Influence of light-irradiated *Noccaea caerulescens* on the characteristics of dissolved organic matter in its rhizospheric soil during phytoremediation

Yao Niu 1 · Zhansheng Wang 2 · Hanfei Wang 1 · Xiaoying Yang 1 · Min Cao 3 · Jie Luo 1

Received: 3 February 2021 / Accepted: 31 July 2021 / Published online: 10 August 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
It has been observed that suitable light irradiation can improve the phytoremediation efficiency of various plants by enhancing their growth rate and metal uptake capacity. However, the mechanisms underlying the effects of light irradiation on metal mobilization and translocation in soils have rarely been reported. This experiment was conducted to evaluate the variation in dissolved organic matter (DOM) in the rhizosphere of *Noccaea caerulescens* (formerly *Thlaspi caerulescens* J. & C. Presl) when irradiated with different combinations of red (0, 25, 50, 90, and 100% red) and blue light. *N. caerulescens* was induced to secrete significantly more DOM, relative to the control, into its rhizosphere after being irradiated with pure red light and other red light combinations; this increased the bioavailability of soil Cd. Moreover, the concentrations and proportions of the hydrophilic DOM fractions, particularly hydrophilic acid, which exhibited a high affinity for Cd, increased with increasing ratios of the red light. Furthermore, DOM secreted because of the light irradiation treatments exhibited a significantly higher Cd extraction ability compared with that of the untreated control; this consequently increased the Cd uptake capacity of *N. caerulescens*. The results demonstrated that the secretion of more DOM, particularly hydrophilic acid, plays a pivotal role in improving the phytoremediation efficiency of *N. caerulescens*.

Keywords Phytoremediation · Light irradiation · Dissolved organic matter · Fractionation · Cd

Introduction

Soil plays an essential role in supporting ecosystems and the human society by providing a habitat for the majority of the Earth’s species and serving as a medium for crop production (Hou et al. 2020). A national evaluation of soil environment reported that measurements for approximately 19% of the area of farmland exceeded the contamination thresholds in China (Zhao et al. 2015). Moreover, Cd, in particular, ranked at the top in comparison with other heavy metals such as Cu, Cr, Ni, and Hg (Cui et al. 2020).

Heavy metals are one of the most dangerous contaminants because of their great persistence, high biotoxicity, and high bioavailability in various environmental media. They pose great threats to the health of higher animals like humans through the food web (Zeng et al. 2019). Cd is ranked seventh on the priority list of hazardous materials established by the US Environmental Protection Agency. It is a highly toxic metal and can enter the human organs via food consumption (Cai et al. 2015). Soil pollution has recently gained increasing interest because it causes a threat to food security. In China, the area of derelict land increases at the rate of 46,700 ha every year, and food security has deteriorated acutely with the pollution of agricultural lands (Hou and Li 2017). Therefore, soil remediation measures are urgently required. The Chinese government has decontaminated approximately 700,000 ha of heavily polluted fields in 2020 and plans to restore approximately 90% of the contaminated fields within a decade (Hou et al. 2020). Some methods such as isolation, chemical leaching, inerting, and electrokinetic remediation have been developed to clean the metal-impacted fields. However, these
technologies are expensive and might cause soil degradation, thus resulting in secondary pollution by leaching (Robinson et al. 2000).

Alternatively, phytoremediation is more acceptable owing to its environmental friendliness and economic feasibility. It utilizes plants to decrease the activity and toxicity of metals in soils (phytostabilization) or to help metals migrate from soils to other harvestable parts (phytoextraction). However, the low growth rate of plants, especially hyperaccumulators, restricts the wide use of phytoremediation in real fields. Some supplementary measures such as organic acid application, microorganism inoculation, electric field addition, and genetic modification have been taken to improve the metal accumulation capacity and growth rate of plants (Mahmood-ul-Hassan et al. 2017; Xiao et al. 2017). The application of these methods not only increases the cost of phytoremediation but also induces potential environmental risks such as metal leaching, acidification, and soil erosion (Luo et al. 2016).

