Solving the Nonlinear Monotone Equations by Using a New Line Search Technique

K. H. Hashim¹, L H Hashim², N k Dreeb³ and Mushtak A. K. Shiker ⁴ *

¹, ³, ⁴ Department of mathematics, College of education for pure sciences, University of Babylon, Hilla, Iraq.
² Department of Planning and Studies, University of Babylon, Hilla, Iraq.

Email: ¹ teacher89karrar@gmail.com, ² luayinfo@gmail.com,
³ nabiha250222@gmail.com,
⁴ mmrtmmhh@yahoo.com.
² Corresponding Author

Abstract. In this work a new technique of line search is proposed to solve the nonlinear monotone equations. For this purpose we combine a modified line search rule with monotone technique. The new proposed algorithm can decrease the CPU time, the number of iterations and the function evaluations and can increase the efficiency of the approach. The global convergence result of the recommended procedures is established under some standard conditions. Preliminary numerical results indicate that the proposed algorithm are interesting and remarkably promising.

Keywords: Nonlinear system of equations. Iterative method. Line search method. Monotone strategy. Global convergence.

1. Introduction

Generally, the nonlinear systems are a family of problems that is close to optimization problems, also its one of the problems that arise in different fields of science and computational geometry, especially in the interpretation of nonlinear partial differential equations, the problem of specified value, etc. There are some cases where many nonlinear equations of some independent variable can be effectively solved. Thus, the roots of systems of nonlinear equations can be found in many applications in applied and numerical mathematics.

Therefore, to solve these non-linear systems, many researchers focused on finding and providing appropriate means and methods for this by proposing some common algorithms to solve this problem.
Nonlinear equations can be considered one of the most important problems with multiple scientific uses as tremolo systems in computer science [1, 2], some sub-problems in generalization and also the first-order necessary condition for the problem of unconstrained convex optimization [3, 4].

One of the indications that there is a close relationship between optimization problems and nonlinear systems of equations is that the fixed points that can be found from the optimization problem are equal in finding the answer to the system of nonlinear equations, so it is appropriate to use unconstrained optimization algorithms to solve this problem.

To solve a system of nonlinear equations, we use one of the two important iterative methods, which are the line search strategy, and the other method is the confidence zone. Emphasis will be placed here on how to search for lines and their frame.

This method is fairly simple so its understanding and application is easy. However, they are ineffective, and have some disadvantage, for example, on the large scale, the work and convergence of the line search method are slow.

So most of researchers used the monotone strategy to address that problem.

Consider the nonlinear system of equations

\[F(x) = 0 \] \hspace{1cm} (1)

Where \(F: \mathbb{R}^n \rightarrow \mathbb{R}^n \) is continuous and monotone, i.e.

\[\langle F(x) - F(y), x - y \rangle \geq 0, \forall x, y \in \mathbb{R}^n. \]

It is possible to convert some of the disparities into monotonous nonlinear equations through the natural map or the fixed point map, but after fulfilling some of the coercive conditions that the objective function has to achieve. There are several algorithms for solving the problem (1), which of the quasi-Newton methods are among the most important of which have made clear progress in theory, and the reason is due to the development in solutions to a large number of problems, which is particularly reflected in the analysis of local convergence [5, 6]. In addition, many researchers have established a global approximation of quasi-Newton methods to unconstrained optimization problems, see [7-10].

In (1986), Griewank suggested a derivative-free line search which is considered the closest approximation to global convergence [11]. In (2000), Li and Fukushima had another point of view by creating and inferring an example showing that searching for a line technique of Griewank contains certain difficulties in some special cases [12]. As a result of their work and by using the non-monotonous line search method, they suggested a Gauss-Newton-based BFGS method to solve nonlinear symmetric equations and a Broydens method to solve nonlinear equations, also they proved these methods converge globally [13]. However, some of the merit functions, such as the quadratic merit function, are used to ensure the global approximation of quasi-Newton method.

The authors suggested many techniques to find the best solution in varicose fields, such as optimization, operation research, reliability, see [14-23], but in this paper, and for solving the nonlinear monotone equations, we used the new algorithm to find the best solution, and it was also proven that they are globally convergence without using the merit function. Compared with the method in [14] and the method in [15], the new method is more efficient.

