \text{Int } T_j\) into two 3-cells \(B_1\) and \(B_2\), i.e., \(S^3 \setminus \text{Int } T_j = B_1 \cup B_2\), where \(B_1\) is the thickened meridional disk \(D\) in \(S^3 \setminus \text{Int } T_j\) with \(\partial D = \alpha_j\) (see Figure 4) and \(B_2\) is the closure of the complement of \(B_1\) in \(S^3 \setminus \text{Int } T_j\). Sewing \(B_1\) to \(T_j \setminus \text{Int } h_j^0(T_0)\) along an annular neighborhood of \(\alpha_j\) in \(\partial T_j\). By Seifert-van Kampen, the inclusion \(T_j \setminus \text{Int } h_j^0(T_0) \hookrightarrow (T_j \setminus \text{Int } h_j^0(T_0)) \cup B_1\) induces a surjection on fundamental groups whose kernel is the normal closure of the curve \(\alpha_j\) in \(\pi_1(T_j \setminus \text{Int } h_j^0(T_0))\).

Adding \(B_2\) to \((T_j \setminus \text{Int } h_j^0(T_0)) \cup B_1\) to form the knot complement \(K_j\) does not affect the fundamental group. This follows readily from Seifert-van Kampen. Hence, the inclusion \(T_j \setminus \text{Int } h_j^0(T_0) \hookrightarrow K_j\) induces a surjection on fundamental groups whose kernel is the normal closure of the curve \(\alpha_j\) in \(\pi_1(T_j \setminus \text{Int } h_j^0(T_0))\).

Claim 2. \(\pi_1(K_j)\) is isomorphic to \(\pi_1((T_j \setminus \text{Int } h_j^0(T_0))/\partial T_j)\).

Proof. It’s sufficient to show that the meridian \(\beta_j\) of \(T_j\) is trivial in \(\pi_1(K_j)\). In other words, we will show that \(\beta_j\) contracts in the complement of \(h_j^0(T_0)\). Consider Figure 4. \(h_j^0(T_0)\) (not pictured) is contained in \(h_j^{2-1}(T_{j-1})\), which is also contained in the solid torus \(A\). Since \(A\) is an unknotted solid torus, \(\beta_j\) bounds a 2-chain in \(S^3 \setminus A\). □

It’s clear that \(\pi(K_1)\) is isomorphic to a trefoil knot group.

Claim 3. \(\pi_1(K_2)\) is isomorphic to the knot group of the connected sum of a trefoil knot and a 3-twisted Whitehead double of a trefoil knot.

Proof. By the construction of \(W^3, T_1^*\) embeds in \(T_2^*\) just as the way \(T_0^*\) embeds in \(T_1^*\) (as shown in Figure 1). Note that the space \(K_2 = S^3 \setminus \text{Int } h_2^0(T_0)\) can be decomposed.

![Figure 3. A 3-twisted Whitehead double of a trefoil knot](image-url)
Figure 4. β_j contracts in $S^3 \setminus \text{Int} h^0_j(T_0)$, where $h^0_j(T_0)$ is not pictured.

Let K_1 be a trefoil knot corresponding to the knot space K_1. Denote a knot K_2 by $K_1^{Wh} \# K_1$ such that $\pi_1(S^3 \setminus K_2) \cong \pi_1(K_2)$. Similarly, one can further find a knot K_3 on the 3rd stage which is a connected sum of a twisted Whitehead double of K_2 and K_1. By iteration, a knot K_j can be viewed as $K_j^{Wh} \# K_1$.

Let G_3 and G_j^{Wh} be the knot group of K_1 and K_j^{Wh} respectively. By the definition of connected sum, there is a tame 2-sphere S^2 dividing S^3 into two balls B_1 containing K_j^{Wh} and K_1 respectively. The intersection of K_j^{Wh} and K_1 is an arc ζ lying in S^2. View $K_j = K_j^{Wh} \# K_1$ as the union of K_j^{Wh} and K_1 minus $\text{Int} \zeta$ (see Figure 5). Then we have the following diagram “pushout” commutative diagram 6.
Figure 5. The connected sum of a twisted Whitehead double of K_1 and K_1 (\approx trefoil knot). Here \approx stands for homeomorphic.

\[
\begin{align*}
\pi_1(S^2 \setminus K_j) & \cong \mathbb{Z} \\
\pi_1(B_{Wh} \setminus K_{j-1}^{Wh}) & \cong G_{j-1}^{Wh} \\
\pi_1(B_1 \setminus K_1) & \cong G_3 \\
\pi_1(S^3 \setminus K_j) & \\
\end{align*}
\]

Figure 6. “Pushout” commutative diagram

Clearly, the two upper homomorphisms in Figure 6 are injective. By the Seifert-van Kampen theorem, the other two homomorphisms ι_1, ι_2 are also injective. That means

\[G_j = \pi_1(S^3 \setminus K_j) = G_{j-1}^{Wh} * \langle \lambda \rangle G_3\]

is a free product with amalgamation along an infinite cyclic group, where $[\lambda]$ corresponds to the loop class in $\pi_1(S^2 \setminus K_j)$. According to this set-up, G_{j-1}^{Wh} and G_3 are two subgroups of G_j and $\langle \lambda \rangle$ is a subgroup of both G_{j-1}^{Wh} and G_3. Since both G_{j-1}^{Wh} and G_3 are abelianized to $\langle \lambda \rangle \cong \mathbb{Z}$, G_j is a split amalgamated free product.
Although the work in [Wei99] guarantees a lower bound for $\text{Rank} G_j *_{\langle \lambda \rangle} G_3$, i.e., $\text{Rank} G_j *_{\langle \lambda \rangle} G_3 \geq 2$, the ultimate goal is to show that $\text{Rank} G_j *_{\langle \lambda \rangle} G_3$ has no upper bound as $j \to \infty$. At the time of writing, we don’t know whether there is a direct knot theoretical approach to this. So, we use the covering space theory as developed by Sternfeld in [Ste77].