It has been reported that suitable light irradiation can improve the growth rate and enhance the nutrient extraction ability of various plants. Moreover, light irradiation is a physical trigger in plants rather than a chemical trigger (Luo et al. 2020). As a component of light (intensity, wavelength, and duration), light wavelength is a critical environmental factor for plant growth. For instance, plants tend to absorb red and blue light for photomorphogenesis and photosynthesis, while they reflect green light (Johkan et al. 2012). Generally, blue light inhibits root elongation and increases leaf development, while red light stimulates fibrous root emergence and decreases shoot expansion (Bennie et al. 2016). Light wavelength can vary plant growth and morphology significantly. For instance, Hogewoning et al. (2010) found that the application of a small dose of blue light (7 μmol m−2 s−1) can fully offset the physiological disorders on Cucumis sativus L. induced by monochromatic red light. Previous studies focused only on the effects of light spectrum on plants themselves. The influence of light spectrum on soil characteristics, especially on the concentration and fractionation of dissolved organic matter (DOM) in soil, has rarely been reported. DOM can activate metals in the soil by generating soluble complexes with them or by competing with metals for adsorption sites on exchangeable surfaces of soil particles (Chen et al. 2018).

The high metal affinity of hydrophilic DOM fractionations, especially hydrophilic acid, has been fully revealed (Chefetz et al. 1998; Guggenberger et al. 1994). However, variations in concentrations and fractionations of DOM in rhizosphere soil of N. caerulescens have not been reported. Li et al. (2013) studied the influences of elevated CO2 on the rhizosphere characteristics of Sedum alfredii Hance, a Cd hyperaccumulator, and found that elevated CO2 increased the content of hydrophilic acid in the rhizosphere of the species. It is safe to hypothesize that under the influence of light irradiation, plants can alter the content and fractionation of DOM in the rhizosphere because light acts a critical role in modulating photosynthesis and morphogenesis of plants. Therefore, the major goals of this study were to (1) estimate the influence of light irradiation on variations in pH, DOM concentrations, and DOM fractionations in the rhizosphere soil of N. caerulescens; (2) evaluate the Cd extraction capacity of DOM from different light treatments; and (3) assess the impacts of soil pH and DOM variations on Cd phytoremediation efficiency of N. caerulescens.

Materials and methods

Source of soil sample

The soil samples remediated in this experiment were collected from Guiyu, an electronic waste (e-waste) recycling town located in southern China. Soils in the town are heavily polluted by metals and persistent organic pollutants due to the prevalence of dismantling and recycling activities without essential protections or regulations (Jiang et al. 2019). The e-waste recycling business is detrimental to the local inhabitants, particularly vulnerable populations like children and pregnant women (Kim et al. 2019). Therefore, it is necessary to remediate the soils in the town. Considering the topography and background of the study region, soil from 200 sampling points (depth 0–20) was taken. After drying on a filter paper, unwanted materials including stone and organic debris were removed using 2-mm meshes. The sieved soils were homogenized to obtain a composite substrate that represented the overall characteristics of the region. The mixed substrate was underwent three cycles of wetting and drying to ensure an even distribution of Cd in it. When chemical equilibrium was achieved, the composite soil was divided into aliquots of 6 kg each for plant growth. The Cd content did not vary significantly due to complete homogenization. It ranged from 1.02 to 1.18 mg kg−1 with an average value of 1.13 mg kg−1 and a variable coefficient of 5.6%. The content severely exceeded the statutory value of 0.3 mg kg−1 stipulated by the Ministry of Ecology and Environment of China.

Experimental design

Previous studies have shown very different accumulation capacities of Cd and Zn according to the population of N. caerulescens (Jacobs et al. 2017; Sterckeman et al. 2017). Plant seeds in the present study were the offspring of Viviez ecotype which is often used to clean Cd/Zn-contaminated soils in a mining area. The species was identified by Yao Niu and deposited in the Herbarium of the College of Resources and Environment, Yangtze University, with voucher id NNSF009. Frérot et al. (2005) observed that the offspring from metallicolous ecotypes of N. caerulescens retained high tolerance and hyperaccumulation capacity. Plant seeds were surface-sterilized using 5% HClO. After
cleaning with deionized water to remove the residual disinfectant, the seeds were grown in Petri dishes under an 8/16-h dark/daytime rhythm. During the daytime, the intensity of light was set at 220 μmol m⁻² s⁻¹.

