Epileptiform spikes in specific left temporal and mesial temporal structures disrupt verbal episodic memory encoding

Camarillo-Rodriguez L¹, Waldman ZJ¹, Orosz I⁵, Stein J⁶, Das S⁵, Gorniak R³, Sharan AD⁴, Gross R¹⁰, Lega BC¹¹, Zaghloul K¹², Jobst BC¹³, Davis KA⁹, Wanda PA⁸, Worrell G¹⁴, Sperling MR², Weiss SA¹

¹Depts. of Neurology and Neuroscience; ²Dept. of Neurology; ³Dept. of Radiology, ⁴Dept. of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, U.S.A. 19107. ⁵Dept. of Neurology David Geffen School of Medicine at UCLA, Los Angeles, CA, U.S.A. 90095. ⁷Penn Image Computing and Science Laboratory, Department of Radiology, ⁸Department of Psychology, ⁹Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA. ¹⁰Department of Neurosurgery, Emory University, Atlanta GA, USA. ¹¹University of Texas Southwestern Medical Center, Department of Neurosurgery, Dallas TX, USA. 75390. ¹²Surgical Neurology Branch, NINDS, NIH, Bethesda, MD 20892, USA. ¹³Dartmouth-Hitchcock Medical Center, Department of Neurology, Lebanon NH, USA. 03756. ¹⁴Depts. of Neurology, Physiology & biomedical Engineering, Mayo Clinic, Rochester, MN 55905.
ABSTRACT (162 WORDS)

Patients diagnosed with epilepsy experience cognitive dysfunction that may be due to a transient cognitive/memory impairment (TCI/TMI) caused by spontaneous epileptiform spikes. We asked in a cohort of 166 adult patients with medically refractory focal epilepsy if spikes in specific neuroanatomical regions during verbal episodic memory encoding would significantly decrease the probability of recall. We found using a naïve Bayesian machine learning model that the probability of correct word recall decreased significantly by 11.9% when spikes occurred in left Brodmann area 21 (BA)21, (p<0.001), 49.7% in left BA38 (p=0.01), and 32.2% in right BA38 (p<0.001), and 21.4% in left BA36 (p<0.01). We also examined the influence of the seizure-onset zone and the language dominant hemisphere on this effect. Our results demonstrate that spontaneous epileptiform spikes produce a large effect TCI/TMI in brain regions known to be important in semantic processing and episodic memory. Thus memory impairment in patients with epilepsy may be attributable to cellular events associated with abnormal inter-ictal electrical events.
INTRODUCTION (208)

Patients diagnosed with epilepsy experience cognitive dysfunction due to a diverse set of risk factors\(^1\text{-}^3\), and epileptiform spike\(^4\text{-}^6\) and high-frequency oscillation (HFO)\(^7\) activity is one of several risk factors that are associated with memory deficits in patients with epilepsy\(^1\text{-}^3\). One possible mechanism is that epileptiform activity directly produces a transient cognitive/memory impairment (TCI/TMI)\(^4\text{-}^7\), although alternative mechanisms have been suggested\(^8\text{-}^10\). Several large recent studies have shown that when epileptiform activity occurs in the left temporal neocortex during the encoding and recall epoch of a verbal episodic memory task a significant decrease in the probability of recall results\(^4\text{-}^7\). In animal models of mesial-temporal lobe epilepsy, epileptiform spikes have also been associated with memory impairment\(^11,12\), although this effect is less clearly directly attributable to the spikes\(^10,13\).

The location wherein epileptiform spikes disrupt memory are contested\(^4\text{-}^7\): Theoretically, the neuroanatomical location where spikes occur should determine the type of transient cognitive impairment (i.e., semantic processing, memory, attention, visual, social deficit, etc). This theory assumes that epileptiform spikes causally produce TCI/TMI because of the changes in neural firing associated with these events\(^12,14\). In this study of considerable sample size, we used spikes in the intracranial EEG (iEEG) during encoding to statistically parametrically map the neuroanatomic structures critical in semantic processing and verbal episodic memory.

RESULTS (1112)

The study cohort consisted of 166 adult patients with medically refractory focal epilepsy (Figure 1A) due to diverse etiologies implanted with depth intracranial electrodes (Figure 1B). Among the 166 patients 80 (48.2\%) of the subjects were male (ages 18-64, mean age=37, Table S1, S7). All the subjects participated in a verbal free recall task (Figure 1C). During each block of the task, subjects were instructed to memorize a list of 12 words that were presented sequentially on a computer screen, then solve arithmetic operations and finally recall as many words as possible during 30 sec. The proportion of words recalled was 27.5\% (95\% confidence interval, CI: 27.2-27.76\%) across all the subjects (Figure 1D). Word order influenced the probability of recall, and words presented first exhibited a primacy effect (Figure 1D1). Using a Generalized Linear
Mixed Model (GLMM) we determined whether subject’s verbal comprehension index (VCI), age or gender had an effect on word recall. Only the VCI and age had a significant effect (Figure 1D2, but not gender ($\beta_{VCI} = 0.02, p<0.0001$; $\beta_{Age} = -0.01, p<0.01$; $\beta_{gender} = -0.016, p>0.05$).

At the same time subjects solved the task, intracranial recordings were obtained from different neuroanatomical locations (Figure 1B, Table S2-S4). The left temporal neocortex was the most densely covered region and exhibited the most spikes across all the subjects, while the occipital lobes had the least coverage and exhibited the least spikes (Figure 1B, Table S2-S4). A previously validated algorithm was used to automatically identify inter-ictal epileptiform spikes (IED), during the word encoding epoch (Figure S3). Overall, we analyzed 459 unique iEEG recordings, 17,142 depth intracranial electrodes, 118,292 word encoding trials across 166 subjects. Prior to analysis, we visually validated every spike detection and eliminated all false positive spike detections.

Among the 166 subjects, only in 51.2% (n=85) of the patients did we detect epileptiform spikes during any of the word encoding trials (Figure 1A). After aggregating the identified epileptiform spikes that occurred in each word encoding trial by neuroanatomical region as defined by Brodmann area (BA), we calculated the mean rate of epileptiform spikes per minute per location across the entire cohort (Table S3, S4). We also derived the mean rate of epileptiform spikes by location in a subset of the cohort with detailed neuroanatomical segmentation of mesial-temporal lobe structures (Figure S1, Table S5). We found that the largest number of epileptiform spikes were detected in left BA21 (middle temporal gyrus, Table S3) and left amygdala (Table S5), but the highest rate of spikes were seen elsewhere in the few patients that had coverage of these regions (Table S3,S4).

We next asked if the detection of a epileptiform spike in a particular neuroanatomical region defined by BAs during encoding of a word reduced the probability of recalling that word. To assess this question, we implemented a naïve bayesian machine learning (NBML) model. The NBML model was used because its training utilized the joint prior probability distributions that account for the simultaneous occurrence of epileptiform spikes in multiple BAs. In order to improve the accuracy of the NBML model, we used forward sequential selection15,16 to select the BAs (i.e. model features) wherein the occurrence of epileptiform spikes were most likely to influence the probability of recall. Using this criteria we excluded n=46 Brodmann areas due to
insufficient power (Table S3), and n=15 regions due to statistical independence (Figure 2A). To test the accuracy of the model we calculated the loss from 10-fold out of sample testing and found that it was 19.6% (i.e. successful recall could be predicted in 80.4% of trials using spikes alone, 50% chance).

The NBML model demonstrated that only when epileptiform spikes occur in the left middle temporal gyrus (BA21), left temporal pole (BA38), left perirhinal cortex (BA36), and right temporal pole (BA38) the probability of correct word recall decreased significantly by 11.9% (left BA21, p<0.001, n=1,693 events), 49.7% (left BA38, p=0.01, n=618), 32.2% (right BA38, p<0.001, n=304), and 21.4% (left BA36, p<0.01, n=191) respectively (Figure 2A, Table S5).

