DNA Barcoding Reveals High Cryptic Diversity of the Freshwater Halfbeak Genus *Hemirhamphodon* from Sundaland

HongChiun Lim1,2*, Muchlisin Zainal Abidin3‡, Chaidir Parlindungan Pulungan4‡, Mark de Bruyn5,6*, Siti Azizah Mohd Nor1,7*

1 School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia, 2 School of Biological Sciences, Faculty of Integrative Sciences and Technology, Quest International University Perak, Ipoh, Perak, Malaysia, 3 Department of Aquaculture, Faculty of Marine and Fisheries, Syiah Kuala University, Banda Aceh, Indonesia, 4 Department of Aquaculture, Faculty of Marine and Fisheries, Syiah Kuala University, Banda Aceh, Indonesia, 5 School of Biological Sciences, Bangor University, Bangor, United Kingdom, 6 School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia, 7 Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Penang, Malaysia

* These authors contributed equally to this work.
‡ These authors also contributed equally to this work.
* hongchiun_01@yahoo.com

Abstract

DNA barcoding of the cytochrome oxidase subunit I (COI) gene was utilized to assess the species diversity of the freshwater halfbeak genus *Hemirhamphodon*. A total of 201 individuals from 46 locations in Peninsular Malaysia, north Borneo (Sarawak) and Sumatra were successfully amplified for 616 base pairs of the COI gene revealing 231 variable and 213 parsimony informative sites. COI gene trees showed that most recognized species form monophyletic clades with high bootstrap support. Pairwise within species comparisons exhibited a wide range of intraspecific diversity from 0.0% to 14.8%, suggesting presence of cryptic diversity. This finding was further supported by barcode gap analysis, ABGD and the constructed COI gene trees. In particular, *H. pogonognathus* from Kelantan (northeast Peninsular Malaysia) diverged from the other *H. pogonognathus* groups with distances ranging from 7.8 to 11.8%, exceeding the nearest neighbor taxon. High intraspecific diversity was also observed in *H. byssus* and *H. kuekanthali*, but of a lower magnitude. This study also provides insights into endemism and phylogeographic structuring, and limited support for the Paleo-drainage divergence hypothesis as a driver of speciation in the genus *Hemirhamphodon*.

Introduction

Biological diversity is believed to be entering an era of mass extinction where it is disappearing worldwide at unprecedented rates [1]. Thus, precise taxonomic delineation of species is crucial in the context of biodiversity conservation [1]. Traditionally, species description and identification are based on morphological traits, however, the morphological approach alone has intrinsic limitations. Phenotypic plasticity and genotypic variation may mask the morphological
characters used in species descriptions, leading to misdiagnoses. Furthermore, cryptic diversity cannot be easily detected, and variable life stage morphologies and sexual dimorphism may add to the confusion, thus requiring high dependence on experts, often a time consuming enterprise [2]. Consequently, molecular methods are proposed to contribute to a new ‘integrative taxonomy’ approach, which can enhance speed and accuracy in species discovery [1,3].

The DNA barcoding concept was first proposed by Hebert et al. [4], based on an approximately 655 base pair (bp) fragment of cytochrome c oxidase subunit I (COI), which has since been adopted as the gold standard for global bioidentification to differentiate among animal species. This system proposed that intraspecific COI divergence would be less than interspecific divergence. Thus, the delimitation of species in DNA barcoding is based on this so-called “barcoding-gap”. The evolutionary rate, absence of indels, and limited occurrence of recombination are the primary reasons why COI was chosen as the DNA barcoding gene, in addition to the existence of robust universal primer sets that can amplify across diverse taxonomic groups [5]. Rapid identification of potentially unidentified species in global biodiversity assessment and conservation, such as cryptic species, juveniles and organisms with ambiguous morphological characters, is one of the main goals of DNA barcoding.

Species identification of freshwater and marine fishes through the utilisation of the DNA barcoding method have resulted in a greater than 90% success rate in species discrimination [5–11]. The inconsistencies from expectations as determined by other approaches might be attributable to several factors such as maintenance of ancestral polymorphism, recent divergence among lineages and introgressive hybridization [11,12]. Since the development of DNA barcoding, there has been extensive documentation of species discovery and cryptic species revelations from DNA barcoding data for both freshwater and marine fishes [13–17].

The freshwater fish genus *Hemirhamphodon* [18] has received considerable global interest among scientists [19–21] working in the biodiversity-rich region of Sundaland in Southeast (SE) Asia. Its wide distribution and endemism within Sundaland makes it suitable for phylegetic, population and phyleogeographic studies, and even the potential discovery of new species. *Hemirhamphodon* belongs to the family Hemiramphidae, subfamily Zenarchopterinae [22]. Members of the family are commonly known as halfbeaks due to their characteristic long needle-like lower jaw (beak), but shorter and triangular upper jaw, which is less than half the length of the lower jaw. It inhabits small freshwater rivers and streams and is distributed only in specific areas of Sundaland (southern Thailand, Peninsular Malaysia, Sumatra, Java and Borneo) [23]. *Hemirhamphodon* is unique from other halfbeak genera in having anteriorly directed teeth along the entire length of the lower jaw [23], and pleural ribs originating from the second vertebra instead of the third [21].

