

Inhibiting Proliferation and Enhancing Chemosensitivity to Taxanes in Osteosarcoma Cells by RNA Interference-Mediated Downregulation of Stathmin Expression

Rui Wang,1 Ke Dong,2 Fang Lin,1 Xi Wang,1 Ping Gao,1 San-Hua Wei,2 Shi-Yin Cheng,1 and Hui-Zhong Zhang1

1Department of Clinical Diagnosis and 2Department of Clinical Laboratory; Tangdu Hospital, Fourth Military Medical University; Xi’an, China

Stathmin (Oncoprotein18), a signal transduction regulatory factor, plays an important role in cell division and malignant tumor development. Stathmin is a ubiquitous intracellular phosphoprotein that is overexpressed in a variety of human malignancies, including osteosarcoma. To investigate the potential use of stathmin as a therapeutic target for human osteosarcomas, we employed RNA interference (small interfering RNA (siRNA)) to reduce stathmin expression in human osteosarcoma cell lines and analyzed their phenotypic changes. Results showed that the downregulation of stathmin expression in human osteosarcoma cells significantly inhibited cell proliferation in vitro and tumorigenicity in vivo. The specific downregulation induced cell arrest in the G2/M phase of cell cycle and eventually apoptotic cell death. Taxanes are a group of effective chemotherapeutic agents whose activity is mediated through stabilization of the microtubules of the mitotic spindle. In the present study, we also observed a synergistic enhancement of the cytotoxicity effect by combination use of taxanes and RNA interference-mediated stathmin downregulation. All these experimental data indicate that stathmin downregulation can lead to potent antitumor activity and chemosensitizing activity to taxanes in human osteosarcomas.

Online address: http://www.molmed.org
doi: 10.2119/2007-00046.Wang
breast cancer cell lines (18) and therapeutic interactions with chemotherapeutic agents in prostate cancer (19). Thus, we believe that stathmin may provide an attractive molecular target for disrupting the mitotic apparatus and arresting the proliferation of malignant cells. In the present study, we employed small interfering RNA targeting stathmin to explore the potential of new therapeutic targets in the treatment of human osteosarcomas. Moreover, we analyzed the synergistic effects on both in vitro and in vivo proliferation of osteosarcoma cells by combined use of taxanes and RNAi-mediated stathmin downregulation. Such synergistic interaction might be relevant for the treatment of osteosarcoma because taxanes and RNAi targeting stathmin are two of the most effective treatment methods for this disease. Thus, this combination may provide a novel strategy of osteosarcoma therapy that avoids toxicities associated with the use of multiple chemotherapeutic agents at full therapeutic doses.

MATERIALS AND METHODS

Maintenance of Cell Lines

Two human osteosarcoma cell lines (Saos-2 and MG63) were cultured in Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (Sijiqing, Hangzhou, China), 100 U/mL penicillin, and 100 µg/mL streptomycin. All cells were maintained in an atmosphere of 5% CO2 with humidity at 37 °C.

SiRNA Synthesis

We designed and synthesized double-strand siRNAs in vitro for the stathmin gene with two thymidine residues (dTdT) at the 3’ end of the sequence extending between amino acid residues 398 and 417 (sense, 5’-GAAAACGAGACGACGAGAAA-3’) (15) (AuGCT Biotechnology, Beijing, PRC). We also synthesized a nonspecific siRNA as a control (sense, 5’-GAAAAGAGCGCAGAGAAA-3’). According to a BLAST database search, the scrambled sequences did not show significant homology to any human mRNA. These RNAs were dissolved in Tris-Cl (pH 8.0) and 1 mM EDTA as 200 µM solutions. Double-strand siRNAs were generated by mixing the corresponding pair of sense and antisense RNA oligonucleotides at a concentration of 20 µM in 5 × annealing buffer [30 mM HEPES-KOH (pH 7.4), 100 mM KCl, 2 mM MgCl2, and 50 mM NH4AC]. The reaction mixture was heated to 90 °C for 1 min, gradually cooled down to 37 °C for 60 min, and then aliquoted and stored at -20 °C.

Transient Transfection of siRNA

Two human osteosarcoma cell lines (Saos-2 and MG63) were plated in 10-cm tissue culture plates at approximately 1.0 × 105 cells per well, respectively, and cultured overnight to give 50%-70% confluence prior to transfection. In vitro transfection of RNA oligonucleotides resulting in various RNA concentrations was performed using Lipofectamine2000 transfection reagent (Invitrogen). The cells were harvested at different time points for RT-PCR and Western blot analyses.

