Further results on the Craig-Sakamoto Equation

John Maroulas

February 2, 2008

Abstract

In this paper necessary and sufficient conditions are stated for the Craig-Sakamoto equation
\[\det(I - sA - tB) = \det(I - sA) \det(I - tB), \]
for all scalars \(s, t \). Moreover, spectral properties for \(A \) and \(B \) are investigated.

1 Introduction

Let \(M_n(\mathbb{C}) \) be the set of \(n \times n \) matrices with elements in \(\mathbb{C} \). For \(A \) and \(B \in M_n(\mathbb{C}) \), the well known in Statistics [1] Craig-Sakamoto (CS) equation
\[\det(I - sA - tB) = \det(I - sA) \det(I - tB) \]
for all scalars \(s, t \) has occupied several researchers. In particular, in [5] O. Trusky presented that the CS equation is equivalent to \(AB = O \), when \(A, B \) are normal and most recently in [4] Olkin and in [2] Li proved the same result in a different way. The author, together with M. Tsatsomero and P. Psarrako in [3], have investigated the CS equation involving the eigenspaces of \(A, B \) and \(sA + tB \). Being more specific, if \(\sigma(X) \) denotes the spectrum for a matrix \(X \), \(m_X(\lambda) \) the algebraic multiplicity of \(\lambda \in \sigma(X) \), and \(E_X(\lambda) \) the generalized eigenspace corresponding to \(\lambda \), we have shown in [3]:

1Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, GREECE. E-mail:maroulas@math.ntua.gr. This work is supported by a grant of the EPEAEK, project “Pythagoras II”.
Proposition 1 For the $n \times n$ matrices A, B the following are equivalent :

I. The CS equation holds

II. for every $s, t \in \mathbb{C}$, $\sigma(sA \oplus tB) = \sigma((sa + tB) \oplus O_n)$, where O_n denotes the zero matrix

III. $\sigma(sA + tB) = \{ s\mu_i + t\nu_i : \mu_i \in \sigma(A), \ \nu_i \in \sigma(B) \}$, where the pairing of eigenvalues requires either $\mu_i = 0$ or $\nu_i = 0$.

Proposition 2 Let the $n \times n$ matrices A, B satisfy the CS equation. Then,

I. $m_A(0) + m_B(0) \geq n$.

II. If A is nonsingular, then B must be nilpotent.

III. If $\lambda = 0$ is semisimple eigenvalue of A and B, then $\text{rank}(A) + \text{rank}(B) \leq n$.

Proposition 3 Let $\lambda = 0$ be semisimple eigenvalue of $n \times n$ matrices A and B such that $BE_A(0) \subset E_A(0)$. Then the following are equivalent.

I. Condition CS holds.

II. $\mathbb{C}^n = E_A(0) + E_B(0)$.

III. $AB = O$.

The remaining results in [3] are based on the basic assumption that $\lambda = 0$ is a semisimple eigenvalue of A and B. Relaxing this restriction, we shall attempt here to look at the CS equation focused on the factorization of polynomial of two variables $f(s, t) = \text{det}(I - sA - tB)$. Also, considering the determinants in [1], new conditions necessary and sufficient on CS property are stated.

2 Spectral results

The first statement on the CS property is obtained investigating the determinantal equation through the Theory of Polynomials. By Proposition 2 II, it is clear that the CS equation is worth valuable when the $n \times n$ matrices A and B are singular. Especially, we define that

"A and B are called r-complementary, if and only if at most, r rows (columns), $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$ of A are shifted and substituted by the corresponding $b_{i_1}, b_{i_2}, \ldots, b_{i_r}$ rows (columns) of B, such that the structured matrix $N(i_1, i_2, \ldots, i_r)$ of a’s and b’s rows is nonsingular."

Note that, $n - r \leq \text{rank}(B)$.

