An inverse-type problem for cycles in local Cayley distance graphs

Thang Pham*

Abstract

Let E be a proper symmetric subset of S^{d-1}, and $C_{\mathbb{F}_q}(E)$ be the Cayley graph with the vertex set \mathbb{F}_q^d, and two vertices x and y are connected by an edge if $x - y \in E$. Let $k \geq 2$ be a positive integer. We show that for any $\alpha \in (0, 1)$, there exists $q(\alpha, k)$ large enough such that if $E \subset S^{d-1} \subset \mathbb{F}_q^d$ with $|E| \geq \alpha q^{d-1}$ and $q \geq q(\alpha, k)$, then for each vertex v, there are at least $c(\alpha, k)q^{(2k-1)d-4k^2}$ cycles of length $2k$ with distinct vertices in $C_{\mathbb{F}_q}(E)$ containing v. This result is the inverse version of a recent result due to Iosevich, Jardine, and McDonald (2021).

Keywords: Spherical configurations, Finite fields, Cayley graphs, Cycles.

Mathematics Subject Classification: 52C10, 11T23

1 Introduction

Let G be an abelian finite group and a symmetric set $E \subset G$. The Cayley graph $C_G(E)$ is defined as the graph with the vertex set $V = G$, and there is an edge from x to y if $y - x \in E$. Let \mathbb{F}_q be a finite field of order q, where q is a prime power. In this paper, we consider G being the whole vector space \mathbb{F}_q^d.

We have $C_{\mathbb{F}_q}(E)$ is a regular graph of degree $|E|$ with q^d vertices. It is well-known in the literature that eigenvalues of $C_{\mathbb{F}_q}(E)$ are of the form $\lambda_m := \sum_{x \in E} \chi(x \cdot m) = \hat{E}(m)$, $m \in \mathbb{F}_q^d$, where χ is the principle additive character of \mathbb{F}_q. Define $\mu := \max_{m \neq (0,0,...,0)} |\lambda_m|$. This quantity is referred as the second largest eigenvalue of $C_{\mathbb{F}_q}(E)$. We call a graph (n, d, λ)-graph if it has n vertices, the degree of each vertex is d, and the second largest eigenvalue is at most λ.

When $E = S^{d-1}$, the unit sphere in \mathbb{F}_q^d, we recall a result from a paper of Iosevich and Rudnev [13, Lemma 5.1] that $\mu = (1 + o(1))q^{\frac{d-1}{2}}$. Thus, the graph $C_{\mathbb{F}_q}(S^{d-1})$ is a (n, d, λ)-graph with $n = q^d$, $d = |S^{d-1}|$, and $\lambda = (1 + o(1))q^{\frac{d-1}{2}}$. In a (n, d, λ)-graph, we know from [13, Theorem 4.10] that any large subset of vertices contains the correct number of copies of any fixed sparse graph. More

*Theory of Combinatorial Algorithms Group, ETH Zurich, Switzerland. Email: phamnhithang.vnu@gmail.com
Theorem 1.1 (Iosevich-Jardine-McDonald, [12]). Let A be a set in \mathbb{F}_q^d. Suppose that $|A| \gg q^{d+\frac{2}{3}}$, then for any positive integer $\ell \geq 3$, the number of cycles of length ℓ in $C_{\mathbb{F}_q^d}(S^{d-1})$ with vertices in A is $(1 + o(1))|A|^\ell q^{-\ell}$. In addition, when ℓ is large, then the exponent $\frac{d+2}{\ell}$ can be improved, namely, the condition

$$|A| \geq \begin{cases} q^{\frac{1}{2}(d+2-\frac{d+2}{\ell}+\delta)}, & \text{if } \ell \geq 4 \text{ even} \\ q^{\frac{1}{2}(d+2-\frac{d+3}{\ell}+\delta)}, & \text{if } \ell \geq 3 \text{ odd} \end{cases}$$

where $0 < \delta \ll \frac{1}{\ell^2}$, would be enough.

The following is our main result.

Theorem 1.2. Let $d, k \in \mathbb{N}$ with $d \geq 4k + 2$, $\alpha \in (0, 1)$ and $q \geq q(\alpha, k)$. For a symmetric set $E \subset S^{d-1} \subset \mathbb{F}_q^d$ with $|E| \geq \alpha q^{d-1}$, the number of cycles of length $2k$ in $C_{\mathbb{F}_q^d}(E)$ with distinct vertices passing through each vertex of $C_{\mathbb{F}_q^d}(E)$ is at least $c(\alpha, k)q^{\frac{(2k-1)d-4k}{2}}$.

To prove Theorem 1.2 several serious challenges arise, and the most difficulty comes from the fact the graph $C_{\mathbb{F}_q^d}(E)$ is not a pseudo-random graph, namely, the second eigenvalue μ is arbitrary close to the graph degree when q is large enough.

Proposition 1.3. For any $1 \leq m \ll q^{d-1}$ and $\epsilon > 0$ with $1/\epsilon \in \mathbb{Z}$. Let $q = p^\frac{1}{\epsilon}$. There exists $E \subset S^{d-1}$ such that $|E| = m$ and $\mu \geq \frac{|E|}{q^d}$. In addition, if $|E + E| \sim |E|$, then we have $\mu \sim \lambda_{(0,\ldots,0)} = |E|$.

