Mathematical Model of In-host Dynamics of Snakebite Envenoming

S. A. Abdullahia,c, A. G. Habibb, N. Hussainic,*

aDepartment of Mathematics, Modibbo Adama University Yola, Adamawa State, Nigeria
bInfectious and Tropical Diseases Unit, Department of Medicine, Bayero University Kano, Nigeria
cDepartment of Mathematical Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria

Abstract

In this paper, we develop an in-host mathematical model of snakebite envenoming that includes tissue, red blood and platelet cells of humans as specific targets of different kinds of toxins in the snake venom. The model is used to study some harmful effects of cytotoxic and hemotoxic snake venom on their target cells under the influence of snake antivenom. The model has two equilibrium points, namely, trivial and venom free. It has been shown that both the equilibrium points are globally asymptotically stable and numerical simulations illustrate the global asymptotic stability of the venom free equilibrium point. Furthermore, simulations reveal the importance of administering antivenom to avert the possible damage from venom toxins on the target cells. It is also shown through simulation that administering the required dose of antivenom can lead to the elimination of venom toxins within one week. Therefore, we recommend the administration of an adequate dose of antivenom therapy as it helps in deactivating venom toxins faster and consequently enhances the recovery time.

DOI:10.46481/jnsps.2022.548

Keywords: Snakebite, in-host model, Venom, Antivenom, Stability analysis

1. Introduction

Snakebite envenoming is one of the most devastating neglected tropical diseases. It continues to impose a major public health and socio-economic burden in low and middle income countries around the world [1, 2, 3, 4, 5]. This neglected tropical disease, which is considered a serious public health issue in tropical and subtropical countries worldwide, is caused by venomous snake bites [6, 7, 8]. Globally, more than five million people are bitten by snakes every year [3, 4, 9]. It has been estimated that 1.8 - 2.7 million envenomations and 81 000 - 138 000 deaths occur annually, with an additional 400 000 amputations and other severe health consequences, such as infection, tetanus, scarring, contractures, and psychological sequelae [3, 4, 6, 7, 8, 10, 11]. The majority of snakebites occur in Africa and Southeast Asia. Snakebites are most common among people living in rural, resource-poor settings. Furthermore, agricultural workers, women, and children are the groups most at risk of being bitten by snakes [6, 7, 8, 9, 12, 13]. According to the World Health Organization (WHO) [14], there are more than 3000 species of snakes in the world, of which 600 are venomous and more than 200 are medically important. Venomous snakes cause substantial morbidity and mortality in humans. When a venomous snake strikes, it may likely inject venom into its vic-
tim, as some bites may be dry, which is a bite that will not lead to the release of venom into its target [15]. These venomous snakes administer bites either as a method of hunting their prey, or as a means of protection against their predators [3]. According to Young and Zahn in [16] the rate of venom discharge and total volume of venom ejected by venomous snakes is much greater during defensive strikes than during predatory strikes. A defensive strike can have 10 times as much venom volume expelled at 8.5 times the flow rate. Snake species accountable for the majority of envenoming in the human population are categorized within the families of Elapidae (cobra, king cobra, krait, etc.) and Viperidae (Saw-scaled viper, pit viper, Russell’s viper). Further, species belonging to the families Atractaspidiidae and Colubridae can also induce significant envenomation [17, 18, 19, 20, 21, 22, 23]. Snake venom is the poisonous, naturally yellow fluid stored in the adapted salivary glands of venomous snakes. Snake venom is mainly categorized into three namely: cytotoxins, neurotoxins and hemotoxins, which target body cells, nervous system and cardiovascular system respectively [14, 24]. According to León et al. in [25] when a snake bites and injects venom into its victim, two concurrent processes occur within the organism: (a) the development of toxic effects and (b) stimulation of immune responses in order to neutralize venom proteins. If the capability of snake venom to cause local and systemic mutilation surpasses the ability of the animal to assimilate and respond to the violence, an envenomation is established. According to some studies, the majority of snakebites occur on the hands, arms, or legs [26, 27]. Some signs and symptoms of snakebite may include: redness, swelling, and severe pain at the bite site, which may take up to an hour to appear. Further, vomiting, blurred vision, tingling of the limbs, and sweating may likely occur [26, 28]. The severity of snakebite depends on some factors, such as the kind of snake, the part of the body bitten, the quantity of venom injected, and the general health of the person bitten. The severity of snakebite is higher in children than in adults, due to their smaller size [9, 13, 29]. Snakebites can be avoided by wearing protective footwear, avoiding snake-infested areas, and not handling snakes [7, 13, 28, 30]. The use of snake antivenom remains the most effective method of averting death from bites. Nevertheless, antivenoms often have side effects [9, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. Some researches on snake venom focused on the use of venom toxins to control infections such as protozoal infections, cancers, and so on (see for instance [49, 50, 51, 52, 53] and references therein). Numerous population-based mathematical models have been developed to study the transmission dynamics and control of neglected tropical diseases and other diseases (see, for instance, [54, 55, 56, 57, 58, 59, 60] and references therein). Also, several in-host mathematical models for diseases such as HIV, HBV, HCV, Chagas disease, etc. have been successfully developed and were used to study the transmission dynamics and possible control of the pathogens inside the victim’s body (for instance, see [61, 62, 63, 64, 65, 66] and references therein). However, the literature on the use of mathematical modeling techniques to gain an in-depth understanding of the dynamics of snake venom inside an envenomed person is scarce. Although not a mathematical model, Kini and Evans in [67] proposed a hypothetical model and explained how venom phospholipase A2 enzymes exhibit specific pharmacological effects such as presynaptic neurotoxicity, cardiotoxicity, myotoxicity, anticoagulant and platelet effects. The research revealed how toxins and enzymes contained within the venom are drawn to specific tissues or cells due to their affinity for specific proteins. In 1994, Stagg [68] developed a mathematical model and studied the effect of cobra venom and its anti-venom inside the envenomed body (in-vivo). The work primarily described the neurotoxic type of snake venom and the cell that it targets. Furthermore, Tanos et al. [69] developed a semi-mechanistic model of the clotting cascade to describe the effect of procoagulant toxin from taipan venom and the effect of anti-venom in controlling venom-induced consumptive coagulopathy. Their work focuses on how the hemotoxic venom affects or disrupts blood clotting factors. We are motivated by the fact that in June 2017, WHO added snakebite envenoming to its priority list of neglected tropical diseases and has set a target to reduce its mortality and disability by 50% before the year 2030 [70]. Also, to the best of our knowledge, not much work has been done in terms of mathematical modeling to gain more insight into the dynamics and control of toxic effects of snake venom inside the host body. Thus, the aim of this study is to develop a novel in-host mathematical model that will describe the dynamics and control of cytotoxic snake venom that was not considered by the aforementioned studies. Moreover, the study will also investigate the impact and control of hemotoxic snake venom on red blood cells and platelets. Additionally, it is important to note that providing effective control of snakebite envenoming in a population may depend on a comprehensive understanding of the effects and dynamics of various kinds of toxins inside snake venom on their target cells (in-vivo). Therefore, this paper is committed to study the effects of interactions between snake venom (cytotoxic and hemotoxic) and their associated target cells with and without antivenom therapy. The paper is organized as follows: the model is formulated in section 2, analyzed in section 3. Results and discussion are reported in section 4 and conclusion is provided in section 5.

