Metal-Free Addition/Head-to-Tail Polymerization of Transient Phosphinoboranes, RPH-BH$_2$: A Route to Poly(alkylphosphinoboranes)

Christian Marquardt, Titel Jurca, Karl-Christian Schwan, Andreas Stauber, Alexander V. Virovets, George R. Whittell, Ian Manners,* and Manfred Scheer*

Dedicated to Professor Todd Marder on the occasion of his 60th birthday

Abstract: Mild thermolysis of Lewis base stabilized phosphinoborane monomers R2R3P=BH$_{2}$NMe$_3$ (R2, R3 = H, Ph, or tBu) at room temperature to 100°C provides a convenient new route to oligo- and polyphosphinoboranes [R2R3P-BH$_2$]$_n$. The polymerization appears to proceed via the addition/head-to-tail polymerization of short-lived free phosphinoborane monomers, R2R3P=BH$_2$. This method offers access to high molar mass materials, as exemplified by poly(tert-butylphosphinoborane), that are currently inaccessible using other routes (e.g. catalytic dehydrocoupling).

Polymers based on main-group elements other than carbon represent attractive materials as a result of their uses as elastomers, lithographic resists, biomaterials, polyelectrolytes, ceramic precursors, and in optoelectronics. Current routes to main-group-element macromolecules generally involve either polycondensation or ring-opening polymerization pathways. Metal-catalyzed polycondensation processes, such as cross-coupling and dehydrocoupling, have also attracted recent attention. In contrast to the situation with organic polymer synthesis, the use of addition polymerization methods is rare, partly due to challenges associated with the generation of suitable multiply bonded monomers. Nevertheless, Gates and co-workers have shown that kinetically stable phosphaalkenes (MesP=CH(C$_6$H$_4$)$_2$; Ar = Ph, C$_6$H$_4$OMe) undergo an addition/rearrangement polymerization in the presence of radical or anionic initiators.[14,15] Furthermore, Baines and co-workers have utilized anion-initiated addition polymerization of gemenes and silenes (Mes$_2$E=CHCH$_2$Bu; E = Ge, Si) to form polygermenes and polysilylenemethylenes, respectively,[16] demonstrating the use of addition polymerization as a promising approach for the synthesis of main-group-element polymers.[6,7]

Compounds with bonds between elements of Groups 13 and 15 are formally isoelectronic to their carbon analogues. However, due to electronegativity differences, the bonds are polar and lead to different physical and chemical properties.[8–10] The analogy has nevertheless stimulated the synthesis of a range of new molecules and materials such as BN analogues of pyrene,[11] carbon nanotubes,[12] and fullerene-like BN hollow spheres.[13] Counterparts of organic macromolecules have also attracted much attention and polymers based on poly(p-phenylene)-like cyclolinar structures involving borazines (polyborazylenes) have been studied in detail, and, more recently, analogues of polyolefins, polyamino- borananes [RNH-BH$_2$]$_n$, have been isolated.[14]

Poly(phosphinoboranes) [RPH-BH$_2$]$_n$ have been prepared over the past decade as high-molar-mass materials by the rhodium- and iron-catalyzed dehydrogenation of primary phosphine-boranes RPH$_2$BH$_3$.[15] Studies of the coordination chemistry of phosphine-borane ligands at d-block metal centers have allowed the elucidation of the fundamental P–B bond-formation processes leading to dehydrogenative oligomerization and polymerization.[16,17] These have revealed a twofold role for P–H bonds: activation of the P–H bond by the metal centers to form metal-phosphido borane intermediates, and promotion of the dehydrogenative coupling of P–H (protic H) with B–H bonds (hydridic H) to release H$_2$ and form a P–B bond.[15,16] However, as P–H bonds are effectively nonpolar (electronegativity: P = 2.19, H = 2.20),[18] catalytic dehydrocoupling routes have relied on the electron-withdrawing effect of aryl groups on phosphorus to promote the reaction. This has resulted in relatively limited substrate scope. Thus, the only examples of poly(alkylphosphinoboranes) are of modest molar mass and have been prepared by the slow dehydrocoupling of tBuPH$_2$BH$_3$[15] and FeCH$_2$PH$_2$BH$_3$[16] at 110–120°C over 13–18 h in the presence of Rh catalysts in reactions that generally lead to appreciable
chain branching and cross-linking, resulting in a very high polydispersity index (PDI) value (e.g. PDI > 5).11c