Hence, it is not possible to apply techniques of pseudo-random graphs to prove such a result as Theorem 1.2. Our main ingredient is a recent Ramsey-type result on the number of congruence copies of $2k$-spherical configurations spanning $2k-2$ dimensions due to Lyall, Magyar, and Parshall in [15], which has been derived by using a generalized von-Neumann type inequality [15].

\[1\text{We use the following notations: } X \ll Y \text{ means that there exists some absolute constant } C > 0 \text{ such that } X \leq CY, X \sim Y \text{ means that } X \ll Y \ll X, X = o(Y) \text{ means that } \lim_{y \to \infty} X/Y = 0.\]
It seems difficult to extend the approach of Theorem [12] for other subgraphs \(H \). When \(H \) is a \(k \)-simplex, say \(k = 2 \) for simplicity, the inverse problem asks for conditions on three given proper subsets \(E_1, E_2, E_3 \) of \(S^{d-1} \) such that there are three vertices \(x, y, z \in \mathbb{F}_q^d \) such that \(x - y \in E_1, y - z \in E_2, z - x \in E_3 \). Note that \(E_1, E_2, E_3 \) can also be assumed to be subsets of spheres with different radii. We believe that finding a non-trivial solution of this problem would be much difficult compared to the original one.

When \(E = S^{d-1} \), giving a lower bound on the number of cycles in \(C_{\mathbb{F}_q^d}(E) \) is much easier, since, as mentioned earlier, \(C_{\mathbb{F}_q^d}(S^{d-1}) \) is a pseudo-random graph with the second eigenvalue \(\mu \sim \sqrt{|S^{d-1}|} \).

In the next proposition, we provide an improvement of Theorem [11] in terms of the lower bound on the number of cycles of even length.

Proposition 1.4. Suppose \(E = S^{d-1} \), then the number of cycles of length \(2k \) in \(C_{\mathbb{F}_q^d}(S^{d-1}) \) is \((1 + o(1))|S^{d-1}|^{2k-1}q^{-d} \). In addition, for any set \(A \subset \mathbb{F}_q^d \) with \(|A| \gg \min\{q^{d+1/2}, q^{-d/2}\} \), the number of cycles of length \(2k \) in \(C_{\mathbb{F}_q^d}(E) \) with vertices in \(A \) is at least \(q^{-2k}|A|^{2k} \).

Based on Proposition 1.4 and in the spirit of Theorem 1.1, we conjecture that for any set \(A \subset \mathbb{F}_q^d \) with \(|A| \gg \min\{q^{d+1/2}, q^{-d/2}\} \), the number of cycles of length \(2k \) in \(C_{\mathbb{F}_q^d}(S^{d-1}) \) with vertices in \(A \) is equal to \((1 + o(1))q^{-2k}|A|^{2k} \).

2 Preliminaries

Let \(\chi: \mathbb{F}_q \to S^1 \) be the canonical additive character. For example, if \(q \) is a prime number, then \(\chi(t) = e^{2\pi it/q} \), if \(q = p^n \), then we set \(\chi(t) = e^{2\pi it/q} \), where \(\mathbf{Tr}: \mathbb{F}_q \to \mathbb{F}_q \) is the trace function defined by \(\mathbf{Tr}(x) := x + x^p + \cdots + x^{p^{n-1}} \).

We recall the orthogonal property of \(\chi \): for any \(x \in \mathbb{F}_q^d, d \geq 1 \),

\[
\sum_{m \in \mathbb{F}_q^d} \chi(x \cdot m) = \begin{cases}
0 & \text{if } x \neq (0, \ldots, 0) \\
q^d & \text{if } x = (0, \ldots, 0)
\end{cases},
\]

where \(x \cdot m = x_1 m_1 + \cdots + x_d m_d \).

For any \(x \in \mathbb{F}_q^d \), through this paper, we define \(||x|| = x_1^2 + \cdots + x_d^2 \).

Given a set \(E \subset \mathbb{F}_q^d \), we identify \(E \) with its indicator function \(1_E \). The Fourier transform of \(E \) is defined by

\[
\hat{E}(m) := \sum_{x \in \mathbb{F}_q^d} E(x) \chi(-x \cdot m).
\]
Let E be a set in \mathbb{F}_d^q, and k be a positive integer. The k–additive energy of E, denoted by $T_k(E)$, is defined by

$$T_k(E) := \# \left\{ (a_1, \ldots, a_k, b_1, \ldots, b_k) \in E^{2k} : a_1 + \cdots + a_k = b_1 + \cdots + b_k \right\}. \tag{1}$$

We call such a tuple $(a_1, \ldots, a_k, b_1, \ldots, b_k)$ k-energy tuple.

A k-energy tuple $(a_1, \ldots, a_k, b_1, \ldots, b_k) \in (\mathbb{F}_d^q)^{2k}$ is called good if for any two sets of indices $I, J \subset \{1, \ldots, k\}$, we have $\sum_{i \in I} a_i - \sum_{j \in J} b_j \neq 0$. We denote the number of good k-energy tuples with vertices in E by $T_k^{\text{good}}(E)$.

In the next lemma, we show that for every vertex $v \in \mathbb{F}_d^q$, the number of cycles of length $2k$ with distinct vertices going through v is at least $T_k^{\text{good}}(E)$.

Lemma 2.1. For any $k \geq 2$ and any $v \in \mathbb{F}_d^q$, the number of cycles of length $2k$ in $C_{\mathbb{F}_d^q}(E)$ with distinct vertices going through v is at least $T_k^{\text{good}}(E)$.

Proof. For each good k-energy tuple $(a_1, \ldots, a_k, b_1, \ldots, b_k) \in E^{2k}$, we consider the following cycle of length $2k$ in $C_{\mathbb{F}_d^q}(E)$:

$$v, v + a_1, v + a_1 + a_2, \ldots, v + a_1 + \cdots + a_k, v + \sum_{i=1}^{k} a_i - b_1, \ldots, v + \sum_{i=1}^{k} a_i - \sum_{i=1}^{k-1} b_i.$$

We observe that in this cycle, each vertex appears only once since the k-energy tuple is good. So, for each vertex v, there are at least $T_k^{\text{good}}(E)$ cycles with distinct vertices passing through v. \hfill \Box

We also recall the well–known Expanding mixing lemma for regular graphs. We refer the reader to [10, 14] for proofs.