We start by constructing a surjective homomorphism $\Phi_j : G_{j-1}^{Wh} *_{\langle \lambda \rangle} G_3 \twoheadrightarrow A_5$, where A_5 is an alternating group on 5 letters. To that end, by the definition of W^3, we decompose K_j into an amalgamation of L_j’s. That is, for $j \geq 1$,

\begin{equation}
K_j \approx (S^3 \setminus \text{Int} T_j) \cup_{t_0} L_j \cup_{h_j} L_{j-1} \cup_{h_j^{-1}} L_{j-2} \cdots \cup_{h_1} L_1,
\end{equation}

where the sewing homeomorphism h_{t+1} identifies the boundary component ∂T_l of L_l. It’s clear that $\pi_1(K_j) \cong G_j$. So, we convert the problem to finding a surjection from $\pi_1(K_j) \twoheadrightarrow A_5$ which will be discussed in the following two sections.

3. A PRESENTATION OF $\pi_1(K_j)$

First we spell out a Wirtinger presentation similar to what Sternfeld did in [Ste77, P.20–26] for $\pi_1(L_l)$, where $l \geq 1$. Let Σ_l and Ω_l be polyhedral simple closed curves contained in S^3 such that $S^3 \setminus (\Sigma_l \cup \Omega_l)$ deformation retracts onto L_l. Σ_l and Ω_l can be viewed as cores of the solid tori T'_l and $S^3 \setminus \text{Int} T_l$ respectively (see Figures 1 and 7). Let the arc μ_l in Figure 7 run from one end point $p_l \in \partial T_l$ and to the other end point $q_l \in \partial T'_l$. μ_l is properly embedded in L_l.

Hence, the presentation of $\pi_1(S^3 \setminus (\Sigma_l \cup \Omega_l), p_l)$ is

\begin{align}
\text{Generators: } & a, b, c, \ldots, i \\
\text{Relators: } & \\
& \begin{cases}
R_{l,1} : b = c^{-1}ac \\
R_{l,2} : c = a^{-1}ba \\
R_{l,3} : d = b^{-1}cb \\
R_{l,4} : e = gdg^{-1} \\
R_{l,5} : f = heh^{-1} \\
R_{l,6} : g = efe^{-1} \\
R_{l,7} : a = h^{-1}gh \\
R_{l,8} : h = g^{-1}ig \\
R_{l,9} : i = fhf^{-1},
\end{cases}
\end{align}

where the subscripts l’s are surpressed.
Write loop classes $[\alpha_l], [\beta_l], [\gamma_l]$ and $[\delta_l]$ as words in the generators a_l, b_l, \ldots, i_l of (3.1):

\[
\begin{align*}
[\alpha_l] &= h_l \\
[\beta_l] &= f_l^{-1} g_l \\
[\gamma_l] &= a_l \\
[\delta_l] &= c_l a_l b_l g_l^{-1} h_l^{-1} e_l^{-1} h_l
\end{align*}
\]

where $[\alpha_l]$ is determined by the oriented simple closed curve α_l lying in ∂L_l (see Figures 1 and 7) and the arc μ_l connecting α_l to the base point p_l. Likewise, $[\beta_l], [\gamma_l]$ and $[\delta_l]$ are defined in the same manner. Deformation retract $S^3 \setminus (\Sigma_l \cup \Omega_l)$ onto L_l. It’s clear that Presentation (3.1) is a presentation of $\pi_1(L_l, p_l)$. Consider the loop classes a_l, b_l, \ldots, i_l in $\pi_1(L_l, p_l)$ (represented by the same loops as before) as loops in L_l. At the same time, $[\alpha_l], [\beta_l], [\gamma_l]$ and $[\delta_l]$ may be written as the same words (3.2) in the generators of $\pi_1(L_l, p_l)$.

Recall in the previous section, we have the following knot space

\[K_j \approx (S^3 \setminus \text{Int } T_j) \cup \text{Id } L_j \cup h_j^{-1} L_{j-1} \cup h_{j-2}^{-1} \cdots \cup h_2^{-1} L_1, \]

where the sewing homeomorphism $h_{t+1}^{l_t}$ identifies the boundary component ∂T_l of L_l to the boundary component ∂T_{l+1} of L_{l+1} such that the transverse oriented simple closed curves α_l and β_l of ∂T_l are mapped in an orientation preserving manner to the
transverse oriented simple closed curves δ_{l+1} and γ_{l+1} respectively in $\partial T'_{l+1}$. Using the words (3.2), this can be described by the following relators

\[
\begin{aligned}
\text{Relators:} & \quad \left\{
S_{l,1} : h_{l-1} = c_1 a_l b_l g^{-1}_l h^{-1}_l e^{-1}_l h_l \text{ for } j \geq l \geq 2 \\
S_{l,2} : f_{l-1} g_{l-1} = a_l \text{ for } j \geq l \geq 2.
\right\}
\end{aligned}
\]

Combine the words (3.1) and (3.3), we obtain

Proposition 3.1. $\pi_1(K_j, p_1)$, $j \geq 1$, has the following presentation

\[
\begin{aligned}
\text{(3.4) Generators:} & \quad a_l, b_l, c_l, \ldots, i_l \text{ for } j \geq l \geq 1 \\
\text{Relators:} & \quad \left\{ R_{l,k} \text{ for } j \geq l \geq 1 \text{ and } 9 \geq k \geq 1 \\
& \quad S_{l,1} \text{ for } j \geq l \geq 2 \\
& \quad S_{l,2} \text{ for } j \geq l \geq 2 \\
& \quad h_j = 1,
\right\}
\end{aligned}
\]

where the generators a_l, \ldots, i_l of Presentation (3.4) correspond to those of Presentation (3.1) conjugated by the path μ_l.

