ON A NON-LINEAR p-ADIC DYNAMICAL SYSTEM

ROZIKOV U.A., SATTAROV I.A.

Abstract. We investigate the behavior of trajectories of a $(3, 2)$-rational p-adic dynamical system in the complex p-adic field \mathbb{C}_p, when there exists a unique fixed point x_0. We study this p-adic dynamical system by dynamics of real radiuses of balls (with the center at the fixed point x_0). We show that there exists a radius r depending on parameters of the rational function such that: when x_0 is an attracting point then the trajectory of an inner point from the ball $U_r(x_0)$ goes to x_0 and each sphere with a radius $> r$ (with the center at x_0) is invariant. When x_0 is a repeller point then the trajectory of an inner point from a ball $U_r(x_0)$ goes forward to the sphere $S_r(x_0)$. Once the trajectory reaches the sphere, in the next step it either goes back to the interior of $U_r(x_0)$ or stays in $S_r(x_0)$ for some time and then goes back to the interior of the ball. As soon as the trajectory goes outside of $U_r(x_0)$ it will stay (for all the rest of time) in the sphere (outside of $U_r(x_0)$) that it reached first.

1. Introduction

What is the main difference between real and p-adic space-time? It is the Archimedean axiom. According to this axiom any given large segment on a straight line can be surpassed by successive addition of small segments along the same line. This axiom is valid in the set of real numbers and is not valid in the field of p-adic numbers \mathbb{Q}_p. However, it is a physical axiom which concerns the process of measurement. To exchange a number field \mathbb{R} to \mathbb{Q}_p is the same as to exchange axiomatics in quantum physics (12, 23).

The representation of p-adic numbers by sequences of digits gives a possibility to use this number system for coding of information. Therefore p-adic models can be used for the description of many information processes. In particular, they can be used in cognitive sciences, psychology and sociology. Such models based on p-adic dynamical systems 2, 3.

The study of p-adic dynamical systems arises in Diophantine geometry in the constructions of canonical heights, used for counting rational points on algebraic varieties over a number field, as in 10. There most recent monograph on p-adic dynamics is Anashin and Khrennikov, 4; nearly a half of Silvermans monograph 22 also concerns p-adic dynamics.

Here are areas where p-adic dynamics proved to be effective: computer science (straight line programs), numerical analysis and simulations (pseudorandom numbers), uniform distribution of sequences, cryptography (stream ciphers, T-functions), combinatorics (Latin squares), automata theory and formal languages, genetics. The monograph 4 contains the corresponding survey. For a newer results see recent papers and references therein: 1, 5, 8, 9, 11, 12, 13 - 18, 21. Moreover, there are studies in computer
science and cryptography which along with mathematical physics stimulated in 1990-th intensive research in \(p \)-adic dynamics since it was observed that major computer instructions (and therefore programs composed of these instructions) can be considered as continuous transformations with respect to the \(2 \)-adic metric, see [6], [7].

In this paper we investigate the behavior of trajectories of an arbitrary \((3,2)\)-rational \(p \)-adic dynamical system in complex \(p \)-adic filed \(\mathbb{C}_p \). The paper is organized as follows: in Section 2 we give some preliminaries. Section 3 contains the definition of the \((3,2)\)-rational function and main results about behavior of trajectories of the \(p \)-adic dynamical system.

2. Preliminaries

2.1. \(p \)-adic numbers. Let \(\mathbb{Q} \) be the field of rational numbers. The greatest common divisor of the positive integers \(n \) and \(m \) is denoted by \((n,m) \). Every rational number \(x \neq 0 \) can be represented in the form \(x = p^r \frac{a}{m} \), where \(r, n \in \mathbb{Z}, \) \(m \) is a positive integer, \((p,n) = 1 \), \((p,m) = 1 \) and \(p \) is a fixed prime number.

The \(p \)-adic norm of \(x \) is given by

\[
|x|_p = \begin{cases} \frac{1}{p^{-r}}, & \text{for } x \neq 0, \\ 0, & \text{for } x = 0. \end{cases}
\]

It has the following properties:
1) \(|x|_p \geq 0 \) and \(|x|_p = 0 \) if and only if \(x = 0 \),
2) \(|xy|_p = |x|_p |y|_p \),
3) the strong triangle inequality

\[
|x + y|_p \leq \max\{|x|_p, |y|_p\},
\]

3.1) if \(|x|_p \neq |y|_p \) then \(|x + y|_p = \max\{|x|_p, |y|_p\} \),
3.2) if \(|x|_p = |y|_p \) then \(|x + y|_p \leq |x|_p \),

this is a non-Archimedean one.

The completion of \(\mathbb{Q} \) with respect to \(p \)-adic norm defines the \(p \)-adic field which is denoted by \(\mathbb{Q}_p \) (see [19], [20]).

