Effects of plant growth regulators on growth, flowering, fruiting and fruit yield of cucumber (Cucumis sativus L.): A review

Sanjeevan Gosai1*, Subash Adhikari1, Saugat Khanal2 and Padam Bahadur Poudel1

1Paklihawa Campus, Institute of Agriculture and Animal Science, Paklihawa, Rupandehi, NEPAL
2Faculty of Agriculture, Agriculture and Forestry University, Rampur, Chitwan, NEPAL
*Corresponding author’s E-mail: sanjeevangosai@gmail.com

INTRODUCTION

Vegetables are the good source of human diet as they are rich in vitamins and minerals and help to fulfill our nutritional requirements. They are naturally good and can help us to keep healthy by protecting against some diseases. Different crops have different health, economic, social, biological, and religious significance. Cucumber (Cucumis sativus), an annual trailing vine...
vegetable belonging to Cucurbitaceae family, is the most widely grown vegetable of the family after watermelon. The demand and supply for cucumber has been expeditiously increased in the last few years and now it is grown throughout the world using fields or greenhouse culture. It has a diploid chromosome number of 14, 2n= 14 (Kadi et al., 2018). Although it is very watery, with little flavor and not very nutritious, it is a common ingredient of salads and pickles, being valued primarily for its crisp texture and juiciness. The seeds are extremely enriched with nutritive compounds; protein (33.8%), fat (45.2%), carbohydrates (10.3%), and crude fibers (2.0%) and the seed oil consist of four chief fatty acids; linoleic acid (61.6%), oleic acid (15.7%), stearic acid (11.1%), and palmitic acid (10.7%) as described by Mariod et al. (2017). The fruits are extremely nutritious and consist of 95% water, extremely small calories (about 15 calories per cup) reported by Mukherjee et al. (2013). The fruit also consists of calcium (20mg/100g), iron (0.7mg/100g), thiamin (0.3mg/100g), niacin (0.01mg/100g) and some natural antioxidants that reduce chronic diseases (Trichopoulou et al., 2000; Baset Mia et al., 2014). It is often applied in cosmetics, beauty, and sometimes in case of burns and skin complications since it contains high percentage of water and lactic acid (~7-8% w/w) which acts as detoxifying agent (Sotiroudis et al., 2010). It is very rich in antioxidants and vitamin K and C (Jyoti et al., 2016). The major problem is maleness in cucumber which greatly decreases the yield (Singh et al., 2015). Other problems include shape distortion, untimed maturity, fruit drop, late flowering, early senescence, and so on which can be solved by the recommended dose of plant growth regulators. With the consistent growing awareness among the Nepalese for organic foods, such as cucumber, numerous scopes of organic farming are also surging. People are nowadays better concerned about what they eat and how they are produced or processed (Khanal, 2020). For this reason, healthy concentrations of plant growth regulators should be applied.

Plant growth regulators, commonly known as phytohormones, are those chemical compounds that control all aspects of growth and development within the plants. There are five major classical phytohormones which consist of more than 20 types of PGRs; they are auxin, cytokinins, gibberellins, abscisic acid, and ethylene. In addition, cucumber also contains a diverse variety of biologically active, non-nutritive compounds regarded as phytochemicals like alkaloids, flavonoids, tannins, phlobatannins, steroids, saponins and many others. The physiological processes like growth and development of the plant, enhancement of the fruit color, flower differentiation, fruit ripening, tissue growth, etc. are controlled by the appropriate application of plant growth regulators (Prajapati et al., 2015). It also control vegetative growth of plant and helps to increase the plant population per area (Latimer, 2019). The plant regulators have positive role on growth, flowering, fruiting, and the fruit yield of cucumber. In fact, the application of growth regulators enhance the production of cucumber including other vegetables and fruits in respect of superior quality and better growth, which increase interests between the scientists and farmers for commercial use of growth regulators. Although cucumber is grown extensively in Nepal, the majority of the farmers are still unknown about the proper use of plant growth regulators and very limited research has been carried out to date regarding the improvement of the plants with the application of PGR. The producers need to know about the proper dose of PGR application as per the recommendation of experts to increase the production, quality, and yield. Therefore, this study was carried out with main objective to understand the role of plant growth regulators on growth pattern, fruiting, and fruit yield of cucumber, to understand the effective plant growth regulators on fruiting and flowering (maleness and femaleness) of cucumber and to study the interactions between different hormones on growth, fruiting, and yield of cucumber.

