RNASEQR—a streamlined and accurate RNA-seq sequence analysis program

Leslie Y. Chen1,*, Kuo-Chen Wei2, Abner C.-Y. Huang2,3, Kai Wang1, Chiung-Yin Huang2, Danielle Yi1, Chuan Yi Tang3,4, David J. Galas1,5 and Leroy E. Hood1,5,*

1Institute for Systems Biology, Seattle, WA 98109, USA, 2Department of Neurosurgery, Chang Gung University College of Medicine and Memorial Hospital, Kwei-Shan, Taoyuan County, Taiwan 333, R.O.C., 3Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan 300, R.O.C., 4Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan 433, R.O.C. and 5Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg

Received August 26, 2011; Revised November 30, 2011; Accepted December 1, 2011

ABSTRACT

Next-generation sequencing (NGS) technologies-based transcriptomic profiling method often called RNA-seq has been widely used to study global gene expression, alternative exon usage, new exon discovery, novel transcriptional isoforms and genomic sequence variations. However, this technique also poses many biological and informatics challenges to extracting meaningful biological information. The RNA-seq data analysis is built on the foundation of high quality initial genome localization and alignment information for RNA-seq sequences. Toward this goal, we have developed RNASEQR to accurately and effectively map millions of RNA-seq sequences. We have systematically compared RNASEQR with four of the most widely used tools using a simulated data set created from the Consensus CDS project and two experimental RNA-seq data sets generated from a human glioblastoma patient. Our results showed that RNASEQR yields more accurate estimates for gene expression, complete gene structures and new transcript isoforms, as well as more accurate detection of single nucleotide variants (SNVs). RNASEQR analyzes raw data from RNA-seq experiments effectively and outputs results in a manner that is compatible with a wide variety of specialized downstream analyses on desktop computers.

INTRODUCTION

Analyzing the spectrum of poly-adenylated RNA using conventional Sanger sequencing has provided rich biological information on gene-expression levels, alternative RNA splicing events and common and rare genetic variations in the last few decades (1–3). Recently, RNA-seq, a deep transcriptome profiling approach based on the next-generation sequencing (NGS) platforms, provides an enormous amount of sequence information and offers a larger dynamic range than other transcriptome profiling methods (4,5). Prior studies have also shown that gene-expression profiles obtained by RNA-seq correlate well with quantitative polymerase chain reaction (qPCRs) measurements (4).

The millions of short sequences from NGS platforms pose a challenge for experimental biologists to analyze and extract meaningful biological information (6). The sequences from the early versions of NGS technology ranged from 25 to 50 bp. With improvements in the chemistry and instrumentation the length of sequences generated from NGS is becoming longer, which should improve the accuracy of RNA sequence analysis. However, the longer sequences involve additional challenges in data analysis since these sequences are more likely to span multiple exons. A recent study indicated that ≈30% of the sequences in a 75-bp RNA-seq library extend across at least one exon junction (7), which makes it more difficult to accurately map and align these sequences. Previous approaches to address this challenge have been focused on creating splice junction reference libraries built from either known gene models (8–10) or

*To whom correspondence should be addressed. Tel: +1 206 732 1392; Fax: +1 206 732 1299; Email: lchen@systemsbiology.org
Correspondence may also be addressed to Leroy E. Hood. Email: lhood@systemsbiology.org

The authors wish it to be known that, in their opinion, the first three authors should be regarded as joint First Authors.

© The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
predicted exons (11–13). Other approaches have also been adapted to assist the alignment of RNA-seq sequences, such as using: seed matching followed by a heuristic identification of splice junctions (14–17); in silico prediction of splice junctions (18); clustering or assembly of RNA-seq sequences (19–22); and comprehensive hash-based alignment (23,24). However, these approaches are heavily dependent on computational resources and still have a significant frequency of mis-aligned sequences.

