LETTER

A Compact Model for Dual-Gate GaAs PHEMT and Application for Power Amplifier Design

Zhihao Lv\(^1\), Zhiwei Xu\(^{(a)}\), and Chunyi Song\(^1\)

Abstract A compact model of the biased dual-gate GaAs pHEMT device is proposed. The biased dual-gate pHEMT is considered as one macro unit to simplify the model and facilitate simulation. We derive the model based on analytical formulation and represent it with a simplified circuit containing only eight elements. The extrinsic elements are extracted using improved open-short method with a larger frequency range than traditional method. The simulated S-parameters based on the proposed model agree with the measured results well up to 40 GHz for 0.25 \(\mu\)m dual-gate GaAs pHEMT devices. In addition, the large-signal model is constructed with a new empirical drain current model. A 2.4 GHz power amplifier (PA) is designed using the proposed model, and the measurement results agree well with the simulation.

key words: Dual-gate, GaAs PHEMT, device modeling

Classification: Electron devices, circuits and modules (silicon, compound semiconductor, organic and novel materials)

1. Introduction

With the rapid development of fifth-generation (5G) communication, the GaAs technology is attractive for RF tranceivers because of the requirements for high power, efficiency and linearity \([1]\). The cascode configuration provides an approach often employed in monolithic integrated circuits (MMIC) to obtain higher output resistance and reduce Miller effect \([2, 3, 4, 5]\). However, as the frequency spectrum of 5G communication allocated from below 6 GHz up to millimeter-wave range, the unwanted parasitic effects become a major issue that degrades performance. Thus the dual-gate device technology has been utilized in many RF circuits to minimize parasitics \([6, 7, 8, 9]\). Unfortunately, many foundries do not provide compact dual-gate GaAs pHEMT model to support accurate and efficient circuit design. Using two independent single-gate device models inevitably introduces extra parasitics that does not exist, and deteriorates design accuracy.

Compared with single-gate device modeling, only a few researches focus on dual-gate device modeling. Due to a large number of elements to be determined at different biases, it is hard to realize a compact and accurate small-signal model of a dual-gate device. The typical small-signal model contains two single-gate models in cascode configuration \([10, 11]\), which cannot be directly extracted even by using three-port measurement. A conventional resolution is to model the dual-gate device by assuming one gate at linear region as a resistor and modeling the other gate using single-gate model \([12, 13]\). However, it is hard to construct a large-signal model due to such complicated procedures and sophisticated small-signal models. Dual-gate device large-signal model has been proposed by \([14, 15, 16, 17]\). These methods are all based on stacking two similar single-gate devices. This approximation presents fairly complex optimization, because the drain (\(D_1\)) and source (\(S_2\)) of equivalent single-gate devices are merged, which makes the two equivalent single-gate devices different and the voltage of \(D_1/S_2\) immeasurable as shown in Fig. 1(a).

![Fig. 1](image)

Fig. 1 (a) Symbol of dual-gate device. (b) Symbol of biased dual-gate device.

In order to realize a compact dual-gate device model, the second gate \((G_2)\) is considered as an independently biased thyristor. Because microwave LNA and PA designs often use dual-gate devices with a biasing resistor and decoupling capacitor at the second gate \((G_2)\), as shown in Fig. 1(b). This technique is often applied to optimize amplifier’s isolation, stabilities and other performances with the second gate effectively attaching to a RF ground through the added capacitor \([18, 19, 20]\). Under this condition, the dual-gate GaAs pHEMT device can be simplified as a two-port device.

In this paper, we propose a simplified model based on biased dual-gate pHEMT. Device intrinsic elements can be extracted with only one set of S-parameter measurement under different biases. Compared with conventional dual-gate models, the proposed model contains only eight
2. Compact Model for Dual-Gate GaAs PHEMT

2.1 Intrinsic Elements Extraction

We simplify the parameter extraction by converting the two-port network into a Y-parameter network, as shown in Fig. 2. The two-port Y-matrix can be derived:

\[
Y = \begin{bmatrix}
Y_1 + Y_2 + Y_3 + Y_4 + k_3 g_{sd} e^{j\omega t} & -Y_6 \\
-Y_5 & Y_1 + Y_3 + Y_4 + k_3 g_{sd} e^{j\omega t}
\end{bmatrix}
\]

(1)

where Y₁, Y₂, Y₃, Y₄, Y₅ and Y₆ represent the Y-parameter of subcircuit shown in Fig.1(b), and M, k₁ and k₂ can be written as:

\[
M = Y_1 + Y_2 + Y_4 + Y_6 + k_3 g_{sd} e^{j\omega t},
\]

