SARGE: an algorithm for generating QCD-antennas

André van Hameren* and Ronald Kleiss†
University of Nijmegen, Nijmegen, the Netherlands

Petros D. Draggiotis‡
University of Nijmegen, Nijmegen, the Netherlands
Institute of Nuclear Physics, NCSR Δημόκριτος, Athens, Greece

November 15, 2018

Abstract

We present an algorithm to generate any number of random massless momenta in phase space, with a distribution that contains the kinematical pole structure that is typically found in multi-parton QCD-processes. As an application, we calculate the cross-section of some $e^+e^- \rightarrow \text{partons}$ processes, and compare SARGE’s performance with that of the uniform-phase space generator RAMBO.

Considering that many multi-jet processes will occur in future hadron colliders, such as the LHC, it is necessary to calculate their cross-sections. A part of the amplitude of these processes consists of a multi-parton QCD-amplitude, and it is well known [1] that the leading kinematic singularity structure of the squared matrix elements is given by the so-called antenna pole structure (APS). In particular, for n gluons it is given by all permutations in the momenta of

$$\frac{1}{(p_1p_2)(p_2p_3)(p_3p_4)\cdots(p_{n-1}p_n)(p_np_1)},$$

(1)

where (p_ip_j) denotes the Lorentz invariant scalar product of the gluon momenta p_i and p_j. Actually, it is this kinematical structure that is implemented in algorithms based on the so-called SPHEL approximation to calculate the amplitudes [1]. But it is expected, and observed, that the same structure occurs in the exact matrix elements [2, 3].

For the integration of the differential cross-sections of the processes under consideration, the Monte Carlo method is the only option, and a phase space generator is needed. RAMBO [4] is a robust and efficient algorithm to generate any number of random massless momenta in their center-of-mass frame (CMF) with a given energy. However, RAMBO generates the momenta distributed uniformly in phase space, so that a large number of events is needed to integrate integrands with the APS to acceptable precision. Especially when the evaluation of the integrand is time-consuming, which is the case for the exact matrix elements, this is highly inconvenient.

*andrevh@sci.kun.nl, †kleiss@sci.kun.nl, ‡petros@sci.kun.nl
In this paper, we introduce SARGE, an algorithm to generate any number of random massless momenta in their CMF with a given energy, distributed with a density that contains the APS. We shall show that it takes account for a substantial reduction in computing time in the calculation of cross-sections of multi-parton processes. We briefly sketch the outline of the SARGE-algorithm; a fuller discussion, appropriate to hadronic initial states as well, will be given elsewhere [7].

The name SARGE stands for Staggered Antenna Radiation GEnerator, and is inspired by the structure of the algorithm. It consists of the repeated use of the basic antenna density for the generation of a momentum k, given two momenta p_1 and p_2:

$$dA(p_1,p_2;k) = d^4k \delta(k^2) \theta(k^0) \frac{1}{\pi} \frac{(p_1 p_2)}{(p_1 k)(k p_2)} g \left(\frac{(p_1 k)}{(p_1 p_2)} \right) g \left(\frac{(k p_2)}{(p_1 p_2)} \right).$$

(2)

Here, g is a function that serves to regularize the infrared and collinear singularities, as well as to ensure normalization over the whole space for k: therefore, $g(\xi)$ has to vanish sufficiently fast for both $\xi \to 0$ and $\xi \to \infty$. At this point, we take the simplest possible function we can think of, that has a sufficiently regularizing behavior. We introduce a positive non-zero number ξ_m and take

$$g(\xi) = \frac{1}{2 \log \xi_m} \theta(\xi - \xi_m^{-1}) \theta(\xi_m - \xi),$$

(3)

which forces the value of ξ to be between ξ_m^{-1} and ξ_m, and is normalized such that $\int dA = 1$.

