The Adhesion of *Lactobacillus salivarius* REN to a Human Intestinal Epithelial Cell Line Requires S-layer Proteins

Ran Wang1*, Lun Jiang1*, Ming Zhang2, Liang Zhao1, Yanling Hao1, Huiyuan Guo1, Yue Sang3, Hao Zhang1 & Fazheng Ren1

Lactobacillus salivarius REN, a novel probiotic isolated from Chinese centenarians, can adhere to intestinal epithelial cells and subsequently colonize the host. We show here that the surface-layer protein choline-binding protein A (CbpA) of *L. salivarius* REN was involved in adherence to the human colorectal adenocarcinoma cell line HT-29. Adhesion of a *cbpA* deletion mutant was significantly reduced compared with that of wild-type, suggesting that CbpA acts as an adhesin that mediates the interaction between the bacterium and its host. To identify the molecular mechanism of adhesion, we determined the crystal structure of a truncated form of CbpA that is likely involved in binding to its cell-surface receptor. The crystal structure identified CbpA as a peptidase of the M23 family whose members harbor a zinc-dependent catalytic site. Therefore, we propose that CbpA acts as a multifunctional surface protein that cleaves the host extracellular matrix and participates in adherence. Moreover, we identified enolase as the CbpA receptor on the surface of HT-29 cells. The present study reveals a new class of surface-layer proteins as well as the molecular mechanism that may contribute to the ability of *L. salivarius* REN to colonize the human gut.

Adhesion to intestinal epithelial cells is considered the first step in the persistent colonization of the host by *Lactobacillus* strains, which benefits the health of the host1. High-affinity adhesion promotes the residence of *Lactobacillus* in the host’s gut, excludes pathogens and protects epithelial cells2,3. Bacterial surface (S-) layers are crystalline arrays of self-assembling subunits called surface-layer (S-layer) proteins, and the S-layers form the outermost component of the cell walls of many species of eubacteria and archaea4. The S-layer is therefore one of the first bacterial components to interact with the gastrointestinal surface of the human host. Moreover, diverse bacterial cell surface-associated factors mediate specific adhesion and may act as adhesins such as carbohydrates, lipoteichoic acids as well as proteinaceous factors LPXTG-like protein5–10.

Since the adhesins have been identified, the mechanisms of adhesion are currently under intensive investigation. Numerous targeting strategies to identify the mechanisms of bacterial colonization of their host have been employed because of the multiple cell surface-associated factors expressed by lactobacilli. For example, Reunanen and Ossowski et al. found that the adhesion of *Lactobacillus rhamnosus* GG during intestinal colonization requires a pilus-mediated mucosal adhesin and a mucus-specific surface adhesin11,12. Certain *Lactobacillus* strains bind molecules such as mannose13, rat colonic mucins14, or glycolipids15. Therefore, adhesion likely does not require a unique and ubiquitous mechanism.

S-layer proteins form monomolecular crystalline arrays with molecular masses ranging from 40–200 kDa1, encompass the entire cell and form a regularly ordered array with oblique (p1, p2), square (p4) or hexagonal (p3, p6) symmetry1. The adhesive properties of the S-layer proteins of *Lactobacillus* have been widely suggested1. Numerous studies show that the loss of the S-layer proteins from the bacterial surface caused by chemical treatment decreases adhesion to different target cells16–19, indicating that the S-layer proteins may be one of the most

1Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, P. R. China. 2School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China. 3Beijing Higher Institution Engineering Research Center of Animal Product, Beijing 100083, P. R. China. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to F.R. (email: renfazheng@263.net)
Figure 1. Adhesion of *L. salivarius* REN to HT-29 cells. The bars represent the mean values of three independent experiments, and the error bars indicate the standard deviations. Viable count of *L. salivarius* REN and LiCl-treated strains for adhesion to HT-29 cells were respectively 960 ± 90 and 673 ± 52 bacteria/100 cells. There was significant difference (*P* < 0.05) in the adhesion of LiCl-treated *L. salivarius* REN compared with that of the untreated strains.

important factors that mediates bacterial adherence to host cells. While, only in a few instances, the mechanism of *Lactobacillus* S-layer proteins in adherence has been definitely shown. For example, recombinant CbsA of *L. crispatus* JCM 5810 and SlpB of *L. crispatus* K31 bind collagen types I and IV. SlpA of *L. acidophilus* NCFM binds to the dendritic cell-specific ICAM-3-grabbing non-integrin receptor expressed by immature human dendritic cells22. Further, the S-layer proteins mediate the binding of bacterial cells to receptors such as fibronectin23 and laminin24 as well as to human epithelial cell lines25,26. The primary structures of S-layer proteins from different species include two functionally independent regions that mediate the adherence to targets and anchor the S-layer subunit to the bacterial cell envelope21. Generally, *Lactobacillus* S-layer proteins are devoid of a surface-layer homology domain that anchors the S-layer to the cell wall peptidoglycan21. Instead, sequences with similarity to tyrosine/phenylalanine-containing carbohydrate-binding motifs or teichoic acid-binding motifs are present in the cell-wall binding domains of *Lactobacilli* S-layer proteins1,21. On the other hand, S-layer proteins are anchored to the cell wall through different binding mechanisms. The S-layer protein CbsA of *L. crispatus* JCM 5810 binds to lipoteichoic acids through electrostatic interactions27; however, SlpA of *L. brevis* ATCC 8287 binds to neutral polysaccharides through hydrogen bonding28. These regions most likely are exposed on the surface of the S-layer proteins, which vary and share little sequence similarity2. Because of difficulties in obtaining high-quality crystals for X-ray crystallography, detailed structural information on their structures is scarce.

