Serum-induced Translocation of Mitogen-activated Protein Kinase to the Cell Surface Ruffling Membrane and the Nucleus

Fernando A. Gonzalez,*,‡ Alpna Seth,*‡ David L. Raden,*‡ Douglas S. Bowman,† Fredric S. Fay,†¶ and Roger J. Davis*§

‡ Howard Hughes Medical Institute, * Program in Molecular Medicine, † Department of Biochemistry and Molecular Biology, ¶ Biomedical Imaging Group, § Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605

Abstract. The mitogen-activated protein (MAP) kinase signal transduction pathway represents an important mechanism by which growth factors regulate cell function. Targets of the MAP kinase pathway are located within several cellular compartments. Signal transduction therefore requires the localization of MAP kinase in each sub-cellular compartment that contains physiologically relevant substrates. Here, we show that serum treatment causes the translocation of two human MAP kinase isoforms, p40~pk and p41~mpk, from the cytosol into the nucleus. In addition, we report that p41~mpk (but not p40~mpk) is localized at the cell surface ruffling membrane in serum-treated cells.

To investigate whether the protein kinase activity of MAP kinase is required for serum-induced redistribution within the cell, we constructed mutated kinase-negative forms of p40~mpk and p41~mpk. The kinase-negative MAP kinases were not observed to localize to the cell surface ruffling membrane. In contrast, the kinase-negative MAP kinases were observed to be translocated to the nucleus. Intrinsic MAP kinase activity is therefore required only for localization at the cell surface and is not required for transport into the nucleus.

Together, these data demonstrate that the pattern of serum-induced redistribution of p40~mpk is different from p41~mpk. Thus, in addition to common targets of signal transduction, it is possible that these MAP kinase isoforms may differentially regulate targets located in distinct sub-cellular compartments.

Cellular proliferation and differentiation is regulated by the action of growth factors that bind to specific receptors expressed at the surface of responsive cells. Growth factor binding to these receptors initiates multiple signal transduction pathways that control cell physiology. One mechanism of signal transduction by growth factor receptors is represented by the mitogen-activated protein (MAP) kinase pathway (2, 15, 19, 46). In the case of signal transduction by the EGF receptor it has been demonstrated that this pathway is complex and consists of multiple steps including the adaptor protein (GRB2/SEM-5 (38, 45), a guanine nucleotide exchange protein (41), Ras (36, 55, 58), and a protein kinase cascade involving a MAP kinase kinase kinase (c-Raf-1 [21, 32, 34], c-Mos [47], Ste11 [35], or other protein kinase [26, 40]), MAP kinase kinase (5, 18, 33, 50, 56, 59), and MAP kinase (2, 15, 19, 46).

Growth factor-activated MAP kinase phosphorylates substrate proteins in vivo. These substrates represent targets of the MAP kinase signal transduction pathway (19). In vitro analysis has demonstrated that MAP kinase exhibits a restricted substrate specificity (3, 14, 19, 27). However, several MAP kinase substrates have been identified (19). These substrates include: (a) cell surface proteins such as the EGF receptor (44, 53) and phospholipase A2 (37, 43); (b) the cytoskeletal proteins tau (22) and caldesmon (12); and (c) the nuclear proteins c-Jun (3, 13, 48), c-Myc (3, 51, 52), NF-IL6 (42), ATF-2 (1), TAJ (11), and p62CRE/Elk-1 (25, 39).

The targets of the MAP kinase signal transduction pathway are therefore located in the nucleus, the cytoplasm and at the cell surface. Analysis of sub-cellular distribution has demonstrated the presence of MAP kinase within the cytoplasm and the nucleus, but not at the cell surface (3, 10, 49, 52). A fundamental question about the process of signal transduction is therefore the identity of the mechanism that allows MAP kinase to couple to targets localized at the cell surface and within different cellular compartments.

The purpose of this study was to investigate the sub-cellular localization of the MAP kinase isoforms p40~mpk and p41~mpk. We report that these MAP kinases are located in the cytosol of serum-starved cells. However, serum treatment causes translocation of these MAP kinases from the
cytosol into the nucleus. Significantly, p41^{40⁴⁰} (but not p40⁴⁰) was also observed to be translocated to the cell surface ruffling membrane. The difference between the serum-induced redistribution of p40⁴⁰ and p41⁴⁰ suggests that these MAP kinase isosforms may be coupled to distinct targets of signal transduction in addition to common signaling pathways.

Materials and Methods

Plasmids

The plasmids pCH110 and pUC13 were from Pharmacia-LKB Biotechnology Inc. (Piscataway, NJ). The plasmid pGEM-Luc was from Promega (Madison, WI). The plasmids pGAIA/Myc and pG5ElbLuc have been described previously (3, 52). The plasmid pMyc contains the human c-myc gene under the control of an SV-40 promoter (30). The plasmid pG5ElbLuc has been described previously (52).

