Economic and technical study for the construction of a 1 MW grid-connected solar power plant in southern Iran

Mahmoud Makkiabadi

1Department of mechanical engineering, Amirkabir University of Technology, Tehran, Iran

(Mahmud.makiabadi@gmail.com)

Abstract

Renewable energy such as solar and wind energy can solve the major problems of humanity such as electricity and fresh water. The renewable energy sources are promising to take a significant share in the energy sector as a viable option for integration with conventional fossil fuel power plants. In this paper, the production of 1 MW of electricity for several households in the city of Sirjan in southern Iran has been studied. The actual data required by the model including solar irradiation, air temperature, load profile, cost of energy for Sirjan, Iran have been utilized in the proposed model. Considering the Iranian market, the fixed and current costs of building this power plant have been studied. Then, using Hummer software, the amount of electricity production per month has been studied. Results showed that Scaled data were used for calculations in HOMER. It had a scaled annual average of 1127 kWh/day and the peak load was 0.467 kW. The maximum electricity energy is obtained in July.

Introduction

By reducing the supply of fossil fuels such as oil and gas in the coming years, humans will have to build a solar power plant to power themselves [1-2]. Commonly hybrid energy systems use solar, wind, and hydro energy sources, although most of the renewable energy available on earth consists of different forms of solar energy [3-5]. Iran, with its high ability to receive solar energy and also a large area, has a potential advantage in the construction of solar power plants [6]. Hybrid energy, which is the use of different kinds of energy, is more efficient than conventional energy generation [7]. The availability of wind energy in Colombia, combined with biomass energy, has had a significant influence on the Caribbean region [8]. The exploitation of this source of energy can be an excellent solution to the energy problems prevalent in the region for solving the load flows problem such as congestion, and load flow control [9-11]. This solution lies in the design of a hybrid renewable energy plant that has the capacity to use all the renewable energy resources existing in this region [12]. HOMER stands for Hybrid Optimization Model for Electric Renewables. Midwest Research Institute has the copyrights of this software [13]. It was developed by National Renewable Energy Laboratory (NREL) of United States. It is used to help the designing of various power plant configurations. Despite abundant availability of solar/wind energy, a PV or Wind Generator (WG) stand-alone system cannot satisfy the loads on a 24-hour basis [14]. Often, the variations of solar/wind energy generation do not match the time distribution of the load. Therefore, power generation systems dictate provision of battery storage facility to
dampen the time distribution mismatch between the load and solar/wind energy generation and to facilitate for maintenance of the systems [15].

Using HOMER power optimization software for cost benefit analysis of hybrid-solar power generation relative to utility cost in Nigeria was studied by Ajao et al [16]. Techno-economic feasibility analysis of a solar PV grid-connected system with different tracking using HOMER software was investigated by Garni et al [17]. Aprillia studied the design On-Grid solar power system for 450 VA conventional housing using HOMER Software [18]. Desain sistem On-Grid energi Terbarukan Skala Rumah Tangga Menggunakan Perangkat Lunak HOMER was studied by aprillia [19].

In this paper, In this article, a 1 MW solar power plant in Sirjan city is studied using Homer software.

Case Study

Sirjan is a city and the capital of Sirjan County, Kerman Province, in the South of Iran. At 1730m, it is situated in a depression between the southern Zagros Mountains to the west and the Kuh-e Bidkhan massif to the east.

The curves of the solar radiation and wind speed for Sirjan city for each month in 2018 are presented in figures 1 and 2, respectively [3].

![Figure 1: Average monthly radiation (MJ/m²) in Sirjan city [3]](image-url)
Figure 2: Average wind speed (MJ/m²) in Sirjan city [3].

The following data have been extracted to build a 1 MW solar power plant in the Balord region of Sirjan. The design location of the solar power plant in Sirjan is shown in Figure 3.

Figure 3: Design location of the 1 MW solar power plant in Sirjan
The design information of a 1 MW solar power plant in Sirjan city is given in Table 1.

Table 1: Design information of a 10 MW solar power plant in Sirjan

Description	unit	amount
City	*	Sirjan
Longitude	North	29 ° 6' N
latitude	East	58 ° 20' E
Power plant capacity	Megawatts	1
Area	square meters	15,000
Number of solar panels	number	2,500
Dimensions of each panel	square meters	2
Cost of purchasing panels	US$	1,000,000
The cost of building a power plant	US$	1,600,000
Purchase price	US$	90,000
Internal Rate of Return (IRR)	%	18.05

Results

First, the geographical coordinates of Sirjan city are placed on Homer software. Also, discount rate, inflation rate, annual capacity shortage and project lifetime are 10%, 5%, 5%, and 25 years, respectively. The peak of electricity consumption is seen in July. A schematic of the design can be seen in Figure 4.
The AC load profile for load-shedding hours for one year is shown in Figure 5. It had a scaled annual average of 11.27 kWh/day and the peak load was 0.467 kW. Scaled data were used for calculations in HOMER. Only load values for load-shedding hours were used in the primary load inputs of HOMER; the rest of the fields in 24-h load profiles were set to zero. The average load shedding duration is 5h per day; however, this may vary accordingly with the load requirements of the consumers. The average monthly electricity production per day is shown in Figure 6. Also, the daily production per month is shown in Figure 7. This figure shows that the highest rate is in July.
Figure 6: The average monthly electricity production per month

Figure 7: The average monthly electricity production per month
Conclusion

In this article, a 1 MW solar power plant was proposed to integrate with a diesel power plant of a local site in Sirjan, Iran. After investigating different case studies, it was concluded that Cost of purchasing panels and the cost of building a power plant were 1 M US$ and 1.6 M US$, respectively. For load-shedding hours, a PV system is suggested, which purchase costs 90000 US$. Discount rate, inflation rate, annual capacity shortage and project lifetime are 10 %, 5%, 5 % and 25 years, respectively. Scaled data were used for calculations in HOMER. It had a scaled annual average of 1127 kWh/day and the peak load was 0.467 kW. The maximum electricity energy is obtained in July.

