The 5th International Conference on Climate Change 2020
The 5th International Conference on Climate Change 2020

IOP Conf. Series: Earth and Environmental Science 724 (2021) 012015
IOP Publishing
doi:10.1088/1755-1315/724/1/012015

The resistance of restorer lines and F1 hybrids to bacterial leaf blight disease

Y Widyastuti1,2, N Kartina1, B P Wibowo1, A Nasution1 and Satoto1

1Indonesian Center for Rice Research, IAARD, Indonesia.
Jalan Raya 9 Sukamandi, Subang West Java 41256
2Corresponding author: yuniweicrr@gmail.com

Abstract. Bacterial leaf blights (BLB) is one of a major problem in hybrid rice cultivation cause yield losses from 15 to 80%. The disease is caused by the bacterium of Xanthomonas oryzae pv. oryzae (Xoo). To overcome this problem, improvement of hybrid rice parental lines have been conducted since 2010 in the Indonesian Center for Rice Research. There were two activities conducted in the research i.e. evaluation of some improved parental lines resistance to BLB and evaluation of their F1 hybrid for yield and agronomic traits during the dry season of 2015 in a field station. Results showed that several Restorer lines were resistant to BLB. The restorer lines CRS850, CRS851, CRS882, 890, and CRS982 have been identified as resistant lines in early tillering and booting stages to both Xoo IV and VII races. Those Restorer lines are the potential to use as parental lines to develop new hybrid varieties possessing resistance to BLB. The best F1 hybrids with resistance to BLB was GMJ7/CRS850 that showed resistance in early tillering and booting stages to both Xoo IV and VIII races. GMJ12/CRS890 hybrid showed the best performance and yielded higher than that of the check variety.

1. Introduction

Hybrid rice is a type of rice that has been bred from two distinctive parental lines. Hybrid rice technology is recognized as one of the alternative solutions to increase rice yield. In Indonesia, three lines system used in hybrid rice breeding was conducted by crossing Cytoplasmic Male Sterile (A line) with the restorer (R line) [1].

Climate change influences rice pest-disease infestation. Rice diseases such as rice blast, rice tungro virus (RTV), and bacterial leaf blight (BLB) could become more widespread in Indonesia. Generally, changes in wind patterns may also change the spread of both wind-borne pests and of bacteria and fungi that are the major agents of crop disease. Hence, the use of resistant variety is a cost-effective and environmentally safe approach to reduce yield loss.

Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is the most significant disease of irrigated land. The BLB can diminish grain yield by up to 50% [2] or maybe up to 80% [3]. This disease also sources low-quality fodder. Resistant varieties are needed as the main component in integrated disease control of BLB [4].

Breeding programs to improve the resistance of parental lines and the F1 hybrid have been established [5]. Parental lines of the hybrids developed in Indonesia are mostly derived from introduced lines, which are commonly more susceptible to pests and diseases. Hence, it is imperative to develop a hybrid variety using the Indonesian parental lines, which is well adjusted to the environment by identifying lines as restorer and maintainer parents [6] or crossing the existing parental lines with donor varieties.
Most of the hybrid rice varieties released in Indonesia were liable to major pests and diseases such as brown planthopper (BPH), BLB, and RTV [7]. The resistance of hybrid rice depends on the resistance of their respective parental lines. Heterosis does not make hybrid rice more or less resistant compared to their parental lines [8]. Wild abortive CMS system is not correlated to susceptibility to blast, BLB, BPH, and white back plant hopper [9].

Hybrid rice developed using three parental lines might be resistant to BLB if on condition that their respective parental lines possessing the resistance genes to those diseases. Therefore, parental lines should be selected very tightly. The objectives of the research were identified the resistance of restorer lines and F1 hybrids to BLB and also evaluated the grain yield and its components of F1 hybrids rice.