A potential avenue to broaden the substrate scope and circumvent the shortcomings of metal-catalyzed dehydropolymerization routes to polyphosphinoboranes would be the implementation of an addition–polymerization strategy. This would require access to suitable monomeric precursors. Significantly, recent progress by Scheer and co-workers has allowed the facile, gram-scale preparation of H₂P-BH₂·NMMe₂ (1a), a Lewis base stabilized monomeric phosphinoborane.17,18 Elimination of the Lewis base should yield a reactive monomeric phosphinoborane [H₂P-BH₂] that might be expected to oligomerize and/or polymerize. In order to explore the potential of this new polymerization strategy in detail we also targeted the aryl-substituted analogue Ph₂P-BH₂·NMMe₂ (1b) and the alkyl-substituted BuPH-BH₂·NMMe₂ (1c). We therefore developed a salt metathesis route as a novel and convenient method for the generation of substituted phosphorylboranes stabilized only by a Lewis base (Scheme 1). Deprotonation of the corresponding phosphines and subsequent reaction with IBH·NMMe₂ afforded the desired phosphorylboranes in good yield and with high purity. Adducts 1b and 1c were obtained as white solids that are soluble in THF, toluene, Et₂O, and MeCN and, in the case of 1c, also n-hexane. Characterization was achieved by multinuclear NMR spectroscopy and single-crystal X-ray diffraction studies (Figure 1).

Attempts to thermally induce oligomerization and polymerization (Scheme 2) were initially made for 1a and involved reactions at 80 °C both in the presence and absence of solvent. However, irrespective of the conditions, in the case of this precursor the major fraction of the product (3a) was insoluble in common solvents and the soluble fraction appeared to consist of low-molar-mass, potentially branched oligomers with multiple phosphorus and boron environments.

For example, thermolysis of 1a in toluene (80 °C, 20 h) gave a white, waxlike product. The soluble extract in dilute C₆D₆20 gave a 31P([H]) NMR spectrum that featured a set of three broad signals at δ = −110, −116, and −133 ppm, which showed further broadening in the 1H-coupled 31P NMR spectrum. These resonances are in a similar chemical shift range to those reported for [H₂P-BH₂] 17a, prepared via B-(C₆F₅)₂-catalyzed dehydrocoupling of H₂P-BH₂ (Δ(31P) = −95 to −120 ppm), where a mixture of oligomers and low-molar-mass polymer (Mₙ < 2000 g mol−1) was formed.19 Furthermore, one of the peaks has a chemical shift similar to that for the borane complex of 1a, BH₂·H₂P-BH₂·NMMe₂ (31P NMR: δ = −116.0),17a in which the phosphorus center would exist in a similar environment. The 11B([H]) spectrum showed a set of three overlapping triplets at roughly δ = −38, −40, and −41 ppm as major peaks (\textit{J} 11B,1H \approx 65 Hz) which further split into triplets on 1H coupling (\textit{J} 1H,11B \approx 105 Hz, typical for BH₂ groups). The 11B NMR chemical shifts were similar to those reported for internal BH₂ groups in phosphinoborane polymers and oligomers ([H₂P-BH₂], δ(11B) = −32 ppm;19 [PhPH-BH₂], δ(11B) = −34.7 ppm).15a Several signals at δ = −8 to −10 ppm were tentatively assigned to the NMMe₂-coordinated BH₂ end groups (cf. NMMe₂-capped terminal BH₂ group in 1a at δ(11B) = −6.7 ppm).17a Analysis of the soluble fraction of 3a by mass spectrometry (MS) and dynamic light scattering (DLS) was also consistent with the presence of oligomers. For example, electrospray ionization (ESI) MS showed a pattern with intervals of Δ(m/z) = 46, expected for a [H₂P-BH₂] moiety, up to 1700 Da, corresponding to up to ca. 37 repeat units (see Figure S12).