One shortcoming of the NBML model was that electrodes were localized using segmentation of the T1 volumetric MRI images resulting in imprecise localization of electrodes implanted in mesial-temporal structures. Fortunately, in a subset of 117 (70.5%) of the 166 subjects, T2 oblique sequences through the mesial-temporal lobes were available and used for a more accurate segmentation protocol. To examine the effect of epileptiform spikes on recall probability in each subregion of the medial temporal lobe, we used logistic regression models (LRMs). We found that epileptiform spikes did not decrease the odds of word recall in area CA1 (p>0.05, adaptive Hochberg corrected, n=1,376 events, Figure 3). However, IED in the left entorhinal (OR of word recall: 0.7, 95% confidence interval (CI): 0.56–0.88, n = 224, adaptive Hochberg, p=0.016, Figure 3, Table S7) perirhinal (OR: 0.8, 95% CI: 0.73–0.87, n = 1,708, adaptive Hochberg p<0.001, Figure 3) and parahippocampal cortex (OR: 0.73, 95% CI: 0.67–0.79, n= 371, adaptive Hochberg, p<0.001, Figure 2B) did disrupt memory encoding. In the right mesial-temporal regions we did not find a significant effect (p>0.05, Figure 2B, Table S6).

To assess if the IED that are within the seizure onset zone (SOZ) are most disruptive in comparison with the IED that are outside, we used LRMs to investigate the interaction between the occurrence of these events with the SOZ for those neuroanatomical areas that showed a statistically significant effect irrespective of the location of the SOZ. Epileptiform spikes within the SOZ disrupted encoding in the left entorhinal cortex (OR: 0.63, CI: 0.56–0.71, p<0.001, adaptive Hochberg corrected, Figure 4), left perirhinal cortex (OR: 0.78, 95% CI: 0.73–0.83, p<0.001), left Brodmann area (BA) 36 (OR: 0.4, 95% CI: 0.27–0.61, p<0.001), and right BA 38 (OR: 0.68, 95% CI: 0.6–0.76, p<0.001). Only in the left BA21 and BA38, did epileptiform spikes not disrupt
memory encoding more when they occurred inside the SOZ (Figure 4B, OR: 0.66, 95% CI: 0.49–0.89, p<0.001).

Finally, we utilized LRM s to determine if epileptiform spikes occurrence in the subject's hemisphere that is dominant for language would have a larger effect on disrupting word encoding. Of 166 patients, 65% had left hemisphere dominance (n=108), 5.4% right dominance (n=9), 1.8% bilateral hemisphere dominance (n=3), and in 27.7% this information was not available (n=46). In the left BA21, BA36, BA38 and left PHC if an epileptiform spike occurred ipsilateral to the hemisphere dominance the odds of word recall were significantly decreased (p<0.01, adaptive Hochberg, Table 1). Only in the left Entorhinal Cortex the odds of recall significantly decreased independent of the subject’s language dominant hemisphere (OR: 0.43, CI: 0.33–0.55, p<0.001; and OR: 0.34, CI: 0.19–0.6, p<0.001 respectively).

DISCUSSION (306 WORDS)

Our study confirms that epileptiform spikes in brain regions known to be involved in semantic processing in the left temporal neocortex17,18 and verbal episodic memory in the left mesial-temporal lobe19,20 result in a TCI/TMI. We found that discharges in the left entorhinal cortex, left perirhinal cortex, and left parahippocampal cortex during encoding significantly disrupted the odds of word recall. However, we did not observe a similar statistically significant effect of discharges in hippocampal regions including area CA1, or right mesial-temporal structures. The hippocampus is thought to be important in memory encoding19,20, and epileptiform spikes in the human hippocampus disrupt verbal episodic recall6. From a structural anatomical perspective, the entorhinal cortex is the entry point of information into the hippocampal formation20, and from a functional perspective the entorhinal cortex is the “pacemaker” essential for forming temporal associations and in temporal coding21–24. Thus, when discharges occur there, it may temporarily disable the “pacemaker” and render temporal associations and temporal coding ineffective. This observation may help to resolve the paradoxical and often debated effects of electrical stimulation of hippocampal and entorhinal cortex stimulation on memory encoding25–28.

We found that in the left temporal pole (BA38), and the left perirhinal cortex (BA35) and entorhinal cortex, epileptiform spikes within the SOZ disrupted encoding with a larger effect size. Our study and prior studies5 have demonstrated that in the left lateral temporal neocortex, epileptiform spikes outside the SOZ may result in a
relatively larger disruption of verbal episodic memory encoding. This result is important because it suggests that resecting mesial-temporal, but not lateral neocortical temporal, epileptogenic regions may help to reduce transient memory impairment from spontaneous epileptiform discharges. In addition, our results suggest that epileptiform discharges in mesial-temporal regions in patients with Alzheimer’s disease29, and also in the temporal poles in patients with semantic dementia18, contribute to verbal episodic memory impairment.

Acknowledgements

We thank Blackrock Microsystems for providing neural recording and stimulation equipment. This work was supported by the DARPA Restoring Active Memory (RAM) program (Cooperative Agreement N66001-14-2-4032). The views, opinions, and/or findings contained in this material are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. Dr. Weiss is supported by 1K23NS094633-01A1.

Conflicts of Interest

S.A.W. and Z.J.W. both hold more than 5% equity interest in Fastwave L.L.C., an EEG software manufacturer.

METHODS

Subjects: Patients undergoing iEEG monitoring as part of the presurgical treatment for drug-resistant epilepsy were recruited in this multicenter study4,4,30,31. Data were collected from the following: Mayo Clinic (Rochester, MN), Thomas Jefferson University Hospital (Philadelphia, PA), Dartmouth-Hitchcock Medical Center (Lebanon, NH), Hospital of the University of Pennsylvania (Philadelphia, PA), Emory University Hospital (Atlanta, GA), University of Texas Southwestern Medical Center (Dallas, TX), Columbia University Medical Center (New York, NY), and National Institute of Health Clinical Center (Bethesda, MD). Each respective Institutional Review Board (IRB) approved the research protocol, and informed consent was obtained from each subject. Electrophysiological recordings were collected from clinical subdural and depth electrodes (AdTech Inc., PMT Inc.).
Electrode localization and defining the location of the SOZ: Coordinates of depth electrode contacts were obtained from post-implantation computed tomography (CT) scans. Preimplantation volumetric T1-weighted magnetic resonance imaging (MRI) scans were coregistered to the CT scans as well as to the normalized Montreal Neurological Institute 152 (MNI152) standard brain to enable comparison of recording sites in a common space across subjects. The clinically defined SOZ was identified using visual inspection of ictal iEEG by clinicians at each of the research sites4,7.

Memory task: Subjects engaged in a list learning free recall memory tasks. During each testing block, 12 words chosen at random were displayed on a computer screen. Each word was displayed for 1600 ms, and the interword interval was jittered between 750 and 1000 ms. Lists were chosen from (http://memory.psych.upenn.edu/WordPools) a pool of high-frequency nouns. Following the word display block, an arithmetic task was used as a distractor for 20 s. Participants then verbally recalled the words in any order for 30 s. Patients performed up to 25 blocks per session, and some of the patients performed more than one session4,7.

Intracranial EEG data: Intracranial data were recorded using either a Nihon Kohden EEG-1200, Natus XLTek EMU 128, or Natus Quantum, or Grass Aura-LTM64. The iEEG signals were sampled at either 500, 1000, or 1600 Hz and were referenced to a common contact placed either intracranially, on the scalp, or the mastoid process. Next, a bipolar montage was derived. To examine the effects of spikes on encoding, we analyzed iEEG between the 750 ms of interword interval and 1600 ms during word display.