After the emergence of four true leaves, ten plants with similar morphophysiological characteristics were transplanted into soil-padded containers and were used in the analysis processes to ensure the accuracy of the measurement.

Cd analysis

The harvested *N. caerulescens* was separated into roots and aerial parts. Roots were cleaned using tap water to eliminate foreign materials and then immersed in a 10-nM ethylenediaminetetraacetic acid (EDTA) solution to remove the adsorbed ions. The shoots were rinsed using tap water and then soaked in CaCl₂ to remove the adsorbate. The cleaned samples were dried at 70 °C in an oven until no weight change was observed. Rhizosphere soil in each container was sampled. Five replicates were performed for each light treatment including the control. The soil pH was analyzed using a pH meter in a 1:2.5 ratio of CaCl₂ and soil suspension.

Content and fraction of DOM

The DOM in the soil was extracted according to the method described by Jones and Willett (2006). Briefly, 2.5 g of the composite soil was shaken with 25 mL of deionized water for 2 h and then centrifuged at 10,000×g for 20 min. The solution was filtered through a 0.45-μm filter, and the concentration of DOM in the filtrate was measured using a total organic carbon (TOC) analyzer (TOC-5000; Shimadzu, Japan). Furthermore, six DOM fractions including hydrophobic acid (HoA), hydrophobic base (HoB), hydrophobic neutral (HoN), hydrophilic acid (HiA), hydrophilic base (HiB), and hydrophilic neutral (HiN) were extracted using the cation exchange resins Amberlite XAD-8, Amberlite XAD-4, and Duolite A-7, according to the methods described by Leenheer and Croué (2003). The concentrations of these fractions in the extraction solution were determined using the same TOC analyzer.

Cd extraction ability

DOM extracted from the rhizosphere of *N. caerulescens* under different light irradiation treatments were filtered using an Amberlite cation exchange H resin (Amberlite IR120, Na form; Sigma-Aldrich, USA) to eliminate cations adsorbed on the DOM. After dilution with deionized water to 100 mg L⁻¹, 20 mL of the DOM dilution was centrifuged with 2 g of the composite soil polluted with Cd at 8000×g for 30 min to extract Cd in the soil. The suspension was sieved using a 0.45-μm membrane, and the Cd content in the filtrate was analyzed using ICP-MS. Deionized water was used as a control to extract Cd in the composite soil. Two reference materials, GBW07410 for the soil and GBW10010 for the plant, were used in the analysis processes to ensure the accuracy of the measurement.

Statistical analysis

All data in this study are exhibited as the average of the replicates. The influences of light irradiation on the dry weight of *N. caerulescens*, DOM content and fraction, and Cd extraction ability of DOM from different treatments were determined using one-way analysis of variance. SPSS 15.0 was used for the statistical analyses.

Results and discussion

Variation in soil pH

At the termination of the experiment, the initial soil pH decreased from 6.2 ± 0.2 to 5.5 ± 0.2, 5.6 ± 0.3, 5.2 ± 0.2, 5.1 ± 0.2, 5.5 ± 0.4, and 5.6 ± 0.2 in the control, R₂B₁₀₀, R₂₅B₇₅, R₅₀B₅₀, R₉₀B₁₀, and R₁₀₀B₀ light treatment groups,
respectively, with significant differences. Strobel et al. (2005) revealed the influencing mechanism of decreasing pH on soil Cd mobilization. Based on equation 4 in that paper, the distribution coefficients of Cd decreased from 3784.4 kg\(^{-1}\) before plant growing to 1862.1, 2060.6, 1374.0, 1241.7, 1862.1, and 2060.6 kg\(^{-1}\) in the control, \(R_{60B100}\), \(R_{50B75}\), \(R_{90B50}\), \(R_{90B10}\), and \(R_{100B0}\) light treatment groups, respectively. This result indicates that the decreases in soil pH under different light treatments were a critical influencing factor in Cd mobilization in the present study. However, inconsistent findings have been observed in the literature for the changes in the pH of plant-growing rhizospheres. For instance, *Nicotiana tabacum* L. reduced the soil pH (Loosemore et al. 2004), as expected, while *Brassica juncea* (L.) Czern increased the pH in both alkaline and acidic soils (Kim et al. 2010). Variation of the soil pH is an intricate procedure determined by soil characteristics, plant species, and microbial activities. In general, Cd exists as an oxyanion in the soil, and plants can release OH\(^{-}\) into the soil. This results in an increase in the soil pH that helps maintain the charge equilibrium of the soil when the soil Cd oxyanion is extracted. In contrast, plants can secrete organic acids to decrease the soil pH. The results suggested that soils may buffer the hyperaccumulator-induced pH variations via different pathways, and the reduction of soil pH might not be a unique mechanism for Cd mobilization in the rhizosphere of *N. caerulescens*. Especially, Christensen and Christensen (2000) reported that the characteristics of soil DOM control the bioavailability and toxicity of metal when the pH was greater than 5.5. Thus, the concentration and fractionation of DOM can influence the bioavailability of Cd in soil, and these parameters have been discussed in this study.

