Habitual and ready positions in female table tennis players and their relation to the prevalence of back pain

Ziemowit Bańkosz Corresp., Equal first author, 1, Katarzyna Barczyk-Pawelec Equal first author, 2

1 Faculty of Sports, Univeristy School of Physical Education in Wrocław, Wrocław, Poland
2 Faculty of Physiotherapy, University School of Physical Education in Wrocław, Wrocław, Poland

Corresponding Author: Ziemowit Bańkosz
Email address: ziemowit.bankosz@awf.wroc.pl

Background The current body of knowledge shows that there is very little research into the occurrence and scale of asymmetry or postural defects in table tennis. It is interesting which regions of the spine are exposed to the greatest changes in the shape of its curvatures and whether the asymmetrical position of the shoulder and pelvic girdles in table tennis players changes when adopting the ready position. Consequently, can overload occur in certain parts of the spine and can the asymmetry deepen as a response of adopting this position? The reply to these questions may be an indication of the need for appropriate compensatory or corrective measures. Therefore, the aim of the study was to evaluate the effect of body position during play on the change in the shape of anterior-posterior spinal curvatures and trunk asymmetry in table tennis players. Methods. To evaluate body posture the photogrammetric method based on the Moiré phenomenon with equipment by CQ Electronic was applied. The study involved 22 female players practicing competitive table tennis (the age of 17±4.5, with the average training experience of 7±4.3 years, body mass of 47.8±15.8, and body height of 161.2±10.4). Each participant completed an author’s own questionnaire on spinal pain. The shape of curvatures in the sagittal and frontal plane was evaluated in the participant in the habitual standing position and in the table tennis ready position. Descriptive statistical analysis was performed and the significance of differences was tested using the Mann-Whitney U test. Results and Conclusions. This study demonstrated the dominance of kyphotic body posture in table tennis players, which can be caused by many hours of using the ready position during playing. After adopting this position, there are significant differences in the angles of anterior and posterior spinal curvatures compared to the habitual posture. This may be the cause of loads and pain complaints reported by the study participants. Adopting the ready position is also associated with an increase in asymmetry in the position (rotation) of the pelvis and spinous processes (frontal plane). Therefore, training programs should be extended with exercises that relieve the spine in the vertical line and exercises that
improve symmetry of the work of the upper limbs, body trunk muscles and the pelvis.
Habitual and ready positions in female table tennis players and their relation to the prevalence of back pain

Ziemowit Bańkosz¹, Katarzyna Barczyk-Pawelec²

¹ Faculty of Sports, University School of Physical Education in Wrocław, Wrocław, Poland
² Faculty of Physiotherapy, University School of Physical Education in Wrocław, Wrocław, Poland

Corresponding Author:
Ziemowit Bańkosz¹

Paderewskiego 35, Wrocław, 51-612, Poland

Email address: ziemowit.bankosz@awf.wroc.pl
Abstract

Background The current body of knowledge shows that there is very little research into the occurrence and scale of asymmetry or postural defects in table tennis. It is interesting which regions of the spine are exposed to the greatest changes in the shape of its curvatures and whether the asymmetrical position of the shoulder and pelvic girdles in table tennis players changes when adopting the ready position. Consequently, can overload occur in certain parts of the spine and can the asymmetry deepen as a response of adopting this position? The reply to these questions may be an indication of the need for appropriate compensatory or corrective measures. Therefore, the aim of the study was to evaluate the effect of body position during play on the change in the shape of anterior-posterior spinal curvatures and trunk asymmetry in table tennis players.

Methods. To evaluate body posture the photogrammetric method based on the Moiré phenomenon with equipment by CQ Electronic was applied. The study involved 22 female players practicing competitive table tennis (the age of 17±4.5, with the average training experience of 7±4.3 years, body mass of 47.8±15.8, and body height of 161.2±10.4). Each participant completed an author’s own questionnaire on spinal pain. The shape of curvatures in the sagittal and frontal plane was evaluated in the participant in the habitual standing position and in the table tennis ready position. Descriptive statistical analysis was performed and the significance of differences was tested using the Mann-Whitney U test.

Results and Conclusions. This study demonstrated the dominance of kyphotic body posture in table tennis players, which can be caused by many hours of using the ready position during playing. After adopting this position, there are significant differences in the angles of anterior
and posterior spinal curvatures compared to the habitual posture. This may be the cause of overloads and pain complaints reported by the study participants. Adopting the ready position is also associated with an increase in asymmetry in the position (rotation) of the pelvis and spinous processes (frontal plane). Therefore, training programs should be extended with exercises that relieve the spine in the vertical line and exercises that improve symmetry of the work of the upper limbs, body trunk muscles and the pelvis.

