Research Article

Optimization of English Online Learning Dictionary System Based on Multiagent Architecture

Ying Wang

Liaocheng University Dongchang College, Liaocheng 252000, China

Correspondence should be addressed to Ying Wang; wangying@lcudcc.edu.cn

Received 7 April 2021; Revised 21 April 2021; Accepted 23 April 2021; Published 29 April 2021

Academic Editor: Zhihan Lv

Copyright © 2021 Ying Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As a universal language in the world, English has become a necessary language communication tool under the globalization of trade. Intelligent, efficient, and reasonable English language-assisted learning system helps to further improve the English ability of language learners. English online learning dictionary, as an important query tool for English learners, is an important part of English online learning. This paper will optimize the design of English online learning dictionary system based on multiagent architecture. Based on the hybrid multiagent cooperative algorithm, this paper will improve the disadvantages of the online English learning dictionary system and propose an appropriate dictionary application evaluation function. At the same time, an improved reinforcement learning algorithm is introduced into the corresponding English online learning dictionary navigation problem so as to improve the efficiency of the online English learning dictionary system. English online learning dictionary is more intelligent and efficient. In this paper, the new online learning dictionary system optimization algorithm is proposed and compared with the traditional system algorithm. The experimental results show that the algorithm proposed in this paper solves the collaborative confusion problem of English learning online dictionary to a certain extent and further solves the corresponding navigation problem so as to improve the efficiency.

1. Introduction

English online learning based on Internet technology has penetrated into many aspects of English language learners. The continuous development and change of mobile terminals such as mobile phones and computers make online English learning more and more popular [1–3]. As an important part of English online learning, English online learning dictionary provides English learners with the functions of fast query, large capacity storage, and timely update iteration, which greatly facilitates English learners and improves the efficiency of English learning. However, traditional English online learning dictionaries are often limited to the dilemma of homogenization. Dictionaries can only be used as tools equivalent to traditional English dictionaries, and English learners will not actively explore them as the source of learning [4, 5]. Traditional English online dictionaries can only present mechanized content but cannot effectively coordinate the functions of online dictionaries, cannot actively guide English language learners to participate in the interactivity given by the query results, and cannot give users a reasonable and positive evaluation of learning effect [6]. Based on the above, the traditional one-way English online learning dictionary is too limited to the mechanical memory stimulation of English learners and cannot effectively use the existing advantages of resources to guide English learners to think and explore in depth [7, 8]. At the same time, the traditional English online learning dictionary relies too much on the mechanical query navigation system and ignores the typical extended application contained in the dictionary, which makes the navigation of English online learning dictionary too mechanical and simple, and the corresponding English online learning efficiency is extremely low [9].

The research status of the abovementioned English online learning dictionary system is an important problem that needs to be solved urgently. The conventional English online learning function is relatively single; long-term
learning cannot arouse students’ interest in learning; at the same time, the corresponding dictionary content cannot keep pace with the times so that the timeliness of learning is greatly reduced; in addition, the conventional online learning function is relatively simple. Online English learning also overemphasizes the subjectivity of tools but neglects the assistance of tools. In view of this situation and the essence of multiagent in English online learning, the main solution in the current industry is to make full use of the multiagent system to improve the dictionary system [10]. The mainstream improvement methods include the improvement of English learning knowledge map, personalized English online dictionary classification scheme, interactive English online dictionary system, and other forms [11]. Its core essence is mostly focused on the optimization of collaborative algorithms and navigation-related problems. However, on the whole, its corresponding collaborative optimization algorithms are mostly too monotonous, which cannot meet the essential requirements of English online learning dictionary. At the same time, its corresponding learning efficiency is low. There is no obvious effect on the enhancement of the corresponding collaborative ability. In terms of the theoretical basis of online English learner’s dictionary, the current mainstream basis mainly focuses on its core level, corresponding to the theoretical basis based on vocabulary memory. The corresponding core level mainly refers to the search level of English words, which is essentially the main function of English online dictionaries. However, traditional English online learner’s dictionaries often overemphasize the single function of searching words and neglect the expansion of word search level. At the corresponding system architecture design level, the current system design of online English learner’s dictionary is mainly based on two dimensions of subsystem architecture and corresponding functional architecture [12–14]. On the whole, the mainstream English online learner’s dictionaries are still lack of obvious improvement in collaborative ability and humanized navigation. Based on the multiagent framework of English online learner’s dictionary system optimization design, this paper will be based on the hybrid multiagent collaborative algorithm to improve that the online English learner’s dictionary system cannot cooperate, put forward the appropriate dictionary application evaluation function, and at the same time, in the corresponding English online learner’s dictionary navigation problem to introduce the improved reinforcement learning algorithm, so as to make the English online learner’s dictionary system in the future online dictionaries more intelligent and efficient [15–17]. In this paper, the new online learning dictionary system optimization algorithm proposed in this paper is compared with the traditional system algorithm. The experimental results show that the algorithm proposed in this paper solves the collaborative confusion problem of English learning online dictionary to a certain extent and further solves the corresponding navigation problem so as to improve the efficiency.