Anderson and Collette [23] described a total of six species based on the number of vertebrae, dorsal fins, anal fins, and the pattern of melanophores and pigments on the dorsal fin. The six species are *H. phaisoma* [24], *H. pogonognathus* [25], *H. kuekenthali* [26], *H. chrysopunctatus* [27], *H. kapuasensis* [23] and *H. tengah* [23]. More recently, three new species from Borneo are currently assigned as *H. byssus*, *H. sesamun* and *H. kecil* [21]. According to Roberts [28], *H. pogonognathus* is the most widespread species in this genus. Its distribution covers almost all of the river basins in Sundaland except northern Borneo (Sabah) and even extends out of Sundaland to the Moluccas (Halmahera) [23] (Anderson and Collette, 1991). Observations by Roberts [28], Brembach [27], Wickman [29] and Hartl [30], revealed that *H. pogonognathus* coloration shows some differentiation amongst some localities. Tan and Lim [21] observed that *H. kuekenthali* is only found in the northern region of Sarawak and is believed to be endemic to the river basins in northern region of Sarawak. On the other hand, the newly assigned species with an apparently allopatric distribution, *H. byssus*, is believed to be endemic to the river basins in Sarawak mainly inhabiting the southern region of Sarawak. Although
eight species (H. byssus, H. kuekenthali, H. kapuasensis, H. tengah, H. chrysopunctatus, H. phaiosoma, H. sesamum and H. kecil) occur in Borneo, H. byssus and H. kuekenthali, which are endemic to Sarawak, are geographically separated from the other six species by mountain ranges traversing the island of Borneo. *Hemirhamphodon sesamum* that has been discovered in eastward flowing lowland coastal basins of South Kalimantan is most closely related to *H. kuekenthali* in terms of external morphology [21]. *Hemirhamphodon kueil* ("kecil" means small in the Malay/Indonesian language) has a smaller adult size compared to its closest congener, *H. pogonognathus* and is found in the lower Mahakam basin in east Kalimantan. *Hemirhamphodon kapuasensis* is endemic to the Kapuas river basin in Kalimantan Barat. The most morphologically distinct species is *H. phaiosoma* with a relatively higher number of dorsal-fin rays. However, based on reproductive behavior, *H. tengah* seems to be the most distinct species. As noted above, the *Hemirhamphodon* genus are livebearers or viviparous, but *H. tengah* has been observed to lay fertilized eggs [31–33]. This, undoubtedly, is a key factor that has generated much interest in the scientific biodiversity community.

This study focused on the preliminary assessment of the species diversity within the genus *Hemirhamphodon* through DNA barcoding. Based on the findings of Anderson and Collette [23] and the revision by Tan and Lim [21], we hypothesise that there is potentially high cryptic diversity in this genus due to its broad distribution and locale-specific polymorphisms.

Methodology

Ethic Statement

This study was carried out in accordance with the recommendations and approval by the Universiti Sains Malaysia Animal Ethics Committee. No protected species were collected in this study. Permission was granted from the State Forestry Department for field sampling in Peninsular Malaysia and Sarawak. Samples from Sumatra were obtained from collaborators from Syiah Kuala University and Riau University in Sumatra.

Sample collection, preservation and DNA extraction

Collection of *H. pogonognathus*, *H. kuekenthali* and *H. byssus* species samples were conducted in Peninsular Malaysia, Sarawak and Sumatra as shown in Fig 1 and Table 1. The information on geographical locations and voucher specimens is shown in S1 Table. Specimens were euthanised with *Transmore* (NIKA Trading Co.), a commercial fish stabilizer commonly used in aquatic trading in Malaysia before the fin clips were excised from the pectoral fin of the specimens and stored in 95% ethanol for DNA extraction. Specimens were subsequently formalin fixed and preserved in 70% ethanol as vouchers. Voucher specimens were identified based on taxonomic keys by Anderson and Collette [23] and Tan and Lim [21]. Images of voucher specimens were captured by digital camera prior to being placed in 95% ethanol for long-term storage. Voucher specimens for each COI barcode were deposited at the Museum of Biodiversity, Universiti Sains Malaysia. DNA extractions were conducted using the high-salt DNA extraction protocol [34] and then stored at -20°C until required.

Gene amplification and sequencing

A partial segment of the COI gene of 3 to 5 individuals per location (except only 2 individuals from Koba) were PCR amplified using BIO-RAD T100 Thermal Cycler (BioRad Laboratories Inc., USA) with primers Fish F2 and Fish R2 [6]. The PCR conditions were conducted as described in Ward et al. [6]. The PCR products were electrophoresed on 1.5% agarose gels for band characterization and purified (PCR Clean-up System, Promega, Madison, WI, USA).
Sequencing was conducted by a service provider (First Base Laboratories Sdn. Bhd., Malaysia) using an ABI3730XL Genetic Analyzer (Applied Biosystems, Foster City, CA, USA).

Data Analysis

All sequences were edited using MEGA v6.0 [35]. Multiple alignments were evaluated using MUSCLE [36] that is integrated within MEGA. Minor adjustments were then made by eye to manually remove any false homologies. The pairwise comparison matrices were constructed using the Kimura 2 Parameter (K2P) model as it is most widely used in COI barcoding studies [2,37]. To check the presence of a “barcode gap” in our dataset, the maximum intraspecific divergences against the minimum nearest-neighbour divergences was plotted.

The Automatic Barcode Gap Discovery (ABGD) species delineation tool on a web interface (http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html) with default settings for the K2P distance matrix was employed [38] to determine the number of operational taxonomic units (OTUs) based on pairwise sequence distances between individuals within the dataset. A Neighbour-Joining (NJ) COI gene tree was constructed using K2P models with the bootstrap procedure [39] of 10000 pseudoreplicates. A Bayesian Inference (BI) COI gene tree was included to examine any likelihood of different positioning of OTUs. The BI tree was constructed using MrBayes [40] with HKY+G+I model (optimal substitution model under Bayesian Information Criterion using ModelTest in MEGA) for 1000 pseudoreplicates. The length of the MCMC chain was 5 million with a sample frequency of 500.

Results

A total of 201 individuals were successfully PCR amplified for the COI gene consisting of three (morphologically) recognized species. All sequences have been deposited in GenBank.

![Sampling locations of H. pogonognathus, H. byssus and H. kuekenthali](http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html) for location abbreviation see Table 1.

