Black hole formation in the early Universe

M. A. Latif,⋆ D. R. G. Schleicher, W. Schmidt and J. Niemeyer

Institut für Astrophysik, Georg-August-Universität, Friedr. Hund-Platz 1, D-37077 Göttingen, Germany

Accepted 2013 May 9. Received 2013 May 8; in original form 2013 April 3

ABSTRACT
Supermassive black holes with up to a $10^9 M_\odot$ dwell in the centres of present-day galaxies, and their presence has been confirmed at $z \geq 6$. Their formation at such early epochs is still an enigma. Different pathways have been suggested to assemble supermassive black holes in the first billion years after the big bang. Direct collapse has emerged as a highly plausible scenario to form black holes as it provides seed masses of 10^5–$10^6 M_\odot$. Gravitational collapse in atomic cooling haloes with virial temperatures $T_{\rm vir} \geq 10^4 K$ may lead to the formation of massive seed black holes in the presence of an intense background ultraviolet flux. Turbulence plays a central role in regulating accretion and transporting angular momentum. We present here the highest resolution cosmological large eddy simulations to date which track the evolution of high-density regions on scales of 0.25 au beyond the formation of the first peak, and study the impact of subgrid-scale turbulence. The peak density reached in these simulations is $1.2 \times 10^{-8} g \text{ cm}^{-3}$. Our findings show that while fragmentation occasionally occurs, it does not prevent the growth of a central massive object resulting from turbulent accretion and occasional mergers. The central object reaches $\sim 1000 M_\odot$ within four free-fall times, and we expect further growth up to $10^6 M_\odot$ through accretion in about 1 Myr. The direct collapse model thus provides a viable pathway of forming high-mass black holes at early cosmic times.

Key words: methods: numerical – galaxies: formation – cosmology: theory – early Universe.

1 INTRODUCTION
The formation of pre-galactic black holes is a fundamental issue in the study of galaxy formation. We know that most galaxies have black holes in their nuclei. Numerous quasars with black hole masses of $10^5 M_\odot$ have been observed at redshifts higher than six when the Universe was less than a billion years old (Fan et al. 2003, 2006). Recently, the discovery of a $z = 7.1$ quasar with a black hole mass of $2 \times 10^6 M_\odot$ is even more striking (Mortlock et al. 2011). It is however not very well understood how these quasars observed in the Sloan Digital Sky Survey could attain such high masses in a such short span of time after the big bang. It suggests that black hole seeds have been formed even earlier and it is important to get a physical understanding of their origin.

One scenario for the formation of supermassive black holes (SMBHs) could be that they formed through accretion and merging of stellar remnants (Haiman 2004a,b). Numerical studies show low gas densities in the vicinity of black hole remnants due to their feedback which brings an obstruction for their formation though accretion and merging (Johnson & Bromm 2007; Alvarez, Wise & Abel 2009). Black holes may have formed through runaway collisions of young dense stellar clusters due to relativistic instability (Portegies Zwart et al. 2004; Omukai, Schneider & Haiman 2008; Devecchi & Volonteri 2009) but this can happen only if the Universe is enriched with trace amounts of metals after the formation of the first stars between redshift 10 and 20, and the resulting black hole masses are about $10^5 M_\odot$. Primordial black holes may have formed during the early stages of the big bang albeit we do not see any observational evidence of their formation (Ricotti, Ostriker & Mack 2008). Various other ways for the formation of massive black holes have been suggested (Rees 1978; Djorgovski et al. 2008; Begelman & Shlosman 2009; Regan & Haehnelt 2009b; Tanaka & Haiman 2009; Volonteri 2010; Haiman 2012; Johnson et al. 2012, 2013; Choi, Shlosman & Begelman 2013; Melia 2013; Prieto, Jimenez & Haiman 2013; Reisswig et al. 2013). Protogalactic metal free haloes may directly collapse to form SMBHs provided that the fragmentation in these haloes remains suppressed (Oh & Haiman 2002; Bromm & Loeb 2003; Begelman, Volonteri & Rees 2006; Spaans & Silk 2006; Dijkstra et al. 2008; Djorgovski et al. 2008; Schleicher, Spaans & Glover 2010; Shang, Bryan & Haiman 2010; Latif, Zaroubi & Spaans 2011a). Given the difficulties with other methods for the formation of SMBHs, direct collapse emerges as a plausible scenario. Haloes with virial temperatures $\geq 10^4 K$ are the most likely candidates for the formation of such objects. The formation of black holes via direct collapse is feasible if fragmentation

⋆ E-mail: mlatif@astro.physik.uni-goettingen.de
is sufficiently suppressed, so that most of the material is accreted on to the central object.

The essential condition for the direct collapse scenarios is to avoid fragmentation. Molecular hydrogen is the only coolant in metal free haloes which can bring the temperature of the gas down to a few hundred Kelvins and may induce fragmentation by reducing the Jeans mass. The gas is unlikely to fragment to form stars in primordial haloes in the absence of H$_2$ cooling (Li, Klessen & Mac Low 2003). For zero metallicity atomic cooling haloes devoid of molecules, the Lyman α radiation is the only pathway to cool the gas down to 8000 K. Cosmological simulations performed to study the collapse of protogalactic metal free haloes show that self-gravitating gas collapses almost isothermally in the absence of H$_2$ cooling (Bromm & Loeb 2003; Wise, Turk & Abel 2008; Regan & Haehnelt 2009a; Latif, Zaroubi & Spaans 2011a).

