Emergent (anomalous) higher symmetries from topological orders and from dynamical electromagnetic field in condensed matter systems

Xiao-Gang Wen

1 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

The usual condensed matter lattice theories do not include dynamical electromagnetic (EM) field and do not have higher symmetries naturally (unless we engineer fine-tuned toy models to realize higher symmetries). However, for gapped systems, (anomalous) higher symmetries can emerge from the usual condensed matter theories at low energies (usually in a spontaneously broken form).

We pointed out that spontaneously broken emergent higher symmetries are nothing but a kind of topological orders. The emergent (anomalous) higher symmetries can be used to constrain possible phase transitions and possible phases induced by certain types of excitations in topological orders. (Anomalous) higher symmetry can also emerge in gapless systems if the gapless excitations contain gapless gauge fields. In particular, EM condensed matter systems that include the dynamical EM field have an anomalous $U(1)$ 1-symmetry if we ignore the magnetic monopoles. So EM condensed matter systems can realize some physical phenomena of anomalous higher symmetry. In particular, any gapped liquid phases of EM condensed matter systems (induced by arbitrary electric charge fluctuations and condensations) must have non-trivial bosonic topological orders.

CONTENTS

I. Introduction 1

II. Notations and conventions 3

III. Symmetry and higher symmetry on lattice 3

IV. An example of on-site Z_2 1-symmetry in 3+1D bosonic lattice model
 A. The lattice model 4
 B. Z_2 1-symmetry and unbreakable strings 4
 C. Emergent higher symmetry in topological orders 5
 D. Spontaneous higher symmetry breaking and topological order 5
 E. The usefulness of higher symmetry in condensed matter 6

V. The topological robustness of emergent higher symmetry 6

VI. Higher symmetry in spacetime lattice models
 A. Models with 0-symmetry and 0-symmetry twist 7
 B. Models with 1-symmetry and 1-symmetry twist 8

VII. Lattice models that realize higher SPT phases – systematic constructions
 A. Models realizing bosonic SPT phases 9
 B. Models realizing bosonic higher SPT phases 9
 C. More general bosonic hSPT phases 10
 D. Fermionic hSPT phases 10
 E. The usefulness of hSPT phases 11

VIII. Lattice models that realize higher SPT phases – simple examples
 A. A 3+1D model to realize a pure Z_n 1-SPT phase
 1. The bulk theory and the boundary theory 11
 2. Higher anomaly and phase transition 13
 B. A D-dimensional model to realize a Z_k 1-SPT phase
 1. The bulk theory and the boundary theory 14

IX. Lattice models that realize topological orders with higher symmetry
 A. The first type of constructions 20
 B. The second type of constructions 20

X. EM condensed matter systems and their higher symmetry
 A. Space-time complex, cochains, and cocycles 23

References 26

I. INTRODUCTION

A global symmetry acts on the whole space, and a local symmetry acts on all the points (i.e. all the sub manifolds of 0-dimension). A higher symmetry, such as a k-symmetry, acts on all the closed sub manifolds of codimension k. Thus a global symmetry is a 0-symmetry. A lattice Hamiltonian system has a k-symmetry, if the Hamiltonian is invariant under certain unitary transformations defined on all the closed codimension-k subspaces.

The term higher form symmetry was first introduced in Ref. 1 for field theory, where it was stressed that higher symmetry can be viewed as a generalization of the global symmetry (i.e. 0-symmetry) and many results and intuitions for global symmetry can be extended to higher symmetry. For a Lagrangian field theory in $(d+1)$-dimensional spacetime, a 0-symmetry is generated by constant fields (closed 0-forms) in spacetime, such as...
$\varphi \to \varphi + c$, while a k-symmetry is generated by closed k-forms in spacetime.

Higher symmetry had been studied before in lattice systems, where exactly soluble lattice Hamiltonians commuting with closed string and/or closed membrane operators were constructed\cite{2-6} to realize topological orders\cite{7-9}. A direct relation between higher symmetries and topological orders was pointed out in Ref. \textit{10} and \textit{11}, under the name \textit{low-dimensional gauge-like symmetries}.

From the field theory definition of the k-symmetry generated by a closed k-form α_k, it appears that we require the field theory to have a k-form field a_k so that the k-symmetry transformation can be written as $a_k \to a_k + \alpha_k$. However, from the lattice point of view, a k-symmetry does not require a k-form field.

The emergence of higher symmetry from lattice model without higher symmetry was also studied before in 2005\cite{12}, under the name of emergent gauge symmetry. A topological robustness of emergent higher symmetry against any local perturbations was discovered. Such a topological robustness was used to show the topological robustness of a Goldstone-like theorem for spontaneous broken continuous higher symmetry: the gapless $U(1)$ gauge bosons from spontaneous breaking of $U(1)$ higher symmetry remain to be gapless even after we explicitly break the higher symmetry by arbitrary perturbations. The result of Ref. \textit{12} also suggests that every topological order containing Abelian gauge theory has emergent higher symmetry.

Recently, higher symmetry and higher anomaly, as well as the related higher symmetry protected trivial (SPT) orders and higher gauge theories, became an active topic in field theory.\cite{1, 13–35} Ref. \textit{18}, \textit{36}, and \textit{37} discussed higher symmetry and higher anomaly in lattice systems. Ref. \textit{18} studied higher SPT phases and higher anomaly in-flow. Ref. \textit{36} discussed how to construct a lattice Hamiltonian of a higher gauge theory. Ref. \textit{37} obtained a Lieb-Schultz-Mattis type theorem from higher anomalies. In this paper, we will concentrate on applications of higher symmetry to condensed matter systems, by studying the lattice aspect of higher symmetry, higher anomaly, and how higher symmetry in field theory can emerge from lattice models without higher symmetry. The following is a summary of the results:

1. The usual condensed matter theories (which do not include the dynamical electromagnetic field) do not have higher symmetries. However, higher symmetries can emerge in usual gapped condensed matter theories in a spontaneously broken form, at energies below the energy gap. In fact, spontaneously broken finite higher symmetry is nothing but a special kind of topological orders (see Section \textit{IV}).

2. If certain topological excitations in topological orders have very large energy gap Δ_{top}, while other topological excitations have small gaps of order $\Delta \ll \Delta_{\text{top}}$, we may have emergent higher symmetry or emergent anomalous higher symmetry at energies below Δ_{top}. Note that such an emergent (anomalous) higher symmetry can appear at energies above Δ, and is smaller than the emergent higher symmetry below Δ. Thus emergent (anomalous) higher symmetry in a topological order is characterized by a set \mathcal{C}_a of low energy allowed topological excitations. The set is closed under the fusion and braiding of the topological excitations (see Section \textit{IV}).

3. For bosonic 2+1D Abelian topological orders, the emergent higher symmetry characterized by \mathcal{C}_a is anomaly free iff the topological excitations in \mathcal{C}_a are bosons with trivial mutual statistics. Here \mathcal{C}_a is the set of topological excitations that have trivial mutual statistics with all the topological excitations in \mathcal{C}_a (see Section \textit{IV}).

4. The emergent (anomalous) higher symmetry will constrain the possible phase transitions and phases induced by the low energy topological excitations (see Section \textit{VIII}). In particular, for a topological order with emergent \textit{anomalous} higher symmetry characterized by \mathcal{C}_a, the topological order cannot change into a trivial phase with no topological order no matter how we condense the topological excitations in \mathcal{C}_a.

5. The Abelian higher symmetry and the non-Abelian 0-symmetry can have a non-trivial mix described by a higher group.\cite{16, 25} In this paper, we discuss a general way to construct lattice models with a combined 0-symmetry, 1-symmetry, etc (see Section \textit{VI}).

6. We systematically construct lattice bosonic models that realize higher SPT phases with higher symmetry described by higher group $B(G, \Pi_2, \cdots)$ in any dimensions.\cite{18} Our construction suggests a (many-to-one) classification of $(d+1)$D bosonic higher SPT phases in terms of the cohomology of an extended higher group: $H^{d+1}[B(G \times SO_{\infty}, \Pi_2, \cdots), \mathbb{R}/\mathbb{Z}]$ (see Section \textit{VII C}). Using fermion worldline decoration, we also systematically construct lattice fermionic models that realize higher SPT phases with higher symmetry $B(G_f, \Pi_2, \cdots)$ in any dimensions (see Section \textit{VII D}).

7. We find a spacetime lattice regularization of 3+1D $U^a(1)$ gauge theory with 2π-quantized topological term

$$Z = \int D[a_I] e^{i \int_M \frac{K}{g} f_I f_J - \int_M \frac{1}{2} f_I^2 + i f_I m_I a_I},$$

where $f_I = da_I$ is the field-strength 2-form of the $U(1)$ gauge field a_I. We show that the lattice model is a local bosonic model with discrete 1-symmetry. The lattice model (109) is exactly soluble on closed spacetime in $g \to \infty$ limit, and realizes a higher SPT phase (see Section \textit{VII D}).
8. The condensed matter theories that include the dynamical electromagnetic (EM) field (which will be called the EM condensed matter theories) can be viewed as local bosonic theories with an anomalous $U(1)$ 1-symmetry, since the magnetic monopoles can be ignored at low energies. Such an anomaly comes from the property that all fermions carry odd electric charges and all bosons carry even electric charges. Using the anomalous $U(1)$ 1-symmetry, we show that any gapped liquid phases\(^{[38, 39]}\) of any EM condensed matter systems must have nontrivial bosonic topological orders (see Section X).

II. NOTATIONS AND CONVENTIONS

In part of this paper, we will use extensively the notion of cochain, cocycle, and coboundary, as well as their higher cup product \sim and Steenrod square Sq^k. A brief introduction can be found in Appendix A. We will abbreviate the cup product $a \sim b$ as ab by dropping \sim. We will use \equiv to mean equal up to a multiple of n, and use \equiv to mean equal up to df (i.e. up to a coboundary). We will use (l, m) to denote the greatest common divisor of l and m $(0, m) \equiv m)$. We will also use $|x|$ to denote the integer that is closest to x.

We introduced a symbol λ to construct fiber bundle X from the fiber F and the base space B:

$$pt \rightarrow F \rightarrow X = F \times B \rightarrow B \rightarrow pt.$$

(2)

We will also use λ to construct group extension of H by N \(^{[40]}\):

$$1 \rightarrow N \rightarrow N \times_{e_2, \alpha} H \rightarrow H \rightarrow 1.$$

(3)

Here $e_2 \in H^2[H; Z(N)]$, $Z(N)$ is the center of N, and $\alpha : H \rightarrow \text{Aut}(N)$ is a non-trivial action of H on $Z(N)$. Thus e_2 and α characterize different group extensions.

We will use $K(\Pi_1, \Pi_2, \ldots, \Pi_n)$ to denote a connected topological space with homotopy group $\pi_i(K(\Pi_1, \Pi_2, \ldots, \Pi_n)) = \Pi_i$ for $1 \leq i \leq n$, and $\pi_i(K(\Pi_1, \Pi_2, \ldots, \Pi_n)) = 0$ for $i > n$. If only one of the homotopy groups, say Π_d, is non-trivial, then $K(\Pi_1, \Pi_2, \ldots, \Pi_n)$ is the Eilenberg-MacLane space, which is denoted as $K(\Pi_d, d)$. If only two of the homotopy groups, say $\Pi_d, \Pi_{d'}$, is non-trivial, then we denote the space as $K(\Pi_d, d; \Pi_{d'}, d')$, etc. We will use $B(\Pi_1, \Pi_2, \ldots, \Pi_n)$, $B(\Pi_d, d)$, and $B(\Pi_d, d; \Pi_{d'}, d')$ to denote the simplicial sets with only one vertex satisfying Kan conditions that describe a special triangulation of $K(\Pi_1, \Pi_2, \ldots, \Pi_n)$, $K(\Pi_d, d)$, and $K(\Pi_d, d; \Pi_{d'}, d')$ respectively. Since simplicial sets satisfying Kan conditions are viewed as higher groupoids in higher category theory, the simplicial sets $B(\Pi_1, \Pi_2, \ldots, \Pi_n)$, $B(\Pi_d, d)$, and $B(\Pi_d, d; \Pi_{d'}, d')$, with only one vertex (unit), can be viewed as higher groups. In this paper, higher groups are treated therefore as this sort of special simplicial sets, as in Ref. 30.

III. SYMMETRY AND HIGHER SYMMETRY ON LATTICE

The notion of phase and phase transition play a major role in condensed matter physics in our attempts to understand properties of various materials. However, to mathematically define the concepts of quantum phase and quantum phase transition at zero temperature, we need to first introduce the notion Hamiltonian class. The notions of phase and phase transition can only be defined relative to a Hamiltonian class. (For example, the notion of phase is not a property of a single Hamiltonian.)

For example, we can define a Hamiltonian class as a set of local Hamiltonians for bosons on lattice. Relative to such a Hamiltonian class, we can define the notion bosonic topological orders.\(^{[7, 8]}\) Such a precise definition of bosonic topological orders allows us to classify them in 1 spatial dimension\(^{[41, 42]}\) where there is no nontrivial bosonic topological orders, as well as in 2 spatial dimensions\(^{[9, 43–46]}\) and in 3 spatial dimensions\(^{[47, 48]}\), where very rich bosonic topological orders exist.

We may define another Hamiltonian class as a set of local Hamiltonians for fermions on lattice. Relative to such a Hamiltonian class, we can define the notion fermionic topological orders.\(^{[49]}\) There is only one nontrivial fermionic topological order in 1 spatial dimension – the 1+1D topological p-wave superconductor,\(^{[50, 51]}\) The fermionic topological orders in 2 spatial dimensions are classified in Ref. 46, and a proposal to classify fermionic topological orders in 3 spatial dimensions is given in Ref. 48.

We can also introduce a Hamiltonian class as a set of local Hamiltonians H on lattice with an on-site symmetry\(^{[52, 53]}\) described by a group G:

$$H = W_g H W_g^{-1}, \quad W_g = \bigotimes_i W_g(i), \quad g \in G,$$

(4)

where $W_g(i)$ is a representation of the symmetry group G acting on the local Hilbert space on site-i. Relative to such a Hamiltonian class, we can define the notion of spontaneous symmetry breaking orders, symmetry protected topological (SPT) orders\(^{[54, 55]}\) (also known as symmetry protected trivial orders\(^{[56, 57]}\)), and symmetry enriched topological (SET) orders.\(^{[58–61]}\) The classification of spontaneous symmetry breaking orders is given by a pair of groups $G_{\text{grnd}} \subset G$, where G_{grnd} is the symmetry group of the ground state (the unbroken symmetry group). The classification of SPT and SET orders are given in Ref. 47, 48, 52, 60, 62–67, via group cohomology theory, cobordism theory, and (higher) category theory.

The on-site symmetry G is also called global symmetry. However, a global symmetry in field theory or in lattice theory may not be an on-site symmetry G. In this case, we say\(^{[53, 68]}\) the global symmetry to have a t’ Hooft anomaly.\(^{[69]}\) We will also call the on-site symmetry G as an on-site 0-symmetry, where the symmetry transformation acts on codimension-0 space or spacetime.\(^{[1, 24]}\)
Now, we are ready to define higher symmetry on lattice, by introducing a Hamiltonian class as a set of local Hamiltonians \(H \) on a triangulation of \(d \)-dimensional space (which is a more precise definition of lattice) that satisfy
\[
H = W_a(C^{d-k})H W_a^{-1}(C^{d-k}),
\]
for any \(d-k \)-dimensional (i.e. codimension-\(k \)) closed subcomplex \(C^{d-k} \) of the triangulated \(d \)-dimensional space. Here \(W_a(C^{d-k}) \) is an operator that acts on the degrees of freedom on the closed subcomplex \(C^{d-k} \) with the following “on-site” property
\[
W_a = \bigotimes_{i \in C^{d-k}} W_a(i).
\]
The operator \(W_a(C^{d-k}) \) labeled by \(a \) satisfy a so called pointed fusion rule
\[
W_a(C^{d-k})W_b(C^{d-k}) = W_c(C^{d-k}),
\]
and they commute with each other
\[
[W_a(C^{d-k}), W_b(C^{d-k})] = 0.
\]
Such a pointed fusion rule makes the index set \(\{a\} \) into an Abelain group \(\Pi \). The Hamiltonian class defined above is referred as having an on-site \(k \)-symmetry since the symmetry acts on codimension-\(k \) subcomplex of the space.[1, 24]

IV. AN EXAMPLE OF ON-SITE \(\mathbb{Z}_2 \)
1-SYMMETRY IN 3+1D BOSONIC LATTICE
MODEL

A. The lattice model

The simplest on-site \(\mathbb{Z}_2 \) 1-symmetry is a \(\mathbb{Z}_2 \) 1-symmetry. Let us consider a qubit model on a 3-dimensional cubic lattice, where the qubits live on the square faces of the cubic lattice. We choose the closed subcomplex \(C^2 \) to the closed 2-dimensional surfaces formed by the square faces of the cubic lattice. The generator of the \(\mathbb{Z}_2 \) 1-symmetry is given by
\[
W(C^2) = \bigotimes_{I \in C^2} \sigma_I^z
\]
where \(I \) labels the square faces of the cubic lattice. We can check that \(W(C^2) \)'s all commute with each other and and their pointed fusion is described by a \(\mathbb{Z}_2 \) group. So we say \(W(C^2) \) generates an on-site \(\mathbb{Z}_2 \) 1-symmetry.

A Hamiltonian with the above \(\mathbb{Z}_2 \) 1-symmetry is given by[2–4]
\[
H = -U_1 \sum_{\langle IJKL \rangle} \sigma_I^\tau \sigma_J^\tau \sigma_K^\tau \sigma_L^\tau
\]
\[-U_2 \sum_{\langle IJKLMN \rangle} \sigma_I^\tau \sigma_J^\tau \sigma_K^\tau \sigma_L^\tau \sigma_M^\tau \sigma_N^\tau - B \sum_{\langle I \rangle} \sigma_I^x,
\]
where \(\sum_{\langle I \rangle} \) sums over all the square faces, \(\sum_{\langle IJKL \rangle} \) sums over all cubes, and \(\sum_{\langle IJKLMN \rangle} \) sums over all squares formed by the links in the dual cubic lattice.

When \(|B| \ll |U_1|, |U_2|\), the Hamiltonian (10) has a topologically ordered ground state. The topological order is described by a \(\mathbb{Z}_2 \) gauge theory. A pair of \(\mathbb{Z}_2 \)-charge is created by an open string operator
\[
S_{str}(C^1) = \bigotimes_{I \in \text{string } C^1} \sigma_I^\tau,
\]
where the string is formed by the links of the dual cubic lattice. Note that the open string creation operators break the \(\mathbb{Z}_2 \) 1-symmetry. Thus we cannot even include the short open string operators in the Hamiltonian. This implies that in the presence of the \(\mathbb{Z}_2 \) 1-symmetry, the \(\mathbb{Z}_2 \)-charge is not mobile. A \(\mathbb{Z}_2 \)-flux loop is created by an open membrane operator bounded by the loop:
\[
M_{\text{memb}}(C^2) = \bigotimes_{I \in \text{membrane } C^2} \sigma_I^\tau,
\]
where the membrane is formed by the square faces of the original cubic lattice. The \(\mathbb{Z}_2 \) 1-symmetry allow the Hamiltonian to have such a open membrane operator. Thus the \(\mathbb{Z}_2 \)-flux loop is mobile even in the presence of the \(\mathbb{Z}_2 \) 1-symmetry.

