We Need to Go Deeper: Measuring Electoral Violence using Convolutional Neural Networks and Social Media

DAVID MUCHLINSKI, XIAO YANG, SARAH BIRCH, CRAIG MACDONALD AND IADH OUNIS

Electoral violence is conceived of as violence that occurs contemporaneously with elections, and as violence that would not have occurred in the absence of an election. While measuring the temporal aspect of this phenomenon is straightforward, measuring whether occurrences of violence are truly related to elections is more difficult. Using machine learning, we measure electoral violence across three elections using disaggregated reporting in social media. We demonstrate that our methodology is more than thirty percent more accurate in measuring electoral violence than previously utilized models. Additionally, we show that our measures of electoral violence conform to theoretical expectations of this conflict more so than those that exist in event datasets commonly utilized to measure electoral violence including ACLED, ICEWS, and SCAD. Finally, we demonstrate the validity of our data by developing a qualitative coding ontology.

*David Muchlinski is an Assistant Professor of International Affairs, Georgia Institute of Technology, 781 Marietta Street, NW, Atlanta, GA 30332 (david.muchlinski@inta.gatech.edu). Xiao Yang is a researcher with the text mining team of the Literature Service group at the European Bioinformatics Institute (xiao.yang@ebi.ac.uk). Sarah Birch is Professor of Political Science, King’s College London, Strand Campus, Bush House (North East Wing) 30 Aldwych, London WC2B 4BG. Craig Macdonald is Senior Lecturer with the School of Computing Science, University of Glasgow, Glasgow G12 8RZ, Scotland, United Kingdom (craig.macdonald@glasgow.ac.uk). Iadh Ounis is Professor with the School of Computing Science, University of Glasgow, Glasgow G12 8RZ, Scotland, United Kingdom (iadh.ounis@glasgow.ac.uk). The authors acknowledge support from the the Economic and Social Research Council, Grant No. ES/L016435/1.
Elections are the most common means by which citizens select and provide legitimacy to their political leaders. Despite intense pressure by the international community to utilize elections as a means to promote stability, electoral politics has become intertwined with violence across much of the developing world (Dunning 2011). Research into the causes of electoral violence has become more systematic, examining the conditions under which incumbents are likely to use violence to influence the electoral process (Hafner-Burton, Hyde, and Jablonski 2014), the effects of majoritarian electoral institutions on electoral violence (Fjelde and Höglund 2016), and the conditions under which ethnic diversity contributes to such conflict (Butcher and Goldsmith 2017).

Despite the increased interest in electoral violence, the concept remains theoretically underdeveloped and conceptually vague (Staniland 2014). Inherent in most definitions of electoral violence is the temporal link between violence and elections and the causal link between the two. Electoral violence is conventionally understood as violence that takes place contemporaneously with the electoral cycle. The causal link, which is often more implicit, limits electoral violence to that which is in some way connected to the electoral process, as opposed to violence that takes place during the electoral process but has no direct bearing on the election. We follow Birch and Muchlinski (2017, 3) who define electoral violence as, “coercive force, directed towards electoral actors and/or objects, that occurs in the context of electoral competition”.

Electoral violence is often conceptualized at quite high levels of aggregation utilizing blunt categories including whether there were post-election protests, whether “civilians were killed in significant numbers” in the months surrounding the election, and whether government forces harassed opposition candidates (Hyde and Marinov 2012). Most studies of electoral violence tacitly assume that violence which occurs contemporaneously with an election is also related to the election, but there are legitimate reasons to think this
may not be so. Commonly utilized datasets on this phenomenon are hand coded from official reports released by the United States Department of State or other international organizations. Conceptual ambiguity can easily creep into published measures as coders impose their own subjective biases into the data generating process (Brass [1997]). While no recorded measure of electoral violence is free from measurement error, the fact that many measures of this concept rely heavily on the timing of violence to justify its coding leaves substantial uncertainty regarding whether such violence would still have occurred in the absence of any election.

Other studies (Daxecker [2012, 2014]; Goldsmith [2015]) have used disaggregated event datasets like ACLED (Raleigh et al. [2010]), ICEWS (Boschee et al. [2015]) and SCAD (Salehyan et al. [2012]) to develop measures of electoral violence. Because they utilize event-based datasets, these studies may be able to more accurately assess the relationship between violence and elections by including only, for instance, violence between opposition and incumbent parties. It has been established, however, that these datasets which rely on major international news media reports to collect data relevant to political violence tend to underestimate the true number of violent events, introducing another possible source of bias into measures of electoral violence (Cook et al. [2017]; Hendrix and Salehyan [2015]; Weidmann [2015, 2016]). Because reporting agencies may lack the necessary resources to send reporters into far-flung rural areas to document instances of conflict, events which have occurred may not be recorded (Earl et al. [2004]). Further, major stories likely to be included in these datasets are subject to the “if it bleeds it leads” problem and violent events that do not result in deaths often go unreported (Zeitzoff [2011]).

We propose utilizing an alternative source of data to develop conceptually clear measurements of electoral violence. Social media platforms such as Twitter catalog reports on political violence, and these data have previously been used to predict violent events,
including political instability (Ramakrishnan et al. 2014). Compared to traditional news reports, Twitter reports on major news events equally well, but contains a longer tail of minor events often not covered by traditional print media sources (Jackoway, Samet, and Sankaranarayanan 2011; Petrovic et al. 2013). This study joins a growing field of research using social media to document conflict dynamics (Doyle et al. 2014; Steinert-Threlkeld et al. 2015; Ramakrishnan et al. 2014). Most research using social media to estimate political violence has focused on large-scale, high-intensity violence like civil unrest and violent protest, but no attempt has been made to estimate occurrences of electoral violence using social media.

Our contributions are twofold. Methodologically, we introduce a way to more accurately estimate the link between the electoral process and electoral violence. To our knowledge, this is among the first projects in political science to utilize a convolutional neural network to estimate a form of political violence directly from unstructured social media text. While we chose to estimate electoral violence, our method is general and can be applied to estimate any politically relevant concept using any source of text from social to mainstream print media. Substantively, we demonstrate that the combination of social media data and our machine learning platform develops more accurate estimates of electoral violence than those that currently exist in available datasets. This is due to the superior classification ability of our convolutional neural network compared to other algorithms previously utilized for the analysis of text as data, as well will demonstrate. Scholars who adopt our methodology to measure electoral violence will thus be able to draw more statistically valid correlations between such violence and variables theorized to bring about its occurrence. This is important for advancing not only scholarly knowledge about this destructive form of conflict, but can also assist policy makers to forecast this violence and develop policies to ameliorate its effects.
We want to make clear at the outset that we are aware of the possible problems inherent in utilizing social media as a source of data to measure instances of possible violence around elections. We are well aware that not all events reported by social media may have actually occurred. Therefore, we corroborate our estimates of electoral violence using local print media sources. We also examine the external and concept validity of our estimates by measuring the temporal trends of violence reported across elections against other established datasets. To be sure our data are truly related to the elections under study, we qualitatively code events discovered by the neural network and existing datasets, and compare these results. Finally, we provide in the supplementary materials tables and datasets documenting each event discovered by our methodology. We are also aware that our data collection and analysis pipeline depends heavily on individual access to the Internet and social media. This access is geographically uneven, and is often subject to government censorship in authoritarian regimes (e.g. China). While the methodology proposed here may not be applicable to all elections worldwide, when it can be utilized it is able to estimate electoral violence with a level of detail which is unmatched in current datasets.

