Annealing effects on the optical and electrochemical properties of tantalum pentoxide films

Wei RENa,*, Guang-Dao YANGb, Ai-Ling FENGc, Rui-Xia MIAOa, Jun-Bo XIAa, Yong-Gang WANGb

aSchool of Science & School of Electronic Engineering, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
bSchool of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
cInstitute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China

Received: September 27, 2020; Revised: January 25, 2021; Accepted: February 8, 2021
© The Author(s) 2021.

Abstract: Tantalum pentoxide (Ta\textsubscript{2}O\textsubscript{5}) has attracted intensive attention due to their excellent physicochemical properties. Ta\textsubscript{2}O\textsubscript{5} films were synthesized via electron beam evaporation (EBE) and subsequently annealed at different temperatures ranging from 300 to 900 °C. X-ray diffraction (XRD) results show that amorphous Ta\textsubscript{2}O\textsubscript{5} thin films form from 300 to 700 °C and then a phase transition to polycrystalline β-Ta\textsubscript{2}O\textsubscript{5} films occurs since 900 °C. The surface morphology of the Ta\textsubscript{2}O\textsubscript{5} films is uniform and smooth. The resulted Ta\textsubscript{2}O\textsubscript{5} films exhibit excellent transmittance properties for wavelengths ranging from 300 to 1100 nm. The bandgap of the Ta\textsubscript{2}O\textsubscript{5} films is broadened from 4.32 to 4.46 eV by annealing. The 900 °C polycrystalline film electrode has improved electrochemical stability, compared to the other amorphous counterparts.

Keywords: Ta\textsubscript{2}O\textsubscript{5} films; anneal; optical property; electrochemical stability

1 Introduction

Ta\textsubscript{2}O\textsubscript{5} (tantalum pentoxide), which forms at either tetragonal (α-Ta\textsubscript{2}O\textsubscript{5}) or orthogonal (β-Ta\textsubscript{2}O\textsubscript{5}) crystalline phase, is one of the important transition-metal oxides with high refractive index (n = 2.02–2.16), high dielectric constant (ε = 20–46), wide bandgap (4.0–4.5 eV), and wide transmission spectrum [1]. Ta\textsubscript{2}O\textsubscript{5} thin films have been widely used in new types of optoelectronic devices, electroluminescent devices [2,3], optical waveguides [4], optical coatings [5,6], and optical filters [7], owing its excellent thermal and chemical stability, high mechanical strength, and good resistance to friction. For examples, a protective layer of Ta\textsubscript{2}O\textsubscript{5} is often coated on thermal sensors utilizing its higher heat resistance and mechanical strength in satellites. Ta\textsubscript{2}O\textsubscript{5} and its ternary alloys have been widely used as passivation layer in MOS-based devices [8]. Electrode materials in modern batteries often need a Ta\textsubscript{2}O\textsubscript{5} cover layer to obtain long-term electrochemical energy storage and charge-and-discharge cycle toughness [9]. The crystalline structure obtained by annealing and the reduction of oxygen vacancies can increase the laser damage threshold. Thin-film saturable absorber materials typically need a coating of Ta\textsubscript{2}O\textsubscript{5} on its top surface to maintain a high laser damage threshold and sustain higher output-power in ultrafast lasers [10,11]. Because

* Corresponding author.
E-mail: renwei@xupt.edu.cn
of its compatibility with commercial integrated circuit technology, Ta2O5 is a promising non-silicon dielectric material for microelectronic devices and the ideal capacitive material for next generation dynamic random-access memory [12] and multi-chip modules [13,14]. With its high acidity, Ta2O5 can serve as a catalyst for important processes such as the oxidation of alkanes and the pollution reduction [15]. In addition, Ta2O5 is an important dielectric material for thin-film capacitors, and has been successfully used for anode oxidation of electrodes in lithium batteries [16].