Let us immediately adopt the notation

$$\xi_1 = \frac{(p_1 k)}{(p_1 p_2)} \quad \text{and} \quad \xi_2 = \frac{(k p_2)}{(p_1 p_2)}.$$

(4)

The main motivation to make the regularizing function depend on ξ_1 and ξ_2 is that it makes dA completely invariant under Lorentz-and scale transformations of the momenta. Consequently, the number ξ_m gives a cut-off for the quotients ξ_1 and ξ_2 of the scalar products of the momenta, and not for the scalar products themselves. It is, however, possible to relate ξ_m to the total energy \sqrt{s} in the CMF and a cut-off s_0 on the invariant masses, i.e., the requirement that

$$(p_i + p_j)^2 \geq s_0$$

(5)

for all pairs of momenta $p_i \neq p_j$. This can be done by choosing

$$\xi_m = \frac{s}{s_0} - \frac{(n + 1)(n - 2)}{2},$$

(6)

where n is the total number of momenta. With this choice, the invariant masses $(p_1 + k)^2$ and $(k + p_2)^2$ are regularized, but can still be smaller than s_0 so that the whole of the demanded phase space is covered. The s_0 can be derived from physical cuts p_T on the transverse momenta and θ_0 on the angles between the outgoing momenta:

$$s_0 = 2p_T^2 \cdot \min \left(1 - \cos \theta_0, \left(1 + \sqrt{1 - p_T^2/s} \right)^{-1} \right).$$

(7)
We now give the algorithm to generate k under the basic antenna density. Let k^0, ϕ and θ denote the absolute value, the polar angle and the azimuthal angle of \vec{k} in the frame for which $\vec{p}_1 = -\vec{p}_2$ with \vec{p}_1 along the positive z-axis. To generate k, one should

Algorithm 1 (BASIC ANTENNA)

1. determine the direction of \vec{p}_1 in the CMF of p_1 and p_2;
2. generate two numbers ξ_1, ξ_2 independently, each from the density $g(\xi)/\xi$;
3. compute from these the values k^0 and $\cos \theta$;
4. generate ϕ uniformly in $[0, 2\pi)$;
5. construct the momentum k in the CMF of p_1 and p_2;
6. boost the result to the actual frame in which p_1 and p_2 were given.

The RAMBO algorithm was developed with the aim to generate the flat phase space distribution of n massless momenta as uniformly as possible. The differential density is given by

$$dV_n(p) = \delta(\sqrt{s} - P^0) \delta^3(\vec{P}) \prod_{i=1}^n d^4p_i \delta(p_i^2) \theta(p_i^0) ,$$

where $P = \sum_{i=1}^n p_i$. Let us denote

$$dA_{j,k}^i = dA(q_j, q_k; q_i) , \quad \text{and} \quad \xi_{k,l}^{i,j} = \frac{(p_ip_j)}{(p_kp_l)} .$$

To include the APS in the density, one should

Algorithm 2 (QCD ANTENNA)

1. generate massless momenta q_1 and q_n in CMF;
2. generate $n-2$ momenta q_j by the basic antennas $dA_{1,n}^2dA_{2,n}^2dA_{3,n}^4 \cdots dA_{n-2,n}^{n-1}$;
3. compute $Q = \sum_{j=1}^n q_j$, and the boost and scaling transforms that bring Q^0 to \sqrt{s} and \vec{Q} to $(0, 0, 0)$;
4. for $j = 1, \ldots, n$, boost and scale the q_j accordingly, into the p_j.

This way, the momenta p_j are generated with differential density $dV_n((p))A_n^{QCD}((p))$, where

$$A_n^{QCD}((p)) = \frac{s^2}{2\pi^{n-1}} \cdot \frac{g(\xi_{1,1,n}^{1,2,n})g(\xi_{1,2,n}^{2,1,n})g(\xi_{2,2,n}^{2,3,n})g(\xi_{2,3,n}^{3,2,n}) \cdots g(\xi_{n-2,2,n}^{n-2,n})g(\xi_{n-2,3,n}^{n-3,n})}{(p_1p_2)(p_2p_3)(p_3p_4) \cdots (p_{n-1}p_n)(p_np_1)} .$$

We point out that, whereas the product $dA_{1,n}^2 \cdots dA_{n-2,n}^{n-1}$ contains a factor (p_1p_n) in the numerator, the scaling transformation carries a Jacobian that is precisely $s^2/(p_1p_n)^2$, thus leading to a perfectly symmetric APS.
Usually, the event generator is used to generate cut phase space. If a generated event does not satisfy the physical cuts, it is rejected. In the calculation of the weight coming with an event, the only contribution coming from the functions \(g \) is, therefore, their normalization. In total, this gives a factor \(1/(2 \log \xi_m)^{2n-4} \) in the density.