Characteristics of DOM

As shown in Fig. 1, the initial DOM concentration in the composite substrate was significantly lower than that in all the growing treatments of *N. caerulescens* including the control. This result indicated that the cultivation of this species increased the content of DOM in its rhizospheric soil via the secretion of organic materials into the soil. Although the secretion of organic materials by *N. caerulescens* has not been characterized before, the finding of the present study was consistent with the results of previous studies using a Cd hyperaccumulator (Li et al. 2013) and a Cd phytostabilizer (Zhan et al. 2018). Relative to the control, the \(R_{60B100}\) and \(R_{50B75}\) light treatments slightly decreased the DOM levels, while the \(R_{50B50}\), \(R_{90B10}\), and \(R_{100B0}\) light treatment significantly increased the concentrations of DOM soil by 19.0, 26.5, and 46.9%, respectively, compared with the control. No significant differences were observed in the soil DOM levels of the \(R_{50B50}\) and \(R_{90B10}\) light treatment groups; \(R_{100B0}\) had significantly higher soil DOM levels than the \(R_{50B50}\) and \(R_{90B10}\) light treatment groups (Fig. 1). Martin et al. (2017) found that the exudation of dissolved organic carbon (DOC) and protein-like DOM by *Halophila ovalis* (R. Br.) Hook. f. grown under continuous light irradiation was more than that in the control; this supports the current findings.

The fractionations of DOM in the rhizosphere of *N. caerulescens* exhibited different concentration characteristics under different light irradiation treatments. Generally, the concentrations of all six fractions, especially the hydrophilic fraction consisting of HoA, HoB, and HoN, increased with increasing proportions of the red light (Fig. 2). However, monochromatic \(R_{60B100}\) and 75% \(R_{50B75}\) blue light irradiation treatments showed slightly lower concentrations of DOM fractions than the control. In addition, the concentration of acid fractions consisting of HiA and HoA was significantly higher in the \(R_{100B0}\) light treatment group than in other treatment groups (Fig. 2). The proportion of hydrophilic fractions consisting of HiA, HiB, and HiN in the rhizosphere of *N. caerulescens* increased with an increase in the ratio of the red light until it reached a peak of 64.7% at \(R_{25B75}\). At this point, the proportions reduced significantly. Because the metal affinity of the hydrophilic fractions was higher than that of the hydrophobic fractions (Huang et al. 2019), we hypothesized that the chemical properties of DOM extracted from soils under the \(R_{50B10}\) and \(R_{100B0}\) light treatment groups were more propitious for the activation of soil Cd. A Cd extraction experiment was performed to verify the correctness of this assumption.