METHODOLOGY

This study is based on the secondary sources of information. This paper is based on the review of different publications. Pieces of Literature were collected from different Journal articles, Government institutes and other relevant reports were studied and the major findings were evaluated and summarized.

Climatic requirement for cucumber cultivation

Cucumbers are cultivated either in fields or green houses. Field cultivated cucumbers are usually started as seeds and may be mechanically or hand planted. The plants are typically trained and supported to grow on poles or trellises to keep the fruit suspended. Contrary to field grown, greenhouse cucumbers are generally cultivated as transplants. Such cucumbers have vigorously growing large leaves and need close monitoring of nutrients to keep the plant healthy and enhance the productivity. The cucumber cultivation is favored by the climatic requirements shown in Table 1.

The cucumber grows best in a semitropical climate. It flourishes well under environment of high temperature, humidity, and light intensity and with an uninterrupted irrigations and appropriate nutrients supply. Under favorable and suitable climatic and nutritional conditions and when pests are under control, the plants grow fast and yield heavily. Under excellent environments, more fruit may initially develop, so fruit may need thinning. Plants allowed to bear too much fruit become exhausted, abort fruit, and fluctuate widely in productivity over time. On the other hand, cucumbers are very sensitive to unfavorable environments, and the slightest stress has negative impacts on their growth and fruit yield. When cucumber could not meet the criteria of these environmental requirements, the effects are seen in the growth pattern, fruiting, flowering, and fruit yield and hence the need of application of PGRs will emerge whose applications shape the growth and development of the plants in right way.

Plant growth regulators

PGRs are a wide class of substances which include plant hormones, their synthetic analogs, inhibitors of hormone
biosynthesis, and blockers of hormone receptors. The role of five different major plant growth regulators in cucumber plant is briefly presented in Table 2. Several other plant growth regulators are identified such as morphactins, cytokinin, maleic hydrazide, florigen, vernalin, brassinosteroids, etc. which influence the growth and ultimately the yield of cucumber. Brassinosteroids stimulate cell division and cell elongation, increase resistance to stresses, and inhibit root growth. Morphactins are the compounds which help on morphogenesis and modulate the expression of the plants. Florigen and Vernalin are the flowering hormones and Maleic hydrazide is a synthetic growth reductant. NAA and GA₃ are found to be more effective and are commonly used PGR by the producers.

Table 1. Description of Climatic requirement for cucumber cultivation.

Parameters	Requirements
A. Temperature	
1. Night air temperature	18-20°C
2. Day air temperature	27-30°C
3. Average air temperature	15-24°C
4. Root temperature	20-23°C, 19°C
5. Soil temperature	>15°C
B. Light	
C. Relative humidity (RH)	
High RH	High growth
Medium RH	Reasonable growth
Low RH	growth of powdery mildew and spider mites
D. Soil Considerations	Slightly acidic, good drainage and adequate water-holding capacity, Optimum pH: 5.5-7

Note: (*): A minimum root temperature of 19°C is required; Source: (Haifa, 2018)

Table 2. Role of five major PGRs in cucumber production.

