Minireview

Role of infiltrated leucocytes in tumour growth and spread

EY Lin1 and JW Pollard*,1

1Departments of Developmental and Molecular Biology and Obstetrics and Gynecology and Women’s Health, Center for the Study of Reproductive Biology and Women’s Health and Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA

Leucocytes are a major component of the tumour microenvironment. Recent studies have indicated that the infiltration and activity of these host cells are regulated by the tumour to promote its survival and progression. Through the production of an array of growth factors, proteases and angiogenic mediators, leucocytes in the tumour microenvironment promote tumour growth, angiogenesis and metastasis.

Keywords: Leucocyte; tumour; progression; metastasis; angiogenesis

TUMOUR-ASSOCIATED LEUCOCYTES

The infiltration of leucocytes into solid tumours was remarked upon more than 100 years ago when it was suggested that they had a causal role in carcinogenesis. These infiltrates are now known to contain myeloid cells (neutrophils, dendritic cells, macrophages, eosinophils and mast cells) as well as lymphocytes. However, controversy remains over the relationship between these host cells and tumour progression. In the past, their presence has been construed as evidence for a host response against the growing tumour. This is because such immune functions were often observed in transplantable tumour models that by their nature represented a transplant that could elicit immune rejection despite being placed in immunocompromised hosts. However, it is becoming clear that tumours growing naturally are largely recognized as self and lack strong foreign antigens. Instead, they appear to have been selected to manipulate the host immune system to prevent rejection (Dunn et al., 2002) and use this system to facilitate their own growth and spread (Khong and Restifo, 2002). This lack of immune response has become particularly evident with the study of tumours induced by the restricted expression of oncogenes in transgenic mice where it has been established that tumour-associated leucocytes are often active participants in the neoplastic process. In addition, there is a growing body of clinical data on a wide range of solid tumour types that has correlated a high density of leucocytic infiltration with poor outcome (Coussens and Werb, 2001, 2002). Furthermore, it has been recognised that cells containing DNA alterations caused by viral or chemical carcinogens do not progress to become cancerous until they are exposed to a second type of stimulus that often includes chronic irritants or inflammatory agents (Coussens and Werb, 2002). For example, an inflammatory response is required to induce cancers in chickens infected with the potent oncogenic Rous Sarcoma virus despite it carrying the v-src oncogene that alone is competent to transform fibroblasts in culture (Sieweke et al., 1989). This view of the role of leucocytes in facilitating cancer progression has been further enhanced by the realisation that many cancers are caused or promoted by infectious or other agents that induce chronic inflammation (Coussens and Werb, 2002).

Under normal physiological circumstances, leucocytes are recruited in response to wounding, inflammatory or pathogenic stimuli. They are attracted by the local synthesis of chemokines (chemoattractive cytokines), cytokines and growth factors as well as products of tissue breakdown. These are all part of a signalling system that involves recognition of the pathological state, organisation of an appropriate cellular response and suppression of this response once the situation is resolved. During cutaneous wound healing, these processes require epithelial cell proliferation and migration, angiogenesis and tissue remodelling (Nathan, 2002). In tumours, it is thought that similar chemoattractive factors are also responsible for the recruitment of leucocytes and that these cells play roles comparable to those observed during wound healing. However, because of the accumulation of intrinsic mutations the epithelial cells have lost positional identity and consequently do not stop growing and migrating on cue. Instead, they send out continuous signals that recruit leucocytes to continue to support the tumor’s development. This concept has led to the rubric that tumours are ‘wounds that never heal’ (Balkwill and Mantovani, 2001).

Several steps are crucial for a tumour to become metastatic. Tumour cells need to be able to break out of their confining basement membranes in order to enter the extracellular matrix and circulation. These processes require the proteolytic breakdown of basement membranes, changes in epithelial cell adhesion, migration and the suppression of anokis that. They are matched in the surrounding stroma with angiogenesis as well as the frequent recruitment of leucocytes. Angiogenesis, known to be the crucial process for tumour progression by providing oxygen and nutrients and removal of waste products, as well as, providing an expanding endothelial surface for the tumour cells to enter the circulation, also involves degradation of basement membranes followed by migration of endothelial cells into the tumour stroma (Folkman, 2002). Recent studies have shown that the tumour-associated leucocytes produce factors that promote all these steps associated...
with malignancy within tumours (Ribatti et al, 2001). This review will focus on the evidence that members of the myeloid lineage, particularly macrophages, neutrophils and mast cells, can facilitate tumour progression.

