The impact of the program structure at Hannover Medical School on academic success in medical studies

Abstract

Aim: The classical course structure for medicine in Germany is separated by three sections of the medical state examination. This structure is generally regarded as sensible and unchangeable. Because the special program structure at Hannover Medical School (MHH) has one integrated, rather than two separate study blocks, it is possible to examine the influence of structural modifications on the study success of different admission groups.

Methods: The data was obtained from students admitted to the MHH between 2006 and 2008 in different admission quotas. Study success was defined as the successful completion of the entire program, but completion of the first section of the state examination was also analysed.

Results: More students from the best “Abitur” (school leaving examinations) quota successfully completed their studies than those accepted via the selection process of the universities. The latter were more successful than students from the waiting list quota. However the successful graduates of this last group completed their studies more often within the prescribed period of study, although they needed more time for completing all parts of the first section of the state examination.

Conclusion: The data shows that an integrated course structure can offer, in particular, students from the waiting list quota, the opportunity to compensate for delays in the first years of study. However, they do not provide any evidence which applicants are best suited to meet the social and professional requirements of trained doctors. Due to the complex structure of such longitudinal studies, our results allow more than one plausible interpretation.

Keywords: Student selection, admission groups, program structure, study success, medicine

1. Introduction

1.1. National and international context

Studies on the influence of the type of university admission on how successful medical students are, such as the current one by Heidmann, Schwibbe, Kadmon and Hampe [1], face two challenges: first, they have to reduce a complex system of input, structural and output variables to a few selected comparisons in order to keep research hypotheses interpretable. Secondly, this kind of work requires tenacity, because in medical studies are at least six years and three months between acceptance to university and the earliest possible graduation.

Habitually, medical students accepted to Hannover Medical School (MHH) in four different ways: “Abiturbeste” (students with the highest grades in high school examinations “Abitur”: university entrance qualification), “Wartezeit” (waiting list of approximately 7 years without the possibility of studying other subject), “Auswahlverfahren der Hochschulen (AdH)” (selection process of the universities) and “Vorabquoten” (priority quota; providing study places for special groups of applicants). Using the example of three year groups in the “Modellstudienengang HannibaL” (model study course “HannibaL”) at MHH, it will be demonstrated that not only the admission process, but also the course structure can have a significant influence on successful graduation. The reason that this topic has been neglected might be the time required for modifying basic course structures and their implementations, which can take at least a decade.

In former analyses on the influences of different selection procedures on successful graduation in medical studies, the structure of those medical courses were completely ignored as all faculties trained within the same course structure prescribed by the “Approbationsordnung” (German Medical Licensure Act) [2]. Also, the focus on the M1 examination (formerly known as “Physikum”) appeared obvious, since it was the first central examination, which was taken in every Institution and success in this examination was a good predictor for success in the second stage of the state examination [3]. Nevertheless,
those former studies did not reduce “success” to passing the M1 examination (first part of the study course). In international studies, being successful refers to the final degree grade (cf. e.g. [4]), however, at the same time it is emphasized that mere grades should not be the only measured criteria [5].

1.2. Initial situation at MHH

Since the 1990s, student selection and the variety of medical course structures in Germany have become more diverse. The “Hochschulzulassungsrecht” (university admission regulations) for all study courses has been changed to allow more space for other candidate criteria than grade performance alone (cf. for example http://www.schure.de/22220/nhzg.htm). The “Modellklausel” (model clause) (§ 41) of the “Approbationsordnung” of 2002, provided the opportunity to test alternative study structures. In the winter semester 2005/06 the model study course “Hannibal” was introduced and is characterized as follows:

- The preclinical and clinical study sections have been merged into one integrated study section. In each academic year, one to two interdisciplinary modules ensure the integration of preclinical, clinical-practical and clinical-theoretical contents. Already in the first two years of the study course education takes place with patients. In order to switch between the model study course and standard courses, the M1 examination equivalency can be received after two years. The majority of the modules are however aligned with the performance records required by the “Approbationsordnung”.
- In the integrated section of the study course, MHH focuses on the development of a consistent basic framework of knowledge, abilities and skills in all students. This includes, from the first semester on, patient contact on ward rounds for clinical teaching purposes.
- The first part of the medical examination (M1) does not consist of a major written and oral-practical examination, but cumulatively through passing all modules of the first two years of the study course. Hence, every single examination must be passed separately. If a single examination is ultimately failed, this means, the whole M1 has been failed. Table 1 shows each separate examination and it’s positioning in the first two years of the study course. By integrating the two sections of the course, students can – with minor limitations – progress in their studies, even if they have not yet completed all parts of their M1 equivalence. This means that in order to participate in modules of study year three to five, one does not need to have passed all modules of the first two academic years. All faculties studied by Heidmann et al. [1], however, require the passing M1 examination (first part of the study course) before clinical classes can be started from the third year onwards.

The 2004 amendment to the “Hochschulrahmengesetz” (Framework law for universities and colleges) and the specification for Lower Saxony in the “Niedersächsische Hochschulzulassungsgesetz” (NHZG) (University admission law for Lower Saxony) in 2005 (current version cf. http://www.schure.de/22220/nhzg.htm), obliged universities to change their “AdH” (selection process of the universities) procedures. In addition to the average grade of the “Abitur” – universities have to take into consideration at least one other criterion which reflects the suitability of the candidates. The MHH decided on selection interviews. In addition to personal qualifications, technical aspects and/or extracurricular interests, applicants have the chance to show their particular motivation for studying medicine.

Compared with other federal states, the MHH has taken almost as much advantage of the narrow room for manoeuvre within the NHZG as is possible. In the framework of the “AdH” process, three times as many applicants as places available are pre-selected on the basis of the average grade of their “Abitur”. These are invited for selection interviews. Taking the total number of points from the selection interview and the scores for the final “Abitur” grade, the weighted average is calculated and serves as a basis for ranking of places (current version cf. [6]). Regarding the other admission quotas (“Vorabquoten”, “Abiturbeste” and “Wartezeit”), universities accept candidates in accordance with common nationwide criteria. Many, however not all faculties, focus in the “AdH” process on performance parameters. This does not apply to the MHH and its model study course “Hannibal”. Therefore, data concerning MHH students may allow for a critical view of the implicit assumptions made in recent German publications [7], [8].

