High Blood Pressure and Long-Term Exposure to Indoor Noise and Air Pollution from Road Traffic

Maria Foraster,1,2,3 Nino Künzl,4,5 Inmaculada Aguilera,1,2 Marcela Rivera,6 David Agis,1,2 Joan Vila,2,7 Laura Bouso,1,2 Alexandre Deltell,6,8 Jaume Marrugat,7 Rafeil Ramos,10,11 Jordi Sunyer,1,2 Roberto Elouso,9 and Xavier Basagana1,2

1Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; 2CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; 3Departament de Ciències Experimentals i de la Salut (UPF), Universitat Pompeu Fabra, Barcelona, Spain; 4Swiss Tropical and Public Health Institute, Basel, Switzerland; 5University of Basel, Basel, Switzerland; 6University of Montreal Hospital Research Center (CRUCHUM), Montréal, Quebec, Canada; 7IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; 8GREFEMA (Grupo de Recerca en Enginyeria de Flums, Energia i Medi Ambient), Girona, Spain; 9University of Girona (UdG), Girona, Spain; 10Jordi Gol Institute for Primary Care Research (IDIAP-Jordi Gol), Girona Institute for Biomedical Research (IDIBGI), Catalan Institute of Health, Girona, Catalonia, Spain; 11Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain

BACKGROUND: Traffic noise has been associated with prevalence of hypertension, but reports are inconsistent for blood pressure (BP). To assess noise effects and to disentangle them from those suspected to be from traffic-related air pollution, it may be essential to estimate people’s noise exposure indoors in bedrooms.

OBJECTIVES: We analyzed associations between long-term exposure to indoor traffic noise in bedrooms and prevalent hypertension and systolic (SBP) and diastolic (DBP) BP, considering long-term exposure to outdoor nitrogen dioxide (NO₂).

METHODS: We evaluated 1,926 cohort participants at baseline (years 2003–2006; Girona, Spain). Outdoor annual average levels of nighttime traffic noise (L_{night}^A) and NO₂ were estimated at postal addresses with a detailed traffic noise model and a land-use regression model, respectively. Individual indoor traffic L_{night}^A levels were derived from outdoor L_{night}^A with application of insulations provided by reported noise-reducing factors. We assessed associations for hypertension and BP with multi-exposure logistic and linear regression models, respectively.

RESULTS: Median levels were 27.1 dBA (indoor L_{night}), 56.7 dBA (outdoor L_{night}), and 26.8 μg/m³ (NO₂). Spearman correlations between outdoor and indoor L_{night}^A with NO₂ were 0.75 and 0.23, respectively. Indoor L_{night}^A was associated both with hypertension (OR = 1.06; 95% CI: 0.99, 1.13) and SBP (β = 0.72; 95% CI: 0.29, 1.15) per 5 dBA; and NO₂ was associated with hypertension (OR = 1.16; 95% CI: 0.99, 1.36), SBP (β = 1.23; 95% CI: 0.21, 2.25), and DBP (β = 0.56; 95% CI: –0.03, 1.14) per 10 μg/m³. In the outdoor noise model, L_{night}^A was associated only with hypertension and NO₂ with BP only. The indoor noise–SBP association was stronger and statistically significant with a threshold at 30 dBA.

CONCLUSION: Long-term exposure to indoor noise association was prevalent with hypertension and SBP, independently of NO₂. Associations were less consistent for outdoor traffic L_{night}^A and likely affected by collinearity.

CITATION: Foraster M, Künzl N, Aguilera I, Rivera M, Agis D, Vila J, Bouso L, Deltell A, Marrugat J, Ramos R, Sunyer J, Elouso R, Basagana X. 2014. High blood pressure and long-term exposure to indoor noise and air pollution from road traffic. Environ Health Perspect 122:1193–1200; http://dx.doi.org/10.1289/ehp.1307156

Introduction

Long-term exposure to outdoor traffic noise has been associated with cardiovascular disease (CVD) (Babish 2006). The biological pathway involves noise–stress reactions related to hormonal and cardiovascular responses that, under long-term exposure, may contribute to hypertension and CVD—particularly during susceptible periods such as sleep at night (Babish 2011).

Hypertension is the leading risk factor for morbidity and mortality worldwide (Lim et al. 2012). A recent comprehensive meta-analysis reported an increase in prevalence of hypertension per 5-dBA increase in daytime traffic noise levels (L_{Aeq,16h}) [range, 45–75 dBA] [odds ratio (OR) = 1.03; 95% confidence interval (CI): 1.01, 1.06] (van Kempen and Babish 2012). However, studies on the association between long-term exposure to noise and the continuous trait of blood pressure (BP) are heterogeneous (Babish 2006).