Now, we will give our algorithm.
2. The New Algorithm (K)

Step 0. Choose an initial point \(x_0 \in \mathbb{R}^n\) and constants \(\mu \in (0,1), \rho \in (0,1), \beta \in \left(\frac{1}{2}, 1\right), \sigma \in (0, \frac{1}{2})\), \(m > 0, r > 0\). Let \(k := 0\).

Step 1. Compute the search direction \(d_k\) by

\[
d_k = -F(x_k)
\]

Stop if \(d_k = 0\)

Step 2. Determine step length \(\alpha_k = \mu^h \beta^k\) such that \(h_k\) is the smallest nonnegative integer \(h\) satisfies

\[
-\langle F(x_k + \mu^h \beta d_k), d_k \rangle \geq \rho \sigma_k \mu^h \beta \| F(x_k + \beta \mu^h d_k) \| \| d_k \|^2
\]

Where \(\sigma_k = \frac{\rho}{1 + \| F(x_k) \|}\)

Let \(z_k = x_k + \alpha_k d_k\).

Stop if \(\| F(z_k) \| = 0\).

Step 3. Compute

\[
x_{k+1} = x_k - \frac{\langle F(z_k), x_k - z_k \rangle}{\| F(z_k) \|^2} F(z_k)
\]

Set \(k := k + 1\). Go to Step 1.

Remark:

(i) the mapping \(F\) is Lipschitz continuous (LC), satisfies for a positive constant \(L > 0\) that:

\[
\| F(x) - F(y) \| \leq L \| x - y \|, \forall x, y \in \mathbb{R}^n.
\]

(ii) it is clear that \(L + m > m\) so,

\[
\frac{\| F(x_k) \|}{L + m} \leq \| d_k \| \leq \frac{\| F(x_k) \|}{m}
\]

Now we will show that the line search (3) is well-defined in a similar way to [24].

suppose that for some iteration index \(k\) and for any nonnegative integer \(h\), the line search (3) is not satisfied i.e.,

\[
-\langle F(x_k + \mu^h \beta d_k), d_k \rangle < \rho \sigma_k \mu^h \beta \| F(x_k + \beta \mu^h d_k) \| \| d_k \|^2
\]

Now if we take \(\lim_{h \to \infty}\) for two side to (*),

\[
\lim_{h \to \infty} \langle F(x_k + \mu^h \beta d_k), d_k \rangle < \lim_{h \to \infty} \rho \sigma_k \mu^h \beta \| F(x_k + \beta \mu^h d_k) \| \| d_k \|^2
\]

\[
\Rightarrow -\langle F(x_k), d_k \rangle < 0
\]

\[
\Rightarrow -\langle F(z_k - \alpha_k d_k), d_k \rangle < 0
\]

(Since \(x_k = z_k - \alpha_k d_k\))

\[
\Rightarrow -\langle -\alpha_k, F(z_k + d_k), d_k \rangle < 0
\]

\[
\Rightarrow \alpha_k \| F(z_k) \| \| d_k \|^2 < 0
\]

Then we have a contradiction, since it is not possible to have each of \(\alpha_k\), \(\| F(z_k) \|\) and \(\| d_k \|^2\) less than zero, so the line search is well-defined.

3. Convergence property

In this section, to obtain the global convergence of our algorithm then we need the following lemma.

Lemma 1. [16]. let \(F\) be monotone and \(x, y \in \mathbb{R}^n\) satisfy \(\langle F(y), x - y \rangle > 0\). Let
\[
x^+ = x - \frac{\langle F(y) , x - y \rangle}{\| F(y) \|^2} F(y)
\]

Then for any \(\bar{x} \in R^n \) such that \(F(\bar{x}) = 0 \), it holds that
\[
\| x^+ - \bar{x} \|^2 \leq \| x - \bar{x} \|^2 - \| x^+ - x \|^2
\]

Now we can state our convergence result by the following theorem similar to [24].