2
For example, the pair of matrices

\[
A = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}, \quad B = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\]

is not 1 or 2–complementary, on behalf of \(\text{rank} \begin{bmatrix} A \\ B \end{bmatrix} = 3 \), but the pair

\[
A = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}, \quad B = B
\]

is 1-complementary and not 2-complementary, since \(\det N(b_1, a_2, a_3) = \det \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix} \neq 0 \)

and \(\det N(b_1, b_2, a_3) = \det \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix} = 0. \)

Proposition 4 Let the \(n \times n \) singular matrices \(A \) and \(B \) be \([n - m_B(0)] \)-complementary with

\[
\theta = \sum_{i_1, \ldots, i_{n-m_B(0)}} \det N(i_1, i_2, \ldots, i_{n-m_B(0)}) \neq 0, \text{ where the sum is over all possible combinations of } i_1, \ldots, i_{n-m_B(0)} \text{ of } n - m_B(0) \text{ of the indices } 1, 2, \ldots, n. \text{ If they satisfy the CS equation, then }
\]

\[
m_A(0) + m_B(0) = n.
\]

Proof. Let \(\text{rank} B = b(< n) \). Then \(\lambda = 0 \) is eigenvalue of \(B \) with algebraic multiplicity \(m_B(0) = m \geq n - b \). Denoting

\[
\beta(t) = \det(tI - B) = t^n + \beta_1 t^{n-1} + \cdots + \beta_{n-m} t^m,
\]

where \(\beta_k = (-1)^k \sum B_k \) and \(B_k \) are the \(k \times k \) principal minors of \(B \), then

\[
\det(tB - I) = (-1)^n t^n \det(t^{-1}I - B) = (-1)^n (1 + \beta_1 t + \cdots + \beta_{n-m} t^{n-m}).
\]

The polynomial \(\tilde{\beta}(t) = 1 + \beta_1 t + \cdots + \beta_{n-m} t^{n-m} \) has precisely \(n - m \) nonzero roots, let \(t_1, t_2, \ldots, t_{n-m} \), since \(\tilde{\beta}(0) = 1 \neq 0 \). Moreover, we have

\[
\det(sA + tB - I) = |A|^s + f_1(t)s^{n-1} + \cdots + f_{n-1}(t)s + |tB - I|,
\]

(2)
where

\[f_1(t) = \sum_i \det \hat{A}_i, \quad \text{with} \quad \hat{A}_i = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ tb_{i1} & \cdots & tb_{ii} - 1 & \cdots & tb_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & \cdots & \cdots & a_{nn} \end{bmatrix}. \]

Note that, \(\hat{A}_i \) arises by \(A \) when the \(i \)-row of \(A \) is substituted by the \(i \)-row of \(tB - I \). Similarly,

\[f_2(t) = \sum_{i,j} \det \hat{A}_{ij}, \quad \text{with} \quad \hat{A}_{ij} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ tb_{i1} & \cdots & tb_{ii} - 1 & \cdots & tb_{in} \\ \vdots & & \vdots \\ tb_{j1} & \cdots & tb_{jj} - 1 & \cdots & tb_{jn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & \cdots & \cdots & a_{nn} \end{bmatrix}, \]

and \(\hat{A}_{ij} \) is obtained by \(A \), substituting the \(i \) and \(j \) rows of \(A \) by the corresponding rows of \(tB - I \). The summation in \(f_2(t) \) is referred to all pairs of indices \(i, j \) by \(\{1, 2, \ldots, n\} \). Hence, by the equation (2) and the CS equation

\((-1)^n \det(sA + tB - I) = \det(sA - I) \det(tB - I), \quad \forall s, t \)

for \(t = t_1, t_2, \ldots, t_{n-m} \), we obtain

\[|A| s^n + f_1(t_i)s^{n-1} + \cdots + f_{n-1}(t_i)s = 0, \quad \forall s \]

and consequently

\[|A| = 0, \quad f_1(t_i) = f_2(t_i) = \cdots = f_{n-1}(t_i) = 0, \quad \text{for} \quad i = 1, 2, \ldots, n - m. \quad (3) \]

Due to the matrices \(A \) and \(B \) are \([n - m_B(0)]\)-complementary and the leading coefficient of \(f_{n-m}(t) \) is equal to the nonzero \(\theta \), then \(\deg(f_{n-m}(t)) = n - m \) and \(\deg(f_k(t)) \leq n - m \), for \(k = 1, 2, \ldots, n - m - 1 \). Moreover, by (3) we have

\[f_1(t) = f_2(t) = \cdots = f_{n-m-1}(t) = 0, \quad \forall t \]