Lemma 2.2. Let G be a regular graph with n vertices of degree d. Suppose that the second eigenvalue of G is at most μ, then for any two vertex sets U and W in G, the number of edges between U and W, denoted by $e(U, W)$, satisfies

$$\left| e(U, W) - \frac{d|U||W|}{n} \right| \leq \mu \frac{|U|^{1/2}|W|^{1/2}}. \tag{2}$$

When U and W are multi-sets, we also have

$$\left| e(U, W) - \frac{d|U||W|}{n} \right| \leq \mu \left(\sum_{u \in U} m(u)^2 \right)^{1/2} \cdot \left(\sum_{w \in W} m(w)^2 \right)^{1/2}.$$

4
where \(\overline{X} \) is the set of distinct elements in \(X \), and \(m(x) \) is the multiplicity of \(x \).

3 Proof of Theorem 1.2

Theorem 1.2 follows directly from Lemma 2.1 and the following lower bound for \(T_k^{\text{good}}(E) \).

Theorem 3.1. Suppose \(E \) satisfies assumptions of Theorem 1.2, we have

\[
T_k^{\text{good}}(E) \geq c(\alpha, k)q^{(2k-1)d-4k+2}.
\]

In the rest of this section, we focus on proving Theorem 3.1.

For each \(j \neq 0 \), let \(S_{d-1}^j(x) \) be the sphere centered at \(x \in \mathbb{F}_q^d \) of radius \(j \). For the sake of simplicity, we write \(S_{d-1}^0 \) for \(S_{d-1}^0(0, \ldots, 0) \), and \(S_{d-1}^1 \) for \(S_{d-1}^1(0, \ldots, 0) \).

Definition 3.2. Let \(X \subset \mathbb{F}_q^d \) be a configuration. We say that \(X \) is spherical if \(X \subset S_{d-1}^1(x) \) for some \(x \in \mathbb{F}_q^d \). If \(\dim(\text{Span}(X - X)) = k \), then we say \(X \) spans \(k \) dimensions.

The following result is our key ingredient in the proof of Theorem 3.1.

Theorem 3.3 (Lyall-Magyar-Parshall, [15]). Let \(d, k \in \mathbb{N} \) with \(d \geq 2k+6 \), \(\alpha \in (0,1) \) and \(q \geq q(\alpha, k) \). For \(E \subset S_{d-1}^1 \) with \(|E| \geq \alpha q^{d-1} \), then \(E \) contains at least \(c(\alpha, k)q^{(k+1)d-(k+1)(k+2)} \) isometric copies of every non-degenerate \((k+2)\)-point spherical configuration spanning \(k \) dimensions.

This theorem says that for any \(\alpha \in (0,1) \) and any fixed non-degenerate \((k+2)\)-point spherical configuration \(X \) spanning \(k \) dimensions, there exists \(q_0 = q_0(\alpha, k) \) which is large enough, such that for any \(E \subset S_{d-1}^1 \subset \mathbb{F}_q^d \) with \(|E| \geq \alpha q^{d-1} \) and \(q \geq q_0 \), \(E \) contains many isometric copies of \(X \).

More precisely, let

\[
X = \{0, v_1, \ldots, v_k, a_1v_1 + \cdots + a_kv_k\},
\]

where \(0 = (0, \ldots, 0) \), \(v_1, \ldots, v_k \in \mathbb{F}_q^d \) are linearly independent vectors, and \(a_1, \ldots, a_k \in \mathbb{F}_q \), be a non-degenerate spherical configuration of \(k + 2 \) points in \(\mathbb{F}_q^d \) that spans a \(k \)-dimensional vector space. By non-degenerate, we meant that \(\{0, v_1, \ldots, v_k\} \) form a \(k \)-simplex with all non-zero side-lengths. Assume that \(E \subset S_{d-1}^1 \) satisfying the conditions of Theorem 3.3, then \(E \) contains at least \(c(\alpha, k)q^{(k+1)d-(k+1)(k+2)} \) copies of \(X \) of the form

\[
X' = \{x_0, x_0 + x_1, \ldots, x_0 + x_k, x_0 + a_1x_1 + \cdots + a_kx_k\},
\]

with \(x_1, \ldots, x_k \) linearly independent such that \(x_i \cdot x_j = v_i \cdot v_j \) for \(1 \leq i \leq j \leq k \).

We recall that two configurations \(X \) and \(X' \) in \(S_{d-1}^1 \) are said to be in the same congruence class if
there exists \(g \in O(d, \mathbb{F}_q) \), the orthogonal group in \(\mathbb{F}_q^d \), such that \(g(X) = X' \).

Let \(Q \) be the set of distinct congruence classes of spherical configurations \(X \) of the form

\[
X = \{ x_0, x_0 + x_1, x_0 + x_2, \ldots, x_0 + x_{2k-2}, x_0 + \sum_{i=1}^{2k-2} (-1)^{i+1}(x + x_i) \},
\]

satisfying

- \(\{x_1, \ldots, x_{2k-2}\} \) are linearly independent.
- \(||x_i - x_j|| \neq 0, ||x_i|| \neq 0 \) for all \(1 \leq i \neq j \leq 2k - 2 \).
- \(X \) forms a good \(k \)-energy tuple.

We note that vectors in \(X \in Q \) form a \(k \)-energy tuple since

\[
x_0 + (x_0 + x_1) + (x_0 + x_3) + \cdots + (x_0 + x_{2k-3}) = (x_0 + x_2) + (x_0 + x_4) + \cdots + (x_0 + x_{2k-2}) + u,
\]

where \(u = x_0 + \sum_{i=1}^{2k-2} (-1)^{i+1}(x_0 + x_i) \).

For each \(X \in Q \), let \(N(X) \) be the number of congruent copies of \(X \) in \(E \). Set \(N(Q) = \sum_{X \in Q} N(X) \).

