Shear-flow transition: the basin boundary

Norman R Lebovitz

Department of Mathematics, The University of Chicago, 5734 S. University Ave., Chicago, IL 60637, USA
E-mail: norman@math.uchicago.edu

Received 14 April 2009, in final form 6 August 2009
Published 2 October 2009
Online at stacks.iop.org/Non/22/2645

Recommended by B Eckhardt

Abstract
The basin of attraction of a stable equilibrium point is investigated for a dynamical system (W97) that has been used to model transition to turbulence in shear flows. The basin boundary contains a linearly unstable equilibrium point X_{lb} which, in the self-sustaining scenario, plays a role in mediating the transition in that transition orbits cluster around its unstable manifold. However we find—for W97 with canonical parameter values—that this role is played not by X_{lb} but rather by a periodic orbit also lying on the basin boundary. Moreover, it appears via numerical computations that all orbits beginning near X_{lb} relaminarize. We offer numerical evidence that the parameter values of W97 are post-critical in the following sense: for some, subcritical parameter values, the basin boundary coincides with the stable manifold of X_{lb} and only a subset of nearby orbits relaminarize, whereas for supercritical values the basin boundary is the union of two stable manifolds, one belonging to the periodic orbit and dominating the basin boundary, and the other belonging to X_{lb} and detectable only as edge separating relaminarizing orbits of different characters. The periodic orbit appears at the critical parameter value via a homoclinic connection. This further leads to a proposal for the structure of the ‘edge of chaos’ somewhat different from that which has previously been proposed.

Mathematics Subject Classification: 76D05, 76F20

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Experimentally, laminar shear flows undergo transition to turbulence when the relevant parameter, the Reynolds number R, exceeds a critical value R_c. Mathematically, when the Navier–Stokes equations are linearized about the laminar flow, the expected passage from
stability to instability at R_c is not found. This is the familiar conundrum that linear theory fails to predict the critical value R_c (cf, for example, the introductory remarks in [7] for a fuller discussion). A resolution of this conundrum is that the stable, laminar point O possesses a basin of attraction B whose boundary ∂B passes increasingly close to O with increasing R, so that perturbations that may be small by laboratory standards are large enough to transgress ∂B for sufficiently large values of R.

This idea of describing the problem of shear flows in the language of dynamical-systems theory is an attractive one but has limitations when the model systems are confined to very low dimensions. This work is nevertheless confined to models of very low dimensions. The motivations are (1) the impression that the nature of the basin of attraction is an important element in the theory, (2) the observation that very little is known about it and (3) the conviction that one needs to understand the basin and its boundary in low-dimensional systems before proceeding to high-dimensional systems. This is not a new idea. For example, a part of the basin boundary has been calculated and graphed for a two-dimensional model in [4], and its importance has been further highlighted in a discrete, dynamical system in [15]. In this paper we consider the four-dimensional model W97 (as described in [18]) and its minor modifications.

Some results that may be relevant to higher dimensional models and to the Navier–Stokes (NS) equations, discussed in more detail in section 5, include the convoluted structure of the boundary, which implies that the functional form of a perturbation may be as important as its size; that the vicinity of X_{lb} may not be the only place to seek transition; and that the tendency of the region complementary to the basin of attraction to extreme narrowness in some parts of phase space may help to explain the ‘edge of chaos’ [14] in terms of the more familiar invariant sets of dynamical-systems theory.

The plan of the paper is as follows. We describe the mathematical setting in section 2. In section 3 we present Waleffe’s model together with diagrams of the boundary of the basin of attraction indicating the periodic orbit that lies on that boundary, and the relaminarization of orbits starting near X_{lb}. In section 4 we reset the parameters in order to conduct a parametric study, finding a critical parameter value at which the lower branch equilibrium point is joined on the basin boundary by a large periodic orbit via a homoclinic bifurcation. The concluding section, section 5, is devoted to drawing from this study a proposed interpretation of the edge of chaos that is related to but not the same as that of [14], and to brief remarks on the results of this paper and their implications for further study.