Plant Growth Regulators	Type	Examples	Functions
Auxins	+ IAA, IBA, NAA, 2,4-D, 2,4,5-T	Favor apical dominance, cell elongation, secondary growth, flower induction, prevent premature fruit drop, delay leaf abscission, induce parthenocarpy, induce vascular differentiation	
Gibberellins	+ Gibberelic acid (GA3, GA4, GA5)	Delay senescence of fruits, stem elongation, induces maleness, promotes seed germination, dormancy breaking, accelerates flowering, possesses pollencide effect	
Cytokinins	+ Kinetin, Zeatin, TDZ, zeatin riboside	Promote cell division, induce cell enlargement, delays leaf senescence, inhibit apical dominance (anti-auxins), lateral shoot growth, adventitious root formation	
Ethylene	- Ethylene, Ethepon, Ethrel	Induces fruit ripening, promotes abscission and senescence of leaf and flowers, break seed and bud dormancy, promote root hair formation	
Dormins	- Abscisic acid	Induce senescence of leaves, inhibits seeds germination and development, regulate closing and opening of stomata	

Note: (+): Plant growth promoters, (-): Plant growth inhibitors, (*): Endogenous hormones, (**) Exogenous plant growth regulators.

Effect on vegetative growth

The applications of various plant growth regulators in a right proportion have a positive effect in the vegetative growth of plants. The attributes of vegetative part such as length of main vine per plant, number of primary branches per vine, intermodal distance, length and width of leaves are affected by different growth regulators. It is mainly due to energetic effect of chemical to the cell elongation and rapid cell division in apical portion of plant. Dalai et al. (2015) revealed experimentally that the mixed treatment of GA₃ @ 20 ppm and NAA @ 100 ppm was superior over all other treatment which produced maximum vine length of 155.28 cm per plant compared to minimum of 138.08 cm per plant and also obtained maximum branches (4.66 per plant) whereas 2.41 per plant in control treatment. Sahil (2016) and Pal et al. (2016) reported that exogenous applications of gibberellic acid have significant impact on growth attributes of vegetative part of cucumbers. Cell elongation is usually due to increasing malleability of cell wall, followed by hydrolysis of starch which drops water potential of cell. This resulted in the rapid vegetative growth either in terms of increase in vine length or leaf area and number of leaves which increase photosynthetic activity and resulted in cell division and cell elongation in apical part of plant (Sargent, 1965). Additionally, Thappa et al. (2011) have determined that both maleic hydrazide and ethephon reduced the main stem and increased primary branches. He also reported that when MH and ethephon, each of 100ppm concentration applied together, it produced maximum number of nodes (19.97) per unit length of vine and minimum internodal distance of 5.02 cm. When 100
ppm of maleic hydrazide was applied, maximum number of primary branches was obtained. Cell division is affected by maleic hydrazide which results in inhibition of apical growth (Greulach and Atchison, 1953). To contrary, application of ethrel is opposite to GA3. Moreover, Thappa et al. (2011), Ouzounidou and Al (2008) and Rajala (2001) studied the effect of ethrel application and reported that in meristematic shoots ethrel inhibits cell division and elongation resulted in formation of shorter shoot with lowest effect on physiology and morphology. Also, application of KNO3, CaNO3, alfaton on cucumber seedling and NAA, maleic hydrazide in cucumber plants enhanced vegetative growth (Ahmad et al., 2019). Sultan et al. (2016) reported that the pretreatment of two concentration of salicylic acid of 0.07mm and 0.18mm proved to be very beneficial for increase in chlorophyll content, diameter of stem and number of leaves. The effects of different PGRs on vegetative growth of cucumber are summarized in Table 3.

Effect on flowering

Plant growth regulators significantly contribute to early flower development and induce the femaleness or maleness in cucumber plants. Female flowers per plant and sex ratio are flowering parameters which determine the net production potential of plants. Minimum sex ratio is resulted by combined dose of GA3 and NAA which increases functional female organ and affinity besides lowering the embryo termination in plant (Dalal et al., 2020). The application of MH 450µM/l helps in lowering the sex ratio which enhanced the production of IAA hormone that increases the number of pistillate flowers. Ethrel is effective at 1750 µM/l which increase pistillate flowers per plant and decrease staminate flower. GA3 at concentration 15µM/l suppressed the staminate flower production (Bano and Khokhar, 2009). (Sanoussi, 1970) reported that GA3 was effective plant growth regulator which reduce requirement of number of days for 1st flower formation and at 10µg/ml of GA3, maximum number of female flowers and minimum number of male flowers was produced. Also, it was reported that most number of female flower per plant and lowest sex ratio of male female flower (3.31) was produced when GA3@ 20mg/liter was applied (Asghar et al., 1990). Furthermore, Suthar et al. (2007) found that the application of 25 ppm ethrel increased the pistillate flowering and delayed staminate flowering. Also, narrow sex ratio was obtained by pruning followed by application of 25 ppm ethrel in protected condition.