(2)

\[
k_1 = \frac{1}{1 + j\omega C_{gs} R_i},
\]

(3)

\[
k_2 = \frac{1}{1 + j\omega C_{gs} R_{ds}}.
\]

(4)

2.2 Extrinsic Elements Extraction

To measure the performance of the dual-gate device, interconnections and ground-signal-ground (GSG) pads are incorporated in the device under test. Thus, it is essential to remove the influence caused by these additional structures.
With the second gate effectively attaching to the RF ground, the parasitic network can also be treated as a two-port network. Traditional open-short method was often used to extract parasitic elements [21, 22, 23].

Since the traditional open-short method is valid below 10 GHz, an improved open-short de-embedding method is proposed that increases modeling accuracy with consideration of series inductance in open structure. All the required elements can be extracted using analytical formulas. The proposed equivalent circuit of parasitic elements is shown in Fig. 4(a). To simplify the extraction procedure, the equivalent circuit of open structure is transformed from a Δ structure to a T structure, which is shown in Fig. 4(b). The imaginary part of Z parameter can be expressed as

$$\omega \text{Im}(Z_{i}) = \omega \nu(L_{i} + L_{a}) \left(\frac{1}{C_{r}} + \frac{1}{C_{g}} \right)$$ (21)

$$\omega \text{Im}(Z_{sg}) = \omega \nu L_{is} - \frac{1}{C_{g}}$$ (22)

$$\omega \text{Im}(Z_{gd}) = \omega \nu(L_{i} + L_{a}) \left(\frac{1}{C_{r}} + \frac{1}{C_{g}} \right)$$ (23)

Inductance and capacitance can be calculated using a linear regression and the parasitic capacitance can be calculated as follows:

$$\frac{1}{C_{st}} = \frac{1}{C_{r}} + \frac{1}{C_{o}} + \frac{C_{s}}{C_{r}C_{o}}$$ (24)

$$\frac{1}{C_{sr}} = \frac{1}{C_{r}} + \frac{1}{C_{s}} + \frac{C_{r}}{C_{s}C_{r}}$$ (25)

$$\frac{1}{C_{so}} = \frac{1}{C_{o}} + \frac{1}{C_{s}} + \frac{C_{o}}{C_{s}C_{o}}$$ (26)

After removing the influence of parasitic elements of open structure, the parasitic elements of short structure can be extracted from measured Z-parameters.

3. Dual-gate Nonlinear Model

Drain current is the prime source of nonlinear device behavior. Most published models deal with the dual-gate device as a cascode connection of two current sources [16, 17]. However, this approximation can’t fit the measured data directly, which causes fitting error. On the other hand, a few neural models [24, 25] and empirical models [26, 27] deal with the dual-gate device as one current generator. Although neural models are able to characterize the anomalies in devices due to its dynamics, these models often result in a slow convergence in the simulation. Empirical models provide expressions which facilitate simulation. However, empirical models need large numbers of parameters to improve accuracy. Ibrahim [27] proposed the empirical drain current model that outperforms Jenner’s model [26], which simplify the model from 165 parameters to 49 parameters.

To further simplify the dual-gate drain current model, a new empirical model with 37 parameters is presented. The drain current of dual-gate GaAs pHEMT is fitted by the following model:

$$I_{d} = I_{d}(V_{G1}, V_{G2})I_{d}(V_{G1}, V_{G2}, V_{D})$$ (27)

$$I_{d}(V_{G1}, V_{G2}) = 1 + \tanh(\alpha V_{G1} - \Psi_{0}) + \alpha V_{G1} - \Psi_{0} + \alpha_{1}(V_{G1} - \Psi_{0})^{3}$$ (28)

$$\Psi_{0} = \alpha_{1} V_{G1} + \alpha_{2} V_{G1}^{2}$$ (29)

$$\alpha = \alpha_{1} + \alpha_{2} V_{G1} + \alpha_{3} V_{G1}^{2}(i = 0, 1, 2)$$ (30)

$$I_{d}(V_{G1}, V_{G2}) = 1 + \tanh(\beta V_{G1} - V_{ps}) + \beta V_{G1} - V_{ps} + \beta_{1}(V_{G1} - V_{ps})^{3}$$ (31)

$$\beta = b_{0} + b_{1} V_{D} + b_{2} V_{D}^{2}(i = 0, 1, 2)$$ (32)

