Nonlinear thermal control in an \(N \)-terminal junction

Dvira Segal

Chemical Physics Theory Group, Department of Chemistry,
University of Toronto, 80 Saint George St. Toronto, Ontario, Canada M5S 3H6

(Dated: February 2, 2008)

We demonstrate control over heat flow in an \(N \)-terminal molecular junction. Using simple model Hamiltonians we show that the heat current through two terminals can be tuned, switched, and amplified, by the temperature and coupling parameters of external gating reservoirs. We discuss two models: A fully harmonic system, and a model incorporating anharmonic interactions. For both models the control reservoirs induce thermal fluctuations of the transition elements between molecular vibrational states. We find that a fully harmonic model does not show any controllability, while for an anharmonic system the conduction properties of the junction strongly depend on the parameters of the gates. Realizations of the model system within nanodevices and macromolecules are discussed.

PACS numbers: 63.20.Ry, 44.10.+i, 05.60.-k, 66.70.+f

Control over vibrational energy flow in nanoscale structures and single molecules is a long standing goal in many parts of physical science and nanotechnology. Historically, intramolecular vibrational redistribution (IVR) was a topic of great interest in chemistry and physics. IVR processes must be reckoned for understanding, and ultimately controlling, molecular dynamics and chemical kinetics \[1\]. The efficiency of these processes is the basic assumption behind the well validated RRKM reaction rate theory \[2, 3\]. From a different perspective, the unexpected results of the computer experiment of Fermi-Pasta-Ulam \[4\], showing no equipartition of energy among normal modes in harmonic chains including small nonlinear terms, lead to extensive research of IVR in nonlinear systems \[5\].

Recurrent theoretical interest in this field is due to the impressive progress in probing thermal properties of nanoscale systems such as nanotubes \[6, 7, 8\], self assembled monolayers \[9, 10, 11\], and thin films \[12\], and due to the development of more tunable systems \[13\]. Recent progress in molecular electronics and nanomechanics has raised further interest in exploring mechanisms of energy flow in nano-level systems. In molecular electronics, local heating of nanoscale devices might cause structural instabilities undermining the junction integrity \[14, 15, 16\]. Engineering good thermal contacts and cooling of the junction are necessary for a stable operation mode. Minimization of mechanical devices, e.g. refrigerators \[17\] and pumps \[18\], to the molecular scale is a topic of great interest for technologies such as chemical sensing, power generation and energy conversion \[12, 19, 20, 21\]. In this context, it is crucial to understand, and ultimately control, the dynamics of phonons in nanoscale structures, or analogously, vibrational modes in molecular systems.

The heat conduction properties of molecular chains can be tuned either by manipulating the internal molecular parameters, or by externally gating the system. We refer to the first mode of control as "static", or "internal", while, as we explain below, we consider gating as a "dynamical", or an "external" control scheme.

Static control is realized by adjusting internal system parameters, e.g. atomic masses and interatomic potential energy, with the goal of increase/decrease of the system thermal conductivity \[22\]. This type of control problem has been extensively discussed in the context of Fourier transport. Here the main challenge is to identify the necessary and sufficient conditions for the validity of the Fourier law of heat conductivity, \(J \propto -\nabla T \), in low dimensions and for quantum systems \[23, 24, 25, 26\]. By Engineering the molecular system, one can also build functional devices, for example, a thermal rectifier, where the nanojunction allows heat flux in one direction, while it acts like an insulator when the temperature gradient is reversed \[13, 27, 28, 29\].

In this context we would like to emphasize that tuning the thermal conductance of harmonic chains is also feasible, though these systems demonstrate abnormal (non-Fourier) thermal current. In the language of the thermal Landauer formula \[30\], this can be accomplished by manipulating the transmission coefficient for phononic heat.
flow through the device, e.g. by introducing impurities into the structure [31].

In this paper we present a simple model that illustrates an external control over thermal current in molecular systems. The generic setup includes a molecule (subsystem) coupled to N thermal baths of different temperatures. Heat current flowing through the system may be modified by a control reservoir, where in general, more than one gate may couple to the subsystem. Typical control parameters are the gate temperature and its coupling to the molecular unit. A schematic representation of a three-bath scenario is shown in Fig. 1.