Theorem 1. Suppose that \(F \) is (LC) and monotone, and let \(\{x_k\} \) be any sequence generated by Algorithm (K). Also we suppose that the solution set of (1) is nonempty. Then for any \(\bar{x} \) satisfying \(F(\bar{x}) = 0 \), we have
\[
\| x_k - \bar{x} \|^2 \leq \| x_k - x_k+1 \|^2 - \| x_k - x_{k+1} \|^2
\]

In particular, the sequence \(\{x_k\} \) is bounded. Also, its satisfy that either \(\{x_k\} \) is finite and the last iterate is a solution, or the sequence is infinite and
\[
\lim_{k\to\infty} \| x_k+1 - x_k \| = 0
\]

Furthermore, the sequence \(\{x_k\} \) converges to some \(\bar{x} \) such that \(F(\bar{x}) = 0 \).

Proof. First, if the algorithm finishes at some iteration \(k \) then:
- either \(d_k = 0 \), so by the positive definiteness of \(B_k \), we get \(F(x_k) = 0 \).
- or \(\| F(z_k) \| = 0 \), in this case \(x_k \) or \(z_k \) will be a solution of (1).

Now suppose that \(d_k \neq 0 \) and \(F(x_k) \neq 0 \) for all \(k \). Then:
\[
\langle F(z_k) , x_k - z_k \rangle = \langle F(z_k) , x_k - x_k - \alpha_k d_k \rangle
\]
\[
= \langle F(z_k) , -\alpha_k d_k \rangle
\]
\[
= -\alpha_k \langle F(x_k) , d_k \rangle
\]
\[
\geq \rho \sigma_k \| F(z_k) \| \alpha_k^2 \| d_k \|^2 > 0
\]

Then,
\[
\langle F(z_k) , x_k - z_k \rangle = -\alpha_k \langle F(z_k) , d_k \rangle \geq \rho \sigma_k \| F(z_k) \| \alpha_k^2 \| d_k \|^2 > 0.
\]

(7)

Let \(\bar{x} \) be any solution of (1) and \(F(\bar{x}) = 0 \). From lemma 1, (4) and (7) we obtain
\[
\| x_k+1 - \bar{x} \|^2 \leq \| x_k - \bar{x} \|^2 - \| x_k+1 - x_k \|^2.
\]

(8)

In particular, the sequence \(\{\| x_k - \bar{x} \|\} \) is decreasing and hence convergent. Consequently, the sequence \(\{x_k\} \) will be bounded, and also we have
\[
\lim_{k\to\infty} \| x_k+1 - x_k \| = 0.
\]

(9)

By (6) It is clear that \(\{d_k\} \) holds to be bounded and so is \(\{z_k\} \).

From (4):
\[
x_k+1 - x_k = -\frac{\langle F(z_k) , x_k - z_k \rangle}{\| F(z_k) \|^2} F(z_k)
\]

Since \(\langle F(z_k) , x_k - z_k \rangle = -\alpha_k \langle F(z_k) , d_k \rangle \) then,
\[
x_k+1 - x_k = \frac{\alpha_k \langle F(z_k) , d_k \rangle}{\| F(z_k) \|^2} F(z_k) \geq \frac{\rho \| F(z_k) \| \alpha_k^2 \| d_k \|^2}{\| F(z_k) \|^2} F(z_k)
\]
\[
= \rho \alpha_k^2 \| d_k \|^2
\]

So,
\[
\| x_k+1 - x_k \| = \frac{\| F(z_k) , x_k - z_k \|}{\| F(z_k) \|} \geq \rho \alpha_k^2 \| d_k \|^2.
\]

(10)
From (9) and (10), we get
\[\lim_{k \to \infty} \alpha_k \| d_k \| = 0, \quad \lim_{k \in K, \ k \to \infty} \alpha_k \| d_k \| = 0. \tag{11} \]

From (6), we get \(\lim \inf_{k \to \infty} \| F(x_k) \| = 0 \). If \(\lim \inf_{k \to \infty} \| d_k \| = 0 \), then by (11) we get
\[\lim_{k \to \infty} \alpha_k = 0 \tag{12} \]

Now since \(\{x_k\} \) is bounded and by continuity of \(F \), it is clear that \(\{x_k\} \) has some accumulation point \(\hat{x} \) with \(F(\hat{x}) = 0 \). We also have from (8) that the sequence \(\{\|x_k - \hat{x}\|\} \) converges. Therefore, \(\{x_k\} \) converges to \(\hat{x} \).