2. Model Formulation

A mathematical model that consists of nine in-host compartments is proposed in order to investigate the effects of snake venom and its target cells inside the human victim at a given time. The in-host compartments are: quantity of healthy tissue cells denoted by \(T(t) \), quantity of healthy red blood cells represented by \(R(t) \), quantity of healthy platelets denoted by \(P(t) \), quantity of snake venom with cytotoxic and hemotoxic components expressed as \(V(t) \), quantity of antivenom to be administered denoted by \(A(t) \). We assumed that the quantity of antivenom to be administered is sufficient to neutralize the circulating venom within the victim’s bloodstream. We also included damaged tissue cells (necrotic cells) caused by the cytotoxic component of venom toxins (necrotoxins), denoted by \(N(t) \), damaged red blood cells (hemolyzed cells) caused by the hemotoxic component of venom toxins, denoted by \(H(t) \), damaged...
platelets caused by the hemotoxic component of venom toxins (platelet toxins), denoted by $D(t)$, and venom-antivenom complexes expressed as $C(t)$. The quantity of healthy tissue cells is replenished at a logistic growth rate given by $\gamma_T T \left(1 - \frac{T}{K_T}\right)$ with $T \leq K_T$. It is decreased as it undergoes necrosis by direct action of the venom’s cytotoxic components (necrotoxin) that begin at the bite site at a constant destruction rate that follows the law of mass action given by $(\beta_T TV)$. The damaged cells caused by venom-induced necrosis are known as necrotic cells. The healthy tissue cells further decreased due to the elimination of the dead cells at a rate μ_T. Thus, the equation governing the dynamics of healthy tissue cells is given by

$$\frac{dT}{dt} = \gamma_T T \left(1 - \frac{T}{K_T}\right) - \beta_T TV - \mu_T T. \quad (1)$$

The quantity of healthy red blood cells is replenished at a logistic growth rate denoted by $\gamma_R R \left(1 - \frac{R}{K_R}\right)$ ($R \leq K_R$). After 120 days it is reduced by natural elimination from the host body at a rate μ_R. Further decreased because of the damage it undergoes as a result of the deleterious effects of the hemotoxic component of the venom as it circulates in the victim’s blood stream. The action of the hemotoxic component of the venom also follows the law of mass action given by $(\beta_R RV)$. The damaged red blood cells due to venom-induced hemolysis are termed hemolyzed cells. Thus, we have

$$\frac{dR}{dt} = \gamma_R R \left(1 - \frac{R}{K_R}\right) - \beta_R RV - \mu_R R. \quad (2)$$

The quantity of healthy platelets is replenished at a logistic growth rate of $\gamma_P P \left(1 - \frac{P}{K_P}\right)$ ($P \leq K_P$). It is reduced by natural elimination of the dead platelet cells at a rate μ_P. It further decreases due to the hemotoxic component of the venom (platelet toxins) that activates and damages platelets at a rate β_P. This effect may cause serious internal bleeding. Thus, the following equation is obtained

$$\frac{dP}{dt} = \gamma_P P \left(1 - \frac{P}{K_P}\right) - \beta_P PV - \mu_P P. \quad (3)$$