Proof. The proof is an easy modification of the proof of Proposition 4.1 in [Ste77]. \(\square\)

4. The surjection of $\pi_1(K_j, p_1)$ onto A_5

Here we shall define a homomorphism $\Phi_j : \pi_1(K_j, p_1) \to A_5$, where $j \geq 1$. It suffices to define Φ_j on the generators of Presentation (3.4) of $\pi_1(K_j, p_1)$ and check that the definition is compatible with the relators of the presentation. That is, if the following words

\[
\begin{aligned}
w(a_1, b_1, \ldots, i_1, \ldots, a_j, b_j, \ldots, i_j) = w'(a_1, b_1, \ldots, i_1, \ldots, a_j, b_j, \ldots, i_j)
\end{aligned}
\]

is a relator of the presentation, then

\[
\begin{aligned}
w(\Phi_1(a_1), \ldots, \Phi_1(i_1), \ldots; \Phi_j(a_j), \ldots; \Phi_j(i_j)) = w'(\Phi_1(a_1), \ldots, \Phi_1(i_1), \ldots; \Phi_j(a_j), \ldots; \Phi_j(i_j))
\end{aligned}
\]

must hold for A_5.

Consider an extreme case by “unknotting” every small trefoil knot in the link (corresponding to L_l) as shown in Figure 7. The link in Figure 7 can be viewed as a connected sum of a Whitehead link and a trefoil knot. Thus, we can abelianize the trefoil knot group to a connected sum of a Whitehead link and a trefoil knot. In other words, the new knot space is a concatenation of Whitehead links with 3 half-twists to T_l due to the writhe of trefoil knot (before abelianization) in T'_{l+1} is 3.
half-twists. Denote the corresponding knot space by \(K_j^{**} \). By the above procedure, \(\pi_1(K_j^{**}) \) can be obtained by adding relators \(a_l = b_l, b_l = c_l, c_l = d_l \) to the presentation of \(\pi_1(K_j) \) in Proposition 3.1

\[
\begin{align*}
\text{Generators: } & a_l, b_l, c_l, \ldots, i_l & & \text{for } j \geq l \geq 1 \\
\text{Relators: } & \begin{cases}
R_{l,k} \text{ for } j \geq l \geq 1 \text{ and } 9 \geq k \geq 1 \\
S_{l,1} \text{ for } j \geq l \geq 2 \\
S_{l,2} \text{ for } j \geq l \geq 2 \\
h_j = 1.
\end{cases}
\end{align*}
\]

Clearly, there is a surjection of \(\psi_j : \pi_1(K_j) \to \pi_1(K_j^{**}) \) by sending \(a_l, \ldots, d_l \) in Presentation (3.4) to \(a_l \) in Presentation (4.1). So, it suffices to find a surjection \(\phi_j \) of \(\pi_1(K_j^{**}) \) onto \(A_5 \).

We shall define \(\phi_j \) inductively on the generators of Presentation (4.1). If \(j = 1 \), we use GAP [GAP18] to define a surjection \(\phi_1 \) on \(a_1, \ldots, i_1 \) by Table 1a. This definition is compatible with the relators \(R_{1,k} \) and \(h_1 = 1 \), where \(1 \leq k \leq 9 \). If \(j = 2 \), both Tables 1a and 1b are used. Besides relators \(R_{1,k}, R_{2,k} \) and \(h_2 = 1 \), relators \(S_{2,1}, S_{2,2} \) are also compatible. Similarly, if \(j = 3 \) (resp. \(j = 4 \)), Tables 1a-1c (resp. 1a-2a) are applied. When \(j \geq 5 \), Tables 1a-2b will be applied periodically. That is, extend \(\phi_j \) to the generators \(a_l, \ldots, i_l \) according to Table 1a if \(l = j \), according to Table 1b if \(l = j - 1 - 4T \), according to Table 1c if \(l = j - 2 - 4T \), according to Table 2a if \(l = j - 3 - 4T \) and according to Table 2b if \(l = j - 4 - 4T \), where \(T \in \mathbb{N} \) and \(0 \leq T \leq (j-1)/4 \). One can either use GAP [GAP18] or simply by hand to check such extension is compatible with relators in Presentation (3.4). Hence, the composition \(\Phi_j = \phi_j \circ \psi_j \) is the desired surjection.

Table 1

(A) \(l = j \)	(B) \(l = j - 1 - 4T \)	(C) \(l = j - 2 - 4T \)			
Generators	**Image**	**Generators**	**Image**	**Generators**	**Image**
\(a_l \)	(1,2)(3,4)	\(a_l \)	(1,2,3)	\(a_l \)	(1,3)(4,5)
\(b_l \)	(1,2)(3,4)	\(b_l \)	(1,2,3)	\(b_l \)	(1,3)(4,5)
\(c_l \)	(1,2)(3,4)	\(c_l \)	(1,2,3)	\(c_l \)	(1,3)(4,5)
\(d_l \)	(1,2)(3,4)	\(d_l \)	(1,2,3)	\(d_l \)	(1,3)(4,5)
\(e_l \)	(1,2)(3,4)	\(e_l \)	(2,4,3)	\(e_l \)	(1,2,4)
\(f_l \)	(1,2)(3,4)	\(f_l \)	(1,3,4)	\(f_l \)	(1,3,4)
\(g_l \)	(1,2)(3,4)	\(g_l \)	(1,4,2)	\(g_l \)	(2,3,4)
\(h_l \)	()	\(h_l \)	(1,2)(3,4)	\(h_l \)	(1,2,3)
\(i_l \)	()	\(i_l \)	(1,3)(2,4)	\(i_l \)	(1,3,2)

