ON THE THIRD-ORDER JACOBSTHAL AND THIRD-ORDER JACOBSTHAL-LUCAS SEQUENCES AND THEIR MATRIX REPRESENTATIONS

GAMALIEL CERDA-MORALES

Abstract. In this paper, we first give new generalizations for third-order Jacobsthal \(\{J_n^{(3)}\}_{n \in \mathbb{N}} \) and third-order Jacobsthal-Lucas \(\{j_n^{(3)}\}_{n \in \mathbb{N}} \) sequences for Jacobsthal and Jacobsthal-Lucas numbers. Considering these sequences, we define the matrix sequences which have elements of \(\{J_n^{(3)}\}_{n \in \mathbb{N}} \) and \(\{j_n^{(3)}\}_{n \in \mathbb{N}} \). Then we investigate their properties.

2010 Mathematics Subject Classification. 11B37, 11B39, 15A15.

Keywords and phrases. Third-order Jacobsthal number, third-order Jacobsthal-Lucas number, matrix representation, matrix methods, generalized Jacobsthal number.

1. Introduction

The Jacobsthal numbers have many interesting properties and applications in many fields of science (see, e.g., [1]). The Jacobsthal numbers \(J_n \) are defined by the recurrence relation

\[
J_0 = 0, \quad J_1 = 1, \quad J_{n+1} = J_n + 2J_{n-1}, \quad n \geq 1.
\]

Another important sequence is the Jacobsthal-Lucas sequence. This sequence is defined by the recurrence relation \(j_0 = 2, \ j_1 = 1, \ j_{n+1} = j_n + 2j_{n-1}, \ n \geq 1. \) (see, [2]).

In [3] the Jacobsthal recurrence relation (1.1) is extended to higher order recurrence relations and the basic list of identities provided by A. F. Horadam [1] is expanded and extended to several identities for some of the higher order cases. In particular, third order Jacobsthal numbers, \(\{J_n^{(3)}\}_{n \geq 0} \), and third order Jacobsthal-Lucas numbers, \(\{j_n^{(3)}\}_{n \geq 0} \), are defined by

\[
J_n^{(3)} = J_{n+3}^{(3)} + 2J_{n+1}^{(3)} + 3J_n^{(3)} + \begin{cases} \ -2 & \text{if} \ n \equiv 1 \pmod{3} \ \\
1 & \text{if} \ n \not\equiv 1 \pmod{3} \end{cases},
\]

and

\[
j_n^{(3)} = j_{n+3}^{(3)} + j_{n+1}^{(3)} + 2j_n^{(3)} + \begin{cases} \ -2 & \text{if} \ n \equiv 1 \pmod{3} \ \\
1 & \text{if} \ n \not\equiv 1 \pmod{3} \end{cases},
\]

respectively.

The following properties given for third order Jacobsthal numbers and third order Jacobsthal-Lucas numbers play important roles in this paper (see [2, 3, 6]).

\[
3J_n^{(3)} + j_n^{(3)} = 2^{n+1},
\]

\[
j_n^{(3)} - 3J_n^{(3)} = 2j_{n-3}^{(3)},
\]

and

\[
J_{n+2}^{(3)} - 4J_n^{(3)} = \begin{cases} \ -2 & \text{if} \ n \equiv 1 \pmod{3} \ \\
1 & \text{if} \ n \not\equiv 1 \pmod{3} \end{cases}.
\]
\begin{align}
\tag{1.7} j_n^{(3)} - 4J_n^{(3)} &= \begin{cases}
2 & \text{if } n \equiv 0 \pmod{3} \\
-3 & \text{if } n \equiv 1 \pmod{3} \\
1 & \text{if } n \equiv 2 \pmod{3}
\end{cases}, \\
\tag{1.8} j_{n+1}^{(3)} + J_n^{(3)} &= 3J_{n+2}^{(3)}, \\
\tag{1.9} j_n^{(3)} - J_n^{(3)} &= \begin{cases}
1 & \text{if } n \equiv 0 \pmod{3} \\
-1 & \text{if } n \equiv 1 \pmod{3} \\
0 & \text{if } n \equiv 2 \pmod{3}
\end{cases}, \\
\tag{1.10} \left(J_n^{(3)} - 3\right)^2 + 3J_n^{(3)}J_n^{(3)} &= 4^n, \\
\tag{1.11} \sum_{k=0}^n j_k^{(3)} &= \begin{cases}
J_{n+1}^{(3)} & \text{if } n \equiv 0 \pmod{3} \\
J_{n+1}^{(3)} - 1 & \text{if } n \equiv 0 \pmod{3}
\end{cases}, \\
\tag{1.12} \left(j_n^{(3)} - 3\right)^2 - 9 \left(j_n^{(3)} - 3\right)^2 &= 2^{n+2}j_{n-3}^{(3)}.
\end{align}