It is assumed that an initial quantity of venom injected by an offending snake is in circulation in the host body. Therefore, the quantity of venom decreases because of its reaction with the various target cells, i.e. tissue, red blood, and platelet cells at the rates β_1, β_2 and β_3, respectively. It further diminishes due to its neutralization by antivenom that is described by the law of mass action ($\beta_A AV$). This reaction produces venom-antivenom complexes that are not harmful to the body. The amount of venom is also eliminated at a rate μ_V. Therefore, the following equation is formed

$$\frac{dV}{dt} = -\beta_1 TV - \beta_2 RV - \beta_3 PV - \beta_A AV - \mu_V V. \quad (4)$$

The unused antivenom is then removed at a rate of μ_A. Thus, we have

$$\frac{dA}{dt} = -\beta_A AV - \mu_A A. \quad (5)$$

The quantity of necrotic cells is formed because of the reaction between the cytotoxic component of the venom (necrotoxin) and the tissue cells at the rate β_1 and is eliminated at a rate μ_N. Therefore, we obtain

$$\frac{dN}{dt} = \beta_1 TV - \mu_N N. \quad (6)$$

The quantity of hemolyzed cells is formed due to the reaction between the hemotoxic component of the venom and the red blood cells at the rate β_2 and is eliminated at a rate μ_H. Thus, we have

$$\frac{dH}{dt} = \beta_2 RV - \mu_H H. \quad (7)$$

The formation of the quantity of damaged platelets occurs as a result of reaction between the platelet toxins and the healthy platelet cells at the rate β_3. It decays at a rate of μ_D. Therefore, we have

$$\frac{dD}{dt} = \beta_3 PV - \mu_D D. \quad (8)$$

The quantity of venom-antivenom complexes is produced because of the neutralization of venom by antivenom and is eliminated from the body at a rate μ_C. So that

$$\frac{dC}{dt} = \beta_A AV - \mu_C C. \quad (9)$$

Based on the aforementioned description of the model, the in-host dynamics of interaction between cytotoxic and hemotoxic venom, their target cells, and antivenom is described by the following system of first order nonlinear ordinary differential equations. The schematic diagram is depicted in Figure 1, and the corresponding variables and parameters are tabulated in Tables 1 and 2, respectively:

$$\frac{dT}{dt} = \gamma_T T \left(1 - \frac{T}{K_T}\right) - \beta_T TV - \mu_T T,$$

$$\frac{dR}{dt} = \gamma_R R \left(1 - \frac{R}{K_R}\right) - \beta_R RV - \mu_R R,$$

$$\frac{dP}{dt} = \gamma_P P \left(1 - \frac{P}{K_P}\right) - \beta_P PV - \mu_P P,$$

$$\frac{dV}{dt} = -\beta_1 TV - \beta_2 RV - \beta_3 PV - \beta_A AV - \mu_V V,$$

$$\frac{dA}{dt} = -\beta_A AV - \mu_A A,$$

$$\frac{dN}{dt} = \beta_1 TV - \mu_N N,$$

$$\frac{dH}{dt} = \beta_2 RV - \mu_H H,$$

$$\frac{dD}{dt} = \beta_3 PV - \mu_D D,$$

$$\frac{dC}{dt} = \beta_A AV - \mu_C C.$$

(10)
It is vital to show that the state variables of the model are non-negative for all $t > 0$. If this result is established, then it is sufficient to say that the model (10) is mathematically and biologically reasonable. It is crucial to assume that the model parameters given in Table 2 are positive. For mathematical convenience let $\mu_1 = \min\{\mu_T, \mu_N\}, \mu_2 = \min\{\mu_R, \mu_H\}$ and $\mu_3 = \min\{\mu_P, \mu_D\}$. Further, let V_0 denotes the amount of venom that the offending snake injected into its victim at the initial time. Thus, we assume that quantity of venom inside the host at any given time is presented as

$$V(t) \leq V_0.$$ \hspace{1cm} (12)

Similarly, let A_0 be the initial dose of antivenom administered into the victim’s bloodstream, which we assumed was sufficient to neutralize the circulating venom for simplicity. Thus, it is assumed that the quantity of antivenom inside the host at any given time is given

$$A(t) \leq A_0.$$ \hspace{1cm} (13)

Theorem 3.1. Let the initial data of the model (10) be non-negative, then the model solutions given by $(T, R, P, V, A, N, H, D, C)$ are all non-negative for every $t > 0$.

Proof. Let $t^* = \sup\{t > 0 : T > 0, R > 0, P > 0, V > 0, A > 0, N > 0, H > 0, D > 0, C > 0, \}$. Thus, $t^* > 0$. Taking the first equation of the model (10) we have,

$$\frac{dT}{dt} = \gamma_T \left(1 - \frac{T}{K_T} \right) - \beta_T V - \mu_T T.$$ \hspace{1cm} (14)

Since, $T \leq K_T$ we have

$$\frac{dT}{dt} \geq - (\beta_T V + \mu_T T).$$ \hspace{1cm} (15)
Figure 2. Graph showing the lethal effects of Russell’s Viper venom with and without antivenom on (a) tissue cells (b) red blood cells (c) Platelets. In Figures (a), (b) and (c), the red dotted lines indicate the quantities of damaged tissue cells, red blood cells and platelets without the influence of antivenom. While the blue solid lines represent quantities of damaged tissue cells, red blood cells and platelets under the influence of antivenom.

