Correlation of Salivary Cortisol with Stress, Anxiety and Depression in Oral Lichen Planus: A Systematic Review and Meta-analysis

Manjushri Waingade1, Raghavendra S Medikeri2, Madhura Mahajan3

ABSTRACT

Aim: The aim of this study was to evaluate and correlate the salivary cortisol levels with depression, anxiety and stress scores in patients with OLP. Background: Oral lichen planus (OLP) is an immunopathological disease where patients often relate the onset and aggravation of symptoms to increased levels of depression/anxiety/stress. Research suggests that salivary cortisol can be considered as a biomarker of stress. Psychosomatic diseases such as OLP validate the role of depression/anxiety/stress so that they can be effectively and comprehensively treated. A comprehensive electronic literature search was performed by using scientific databases MEDLINE, PubMed Central, Directory of Open Access Journal, Cochrane and Google Scholar. Studies included case control/cross-sectional studies in which the detection of salivary cortisol levels of the OLP patients and controls was assessed along with assessment of DAS with questionnaire/ scales. Quality assessment was done using modified Newcastle–Ottawa Quality assessment scale (NOS) and The Joanna Briggs Institute (JBI) Critical Appraisal tool. Review results: Eleven studies comprising 260 OLP patients and 253 controls were included. The results suggest that the depression/anxiety/stress scores were higher in OLP patients than controls. The anxiety, depression and stress scores showed statistically non-significant correlation with salivary cortisol in OLP. Conclusion: The psychological factors including stress, anxiety and depression plays a crucial role in pathogenesis of OLP. So, supportive psychological treatment also needs to be considered while treating OLP patients. Clinical significance: Oral lichen planus (OLP) is a psychosomatic disorder and salivary cortisol is biomarker of stress. The psychological factors including stress, anxiety and depression role in pathogenesis of OLP. We reported higher salivary levels of cortisol and higher scores of anxiety, depression and stress in OLP patients compared to controls. Similarly, no correlation between anxiety, depression and stress scores with salivary cortisol is established. Thus, we recommend supportive psychological treatment together with the conventional therapy could increase patients’ capability to deal with psychological instabilities that can improve the OLP healing. Keywords: Anxiety, Cortisol, Depression, Oral lichen planus, Saliva, Stress.

World Journal of Dentistry (2022): 10.5005/jp-journals-10015-1890

INTRODUCTION

Oral lichen planus (OLP) is currently recognized as a multifactorial disease with a complex interplay of genetic and environmental factors including patients’ lifestyle, stress as well as anxiety.1–5 The prevalence of OLP varies from 0.5 to 4%, seen predominantly in middle-aged and elderly women.6–9 It is postulated to result from an abnormal T-cell mediated immune response in which auto-cytotoxic CD8+ T cells trigger apoptosis of oral epithelial cells.7,8,10–12

Chronic stress is associated with the activation of the hypothalamic–pituitary–adrenal (HPA) axis as well as with depressed immune function.1,3,7,13,14 Various studies have shown that stress and anxiety can be considered as etiological factors in OLP, but there is still controversy concerning the exact mechanism.3,4,8,15,16 Accumulating evidence supports clinically relevant interrelations between psychological stressors and onset and progression of chronic diseases. Furthermore, psychological stress and psychiatric illness modify the immunological response.15–18

Cortisol is considered as a primary end product of the HPA axis because it is widely considered as a biological regulator of adaptation and maintenance to homeostasis in response to psychological and physiological challenges.5,8,13,19 The measurement of salivary cortisol is an indicator of free cortisol or biologically active cortisol. So quantification of salivary cortisol could help in analyzing the activity of HPA axis and thus evaluate the role of psychological factors in the etiopathogenesis of OLP.1,4,6,10,20

OLP is associated with significantly increased levels of anxiety, depression, and stress, as well as the development or worsening of lesions during times of emotional stress.2,9,10,14,19–25 However, few authors point to controversies in the relationship between OLP and psychological factors.5,8,13,16

1,2Department of Oral Medicine and Radiology, Sinhgad Dental College and Hospital, Pune, Maharashtra, India
2Department of Periodontics, Sinhgad Dental College and Hospital, Pune, Maharashtra, India

Corresponding Author: Manjushri Waingade, Department of Oral Medicine and Radiology, Sinhgad Dental College and Hospital, Pune, Maharashtra, India, Phone: +91 7875044983, e-mail: manju.waingade@gmail.com

How to cite this article: Waingade M, Medikeri RS, Mahajan M. Correlation of Salivary Cortisol with Stress, Anxiety and Depression in Oral Lichen Planus: A Systematic Review and Meta-analysis. World J Dent 2022;13(1):70–79.