Traffic is also the primary source of local air pollution, and recent cross-sectional studies indicate associations between long-term exposure to markers of traffic-related pollution and high BP (Chuang et al. 2011; Dong et al. 2013; Foraster et al. 2014; Fuks et al. 2011; Schwartz et al. 2012). However, the evidence is still limited, particularly for hypertension (Coogan et al. 2012; Fuks et al. 2011; Sørensen et al. 2011). A major unresolved concern is whether long-term effects of traffic-related air pollution and noise could be mutually confounded (Allen et al. 2009; Foraster et al. 2011). As emphasized in the literature (Babish 2011), current studies rely on outdoor traffic noise estimates at the most exposed façade, whereas the true exposure may well differ depending on room orientation, noise shielding, and coping behaviors (Babish et al. 2012). Understanding traffic noise exposure indoors, during sleep, could be essential to ascertaining the cardiovascular effects of noise and disentangling them from those of traffic-related air pollution.

We aimed to evaluate the association of long-term exposure to individually assigned estimates of indoor traffic noise levels in bedrooms at night (L_{night}^A), a susceptible period to noise exposure, with BP and hypertension. To derive indoor levels, we combined outdoor traffic noise levels with information about the bedroom’s orientation and measures against noise. We also evaluated the confounding effect of traffic-related air pollution. The study was conducted within the well-defined population-based cohorts of the REGICOR (Registre Gironí del Cor; Girona Heart Registry) study in Girona, a dense Mediterranean city of nearly 100,000 inhabitants in northeast Spain.

Address correspondence to M. Foraster, Centre for Research in Environmental Epidemiology (CREAL), Doctor Aiguader 88, 08003, Barcelona, Spain. Telephone: 34932147324. E-mail: mariafp@gmail.com

Supplemental Material is available online (http://dx.doi.org/10.1289/ehp.1307156).

We are grateful for the contribution of M. Medina-Ramón, M. Mendez, and the REGICOR team and participants.

This study was supported by funding from Marató 081632, Centre for Research in Environmental Epidemiology (CREAL) Pilot Project Funds 2009; Centro de Investigación Biomédica en Epidemiología y Salud Pública (CIBERESP) Pilot Project Funds 2008 (AA08_15); Instituto de Salud Carlos III (ISCIII): Fondo de Investigación Sanitaria (FIS) PI060258, Red de Investigación Cardiovascular–Programa Heracles RD 12/0042, Red de Investigación en Actividades Preventivas y Promoción de la Salud (RedAPP) RD 06/0018, and a fellowship to M.F.; Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et de la Santé (ANSES) CREAL 0966C03813 (the TRIPTABS study); and the Young Researchers Exchange Program of the European Network on Noise and Health (ENNAH).

The authors declare they have no actual or potential competing financial interests.

Received: 30 May 2013; Accepted: 7 July 2014; Advance Publication: 8 July 2014; Final Publication: 1 November 2014.
Methods

Study sample. The initial sample consisted of 2,067 participants, 36–82 years of age, who were evaluated at baseline (2003–2006) within a population-based cohort of the REGICOR study (Grau et al. 2007), and who had answered a questionnaire on nighttime noise exposure at the bedroom at follow-up (2009–2011). Briefly, the baseline sample was a random selection of noninstitutionalized inhabitants of Girona who were called in a randomized order for the follow-up visit. Because the noise questionnaire referred to the residence at follow-up, we selected nonmovers from baseline to follow-up (93.3% of the follow-up sample) to ensure that responses referred to the same baseline residences.

The study was approved by Parc de Salut Mar ethics committee, and participants signed written informed consent.

Outcomes and health assessment. Participants were examined from 0800 to 1100 hours at the primary care center and after fasting for 10 hr but being allowed regular medication. Trained nurses measured BP and heart rate following the Joint National Committee VII recommendations (Chobanian et al. 2003), in sitting position, and with a calibrated automatic device (OMRON 711; Omron Healthcare, Lake Forest, IL, USA). Two measurements were done after at least 10 and 3 min of rest, respectively. If measurements differed by ≥ 5 mmHg, a third one was taken. To minimize the “white coat” effect, if noise levels [in dB(A)] at the geocoded residential addresses (hereafter called outdoor traffic L_{night}) were ≥ 140/90 mmHg, respectively (Chobanian et al. 2007), a 10-item score based on a nonverbal scale—in the bedroom during sleeping hours, with no further contribution of the architectural features when “Always closing windows” (100% of the time), “seldom” (25%), and “never” closed, the resulting insulation factors were −21 dB(A), −16 dB(A), and −15 dB(A), respectively, with no further contribution of the specific insulation of each window type.

We followed step b to obtain indoor railway L_{night} from outdoor estimates. We also derived individual outdoor levels of annual average nitrogen dioxide (NO_2) concentrations (micrograms per cubic meter) at each geocoded address with a land use regression model (LUR) derived in 2010 for Girona, as described elsewhere (Rivera et al. 2013). Briefly, the LUR was based on a dense network of residential outdoor NO_2 measurements (years 2007–2009). The main predictor variables were the height above street and traffic-related variables within different buffers (from 25- to 1,000-m radii) around the sampling locations. The coefficient of determination (R^2) of the model was 0.63.