Using standard techniques for solving recurrence relations, the auxiliary equation, and its roots are given by
\begin{align}
\tag{1.13} x^3 - x^2 - x - 2 &= 0; \quad x = 2, \quad \text{and } x = \frac{-1 \pm i\sqrt{3}}{2}.
\end{align}

Note that the latter two are the complex conjugate cube roots of unity. Call them \(\omega_1\) and \(\omega_2\), respectively. Thus the Binet formulas can be written as
\begin{align}
\tag{1.14} J_n^{(3)} &= \frac{2}{7}2^n - \frac{3 + 2i\sqrt{3}}{21}\omega_1^n - \frac{3 - 2i\sqrt{3}}{21}\omega_2^n = \frac{1}{7} \left(2^{n+1} - V_n^{(3)}\right), \\
\tag{1.15} j_n^{(3)} &= \frac{8}{7}2^n + \frac{3 + 2i\sqrt{3}}{7}\omega_1^n + \frac{3 - 2i\sqrt{3}}{7}\omega_2^n = \frac{1}{7} \left(2^{n+3} + 3V_n^{(3)}\right),
\end{align}
respectively. Here, the sequence \(\{V_n^{(3)}\}_{n \geq 0}\) is defined by
\begin{align}
\tag{1.16} V_n^{(3)} &= \begin{cases}
2 & \text{if } n \equiv 0 \pmod{3} \\
-3 & \text{if } n \equiv 1 \pmod{3} \\
1 & \text{if } n \equiv 2 \pmod{3}
\end{cases}.
\end{align}

In [4, 5], the authors defined a new matrix generalization of the Fibonacci and Lucas numbers, and using essentially a matrix approach they showed properties of these matrix sequences. The main motivation of this article is to study the matrix sequences of third-order Jacobsthal sequence and third-order Jacobsthal sequence.

2. The third-order Jacobsthal, third-order Jacobsthal-Lucas sequences and their matrix sequences

Now, considering these sequences, we define the matrix sequences which have elements of third-order Jacobsthal and third-order Jacobsthal-Lucas sequences.

\textbf{Definition 2.1.} Let \(n \geq 0\). The third-order Jacobsthal matrix sequence \(\{JM_n^{(3)}\}_{n \in \mathbb{N}}\) and third-order Jacobsthal-Lucas matrix sequence \(\{jM_n^{(3)}\}_{n \in \mathbb{N}}\) are defined respectively by
\begin{align}
\tag{2.15} JM_{n+3}^{(3)} &= JM_{n+2}^{(3)} + JM_{n+1}^{(3)} + 2JM_n^{(3)}, \\
\tag{2.16} jM_{n+3}^{(3)} &= jM_{n+2}^{(3)} + jM_{n+1}^{(3)} + 2jM_n^{(3)},
\end{align}
Theorem 2.2. For $n \geq 0$, we have

\[
M_{J,n}^{(3)} = \left(\frac{M_{j,2}^{(3)} + M_{j,1}^{(3)} + M_{j,0}^{(3)}}{(2 - \omega_1)(2 - \omega_2)} \right) 2^n - \left(\frac{M_{j,2}^{(3)} - (2 + \omega_2)M_{j,1}^{(3)} + 2\omega_2 M_{j,0}^{(3)}}{(2 - \omega_1)(\omega_1 - \omega_2)} \right) \omega_1^n
\]

\[
+ \left(\frac{M_{j,2}^{(3)} - (2 + \omega_1)M_{j,1}^{(3)} + 2\omega_1 M_{j,0}^{(3)}}{(2 - \omega_2)(\omega_1 - \omega_2)} \right) \omega_2^n.
\]

(2.17)

(2.18)

Proof. (2.17): The solution of Eq. (2.15) is

\[
M_{J,n}^{(3)} = c_1 2^n + c_2 \omega_1^n + c_3 \omega_2^n.
\]

Then, let $M_{J,0}^{(3)} = c_1 + c_2 + c_3$, $M_{J,1}^{(3)} = 2c_1 + c_2 \omega_1 + c_3 \omega_2$ and $M_{J,2}^{(3)} = 4c_1 + c_2 \omega_1^2 + c_3 \omega_2^2$. Therefore, we have $(2 - \omega_1)(2 - \omega_2)c_1 = M_{J,2}^{(3)} - (\omega_1 + \omega_2)M_{J,1}^{(3)} + \omega_1 \omega_2 M_{J,0}^{(3)}$,