Remark 2. In line 16 [Ste77, P.28], the author claims that the definition of \(\Phi_i : \pi_1(A_i) \to A \) given in Table 1 [Ste77, P.29] is compatible with the relators \(S_{j,1}, S_{j,2} \) for
Table 2

Generators	Image	Generators	Image
\(a_l\)	\((3,4,5)\)	\(a_l\)	\((1,2)(3,4)\)
\(b_l\)	\((3,4,5)\)	\(b_l\)	\((1,2)(3,4)\)
\(c_l\)	\((3,4,5)\)	\(c_l\)	\((1,2)(3,4)\)
\(d_l\)	\((3,4,5)\)	\(d_l\)	\((1,2)(3,4)\)
\(e_l\)	\((1,3,5)\)	\(e_l\)	\((1,2)(4,5)\)
\(f_l\)	\((1,4,3)\)	\(f_l\)	\((1,2)(3,4)\)
\(g_l\)	\((1,5,4)\)	\(g_l\)	\((1,2)(3,5)\)
\(h_l\)	\((1,3)(4,5)\)	\(h_l\)	\((3,4,5)\)
\(i_l\)	\((1,5)(3,4)\)	\(i_l\)	\((3,5,4)\)

\(l \geq j \geq 2\), where \(A\) is an alternating group on 5 letters \(v, w, x, y\) and \(z\). However, for \(l < i\), \(\Phi(o_{l-1}^{-1}h_{l-1}f_{l-1}^{-1}q_{l-1})\) is not equal to \(\Phi(a_l)\). That is, using Table 1 [Ste77, P.29], \(\Phi(o_{l-1}) = (vy)(wz), \Phi(h_{l-1}) = (vy)(xz), \Phi(f_{l-1}) = (wx)(yz)\) and \(\Phi(q_{l-1}) = (vw)(yz)\). Hence, \(\Phi(o_{l-1}^{-1}h_{l-1}f_{l-1}^{-1}q_{l-1}) = (vw)(xz) \neq \Phi(a_l) = (vw)(xy)\). That means the definition of the so claimed \(\Phi_i\) is not compatible with the relators \(S_{j,1}, S_{j,2}\) for \(l \geq j \geq 2\). This error directly affects the following statement [Ste77, P.52]: “The composition \(\pi_1(C_j, x_j) \xrightarrow{k} \pi_1(A_i, x_j) \xrightarrow{M_j} \pi_1(A_i, x_i) \xrightarrow{\Phi_i} A\) has image isomorphic to \(\mathbb{Z}_2\) in \(A\) since \(\Phi_i\) maps \(a_j\) and \(b_j\) to the same element of order 2 in \(A\). Thus, the kernel of \(\Phi_i \circ M_j \circ k\) has index 2 in \(\pi_1(C_j, x_j)\).” To fix this error, we provide a series of correct tables here.

We have to use at least 3 tables (instead of 2 tables) such that the definition of \(\Phi_i\) is compatible with all the relators. Similar to how we define a surjection of \(\pi_1(K_j, p_1) \to A_5\) in the beginning of this section, with the assistance of GAP [GAP18], the following tables provide a surjection of \(\Phi_i : \pi_1(A_i, x_1) \to A_5\). If \(i = 1\), we defined \(\Phi_i\) on \(a_1, \ldots, u_1\) by Table 3a. If \(i = 2\), then Tables 3a and 3b are used. Otherwise, when \(i \geq 3\), Tables 3a, 3b and 3c are applied. That is, extend \(\Phi_i\) to the generators \(a_l, \ldots, u_l\) according to Table 3a if \(l = i\), according to Table 3b at \(l = i - 1 - 2T\) and according to Table 3c at \(l = i - 2 - 2T\), where \(T \in \mathbb{N}\) and \(0 \leq T \leq (i - 1)/2\).
5. Properties of a cube with a trefoil-knotted hole

One of the key ingredients in proving Theorem 1.1 is to understand the covering space of a cube with a trefoil-knotted hole as shown in Figure 1. In this section, we collect a number of important properties about cubes with a trefoil-knotted hole. Let \(C \) be the cube with a trefoil-knotted hole as shown in Figure 8. Here \(C \) is the complement in \(S^3 \) of the interior of a regular neighborhood of the polyhedral simple closed curve \(\Gamma \). There is a deformation retract of \(S^3 \setminus \Gamma \) onto \(C \). The presentation of \(\pi_1(S^3 \setminus \Gamma) \) (i.e., trefoil knot group) is a presentation of \(\pi_1(C, p_0) \), where \(p_0 \) is a base point. Hence, one can use the Wirtinger presentation of \(\pi_1(S^3 \setminus \Gamma) \) to obtain the following proposition.

Proposition 5.1. \(\pi_1(C, p_0) \) has presentation
\[
\langle a, b | b^{-1}a^{-1}b^{-1}aba = 1 \rangle,
\]
where \(a = [A] \) and \(b = [B] \) as shown in Figure 8.

Corollary 5.2. \(\pi_1(C, p_0) \) has Rank 2.
Proof. Obviously, $\text{Rank} \, \pi_1(C, p_0) \leq 2$. By the classification of finite simple groups, $\text{Rank} \, A_5 = 2$. Using GAP [GAP18], one can find a surjection of $\pi_1(C, p_0)$ onto A_5 by $(a, b) \mapsto ((1, 3, 5, 4, 2), (1, 2, 3, 4, 5))$. That means $\text{Rank} \, \pi_1(C, p_0)$ has to be greater or equal to 2. Hence, $\text{Rank} \, \pi_1(C, p_0) = 2$. \hfill \Box

Proposition 5.3. [Ste77, Prop.6.3] C has a unique 2-fold cover, \tilde{C}^2, the boundary $\partial \tilde{C}^2$ is connected and the quotient map

$$ Q : \tilde{C}^2 \to \tilde{C}^2 / \partial \tilde{C}^2 $$

induces a surjection on fundamental groups.