L. salivarius REN is a novel strain isolated from the fecal samples of a healthy centenarian living in a “longevity village” in the Bama District (Guangxi, China), which is home to one of the largest groups of centenarians in the world. Sun *et al.* reported the complete genome sequence of *L. salivarius* REN and found several specific genes related to its functions, such as alpha-glycerophosphate oxidase gene absence in *L. salivarius* ATCC 11741, contributing to degrade 4-hydroxyaminoquinoline 1-oxide, which could damage DNA29. *L. salivarius* REN decreases 4-nitroquinoline 1-oxide-induced genotoxicity in vitro30, and prevents oral31 and colorectal carcinogenesis32. Further, *L. salivarius* REN binds with high affinity to intestinal mucus and epithelial cells and survives and proliferates in the rat colon33. These studies highlight the potential role of *L. salivarius* REN in probiotic activities, although the detailed mechanism of adhesion of *L. salivarius* REN to intestinal cells is unknown.

In the present study, we identified and isolated choline-binding protein A (CbpA) as an S-layer protein of *L. salivarius* REN that we show is important for adhesion. Moreover, we determined the crystal structure of the C-terminal region of CbpA, conducted *in vitro* analyses of the adhesive role of *L. salivarius* S-layer proteins and identified the CbpA receptor.

Results
The important role of S-layer proteins in adhesion of *L. salivarius* REN to the human colorectal cancer cell line HT-29.

To assess the potential contribution of S-layer proteins to adherence, *L. salivarius* REN was treated with LiCl to remove S-layer proteins. The viable count of LiCl-treated bacteria was 3.8 × 10^6 CFU/mL, indicating that good survival (85% viability) of the LiCl-treated cells was observed, and as previously reports34, treatment of *L. helveticus* with 5 M-LiCl led to a limited loss of viability (80%, i.e. <1 log unit). The adhesion value of this strain to HT-29 cells was 960 bacterial cells/100 HT-29 cells. However, after treatment with LiCl, a significant reduction (45%) in adherence was observed (Fig. 1). These results suggest that S-layer proteins play an important role in adherence to host cells.

Isolation and identification of S-layer proteins of *L. salivarius* REN.

The S-layer proteins of *L. salivarius* REN were extracted with LiCl and separated using SDS-PAGE. Two dominant bands with approximate molecular masses of 35 kDa and 50 kDa were observed (Fig. 2A) and were provisionally designated SlpA and SlpB, respectively. MALDI-TOF-MS sequence analysis of the SlpA and SlpB bands revealed that SlpA was nearly identical (98%) to peptidase, specifically the M23 family of *L. salivarius* (Figure S2A). It was labeled as a domain of choline-binding protein A (CbpA, GenBank: AKI05012.1) in *L. salivarius* REN genome, which contains cell wall-anchoring choline binding domains (CWBD) in its N-terminal and C-terminal regions. SlpB was identical (99%) to the N-acetylmuramoyl-L-alanine amidase (NAM-amidase, GenBank: AKI04983.1) (Figure S2B). It was
composed of a glucan-binding domain (YG repeat) at the N-terminal region and a peptidoglycan recognition
protein (PGRP) domain at the C-terminal region.

To determine the roles of the S-layer proteins in adhesion, we constructed deletion mutants designated
ΔcbpA and Δnam-amidase and tested their ability to adhere to HT-29 cells. The adhesion values of
ΔcbpA and Δnam-amidase mutants to HT-29 cells were reduced by 62% and 16%, respectively, compared with wild-type
(WT) (Fig. 2B), indicating that CbpA represents the major surface adherence factor of
L. salivarius REN.

Therefore, we focused our attention on CbpA.

Crystal structure of CbpA. Analysis of the primary amino acid sequence of CbpA revealed that it contains
a CWBD for anchoring to the surface of bacterial. The CWBD is characterized by the repetition of the 20-residue
consensus motif GWX_{6}WYYX_{4}GXMX_{2} (G, Gly; W, Trp; Y, Tyr; M, Met; X, other residues)\(^35\), which comprises
two highly conserved antiparallel β-strands connected by a short internal loop region\(^36\). The CWBD of Cbps
binds noncovalently to choline moieties of teichoic and lipoteichoic acids, which are major components of the

Figure 2. Identification of S-layer proteins of *L. salivarius* REN. (A) SDS-PAGE of cell surface proteins
extracted from *L. salivarius* REN. (B) Gene organization of the region surrounding the cbpA and nam-amidase
locus. Arrows indicate the locations of primers used for PCR analysis. The red shaded regions represented the
deletion target. The green and blue shaded regions represented the upstream and downstream fragments in
target genes. The chromosomal map is not drawn to scale. (C) Schematic overview of the construction of
ΔcbpA and Δnam-amidase mutants. (D) PCR identification of double crossover recombinant. Lane M: DNA
marker DL2000, lane 1: PCR amplification of cbpA in ΔcbpA mutants, lane 2: PCR amplification of cbpA in
wild type strain, lane 3: PCR amplification of nam-amidase in wild type strain, lane 4: PCR amplification of
nam-amidase in Δnam-amidase mutants. (E) Adhesion of *L. salivarius* REN, ΔcbpA and Δnam-amidase
mutants to the HT-29 cells. Data were analyzed by the paired Student's *t* test (*P < 0.05; **P < 0.001). Bars
represented mean values of three independent experiments.
bacterial cell wall30. The CWBD of the S-layer protein of *L. acidophilus* ATCC 4356 mediates binding to the cell was as well37-38. Therefore, the C-terminal domain of CbpA (*DGL_654*, residues 338–512) may be responsible for adherence of bacteria to their host cells. This reasoning led us to solve the crystal structure of a truncated form of CbpA lacking the CWBD to identify the mechanism of adhesion.