This article is structured in the following way. The next section argues existing sources of data measuring electoral violence do a good job measuring the temporal link between elections and violence, but the causal link between the two remains ambiguous. We argue that social media offers a useful alternative source of data to establish this relationship. The next section introduces word embeddings as our natural language processing model as well as our convolutional neural network classifier. The results section discusses how our method of detecting events in text enhances estimation of electoral violence compared to other previously utilized text analysis and machine learning methods. We also qualitatively demonstrate that our machine learning pipeline is vastly more accurate than existing
datasets in assessing the relationship between electoral violence and the electoral process. We conclude with some remarks about the use of social media to estimate political violence and the use of neural networks for the collection of this data.

Estimating Electoral Violence from Social Media

Using textual sources of data to develop estimates of political violence using automated methods is not a new endeavor. Datasets including Phoenix and ICEWS are created by fully automated systems built to search for and record specific events in newswire reports (Boschee et al. 2015; Schrodt, Beieler, and Idris 2014). Nor is utilizing social media data a foreign concept to scholars of political violence. Zeitzoff (2011) collected social media data from Twitter to analyze temporal violent dynamics between Israel and Hamas during the 2008-2009 Gaza conflict, and Ramakrishnan et al. (2014) used social media data to forecast civil unrest across multiple countries.

Thanks to these automated methods and massive sources of textual data, scholars of political violence now have access to massive datasets measuring political cooperation and conflict. It is hard to overstate the impact this new form of data has had on the field. With automated text analysis methods, datasets can now be compiled more quickly with high degrees of accuracy (Schrodt and Van Brackle 2013). It is the size of these new datasets, with millions of observations coded from international media outlets and spanning decades, that has allowed scholars to understand the minute details of political violence that previous data were unable to distinguish. As the collection and use of this text-as-data has proceeded, however, its limitations have become clearer.

Datasets constructed by automated methods may be systematically under counting the true number of violent events (Cook et al. 2017; Hendrix and Salehyan 2015; Weidmann 2015).
We Need to Go Deeper

2015, 2016). Media organizations face resource constraints and cannot be everywhere at once. Much political violence occurs where these organizations lack established bureaus to report these events (Earl et al., 2004). Perpetrators of political violence also go to some lengths to obfuscate their use of violence to make sure they do not leave a record of their activity (Zeitzoff, 2011). Finally, reports on political violence are subject to the “if it bleeds, it leads” bias, where violent events that result in multiple casualties are more likely to be reported, leaving many violent, but not deadly, events to go unreported. This is especially likely to affect estimates of electoral violence as such violence does not often rise to a level which will draw international media attention. Electoral violence can include local protests, sporadic clashes between partisans, destruction of voting material or polling stations, and other events which may not directly endanger the lives of citizens.

Other datasets utilize reports by international organizations to develop broad measures of electoral violence (Hyde and Marinov, 2012). These datasets have also done much to improve our knowledge, but the broad categories with which they measure electoral violence often obscure the identity of the perpetrators and victims and the tactics employed, misrepresent the nature of the event itself, or otherwise provide measures of this violence at quite high levels of generality and aggregation (Staniland, 2014). It can be difficult to determine whether a violent event was related to an election because reports used to generate this data generally do not report on each violent event that occurred, but rather describe elections as “generally peaceful”, or “not peaceful”. As a result, most datasets that measure electoral violence, though they posit a causal relationship between violence around the election and the electoral contest itself assume this relationship rather than making it explicit.

This is problematic. While electoral violence is indeed a broad category of violence perpetrated by many different actors with a diversity of motivations (Staniland, 2014), it
is unknown to what extent current data on these events are actually electoral in nature. Under reporting of this violence is also another unanswered question. While it is possible to utilize methods to uncover more empirically accurate distributions of political violence from text (Cook et al. 2017), these methods do not provide for us any information about these other events, including whether they were related to the election.

We propose a solution to these problems by utilizing a different source of data entirely: social media. Social media networks facilitate collective action for political activity (Larson et al. 2016). Given the ability of social media to facilitate collective action, the digital footprints left by individuals involved in these activities provide researchers with relevant data that can be used to discover the relationship of an event to the election (Schrodt, Yonamine, and Bagozzi 2013). Social media can also assist in fleshing out the obscure details of electoral violence where power asymmetries force combatants to utilize nontraditional means of violence which may go unreported by traditional news organizations (Zeitzoff 2011).

Given the massive amount of content contained in textual data, automated document classification has become a popular method of coding information due to its inherent efficiency and flexibility (Grimmer and Stewart 2013). Automated methods code massive amounts of information regarding political violence, including outbreaks of civil and international conflict (D’Orazio et al. 2014), and have identified perpetrators of mass atrocities (Bagozzi and Koren 2017). A growing literature demonstrates that machine learning algorithms, like neural networks, can achieve accuracy beyond that of previously utilized textual analysis methods, like parsers (Beieler 2016; Lin et al. 2016). Can these new methods assist researchers to discover and accurately measure electoral violence?

We hypothesize the accurate estimation of electoral violence will be enhanced by utilizing social media and neural networks for two reasons. First, because most event
We Need to Go Deeper

9
datasets were not created to measure electoral violence, we expect these datasets to under estimate this violence. Second, convolutional neural networks have produced state-of-the-art results in many computational linguistics tasks, out-performing other commonly utilized machine learning methods (Goldberg 2016). We argue the combination of disaggregated reporting using social media and advances in computational linguistics will allow scholars to more accurately estimate the occurrence of electoral violence. With more accurate discovery of these events, better statistical models can be constructed to inform scholars of the mechanisms underlying such violence and its impacts on society.

Data Collection and Preprocessing

Collection of Tweet-Level Datasets

We use the publicly available Twitter Streaming API to collect Twitter posts related to electoral violence. We collected these tweets from a two-month period around elections in three countries: Venezuela in 2015, Ghana in 2016, and the Philippines in 2016. We chose these countries because they have some of the largest levels of social media penetration in their respective regions.1 While tweets collected from the Philippines and Ghana were almost exclusively written in English, tweets from Venezuela were in Spanish.2 We chose

1For instance, Venezuela’s social media penetration (the percentage of Internet users who use social media) is 68%, the Philippine’s social media penetration is 37% and Ghana’s social media penetration is 40%. https://www.statista.com/statistics/754520/venezuela-penetration-social-networks/ https://cliqafrica.com/wp-content/uploads/2017/01/2016-Final-Ghana-Social-Media-Rankings-Report-CliQAfrica-Ltd.pdf https://www.statista.com/statistics/490378/mobile-messaging-user-reach-philippines/, accessed May 14, 2018

2For the purposes of coding the training data, Spanish tweets were automatically translated into English. Quality of the automatic translations were checked by two Spanish
the two-month window in order to analyze trends in both pre and post-electoral violence, a choice commonly made in the literature on electoral violence (Hafner-Burton, Hyde, and Jablonski 2014; Hyde and Marinov 2012). While any temporal choice to aggregate the data will be somewhat arbitrary (Daxecker 2014), we believe two months is a long enough time frame during which to gather a large number of tweets regarding possible electoral violence while ensuring a majority of tweets collected will be connected to the election.

We utilized a keyword search for tweets related to the election and electoral violence. A table with the keywords utilized in our search is given in the supplementary materials. Because the size of the tweet-based datasets resulting from this keyword search are very large, we used a computerized platform to select a random sample of tweets from each country and manually code them. Each author coded the same random sample of tweets using this electronic platform, and a report of inter-coder reliability is provided in the supplementary materials. In total, our Venezuela election training data consists of a random sample of 5,747 Spanish tweets. The Philippine training data consisted of a random sample of 4,163 English tweets. The training data for the election in Ghana consisted of 3,235 English tweets. A table with the statistics of these samples is provided in the supplementary materials. Tweets were hand-coded according to a two-tier classification scheme. First, a tweet was coded as election related or not election related. Then, out of those tweets that were coded as related to the election, a tweet was further coded as referencing violence or not. Thus, all tweets that were coded as violent were coded as violent with respect to the election. This two tiered ontology ensured that all tweets labeled as violent referenced electoral violence rather than other forms of violence that were not related to the election. This hand coded data was used to train the convolutional speakers, one author who is fluent in Spanish, and another native speaker.
neural network, which is described in greater detail later. To collect tweets, we adopt an informational retrieval and pooling methodology (Voorhees and Harman 2005) as shown in Figure 1.

