1. Introduction

Methanol is the simplest primary alcohol manufactured worldwide in large quantities with an annual production of 40-60 million tons\(^1\). Methanol is a clean liquid fuel which can be used for fuel cells\(^2\). Methanol is extensively used for the production of dimethoxy-methane (DMM), formic acid, dimethyl ether (DME), and other industrial chemicals\(^3\),\(^4\). More importantly, methanol is an intermediate for the synthesis of aromatics from syngas (CO + H\(_2\)) or mixtures of carbon dioxide and hydrogen (CO\(_2\) + H\(_2\))\(^5\),\(^6\). These many applications emphasize the desirability of the development of highly active catalysts for methanol synthesis.

The conventional high-temperature methanol synthesis process was developed by Imperial Chemical Industries Limited (ICI)\(^2\). However, the process achieves one-pass CO conversion of only 20-30 % because methanol synthesis is an exothermic reaction\(^2\). Therefore, recycling of unreacted feed gas is essential to increase conversion, leading to increased production costs. Consequently, methanol synthesis processes operating at low temperatures are very desirable. We previously proposed a novel reaction path of low-temperature methanol synthesis over Cu/ZnO catalyst using various alcohols as both promoters and solvents, which produced methanol at low temperatures (130-170 °C) in a slurry-phase reactor\(^7\),\(^8\). This new process can use syngas containing both CO\(_2\)/H\(_2\)O directly without further purification, since CO\(_2\) and H\(_2\)O in the feed gas are both byproducts and reactants, so are recycled in-situ in
the new reaction path. Recently, we further developed vapor-phase low-temperature methanol synthesis through self-catalysis of methanol in a continuous fixed-bed reactor, which achieved much higher catalytic activity and methanol selectivity compared with the slurry-phase reaction\(^9\),\(^{10}\).

Cu/ZnO catalyst is prepared by the conventional co-precipitation method, but produces a large amount of wastewater because of the utilization of nitrate salts\(^9\). Catalyst synthesis without nitrate salts was developed using formate salts as the raw materials\(^13\). Unfortunately, the formate salts are more expensive than nitrate salts, resulting in uneconomical preparation. Recently, a simple solid-state method was developed to prepare various metallic catalysts used in numerous catalytic reactions. Resultant Ni-SBA-15 catalyst exhibited much higher catalytic performance and stability for the dry reforming of methane than Ni-SBA-15 obtained by the conventional impregnation method due to the enhanced Ni-support interaction\(^12\). Composite catalyst containing Ni supported on carbon/silica carrier also showed excellent activity for CO\(_2\) reforming of methane\(^13\).

Binary NiO-CeO\(_2\) catalyst prepared via a fast and simple solid-state route displayed good performance in the reduction of NO to N\(_2\) due to the stronger Ni-Ce interaction\(^14\). We previously used the solid-state method for the preparation of Cu/ZnO catalyst\(^6\),\(^7\). The effect of the Cu/(Cu + Zn) molar ratio on the textural properties of Cu/ZnO catalysts and the corresponding catalytic activity for low-temperature methanol synthesis from syngas were studied. However, the effects of different chelating agents on the physicochemical properties of Cu/ZnO catalysts for low-temperature methanol synthesis were insufficiently evaluated.

This study used three typical chelating agents, citric acid (C\(_6\)H\(_{12}\)O\(_7\)), formic acid (CH\(_2\)O\(_2\)) and oxalic acid (H\(_2\)C\(_2\)O\(_4\)), for the preparation of Cu/ZnO catalysts. The textural properties of the obtained catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), temperature-programmed reduction by H\(_2\) (H\(_2\)-TPR), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), N\(_2\) adsorption-desorption and N\(_2\)O chemisorption. The different catalytic reactions had tremendous effects on the CuO-ZnO interaction, so influencing the reducibility of the calcined catalysts. Different catalytic systems also had significant effects on the Cu crystallite size, specific surface area and Cu\(^\theta\) surface area, as well as the ZnO (002) plane to ZnO (100) plane ratio, so affecting the catalytic performance for low-temperature methanol synthesis from CO\(_2\)-containing syngas. These findings revealed the structure-activity correlations. The present results provide a new vapor-phase low-temperature methanol synthesis route using methanol as catalytic promoter, and reveal that chelating agents affect the physicochemical properties of Cu/ZnO catalysts.