$(2 - \omega_1)(\omega_1 - \omega_2)c_2 = M_{J,2}^{(3)} - (2 + \omega_2)M_{J,1}^{(3)} + 2\omega_2 M_{J,0}^{(3)}$, $(2 - \omega_2)(\omega_1 - \omega_2)c_3 = M_{J,2}^{(3)} - (2 + \omega_1)M_{J,1}^{(3)} + 2\omega_1 M_{J,0}^{(3)}$. Using c_1, c_2 and c_3 in Eq. (2.19), we obtain

\[
M_{J,n}^{(3)} = \left(\frac{M_{J,2}^{(3)} + M_{J,1}^{(3)} + M_{J,0}^{(3)}}{(2 - \omega_1)(2 - \omega_2)} \right) 2^n - \left(\frac{M_{J,2}^{(3)} - (2 + \omega_2)M_{J,1}^{(3)} + 2\omega_2 M_{J,0}^{(3)}}{(2 - \omega_1)(\omega_1 - \omega_2)} \right) \omega_1^n
\]

\[
+ \left(\frac{M_{J,2}^{(3)} - (2 + \omega_1)M_{J,1}^{(3)} + 2\omega_1 M_{J,0}^{(3)}}{(2 - \omega_2)(\omega_1 - \omega_2)} \right) \omega_2^n.
\]

(2.18)

(2.19)

The proof is similar to the proof of (2.17). □

The following theorem gives us the n-th general term of the sequence given in (2.15) and (2.16).

Theorem 2.3. For $n \geq 3$, we have

\[
M_{J,n}^{(3)} = \begin{bmatrix}
J_{n+1}^{(3)} & J_{n}^{(3)} + 2J_{n-1}^{(3)} & 2J_{n}^{(3)} \\
J_{n}^{(3)} & J_{n}^{(3)} + 2J_{n-1}^{(3)} & 2J_{n-1}^{(3)} \\
J_{n-1}^{(3)} & J_{n-2}^{(3)} + 2J_{n-3}^{(3)} & 2J_{n-2}^{(3)}
\end{bmatrix}
\]

(2.20)
Theorem 2.4. □

Also holds for \(n = 0 \) in (1.2). We have

Proof. (2.20): Let use the principle of mathematical induction on \(n \). For equality in (2.20) holds for all \(n \). By iterating this procedure and considering induction steps, let us assume that the equality in (2.20) holds for all \(n = k \in \mathbb{N} \). To finish the proof, we have to show that (2.20) also holds for \(n = k + 1 \) by considering (1.2) and (2.15). Therefore we get

\[
M_{j,k+2}^{(3)} = M_{j,k+1}^{(3)} + M_{j,k}^{(3)} + 2M_{j,k-1}^{(3)}
\]

By iterating this procedure and considering induction steps, let us assume that the equality in (2.20) holds for all \(n = k \in \mathbb{N} \). To finish the proof, we have to show that (2.20) also holds for \(n = k + 1 \) by considering (1.2) and (2.15). Therefore we get

\[
M_{j,k+2}^{(3)} = M_{j,k+1}^{(3)} + M_{j,k}^{(3)} + 2M_{j,k-1}^{(3)}
\]

Hence we obtain the result. If a similar argument is applied to (2.21), the proof is clearly seen. □

Theorem 2.4. Assume that \(x \neq 0 \). We obtain,

(2.22) \[
\sum_{k=0}^{n} \frac{M_{j,k}^{(3)}}{x^k} = \frac{1}{x^n \nu(x)} \left\{ \begin{array}{ll}
2M_{j,n}^{(3)} + \left(M_{j,n+2}^{(3)} - M_{j,n+1}^{(3)} \right) x + M_{j,n+1}^{(3)} x^2 \\
-M_{j,2}^{(3)} - M_{j,1}^{(3)} - M_{j,0}^{(3)} - \left(M_{j,0}^{(3)} - M_{j,1}^{(3)} \right) x + M_{j,0}^{(3)} x^2
\end{array} \right\},
\]

(2.23) \[
\sum_{k=0}^{n} \frac{M_{j,k}^{(3)}}{x^k} = \frac{1}{x^n \nu(x)} \left\{ \begin{array}{ll}
2M_{j,n}^{(3)} + \left(M_{j,n+2}^{(3)} - M_{j,n+1}^{(3)} \right) x + M_{j,n+1}^{(3)} x^2 \\
-M_{j,2}^{(3)} - M_{j,1}^{(3)} - M_{j,0}^{(3)} - \left(M_{j,0}^{(3)} - M_{j,1}^{(3)} \right) x + M_{j,0}^{(3)} x^2
\end{array} \right\},
\]

where \(\nu(x) = x^3 - x^2 - x - 2 \).