Quantitative Real-Time PCR

Total RNA was extracted from cultured cells using Trizol reagent (Invitrogen). RNA of 2 µL (1 µg/µL) was used to synthesize cDNA using a Superscript First-Strand Synthesis Kit (Promega, Madison, Wisconsin, USA) following the manufacturer protocols. Expression of stathmin mRNA was detected with the ABI 7700 Sequence Detection System (PE Applied-Biosystems) using specific primers: sense 5’-ATGGCTTCTTCTTGATATCCAG-3’ and antisense 5’-TTAGTCAGCTTCAGTCTCGTC-3’. Relative gene expression was quantified, using β-actin as an internal standard.

Western Blot Analysis

A total of 2.0 × 106 cells were harvested and rinsed three times with phosphate-buffered saline (PBS). Cell extracts were prepared with lysis buffer (1 mM dithiothreitol, 0.125 mM EDTA, 5% glycerol, 1 mM phenylmethylsulfonylfluoride, 1 µg/mL leupeptin, 1 µg/mL pepstatin, 1 µg/mL aprotinin, and 1% Triton X-100 in 12.5 mM Tris-HCl buffer, pH7.0) at 4°C for about 30 min. An equal volume of lysate was electrophoresed with SDS polyacrylamide gel electrophoresis (12%). The separated proteins in the gel were transferred to the nitrocellulose membrane. The membranes were blocked for one hour with Tris-buffered saline plus 0.1% Tween-20 (TTBS) containing 5% nonfat milk and then incubated for two hours with the appropriate primary antibodies [anti-stathmin (Santa Cruz Biotechnology, Santa Cruz, CA, USA); anti-β-actin (Sigma, St Louis, MO, USA)] in TTBS containing 5% nonfat milk, followed by incubation for 45 min with horseradish peroxidase-conjugated antismouse immunoglobulin antibodies (Sigma). The immunocomplexes were visualized by enhanced chemiluminescence using an ECL™ kit (Amersham, Piscataway, NJ, USA), followed by exposure to x-ray films.

Cell Proliferation Assay

A total of approximately 6.0 × 103 osteosarcoma cells in 100 µL of the medium were plated in 96-well plates and allowed to attach for 48 h, then treated daily for two days with indicated concentrations of siRNA. After 48 hours of incubation, the medium was replaced with 100 µL of 0.05% 3-[4,5-dimethyl-2-thiazolyl]-2, then 5-diphenyl-2H-tetrazolium bromide (5 mg/mL) was added to each well and the plate was incubated for four hours at 37 °C. After the incubation, the reaction was stopped by the addition of 150 µL/well of DMSO for 10 min. The absorbance was measured using a VersaMax Tunable Microplate Reader (Molecular Devices, Sunnyvale, CA, USA) with a test wavelength of 570 nm and a reference wavelength of 630 nm; all experiments were performed in triplicate. The cell proliferation curve was plotted using the absorbance at each time point.

Soft Agar Colony Assays

Forty-eight hours after siRNA transfection, the cells were mixed with cell cul-
ture medium containing 0.6% agar to a final concentration of 0.4%. We immediately plated 1 mL of this cell suspension in 6-well plates coated with 0.6% agar (1 mL per well) in cell culture medium. The colonies were counted in triplicate 15 d after plating, and the number of colonies per 10^3 cells was calculated.

Plasmid Constructions

The DNA oligonucleotides coding for the short hairpin short hairpin (sh)stathmin and a nonspecific shRNA negative control (shControl) were designed and synthesized as follows: shstathmin: (5’-GATCCGAAACGAGCAGCAGAAAGTTCAAGAGATTCTGCTGTCAGTTT-GCAGA-3’) and shControl: (5’-GATCCGAAACGAGCAGCAGAAAGTTCAAGAGATTCTGCTGTCAGTTT-GCAGA-3’). All these sequences were inserted between BamHI and HindIII restriction sites of pSilencer4.1-CMVneo (pSC) vectors (Ambion, Austin, TX, USA). Name designation of the recombinant plasmid was pSC-shstathmin and pSC-shControl. The recombinant vectors were confirmed by the digestion analysis of restriction endonuclease and all inserted sequences were verified by DNA sequencing by TaKaRa Biotech Company using ABI PRISM SigDyeTM Terminator Cycle Sequencing Ready Reaction Kit with AmpliTaq DNA Polymerase FS (Perkin Elmer, Waltham, MA, USA).