Based on the above analysis, the chapters of this paper will be arranged as follows. Based on the above research background and significance analysis, the structure of this paper is as follows: the second section of this paper will make a systematic analysis of the current research status of English online learner’s dictionary under the multiagent framework; the third section of this paper will focus on the system optimization technology of the improved English online learner’s dictionary and the optimization technology should include multiagent cooperative algorithm and reinforcement learning algorithm; the fourth section of this paper will be based on the third section of the relevant algorithms for experimental analysis; finally, this paper will be summarized.

2. Related Work Analysis: Research Status of English Online Dictionary System Based on Multiagent Structure

The English online dictionary system based on multiagent structure is mainly to solve the corresponding problems of multiagent cooperation ability and navigation application, so as to finally solve the corresponding efficiency problem. The mainstream improvement methods include the improvement of English learning knowledge map, personalized English online dictionary classification scheme, and interactive English online dictionary system. Its core essence is mostly focused on the optimization of collaborative algorithms and navigation-related problems. However, on the whole, its corresponding collaborative optimization algorithms are mostly too monotonous, which cannot meet the essential requirements of English online learning dictionary [18–21]. At the same time, its corresponding learning efficiency and efficiency are low. There is no obvious effect on the enhancement of the corresponding collaborative ability. Based on this system, the research focus is mainly on the multiagent level; a large number of scientific research workers or companies have conducted professional research and analysis; Japan researchers have proposed the behavior synthesis strategy of multiagent in learning, which emphasizes the corresponding adaptive learning ability of the agent. Based on this, they have developed the corresponding learning platform and achieved certain results [22–24]. In the improvement of the corresponding collaborative ability, the relevant European and American artificial intelligence experts put forward the advantages based on the genetic algorithm, ant colony algorithm, and the corresponding path planning algorithm. In order to further explore the intelligence and interactivity of the English online learner’s dictionary system, Chinese scholars propose the introduction of the reinforcement learning algorithm, which integrates deep convolution neural network and traditional reinforcement algorithm, and innovatively proposes the deep convolution algorithm to solve the problem of insufficient stability of some online English dictionaries. European and American scientists put forward the strategy of exploring while learning. In this kind of improved algorithm, the corresponding learning and interaction are carried out at the same time. After learning for a period of time, the dictionary system will track the data obtained from interactive learning. Finally, the stable output of the algorithm is achieved by comparing the network data before and
after tracking processing [25–28]. In the design of the overall platform, the relevant companies have launched the corresponding intelligent learning platform based on the Internet intelligent platform, which has launched personalized English learner’s dictionaries for different English learners so as to realize the personalized improvement of English learners’ ability and further improve the learning efficiency, but this method requires a lot of data analysis, and it can be avoided for a long time. It is not the trend of homogenization, thus losing the advantage and significance of personalization [29–33].

