Functional Analysis of γ-Tubulin Complex Proteins Indicates Specific Lateral Association via Their N-terminal Domains*

Received for publication, June 22, 2016, and in revised form, September 20, 2016 Published, JBC Papers in Press, September 22, 2016, DOI 10.1074/jbc.M116.744862

Dorian Farache‡, Alain Jauneau§, Cécile Chemin‡, Marine Chartrain§1, Marie-Hélène Rémy‡, Andreas Merdes‡2, and Laurence Haren‡3

From the ‡Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France and §Plateforme Imagerie-Microscopie, FR 3450 Pôle de Biotechnologie Végétale, 31326 Castanet-Tolosan, France

Edited by Velia Fowler

Microtubules are nucleated from multiprotein complexes containing γ-tubulin and associated γ-tubulin complex proteins (GCPs). Small complexes (γTuSCs) comprise two molecules of γ-tubulin bound to the C-terminal domains of GCP2 and GCP3. γTuSCs associate laterally into helical structures, providing a structural template for microtubule nucleation. In most eukaryotes γTuSCs associate with additional GCPs (4, 5, and 6) to form the core of the so-called γ-tubulin ring complex (γTuRC). GCPs 2–6 constitute a family of homologous proteins. Previous structural analysis and modeling of GCPs suggest that all family members can potentially integrate into the helical structure. Here we provide experimental evidence for this model. Using chimeric proteins in which the N- and C-terminal domains of different GCPs are swapped, we show that the N-terminal domains define the functional identity of GCPs, whereas the C-terminal domains are exchangeable. FLIM-FRET experiments indicate that GCP4 and GCP5 associate laterally into helical structures, and their interaction is mediated by their N-terminal domains as previously shown for γTuSCs. Our results suggest that all GCPs are incorporated into the helix via lateral interactions between their N-terminal domains, whereas the C-terminal domains mediate longitudinal interactions with γ-tubulin. Moreover, we show that binding to γ-tubulin is not essential for integrating into the helical complex.

In all eukaryotes, microtubules are nucleated from specialized multiprotein complexes containing γ-tubulin and associated proteins (1–3). These complexes resemble small rings by electron microscopy and are thus called γ-tubulin ring complexes (γTuRCs) (4–7). Closer inspection revealed that these γTuRCs are helices of one turn, with the two ends overlapping. They are ubiquitous and essential for viability: the growth of new microtubules is crucial to drive mitotic spindle formation and cell division.

γTuRCs are mainly composed of γ-tubulin and of proteins of the GCP (γ-tubulin complex protein) family. GCPs are characterized by sequence homology in two specific regions, also referred to as the grip1 and grip2 motifs (8). Five members of this family are known: GCPs 2, 3, 4, 5, and 6. GCPs 2 and 3 associate with γ-tubulin to form a V-shaped subcomplex, called γ-tubulin small complex (γTuSC). GCPs 2 and 3 constitute the arms of the V, interacting laterally via their N-terminal domains (Fig. 1, A and B). The C-terminal domains are located at the two tips of the V, each binding one molecule of γ-tubulin (9). In the budding yeast Saccharomyces cerevisiae, γTuSCs are directly recruited to the spindle pole body (yeast centrosome equivalent) by the protein Spc110. Oligomers of Spc110 interact with the basis of the V-shaped γTuSCs and stabilize their lateral association (10–13). Likely, seven γTuSCs assemble stepwise into a helix of one turn plus a small overlap (14). In this helical array, the γ-tubulin molecules are exposed to form a platform from which α/β-tubulin dimers assemble into protofilaments. The structure of these helical complexes predefines the geometry of the microtubule, with a diameter of 25 nm and with 13 γ-tubulin molecules per turn. S. cerevisiae represents the simplest model organism for microtubule nucleation, building γ-tubulin complexes from γTuSCs in the absence of GCPs 4, 5, and 6. In most other eukaryotes, however, GCPs 4, 5, and 6 are an integral part of γTuRCs, albeit only one or very few copies of each protein are associated with each ring (7, 8, 15–19). In human cells, preformed, inactive γTuRCs are in a soluble pool in the cytoplasm from which they are recruited to nucleation centers followed by their activation. Depletion of GCPs 4, 5 or 6 prevents the formation of stable, full-sized γTuRCs and prevents the targeting of γ-tubulin to the centrosome and to spindle microtubules (20–22). This causes errors in centriole duplication and spindle assembly, often inducing monopolar spindles (21). These phenotypes resemble defects from impaired recruitment or function of γ-tubulin (23–25).

The role of GCPs 4, 5, and 6 in γTuRC assembly is not well understood. Original observations by electron microscopy suggested that they could form a scaffolding cap at the base of the γTuSC helix (6, 7, 26). More recent structural data have challenged this model. Resolution of the atomic structure of GCP4
has revealed a remarkable conservation with the structures of GCP2 and GCP3 of *S. cerevisiae*. Cryo-EM reconstructions of γTuSC helices and *in silico* modeling has shown that the atomic structure of GCP4 can be fitted into the helical wall in the place of GCPs 2 or 3 (11, 27, 28). In addition, biochemical experiments showed that GCP4 interacts with γ-tubulin via its C-terminal domain, as previously shown for GCP2 and GCP3 (9, 10, 27). *Drosophila* GCPs 5 and 6 were also found to bind γ-tubulin (29). These results led to the prediction that GCPs 4, 5, and 6 integrate into γTuRCs in an equivalent manner to GCPs 2 and 3. In this model, all GCPs would interact laterally via their N-terminal domains. Longitudinal interactions would bind γ-tubulin molecules to the C-terminal domains of each GCP (1). To test this idea experimentally, we have compared the function of the N- and C-terminal domains of GCPs 4, 5, and 6 to the equivalent domains of GCPs 2 and 3, and we have performed FLIM-FRET analysis to determine the mode of interaction between GCPs 4 and 5. We have found that the N-terminal domains define the identity of the GCP, driving lateral interactions similar to the interactions found in γTuSCs. This is the first experimental approach supporting that GCPs 4, 5, and 6 are part of the helical wall of the γTuRC.

Results

The Particular Role of Each GCP Is Specified by Its N-terminal Domain—The atomic structure of GCP4 shows that the protein contains two independent domains corresponding to the N-terminal and C-terminal halves (Fig. 1A). All GCP proteins possess structural similarities in their N- and C-terminal domains, highlighted in dark blue and red in Fig. 1B (27). Nevertheless, depletion of any individual GCP from cells reduces the amount of γTuRCs and leads to mitotic defects, suggesting that the various GCPs are not functionally redundant (19–21).