Intracranial EEG analysis: To examine the effects of epileptiform spikes on encoding, we analyzed iEEG during both the 750 ms of interword interval and 1600 ms during word display. Prior to data preprocessing, we first determined which depth electrode iEEG recordings exhibited a signal-to-noise ratio sufficient for accurate ripple detection. iEEG recordings were bandpass filtered (80-240 Hz) using a finite impulse response filter. The filter order was set to be 1/3 of the number of data points in the trial, to maximize the filter order for the calculation. For each electrode contact recording we calculated the root mean square (RMS) value during each encoding word trial. We took the mean of this RMS value and excluded electrode contacts exceeding between 1.5-1.8 µV depending on the amplifier manufacturer used to acquire the data7.

We next generated a time–frequency (TF) plot of each trial using wavelet convolution in the time domain. Complex Morlet wavelets were created with constant frequency domain width $f_o = \frac{\sigma_f}{\sigma_f}$, where f_o is the wavelet central frequency and σ_f is the standard deviation of its Gaussian envelope in the frequency domain7,32,33. The central frequency, and its standard
deviation of the Gaussian envelope values were frequency dependent and varied between the lower and upper limits (50-240 Hz) of the time-frequency (TF) analysis. Prior to performing the wavelet convolution, the digital recordings of the iEEG were padded with zeros until the sample count was equal to the closest power of two greater than the initial number of samples. The time frequency plot was not normalized. Due to boundary effects caused by continuous wavelet convolution of finite length signals, a range of 50 – 240 Hz was selected for the TF plot in order to buffer the frequency range of interest, then frequencies below 80 Hz were discarded. To further reduce boundary effects, we also discarded the initial and final 70 msec of the TF plot. To identify the candidate epileptiform spike events in the TF plot, we used a power magnitude threshold of 1×10^7 arbitrary units or detected the maximum power. A second stage algorithm identified the presence of an interictal discharge, within 200 ms of the maximum or threshold power, on the basis of an analysis of TF plots resulting from wavelet convolution.

Sharply contoured epileptiform spikes produce a motif on TF spectrograms related to the waveform morphology and not the amplitude of the event. The novel epileptiform spike detector sought to identify this motif by using a topographical analysis of the TF plot that identified and characterized distinct elevations in both the power (Figure S1b), and the gradient of the power (Figure S1c), in TF space. These elevations represent objects and we hypothesized that objects that met certain criteria would always correspond with interictal epileptiform spike events.

We identified these candidate events by first creating objects by thresholding the TF plot and its gradient to values >20% of the maximum. After applying this threshold it was possible to define the borders of the objects in the resulting TF plot, and its gradient, by using this same threshold to derive a binary map. We subsequently calculated the volume of each object, within its defined boundaries, using a trapezoidal surface integration for each of the objects. To determine if any of the identified and characterized objects were representative of interictal epileptiform spikes we applied separate thresholds to the derived volumes for the objects in the TF plot and its gradient.

Specifically, the iEEG trials were processed using a real Morlet-based wavelet convolution to compute the TF map. The wavelets were created with constant frequency domain width $\frac{f_0}{\sigma_f}$=6, to better distinguish shapes associated with spikes in the TF plot from background activity. We analyzed the portion of the resulting TF plot centered around the detected ripple event ±200 ms. We derived a gradient plot of the TF plot by calculating both the horizontal gradient of the TF plot $\nabla P_t = \frac{\delta (\text{power magnitude})}{\delta (\text{time})}$ and the vertical gradient of the TF plot $\nabla P_f = \frac{\delta (\text{power magnitude})}{\delta (\text{frequency})}$ and combining these two gradients as $\nabla TF_{map} = \sqrt{(\nabla P_f)^2 + (\nabla P_t)^2}$.
To define the thresholds for both the TF plot and its gradient used to define the object boundaries we used 20% of the respective maximum values. Following binarization of the maps using this threshold we identified the boundary coordinates of each object using a Moore-neighbor tracing algorithm modified by Jacob’s stopping criteria. We then determined the volume of each object within its boundaries by approximating the surface integral using trapezoidal numerical integration.

To identify the objects that corresponded to interictal epileptiform spikes, we first identified the object with the maximum power coordinate. We then determined if the volume of this object met a predetermined threshold and if in the gradient plot corresponding objects also met a predetermined threshold. The correspondence of the object in the TF plot and the objects in the gradient plot was confirmed by measuring the distance between the centroids of these objects. Due to edge effects we excluded objects in the TF plot that had a power maximum value near the TF plot borders. We also excluded objects that had a height-width ratio less than 0.7, because these objects more often represented bursts of gamma oscillations.

The custom software written in Matlab™ (Mathworks, Natick, MA) generated an XML file that was imported into Micromed Brain Quick™ (Micromed S.p.A, Veneto TV, Italy). The XML file specified the iEEG electrode recording channels and trials that exhibited epileptiform spikes. LCR subsequently visually validated these spike detections and deleted false positive epileptiform discharge detections specified by the custom software. The specified trials and electrode recording channels that exhibited the visually validated epileptiform discharges were imported from XML into Matlab™ and used for statistical analysis. In a small subset of the records from 10 patients SAW also edited the XML files in Brain Quick and the intraclass correlation coefficient was similar to previously reported values measured in the laboratory using a prior version of the algorithm.

Naive Bayesian Machine Learning Model: Naïve Bayesian machine-learning models (NBML) are advantageous in that when these models are trained the resulting prior probabilities reflect discharges in a variety of neuroanatomical regions occurring within the same word encoding trial. However, the trained model still assumes that the discharges in each region are conditionally independent. The epileptiform discharges recorded from individual electrodes were aggregated within the corresponding neuroanatomical regions of interest (Brodmann areas). A two-dimensional matrix that indicates for each trial the locations wherein a spike occurred (Brodmann areas x trials) and an outcome vector (i.e. recalled vs. forgotten trials) were constructed by concatenating the word encoding trials across multiple sessions and patients. When a patient did not have electrode coverage in a given Brodmann area, it was coded in the matrix as missing values. Brodmann areas that exhibited fewer than 180 discharges across the concatenated word encoding trials were excluded due to simulations indicating that these regions would exhibit a Bayes factor less than 3 or higher than 1/3 which are associated with insufficient
evidence assuming a large effect size80,85. Prior to constructing the NBM, regions in which epileptiform discharges produced no significant effect (X² test, p>0.05) on the probability of recall, were excluded. A categorical Naïve Bayesian machine learning model (NBM) was trained using the remaining matrix and outcome array in Matlab™ (fitcnb.m). This model could calculate the posterior probability of correct recall given the occurrence of an epileptiform discharge in a specified Brodmann area (effect size) on the basis of the maximum likelihood estimation using the prior probabilities derived from the two-dimensional matrix and outcome array. The significance of the posterior probability estimation was determined by implementing a bagging algorithm63 by first performing a label shuffling permutation test (n=2000 permutations) using the success of word recall for each subject as the label (1 or 0), but maintaining the overall recall probability for each subject. Then, a categorical NBM was trained using each permuted outcome i.e. (recalled words) array. The posterior probabilities (Δrecall probability) corresponding to a discharge in any one of the Brodmann areas calculated from the permuted NBMs (n=2000) were used to derive a p-value for the corresponding posterior probability from the unpermuted NBM under the assumption of a normal distribution35 (multiple comparisons corrected, p=0.01)36–38. The non-permuted trained NBM was cross-validated by calculating the loss from 10-fold out of sample testing (crossval.m).

Repeated measures logistic regression models (LRMs) for word encoding trials: In contrast to the NBML model, logistic regression models (LRMs) cannot easily account for the effects of discharges that occur in multiple brain regions within a single trial. However, LRMs can include covariates like whether a neuroanatomic region is in the SOZ, or hemispheric dominance. The epileptiform spike events recorded from individual electrodes were aggregated across the corresponding regions of interest. If a given subject did not have coverage of a neuroanatomical region, then, the data from that subject were missing for the region. The events of each word recall and proportions of word recall events in 12-word blocks were analyzed using the generalized linear mixed model (GLMM) with the assumption of binomial distribution. The generalized estimating equation (GEE) estimation approach for population-average GLMM was used with the exchangeable working correlation matrix to account for correlations between rates of recall in repeated words within blocks, repeated blocks within experiment, and repeated experiments within the same subject. The GLMM allows for variable number of observations per subject representing variable number of experiments and word blocks per patient. Separate models were fitted for each neuroanatomical region of interest. For each region, predictors of individual word recall included the type of event and location of the corresponding electrode inside or outside the SOZ or whether the patient’s language dominant hemisphere was (0) not determined (1) left hemisphere dominant (2) right hemisphere dominant. Predictors of proportions of word recall events in 12-word blocks included the The p-values from each set of models (including models for multiple regions of interest) were corrected for multiple comparisons using the adaptive Hochberg algorithm39. The data were analyzed in R (Vienna, Austria) and SAS 9.4 (Cary, NC). A
GLMM in SAS 9.4 was also implemented to correlate recall performance with age, gender, and the verbal comprehension index.