2. Experimental

2.1. Preparation of Catalysts Using Citric Acid

2.416 g Cu(NO\(_3\))\(_2\)·3H\(_2\)O (FUJIFILM Wako Pure Chemical Corp., AR), 2.975 g Zn(NO\(_3\))\(_2\)·6H\(_2\)O (FUJIFILM Wako Pure Chemical Corp., AR) and 5.379 g citric acid (Sigma-Aldrich, AR) were physically mixed in a mortar and ground for 30 min in air. The as-prepared light blue homogeneous precursor was dried at 120 °C for 12 h, named CZ\(_\text{CA}_\text{D}\). The obtained powder was reduced under H\(_2\)/He (5/95, v/v) gas mixture at 260 °C for 4 h to obtain Cu/ZnO catalysts, named CZ\(_\text{CA}_\text{R}\).

2.2. Preparation of Catalysts Using Formic Acid

2.416 g Cu(NO\(_3\))\(_2\)·3H\(_2\)O (FUJIFILM Wako Pure Chemical Corp., AR), 2.975 g Zn(NO\(_3\))\(_2\)·6H\(_2\)O (FUJIFILM Wako Pure Chemical Corp., AR) and 12.554 g formic acid (FUJIFILM Wako Pure Chemical Corp., AR) were physically mixed in a mortar and ground for 30 min in air. The as-prepared light blue precursor was dried at 120 °C for 12 h, named CZ\(_\text{FA}_\text{D}\). The obtained powder was reduced under H\(_2\)/He (5/95, v/v) gas mixture at 260 °C for 4 h to obtain Cu/ZnO catalysts, named CZ\(_\text{FA}_\text{R}\).

2.3. Preparation of Catalysts Using Oxalic Acid

2.416 g Cu(NO\(_3\))\(_2\)·3H\(_2\)O (FUJIFILM Wako Pure Chemical Corp., AR), 2.975 g Zn(NO\(_3\))\(_2\)·6H\(_2\)O (FUJIFILM Wako Pure Chemical Corp., AR) and 7.202 g oxalic acid (FUJIFILM Wako Pure Chemical Corp., AR) were physically mixed in a mortar and ground for 30 min in air. The as-prepared light blue precursor was dried at 120 °C for 12 h, named CZ\(_\text{OA}_\text{D}\). The obtained powder was reduced under H\(_2\)/He (5/95, v/v) gas mixture at 260 °C for 4 h to obtain Cu/ZnO catalysts, named CZ\(_\text{OA}_\text{R}\).

2.4. Characterization of Catalysts

XRD was performed with a Rigaku RINT 2200 instrument using scanning angle (2θ) in the range of 10-30° for the precursors and 10-80° for the calcined and reduced samples. The average crystallite sizes of CuO, Cu and ZnO were calculated based on Scherrer’s equation. XRF used a Philips 2400 to determine the Cu/Zn molar ratio of the calcined catalysts. SEM was conducted with a JEOL JSM-6360 LV to investigate the morphology of the calcined catalysts. N\(_2\) adsorption-desorption was carried out with a Micromeritics NOVA 2200. The reduced catalysts were
degassed at 200 °C for 2 h under a vacuum before testing. The specific surface area was calculated based on BET method. N₂O chemisorption with a BELCAT-B was used to measure the Cu⁶⁺ surface area of the reduced samples. First, about 0.05 g calcined catalyst was reduced at 260 °C in H₂/Ar (5/95, v/v) gas mixture for 1.5 h. The catalyst was purged with helium gas for 15 min after cooling to 60 °C to remove the reducing gas adsorbed on the catalyst surface. Finally, the reduced catalyst was exposed to N₂O/He (5/95, v/v) gas mixture and the metallic Cu⁰ surface area was calculated from the total consumed amount of N₂O as 1.46 × 10¹⁹ copper atoms per square meter.

H₂-TPR was carried out with a BELCAT-B. About 0.05 g calcined catalyst was first pretreated at 150 °C in He gas for 2 h and then cooled to 50 °C. Subsequently, H₂/Ar (5/95, v/v) gas mixture passed through the catalyst bed and the temperature was linearly increased from 50 to 600 °C at 10 °C/min. XPS was conducted with an ESCALAB 250 Xi using Al Kα radiation. The calcined catalysts were first pretreated or reduced in the pretreatment chamber. Then, the samples were transferred into the analysis chamber and C 1s, O 1s, Cu 2p and Zn 2p spectra were obtained. The C 1s line (284.6 eV) was used to calibrate the binding energy (BE).