Macrophages

Macrophages derived from circulating monocytes represent a major component of the infiltrated leucocytic population in the tumour microenvironment. These cells have a wide range of functions in immunity, during development and in tissue repair. They can adopt a particular phenotype according to the demand and produce many factors ranging from chemokines, cytokines, and proteases, to angiogenic and growth factors. They therefore appear to be the ‘jack-of all trades’ of the myeloid lineage. Of all the cells of the myeloid lineage, the evidence is strongest in support of a positive impact of macrophages on tumour progression. For example, in greater than 80% of clinical studies, an increase in tumour-associated macrophages (TAMs) density is correlated with poor prognosis, with less than 10% of studies showing the converse (Bingle et al, 2002). Similarly, overexpression of macrophage chemoattractants within tumours has also been shown to correlate with poor prognosis (Leek and Harris, 2002). One such example is colony stimulating factor-1 (CSF-1 or macrophage CSF), a macrophage growth factor as well as a potent macrophage chemoattractant (Lin et al, 2002). Overexpression of CSF-1 correlates with poor prognosis in human breast, ovarian endometrial and prostatic carcinomas (Kacinski, 1997). In breast cancers, this overexpression correlates with a strong leucocytic infiltration in over 95% of cases (Scholl et al, 1994). Similarly, the CC chemokine ligand 2 CCL2/MCP-1 (MCP = monocyte chemoattractant protein 1) has been identified as a major chemokine for macrophages recruitment in several human tumours, including the bladder (Amann et al, 1998), cervix (Riethdorf et al, 1996), ovary (Negus et al, 1995), lung (Arenberg et al, 2000) and breast (Valkovic et al, 1998; Ueno et al, 2000). The level of CCL2/MCP-1 expression is correlated with the increased infiltration of macrophage (Ueno et al, 2000) and the grade of tumour (Amann et al, 1998; Valkovic et al, 1998). Although both CSF-1 and CCL-2 can be targeted to the tumour cells themselves, the strong correlation of overexpression of these macrophage chemoattractants with poor prognosis suggests that TAMs can play a major role in the progression of tumours to metastasis.

Several experiments have supported the role of macrophages in tumour progression. We have observed that in a Polyoma Middle T antigen-induced mouse model of breast cancer (PyMT), an increase of macrophage infiltration at the primary tumour site occurred immediately before the onset of malignant transition (Figure 1) (Lin et al, 2001). Using genetic approaches, we demonstrated that depletion of CSF-1 in this model markedly decreased the infiltration of macrophages at the tumour site and this correlated with a significant delay of tumour progression to metastasis. In contrast, overexpression of CSF-1 in the tumour dramatically increased the macrophage density in the primary tumour and this was correlated with an accelerated malignant switch (Lin et al, 2001). Similarly, removal of CSF-1 from transplanted tumours also resulted in an impairment of growth with extensive necrosis and poor vascularisation, phenotypes that could be reversed by treatment of the mice with CSF-1 (Nowicki et al, 1996). These studies have provided strong evidence that TAMs promote the tumour progression to malignancy. This conclusion was enhanced by the observations that treatment of mice that had been xenotransplanted with either a human colonic or embryonic tumour with antisense oligonucleotides directed against mouse CSF-1 reduced tumour growth and prolonged survival. This was associated with a reduced serum concentration of CSF-1 and a decreased TAM density. Since mouse CSF-1 does not stimulate the human receptor, these data argue for the effects of the CSF-1 antisense molecules to be mediated through the reduction in TAMs (Aharinejad et al 2002).

The evidence from both clinical and experimental studies supports the view that, in most cases, TAMs facilitate tumour progression and metastasis. The mechanism(s) macrophages used to promote tumour progression are still unknown; however, it has been proposed that macrophages may promote tumour growth and angiogenesis through the production of growth factors and angiogenic inducers such as Epidermal Growth Factor (EGF), vascular endothelial growth factor (VEGF), tumour necrosis factor (TNFz) and Thymidine Phosphorylase (TP) (Xiong et al, 1998; Leek and Harris, 2002). Macrophages also indirectly enhance blood vessel formation by possessing a procoagulant activity through fibrin deposition (Mantovani et al, 1992). In addition, many macrophages produced factors, proteases and protease activators such as transforming growth factor-β (TGFβ), platelet-derived growth factor, interleukin-6 (IL-6), urokinase plasminogen activator and Tissue-type Plasminogen Activator (t-PA) that may cause degradation of extracellular matrix to facilitate the tumour cell invasion and migration and induce angiogenesis (Egami et al, 2003; Eubank et al, 2003; Hildrenbrand et al, 1995; Klimetzek and Sorg, 1977). Moreover, TAMs contribute greatly to the growth of the tumour by producing proangiogenic and tumour-stimulating chemokines such as CCR2 ligands (Vicari and Caux, 2002).