Proof. In contrast, here we will just prove (2.23) since the proof of (2.22) can be done in a similar way. From Theorem 2.2 we have

\[
\sum_{k=0}^{n} \frac{M_{j,k}^{(3)}}{x^k} = \left(\frac{M_{j,2}^{(3)} + M_{j,1}^{(3)} + M_{j,0}^{(3)}}{(2 - \omega_1)(2 - \omega_2)} \right) \sum_{k=0}^{n} \left(\frac{2}{x} \right)^k
\]

\[
- \left(\frac{M_{j,2}^{(3)} - (2 + \omega_2)M_{j,1}^{(3)} + 2\omega_2 M_{j,0}^{(3)}}{(2 - \omega_1)(\omega_1 - \omega_2)} \right) \sum_{k=0}^{n} \left(\frac{\omega_1}{x} \right)^k
\]

\[
+ \left(\frac{M_{j,2}^{(3)} - (2 + \omega_1)M_{j,1}^{(3)} + 2\omega_1 M_{j,0}^{(3)}}{(2 - \omega_2)(\omega_1 - \omega_2)} \right) \sum_{k=0}^{n} \left(\frac{\omega_2}{x} \right)^k.
\]
By considering the definition of a geometric sequence, we get

\[
\sum_{k=0}^{n} M_{j,k}^{(3)} = \frac{M_{j,2}^{(3)} + M_{j,1}^{(3)} + M_{j,0}^{(3)}}{(2 - \omega_1)(2 - \omega_2)} x^{n+1} - x^{n+1} \frac{2n+1}{x^n(2 - x)} = \left(\frac{M_{j,2}^{(3)} - (2 + \omega_2)M_{j,1}^{(3)} + 2\omega_2 M_{j,0}^{(3)}}{(2 - \omega_1)(\omega_1 - \omega_2)} \right) \frac{\omega_1^{n+1} - x^{n+1}}{x^n(\omega_1 - x)} + \left(\frac{M_{j,2}^{(3)} - (2 + \omega_1)M_{j,1}^{(3)} + 2\omega_1 M_{j,0}^{(3)}}{(2 - \omega_2)(\omega_1 - \omega_2)} \right) \frac{\omega_2^{n+1} - x^{n+1}}{x^n(\omega_2 - x)}
\]

\[
= \frac{1}{x^n \nu(x)} \begin{cases}
\frac{(M_{j,2}^{(3)} - (2 + \omega_2)M_{j,1}^{(3)} + 2\omega_2 M_{j,0}^{(3)})}{(2 - \omega_1)(\omega_1 - \omega_2)} (2n+1 - x^{n+1})(\omega_1 - x)(\omega_2 - x) \\
\frac{(M_{j,2}^{(3)} - (2 + \omega_1)M_{j,1}^{(3)} + 2\omega_1 M_{j,0}^{(3)})}{(2 - \omega_2)(\omega_1 - \omega_2)} (2n+1 - x^{n+1})(2 - x)(\omega_1 - x) \\
+ \frac{(M_{j,2}^{(3)} - (2 + \omega_1)M_{j,1}^{(3)} + 2\omega_1 M_{j,0}^{(3)})}{(2 - \omega_2)(\omega_1 - \omega_2)} (2n+1 - x^{n+1})(2 - x)(\omega_2 - x)
\end{cases},
\]

where \(\nu(x) = x^3 - x^2 - x - 2 \). If we rearrange the last equality, then we obtain

\[
\sum_{k=0}^{n} M_{j,k}^{(3)} = \frac{1}{x^n \nu(x)} \begin{cases}
2M_{j,2}^{(3)} + \left(M_{j,n+2}^{(3)} - M_{j,n+1}^{(3)} \right) x + M_{j,0}^{(3)} - M_{j,1}^{(3)} - M_{j,0}^{(3)} x + M_{j,0}^{(3)} x^2
\end{cases}.
\]

So, the proof is completed.

In the following theorem, we give the sum of third-order Jacobsthal and third-order Jacobsthal-Lucas matrix sequences corresponding to different indices.

Theorem 2.5. For \(r \geq m \), we have

(2.24)

\[
\sum_{k=0}^{n} M_{j,mk+r}^{(3)} = \frac{1}{\sigma_n} \begin{cases}
M_{j,(m(n+1)+r)}^{(3)} - M_{j,r}^{(3)} + 2M_{j,(mn+r)}^{(3)} - 2M_{j,(r+m)}^{(3)} \\\n- M_{j,(m(n+1)+r)} M_{j,mn+r}^{(3)} + M_{j,(m+1)r}^{(3)} m + M_{j,(m+2)r}^{(3)} - M_{j,rm}^{(3)}
\end{cases}
\]

(2.25)

\[
\sum_{k=0}^{n} M_{j,mk+r}^{(3)} = \frac{1}{\sigma_n} \begin{cases}
M_{j,(m(n+1)+r)}^{(3)} - M_{j,r}^{(3)} - 2M_{j,(mn+r)}^{(3)} + 2M_{j,(r+m)}^{(3)} \\\n- M_{j,(m(n+1)+r)} M_{j,mn+r}^{(3)} + M_{j,(m+1)r}^{(3)} m + M_{j,(m+2)r}^{(3)} - M_{j,rm}^{(3)}
\end{cases},
\]

where \(\sigma_n = 2n+1 + (1 - 2m)(\omega_1^m + \omega_2^m) - 2 \) and \(m(\mu) = 2^n + \omega_1^m + \omega_2^m \).