Introduction

Table tennis is one of the fastest sports (Kondric et al. 2013). This is mainly due to the short distance between the players (table length is 2.74 m) and the speed of the flying ball (up to about 40 m/s). For this reason, the players have very little time to react, ranging from 0.2 to 0.4 seconds. Except for the service, all player's actions represent the response to the opponent's play. Therefore, each player has to evaluate the parameters of the flying ball: where and how the ball will bounce on the table and what the speed and rotation will be. Then the player must precisely choose the parameters of the stroke such as its type, strength and direction, angle of the racket, place of hitting the ball, and adopt the right position to perform the play. All this causes the player to act in a constant shortage of time. It is therefore essential to remain ready. This is expressed by taking and maintaining the so-called ready position, in which the lower and upper limbs are flexed, the torso is significantly leaned forward, the rocket is kept in front of the player’s body, the center of gravity of the body is shifted forward, the body weight is kept on the forefoot, etc. (Fig. 1, Hudetz, 2005).

Fig. 1 about here
Another characteristic element of table tennis is the one-sidedness and asymmetry of muscle work because the player plays with one hand. The impact movements are therefore asymmetrical and significantly load one side of the body. Impact movements are characterized by high speed and the impact force is generated based on the principle of "proximal to distal sequence", using the work of the whole body (Iino, & Kojima, 2009, Bańkosz, & Winiarski 2017, 2018). The movements of the pelvic girdle, torso and shoulder girdles (Iino, & Kojima, 2009, 2011, 2016; Bańkosz, & Winiarski, 2018), especially in the transverse and frontal plane, are of great importance to the achievement of a high impact force.

Postural defects (excessive spine curvatures, scoliosis), limb distortions and asymmetry of body build are the factors leading to pain syndromes, degenerative states, disorders of motor functions or even internal organs functioning (Zeyland-Malawka, Prętkiewicz-Abacjew, 2006).

Researchers dealing with body posture, the symmetry of body build or proportions of athletes' bodies often find that the risk of occurrence of excessive morphological asymmetry or spinal pain syndromes in athletes is high. Hobbs et al. (2014) have identified a high risk of chronic spinal pain and morphological asymmetry in female and male equestrian athletes. The study found a high correlation between the incidence of injury and certain body mechanics disorders in football players (Watson, 1995). Increased lumbar lordosis and increased or decreased distance between the knees were often associated with muscle strain, while increased thoracic kyphosis and shoulder and trunk asymmetry were associated with back pain. The risk of injury is also high as a result of functional asymmetry, which was found in soccer players (Read et al., 2017).

Tiraman and Yaman (2001) demonstrated the relationship between the occurrence of asymmetry in different parts of the body and the occurrence of injuries in adolescents. Krzykała et al. (2018), who examined asymmetry in hockey players, emphasized the role of monitoring of the
magnitude of the asymmetry in preventing injuries and health problems linked to morphological asymmetry. Morton and Callister (2010) found a frequent occurrence of transient abdominal pain after exercise in cases of increased thoracic kyphosis or lumbar lordosis.

Many researchers have pointed to the occurrence of asymmetry in athletes. Grabara and Hadzik (2009), assessing the body build of young female and male athletes, found numerous asymmetries with respect to waist triangles and shoulder blade position and tendencies for increased thoracic kyphosis.

Grabara (2018) found that thoracic kyphosis increased while lumbar lordosis decreased in young handball players during a two-year training period. A large number of pelvic asymmetries in athletes practising sports with one-sided domination (limb use, rotating upper body) was stressed by Bussey (2010), who examined hockey players, field hockey players, and speed skaters.

However, some researchers point out that practicing sport involves correcting or symmetrical development of body posture. Such results have been documented by researchers in the field of taekwondo (Wąsik et al., 2015), gymnastics (Radaš, & Trost Bobić, 2011), or karate (Drzał-Grabbiec, & Truszczyńska, 2014). Maloney (2019), in a review of available studies, pointed out that there is no convincing evidence of asymmetry in athletes and that it is sporting activity that can counteract such asymmetries.

The current body of knowledge shows that there is very little research into the occurrence and scale of asymmetry or postural defects in table tennis. It is interesting to see how and to what extent the body posture changes during the adoption of a typical playing ready position. To be more specific, the question is which regions of the spine are exposed to the greatest changes in the shape of its curvatures and whether the asymmetrical position of the shoulder and pelvic girdles in table tennis players changes when adopting the ready position? It is also interesting if
table tennis players declare the occurrence of back pain, what are the scale and consequences of
this pain and if this pain occurrence is correlated to any of measured body posture parameter?
There is no data in the literature concerning this problem. The reply to these questions may be an
indication of the need for appropriate compensatory or corrective measures. Therefore, the aims
of the study were to: evaluate the effect of body position during play on the change in the shape
of anterior-posterior spinal curvatures and trunk asymmetry in table tennis players and to
establish the correlation between prevalence of back pain and parameters of body posture in
table tennis players.