2. Method

Since the NHZG came into force late, there were no selection interviews conducted in the “AdH” process the first year of the model study course. With years three and four, completion of studies within the prescribed period meant they were completed before the start of the survey. Even a delayed graduation could only be illustrated in a limited way. For a more precise analysis, those 307 students from year two were analyzed, since they were the first students admitted to the university via selection interviews and their earliest possible graduation was estimated for Autumn 2012. This also allowed for students who took the second part of the medical examination in autumn 2015, up to three years after the earliest examinations, to also be analysed.

Another reason for looking at the second cohort in detail was, that due to the lack of experience with the “AdH” process in 2006, there was a significant overbooking of spaces and, for this reason, for the first five years of the model study course no lateral entrants were accepted to fill spaces.
Although the number of career changers at MHH count for less than five per cent of entrants per year, their late entry into the integrated study program naturally has an impact on the various admission groups.

For all students the following variables were evaluated:

- the kind of university entrance ("Vorabquoten", "Abiturbeste", "AdH", "Wartezeit"),
- the "Abitur" average grade,
- time taken to attain M1 equivalence in semesters,
- time needed to successfully pass the M2 examination in semesters, if it was sat by the "Landesprüfungsamt Niedersachsen" (State examinations board of Lower Saxony),
- and the status of enrollment in November 2015.

Additionally, for students admitted to the MHH via the "AdH"-process, it was recorded, whether they were admitted on the basis of the "Abitur" average grades or whether they also needed the points from the selection interview.

This survey should explore whether structural changes in the medical course can have a significant impact on successful graduation. Due to its limitations (only one university, only a few evaluable cohorts), significant differences in the number of people from the different admission groups, a greater number of additional analyses would be required in order to determine the strength of various effects. However, that would move the central question out of sight: Are structural changes to the study course of medicine possible, which lead to more equal chances of successful graduation for students from different admission groups?

3. Results

The "Abitur" average grades were distributed as expected among the different admission groups. The "Abiturbeste" achieved better grades than those entering via the "AdH" process, while the "Wartezeit" students had the lowest grades. The grades of "Vorabquoten" students were distributed across the whole range of admission groups (see Figure 1), since this quota was very heterogeneous (non-EU citizens, students from Federal armed forces and personal hardship cases).
Nine years after attending the study course, all of the “Abiturbeste” students had received their M1 equivalence. 84% of the “Wartezeit” students had also passed their intermediate examination successfully. As with the “Abitur” grades, “AdH” students achieved results between those of the “Abiturbeste” and “Wartezeit” groups for the intermediate examination. Only the number of “Vorabquoten” students successfully passing the M1 equivalence did not correspond to the “Abitur” average grades (see Figure 2).

Whether a student has graduated successfully can only be determined after they have passed the third section of the medical examination. This examination is taken after the practical year. Until 2014, students had to take the written M2 examination after the third study section. Now this examination is again set before the practical year. All students of the “Abiturbeste”, who attended university in 2006/07 had, by November 2015, passed all parts of the state examinations. Over 86% of the “AdH” group had definitely successfully completed their studies. Another 12 percent had left the MHH so it was unclear, whether or not they had actually graduated. They either changed universities or broke off their studies. 74% of the “Wartezeit” students had successfully passed their examinations at MHH, whereas 16% had left the university. Even from the group that performed worst in the M1 equivalent examinations, the “Vorabquoten”, 60% had successfully completed their studies three years after the prescribed period of study (see Figure 3).
When the final grades for the state examination are considered (all admission groups listed separately), there is still a correspondence to the high school examination grade (see Figure 5). Here it should be noted, that the pass rate and grade distribution relate to 27 out of 27 “Abiturbeste” students, 166 out of 191 “AdH” students, 37 out of 50 “Wartezeit” students as well as 24 out of 39 “Vorabquoten” students at the MHH.

Figure 5: Distribution of state examination grades from November 2015 by admission groups.

4. Discussion

According to our data, entering university via “Abiturbeste”, “AdH” procedure or “Wartezeit” and successfully passing the study course correlates at least to the initial qualification. Figure 2, figure 3 to figure 4 show the pass rates and figure 1 and figure 5 the grade distribution. Heidmann et al. [1] reported that 40% of the “Wartezeit” students did not pass the M1 examination. Our data confirms that this was not due solely to their lesser suitability. The results can be traced back to the missing cut provided by the M1 intermediate examinations. In the model study courses analysed by Heidmann et al. [1] the M1 examination had to be passed before the continuation of studies. Otherwise, the first study block would have to be prolonged for at least another half a year. MHH students, however, lacking one or more equivalent examinations may continue studying. The “Abiturbesten” quota at MHH show better results/score better than the same group of faculties analysed by Heidmann et al [1]. The “AdH” quota and the “Vorab” quota students show similar pass rates. Our data contradicts the postulate that the drastic reduction of the “Wartezeit” quota will produce more students graduating within the prescribed period of study. At least at MHH, the “Wartezeit” students complete their studies just as often within the prescribed period of study, as did the students of the “Abiturbeste” (see Figure 4). Their lower grades (see Figure 5), should not count for professional healthcare of the population and for career entry.

The data available does not reveal why “Abiturbeste” and “AdH” students graduate more often at the MHH, but at the same time often study longer than the prescribed period of study – compared to students of “Vorab” or “Wartezeit” quota.

Possible explanations are that they are younger, may start a doctoral thesis and/or take part in a study exchange abroad. It could also relate to less life experience, poorer time management or higher pressure from their surroundings. The independent variables are complex and numerous, as mentioned by Kadmon, Resch, Duelli und Kadmon [9].

As Hampe et al. [10] have shown, that selection processes emphasizing specific cognitive performance parameters can reduce the dropout rate in the preclinical study block. This raises the question whether that also applies to motivational parameters. When focusing on the student selection alone it might be forgotten that the dropout rate could be determined by a restrictive idea of academic progress, which causes the prior elimination of certain performance deficits in scientific disciplines to seem like a condito sine qua non for a clinical/practical education. However in our opinion, you can neither conclude from successful passing of the preclinical study block nor from the kind of university admission whether a doctor will be suited to daily medical practice. The situation is different in regard to the final grade for random samples [4].