The fabrication of Ta2O5 films using various methods has been investigated intensively and the potential application in industry has been developed during the past two decades. Hudner et al. [17] reported the growth of β-phase Ta2O5 films on Si(100) via electron beam evaporation in an atomic oxygen plasma at a substrate temperature of 650 °C. Mannequin et al. [18] discussed the difference in the structural and chemical properties of amorphous Ta2O5 thin films grown via EBE and RF sputtering. Using chemical vapor deposition (CVD), Devine et al. [19] developed a new plasma-enhanced process to obtain high-quality amorphous Ta2O5 thin films, which were used as gate insulators to make p-channel MOS transistors. Using atomic layer deposition (ALD) method, Chaneiliere et al. [3] and Lukosius et al. [20] characterized the structural and electrical properties of Ta2O5 films and explored the possibility of applying Ta2O5 thin films in microelectronic devices. Pulsed laser deposition (PLD) was used by Krishnan et al. [21] to obtain crystalline SnO2-doped Ta2O5 thin films with good optical properties at relatively low temperatures. Byeon et al. [22] and Reddy et al. [23] used magnetron sputtering method to synthesize Ta2O5 films and investigated the possibility of Ta2O5 films as dielectric materials in capacitors of integrated circuits. Xia et al. [16] chose anodizing method to fabricate a self-supporting porous Ta2O5 film for a battery electrode material with a large number of charge and discharge cycles. Ta2O5 films were also produced via the sol–gel method [24] and polycrystalline Ta2O5 film formed after heat treatment above 400 °C, which decreased optical absorption. The performance adjustment of Ta2O5 films was made at the same time. Xu et al. [10] improved the oxygen vacancy problem of evaporated Ta2O5 film via annealing, and increased the bandgap and the laser damage resistance threshold of the film. Zhang et al. [25] used spectroscopic ellipsometry (SE) to characterize the refractive index of evaporated Ta2O5 films with different thicknesses and studied the optical properties of ultrathin film as a function of thickness. Masse et al. [26] studied Ta2O5 thin films at different annealing temperatures ranging from room temperature up to 900 °C and found mutual diffusion of oxygen, silicon, and Ta at high temperatures. He et al. [27] studied the effects of oxygen pressure on film roughness and optical transmission of PLD-grown Ta2O5 films.

Technically, the synthesis of Ta2O5 film is feasible using any of the above methods. Annealing of the deposited Ta2O5 films is necessary to improve film crystallinity as well as the refractive index, absorption coefficient, and the electrical properties of the films [26,28–32]. In this work, EBE, a simple film-growth method, had been employed to deposit amorphous Ta2O5 films on quartz and Si substrates to produce optical coatings with uniform, smooth surfaces and a high film density [33–35]. However, when evaporated Ta2O5 films undergo high temperature annealing, the effects on the film’s structural, morphological, optical, and electrochemical properties are still not clear. Therefore, our purpose is to investigate the properties of Ta2O5 samples at different annealing temperatures, and the research work should bear the significance to improve the long-term stability of the photocatalyst/electrocatalyst electrodes.

2 Experimental

Ta2O5 films were synthesized with the following procedure. The source materials were small Ta2O5 pieces (purity 99.99%), which were put into a pure copper crucible in a commercial high-vacuum EBE system (ZZS700, Xing Nan Technology Co., China). The experimental device is shown in Fig. 1. Optically-polished Si(100) substrates with 4 kΩ·cm² and the thickness of 650 μm (for the structural and morphological characterization) and quartz with the thickness of 500 μm (for transmittance studies) were cut into pieces (10 mm × 10 mm) and cleaned (ultrasonic cleaning in acetone, alcohol, and DI water, respectively, for 15 min). They were placed on a rotating workpiece which was heated with a contact heater in the upper vacuum chamber to maintain a constant substrate temperature of 300 °C. The substrate temperature was monitored by a thermocouple with an accuracy of ±1 °C in real time. The evaporation source-to-substrate distance

www.springer.com/journal/40145
was ~130 cm, and the evaporation source-to-electron-gun-filament distance was ~25 mm. Before the evaporation, the substrate surface was cleaned for 120 s using an ion source. The vacuum system consists of a low-vacuum mechanical pump and a high-vacuum molecular pump. The pump and vacuum monitor can (in real time) display the vacuum level in the system pipeline and the evaporation chamber. When the evaporation chamber was pumped down below 6×10⁻⁴ Pa, the materials started to be evaporated.

