Easily processable temperature-responsive infrared-reflective polymer coatings

Citation for published version (APA):
Zhang, W., Kragt, S., Schenning, A. P. H. J., de Haan, L. T., & Zhou, G. (2017). Easily processable temperature-responsive infrared-reflective polymer coatings. ACS Omega, 2(7), 3475-3482.
https://doi.org/10.1021/acsomega.7b00454

DOI:
10.1021/acsomega.7b00454

Document status and date:
Published: 31/07/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.
Easily Processable Temperature-Responsive Infrared-Reflective Polymer Coatings

Weixin Zhang,† Stijn Kragt,‡ Albertus P. H. J. Schenning,†,‡ Laurens T. de Haan,*†,§ and Guofu Zhou†,∥

†SCNU-TUE Joint Laboratory of Device Integrated Responsive Materials (DIRM), South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, 510006 Guangzhou, China
‡Laboratory of Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
§Shenzhen Guohua Optoelectronics Tech. Co. Ltd., No. 1301-1, Tourism Road, Dabu Xiang, Longhua District, 518110 Shenzhen, China
∥Academy of Shenzhen Guohua Optoelectronics, No. 1301-1, Tourism Road, Dabu Xiang, Longhua District, Shenzhen 518110, China

Supporting Information

ABSTRACT: A temperature-responsive near-infrared reflective coating was fabricated based on a side-chain liquid crystal siloxane polymer using a simple wired-bar method. The cholesteric liquid crystalline polymer film showed a blue shift of the reflection band of ∼1000 nm in the IR region upon heating. The temperature-responsive change of the reflection band was reversible. Compared to that of the same mixture system in an alignment cell, the coating showed a significantly faster response. This research demonstrates an easy way to prepare a temperature-responsive IR-reflective coating that shifts its reflection to a shorter wavelength upon heating. As IR radiation of shorter wavelengths is more strongly represented in sunlight than longer wavelengths,8 this coating could be used to selectively reduce heating of an indoor space when the temperature is high. This is promising for the future application of smart climate control.

INTRODUCTION

Near-infrared (NIR) light, ranging from 700 to 2500 nm, makes up 50% of the total sunlight energy that reaches earth and is a significant interior heating source of buildings.1 Transmission and reflection of NIR from sunlight can be regulated by special windows, which can reduce energy consumption for heating and cooling of buildings while still being transparent for visible light.2−5 Smart temperature-responsive IR reflectors autonomously regulate the temperature of indoor spaces.6 As IR radiation of shorter wavelengths is more strongly represented in sunlight than longer wavelengths,7 a window that shifts its reflection to a shorter wavelength upon heating rejects more IR at higher temperatures, which reduces heating of the indoor space. If this can be done in a reversible and autonomous way, it would be a major step toward the construction of energy-neutral buildings.

Temperature-responsive photonic materials are the key to this kind of smart window, as such materials can change their reflection of light in response to temperature changes. The reflected wavelength of photonic materials, which operate as Bragg reflectors, is determined by periodic structures. The reported temperature-responsive photonic systems are based on cholesteric liquid crystals (CLCs),8−10 polymeric colloids,11−13 or thermoplastic materials.14−18 Temperature-responsive photonic hydrogel polymer coatings have been made for temperature sensors and indicators.19,20 These hydrogel coatings rely on swelling and deswelling by water and thus require specific humidity conditions.

CLCs are an interesting category of temperature-responsive photonic materials, which can operate under dry conditions. CLCs can be obtained by introducing a chiral dopant into a nematic LC. The chiral dopant causes helical twisting of the average orientation (director) of the molecules, which induces selective Bragg-type reflection of light. As only one handedness of circular polarization is reflected, a maximum of 50% of ambient light can be reflected for a single handedness of the helix. The pitch of the helix (the distance over which the alignment director makes a 2π rotation) in these systems

Received: April 13, 2017
Accepted: June 20, 2017
Published: July 12, 2017

© 2017 American Chemical Society

DOI: 10.1021/acsomega.7b00454
ACS Omega 2017, 2, 3475−3482
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
determines the wavelength of reflection. This pitch can be modified in response to temperature, resulting in a change in the reflection wavelength. For CLCs that also have a smectic phase, large shifts of the reflection band have been reported at temperature changes just above the smectic to chiral nematic transition temperature. The transition to the smectic phase "unwinds" the helix as the smectic−cholesteric phase transition is approached, resulting in a red shift of the reflection band. In this way, temperature-responsive reflective systems have been developed for various purposes. However, in the fabrication methods to prepare these systems, the LC is brought into a narrow gap between two glass plates with alignment layers on the inside (an alignment cell), which limits their applications. Polymer-dispersed systems seem to be a good alternative for easier fabrication of temperature-responsive reflective coatings, but these have the tendency to be opaque due to the scattering of visible light. Easy procedures, such as knife coating, have been adopted for making static CLC color coatings but never for responsive ones. As such, the development of a facile method to fabricate transparent temperature-responsive polymer IR-reflective coatings remains a challenge.