We have developed a new sequence mapper/aligner, RNASEQR, specifically for RNA-seq data analysis. RNASEQR takes advantage of annotated transcripts and genomic reference sequences to obtain high quality mapping/alignment results. To evaluate the performance of RNASEQR, we compared the results to those from other widely used RNA-seq tools, including ERANGE (8), MapSplice (16), SpliceMap (12) and TopHat (11), with a simulated dataset derived from the Consensus CDS (CCDS) project (25) and two experimental data sets generated from a patient with glioblastoma multiforme (GBM). RNASEQR significantly improves the mapping results, especially on transcripts containing smaller exons, which results in more accurate assessment of gene-expression profiles and better transcript structures. The RNASEQR pipeline also significantly reduces false identification of single nucleotide variants (SNVs) near the splice junctions. We report in this manuscript a comprehensive comparison between RNASEQR and four other most widely used RNA-seq tools by evaluating their performance in several downstream analyses. RNASEQR and its open source code are available at https://github.com/rnaseqr/RNASEQR.

MATERIALS AND METHODS

RNASEQR pipeline

RNASEQR was written in Python 2.7 and runs on 64-bit Linux systems. It employs a Burrows–Wheeler transform (BWT)-based and a hash-based indexing algorithm. Briefly, there are three sequential processing steps: the first step is to align RNA-Seq sequences to a transcriptomic reference; the second step is to detect novel splice junctions; the third step is to identify novel transcriptomic reference using Bowtie with built-in paired-end feature. The un-paired sequences (19–22); and comprehensive hash-based alignment (23,24). However, these approaches are heavily dependent on computational resources and still have a significant frequency of mis-aligned sequences.

The positions of both uniquely- and multiply-assigned sequences on gene transcripts are converted to the
one lane for each sample, and obtained 25.3 million, and 23.2 million high quality sequences for the tumor and the peripheral brain RNA samples, respectively. The raw sequence data was deposited to the Gene-expression Omnibus (GEO) database and is accessible through accession number GSE33328.

Genomic and transcriptomic reference sequence and simulated RNA-seq library

We compiled the sequences of each full-length transcript annotated on the UCSC KnownGene (29), NCBI RefSeq (30), Ensembl Genes (31) and Consensus CDS (CCDS) Genes (25) databases using the human genome reference sequence (GRCh37). We used Bowtie to create a pre-built index from the compiled transcriptomic reference sequence for all gene databases. The index of genomic references was downloaded from the Bowtie webpage (http://bowtie-bio.sourceforge.net/).

We performed a simulation test using the transcripts annotated in CCDS Gene (25). Full-length sequences of each transcript in CCDS Gene were assembled using human genome reference (GRCh37), and then split into overlapping 75-bp simulated sequences by sliding a 75-bp window one nucleotide at a time. Positions of these unique sequences were recorded for further evaluating mapping and alignment accuracy.

Some publicly available mapping programs and downstream analysis tools

The mapping performance of RNASEQR was compared with that of ERANGE (8) (version 3.2.1), MapSplice (16) (version 1.14.1), SpliceMap (12) (version 3.3.5.1) and TopHat (11) (version 1.1.1). We ran the SAMtools (28) (version 0.1.8) to detect SNVs presented in the mapping result. SNVs with read-depth fewer than five were manually removed. We ran the Scripture program (7) to assemble the mapping results, construct transcript structures, and determine alternative isoforms, and calculate gene-expression levels for each transcript from the mapping results. Novel exons and novel splice junction sites were identified by comparing the assembled transcript structures to that annotated in the Ensembl Genome Browser. Sequence mapping result, SNVs, and assembled transcripts were visualized using the Integrative Genomics Viewer (32).

RESULTS

RNASEQR adapted a three-step ‘align and remove’ strategy to streamline the RNA-seq sequence mapping and alignment process (Figure 1). Sequences were first mapped to a set of full-length RNA transcripts (transcriptomic reference), which assigned a majority of the sequences and left a smaller portion of sequences undetermined. This allowed us to fully implement computationally intensive algorithms with limited resources in the following steps. Sequences that failed to map to the transcriptomic reference were subsequently compared to a genomic reference sequence to identify novel exons.