Reminding that \(A_\ell \) denotes the \(\ell \times \ell \) principal minor of \(A \), by \(f_1(t) = 0 \), clearly

\[f_1(0) = \sum A_{n-1} = 0 \quad \implies \quad c_{n-1} = 0. \]

4
Similarly, by
\[f_2(t) = 0 \implies \sum A_{n-2} = 0 \implies c_{n-2} = 0 \]
\[\vdots \]
\[f_{n-m-1}(t) = 0 \implies \sum A_{m+1} = 0 \implies c_{m+1} = 0, \]
and consequently
\[
\delta_A(\lambda) = |\lambda I - A| = \lambda^n - c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \cdots + (-1)^n |A| \\
= \lambda^n - c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \cdots + (-1)^m c_m \lambda^{n-m}.
\]
In (4), \(c_m \neq 0 \), since \((-1)^{n-m} c_m = \theta t_1 t_2 \cdots t_{n-m} \). Thus, \(\lambda = 0 \) is eigenvalue of \(A \) with algebraic multiplicity \(n - m_B(0) \), whereby we conclude
\[
m_A(0) + m_B(0) = n.
\]

Remark 1 By the proof of Proposition 4, it is evident that the equality \(m_A(0) + m_B(0) = n \) holds, when the matrices \(B \) and \(A \) are \([n - m_A(0)]\)-complementary and
\[
\theta = \sum_{j_1, \ldots, j_{n-m_A(0)}} \det N(j_1, j_2, \ldots, j_{n-m_A(0)}) \neq 0.
\]

Corollary 1 Let the \(n \times n \) singular and \([n - m_B(0)]\)-complementary matrices \(A \) and \(B \). If \(\theta \neq 0 \) and these matrices satisfy the CS equation (4), then

I. \(\lambda = 0 \) is semisimple eigenvalue of \(A \) and \(B \implies \text{rank} A + \text{rank} B = n. \)

II. \(\lambda = 0 \) is semisimple eigenvalue of \(A \implies \text{rank} A = m_B(0). \)

Proof. I. Because
\[
n - \text{rank} A \leq m_A(0) = n - m_B(0),
\]
we have \(\text{rank} A + \text{rank} B \geq m_B(0) + r \geq n \). Hence, by III, Proposition 4, we obtain the equality.

II. By the assumption and Proposition 4 we have \(\text{rank} A = n - m_A(0) = m_B(0) \).

Closing this section, we present a property of generalized eigenspaces of nonzero eigenvalues of \(A \) and \(B \).
Proposition 5. Let \(\lambda = 0 \) be semisimple eigenvalue of \(n \times n \) matrices \(A \) and \(B \) such that \(E_A(0) + E_B(0) = \mathbb{C}^n \). If for any \(\lambda \in \sigma(A) \setminus \{0\} \) (or, \(\mu \in \sigma(B) \setminus \{0\} \)), the corresponding generalized eigenspaces \(E_A(\lambda) \) (or \(E_B(\mu) \)) satisfy \(E_A(\lambda) \subseteq E_B(0) \) (or, \(E_B(\mu) \subseteq E_A(0) \)), then

I. \(A, B \) have the CS property.

II. \(E_A(\lambda) = E_{I-sA-tB}(1-s\lambda) \) and \(E_B(\mu) = E_{I-sA-tB}(1-t\mu) \).

Proof. I. Since \(E_A(\lambda) \subseteq E_B(0) \), for every \(w = w_1 + w_2 \in \mathbb{C}^n \), where \(w_1 \in \bigoplus_\lambda E_A(\lambda) \), \(w_2 \in E_A(0) \), we have \(BAw = BA(w_1 + w_2) = BAw_1 = 0 \). Thus, \(BA = O \) and consequently \(AE_B(0) \subseteq E_A(0) \). The assumption \(E_A(0) + E_B(0) = \mathbb{C}^n \), and Proposition \(\mathbb{3} \) lead to the statement I.

