Exploring the spatial heterogeneity and temporal homogeneity of ambient PM$_{10}$ in nine core cities of China

Rui Feng1,2,3,*, Rong Zhou3, Weiwei Shi2, Nanjing Shi2 & Xuekun Fang1,2

We focus on the causes of fluctuations in wintertime PM$_{10}$ in nine regional core cities of China using two machine learning models, Random Forest (RF) and Recurrent Neural Network (RNN). RF and RNN both show high performance in predicting hourly PM$_{10}$ using only gaseous air pollutants (SO$_2$, NO$_2$ and CO) as inputs, showing the predominance of the secondary inorganic aerosol and implying the existence of thermodynamic equilibrium between gaseous air pollutants and PM$_{10}$. Also, we find the following results. The correlation of gaseous air pollutants and PM$_{10}$ were more relevant than that of meteorological conditions and PM$_{10}$. CO was the predominant factor for PM$_{10}$ in the Beijing-Tianjin-Hebei Plain and the Yangtze River Delta while SO$_2$ and NO$_2$ were also important features for PM$_{10}$ in the Pearl River Delta and Sichuan Basin. The spatial heterogeneity and temporal homogeneity of PM$_{10}$ in China are revealed. The long-range transported PM$_{10}$ was substantiated to be insignificant, except in the sandstorms. The severity of PM$_{10}$ was attributable to the lopsided shift of thermodynamic equilibrium and the phenology of indigenous flora.

China, the world’s second largest economy, has gone through severe atmospheric deterioration for decades, which have slowed down the economic growth rate and implacably elicited 1.6 million premature deaths in 20171. Air pollution, having elevated daily hospital admissions in 218 cities of China2, leads to the increase of cardiopulmonary/cardiovascular diseases, respiratory infection and hypermethylation3. Atmospheric particulate matter (PM) draws the most public concerns among air pollutants, because of its toxicity and carcinogenicity4. PM can be a host for bacterial and fungal pathogens5,6. It has been found that a 1% rise of PM$_{2.5}$ enhances 2.9% of healthcare expenditure in China7. Moreover, atmospheric aerosols are possible contributors to weather and climate change$^8–11$.

The atmospheric particulate matter with an aerodynamic equivalent diameter of less than 10 μm (PM$_{10}$), whose main emission sources are the coal-based thermal power plants, coal-based domestic heating, automobiles, fugitive dust from roads, construction sites, and unpaved soil12, is studied in this work. The reason why we select PM$_{10}$ for investigation is it can greatly affect human's health, bringing in numerous disease burdens$^{13–15}$. Also, the source of PM$_{10}$ partly originates from long-range transported sandstorms16. Investigation on the significance of long-range transport and indigenous emission is of great importance. Several previous works investigated PM in the megacities of China via outdoor observation$^{17–19}$. Machine learning, orchestrated for developing algorithms automatically from large datasets, removes the need for an air pollution emission inventory which is a linchpin for conventional atmospheric models, thus becoming a more flexible approach$^{20–23}$. Compared to inventory-predicated air quality models, machine learning offers an alternative and more accurate method to interpret air pollutant concentration, which now is a popular topic in atmospheric research field. Feng et al.23 proposed an avenue to forecast the air pollutants in Hangzhou using machine learning. Chen et al.24 used deep neural network to estimate PM$_{2.5}$ concentrations across China. Yan et al.25 developed a deep learning model to improve the interpretability and predictive accuracy of satellite-based PM$_{2.5}$. Han et al.26 estimated air qualities in Beijing during 2008–2012 by Bayesian Multi-task Long Short-Term Memory. In this work, we select Recurrent Neural Network (RNN) and Random Forest (RF) to conduct a nationwide survey of PM$_{10}$. The concentration

1College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People’s Republic of China.2State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, People’s Republic of China.3Ecological and Environmental Science and Design Institute of Zhejiang Province, Hangzhou 310012, People’s Republic of China.*email: fengrui0621291@zju.edu.cn; fangxuekun@zju.edu.cn
of PM$_{10}$ is much higher in winter than in the other seasons, so we focus on the wintertime (December, January and February) PM$_{10}$ in the past more than five years (December 2014 to February 2019).

