World’s first black-seeded high yielding mungbean [Vigna radiata (L.) Wilczek] varieties ‘NIFA Sikaram-21 and NIFA Spinghar-21’

Gul Sanat Shah Khattak¹, Iqbal Saeed¹*, Shahzad Ahmad¹, Muhammad Ibrar¹, Muhammad Mansoor²

¹Nuclear Institute for Food & Agriculture (NIFA), Tarnab, Peshawar, KP-Pakistan
²National Pulses Coordinator, PARC, Islamabad

Abstract
Globally, black-seeded mungbean is cultivated only in Kuram area of Khyber Pakhtunkhwa (KP) of Pakistan and adjacent areas of Afghanistan. The black-seeded mungbean land-race being cultivated in the area since unknown dates had poor genetic back-ground, and hence, low yield potential and susceptibility to diseases. In order to develop high yielding shiny black-seeded mungbean varieties for Kuram, a cross was attempted between a local Mungbean Yellow Mosaic Virus (MYMV) susceptible land-race collected from Kuram and later named as Kuram black mung (KBM) and an MYMV resistant black mottled-seeded mutant named as NIFA black mung (NBM) in the kharif season 2014 at the Nuclear Institute for Food & Agriculture (NIFA), Peshawar. The F₁ generation was planted in spring 2015. The F₂ to F₄ generations were raised in kharif 2016 – spring 2019. Single plants and lines based on shiny black seed coat color, short and medium plant stature, MYMV resistance and high grain yield were selected. Elite short and medium statured lines NBM-2-2-4-5 (NIFA Sikaram-21) and NBM-5-3-7 (NIFA Spinghar-21), respectively, were selected and tested in replicated yield trials along with black-seeded parents and green-seeded check varieties at NIFA and other locations in Kuram. On an average, NIFA Sikaram-21 produced seed yield of 1716 kg ha⁻¹ and NIFA Spinghar-21 1724 kg ha⁻¹ against KBM (880 kg ha⁻¹) with 94% increase over KBM. However, its yield was lower than those of the green-seeded checks as green-seeded mungbean is well adapted to the growing conditions. Shiny black seeds, bold seed size and high grain yield are the distinguishing characters of NIFA Sikaram-21 and NIFA Spinghar-21. Furthermore, these are the first-ever black-seeded mungbean approved varieties in the world. The Provincial Seed Council of the KP approved both varieties in its 40th meeting held on April 07, 2021.

Introduction
Mungbean is an important kharif season’s crop grown on marginal lands of Pakistan including the Khyber Pakhtunkhwa (KP) province. It was grown on an area of 0.172 million ha with a total production of 0.125 million tons (Agric. Statistics of Pak., 2020). In KP, mungbean was grown on an area of 0.006 million hectares with a total production of 0.002 million tons (Agric. Statistics of Pak., 2020). In KP, a major portion of the area under mungbean cultivation lies in the Kuram district meaning that there is a great potential for expanding mungbean area in KP by bringing more area under cultivation in Kuram.

Currently, mungbean being cultivated globally has green seed coat color as it is preferred by the consumers and has good market value, whereas no breeding work has so far been reported on mungbean having black seed coat color. The reason behind this is the consumer’s preference for mungbean having green seed coat color globally. There is neither structural difference in black and green

*CONTACT Iqbal Saeed, iqbal.saeed@yahoo.com, Nuclear Institute for Food & Agriculture (NIFA), Tarnab, Peshawar, KP-Pakistan

TO CITE THIS ARTICLE: Khattak, G.S.S., Saeed, I., Ahmad, S., Ibrar, M., Mansoor, M. (2022). World’s first black-seeded high yielding mungbean [Vigna radiata (L.) Wilczek] varieties ‘NIFA Sikaram-21 and NIFA Spinghar-21’. International Journal of Applied and Experimental Biology 1(2):67-73.