In contrast to other current publications [1], [7] we believe it important not to measure academic success through one important intermediate examination or university internal examination, but rather to use the successful passing of the study course as the target criterion.
Such an approach relativizes the significance of cognitive performance parameters [11]. This confirms the postulation of Conrad, Addams and Young [5] that performance criteria should not be the sole focus in student selection. However, they do not take all factors into account, which influence study progress.

It is apparent that current studies focus very much on the preclinical study block, whereas older surveys also look at the effect of various selection procedures with regard to successful graduation. That is why those older publications in combination with recent international surveys offer a way out from the feared shortage of doctors in the countryside/in rural areas [2], [3], [4], [12]. In contrast to e.g. Kadmon, Resch, Duelli & Kadmon [9], we consider it important to also look for structural reasons for academic success, rather than finding explanations in the students solely. Comparisons between current admission quota groups no longer seem necessary as, based on the current judgment of the Federal Constitutional Court [13] regarding the admission process for medical studies, sooner rather than later they will be replaced by a new selection procedure. However, the search for relevant structural variants for medical studies remains current. And if our data can be replicated, it suggests that a change in the structure of the medical study program would allow more students to graduate within the prescribed period of study. In addition, the focus on successful passing of the preclinical study section fails to consider the professional requirements of trained physicians in society. That should not mean that basic knowledge can be neglected nor clinical decisions positively influenced [14].

To show that the academic success of the various admission groups was not a singular effect of one student cohort, we examined the pass rates of various cohorts at the MHH (MHH being the only medical faculty with this study program structure). We found that 74.2% of the “Wartezeit” students from cohort two (beginning: winter semester 2006/07) to cohort four (beginning: winter semester 2008/09) of the model study course, graduated successfully within the prescribed period of study by autumn 2015. Another 6.5% had passed all minor (university-administered) examinations (so-called “Leistungsscheine”), but had not yet passed all sections of the medical state examination. 88.9% of the “Abiturbeste” had passed all “Leistungsscheine” examinations as well as all sections of the medical state examination, another 1.1% had passed all “Leistungsscheine” examinations, but not all parts of the medical state examination. Compared with other study courses it can therefore be observed, that even with this large random sample “Wartezeit” students show an impressive rate of success if the five years of their studies up to the practical year are structured continuously and as a single stage process, rather than being divided by the intermediate examination.

This means, that even though the quota of students breaking off their medical studies (1) is significantly lower than those of Bachelor’s and Master’s study courses [15], it seems that this rate is even better for MHH students. Since the motivation and the qualifications of the students should not differ notably from those investigated by Heidmann et al., we believe that the different structure of the study course can be the only possible explanation for this.

Systematic and more longitudinal analyzes will have to show, not only how success in individual examinations can be optimized but also how the overall rates of successful graduation can be improved. It is already clear that there will not be any simple answer for how to reconcile the complex relationships between expectations of society, individual choice of study, curriculum requirements and academic success.

Competing interests
The authors declare that they have no competing interests.

References
1. Heidmann J, Schwibbe A, Kadmon M, Hampe W. Sieben lange Jahre. Warten auf das Medizinstudium. Dtsch Ärztebl. 2016;113(38):1636-1638.
2. Fisseni H-J, Holbracht E, Halsig N, Mailahn J, Ittner E. Auswahlgespräche mit Medizinstudenten. Modelle - Erfahrungen - Vorschläge. Göttingen: Hogrefe Verlag für Psychologie; 1993. S.x + 346
3. Schuler H, Hell B. Studierendenauswahl und Studienentscheidung. Göttingen: Hogrefe; 2008.
4. Norcini JJ, Boulet JR, Opalek A, Dauphinee WD. The Relationship Between Licensing Examination Performance and the Outcomes of Care by International Medical School Graduates. Acad Med. 2014;89(8):1157-1162. DOI: 10.1097/ACM.0000000000000310
5. Conrad SS, Addams AN, Young GH. Holistic Review in Medical School Admission and Selection: A Strategic, Mission-Driven Response to Shifting Societal Needs. Acad Med. 2016;91(11):1472-1474. DOI: 10.1097/ACM.0000000000001403
6. MH Hannover. Ordnung zur Durchführung der Auswahlgespräche im Rahmen des Auswahlverfahrens der Hochschulen an der Medizinischen Hochschule Hannover. Hannover: MH Hannover; 2015. Zugänglich unter/available from: https://www.mh-hannover.de/fileadmin/mhh/download/studium_ausbildung/OrdnungenAllgemein/2014_06_18 Auswahlordnung.pdf
7. Kadmon G, Kadmon M. Academic Performance of Students with the Highest and Mediocre School-leaving Grades: Does the Aptitude Test for Medical Studies (TMS) Balance Their Prognoses? . GMS J Med Educ. 2016;33(1):Doc7. DOI: 10.3205/zma001006
8. Hampe W, Hissbach J, Kadmon M, Kadmon G, Klusmann D, Scheutzel P. Wer wird guter Arzt? Verfahren zur Auswahl von Studierenden der Human- und Zahnmedizin. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz. 2009;52(8):821-830. DOI: 10.1007/s00103-009-0905-6
9. Kadmon G, Resch F, Duelli R, Kadmon M. Der Vorhersagewert der Abiturdurchschnittsnote und die Prognose der unterschiedlichen Zulassungsquoten für Studienleistung und -kontinuität im Studiengang Humanmedizin - eine Längsschnittanalyse. GMS Z Med Ausbild. 2014;31(2):Doc21. DOI: 10.3205/zma000913
10. Hampe W, Klusmann D, Buhk H, Münch-Harrach D, Harendza S. Reduzierbarkeit der Abbrecherquote im Humanmedizinstudium durch das Hamburger Auswahlverfahren für Medizinische Studiengänge – Naturwissenschaftsteil (HAM-Nat). GMS Z Med Ausbild. 2008;25(2):Doc82. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2008-25/ zma000566.shtml

11. Steger-Jager KM, Cohen-Schotanus J, Themmen APN. Motivation, learning strategies, participation and medical school performance. Med Educ. 2012(7):46:678-88. DOI: 10.1111/j.1365-2923.2012.04284.x

12. Lohölter R, Hinrichsen K, Trost G, Drolshagen S. Das Interview bei der Zulassung zum Medizinstudium. Stuttgart: Schattauer; 1986.