Proof. (2.24): Let us take \(A = \frac{M_{j,2}^{(3)} + M_{j,1}^{(3)} + M_{j,0}^{(3)}}{(2 - \omega_1)(2 - \omega_2)} \), \(B = \frac{M_{j,2}^{(3)} - (2 + \omega_1)M_{j,1}^{(3)} + 2\omega_1 M_{j,0}^{(3)}}{(2 - \omega_2)(\omega_1 - \omega_2)} \) and \(C = \frac{M_{j,2}^{(3)} - (2 + \omega_2)M_{j,1}^{(3)} + 2\omega_2 M_{j,0}^{(3)}}{(2 - \omega_1)(\omega_1 - \omega_2)} \). Then, we write

\[
\sum_{k=0}^{n} M_{j,mk+r}^{(3)} = \sum_{k=0}^{n} (A2^m + B_1^{m+1} + C_2^{m+1})
\]

\[
= A2^r \sum_{k=0}^{n} 2^m - B_1^{m+1} \sum_{k=0}^{n} \omega_1^m + C_2^{m+1} \sum_{k=0}^{n} \omega_2^m
\]

\[
= A2^r \frac{2^m - 1}{2^m - 1} - B_1^{m+1} \left(\frac{\omega_1^{m+1} - 1}{\omega_1^m - 1} \right) + C_2^{m+1} \left(\frac{\omega_2^{m+1} - 1}{\omega_2^m - 1} \right)
\]

\[
= \frac{1}{\sigma_n} \begin{cases}
\left(A2^m + B_1^{m+1} + C_2^{m+1} \right) \left(\omega_1^m - \omega_2^m \right) \left(m(\mu) - 1 \right)
\end{cases},
\]
where $\sigma_n = 2^{m+1} + (1 - 2^m)(\omega_1^m + \omega_2^m) - 2$. After some algebra, we obtain

$$\sum_{k=0}^{n} M_{j,mk+r}^{(3)} = \frac{1}{\sigma_n} \begin{bmatrix} M_{j,m(n+1)+r}^{(3)} - M_{j,r}^{(3)} + 2^m M_{j,m+1+r}^{(3)} & \cdots & -M_{j,m(n+1)+r}\mu(m) + M_{j,r}\mu(m) + M_{j,m(n+2)+r} - M_{j,r+m}^{(3)} \end{bmatrix},$$

where $\mu(m) = 2^m + \omega_1^m + \omega_2^m$.

(2.25): The proof is similar to the proof of (3.24).

□

3. The relationships between matrix sequences $M_{j,n}^{(3)}$ and $M_{j,n}^{(3)}$

Lemma 3.1. For $m, n \in \mathbb{N}$, the third-order Jacobsthal and third-order Jacobsthal-Lucas matrix sequences are commutative. The following results hold.

(3.26) $M_{j,n}^{(3)}M_{j,m}^{(3)} = M_{j,m}^{(3)}M_{j,n}^{(3)},$

(3.27) $M_{j,n}^{(3)}M_{j,m}^{(3)} = M_{j,m}^{(3)}M_{j,n}^{(3)},$

(3.28) $M_{j,1}M_{j,n}^{(3)} = M_{j,n+1}^{(3)}M_{j,1},$

(3.29) $M_{j,1}M_{j,n}^{(3)} = M_{j,n+1}^{(3)}M_{j,1},$

(3.30) $M_{j,1}M_{j,n}^{(3)} = M_{j,2n+1}^{(3)}.$

Proof. Here, we will just prove (3.26) and (3.28) since (3.27), (3.29) and (3.30) can be dealt with in the same manner. To prove Eq. (3.26), let us use the induction on m. If $m = 0$, the proof is obvious since that $M_{j,0}^{(3)}$ is the identity matrix of order 3. Let us assume that Eq. (3.26) holds for all values k less than or equal to m. Now we have to show that the result is true for $m + 1$:

$$M_{j,n+1}^{(3)} = M_{j,m}^{(3)}M_{j,m}^{(3)} + 2M_{j,m}^{(3)}M_{j,m+1}^{(3)} + 2M_{j,m}^{(3)}M_{j,m+1}^{(3)} = M_{j,m}^{(3)}M_{j,m+1}^{(3)} + 2M_{j,m}^{(3)}M_{j,m+1}^{(3)} = M_{j,m}^{(3)}M_{j,m+1}^{(3)} + 2M_{j,m}^{(3)}M_{j,m+1}^{(3)} = M_{j,m}^{(3)}M_{j,m+1}^{(3)} + 2M_{j,m}^{(3)}M_{j,m+1}^{(3)} = M_{j,m}^{(3)}M_{j,m+1}^{(3)}.$$

It is easy to see that $M_{j,n+1}^{(3)}M_{j,m}^{(3)} = M_{j,m}^{(3)}M_{j,n+1}^{(3)}$. Hence we obtain the result.