The structure of CbpA was solved at 1.85 Å resolution. One molecule was present in one asymmetric unit. The structure comprises residues 360–512, and residues 338–359 were not visible in the electron density map. The entire structure, which shares key features with those of M23-family peptidases39, includes a central six-stranded antiparallel β-sheet (β1–β6) and another β-sheet (β7–β8) forming a “sandwich” structure (Fig. 3). The β7–β8 sheet is packed against the bottom of the β-sheet and helices α1 and α2 in the C-terminus pack against the top (Fig. 3). The core antiparallel β-sheet anchors the catalytic residues, which bind a central Zn^{2+} (Fig. 3). The identification of Zn^{2+} was confirmed by crystallography (a decrease in the anomalous peak-height density at the metal ion sites passing from the absorption to the inflection-point wavelength) and was supported as well by similar temperature factors of the metal ion and the surrounding residues.

The active site of CbpA. Zn^{2+} is coordinated by three adjacent residues (His395, Asp399 of the characteristic HxxxD motif and His475 of the HxH motif) and three water molecules (W110, W111 and W119) in a nearly perfect octa-hedral arrangement. Glu444 and His473 interact with the metal ion through the W111 water molecule (Fig. 4A). The common active conformation of all M23 peptidase can be defined by the four loops (L1–L4) that regulate the entrance of the substrate towards the middle of the groove. The conformations of Loops 2 and 3 in CbpA and lysostaphin, and the smaller Loop 3 in CbpA buries a smaller surface area that is accessible to the substrate. It differs most in the loop 4 of CbpA, forming an α-helix rather than a coil that is present in lysostaphin (Fig. 4). These different conformations of the loops in CbpA may indicate binding to more diverse substrates compared with lysostaphin.

Structural comparisons of CbpA with other M23 metallopeptidases. Structural comparisons using the Dali Server40 revealed that the best match of CpbA was with lysostaphin from *Staphylococcus simulans* (PDB ID: 4QPB)41 with an overall root-mean-square deviation of 1.67 Å between 114 corresponding C-alpha atoms. Although CbpA and lysostaphin share only 26% amino acid sequence similarity, their active sites are similar (Fig. 4B). The common active conformation of all M23 peptidase can be defined by the four loops (L1–L4) that encompass the active site, which would be occupied by potential substrates (Fig. 5). The central six-stranded antiparallel β-sheet of CbpA forms the floor of the groove, and loops L1–L4 form the walls defined for lysostaphin42. CbpA contains a longer L-shaped Loop 1 above the Zn^{2+}, thus forming a lid above the active site that regulates the entrance of the substrate towards the middle of the groove. The conformations of Loops 2 are similar in CbpA and lysostaphin, and the smaller Loop 3 in CbpA buries a smaller surface area that is accessible to the substrate. Most of the loops in CbpA, forming an α-helix rather than a coil that is present in lysostaphin (Fig. 5). These different conformations of the loops in CbpA may indicate binding to more diverse substrates compared with lysostaphin.

Identification of the HT-29 receptor for *L. salivarius* REN CbpA. To identify the host-cell receptor that binds to *L. salivarius* REN, the M23 peptidase domain of CbpA (*DGL_654*) was expressed as a soluble His_{6}-fusion protein in *E. coli* with high purity (Fig. 6A).

We performed pull-down assays of lysed HT-29 cells using a His-CbpA as bait. We detected an approximately 50 kDa band, which we designated “receptor of S-layer protein” (RlpA) (Fig. 6B). The sequence of RlpA, which we determined using MALDI-TOF-MS, is 98% identical to that of human enolase (ENO1, NCBI accession No.: NP_001419) (Figure S2C). To clarify the interaction between CbpA and ENO1, extracts of HT-29 cells were co-immunoprecipitated with His-CbpA (expressed in *E. coli*) or CbpA (extracted by LiCl treatment). When we probed western blots of the respective immunoprecipitates using an anti-ENO1 polyclonal antibody, we detected bands corresponding to the expected sizes of approximately 50 kDa (Fig. 6C).
Discussion

The probiotic _L. salivarius_ REN adheres to intestinal mucus and epithelial cells in _vivo_. To study the molecular mechanism that sustains the ability of this bacterium to colonize the human gut and interact with the intestinal...
mucosa, S-layer proteins were removed by LiCl treatment, and the treated strain showed significant (P < 0.05) reductions in adhesion to HT-29 cells, suggesting that S-layer proteins play an important role in bacterial adherence to host cells.

We used SDS-PAGE and MALDI-TOF-MS to identify the S-layer proteins CbpA and NAM-amidase. Sequence analysis of CbpA revealed a CWBD motif that anchors CbpA to the bacterial envelope as well as an M23 peptidase sequence. The M23 peptidases of certain pathogens can act as adhesins. For example, *Treponema denticola* proteins with M23 peptidase domains that bind fibronectin42, and NlpD, which contains an M23 peptidase domain, is specifically required for intestinal colonization in an infant mouse model of cholera44. Further, deletion of the gene encoding the M23 peptidase family member HdpA (HP0506) reduces the virulence of *Helicobacter pylori* by decreasing its ability to colonize its host44.