REFERENCES
1. Witt, J.-A. & Helmstaedter, C. Should cognition be screened in new-onset epilepsies? A study in 247 untreated patients. *J. Neurol.* 259, 1727–1731 (2012).
2. Berg, A. T., Zelko, F. A., Levy, S. R. & Testa, F. M. Age at onset of epilepsy, pharmaoresistance, and cognitive outcomes: a prospective cohort study. *Neurology* 79, 1384–1391 (2012).
3. Helmstaedter, C. & Elger, C. E. Chronic temporal lobe epilepsy: a neurodevelopmental or progressively dementing disease? *Brain J. Neurol.* 132, 2822–2830 (2009).
4. Horak, P. C. et al. Interictal epileptiform discharges impair word recall in multiple brain areas. *Epilepsia* 58, 373–380 (2017).
5. Ung, H. et al. Interictal epileptiform activity outside the seizure onset zone impacts cognition. *Brain J. Neurol.* 140, 2157–2168 (2017).
6. Kleen, J. K. et al. Hippocampal interictal epileptiform activity disrupts cognition in humans. *Neurology* 81, 18–24 (2013).
7. Waldman, Z. J. et al. Ripple oscillations in the left temporal neocortex are associated with impaired verbal episodic memory encoding. *Epilepsy Behav. EB* 88, 33–40 (2018).
8. Helmstaedter, C. & Witt, J.-A. Epilepsy and cognition - A bidirectional relationship? *Seizure* 49, 83–89 (2017).
9. Ibrahim, G. M. et al. Resilience of developing brain networks to interictal epileptiform discharges is associated with cognitive outcome. *Brain J. Neurol.* 137, 2690–2702 (2014).
10. Gelinas, J. N., Khodagholy, D., Thesen, T., Devinsky, O. & Buzsáki, G. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. *Nat. Med.* 22, 641–648 (2016).
11. Khan, O. I., Zhao, Q., Miller, F. & Holmes, G. L. Interictal spikes in developing rats cause long-standing cognitive deficits. *Neurobiol. Dis.* 39, 362–371 (2010).
12. Zhou, J.-L., Lenck-Santini, P.-P., Zhao, Q. & Holmes, G. L. Effect of interictal spikes on single-cell firing patterns in the hippocampus. *Epilepsia* 48, 720–731 (2007).
13. Chauvière, L. et al. Early deficits in spatial memory and theta rhythm in experimental temporal lobe epilepsy. *J. Neurosci. Off. J. Soc. Neurosci.* 29, 5402–5410 (2009).

14. Muldoon, S. F. et al. GABAergic inhibition shapes interictal dynamics in awake epileptic mice. *Brain J. Neurol.* 138, 2875–2890 (2015).

15. Blanco, R., Inza, I., Merino, M., Quiroga, J. & Larrañaga, P. Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS. *J. Biomed. Inform.* 38, 376–388 (2005).

16. Searching for Dependencies in Bayesian Classifiers | SpringerLink. Available at: https://link.springer.com/chapter/10.1007/978-1-4612-2404-4_23. (Accessed: 31st January 2019)

17. Patterson, K., Nestor, P. J. & Rogers, T. T. Where do you know what you know? The representation of semantic knowledge in the human brain. *Nat. Rev. Neurosci.* 8, 976–987 (2007).

18. Mummery, C. J. et al. A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. *Ann. Neurol.* 47, 36–45 (2000).

19. Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R. & Fried, I. Internally generated reactivation of single neurons in human hippocampus during free recall. *Science* 322, 96–101 (2008).

20. The hippocampus book. (Oxford University Press, 2007). editor Per Anderson

21. Tsao, A. et al. Integrating time from experience in the lateral entorhinal cortex. *Nature* 561, 57–62 (2018).

22. Robinson, N. T. M. et al. Medial Entorhinal Cortex Selectively Supports Temporal Coding by Hippocampal Neurons. *Neuron* 94, 677-688.e6 (2017).

23. Schlesiger, M. I. et al. The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity. *Nat. Neurosci.* 18, 1123–1132 (2015).

24. Suh, J., Rivest, A. J., Nakashiba, T., Tominaga, T. & Tonegawa, S. Entorhinal cortex layer III input to the hippocampus is crucial for temporal association memory. *Science* 334, 1415–1420 (2011).

25. Titiz, A. S. et al. Theta-burst microstimulation in the human entorhinal area improves memory specificity. *eLife* 6, (2017).
26. Suthana, N. & Fried, I. Deep brain stimulation for enhancement of learning and memory. *NeuroImage* **85 Pt 3**, 996–1002 (2014).

27. Suthana, N. *et al.* Memory enhancement and deep-brain stimulation of the entorhinal area. *N. Engl. J. Med.* **366**, 502–510 (2012).

28. Goyal, A. *et al.* Electrical Stimulation in Hippocampus and Entorhinal Cortex Impairs Spatial and Temporal Memory. *J. Neurosci. Off. J. Soc. Neurosci.* **38**, 4471–4481 (2018).

29. Lam, A. D. *et al.* Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. *Nat. Med.* **23**, 678–680 (2017).

30. Ezzyat, Y. *et al.* Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. *Nat. Commun.* **9**, 365 (2018).

31. Kucewicz, M. T. *et al.* Evidence for verbal memory enhancement with electrical brain stimulation in the lateral temporal cortex. *Brain J. Neurol.* **141**, 971–978 (2018).

32. Waldman, Z. J. *et al.* A method for the topographical identification and quantification of high frequency oscillations in intracranial electroencephalography recordings. *Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol.* **129**, 308–318 (2018).

33. Weiss, S. A. *et al.* Visually validated semi-automatic high-frequency oscillation detection aides the delineation of epileptogenic regions during intra-operative electrocorticography. *Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol.* **129**, 2089–2098 (2018).

34. Bishop, C. M. Pattern recognition and machine learning. (Springer, 2006).

35. Sambo, F., Trifoglio, E., Di Camillo, B., Toffolo, G. M. & Cobelli, C. Bag of Naïve Bayes: biomarker selection and classification from genome-wide SNP data. *BMC Bioinformatics* **13 Suppl 14**, S2 (2012).