2.5. Catalytic Activity Tests

The catalytic activity was tested in a continuous fixed-bed reactor. The methanol promoter flow rate was controlled by a high-pressure pump, and the fixed-bed reactor. The methanol promoter flow rate was calculated based on the following formula:

\[S_{\text{methanol}} = \frac{n_{\text{methanol}}}{m_{\text{catalyst}}} \times 100\% \] \hspace{1cm} (4)

where \(n_{\text{methanol}} \) is the methanol carbon-molar number, and \(m_{\text{catalyst}} \) is the total carbon-molar number in all liquid products.

The space time yield (STY) of methanol and total carbon turnover frequency (TOF) were calculated according to the following equations:

\[\text{STY (g/kg h}^{-1}) = \frac{C_{\text{total}} \times (a + b) \times A_{\text{total}} \times S_{\text{methanol}} \times M_{\text{methanol}}}{m_{\text{catalyst}} \times 10^{-3}} \] \hspace{1cm} (5)

\[\text{TOF (h}^{-1}) = \frac{C_{\text{total}} \times (a + b) \times A_{\text{total}}}{m_{\text{catalyst}} \times S_{\text{Cu}} \times 1.46 \times 10^{19} \times N_{\Lambda}} \] \hspace{1cm} (6)

where \(C_{\text{total}} \) is total capacity of the CO₂-containing syngas (mol/h), \(a \) and \(b \) are CO and CO₂ content in the CO₂-containing syngas (%), \(A_{\text{total}} \) is total carbon conversion (%), \(S_{\text{methanol}} \) is the selectivity of methanol (%), \(M_{\text{methanol}} \) is methanol molecular weight (32.0 g/mol), \(m_{\text{catalyst}} \) is the mass of catalyst (g), \(S_{\text{Cu}} \) is the Cu⁶⁺ surface area (m²/g), 1.46 \times 10¹⁹ is the number of copper atoms per square meter [6], and \(N_{\Lambda} \) is the Avogadro Constant (\(N_{\Lambda} = 6.02 \times 10^{23} \)).

3. Results and Discussion

3.1. Characterization of the Dried Precursors

XRD patterns of the dried precursors are shown in Fig. 1(a). CZ-CA-D precursor prepared with citric acid had amorphous structure based on the absence of diffraction peaks consistent with the previous report [16]. All diffraction peaks of CZ-FA-D were attributed to the copper formate (Cu(HCOO)₂) and zinc formate (Zn(HCOO)₂) phases, indicating that addition of formic acid led to the formation of formate phases in the precursor. All diffraction peaks of CZ-OA-D were assigned to copper oxalate (CuC₂O₄), zinc oxalate (ZnC₂O₄) and excess oxalic acid phases [30]. Therefore, XRD analysis confirmed that metal oxalate and metal oxalate precursors were successfully synthesized through the solid-state grinding method.

3.2. Characterization of the Calcin C e d Catalysts

XRF analysis was used to measure the Cu/Zn molar ratio of the calcined catalysts as listed in Table 1. All samples exhibited the Cu/Zn molar ratio of 1:1, in accordance with the designed value.

XRD patterns of the calcined samples are shown in Fig. 1(b). All catalysts clearly displayed the diffraction peaks of CuO and ZnO, demonstrating that the pre-

\[A_{\text{total}} = A_{\text{CO}} \times \frac{a}{a + b} + A_{\text{CO₂}} \times \frac{b}{a + b} \] \hspace{1cm} (3)
cursors were completely decomposed to metal oxide phases after calcination in air. The width of the diffrac-
tion peak at half height was different for each catalyst, indicating that different chelating agents had significant effects on the CuO and ZnO crystallite sizes. The average crystallite sizes calculated based on Scherrer’s formula are summarized in Table 1. As discussed above, metal nitrates were converted into metal oxalate or metal formate complexes by introducing different chelating agents. Cu$^{2+}$ and Zn$^{2+}$ were connected via metal-oxygen bonds during the ligand exchange process. Therefore, the strength of metal-oxygen bond was closely related to the stability of the complexes. Metal oxalate had a five-membered ring crystal structure, whereas metal formate had a non-cyclic structure as shown in Figs. 2(a)-2(b). The five-membered ring is generally accepted as a stable structure for organic compounds. Therefore, the metal-oxygen bond in metal oxalate was stronger than that in metal formate.