NAM-amidases of pathogens function as adhesins. These include AtlE of *Staphylococcus epidermidis*, which contains an amidase domain, mediates adherence to vitronectin and contributes to the binding of host cells during the stages of adherence45. The adhesin Aaa of *Staphylococcus aureus* contains a cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domain that binds in a concentration-dependent manner to fibrinogen, fibronectin and vitronectin and may promote the colonization of the host's extracellular matrix and tissue46. However, adhesion mediated by M23 peptidases and NAM-amidases of probiotics is not assessed.

S-layer proteins can determine cell shape, and removal of the S-layer proteins may change the shape of a bacterial cell and thus alter its surface characteristics47. We show here that the abilities of ΔcbpA and Δnam-amidase mutants to attach to HT-29 cells were significantly decreased compared with that of WT, suggesting that the S-layer proteins CbpA and NAM-amidase contribute to the ability of *L. salivarius* REN to bind to its host cells. Similarly, the abnormal shape of an *hp0506* mutant of *H. pylori* significantly inhibits its ability to colonize the gastric mucosa of mice44. Moreover, in the present study, the adhesive ability of the ΔcbpA mutant was significantly reduced compared with that of the Δnam-amidase mutant, suggesting a more important role in adhesion for CbpA.

We next solved the crystal structure of a C-terminal segment of CbpA that exhibited structural homology with M23 peptidase, indicating that CbpA is a protease. Evidence indicates that *Streptococcus pneumoniae* CbpG may represent a member of the S1 family of multifunctional surface-associated serine proteases and that its proteolytic activity may be required for adherence48. The structural similarities between the active sites of M23 metallopeptidases and CbpA indicate that the latter prefers glycine-containing peptides as substrates. Moreover, the differences in the conformation of its the loops compared with those of M23 metallopeptidases suggest that CbpA binds diverse substrates that are required for adherence. Molecular genetic experiments described above show that the adherence of CbpA required the presence of a proteolytic domain. Thus, CbpA may be a multifunctional surface protein that cleaves the host extracellular matrix and contributes to adherence.

Specific bacterial adhesion to intestinal cells depends on the receptor expressed on the host cell's surface. The S-layer protein receptors expressed by intestinal epithelial cells are key factors in the interaction between gut microbiota and the host. Therefore, the identification of the receptors for S-layer protein is important for further research aimed to enhance the probiotic properties of lactobacilli. Here, the results of our in vitro binding and co-immunoprecipitation experiments show that enolase is the CbpA receptor expressed by HT-29 cells.

Enolase is a highly conserved glycolytic enzyme that represents a novel class of cell surface proteins. Enolase serves as a plasminogen receptor on the surface of a variety of hematopoietic, epithelial, and endothelial cells49. To determine the molecular mechanism of the interaction between CbpA and ENO1, we attempted to solve the
structure of the complex formed by CbpA with ENO1. Despite repeated attempts to co-crystallize CbpA with ENO1, we failed to cocrystallize the proteins. Therefore, we conducted structural analyses of CbpA and ENO1.

Our experimental strategy was designed according to the findings of previous studies that demonstrate that the interaction between enolase and plasminogen increases the adherence of *S. pneumoniae* to epithelial and endothelial cells. Therefore, we reasoned that CbpA mimics plasminogen in its interaction with ENO1, which mediates the adherence of *L. salivarius* REN to HT-29 cells. Further, the binding of enolase to plasminogen requires C-terminal lysine residues of enolase. In the lysine binding sites of plasminogen, two adjacent aspartic acid residues coordinate the C-terminal lysine residues of enolase, and another arginine residue stabilizes the binding of the carboxylic moiety of the C-terminus of enolase. Apart from these interactions, the methylene groups of the C-terminus of enolase are stabilized in the binding pocket through van der Waals contacts with the side-chain atoms of tryptophan residues. In the active site of CbpA, the corresponding anionic center that coordinates the lysine residues of ENO1 may include Asp396 and Asp399, and the binding of the cationic to the carboxylic moiety of ENO1 may require Arg390. Further, the histidine residues in the active site may contribute to stabilizing the hydrophobic residues of ENO1. Moreover, the electrostatic potential map of the active site of CbpA reveals a continuously negative charged surface, and that the surfaces of the C-terminal lysine residues of ENO1 are positively charged, indicating that they may interact with each other (Figure S1A, B). Multiple positively charged surfaces of ENO1 may participate in the interaction with CbpA as well.

In summary, we analyzed and identified two active S-layer proteins of *L. salivarius* REN (CbpA and NAM-amiadase) and detected their different contributions to bacterial adhesion to HT-29 cells. We determined the structural and functional properties of the major surface adherence factor CbpA, which may represent a new class of surface layer proteins, which contain an N-terminal domain required for cell wall-anchoring through choline binding and an M23 family peptidase C-terminal domain required for the interaction with the ENO1 receptor on the surface of host cells. Moreover, through structural analysis, we identified potential amino acid residues that mediate the binding of CbpA to ENO1. The interesting structural features of CbpA may be exploited for the development of selective activators or inhibitors to regulate the interaction between CbpA and ENO1 and enhance the beneficial effects of probiotics.

Methods

HT-29 cells cultures. HT-29 cells were obtained from Peking Union Medical College Hospital in Beijing, China and maintained in Hyclone DMEM/high glucose solution (Thermo Fisher Scientific, Waltham, MA, USA), with penicillin (50 U/mL), streptomycin (50 mg/mL) and 10% fetal bovine serum (Sigma-Aldrich, St. Louis, MO, USA) at 37 °C in an atmosphere of 5% CO₂-95% air. For the adhesion assay, HT-29 cell monolayers were prepared on glass cover slips that were placed in 24-well tissue culture plates; the culture media was changed every other day. Cells were seeded at a concentration of 1 × 10⁶ cells/well. All experiments and cell maintenance were carried out at 37 °C in 5% CO₂-95% atmospheric air.