In this respect, the presence of ultraviolet (UV) radiation has important implications for the formation of SMBHs as it may suppress cooling and consequently halt the fragmentation of a gas cloud. It is found that strong Lyman–Werner flux $\geq 10^8$ in units of J_{21} is required to photodissociate H$_2$ molecules in haloes with virial temperatures $\geq 10^8$ K (Omukai 2001; Johnson & Bromm 2007; Dijkstra et al. 2008; Schleicher et al. 2010; Shang et al. 2010; Latif et al. 2011b, 2013a; Wolcott-Green, Haiman & Bryan 2011; Agarwal et al. 2012).

Turbulent energy plays a key role in the formation of structures as it locally compresses the gas to high densities where it may become susceptible to fragmentation and collapse. It can provide an additional pressure against the gravitational collapse at larger scales. In order to transport the angular momentum, previous studies suggested scenarios based on gravitational instabilities in self-gravitating discs (Koushiappas, Bullock & Dekel 2004) and self-regulation due to the presence of turbulence (Begelman & Shlosman 2009). In a similar fashion, turbulence is thought to regulate the angular momentum transport in minihaloes (Abel, Bryan & Norman 2002; Turk et al. 2012). In the presence of high-mass accretion rates and efficient cooling, gravitational torques may not be sufficient to transport the gas through the disc leading to fragmentation (Clark et al. 2011; Greif et al. 2012). Numerical simulations show that primordial gas becomes turbulent during the formation of the first galaxies (Greif et al. 2008; Wise et al. 2008). While these studies employed a typical Jeans length resolution of 16 cells, later studies demonstrated the necessity of a higher Jeans resolution, i.e. minimum resolution of 32 cells per Jeans length to obtain converged turbulent energy (Federrath et al. 2011; Turk et al. 2012; Latif et al. 2013a). In addition, the turbulent energy cascade is expected to generate turbulence even on subgrid scales (SGS), which may backreact on the resolved scales via turbulent viscosity. Latif et al. (2013a) have shown that applying an SGS turbulence model to cosmological adaptive mesh refinement (AMR) simulations significantly changes the morphology of the halo during its initial collapse phase in comparison to standard simulations without an explicit SGS model. This may have a significant impact on the formation of astrophysical objects.

The main objective of this work is to assess the role of turbulence in the formation of seed black holes. To accomplish this goal, we have performed the highest resolution cosmological large eddy simulations (LES) to date which track the gravitational collapse beyond the formation of the first peak in the presence of a strong Lyman–Werner background UV flux. We employ a fixed Jeans length of 64 cells throughout the evolution of simulations to resolve turbulent eddies and follow the collapse down to sub-au scales for four free-fall times by exploiting the adaptive mesh technique. This study will allow us to explore the feasibility of the direct collapse scenario. It will further enable us to quantify the impact of subgrid/resolved turbulence in the formation of SMBHs.

Our paper is organized as follows. In the next section, we describe the simulation setup and the numerical methods employed. In the third section of the paper, we present the results obtained in this study. In the last section of this paper, we summarize our main results and confer our conclusions.

2 BASIC SETUP

2.1 Computational methods

We present high-resolution cosmological simulations which capture a large range of spatial scales starting from Mpc down to sub-au scales. These simulations were performed using a modified version of the AMR code ENZO (O’Shea et al. 2004) including a SGS model which takes into account unresolved turbulence (Schmidt, Niemeyer & Hillebrandt 2006a). ENZO is an AMR, parallel, grid-based cosmological hydrodynamics code (O’Shea et al. 2004; Norman et al. 2007). It makes use of the message passing interface to achieve portability and scalability on parallel systems. The computational domain is discretized using a nested grid structure. We use a split hydro solver with a third order piecewise parabolic method for hydrodynamical calculations. The dark matter N-body dynamics is solved using the particle-mesh technique. A multigrid Poisson solver is employed for the self-gravity computations.