Fig 1. SAMPLING LOCATIONS OF H. POGONOGNATHUS, H. BYSSUS AND H. KUEKENTHALI (MODIFIED FROM ANDERSON AND COLETTE, 1991), FOR LOCATION ABREVIATION SEE TABLE 1.

doi:10.1371/journal.pone.0163596.g001
Table 1. Species name, locations, code, sample size (n), regional locations within Peninsular Malaysia, Sarawak (Borneo) and Sumatra; and the newly assigned groups of *Hemirhamphodon* species.

Species	Locations	Code	n	Present region of locations	Newly assigned groups
Hemirhamphodon pogonognathus	Kampung Wang Kelian	KWK	5	Northwest-Peninsular	Main
H. pogonognathus	Sungai Teroi	TE	5	Northwest-Peninsular	Main
H. pogonognathus	Teluk Bahang	TB	5	Northwest-Peninsular	Main
H. pogonognathus	Bukit Pancor	BP	5	Northwest-Peninsular	Main
H. pogonognathus	Pondok Tanjung	PTG	5	Northwest-Peninsular	Main
H. pogonognathus	Sungai	SK	5	Northwest-Peninsular	Main
H. pogonognathus	Sungai Panjang	PJG	5	West-Peninsular	Main
H. pogonognathus	Damansara	DM	5	West-Peninsular	Main
H. pogonognathus	Serting Ulu	SU	5	Central-Peninsular	Main
H. pogonognathus	Kampung Som	SOM	5	Central-Peninsular	Main
H. pogonognathus	Kampung Salong	KS	5	Central-Peninsular	Main
H. pogonognathus	Pos Iskandar	PI	5	Central-Peninsular	Main
H. pogonognathus	Jeram Pasu	JP	5	Northeast-Peninsular	Kelantan
H. pogonognathus	Lata Belatan	LB	5	Northeast-Peninsular	Kelantan
H. pogonognathus	Sekayu	S	5	Northeast-Peninsular	Main
H. pogonognathus	Rantau Abang	RA	5	East-Peninsular	Main
H. pogonognathus	Padang Ah Hong	PA	5	East-Peninsular	Main
H. pogonognathus	Panti	PT	5	Southeast-Peninsular	Main
H. pogonognathus	Kahang Jemaluang	KJ	5	Southeast-Peninsular	Main
H. pogonognathus	Sungai Tarai	ST	3	Central-east-Sumatra	Main
H. pogonognathus	Sungai Gerigeng	SG	3	Central-east-Sumatra	Main
H. pogonognathus	Sungai Timek	STK	3	Central-east-Sumatra	Main
H. pogonognathus	Sungai Baung	SBG	3	Central-east-Sumatra	Southern Sumatra
H. pogonognathus	Jambi	JBI	3	Southeast- Sumatra	Southern Sumatra
H. pogonognathus	Jambi Palembang	Jmp	3	Southeast- Sumatra	Southern Sumatra
H. pogonognathus	Rambat	Rbt	3	North-Bangka Island, Southeast-Sumatra	Southern Sumatra
H. pogonognathus	Merawang	MRW	3	Central-Bangka Island, Southeast-Sumatra	Southern Sumatra
H. pogonognathus	Petaling	PLG	3	Central-Bangka Island, Southeast-Sumatra	Southern Sumatra
H. pogonognathus	Koba	KA	2	South-Bangka Island, Southeast-Sumatra	Southern Sumatra
H. byssus	Kampung Semunin Cina	SC	5	Southern-Sarawak, Borneo	Southern
H. byssus	Sungai Stuum Toman	SST	5	Southern-Sarawak, Borneo	Southern
H. byssus	Sungai Duyoh	SD	4	Southern-Sarawak, Borneo	Southern
H. byssus	Tapang Rumpat	TR	4	Southern-Sarawak, Borneo	Central
H. byssus	Sungai Paku	SP	5	Southern-Sarawak, Borneo	Central
H. kuekenthali	Nangan Lassi	LS	5	Northern-Sarawak, Borneo	Central
H. kuekenthali	Nangan Lanang	LG	4	Northern-Sarawak, Borneo	Central
H. kuekenthali	Bukit Kemunyang	BK	5	Northern-Sarawak, Borneo	Central
H. kuekenthali	Mukah	MK	5	Northern-Sarawak, Borneo	Central
H. kuekenthali	Tatau	TT	5	Northern-Sarawak, Borneo	Central
H. kuekenthali	Sungai Kemenda	KMD	5	Northern-Sarawak, Borneo	Northern
H. kuekenthali	Sungai Liku	LK	3	Northern-Sarawak, Borneo	Northern
H. kuekenthali	Long Lama	LL	5	Northern-Sarawak, Borneo	Northern
H. kuekenthali	Sunag Kejin	KJI	5	Northern-Sarawak, Borneo	Northern
H. kuekenthali	Labi-Linei	LBI	4	Northern-Sarawak, Borneo	Northern
H. kuekenthali	Limbang	LMB	5	Northern-Sarawak, Borneo	Northern

doi:10.1371/journal.pone.0163596.t001
(accession number: KM405651 –KM405787 and KX216532 –KX216595) and are available on BOLD public datasets DS-HMRD. Several additional species and two out-group sequences totaling 112 individuals from GenBank (Table 2) were also included in the analyses. Three other documented species, *H. kapuasensis*, *H. kecil* and *H. sesamun* were not included in the analyses as no specimens were obtained and no GenBank sequences were available. The final COI gene segment consisted of 616bp with average nucleotide composition of A = 24%, T = 35%, C = 25% and G = 16%, 231 variable sites, of which 213 were parsimony informative. No insertions, deletions or stop codons after translation were found, indicating that the amplified sequences constitute functional mitochondrial COI sequences and did not harbour any nuclear mitochondrial pseudogenes (numts).