Macrophages can display tumour cytotoxicity and can potentially present tumour antigens to induce specific immune reaction against tumours. However, these cells are believed to have primarily a protumour function since both tumours and TAMs produce potent immunomodulating agents that suppress macrophage tumoricidal activity. Such tumour-produced molecules, including IL-4, IL-6, IL-10, CSF-1, TGFβ and prostaglandin E2
An infiltration of mast cells has been found in a variety of human cancers, including non-small-cell lung cancer (Shijubo et al., 2003), breast cancer (Kankkunen et al., 1997), colorectal cancer (Lachter et al., 1995), brain cell cancer (Yamamoto et al., 1997) and pulmonary adenocarcinoma (Imada et al., 2000). The accumulation of mast cells has been associated with enhanced growth and invasion of several human cancers (Ribatti et al., 2001). However, there are other studies in colorectal cancer where their presence is indicative of improved prognosis (Nielsen et al., 1999). Initial studies using animal models have shown that increasing mast cell density in tumour promoted tumour growth (Roche, 1985), whereas reducing their number inhibited tumour growth and angiogenesis (Starkey et al., 1988). The role of inflammatory mast cells in tumour progression of squamous epithelial carcinogenesis was also illustrated recently (Coussens et al., 1999). Furthermore, Schwann cell tumours caused by inherited mutations in the NFI gene do not form in mouse models unless the surrounding stromal cells are at least heterozygous for the mutation. These tumours are highly populated with mast cells and it seems likely that a haploinsufficiency of NFI in these cells is the cause of the tumour formation (Zhu et al., 2002).

The best known role that mast cells plays in tumour progression is their ability to induce tumour angiogenesis (Hiromatsu and Toda, 2003). Activated mast cells produce a variety of angiogenic growth factors, including VEGF, basic fibroblast growth factor, IL-8 and TNFα (Meiningier and Zetter, 1992; Qu et al., 1995; Hiromatsu and Toda, 2003). In addition, they can produce specific angiogenic mediators including histamine and heparin, which can stimulate endothelial cell proliferation and may contribute to the hyper-permeable nature of newly formed microvessels during pathological angiogenesis (Ribatti et al., 2001), and a variety of proteases, particularly MMPs, which are involved in angiogenesis. How tumour cells regulate the infiltration and activation of mast cells is still not fully understood. However, several types of tumours produce stem cell factor that may have functions in mast cell migration, proliferation and activation (Turner et al., 1992).

In addition to the promotion of angiogenesis, the activated mast cells are a rich source of cytokines and chemokines such as IL-1, IL-3, IL-4, IL-8, granulocyte – macrophage colony-stimulating factor, TNFα, interferon-γ (IFNγ), CCL-2, Macrophage Inflammatory Protein MIP-1β and β, many of which can contribute to the tumour microenvironment by enhancing tumour cell growth and invasion either directly or through intermediaries such as macrophages (Burd et al., 1989; Selvan et al., 1994).

Neutrophils

The role of neutrophils in tumour progression is still controversial. During immune responses, they are among the first cells to arrive at sites of infection where they are highly bactericidal. They are also involved in cell killing during graft rejection and thus they might be considered as potential antitumour cells. However, clinical studies have been contradictory. The presence of increased numbers of tumour-infiltrating neutrophils was linked to poorer outcome in patients with adenocarcinoma of the bronchialalveolar carcinoma subtype (Bellocq et al., 1998), whereas studies of gastric carcinoma suggested that neutrophil infiltration correlated with good prognosis (Caruso et al., 2002). It has been reported that tumours prolong alveolar neutrophil survival through the production of soluble factors (Wislez et al., 2001). Using transplantable tumour models, studies have shown that tumour-associated neutrophils were involved in tumour angiogenesis by the production of proangiogenic factors such as VEGF and IL-8 (Schaider et al., 2003), proteases such as matrix metalloproteinases (Shamamian et al., 2001) and elastases (Iwatsuki et al., 2000; Scapini et al., 2002). In addition, studies using animal models have also shown that neutrophils may contribute to genetic instability in tumours (Haqqani et al., 2000).