3. Optimization Analysis of English Online Learning Dictionary System Based on Multiagent Structure

The main part of this section mainly discusses and analyzes the core algorithm of the English online learning dictionary system based on multiagent structure. The core architecture of the algorithm proposed in this paper is shown in Figure 1. It can be seen from the figure that the corresponding core algorithms mainly include the multiagent cooperation algorithm and the improved algorithm based on it. At the same time, the corresponding system interface and the corresponding functional architecture of online learning English dictionary are also shown in Figure 1. In the whole architecture, this paper is mainly based on the hybrid multiagent collaborative algorithm to improve the poor performance of the online English learner’s dictionary system, and this paper proposed a suitable evaluation function of online English learner’s dictionary and introduced an improved reinforcement learning algorithm in the corresponding navigation problem of online English learner’s dictionary, so as to make the online English learner’s dictionary system more efficient. The dictionary system is more intelligent and efficient.

3.1. Collaborative Algorithm Analysis of English Online Learning Dictionary System Based on Multiagent Structure

In order to solve the problem of poor convergence caused by the corresponding collaborative factors in the traditional online English learner’s dictionary system, this paper designs a collaborative algorithm based on the theory of coevolution in biology. The corresponding algorithm function is described in formula (1), where the corresponding $M(a_1, a_2, a_3, \ldots, a_n)$ represents the multidimensional vector factors of a system. In the application of the online English learner’s dictionary system, using the ability of the collaborative algorithm, the corresponding n-dimensional vector is decomposed into corresponding s vectors, and then these vectors are optimized to make the final system tend to be consistent.

\[
\min \text{module: } M_{\text{min}} = m(a_1, a_2, a_3, a_4, a_5, \ldots, a_{n-1}, a_n).
\]

(1)

Based on the basic theory of coevolution corresponding to formula (1), the task of online English dictionary is decomposed, and the fitness function is allocated based on the collaborative relationship between the corresponding different tasks. The corresponding algorithm flow chart is shown in Figure 2. From the corresponding Figure 2, it can be seen that the operation details of the corresponding algorithm are as follows:

- **Step 1.** Initialization analysis is carried out for multiple populations corresponding to the online English learner’s dictionary, and each task cluster after decomposition is regarded as a member of the corresponding set.
- **Step 2.** Decompose the subset of each task subpopulation into corresponding set space.
- **Step 3.** Evaluate the fitness of the decomposed tasks, and take the corresponding fitness evaluation system as the fitness evaluation of the task solution.
- **Step 4.** The subcluster after task decomposition is further implemented by the corresponding standard genetic algorithm.

Based on the above improved cooperative algorithm, the consistency requirements of the English online learning dictionary system can be realized under the multiagent frame structure. Through the continuous decomposition of task subgroups, the independent analysis is carried out, and finally, the evaluation analysis is based on the corresponding subgroups. Compared with the traditional genetic algorithm, the improved algorithm results in the consistency of online English learning.

In the overall evaluation fitness function, this paper develops the corresponding evaluation function system to evaluate the contribution value of each agent. The corresponding algorithm details flow chart is shown in Figure 3, and the corresponding process details are as follows:

- **Step 1:** Decompose the corresponding tasks into populations for initialization, so as to regenerate several populations.
- **Step 2.** For any one of the populations, the adaptive degree of the individuals in the corresponding subgroup set is calculated by the adaptive degree function, and the individuals are arranged in order after the calculation.
- **Step 3.** Based on the corresponding elitist grouping strategy, combined with the traditional genetic algorithm, the corresponding individuals in each task subset make internal self evolution.
- **Step 4.** Perform independent internal evolution for n subgroups, and constantly judge whether the corresponding overall fitness calculation results meet the standards. If the corresponding standards cannot be met, the iterative calculation will be performed again.
- **Step 5.** Optimize the task cluster until the end of this round of coevolution and then the end of the algorithm.

3.2. Reinforcement Algorithm Analysis of English Online Learning Dictionary System Based on Multiagent Structure...
In order to solve the navigation problem of online learning English dictionary under multiagent [34–37], this paper improves the navigation problem based on improved reinforcement learning. Conventional reinforcement learning is mainly suitable for single agent architecture, and when the corresponding multiagent appears, its corresponding dynamic environment will have problems, and the corresponding navigation system will also have serious problems.