2. Mathematical setting

The NS equations possess a number of very simple solutions representing laminar shear flows (plane Couette and Poiseuille flow, pipe flow, etc). When these partial-differential equations are modelled by a finite-dimensional system, the laminar flow can be modelled by an equilibrium point of that system, which we will take to be the origin of coordinates O. Almost all such finite-dimensional systems that have been studied take the form

$$\dot{x} = Ax + b(x), \quad x \in \mathbb{R}^n$$

satisfying certain conditions:

1. A is a non-normal, stable matrix.
2. $b(x)$ is quadratic in x and $\sum_{j=1}^n x_j b_j(x) = 0$.

This structure can be inferred by a Galerkin projection of the NS equations onto n basis vectors, while taking mild liberties with the boundary conditions.

The stability condition on A implies that its eigenvalues lie in the left half-plane and therefore that the origin O is asymptotically stable. The basin of attraction B of an
asymptotically stable equilibrium point is the set with the property that any orbit through a point of B tends to the equilibrium point as $t \to +\infty$. It is an open set invariant under the flow, in the sense that any solution beginning in B remains in B on its maximal interval of existence (a, ∞). In some examples $a = -\infty$, though this is not inevitable. Its set-theoretic boundary ∂B (if it has one) is likewise invariant in the same sense (it is worth noting here that other, more restrictive, meanings have been given to ∂B: cf [15] and section 5 below). The latter is typically of relative measure zero, so the orbits that lie on ∂B are rare but important since they lie just at the transition from the laminar flow towards something ‘more interesting’. In particular, the threshold amplitude for transition, which has been a subject of some interest ([1–3, 9, 13, 16]), is the minimum distance from the origin to the basin boundary. We denote such a threshold point by T.

It plays a role in the self-sustaining process of shear turbulence as outlined by Waleffe et al ([11, 17, 18]). In this three-part process sustained turbulence is envisaged as consisting of streamwise rolls (part one) leading towards a streaky flow (part two) whose instability reinforces the streamwise rolls (part three). Figure 1 illustrates the first two parts of this process: a phase point starting near T evolves towards the unstable equilibrium point X_{lb}, a surrogate for the streaky flow. If it lies just above the basin boundary—which coincides in this diagram with the stable manifold of X_{lb}—it is captured by the unstable manifold of X_{lb} and sent towards S, a surrogate for turbulence.

3. The model W97

This is a four-dimensional model which may be written as

\begin{align*}
\dot{x}_1 &= -\delta r_1 x_1 + \sigma_1 x_2^2 - \sigma_2 x_2 x_3, \\
\dot{x}_2 &= -\delta r_2 x_2 + \sigma_2 x_3 + \sigma_2 x_1 x_3 - \sigma_4 x_4^2, \\
\dot{x}_3 &= -\delta r_3 x_3 + \sigma_3 x_4^2, \\
\dot{x}_4 &= -(\sigma_1 + \delta r_4) x_4 + x_4 (\sigma_4 x_2 - \sigma_1 x_1 - \sigma_3 x_3).
\end{align*}

Here $\delta = 1/R$ where R is the Reynolds number and the eight constants r_1 to σ_4 are all positive (in an earlier model, W95, $\sigma_1 = 0$: see [17]). There are canonical values for these constants that we use (following [2]) in this section:

$(\sigma_1, \sigma_2, \sigma_3, \sigma_4) = (0.31, 1.29, 0.22, 0.68),
(r_1, r_2, r_3, r_4) = (2.4649, 5.1984, 7.6729, 7.1289).$
This system conforms to the rules (1) and (2) of model building. It possesses the symmetry $S = \text{diag}(1, 1, 1, -1)$, so a solution $x(t)$ has a companion solution $\tilde{x}(t)$ obtained by reversing the sign of $x_4(t)$ and the plane $x_4 = 0$ is an invariant plane. For these reasons there is no loss of generality in considering only solutions for which $x_4(t) \geq 0$. It is not difficult to show that the invariant plane $x_4 = 0$ lies entirely in B, the basin of attraction of the origin. It has been the subject of several studies (in addition to [2], see in particular that of [5]), with different goals from those emphasized here.