Femaleness and maleness varies due to the environmental factors such as temperature, photoperiod, and nutrition or by PGRs application (MA et al., 2014). NAA application are not effective to increase pistillate flowers in the winter season, especially when there is low temperature (Hikosaka and Sugiyama, 2015). In addition to that Yamasaki et al. (2007) reported that CS-ETR and CS-ERS mRNA are highly accumulated when endogenous hormone (ethylene) are highly produced which help in development of female flower in cucumber. He concluded that femaleness in cucumber is mainly persuaded by ethylene and auxin. Ethylene, a gaseous hormone, is a major determining compound for female sex expression where auxin acts collaterally by stimulating the ethylene production (Trebitsh et al., 1987). Also, Hossain et al. (2006) reported that if PGRs are applied at two and four leaf stage, the critical stage for promotion or suppression of both sex, it plays an important role in alternation of sex ratio. The summary of the overall effects of growth regulators in flowering of cucumber is presented in Table 4.

Table 3. Effect of different PGRs on vegetative growth of cucumber.

PGR	Dosage	Vegetative attributes affected
GA3 + NAA	20 ppm + 100 ppm respectively	increase vine length and branches
Gibberellin	15-20 ppm	increase the length of shoot
MH + Ethephon	100 ppm each	increase number of nodes and primary branches
MH	50-100 ppm	affect cell division, inhibit apical growth
Ethrel	300-400 ppm	decrease shoot length, inhibit cell division and cell elongation
Salicylic acid	2 doses of 0.07 mm/l + 0.18 mm/l	increase chlorophylls content, stem diameter and number of leaves
IAA	10-15 mg/L	enhance seed germination

IAA: Indole-3 Acetic Acid, NAA: Naphthalene Acetic Acid, MH: Maleic hydrazide.

Table 4. Effect of different PGRs on flowering attributes of cucumber.

PGR	Dosage	Flowering attributes affected
GA3 + NAA	50-100 ppm	Minimum sex ratio, increases no. of functional female organs
MH	450 µM/L or 100 ppm	lower sex ratio, produce more female flowers
Ethrel	1750 µM/L or 150-200 ppm	increase pistillate flower and reduce staminate flower
GA3	15 µM/L or 10-20 ppm	suppressed male flower and produce more no. of female flowers
GA	1500-2000 ppm	produce more male flowers
Ethylene	200 ppm	enhance female sex expression
Silver Nitrate (AgNO3)	400 ppm	Increase number of staminate (male) flowers
MH + Ethephon	100 ppm each	Earliness, increase sex ratio, and reduce plant expansion

Source: Summary of the above review.
Effect on fruiting

Fruit size, fruit length or fruit diameter can be increased by PGRs like TIBA, NAA, and MH (Tantasawat et al., 2015). Cell division, cell elongation and differentiation are mainly due to auxin which ultimately increase fruit size (Growth, 1986). Translocation and photosynthetic activity is accelerated by the application of GA\(_3\) which resulted in improved cell elongation, rapid cell division, and finally shortened fruit maturation period (Al-Sanoussi, 1970). When cucumber was sprayed with combined dose of GA\(_3\) @ 200 ppm and NAA @ 100 ppm, the highest number of fruits per plant was obtained with maximum fruit width and length (Dalai et al., 2020). At the treatment of GA\(_3\), NAA, and its combination, Singh et al. (2015) founded that application of GA\(_3\)@20 ppm and NAA @ 100 ppm combined produced maximum number of fruit per plant (10.34) and maximum length and diameter of fruit whereas control treatment produced lowest number of fruit per plant (5.25).