To identify new exon junctions, we adopted BLAT (27), a memory-efficient hash-based alignment algorithm. Collectively, the three-step process yielded high-quality mapping results for both known and novel transcripts.

To test the performance of RNASEQR, we used three different datasets, one simulated and two experimental RNA-seq datasets. The simulated dataset contained 38,506,959 sequences, which were generated by sliding a 75-bp window along the sequence of all annotated transcripts in CCDS (25). Of the two experimental datasets, one of them was generated from a tumor tissue and the other was from the corresponding peripheral normal (reference) brain tissue obtained from a GBM patient.
Taken together, the two experimental libraries yielded 48,643,647 single-end 75-bp high-quality sequences, respectively.

The effect of different transcriptomic annotations on the performance of RNASEQR

Several independent efforts, including the Ensembl Genome browser (31), the UCSC Genome browser (29), the NCBI Reference Sequence (30) and the Consensus CDS (25), are dedicated to annotating transcribed regions of the genome (herein Ensembl, UCSC, RefSeq and CCDS). Each annotation effort has implemented different inclusion criteria for transcripts, which might affect the results generated from RNASEQR. To address this, we compared the results with RNASEQR using a transcriptomic reference library built from different annotations. Approximately 35 million sequences were mapped uniquely in the first and second steps (Table 1) using transcriptomic references based on either Ensembl, UCSC or RefSeq. Since CCDS collects only protein-coding transcripts, only one-third of the sequences were assigned in the first step, but an equivalent number of mapped sequences were obtained after the second and the third steps analysis in RNASEQR. The number of uniquely mapped sequences differed by only 1.71%, suggesting that different transcriptomic reference databases used did not significantly affect the overall performance of RNASEQR.

Comparing the mapping performance of RNASEQR with other RNA-seq tools

The mapping performance of RNASEQR was compared to some widely used RNA-seq tools including ERANGE (8), MapSplice (16), SpliceMap (12) and TopHat (11) using the simulated dataset created from CCDS transcripts. Among 38,506,959 non-redundant sequences, RNASEQR assigned more sequences uniquely than the other tools with highest overall accuracy of 99.91% (Table 2). The aligned sequences were further broken down into two groups based on whether the sequence originated from a single exon: a total of 23,187,354 sequences were from single exon (unspliced) and 15,319,605 sequences were from more than one exon (spliced). All tools performed equally well with high sensitivity for sequences originating from a single exon. RNASEQR provided a better mapping result in both sensitivity and specificity with sequences that came from one or more than one exon (Table 2). This finding suggests that RNASEQR is particularly effective and accurate in assigning sequences correctly to splice junctions and that it will be increasingly effective as the length of the RNA sequence reads increases.

Since no sequence variation was introduced in the simulated dataset, we could fully evaluate the impact of incorrect mapping by means of the identification of SNVs. RNASEQR gave the lowest number of incorrectly mapped sequences, and most of these sequences were partially correct (Table 3). RNASEQR also yielded the lowest number of SNVs due to its highly accurate alignment results (Table 3). Most other tools reported a higher number of spurious SNVs identified near the splice junctions (≤5 bp, Table 3). Further analysis showed that these spurious SNVs were the consequences of incorrect identification of splice junctions (data not shown).