The well-known Ostrovsky’s theorem asserts that norms \(|x| = |x|_\infty \) and \(|x|_p, \) \(p = 2, 3, 5... \) exhaust all nonequivalent norms on \(\mathbb{Q} \). Any \(p \)-adic number \(x \neq 0 \) can be uniquely represented in the canonical series:

\[
x = p^{\gamma(x)}(x_0 + x_1 p + x_2 p^2 + ...), \tag{2.1}
\]

where \(\gamma = \gamma(x) \in \mathbb{Z} \) and \(x_j \) are integers, \(0 \leq x_j \leq p - 1, \) \(x_0 > 0, j = 0, 1, 2, ... \). Observe that in this case \(|x|_p = p^{-\gamma(x)} \).

The algebraic completion of \(\mathbb{Q}_p \) is denoted by \(\mathbb{C}_p \) and it is called complex \(p \)-adic numbers. For any \(a \in \mathbb{C}_p \) and \(r > 0 \) denote

\[
U_r(a) = \{ x \in \mathbb{C}_p : |x - a|_p \leq r \}, \quad V_r(a) = \{ x \in \mathbb{C}_p : |x - a|_p < r \}, \quad S_r(a) = \{ x \in \mathbb{C}_p : |x - a|_p = r \}.
\]

A function \(f : U_r(a) \to \mathbb{C}_p \) is said to be \emph{analytic} if it can be represented by

\[
f(x) = \sum_{n=0}^{\infty} f_n (x-a)^n, \quad f_n \in \mathbb{C}_p,
\]
which converges uniformly on the ball $U_r(a)$.

2.2. Dynamical systems in \mathbb{C}_p. In this section we recall some known facts concerning dynamical systems (f, U) in \mathbb{C}_p, where $f : x \in U \to f(x) \in U$ is an analytic function and $U = U_r(a)$ or \mathbb{C}_p.

Now let $f : U \to U$ be an analytic function. Denote $x_0 = f^n(x_0)$, where $x_0 \in U$ and $f^n(x) = f \circ \cdots \circ f(x)$.

Recall some the standard terminology of the theory of dynamical systems. If $f(x_0) = x_0$ then x_0 is called a fixed point. The set of all fixed points of f is denoted by Fix(f). A fixed point x_0 is called an attractor if there exists a neighborhood $V(x_0)$ of x_0 such that for all points $y \in V(x_0)$ it holds $\lim_{n \to \infty} y_n = x_0$. If x_0 is an attractor then its basin of attraction is $A(x_0) = \{ y \in \mathbb{C}_p : y_n \to x_0, \ n \to \infty \}$.

A fixed point x_0 is called repeller if there exists a neighborhood $V(x_0)$ of x_0 such that $|f(x) - x_0|_p > |x - x_0|_p$ for $x \in V(x_0), x \neq x_0$. Let x_0 be a fixed point of a function $f(x)$. The ball $V_r(x_0)$ (contained in U) is said to be a Siegel disk if each sphere $S_p(x_0), \ r < r$ is an invariant sphere of $f(x)$, i.e. if $x \in S_p(x_0)$ then all iterated points $x_n \in S_p(x_0)$ for all $n = 1, 2, \ldots$. The union of all Siegel desks with the center at x_0 is said to a maximum Siegel disk and is denoted by $SI(x_0)$.

In complex geometry, the center of a disk is uniquely determined by the disk, and different fixed points cannot have the same Siegel disks. In non-Archimedean geometry, a center of a disk is a point which belongs to the disk. Therefore, different fixed points may have the same Siegel desk.

Let x_0 be a fixed point of an analytic function $f(x)$. Put

$$\lambda = \frac{d}{dx} f(x_0).$$

The point x_0 is attractive if $0 \leq |\lambda|_p < 1$, indifferent if $|\lambda|_p = 1$, and repelling if $|\lambda|_p > 1$.

3. $(3, 2)$-rational p-adic dynamical systems with a unique fixed point

A function is called a (n, m)-rational function if and only if it can be written in the form $f(x) = \frac{P_n(x)}{Q_m(x)}$, where $P_n(x)$ and $Q_m(x)$ are polynomial functions with degree n and m respectively, $Q_m(x)$ is not the zero polynomial.

In this paper we consider the dynamical system associated with the $(3, 2)$-rational function $f : \mathbb{C}_p \to \mathbb{C}_p$ defined by

$$f(x) = \frac{x^3 + ax^2 + bx + c}{x^2 + ax + d}, \quad a, b, c, d \in \mathbb{C}_p, b \neq d$$

where $x \neq \hat{x}_{1,2} = \frac{a \pm \sqrt{a^2 - 4d}}{2}$. Denote

$$\mathcal{P} = \{ x \in \mathbb{C}_p : \exists n \in \mathbb{N}, f^n(x) = \hat{x}_{1,2} \}.$$

The function f has a unique fixed point $x_0 = \frac{c}{d-b}$.