© 2022 Society of Eminent Biological Scientists (SEBS), Pakistan
mungbean plants nor do they differ in nutritional compositions; the only difference is the color of seed coat. In Kuram district, the mungbean growers are accustomed to grow mungbean having black seed coat color, because of the high demand from consumers. Plant breeding also emphasizes on breeding crop plants based on consumers’ preferences, so that a newly developed crop variety is readily adopted by the growers. The importance of crop breeding based on consumers’ preferences has previously been reported by several researchers (Carlson, 2007; Kassie et al., 2017; Wale and Yalew, 2007; Poudel and Jhonsen, 2009; Asrat et al., 2010; Blazy et al., 2011; Smith and Fennessy, 2011). Development of high yielding black-seeded mungbean varieties adapted to the growing conditions of Kuram was therefore felt necessary. The local land race being cultivated there for centuries had low yield potential due to poor genetic background for seed yield. The Nuclear Institute for Food and Agriculture (NIFA), Peshawar started breeding work with a financial assistance from the Pakistan Science Foundation (PSF) on the improvement of black-seeded mungbean, particularly for Kuram. The efforts resulted in breeding of two high yielding and disease resistant black-seeded mungbean advanced lines NBM-2-2-4-5 and NBM-5-3-7. These advanced lines were further evaluated in mandatory replicated yield trials, which are pre-requisite for variety approval with the financial support of a Pulses PSDP project, PARC. As a result, two high yielding black-seeded mungbean varieties namely NIFA Sikaram-21 and NIFA Spinghar-21 were released for general cultivation in Kuram during 2021. These varieties would play a key role in enhancing overall production of mungbean in the country, in general, and KP, in particular.

The current manuscript describes the development process of these two black-seeded and high yielding mungbean varieties.

Materials and Methods

The seeds of the black-seeded mungbean land race grown in Kuram were collected from the local growers in spring 2013. The Kuram’s land race had variation for dull and shiny black color. The seeds were separated on the basis of dull and shiny seed coat color and confirmed their breeding behavior by growing the seeds separately at NIFA, Peshawar. The true shiny black seeded rows were harvested and bulked, whereas the dull black-seeded rows were discarded as dull color was not preferred by the consumers. The Kuram shiny black-seeded land race was named as Kuram black mung (KBM) which was highly susceptible to MYMV in kharif season under NIFA’s growing conditions apart from its very low yield potential. Another black mottled seeded mutant mungbean genotype developed at the Nuclear Institute for Agriculture Biology (NIAB) during 1996-99 and hereby named as NIFA black mung (NBM) was also used in this research work. KBM and NBM were hybridized as a single cross-combination in kharif 2014 according to Khattak et al. (1998) and F₁ generation was raised in spring 2015. All recombinant plants were harvested, threshed and bagged individually, and planted as plant-progeny-rows in F₂ generation in kharif 2016. Single plant selections were made based on more pods, short and medium plant stature, shiny black seed coat color, and resistance to MYMV. The selected single plants were space-planted in F₃ generation in kharif 2017 and single plants selections were again made based on the desired criteria. The F₄ generation was raised as plant-progeny-rows in kharif 2018 for generation advancement and confirmation of genetic behavior of the target traits. Single row/line selection was carried-out on the basis of traits mentioned above.

The segregating material was screened for MYMV resistance/susceptibility according to the procedure reported by Khan et al. (2007). To intensify MYMV inoculums from natural sources, a highly susceptible check “VC 1560D” was planted in the segregating populations. Individual plants were scored for MYMV percent infection four weeks after planting at the stage when all plants of the susceptible check were completely infected by MYMV.