The keyword search of Twitter collected a large number of tweets each day. In order to manually code the tweets, we used a search and pooling methodology to identify a reduced set that were mostly likely to be concerned with electoral malpractice or violence for each day. In particular, we used the Terrier information retrieval platform (Macdonald et al. 2012; Ounis et al. 2006) to rank tweets that well match a set of electoral violence related search terms. In particular, we configured Terrier to rank tweets using the DFReeKLIM weighting model (Amati et al. 2011), which is specifically designed for the analysis of text-sparse Twitter data. Indeed, the DFReeKLIM weighting model accounts for the very short nature of tweets when measuring the extent they match the search terms. In this way we constructed three training datasets collected from each of the three countries. We did this for each election so that there is one training dataset of tweets for the Venezuela election, one for the Ghanaian election, and one for the Philippine election. While our word embedding natural language processing model allows for multilingual data sources, we assume that there may be systematic differences in the ways in which people tweeted about elections in each country, therefore the neural network was trained separately for each election.

3 Terrier is available from http://terrier.org. We used version 4.1, but any more recent version would also be suitable.
4 Using convolutional neural networks trained on tweets from one election to classify tweets from another election has been studied and generalized by transfer learning.
Data Preprocessing using Word Embeddings

Once the training datasets were collected over the two-month period for each election and hand coded, they were preprocessed to remove stopwords and capitalization and stemmed using the English and Spanish Snowball stemmer. Then the hand-labeled tweets used to train the neural network were transformed into real-valued vectors using natural language processing software separate from our neural network to produce word embeddings (Collobert et al. [2011] Mikolov, Sutskever, et al. [2013]). The software used to create these embeddings is called \textit{word2vec} and is freely available5. Because word embeddings have not widely been utilized as a natural language processing tool in political science, a quick explanation is in order.

The commonly utilized method to transform words into numeric vectors is to assign each word a one-hot vector in $\mathbb{R}^{|V|}$ where $|V|$ is the vocabulary size of the text. Repeating this process for all words across n documents results in the creation of a $V \times N$ term-

5The website hosting this software is https://deeplearning4j.org/
document matrix where words that appear in a given document are given a value of 1, and 0 otherwise. Representing words in this way leads to substantial data sparsity and increases the data required in order to successfully train statistical models (Mandelbaum and Shalev 2016). The one-hot encoding of words also discards much linguistic information regarding the surrounding syntactic and semantic context of a given word in a sentence. Methods that can retain this kind of information are able to use this information to increase classification accuracy in many tasks (Bengio et al. 2003; Collobert et al. 2011).

One such natural language processing method is word embeddings. Word embeddings are a set of language modeling and feature leaning techniques where words and phrases from the vocabulary of the textual data are mapped to vectors of real numbers (Collobert et al. 2011; Mikolov, Sutskever, et al. 2013; Mikolov, Chen, et al. 2013). The basic idea behind word embeddings is to create a more meaningful numeric representation of the text that contains both information regarding the word itself (i.e. the meaning of the word) as well as information regarding the context of that word (i.e. its syntactic and semantic relationship to other words in the text).

In word2vec, word embeddings are randomly generated and further tuned by maximizing the average log probability of the linguistic context c given word w, or in other words, maximizing the dot product between informative word-context pairs (Goldberg and Levy 2014). Rather than consider words as atomized features to be represented as a

6The process by which word embeddings are produced is complex and space constraints do not permit a full explanation here. Theoretical work on the explicit processes by which word embeddings are produced and by which the context surrounding individual words is learned is an emerging research field in computational linguistics and statistics, and the debate surrounding the explicit formalization of this process and its proofs is ongoing. Possible methods by which embeddings are produced in the word2vec software includes Implicit Matrix Factorization (Levy and Goldberg 2014), a Skip-gram Model with Negative Sampling (Mikolov, Sutskever, et al. 2013; Mikolov, Chen, et al. 2013), and
series of ones or zeros in a term-document matrix, word embedding models like \textit{word2vec} transform these sparse word representations into dense real-valued vectors.

Conceptually, the contextual meaning of a word is not determined by viewing a word in isolation; one also needs an understanding of the surrounding linguistic context. Word embeddings model the probability of a word occurring given that linguistic context. Words are assigned a real valued vector such that words which appear in similar contexts cluster together in the embedding space. The assignment of vector values to words and the dimensions of the embedding space are meaningful only in the context of the embeddings themselves. While each word is given a vector representation, the values of these vectors have no valuation attached to them such that, for example, larger vectors are preferred to smaller vectors, or assassinate is a word twice as violent as assault. Words like violence, death, assault, fight, and kill will cluster together in the embedding space because \textit{word2vec} recognizes that these words co-occur more frequently together than do other words like fraud, cheat, vote, and ballot. This allows our neural network to learn not only which words are predictive of electoral violence, but also to learn other words in similar contexts that also report on violent events. Some visualizations of word embedding space as well as further conceptual examples are provided in the supplementary materials.

By maximizing the probability that a word occurs within a particular linguistic context, word embeddings encode information not only on the word itself - its meaning - but also the surrounding context in which that word occurs. To give a simple example, if we think the word “assassinate” is indicative of electoral violence, we would expect that a Bayesian log-linear generative model utilizing word context as informative priors (Arora et al. 2015). We follow Mikolov, Sutskever, et al. (2013) and Mikolov, Chen, et al. (2013) in this article who explain the mathematical formalization of \textit{word2vec} as a Skip-gram with Negative Sampling model.
word to co-occur relatively more frequently in the context of other words like “dead”, “politician”, and “candidate”. Utilizing a natural language processing model that accounts for these kinds of linguistic relationships should increase the discovery of violent events beyond methods that discard this broader linguistic information and only rely on one-hot encodings of each of these words.

Describing the Convolutional Neural Network

Convolutional neural networks can be quite complex, and the number of hyperparameters that are used to train the network can represent an extreme case of Gelman and Loken (2013)’s “garden of forking paths”. This section introduces the basic components of our neural network and explains their functions. A secondary subsection describes our parameterization of the neural network including, among other parameters, our choice of window size for the convolutional layer, and the dimensionality of our word embedding model.

Neural networks apply non-linear transformations to the input data, allowing nearly any relationship between the response and predictor variables. This makes neural networks

7Replication code and data for this research can be found at the following locations: Python code for the convolutional neural network at https://github.com/zzyxzz/Twitter-Election-Classification. JSON file formatted Twitter data at http://researchdata.gla.ac.uk/564/. We wish to note that there is substantial debate surrounding the extent to which complicated methodologies which rely on the setting of multiple hyper-parameters and even starting seed values, like machine learning, and especially neural networks, replicate exactly the same every time. For some clarification on this debate see Ferro et al. (2016), Ferro and Kelly (2018), and Muchlinski et al. (2019). Though perhaps the exact number of events discovered, the number of tweets captured, and metric values may differ during future replications, the main results will hold. The neural network will out-preform the support vector machine if our methodology is followed.
ideal tools for textual analysis tasks as they can learn functional mapping between any word in a vocabulary and the probability that a text references a violent event. Given we do not assume to know the entire vocabulary which is predictive of such events, we allow the neural network to learn these linguistic features directly from the data itself. Here we introduce the basics of neural networks and expand these fundamentals to describe our convolutional neural network in the following subsections.