We now report on the fabrication of a temperature-responsive IR-reflective coating using a simple wired-bar method. The photonic polymer film was based on a mixture of a side-chain liquid crystalline polysiloxane homopolymer (HP) and 10% of chiral dopant S811 (Scheme 1), which has a Sm−N* phase transition. A 1000 nm reversible blue shift of the reflection band within the IR region was observed upon increasing the temperature from room temperature to 60 °C. The same system in a cell showed a similar change of the reflection band as a function of temperature, but the coating showed a significantly faster response. These results show that easily processable responsive photonic coatings can be fabricated, which function similar to responsive systems in cells. The main advantage of using a coating is that it can be applied without the use of a glass cell. This is important because in many practical applications the use of a cell is not desirable or possible, such as for large, uneven, or curved surfaces.

Scheme 1. (a) Chemical Structures of the LC Polysiloxane−Chiral Dopant Mixture, (b) Schematic Representation of the Wired-Bar Coating Method to Fabricate the Photonic Coating, and (c) Photograph of the Photonic Coating at 52 °C with a Label as Background To Show the Good Transparency in the Visible Range

Figure 1. (a) WAXS and (b) SAXS of the HP−S811 mixture at different temperatures upon cooling.
RESULTS AND DISCUSSION

Preparation and Characterization of the LC Mixture. The side-chain liquid crystalline HP was synthesized by grafting an olefinic LC onto a polymethylhydrosiloxane (PMHS) backbone in the presence of Karstedt’s catalyst. The structure of the HP was confirmed by attenuated total reflectance IR spectroscopy (ATR-IR, Figure S1), gel permeation chromatography (GPC), and proton nuclear magnetic resonance (1H NMR, Figure S2). The average degree of polymerization was 6.3 while the polydispersity was 1.21 (Table S1). Differential scanning calorimetry (DSC) revealed that the polymer has both the desired smectic and nematic phases (G-8 Sm 20.7 N 75 I, Figure S3).

An IR-reflecting chiral nematic LC mixture was created by adding 10 wt % chiral dopant S811 to the HP (Scheme 1), dissolving the mixture in dichloromethane (DCM), and evaporating the solvent overnight. The mixture had a cholesteric liquid crystalline phase between 22 and 64 °C, an intermediate mesophase between −10 and 22 °C, and glass transition at −10 °C. Wide-angle and small-angle X-ray scattering (WAXS and SAXS) measurements (Figure 1) showed a diffraction peak located at \(q = 0.24 \text{ Å}^{-1} \) (\(2\theta = 3.386^\circ, d = 2.6 \text{ nm} \)) at ≤60 °C, which is a typical indication of the smectic order. The peak in the WAXS measurement at \(q = 1.5 \text{ Å}^{-1} \) represents the side-by-side intermolecular spacing, which is present in both the nematic and smectic phases. When the smectic order is present in a nematic or cholesteric phase, this is known as a cybotactic structure.40,41 The existence of cybotactic structures in the entire cholesteric temperature range, combined with a peak intensity increase with decreasing temperature, reveals a gradual pretransitional effect of this system, indicating a gradual change from a cholesteric order to a smectic order.

Temperature Response of the HP–S811 Polymer Coating. The mixture of HP–S811 was coated at 52 °C on a glass surface with a poly(vinyl alcohol) (PVA) alignment layer using a wired bar. After processing, a transparent colorless 11.5 μm thick coating was obtained (Scheme 1c). Polarizing optical microscopy (POM) analysis showed typical planar cholesteric textures (Figure S4). The stripes that were observed originated from the micro pattern of the coating bar and did not significantly influence coating transparency and properties.

