A remark on variational inequalities in small balls

BIAGIO RICCERI

To Professor Franco Giannessi on his 85th birthday, with esteem and friendship

Abstract. In this paper, we prove the following result: Let \((H, \langle \cdot, \cdot \rangle)\) be a real Hilbert space, \(B\) a ball in \(H\) centered at 0 and \(\Phi : B \to H\) a \(C^{1,1}\) function, with \(\Phi(0) \neq 0\), such that the function \(x \to \langle \Phi(x), x - y \rangle\) is weakly lower semicontinuous in \(B\) for all \(y \in B\). Then, for each \(r > 0\) small enough, there exists a point \(x^* \in H\), with \(\|x^*\| = r\), such that

\[
\max\{\langle \Phi(x^*), x^* - y \rangle, \langle \Phi(y), x^* - y \rangle\} < 0
\]

for all \(y \in H \setminus \{x^*\}\), with \(\|y\| \leq r\).

Keywords. Variational inequality; \(C^{1,1}\) function; saddle point; ball.

2010 Mathematics Subject Classification. 47J20, 49J40.

1. INTRODUCTION

In the sequel, \((H, \langle \cdot, \cdot \rangle)\) is a real Hilbert space. For each \(r > 0\), set

\[
B_r = \{x \in H : \|x\| \leq r\}
\]

and

\[
S_r = \{x \in H : \|x\| = r\}.
\]

Let \(\Phi : B_r \to H\) be a given function.

We are interested in the classical variational inequality associated to \(\Phi\): to find \(x_0 \in B_r\) such that

\[
\sup_{y \in B_r} \langle \Phi(x_0), x_0 - y \rangle \leq 0. \tag{1}
\]

If \(H\) is finite-dimensional, the mere continuity of \(\Phi\) is enough to guarantee the existence of solutions, in view of the classical result of Hartman and Stampacchia ([3]). This is no longer true when \(H\) is infinite-dimensional. Actually, in that case, Frasca and Villani ([2]) constructed a continuous affine operator \(\Phi : H \to H\) such that, for each \(r > 0\) and \(x \in B_r\), one has

\[
\sup_{y \in B_r} \langle \Phi(x), x - y \rangle > 0.
\]

We also mention the related wonderful paper [7].

Another existence result is obtained assuming the following condition:

(a) for each \(y \in B_r\), the function \(x \to \langle \Phi(x), x - y \rangle\) is weakly lower semicontinuous in \(B_r\).

Such a result is a direct consequence of the famous Ky Fan minimax inequality ([1]).
In particular, condition (a) is satisfied when Φ is continuous and monotone (i.e. $\langle \Phi(x) - \Phi(y), x - y \rangle \geq 0$ for all $x, y \in B_r$). Moreover, when Φ is so, (1) is equivalent to the inequality

\[
\sup_{y \in B_r} \langle \Phi(y), x_0 - y \rangle \leq 0 \tag{2}
\]

(see [6]).

On the basis of the above remarks, a quite natural question is to find non-monotone functions Φ such that there is a solution of (1) which also satisfies (2).

The aim of the present very short note is just to give a first contribution along this direction, assuming, besides condition (a), that Φ is of class $C^{1,1}$, with $\Phi(0) \neq 0$ (Theorem 2.3).

2. RESULTS

We first establish the following saddle-point result:

THEOREM 2.1 - Let Y be a non-empty closed convex set in a Hausdorff real topological vector space, let $\rho > 0$ and let $J : B_\rho \times Y \to \mathbb{R}$ be a function satisfying the following conditions:

(a1) for each $y \in Y$, the function $J(\cdot, y)$ is C^1, weakly lower semicontinuous and $J^*_x(\cdot, y)$ is Lipschitzian with constant L (independent of y);

(a2) $J(x, \cdot)$ is continuous and quasi-concave for all $x \in B_\rho$ and $J(x_0, \cdot)$ is sup-compact for some $x_0 \in B_\rho$;

(a3) $\delta := \inf_{y \in Y} \| J^*_x(0, y) \| > 0$.