Stable Transfection of Plasmids and Selection

Human osteosarcoma cell lines (Saos-2 and MG63) were seeded in 6-well plates at 2.0 × 10⁴ cells/well, respectively, and cultured overnight to about 90% confluency prior to transfection. Then, transfection was performed using Lipofectamine2000 transfection reagent (Invitrogen) following the manufacturer’s specifications. Forty-eight hours after transfection, stable cell lines were selected with G418 (800 μg/mL). Three stably transfected osteosarcoma cell lines (transfected with pSC-shstathmin, pSC-shControl, or pSC-CMVneo parental vector) were established.

Flow Cytometry Analysis of Cell Cycle and Apoptosis

The cells were harvested with trypsinization, fixed with cold 70% ethanol, and stored at 4°C until analyzed. The cells were pelleted and resuspended in PBS containing 20 μg/mL propidium iodide (PI) and RNase A and then analyzed for PI fluorescence intensity by flow cytometry to assess cellular DNA content. The relative proportions of cells in the G₀, S, and G₂/M phases of the cell cycle were determined from the flow cytometry data. The percentage of apoptotic cells was determined by the sub-G₁ proportion. Apoptosis of stable transfectants was also measured with an annexin V-fluorescein isothiocyanate apoptosis detection kit (Zymed; Invitrogen) that was used to detect the cell apoptosis of stable transfectants.

Tumor Formation Assay in Nude Mice

Mouse studies were performed according to institutional guidelines and a protocol improved by the animal research committee. The effect of stathmin downregulation on the tumorigenic capacity was assessed by subcutaneous injection of pSC-shstathmin, pSC-shControl, or pSC-neo parental vector-transfected and untransfected Saos-2 cells into athymic nude mice. Approximately 1.0 × 10⁶ stably transfected cells were injected into eight-week-old female BALB/c nude mice, which were maintained under pathogen-free conditions. The inoculations were performed in 10 mice for one group. Tumor growth from days 7 to 28 after inoculation was monitored, and tumor diameters were measured with a caliper. Tumor volumes (mm³) were calculated by the following formula: V = 1/2 × L² × W (L, tumor length; W, tumor width). At 28 d after inoculation, all mice were killed, and subcutaneous tumors were resected. Survival tests were made using groups of mice (n = 10) treated as above and monitored daily until all the mice died.

Chemosensitivity Assay

First, cell chemosensitivity in vitro to taxanes (Taxol and Docetaxel; Sigma) was evaluated by MTT analysis; then, 72 hours after transfection, the cells (Saos-2 and MG63) in the 96 wells were treated with various concentrations of Taxol (at 0, 5, 15, 20, and 25 nM) and Docetaxel (at 0, 3, 6, 9, 12, and 15 nM). Cell viability was detected 48 hours later, as described above, and the in vivo tumor sensitivity to taxanes was evaluated in the mouse model. Mice were implanted with 1.0 × 10⁶ Saos-2 cells. Two weeks after implantation, subcutaneous tumors were formed, mice were allocated to 5 groups (10 mice/group), and mice in each group were treated as described in Table 1 (siRNA in 60 μL PBS by tail vein injection and taxanes in 100 μL PBS by intraperitoneal injection thrice weekly). After 10 weeks of treatment, all mice were killed, and subcutaneous tumors were resected. Tumor growth was evaluated by the average volume and the average weight of tumors. The tumor volume was calculated as already described and tumors were weighed. All the animal experiments were performed in accordance with institutional guidelines of the Fourth Military Medical University.

Statistical Analysis

All experiments were performed at least in triplicate and all statistical analyses were performed with SPSS10.0. Com-

Table 1. Three-weekly in vivo chemotherapy regimen (n = 10/group).

Group Treatment		
1. Control-siRNA(100 μg/kg)		
2. stathmin-siRNA(100 μg/kg)		
3. Taxol (10 mg/kg) or Docetaxel (8.0 mg/kg)		
4. Control-siRNA(100 μg/kg) + Taxol (10 mg/kg) or Docetaxel (8.0 mg/kg)		
5. stathmin-siRNA(100 μg/kg) + Taxol (10 mg/kg) or Docetaxel (8.0 mg/kg)		
parisons among all groups were performed with the one-way analysis of variance (ANOVA) test and Student Newman Keuls method. Values of \(P < 0.05 \) were considered significant.