Source of support: Nil

Conflict of interest: None

© The Author(s). 2022 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Salivary Cortisol with Stress, Anxiety and Depression in Oral Lichen Planus

Because psychological disorders are not easily measurable, studies have used psychometric testing to quantify and establish a relationship between OLP and behavioral changes. In recent years, the mental health of patients with OLP has been clinically assessed both with and without psychological questionnaires that are acceptable to patients and have enough sensitivity and specificity in their ability to diagnose such diseases.\(^9,^{26}\)

Numerous studies have postulated the role of psychological factors like stress, anxiety and depression in OLP, but with conflicting results.\(^2,^8,^{15,17,19}\) Further, previous systematic reviews have reported higher salivary cortisol levels in OLP patients.\(^9,^{27}\) However, there was no emphasis on the correlation of salivary cortisol levels with depression, anxiety and stress (DAS) scores. Thus, the aim of this systematic review is to evaluate and correlate the salivary cortisol levels with the DAS scores in OLP patients.

Methodology

This systematic review and meta-analysis was developed and registered in PROSPERO (registration number: CRD42021226601). The research question was “Is there any correlation between salivary cortisol levels and Depression, Anxiety and Stress scores in patients with oral lichen planus?”

- **Patient (P):** Patients diagnosed with oral lichen planus clinically and/or histopathologically.
- **Intervention (I):** Analysis of salivary cortisol with assessment of anxiety, depression and stress levels in patients diagnosed with oral lichen planus.
- **Comparator (C):** Healthy subjects not suffering with any diseases/conditions, without other skin lesions and/or not on any drugs.
- **Outcome (O):** Estimation of salivary cortisol levels and assessment of anxiety, depression and stress scores in oral lichen planus and controls.

Inclusion Criteria

Case-control/cross-sectional studies in which the detection of salivary cortisol levels in OLP patients and controls was assessed along with assessment of DAS with questionnaire/scales were included. Also, publications written in English language and available as full text were included.

Exclusion Criteria

Case series/case reports, animal studies, in vitro studies and studies in unpublished formats and articles not available as full text were excluded.

Search Strategy

Databases including PubMed/MEDLINE, PubMed central (PMC), Google Scholar, Cochrane and Directory of Open Access Journal (DOAJ) were searched from 1st January 2010 to 21st January 2021. The following MeSH terms were searched in PubMed/MEDLINE, PubMed central (PMC) including: “oral,” “lichen,” “planus,” “psychological factors,” “stress,” “anxiety,” “salivary,” and “cortisol.” In Google scholar and DOAJ the terms used were “oral lichen planus,” and “cortisol.”

Data Extraction

The search and screening process were carried out by 2 independent reviewers (MW, MM). The titles and abstracts of all retrieved articles were screened and irrelevant studies were excluded. Full text of the eligible studies were obtained and thoroughly analyzed as per eligibility criteria (inclusion/exclusion) for future data extraction.

Two examiners (MW and RM) evaluated titles, abstracts and full text and if there was a diverging opinion, the disagreement among examiners was reexamined and decisions were made unanimously. Each reviewer first decided on a study’s eligibility for inclusion in the systematic review, based on the reported parameters. It was performed using a customized data extraction form, which included following contents: year of publication, study design, study population, mean age, laboratory method of detecting salivary cortisol, tools for measuring the stress/anxiety/depression and outcomes. Inconsistencies were discussed and resolved between the two authors. Missing or unclear information was sought from the authors of the selected papers.

Risk of Bias Assessment

Two authors (MW and RM) independently estimated the quality/risk of bias of each included study. Case-control studies were evaluated by modified Newcastle–Ottawa Quality assessment scale (NOS).\(^{28}\) Risk of bias was assessed domain wise. The studies were considered as good quality/low risk of bias when for the selection domain ≥3 stars; for comparability domain ≥1 star; and for outcome/exposure domain ≥2 stars were obtained. The studies were considered as fair quality/some concern when for the selection domain ≥2 stars; comparability domain ≥3 stars; outcome/exposure domain ≥2 stars were obtained. The studies were considered as poor quality/high risk of bias when for the selection domain ≥0 or 1 star; comparability domain 0 star; outcome/exposure domain 0 or 1 star were obtained.