Bacterial adhesion to HT-29 cells. All bacterial strains and plasmids are listed in Table S1. Adhesion of *L. salivarius* REN to HT-29 cells was examined as previously described. Briefly, bacterial cells were grown in de Man-Rogosa-Sharpe (MRS) broth (pH 6.5) under aerobic conditions at 37 °C to late exponential phase. Cultures were centrifuged at 4500 × g for 10 min at room temperature and washed once, and then re-suspended in sterile phosphate-buffered saline (PBS) before cell density was adjusted to ~1 × 10⁶ CFU/mL based on OD₆₀₀. HT-29 monolayers were washed twice with PBS. For each adhesion assay, 1 mL of *Lactobacillus* suspension was added to each well of the tissue culture plate at the multiplicity of infection (MOI) of 0–100, and incubated at 37 °C for 1 h in 5% CO₂-95% atmospheric air. After incubation, the monolayers were washed five times with sterile PBS, fixed with methanol, Gram-stained, and examined using a light microscope. Each adhesion assay was duplicated using cells from three successive passages. For each monolayer on a glass cover slip, the number of adherent bacteria was counted in 20 random areas. *Lactobacillus* adhesion is expressed as the number of bacteria adhering to 100 HT-29 cells.

Determination of the effect of LiCl. Viability was determined on MRS agar plates after incubation for 48 h at 37 °C as described by Lortal et al. The late exponential-phase cells (1.5 mg dry mass mL⁻¹; 4.5 × 10⁶ CFU/mL) were incubated for 1 h at 37 °C with 5 M LiCl to extract the S-layer proteins. The treated bacteria were divided into two parts. One part was recovered by centrifugation, washed once in sterile distilled water and resuspended in the initial volume of MRS broth for the determination of viable bacteria by plate counting. Another was used for the adhesion assay. The bacterial pellet was washed once, and resuspended in sterile PBS before cell density was adjusted to ~1 × 10⁶ CFU/mL based on viable cell count and OD₆₀₀.

Isolation of bacterial cell surface proteins. S-layer proteins were extracted with 5 M LiCl as described by Lortal et al. using a slight modification. Briefly, the bacterial biomass from 500 mL of a culture was harvested by centrifugation (9000 × g, 4 °C) and washed twice with sterile deionized water. One gram of wet cells was extracted with 5 mL of 5 M LiCl at 37 °C for 1 h. The cell suspension was centrifuged at 10,000 × g for 10 min at 4 °C, and the supernatants were collected and dialyzed overnight in deionized water at 4 °C. Finally, the dialysate was freeze-dried and stored at −20 °C.

Sequence analysis of S-layer proteins. The S-layer proteins of *L. salivarius* REN were separated using 12% (wt/vol) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The bands on the gel were excised and sequenced using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) (Beijing Bioms Sci-tech Co., Ltd., Beijing, China). The protein sequences were compared with *L. salivarius* REN sequence using blastp.
Inactivation of genes encoding S-layer proteins. S-layer protein mutants were generated using a modified procedure described by van Pijkeren et al. Genomic DNA of *L. salivarius* REN was isolated using a genomic DNA purification kit (Tiagen Biotech Co., Ltd., Beijing, China). The genomic DNA of *L. salivarius* REN was used as a template for PCR amplification of the 5′- and 3′-end flanking regions of DGL_654 and DGL_683, using the primer pairs AIE51F-AI52R, AI33F-AIB34R, BIE51F-BI52R and BIB33F-BIB34R (Table S3). The amplicons were joined by splicing through overlap extension (SOE)-PCR using primer pairs AIE51F-AIB34R and BIE51F-BIB34R. The amplicons (500 bp and 910 bp) were digested using EcoRI and BamHI, respectively, and ligated to pORI19. The integrity of each transformant was verified by digestion with EcoRI and BamHI. The plasmids were designated pORS001 and pORS002, respectively. The plasmid integrants in *L. salivarius* REN were constructed with minor modifications described by Russell et al. Briefly, *L. salivarius* REN harbouring the helper plasmid pTRK669 was transformed with pTRK001 or pTRK002 by electroporation. Electroporation was carried out by using a MicroPulser (Bio-Rad Laboratories, Richmond, CA, USA). Pulse parameters were set as following: capacitance, 25 μF, voltage, 2.4 kV, and time, 4.5 ms. Then, the bacterial cells were immediately but gently suspended in 1 mL supplemented MRS medium and incubated at 37 °C for 2 h, then spreaded on MRS plates containing erythromycin (Em) and chloramphenicol (Cm), cultured for 48 h at 37 °C. Subsequently, two Em/Cm-resistant transformants carrying both plasmids were propagated 16 h once at 37 °C in MRS broth containing 5 μg/mL each of Em and Cm, and transferred three times (1% inoculum) in MRS broth with Em (ca. 30 generations) at 43 °C, with selection for pORS001 and pORS002 only, thus allowing integration into the chromosome.