The thermo-optical properties of the coating were investigated using ultraviolet-visible-IR (UV/vis/IR) spectroscopy. Figure 2 presents the stabilized transmission spectra of a coating at different temperatures in two heating and cooling cycles. The bandwidth of each reflection peak was calculated from full width at half-maximum (FWHM) reflection, and the Bragg reflection center (\(\lambda_B \)) was determined by the middle point of the FWHM line. The spectrum taken first at 47.5 °C (Figure 2a, 47.5 °C initial) had a reflection band centered at \(\lambda_B = \sim 1380 \text{ nm} \). The reflection band had a triangle-like shape with a FWHM of 210 nm. In the first cycle, between 56.7 and 30 °C, the reflection band shifted from 1225 to 2026 nm (Figure 2a). In the second cycle, upon further cooling to 16.5 °C, the reflection band did not disappear but was centered at 2310 nm (Figure 2b). During the two cycles, the reflection band showed a reversible change as a function of temperature. Some scattering was also observed, which was visible as a lower transparency in the visible light region of the spectra. The scattering increased as the temperature decreased, and finally at 16.5 °C, below the Sm−N* transition point, scattering reached the highest degree. POM images displayed a new “fingerprint” texture at lower temperatures, indicating a homeotropic

![Figure 2](https://example.com/figure2.png)

Figure 2. Transmission spectra of a single HP–S811 coating during two cycles of cooling and heating between (a) 56.7 and 30 °C and (b) 47.6 and 16.5 °C. (c) Reflection wavelength (\(\lambda_B \)) of the HP–S811 coating as a function of temperature.
alignment of the helices (Figure S4), which could account for the scattering of the coating. This homeotropic alignment of mesogens at the air–coating interface could be more favorable due to lower surface tensions.42,43 The fingerprint structure was more obvious on top of the planar textures when a coating surface was obtained by a 10 \(\mu \)m narrow gap applicator (Figure S5). In another experiment, the temperature was raised beyond the cholesteric to isotropic transition point. This wiped out the alignment of the molecules as expected. When the temperature was then lowered back to the cholesteric range, the LCs realigned poorly and the coating became highly scattering. This should not hurt the practical application of the coating as it is meant to be used in the built environment, where such high temperatures should not be reached.

Temperature Response of the HP–S811 Cell. For comparison, the thermo-optic behavior of the HP–S811

Figure 3. (a) Stabilized transmission spectra and (b) reflection wavelength (\(\lambda_B \)) of the HP–S811 cell as a function of temperature. The dashed lines and hollow dots refer to the spectral data partly out of the machine detection range.

Figure 4. Response times of the HP–S811 cell and coating. (a) Change of the reflection band, \(\Delta \lambda_B \), and (b) change of the transmittance at 625 nm upon cooling from 39 to 30 \(^\circ \)C. (c) Change of the reflection band, \(\Delta \lambda_B \), and (d) change of the transmittance at 625 nm upon heating from 30 to 39 \(^\circ \)C. Time zero is the status of the sample before cooling or heating. The open symbols describe the data points collected during the temperature ramp, and the solid symbols describe the data points collected once the temperature has stabilized.
mixture was also studied in a cell. The spectrum of the cell exhibited an IR reflection peak centered at $\lambda_\text{B} = 1390$ nm at 52 °C with a transmittance of 65%. The cell was fully transparent in the visible region, indicating planar alignment of the LCs. Compared to that of the coating, the FWHM of this band was much smaller (112 nm), and its shape was not triangular. This can be explained by the absence of a fingerprint texture, which does not form due to the lack of an air interface and leads to a sharper band and less scattering. The temperature of the cell varied between 66 and 16 °C. Figure 3a shows the temperature-dependent reflection spectra measured after stabilization. The spectra show the same gradual change of the reflection center along the temperature range as was observed in the coating. In the CLC temperature range, a 1000 nm red shift of λ_B was observed, that is, λ_B increased from 1215 to 2190 nm. This wavelength shift was fully reversible, as two heating and cooling cycles between 66 and 30 °C showed the same behavior (Figure S6). Below the Sm−N* transition point (22 °C), the reflection bands were only partially visible due to light absorption of the glass cell but remained at the same position. This is similar to what was seen before in the coating.