The scopes of this work are as follows: (1) finding the different regional PM$_{10}$ patterns and its determinants; (2) exploring the contributors of severe wintertime haze in a novel perspective and demonstrating of the insignificance of long-range transport. In Section two, we introduce the study areas, the sources of data, and parameters of two machine learning models. In Section three, we illustrate the causes for severity of haze in wintertime and show the reason why the long-range transported PM$_{10}$ are insignificant except in sandstorms.

Methods

Investigated areas. The Beijing-Tianjin-Hebei plain (BTH) (37°–41° N, 114°–118° E), the Yangtze River Delta (YRD) (30°–33° N, 118°–122° E), the Pearl River Delta (PRD) (21.5°–24° N, 112°–115.5° E) and the Sichuan Basin (SCB) (28.5°–31.5° N, 103.5°–107° E) are the four most prosperous but polluted regions in China, representing the center of North, East, South and West China, respectively. BTH, where the capital city of Beijing and the central municipality of Tianjin nestle, had a population of 110 million and produced over 10% of China’s national gross domestic product (GDP) in 2017. YRD, where the megalopolis of Shanghai resides, denotes the economic center of China, accounted for 19% of China’s GDP and had a population of 150 million. The PRD urban agglomerations surrounding Hong Kong and Macao created nearly 13% of China’s GDP with a population of 83 million. SCB, the economic and political center of West China, contributed a population of 114 million and 7% national GDP. These four regions comprised 33% of the Chinese population, 8% of China’s land, and 49% of GDP of China in 2017. However, all of these regions have suffered from severe PM$_{10}$ for decades due to the rapid industrialization. In order to develop better control measures, the question emerges as whether the regional patterns of PM$_{10}$ are the same. Because of the regional heterogeneity of natural and anthropogenic sources of PM$_{10}$, a reasonable assumption is the determinants of PM$_{10}$ varies among regions but remains consistent in the same region. Nine regionally representative core cities, which are Beijing and Tianjin in BTH, Shanghai, Nanjing and Hangzhou in YRD, Guangzhou and Shenzhen in PRD, and Chengdu and Chongqing in SCB, are picked to investigate the regional PM$_{10}$ patterns in wintertime. These nine cities, each of which has more than nine million citizens, are the most flourishing areas of China with their ever-growing urbanization. According to census, the permanent residents living in these nine cities were 154 million in 2017.

Data of wintertime air pollutants and meteorology. All the data used in this work are publicly accessible online. The time period studied was sifted to be wintertime (December, January and February) from 1 December 2014 to 28 February 2019. Hourly air pollutants, including sulfur dioxide (SO$_2$), nitrogen dioxide (NO$_2$), tropospheric ozone in the surface air (O$_3$), carbon monoxide (CO), PM$_{2.5}$ and PM$_{10}$ were extracted from official website of China National Environmental Monitoring Centre (http://beijingair.sinaapp.com/), where the air pollution data from 1563 environmental monitoring sites across China were recorded and documented. We chose the environmental monitoring sites in the nine investigated cities for training and testing. We use the data from all of the environmental monitoring sites in a city to calculate Feature Importance. Then we take the average of them to predict hourly PM$_{10}$ in Scenario one and two. The meteorological data were from the NASA Global Modeling and Assimilation Office (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2) and the University of Wyoming (http://www.weather.uwyo.edu/surface/meteorogram/seasia.shtml), including hourly temperature, relative humidity, atmospheric pressure, wind speed and wind direction.

Parameters of random forest and RNN. Recurrent Neural Network (RNN) is capable of capturing temporal contextual information, suitable for simulating the accumulation and deposition of air pollutants. RNN can transfer information from one step to the following step. Random Forest (RF), a tree structuring model, is able to quantitatively rate the significance of each input in shaping the output via calculating the Feature Importance (FI). There are two types of Feature Importance, which are Variable Importance and Gini Importance. In this case, we chose Gini Importance.