$$I_{d}(V_{G1}, V_{G2}, V_{D}) = c_{0} \left[1 + K_{o} V_{D} \right] \tanh(K_{o} V_{D})$$ (33)

$$K_{o} = c_{2} \left[1 + (c_{1} + c_{2} V_{G1} + c_{3} V_{G1}^{2}) (c_{4} + c_{5} V_{G2} + c_{6} V_{G2}^{2}) \right](i = 0, 1, 2)$$ (34)

where Ψ_{0} is the voltage of G_{1} changing with the voltage of G_{2} for maximum transconductance. K_{o} controls the slope of drain current at saturation region. K_{1}, α, and β are the fitting parameters.

The other nonlinear elements are extracted from small-signal model by using muti-bias S-parameter measurements. The large-signal model is built from intrinsic elements varied with bias (V_{G1}, V_{G2} and V_{D}) and the current source is modelled based on our proposed drain current model. Then, we summarize these nonlinear parameters into a large-signal model using verilogA language.

4. Experiment Results

To verify the proposed model, two-port S-parameters are measured under different bias conditions on dual-gate 0.25 μm GaAs pHEMTs with gates width 4 × 125 μm and 8 × 125 μm. The DC characteristics are measured by Keysight B2902A. S-parameters are measured using Keysight N5247A VNA. In Fig. 4(b), the procedure to determine the parasitic elements of open structure is illustrated. L_{g1}, L_{d1} and L_{st} can be determined from the slopes of three straight lines. C_{gd}, C_{gs} and C_{os} can be calculated from the intercepts of three straight lines. Then the extracted elements are de-embedded from short structures, L_{g2}, L_{d2}, L_{s}, R_{p}, R_{d} and R_{s} can be easily extracted from measured Z-parameters. Fig. 6
shows a comparison of S-parameters simulated by using the proposed method and the traditional open-short method respectively. It can be seen that the proposed model characterizes the performance of open structure and short structure more accurately up to 40 GHz.

Fig. 5 Measured data and linear regression to calculate parasitic elements of open dummy structure.

![Image](image1)

Fig. 6 Comparison among measured S parameters (red circle), simulated S parameters by using the proposed method (blue triangle) and traditional method (black cross) from 500 MHz to 40 GHz.

![Image](image2)

Fig. 7 (a) Measured (red square) and simulated (blue circle) two-port S-matrix of dual-gate pHEMT with $V_{D}=5$ V, $V_{G1}=0.6$ V, $V_{G2}=1$ V from 500 MHz to 40 GHz.

Subsequently, the influence of extrinsic elements is removed from the measured S-parameters of dual-gate device, and the intrinsic elements are derived by using the method mentioned above. The simulated S-parameters based upon the built small-signal model and the measured S-parameters are compared in Fig. 7(a) and Fig. 7(b).

To quantify model accuracy, an error function is defined by:

$$EF = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{|S_{ij}^{(m)} - S_{ij}^{(c)}|^2}{|S_{ij}^{(c)}|^2}}$$

where $S_{ij}^{(m)}$ is the measured S-parameters, $S_{ij}^{(c)}$ is the calculated S-parameters, and N is the number of frequencies. The EF represents the error between the measured and calculated S-parameters. As shown in Fig. 8, the EF of the proposed models with gates width 4×125 μm and 8×125 μm are presented. The average error of proposed model is about 6.4%, which proves that the proposed method gives an accurate result to the measured S-parameters. Tab. 1 summarizes the previously proposed dual-gate model. The presented dual-gate model demonstrates wide frequency range and good fitting error.

![Image](image3)

Fig. 8 Errors between simulated and measured S-parameters with the bias of $V_D=3$ V $- 5$ V, $V_{G1}=0.2$ V $- 0.6$ V when $V_{G2}=1$ V and $V_{G1}=0.8$ V $- 1$ V when $V_{G1}=0.5$ V.

![Image](image4)

Table 1. Comparison of dual-gate device model.