Upon plotting the wavelength of the reflection band (λ_B) against temperature (Figure 3b), gradual reflection band shifts were observed. This behavior is different from the Sm−N* systems reported earlier, in which drastic reflection band shifting takes place within a few degrees of temperature. The gradual reflection band shift coincides with the gradual increase in the smectic order in the CLC phase, as observed by WAXS and SAXS (Figure 1). Most likely, as reported for other systems, this smectic order increase led to a gradual increase in pitch, leading to a red shift of the reflection band.45,46 Below the Sm−N* transition point, the reflection band was not changing, revealing that the pitch did not change at these temperatures. It should be noted that the slight decrease of the helical twisting power of chiral dopant S811 with decreasing temperature will only have a minor contribution to the gradual λ_B change.47,48

Response Time of the HP−S811 Cell and Coating. We studied the response time of the thermo-optical changes of the polymer LC mixture with respect to the reflection band shift and transparency changes. Figure 4 shows a comparison of the response of both the coating and cell upon cooling from 39 to 30 °C (Figure 4a,b) and heating from 30 to 39 °C (Figure 4c,d). Interestingly, the responsive behavior of the coating was different when compared to that of the cell. Upon cooling the cell, the shift of the reflection band took place over 160 min (Figure 4a), whereas the transparency of the cell did not change and stayed high (Figure 4b). In contrast, upon heating, the reflection band shifted in less than 10 min (Figure 4c), whereas the transparency initially dropped significantly due to scattering (from 98 to 65%) and recovered only after 410 min (Figure 4d). For the coating, the shift of the reflection band was significantly faster upon cooling compared to that of the cell (60 vs 160 min, Figure 4a), also without any drop in transparency (Figure 4b). Upon heating, the change of the reflection band was also faster compared to that in the cell (5 vs 10 min, Figure 4c). The coating had a lower initial transparency compared to that of the cell, but upon heating, its transmittance dropped by only 5% due to scattering (Figure 4d), and it quickly recovered in 20 min. During heating, POM images of the coating (Figure S4) and the cell (Figure S7) showed the formation of focal conic textures, revealing a decrease in alignment. Even when heating at a very slow rate of 0.1 °C/
the coating are similar to those of the cell, this reveals that other
response mechanisms already reported for a cell can now also
be applied to coatings, opening up new opportunities to
fabricate temperature-responsive polymers with novel proper-
ties.

METHODS

Materials. 4-Hydroxybenzoic acid was purchased from J&K
Chemical (China). 6-Bromo-1-hexene was purchased from
Heowns Biochem Technologies (China). 4-Methoxyphenol
and dicyclopentadienylcarbodiimide were obtained from Adamas
Reagent, Ltd. (China). 4-Dimethyaminopyridine was received
from Shanghai Macklin Biochemical Co., Ltd. (China). PMHS
(trimethylsilyl-terminated, average Mn ∼390), platinum(0)-1,3-
divinyl-1,1,3,3-tetramethyldisiloxane complex solution in xyl-
ene, Pt ∼2% (Karstedt’s catalyst), and anhydrous toluene were
purchased from Sigma-Aldrich. Chiral dopant S811 was bought
from Jiangsu Hecheng Advanced Materials Co., Ltd. (China).
All materials were used as received without further purification.

Characterization. The compounds were characterized by
ATR-IR (Bruker VERTEX 70) and by 1H NMR (Varian
AS400; 400 MHz) using chloroform-d. The HP was analyzed
by a GPC (Waters e2695) system equipped with a refractive
index detector (Waters 2414) using tetrahydrofuran as eluent
and monodisperse polystyrene calibration standards. Phase
transition temperatures of the HP were measured by DSC
(Mettler Toledo DSC 1) using heating and cooling rates of 2
°C/min. The mixture was analyzed by both WAXS and SAXS
(Ganesha lab instrument) at various temperatures. Optical
textures of the cells and coatings were investigated by POM
(Leica DM 7200P or Leica DM 2700M) with a hot stage
(Linkam PE95/T95). Transmission spectra of the cells and
coatings were obtained with a UV/vis/NIR spectrometer
(Leica DM 2700M) with a two-dimensional detector
module. The temperature of the sample was controlled by a
water-temperature controller (EYELA NCB-1200) and
was calibrated by a thermoelectric couple. The thickness of the
coating was measured by an interferometer (Forgale Zoomsurf
3D).

Preparation of HP. The HP was synthesized by grafting
olefinic LC 4-methoxyphenyl 4-((hexenyl)benzoate onto a
polydimethylsiloxane backbone in the presence of
Karstedt’s catalyst as previously reported.54,55 A detailed
synthetic procedure and characterization can be found in the
Supporting Information.

Preparation of the CLC Polysiloxane Mixture. The HP
(205.8 mg) and chiral dopant S811 (22.9 mg, 10 wt %)
were dissolved in DCM. The solvent was slowly evaporated on a 55
°C hot plate and further removed in high vacuum at 70
°C overnight to yield a homogenous polysiloxane–chiral dopant
mixture.

