Hall effect in single crystal CeCu$_2$Si$_2$ under high pressure

S Araki1, Y Shiroyama1, T Shinohara1, Y Ito1, Y Ikeda1, T C Kobayashi1, S Seiro2, C Geibel2 and F Steglich2

1Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
2Max Planck Institute for Chemical Physics of Solids, Notnitzer Straße 40, 01187 Dresden, Germany
E-mail: araki@science.okayama-u.ac.jp

Abstract. Hall effect measurements were carried out under high pressures up to 4.9 GPa in a single crystal of CeCu$_2$Si$_2$. The temperature dependence of the Hall coefficient is interpreted to be composed of two peaks below room temperature. The high-temperature peak shows strong pressure dependence, where the peak shifts from 20 K at ambient pressure to 125 K at 4.9 GPa. This peak is a consequence of the anomalous Hall effect due to skew scattering. The low-temperature peak shifts from 5 K at ambient pressure to 15 K at 4.9 GPa and the magnitude of the peak shows the maximum around 4.1 GPa at which the superconducting transition temperature also reaches the maximum.

1. Introduction

The heavy-fermion compound CeCu$_2$Si$_2$ is a superconductor with $T_c \approx 0.6$ K at ambient pressure [1]. This unconventional superconductivity is considered to be mediated by antiferromagnetic (AFM) spin fluctuations around an AFM quantum critical point such as in CePd$_2$Si$_2$ and CeIn$_3$ [2]. With increasing pressure, T_c is enhanced above 3 GPa and becomes maximum around $P_c \approx 4.5$ GPa, although the AFM spin fluctuations are drastically suppressed under pressure [3]. The enhanced superconductivity soon disappears with further application of pressure above P_c. In the chemical substitution system CeCu$_2$(Si$_{1-x}$Ge$_x$)$_2$, the superconducting phase in the P-T phase diagram splits into two domes, which suggests a different origin for superconductivity at ambient pressure and high pressures around P_c [4].

Recently it was suggested theoretically that the possible origin of the enhancement of T_c around P_c is critical valence fluctuations [5, 6]. The T-linear dependence of resistivity and the enhancement of the residual resistivity around P_c were explained by the valence fluctuation scenario [5]. The NQR study at 4.2 K revealed the downward deviation of $^{63}v_Q$ of Cu-nuclei above 3.5 GPa from the linear pressure dependence which is predicted from the volume compression [3]. This result may reflect the change of valence. The pressure dependence of the Ce valence at 14 K was recently measured by XAS [7]. The valence of Ce smoothly decreases with increasing pressure and no sharp valence transition at P_c was observed. In summary, although a number of low-temperature properties suggest the presence of a valence transition, no direct evidence of such a transition has been obtained so far.
The Hall coefficient reflects the transport properties of carriers and is expected to be sensitive to the valence instability. We have measured the Hall coefficient in polycrystalline CeCu$_2$Si$_2$ under pressure [8]. The temperature dependence of the Hall coefficient has a peak at around 10 K. The magnitude of the Hall coefficient at the peak temperature shows the decreasing trend with increasing pressure and is enhanced from 3.1 to 4.2 GPa at which T_c is enhanced. In this study, the Hall effect was measured under high pressure in single crystal of CeCu$_2$Si$_2$.

2. Experimental

The single crystal of S-type CeCu$_2$Si$_2$ was grown by a self-flux method combined with a Bridgman cooling technique [9]. The pressure up to 4.9 GPa was applied in an indenter cell [10] with Daphne oil 7474 [11] as a pressure transmitting medium. The pressure was determined from the superconducting transition temperature of Pb [12]. The Hall voltage V_H was measured down to 1.4 K with AC resistance bridge in the field-sweep measurement. External magnetic field was applied along the [100] direction, which is the hard axis of magnetization. The Hall resistivity is given by

$$R_H(H) = f(\frac{V_H(H) - V_H(-H)}{2I})$$

where a and I are the thickness of the sample and the electric current, respectively. The Hall coefficient R_H was obtained from the slope of $H(H)$. The electrical resistivity was measured up to 4.5 GPa for the sample cut from the same grain to check the T_c using a dilution refrigerator. The pressure dependence of T_c in the present sample reproduces the previous result [5].