Now integrating both sides from \(t = 0 \) to \(t = t^1 \) we obtain,

\[
\int_0^{t^1} \left(\frac{1}{T} \right) dT \geq - \left[\int_0^{t^1} (\mu) dt + \int_0^{t^1} (\beta_1 V(\tau)) d\tau \right]
\]

\[
T(t) \geq T(0) \exp \left[- \left(\mu t^1 + \int_0^{t^1} \beta_1 V(\tau) d\tau \right) \right] > 0.
\]

Thus, \(T(t^1) > 0 \) for all \(t^1 > 0 \), hence, \(T(t) > 0 \) for \(t > 0 \). Following similar technique, it can be established that the remaining eight variables \(R, P, V, A, N, H, D, C \) are all positive for \(t > 0 \). Consequently, the solutions of the system (10) remain positive for all \(t > 0 \).

Lemma 3.1. The closed set

\[
\Omega = \{(T, R, P, V, A, N, H, D, C) \in \mathbb{R}_{+}^{9} : P_1 \leq \frac{\gamma_T K_T}{\mu_T}, P_2 \leq \frac{\gamma_T K_T}{\mu_T}, P_3 \leq \frac{\gamma_T K_T}{\mu_T}, C \leq \frac{\beta_4 A_0 V_0}{\mu_C} \},
\]

is positively invariant.

Proof. Let \(P_1 \) represents the total quantity of healthy and damaged tissue cells (necrotic). Thus, \(P_1 = T + N \) and \(\frac{dP_1}{dt} = \frac{dT}{dt} + \frac{dN}{dt} \). Now, adding the first and sixth equations of system (10) we get

\[
\frac{dP_1}{dt} = \gamma_T T \left(1 - \frac{T}{K_T} \right) - \mu_1 P_1.
\]

(16)

It follows that

\[
\frac{dP_1}{dt} \leq \gamma_T K_T - \mu_1 P_1.
\]

Applying comparison theorem [73] it can be shown that

\[
P_1(t) \leq P_1(0)e^{-\mu_1 t} + \frac{\gamma_T K_T}{\mu_1} \left[1 - e^{-\mu_1 t} \right].
\]
Thus, \(\limsup_{t \to \infty} P_1(t) \leq \frac{\gamma R K}{\mu_1} \).

Similarly, let \(P_2 \) denotes the total quantity of healthy and damaged red blood cells (hemolyzed). Thus, \(P_2 = R + H \) and \(\frac{dP_2}{dt} = \frac{dR}{dt} + \frac{dH}{dt} \). Now, adding the second and seventh equations of system (10) we obtain
\[
\frac{dP_2}{dt} = \gamma R \left(1 - \frac{R}{K_R} \right) - \mu_2 P_2.
\]
(17)
It follows that
\[
\frac{dP_2}{dt} \leq \gamma R K_R - \mu_2 P_2.
\]
Applying comparison theorem [73] it can be shown that
\[
P_2(t) \leq P_2(0) e^{-\mu_2 t} + \frac{\gamma R K}{\mu_2} \left[1 - e^{-\mu_2 t} \right].
\]

Thus, \(\limsup_{t \to \infty} P_2(t) \leq \frac{\gamma R K}{\mu_2} \). In the same manner let \(P_3 \) denotes the total quantity of healthy and damaged platelets. Thus, \(P_3 = P + D \) and \(\frac{dP_3}{dt} = \frac{dP}{dt} + \frac{dD}{dt} \). Now, adding the third and eighth equations of system (10) we get
\[
\frac{dP_3}{dt} = \gamma P \left(1 - \frac{P}{K_P} \right) - \mu_3 P_3.
\]
(18)
It follows that
\[
\frac{dP_3}{dt} \leq \gamma P K_P - \mu_3 P_3.
\]
Applying comparison theorem [73] it can be shown that
\[
P_3(t) \leq P_3(0) e^{-\mu_3 t} + \frac{\gamma P K_P}{\mu_3} \left[1 - e^{-\mu_3 t} \right].
\]
Thus, \(\limsup_{t \to \infty} P_3(t) \leq \frac{\gamma P K_P}{\mu_3} \). Finally, taking the ninth equation of

Figure 3. Simulations showing the effects of varying the initial amount of Russell’s Viper venom injected on (a) tissue cells (b) red blood cells (c) Platelets. The red dashed, black solid, green dashed, and blue dashed lines denote the quantities of damaged tissue, red blood and platelet cells when 0mg, 50mg, 100mg and 150mg of venom are injected, respectively.
Figure 4. Simulations showing the effects of varying the initial dose of snake antivenom in averting damaged (a) tissue cells (b) red blood cells (c) Platelets and (d) deactivating venom inside the host body. In Figures 4a, 4b and 4c, the red dashed, black solid, green dashed, and blue dashed lines represent the quantities of necrotic, hemolyzed and damaged platelet cells when 0 ml, 100 ml, 150 ml and 250 ml of antivenom are administered, respectively. While in Figure 4d, the black dashed, blue dashed and red solid lines represent the quantities of venom inside the host body when 50 ml, 100 ml and 250 ml of antivenom are administered, respectively.