Then, for each $r \in [0, \min \{ \rho, \frac{\delta}{2L} \}]$ and for each non-empty closed convex $T \subseteq Y$, there exist $x^* \in S_r$ and $y^* \in T$ such that

\[
J(x^*, y) \leq J(x^*, y^*) \leq J(x, y^*)
\]

for all $x \in B_r$, $y \in T$.

PROOF. Fix an increasing sequence $\{ r_n \}$ of positive numbers converging to r. Since $\inf_{y \in T} \| J^*_x(0, y) \| \geq \delta$, for each $n \in \mathbb{N}$, Corollary 2.4 of [5] ensures that

\[
\sup_{T} \inf_{B_{r_n}} J = \inf_{B_{r_n}} \sup_{T} J.
\]

By Proposition 2.1 of [4], this implies that

\[
\sup_{T} \inf_{\text{int}(B_r)} J = \inf_{\text{int}(B_r)} \sup_{T} J.
\]

Then, since $J(\cdot, y)$ is continuous, we have

\[
\inf_{B_r} \sup_{T} J \leq \inf_{T} \sup_{\text{int}(B_r)} J = \sup_{T} \inf_{\text{int}(B_r)} J = \sup_{B_r} \inf_{T} J
\]

and so

\[
\inf_{B_r} \sup_{T} J \leq \inf_{T} \sup_{B_r} J = \sup_{B_r} \inf_{T} J.
\]

Now, due the semicontinuity and compactness assumptions, there exist $x^* \in B_r$ and $y^* \in T$ such that

\[
J(x^*, y) \leq J(x^*, y^*) \leq J(x, y^*)
\]

for all $x \in B_r$, $y \in T$. Finally, observe that $x^* \in S_r$. Indeed, if $x^* \in \text{int}(B_r)$ we would have

\[
J^*_x(x^*, y^*) = 0
\]

and so

\[
\delta \leq \| J^*_x(0, y^*) \| \leq L \| x^* \| \leq \frac{\delta}{2},
\]

2
an absurd. The proof is complete.

Here is our main theorem:

THEOREM 2.2. - Let \(\rho > 0 \) and let \(\Phi : B_\rho \to H \) be a \(C^1 \) function whose derivative is Lipschitzian with constant \(\gamma \). Moreover, assume that, for each \(y \in B_\rho \), the function \(x \to \langle \Phi(x), x - y \rangle \) is weakly lower semicontinuous. Set

\[
\theta := \sup_{x \in B_\rho} \| \Phi'(x) \|_{\mathcal{L}(H)} ,
\]

\[
M := 2(\theta + \rho \gamma)
\]

and assume also that

\[
\sigma := \inf_{y \in B_\rho} \sup_{\| u \| = 1} |\langle \Phi(0), u \rangle - \langle \Phi'(0)(0), y \rangle| > 0 .
\]

Then, for each \(r \in [0, \min \{ \rho, \frac{\sigma}{2\gamma} \}] \), there exists \(x^* \in S_r \) such that

\[
\max\{ \langle \Phi(x^*), x^* - y \rangle, \langle \Phi(y), x^* - y \rangle \} < 0
\]

for all \(y \in B_r \setminus \{ x^* \} \).

PROOF. Consider the function \(J : B_\rho \times B_\rho \to \mathbb{R} \) defined by

\[
J(x, y) = \langle \Phi(x), x - y \rangle
\]

for all \(x, y \in B_\rho \). Of course, for each \(y \in B_\rho \), the function \(J(\cdot, y) \) is \(C^1 \) and one has

\[
(J'_x(x, y), u) = \langle \Phi'(x)(u), x - y \rangle + \langle \Phi(x), u \rangle
\]

for all \(x \in B_\rho, u \in H \). Fix \(x, v \in B_\rho \) and \(u \in S_1 \). We then have

\[
|\langle J'_x(x, y), u \rangle - \langle J'_v(x, y), u \rangle| = |\langle \Phi(x) - \Phi(v), u \rangle + \langle \Phi'(x)(u), x - y \rangle - \langle \Phi'(v)(u), v - y \rangle|
\]

\[
\leq \| \Phi(x) - \Phi(v) \| + |\Phi'(x)(u) - \Phi'(v)(u)| + \| \Phi'(x)(u), x - y \|
\]

\[
\leq \theta \| x - v \| + 2\rho \| \Phi'(x) - \Phi'(v) \|_{\mathcal{L}(H)} + \theta \| x - y \|
\]

\[
\leq 2(\theta + \rho \gamma) \| x - v \| .
\]