ON A NON-LINEAR p-ADIC DYNAMICAL SYSTEM 3
For any \(x \in \mathbb{C}_p \setminus \mathcal{P} \), by simple calculations we get
\[
|f(x) - x_0|_p = |x - x_0|_p \cdot \frac{|((x - x_0) + (x_0 + \frac{a}{2}))^2 + \alpha(x_0)|_p}{|((x - x_0) + (x_0 + \frac{a}{2}))^2 + \beta(x_0)|_p},
\] (3.2)
where
\[
\alpha(x) = \frac{8x^4 + 16ax^3 + 6(a^2 + d)x^2 + (6ad + a^2 - c)x + a^2d + bd - ac}{4(x^2 + ax + d)},
\]
\[
\beta(x) = 2x^2 + 2ax + d + \frac{a^2}{4}.
\]
For
\[
\alpha = |\alpha(x_0)|_p, \quad \beta = |\beta(x_0)|_p,
\]
and
\[
\delta = |x_0 + \frac{a}{2}|_p
\]
we have that \(\alpha, \beta \) and \(\delta \) satisfy one of the following relations:
I. \(\delta \leq \min\{\sqrt{\alpha}, \sqrt{\beta}\} \).
II. \(\sqrt{\alpha} \leq \min\{\delta, \sqrt{\beta}\} \).
III. \(\sqrt{\beta} \leq \min\{\sqrt{\alpha}, \delta\} \).
Consider the following functions:
For \(\delta \leq \min\{\sqrt{\alpha}, \sqrt{\beta}\} \) define the functions \(\varphi_i : [0, +\infty) \to [0, +\infty), (i = 1, 2, 3, 4, 5, \) as the following
1. If \(\delta < \sqrt{\alpha} < \sqrt{\beta} \), then
\[
\varphi_1(r) = \begin{cases} \frac{\alpha}{\beta}r, & \text{if } r < \sqrt{\alpha}, \\ \alpha^*, & \text{if } r = \sqrt{\alpha}, \\ \beta^*, & \text{if } \sqrt{\alpha} < r < \sqrt{\beta}, \\ r, & \text{if } r > \sqrt{\beta}, \end{cases}
\]
where \(\alpha^* \) and \(\beta^* \) are some given numbers with \(\alpha^* \leq \frac{\alpha\sqrt{\alpha}}{\beta}, \beta^* \geq \sqrt{\beta} \).
2. If \(\delta < \sqrt{\alpha} = \sqrt{\beta} \), then
\[
\varphi_2(r) = \begin{cases} r, & \text{if } r \neq \sqrt{\alpha}, \\ \hat{\alpha}, & \text{if } r = \sqrt{\alpha}, \end{cases}
\]
where \(\hat{\alpha} \) is a given number.
3. If \(\delta = \sqrt{\alpha} < \sqrt{\beta} \), then

\[
\varphi_3(r) = \begin{cases}
\lambda r, & \text{if } r < \delta, \\
\delta^*, & \text{if } r = \delta, \\
\frac{\alpha^3}{\beta^3}, & \text{if } \delta < r < \sqrt{\beta}, \\
\beta^*, & \text{if } r = \sqrt{\beta}, \\
r, & \text{if } r > \sqrt{\beta},
\end{cases}
\]

where \(\lambda \leq \frac{\delta^2}{\beta} < 1 \), \(\delta^* \leq \frac{\delta^3}{\beta} \) and \(\beta^* \geq \sqrt{\beta} \).

4. If \(\delta < \sqrt{\beta} < \sqrt{\alpha} \), then

\[
\varphi_4(r) = \begin{cases}
\frac{\alpha^3}{\beta^2} r, & \text{if } r < \sqrt{\beta}, \\
\beta^*, & \text{if } r = \sqrt{\beta}, \\
\frac{\alpha}{\beta}, & \text{if } \sqrt{\beta} < r < \sqrt{\alpha}, \\
\alpha^*, & \text{if } r = \sqrt{\alpha}, \\
r, & \text{if } r > \sqrt{\alpha},
\end{cases}
\]

where \(\alpha^* \leq \sqrt{\alpha} \), \(\beta^* \geq \frac{\alpha}{\sqrt{\beta}} \).

5. If \(\delta = \sqrt{\beta} < \sqrt{\alpha} \), then

\[
\varphi_5(r) = \begin{cases}
\lambda r, & \text{if } r < \delta, \\
\delta^*, & \text{if } r = \delta, \\
\frac{\alpha^3}{\beta^2}, & \text{if } \delta < r < \sqrt{\alpha}, \\
\alpha^*, & \text{if } r = \sqrt{\alpha}, \\
r, & \text{if } r > \sqrt{\alpha},
\end{cases}
\]

where \(\lambda \geq \frac{\delta^2}{\beta} > 1 \), \(\delta^* \geq \frac{\alpha}{\delta} \) and \(\alpha^* \leq \sqrt{\alpha} \).