We also note that the closed membrane operator happen to be the generator (9) of the \(\mathbb{Z}_2 \) 1-symmetry. Thus we say that the \(\mathbb{Z}_2 \) 1-symmetry is generated by the topological excitations of the \(\mathbb{Z}_2 \)-flux loops.

B. \(\mathbb{Z}_2 \) 1-symmetry and unbreakable strings

In this subsection, we discuss a meaning of 1-symmetry in lattice model. Consider the lattice model (10). Let \(|\uparrow\rangle, |\downarrow\rangle\) be the eigenstates of \(\sigma_I^z \). We view \(\bigotimes_I |\uparrow\rangle \) as a reference state. We create a closed-string state by changing \(|\uparrow\rangle \bigotimes_I \) to \(|\downarrow\rangle \bigotimes_I \) for \(I \) on closed strings. Here strings are formed by links of the dual cubic lattice.

Because of the \(\mathbb{Z}_2 \) 1-symmetry, the ground state of eqn. (10) is a superposition of closed strings (assuming \(U_2, B > 0 \)). When \(B = 0 \), the ground state is an equal weight superposition of all closed strings, and spontaneously break the \(\mathbb{Z}_2 \) 1-symmetry (on space with non-trivial first homotopy group \(\pi_1 \)). When \(B \to +\infty \), the ground state has no strings and does not break the \(\mathbb{Z}_2 \) 1-symmetry.

From this example, we see that the physical meaning of the \(\mathbb{Z}_2 \) 1-symmetry is the appearance of unbreakable strings. Even when we force a string breaking, the \(\mathbb{Z}_2 \) 1-symmetry requires that the end of the string (i.e. the \(\mathbb{Z}_2 \)-charge) cannot move and have no dynamics.

To summarize, the \(\mathbb{Z}_2 \) 1-symmetry is generated by the \(\mathbb{Z}_2 \)-flux-line excitations. Such a \(\mathbb{Z}_2 \) 1-symmetry forbid the excitations that have non-trivial mutual statistics with the \(\mathbb{Z}_2 \)-flux lines, such as the \(\mathbb{Z}_2 \)-charge excitations. This
can be achieved by including the Z_2 1-symmetry generator (9) in the Hamiltonian with a large coefficient (the U_2 term in eqn. (10)), which gives the Z_2-charge a large energy gap.

C. Emergent higher symmetry in topological orders

The above physical understanding of Z_2 1-symmetry can also be generalized:

If a topological order contains a topological excitation η of unit quantum dimension, then the topological order can have an emergent higher symmetry generated by η below an energy gap Λ, if all the topological excitations with non-trivial mutual statistics respect to any combinations of η have a large gap beyond Λ.

We note that the emergent higher symmetry allows the topological excitations with trivial mutual statistics respect to topological excitations with trivial mutual statistics respect to η to have a small gap, or even become gapless and drive a phase transition via their condensation. The emergent higher symmetry will be present through the phase transition.

To understand the above result in more details, let us consider a dimension-n topological excitation in a topological order. We assume that the topological excitation can be created by a dimension-$n + 1$ operator $W_1(C^{n+1})$ at its boundary ∂C^{n+1}. Here $W_1(C^{n+1})$ is an operator acts on the $(n+1)$-dimensional subcomplex C^{n+1} in the space (not spacetime). If the quantum dimension of the topological excitation is 1, then $W_1(C^{n+1})$ on a closed subcomplex C^{n+1} generates a Z_N fusion

$$W_a(C^{n+1})W_b(C^{n+1}) = W_{a+b}(C^{n+1}), \quad W_{N}(C^{n+1}) = 1,$$

for a certain integer N. Now, we require the lattice Hamiltonians to commute with $W_1(C^{n+1})$ for all closed C^{n+1}. This way we obtain a Hamiltonian system that has a $Z_N D - n - 2$-symmetry where D is the spacetime dimension. If a Hamiltonian with such a higher symmetry realizes the above topological order, then all the topological excitations with non-trivial mutual statistics with the n-dimensional topological excitation are not mobile. We can even make those topological excitations to have a large gap by adding the $W_a(C^{n+1})$ terms to the Hamiltonian with a large coefficient. Only topological excitations having trivial mutual statistics with the n-dimensional topological excitation are allowed to appear at low energies and to have non-trivial dynamics.

We stress that, in our construction, the higher symmetry is a property of the pair: the topological order plus the allowed low energy topological excitations: the higher symmetry is generated from the topological excitations of unit quantum dimension that have trivial mutual statistics with the allowed low energy topological excitations. Even in the same topological order, allowing different types of topological excitations will leads to different (anomalous) higher symmetries. Later, we will present several examples of this phenomenon.

For the 3+1D Z_2 topological order discussed above, if we only allow the Z_2-flux line excitations at low energies (i.e. the Z_2-charges associated with the string ends all have very high energies), then we will have the Z_2 1-symmetry at low energies, generated by the Z_2-flux lines. Later we will show that if we only have the Z_2-charge excitations at low energies, we will have a Z_2 2-symmetry at low energies (see eqn. (87)), generated by the Z_2-charge excitations. If we only allow the trivial excitations at low energies, then we will have the Z_2 1-symmetry generated by the Z_2-flux lines, and the Z_2 2-symmetry, generated by the Z_2-charge excitations. If we allow both Z_2-flux and Z_2-charge excitations at low energies, we will explicitly break the Z_2 1-symmetry and the Z_2 2-symmetry at low energies. In fact, there are no topological excitations that have trivial mutual statistics with both Z_2-flux and Z_2-charge excitations, and there is no higher symmetry.

In the above, we have constructed a higher symmetry from one topological excitation of unit quantum dimension. Certainly, we can construct more general higher symmetry from several topological excitations of unit quantum dimension. We can even construct something from a topological excitations with higher quantum dimensions. We call the “something” Q-local symmetry (see Ref. 70):

A topological order can have an emergent Q-local symmetry generated by a topological excitation η, if all the topological excitations with non-trivial mutual statistics respect to any combinations of η have a large gap.

Since a topological order, by definition, always has a finite energy gap, at energies much below the energy gap, the topological order always has an emergent Q-local symmetry, and such a Q-local symmetry is spontaneously broken. If the topological order contains excitations with unit quantum dimension, then, part of the Q-local symmetry can be viewed as the higher symmetry. If certain topological excitations have a large gap and other topological excitations have a small gap, then below the large gap, the topological order may have an emergent Q-local symmetry, which may be smaller then the emergent Q-local symmetry below the small gap.

D. Spontaneous higher symmetry breaking and topological order

When $|B| \gg |U_1|, |U_2|$, the Hamiltonian (10) has a trivial ground state without topological order. The small $|B|$ topologically ordered phase and the large $|B|$ trivial phase can also be distinguished by spontaneous 1-symmetry breaking. The Z_2 1-symmetry is generated by $W(C^2)$ in eqn. (9). On space $S^1 \times S^1 \times S^1$, we find that
the unique ground state of the large $|B|$ trivial phase is invariant under all the Z_2 1-symmetry transformations. The Z_2 1-symmetry is not broken. While a typical ground state in the 8-dimensional ground state subspace for the small $|B|$ topologically ordered phase is not invariant under the Z_2 1-symmetry transformations. The Z_2 1-symmetry is spontaneously broken.

The spontaneous 1-symmetry broken state is nothing but a topologically ordered state. Since the 1-symmetry is not spontaneously broken in the large $|B|$ trivial product state, the transition from the trivial product state to the topologically ordered state can be viewed as a spontaneous breaking of the 1-symmetry. This result is general:

A spontaneous higher symmetry broken state always corresponds to a topologically ordered state.

Here we have assumed that the higher symmetry is finite. The spontaneous breaking of continuous higher symmetry is discussed in Ref. 1 and 24, and give rise to gapless states. However, even though the spontaneous breaking of continuous higher symmetry produce gapless excitations, the gaplessness of the excitations do not need higher symmetry. Even after we explicitly break the higher symmetry, the gapless excitations remain gapless (see Section V).[12] This is very different from the gapless excitations from the spontaneous breaking of continuous 0-symmetry.

We also like to point out that a topologically ordered state can be more general and may not correspond to a spontaneous higher symmetry broken state. For example, we can break the higher symmetry explicitly. Even without higher symmetry, we can still have topologically order. Even though, some topological orders, such as Z_2-gauge theory, can be viewed as spontaneous higher symmetry broken states. Some other topological orders, such as $SU(3)$-gauge theory, cannot be viewed as spontaneous higher symmetry broken states, since spontaneous 1-symmetry broken states only give rise to Abelian gauge theory.

E. The usefulness of higher symmetry in condensed matter

We see that some topological orders can be understood as spontaneous higher symmetry breaking in the systems with higher symmetry. But the usual condensed matter theories on lattice never have higher symmetry. (Here by “usual condensed matter theories” we mean the theories that do not include the dynamical electromagnetic fields.) So it appears that this way to understand topological order may not be very useful. Also, this way to understand topological order misses a key feature of topological order: topological order is robust against any local perturbations that can break all the symmetries and higher symmetries.

However, the notion of higher symmetry and their spontaneous breaking can still be useful in condensed matter in the following sense: A gapped liquid state[38, 39] may have many emergent symmetries and higher symmetries at low energies. If some of the emergent higher symmetries are spontaneously broken, then the corresponding gapped liquid state has topological orders. This allows us to use spontaneously broken emergent higher symmetry to characterize a subclass of topological orders.

The higher symmetries in low energy effective field theory may come from lattice model with exact higher symmetry, or may emerge from a lattice model that has no higher symmetry. Therefore, even though the usual condensed matter theories on lattice do not have higher symmetry, field theories with higher symmetries can still apply to condensed matter systems, since higher symmetry can be emergent.

Later, we will see that if we include the dynamical electromagnetic (EM) fields in condensed matter theories, the resulting EM condensed matter theories will have an approximate $U(1)$ 1-symmetry if we ignore the magnetic monopoles. (The appearance of magnetic monopoles in condensed matter energy scale will break the $U(1)$ higher symmetry.) In this sense, $U(1)$ 1-symmetry is useful for real condensed matter systems.

The notion of higher symmetry can also be useful for condensed matter in another way. We can construct toy models with higher symmetries, and make the ground states spontaneous break the higher symmetry. This way, we construct toy models that realize some topological orders. There are already many different ways to construct exactly soluble models to systematically realize topological orders, SPT orders, and SET orders.[2, 30, 49, 52, 67, 71–74] But it does not hurt to have one more construction. In this paper, we will construct some simple toy models with higher symmetry that realize some topological orders, SET orders, and SPT orders.

Last, higher symmetry can also be used to constrain possible phase transitions and possible phases.[37] In certain topological orders, if we only allow a certain type of topological excitations at low energies, the topological orders plus the topological excitations may have an emergent (anomalous) higher symmetry. Then any phase transitions induced by this particular type of topological excitations must preserve the anomaly of the higher symmetry. This puts constraint on possible phase transitions and possible resulting phases.

V. THE TOPOLOGICAL ROBUSTNESS OF EMERGENT HIGHER SYMMETRY

The lattice model (10) has an exact Z_2 1-symmetry generate by the membrane operator (12), since the Z_2 charges are not mobile. We can make the Z_2 charges
mobile and break the Z_2 1-symmetry by adding the term
\[\delta H = -J \sum_{\langle ij \rangle} \sigma_i^\dagger \sigma_j. \] (14)
However when U_2 is very large, the Z_2 charges have a large energy gap of order $|U_2|$. The Z_2 charges do not even appear at low energies. In this case, we expect an emergence of Z_2 1-symmetry at low energies even when $\delta H \neq 0$.

Indeed, it was shown in Ref. 12 that even though membrane operator (12) does not commute with the perturbed Hamiltonian $H + \delta H$, we can define fattened membrane operators
\[M_{\text{fat-memb}} = W_{LU} \left(\bigotimes_{\ell \in \text{closed membrane}} \sigma_{\ell}^\dagger \right) W_{LU}^\dagger, \] (15)
where W_{LU} is the local unitary operator defined in Ref. 58. We can choose W_{LU} such that the low energy eigenstates are also the eigenstates of the fattened membrane operators. This indicates an emergence of Z_2 1-symmetry at low energies.

Ref. 12 shows that such fattened membrane operators can be found for any local perturbations δH that can break any symmetries and higher symmetries. Thus the emergence of Z_2 1-symmetry at low energies is robust against any local perturbations. This represents a topological robustness of emergent of higher symmetry. In general, we believe the emergence of higher symmetry to be always topological, reflecting the topological robustness of topological orders.

Similarly, the emergence of 3+1D gapless $U(1)$ gauge theory is also accompanied with an emergence of $U(1)$ 1-symmetries, if the $U(1)$-charges and the $U(1)$-monopoles have a large energy gap. It was shown that the emergence of such higher symmetries to be topological.[12] The topological robustness of the emergent $U(1)$ 1-symmetries (which was called the local $U(1)$ gauge symmetries in Ref. 12) is used to show the topological robustness of the gapless $U(1)$ gauge theory:

There are no local perturbations that can open an energy gap for the gapless $U(1)$ gauge bosons.[12]

VI. HIGHER SYMMETRY IN SPACETIME LATTICE MODELS

To construct more general lattice models with 0-symmetries and higher symmetries, It is more convenient to do so in the spacetime Lagrangian formalism. We first construct a spacetime lattice by triangulating a D-dimensional spacetime manifold \mathcal{M}^D. (In this paper, we will use D to denote spacetime dimensions and d to denote space dimensions.) So a spacetime lattice is a D-complex \mathcal{M}^D with vertices labeled by i, links labeled by ij, triangles labeled by ijk, etc. The D-complex \mathcal{M}^D also has a dual complex denoted as \mathcal{M}^\dagger. The vertices of \mathcal{M}^D correspond to the D-cells in \mathcal{M}^D. The links of \mathcal{M}^D correspond to the $(D - 1)$-cells in \mathcal{M}^D, etc.

Our spacetime lattice model may have a field living on the vertices, g_i. Such a field is called a 0-cochain. The model may also have a field living on the links, a_{ij}. Such a field is called a 1-cochain, etc. To construct spacetime lattice models, in particular, the topological spacetime lattice models,[16, 18, 75, 76] we will use extensively the mathematical formalism of cochains, coboundaries, and cocycles (see Appendix A).

A. Models with 0-symmetry and 0-symmetry twist

In the next section, we will construct lattice model with a combined 0-symmetry and 1-symmetry. The mixture of the 0-symmetry and 1-symmetry can be twisted and is quite non-trivial. So, in this section, we review a particular construction of spacetime lattice models with global on-site symmetry G (i.e. 0-symmetry). This particular construction can be generalized to obtain lattice model with a combined 0-symmetry and 1-symmetry.

To describe a 0-symmetry described by a finite group G, we consider a spacetime lattice model with a field g_i living on vertices. The 0-symmetry lives on the closed D-subcomplex of the dual spacetime complex \mathcal{M}^D (i.e. the dual of the vertices of \mathcal{M}^D), which generate the following transformation

\[g_i \to g_hg_i, \quad g \in G. \] (16)

The 0-symmetry invariant lattice model
\[Z = \sum_{\{g_i\}} e^{-\int_{\mathcal{M}^D} L(g_i)} \] (17)
satisfies
\[L(g_i) = L(hg_i), \quad h \in G. \] (18)

The Lagrangian $L(g_i)$ (a D-cochain) can be “gauged” to obtain $L(g_i, \hat{A}_{ij})$ with a non-dynamical flat gauge connection $\hat{A}_{ij} \in G$:
\[\hat{A}_{ij}\hat{A}_{jk} = \hat{A}_{ik}. \] (19)

\hat{A}_{ij} is also called the symmetry twist. The “gauged” Lagrangian has a 1-gauge symmetry
\[L(g_i, \hat{A}_{ij}) = L(h_i g_i, h_i \hat{A}_{ij} h_i^{-1}), \quad h_i \in G. \] (20)

In the following, we will choose the value of the g_i field to be the symmetry group G. Using the above symmetry, we can rewrite
\[L(g_i, \hat{A}_{ij}) = L(1, g_i^{-1} \hat{A}_{ij} g_i) = L(A_{ij}), \] (21)
where A_{ij} is the effective field
\[A_{ij} = g_i^{-1} \hat{A}_{ij} g_i. \] (22)
The partition function now can be written as

$$Z = \sum_{\{g_i\}} e^{-\int_M D L(A_{ij})}, \quad A_{ij} = g_i^{-1}\hat{A}_{ij}g_j.$$ \hspace{1cm} (23)

We remark that eqn. (23) describes a G symmetric system in a background of twisted 0-symmetry. The twisted 0-symmetry is described by a connection A_{ij}. We may also view the connection \hat{A}_{ij} as a probe of the G 0-symmetry.

We remark that the effective field A_{ij} in eqn. (23) describes a flat connection

$$A_{ij}A_{jk} = A_{ik}. \quad \hspace{1cm} (24)$$

The summation $\sum_{\{g_i\}}$ sums over all gauge equivalent configuration that correspond to the same flat G-bundle. In fact, we can view g_i as the gauge transformation, and thus $\sum_{\{g_i\}}$ sums over all gauge transformations.

We also like to remark that $L(A_{ij})$ can be viewed as a Lagrangian of a lattice gauge theory (i.e. 1-gauge theory). Here we construct a lattice theory with a 0-symmetry with a 0-symmetry twist by starting with a Lagrangian for lattice 1-gauge theory, and doing the path integral by only summing over the 1-gauge configurations within one gauge equivalent class. We will use the similar approach to construct lattice model with higher symmetry, with a higher symmetry twist.

\section*{B. Models with 1-symmetry and 1-symmetry twist}

To construct a model with a combined 0-symmetry and 1-symmetry, we include an extra bosonic field a_{ij} living on the links ij. The value of a_{ij} is taken from an Abelian group Π_2. We start with the Lagrangian in terms of the effective fields A_{ij} and B_{ijk}. Here B_{ijk} is a Π_2-valued 2-cochain field living on the triangles ijk. The 1-cochain field A_{ij} is flat as before (see eqn. (24)). The 2-cochain field B_{ijk} may not be flat

$$dB = n_3(A). \quad \hspace{1cm} (25)$$

To understand $n_3(A)$, we note the field A on the links satisfying (24) define a map $\mathcal{M}^D \xrightarrow{\phi} BG$ (or more precisely a homomorphism of simplicial complexes). Then $n_3(A)$ is given by $n_3(A) = \#\phi\bar{n}_3$, where $\bar{n}_3 \in H^2(BG,\Pi_2)$. Note that \bar{n}_3 is a cocycle on the classifying space BG, while $n_3(A)$ is the pullback of \bar{n}_3 on BG by the homomorphism ϕ. We see that the map ϕ must satisfy a property that the pullback of \bar{n}_3 is a coboundary on \mathcal{M}^D. (For details, see Ref. 30 and 76.)