Several setups of RF and RNN were tested and fine-tuned before we selected the best settings of parameters. As for RF, n-estimator is the number of built trees. A higher n-estimator ensures the predictions to be stronger and more stable, but also makes the operator code slower. Increasing max-features generally improves the performance of Random Forest, but decreases the diversity of individual tree and slows down the running speed. To strike the right balance, assigning maximum features to be auto to take all features into consideration and put no restriction on the individual tree. Max depth being none means the node extends until all leaves are pure or all leaf nodes contain fewer samples than min samples split, which is set as two in this work. Min sample leaf is the minimum sample number on leaf nodes. Max leaf nodes are the optimal nodes defined by a relative reduction in purity in the best-first fashion. Max leaf nodes being none means there is no restriction on the number of leaf nodes. As for RNN, the activation function chosen was the most popular non-linear function rectified linear unit (ReLU), expressed as $f(x) = \max(z, 0)$. As the number of the hidden units becomes larger, the prediction accuracy of RNN slightly increases but the running speed is slowed down. In this case, we choose the number of the hidden units to be 300. Learning rate is typically log-spaced and change of it commonly does not make significant improvement. We choose learning rate to be 10^{-2}. Lay number is set to be 2, because two-layer enables RNN more accurate than single-layer in predicting PM$_{10}$ as we’ve tested.

Results and discussion

Feature importance of PM$_{10}$. Feature Importance (FI), calculated by Random Forest, is able to quantify the significance of each input to impact the output. The higher the score that an input gets, the more significant that input is to the output. The hourly meteorological conditions and air pollutants in the wintertime of past
more than five years (December 2014 to February 2019) were input to calculate the long-term FI of PM$_{10}$ shown in Fig. 1. First and foremost, Fig. 1 quantitatively demonstrates that gaseous air pollutants (SO$_2$, NO$_2$, O$_3$ and CO) were more significant than the meteorological conditions in shaping PM$_{10}$ as the FI of gaseous air pollutants outscored that of meteorological conditions combined. SO$_2$ and NO$_2$ were positively correlated with PM$_{10}$ because they were the precursors of sulfate and nitrate, the main components of PM$_{10}$. Tropospheric O$_3$ in the surface air and PM$_{10}$ were negatively associated, because PM$_{10}$ is a promotor that speeds up the aerosol sink of hydroperoxy radicals. The strongly positive association between CO and PM$_{10}$ was because they were emitted from same sources, such as coal-base domestic heating and traffic. The possible chemical bonds between CO and PM$_{10}$ need further investigation. As for Beijing and Tianjin of BTH, the influence of CO on PM$_{10}$ was far greater than that of other gaseous air pollutants and NO$_2$ contributed more pivotally than SO$_2$ for PM$_{10}$. As for Shanghai, Nanjing and Hangzhou of YRD, SO$_2$ played a more crucial role than NO$_2$ in reproducing PM$_{10}$. The influence of CO on PM$_{10}$ was also predominant in YRD but less critical than that in BTH. As for Guangzhou and Shenzhen of PRD, NO$_2$ and SO$_2$ had higher FI than CO, revealing a different pattern of PM$_{10}$ in stark comparison with BTH and YRD. As for PM$_{10}$ in SCB, CO and NO$_2$ were the primary FI in Chengdu and Chongqing, respectively. Therefore, the spatial heterogeneity of regional PM$_{10}$ in China is corroborated. We then calculate the annual FI for PM$_{10}$ from the aforementioned nine cites, shown in Table 1. Despite of the ebb and flow of FI in some year, the results are consistent for wintertime PM$_{10}$ in a city. CO is associated with the insufficient combustion in the coal-based house heating while NO$_2$ is mainly emitted by automotive vehicles, curbing coal-based house heating in BTH/YRD and controlling vehicles in PRD and SCB are the best ways to lower PM$_{10}$.