For \(\sqrt{\alpha} \leq \min\{\delta, \sqrt{\beta}\} \) define the function \(\phi_j : [0, +\infty) \rightarrow [0, +\infty) \) \((j = 1, 2, 3) \) as the following

1. If \(\sqrt{\alpha} < \delta < \sqrt{\beta} \), then

\[
\phi_1(r) = \begin{cases}
\frac{\alpha^3}{\beta^3} r, & \text{if } r < \delta, \\
\delta', & \text{if } r = \delta, \\
\frac{\alpha^3}{\beta^3}, & \text{if } \delta < r < \sqrt{\beta}, \\
\beta', & \text{if } r = \sqrt{\beta}, \\
r, & \text{if } r > \sqrt{\beta},
\end{cases}
\]

where \(\delta' \) and \(\beta' \) some positive numbers with \(\delta' \leq \frac{\delta^3}{\beta}, \beta' \geq \sqrt{\beta} \).
2. If $\sqrt{\alpha} < \delta = \sqrt{\beta}$, then

$$
\phi_2(r) = \begin{cases}
\lambda r, & \text{if } r < \delta, \\
\delta', & \text{if } r = \delta, \\
r, & \text{if } r > \delta,
\end{cases}
$$

where $\lambda \geq 1$, $\delta' \leq \delta$.

3. If $\sqrt{\alpha} \leq \delta < \sqrt{\beta}$, then

$$
\phi_3(r) = \begin{cases}
r, & \text{if } r \neq \delta, \\
\hat{\delta}, & \text{if } r = \delta,
\end{cases}
$$

where $\hat{\delta}$ is a given number.

For $\sqrt{\beta} \leq \min\{\sqrt{\alpha}, \delta\}$ we define the function $\psi_k : [0, +\infty) \rightarrow [0, +\infty)$ ($k = 1, 2, 3$) as the following

1. If $\sqrt{\beta} < \delta < \sqrt{\alpha}$, then

$$
\psi_1(r) = \begin{cases}
\frac{\alpha}{2^2} r, & \text{if } r < \delta, \\
\delta^*, & \text{if } r = \delta, \\
\alpha^*, & \text{if } \delta < r < \sqrt{\alpha}, \\
r, & \text{if } r > \sqrt{\alpha},
\end{cases}
$$

where $\delta^* \geq \frac{\alpha}{2}$, $\alpha^* \leq \sqrt{\alpha}$.

2. If $\sqrt{\beta} < \delta = \sqrt{\alpha}$ and $|\delta^2 + \alpha|_p < \delta^2$, then

$$
\psi_2(r) = \begin{cases}
\lambda r, & \text{if } r < \delta, \\
\hat{\delta}, & \text{if } r = \delta, \\
r, & \text{if } r > \delta,
\end{cases}
$$

where $\hat{\delta} \geq \delta$, $\lambda = \frac{|\delta^2 + \alpha|_p}{\delta^2}$.

3. If $\sqrt{\beta} < \sqrt{\alpha} \leq \delta$ and $|\delta^2 + \alpha|_p = \delta^2$, then

$$
\psi_3(r) = \begin{cases}
r, & \text{if } r \neq \delta, \\
\hat{\delta}, & \text{if } r = \delta,
\end{cases}
$$

where $\hat{\delta}$ is a given number.

Using the formula (3.2) we easily get the following:
Lemma 3.1. If \(x \in S_r(x_0) \), then the following formula holds

\[
|f^n(x) - x_0|_p = \begin{cases}
\varphi^1_n(r), & \text{if } \delta < \sqrt{\alpha} < \sqrt{\beta} \\
\varphi^2_n(r), & \text{if } \delta < \sqrt{\alpha} = \sqrt{\beta} \\
\varphi^3_n(r), & \text{if } \delta = \sqrt{\alpha} < \sqrt{\beta} \\
\varphi^4_n(r), & \text{if } \delta < \sqrt{\beta} < \sqrt{\alpha} \\
\varphi^5_n(r), & \text{if } \delta = \sqrt{\beta} < \sqrt{\alpha} \\
\end{cases}
\]

Thus the \(p \)-adic dynamical system \(f^n(x), n \geq 1, x \in \mathbb{C}_p \setminus \mathbb{P} \) is related to the real dynamical systems generated by \(\varphi_i, \phi_j \) and \(\psi_k \). Now we are going to study these (real) dynamical systems.