The higher gauge transformations are generated by g_i, a_{ij}:

$$A_{ij} \rightarrow g_i^{-1}A_{ij}g_i,$$

$$B_{ijk} \rightarrow B_{ijk} + a_{ij} + a_{jk} - a_{ik} + \xi_{ijk}(A_{ij}, g_i). \quad \hspace{1cm} (26)$$

where $\xi_{ijk}(A_{ij}, g_i)$ is given by

$$d\xi(A_{ij}, g_i) = n_3(g_i^{-1}A_{ij}g_i) - n_3(A_{ij}). \quad \hspace{1cm} (27)$$

Here eqn. (26) is called a 2-gauge transformation.

Let $L(A_{ij}, B_{ijk})$ be a D-cochain that depends on A and B. Then summing over all the 2-gauge transformations (26)

$$Z = \sum_{\{g_i, a_{ij}\}} e^{-\int_M D L(A_{ij}, B_{ijk})} \quad \hspace{1cm} (28)$$

will give us a bosonic model with a non-trivially combined 0-symmetry and 1-symmetry. Here

$$A_{ij} = g_i^{-1}\hat{A}_{ij}g_i,$$

$$B_{ijk} = \hat{B}_{ijk} + a_{ij} + a_{jk} - a_{ik} + \xi_{ijk}(\hat{A}_{ij}, g_i), \quad \hspace{1cm} (29)$$

g_i, a_{ij} are dynamical fields, and $\hat{A}_{ij}, \hat{B}_{ijk}$ are non-dynamical background 2-gauge connections satisfying

$$\hat{A}_{ij}\hat{A}_{jk} = \hat{A}_{ik}. \quad \hspace{1cm} (30)$$

Note that here $L(A_{ij}, B_{ijk})$ can be any function of A_{ij}, B_{ijk}. In particular, it does not has to be invariant under the higher gauge transformation (29). The model eqn. (28) has a combined global 0-symmetry and 1-symmetry when $\hat{A}_{ij} = 1$ and $\hat{B}_{ijk} = 0$. The combined 0-symmetry and 1-symmetry is generated by

$$g_i \rightarrow gg_i, \quad a_{ij} \rightarrow a_{ij} + \alpha_{ij}; \quad g \in G, \quad \alpha_{ij} \in \Pi_2, \quad d\alpha = 0. \quad \hspace{1cm} (31)$$

(Note that $\xi_{ijk}(\hat{A}_{ij} = 1, g_i) = \xi_{ijk}(\hat{A}_{ij} = 1, gg_i)$.) In particular, the global 1-symmetry transformation changes the 1-cochain field a by a cocycle. (We can view the 1-cochain field a as a field on $(D - 1)$-cells of the dual complex \mathcal{M}^D. The global 1-symmetry transformation changes the 1-cochain field a by a constant on the $(D - 1)$-cells of a closed the $(D - 1)$-dimensional (or codimension-1) complex in the dual complex \mathcal{M}^D.

We point out that eqn. (28) describes a system with 0-symmetry and 1-symmetry on a background of twisted 0-symmetry and 1-symmetry. The twisted 0-symmetry is described by the 1-connection $\hat{A}_{ij} \in G$. The twisted 1-symmetry is described by the 2-connection $\hat{B}_{ijk} \in \Pi_2$, which is a Π_2-valued 2-cochain satisfying $d\hat{B} = n_3(\hat{A})$.

We like to remark that in our above construction of lattice models, we started with a lattice 2-gauge theory. However, in our construction, the 2-gauge invariant field strength is a non-dynamical background field. The pure 2-gauge transformations are our dynamical fields. Such a lattice model has a combined global 0-symmetry and 1-symmetry. We point out that the above construction can also be used to construct lattice models with a combined global 0-symmetry, 1-symmetry, and 2-symmetry, by starting with 3-gauge theories. In general, lattice models with higher symmetry can be constructed by starting from lattice higher gauge theories,[30] where the higher field strength corresponds to fixed higher symmetry twist, and the dynamical fields come from the higher gauge transformations.
VII. LATTICE MODELS THAT REALIZE HIGHER SPT PHASES – SYSTEMATIC CONSTRUCTIONS

A. Models realizing bosonic SPT phases

After constructing models with on-site 0-symmetry eqn. (23), we can choose \(L(A) \) to be a \(2\pi i \mathbb{R} / \mathbb{Z} \)-valued cocycle

\[
Z(\hat{A}) = \sum_{\{g_i\}} e^{2\pi i \int_{\mathcal{M}^D} \omega_D(A_{ij})}, \quad A_{ij} = g_i^{-1} \hat{A}_{ij} g_j, \tag{32}
\]

where \(\omega_D(A_{ij}) = *\phi \hat{\omega}_D \), \(\hat{\omega}_D \) is a cocycle \(\hat{\omega}_D \in H^2(BG, \mathbb{R} / \mathbb{Z}) \) and \(BG \) is the classifying space of \(G \). Note that \(\hat{\omega}_D \) lives on \(BG \), while \(\omega_D(A_{ij}) \) lives on \(\mathcal{M}^D \). Thus \(\omega_D(A_{ij}) \) is the pullback of \(\hat{\omega}_D \) by the map \(\mathcal{M}^D \xrightarrow{\partial} BG \) determined by the 1-cochain field \(A_{ij} : \omega_D(A_{ij}) = *\phi \hat{\omega}_D \). The above exactly soluble model realizes a bosonic G-SPT state characterized by cocycle \(\hat{\omega}_D \). For more details and a more precise description of the above model and the notations, see, for examples, Ref. 75 and Ref. 30.

B. Models realizing bosonic higher SPT phases

Starting with the model (28) with a combined 0-symmetry and 1-symmetry, we can choose \(L(A, B) \) to obtain an exactly soluble model

\[
Z = \sum_{\{g_i, a_{ij}\}} e^{2\pi i \int_{\mathcal{M}^D} \omega_D(A_{ij})}, \quad A_{ij} = g_i^{-1} \hat{A}_{ij} g_j, \quad B_{ijk} = B_{ijk} + a_{ij} + a_{jk} - a_{ik} + \xi_{ijk}(\hat{A}, g), \tag{33}
\]

where the dynamical field on vertices is \(g_i \in G \) and the dynamical field on links is \(a_{ij} \in \Pi_2 \). Here \(\omega_D(A, B) = *\phi \hat{\omega}_D \), \(\hat{\omega}_D \in H^2(B(G, \Pi_2), \mathbb{R} / \mathbb{Z}) \) and \(B(G, \Pi_2) \) is the classifying space of a 2-group.[30] We call \(\hat{\omega}_D \) a 2-group cocycle. Also \(\phi \) is the map \(\mathcal{M}^D \xrightarrow{\partial} B(G, \Pi_2) \) as determined by the fields \(A_{ij}, B_{ijk} \). In fact, the homomorphism \(\phi \) and the fields \(A, B \) on \(\mathcal{M}^D \) are directly related in the following way

\[
A = *\phi \hat{A}, \quad B = *\phi \hat{B} \tag{34}
\]

where \(\hat{A} \) is the \(G \)-valued canonical 1-cochain on \(B(G, \Pi_2) \) and \(\hat{B} \) is the \(\Pi_2 \)-valued canonical 2-cochain on \(B(G, \Pi_2) \). For more details, see, for example, Ref. 30.

The model (28) realizes a higher SPT (hSPT) phase with a higher symmetry described by 2-group \(B(G, \Pi_2) \).[18] The hSPT phases are systematically constructed via \(\mathbb{R} / \mathbb{Z} \)-valued D-cocycles \(\omega_D \) on the classifying space \(B(G, \Pi_2) \).

For more general higher group \(B(G, \Pi_2, \Pi_3, \cdots) \), we note that higher group admits a special one-vertex triangulation. The resulting complex is a simplicial set (see for example Ref. 30). We will use the same symbol \(B(G, \Pi_2, \Pi_3, \cdots) \) to denote such a simplicial set. Using the simplicial set, an exactly soluble local bosonic model that realize a higher gauge theory with gauge group \(B(G, \Pi_2, \Pi_3, \cdots) \) can be constructed[30]

\[
Z(\mathcal{M}^D) = \sum_{\phi} e^{2\pi i \int_{\mathcal{M}^D} *\phi \hat{\omega}_D}, \tag{35}
\]

where \(\sum_{\phi} \) sums over all the simplicial-complex homomorphisms \(\mathcal{M}^D \xrightarrow{\partial} B(G, \Pi_2, \Pi_3, \cdots) \). Here \(\hat{\omega}_D \) is a \(\mathbb{R} / \mathbb{Z} \)-valued D-cocycle on \(B(G, \Pi_2, \Pi_3, \cdots) \):

\[
\hat{\omega}_D \in H^2(B(G, \Pi_2, \Pi_3, \cdots); \mathbb{R} / \mathbb{Z}), \tag{36}
\]

and \(*\phi \hat{\omega}_D \) is the pullback of the cocycle on \(B(G, \Pi_2, \Pi_3, \cdots) \) to \(\mathcal{M}^D \). We note that the model (35) realizes a topologically ordered phase described by a higher gauge theory (which is not a hSPT phase).

To obtain a model that realizes a hSPT phase with trivial topological order, we note that the simplicial-complex homomorphisms \(\mathcal{M}^D \xrightarrow{\partial} B(G, \Pi_2, \Pi_3, \cdots) \) can be divided into many different homotopy classes. Each class correspond to gauge equivalent configurations. So we can label the homotopy classes as \([A, B, \cdots]\), which are formed by all the configurations that are homotopic to \(\phi \). We may also label the homotopy classes as \([A, B, \cdots]\) where \(A, B, \cdots \) are the higher gauge connections, and \([A, B, \cdots]\) are formed by all the configurations that are gauge equivalent (i.e. homotopic) to \(A, B, \cdots \). \([\phi]\) and \([A, B, \cdots]\) are just two notations for the same thing.

Now we generate the gauge equivalent configurations in the class \([A, B, \cdots]\) by gauge transformations \(g, a_{ij}, \cdots \)

\[
A^g, B^a, g, a_{ij}, \cdots \in [A, B, \cdots]. \tag{37}
\]

We may also rewrite the above as

\[
\psi^{a_{ij}, \cdots} \in [\phi], \tag{38}
\]

where \(\psi^{a_{ij}, \cdots} \) is the homomorphism obtained from \(\psi \) by 2-gauge transformation \(g, a \) (see eqn. 26). We note that the number of gauge transformations \(g, a, \cdots \) and the number of configurations in \([\phi]\) may not be the same, since different gauge transformations may give rise to the same homomorphism \(\psi^{a_{ij}, \cdots} = \psi^{a_{ij}, \cdots} \).

With the above notation, we can write down the local bosonic model that realize a hSPT phase

\[
Z(\mathcal{M}^D, \psi) = \sum_{g, a_{ij}, \cdots} e^{2\pi i \int_{\mathcal{M}^D} *\psi^{a_{ij}, \cdots} \hat{\omega}_D}. \tag{39}
\]

Comparing to the higher gauge theory eqn. (35) here we just change the dynamics of the field \(\phi \) by restricting it to a homotopy class \([\phi]\). We note that \(\phi \) in each homotopy
class \(\phi \) give rise to the same \(e^{2\pi i \int_{\mathcal{M}^D} \star \omega_D} \) for closed \(\mathcal{M}^D \). Thus
\[
Z(\mathcal{M}^D, \hat{\phi}) = \left(|G|^N_1 |\Pi_1|^N_1 |\Pi_3|^N_1 \right) e^{2\pi i \int_{\mathcal{M}^D} \star \omega_D},
\]
(40)
where \(N_1, N_1, \ldots \) are the numbers of vertices, links, triangles, \(\cdots \), in the spacetime complex \(\mathcal{M}^D \). We see that the topological partition function is given by
\[
Z^{\text{top}}(\mathcal{M}^D, \hat{\phi}) = e^{2\pi i \int_{\mathcal{M}^D} \star \omega_D},
\]
which is the hSPT invariant characterizing the hSPT phase.

C. More general bosonic hSPT phases

The bosonic model eqn. (39) does not realize all possible bosonic hSPT phases. To obtain more general bosonic hSPT phases protected by higher symmetry described by higher group \(B(G, \Pi_2, \cdots) \), we can replace the symmetry group \(G \) by \(G^{SO} \), as proposed in Ref. 56 and Ref. 76:
\[
G_{SO} = G \times SO_{\infty}.
\]
We arrive at the following local bosonic model
\[
Z(\mathcal{M}^D, \hat{\phi}_{GSO}) = \sum_{g_{GSO}, a_{n_2}} e^{2\pi i \int_{\mathcal{M}^D} \star \omega_{GSO}^{g_{GSO}, a_{n_2}}},
\]
(43)
where \(\omega_{GSO}^{g_{GSO}, a_{n_2}} \in H^D[B(G_{SO}, \Pi_2, \cdots); \mathbb{R}/\mathbb{Z}] \), \(\hat{\phi}_{GSO} \) is a simplicial-complex homomorphism \(\mathcal{M}^D \rightarrow B(G_{SO}, \Pi_2, \cdots) \), and \(\sum g_{GSO}, a_{n_2} \) sums over all the gauge transformations described by \(g_{GSO}, a_{\Pi_2}, \cdots \). Also, \(\hat{\phi}_{GSO} \) is the homomorphism obtained from the \(\hat{\phi}_{GSO} \) by gauge transformation \(\hat{\phi}_{GSO}^{g_{GSO}, a_{n_2}} \). We stress that here \(\hat{\phi}_{GSO} \) is not an arbitrary homomorphism from \(\mathcal{M}^D \) to \(B(G_{SO}, \Pi_2, \cdots) \). We note that a homomorphism \(\hat{\phi}_{GSO} \) gives rise to a \(G_{SO} \) gauge configuration \(\hat{\mathcal{A}}_{GSO} = \star \hat{\phi}_{GSO} \hat{\mathcal{A}}_{GSO} \) on \(\mathcal{M}^D \), where \(\hat{\mathcal{A}}_{GSO} \) is the canonical 1-cochain on \(B(G_{SO}, \Pi_2, \cdots) \). Since \(\hat{\mathcal{A}}_{GSO} \in G_{SO} \), we can use the natural projection \(G_{SO} \rightarrow SO_{\infty} \) to obtain \(\hat{\mathcal{A}}_{SO} = \pi(\hat{\mathcal{A}}_{GSO}) \in SO_{\infty} \). We require \(\hat{\mathcal{A}}_{SO} \) to be the connection of the tangent bundle of \(\mathcal{M}^D \). The resulting model (43) realizes more general bosonic hSPT phases.

In the presence of time-reversal symmetry, the symmetry group is given by \(G = G_0 \times Z^T_2 \), where \(Z^T_2 \) is the time-reversal symmetry group. In this case we replace \(G \) by \(G_D \), as proposed in Ref. 56 and Ref. 76:
\[
G_D = G \times SO_{\infty} = G_0 \times Z^T_2 \times SO_{\infty} = G_0 \times O_{\infty}
\]
(44)
since \(O_{\infty} = Z^T_2 \times SO_{\infty} \). We obtain the following local bosonic model
\[
Z(\mathcal{M}^D, \hat{\phi}_{G_D}) = \sum_{g_{G_D}, a_{n_2}} e^{2\pi i \int_{\mathcal{M}^D} \star \omega_{G_D}^{g_{G_D}, a_{n_2}}},
\]
(45)
where \(\omega_{G_D}^{g_{G_D}, a_{n_2}} \in H^D[B(G_D, \Pi_2, \cdots); \mathbb{R}/\mathbb{Z}] \), \(\hat{\phi}_{G_D} \) is a simplicial-complex homomorphism \(\mathcal{M}^D \rightarrow B(G_D, \Pi_2, \cdots) \), and \(\sum g_{G_D}, a_{n_2} \) sums over all the higher gauge transformations of the higher group \(B(G_D, \Pi_2, \cdots) \). Again, \(\hat{\phi}_{G_D} \) is not an arbitrary homomorphism from \(\mathcal{M}^D \) to \(B(G_D, \Pi_2, \cdots) \). We require \(\hat{\mathcal{A}}_{\mathcal{D}} = \pi(\hat{\mathcal{A}}_{G_D}) \in O_{\infty} \) to be the connection of the tangent bundle of \(\mathcal{M}^D \), where \(\hat{\mathcal{A}}_{G_D} = \hat{\phi}_{G_D} \hat{\mathcal{A}}_{G_D} \). The resulting model (45) realizes more general bosonic hSPT phases.

D. Fermionic hSPT phases

With the above general construction of bosonic models to realize bosonic hSPT phases, we can use higher dimensional bosonization\([56, 75]\) to obtain fermionic models to realize fermionic hSPT phases. Such a construction is closely related to the fermion worldline decoration\([76]\), and does not produce all possible fermionic hSPT phases.

Without time reversal symmetry, we consider the following bosonized local fermion model
\[
Z(\mathcal{M}^D, \hat{\phi}_{GSO}) = \sum_{g_{GSO}, a_{n_2}} e^{2\pi i \int_{\mathcal{M}^D} \star \omega_{GSO}^{g_{GSO}, a_{n_2}}},
\]
(46)
The model is build using the following data

1. A fermion higher symmetry described by higher group \(B(G_{GSO}, \Pi_2, \cdots) \), where
\[
G_{GSO} = G_f \times SO_{\infty}
\]
(47)
and \(G_f = Z^T_2 \times G_b \) is the fermion 0-symmetry group. The higher group \(B(G_{GSO}, \Pi_2, \cdots) \) has the canonical \(G_{GSO} \)-valued 1-cochain \(\hat{\mathcal{A}}_{G_{GSO}} \), the canonical \(\Pi_2 \)-valued 2-cochain \(\hat{B}_{G_{GSO}} \) that satisfy \(dB_{G_{GSO}} = \tilde{n}_2(\hat{A}_{G_{GSO}}) \), etc (see Ref. 30 and Ref. 76).