Other data collection. Based on questionnaires we also assessed smoking (smoker/ex-smoker of > 1 year/never smoker), weekly leisure time physical activity (in metabolic
Traffic-related noise, pollution, and hypertension contribute further to models (i.e., effect of lag 0, and daily NO\textsubscript{2} (lags 0–3) did not measured BP. Occupational status, living BMI, deprivation, railway noise, and short-term effects of daily temperature at lag 0) on measured BP. Occupational status, living alone, temperature at lags 1–3, instead of lag 0, and daily NO\textsubscript{2} (lags 0–3) did not contribute further to models (i.e., effect estimates changed < 10%). We additionally adjusted for BP-lowering treatment in models for BP and checked regression diagnostics. Effect estimates changed < 10% by further inclusion of potential intermediates (traffic noise annoyance, family history of cardiovascular death, heart rate, and CVD), so these were not considered (data not shown).

We also assessed linear threshold models assuming noise effects to start at 30 dB(A) indoors, the recommended indoor noise levels at night (WHO 2009). For this, we created a new variable by subtracting 30 dB(A) to the noise levels and giving the value zero to the resulting negative values. This new variable was then used as the exposure variable in the models.

We tested population characteristics that could modify the association between traffic noise (indoors) and hypertension by including an interaction term (i.e., evaluated categorical or continuous variable × indoor traffic noise) in multivariate models and checking its statistical significance (i.e., p-value of interaction term) as well as the stratum-specific effect estimate of the studied association. The evaluated ordinal variables were coded with consecutive numbers, multiplied by indoor traffic noise, and the resulting continuous variable was used in the models to test for trends. We evaluated age, sex, educational level, BMI, diabetes, traffic annoyance, noise sensitivity with a cut-off at 50.23, respectively (Table 2). Participants who always closed windows and had noise protections (i.e., with bedroom facing the backyard or sound-proofed windows: 15% of the participants) were exposed to slightly higher median outdoor levels [57.2 dB(A)] compared with those who had none of these noise-reducing measures [56.1 dB(A), 34%], or those who only closed windows [56.9 dB(A), 31%] or only had protections [56.9 dB(A), 20%] (Kruskal–Wallis test p-value = 0.044). Median outdoor traffic levels were also higher for those reporting higher traffic annoyance (not new: 56.1 dB(A); moderately: 57.3 dB(A); highly annoyed: 58.1 dB(A); Kruskal–Wallis test p-value < 0.001), but not for those with higher noise sensitivity.

Traffic L\textsubscript{night} NO\textsubscript{2} and high BP. In single-exposure models, outdoor traffic L\textsubscript{night} and NO\textsubscript{2} were associated with prevalent hypertension [OR = 1.18; 95% CI: 1.05, 1.32 per 5 dB(A) and OR = 1.16; 95% CI: 0.99, 1.36 per 10 \mu g/m3, respectively] (Table 3). When combining both factors in two-exposure models, the association for outdoor traffic L\textsubscript{night} was similar, whereas that for NO\textsubscript{2} was attenuated (OR = 0.98; 95% CI: 0.79, 1.22). In contrast, we observed associations of NO\textsubscript{2}, traffic L\textsubscript{night} at the bedroom façade and indoor traffic L\textsubscript{night} with hypertension that were not confounded by noise or NO\textsubscript{2}, correspondingly. Relationships with indoor traffic L\textsubscript{night} and NO\textsubscript{2} did not reach statistical significance (OR = 1.06; 95% CI: 0.99, 1.13;
Foraster et al.

The average beta coefficients of the 10,000 simulations were for NO₂, $\beta = 1.19$, and for outdoor traffic L_{night}, $\beta = 0.51$, and their Pearson correlation was -0.70 (see Supplemental Material, Figure S1A). In contrast, the resulting correlation between the simulated beta coefficients of NO₂ and indoor traffic L_{night} was 0.03 (see Supplemental Material, Figure S1B).

Discussion

This study combined long-term estimates of outdoor traffic noise levels at night (L_{night}) with information on bedroom orientation and measures to abate noise to derive an estimate of indoor traffic noise levels at each participant’s bedroom. Besides attempting to get a more accurate estimate of the true relevant exposure, accounting for noise-reducing factors decreases the correlation observed between outdoor traffic noise and NO₂ levels (a marker of traffic-related air pollution). Thus it helps to disentangle the associations of these traffic-related stressors with high BP. Few studies to date have considered this mutual confounding on high BP (Coogan et al. 2012; de Kluijner et al. 2014).

Table 1. Main characteristics of the study sample.