RESULTS

Downregulation of Stathmin Expression by Transient siRNA in Osteosarcoma Cells

We in vitro synthesized 21-mer oligoribonucleotide targeting stathmin (nucleotide 398-417) and transiently transfected two osteosarcoma cells (Saos-2 and MG63). Real-time RT-PCR (Figure 1A) and Western blot analyses (Figure 1B) were used to determine the effect of treatment with siRNA on stathmin expression at the mRNA and protein levels in osteosarcoma cell lines. As shown in Figure 1A, daily treatment of osteosarcoma cells with 50, 150, and 250 nM stathmin-siRNA for two days reduced stathmin mRNA levels by 16.2%, 53.6%, or 64.3% in Saos-2 cells and by 15.0%, 50.2%, or 78.2% in MG63 cells. As shown in Figure 1B, stathmin protein levels were reduced in a dose-dependent manner, and partial to complete inhibitions were observed with increasing concentrations of the siRNA oligonucleotides.

Effects of Stathmin-siRNA on Cell Proliferation and Colony Formation In Vitro

To analyze phenotypic changes, we first investigated the effects of transient stathmin-siRNA on cellular proliferation of osteosarcoma cells. Cell proliferation was evaluated by MTT assay daily for various concentrations of stathmin-siRNA. As shown in Figure 2A, treatment of Saos-2 and MG63 cells with stathmin-siRNA resulted in a dose-dependent inhibition of the proliferation of two osteosarcoma cells and reduced cell proliferation by 51.2% and 61.0% at 250 nM, respectively. Next, we explored whether stathmin-siRNA affected colony formation of osteosarcoma cells in soft agar assays. Cells were transfected with stathmin-siRNA or control-siRNA, and at 48 hours after transfection, the cells were plated into medium with soft agar. Colony formation was assayed at 15 days. As shown in Figure 2B, colony formation was significantly inhibited in the presence of stathmin-siRNA compared with that seen with untreatment or Control-siRNA treatment. All these results showed that RNAi-mediated transient stathmin downregulation resulted in marked inhibition of osteosarcoma cell proliferation in vitro.

Effects of Vector-Mediated shRNA on Stathmin Expression and Cell Proliferation

First, we established stable transfectants of Saos-2 cells (transfected with pSC-shstathmin, pSC-shControl, or pSC-neo parental vector). In those stable transfectants expressing shstathmin, RT-PCR and Western blot analysis results showed that the levels of stathmin mRNA and protein expression were reduced by 64.7% and 75.5%, respectively (Figure 3A). We then tested the in vitro proliferation of these stably transfected cells by MTT assay daily for seven days. The cell proliferation curve showed that the stably transfected Saos-2 cells expressing shstathmin showed incomplete inhibition but moderate proliferation retardation, and the highest inhibitory rate was 38.3 ± 1.46% on day seven (\(P < 0.05 \), Figure 3B).

Effects of RNA Interference Targeting Stathmin on Cell Cycle and Apoptosis

The proliferation inhibition of osteosarcoma cells by knockdown of stathmin expression was caused by disrupting the cell cycle and affecting microtubule assembly shown in other types of mammalian cells (16,17). To reveal the mechanisms underlying RNAi-mediated proliferation inhibition, we used flow cytometric analysis to detect changes in the cell cycle and apoptosis of stably transfected Saos-2 cells expressing shstathmin. Flow cytometry analysis showed that the proportion of cells in the G1 phase was increased, while the proportion of cells in the S phase was decreased. In addition, the proportion of apoptotic cells was increased significantly in the shstathmin group compared with the control group. These results indicated that RNAi-mediated stathmin downregulation induced cell cycle arrest and apoptosis in osteosarcoma cells.
cell cycle and quantify apoptotic rates in osteosarcoma cells. We first analyzed the DNA contents of cell populations after transient transfection of stathmin-siRNA at the concentration of 250 nM into Saos-2 and MG63 cells. In both Saos-2 and MG63 cells 72 hours after stathmin-siRNA treatment, the population of G2/M phase was significantly increased and the population of G1/G0 phase was obviously decreased (\(P < 0.05 \)), and a marked increase in the sub-G1 population was also detected (Figure 4, Table 2).

Next, an annexin V-fluorescein isothiocyanate apoptosis detection kit (Zymed) was used to detect cell apoptosis of stably transfected Saos-2 cells. Cell apoptosis analysis by flow cytometry showed that compared with untransfected Saos-2 cells, the apoptosis rate of pSC-shstathmin transfected Saos-2 cells significantly increased by 22.6% ± 2.1% (\(P < 0.05 \)), whereas there were no obvious changes among other stably transfected Saos-2 cells (transfected with pSC-shControl or pSC-neo vector). All above results suggested that RNAi-mediated transient or stable downregulation of stathmin expression in osteosarcoma cells could induce cell accumulation in the G2/M phase and final apoptosis.