To investigate potential functional differences between the protein domains of individual GCPs, we developed an assay involving RNA silencing of specific GCPs and rescuing function by the expression of siRNA-resistant chimeric proteins. Our experimental setup involved stable transfection of GCP constructs into HeLa cells, taking advantage of the Flip-in T-Rex experimental setup involved stable transfection of GCP constructs into HeLa cells, taking advantage of the Flip-in T-Rex system that allows site-specific integration and inducible expression of the transgenes. To validate the system, we first verified that expression of WT GCP4 was able to rescue the depletion of the endogenous protein. We transfected an siRNA targeting GCP4 with induction of a siRNA-resistant construct at levels similar to the endogenous protein (Fig. 1C). Under these conditions, we measured the amount of soluble γTuRCs and their recruitment to spindles in mitosis using γ-tubulin as a marker (Fig. 1, D–F). In sucrose gradients, the percentage of γ-tubulin sedimenting as γTuRCs was quantified relative to total γ-tubulin levels (because the siRNA treatments delayed cell growth, total amounts of proteins varied depending on the condition) (Fig. 1, D and E). Depletion of GCP4 drastically reduced the amount of γTuRCs, whereas concomitant induction of the siRNA-resistant GCP4 restored the full-sized complexes. Depletion also reduced the recruitment of γ-tubulin to mitotic centrosomes and to spindles microtubules, which was rescued by siRNA-resistant GCP4 (Fig. 1F).

In a second step cells expressing chimeric proteins were analyzed. In these proteins, the N-terminal or the C-terminal domain of GCP4 was replaced by the corresponding domain of another GCP, i.e. 2, 3, 5, or 6 (Fig. 2). The atomic structure of GCP4 shows that the two domains are connected at a central “hinge,” located between helices α11 and α12 (Fig. 1, A and B). The location of the hinge in different GCPs was determined by multiple sequence alignments (Fig. 1B) and was chosen as a site of recombination for the construction of chimeras. Sucrose gradient analysis showed that all chimeras carrying the N-terminal domain of GCP4 were able to rescue γTuRC formation after depletion of the endogenous GCP4 irrespective of the origin of the C-terminal domain to which they were fused (Fig. 2A). In contrast, chimeras with the C-terminal domain of GCP4 fused to the N-terminal domain of any other GCP failed to rescue γTuRC formation after depletion of GCP4 (Fig. 2B). In general, the chimeras were able to rescue only if they carried the N-terminal domain identical to the depleted endogenous GCP (Fig. 2, A and B). Quantification of γ-tubulin levels showed that rescue-competent chimeras restored nearly fully the original amounts of γTuRCs (Fig. 2C). They also rescued the recruitment of γ-tubulin in mitosis (Fig. 3A). The results are summarized in Fig. 3B. Occasionally, chimeras were expressed at very low levels, leading to ambiguous answers (marked with ? in Fig. 3B; expression levels are presented in Fig. 4). In particular, insufficient expression might explain why the chimera carrying the N-terminal domain of GCP3 does not rescue the depletion of GCP3. Alternatively, GCP3 might behave differently from the other GCPs and require its own C-terminal domain to function. Successful rescue also diminished the amount of aberrant, monopolar spindles (Fig. 3C), suggesting that not only the structure but also the function of γTuRCs was restored. The results show that the N-terminal domains define the functional identity of the different GCPs, whereas the C-terminal domains are exchangeable.

GCP4 and GCP5 Are Associated Laterally via Their N-terminal Domains—Whereas lateral interaction between the N-terminal domains of GCP2 and GCP3 has been shown previously (9, 10, 30), experimental evidence is missing on how GCPs 4, 5, and 6 bind to the remainder of the γTuRC. Modeling of the GCP4 structure into reconstructions of γTuSCs from cryo-electron microscopy has strongly suggested that GCP4 is capable of interacting laterally with other GCPs, equivalent to GCPs 2 and 3. However, this has never been verified by any biochemical or biophysical experiments. To determine whether GCP4 is involved in lateral interactions, we performed FLIM-FRET analysis. Co-immunoprecipitation experiments in *Schizosaccharomyces pombe* have suggested that GCP4 and GCP5 can bind to each other independently of γTuSCs (17). We co-expressed GCP4 and GCP5 tagged with GFP and mCherry and looked for energy transfer between the fluorescent proteins incorporated into γTuRCs at centrosomes. If the two proteins interact, the transfer of energy from the donor (GFP) to the acceptor (mCherry) decreases the fluorescence lifetime of the donor. The relative difference of lifetime is a measure of FRET efficiency and depends on the distance between the donor and the acceptor. Initial attempts of expressing fluorescent GCPs in cell lines yielded centrosomal fluorescence that was too weak.
γ-Tubulin Complex Proteins and γ-TuRC Assembly

for measuring fluorescence lifetimes. To circumvent this problem, we used a previously established cell line stably overexpressing ninein-like protein (Nlp) (31). Increased amounts of Nlp form large centrosomal assemblies in interphase that enrich γTuRCs and thereby boost microtubule nucleation. We verified by immunofluorescence that these assemblies recruit all different endogenous GCPs (Fig. 5A). Moreover, depletion of GCP4 or GCP5 blocked the recruitment of the other GCPs to these centrosomal assemblies, indicating that GCPs are incorporated only in the form of γTuRCs (Fig. 5B and data not shown).
Our approach was designed to monitor FRET only between adjacent proteins within γTuRCs. Using the fitting models of GCP4 structure into the γTuSC helix, we predicted the distances between the extremities of the GCPs (11, 28). Because of the V-shape of γTuSCs, the N termini of adjacent GCP4 molecules were found in close contact (<2.5 nm), but the C termini were separated by an average of 6 nm. The distances between non-adjacent C termini exceeded 11 nm. As energy transfer is only possible if the distance between the fluorophores is below 10 nm, fluorescent tags positioned C-terminally should restrict FRET to direct neighbors. Modeling also predicted that the C termini extend outside the helix, away from the lateral surfaces of the GCPs, suggesting that the addition of the fluorescent proteins should not interfere with protein-protein interactions.