A quartz crystal monitor (Inficon G10) was used to display the real-time film deposition rate. The target thickness value of the Ta₂O₅ film was pre-set to 50 nm twice in control panel of the EBE system (100 nm thick in total). The filament current of the electron gun was 310 mA. The film growth rate was set to be very slow (0.2–0.4 nm/s) so as to allow sufficient duration for film growth with uniform grain distribution. After the film growth was done and the chamber naturally cooled down, the samples were taken out of the chamber and subsequently annealed at 300, 500, 700, and 900 °C for 30 min in a tube furnace (with the temperature rising at 5 °C/min). After film deposition, the samples in the tube furnace are naturally cooling down in air to the room temperature with the cooling rate estimated to be about 2 °C/min.

The surface morphology of the samples was characterized using atomic force microscopy (AFM, Dimension ICON) and field-emission scanning electron microscopy (FE-SEM, Nova Nanosem 450). Phase identification was performed via XRD with the Cu Kα radiation line (λ = 1.5418 Å, Shimadzu 7000SAS). The optical transmittance spectra of the Ta₂O₅ films with different annealing temperatures were measured via a UV–visible spectrophotometer (UV3300) for a wavelength range of 200–1100 nm. Using an electrochemical workstation (CHI760E), the capacitive test was performed on the sample by cyclic voltammetry. The electrochemical test uses a three-electrode system for a scan rate range of 0.1–0.5 V/s, using a thin film sample as the working electrode, metal platinum as the counter electrode, and calomel electrode (SCE) as the reference electrode. The electrolyte uses 1 M NaCl electrolyte. The surface valence state is characterized by X-ray photoelectron spectroscopy (XPS, Kratos Analytical Ltd.), the binding energy was calibrated using C 1s (284.8 eV) spectrum of hydrocarbon that always remained in the XPS analysis chamber.

3 Results and discussion

Figure 2 shows the XRD diffraction patterns of the prepared Ta₂O₅ thin films on Si substrates at different annealing temperatures. When comparing these four curves (300–900 °C) with the Standard PDF Card #25-0922 [16,18,36], only 900 °C curve exhibits (001).
(200), and (270) orientation peaks of orthorhombic-
phase Ta$_2$O$_5$ (β-Ta$_2$O$_5$) film. The other three curves do
not exhibit Ta$_2$O$_5$ peak except for a broad hump at
27°–32°. The presence of this hump infers that the
Ta$_2$O$_5$ films are amorphous in the temperature range of
300–700 °C. A polycrystalline Ta$_2$O$_5$ film forms until
900 °C. Considering that polycrystalline Ta$_2$O$_5$ films
have been reported by annealing at 800 °C [36], the
crystallization of Ta$_2$O$_5$ films may start at less than
800 °C. All the above results are consistent with
previous reports [17,18,33,36,37].

Figure 3 illustrates AFM images of the planar
morphology of Ta$_2$O$_5$/Si(100) sample at 300–900 °C
anneal. The R_a (the maximum roughness) values of
these samples at 300, 500, 700, and 900 °C are 0.402,
0.865, 0.780, and 2.263 nm, respectively; and the R_q
(the root mean square roughness) values of these
samples at 300–900 °C are 0.520, 1.151, 0.989, and
3.132 nm, respectively. The overall color of the
diagram for the 300–900 °C is dark brown, which
indicates that the film surface is quite uniform and very
dense [38]. Specifically, the light brown and white dots,
representing the raised structures, are relatively small.
The height errors are even within the scale of a single
molecular layer, indicating the film surface has atomic
flatness [39].