The plasmid pCMV-p41⁴⁰ was constructed using a 1,992-bp Espl restriction fragment of the human p41⁴⁰ cDNA (28) (available from GenBank under accession number Z1695) cloned as a blunt-ended fragment in the Smal site of the polylinker of the expression vector pCMV5 (4). The protein sequence of human p41⁴⁰ has a calculated molecular mass of 41 kD and is 98.3% identical to the rat ERK2 protein kinase (7, 28). Mutation of p41⁴⁰ at the ATP binding site to inhibit protein kinase activity was performed by replacing Lys⁴² and Lys⁴³ (sequence AGGAAA) in sub-region II (according to the nomenclature of Hanks et al. [31]) with two Ala residues (sequence GCGGCA) using a polymerase chain reaction-based procedure (54) to create the plasmid pCMV-p41(Ala⁴²Ala⁴³)⁴⁰. The plasmid pCMV-p40⁴⁰ was constructed using a 1,940-bp SacII-EspI restriction fragment of the human p40⁴⁰ cDNA (28) (available from GenBank under accession number Z1695) cloned as a blunt-ended fragment in the Smal site of the polylinker of the expression vector pCMV5. The protein sequence of human p40⁴⁰ has a calculated molecular mass of 40 kD and is 98.6% identical to the rat ERK2 protein kinase (7, 28). Mutation of p40⁴⁰ at the ATP binding site to inhibit protein kinase activity was performed by replacing Lys⁴² and Lys⁴³ (sequence AGGAAA) in sub-region II with Ala residues (sequence GCGGCA) using a polymerase chain reaction-based procedure (54) to create the plasmid pCMV-p40(Ala⁴²Ala⁴³)⁴⁰.

Cell Culture and Transfection Assays

COS-7 cells were subcultured in DMEM supplemented with 5% FBS (GIBCO BRL, Gaithersburg, MD). Transfections were performed using the DEAE-Dextran method as previously described (3). The cells were trypsinized 20 h after transfection, seeded into 100-mm dishes or 4-well tissue culture chambers mounted on a glass slide (Lab-tec, Naperville, IL), and incubated in DMEM containing 5% FBS for 24 h. Serum-starved cells were transfected to medium without serum during the last 18 h of incubation. Serum starvation was performed by adding DME containing 10% FBS.

Measurement of Myc-directed Transactivation of Reporter Gene Expression

Transactivation assays were performed using 0.02 µg of pGAL4/Myc activator plasmid and 2 µg of a luciferase reporter plasmid (pGSEBluc) as previously described (51). Normalization of transactivation efficiency was performed using a control plasmid (1 µg of pCH110) that expresses β-galactosidase. To investigate the effect of MAP kinase expression, the cells were transfected with 2 µg of pCMV5 (vector control), pCMV-p40⁴⁰, pCMV-p40(Ala⁴²Ala⁴³)⁴⁰, pCMV-p41⁴⁰, or pCMV-p41(Ala⁵⁴Ala⁵⁵)⁴⁰. The total DNA in all transfections was maintained at 10 µg using pUC13 as carrier DNA. The cells were harvested 48 h after transfection and cell extracts were prepared as previously described (31). Luciferase activity was measured using 2.5 µl of the cell extract with a luminometer (model 2010; Analytical Luminescence Laboratory, San Diego, CA) (51). β-Galactosidase activity was measured by mixing 15 µl of the cell extract with 3 µl of 0.1 M MgCl₂/4.5M β-mercaptoethanol, 66 µl of 4 mM o-nitrophenyl-β-D-galactopyranoside (Sigma Immunochemicals, St. Louis, MO), 16 µl of 0.1 M sodium phosphate, pH 7.5. The incubations were performed at 37°C for 5 min or until a faint yellow color appeared. The reactions were stopped by adding 500 µl of 1 M Na₂CO₃ to each tube and the optical density at 420 nm was measured using a spectrophotometer (Pharmacia-LKB Biotechnology Inc.).

Isolation of Protein Kinases

The protein kinases p40⁴⁰ and p41⁴⁰ were isolated from transfected COS-7 cells by sequential chromatography on Mono-Q and phenyl-Supercolumns (Pharmacia-LKB Biotechnology, Inc.) as described previously (44).

MAP Kinase Assays

Protein kinase activity was measured using a synthetic peptide substrate based on the sequence of the EGF receptor surrounding the Thr⁴²⁵ phosphorylation site (16, 44, 53) (described by Gonzalez et al. [27]). Transfected COS-7 cells were lysed at 4°C in 25 mM Hepes, pH 7.4, 5 mM EDTA, 50 mM NaF, 100 µM sodium orthovanadate, 1 mM PMFSF and 10 µg/ml leupeptin. The lysate was cleared by centrifugation at 100,000 g for 20 min at 4°C and the supernatant containing that MAP kinase activity was collected. Phosphorylation assays were performed using 25 mM Hepes, pH 7, 10 mM MgCl₂, 50 µM ATP[p³²P] (10 Ci/mmol), 1 mg/ml synthetic peptide, and 10 µl of kinase preparation in a final volume of 25 µl. Reactions were terminated after 20 min at 22°C by the addition of 10 µl of 5% formic acid containing 75 mM ATP. The phosphorylated synthetic peptide was isolated by applying 25 µl of the reaction mixture onto phosphocellulose paper (P81; Whatman Inc., Clifton, NJ) and washing the filters twice in 1 M acetic acid, 4 mM sodium pyrophosphate for 20 min. Radioactivity was quantified by measuring Cerenkov radiation with a Beckman liquid scintillation counter (Beckman Instruments, Inc., Fullerton, CA). Non-specific incorporation of radioactivity was determined in incubations without synthetic peptide substrate.