Characteristic	Total ($n = 1,926$)	Nonhypertensive ($n = 1,222$)	Hypertensive ($n = 704$)	p-Value a
Continuous variables [median (IQR)]				
Systolic blood pressure (mmHg)	123.0 (24.0)	117.0 (15.0)	143.0 (21.0)	< 0.001
Diastolic blood pressure (mmHg)	76.0 (13.0)	75.0 (10.0)	86.0 (13.0)	< 0.001
Age (years)	60.0 (18.0)	52.0 (15.0)	63.0 (15.0)	< 0.001
Mediterranean diet adherence score	20.0 (4.00)	20.0 (4.00)	20.0 (4.00)	0.483
Deprivation index c	-1.95 (0.91)	-2.01 (1.00)	-1.82 (1.00)	0.130
Outdoor annual average NO₂ ($\mu g/m^3$)	26.8 (11.5)	26.3 (11.2)	27.4 (12.2)	0.017
Indoor traffic L_{night} [dB(A)]	56.7 (6.80)	56.5 (6.70)	57.4 (7.00)	< 0.001
Indoor traffic L_{night} at bedroom façade [dB(A)]	53.5 (17.2)	53.4 (16.9)	53.7 (17.6)	0.03
Indoor traffic L_{night} at bedroom façade [dB(A)]	27.1 (16.2)	26.9 (15.8)	27.6 (17.2)	0.061
Indoor traffic L_{night} at bedroom façade [dB(A)]	10.5 (21.6)	10.0 (21.4)	11.1 (22.0)	0.572
Noise sensitivity score [10–60]d	30 (17.0)	34 (17.0)	30 (17.0)	< 0.001
Categorical variables [n (%)]				
Male sex	876 (45.5)	493 (40.3)	383 (54.4)	< 0.001
BMI (kg/m²)				
< 20	68 (3.50)	60 (4.90)	8 (1.10)	< 0.001
20–25	605 (31.4)	477 (39.0)	128 (18.2)	
25–30	651 (44.2)	517 (42.3)	334 (47.4)	
> 30	402 (20.9)	168 (13.7)	234 (32.3)	
Educational level				
University or similar	596 (30.9)	438 (35.8)	158 (22.4)	0.001
Secondary	618 (32.1)	428 (35.0)	190 (27.0)	
Primary	681 (35.4)	436 (35.3)	335 (47.6)	
Illiterate	31 (1.60)	10 (0.80)	21 (3.00)	
Smoking				
Never smokers	981 (50.9)	613 (50.2)	368 (52.3)	0.004
Smokers	408 (21.1)	285 (23.0)	121 (17.2)	
Former smokers	539 (28.0)	324 (26.5)	215 (30.5)	
Diabetes, yes	261 (13.6)	97 (7.90)	164 (23.3)	< 0.001
Bedtime orientation, back g	582 (30.2)	369 (30.2)	213 (30.3)	0.976
Closing windows, yes f	885 (46.0)	574 (47.0)	311 (44.2)	0.236
Protections, yes p	668 (34.6)	419 (34.3)	247 (35.1)	0.723
Traffic annoyance (points)				
None b	1,198 (62.6)	737 (60.6)	461 (66.0)	0.005
Moderate [1–5]	549 (28.7)	368 (30.3)	181 (25.9)	
High [6–10]	168 (8.80)	111 (9.10)	57 (8.20)	
Anxiolytics, yes	425 (22.3)	239 (19.6)	186 (26.5)	< 0.001

aChi-square test and Kruskal–Wallis test for strata of hypertension with categorical or continuous variables, respectively. bLowest (10) and highest (30) adherence to diet. cHigh deprivation corresponds to high values. dHigher noise sensitivity with higher values; 10.8% missing observations. eVersus bedroom facing postal address street or side-street. fYes: always close windows (vs. no: never, seldom, often close windows). gSound-proofed windows or bedroom facing the backyard. hOR = 1.19 (2% missing observations).

Table 2. Spearman correlationsa **between annual average home outdoor NO₂ levels and outdoor and indoor traffic noise levels (L_{night}) in the city of Girona ($n = 1,926$).**

Variable	Outdoor NO₂	Outdoor L_{night} at façade	Indoor L_{night}	
Outdoor annual average NO₂ ($\mu g/m^3$)	1.00			
Outdoor L_{night} [dB(A)]	0.75	1.00		
Outdoor L_{night} at bedroom façade [dB(A)]	0.39	0.55	1.00	
Indoor L_{night} [dB(A)]	0.23	0.35	0.78	1.00

aAll correlations are statistically significant at $\alpha < 0.001$. **Foraster et al.**
Traffic-related noise, pollution, and hypertension

et al. 2007; Fuks et al. 2011; Sørensen et al. 2011, 2012), and none have used indoor noise estimates. Moreover, few studies analyzed both hypertension and BP. We observed associations between indoor traffic noise and both hypertension and SBP, and between NO2 and hypertension, SBP, and DBP. The associations of indoor traffic noise were not confounded by NO2, and vice versa. In contrast, results for outdoor traffic Lnight were less consistent, and associations between outdoor traffic Lnight and NO2 with the outcomes showed opposite tendencies after mutual adjustment.

The less consistent findings for outdoor traffic Lnight agreed with the literature, which indicates associations with hypertension, but limited evidence with BP (Babisch 2006; Dratva et al. 2012; Sørensen et al. 2011; van Kempen and Babisch 2012). Regarding the estimated effect size, a recent meta-analysis reported an OR of 1.03 (95% CI: 1.01, 1.06) per 5-dB(A) change of daytime traffic noise (van Kempen and Babisch 2012). We observed a higher OR of 1.19 (95% CI: 1.02, 1.40), which may reflect a residual confounding by traffic-related air pollution in our study area, due to the high correlation between the two outdoor factors, and thus, the inability to disentangle associations even after adjustment for NO2, as discussed below.