Figure 4 shows planar and cross-sectional SEM
images and EDS mapping of Ta$_2$O$_5$ thin films at
different annealing temperatures. Table 1 shows the
atomic weight percentage of oxygen and tantalum in
EDS mapping energy spectra. In Fig. 4(a), it exhibits
that the particle size of Ta$_2$O$_5$ films decreases greatly
with increasing of the temperatures (from 300 to
700 °C). Significant changes occurred at 900 °C,
where the film surface morphology becomes texturized
structure in spite of the film surface keeping flat. This
phenomenon is consistent with XRD results of the
Ta$_2$O$_5$ film transition from amorphous phase to
crystalline phase at high temperature. Figure 4(b)
measures the sample thickness values of 157.5, 105.7,
113.5, and 116.0 nm for 300–900 °C films. According
to Ref. [25], the film thickness below 40 nm could
affect the optical properties of Ta$_2$O$_5$ thin film
dramatically. When the film thickness exceeds 40 nm,
the refractive index of the film will be close to the
value of bulk Ta$_2$O$_5$. Thus, the optical properties of
the obtained films are thickness-independent. In Fig. 4(c)
and Table 1, it shows the elemental distributions of Ta
and O on the film surface of four films, confirming
high elemental distribution uniformity of all film
surfaces.

Since the optical properties of Ta$_2$O$_5$ films can reflect
the variation in the crystalline quality and energy
bandgap of the films, the transmittance spectra of four
films on the quartz substrate are plotted in the
wavelength range of 200–1100 nm in Fig. 5. All the
Ta$_2$O$_5$ films exhibit relatively good optical transmittance
over the wavelength range of 310–1100 nm. For
300 °C curve, the transmittance rate of the film is
around 0.6 to 0.77 (60% to 77%) in the wavelength
range of 310–660 nm. For 500 and 700 °C curves, the
transmittance rates of the two samples increase to
0.75–0.82 (75%–82%) in the wavelength range of
310–660 nm. This phenomenon occurs probably
because the optical properties of the samples were

![Fig. 3](AFM images of the planar morphology of the Ta$_2$O$_5$/Si(100) samples at 300–900 °C anneal.)
Fig. 4 (a) Planar and (b) cross-sectional SEM images; (c) EDS mapping energy spectra of Ta$_2$O$_5$ thin films annealed at different temperatures.
Table 1 Atomic weight percentage of O and Ta in EDS mapping energy spectra

Temperature (°C)	Ta (%)	O (%)
300	92.318	7.682
500	90.914	9.086
700	92.885	7.115
900	91.870	8.130

Fig. 5 Transmission spectra of the Ta2O5/quartz samples within the incidence light wavelength of 200–1100 nm, and sample color contrast illustration. The inset: $(ahv)^{1/2}$ versus incidence photon energy of Ta2O5 films.

relatively not so good with low density and there are many defects in the Ta2O5 film at low temperature anneal [10,36]. Another reason may be that 300 °C film is thicker (157.5 nm) than the other three films (around 110 nm). Unlike Ref. [26], the transmittance spectra of 500 and 700 °C are very similar probably because the hexagonal structured Ta2O5 (δ-Ta2O5) forms at 700 °C in Ref. [26] while the film crystallization of 500 and 700 °C does not occur yet. In addition, the optical transmittance continues to substantially increase in the wavelength ranges of 300–550 nm and 700–1100 nm, from 700 to 900 °C since crystalline Ta2O5 phase starts to form at 900 °C and thus there are fewer defects in 900 °C film. Finally, contrary to the results in Ref. [36], where the transmittance of the prepared films decreased when the annealing temperatures increased from 600 to 1000 °C, the transmittance in Fig. 5 generally increases with temperature. The film morphology of Ta2O5 may explain the difference: the surface roughness values of those films at 600, 800, and 1000 °C in Ref. [36] were 9.364, 31.367, and 43.699 nm, respectively, which are much rougher than those of 300–900 °C. It is clear that the rougher the film surface is, the stronger the light scattering in the film, or the smaller the film transmittance.