The Joanna Briggs Institute (JBI) Critical Appraisal tool was used to estimate quality of analytical cross sectional studies.\(^{29}\) The positive answers of ≤49% were considered as high risk of bias, whereas 50–69% for moderate risk and low risk of bias was considered when the positive answers were >70%.

The disagreements between two reviewers were resolved with discussion with third reviewer.

Statistical Analysis

The Review Manager 5.4 (RevMan 5.4, The Cochrane Collaboration, Oxford, United Kingdom) applying the mean difference (MD) and 95% confidence intervals (CIs) was used with a random/fixed-effects analysis. Forest plots and funnel plots were created to visualize the differences between groups and publication bias. The MD was calculated to estimate the salivary cortisol levels in OLP patients versus controls. The I² statistics were applied to evaluate heterogeneity between the studies. High heterogeneity was determined if I² >50% and low heterogeneity when I² <50%. The random or fixed model was used depending upon high or low heterogeneity found, respectively. The Medcalc meta-analysis software was used to evaluate the correlation between the DAS scores and salivary cortisol. Also, publication bias was assessed among the studies using funnel plot and by Begg’s and Egger’s tests. The \(p < 0.05\) was considered statistically significant.

Results

Literature Search

Figure 1 depicts the study search process conducted according to the PRISMA guidelines. The initial online database (PubMed/MEDLINE, PMC, Cochrane, DOAJ and Google Scholar) and manual reference of included studies search yielded a total of 122 articles. After initial
using random model analysis. The pooled mean difference in cross-sectional studies of the salivary cortisol levels in OLP patients compared with controls was 5.19 ng/mL (95% CI: –0.72, 11.10) with \(I^2 = 97\% \) which was statistically non-significant. (\(Z = 1.72; \ p = 0.09 \)).

Similarly, the pooled mean difference of the salivary cortisol levels in case-control studies was 0.55 ng/mL (95% CI: –2.53, 3.63) with \(I^2 = 98\% \) which was statistically non-significant. (\(Z = 0.35; \ p = 0.73 \)).

Stress, Anxiety and Depression Scores in OLP and Controls
Meta-analysis of cross-sectional studies (Fig. 3) in OLP patients compared to controls showed higher anxiety and depression scores which was statistically significant (MD: 7.58; 95% CI: 3.06–12.06; \(p = 0.0009 \) and MD: 5.39; 95% CI: 2.38–8.40; \(p = 0.0005 \) respectively).

However, high heterogeneity was found in both anxiety (\(I^2 = 94\% \)) and depression (\(I^2 = 85\% \)) scores. The stress scores in OLP patients as compared to controls were statistically significant. Quantitative analysis between stress and OLP could not be performed as only one study has been reported.

Case-control studies (Fig. 4) showed higher stress and anxiety scores in OLP as compared to controls which was statistically significant. (MD: 9.04; 95% CI: 1.31–16.77; \(p = 0.02 \) and MD: 4.15; 95% CI: 3.11–5.19; \(p < 0.00001 \) respectively). No significant differences were observed for depression scores in OLP and controls. (MD: 5.72; 95% CI: –1.14 to 12.57; \(p = 0.10 \)).

Correlation of Anxiety, Depression and Stress Scores with Salivary Cortisol Levels
In the two cross-sectional studies (Fig. 5) there was no correlation of anxiety and depression scores with salivary cortisol levels in OLP (\(r = 0.0127; \ p = 0.931, 95\% \text{CI}: –0.267 to 0.290; \) and \(r = 0.0888, \ p = 0.687, 95\% \text{CI}: –0.331 to 0.479 \) respectively) (Fig. 5). The Egger’s test was significant (\(p < 0.00001 \)) indicating possibility of publication bias. But Begg’s test was non-significant (\(p = 0.317 \)).