In contrast, indoor traffic Lnight was suggestively associated with hypertension (OR = 1.06; 95% CI: 0.99, 1.13, p-value = 0.073) and the estimated effect size was closer to the above-mentioned meta-analysis (van Kempen and Babisch 2012). Furthermore, it was also associated with SBP. The null association for DBP was previously observed by Sørensen et al. (2011) with outdoor traffic noise. Further research is needed to clarify whether the chronic noise–stress biological pathway may promote vascular changes resulting in isolated increased SBP (Black and Elliott 2013).

To our knowledge, only one study has estimated indoor traffic noise (as a categorical variable) according to two terms: room orientation and always closing windows. Only the indoor estimates yielded an increase in the risk of ischemic heart disease, though it was not statistically significant (Babisch et al. 1999). Our assessment further computed the frequency of opening windows, and used more precise, continuous noise estimates with a wider exposure contrast. The other few attempts to account for noise-reducing factors consisted of stratification or interaction analysis by these factors on the noise–hypertension relationship, and only one study addressed this issue comprehensively (Babisch et al. 2012). However, results have been heterogeneous. We assessed similar interaction analyses with closing windows, protections, and a combination of the two, and did not identify differences among groups (data not shown). Stratified analyses have lower statistical power and might result in bias and spurious findings due to multiple comparisons. Furthermore, people may combine noise-reducing remedies, and findings for specific measures might be difficult to interpret if they co-vary with other shielding elements, annoyance, or outdoor traffic noise and air pollution levels.

Our findings for long-term exposure to near-road pollution (NO2) also agreed with the emerging literature, which indicates associations with BP (Chuang et al. 2011; Dong et al. 2013; Foraster et al. 2014; Fuks et al. 2011; Schwartz et al. 2012), although not in all studies (Sørensen et al. 2012). Furthermore, we also observed a borderline statistically significant association for hypertension, which was independent of indoor

![Figure 1. Estimated change in prevalent hypertension per increment of 5 dB(A) in annual average levels of nighttime indoor traffic noise at the bedroom by subgroups of population characteristics (n = 1,926). P50, 50th percentile. Each multivariate logistic regression model was adjusted for the corresponding interaction term, one at a time, and annual average NO2 levels, age, age squared, sex, education, Mediterranean diet, exercise, alcohol consumption, smoking, BMI, diabetes, deprivation, daily temperature, and indoor railway Lnight.](image)

Table 3. Estimated change in the prevalence of hypertension, SBP, and DBP (mmHg) per increasing exposure to residential levels of traffic noise (Lnight) and annual average outdoor NO2 (n = 1,926).

Models	Hypertension [OR (95% CI)]	SBP [β (95% CI)]	DBP [β (95% CI)]
	Lnight NO2	Lnight NO2	Lnight NO2
Outdoor model			
Single-exposure	1.16 (1.05, 1.32)**	1.16 (0.99, 1.36)*	0.51 (–0.24, 1.25)
Multi-exposure	1.19 (1.02, 1.40)**	0.90 (0.79, 1.22)	–0.20 (–1.25, 0.84)
Facade model			
Single-exposure	1.08 (1.01, 1.15)**	1.16 (0.99, 1.36)*	0.42 (0.00, 0.83)**
Multi-exposure	1.07 (1.01, 1.14)**	1.14 (0.97, 1.33)	0.36 (–0.06, 0.77)**
Indoor model			
Single-exposure	1.06 (0.99, 1.13)*	1.16 (0.99, 1.36)*	0.71 (0.28, 1.14)**
Multi-exposure	1.06 (0.99, 1.13)*	1.16 (0.99, 1.36)*	0.72 (0.29, 1.15)**

Single-exposure models were for NO2 or the corresponding traffic noise indicator. Multi-exposure models were adjusted for NO2 and the corresponding traffic noise indicator.

*Per 5 dB(A) of traffic Lnight and 10 μg/m3 of NO2. **All models were adjusted for age, age squared, sex, education, Mediterranean diet, exercise, alcohol consumption, smoking, BMI, diabetes, deprivation, daily temperature, and indoor railway noise. BP models were additionally adjusted for BP-lowering treatment. *Noise indicator: outdoor traffic Lnight. **Noise indicator: outdoor traffic Lnight at the bedroom façade. *p < 0.1. **p < 0.05.
traffic noise, but tended to the null when adjusting for outdoor traffic \(L_{\text{night}} \). To our knowledge, the association between \(\text{NO}_2 \) and prevalence of hypertension was observed in only two studies (Dong et al. 2013; Johnson and Parker 2009), whereas other studies found null or inverse effects (Foraster et al. 2014; Fuks et al. 2011; Sørensen et al. 2012). The evidence is more consistent for incidence of hypertension, but only based on two studies (Coogan et al. 2012; Sørensen et al. 2012).

In this study, the beta coefficients of outdoor traffic \(L_{\text{night}} \) and \(\text{NO}_2 \) tended to show opposite associations when combined in two-exposure models. We observed a Spearman correlation coefficient of 0.75 between outdoor traffic \(L_{\text{night}} \) and \(\text{NO}_2 \). However, according to the VIF and the commonly used thresholds, the tendencies were not explained by collinearity.