Western blot analysis

Cells were solubilized in lysis buffer (25 mM Hepes, pH 7.5, 5 mM EDTA, 1 mM PMFSF and 10 µg/ml leupeptin) and the extracts were centrifuged at 100,000 g for 20 min at 4°C. The supernatant was subjected to SDS-PAGE and the resolved proteins were electrophoretically transferred onto a polyvinylidine difluoride membrane (Immobilon-P; Millipore Corp., Bedford, MA). The membranes were then probed with a mouse anti-MAP/ERK kinase monoclonal antibody (Zymed Laboratories, Inc., San Francisco, CA) to detect the MAP kinases. The immune complexes were visualized with Kodak X-O-MAT AR film (Eastman Kodak Co., Rochester, NY) using enhanced chemiluminescence detection (Amersham International, Buckinghamshire, England) or 125I-goat anti-mouse Ig (Dupont-NEN). Quantitative detection of the radioactivity was performed using a Phosphorimager and ImageQuant soft ware (Molecular Dynamics Inc., Sunnyvale, CA).

Stoichiometry of EGF Receptor Phosphorylation

COS cells seeded in 35-mm dishes were labeled with 32PPhosphate by incubation with phosphate-free modified Eagle's medium (Flow Laboratories, Inc., McLean, VA) supplemented with 0.1% calf serum (GIBCO-BRL) and 2 mM/cil 32PPhosphate (Dupont-NEN, Boston, MA). The cells were treated with 10% FBS for defined times. The cells were then lysed with 25 mM Hepes, pH 7.4, 1% (vol/vol) Triton X-100, 1% (wt/vol) Na deoxycholate, 0.1% Na dodecylsulfate, 50 mM Na fluoride, 5 mM EDTA, 10 µg/ml leupeptin, and 1 mM PMFSF. The EGFR receptors were isolated by immunoprecipitation using a rabbit polyclonal anti-EGF receptor antibody and subjected to polyacrylamide gel electrophoresis. The EGFR receptor was then eluted from the gel and digested with trypsin (8, 20). The tryptic 32PPhosphopeptides obtained were resolved by reverse-phase high pressure liquid chromatography to isolate the peptide phosphorylated at Thr⁶⁶⁹ (8, 20). The stoichiometry of phosphorylation of the EGF receptor was determined as described previously (8, 20). Calculation of the stoichiometry of the phosphorylation of the EGF receptor requires knowledge of both the number of EGF receptors and the specific radioactivity of the phosphate incorporated into the receptor. EGFR receptor number was estimated by Western blotting using a polyclonal anti-receptor antibody using 125I-protein A (Dupont-NEN) and detection with a Phosphorimager (Molecular Dynamics Inc.). The Western blotting procedure was quantitated by comparison with different amounts of plasma membranes electrophoresed on the same gel and transferred to nitrocellulose. EGFR receptor number in the plasma membranes was measured using a radioreceptor assay using 125I-EGF (8, 20). The specific radioactivity of the γ-phosphate of ATP was measured by the technique of England and Walsh (23).
Immunocytochemistry

Transfected cells were plated into 4-well tissue culture chambers mounted on a glass slide (Lab-tek) and incubated for 10 h in DME supplemented with 5% FBS. To examine the effect of serum on the cellular distribution of MAP kinases, the cells were washed and incubated in serum-free DME for 18 h, and then treated with or without 10% FBS (GIBCO-BRL) for 30 min at 37°C. The cells were washed and processed for immunofluorescence in KRH buffer (120 mM NaCl, 6 mM KCl, 1.2 mM MgCl₂, 1 mM CaCl₂, 25 mM Hepes, pH 7.4).

The cells were fixed in KRH containing 37% formaldehyde (15 min, 22°C), washed and incubated in KRH containing 50 mM NH₄Cl for 15 min at 22°C. Then, they were permeabilized with 0.2% Triton X-100 in KRH (5 min, 22°C), washed three times and incubated for 1 h in KRH containing the primary antibody and 20% horse serum at 22°C. The primary antibodies and the dilutions used were: (a) a mouse monoclonal anti-c-Myc antibody (Ab-2; Oncogene Science, Inc., Manhassett, NY) diluted 1:20; (b) a mouse monoclonal anti-MAP/ERK kinase antibody (Zymed Laboratories, Inc.) diluted 1:500; and (c) a shee polyclonal anti-EGF receptor antibody diluted 1:200. The EGF receptor antibody was purified from serum that was obtained after immunization of a sheep with a bacterially expressed carboxy-terminal fragment of the human EGF receptor as an antigen.

After the incubation with primary antibodies, the cells were washed three times and incubated for 1 h at 22°C in KRH containing secondary antibodies and 20% horse serum. The secondary antibodies and the dilutions used were: (a) a rhodamine-conjugated rabbit anti-mouse Ig antibody (Boehringer Mannheim Corp., Indianapolis, IN) diluted 1:500; (b) a FITC-conjugated goat anti-mouse Ig antibody (Kirkegaard and Perry Laboratories, Inc., Gaithersburg, MD) diluted 1:300; and (c) a FITC-conjugated rabbit anti-sheep Ig antibody (ICN Immunochemicals, Costa Mesa, CA) diluted 1:500. Actin filaments were stained with 5 U/ml of rhodamine-labeled phalloidin (Molecular Probes, Inc., Eugene, OR) during the incubation with the secondary antibody. The cells were then washed with KRH and mounted onto slides with a solution of 87.5% glycerol, 10% PBS, and 2.5% DABCO. Beads (200 nm) with a broad fluorescent emission (Molecular Probes, Inc.) were added to the mounting medium as fiduciary markers.

Control experiments were performed to assess the specificity of each antibody used for indirect immunofluorescence experiments. No fluorescence was detected using the secondary antibodies in the absence of primary antibody. To confirm the presence of ruffling membranes after serum stimulation we stained the actin filaments in the cells with rhodamine-labeled phalloidin. FITC-conjugated WGA (Molecular Probes, Inc.) was also used to visualize the cell surface ruffling membrane. It was found that the expression of both the wild-type and kinase-negative forms of the MAP kinases p40^{mapk} and p41^{mapk} had no significant effect on the ability of serum to induce the formation of the cell surface membrane ruffles.