FIGURE 2. Chimeric GCPs rescue γTuRC assembly only if they carry the N-terminal domain corresponding to the depleted GCP. Shown is sucrose gradient fractionation of extracts from stable cell lines expressing the chimeras after depletion of the GCPs corresponding to the N- or the C-terminal domain of the chimera. A, chimeras composed of the N-terminal domain of GCP4 fused to the C-terminal domains of GCP 2, 3, 5, or 6 (respectively, N42C, N43C, N45C, and N46C). B, chimeras composed of the C-terminal domain of GCP4 fused to the N-terminal domains of GCP 2, 3, 5, or 6 (respectively, N24C, N34C, N54C, and N64C). γTuRC sedimentation is visualized using a γ-tubulin antibody. C, percentage of γ-tubulin in fraction 7 of the gels shown in A and B; values of siRNA-treated cells, with induction of the chimeras, are shown relative to control cells.
and should not inhibit the assembly of the complex. Indeed, the tagged GCPs were recruited to the centrosomal Nlp assemblies, and their presence did not alter microtubule nucleation, indicating that they were functional (Fig. 5C).

We first used GCP2 and GCP3 as controls. We fused GFP to the C terminus of GCP3 and mCherry to the C termini of GCP2 and GCP3. Centrosomal assemblies containing GCP3-GFP displayed an average lifetime of 2.414 ns. When co-expressed with GCP2-mCherry, the lifetime decreased to 1.981 ns, but only to 2.293 ns with GCP3-mCherry (Table 1, Fig. 5, D–F). This corresponds to FRET efficiencies of 18% for the GCP3/GCP2 pair and 5% for the GCP3/GCP3 pair. For comparison, the use of free mCherry as an acceptor led to 3.7% of FRET efficiency (Table 1). Only values \(\geq 7\% \) are considered significant (see “Experimental Procedures” for details). These results are consistent with the existing model of \(\gamma \)-TuSC helices, with GCP3 in direct contact with GCP2 but with distances between GCP3 C termini exceeding the radius for efficient FRET (Fig. 5E).

Using GCP4-GFP paired with GCP5-mCherry or GCP5-GFP paired with GCP4-mCherry, we obtained FRET efficiencies between 8 and 9% (Table 1, Fig. 6, A and B). In contrast, pairing GCP4-GFP with GCP4-mCherry or GCP5-GFP with GCP5-mCherry led to \(<3\%\) of FRET efficiency (Table 1, Fig. 6C). These values are consistent with a close and specific proximity of the C termini of GCP4 and GCP5. Note that FRET is more efficient with the GCP2/GCP3 pair than with the GCP4/GCP5 pair, because GCP3-GFP has the potential to transfer energy simultaneously to two molecules of GCP2-mCherry in the helix, which potentiates the energy transfer (Fig. 5E). GCP4 can only have one GCP5 neighbor because there is only one copy of GCP5 per complex (16, 19). To verify that the interaction revealed by FRET is direct as expected, we performed cross-linking experiments \textit{in vitro} on purified \(\gamma \)-TuRC. Despite the large size and low abundance of the complex, we were able to reveal by Western blot a cross-linked product containing both proteins at the size of the heterodimer (Fig. 6D). This confirms that GCP4 and GCP5 are direct neighbors within the complex.

We then used GCP4 and GCP5 fluorescently tagged at their N termini. Again, we measured significant FRET (9.5–12%), in contrast to pairs of one protein tagged at its C terminus and the

Interaction of GCP4 with \(\gamma \)-Tubulin Is Not Necessary for Incorporation into the \(\gamma \)TuRC—Our results show that the C-terminal domains of the GCPs are exchangeable, suggesting that they perform the same function, i.e. binding to \(\gamma \)-tubulin. We wanted to address the significance of the GCP/\(\gamma \)-tubulin interaction in \(\gamma \)TuRC assembly. For this, we mutated the \(\gamma \)-tubulin binding region of GCP4 and evaluated its function in \(\gamma \)TuRC assembly and recruitment along spindles. Based on the models of the GCP4 structure fitted into the reconstruction of \(\gamma \)TuSC helices, we predicted the regions of GCP4 involved in the interaction with \(\gamma \)-tubulin (27, 28, 32). Helices \(\alpha 16 \) and \(\alpha 20 \) of the C-terminal domain of GCP4 were found at the protein interface with \(\gamma \)-tubulin (Fig. 8A). We mutated both helices and evaluated the binding of the mutants to \(\gamma \)-tubulin in vitro by isolating stable complexes of FLAG-tagged \(\gamma \)-tubulin and V5-tagged GCP4 on anti-FLAG affinity beads. Multiple mutations in helix \(\alpha 16 \) inhibited binding of GCP4 to \(\gamma \)-tubulin, whereas mutating helix \(\alpha 20 \) showed no effect (Fig. 8, A and B).

Refining the mutations revealed that mutating residue Phe-522 of \(\alpha 16 \) to Arg reduced the binding and that adding the F626R mutation in \(\alpha 20 \) was fully inhibitory (Fig. 8, A and B).

We tested the ability of the double mutant F522R/F626R to complement the depletion of the endogenous GCP4. A stable cell line expressing the siRNA-resistant GCP4 F522R/F626R still assembled \(\gamma \)TuRCs after siRNA treatment, as shown after sucrose gradient sedimentation, and \(\gamma \)-tubulin was still recruited to the mitotic spindle (Fig. 8, C–E, upper panels). In contrast, deletion of the whole C-terminal domain of GCP4 was unable to rescue (Fig. 8, C–E, lower panels). We observed that GCP4 was present in low density fractions of the sucrose gradients, independent of \(\gamma \)TuRCs (Fig. 8F). Immunoprecipitation of GCP4 from these fractions indicated a specific interaction with \(\gamma \)-tubulin (Fig. 8G). When WT GCP4 was replaced by the double mutant F522R/F626R, the interaction was lost (Fig. 8H), confirming that the F522R/F626R mutations inhibited the binding of GCP4 to \(\gamma \)-tubulin not only in vitro but also in cells where \(\gamma \)TuRC assembly is rescued. Moreover, the lateral association with GCP5 was not altered, as controlled by FLIM-FRET (Table 1). These results indicate that the C-terminal domain of GCP4 is needed for incorporation into the \(\gamma \)TuRC, but not the interaction with \(\gamma \)-tubulin.

Discussion

In this work we provide the first experimental evidence supporting the prediction that all GCPs assemble into the helical wall of the \(\gamma \)-TuRC. Using chimeric proteins formed by the N-terminal domain of one GCP fused to the C-terminal domain of another GCP, we show that the N-terminal domains determine the identity of the GCPs. Moreover, our FLIM-FRET experiments indicate that GCP4 and GCP5 establish \(\gamma \)TuSC-like lateral interactions within the complex. Previous studies in \(S. \) pombe have suggested an interaction between GCP4 and GCP5, independent of the presence of GCP2 and GCP3 (17), and our cross-linking results confirm a direct association of GCP4 and GCP5 within \(\gamma \)TuRCs. Using chimeric proteins with the N- or C-terminal domains of GCP4 and 5 swapped, we show that the N-terminal domains carry the specificity of the interaction. Altogether, our results suggest that the N-terminal
domains of all GCPs are mediating specific lateral interactions. Thereby, they define the direct neighbors and position the GCPs within the γTuRC helix.