Likewise, Ahmad et al. (2020) also reported that exogenous application of cycocel and ethephon also increase in average fruit length and weight in cucumber. Auxin level might alter by the application of MH @ 200 ppm and ethephon @ 300 ppm which enhance the cucumber fruit size. And the number of fruit per plant were highest when ethephon @ 300 ppm was applied which also reduces the time required for harvesting fruit (Mir, 2019). Smooth surface of fruit was expressed by ethephon at 200 ppm or 300 ppm where as NAA, GA\(_3\) exhibited rough surface and GA\(_3\) applied @ 200 ppm resulted maximum fruit (Kadi et al., 2018). All the concentration of plant growth regulators help in the enhancement of the fruit yield per vine where as maximum fruit yield was recorded at the application of maleic hydrazide and ethephon each rate of 100 ppm (Kaur et al., 2016).

Table 5 shows the different effects of PGRs on fruiting of the cucumber plant.

PGR	Dosage	Fruiting attributes affected
TIBA, NAA, MH	200-400 ppm	Increase fruit size, fruit length, or fruit diameter
GA\(_3\)	20-30 ppm	Accelerate translocation and photosynthesis, shorten fruit maturation period
GA\(_3\) + NAA	200 ppm + 100 ppm respectively	Increase no. of fruits, fruit diameter and length, exhibit rough fruit surface
Cycocel + Ethrel	-	Increase weight and length of fruits
MH	200 ppm	Increase fruit size
Ethrel	300 ppm	Reduce harvesting time
Ethrel	200 ppm or 300 ppm	Make fruit surface smooth

Source: Summary of the above review; TIBA: 2, 3, 5-tri-iodobenzoic acid

Effect on fruit yield

The application of growth regulators significantly hastened fruit development as compared with the control treatment. In the presence of PGRs, plant remain physiologically more active which help in development of female flower of fruits, ultimately contribute to higher fruit yield in cucumber. There are various effect of GA\(_3\), NAA, MH and their combination in fruit yield. The weight of fruit decreased as GA\(_3\) doses decreased up to 10 ppm and fruit yield result highest per plant when NAA doses up to 150 ppm. Consequently, combined application of GA\(_3\) @ 20 ppm + NAA @ 100 ppm was found to be superior in fruit yield of cucumber (Dalai et al., 2020). Higher concentration of ethrel and MH decreased average fruit yield. Also, the lowest and highest average fruit yield /plant was obtained by the application of ethrel @ 3800 μM/l and GA\(_3\) @ 60μM/l respectively. The highest fruit yield /plant are produced with the application of 450 μM/l ethrel (Bano and Khokhar, 2009).

The combination of maleic hydrazide and ethephon each of 100 ppm gives maximum yield (11.72 ton/ha) and only 7.23 ton/ha was obtained in control treatment which is 45% less than best treatment. Whereas naphthalene acetic acid, either or in combination with others PGRs, does not give significant yield (Thappa et al., 2011). In poly house condition, the application of 100 ppm GA\(_3\) produced maximum yield of 178.67 (q/ha) whereas minimum yield (160q/ha) obtained in control treatment (Kadi et al., 2018). Also, Larqué-Saavedra and Martin-Mex (2007) studied the effect of salicylic acid and reported that exogenous application of SA enhanced the fruit yield of cucumber. Similarly, Imran et al. (2007) founded that the delay in senescence of plant organs (leaves and flower) in reaction of SA enhanced the fruit yield of plant. The effects of different dosages of PGRs on fruit yield of cucumber are briefly shown in Table 6.

