Semiclassical theory of chaotic quantum resonances

T. Micklitz1 and A. Altland2

1Dahlem Center for Complex Quantum Systems and Institut für Theoretische Physik, Freie Universität Berlin, 14195 Berlin, Germany

2Institut für Theoretische Physik, Universität zu Köln, Zülpicher Str. 77, 50937 Cologne, Germany

(Dated: May 5, 2014)

States supported by chaotic open quantum systems fall into two categories: a majority showing instantaneous ballistic decay, and a set of quantum resonances of classically vanishing support in phase space. We present a theory describing these structures within a unified semiclassical framework. Emphasis is put on the quantum diffraction mechanism which introduces an element of probability and is crucial for the formation of resonances. Our main result are boundary conditions on the semiclassical propagation along system trajectories. Depending on whether the trajectory propagation time is shorter or longer than the Ehrenfest time, these conditions describe deterministic escape, or probabilistic quantum decay.

PACS numbers: 03.65.Sq, 03.65.Yz, 05.45.Mt

I. INTRODUCTION

Quantum states populating ‘open’ chaotic cavities decay to the outside environment and, thence, have the status of resonances. In spite of the ubiquity of the general setup — open quantum chaos is realized in many of the devices currently explored in mesoscopic physics, quantum optics, and cold atom physics — salient features of these resonances are not fully understood. While the deep quantum regime (the Ehrenfest time, t_E, marking the diffusive disintegration of minimal wave packages shorter than classical escape times, t_d) appears to be under reasonable control \cite{2}, it is the opposite, semiclassical limit which poses unsettled issues \cite{2}.

Broadly speaking, the states populating an open cavity can be grouped into two families: states evolving near classically and escaping deterministically after a classical flight time, and a fraction $\sim \exp(-t_E/t_d)$ of quantum resonances, whose probabilistic decay is characterized by a finite imaginary offset $\Gamma/2$ to the real resonance energy E. The most basic quantity characterizing the statistics of resonances of complex energy $z = E + i\Gamma/2$ is the resonance density $\rho(z)$. Although the quantitative profile of that quantity is not fully understood, the density appears to be gapped against the real axis, $\Gamma = 0$ (the existence of rare midgap states notwithstanding \cite{2} \cite{5}.) The integrated number of resonances at a given value of E has been found to obey the so-called fractal Weyl law, $\rho \propto \hbar^{-d_f}$, where d_f is a non-universal fractal exponent.

Previous work on the phenomenon includes the formulation of lower bounds on the resonance gap \cite{4} \cite{6}, semiclassical approaches based on short periodic orbits \textit{trapped} in the open system \cite{7}, a description in terms of non-unitarily evolving Husimi functions \cite{8}, phenomenology based on a mixture of phase space dynamics and random matrix theory, resp. \cite{9}, and numerical analyses \cite{2} \cite{5} \cite{8} \cite{12}. However, a unified theory of resonance formation in terms of first principle semiclassical dynamics appears to be missing and the formulation of such a theory is the subject of the present work.

Specifically, we will explore the quantum dynamics of states concentrated on classical trajectories in terms of phase space Wigner functions. Assuming globally hyperbolic classical dynamics we will describe how quantum fluctuations operational on long trajectories convert the deterministic classical escape of short trajectories into probabilistic quantum decay.

Our analysis is organized in three conceptual steps. We first introduce the phase space language used in the rest of the paper on a one-dimensional toy model (section II). We then generalize to the more complex setting of a higher dimensional cavity (section III), and derive effective boundary conditions determining the decay rates of the system. Finally, (section IV) we analyze these equations for both short and long trajectories. We conclude in section V.

II. ONE-DIMENSIONAL TOY MODEL

Consider a one-dimensional ‘cavity’ parameterized by the spatial coordinate $q \in [-q_0,q_0]$, while coordinates to the right/left of $+q_0/-q_0$ define connecting ‘leads’ (see Fig. I). We assume free intra-cavity particle dynamics, $\hat{H}_0 = \hat{p}^2/2m$ and, crucially, no backscattering barriers at the cavity/lead interfaces.