As a result of the insolubility of the polyphosphinoborane 3a formed from heating 1a, we next turned our attention to the analogous thermally induced polymerization of phosphinoboranes with organic substituents at phosphorus (1b,c) (Scheme 2). Thermolysis of phosphinoborane 1b was conducted in toluene solution at 100 °C for 18 h. The 1H, 31P, and 11B NMR resonances of the isolated product 3b were consistent with the formation of oligomeric species [Ph₂P-BH₂], and occurred at chemical shifts similar to those reported for [Ph₂P-BH₂] and [Ph₂P-BH₂].15c ESI MS analysis of 3b indicated the presence of linear NMMe₂-capped oligomers with a maximum detectable mass of up to 1200 g mol−1 corresponding to about six repeat units (Figure S15), slightly greater than that in the reports of Rh1 catalyzed dehydrocoupling of Ph₂P-BH₂.15b In addition, the
ESI mass spectrum of 3b displayed several peaks corresponding to small, NMe2-capped oligomeric units, [Me2N-BH2-PhP-BH2·NMe2]+ and [Me2N-BH2-PhP-BH2·PhP-BH2·NMe2]+. These represent a class of highly stable cationic phosphinoborane chains, whose preparation has recently been reported. Analysis by DLS was also consistent with the formation of oligomeric products that undergo facile aggregation (see the Supporting Information for details).

Finally, we explored the thermolysis of the tBu-substituted phosphanylborane 1c using three methods: heating 1c at 40°C for 48 h in the absence of solvent, stirring a toluene solution of 1c at room temperature (22°C), and performing the latter experiment at 40°C for 48 h. After complete consumption of the starting material (and removal of the solvent for reactions conducted in toluene), the crude product was dissolved in n-hexane and precipitated by adding the resulting solution slowly to vigorously stirred acetonitrile. All three methods led to the isolation of the product 3c as a fine white powder (Figure 3, inset) with similar NMR spectra. The 11B[1H] NMR spectrum featured a single very broad signal at δ = −38 ppm. The 31P[1H] NMR spectrum featured a set of three broad signals at δ = −19, −21, and −24 ppm. Further broadening and splitting into poorly defined doublets was observed in the 1H-coupled 31P NMR spectrum. We attribute the overlapping resonances to tacticity: the tentative assignment of rm, mr, rr, and mm triads is based on statistical probability (Figure 2). Similar features have been observed in poly(methylene phosphine) polymers[14] Overall, the observed NMR spectra for 3c were similar to those for [RHP-BH2]+, (R = Ph, tBu, p-nBuC6H5, p-dodecylC6H4)][15a–c]

The ESI mass spectra of acetonitrile solutions of 3c (reaction in toluene, 22°C, 48 h) showed patterns corresponding to the successive loss of (m/z) = 102, characteristic of a single unit of [tBuPH-BH2] (Figure S19). Samples obtained from the three methods were analyzed by DLS at optimized concentrations in CHCl3. The range of values obtained for Rg of 4.4–5.5 nm correspond to molar masses of 26800–39900 g mol⁻¹ for monodisperse polystyrene samples in THF (Figure S20).[21] GPC analysis of the samples with CHCl3 as eluent, also using polystyrene standards, was consistent with these results within experimental error and showed the presence of polymer with molar masses (Mn) of 27800–35000 g mol⁻¹ with polydispersity indices of 1.6–1.9 (Figures 3 and S22).

We posit that polymerization of 1a–c is triggered by the initial thermolysis of Lewis base stabilized phosphanylboranes 1a–c, leading to elimination of NMe2 to form the unprotected monomeric phosphinoborane intermediates 2a–c. The resulting absence of the Lewis base leads to a lack of electronic stabilization for 2a–c. As a result, the lone pair at phosphorus together with a vacant p orbital at boron, in conjunction with the aforementioned electronic destabilization, appears to promote a head-to-tail addition oligomerization/polymerization sequence which ultimately affords 3a–c, although the full mechanistic details are not yet clear (Scheme 2). We attribute the difference in product distribution to the reactivity of 2a–c and the solubility of the polymer products 3a–c. Sterically unencumbered 2a is likely to be highly reactive and forms the insoluble material, which may be of high molar mass, together with soluble oligomers. In contrast, 2h, which contains two bulky phenyl groups at phosphorus, appears to afford only oligomers. Presumably the steric bulk hinders polymer formation both kinetically, and possibly thermodynamically as well. In contrast, the tert-butyl-substituted species 3c affords soluble, high-molecular-weight polymer.