We consider two realizations of this standard setup: (i) Artificial nanodevices operating as thermal amplifiers or transistors [32]. Here the generic system includes three segments, source (L) drain (R) and gate (G), following the notation used in semiconductor transistors, where heat flow between the source and drain is controlled by the gate terminal. This device may be realized by fabricating branched nanotubes with T, Y, and X shapes [33]. (ii) Macromolecules, e.g. proteins and dendrimers with spatially separated sidegroups. Energy may be funneled between the molecular groups by a control unit (G), for example a protein, that can temporarily bind to the system. We refer to the energetically hot group as L, while the R group is the energy accepting sidegroup.

The role of the gate (G) may be modeled as inducing thermal fluctuations of the L - R transition element [34], thus we refer to this mode of control as dynamical. The control element can also be identified as the solvent itself, modulating system parameters. Inserting a molecule in different mediums may therefore modify its heat conduction properties. In this context this work provides a simple framework for investigating IVR in solutions [35].

The main question to be addressed in this paper is what is the role of anharmonic interactions, specifically, nonbilinear molecule-surface interactions, in controlling the thermal properties of a gated system. It is widely accepted that nonlinear interactions are essential for showing normal (Fourier) transport in molecular chains [24, 36]. Anharmonic interactions are also necessary for bringing in rectifying behavior [27, 28, 29], and for manifesting nonlinear thermal conductance characteristics [32, 37]. We show next that anharmonic interactions are also a crucial element for realizing dynamical control of heat current.

We consider two models. The first system is a prototype for transport in harmonic chains. The second model incorporates anharmonic interactions in the molecule, and also assumes nonbilinear system-bath couplings. For both models we focus on two quantities: (i) We calculate the heat current at the terminal ν, J_ν, and (ii) we investigate the net heat current flowing between two surfaces, $J_{\nu - \nu'}$. The objective of our calculation is to demonstrate that these quantities strongly depend on the parameters of the gate reservoirs (temperature and energetics) for the anharmonic model only.

We begin with the harmonic model. In this case both the reservoirs (inverse temperatures $\beta_\nu = T^{-1}_\nu$, $\nu = 1...N$) and the molecular unit are modeled by a set of non interacting bosons coupled via a bilinear term. For simplicity, we assume that heat transfer in the molecular unit is dominated by a specific single mode,

$$H_{bb} = \omega b^\dagger b + \sum_{j,\nu} \omega_j a_j^\dagger a_j \nu, + (b^\dagger + b) \sum_{j,\nu} \lambda_j,\nu (a_j^\dagger \nu, + a_j \nu). \quad (1)$$

Here b^\dagger (b) are creation (annihilation) operators for the molecular mode of frequency ω_0. Similarly, a_j^\dagger,ν (a_j,ν) are the operators for the mode j of the ν reservoir. Since system-bath interaction is bilinear, the model Hamiltonian can be exactly diagonalized, to be represented in terms of a set of noninteracting phonons. We refer to model (11) as the boson-boson (b-b) Hamiltonian.

The dynamics of the system can be exactly solved using various techniques, e.g. the generalized Langevin equation [31, 36] and Master equation formalism [29, 37, 38]. The result of these calculations is the "thermal Landauer formula" [30, 31], where in the classical limit the heat current (for $N = 2$) linearly depends on the temperature difference between the two thermal baths. We briefly follow here the derivation within the Master equation formalism, generalizing the results of Refs. [24, 37] for an N terminal system.

Under the assumption of weak system-bath interactions, going into the Markovian limit, the probabilities P_n to occupy the n state of the molecular oscillator satisfy the Master equation [32, 33, 35],

$$\frac{d P_n}{dt} = n k_u P_{n - 1}(t) + (n + 1) k_d P_{n + 1}(t) - [n k_d + (n + 1) k_u] P_n(t). \quad (2)$$

The nonadiabatic relaxation and excitation rates, k_d and k_u, respectively, are given by summing up contributions from each reservoir, as no correlations exist between the different baths ($\nu = 1...N$),

$$k_u = \sum_\nu k_u^\nu; \quad k_d = \sum_\nu k_d^\nu. \quad (3)$$

It can be shown that

$$k_u^\nu = \Gamma_\nu (\omega_0)(1 + \bar{n}_\nu (\omega_0)); \quad k_u^\nu = \Gamma_\nu (\omega_0) \bar{n}_\nu (\omega_0), \quad (4)$$

where

$$\Gamma_\nu (\omega_0) = 2\pi \sum_{j \in \nu} \lambda_j^2 \delta (\omega_j - \omega_0). \quad (5)$$