The simulations are commenced with cosmological initial conditions generated from Gaussian random fields. We make use of the INTS package available with ENZO to create nested grid initial conditions. Our simulations start at redshift $z = 100$ with a top grid resolution of 1283 cells and we select a massive halo at redshift 15 using the halo finder based on a standard friends-of-friends algorithm (Turk et al. 2011). Our computational volume has a cosmological size of 1 Mpc$^{-1}$ and is centred on the most massive halo. Two additional nested levels of refinement are subsequently employed each with a resolution of 1283 cells. In all, we initialize 5767168 particles to compute the evolution of the dark matter dynamics yielding a dark matter resolution of 620 M$_\odot$. The parameters from the Wilkinson Microwave Anisotropy Probe seven years data (Jarosik et al. 2011) are used for creating the initial conditions. We further allow additional 27 levels of refinement in the central 62 kpc region of the halo during the course of simulation yielding a physical resolution of sub-au scales (3 au in comoving units). The resolution criteria used in these simulations are based on the Jeans length, the gas overdensity and the particle mass resolution. The gas overdensity criterion flags grid cells for refinement when the gas density exceeds four times the mean baryonic density. Similarly, grids are marked for refinement when the dark matter density exceeds 0.0625 times ρDM$^\alpha$, where $r = 2$ is the refinement factor, l is the refinement level and $\alpha = -0.3$ makes the refinement super-Lagrangian. The grid cells matching these requirements are marked for refinement. We mandated a Jeans length resolution of 64 cells throughout the evolution. This criterion was applied during the course of the simulations to ensure a high resolution in the central collapsing region, simultaneously ensuring the Truelove criterion (Truelove et al. 1997). When the highest refinement level is reached, the thermal evolution becomes adiabatic. This approach enables us to follow the evolution of structures beyond the formation of the first peak until they reach a peak density of 1.2×10^{-8} g cm$^{-3}$ which corresponds to four free-fall times. Our study consists of nine...
distinct haloes selected from various Gaussian random seeds. The results from the SGS turbulence model are compared with normal runs. In total, we perform 18 simulations.

2.2 Chemistry

According to big bang nucleosynthesis, primordial gas is mainly composed of hydrogen and helium. For zero metallicity gas devoid of molecules, atomic line cooling is the only pathway to cool the gas down to 8000 K. While molecular hydrogen can potentially cool below a few thousand K, the presence of strong UV flux emitted by the first generation of stars has important implications for structure formation (Omukai 2001; Omukai et al. 2008; Wolcott-Green et al. 2011). A photon with energy between 11.2 and 13.6 eV is absorbed in the Lyman–Werner bands of molecular hydrogen and brought into an excited state. The H_2 molecule then decays to the vibrational continuum of a ground state and is dissociated. This two-step process is known as the Solomon process (Abel et al. 1997). The photodissociation reaction is given by

$$H_2 + \gamma \rightarrow H_2^* \rightarrow H + H.$$ \hfill (1)

The critical value of the flux can be obtained by balancing the H_2 formation and dissociation timescales. The value of the critical UV intensity is higher for the larger haloes as compared to the minihaloes and varies from halo to halo. It is found that a strong Lyman–Werner flux $> 10^5$ in units of J_1 is required to photodissociate H_2 molecules in haloes with virial temperatures $> 10^4$ K for a radiation temperature of 10^5 K (Omukai 2001; Johnson & Bromm 2007; Dijkstra et al. 2008; Spaans & Silk 2006; Schleicher et al. 2010; Latif et al. 2011b; Wolcott-Green et al. 2011; Safranek-Shrader et al. 2012). J_1 is the background UV flux below the Lyman limit (i.e. 13.6 eV) in units of 10^{-21} erg cm$^{-2}$ s$^{-1}$ Hz$^{-1}$ sr$^{-1}$.

To study the thermal evolution of the gas, it is crucial to model the chemistry of primordial gas in detail. In order to include the primordial non-equilibrium chemistry, the rate equations of $H, H^+, He, He^+, H_2^+, H_2, H_2O$ are self-consistently solved in the cosmological simulations. We use the H_2 photodissociating background UV flux implemented in the ENZO code, and employ an external UV field of constant strength 10^7 (Dijkstra et al. 2008) and is emitted by Population III stars with $M > 80 M_\odot$ (Tanaka & Haiman 2009; Inayoshi & Omukai 2011).

2.3 Turbulence subgrid-scale model

The phenomenon of turbulence describes a process where energy cascades from large scales to small scales through a series of eddies. The formation and evolution of cosmic structures is a typical case of turbulence generation. Due to the high Reynolds numbers relevant for astrophysical systems, it is not possible to resolve all scales down to the dissipative scale even with AMR techniques. In AMR simulations, mainly the core of the halo is well resolved and turbulence cascades from coarser grids corresponding to large scales down to the centre of the haloes without being properly accounted for. To compute the unresolved turbulence on grid scales in our simulation, we perform LES with the SGS turbulence model proposed in Schmidt et al. (2006a). This SGS model is based on a mathematically rigorous approach separating the resolved and unresolved scales, and connecting them via an eddy-viscosity closure for the non-linear energy transfer across the grid scale. The turbulent viscosity is given by the grid scale and the SGS turbulence energy, i.e. the kinetic energy associated with numerically unresolved turbulent velocity fluctuations. In contrast, implicit large eddy simulations (ILES) use only the numerical dissipation stemming from the discretization errors of the compressible fluid dynamics equations. This is the standard method in computational astrophysics.