The Basics of a Neural Network

A neural network used for the classification of a binary variable is a nonlinear and interactive extension of the familiar logistic regression model (Beck, King, and Zeng 2000). Logistic regression fits one function to estimate the relationship between a dataset of features X and the probability that a tweet references a violent event, call this π_i. A neural network can fit N approximations of this relationship. Statistically, we begin by assuming the data Y, which represents observations regarding electoral violence, are defined according to a known statistical distribution.

$$Y_i \sim \text{Bernoulli}$$

The standard logistic regression model expresses the relationship between X and π as

$$\pi_i = \logit(X_i \beta) = \frac{1}{1 + e^{-X_i \beta}}.$$
where \(i\) denotes the \(i\)-th tweet in the dataset. A neural network extends the logistic regression model in the following way:

\[
\pi_i = \logit[\gamma_0 + \gamma_1 \logit(X_i \beta_1) + \gamma_2 \logit(X_i \beta_2) + \cdots + \gamma_N \logit(X_i \beta_N)]. \quad (1)
\]

\[
\pi_i = \logit[\gamma_0 + \gamma_1 \logit(\pi_1) + \gamma_2 \logit(\pi_2) + \cdots + \gamma_N \logit(\pi_N)]. \quad (2)
\]

The \(\gamma\) terms in these equations are weights representing how much confidence the network attaches to a given probability estimate of electoral violence. More generally, we can write the weighted product of \(\gamma_n \pi_n\) as a single weight matrix \(W\), and replace the logistic functional form with a more general form \(x\). Rewriting \[1\] and \[2\] with more general notation, we obtain:

\[
f(x) = \pi_i = x_1 W_1 + \cdots + x_n W_n. \quad (3)
\]

The functional form \(x\) is estimated directly from the data by the number \(N\) of computation units in the network called “neurons”. Neurons are mathematical functions that apply nonlinear transformations of the data to various parts of the network. In our network, we use a type of neuron called a Rectified Linear Unit or ReLU, which passes tweets to other layers of the network if and only if the neuron receives sufficient evidence that a given vectorized tweet references electoral violence. The network learns which linguistic features of a tweet reference violence through its learning procedure, called backpropagation, which passes errors in classification backwards through the network. This backpropagation provides the neurons with information regarding whether a tweet was misclassified or correctly classified. If a tweet was correctly classified, the information passed to the neurons by backpropagation does not substantially alter the weights for a given vectorized tweet. If, however, a tweet was misclassified, the neural network
will update its information regarding which features are indicative of electoral violence, attaching different weight to different features. This process continues by gradient descent until a global minimum is reached.

Explaining the Convolutional Neural Network

A neural network like the one outlined above represents the simplest architecture of a neural network. Convolutional neural networks apply further transformations to the data in order to enhance classification accuracy. These transformations are applied in different *layers* of the network. Consider a neural network like a multiple-story office building. The human resources and finance departments may be housed on different floors, but are connected to each other and pass information regarding employees back and forth. Layers of a deep neural network work in a similar way by applying different transformations to the data and passing this information backwards and forwards through the network. Our convolutional neural network is based upon the architecture described in Kim (2014) and Severyn and Moschitti (2015), and consists of a convolutional layer, a max pooling layer, a dropout layer, and a softmax layer. Each of these are explained in turn. To facilitate ease of understanding, a diagram of our network is presented in Figure 2. Our neural network was run using a standard Windows desktop computer with an Intel CPU 3.6 GHz i7 processor and 16GB of RAM. Such a setup is readily available and inexpensive, making this methodology competitive with current event data projects in political science.

The Convolutional Layer. Consider a tweet that reads “Ten people are dead in election day violence”. A vectorized representation of this tweet generated from our word embedding model is input to the first layer of the network, the convolutional layer. This layer passes a series of filters over the vectorized tweet. These filters “read” the tweet, learning which
features indicate whether or not a tweet references violence by generating a series of “feature maps”. These are d-dimensional vectors of tweet features - in essence vectorized words or n-grams - that are learned to be representative of violence. To take the example shown in Figure 2 above, three feature maps may be generated from this tweet. The first is “ten people dead”, the second is “dead in election”, and the third is the word “violence”. These feature maps can be different lengths and are generated endogenously by the convolutional layer. They are passed to the next layer of the network, the Max Pooling Layer, which concatenates these features maps together, then reduces them into a sparser, but more easily learned, representation.

The Max Pooling Layer. The feature maps generated by the convolutional layer are diverse and may be of substantial length depending on the length of the initial vectorized tweet. Variation in the length of the feature maps may increase computation time and reduce classification accuracy as the network has a greater number of parameters to learn. The max pooling layer uses dimensionality reduction to concatenate the feature maps into a
single vector, then removes all but the most salient features of these maps, speeding up computation time by reducing the number of features the network has to learn.

In our example, the max pooling layer takes the three feature maps generated by the convolutional layer: “ten people dead”, “dead in election”, “violence”, and reduces them into a smaller vector that reads “people dead violence”. Though this reduced tweet is not grammatically correct, it greatly assists the neural network to classify such a tweet as referencing violence. As error rates are passed back through the max pooling layer by backpropagation, fewer weight matrices are updated - because there are fewer words in the tweet - and the neural network will learn this “tweet” references violence more quickly and accurately than if it had to update weights for all features in the longer tweet “ten people dead in election day violence”.

Dropout and Softmax Layers. The dropout layer acts like an ensemble learner. With a certain probability p it keeps a set of neurons in the network active and switches the others off. We set p equal to 0.5 such that through each iteration of training, the network used a randomly selected half of its computational units to classify tweets. This allows us to avoid overfitting. At the end of the training procedure, the results of training are averaged over all training iterations. Since each training iteration used a random configuration of neurons, our training results represent the weighted average of thousands of network configurations. Averaging the training results over these thousands of different model configurations reduces model bias. We further used $L2$ regularization to control overfitting.

The Softmax layer is the final output layer. It uses a variation of the logistic function to classify the tweets passed by the max pooling layer into mutually exclusive categories of electoral violence or not electoral violence. Concluding with our running example, the concatenated tweet “people dead violence” is passed from the max pooling to the softmax
layer. The softmax layer compares the features in this reduced-form tweet - “people dead violence” - to the hand coded class label and assigns a probability to the category of violence. Once this probability is assigned, backpropagation updates the weight matrices for each individual feature in the reduced tweet to reflect new information that features like “people”, “dead”, and “violence” are predictive of the class of violence.

As other tweets are similarly classified, the softmax layer continues to assign probabilities that separate tweets into the mutually exclusive categories of violence or no violence. As training continues, weight matrices are continually updated through backpropagation. Over time, the weight attached to the feature “people” may decrease, indicating that this is not a word that often predicts violence. But the weights of “dead” and “violence” may increase, providing the network with information that those words are highly salient predictors of the category of violence.

The Parameterization of our Neural Network and Word Embedding Model

To train and tune the parameters of the convolutional neural network and the support vector machine, we use 5-fold cross validation, such that in each fold, 3 partitions are used for training, 1 partition for validation, and 1 partition for test. Afterwards, the overall performance on the test instances is assessed by averaging the scores across all folds. The support vector machine was initialized using the LinearSVC model in the Python scikit-learn library (Pedregosa et al. 2011) and the parameter \(c \) was tuned using 5-fold cross-validation. Our neural network was also coded in Python using the Tensorflow library (Abadi et al. 2016). For all the experiments conducted with the neural network, we use 3 filter sizes \(m = \{1, 2, 3\} \), stride \(s = 1 \), window size \(W = \{1, 5, 10\} \), and the dimension size of the word embedding model was set to \(D = \{200, 500, 800\} \). For each
filter size, 200 filters are applied to the convolutional layer, producing 600 feature maps in total. Window size set to 10 and embedding size equal to 800 produced the best results, so we set those values as default parameter values for all elections. For our word embedding model, we set the batch size to 50, minimum word frequency to 5 and iterations to 5. As the distribution of tweet classes (i.e. violence or no violence) were imbalanced, we also set negative sampling to 10 as an additional parameter and conduct experiments by varying negative sampling size $ns = \{2, 10\}$. The class imbalance in the training data is shown in the supplementary materials. We note here that tweets describing electoral violence are between 5%-6% of all tweets across all three elections. To correct for this class imbalance, a weighted cross-entropy loss function was used to give a larger weight to the minority class for the neural network. For the support vector machine, we set the class weights parameter of the model to “balanced” in the Scikit-Learn library.