The next lemma gives us a lower bound for \(T_k^{\text{good}}(E) \).

Lemma 3.4. Suppose \(E \) satisfies assumptions of Theorem 1.2, we have

\[
T_k^{\text{good}}(E) \geq N(Q). \tag{1}
\]

Proof. Let

\[
X = \{ x_0, x_0 + x_1, x_0 + x_2, \ldots, x_0 + x_{2k-2}, x_0 + \sum_{i=1}^{2k-2} (-1)^{i+1}(x_0 + x_i) \} \in Q,
\]

and set \(u = x_0 + \sum_{i=1}^{2k-2} (-1)^{i+1}(x_0 + x_i) \), then we have

\[
x_0 + (x_0 + x_1) + (x_0 + x_3) + \cdots + (x_0 + x_{2k-3}) = (x_0 + x_2) + (x_0 + x_4) + \cdots + (x_0 + x_{2k-2}) + u,
\]

which provides a good \(k \)-energy tuple. Notice that \(x_0 + x_i \neq x_0 + x_j \) for all pairs \((i, j) \), and \(u \neq x_0, x_0 + x_i \) for all \(i \). Since the additive energy is invariant under the action of orthogonal matrices, we have \(N(X) \) good \(k \)-energy tuples in \(E \). Summing over all \(X \), we have \(N(Q) \) good \(k \)-energy tuples in \(E \).

In the form of Lemma 3.4 in order to complete the proof of Theorem 3.1 we have to find a lower
bound for $N(Q)$, which will be followed by a lower bound of $|Q|$ and Theorem 3.3. The following proposition plays an important role for this step.

Proposition 3.5. For $d \geq \max\{2k - 2, 4\}$ and $k \geq 2$, we have $|Q| \gg q^{2k^2 - 3k}$.

With Proposition 3.5 in hand, we derive the following corollary.

Corollary 3.6. Let $d, k \in \mathbb{N}$ with $d \geq 4k + 2$, $\alpha \in (0, 1)$ and $q \geq q(\alpha, k)$. Let $E \subseteq S^{d - 1} \subseteq \mathbb{F}_q^d$ with $|E| \geq \alpha q^{d - 1}$. We have

$$N(Q) \geq c(\alpha, k)q^{\frac{(2k - 1)d - 4k}{2}}.$$

Proof. For each configuration in Q, we know from Theorem 3.3 that the number of its copies in E is at least

$$c(\alpha, k)q^{\frac{(2k - 1)d - (2k - 1)(2k)}{2}}.$$

Taking the sum over all possible $q^{2k^2 - 3k}$ congruence classes, the lemma follows. \qed

Combining Lemma 3.4 and Corollary 3.6, Theorem 3.1 is proved.

3.1 Proof of Proposition 3.5

We now turn our attention to the Proposition 3.5. The proof of Proposition 3.5 is quite complicated, which combines the usual Cauchy-Schwarz argument and the claim that most k-energy tuples in $S^{d - 1}$ are $2k$-spherical configurations spanning $(2k - 2)$ dimensions. We first start with some technical lemmas.

Lemma 3.7 (Lemma 4.5, [11]). For any $E \subseteq S^{d - 1}$, and $k \geq 2$, we have

$$|T_k(E) - \frac{|E|^{2k - 1}}{q}| \leq q^{d - 1}T_{k - 1}^{1/2}T_k^{1/2},$$

where $T_1(E) = |E|$.

Corollary 3.8. For $k, d \geq 2$, we have

$$T_k(S^{d - 1}) = (1 + o(1))\frac{|S^{d - 1}|^{2k - 1}}{q}.$$

Proof. We prove by induction on k.

For $k = 2$, we apply Lemma 3.7 to obtain

$$|T_2(S^{d - 1}) - \frac{|S^{d - 1}|^3}{q}| \leq q^{d - 1} \cdot T_2^{1/2}|S^{d - 1}|^{1/2}.$$
Using the fact that $|S^{d-1}| \sim q^{d-1}$ and set $x = \sqrt{T_2(S^{d-1})}$, we have

\[x^2 \geq c_1 q^{3d-4} - c_2 q^{d-1} x, \quad \text{and} \quad x^2 \leq c_1 q^{3d-4} + c_2 q^{d-1} x, \]

for some positive constants c_1 and c_2. Solving these equations gives us $x \gg q^{\frac{3d-4}{2}}$ and $x \ll q^{\frac{3d-4}{2}}$, respectively. Thus, the base case is proved.

Suppose that the claim holds for any $k - 1 \geq 2$, we now show that it also holds for the case k. Indeed, set $x = \sqrt{T_k(S^{d-1})}$, applying Lemma 3.7 and the inductive hypothesis, we have

\[x^2 - q^{\frac{d-1}{2}} |S^{d-1}|^{\frac{2k-3}{2}} x - \frac{|S^{d-1}|^{2k-1}}{q} \leq 0, \quad x^2 + q^{\frac{d-1}{2}} |S^{d-1}|^{\frac{2k-3}{2}} x - \frac{|S^{d-1}|^{2k-1}}{q} \geq 0. \]

Solving these inequalities will give us

\[x = (1 + o(1)) \left(\frac{|S^{d-1}|^{2k-1}}{q} \right)^{1/2}. \]

This completes the proof of the corollary. \[\square\]

Lemma 3.9. For $d > n \geq 2$, let L be the number of tuples $(v_0, \ldots, v_n) \in (S^{d-1})^{n+1}$ such that $v_i - v_0 \in \{a_1(v_1-v_0) + \cdots + a_{i-1}(v_{i-1}-v_0) + a_{i+1}(v_{i+1}-v_0) + \cdots + a_n(v_n-v_0): a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \neq 0 \}$ for some $1 \leq i \leq n$. We have $L \ll \frac{|S^{d-1}|^{n+1}}{q^{d-1}}$.