Applying the filtering mechanism to the fluid equations and solving them in a comoving coordinate system, we obtain (Schmidt et al. 2006a; Maier et al. 2009)

$$\frac{\partial}{\partial t} \rho + \frac{1}{a} \frac{\partial}{\partial x_j} v_j \rho = 0,$$ \hfill (2)

$$\frac{\partial}{\partial t} \rho v_j + \frac{1}{a} \frac{\partial}{\partial x_i} v_i \rho v_j = -\frac{1}{a} \frac{\partial}{\partial x_i} P + \rho g_i^+ - \frac{1}{a} \frac{\partial}{\partial x_j} \tau_{ij} - \frac{\partial}{\partial t} \rho v_j,$$ \hfill (3)

$$\frac{\partial}{\partial t} \rho \varepsilon_{\text{eq}} + \frac{1}{a} \frac{\partial}{\partial x_j} v_j \rho \varepsilon_{\text{eq}} = -\frac{1}{a} \frac{\partial}{\partial x_i} \varepsilon_i + P + \frac{1}{a} v_i \rho g_i^+$$

$$-\frac{\partial}{\partial x_i} \rho \varepsilon_{\text{eq}} - \frac{1}{3} v^2 \rho v_i + P$$

$$+ \rho (\lambda + \epsilon) - \frac{1}{a} v_i \frac{\partial}{\partial x_j} \tau_{ij},$$ \hfill (4)

$$\frac{\partial}{\partial t} \rho e_i + \frac{1}{a} \frac{\partial}{\partial x_j} v_j \rho e_i = \mathbb{P} - \rho (\lambda + \epsilon) - \frac{1}{a} \frac{\partial}{\partial x_j} v_j - 2 \frac{\partial}{\partial a} \rho e_i.$$ \hfill (5)

Here, $a(t)$ is the scalefactor of the cosmological expansion, ρ and P are the comoving density and pressure, v_j is the peculiar velocity, g_i^+ is the gravitational acceleration, ε_{eq}, ε_i, \mathbb{P} is the sum of the numerically resolved thermal and kinetic energies and e_i is the SGS turbulent energy (see Schmidt et al. 2006a; Maier et al. 2009).
The terms D, λ, ϵ and τ_{ij} correspond to SGS transport (diffusion), pressure dilatation, dissipation and turbulent stresses. The following closure relations in terms of the resolved flow and the SGS turbulent velocity $q = \sqrt{2\epsilon}$ are applied to evaluate these terms:

$$D = \frac{\partial}{\partial r_i} C_s q^2 \frac{\partial}{\partial r_i} q,$$

(6)

$$\lambda = C_s q^2 \frac{\partial}{\partial r_i} v_i,$$

(7)

$$\epsilon = C_s q^3,$$

(8)

$$\tau_{ij} = -2\eta_i S_{ij} + \frac{1}{3} \delta_{ij} \rho q^2,$$

(9)

where $\eta_i = \rho C_s l_\Delta q$ is the dynamic turbulent viscosity and

$$S_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) - \frac{1}{3} \delta_{ij} \frac{\partial v_l}{\partial x_l}$$

(10)

is the trace-free rate-of-strain tensor. Further details and numerical validations of the above closures are given in dedicated studies (Schmidt et al. 2006b; Maier et al. 2009).

For our SGS model, the coefficients are calibrated against transonic compressible turbulence simulations, comparable to the regime in our simulations (Schmidt et al. 2006a). The method of adaptively refined LES is used to apply the SGS model in cosmological AMR simulations (Maier et al. 2009). As the SGS turbulence energy depends on the grid scale, which varies on adaptive meshes, energy must be exchanged with the numerically resolved velocity field when the grid is refined or derefined. This is achieved by assuming the Kolmogorov two-thirds law for the scaling of the turbulent velocity fluctuations. As long as the turbulence is subsonic and nearly isotropic locally, this is a reasonable assumption. In contrast, the method used in Gray & Scannapieco (2011) does not calculate the turbulent energy on the grid scale but the energy associated with a characteristic length-scale of buoyant bubbles. Our SGS model completely neglects gravity on unresolved length-scales and assumes the turbulent cascade from larger resolved scales as the dominant source of unresolved turbulence for the effects of buoyancy on SGS (Schmidt et al. 2006b). With a resolution of 64 cells per Jeans length, we expect this assumption to be valid on unresolved scales.

Even though the presence of turbulence was reported in massive primordial haloes already by Wise et al. (2008), it was only realized by Federrath et al. (2011) that a minimum resolution of 32 cells per Jeans length is required to obtain converged turbulent energies during gravitational collapse. In addition, the turbulent energy cascade is expected to generate turbulence even on SGS, which may back-react on the resolved scales via turbulent viscosity. In engineering and many other disciplines of computational fluid dynamics, SGS turbulence models are used to represent the effect of unresolved turbulence on resolved scales in so-called LES.

3 MAIN RESULTS

In total, we have performed nine LES and nine equivalent ILES for nine haloes as listed in Table 1 for a constant radiation background with $J_\lambda = 10^3$ of the H$_2$ photodissociating radiation field for a radiation temperature of 107 K. The results obtained from our cosmological simulations are presented here in detail. In the early phases of the collapse, gas falls into the dark matter potential and gets shock heated during the non-linear evolution phase. Gravitational energy of the halo is continuously transferred to kinetic energy of the gas and dark matter during the course of virialization.