PGR	Dosage	Fruit yield attributes
GA\(_3\)	10 ppm	Drastically decrease fruit yield
GA\(_3\)	60 μm/l	Optimum fruit yield
NAA	150 ppm	Produce maximum yield
GA\(_3\) + NAA	20 ppm + 200 ppm respectively	Superior yield
Ethrel + MH	High concentration	Decrease average yield
Ethrel	3800 Um/L	Lowest yield
Ethrel	450 μm/l	Highest yield
MH + Ethephon	100 ppm each	Enhance yield
Salicylic acid (SAA)	exogenous application	Increase yield

Source: Summary of the above review.
Cucumber has medicinal values. It is widely consumed in salads, pickles, or most frequently eaten in the preserved form. Although cucumber is a highly nutritive and increasingly demanded vegetable in Nepal, the expected potential yield hasn’t been achieved yet. It is concluded that the application of different growth regulators has a considerable impact on the growth, flowering, fruiting, and fruit yield of cucumber plants. Plant growth regulators leave determining impact on the overall growth and developmental processes, such as germination, shoot elongation, leaf expansion, flowering, fruit set, fruit growth and ripening, and the ultimate yield of the cucumber. Plant growth regulators (PGRs) may have an important role in regulating both yield and fruit quality during the production of cucumber. Some growth regulators promote the growth of plants while other acts as inhibitors that result in the reduction of growth and yield attributes of plants. Exogenous application of PGRs affect on endogenous hormone of plant which alter the physiological process of plant. Various types of plant growth regulators recommended concentrations give better growth, early flowering, and minimum sex ratio, highest fruit yield with superior quality of fruit. There are also growth regulators which suppress the plant growth. Mostly, the growth regulator helps in the production of marketable fruit in minimum number of days. Different PGRs applications showed significant effect on stem length, number of branches, total number of flower, fruiting, yield and other yield contributing characters. Auxins enhances root elongation, fruit set and fruit development whereas gibberellins enhances the cell elongation and the secondary growth. Cytokinins delay the senescence of the fruit and increase the fruit yield. This way, the review meets the objective of assessing the role of different dosage of plant growth regulators on growth, fruiting, flowering, and fruit yield of cucumber.

Open Access: This is an open access article distributed under the terms of the Creative Commons Attribution NonCommercial 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) or source are credited.

REFERENCES

Ahmad, W., Awas, H.A. and Muzafar, S. (2019). Behavior of cucumber plants under the application of different growth regulators: A review. International Journal of Research Scholars (IJRS), 3(2): 16–19.

Al-Sanousi, A.J. (1970). Effect of seed presoaking in gibberellic acid on cucumber (Cucumis sativus L) plant growth, flowering, and yield. Journal of Scientific Agriculture, 3: 9–13. https://doi.org/10.25081/jasa.2019.v3.5278

Asghar, H., Wazir, F.K. and Suleman, A. (1990). Influence of growth promoting hormones on the growth, sex expression and production of Cucumis sativus. Sarhad Journal of Agriculture, 6(6): 563-569.

Bano, A. and Khokhar, K.M. (2009). Sex expression and level of phytohormones in monoecious cucumber as affected by plant growth regulators. Sarhad Journal of Agriculture, 25(2): 10–15.

Baset Mia, M.A., Islam, M.S. and Shamsuddin, Z.H. (2014). Altered sex expression by plant growth regulators: an overview in medicinal vegetable bitter gourd (Momordica charantia L.). Journal of Medicinal Plants Research, 8(8): 361–367. https://doi.org/10.5897/jmpr.10.032

Dalai, S., Singh, M.K. and Soni, S. (2020). Yield and yield traits of cucumber (Cucumis sativus L) as influenced by foliar application of plant growth regulators. International Journal of Current Microbiology and Applied Sciences, 9(3): 121–126. https://doi.org/10.20546/ijcmas.2020.903.015

Dalai, S., Singh, M.K., Singh, K., Kumar, M, Malik, S. and Kumar, V. (2015). Effect of foliar application of GA3 and NAA on growth, flowering, yield and yield attributes of cucumber [Cucumis sativus L]. Annals of Horticulture, 8(2): 181–194. https://doi.org/10.9598/0976-4623.2015.00014.6

Greslach, V.A. and Atchison, E. (1953). Inhibition of mitosis in bean buds by maleic hydrazide. Botanical Gazette, 114(4), 478-479, https://doi.org/10.1086/335791

Growth substances (1986). In Nippon rinsho. Japanese journal of clinical medicine, 44(1).