(3.28): To prove equation (3.28), we again use induction on n. Let $n = 0$, we get $M_{j,1}^{(3)}M_{j,0}^{(3)} = M_{j,1}^{(3)}$. Let us assume that $M_{j,1}^{(3)}M_{j,n}^{(3)} = M_{j,n+1}^{(3)}$ is true for all values k less than or equal to m. Then,

$$M_{j,n+1}^{(3)} = \begin{bmatrix} j_{n+2}^{(3)} & j_{n+1}^{(3)} & 2j_n^{(3)} & 2j_{n-1}^{(3)} \\ j_{n+1}^{(3)} & j_n^{(3)} & 2j_{n-1}^{(3)} & 2j_{n-2}^{(3)} \\ j_n^{(3)} & j_{n-1}^{(3)} & 2j_{n-2}^{(3)} & 2j_{n-3}^{(3)} \\ j_{n-1}^{(3)} & j_{n-2}^{(3)} & 2j_{n-3}^{(3)} & 2j_{n-4}^{(3)} \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = M_{j,n}^{(3)}M_{j,1}^{(3)} = M_{j,1}^{(3)}M_{j,n}^{(3)} = M_{j,1}^{(3)}M_{j,n-1}^{(3)} = M_{j,1}^{(3)}.$$

Hence the result. □
Theorem 3.2. For $m, n \in \mathbb{N}$ the following properties hold.

(3.31) \[M_{j,n}^{(3)} = M_{j,n}^{(3)} + 4M_{j,n-1}^{(3)} + 4M_{j,n-2}^{(3)}. \]

(3.32) \[M_{j,n}^{(3)} = 2M_{j,n+1}^{(3)} - M_{j,n}^{(3)} + 2M_{j,n-1}^{(3)}. \]

(3.33) \[M_{j,n}^{(3)} = M_{j,n+2}^{(3)} + 3M_{j,n}^{(3)} + 2M_{j,n-1}^{(3)}. \]

Proof. First, here, we will just prove (3.31) and (3.33) since (3.32) can be dealt with in the same manner. So, if we consider the right-hand side of equation (3.31) and use Theorem 2.3 we get

\[
M_{j,n}^{(3)} + 4M_{j,n-1}^{(3)} + 4M_{j,n-2}^{(3)} = \begin{bmatrix}
J_{n+1}^{(3)} & J_{n}^{(3)} + 2J_{n-1}^{(3)} & 2J_{n-2}^{(3)} \\
J_{n}^{(3)} & J_{n-1}^{(3)} + 2J_{n-2}^{(3)} & 2J_{n-3}^{(3)} \\
J_{n-1}^{(3)} & J_{n-2}^{(3)} + 2J_{n-3}^{(3)} & 2J_{n-4}^{(3)} \\
\end{bmatrix} + 4 \begin{bmatrix}
J_{n}^{(3)} & J_{n-2}^{(3)} + 2J_{n-3}^{(3)} \\
J_{n-1}^{(3)} & J_{n-3}^{(3)} + 2J_{n-4}^{(3)} \\
\end{bmatrix}
\
\]

and we get

\[M_{j,n}^{(3)}, \]

From Eq. (1.5), $j_n^{(3)} = j_n^{(3)} + 4j_{n-1}^{(3)} + 4j_{n-2}^{(3)}$, as required in (3.31).

Second, let us consider the left-hand side of Eq. (3.33). Using Theorem 2.3, we write

\[M_{j,1}^{(3)}M_{j,n}^{(3)} = \begin{bmatrix}
J_{n+1}^{(3)} & J_{n}^{(3)} + 2J_{n-1}^{(3)} & 2J_{n-2}^{(3)} \\
J_{n}^{(3)} & J_{n-1}^{(3)} + 2J_{n-2}^{(3)} & 2J_{n-3}^{(3)} \\
J_{n-1}^{(3)} & J_{n-2}^{(3)} + 2J_{n-3}^{(3)} & 2J_{n-4}^{(3)} \\
\end{bmatrix} \begin{bmatrix}
J_{n+1}^{(3)} & J_{n}^{(3)} + 2J_{n-1}^{(3)} & 2J_{n-2}^{(3)} \\
J_{n}^{(3)} & J_{n-1}^{(3)} + 2J_{n-2}^{(3)} & 2J_{n-3}^{(3)} \\
J_{n-1}^{(3)} & J_{n-2}^{(3)} + 2J_{n-3}^{(3)} & 2J_{n-4}^{(3)} \\
\end{bmatrix}. \]