3.1 LES runs

The properties of the haloes at larger scales during the formation of the first peak are shown in Fig. 1. The density profiles follow an R^{-2} behaviour for all haloes according to the expectation of an isothermal collapse. The small bump in the density profile of one halo shows the formation of an additional clump. The top-right panel of Fig. 1 shows the temperature radial profiles. The gas in these haloes is heated up to their virial temperatures and subsequently cools via Lyman α radiation. It is found that all haloes collapse isothermally in the ubiquity of strong UV photodissociation flux and the formation of H$_2$ remains suppressed. The temperature in the centre of the haloes is about 8000 K. The dissimilarities in temperature profiles around radii of 10^9 au arise from the difference in halo masses. The radial profiles of radial velocity scaled by the sound speed are depicted in the bottom-left panel of Fig. 1. Overall, this ratio is negative which indicates the infall of gas to the centre of the halo. This behaviour is observed for all the haloes. The turbulent Mach number is plotted in the bottom-right panel of Fig. 1. The value of turbulent Mach number is about 1 which indicates that turbulence is transonic in the haloes. We attribute small variations in the turbulent Mach number to the differences in halo masses. The fraction of molecular hydrogen is shown in Fig. 2 for a few representative cases. The H$_2$ fraction increases at lower densities due to the rise in electron abundance during the

Model	Mass (M$_\odot$)	Spin parameter	Collapse redshift	Clump masses LES (M$_\odot$)	Clump masses ILES (M$_\odot$)
A	8.06×10^6	0.034 7468	12.06	950	460
B	4.3×10^6	0.030 9765	11.3	850	850
C	2×10^7	0.017 8532	12.6	800	611
D	1.0×10^7	0.033 8661	12.8	850	842
E	1.9×10^7	0.008 4786	13.7	1200	741
F	4.5×10^7	0.029 4066	18.1	800	588
G	2.3×10^7	0.021 782	15.9	800	815
H	9.7×10^6	0.009 9387	13.5	900	1522
I	8.2×10^6	0.025 2206	15.0	556	1000
non-linear phase of the collapse. At intermediate densities, the H\textsubscript{2} abundance becomes constant as gas cools, recombines and remains neutral with a constant temperature around 8000 K. The presence of sharp spikes in the H\textsubscript{2} fraction is due to the shocks occurring at the central densities due to collisional dissociation as well as due to the presence of clumps. In general, the H\textsubscript{2} fraction is lower than the universal value (i.e. 10-3). Therefore, the contribution of H\textsubscript{2} cooling in the thermal evolution of the haloes studied here is negligible. The overall halo properties are in accordance with previous studies (Abel et al. 2002; Wise et al. 2008; Turk, Abel & O’Shea 2009; Turk et al. 2012).

As a result of the strong photodissociating background, the haloes go through an almost isothermal collapse regulated by atomic hydrogen line cooling. The central core develops a highly turbulent, extended structure. When the highest refinement level is reached, the evolution becomes adiabatic, thus stabilizing the gas on the finest grid and preventing collapse to smaller scales. The evolution on larger scales however continues, leading to turbulent accretion on to the central clump and occasional fragmentation as seen in Fig. 3. In the final stage of the simulation, fragmentation is clearly visible in 3 out of 9 haloes. Even in some of the other haloes, fragmentation occasionally occurs, but the clumps merge again on short time-scales. Zooming in further, we note that the central clumps are surrounded by self-gravitating accretion discs with prominent spiral arm structures depicted in Fig. 4. The growth of the clumps is thus regulated due to accretion via the observed spiral arm structures as well as occasional mergers.

The radial profiles of the physical properties of the halo in the central 105 au are shown for four representative cases in Fig. 5. The mass profile increases as \(R^3 \) in the region of constant density, is then approximately constant within the disc, thus implying a minor contribution of the disc to the total mass, and subsequently increases as \(R \) according to the density profile. The latter shows \(R^{-2} \) behaviour corresponding to an isothermal collapse, while flattening occurs in the central clump, where the collapse is stabilized by an adiabatic core. The rotational velocity (\(V_{\text{rot}} = v \times \frac{\hat{a}}{r} \), where \(\hat{a} = L \times r \), \(L \) is the specific angular momentum and \(r \) is the radius) is about 10 km s-1 in the centre, peaks at radii of 100 au and then declines as it follows the Keplerian rotation. Variations in the peak rotational velocity arise due to the difference in the halo mass and spin. The radial velocity profile indicates that gas is falling into the centre of the haloes with typical velocity of about 10 km s-1. The mean accretion rate for these haloes is thus a few \(M_\odot \) yr-1.

3.1.1 Turbulence production and dissipation

We found that the medium inside the halo becomes highly turbulent and clumpy due to well-resolved turbulence below a scale of...
The turbulent energy is low in the outskirts of the halo and tends to be stronger in the core. The rate of SGS turbulence production is computed as

$$\Sigma = -\tau_{ij} \frac{\partial v_i}{\partial x_j},$$

(11)

while the turbulent dissipation rate $\rho \epsilon$ is defined in equation (9). The ratio of turbulence production to dissipation for different LES is depicted in the left-hand panel of Fig. 6. In the outer regions, the turbulent production rate tends to be higher than the dissipation rate. This is a consequence of gravitational instabilities exciting turbulent motions during the collapse. In the adiabatic cores, on the other hand, production and dissipation are roughly in equilibrium, which indicates developed turbulence. However, local enhancement of turbulence production by instabilities can be seen even in the inner regions of some haloes.