In the three case-control studies (Fig. 6), there was no correlation of anxiety, depression and stress scores with salivary cortisol levels in OLP. (\(r = 0.123, \ p = 0.313, 95\% \text{CI}: –0.116 to 0.348; \) \(r = 0.136, \ p = 0.263, 95\% \text{CI}: –0.102 to 0.359; \) \(r = 0.160, \ p = 0.117, 95\% \text{CI}: –0.0403 to 0.349, \) respectively). The Begg’s and Egger’s test (\(p > 0.05 \)) indicated minimal or nil publication bias across the studies.
Table 1: Characteristics of included studies

Sr.no	Author/year	Study design	No. of OLP patients and controls	Mean age of OLP patients/controls (years)	Salivary cortisol measurement method	Sampling time	Questionnaire used for assessment of depression/anxiety/stress	Outcome
1.	Girardi C et al.1	Case-control	31/31	53.8/55.5	Radio-immunoassay	8–10 am	Beck Depression Inventory, Beck Anxiety inventory, Lipps inventory of stress symptoms for adults (LISS)	Non-significant difference between the OLP and controls with respect to depression, anxiety or stress, or with respect to morning and night salivary levels of dehydroepiandrosterone and cortisol.
2.	Pippi R et al.8	Case-control	20/14	57/53	ELISA	Morning, noon, & evening (7.30 am, 12.00 Noon and 19.30 pm)	The state and trait anxiety inventory, Beck Depression Inventory Perceived stress scale	OLP patients showed a significantly lower capability of active coping that was associated with higher scores in stress perception and loneliness and significant reduction of diurnal salivary cortisol production (morning).
3.	Nosratzehi T et al.24	Case-control	20/20	45.8/42.8	ELISA	9–10 am	Depression Anxiety Stress (SCL-90)	Salivary cortisol level in patient with OLP significantly less than healthy persons.
4.	Zenouz AT et al.16	Case-control	30/30	48.6/47.3	ELISA	9–10 am	Holms and Rahe’s stress scale	Statistically significant increase in salivary cortisol and stress scores in OLP patients.
5.	Kaur B et al.21	Case-control	25/25	Matched	ELISA	9–10 am	Depression Anxiety Stress scale	Significantly higher depression, anxiety, and stress scores in OLP. Salivary cortisol levels were increased and correlated with psychological factors in OLP.
6.	Gaur A et al.22	Case-control	30/30	46.50±28.99 / 46.50±28.99	ELISA	9–10 am	Depression Anxiety Stress scale	Highly significant increase in salivary cortisol levels in OLP subjects. A significantly higher stress anxiety and depression levels in OLP.
7.	Pires ALPV et al.4	Case-control	21/21	49.19/48.10	ELISA	Awakening, 30-minute post-awakening, bedtime	Beck Depression Inventory, Beck Anxiety inventory, Perceived stress scale	Oral lichen planus was associated with anxiety, depression and stress scores through psychological tests, but not in relation to the pattern of salivary cortisol secretion. The mean salivary cortisol level and anxiety score in OLP group showed highly significant difference (p < 0.001) Positive correlation between anxiety and salivary cortisol.
8.	Nadendla LK et al.3	Cross-sectional	20/20	Matched	ELISA	9–9:15 am	Hamilton anxiety scale	Non-significant increase in salivary cortisol level in the OLP compared to controls. Anxiety and depression scores showed strong positive correlation in both groups.
9.	Lopez-Jornet P et al.27	Cross-sectional	33/32	57 ± 15.8 / 53 ± 12	Chemiluminescent enzyme immunoassay	Before 10 am	Hospital anxiety and Depression scale	Significantly higher Hospital anxiety and depression scale (HADA) and Pittsburgh sleep quality scores in OLP. Significant increase in cortisol in OLP.
10.	Vassanda-coumara V & Daniel JM.2	Cross-sectional	20/20	42.3/34.1	Chemiluminescent immunoassay	8–9 am	Hospital anxiety and Depression scale	Non-significant increase in salivary cortisol level in the OLP compared to controls. Anxiety and depression scores showed strong positive correlation in both groups.
11.	Gupta & Ahuja.23	Cross-sectional	10/10	39.51/23.75	ELISA	9–10 am	Depression Anxiety Stress scale	Depression, anxiety and stress along with salivary cortisol levels were higher in oral lichen planus. Salivary cortisol levels were correlated with psychological factors.
Table 2A: Quality assessment of case-control studies using the modified Newcastle-Ottawa Quality assessment scale

Studies	Selection	Comparability	Exposure	Same method of ascertainment for cases & controls	Non-response rate	Total quality score
Girardi et al.1	1	0	1	1	1	Good
Pippi et al.8	1	0	1	1	1	Good
Nosratzehi et al.24	1	1	1	1	1	Good
Zenouz et al.16	1	1	0	1	1	Good
Kaur et al.21	1	1	0	1	1	Good
Gaur et al.22	1	1	0	1	1	Good
Pires et al.4	1	1	1	1	1	Good