Lemma 3.2. The dynamical system generated by \(\varphi_i(r), (i = 1, 2, 3, 4, 5) \) has the following properties:

1. \(\text{Fix}(\varphi_i) = \{0\} \cup \begin{cases}
\{r : r > \sqrt{\beta}\} \cup \left\{ \beta^* : \text{if} \ \sqrt{\beta} = \beta^* \right\}, & \text{for } \alpha < \beta, \ i = 1, 3, \\
\{r : r \neq \sqrt{\alpha}\} \cup \left\{ \hat{\alpha} : \text{if} \ \hat{\alpha} = \sqrt{\alpha} \right\}, & \text{for } \alpha = \beta, \ i = 2, \end{cases} \)

2. If \(\alpha < \beta \), then for functions \(\varphi_i(r), i = 1, 3 \) we have

\[
\lim_{n \to \infty} \varphi^n_i(r) = \begin{cases}
0, & \text{for all } r < \sqrt{\beta}, \\
r, & \text{for all } r > \sqrt{\beta}, \\
\varphi_i(\beta^*), & \text{if } r = \sqrt{\beta} \\
\end{cases}
\]

3. If \(\alpha = \beta \), then for function \(\varphi_2(r) \)

\[
\lim_{n \to \infty} \varphi^n_2(r) = \begin{cases}
r, & \text{for all } r \neq \sqrt{\alpha}, \\
\varphi_2(\hat{\alpha}), & \text{if } r = \sqrt{\alpha}, \\
\end{cases}
\]

4. If \(\alpha > \beta \), then for functions \(\varphi_i(r), i = 4, 5 \) we have

\[
\lim_{n \to \infty} \varphi^n_i(r) = \begin{cases}
0, & \text{if } r = 0, \\
\in C_i, & \text{for all } 0 < r \leq \sqrt{\alpha}, \\
r, & \text{for all } r > \sqrt{\alpha}, \\
\end{cases}
\]
where \(C_4 = (\sqrt{\alpha}, \alpha/\sqrt{\beta}) \cup \{\beta^*\} \), \(C_5 = (\sqrt{\alpha}, \alpha/\delta) \cup \{\delta^*\} \).

Proof. 1. This is the result of a simple analysis of the equation \(\varphi_i(r) = r \).

Proofs of parts 2, 3 follow from the property that \(\varphi_i(r), i = 1, 2, 3 \) is an increasing function (except at points of discontinuity). The part 4 easily can be proved using graphs of the corresponding functions \(\varphi_i, i = 4, 5 \).

We note that for any \(a \in C_i \) there exists \(x \in (0, \sqrt{\alpha}) \) such that \(\varphi_i^m(x) = a, i = 4, 5 \).

Lemma 3.3. The dynamical system generated by \(\phi_j(r), (j = 1, 2, 3) \) has the following properties:

A. Fix(\(\phi_j \)) = \(\{0\} \cup \{r : r > \sqrt{\beta} \cup \{\beta^* : if \ \beta^* = \beta\}, for \ \sqrt{\alpha} < \delta < \sqrt{\beta}; \}
\{r : r \neq \delta \cup \{\delta^*: if \ \delta^* = \delta\}, for \ \sqrt{\alpha} \leq \sqrt{\beta} < \delta; \}
\{r : r \neq \delta \cup \{\delta^* : if \ \delta^* = \delta\}, for \ \sqrt{\alpha} < \sqrt{\beta} = \delta and \ \delta^2 = |\delta^2 + \beta|_p; \}
\{r : r > \delta \cup \{\delta^* : if \ \delta^* = \delta\}, for \ \sqrt{\alpha} < \sqrt{\beta} = \delta and \ \delta^2 > |\delta^2 + \beta|_p. \}

B. For function \(\phi_1(r) \), we have
\[\lim_{n \to \infty} \phi_1^n(r) = \begin{cases} 0, & for \ all \ r < \sqrt{\beta}, \\ r, & for \ all \ r > \sqrt{\beta}; \end{cases} \]
\[\phi_1(\beta^*), \ if \ r = \sqrt{\beta}. \]

C. For function \(\phi_2(r) \):
C.a If \(\delta^2 = |\delta^2 + \beta|_p \), then
\[\lim_{n \to \infty} \phi_2^n(r) = \begin{cases} r, & for \ all \ r \neq \delta, \\ \phi_2(\delta^*), & if \ r = \delta; \end{cases} \]
C.b If \(\delta^2 > |\delta^2 + \beta|_p \), then
\[\lim_{n \to \infty} \phi_2^n(r) = \begin{cases} 0, & if \ r = 0, \\ \in B, & for \ all \ 0 < r \leq \delta; \\ r, & for \ all \ r > \delta, \end{cases} \]
where \(B = (\delta, \delta^3/|\delta^2 + \beta|_p) \).