Robustness tests of our results across various combinations of window size and word embedding dimension sizes, are extensively covered in Yang, Macdonald, and Ounis (2018) Table 3 and Table 4 for the Venezuelan election and the Philippine election respectively. Robustness tests displaying the results of varying the negative sampling size are reported in Table 5 of Yang, Macdonald, and Ounis (2018). The neural network consistently outperforms the support vector machine as measured by the F1 score across every window size and every dimension size of the word embedding model for both

8The article containing our robustness checks, though written by some of our coauthors does not have the same focus as this manuscript. Yang, Macdonald, and Ounis (2018) examined the ability of a convolutional neural network to accurately classify tweets related to electoral violence and malpractice. This was a purely experimental paper, and the current manuscript has the empirical goal of extending the work of Yang, Macdonald, and Ounis (2018) by comparing the classification ability of the neural network and support vector machines to prominent datasets in political science which have been used to study electoral violence.
elections. Yet, as we note below in the results section, the classification performance of the neural network compared to the support vector machine in the Ghanaian election is not statistically significant, demonstrating, perhaps some limitations of this particular methodology. Ghana lags both Venezuela and the Philippines in terms of Twitter users, limiting our ability to gather data. Hootsuite, a social media management platform that catalogues the number of social media users across all countries in the world estimated only 10% of citizens were social media users in Ghana in 2016, compared to 47% in the Philippines, and 38% in Venezuela9.

We note in Table 2 below that the neural network did not identify as many additional violent events in the Ghanaian election compared to the support vector machine, though it identified comparatively many more events in the Philippines and Venezuela. The lack of robustness of our results in Ghana may be due to a relatively low level of social media penetration compared to our other two cases, a lack of mobile cell phone infrastructure hampering people’s ability to record violence as it happens, or other factors. Further study on the usefulness of digital media based research designs is most likely warranted for most African nations to understand the factors hampering researcher’s ability to gather sufficient data. Despite the more limited robustness in the Ghanian election, our results are certainly robust across the other two - statistically significant - elections, suggesting the neural network is a superior classifier of violent events compared to a support vector machine because it is a more accurate algorithm, not because of any lucky parameter settings. Researchers looking for guidance on how to parameterize future convolutional neural networks should, of course, conduct similar experiments.

9Data accessed at https://datareportal.com/reports/digital-2016-global-digital-yearbook, Feb 11, 2019
RESULTS: ESTIMATING ELECTORAL VIOLENCE

In the following sections, we describe the classification accuracy of our neural network compared to a baseline algorithm, derive the total number of violent events for each election, and compare the number of events discovered by our neural network to those reported in other event datasets including ACLED, ICEWS, and SCAD. We chose a support vector machine (SVM) for the baseline model because this algorithm has been shown to accurately classify textual data referencing various forms of political violence (D’Orazio et al., 2014). We further ensure that the events our neural network has discovered actually occurred using two methods. First, by verifying the veracity of each event using local media sources. Tweets reporting violent events often contain other media, including linked news reports that we can independently verify. The second is to create a qualitative coding ontology which we apply to all data estimated by our neural network as well as all violent data occurring during the two-month electoral period in ACLED, ICEWS, and SCAD. Qualitatively coding this data gives us greater insight into whether a violent event that occurred was causally related to the election. To code this information qualitatively, we rely on linked news stories in our tweets, but because we do not have access to the textual sources underlying the data in the other datasets, we are forced to make judgments about how likely these events were related to the election.

We use several metrics to compare classification accuracy between the neural network and support vector machine including precision, recall, and the F-1 score. Precision, is defined as $\frac{\text{true positives}}{\text{true positives} + \text{false positives}}$, while recall is given by $\frac{\text{true positives}}{\text{true positives} + \text{false negatives}}$.

\footnote{ACLED and SCAD contain some notes about each event taken from the underlying text, and we use these notes to assist our qualitative coding of that data as well.}
The F-1 score is the harmonic mean of precision and recall.

To briefly summarize, we find that our neural network more accurately classifies tweets that report actual electoral violence compared to a support vector machine. The neural network identifies thousands more violent tweets in the data, allowing us to discover many violent events that would have gone undiscovered by utilizing other methods. We further find substantial concept validity of our data by measuring the temporal distribution of electoral violence and by qualitatively coding our observations.

Comparing Classification Accuracy

After the neural network and support vector machine were trained, the parameters of each algorithm are saved, and classification accuracy is assessed using a hold-out test dataset of tweets. Because each model was trained separately for each election, test set accuracy was also assessed for each election separately. Table I compares the classification accuracy of the neural network compared to the support vector machine. Because it combines information from both precision and recall, we utilize the F-1 score as our primary metric of classification accuracy. As is clear from the table, the neural network more accurately discovers electoral violence in social media as shown by the higher F-1 scores across all elections. These differences, further, are statistically significant using McNemar’s test for the elections in the Philippines ($p=0.0153$) and Venezuela ($p=0.0218$), but are not significant for the Ghanaian election ($p=0.0736$)

Compared to the support vector machine’s performance on the entire tweet-level data (training and test sets), the neural network identifies 27,282 (47%) additional tweets referencing violence during the Venezuelan election, 1,135 (13%) additional tweets for the Philippine election, and 18,868 (76%) tweets for the Ghanaian election. These are large
numbers, and it is likely that among these tens of thousands of additional tweets, there are
tweets referencing violent events that the support vector machine has not discovered.

In effect, this replicates one of the problems of electoral violence data all over again:
under-reporting bias. Given the support vector machine fails to identify over forty thousand
tweets that actually report on violent events, we cannot be confident that this method will
be able to provide an accurate accounting of the total number of such events for each
election. However, it may also be the case that the neural network is simply producing
many more false positives. What is needed is a way to determine if the two algorithms
detect a different number of violent events, rather than simply detecting a different number
of tweets referencing violence. If the tweets classified by the neural network reference a
larger number of violent events, we can more accurately determine the level of electoral
violence for each election.

Discovering the Number of Violent Events with Clustering

Because multiple Twitter users may report on the same event, counting each tweet as a
single event would provide an inflated estimate of violence across our three elections. To
discover how many events actually occurred we utilize K-means clustering. K-means
clustering partitions the data space of observations into k clusters, where k is chosen as a
hyperparameter by the researcher. For each election, we set \(k = 100 \), one hundred being a

Country	Classifier	Precision	Recall	F-1
Venezuela	SVM	71.3	72.0	71.5
	CNN	74.3	75.4	74.6
Philippines	SVM	67.1	76.1	70.9
	CNN	78.7	74.0	75.9
Ghana	SVM	75.1	77.6	76.0
	CNN	82.6	72.9	77.1
large enough number such that all violent events could potentially be observed. As our
tweets have been transformed into word embeddings, tweets which report on the same
event will contain similar linguistic information, and thus have similar numerical values.
Tweets with similar values will cluster closely together, while tweets reporting on different
events should cluster further away in the data space. Partitioning this space into clusters
assists in the discovery of individual violent events.

The results of our clustering analysis are showing in Table 2 which shows the number
of events discovered by each algorithm across all elections, as well as the difference in
events discovered between the neural network and the support vector machine. The neural
network discovers an additional 15 violent events in Venezuela, 11 in the Philippines, and
3 in Ghana compared to the support vector machine.