II. Let \(\lambda \in \sigma(A) \setminus \{0\} \), and \(x_k \in E_A(\lambda) \) be generalized eigenvector of \(A \) of order \(k \). By the assumption, \(x_k \in E_B(0) \), and yields

\[
(I - sA - tB)x_k = (I - sA)x_k = x_k - s(\lambda x_k + x_{k-1}) = (1 - s\lambda)x_k - sx_{k-1}.
\]

Thus, for all chain \(x_1, \ldots, x_k, \ldots, x_\tau \) of \(\lambda \), we have

\[
(I - sA - tB) \begin{bmatrix} x_1 & \cdots & x_\tau \end{bmatrix} = \begin{bmatrix} x_1 & \cdots & x_\tau \end{bmatrix} \begin{bmatrix} 1 - s\lambda & \cdots & -s \\ 0 & 1 - s\lambda & \cdots & O \\ \vdots & \ddots & \ddots \\ 0 & \cdots & 1 - s\lambda & -s \\ 0 & \cdots & 0 & 1 - s\lambda \end{bmatrix}_{\tau \times \tau}.
\]

Moreover, by the statement III in Proposition II, \(s\lambda \) and \(t\mu \in \sigma(sA + tB) \). The equivalence of CS equation and \(\mathbb{C}^n = E_A(0) + E_B(0) \) in Proposition \(\mathbb{3} \) and the assumption \(E_A(\lambda) \subseteq E_B(0) \), lead to \(E_B(\mu) \subseteq E_A(0) \). Similarly, if \(y_\ell \in E_B(\mu) \) is generalized eigenvector of order \(\ell \), then \(y_\ell \in E_A(0) \) and

\[
(I - sA - tB)y_\ell = (I - tB)y_\ell = y_\ell - t(\mu y_\ell + y_{\ell-1}) = (1 - t\mu)y_\ell - ty_{\ell-1},
\]

and for all chain \(y_1, \ldots, y_\ell, \ldots, y_\sigma \) we obtain

\[
(I - sA - tB) \begin{bmatrix} y_1 & \cdots & y_\sigma \end{bmatrix} = \begin{bmatrix} y_1 & \cdots & y_\sigma \end{bmatrix} \begin{bmatrix} 1 - t\mu & \cdots & -t \\ 0 & 1 - t\mu & \cdots & O \\ \vdots & \ddots & \ddots \\ 0 & \cdots & 1 - t\mu & -t \\ 0 & \cdots & 0 & 1 - t\mu \end{bmatrix}_{\sigma \times \sigma}.
\]

Clearly, by (5) and (6) are implied the equations in II, for any \(s, t \). □
Remark 2 For $z \in E_A(0) \cap E_B(0)$ obviously $(I - sA - tB)z = z, \ \forall \ s, \ t$. Therefore by the above proposition the Jordan canonical form of $I - sA - tB$, and the matrix

$$F = I_\nu \bigoplus_{\lambda \neq 0} \begin{pmatrix} 1 - s\lambda_A & -s & 0 \\ & 1 - s\lambda_A & \ddots \\ & & & -s \\ 0 & & & 1 - s\lambda_A \end{pmatrix} \bigoplus_{\mu \neq 0} \begin{pmatrix} 1 - t\mu_B & -t & 0 \\ & 1 - t\mu_B & \ddots \\ & & & -t \\ 0 & & & 1 - t\mu_B \end{pmatrix},$$

are similar.

The order ν of submatrix I_ν of F declares the number of linear independent eigenvectors which correspond to the eigenvalue $\lambda = 1$ of $I - sA - tB$. Clearly, these eigenvectors belong to $E_B(0) \backslash E_A(\lambda)$, $E_A(0) \backslash E_B(\mu)$, and $E_A(0) \cap E_B(0)$, and ν is equal to

$$\nu = n - (\text{rank}A + \text{rank}B) = n - \left(\text{dim} \bigcup_{\lambda \neq 0} E_A(\lambda) + \text{dim} \bigcup_{\mu \neq 0} E_B(\mu)\right).$$

3 Criteria for CS equation

Let

$$f(s, t) = \det(I - sA - tB) = \sum_{p+q=n} m_{pq}s^pt^q, \quad p + q \leq n. \quad (7)$$

Denoting by $x = \begin{bmatrix} 1 & s & s^2 & \cdots & s^n \end{bmatrix}^T$, $y = \begin{bmatrix} 1 & t & t^2 & \cdots & t^n \end{bmatrix}^T$, then (7) is written obviously

$$f(s, t) = x^TMy,$$

where $M = [m_{pq}]_{p,q=0}^n$, with $m_{00} = 1$.