Two additional equilibrium solutions beyond that at the origin are found provided $\delta < \delta_{\text{sn}}$ or $R > R_{\text{sn}}$. With the choices for the parameters made above, $R_{\text{sn}} = 106.19$. The equilibrium solution lying closer in norm to the origin is called the ‘lower branch’ X_{lb}, the one lying farther away is called the ‘upper branch’ X_{ub} (see figure 2). The lower branch solution is unstable, with a one-dimensional unstable manifold and a three-dimensional stable manifold; the upper branch solution may be stable or unstable, depending on the choices of R and the other parameters. For the values of R considered in this paper and for the canonical values of the other parameters, X_{ub} is asymptotically stable. These equilibrium solutions are illustrated in figure 2. The one marked X_{lb} lies on ∂B. It is important to bear in mind, however, that X_{lb} is by no means the closest point on that boundary to the origin. That closest point, denoted by T in figure 1, tends to the origin as $R \to \infty$ (cf [2]) whereas X_{lb} does not.

Figure 1 suggests that the orbits starting on ∂B tend towards X_{lb}, which mediates the transition. This will be so if the stable manifold of X_{lb} coincides with ∂B. This seems plausible (and has been found to be the case for some other models) but is by no means inevitable: the basin boundary and the stable manifold of X_{lb} are both invariant sets for the system (2)–(5) but they are defined in different manners and need not be identical. In fact, we find that they are not identical for the model W97. The stable manifold of X_{lb} is a proper subset of ∂B, so a point on ∂B lying far enough from X_{lb} has a different evolution.

For W97 the threshold point T has been located by Cossu [2]. We find, by following the orbits starting near T, that they are attracted not towards X_{lb} but to a periodic orbit P also lying on ∂B. We have thus far carried out calculations for $R = 145$ and $R = 190$ and

![Figure 2. This is the diagram for equilibrium figures in Waleffe’s model. The lower edge, where the norm $\|X\| = 0$, represents the laminar solution. The ‘lower branch’ of further equilibrium solutions does not approach the laminar solution as $R \to \infty$ but instead tends to the indicated asymptote.](image)
we display only those for \(R = 190 \) (those for \(R = 145 \) are similar). We exploit Cossu’s calculations to find refinements of the threshold values \(T \): by repeated bisection we obtain a pair of values, \(x_o \) and \(x_i \) lying, respectively, just outside and just inside the basin of attraction \(B \) and within a short distance \(\epsilon \) of one another. It follows that there is a point \(T \) on \(\partial B \) within \(\epsilon \) of either of them. We then find the structure of the basin boundary by calculating slices of it by two-dimensional hyperplanes (figures 3–5). \(T \) lies close to the origin on the scales of these diagrams. That it does not lie at the origin is most easily seen in figure 5.

We also obtain the orbit through \(T = (T_1, T_2, T_3, T_4) \), finding the following. On taking \(x_o \) as the initial data, we find that after a transient of a few hundred units of time, the orbit is essentially periodic for many thousand units of time, eventually spiralling into the stable, outside point \(X_{ub} \). If \(x_i \) is taken as the initial point a similar evolution is found except that at the end, the orbit tends to the laminar point \(O \). Neither of these orbits comes close to \(X_{lb} \).

In figures 3–5 two different kinds of objects are shown: slices of the basin boundary by two-dimensional hyperplanes on the one hand and projections onto these hyperplanes of other features in the four-dimensional space (such as the periodic orbit) on the other hand. The latter are indicated by single quotation marks.

While the self-sustaining process may be only slightly modified by replacing the equilibrium point \(X_{lb} \) with the periodic orbit \(P \) as the mediator of transition, the question of what role \(X_{lb} \) plays in the dynamics now arises. We next turn to this.

The three-dimensional stable manifold of \(X_{lb} \) coincides locally with \(\partial B \). Denote by \(\xi_t \) a unit vector transverse to \(\partial B \) (for example, \(\xi_t \) could have the unstable direction at \(X_{lb} \)). Then if for a scalar \(v \) we choose the initial data

\[
x(0) = X_{lb} + v\xi_t \quad (6)
\]

for a small value of \(|v| \), we expect the orbit to depart from \(X_{lb} \) along its unstable manifold. We anticipate that for one sign of \(v \) the orbit will lie inside \(B \) and for the other outside, and therefore that for one sign the orbit will tend to the origin and for the other it will remain permanently outside the basin boundary, presumably tending for large \(t \) to the stable equilibrium point at \(X_{ub} \).
Instead, we find that all orbits tend to O, apparently echoing the persistent relaminarization found in other models [8]. This is illustrated in figure 6.