Ref.	Process	parameter	Freq. (GHz)	port	EF	
	This work	pHEMT	8	0.5-40	2	6.4
[11]	MESFET	14	2-11	3	9.8	
[13]	MESFET	14	1.5-11	3	<10	
[17]	CMOS	12	0.5-15	3	N/A	

![Image](image5)

Fig. 9 Comparison of measured (symbols) and simulated (solid) 1-V characteristics of a 8×125 μm dual-gate pHEMT. (a) $V_{G2}=0.6$ V, $V_D=0$ V $- 5$ V with a step of 0.1 V and $V_{G1}=0.2$ V $- 0.65$ V with a step of 0.05 V. (b) $V_{G2}=1.0$ V, $V_D=0$ V $- 5$ V with a step of 0.1 V and $V_{G1}=0.2$ V $- 0.65$ V with a step of 0.05 V. After extracting small-signal model at different bias conditions, the large-signal model is constructed as proposed. The model prediction and the measured I-V characteristics are shown in Fig. 9, and the measured and
simulated transconductance are compared in Fig. 10. As can be observed, good agreement between model prediction and the measurement is obtained.

![Fig. 10](image)

Fig. 10 Comparison of measured (symbols) and simulated (solid) transconductance of a $8 \times 125 \mu m$ dual-gate pHEMT. (a) g_{m1} at $V_{G1} = 0.6 ~ 1.0 V$ with a step of 0.1 V, and $V_{G2} = 0.2 V ~ 0.6 V$ with a step of 0.05 V. (b) g_{m2} at $V_{G1} = 0.4 V ~ 0.7 V$ with a step of 0.05 V, and $V_{G2} = 0.5 ~ 1.4 V$ with a step of 0.1 V.

5. Power Amplifier design and Verification

To evaluate the large-signal model, a single-stage 2.4 GHz power amplifier is designed using the proposed dual-gate device model. The schematic is shown in Fig. 11. Two paralleled devices ($8 \times 125 \mu m$) are power combined to boost output power.

An adaptive bias circuit is used to bias the power amplifier, as shown in Fig. 11(a). A dual-pHEMT self-compensating current source is used to sense the changes in each of the devices. With the input power varying, the voltages at the gates of the power devices remain constant due to the compensation voltage change between the gate and source of pHEMT H3. Therefore, the bias circuit provides high linearity even with the variation of input power and temperature. With power devices adaptively biased, the power amplifier can operate in class-B mode to achieve both high output power and efficiency.

![Fig. 11](image)

Fig. 11 (a) Schematic of the bias circuit. (b) Schematic and photograph of the designed PA.

The total chip size is 0.38 mm by 0.6 mm. As shown in Fig. 11(b), the chip is mounted on a printed circuit board (PCB) by gold bonding wires. Input and output matching networks are designed off the chip to transform 50 ohm to the desired impedance on chip. The matching networks are carefully designed using lumped devices considering the parasitics of bonding wire, pads and transmission line. The designed power amplifier achieved flat gain in a broad frequency range.

Fig. 12(a) shows the measured and simulated S-parameter in the frequency range from 100 MHz to 4 GHz. The supply voltage V_{CC} is 5 V, and the Gate2 voltage V_{G2} is 1.5 V. The control voltage of bias circuit V_{bias} is 1.5 V, and drain voltage of bias circuit V_{ds} is 1.5 V as well. The measured small-signal gain achieves 20.5 dB with a fluctuation within ± 1 dB from 0.9-2.4 GHz. The large-signal characteristic is measured at 2.4 GHz. Fig. 12(b) shows the simulated output power, power gain and power-added efficiency and the measured results. A 1 dB output compression point of 23.4 dBm is achieved. The power gain is about 18.5 dB at 2.4 GHz, and the PAE is approximately 39.9%. As shown in Fig. 12(a) and (b), the simulation results and measurement results agree with each other, validating that the proposed model can predict the small-signal and large-signal performance with good accuracy.

Tab. II summarizes the performance of this work compared with previously reported power amplifier using GaAs pHEMT technology. The presented power amplifier demonstrates good power gain with only one stage, and competitive PAE and P1dB are achieved.

![Tab. II](image)

Table II. Comparison of PA using GaAs pHEMT technology.

Ref.	GaAs Process (um)	Freq. (GHz)	Gain (dB)	PAE (%)	P1dB (dBm)	Die size (mm²)
This work	0.25	0.9-2.4	20.5	39.9	23.4	0.228
[28]	0.15	2.4	7.51	31.7	14.01	0.84
[29]	0.15	2.6-5	25.5	51.5	-	9.62
[30]	0.25	3.5	16.1	22	23	3.2
[31]	0.15	0.5-7	14	24	29	7.5

6. Conclusion

A simplified dual-gate model has been proposed. The extrinsic elements are extracted using improved open-short method which performs good accuracy up to 40 GHz. All intrinsic elements are directly extracted from the measured
two-port S-parameters under different biases. With only one-step measurement and eight elements to be extracted, the proposed modeling procedure is significantly simplified. The average EF of the model is 6.4% from 500 MHz to 40 GHz without any optimization. Moreover, a large-signal model is constructed from multi-bias S-parameter measurement with a new empirical drain current model. A single-stage power amplifier is designed using the proposed model. The simulated results of the amplifier also agree with the measurements, indicating a good accuracy of the compact dual-gate pHEMT model.