Proposition 6 Let $A, B \in M_n(\mathbb{C})$. The CS equation holds for the pair of matrices A and B if and only if $\text{rank}M = 1$.

Proof. Let A and B managed by the CS property. Then the equation (1) is formulated as

$$x^TMy = x^Ta^Tb^Ty, \quad (8)$$

where

$$a = \begin{bmatrix} 1 & a_{n-1} & \cdots & a_0 \end{bmatrix}^T, \quad b = \begin{bmatrix} 1 & b_{n-1} & \cdots & b_0 \end{bmatrix}^T,$$
and \(a_i, b_i \) are the coefficients of characteristic polynomials

\[
det(\lambda I - A) = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_0, \quad det(\lambda I - B) = \lambda^n + b_{n-1}\lambda^{n-1} + \ldots + b_0.
\]

Hence, by (8) for any \(s_1 \neq s_2 \neq \cdots \neq s_{n+1} \) and \(t_1 \neq t_2 \neq \cdots \neq t_{n+1} \) we have

\[
V^T(M - ab^T)W = O, \tag{9}
\]

where

\[
V = \begin{bmatrix} 1 & \cdots & 1 \\ s_1 & \cdots & s_{n+1} \\ \vdots & \ddots & \vdots \\ s_1^n & \cdots & s_{n+1}^n \end{bmatrix}, \quad W = \begin{bmatrix} 1 & \cdots & 1 \\ t_1 & \cdots & t_{n+1} \\ \vdots & \ddots & \vdots \\ t_1^n & \cdots & t_{n+1}^n \end{bmatrix}.
\]

Clearly, by (9), we recognize that \(M = ab^T \), i.e., \(\text{rank } M = 1 \).

Conversely, if \(\text{rank } M = 1 \), then \(M = k\ell^T \), where the vectors \(k, \ell \in \mathbb{C}^{n+1} \). Therefore,

\[
f(s, t) = x^TMy = x^T k \ell^T y = k(s)\ell(t),
\]

where \(k(s) \) and \(\ell(t) \) are polynomials. Since, \(f(0, 0) = 1 = k(0)\ell(0) \), and

\[
\begin{align*}
det(I - sA) &= f(s, 0) = k(s)\ell(0), \\
det(I - tB) &= f(0, t) = k(0)\ell(t)
\end{align*}
\]

clearly,

\[
f(s, t) = k(s)\ell(0)k(0)\ell(t) = det(I - sA) det(I - tB).
\]

\[\square\]

Example 1 Let the matrices

\[
A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 - \gamma & 1 \\ 0 & 0 & 1 - \gamma \end{bmatrix}, \quad B = \begin{bmatrix} 0 & \gamma & 0 \\ 1/\gamma & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\]

We have

\[
f(s, t) = det(I - sA - tB) = 1 + 2(\gamma - 1)s + (\gamma - 1)^2s^2 - t^2 + (1 - \gamma)t^2s
\]

\[
= x^T \begin{bmatrix} 1 & 0 & 1 \\ 2(\gamma - 1) & 1 - \gamma & 0 \\ \gamma - 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} y
\]

8
and

$$det(I - sA) = (1 + (\gamma - 1)s)^2, \quad det(I - tB) = 1 - t^2.$$

By the criterion (Proposition 3) easily we recognize that A, B have the CS property only for $\gamma = 1$.

Remark 3 In equation (5), if $b^T a = 0$ then $M^2 = 0$, and $M\left(\frac{1}{\|b\|^2}b\right) = a$. Therefore,

$$M = P \begin{bmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} P^{-1} = P \begin{bmatrix} 1 \\ 0 \\ \vdots \end{bmatrix} P^{-1}$$

where $P = \begin{bmatrix} a & p_2 & \cdots & p_{n-1} \\ \frac{1}{\|b\|^2}b \end{bmatrix}$ and p_k, \ldots, p_{n-1} is an orthonormal basis of $\text{span}\{a, b\}$. Then $P^{-1} = \begin{bmatrix} \frac{1}{\|a\|^2}a & p_2 & \cdots & p_{n-1} \end{bmatrix}^T$.