2. Materials and methods

2.1. Evaluation resistance to BLB

The differential variety was included on the test i.e. Code was used as resistant checks. Tested lines were inoculated on 15-21 days after sowing (seedling stage) using *Xanthomonas oryzae pv. Oryzae* suspension with 108cfu (colony forming unit) of concentration. Inoculations were conducted by leaf cutting. The leaf cuttings were done using scissors that have put on the suspension of inoculums. The observation was started when Code (resistant check variety) have totally damaged or 14 days after inoculation. The length of lesion and leaf length were observed and the percentage of the lesion was counted. Scoring is conducting based on the modified standard evaluation system of rice (SES)[9].

2.2. Evaluation F1 hybrids for yield and agronomic traits

Thirty-six new promising hybrid rice are used as genetic materials, compared to Hipa Jatim2 and Inpari 13 as check varieties. Field experiments were conducted during the 2015 dry season (DS) at Sukamandi, West Java (Alluvial, 16 m above sea level), Indonesia. Experiments were laid out in a randomized complete block design (RCBD) involving 38 genotypes with three replications. The plot size was 2 x 5 m2.

The rice cultivation and postharvest practices were carried out based on an integrated crop management system. Grain yield and yield components were recorded. Grain yield data and yield components were analyzed using SAS (version 9.1.3) and the analysis of variance in RCBD was used [10]. Hybrid yield performance was compared with check varieties based on the least significant difference (LSD) value at the 5%.

3. Results

Bacterial Leaf Blight (BLB) is a pathogen affected leaf of rice in altogether growth phases. Evidence on the vegetative phase of the plant is named kresek and which at the generative phase is called blight. When the infection appeared within the generative phase, the grain filling process was ended, resulting in less than perfect grains [4]. During this research, screening to BLB was conducted at two growth stages i.e. early tillering stage and booting stage.

3.1. Improvement of restorer lines resistance to Bacterial Leaf Blight (BLB)

Disease severity BLB caused by *Xanthomonas oryzae pv. Oryzae* race IV ranged from 0.42% to 23.24% and 1% to 32.44% at early tillering and booting stage, respectively. For Xoo race VIII incidence of BLB varied from 0.25% to 23.19% and 0.95% to 38.34% (Table 1). Results revealed that out of tested 27, five restorer lines i.e. CRS850, CRS851, CRS882, CRS 890, and CRS982 were found to be resistant at both early tillering and booting stages to both Xoo IV and VII races (Table 1).
Table 1. Resistant reactions of restorer lines to the two pathotypes of *Xanthomonas oryzae pv. oryzae* (Xoo) at early tillering (TS) and booting (BS) stages.

No	Restorer lines (male parent)	Resistance level to BLB (Xoo) at two growth stage								
		Early tillering stage	Booting stage	Early tillering stage	Booting stage					
		LAI (%)	DS	PR	LAI (%)	DS	PR	LAI (%)	DS	PR
1	CRS828	23.24	4	MS	32.34	5	S	22.36	4	MS
2	CRS832	15.05	4	MS	28.67	5	S	16.69	4	MS
3	CRS834	13.51	4	MS	21.41	4	MS	20.13	4	MS
4	CRS842	8.14	3	MR	11.91	3	MR	18.31	4	MS
5	CRS848	15.91	4	MS	31.25	5	S	14.97	4	MS
6	CRS849	11.63	3	MR	19.25	4	MS	9.34	3	MR
7	CRS850	1.1	1	HR	1.58	1	HR	0.33	1	HR
8	CRS851	0.42	1	HR	1.08	1	HR	0.42	1	HR
9	CRS854	12.42	4	MS	21.25	4	MS	12.75	3	MR
10	CRS857	13.17	4	MS	20.25	4	MS	14	4	MS
11	CRS860	12.29	3	MR	16.83	4	MS	11.75	3	MR
12	CRS864	9.92	3	MR	14	4	MS	12.17	3	MR
13	CRS 865	10.92	3	MR	32.44	5	S	12.81	3	MR
14	CRS 882	0.6	1	HR	1	1	HR	0.25	1	HR
15	CRS 883	12.17	3	MR	20.25	4	MS	0.52	1	R
16	CRS 887	5	2	R	14.75	4	MS	7.5	3	MR
17	CRS 888	10.17	3	MR	18.83	4	MS	8.92	3	MR
18	CRS 889	8.25	3	MR	11.67	3	MR	6.08	2	R
19	CRS 890	3	1	HR	7.83	3	MR	0.28	1	HR
20	CRS900	10.79	3	MR	14.08	4	MS	12.08	3	MR
21	CRS 939	11.1	3	MR	13.68	4	MS	13.06	4	MS
22	CRS 942	11.32	3	MR	11.47	3	MR	23.19	4	MS
23	CRS 952	9.75	3	MR	16.75	4	MS	16.17	4	MS
24	CRS961	7.9	3	MR	12.08	3	MR	5.17	2	R
25	CRS 963	8.92	3	MR	15.08	4	MS	7.49	3	MR
26	CRS982	0.83	1	HR	5.58	2	HR	0.35	1	HR
27	CRS1002	7.67	3	MR	12.08	3	MR	6.93	2	R