Materials & Methods

Participants

The method of sampling in the research was judgmental sampling - the research concerned
female table tennis players who have been practicing table tennis more than 2 years. The
research involved 22 female players practicing competitive table tennis at the age of 17±4.5, with
the average training experience of 7±4.3 years, body weight of 47.8±15.8, and body height of
161.2±10.4. The research was done during afternoon session of training, between 5.00 and 8.00
p.m. All participants trained at least 2.5 hours a day 6 times a week, and some of them more
often (twice a day). All of them were informed about the research aim and procedures and signed
informed consent to participate in the experiment. The research was approved by The Senate’s
Research Bioethics Commission at the University School of Physical Education in Wroclaw.

After signing the consent, each participant completed an author’s own questionnaire on spinal
pain, in which they answered the following questions: (1) How often do you complain about
back pain? (never or almost never; rarely; occasionally; often; very often). (2) Which sections of
your back do you find to be the most often painful? (I have no back pain; lumbar spine; thoracic
spine; cervical spine; all regions). (3) What is the most frequent pain intensity on a scale from 0
to 10? (0 - no pain to 10 - unbearable pain). (4) Have you ever had to give up training
because of back pain? (yes, no) (5) Is the spinal pain getting worse? (during
training; immediately after the training session, sometime after the training session; no pain). (6)
If pain occurs, what is its nature? (radiating to the lower limb; radiating to the upper limb, local
without radiation). The answers for the question number 1 helped to divide participants into two
groups. Group 1 (8 players) gave answers: never, almost never or rarely and group 2 (14
players) gave answers: occasionally; often or very often.

Procedures

Body posture assessment in all patients was performed with a device for computer analysis of the
shape of anterior-posterior curvatures of the spine and trunk asymmetry using the
photogrammetric method and a fourth-generation moiré apparatus (CQ Elektronik System,
Wroclaw, Poland) that maps the anteroposterior spine curvature (Porto et al. 2010, Barczyk-
Pawelec, Sipko 2017) (Fig. 2). The moiré technique is based on a type of optical distortion
created by the interference of light waves, as if an image was being refracted. A series of visible
lines are projected on the surface of the back, which at different angles are distorted depending
on the distance of a given anatomical marker from the projector. In effect, this photogrammetric
method mirrors the shape of the back (Fig. 3).

Before the examination, the following points were marked on the body of the participant with a
washable black marker: spinous processes of spine vertebrae from C7 to S1 and thoracic-lumbar
transition, acromions, inferior angles of scapulae and posterior superior iliac spine. All
determinations on the body were made by the same physiotherapist experienced in this type of
examination. Based on the contour of the curvature of the spine, the program automatically
determined the peaks of thoracic kyphosis and lumbar lordosis. Three-dimensional coordinates
of body surface were obtained based on the recorded images of the body trunk of the
participants. The parameters determining the anterior-posterior spinal curvatures, the sagittal
inclination of the trunk, magnitude of asymmetry within the shoulder and pelvic girdles, and
trunk inclination in the frontal plane were calculated.
In the sagittal plane, the following angular parameters of spinal curvatures were evaluated and
analysed (Fig. 3):

- angle of inclination of the lumbosacral spine (α),
- angle of inclination of the thoracolumbar spine (β),
- angle of inclination of the upper part of the thoracic region (γ),
- angle of sagittal inclination of the trunk (KPT). Negative angles indicate the forward
 inclination of the trunk relative to the vertical line.
- angle of thoracic kyphosis (KKP),
- angle of lumbar lordosis (KLL)
- depth of thoracic kyphosis (GKP)
- depth of lumbar lordosis (GLL)

The following body asymmetries were evaluated and analysed in the frontal plane:
(a) Angular parameters (expressed in degrees):
- KNT - angle of trunk inclination,
- KLB - angle of shoulder line inclination,
- KNM - pelvic inclination angle,
- KSM - pelvic rotation angle.

(b) Length and depth parameters (expressed in mm):
- UL - difference in the positions of the inferior angles of scapula,
- OL - difference in the distance of inferior angles of scapula from the spine,
- TT - difference in the height of the waist triangles,
- TS - difference in the width of the waist triangles,
- UK - deviation of spinous processes from the line of the spine.

The magnitude of asymmetry was established on the basis of differences in the placement of osteal points within the trunk. Intervals of these differences were determined for angular and length parameters, distinguishing three levels of asymmetry according to Bibrowicz (Bibrowicz 1995).

For the angle indices (KNT, KLB, KNM, KSM), it was assumed that:
- difference of $0^\circ < x \leq 1.5^\circ$ means no asymmetry,
- difference of $1.5^\circ < x < 3^\circ$ means moderate asymmetry,
- difference of $x \geq 3^\circ$ indicates severe asymmetry.