Moreover, the transmittance drops rapidly to zero from 310 to 273 nm, which is due to strong light-absorption in this region. The minimum absorption is below 273 nm. If the energy that corresponds to the 273 nm absorption edge is defined as the bandgap of the film, then, according to the formula:

$$E = \frac{hc}{\lambda}$$

(1)

The bandgap of the samples is ~4.54 eV, which is close to the 4.2 eV of bulk Ta2O5 [21]. In addition, the Ta2O5 film coverage reduces the substrate transmittance slightly and the film color of 300–900 °C turns to light blue from dark blue in Fig. 5. As the temperature increases, the optical transmittance of the Ta2O5 film generally increases. The transmittance of 900 °C film remains above 90% from 374 to 1100 nm (slightly below 90% at 500–600 nm), and reaches a maximum of 93 % at 400 nm. Thus, annealing facilitates removal of the voids and holes of thin films and the consequent improvement of the film optical quality as well as the film color.

Further, Fig. 5 shows the bandgap (E_g) variation of the Ta2O5 films with annealing temperatures. The film E_g value can be derived using Tauc [40] formula:

$$\left(\frac{ahv}{K}\right)^{1/2} = hv - E_g$$

(2)

where α is the absorption coefficient, K is a constant, and hv is the photon energy. α can be obtained using [41]:

$$\alpha = -\frac{\ln T}{d}$$

(3)

Here, d is the film thickness and T is the transmittance. The insets in Fig. 5 are plotted based on Eq. (2). The E_g value of 300 °C for Ta2O5 films on quartz substrate is 4.32 eV, while those of 500–900 °C increase slowly from 4.32 to 4.46 eV. The E_g values of 300–900 °C for Ta2O5 films on Si substrate are from 4.46 to 4.51 eV. The slight increase in the band gap of Ta2O5 film on Si substrate is related to the weak diffusion of Si into Ta2O5 film forming SiO2 and/or tantalum silicate [10,21].

Annealing processing also affects the electrochemical properties of Ta2O5 films. In a typical cyclic voltammetry test, the redox peak current (i_p) and the scan rate (ν) satisfy the following relationship [42]:

$$i_p = \alpha \nu^b$$

(4)

where a and b are adjustable constants. When $b = 0.5$,
the charge/discharge is controlled by diffusion-controlled electrode process; when \(b = 1.0 \), the charge/discharge is adsorption-controlled electrode process; if \(0.5 < b < 1 \), the electrode reaction of NaCl electrolyte is an irreversible process driven by both adsorption and diffusion \([42–44]\). Take the logarithm of Eq. (4) at both sides of equal sign, we get the following equation:

\[
\ln i_p = b \ln \nu + \ln a
\]

Figure 6 plots the cyclic voltammograms (CVs) of 300 and 900 °C samples dipped into 1 M NaCl neutral electrolyte collected at potential scan rates from 0.1 to 0.5 V/s. In Fig. 6(a), redox peaks appearing at \((-0.5)–0.7\) V represent the oxidation/reduction of Ta ion species on the anode surface. For the scan rate of 0.5 V/s anodic peak is broad, about 500 mV and cathodic peak is relatively narrow, about 375 mV. The maximum peak currents of anodic and cathodic peaks are 3.0 and \(-3.7\) μA, respectively. When the scan rate decreases from 0.4 till 0.1 V/s, the cathodic peak potentials shift from \(-0.5\) to 0.2 V in a positive direction (the negative shift of the peak potentials signifies a greater ohmic resistance in the thicker oxide coating) and the peak-to-peak potential separation decreases. While both the anodic/cathodic current peaks decrease in intensity, the cathodic peaks decrease faster. In Fig. 6(b), previous redox peaks are not present. When the scan rate increases from 0.1 to 0.5 V/s, the peak current gradually increases, and their shapes remain unchanged, reflecting good electrochemical stability of 900 °C electrode. The maximum peak currents are \(-0.8\) and 0.8 μA, respectively. This phenomenon occurs probably because the film defects or vacancies are enormously eliminated with 900 °C annealing, and the capacity of the film surface to capture carriers decreases, leading to performance degradation of the film conductivity and peak current.