Protein Expression and Purification. The gene encoding residues 338–512 of CbpA (DGL_654) was cloned into a modified pET-28a vector, in which the thrombin recognition site is replaced by a tobacco etch virus (TEV) recognition site. The sequence of the insert was verified using DNA sequencing, and the plasmid was used to transform *E. coli* strain BL21 (DE3) for protein expression. Transformed cells were cultured in LB medium at 37 °C to an OD₆₀₀ = 1.0, induced using 0.1 mM IPTG, and cultured further for 12 h at 18 °C. Cells were harvested by centrifugation at 3,000 × g for 15 min, resuspended in lysis buffer (20 mM Hepes pH 7.0, 500 mM NaCl) and lysed using a sonicator. The lysate was centrifuged at 47,000 × g for 20 min, the supernatant was filtered through a 0.45-μm filter membrane to remove cell debris and other impurities, and then applied to a Profinity IMAC Ni-Charged Resin column (Bio-Rad). To excise the 6× His-tag, a small amount of 6× His-tagged TEV protease was added and incubated on ice overnight. The digestion products were applied to a Ni-Charged Resin column to remove TEV protease. The flow through was loaded onto a Superdex 200 HR10/300 GL column (GE Healthcare) equilibrated with 20 mM Hepes pH 7.0, 150 mM NaCl. The protein peak was identified using SDS-PAGE. The proteins were concentrated to 8 mg/mL for crystallization.

Crystallization and Data Collection. Crystals of CbpA were grown at 18 °C using the sitting drop vapor diffusion method and equilibrated to a reservoir solution of 1.0 M (NH₄)₂HPO₄, 0.1 M acetate, pH 7.5. After several days, the crystals were frozen in a cryoprotectant consisting of the reservoir solution containing with 20% ethylene glycol. The crystal data were collected at SSRF beamline BL17U and integrated and scaled using the HKL2000 suite. Data collection statistics are summarized in Table S2.

Structure determination and refinement. Using balbes (http://www.ccp4.ac.uk/ccp4online/) to perform searches, molecular replacement solutions of the CbpA were initially found. A crude partial model was built automatically using IPCAS (Iterative Protein Crystal structure Automatic Solution). The structure was completed using alternating cycles of manual model building (in coot ref. 60) and restrained refinement (in refmac5 ref. 61), and the final Rwork/Rfree was 17.2%/19.7%. All figures in this article displaying molecular structures created using PyMOL (The PyMOL molecular graphics system, version 1.3 r1, 2010).

His pull-down assay of CbpA binding to molecules expressed by HT-29 cells. The His pull-down assay was performed using the Pierce His Protein Interaction Pull-Down Kit (Thermo-Fisher Scientific, Waltham, MA, USA). Briefly, His-CbpA served as bait and was incubated with HisPur Cobalt Resin at 4 °C for at least 30 min, the resin was washed with wash solution, and incubated with HT-29 cell lysates overnight at 4 °C. HT-29 cell lysates were prepared according to the user guide of the Pierce His Protein Interaction Pull-Down Kit. Briefly, HT-29 cells were released from the surface of the flask by Lifters, and harvested by centrifugation (500 g, 5 minutes), then washed once with 1 mL of Tris Buffered Saline (TBS) per 5 mL of original cell culture volume. HT-29 cell pellet was resuspended with 2.5 mL of ice-cold TBS per gram wet weight of cells, and added 5 mL of Pierce Lysis Buffer per gram wet weight of cells, and then incubated on ice for ~30 minutes. Supernatant was obtained by centrifuging at 12,000 × g for 5 minutes. Finally, the resin was washed with elution buffer, and the elution buffer containing bait and prey proteins was analyzed using SDS-PAGE.

Sequence analysis of potential CbpA receptors. The proteins in the pull-down elution buffer were separated using 12% (wt/vol) SDS-PAGE. The bands bound to His-CbpA were excised from the gel and sequenced using MALDI-TOF-MS. Protein sequences were compared with the sequences deposited in the Mascot database (http://www.matrixscience.com).

Co-immunoprecipitation. Co-immunoprecipitation assays were performed using the Pierce Co-Immunoprecipitation Kit (Thermo-Fisher Scientific, Waltham, MA, USA). Briefly, an antibody against CbpA was coated onto an amine-reactive resin at room temperature for 90 min, and then the CbpA–HT-29 cell lysate mixture was added to the immobilized antibody and incubated overnight at 4 °C. The resin was washed with...
elution buffer, and the proteins in the eluate were separated using SDS-PAGE. The proteins were electrophoretically transferred onto 0.2-μm Immobilon-P polyvinylidene difluoride (PVDF) membranes (EMD Millipore, Billerica, MA, USA) and subjected to western blotting using an antibody against ENO1.