36. Bogdan, M., Ghosh, J. K. & Tokdar, S. T. *A comparison of the Benjamini-Hochberg procedure with some Bayesian rules for multiple testing.* (Institute of Mathematical Statistics, 2008). doi:10.1214/193940307000000158

37. Why We (Usually) Don’t Have to Worry About Multiple Comparisons: Journal of Research on Educational Effectiveness: Vol 5, No 2. Available at: https://www.tandfonline.com/doi/abs/10.1080/19345747.2011.618213. (Accessed: 31st January 2019)
38. ‘FDR and Bayesian Multiple Comparisons Rules’ by Peter Muller, Giovanni Parmigiani et al. Available at: https://biostats.bepress.com/jhubiostat/paper115/. (Accessed: 31st January 2019)

39. Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 9, 811–818 (1990).
Figure 1. Patient Recruitment, task overview and performance. (A) Patient inclusion and exclusion criteria. Over a four-year period from different clinical sites, a total of 344 neurosurgical patients to engage in cognitive tasks at the same they were under intracranial monitoring. Of the 344, we focus exclusively on a subset of depth electrode patients who participated in a verbal free recall task (FR1) or its categorical version (CatFR1) recruited between Nov 2013 and April 2017. Of the 169 patients included, we discarded three subjects because their iEEG recordings exceeded a noise threshold. (B) Lateral views of a rendered brain and neuroanatomical locations wherein the electrophysiological signals were recorded. The color bar indicates the number of depth electrodes recorded in each region across all subjects. (C) Subjects participated in a verbal free recall task, that has three main components (encoding, distractor, and recall). First, the subject is instructed to memorize a list of 12 words that are presented sequentially on a computer screen separated by an inter-word interval (encoding). Follows the distractor period during which the participants are required to solve arithmetic tasks for 20 sec. Finally, the subject has 30 seconds to recall as many words as possible. (D1) Percentage of words recalled across all subjects as a function of their presentation during a list. Note that the performance in the categorical verbal free recall (Catfr1) was higher in comparison to the non-categorical version of the task (Fr1). (D2) Percentage of words recalled plotted as a function of subject’s verbal comprehension index. As the verbal comprehension index increased also the odds of word recall (LRM, OR:1.02, 95% CI:1.016-1.028, p < 0.0001). Amy, Amygdala; EC, Entorhinal Cortex; PHC, Parahippocampal Cortex; PRC, Perirhinal Cortex. MTL, Medial Temporal Lobe; IED, interictal epileptiform spikes.
Figure 2. The occurrence of epileptiform spikes in left temporal and mesial temporal structures during the word encoding period was associated with a decrease in the probability of recall. (A) Neuroanatomical sites wherein the occurrence of an epileptiform discharge during the word encoding period change significantly the probability of recalling a word in the naïve Bayesian model (NBM) (lighter shade red corresponds to effect size, \(p<0.01\)). We estimated the probability values with a naïve Bayesian model (Methods). Dark blue colored regions did not show a significant effect with \(\chi^2\) testing. Light blue areas showed no significant effect in the model (see Methods). (B1) Odds ratio values were obtained from logistic regression models of mesial-temporal subregions in a distinct subset of patients (lighter shade blue corresponds to effect size, \(p<0.05\), adaptive Hochberg corrected) NS, non significant regions shown in red. (B2) A comparison of the odds ratio computed from logression regression models (LRMs) utilizing the complete and mesial-temporal patient cohorts, epileptiform spikes within the seizure onset zones (SOZ) disrupted encoding in the left entorhinal cortex, perirhinal cortex, Brodmann area (BA) 36, and right BA 38. We did not fit a SOZ model either for the Left PHC or Left BA 38, because there were no electrodes in SOZ regions in these areas. (Asterisks correspond to \(p<0.05\), adaptive Hochberg corrected).
Tables

Table 1. Effect of spike occurrence on word recall performance by language hemisphere lateralization across subjects. Odds of successful recall given the interaction between the hemisphere dominance for language and the occurrence of an IED in selected mesial temporal regions and BA during the word encoding period. Best fit parameters were obtained with a logistic regression model per each area. CI, Confidence Interval; ND, lateralization not determined.

Hemisphere dominance	OR	CI 95%	p corrected
Left Entorhinal Cortex			
ND	0.84	[0.69-1.01]	0.059
Left	0.43	[0.33-0.55]	<0.0001*
Right	0.34	[0.19-0.6]	0.0002*
Left Parahippocampal			
Left	0.7	[0.66-0.74]	<0.0001*
Left Perirhinal Cortex			
ND	0.51	[0.29-0.88]	0.015*
Left BA 21			
ND	0.78	[0.46-1.31]	0.34
Left	0.56	[0.4-0.796]	0.008*
Right	0.72	[0.71-0.73]	ND
Left Brodmann area 36			
ND	0.93	[0.29-2.9]	0.89
Left	0.93	[0.71-1.22]	0.59
Left Brodmann area 38			
ND	0.9	[0.61-1.33]	0.61
Left	0.83	[0.67-1.02]	0.07
Right	0.2	ND	ND
Right Brodmann area 38			
ND	1.24	[0.88-1.73]	0.21
Left	0.61	[0.53-0.69]	<0.0001*
Supporting Materials

Epileptiform spikes in specific left temporal and mesial temporal structures disrupt verbal episodic memory encoding

Camarillo-Rodriguez L¹, Waldman ZJ¹, Orosz I⁵, Stein J⁶, Das S⁵, Gorniak R³, Sharan AD⁴, Gross R¹⁰, Lega BC¹¹, Zaghloul K¹², Jobst BC¹³, Davis KA⁹, Wanda PA⁸, Worrell G¹⁴, Sperling MR², Weiss SA¹

¹Depts. of Neurology and Neuroscience, ²Dept. of Neurology, ³Dept. of Radiology, ⁴Dept. of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, U.S.A. 19107. ⁵Dept. of Neurology David Geffen School of Medicine at UCLA, Los Angeles, CA, U.S.A. 90095. ⁶Penn Image Computing and Science Laboratory, Department of Radiology, ⁷Department of Psychology, ⁸Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA. ⁹Department of Neurosurgery, Emory University, Atlanta GA, USA. ¹¹University of Texas Southwestern Medical Center, Department of Neurosurgery, Dallas TX, USA. 75390. ¹²Surgical Neurology Branch, NINDS, NIH, Bethesda, MD 20892, USA. ¹³Dartmouth-Hitchcock Medical Center, Department of Neurology, Lebanon NH, USA. 03756. ¹⁴Depts. of Neurology, Physiology & biomedical Engineering, Mayo Clinic, Rochester, MN 55905.
Table S1. Characteristics of the patients included in the study.

Variable	Number, range	%, mean, or SEM
A. Age		
Both	[18-64 y]	mean=37.6
Male	84/166	50.6%
Female	80/166	48.2%
NA	2/166	1.2%
B. Gender		
Male	84/166	50.6%
Female	80/166	48.2%
NA	2/166	1.2%
C. Performance		
FR1	[24.9-25.5]	25.17%
CatFR1	[31.7-32.6]	32.1%
Sessions per subject	mean=2.41	SEM=0.13
Trials per subject	mean=551.2	SEM=23.8
D. Handedness		
Left	19/166	11.4%
Right	135/166	81.3%
Ambidextrous	9/166	5.42%
NA	3/166	1.8%
E. Dominant hemisphere		
Left	108/166	65%
Right	9/166	5.4%
Bilateral	3/166	1.81%
Inconclusive or NA	46/166	27.7%
F. Etiologies of epilepsy		
Hypoxic-ischemic encephalopathy	6/166	3.6%
Inborn errors of metabolism	0/166	0%
Intraventricular hemorrhage	1/166	0.6%
Malformations of cortical development	16/166	9.6%
Mesial temporal sclerosis	8/166	4.82%
NA	2/166	1.2%
Neoplasia	4/166	2.4%
Neurocutaneous syndrome	1/166	0.6%
Other etiology	45/166	27.1%
Other metabolic or toxic insults	0/166	0%
Stroke	3/166	1.8%
Traumatic brain injury	48/166	28.9%
Unknown cause	70/166	42.17%
Viral, bacterial and parasitic infections	9/166	5.42%
G1. MRI impression of specific abnormalities		
Atrophy or tissue loss	15/166	9%
Encephalocoele	0/166	0%
Encephalomalacia/gliosis	27/166	16%
Inflammatory/infectious	0/166	0%
Malformation of cortical development	14/166	8%
Mesial temporal sclerosis	15/166	9%
NA	2/166	1%
Neoplasm	3/166	2%
Other	32/166	19%
Vascular	2/166	1%
G2. MRI Distribution		
Left Frontal	20/166	12%
Left Temporal Neocortical	11/166	7%
Left Mesial Temporal	25/166	15%
Left Parietal	16/166	10%
Left Occipital	9/166	5%
Right Frontal	19/166	11%
Right Temporal Neocortical	17/166	10%
Right Mesial Temporal	23/166	14%
Right Parietal	11/166	7%
Right Occipital	6/166	4%
H. Seizure lateralization		
Left	71/166	43%
Right	53/166	32%
Bilateral	30/166	18%
Undetermined	12/166	7%
Table S2. IED detections and rates of epileptiform discharges in specific neuroanatomical regions defined by Brodmann Areas (BA). Number of spikes detected and validated across all subjects, mean rate of epileptiform discharges per minute and standard error of the mean’s rate (SEM, see Methods). For the computation of each statistic we discarded iEEG recordings were the mean rate of epileptiform discharges per minute was equal to 0.