3. Results and Discussion

![Figure 1](image1.png)
Figure 1. Temperature dependence of the Hall coefficient R_H in CeCu$_2$Si$_2$ at various pressures.

![Figure 2](image2.png)
Figure 2. Hall coefficient R_H as a function of $\rho \chi$ in CeCu$_2$Si$_2$ at ambient pressure.

Figure 1 shows the temperature dependence of the Hall coefficient R_H in CeCu$_2$Si$_2$ at various pressures. The Hall resistivity increases linearly with increasing field up to 5 T in the present experimental range of temperature and pressure. The R_H at ambient pressure increases with decreasing temperature and reaches the maximum at \sim 5 K. This behavior is almost the same as our previous result in the polycrystalline sample [8]. In heavy fermion systems, the anomalous Hall effect R_H^a due to skew scattering causes this kind of strong temperature dependence. The R_H^a is theoretically proportional to the magnetic susceptibility χ [13] or the product of χ and the electrical resistivity ρ [14] at temperatures higher than the coherence temperature of the Kondo effect. The R_H^a decreases with decreasing temperature below the coherence temperature.
The peak temperature of \(R_H \) roughly corresponds to the coherence temperature. The \(R_H \) in CeCu_2Si_2 at ambient pressure is plotted against \(\rho \chi \) in Fig. 2. The linear relation between \(R_H \) and \(\rho \chi \) holds above 100 K.

The \(R_H \) below 100 K deviates from the linear dependence at higher temperatures. The \(R_H \) between 35 and 14 K is proportional to \(\rho \chi \) with different slope above 100 K. Note that 14 and 100 K correspond to the characteristic temperatures \(T_{\text{max}}^H \) determined from the peaks in the resistivity, respectively. The \(R_H \) deviates from the linear relationship below 14 K. The \(\rho \chi \) in this temperature region is expected to decrease with decreasing temperature because \(T_{\text{max}}^H \) corresponds to the coherence temperature. Therefore, the maximum of \(R_H \) at 5 K cannot be assigned to the contribution of \(R_H^0 \) due to skew scattering.

The \(R_H \) above 3.4 GPa clearly has two peaks, which are observed, for example, at \(T_{m}^L = 9 \) K and \(T_{m}^H = 105 \) K at 4.3 GPa, as shown in Fig. 1. The low-temperature and high-temperature peaks are denoted as \(T_{m}^L \) and \(T_{m}^H \), respectively. Note that the high-temperature peak at \(T_{m}^H \) was not clearly seen up to 4.8 GPa in our previous report for polycrystalline sample [8]. This difference may be caused by the anisotropic Hall coefficient. The pressure dependences of \(T_{m}^L \) and \(T_{m}^H \) are summarized in Fig. 3 (a). The \(T_{m}^L \) and \(T_{m}^H \) below 2.6 GPa, at which two peaks are not clearly separated, are determined from the peak and the inflection point of \(R_H \), respectively.

The pressure variation of \(T_{m}^H \) almost follows that of \(T_{1}^{\text{max}} \). Therefore, the high-temperature peak of \(R_H \) at \(T_{m}^H \) is likely due to the anomalous Hall effect.

Figure 3. Pressure dependence of (a) \(T_{m}^H \), \(T_{m}^L \) in \(R_H \) and \(T_{m}^{\text{max}} \) in \(\rho \) (see text), and (b) the magnitude of \(R_H \) at \(T_{m}^H \) and \(T_{m}^L \). The dotted curves are guide to eye.

Figure 4. Pressure dependence of (a) \(T_c \) and (b) residual resistivity \(\rho_0 \) (solid circle) and resistivity at 2 K (open circle). The dotted curves are guide to eye.