Cd extraction ability of DOM

The DOM from soils planted with *N. caerulescens* had a significantly higher Cd extraction capacity relative to that of deionized water regardless of light irradiation; however, the exception was \(R_{60B100}\) light treatment group (Fig. 3). The amount of Cd extracted using DOM from the control, \(R_{60B100}\), \(R_{50B75}\),
The Cd decontamination effect was determined by the dry weight and Cd uptake capacity of the species. The dry weight of the plant roots and aerial parts in the present experiment ranged from 19 to 49 mg and 43 to 125 mg (Fig. 4a), respectively. The lowest root dry weight was observed under monochromatic blue light irradiation (R0B100), while the lowest dry weight of the aerial part was observed under monochromatic red light irradiation (R100B0). The R50B50 light treatment group had the highest dry weight among all species; the dry weights were successively lower in R0B100, R50B75, R50B100, control, and R100B0 light treatment groups. In general, R100B0 inhibited the growth of the aerial parts and stimulated the development of the belowground parts. The reduced dry weight of the aerial parts could not be compensated by the enhanced root biomass. Lower growth rate and lower biomass generation ability in plants grown under monochromatic red light have been reported for different plant species. Hogewoning et al. (2010) found that C. sativus had a lower dry weight when grown under monochromatic red light compared to its dry weight when grown under red-blue light. They attributed the relatively low growth rate of the species to disorders in the development of the photosynthetic apparatus and suggested that a small dose of blue light could alleviate the symptoms.

The concentration of Cd in the aerial parts of N. caerulescens increased with a decrease in the ratio of the red light. This trend continued until it reached a peak at R50B50 and then reduced slightly (Fig. 4b). The mechanisms underlying the effects of light irradiation on metal accumulation in plant tissues have rarely been reported. Dong et al. (2014) have reported that a suitable combination of red and blue light improves the activities of the antioxidant enzymes in the plants. This removes the oxygen free radicals resulting from metal stress and helps the plants accumulate a greater amount of metals without obvious oxidative damage. This result can at least partly explain why the R50B50 light treatment group had a higher Cd content in the plant tissues compared with the contents observed in other treatments.

Phytoremediation efficiency

Monochromatic red light resulted in the highest Cd content in roots of N. caerulescens, consistent with the results of the variations in DOM content, fractionations, and Cd extraction capacity under different light treatments. Unfortunately, R100B0 resulted...
in the lowest dry weight and Cd content of plant shoots. The application of blue light offset the negative effects of monochromatic red light on the biomass generation and Cd accumulation of *N. caerulescens*. This finding can be supported by the results of Li et al. (2010) who suggested that red light can inhibit the development of plant shoots by obstructing the biosynthesis of chlorophyll and carotenoid and blue light can increase the transpiration rate of by stimulating the opening of stomata. Moreover, transpiration rate is regarded as an important influencing factor in the transport of metals from plant roots to shoots (Liu et al. 2016; Wan et al. 2015).

The Cd uptake efficiency of *N. caerulescens* was calculated as the product of the dry weight and Cd content of the species (Fig. 4). Based on the calculations, 5.5, 9.4, 7.6, 16.4, 9.3, and 3.7 μg of Cd was extracted from the control, R0B100, R25B75, R50B50, R90B10, and R100B0 light treatment groups, respectively. Considering the initial soil Cd content (1.13 mg kg⁻¹), 183, 107, 132, 61, 108, and 268 planting cycles of *N. caerulescens* were required to remove the excess Cd in the composite soil in the control, R0B100, R25B75, R50B50, R90B10, and R100B0 light treatment groups, respectively. Under suitable growing conditions, three planting and harvesting cycles can be carried out in 1 year, and 61, 36, 44, 21, 36, and 90 years would be required to clean the soil in the control, R0B100, R25B75, R50B50, R90B10, and R100B0 light treatment groups, respectively. Suitable light irradiation only required one-third phytoremediation time when compared to that of the control. This study verified that light treatment is an efficient method to enhance the phytoremediation efficiency of *N. caerulescens* from the perspective of soil DOM concentration and fractionation. It is worth noting that, although the chemical properties of DOM extracted from the soils in the R100B0 light treatment group were more favorable for the activation of soil Cd, optimal phytoremediation was not observed with this irradiation strategy. This may be due to the physiological responses of *N. caerulescens* to light irradiation, and this mechanism should be discussed in detail in future work.

Conclusion

This work showed that light irradiation increased the phytoremediation efficiency of *N. caerulescens* via increasing its dry weight and Cd uptake capacity. Relative to the control, the content and acid fraction of DOM were enhanced by red light irradiation. The Cd extraction capacity of DOM in R90B10 and R100B0 were significantly higher than other treatments, increasing Cd content in *N. caerulescens* roots. The present experiment exhibits that the main mechanism to increase Cd phytoremediation efficiency of *N. caerulescens* is the alteration in concentration and fraction of DOM in the rhizosphere solution, which increases Cd activity in soils.