Digital Imaging Microscopy and Image Restoration

Cells are complex three-dimensional objects. The image from a single focal plane acquired using a conventional fluorescence microscope is degraded by light originating above and below the plane of interest. Therefore, details that are contained within a two-dimensional image of a cell may be obscured by the out of focus light. To minimize this problem, we used image restoration procedures to achieve increased contrast, higher resolution, and greater numerical accuracy (24).

Digital images of the fluorescence distribution in single cells were obtained using a Nikon 60× Planapo objective (NA = 1.4) on a Zeiss IM-35 microscope equipped for epifluorescence as previously described (24). Images of various focal planes were obtained with a computer controlled focus mechanism and a thermoelectrically cooled charge coupled device camera (model 2500; Photometrics Ltd., Tucson, AZ). The exposure of the sample to the excitation source was determined by a computer-controlled shutter and wavelength selector system (MVI, Avon, MA). The charge coupled device camera and microscope functions were controlled by a microcomputer, and the data acquired from the camera were transferred to a Silicon Graphics model 4D/XT workstation (Mountainview, CA) for image processing. Images were corrected for non-uniformities in sensitivity and for the dark current of the charge coupled device detector. The calibration of the microscope blurring was determined by measuring the instrument's point spread function as a series of optical sections at 0.125-μm intervals of a 0.19-μm diameter fluorescently labeled latex bead (Molecular Probes, Inc.). The image restoration algorithm used was based upon the theory of ill-posed problems and obtains quantitative dye density values within the cell that are substantially more accurate than those in an un-processed image (9). After image processing, individual optical sections of cells were inspected and analyzed using computer graphics software on a Silicon Graphics workstation. Quantitative molecular density values within a single optical section of individual cells were estimated by defining 15 concentric regions where the first region enclosed the cell nucleus and the fifteenth region enclosed the outermost cell fluorescence but excluded extracellular background fluorescence. The fluorescence intensity values were normalized by calculating the ratio of the average-pixel intensity within each region to the average-pixel intensity over all 15 regions.

Results

Biochemical Characterization of p40^{mapk} and p41^{mapk}

Two isoforms of the human ERK2 protein kinase that are expressed by HeLa cells have been identified by molecular cloning (28). These protein kinases share a high degree of sequence identity with the exception that p41^{mapk} has a short NH₂-terminal extension compared with p40^{mapk} (Fig. 1). To determine the significance of this difference in primary structure, we examined the properties of the two ERK2 isoforms expressed in cultured cells. Western blot analysis of the cell lysates detected a marked increase (~20-fold) in the level of expression of p40^{mapk} and p41^{mapk} (Fig. 2). Immunofluorescence analysis demonstrated that the transfection procedure resulted in the over-expression of MAP kinase in 15–20% of the COS cells. Thus, we can calculate that the over-expression of MAP kinase in the transfected cells was ~100-fold over the endogenous MAP kinase. This over-expression of p40^{mapk} and p41^{mapk} was associated with increased growth factor-stimulated MAP kinase activity detected in cell lysates (Fig. 3). Significantly, the mutation of the ERK2 isoforms within the conserved protein kinase sub-domain II (Fig. 1) resulted in the expression of kinase-negative forms of these MAP kinases (Figs. 2 and 3).

In an initial analysis of the biochemical properties of p40^{mapk} and p41^{mapk} we compared the chromatographic elution profiles of these proteins kinases. A similar elution profile of p40^{mapk} and p41^{mapk} was observed from an anion exchange gradient (9). After image processing, individual optical sections of cells were inspected and analyzed using computer graphics software on a Silicon Graphics workstation. Quantitative molecular density values within a single optical section of individual cells were estimated by defining 15 concentric regions where the first region enclosed the cell nucleus and the fifteenth region enclosed the outermost cell fluorescence but excluded extracellular background fluorescence. The fluorescence intensity values were normalized by calculating the ratio of the average-pixel intensity within each region to the average-pixel intensity over all 15 regions.

Figure 1. Comparison of the NH₂-terminal region of p41^{mapk} and p40^{mapk}. The conserved protein kinase sub-regions I and II (31) are illustrated. Regions of identity are presented and boxed. Point mutations in sub-region II that result in the loss of protein kinase activity are presented below the protein sequence.
Expression of p41^{mapk} and p40^{mapk} in cultured cells. Extracts were prepared from COS-7 cells transfected with pCMV5 (Control), pCMV-p41^{mapk}, pCMV-41 (Ala⁴¹Ala⁵⁵)_{mapk}, pCMV-p40^{mapk}, or pCMV-p40(Ala⁴²Ala⁴³)_{mapk}. MAP kinase expression was examined by Western blot analysis (50 μg of the cell extract) using a monoclonal anti-MAP kinase antibody and the enhanced chemiluminescence detection procedure. Quantitation of the Western blot was performed using ¹²⁵I-labeled protein A to detect the immune complexes and a Phosphorimager with ImageQuant software (Molecular Dynamics Inc.). The level of over-expression of the transfected MAP kinase was approximately 20-fold over the level of the endogenous MAP kinase. Similar data were obtained in three separate experiments.

exchange column (Fig. 4). The partially purified protein kinases were then applied to a hydrophobic interaction column. This column was washed with high salt and the bound proteins were eluted using a decreasing salt gradient in the presence of ethylene glycol. A single peak of protein kinase activity was eluted from the column in each case. However, the elution of p40^{mapk} from the hydrophobic interaction column was found to be modestly retarded in comparison to that of p41^{mapk} (Fig. 5). Together, these data demonstrate that the chromatographic properties of p40^{mapk} and p41^{mapk} are very similar.