Note: LAI: Lesion area infection (%), DS: Disease scale, PR: Plant response, HR: Highly resistant, MR: Moderately resistant, R: Resistant, MS: Moderately Susceptible, S: Susceptible, HS: Highly susceptible.

3.2. Improvement of F1 hybrid rice combinations resistance to Bacterial Leaf Blight

All the F1 hybrids rice showed varied disease severity to Xoo race IV at the early tillering stage with the average percentage of the lesion ranging from 0.42% to 31.33%. At the booting stage, most of the F1 plants exhibited increased resistance to Xoo race IV as to those at the early tillering stage, with disease severity from 8% to 39.67%. Whereas, the result of disease severity BLB Xoo race VIII ranged from 0.40% to 14.66% and 0.70% to 35.67% at early tillering and booting stage, respectively (Table 2).
Table 2. Resistant reactions of F1 hybrid rice combinations to the two patotype of Xanthomonas oryzae pv. oryzae (Xoo) at early tillering (TS) and booting (BS) stages.

No	F1 hybrid rice combinations	Resistance level to BLB (Xoo) at two growth stage				
		Early tillering stage	Booting stage	Xoo race IV	Xoo race VIII	
		LAI (%) DS PR	LAI (%) DS PR	Early tillering stage	Booting stage	LAI (%) DS PR
1	GMJ12/CRS887	9.00 3 MR 8.00 3 MR	12.43 3 MR 16.32 4 MS			
2	GMJ12/CRS890	27.33 5 S 11.67 3 MR	7.56 3 MR 12.87 3 MR			
3	GMJ12 / CRS963	19.58 4 MS 13.67 4 MS	7.17 3 MR 9.42 3 MR			
4	GMJ6/CRS900	8.92 3 MR 13.42 4 MS	8.33 3 MR 8.26 3 MR			
5	GMJ7/CRS900	15.36 4 MS 20.00 4 MS	14.08 4 MS 23.11 4 MS			
6	GMJ12/CRS849	11.00 3 MR 13.33 4 MS	10.91 3 MR 17.24 4 MS			
7	GMJ12/CRS848	14.92 4 MS 16.17 4 MS	12.82 3 MR 16.93 4 MS			
8	GMJ12/CRS850	8.08 3 MR 16.92 4 MS	9.63 3 MR 20.46 4 MS			
9	GMJ12/CRS900	10.67 3 MR 14.93 4 MS	3.80 1 R 3.18 2 R			
10	A7/CRS860	16.83 4 MS 19.94 4 MS	14.22 4 MS 35.67 5 S			
11	A7/CRS939	20.17 4 MS 16.50 4 MS	7.64 3 MR 14.02 4 MS			