For linear asymmetry indices (UL, OL, TT, TS, UK), it has been assumed that:
- difference of $0 < x \leq 5$ mm means no asymmetry,
- difference of $5 < x < 10$ mm means moderate asymmetry,
- difference of $x \geq 10$ mm means severe asymmetry.
Body posture was classified on the angular values of the anteroposterior spinal curvatures (compensation index) using the formula \(\mu = \gamma - \alpha \), in which \(\mu \) was defined as three possible body posture types. The first was a kyphotic-type posture (KT), featuring excess thoracic kyphosis compared with lumbar lordosis in which \(\mu > 3 \), \(\gamma + \beta \geq 29^\circ \), and \(\alpha + \beta < 25^\circ \); the second a lordotic type posture (LT) whereby lumbar lordosis exceeded thoracic kyphosis and \(\mu < -3 \), \(\alpha + \beta \geq 25^\circ \), and \(\gamma + \beta < 29^\circ \); and the third was the balanced type (BT) with approximately equal curvatures as defined by \(-3 \leq \mu \leq 3 \) and \(33^\circ < \alpha + \beta + \gamma \) (Zeyland-Malawka 1999; Barczyk-Pawelec, & Sipko. 2017). The shape of curvatures in the sagittal plane was evaluated in the participant in the habitual standing position and in the table tennis ready position after a verbal instruction: "Adopt the ready position!" without giving any additional instructions or guidelines on the quality of the new position. The only thing that the participant could not do was crossing the line determining the distance between the camera and the participant with his or her heels.

First of all, body posture was assessed in a habitual standing position without shoes. The test participant stood in a habitual standing position within the field of vision of the camera at a distance of 2.6 m. The participant's feet were positioned on a line parallel to the measurement stand, spaced at the width of the hips. The knee joints were extended and the body weight was evenly distributed on both lower limbs. The upper limbs were placed freely along the torso, the head was positioned freely, and the eyes were looking ahead. After recording the shape of the upper body in the habitual standing position, the examined person, on the instruction of "Adopt the ready position!", adopted the given position and after 5 seconds, another image of the back was recorded.

Statistics
The parameters obtained from the examinations were subjected to statistical analysis. Descriptive statistical analysis was performed (normality of distribution was tested by means of the Shapiro-Wilk test. Means, standard deviations and confidence intervals for mean CI 95% were calculated for all measured parameters. The significance of differences between habitual and ready positions was tested using the Mann-Whitney U test with the level of statistical significance set at \(p \leq 0.05 \), and d-Cohen's effect was calculated. The U Mann-Whitney test was also used to examine differences between body posture parameters of group 1 and 2. This helped to assess the relation between the parameters of body posture and the frequency of occurrence of pain declared by participants. Statistica 10 package (Statsoft Inc., Tulsa, USA) was used for calculations.

Results

A survey conducted immediately before the examination concerning the incidence of back pain showed that 5 athletes never (or almost never) complained about back pain. Three people complained rarely, 7 - occasionally, 3 - often, and 4 - very often. The thoracic region of the spine was considered to be the most common painful regions of the spine (11 people), followed by the lumbar region (8 people) and cervical region (2 people). 4 people declared no pain symptoms. The most frequent pain intensity indicated by the respondents (on a scale from 0 - no pain to 10 - unbearable pain) was 5 (6 people), followed by 6 (6 people), 4 (2 people) and 7 (2 people). One person reported the intensity of 8, whereas 4 people - the intensity of 0. Eight people declared that due to spinal pain they had to stop training (or competition). In 10 people, the pain increased during training, in 4 - immediately after training and in 3 - some time after the training session. In most of the respondents, pain was local, without radiation (13 people). Four people reported pain radiating to the upper limb.
In the sagittal plane, the free posture of table tennis players was characterized by slightly deepened thoracic kyphosis, especially in the upper part. Based on the compensation index, a kyphotic type (KT) of posture was found. The depth of thoracic kyphosis (GKP) was also higher than that of lumbar lordosis (GLL). In the frontal plane, table tennis players were characterized by significant asymmetry, exceeding 10 mm, within the parameters of the difference in height and width of waist triangles (TT and TS) and the difference in the distance between lower shoulder blade angles and spine (OL). Furthermore, table tennis players also showed asymmetry at the pelvic rotation angle in the transverse plane (KSM). The remaining analysed parameters for angular and linear asymmetries (KNT, KLB, UL, KNM, UK) were at a moderate level (difference of 1.5°-3° in case of angles, difference of 5 - 10 mm in case of linear measure – see Tab. 1).

The change in body position has a significant effect on the angles of anterior-posterior spinal curvatures, the angle of trunk inclination and the depth of thoracic kyphosis and lumbar lordosis (Tab. 1). Significant changes in all three angles of spinal curvatures were observed between the habitual standing position and the ready position. After changing the position from habitual posture to the ready position, the angle of inclination of the upper thoracic and lumbosacral regions increased significantly: their values tripled and the angle of the thoracolumbar region increased more than twice. The value of the angle of trunk inclination (KPT) increased tenfold (p<0.01). Furthermore, as a result of adopting the ready position, significant changes in the depth of both thoracic kyphosis and lumbar lordosis were observed. In these cases, the effect size calculated based on the d-Cohen test was very high (d-Cohen ≥1.0). The change in body position had only a slight effect on the change in the magnitude of asymmetry in body trunk and concerns
mainly pelvic rotation (KSM) and the deviation of the spinous processes (UK). The medium
effect size (d-Cohen ≥0.5) was found in this case.