Expression of p41^{mapk} and p40^{mapk} causes an increase in MAP kinase activity. Extracts were prepared from COS-7 cells that were mock-transfected (Control) or transfected with plasmid vectors to express wild-type and kinase-negative forms of p40^{mapk} and p41^{mapk}. MAP kinase activity was measured using a synthetic peptide substrate based on the primary sequence of the EGF receptor surrounding the phosphorylation site Thr⁵⁶². The results are presented as the mean of data obtained in three independent experiments.

In further studies to compare the properties of p40^{mapk} and p41^{mapk}, we examined the effect of the expression of these kinases on a physiologically relevant target of the MAP kinase signal transduction pathway. In previous studies we have demonstrated that c-Myc is a substrate for phosphorylation by MAP kinase at Ser-62 and that the phosphorylation at this site positively regulates the c-Myc transactivation domain (51, 52). We therefore examined the effect of the expression of p40^{mapk} and p41^{mapk} on the c-Myc transactivation
Figure 5. Phenyl-superose chromatography of p41^{mapk} and p40^{mapk}. Peak fractions of MAP kinase activity obtained after anion exchange chromatography (Fig. 4) were applied to a phenyl-Superose column. (A) Protein kinase activity of p41^{mapk} (●) and p41^{mapk} (○) was measured using the synthetic peptide KRELVEPLT_{PSG}-EAPNQALLR as a substrate. The protein kinase activity in the flow through (FT) and in the eluted fractions is presented. The concentration of NaCl in the eluate is indicated (---). (B) Fractions corresponding to the peak of protein kinase activity were analyzed by SDS-PAGE, transferred to Immobilon-P, and probed with MAP kinase antibody using enhanced chemiluminescence detection.

Figure 6. Effect of p41^{mapk} and p40^{mapk} on c-Myc-directed transactivation of reporter gene expression. The effect of transient expression of wild-type and mutated (kinase-negative) forms of p41^{mapk} and p40^{mapk} was investigated. COS-7 cells were co-transfected with 0.02 µg of the activator plasmid pGAL4/Myc, 2 µg of the reporter plasmid pG5EIBLuc and 1 µg of a β-galactosidase expression vector (pCH110) together with either 2 µg of pCMV5 (Control), pCMV-p41^{mapk}, pCMV-p41^{Ala₄₂Ala₄₃mapk}, pCMV-p40^{mapk}, or pCMV-p40^{Ala₄₂Ala₄₃mapk}. The cells were grown in medium containing 5% FBS and extracts were prepared 48 h posttransfection. Differences in transfection efficiency were estimated by measurement of the β-galactosidase activity (OD value) in 5 µl cell extract. Luciferase activities (light units) in 5 µl of cell extract were measured and are presented as (Light Units/OD). Each data point represents the mean ± S.E. of determinations obtained from three independent transfections. Similar data were obtained in three separate experiments.

Gonzalez et al. Sub-cellular Distribution of p40^{mapk} and p41^{mapk}
Figure 7. Localization of MAP kinase substrate proteins. Transfected COS-7 cells were serum-starved for 18 h and then treated without (A, C, and E) or with (B, D, and F) 10% FBS for 30 min. The cells were then fixed and analyzed by indirect immunofluorescence using a digital imaging microscope and image restoration techniques. Images were obtained for c-Myc (A and B) and the EGF receptor (C and D). Actin filaments were visualized using rhodamine-conjugated phalloidin (E and F). The figure presents representative images of the fluorescence detected from single cells.

Figure 8. Analysis of the distribution of endogenous MAP kinase. COS cells were treated with 10% FBS for 30 min. The cells were then fixed and analyzed by indirect immunofluorescence using a mouse monoclonal anti-MAP kinase antibody and a rhodamine-conjugated goat anti-mouse Ig antibody. The figure presents a representative image of the fluorescence detected from a single cell by digital imaging microscopy and processed for image restoration.
crease in the level of p40~. This observation implies that serum treatment induces the translocation of p40~ from the cytosol into the nucleus.

To achieve a quantitative understanding of the sub-cellular distribution of p40~ we analyzed the fluorescence images obtained by digital imaging microscopy. The method we used allowed the compilation of data from several individual cells and the calculation of the average fluorescence in discrete sub-cellular regions (Fig. 12). This quantitative analysis of the immunofluorescence demonstrated that the treatment of cells with serum caused a significant redistribution of cytosolic p40~ to the nucleus (Figs. 12 and 13). Significantly, no apparent localization of p40~ to the surface ruffling membrane of serum-treated cells was detected (Fig. 10).

Sub-cellular Localization of p41~

The protein kinase p41~ was detected in the cytosol of serum-starved cells (Fig. 11). A low level of p41~ was also detected in the nuclear region (Fig. 11). Treatment of the cells with serum caused a marked increase in the nuclear localization of p41~ and a corresponding decrease in the level of p41~ in the cytosol (Fig. 11). In addition, it was observed that p41~ was localized at the border of serum-treated cells. This location at the cell border coincided with the cell surface ruffling membranes which were visualized by staining with rhodamine-labeled phalloidin and FITC-conjugated WGA (data not shown). The cell surface and nuclear localization of p41~ observed using the digital imaging microscope and image restoration procedures (Fig. 11) was also observed by analysis of the immunofluorescence by laser scanning confocal microscopy (Fig. 14). Quantitative analysis of the immunofluorescence demonstrated that serum caused a significant redistribution of p41~ to the nuclear region and to the cell surface ruffling membrane (Figs. 12 and 13).

