A SEPARABLE DEFORMATION
OF THE QUATERNION GROUP ALGEBRA

NURIT BARNEA AND YUVAL GINOSAR

(Communicated by Martin Lorenz)

Abstract. The Donald-Flanigan conjecture asserts that for any finite group G and any field k, the group algebra kG can be deformed to a separable algebra. The minimal unsolved instance, namely the quaternion group Q_8 over a field k of characteristic 2 was considered as a counterexample. We present here a separable deformation of kQ_8. In a sense, the conjecture for any finite group is open again.

1. Introduction

In their paper [1], J. D. Donald and F. J. Flanigan conjectured that any group algebra kG of a finite group G over a field k can be deformed to a semisimple algebra even in the modular case, namely where the order of G is not invertible in k. A more customary formulation of the Donald-Flanigan (DF) conjecture is by demanding that the deformed algebra $[kG]_\ell$ should be separable; i.e., it remains semisimple when tensored with the algebraic closure of its base field. If, additionally, the dimensions of the simple components of $[kG]_\ell$ are in one-to-one correspondence with those of the complex group algebra C^G, then $[kG]_\ell$ is called a strong solution to the problem.

The DF conjecture was solved for different families of groups, using different methods:

- when the group G has a cyclic p-Sylow subgroup and k is an algebraically closed field of characteristic p [12];
- when G has a normal abelian p-Sylow subgroup in characteristic p [6];
- dihedral groups [3] and semi-dihedral groups [2] in characteristic 2;
- reflection groups in any characteristic (with six exceptions) [7] [8] [11].

In [5], it is claimed that the group algebra kQ_8, where

$$Q_8 = \langle \sigma, \tau | \sigma^4 = 1, \tau \sigma = \sigma^3 \tau, \sigma^2 = \tau^2 \rangle$$

is the quaternion group of order 8 and k is a field of characteristic 2, does not admit a separable deformation. This result allegedly gives a counterexample to the DF conjecture. However, as observed by M. Schaps, the proof apparently contains an error (see [7]).

Received by the editors April 23, 2007.

2000 Mathematics Subject Classification. Primary 16S80.

©2008 American Mathematical Society
Reverts to public domain 28 years from publication

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The aim of this paper is to present a separable deformation of kQ_8, where k is any field of characteristic 2, reopening the DF conjecture. The same approach works for the generalized quaternion group algebras and will be introduced separately.

2. Preliminaries

Let $k[[t]]$ be the ring of formal power series over k, and let $k((t))$ be its field of fractions. Recall that the deformed algebra $[kG]_t$ has the same underlying $k(t)$-vector space as $k((t)) \otimes_k kG$, with multiplication defined on basis elements

$$g_1 * g_2 := g_1 g_2 + \sum_{i \geq 1} \Psi_i(g_1, g_2) t^i,$$

and extended $k((t))$-linearly (such that t is central). Here $g_1 g_2$ is the group multiplication. The functions $\Psi_i : G \times G \rightarrow kG$ satisfy certain cohomological conditions induced by the associativity of $[kG]_t$.

Note that the set of equations (2.1) determines a multiplication on the free kQ-module Λ spanned by the elements \{\(g\)\}$_{g \in G}$ such that $kG \cong \Lambda_4 / \langle \t \rangle$ and $[kG]_t \cong \Lambda_4 \otimes_{k[[t]]} k((t))$. In a more general context, namely over a domain R which is not necessarily local, the R-module Λ_4 which determines the deformation, is required only to be flat rather than free [3 §1].

In what follows, we shall define the deformed algebra $[kG]_t$ by using generators and relations. These will implicitly determine the set of equations (2.1).

3. Sketch of the construction

Consider the extension

$$(\beta) : 1 \rightarrow C_4 \rightarrow Q_8 \rightarrow C_2 \rightarrow 1,$$

where $C_2 = \langle \tau \rangle$ acts on $C_4 = \langle \sigma \rangle$ by

$$\eta : C_2 \rightarrow \text{Aut}(C_4),$$

$$\eta(\tau) : \sigma \mapsto \sigma^2 = (\sigma^{-1}),$$

and the associated 2-cocycle $\beta : C_2 \times C_2 \rightarrow C_4$ is given by

$$\beta(1,1) = \beta(1, \tau) = \beta(\tau, 1) = 1, \quad \beta(\tau, \tau) = \sigma^2.$$

The group algebra kQ_8 (any field) is isomorphic to the quotient $kC_4[y; \eta]/\langle q(y) \rangle$, where $kC_4[y; \eta]$ is a skew polynomial ring [10 §1.2], whose indeterminate y acts on the ring of coefficients kC_4 via the automorphism $\eta(\tau)$ (extended linearly) and where

$$(3.2) \quad q(y) := y^2 - \sigma^2 \in kC_4[y; \eta]$$

is central. The above isomorphism is established by identifying τ with the indeterminate y.