(3) gives us
\[-(F(x_k + \mu^{h_{k-1}}d_k),d_k) < \rho \sigma_k \mu^{h_{k-1}} \beta \| F(x_k + \beta \mu^{h_{k-1}}d_k) \| \| d_k \| \]

Since \(\{x_k\}, \{d_k\} \) are bounded, so we can choose a subsequence, let \(k \to \infty \) in (13), we obtain
\[-(F(\hat{x}), \hat{d}) \leq 0 \tag{14} \]

Such that \(\hat{x} \) and \(\hat{d} \) are limits of subsequences that chosen. Otherwise, by (6) and already familiar argument,
\[-(F(\hat{x}), \hat{d}) > 0 \tag{15} \]

From (14) and (15) we get a contradiction. Hence it is not possible to get that
\[\lim \inf_{k \to \infty} \| F(x_k) \| > 0. \]

This finishes the proof.

4. Numerical Results
In this section, we compare the performance of the new method (K) discussed earlier with the following algorithms

PRP: It is coming from [12].

BFGS: It is coming from using the line search in [13] with the direction of this paper.

We wrote all the codes in MATLAB with version R2014a, also the experiments are running on a computer with 4 GB of RAM and CPU 2.30 GHz. The purpose of running the codes is to compare the results of the new algorithm (K) with the algorithms mentioned above.

When \(\|F_k\| \leq 10^{-6} \) or \(\|F(z_k)\| \leq 10^{-8} \) or the total number of iterates exceeds 500000 then all the algorithms will be end. In all of the algorithms, the parameters are specified as follows \(\mu = 0.4, \rho = 0.3, \sigma = 0.25, \epsilon = 10^{-6} \).

The comparison of these methods is based on three things: \(N_i \) (number of iterations), \(N_f \) (number of function evaluations) and the CPU time. Also, the special dimensions to compare these algorithms are limited to 5000 – 50000 for the following initial points:

\[x_0 = (10,10, ...,10)^T, \]
\[x_1 = (-10, -10, ..., -10)^T, \]
\[x_2 = (1,1, ...,1)^T, \]
\[x_3 = (-1, -1, ..., -1)^T, \]
\[x_4 = (1, \frac{1}{2}, ..., \frac{1}{2})^T, \]
\[x_5 = (0,1,0,1, ...,0,1)^T, \]
\[x_6 = (\frac{1}{2}, \frac{1}{2}, ...,0)^T, \]
\[x_7 = (1 - \frac{1}{2}, 1 - \frac{1}{2}, ...,0)^T. \]
Numerical results are displayed in tables (4.1, 4.2), the first table contains both of N_i and N_f for all algorithms while the second table contains CPU times of these algorithms.

Table 4.1: Numerical results (N_i, N_f)