Table 2B: Quality assessment of cross-sectional studies using Joanna Briggs Institute (JBI) critical appraisal tool

Studies	Response options*	Overall appraisal	Risk of bias
Nadendla et al.3	Yes Yes Yes Yes Yes Yes Unclear Yes	Include	Low
Lopez-Jornet et al.27	Yes Yes Yes Yes Yes Yes Yes Yes	Include	Low
Vassandacoumara and Daniel2	Yes Yes Yes Yes Yes Yes Yes Yes	Include	Low
Gupta and Ahuja23	Yes Yes Yes Yes Yes Yes Yes Yes	Include	Low

* 1 - Were the criteria for inclusion in the sample clearly defined; 2 - Were the study subjects and the setting described in detail?; 3 - Was the exposure measured in a valid and reliable way?; 4 - Were objective, standard criteria used for measurement of the condition?; 5 - Were confounding factors identified; 6 - Were strategies to deal with confounding factors stated? 7 - Were the outcomes measured in a valid and reliable way?; 8 - Was appropriate statistical analysis used?

Fig. 2: Forest plot – salivary cortisol levels in the OLP patients vs. controls [cross-sectional studies and case-control studies]
Salivary Cortisol with Stress, Anxiety and Depression in Oral Lichen Planus

The evidence from this research suggests salivary cortisol levels were not significantly elevated in OLP compared to controls. The anxiety scores in OLP patients were significantly higher in OLP patients as shown in both cross-sectional and case control studies. The depression scores were shown to be higher in OLP patients in cross-sectional studies. The stress scores were also significantly higher in OLP patients as reported in case-control studies. Quantitative evaluation of anxiety, depression and stress scores were statistically not correlated with salivary cortisol levels in OLP patients.

The studies by Gaur et al.,18 Kaur et al.20 and Pires et al.4 found a positive correlation between DAS scores with salivary cortisol levels in OLP. Zenouz et al.16 found no correlation between stress scores and salivary cortisol. Also, Lopez et al.7 and Vassandacoumara et al.2

Discussion

The evidence from this research suggests salivary cortisol levels were not significantly elevated in OLP compared to controls. The anxiety scores in OLP patients were significantly higher in OLP patients as shown in both cross-sectional and case control studies. The depression scores were shown to be higher in OLP patients in cross-sectional studies. The stress scores were also significantly higher in OLP patients as reported in case-control studies. Quantitative evaluation of anxiety, depression and stress scores were statistically not correlated with salivary cortisol levels in OLP patients.

The studies by Gaur et al.,18 Kaur et al.20 and Pires et al.4 found a positive correlation between DAS scores with salivary cortisol levels in OLP. Zenouz et al.16 found no correlation between stress scores and salivary cortisol. Also, Lopez et al.7 and Vassandacoumara et al.2
found no correlation between anxiety and depression scores with salivary cortisol levels in OLP. In a study by Nadendla et al., the outcomes measured were not clearly mentioned as published data was not available although it was stated that cortisol levels were statistically not correlated with anxiety. Hence, it was not included in the meta-analysis. It is evident in the present systematic review that although anxiety, depression and stress score are significantly higher in OLP patients than controls, no correlation between these factors with salivary cortisol levels was observed.

Evidence suggests the role of psychological stress on the immune function that results in the development of psychosomatic disorders. Psychological stress acts as initiating or precipitating factor which causes an imbalance in the Th1/Th2 cytokines primarily. As the repeated episodes of stress continue there is a change or amplification of cytokine production including IL-2, IL-12, IFN-γ, TNF-α, IL-4, IL-5, IL-6, IL-10 and IL-13 that modify the immune response and initiate the inflammatory process which eventually results in the immune dysregulation. Neuroendocrine immune system primarily the catecholamines furthers this process by increasing the function of cytotoxic T cells that result in keratinocyte apoptosis which is the hallmark of OLP.

This psychological stress leads to activation of HPA axis which leads to increased production of glucocorticoids and catecholamines followed by increased levels of cortisol in the serum and saliva. Many authors have suggested that the salivary cortisol levels indicate the free cortisol that can be used as a non-invasive and simple method for estimation of psychological instabilities.

This meta-analysis has included studies with good study design and analysis indicating high internal and external validity. The risk of bias was performed by two independent examiners for each study. The inter observer agreement was found more than 80% for studies being assessed.