Author contribution Conceptualization: Y.N., J.L. Data curation: Z.W., J.L. Methodology: H.W. Funding acquisition: J.L. Writing—original draft: Y.N., X.Y., J.L. Writing—review and editing: M.C. All authors read and approved the final manuscript.

Funding The authors thank the National Natural Science Foundation of China (Project No. 21876014) for financial support to carry out this study.

Data Availability The datasets used or analyzed during the current study are available from the corresponding author on reasonable request. All data generated or analyzed during this study are included in this published article.

Declarations

Ethical approval Not applicable. This work did not describe experiments with animals, human subjects, or human tissue samples.

Consent to participate Not applicable. This work did not describe experiments with animals, human subjects, or human tissue samples.

Consent to publish The manuscript entitled, “Influence of light-irradiated Noccaea caerulescens on the characteristics of dissolved organic matter in its rhizospheric soil during phytoremediation” is prepared in accordance with the Guide for Authors available on the journal’s
Conflict of interest The authors declare no competing interests.

References

Bennie J, Davies TW, Cruse D, Gaston KJ (2016) Ecological effects of artificial light at night on wild plants. J Ecol 104:611–620
Cai LM, Xu ZC, Qi JY, Feng ZZ, Xiang TS (2015) Assessment of exposure to heavy metals and health risks among residents near Tonglushan mine in Hubei, China. Chemosphere 2015:127–135
Chefez B, Hadar Y, Chen Y (1998) Dissolved organic carbon fractions formed during composting of municipal solid waste: properties and significance. Acta Hydrochim Hydrobiol 26:172–179
Chen Y, Shi J, Tian X, Jia Z, Wang S, Chen J, Zhu W (2018) Impact of dissolved organic matter on Zn extractability and transfer in calcareous soil with maize straw amendment. J Soils Sediments 19:774–784
Cui H, Li H, Zhang S, Yi Q, Zhou J, Fang G, Zhou J (2020) Bioavailability and mobility of copper and cadmium in polluted soil after phytostabilization using different plants aided by limestone. Chemosphere 242:1–8
Dong C, Fu Y, Liu G, Liu H (2014) Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. J Agron Crop Sci 200:219–230
Frérot H, Lefèbvre C, Petit C, Collin C, Dos Santos A, Escarré J (2005) Zinc tolerance and hyperaccumulation in F1 and F2 offspring from inter and interecotype crosses of Thlaspi caerulescens. New Phytol 165:111–119
Guggenberger G, Glaser B, Zech W (1994) Heavy metal binding by hydrophobic and hydrophilic dissolved organic carbon fractions in a Spodosol A and B horizon. Water Air Soil Pollut 72:111–127
Hogendoorn SW, Trouwborst G, Maljaars H, Pooter H, van Ieperen W, Harbinson J (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:3107–3117
Hou D, Li F (2017) Complexities surrounding China’s Soil Action Plan. Land Degrad Dev 28:2315–2320
Hou D, O’Connor D, Igalavithana AD, Alessi DS, Luo J, Tsang DCW, Sparks DL, Yamauchi Y, Rinklebe J, Ok YS (2020) Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat Rev Earth Environ 1:366–381
Huang B, Liu G, Wang P, Zhao X, Xu H (2019) Effect of nitric acid modification on characteristics and adsorption properties of lignite. Processes 7:1–16
Jacobs A, Drouet T, Sterckeman T, Noret N (2017) Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous ‘Gangers’ in field trials. Environ Sci Pollut Res 24:8176–8188
Jiang S, Luo J, Ye Y, Yang G, Ph W, He W (2019) Using Pb isotope to quantify the effect of various sources on multi-metal polluted soil in Guiyu. Bull Environ Contam Toxicol 102:413–418
Johkan M, Shoji K, Goto F, Hahida S, Yoshihara T (2012) Effect of green light wavelength and intensity on morphogenesis and photosynthesis in Lactuca sativa. Environ Exp Bot 75:128–133
Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999