Since, the region Ω is positively invariant, it suffice to investigate the dynamics of the model equations given by (10) in Ω, where the usual existence, uniqueness, continuation of solutions hold.

4. Results and Discussion

4.1. Equilibrium Points of the Model

To obtain the equilibrium points of the model equations given by system (10) the right hand side of each equation in system (10), is set to zero and solves for the associated state variables. The model equations have two non-negative equilibrium points, viz; the trivial and the venom free equilibrium points, denoted...
by ϵ_0 and ϵ_1 correspondingly. The results obtained are presented in the following subsections.

4.1.1. Trivial Equilibrium Point

The trivial equilibrium point is presented as follows:

$$\epsilon_0 = \left(T^0, R^0, P^0, V^0, A^0, N^0, H^0, D^0, C^0 \right) = (0, 0, 0, 0, 0, 0, 0, 0, 0).$$

It is important to note that this equilibrium point is biologically not feasible. However, its qualitative analysis is of interest.

4.1.2. Venom Free Equilibrium Point

The venom free equilibrium point of the model is given by:

$$\epsilon_1 = \left(T^*, R^*, P^*, V^*, A^*, N^*, H^*, D^*, C^* \right)$$

$$= \left(\frac{K_T (\gamma_T - \mu_T)}{\gamma_T}, \frac{K_R (\gamma_R - \mu_R)}{\gamma_R}, \frac{K_P (\gamma_P - \mu_P)}{\gamma_P}, 0, 0, 0, 0, 0, 0 \right).$$

This equilibrium point is biologically and mathematically feasible. It describes the healthy state of tissue, red blood cells and platelets. Observe that if $\gamma_T = \mu_T, \gamma_R = \mu_R$ and $\gamma_P = \mu_P$ then the equilibrium point ϵ_1 reduces to ϵ_0. Therefore, for the equilibrium point ϵ_1 to be positive we must have $\gamma_T > \mu_T, \gamma_R > \mu_R$ and $\gamma_P > \mu_P$.

4.1.3. Global Stability of Equilibrium Points of the Model

Here we shall use Lyapunov function theory in conjunction with LaSalle’s invariance principle to establish the global asymptotic stability of the trivial and venom free equilibrium points.

4.1.4. Global Stability of Trivial Equilibrium Point

Theorem 4.1. The trivial equilibrium point (ϵ_0) of model (10), is globally asymptotically stable in Ω.

Proof. The stability analysis of (ϵ_0) is simplified by defining a perturbation

$$W = X - \epsilon_0, \quad X = (T, R, P, V, A, N, H, D, C).$$

Therefore, model (10) is expressed as:

$$\frac{dW}{dt} = B(W)W,$$

(22)

where $W = W_i^T (i = 1, ..., 9)$ and $B(W)$ is a matrix of coefficients of the system (10) with the variables $W_i(i = 1, ..., 9)$, this is presented as follows: where, $Z_{11} = \frac{(\gamma_T - \beta_1 W_1 - \mu_T) K_T - 2 \gamma_T W_1}{K_T}, \quad Z_{22} = \frac{\gamma_R - \beta_2 W_2 - \mu_R}{K_R},$ $\frac{\gamma_P - \beta_3 W_3 - \mu_P}{K_P}, \quad Z_{33} = \frac{(\gamma_T - \beta_1 W_1 - \mu_T) K_T - 2 \gamma_T W_1}{K_T}, \quad Z_{44} = -\beta_1 W_1 - \beta_2 W_2 - \beta_3 W_3 - \beta_4 W_4 - \mu_V.$

Observe that $\epsilon_W = (0, 0, 0, 0, 0, 0, 0, 0, 0)$, is the only equilibrium point of equation (22). Furthermore, we consider the following Lyapunov function as in the following studies [74, 75, 76] and references therein.

$$V(W) = \langle Y, W \rangle, \quad Y = (1, 1, 1, 1, 1, 1, 1, 1) > 0.$$

(24)

$$V'(W) = \langle Y, B(W)W \rangle,$$

$$= Z_{11} W_1 + Z_{22} W_2 + Z_{33} W_3 - (W_1 \beta_1 + W_2 \beta_2 + W_3 \beta_3 + W_4 \beta_4 + \mu_V) W_4 - (W_4 \beta_4 + \mu_A) W_5 - \mu_N W_6 - \mu_H W_7 - \mu_D W_8 - \mu_C W_9,$$

$$= (\gamma_T 1 - \frac{W_1}{K_T}) - \frac{\gamma_T W_1}{K_T} - \beta_1 W_4 - \mu_T W_1$$

$$+ \left(\frac{1 - W_2}{K_R} - \frac{\gamma_R W_2}{K_R} - \beta_2 W_4 - \mu_R W_2 \right)$$

$$+ \left(\frac{1 - W_3}{K_P} - \frac{\gamma_P W_3}{K_P} - \beta_3 W_4 - \mu_P W_3 \right)$$

$$- (\beta_4 W_4 + \mu_A) W_5 - \mu_N W_6 - \mu_H W_7 - \mu_D W_8 - \mu_D W_9.$$

(25)