Evaluate the performance of RNASEQR with experimental data

The two experimental libraries derived from a single GBM patient had 25,384,704 (tumor) and 23,258,943 (reference) single-end sequences, respectively. RNASEQR mapped 58% of the sequences with unique genomic coordinates to the UCSC transcriptomic reference. In the second and third mapping steps additional 6,704,035 (tumor) and 731,426 (reference) sequences with novel exons or splice junctions were assigned to the genome with unique locations. In summary, RNASEQR assigned ~78.3% of the sequences to unique regions on the genome, 2.1% of the sequences were assigned to multiple locations, and 20.8% sequences are still unmapped. Most of these

Table 1. RNASEQR mapping results of two RNA-seq libraries using various transcriptomic references

Step	Reference	Annotated transcripts	Ensembl	UCSC	RefSeq	CCDS
		Mapping				
I	Transcriptome	Unique	8,034,365	6,998,920	16,024,976	10,570,226
		Uniquea	20,099,654	21,143,858	11,228,678	3,829,696
		Multipleb	1,016,650	625,143	411,881	240,348
II	Genome	Input	17,015,881	17,398,629	18,501,015	31,526,280
		Unique	6,411,301	6,704,035	7,478,666	19,518,521
		Multiple	258,860	342,518	598,051	1,010,132
III	Transcriptome and genome	Split reads	10,345,720	10,352,976	10,424,298	10,997,627
		Anchored	2,765,619	2,769,510	2,798,471	3,052,090
		Unique	731,426	742,058	751,073	882,532
Total mapped uniquely, n (%)	35,276,746 (76.41)	35,588,871 (77.09)	35,483,393 (76.86)	34,800,975 (75.38)		

aOn multiple transcripts but unique genomic location.

bOn multiple transcripts and multiple genomic locations.
unmapped sequences were poor quality sequences based on the Phred quality score (Supplementary Figure S1).

Comparing the mapping results with other programs, RNASEQR assigned ~3% more sequences than the other programs with various number of mismatches allowed in mapping (Figure 2A). Using default settings, RNASEQR allowed three mismatches in the first and second steps; ERANGE and SpliceMap also allowed three mismatches, while MapSplice tolerated up to five. TopHat mapped 0.5% more sequences than RNASEQR by tolerating more mismatches and truncating low quality sequences. The mapped sequences under default setting were further classified as spliced and unspliced. Accurately mapped and assigned spliced sequences are essential to obtain complete gene structures. RNASEQR mapped 7.3 million spliced sequences that is 17–106% more than the other tools mapped (Figure 2B).

The accuracy of the mapping process inevitably influences the quality of downstream analysis. To investigate the influence of mapping accuracy on gene-expression level estimation, we ran a program called Scripture (7) to calculate the expression levels of genes that have been

Table 2. Mapping result of a 75-bp CCDS derived library in human

	RNASEQR	ERANGE	MapSplice	SpliceMap	TopHat
Uniquely mapped reads, n (%)	37,634,842 (97.74)	37,128,297 (96.42)	34,516,928 (89.64)	35,770,965 (92.89)	
Mapped unspliced reads	22,619,568	22,480,501	21,619,384	22,487,761	
Sensitivity (%)	97.54	96.95	97.02	93.15	96.98
Specificity (%)	99.94	92.82	92.66	90.68	79.11
Mapped spliced reads	15,015,274	14,647,796	14,963,454	12,897,544	13,283,204
Sensitivity (%)	97.98	88.41	90.26	69.29	65.36
Specificity (%)	99.90	99.85	99.50	88.90	99.15
Overall mapping accuracy (%)	99.91	96.95	96.69	87.48	90.50

aTotal 38,506,959 unique sequences (reads).
bTotal 23,187,354 reads originated from a single exon.
cTotal 15,319,605 spliced reads originated from at least two exons.

Table 3. Incorrectly mapped reads and location of resulting SNVs

	RNASEQR	ERANGE	MapSplice	SpliceMap	TopHat
Incorrectly mapped reads	32,184	1,133,128	1,240,521	4,322,547	3,399,156
Partially correct (%)	86.31	49.01	41.89	43.08	42.77
Resulting false SNVs	719	53,735	27,090	53,362	126,812
Coding exon	37	3991	5132	5053	51,461
Non-coding exon	330	382,742	249,573	507,627	704,682
Intron (<5 bp from exon)	39	302	1,523	1,523	252,773
Intergenic region	86	875	2,065	2,065	248,298

aCorrect position either at the beginning or the end of sequence.