MAP Kinase Activity Is Required for Redistribution to the Cell Surface, but not for Translocation to the Nucleus

The MAP kinase isoforms p40~ and p41~ were observed to redistribute from the cytosol to the nucleus after treatment of cells with serum (Figs. 10-13). The kinase-negative mutant forms of p40~ and p41~ also exhibited serum-stimulated translocation into the nucleus (Figs. 10-13). Thus, kinase activity is not required for the serum-induced nuclear translocation of p40~ and p41~. In contrast, kinase activity was required for the serum-stimulated redistribution of MAP kinase to the cell surface ruffling membrane. Furthermore, the cell surface redistribution was found only for p41~ and was not observed for p40~ (Figs. 10 and 11). Together, these observations demonstrate that there are distinct structural requirements for the serum-stimulated redistribution of MAP kinases to different cellular compartments.

Discussion

There has been much interest in the role of MAP kinases in signal transduction because these enzymes appear to integrate signaling pathways that are initiated by many types of cell surface receptors (2, 15, 17, 19, 46). Molecular cloning
Figure 10. Localization of the ERK2 isoform p40ERK. Cells expressing wild-type (A and B) and kinase-negative mutant (C and D) forms of p40ERK were serum starved for 18 h and then treated without (A and C) or with (B and D) 10% FBS for 30 min. The cells were fixed and analyzed by indirect immunofluorescence using a mouse monoclonal anti-MAP kinase antibody and an FITC-conjugated goat anti-mouse Ig antibody. All images were obtained by digital imaging microscopy and processed for image restoration. The figure presents representative images of the fluorescence detected from single cells.

Figure 11. Localization of the ERK2 isoform p41ERK. Cells expressing wild-type (A and B) and kinase-negative (C and D) forms of p41ERK. The cells were serum-starved for 18 h and then treated without (A and C) or with (B and D) 10% FBS for 30 min. The cells were then fixed and analyzed by indirect immunofluorescence microscopy using a mouse monoclonal anti-MAP kinase antibody and an FITC-conjugated goat anti-mouse Ig antibody. All images were obtained by digital imaging microscopy. The figure presents representative images of the fluorescence detected from single cells.
of MAP kinases has revealed the presence of isoforms that exhibit heterogeneous expression in human tissues (6, 7, 28). These isoforms have similar in vitro substrate specificity (3, 14, 19, 27) and may have similar functions in vivo. However, as MAP kinase substrates are located within several cellular compartments, it is possible that these MAP kinase isoforms may have distinct roles during signal transduction because of differences in sub-cellular localization.

We have previously described two isoforms of the human ERK2 protein kinase that are expressed in HeLa cells. These isoforms were designated p40iso and p41iso according to their predicted molecular mass (28). Analysis of the sequence of these protein kinases indicates that they share a high degree of sequence identity except that p41iso has a short NH\textsubscript{2}-terminal Alα-rich extension that is absent in p40iso (Fig. 1). To examine the significance of this difference in structure, we compared the properties of p40iso and p41iso. It was found that these protein kinases exhibited similar chromatographic properties (Figs. 4 and 5) and that both kinases were able to transduce a signal to the nucleus (Fig. 6). Thus, the biochemical properties of p40iso and p41iso are very similar. However, in further studies using immunofluorescence and digital imaging microscopy, it was found that these MAP kinase isoforms differ in their sub-cellular localization. This observation suggests that these MAP kinase isoforms may couple to distinct signal transduction targets in addition to common pathways.

Serum-induced Redistribution of MAP Kinase to the Nucleus

The nucleus has been demonstrated to be a target of the MAP kinase signal transduction pathway (52). Physiological functions of MAP kinases in the nucleus are likely to include the regulation of gene expression (19). For example, c-Myc, NF-IL6, c-Jun, TAL1 and p62Tcf/Elk-1 have been demonstrated to be phosphorylated by MAP kinases (1, 3, 11, 13, 25, 30, 39, 42, 48, 51, 52). In serum-starved cells only a very low level of MAP kinase is detected in the nucleus. However, treatment of cells with serum causes the redistribution of MAP kinase from the cytosol to the nucleus (3, 10, 49, 52). Previous investigations of the cellular distribution of MAP kinases have been performed without reference to the analysis of individual isoforms (3, 10, 49). Here we show that serum treatment caused the redistribution of two different MAP kinase isoforms (p40iso and p41iso) from the cytosol to the nucleus (Figs. 10 and 11). This serum-stimulated nuclear translocation was also observed for the kinase-negative forms of p40iso and p41iso (Figs. 10 and 11). Together, these data demonstrate that serum causes the nuclear redistribution of both p40iso and p41iso and that intrinsic MAP kinase activity is not required for the nuclear accumulation.