Halfa. (2018). Crop guide: growing cucumbers. Retrieved June 22, 2020, from Pioneering the future: https://www.halfa-group.com/cucumber-fertilizer/ crop-guide-growing-cucumbers

Hikosaka, S., and Sugiyama, N. (2015). Effects of exogenous plant growth regulators on yield, fruit growth, and concentration of endogenous hormones in gynoecious parthenocarpic cucumber (Cucumis sativus L). Horticulture Journal, 84(4), 342–349, https://doi.org/10.20530/hortj.40-051

Hossain, D., Karim, M.A., Pramanik, M.H.R. and Rahman, A.S. (2006). Effect of gibberellic acid (GA 3) on flowering and fruit development of bitter gourd (Momordica charantia L.). International Journal of Botany, 2(3): 329-332, https://doi.org/10.3923/ijb.2006.329.332

Imran, H., Zhang, Y., Du, G., Wang, G. and Zhang, J. (2007). Effect of salicylic acid (SA) on delaying fruit senescence of Huang Kum pear. Frontiers of Agriculture in China, 1(4): 456–459, https://doi.org/10.1007/s11703-007-0075-y

Jyoti, S., Patel, N.B. and Patel, J.B. (2016). Effect of growth regulators and stages of spray on seed yield and seed quality parameters of ridge gourd (Luffa acutangula [Roxb.] L.). Journal of Applied and Natural Science, 8(3): 1551-1555, https://doi.org/10.1018/ijans.83.999

Kadi S.A, Asati, K.P., Barche, S. and TulasiGERI, R.G. (2018). Effect of different plant growth regulators on growth, yield and quality parameters in cucumber (Cucumis sativus L) under polyhouse condition. International Journal of Current Microbiology and Applied Sciences, 7(4): 3339–3352, https://doi.org/10.20546/ijcmas.2018.704.378

Kaur, A., Khurana, D. and Dhall, R. (2016). Sex modification in cucumber (Cucumis sativus L) under the influence of ethephon and maleic hydrazide. International Journal of Advanced Research, 4(11), 2199–2205, https://doi.org/10.21474/ijar01.2326

Khanal, S. (2020). Consumers’ willingness, behaviors, and attitudes to pay a price premium for local organic foods in Nepal. International Journal of Environment, Agriculture and Biotechnology, 5(3): 594-609, https://doi.org/10.22161/ijeb.53.3.594

Larque-Savedra, A. and Martin-Nino, M. (2007). Effects of salicylic acid on the bioproductivity of plants. Salicylic acid: a plant hormone. Dordrecht: Springer: 130, 130-15,23, https://doi.org/10.1007/1-4020-51844-0_2

Latimer, J.G. (2019). Growth retardants affect landscape performance of zinnia, impatients, and marigold. HortScience, 26(5), 557–560, https://doi.org/10.21273/hortsci.26.5.557

Marid, A.A., Mirghani, M.E. and Hussein, I. (2017). Cucumis sativus cucumber. Unconventional Oilsseeds and Oil Sources, 16: 89-94, https://doi.org/10.1016/B978-0-12-809435-8.00016-0

Mir, Albely Aflfa, Md. Abu Sadat, Md. Ruhul Amin and Md. Nazrul Islam. (2019). Plant growth regulators: one of the techniques of enhancing growth and yield of Bangladeshi local cucumber variety (Cucumis sativus). Plant Science Today, 6(2): 252–258, https://doi.org/10.14719/psl.2019.6.2.534

Mukherjee, P.K., Nema, N.K., Maity, N. and Sarkar, B.K. (2013). Phytochemical and therapeutic potential of cucumber. Fitoterapia, 84(1): 227–236, https://doi.org/10.1016/j.fitote.2012.10.003

Ouzounidou, Georgia., Anastasia G. and Parthena, P. (2008). Plant growth regulators treatments modulate growth , physiology and quality characteristics of Cucumis melo L. plants. 40(3): 1185–1193.