The linear relationship between \(\log i_p \) and \(\log \nu \) and the slope \(b \) values were obtained from the insets of Fig. 6. The \(b \) values of \(-0.625\) for 300 °C film and \(-0.877\) for 900 °C film indicate that Ta2O5 film electrode behaves are driven by both adsorption and diffusion. Further, the \(b \) value of Ta2O5 film electrode increases with annealing temperatures. The possible reason is that annealing reduces the oxygen vacancies, improves the flatness and uniformity of the film, and weakens the ability of the electrode surface to adsorb ions.

Figure 7 shows the XPS results of 300 and 900 °C electrodes before and after the CV tests and their area ratio graph after Ta5+/Ta4+ peak position fitting. In Fig. 7(a), the characteristic peak positions of Ta5+ of Ta 4f7/2 and 4f5/2 of the samples are 26.2 and 28.0 eV \([45,46]\). The presence of surface states or oxygen vacancies may cause partial Ta5+ to lower chemical valence state in the formula of Ta2O5–δ \([47]\). After fitting the Ta 4f spectral line of (a), a small amount of Ta4+ peaks at 25.7 and 27.9 eV \([46]\) are obtained. In Fig. 7(b), the two pairs of peaks in the sample after the CV test are located at 25.4, 25.9, 27.7, and 27.9 eV, respectively. Among them, the 25.9 and 27.9 eV peaks represent Ta5+ in the Ta 4f spectrum. Further, the Ta4+ content of the sample has increased from 5.27% to 7.73% for 4f7/2 and from 3.95% to 5.80% for 4f5/2, which infers that a certain amount of Ta4+ in the 300 °C sample was produced after the electrochemical test. Thus, the anodic/cathodic peaks in CV test (Fig. 6) may be attributed to the redox transitions of Ta5+/Ta4+ \([45,48]\). How the specific reactions take place still needs further

![Fig. 6](https://www.springer.com/journal/40145)
investigation. With larger reduction peak in Fig. 6(a) than oxidation peak, it might be concluded that the reduction process proceeds faster than the oxidation process and thus, more Ta$^{4+}$ was generated. In Figs. 7(c) and 7(d), the peak position and content of Ta 4f do not change much. Due to the symmetrical CV curve of Fig. 6(b), the Ta$^{5+}$/Ta$^{4+}$ redox transition seems to be reversible, which suggests better chemical stability and cyclical performance of the electrode material after 900 ℃ heat treatment.

4 Conclusions

Ta$_2$O$_5$ films were synthesized on Si(100) and quartz substrates via EBE method, followed by annealing at different temperatures in air. Amorphous dense films formed at temperatures between 300 and 700 ℃ with enlarged band gap values from 4.32 to 4.46 eV. As the annealing temperature increased, the film transmittance was improved due to the higher film density and less defects in the film. Film crystallization of β-Ta$_2$O$_5$ occurred at 900 ℃, which produced the highest transmittance rate among these Ta$_2$O$_5$ films. The smooth and flat film-surface, high film-density, less defects in the film, and crystallization may play vital roles in maintaining the excellent transmittance properties of Ta$_2$O$_5$ films. The crystallization of amorphous Ta$_2$O$_5$ film by annealing may lead to the reversible electrochemical reaction inside electrolyte.

Acknowledgements

This work was supported by the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (Grant No. 2020GXLH-Z-029).