True breeding lines selected for the desired traits were evaluated for yield and related traits in a replicated yield trial at NIFA and other locations in KP during 2019 and 2020. Each trial was laid-out in a Randomized Complete Block Design with each entry comprising four rows of four meter length with row-to-row and plant-to-plant spacing of 30 cm and 10 cm, respectively. Each plot of each entry was replicated three times. The experiment was sown under irrigated conditions and need-based irrigation was applied. Statistical analyses were done according to Steel and Torrie (1980). The lines were also screened for MYMV in a separate nursery at NIFA in the same seasons. The breeding history of NIFA Sikaram-21 (recombinant NBM-2-2-4-5) and NIFA Spinghar-21 (recombinant NBM-5-3-7) is given in Table 1.
The growth and yield performance of NIFA Sikaram-21 (NBM-2-2-4-5) and NIFA Spinghar-21 (NBM-5-3-7) in various replicated yield trials conducted at NIFA and other locations in KP is presented in Tables 2 to 7. In replicated yield trials conducted at NIFA in kharif 2019 and spring 2020, the recombinant lines NBM-5-3-7 (NIFA Spinghar-21) and NBM-2-2-4-5 (NIFA Sikaram-21) produced statistically significant higher (P ≤ 0.05) seed yield of 1794 and 1734 kg ha⁻¹ (kharif 2019) and 1715 and 1745 kg ha⁻¹ (spring 2020), respectively, compared with those of parents KBM (852 kg ha⁻¹) and NBM (903 kg ha⁻¹) (Table 2 & 3). The parent KBM did not thrive well in kharif due to its high susceptibility to MYMV which prevails in the season due to occurrence of white fly (vector of MYMV). However, their yields were statistically lower than those of the green-seeded check varieties NIFA Mung-19 (1806 and 1756 kg ha⁻¹, respectively) and Ramzan (1790 and 1694 kg ha⁻¹) (Table 2 & 3). Similarly, in the replicated yield trial conducted at Peshawar, in kharif 2020, NBM-5-3-7 (NIFA Spinghar-21) and NBM-2-2-4-5 (NIFA Sikaram-21) produced statistically significant (P ≤ 0.05) higher seed yields of 1815 and 1775 kg ha⁻¹, respectively, compared with the parent NBM (1669 kg ha⁻¹), whereas the parent KBM did not thrive well in the season due to its susceptibility to MYMV (Table 4). Again, the yields of NIFA Spinghar-21 and NIFA Sikaram-21 were lower than those of the green-seeded check varieties Ramzan and NIFA Mung-19 with individual seed yield of 1789 and 1826 kg ha⁻¹, respectively (Table 4). In adaptability yield trials planted on farmers’ fields at five locations in Kuram in kharif 2019, NBM-2-2-4-5 (NIFA Sikaram-21) and NBM-5-3-7 (NIFA Spinghar-21) produced significantly (P ≤ 0.05) higher average seed yields of 1622 and 1613 kg ha⁻¹, respectively, compared with those of parents KBM (852 kg ha⁻¹) and NBM (903 kg ha⁻¹).
and NBM (1489 kg ha⁻¹) (Table 5). However, the green-seeded check variety NIFA Mung-19 surpassed both lines with an average seed yield of 1630 kg ha⁻¹ (Table 5). Similarly, in the adaptability yield trial conducted on the same locations in Kuram in kharif 2020, both lines out-yielded both parents with statistically significant (P ≤ 0.05) average higher seed yields of 1703 and 1684 kg ha⁻¹ against average seed yields of parents KBM (804 kg ha⁻¹) and NBM (1553 kg ha⁻¹), however, their yields were lower than the average seed yield of the green-seeded check variety NIFA Mung-19 with a value of 1737 kg ha⁻¹ (Table 6). As a mandatory requirement for new varieties, Distinctness, Uniformity and Stability (DUS) study of these two candidate varieties was carried out by the Federal Seed Certification and Registration Department (FSC & RD), KP region in spring and kharif 2020 at NIFA, Peshawar. New varieties of different crops with a high yield potential help enhance per unit yield as well as overall production of those crops (Ahmad et al., 2007; Wasin, 2007; Zulfiqar and Hussain, 2014; Joshi et al., 2017), whereas high economic yield potential is a trait of high interest to the growers (Hossain, 2012; Walker et al., 2015). The high yield potential of NIFA Sikaram-21 and NIFA Spinghar-21 (Tables 2 to 6) against the average yield potential of the black-seeded parents KBM and NBM will play a key role in enhancing overall mungbean production in the country, in general, and the KP, in particular, as well as expanding national mungbean area.