Following we note by $M\left(\frac{1}{\|a\|^2}a, \frac{1}{\|b\|^2}b\right)$ the leading principal minor of order $p + q (\leq n)$, which is defined by the i_1, \ldots, i_p rows of A and j_1, \ldots, j_q rows of B, i.e.,

$$M\left(\begin{smallmatrix} a_{i_1, \ldots, i_p} \\ b_{j_1, \ldots, j_q} \end{smallmatrix}\right) = \begin{vmatrix} a_{i_1j_1} & a_{i_1j_2} & \cdots & a_{i_1j_q} & \cdots & a_{i_1j_p} \\ a_{i_2j_1} & a_{i_2j_2} & \cdots & a_{i_2j_q} & \cdots & a_{i_2j_p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i_qj_1} & a_{i_qj_2} & \cdots & a_{i_qj_q} & \cdots & a_{i_qj_p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i_pj_1} & a_{i_pj_2} & \cdots & a_{i_pj_q} & \cdots & a_{i_pj_p} \end{vmatrix}$$

for $i_1 < i_2 < j_1 < i_3 < \cdots < j_q < \cdots < i_p$. Thus, we clarify a determinental expression of coefficients m_{pq} in (7):

$$m_{pq} = (-1)^{p+q} \sum_{1 \leq i_1 < j_1 < \cdots < j_q < i_p \leq n} M\left(\begin{smallmatrix} a_{i_1, \ldots, i_p} \\ b_{j_1, \ldots, j_q} \end{smallmatrix}\right), \quad m_{00} = 1. \quad (10)$$

For example, for $n \times n$ matrices A and B the coefficients of t, st, s^2 and s^2t are respectively equal to

$$m_{01} = - \sum_{1 \leq j \leq n} M(b_j) = - (b_{11} + b_{22} + \cdots + b_{nn}) = -trB$$
Hence, for the matrix M

$$m_{11} = \sum_{1 \leq i < j \leq n} M\begin{pmatrix} a_i \\ b_j \end{pmatrix} = \sum_{i, j = 1}^{n} \left(\begin{vmatrix} a_{ii} & a_{ij} \\ b_{ji} & b_{jj} \end{vmatrix} + \begin{vmatrix} b_{ii} & b_{ij} \\ a_{ji} & a_{jj} \end{vmatrix} \right)$$

$$m_{20} = \sum_{1 \leq i, j \leq n} M(a_{ij}) = \sum_{i, j = 1}^{n} \left| a_{ii} \right| \left| a_{ij} \right|$$

and

$$m_{21} = -\sum_{1 \leq i \leq j \leq k \leq n} M\begin{pmatrix} a_{i,j} \\ b_k \end{pmatrix} = -\sum_{i, j \leq k \leq n} \left(\begin{vmatrix} a_{ii} & a_{ij} & a_{ik} \\ a_{ji} & a_{jj} & a_{jk} \\ b_{ki} & b_{kj} & b_{kk} \end{vmatrix} + \begin{vmatrix} a_{ii} & a_{ij} & a_{ik} \\ a_{ji} & a_{jj} & a_{jk} \\ b_{ki} & b_{kj} & a_{kk} \end{vmatrix} + \begin{vmatrix} b_{ii} & b_{ij} & b_{ik} \\ a_{ji} & a_{jj} & a_{jk} \\ a_{ki} & a_{kj} & a_{kk} \end{vmatrix} \right)$$

Hence, for the matrix M in (7) we have:

$$M = \begin{bmatrix}
1 & -\sum M(b_j) & \sum M(b_{i,j}) & \cdots & (-1)^{n-1} \sum M(b_{j_1,\ldots,j_{n-1}}) & (-1)^n |B| \\
-\sum M(a_i) & \sum M\begin{pmatrix} a_i \\ b_j \end{pmatrix} & -\sum M\begin{pmatrix} a_i \\ b_{j_1,j_2} \end{pmatrix} & \cdots & (-1)^n \sum M\begin{pmatrix} a_i \\ b_{j_1,\ldots,j_{n-1}} \end{pmatrix} & 0 \\
\sum M(a_{i_1,i_2}) & -\sum M\begin{pmatrix} a_{i_1,i_2} \\ b_{ji} \end{pmatrix} & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & (-1)^n \sum M\begin{pmatrix} a_{i_1,\ldots,i_{n-1}} \\ b_j \end{pmatrix} & 0 & \cdots & 0 & 0 \\
(-1)^n |A| & 0 & 0 & \cdots & 0 & 0
\end{bmatrix}$$

The zeros in M correspond to the coefficients of monomials of $f(s,t)$ with degree $\geq n + 1$. These terms are not presented in $\det(I - sA - tB)$, since by (10) the order of principal minors is greater than n. Moreover, the dimension of M in (7) should be less than $n + 1$, since the CS equation make sense for singular matrices.