P.	Dim.	S.P	New	PRP	BFGS			
P_1	50000	x_0	16	145	188	994	1255	8837
	50000	x_1	16	145	188	994	1255	8837
	50000	x_2	14	101	40	194	148	798
	50000	x_3	14	101	40	194	148	798
	50000	x_4	15	81	25	115	15	79
	50000	x_5	10	46	20	97	27	160
	50000	x_6	19	136	45	202	49	254
	50000	x_7	19	136	45	202	49	254
P_2	50000	x_0	16	145	188	994	1255	8837
	50000	x_1	14	109	196	1016	1327	9350
	50000	x_2	14	101	40	194	148	798
	50000	x_3	15	121	46	235	65	375
	50000	x_4	15	81	71	376	16	89
	50000	x_5	10	46	20	97	27	160
	50000	x_6	18	126	50	221	49	254
	50000	x_7	30	250	50	256	50	267
P_3	10000	x_0	22534	135605	149031	911135	409228	2866839
	10000	x_1	13699	87210	36187	217508	149424	1057285
	10000	x_2	61248	385783	99331	521291	446334	3081533
	10000	x_3	29703	149950	111908	587876	241250	1466562
	10000	x_4	60325	386954	94078	592519	102701	586236
	10000	x_5	11159	38466	14865	49971	28606	133867
	10000	x_6	9873	57261	20338	104094	51190	307639
	10000	x_7	10121	59001	20326	104018	51133	307162
P_4	10000	x_0	26	263	8567	106957	12677	163074
	10000	x_1	26	272	14175	204841	19577	256721
	10000	x_2	23	219	421	5346	5072	58466
	10000	x_3	146	1471	5282	60829	7269	83804
	10000	x_4	21	185	3599	35949	4134	41272
	10000	x_5	1365	14992	257	1809	2328	20899
	10000	x_6	536	4801	6679	73228	4428	49192
	10000	x_7	539	4828	7036	77151	4525	50314
P_5	50000	x_0	88	973	62668	609170	228454	2427634
	50000	x_1	67	675	61618	597442	225811	2396330
	50000	x_2	88	973	62578	608175	228235	2425065
	50000	x_3	86	933	62398	606160	227774	2419561
	50000	x_4	92	1041	62491	607212	228010	2422394
	50000	x_5	91	1024	62497	607267	228023	2422517
	50000	x_6	91	1024	62516	607479	228068	2423049
	50000	x_7	88	973	62549	607843	228167	2424258
Table 4.1: Numerical results (\(N_i, N_f\)) – continued

P.	Dim.	S.P	New	PRP	BFGS			
			\(N_i\)	\(N_f\)	\(N_i\)	\(N_f\)	\(N_i\)	\(N_f\)
\(P_6\)	50000	\(x_0\)	16	91	376	1916	659	4044
	50000	\(x_1\)	16	115	378	1944	2560	17934
	50000	\(x_2\)	14	87	40	169	181	1010
	50000	\(x_3\)	16	91	117	510	659	4044
	50000	\(x_4\)	15	101	117	510	182	1023
	50000	\(x_5\)	14	87	117	510	181	1010
	50000	\(x_6\)	14	87	117	510	181	1010
\(P_7\)	50000	\(x_0\)	10	41	350	1755	606	3643
	50000	\(x_1\)	12	63	401	2064	684	4145
	50000	\(x_2\)	31	65	62	126	62	189
	50000	\(x_3\)	22	164	26	142	97	538
	50000	\(x_4\)	49	100	99	200	25	52
	50000	\(x_5\)	2584	5170	5168	10338	1292	2586
	50000	\(x_6\)	55	112	110	222	110	333
	50000	\(x_7\)	55	112	110	222	110	333

Table 4.2: Numerical results (CPU time)

P.	Dim.	S.P	New	PRP	BFGS
\(P_1\)	50000	\(x_0\)	0.5148	4.9296	40.3730
	50000	\(x_1\)	0.5148	4.9608	41.4182
	50000	\(x_2\)	0.2652	0.7332	2.5584
	50000	\(x_3\)	0.3120	0.7020	2.5896
	50000	\(x_4\)	0.2652	0.4368	0.2652
	50000	\(x_5\)	0.1716	0.3744	0.5460
	50000	\(x_6\)	0.4212	0.7956	0.7176
	50000	\(x_7\)	0.3744	0.8424	0.8892
\(P_2\)	50000	\(x_0\)	0.5148	4.9452	42.6974
	50000	\(x_1\)	0.4056	5.1012	44.7410
	50000	\(x_2\)	0.2964	0.6708	2.8548
	50000	\(x_3\)	0.3588	0.8736	1.2636
	50000	\(x_4\)	0.2652	1.2480	0.2808
	50000	\(x_5\)	0.1560	0.3432	0.5304
	50000	\(x_6\)	0.3900	0.7956	0.7332
	50000	\(x_7\)	0.7488	0.9828	0.8580
Table 4.2: Numerical results (CPU time) – continued