Here $\bar{n}_\nu (\omega) = [e^{\omega/T_\nu} - 1]^{-1}$ is the Bose-Einstein distribution function for the ν reservoir. The heat current properties of this model are obtained from the steady state solution of Eq. (2) with the nonadiabatic rates [32-34]. The steady state heat flux at the ν terminal is given
by calculating the difference between heat flow from the \(\nu \) bath into the the molecular mode, leading to vibrational excitations within the molecule, and the outgoing molecule-reservoir energy current, resulting from relaxation processes inside the molecule,

\[
J^{(bb)}_{\nu} = -\omega_0 \sum_n n(k_d^\nu P_n - k_u^\nu P_{n-1}). \tag{6}
\]

The current is defined positive when flowing from the contact into the molecule. In the classical limit \((T_\nu > \omega_0) \) we get \[37\]

\[
J^{(bb)}_{\nu} = \frac{\Gamma_\nu \sum_\mu \Gamma_\mu (T_\nu - T_\mu)}{\sum_\mu \Gamma_\mu}. \tag{7}
\]

Considering this expression, we can identify the directed current \(\nu \rightarrow \mu \) as

\[
J^{(bb)}_{\nu \rightarrow \mu} = \frac{\Gamma_\nu \Gamma_\mu (T_\nu - T_\mu)}{\sum_\mu \Gamma_\mu}. \tag{8}
\]

We refer next to two specific terminals as source (L) and drain (R), while all other \(N - 2 \) baths are referred to as gates (G). When currents in the G terminals are zero, \(J_\nu \neq L,R = 0 \), the gates acquire the same temperature in steady state, \(T_G = (\Gamma_L T_L + \Gamma_R T_R) / (\Gamma_L + \Gamma_R) \). The current at the L/R contact is then given by

\[
J^{(bb)}_L = \frac{\Gamma_L \Gamma_R}{\Gamma_L + \Gamma_R} (T_L - T_R); \quad J_R = -J_L, \tag{9}
\]

which is the same result as obtained when \(\Gamma_G = 0 \), see Eq. (7). We also find that the current \(J_{L \rightarrow R} \) decays with the number of thermal reservoirs as

\[
J^{(bb)}_{L \rightarrow R} = \frac{\Gamma_L \Gamma_R}{\sum_\nu \Gamma_\nu} (T_L - T_R); \quad (J_G = 0), \tag{10}
\]

due to additional decay channels. To summarize, we find that in the harmonic limit the effect of gate terminals is simply to effectively increase the broadening \(\Gamma \), while the gates’ temperatures can not modify the current in the system. Thus, there is no control over the heat dissipated (or absorbed) from the contacts in a purely harmonic system.

Next we show that in a model consisting nonlinear interactions heat current can be strongly controlled by the temperature of a gate terminal. As a case study we consider the spin-boson (s-b) model, generalized to include \(N \) bosonic reservoirs (creation operators \(a_{j,\nu}^\dagger, \nu = 1...N \) linearly coupled to a spin (two-level) system,

\[
H_{sb} = \frac{\Delta}{2} \sigma_z + \frac{\omega_0}{2} \sigma_z + \sum_{j,\nu} \omega_j a_{j,\nu}^\dagger a_{j,\nu} + \frac{\sigma_z}{2} \sum_{j,\nu} \kappa_{j,\nu} (a_{j,\nu}^\dagger + a_{j,\nu}). \tag{11}
\]

Here \(\omega_0 \) is the energy difference between the spin levels with tunneling splitting \(\Delta \). In this model internal molecular anharmonicity is introduced by truncating the spectrum of the single molecular mode to include only the lowest two energy states. We do not allow for other phonon-phonon scattering processes, e.g. umklapp processes, that can lead to normal conductivity as in the Peierls model \[30\]. Using the small polaron transformation \[40\] it can be shown that this model represents a molecular mode coupled nonlinearly to the harmonic reservoirs \[24\].

\[
H_{sb} = \frac{\omega_0}{2} \sigma_z + \sum_{j,\nu} \omega_j a_{j,\nu}^\dagger a_{j,\nu} + \frac{\Delta}{2} (e^{i\Omega_+} - e^{-i\Omega_-}) + H_{shift}. \tag{12}
\]