The mechanism of serum-induced translocation of MAP kinases remains unknown because a nuclear localization sequence within the primary structure of p40iso and p41iso has not been identified (28). However, three general mechanisms can be proposed: (a) MAP kinase may enter the nucleus because of a general increase in nuclear transport in serum-treated cells. We are, however, unaware of any precedent for this form of regulation of nuclear localization. (b) It is possible that MAP kinases may have a cryptic nuclear localization sequence that is exposed by the treatment of cells with serum. Kinase-negative mutant forms of p40iso and p41iso are translocated into the nucleus (Figs. 10 and 11). Thus, intrinsic kinase activation is not required for translocation. However, it is possible that the mechanisms of MAP kinase activation (Thr and Tyr phosphorylation) may act as a signal for translocation. (c) If MAP kinase lacks a functional nuclear localization sequence, it is possible that this signal may be provided by association with another protein. Proteins that could account for this activity have not been identified, but one candidate is represented by MAP kinase kinase (5, 18, 33, 50, 56, 59).

Serum-induced Redistribution of MAP kinase to the Cell Surface Ruffling Membrane

The formation of cell surface membrane ruffles is a common event that is observed after the treatment of cells with growth factors. Recent studies have established an important role for small GTP-binding proteins (rho and rac) in the formation of the membrane ruffles and the reorganization of the cytoskeleton (10, 49). It is possible that the localization of MAP kinase in the membrane ruffles may be related to the regulation of the cytoskeleton in this region of the cell (12, 29). Alternatively, the serum-stimulated redistribution of MAP kinase to the membrane ruffles may function to couple the MAP kinase signal transduction pathway to targets located at the cell surface. Examples of potential targets of MAP kinase at the cell surface include the EGF receptor (16, 44, 53) and phospholipase A\textsubscript{2} (37, 43).

Analysis of the cellular distribution of p41iso demonstrated that this protein kinase is localized at the cell surface ruffling membrane after serum-stimulation (Fig. 11). However, the cell surface translocation of p40iso was not observed (Fig. 10). This observation suggests that the NH\textsubscript{2}-terminal region of p41iso is required for localization at the cell surface (Figs. 10 and 11). Thus, it is possible that the 12-amino acid NH\textsubscript{2}-terminal extension could act as a "signal sequence" for cell surface membrane localization. However, strong evidence against this hypothesis was obtained from the analysis of the kinase-negative MAP kinases which did not localize to the cell surface ruffling membranes after serum treatment. This observation demonstrates that the 12-amino acid NH\textsubscript{2}-terminal extension found in the primary sequence of p41iso is not sufficient to confer serum-dependent localization at the cell surface. Together, these data indicate that the cell surface localization of p41iso in serum-stimulated cells requires both protein kinase activation and the NH\textsubscript{2}-terminal region of p41iso. Further studies are required to identify structures within the cell surface ruffling membrane that are required for the cell surface localization of p41iso.

We thank Margaret Shepard for secretarial assistance.

This work was supported by grants from the National Institutes of Health (CA58396 and GM37845) and by a grant from the National Science Foundation (BIR-920002). R. J. Davis is an Investigator of the Howard Hughes Medical Institute. F. A. Gonzalez was the recipient of a postdoctoral fellowship from the National Science Foundation.

Received for publication 7 April 1993 and in revised form 22 June 1993.
Figure 13. Comparison of MAP kinase distribution in control and serum-treated cells. The relative molecular density of MAP kinase in the nucleus (A) and at the cell surface ruffling membrane (B) is presented (mean ± SD, n = 8). The density of MAP kinase was normalized by dividing the average pixel intensity (Fig. 10) of region 15 (nucleus) and region 1 (cell surface ruffling membrane) by the average pixel intensity of region 12 (a cytosolic serum-independent region).

Figure 14. Analysis of the sub-cellular distribution of p41mapk by confocal microscopy. Three different focal planes are shown of a cell incubated with 10% FBS for 30 min. The images shown are representative of cells observed in three separate experiments. The intensity of the fluorescence in each image is shown in pseudocolors and the pixel intensity across the references line (green) is illustrated. Bar, 30 μm.