Proof. Without loss of generality, we count the number of such tuples with $i = n$.

Let χ be the principle additive characteristic of F_q. Using the orthogonality of χ, one has

\[
L \leq \frac{1}{q^d} \sum_{s \in F_q} \sum_{v_0, \ldots, v_n \in S^{d-1}} \sum_{a_1, \ldots, a_{n-1} \in F_q} \chi \left(s \cdot \left((v_n - v_0) - a_1(v_1 - v_0) - \cdots - a_{n-1}(v_{n-1} - v_0) \right) \right)
\]

\[
= \frac{|S^{d-1}|^{n+1}}{q^{d-n+1}} + \frac{1}{q^d} \sum_{s \neq 0} \sum_{v_0, \ldots, v_n \in S^{d-1}} \sum_{a_1, \ldots, a_{n-1} \in F_q} \chi \left(s \cdot \left((v_n - v_0) - a_1(v_1 - v_0) - \cdots - a_{n-1}(v_{n-1} - v_0) \right) \right)
\]

\[
= \frac{|S^{d-1}|^{n+1}}{q^{d-n+1}} + \frac{1}{q^d} \sum_{s \neq 0} \sum_{a_1, \ldots, a_{n-1} \in F_q} \tilde{S}(a) \cdots \tilde{S}(a) \tilde{S}(s(1 - a_1 - \cdots - a_{n-1})),
\]

where $\tilde{S}(m) = \sum_{x \in F_q} S(x) \chi(-x \cdot m)$. We now recall from [12] Lemma 5.1 that $|\tilde{S}(m)| \ll q^{\frac{d-4}{2}}$ for $m \neq 0$ and $\tilde{S}(0) = |S^{d-1}| \sim q^{d-1}$. We now partition the sum $\sum_{a_1, \ldots, a_{n-1} \in F_q}$ into two sub-

summands $\sum_{a_1 + \cdots + a_{n-1} \neq 1}$ and $\sum_{a_1 + \cdots + a_{n-1} = 1}$.
Therefore,

\[\sum_{a_1 + \cdots + a_{n-1} \neq 1} \left(S_{d-1}(a_1 s) \cdots S_{d-1}(a_{n-1} s) S_{d-1}(s(1 - a_1 - \cdots - a_{n-1})) \right) \ll q^{\frac{(d-1)(n+1)}{2}} \cdot q^{n-1}, \]

and

\[\sum_{a_1 + \cdots + a_{n-1} = 1} \left(S_{d-1}(a_1 s) \cdots S_{d-1}(a_{n-1} s) S_{d-1}(s(1 - a_1 - \cdots - a_{n-1})) \right) \ll q^{\frac{(d-1)(n)}{2}} \cdot q^{d-1} \cdot q^{n-2}. \]

These upper bounds are at most \(\frac{|S_{d-1}|^{n+1}}{q^{d-1}} \) when \(d > n \) and \(n \geq 2 \). In other words,

\[L \ll \frac{|S_{d-1}|^{n+1}}{q^{2}}. \]

\[\square \]

Lemma 3.10. Suppose that \(d > 2k - 2 \) and \(k \geq 2 \). The number of tuples \(\{x_0, x_0 + x_1, \ldots, x_0 + x_{2k-2}, x_0 + \sum_{i=1}^{2k-2} (-1)^i (x_0 + x_i)\} \) in \((S_{d-1})^{2k} \) such that

\[x_0 + (x_0 + x_1) + (x_0 + x_3) + \cdots + (x_0 + x_{2k-3}) = (x_0 + x_2) + (x_0 + x_4) + \cdots + (x_0 + x_{2k-2}) + u, \]

where \(u = x_0 + \sum_{i=1}^{2k-2} (-1)^i (x_0 + x_i) \), and \(x_i \in \text{Span}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{2k-2}) \) for some \(1 \leq i \leq 2k - 2 \) is \(o(T_k(S_{d-1})) \).

Proof. Applying Lemma 3.9 for the family of vectors \(\{x_0, x_0+x_1, \ldots, x_0+x_{2k-2}\} \) or its sub-families, we know that there are at most \(\frac{|S_{d-1}|^{2k-1}}{q^{2}} \) such tuples whenever \(d > 2k - 2 \) and \(k \geq 2 \). We also know from Corollary 3.8 that \(T_k(S_{d-1}) = (1 + o(1))\frac{|S_{d-1}|^{2k-1}}{q^{2}} \). Thus, the lemma follows from the fact that

\[\frac{|S_{d-1}|^{2k-1}}{q^{2}} = o \left(\frac{|S_{d-1}|^{2k-1}}{q} \right). \]

\[\square \]

We are ready to give a proof of Proposition 3.5.

Proof of Proposition 3.5 For any \(k \)-energy tuple \((a_1, \ldots, a_k, b_1, \ldots, b_k) \in S^{d-1} \), i.e.

\[a_1 + \cdots + a_k = b_1 + \cdots + b_k, \]

we set \(a_i = a_1 + x_i \) for \(2 \leq i \leq k \), and \(b_i = a_1 + y_i \) for \(1 \leq i \leq k \).
We first show that most of all tuples \((a_1, \ldots, a_k, b_1, \ldots, b_k)\) satisfying \([2]\) will have the following properties

a. \(\{x_2, \ldots, x_k, y_1, \ldots, y_k\}\) are linearly independent.

b. \(||x_i - x_j|| \neq 0, ||y_i - y_j|| \neq 0\) for all pairs \(i \neq j\), and \(||x_i - y_j|| \neq 0, ||y_i|| \neq 0, ||y_j|| \neq 0\) for all pairs \(i, j\).

c. For any \(I, J \subseteq \{1, \ldots, k\}\), we have \(\sum_{i \in I} a_i - \sum_{j \in J} b_j \neq 0\).