The stronger metal-oxygen bond contributed to preventing metal oxide particles from agglomerating and sintering, resulting in the formation of smaller CuO and ZnO particles. Accordingly, the CuO and ZnO crystallite sizes in CZ-OA-C were smaller than those in CZ-FA-C. CZ-CA-C and CZ-OA-C samples also displayed almost similar CuO and ZnO crystallite sizes. However, the crystallite sizes of both CuO and ZnO of CZ-CA-C catalyst were larger than those of CZ-OA-C catalyst. Excess amount of chelating agent was present during the solid-state grinding process to ensure complete conversion of metal nitrates. Accordingly, the calcination process involved both decomposition of the formed complexes, and decomposition of the excess chelating agent. Citric acid contains more carbon atoms in its molecular structure than oxalic acid. Therefore, more heat was released during the decomposition of excess citric acid, which led to agglomeration of CuO and ZnO particles. Therefore, CuO and ZnO crystallite sizes in CZ-CA-C catalyst were larger than those in CZ-OA-C catalyst. Consequently, oxalic acid with its unique structure and moderate number of carbon atoms was the best chelating agent for the preparation of CuO/ZnO catalyst.

XPS was used to investigate the chemical states on the surface of the calcined catalysts with the parameters summarized in Table 2. The Cu 2p, Zn 2p, C 1s and O 1s XPS spectra are shown in Figs. 3(a)-3(d). Four

![Figure 1: XRD Patterns of the Dried Precursors (a) and the Calcined Catalysts (b)](image)

![Figure 2: Crystal Structure of Metal Oxalate (a) and Metal Formate (b) Complexes](image)

Table 1: Characterization of the Texture Properties of the Calcined Catalysts

Catalysts	Chelating agents	Element contenta [weight ratios %]	Cu/Zn [molar ratio]	Crystallite sizesb [nm]	
		O Cu Zn			
CZ-CA-C	citric acid	21.4	39.1 39.5	1.01/1	15.6 15.0
CZ-FA-C	formic acid	21.3	39.3 39.4	1.02/1	16.5 22.4
CZ-OA-C	oxalic acid	21.4	39.2 39.4	1.01/1	10.9 10.7

a Element content determined by XRF analysis.

b CuO and ZnO crystallite sizes calculated by Scherrer’s equation.
Peaks were observed in Cu 2p XPS spectra as shown in Fig. 3(a). Peaks in the binding energy range of 933.1-933.6 eV and 953.0-953.5 eV were assigned to Cu 2p$_{3/2}$ and Cu 2p$_{1/2}$, respectively.\(^{18}\) Another two peaks centering at 942.5 eV and 962.3 eV were attributed to the satellite peaks of Cu 2p$_{3/2}$ and Cu 2p$_{1/2}$.\(^{18}\) These features were consistent with CuO phases.\(^{18}\) All calcined samples displayed two Zn 2p XPS peaks as shown in Fig. 3(b), which were derived from Zn 2p$_{3/2}$ and Zn 2p$_{1/2}$, respectively.\(^{19}\) These characteristics were consistent with ZnO phases.\(^{19}\) Therefore, the Cu 2p and Zn 2p spectra were in good agreement with the XRD analysis which indicated that the precursors were decomposed to CuO and ZnO phases completely after calcination in air.

Figure 3(c) shows the C 1s XPS spectra of the calcined catalysts. CZ-OA-C and CZ-FA-C had only one peak centering at 284.8 eV, which was ascribed to the reference C 1s peak. No other peaks were observed, indicating that no carbon or carbon species remained on the surface of the CZ-OA-C and CZ-FA-C catalysts. CZ-CA-C had two new C 1s peaks besides the reference C 1s peak, which were derived from C-O (286.5 eV) and C-OH (289.4 eV), respectively.\(^{20}\) Therefore, carbon species from excess citric acid persisted on the surface of CZ-CA-C catalyst even after calcination treatment. The surface carbon species could not be eliminated by 5 % H$_2$ during reduction.\(^{21}\) Therefore, carbon species were still present on the surface of the reduced CZ-CA-R sample, resulting in reduced catalytic performance for low-temperature methanol synthesis.