Because we are dealing with gluon momenta, we want to symmetrize the density. This can be done by re-labeling the momenta using a random permutation:

Algorithm 3 (Symmetrization)

1. generate a random permutation \(\sigma \in S_n \) and put \(p_i \leftarrow p_{\sigma(i)} \) for all \(i = 1, \ldots, n \).

An algorithm to generate the random permutations can be found in [1]. As a result, the differential density becomes

\[
dV_n(\{p\}) \left(\frac{1}{n!} \sum_{\text{perm.}} A_n^{\text{QCD}}(\{p\}) \right),
\]

where the sum is over all permutations of \((1, \ldots, n)\). An efficient algorithm to calculate a sum over permutations can be found in [1].

When doing calculations with this algorithm on a phase space cut such that \((p_i + p_j)^2 > s_0\) for all \(i \neq j\) and some reasonable \(s_0 > 0\), we notice that a very high percentage of the generated events does not pass the cuts. An important reason why this happens is that the variables \(\xi_{i,j}^{k,l} \) that appear explicitly in the generation of the QCD-antenna. Therefore, an improvement is obtained as follows. Let \(P_m \) denote the subspace of \([-1, 1]^m\) for which \(|x_i - x_j| \leq 1\) for all \(i, j = 1, \ldots, m\), and let us denote the number of \(\xi_{k,l}^{i,j} \) variables that has to be generated \(n_\xi = 2n - 4 \). An improvement is obtained if the generation of these variables is replaced by

Algorithm 4 (Improvement)

1. generate \((x_1, \ldots, x_{n_\xi})\) distributed uniformly in \(P_{n_\xi} \);
2. define \(x_0 = 0 \) and put, for all \(i = 2, \ldots, n-1\),

\[
\xi_{i-1,n_i}^{i-1,i} \leftarrow e^{(x_{2i-3} - x_{2i-4}) \log \xi_m}, \quad \xi_{i-1,n_i}^{i,n} \leftarrow e^{(x_{2i-2} - x_{2i-4}) \log \xi_m}.
\]

Because all the variables \(x_i\) are distributed uniformly such that \(|x_i - x_j| \leq 1\), all quotients \(\xi_{k,l}^{i,j} \) with \((i, j)\) and \((k, l)\) in \(\{(i-1, i), (i, n) \mid i = 2, \ldots, n-1\}\) are distributed such that they satisfy \(\xi_1^{-1} \leq \xi_{k,l}^{i,j} \leq \xi_m\). This is an improvement on the previous situation, because then only the quotients \(\xi_{i-1,n_i}^{i-1,i} \) and \(\xi_{i-1,n_i}^{i,n} \) with \(i = 2, \ldots, n-1\) satisfied the relation. In terms of the variables \(x_i\), this means that the volume of \(P_{n_\xi} \) is generated, which is \(n_\xi + 1\), instead of the volume of \([-1, 1]^{n_\xi}\), which is \(2^{n_\xi}\). We have to note here that this improvement only makes sense because there is a very efficient algorithm to generate the uniform distribution in \(P_m \) [1]. The total density changes such that the product of the \(g\)-functions in Eq. (10) has to be replaced by

\[
g_{n-2}(\xi_m; \{\xi\}) = \frac{1}{(n_\xi + 1)(\log \xi_m)^{n_\xi}} \times
\begin{cases}
1 & \text{if } (x_1, \ldots, x_{n_\xi}) \in P_{n_\xi}, \\
0 & \text{if } (x_1, \ldots, x_{n_\xi}) \notin P_{n_\xi},
\end{cases}
\]
where the variables \(x_i \) are functions of the variables \(\xi_{k,l}^{i,j} \) as defined by (12). Again, only the normalization has to be calculated for the weight of an event.