Inhibition of In Vivo Tumor Growth by Stathmin Downregulation

With the above findings of the effects of stathmin-siRNA in vitro, we next explore whether stathmin plays a critical role in tumor formation in vivo, and whether it can be used in clinical gene therapy. We subcutaneously injected aliquots of 1.0x10^7 stably transfected Saos-2 cells into 4 groups of mice and monitored tumor growth. As shown in Figure 6A, the growth of tumors formed from the pSC-shstathmin xenografts was significantly inhibited compared with tumors formed from other control xenografts. At 28 days after inoculation, the average tumor volume and tumor weight of the mice was decreased by 55.1% and 52.0% in pSC-shstathmin xenografts. We concluded that RNAi-mediated stathmin downregulation was an effective strategy in the treatment of osteosarcoma.
xenografts compared with untreated xenografts. \((P < 0.01, \text{Figure 6B and Figure 6C}) \). Figure 6D shows the survival time of the mice. Stathmin downregulation prolonged the lifespan of mice bearing Saos-2 tumor cells \((P = .00352) \). These results indicated that RNAi-mediated stathmin downregulation exerted a strong growth-suppressive effect on osteosarcoma in vivo.

Stathmin-siRNA Synergistically Enhances Taxane-Induced Cytotoxicity In Vitro and In Vivo

Stathmin can disrupt the microtubule structure and destabilize microtubules through its phosphorylation. Taxanes, a family of chemotherapeutic agents, impair disassembly of microtubules that is essential for the normal segregation of chromosomes during mitosis of eukaryotic cells. Thus, we conclude that RNAi-mediated stathmin downregulation may synergistically enhance the cytotoxicity of taxanes (Taxol and Docetaxel), osteosarcoma cells (Saos-2 and MG63) were treated with 100 nM Control-siRNA or stathmin-siRNA daily for three days, and incubated with indicated concentrations of each chemotherapeutic agent for two days. As shown in Figure 7, stathmin-siRNA significantly enhanced the chemosensitivity of these agents, decreasing the 50% inhibitory concentration of Taxol by 54.2 (or 47.3%) and Docetaxel by 78.5% (or 53.6%). Considering these findings in vitro, we next investigated the efficacy of stathmin-siRNA as an in vivo chemosensitizing strategy in a nude mouse xenograft model. After mice were treated with Control-siRNA and stathmin-siRNA, alone and in combination with Taxol or Docetaxel for 10 weeks, the average tumor volume (mm³) and tumor mass (mg) were detected. The average tumor volume and average tumor mass of mice treated with Taxol or Docetaxel in combination with *stathmin*-siRNA were 87.5 mm³ and 64 mg, respectively. Compared with other groups of mice, the tumor growth in this group of mice treated with Taxol or Docetaxel in combination with *stathmin*-siRNA was significantly inhibited \((P < 0.05, \text{Figure 8}) \). All above results showed that the downregulation of stathmin expression mediated by siRNA can synergistically enhance the chemosensitivity of human osteosarcoma cells to taxanes both in vivo and in vitro.

DISCUSSION

Stathmin (Op18), a cytosolic phosphoprotein, is the founding member of a family of microtubule-destabilizing proteins that regulate the dynamics of microtubule polymerization and depolymerization (20,21). *Stathmin* is overexpressed in various types of human cancers, including osteosarcoma, and its high expression levels could affect the distribution of cells throughout the cell cycle (22,23). To explore the possibility of *stathmin* as an effective therapeutic target, we employed an RNA interference technique to silence endogenous *stathmin* expression in osteosarcoma cells and analyzed phenotypic changes of transiently or stably transfected osteosarcoma cells. In our study, we achieved almost complete downregulation of *stathmin* expression by using an siRNA treatment strategy in osteosarcoma cell lines. Experimental data showed that transient *stathmin* downregulation led to

Table 2. Changes of population in cell cycle of transfected osteosarcoma cells.

Cell phase	Saos-2 cell (72h after treatment)	MG63 cell (72 h after treatment)		
	Control-siRNA (%)	stathmin-siRNA (%)	Control-siRNA (%)	stathmin-siRNA (%)
SubG₀	2.56 ± 0.35 *	14.23 ± 0.88 *	3.14 ± 0.74 *	16.13 ± 1.35 *
G₀/G₁	57.42 ± 3.16 *	32.32 ± 2.03	62.32 ± 2.64	55.26 ± 2.83
S	23.35 ± 1.14	20.67 ± 1.55	20.46 ± 2.13	19.57 ± 1.46
G₂/M	16.67 ± 1.76	32.78 ± 2.43	14.08 ± 1.17	29.04 ± 2.23