12	GM12/CRS860	14.17 4 MS 23.67 4 MS	10.97 3 MR 21.38 4 MS			
13	GMJ12/CRS842	9.83 3 MR 21.83 4 MS	8.01 3 MR 16.19 4 MS			
14	GMJ12/CRS851	4.25 2 R 18.83 4 MS	6.96 2 R 13.12 4 MS			
15	A7/CRS900	9.50 3 MR 23.33 4 MS	14.66 4 MS 21.84 4 MS			
16	GMJ12/CRS882	8.50 3 MR 14.25 4 MS	1.41 1 R 11.10 3 MR			
17	GMJ12/CRS961	8.58 3 MR 15.08 4 MS	11.06 3 MR 20.48 4 MS			
18	A7/CRS828	14.17 4 MS 39.67 5 S	11.78 3 MR 21.31 4 MS			
19	GMJ12/CRS982	7.67 3 MR 14.25 4 MS	8.17 3 MR 11.06 3 MR			
20	GMJ12/CRS889	9.67 3 MR 13.17 4 MS	7.81 3 MR 20.83 4 MS			
21	GMJ10/CRS883	3.58 1 R 10.75 3 MR	9.26 3 MR 12.43 3 MR			
22	GMJ12/CRS857	8.33 3 MR 15.75 4 MS	14.16 4 MS 18.97 4 MS			
23	A7/CRS888	8.25 3 MR 20.75 4 MS	10.33 3 MR 16.24 4 MS			
24	GMJ7/CRS850	0.42 1 R 8.42 3 MR	0.40 1 R 0.70 1 R			
25	GMJ12/CRS1002	5.00 2 R 14.08 4 MS	6.94 2 R 25.80 4 MS			
26	GMJ12/CRS832	15.63 4 MS 16.17 4 MS	9.59 3 MR 20.23 4 MS			
27	GMJ7/CRS834	12.08 3 MR 16.83 4 MS	14.61 4 MS 22.36 4 MS			
28	GMJ10/CRS864	11.67 3 MR 17.25 4 MS	10.31 3 MR 12.38 3 MR			
29	A7/CRS1002	10.67 3 MR 15.75 4 MS	13.84 4 MS 16.71 4 MS			
30	GMJ12/CRS942	9.83 3 MR 20.50 4 MS	9.28 3 MR 18.17 4 MS			
31	GMJ7/CRS872	10.83 3 MR 14.33 4 MS	4.53 2 R 11.00 3 MR			
32	GMJ12/CRS939	31.33 5 S 15.25 4 MS	5.29 2 R 14.75 4 MS			
33	GMJ12/CRS865	10.08 3 MR 17.17 4 MS	9.75 3 MR 13.47 4 MS			
34	GMJ10/CRS860	12.67 3 MR 20.33 4 MS	5.01 2 R 20.57 4 MS			
35	GMJ12/CRS854	10.33 3 MR 20.00 4 MS	13.71 4 MS 16.90 4 MS			
36	A7/CRS952	15.32 4 MS 20.25 4 MS	7.02 3 MR 9.17 3 MR			

Note. LAI: Lesion area infection (%), DS: Disease scale, PR: Plant response, HR: Highly resistant, MR: Moderately resistant, R: Resistant, MS: Moderately Susceptible, S: Susceptible, HS: Highly susceptible.
Table 3. Agronomic performance of F1 hybrid rice combinations tested under normal field conditions during 2015 dry season in Sukamandi, West Java.