In addition to the conserved sequences, including the grip1 motif, the N-terminal domains carry specific insertions of various sizes depending on the GCP, i.e. internal insertions or N-terminal extensions (27). These insertions may equally contribute to the function of individual GCPs as they have been implied in specific interactions with regulatory or structural proteins. For instance, GCP6 carries a large internal insertion phosphorylated by Plk4 (21) and containing a domain of interaction with keratins (33), whereas the N-terminal extension of GCP3 interacts with the recruitment protein MOZART1 (34, 35).

The N-terminal domains can be fused to C-terminal domains of other GCPs without affecting their function and specificity. This was shown for the N-terminal domains of GCPs 2, 4, 5, and 6 but remains uncertain for GCP3. The poor induction of GCP3 chimera did not allow us to test unambiguously whether it rescues the depletion of the endogenous GCP3. Either the expression level was insufficient for rescuing, or the C-terminal domain of GCP3 was irreplaceable. One difference between GCP3 and the other GCPs is the flexibility of the GCP3 hinge linking the N- and C-terminal domains. This flexibility is needed to close the γTuRC in a conformation compatible with the geometry of the microtubule, increasing its nucleation capacity (11). In the chimera composed of the N-terminal domain of GCP3 and the C-terminal domain of GCP4, the flexibility or the positioning of the C-terminal domain might be altered and impact the assembly of the complex. The observation that the C-terminal domains of all other GCPs can be switched fits with the structural data, which predict an interaction with γ-tubulin via the conserved grip2 motif (27, 32, 36). They could thus be exchangeable if the GCPs were all binding similarly to γ-tubulin. Surprisingly, we have found that a mutant of GCP4 lacking affinity to γ-tubulin was still able to incorporate into γTuRCs and to rescue their assembly. Thus binding to γ-tubulin might not be essential for all GCPs, and low copy number GCPs might participate in γTuRC assembly even if they do not carry their own copy of γ-tubulin.

The precise stoichiometry of GCPs 4, 5, and 6 within γTuRCs remains unclear. Co-immunoprecipitation of endogenous γ-tubulin

FIGURE 5. Specific energy transfer between adjacent GCPs within γTuRCs at centrosomal Nlp assemblies. A, localization of γ-tubulin and GCPs in U2OS cells overexpressing Nlp (left panel, no induction of Nlp overexpression). B, localization of GCP2 in cells overexpressing the Nlp protein with or without treatment with GCP4 siRNA. C, microtubule regrowth assay on cells overexpressing the Nlp protein with or without expression of GCP2-mCherry. The graph shows the quantification of the number of microtubules after regrowth (35 cells scored per condition; error bars, mean ± S.D.). D, localization of GCP3-GFP (green) and GCP2-mCherry (red) in cells overexpressing Nlp. E, GFP lifetime distribution of GCP3-GFP with or without co-expression of GCP2-mCherry. F, GFP lifetime distribution of GCP3-GFP with or without co-expression of GCP3-mCherry. Histograms show the percentage of centrosomes according to the lifetime classes. Schemes on the right indicate the percentage of FRET efficiency.
TABLE 1

Donor	Acceptor	\(n^a\)	S.E.	\(\Delta n^b\)	\(\%\)	\(p\) value^c
GCP3-GFP	NA	2.414	0.006	121	3.7	2.5 \(\times\) 10⁻⁸
	mCherry	2.325	0.019	89	3.7	2.5 \(\times\) 10⁻⁷
GCP2-mc	1.981	0.026	433	60	17.9	2.4 \(\times\) 10⁻⁵
GCP3-mc	NA	2.293	0.011	121	5.0	1.4 \(\times\) 10⁻¹⁹
	GCP4-mc	2.391	0.008	53	2.2	2.5 \(\times\) 10⁻⁷
GCP5-mc	2.251	0.013	193	88	7.9	3.6 \(\times\) 10⁻³
GCP6-mc	2.347	0.010	97	90	4.0	3.6 \(\times\) 10⁻²
GCP4-mc	NA	2.425	0.008	136		
GCP4-mc	2.213	0.015	211	80	8.7	9.6 \(\times\) 10⁻²⁹
GCP5-mc	2.369	0.018	55	50	2.3	2.0 \(\times\) 10⁻³
GCP6-mc	2.345	0.018	80	57	3.3	1.0 \(\times\) 10⁻⁵
GCP5-mc	NA	2.436	0.007	152		
GCP4-mc	2.432	0.014	13	60	0.6	1.6 \(\times\) 10⁻¹
GCP5-mc	2.353	0.008	83	60	3.4	1.6 \(\times\) 10⁻¹
GCP6-mc	2.354	0.012	82	44	3.4	1.7 \(\times\) 10⁻⁷
GFP-GCP4	NA	2.402	0.009	60	0.5	3.4 \(\times\) 10⁻¹
	GCP3-mc	2.390	0.008	12	60	0.5
GFP-GCP5	NA	2.409	0.022	70	57	3.3 \(\times\) 10⁻⁷
	GCP4-mc	2.326	0.022	83	43	3.5
GFP-GCP4	NA	2.499	0.008	60	60	3.6
	m-G-CGP4	2.408	0.009	91	60	3.6
GFP-GCP5	NA	2.626	0.009	237	60	9.5
	GCP5-mc	2.460	0.009	60		
	m-G-CGP4	2.162	0.018	298	60	12.1
N45C-GFP	NA	2.438	0.010	72	60	2.9
	GCP4-mc	2.377	0.009	96	60	3.9
N54C-GFP	NA	2.258	0.012	215	90	8.7
	GCP4-mc	2.261	0.014	195	60	7.9
GCP4(F522R-F626R)-GFP	NA	2.412	0.010	44	60	1.8
	GCP5-mc	2.407	0.008	60		
	GCP5-mc	2.169	0.019	238	60	9.9

^a Mean lifetime (in ns).
^b \(\Delta n\) = \(n_{\text{Donor}} - n_{\text{Acceptor}}\) (in ps).
^c Total number of measured centromeres.
^d Percentage of FRET efficiency: \(E = 1 - (\tau_{\text{Donor}}/\tau_{\text{Sample}})\).

[*]p value of the difference between the donor lifetimes in the presence and absence of acceptor (Student’s t test).