Figure 2. Numbers of uniquely mapped RNA-seq sequences. (A) RNASEQR assigned more sequences than the other tools with default threshold. (B) Using the default threshold, RNASEQR mapped more spliced sequences than the other programs.
annotated in Ensembl. Different RNA-seq mapping tools gave high overall expression correlations when comparing the results for those genes with expression levels greater than 1 RPKM (reads per kilo per million) (Figure 3A and B). The RNASEQR result showed that underestimated gene expression was inferred by the other tools and this was seen in protein-coding gene transcripts (Figure 3C and D). This was predominately seen especially in low abundant transcripts (dots in the red circle in the Figure 3A and B). The RNASEQR result showed that 21,549 Ensembl transcripts showed a 2-fold change in expression level in the glioblastoma tumor compared to that in the peripheral brain tissue (Supplementary Table S1).

In addition, we observed that transcripts containing small exons (exon length shorter than the sequence read length) could lead to an underestimation of gene expression, as expected. For example, ST13, suppression of tumorigenicity 13 (colon carcinoma), is an example of a gene with 12 exons where 5 of them are <76 bp (RNA-seq sequence length). RNASEQR was the only tool that could detect all exons in ST13, which may provide better transcriptional abundance information (Figure 4A). RNASEQR failed to detect 4658 exons and 4762 exons in the gene transcripts with expression level >1 RPKM in the peripheral brain tissue and the glioblastoma tumor, respectively. RNASEQR showed a significantly lower ratio of the unidentified exons when the exons are <76 bp (Figure 4B).

Identifying genes with alternative exon usage is one of the most powerful applications for RNA-seq. For example, adenylate kinase 2 (AK2) has seven known exons. RNASEQR identified two novel exons and four isoforms (Figure 5). Two of these isoforms were seen only in the tumor RNA-seq library. The two novel exons and the tumor specific isoforms were experimentally

![Figure 3](image-url)
verified (Supplementary Figure S2). All the other tools failed to reveal the complete gene structures for the AK2 gene.

We used SAMtools (28) to identify SNVs in the RNA-seq dataset. As expected, the tumor harbored more SNVs than the reference brain tissue (Table 4). As with the simulated dataset, the RNASEQR identified fewer SNVs in splice junction regions in GBM samples compared to other tools, especially near the splice sites (Supplementary Figure S3), and hence provides more accurate assessments of variation in junctional sequences (Figure 6). These results suggested that RNASEQR provided more accurate alignment results that gave more reliable transcripts and associated SNVs.
DISCUSSION

Current NGS technology can produce tens of billions of raw sequence data in a few days in routine operation; this creates an enormous challenge for the efficiency and accuracy of subsequent data analysis. Compared to the size of human genome (~3 billion base pairs), transcriptomic reference databases are much smaller and range from 40 million base pairs in CCDS to 240 million base pairs in the Ensembl genome browser. The UCSC transcriptomic annotation that is used as default reference for transcriptomic data in RNASEQR is ~200 million base pairs, 1/15 the size of the human genome. The BWT-based indexing allows large genomic sequences to be searched efficiently in a workstation computer.
equipped with small memory. RNASEQR also takes advantage of the BWT-based alignment algorithm and parallel computation to shorten the processing time. For a 25 million-read library, RNASEQR takes ~200 min on a single-thread 2.4 GHz Xeon CPU and 100 min if a four-threaded process is applied (Supplementary Figure S4). It requires as little as 4 GB of computer memory and can efficiently run on a standard desktop computer. As far as we know, the RNASEQR is the fastest pipeline with least hardware requirements for RNA-seq data processing.