The summary values of genetic divergence across taxonomic level based on K2P are shown in Table 3. The mean genetic divergence within species was 2.5% while the within genus

Table 2. Sequences of the COI gene of *Hemirhamphodon* species obtained from GenBank.

Species	Sequence label	GenBank Accession
Hemirhamphodon pogonognathus	H_7140	JQ430593.1
H. kuekenthali *(H. byssus)*	H_7136	JQ430639.1
H. kuekenthali	H_7138	JQ430651.1
H. phaisoma	H_7135	JQ430652.1
H. tengah	H_7129	JQ430653.1
H. tengah	H_7142	JQ430654.1
H. chrysoptunctatus	H_7141	JQ430655.1
H. sp.	H_7125	JQ430557.1
H. sp.	H_7127	JQ430054.1
H. sp.	H_7126	JQ430561.1
H. sp.	H_SGK1	JQ430601.1
H. sp. H_Pek1–H_Pek10	JQ430558.1, JQ4300560.1, JQ430563.1—JQ430565.1, JQ430567.1, JQ430571.1, JQ430577.1, JQ430582.1, JQ430586.1	
H. sp. H_Pen1–H_Pen11	JQ430557.1, JQ430575.1, JQ430579.1, JQ430584.1, JQ430594.1, JQ430599.1, JQ430602.1, JQ430603.1, JQ430605.1, JQ430607.1, JQ430609.1	
H. sp. H_Sel2–H_Sel3	JQ430559.1, JQ430562.1	
H. sp. H_Jam1–H_Jam10	JQ430546.1—JQ430553.1, JQ430555.1—JQ430556.1	
H. sp. H_LR_5250—H_LR5260	JQ430569.1, JQ430572.1, JQ430576.1, JQ430578.1, JQ430580.1, JQ430583.1, JQ430585.1, JQ430600.1, JQ430608.1, JQ430610.1, JQ430611.1	
H. sp. H_LR_5317—H_LR5326	JQ430612.1—JQ430621.1	
H. sp. H_LR_5422—H_LR5425	JQ430588.1, JQ430589.1, JQ430591.1, JQ430606.1	
H. sp. H_LR_5445—H_LR5449	JQ430574.1, JQ430590.1, JQ430592.1, JQ430595.1, JQ430604.1	
H. sp. H_LR_5452—H_LR5459	JQ430566.1, JQ430568.1, JQ430570.1, JQ430581.1, JQ430587.1, JQ430596.1, JQ430597.1, JQ430598.1	
H. sp. H_LR_6979—H_LR6980d	JQ430634.1—JQ430638.1	
H. sp. H_LR_6993—H_LR7003	JQ430640.1—JQ430650.1	
H. sp. H_Sar1–H_Sar12	JQ430622.1—JQ430633.1	
Dermogenys sp. D_Pen4	JQ430526.1	
Dermogenys sp. D_Pen7	JQ430524.1	

*New species name according to the latest species revision by Tan and Lim, 2013.

doi:10.1371/journal.pone.0163596.t002
divergence was three times greater at 8.4%. Pairwise comparisons of interspecific divergence among six species (Table 4) ranged from 8.7% (H. byssus vs H. kuekenthali) to 20.1% (H. phaiosoma vs H. chrysopunctatus—both from GenBank sequences) with a mean of 15.2%. Intraspecific divergence (S2 Table) revealed considerable heterogeneity ranging from low to deep divergence for H. pogonognathus (0% to 14.8%), H. byssus (0% to 6.7%) and H. kuekenthali (0% to 7.0%). A barcode Gap analysis (Fig 2) with two singleton species (H. phaiosoma and H. chrysopunctatus) excluded showed that a barcode gap was present in H. tengah and H. byssus while no barcode gap was present in H. pogonognathus and H. kuekenthali.

The constructed NJ (Fig 3) COI gene tree consisted of nine OTUs including one outgroup. Most individuals formed monophyletic species clusters consistent with their morphological identifications. However, H. pogonognathus was split into three distinct clusters with one major cluster of H. pogonognathus from Peninsular Malaysia and central Sumatra, a second cluster of a southern Sumatran group, and a third discrete Kelantan (JP, LB and H_LR53) cluster. Further inspection also revealed that population divergence patterns occurred in H. byssus and H. kuekenthali. H. byssus of the southern group (SC and SST) formed one cluster while H. byssus from the central group (SD, SP and TR) formed another cluster. For H. kuekenthali, the northern group (KMD, LK, KJI, LL, LBI and LMB) formed one cluster and the central group (LS, LG, BK, MK and TT) formed another cluster. The BI COI gene tree (Fig 4) showed nearly the same OTU clusters except for H. pogonognathus from Kelantan, where it branched as a sister clade of H. kuekenthali, instead of the main H. pogonognathus group as shown in the NJ tree.

The number of OTUs generated by ABGD based on K2P varied from 1 to 74 (Fig 5). The initial partition at a prior intraspecific divergence (P) (P = 0.0077–0.0359) produced 9 OTUs, and was in concordance with the NJ and BI trees. The additional OTU identified by ABGD was H. pogonognathus from Rambat.

Pairwise comparisons (Table 5) were computed for the newly assigned groupings according to the constructed NJ COI gene tree and the ABGD results. As expected, intraspecific

Table 3. Sample size (n), mean values, ranges of genetic divergences based on K2P across taxonomic levels from 311 sequences of the genus *Hemirhamphodon*.

Taxon	n	Min	Max	Mean
Within Species	*4	0	4.8	2.5
Within Genus	311	0	20	8.4

Only four species analysed as the other two species were represented by a single individual.

doi:10.1371/journal.pone.0163596.t003

Table 4. Pairwise comparisons of the COI gene based on K2P distance among six presumed (morphologically identified) *Hemirhamphodon* species.