The GCP4 or GCP5 with tagged forms suggested that more than one copy of GCP4 but only one of GCP5 is present per complex (16). Estimation from gels of purified γTuRCs also suggests an average of 2.5 copies of GCP4, one copy of GCP5 and <1 copy of GCP6 (although GCP6 is essential for γTuRC assembly, this result is still to be confirmed; 19). Because of their low stoichiometry and because they are all essential, we think that GCP 4, 5, and 6 are positioned at specific locations, critical for the formation or stability of the helix. Our limited analysis revealed that the positions of GCP4 and GCP5 were not random and that the two proteins were adjacent within γTuRCs. Experiments in fungi suggest that GCP 4, 5, and 6 might form a subcomplex within γTuRCs (17, 37, 38). We failed to detect an interaction with GCP6 by FLIM-FRET using C-terminally tagged GCP 4, 5, and 6 (see Table 1), suggesting that GCP6 is not laterally associated with GCP4 or GCP5. Alternatively, the wide insertion present in the middle of GCP6 might position its C terminus away from the neighboring protein, preventing FRET. We propose that GCP 4, 5, and 6 position together at the ends of the helix, which would allow them either to initiate or terminate the self-assembly of γTuSCs and/or to stabilize the structure by bridging the two ends. Although several models can be proposed, we favor a model in agreement with our FLIM-FRET results in which GCP4 and -5 interact laterally at one end of the helix and GCP6 is located at the other end. In this configuration, a longitudinal interaction between GCP6 and GCP4/5 might close and stabilize the complex (Fig. 9). Finding the precise positions of GCP 4, 5, and 6 will be essential to understand their contribution to the function of γTuRCs.

Experimental Procedures

Plasmid Constructs—Human GCPs 2, 3, 4, 5, and 6 cDNAs were cloned into pClaus/FRT/TO (Invitrogen) using high fidelity PCR with oligonucleotides with tailored restriction sites: GCP2 and GCP3 (39), GCP4 (15), GCP5 (image clone 5297149), and GCP6 (21). Five silent point mutations within the siRNA targeting sequence of the GCPs cDNAs were introduced by PCR to generate resistance. For FLIM-FRET analysis, the sequences of AcGFP and mCherry were added at the 5’ or 3’ end of the GCPs cDNAs by PCR with a linker of six residues (AcGFP/mCherry-AGGGGG-GCP or GCP-GGGGGA-AcGFP/mCherry). Mutations within the C-terminal domain of GCP4 were introduced into the pET26B-GCP4-V5 (27) by PCR. The chimeric constructs were generated by introducing a Nhel restriction site at the junction of the N-terminal and C-terminal domains of the GCPs by PCR and by swapping the domains using the sites flanking the constructs in pClaus/FRT/TO. For the GCP3 chimera, the domains were also swapped using the Gibson kit (NEB) without introduction of the Nhel restriction site.
Cell Culture and Generation of Stable Cell Lines—HeLa Flp-in T-Rex (a gift from S. Taylor, University of Manchester, UK), U2OS T-Rex Myc Nlp (from E. Nigg, University of Basel, Switzerland), and HeLa S3 γ-tubulin-Myc-TAP (from J. Lüders, IRB Barcelona, Spain) were grown at 37 °C in a 5% CO₂ atmosphere in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (31, 40). HeLa Flp-in T-Rex were cultured with Zeocin (100 μg/ml) and blasticidin (5 μg/ml). The pCDNA5/FRT/TO vectors containing the GCPs cDNAs were co-transfected with the Flp recombinase encoding plasmid pOG44 (Invitrogen) using CaCl₂. Hygromycin B-resistant clones (200 μg/ml) were picked and expanded to obtain clonal cell lines. Transgene expression was induced using 1 μg/ml doxycycline. Two independent clones with levels of expression similar to endogenous levels (except for the N64C chimera that was strongly overexpressed) were systematically chosen and analyzed. The results were similar between clones. U2OS T-Rex Myc Nlp were cultured with Zeocin (100 μg/ml) and hygromycin B (50 μg/ml). Nlp overexpression was induced using 1 μg/ml doxycycline. HeLa S3 γ-tubulin-Myc-TAP were cultured with 400 μg/ml Geneticin.

RNAi and Transfections—For RNAi, the following sequences were used as targets: GCP2 (5'-GGCUUGACUUCAAG-GUUU-3'), GCP3 (5'-CGAUUAUCAUGUUGAGGA-3'), GCP4 (5'-GCUGCUUCAUGUUGAGGA-3'), GCP5 (5'-CGUAUAUGCUUCAAGA-3'), GCP6 (5'-GAUGAGACU-CACACUGGC-3'). Double-stranded siRNA oligomers (Ambion) were transfected using Lipofectamine RNAi max (Invitrogen). Cells were seeded the day before transfection at 600,000 cells in 100-mm Ø dishes (for sucrose gradient experiments) or at 100,000 cells in 6-well dishes on coverslips (for immunofluorescence). 10 nM siRNAs were transfected according to the manufacturer’s protocol, and the medium was replaced with or without 1 μg/ml doxycycline after 5 or 24 h. Cells were harvested or fixed 72 h post-transfection. For FRET experiments, 800 ng of plasmid DNA were transfected using Lipofectamine 2000 (Invitrogen) into cells seeded in 24-well dishes on coverslips. Medium was changed after overnight incubation, with 1 μg/ml doxycycline. After 7 h of induction, cells were fixed for 15 min in 4% paraformaldehyde and mounted in Vectashield.

Sucrose Gradients—Cells were trypsinized, rinsed with PBS, and resuspended in gradient buffer (50 mM HEPES, pH 7.4, 100 mM KCl, 1 mM EGTA, 1 mM MgCl₂, 1 mM GTP, 1 mM DTT) with 1% Nonidet P-40 and complete protease inhibitor mix (Roche Applied Science). After 10 min centrifugation at 16,000 × g, soluble extracts were fractionated on gradients of 5–40% sucrose in gradient buffer, in a SW55-Ti Rotor (Beckman Coulter) at 50,000 rpm for 4.5 h. Fractions were precipitated in methanol and resuspended in gel loading buffer containing SDS. Proteins were detected by Western blot using the Odyssey imaging system (Li-cor Biosciences), with IRDye 800CW- and 680CW-conjugated secondary antibodies (Invitrogen). γ-Tubulin levels were quantified using the Odyssey 2.1 software: the Odyssey fluorescence system provides a linear relationship between signal intensity and antigen loading. Band intensities were measured with background subtraction, and the values were normalized relative to the total γ-tubulin.