Lemma 5.4. [Ste77, Lemma 1.3] Let B be a subspace of X. Let B and X be path connected. If B is collared in X, then the quotient map $q : X \to X/B$ induces a surjection of fundamental groups whose kernel is the normal closure in $\pi_1(X)$ of $i_* \pi_1(B)$, where i_* denotes the inclusion induced homomorphism.
The following result generalizes Proposition 5.3 for the \(k \)-fold cyclic cover of \(C \).

Proposition 5.5. Let \(\tilde{C}^k \) be the \(k \)-fold cyclic cover of \(C \). Then \(\partial \tilde{C}^k \) is connected and the quotient map

\[
Q : \tilde{C}^k \to \tilde{C}^k / \partial \tilde{C}^k
\]

induces a surjection on fundamental groups.

Proof. First, we show \(\partial \tilde{C}^k \) is connected. Let \(\tilde{P} : \tilde{C}^k \to C \) be the \(k \)-fold cyclic cover. The restriction of \(\tilde{P} \) to each component of \(\tilde{P}^{-1}(\partial C) \) is a covering map of \(\partial C \). Note that the \(k \)-fold cyclic cover is defined to be the one which corresponds to the kernel of the composite

\[
\pi_1(C) \xrightarrow{\text{abelianization}} \mathbb{Z} \xrightarrow{\text{projection}} \mathbb{Z}_k.
\]

The uniqueness of the abelianization and the projection assures that the simple closed curve \(A \) (see Figure 8) in \(\partial C \) based at a point \(p_0 \) has a lift \(\tilde{A} \) which is not a loop since the loop \([A]\) corresponding to the generator \(a \) in Proposition 5.1 is not in the kernel. Therefore, the component of \(\partial \tilde{C}^k \) that contains \(\tilde{A} \) must be a least a double cover of \(\partial C \) since the two end points of \(\tilde{A} \) cover \(p_0 \). Since each point of \(C \) has precisely \(k \) preimages in \(\tilde{C}^k \), the component of \(\partial \tilde{C}^k \) that contains \(\tilde{A} \) must be all of \(\partial \tilde{C}^k \). Thus \(\partial \tilde{C}^k \) is (path) connected.

Applying Lemma 5.4 finishes the proof. \(\square \)

Proposition 5.6. \(\pi_1(\tilde{C}_2 / \partial \tilde{C}_2) \cong \mathbb{Z}_3 \).

Proof. The proof is a standard covering space argument. See the proof of Prop.6.4 in [Ste77, P.39-46]. \(\square \)

Proposition 5.7. Let \(\tilde{C}^3 \) be the 3-fold cyclic cover of \(C \). Then \(\text{Rank} \pi_1(\tilde{C}^3 / \partial \tilde{C}^3) \geq 1 \).

Proof. Standard cyclic cover argument [Rol76, Ch.6] assures the first homology group \(H_1(\tilde{C}^3) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z} \). “Modulo out” the generators corresponding the boundary \(\tilde{C}^3 \) can at most reduce the rank by 2, hence, \(\text{Rank} \pi_1(\tilde{C}^3 / \partial \tilde{C}^3) \geq 3 - 2 = 1 \). \(\square \)

6. **Proof of Theorem 1.1**

Recall in Section 2 we pointed out the key in proving Theorem 1.1 is to show that \(\text{Rank} \pi_1(K_j, p_1) \) is not bounded. Since \(A_5 \) has order 60 and \(\Phi_j : \pi_1(K_j, p_1) \to A_5 \) is onto, \(\ker \Phi_j \) has index 60 in \(\pi_1(K_j, p_1) \). Then the following formula guarantees that it suffices to show that \(\text{Rank} \ker \Phi_j \) is not bounded.

The formula can be viewed as a corollary of the Schreier index theorem. A detailed proof by utilizing covering space theory can be found in [Ste77, Lemma 1.4].

Lemma 6.1. Let \(G \) be a group and \(H \) be a subgroup of index \(i \). If \(\text{Rank} \ H \geq m \), then \(\text{Rank} \ G \geq \frac{m-1}{i} + 1 \).

Let \(P_j : (\tilde{K}_j, \tilde{p}_1) \to (K_j, p_1) \) be the covering map such that the induced map \(P_j^* : \pi_1(\tilde{K}_j, \tilde{p}_1) \to \pi_1(K_j, p_1) \) is an isomorphism onto \(\ker \Phi_j \). By Lemma 6.1, it remains to show that \(\text{Rank} \ker \Phi_j \) is not bounded above as \(j \to \infty \), which is equivalent
to showing that \(\text{Rank} \pi_1(\tilde{K}_j, \hat{p}_1) \geq 25j \) (resp. \(5(5j + 1) \)) when \(j \) is even (resp. odd). The key is the fact that \(K_j \) contains \(j \) pairwise disjoint incompressible cubes with trefoil-knotted hole. Figure 1 shows that each \(L_l, l \geq 1 \) contains a cube with trefoil-knotted hole \(C_l \). Recall

\[
K_j \approx (S^3 \setminus \text{Int } T_j) \cup_{\text{id}} L_j \cup_{h_{j-1}} L_{j-1} \cup_{h_{j-2}} \cdots \cup_{h_0} L_1,
\]

\(K_j \) contains \(C_1, C_2, \ldots, C_j \), pairwise disjoint cubes with trefoil-knotted hole. The disjointness follows from that each \(C_l \) lies in its own \(L_l \) and touches only the “inner” boundary of its \(L_l \). In \(K_j \), when we sew two adjacent \(L_l \)’s together, only the “outer” boundary of one is glued to the “inner” boundary of the next.