D. For function \(\phi_3(r) \), we have
\[\lim_{n \to \infty} \phi_3^n(r) = \begin{cases} r, & for \ all \ r \neq \delta, \\ \phi_3(\delta), & if \ r = \delta. \end{cases} \]

Proof. The proof consists simple analysis of the functions \(\phi_j(r) \) using their graphs.

The following lemma is obvious:

Lemma 3.4. The dynamical system generated by \(\psi_k(r), (k = 1, 2, 3) \) has the following properties:
ON A NON-LINEAR p-ADIC DYNAMICAL SYSTEM

(i) Fix(ψ_k) = \{0\} \cup

\[
\begin{cases}
{\{r : r > \sqrt{\alpha}\} \cup \{\alpha^* : \text{if } \alpha^* = \alpha\}, \text{ for } \sqrt{\beta} < \delta < \sqrt{\alpha},} \\
{\{r : r > \delta\} \cup \{\hat{\delta} : \text{if } \hat{\delta} = \delta\}, \text{ for } \sqrt{\beta} < \delta = \sqrt{\alpha} \text{ and } \delta^2 > |\delta^2 + \alpha |_p,} \\
{\{r : r \neq \delta\} \cup \{\hat{\delta} : \text{if } \hat{\delta} = \delta\}, \text{ for } \sqrt{\beta} < \sqrt{\alpha} \leq \delta \text{ and } \delta^2 = |\delta^2 + \alpha |_p,}
\end{cases}
\]

(ii) For function $\psi_1(r)$, we have

\[
\lim_{n \to \infty} \psi_1^n(r) = \begin{cases}
0, & \text{if } r = 0, \\
E, & \text{for all } 0 < r \leq \sqrt{\alpha}, \\
r, & \text{for all } r > \sqrt{\alpha},
\end{cases}
\]

where $E = (\sqrt{\alpha}, \alpha/\delta) \cup \{\delta^*\}$.

(iii) For function $\psi_2(r)$

\[
\lim_{n \to \infty} \psi_2^n(r) = \begin{cases}
0, & \text{for all } r < \delta, \\
\psi_2(\delta), & \text{if } r = \delta, \\
r, & \text{for all } r > \delta,
\end{cases}
\]

(iv) For function $\psi_3(r)$

\[
\lim_{n \to \infty} \psi_3^n(r) = \begin{cases}
r, & \text{for all } r \neq \delta, \\
\psi_3(\hat{\delta}), & \text{if } r = \delta.
\end{cases}
\]

Now we shall apply these lemmas to the study of the p-adic dynamical system generated by f.

Using Lemma 3.1 and Lemma 3.2 we obtain the following

Theorem 3.5. If $\delta \leq \min\{\sqrt{\alpha}, \sqrt{\beta}\}$ and $x \in S_r(x_0)$, then the p-adic dynamical system generated by f has the following properties:

1. The following spheres are invariant with respect to f:

 \[
 S_r(x_0), \quad \text{if } r > \sqrt{\max\{\alpha, \beta\}} \text{ and } \alpha \neq \beta;
 \]

 \[
 S_r(x_0), \quad \text{if } r \neq \sqrt{\alpha}, \text{ and } \alpha = \beta;
 \]

2. For $\alpha < \beta$, we have

 \[
 \lim_{n \to \infty} f^n(x) = x_0, \quad \text{for all } r < \sqrt{\beta},
 \]

 \[
 f(S_r(x_0) \setminus P) \subset S_r(x_0), \quad \text{for all } r > \sqrt{\beta},
 \]

 \[
 \lim_{n \to \infty} f^n(x) \in \begin{cases}
 S_{\varphi_1(\delta^*)}(x_0), & \text{if } \delta < \sqrt{\alpha}, \ r = \sqrt{\beta};
 \\
 S_{\varphi_3(\delta^*)}(x_0), & \text{if } \delta = \sqrt{\alpha}, \ r = \sqrt{\beta};
 \end{cases}
 \]

3. If $\alpha = \beta$, then

 \[
 f(S_r(x_0) \setminus P) \subset S_r(x_0), \quad \text{for all } r \neq \sqrt{\alpha},
 \]

 \[
 \lim_{n \to \infty} f^n(x) \in S_{\varphi_2(\delta)}(x_0), \quad \text{if } r = \sqrt{\alpha};
 \]
4. If $\alpha > \beta$, then
\[
\lim_{n \to \infty} f^n(x) \in S_\rho(x_0), \quad \rho \in \begin{cases}
C_4, & \text{if } \delta < \sqrt{\beta}, \\
C_5, & \text{if } \delta = \sqrt{\beta},
\end{cases}, \quad 0 < r \leq \sqrt{\alpha},
\]
\[
f(S_r(x_0) \setminus P) \subset S_r(x_0), \quad \text{for all } r \neq \sqrt{\alpha}.
\]