We compare SARGE with RAMBO in the calculation of the cross-section of the processes

\[
e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}g, q\bar{q}q', q\bar{q}qq, q\bar{q}q\bar{g}, q\bar{q}gg .
\]

(14)

The squared matrix element was calculated with the algorithm presented in [2], suitably adapted for these processes. We used massless electrons and quarks, and took the sum over final-state helicities and the average over initial-state helicities. We also summed over the color configurations of the final states. The center-of-mass energy \(\sqrt{s} \) was fixed to 500 GeV for the processes with 5 outgoing momenta, and to 100 GeV for the other processes. The cuts on the phase space where fixed with choices of a parameter \(\tau \), which is related to the cut-off \(s_0 \) on the squares of the outgoing momenta (Eq. (5)) by

\[
s_0 = \frac{2s\tau}{n(n-1)} ,
\]

where \(n \) is the number of outgoing momenta. If \(\tau = 1 \), then \(s_0 \) is larger than the maximal value that is kinematically allowed. The couplings and charges in various processes were all set to the value 1, since they only contribute a factor to the cross-section, which is irrelevant for this analysis. The results of the computer runs are given in the tables below. Presented are the final result for the cross-section \(\sigma \) in units of GeV\(^{-2} \), the number of generated events \(N_{ge} \), the number of accepted events \(N_{ac} \), and the cpu-time consumed \(t_{cpu} \) in seconds. All Monte Carlo runs were performed on a single 440-MHz UltraSPARC-IIi processor, and were stopped when an expected error of 3% was reached.

The final results for the cross-sections are irrelevant in our discussion, and are just printed to show that the results with SARGE and RAMBO are compatible within the 3% error estimate. The most important conclusion that can be drawn from the results is that SARGE needs less accepted events than RAMBO for the given error estimate, especially for small values of \(\tau \), i.e., for phase space that comes close to the singularities of the QCD-amplitudes. (Remember that the ratio of the volumes of cut phase space and whole phase space is given by \(N_{ac}/N_{ge} \) for RAMBO.) As a result, less evaluations of the matrix elements have to be done which accounts for a large gain in computer time. It is true that SARGE is “ineffective” in the sense that many of the generated events have to be rejected because they do not satisfy the cuts imposed, but this is fully compensated by the fact that generating random numbers is much cheaper than evaluating matrix elements nowadays. For the last four processes, no results with RAMBO and \(\tau = 0.01 \) are presented, but we observe that \(t_{cpu} > 130,000 \) seconds. The fraction of phase space covered with five massless momenta and \(\tau = 0.01 \) is 0.893 ± 0.001.

\(\tau \)	0.5	0.1	0.05	0.01				
alg.	SARGE	RAMBO	SARGE	RAMBO	SARGE	RAMBO	SARGE	RAMBO
\(\sigma \)	1.85e-5	1.85e-5	1.53e-4	1.58e-4	2.61e-4	2.66e-4	6.26e-4	6.41e-4
\(N_{ge} \)	7,691	25,782	10,777	24,801	10,806	37,121	11,437	366,614
\(N_{ac} \)	5,503	6,536	9,436	20,112	9,852	33,577	10,860	359,447
\(t_{cpu} \)	251	293	429	899	451	1,503	497	16,124
$e^+e^- \to q\bar{q}q\bar{q}$

τ	0.5	0.1	0.05	0.01				
alg.	SARGE	RAMBO	SARGE	RAMBO	SARGE	RAMBO	SARGE	RAMBO
σ	9.79e-9	10.4e-9	7.72e-7	7.86e-7	1.90e-6	1.83e-6	7.39e-6	7.00e-6
N_{ge}	64,384	158,678	32,492	27,091	34,701	29,642	41,744	113,368
N_{ac}	4,428	4,551	9,894	15,328	13,081	22,297	20,150	107,021
t_{cpu}	775	786	1,718	2,606	2,256	3,778	3,578	18,038

$e^+e^- \to q\bar{q}'q'\bar{q}'$

τ	0.5	0.1	0.05	0.01				
alg.	SARGE	RAMBO	SARGE	RAMBO	SARGE	RAMBO	SARGE	RAMBO
σ	5.38e-9	5.30e-9	4.07e-7	4.24e-7	1.00e-6	1.02e-6	3.95e-6	3.89e-6
N_{ge}	98,840	245,138	50,052	45,963	63,398	50,873	71,254	366,166
N_{ac}	6,696	7,022	15,392	25,883	23,989	38,145	34,584	345,323
t_{cpu}	1,165	1,198	2,664	4,346	4,133	6,434	5,843	58,708