No.	F1 hybrid rice combinations	Plant height (cm)	Number of productive tillers	Seed set (%)	1000 grain weight (g)
1	GMJ12/CRS887	118.0	13	68.0	27.0
2	GMJ12/CRS890	120.8	13	70.8	27.4
3	GMJ12/CRS963	118.7	13	68.6	27.5
4	GMJ6/CRS900	119.1	14	64.9	26.3
5	GMJ7/CRS900	121.6	13	63.3	26.8
6	GMJ12/CRS849	120.8	12	67.1	26.3
7	GMJ12/CRS848	121.5	13	64.4	25.8
8	GMJ12/CRS850	114.6	14	72.6	26.1
9	GMJ12/CRS900	119.0	13	67.2	26.5
10	A7/CRS860	122.0	14	74.3	26.1
11	A7/CRS939	121.2	13	74.4	26.3
12	GM12/CRS860	118.7	13	78.0	27.8
13	GM12/CRS842	121.0	13	71.1	27.4
14	GM12/CRS851	119.2	12	68.4	27.9
15	A7/CRS900	119.5	14	64.1	27.0
16	GM12/CRS882	119.1	13	71.7	26.9
17	GM12/CRS961	120.9	13	64.4	28.2
18	A7/CRS828	119.6	13	78.1	26.6
19	GMJ12/CRS892	115.9	13	68.0	26.8
20	GMJ12/CRS889	112.0	12	64.8	26.4
21	GMJ10/CRS883	111.7	14	81.7	24.9
22	GMJ12/CRS857	116.4	13	71.8	28.4
23	A7/CRS888	116.1	14	54.0	27.5
24	GMJ7/CRS850	115.1	13	69.7	26.4
25	GMJ12/CRS1002	118.2	14	71.0	27.3
26	GMJ12/CRS832	118.2	13	66.3	28.1
27	GMJ7/CRS834	116.4	14	67.2	26.7
28	GMJ10/CRS864	119.1	13	72.8	29.2
29	A7/CRS1002	119.0	14	73.0	26.6
30	GMJ12/CRS942	115.1	13	68.0	26.9
31	GMJ7/CRS872	119.9	13	59.8	26.2
32	GMJ12/CRS939	114.4	14	69.8	26.8
33	GMJ12/CRS865	116.3	12	67.2	27.1
34	GMJ10/CRS860	118.1	12	80.3	29.6
35	GMJ12/CRS854	117.9	13	67.1	27.5
36	A7/CRS952	118.3	13	71.8	27.7
37	Hipa Jatim2	119.4	13	73.8	27.7
38	Inpari 31	115.5	13	75.6	25.9

LSD (%) 2.9 48.4 11.2 32.0
CV (%) 2.7 5.2 6.3 7.1

3.3. Agronomic traits and grain yield of F1 hybrid rice combinations
Some hybrids selected from the preliminary yield trial conducted during the dry season of 2015 is listed in Table 3. Some of the hybrids had better agronomic characters than check varieties. Regarding plant height, A7/CRS860 (122.0 cm) was the highest while GMJ10/CRS883 (111.7 cm) was the shortest. The number of productive tillers of F1 hybrids varied from 12 to 14. The percentage of seed
set was the highest in GMJ7/CRS883 (81.7%) but the lowest in A7/CRS888 (54%). Thousand-grain weights of GMJ10/CRS860 (29.6 g) were heavier than other F1 combinations (Table 3).

Grain yield and standard heterosis value of yield character of the 36 hybrids are shown in Table 4. Table 5 shows that the range of grain yield of F1 hybrid between 4.23 t/ha (GMJ7/CRS872) to 7.91 t/ha (GMJ12/CRS890). The best hybrid was GMJ12/CRS890 with a heterosis value of 16.36% higher than Inpari31 (inbred rice variety) and 8.83% higher than Hipa 18 (hybrid rice variety).