Indeed, let \(T^\text{dep}(S^{d-1}), T^\varnothing_k(S^{d-1}), T^\text{bad}_k(S^{d-1})\) be the number of \(k\)-energy tuples not satisfying (a), (b), and (c), respectively. We will prove that \(T^\text{dep}(S^{d-1}), T^\varnothing_k(S^{d-1}), T^\text{bad}_k(S^{d-1}) = o(T_k(S^{d-1}))\).

Bounding \(T^\text{dep}_k\): By Lemma 3.10, we have \(T^\text{dep}_k = o(T_k(S^{d-1}))\).

Bounding \(T^\varnothing_k\): It follows from our setting that \(||x_i - x_j|| = ||a_i - a_j||\) and \(||x_i - y_j|| = ||a_i - b_j||\). Hence, it is sufficient to count tuples with \(||a_i - a_j|| = 0\) for some \(1 \leq i \neq j \leq k\). The other cases can be treated in the same way.

Without loss of generality, we assume that \(||a_1 - a_2|| = 0\), which is equivalent with \(||x_2|| = 0\).

Let \(U\) be the multi-set defined by

\[U := \{a_1 + \cdots + a_k: a_i \in S^{d-1}, ||a_1 - a_2|| = 0\}\]

Let \(W\) be the multi-set defined by

\[W := \{b_1 + \cdots + b_{k-1}: b_i \in S^{d-1}\}\]

Let \(e(U, W)\) be the number of pairs \((u, w) \in U \times W\) such that \(u - w \in S^{d-1}\). Applying Lemma \([2]\) for the graph \(C_{2q}(S^{d-1})\), we have

\[e(U, W) \leq \frac{|U||W|}{q} + q^{\frac{d-1}{2}} \left(\sum_{u \in U} m(u)^2 \right)^{1/2} \cdot \left(\sum_{w \in W} m(w)^2 \right)^{1/2}\]

where \(m(u), m(w)\) are the multiplicities of \(u\) and \(w\) in \(U\) and \(W\), respectively.

We know from \([8]\) that for any two sets \(X, Y \subseteq S^{d-1}\), the number of pairs \((x, y) \in X \times Y\) such that \(||x - y|| = 0\) is at most \(\frac{|X||Y|}{q} + q^{\frac{d}{2}}|X|^{1/2}|Y|^{1/2}\). So with \(X = Y = S^{d-1}\), we obtain \(|U| \leq \frac{|S^{d-1}|^k}{q}\).

It is clear that \(|W| = |S^{d-1}|^{k-1}\).
On the other hand, it is not hard to see that
\[
\sum_u m(u)^2 \leq T_k(S^{d-1}), \quad \sum_w m(w)^2 \leq T_{k-1}(S^{d-1}).
\]

Using Corollary 3.8, one has
\[
e(U, W) \leq \frac{|S^{d-1}|2^{k-1}}{q^2} + q^{d-1} \frac{|S^{d-1}|2^{k-1}}{q^{1/2}} \cdot \frac{|S^{d-1}|2^{k-3}}{q^{1/2}} \ll \frac{|S^{d-1}|2^{k-1}}{q^2}.
\]

On the other hand, \(e(U, W) \) equals to the number of tuples satisfying (2) with \(|a_1 - a_2| = 0 \).

In other words,
\[
T_k^0 \ll \frac{|S^{d-1}|2^{k-1}}{q^2} = o(T_k(S^{d-1})).
\]

Bounding \(T_k^{\text{bad}} \): Let \(I \) and \(J \) be two subsets of \(\{1, \ldots, k\} \). Assume that \(|I| = |J| = m \). The case \(|I| \neq |J| \) is treated in the same way. Without loss of generality, we assume that \(I = J = \{1, \ldots, m\} \). We now count the number of \(k \)-energy tuples \((a_1, \ldots, a_k, b_1, \ldots, b_k) \in (S^{d-1})^2 \) such that \(a_1 + \cdots + a_m - b_1 - \cdots - b_m = 0 \). This implies that \(a_{m+1} + \cdots + a_k - b_{m+1} - \cdots - b_k = 0 \).

We now show that the number of tuples \((a_1, \ldots, a_m, b_1, \ldots, b_m) \in (S^{d-1})^{2m} \) such that \(a_1 + \cdots + a_m - b_1 - \cdots - b_m = 0 \) is at most \(\ll \frac{|S^{d-1}|2m-1}{q} \).

Indeed, using the same argument as in bounding \(T_k^0 \), let \(U', W' \) be multi-sets defined by
\[
U' := \{a_1 + \cdots + a_m : a_i \in S^{d-1}\}, \quad W = \{b_1 + \cdots + b_{m-1} : b_i \in S^{d-1}\}.
\]

The number of such tuples is bounded by \(e(U', W') \) in the graph \(G_{p,q}(S^{d-1}) \). As before, we also have
\[
\sum_{u \in U'} m(u)^2 = T_m(S^{d-1}), \quad \sum_{w \in W'} m(w)^2 = T_{m-1}(S^{d-1}).
\]

Using Lemma 2.2 and Lemma 3.7, we have
\[
e(U', W') \ll \frac{|S^{d-1}|2m-1}{q} + q^{d-1} \cdot \frac{|S^{d-1}|2m-2}{q} \ll \frac{|S^{d-1}|2m-1}{q}.
\]

Similarly, the number of tuples \((a_{m+1}, \ldots, a_k, b_{m+1}, \ldots, b_k) \in S^{d-1} \) such that \(a_{m+1} + \cdots + a_k - b_{m+1} - \cdots - b_k = 0 \) is at most \(\ll \frac{|S^{d-1}|2(k-m)-1}{q} \).