From matrix product, we have

\[
M_{j,1}^{(3)}M_{j,n}^{(3)} = \begin{bmatrix}
5 & 5 & 2 \\
1 & 4 & 4 \\
2 & -1 & 2 \\
\end{bmatrix} \begin{bmatrix}
J_{n+1}^{(3)} & J_{n}^{(3)} + 2J_{n-1}^{(3)} & 2J_{n-2}^{(3)} \\
J_{n}^{(3)} & J_{n-1}^{(3)} + 2J_{n-2}^{(3)} & 2J_{n-3}^{(3)} \\
J_{n-1}^{(3)} & J_{n-2}^{(3)} + 2J_{n-3}^{(3)} & 2J_{n-4}^{(3)} \\
\end{bmatrix}
\]

\[
+ 4 \begin{bmatrix}
J_{n}^{(3)} & J_{n-2}^{(3)} + 2J_{n-3}^{(3)} \\
J_{n-1}^{(3)} & J_{n-3}^{(3)} + 2J_{n-4}^{(3)} \\
\end{bmatrix} \begin{bmatrix}
J_{n}^{(3)} & J_{n-2}^{(3)} + 2J_{n-3}^{(3)} \\
J_{n-1}^{(3)} & J_{n-3}^{(3)} + 2J_{n-4}^{(3)} \\
\end{bmatrix}
\]

\[
+ 3 \begin{bmatrix}
J_{n+1}^{(3)} & J_{n}^{(3)} + 2J_{n-1}^{(3)} & 2J_{n-2}^{(3)} \\
J_{n}^{(3)} & J_{n-1}^{(3)} + 2J_{n-2}^{(3)} & 2J_{n-3}^{(3)} \\
J_{n-1}^{(3)} & J_{n-2}^{(3)} + 2J_{n-3}^{(3)} & 2J_{n-4}^{(3)} \\
\end{bmatrix}
\]

\[
+ 2 \begin{bmatrix}
J_{n+1}^{(3)} & J_{n}^{(3)} + 2J_{n-1}^{(3)} & 2J_{n-2}^{(3)} \\
J_{n}^{(3)} & J_{n-1}^{(3)} + 2J_{n-2}^{(3)} & 2J_{n-3}^{(3)} \\
J_{n-1}^{(3)} & J_{n-2}^{(3)} + 2J_{n-3}^{(3)} & 2J_{n-4}^{(3)} \\
\end{bmatrix}
\]

\[M_{j,n}^{(3)} + 3M_{j,n+1}^{(3)} + 2M_{j,n-1}^{(3)}. \]

Hence the result. □

Theorem 3.3. For $m, n \in \mathbb{N}$, the following properties hold.

(3.34) \[M_{j,m}^{(3)}M_{j,n+1}^{(3)} = M_{j,n+1}^{(3)}M_{j,m}^{(3)} = M_{j,m+n+1}^{(3)}. \]

(3.35) \[(M_{j,n+1}^{(3)})^{m} = (M_{j,1}^{(3)})^{m} M_{j,m-n}^{(3)}. \]
Proof. (3.34): Let us consider the left-hand side of equation (3.34) and Lemma 3.1 and Theorem 3.2. We have
\[
M_{j,m}^{(3)} M_{j,n}^{(3)} = M_{j,m}^{(3)} \left(2M_{j,2}^{(3)} - M_{j,1}^{(3)} + 2M_{j,0}^{(3)}\right) M_{j,n}^{(3)}
\]
\[= 2M_{j,m+n+2}^{(3)} - M_{j,m+n+1}^{(3)} + 2M_{j,m+n}^{(3)}
\]
\[= \left(2M_{j,2}^{(3)} - M_{j,1}^{(3)} + 2M_{j,0}^{(3)}\right) M_{j,m+n}^{(3)}.
\]
Moreover, from Eq. (3.32) in Theorem 3.2, we obtain
\[
M_{j,m}^{(3)} M_{j,n}^{(3)} = M_{j,1}^{(3)} M_{j,m}^{(3)} M_{j,n}^{(3)} = M_{j,m+1}^{(3)} M_{j,m}^{(3)}.
\]
Also, from Lemma 3.1, it is seen that
\[
M_{j,m}^{(3)} M_{j,n}^{(3)} = M_{j,1}^{(3)} M_{j,m}^{(3)} M_{j,n}^{(3)} = M_{j,m+1}^{(3)} M_{j,m}^{(3)}.
\]
Therefore, we have to show that it is true for \(m+1\). If we multiply this \(m\)-th step by \(M_{j,n}^{(3)}\) on both sides from the right, then we have
\[
\left(M_{j,n+1}^{(3)}\right)^{m+1} = \left(M_{j,1}^{(3)}\right)^{m} M_{j,m}^{(3)} M_{j,n+1}^{(3)}
\]
\[= \left(M_{j,1}^{(3)}\right)^{m} M_{j,m}^{(3)} M_{j,n}^{(3)}
\]
\[= \left(M_{j,1}^{(3)}\right)^{m} M_{j,m}^{(3)} M_{j,n+1}^{(3)}
\]
\[= \left(M_{j,1}^{(3)}\right)^{m+1} M_{j,m+n}^{(3)}
\]
\[= \left(M_{j,1}^{(3)}\right)^{m+1} M_{j,(m+1)n}^{(3)}
\]
which finishes the induction and gives the proof of (3.35).