For a new variety to be successful, its yield potential should surpass the already existing commercial varieties of that crop under cultivation. In our case, both lines produced percent average increase of 40% in seed yield over those of parents KBM and NBM in Kuram with even higher individual values over the parents in Kuram, meaning that both varieties have a promising potential in Kuram for which these varieties have been developed. However, their yields were lower than those of the green-seeded check varieties at all locations in all seasons. The underlying reason for this could be the extensive breeding work on green-seeded mungbean and its adaptability world-wide except at Kuram of the KP, where only black-seeded mungbean is cultivated on a large area and the inhabitants prefer to consume it in huge quantities. With the passage of time and continuous breeding work, the black-seeded mungbean yield will definitely surpass the yield of green-seeded mungbean varieties.

Table 2. Performance of NIFA Sikaram-21 (NBM-2-2-4-5) and NIFA Spinghar-21 (NBM-5-3-7) in replicated yield trial conducted at NIFA, Peshawar in kharif 2019

S.No.	Entry	Parentage/Pedigree	DF (50%)	DM (90%)	PH (cm)	1000-SW (g)	SY (kg ha⁻¹)
1	NBM-2-2-4-2	KMB × NBM	41	85	50	49	1404
2	NBM-2-2-4-5	-do-	40	81	51	49	1734
3	NBM-2-14-4-3	-do-	40	84	63	46	1351
4	NBM-2-15-7-1	-do-	39	86	63	48	1328
5	NBM-5-3-7	-do-	41	84	69	50	1794
6	NBM-5-3-9	-do-	42	85	64	52	1502
7	KBM	Parent (BS)					
8	NBM	-do-	40	84	74	48	1655
9	Ramzan	Std. check (GS)	44	77	53	49	1790
10	NIFA mung-19	-do-	41	81	65	49	1806

CV (%) 1.34 0.98 2.98 1.79 7.23
LSD (5%) 0.97 1.42 3.04 1.46 75.12

Table 3. Performance of NIFA Sikaram-21 (NBM-2-2-4-5) and NIFA Spinghar-21 (NBM-5-3-7) in replicated yield trial conducted at NIFA, Peshawar in spring 2020

S.No.	Entry	Parentage/Pedigree	DF (50%)	DM (90%)	PH (cm)	1000-SW (g)	SY (kg ha⁻¹)
1	NBM-2-2-4-2	KMB × NBM	42	82	49	47	1125
2	NBM-2-2-4-5	-do-	39	85	50	50	1745
3	NBM-2-14-4-3	-do-	41	88	61	41	1014
4	NBM-2-15-7-1	-do-	39	86	61	45	1167
5	NBM-5-3-7	-do-	40	85	66	50	1715
6	NBM-5-3-9	-do-	39	86	60	49	1387
7	KBM	Parent (BS)					
8	NBM	-do-	40	87	71	49	1542
9	Ramzan	Std. check (GS)	39	83	53	48	1694
10	NIFA mung-19	-do-	41	82	63	49	1756

CV (%) 1.12 1.63 3.03 1.84 5.88
LSD (5%) 0.77 2.38 3.00 1.47 141.32

DF: Days to flowering, DM: Days to maturity, PH: Plant height, SW: Seed weight, BS: Black seeded, GS: Green seeded, SY: Seed yield
Table 4. Performance of NIFA Sikaram-21 (NBM-2-2-4-5) and NIFA Spinghar-21 (NBM-5-3-7) in replicated yield trial conducted at NIFA, Peshawar in kharif 2020

S.No.	Entry	Parentage /Pedigree	DM (90%)	PH (cm)	1000-SW (g)	SY(㎏ ha⁻¹)
1	NBM-2-2-4-2	KMB x NBM	83	52	49	1415
2	NBM-2-2-4-5	-do-	87	52	49	1775
3	NBM-2-14-4-3	-do-	88	66	43	1176
4	NBM-2-157-7-1	-do-	87	69	47	1226
5	NBM-5-3-7	-do-	86	72	50	1815
6	NBM-5-3-9	-do-	85	70	49	1611
7	KBM	Parent (BS)				
8	NBM	-do-	87	76	49	1669
9	Ramzan	Std. check (GS)	86	55	47	1789
10	NIFA mung-19	-do-	86	68	49	1826