On the basis of a simple Kolmogorov scaling for homogenous turbulence, one would naively expect the turbulent energy to decrease towards small radii. This effect is compensated as turbulence is produced locally during the gravitational collapse (see also Latif et al. 2013a). In order to elucidate the contribution of turbulence, we followed the dynamics of gas compression employing a differential equation for the divergence of the velocity field $d = \nabla \cdot \mathbf{v}$ (Schmidt, Collins & Kritsuk 2013):

$$\frac{Dd}{Dt} = 4\pi G \rho_0 \delta - \Lambda.$$

(12)

Here, $\frac{Dd}{Dt} = \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla$, δ is the overdensity relative to the mean density ρ_0 and Λ the local support terms against gravitational compression. Λ receives the contributions from thermal pressure, resolved turbulence and the SGS turbulent pressure.

3.1.2 Support terms

Thermal pressure support against gravity defines the critical mass for gravitational instability to become effective and is often accounted using the Jeans mass. However, in a strict theoretical sense, it is not applicable to substructures in a turbulent self-gravitating medium. For a more sophisticated analysis, we have computed the local support by thermal pressure, turbulence on numerically resolved scales and SGS turbulent pressure. These local support terms...
are denoted by Λ_{therm}, Λ_{turb}, and Λ_{SGS}. They are defined as (Schmidt et al. 2013)

$$\Lambda_{\text{therm}} = -\frac{1}{\rho} \frac{\partial^2 P}{\partial x_i \partial x_i} + \frac{1}{\rho^2} \frac{\partial \rho}{\partial x_i} \frac{\partial P}{\partial x_i},$$

(13)

$$\Lambda_{\text{turb}} = \frac{1}{2} \left(\omega^2 - |S|^2 \right),$$

(14)

where P is pressure, ρ is the gas density, $\omega = \nabla \times v$ is the vorticity of the fluid and $|S| = (2S_{ij}S_{ij})^{1/2}$ is the rate of strain

$$S_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right),$$

(15)

$$\Lambda_{\text{SGS}} = -\frac{1}{\rho} \frac{\partial^2 P_{\text{SGS}}}{\partial x_i \partial x_i} + \frac{1}{\rho^2} \frac{\partial \rho}{\partial x_i} \frac{\partial P_{\text{SGS}}}{\partial x_i}. $$

(16)

Here, $P_{\text{SGS}} = \frac{2}{7} \rho c_s^2$ is the SGS turbulent pressure. If these source terms are positive they provide support against gravity otherwise they aid to gas compression. These terms regulate the evolution of the divergence of the velocity field given by

$$-\frac{Dd}{Dt} = 4\pi G \rho_0 \delta - \Lambda.$$

(17)

The positive and negative contributions of these terms scaled by the gravitational compression rate $4\pi G \rho_0 \delta$ are plotted in Fig. 6. The plot clearly demonstrates that dynamical compression by gravity dominates above 1000 au because $\Lambda/4\pi G \rho_0 \delta \ll 1$. The thermal support of the gas becomes dominant and acts against gravitational compression at radii smaller than 10 au, which corresponds to the centre of our adiabatic core. In between these scales, while the resolved velocity field compresses the gas (negative net support by resolved turbulence), this effect is balanced by the large positive support from SGS turbulence. In this region, self-gravitating discs are able to form due to the additional turbulent viscosity. Thus, turbulence has both a stabilizing and compressive effect, where the former is mainly due to eddies on length-scales below the resolution limit. The positive support by resolved turbulence may also include the contribution from rotation. However, it is important to note that later is subdominant, i.e. the main positive support results from SGS

Figure 4. Density projections for nine haloes (same as Fig. 3) in the central 300 au.
model, while resolved turbulence appears to have predominantly compressive modes.

A further analysis of the central regions shows that the discs seen in Fig. 4 are rotationally supported and stable against gravitational instability. The ratio of rotational to Keplerian velocity for discs is shown in Fig. 7. It is found that the discs are partly rotationally supported as the mean rotational velocity is 0.4 times the Keplerian velocity.

3.2 ILES runs

The general properties of the haloes for standard hydro runs without SGS model are identical to those found from the LES (see also Latif et al. 2013a). All haloes collapse isothermally and follow an R^{-2} behaviour. The central temperature in the haloes before the adiabatic evolution is about 8000 K. No differences are observed in the thermal properties of the halo.

We however see strong differences in the morphology and the fragmentation of the haloes compared to the LES. The state of the simulations on a scale of 1000 au is shown in Fig. 8. It is found that fragmentation is more common in these runs (7 out of 9 haloes). Nevertheless, we see that a massive object is also formed in the core of these haloes. The typical masses of these clumps are slightly smaller than in the LES in most of the runs due to the presence of additional clumps. The masses of the most massive clumps are listed in Table 1. The formation of less massive clumps is much more common in these runs. We attribute the formation of clumps to turbulent compression which locally aids in gravitational compression and helps in the formation of smaller clumps. Here, this effect is enhanced as the viscous damping from unresolved turbulence is missing in these calculations. To quantify the effect in

Figure 5. Radial profiles for the physical properties of the discs centred on the peak density at collapse redshifts. The rotational and radial velocity profiles are shown in the top panels. Mass accretion rate ($4\pi R^2 \rho v_{\text{rad}}$) and mass radial profiles are shown in the bottom panel. These profiles are shown for four representative haloes.