Life times and energies of the resonant states supported by the system may be calculated by matching solutions of the cavity Schrödinger equation to outgoing boundary conditions \cite{13} \cite{4}, i.e. by requiring that cavity wave functions $\psi(q)$ and their derivatives smoothly connect to vacuum wave functions $\varphi_\pm(q) \equiv a_\pm \exp(\pm i q \kappa)$ at the right/left interface. Here, $a_\pm = \text{const}.$, and $\kappa = k - i\Gamma/2$ is a complex wave vector whose real- and imaginary-part define the energy $\hbar k = (2mE)^{1/2}$ and life time $\hbar k T \equiv \Gamma/v$ of resonant states, resp., where $v = \hbar k/m$. The divergence of the reference states at spatial infinity $q \to \pm \infty$, is a formal means \cite{13} to the fixation of decay rates, as exemplified below.

For the intra-cavity wave function we make an ansatz
and the somewhat unconventional denotation of terms is retained. Indeed, it is straightforward to check that

\[a^2 e^{\sigma k \Gamma v t(q)} = |\psi_0(q)|^2 = \int (dp) W_0(q, p), \]

\[\sigma \hbar \partial_q \phi(q) = \int (dp) p W_0(q, p) \int (dp) W_0(q, p). \]

(3)

For the simple 1d system, the linear dependence \(\phi_q = kp \) implies \(\partial_q \phi = k \) so that the right side of (1) reduces to

\[\frac{8E}{\Gamma} e^{-\Gamma t(q_0)/\hbar} = 1 - \nu \partial_q t(q)|_{q=q_0} \]

(4)

where we have 'fixed a gauge' \(e^{-2i\phi(q_0)} = i \) for the arbitrary phase of the wave function and neglected contributions \(k_\Gamma/k \ll 1 \).

For the toy model at hand, \(\nu \partial_q t(q) = 1 \), which means that the right hand side of (4) vanishes, and \(\Gamma \to \infty \) is the only consistent solution. This reflects the fact that a wave function will 'decay' with probability unity upon passing the reflectionless boundaries of the system. We next discuss how the situation changes upon generalization to a higher dimensional system with chaotic dynamics.

III. CHAOTIC CAVITY

We consider a two-dimensional cavity with ballistic Hamiltonian \(H = \hat{p}^2 / 2m \) and chaotic boundary scattering. The cavity is open such that after an average time \(t_d \), much shorter than any of the relevant quantum time scales, trajectories escape through one or several reflectionless openings. We define the Wigner function of the system’s resonance states by obvious generalization of Eq. (2), i.e. \(W(q, p) = \int (d^2a) e^{-i\frac{\hbar}{2} \{ \hat{a} \hat{a}^* - \frac{\hbar}{2} \{ \hat{a}^* \hat{a} - \frac{p^2}{2} \} \psi(q - \frac{a}{2}) \psi(q + \frac{a}{2})} \). To obtain the intra cavity evolution equations of \(W \), one adds and subtracts the Schrödinger equations of the resonances \(\psi \) and \(\psi^* \) to obtain

\[[H, W] = 2E W, \quad [H, \psi] = -i\Gamma \psi \]

(5)

Here, \(H = \hat{p}^2 / 2m \) is the Hamiltonian function and \([A; B] = A \ast B \mp B \ast A \) where the Moyal product of phase space functions \(A = A(q, p) \) is given by \(A \ast B = AB + \frac{i\hbar}{2} \{ A, B \} + O(h^2) \), and \(\{, \} \) is the Poisson bracket.