Consider the following conditions:

$$W_1 \leq K_T, \quad W_2 \leq K_R, \quad W_3 \leq K_P.$$

(26)

Therefore, applying the conditions given in (26) in equation (25) we obtain

$$V'(W) \leq - \left(\frac{\gamma_T W_1}{K_T} - \beta_1 W_4 + \mu_T \right) W_1 - \left(\frac{\gamma_R W_2}{K_R} + \beta_2 W_4 + \mu_R \right) W_2$$

$$- \left(\frac{\gamma_P W_3}{K_P} + \beta_3 W_4 + \mu_P \right) W_3$$

$$- (\beta_4 W_4 + \mu_A) W_5 - \mu_N W_6 - \mu_H W_7 - \mu_D W_8 - \mu_D W_9.$$

(27)

Thus, $V'(W) \leq 0$ with $V'(W) = 0$, if and only if $W_i = 0, (i = 1, 2, ..., 9)$. Hence, $V(W)$ is Lyapunov function in Ω. Further, since Ω is an invariant and attracting set as established in Lemma (3.1) it follows from LaSalle’s invariance principle in [77] that the maximum invariant set contained in $\{V/V'(W) = 0\}$ is ϵ_W. Consequently, the transformed equilibrium point ϵ_W, is globally asymptotically stable in Ω. Hence, the trivial equilibrium, ϵ_0, is also globally asymptotically stable in Ω.

4.1.5. Global Stability of Venom Free Equilibrium Point

Theorem 4.2. The venom free equilibrium point (ϵ_1) of model (10), is globally asymptotically stable in Ω.

Proof. Consider the following linear Lyapunov function given by:

$$V(t) = a_1 V(t) + a_2 N(t) + a_3 H(t) + a_4 D(t) + a_5 C(t).$$

(28)

where $a_i, i = 1, ..., 5$ are positive constants to be chosen later. The time derivative of the Lyapunov function along the solutions of model (10) is given as;

$$\dot{V}(t) = a_1 \dot{V}(t) + a_2 \dot{N}(t) + a_3 \dot{H}(t) + a_4 \dot{D}(t) + a_5 \dot{C}(t).$$

(29)
In this section, some numerical simulations were performed using the values of the model parameters in Table 3. According to Bawaskar in [79], the deadly dose of Russell’s viper venom is \(V_0 = 150 \text{mg} \) and the initial dose of antivenom needed to neutralize the venom is \(A_0 = 250 \text{ml} \). The numerical simulation results are shown in Figures 2, 3, 4, 5 and 6.

4.2.1. Effects of venom toxins on target cells with and without antivenom

Figure 2a shows the deleterious effects of toxins inside the Russell’s viper venom on the tissue cells. It can be observed that the quantity of damaged tissue cells is on the increase when antivenom is not administered (red dot line). On the other hand, a negligible quantity of damaged tissue cells is noticed when antivenom is administered (blue line). Also, in Figures 2b and 2c we notice a significant amount of damaged red blood cells and platelets in the absence of antivenom to neutralize the circulating venom. However, an insignificant number of damaged red blood cells and platelets are observed when snake antivenom is administered.

4.2.2. Effects of varying initial quantity of venom on the target cells

The dynamical effect of increasing the initial dose of venom on the target cells is depicted in Figure 3. The outcome reveals that the amounts of injured tissue, red blood cells, and platelet cells increase as the initial dose of venom increases. This result suggests that the magnitude of damage to be inflicted by venom toxins on the target cells depends on the initial quantity of venom injected by the offending snake. Therefore, determining the amount of venom injected by the offending snake is crucial in the management of snakebite patients.

4.2.3. Effects of varying initial dose of antivenom on the damaged cells and the venom

The simulations in Figures 4a, 4b and 4c demonstrate the effect of varying antivenom doses in preventing damaged cells as a result of venom toxins. It is obvious that the application of the re-
Figure 5. Simulation showing the effect of using adequate dose of antivenom in decreasing the quantity of venom inside the host.

Figure 6. Simulation results showing total quantity of damaged (a) tissue cells (b) red blood cells (c) platelets. In all the cases different initial conditions were used to illustrate the result of global asymptotic stability of the venom free equilibrium point.

4.2.4. Effect of adequate dose of antivenom in decreasing the quantity of venom inside the host body

According to the simulation result shown in Figure 5, application of adequate dose of antivenom leads to the elimination of a deadly dose of Russell viper venom within one week. This result is in line with the recovery time for snakebite envenoming in Treatment and Research Hospital, Katungo, Gombe state, as reported in [80]. This finding supports the use of the recommended dose of antivenom in the treatment of snakebites envenoming, since it will not only prevent harm to the cells but also speed up recovery time. It is worth mentioning that the epidemiological implication of the numerical results provided in Figures 2, 3, 4 and 5 is that whenever snakebite envenomation is confirmed, the required doses of antivenom therapy should be administered as soon as possible to avoid the potential damage that venom toxins will inflict on target cells. As a result, envenomation-related deaths and disabilities will be avoided.

4.2.5. Numerical illustration of global asymptotic stability of the venom free equilibrium point

The results in Figures 6a, 6b and 6c illustrate the convergence of solutions to the venom free equilibrium point which uphold the result of global asymptotic stability of venom free equilibrium point presented in Theorem 4.2.