Next, we shall show that \(C_l \) in \(K_j \) has preimage under the restriction of the covering map \(P_j \) has 30 disjoint double covers and 20 disjoint triple covers. The proof heavily relies on the argument given in [Ste77, P.50-55]. For the convenience of readers, we spell out the proof in details.

Consider \(p_l \in C_l \). See Figures 7 and 8. From the Wirtinger presentation (3.4), a loop class with subscript \(l \) is the class of a loop formed by conjugation of a loop in \(L_l \) based at \(p_l \) by the path \(\mu_l^l \) running from \(p_l \) to \(p_l \) in \(K_j \). Define a change-basepoint isomorphism \(M_l : \pi_1(K_j, p_l) \to \pi_1(K_j, p_l) \) generated by conjugation by \(\mu_l^l \). By Figures 1 and 7, loop classes \(M_l^{-1}(a_l), M_l^{-1}(b_l) \) can be viewed as loop classes of \(\pi_1(C_l, p_l) \), where \(1 \leq l \leq j \). Then Figures 7-8 and Proposition 5.1 assure that the set \(\{M_l^{-1}(a_l), M_l^{-1}(b_l) \} \) generates \(\pi_1(C_l, p_l) \).

Let \(\iota_* : \pi_1(C_l, p_l) \to \pi_1(K_j, p_l) \) be the inclusion induced homomorphism. Combine the results from §4 to obtain the following composition

\[
\pi_1(C_l, p_l) \xrightarrow{\iota_*} \pi_1(K_j, p_l) \xrightarrow{M_l} \pi_1(K_j, p_l) \xrightarrow{\Phi_j} \mathbb{A}_5,
\]

which has image isomorphic to \(\mathbb{Z}_2 \) (resp. \(\mathbb{Z}_3 \)) in \(\mathbb{A}_5 \) when \(l = j, j - 2 - 4T \) and \(j - 4 - 4T \) (resp. \(l = j - 1 - 4T \) and \(j - 3 - 4T \)). See Tables 1a, 1c and 2b (resp. 1b and 2a). That is because \(\Phi_j \) maps \(a_l \) and \(b_l \) of \(\pi_1(C_l, p_l) \) to the same element of order 2 (resp. 3) in \(\mathbb{A}_5 \). It follows that the kernel of \(\Phi_j \circ M_l \circ \iota_2 \) has index either 2 or 3 in \(\pi_1(C_l, p_l) \). Let \(q : (\tilde{C}_l^2, \tilde{p}_l) \to (C_l, p_l) \) be a 2-fold cover of \((C_l, p_l) \) corresponding to the kernel.

Claim 4. Each \(\tilde{C}_l^2 \) embeds in \(\tilde{K}_j \).

Proof. Note that there exists a lift \(\tilde{p}_l \) of \(p_l \) in \(\tilde{K}_j \) so that \(P_j*(\pi_1(\tilde{K}_j, \tilde{p}_l)) = \ker(\Phi_j \circ M_l) \). The lift is obtained by lifting \(\mu_l^l \) to a path \(\tilde{\mu}_l^l \) so \(\tilde{\mu}_l^l(0) = \tilde{p}_l \) and the point \(\tilde{p}_l \) is defined to be \(\tilde{\mu}_l^l(1) \). Since \(\iota_*q_*(\pi_1(\tilde{C}_l^2, \tilde{p}_l)) \subseteq P_j*(\pi_1(\tilde{K}_j, \tilde{p}_l)) \), we have the following commutative diagram with \(\iota \) lifted to \(\tilde{\iota} \)

\[
\begin{array}{ccc}
(C_l, p_l) & \xrightarrow{\iota} & (K_j, p_l) \\
\downarrow q & & \downarrow P_j \\
(\tilde{C}_l^2, \tilde{p}_l) & \xrightarrow{\tilde{\iota}} & (\tilde{K}_j, \tilde{p}_l)
\end{array}
\]

We shall apply standard covering space theory to show \(\tilde{\iota} \) is an embedding. It suffices to prove that \(\tilde{\iota} \) is 1-1. Suppose \(x \) and \(y \) are two elements of \(\tilde{C}_l^2 \) such that \(\tilde{\iota}(x) = \tilde{\iota}(y) \).
The commutativity of the diagram above implies that \(q(x) = q(y) \). Connect \(x \) to \(y \) by a path \(\alpha \) and \(x \) to \(\tilde{p}_1 \) by a path \(\beta \) with \(\beta(0) = \tilde{p}_1 \) and \(\beta(1) = x \). Lift \(q(\beta) \) to \(\tilde{\beta} \) so that \(\tilde{\beta}(1) = y \). Suppose \(x \neq y \). Then \(\tilde{\beta} \) and \(\beta \) are distinct lifts of \(q(\beta) \). That means \(\beta(0) \neq \tilde{\beta}(0) \). So, \(\beta \alpha \tilde{\beta}^{-1} \) is not a loop. However, \(\tilde{\iota}(\beta \alpha \tilde{\beta}^{-1}) \) is a loop in \(\tilde{K}_j \). Since \(\tilde{\iota}(x) = \tilde{\iota}(y) \), \(\tilde{\iota} \beta \) and \(\iota \tilde{\beta} \) have to be the same lift of \(\iota q(\beta) \). By commutativity of the diagram, \(\iota q(\beta \alpha \tilde{\beta}^{-1}) = \iota P_j \iota (\beta \alpha \tilde{\beta}^{-1}) \). Hence, \(q(\beta \alpha \tilde{\beta}^{-1}) \) is a loop in \(\iota P_j (\iota(\tilde{K}_j, \tilde{p}_1)) \). Thus, \(q(\beta \alpha \tilde{\beta}^{-1}) \) must lift to a loop at \(\tilde{p}_1 \). Contradiction!