To further understand this issue, we implemented a simulation. The simulation showed unbiased average regression coefficients for the association of \(\text{NO}_2 \) and outdoor traffic \(L_{\text{night}} \) with \(\text{SBP} \) after 10,000 replications. This indicates that results from multiple studies (i.e., a meta-analysis) using linear regression and even with an \(\text{NO}_2 \)-outdoor \(L_{\text{night}} \) correlation of 0.75 would provide unbiased estimates on average. However, the correlation between regression coefficients was -0.70.

In other words, those individual replicates of the study finding a high regression coefficient for \(\text{NO}_2 \) found a low coefficient for outdoor traffic \(L_{\text{night}} \), and vice versa (see Supplemental Material, Figure S1A). In particular, around 15.1% of studies had a reversed sign for outdoor traffic noise. In the current study, the tendency could be strong enough to reverse the sign of one of the two exposures. Similar results are expected in other studies of similar size and correlation (around 0.7 or higher) between \(\text{NO}_2 \) and noise. Therefore there is a risk that literature reporting an association for \(\text{NO}_2 \) does not find an association for outdoor traffic noise and vice versa, making it difficult to disentangle associations. This might have happened in three of the few studies combining both stressors, which observed a slight negative confounding, including a recent study of our group that focused on \(\text{NO}_2 \) and adjusted for outdoor traffic \(L_{\text{night}} \) as the only available exposure marker (de Kluijzenaar et al. 2007; Foraster et al. 2014; Sørensen et al. 2012).

The present study further showed that these opposite tendencies in beta coefficients disappeared when assessing markers of personal exposure at the bedroom façade, which were less correlated with \(\text{NO}_2 \) (Table 3). This was also confirmed in the simulation study by a null correlation between the beta coefficients of indoor traffic \(L_{\text{night}} \) and \(\text{NO}_2 \) (see Supplemental Material, Figure S1B). This underscores the need for appropriate exposure measurements for both noise and air pollution to adequately disentangle their associations with common end points—to avoid spurious correlations and thus spurious adjustment patterns when one factor (noise in our case) is a poor proxy of exposure.

Threshold effects for indoor traffic \(L_{\text{night}} \). The association of indoor traffic noise with hypertension and \(\text{SBP} \) was stronger when we assumed a 30-dB(A) threshold effect for indoor traffic noise. Although departures from linearity were observed only for \(\text{SBP} \) (see Supplemental Material, Figure S2), a threshold might be possible because indoor noise sources at nighttime could well reach 30 dB(A), thus partly or totally masking the contribution of traffic noise levels < 30 dB(A) indoors. This low threshold indicates that even low traffic noise levels may affect BP and agrees with the WHO recommendations for nighttime noise at bedrooms [30 dB(A)] (WHO 2009).

Effect modification. We observed no association between indoor traffic \(L_{\text{night}} \) and hypertension among participants taking anxiolytics, which might indicate that anxiolytics block the stress response by which noise affects BP. This agrees with a laboratory study reporting fewer noise-induced sleep responses with intake of anxiolytic medication (Cuypers et al. 1995).

We also observed that increasing noise annoyance may potentially lead to stronger associations between indoor traffic noise and hypertension (Figure 1). Few studies to date have analyzed this pattern, which could relate to an interaction between the proposed direct and indirect mechanistic pathways of noise (Babisch et al. 2013).

Finally, we could not confirm previous reports of stronger associations in some age groups or in men (van Kempen and Babisch 2012).

Strengths and limitations. In this study, we derived markers of traffic noise exposure at the bedroom façade and indoors at night from questionnaire data on noise-reducing factors and the best available literature on insulation (European Environment Agency 2010; Salomons et al. 2009; Spanish Government 2010; Tremco Ltd. 2004). We acknowledge that these corrections may have introduced some error, resulting in less precise or biased estimates, which are difficult to predict. For instance, although we deducted standard values to adjust for window type, the true insulation provided by different windows may vary because it also depends on proper window seals. Nevertheless, a small proportion of the participants had sound-proofed windows (4.5%), and still 54% opened windows to some degree (a factor we also considered), thus heavily reducing the effect of window insulation. Besides, home construction is quite homogeneous in Girona, thus possibly yielding similar insulations in backyards. However, models that estimate noise at all building façades are needed to improve precision. In summary, in this study, both markers of noise exposure at the bedroom (particularly the indoor marker) provided more plausible results than outdoor noise at the postal address. Even though our novel questionnaire-based assessment seems suitable, future studies should confirm our results and could even improve questionnaires to obtain even more precise information.

We emphasize that the exposure misclassification now addressed for noise does not necessarily apply to the same extent to air pollution. Many exposure studies confirmed that indoor concentrations of pollutants from outdoor origin, as well as traffic-related particulate matter components such as black smoke (Gotschi et al. 2002), are highly correlated with the outdoor concentrations (Chen and Zhao 2011). This may particularly apply to Girona, where only 46% of participants always closed windows at night and where ventilation during the day is expected given the mild temperatures.

We relied on a detailed noise and LUR model for Girona. However, our exposure models were derived for a specific year and the current residence only, which could lead to exposure misclassification. Nevertheless, the city had no major changes in traffic during the years before the exposure assessment; therefore, we expect spatial distributions of both environmental factors to represent long-term exposure. Moreover, residential mobility was low, and restricting the analyses to nonmovers up to 10 years before the baseline examination had no influence on results (data not shown).