This violation of expectations could be explained by the following conjecture: X_{lb} indeed lies on ∂B but, near the part of ∂B on which it lies, there is a second leaf of ∂B exquisitely close to the first, and it is only for the initial data in the narrow gap between the two leaves that orbits remain bounded away from the origin. That such narrow gaps are plausible for these systems may be seen by examining figure 3 near the point T. In that case the gap, while narrow, is still easily detectable numerically. If this ‘gap conjecture’ is correct for W97 with the canonical choice of parameters, the space between the two leaves is too small to be detected in the usual double precision arithmetic.
Figure 6. The model is W97 with the canonical values for the constants \(r_1 \) to \(\sigma_4 \) and \(R = 190 \). The norms of the orbits are shown in the interval \([0,1200]\) and \(v = \pm 10^{-14} \). The two cases differ in the nature of the orbits and in the time for relaminarization to occur.

4. A march towards relaminarization

We adopt a familiar strategy for testing this conjecture. We choose different parameters for which the problem simplifies and there is no violation of expectations, and make gradual changes in these parameters to see whether the more complicated situation encountered above unfolds. There is always some degree of arbitrariness in a reparametrization. The one we have chosen below is extreme and it is likely that a more modest reparametrization would suffice, although we have not explored this.

If we set all the positive constants in W97 equal to unity we find qualitative similarity to the case with canonical values for these constants. In particular, on choosing (say) \(R = 100 \), we find that all perturbations of \(X_{lb} \) appear to relaminarize, as in figure 6. The strategy will be to take all coefficients equal to unity with the exception of \(\sigma_1 \). An asymptotic analysis like that of [18] shows that, for small \(\delta = 1/R \), the lower and upper branch equilibrium points are

\[
X_{lb} \approx \left(-\frac{\sigma_1}{1+\sigma_1}, \frac{\sigma_1}{1+\sigma_1}, \sigma_1/\delta, \sigma_1/2\delta \right)
\]

and

\[
X_{ub} \approx (-1+2\delta, \delta^{1/2}, \delta^{1/2}, \delta^{3/4}).
\]

For small values of \(\sigma_1 \), we find numerically that there is a large and easily detectable gap near \(X_{lb} \), i.e. in a description like that of figure 6, the orbits for which \(v < 0 \) relaminarize whereas those for which \(v > 0 \) do not. We then consider successively larger values of \(\sigma_1 \) to see whether this gap gets successively narrower and ultimately becomes undetectable. In figures 7 and 8, we show only slices of the basin boundary with the hyperplane \(x_2 = X_{lb2}, x_3 = X_{lb3} \) since these seem to reveal the gap most clearly. The value of \(R \) is held fixed at 15.

In these diagrams the region marked \(C \), or complement of \(B \), is itself the basin of attraction of a stable periodic orbit lying outside \(B \) (\(X_{ab} \) is now unstable). The diagrams confirm the existence of a narrowing gap but reveal a further, unexpected feature: there appears to be a topological change in the nature of the basin boundary at precisely the parameter value at which the gap becomes suddenly undetectable, and is replaced by an ‘edge’, determined numerically by differences in time to relaminarize, as in figure 6.

Simultaneous with the appearance of the edge is the appearance of a homoclinic loop, as indicated in figure 8. This presages the appearance of a periodic orbit (\(P \), say) lying on the
Figure 7. The ordinate is x_4. For each value of σ_1 shown, there is a progressively narrower gap to the right of X_{lb}. Orbits starting above the narrower gap require a longer time to relaminarize than those starting below. It looks on this scale as if the gap closes when $\sigma_1 = 0.185$, with X_{lb} falling on a critical point. A close-up of the region near X_{lb} would show that this has not yet occurred for $\sigma_1 = 0.185$, but see figure 8.