Brodmann area	N. of subjects	Spikes detected	Mean rate IED/min	SEM
L-Amygdala	23	1234	5.08	0.81
L-Brodmann area 13	12	480	5.21	1.29
L-Brodmann area 19	10	687	7.74	1.79
L-Brodmann area 20	23	784	5.42	0.74
L-Brodmann area 21	32	1693	5.30	0.69
L-Brodmann area 22	15	548	7.89	1.50
L-Brodmann area 28	6	989	6.98	1.81
L-Brodmann area 31	11	233	6.59	1.35
L-Brodmann area 34	8	246	6.04	1.90
L-Brodmann area 35	3	191	6.54	1.90
L-Brodmann area 36	13	277	5.92	1.43
L-Brodmann area 37	9	719	8.45	2.09
L-Brodmann area 38	13	618	5.21	1.01
L-Brodmann area 39	8	583	9.38	1.71
L-Brodmann area 4_6	6	263	4.29	0.73
L-Brodmann area 40	11	418	6.19	1.50
L-Brodmann area 7	4	223	7.10	2.60
L-Caudate Tail	10	198	5.60	1.30
L-Hippocampus	22	1092	5.01	1.04
R-Amygdala	17	567	4.39	0.81
R-Brodmann area 13	15	240	4.72	1.00
R-Brodmann area 20	26	1044	4.34	0.53
R-Brodmann area 21	20	1168	4.28	0.51
R-Brodmann area 22	12	192	4.83	1.08
R-Brodmann area 24	3	270	2.51	1.21
R-Brodmann area 31	11	311	3.20	0.68
R-Brodmann area 36	15	312	3.80	0.74
R-Brodmann area 38	8	304	6.19	1.17
R-Brodmann area 40	9	293	5.64	1.14
R-Brodmann area 47	6	306	5.09	1.30
R-Caudate Tail	6	234	6.26	1.53
R-Hippocampus	11	307	3.89	0.82
Table S3. IED detections and rates of epileptiform discharges in specific neuroanatomical regions defined by BA. The areas shown here were discarded from the NBML analysis because the number of spikes detected were not enough to reach the desired statistical significance. Number of spikes detected and validated across all subjects, mean rate of epileptiform discharges per minute and standard error of the mean’s rate (SEM, see Methods). For the computation of each statistic we discarded iEEG recordings were the mean rate of epileptiform discharges per minute was equal to 0.

Brodmann area	N. of subjects	Spikes detected	Mean rate IED/min	SEM
L-Brodmann area 1_2_3_5	4	34	4.4	2.4
L-Brodmann area 10	6	87	6.1	2.2
L-Brodmann area 11	5	92	7.3	1.9
L-Brodmann area 17	1	1	7.8	0.0
L-Brodmann area 18	3	33	7.8	2.7
L-Brodmann area 23	1	13	6.5	0.0
L-Brodmann area 24	2	18	5.0	4.0
L-Brodmann area 25	1	1	3.6	0.0
L-Brodmann area 27	1	39	10.1	2.2
L-Brodmann area 30	5	118	5.0	2.0
L-Brodmann area 32	3	9	6.4	1.9
L-Brodmann area 41_42	4	62	7.0	2.8
L-Brodmann area 43	1	116	3.5	0.0
L-Brodmann area 45	1	42	15.1	0.0
L-Brodmann area 46	1	1	0.2	0.0
L-Brodmann area 47	4	169	4.7	2.6
L-Brodmann area 8	1	3	3.6	0.0
L-Brodmann area 9	4	59	4.7	1.3
L-Caudate Body	1	4	3.5	0.0
L-Corpus Callosum	5	75	7.2	2.0
L-Lateral Globus Pallidus	1	4	3.2	2.6
L-Optic Tract	1	98	8.4	0.0
L-Pulvinar	1	42	16.8	0.0
L-Putamen	5	107	4.0	1.6
R-Brodmann area 1_2_3_5	6	75	3.6	1.0
R-Brodmann area 10	3	91	5.5	1.2
R-Brodmann area 11	3	27	5.0	1.6
R-Brodmann area 19	2	6	7.1	4.2
R-Brodmann area 23	3	76	6.5	1.4
R-Brodmann area 27	1	56	3.9	1.3
R-Brodmann area 28	5	159	2.9	0.5
R-Brodmann area 32	2	33	7.3	0.2
R-Brodmann area 34	1	3	2.6	0.0
R-Brodmann area 35	6	69	2.7	0.7
R-Brodmann area 37	9	104	3.7	0.6
R-Brodmann area 39	3	8	2.5	1.9
R-Brodmann area 4_6	8	121	3.3	0.9
R-Brodmann area 44	1	5	3.0	0.0
R-Brodmann area 45	1	10	0.3	0.0
R-Brodmann area 7	3	172	3.7	1.4
R-Brodmann area 8	6	67	3.8	1.3
R-Brodmann area 9	7	115	3.6	0.9
R-Caudate Body	1	1	8.7	0.0
R-Corpus Callosum	4	167	5.1	1.6
R-Putamen	3	90	6.8	2.4
R-VPL Nucleus	1	7	0.2	0.0
Table S4. IED detections and rates of epileptiform discharges in specific neuroanatomical regions defined by mesial temporal regions. Number of spikes detected and validated across all subjects, mean rate of epileptiform discharges per minute and standard error of the mean’s rate (SEM, see Methods). For the computation of each statistic we discarded iEEG recordings were the mean rate of epileptiform discharges per minute was equal to 0.

Mesial temporal	N. of subjects	Spikes detected	Mean rate IED/min	SEM
Left Amy	16	2,754	6.68	1.17
Left CA1	11	1,376	6.01	1.76
Left CA2	2	342	9.61	3.81
Left DG	3	589	7.25	3.76
Left EC	5	224	3.59	0.93
Left PHC	2	371	3.82	0.81
Left PRC	13	1,708	4.80	0.97
Left Sub	3	412	5.48	2.95
Right Amy	9	836	4.52	1.33
Right CA1	3	238	3.84	2.00
Right DG	1	10	0.63	0.00
Right EC	4	302	2.92	0.48
Right PHC	5	697	3.92	0.85
Right PRC	7	640	3.40	0.61
Right Sub	1	10	0.63	0.00
Table S5. Results of the Naïve Bayesian Machine Learning Model of the effect of epileptiform discharges during encoding in specific Brodmann areas on recall probability. P, probability; p, p value; n, number of IED.

Brodmann area	Change in the probability of recall
L-Brodmann area 4_6	P=130.73, p= 0.0400, n=263
L-Brodmann area 13	P=133.46, p= 0.1160, n=480
L-Brodmann area 19	P=88.74, p= 0.7920, n=687
L-Brodmann area 20	P=-33.18, p= 0.3060, n=784
L-Brodmann area 21	P=-11.61, p= 0.0000, n=1693
L-Brodmann area 28	P=-15.42, p= 0.6360, n=989
L-Brodmann area 36	P=-21.41, p= 0.0030, n=277
L-Brodmann area 37	P=138.48, p= 0.4380, n=719
L-Brodmann area 38	P=-49.68, p= 0.0130, n=618
L-Brodmann area 39	P=112.43, p= 0.5640, n=583
L-Hippocampus	P=150.74, p= 0.7430, n=1092
R-Amygdala	P=146.94, p= 0.6850, n=567
R-Brodmann area 21	P=-10.49, p= 0.1330, n=1168
R-Brodmann area 31	P=-49.20, p= 0.0420, n=311
R-Brodmann area 36	P=-40.39, p= 0.3730, n=312
R-Brodmann area 38	P=-32.19, p= 0.0010, n=304
R-Brodmann area 47	P=-46.48, p= 0.4010, n=306
Table S6. Results of the GLMs of the effect of epileptiform discharges during encoding in specific mesial-temporal regions on recall probability. The confidence interval and p values for the Right Dendate Gyrus model was not computed by the SAS algorithm because there was not enough data. ND, not determined.