13. Medizinischer Fakultätenrat. Zur Abschaffung der Wartezeitquote. Resolution, Rostock: Medizinischer Fakultätenrat; 2011.

14. de Bruin AB, Schmidt HG, Riker RM. The Role of Basic Science Knowledge and Clinical Knowledge in Diagnostic Reasoning: A Structural Equation Modeling Approach. Acad Med. 2005;80(8):765-773. DOI: 10.1097/00001888-200508000-00014

15. Heublein U, Ebert J, Hutzsch C, Ieble S, König R, Richter J, Woisch A. Zwischen Studienwartungen und Studienwirklichkeit. Hannover: Deutsches Zentrum für Hochschul- und Wissenschaftsforschung; 2017.

Corresponding author:
PD Dr. phil. Dipl.-Psych. Volkhard Fischer
Hannover Medical School, Dean of studies office, Academic controlling, OE 9135, D-30623 Hannover, Germany, Phone: +49 (0)511/532-6015, Fax: +49 (0)511/532-8022
fischer.volkhard@mh-hannover.de

Please cite as
Fischer V, Dudzinska A, Just I. The impact of the program structure at Hannover Medical School on academic success in medical studies. GMS J Med Educ. 2018;35(2):Doc22.
DOI: 10.3205/zma001169, URN: urn:nbn:de:0183-zma0011697

This article is freely available from http://www.egms.de/en/journals/zma/2018-35/zma001169.shtml

Received: 2017-03-22
Revised: 2018-01-24
Accepted: 2018-03-04
Published: 2018-05-15

Copyright
©2018 Fischer et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.

GMS Journal for Medical Education 2018, Vol. 35(2), ISSN 2366-5017
Die Bedeutung des Studienaufbaus an der Medizinischen Hochschule Hannover für den Studienerfolg im Medizinstudium

Zusammenfassung

Zielsetzung: Der klassische, durch Teilprüfungen des medizinischen Staatsexams unterteilte Aufbau des Medizinstudiums wird in der Regel als sinnvoll und deshalb unveränderbar hingenommen. Der Modellstudiengang der Medizinischen Hochschule Hannover (MHH) weist statt zwei Studienabschnitten nur einen integrierten fünfjährigen Studienabschnitt vor dem Praktischen Jahr (PJ) auf. In ihm kann deshalb der Einfluss struktureller Modifikationen auf den Studienerfolg verschiedener Zulassungsgruppen beispielhaft untersucht werden.

Methodik: Betrachtet wurde der Studienerfolg der über die Vorabquoten und die drei Hauptquoten zwischen 2006 und 2008 an der MHH zugelassenen Studierenden. Studienerfolg wurde dabei als erfolgreicher Abschluss des gesamten Studiums definiert, ohne den Abschluss des ersten Abschnitts der ärztlichen Prüfung (M1) auszublenden.

Ergebnisse: Die Studierenden aus der Abiturbesten-Quote schlossen ihr Studium an der MHH im Untersuchungszeitraum häufiger erfolgreich ab als die Studierenden, die über das Auswahlverfahren der Hochschulen [AdH], Vorabquoten) ausgewählt wurden. Diese waren wiederum häufiger erfolgreich als MHH-Studierende aus der Wartezeitquote. Gleichzeitig waren letztere häufiger innerhalb der Regelstudienzeit mit dem Studium fertig, obwohl sie seltener innerhalb der Regelstudienzeit alle Teile der M1-Prüfung bestanden hatten.

Schlussfolgerung: Die Daten verdeutlichen, dass ein integrierter Studienabschnitt vor dem PJ insbesondere für Studierende aus der Wartezeitquote die Chance bieten kann, Studienzeitverzögerungen aus den ersten Studienjahren im weiteren Verlauf des Studiums zu kompensieren. Ein einstufiger Studienabschnitt kann also die Möglichkeit erhöhen, zügiger zu studieren. Auch wenn die Komplexität der Daten verschiedene Erklärungsansätze erlaubt.

Schlüsselwörter: Studierendenauswahl, Zulassungsgruppen, Studienaufbau, Studienerfolg, Medizin

1. Einleitung

1.1. Nationaler und internationaler Kontext

Studien zum Einfluss der Art der Hochschulzulassung auf den Studienerfolg im Medizinstudium, wie die aktuelle von Heidmann, Schwibbe, Kadmon und Hampe [1], stehen vor zwei Herausforderungen: Erstens müssen sie ein komplexes System von Input-, Struktur- und Outputvariablen auf wenige ausgewählte Vergleiche reduzieren, damit die Forschungshypothesen noch interpretierbar bleiben. Zweitens erfordern diese Arbeiten einen langen Atem, denn im Medizinstudium liegen über sechs Jahre und drei Monate zwischen der Hochschulzulassung und dem frühestmöglichen Studienabschluss.

Hier soll am Beispiel von drei Jahrgängen des Modellstudiengangs Hannibal an der Medizinischen Hochschule Hannover (MHH) gezeigt werden, dass neben der Art des Hochschulzugangs (Abiturbeste, Wartezeit, Auswahlverfahren der Hochschulen [AdH], Vorabquoten) auch die Studiengangsstruktur einen wesentlichen Einfluss auf den Studienerfolg haben kann. Dass diese meistens nicht thematisiert wird, dürfte vor allem daran liegen, dass Änderungen des grundsätzlichen Aufbaus eines Studiengangs einen deutlich längeren Vorlauf und eine Umsetzungsphase erfordern, die zusammen mindestens eine Dekade umfassen.

In den älteren Analysen des Einflusses verschiedener Auswahlverfahren auf den Erfolg im Medizinstudium war es noch naheliegend, den Aufbau des Medizinstudiums komplett auszublenden, weil alle Fakultäten innerhalb der gleichen durch die Approbationsordnung vorgegebe-
nen Studienstruktur ausbildeten [2]. Auch die Konzentration auf das M1-Examen (vormals Physikum) war näheliegend, weil dieses die erste zentrale Prüfung war, die überall gleich abliefern und der Erfolg in den Erfolg im nächsten Abschnitt des Staatsexamens sehr gut vorhergesagt [3]. Trotzdem reduzierten diese älteren Arbeiten die Zielgröße „Studienfolge“ nicht auf das Bestehen des ersten Studienabschnittes. Auch in internationalen Studien wird der Studienfolge an der Abschlussnote festgemacht (vgl. z.B. [4]), aber auch in der Leistungskriterien nicht das alleinige Maß sein dürfen [5].