FIGURE 6. GCP4 and GCP5 interact directly within γTuRCs. A, localization of GCP4-GFP (green) and GCP5-mCherry (red) in cells overexpressing Nlp. B, GFP lifetime distribution of GCP4-GFP with or without co-expression of GCP5-mCherry. C, GFP lifetime distribution of GCP4-GFP with or without co-expression of GCP4-mCherry. D, Western blot analysis of GCP4 and GCP5 after cross-linking of purified γTuRCs in vitro. At low concentration of cross-linker, a specific band containing GCP4 (76 kDa) and GCP5 (118 kDa) appears at the size of GCP6 (used here as a marker of 200 kDa), corresponding to the size of the heterodimer. An additional band containing GCP4 was also observed around 130 kDa (*).
amount, corresponding to the sum of the intensities of all the fractions. For immunoprecipitation, gradient fractions were incubated with anti-GCP4 FL antibody for 2 h at 4°C and with protein A magnetic beads (Dynal) for an additional 2 h. The beads were washed twice in gradient buffer, and samples were eluted in gel loading buffer.

Cross-linking Experiments—γTuRCs were purified from a HeLa S3 cell line expressing γ-tubulin-Myc-TAP as described in Teixidó-Travesa et al. (40). Purified complexes were cross-linked with 0.5 mM DSS (disuccinimidyl suberate) for 7 min at 20°C. The cross-linking was stopped by adding 50 mM Tris, pH 8, for 15 min at 4°C. Cross-linked complexes were analyzed by Western blot after denaturing SDS-PAGE.

FLAG Pulldown Assay—FLAG-γ-tubulin and GCP4-V5 (WT and mutants) were transcribed and translated together in a coupled reticulocyte lysate system, according to the manufac-

FIGURE 7. GCP4-GCP5 associate laterally via their N-terminal domains. A, GFP lifetime distribution of GFP-GCP4 with or without co-expression of mCherry-GCP5. B, GFP lifetime distribution of GFP-GCP4 with or without co-expression of GCP5-mCherry. C, GFP lifetime distribution of N45C-GFP with or without GCP5-mCherry. D, GFP lifetime distribution of N45C-GFP with or without GCP4-mCherry. E, GFP lifetime distribution of N54C-GFP with or without GCP4-mCherry. F, GFP lifetime distribution of N54C-GFP with or without GCP5-mCherry.
The sample was then incubated with 10 μl of anti-FLAG M2 agarose beads (Sigma) for 2 h at 4 °C and then washed 3 times with 30 μl of HEPES buffer (50 mM HEPES, pH 7.4, 150 mM NaCl, 1 mM EGTA, and 2 mM MgCl₂). The bound proteins were eluted by increasing buffer stringency: HEPES 500 (HEPES buffer with 500 mM NaCl), Nonidet P-40 (HEPES buffer supplemented with 1% Igepal CA-630 (Sigma)), radioimmune precipitation.
γ-Tubulin Complex Proteins and γ-TuRC Assembly

For all the quantifications, error bars correspond to confidence interval calculated for a probability of 95% (1.96 × S.E.).

Fluorescence Lifetime—For FLIM, the light source was a mode-locked Ti:sapphire laser (Tsunami, model 3941, Spectra-Physics) pumped by a 10-watt diode laser (Millennia Pro, Spectra-Physics) and delivering ultrafast femtosecond pulses of light with a fundamental frequency of 80 MHz. A pulse picker (model 3980, Spectra-Physics) was used to reduce the repetition rate to 2 MHz to satisfy the requirements of the triggering unit (working at 2 MHz) and to avoid exposition of the specimen to unwanted excitation pulses. All the experiments were carried out at λ = 850 nm, the optimal wavelength to excite GFP in multiphoton mode (12). All images were acquired with a 60× lens (Plan Apo, 1.4 NA, IR) mounted on an inverted microscope (Eclipse TE2000E, Nikon, Japan) coupled to the FLIM system. In this setup the femtosecond-pulsed laser light is scanned into the left camera port of the microscope via a dichroic mirror (λ < 750 nm). The fluorescence emission is directed back into the detection unit through the same camera port and selected by a band pass filter (520/25 nm). Briefly, the FLIM unit is composed of two galvo mirrors, scanning along the x and y axes, a relay lens, and a streak camera (Streakscope C4334, Hamamatsu Photonics, Japan) coupled to a fast and high sensitivity CCD camera (model C8800-53C, Hamamatsu). Fluorescence decays were recorded during a time interval of 20 ns. A 4 × 4 binning was used to reduce the acquisition time. The MCP-PMT gain and the exposure time of the CCD were adjusted to avoid overexposure of the CCD. For each image, average fluorescence decay profiles were calculated, and the lifetimes were estimated by fitting these data with a mono- or bi-exponential function using the Levenberg-Marquart non-linear least squares estimation procedure. FRET efficiency was calculated by $E = 1 - (\tau_{DA}/\tau_{DA})$, with τ_{DA} and τ_0 the mean lifetime of the donor in the presence or absence of the acceptor, respectively. Statistical comparisons were performed by Student’s t test. The relation between the FRET efficiency and the distance r between the donor and the acceptor is given by equation $E = 1/(r/R_0)^n$, with R_0 the Förster distance to obtain 50% of FRET. Based on the Förster theory, if the distance r is $>1.5R_0$, no energy transfer occurs. Taking into account the GFP-mCherry couple of donor and acceptor, we obtained a value close to 7%, meaning that FRET is considered significant only above this value.

Miscellaneous—Molecular graphics were performed with the UCSF Chimera package. Chimera is developed by the Resource

FIGURE 8. The C-terminal domain of GCP4, but not the interaction with γ-tubulin, is necessary to rescue γ TuRC assembly. A, ribbon view of GCP4 and representation of the GCP4/γ-tubulin interface modeled by fitting the GCP4 atomic structure into the S. cerevisiae γTuSC helix. Mutated residues within helices α16 are colored in light blue and within α20 are in dark blue. Phe-522 and Phe-626 are colored in orange. B, pulldown (PD) assays using γ-tubulin–FLAG as bait with GCP4 mutants (α16 mut: A511Q, N518R, A521E, F522W, D525R, N526F, Y529R, Y530A; α20 mut: A608W, A609R, S612E, S619W, S623Y). Shown are Western blot analysis of expression of the F522R/F626R mutant and of γ-tubulin. C, Western blot analysis of expression of the F522R/F626R and 1–349 truncated GCP4 siR mutants in HeLa cells with or without depletion of the endogenous protein and induction of the mutant.