Prediction of PM$_{10}$ using SO$_2$, NO$_2$ and CO as inputs. Due to the leading roles that gaseous air pollutants (SO$_2$, NO$_2$ and CO) play in shaping PM$_{10}$, they are used to predict hourly PM$_{10}$ without meteorological circumstances. Training period is set to be December and February while testing period is January (Scenario one). Training and testing data are from the same city. Pearson correlation coefficient (R) and Root Mean Square Error (RMSE) are used as two statistic indicators to evaluate the performance of RF and RNN, and the results are shown in Table 2 and Fig. 2. As Table 2 indicates, both RF and RNN show good accuracy in simulating hourly PM$_{10}$ with only three gaseous air pollutants as inputs. In most cases, the Pearson correlation coefficient (R) between hourly observed and RF/RNN-simulated data is larger than 0.8. RNN is related with time series, as it recursively associates the dataset in the direction of sequence evolution. However, in this case, RNN’s not outperforming Random Forest in all nine cities signals that PM$_{10}$ was not strongly linked to the time series with one hour interval. This finding reveals that, compared with the impact of gaseous air pollutants, the concentration of PM$_{10}$ at a given time-point is more relevant to the gaseous air pollutants at the same time than to their previous levels one hour prior. Also, when using the gaseous air pollutants in timestamp (T-1) as inputs, the performances of RF and RNN are slightly worse for predicting PM$_{10}$ in timestamp T, compared with that using the gaseous air pollutants in timestamp (T) as inputs. Moreover, the Pearson correlation coefficient of PM$_{10}$ in timestamp T and concomitant gaseous air pollutants in timestamp T is greater than that of PM$_{10}$ in timestamp T and gaseous pollutants one hour prior in timestamp (T-1). This finding not only unravels that PM$_{10}$ and gaseous air pollutants were in thermodynamic dynamic equilibrium, but also implies the formation and deposition of PM$_{10}$ tended to occur in less than one hour. Furthermore, when training data and testing data are extracted from different cities, the prediction accuracy is reduced, implying every city had its own unique pattern of PM$_{10}$.

Thermodynamic equilibrium between gaseous air pollutants and PM$_{10}$. As Fig. 2 and Table 3 show, both RF and RNN ubiquitously underestimate PM$_{10}$ in all nine cities in Scenario one. In contrast with Scenario one, Scenario two is set as the testing period is hourly PM$_{10}$ in one day in January 2019 and the training period is hourly PM$_{10}$ in the remaining days in January 2019. Training and testing data are from the same city. Inputs include SO$_2$, NO$_2$, CO as well. The results are given in Fig. 3. As Fig. 3 shows, the underestimations do not take place in Scenario two. In addition, we use the gaseous pollutants in January 2018 and December 2017/February 2018 as inputs to train RF and RNN, respectively. The results are similar: the prediction results of PM$_{10}$ in January 2019 using the data in January 2018 for training are greater than that using the gaseous air pollutants in January 2018 as inputs. This finding shows PM$_{10}$ in January 2019 is greater than that using the data in February 2018 for training. The simulations of RF and RNN both underestimate the PM$_{10}$ level in all nine cities when using the data in December 2017 and February 2018 for training, similar to Scenario one, indicating this is a ubiquitous phenomenon.

Two insidious causes account for this. The major reason is the chemical processes of sulfur dioxide forming sulfate and nitrogen dioxide forming nitrate are exothermic. Since the temperature in January is lower than that in December and February, the thermodynamic equilibrium shifts lopsidedly in favor of augmenting PM$_{10}$. Moreover, indigenous flora plays an important role for the removal of PM$_{10}$ in Beijing. Zhang et al.37 was opposed to Cao and Zhang35, stating that there was little evidence showed that the biogenic source is an ascendant contribu-