Mapping RNA-seq sequences to full-length gene transcripts is intuitive and has been discussed elsewhere (33); however, the limitation in using transcriptomic references alone is the inherent inability to identify novel transcripts, exons or alternative splicing events. RNASEQR uses both transcriptomic and genomic references so that it can effectively assess the expression levels of known transcripts and identify novel exons, transcripts and alternative uses of known exons. We set the default transcriptomic reference as the UCSC genome browser transcriptome in RNASEQR. The performance of RNASEQR is little affected by the specific use of the transcriptomic reference. Therefore, other databases could be selected as references for this purpose.

The results from some RNA-seq data analysis programs show a preference to map sequences to pseudogenes in the

Table 4. SNVs identified in peripheral brain and glioblastoma tissues

	RNASEQR	ERANGE	MapSplice	SpliceMap	TopHat
Peripheral brain					
Coding exon	22986	19944	50714	19641	21871
Non-coding exon	1378	1103	3091	1194	4826
Intron (≤5 bp from exon)	82	6299	1637	7984	9850
Intron (>5 bp from exon)	2130	1555	4196	1250	2035
Intergenic region	5626	4077	11119	9916	13491
Subtotal	32202	32888	70757	39985	52073
Glioblastoma					
Coding exon	26763	24220	53429	24062	26456
Non-coding exon	1898	1494	3952	1504	5894
Intron (≤5 bp from exon)	104	3994	2607	9756	32796
Intron (>5 bp from exon)	3697	2911	7109	2146	3333
Intergenic region	7495	9281	15192	12396	17169
Subtotal	39957	41900	82289	49864	85648

Figure 6. Detail sequence alignment result on an exon–intron junction (chr1:220,311,381 to 220,311–391) in IARS2.
genome (data not shown) because of their high sequence similarity to the functional, spliced protein-coding genes—most of them do not contain intronic sequences. This can lead to inaccurate measurement of gene-expression levels as well as transcript-associated SNVs. The implementation of transcriptomic references in the first step in RNAseQR greatly reduces the problem of ‘preferentially’ aligning the sequences to pseudogenes located in the genome for two reasons: the first is that full-length RNA sequences do not require tolerating sequence gaps in mapping and alignment; the second is that RNA-seq sequences match to their origins better when both coding and pseudogene sequences are provided in the transcriptomic references.

To deal with sequences that span more than one exon, ERANGE uses a splice junction library generated from annotated exons in the UCSC Genome browser while MapSplice, SpliceMap and TopHat detect splice junctions with their de novo methods. RNAseQR takes a third route by utilizing the sequences of full-length gene transcripts for the known exon junctions and a hash-based local alignment algorithm to detect novel splice sites. Based on our test, the three-step framework implemented in RNAseQR best explores annotated and novel transcriptomic repertoires, and is also able to identify insertions and deletions (data not shown).

Tolerating some mismatched sequences in sequence alignment is necessary because of SNVs, sequencing errors, and even the possibility of RNA editing. However, mismatch allowances should be minimized to avoid false identification of SNVs. Compared to other programs, RNAseQR aligns more sequences with fewer mismatches and uses only full-length RNA-seq sequences to avoid spurious results. Short exons represent another class of genomic features that may affect the performance of RNA-seq data analysis. In Ensembl, 17.5% of the annotated exons were <76 bp, and half of the genes in the human genome have at least one exon <76 bp. Poor mapping of small exons and associated splice junctions will result in an underestimation of expression levels and the overestimation of transcripts with alternative exon usages. However, the calculation for differential expression for abundant transcripts between samples will not be affected because undetected small exons are not observed in all analyzed RNA-seq samples. But underestimation of low abundant transcripts could prevent these transcripts from the downstream differential expression analysis (Supplementary Tables S2–S5). The RNAseQR performed much better than other tools in handling small exon associated sequences and accurately provided complete gene structures (Figure 4A).

Sequence variations near splice junctions could have biological implications, for functions such as alternative exon usage. Most, if not all, programs have problems aligning sequences near splice junctions (Supplementary Figure S5). To avoid false identification of SNVs due to mis-alignment, approaches including additional local alignments to remap sequences mapped near splice junctions (34,35) and de novo RNA-seq sequence assembly are used. However, these approaches take significant time and computation resources. RNAseQR adapted an anchored-and-align approach to deal with this problem and delivered the lowest number of falsely identified SNVs.