Acknowledgments

This work is supported by National Science and technology Major Project of the Ministry of Science and Technology of China 2016ZX03001006, NSFC projects 61674128.

References

[1] C. N. Chen et al.: “38-GHz Phased Array Transmitter and Receiver Based on Scalable Phased Array Modules With Endfire Antenna Arrays for 5G MMW Data Links,” IEEE Trans. Microw. Theory Techn. 69 (2021) 980-990 (DOI: 10.1109/TMTT.2020.3035901).

[2] N. Rostomyan, et al.: “15 GHz Doherty power amplifier with RF predistortion linearizer in CMOS SOI,” IEEE Trans. Microw. Theory Techn. 66 (2018). 1339-1348 (DOI: 10.1109/TMTT.2017.2772785).

[3] C. Deng et al.: “30 – 43 GHz cascode sub-harmonic mixer in 0.13-μm CMOS technology,” IEICE Electron. Express 15 (2018) 20180793 (DOI: 10.1587/elex.15.20180793).

[4] Gao H, et al.: “A 6.5-12-GHz Balanced Variable-Gain Low-Noise Amplifier With Frequency-Selective Gain Equalization Technique,” IEEE Trans. Microw. Theory Techn. 69 (2020) 732-744 (DOI: 10.1109/TMTT.2020.3038470).

[5] M. Lokhandwala, et al.: “A high-power 24–40-GHz transmit–receive front end for phased arrays in 45-nm CMOS SOI,” IEEE Trans. Microw. Theory Techn. 66 (2020) 4775 (DOI: 10.1109/TMTT.2020.2998011).

[6] Groeckel C, et al.: “A Compact 281-319 GHz Low-Power Downconverter MMIC for Superheterodyne Communication Receivers,” IEEE Trans. THz Sci. Technol. 11 (2020) (DOI: 10.1109/TTHZ.2020.3038043).

[7] Li N, et al.: “A 4-element 7.5-9.5 GHz phased array receiver with 8 simultaneously reconfigurable beams in 65 nm CMOS technology,” Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC) (2020) 83-86 (DOI: 10.1109/RFIC49505.2020.9218299).

[8] D. M. Lin, et al.: “Dual-gate E/E- and E/D-mode AlGaNAs/ InGaNAs pHEMTs for microwave circuit applications,” IEEE Trans. Electron Devices 54 (2007) 1818–1824 (DOI: 10.1109/TED.2007.901054).

[9] Yaghoobi M, et al.: “A 56- to 66-GHz CMOS Low-Power Phased-Array Receiver Front-End With Hybrid Phase Shifting Scheme,” IEEE Trans. Circuits Syst. I Reg. Papers 67 (2020) 4002-4014 (DOI: 10.1109/TCSI.2020.3009390).

[10] Chvála A, et al.: “Characterization of monolithic InAlN/GaN NAND logic cell supported by circuit and device simulations,” IEEE Trans. Electron Devices 65 (2018) 2666-2669 (DOI: 10.1109/TED.2018.2828464).

[11] J. R. Scott and R. A. Minasian: “A simplified microwave model of the GaAs dual-gate MESFET,” IEEE Trans. Microw. Theory Techn. 32 (1984) 243-248 (DOI: 10.1109/TMTT.1984.1132660).

[12] Langrez D, et al.: “Accurate extraction of dual - gate field - effect - transistor parasitic elements,” Microw. Opt. Tech. Lett. 9 (1995) 91-95 (DOI: 10.1002/mop.465009209).

[13] W. K. Deng and T. H. Chu: “Element extraction of GaAs Dual-Gate MESFET small-signal equivalent circuit,” IEEE Trans. Microw. Theory Tech., 46 (1999) 2383-2390 (DOI: 10.1109/22.739226).

[14] R. Allam, et al.: “An accurate dual-gate HFET nonlinear model for millimeter-wave MMIC design,” Int. J. RF Microw. Comput. Aided Eng. 8 (1998) 315-320 (DOI: 10.1002/SICI:1099-047X(199807)8:4<315::AID-MMC5>3.0.CO;2-E).