CV (%): 1.22; LSD (5%): 1.81

DM: Days to maturity, PH: Plant height, SW: Seed weight, BS: Black seeded, GS: Green seeded, Seed yield

Table 5. Performance of NIFA Sikaram-21 (NBM-2-2-4-5) and NIFA Spinghar-21 (NBM-5-3-7) in adaptability yield trials planted at different locations on farmers’ fields at Kuram in kharif 2019

Entry	PP	DM	PH	SW	Malana	Boshara	Shanai	Shublan	Zeran	Av.	PAI
NBM-2-2-4-5	KN	76	57	49	1750	1717	1626	1411	1613	1622	38
NBM-2-14-4-3	-do-	76	72	40	1438	1124	951	1180	1423	1223	-
NBM-2-157-7-1	-do-	74	71	48	1266	1284	1110	1131	1076	1173	-
NBM-5-3-7	-do-	75	75	49	1723	1691	1383	1419	1594	1613	37
KBM	BS	72	58	39	950	961	796	715	836	852	-
NBM	-do-	77	77	49	1634	1669	1640	1385	1433	1489	-
NIFA Mung-19	GS	75	71	49	1814	1797	1468	1449	1623	1630	-

CV (%): 1.38; LSD (5%): 1.13; PAI: Percent average increase in yield over parents

DM: Days to 90% maturity; PH: Plant Height (cm); SW: 1000 Seed weight (g); PP: Parent (KBM); KS: Black seeded (Parent); GS: Green seeded (Standard check), P1: Parent 1 (KBM), P2: Parent 2 (NBM); PAI: Percent average increase in yield over parents

Table 6. Performance of NIFA Sikaram-21 (NBM-2-2-4-5) and NIFA Spinghar-21 (NBM-5-3-7) in adaptability yield trials planted at different locations on farmers’ fields at Kuram in kharif 2020

Entry	PP	DM	PH	SW	Malana	Boshara	Shanai	Shublan	Zeran	Av.	PAI
NBM-2-2-4-5	KN	75	58	49	1787	1626	1774	1590	1737	1703	44
NBM-2-14-4-3	-do-	74	70	42	1126	1216	1503	1147	1438	1328	-
NBM-2-157-7-1	-do-	73	72	46	1513	1015	1328	1003	1385	1249	-
NBM-5-3-7	-do-	74	73	49	1785	1605	1744	1556	1723	1684	42
KBM	BS	72	56	40	533	714	867	929	978	804	-
NBM	-do-	76	78	47	1634	1440	1648	1405	1641	1553	-
NFM-2019	GS	74	69	49	1835	1699	1779	1605	1765	1737	-

CV (%): 1.73; LSD (5%): 2.27; PAI: Percent average increase in yield over parents

DM: Days to 90% maturity; PH: Plant Height (cm); SW: 1000 Seed weight (g); PP: Parent (KBM); KS: Black seeded (Parent); GS: Green seeded (Standard check), P1: Parent 1 (KBM), P2: Parent 2 (NBM); PAI: Percent average increase in yield over parents

Table 7. Reaction of NIFA Sikaram-21 (NBM-2-2-4-5) and NIFA Spinghar-21 (NBM-5-3-7) to MYMV as compared to standards at NIFA, Peshawar in kharif 2019 and 2020

Entry	Score	Rating	Percent infection	Score	Rating
2019 at NIFA, Peshawar					
NBM-2-2-4-5	6.8	R	6.4	2	R
NBM-5-3-7	6.2	R	6.5	2	R
KBM	97.6	H5	91.2	8	H5
NBM	7.5	R	6.9	2	R
VC 1560 D	94.5	H5	96.2	8	H5
RAMZ2AN	8.2	R	7.6	2	R
NFM-2019	7.5	R	7.1	2	R