P	Dim.	S.P	New	PRP	BFGS
P_3	10000	x_0	0.5265	3.6298	1.1398
	10000	x_1	0.3429	0.8903	0.4389
	10000	x_2	1.4979	2.0869	1.3758
	10000	x_3	0.5859	2.3832	0.5998
	10000	x_4	1.5049	2.3747	0.2346
	10000	x_5	0.1506	0.2027	0.0535
	10000	x_6	0.2228	0.4189	0.1233
	10000	x_7	0.2290	0.4198	0.1229
P_4	10000	x_0	0.1716	0.7960	1.0721
	10000	x_1	0.1716	1.5104	1.7052
	10000	x_2	0.1248	0.0388	0.4040
	10000	x_3	1.0140	0.4524	0.5508
	10000	x_4	0.1248	0.2664	0.2676
	10000	x_5	10.3116	0.0143	0.1396
	10000	x_6	3.2292	0.5561	0.3291
	10000	x_7	3.3384	0.5779	0.3325
P_5	5000	x_0	0.3900	2.6088	9.1360
	5000	x_1	0.2808	2.5382	8.9972
	5000	x_2	0.4056	2.6067	9.0797
	5000	x_3	0.3744	2.5844	9.0674
	5000	x_4	0.3744	2.5744	9.0594
	5000	x_5	0.3744	2.5384	9.0630
	5000	x_6	0.3744	2.5518	9.1413
	5000	x_7	0.3744	2.5476	9.2811
P_6	50000	x_0	0.5616	13.3224	0.2694
	50000	x_1	0.8580	13.3380	1.1963
	50000	x_2	0.5616	1.2012	0.0670
	50000	x_3	0.5616	3.6660	0.2751
	50000	x_4	0.7020	3.6972	0.0680
	50000	x_5	0.6552	3.6660	0.0656
	50000	x_6	0.5304	3.5256	0.0641
	50000	x_7	0.5772	3.6348	0.0658
P_7	50000	x_0	0.1560	8.4396	16.9261
	50000	x_1	0.2340	9.9060	18.7045
	50000	x_2	0.2496	0.5304	0.6708
	50000	x_3	0.4836	0.4836	1.7472
	50000	x_4	0.2808	0.9204	0.1248
	50000	x_5	16.8325	43.9922	8.6424
	50000	x_6	0.4368	0.9984	0.9672
	50000	x_7	0.3744	1.0608	0.9828

From the comparisons of the results we can see the superiority of the new approach compared to other methods for solving the nonlinear systems of monotone equations.
Table (4.1) shows the total of \(N_i \) and \(N_f \) for the three algorithms, while table (4.2) shows the CPU time for the three algorithms to reach the solution. The algorithm (K) solved reached to the solution with less number of iteration and function evaluation and with less CPU time among the three methods. It means that the new algorithm (K) is the best algorithm closing to the performance index.

5. Conclusion
From the numerical results obtained through the comparison technique presented in the tables above of different problems with different initial points and dimensions, it is easy to conclude that the performance of the proposed algorithm (K) is the most efficient and effective in terms of \(N_i, N_f \) and CPU time compared with the two famous algorithms. This can improve the behavior of the new algorithm to solve the nonlinear monotone equations which does not require Jacobian information of the nonlinear equations. The algorithm (K) is able to calculate the best solution of problem (1), also its global convergence has been created without using any merit functions.