*P < 0.05 compared with Control-siRNA.
significant inhibition of in vitro proliferation and colony formation, accumulation of G2/M phase, and final apoptosis of osteosarcoma cells. We established stably transfected osteosarcoma cells expressing shstathmin and observed that stable stathmin downregulation in osteosarcoma cells induced incomplete proliferation inhibition but moderate proliferation retardation. We also detected increased apoptosis rates of pSC-shstathmin transfectants, and the stable transfectants almost completely suppressed tumorigenecity in a mouse xenograft model. All these results suggest that stathmin is an important molecule of proliferation of tumor cells and a potential target for suppressing proliferation and triggering apoptosis, which can be explained by its key roles in mitosis. Thus, we have reasons to believe that stathmin may provide an excellent molecular target for osteosarcoma therapy.

Taxanes, a family of chemotherapeutic drugs that exert antitumor effects by interacting with microtubules and interfering with their dynamic equilibrium, induce cell accumulation in the G2/M phase of the cell cycle (24). The antimitotic effects of taxanes are exerted by promoting microtubulins to stable microtubules and suppressing their breakdown by combining with free microtubules, which are essential for the segregation of chromosomes during mitosis of eukaryotic cells. This action interferes with the normal regulation of the mitotic spindle and leads to mitotic arrest (25,26). After exposure to taxanes, some of the mitotically arrested cells undergo apoptosis, whereas others complete the division cycle, producing aneuploid cells that undergo apoptosis during subsequent cell cycles (27). Although taxanes significantly inhibit proliferation and induce apoptosis of os-

Figure 5. Cell apoptosis of stable transfectants detected by flow cytometry. The apoptotic rate of pSC-shstathmin transfected Saos-2 cells obviously increased by 22.6 ± 2.1% (P < 0.05), whereas there were no significant differences in cell apoptosis among untransfected, pSC-neo, or pSC-shControl transfected Saos-2 cells (P > 0.05).

Figure 6. Effects of stathmin downregulation on tumor growth in vivo. (A) The growth in mice of tumors developed from untransfected and stably transfected Saos-2 cells (transfected with pSC-neo, pSC-shControl or pSC-shstathmin vector). The inoculation was performed in four groups (n = 10). (B) The average tumor volume at day 28 after inoculation of the above cells; **P < 0.01. (C) The average tumor weight at day 28 after inoculation of the above cells; **P < 0.01. (D) Survival curve of mice (n = 10) inoculated with untransfected and stably transfected Saos-2 cells (transfected with pSC-neo, pSC-shControl, or pSC-shstathmin vector). Results were evaluated by the Kaplan-Meier method. The differences between pSC-shstathmin treatment group and other control groups were statistically significant, *P < 0.01.
teosarcoma cells in vitro (28-30), their clinical uses as single chemotherapeutic agents are very limited because of the toxic effects related to long-term administration at high doses. Thus strategies to target mitosis will help to enhance the cytotoxicity effects of taxanes while reducing toxicity (or side effects) caused by high doses.

In the present study, we observed that RNAi-mediated stathmin downregulation in combination with taxanes could synergistically enhance the cytotoxicity effects both in vitro and in vivo. Taxanes and stathmin downregulation both interfere with the regulation of microtubules that make up the mitotic spindle, so it is not surprising that the combined use of two interventions would induce a synergistic interaction. In fact, RNAi-mediated stathmin inhibition and taxane exposure target different steps in the same mitotic pathway, so the simultaneous effects of both of these methods will increase tumor cell cytotoxicity. These results are consistent with other studies that showed synergistic inhibition of tumor cell proliferation associated with stathmin inhibition and taxane exposure (31,32). Much evidence has demonstrated that stathmin deficiency can decrease the rate of destruction and sequestration of tubulin molecules, thereby disrupting the equilibrium between polymerized and unpolymerized tubulin in favor of polymerized tubulin (33,34). Taxanes, on the other hand, make microtubules stable by binding to polymerized tubulin (35). Thus, once the stathmin-downregulated cells are exposed to taxanes, cells affected by stathmin deficiency will fail to depolymerize the microtubules, and the polymerized microtubules will be further stabilized by taxane binding. Therefore, the combine use of stathmin downregulation and taxanes will lead to stronger impairment of G2/M phase progression and synergistic induction of apoptosis. This result may be attributable, at least in part, to the mechanism by which RNAi-mediated stathmin downregulation synergizes with taxane exposure to exert more potent antiproliferative and anti-
titumor effects. These results are also consistent with our previous reports and those of others that the overexpression of stathmin increased resistance to chemotherapy by decreasing microtubule polymer mass (36,37). The exact molecular mechanism that accounts for the observed synergistic interaction between stathmin inhibition and taxanes appears complex and remains to be further clarified.