High heterogeneity was evident in the included studies. This may be attributed to assessment of the DAS scores or variants of OLP in clinical diagnosis. Such variability does not allow creating a standard protocol for assessment of DAS scores in OLP. Since there is no ‘standard scale’ for measurement of DAS score. Further, the reliability of one scale over another is not estimated. However, the publication bias was observed in this study as evident from the results of Begg’s and Egger’s test.

Confounding factors that were addressed in most of the included studies are the cortisol awakening response (CAR), which is the rise in cortisol levels from wake time to 30 min post. In almost all the included studies the timing of salivary cortisol collection was followed as early morning sample to assess this response since
to employ exclusively English-language publications may be made. Furthermore, the time and expense of translation are not viable given the time and financial constraints. To emphasise, the employment of non-restriction of language barrier would give high findings, and assessment of these studies may undermine the quality assessment in the absence of other inputs.38 A recent study found no evidence of systematic bias from the use of language constraints in systematic review-based meta-analyses in conventional medicine.39

There are certain limitations in the present systematic review that should be taken into consideration. The levels of cortisol secretion vary throughout the day depending on the stressful situations and the concentration of cortisol follows a normal circadian rhythm.37 In the present analysis, only two studies have analyzed the diurnal variations of salivary cortisol in OLP

Fig. 6: Forest plot and funnel plot – anxiety and depression and stress scores in the OLP patients vs. controls [case-control studies]
patients.4,9 Also, different scales of assessment of DAS were used in the included studies.3,4,7,8,18,21 The difficulty of establishing causality between OLP and psychological factors may be related to the use of different measurement instruments, as well as subjectivity, lack of a methodological standard and the low statistical power of the studies due to small sample size.4,9 Nevertheless, the outcome of this meta-analysis should be interpreted carefully considering the high heterogeneity due to methods used to analyze DAS scores and limited number of studies involved for the meta-analysis. More research is required to understand the influence of language restrictions on systematic reviews in specific domains of Medicine. One feasible solution would be to make medical information available in widely accepted languages, preferably English. This will account for the evidence of different measurement instruments, as well as subjectivity, lack of a methodological standard and the low statistical power of the studies due to small sample size.4,9

The assessment of stress and circadian rhythm of salivary cortisol also is a field of future research. Moreover, the standardized protocols and scales for assessing the stress, anxiety and depression need to be formulated for better comparison of results.

Conclusion

The current systematic review reported no difference in salivary cortisol levels in OLP patients. While higher scores of anxiety, depression and stress in OLP patients were reported compared to controls, but no correlation was seen between the anxiety, depression and stress scores with salivary cortisol levels. However, the results should be interpreted cautiously when correlating salivary cortisol levels with psychosocial factors in OLP since objectively quantifying a psychological disorder can often be difficult and inaccurate because of individuals’ subjectivity and the difficulty of methodological standardization. Regardless, we recommend psychological counselling in conjunction with conventional management to help strengthen patients’ ability to deal with psychological instabilities that may further improve healing of OLP.

Clinical Significance

Oral lichen planus is a psychosomatic disorder and salivary cortisol is biomarker of stress. The psychological factors including stress, anxiety and depression plays a crucial role in pathogenesis of OLP. We reported higher levels of salivary cortisol and higher scores of anxiety, depression and stress in OLP patients compared to controls. Similarly, no correlation between anxiety, depression and stress score and salivary cortisol is established. Thus, we recommend psychological counseling in combination with conventional management to help increase patients’ capability to deal with psychological instabilities that could further improve OLP healing.

Orcid ID

Manjushri Waingade @ https://orcid.org/0000-0002-1996-573X
Raghavendra S Medikeri @ https://orcid.org/0000-0002-7879-8644
Madhura Mahajan @ https://orcid.org/0000-0001-6470-3096