Hence, the function \(J(\cdot, y) \) is Lipschitzian with constant \(M \). At this point, we can apply Theorem 2.1 taking \(Y = B_\rho \) with the weak topology. Therefore, for each \(r \in [0, \min \{ \rho, \frac{\sigma}{2\gamma} \}] \), there exist \(x^* \in S_r \) and \(y^* \in B_r \) such that

\[
\langle \Phi(x^*), x^* - y \rangle \leq \langle \Phi(x^*), x^* - y^* \rangle \leq \langle \Phi(x), x - y^* \rangle
\]

(3)

for all \(x, y \in B_r \). Notice that \(\Phi(x^*) \neq 0 \). Indeed, if \(\Phi(x^*) = 0 \), we would have

\[
\| \Phi(0) \| = \| \Phi(0) - \Phi(x^*) \| \leq \theta r
\]

and hence, since \(\sigma \leq \| \Phi(0) \| \), it would follow that

\[
r \leq \frac{\| \Phi(0) \|}{2M} < \frac{\| \Phi(0) \|}{\theta} \leq r .
\]

Consequently, the infimum in \(B_r \) of the linear functional \(y \to \langle \Phi(x^*), y \rangle \) is equal to \(-\| \Phi(x^*) \| r \) and attained only at the point \(-r \frac{\Phi(x^*)}{\| \Phi(x^*) \|} \). But, from the first inequality in (3), it just follows that \(y^* \) is the global minimum in \(B_r \) of the functional \(y \to \langle \Phi(x^*), y \rangle \), and hence

\[
y^* = -r \frac{\Phi(x^*)}{\| \Phi(x^*) \|} .
\]
Moreover, from (3) again (taking \(y = x^* \) and \(x = y^* \)), it follows that
\[
\langle \Phi(x^*), x^* - y^* \rangle = 0 .
\]
Consequently, we have
\[
\langle \Phi(x^*), x^* \rangle = \langle \Phi(x^*), y^* \rangle = \left\langle \Phi(x^*), -r \frac{\Phi(x^*)}{\|\Phi(x^*)\|} \right\rangle = -\|\Phi(x^*)\| r .
\]
Therefore, \(x^* \) is the global minimum in \(B_r \) of the functional \(y \to \langle \Phi(x^*), y \rangle \) and hence \(x^* = y^* \). Thus, (3) actually reads
\[
\langle \Phi(x^*), x^* - y \rangle \leq 0 \leq \langle \Phi(x), x - x^* \rangle
\]
for all \(x, y \in B_r \). Finally, fix \(u \in B_r \setminus \{x^*\} \). By what seen above, the inequality
\[
\langle \Phi(u), x^* - u \rangle < 0
\]
is clear. Moreover, from the proofs of Corollaries 2.1, 2.3, 2.4 and Theorem 2.1 of [5], it follows that, for each \(y \in B_r \), the function \(J(\cdot, y) \) has a unique global minimum in \(B_r \). But, the second inequality in (4) says that \(x^* \) is a global minimum in \(B_r \) of the function \(J(\cdot, x^*) \) and hence the inequality
\[
\langle \Phi(u), x^* - u \rangle < 0
\]
follows, and the proof is complete. \(\triangle \)

From Theorem 2.2 we obtain the following characterization:

THEOREM 2.3. - Let \(\rho > 0 \) and let \(\Phi : B_\rho \to H \) be a \(C^1 \) function, with Lipschitzian derivative, such that, for each \(y \in B_\rho \), the function \(x \to \langle \Phi(x), x - y \rangle \) is weakly lower semicontinuous.