Mesial-temporal areas	OR	CI 95%	p corrected
Left Amygdala	0.90	[0.72-1.12]	0.351
Left CA1	1.06	[0.82-1.35]	0.665
Left CA2	0.76	[0.59-0.98]	0.226
Left Entorhinal cortex	0.70	[0.56-0.88]	0.016
Left Parahippocampal gyrus	0.73	[0.67-0.79]	<0.0001
Left Perirhinal cortex	0.80	[0.73-0.88]	<0.0001
Left Subiculum	0.78	[0.62-0.97]	0.025
Right CA1	1.09	[0.88-1.35]	0.438
Right Dendate Gyrus	0.19	ND	ND
Right Entorhinal cortex	1.09	[0.79-1.51]	0.587
Right Parahippocampal gyrus	0.95	[0.83-1.09]	0.470
Right Perirhinal cortex	1.17	[0.98-1.39]	0.078
Table S7. Characteristics of the patients included in the study. Demographic information, handedness, verbal comprehension index (VCI), dominant hemisphere and method of determination and clinical information. Age at the time of implant. The verbal comprehension assessment was done with the WAIS IV test or WASI II test. Unknown* etiology of epilepsy means that there were not relevant abnormalities on examination, cognition, history or imaging. If the etiology of epilepsy is due to infections, it could be either viral, bacterial or parasitic. The information about the seizure onset localization was retrieved from the clinical notes when this information was available, otherwise, it was retrieved from the electrode notes. Abbreviations: A, ambidextrous; F, female; HIE, Hypoxic Ischemic Encephalopathy; IVH, Intraventricular Hemorrhage; L, left; M, Male; N/A, not available; ND, not determined, R, right; TBI, Traumatic Brain Injury.			
ID	Age	Gender	Handed
----	-----	--------	--------
1	48	F	R
2	49	F	R
3	39	F	A
4	52	F	R
5	31	F	A
6	37	F	R
7	55	F	L
8	49	F	L
9	39	M	R
10	25	M	R
11	33	M	R
12	37	F	R
13	25	F	R
14	48	M	R
15	27	F	R
16	33	F	R
17	23	M	L
18	40	M	R
19	20	F	R
20	32	F	R
21	45	F	A
22	49	M	L
23	28	F	R
24	34	M	R
25	28	F	L
26	59	M	R
27	51	M	R
28	51	M	R
ID	Age	M/F	Hand
----	-----	-----	------
49	52	F	R
51	25	F	R
52	20	F	R
53	39	F	R
54	24	M	R
56	34	M	A
57	53	M	R
59	45	F	R
60	37	F	R
61	21	M	R
62	24	F	R
63	24	M	R
65	34	F	R
66	39	M	R
67	45	F	R
68	39	F	A
69	27	M	R
70	40	F	R
74	25	M	R
77	48	F	R
80	43	F	R
81	34	F	R
83	49	F	R
84	25	M	R
86	21	M	R
89	36	M	L
92	45	M	R
93	25	M	R
94	47	M	R
96	34	F	R
ID	Age	Sex	Handedness
-----	-----	-----	------------
100	44	F	R
101	26	F	L
102	35	M	R
104	22	M	R
105	25	M	R
106	27	M	R
107	25	M	R
108	24	F	R
111	20	M	R
112	30	F	R
114	32	F	A
115	47	M	L
118	33	M	R
119	27	F	L
120	34	F	L
122	48	F	R
123	29	F	R
124	41	F	R
125	45	F	R
127	40	F	R
128	26	M	R
130	57	M	R
131	24	M	R
134	65	M	R
135	48	M	R
136	57	F	R
138	42	M	R
141	45	F	R