References

[1] Qi HJ, Xiao XD, He HB, et al. Optical properties and microstructure of Ta$_2$O$_5$ biaxial film. Appl Opt 2009, 48: 127–133.
[2] Wang SC, Liu KY, Huang JL. Tantalum oxide film prepared by reactive magnetron sputtering deposition for all-solid-state electrochromic device. Thin Solid Films 2011, 520: 1454–1459.
[3] Chaneliere C, Autran JL, Devine RAB, et al. Tantalum pentoxide (Ta$_2$O$_5$) thin films for advanced dielectric applications. Mater Sci Eng R: Rep 1998, 22: 269–322.
[4] Doumaki T, Tamada H, Saitoh M. Highly efficient Cherenkov-type second harmonic generation in a Ta$_2$O$_5$/KTiOPO$_4$ waveguide. Appl Phys Lett 1994, 64: 3533–
Hudner J, Stem N, Brunetti C, et al. Improvements in anti-reflection coatings for high-efficiency silicon solar cells. Surf Coat Technol 1998, 106: 117–120.

Cui Y, Liu SJ, He HB, et al. Influence of vacuum organic contaminations on laser-induced damage of 1064 nm anti-reflective coatings. Chinese Phys Lett 2007, 24: 2873–2875.

Song YZ, Sakurai T, Maruta K, et al. Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique. Vacuum 2000, 59: 755–763.

Quah HJ, Ahmad FH, Lim WF, et al. Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films. Chinese Phys Lett 2012, 29: 084207.

Xu C, Dong HC, Ma JY, et al. Influences of SiO2 protective layers and annealing on the laser-induced damage threshold of Ta2O5 films. Chin Opt Lett 2008, 6: 228–230.

Cheng WH, Chi SF, Chu AK. Effect of thermal stresses on temperature dependence of refractive index for Ta2O5 dielectric films. Thin Solid Films 1999, 347: 233–237.

Ezhihvalvan S, Tseng TY. Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application - A review. J Mater Sci: Mater Electron 1999, 10: 9–31.

Atanassova E, Paskaleva A. Challenges of Ta2O5 as high-k dielectric for nanoscale DRAMs. Microelectron Reliab 2007, 47: 913–923.

Zhou MF, Fu ZW, Yang HJ, et al. Pulsed laser deposition of tantalum oxide thin films. Appl Surf Sci 1997, 108: 399–403.

Xia SL, Ni JF, Savelov SV, et al. Oxygen-deficient Ta2O5 nanoporous films as self-supported electrodes for lithium microbatteries. Nano Energy 2018, 45: 407–412.

Hudner J, Hellberg PE, Kusche D, et al. Tantalum oxide films on silicon grown by tantalum evaporation in atomic oxygen. Thin Solid Films 1996, 281–282: 415–418.

Mannequin C, Tsuruoka T, Hasegawa T, et al. Identification and roles of nonstoichiometric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes. Appl Surf Sci 2016, 385: 426–435.

Devine RAB, Chanielle C, Autran JL, et al. Use of carbon-free Ta2O5 thin-films as a gate insulator. Microelectron Eng 1997, 36: 61–64.

Lukosius M, Kaynak CB, Kubotsch S, et al. Properties of atomic-vapor and atomic-layer deposited Sr, Ti, and Nb doped Ta2O5 Metal-Insulator-Metal capacitors. Thin Solid Films 2012, 520: 4576–4579.

Krishnan RR, Nissamudeen KM, Gopchandran KG, et al. Effect of doping and substrate temperature on the structural and optical properties of reactive pulsed laser ablated tin oxide doped tantalum oxide thin films. Vacuum 2010, 84: 1204–1211.

Byeon SG, Tzeng Y. High performance sputtered/anodized tantalum oxide capacitors. In: Proceedings of the International Electron Devices Meeting, 1988: 722–725.

Reddy PK, Jawalekar SR. Improved properties of TaNTa2O5N2Al capacitors. Thin Solid Films 1979, 64: 71–76.

Ozer N, Lampert CM. Structural and optical properties of sol-gel deposited proton conducting Ta2O5 films. J Sol-Gel Sci Technol 1997, 8: 703–709.

Zhang DX, Zheng YX, Cai QY, et al. Thickness-dependence of optical constants for Ta2O5 ultrathin films. Appl Phys A 2012, 108: 975–979.

Masse JP, Szymanowski H, Zabeida O, et al. Stability and effect of annealing on the optical properties of plasma-deposited Ta2O5 and Nb2O5 films. Thin Solid Films 2006, 515: 1674–1682.