Test U showed also the difference between group 1 and 2 of participants in the case of years of
experience - group 1: 3.3±1.7 y and group 2 - 9.2±3.9 y, with p<0.01. The significant difference
was also indicated in the case of angle β in habitual position (p=0.03).

Tab. 1. About here

Discussion

The aims of the study were to: evaluate the effect of body position during play on the change in
the shape of anterior-posterior spinal curvatures and trunk asymmetry in table tennis players and
to establish the frequency of occurrence of back pain and its correlation to body posture
parameters as well as the scale of back pain in table tennis players. Few scientific studies have
analysed the parts of the spine that undergo the greatest changes and their direction. This is of
great cognitive importance because table tennis players adopt a specific body position for a long
period of time during many hours of training and during the game. Forced positions, i.e. flexion-
based posture adopted during readiness for play, can lead to overloading of the lumbar spine.

Kyphotic posture, which was found in our study in table tennis players, may cause various
physiological and functional disorders of the player's musculoskeletal system. According to
Nachemson (1987), the greatest pressure on the intervertebral discs in the lumbar region (mainly
on the 3rd lumbar disc) is observed in the standing position with a simultaneous inclination of
the body towards the front, whereas in the habitual standing position, this pressure is almost 2.5
times lower. The results of our study showed a significant increase in the value of the angle of
trunk inclination when table tennis players adopted the ready position. This angle increased more
than tenfold, hence the pressure on intervertebral discs probably increased, mainly in the lower part of the lumbar spine. The lower part of the lumbar spine (L4-S1) is characterized by greater mobility than its upper part, covering 95% of its entire range. On the other hand, in the places of the greatest mobility, with additional loads, there are exceptional possibilities of overloading and the appearance of symptoms of overload disease and pain.

The problem of overload, spinal pain or risk of injury resulting from faulty posture or morphological asymmetry seems to be common, especially in one-sided and monotypic sports. The main factors of various types of injuries in literature most often mentioned are those resulting from many hours of training and overloads and the specificity of the sport i.e. multiple repetitions that overload specific parts of the body (Saragiotto, Di Pierro, & Lopes, 2014).

The results of our survey confirmed that professional table tennis players experienced spinal pain, with nearly 32% of the respondents complaining about frequent and very frequent pain occurring mainly during the game or immediately after training. This frequency of pain occurrence is probably correlated with the value of angle of inclination of the thoracolumbar spine (β). As many as 36% of table tennis players had to stop training because of the pain. Slightly more than half of the respondents estimated the level of pain at the medium level (5-6 on the VAS scale) and 3 persons - at the level of 7-8. This demonstrates that the spine is probably heavily overloaded as a result of many hours of training of this sport, with the majority of the training time based on adopting the position forcing the body to position body trunk at a significant forward inclination, and performing frequent and intensive torsional movements.

Apart from the forced forward-leaning position, professional training in table tennis also forces the player to use only one upper limb while playing. Impact movements are very intense, often with the use of submaximal and maximal force, significantly involving the entire body. In order
for the impact force to be maximal, the player must make a rotational movement, depending on
the playing limb, from the maximum starting and ending ranges, combined with the transfer of
body weight from one lower limb to another, but often with the feet on the ground being locked
in one plane. Such forced repetitive movements put strain on the posterior lateral structures of
the intervertebral discs, which may result in their damage. The results of our study showed that
over 50% of the respondents complained about local pain, which may suggest that the overload
to the perispinal structures is not yet at an advanced stage of the disorder.

The results of studies of other authors confirm the frequent occurrence of spinal pains in groups
of people practicing various sports (rowers, dancers, fencers, gymnasts, athletes, figure skaters
and shooters). They pointed out that this problem was mainly caused by high and substantial
workout volumes (Fett et al. 2017; Trompeter et al. 2019). Furthermore, they suggested that
training should be monitored by experienced coaches to prevent back pain due to technical errors
or too much strain exceeding the training capabilities of young athletes.

The training process in table tennis involves daily routines of many hours of exercise (usually
from 4 to 6 hours per day), which is observed even in young people at the age of 6 years due to
the early specialization. The very young male and female athletes (Harimoto, Ito, Hirano) who
are currently in the world's leading position (e.g. https://gossipgist.com/tomokazu-harimoto) are
claimed to have started intensive training even at an earlier age. The analysis of the results in our
study showed that table tennis players who declared high frequency of occurrence of back pain
(Group 2) has been practicing longer than the others (Group 1). It can be assumed that in table
tennis an increase of time of sport experience is accompanied by frequency of pain occurrence
declared by participants. Taking all the above into account, it can be concluded that the risk of
postural defects, spinal pain syndromes or morphological asymmetry exceeding the norm in table
tennis may be high. It is worth noting that in the examined athletes, substantial asymmetry was found in the position of the scapulae and waist, while in other parameters, this asymmetry was at a moderate level.