Various important biological questions are being addressed by using RNA-seq techniques, such as the assessment of transcriptional regulation (36,37), the identification of novel regulatory RNAs (7), the expression of quantitative trait loci (38,39), and the assessment of allelic expression imbalances (40,41), to name just a few areas. The file output for RNAseQR is compatible with tools such as DEseq (42), DEGseq (43), SAMtools (28), GATK (44), SNVMix (45), MISO (37), Cufflink (36) and Scripture (7) to estimate gene-expression levels, identify transcripts associated SNVs, discover alternative exon usage and assemble complete gene structures. The current version of RNAseQR can read both the color-space and nucleotide sequence formats for both single-end and paired-end sequence analyses, and it can easily be adapted to take the results from future NGS technology, such as single molecular sequencing, for more sophisticated experimental designs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online: Supplementary Table 1–5, Supplementary Figures 1–5, and Supplementary Methods.

ACKNOWLEDGEMENTS

The authors thank the sequencing facility at Institute for Systems Biology (ISB) for excellent work. The authors also thank Drs Richard Gelinas and Lee Rowen for critical reading and suggestions for this manuscript, Drs Juan Caballero, Qiang Tian and Gustavo Glusman for stimulating discussions.

FUNDING

Institute for Systems Biology-University of Luxemburg program; the National Institutes of Health Center for Systems Biology P50 [GM076547]; Republic of China National Science Council [97-2221-E-126-012-MY3]; Republic of China National Health Research Institute [NHRI-EX100-10004NI]; and Chang-Gung Memorial Hospital [CMRPG 380621, CMRPG 392101]. Funding for open access charge: Institute for Systems Biology-University of Luxemburg program.

Conflict of interest statement. None declared.

REFERENCES

1. Irizarry,K., Kustinovich,Y., Li,C., Brown,N., Nelson,S., Wong,W. and Lee,C.J. (2000) Genome-wide analysis of single-nucleotide polymorphisms in human expressed sequences. Nat. Genet., 26, 233–236.
2. Modrek,B. and Lee,C. (2002) A genomic view of alternative splicing. Nat. Genet., 30, 13–19.
3. Adams,M.D., Kerlavage,A.R., Fleischmann,R.D., Fuldner,R.A., Bult,C.J., Lee,N.H., Kirkness,E.F., Weinstock,K.G., Gocayne,J.D., White,O. et al. (1995) Initial assessment of human
gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. *Nature*, 377, 3–174.

4. Cloonan,N., Forrest,A.R., Kolle,G., Gardner,B.B., Faulkner,G.J., Brown,M.K., Taylor,D.F., Steptoe,A.L., Wani,S., Bethel,G. et al. (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. *Nat. Methods*, 5, 613–619.

5. Wilhelm,B.T., Marguerat,S., Watt,S., Schubert,F., Wood,V., Goodhead,I., Penkett,C.J., Rogers,J. and Bahler,J. (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. *Nature*, 453, 1239–1243.

6. Wilhelm,B.T., Marguerat,S., Goodhead,I. and Bahler,J. (2010) Defining transcribed regions using RNA-seq. *Nat. Protoc.*, 5, 255–266.

7. Guttman,M., Garber,M., Levin,J.Z., Donaghey,J., Robinson,J., Aidesconis,X., Fan,L., Koziol,M.J., Gnrke,A., Nusbaum,C. et al. (2010) Ab initio reconstruction of cell type-specific transcriptomes in mice revealed the conserved multi-exonic structure of lincRNAs. *Nat. Biotechnol.*, 28, 503–510.

8. Mortazavi,A., Williams,B.A., McCue,K., Schaeffer,L. and Wold,B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat. Methods*, 5, 62–68.