We next consider the vicinity of an exceptionally long trajectory \(\gamma_0 \) spending time \(T \gg t_d \) inside the cavity. For completeness we note that long trajectories in open systems are found with low probability \(\sim \exp(-T/t_d) \). They typically form in the phase space neighborhood of strange repellors realized through periodic orbits trapped in the interior of the cavity (see below for further comments on this aspect). Assuming global hyperbolicity of the dynamics, we introduce a trajectory coordinate, \(q \in [-v T / 2, v T / 2] \), a conjugate momentum \(p = p(H) = (2mH)^{1/2} \) transverse to the shell of conserved energy, and a pair \(u, s \) of locally unstable and stable coordinates. In the asymptotic neighborhood of \(\gamma_0 \), the Hamiltonian can
then be approximated as $H \simeq H_0 = \frac{p^2}{2m} + \lambda u s$, where λ is a Lyapunov exponent. The corresponding dynamics is generated by $[H, \cdot] = \frac{1}{i} \{H_0, \cdot\} \equiv -i h \mathcal{L}$, where the Liouvillian
\[\mathcal{L} = v \partial_q + \lambda (u \partial_u - s \partial_s) \] describes propagation in the direction of γ_0, and exponential expansion/contraction in the u/s coordinate. Nonlinear corrections to H_0 can be described as $H = H_0 + V$, where $V = V(u, s)$ is a polynomial of degree > 2 in the variables u, s. The corresponding modification of the dynamics, $[V, \cdot] \equiv -i h (\Delta \mathcal{L} + \mathcal{Q})$, comprises a weak alteration of the classical Liouvillian, $\Delta \mathcal{L}$, and a quantum generator
\[\mathcal{Q} = \sum_{n+m>1} c_{nm} h^{n+m} \partial_u^n \partial_s^m, \] where $c_{nm} = c_{nm}(q, u, s)$ are coefficient functions whose detailed profile will not be of much importance throughout. Although both contributions are nominally small in u, s, the quantum generator \mathcal{Q}, will be seen to have a regularizing effect on classical singularities [17], which will ultimately shape the profile of the resonance density.

A. Life time in a chaotic cavity

Close to the trajectory, the first of Eqs. [5], $[H, W]_+ \simeq [H_0, W]_+ \simeq 2(p^2/2m)W = 2EW$ simply describes the on-shell fixation $p \simeq (2mE)^{1/2}$. Turning to the second equation,
\[\mathcal{Q} = \Gamma W(q, u, s), \] we first discuss the linear approximation, $\Delta \mathcal{L}, Q = 0$, before including the correction terms in a second step.

For $\Delta \mathcal{L}, Q = 0$, (6) becomes a first order differential equation which is solved in terms of a left- and a right-moving contribution
\[W(q, p, u, s) = \sum_{\sigma = \pm} a^2 \delta(p - \sigma p(E))e^{\sigma q \nu t + t(q, u, s)}, \] structurally similar to Eq. (2). Here, (q, u, s) are effective parameter functions generalizing $t(q)$ of the toy model and evolving uniformly along the trajectories $\gamma \equiv \gamma_\mathcal{Q}$ piercing the phase-space point $x \equiv (q, u, s), L^\prime(t(x)) = 1$. To solve this (partial first order differential) equation, we consider its characteristics, i.e. the trajectory $\gamma_\mathcal{Q}$. On $\gamma_\mathcal{Q}$, the equation assumes the form $d_t \ell(x(\tau)) = 1$, where $q(\tau) = q + vt, u(\tau) = ue^{\lambda \tau}, s(\tau) = se^{-\lambda \tau}$ and (q, u, s) are starting values of the evolution. We solve the characteristic equation as $t(\tau) = t + \ell^0$, where t increases uniformly until $\gamma_\mathcal{Q}(\tau)$ hits the effective boundaries of the problem, and ℓ^0 is a freely adjustable parameter.

To understand the role of the boundaries, note that $\gamma_\mathcal{Q}$ will leave the cavity either through a physical interface, S_0, along with $\gamma_0 = \gamma_{(q, 0, 0)}$ (cf. Fig. 3), or it will depart from γ_0 up to some classical threshold $u \simeq c$ within the cavity (solid line). We assume that points separated from γ_0 by scales $\sim c$ have become generic and will exit in the classical, and hence negligibly short time $\simeq t_d$. The union $I_o \equiv S_o \cup C_o$ of S_o and the surface $C_o \equiv \{u = c, s, q\}$ then defines the effective ‘outgoing interface’ of our problem. Similarly, the union $I_i \equiv S_i \cup C_i$ of the left vacuum interface S_i and the surface $C_i \equiv \{u = c, s, q\}$ defines the incoming interface. The traveling phase space point $x(\tau) = (q, u, s)(\tau)$ hits the exit interface I_o, at the smaller of two times, $\tau = t_o = t_o(q, u)(\tau)$, depending on whether S_o or C_o is the terminal. Likewise, $\gamma_\mathcal{Q}$ has entered the cavity through I_i at a large negative time $\tau = t_i = t_i(q, s)(\tau)$.