Table 2 XPS Parameters of the Calcined Catalysts Prepared with Different Chelating Agents

Catalysts	Binding energy [eV]	Relative surface concentration of metal [at %]	Atomic ratio of Cu/Zn	$O_{\text{vac}}/O_{\text{lat}}$		
	Cu 2p$_{3/2}$	Zn 2p$_{3/2}$	Cu	Zn		
CZ-CA-C	933.6	1022.1	32.7	67.3	0.49	0.76
CZ-FA-C	933.5	1022.1	38.5	61.5	0.63	0.21
CZ-OA-C	933.1	1021.6	33.9	66.1	0.34	0.86

Fig. 3 Cu 2p (a), Zn 2p (b), C 1s (c) and O 1s (d) Spectra of the Calcined Catalysts
The O 1s XPS spectra are displayed in Fig. 3(d). All catalysts showed a broad O 1s peak in the binding energy range of 535-527 eV, which could be divided into four Gaussian peaks. The peak at 532 eV was derived from adsorbed oxygen (O\text{ads}), the peak at 530.8 eV was assigned to the oxygen vacancy22, the peak between 529 eV and 530 eV was attributed to the lattice oxygen arising from ZnO, and the peak in the binding energy range of 528-529 eV was ascribed to the lattice oxygen derived from CuO23. The ratio of oxygen vacancy to lattice oxygen (\text{O}\text{vac}/\text{O}\text{lat}) was calculated based on peak area as listed in Table 2. The \text{O}\text{vac}/\text{O}\text{lat} ratio was highest (0.86) for CZ_OA_C, followed by CZ_CA_C (0.76) and CZ_FA_C (0.21), so that CuO/ZnO catalyst prepared with oxalic acid had the largest number of oxygen vacancies. More oxygen vacancies are favorable for charge transfer and electron rearrangement, which change the surface properties of CuO/ZnO catalyst, so resulting in the enhanced interaction between CuO and ZnO24,25. The stronger CuO-ZnO interaction boosted the reduction of CuO, so lowering the reduction temperature of the calcined catalysts, as proved by the following H\textsubscript{2}-TPR analysis.

The surface compositions of the calcined samples were also determined by XPS as summarized in Table 2. The surface atomic ratio of Cu/Zn was lower than that of the bulk phase (Table 1) and was more pronounced for CZ_OA_C. Therefore, the catalyst surface was depleted of Cu but was enriched in Zn. Furthermore, the Cu/Zn atomic ratio and the \text{O}\text{ads}/\text{O}\text{lat} ratio exhibited opposite trends, indicating that larger number of oxygen vacancies resulted in lower Cu/Zn atomic ratio on the catalyst surface. The CuO-ZnO interaction was correlated to with the oxygen vacancies and more oxygen defects led to stronger interaction between CuO and ZnO. Therefore, the lowest atomic ratio of Cu/Zn for CZ_OA_C sample may be attributed to the strongest CuO-ZnO interaction. Similar experimental results were also observed previously26,27.

The reduction behavior of the calcined catalysts was investigated by H\textsubscript{2}-TPR and the TPR profiles are shown in Fig. 4. All catalysts displayed a single reduction peak, which was assigned to the reduction of CuO to metallic Cu28. The onset reduction temperature (T\textsubscript{o}) was the highest (162 °C) for CZ_FA_C, followed by CZ_CA_C (151 °C) and CZ_OA_C (113 °C). The maximum reduction temperature (T\textsubscript{max}) displayed similar trends to the onset reduction temperature. Clearly, CuO species in CZ_OA_C catalyst prepared with oxalic acid were much easier to reduce than those in CZ_CA_C and CZ_FA_C obtained with citric acid or formic acid. The reduction temperature is closely related to the CuO crystallite size and CuO-ZnO interaction29. Small CuO crystallite size and strong interaction between CuO and ZnO facilitated the CuO reduction. The XRD and O 1s XPS analysis showed that CZ_OA_C catalyst had the smallest CuO crystallite size and the strongest CuO-ZnO interaction. In contrast, CZ_FA_C had the largest CuO crystallite size and the weakest CuO-ZnO interaction. Consequently, CZ_OA_C required the lowest reduction temperature, and CZ_FA_C needed the highest reduction temperature. Lower reduction temperature could prevent agglomeration and sintering of Cu particles, leading to the formation of smaller Cu crystallite size and higher Cu0 surface area, as confirmed by the following XRD and N\textsubscript{2}O chemisorption analysis of the reduced catalysts.

SEM micrographs of the calcined catalysts are compared in Fig. 5. CZ_CA_C exhibited aggregated particles on the surface. This morphology may be caused by excess citric acid, which may have existed in the quasi-solid state at about 157 °C, so surrounding the precursor30. Finally, the organic species or carbon species arising from the decomposition of excess citric acid were formed and coated on the surface of the calcined catalyst. Therefore, many bulk particles with
compact aspect were present on the surface of CZ-FA-C. CZ-OA-C had spherical particles with almost uniform distribution, and smaller average particle size than CZ-CA-C and CZ-FA-C.