	1	2	3	4	5	6	7	
1	H. pogonognathus	0.045						
2	H. byssus	0.126	0.030					
3	H. kuekenthali	0.120	0.087	0.048				
4	H. phaiosoma	0.144	0.143	0.148	n/c			
5	H. chrysopunctatus	0.171	0.186	0.178	0.201	n/c		
6	H. tengah	0.150	0.149	0.145	0.177	0.161	0.000	
7	Outgroup: Dermogenys	0.186	0.215	0.206	0.201	0.208	0.150	0.000

n/c = no calculation due to single sample.

doi:10.1371/journal.pone.0163596.t004
divergence exhibited a decreased value with a mean of 1.5% ranging from 0% to 4.3%. However, the intraspecific divergence for *H. pogonognathus* (southern Sumatra) remained high (4.3%). Pairwise divergence between groups for *H. byssus* (southern vs central) and *H. kuekenthali* (northern vs central) were 4.9% and 6.9% respectively. These values might be considered high but did not exceed the minimum nearest-neighbour interspecific divergence (7.9%). On the other hand, pairwise divergence among the three *H. pogonognathus* groups ranged from 7.8% to 11.8%, where divergences of the Kelantan group from other populations exceeded the minimum interspecific divergence value. A re-analysis of the barcode gap was conducted (Fig 2) for the new grouping. Again, the results revealed absence of a barcode gap in *H. pogonognathus* from southern Sumatra, *H. kuekenthali* from northern and *H. byssus* from central.

The results also revealed that members of the *Hemirhamphodon* genus appear to be allopatrically distributed. To determine whether the high intraspecific divergence was influenced by Paleo-drainage systems in Sundaland as discussed in de Bruyn et al. [41], the NJ COI gene tree clusterings were mapped against the Paleo-drainages (Fig 6) as suggested by Voris [42]. The mapping results revealed that only the divergence of *H. pogonognathus* from southern Sumatra is consistent with the Paleo-drainage (north Sunda) hypothesis. Samples from Malacca and Siam Paleo-drainages formed a single mixed group instead of two groups. Although there is no record of a Paleo-drainage for north Borneo (Sarawak), the divergence of *H. byssus* and *H. kuekenthali* seem likely to be congruent with a presently unknown barrier.

Discussion

The DNA barcoding approach is now widely recognized as an efficient tool to facilitate rapid identification of unidentified or unknown taxa through a DNA barcode reference library and also in assessment for conservation purposes, including of cryptic and microscopic organisms,
particularly those with morphologically ambiguous characters [1,4]. In this study, DNA barcode analysis was used in an attempt to assess cryptic diversity in the genus *Hemirhamphodon*. The analysis also permitted insights into the influence of Paleo-drainage systems of Sundaland in driving species diversity.

Fig 3. Neighbor-Joining COI gene tree among *Hemirhamphodon* species generated through K2P. Values at nodes represent bootstrap confidence levels (10000 replicates). A *Dermogenys* species was employed as an outgroup.

doi:10.1371/journal.pone.0163596.g003
Fig 4. Bayesian Inference COI gene tree generated through HKY+G+I. Value at nodes represents the Bayesian posterior probability. A Dermogenys species was employed as an outgroup.

doi:10.1371/journal.pone.0163596.g004
Table 5. Pairwise comparison of the COI gene based on K2P distance among newly assigned Hemirhamphodon groupings.

	1	2	3	4	5	6	7	8	9	10	11	
1	H. pogonognathus_main	0.011										
2	H. pogonognathus_southern_Sumatra	0.078	0.043									
3	H. pogonognathus_Kelantan	0.107	0.118	0.004								
4	H. byssus_southern	0.123	0.124	0.124	0.010							
5	H. byssus_central	0.134	0.133	0.120	0.049	0.029						
6	H. kuekenthali_central	0.119	0.121	0.124	0.090	0.095	0.025					
7	H. kuekenthali_northern	0.120	0.121	0.120	0.079	0.087	0.069	0.030				
8	H. phaiosoma	0.141	0.147	0.163	0.138	0.153	0.147	0.148	n/c			
9	H. chrysopunctatus	0.168	0.178	0.178	0.193	0.174	0.174	0.182	0.201	n/c		
10	H. tengah	0.149	0.149	0.159	0.147	0.154	0.147	0.141	0.177	0.161	0.000	
11	Outgroup_Dermogenys	0.181	0.201	0.201	0.214	0.216	0.208	0.203	0.201	0.208	0.150	0.000

n/c = no calculation due to single sample.

doi:10.1371/journal.pone.0163596.t005
The high levels of intraspecific divergence in *H. pogonognathus*, *H. byssus* and *H. kuekenthali* suggest that this genus exhibits high cryptic diversity. Several studies have reported the same phenomenon, for instance of the fighting fish *Betta* [43], flathead fishes [11] and fishes from Nujiang River [44], which revealed very high species diversity in the absence of apparent morphological differences. The constructed COI gene trees were generally consistent with the current morphological delimitation of *Hemirhamphodon* species, although several species were only represented by a single sequence here. However, the clustering of *H. pogonognathus* split into three well-supported clusters with high levels of divergence, except *H. pogonognathus* from Kelantan (bootstrap value of 59). This result further supports the existence of cryptic diversity within the *H. pogonognathus* group. Given its broad distribution in a biodiversity hotspot and the recent documentation of species discovery in *Hemirhamphodon* [21], this is therefore not surprising. This pattern could be interpreted as any of these: a recent speciation event, interspecies hybridization, or as (morphological) misidentification [45–46]. When hybridization occurs, the divergent sequence will cluster with the clade of one of the hybridizing species. Conversely, for cryptic species, a new divergent clade will be apparent that is different from that of any currently recognized species [11]. Our results clearly exhibit the split of different clusters indicating the probable presence of cryptic diversity.