Country	Classifier	Number of Violent Events	Difference
Venezuela	SVM	32	
	CNN	47	+15
Philippines	SVM	36	
	CNN	47	+11
Ghana	SVM	42	
	CNN	45	+3

The exact choice of k in our analysis does not matter as long as it is sufficiently large
to capture all relevant events. The idea is to have a reasonable number of clusters for
authors to manually validate the events. A small number will lead to clusters with mixed
events but a very large number will necessitate that researchers spend more time to check
the homogeneity of event clusters. For some experiments demonstrating how the choice
of k affects inter- and intra-tweet cluster homogeneity, see the supplementary materials.
Electoral Violence in Social Media: Measuring Concept Validity

Here we examine the concept validity of our estimates of electoral violence by examining temporal trends in violence during each election compared to that of violent events recorded in other established event datasets including ACLED, ICEWS, and SCAD. The objective of electoral violence is to influence the electoral process (Höglund 2009). Because violence can be strategically deployed to affect voting patterns, electoral violence tends to increase in frequency as election-day approaches (Harish and Little 2017). Therefore, we should expect to discover an increase in violence in the days immediately surrounding each election, as electoral actors strategically deploy violence in order to affect the results of the election according to their particular ends.

Figure 3. Temporal Trends of Electoral Violence

Figure 3 shows temporal trends in violence across all three elections. As is clear from
each graph, the temporal trends discovered by our neural network are quite different from those recorded elsewhere. This suggests that our method is detecting a different type of violence. For each election, our neural network detects substantial increases in electoral violence in the days immediately surrounding each election (election day is represented as 0 on the x-axis), a trend no other dataset picks up, except for ACLED in the Ghanaian election. Our results mirror the finding of Harish and Little (2017) who discover that political violence tracks electoral periods closely in what they term a “political violence cycle”, where violence tends to start from a low-level baseline before the election, increase as elections near eventually violence peaking on and around election day itself, then returns to the pre-electoral baseline within a month after the election. This suggests that our estimates of electoral violence have good concept validity. By measuring violence that peaks on election-day, our algorithm is accurately estimating political violence that is directly related to the electoral process.

Qualitatively Coding Electoral Violence

To ensure the neural network has discovered violent events that are correlated to the electoral process, we developed a qualitative coding ontology of all events discovered by our neural network as well as all events recorded by ACLED, ICEWS, and SCAD. We separate events into six mutually exclusive categories: strongly related to the election, probably related to the election, probably not related to the election, not related to the election, related to the election but not violent, and the final category being not enough information to code. We develop a qualitative codebook to separate events into these mutually exclusive categories. For data collected by our neural network, we relied on linked urls to news articles to determine the association of each event to each election.
When tweets contained no linked news article, we could not determine if there was sufficient information to determine the causal relation of an event to the election. Because we do not have access to the text from which events in ACLED, ICEWS, and SCAD are coded, we rely on the descriptions of each event in these datasets to assess the relationship of those events to the electoral process.

Events were coded as “strongly” related to the election if at least one actor had strong connections to the electoral process, such as being a political party or activist, and if it could be corroborated through a description of the event that the motive for the violence was related to the election. Events are “probably” related to the election if at least one actor could be linked to the electoral process, but if the motive for engaging in the violence remained unclear. Events for which the identity of either actor is ambiguous (i.e. “vigilante militia”, or “civilians”) and for which the motive is unclear are coded as probably not related to the election. Events are coded as not related to the election if no actor has an identification that can be clearly traced to the electoral process, and if the motive for the incident is clearly not related to the election. Events could also be coded as related to the election, but the event was not violent in nature. An example would be if members of a political party staged a rally, and no violence broke out. Finally, there were often events which could not be corroborated using alternative sources of data, or the identity of at least one actor was completely unknown (i.e. the identity of the perpetrator or victim in ACLED, ICEWS, or SCAD was left blank). These events were coded as not having

12ICEWS, which is the only alternative source of event data for two elections, does not contain any additional descriptions of events, like notes, which can be used to get a better understanding of the event. Fortunately, ACLED and SCAD do contain such information, and we use this additional data to assist in our qualitative coding of data from ACLED. For other reasons, we do not report the relationship of events in SCAD to the election here. We explain this reason in the text below.
enough information to determine how strongly that event was related to the election.

The qualitative coding of the data collected by our neural network confirms our earlier results, with an important caveat. The neural network is able to determine with a high degree of confidence whether events are correlated with the electoral process, but only for English language tweets. For the Venezuela election, there is little difference in the percentage of tweets qualitatively classified as “strongly” or “probably” related to the election compared to ICEWS or our neural network. We begin by noting that our neural network discovered more than twice as many violent events during the Venezuelan election compared to ICEWS. We discovered 47 violent incidents, compared to 16 recorded by ICEWS. The proportions of events that are related to the election among the two datasets, however, are similar. The neural network suggests that 53% of events discovered are strongly or probably related to the Venezuelan election. By contrast, 56% of events in ICEWS fall into the same two categories. While our neural network detects a greater number of violent events, it does no better than existing datasets at classifying the relationship of those events to the electoral process.

When the neural network is trained on English language tweets, however, it is able to far surpass other datasets in determining which violent events are related to the electoral process. These results are shown in Table[3]. For instance, our qualitative coding of the Philippine election demonstrates most recorded violence in ICEWS is not related to the electoral process. ICEWS records 106 violent events, compared to 51 discovered by our neural network. Seventy-eight percent of all events recorded by the neural network during the Philippine election are either “strongly” or “probably” related to the election. By contrast, only seven percent of all observations recorded in ICEWS could be considered to

13The qualitatively coded datasets are available from the authors
be “probably” election related, and no event could be considered to be “strongly” related to the election. The vast majority of violence contained in ICEWS are false positives reporting the killings of drug dealers or users, or military actions against rebel groups like Abu Sayyaf. The first category of events are clearly unrelated to the election. The second could plausibly be related to the electoral process, but the insurgency against such rebels has long predated the 2016 election, so such violence is quite unlikely to have electoral causes.

Similar results hold for the election in Ghana. Our neural network discovered 45 violent events, compared to 29 in ACLED, 2 in ICEWS, and 3 in SCAD. ACLED does a comparatively good job in correctly identifying electoral violence. It suggests 44% of the 29 events are “strongly” or “probably” related to the election. Our neural network, however, is twice as accurate in correctly identifying true positives - violent events that were “strongly” or “probably” related to the election. ACLED incorrectly classifies 40% of its events as violent when there is considerable evidence in ACLED itself to suggest they were peaceful. Adding the additional 16% of events that are not related to the election, ACLED’s false positive rate is 56% - twelve percent higher than its true positive rate.

These results demonstrate that our machine learning platform is vastly more accurate

\[\text{Table 3} \quad \text{Rates of Qualitative Classification for Each Election According to Different Datasets}\]

Election	Strongly	Probably	Probably Not	Not Related	Not Violence	No Info
Venezuela (NN)	0.33	0.20	0.04	0.09	0.15	0.20
Venezuela (ICEWS)	0.06	0.50	0.19	0.25	0.00	0.00
Philippines (NN)	0.53	0.25	0.02	0.06	0.02	0.10
Philippines (ICEWS)	0.00	0.07	0.08	0.74	0.00	0.10
Ghana (NN)	0.66	0.18	0.00	0.02	0.07	0.07
Ghana (ACLED)	0.40	0.04	0.00	0.16	0.40	0.00

\[\text{footnote} 14 \quad \text{We report only the comparison with ACLED in Table 3 due to these small sample sizes.}\]
in correctly identifying electoral violence as compared to existing event datasets. This suggests statistical models of electoral violence developed using these event datasets should be interpreted with caution because rates of misclassification on the dependent variable appear to be substantial. Scholars working in this field may wish to utilize alternative sources of information to measure electoral violence. Social media is one useful source of text, but many more may exist. Lastly, our results show that the choice of machine learning algorithm matters for measuring violent events in text. The support vector machine possibly under counted the true rate of violence during these three elections, contributing to another possible source of statistical bias. While we have demonstrated our neural network is able to estimate electoral violence more accurately than existing methods, our machine learning method can be applied to different, and much broader, classes of political phenomena. While convolutional neural networks can be quite complex, and they remain the blackest of back boxes, they are useful to the broader community of political methodologists or any researcher who simply wishes to measure data developed from unstructured text more accurately.