Suppose now that $\text{Char}(k) = 2$. The deformed algebra $[kQ_8]_t$ is constructed as follows.

In §4.1 the subgroup algebra kC_4 is deformed to a separable algebra $[kC_4]_t$ which is isomorphic to $K \oplus k((t)) \oplus k((t))$, where K is a separable field extension of $k((t))$ of degree 2.

The next step (§4.2) is to construct an automorphism η_t of $[kC_4]_t$ which agrees with the action of C_2 on kC_4 when specializing $t = 0$. This action fixes all three
Then the quotient is an irreducible (separable) polynomial in \(k \). Let \(x \) be a non-zero element, and let \(\sigma \) be a primitive idempotents of \([kC_4]_t \). In that way, we obtain the skew polynomial ring \([kC_4]_t[y; \eta_t] \).

In \(\Theta \) we deform \(q(y) = y^2 + \sigma^2 \) to \(q_t(y) \), a separable polynomial of degree 2 in the center of \([kC_4]_t[y; \eta_t] \).

By factoring out the two-sided ideal generated by \(q_t(y) \), we establish the deformation

\[
[kQ_8]_t := [kC_4]_t[y; \eta_t]/(q_t(y)).
\]

In \(\Theta \) we show that \([kQ_8]_t \) as above is separable. Moreover, passing to the algebraic closure \(k((t)) \) we have

\[
[kQ_8]_t \otimes_{k((t))} k((t)) \cong \bigoplus_{i=1}^{4} k((t)) \oplus M_2(k((t))).
\]

This is a strong solution to the DF conjecture since its decomposition to simple components is the same as

\[
CQ_8 \cong \bigoplus_{i=1}^{4} \mathbb{C} \oplus M_2(\mathbb{C}).
\]

4. A deformation of \(kC_4[y; \eta] \)

4.1. We begin by constructing \([kC_4]_t \), \(C_4 = \langle \sigma \rangle \). Recall that

\[
kC_4 \cong k[x]/(x^4 + 1)
\]

by identifying \(\sigma \) with \(x + \langle x^4 + 1 \rangle \). We deform the polynomial \(x^4 + 1 \) to a separable polynomial \(p_t(x) \) as follows.

Let \(k[[t]]^* \) be the group of invertible elements of \(k[[t]] \) and denote by

\[
U := \{ 1 + zt | z \in k[[t]]^* \}
\]

its subgroup of 1-units (when \(k = \mathbb{F}_2 \), \(U \) is equal to \(k[[t]]^* \).

Let

\[
a \in k[[t]] \setminus k[[t]]^*
\]

be a non-zero element, and let

\[
b, c, d \in U(c \neq d),
\]

such that

\[
\pi(x) := x^2 + ax + b
\]

is an irreducible (separable) polynomial in \(k((t))[[x]] \). Let

\[
p_t(x) := \pi(x)(x + c)(x + d) \in k((t))[[x]].
\]

Then the quotient \(k((t))[[x]]/(p_t(x)) \) is isomorphic to the direct sum \(K \oplus k((t)) \oplus k((t)) \), where \(K := k((t))[[x]]/(\pi(x)) \). The field extension \(K/k((t)) \) is separable and of dimension 2.

Note that \(p_{t=0}(x) = x^4 + 1 \) and that only lower order terms of the polynomial were deformed. Hence, the quotient \(k[[t]][x]/(p_t(x)) \) is \(k[[t]] \)-free and \(k((t))[[x]]/(p_t(x)) \) indeed defines a deformation \([kC_4]_t \) of \(kC_4 \cong k[x]/(x^4 + 1) \). The new multiplication \(\sigma^t \ast \sigma^t \) of basis elements \(\{2, 3\} \) is determined by identifying \(\sigma^t \) with \(\bar{x^t} := x^t + \langle p_t(x) \rangle \).

We shall continue to use the term \(\bar{x} \) in \([kC_4]_t \), rather than \(\sigma \).