Multiple lineages generated through tree construction demonstrated the potential occurrence of sources from different drainages. The mapping of Sundaland Paleo-drainage systems against the NJ COI gene tree revealed that Paleo-drainages also likely played a role in the high intraspecific divergence values recovered here. This was evident in the *H. pogonognathus*
southern Sumatran group which follows the north Sunda Paleo-drainage, diverging from the main *H. pogononathus* group (combined Malacca and Siam Paleo-drainages) as shown in Fig 6. Additionally, the NJ COI gene tree also shows further splits within *H. byssus* and *H. kuekenthali* into multiple lineages. However, these bifurcations did not split out from the currently recognized species to form a new cluster as in *H. pogonognathus*. DeBruyn et al. [41] found little evidence for Paleo-drainage systems driving divergence in *Hemirhamphodon*, but strong support for this mechanism influencing diversity in the halfbeak genus *Dermogenys*. They postulated that life history strategies (*Hemirhamphodon* = forest stream specialists; *Dermogenys* = brackish water generalists) could have been an important determinant of ability to migrate via these vast Pleistocene paleo-river systems, before subsequent allopatric splitting as sea-levels fell and paleo-systems waned. Although the mapping result demonstrated no obvious Paleo-drainage assigned for north Borneo (Sarawak), the different lineages of *H. byssus* and *H. kuekenthali* seem very likely to be geographically restricted lineages resulting from unidentified barriers. On the other hand, these divergences could also be associated with ecosystem-dependent adaptive radiation. In addition, the Rajang River seems to have acted as an effective barrier leading to endemism of *H. byssus* and *H. kuekenthali* with *H. byssus* only found in the south of the Rajang basin and *H. kuekenthali* in the north.

The tree topology showing several distinct clusters within certain species coupled with high levels of intraspecific diversity indicated probable occurrence of cryptic species [44]. High genetic divergence within nominal species can be interpreted as misidentification, or more importantly as cryptic or unrecognized speciation events [11,12,47]. There are several criteria proposed for species delineation based on the DNA barcoding approach. Hebert et al. [48] proposed the ‘10X rule’ as an indicator of cryptic speciation. On the other hand, Ward et al. [49], who analysed barcode data from about 1000 fish species, showed that individuals were much more likely to be congeneric than conspecific at a level of 2% distance or greater. Another criterion is the use of the barcode gap, which is the distance or gap between the maximum intraspecific and minimum interspecific distances [38,48,50–52].

Barcode gap analysis for our dataset for both initial groupings and new groupings (Fig 2) revealed that no barcode gap was present in *H. pogonognathus*, *H. kuekenthali* and *H. byssus*, which indicated the probable existence of more than one species within each of these taxa. In addition, the ABGD method generated 9 OTUs, which is nearly concordant with the COI gene trees. The *H. pogonognathus* complex formed three OTUs, which potentially implies detectable intraspecific diversity. Thus, referring to the results of the genetic distance, COI gene trees and barcode gap analyses, the existence of high cryptic diversity among our dataset is apparent.

The three genetic lineages across *H. pogonognathus* most likely represent species-level taxa, suggesting that *H. pogonognathus* consists of at least two distinct species. *Hemirhamphodon pogonognathus* was the most widely distributed species and showed high intraspecific divergence values up to 14.8% with a mean of 4.5%, separated by three geographical splits (Fig 6). Further re-grouping revealed that the *H. pogonognathus* complex exhibited deep divergence among the three *H. pogonognathus* groups, ranging from 7.8% to 11.8% (Table 4), where divergences of the Kelantan group from the other two groups exceeded the minimum interspecific divergence (7.9%). No obvious morphological characters were found to distinguish them into different species even though colour differentiation was observed among some localities. In fact, the genetically distant Kelantan group shared the same colour pattern with the main group. In addition, the Kelantan group was separated from the main cluster to form its own clade in the COI gene trees, further supporting the probable existence of cryptic species in the *H. pogonognathus* group. Thus, we propose that *H. pogonognathus* from Kelantan has the potential of being a new species record.
The six morphological species included in this study generated 9 OTUs. This DNA barcoding study shows the high potential in cryptic species assessment particularly within 'hyperdiverse' SE Asia. The species status for *H. byssus* and *H. kuekenthalii* remains unclear, and each could be considered as a species complex. Based on this study, the genus of *Hemirhamphodon* is proposed to consist of at least 10 species namely *H. pogonognathus*, *H. kuekenthalii*, *H. byssus*, *H. phaiosoma*, *H. chrysopunctatus*, *H. tengah*, *H. kapuasensis*, *H. sesamun*, *H. kecil* (the last three species not included in this analysis) and the newly proposed *H. pogonognathus* sp. of Kelantan. Nevertheless, further investigations with combined molecular and morphological approaches, and also population level analyses with larger sample sizes are needed to clarify *Hemirhamphodon* taxonomy.

Conclusions

In conclusion, the present study exhibited the power of DNA barcoding in species diversity assessment. In addition, the findings highlight the high cryptic diversity of this genus, which is in agreement with our initial hypothesis. However, a more integrated study including molecular and morphological approaches needs to be conducted to resolve the issue of the identification of paraphyletic or species complexes of several *Hemirhamphodon* species. Lastly, more studies of freshwater fishes with a range of distributional, life history and other datasets (genetic, phenotypic and geographical) incorporating multiple research tools need to be conducted in order to have a better understanding of the drivers and maintenance of biodiversity within the SE Asian region.

Supporting Information

S1 Table. Geographical coordinates of sampling locations and voucher specimen repository.
(XLSX)

S2 Table. Pairwise comparisons of the COI gene based on K2P distance among sampling locations of *Hemirhamphodon* species.
(XLSX)

Acknowledgments

We would like to thank supporting staff from School of Biological Sciences, Universiti Sains Malaysia and members of Lab 308. Our appreciations to Mr. Lim Teow Yeong, Mr. Michael Lo, Prof. Muchlisin of Syiah Kuala University, Aceh and the sampling team from University of Riau, Sumatra, Indonesia for sampling assistance with this research.