Furthermore, neutrophil-recruiting cytokines such as GRO (IL-8 homologues) may also directly stimulate tumour proliferation in melanoma (Haghnegahdar et al., 2000). Taken together, an environment that recruits neutrophils might enhance angiogenesis, promote tumour invasion and stimulate growth.

CONCLUSION

Solid tumours are not just composed of malignant cells, but are complex microcosms of many cell types including a wide range of haematopoietic cells. The evidence described above suggests that cells of the myeloid lineages, particularly macrophages, mast cells and neutrophils, on balance play an active role in enhancing tumour progression and metastatic capacity. This is through their ability to promote angiogenesis and tissue remodelling as well as...
REFERENCES

Aharinejad S, Abraham D, Paulus P, Abri H, Hofmann M, Grossshmidt K, Schafer R, Stanley ER, Hofbauer R (2002) Colony-stimulating factor-1 antifreeze treatment suppresses growth of human xenografts in mice. Cancer Res 62: 5317 – 5324

Almand B, Resser JR, Lindman B, Nadaf S, Clark JJ, Kwon ED, Cardone DP, Gabriovich DI (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6: 1755 – 1766

Amano Y, Perabo FG, Wirger A, Hugenschmidt H, Schultz-Seemann W (1998) Urinary levels of monocyte chemo-attractant protein-1 correlate with tumour stage and grade in patients with bladder cancer. Br J Urol 82: 118 – 121

Arenberg DA, Keane MP, DiGiovine B, Kunkel SL, Strom SR, Burdick MD, Iannettoni MD, Strieter RM (2000) Macrophage infiltration in human non-small-cell lung cancer: the role of CC chemokines. Cancer Immunol Immunother 49: 63 – 70

Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357: 539 – 545

Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S, Valladeau J, Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S, Valladeau J, Davoust J, Palucka KA, Banchereau J (1999) In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peripheral areas. J Exp Med 190: 1417 – 1426

Bellocc A, Antoine M, Flahault A, Philippe C, Crestani B, Bernauffin JF, Mayaud C, Milleron B, Baud L, Cadranel J (1998) Neutrophil alveolitis in bronchiolialveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. Am J Pathol 152: 83 – 92

Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196: 254 – 265

Burd PR, Rogers HW, Gordon JR, Martin CA, Jayaraman S, Wilson SD, Dvorak AM, Galli SJ, Dorf ME (1989) Interleukin 3-dependent and -independent mast cells stimulated with IgE and antigen express multiple cytokines. J Exp Med 170: 245 – 257

Caruso RA, Bellocco R, Pagano M, Bertoli G, Rigoli L, Ferrerma C (2002) Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol 15: 831 – 837

Cousens LM, Raymond WW, Bergers G, Laing-Webster M, Behrendtsen O, Werb Z, Coughley GH, Hanahan D (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13: 1382 – 1397

Cousens LM, Werb Z (2001) Inflammatory cells and cancer: think different! J Exp Med 193: F23 – F26

Cousens LM, Werb Z (2002) Inflammation and cancer. Nature 420: 860 – 867

Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4: 11 – 22

Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoeediting: from immunosurveillance to tumor escape. Nat Immunol 3: 991 – 998

Egami K, Murohara T, Shimada T, Sasaki K, Shintani S, Sugaya T, Ishii M, Akagi T, Ikeda H, Matsuishi T, Imaizumi T (2003) Role of host angiogenesis II type 1 receptor in tumor angiogenesis and growth. J Clin Invest 112: 67 – 75

Elgert K, Alleva D, Mullins D (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64: 275 – 290

Enk AM, Jounieli H, Saloga J, Knop J (1997) Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 73: 309 – 316

Eubank TD, Galloway M, Montague CM, Waldman WJ, Marsh CB (2003) M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J Immunol 171: 2637 – 2643

Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29: 15 – 18

Hackstein H, Morelli AE, Thomson AW (2001) Designer dendritic cells for tolerance induction: guided not misguided missiles. Trends Immunol 22: 437 – 442

Haghnejahdar H, Du J, Wang D, Striet RD, Burdick MD, Nanney LB, Cardwell N, Luan J, Shattuck-Brandt R, Richmond A (2000) The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma. J Leukoc Biol 67: 53 – 62

Hamada I, Kato M, Yamasaki T, Iwabuchi K, Watanabe K, Yamada T, Itoyama S, Ito H, Okada K (2002) Clinical effects of tumor-associated macrophages and dendritic cells on renal cell carcinoma. Anticancer Res 22: 4281 – 4284