Hence, the number of \(k \)-energy tuples with \(\sum_{i \leq l} a_i - \sum_{j \leq l} b_j = 0 \) is at most \(\ll \frac{|S^{d-1}|2k-2}{q^2} \).
Summing over all possibilities of sets I and J, we obtain

$$T_k^{\text{bad}}(S^{d-1}) = o(T_k(S^{d-1})).$$

From the bounds of T_k^{dep}, T_k^0, and $T_k^{\text{bad}}(S^{d-1})$, we conclude that most of k-energy tuples in S^{d-1} satisfying $(a), (b)$, and (c). We denote the number of those tuples by $T_k^*(S^{d-1})$.

We recall that for any two non-trivial spherical configurations X and X', they are in the same congruent class if there exists $g \in O(d, \mathbb{F}_q)$ such that $gX = X'$. For each configuration in Q, say,

$$X = \{ x_0, x_0 + x_1, x_0 + x_2, \ldots, x_0 + x_{2k-2}, x_0 + \sum_{i=1}^{2k-2} (-1)^{i+1}(x + x_i) \},$$

the $2k - 1$ vertices $x_0, x_0 + x_1, \ldots, x_0 + x_{2k-2}$ form a non-degenerate $(2k - 2)$-simplex. We know from [3] that the stabilizer of a non-degenerate $(2k - 2)$–simplex in S^{d-1} is of cardinality at least $|O(d - 2k + 1)|$.

For any $X \in Q$, let $\mu(X)$ be the number of configurations which are congruent to X. We have $\sum_{X \in Q} \mu(X) = T_k^*(S^{d-1})$. By Cauchy-Schwarz inequality, we have

$$\sum_{X \in Q} \mu(X) \leq |Q|^{1/2} \cdot \left(\sum_{X} \mu(X)^2 \right)^{1/2}. \quad (3)$$

On the other hand, $\sum_X s(X)\mu(X)^2$ is at most the number of pairs of configurations (X, X') such that $X' = g(X)$ for some $g \in (d, \mathbb{F}_q)$, where $s(X)$ is the stabilizer of X. Hence, we can bound $\sum_X s(X)\mu(X)^2$ by $T_k^*(S^{d-1}) \cdot |O(d, \mathbb{F}_q)|$. This implies that

$$\sum_X \mu(X)^2 \leq \frac{|O(d, \mathbb{F}_q)| \cdot T_k^*(S^{d-1})}{|O(d - 2k + 1)|}. \quad (4)$$

We recall from [3] that $|O(n, \mathbb{F}_q)| \sim q^{\binom{n}{2}}$. From (3) and (4), we obtain $|Q| \gg q^{2k^2 - 3k}$. This completes the proof.

4 Proof of Proposition 1.3

Proof of Proposition 1.3 Suppose $q = p^r$ with $r = \frac{1}{\epsilon}$ (assume that $1/\epsilon$ is an integer).

Let A be an arithmetic progression in \mathbb{F}_q of size p^{r-1}. Let X be the hyperplane $x_d = 0$. Define

$$H := \{ X + (0, \ldots, 0, a) : a \in A \}.$$
Note that H is a set of $|A|$ translates of the hyperplane X.

We have $|H| = q^{d-1} \cdot \frac{q \cdot 1}{q-1} = q^{d-\epsilon}$. It is not hard to see that

$$|(H - H) \cap S^{d-1}| \ll q^{d-2} \cdot \frac{q - 1}{q} \ll q^{d-1-\epsilon} = o(|S^{d-1}|).$$

For any $1 \leq m \ll |S^{d-1}|$, let $E \subset S^{d-1} \setminus (H - H)$ with $|E| = m$, we have

$$(H - H) \cap E = \emptyset. \quad (5)$$

If $\mu < \frac{|E|}{2q^d}$, then by Lemma 2.2 for the graph $C_{F_q^d}(E)$, one has

$$e(H, H) \geq \frac{|H|^2|E|}{q^d} - \frac{|E||H|}{2q^d} > 0,$$

whenever $|H| > \frac{q^{d-\epsilon}}{2}$, which contradicts to (5).

In other words, we have $\mu \geq \frac{|E|}{2q^d}$.

In the case $|E + E| = K|E| < q^d/2$, we start with an observation that

$$T_2(E) \geq \frac{|E|^4}{|E + E|},$$

which implies

$$T_2(E) \geq \frac{|E|^4}{K|E|^4}.$$

Let X be the multi-set in F_q^d defined by $X = E + E$. We can apply the Expander mixing lemma for the graph $C_{F_q^d}(E)$ to get an upper bound for $T_2(E)$. Indeed, one has

$$T_2(E) = e(X, -E) \leq \frac{|E|^4}{q^d} + \mu \cdot T_2(E)^{1/2} \cdot |E|^{1/2}.$$

This gives us

$$T_2(E) \leq \frac{|E|^4}{q^d} + \mu^2 \cdot |E|.$$

Since $K|E| < q^d/2$, we have $\mu^2|E| \gg \frac{|E|^4}{K|E|^4}$. This gives $\mu \gg \frac{|E|}{K^{3/2}}$. Hence, when $K \sim 1$, we have $\mu \gg |E|$. \qed
5 Proof of Proposition 1.4

Proof of Proposition 1.4. We have seen in the proof of Theorem 1.2 that the number of cycles of length $2k$ is equal to $q^d \cdot T_k(S^{d-1})$ and $T_k(S^{d-1}) = (1 + o(1))|S^{d-1}|^{2k-1}/q$. Hence, the number of cycles of length $2k$ in $C_{F_q}(S^{d-1})$ is $(1 + o(1))|S^{d-1}|^{2k-1}q^{-1}$.

To prove the upper bound on the number of cycles of length $2k$ in a given set $A \subset F_q^d$, we need to recall the following result from [4].