9. Wang,E.T., Sandberg,R., Luo,S., Khrebtukova,I., Zhang,L., Xiao,L., Zhang,Y., LivUDENT,A., Lu,J., Peng,Y. et al. (2009) mRNA-Seq: high-sensitive gene expression measurement by RNA-seq. *Nat. Biotechnol.*, 27, 1262–1266.

10. Wang,K., Singh,D., Zeng,Z., Coleman,S.J., Huang,Y., Chaudhary,M., Voinnet,O., Mikkelsen,T.S., Bernstein,E. and Zaba,B. (2009) Genome-wide identification of mammalian lincRNAs. *RNA*, 15, 416–427.

11. Wang,K., Wang,J., Yang,Y., Zheng,Y., Shen,Y., Yang,Y., Wang,H., Song,Y., Wang,X. and Wu,J. (2010) RNAseq: an ultra-sensitive assay for genome-wide expression analysis. *Bioinformatics*, 26, 1498–1504.

12. Wang,K., Wang,Y., Gao,J., Shi,Y., Bao,W., Zhang,X., Wang,J., Li,X., Liu,J., Shi,H. et al. (2009) RSEM: accurate alignment of short sequencing reads to long genomes. *Bioinformatics*, 25, 1128–1129.

13. Wang,K., Yang,Y., Mason,M.G., Gerstein,M. and Snyder,M. (2009) RNA-Seq: an ultra-sensitive technology for transcriptome analysis. *Nat. Methods*, 6, 39–45.

14. Wang,K., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. *Science*, 334, 1805–1813.

15. Wang,K., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a powerful new tool for gene expression analysis. *Cell*, 137, 824–831.

16. Wang,K., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a technology for transcriptome analysis. *Nat. Rev. Genet.*, 10, 57–63.

17. Wang,K., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a new technology for transcriptome analysis. *Nat. Rev. Genet.*, 10, 57–63.

18. Wang,K., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a revolution in gene discovery and annotation. *Nat. Rev. Genet.*, 10, 57–63.

19. Wang,K., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a new technology for transcriptome analysis. *Nat. Rev. Genet.*, 10, 57–63.

20. Wang,K., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a revolution in gene discovery and annotation. *Nat. Rev. Genet.*, 10, 57–63.

21. Wang,K., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a new technology for transcriptome analysis. *Nat. Rev. Genet.*, 10, 57–63.

22. Wang,K., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a revolution in gene discovery and annotation. *Nat. Rev. Genet.*, 10, 57–63.

23. Homer,N., Marriniman,B. and Nelson,S.F. (2009) BFAST: an alignment tool for large scale genome sequencing. *PLoS One*, 4, e7767.

24. Wu,T.D. and Nacu,S. (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. *Bioinformatics*, 26, 873–881.

25. Pritchard,K.D., Harrow,J., Harte,R.A., Wallin,C., Diekhans,M., Maaslank.D.R., Siden,S., Farrell,C.M., Lovand,F.J. and Rue,B.J. et al. (2009) The comprehensive coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. *Genome Res.*, 19, 1316–1323.

26. Langmead,B., Trapnell,C., Pop,M. and Salzberg,S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol.*, 10, R25.

27. Kent,W.J. (2002) BLAT—the BLAST-like alignment tool. *Genome Res.*, 12, 656–664.

28. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

29. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

30. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

31. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

32. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

33. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

34. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

35. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

36. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

37. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

38. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

39. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

40. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N., Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.
43. Wang, L., Feng, Z., Wang, X. and Zhang, X. (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. *Bioinformatics*, 26, 136–138.

44. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M. et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.*, 20, 1297–1303.

45. Goya, R., Sun, M. G., Morin, R. D., Leung, G., Ha, G., Wiegand, K. C., Senz, J., Crisan, A., Marra, M. A., Hirst, M. et al. (2010) SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. *Bioinformatics*, 26, 730–736.