References

[1] Emamjomeh, M. M., Mousazadeh, M., Mokhtari, N., Jamali, H. A., Makkiabadi, M., Naghdali, Z., ... & Ghanbari, R. (2020). Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes. Separation Science and Technology, 55(17), 3184-3194.

[2] Makki, M., Izadi, A. I., & Jalili, B. (2019). Numerical analysis of a multi-stage evacuation desalination in Tehran city. Water and Energy International, 61(12), 53-57.

[3] Makkiabadi, M., Hoseinzadeh, S., Mohammadi, M., Nowdeh, S. A., Bayati, S., Jafaraghaei, U., ... & Assad, M. E. H. (2020). Energy Feasibility of Hybrid PV/Wind Systems with Electricity Generation Assessment under Iran Environment. Applied Solar Energy, 56(6), 517-525.

[4] Naeini, H. G., & Makkiabadi, M. Effect of the zone ‘s orientation on thermal comfort and energy saving in the vernacular architecture of Iran (Shiraz city) in the winter period.

[5] Naghipour, D., Taghavi, K., Jaafari, J., Kabdaşlı, I., Makkiabadi, M., Doust, M. J. M., & Doust, F. J. M. (2021). Scallop shell coated Fe2O3 nanocomposite as an eco-friendly adsorbent for tetracycline removal. Environmental Technology, (just-accepted), 1-23.

[6] Doshi, K., & Harish, V. S. K. V. (2020). Analysis of a wind-PV battery hybrid renewable energy system for a dc microgrid. Materials Today: Proceedings.

[7] Shaikh, J. A., Mirjat, N. H., Memon, Z. A., Shan, S. A., & Shaikh, S. A. (2021, March). Optimization of renewable energy based microgrid for Mehran UET Jamshoro. In Journal of Physics: Conference Series (Vol. 1860, No. 1, p. 012022). IOP Publishing.

[8] Betancourt Schwarz, M. (2021). Energy, economic and quality of service assessment using dynamic modelling and optimization for smart management of district heating networks (Doctoral dissertation, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire).

[9] Aprillia, B. S., & Rigoursyah, M. A. F. (2020, March). Design On-Grid Solar Power System for 450 VA Conventional Housing using HOMER Software. In IOP Conference Series: Materials Science and Engineering (Vol. 771, No. 1, p. 012011). IOP Publishing.
[10] M. Hayerikhiyavi and A. Dimitrovski, "Gyrator-Capacitor Modeling of A Continuously Variable Series Reactor in Different Operating Modes," 2021 IEEE Kansas Power and Energy Conference (KPEC), 2021.

[11] M. Hayerikhiyavi, A. Dimitrovski. “Comprehensive Analysis of Continuously Variable Series Reactor Using GC Framework”. arXiv preprint arXiv:2103.11136, 2021.

[12] Aprillia, B. S., Keswara, I. M. H., Raharjo, J., Ramdhani, M., Adam, K. B., & Suhartono, E. (2020, December). Standalone Photovoltaic System Cost Optimization for Matantimali Village Central Sulawesi. In IOP Conference Series: Materials Science and Engineering (Vol. 982, No. 1, p. 012023). IOP Publishing.

[13] Rinaldi, R., Aprillia, B. S., Ekaputri, C., & Reza, M. (2020, December). Design of Open Loop Single Axis Solar Tracker System. In IOP Conference Series: Materials Science and Engineering (Vol. 982, No. 1, p. 012016). IOP Publishing.

[14] Antonio Barrozo Budes, F., Valencia Ochoa, G., Obregon, L. G., Arango-Manrique, A., & Ricardo Núñez Álvarez, J. (2020). Energy, economic, and environmental evaluation of a proposed solar-wind power on-grid system using HOMER Pro®: A case study in Colombia. Energies, 13(7), 1662.

[15] Andramuño, J., Mendoza, E., Núñez, J., & Liger, E. (2021). Intelligent distributed module for local control of lighting and electrical outlets in a home. In Journal of Physics: Conference Series (Vol. 1730, No. 1, p. 012001). IOP Publishing.

[16] Ajao, K. R., Oladosu, O. A., & Popoola, O. T. (2011). Using HOMER power optimization software for cost benefit analysis of hybrid-solar power generation relative to utility cost in Nigeria. International Journal of Research and Reviews in Applied Sciences, 7(1), 96-102.

[17] Al Garni, H., & Awasthi, A. (2017, August). Techno-economic feasibility analysis of a solar PV grid-connected system with different tracking using HOMER software. In 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE) (pp. 217-222). IEEE.

[18] Aprillia, B. S., & Rigoursyah, M. A. F. (2020, March). Design On-Grid Solar Power System for 450 VA Conventional Housing using HOMER Software. In IOP Conference Series: Materials Science and Engineering (Vol. 771, No. 1, p. 012011). IOP Publishing.

[19] Aprillia, B. S., Silalahi, D. K., & Rigoursyah, M. A. F. (2019). Desain Sistem On-Grid Energi Terbarukan Skala Rumah Tangga Menggunakan Perangkat Lunak HOMER. JTIM: Jurnal Teknologi Informasi dan Multimedia, 1(3), 174-180.