Fabrication of the IR-Reflective Coatings. A few drops
of a 5.0 wt % PVA in aqueous solution were spin-coated onto 3
× 3 cm² clean glass plates at 2000 rpm for 30 s. The deposited
films were dried at 60.0 °C for about 1 h and subsequently
rubbed on a velvet textile cloth in one direction to induce
alignment. The glass plate with the PVA alignment layer was
then placed on a hot plate at 52 °C. A coating bar having a
surface microstructure with a waviness height of 24.4 μm and a
wavelength of 202.6 μm was heated to 52 °C. The LC mixture
was placed onto one side of the glass plate and coated by the bar in
the direction antiparallel to the PVA layer rubbing direction.
The bar was moved over the plate several times until the
material was fully covering the plate. The resulting coating was
stored on the hot plate at 52 °C. The coating in Figure S5 was
obtained using a narrow gap applicator instead of the rod.

Preparation of IR-Reflective Cells. Two of the glass
plates with the rubbed PVA alignment layer were imposed
antiparallel on each other and glued together using a UV glue
containing 15 μm silica particles as spacers. The mixture was
filled into the cell at 52 °C by capillary forces.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsomega.7b00454.

REFERENCES

(1) Yang, W.; Runnerstrom, E. L.; Milliron, D. J. Switchable Materials
for Smart Windows. *Annu. Rev. Chem. Biomol. Eng.* 2016, 7, 283.
(2) Khandelwal, H.; Loonen, R. C. G. M.; Hensen, J. L. M.;
Schenning, A. P. H. J.; Debije, M. G. Application of broadband infrared
reflector based on cholesteric liquid crystal polymer bilayer film to
windows and its impact on reducing the energy consumption in
buildings. *J. Mater. Chem. A* 2014, 2, 14622.
(3) Khandelwal, H.; Roberz, F.; Loonen, R. C. G. M.; Hensen, J. L.
M.; Bastiaansen, C. W. M.; Broer, D. J.; Debije, M. G.; Schenning, A.
P. H. J. Infrared reflector based on liquid crystal polymers and its
impact on thermal comfort conditions in buildings. *Proc. SPIE 2014*,
No. 91820S.
(4) Loonen, R. C. G. M.; Trčka, M.; Cóstola, D.; Hensen, J. L. M.
Climate adaptive building shells: State-of-the-art and future challenges.
Renewable Sustainable Energy Rev. 2013, 25, 483–493.
(5) Riley, C. T.; Smalley, J. S. T.; Brodie, J. R. J.; Fainman, Y.;
Sirbuly, D. J.; Liu, Z. W. Near-perfect broadband absorption from
hyperbolic metamaterial nanoparticles. *Proc. Natl. Acad. Sci. U.S.A.*
2017, 114, 1264–1268.
(29) Dierking, I.; Gießelmann, F.; Zugenmaier, P. TGB A* state in a homologous series of diarylethane α-chloroester ferroelectric liquid crystals. Liq. Cryst. 1994, 17, 17–22.

(30) Vijayaraghavan, R. K.; Abraham, S.; Akiyama, H.; Furumi, S.; Tamaoki, N.; Das, S. Photoresponsive glass-forming butadiene-based chiral liquid crystals with circularly polarizedoluminescence. Adv. Funct. Mater. 2008, 18, 2510–2517.

(31) Wu, X. J.; Cao, H.; Guo, R. W.; Li, K. X.; Wang, F. F.; Yang, H. Effect of cholesteric liquid crystal elastomer with binaphthalene crosslinkings on thermal and optical properties of a liquid crystal that show smectic A-cholesteric phase transition. Polym. Adv. Technol. 2013, 24, 228–235.

(32) Huang, W.; Zhang, X. G.; Guo, J. B.; Zhang, L. P.; Bian, Z. Y.; Zhao, D. Y.; He, W. L.; Cao, H.; Yang, H. Super wide-band reflective polarizers from polymer stabilised liquid crystal films. Liq. Cryst. 2009, 36, 497–501.

(33) Yang, H.; Kikuchi, H.; Kajiyama, T. Thermal switching characteristics based on smectic A-chiral nematic phase transitions of (liquid crystals/chiral dopant) composites, with and without side chain-type liquid crystalline polymer. Liq. Cryst. 2002, 29, 1141–1149.