High-molar-mass poly(phenyl phosphinoborane) free of cross-linked material has been recently prepared using an iron-based dehydrocoupling catalyst in toluene solution, a reaction significantly more efficient that the previously reported Rh-catalyzed process performed in the absence of solvent.[15d] We were intrigued whether alkyl-substituted polymer 3c would be accessible by a similar route. For comparison we prepared poly(phenyl phosphinoborane) from PhPH2·BH2 and 1 mol % [Cp(CO)2Fe(OSO2CF3)] (100°C, 24 h) and isolated the material with Mn = 59000 g mol⁻¹ and PDI = 1.6.[15c] When tBuPH2·BH2 was treated with [Cp(CO)2Fe(OSO2CF3)] under the same conditions (Scheme 3) near complete consumption of tBuPH2·BH2 required 176 h by
\[n \text{BuPH}_2 \cdot \text{BH}_3 \quad \text{toluene, 100 °C} \quad \Delta \text{m/z} = 102, \text{attribution to units of } \text{[BuP(BH)]}_2, \text{masses up to only 1100 Da were detected. Moreover, GPC analysis of the products with CHCl}_3 \text{as eluent revealed no high-molar-mass component and the product appears to be an oligomer of 10 units or less. This is in stark contrast to the high-molar-mass polymer (3c) obtained via the thermally induced polymerization of phosphorylborane 1c.} \\

In summary, a straightforward synthesis of organosubstituted monomeric phosphorylboranes stabilized only by a Lewis base has been developed to obtain compounds 1b and 1c. Simple thermal treatment of the monomeric Lewis base stabilized phosphinoboranes 1a-c led to the formation of oligomeric and polymeric compounds 3a-c. Due to the low solubility of 3a, characterization of this polymer was limited. Polymerization of 1b led to short-chain oligomers 3b which could be characterized by multinuclear NMR spectroscopy and mass spectrometry. However, polymerization of 1c afforded 3c with high molar mass (\(M_n = 27800–35000 \text{ g mol}^{-1} \)) and reasonably low PDI (1.6–1.9) characteristic of a linear main polymer. In contrast, previous work with Rh catalysts has given lower-molar-mass, branched materials (\(M_n \text{ ca. } 10000 \text{ g mol}^{-1} \)) under forcing thermal conditions in the melt where the yields have been limited by gel formation.\(^{[i]}\) In addition, polyphosphinoborane 3c could not be accessed via the recently reported Fe-catalyzed catalytic dehydrocoupling route, presumably also due to the deactivated P–H bond in the alkylphosphinoborane monomer.

Based on these results, the new metal-free polymerization method described offers considerable promise for the preparation of a range of new polyphosphinoboranes with alkyl substituents on phosphorus that are of interest as elastomers, flame-retardant materials, and ceramic precursors. Expansion of the substrate/polymer scope, optimization of the reaction conditions, and the detailed elucidation of the reaction mechanism, which appears to involve the addition/head-to-tail polymerization of transient phosphinoborane monomers, are topics currently under investigation.

Acknowledgements

The German team thanks the DFG for comprehensive support. The COST action CM1302 is gratefully acknowledged. I.M. thanks the EPSRC and Alexander von Humboldt Foundation for support. T.J. thanks EPSRC for funding and the EU for a Marie Curie Fellowship. We thank Dr. F. H. Schacher (Friedrich-Schiller-Universität Jena) for access to GPC equipment that uses CHCl₃ as eluent, Dr. P. Gates (University of Bristol) for MS data, and Dr. H. Helten (RWTH Aachen University) for helpful discussions.