FIGURE 9. Model of positioning of GCP4, 5, and 6 within γTuRCs. GCP4s 4, 5, and 6 are part of the γTuRC helix, with GCP4 and GCP5 interacting laterally. We propose that they are located at the overlapping ends of the helix, allowing them to initiate or terminate the assembly of the complex. As we have not detected a proximity between the C termini of GCP4/5 and GCP6, we propose that GCP4/5 position at one end of the helix, whereas GCP6 positions at the other end. GCP6 might interact longitudinally with GCP4/5 and bridge the ends of the helix, to stabilize its structure.

Table:

Antibodies	Sources	
anti-α-tubulin, mouse (Sigma)		
anti-γ-tubulin, mouse TU-30 (Exbio) or rabbit R75 (41)		
anti-GCP2, rabbit (23)		
anti-GCP3, mouse C3 (Santa Cruz)		
anti-GCP4, rabbit (15)		
anti-GCP5, rabbit H300 or mouse E1 (Santa Cruz)		
anti-GCP6, rabbit (Abcam)		
anti-MYC, mouse (Sigma)		

Blots:

1. Western blot of γ-tubulin complex proteins and γ-TuRC assembly.
2. Western blot showing GST pull-down of γ-TuRCs.
3. Western blot analysis of expression of the F522R/F626R mutant and of γ-tubulin.
4. Western blot analysis of expression of the F522R/F626R and 1–349 truncated GCP4 siR mutants in HeLa cells with or without depletion of the endogenous protein and induction of the mutant.

Supplementary Information:

1. Introduction to the γ-TuRC assembly model.
2. Methods for fluorescence lifetime measurement.
3. Results and discussion on the γ-TuRC assembly model.
4. Conclusion and future perspectives on the γ-TuRC assembly.

References:

1. Tsunami, Spectra-Physics
2. Fluorescence microscopy setup and image acquisition.
3. GCP4 atomic structure modeling.
4. Data analysis for FRET efficiency and distance calculation.
5. Statistical analysis of FRET efficiency and distance.
6. Conclusion and future perspectives on the γ-TuRC assembly model.

Acknowledgments:

The authors acknowledge funding from the National Institutes of Health and the American Society for Biochemistry and Molecular Biology (ASBMB). The UCSF Chimera package is developed by the Resource
γ-Tubulin Complex Proteins and γ-TuRC Assembly

for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIGMS, National Institutes of Health Grant P41-GM103311). PDB structures used were 3RIP for GCP4 atomic structure and 5FLZ for the interface between GCP4 and γ-tubulin.

Author Contributions—A. M. and L. H. conceived and coordinated the study and wrote the paper. L. H. designed, performed, and analyzed the rescue experiments shown in Figs. 1 and 7. D. F. designed, performed, and analyzed the experiments shown in Figs. 2–6. A. J. carried out the FLIM-FRET measurements and analysis. C. C. helped with immunoprecipitation.

Acknowledgments—We thank S. Jackson, E. Nigg and J. Lüders for providing cell lines, I. Hoffmann and T. Stearns for cDNAs of GCPs, L. Emorine, V. Guillet, L. Mourey, and S. Tournier for helpful discussions, and Ismaila Li for technical help.

References

1. Kollman, J. M., Merdes, A., Mourey, L., and Agard, D. A. (2011) Microtubule nucleation by γ-tubulin complexes. *Nat. Rev. Mol. Cell Biol.* **12**, 709–721

2. Teixidó-Travesa, N., Roig, J., and Lüders, J. (2012) The where, when, and how of microtubule nucleation: one ring to rule them all. *J. Cell Sci.* **125**, 4445–4456

3. Remy, M. H., Moritz, M., and Gregory-Pauron, L. (2013) Assembly of γ-tubulin ring complexes: implications for cell biology and disease. *Prog. Mol. Biol. Transl. Sci.* **117**, 511–530

4. Zheng, Y., Wong, M. L., Alberts, B., and Mitchison, T. (1995) Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. *Nature* **378**, 578–583

5. Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B., and Agard, D. A. (1995) Microtubule nucleation by γ-tubulin-containing rings at the centrosome. *Nature* **378**, 638–640

6. Moritz, M., Braunfeld, M. B., Guénebaut, Y., Heuser, J., and Agard, D. A. (2000) Structure of the γ-tubulin ring complex: a template for microtubule nucleation. *Nat. Cell Biol.* **2**, 365–370

7. Oegema, K., Wiese, C., Martin, O. C., Milligan, R., A., Iwamatsu, A., Mitchison, T. J., and Zheng, Y. (1999) Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. *J. Cell Biol.* **144**, 721–733

8. Gunawardane, R. N., Martin, O. C., Cao, K., Zhang, L., Dej, K., Iwamatsu, A., and Zheng, Y. (2000) Characterization and reconstitution of Drosophila γ-tubulin ring complex subunits. *J. Cell Biol.* **151**, 1513–1524

9. Kollman, J. M., Zelter, A., Muller, E. G., Fox, B., Rice, L. M., Davis, T. N., and Agard, D. A. (2008) The structure of the γ-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation. *Mol. Biol. Cell* **19**, 207–215

10. Kollman, J. M., Polka, J. K., Zelter, A., Davis, T. N., and Agard, D. A. (2010) Microtubule nucleating γ-TuSC assemblies structures with 13-fold microtubule-like symmetry. *Nature* **466**, 879–882

11. Kollman, J. M., Greenberg, C. H., Li, S., Moritz, M., Zelter, A., Fong, K. K., Fernandez, J.-J., Sali, A., Kilmartin, J., Davis, T. N., and Agard, D. A. (2015) Ring closure activates yeast γ-TuRC for species-specific microtubule nucleation. *Nat. Struct. Mol. Biol.* **22**, 132–137

12. Lin, T. C., Neuner, A., Schlosser, Y. T., Scharf, A. N., Weber, L., and Schiebel, E. (2014) Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation. *Elife* **3**, e02208

13. Lyon, A. S., Morin, G., Moritz, M., Yabut, K. C., Vojnar, T., Zelter, A., Muller, E., Davis, T. N., and Agard, D. A. (2016) Higher-order oligomerization of Spc110p drives γ-tubulin ring complex assembly. *Mol. Biol. Cell* **27**, 2245–2258

14. Erlemann, S., Neuner, A., Gombos, L., Gibeaux, R., Antony, C., and Schiebel, E. (2012) An extended γ-tubulin ring functions as a stable platform in microtubule nucleation. *J. Cell Biol.* **197**, 59–74

15. Fava, F., Raynaud-Messina, B., Leung-Tack, J., Mazzolini, L., Li, M., Guilleminot, J.-C., Cachat, D., Tollon, Y., Ferrara, P., and Wright, M. (1999) Human 76p: a new member of the γ-tubulin-associated protein family. *J. Cell Biol.* **147**, 857–868