Finally, the boundary conditions Eq. (1) are generalized by replacing the one-dimensional variable $t(q)$ by $t(q, u, s)$, and the derivative $v \partial_q$ by \mathcal{L}, i.e. a derivative acting in the direction of the Hamiltonian flow [13]. The generalization of Eq. (1) thence reads
\[\frac{8E}{1 - e^{-\tau t/h}} = 1 - \mathcal{L}t, \] where $t = t(q) = T_\gamma/2$, and $x \in I_o$ is on the exit interface. Eq. (10) is a principal result of the present paper. In the following we discuss its implications for different types of trajectories.
of classically evolving variables gets cut off by quantum fluctuations. Technically, this conclusion rests on the observation that in the evolution equation for the variable s the higher order derivatives $\sim \partial_s^{n>1}$ present in the quantum generator [7], build up 'pressure' counteracting the classical contraction. This is seen in explicit terms in the Fourier/Laplace representation of the evolution equation, where these derivatives assume the form of algebraic factors, cutting the logarithmic 'ultraviolet' singularities of the classical equation. Referring to the appendix for more details, we note that to leading semiclassical accuracy functions which in the classical theory evolve as $f(q,|u|,|s|)$ get replaced by $f(q,|u|+\hbar/c,|s|+\hbar/c)$. Here, c is symbolic notation for classical (\hbar-independent) functions over which we have no explicit control, and the substitution $|u| \to |u|+\hbar$ becomes effective in the large negative time asymptotics of a trajectory, where u rather than s scales to small values.

To understand the consequences of this regularization mechanism, consider the trajectory time parameter, $t = t_\ell/2$ at the exit point of γ. Now notice that $t_\ell(q,|s|) \to \min(T/2+q/v,\lambda^{-1}\ln(|s|+\hbar/c)) \approx \lambda^{-1}\ln(|s|+\hbar/c) \approx t_E$, where we used that, $T > t_E$. The crucial observation here is that the regularization effectively truncates the in-time function t_i at values t_E. As a consequence, the interface derivative $\mathcal{L}t = \frac{1}{2}\mathcal{L}(t_i - t_o) = 1/2$ reduces to one half of the value before quantum regularization. Substitution of this value into Eq. (10) shows that the quantum theory admits finite values of the decay constant, determined by

$$\frac{\Gamma_0}{2} = \frac{\hbar}{t_E} W \left(\frac{8Et_E}{\hbar} \right) = \frac{\hbar}{t_E} \left(\log \left(\frac{8Et_E}{\hbar} \right) + \ldots \right),$$

(11)

where W is the Lambert function and ellipses denote sub-leading double-'log' contributions. Eq. (11) states the decay rate in terms of the Ehrenfest time in combination with non-universal short time cutoff \hbar/E. However, in the semiclassical limit, $\hbar \to 0$, the dependence on E drops out, and we are left with the asymptote $\Gamma_0 \sim \hbar \lambda$. Before commenting on this result, we note that the appearance of a finite decay rate within our present formalism follows from the fact that, by Heisenberg uncertainty, quantum mechanics is not capable of resolving the phase space fine structures pertaining to the evolution of long trajectories $T_\gamma > t_E$. Each such trajectory should, rather, be thought of as a distribution defined by the union of trajectories with uncertainty $\sim \hbar$ in their phase space coordinates. At a given instance of time, a fraction of this distribution escapes, as described by the rate Γ_0.

C. Effective decay rate

Our above analysis was oversimplifying in that it treated escape from an isolated long trajectory, γ_0, as tantamount to escape into the lead vacuum. This picture ignores the fact that escaping trajectories may get 'folded back' into the repeller domain supporting γ_0, and thence