5. Conclusions

In this work, we developed and analyzed an in-host model of snakebite envenoming. The model was used to study some toxic effects of snake venom on tissue, red blood, and platelet cells of humans under the influence of snake antivenom. The basic properties of the model in terms of positivity and boundedness of solutions were explored. The qualitative study of the model reveals that the model has two non-negative equilibrium points, namely, trivial and venom-free. The equilibrium points were shown to be globally asymptotically stable and numerical simulations were used to illustrate the result of global asymptotic stability of the venom free equilibrium point as established in Theorem 4.2. Furthermore, numerical simulations also revealed the importance of antivenom therapy in preventing the deleterious effects of snake venom on target cells. It is also shown through simulation that the application of required dose of antivenom can lead to the elimination of venom toxins within one week. The public health implication of the simulation results in Figures 2, 3, 4 and 5 in terms of managing snakebite envenomation is that determining the quantity of venom injected by the offending snake is crucial. In addition, the required dose of antivenom should be administered as soon as possible so that envenomation-related deaths and disabilities can be prevented. Some of the numerical findings in this study provide some useful insights into the management and control of snakebite envenomation patients, such as determining the initial quantity of venom injected by the offending snake and applying the required dose of antivenom to neutralize the venom toxins. This work is limited to the effect of cytotoxic and hemotoxic venoms on the tissue, red blood, and platelet
cells of humans under the influence of snake antivenom. In the future, we intend to use delay differential equations to model the impact of early and late treatment. Future studies may also be directed towards modeling the effects of other types of snake venom toxins, such as neurotoxins and anticoagulant toxins, on their target cells.

Acknowledgments

The authors are grateful to the anonymous reviewers and the handling editor for their constructive comments, which have undoubtedly improved the quality and clarity of the manuscript. We would also like to thank Dr. Abubakar S. Balla and Dr. Agom D. Ibrahim of Snakebite Treatment and Research Hospital Kaltungo, Gombe state, for providing us with useful information on the management of snakebite envenoming patients.