2. A higher group \(B_f(\Pi_2, \Pi_1, \cdots) \), where \(B_f \) is an \(O_{\infty} \)-valued \(D \)-cochain on \(B(G_{GSO}, \Pi_2, \cdots) \) that satisfies \(dB_{G_{GSO}} = \tilde{n}_2(\hat{A}_{G_{GSO}}) \) (48)
on the higher group \(B_f(\Pi_2, \Pi_1, \cdots) \), \(O_{\infty} \)-valued \(D \)-cochain on \(B(G_{GSO}, \Pi_2, \cdots) \) that satisfies \(dB_{G_{GSO}} = \tilde{n}_2(\hat{A}_{G_{GSO}}) \) (48)

3. A \(\mathbb{R}/\mathbb{Z} \)-valued \((D + 1) \)-coycle
\[
\tilde{\omega}_{D+1} = \frac{1}{2} \tilde{s}_2 \hat{f}_{D-1} + \frac{1}{2} \tilde{w}_2(\hat{A}_{SO})
\]
(48)
on the higher group \(B_f(\Pi_2, \Pi_1, \cdots) \), \(O_{\infty} \)-valued \(D \)-cochain on \(B(G_{GSO}, \Pi_2, \cdots) \) that satisfies \(dB_{G_{GSO}} = \tilde{n}_2(\hat{A}_{G_{GSO}}) \) (48)

4. A trivialization homomorphisms \(\varphi : B(G_{GSO}, \Pi_2, \cdots) \rightarrow B_f(\Pi_2, \Pi_1, \cdots) \).

5. A choice of trivialization, \(i.e. \) a \(\mathbb{R}/\mathbb{Z} \)-valued \(D \)-cochain on \(B(G_{GSO}, \Pi_2, \cdots) \) that satisfies
\[
-d\hat{B}_{G_{GSO}} = \varphi \cdot \tilde{\omega}_{D+1}.
\]
(49)
The above data, in fact, gives us a partial classification of fermionic hSPT phases without time reversal symmetry. Now let us explain the compact notation eqn. (46) that describes the model

1. The model is defined on a spacetime complex \mathcal{M}^D.

2. The model has a higher symmetry described by a higher group $\mathcal{B}(\mathcal{G}_{\text{ISO}}, \Pi_2, \cdots)$, where \mathcal{G}_{ISO} is a simplicial-complex homomorphism $\mathcal{M}^D \xrightarrow{\phi_{\mathcal{G}_{\text{ISO}}}} \mathcal{B}(\mathcal{G}_{\text{ISO}}, \Pi_2, \cdots)$. $\phi_{\mathcal{G}_{\text{ISO}}}$ is not an arbitrary homomorphism. We require $\hat{A}_{ij} = \pi(\hat{A}_{ij}^{\mathcal{G}_{\text{ISO}}}) \in SO_\infty$ to be the connection of the tangent bundle of \mathcal{M}^D, where $\hat{A}^{\mathcal{G}_{\text{ISO}}} = \ast \phi_{\mathcal{G}_{\text{ISO}}} \hat{A}^{\mathcal{G}_{\text{ISO}}}$ and π is the natural projection $\mathcal{G}_{\text{ISO}} \xrightarrow{\pi} SO_\infty$.

3. $\sum_{a \in \Pi_2, \cdots} g_{\mathcal{G}_{\text{ISO}}, a}^\Pi_2$ is a summation of all the higher gauge transformations described by $g_{\mathcal{G}_{\text{ISO}}, a}^\Pi_2, \cdots$ (see eqn. (26)). Here $g_{\mathcal{G}_{\text{ISO}}}^\mathcal{M}$ lives on the vertices of \mathcal{M}^D: $g_{\mathcal{G}_{\text{ISO}}}^\mathcal{M} \in G_{\text{ISO}}$, and $g_{\mathcal{G}_{\text{ISO}}, a}^\Pi_2$ lives on the links of \mathcal{M}^D: $g_{\mathcal{G}_{\text{ISO}}, a}^\Pi_2 \in \Pi_2, \cdots$, etc. $g_{\mathcal{G}_{\text{ISO}}, a}^\Pi_2, \cdots$ are the dynamical fields in our model.

4. $\hat{g}_{\mathcal{G}_{\text{ISO}}, a}^\Pi_2$ is the higher connection obtained from the background higher connection $\phi_{\mathcal{G}_{\text{ISO}}}$ via the higher gauge transformation $g_{\mathcal{G}_{\text{ISO}}, a}^\Pi_2, \cdots$.

5. N^{D+1} is a $(D + 1)$-dimensional complex whose boundary is \mathcal{M}^D: $\partial N^{D+1} = \mathcal{M}^D$.

6. $\hat{g}_{\phi_{\mathcal{G}_{\text{ISO}}, a}^\Pi_2}$ is a simplicial-complex homomorphism $N^{D+1} \xrightarrow{\phi_{\phi_{\mathcal{G}_{\text{ISO}}, a}^\Pi_2}} \mathcal{B}(SO_\infty, 1; \mathbb{Z}_2, D - 1)$. When restricted to the boundary $\mathcal{M}^D = \partial N^{D+1}$, it satisfies $\phi_{\phi_{\mathcal{G}_{\text{ISO}}, a}^\Pi_2} = \phi_{\phi_{\mathcal{G}_{\text{ISO}}, a}^\Pi_2}$.

The resulting model (46) realizes fermionic hSPT phases without time reversal symmetry.

When we have only the usual global symmetry, i.e., when $B(G_{\text{ISO}}, \Pi_2, \cdots) = B(G_{\text{ISO}})$, the above model (46) reduces to the one discussed in Ref. 76, which realizes fermionic SPT phases. When $\omega_{D+1}^{SO} = 0$, the model (46) reduces to eqn. (43) which realizes bosonic hSPT phases.

To include time reversal symmetry, we simply replace SO_∞ by O_∞ in the above construction. However, now ω_{D+1}^{SO} has two choices: If the fermions are Kramers singlet, we have

$$\omega_{D+1}^{SO} = \frac{1}{2} S_q^2 f_{D-1} + \frac{1}{2} \tilde{f}_{D-1} \tilde{w}_2 (\hat{A}^O) \quad (50)$$

If the fermions are Kramers doublets, we have

$$\omega_{D+1}^{SO} = \frac{1}{2} S_q^2 f_{D-1} + \frac{1}{2} \tilde{f}_{D-1} [\tilde{w}_2 (\hat{A}^O) + \tilde{w}_1^2 (\hat{A}^O)] \quad (51)$$

E. The usefulness of hSPT phases

But hSPT phases do not exist in natural condensed matter systems. This is because, similar to the usual SPT phase, a hSPT phase requires a higher symmetry. Without higher symmetry, we simply do not have distinct hSPT phases. But in the usual condensed matter systems, we do not have higher symmetry. In the EM condensed matter systems with dynamical electromagnetic field, we either have gapless photon modes or have non-trivial topological orders (where the higher symmetry is spontaneously broken due to the superconductivity in the EM condensed matter systems). This is why we do not have hSPT phases in natural condensed matter systems. (But we may construct fine-tuned toy models experimentally to realize higher symmetries and hSPT phases.)

However, understanding the hSPT phases is still important in condensed matter. This is because the emergent higher symmetries in topological orders may be anomalous, which has physical consequences. We need to understand hSPT phases in order to understand the anomalous higher symmetry via the boundary of hSPT states.[18, 53] In the following, we will study a few simple hSPT phases. In particular, we will give examples of topological orders with emergent (anomalous) higher symmetries.

VIII. LATTICE MODELS THAT REALIZE HIGHER SPT PHASES – SIMPLE EXAMPLES

A. A 3+1D model to realize a pure Z_n 1-SPT phase

1. The bulk theory and the boundary theory

In this section, we will show that the following bosonic model can realize a Z_n 1-SPT phase

$$Z = \sum_{\{a \in \mathbb{Z}_n\}} e^{2\pi i \frac{\xi}{\Delta} [a^2 + da^{\mathbb{Z}_n}]}, \quad (k, n) = (\text{integer}, \text{integer}), \quad (52)$$

where $\sum_{\{a \in \mathbb{Z}_n\}}$ sums over \mathbb{Z}_n-valued 1-cochains $a^\mathbb{Z}_n$, and $B^\mathbb{Z}_n$ is a \mathbb{Z}_n-valued 2-cocycle

$$dB^\mathbb{Z}_n = 0. \quad (53)$$
Also Sq is the generalized Steenrod square defined in eqn. (A24).

For $\tilde{B}^{R/Z} = 0$, the model has a Z_n 1-symmetry generated by
\[a^{Z_n} \rightarrow a^{Z_n} + \alpha^{Z_n}, \quad da^{Z_n} \equiv 0, \quad (54) \]
even when M^4 has a boundary. When $\tilde{B}^{R/Z} \neq 0$, the model has the Z_n 1-symmetry when M^4 has no boundary. To obtain this result, we note that (see eqn. (A27))
\[Sq^2(\tilde{B}^{Z_n} + da^{Z_n}) \]
\[\equiv Sq^2\tilde{B}^{Z_n} + 2Sq^2 da^{Z_n} - d(da^{Z_n} - \tilde{B}^{Z_n}) \equiv Sq^2\tilde{B}^{Z_n}, \quad (55) \]

In eqn. (52), \tilde{B}^{Z_n} is the Z_n background 2-connection to describe the twist of the Z_n 1-symmetry. There is Z_n gauge symmetry:
\[a^{Z_n} \rightarrow a^{Z_n} + \tilde{a}^{Z_n}, \quad \tilde{B}^{Z_n} \rightarrow \tilde{B}^{Z_n} - da^{Z_n}. \quad (56) \]

Using eqn. (A29) we find that
\[Sq^2(\tilde{B}^{Z_n} + da^{Z_n}) \]
\[= Sq^2\tilde{B}^{Z_n} + 2B^{Z_n} da^{Z_n} + d[Sq^2a^{Z_n} - da^{Z_n} - \tilde{B}^{Z_n}] \]
\[\equiv Sq^2\tilde{B}^{Z_n} + d[a^{Z_n} da^{Z_n} - da^{Z_n} - \tilde{B}^{Z_n} + B^{Z_n} d\tilde{a}^{Z_n}] \]
Therefore
\[e^{2\pi i f_{\lambda^4} \frac{\pi}{2} Sq^2(\tilde{B}^{Z_n} + da^{Z_n})} = e^{2\pi i f_{\lambda^4} \frac{\pi}{2} Sq^2(\tilde{B}^{Z_n})} \quad (58) \]
for closed spacetime M^4. The model is exactly soluble and gapped for closed spacetime M^4.

Eqn. (52) has no topological order since on closed spacetime and for $\tilde{B}^{Z_n} = 0$,
\[Z = \sum_{\{a^{Z_n}\}} e^{2\pi i f_{\lambda^4} \frac{\pi}{2} (da^{Z_n})^2} = \sum_{\{a^{Z_n}\}} 1 = n^{N_i}, \quad (59) \]
where N_i is the number of links in the spacetime complex M^4, n^{N_i} is the so called the volume term that is linear in the spacetime volume. The topological partition function Z^{top} is given via
\[Z = e^{-TV} Z^{\text{top}} \quad (60) \]
where V is the spacetime volume. (For a detailed discussion of the non-universal volume term and the universal topological terms, see Ref. 77 and 78.) After removing the volume term, the topological partition function of the above model is $Z^{\text{top}}(M^4) = 1$ for all closed 4-complex M^4. Thus the above model has no topological order. After we turn on the flat Z_n 2-connection \tilde{B}^{Z_n}, the topological partition function of the model (52) is
\[Z^{\text{top}}(M^4, \tilde{B}^{Z_n}) = e^{2\pi i f_{\lambda^4} \frac{\pi}{2} (\tilde{B}^{Z_n})^2}, \quad d\tilde{B}^{Z_n} \equiv 0. \quad (61) \]
The above 1-SPT invariant looks different for different $k \mod n$. But do they really different? If we gauge the Z_n 1-symmetry, we turn the above Z_n 1-SPT phase into a topological ordered phase described by a pure Z_n 2-gauge theory:
\[Z = \sum_{\{\{\tilde{a}^{Z_n}\}\}} e^{2\pi i f_{\lambda^4} \frac{\pi}{2} (\tilde{a}^{Z_n})^2}. \quad (62) \]
It turns out that the same topological order is also described by a $Z_{(2k,n)}$ gauge theory. The $Z_{(2k,n)}$ gauge theory has emergent fermions iff $2kn/(2k,n)^2 = \text{odd}$. So the 1-SPT invariant is really different at least when the pairs $\{2k,n\}$, mod $(2kn/(2k,n)^2, 2)$ are different.

In Ref. 30, it was shown that $H^4(B(Z_n, 2); \mathbb{R}/Z) = Z_n$ for $n = \text{odd}$, and $H^4(B(Z_n, 2); \mathbb{R}/Z) = Z_{2n}$ for $n = \text{even}$. Thus the above 1-SPT invariant is non-trivial. There are (at least) n distinct Z_n 1-SPT phases labeled by $k = 0, \cdots, n - 1$.

To see the physical properties of the Z_n 1-SPT phase, we consider its 2+1D boundary state described by
\[Z(B^3) = \sum_{\{\{\tilde{a}^{Z_n}\}\}} e^{2\pi i f_{\lambda^3} \frac{\pi}{2} a^{Z_n} da^{Z_n}} \quad (63) \]
where we have set the background 2-connection $\tilde{B}^{Z_n} = 0$. The boundary theory also has the Z_n 1-symmetry which is generated by eqn. (54). We like to point out that the action amplitude $e^{2\pi i f_{\lambda^3} \frac{\pi}{2} a^{Z_n} da^{Z_n}}$ for spacetime with boundary $\partial B^3 \neq 0$ is actually not invariant under the Z_n 1-symmetry transformation. Only the action amplitude for closed spacetime $\partial B^3 = 0$ has the Z_n 1-symmetry. This indicates that the Z_n 1-symmetry in the model is anomalous.

The above model is not exactly soluble. To have a soluble model, we restrict a^{Z_n} to be cocycles and obtain
\[Z(B^3) = \sum_{\{\{a^{Z_n}\}\}} e^{2\pi i f_{\lambda^3} \frac{\pi}{2} a^{Z_n} da^{Z_n}} = \sum_{\{\{a^{Z_n}\}\}} 1. \quad (64) \]
The above model actually describes a 2+1D untwisted Z_n gauge theory.

In the presence of the Z_n-flux described by 2-coboundary da^{Z_n} and the Z_n charge described by worldline C^1, the above path integral is modified. The new one is obtained by adding the term $e^{2\pi i f_{C^1} a^{Z_n}}$ and then replacing a^{Z_n} by $a^{Z_n} + \tilde{a}^{Z_n}$. We find
\[Z(B^3) = \sum_{\{\{a^{Z_n}\}\}} e^{2\pi i f_{\lambda^3} \beta_n a^{Z_n} + 2\pi i f_{\lambda^3} (2a^{Z_n} da^{Z_n} + \tilde{a}^{Z_n} d\tilde{a}^{Z_n})} \]
\[e^{2\pi i f_{C^1} (a^{Z_n} + \tilde{a}^{Z_n})}, \quad (65) \]
Let \tilde{c}_2 be the Poincaré dual of the cycle C^1 which is a 2-cocycle on the dual complex B^3. The above can be rewritten as
\[Z(B^3) = \sum_{\{\{a^{Z_n}\}\}} e^{2\pi i f_{\lambda^3} \beta_n a^{Z_n} da^{Z_n} + \pi c_2(a^{Z_n} + \tilde{a}^{Z_n})}. \quad (66) \]
Now let us consider a bound state of m_f Z_n-flux quanta and m_c unit of Z_n charges. Let 2-cocycle \tilde{d} be the Poincaré dual of the worldline of such a bound state. The path integral in presence of such a bound state is obtained by setting $\hat{d}Z_n = m_f \hat{d}a$ and $\hat{e}_2 = m_c \hat{d}a$. We get

$$Z(B^3) = \sum_{\{dZ_n \equiv 0\}} e^{2\pi i \int f_{\theta B} \frac{2k}{n} aZ_n d\hat{a} + \frac{2m}{n} aZ_n \hat{d}a + \frac{km}{n} \hat{a}d\hat{a} + \frac{mc}{n} \hat{a}d\hat{a}} \cdot (\hat{d}a)^{Z_n}.$$ \hspace{1cm} (67)

This suggests that the statistics of the bound state is given by $\theta = 2\pi \left(\frac{km}{n} + \frac{m_c m_f}{n}\right) = \pi m^T K^{-1} m$, where

$$K = \begin{pmatrix} -2kn & n \\ n & 0 \end{pmatrix}, \quad K^{-1} = \begin{pmatrix} 0 & \frac{1}{n} \\ \frac{1}{n} & 2k \end{pmatrix}, \quad m = \begin{pmatrix} m_c \\ m_f \end{pmatrix}. \hspace{1cm} (68)$$

The above statistics can be reproduced by a $U(1) \times U(1)$ Chern-Simons (CS) theory. Thus the 2+1D bosonic model (65) can be described by $U(1) \times U(1)$ CS theory

$$\mathcal{L} = \pi K_{1j} a_j \hat{d}a_j + \cdots,$$ \hspace{1cm} (69)

where a_j’s are 1-forms and $a_j \hat{d}a_j = a_j \wedge da_j$ is a wedge product of differential forms. The \cdots term makes a_j to have a small curvature

$$da_j \approx 0 \hspace{1cm} (70)$$

We can choose a new basis to rewrite eqn. (69) as

$$\mathcal{L} = \pi K'_{1j} a_j' \hat{d}a_j' + \cdots,$$ \hspace{1cm} (71)

where

$$K' = \begin{pmatrix} 0 & n \\ n & 0 \end{pmatrix} = W^T KW, \quad W = \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}. \hspace{1cm} (72)$$

Thus, the CS theory eqn. (69) always describes the same Z_n gauge theory eqn. (71) regardless of the value of k. In the new bases, the excitations are labeled by

$$m' = (W^T)^{-1} m \quad \text{or} \quad \begin{pmatrix} m_1' \\ m_2' \end{pmatrix} = \begin{pmatrix} 1 & -k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} m_c \\ m_f \end{pmatrix}. \hspace{1cm} (73)$$

The 2+1D bosonic model (65) without the C^1 term has a Z_n 1-symmetry (54). The model (65) can be described by a $U(1) \times U(1)$ CS theory (69) or (71). The low energy allowed excitations are described by $m_{a_1} = (0, 1)$, or $m_{a_1}' = (-k, 1)$ in the new basis. Thus the Z_n 1-symmetry is generated by the excitation $m_{a_1}' = (k, 1)$ which has a trivial mutual statistics with m_{a_1}'. However, such a Z_n 1-symmetry is anomalous (or non-on-site) when $k \neq 0 \mod n$, since the 2+1D theory is a boundary of the 3+1D hSPT phase. We cannot gauge it to obtain a Z_n 2-gauge theory. This is an example of emergent anomalous Z_n 1-symmetry in a topologically ordered state.

In fact, the above discussions can be generalized to obtain emergent (anomalous) 1-symmetry in a $U^n(1)$ CS theory (69) described by a general K-matrix.[79–81] (For a more general discussion, see Ref. 28.) For a 2+1D bosonic topological order described by even K-matrix, an emergent higher symmetry is described by a set of low energy allowed topological excitations $C_a = \{m_a\}$ which form a lattice. All other non-trivial topological excitations not in the C_a have very high energies above Λ. Then the K topological order plus the low energy allowed topological excitations C_a has an emergent higher symmetry below the energy Λ. The emergent higher symmetry is generated by the topological excitations in $C_a = \{m_a\}$, which is formed by m_a’s that satisfy

$$m_a K^{-1} m_a = \text{integer}, \quad \forall m_a \in C_a, \hspace{1cm} (74)$$

(i.e. m_a has a trivial mutual statistics with all low energy allowed excitations m_a in C_a). Note that C_a is also a lattice. We see that

$$e^{i \pi f_{C^1} K_{1j} a_j' \hat{d}a_j'} e^{i 2\pi f_{C^1} m_{a_1}' \hat{d}a} \hspace{1cm} (75)$$

where C^1 is the worldline of the m_a excitation. The above action amplitude actually describes a boundary of a 3+1D hSPT phase described by eqn. (109) with a 1-symmetry (see eqn. (98)). In Section VIII D, we show that such an 1-symmetry happen to be the one described by the lattice C_a introduced above. Also in Section VIII D, we will show that the 3+1D hSPT order is trivial if $\pi m_{a_1}' K^{-1} m_a = 2\pi \times \text{integer}, \quad \forall m_a, m_{a_1}' \in C_a.$ Therefore, for the higher symmetry characterized by low energy allowed topological excitations C_a in a 2+1D Abelian topological order, the higher symmetry is anomaly free iff C_a contains only bosons with trivial mutual statistics among them. (Here C_a is formed by the topological excitations, that have trivial mutual statistics with all the topological excitations in C_a).