References
1. Hynonen, U. & Palva, A. Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol 97, 5225–5243 (2013).
2. Zhang, W. et al. Adhesive ability means inhibition activities for lactobacillus against pathogens and S-layer protein plays an important role in adhesion. Anaerobe 22, 97–103 (2013).
3. Servin, A. L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS microbiol rev 28, 405–440 (2004).
4. Johnson, B., Selle, K., OFlaherty, S., Goh, Y. J. & Klamerhammer, T. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM. Microbiol-Sgm 159, 2269–2282 (2013).
5. Ventura, M., Jankovic, I., Walker, D. C., Pridmore, R. D. & Zink, R. Identification and characterization of novel surface proteins in Lactobacillus johnsonii and Lactobacillus gasseri. Appl environ microbiol 68, 6172–6181 (2002).
6. Morata de Ambrosini, V. L., Gonzalez, S. N. & Oliver, G. Study of adhesion of Lactobacillus casei CRL 431 to ileal intestinal cells of mice. J food prot 62, 1430–1434 (1999).
7. Gusils, C., Cuo, Z., Sesma, F. & Gonzalez, S. Examination of adhesive determinants in three species of Lactobacillus isolated from chicken. Can J microbio 48, 34–42 (2002).
8. Greene, J. D. & Klamerhammer, T. R. Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl environ microbiol 60, 4487–4494 (1994).
9. Granato, D. et al. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl environ microbiol 65, 1071–1077 (1999).
10. Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol R 72, 728–764 (2008).
11. Reunanen, J., von Ossowski, I., Hendrickx, A. P. A., Palva, A. & de Vos, W. M. Characterization of the spaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl environ microbiol 78, 2337–2344 (2012).
12. von Ossowski, I. et al. Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus gasseri GG. Appl environ microbiol 77, 4465–4472 (2011).
13. Adlerberth, I. et al. A mannos-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl environ microbiol 62, 2244–2251 (1996).
14. Mukai, T., Arribas, O. & Itoh, H. Lectin-like activity of Lactobacillus acidophilus strain JCM 1026. Fems Microbiol Lett 79, 71–74 (1992).
15. Yamamoto, K. et al. Binding specificity of Lactobacillus to glycolipids. Biosci Bioph Res Co 282 (1996).
16. Garrote, G. L. et al. Lactobacilli isolated from kefir grains: evidence of the presence of S-layer proteins. J Dairy Res 71, 222–230 (2004).
17. Freese, J. et al. Importance of S-layer proteins in probiotic activity of Lactobacillus acidophilus M92. J Appl microbiol 98, 285–292 (2005).
18. Chen, X. Y. et al. The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157: H7 and Salmonella typhimurium. Int J Food microbiol 115, 307–312 (2007).
19. Jalava-Vijanen, M. & Palva, A. Isolation of surface (S) layer protein carrying Lactobacillus species from porcine intestine and faces and characterization of their adhesion properties to different host tissues. Vet Microbiol 124, 264–273 (2007).
20. Sillanpaa, J. et al. Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus. J Bacteriol 182, 6440–6450 (2000).
21. Sun, Z. L. et al. Characterization of a S-layer protein from Lactobacillus crispatus K313 and the domains responsible for binding to cell wall and adherence to collagen. Appl Microbiol Biotechnol 97 (2013).
22. Konstantinov, S. R. et al. S-layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. P Natl Acad Sci USA 105, 19474–19479 (2008).
23. Hymes, J. P., Johnson, B. R., Barrangou, R. & Klamerhammer, T. R. Functional analysis of an S-layer-associated fibronectin-binding protein in Lactobacillus acidophilus NCFM. Appl environ microbiol 82, 2676–2685 (2016).
24. de Leuuve, E., Li, X. Q. & Liu, W. Y. Binding characteristics of the Lactobacillus brevis ATCC 8287 surface layer to extracellular matrix proteins. Fems Microbiol Lett 260, 210–215 (2006).
25. Buck, B. L., Altermann, E., Svingerud, T. & Klamerhammer, T. R. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl environ microbiol 71, 8344–8351 (2005).
26. Hynonen, U., Westerlund-Wikstrom, B., Palva, A. & Korhonen, T. K. Identification by flagellum display of an epithelial cell- and fibronectin-binding function in the SpaA surface protein of Lactobacillus brevis. J Bacteriol 184, 3360–3367 (2002).
27. Antikainen, J., Antolin, L., Sillanpaa, J. & Korhonen, T. K. Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly. Mol Microbiol 46, 381–394 (2002).
28. Avall-Jaaskelainen, S. et al. Identification and characterization of domains responsible for self-assembly and cell wall binding of the surface layer protein of Lactobacillus brevis ATCC 8287. Bmc Microbiol 8 (2008).
29. Sun, E. R., Liu, S. et al. Complete genome sequence of Lactobacillus salivarius Ren, a probiotic strain with anti-tumor activity. J Bacteriol 210, 53–55 (2015).
30. Wang, F., Jiang, L., Liu, A. P., Guo, X. H. & Ren, F. Z. Analysis of antigenotoxicity of Lactobacillus salivarius by high performance liquid chromatography. Chinese J Anal Chem 36, 740–744 (2008).
31. Zhang, M. et al. Lactobacillus salivarius REN inhibits rat oral cancer induced by 4-nitroquinoline 1-oxide. Cancer Prev Res 6, 686–694 (2013).
32. Zhu, J. et al. Lactobacillus salivarius Ren prevent the early colorectal carcinogenesis in 1,2-dimethylhydrazine-induced rat model. J Appl microbiol 117, 208–216 (2014).
33. Zhang, M., Qiao, X. W., Zhao, L., Jiang, L. & Ren, F. Z. Lactobacillus salivarius REN counteracted unfavorable 4-nitroquinoline-1-oxide-induced changes in colonic microflora of rats. J Microbiol 49, 877–883 (2011).
34. Lortal, S., H. J. V., Gruber, K. et al. S-layer of Lactobacillus helveticus ATCC 12046: isolation, chemical characterization and reformation after extraction with lithium chloride. J Gen Microbiol 138, 611–618 (1992).