1.2. Ausgangslage an der MHH

Seit den 90er Jahren hat sich eine größere Vielfalt in der Studierendenauswahl als auch im Aufbau des Medizinstudiums in Deutschland herausgebildet. So wurde das Hochschulzulassungsrecht für alle Studiengänge genannt, um neben reinen Leistungskriterien anderen Bewerber/-innenmerkmalen größeren Raum zu geben (vgl. z.B. http://www.schure.de/22220/nhzg.htm). Und mit der Modellklausel (§ 41) der Approbationsordnung für Ärzte (NHZG) wurde der Studienerfolg an der Abschlussnote festgelegt (vgl. z.B. [4]), aber auch in den Leistungskriterien nicht das alleinige Maß sein dürfen [5].

Mit der Novelle des Hochschulrahmengesetzes 2004 und seiner Präzisierung für Niedersachsen durch das Niedersächsische Hochschulzulassungsgesetz (NHZG) im Jahre 2005 (zur aktuellen Fassung vgl. http://www.schure.de/22220/nhzg.htm) wurden die Hochschulen verpflichtet, im AdH-Verfahren neben der Abiturdurchschnittsnote die Integration vorklinischer, klinisch-praktischer Unterricht am Krankenbett mit ein. Dies schließt vom ersten Semester an Unterricht mit Patienteneinbindung in Form von klinischen Lehrvisiten ein, wobei die Integration vorklinischer, klinisch-praktischer Unterricht am Krankenbett mit ein.

2. Methode

Der erste Jahrgang des Modellstudiengangs hatte noch keine Auswahlgespräche im AdH-Verfahren, weil das NHZG verspätet in Kraft trat. Bei den Jahrgängen drei und vier lag der Abschluss des Studiums innerhalb der Regelstudienzeit zwar vor dem Beginn dieser Studie. Al-
Tabelle 1: Verteilung der Prüfungen im Modellstudiengang HannibaL über die Studienjahre 1 und 2 für den Jahrgang 2006/07.

Modul (Prüfung)	Art	Studienjahr	Text	Woche	Anzahl Fragen	Teil der M1-Äquivalenz
Orientierung (Probeklausur)	Schriftlich	1	1	1	20	nein
Propädeutikum (TP1)	Schriftlich	1	1	3	20	ja
Propädeutikum (TP2)	Schriftlich	1	1	4	20	ja
Zellbiologie & Genetik (TP1)	Schriftlich	1	1	9	30	ja
Propädeutikum (TP3)	Schriftlich	1	2	3	20	ja
Zellbiologie & Genetik (TP2)	Schriftlich	1	2	6	40	ja
Lernen lernen	Schriftlich	1	2	7	20	nein
Zellbiologie & Genetik (TP3)	Schriftlich	1	2	9	30	ja
Physik & Physiologie (TP11)	Schriftlich	1	2	10	15	ja
Chemie & Biochemie (TP1)	Schriftlich	1	2	10	40	ja
Propädeutikum (TP4)	Schriftlich	1	3	2	20	ja
Physik & Physiologie (TP12)	Schriftlich	1	3	9	15	ja
Chemie & Biochemie (TP2)	Schriftlich	1	3	10	40	ja
Anatomie (P1)	Schriftlich	1	3	12	70	ja
Anatomie (P2)	Mündlich	1	3	14		ja
Chemie & Biochemie (TP3)	Schriftlich	2	2	7	60	ja
Physik & Physiologie (TP21)	Schriftlich	2	1	10	30	ja
Physik & Physiologie (TP22)	Schriftlich	2	2	11	30	ja
Physik & Physiologie (TP23)	Schriftlich	2	3	10	30	ja
Med. Psychologie & Med. Soziologie	Schriftlich	2	3	10	60	ja
Diagnostische Methoden (P1)	Schriftlich	2	3	11	60	ja
Diagnostische Methoden (P2)	Praktisch	2	3	12		ja
Physik & Physiologie (P3)	Mündlich	2	3	14		ja

lerdings war bei ihnen ein verzögerter Studienabschluss nur eingeschränkt abbildbar. Für eine genauere Analyse wurden deshalb insbesondere jene 307 Studierenden betrachtet, die zum zweiten Jahrgang des Modellstudiengangs gehören, weil für diese Kohorte erstmals Auswahlgespräche im AdH-Verfahren durchgeführt wurden und die Regelstudienzeit einen frühestmöglichen Studienabschluss für den Herbst 2012 vorsah. Somit konnten auch jene Studierenden der Kohorte hinsichtlich des Studienabschlusses berücksichtigt werden, die im Herbst 2015, also bis zu drei Jahre nach dem frühestmöglichen Zeitpunkt, am zweiten Abschnitt der Ärztlichen Prüfung teilgenommen haben.

Für eine gesonderte Analyse der zweiten Kohorte spricht auch, dass es auf Grund der fehlenden Erfahrungen mit dem AdH-Verfahren 2006 zu einer deutlichen Überbarung kam und deshalb in den ersten Jahren des Modellstudiengangs keine Quereinsteiger zur Auffüllung für höhere Studienjahre eingeschrieben wurden. Denn auch wenn die Zahl der Quereinsteiger an der MHH unter fünf Prozent pro Jahr liegt, verändert ihr verspäteter Einstieg in den integrierten Studienabschnitt natürlich dessen Auswirkungen auf die verschiedenen Zulassungsgruppen. Für alle Studierenden wurden folgende Variablen ausgewertet:

- die Art ihrer Hochschulzugangsberechtigung (Vorabquote, Abiturbeste, AdH-Verfahren, Wartezeit),
- die Abiturvordiplomnote,
- der Zeitpunkt des Erreichens der M1-Äquivalenz in Semestern,
- der Zeitpunkt des erfolgreichen Abschlusses der M2-Prüfung in Semestern, wenn sie vor dem Landesprüfungsamt Niedersachsen abgelegt wurde,
- und der Immatrikulationsstatus im November 2015.