Keywords: addition polymerization · inorganic polymers · phosphinoboranes · phosphine–borane adducts · poly(phosphinoboranes)

How to cite: Angew. Chem. Int. Ed. 2015, 54, 13782–13786

Angew. Chem. 2015, 127, 13986–13991

\[1\] a) M. Liang, I. Manners, J. Am. Chem. Soc. 1991, 113, 4044–4045; b) H. R. Allocco, Chem. Mater. 1994, 6, 1476–1491; c) C. H. Honeyman, I. Manners, C. T. Morrissey, H. R. Allocco, J. Am. Chem. Soc. 1995, 117, 7035–7036; d) R. D. Archer, Inorganic and Organometallic Polymers, Wiley-VCH, New York, 2001; e) I. Manners, Angew. Chem. Int. Ed. Engl. 1996, 35, 1602–1621; Angew. Chem. 1996, 108, 1712–1731; f) S. J. Clarson, J. A. Semlyen, Siloxane Polymers, Prentice Hall, Englewood Cliffs, 1993; g) R. H. Neillson, P. Wisian-Neillson, Chem. Rev. 1988, 88, 541–562; h) R. D. Miller, J. Michl, Rev. Chem. 1989, 89, 1359–1410; i) R. De Jaeger, M. Gleria, Prog. Polym. Sci. 1998, 23, 173–276; j) R. West, J. Organomet. Chem. 1986, 300, 327–346; k) T. Imori, V. Lu, H. Cai, T. D. Tilley, J. Am. Chem. Soc. 1995, 117, 9931–9940; l) X. He, T. Baumgarten, RSC Adv. 2013, 3, 11354–11350; m) S. Wilfert, H. Henke, W. Schoeberger, O. Bräutigam, I. Teasdale, Macromol. Rapid Commun. 2014, 35, 1135–1141; n) W. Cao, Y. Gu, M. Meineck, T. Li, H. Xu, J. Am. Chem. Soc. 2014, 136, 5132–5137; o) F. Choffat, S. Käsar, P. Wolfet, D. Schmid, R. Mezzenga, P. Smith, W. Caseri, Macromolecules 2007, 40, 7878–7889; p) J. Linshoef, E. J. Baum, A. Hussain, P. J. Gates, C. Nather, A. Staubitz, Angew. Chem. Int. Ed. 2014, 53, 12916–12920; Angew. Chem. 2014, 126, 13130–13134; q) B. W. Rawe, C. P. Chun, D. P. Gates, Chem. Sci. 2014, 5, 4928–4938.

\[2\] a) P. J. Fazen, J. S. Beck, A. T. Lynch, E. E. Remsen, L. G. Sneddon, Chem. Mater. 1999, 2, 96–97; b) F. Jakle, Chem. Rev. 2010, 110, 3985–4022; c) H. Kuhrtz, F. Cheng, S. Schwedler, L. Böhling, A. Brockhinke, L. Weber, K. Parab, F. Jakle, ACS Macro Lett. 2012, 1, 555–559; d) Z. M. Hudson, D. J. Lunn, M. A. Winnik, I. Manners, Nat. Commun. 2014, 5, 3372; e) A. Lorbach, M. Bolte, H. Li, H.-W. Lerner, M. C. Holthausen, F. Jakle, M. Wagner, Angew. Chem. Int. Ed. 2009, 48, 4584–4588; f) Angew. Chem. 2009, 121, 4654–4658; g) A. Hübner, Z.-W. Qu, U. Engler, M. Bolte, H.-W. Lerner, M. C. Holthausen, M. Wagner, J. Am. Chem. Soc. 2011, 133, 4596–4601; h) G. Zhang, G. M. Palmer, M. W. Dewhurst, C. L. Fraser, Nat. Mater. 2009, 8, 747–751.

\[3\] a) E. M. Leitao, T. Jurca, I. Manners, Nat. Chem. 2013, 5, 817–829; b) G. He, L. Kang, W. T. Delgado, O. Shynkaruk, M. J. Ferguson, R. McDonald, E. Rivard, J. Am. Chem. Soc. 2013, 135, 5360–5363; c) M. Heinw, W. Zhang, D. J. Crouch, L. M. Chabinyc, S. Gordeyev, R. Hamilton, S. J. Higgins, I. McCalloch, P. J. Skabara, D. Sparrowe, S. Tierney, Chem. Commun. 2007, 5061–5063; d) B. W. Rawe, D. P. Gates, Angew. Chem. Int. Ed. 2015, 54, 11438–11442; Angew. Chem. 2015, 127, 11600–11604.