Here \(\Omega = \sum_\nu \Omega_\nu; \quad \Omega_\nu = i \sum_{j'} \kappa_{j,j'} \left(a_{j,\nu}^\dagger - a_{j,\nu} \right) \), \(H_{shift} = \sum_{j,\nu} \frac{-\kappa_{j,\nu}^2}{4\omega_{j,\nu}} \) is an energy shift henceforth incorporated into the zero order energies. Eq. (12) shows that the role of the thermal reservoirs is to modulate the transition elements between molecular vibrational levels. The important feature of this model is that system-bath couplings (Eq. (12)) are multiplicative in the bath degrees of freedom, rather than additive as is the linear harmonic model \[9\]. We do not distinguish in this model between the role of the different reservoirs (source, drain and gates). One could construct variants of this model, where the gates interact in a distinct functional form. For small \(\Delta \) the Hamiltonian leads again to nonadiabatic dynamics, Eq. (13), with \(n = 0, 1 \). The and rate constants are given by

\[
k_u = \frac{\Delta^2}{4} C(-\omega_0); \quad k_d = \frac{\Delta^2}{4} C(\omega_0). \tag{13}
\]

The trace is performed over the \(\nu \) reservoir degrees of freedom. For convenience, in what follows we disregard the prefactor \((\Delta/2)^2 \). Using the convolution theorem, it can be shown that the function \(C(\omega) \) can be decomposed in terms of the \(N \) reservoirs correlation functions,

\[
C(\omega_0) = \int_{-\infty}^{\infty} dt e^{i\omega_0 t} \langle C(t) \rangle, \quad C(t) = \Pi_\nu C_\nu(t); \quad C_\nu(t) = \langle e^{i\Omega_\nu(t)} e^{-i\Omega_\nu(0)} \rangle. \tag{14}
\]

The track is performed over the \(\nu \) reservoir degrees of freedom. In what follows we disregard the prefactor \((\Delta/2)^2 \). Using the convolution theorem, it can be shown that the function \(C(\omega) \) can be decomposed in terms of the \(N \) reservoirs correlation functions,

\[
C(\omega_0) = \int_{-\infty}^{\infty} d\omega_1 \int_{-\infty}^{\infty} d\omega_2 ... \int_{-\infty}^{\infty} d\omega_{N-1} C_1(\omega_1) C_2(\omega_2) ... C_N(\omega_0 - \omega_1 - \omega_2 - ... - \omega_{N-1}). \tag{15}
\]
For clarity, we include the explicit expression for the heat flux in a three-terminal junctions, measured at terminal ‘1’,

\[
J_{\nu}^{(sb)}(N = 3) = - \int_{-\infty}^{\infty} \omega_\nu d\omega_1 \int_{-\infty}^{\infty} d\omega_2 [C_1(\omega_1)C_2(\omega_2)C_3(\omega_0 - \omega_1 - \omega_2)P_1 - C_1(-\omega_1)C_2(\omega_2)C_3(-\omega_0 + \omega_1 - \omega_2)P_0],
\]

(17)

The population of the spin levels is given by

\[P_0 = 1 - P_1 = C(\omega_0)/[C(\omega_0) + C(-\omega_0)]. \]

Assuming strong coupling, going into the high temperature classical limit, \((T_\nu > \omega_0)\), the kernel \(C(t)\) can be calculated in the short time limit 40,

\[
C_\nu(t) = e^{-\phi_\nu(t)}, \quad \phi_\nu(t) = iE_\nu^M t + T_\nu E_\nu^M t^2,
\]

(18)

where \(E_\nu^M = \sum_j \varepsilon_j^2 \omega_\nu^2\) is the reorganization energy of the \(\nu\) reservoir. In frequency domain we find that

\[
C(\omega_0) = \sqrt{\frac{\pi}{T_\nu E_\nu^M}} \exp \left[\frac{-(\omega_0 - E_\nu^M)^2}{4T_\nu E_\nu^M} \right],
\]

\[
C_\nu(\omega) = \frac{1}{\sqrt{2\pi T_\nu E_\nu^M}} \exp \left[-\frac{(\omega - E_\nu^M)^2}{4T_\nu E_\nu^M} \right],
\]

(19)

where \(E_\nu^M\) is the total (\(N\) baths) reorganization energy and \(T_\nu\) is an effective temperature for the subsystem,

\[
E_\nu^M = \sum_\nu E_\nu^M; \quad T_\nu = \frac{\sum_\nu E_\nu^M T_\nu}{E_\nu^M}.
\]