Figure 6. The left-hand panel of this figure shows the ratio of turbulence production to dissipation for various haloes at their collapse redshifts. Comparison of local support terms like thermal pressure, resolved turbulence and SGS turbulence for a representative case is shown in the right-hand panel. They are scaled by the gravitational compression. The positive components mean support against gravity while negative components aid the compression.
more detail, we have compared the contribution of the local support terms. They are shown in Fig. 9 for a representative case. It can be noted that gravitational compression dominates at larger scales while the resolved turbulence becomes important in the central 100 au, where the latter becomes comparable to the support from thermal pressure. It may even exceed the thermal support locally. Overall, the support from resolved turbulence is negative which aids in gravitational compression. In the very centre of the halo, we see an adiabatic core which is supported by thermal pressure.

We also found that in some cases these clumps are produced at earlier times and merge with the central object. It can be noted from the figure that these clumps are very well separated and may lead to the formation of binary or multiple systems. Depending on the further evolution the clumps might evolve to a massive star cluster surrounding a central black hole. We see accretion rates of few M_\odot yr$^{-1}$ comparable to LES. Zooming into the central object as shown in Fig. 10, the clumps are dense and compact. No discs are observed in these runs due to the higher turbulent velocities. Nevertheless, an object of mass between 500 and 1000 M_\odot forms

Figure 7. The ratio of rotational to Keplerian velocity for the discs shown in Fig. 4. Each line style and colour represents one disc.

Figure 8. Illustrates the state of simulations for various haloes (ILES) at their collapse redshifts (at $t_{\text{ff}} = 4$). The density projections are shown for the central 1000 au of the haloes.
Figure 9. The local support terms for a representative case are shown at collapse redshift (at $t_f = 4$). The solid lines represent the positive component while the dashed lines indicate the negative component of the support term. The positive components mean support against gravity while negative components aid the compression.

in the centre of every halo which will lead to formation of massive black hole or a supermassive star at an intermediate stage.

4 DISCUSSION

We present here the highest resolution cosmological LES to date which track the evolution of high-density regions on scales of 0.25 au beyond the formation of the first peak, and study the impact of SGS turbulence. Our findings show that while fragmentation occasionally occurs, it does not prevent the growth of a central massive object resulting from turbulent accretion and occasional mergers. The central object reaches $\sim 1000 M_\odot$ within four free-fall times. They may further grow up to $10^6 M_\odot$ through accretion in about 1 Myr. The direct collapse model thus provides a viable pathway of forming high-mass black holes at early cosmic times.

The first massive clump is formed in the centre of the halo as early as $z = 18.0$, and begins to accrete gas from the ambient medium. Due to the additional turbulent viscosity, the morphology of the haloes becomes more extended compared to the runs without SGS model. At the final stage, our simulations harbour central massive objects with $\sim 1000 M_\odot$. These objects are expected to form a

Figure 10. Same as Fig. 8, density projections for the fields of view of 300 au, for the ILES runs.
supermassive star on the Kelvin–Helmholtz time-scale, which may subsequently collapse to an SMBH (Fryer, Woosley & Heger 2001). In the presence of efficient accretion, the atmospheres of such massive protostars remain at low temperatures, and UV feedback is negligible (Hosokawa, Omukai & Yorke 2012). On the other hand, feedback via the accretion luminosity may become relevant at an earlier stage.

4.1 Accretion luminosity

We also computed the heating rate from the accretion luminosity for the massive clumps in the centre of the disc employing the optically thin approximation, as

$$\Gamma_{\text{acc}} = \kappa P \left(\frac{L_{\text{acc}}}{4\pi R^2} \right) \text{erg g}^{-1} \text{s}^{-1},$$

(18)

where κP is the Planckian opacity, R is the distance from the source and L_{acc} is the accretion luminosity computed as

$$L_{\text{acc}} = \frac{G M_* M}{R_*},$$

(19)

here M_* is the mass of the star, M is the mass accretion rate and R_* is the radius of star obtained from the relation (Hosokawa et al. 2012)

$$R_* = 2.6 \times 10^3 R_\odot \left(\frac{M_*}{100 M_\odot} \right)^{1/2}.$$

(20)

Our estimates show for a 500 M\odot clump with a typical size of $R \sim 100$ au, a temperature of 7500 K, a Planckian opacity of 0.04 (Mayer & Duschl 2005) and a typical accretion rate of 1 M\odot yr$^{-1}$, the heating rate from the accretion luminosity is 2×10^{-4} erg cm$^{-3}$ s$^{-1}$, which is approximately equal to the atomic line cooling, given as 1.6×10^{-4} erg cm$^{-3}$ s$^{-1}$. Once the masses of the clumps reach 1000 M\odot, the heating rate exceeds the cooling rate by a factor of 10. We note, however, that this is easily compensated by a minor change in the temperature. Specifically, a temperature rise by 500 K would be sufficient to account for the additional heating. However, with the optically thin approximation, we likely overestimate the contribution on the scales considered here. In fact, with an optical depth $\tau \sim R_\text{PKP} > 30$, the accretion luminosity feedback is likely confined to much smaller scales, thus not affecting the evolution considered here. It can thus be expected that the accretion luminosity heating would only cause minor differences until this point, and potentially stabilize the central region further, i.e. suppress fragmentation even further.