Conclusion

Election related violence plagues a significant number of countries around the world. It impedes the peaceful transition of power and can prevent citizens from exercising their constitutionally protected rights to chose their elected leaders. Despite a proliferation of recent research into this phenomenon, the concept of electoral violence still remains ill-defined and most studies assume, rather than validate, that violence occurring during elections actually seeks to affect the electoral process in some way. We have developed a new method to collect, code, and validate data mined from social media to estimate trends
in electoral violence during three elections in different countries. We have demonstrated that our machine learning pipeline more accurately measures electoral violence compared to existing datasets and other state of the art machine learning algorithms. We show that the trends in violence uncovered by our neural network peak on or near election day, and we demonstrate through qualitative coding that the data we have collected has a stronger causal connection to the electoral process compared to existing data in ACLED, ICEWS, and SCAD.

Electoral violence can take a variety of forms, is perpetrated by many different actors, and often falls short of erupting into full-fledged civil conflict. Thus, it can be difficult to correlate the presence of any violent event that occurs to the election itself. We have provided scholars with a method of moving past this technical barrier. Because it is a more direct type of reporting, often from observers of the event itself, social media may offer a more straightforward way to discover violent events. Further, since news reports are often linked to in the tweets themselves, such events can be easily confirmed using alternative sources of information. We have shown that word embeddings, further, provide machine learning classifiers greater accuracy in identifying instances of violence in text. These tools currently show the most promise in enhancing natural language processing pipelines, like ours, and classifiers trained using such embeddings have proven to be more accurate than commonly utilized tools across the discipline (Beiel 2016). Our results demonstrate that word embeddings outperform traditional bag-of-words approaches to textual analysis. The ability of word embeddings to encode not just about the word itself, but its linguistic relationship to other parts of the text, enhances classification accuracy, assisting the discovery of violent events. Our neural network classifier, further, has been demonstrated to be a more accurate algorithm for identifying instances of violence in social media text compared to other machine learning algorithms, like support vector
machines, that have previously been utilized for similar tasks.

We are aware of the limitations of our methodology. Because we derive our data on electoral violence from social media, Internet and social media access is a prerequisite for measuring electoral violence. Scholars utilizing our methodology will not be able to measure electoral violence in countries where citizen access to the Internet is limited. Scholars must also remain vigilant against the spread of misinformation throughout social media networks, and validate the information they gather against alternative sources. The performance of our methodology may deteriorate somewhat in countries where English is not the primary language used across social media platforms. Further application of this methodology to multilingual datasets of tweets is warranted to resolve this possible limitation. However, when tweets are written in English, and Internet and social media usage is high, our methodology can provide scholars with an alternative way to measure contested violent concepts, like electoral violence, with a greater degree of accuracy than has previously been possible.

Our results also demonstrate that the granularity by which media is reported matters. Both ACLED and our neural network utilize national, regional, and local reporting sources. Of the three event datasets, ACLED seems to be more accurate in identifying electoral violence, though it is extremely difficult to determine if this result would hold across additional elections. Because ACLED does not contain data on Venezuela or the Philippines, a more thorough comparison is not possible within the scope of this project. While ACLED is the most accurate in identifying the nature of electoral violence, it is interesting to note that our neural network discovered fourteen additional violent events during the Ghanaian election. A detailed analysis of why our neural network discovered more events, even holding the locality of news reporting more or less constant, is unfortunately outside the scope of this project. Despite our ignorance on this issue, we
can heartily advise scholars to, where possible, utilize the most disaggregated source of reporting that is relevant for their research needs.

Perhaps unexpectedly, we have also uncovered a result suggesting that the choice of algorithm used to discover violent events in text matters. Given the inherent costs of failing to accurately diagnose potential conflicts, including electoral violence, we suggest scholars utilize the most accurate methods available to ameliorate any possible source of under-reporting bias. Though neural networks are quite complex, and the process by which they produce their estimates are a subject of much current research, they are worth using for tasks in which the box of causality can remain black. If researchers only wish to recover the most accurate estimates of violence from text, it makes sense to use the most accurate method. Of course a sophisticated machine learning algorithm cannot substitute for the watchful eye of an expert researcher, but it can be a powerful tool in the right hands. Given our success in estimating electoral violence, we invite scholars of political violence more generally to embrace this new technology and take a dive in the deep end.
Abadi, Martin, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. “Tensorflow: a system for large-scale machine learning.” In OSDI, 16:265–283.

Amati, Gianni, Giuseppe Amodeo, Marco Bianchi, Giuseppe Marcone, Fondazione Ugo Bordoni, Carlo Gaibisso, Giorgio Gambosi, Alessandro Celi, Cesidio Di Nicola, and Michele Flammini. 2011. “FUB, IASI-CNR, UNIVAQ at TREC 2011 Microblog Track.” In Proc. of TREC.

Arora, Sanjeev, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. 2015. “Random walks on context spaces: Towards an explanation of the mysteries of semantic word embeddings.” arXiv preprint arXiv:1502.03520.

Bagozzi, Benjamin E, and Ore Koren. 2017. “Using Machine Learning Methods to Identify Atrocity Perpetrators.” In 2017 IEEE International Conference on Big Data.

Beck, Nathaniel, Gary King, and Langche Zeng. 2000. “Improving quantitative studies of international conflict: A conjecture.” American Political Science Review 94 (1): 21–35.

Beieier, John. 2016. “Generating politically-relevant event data.” arXiv preprint arXiv:1609.06239.

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. “A neural probabilistic language model.” Journal of machine learning research 3:1137–1155.

Birch, Sarah, and David Muchlinski. 2017. “The Dataset of Countries at Risk of Electoral Violence.” Terrorism and Political Violence: 1–20.

Boschee, Elizabeth, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James Starz, and Michael Ward. 2015. “ICEWS coded event data.” Harvard Dataverse 5.

Brass, Paul R. 1997. Theft of an idol: Text and context in the representation of collective violence. Princeton University Press.

Butcher, Charles, and Benjamin E Goldsmith. 2017. “Elections, Ethnicity, and Political Instability.” Comparative Political Studies 50 (10): 1390–1419.

Collobert, Ronan, Jason Weston, Leon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. “Natural Language Processing (Almost) from Scratch.” Journal of Machine Learning Research 12:2493–2537.

Cook, Scott J, Betsabe Blas, Raymond J Carroll, and Samiran Sinha. 2017. “Two wrongs make a right: Addressing underreporting in binary data from multiple sources.” Political Analysis 25 (2): 223–240.
Daxecker, Ursula E. 2012. “The cost of exposing cheating: International election monitoring, fraud, and post-election violence in Africa.” *Journal of Peace Research* 49 (4): 503–516.

———. 2014. “All quiet on election day? International election observation and incentives for pre-election violence in African elections.” *Electoral Studies* 34:232–243.

D’Orazio, Vito, Steven T Landis, Glenn Palmer, and Philip Schrotldt. 2014. “Separating the Wheat from the Chaff: Applications of Automated Document Classification Using Support Vector Machines.” *Political analysis* 22 (2).

Doyle, Andy, Graham Katz, Kristen Summers, Chris Ackermann, Ilya Zavorin, Zunsik Lim, Sathappan Muthiah, Patrick Butler, Nathan Self, Liang Zhao, et al. 2014. “Forecasting significant societal events using the Embers streaming predictive analytics system.” *Big Data* 2 (4): 185–195.