![FIG. 3: The information of Fig. 2 collapsed to the two-dimensional sections spanned by the stable and the unstable coordinate, and the trajectory parameter, q, resp. A phase-space point (q,u,s) in the vicinity of γ_0 propagates along a unique classical trajectory, γ. It will exit the cavity either through the interface S_o or within the cavity through the surface C_o. Similarly, the union of the left vacuum interface S_l together with the manifold C_l defines the incoming interface.](image)
be trapped again. A statistical theory accounting for the renormalization of the decay of an initial distribution centered around an isolated trajectory by the complex structure of the embedding repeller structure has been developed in Refs. [3, 21]. The result of that analysis is an effective renormalization of decay rates as \(\lambda \rightarrow \lambda(1 - d) \), where the factor \((1 - d) \) effectively measures the fraction of trajectories managing to escape the repeller and \(d \) is the fractal (information) dimension of the latter [3, 22]. The ensuing effective rate, \(\Gamma_{0} \rightarrow \Gamma = \hbar \lambda(1 - d) \) is generally identified with the inverse of the classical escape time of the system. We finally caution that the decay rate will be subject to sources of fluctuations which are beyond the scope of our analysis. Notably, the Lyapunov exponents may vary between trajectories, and along individual trajectories. The escape from the repeller may introduce additional uncertainty. Our result, thus, yields a characteristic value for the decay rate, where the important role of fluctuations is left unaccounted for. Other effects not captured by our analysis include transient features of the classical dynamics outside the repeller’s area which, as recent work shows [23, 24], may have important influence on the resonances of open quantum systems.

V. SUMMARY

We have formulated a semiclassical theory of quantum escape processes in open chaotic systems. The most important single contribution of our approach is that it quantitatively describes how deterministic escape after the traversal of generic short trajectories through the system gives way to quantum mechanical decay on long trajectories. The latter define the support of resonances whose life times we estimated by imposing effective phase space boundary conditions. Somewhat counterintuitively, it turns out that the ensuing decay rates are classically short \(\Gamma_{0} \sim \hbar \lambda \), although the relevant escape dynamics takes place on long trajectories \(T > t_{E} \). Finally, the escape of individual long trajectories as described in the present paper defines only an initializing stage of the decay of a more complicated repeller structure. As a result, the decay rate \(\Gamma \) is subject to renormalization \(\Gamma_{0} \rightarrow \Gamma = \hbar \lambda(1 - d) \) where \(d \) is the fractal repeller dimension. Qualitatively, the renormalization factor accounts for the probability that a state gets re-captured by the repeller structure after escaping an individual trajectory. However, a quantitative description of that secondary mechanism is beyond the scope of our approach.

Acknowledgments

We thank P. W. Brouwer, S. Nonnenmacher and H. Schomerus for discussions and M. Novaes for pointing out an inconsistency in the interpretation of our results as given in the first version of this paper. Work supported by SFB/TR 12 of the Deutsche Forschungsgemeinschaft.

Appendix A: Regularization

We here discuss how quantum fluctuations regularize the unlimited classical contraction of the stable coordinate \(s \) in a system with globally hyperbolic dynamics. In the language of Eqs. (6) and (7) of the main text, the dynamics of the variable \(s \) is described by a differential equation of the structure

\[
\left(s \partial_{s} + \sum_{n \geq 1} c_{n} \hbar^{2n+1} \partial_{s}^{2n+1} \right) f(s) = -\alpha f(s) \tag{A1}
\]

where \(\alpha > 0 \), and in a manner inessential to the present argument the coefficients \(c_{n} \) may depend on the variables \(q, u, s \).

Considering positive starting values, \(s > 0 \) (the extension to negative values is straightforward), we introduce a Laplace representation

\[
f(s) = \int_{0}^{\infty} \text{d}z \ e^{-sz} g(z) \tag{A2}
\]

in which (A1) takes the form [27]

\[
\partial_{z} g(z) = - \left(\frac{1 - \alpha}{z} + \sum_{n \geq 1} c_{n} \hbar^{2n+1} z^{2n} \right) g(z), \tag{A3}
\]

The general solution of this equation is found by straightforward integration over \(z \), and when inserted into (A2) gives

\[
f(s) = c_{0} \int_{0}^{\infty} \text{d}z \ e^{-sz} z^{\alpha-1} e^{\sum_{n \geq 1} c_{n} \hbar^{2n+1}} \tag{A4}
\]

with an integration constant \(c_{0} \). Eq. (A4) now illustrates the role played by higher differential operators in (A1).
To make the point, let us for the moment consider the first order differential equation obtained from (A1) by setting all $c_n = 0$. The resulting function

$$f^0(s) = c_0 \int_0^\infty dz e^{-sz} z^{\alpha-1} = \frac{c_0}{s^\alpha}$$

(A5)

then displays the singular at small values of s plaguing the classical evolution equation of the stable coordinate.