Remark 3. The above argument also works for the 3-fold cover \(\tilde{C}_i^3 \) which will soon be defined.

Since \(\iota \) is an embedding, \(l = j, j - 2 - 4T \) and \(j - 4 - 4T \), the restriction map \(P_j| : \iota(\tilde{C}_i^3) \rightarrow C_i \) is a 2-fold cover of \(C_i \). Since \(\ker \Phi_j \) has index 60 in \(\pi_1(K_j) \), the covering space \(P_j : \tilde{K}_j \rightarrow K_j \) has 60 covering translations. The components of \(P_j^{-1}(C_i) \) are the homeomorphic images of \(\iota(\tilde{C}_i^3) \) under the 60 covering translations of \(P_j \). Thus, every component of \(P_j^{-1}(C_i) \) is a 2-fold cover of \(C_i \) (i.e., a 2-fold cover of trefoil knot). By §2, each \(K_j \) contains \(j \) pairwise disjoint cuboids with trefoil-knotted hole \(C_i \), where \(1 \leq l \leq j \). Hence, \(\tilde{K}_j \) must have \(15j \) (resp. \(15(j + 1) \)) when \(j \) is even (resp. odd) pairwise disjoint 2-fold covers of trefoil knot.

Likewise, let \(q' : (\tilde{C}_i^3, \tilde{p}_1) \rightarrow (C_i, p_1) \) be a 3-fold cover of \((C_i, p_1) \) corresponding to the kernel of \(\Phi_j \circ M_1 \circ \tau_2 \). When \(l = j - 1 - 4T \) and \(j - 3 - 4T \), the restriction map \(P_j| : \iota(\tilde{C}_i^3) \rightarrow C_i \) is a 3-fold cover of \(C_i \).

Claim 5. \(P_j| : \iota(\tilde{C}_i^3) \rightarrow C_i \) yields a unique 3-fold (cyclic) cover of \(C_i \).

Proof. Since the 60-fold covering space of \(K_j \) is clearly regular, the restriction of the covering projection to each \(C_i \) is also a regular covering. Thus, the induced map \(P_j| : \iota(\pi_1(\tilde{C}_i^3)) \rightarrow \pi_1(C_i) \) goes onto an index 3 normal subgroup \((\mathbb{Z}_3) \). Note that \(\pi_1(\tilde{C}_i^3) \) corresponds to the kernel of the composite \(\pi_1(C_i) \xrightarrow{\text{abelianization}} \mathbb{Z} \xrightarrow{\text{projection}} \mathbb{Z}_3 \). Then the claim follows immediately from the uniqueness of the abelianization and the projection.

When \(j \) is even (resp. odd), let \(D \) be the complement of the interior of the 15\(j \) (resp. 15\(j + 1 \)) double covers and 10\(j \) (resp. 10\((j - 1) \)) triple cover of trefoil knot in \(\tilde{K}_j \). Let \(Q_j : \tilde{K}_j \rightarrow \tilde{K}_j/D \) be quotient map. The quotient space \(\tilde{K}_j/D \) is 25\(j \) (resp. 5(5\(j + 1 \))) when \(j \) is even (resp. odd) pairwise disjoint 2-fold and 3-fold covers of trefoil knot modulo their boundaries, wedged at the point to which their boundaries are identified. By Propositions 5.6 and 5.7, \(\pi_1(\tilde{K}_j/D) \) has rank at least 25\(j \) (resp. 5(5\(j + 1 \))) when \(j \) is even (resp. odd). Then Propositions 5.3 and 5.5 assure that \(Q_j \) induces a surjection of \(\pi_1(\tilde{K}_j) \) onto \(\pi_1(\tilde{K}_j/D) \), hence, \(\text{Rank} \pi_1(\tilde{K}_j) \geq 25j \) (resp. 5(5\(j + 1 \))) when \(j \) is even (resp. odd).

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Using our building block \(W^3 \), one can apply the standard “drilling tunnel” and “piping” to generate high-dimensional examples \(W^n \). We only
spell out an outline. A detailed proof described in [Ste77, P.56-62] can readily be applied.

Recall in §3 there is an arc μ^1_l connecting the base points $p_l \in \partial T_l'$ and $q_l \in \partial T_l$ (see Figure 7). The sewing homeomorphism h^l_{i+1} identifies q_l with p_{l+1}. By the construction of W^3, those arcs fit together to form a (base) ray R in W^3. Then it suffices to show $\pi_1(U/p^{-1}(Int T_0^+))$ is not finitely generated just as how we prove Theorem 1.1. By definition of N, $T_0^+ = T_0^*$. Let q be the quotient map

$$q : T_j^+ \setminus Int T_0^+ \to (T_j^+ \setminus Int T_0^+)/\partial T_j^+.$$

Extend q to map $Q : U/p^{-1}(Int T_0^+) \to (T_j^+ \setminus Int T_0^+)/\partial T_j^+$. There should be no difficulty in doing so because $U/p^{-1}(Int T_0^+)$ can be decomposed into the union of $U/p^{-1}(Int T_j^+)$ and $p^{-1}(T_j^+ \setminus Int T_0^+)$. Then Q can be defined as the union of the constant map $l : U/p^{-1}(Int T_j^+) \to (T_j^+ \setminus Int T_0^+)/\partial T_j^+$ and the restriction map $q \circ p|^{-1}(T_j^+ \setminus Int T_0^+)$. By Lemma 5.4, $q \circ p|_{^{-1}(T_j^+ \setminus Int T_0^+)}$ induces a surjection on fundamental groups, so does Q. Note that $(T_j^+ \setminus Int T_0^+)/\partial T_j^+$ and $(T_j^* \setminus Int T_0^+)/\partial T_j^*$ are homeomorphic. Thus, showing that $\text{Rank } \pi_1(U/p^{-1}(Int T_0^+))$ has no lower bound is equivalent to proving $\text{Rank } \pi_1((T_j^* \setminus Int T_0^+)/\partial T_j^*) = \text{Rank } \pi_1(K_j^*)$, which is just an application of Theorem 1.1.