3.3 Characterization of the Reduced Catalysts

XRD patterns of the reduced catalysts are shown in Fig. 6. All reduced catalysts contained metallic Cu and ZnO phases, but no CuO or Cu2O phases, indicating that CuO was completely reduced to metallic Cu0, whereas ZnO maintained its oxidation state. CZ-FA-R exhibited the strongest diffraction peak intensity and the narrowest width of the diffraction peak at half height compared with CZ-CA-R and CZ-OA-R, revealing that CZ-FA-R sample prepared with formic acid had the highest crystallinity and the largest Cu and ZnO crystallite sizes. The crystallite sizes of Cu and ZnO were calculated according to Scherrer’s equation as listed in Table 3. Cu and ZnO crystallite sizes were much larger in CZ-FA-R than in CZ-CA-R and CZ-OA-R. As proved by the previous O 1s XPS analysis, CZ-FA-C exhibited the weakest CuO-ZnO interaction, whereas CZ-OA-C showed the strongest interaction between CuO and ZnO. The stronger CuO-ZnO interaction could prevent agglomerating and sintering of Cu and ZnO particles during reduction. Furthermore, H2-TPR analysis showed CZ-OA-C catalyst had the lowest onset reduction temperature and the maximum reduction temperature, which are beneficial for obtaining smaller Cu and ZnO crystallite sizes. Therefore, CZ-OA-R prepared with oxalic acid exhibited the smallest Cu and ZnO crystallite sizes among all the reduced catalysts.

Peak intensity ratio \(\frac{I(002)}{I(100)} \) of the ZnO (002) plane \((2\theta = 34.4^\circ) \) to the ZnO (100) plane \((2\theta = 31.7^\circ) \) is also a critical factor influencing the catalytic activity for low-temperature methanol synthesis from syngas. The ZnO (002) plane is polar, whereas the ZnO (100) plane is non-polar \(^{23}\). More oxygen vacancies are present in the ZnO (002) plane, and Cu/ZnO catalyst with more ZnO (002) plane displays stronger interaction between Cu and ZnO \(^{31,32}\). Therefore, the \(\frac{I(002)}{I(100)} \) ratio was calculated based on XRD patterns and compared in Table 3. Clearly, the \(\frac{I(002)}{I(100)} \) ratio was highest (0.995) for CZ-OA-R, followed by CZ-CA-R (0.912) and CZ-FA-R (0.866). CZ-FA-R prepared with oxalic acid contained a larger number of ZnO (002) planes, leading to the formation of more oxygen vacancies. Oxygen vacancies are important in the adsorption and activation of CO and CO2 molecules \(^{33} \sim 35\). The chemisorption amounts of CO and CO2 increased linearly with higher number of oxygen vacancies \(^{35}\). In addition, oxygen vacancy also acts as the active site for methanol synthesis \(^{36}\). Accordingly, higher \(\frac{I(002)}{I(100)} \) ratio, or larger number of oxygen vacancies, results in better catalytic performance for low-temperature methanol synthesis from syngas containing CO2.

The specific surface area and Cu0 surface area of the reduced catalysts are summarized in Table 3. CZ-OA-R showed the highest specific surface area (49.2 m\(^2\)/g) and Cu0 surface area (15.8 m\(^2\)/g), whereas CZ-FA-R had the lowest values (17.8 m\(^2\)/g and 9.3 m\(^2\)/g). Higher specific surface area is beneficial for the dispersion of Cu0, and greater Cu0 surface area provides more active sites, which are favorable for methanol synthesis \(^{37}\). Therefore, CZ-OA-R prepared with oxalic acid had the best catalytic activity of all reduced catalysts.

3.4 Catalytic Performance and Structure-activity Correlations

Our previous study \(^9\) systemically investigated the effects of methanol promoter flow rate and reaction tem-

Catalysts	Chelating agents	Cu crystallite sizes \[^{a}\] [nm]	ZnO crystallite sizes \[^{a}\] [nm]	Specific surface area \[^{b}\] [m\(^2\)/g]	Cu0 surface area \[^{c}\] [m\(^2\)/g]	\(\frac{I(002)}{I(100)} \) \[^{d}\]
CZ-CA-R	citric acid	17.3	13.9	42.4	11.9	0.912
CZ-FA-R	formic acid	38.2	35.6	17.8	9.3	0.866
CZ-OA-R	oxalic acid	16.8	12.9	49.2	15.8	0.995

\(^{a}\) Cu and ZnO crystallite sizes calculated by Scherrer’s formula.