16. Murphy, S. M., Preble, A. M., Patel, U. K., O’Connell, K. L., Dias, D. P., Moritz, M., Agard, D., Stults, J. T., and Stearns, T. (2001) GCP5 and GCP6: two new members of the human γ-tubulin complex. *Mol. Biol. Cell* **12**, 3340–3352

17. Anders, A., Lourenço, P. C., and Sawin, K. E. (2006) Noncore components of the fission yeast γ-tubulin complex. *Mol. Biol. Cell* **17**, 5075–5093

18. Vérölet, C., Colombié, N., Daubon, T., Bourbon, H. M., Wright, M., and Raynaud-Messina, B. (2006) Drosophila melanogaster γ-TuRC is dispensable for targeting γ-tubulin to the centrosome and microtubule nucleation. *J. Cell Biol.* **172**, 517–528

19. Choi, Y. K., Liu, P., Sze, S. K., Dai, C., and Qi, R. Z. (2010) CDC5RAP2 stimulates microtubule nucleation by the γ-tubulin ring complex. *J. Cell Biol.* **191**, 1089–1095

20. Iwamatsu, A., and Zheng, Y. (2003) Characterization and reconstitution of γ-tubulin small complex: a template for microtubule nucleation. *Biochem. Biophys. Res. Commun.* **303–310

21. Kollman, J., Zelter, A., Johnson, R., MacCoss, M. J., Hoffmann, I., Li, M., Muller, E., Davis, T. N., and Agard, D. A. (2012) Structure of the γ-tubulin ring complex: a template for microtubule nucleation. *J. Cell Biol.* **151**, 915–919

22. Greenberg, C. H., Kollman, J., Zelter, A., Johnson, R., MacCoss, M., Davis, T. N., and Agard, D. A. (2012) Structure of γ-tubulin small complex based on a cryo-EM map, chemical cross-links, and a remotely related structure. *J. Cell Biol.* **194**, 303–310

23. Gunawardane, R. N., Martin, O. C., and Zheng, Y. (2003) Characterization of a new γTuRC subunit with WD repeats. *Mol. Biol. Cell* **14**, 1017–1026

24. Chien, T., Liu, P., Shioda, S., Pagel, J., Goto, H., Yoshioka, H., Okada, Y., Hayakawa, I., Hayashi, Y., Kogosi, H., Usui, T., and Schiebel, E. (2015) The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle. *Nat. Commun.* **6**, 8722

25. Zhang, L., Keating, T. J., Wild, A., Borisy, G. G., and Zheng, Y. (2000) The role of Xgrip210 in γ-tubulin ring complex assembly and centrosome recruitment. *J. Cell Biol.* **151**, 1525–1536

26. Guillet, V., Knibiehler, M., Gregory-Pauron, L., Remy, M.-H., Chemin, C., Lessmann, B., Meirelles, F., Agard, D. A., Mourey, L. (2011) Crystal structure of γ-tubulin complex protein GCP4 provides insight into microtubule nucleation. *Nat. Struct. Mol. Biol.* **18**, 915–919

27. Greenberg, C. H., Kollman, J., Zelter, A., Johnson, R., MacCoss, M. I., Davis, T. N., Agard, D. A., and Sali, A. (2016) Structure of γ-tubulin small complex based on a cryo-EM map, chemical cross-links, and a remotely related structure. *J. Cell Biol.* **194**, 303–310

28. Casenghi, M., Meraldi, P., Weinhart, U., Duncan, P. I., Körner, R., and Zheng, Y. (2003) Polo-like kinase 1 regulates Nlp, a centrosome protein that is involved in microtubule nucleation. *J. Biol. Chem.* **278**, 571–574

29. Cala, O., Remy, M. H., Guillet, V., Merdes, A., Mourey, L., Milon, A., and Czaplicki, G. (2013) Virtual and biophysical screening targeting the γ-tu-
Oriolo, A. S., Wald, F. A., Canessa, G., and Salas, P. J. (2007) GCP6 binds to intermediate filaments: a novel function of keratins in the organization of microtubules in epithelial cells. *Mol. Biol. Cell* **18**, 781–794

34. Janski, N., Masoud, K., Batzenschlager, M., Herzog, E., Evrard, J.-L., Houlné, G., Bourge, M., Chabouté, M.-E., and Schmit, A. C. (2012) The GCP3-interacting proteins gip1 and gip2 are required for γ-tubulin complex protein localization, spindle integrity, and chromosomal stability. *Plant Cell* **24**, 781–794

35. Dhani, D. K., Goult, B. T., George, G. M., Rogerson, D. T., Bitton, D. A., Miller, C. J., Schwabe, J. W., and Tanaka, K. (2013) Mzt1/Tam4, a fission yeast MOZART1 homologue, is an essential component of the γ-tubulin complex and directly interacts with GCP3(Alp6). *Mol. Biol. Cell* **24**, 3337–3349

36. Suri, C., Joshi, H. C., and Naik, P. K. (2015) Molecular modeling reveals binding interface of γ-tubulin with GCP4 and interactions with noscapinoids. *Proteins* **83**, 827–8243

37. Xiong, Y., and Oakley, B. R. (2009) In vivo analysis of the functions of γ-tubulin-complex proteins. *J. Cell Sci.* **122**, 4218–4227

38. Masuda, H., and Toda, T. (2016) Synergistic role of fission yeast Alp16GCP6 and Mzt1MOZART1 in γ-tubulin complex recruitment to mitotic spindle pole bodies and spindle assembly. *Mol. Biol. Cell* **27**, 1753–1763

39. Murphy, S. M., Urbani, L., and Stearns, T. (1998) The mammalian γ-tubulin complex contains homologues of the yeast spindle pole body components spc97p and spc98p. *J. Cell Biol.* **141**, 663–674

40. Teixidó-Travesa, N., Villén, J., Lacasa, C., Bertran, M. T., Archinti, M., Gygi, S. P., Caelles, C., Roig, J., and Lüders, J. (2010) The γTuRC revisited: a comparative analysis of interphase and mitotic human γTuRC redefines the set of core components and identifies the novel subunit GCP8. *Mol. Biol. Cell* **21**, 3963–3972

41. Julian, M., Tollon, Y., Lajoie-Mazenc, I., Moisand, A., Mazarguil, H., Puget, A., and Wright, M. (1993) γ-Tubulin participates in the formation of the midbody during cytokinesis in mammalian cells. *J. Cell Sci.* **105**, 145–156