For a more general and detailed discussion, see Ref. 28 and Ref. 70.

2. Higher anomaly and phase transition

In above, we see that the emergent (anomalous) higher symmetry is not a property of a topologically ordered state. It is a property of a pair: a topologically ordered state plus its allowed low energy topological excitations.
For example, a 2+1D untwisted Z_n-gauge theory has a Z_n 1-symmetry if we only allow Z_n-flux and their fluctuations, and do not allow, for example, any Z_n-charges and their fluctuations. Such a Z_n 1-symmetry
\[
a^z \rightarrow a^z + \alpha z, \quad \text{d}a^z \equiv 0. \quad (76)
\]
is anomaly free (i.e. on-site and gaugable).

Now let us start with the deconfined phase of the 2+1D untwisted Z_n-gauge theory described by
\[
Z(B^3) = \sum_{\{a^z\}} 1. \quad (77)
\]
The deconfined phase has an anomaly-free Z_n 1-symmetry (76). We then increase the fluctuations of the Z_n-flux to drive a phase transition to the confined phase. The confined phase is described by
\[
Z(B^3) = \sum_{\{a^z\}} 1, \quad (78)
\]
which is a product state. The product phase also has an anomaly-free Z_n 1-symmetry (76), which is the same as the deconfined phase. Thus the phase transition from the Z_n-gauge deconfined phase to the confined phase (the product state) is an allowed phase transition. Such a phase transition is induced by the boson condensation of the Z_n-flux quanta.

As a second example, let us consider the same 2+1D untwisted Z_n-gauge theory described by the mutual CS theory (71), but with different allowed topological excitations: the bound states of unit Z_n-flux and $-k$ Z_n-charges $m^\tau = (-k, 1)$. In this case, the system has a different Z_n 1-symmetry (76) is anomalous (i.e. non-on-site and not gaugable). This means that if we want increase the fluctuations of the $m^\tau = (-k, 1)$ excitations to induce a phase transition, we get a phase described by eqn. (63). We cannot reach a product state described by eqn. (78) which has a different anomaly-free Z_n 1-symmetry. This result is expected. When $k \neq 0$, the $m^\tau = (-k, 1)$ excitation has a statistics $\theta = -\frac{2k}{n} \pi$. The anyons cannot condense directly. However, anyon-pairs or other proper clusters of anyons may condense to drive a phase transition. We believe that those condensations lead to topologically ordered phases, but we are not totally sure.

The result from this paper provides a proof for the above general belief, by understanding it from a point of view of the anomaly matching of the Z_n 1-symmetry. But why do we need to match the anomaly of the Z_n 1-symmetry? This is because the theories with different anomalies of higher symmetry are boundaries of different hSPT states in one higher dimension. No matter how we change the boundary interaction, we cannot change the hSPT order in one higher dimension. Hence we cannot change the higher anomaly, unless we explicitly break the higher symmetry on the boundary. Thus for $k \neq 0 \pmod{n}$

no matter how we condense the $m^\tau = (-k, 1)$ excitation in a 2+1D Z_n-gauge theory (i.e. the CS theory (71)), we can never get the trivial confined phase with no topological order.

On the other hand, if we allow the fluctuations of the bound states of several different combinations of Z_n-flux and Z_n-charges, then we may be able to induce the trivial confined phase with no topological order. In this case, the Z_n 1-symmetry is explicitly broken and the anomaly matching of the Z_n 1-symmetry is invalidated.

In general

no matter how we condense the low energy allowed topological excitation that form C_a, we can never get the trivial confined phase with no topological order, if the higher symmetry characterize by C_a is anomalous (i.e. if C_a obtained from C_a are not formed by boson with trivial mutual statistics).

B. A D-dimensional model to realize a Z_2 k-SPT phase

1. The bulk theory and the boundary theory

In the above, we have constructed models to realize Z_n 1-SPT phases in 3+1D. Here we will construct models to realize pure Z_2 k-SPT phases in any dimensions:
\[
Z(\mathcal{M}^D) = \sum_{\{a^z\}} e^{m \pi i \int_{\mathcal{M}^D} \mathcal{S}_d^{D-k-1}(\hat{B}_{k+1}^2 + \text{d}a_k^z)} , \quad (79)
\]
where $\text{d}B_{k+1}^z \equiv 0, m = 0, 1$. The theory is well defined since
\[
\mathcal{S}_d^{D-k-1}(\hat{B}_{k+1}^2 + 2c_k+1) \equiv \mathcal{S}_d^{D-k-1}(\hat{B}_{k+1}^2) \quad (80)
\]
where we have used eqn. (A27). So the model has a Z_2 k-Symmetry
\[
a_k^z \rightarrow a_k^z + \alpha_k^z, \quad \text{d}a_k^z \equiv 0. \quad (81)
\]
even when \mathcal{M}^D has a boundary. We can also show that
\[
\mathcal{S}_d^{D-k-1}(\hat{B}_{k+1}^2 + \text{d}a_k^z) \equiv \mathcal{S}_d^{D-k-1}(\hat{B}_{k+1}^2), \quad (82)
\]
using eqn. (A29). Thus, the hSPT phase is characterized by hSPT invariant
\[
\mathcal{Z}^{\text{top}}(\mathcal{M}^D, \hat{B}_{k+1}^z) = e^{m \pi i \int_{\mathcal{M}^D} \mathcal{S}_d^{D-k-1} \hat{B}_{k+1}^2}, \quad (83)
\]
for closed \mathcal{M}^D.

One boundary of the above hSPT state is described by (after setting $\hat{B}_{k+1}^z = 0$)
\[
Z(\mathcal{B}^{Dh}) = \sum_{\{a_k^z\}} e^{m \pi i \int_{\mathcal{B}^{Dh}} \mathcal{S}_d^{D-k-1}a_k^z} , \quad (84)
\]
where $D_b = D - 1$ is the spacetime dimension of the boundary. But such a boundary theory is not exactly soluble. An exactly soluble boundary is described by

$$Z(B^{D_b}) = \sum_{\{a_k^{Z_2}\}} e^{m \pi i f_{\alpha_D} \sqrt{Q}^{D_b} - k a_k^{Z_2}}$$

which describes a Z_2 k-gauge theory twisted by the topological term $e^{m \pi i f_{\alpha_D} \sqrt{Q}^{D_b} - k a_k^{Z_2}}$. In the presence of the higher Z_2-flux, the path integral becomes (after replacing $a_k^{Z_2}$ by $a_k^{Z_2} + \hat{a}_k^{Z_2}$)

$$Z(B^{D_b}) = \sum_{\{a_k^{Z_2}\}} e^{m \pi i f_{\alpha_D} \sqrt{Q}^{D_b} - k (a_k^{Z_2} + \hat{a}_k^{Z_2})}$$

where $d\hat{a}_k^{Z_2}$ describes the higher Z_2-flux on the boundary. The above model has a Z_2 k-symmetry (81). The Z_2 k-symmetry is anomalous for $m = 1$ and anomaly-free for $m = 0$.

2. Higher anomaly and phase transition

Now consider topologically ordered state in D_b spacetime dimension described by the deconfined phase of the Z_2 k-gauge theory (85). We allow only the fluctuations of the higher Z_2-flux, and try to use them to drive a phase transition. Such a system has the $Z_2 k$-symmetry (81). Using the anomaly matching condition, we find that the phase transition can produce the confined phase with topological order, when $m = 1$. On the other hand, when $m = 0$, the trivial confined phase can be reach by the phase transition.

We like to stress that here we only ask can we obtain the product state from the deconfined phase of the Z_2 k-gauge theory (85) by the fluctuations of the higher Z_2-flux only. We find that we cannot obtain the product state from the deconfined phase when $m = 1$. However, if we include both fluctuations of the higher Z_2-charge and the higher Z_2-flux, then we can always obtain the product state from the deconfined phase regardless the value of m.

As an application of the above result, let us consider the case with $D_b = 4$ and $k = 2$. The deconfined phase of the 3+1D Z_2 2-gauge theory is described by (with the Z_2 2-flux)

$$Z(B^4) = \sum_{\{d\hat{a}_k^{Z_2}\}} e^{m \pi i f_{\alpha_D} \sqrt{Q}^{4} (\hat{b}^{Z_2} + b^{Z_2})},$$

where $d\hat{b}^{Z_2}$ is a fixed 3-coboundary describing the Z_2 2-flux and b^{Z_2} is a dynamical 2-cochain.

It is well known that a Z_2 2-gauge theory in 3+1D is dual to a Z_2 gauge theory (see for example Ref. 75). The so called Z_2 2-flux in the Z_2 2-gauge theory correspond to the Z_2-charge in the Z_2 gauge theory. In fact, the 3-coboundary $d\hat{b}^{Z_2}$ is the Poincaré dual of the world-line of the Z_2-charge in 3+1D spacetime. When $m = 0$, eqn. (87) corresponds to a untwisted Z_2 gauge theory where the Z_2 charge is a boson and the Z_2 2-symmetry is anomaly-free. When $m = 1$, eqn. (87) corresponds to a twisted Z_2 gauge theory where the Z_2 charge is a fermion[4] and the Z_2 2-symmetry is anomalous. The result in this section implies that

any Z_2 charge fluctuations and condensations in the 3+1D bosonic topological order described by a twisted Z_2 gauge theory (87) cannot induce the trivial gapped phase with no topological order.

In contrast, the Z_2-charge fluctuations and condensations in the untwisted Z_2 gauge theory can induce the trivial product state. Also, the Z_2-charge and Z_2-flux fluctuations and condensations in the twisted Z_2 gauge theory can induce the trivial product state. The Z_2-flux fluctuations breaks the Z_2 2-symmetry and invalidate the anomaly matching of the Z_2 2-symmetry.

C. A D-dimensional model to realize a Z_n k-SPT phase

We can also construct models to realize more general pure Z_n hSPT phases. For $D - k = even$, the following model realizes a Z_n k-SPT phase.

$$Z = \sum_{\{a_k^{Z_n}\}} e^{2 \pi i f_{\alpha_D} \sqrt{Q}^{D} - k (\hat{b}^{Z_n} + a_k^{Z_n})},$$

The theory is well defined when $d\hat{B}^{Z_n} = 0$, since

$$\sqrt{Q}^{D - k - 1} (\hat{b}^{Z_n} + n a_k^{Z_n}) \rightarrow \sqrt{Q}^{D - k - 1} \hat{b}^{Z_n},$$

where we have used eqn. (A27). We can also show that

$$\sqrt{Q}^{D - k - 1} (\hat{b}^{Z_n} + da_k^{Z_n}) \rightarrow \sqrt{Q}^{D - k - 1} \hat{b}^{Z_n},$$

using eqn. (A29) and $D - k - 1 = odd$. The model has a Z_n k-symmetry

$$a_k^{Z_n} \rightarrow a_k^{Z_n} + \alpha_k^{Z_n}, \quad da_k^{Z_n} \rightarrow 0.$$

and Z_n $(k + 1)$-gauge symmetry

$$\hat{B}^{Z_n}_{k+1} \rightarrow \hat{B}^{Z_n}_{k+1} + da_k^{Z_n}.$$

The Z_n k-symmetry is anomaly free since it can be gauged.

Such a hSPT phase is characterized by hSPT invariant

$$Z_{top}(M^D, \hat{B}^{Z_n}_{k+1}) = e^{2 \pi i f_{\alpha_D} \sqrt{Q}^{D - k - 1} \hat{b}^{Z_n}},$$
The hSPT state can have a boundary described by

$$Z = \sum \left(e^{2\pi i f_{\mathcal{B}^0}} \overline{\Phi} s_n^{d-k-1}(a^n_z) \right), \quad (94)$$

after setting $\hat{B}_{d+1}^Z = 0$. The boundary theory (94) also has the Z_n k-symmetry (91) when \mathcal{B}^{D-1} has no boundary. This can be shown by using eqn. (A.29).

We may choose $D = 6$ and $k = 2$

$$Z = \sum \left(e^{2\pi i f_{\mathcal{M}^4}} \overline{\Phi} s^n (\hat{B}^Z + d a^Z_n) \right), \quad (95)$$

The model has a Z_n 2-symmetry

$$a^Z_n \rightarrow -a^Z_n + \alpha a^Z_n, \quad da^Z_n \Rightarrow 0, \quad (96)$$

and realizes a Z_n 2-SPT phase. A Z_n 2-symmetric boundary of such a 2-SPT phase is described by (after setting $\hat{B}^Z_d = 0$):

$$Z(B^5) = \sum \left(e^{2\pi i f_{\mathcal{M}^5}} \overline{\Phi} s^n (a^n_z) \right) = \sum \left(e^{2\pi i f_{\mathcal{M}^5}} \overline{\Phi} a^Z_n da^Z_n \right). \quad (97)$$

The Z_n 2-symmetry on B^5 is anomalous when $m \neq 0 \mod n$. The model can not reach to trivial gapped phase with no topological order even if we allow fluctuations with $da^Z_n \neq 0$, but do not allow the fluctuations of the charges of Z_n 2-gauge theory (which are closed strings).

D. A 3+1D $U^\infty(1)$ bosonic model to realize a $Z_{k_1} \times Z_{k_2} \times \cdots$ 1-SPT phase

In this section, we will use a 3+1D $U^\infty(1)$ “gauge theory” in the confined phase to realize some hSPT phase. Our model is a bosonic model defined on a triangulated spacetime (with vertices labeled by i, j, \cdots). On each link ij, we have bosonic degrees of freedom described by $(a^{R/Z}_{ij})_{ij} \subset \{-\frac{1}{2}, \frac{1}{2}\}$, $I = 1, \cdots, k$. To write down the path integral of the bosonic model, we start with 2+1D $U^\infty(1)$ Chern-Simons theory on spacetime lattice B^3 [82]:

$$Z = \int D[a^{R/Z}_i] e^{i\pi f_{\mathcal{M}^4} K_{ij} \int d[a^{R/Z}_i] - [a^{R/Z}_i] - [a^{R/Z}_i]} \right) - [da^{R/Z}_i] - [da^{R/Z}_i]. \quad (98)$$

where $a^{R/Z}_i$ is a R/Z-valued 1-cochain, $\int D[a^{R/Z}_i] = \prod_{i,j \in J^0} d[a^{R/Z}_{ij}]_{ij}$, and K is an $\kappa \times \kappa$ even symmetric invertible integer matrix. Since $a^{R/Z}_i$ is R/Z-valued, we require eqn. (98) to have the following gauge symmetry

$$a^{R/Z}_i \rightarrow a^{R/Z}_i + u^Z_i \quad (99)$$

for any Z-valued 1-cochains u^Z_i. Eq. (98) satisfies this condition for closed B^3 [82].

The path integral of the 3+1D bosonic model (for spacetime M^4 with or without boundary) is obtained from eqn. (98) by taking a derivative:

$$e^{i\pi f_{\mathcal{M}^4} K_{ij} \int [da^{R/Z}_i] - [da^{R/Z}_i]} \right) - [da^{R/Z}_i] - [da^{R/Z}_i] \right) - [da^{R/Z}_i]. \quad (100)$$

$$e^{i\pi f_{\mathcal{M}^4} K_{ij} \int [da^{R/Z}_i] - [da^{R/Z}_i]} \right) - [da^{R/Z}_i] - [da^{R/Z}_i] \right) - [da^{R/Z}_i]. \quad (101)$$

Combining the above results, we obtain a 3+1D bosonic model on space-time lattice

$$Z = \int D[a^{R/Z}_i] e^{i\pi f_{\mathcal{M}^4} K_{ij} \int [da^{R/Z}_i] - [da^{R/Z}_i]} \right) - [da^{R/Z}_i] - [da^{R/Z}_i] \right) - [da^{R/Z}_i]. \quad (102)$$

In the above, we have included an extra term $e^{-i\pi f_{\mathcal{M}^4} a^{R/Z}_i}$. Without such a term, eqn. (104) reduces to eqn. (98) when \mathcal{M}^4 has a boundary $B^3 = \partial \mathcal{M}^4$.

We may view the boson field $a^{R/Z}_i$ on the links as the $U(1)$ connection in the continuum limit. In this case $da^{R/Z}_i - [da^{R/Z}_i]$ correspond to the field strength of the $U(1)$ gauge field in the continuum limit (note that $[x]$ is the integer closest to x). Also $d[da^{R/Z}_i]$ is a Z-valued 3-coboundary, whose Poincaré dual is a 1-boundary C^1. Such a 1-boundary is the worldline of monopole of the $U(1)$ gauge field $a^{R/Z}_i$. The term $e^{i2\pi f_{\mathcal{M}^4} K_{ij} a^{R/Z}_i} d[da^{R/Z}_i]$
indicates that we bind $K_{I,J}$ charge of the a^R/Z_I gauge field to the monopole of the a^R/Z_J gauge field.

When \mathcal{M}^4 has no boundary, by its construction from eqn. (98), eqn. (104) can be simplified to

$$Z(\mathcal{M}^4) = \int D[a^R/Z_I] e^{-\int_{\mathcal{M}^4} \frac{|da^R/Z_I|}{\mu}}.$$

We find that when $g \sim 0$, da^R/Z_I fluctuate weakly and the above model describes the deconfined phase of the $U^b(1)$ gauge theory. In this case, the model is gapless. In this limit, $da^R/Z_I \sim 0$ or $|da^R/Z_I| = 0$, and we can reduce eqn. (104) to a familiar $U^b(1)$ gauge theory with 2π quantized topological terms $\pi \int_{\mathcal{M}^4} K_{I,J} da^R/Z_I da^R/Z_J$ and the Maxwell terms $\int_{\mathcal{M}^4} \frac{|da^R/Z_I|^2}{\mu}$:

$$Z = \int D[a^R/Z_I] e^{\pi \int_{\mathcal{M}^4} K_{I,J} da^R/Z_I da^R/Z_J - \int_{\mathcal{M}^4} \frac{|da^R/Z_I|^2}{\mu}}.$$

In particular, when $\kappa = 1$, the above becomes

$$Z = \int D[a] e^{i2\pi k \int_{\mathcal{M}^4} da da - \int_{\mathcal{M}^4} \frac{|da|^2}{\mu}},$$

where $k = K_{11}/2$ is an integer.

When $g \sim \infty$, da^R/Z_I fluctuate strongly and the above model describes the confined phase of the $U^b(1)$ gauge theory. The model is fully gapped. For any closed \mathcal{M}^4 and when $g = \infty$, the partition function $Z(\mathcal{M}^4) = \int D[a^R/Z_I] = 1$ since $\int_0^1 da^R/Z_I = 1$. Thus the topological partition function $Z^{op}(\mathcal{M}^4) = 1$ is trivial for any closed \mathcal{M}^4. This implies that the $g = \infty$ confined phase is a gapped phase with trivial topological order.