Using the criterion in Proposition (6) in the above formulation of M, it is clear the next necessary and sufficient conditions.
Proposition 7 The \(n \times n \) matrices \(A \) and \(B \) have the CS property if and only if

\[
\sum M(a_{i_1, \ldots, i_p}) \sum M(b_{j_1, \ldots, j_q}) = \sum M\left(\begin{array}{c} a_{i_1, \ldots, i_p} \\ b_{j_1, \ldots, j_q} \end{array}\right), \quad \text{for } p + q \leq n,
\]

and

\[
\sum M(a_{i_1, \ldots, i_p}) \sum M(b_{j_1, \ldots, j_q}) = 0, \quad \text{for } p + q > n.
\]

(11)

Example 2 In (1) let \(A \) be a nilpotent matrix. Then,

\[
\sum M(a_i) = \sum M(a_{i,j}) = \cdots = |A| = 0,
\]

and by Proposition 7 clearly

\[
\sum M\left(\begin{array}{c} a_{i_1, \ldots, i_p} \\ b_{j_1, \ldots, j_q} \end{array}\right) = 0 \quad ; \quad p, q = 1, 2, \ldots, n - 1.
\]

In this case, \(M = \begin{bmatrix} 1 & 0 \\ 0 & b_{n-1} & \cdots & b_1 & b_0 \end{bmatrix} \).

The equations (11) give also an answer to the problem "For the \(n \times n \) matrix \(A \), clarify the set \(CS(A) = \{ B : A \) and \(B \) follow the CS property \}.

If \(a(s) = det(I - sA) \) and \(b(t) = det(I - tB) \), easily we turn out the \(\mu \)-th order derivative of polynomials at the origin

\[
\frac{1}{p!} a^{(p)}(0) = \sum M(a_{i_1, \ldots, i_p}), \quad \frac{1}{q!} b^{(q)}(0) = \sum M(b_{j_1, \ldots, j_q}),
\]

and even

\[
\frac{1}{p!q!} \frac{\partial^{p+q} f(0,0)}{\partial s^{p} \partial t^{q}} = \sum M\left(\begin{array}{c} a_{i_1, \ldots, i_p} \\ b_{j_1, \ldots, j_q} \end{array}\right).
\]

Thus, if we use the Taylor’s expansion of polynomials in (1), by the relationships

\[
a^{(p)}(0) b^{(q)}(0) = \frac{\partial^{p+q} f(0,0)}{\partial s^{p} \partial t^{q}}, \quad \text{for } p + q \leq n,
\]

\[
a^{(p)}(0) b^{(q)}(0) = 0, \quad \text{for } p + q > n,
\]

the equations (11) arise again.
References

[1] M. Dumais ans G.P. Styan, A bibliography on the distribution of quadratic forms in normal variables, with special emphasis on the Craig-Sakamoto theorem and on Cochran’s theorem, In George Styan ed., Three Bibliographies and a Guide, Seventh International Workshop on Matrices and Statistics, Fort Lauderdale, 1-9, 1988.

[2] C-K. Li, A simple proof of the Craig-Sakamoto Theorem, Linear Algebra and Its Applications, 321, (2000), 281-283.

[3] J. Maroulas, P. Psarrakos and M. Tsatsomeros, Separable characteristic polynomials of pencils and property L, Electronic Journal of Linear Algebra, 7, (2000), 182-190.

[4] I. Olkin, A determinantal proof of the Craig-Sakamoto Theorem, Linear Algebra and Its Applications, 264, (1997), 217-223.

[5] O. Trussky, On a matrix theorem of A.T. Craig and H. Hotelling, Indagationes Mathematicae, 20, (1958), 139-141.