35. Garau, G., Lemaire, D., Vernet, T., Dideberg, O. & Di Guilmi, A. M. Crystal structure of phosphorylcholine esterase domain of the virulence factor choline-binding protein E from Streptococcus pneumoniae - New structural features among the metallo-beta-lactamase superfamily. J Biol Chem 280, 28591–28600 (2005).
36. Fernandez-Tornero, C., Lopez, R., Garcia, E., Gimenez-Gallego, G. & Romero, A. A novel solenoid fold in the cell wall anchoring domain of the pneumococcal virulence factor LytA. Nat Struct Biol 8 (2001).
37. Smit, E., Oling, F., Demel, R., Martinez, B. & Pouwels, P. H. The S-layer protein of Lactobacillus acidophilus ATCC 4356, Identification and characterization of domains responsible for S-protein assembly and cell wall binding. J Mol Biol 305, 245–257 (2001).
38. Smit, E. & Pouwels, P. H. One repeat of the cell wall binding domain is sufficient for anchoring the Lactobacillus acidophilus surface layer protein. J Bacteriol 184, 4617–4619 (2002).
39. Bohler, M., Odintsov, S. G., Marcyniak, M. & Sabala, I. Similar active sites in lysostaphins and D-Ala-D-Ala metallopeptidases. Prot sci 13, 854–861 (2004).
40. Holm, L. & Sander, C. DALI: a network tool for protein structure comparison. Trends biochem sci 20, 478–480 (1995).
41. Sabala, I. et al. Crystal structure of the antimicrobial peptide lysostaphin from Staphylococcus simulans. FEBS Lett 581, 4112–4122 (2014).
42. Bamford, C. V., Francescutti, T., Cameron, C. E., Jenkinson, H. F. & Dymock, D. Characterization of a novel family of fibronectin-binding proteins with M23 peptide domains from Treponema denticola. Mol Oral Microbiol 25, 369–383 (2010).
43. Moll, A. et al. Cell separation in Vibrio cholerae is mediated by a single amidase whose action is modulated by two nonredundant activators. J Bacteriol 196, 3937–3948 (2014).
44. Bonis, M., Ecobichon, C., Guadagnini, S., Prevost, M. C. & Boneca, I. G. A M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence. Mol Microbiol 78, 809–819 (2010).
45. Hellmann, C., Hussain, M., Peters, G. & Gotz, F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24, 1013–1024 (1997).
46. Hirschhausen, N., Schiesler, T., Peters, G. & Hellmann, C. Characterization of the modular design of the autolysin/adhesin Aaa from Staphylococcus aureus. Plos One 7 (2012).
47. Stryer, L. & Beveridge, T. J. Bacterial S-layers. Trends Microbiol 7, 253–260 (1999).
48. Man, B. et al. Multifunctional role of choline binding protein G in pneumococcal pathogenesis. Infect Immun 74, 821–829 (2006).
49. Pancholi, V. Multifunctional alpha-enzyme: its role in diseases. Cell Mol Life Sci 58, 902–920 (2001).
50. Bergmann, S., Schoen, H. & Hammer, S. The interaction between bacterial enolase and plasminogen promotes adherence of Streptococcus pneumoniae to epithelial and endothelial cells. Int J Med Microbiol 303, 453–462 (2013).
51. Redzic, A., Fowler, B. J., Plow, E. F. & Miles, L. A. The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem 227, 407–415 (1995).
52. Rios-Steiner, J. L., Schenone, M., Mochalik, I., Tulinsky, A. & Castellino, F. J. Structure and binding determinants of the recombinant kringle-2 domain of human plasminogen to an internal peptide from a group A Streptococcus surface protein. J Mol Biol 308, 705–719 (2001).
53. Mathews, I. L., Vanderhoff, P. H., Van et al. Crystal structures of the recombinant kringle 1 domain of human plasminogen in complexes with the ligands epsilon-aminocaproic acid and trans-4-(aminomethyl)cyclohexane-1-carboxylic acid. Biochemistry-Us 35, 2567–2576 (1996).
54. Marti, D. N., Schaller, J. & Llinas, M. Solution structure and dynamics of the plasminogen kringle 2-AMCHA complex: 3(1)-helix in homologous domains. Biochemistry-Us 38, 15741–15753 (1999).
55. Rejante, M. R. & Llinas, M. Solution structure of the epsilon-aminohexanoic acid complex of human plasminogen kringle-1. Eur J Biochem 221, 939–949 (1994).
56. Chauviere, G., Coconnier, M. H., Kerneis, S., Fourniat, J. & Servin, A. L. Adhesion of human Lactobacillus acidophilus strain UCC118 to human enterocyte-like Caco-2 cells. J Gen Microbiol 138, 1689–1696 (1992).
57. van Pijkeren, J. P. et al. Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus acidophilus gasseri. FEBS J 278, 4134–4153 (2006).
58. Russell, W. M. & Klaenhammer, T. R. Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Appl environ microbiol 67, 4361–4364 (2001).
59. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D 67, 235–242 (2011).
60. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D 66, 2126–2132 (2004).
61. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D 67, 355–367 (2011).

Acknowledgements
We thank the staffs of the beamline BL17B at the Shanghai Synchrotron Radiation Facility, beamline BL5A at the Photon Factory (Tsukuba, Japan) and beamline 1W2B at the Beijing Synchrotron Radiation Facility for excellent technical assistance during data collection. This study was supported by the National Natural Science Foundation of China (31401668), the Beijing Natural Science Foundation (6154022), and the Beijing Municipal Commission of Education Co-construted program.

Author Contributions
F.R. conceived the idea, directed the work and designed the experiments; R.W. and L.J. performed the experiments; R.W., L.J. and F.R. analyzed the data and wrote the manuscript; M.Z., L.Z., Y.H. H.G. Y.S. and H.Z. revised the manuscript. All authors discussed the results, reviewed and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing Interests: The authors declare no competing financial interests.

How to cite this article: Wang, R. et al. The Adhesion of Lactobacillus salivarius REN to a Human Intestinal Epithelial Cell Line Requires S-layer Proteins. Sci. Rep. 7, 44029; doi: 10.1038/srep44029 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017