Note added in proof

Ablation of macrophage recruitment in transplantable breast cancers by a chemokine receptor antagonist significantly inhibited tumour development (Robinson et al, 2003). Similarly, inhibition of MMP9 production in tumour-associated macrophages by a hypomorphic Ets-2 mutation also inhibited tumour development in the PyMT mouse model of breast cancer (Man et al, 2003). These data confirms the involvement of macrophages in tumour development in mouse models.
Hanahan D, Lanzaavecchia A, Mihich E (2003) Fourteenth Annual Pescoll Symposium: the novel dichotomy of immune interactions with tumors. Cancer Res 63: 3005–3008
Haqqani AS, Sandhu JK, Birnboim HC (2000) Expression of interleukin-8 promotes neutrophil infiltration and genetic instability in mutantated tumors. Neoplasia 2: 561–568
Hildenbrand R, Dilger I, Horlin A, Stutte HJ (1995) Urokinase and macrophages in tumour angiogenesis. Br J Cancer 72: 818–823
Hiromatsu Y, Toda S (2007) Macrophage and angiogenesis. Microsc Res Tech 60: 64–69
Imada A, Shijubo N, Kojima H, Abe S (2000) Mast cells correlate with angiogenesis and poor outcome in stage 1 lung adenocarcinoma. Eur Respir J: 1087–1093
Iwatsuki K, Kuma K, Yoshimine T, Nakagawa H, Sato M, Hayakawa T (2000) Elastase expression by infiltrating neutrophils in gliomas. Neurol Res 22: 465–468
Kacinski BM (1997) CSF-1 and its receptor in breast carcinomas and neoplasms of the female reproductive tract. Mol Reprod Dev 46: 71–74
Kanikzen JP, Harvima IT, Naukkarinen A (1997) Quantitative analysis of tryptase and chymase containing mast cells in benign and malignant breast lesions. Int J Cancer 72: 385–388
Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3: 999–1005
Klimetek V, Sorg C (1977) Lymphokine-induced secretion of plasminogen activator by human monocytes. Eur J Immunol 7: 185–187
Lachter J, Stein M, Lichtig C, Eidelman S, Munich M (1995) Mast cells in colorectal neoplasias and premalignant disorders. Dis Colon Rectum 38: 290–293
Leek RD, Harris AL (2002) Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 7: 177–189
Lespagnard L, Gancberg D, Rouas G, Leclercq G, de Saint-Aubain (1997) Tumor-infiltrating dendritic cells in adenocarcinomas of the breast: a study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. Int J Cancer 84: 309–314
Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW (2002) The macrophage growth factor CSF-1, in mammalian gland development and cancer. J Mammary Gland Dev Neoplasia 7: 147–162
Lin EY, Jones LG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163: 2113–2126
Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193: 727–740
Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin of the dendritic cell infiltrate in prostate cancer. J Clin Invest 95: 2391–2396
Nielsen HJ, Hansen U, Christensen II, Reimert CM, Brunner N, Moesgaard F (1999) Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. J Pathol 189: 487–495
Noguchi T, Wada S, Takeno S, Moriymaha K, Kimura Y, Uchida Y (2003) Lymph node metastasis could be predicted by evaluation of macrophage infiltration and hsp70 expression in superficial carcinoma of the esophagus. Oncol Rep 10: 1161–1164
Nowicki A, Szenajch J, Ostrowska G, Wojtwicz A, Wojtowicz K, Kruszewski AA, Maruszynski M, Aukerman SL, Wiktork-Jedrzejczak W (1996) Impaired tumor growth in colony-stimulating factor 1 (CSF-1)-deficient/macroage-deficient op/op mouse: evidence for a role of CSF-1-dependent macrophages in formation of tumor stroma. Int J Cancer 65: 112–119
Pollard JW (2004) Tumor educated macrophages promote tumor progression and metastasis. Nat Rev Cancer 4: 71–78
Qu Z, Liebler JM, Powers MR, Galey T, Ahmad P, Huang XN, Ansel JC, Butterfield JH, Planck SR, Rosenbaum JT (1995) Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 149: 564–573
Ribatti D, Vacca A, Nico B, Crivellato E, Roncali L, Damacco F (2001) The role of mast cells in tumour angiogenesis. Br J Haematol 115: 514–521