Assume further that there exists \(w \in k[[t]] \) such that

\[
(4.1) \quad (x + w)(x + c)(x + d) = x\pi(x) + a
\]

A SEPARABLE DEFORMATION OF THE QUATERNION GROUP ALGEBRA 2677
(see Example 4.3). Then $K \simeq ([kC_4]_t)e_1$, where

$$e_1 = \frac{(\bar{x} + w)(\bar{x} + c)(\bar{x} + d)}{a}.$$

The other two primitive idempotents of $[kC_4]_t$ are

$$e_2 = \frac{c(\bar{x} + d)\pi(\bar{x})}{a(c + d)}, \quad e_3 = \frac{d(\bar{x} + c)\pi(\bar{x})}{a(c + d)}.$$

4.2. Let

$$\eta : k((t))[x] \to k((t))[x]$$

be an algebra endomorphism determined by its value on the generator x as follows:

$$\eta(x) = x\pi(x) + x + a.$$

We compute $\eta(\pi(x))$, $\eta(x + c)$ and $\eta(x + d)$:

$$\eta(\pi(x)) = \eta(x)^2 + a\eta(x) + b = x^2\pi(x)^2 + x^2 + a^2 + ax\pi(x) + ax + a^2 + b = \pi(x)(x^2\pi(x) + ax + 1).$$

By (4.1),

$$\eta(\pi(x)) = \pi(x) + x(x + w)p_t(x) \in \langle \pi(x) \rangle.$$

Next,

$$\eta(x + c) = x\pi(x) + x + a + c.$$

By (4.1),

$$\eta(x + c) = (x + c)[(x + w)(x + d) + 1] \in \langle x + c \rangle.$$

Similarly,

$$\eta(x + d) = (x + d)[(x + w)(x + c) + 1] \in \langle x + d \rangle.$$

By (4.1), (4.6) and (4.7), we obtain that $\eta(p_t(x)) \in \langle p_t(x) \rangle$, and hence η_t induces an endomorphism of $k((t))[x]/(p_t(x))$, which we continue to denote by η_t. As can easily be verified, the primitive idempotents given in (4.2) and (4.3) are fixed under η_t:

$$\eta_t(e_i) = e_i, \quad i = 1, 2, 3,$$

whereas

$$\eta_t(\bar{x}e_1) = \eta_t(\bar{x})e_1 = (\bar{x}\pi(\bar{x}) + \bar{x} + a)e_1 = (\bar{x} + a)e_1.$$

Hence, η_t induces an automorphism of K of order 2 while fixing the two copies of $k((t))$ pointwise. Furthermore, one can easily verify that

$$\eta_{t=0}(\bar{x}) = \bar{x}^3.$$

Consequently, the automorphism η_t of $[kC_4]_t$ agrees with the automorphism $\eta(\tau)$ of kC_4 when $t = 0$. The skew polynomial ring

$$[kC_4]_t[y; \eta_t] = (k((t))[x]/(p_t(x)))[y; \eta_t]$$

is therefore a deformation of $kC_4[y; \eta]$.

Note that by (4.8), the idempotents $e_i, i = 1, 2, 3$ are central in $[kC_4]_t[y; \eta_t]$ and hence

$$[kC_4]_t[y; \eta_t] = \bigoplus_{i=1}^3 [kC_4]_t[y; \eta_t]e_i.$$
4.3. Example. The following is an example for the above construction. Put
\[a := \frac{t + t^2 + t^3}{1 + t}, \quad b := 1 + t^2 + t^3, \quad c := \frac{1}{1 + t}, \quad d := 1 + t + t^2, \quad w := t. \]

These elements satisfy equation (4.1):
\[(x + w)(x + c)(x + d) = (x + t)(x + \frac{1}{1 + t})(x + 1 + t + t^2) \]
\[= x^3 + \frac{t + t^2 + t^3}{1 + t}x^2 + (1 + t^2 + t^3)x + \frac{t + t^2 + t^3}{1 + t} = x\pi(x) + a. \]

The polynomial
\[\pi(x) = x^2 + \frac{t + t^2 + t^3}{1 + t}x + 1 + t^2 + t^3 \]
does not admit roots in \(k[[t]]/(t^2) \); thus it is irreducible over \(k((t)) \).