Different from the traditional reinforcement learning, the task after decomposition will be analyzed according to the corresponding state of English learners and the navigation function needed by English learners. The corresponding set space is composed of the subsets of each task subpopulation. The subcluster after task decomposition is further implemented by the corresponding standard genetic algorithm. The updating mode of the corresponding task network is shown in formula (2), and the corresponding self updating network is shown in formula (3).

\[
\max_{i=0} W'[(a, b); \eta_i] \Rightarrow W'[(a, b); \eta_i]. \tag{2}
\]

\[
W'[(a, b); \eta_i] \Rightarrow W[(a, b); \eta_i]. \tag{3}
\]

Different from the traditional reinforcement learning, the task after decomposition will be analyzed according to...
the corresponding environment, the corresponding state of current English learners, and the navigation function needed by English learners. At this time, when the corresponding agent needs to cooperate with other agents, the learning system will switch it to the cooperative processing state, while maintaining its communication state with other agents; otherwise, the corresponding task cluster will be processed independently as a separate individual. The corresponding flow chart of the improved reinforcement learning algorithm is shown in Figure 4. It can be seen from the figure that the corresponding reinforcement learning state can be divided into independent processing state and cooperative state. The corresponding independent processing state is mainly that there are no other agents between adjacent agents or in the effective area, and they all use their own effective network for calculation, and processing analysis of the cooperative state of agent is that different agents need to cooperate with each other, and their corresponding processing methods are processed by a certain agreement.

Figure 3: Flow chart of the collaborative algorithm evaluation system of the English online learning dictionary system under multiagent structure.

Figure 4: Flow chart of the reinforcement algorithm evaluation system of the English online learning dictionary system under multiagent structure.
3.3. Architecture Design of English Online Learning Dictionary System Based on Multiagent Structure. Based on the above theoretical analysis, this section will design its architecture. The corresponding architecture mainly includes learner management, English online learning dictionary function area, English word interpretation function, search function, and review mechanism function. The corresponding functional architecture is shown in Figure 5, from which we can clearly see the corresponding important functional areas and the corresponding detailed design ideas of the whole English online learning dictionary. In the whole system, the corresponding important functions are English word interpretation function, search function, and review mechanism function, which determine the essential function of the system.

At the corresponding user management level of English learners, the actual design mainly considers whether the learners are new users, whether they have relevant learning records, and how to deal with the registration and login of learners in a variety of ways.

In the corresponding functional area level of English online learner’s dictionary, the corresponding learning functions in this level mainly include English word grouping, card learning, paired test module, and formal learning module. At the same time, the corresponding functional area also adds the corresponding evaluation summary module. In the corresponding evaluation summary module, it mainly includes wrong question list, new word book, wrong question book, and bonus pool.

The corresponding functional level of English word interpretation is mainly to present the complete analysis of the English learners to the words they need to learn. Word interpretation is the key of this system. Based on the collaborative ability of this algorithm, we can realize the word interpretation and run the new word book at the same time. In the corresponding word interpretation function level, the corresponding word grammar and the corresponding test part are added. In order to further enrich the help of this function for English learners, this part adds the classic application background corresponding to the words, and the corresponding background display forms include videos and classic movie clips, which helps to increase the interest of English learners’ interactive learning and improve the learning efficiency of English learners.

At the element search function level, it mainly provides English word search service for English learners. Based on the algorithm proposed in this paper, it can achieve accurate matching of English words and reduce unnecessary search burden. At the same time, it can achieve associative matching of relevant English words with the reinforcement learning module, so as to enrich the corresponding search results and improve the search efficiency of English learners.

At the level of review mechanism, it is mainly to make use of the advantages of reinforcement learning and collaborative processing algorithm in the new system. Through reinforcement learning, the system can continuously summarize the learning problems of a single English learner and operate multiple system functions reasonably based on collaborative processing at the same time. Online English learner’s dictionary will carry out autonomous learning based on Ebbinghaus forgetting curve, so as to constantly remind English learners to review regularly.

4. Experiment and Analysis

This section is mainly for the experimental part. In order to verify the advantages of the corresponding English online learning dictionary system under the multiagent structure, this paper carries out the algorithm comparative experiment under the condition of keeping the environmental variables unchanged. The corresponding experimental environment parameters are as follows: five Android mobile phones, the corresponding mobile phones only install this algorithm system and the traditional algorithm system, and other parameters of the experimental platform strictly control the same variables. The experiment includes the security test and system performance test. In the corresponding performance test, it mainly includes the word search speed, the user’s satisfaction with the word definition, and the convergence of the corresponding algorithm.