7. Questions

Recall the construction of W^3 in §2

$$W^3 = \lim_{j \to \infty} L_j \cup_{h^{-1}_j} L_{j-1} \cup_{h^{-2}_j} \cdots \cup_{h^{-1}_j} L_1,$$

where the sewing homeomorphism h^l_{i+1} identifies the boundary component ∂T_l of L_l to the boundary component $\partial T_l'_{i+1}$ of L_{l+1}. Unknotting the cube with trefoil-knotted hole as shown in Figure 1 results in a cobordism L^*, which is widely known as the first stage of constructing a Whitehead manifold. See Figure 9.

Consider a variation of W^3 by placing L^* ahead of L_j or inserting L^* between adjacent L_l and L_{l+1} in (7.1)

$$W^* = \lim_{j \to \infty} L_j \cup_{H^*_j} L^* \cup_{H^*_{j-1}} L_{j-1} \cdots \cup_{h^*_j} L_1,$$

where the sewing homeomorphism H^*_j identifies the boundary component ∂T_l of L_l to the boundary component $\partial T_l'$ of L^* and the sewing homomorphism H^*_{i+1} identifies
The “inner” boundary component of L^* is $\partial T'$.
The “outer” boundary component of L^* is ∂T.

the boundary component ∂T of L^* to the boundary component $\partial T'_{t+1}$ of L_{t+1}. Then we obtain an infinite collection C by inserting L^*’s in (7.1).

The following result is an example of C.

Proposition 7.1. The 3-dimensional example W constructed by Sternfeld belongs to the collection C.

Proof. The manifold W constructed by Sternfeld is homeomorphic to $L^* \cup_{H^*_j} L_j \cup_{H^*_j} L^* \cdots$, i.e., inserting L^* in (7.1) every other slot. See Figure 10. If one ignores the grey curves as shown in Figure 10, then the picture will be exactly the same picture given in [Ste77, P.4]. In other words, solid tori T and T'_{j-1} are the first stage of Sternfeld’s construction. □

Remark 4. Let K_j and K_i be the corresponding knot spaces of W^3 and W respectively. Although both W^3 and W contain a cube with a trefoil-knotted hole at each stage of the construction, the corresponding 60-fold covers of K_j and K_i are different. That is, the 60-fold cover of K_j has both embedded 2-fold covers and embedded 3-fold covers of incompressible cube with a trefoil-knotted hole in K_j. However, the 60-fold cover of K_i has only embedded 2-fold covers of incompressible cube with trefoil-knotted hole in K_i.

Question 1. Does C contain an infinite subcollection of contractible open 3-manifolds C' such that each manifold in C' embeds in no compact, locally connected and locally 1-connected metric 3-space?
CONTRACTIBLE OPEN MANIFOLDS WHICH EMBED IN NO COMPACT, LC, 1-LC SPACE

Figure 10. The difference between solid torus T (blue) and T' (grey) is L^*. This L_{j-1} is the area between ∂T_{j-1} (which has been identified with $\partial T'$) and $\partial T_{j-1}'$.

Question 2. The cube with trefoil-knotted hole C_l plays the key role in this paper. Let K be an arbitrary (nontrivial) knot. Can C_l be replaced by a cube with a K-knotted hole? More specifically, if we replace C_l at each stage in the construction of W^3 by cube with a K-knotted hole, can the resulting contractible open manifold W' embed in some compact, locally connected and locally 1-connected metric 3-space?

Acknowledgements

I would like to thank Professor Craig Guilbault for bringing Bing’s and Sternfeld’s examples to my attention and many helpful discussions on this work. I also thank the referee for the comments and for giving this paper a very close reading.

References

[GAP18] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.10; 2018. (https://www.gap-system.org)

[Hak68] W. Haken, *Some results on surfaces in 3-manifolds*, Studies in modern topology (M.A.A., Prentice-Hall, 1968), 39–98.

[KM62] J. M. Kister and D. R. McMillan, Jr., *Locally Euclidean factors of E^4 which cannot be embedded in E^3*, Ann. of Math. *76* (1962), 541–546.

[MW79] R. Messer and A. Wright, *Embedding open 3-manifolds in compact 3-manifolds*, Pacific J. Math., *82* (1979), 163–177.

[Rol76] D. Rolfsen, *Knots and Links*, Publish or Perish Press, Berkeley, CA, 1976.

[Ste77] Robert William Sternfeld, *A contractible open n-manifold that embeds in no compact n-manifold*, ProQuest LLC, Ann Arbor, MI, 1977, Thesis (Ph.D.).-The University of Wisconsin-Madison. MR 2627427
[Wei99] R. Weidmann, *On the rank of amalgamated products and product knot groups*, Math. Ann. 312, 1999, 761–771.

[Whi35] J. H. C. Whitehead, *A certain open manifold whose group is unity*, Quarterly journal of Mathematics, 6 (1) (1935) 268–279.

DEPARTMENT OF MATHEMATICAL SCIENCES, CENTRAL CONNECTICUT STATE UNIVERSITY, NEW BRITAIN, CT 06053

E-mail address: sgu@ccsu.edu