In the full solution Eq. (A4) the exponential factor $e^{-\sum_{n \geq 1} \frac{2n}{2n+1} (Lz)^{2n+1}}$ cuts the small s/large z singularity at values $z \sim 1/\hbar$. The resulting integral can be estimated by a regularized function

$$f(s) = \frac{c_0}{(s + \hbar)^\alpha}. \quad (A6)$$

Finally notice that our argument crucially relies on assumed positivity of the coefficients c_n. While the present construction cannot prove this feature, positivity is required on principal grounds to ensure stability of the dynamics. (Otherwise the Wigner distribution would cease to exist.) To actually demonstrate this stability, one has to work harder as in, e.g., Refs. [17, 28]. A discussion tailored to the present formalism is contained in Ref. [20].

[1] Cf. Y. V. Fyodorov, H.-J. Sommers, Phys. A: Math.Gen. 36, 3303 (2003) for review.
[2] M. Novaes, J. Phys. A: Math. Theor. 46, 143001 (2013).
[3] M. Novaes, Phys. Rev. E 85, 036202 (2012).
[4] P. Gaspard, S. A. Rice, J. Chem. Phys. 90, 2225 (1989); J. Chem. Phys. 90, 2242 (1989).
[5] W. T. Lu, S. Sridhar, and M. Zworski, Phys. Rev. Lett. 91, 154101 (2003).
[6] S. Nonnenmacher and M. Zworski, Acta Math. 203, 149 (2009).
[7] M. Novaes, J. M. Pedrosa, D. Wisniacki, G. G. Carlo and J. P. Keating, Phys. Rev. E 80, 035202(R) (2009).
[8] J. P. Keating, M. Novaes, S. D. Prado, M. Sieber, Phys. Rev. Lett. 97, 150406 (2006).
[9] M. Kopp, H. Schomerus, Phys. Rev. E 81, 026208 (2010).
[10] H. Schomerus and J. Tworzydlo, Phys. Rev. Lett. 93, 154102 (2004).
[11] S. Nonnenmacher, M. Zworski, J. Phys. A: Math. Gen. 38, 10683 (2005).
[12] D. L. Shepelyansky, Phys. Rev. E 77, 015202(R) (2008).
[13] L. D. Landau, L. M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory (Pergamon Press, Oxford, 1977).
[14] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University Press, Cambridge, 2011).
[15] W. P. Schleich, Quantum Optics in Phase Space (Weinheim, 2001).
[16] J. E. Moyal, Proc. Cambridge Philos. Soc. Math. Phys. Sci 45, 99 (1949).
[17] W. H. Zurek, J. P. Paz, Phys. Rev. Lett. 72, 2508 (1994).
[18] Notice that the appearance of L in this context does not imply a ‘classical approximation’. Rather, the first order differential operator L describes the projection of the quantum current onto the outward direction of the dynamical flow at the cavity/lead interface.
[19] A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eskp. Teor. Fiz. 55, 2262 (1968) [Sov. Phys. JETP 28, 1200 (1969)].
[20] T. Micklitz, A. Altland, Phys. Rev. Lett. 103, 080403 (2009).
[21] R. V. Jensen, Chaos 1, 101 (1991).
[22] E. Ott, Chaos in Dynamical Systems (Cambridge, 2000).
[23] L. Ermann, G. G. Carlo, J. M. Pedrosa and M. Saraceno, Phys. Rev. E 85, 066204 (2012).
[24] G. G. Carlo, D. A. Wisniacki, L. Ermann, R. M. Benito and F. Borondo, Phys. Rev. E 87, 012909 (2013).
[25] H. Schomerus, P. Jacquod, J. Phys. A 38, 10663 (2005).
[26] Here we used $\Omega_E = L^2p/\hbar\ell$, where L sets the size of cavity cavity and \hbar/ℓ the characteristic momentum resolution.
[27] For the sake of the argument, we focus on solutions subject to the condition $[z g(z)]_{z=0} = 0$, such that (A4) does not contain a boundary term.
[28] A. Altland and F. Haake, Phys. Rev. Lett. 108, 073601 (2012).