Dunning, Thad. 2011. “Fighting and voting: Violent conflict and electoral politics.” *Journal of Conflict Resolution* 55 (3): 327–339.

Earl, Jennifer, Andrew Martin, John D McCarthy, and Sarah A Soule. 2004. “The use of newspaper data in the study of collective action.” *Annu. Rev. Sociol.* 30:65–80.

Ferro, Nicola, Norbert Fuhr, Kalervo Järvelin, Noriko Kando, Matthias Lippold, and Justin Zobel. 2016. “Increasing Reproducibility in IR: Findings from the Dagstuhl Seminar on” Reproducibility of Data-Oriented Experiments in e-Science”.’’ In *SIGIR Forum*, 50:68–82. 1.

Ferro, Nicola, and Diane Kelly. 2018. “SIGIR initiative to implement ACM artifact review and badging.” In *ACM SIGIR Forum*, 52:4–10. 1. ACM.

Fjelde, Hanne, and Kristine Höglund. 2016. “Electoral institutions and electoral violence in Sub-Saharan Africa.” *British Journal of Political Science* 46 (02): 297–320.

Gelman, Andrew, and Eric Loken. 2013. “The garden of forking paths: Why multiple comparisons can be a problem, even when there is no “fishing expedition” or “p-hacking” and the research hypothesis was posited ahead of time.” *Department of Statistics, Columbia University.*

Goldberg, Yoav. 2016. “A Primer on Neural Network Models for Natural Language Processing.” *Journal of Artificial Intelligence Research* 57:345–420.

Goldberg, Yoav, and Omer Levy. 2014. “word2vec Explained: deriving Mikolov et al.’s negative-sampling word-embedding method.” *arXiv preprint arXiv:1402.3722*.

Goldsmith, Arthur A. 2015. “Electoral violence in Africa revisited.” *Terrorism and Political Violence* 27 (5): 818–837.
Grimmer, Justin, and Brandon M Stewart. 2013. “Text as data: The promise and pitfalls of automatic content analysis methods for political texts.” Political analysis 21 (3): 267–297.

Hafner-Burton, Emilie M, Susan D Hyde, and Ryan S Jablonski. 2014. “When do governments resort to election violence?” British Journal of Political Science 44 (01): 149–179.

Harish, SP, and Andrew T Little. 2017. “The political violence cycle.” American Political Science Review 111 (2): 237–255.

Hendrix, Cullen S, and Idean Salehyan. 2015. “No news is good news: Mark and recapture for event data when reporting probabilities are less than one.” International Interactions 41 (2): 392–406.

Höglund, Kristine. 2009. “Electoral violence in conflict-ridden societies: concepts, causes, and consequences.” Terrorism and political violence 21 (3): 412–427.

Hyde, Susan D, and Nikolay Marinov. 2012. “Which elections can be lost?” Political Analysis: 191–210.

Jackoway, Alan, Hanan Samet, and Jagan Sankaranarayanan. 2011. “Identification of live news events using Twitter.” In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks, 25–32. ACM.

Kim, Yoon. 2014. “Convolutional neural networks for sentence classification.” arXiv preprint arXiv:1408.5882.

Larson, Jennifer, Jonathan Nagler, Jonathan Ronen, and Joshua Tucker. 2016. “Social networks and protest participation: Evidence from 93 million twitter users.”

Levy, Omer, and Yoav Goldberg. 2014. “Neural word embedding as implicit matrix factorization.” In Advances in neural information processing systems, 2177–2185.

Lin, Yankai, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. 2016. “Neural relation extraction with selective attention over instances.” In Proceedings of ACL, 1:2124–2133.

Macdonald, Craig, Richard McCreadie, RL Santos, and Iadh Ounis. 2012. “From puppy to maturity: Experiences in developing terrier.” Proc. of OSIR at SIGIR: 60–63.

Mandelbaum, Amit, and Adi Shalev. 2016. “Word embeddings and their use in sentence classification tasks.” arXiv preprint arXiv:1610.08229.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. “Efficient Estimation of Word Representations in Vector Space.” arxiv preprint.
Mikolov, Tomas, Hya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. “Distributed Representations of Words and Phrases and their Compositionality.” *arxiv preprint*.

Muchlinski, David Alan, David Siroky, Jingrui He, and Matthew Adam Kocher. 2019. “Seeing the Forest through the Trees.” *Political Analysis* 27 (1): 111–113.

Ounis, Iadh, Gianni Amati, Vassilis Plachouras, Ben He, Craig Macdonald, and Christina Lioma. 2006. “Terrier: A high performance and scalable information retrieval platform.” In *Proceedings of the OSIR Workshop*, 18–25.

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. “Scikit-learn: Machine learning in Python.” *Journal of machine learning research* 12 (Oct): 2825–2830.

Petrovic, Sasa, Miles Osborne, Richard McCreadie, Craig Macdonald, and Iadh Ounis. 2013. “Can twitter replace newswire for breaking news?”

Raleigh, Clionadh, Andrew Linke, Håvard Hegre, and Joakim Karlsen. 2010. “Introducing ACLED: an armed conflict location and event dataset: special data feature.” *Journal of peace research* 47 (5): 651–660.

Ramakrishnan, Naren, Patrick Butler, Sathappan Muthiah, Nathan Self, Rupinder Khandpur, Parang Saraf, Wei Wang, Jose Cadena, Anil Vullikanti, Gizem Korkmaz, et al. 2014. “Beating the news’ with EMBERS: forecasting civil unrest using open source indicators.” In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*, 1799–1808. ACM.

Salehyan, Idean, Cullen S Hendrix, Jesse Hamner, Christina Case, Christopher Linebarger, Emily Stull, and Jennifer Williams. 2012. “Social conflict in Africa: A new database.” *International Interactions* 38 (4): 503–511.

Schrodt, Philip A, John Beieeler, and Muhammed Idris. 2014. “Three’sa Charm?: Open Event Data Coding with EL: DIABLO, PETRARCH, and the Open Event Data Alliance.” In *ISA Annual Convention*.

Schrodt, Philip A, and David Van Brackle. 2013. “Automated coding of political event data.” In *Handbook of computational approaches to counterterrorism*, 23–49. Springer.

Schrodt, Philip A, James Yonamine, and Benjamin E Bagozzi. 2013. “Data-based computational approaches to forecasting political violence.” In *Handbook of computational approaches to counterterrorism*, 129–162. Springer.
Severyn, Aliakesi, and Alessandro Moschitti. 2015. “UNITN: Training Deep Neural Convolutional Neural Networks for Twitter Sentiment Classification.” *Procedings of SemEval*: 464–469.

Staniland, Paul. 2014. “Violence and democracy.” *Comparative Politics* 47 (1): 99–118.

Steinert-Threlkeld, Zachary C, Delia Mocanu, Alessandro Vespignani, and James Fowler. 2015. “Online social networks and offline protest.” *EPJ Data Science* 4 (1): 19.

Voorhees, Ellen M., and Donna K. Harman. 2005. *TREC: Experiment and Evaluation in Information Retrieval*. 199–232. MIT Press.

Weidmann, Nils B. 2015. “On the accuracy of media-based conflict event data.” *Journal of Conflict Resolution* 59 (6): 1129–1149.

———. 2016. “A closer look at reporting bias in conflict event data.” *American Journal of Political Science* 60 (1): 206–218.

Yang, Xiao, Craig Macdonald, and Iadh Ounis. 2018. “Using word embeddings in twitter election classification.” *Information Retrieval Journal* 21 (2-3): 183–207.

Zeitzoff, Thomas. 2011. “Using social media to measure conflict dynamics: An application to the 2008–2009 Gaza conflict.” *Journal of Conflict Resolution* 55 (6): 938–969.