Figure 8. These are close-up views of the part of phase space near X_{lb}, which is represented by a large dot. The first and third of these diagrams are calculated but the central diagram is conjectural. The arrow marked $\text{UM}(X_{lb})$ in the left-hand diagram is the projection onto this hyperplane of the unstable direction at X_{lb}, and it is tending towards tangency with the upper leaf of the stable manifold of X_{lb}, and thus forming the homoclinic connection (central diagram). The curve marked ‘edge’ in the third diagram divides long-time relaminarizations from short-time relaminarizations: no points of the complementary region C are detectable in the region of phase space immediately adjacent to this edge.

basin boundary. This orbit is shown for a slightly post-critical value of σ_1 in figure 9 in which it continues to have the appearance of a homoclinic loop. It is to be distinguished from the separate, stable periodic orbit attracting all orbits inside the complement of B. P has been detected in a numerical program designed to identify periodic orbits, which also confirms that it has one Floquet multiplier exceeding one in absolute value (i.e. of unstable type), and two less than one (the remaining multiplier equals one). This is consistent with the interpretation that its stable manifold now forms a part of the basin boundary. That part of the basin boundary is robustly detectable as the borderline between orbits that tend to the origin and those that are captured by a stable periodic orbit. Similarly, in the case of canonical parameters depicted in figures 3–5, the part of the basin boundary consisting of the stable manifold of the periodic orbit is robust, and near-transition orbits are attracted to this.
5. Discussion

We have studied the modified system W97 in which all the constants except σ_1 have been set equal to one. The following sequence of statements is inferred from this study. Since the study is numerical, these statements are made subject to the usual caveats.

- When σ_1 is small enough, the boundary ∂B of the basin of attraction B of the origin coincides with the stable manifold $SM(X_{lb})$ of the unstable equilibrium point X_{lb}.
- When σ_1 exceeds a critical value, ∂B is the union of two stable manifolds, $SM(X_{lb})$ and $SM(P)$, where P is a periodic orbit that comes into existence via a homoclinic connection at the critical value of σ_1.
- Post-critically, $SM(X_{lb})$ is no longer detectable as the boundary between the initial data whose orbits tend to the origin and those whose orbits are permanently bounded away from the origin, because all nearby orbits tend to the origin (relaminarize). It continues to be detectable as the dividing line between qualitatively different kinds of orbits, whose times to relaminarize are sharply different.
- Orbits through points on that part of ∂B separating orbits that relaminarize from those that do not are all attracted to P, i.e. this part of ∂B coincides with $SM(P)$.

Accepting these results from the modified version of W97, we can understand the results obtained in section 3 for the canonical version of this model: the latter is post-critical in the sense that the homoclinic bifurcation has occurred along some path in parameter space leading from the modified parameters to their canonical values.

The sudden collapse of a part of the set complementary to the basin of attraction, as depicted in the right-hand diagram of figure 8, is reminiscent of the ‘edge of chaos’ as described in [14] in that the line marked ‘edge’ is determined in a similar manner, namely there is a sharp difference in relaminarization time for points just above and just below this line. A plausible interpretation of this edge is given in [14] along the following lines. In addition to the stable, laminar point at the origin of coordinates, there are two other invariant sets controlling the dynamics: a periodic orbit P on the basin boundary and a chaotic saddle farther out in phase space (see their figure 3). Orbits beginning below $SM(P)$ tend directly to the origin, whereas those beginning above it first participate in the dynamics of the chaotic saddle before finally relaminarizing. This basic building block is then enhanced by intricate convolutions of $SM(P)$ to explain the repeated, sudden alterations in relaminarization times with distance along a line (see their figure 2).

In the model currently under consideration, the analogue of their periodic orbit is the equilibrium point X_{lb} and the analogue of the chaotic saddle is a stable, periodic orbit lying...
Figure 10. A conjecture regarding the ‘edge’. The distance ϵ separating the top and bottom leaves of the basin boundary is so small as to escape numerical detection. If a point could be located between these leaves, it would ultimately be captured by a stable invariant set lying farther out in phase space and therefore be permanently bounded away from the origin. Attempts to locate such a point are frustrated by the narrowness of the gap, and will result instead in initial points indicated by the asterisks above and below. The orbit starting above is complicated but, since it is in B, ultimately decays to O. The orbit starting below decays more directly, and more quickly, to O.