We further note that this effect has been examined in further detail by Smith et al. (2011) for minihaloes, finding that the amount of fragmentation is at most slightly reduced. We would expect that to favour the formation of a central massive object even further. However, in the atomic cooling haloes considered here, atomic hydrogen is expected to act as an even more efficient thermostat, and the relative change of the thermal pressure even less relevant.

These massive clumps will collapse to similar mass black holes at the end of their lifetime, which can grow to the observed 10^9 M\odot black holes at $z \sim 6$ (via Eddington accretion (Shapiro 2005). The main requirement to obtain high-mass black hole seeds is thus a massive primordial halo at $z \sim 15$, exposed to a sufficiently strong radiation field for H$_2$ dissociation. The abundance of such haloes was previously calculated by Dijkstra et al. (2008) and Agarwal et al. (2012), showing that these are indeed frequent enough to explain the number of observed high-redshift black holes. The high-resolution simulations presented here strongly confirm the feasibility of this scenario from a dynamical point of view, as a result of turbulent accretion and occasional mergers with additional fragments. For a final conclusion on the origin of SMBHs, future studies will need to address the growth of these clumps in the presence of feedback. At the later stages, we expect star formation and stellar feedback to affect the subsequent evolution, potentially giving rise to a co-evolution between stellar bulge and central black hole (Tremaine et al. 2002; Johnson et al. 2011). The formation of their seeds is in any case feasible, thus yielding strong support for direct collapse scenarios.

ACKNOWLEDGEMENTS

The simulations described in this work were performed using the ENZO code, developed by the Laboratory for Computational Astrophysics at the University of California in San Diego (http://lca.ucsd.edu). We acknowledge research funding by Deutsche Forschungsgemeinschaft (DFG) under grant SFB 963/1, project A12 and computing time from HLRN under project np00029. The simulation results are analysed using the visualization toolkit for astrophysical data YT (Turk et al. 2011).

REFERENCES

Abel T., Anninos P., Zhang Y., Norman M. L., 1997, New Astron., 2, 181
Abel T., Bryan G. L., Norman M. L., 2002, Sci, 295, 93
Agarwal B., Khochfar S., Johnson J. L., Neistein E., Dalla Vecchia C., Livio M., 2012, MNRAS, 425, 2854
Alvarez M. A., Wise J. H., Abel T., 2009, ApJ, 701, L133
Anninos P., Zhang Y., Abel T., Norman M. L., 1997, New Astron., 2, 209
Begelman M. C., Shlosman I., 2009, ApJ, 702, L5
Begelman M. C., Volonteri M., Rees M. J., 2006, MNRAS, 370, 289
Bromm V., Loeb A., 2003, ApJ, 596, 34
Choi J.-H., Shlosman I., Begelman M. C., 2013, preprint (arXiv:1304.1369)
Clark P. C., Glover S. C. O., Smith R. J., Greif T. H., Klessen R. S., Bromm V., 2011, Sci, 331, 1040
Devecchi B., Volonteri M., 2009, ApJ, 694, 302
Dijkstra M., Haiman Z., Mesinger A., Wyithe J. S. B., 2008, MNRAS, 391, 1961
Djorgovski S. G., Volonteri M., Springel V., Bromm V., Meylan G., 2008, preprint (arXiv:0803.2862)
Fan X., Strauss M. A., Schneider D. P., Becker R. H., White R. L., Haiman Z., Gregg M., 2003, AJ, 125, 1649
Fan X., Strauss M. A., Richards G. T., Hennawi J. F., Becker R. H., White R. L., Diamond-Stanic A. M., 2006, AJ, 131, 1203
Federrath C., Sur S., Schleicher D. R. G., Banerjee R., Klessen R. S., 2011, ApJ, 731, 62
Fryer C. L., Woosley S. E., Heger A., 2001, ApJ, 550, 372
Gray W. J., Scannapieco E., 2011, ApJ, 733, 88
Greif T. H., Johnson J. L., Klessen R. S., Bromm V., 2008, MNRAS, 387, 1021
Greif T. H., Bromm V., Clark P. C., Glover S. C. O., Smith R. J., Klessen R. S., Yoshida N., Springel V., 2012, MNRAS, 424, 399
Haiman Z., 2004a, ApJ, 613, 36
Haiman Z., 2004b, in KITT Conf., Formation of the Earliest Stars and Black Holes and their Contribution to Reionization
Haiman Z., 2012, preprint (arXiv:1203.6075)
Hosokawa T., Omukai K., Yorke H. W., 2012, ApJ, 756, 93
Inayoshi K., Omukai K., 2011, MNRAS, 416, 2748
Jarosik N., Bennett C. L., Dunkley J., Gold B., Greason M. R., Halpern M., Hill R. S., Hinshaw G., 2011, ApJS, 192, 1
Johnson J. L., Bromm V., 2007, MNRAS, 374, 1557
Johnson J. L., Khochfar S., Greif T. H., Durier F., 2011, MNRAS, 410, 919
Johnson J. L., Whalen D. J., Fryer C. L., Li H., 2012, ApJ, 750, 66