An interesting observation also concerns the transverse and frontal planes. The table tennis players studied showed a greater pelvic torsion after adopting the ready position. This may be due to the specific body arrangement in the ready position, where the player positions the lower limbs asymmetrically, with the foot of the limb opposite to the playing upper limb moved forward. At the same time, it may be a signal that this pelvic asymmetry, which in literature is perceived as a consequence of the domination of one side of the body in sporting activities, may become permanent (Bussey, 2010). Significant asymmetry of pelvic rotation angle was also observed in the group of soccer players (Grabara 2012) and handball players (Grabara 2014). It can be presumed that sport-specific training in asymmetrical sports can lead to asymmetry in the position of the body parts, which over time can be fixed in the habitual position.

The study also found an increase in asymmetry within the UK parameter (maximum deflection of spinous process line from the line C7-S1) in the frontal plane, which may indicate asymmetrical, unilateral bending of the spine in the ready position. Maintaining such a position for many hours can be conducive to various types of overload and asymmetrical muscle work.

Therefore, the practical value of this study may be the observation that training programs should incorporate exercises that relieve the spine in the vertical line and exercises that improve symmetry of the work of the upper limbs, body trunk muscles and the pelvis. The results of our research indicated the need to supplement sports training with physiotherapy methods. These methods should reproduce the lordotic flexion of the spine in relief positions and include exercises to strengthen the postural muscles responsible for proper pelvic anterior tilt. Very
important are also exercises which strengthen the muscles of the torso and upper limb of the non-
dominant side and to shape the habit of correct body posture based on the symmetry of the
shoulder and hip girdle. Limitation of our study could be some of errors that may appear during
measurement, reported in the literature (Mrozkowiak, & Strzecha, 2012). Another limitation of
our work is a relatively small number of participants and a fairly large dispersion (variability) of
their age. However, it is not easy to choose a study group consisting of female table tennis
players who practice the sport professionally and with a sufficiently long training period. An
insignificant asymmetry found in the frontal plane of the study participants (only in the case of
the UK and KSM) was also surprising. Our previous research suggested the likelihood of a large
asymmetry associated with practicing table tennis, especially in KLB, (Barczyk, Bańkosz,
Derlich, 2012). Perhaps the participants of the present study are subjected to corrective and
compensatory exercises in the direction that counteracts the asymmetry. The limitation of our
study could be also interpretation of magnitude of asymmetry adopted in the research according
to Bibrowicz (Bibrowicz, 1995) which was originally designated to children

Conclusions

This study demonstrated the dominance of kyphotic body posture in table tennis players., which
can be caused by many hours of using the ready position during playing. After adopting this
ready position, there are significant differences in the angles of anterior and posterior spinal
curvatures compared to the habitual posture. This may be the cause of overloads and pain
complaints reported by the study participants. Adopting the ready position is also associated with
an increase in asymmetry in the position (transverse palnerotation) of the pelvis and spinous
processes (frontal plane). Therefore, training programs should be extended with exercises that
relieve the spine in the vertical line and exercises that improve symmetry of the work of the upper limbs, body trunk muscles and the pelvis. The need to entering compensation and correction programs to a training process confirms frequency of pain occurrence declared by participants which is accompanied by increase of thoracolumbar inclination and time of sport experience

References

Barczyk-Pawelec K, Sipko T. (2017). Active self-correction of spinal posture in pain-free women in response to the command "straighten your back". Women and Health 57(9):1098-1114. doi: 10.1080/03630242.2016.1243605

Bibrowicz, K. (1995). Elementy wczesnej diagnostyki bocznych skrzywień kręgosłupa – asymetria tułowia w płaszczyźnie czołowej. (Elements of early diagnosis of lateral curvatures of the spine - asymmetry of the trunk in the frontal plane, in Polish). Fizjoterapia; 3 (3), 7-15

Bussey, M.D. (2010) Does the demand for asymmetric functional lower body postures in lateral sports relate to structural asymmetry of the pelvis? Journal of Science & Medicine in Sport 13(3), 360 – 364

Drzał-Grabiec, J., & Truszczyńska, A. (2014). Evaluation of selected postural parameters in children who practice kyokushin karate. Biomedical Human Kinetics, 6, 69-73

Grabara, M. (2018) The posture of adolescent male handball players: A two-year study. Journal of Back and Musculoskeletal Rehabilitation 31, 183–189

Grabara M. (2014). A comparison of the posture between young female handball players and non-traing peers. Journal of Back and Musculoskeletal Rehabilitation 27, 2014, 85-92.
Grabara M. (2012). Analysis of body posture between young football players and their untrained peers. Human Movement 2012, vol. 13(2); 120-126.