$e^+e^- \to q\bar{q}gg$

τ	0.5	0.1	0.05	0.01			
alg.	SARGE	RAMBO	SARGE	RAMBO	SARGE	RAMBO	SARGE
σ	1.76e-7	1.70e-7	1.86e-5	1.95e-5	5.19e-5	5.27e-5	5.40e-4
N_{ge}	96,942	268,407	42,321	86,608	50,552	298,073	50,414
N_{ac}	6,579	7,677	12,945	48,902	19,091	223,530	26,551
t_{cpu}	1,363	1,597	3,619	6,398	3,802	43,913	5,287

$e^+e^- \to q\bar{q}gg$

τ	0.5	0.1	0.05	0.01			
alg.	SARGE	RAMBO	SARGE	RAMBO	SARGE	RAMBO	SARGE
σ	2.04e-11	1.91e-11	4.05e-8	4.08e-8	1.68e-7	1.61e-7	1.48e-6
N_{ge}	4,028,648	4,017,888	238,220	97,035	203,237	210,325	176,710
N_{ac}	5,616	5,094	14,216	33,239	19,522	121,734	29,492
t_{cpu}	4,530	3,941	10,333	23,875	14,159	87,756	21,407

$e^+e^- \to q\bar{q}'q'g$

τ	0.5	0.1	0.05	0.01			
alg.	SARGE	RAMBO	SARGE	RAMBO	SARGE	RAMBO	SARGE
σ	1.05e-11	1.05e-11	2.19e-8	2.23e-8	9.07e-8	8.86e-8	7.85e-7
N_{ge}	5,596,725	6,929,475	436,225	188,693	377,384	522,602	305,426
N_{ac}	7,730	8,844	26,154	64,558	36,042	302,724	51,044
t_{cpu}	5,882	6,494	17,595	43,104	24,764	201,801	34,700
As an extra illustration, we also present the convergence to zero of the expected error during the Monte Carlo-run for a few cases. In Fig. 1, we plot the relative error as function of the number of generated events using a double-log scale. We first of all observe that the curves for SARGE are less spiky, which shows that SARGE takes care for a substantial part of the singular behavior of the integrand. Every time a RAMBO-event hits a singularity, a term much larger than the average so far is added to the Monte Carlo sum, resulting in an increase of the expected error. Furthermore, we observe that the SARGE-error converges quicker than the RAMBO-error, except in the case of $e^+e^- \rightarrow q\bar{q}ggg$ with $\tau = 0.05$. However, this is a plot of the error as function of the number of generated events, and we know that many SARGE-events have to be rejected. A more realistic view is given by a plot of the error as function of cpu-time (Fig. 2), which clearly shows that SARGE outperforms RAMBO.

References

[1] J.G.M. Kuijf, Multiparton production at hadron colliders, PhD thesis, University of Leiden, 1991.

[2] P. Draggiotis, R. Kleiss and C.G. Papadopoulos, On the computation of multigluon amplitudes, Nucl. Phys. B439 (1998) 157-164.

[3] F. Caravaglios, M.L. Mangano, M. Moretti and R. Pittau, A new approach to multi-jet calculations in hadron collisions, Nucl. Phys. B539 (1999) 215-232.

[4] W.J. Stirling, R. Kleiss and S.D. Ellis, A new Monte Carlo treatment of multiparticle phase space at high energy, Comp. Phys. Comm. 40 (1986) 359.

[5] D.E. Knuth, The Art of Computer Programming, Vol. 2. 2d ed. (Princeton, 1991).

[6] A. van Hameren and R. Kleiss, preprint physics/0003078.

[7] P. Draggiotis, A. van Hameren and R. Kleiss, in preparation.
Figure 1: The expected relative error as function of the number of generated events.
The expected error as function of cpu-time

\[e^+ e^- \rightarrow q\bar{q}ggg \]

\[\tau = 0.05 \]

Figure 2: The expected relative error as function of cpu-time.