Author Contributions

Conceptualization: HCL SAMN MdB.

Data curation: HCL.

Formal analysis: HCL.

Funding acquisition: SAMN.

Investigation: HCL.

Methodology: HCL.
Project administration: SAMN.

Resources: MZA CPP.

Supervision: SAMN.

Writing – original draft: HCL.

Writing – review & editing: HCL SAMN MdB.

References

1. Hubert N, Hanner R. DNA Barcoding, species delineation and taxonomy: a historical perspective. DNA Barcode. 2015; 3:44–58.

2. Hebert PDN, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London, Series B: Biological Sciences. 2003; 270(Suppl.):S96–S99.

3. Padial JM, Miralles A, De la Riva I, Vences M. The integrative future of taxonomy. Frontiers in Zoology. 2010; 7:1–14.

4. Hebert PDN, Cywinska A, Ball SL, de Waard JR. Biological identification through DNA barcodes. Proceedings of the Royal Society of London, Series B: Biological Sciences. 2003; 270:313–322.

5. Ribeiro ADO, Caires RA, Mariguela TC, Pereira LHG, Hanner R, Oliveira C. DNA barcodes identify marine fishes of São Paulo State, Brazil. Molecular Ecology Resources. 2012; 12: 1012–1020. doi: 10.1111/j.1755-0998.12007 PMID: 22958713

6. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN. DNA barcoding Australia’s fish species. Phil. Trans. R. Soc. B. 2005 Oct 29; 360(1642):1847–1857. doi: 10.1098/rstb.2005.1716. PMCID: PMC1609232.

7. Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M, et al. Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE. 2008; 3(6):e2490. doi: 10.1371/journal.pone.0002490 PMID: 22423312

8. Steinke D, Zemlak TS, Boutillier JA, Hebert PDN. DNA barcoding of Pacific Canada’s fishes. Marine Biology. 2009; 156:2641–2647.

9. Valdez-Moreno M, Ivanova NV, Elias-Gutiérrez M, Contreras-Balderas S, Hebert PDN. Probing diversity in freshwater fishes from Mexico and Guatemala with DNA barcodes. Journal of Fish Biology. 2009; 74:377–402. doi: 10.1111/j.1095-8649.2008.02077.x PMID: 20735566

10. Kim S, Eo HS, Koo H, Choi JK, Kim W. DNA Barcode based molecular identification system for fish species. Molecules and Cells. 2010; 30:507–512. doi: 10.1007/s10059-010-0148-2 PMID: 21110132

11. Puckridge M, Andreakis N, Appleyard SA, Ward RD. Cryptic diversity in flathead fishes (Scorpaeniformes: Platycephalidae) across the Indo-West Pacific uncovered by DNA barcoding. Molecular Ecology Resources. 2013; 13:32–42. doi: 10.1111/1755-0998.12022 PMID: 23006498

12. León-Romero Y, Omar Mejía, Soto-Galera E. DNA barcoding reveals taxonomic conflicts in the Herichthys bartoni species group (Pisces: Cichilidae). Molecular Ecology Resources. 2012; 12:1021–1026. doi: 10.1111/j.1755-0998.12018 PMID: 23006448

13. Zhang JB, Hanner R. DNA barcoding is a useful tool for the identification of marine fishes from Japan. Biochemical Systematics Ecology. 2011; 39:31–42. doi: 10.1016/j.bse.2010.12.017

14. Mat Jaafar TNA, Taylor MI, Mohd Nor SA, de Bruyn M, Carvalho GR. DNA barcoding reveals cryptic diversity within commercially exploited Indo-Malay Carangidae (Teleostei: Perciformes). PLoS ONE. 2012; 7(11):e49623. doi: 10.1371/journal.pone.0049623 PMID: 23209586

15. Hubert N, Meyer CP, Bruggemann HJ, Guerin F, Komeno RJJ, Espiau B, et al. Cryptic diversity in Indo-Pacific coral-reef fishes revealed by DNA barcoding provides new support to the Centre-of-Overlap hypothesis. PLoS One. 2012; 7(3):e28987. doi: 10.1371/journal.pone.0028987 PMID: 22439862

16. Rosso JJ, E. Mabragaña A, González Castro M., Díaz de Astarloa JM. DNA barcoding Neotropical fishes: recent advances from the Pampa Plain, Argentina. Molecular Ecology Resources. 2012; 12:999–1011. doi: 10.1111/j.1755-0998.12010 PMID: 22984883

17. Ruocco NL, Lucifora LO, Díaz de Astarloa JM, Mabragaña E, Delpiani SM. Morphology and DNA barcoding reveal a new species of eagle ray from the Southwestern Atlantic: Myliobatis ridens sp. nov. (Chondrichthyes: Myliobatiformes: Myliobatidae). Zoological Studies 2012; 51(6):862–873.