2020 at NIFA, Peshawar | | | | | |
NBM-2-2-4-5	6.8	R	6.4	2	R
NBM-5-3-7	6.2	R	6.5	2	R
KBM	97.6	H5	91.2	8	H5
NBM	7.5	R	6.9	2	R
VC 1560 D	94.5	H5	96.2	8	H5
RAMZ2AN	8.2	R	7.6	2	R
NFM-2019	7.5	R	7.1	2	R

Mungbean Yellow Mosaic Virus disease rating during
Contemporary plant breeding emphasizes on breeding crop plants based on consumers’ preferences so that a newly developed crop variety is readily adopted by the growers. The importance of crop breeding based on consumers’ preferences has previously been reported elsewhere (Carlson, 2007; Wale and Yalew, 2007; Poudel and Jhonsen, 2009; Asrat et al., 2010; Blazy et al., 2011; Smith and Fennessy, 2011; Ward et al., 2013; Kassie et al., 2017). In Kuram, the growers prefer to grow mungbean with black seed coat color as this type of mungbean ensures better financial returns to the growers in the area. The newly developed black-seeded mungbean varieties NIFA Sikaram-21 and NIFA Spinghar-21 with high yield potential and consumers’ preferred shiny black seed coat color are expected to play a vital role in uplifting the financial status of the growers of Kuram through improved economic harvest.

Controlling crop plants’ disease through chemical applications is expensive and detrimental to the environment as well. The practical strategy to protect the potential yield of a newly developed crop variety is to induce genetic potential in the variety to resist diseases with no or little compromise on grain yield. In mungbean, resistance to MYMV disease is the accumulation of certain favorable genes with modifying effect (Khattak et al., 2000). As inherent disease resistance helps the genotypes to avoid yield losses (Oerke, 2006; Savary et al., 2012), NIFA Sikaram-21 and NIFA Spinghar-21 have the inherent potential to resist MYMV (Table 7) in order to protect their yield potential under disease conditions. MYMV does not prevail in Kuram due to un-availability of the vector, because of a relatively cooler environment during the growth cycle. However, as a result of the current climate change phenomenon, it is very likely that MYMV may occur in niches that are safe till now. NIFA Sikaram-21 and NIFA Spinghar-21 have the genetic potential to perform better under circumstances of MYMV incidence in Kuram.

Acknowledgement

The authors highly acknowledge Pakistan Science Foundation (PSF), Islamabad for providing financial assistance for carrying-out the basic research work of this study at NIFA, Peshawar through a funded project PSF/NSLP/KP/NIFA (492). Financial assistance of PARC-PSDP Pulses Project (PSDP # 635) for conducting adaptability trials across KP is also highly acknowledged. Institutional support provided by NIFA/PAEC is also highly acknowledged.

References

Agriculture Statistics of Pakistan (2020). Government of Pakistan, Ministry of National Food Security & Research, Islamabad, Pakistan.

Ahmad, M., Akram, M., Rauf, R., Khan I.A. (2007). Adoption and constraints in use of high yielding varieties: A case study of four villages of district Peshawar andCharsada. *Srarahd Journal of Agriculture* 23(3):803-806.

Asrat, S., Yesuf, M., Carlson, F., Wale, E. (2010). Farmers’ preferences for crop variety traits: Lessons for on-farm conservation and technology adoption. *Ecological Economics* 69(12):2394-2401.

Blazy, J.M., Carpenter, A., Thomas, A. (2011). The willingness to adopt agro-ecological innovations: Application of choice modeling to Caribbean banana planters. *Ecological Economics* 72:140-150.

Carlson, F., Fryklom, P., Lagerkvist, C.J. (2007). Consumer benefits of labels and bans on GM foods-choice experiments with Swedish consumer. *American Journal of Agriculture Economics* 89(1):152-161.

Hossain, M. (2012). Rice varietal diversity, milling, and cooking in Bangladesh and Eastern India: A synthesis. In Adoption and diffusion of modern rice varieties in Bangladesh and India, Eds., Hossain, M., Jaim, W.M.H., Paris, T.R., Hardy, B., pp:1–14. Los Banos (Philippines): *International Rice Research Institute*.

