EAS Time Structures with ARGO-YBJ experiment

A K Calabrese Melcarne\(^1\) and G Marsella\(^2\) on behalf of ARGO-YBJ collaboration

\(^1\) Istituto Nazionale di Fisica Nucleare, CNAF, I-40127 Bologna, Italy,
\(^2\) Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento and Istituto Nazionale di Fisica Nucleare, Sezione di Lecce 73100 Lecce, Italy

E-mail: giovanni.marsella@le.infn.it

Abstract. Shower-by-shower fluctuations play a key role for the understanding of EAS morphology. Each observed event keeps track of the propagation through the atmosphere. This factor can influence the shape of time front and the sequence of arrival times. The design of the ARGO-YBJ detector offers a unique chance to have high resolution pictures of shower footprints at the ground. The time structure of the shower disc has been studied as a function of the distance to the shower axis. The curvature of the shower front, defined as the mean of time residuals with respect to a planar fit, has also been investigated in the energy range between 300 GeV and 100 TeV and its features employed to characterize the standard surface array observables. After a study on the shower time profile and on the lateral distribution at different time delay from the shower front, showers with large time residual rms with respect to the shower front have been investigated. The longitudinal time structures in data could help to better define selection criteria for particular analysis, such as gamma/hadron separation, composition or “exotic” physics, and allow a better determination of EAS disc structure and correlations between front profile, front thickness and core distance.

1. Introduction

The ARGO-YBJ experiment (Astrophysical Radiation with Ground-based Observatory at YangBajing) has been designed to study cosmic rays and cosmic gamma-radiation at energy larger than few hundred GeV, by detecting air showers at high altitude with wide-aperture and high duty cycle[1].

ARGO-YBJ is operating in its complete layout since 2007 allowing a complete and detailed three dimensional reconstruction of the shower front with unprecedented spatial and time resolution. The space-time structure of extensive air showers depends on primary mass, energy and arrival direction and on the interaction mechanisms with air nuclei. Measurements of shower parameters with several detection techniques would be required for a detailed knowledge of the shower front. A flat array like ARGO-YBJ can measure the particles arrival times and their densities at ground. The digital readout allows detecting shower secondary particles down to very low density and the high space-time granularity is able to provide a fine sampling of the shower front close to the core. The time profile of the shower front can be reconstructed by the time of fired pads. The time structure of the shower disc has been studied as a function of the distance to the shower axis and the curvature of the shower front,
defined as the mean of the time residuals with respect to a planar fit, is investigated following the approach described in [2] in the energy range between 300 GeV and 100 TeV. A particular attention is devoted to the events that show particularly wide time distribution.

Figure 1. Comparison between data and MC of the shower profile in a multiplicity range between 200 and 400 hits.

2. Shower front
Shower by shower fluctuations play a key role in understanding the EAS morphology. ARGO-YBJ detector design offers a unique chance to study in detail and with a high resolution the shower front at ground level. Lateral distribution and time profile around the shower core have been analyzed. In this work a new and wider sample of data have been processed in order to check the data consistency in different sample of data and to study more in detail the systematic due to the reconstruction techniques. The condition to select only well reconstructed showers could bias the shape of the curvature.

In figure 1 the distribution of the time residual respect to a planar fit obtained with quality cuts on the conical fit are shown for some multiplicity ranges. Also a comparison with MC data is shown. A sample of 10^7 events of proton showers have been generated with CORSIKA[3] code with an energy spectrum ranging form 300 GeV to 100 TeV. To reproduce the hadronic interactions SYBILL[4] and FLUKA[5] have been used for high and low energies respectively. The full detector performance has been simulated with GEANT[6] package.