Kim KR, Owens G, Naidu R, Kwon SL (2010) Influence of plant roots on rhizosphere soil solution composition of long-term contaminated soils. Geoderma 155:86–92
Kim S, Xu X, Zhang Y, Zheng X, Liu R, Dietrich K, Reponen T, Ho SM, Xie C, Sucharew H, Hua X, Chen A (2019) Metal concentrations in pregnant women and neonates from informal electronic waste recycling. J Expo Sci Environ Epidemiol 29:406–415
Krishnamurti GSR, Megharaj M, Naidu R (2004) Bioavailability of cadmium-organic complexes to soil algae – an exception to the free ion model. J Agric Food Chem 52:3894–3899

Leenheer JA, Croue JP (2003) Characterizing dissolved aquatic organic matter. Environ Sci Technol 1:19–26
Li HM, Xu ZG, Tang CM (2010) Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plants let in vitro. Plant Cell Tissue Organ Cult 103:155–163
Li TQ, Liang CF, Han X, Yang XE (2013) Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii. Chemosphere 91:970–976
Liu Q, Loganathan P, Hedley MJ, Skinner MF (2004) The mobilisation and fate of soil and rock phosphate in the rhizosphere of ectomycorrhizal Pinus radiata seedlings in an Allophonic soil. Plant Soil 264:219–229
Liu H, Wang H, Ma Y, Wang H, Shi Y (2016) Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.). Chemosphere 144:1960–1965
Loosmore N, Straczek A, Hinsinger P, Jaillard B (2004) Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH. Plant Soil 260:19–32
Luo J, Qi S, Gu XWS, Wang J, Xie X (2016) An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems. Ecotoxicology 25:646–654
Luo J, Cao M, Zhang C, Wu J, Gu XWS (2020) The influence of light combination on the physicochemical characteristics and enzymatic activity of soil with multi-metal pollution in phytoremediation. J Hazard Mater 393:1–10
Mahmood-ul-Hassan M, Suthar V, Ahmad R, Yousra M (2017) Heavy metal phytoextraction—natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat. Environ Monit Assess 189:591–601
Martin BC, Statton J, Siebers AR, Grierson PF, Ryan MH, Kendrick GA (2017) Colonizing tropical seagrasses increase root exudation under fluctuating and continuous low light. Linnñol Oceanogr 63:381–391
Martín-Belloso O, Alcalá I, Bernal MP, de la Fuente C, Gondar D, Clemente R (2016) Changes in the heavy metal solubility of two contaminated soils after heavy metals phytoextraction with Euphorbia characias. Ecol Eng 89:56–63
Ok YS, Kim SC, Kim DK, Skousen JG, Lee JS, Cheong YW, Kim SJ, Yang JE (2011) Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ Geochem Health 33:23–30
Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306
Sterckeman T, Cazes Y, Gonneau C, Sirguey C (2017) Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction. Plant Soil 418:523–540
Strobel BW, Borggaard OK, Hansøn HCB, Andersen MK, Raulund-Rasmussen K (2005) Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil. Eur J Soil Sci 56:189–196
Wan XM, Lei M, Chen TB, Yang JX, Liu HT, Chen Y (2015) Role of transpiration in arsenic accumulation of hyperaccumulator Pteris vittata L. Environ Sci Pollut Res 22:16631–16639
Xiao W, Li D, Ye X, Xu H, Yao G, Wang J, Zhang Q, Hu J, Gao N (2017) Enhancement of Cd phytoextraction by hyperaccumulator...
Sedum alfredii using electrical field and organic amendments. Environ Sci Pollut Res 24:5060–5067
Zeng ZJ, Huo X, Zhang Y, Hylkema MN, Wu YS, Xu XJ (2019) Differential DNA methylation in newborns with maternal exposure to heavy metals from an e-waste recycling area. Environ Res 171:536–545
Zhan J, Li TX, Zhang XZ, Yu HY, Zhao L (2018) Rhizosphere characteristics of phytostabilizer Athyrium wardii (Hook.) involved in Cd and Pb accumulation. Ecotoxicol Environ Saf 2018:892–900
Zhao FJ, Ma YB, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:750–759

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.