References

[1] J. M. Gutierrez, R. D. G. Theakston & D. A. Warrell, “Confronting the neglected problem of snake bite envenoming: the need for a global partnership”, PLoS Med 3 (2006) 6.
[2] J. M. Gutierrez, D. Williams, H. W. Fan & D. A. Warrell, “Snakebite envenoming from a global perspective: the need of an integrated approach”, Toxicon 56 (2010).
[3] A. Kasturiratne, A. R. Wickremasinghe, N. de Silva, N. K. Gunawardena, A. Pathmeswaran, R. Premaratna, L. Savioli, D. G. Lallo & H. J. de Silva, “The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths”, PLoS Med 5 (2008) 11.
[4] J.P. Chippaux, “Snake-bites: appraisal of the global situation”, Bull World Health Organ 76 (1998) 5.
[5] S. S. Williams, C. A. Wijesinghe, S. F. Jayamannge, N. A. Buckley, A. H. Dawson, D. G. Lallo & H. J. de Silva, “Delayed psychological morbidity associated with snakebite envenoming”, PLoS Negl Trop Dis 5 (2011) 8, doi:10.1371/journal.pntd.0001255.
[6] J. P. Chippaux, “Estimate of the burden of snakebites in sub-Saharan Africa: a meta-analytic approach”, Toxicon 57 (2011).
[7] R. A. Harrison, A. Hargreaves, S. C. Wagsta, B. Faragher & D. G.Lalloo, “Snake envenoming: a disease of poverty”, PLoS Negl Trop Dis. 3 (2009).
[8] B. Mohapatra, D. A. Warrell, W. Suraweera, P. Bhathia, N. Dhinra, R. M. Joktar, P. S. Rodriguez, K. Mishra, R. Whitaker, P. Jha & J. O. Gyavenport, “Snakebite Mortality in India: A Nationally Representative Mortality Survey”, PLoS Neglected Tropical Diseases 5 (2011) 4, doi:10.1371/journal.pntd.0001018.
[9] Animal bites: Fact sheet N°373, World Health Organization, https://www.who.int/mediacentre/factsheets/fs373/en/, Accessed: February, 2021.
[10] J. P. Chippaux, “Snakebite envenomation turns again into a neglected tropical disease”, J Venom Anim Toxins Incl Trop Dis. (2017).
[11] J. M. Gutierrez, J. J. Calvette, A. G. Habib, R. A. Harrison, D. G. Williams & D. A. Warrell, “Snakebite envenoming”, Nat Rev Dis Primers 3 (2017) 17063.
[12] World Health Organization, Prevalence of snakebite envenoming, https://www.who.int/snakebites/epidemiology/en/, Accessed: February, 2021.
[13] World Health Organization, Animal bites, https://www.who.int/en/news-room/fact-sheets/detail/animal-bites. Accessed March, 2021.
[14] World Health Organization, Regional Office for Africa. Guidelines for the prevention and clinical management of snakebite in Africa, (2010), http://apps.who.int/medicinedocs/ documents/s17810en/s17810en.pdf, Accessed: March, 2021.
[15] B. S. Naik, “Dry bite in venomous snakes: A review” Toxicon, 133 (2017) 63, doi:10.1016/j.toxicon.2017.04.015.
[16] B. A. Young & K. Zahn, “Venom flow in rattlesnakes: mechanics and metering”, Journal of Experimental Biology, 204 (2001) 24, doi:10.1242/jeb.204.24.4345.
[17] D. A. Warrell, C. Bon & M. Goyffon, “Envenomings and Their Treatments. In: Clinical features of envenoming from snake bites”, Fondation Marcel Mérieux: Lyon, (1996).
[18] L. A. Ribeiro, G. Paütor & M. T. Jorge, “Bites by the colubrid snake Philodryas offersii, a clinical and epidemiological study of 43 cases”, Toxicon 37 (1999).
[19] B. Alina, Live Science. Snake Facts and Types of Snakes, https://www.livescience.com/27845-snakes.html. Accessed March, 2021.
[20] R. E. Hill & S. P. Mackessy, “Characterization of venom (Duvernoy’s secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins”, Toxicon 38 (2000).
[21] M. E. Peichoto, P. Teibler, R. Ruiz, L. Leiva & O. Acosta, “Systemic pathological alterations caused by Philodryas patagoniensis colubrid venom in rats”, Toxicon 48 (2006).
[22] S. Weinstein & D. Keyler, “Local envenoming by the Western hognose snake (Heterodon nasicus): A case report and review of medically significant Heterodon bites”, Toxicon 54 (2009).
[23] D. A. Warrell, N. M. D.Davidson & B. M. Greenwood, “Poisoning by bites of the saw-scaled or carpet viper (Echis carinatus) in Nigeria”, Q J Med. 46 (1977).
[24] R. Bailey, How Does Snake Venom Work? https://www.thoughtco.com/how-snake-venom-works-4161270. Accessed: February, 2021.
[25] G. Leon, L. Sánchez, A. Hernández, M. Villalta, M. Herrera, A. Segura, R. Estrada & J. M. Gutiérrez, “Immune Response towards Snake Venoms. Inflammation and Allergy - Drug Targets”, Journal of Inflammation and Allergy Drug Target 10 (2011) 5.
[26] B. S. Gold, C. D. Richard & A. B. Robert, “Bites of venomous snakes”, The New England Journal of Medicine, 5 (2002), doi:10.1056/NEJMra013477.
[27] B. J. Daley & J. Torres, “Venomous snakebites”, A Journal of Emergency Medical Services 39 (2014) 6.
[28] United State National Institute for Occupational Safety and Health, Venomous Snakes, Accessed: February, 2021, https://www.cdc.gov/niosh/topics/snakes/.
[29] M. Peden & World Health Organization, “World report on child injury prevention”, World Health Organization, (2008), https://apps.who.int/iris/handle/10665/43851, Accessed May, 2021.
[30] World Health Organization, Snakebite envenoming: a strategy for prevention and control, Geneva, (2019).
[31] F. Chappuis, S. K. Sharma, N. Jha, L. Loutan & P. A. Bovier, “Protection against snake bites by sleeping under a bed net in southeastern Nepal”, Am. J. Trop. Med. Hyg. 77 (2007).
[32] H. A. de Silva, A. Pathmeswaran, C. D. Ranasinha, S. Jayamannge, A. Hittharage, R. Kalupahana, G. A. Ratnatilaka, W. Uluwatthage, J. K. Aronson, J. M. Armitage, D. G. Lalloo & H. J. de Silva, “Low-dose adrenaline, promethazine, and hydrocortisone in the prevention of acute adverse reactions to antivenom following snakebite: a randomised, double-blind, placebo-controlled trial”, PLoS Med, 8 (2011) 5, doi:10.1371/journal.
[33] J. M. Gutierrez, L. Bruno, L. Guillermo, R. Alexander, C. Fernando & A. Yamileth, “Trends in Snakebite Envenomation Therapy: Scientific, Technological and Public Health Considerations. Current Pharmaceutical Design”, 13 (2007) 28, doi:10.2174/13816120778203784.
[34] A. G. Habib, U. I. Gebi & G. C. Onyemelukwe, “Snake bite in Nigeria”, Afr J Med Sci. 30 (2001) 3.
[35] A. G. Habib, “Public health aspects of snakebite care in West Africa: perspectives from Nigeria”, J Venom Anim Toxins Incl Trop Dis, 19 (2013) 27.
[36] A. G. Habib, “Effect of pre-medication on early adverse reactions following antivenom use in snakebite: a systematic review and meta-analysis”, Drug Saf. 34 (2011)10, doi: 10.2165/119250-0000000000-00000.
[37] K. Maduwage, “Snakebite coagulopathy: controversies in understanding and management”, Sri Lanka Journal of Medicine 26 (2017) 2.
[38] B. Mohapatra, D. A. Warrell, P. Chanthavanich, C. Viravan, J. Mongkolsapaya, B. Singhthong & C. Supich, “Prediction, prevention, and mechanism of early (anaphylactic) antivenom reactions in victims of snake bites”, British Medical Journal, 292 (1986), DOI: 10.1136/bmj.292.6512.17.
[39] V. M. Morais & H. Massaldi, “Snake antivenoms: adverse reactions and production technology”, J Venom Anim Toxins Incl Trop Dis. 15 (2009)