Regardless the value of g, let us include low energy allowed excitations described by charges of the $U^b(1)$ gauge field. The values of the charges are encoded in integer vectors m_a. Since the set of allowed excitations is closed under the fusion, the allowed integer vectors m_a form a lattice C_a. We like to point out that C_a includes the column vector of the K matrix. This is because, for large g, the monopoles described by $d[da^R/Z_I]$ are low energy allowed excitations. Those monopole excitations carry charges given by the column vector of the K matrix. So the column vectors of the K matrix are the charges for the allowed low energy excitations.

Let m^μ_a, $\mu = 1, 2, \cdots, \kappa$ be a basis of the C_a lattice, and let M_a is a square matrix whose columns are m^μ_a vectors. Using Smith normal form, we can always choose a basis such are the square matrix M_a is diagonal, i.e.

$$(m^\mu_a)_I = k_I \delta_{\mu I}.$$

The allowed charge excitations can be included in the path integral via the Wilson-loop G^1

$$Z = \int D[a_I] e^{i\pi \int_{\mathcal{M}^4} K_{I,J} (da^R/Z_I - |da^R/Z_I|)(da^R/Z_J - |da^R/Z_J|)} e^{i2\pi \int_{\mathcal{M}^4} m^\mu_a a_I} e^{-i \int_{\mathcal{M}^4} \kappa^I d[da^R/Z_I]} e^{i \int_{\mathcal{M}^4} \pi \sum_I K_{I,J} |da^R/Z_I|_2}.$$

Such a model has 1-symmetries generated by

$$a_I^R/Z_I \rightarrow a^R/Z_I + s_I \alpha^Z$$

for \mathcal{M}^4 with or without boundary. Here, α^Z are arbitrary Z-valued 1-cocycles, and $s = (s_1, s_2, \cdots)^T$ is an arbitrary rational vector that satisfies

$$s^T m_a = 0, \quad \forall m_a \in C_a.$$

or

$$M_a^T s = 0.$$

The above choices of s ensure the invariance of $e^{i2\pi \int_{\mathcal{M}^4} m^\mu_a a_I}$.

The above implies that $K s = 0$ since C_a contains the columns of K. This ensures the invariance of $e^{i2\pi \int_{\mathcal{M}^4} K_{I,J} a^R/Z_I d[da^R/Z_J]}$. Other terms are functions of a^R/Z_I and are automatically invariant under the 1-symmetry transformations.

It is more convenient to introduce integer vectors

$$m_a = K s$$

to describe the 1-symmetries, m_a’s satisfy

$$M_a^T K^{-1} m_a = 0.$$

In fact, the integer vectors m_a satisfying the above conditions form a lattice C_a. Let m^μ_a be a basis of the lattice C_a. The 1-symmetries is characterized by this C_a lattice. For the special basis eqn. (108), m^μ_a and $s^\mu = K^{-1} m^\mu_a$ are given by

$$(m^\mu_a)_I = K_I \delta_{\mu I} \in \mathbb{Z}, \quad (s^\mu)_I = \delta_{I \mu} \in \mathbb{Z},$$

where μ is not summed.

The above 1-symmetries are defined on the spacetime lattice with or without boundary, and are expected to be anomaly-free. Thus for large g, the gapped state described by eqn. (109) is a state with 1-symmetry but no topological order. In the following, we will try to determine the hSPT order in such a gapped state.

To do so, let us gauge the 1-symmetries by replacing da^R/Z_I with

$$b_I = da^R/Z_I - s^\mu_a \delta^Z.$$

where $s^\mu = K^{-1}m_\kappa^\mu$ and \hat{B}_μ^Z are Z-valued 2-cocycles:

$$Z = \int D[a_i^{R/Z}] e^{i\pi \int_{M^4} K_{ij}(b_i - b_j)(b_j - b_i) - \int_{M^4} \frac{[b_i - b_j]^2}{2}} e^{-i\pi \int_{\partial M^4} K_{ij}(b_i - b_j) - d(b_i)} e^{i2\pi \int_{M^4} K_{ij} a_i^{R/Z} d(b_i)} e^{i\pi \sum_{l < j} f_{M^4} K_{ij} d(b_i - b_j)} e^{i2\pi \int_{\partial M^4} K_{ij} a_i^{R/Z} d(b_i)} e^{i\pi \int_{\partial M^4} m_i^\mu a_i}. \quad (117)$$

In the above, we have replaced $e^{i2\pi f_{M^4} m_i^\mu a_i}$ by $e^{i2\pi f_{M^4} m_i^\mu a_i} - e^{i2\pi f_{M^4} m_i^\mu a_i} = e^{i2\pi f_{M^4} m_i^\mu a_i}$ after a flat 2-gauge transformation. Since m_i^μ and s^μ are integers, $e^{i2\pi f_{M^4} m_i^\mu a_i - f_{M^4} m_i^\mu a_i} = e^{i2\pi f_{M^4} m_i^\mu a_i}$, and $e^{i2\pi f_{M^4} m_i^\mu a_i}$ is unchanged under the gauging of the 1-symmetry. Similarly, the term $e^{i2\pi f_{M^4} K_{ij} a_i^{R/Z} d(b_j)}$ is unchanged under the gauging of the 1-symmetry. Note that the 1-symmetries are discrete symmetries, and can be probed by flat 2-gauge connections.

The 2-gauged $U(\kappa)$ theory (117) still have the 1-symmetries (110) for M^4 with or without boundary. In fact, it has the following 2-gauge symmetries that include the 1-symmetries:

$$d_i^{R/Z} \rightarrow d_i^{R/Z} + s_i^\mu a_i ^\mu, \quad \hat{B}_\mu^Z \rightarrow \hat{B}_\mu^Z + du_\mu^Z \quad (118)$$

for closed M^4. Here u_μ^Z are arbitrary Z-valued 1-cochains. This is because $b_i = d a_i^{R/Z} - s_i^\mu \hat{B}_\mu^Z$ is invariant under the 2-gauge transformation (118). Also $e^{i2\pi f_{M^4} K_{ij} a_i^{R/Z} d(b_i)}$ and $e^{i2\pi f_{M^4} m_i^\mu a_i}$ are invariant under the 2-gauge transformation (118). Thus the 1-symmetries can be gauged and are anomaly-free as expected. We also note that the 2-gauged theory (117) has the gauge symmetry eqn. (99) for M^4 with or without boundary.

When M^4 has no boundary and $g = \infty$, eqn. (117) can be simplified. We note that

$$e^{-i\pi \int_{M^4} K_{ij} b_i + [b_i]_1 b_i e^{i2\pi K_{ij} \int_{M^4} a_i^{R/Z} d(b_i) - s_i^\mu \hat{B}_\mu^Z [b_i]} \quad (119)$$

without the charged excitations described by m_κ, the partition function becomes

$$Z(M^4, \hat{B}_\mu^Z) = Z_{\text{top}}(M^4, \hat{B}_\mu^Z) = e^{i\pi \int_{M^4} (s_i^\mu)^\kappa - m_\kappa^\mu \hat{B}_\mu^Z \hat{B}_\mu^Z} = e^{i\pi \int_{M^4} (m_i^\mu)^\kappa - m_\kappa^\mu \hat{B}_\mu^Z \hat{B}_\mu^Z} \quad (122)$$

where $m_\kappa^\mu \in C_\kappa$. We see that if C_κ satisfies

$$m_\kappa^\mu K^{-1} m_\kappa^\mu \neq 0 \quad (123)$$

then the hSPT invariant $e^{i\pi \int_{M^4} (m_i^\mu)^\kappa - m_\kappa^\mu \hat{B}_\mu^Z \hat{B}_\mu^Z} = 1$ is trivial. The confined phase of our $U(\kappa)$ model is a trivial hSPT phase protected by the 1-symmetry characterized by C_κ. Otherwise, the confined phase of our $U(\kappa)$ model is a non-trivial hSPT phase.

To summarize, for our $U(\kappa)$ model with low energy allowed charges in C_κ (117), the 1-symmetry is characterized by a lattice

$$C_\kappa = \{ m_\kappa | m_\kappa^\mu K^{-1} m_\kappa^\mu \neq 0 \text{ } \forall m_\kappa \in C_\kappa \}. \quad (124)$$

The confined phase of our $U(\kappa)$ model can be a non-trivial hSPT phase protected by the 1-symmetry C_κ. The confined phase is a trivial hSPT phase iff C_κ satisfies eqn. (123).

We like to remark that for M^4 without boundary, our model reduces to eqn. (105). Such a model have a $U(\kappa)$ 1-symmetry generated by shifting $a_i^{R/Z}$ by R-valued cocycles. However, the $U(\kappa)$ 1-symmetry is broken for the model with boundary and with the charge excitations, i.e. eqn. (109) does not have the $U(\kappa)$ 1-symmetry. However, the model (109) has an anomaly-free discrete 1-symmetry generated by a subset of the $U(\kappa)$ 1-transformations, i.e. eqn. (110). The model (109) realizes a hSPT phase for such an anomaly-free discrete and finite 1-symmetry. The finite 1-symmetry is a $Z_{k_1} \times Z_{k_2} \times \cdots$ 1-symmetry where k_i is given in eqn. (108).

E. A model to realize a hSPT phase with a $U(1)$ k-symmetry

In this section, we consider a model to realize a hSPT phase with a continuous $U(1)$ k-symmetry:

$$Z(M^D) = \sum_{\{a_k^{R/Z}\}} e^{i\pi \int_{M^D} d a_k^{R/Z} + d a_k^{R/Z}}, \quad (125)$$

where $a_k^{R/Z}$ is an R/Z-valued k-cochain, and $[x]$ is the integer that is closest to x. Such a theory has the following $U(1)$ k-symmetry, even when M^D has a boundary

$$a_k^{R/Z} \rightarrow a_k^{R/Z} + a_k^{R/Z}, \quad d a_k^{R/Z} = 0 \quad (126)$$

where $a_k^{R/Z}$ is an arbitrary R/Z-valued k-coycle. Since $a_k^{R/Z}$ is R/Z-valued, the theory must also have the following gauge symmetry, again for M^D that has a boundary

$$a_k^{R/Z} \rightarrow a_k^{R/Z} + a_k^{R/Z}, \quad (127)$$
where u_k^Z is an arbitrary Z-valued k-cochain. We find that eqn. (125) indeed has such a gauge symmetry. This implies that the model (125) has an anomaly free $U(1)$ k-symmetry.

Using eqn. (A26), we can show that when \mathcal{M}^D is closed
\[
e^{-i \int_{\mathcal{M}^D} \mathcal{S}^k_{D-k-2} d[da_k^R/Z]} = 1, \quad \partial \mathcal{M}^D = 0. \tag{128}
\]
Therefore, the corresponding topological partition function $Z^{top}(\mathcal{M}^D) = 1$ for any closed \mathcal{M}^D. The model (125) describes a phase with trivial topological order.

Here we would like to mention that when $D - k - 2 = 0$ or when $D - k - 2 \geq k + 2$, we have (see A25)
\[
\mathcal{S}^k_{D-k-2} d[da_k^R/Z] = d\mathcal{S}^k_{D-k-2} [da_k^R/Z], \tag{129}
\]
and
\[
e^{\theta i \int_{\mathcal{M}^D} \mathcal{S}^k_{D-k-2} d[da_k^R/Z]} = 1, \quad \partial \mathcal{M}^D = 0, \tag{130}
\]
for any θ. Thus in this case, we can tune θ in eqn. (125) continuously to 0 without encountering phase transitions. We see that when $D - k - 2 = 0$ or when $D - k - 2 \geq k + 2$, eqn. (125) describes a trivial hSPT phases.

Therefore, the corresponding topological partition function of the gauged model is given by
\[
Z^{top}(\mathcal{M}^D, \hat{B}_{k+1}^R/Z) = e^{\pi i \int_{\mathcal{M}^D} \mathcal{S}^k_{D-k-2} d[\hat{B}_{k+1}^R/Z]} \tag{140}
\]
for any closed \mathcal{M}^D. This non-trivial hSPT invariant implies that the model (125) or (137) describes a phase with a non-trivial hSPT order, when $D - k - 2 = 0$ or when $D - k = 0$ and $k + 3 \leq 2k + 3.$

When $k = 1$, we have a model to realize a non-trivial 4+1D $U(1)$ 1-SPT phase
\[
Z(\mathcal{M}^5) = \sum_{\{a^R/Z\}} e^{\pi i \int_{\mathcal{M}^6} \mathcal{S}^2 d[da^R/Z]} \tag{141}
\]
When $k = 2$, we have a model to realize a non-trivial 5+1D $U(1)$ 2-SPT phase
\[
Z(\mathcal{M}^6) = \sum_{\{b^R/Z\}} e^{\pi i \int_{\mathcal{M}^6} \mathcal{S}^2 d[db^R/Z]} \tag{142}
\]
It turns out that the 4+1D hSPT phase described by eqn. (141) is very important for condensed matter. This is because all the EM condensed matter systems with dynamical EM fields must be a boundary of such a 4+1D hSPT phase (see Section X).
IX. LATTICE MODELS THAT REALIZE TOPOLOGICAL ORDERS WITH HIGHER SYMMETRY

A. The first type of constructions

We have constructed models to realize a hSPT phase with a combined 0-symmetry and 1-symmetry, where we have summed over all 1-cochains a_{ij} in (28). To realize a topologically ordered phase with a combined 0-symmetry and 1-symmetry, we can change the dynamics of the a_{ij} field, by instead summing over only all 1-cocycles a_{ij} that satisfy $d\alpha = 0$:

$$Z = \sum_{\{g_i, \alpha = 0\}} e^{2\pi i f_{sM^D} \omega_D(A,B)}, \quad A_{ij} = g_i^{-1} \hat{A}_{ij} g_j, \quad B = \hat{B} + \alpha + \xi(\hat{A}, g), \quad (143)$$

Since $a_{ij} \in \Pi_2$ (i.e. a is a Π_2-valued 1-cocycle), the above model realizes a topologically ordered state described by Abelian gauge theory with Π_2 gauge group. The model also has a combined 0-symmetry and 1-symmetry. In particular, the 1-symmetry is generated by shifting α by Π_2-valued 1-cocycles.

The flux of the Π_2 gauge theory is described by a $D-2$-cycle \tilde{F}_{D-2} in the dual spacetime complex \mathcal{M}^D. The charge of the Π_2 gauge theory is described by a 1-cycle C^1 (the worldline of the charge) in the spacetime complex \mathcal{M}^D. In the presence of the flux and charge, the path integral becomes

$$Z = \sum_{\{g_i, \alpha = \star \tilde{F}_{D-2}\}} e^{2\pi i f_{sM^D} \omega_D(A,B) + 2\pi i f_C \alpha}, \quad A_{ij} = g_i^{-1} \hat{A}_{ij} g_j, \quad B = \hat{B} + \alpha + \xi(\hat{A}, g), \quad (144)$$

where $\star \tilde{F}_{D-2}$ is a two cocycle – the Poincaré dual of $D-2$ cycle \tilde{F}_{D-2}.

We note that the gauge charges are not mobile in the exactly soluble model eqn. (143). To make the gauge charges mobile, we need to add terms like $e^{-\beta f_{f_1} a}$ where f_1 is a 1-chain in the spacetime complex \mathcal{M}^D. Shifting α by a cocycle will change $e^{-\beta f_{f_1} a}$, so the term $e^{-\beta f_{f_1} a}$ will break the 1-symmetry. The term $e^{2\pi i f_{f_1} a}$ will also break the 1-symmetry if C^1 is not a 1-boundary. Thus if we only allow the gauge flux, the Π_2-gauge theory (144) (without the C^1 term) will have a combined 0-symmetry and 1-symmetry.

We like to stress that the above 1-symmetry can be emergent in the weak coupling phase of the gauge theory. As long as the gauge flux to be the only low energy excitations, we will have the emergent 1-symmetry in the in the weak coupling gauge theory, and we will have a combined 0-symmetry and 1-symmetry at low energies.

B. The second type of constructions

In the second type of constructions, we start with a model that realize a hSPT state with no topological order (see eqn. (33))

$$Z = \sum_{\{g_i, a_{ij}\}} e^{2\pi i f_{sM^D} \omega_D(A,B)}, \quad A_{ij} = g_i^{-1} \hat{A}_{ij} g_j, \quad B_{ij} = B_{ijk} + a_{ij} + a_{jk} - a_{ik} + \xi_{ijk}(\hat{A}, g), \quad (145)$$

where A_{ij}, g_i belong to a group G and B_{ijk}, a_{ij} belong to an Abelian group Π_2. Also ω_D is a \mathbb{R}/\mathbb{Z}-valued 2-group cocycle. We note that the above model is construct by starting with a fixed background 2-connection described by A_{ij} and B_{ijk}, and then include the “pure” 2-gauge transformations described by g_i and a_{ij} as dynamical fields.

To obtain a model that realizes a topological order, we can partially gauge the 2-group. This way, we obtain a combined 1-gauge and a 2-gauge theory with a combined 0-symmetry and 1-symmetry. To do so, we assume $G = G^g \times G^s$ and $\Pi_2 = \Pi_2^g \times \Pi_2^s$. G^s will be our 0-symmetry group and G^g the gauge group of the 1-gauge theory. We label the group elements of G by a pair

$$g = (g^g, g^s), \quad g^g \in G^g, \quad g^s \in G^s, \quad g_i \in G. \quad (146)$$

So we can denote the effective field A_{ij} as a pair $A_{ij} = (A^g_{ij}, A^s_{ij})$. We have

$$A_{ij} = (g_i^g, g_i^s)^{-1}(a^g_{ij}, \hat{A}^g_{ij})(g_j^g, g_j^s) = g_i^{-1}(a^g_{ij}, \hat{A}^g_{ij})g_j, \quad g_i^g, g_i^s \in G^g, \quad a^g_{ij}, \hat{A}^g_{ij} \in G^s, \quad g_i \in G. \quad (147)$$

Here \hat{A}^g_{ij} is the flat connection describing the G^s symmetry twist. a^g_{ij} is the dynamical gauge field satisfying

$$a^g_{ij} a^g_{jk} = a^g_{ik}, \quad (148)$$

so that a^g_{ij} describes the deconfined phase of the G^g 1-gauge theory. $g_i \in G$ is a dynamical scalar field carrying both symmetry charge and gauge charge.

Similarly, we denote the elements in Π_2 with a pair

$$h = (h^g, h^s), \quad h^g \in \Pi_2^g, \quad h^s \in \Pi_2^s, \quad h_i \in \Pi_2. \quad (149)$$

So we can write the effective dynamical field B as

$$B_{ijk} = (b^g_{ijk}, \hat{B}^s_{ijk}) + a_{ij} + a_{jk} - a_{ik} + \xi_{ijk}[(a^g_{ij}, \hat{A}^g_{ij})], \quad (150)$$

Here $\hat{B}^s_{ijk} \in \Pi_2^s$ is the background 2-connection describing the 1-symmetry twist of Π_2^s. $b^g_{ijk} \in \Pi_2^g$ is the dynamical 2-gauge field of Π_2^g, that satisfy

$$d(b^g, \hat{B}^s) = n_3[(a^g, \hat{A}^g)]. \quad (151)$$
$a_{ij} \in \Pi_2$ is a dynamical 1-cochain field.