\(^{b}\) Determined by N\(_2\) adsorption-desorption at \(-196^\circ C\).

\(^{c}\) Determined by N\(_2\)O chemisorption method.

\(^{d}\) \(\frac{I(002)}{I(100)} \) is the peak intensity ratio of ZnO (002) plane to ZnO (100) plane.
perature on the low-temperature methanol synthesis reaction. The optimum flow rate of methanol was 0.003 mL/min, and the optimum reaction temperature was 200 °C. Therefore, the present study evaluated Cu/ZnO catalysts prepared with different chelating agents at 200 °C, using 0.003 mL/min methanol promoter. The CO, CO2, and total carbon conversions of different catalysts are compared in Fig. 7(a). CO, CO2, and total carbon conversions using CZ_OA_R were 51.9, 33.1, and 49.3 %, which were much higher than those of CZ_CA_R (23.4, 6.0, and 21 %) and CZ_FA_R (9.8, 5.4, and 9.2 %), indicating that Cu/ZnO catalyst prepared with oxalic acid displayed superior catalytic activity compared with catalysts prepared with citric acid or formic acid.

The catalytic performance of different catalysts was also compared using the total carbon turnover frequency (TOF), which represents the number of CO and CO2 molecules converted per copper atom per hour, as summarized in Fig. 7(b). The TOF value was as high as 40.3 h⁻¹ for CZ_OA_R, followed by CZ_CA_R (22.8 h⁻¹) and CZ_FA_R (12.8 h⁻¹). The space time yield (STY) of methanol, which shows the mass of methanol produced per kilogram catalyst per hour, was also calculated based on total carbon conversion in Fig. 7(b). CZ_OA_R exhibited much higher STY value (443.7 g/kg h⁻¹) than CZ_CA_R (189.0 g/kg h⁻¹) and CZ_CA_R (82.8 g/kg h⁻¹). Therefore, STY and TOF values further confirmed that Cu/ZnO catalyst prepared with oxalic acid displayed the best catalytic activity of all reduced catalysts.

We previously studied the low-temperature methanol synthesis reaction using in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The reaction mechanism is illustrated in Fig. 8, including the following steps: (1) formation of CO2 through the water-gas shift (WGS) reaction; (2) generation of formate species by the CO2 hydrogenation reaction; (3) esterification of formate species with methanol promoter producing the methyl formate intermediate; and (4) hydrogenation of methyl formate to form final product methanol and simultaneously regenerate methanol promoter. In this new process, esterification of step (3), which was the rate-determining step of low-temperature methanol synthesis, could proceed under mild reaction conditions38). Therefore, the introduction of methanol promoter significantly lowered the reaction temperature of methanol synthesis, leading to higher one-pass CO conversion compared with the conventional high-temperature ICI methanol synthesis process. The Cu⁰ or Cu-ZnO structure was the active site for step (1), whereas the metallic Cu⁰ was the main active site for step (4)7). Accordingly, the physicochemical properties of Cu/ZnO catalysts had a tremendous effect on this low-temperature methanol synthesis reaction.

Based this reaction route, methyl formate was an intermediate for low-temperature methanol synthesis using methanol as catalytic promoter. However, only methanol was detected in the cold trap. In addition, CO and CO2 conversion were positive for all catalysts, revealing that CO and CO2 in the feed gas or derived from the water-gas shift (WGS) and reverse water-gas shift (RWGS) reactions were converted to methanol via hydrogenation. Therefore, the methanol selectivity was 100 %. Our in-situ DRIFTS38) study proved that formate ester hydrogenation to methanol occurred easily on Cu⁰ at 170 °C and H2 partial pressure of 1.0 MPa.
Accordingly, methyl formate hydrogenation was very fast under the present reaction conditions (200 °C, 3.8 MPa H₂ partial pressure), leading to total conversion of methyl formate to methanol.