Insignificance of long-range transport. The motivation of this work is partially stimulated by the siz-

zing debates in several previous studies33–37. Guo et al.35 inferred that primary emissions and regional transport of PM in Beijing were insignificant in spawning haze. Li et al.36 demurred to Guo et al.35, insisting that long-range transport was the major cause of severe haze in Beijing. Zhang et al.37 contended that the back trajectory analysis by Li et al.36 was unsuitable for urban-scale investigations and polluted periods in Beijing were typically linked to stagnant conditions with weak and variable winds. Cao and Zhang35 criticized Guo et al.33 for ignorance of non-fossil emission sources, such as biomass burning, cooking, and biogenic emissions. Zhang et al.37 was opposed to Cao and Zhang35, stating that there was little evidence showed that the biogenic source is an ascendant contribu-

Scientific Reports | (2022) 11:8991 | https://doi.org/10.1038/s41598-021-88596-8
Figure 1. Feature Importance for PM$_{10}$ in wintertime from December 2014 to February 2019.
tor to severe urban PM pollution worldwide. According to Ni et al.38, when the horizontal transportation of air pollutants exceeds 300 km, it is considered as long-distance transport.

Machine learning can give an assessment to this argument. The gestations of the haze can be ascribed to crescendo of gaseous precursors, increase of primary emission, or long-range transport. The lifespans of SO2 and NOx are short33. The gaseous air pollutants and solid PM10 have different physical characteristics, making them unlikely to transport together for a long distance. Hence, our theory to judge the causes of the ups and downs of PM10 level is: when using gaseous air pollutants (SO2, NO2 and CO) as inputs, if RF and RNN catch the maximum, the high episodes were induced by the increase of secondary inorganic aerosols or change of primary sources; otherwise, it's elicited by long-range transport.

The average of the monthly average discrepancy between simulation and observation in Scenario two is less than 15% of the observation. Hence, RF and RNN catch the undulations of PM10 using only gaseous air pollutants as inputs, indicating the insignificance of long-range transport. In urban areas of China, fugitive dust from roads, construction sites, and unpaved soil sources normally account for 30%-50% of PM10, which is referred as primary PM10. CO is a presumable indicator for primary PM10. The sporadic sandstorm may induce the long-range transport of PM10 from the far-flung deserts in the northwestern China40. RF and RNN catch all the fluctuations of PM10 using gaseous air pollutants as inputs, indicating the long-range transport induced by spasmodic sandstorm did not occur in January 2019. Thus, we second and shore up the viewpoints of Guo et al.33.

Conclusion

Air pollution has become a hot button in China in recent years. In this work, we take a deeper insight into PM10. To wrap up, we deduce the following conclusions. We find that PM10 was more statistically correlated to the gaseous air pollutants (SO2, NO2 and CO) than meteorological conditions. The spatial heterogeneity and temporal homogeneity of PM10 in China are quantitatively chronicled, signifying each city had its own unique
	SO₂ (%)	NO₂ (%)	O₃ (%)	CO (%)
Beijing, BTH				
2014–2015	8.7	6.9	6.3	78.1
2015–2016	13.2	12.8	4.6	69.4
2016–2017	5.2	4.9	4.2	85.8
2017–2018	10.0	9.8	12.6	67.7
2018–2019	6.0	12.7	14.2	67.1
Tianjin, BTH				
2014–2015	5.7	13.4	6.3	74.6
2015–2016	9.0	9.8	4.8	86.4
2016–2017	5.8	8.1	5.2	81.0
2017–2018	12.1	11.3	10.3	66.3
2018–2019	7.0	11.4	11.8	69.8
Shanghai, YRD				
2014–2015	13.4	5.0	5.8	75.8
2015–2016	50.0	7.6	12.0	30.4
2016–2017	13.4	9.1	11.8	65.7
2017–2018	36.5	5.9	8.1	49.5
2018–2019	25.3	12.3	12.7	49.5
Nanjing, YRD				
2014–2015	27.2	6.4	6.6	59.8
2015–2016	18.4	13.7	13.4	54.5
2016–2017	24.1	10.4	9.5	56.0
2017–2018	13.9	8.6	8.8	68.7
2018–2019	18.6	10.8	9.3	61.3
Hangzhou, YRD				
2014–2015	44.8	8.4	12.6	34.3
2015–2016	27.3	12.6	9.4	50.7
2016–2017	19.3	32.9	12.3	35.5
2017–2018	20.5	7.7	9.0	62.8
2018–2019	44.5	13.1	15.7	26.7
Guangzhou, PRD				
2014–2015	45.6	21.5	7.7	25.2
2015–2016	30.1	45.9	10.3	13.7
2016–2017	51.5	27.2	8.2	13.1
2017–2018	59.3	10.2	8.5	22.0
2018–2019	7.1	64.0	14.6	14.3
Shenzhen, PRD				
2014–2015	39.6	28.9	17.3	14.2
2015–2016	35.9	22.5	17.1	24.5
2016–2017	40.9	17.6	12.9	28.6
2017–2018	49.0	18.1	14.2	18.7
2018–2019	37.6	27.8	15.1	19.5
Chengdu, SCB				
2014–2015	14.7	50.70	8.1	26.5
2015–2016	49.6	10.8	7.6	32.2
2016–2017	20.3	10.6	10.1	59.0
2017–2018	8.6	26.4	14.0	51.0
2018–2019	28.8	41.4	14.6	15.2
Chongqing, SCB				
2014–2015	53.5	18.2	6.5	21.8
2015–2016	20.0	43.5	13.6	22.9
2016–2017	49.3	10.9	7.6	32.2
2017–2018	47.1	24.6	10.5	17.8
2018–2019	20.0	52.3	9.3	18.4