\[4\] a) C.-W. Tsang, M. Yam, D. P. Gates, J. Am. Chem. Soc. 2003, 125, 1480–1481; b) C.-W. Tsang, B. Baharlooh, D. Riendl, M. Yam, D. P. Gates, Angew. Chem. Int. Ed. 2004, 43, 5682–5685; Angew. Chem. 2004, 116, 5800–5803; c) P. W. Sui, S. C. Serin, I.
[10] A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners, Chem. Rev. 2010, 110, 4023–4078.

[11] M. J. D. Bosdet, W. E. Piers, T. S. Sørensen, M. Parvez, Angew. Chem. Int. Ed. 2007, 46, 4940–4943; Angew. Chem. 2007, 119, 5028–5031.

[12] M. Terrones, J. M. Romo-Herrera, E. Cruz-Silva, F. López-Urriaz, E. Muñoz-Sandoval, J. J. Velizquez-Salazar, H. Terrones, Y. Bando, D. Goldberg, Mater. Today 2007, 10, 30–38.

[13] X. Wang, Y. Xie, Q. Guo, Chem. Commun. 2003, 2688–2689.

[14] a) M. E. Bluhm, M. G. Bradley, R. Butterick III, U. Kusari, L. G. Sneddon, J. Am. Chem. Soc. 2006, 128, 7748–7749; b) D. W. Himmelberger, C. W. Yoon, M. E. Bluhm, P. J. Carroll, L. G. Sneddon, J. Am. Chem. Soc. 2009, 131, 14101–14110; c) L. G. Sneddon, M. G. L. Mirabelli, A. T. Lynch, P. J. Fazen, K. Su, J. S. Beck, Pure Appl. Chem. 1991, 63, 407–410; d) T. Wideman, P. J. Fazen, K. Su, E. E. Remsen, G. A. Zank, L. G. Sneddon, Appl. Organomet. Chem. 1998, 12, 681–693; e) A. Staubitz, A. P. Soto, I. Manners, Angew. Chem. Int. Ed. 2008, 47, 6212–6215; f) Angew. Chem. 2008, 120, 6308–6311; g) A. Staubitz, M. E. Sloan, A. P. M. Robertson, A. Friedrich, S. Schneider, P. J. Gates, J. Schmidt on der Günn, I. Manners, J. Am. Chem. Soc. 2010, 132, 13322–13345; h) A. N. Marziale, A. Friedrich, I. Klopcsh, M. Drees, V. R. Celinski, J. Schmidt on der Günn, S. Schneider, J. Am. Chem. Soc. 2013, 135, 13342–13355; i) R. Dallanegra, A. P. M. Robertson, A. B. Chaplin, I. Manners, A. S. Weller, Chem. Commun. 2011, 47, 3763–3765.

[15] a) H. Dorn, R. A. Singh, J. A. Massey, A. J. Lough, I. Manners, Angew. Chem. Int. Ed. 1999, 38, 3231–3232; Angew. Chem. 1999, 111, 3540–3543; b) H. Dorn, R. A. Singh, J. A. Massey, J. M. Nelson, C. A. Jaska, A. J. Lough, I. Manners, J. Am. Chem. Soc. 2000, 122, 6669–6678; c) H. Dorn, J. M. Rodzemo, B. Brunnhofer, E. Rivard, J. A. Massey, I. Manners, Macromolecules 2003, 36, 291–297; d) T. J. Clark, J. M. Rodzemo, S. B. Clendenning, S. Aoub, P. M. Brodersen, A. J. Lough, H. E. Ruda, I. Manners, Chem. Eur. J. 2005, 11, 4526–4534; e) S. Pandey, P. Lonnecke, E. Hey-Hawkins, Eur. J. Inorg. Chem. 2014, 2456–2465; f) D. Jaquequin, C. Lambert, E. A. Pépète, Macromolecules 2004, 37, 1009–1015; g) A. Schäfer, T. Jurca, J. Turner, J. R. Vance, K. Lee, V. A. Du, M. F. Haddow, G. R. Whittell, I. Manners, Angew. Chem. Int. Ed. 2015, 54, 4836–4841; Angew. Chem. 2015, 127, 4918–4923.