Zusätzlich wurde bei den Studierenden, die über das AdH-Verfahren an die MHH gekommen waren, vermerkt, ob sie die Zulassung ausschließlich über die Abiturvordiplomnote geschafft hätten, oder ob dazu auch die Punkte aus dem Auswahlgespräch notwendig waren. Diese Studie soll explorieren, ob strukturelle Veränderungen des Medizinstudiums plausible Auswirkungen auf den Studienerfolg haben können. Wegen ihrer Beschränkungen (ein Standort, bisher nur wenige Kohorten auswertbar, deutliche Unterschiede in der Personenzahl der verschiedenen Zugangswege), würden eine ganze Reihe von Zusatzanalysen notwendig werden, wenn man die Stärke der verschiedenen Effekte bestimmen will. Dadurch würde aber die eigentliche Fragestellung immer mehr aus dem Blick geraten: Sind strukturelle Veränderungen des Studiengangs Humanmedizin denkbar, die die Effolgsmöglichkeit oder das Medizinstudium zu mehr Chancengleichheit hin verändern?
3. Ergebnisse

Die Abiturdurchschnittsnoten verteilten sich in den verschiedenen Zulassungsgruppen genauso, wie man es aufgrund der Gruppenzuordnung erwarten konnte. Die Abiturbesten wiesen bessere Abiturnoten auf als die über das AdH-Verfahren zugelassenen Studierenden, während die Studierenden der Wartezeitgruppe den schlechtesten Notenschnitt hatten. Jene, die ihren Studienplatz über eine der Vorabquoten bekommen hatten, streuten über das Spektrum der anderen Zulassungsgruppen (siehe Abbildung 1), da diese Quote sehr heterogen zusammengesetzt war (Nicht-EU-Bürger, Studierende über die Bundeswehr und persönliche Härtefälle).

Neun Jahre nach Studienbeginn hatten alle Abiturbesten die M1-Äquivalenz im Modellstudiengang erreicht. Auch in der Wartezeitgruppe hatten 84% der MHH-Studierenden diese Zwischenprüfung erfolgreich bestanden. Die über das AdH-Verfahren an der MHH zugelassenen lagen, wie bei den Abiturnoten, zwischen den beiden Gruppen, was diesen Zwischenschritt auf dem Weg zu einem erfolgreichen Studienabschluss anging. Lediglich bei den über Vorabquoten zugelassenen Studierenden entsprach der Anteil erfolgreich abgelegter Zwischenprüfungen nicht den Vornoten (siehe Abbildung 2).

Der eigentliche Studienerfolg kann erst nach dem erfolgreichen Bestehen des dritten Abschnitts der Ärztlichen Prüfung nach dem Praktischen Jahr festgestellt werden. Bis zum Jahr 2014 enthielt dieser Prüfungsabschnitt auch die jetzt wieder vor dem Praktischen Jahr liegende schriftliche M2-Prüfung. Im November 2015 hatten alle Studierenden der Gruppe der Abiturbesten, die zum Studienjahr 2006/07 angefangen hatten, alle Teile des Staatsexamens bestanden. Aus der über das AdH-Verfahren zugelassenen Gruppe hatten über 86% definitiv das Studium erfolgreich abgeschlossen. Bei weiteren 12 Prozent war ihr Studienerfolg unklar, denn sie hatten die MHH verlassen. Diese Studierenden, die die MHH verlassen haben, verteilten sich auf Studienortwechsler und Abbrecher, aber letztlich liegen uns über sie keine aktuellen Daten vor. In der Wartezeit-Gruppe hatten immerhin 74% das Studium an der MHH erfolgreich abgeschlossen, gleichzeitig 16% die MHH verlassen. Selbst von den schon hinsichtlich der M1-Äquivalenz am schlechtesten abschneidenden Gruppe, den über die Vorabquote zugelassenen Studierenden, hatten drei Jahre nach Ende der Regelstudienzeit über 60% ihr Studium erfolgreich abgeschlossen (siehe Abbildung 3).
Für die Untergruppe derjenigen, die ihr Studium mit dem Bestehen der Ärztlichen Prüfung erfolgreich abgeschlossen hatten, zeigt Abbildung 4, dass es insbesondere die Studierenden der Wartezeitquote und der Vorabquote waren, die innerhalb der Regelstudienzeit ihr Examen erfolgreich abgelegt hatten. Dagegen hatten die Studierenden der Abiturbestenquote oder die der AdH-Quote deutlich häufiger zwei oder mehr Semester länger studiert, als minimal notwendig ist. Möglich wird diese Veränderung gegenüber der benötigten Studienzeit für den erfolgreichen Abschluss des ersten Abschnitts der Ärztlichen Prüfung durch den nicht aufschiebenden Charakter der M1-Äquivalenzprüfungen an der MHH.

Betrachtet man abschließend die Gesamtnote im Staatsexamen (getrennt nach Zulassungsquote), so findet sich immer noch ein mit der Abiturnote korrespondierendes Ergebnis (siehe Abbildung 5). Zu beachten ist hierbei, dass sich diese Bestehensquoten und Notenverteilungen auf 27 von 27 ursprünglich über die Abiturbesten-Quote zugelassene, 166 von 191 über das Auswahlverfahren der Hochschulen zugelassene, 37 von 50 über die Wartezeit-Quote zugelassene, sowie 24 von 39 über Vorabquoten zugelassene Studierende an der MHH bezieht.

Abbildung 3: Anteil der Studierenden des Jahrgangs 2006/07 mit bestandenem Staatsexamen nach Zulassungsgruppen im November 2015.

Abbildung 4: Anteil der Studierenden des Jahrgangs 2006/07, die das Staatsexamen innerhalb der Regelstudienzeit bestanden haben, nach Zulassungsgruppen.