18. Bleeker P. Atlas ichthyologique des Inde Orientales Néerlandaises. Tome VI. Pleuronectes, Scombrèo-soces, Clupèes, Clupésoces, Chauliodontes, Saurides. Amsterdam, Frédéric Muller. 1866–1872; 170.
19. Lovejoy N R. Reinterpreting recapitulation: Systematics of needlefishes and their allies (Teleostei: Beloniformes). Evolution. 2000; 54(4):1349–1362. PMID: 11005301
20. de Bruyn M, von Rintelen T, von Rintelen K, Mather PB, Carvalho GR. Molecular biogeography and phylogeography of the freshwater fauna of the Indo-Australian Archipelago. In: Gower DJ, Johnson K, Richardson J, Rosen B, Ruber L, Williams S editors. Biotic evolution and environmental change in Southeast Asia. Cambridge: Syst. Assoc. Vol. Cambridge University Press; 2012.p.316–347.
21. Tan HH, Lim KKP. Three new species of freshwater halfbeaks (Teleostei: Zenarchopteridae: Hemirhamphodon) from Borneo. Raffles Bulletin of Zoology, supplement. 2013; 61:735–747.
22. Collette BB. Family Hemirampidae Gill 1859—halfbeaks. Calif. Acad. Sci. Annotated Checklists of Fishes. 2004; 22:35.
23. Anderson WD III, Collette BB. Revision of the freshwater viviparous halfbeaks of the genus Hemirhamphodon (Teleostei: Hemirampidae). Ichthyol. Explor. Freshwaters. 1991; 2(2):151–176.
24. Bleeker P. Bijdrage tot de kennis der ichthyologische fauna van Blitong (Billiton), met beschrijving van enige nieuwe soorten van zoetwatervissen. Natuurkd. Tijdschr. Neder. Indië v. 1852; 3:87–100.
25. Bleeker P. Nalezingen op de ichthyologische fauna van het eiland Banka. Natuurk. Tijdschr. Neder. Indië v. 1853: 5:175–194.
26. Steindachner F. Kükethal’s W., Ergebnisseiner zoologischen Forschungsreise in den Molukken und Borneo. Fische. Abh. Senckenb. Naturforsch. Ges. 1901: 25:409–464.
27. Brembach M. Ein neuer Halbschnäbler aus Kalimantan (Süd Borneo). Vorläufige Beschreibung von Hemirhamphodon chrysoptactus spec. nov. Aquarium Aqua Terra v. 1978; 12(110): 340–344.
28. Roberts TR. The freshwater fishes of Western Borneo (Kalimantan Barat, Indonesia). California Academy of Sciences, San Francisco; 1989:210.
29. Wickman A. Net in hand in Borneo. Aquar. Pondkeeper. 1981; 46(6):40–46.
30. Hartl A. Halbhechte und Halbschnabhechte Harmlose Namensverwandte unseres Hechtes aus Südostasien (Schluss). Aquar. Terrar. Zeitsch. 1983; 36(10):368–371.
31. Bork D, Mayland HJ. Seltene Schönheiten im Süßwasser aquarium. Birgit Schmettkamp Verlag, Bornheim. 1998:38–43.
32. Grell W. Pflege und Zucht eines eierlegenden Halbschnabelhechtes. Aquaristik aktuell. 1998; 6(11/12):24–26.
33. Dorn A, Greven H. Some observations on courtship and mating of Hemirhamphodon tengah Anderson& Collette, 1991 (Zenarchopteridae). Bulletin of Fish Biology. 2007; 9(1):99–104.
34. Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research. 1997; 25:4692–4693. PMID: 9358185
35. Tamura K, Peterson D, Peterson N, Stecher G, Filipski A, Kuma S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology & Evolution. 2013; 30:2725–2729.
36. Edgar, Robert C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004; 32(5):1792–97. PMID: 15034147
37. Hebert PDN, Gregory TR. The promise of DNA barcoding for taxonomy. Systematic Biology 2005; 54:852–859. PMID: 16243770
38. Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, automated barcode gap discovery for primary species delimitation. Molecular Ecology. 2012; 21:1864–1877. doi: 10.1111/j.1365-294X.2011.05239.x PMID: 21883587
39. Felsenstein J. Accuracy of coalescent likelihood estimates: Do we need more sites, more sequences, or more loci? Molecular Biology and Evolution. 2005; 23:691–700. PMID: 16364968
40. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012; 61(3):539–42. doi: 10.1093/sysbio/sys029 PMID: 22357727
41. de Bruyn M, Rüber L, Nylinder S, Stelbrink B, Lovejoy NR, Lavoue S, et al. Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots. Systematic Biology. 2013; 62:398–410. doi: 10.1093/sysbio/sys007 PMID: 23391942
42. Voris HK. Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river systems and time durations. Journal of Biogeography. 2000; 27:1153–1167.
43. Sriwattanarothai N, Steinke D, Ruenwongsa P, Hanner R, Panipjan B. Molecular and morphological evidence supports the species status of the Mahachai fighter Betta sp. Mahachai and reveals new species of Betta from Thailand. Journal of Fish Biology. 2010; 77:414–424. doi: 10.1111/j.1095-8649.2010.02715.x PMID: 20646165
44. Chen WT, Ma XH, Shen YJ, Mao YT, He SP. The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding. Scientific Reports. 2015; 5:17437. doi: 10.1038/srep17437 PMID: 26616046

45. Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN. Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes. 2007; 7:544–548.

46. Coyne JA, Orr HA. Speciation. Sunderland (MA): Sinauer Associates;2004.

47. Kadarusman, Hubert N, Hadiaty RK, Sudarto, Paradis E, Pouyaud L. Cryptic diversity in Indo-Australian rainbow fishes revealed by DNA barcoding: implications for conservation in a biodiversity hotspot candidate. PLoS ONE. 2012; 7(7):e40627. doi: 10.1371/journal.pone.0040627 PMID: 22829879

48. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101:812–817.

49. Ward RD, Hanner RH, Hebert PDN. The campaign to DNA barcode all fishes, FISH-BOL. Journal of Fish Biology. 2009; 74:329–356. doi: 10.1111/j.1095-8649.2008.02080.x PMID: 20735564

50. Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive sampling. PLoS Biology. 2005; 3(12):e422. doi: 10.1371/journal.pbio.0030422 PMID: 16336051

51. Meier R, Kwong S, Vaidya G, Ng PKL. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology. 2006; 55: 715–728. PMID: 17060194

52. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103:968–971. PMID: 16418261