[16] a) M. A. Huertos, A. S. Wellers, Chem. Commun. 2012, 48, 7185–7187; b) M. A. Huertos, A. S. Wellers, Chem. Sci. 2013, 4, 1881–1888; c) T. N. Hooper, M. A. Huertos, T. Jurca, S. D. Pike, A. S. Wellers, I. Manners, Inorg. Chem. 2014, 53, 3716–3729; d) H. C. Johnson, T. N. Hooper, A. S. Wellers, Top. Organomet. Chem. 2015, 49, 153–220; e) C. Thoms, C. Marquardt, A. Y. Timoshkin, M. Bodenstein, M. Scheer, Angew. Chem. Int. Ed. 2013, 52, 5150–5154; Angew. Chem. 2013, 125, 5254–5259.

[17] a) K.-C. Schwan, A. Y. Timoshkin, M. Zabel, M. Scheer, Chem. Eur. J. 2006, 12, 4900–4908; b) C. Marquardt, A. Adolf, A. Stauber, M. Bodenstein, A. V. Virovets, A. Y. Timoshkin, M. Scheer, Chem. Eur. J. 2013, 19, 11887–11891.

[18] For the formation of stable monomeric phosphinoboranes with bulky substituents see: a) X. Feng, M. M. Olmstead, P. P. Power, Inorg. Chem. 1986, 25, 4615–4616; b) A. M. Spokony, C. D. Lewis, G. Teverovskiy, S. L. Buchwald, Organometallics 2012, 31, 8478–8481; c) J. A. Bailey, P. G. Pringle, Coord. Chem. Rev. 2015, 297, 77–90. For examples of the analogous stabilization of other Group 13–15 species see: (P–Al, P–Ga) d) U. Vogel, A. Y. Timoshkin, M. Scheer, Angew. Chem. Int. Ed. 2001, 40, 4409–4412; Angew. Chem. 2001, 113, 4541–4544; (As–B) e) M. A. Mardones, A. H. Cowley, L. Contreras, R. A. Jones, C. I. Carrano, I. Organomet. Chem. 1993, 455, C1–C2; f) C. Marquardt, C. Thoms, A. Stauber, G. Balázs, M. Bodenstein, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 3727–3730; Angew. Chem. 2014, 126, 3801–3804; (B–N) g) N. E. Stubbs, T. Jurca, E. M. Leitao, C. H. Woodall, I. Manners, Chem. Commun. 2013, 49, 9098–9100; h) H. Braunschweig, W. C. Ewing, K. Geetharan, M. Schäfer, Angew. Chem. Int. Ed. 2015, 54, 1666–1665; Angew. Chem. 2015, 127, 1602–1685; i) A. K. Swarnakar, C. Herin-Junghans, K. Nagata, M. J. Ferguson, R. McDonald, N. Tokito, E. Rivard, Angew. Chem. Int. Ed. 2015, 54, 10666–10669; Angew. Chem. 2015, 127, 10812–10816. For the successful stabilization of phosphinophen boranes at metal centers see: j) A. Amguee, S. Ladeira, K. Miquet, D. Bourissou, J. Am. Chem. Soc. 2012, 134, 6560–6563.

[19] J.-M. Denis, H. Forinton, H. Szelle, L. Toupet, T.-N. Pham, P.-J. Madec, A.-C. Gaumont, Chem. Commun. 2003, 54–55.

[20] Attempted dissolution of reaction products (3a) in n-hexane, benzene, toluene, Et₂O, THF, CH₂Cl₂, CHCl₃, MeCN, and 1,4-dioxane was not successful.

[21] L. J. Fetters, N. Hadjichristidis, J. S. Lindner, J. W. Mays, J. Phys. Chem. Ref. Data 1994, 23, 619–640.

Received: July 30, 2015
Published online: October 2, 2015