(20)

Integrating Eq. (16) utilizing (19) yields the heat current at the \(\nu\) contact (ignoring a multiplicative numeric factor of \(\sqrt{T_\nu}\)),

\[
J_\nu^{(sb)} = E_\nu^M \left(T_\nu - T_\mu \right) E_\nu^M (E_\nu^M T_\nu)^{3/2} (1 + e^{-E_\nu^M/T_\nu}) e^{-(\omega_\nu - E_\nu^M)^2/(4E_\nu^M T_\nu)}. \]

(21)

The current flowing through the system between the terminals \(\nu\) and \(\mu\) is given by

\[
J_{\nu\rightarrow\mu}^{(sb)} = \frac{E_\nu^M E_\mu^M (T_\nu - T_\mu)}{(E_\nu^M T_\nu)^{3/2} (1 + e^{-E_\nu^M/T_\nu})} e^{-(\omega_\nu - E_\nu^M)^2/(4E_\nu^M T_\nu)}. \]

(22)

The temperatures of the gating terminals and their couplings to the molecule appear in a nontrivial way in this expression, leading to strong controllability, as opposed to the harmonic results, Eqs. (7) and (8).

We exemplify control over the heat current in the system by studying a source-drain-gate situation, where two reservoirs are considered as source (\(L\)) and drain (\(R\)), while \(N - 2\) baths are identified as gates (\(G\)). Under the condition of zero current in the gating terminals \((J_G = 0)\), their temperatures can be determined self consistently to yield \(T_G = T_M = (E_L T_L + E_R T_R)/(E_L + E_R)\). The current at the source/drain contact then becomes

\[
J_{L \rightarrow R}^{(sb)} = -J_{R \rightarrow L}^{(sb)} = (T_L - T_R) \frac{E_L E_R}{E_M + E_R} \frac{E_M}{(E_M T_G)^{3/2}} \frac{e^{-(\omega_0 - E_M)^2/(4E_M T_G)}}{1 + e^{-\omega_0/T_G}}.
\]

(23)

In the limit of strong coupling, \(NE_0^M > \omega_0\), we find that \(J_{L \rightarrow R}^{(sb)} \propto \Delta T N^{-3/2} e^{-NE_0^M/4T_G}\). Therefore, the temperature \(T_G\) serves as an effective activation temperature, exponentially enhancing the directed current, while \(E_M\) is the energy gap for transport. Note that \(J_{L}/J_{L \rightarrow R} = E_M/(E_M + E_R)\), in analogy with the behavior of the fully harmonic model, Eq. (19-10).

We present next numerical results calculated by applying Eqs. (21-22) on a three-terminal (\(L, R\) and \(G\)) configuration. The control parameters are the coupling strength of the gate to the subsystem, given in terms of reorganization energy \(E_G^M\) and the temperature of the \(G\) reservoir. For simplicity we take \(\Delta/2 = 1\) meV.

Figure 4 displays results in the absence of (net) energy flow between the gate and the subsystem. Taking all coupling strengths to be equal sets the gate temperature to \(T_G = (T_L + T_R)/2\). Simulating Eq. (23) we find that the current at the \(L/R\) interfaces strongly decays with \(E_G^M\). We also show strong control over the directed \(L \rightarrow R\) current using Eq. (21).

Next we modulate the temperature of the gate reservoir, and manifest that the system can act like a good thermal conductor, or an insulator, depending on the gate temperature. Figure 5 shows that the system behaves as a bad thermal conductor at low gating temperature \(T_G \sim 100K\), while at \(T_G = 250K\) (where \(J_G = 0\) the current is amplified by a factor of \(\sim 10\).

Finally, in Figure 6 we analyze the directed heat flux \(J_{L \rightarrow R}\) as a function of the gate temperature. We show strong amplification of current, of three orders of magnitudes, when the gate terminal is strongly coupled to the molecular mode (dashed-dotted line). In contrast, at
FIG. 2: Control over heat current in a three-terminal configuration under the condition of zero current at the gate $J_G=0$. The heat current at the L contact (full) strongly decays with E_G. Also shown are the directed currents $J_{L\rightarrow R}$ (dashed), $J_{G\rightarrow R}$ (dashed-dotted), and $J_{G\rightarrow L}$ (dotted). Other parameters are $T_L=300\text{K}$, $T_R=200\text{K}$, $T_G=250\text{K}$, $E_{LM}=E_{RM}=50\text{ meV}$.