Then, the following assertions are equivalent:

(i) for each \(r > 0 \) small enough, there exists \(x^* \in S_r \) such that
\[
\max\{\langle \Phi(x^*), x^* - y \rangle, \langle \Phi(y), x^* - y \rangle\} < 0
\]
for all \(y \in B_r \setminus \{x^*\} \); \(\Phi(0) \neq 0 \).

(ii) \(\Phi(0) \neq 0 \).

PROOF. The implication (i) \(\to (ii) \) is clear. So, assume that (ii) holds. Observe that the function \(y \to \sup_{\|u\|=1} |\langle \Phi(0), u \rangle - \langle \Phi'(0)(u), y \rangle| \) is continuous in \(H \) and takes the value \(\|\Phi(0)\| > 0 \) at 0. Consequently, for a suitable \(r^* \in [0, \rho] \), we have
\[
\inf_{y \in B_r} \sup_{\|u\|=1} |\langle \Phi(0), u \rangle - \langle \Phi'(0)(u), y \rangle| > 0 .
\]
At this point, we can apply Theorem 2.1 to the restriction of \(\Phi \) to \(B_{r^*} \), and (i) follows. \(\triangle \)

Finally, it is also worth noticing the following further corollary of Theorem 2.2:

THEOREM 2.4. - Let \(\rho > 0 \) and let \(\Psi : B_\rho \to H \) be a \(C^1 \) function whose derivative vanishes at 0 and is Lipschitzian with constant \(\gamma_1 \). Moreover, assume that, for each \(y \in B_\rho \), the function \(x \to \langle \Psi(x), x - y \rangle \) is weakly lower semicontinuous. Set
\[
\theta_1 := \sup_{x \in B_\rho} \|\Psi'(x)\|_{\mathcal{L}(H)} ,
\]
\[
M_1 := 2(\theta_1 + \rho\gamma_1)
\]
and let \(w \in H \) satisfy
\[
\|w - \Psi(0)\| \geq 2M_1 \rho .
\]
Then, for each \(r \in [0, \rho] \), there exists \(x^* \in S_r \) such that

\[
\max\{\langle \Psi(x^*) - w, x^* - y \rangle, \langle \Psi(y) - w, x^* - y \rangle\} < 0
\]

for all \(y \in B_r \setminus \{x^*\} \).

Proof. Set \(\Phi := \Psi - w \). Apply Theorem 2.1 to \(\Phi \). Since \(\Phi' = \Psi' \), we have \(M = M_1 \). Since \(\Phi'(0) = 0 \), we have \(\sigma = \|\Phi(0)\| \) and hence, by (5),

\[
\rho \leq \frac{\sigma}{2M}
\]

and the conclusion follows. \(\triangle \)

Acknowledgement. The author has been supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by the Università degli Studi di Catania, “Piano della Ricerca 2016/2018 Linea di intervento 2”.
References

[1] K. FAN, A minimax inequality and its applications, in “Inequalities III”, O. Shisha ed., 103-113, Academic Press, 1972.
[2] M. FRASCA and A. VILLANI, A property of infinite-dimensional Hilbert spaces, J. Math. Anal. Appl., 139 (1989), 352-361.
[3] P. HARTMAN and G. STAMPACCHIA, On some nonlinear elliptic differential equations, Acta Math., 115 (1966).
[4] B. RICCERI, On a minimax theorem: an improvement, a new proof and an overview of its applications, Minimax Theory Appl., 2 (2017), 99-152.
[5] B. RICCERI, Applying twice a minimax theorem, J. Nonlinear Convex Anal., 20 (2019), 1987-1993.
[6] G. J. MINTY, On the generalization of a direct method of the calculus of variations, Bull. Amer. Math. Soc., 73 (1967), 314-321.
[7] J. SAINT RAYMOND, A theorem on variational inequalities for affine mappings, Minimax Theory Appl., 4 (2019), 281-304.

Department of Mathematics and Informatics
University of Catania
Viale A. Doria 6
95125 Catania, Italy

e-mail address: ricceri@dmi.unict.it