[15] Chvála A, et al.: “Device and Circuit Models of Monolithic InAlN/GaN NAND and NOR Logic Cells Comprising D-and E-Mode HEMTs,” J. Circuits Syst. Comp. 28 (2019) 1940009 (DOI: 10.1142/S0218126619400097).

[16] S. Bashirzadeh, et al.: “GaAs DGMESFET modelling using SGMESFET models,” Proc. of IEEE Int. RF Integr. Technol. Workshop (2005) 202–206 (DOI: 10.1109/RIFT.2005.1598911).

[17] H.-Y. Chang and K.-H. Liang: “A 0.18-μm Dual-Gate CMOS Device Modeling and Applications for RF Cascode Circuits,” IEEE Trans. Microw. Theory Techn. 59 (2011) 116-124 (DOI: 10.1109/TMTT.2010.2091201).

[18] Dennler P, et al.: “Modeling and realization of GaN-based dual-gate HEMTs and HPA MMICs for Ku-band applications,” IEEE MIT-S Int. Symp. (2011) 1-4 (DOI: 10.1109/MWSYM.2011.5972785).

[19] H. Y. Chang, et al.: “65-nm cmos dual-gate device for ka-band broadband low-noise amplifier and high-accuracy quadrature voltage-controlled oscillator,” IEEE Trans. Microw. Theory Techn. 61 (2013) 2402-2413 (DOI: 10.1109/TMTT.2013.2259256).

[20] J. S. Moon, et al.: “70% power-added-efficiency dual-gate, cascode GaN HEMTs without harmonic tuning,” IEEE Electron Device Lett. 37 (2016) 272–275 (DOI: 10.1109/LED.2016.257048).

[21] G. Crupi and D. M. M. P. Schreurs: Microwave de-embedding: from theory to applications, (Academic Press, UK, 2013) 27-30.

[22] X. Luo, et al.: “Equivalent circuit model of millimeter-wave AlGaN/GaN HEMTs,” IEICE Electron. Express 11 (2014) 20140613 (DOI: 10.1587/elex.11.20140613).

[23] Zhang J, et al.: “Comparison of PMOS and NMOS in a 14-nm RF FinFET technology: RF Characteristics and Compact Modeling,” IEEE SERF (2020) 47-49 (DOI: 10.1109/SERF46766.2020.9040137).

[24] Abeelen, et al.: “Neural modelling of the large-signal drain current of the dual-gate MESFET with DC and pulsed IV measurements,” IEEE Int. Symposium on Circuits and Systems 5 (2004) 796-799 (DOI: 10.1109/ISCAS.2004.132992).

[25] Chvála A, et al.: “Neural Network for Circuit Models of Monolithic InAlN/GaN NAND and NOR Logic Gates,” Proc. 14th Int. Conf. Design Technol. Integr. Syst. Nanosc. Era. (2019) 1-4 (DOI: 10.1109/DTS.2019.8735087).

[26] M. B. Jenner: “A large-signal compatible dual-gate MESFET dc model,” Proc. IEEE European Conference on Circuit Theory and Design (ECCTD) (1999) 888-891.

[27] M. Ibrahim, et al.: “Modeling the drain current of the dual-gate GaAs MESFET,” IEEE MTT-S Int. Symp. 3 (2003) 2113-2116 (DOI: 10.1109/MWSYM.2003.1210579).

[28] R. Amiža, et al.: “A 2.4 GHz packaged power amplifier using GaAs PHEMT technology,” IEEE micro and nanoelectronics (2011) 148-151 (DOI: 10.1002/mnt.2011.6088312).

[29] X. Ding and L. Zhang, “A high-efficiency GaAs MMC power amplifier for multi-standard system,” IEEE Trans. Microw. Theory Techn 26 (2016) 55-57 (DOI: 10.1109/LMWC.2015.2505615).

[30] L. Liu, et al.: “A 3.5 GHz GaAs pHEMT Power Amplifier,” Proc. Int. Conf. Microw. Millim. Wave Technol. (ICMNT) (2018) (DOI: 10.1109/ICMNT.2018.856367).

[31] L. L. Hu, et al.: “An Ultra-wideband GaAs pHEMT Distributed Power Amplifier,” Proc. IEEE 4th Adv. Inf. Technol., Electron. Autom. Control Conf. (IACCC) 1 (2019) 2144-2147 (DOI: 10.1109/IAEAC47372.2019.8997602).