References
1. Abdel-Hafiz, H. A. M., L. E. Heasley, J. M. Kyriakis, J. Avruch, D. J. Kroll, G. L. Johnson, and J. P. Hoeffer. 1992. Activating transcription factor-2 DNA-binding activity is stimulated by phosphorylation catalyzed by p42 and p54 microtubule-associated protein kinases. Mol. Endocrinol. 6:2079-2089.
2. Aim, N. G., R. Seger, and E. G. Krebs. 1992. The mitogen-activated protein kinase activator. Curt. Opin. Cell Biol. 4:992-999.
3. Alvarez, E., I. C. Northwood, F. A. Gonzalez, D. A. Latour, A. Seth, C. Abate, T. Curran, and R. J. Davis. 1991. Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. J. Biol. Chem. 266:15277-15285.
4. Andersson, S., D. L. Davis, H. Dahlbäck, H. Jörnvall, and D. W. Russell. 1989. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol. Chem. 264:8222-8229.
5. Ashworth, A., S. Nakielsky, P. Cohen, and C. Marshall. 1992. The amino acid sequence of a mammalian MAP kinase kinase. Oncogene. 7:2555-2566.
6. Boulton, T. G., and M. H. Cobb. 1991. Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regul. 2:357-371.
7. Boulton, T. G., S. H. Nye, D. J. Robbins, N. Y. Ip, E. Radziejewska, S. Nakielny, P. Cohen, and C. Marshall. 1992. The amino acid sequence of a mammalian MAP kinase kinase. Oncogene. 7:2555-2566.
8. Boulton, T. G., and M. H. Cobb. 1991. Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regul. 2:357-371.
33. Kosako, H., E. Nishida, and Y. Gotoh. 1993. eDNA cloning of MAP kinase.
32. Howe, L. R., S. J. Leevers, N. Gomez, S. Nakieiny, P. Cohen, and C. J. Marshall. 1992. Activation of the MAP kinase pathway by the protein kinase Raf.
31. Hanks, S. K., A. M. Quinn, and T. Hunter. 1988. The protein kinase family.
28. Gonzalez et al.
24. Fay, F. S., W. Carrington, and K. E. Fogarty. 1989. Three-dimensional molecular distribution in single cells analyzed using the digital imaging techniques in Cell Biology. K. Fosbett and S. Grinstein, editors, Wiley-Liss, New York.
23. England, P. S., and D. A. Walsh. 1976. A rapid method for the measurement of [3,-32P]ATP specific radioactivity in tissue extracts and its application to function. Cell. 314:461--465.
22. Drechsel, D. N., A. A. Hyman, M. H. Cobb, and M. W. Kirschner. 1992. Phosphorylation of the epidermal growth factor receptor at threonine-669. J. Biol. Chem. 267:3275-3281.
21. Dent, P., W. Haser, T. A. Haystead, L. A. Vincent, T. M. Roberts, and T. W. Sturgill. 1992. Activation of mitogen-activated protein kinase kinase by the extracellular-signal-regulated protein kinase ERK in 3T3-L1 cells is an EGF-stimulated "MAP" kinase. J. Biol. Chem. 267:22853-22859.
20. Davis, R. J. 1993. The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268:14533-14556.
19. Davis, R. J. 1993. Isolation and characterization of two growth factor-stimulated, high-molecular weight form of phospholipase A2 by p21ras, A. Ullrich, E. Y. Skolnik, S. D. Bar, and J. Sehlessinger. 1992. The structure of a protein-tyrosine/threonine kinase activating 1>42 Raf kinase in Drosophila. Mol. Cell. Biol. 12:787-794.
18. Countaway, J. L., I. C. Northwood, and R. J. Davis. 1989. Mechanism of phosphorylation of the epidermal growth factor receptor at threonine-669. J. Biol. Chem. 264:10828-10835.
17. Crews, C. M., A. Alessandrini, and R. L. Erikson. 1992. Erks: their fifteen years minutes has arrived. Cell. 75:429-435.
16. Countaway, J. L., I. C. Northwood, and R. J. Davis. 1989. Mechanism
15. Cobb, M. H., T. G. Boulton, and D. J. Robbins. 1991. Extracellular signal-regulated kinases: ERKs in progress. Cell Regul. 2:965-978.
14. Clark-Lewis, I., J. S. Sanghera, and S. L. Pelech. 1991. Definition of a consensus sequence for peptide substrate recognition by p44*, the mitogen-activated myelin basic protein kinase. J. Biol. Chem. 266:15180-15184.
13. Chou, S., V. Baichwal, and J. E. Ferrell Jr. 1992. Inhibition of c-Jun DNA binding by mitogen-activated protein kinase. Mol. Biol. Cell. 3:1117-1130.
12. Childs, T. J., M. H. Watson, J. S. Sanghera, D. L. Campbell, S. L. Pelech, and A. S. Mak. 1992. Phosphorylation of smooth muscle caldesmon by mitogen-activated protein (MAP) kinase and the expression of MAP kinase-differentiated smooth muscle cells. J. Biol. Chem. 267:22653-22859.
11. Chen, R. H., C. Sarnecki, and J. Blenis. 1992. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol. 12:915-927.
10. Crow, S. K., E. Sevok, and S. Grinstein, editors, Wiley-Liss, New York. 53-72.
9. Bowman, S. K., E. Y. Nishida, and S. K. Chen. 1991. Constitutive phosphorylation of the epidermal growth factor receptor blocks mitogenic signal transduction. J. Biol. Chem. 266:1162-1169.
8. Bowen, S., K. Stanley, and R. J. Davis. 1992. Activation of the MAP kinase pathway by the protein kinase Raf. J. Biol. Chem. 267:335-342.
7. Kosako, H., E. Nishida, and Y. Gotoh. 1993. cDNA cloning of MAP kinase reveals kinase cascade pathways in yeasts to vertebrates. EMBO (Eur. Mol. Biol. Organ.) J. 12:787-794.
6. Howe, L. R., S. J. Leevers, N. Gomez, S. Nakieiny, P. Cohen, and C. J. Marshall. 1992. Activation of the MAP kinase pathway by the protein kinase Raf. J. Biol. Chem. 267:335-342.
5. Kosako, H., E. Nishida, and Y. Gotoh. 1993. cDNA cloning of MAP kinase reveals kinase cascade pathways in yeasts to vertebrates. EMBO (Eur. Mol. Biol. Organ.) J. 12:787-794.
4. Kyriakis, J. M., H. App, X. F. Zhang, P. Banerjee, D. L. Brautigan, U. R. Rapp, and J. Avruch. 1992. Raf-1 activates MAP kinase kinase. Nature (Lond.). 358:417-421.
3. Lange-Carter, C. A., C. M. Pfeian, A. M. Gardner, K. J. Blumer, and G. L. Johnson. 1993. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science (Wash. DC). 260:315-319.
2. Leevers, S. J., and C. J. Marshall. 1992. Activation of extracellular-signal regulated kinase, ERK2, by p21ras oncoprotein. EMBO (Eur. Mol. Biol. Organ.) J. 11:569-574.
1. Lin, L. L., M. Wartmann, A. Y. Lin, J. L. Knopf, A. Seth, and R. J. Davis. 1992. cPLA is phosphorylated and activated by MAP kinase. Cell. 72:269-278.