By Lemma 3.1 and Lemma 3.3 we obtain the following

Theorem 3.6. If $\sqrt{\alpha} \leq \min\{\delta, \sqrt{\beta}\}$ and $x \in S_r(x_0)$, then the p-adic dynamical system generated by f has the following properties:

A. The following spheres are invariant:
\[
S_r(x_0), \quad \text{if } \sqrt{\alpha} < \delta < \sqrt{\beta}, \quad r > \sqrt{\beta},
\]
\[
S_r(x_0), \quad \text{if } \sqrt{\alpha} \leq \sqrt{\beta} < \delta, \quad r \neq \delta,
\]
\[
S_r(x_0), \quad \text{if } \sqrt{\alpha} \leq \sqrt{\beta} = \delta, \quad \delta^2 = |\delta^2 + \beta_p|, \quad \text{and } r \neq \delta,
\]
\[
S_r(x_0), \quad \text{if } \sqrt{\alpha} < \sqrt{\beta} = \delta, \quad \delta^2 > |\delta^2 + \beta_p|, \quad \text{and } r > \delta.
\]

B. For $\sqrt{\alpha} < \delta < \sqrt{\beta}$, we have
\[
\lim_{n \to \infty} f^n(x) = x_0, \quad \text{for all } r < \sqrt{\beta},
\]
\[
f(S_r(x_0) \setminus P) \subset S_r(x_0), \quad \text{for all } r > \sqrt{\beta},
\]
\[
\lim_{n \to \infty} f^n(x) \in S_{\phi_1(\beta^*)}(x_0), \quad \text{if } r = \sqrt{\beta}.
\]

C. Let $\sqrt{\alpha} < \sqrt{\beta} = \delta$.

C.a) If $\delta^2 = |\delta^2 + \beta|_p$, then
\[
f(S_r(x_0) \setminus P) \subset S_r(x_0), \quad \text{for any } r \neq \delta,
\]
\[
\lim_{n \to \infty} f^n(x) \in S_{\phi_2(\beta^*)}(x_0), \quad \text{if } r = \delta.
\]

C.b) If $\delta^2 > |\delta^2 + \beta|_p$, then
\[
\lim_{n \to \infty} f^n(x) \in S_\mu(x_0), \quad \mu \in B, \quad \text{for any } 0 < r \leq \delta,
\]
\[
f(S_r(x_0) \setminus P) \subset S_r(x_0), \quad \text{for any } r > \delta;
\]

D. If $\sqrt{\alpha} \leq \sqrt{\beta} < \delta$, then
\[
f(S_r(x_0) \setminus P) \subset S_r(x_0), \quad \text{for any } r \neq \delta,
\]
\[
\lim_{n \to \infty} f^n(x) \in S_{\phi_3(\delta)}(x_0), \quad \text{if } r = \delta.
\]

By Lemma 3.1 and Lemma 3.4 we get

Theorem 3.7. If $\sqrt{\beta} \leq \min\{\delta, \sqrt{\alpha}\}$, and $x \in S_r(x_0)$, then the dynamical system generated by f has the following properties:
(i) The following spheres are invariant:

\[S_r(x_0), \text{ if } \delta < \sqrt{\alpha}, \quad r > \sqrt{\alpha}, \]
\[S_r(x_0), \text{ if } \delta = \sqrt{\alpha}, \quad \delta^2 > |\delta^2 + \alpha|_p, \quad r > \delta, \]
\[S_r(x_0), \text{ if } \delta \geq \sqrt{\alpha}, \quad \delta^2 = |\delta^2 + \beta|_p, \quad r \neq \delta; \]

(ii) Let \(\delta < \sqrt{\alpha} \). Then

\[\lim_{n \to \infty} f^n(x) \in S_\nu(x_0), \quad \nu \in E, \text{ for any } 0 < r \leq \sqrt{\alpha}, \]

\[f(S_r(x_0) \setminus \mathcal{P}) \subset S_r(x_0), \text{ for any } r > \sqrt{\alpha}; \]

(iii) If \(\delta = \sqrt{\alpha} \) and \(\delta^2 > |\delta^2 + \alpha|_p \), then

\[\lim_{n \to \infty} f^n(x) = x_0, \text{ for all } r < \delta, \]

\[\lim_{n \to \infty} f^n(x) \in S_{\psi_2(\delta)}(x_0), \text{ if } r = \delta; \]

\[f(S_r(x_0) \setminus \mathcal{P}) \subset S_r(x_0), \text{ for any } r > \delta; \]

(iv) If \(\delta \geq \sqrt{\alpha} \) and \(\delta^2 = |\delta^2 + \alpha|_p \), then

\[\lim_{n \to \infty} f^n(x) \in S_{\psi_3(\delta)}(x_0), \text{ if } r = \delta; \]

\[f(S_r(x_0) \setminus \mathcal{P}) \subset S_r(x_0), \text{ for any } r \neq \delta. \]

Acknowledgements

The first author thanks the Department of Algebra, University of Santiago de Compostela, Spain, for providing financial support of his many visits to the Department. He was also supported by the Grant No.0251/GF3 of Education and Science Ministry of Republic of Kazakhstan.