The magnitude of \(R_H \) at \(T_{m}^L \), shown in Fig. 3 (b), is almost unchanged up to 1.9 GPa, and decreases with increasing pressure up to 3.4 GPa. Then, it increases rapidly and exhibits the maximum at 4.1 GPa. The \(T_c \) of our sample reaches its maximum value at around 4.0 GPa, as shown in Fig. 4 (a). Therefore, we conclude that the enhancement of both the \(R_H \) at \(T_{m}^L \) and the \(T_c \) under pressure occurs simultaneously. The temperature \(T_{m}^L \) shows a minimum at 4.1 GPa and increases above 4.1 GPa, as shown in Fig. 3 (a). These results imply the existence...
of fluctuations around 4.1 GPa. The residual resistivity of this sample reaches the maximum at 4.6 GPa, as shown in Fig. 4 (b). This implies the existence of $P_c = 4.6$ GPa within the valence fluctuations scenario. The valence fluctuations may also influence the R_H. However, the pressure at which R_H is enhanced is slightly lower than the pressure at which ρ_0 reaches the maximum.

The enhancement of the R_H due to AF fluctuations was reported for CeRhIn$_5$ [15]. The R_H of CeRhIn$_5$ is critically enhanced around 2 GPa, at which the AF metallic and superconducting states are separated. The enhancement of the R_H decreases with increasing the magnetic field due to the suppression of AF fluctuations. In the case of CeCu$_2$Si$_2$, we did not observe a field dependent R_H. Therefore, the possibility of the AF fluctuations for the origin of the enhancement of the R_H at 4.1 GPa is ruled out.

4. Conclusion

At ambient pressure, the temperature dependence of the Hall coefficient R_H along [100] has a linear relation to ρ_X above 100 K, which is explained by the sum of the ordinary Hall coefficient and the anomalous Hall coefficient due to skew scattering. The maximum in R_H at 5 K is not assigned to the anomalous Hall effect. The R_H under pressure above 3.4 GPa exhibits two peaks. The pressure dependence of the high-temperature peak roughly follows that of T_{c1}^{\max} in the resistivity. The origin of high-temperature peak is assigned to the anomalous Hall effect due to skew scattering. The magnitude of R_H at the low-temperature peak increases with increasing pressure above 3.4 GPa and reaches the maximum at 4.1 GPa, at which T_c also reaches its maximum. This result indicates the close relationship between the enhancement of R_H at low temperatures and the increase of T_c.

Acknowledgments

This work was partially supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Heavy Electrons” (No. 20102008) from the Ministry of Education, Culture, Sports, Science and Technology. This work was also supported by Scientific Research B (20340090) from the Japan Society for the Promotion of Science.

References

[1] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W and Schäfer H 1979 Phys. Rev. Lett. 43 1892.
[2] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W and Lonzarich G G 1998 Nature 394 39.
[3] Fujiwara K, Hata Y, Kobayashi K, Miyoshi K, Takeuchi J, Shimaoka Y, Kotegawa H, Kobayashi T C, Geibel C and Steglich F 2008 J. Phys. Soc. Jpn. 77 123711.
[4] Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G and Steglich F 2003 Science 302 2104.
[5] Holmes A T, Jaccard D and Miyake K 2004 Phys. Rev. B 69 024508, and references therein.
[6] Miyake K 2007 J. Phys.: Condens. Matter 19 125201.
[7] Rueff J-P, Raymond S, Taguchi M, Sikora M, Itié J-P, Baudelet F, Braithwaite D, Knebel G and Jaccard D 2011 Phys. Rev. Lett. 106 186405.
[8] Araki S, Shiroyama Y, Ikeda Y, Kobayashi T C, Seiro S, Geibel C and Steglich F 2011 J. Phys. Soc. Jpn. 80 SA061.
[9] Seiro S, Deppe M, Jeewan H, Burkhardt U and Geibel C 2010 Phys. Stat. Solid. B 247 614.
[10] Kobayashi T C, Hidaka H, Kotegawa H, Fujiwara K and Eremets M I 2007 Rev. Sci. Instrum. 78 023909.
[11] Murata K et al 2008 Rev. Sci. Instrum. 79 085101.
[12] Eiling A and Schilling J S 1981 J. Phys. F 11 623.
[13] Fert A and Levy P M 1987 Phys. Rev. B 36 1907.
[14] Kontani H and Yamada K 1994 J. Phys. Soc. Jpn. 63 2627.
[15] Nakajima Y et al 2007 J. Phys. Soc. Jpn. 76 024703.