RNA interference is characterized by high efficiency, high specificity, and low toxicity (38,39). This novel technology is becoming a conventional application for in vivo cancer therapy (40-42). In our study, we presented a proof of principle for the use of novel RNA interference technology to target candidate oncogenes in osteosarcoma cells and thereby exert antitumor effects at multiple levels. RNAi-mediated stathmin downregulation effectively inhibited cell proliferation in vitro and tumorigenicity in vivo, induced cell accumulation in the G2/M phase, led to apoptotic cell death, and enhanced chemosensitivity in human osteosarcoma cells. All these findings suggest that stathmin may be a pival determinant for tumorigenesis and chemosensitivity, so it is expected to be a potential therapeutic target for the treatment of osteosarcomas.

ACKNOWLEDGMENTS
We thank the Department of Clinical Diagnosis for their technical support. This work was supported by a grant from Natural Science Foundation of Shaanxi Province (2003K10G44).

REFERENCES
1. Wittig JC, Bickels J, Priebe D, et al. (2002) Osteosarcoma: a multidisciplinary approach to diagnosis and treatment. Am. Fam. Physician 65:1123-32.
2. Bacci G, Longhi A, Versari M, Mercuri M, Briccoli A, Picci P. (2006) Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer 106:1154-61.
3. Charbaut E, Curmi PA, Ovon S, Lachkar S, Re- deker V, Sobel A. (2001) Stathmin family proteins display specific molecular and tubulin binding properties. J. Biol. Chem. 276:1614-64.
4. Zhang HZ, Gao P, Yan L, Lin F. (2004) Signiﬁcance of stathmin gene overexpression in osteosarcoma cells. Ai Zheng 23:493-6.
5. Price DK, Ball JR, Bahrami-Mostafavi Z, et al. (2000) The phosphoprotein Op/18/stathmin is differentially expressed in ovarian cancer. Cancer Invest. 18:722-30.
6. Roos G, Bratskand G, Landberg G, Marklund U, Gullberg M. (1993) Expression of op/op protein in human leukemia and lymphomas. Leukemia 7:1538-46.
7. Hanash SM, Strahler JR, Kucik R, Chu EHY, Nichols D. (1998) Identiﬁcation of a polypeptide associated with the malignant phenotype in acute leukemia. J. Biol. Chem. 268:12813-5.
8. Feuerstein N, Cooper HL. (1993) Rapid phosphor- ylation induced by phorbol ester in HL-60 cells. J. Biol. Chem. 258:10786-93.
9. Belmont LD, Mitchison TJ. (1996) Identiﬁcation of a protein that interacts with tubulin dimers and increases the catastrophe rate of micro- tubules. Cell 84:623-31.
10. Laird AD, Shalloway D. (1997) Oncoprotein signaling and mitosis. Cell Signal. 9:249-55.
11. Murphy ME, Cazzaniga L. (2006) A novel cancer therapy approach targeting microtubule function. Cancer Biol. Ther. 5:1721-3.
12. Mistry SJ, Atweh GF. (2002) Role of stathmin in the regulation of the mitotic spindle: potential applications in cancer therapy. Mt. Sinai J. Med. 69:299-304.
13. Luo XN, Mookerjee B, Ferrari A, Mistry S, Atweh GF. (1994) Regulation of phosphoprotein p18 in leukemia cells. Cell cycle regulated phosphoryla- tion by p34cdc2 kinase. J. Biol. Chem. 269:10312-8.
14. Jha S, Luo XN, Beran M, Kantarjian H, Atweh GF. (1996) Antisense RNA inhibition of phosphoprotein p18 expression abrogates the transformed phen- otype of leukemia cells. Cancer Res. 56:1445-50.
15. Fan XM, Zhang HZ, Zhang MH, Fan QY. (2002) Inhibitory effects of AS-ODN of Stathmin gene on cultured osteosarcoma cell lines. J. Fourth Mil. Med. Univ. 23:669-71.
16. Gao P, Lin F. (2006) Inhibitory effects of stathmin gene SiRNA on cultured HeLa cell lines. J. Mod. Oncol. 2:210-2.
17. Zhang HZ et al. (2006) Silencing stathmin gene expression by survivin promoter-driven siRNA vector to reverse malignant phenotype of tumor cells. Cancer Biol. Ther. 5:1437-61.