He X, Wu J, Li X, et al. Characterization of high quality tantalum pentoxide film synthesized by oxygen plasma enhanced pulsed laser deposition. Thin Solid Films 2009, 518: 94–98.

Liu WJ, Chien CH. Influences of residual argon gas and thermal annealing on Ta2O5 thin films. Jpn J Appl Phys 2005, 44: 181–186.

Ghedis FE, Tehpehan FZ, Tehpehan GG. Optical properties of Ta2O5 thin films deposited using the spin coating process. Thin Solid Films 1997, 285: 11–15.

Huang AP, Chu PK. Crystallization improvement of Ta2O5 thin films by the addition of water vapor. J Cryst Growth 2005, 274: 73–77.

Chandra SVJ, Uthanna S, Rao GM. Effect of substrate temperature on the structural, optical and electrical properties of dc magnetron sputtered tantalum oxide films. Appl Surf Sci 2008, 254: 1953–1960.

Dimitrova T, Arshak K, Atanassova E. Crystallization effects in oxygen annealed Ta2O5 thin films on Si. Thin Solid Films 2001, 381: 31–38.

Xu C, Dong HC, Yuan L, et al. Investigation of annealing effects on the laser-induced damage threshold of amorphous Ta2O5 films. Opt Laser Technol 2009, 41: 258–263.

Porqueras I, Marti J, Bertran E. Optical and electrical characterisation of Ta2O5 thin films for ionic conduction applications. Thin Solid Films 1999, 343–344: 449–452.

Xu C, Yao JK, Ma JY, et al. Laser-induced damage threshold in n-on-1 regime of Ta2O5 films at 532, 800, and 1064 nm. Chin Opt Lett 2007, 5: 727–729.

Xu C, Xiao QL, Ma JY, et al. High temperature annealing effect on structure, optical property and laser-induced damage threshold of Ta2O5 films. Appl Surf Sci 2008, 254: 704–713.
6554–6559.

[37] Gladczuk L, Patel A, Singh Paur C, et al. Tantalum films for protective coatings of steel. Thin Solid Films 2004, 467: 150–157.

[38] Zhou JC, Luo DT, Li YZ, et al. Properties of Ta2O5 thin films deposited by dc reactive magnetron sputtering. Int J Mod Phys B 2009, 23: 5275–5282.

[39] Li XH, Ji T, Hu J, et al. Optimization of specimen preparation of thin cell section for AFM observation. Ultramicroscopy 2008, 108: 826–831.

[40] Tauc J. Amorphous and Liquid Semiconductors. Boston: Springer US, 1974.

[41] Meng LJ, dos Santos MP. Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures. Thin Solid Films 1993, 226: 22–29.

[42] Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 2013, 12: 518–522.

[43] Xie ZK, Wu YM, Kai S, et al. A newly competitive electrochemical sensor for sensitive determination of chrysine based on electrochemically activated Ta2O5 particles modified carbon paste electrode. Electroanalysis 2017, 29: 835–842.

[44] Xie ZK, Li GP, Fu YM, et al. Sensitive, simultaneous determination of chrysine and baicalin based on Ta2O5-chitosan composite modified carbon paste electrode. Talanta 2017, 165: 553–562.

[45] NuLi YN, Fu ZW, Chu YQ, et al. Electrochemical and electrochromic characteristics of Ta2O5-ZnO composite films. Solid State Ionics 2003, 160: 197–207.

[46] Simpson R, White RG, Watts JF, et al. XPS investigation of monatomic and cluster argon ion sputtering of tantalum pentoxide. Appl Surf Sci 2017, 405: 79–87.

[47] Wu T, Jin, Xiao W, et al. Thin pellets: Fast electrochemical preparation of capacitor tantalum powders. Chem Mater 2007, 19: 153–160.

[48] Wen TC, Hu CC. Hydrogen and oxygen evolutions on Ru-Ir binary oxides. J Electrochem Soc 1992, 139: 2158–2163.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.