5. A deformation of \(q(y) \)

The construction of \([kQ_8]_t \) will be completed once the product \(\bar{\pi} \ast \bar{\pi} \) is defined. For this purpose the polynomial \(q(y) \) (3.2), which determined the ordinary multiplication \(\tau^2 \), will now be developed in powers of \(t \).

For any non-zero element \(z \in k[[t]] \setminus k[[t]]^* \), let
\[q_t(y) := y^2 + z\bar{x}\pi(\bar{x})y + \bar{x}^2 + a\bar{x} \in [kC_4]_t[y; \eta_t]. \]

The decomposition of (5.1) with respect to the idempotents \(e_1, e_2, e_3 \) yields
\[q_t(y) = (y^2 + b)e_1 + [y^2 + zay + c(c + a)]e_2 + [y^2 + zay + d(d + a)]e_3. \]

We now show that \(q_t(y) \) is in the center of \([kC_4]_t[y; \eta_t] \).

First, the leading term \(y^2 \) is central since the automorphism \(\eta_t \) is of order 2. Next, by (1.8), the free term \(be_1 + c(c + a)e_2 + d(d + a)e_3 \) is invariant under the action of \(\eta_t \) and hence central. It is left to check that the term \(za(e_2 + e_3)y \) is central. Indeed, since \(e_2 \) and \(e_3 \) are \(\eta_t \)-invariant, then \(za(e_2 + e_3)y \) commutes both with \([kC_4]_t[y; \eta_t]e_2 \) and \([kC_4]_t[y; \eta_t]e_3 \). Furthermore, by orthogonality,
\[za(e_2 + e_3)y \cdot [kC_4]_t[y; \eta_t]e_1 = [kC_4]_t[y; \eta_t]e_1 \cdot za(e_2 + e_3)y = 0, \]
and hence \(za(e_2 + e_3)y \) commutes with \([kC_4]_t[y; \eta_t] \).

Consequently, \(\langle q_t(y) \rangle = q_t(y)[kC_4]_t[y; \eta_t] \) is a two-sided ideal.

Now, as can easily be deduced from (5.1),
\[q_{t=0}(y) = y^2 + \bar{x}^2 = q(y), \]
where the leading term \(y^2 \) remains unchanged. Then
\[[kQ_8]_t := [kC_4]_t[y; \eta_t]/\langle q_t(y) \rangle \]
is a deformation of \(kQ_8 \), identifying \(\bar{\pi} \) with \(\bar{y} := y + \langle q_t(y) \rangle \).
6. Separability of $[kQ_8]_t$

Finally, we need to prove that the deformed algebra $[kQ_8]_t$ is separable. Moreover, we prove that its decomposition to simple components over the algebraic closure of $k((t))$ resembles that of $\mathbb{C}Q_8$. By (4.10), we obtain

$$[kQ_8]_t = \bigoplus_{i=1}^{3} [kC_4]_t[y; \eta_i]/(q_i(y)e_1).$$

We handle the three summands in (6.1) separately.

By (6.2),

$$[kC_4]_t[y; \eta_i]/(q_i(y)e_1) \simeq K[y; \eta_i]/(y^2 + b) \simeq K
\ast_f C_2.$$

The rightmost term is the crossed product of the group $C_2 := \langle \bar{\tau} \rangle$ acting faithfully on the field $K = [kC_4]_t e_1$ via η_i (1.9), with a twisting determined by the 2-cocycle $f : C_2 \times C_2 \to K^*$:

$$f(1, 1) = f(1, \bar{\tau}) = f(\bar{\tau}, 1) = 1, \ f(\bar{\tau}, \bar{\tau}) = b.$$

This is a central simple algebra over the subfield of invariants $k((t))$ [37, Theorem 4.4.1]. Evidently, this simple algebra is split by $k((t))$, i.e.

$$[kC_4]_t[y; \eta_i]/(q_i(y)e_1) \otimes_{k((t))} k((t)) \simeq M_2(k((t))).$$

(In fact, $K \ast_f C_2$ splits already over $k((t))$, since b is a C_2-norm of a root of the irreducible polynomial $\pi(x)$ and therefore f is cohomologically trivial.)