18. Alli E, Yang JM, Hait WN. (2007) Silencing of stathmin induces tumor-suppressor function in breast cancer cell lines harboring mutant p53. Oncogene 26:1003-12.
19. Mistry SJ, Atweh GF. (2006) Therapeutic interac- tions between stathmin inhibition and chemotherapeutic agents in prostate cancer. Mol. Cancer Ther. 5:3248-57.
20. Mistry SJ, Atweh GF. (2006) Therapeutic interac- tions between stathmin inhibition and chemotherapeutic agents in prostate cancer. Mol. Cancer Ther. 5:3248-57.
21. Curmi PA et al. (1999) Stathmin and its phospho- protein family: general properties, biochemical and functional interaction with tubulin. Cell Struct. Funct. 24:345-57.
22. Niethammer P, Bastiaens P, Karsenti E. (2004) Stathmin-tubulin interaction gradients in motile and mitotic cells. Science 303:1862-6.
23. Rubin CI, Atweh GF. (2004) The role of stathmin in the regulation of the cell cycle. J. Cell Biochem. 93:242-50.
24. Rovinsky EK. (1997) The development and clini- cal utility of the taxane class of antimicrotubule chemotherapeutic agents. Ann. Rev. Med. 48:353-74.
25. Yvon AM, Wadsworth P, Jordan MA. (1999) Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Biol. Cell. 10:947-59.
26. Jordan MA, Tosij R, Thrower D, Wilson L. (1993) Mechanism of mitotic block and inhibition of cell proliferation by Taxol at low concentrations. Proc. Natl. Acad. Sci. USA 90:9532-6.
27. Rovinsky EK, Donehower RC, Jones RJ, Tucker RW. (1988) Microtubule changes and cytotoxicity in leukemic cell lines treated with Taxol. Cancer Res. 48:4093-100.
28. Guo W, Zeng C, Dong FQ, Lei W. (2002) Pacli- taxel-induced apoptosis in osteosarcoma cell line U-2 OS. Chin. Med. J. (Engl). 115:1796-801.
29. Xu XT, Wu XF, Zhang YQ. (2005) Experimental study of paclitaxel against human osteosarcoma. Cancer Res. 72.3291-7.
30. Tao H, Cai L, Song J. (2006) Proliferation inhibition effect of Doxetaxel combined with cisplatin on osteosarcoma cells. Medical Journal of Wuhan University 23:756-8.
31. Iancu C, Mistry SJ, Arkin S, Atweh GF. (2000) Taxol and anti-stathmin therapy: a synergistic combination that targets the mitotic spindle. Cancer Res. 60:3571-4.
32. Mistry SJ, Atweh GF. (2006) Therapeutic interac- tions between stathmin inhibition and chemotherapeutic agents in prostate cancer. Mol. Cancer Ther. 5:3248-57.
33. Mistry SJ, Atweh GF. (2001) Stathmin inhibition enhances okadaic acidinduced mitotic arrest: a potential role for stathmin in mitotic exit. J. Biol. Chem. 276:31209-15.
34. Howell B, Deacon H, Cassanelli L. (1999) Decreasing oncoprotein 18/stathmin levels reduces microtubule catastrophes and increases microtubule polymer in vivo. J. Cell Sci. 112:3713-22.
35. Parness J, Horwitz SB. (1981) Taxol binds to poly- merized tubulin in vitro. J. Biol. Chem. 247:87-97.
36. Jing X-R, Liu L, Zhao H, Zhang H-Z. (2005) Rela- tionship between expression of Stathm in gene in cancer cells and its sensitivity to chemotherapeu- tic drugs. J. Fourth Mil. Med. Univ. 26:784-8.
37. Nishio K, Nakamura T, Koh Y, Kanazawa F, Tamura T, Saijo N. (2001) Oncoprotein 18 over- expression increases the sensitivity to vindesine in the human lung carcinoma cells. Cancer 91:1494-9.
38. Elbashir SM, Lendeckel W, Tuschl T. (2001) RNA interference is mediated by 21-22 nucleotide RNAs. Genes Dev. 15:188-200.
39. Tomari Y, Martranga C, Haley B, Martinez N, Zamar PD. (2004) A protein sensor for siRNA asymmetry. Science 306:1377-80.
40. Hingorani SR, Jacobetz MA, Robertson GP, Herlyn M, Tuveson DA. (2003) Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Res. 63:5198-202.
41. Brummelkamp TR, Bernards R, Agami R. (2002) Stable suppression of tumorigenicity by virus- mediated RNA interference. Cancer Cell. 2:243-7.
42. Takei K, Kodama T, Yuzawa Y, Mabuso S, Muramatsu T. (2004) A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 64:3365-70.