(34) Jian, S.; Huihui, W.; Ling, W.; Hui, C.; Hui, X.; Xueya, L.; Jiumei, X.; Hangjun, D.; Zhou, Y.; Huai, Y. Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition. Smart Mater. Struct. 2014, 23, No. 125038.

(35) Nagai, H.; Urayama, K. Thermal response of cholesteric liquid crystal elastomers. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2015, 92, No. 022501.

(36) Hakemi, H. Industrial Development of Plastic PDLC: Is There a Future? Liq. Cryst. Today 1998, 8, 7–12.

(37) Corenic, E. M.; Jacobs, S. D.; Faris, S. M.; Li, L. Cholesteric Liquid Crystal Flakes - A New Form of Domain. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 1998, 317, 197–219.

(38) Finkelmann, H.; Rehage, G. Liquid-Crystal Side-Chain Polymers. Macromol. Chem. Phys. 1984, 6, 29.

(39) Wang, J. W.; Zhang, B. Y. Synthesis and properties of novel chiral side-chain liquid crystalline polysiloxanes containing different chiral pendant groups. J. Mater. Sci. 2014, 49, 604–613.

(40) Davidson, P. X-ray diffraction by liquid crystal side-chain polymers. Prog. Polym. Sci. 1996, 21, 893–950.

(41) Becker, P.; Siebert, H.; Noirez, L.; Schmidt, C. Shear-induced order in nematic polymers. Macromol. Symp. 2005, 220, 111–122.

(42) Agez, G.; Bitar, R.; Mitov, M. Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induced deformations. Soft Matter 2011, 7, 2841–2847.

(43) Nagano, S. Inducing Planar Orientation in Side-Chain Liquid-Crystalline Polymer Systems via Interfacial Control. Chem. Rev. 2016, 116, 378–392.

(44) Natarajan, L. V.; Wofford, J. M.; Tondiglia, V. P.; Sutherland, R. L.; Koerner, H.; Vai, A. R.; Bunning, T. J. Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material. J. Appl. Phys. 2008, 103, No. 093107.

(45) Suresh, K. A.; Chandrasekhar, S. Optical and X-Ray Studies on Twisted Smectic-C and Twisted Nematic Phases - Evidence for a Skew-Cybotactic Type of Cholesteric Structure. Mol. Cryst. Liq. Cryst. 1977, 40, 133–141.

(46) Mallia, V. A.; Tamaoki, N. Study of chiral dimesogens: Liquid crystalline properties, effect of smectic cybotactic domains in controlling the chiral reflections and glassy liquid crystal forming properties. Mol. Cryst. Liq. Cryst. 2006, 454, 81–90.

(47) Huang, Y.; Zhou, Y.; Doyle, C.; Wu, S. T. Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility. Opt. Express 2006, 14, 1236–1242.

(48) Shim, K. S.; Heo, J. U.; Jo, S. I.; Lee, Y. J.; Kim, H. J.; Kim, J. H.; Yu, C. J. Temperature-independent pitch inversion in cholesteric liquid crystal. Opt. Express 2014, 22, 15467–72.

(49) Dierking, I.; Gießelmann, F.; Zugenmaier, P.; Kucynski, W.; Lagerwall, S. T.; Stebler, B. Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the
succeeding Sc* phase in thin liquid crystal cells. *Liq. Cryst.* 1993, 13, 45−55.

(50) Yoon, H. G.; Dierking, I.; Gleeson, H. F. Cholesteric pitch divergence near smectic phase transitions. *Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.* 2010, 82, No. 011705.

(51) Zhang, F.; Yang, D. K. Evolution of disclinations in cholesteric liquid crystals. *Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.* 2002, 66, No. 041701.

(52) Chilaya, G. Always Cholesterics ... but Sometimes Chiral Smectic C, TGB and Blue Phases. *Mol. Cryst. Liq. Cryst.* 2012, 561, 8−35.

(53) Chilaya, G. S. Effect of various external factors and pretransitional phenomena on structural transformations in cholesteric liquid crystals. *Crystallogr. Rep.* 2000, 45, 871−886.

(54) Stevens, H.; Rehage, G.; Finkelmann, H. Phase-Transformations of Liquid-Crystalline Side-Chain Oligomers. *Macromolecules* 1984, 17, 851−856.

(55) Ringsdorf, H.; Schneller, A. Liquid-Crystalline Side-Chain Polymers with Low Glass-Transition Temperatures. *Makromol. Chem., Rapid Commun.* 1982, 3, 557−562.