Abbildung 5: Verteilung der Gesamtnoten im Staatsexamen im November 2015 jeweils nach Zulassungsgruppen des Jahrgangs 2006/07.
4. Diskussion

Der erfolgreiche Abschluss des Medizinstudiums hängt nach unseren Daten zumindest in den drei Hauptquoten (Abiturbeste, AdH-Verfahren und Wartezeit) durchaus mit der Eingangskualifikation zusammen. Dies zeigen die Abbildung 2, Abbildung 3 bis Abbildung 4 für die Bestehensraten und die Abbildung 1 und Abbildung 5 für die Notenverteilung. Aber unsere Daten belegen auch, dass die von Heidmann et al. [1] berichteten 40% Studierende aus der Wartezeit-Quote ohne bestandene M1-Prüfung nicht nur auf eine geringere Eignung der so zugelassenen Studierenden zurückzuführen ist. Vielmehr lassen sich deren Ergebnisse vor allem auf die im Modellstudiengang HannibAL fehlende Zäsur durch die M1-Zwischenexamen zurückführen, denn in den dort untersuchten Modellstudiengängen erlaubt erst die komplett bestandene M1-Prüfung die Fortsetzung des Studiums. Ansonsten erfolgt wie in den Regelstudiengängen eine mindestens halbjährige Verlängerung des ersten Studienabschnittes. Studierende der MHH, denen noch eine oder mehrere der Äquivalenzprüfungen fehlen, können dagegen in ihrem Studium fortschreiten. Auch die MHH-Studierenden aus der Abiturbesten-Quote schneiden besser ab, als die gleiche Gruppe an den von Heidmann et a. [1] ausgewerteten Fakultäten. Dagegen liegen für die Studierenden aus der AdH-Quote und aus den Vorabquoten vergleichbare Bestehensraten vor.

Unsere Daten widersprechen damit dem Postulat, dass die drastische Reduktion der Wartezeitquote mehr Absolventen/-innen innerhalb der Regelstudienzeit hervorbringen würde. Denn zumindest an der MHH schließen die Studierenden der Wartezeitquote ihr Studium genauso häufig innerhalb der Regelstudienzeit erfolgreich ab, wie die Studierenden der Abiturbestenquote (siehe Abbildung 4). Dass ihre Noten dabei geringfügig schlechter ausfallen (siehe Abbildung 5), sollte für die Gesundheitsversorgung der Bevölkerung und den Berufseinstieg der Absolventen irrelevant sein.

Die uns bisher vorliegenden Daten erlauben keine Aussagen darüber, wieso die Studierenden aus der Abiturbestenquote und der AdH-Quote zwar häufiger ihr Studium an der MHH abschließen, aber gleichzeitig häufiger länger als die Regelstudienzeit studieren, wenn man sie mit Studierenden aus den Vorabquoten oder der Wartezeitquote vergleicht. Mögliche Erklärungen wären, dass sie jünger sind, zusätzlich eine Promotion während des Studiums beginnen und/oder Auslandssemester absolvieren. Es könnte aber auch an einer geringeren Lebenserfahrung, schlechterem Zeitmanagement oder höherem Erfolgsdruck aus dem Umfeld des Studiums liegen. Die zu betrachtenden unabhängigen Variablen sind komplex und zahlreich, wie schon Kadmon, Resch, Duelli und Kadmon [9] feststellten.

Da Hampe et al. [10] gezeigt haben, dass Auswahlverfahren, die spezifische kognitive Leistungsparameter betrachten, die Abbrecherquote im vorklinischen Studienabschnitt reduzieren können, stellt sich aber natürlich die Frage, ob Ähnliches auch für motivationale Parameter gilt. Beschränkt man die Analyse ausschließlich auf den Aspekt der Studierendenauswahl, dann gerät aus dem Blick, dass diese Abbrecherquote auch durch eine restriktive Vorstellung von Studienfortschritt determiniert sein könnte, die die vorherige Beseitigung von Leistungsdefiziten in den naturwissenschaftlichen Grundlagenfächern zur conditio sine qua non für eine klinisch-praktische Ausbildung erklärt. Aber nach unserer Auffassung kann man weder aus einem erfolgreichen Abschluss eines vorklinischen Studienabschnitts, noch aus der Art der Hochschulzulassung oder den ärztlichen Wichtigkeit der Studienerfolg für den Studienerfolg zu suchen, statt diesen ausschließlich auf Leistungskriterien bei der Studierendenauswahl zu fokussieren. Auch aber sie blendet Faktoren aus, die den Studienerfolg beeinflussen.

Es fällt auf, dass die aktuellen Studien sehr stark (bis ausschließlich) auf den vorklinischen Studienabschnitt fokussieren, während die älteren Arbeiten, die in Verbindung mit der neueren internationalen Literatur einen Ausweg aus dem so gebräuchlichen Verfahren der Studienplatzvergabe im Studiengang Medizin gefunden haben sich die Vergleiche zwischen den bisherigen Quoten weitgehend erledigt, weil diese Quoten eher früher als später durch ein neues Verfahren abgelöst werden. Die Suche nach relevanten strukturellen Varianten des Abbaus des Medizinstudiums bleibt aber aktuell. Und wenn sich unsere Daten replizieren ließen, könnte man durch einen veränderten Studienaufbau mehr Studierende innerhalb der Regelstudienzeit zu einem erfolgreichen Abschluss des Medizinstudiums führen. Außerdem verkennt die Fokussierung auf den Erfolg im vorklinischen Studienabschnitt unserer Meinung nach die gesellschaftlichen und beruflichen Anforderungen an ausgebildete Ärzte. Was nicht heißen soll, dass ein solides Grundlagenwissen verzichtbar wäre, oder klinische Entscheidungen nicht positiv beeinflusst [14].