References

1. Girardi C, Luz C, Cherubini K, et al. Salivary cortisol and dehydroepiandrosterone (DHEA) levels, psychological factors in patients with oral lichen planus. Arch Oral Biol 2011; 56(9):864–868. DOI: 10.1016/j.archoralbio.2011.02.003
2. Vassandacoumara V, Daniel JM. Correlation between salivary cortisol levels and Hospital Anxiety and Depression scores in oral lichen planus and recurrent aphthous stomatitis. Stomatol Dis Sci 2017; 1:103–108. DOI: 10.20517/2573-0002.2017.08
3. NadendlaLK, Meduri V, Paramukam G, et al. Association of salivary cortisol and anxiety levels in lichen planus patients. J Clin Diagn Res 2014;8(12):ZC01–ZC03. DOI: 10.7860/JCDR/2014/8058.5225
4. Pires ALPV, Simoura JADS, Cerqueira JDM, et al. Relationship of psychological factors with salivary flow rate and cortisol levels in individuals with oral lichen planus: a case-control study. Oral Surg Oral Med Oral Pathol Oral Radiol 2020;130(6):675–680. DOI: 10.1016/j.ooom.2020.10.004
5. Agha Hosseini F, Sadat Moosavi M, Sadat Sadrazadeh Afshar M, et al. Assessment of the relationship between stress and oral lichen planus: a review of literature. J Islam Dent Assoc Iran 2016;28(2):78–85. DOI: 10.30699/jidai.29.2.78
6. Skrinjar I, Vidranski V, Brzak BL, et al. Salivary cortisol levels in patients with oral lichen planus—a pilot case-control study. Dent J (Basel) 2019;7(2):59. DOI: 10.3390/dj7020059
7. Lopez-Jornet P, Cayuela CA, Tvarijonaviciute A, et al. Oral lichen planus: salival biomarkers cortisol, immunoglobulin A, and adiponectin. J Oral Pathol Med 2016;45(3):211–217. DOI: 10.1111/jop.12345
8. Pippi R, Patini R, Ghiciuc CM, et al. Diurnal trajectories of salivary cortisol, salivary α-amylase and psychological profiles in oral lichen planus patients. J Biol Regul Homeost Agents 2014;28(1):147–156. PMID: 24750801
9. Cerqueira JDM, Moura JR, Arsatif, et al. Psychological disorders and oral lichen planus: a systematic review. J Invest Clin Dent 2018;12:283. https://doi.org/10.1111/jcid.12363
10. Shah B, Ashok L, Sujatha G. Evaluation of salivary cortisol and psychological factors in patients with oral lichen planus. Indian J Dent Res 2009;20:288–292. DOI: 10.4103/0970-9290.57361
11. Aggarwal A, Agrawal N, Goyal R, et al. Evaluation of psychological factors in patients with oral lichen planus. Annal Dental Special 2020;8(2):5–12.
12. Roopashree MR, Gondhalekar RV, Shashikanth MC, et al. Pathogenesis of oral lichen planus—a review. J Oral Pathol Med 2010;39(10):729–734. DOI: 10.1111/j.1600-0714.2010.00946.x
13. Shetty P, ThorpLS, Chatra P, et al. An association between serum cortisol levels in erosive and nonerosive oral lichen planus patients. Webmed Cent Dent 2010;1:WMC0056. DOI: 10.4103/JPBS.JPBS_7_19
14. Chaudhary, S. Psychosocial stressors in oral lichen planus. Aust Dent J 2004;49(4):192–195. DOI: 10.1111/j.1834-7819.2004.tb00072.x
15. Rödstrom PO, Jontell M, Hakeberg M, et al. Erosive oral lichen planus and salivary cortisol. J Oral Pathol Med 2001;30(5):257–263. DOI: 10.1034/j.1600-0714.2001.300501.x
16. Zenouz A, Mehdipour M, Dadashzadeh H, et al. Evaluation of salivary cortisol, immunoglobulin A, and adiponectin in patients with oral lichen planus–a review of literature. J Oral Pathol Med 2010;39(10):729–734. DOI: 10.1111/j.1600-0714.2010.00946.x
17. Kirthikeyan P, Aswath N. Stress as an etiologic co-factor in recurrent aphthous ulcers and oral lichen planus. J Oral Sci 2016;58(2):237–240. DOI: 10.2334/josnusd.15-0610
18. Sawant NS, Vanjari NA, Khopkar U, et al. A study of depression and quality of life in patients of lichen planus. Sci World J 2015;2015:617481. DOI: 10.1155/2015/617481
19. Koray M, Düüger O, Ak G, et al. The evaluation of anxiety and salivary cortisol levels in patients with oral lichen planus. Oral Dis 2003;9(6):298–301. DOI: 10.1034/j.1601-0714.2003.00960.x
20. Ibrahim A, Ibrahim H, Al-Saedy S. Cortisol and psychological factors in etiology of lichen planus. Indian J Forensic Med Toxicol 2020;14: 1153–1159. DOI: 10.3750/jfmt.v14i2.3062
21. Kaur B, Sunil MK, Trivedi A, et al. Salivary cortisol in oral lichen planus: a diagnostic marker? J Int Oral Health 2015;7(10):43–48.
22. Gaur A, Kumar CA, Kumar S, et al. Estimation of salivary cortisol level and psychological assessment in patients with oral lichen planus. J Indian Acad Oral Med Radiol 2018;30:14–17. DOI: 10.4103/jiomr. jiomr_98_17
23. Gupta S, Ahuja N. Estimation of salivary cortisol level in oral lichen planus and oral leukoplasia patients. Int J Health Sci Res 2018;8(6):75–80.