Now, we can write down our partially gauged hSPT model:

$$Z = \sum_{\{g, a_{ij}, a_{ij}^g, b_{ij}^g\}} e^{2\pi i \int_{M^D} \omega_D(A, B)},$$

(152)

where the 1-cochain effective field A and the 2-cochain effective field B are given by eqn. (147) and eqn. (150). The dynamical fields $g_{ij} \in G$ and $a_{ij} \in \Pi_2$ can fluctuate arbitrarily. The dynamical fields $a^g \in G^g$ and $b^g \in \Pi_2$ cannot fluctuate arbitrarily and should satisfy the conditions eqn. (148) and eqn. (151), so that they describe deconfined phase of a 2-gauge theory.

We see that partially gauging is simply making part of the background connections dynamical

$$\hat{A}_{ij} = (\hat{A}_{ij}^g, \hat{A}_{ij}^s) \rightarrow (a^g_{ij}, \hat{A}_{ij}^s),$$

$$\hat{B}_{ijk} = (\hat{B}_{ijk}^g, \hat{B}_{ijk}^s) \rightarrow (b^g_{ijk}, \hat{B}_{ijk}^s).$$

(153)

plus “pure” 2-gauge fluctuations described by dynamical fields g_{ij} and a_{ij}. We note that, in our construction, the combined 1-gauge and 2-gauge theory plus its combined 0-symmetry and 1-symmetry together is described a 2-group $\mathcal{B}(G, \Pi_2)$ and a 2-group cocycle ω_D.

More generally, we may consider a simplicial-complex homomorphism ϕ between two higher groups

$$\mathcal{B}(G, \Pi_2, \Pi_3, \cdots) \xrightarrow{\phi} \mathcal{B}(G^s, \Pi_2^s, \Pi_3^s, \cdots).$$

(154)

We assume ϕ to be surjective. Then using a \mathbb{R}/\mathbb{Z}-valued cocycle $\tilde{\omega}_D$ on $\mathcal{B}(G, \Pi_2, \Pi_3, \cdots)$, we can construct the following local bosonic model (see Section VII B)

$$Z(\mathcal{M}^D, \hat{\phi}^s) = \sum_{\{g, a, \cdots\}} \sum_{\{\phi|\phi = \hat{\phi}^s\}} e^{2\pi i \int_{\mathcal{M}^D} \phi s_{\phi s} \cdots \tilde{\omega}_D}.$$

(155)

The above model realize a topological order with a higher symmetry described by the higher group $\mathcal{B}(G^s, \Pi_2^s, \Pi_3^s, \cdots)$. Here ϕ is a complex homomorphism from \mathcal{M}^D to $\mathcal{B}(G, \Pi_2, \Pi_3, \cdots)$ and $\hat{\phi}^s$ is a fixed simplicial-complex homomorphism from \mathcal{M}^D to $\mathcal{B}(G^s, \Pi_2^s, \Pi_3^s, \cdots)$:

$$\mathcal{M}^D \xrightarrow{\phi} \mathcal{B}(G, \Pi_2, \Pi_3, \cdots) \xrightarrow{\hat{\phi}^s} \mathcal{B}(G^s, \Pi_2^s, \Pi_3^s, \cdots).$$

(156)

$\hat{\phi}^s$ is the background connection that describes the higher symmetry twist on \mathcal{M}^D. The summation $\sum_{\{\phi|\phi = \hat{\phi}^s\}}$ sums over all the homomorphisms ϕ such that $\phi s_{\phi s} = \hat{\phi}^s$. The summation $\sum_{\{g, a, \cdots\}}$ sums over all the higher gauge transformations of the higher group $\mathcal{B}(G, \Pi_2, \Pi_3, \cdots)$.

X. EM CONDENSED MATTER SYSTEMS AND THEIR HIGHER SYMMETRY

In our theoretical descriptions of condensed matter systems, we usually ignore the dynamical electromagnetic (EM) field. Those usual condensed matter theories in general do not have higher symmetries. However, more accurate theoretical descriptions of condensed matter systems should contain the dynamical EM field. In this section, we point out that those EM condensed matter theories with dynamical EM field actually have an anomalous higher symmetry if we ignore the magnetic monopoles.

The reason is very simple. A dynamical $U(1)$ gauge theory in 3+1D does not have higher symmetry if the mobile $U(1)$ charges and $U(1)$ monopoles appear in the interested energy scales (which are about 1eV for condensed matter physics). However, for the dynamical $U(1)$ EM gauge theory in condensed matter, although the mobile $U(1)$ charges appear at energy scales of 1eV (the energy gap of an insulator), the $U(1)$ monopoles can appear only beyond 100GeV. So the dynamical $U(1)$ EM gauge theory in condensed matter can be viewed as a dynamical $U(1)$ gauge theory without mobile $U(1)$ monopoles. Such a dynamical $U(1)$ gauge theory has a higher symmetry.[1]

Using the general picture of higher symmetry and its relation to topological excitations developed in Section VIII A 1, we see that the emergent higher symmetry in the EM condensed matter systems is characterized by low energy allowed EM charge excitations. It is generated by the topological excitations with trivial mutual statistics with the EM charge excitations. In other words, the higher symmetry is generated by the electric charged charge excitations. This appearance of higher symmetry in condensed matter systems has been noticed in some recent papers.[83, 84]

To see the higher symmetry in EM condensed matter systems more explicitly, let us consider a dynamical $U(1)$ gauge lattice gauge theory described by a lattice rotor model where the rotor angles correspond to the gauge connection of the dual $\tilde{U}(1)$ gauge field:[85–87]

$$H = U \sum_i \left(\sum_{\text{next to } i} \tilde{L}_{ij} \right)^2 + g \sum_{ij} \tilde{L}_{ij}$$

$$-J \sum_{ijk\ell} \left(\tilde{L}_{ij}^{\pm} \tilde{L}_{jk}^{\pm} \tilde{L}_{kl}^{\pm} \tilde{L}_{li}^{\pm} + \text{h.c.} \right)$$

(156)

where $\tilde{i}, \tilde{j}, \tilde{k}, \tilde{l}$ label the sites of a dual cubic lattice \tilde{M}^3, and $\tilde{L}_{ij} = -i \partial_{\tilde{t}_{ij}}$ is the angular momentum of the rotor $\tilde{t}_{ij} = -\partial_{\tilde{t}_{ij}}$ living on the link \tilde{ij}. Also $\tilde{L}_{ij}^{\pm} = e^{\pm i \tilde{t}_{ij}}$. The summation $\sum_{ijk\ell}$ sums over all the square faces $\left(\tilde{i} \tilde{j} \tilde{k} \tilde{l} \right)$ of the cubic lattice. The charge of the dual $\tilde{U}(1)$ corresponds to the monopole of the EM $U(1)$. The monopole of the dual $\tilde{U}(1)$ corresponds to the charge of the EM $U(1)$.

\[\text{\[1\]}\]
The higher symmetry is given by

\[W_{C^2} = e^{i\varphi \sum_{(i,j) \in C^2} L_{ij}}. \]

(157)

Where \(C^2 \) is a closed surface formed by the square faces the cubic lattice \(M^3 \). Since \(M^3 \) and \(M^3 \) are dual to each other, the links \(\langle i,j \rangle \) in the dual lattice \(M^3 \) correspond to the square faces of the lattice \(M^3 \). Since \(C^2 \) has a codimension-1 in the 3-dimensional space, the higher symmetry is a \(U(1) \)-1-symmetry. The above \(U(1) \)-1-higher symmetry is generated by

\[W_i = e^{i\varphi \sum_{j \text{ next to } i} L_{ij}}. \]

(158)

which leaves the above Hamiltonian invariant. \(W_i \) is also called the local gauge symmetry. Thus the \(U(1) \)-1-symmetry is simply the dual \(\tilde{U}(1) \) gauge symmetry. Such an \(U(1) \)-1-symmetry forbids the term \(\sum_{(i,j)} L_{ij}^+ \) in the Hamiltonian. So the charge of the dual \(\tilde{U}(1) \) (i.e. the monopole of the EM \(U(1) \)) is not mobile.

We can also describe the above dual \(\tilde{U}(1) \) gauge theory using path integral of cochain fields on spacetime complex \(M^4 \):

\[Z = \sum_{\{\tilde{a}^R/Z, \ldots\}} e^{-\int_M L(\tilde{a}^R/Z, \ldots)} \]

(159)

where \(\sum_{\{\tilde{a}^R/Z, \ldots\}} \) sums over \(R/Z \)-valued 1-cochains \(\tilde{a}^R/Z \) on spacetime dual complex \(M^4 \), and possibly some other EM neutral bosonic fields represented by \(\ldots \). Since \(\tilde{a}^R/Z \) is \(R/Z \)-valued, \(L(\tilde{a}^R/Z, \ldots) \) is invariant under

\[\tilde{a}^R/Z \rightarrow \alpha \tilde{a}^R/Z + \alpha Z, \]

(160)

where \(\alpha \tilde{a}^R/Z \) is any \(Z \)-valued 1-cochain. The model has a \(\tilde{U}(1) \) 1-symmetry, which is generated by shifting \(\tilde{a}^R/Z \) by \(R/Z \)-valued 1-cocycles \(\tilde{\alpha} \):

\[\tilde{a}^R/Z \rightarrow \alpha \tilde{a}^R/Z + \alpha Z, \quad d\tilde{a}^R/Z = 0. \]

(161)

When \(L(\tilde{a}^R/Z, \ldots) \) restricts the fluctuations to be integer cochain, then \(\tilde{a}^R/Z \) will describe a \(\tilde{U}(1) \) gauge field (the EM field) in semiclassical limit.

We note that \(d[\tilde{a}^R/Z] \) is a \(Z \)-valued 3-coboundary that corresponds to the Poincaré dual of the worldlines of monopoles of the \(U(1) \) gauge field. The monopoles of the \(\tilde{U}(1) \) gauge field is the electric charges. So the Poincaré dual of \(d[\tilde{a}^R/Z] \) is the world line of the electric charges. We also note that \(d[\tilde{a}^R/Z] \) is invariant under eqn. (160), and is thus physical.

Now we see that if \(L(\tilde{a}^R/Z, \ldots) \) further restricts the fluctuations to be \(\tilde{a}^R/Z \approx \alpha \), in this case \(\tilde{a}^R/Z \) will describes a deconfined phase of \(\tilde{U}(1) \) gauge field \(\tilde{a}^R/Z \), which corresponds to an EM insulator. On the other hand, if \(L(\tilde{a}^R/Z, \ldots) \) restricts \(\tilde{a}^R/Z \approx \) integer cochain, and allow strong fluctuations of \(d[\tilde{a}^R/Z] \), the system will be in a metallic or a superconducting phase.

However, in the model (159) worldlines of electric charges, described by \(d[\tilde{a}^R/Z] \), are bosons. So the model (159) does not describe the EM condensed matter systems, where the odd charges of EM \(U(1) \) are always fermions. To make the electric charge worldline \(d[\tilde{a}^R/Z] \) to describe the worldlines of fermions, we can use the high dimensional bosonization.[65, 75] Thus the correct models that describe EM condensed matter systems are given by

\[Z = \sum_{\{\tilde{a}^R/Z, \ldots\}} e^{-\int_M L(\tilde{a}^R/Z, \ldots)+\pi i \int_M \tilde{A}^2 d[\tilde{a}^R/Z]} \]

\[e^{\pi i \int_M \pi \tilde{a}^2 d[\tilde{a}^R/Z]+w_2 d[\tilde{a}^R/Z]}} \]

(162)

where \(\partial \mathcal{N}^5 = \mathcal{M}^4 \), \(w_k \) is the \(k \)-th Stiefel-Whitney class of the tangent bundle of \(\mathcal{N}^5 \), and \(\tilde{A}^2 \) is a spin structure

\[d\tilde{A}^2 \equiv w_2. \]

(163)

The term \(e^{\pi i \int_M \pi \tilde{a}^2 d[\tilde{a}^R/Z]} \) makes \(d[\tilde{a}^R/Z] \) to describe the worldlines of fermions. For details, see Ref. 76.

We like to remark that even though

\[e^{\pi i \int_M \pi \tilde{a}^2 d[\tilde{a}^R/Z]} = e^{\pi i \int_M \pi \tilde{a}^2 d[\tilde{a}^R/Z]}, \]

(164)

the term \(e^{\pi i \int_M \pi \tilde{a}^2 d[\tilde{a}^R/Z]} \) cannot come from a local Lagrangian on \(M^4 \) such as \(e^{\pi i \int_M \pi \tilde{a}^2 d[\tilde{a}^R/Z]} \). This is because \(\pi \tilde{a}^2 d[\tilde{a}^R/Z] \) mod 2 is not invariant under the gauge transformation (160), and is not allowed in a 3+1D Lagrangian. Thus \(e^{\pi i \int_M \pi \tilde{a}^2 d[\tilde{a}^R/Z]} \) is an intrinsic \(\mathcal{N}^5 \) term like the Wess-Zumino-Witten term.[88, 89]

The model (162) still has the \(\tilde{U}(1) \) 1-symmetry (161). To find out if such a \(\tilde{U}(1) \) 1-symmetry is anomalous or not, we note that \(e^{\pi i \int_M \pi \tilde{a}^2 d[\tilde{a}^R/Z]} \) is the action amplitude (141), describing a 4+1D local bosonic model with the \(\tilde{U}(1) \) 1-symmetry (161). A EM condensed matter system eqn. (162) is always a boundary of such a 4+1D \(\tilde{U}(1) \) 1-symmetric model. It was shown that the action amplitude (141) describes a non-trivial hSPT phase of \(\tilde{U}(1) \) 1-symmetry. Thus the \(\tilde{U}(1) \) 1-symmetry in the EM condensed matter systems is always anomalous.

Eqn. (162) describe a generic EM condensed matter system without time reversal symmetry. In the presence of time reversal symmetry, the EM \(U(1) \) odd-charged fermions must also be a Kramers doublet. In this case EM condensed matter systems are described by [76]

\[Z = \sum_{\{\tilde{a}^R/Z, \ldots\}} e^{-\int_M L(\tilde{a}^R/Z, \ldots)+\pi i \int_M \tilde{A}^2 d[\tilde{a}^R/Z]} \]

\[e^{\pi i \int_M \pi \tilde{a}^2 d[\tilde{a}^R/Z]+(w_2+w_2^2) d[\tilde{a}^R/Z]}, \]

(165)

where the spin structure \(\tilde{A}^2 \) now satisfies

\[d\tilde{A}^2 \equiv w_2 + w_2^2. \]

(166)

Similarly, the \(\tilde{U}(1) \) 1-symmetry in eqn. (165) is also anomalous.
We note that the EM condensed matter systems described by eqn. (162) or eqn. (165) are actually a bosonic theory, since all the charge neutral excitations are bosons. In fact eqn. (162) and eqn. (165) themselves are bosonic theories, which are boundaries of a bosonic theory with trivial topological order. So eqn. (162) and eqn. (165) are really 3+1D local bosonic theories.

The anomalous $U(1)$-symmetry in eqn. (162) or eqn. (165) implies that all the gapped liquid phases\cite{38, 39} of all the EM condensed matter systems must have a bosonic topological orders.

Here “bosonic topological orders” means topological orders in local bosonic systems. The 3+1D bosonic topological orders are classified in Ref. 47, Ref. 48, and Ref. 30.

We know that any condensations of even-number of electrons can only break the $U(1)$ gauge symmetry down to Z_n gauge symmetry ($n = even \neq 0$). So the induced gapped phases (the superconducting phases) have non-trivial topological orders described by Z_n gauge theory. However, in addition to the boson-condensation of the electron clusters, the electrons may also form a non-trivial topological state. One may wonder whether this extra topological order can cancel the topological order of the Z_n gauge theory, and give rise to a trivial product state. Using the higher anomaly, we find that no matter how electric charges fluctuate and condense, their induced gapped liquid phase of EM condensed matter systems must have a non-trivial bosonic topological order.

This work is motivated by the presentations on higher symmetry and higher anomaly in field theories, in the workshop “Developments in Quantum Field Theory and Condensed Matter Physics” at the Simons Center for Geometry and Physics, Stony Brook University. This research is partially supported by NSF Grant No. DMR-1506475 and DMS-1664412.

Appendix A: Space-time complex, cochains, and cocycles

In this paper, we consider models defined on a space-time lattice. A space-time lattice is a triangulation of the D-dimensional spacetime M^D, which is denoted by \mathcal{M}^D. We will also call the triangulation \mathcal{M}^D as a space-time complex, which is formed by simplices – the vertices, links, triangles, etc. We will use i,j,\cdots to label vertices of the space-time complex. The links of the complex (the 1-simplices) will be labeled by $(i,j),(j,k),\cdots$. Similarly, the triangles of the complex (the 2-simplices) will be labeled by $(i,j,k), (j,k,l),\cdots$.

In order to define a generic lattice theory on the space-time complex \mathcal{M}^D using local Lagrangian term on each simplex, it is important to give the vertices of each simplex a local order. A nice local scheme to order the vertices is given by a branching structure.\cite{52, 90, 91} A branching structure is a choice of orientation of each link in the d-dimensional complex so that there is no oriented loop on any triangle (see Fig. 1).

The branching structure induces a local order of the vertices on each simplex. The first vertex of a simplex is the vertex with only one incoming link, etc. We can use (i,j,\cdots,k) to denote the same simplex with opposite orientations. The value $f_{n;i,j,\cdots,k}$ assigned to the simplex with opposite orientations should differ by a sign: $f_{n;i,j,\cdots,k} = -f_{n;j,i,\cdots,k}$. So to be more precise f_n is a linear map $f_n: n$-simplex $\to \mathbb{M}$. We can denote the linear map as $\langle f_n, n$-simplex\rangle, or

$$\langle f_n, (i,j,\cdots,k) \rangle = f_{n;i,j,\cdots,k} \in \mathbb{M}. \quad (A3)$$

More generally, a cochain f_n is a linear map of n-chains:

$$f_n: n$-chains $\to \mathbb{M}. \quad (A4)$$

FIG. 1. (Color online) Two branched simplices with opposite orientations. (a) A branched simplex with positive orientation and (b) a branched simplex with negative orientation.
or (see Fig. 2)

\[
(f_n, n\text{-chain}) \in \mathcal{M},
\]

where a chain is a composition of simplices. For example, a 2-chain can be a 2-simplex: \((i, j, k)\), a sum of two 2-simplices: \((i, j, k) + (j, k, l)\), a more general composition of 2-simplices: \((i, j, k) - 2(j, k, l)\), etc. The map \(f_n\) is linear with respect to such a composition. For example, if a chain is \(m\) copies of a simplex, then its assigned value will be \(m\) times that of the simplex. \(m = -1\) correspond to an opposite orientation.

We will use \(C^n(M^D; \mathcal{M})\) to denote the set of all \(n\)-cochains on \(M^D\). \(C^n(M^D; \mathcal{M})\) can be also viewed as a set all \(\mathcal{M}\)-valued fields (or paths) on \(M^D\). Note that \(C^n(M^D; \mathcal{M})\) is an Abelian group under the \(+\) operation.