FIG. 3: Switching the heat current in a three-terminal setup: The system behaves as an insulator for low control temperatures, while for high T_G the system becomes a good thermal conductor. J_L (dashed) and $-J_R$ (full) are equal at $T_G=250\text{K}$, where J_G (dotted) diminishes. Other parameters are $T_L=300\text{K}$, $T_R=200\text{K}$, $E_{LM}=E_{RM}=50\text{ meV}$, $E_{GM}=300\text{ meV}$.

FIG. 4: Amplification of the heat current in a three-terminal configuration. The current $J_{L\rightarrow R}$ can be strongly manipulated by the control bath at strong coupling. $T_L=300\text{K}$, $T_R=200\text{K}$, $E_{LM}=E_{RM}=50\text{ meV}$, $E_{GM}=10\text{ meV}$ (full), 100 (dashed), 200 (dotted) and 300 meV (dashed-dotted).

weak coupling (full line), $J_{L\rightarrow R}$ is insensitive to the presence of the G channel. As discussed above, the model Hamiltonian \(^{(11)}\) could be also introduced for describing transport between two sidegroups in a macromolecule immersed in a solvent. In this context, Fig. 4 reveals that the solvent may enhance the L to R current, in analogy with the effect of solvent assisted IVR \(^{(32)}\).

In conclusion, we have presented here two models for the study of thermal transport in gated systems: a purely harmonic system, and an anharmonic model. In both cases the gate terminals induce thermal fluctuations of the transition elements between the molecular vibrational states, leading to dynamical control of heat current. We (trivially) found that the purely harmonic setup cannot bring in a gated behavior. In contrast, in the spin-boson model, incorporating anharmonic interactions, the system can behave either as an insulator, or as a good thermal conductor, depending on the gates parameters: temperatures and molecule-bath coupling strength (binding energy using proteins terminology).

We may also explore other variants of the anharmonic model. For example, the central molecular unit can bilinearly-weakly couple to the L and R surfaces, while the gates may couple nonbilinearly-strongly to the subsystem. Such models should basically display the same characteristics as discussed above.

The effects described in this paper may be also studied using classical molecular dynamics (MD) simulations \(^{(32)}\). The advantage of our formalism over such Langevin equation treatment is twofold: (i) Nonbilinear system-surface couplings are difficult to simulate within Langevin dynamics, leading to a coordinate dependent friction coefficient \(^{(41)}\); (ii) The net heat current between two reservoirs, $J_{\nu\rightarrow\mu}$, cannot be resolved within MD simulations, only the current at each terminal can be directly obtained. In contrast, one can clearly identify these currents in the analytical expression \(^{(22)}\).

The models presented in this paper can be realized by fabricating an N terminal nanodevice. The heat conductance of suspended two-terminal nanotubes was measured by detecting changes in the electric resistance of the attached heater and detector pads \(^{(13)}\). We suggest employing this method in a three-terminal setup, e.g. by connecting a T-shaped nanotube to three conducting...
surfaces. Macromolecules with spatially localized side-groups also offer a playground for realizing these models.\[35, 42\]

Nonlinear electrical devices (rectifiers, switches and transistors) have shaped technology in the last 60 years. Nonlinear nanomechanical devices promise to revolutionize the technology of the future as well, whereas phonons, instead of electrons become the carriers of information and the computation element. This paper, presenting a simple study for the control of heat flow in nanosystems, is a first step in addressing this challenge. Introducing quantum effects will further offer new pathways for energy control at the nanoscale \[43, 44\].