Joshi, K.D., Rehman, A.U., Ullah, G., Nazir, M.F., Zahara, M., Akhtar, J., Khan, M., Baloch, A., Elahi, E., Khan, A., Suleman, M., Imtiaz, M. (2017). Acceptance and competitiveness of new improved wheat varieties by small holder farmers. *Journal of Crop Improvement* 31(4):608–627.

Kassie, G.T., Abdulai, A., William Greene, H., Shiferaw, B., Abate, T., Tarekene, A., Sutcliffe C. (2017). Modeling preference and willingness to pay for drought tolerance in maize in rural Zimbabwe. *World Development* 94: 465-477.
Khan, M.G., Ahmad, W., Khattak G.S.S., Siraj-ud-Din, Ahmad, H. (2007). Mode of inheritance of resistance to mungbean yellow mosaic virus (MYMV) in mungbean (Vigna radiata (L.) Wilczek). Sarhad Journal of Agriculture 23(4):1071–1074.

Khattak, G.S.S., Haq, M.A., Ashraf, M., Elahi, T. (2000). Genetics of mungbean yellow mosaic virus (MYMV) in mungbean (Vigna radiata (L.) Wilczek). Journal of Genetics and Breeding 54:237-243.

Khattak, G.S.S., Haq, M.A., Rana, S.A., Elahi, T., Srinives, P. (1998). An efficient technique for crossing mungbean (Vigna radiata (L.) Wilczek). Thai Journal of Agricultural Science 31:577-582.

Oerke, E.C. (2006). Crop losses to pests. Journal of Agricultural Science 144:31–43.

Poudel, D., Johnsen, F.H. (2009). Valuation of crop genetic resources in Kaski, Nepal: Farmers’ willingness to pay for rice landraces conservation. Journal of Environmental Management 90(1):483-491.

Savary, S., Ficke, A., Aubertot. J.N., Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security 4(4):519–537.

Smith, K.F., Fennelly, P.F. (2011). The use of conjoint analysis to determine the relative importance of specific traits as selection criteria for the improvement of perennial pasture species in Australia. Crop and Pasture Science 62(4):355-365.

Steel, R.G.D., Torrie, J.H. (1980). Principles and Procedures of Statistics. A Biometrical Approach. McGraw Hill Book Co., New York (USA).

Wale, E., Yalew, A. (2007). Farmers’ varieties attribute preferences: Implications for breeding priority setting and agricultural extension policy in Ethiopia. African Development Review 19(2):379-396.

Walker, T.S., Alwang, J., Alene, A., Ndjouenga, J., Labarta, R., Yizgezu, Y., Diagne, A., Andrade, R., Andriatsitona, R.M., De-Groote, H., Mauch, K., Yirga, C., Simotowe, F., Katungi, E., Jogo, W., Jaleta, M., Pandey, S., Kumara, D.C. (2015). Varietal adoption, outcomes and impact. In: Crop improvement, adoption, and impacts of improved varieties in food crops in Sub-Saharan Africa, Eds., Walker, T.S., Alwang, J. Wallingford, UK: CGIAR and CABI, pp:388–405.

Ward, P.S., Ortega, D.L., Spielman. D.J., Singh, V. (2013). Farmer preferences for drought tolerance in hybrid versus inbred rice: Evidence from Bihar, India IFPRI Discussion Paper. IFPRI, Washington DC: CGIAR Research Program on Policies, Institutions and Markets.

Wasim, M.P. (2007). Contribution of high-yield varieties seeds to major food crops production, yield and area in Punjab – Pakistan. Indus Journal of Management and Social Sciences 1(1):46–52.

Zulfiqar, F., Hussain, A. (2014). Forecasting wheat production gaps to assess the future food security in Pakistan. Journal of Food and Nutritional Disorders 3(3). http://dx.doi.org/10.4172/2324-9323.1000146.