24. Nosratzehi T, Arbabi-Kalati F, Salimi S, et al. The evaluation of psychological factor and salivary cortisol and iga levels in patients with oral lichen planus. Zahedan J Res Med Sci 2014;16(7):31–34.

25. Radwan-Oczko M, Zwyrtel E, Owczarek JE, et al. Psychopathological profile and quality of life of patients with oral lichen planus. J Appl Oral Sci 2018;26:e20170146. DOI: 10.1590/1678-7757-2017-0146

26. Wiriyakijja P, Fedele S, Porter SR, et al. Patient-reported outcome measures in oral lichen planus: a comprehensive review of the literature with focus on psychometric properties and interpretability. J Oral Pathol Med 2018;47(3):228–239. DOI: 10.1111/jop.12604

27. Lopez-Jornet P, Zavattaro E, Mozaffari HR, et al. Evaluation of the salivary level of cortisol in patients with oral lichen planus: a meta-analysis. Medicina (Kaunas) 2019;55(5):213. DOI: 10.3390/medicina55050213

28. Wells GA, Shea B, O’Connell D, et al. The Newcastle–Ottawa scale (NOS) for assessing the quality of nonrandomized studies in metaanalyses. Ottawa, Canada: The Ottawa Health Research Institute. http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (accessed 14.04.15)

29. Moola S, Munn Z, Tufanaru C, et al, Mu P-F. Chapter 7: Systematic reviews of etiology and risk In: Aromataris E, Munn Z (Editors). Joanna Briggs Institute Reviewer’s Manual. The Joanna Briggs Institute, 2017. Available from: https://reviewersmanual.joannabriggs.org/

30. Qi M, Gao H, Guan L, et al. Subjective stress, salivary cortisol, and electrophysiological responses to psychological stress. Front Psychol 2016;18(7):229. https://doi.org/10.3389/fpsych.2016.00229

31. Stojanovich L, Marisavljevic D. Stress as a trigger of autoimmune disease. Autoimmun Rev 2008;7(3):209–213. DOI: 10.1016/j. autrev.2007.11.007

32. Rhodus NL, Cheng B, Ondrey F. Th1/Th2Cytokine ratio in tissue transudates from patients with oral lichen planus. Mediators Inflamm 2007;2007:19854. https://doi.org/10.1155/2007/19854

33. Kalogerakou F, Albanidou-Farmaki E, Markopoulos AK, et al. Detection of Tcell secreting type 1 and type 2 cytokines in theperipheral blood of patients with oral lichen planus Hippokratia. 2008;12(4):230–235. PMCID: PMC2580045 PMID: 191989

34. Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA 2007;298(14):1685–1687. DOI: 10.1001/jama.298.14.1685

35. Par M, Tarle Z. Psychoneuroimmunology of oral diseases – a review. Stomatol Edu J 2019;6(1):55–65. DOI: https://doi.org/10.25241/ stomaeduj.2019.6(1).art.7

36. Prolo P, Chiappelli F, Cajulis E, et al. Psychoneuroimmunology in oral biology and medicine. The model of oral lichen planus. Ann NY Acad Sci 2002;966:429–440. DOI: 10.1111/j.1749 – 6632. 2002.tb04244.x

37. Clements AD. Salivary cortisol measurement in developmental research: where do we go from here? Dev Psychobiol 2013;55(3):205–220. DOI: 10.1002/dev.21025

38. McDonagh M, Peterson K, Raina P, et al. Avoiding bias in selecting studies. In: Methods Guide for Effectiveness and Comparative Effectiveness Reviews [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2008. Available from: https://www.ncbi.nlm.nih.gov/books/NBK126701/}

39. Morrison A, Moulton K, Clark M, et al. English-language restriction when conducting systematic review-based meta-analyses: systematic review of published studies. Ottawa: Canadian Agency for Drugs and Technologies in Health 2009:1–17.