The corresponding security test mainly includes software configuration security, software code security, component security, data transmission security, and personal information security. The corresponding test histogram is shown in Figures 6(a)–6(d). From Figure 6, it can be seen that the optimized system proposed in this paper has obvious advantages in the overall security of the system. At the same time, it has great advantages in the corresponding data security issues and is basically flat in the corresponding configuration security. From Figure 6 as a whole, online English learning under the traditional multiagent structure performs poorly in terms of security, especially for the data information security that users are very concerned about and the protection of user information security. For the optimization system proposed in this paper, its corresponding information security protection level has obvious advantages compared with the traditional system, but for the modern information society with more and more severe network attacks, this paper also needs to do real-time protection design.

The corresponding Figures 7(a) and 7(b) are the performance comparison curves of the system. It can be seen from the figure that the optimized and improved system proposed in this paper has obvious advantages in the corresponding word search speed, user satisfaction for word interpretation, and other hard indicators, among which the corresponding user satisfaction level has obvious advantages. In the corresponding Figure 7(b), the running convergence of the whole system is separately taken out for comparative analysis. From the actual corresponding Figure 7(b), it can be seen that the corresponding convergence speed of the improved algorithm is faster, and the corresponding system can better learn the habits and learning methods of English learners and formulate the corresponding learning strategies in time.

In order to further highlight the advantages of the corresponding reinforcement learning after the improvement of the whole system, the convergence of the improved
Figure 5: Architecture design of the English online learning dictionary system based on multiagent structure.

Figure 6: Continued.

(a) Safety factor (planning value)

- Experiment serial number: 1, 2, 3, 4, 5
- Values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
-安全因子(计划值)
- 实验序列号：1, 2, 3, 4, 5
- 值：0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Configure security
Component security
This paper
Tradition

(b) Open vulnerability factor

- Experiment serial number: 1, 2, 3, 4, 5
- Values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
- 开放脆弱性因子
- 实验序列号：1, 2, 3, 4, 5
- 值：0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

This paper
Tradition

Complexity
The improved reinforcement learning algorithm is compared with the traditional reinforcement learning algorithm, and the corresponding convergence results are shown in Figure 8. It can be seen from the figure that both the improved reinforcement algorithm and the traditional algorithm converge in the end, which achieves the best experimental effect. However, the improved reinforcement learning algorithm converges after about 500 experiments, while the traditional reinforcement learning algorithm needs about 800 times. The reason is that there is continuous learning and communication between the agents corresponding to the improved reinforcement learning, so it greatly reduces the time of agent learning alone and reduces the unnecessary waste of resources.

Based on the above experimental results and the corresponding data analysis, it can be seen that the proposed multiagent English online learning dictionary system has obvious advantages compared with the traditional English online learning dictionary system. The system can strongly adapt to the special needs of English learners and form the

![Figure 6](image_url)
Figure 6: Column comparison chart of the system security test: (a) configuration security and component security; (b) open loopholes; (c) software code security; (d) data communication security.

![Figure 7](image_url)
Figure 7: (a) Comparison of search speed of the corresponding English online learner's dictionary system based on multiagent structure. (b) Comparative histogram of user satisfaction of the corresponding English online learner's dictionary system under multiagent structure.
corresponding learning stickiness, which has obvious promotion significance and practical value.