Grabara, M., & Hadzik, A. (2009). The body posture in young athletes compared to their peers. Polish Journal of Sports Medicine. 25(2): 115-124.

Heneweer H, Vanhees L, Picavet HS. (2009) Physical activity and low back pain: A U-shaped relation? Pain. 2009; 143: 21-25. https://doi.org/10.1016/j.pain.2008.12.033

Hudetz, R. (2005). Tenis stołowy 2000 [Table tennis 2000, in polish]. Modest, Łódź,

Hobbs, S.J., Baxter, J. Broom, L., Rossell, L.A., Sinclair, J., Clayton, H.M. (2014) Posture, flexibility and grip strength in horse riders, Journal of Human Kinetics, 42, 113-125 DOI: 10.2478/hukin-2014-0066 Section II- Exercise Physiology & Sports Medicine

Krzykała, M.; Leszczyński, P.; Grześkowiak, M.; Podgórski, T.; Woźniewicz-Dobrzyńska, M.; Konarska, A.; Strzelczyk, R.; Lewandowski, J.; Konarski, J.M. (2018). Does field hockey increase morphofunctional asymmetry? A pilot study. HOMO - Journal of Comparative Human Biology. Mar2018, Vol. 69 Issue 1/2, p43-49.

Maloney, SJ. (2018). The relationship between asymmetry and athletic performance: A critical review. Journal of Strength and Conditioning Research 33(9): 2579–2593, 2019

Morton, D.P., Callister, R. (2010). Influence of posture and body type on the experience of exercise-related transient abdominal pain. Journal of Science and Medicine in Sports 2010 Sep;13(5):485-8. doi: 10.1016/j.jsams.2009.10.487.

Mrozkowiak, M. & Strzecha M. (2012). Projection moiré as a modern tool for diagnosis of body posture (in Polish, Abstract in English). Antropomotoryka, 60, 33-47

Nachemson AL. Lumbar intradiscal pressure. In: Jayson MIV (ed.) : The lumbar spine and back pain. Churchill-Livingstone, Edinburgh, London, Melbourne, New York 1987
O'Sullivan PB, Grahamslaw KM, Kendell M, Lapenskie SC, Möller NE, Richards KV. The effect of different standing and sitting postures on trunk muscle activity in a pain-free population. Spine 2002 Jun 1;27(11):1238-44.

Porto, F., Gurgel, J., T. Russomano, T., & T. Farinatti, P.DeT.V. 2010. Moiré topography: Characteristics and clinical application. Gait & Posture 32 (3):422–24. doi:10.1016/j.gaitpost.2010.06.017

Radaš, J., Trost Bobič, T (2011). Posture in top-level Croatian rhythmic gymnasts and non-trainees. Kinesiology. 43(1): 64-73

Read, P.J., Oliver, J.L., De Ste Croix, M.B.A., Myer, G.D., Lloyd, R.S. (2017). A prospective investigation to evaluate risk factors for lower extremity injury risk in male youth soccer players. Scandinavian journal of medicine & science in sports. 28(3):1244-1251

Watson, A.W.S. (1995). Sports injuries in footballers related to defects of posture and body mechanics. Journal of Sports Medicine & Physical Fitness Dec 1995: Vol. 35 Issue 4. p. 289-294

Wąsik, J, Motow-Czyż, M., Shan, G, Kluszczynski, M. (2015). Comparative analysis of body posture in child and adolescent taekwon-do practitioners and non-practitioners. Ido Movement for Culture. 15(3). 35-40

Wojtys EM, Ashton-Miller JA, Huston LJ, Moga PJ (2000) The association between athletic training time and the sagittal curvature of the immature spine. American Journal of Sports Medicine. 2000 Jul-Aug;28(4):490-8.

Zeylan-Malawka E (1999). Klasyfikacja i ocena postawy ciała w modyfikacji metody Wolańskiego i Nowojorskiego Testu Klasyfikacyjnego. (Classification and assessment of
body posture in the modification of the Wolański and New York Classification Test methods, in Polish) Fizjoterapia. 4 (4). 52-55

Zeyland-Malawka, E., Prętkiewicz-Abacjew, (2006). Symptoms of asymmetry in the posture of children and young people – a threat to a fully efficient locomotor system and to health. Nowiny Lekarskie, 75(4): 394–398

Żuk, B., Sutkowski, M., Paśko, S., and Grudniewski, T. (2019). Posture correctness of young female soccer players. Sci Rep. 2019; 9: 11179. Published online 2019 Aug 1. doi: 10.1038/s41598-019-47619-1

Figure captions

Fig.1. Ready position
Fig. 2. Scheme of the research station
Fig. 3. Body posture examination using the photogrammetric method in habitual posture (A) and in the ready position (B)
Table 1 (on next page)