Next, since η_i is trivial on $[kC_4]_t e_2$, the skew polynomial ring $[kC_4]_t e_2[y; \eta_i]$ is actually an ordinary polynomial ring $k((t))[y]$. Again by (5.2),

$$[kC_4]_t[y; \eta_i]/(q_i(y)e_2) \simeq k((t))[y]/(y^2 + za + c(c + a)).$$

Similarly,

$$[kC_4]_t[y; \eta_i]/(q_i(y)e_3) \simeq k((t))[y]/(y^2 + za + d(d + a)).$$

The polynomials $y^2 + za + c(c + a)$ and $y^2 + za + d(d + a)$ are separable (since za is non-zero). Thus, both $[kC_4]_t[y; \eta_i]/(q_i(y)e_2)$ and $[kC_4]_t[y; \eta_i]/(q_i(y)e_3)$ are separable $k((t))$-algebras, and for $i = 2, 3$,

$$[kC_4]_t[y; \eta_i]/(q_i(y)e_i) \otimes_{k((t))} k((t)) \simeq k((t)) \otimes k((t)).$$

Equations (6.1), (6.2) and (6.3) yield

$$[kQ_8]_t \otimes_{k((t))} k((t)) \simeq \bigoplus_{i=1}^{4} k((t)) \otimes M_2(k((t))),$$

as required.

7. Acknowledgement

We wish to thank M. Schaps for pointing out to us that there is an error in the attempted proof in [5] that the quaternion group is a counterexample to the DF conjecture. Here is her explanation: The given relations for the group algebra are incorrect. Using the notation in pages 166-7 of [5], if $a = 1 + i$, $b = 1 + j$ and $z = i^2 = j^2$, then $ab + ba = ij(1 + z)$, while $a^2 = b^2 = 1 + z$. There is a further error later on when the matrix algebra is deformed to four copies of the field, since a non-commutative algebra can never have a flat deformation to a commutative algebra.
References

[1] J. D. Donald and F. J. Flanigan, *A deformation-theoretic version of Maschke’s theorem for modular group algebras: The commutative case*, J. Algebra 29 (1974), 98–102. MR0342568 (49:7314)

[2] K. Erdmann, *On semisimple deformations of local semidihedral algebras*, Arch. Math. 63 (1994), no. 6, 481–487. MR1300746 (95k:16044)

[3] K. Erdmann and M. Schaps, *Deformation of tame blocks and related algebras*, in: *Quantum Deformations of Algebras and Their Representations*, Israel Math. Conf. Proc. 7, Bar-Ilan Univ., Ramat Gan (1993), 25–44. MR1261899 (95k:16036)

[4] M. Gerstenhaber, *On the deformation of rings and algebras*, Ann. of Math. 79 (1964), 59–103. MR0171807 (30:2034)

[5] M. Gerstenhaber and A. Giaquinto, *Compatible deformations*, Contemp. Math. 229, Amer. Math. Soc., Providence, RI (1998), 159–168. MR1676217 (2000e:16029)

[6] M. Gerstenhaber and M. E. Schaps, *The modular version of Maschke’s theorem for normal abelian p-Sylows*, J. Pure Appl. Algebra 108 (1996), no. 3, 257–264. MR1384005 (97e:16063)

[7] M. Gerstenhaber and M. E. Schaps, *Hecke algebras, U_q(sl_n), and the Donald-Flanigan conjecture for S_n*, Trans. Amer. Math. Soc. 349 (1997), no. 8, 3353–3371. MR1390035 (97j:20012)

[8] M. Gerstenhaber, A. Giaquinto and M. E. Schaps, *The Donald-Flanigan problem for finite reflection groups*, Lett. Math. Phys. 56 (2001), no. 1, 41–72. MR1848165 (2002g:20049)

[9] I. N. Herstein, *Noncommutative Rings*, published by The Mathematical Association of America, distributed by John Wiley & Sons, Inc., New York, 1968. MR0227205 (37:2790)

[10] J. C. McConnell and J. C. Robson, *Noncommutative Noetherian Rings*, John Wiley & Sons, Ltd., Chichester, UK, 1987. MR934572 (89j:16023)

[11] M. Perez and M. Schaps, *Hecke algebras and separable deformations of dihedral groups*, Far East J. Math. Sci. (FJMS) 1 (1999), no. 1, 17–26. MR1686657 (2000i:20009)

[12] M. Schaps, *A modular version of Maschke’s theorem for groups with cyclic p-Sylow subgroups*, J. Algebra 163 (1994), no. 3, 623–635. MR1265854 (95b:20015)

Department of Mathematics, University of Haifa, Haifa 31905, Israel

E-mail address: ginosar@math.haifa.ac.il