11
ID	Age	M/F	Handedness	VCI	Dominant hemisphere and method	Etiologies of epilepsy	MRI findings and localization	Seizure Onset Zone
142	44	F	L	N/A	N/A fMRI	Unknown*	R frontal lobe hamartoma vs low grade glioma	R-Frontal Lobe, R-Limbic Lobe, R-Other
144	53	M	R	125	Right fMRI	TBI	R mesial temporal encephalomalacia/gliosis	R-Mesial Temporal
145	46	M	R	95	N/A N/A	Stroke	R anterior temporal region, anterior insula	
146	45	F	R	81	Left fMRI	Malformations of cortical or other brain development	Posterior R frontal lobe cortical dysplasia	R-Frontal Lobe
147	48	M	R	96	Left WADA	TBI, Specific etiologies of epilepsy	L middle and inferior temporal gyri cortical dysplasia	L mesial temporal lobe
148	60	F	R	98	Left fMRI	Specific etiologies of epilepsy	Mild R hippocampal volume loss; old infarct in aneurysm with post-surgical changes	R mesial temporal lobe
150	50	F	R	81	Left fMRI	Specific etiologies of epilepsy	L fronto-insular cavernous malformation	L-Other
151	36	M	R	103	Left WADA	Infection	Normal; Bilateral frontal DBS stimulator leads	L-Mesial Temporal, L-Other, L-Temporal Lobe
153	38	M	L	N/A	Left N/A	Mesial temporal sclerosis	R mesial temporal sclerosis	L anterior hippocampus; R mesial temporal lobe
154	36	F	R	98	Left WADA	Unknown*	None	Undetermined
157	22	M	R	98	Left N/A	Unknown*	None	R-Mesial Temporal, R-Parietal Lobe, R-Temporal Lobe
158	45	F	R	89	Left fMRI	Unknown*	None	L-Mesial Temporal, L-Temporal Lobe
159	43	F	R	96	Left WADA	Specific etiologies of epilepsy	None	R-Mesial Temporal
161	54	F	R	N/A	N/A N/A	Malformations of cortical or other brain development	Post-surgical changes in L parietal and occipital lobes	L-Parietal Lobe, L-Temporal Lobe
163	46	M	R	N/A	Left fMRI	Specific etiologies of epilepsy	L parietal cystic encephalomalacia	L-Mesial Temporal, L-Parietal Lobe, L-Temporal Lobe
164	38	M	R	80	Left fMRI	TBI	None	L-Mesial Temporal
166	39	M	L	N/A	Left WADA	Specific etiologies of epilepsy	L frontal post-op changes, encephalomalacia	L-Frontal Lobe, L-Parietal Lobe
167	33	M	R	N/A	Left fMRI	Specific etiologies of epilepsy	Prominent sulcation in L anterior temporal lobe	L-Frontal Lobe, L-Temporal Lobe
168	24	M	R	93	Left fMRI	Unknown*	None	R-Mesial Temporal, R-Temporal Lobe
169	43	F	R	85	Left WADA	TBI, Specific etiologies of epilepsy	R frontal craniotomy and anterior R frontal lobe resection	R posterior frontal area
170	21	M	R	78	N/A N/A	HIE	Post-op changes of previous L temporal lobectomy	Margin surrounding previous partial L temporal lobectomy
171	36	M	R	N/A	N/A N/A	TBI, Neoplasia, Specific etiologies of epilepsy	Lesion in R hippocampus and amygdala	R-Mesial Temporal
172	22	F	R	93	Left WADA	Unknown*	None	L-Mesial Temporal, R-Temporal Lobe
173	19	F	R	102	N/A N/A	Unknown*	Small lesion in R medial temporal lobe	R SMA
174	29	M	R	N/A	Left WADA	Unknown*	None	L-Temporal Lobe
176	41	F	R	N/A	Left WADA	Unknown*	Post-op changes of R anterior temporal lobectomy with partial amygdałohippocampsectomy	R insula
177	23	F	R	N/A	Left WADA	Aphasia	L posterior tempo-parietal tuber	L posterior temporal region
178	40	M	R	N/A	Left WADA	TBI, Specific etiologies of epilepsy	Previous L temporal resection with L limbic atrophy; L frontal lobe encephalomalacia	L hippocampus
180	21	F	R	N/A	Left WADA	Specific etiologies of epilepsy	None	L-Other, L-Temporal Lobe
181	22	M	R	95	Left fMRI	Unknown*	None	R-Frontal Lobe, R-Parietal Lobe
ID	Age	M/F	Hand ed	VCI	Dominant hemisphere and method	Etiologies of epilepsy	MRI findings and localization	Seizure Onset Zone
-----	-----	-----	---------	-----	-------------------------------	--	---	---
184	42	M	R	N/A	N/A	Malformations of cortical or other brain development, Specific etiologies of epilepsy	R posterior perisylvian region cortical dysplasia; post-op changes from previous R anterior temporal lobectomy and hippocampectomy	R-Frontal Lobe, R-Parietal Lobe, R-Temporal Lobe
186	28	M	N/A	68	N/A	TBI, Specific etiologies of epilepsy	Lesion in R posterior temporal lobe, likely capillary telangiectasia	L mesial and neocortical temporal lobe, R anterior neocortical temporal lobe
187	52	F	R	98	Left WADA	TBI, Malformations of cortical or other brain development	L frontal malformation of cortical development	L-Frontal Lobe, L-Parietal Lobe
188	26	F	R	108	N/A	Unknown*	None	R-Other, R-Temporal Lobe
189	23	M	R	N/A	N/A	TBI, Specific etiologies of epilepsy	Incidental, other	R-Frontal Lobe, R-Limbic Lobe
190	58	F	R	96	Left WADA	Unknown*	None	L-Frontal Lobe, L-Frontal Lobe, R-Temporal Lobe
191	19	M	R	68	N/A	Specific etiologies of epilepsy	None	R-Parietal Lobe, R-Temporal Lobe
192	28	M	R	81	Left fMRI	Specific etiologies of epilepsy	None	Undetermined
193	37	M	R	83	N/A	Unknown*	None	R-Other
195	44	M	R	108	Left fMRI	TBI	None	Undetermined
196	19	M	L	122	N/A	Specific etiologies of epilepsy	Abnormal	L-Parietal Lobe
198	60	F	A	N/A	Left fMRI	Neoplasia	L frontal, mesial and parietal neoplasm	L-Frontal Lobe, L-Parietal Lobe
200	26	M	R	N/A	Left fMRI	Unknown*	L frontal encephalomalacia/girosis	L-Frontal Lobe, L-Other, L-Temporal Lobe
201	37	M	R	93	Left fMRI	TBI, Specific etiologies of epilepsy	R parietal neoplasm	R-Mesial Temporal
203	36	F	R	87	Left fMRI	Unknown*	Incidental, other	L-Limbic Lobe, R-Limbic Lobe, R-Other
204	26	F	R	74	Left fMRI	Unknown*	None	L-Mesial Temporal
207	40	F	L	76	Right fMRI	Infection	Mesial temporal sclerosis, encephalomalacia/girosis	Multifocal
212	47	M	R	N/A	N/A	TBI, Neoplasia, Specific etiologies of epilepsy	None	R-Frontal Lobe, R-Limbic Lobe, R-Temporal Lobe
214	31	M	R	N/A	N/A	Malformations of cortical or other brain development	L malformation of cortical development, Other	L-Frontal Lobe, L-Limbic Lobe, L-Parietal Lobe
215	51	F	R	83	Left fMRI	Unknown*	None	L-Limbic Lobe
216	23	F	R	85	Left fMRI	Unknown*	None	L-Mesial Temporal, L-Temporal Lobe
217	37	M	R	N/A	Left WADA	TBI	Incidental, other	L-Limbic Lobe
221	57	M	R	87	Left fMRI	TBI, Specific etiologies of epilepsy	Abnormal	L-Mesial Temporal, L-Other, L-Temporal Lobe
223	43	F	R	78	Left fMRI	Mesial temporal sclerosis, Specific etiologies of epilepsy	Mesial temporal sclerosis, Other	L-Limbic Lobe, L-Temporal Lobe
226	42	F	R	93	Left fMRI	TBI, Mesial temporal sclerosis	Mesial temporal sclerosis	L-Frontal Lobe, L-Mesial Temporal
227	33	M	R	N/A	Left fMRI	TBI	R occipital encephalomalacia/girosis	R-Parietal Lobe
228	59	F	R	N/A	N/A	Malformations of cortical or other brain development	L frontal malformation of cortical development	R-Parietal Lobe, L-Other, R-Limbic Lobe
229	29	M	R	N/A	Left fMRI	Unknown*	None	L-Parietal Lobe, L-Other
230	56	F	R	N/A	N/A	Stroke	None	R-Frontal Lobe, R-Limbic Lobe, R-Other
231	21	M	R	N/A	N/A	Unknown*	None	L-Frontal Lobe, L-Parietal Lobe
232	28	M	A	143	Left fMRI	TBI	None	L-Frontal Lobe, L-Parietal Lobe
236	52	F	R	95	Left fMRI	TBI	None	L-Mesial Temporal
ID	Age	M/F	Handenedness	VCI	Dominant hemisphere and method	Etiologies of epilepsy	MRI findings and localization	Seizure Onset Zone
-----	-----	-----	-------------	-----	-------------------------------	--	---	-----------------------------------
239	27	M	R	93	Left WADA	Malformations of cortical or other brain development	Bilateral encephalomalacia/gliosis, Other	R-Frontal Lobe, R-Limbic Lobe, R-Temporal Lobe
240	38	F	R	N/A	Left fMRI	Infection	Bilateral atrophy or tissue loss	Bilateral mesial and neocortical temporal areas
241	52	M	R	N/A	Left N/A	TBI	None	Bilateral mesial and neocortical temporal areas
243	64	M	A	87	Left N/A	Unknown*	None	Undetermined
247	62	F	R	100	N/A N/A	Unknown*	None	L-Other, L-Temporal Lobe
251	32	M	L	N/A	Left fMRI	Malformations of cortical or other brain development	R atrophy or tissue loss, Encephalomalacia/gliosis	Multifocal
260	57	F	R	95	Left N/A	Infection	None	L-Frontal Lobe, L-Limbic Lobe, L-Temporal Lobe
264	53	F	R	83	Left WADA	Specific etiologies of epilepsy	Other	L-Mesial Temporal, L-Temporal Lobe
269	42	F	R	110	N/A N/A	Malformations of cortical or other brain development, Neoplasia, Mesial temporal sclerosis	R mesial temporal sclerosis, R encephalomalacia/gliosis	R-Limbic Lobe
273	48	F	L	90	Left N/A	TBI	Abnormal	L-Frontal Lobe, L-Parietal Lobe, L-Other
274	44	F	R	N/A	Left fMRI	Unknown*	None	L-Parietal Lobe, L-Other, L-Temporal Lobe
277	34	M	R	116	N/A fMRI	TBI	None	R-Frontal Lobe, R-Limbic Lobe, R-Parietal Lobe
278	22	F	R	72	Left fMRI	Specific etiologies of epilepsy	None	R-Parietal Lobe, R-Temporal Lobe
291	35	M	R	N/A	Left fMRI	Infection, Specific etiologies of epilepsy	Incidental, other	Multifocal
422	57	F	R	N/A	Left fMRI	Unknown*	None	L-Limbic Lobe, L-Temporal Lobe
423	49	M	L	N/A	Right fMRI	Unknown*	None	R-Mesial Temporal, R-Temporal Lobe
424	-	M	L	N/A	N/A fMRI	Unknown*	N/A	Undetermined
425	-	-	N/A	N/A	-	N/A	N/A	Undetermined