Results of examinations in a group of players in the habitual standing position and the ready position: means, standard deviations (SD) and confidence intervals (CI 95%), p-values of the Mann-Whitney U-test and d-Cohen's values

Note: α - angle of inclination of the lumbosacral spine; β- angle of inclination of the thoracolumbar spine; γ - angle of inclination of the upper part of the thoracic region; CI – compensation index; KPT - angle of sagittal inclination of the trunk. KKP - angle of thoracic kyphosis, KLL - angle of lumbar lordosis; GKP - depth of thoracic kyphosis; GLL - depth of lumbar lordosis, KNT - angle of trunk inclination; KLB - angle of shoulder line inclination; KNM - pelvic inclination angle; KSM - pelvic rotation angle; UL - difference in the positions of the inferior angles of scapula; OL- difference in the distance of inferior angles of scapulae from the spine; TT- difference in the height of the waist triangles; TS- difference in the width of the waist triangles; UK - deviation of spinous processes from the line of the spine. Differences are significant when p≤0.05. Effect size is medium when Cohen’s d is 0.5≤0.8 (٭) and large when d&γτ;0.8 (٭٭).
Table 1. Results of examinations in a group of players in the habitual standing position and the ready position: means, standard deviations (SD) and confidence intervals (CI 95%), p-values of the Mann-Whitney U-test and d-Cohen's values

Table tennis players (n=22)	Mean±SD (CI 95%)	p values of the Mann-Whitney U-test	d-Cohen's	
	Habitual position	Ready position		
α[deg]	10.45±5.54(8.00-12.90)	34.70±15.76(27.71-41.68)	<0.01	1.43**
β[deg]	7.43±4.31(5.52-9.34)	20.58±9.18(16.51-24.65)	<0.01	1.35**
γ[deg]	13.92±11.59-16.26)	43.24±7.97(39.71-46.77)	<0.01	1.80**
CI[deg]	3.47±(8.34(-0.22-7.17)	13.73±16.73(6.31-21.14)	0.01	0.73*
KPT[deg]	-2.98±3.87(-4.69- -1.26)	-29.94±12.11(-35.31 -24.57)	<0.01	-1.66**
GKP[deg]	13.63±8.39(9.91-17.35)	-38.98±24.85(-50.00- -27.96)	<0.01	-1.63**
GLL[deg]	-12.33±9.14(-16.39- -8.28)	21.89±15.65(14.95-28.83)	<0.01	1.60**
KNT [deg]	1.50±0.94(1.08-1.91)	2.21±2.06(1.29-3.12)	0.50	0.44
KLB[deg]	1.19±0.88(0.80-1.58)	1.31±1.17(0.79-1.83)	0.99	0.12
UL [mm]	2.27±1.59(1.56-1.59)	1.48±1.14(0.98-1.99)	0.09	-0.55*
OL [mm]	10.85±8.63(7.02-14.68)	9.26±9.65(4.99-13.54)	0.27	-0.17
TT[mm]	11.93±9.05(7.92-15.94)	14.57±10.77(9.79-19.34)	0.49	0.27
TSm[mm]	9.26±8.63(5.43-13.08)	11.65±12.50(6.11-17.19)	0.34	0.22
KNM[deg]	1.51±1.71(0.75-2.27)	1.38±1.27(0.81-1.94)	0.97	-0.09
KSM[deg]	4.21±2.77(2.98-5.44)	10.30±14.30(3.96-16.63)	0.34	0.57*
UK [mm]	4.30±2.64(3.13-5.48)	6.24±3.69(4.61-7.88)	0.06	0.58*

Note: α - angle of inclination of the lumbosacral spine; β- angle of inclination of the thoracolumbar spine; γ - angle of inclination of the upper part of the thoracic region; CI – compensation index; KPT - angle of sagittal inclination of the trunk. KKP - angle of thoracic kyphosis, KLL - angle of lumbar lordosis; GKP - depth of thoracic kyphosis; GLL - depth of lumbar lordosis, KNT - angle of trunk inclination; KLB - angle of shoulder line inclination; KNM - pelvic inclination angle; KSM - pelvic rotation angle; UL - difference in the positions of the inferior angles of scapula; OL- difference in the distance of inferior angles of scapulae from the spine; TT- difference in the height of the waist triangles; TS- difference in the width of the waist triangles;
UK - deviation of spinous processes from the line of the spine. Differences are significant when $p \leq 0.05$. Effect size is medium when Cohen’s d is $0.5 \leq 0.8$ (*) and large when $d > 0.8$ (**).
Figure 1

Ready position
Figure 2

Scheme of the research stand

- Image of the patient's back
- Screen on the patient's body
- Distance 2.6 m
- USB connection
- Laptop with the software
Figure 3

Body posture examination using the photogrammetric method in habitual posture (A) and in the ready position (B)