Rietdorff L, Rietdorff S, Gutzlafl K, Prall F, Loning T (1996) Differential expression of the monocyte chemotactant protein-1 gene in human papillomavirus-16-infected squamous intraepithelial lesions and squamous carcinoma cells of the cervix uteri. Am J Pathol 149: 1469–1476
Robinson SC, Scott KA, Wilson JL, Thompson RG, Proudfit AEJ, Balking FR (2003) A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res 63: 8360–8365
Robson WR (1985) Mast cells and tumour angiogenesis: the tumor-mediated release of an endothelial growth factor from mast cells. Int J Cancer 36: 721–728
Scapini P, Nesi L, Morini M, Tanghetti E, Belleri M, Noonan D, Presta M, Albini A, Cassatella MA (2002) Generation of biologically active angiotatin kringle 1-3 by activated human neutrophils. J Immunol 168: 5798–5804
Scarpino S, Stoppacciaro A, Ballerini F, Marchesi M, Prat M, Stella MC, Sozzani S, Allavena P, Mantovani A, Ruco LP (2000) Papillary carcinoma of the thyroid: hepatocyte growth factor (HGF) stimulates tumor cells to release chemokines active in recruiting dendritic cells. Am J Pathol 156: 831–837
Schopp H, Oka M, Bogenrieder T, Nesbit M, Satyamoorthy K, Berkling C, Matsushima K, Herlyn M (2003) Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. Int J Cancer 103: 335–343
Scholl SM, Pallud C, Beuvon F, Hacene K, Stanley ER, Rohrschneider LR, Tang R, Pouillard P, Lidereau R (1994) Anti-colony-stimulating factor-1 antibody stabilising in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J Nat Cancer Inst 86: 120–126
Schwaab T, Schned AR, Haneyea J, Cole BF, Atzpodien J, Wittke F, Ernstoff MS (1999) In vivo description of dendritic cells in human renal cell carcinoma. J Urol 162: 567–573
Schwaab T, Weiss JE, Schned AR, Barth Jr RJ (2001) Dendritic cells infiltrate in colon cancer. J Immunother 24: 130–137
Selvan RS, Butterfield JH, Krangel MS (1994) Expression of multiple elastase, cathepsin G, and proteinase-3: a role for inflammatory cells in tumor invasion and hsp70 expression in superficial carcinoma of the cervix uteri. J Pathol 189: 2391–2396
Shijubo N, Kojima H, Nagata M, Ohchi T, Suzuki A, Abe S, Sato N (2003) Tumor, angiogenesis of non-small cell lung cancer. Microsc Res Tech 60: 186–198
Sieweke MH, Stoker AW, Bissell MJ (1989) Evaluation of the cocarcinogenic effect of wounding in Rous sarcoma virus tumorigenesis. Cancer Res 49: 6419–6424
Starkey JR, Crowle PK, Taubenberger S (1988) Mast-cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer 42: 48–52
Troy A, Davidson P, Atkinson C, Hart D (1998) Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer. J Urol 160: 214–219
Tsujiitan S, Kakeji Y, Watanabe A, Kohnoe S, Maehara Y, Sugimachi K (1990) Infiltration of dendritic cells in relation to tumor invasion and lymph node metastasis in human gastric cancer. Cancer 66: 2012–2016
Turner AM, Zabe KM, Martin F, Jacobsen FW, Bennett LG, Broudly VC (1992) Nonhematopoietic tumor cell lines express stem cell factor and display c-kit receptors. Blood 80: 374–381

Leucocytes in tumour progression
EY Lin and JW Pollard

© 2004 Cancer Research UK
Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6: 3282 – 3289

Valkovic T, Lucin K, Krstulja M, Dobi-Babic R, Jonjic N (1998) Expression of monocyte chemotactic protein-1 in human invasive ductal breast cancer. Pathol Res Pract 194: 335 – 340

Vicari AP, Caux C (2002) Chemokines in cancer. Cytokine Growth Factor Rev 13: 143 – 154

Wislez M, Fleury-Feith J, Rabbe N, Moreau J, Cesari D, Milleron B, Mayaud C, Antoine M, Soler P, Cadranel J (2001) Tumor-derived granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor prolong the survival of neutrophils infiltrating bronchoalveolar subtype pulmonary adenocarcinoma. Am J Pathol 159: 1423 – 1433

Xiong M, Elson G, Legarda D, Leibovich SJ (1998) Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 153: 587 – 598

Yamamoto T, Katayama I, Nishioka K (1997) Expression of stem cell factor in basal cell carcinoma. Br J Dermatol 137: 709 – 713

Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF (2002) Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296: 920 – 922