The total spacetime lattice \(M^D\) correspond to a \(D\)-chain. We will use the same \(M^D\) to denote it. Viewing \(f_D\) as a linear map of \(D\)-chains, we can define an “integral” over \(M^D\):

\[
\int_{M^D} f_D = \{f_D, M^D\}
\]

\[
= \sum_{(i_0, i_1, \ldots, i_D)} s_{i_0 i_1 \ldots i_D} (f_D)_{i_0, i_1, \ldots, i_D}.
\]

Here \(s_{i_0 i_1 \ldots i_D} = \pm 1\), such that a \(D\)-simplex in the \(D\)-chain \(M^D\) is given by \(s_{i_0 i_1 \ldots i_D} (i_0, i_1, \ldots, i_D)\).

We can define a derivative operator \(d\) acting on an \(n\)-cochain \(f_n\), which give us an \((n+1)\)-cochain (see Fig. 2):

\[
\langle df_n, (i_0 i_1 i_2 \cdots i_{n+1})\rangle = \sum_{m=0}^{n+1} (-1)^m \langle f_n, (i_0 i_1 i_2 \cdots \hat{i}_m \cdots i_{n+1})\rangle
\]

where \(i_0 i_1 i_2 \cdots \hat{i}_m \cdots i_{n+1}\) is the sequence \(i_0 i_1 i_2 \cdots i_{n+1}\) with \(i_m\) removed, and \(i_0, i_1, i_2 \cdots i_{n+1}\) are the ordered vertices of the \((n+1)\)-simplex \((i_0 i_1 i_2 \cdots i_{n+1})\).

A cochain \(f_n \in C^n(M^D; \mathcal{M})\) is called a cocycle if \(df_n = 0\). The set of cocycles is denoted by \(Z^n(M^D; \mathcal{M})\).

A cochain \(f_n\) is called a coboundary if there exist a cochain \(f_{n-1}\) such that \(df_{n-1} = f_n\). The set of coboundaries is denoted by \(B^n(M^D; \mathcal{M})\). Both \(Z^n(M^D; \mathcal{M})\) and \(B^n(M^D; \mathcal{M})\) are Abelian groups as well. Since \(d^2 = 0\), a coboundary is always a cocycle: \(B^n(M^D; \mathcal{M}) \subset Z^n(M^D; \mathcal{M})\). We may view two cocycles differ by a coboundary as equivalent. The equivalence classes of cocycles, \([f_n]\), form the so called cohomology group denoted by

\[
H^n(M^D; \mathcal{M}) = Z^n(M^D; \mathcal{M}) / B^n(M^D; \mathcal{M}),
\]

\(H^n(M^D; \mathcal{M})\), as a group quotient of \(Z^n(M^D; \mathcal{M})\) by \(B^n(M^D; \mathcal{M})\), is also an Abelian group.

When we study systems with time reversal symmetry, we need to consider cochains with local value. To define cochains with local value, we first note that a manifold \(M^D\) has a Stiefel-Whitney class \(w_1\) to describe its orientation structure. On each link \((ij)\) of \(M^D\), \(w_1\) has two values \((w_1)_{ij} = 0, 1\). For a cochain \(\phi\) with local values, we cannot direct compare their values on different simplex, say \(f_{ijk}\) and \(f_{ilmn}\). To compare \(f_{ijk}\) and \(f_{ilmn}\), we need to use \(w_1\) to parallel transport the value \(f_{ilmn}\) with base point \(l\) to the value with base point \(i\):

\[
\text{if } f_{ilmn} \rightarrow (w_1)_{ij} f_{ilmn}, \text{ then we can compare } f_{ijk} \text{ and } (w_1)_{ij} f_{ilmn}.
\]

Such a interpretation of the value of a cochain will modify our definition of derivative operator

\[
\langle dw_1 f_n, (i_0 i_1 i_2 \cdots i_{n+1})\rangle = (-1)^{w_1} \langle f_n, (i_1 i_2 \cdots i_{n+1})\rangle + \sum_{m=1}^{n+1} (-1)^m \langle f_n, (i_0 i_1 i_2 \cdots \hat{i}_m \cdots i_{n+1})\rangle
\]

we note that on the right-hand-side of the above equation, all the terms have the base point \(0\), except the first term which has a base point \(1\).

In this paper, on orientable manifold \(M^D\), we will choose \(w_1 = 0\), and the cochains will all be the cochains with global values and the derivative operator is defined by eqn. (A7). On the other hand, on unorientable manifold \(M^D\), the cochains will all be the cochains with local values and the derivative operator is defined by eqn. (A9).
One can show that d and d_{w_1} have the same local properties. We will drop the subscript w_1 in d_{w_1} and write d.

For the \mathbb{Z}_N-valued cocycle x_n, $d x_n \equiv 0$. Thus

$$\beta_N x_n \equiv \frac{1}{N} d x_n \tag{A10}$$

is a \mathbb{Z}-valued cocycle. Here β_N is the Bockstein homomorphism.

We notice the above definition for cochains still makes sense if we have a non-Abelian group (G, \cdot) instead of an Abelian group $(\mathbb{B}, +)$, however the differential d defined by eqn. (A7) will not satisfy $d \circ d = 1$, except for the first two d's. That is, one may still make sense of 0-cocycle and 1-cocycle, but no more further naively by formula eqn. (A7). For us, we only use non-Abelian 1-cocycle in this article. Thus it is ok. Non-Abelian cohomology is then thoroughly studied in mathematics motivating concepts such as gerbes to enter.

From two cochains f_m and h_n, we can construct a third cochain p_{m+n} via the cup product (see Fig. 3):

$$p_{m+n} = f_m \cup h_n,$$

$$\langle p_{m+n}, (0 \to m+n) \rangle = \langle f_m, (0 \to m) \rangle \times \langle h_n, (m \to m+n) \rangle, \tag{A11}$$

where $i \to j$ is the consecutive sequence from i to j:

$$i \to j \equiv i, i+1, \cdots, j-1, j. \tag{A12}$$

Note that the above definition applies to cochains with global. If h_n has a local value, we then have

$$p_{m+n} = f_m \cup h_n,$$

$$\langle p_{m+n}, (0 \to m+n) \rangle = (-)^{\langle w_1 \rangle m} \langle f_m, (0 \to m) \rangle \times \langle h_n, (m \to m+n) \rangle, \tag{A13}$$

The cup product has the following property

$$d(h_n \cup f_m) = (dh_n) \cup f_m + (-)^n h_n \cup (df_m) \tag{A14}$$

for cochains with global or local values. We note that the above is a local relation. Locally, we can always choose a gauge to make $w_1 \equiv 0$. Thus, the local relations are valid for cochains with both global and local values.

We see that $h_n \cup f_m$ is a cocycle if both f_m and h_n are cocycles. If both f_m and h_n are cocycles, then $f_m \cup h_n$ is a coboundary if one of f_m and h_n is a coboundary. So the cup product is also an operation on cohomology groups $\cup: H^n(M^D, \mathbb{B}) \times H^n(M^D, \mathbb{B}) \to H^{n+m}(M^D, \mathbb{B})$. The cup product of two cocycles has the following property (see Fig. 3)

$$f_m \cup h_n = (-)^{mn} h_n \cup f_m \text{ coboundary} \tag{A15}$$

We can also define higher cup product $f_m \cup h_n$ which gives rise to a $(m+n-k)$-cochain [92]:

$$\langle f_m \cup h_n, (0, 1, \cdots, m+n-k) \rangle$$

$$= \sum_{0 \leq i_0 < \cdots < i_k \leq n+m-k} (-)^p \langle f_m, (0 \to i_0, i_1 \to i_2, \cdots) \rangle \times \langle h_n, (i_0 \to i_1, i_2 \to i_3, \cdots) \rangle, \tag{A16}$$

and $f_m \cup h_n = 0$ for $k < 0$ or for $k > m$ or n. Here $i \to j$ is the sequence $i, i+1, \cdots, j-1, j$, and p is the number of permutations to bring the sequence

$$0 \to i_0, i_1 \to i_2, \cdots; i_0 + 1 \to i_1 - 1, i_2 + 1 \to i_3 - 1, \cdots \tag{A17}$$

to the sequence

$$0 \to m + n - k. \tag{A18}$$

For example

$$\langle f_m \cup h_n, (0 \to m + n - 1) \rangle = \sum_{i=0}^{m-1} (-)^{\langle m-i \rangle (n+1)} \times \langle f_m, (0 \to i, i+n \to m+n-1) \rangle \langle h_n, (i \to i+n) \rangle \tag{A19}$$

We can see that $\cup = \cup$. Unlike cup product at $k = 0$, the higher cup product of two cocycles may not be a cocycle. For cochains f_m, h_n, we have

$$d(f_m \cup h_n) = df_m \cup h_n + (-)^m f_m \cup dh_n + \tag{A20}$$

$$(-)^{m+n-k} f_m \cup h_n + (-)^{m+n+m+n} h_n \cup f_m$$

If h_n has a local value, we then have

$$\langle f_m \cup h_n, (0, 1, \cdots, m+n-k) \rangle$$

$$= \sum_{0 \leq i_0 < \cdots < i_k \leq n+m-k} (-)^p (-)^{\langle w_1 \rangle i_0} \langle f_m, (0 \to i_0, i_1 \to i_2, \cdots) \rangle \times \langle h_n, (i_0 \to i_1, i_2 \to i_3, \cdots) \rangle, \tag{A21}$$

Let f_m and h_n be cocycles and c_l be a chain, from eqn. (A20) we can obtain

$$d(f_m \cup h_n) = (-)^{m+n-k} f_m \cup h_n$$

$$+ (-)^{mn+m+n} h_n \cup f_m, \tag{A22}$$

$$d(f_m \cup h_n) = [(\cdot)^k + (-)^m] f_m \cup h_n \tag{A23}$$

$$d(c_l \cup c_l \cup d c_l) = d c_l \cup d c_l$$

$$- [(-)^k - (-)^l] (c_{k-2} \cup c_l + c_l \cup d c_l).$$

From eqn. (A22), we see that, for \mathbb{Z}_2-valued cocycles z_n,

$$\text{Sq}^{n-k}(z_n) \equiv z_n \cup z_n \tag{A23}$$

is always a cocycle. Here Sq is called the Steenrod square. More generally $h_n \cup h_n$ is a cocycle if $n+k$ is odd and h_n is a cocycle. Usually, the Steenrod square is defined only
for \mathbb{Z}_2-valued cocycles or cohomology classes. Here, we like to define a generalized Steenrod square for \mathbb{M}-valued cochains c_n:

$$\text{Sq}^{n-k}c_n \equiv c_n \smile_{k} c_n + c_n \smile_{k+1} d c_n. \quad (A24)$$

From eqn. (A22), we see that

$$d\text{Sq}^k c_n = d(\smile_{n-k} c_n + \smile_{n-k+1} d c_n)$$

$$= \text{Sq}^k d c_n + (-)^n \begin{cases} 0, & k \text{ odd} \\ 2\text{Sq}^{k+1} c_n, & k \text{ even} \end{cases} \quad (A25)$$

In particular, when c_n is a \mathbb{Z}_2-valued cochain, we have

$$d\text{Sq}^k c_n \equiv \text{Sq}^k d c_n. \quad (A26)$$

Next, let us consider the action of Sq^k on the sum of two \mathbb{M}-valued cochains c_n and c_n':

$$\text{Sq}^k(c_n + c_n') = \text{Sq}^k c_n + \text{Sq}^k c_n' +$$

$$+ c_n \smile_{n-k} c_n' + c_n' \smile_{n-k} c_n + c_n \smile_{n-k+1} d c_n + c_n' \smile_{n-k+1} d c_n$$

$$= \text{Sq}^k c_n + \text{Sq}^k c_n' + [1 + (-^k)] c_n \smile_{n-k} c_n'$$

$$- (-)^n [(-)^n c_n' \smile_{n-k} c_n + (-)^n c_n \smile_{n-k} c_n']$$

$$+ c_n \smile_{n-k+1} d c_n' + c_n' \smile_{n-k+1} d c_n$$

$$= \text{Sq}^k c_n + \text{Sq}^k c_n' + [1 + (-^k)] c_n \smile_{n-k} c_n'$$

$$+ [1 + (-^k)] c_n' \smile_{n-k+1} d c_n - (-)^n d(c_n' \smile_{n-k+1} c_n)$$

$$- [(-)^{n-k+1} d c_n' \smile_{n-k+1} c_n - c_n \smile_{n-k+1} d c_n']$$

$$= \text{Sq}^k c_n + \text{Sq}^k c_n' + [1 + (-^k)] c_n \smile_{n-k} c_n'$$

$$+ [1 + (-^k)] c_n' \smile_{n-k+1} d c_n - (-)^n d(c_n' \smile_{n-k+1} c_n)$$

$$- d(c_n' \smile_{n-k+1} c_n) + d(c_n' \smile_{n-k+2} d c_n)$$

$$= \text{Sq}^k c_n + \text{Sq}^k c_n' + d(c_n' \smile_{n-k+2} d c_n)$$

$$+ [1 + (-^k)] c_n \smile_{n-k} c_n' + c_n' \smile_{n-k+1} d c_n$$

$$- (-)^n d(c_n' \smile_{n-k+1} c_n) - d(d(c_n' \smile_{n-k+2} c_n)). \quad (A27)$$

We see that, if one of the c_n and c_n' is a cocycle,

$$\text{Sq}^k(c_n + c_n') \equiv d \text{Sq}^k c_n + \text{Sq}^k c_n'. \quad (A28)$$

We also see that

$$\text{Sq}^k(c_n + d f_{n-1}) = \text{Sq}^k c_n + \text{Sq}^k d f_{n-1} + [1 + (-^k)] d f_{n-1} \smile c_n$$

$$- (-)^{n-k} d(c_n \smile_{n-k+1} d f_{n-1}) - d(d c_n \smile_{n-k+2} d f_{n-1})$$

$$= \text{Sq}^k c_n + [1 + (-^k)] [d f_{n-1} \smile c_n + (-)^n \text{Sq}^{k+1} d f_{n-1}]$$

$$+ d[d f_{n-1} - (-)^{n-k} d c_n \smile_{n-k+1} d f_{n-1} - d c_n \smile_{n-k+2} d f_{n-1}]$$

$$= \text{Sq}^k c_n + [1 + (-^k)] [d c_n \smile_{n-k+1} d f_{n-1} + (-)^n \text{Sq}^{k+1} d f_{n-1}]$$

$$+ d[d f_{n-1} - (-)^{n-k} d f_{n-1} \smile_{n-k+1} d c_n].$$

Using eqn. (A30), we can also obtain the following result if $d c_n$ = even

$$\text{Sq}^k(c_n + 2c_n') \equiv \text{Sq}^k c_n + 2d(c_n \smile_{n-k+1} c_n') + 2d c_n \smile_{n-k+1} c_n'$$

$$= \text{Sq}^k c_n + 2d(c_n \smile_{n-k+1} c_n') \quad (A30)$$

As another application, we note that, for a \mathbb{M}-valued cochain m_d and using eqn. (A20),

$$\text{Sq}^1(m_d) = m_d \smile_{d-1} m_d + m_d \smile_{d} d m_d$$

$$= \frac{1}{2}(-)^d [d(m_d \smile_{d-1} m_d) - d m_d \smile_{d} m_d] + \frac{1}{2} m_d \smile_{d} d m_d$$

$$= (-)^d \beta_2(m_d \smile_{d} m_d) - (-)^d \beta_2 m_d \smile_{d} m_d + m_d \smile_{d} \beta_2 m_d$$

$$= (-)^d \beta_2 \text{Sq}^0 m_d - 2(-)^d \beta_2 m_d \smile_{d} m_d$$

This way, we obtain a relation between Steenrod square and Bockstein homomorphism, when m_d is a \mathbb{Z}_2-valued cochain

$$\text{Sq}^1(m_d) \equiv \beta_2 m_d. \quad (A32)$$

where we have used $\text{Sq}^0 m_d = m_d$ for \mathbb{Z}_2-valued cochain.

For a k-cochain a_k, k odd, we find that

$$\text{Sq}^k a_k = a_k a_k + a_k \smile_{1} d a_k \quad (A33)$$

$$= \frac{1}{2} [d a_k \smile_{1} a_k - a_k \smile_{1} d a_k - d(a_k \smile_{1} a_k)] + a_k \smile_{1} d a_k$$

$$= \frac{1}{2} [d a_k \smile_{1} d a_k - d(d a_k \smile_{1} a_k)] - \frac{1}{2} d(a_k \smile_{1} a_k)$$

$$= \frac{1}{4} d(d a_k \smile_{3} d a_k) - \frac{1}{2} d(a_k \smile_{1} a_k + d a_k \smile_{2} a_k)$$

Thus $\text{Sq}^k a_k$ is always a \mathbb{Q}-valued coboundary, when k is odd.

[1] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, Journal of High Energy Physics 2, 172 (2015), arXiv:1412.5148.
[70] T. Lan, L. Kong, and X.-G. Wen, to appear (2018).
[71] M. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005), cond-mat/0404617.
[72] K. Walker and Z. Wang, Frontiers of Physics 7, 150 (2012), arXiv:1104.2632.
[73] L. Bhardwaj, D. Gaiotto, and A. Kapustin, Journal of High Energy Physics 2017, 96 (2017), arXiv:1605.01640.
[74] D. J. Williamson and Z. Wang, Annals of Physics 377, 311 (2017), arXiv:1606.07144.
[75] X.-G. Wen, Phys. Rev. B 95, 205142 (2017), arXiv:1612.01418.
[76] T. Lan, C. Zhu, and X.-G. Wen, (2018), arXiv:1809.01112.
[77] L. Kong and X.-G. Wen, (2014), arXiv:1405.5858.
[78] X.-G. Wen and Z. Wang, (2018), arXiv:1801.09938.
[79] B. Blok and X.-G. Wen, Phys. Rev. B 42, 8145 (1990).
[80] J. Fröhlich and T. Kerler, Nucl. Phys. B 354, 369 (1991).
[81] X.-G. Wen and A. Zee, Phys. Rev. B 46, 2290 (1992).
[82] M. DeMarco and X.-G. Wen, to appear (2018).
[83] S. Grozdanov, D. M. Hofman, and N. Iqbal, Phys. Rev. D 95, 096003 (2017), arXiv:1610.07392.
[84] P. Glorioso and D. T. Son, (2018), arXiv:1811.04879.
[85] O. I. Motrunich and T. Senthil, Phys. Rev. Lett. 89, 277004 (2002).
[86] X.-G. Wen, Phys. Rev. B 68, 115413 (2003), cond-mat/0210040.
[87] M. Levin and X.-G. Wen, Phys. Rev. B 73, 035122 (2006), hep-th/0507118.
[88] J. Wess and B. Zumino, Phys. Lett. B 37, 95 (1971).
[89] E. Witten, Nucl. Phys. B 223, 422 (1983).
[90] F. Costantino, Math. Z. 251, 427 (2005), math/0403014.
[91] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338, 1604 (2012), arXiv:1301.0861.
[92] N. Steenrod, Annals of Mathematics 48, 290 (1947).