A number of issues for further study come to mind in view of the outcomes of the work reported here:

- A topological transition takes place in the structure of the basin boundary at the critical parameter value at which the periodic orbit P appears. What is the nature of that transition? If the post-critical basin boundary is the union of the two stable manifolds $\text{SM}(P)$ and $\text{SM}(X_{lb})$, do these meet?
- The structure of the basin boundaries makes it clear that whether a perturbation lies in B or its complement depends not only on the amplitude of the perturbation but also—sensitively—on its direction in phase space (see, for example, figure 3). Moreover, even for perturbations in the right direction to leave B, a large amplitude is not necessarily more effective than a smaller one. This must influence the experimental determination of the threshold for transition [3].
• In [15] the term ‘basin boundary’ is reserved for the set separating the basins of attraction of two, asymptotically stable invariant sets. This distinguishes the basin boundary from an ‘edge set’, which may apply to a case when all invariant sets other than the origin are unstable. In this paper we use the term ‘basin boundary’ to mean the set-theoretic boundary of the basin of attraction of the origin, irrespective of the stability character of any other invariant set. For all the parameter values considered in this paper, it turns out that there is indeed a second, asymptotically stable invariant set, but we nevertheless also find what appears to be an edge set. It seems important to clarify this fundamental distinction.

It is tempting to draw parallels with studies of numerical solutions of the NS equations, especially those for which periodic solutions emerge through a parametric study (e.g. [6, 10, 12]). However, given the range of models and of parameters employed in these studies on the one hand and the obvious limitations of the model studied here on the other, such parallels would be highly speculative.

Acknowledgments

The author wished to thank Carlo Cossu for generously sharing his data with him.

References

[1] Baggett J S and Trefethen L N 1997 Low-dimensional models of transition to turbulence Phys. Fluids 9 1043–53
[2] Cossu C 2005 An optimality condition on the minimum energy threshold in subcritical instabilities C. R. Mech. 333 331–6
[3] Darbyshire A G and Mullin T 1997 Transition to turbulence in constant-mass-flux pipe flow J. Fluid Mech. 289 83–114
[4] Dauchot O and Manneville P 1997 Local versus global concepts in hydrodynamic stability theory J. Phys. II France 7 371–89
[5] Dauchot O and Voujard N 2000 Phase space analysis of a dynamical model for the subcritical transition to turbulence in plane couette flow Eur. Phys. J. B 14 377–81
[6] Duguet Y, Willis A P and Kerswell R 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence J. Fluid Mech. 613 255–74
[7] Eckhardt B and Mersmann A 1999 Transition to turbulence in shear flow. Phys. Rev. E 60 509–17
[8] Eckhardt B 2008 Turbulence transition in pipe flow: some open questions Nonlinearity 21 T1–T11
[9] Hof B, Juüel A and Mullin T 2003 Scaling of the turbulence transition threshold in a pipe Phys. Rev. Lett. 91 244502
[10] Kawahara G and Kida S 2001 Periodic motion embedded in plane couette turbulence: regeneration cycle and burst J. Fluid Mech. 449 291–300
[11] Kim J, Hamilton J and Waleffe F 1995 Regeneration mechanisms of near-wall turbulence structures J. Fluid Mech. 287 317–48
[12] Nagata M 1990 Three-dimensional finite-amplitude solutions in plane couette flow: bifurcation from infinity J. Fluid Mech. 217 517–27
[13] Peixinho J and Mullin T 2007 Finite-amplitude thresholds for transition in pipe flow J. Fluid Mech. 582 169–78
[14] Skufla J D, Yorke J A and Eckhardt B 2006 Edge of chaos in a parallel shear flow Phys. Rev. Lett. 96 174101
[15] Vollmer J, Schneider T M and Eckhardt B 2009 Basin boundary, edge of chaos and edge state in a two-dimensional model New J. Phys. 11 013040
[16] Waleffe F and Wang J 2005 Transition threshold and the self-sustaining process IUTAM Symp. on Laminar-Turbulent Transition and Finite Amplitude Solutions (Bristol, UK) ed T Mullin and R Kerswell (Berlin: Springer) pp 85–106
[17] Waleffe F 1995 Hydrodynamic stability and turbulence: Beyond transients to a self-sustaining process Stud. Appl. Math. 95 319
[18] Waleffe F 1997 On a self-sustaining process in shear flows Phys. Fluids 9 883–900