No.	F1 hybrid rice combinations	Grain yield (ton/ha)	Standard heterosis (%) compared to:	
			Inpari 31	Hipa 18
1	GMJ12/CRS887	7.59	11.68	4.46
2	GMJ12/CRS890	7.91	16.36	8.83
3	GMJ12 / CRS963	7.12	4.64	-2.13
4	GMJ6/CRS900	7.26	6.80	-0.10
5	GMJ7/CRS900	5.67	-16.59	-21.98
6	GMJ12/CRS849	7.36	8.22	1.22
7	GMJ12/CRS848	7.20	5.92	-0.92
8	GMJ12/CRS850	7.48	9.99	2.88
9	GMJ12/CRS900	7.25	6.68	-0.22
10	A7/CRS860	6.99	2.73	-3.91
11	A7/CRS939	6.72	-1.24	-7.63
12	GMJ12/CRS860	7.20	5.86	-0.98
13	GMJ12/CRS842	7.37	8.35	1.34
14	GMJ12/CRS851	7.36	8.22	1.22
15	A7/CRS900	6.43	-5.44	-11.55
16	GMJ12/CRS882	7.55	11.04	3.87
17	GMJ12 / CRS961	7.22	6.18	-0.68
18	A7/CRS828	7.21	6.00	-0.86
19	GMJ12 / CRS982	6.42	-5.63	-1.73
20	GMJ12/CRS889	6.48	-4.74	-10.90
21	GMJ10/CRS883	6.28	-7.59	-13.57
22	GMJ12/CRS857	6.73	-1.08	-7.47
23	A7/CRS888	4.63	-31.86	-36.26
24	GMJ7/CRS850	6.28	-7.65	-13.62
25	GMJ12 / CRS1002	7.78	14.45	7.05
26	GMJ12/CRS832	6.55	-3.68	-9.91
27	GMJ7/CRS834	5.28	-22.30	-27.32
28	GMJ10/CRS864	5.01	-26.38	-31.14
29	A7 / CRS1002	7.23	6.30	-0.57
30	GMJ12 / CRS942	7.15	5.08	-1.72
31	GMJ7/CRS872	4.23	-37.83	-41.85
32	GMJ12 / CRS939	7.45	9.61	2.52
33	GMJ12/CRS865	6.18	-9.11	-14.99
34	GMJ10/CRS860	6.65	-2.14	-8.46
35	GMJ12/CRS854	7.44	9.41	2.34
36	A7 / CRS952	6.75	-0.71	-7.13
37	Hipa Jatim2	7.27		
38	Inpari 31	6.80		

LSD (%) 12.56
CV (%) 0.69

4. Discussions
The currency of BLB disease in Indonesia is threatening the development of hybrids rice as a reaction to their susceptibility. The term in hybrid rice breeding for disease BLB is improving the resistance of
its parental lines (CMS, maintainer, and restorer lines) to BLB disease. Beginning from 2010, improvement of parental lines, for example, restorer, CMS, and maintainer line have been conducting by conventional crossing between the parental lines and a few donor lines of local and elite lines.

This program has crossed existing R lines with donors from released varieties (Maros and Siakraya), isogenic lines (IRBB 57), and elite lines (BIG12-3, RCN-B-94-19, IR71103) that have resistance to HDB. The isogenic lines with pyramiding genes were IRBB 55, IRBB 57, IRBB 60, IRBB 61, etc. can be used in the breeding of resistant new varieties to BLB [11]. The identification [12] showed that the most important resistance Xa genes in Indonesia were x5, Xa7, and Xa21.

The parental lines are important for the development of BLB resistance in hybrid rice breeding. The research identified five restorer lines having a high level of resistance all Xoo race. The restorer has resistance to HDB with a score around 1–3 (Table 2). Some HDB-resistant restorers can reduce hybrids that also have resistance, but the reaction of these hybrids is not always the same as the restorer reaction [13].

There were different reactions between BLB-resistant restorers and F1 hybrids. For example, the restorer lines (CRS 882 and CRS 982) had high resistance to BLB (Table 1), however, the reaction to BLB of F1 hybrids (GMJ12/CRS882 and GMJ12/CRS982) was only moderately resistant (Table 2). Furthermore, the resistance level of F1 was dominated by the interaction between CMS and restorer line when CMS was resistant. We saw that restorer lines with Xa21 (CRS888, CRS889, and CRS890) and their derived hybrid combinations were moderately resistant to all IV and VII races tested particularly at booting stages.