Regarding the noise questionnaire, responses referred to the time of the follow-up visit, but participants were nonmovers. Thus, we expect that most responses represent exposure at baseline. However, because noise-reducing factors may come later as a consequence of annoyance or disease, we may have underestimated the baseline exposure and the true associations for some participants. Finally, although reported noise-reducing remedies could vary across seasons, season of reexamination did not influence the association between indoor traffic noise and the outcomes (p-values of interaction > 0.34).

We assessed nighttime, a particularly susceptible period for the adverse health effects of noise (WHO 2009). Daytime indoor traffic noise should be estimated in rooms where activities may be disturbed, and this may be more difficult to determine. Moreover, we expect the daytime to account for a smaller proportion of the total relevant exposure. Besides, although long-term average traffic noise levels (available from current models) could be representative of peak values, given
their health (WHO 2009), peaks might be more disturbing, and future efforts are needed to characterize and assess their health impact.

We also considered a comprehensive set of adjustment variables which had little influence on coefficients. However, residual confounding could always remain, particularly from other traffic-related air pollutants not well captured with our marker (NO2). As previously argued (Foraster et al. 2014), no perfect method exists to deal with the intake of BP-lowering medication in BP analyses. The stratified analyses by medication did not indicate a strong masking of the studied associations by medication in the treated group (see Supplemental Material, Table S4). Actually, these associations were even stronger in this group, suggesting that the most affected individuals tended to be medicated. Moreover, our results for BP were robust across all alternative methods (Tobin et al. 2005) in the entire sample, which is reassuring. Thus, for simplicity and to increase statistical power in this rather small study, we retained all study participants and presented the results with the commonly used approach of adjustment for medication.

A main limitation of this study was its cross-sectional design, so distinguishing causes from effects is not possible. Nevertheless, results for indoor traffic noise and NO2 seem plausible and in line with the biological mechanisms (Babisch 2011; Brook et al. 2009). In addition, given the rather small sample size, we may lack statistical power, particularly for the binary variable of hypertension and the stratified analyses.

Another limitation is that we assessed BP with standard protocols of repeat measurements during one single examination, which does not allow a clinical diagnosis of hypertension. Nevertheless, we know that at least 50% of those with high BP in our cohort confirmed their hypertension in the following years (Foguet et al. 2008). Furthermore, most hypertensive subjects were classified according to their antihypertensive treatment, and we selected the last BP measurement available to minimize the “white-coat” effect. Despite the efforts to minimize variability in BP, we cannot exclude a remaining nondifferential misclassification, which would bias results toward the null.

Finally, we selected participants attending the follow-up, so some self-selection of healthier participants might have occurred, potentially biasing results toward the null too.

Public health implications. Even low levels of both traffic-related factors (noise and air pollution) may contribute to hypertension, and thus to CVD—a primary cause of morbidity and mortality. Although estimated effect sizes were small, these stressors are ubiquitous, so decreasing their levels could benefit millions of people. Our results further suggest that individual measures against noise in Girona were insufficient: Whether current noise protections reduce BP is unclear (Babisch et al. 2012).

Conclusions

In this cross-sectional study we identified an association between long-term exposure to indoor traffic noise at night and both prevalent hypertension and SBP, as well as an association between long-term exposure to NO2—a marker of traffic-related air pollution—and both prevalent hypertension and BP. These results should be further confirmed, but they underscore the relevance of using detailed exposure assessment to identify the independent associations of traffic noise and traffic-related air pollution (Künzli 2013) on common outcomes. Questionnaires on measures against noise could be a useful tool to derive indoor noise markers in future studies.

References

Allen RW, Davies H, Cohen MA, Mallach G, Kaufman JD, Adar SD. 2009. The spatial relationship between traffic-generated air pollution and noise in 2 US cities. Environ Res 109:334–342; doi:10.1016/j.envres.2009.05.004.

Babisch W. 2006. Transportation noise and cardiovascular risk: updated review and synthesis of epidemiological studies indicate that the evidence has increased. Noise Health 8:1–29.

Babisch W. 2011. Cardiovascular effects of noise. Noise Health 13:201–204; doi:10.1016/j.noheal.2011.01.002.

Babisch W, Ising H, Gallacher JE, Sweetnam PM, Aitio A, Blangiardo M, Pershagen G, et al. 2012. Exposure modifiers of the relationship of using detailed exposure assessment to identify the independent associations of traffic noise and traffic-related air pollution (Künzli 2013) on common outcomes. Questionnaires on measures against noise could be a useful tool to derive indoor noise markers in future studies.

REFERENCES

Allen RW, Davies H, Cohen MA, Mallach G, Kaufman JD, Adar SD. 2009. The spatial relationship between traffic-generated air pollution and noise in 2 US cities. Environ Res 109:334–342; doi:10.1016/j.envres.2009.05.004.

Babisch W. 2006. Transportation noise and cardiovascular risk: updated review and synthesis of epidemiological studies indicate that the evidence has increased. Noise Health 8:1–29.