Theorem 5.1 (Bennett-Chapman-Covert-Hart-Iosevich-Pakianathan, [4]). For $A \subset F_q^d$, $d \geq 2$ and an integer $k \geq 1$. Suppose that $\frac{2k}{\ln q} \frac{d-1}{q} = o(|A|)$ then the number of paths of length k with vertices in A in $C_{F_q}(S^{d-1})$ is $(1 + o(1))\frac{|A|^{k+1}}{q^k}$.

Let N be the number of cycles of length $2k$ with vertices in A. For any two vertices $x, y \in A$, let $P(x, y)$ be the number of paths of length k between x and y with vertices in A. It follows from Theorem 5.1 that

$$\sum_{x, y \in A} P(x, y) = (1 + o(1))\frac{|A|^{k+1}}{q^k}.$$

It is clear that

$$N = \sum_{x, y \in A} \left(\frac{P(x, y)}{2} \right).$$

Using the convexity of the function $\left(\frac{x}{2}\right)$, one has

$$N \gg |A|^2 \cdot \left(\frac{\sum_{x, y \in A} P(x, y)}{|A|^2} \right) \gg \frac{|A|^{2k}}{q^{2k}},$$

provided that $|A| \gg q^{\frac{k}{k-1}}$. This completes the proof.

Remark 5.1. We remark here that for any $k \geq 2$, there exists a set $E \subseteq S^{d-1}$ with $|E| \gg q^{\frac{d}{2k-1}}$ such that all cycles of length $2k$ in $C_{F_q}(E)$ do not have distinct vertices. Such a set can be constructed easily as follows. Let H be a $2k$-uniform hypergraph with the vertex set S^{d-1}, and each edge is a good k-energy tuple, then we know from the proof of Proposition 3.5 that the number of edges in H is at most $|S^{d-1}|^{2k-1}/q$. Applying Spencer’s independent hypergraph number lemma in [16], we get an independent set E of size at least $\gg q^{\frac{d}{2k-1}}$. This set will satisfy our desired properties.
Acknowledgments

The author was supported by Swiss National Science Foundation grant P4P4P2-191067. I would like to thank Ilya Shkredov for useful discussions about the second eigenvalue of the local Cayley distance graphs.

References

[1] A. J. Bondy, M. Simonovits, *Cycles of even length in graphs*, Journal of Combinatorial Theory, Series B, 16(2) (1974): 97–105.

[2] M. Bennett, A. Iosevich, J. Pakianathan, *Three-point configurations determined by subsets of \(\mathbb{F}_q^2 \) via the Elekes–Sharir Paradigm*, Combinatorica, 34(6), 689–706.

[3] M. Bennett, D. Hart, A. Iosevich, J. Pakianathan, M. Rudnev, *Group actions and geometric combinatorics in \(\mathbb{F}_q^d \)*, Forum Mathematicum, vol. 29, no. 1, pp. 91–110. De Gruyter, 2017.

[4] M. Bennett, J. Chapman, D. Covert, D. Hart, A. Iosevich, J. Pakianathan, *Long paths in the distance graph over large subsets of vector spaces over finite fields*, J. Korean Math. Soc, 53(1) (2016), 115–126.

[5] J. Chapman, M. Burak Erdogan, D. Hart, A. Iosevich, and D. Koh, *Pinned distance sets, k-simplices, Wolff’s exponent in finite fields and sum-product estimates*, Math Z. 271 (2012), no. 1, 63–93.

[6] C. Chen, *Salem sets in vector spaces over finite fields*, Arkiv för Matematik, 56(1) (2018): 45–52.

[7] D. Covert, D. Hart, A. Iosevich, S. Senger, I. Uriarte-Tuero, *A Furstenberg–Katznelson–Weiss type theorem on \((d+1) \)-point configurations in sets of positive density in finite field geometries*, Discrete mathematics, 311, no. 6 (2011): 423–430.

[8] D. Hart, A. Iosevich, D. Koh, M. Rudnev, *Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős–Falconer distance conjecture*, Trans. Amer. Math. Soc. 363, (2011), no. 6, 3255-3275.

[9] D. Hart, A. Iosevich, *Ubiquity of simplices in subsets of vector spaces over finite fields*, Analysis Mathematica, 34 (2007).

[10] B. Hanson, B. Lund, O. Roche-Newton, *On distinct perpendicular bisectors and pinned distances in finite fields*, Finite Fields and Their Applications, 37 (2016): 240–264.
[11] D. D. Hieu, T. Pham, *Distinct distances on regular varieties over finite fields*, Journal of Number Theory, 173(2017): 602–613.

[12] A. Iosevich, G. Jardine, B. McDonald, *Cycles of arbitrary length in distance graphs on \mathbb{F}_q^d*, Proceedings of the Steklov Institute of Mathematics dedicated to 130th anniversary of Academician Ivan Matveevich Vinogradov, [arXiv:2101.00748](https://arxiv.org/abs/2101.00748) (2021).

[13] A. Iosevich, M. Rudnev, *Erdős distance problem in vector spaces over finite fields*, Trans. Amer. Math. Soc. 359 (2007), 6127–6142.

[14] M. Krivelevich, B. Sudakov, *Pseudo-random graphs*, More sets, graphs and numbers, Springer, Berlin, Heidelberg, 2006. 199–262.

[15] N. Lyall, A. Magyar, H. Parshall, *Spherical configurations over finite fields*, American Journal of Mathematics, 142(2) (2020): 373–404.

[16] J. Spencer, *Turán’s theorem for k–graphs*, Discrete Mathematics 2 (1972), 183–186.

[17] L. A. Vinh, *On kaleidoscopic pseudo-randomness of finite Euclidean graphs*, Discussiones Mathematicae. Graph Theory, 32(2) (2012) 279 – 287.

[18] L. A. Vinh, *The solvability of norm, bilinear and quadratic equations over finite fields via spectra of graphs*, Forum Mathematicum, Vol. 26 (2014), No. 1, pp. 141–175.