In figure 2 the same distribution is shown with quality cuts only on the planar reconstruction. The behaviour around the core is similar, while at distances larger than 40 meters from the core the two distribution becomes different. The bias introduced by the reconstruction need further and deep analysis. For showers with the core outside the detector it becomes harder to define the correct parameters of the shower profile, as the energy and real core distances of the showers are hard to be defined, and a huge Montecarlo production is needed in order to reproduce well the analysed data.
3. Double showers
Shower with particular wide time distribution have been investigated by ARGO-YBJ collaboration in the past[7]. Two different classes of events have been identified:
• Wide showers
• Double showers

The first class identifies showers with a high number of hits homogeneously distributed in a wide space-time range. In the second class two separated showers are evident. In this work only the second class is studied in details.

Figure 2. Shower profile with quality cuts only on planar reconstruction

Figure 3. Detection of the peaks in the time distribution (top) and the double peak fit on data (bottom)
The origin of the double showers in ARGO-YBJ events is mainly due to statistical coincidences. The expected number of events has been calculated as the number of coincidences expected in the trigger time window $\tau = 2\mu s$ taking into account the quality selection on subshowers. The expected rate is equal to:

$$\lambda_{\text{exp}} = 2 \times \lambda_1 \times \lambda_2 \times \tau = 29.0 \pm 0.5 \text{Hz}$$ \hspace{1cm} (1)

where $\lambda_1 = \lambda_2 = 2.69$ kHz is the observed rate of the showers satisfying the quality requirements for the subshowers. In order to test and check the selection algorithm and the expected distribution of the statistical coincidences a sample of random double showers has been generated putting together in same time window series of real events, shifting randomly the second event. In this work, a new more efficient selection algorithm has been used, based on the time distribution of the events and reconstructing double peaks using techniques used in spectroscopy[8].

In figure 3 a two peaks fit on a double shower is shown. Using this technique an efficiency in double shower reconstruction of 60% has been reached. Applying this selection in a large sample of data an observation rate of double showers of about 9 Hz is expected. The angle and time distribution will be analyzed in order to test the possibility to detect anomalies as a signature of possible effects due to heavy or ‘exotic’ cosmic ray particles.

4. Conclusions

In this work the shower front time profile and distribution have been presented. The curvature of the showers around the core have been studied, illustrating the reconstruction effect on ARGO-YBJ data. Large time residual have also been investigated, and in particular double showers. A new Algorithm have been introduced, increasing the detection efficiency. The detailed study of the angular and time distribution of the selected events will be useful in studying possible shower anomalies.

references

[1] Di Sciascio G et al., 2003 Proc. of 28th International Cosmic Ray Conference, Tsukuba, Japan, Session OG.2.5 p 3015.

[2] Calabrese Melcarne A K, Perrone L et al., 2009 Proc. of 31st International Cosmic Ray Conference, Lodz, Poland, HE.1.1, id 0424.

[3] Heck D et al., 1998 CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers, Forschungszentrum Karlsruhe, FZKA 6019 and references therein

[4] Engel R et al., 1999 Proc. of 26th International Cosmic Ray Conference, Salt Lake City, USA, vol.1, p 415

[5] Fass’o A, Ferrari A, Ranft J, and Sala P R, 2005 FLUKA: a multi-particle transport code, CERN-2005-10 INFN/TC 05/11, SLAC-R-773.
Fass’o A, Ferrari A, Roesler S, Sala P R, Battistoni G, Cerutti F, Gadioli E, Garzelli M V, Ballarini F, Ottolenghi A, Empl A and Ranft J, 2003 The physics models of FLUKA: status and recent developments, Computing in High Energy and Nuclear PhysicsConference, La Jolla, CA, USA, March 24-28, (paper MOMT005), eConf C0303241, arXiv:hep-ph/0306267

[6] GEANT- Detector Description and Simulation Tool, CERN Program Library, Long Writeup W5013 (1993)

[7] Calabrese Melcarne A K et al. for the ARGOYBJ Collaboration, 2011Proc. of 32nd International Cosmic Ray Conference, Beijing, China, HE.1.1 Vol. 1, pp 66-69 (http://www.ihep.ac.cn/english/conference/icrc2011/paper/proc/v1.pdf)

[8] T Spectrum – ROOT Class – Cern Library (http://root.cern.ch)