References

[1] S. Albeverio, U.A. Rozikov, I.A. Sattarov. p-adic (2,1)-rational dynamical systems. Jour. Math. Anal. Appl. 398(2) (2013), 553–566.

[2] S. Albeverio, A. Khrennikov, P.E. Kloeden, Memory retrieval as a p-adic dynamical system, BioSys. 49 (1999), 105–115.

[3] S. Albeverio, A. Khrennikov, B. Tirozzi, S. De Smedt, p-adic dynamical systems, Theor. Math. Phys. 114 (1998), 276–287.

[4] V. Anashin, A. Khrennikov. Applied Algebraic Dynamics, V. 49, de Gruyter Expositions in Mathematics, Walter de Gruyter, Berlin New York, 2009.

[5] V. S. Anashin, A. Yu. Khrennikov, and E. I. Yurova. Characterization of ergodicity of p-adic dynamical systems by using van der Put basis. Doklady Mathematics, 83(3) (2011), 306–308.

[6] V. S. Anashin. Uniformly distributed sequences of p-adic integers. Math. Notes, 55(2) (1994), 109–133.

[7] V. S. Anashin. Uniformly distributed sequences in computer algebra, or how to construct program generators of random numbers. J. Math. Sci., 89(4) (1998), 1355–1390.

[8] V. Anashin. Non-Archimedean ergodic theory and pseudorandom generators. The Computer Journal, 53(4) (2010), 370–392.

[9] V. Anashin. Automata finiteness criterion in terms of van der Put series of automata functions. p-Adic Numbers, Ultrametric Analysis and Applications, 4(2) (2012), 151–160.

[10] G. Call and J. Silverman, Canonical height on varieties with morphisms, Compositio Math. 89(1993), 163-205.
[11] A.-H. Fan and L.-M. Liao. On minimal decomposition of p-adic polynomial dynamical systems. Adv. Math., 228 (2011), 2116–2144.
[12] M. Khamraev, F.M. Mukhamedov, On a class of rational p-adic dynamical systems, J. Math. Anal. Appl. 315 (1) (2006), 76–89.
[13] A. Yu. Khrennikov, p-Adic valued distributions in mathematical physics, Kluwer, Dordrecht (1994).
[14] J. Kingsbery, A. Levin, A. Preygel, and C. E. Silva. On measure-preserving c_1 transformations of compact-open subsets of non-archimedean local fields. Trans. Amer. Math. Soc., 361(1) (2009), 61–85.
[15] J. Kingsbery, A. Levin, A. Preygel, and C. E. Silva. Dynamics of the p-adic shift and applications. Disc. Contin. Dyn. Syst., 30(1) (2011), 209218.
[16] D. Lin, T. Shi, and Z. Yang. Ergodic theory over $\mathbb{F}_2[[X]]$. Finite Fields Appl., 18 (2012), 473–491.
[17] F.M. Mukhamedov, U.A. Rozikov, On rational p-adic dynamical systems. Methods of Func. Anal. and Topology, 10(2), 21–31 (2004).
[18] J.-E. Pin. Profinite methods in automata theory. In Symposium on Theoretical Aspects of Computer Science STACS 2009, pages 3150, Freiburg, 2009.
[19] A.M. Robert, A course of p-adic analysis, Springer, New York, 2000.
[20] W. Schikhof, Ultrametric calculus, Cambridge Univ., Cambridge (1984).
[21] T. Shi, V. Anashin and D. Lin. Linear weaknesses in T-functions. In T. Helleseth and J. Jedwab, editors, SETA 2012, volume 7280 of Lecture Notes Comp. Sci., pages 279–290, BerlinHeidelberg, 2012. Springer-Verlag.
[22] J. Silverman. The arithmetic of dynamical systems. Number 241 in Graduate Texts in Mathematics. Springer-Verlag, New York, 2007.
[23] V.S. Vladimirov, I.V. Volovich, and E.I. Zelenov, The spectral theory in the p-adic quantum mechanics. Izvestia Akad. Nauk SSSR, Ser. Mat., 54(2), 275–302 (1990).

U. A. ROZIKOV, INSTITUTE OF MATHEMATICS, 29, DO’RMON YO’LI STR., 100125, TASHKENT, UZBEKISTAN.
E-mail address: rozikovu@yandex.ru

I.A. SATTAROV, NAMANGAN STATE UNIVERSITY, NAMANGAN, UZBEKISTAN.
E-mail address: iskandar1207@rambler.ru