6. References
[1] Ortega J M and Rheinboldt W C 1970 *Iterative Solution of Nonlinear Equations in Several Variables*. New York: Academic Press.
[2] Hashim K H and Shiker M A K 2020 Using a new line search method with gradient direction to solve nonlinear systems of equations, “in press”, accepted paper for publication in Journal of Physics: Conference Series, International Conference of Modern Applications on Information and Communication Technology (ICMAICT) - Iraq.
[3] Dwail H H Mahdi M M Wasi H A Hashim A H and Shiker M A K 2020 A new modified TR algorithm with adaptive radius to solve a nonlinear systems of equations, “in press”, accepted paper for publication in Journal of Physics: Conference Series, International Conference of Modern Applications on Information and Communication Technology (ICMAICT) - Iraq.
[4] Shiker M A K and Sahib Z 2018 A modified technique for solving unconstrained optimization, *J. Eng. Applied Sci.*, 13, 9667-9671.
[5] Hussein H A and Shiker M A K 2020 A modification to Vogel’s approximation method to Solve transportation problems, *J. Phys.: Conf. Ser.* 1591 012029.
[6] Hussein H A and Shiker M A K 2020 Two New Effective Methods to Find the Optimal Solution for the Assignment Problems, *Journal of Advanced Research in Dynamical and Control Systems*, 12, 49-54.
[7] Byrd R, Nocedal J and Yuan YX Global convergence of a class of quasi-Newton methods on convex problems, *SIAM J. Numer. Anal.*. 1987; 24, 1171-1190.
[8] Mahdi M M and Shiker M A K 2020 A new projection technique for developing a Liu-Storey method to solve nonlinear systems of monotone equations, *J. Phys.: Conf. Ser.* 1591 012030.
[9] Mahdi M M and Shiker M A K 2020 Three terms of derivative free projection technique for solving nonlinear monotone equations, *J. Phys.: Conf. Ser.* 1591 012031.
[10] Shiker M A K and Amini K 2018 A new projection-based algorithm for solving a large scale nonlinear system of monotone equations, *Croatian operational research review, crorr*, 9, 63-73.
[11] Griewank A 1986 The global convergence of Broyden-like methods with a suitable line search, *The ANZIAM Journal*, 28, 75–92.
[12] Li D H and Fukushima M A derivative-free line search and global convergence of Broyden like method for nonlinear equations. *Optim. Methods and Softw.*. 2000; 13, 181-201.
[13] Li D H and Fukushima M 1999 A globally and superlinear convergent Gauss–Newton-based BFGS methods for symmetric nonlinear equations, *SIAM Journal on Numerical Analysis*, 37, 152–172.
[14] Wasi H A and Shiker M A K 2020 A modified of FR method to solve unconstrained optimization, “in press”, accepted paper for publication in Journal of Physics: Conference Series, International
Conference of Modern Applications on Information and Communication Technology (ICMAICT) - Iraq.

[15] Hassan Z A H H and Shiker M A K 2018 Using of generalized baye’s theorem to evaluate the reliability of aircraft systems, *Journal of Engineering and Applied Sciences*, (Special Issue 13), 10797- 10801.

[16] Mahdi M M and Shiker M A K 2020 Solving systems of nonlinear monotone equations by using a new projection approach, “in press”, accepted paper for publication in *Journal of Physics: Conference Series*, International Conference of Modern Applications on Information and Communication Technology (ICMAICT) - Iraq.

[17] Mahdi M M and Shiker M A K 2020 Three-term of new conjugate gradient projection approach under Wolfe condition to solve unconstrained optimization problems, *Journal of Advanced Research in Dynamical and Control Systems*, 12, 788- 795.

[18] Hussein H A and Shiker M A K and Zabiba M S M 2020 A new revised efficient of VAM to find the initial solution for the transportation problem, *J. Phys.: Conf. Ser.* 1591 012032.

[19] Wasi, H A and Shiker, M A K, 2020 Proposed CG method to solve unconstrained optimization problems”, “in press, accepted paper for publication in *Journal of Physics: Conference Series*, International Conference of Modern Applications on Information and Communication Technology (ICMAICT) - Iraq.

[20] Dwail H H and Shiker M A K, 2020 Using a trust region method with nonmonotone technique to solve unrestricted optimization problem, *J. Phys.: Conf. Ser.* 1664 012128.

[21] Dwail H H and Shiker M A K, 2020 Reducing the time that TRM requires to solve systems of nonlinear equations, *IOP Conf. Ser.: Mater. Sci. Eng.*, 928 042043.

[22] Mahdi M M and Shiker M A K, 2020 A New Class of Three-Term Double Projection Approach for Solving Nonlinear Monotone Equations, *J. Phys.: Conf. Ser.* 1664 012147

[23] Wasi H A and Shiker M A K. 2020 A new hybrid CGM for unconstrained optimization problems, *J. Phys.: Conf. Ser.* 1664 012077.

[24] Zhou W J and Li D H 2008 A globally convergent BFGS method for nonlinear monotone equations without any merit functions, Math. Comput., 77: 264, 2231–2240.