□

Corollary 3.4. For \(n \geq 0\), by taking \(m = 2\) and \(m = 3\) in the Eq. (3.35) given in Theorem 3.3, we obtain
\[
(3.36) \quad \left(M_{j,n+1}^{(3)}\right)^{2} = \left(M_{j,1}^{(3)}\right)^{2} M_{j,2n}^{(3)} = M_{j,1}^{(3)} M_{j,2n+1}^{(3)}.
\]
\[
(3.37) \quad \left(M_{j,n+1}^{(3)}\right)^{3} = \left(M_{j,1}^{(3)}\right)^{3} M_{j,3n}^{(3)} = \left(M_{j,1}^{(3)}\right)^{2} M_{j,3n+1}^{(3)}.
\]

Corollary 3.5. For \(n \in \mathbb{N}\), we have the following result
\[
(3.38) \quad \left(j_{n+1}^{(3)}\right)^{2} + \left(j_{n}^{(3)}\right)^{2} + 2j_{n}^{(3)} j_{n-1}^{(3)} = 34J_{2n+1}^{(3)} + 43J_{2n-1}^{(3)} + 34J_{2n}^{(3)}
\]
\[= 5j_{2n+2} + 5j_{2n+1} + 2j_{2n}.
\]
Proof. The proof can be easily seen by the coefficient in the first row and column of the matrix \(M_{j,n}^{(3)}\) in (3.36) and the Eq. (2.16).

□

4. Conclusions

In this paper, we study a generalization of the Jacobsthal and Jacobsthal-Lucas matrix sequences. Particularly, we define the third-order Jacobsthal and third-order
Jacobsthal-Lucas matrix sequences, and we find some combinatorial identities. As seen in [6] one way to generalize the Jacobsthal recursion is as follows

\[J^{(r)}_{n+r} = \sum_{k=0}^{r-1} J^{(r)}_{n+r-k} + 2J^{(r)}_n, \]

with \(n \geq 0 \) and initial conditions \(J^{(r)}_k \), for \(k = 0, 1, \ldots, r - 2 \) and \(J^{(r)}_{r-1} = 1 \), has characteristic equation \((x - 2)(x^{r-1} + x^{r-2} + \cdots + 1) = 0\) with eigenvalues 2 and \(\omega_k = e^{2\pi i m/r} \), for \(k = 0, 1, \ldots, r - 1 \). It would be interesting to introduce the higher order Jacobsthal and Jacobsthal-Lucas matrix sequences. Further investigations for these and other methods useful in discovering identities for the higher order Jacobsthal and Jacobsthal-Lucas sequences will be addressed in a future paper.

References

[1] P. Barry, Triangle geometry and Jacobsthal numbers, Irish Math. Soc. Bull. 51 (2003), 45–57.
[2] G. Cerda-Morales, Identities for Third Order Jacobsthal Quaternions, Advances in Applied Clifford Algebras 27(2) (2017), 1043–1053.
[3] G. Cerda-Morales, On a Generalization of Tribonacci Quaternions, Mediterranean Journal of Mathematics 14:239 (2017), 1–12.
[4] H. Civciv and R. Türkmen, On the (s, t)-Fibonacci and Fibonacci matrix sequences, Ars Combinatoria 87 (2008), 161–173.
[5] H. Civciv and R. Türkmen, Notes on the (s, t)-Lucas and Lucas matrix sequences, Ars Combinatoria 89 (2008), 271–285.
[6] Ch. K. Cook and M. R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Annales Mathematicae et Informaticae 41 (2013), 27–39.
[7] A. F. Horadam, Jacobsthal representation numbers, Fibonacci Quarterly 34 (1996), 40–54.

Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Valparaíso, Chile.

E-mail address: gamaliel.cerda.m@mail.pucv.cl