Babisch W. 2011. Cardiovascular effects of noise. Noise Health 13:201–204; doi:10.1016/j.noheal.2011.01.002.

Babisch W, Ising H, Gallacher JE, Sweetnam PM, Aitio A, Blangiardo M, Pershagen G, et al. 2012. Exposure modifiers of the relationship of using detailed exposure assessment to identify the independent associations of traffic noise and traffic-related air pollution (Künzli 2013) on common outcomes. Questionnaires on measures against noise could be a useful tool to derive indoor noise markers in future studies.
Fuks K, Moebus S, Hertel S, Viehmann A, Nonnemacher M, Dragano N, et al. 2011. Long-term urban particulate air pollution, traffic noise, and arterial blood pressure. Environ Health Perspect 119:1706–1711; doi:10.1289/ehp.1103564.

Gotschi T, Oglesby L, Mathy P, Monn C, Manalis N, Koistinen K, et al. 2007. Trends in cardiovascular risk factor prevalence (1995–2000–2005) in northeastern Spain. Eur J Cardiovasc Prev Rehabil 14:653–659; doi:10.1097/ HJR.0b013e3281764429.

Johnson D, Parker JD. 2009. Air pollution exposure and self-reported cardiovascular disease. Environ Res 109:582–589; doi:10.1016/j.envres.2009.01.001.

Künstl N. 2013. Air pollution and atherosclerosis: new evidence to support air quality policies. PLos Med 10:e1001432; doi:10.1371/journal.pmed.1001432.

Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:224–2256; doi:10.1016/S0140-6736(12)61766-8.

Rivera M, Basagaña X, Aguilera I, Foraster M, Agis D, de Groof E, et al. 2013. Association between long-term exposure to traffic-related air pollution and subclinical atherosclerosis: the REGICOR study. Environ Health Perspect 121:223–230; doi:10.1289/ehp.1205148.

Salomons EM, Polinder H, Lohman WJA, Zhou H, Burst HC, Miedema HME. 2009. Engineering modeling of traffic noise in shielded areas in cities. J Acoust Soc Am 126:2340–2348; doi:10.1121/1.3238238.

Schröder H, Marrugat J, Covas M, Elosua R, Pena A, Weinbrenner T, et al. 2004. Population dietary habits and physical activity modification with age. Eur J Clin Nutr 58:302–311; doi:10.1038/sj.ejcn.1601782.

Schröder H, Marrugat J, Covas M, Elosua R, Pena A, Weinbrenner T, et al. 2004. Population dietary habits and physical activity modification with age. Eur J Clin Nutr 58:302–311; doi:10.1038/sj.ejcn.1601782.

Sørensen M, Hvidberg M, Hoffmann B, Andersen ZJ, Nordsborg RB, Lillevang KG, et al. 2011. Exposure to road traffic and railway noise and associations with blood pressure and self-reported hypertension: a cohort study. Environ Health 10:92; doi:10.1186/1476-069X-10-92.

Spanish Government. 2010. Código Técnico de Edificación. Catálogo de Elementos Constructivos del CTE, v6.3 [in Spanish]. Available: http://www.codigotecnicas.org/web/galerias/archivos/CTE-EC-v06.3_marzo_10.pdf [accessed 29 September 2014].

Tobin MD, Sheehan NA, Scurrah KJ, Burton PR. 2005. Adjusting for treatment effects in studies of quantitative traits: anti-hypertensive therapy and systolic blood pressure. Stat Med 24:2911–2925; doi:10.1002/sim.2165.

Servei de Vigilància i Control de l'aire. 2008. Avaluació de la qualitat de l'aire. Medi Ambient. Generalitat de Catalunya [in Catalan]. Available: goo.gl/wd5v2c [accessed 3 June 2014].

Servei Meteorològic de Catalunya. 2011. Meteo.cat home page. Generalitat de Catalunya [in Catalan]. Available: http://www.meteo.cat/servmet/index.html [accessed 3 June 2014].

Sørensen M, Hvidberg M, Hoffmann B, Andersen ZJ, Nordsborg RB, Lillevang KG, et al. 2011. Exposure to road traffic and railway noise and associations with blood pressure and self-reported hypertension: a cohort study. Environ Health 10:92; doi:10.1186/1476-069X-10-92.

Spanish Government. 2010. Código Técnico de Edificación. Catálogo de Elementos Constructivos del CTE, v6.3 [in Spanish]. Available: http://www.codigotecnicas.org/web/galerias/archivos/CTE-EC-v06.3_marzo_10.pdf [accessed 29 September 2014].

van Kempen E, Babisch W. 2012. The quantitative relationship between road traffic noise and hypertension: a meta-analysis. J Hypertens 30:1075–1086; doi:10.1097/HJH.0b013e328352ac54.

Weinstein ND. 1978. Individual differences in reactions to noise: a longitudinal study in a college dormitory. J Appl Psychol 63:458–466; doi:10.1037/0021-9010.63.4.458.

WHO (World Health Organization). 2009. Night Noise Guidelines for Europe. Available: http://www.euro.who.int/__data/assets/pdf_file/0017/43316/E92845.pdf [accessed 25 September 2013].