5. Conclusion

This paper mainly analyzes the corresponding technology and research status of English online learning dictionary under the multiagent structure. Aiming at the inefficiency caused by the corresponding collaborative problem and the corresponding navigation problem, this paper makes a technical comparative analysis. Based on the existing problems, this paper uses the hybrid multiagent cooperative algorithm to improve the disadvantages of the online English learner’s dictionary system, proposes a suitable dictionary application evaluation function, and introduces the improved reinforcement learning algorithm in the corresponding English online learner’s dictionary navigation problem, so as to make the English online learner’s dictionary more intelligent and efficient. In order to verify the algorithm, based on the traditional algorithm, a comparative experiment is carried out on the basis of control variables. The analysis of the experimental results also shows the superiority of the algorithm. In the follow-up research, this paper will focus on how to realize the personalized setting of English online learning dictionary with lower cost and resource consumption, so as to improve the efficiency and advantages of English online learning more effectively. At the same time, it will also further analyze and research on the control of multiagent structural element variables.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The author declares that there are no conflicts of interest or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] J. Jin and X. Ma, “A multi-objective agent-based control approach with application in intelligent traffic signal system,” *IEEE Transactions on Intelligent Transportation Systems*, vol. 20, no. 10, pp. 3900–3912, 2019.
[2] N. M. D. Nascimento and L. C. Fiot, “An agent-based framework for self-adaptive and self-organizing applications based on the internet of things,” *Information Sciences*, vol. 378, no. 4, pp. 161–176, 2017.
[3] Y. Zhou, J. Wu, and C. Long, “Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework,” *Applied Energy*, vol. 222, no. 15, pp. 993–1022, 2018.
[4] X. Wang, Y. Hong, and H. Ji, “Distributed optimization for a class of nonlinear multiagent systems with disturbance rejection,” *IEEE Transactions on Cybernetics*, vol. 46, no. 7, pp. 1655–1666, 2016.
[5] Z. Li, S. Ding, and Y. Li, “A fast algorithm for learning overcomplete dictionary for sparse representation based on proximal operators,” *Neural Computation*, vol. 27, no. 9, pp. 1951–1982, 2015.
[6] T. H. Vu, H. S. Mousavi, V. Monga, G. Rao, and U. K. A. Rao, “Histopathological image classification using discriminative feature-oriented dictionary learning,” *IEEE Transactions on Medical Imaging*, vol. 35, no. 3, pp. 738–751, 2016.
[7] M. Thom, M. Rapp, and G. Palm, “Efficient dictionary learning with sparsity-enforcing projections,” *International Journal of Computer Vision*, vol. 114, no. 2–3, pp. 168–194, 2015.
[8] F. Auger and K. Vickery, “Application of computational fluid dynamics for the optimization of homogenization processes in wine tanks,” *Monthly Notices of the Royal Astronomical Society*, vol. 30, no. 2, pp. 103–112, 2015.
[9] A. Ben-Tal, E. Hazan, T. Koren, and S. Mannor, “Oracle-based robust optimization via online learning,” *Operations Research*, vol. 63, no. 3, pp. 628–638, 2015.
[10] R. D. Hegazy, O. A. Nasr, and H. A. Kamal, “Optimization of user behavior based handover using fuzzy Q-learning for LTE networks,” *Wireless Networks*, vol. 24, no. 2, pp. 481–495, 2018.
[11] R. Rahmani, I. Moser, and M. Seyedinmohammoudian, “Multiagent based operational cost and inconvenience optimization of PV-based microgrid,” *Solar Energy*, vol. 150, no. 7, pp. 177–191, 2017.
[12] H. Bai, G. Li, S. Li, Q. Li, Q. Jiang, and L. Chang, “Alternating optimization of sensing matrix and sparsifying dictionary for compressed sensing,” *IEEE Transactions on Signal Processing*, vol. 63, no. 6, pp. 1581–1594, 2015.
[13] Y. Zeng, Z. Zhang, and A. Kusiak, “Predictive modeling and optimization of a multi-zone HVAC system with data mining and firefly algorithms,” *Energy*, vol. 86, no. 6, pp. 393–402, 2015.
[14] A. Li, Z. Miao, Y. Chen, X.-P. Zhang, L. Zhang, and S. Chen, “Abnormal event detection in surveillance videos based on low-rank and compact coefficient dictionary learning,” *Pattern Recognition*, vol. 108, no. 1, Article ID 107355, 2020.
[15] X. Cao, H. Zhang, and X. Guo, “SLED: semantic label embedding dictionary representation for multilabel image annotation,” *IEEE Transactions on Image Processing*, vol. 24, no. 9, pp. 2746–2759, 2015.
[16] T. Suganuma, T. Oide, S. Kitagami, K. Sugawara, and N. Shiratori, “Multiagent-based flexible edge computing architecture for IoT,” *IEEE Network*, vol. 32, no. 1, pp. 16–23, 2018.
[17] A. Acan and N. Lotfi, “A multiagent, dynamic rank-driven multi-deme architecture for real-valued multiobjective
optimization,” *Artificial Intelligence Review*, vol. 48, no. 1, pp. 1–29, 2016.