Dass die hier beschriebene Studienerfolg der unterschiedlichen Zulassungsquoten kein singulärer Effekt einer einzelnen Studierendenkohorte ist, machen wir mangels anderer Standorte mit diesem Studiengang aufbau daran fest, dass sich vergleichbare Bestehensraten finden,
wenn wir mehrere Kohorten an der MHH zusammenfassen. So haben von den Studierenden der Wartezeit-Gruppe aus den Kohorten zwei (Beginn: WS 2006/07) bis vier (Beginn: WS 2008/09) des Modellstudiengangs immerhin 74,2 % ihr Studium innerhalb der Regelstudienzeit bis zum Herbst 2015 erfolgreich abgeschlossen, weitere 6,5% haben alle Leistungsscheine, aber noch nicht alle Abschnitte der ärztlichen Prüfung bestanden. Von den Abiturbesten haben 88,9% alle Leistungsscheine und alle Abschnitte der ärztlichen Prüfung bestanden, weitere 1,1% haben keine Leistungsscheine, aber noch nicht alle Examensteile bestanden. Auch bei dieser größeren Stichprobe ist also zu beobachten, dass die über die Wartezeit zugelassenen Studierenden der Humanmedizin eine, verglichen mit anderen Studiengängen beeindruckende, Erfolgsquote vorweisen können, wenn die fünf Jahre ihres Studiums bis zum Praktischen Jahr einstufig und kontinuierlich aufgebaut sind, und nicht durch ein Zwischenexamen unterteilt werden. D.h. obwohl die Studienabbruchquote in Medizin [1] schon deutlich unter der für die Bachelor- und Masterstudiengängen [15] liegt, scheint es für Studierende an der MHH noch mal bessere Werte zu geben. Da die Motivation der Studierenden und ihre Qualifikation in unserer Studie sich nicht deutlich von den Studierenden bei Heidmann et al. unterscheiden sollte, bleibt aus unserer Sicht nur der strukturell andere Studienaufbau als Erläuterung übrig. Systematische Längsschnitt-Analysen werden zeigen müssen, wie nicht nur Erfolge in einzelnen Studienabschnitten optimiert, sondern auch der Gesamtstudiererfolg verbessert werden kann. Fest steht schon jetzt, dass es keine einfache Antwort sein wird, wenn man die komplexen Zusammenhänge zwischen gesellschaftlichen Erwartungen, individueller Studienwahl, curricularen Vorgaben und Studienerfolg in Einklang bringen will.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Heidmann J, Schwibbe A, Kadmon M, Hampe W. Sieben lange Jahre. Warten auf das Medizinstudium. Dtch Ärztebl. 2016;113(38):1636-1638.
2. Fisseni H-J, Olbricht E, Halsig N, Mailahn J, Ittner E. Auswahlgespräche mit Medizinstudenten. Modelle - Erfahrungen - Vorschläge. Göttingen: Hogrefe Verlag für Psychologie; 1993. S.xx + 346
3. Schuler H, Heil B. Studierendenauswahl und Studienentscheidung. Göttingen: Hogrefe; 2008.
4. Norcini JJ, Boulet JR, Opalek A, Dauphinee WD. The Relationship Between Licensing Examination Performance and the Outcomes of Care by International Medical School Graduates. Acad Med. 2014;89(8):1157-1162. DOI: 10.1097/ACM.0000000000003110
5. Conrad SS, Addams AN, Young GH. Holistic Review in Medical School Admission and Selection: A Strategic, Mission-Driven Response to Shifting Societal Needs. Acad Med. 2016;91(11):1472-1474. DOI: 10.1097/ACM.0000000000001403
6. MH Hannover. Ordnung zur Durchführung der Auswahlgespräche im Rahmen des Auswahlverfahrens der Hochschulen an der Medizinischen Hochschule Hannover. Hannover: MH Hannover; 2015. Zugänglich unter/available from: https://www.mh-hannover.de/fileadmin/mhh/download/studium_ausbildung/OrdnungenAllgemein/2014_06_18_Auswahlordnung.pdf
7. Kadmon G, Kadmon M. Academic Performance of Students with the Highest and Medio-ocre School-leaving Grades: Does the Aptitude Test for Medical Studies (TMS) Balance Their Prognoses? . GMS J Med Educ. 2016;33(1):Doc7. DOI: 10.3205/zma001006
8. Hampe W, Hissbach J, Kadmon M, Kadmon G, Klusmann D, Scheutzell P. Wer wird guter Arzt? Verfahren zur Auswahl von Studierenden der Human- und Zahnmedizin. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz. 2009;52(8):821-830. DOI: 10.1007/s00103-009-0905-6
9. Kadmon G, Resch F, Duelli R, Kadmon M. Der Vorhersagewert der Abiturdurchschnittsnote und die Prognose der unterschiedlichen Zulassungsquoten für Studienleistung und -kontinuität im Studiengang Humanmedizin - eine Längsschnittanalyse. GMS Z Med Ausbild. 2014;31(2):Doc21. DOI: 10.3205/zma000913
10. Hampe W, Klusmann D, Buhi H, Münch-Harrach D, Harendza S. Reduzierbarkeit der Abbrecherequote im Humanmedizinstudium durch das Hamburger Auswahlverfahren für Medizinische Studiengänge - Naturwissenschaftsteil (HAM-Nat). GMS Z Med Ausbild. 2008;25(2):Doc82. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2008-25/zma000566.shtml
11. Steger-Jager KM, Cohen-Schotanus J, Themmen APN. Motivation, learning strategies, participation and medical school performance. Med Educ. 2012;(7):46:678-88. DOI: 10.1111/j.1365-2923.2012.04284.x
12. Lohölter R, Hinrichsen K, Trost G, Drolshagen S. Das Interview bei der Zulassung zum Medizinstudium. Stuttgart: Schattauer; 1986.
13. Medizinischer Fakultätentag. Zur Abschaffung der Wartezeitquote. Resolution. Rostock: Medizinischer Fakultätentag; 2011.
14. de Bruin AB, Schmidt HG, Riker RM. The Role of Basic Science Knowledge and Clinical Knowledge in Diagnostic Reasoning: A Structural Equation Modeling Approach. Acad Med. 2005;80(8):765-773. DOI: 10.1097/00001888-200508000-00014
15. Heublin U, Ebert J, Hutzsch C, Isleib S, König R, Richter J, Woisch. Reduzierbarkeit der Abbrecherquote im Humanmedizinstudium durch das Hamburger Auswahlverfahren für Medizinische Studiengänge - Naturwissenschaftsteil (HAM-Nat). GMS Z Med Ausbild. 2014;31(2):Doc21. DOI: 10.3205/zma000913

Korrespondenzadresse:
PD Dr. phil. Dipl.-Psych. Volkhard Fischer
Medizinische Hochschule Hannover, Studiendekanat, Bereich Evaluation & Kapazität, OE 9135, 30623 Hannover, Deutschland, Tel.: +49 (0)511/532-6015, Fax: +49 (0)511/532-8022 fischer.volkhard@mh-hannover.de