Pal, P., Yadav, K., Kumar, K. and Singh, N. (2016). Effect of gibberellic acid and potassium foliar sprays on productivity and physiological and biochemical parameters of parthenocarpic cucumber cv ‘seven star F1”. Journal of Horticultural Research, 24(1): 93–100, https://doi.org/10.1515/jhr-2016-0011

Prajapati, S., Jamkar, T., Singh, O.P., Rairu, N., Mandloi, R. and Jain, P.K. (2015). Plant growth regulators in vegetable production: An overview. Plant Archives, 15(2): 619–626.
Rajala, A. (2001). Plant growth regulator effects on spring cereal root and shoot growth. *Agronomy Journal*, 94(3): 936–943, https://doi.org/10.2134/agronj2001.934936x

Sahil, A.A.A.L. (2016). Effect of gibberelic and salicylic acids pre-soaking on seed germination attributes of cucumber (*Cucumis sativus* L.) under induced salt stress. *Cercetări Agronomice în Moldova*, XLIX(165): 99-109, https://doi.org/10.1515/cerce-2016-0009

Sargent, B.J.A. (1965). The penetration of growth regulators into leaves. *Annual Review of Plant physiology*, 16: 1-12, https://doi.org/10.1146/annurev.pp.16.060165.000245

Singh, M.K., Dalai, S., Singh, K.V., Kumar, M. and Lodhi, S.K. (2015). Sex modification and yield of cucumber (*Cucumis sativus* L.) as sex modification and yield of cucumber (*Cucumis sativus* L) as influenced by different levels of auxins and gibberellins. *HortFlora Research Spectrum*, 4(4): 329-332.

Sotirioudis, G., Melliou, E., Sotirioudis, T.G. and Chinou, I. (2010). Chemical analysis, antioxidant and antimicrobial activity of three Greek cucumber (*Cucumis sativus*) cultivars. *Journal of Food Biochemistry*, 34(SUPPL. 1): 61–78, https://doi.org/10.1111/j.1745-4514.2009.00296.x

Sultan, S.M.E., Mohamed, M.F., Abd-Elrahim, G.H. and El-Basyouny, M.S.S. (2016). Growth and yield of cucumber plants derived from seeds pretreated with salicylic acid. *Journal of Biology, Chemistry and Environmental Science*, 11(1): 541–561.

Suthar, M.R., Malik, T.P., Arora, S.K., Singh, V.P., Bhatia, A.K. and Rakesh, M. (2007). Effect of pruning and ethrel sprays on sex-expression and sex-ratio in cucumber (*Cucumis sativus* L.) under protected conditions. *Haryana Journal of Horticultural Sciences*, 36(1/2): 145-147

Tantasawat, P.A., Sorntip, A. and Pornbungkerd, P. (2015). Effects of exogenous application of plant growth regulators on growth, yield, and in vitro gynogenesis in cucumber. *HortScience*, 50(3): 374–382, https://doi.org/10.21273/hortsci.50.3.374

Thappa, M., Kumar, S. and Rafiq, R. (2011). Influence of plant growth regulators on morphological, floral and yield traits of cucumber (*Cucumis sativus* L.). *Kanetsart Journal - Natural Science*, 45(2): 177–188.

Trebitsh, T., Rudich, J. and Riov, J. (1987). Auxin, biosynthesis of ethylene and sex expression in cucumber (*Cucumis sativus*) . *Plant Growth Regulation*, 5(2): 105–113, https://doi.org/10.1007/BF00024738

Trichopoulou, A., Lagiou, P., Kuper, H. and Trichopoulos, D. (2000). Cancer and mediterranean dietary traditions. *Cancer Epidemiology Biomarkers and Prevention*, 9(9): 869–873.

Yamasaki, S., Fuji, N. and Takahashi, H. (2000). The ethylene-regulated expression of *CS-ETR2* and *CS-ERS* genes in cucumber plants and their possible involvement with sex expression in flowers. *Plant and Cell Physiology*, 41(5): 608–616, https://doi.org/10.1093/pch/41.5.608