To investigate the effect of chelating agents on the structure-activity correlation, we tried to correlate the STY of methanol with the physicochemical properties of Cu/ZnO catalysts. Figure 9(a) discloses the relationship between STY of methanol and Cu⁰ surface area. STY of methanol was linearly enhanced with greater Cu⁰ surface area. Higher Cu⁰ surface area produces more atomic hydrogen on metallic Cu⁰ active sites. As stated above, metallic Cu⁰ was the active site for the hydrogenation of methyl formate to methanol (step (4)). Accordingly, generation of more atomic hydrogen increased the rate of step (4), leading to higher STY of methanol. The correlation of STY of methanol with I(002)/I(100) ratio is shown in Fig. 9(b). STY of methanol had a linear relationship with I(002)/I(100) ratio, indicating that Cu/ZnO catalyst with more ZnO (002) plane was favorable for methanol synthesis. The ZnO (002) plane contained more oxygen vacancies compared than the ZnO (100) plane. Oxygen vacancies were also considered as active sites and more oxygen vacancies were beneficial for adsorbing CO and CO₂ molecules, which promoted the water-gas shift and the subsequent CO₂ hydrogenation reactions (steps (1) and (2)). Therefore, higher I(002)/I(100) ratio led to faster steps (1) and (2), resulting in greater STY of methanol.

The specific surface area and Cu crystallite size were also important parameters influencing the catalytic activity. Higher specific surface area was favorable for the dispersion of active sites, which was beneficial for methanol synthesis. Smaller crystallite size has more open planes and vacancy sites consisting of incompletely coordinated atoms, which exhibited higher catalytic activity compared with fully coordinated atoms. Therefore, CZ-OA-R catalyst prepared with oxalic acid displayed the best catalytic performance for low-temperature methanol synthesis due to the smaller Cu crystallite size, higher specific surface area and Cu⁰ surface area as well as stronger Cu-ZnO interactions.

4. Conclusions

Cu/ZnO catalysts were prepared by a simple solid-state method. The effects of chelating agents on the physicochemical properties of Cu/ZnO catalysts were studied. Different chelating agents had significant effects on the CuO crystallite size and CuO-ZnO interactions in the calcined catalysts, so influencing the reducibility. Different chelating agents also had tremendous effects on specific surface area, Cu⁰ surface area, and Cu crystallite size, as well as I(002)/I(100) ratio of the reduced samples, thus affecting the catalytic performance for low-temperature methanol synthesis from CO₂-containing syngas. Based on these findings, the structure-activity correlations could be established. STY of methanol had a linear correlation with Cu⁰ surface area. STY value was also enhanced linearly with increased I(002)/I(100) ratio. Cu/ZnO catalyst prepared with oxalic acid exhibited excellent catalytic activity due to the higher specific surface area, greater Cu⁰ surface area and smaller Cu crystallite size. Greater Cu-ZnO interactions in the reduced samples also contributed to increasing the catalytic activity for low-temperature methanol synthesis.

Acknowledgment

This work is supported by the SATREPS joint project of Japan Science and Technology Agency and Japan International Cooperation Agency (Grant Number, JPMJSA1605). Research fund (Grant Number, 2019BFH02016) from the Ningxia Hui Autonomous Region Key R & D Program is greatly appreciated. F. Chen acknowledges financial support from the Regional Industrial Innovation and Creation Fellowship in University of Toyama.
要 旨

CO₂を含む合成ガスからの低温メタノール合成用 CuZnO触媒の物性に関わる異なるキレート剤の影響

陳 飛†1, 高 煋君†1, 張 柏章†1, 趙 恒†1, 肖 カイ†1, 新木 覺也†1, 雛 晩静†2, 張 偉†2, 趙 婉珂†2, 郭 中山†2, 何 英洛†1, 張 培培†1, 椿 覃立†1

†1 富山大学工学部応用化学科, 930-8555 富山市五福3190
†2 中国エネルギー集団中夏石炭(株), 750011 中国銀川市

本研究に用いたナノ構造を有する CuZnO触媒は、安定な金属硝酸塩を原料とし、操作が簡単な固体反応法によって調製した。また、調製時に異なるキレート剤（ケン酸、ピ酸、シアス酸）を添加することで、CuZnO触媒の物性が変化することを明らかにした。構築解析の結果から、添加したキレート剤の種類によって焼成後の触媒のCuO結晶サイズ、酸素欠陥および表面組成が変化し、それによりCuO-ZnO相互作用および還元性が変化することが分かった。さらに、異なるキレート剤の添加は、還元後の触媒の比表面積、CuO表面積、Cu結晶サイズ、およびXRDピーク強度に基づいて計算されたZnO（002）面とZnO（100）間の強度比（I₀₀₂/I₁₀₀）に大きな影響を与え、選択的なキレート剤を使用した触媒はCO₂を含む合成ガスからの低温メタノール合成の活性向上に効果的であった。この結果から、触媒構造と活性の相関関係、特にメタノールの空時収率（STY）とCuO表面積およびI₀₀₂/I₁₀₀との関係が明らかになっ

štš