As shown in this study, the parental lines conveying resistant genes (CRS883 and CRS850) and express high resistance in its F1 hybrids (GMJ7/CRS883 and GMJ10/CRS850), did not generally exhibit good agronomic traits. Subsequently, the program to improve the resistance to BLB of the parental lines must be completed simultaneously by testing the combining ability F1 hybrid rice.

5. Conclusion
The restorer lines with resistance to BLB were CRS850, CRS851, CRS882, 890, and CRS982 that showed resistance at both early tillering and booting stages to both Xoo IV and VIII races. The best F1 hybrids with resistance to BLB was GMJ7/CRS850 that showed resistance at both early tillering and booting stages to both Xoo IV and VIII races. GMJ12/CRS890 hybrid has the best performance with a higher grain yield than that of the check varieties.

Acknowledgements
This research was funded by the Indonesian Agency for Agricultural Research and Development (IAARD), Ministry of Agriculture, Republic of Indonesia, the fiscal year of 2015. The authors would like to thank Dede Casim and Firman M. Akbar for his technical assistance in the field and greenhouse.

References
[1] Rumanti I A, Purwoko B S, Dewi I, Aswidinnoor H and Widyastuti Y 2017 Combining ability for yield and agronomic traits in hybrid rice derived from wild abortive, gambiae and kalinga cytoplasmic male sterile lines SABRAO J. Breed. Genet. 49 69–76
[2] Ogawa T and Khush G S 1989 Major gene for resistance to bacterial blight in rice in Bacterial blight of rice (Manila, Philippines: International Rice Research Institute) pp 177–92
[3] Singh G P, Srivastava M K, Singh R M and Singh R V 1977 Variation in quantitative and qualitative losses caused by bacterial blight rice varieties Indian phytopathol. 30 180-85
[4] Sudir, B Nuryanto and T S Kadir 2012 Epidemiologi, patotipe, dan strategi pengendalian penyakit hawar daun bakteri pada tanaman padi Iptek Tanaman Pangan 7 79-87
[5] Satoto, M J Mejay, Y Widyastuti and I A Rumanti 2013 Stabilitas dan potensi hasil varietas unggul baru padi hibrida Jurnal Penelitian Tanaman Pangan 32 67–73
[6] Y Nugraha, E Lubis and M Diredja 2004 Identifikasi galur-galur elit padi (Oryza sativa) untuk
tetua padi hibrida *Buletin Plasma Nutfah* **10** 12–16.

[7] M B Cohen, C C Bernal and S S Virmani 2003 Do rice hybrids have heterosis for insect resistance? A study with Nilaparvata lugens (Hemiptera: Delphacidae) and Marasmia patnalis (Lepidoptera: Pyralidae) *J. Econ. Entomol.* **96** 1935–41

[8] S S Virmani, F A Faiz, N dela Cruz and A J Ali 2001 Has ‘WA’ cytoplasms any genetic liability on rice hybrids? Paper presented in ASA meeting Charlotte, N.C. USA

[9] IRRI 2002 *Standard Evaluation System For Rice* (Manila: International Rice Research Institute)

[10] K A Gomez and A A Gomez 1984 *Statistical procedures for agricultural research* (2 ed.) (New York: John Wiley & Sons) 680p

[11] D Yuliani, R H Wening and Sudir 2014 Selection resistance of rice germplasm accessions to bacterial leaf blight *Buletin Plasma Nutfah* **20** 65–76

[12] Tasliah 2012 Gen ketahanan tanaman padi terhadap bakteri hawar daun (*Xanthomonas oryzae* pv. *oryzae*) *Jurnal Penelitian dan Pengembangan Pertanian* **31** 103–12

[13] W Zhai, W Wang, Y Zhou, X Li, X Zheng, Q Zhang, G Wang and L Zhu 2002 Breeding bacterial blight-resistant hybrid rice with the cloned bacterial blight resistance gene *Xa21* *Mol. Breed.* **8** 285–93