[1] T. Uzer, W. H. Miller, Phys. Rep. 199, 73 (1991).
[2] R. A. Marcus, J. Chem. Phys. 20, 359 (1952).
[3] M. Gruebele, P. G. Wolynes, Acc. Chem. Res. 37, 261 (2004).
[4] E. Fermi, J. Pasta, S. Ulam, Los Alamos Document No. LA-1940 (1955).
[5] D. K. Campbell, P. Rosenau, G. M. Zaslavsky, Chaos 15, 015101 (2005).
[6] P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).
[7] M. Fuji, et al., Phys. Rev. Lett. 95, 065502 (2005).
[8] C. H. Yu, L. Shi, Z. Yao, D. Y. Li, A. Majumdar, Nano Lett. 5, 1842 (2005).
[9] Z. B. Ge, D. G. Cahill, P. V. Braun, Phys. Rev. Lett. 96, 186101 (2006).
[10] R. Y. Wang, R. A. Segalman, A. Majumdar, App. Phys. Lett. 89, 173113 (2006).
[11] Z. Wang, et al., Science 317, 787 (2007).
[12] C. Chiritescu, et al., Science 315, 351 (2007).
[13] C. W. Chang, D. Okawa, A. Majumdar, A. Zettl, Science 314, 1121 (2006).
[14] D. Segal, A. Nitzan, J. Chem. Phys. 117, 3915 (2002).
[15] R. D’Agosta, N. Sai, M. Di Ventra, Nano Lett. 6, 2935 (2006).
[16] M. Galperin, M. A. Ratner, A. Nitzan, J. Phys.-cond. mat. 19, 10320 (2007).
[17] O. P. Saira, et al., Phys. Rev. Lett. 99, 027203 (2007).
[18] D. Segal, A. Nitzan, Phys. Rev. E. 73, 026109 (2006).
[19] D. G. Cahill, K. Goodson, A. Majumdar, J. Heat Transfer 124, 223 (2002).
[20] M. Blencowe, Phys. Rep. 395, 159 (2004).
[21] D. Li, S. T. Huxttable, A. R. Abramson, A. Majumdar, J. Heat Transfer 127 108, (2005).
[22] G. Casati, Chaos 15, 015120 (2005).
[23] F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet, *Fourier’s law: A challenge to theorists*, Mathematical Physics, A. Fokas, A. Grigoryan, T. Kibble, and B. Zegarulski, eds. (Imperial College Press, London, 2000).
[24] S. Lepri, R. Livi, A. Politi, Phys. Rep. 377, 1 (2003).
[25] M. Michel, G. Mahler, J. Gemmer, Phys. Rev. Lett. 95, 180602 (2005).
[26] E. Pereira, R. Falcao, Phys. Rev. Lett. 96, 100601 (2006); F. Barros, H. C. F. Lemos, E. Pereira, Phys. Rev. E 74, 052102 (2006).
[27] M. Terraneo, M. Peyrard, G. Casati, Phys. Rev. Lett. 88, 094302 (2002).
[28] B. Li, L. Wang, G. Casati, Phys. Rev. Lett. 93, 184301 (2004).
[29] D. Segal, A. Nitzan, Phys. Rev. Lett. 94, 034301 (2005); J. Chem. Phys. 122, 194704 (2005).
[30] L. G. C. Rego, G. Kirczenow, Phys. Rev. Lett. 81, 232 (1998).
[31] D. Segal, A. Nitzan, P. Hanggi, J. Chem. Phys. 119, 6840 (2003).
[32] B. W. Li, L. Wang, G. Casati, App. Phys. Lett. 88, 143501 (2006).
[33] M. Menon, D. Srivastava, Phys. Rev. Lett. 79, 4453 (1997).
[34] G. Trinkunas, A. Holzwarth, J. Phys. Chem. B 101, 7271 (1997).
[35] R. von Benten, O. Link, B. Abel, D. Schwarzer, J. Phys. Chem. A 108, 363 (2004).
[36] Harmonic chains with self consistent reservoirs can also manifest normal heat conductivity, see e.g. F. Bonetto, J. L. Lebowitz, J. Lukkarinen, J. Stat. Phys. 116, 783 (2004); A. Dhar, D. Roy, J. Stat. Phys. 125, 805 (2006).
[37] D. Segal, Phys. Rev. B 73, 205415 (2006).
[38] S. H. Lin, J. Chem. Phys. 61, 3810 (1974).
[39] R. E. Peierls, *Quantum Theory of Solids* (Oxford University Press, London, 1955).
[40] G. D. Mahan, *Many-particle physics* (Plenum press, New York, 2000).
[41] B. Carmeli, A. Nitzan, Chem. Phys. Lett. 102, 517 (1983).
[42] D. Schwarzer, P. Kutne, C. Schroder, J. Troe, J. Chem. Phys. 121, 1754 (2004).
[43] K. C. Schwab, M. L. Roukes, Phys. Today 58, 36 (2005).
[44] N. Mingo, Phys. Rev. B 74, 125402 (2006).