[18] D. Vallejo, J. J. Castro-Schez, and C. Glez-Morcillo, “Multi-agent architecture for information retrieval and intelligent monitoring by UAVs in known environments affected by catastrophes,” *Engineering Applications of Artificial Intelligence*, vol. 87, Article ID 103243, 2020.

[19] J. Zhang, G. Wang, S. Yue, Y. Song, J. Liu, and X. Yao, “Multi-agent system application in accordance with game theory in bi-directional coordination network model,” *Journal of Systems Engineering and Electronics*, vol. 31, no. 2, pp. 279–289, 2020.

[20] X. Cai, H. Zhao, S. Shang et al., “An improved quantum-inspired cooperative co-evolution algorithm with multi-strategy and its application,” *Expert Systems with Applications*, vol. 171, Article ID 114629, 2021.

[21] X. Yan, J. Li, and B. Mei, “Collaborative optimization design for centralized networked control system,” *IEEE Access*, vol. 9, pp. 19479–19487, 2021.

[22] E. Xydas, C. Marmaras, and L. M. Cipcigan, “A multi-agent based scheduling algorithm for adaptive electric vehicles charging,” *Applied Energy*, vol. 177, no. 4, pp. 354–365, 2016.

[23] Guoxing and C. Wen, “Optimized formation control using simplified reinforcement learning for a class of multiagent systems with unknown dynamics,” *IEEE Transactions on Industrial Electronics*, vol. 67, no. 9, pp. 7879–7888, 2019.

[24] X. Cai, H. Zhao, S. Shang et al., “An improved quantum-inspired cooperative co-evolution algorithm with multi-strategy and its application,” *Expert Systems with Applications*, vol. 171, Article ID 114629, 2021.

[25] S. C. Ho, S. W. Hsieh, and P. C. Sun, "To activate English learning: listen and speak in real life context with an AR featured U-learning system," *Educational Technology & Society*, vol. 20, no. 2, pp. 176–187, 2017.

[26] C. Yan, C. L. Carger, and T. J. Smith, “Mobile-assisted narrative writing practice for young English language learners from a funds of knowledge approach,” *Language Learning & Technology*, vol. 21, no. 1, pp. 28–41, 2017.

[27] A. S. Thompson, “Language learning motivation in the United States: an examination of language choice and multilingualism,” *The Modern Language Journal*, vol. 101, no. 3, pp. 483–500, 2017.

[28] M. Gonzalez-Howard and K. L. Mcneill, “Learning in a community of practice: factors impacting English-learning students’ engagement in scientific argumentation,” *Journal of Research in Science Teaching*, vol. 53, no. 4, pp. 11–23, 2016.

[29] H.-J. Ma, L.-X. Xu, and G.-H. Yang, “Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems,” *IEEE Transactions on Cybernetics*, vol. 51, no. 4, pp. 1913–1928, 2021.

[30] J. Yang, Y. Zhao, J. Liu et al., “No reference quality assessment for screen content images using stacked autoencoders in pictorial and textual regions,” *IEEE Transactions on Cybernetics*, pp. 1–13, 2020.

[31] W. Wei, S. Liu, W. Li, and D. Du, “Fractal intelligent privacy protection in online social network using attribute-based encryption schemes,” *IEEE Transactions on Computational Social Systems*, vol. 5, no. 3, pp. 736–747, 2018.

[32] Y. Zhang, L. Sun, H. Song, and X. Cao, “Ubiquitous WSN for healthcare: recent advances and future prospects,” *IEEE Internet of Things Journal*, vol. 1, no. 4, pp. 311–318, 2014.

[33] W. Li and H. Song, “ART: an attack-resistant trust management scheme for securing vehicular ad hoc networks,” *IEEE Transactions on Intelligent Transportation Systems*, vol. 17, no. 4, pp. 960–969, 2016.