Table 1. FI of wintertime PM₁₀ in nine regional core cities in Scenario one.
Time	Random Forest	RNN		
	R	RMSE	R	RMSE
Beijing, BTH				
2015.1	0.85	56.3	0.86	58.6
2016.1	0.91	60.2	0.92	41.0
2017.1	0.86	77.4	0.88	82.9
2018.1	0.74	34.5	0.75	34.8
2019.1	0.85	35.9	0.85	35.8
Tianjin, BTH				
2015.1	0.87	57.9	0.92	51.2
2016.1	0.89	50.5	0.89	50.3
2017.1	0.88	51.9	0.88	51.9
2018.1	0.78	26.4	0.82	23.5
2019.1	0.79	36.8	0.81	42.9
Shanghai, YRD				
2015.1	0.86	42.7	0.91	44.2
2016.1	0.83	30.3	0.88	27.4
2017.1	0.79	25.6	0.79	22.6
2018.1	0.86	27.8	0.88	28.7
2019.1	0.85	34.0	0.87	31.9
Nanjing, YRD				
2015.1	0.81	59.9	0.84	69.9
2016.1	0.69	48.4	0.84	70.2
2017.1	0.81	32.6	0.97	29.1
2018.1	0.80	53.2	0.81	55.6
2019.1	0.83	44.5	0.83	50.1
Hangzhou, YRD				
2015.1	0.89	39.2	0.90	39.7
2016.1	0.84	34.8	0.87	30.9
2017.1	0.80	34.2	0.84	32.4
2018.1	0.82	30.0	0.87	28.3
2019.1	0.61	45.9	0.61	49.7
Guangzhou, PRD				
2015.1	0.86	23.5	0.930	16.2
2016.1	0.86	17.5	0.882	16.4
2017.1	0.88	27.9	0.895	29.9
2018.1	0.90	33.5	0.921	32.9
2019.1	0.89	27.9	0.87	38.4
Shenzhen, PRD				
2015.1	0.80	23.7	0.79	28.3
2016.1	0.73	16.4	0.75	16.0
2017.1	0.79	12.2	0.80	13.8
2018.1	0.89	17.7	0.90	18.3
2019.1	0.81	25.3	0.81	27.7
Chengdu, SCB				
2015.1	0.84	78.1	0.86	77.4
2016.1	0.84	31.5	0.79	36.7
2017.1	0.70	96.7	0.69	107.7
2018.1	0.78	37.6	0.86	31.3
2019.1	0.57	34.9	0.68	36.8
Chongqing, SCB				
2015.1	0.82	69.7	0.81	75.1
2016.1	0.60	37.2	0.63	34.8
2017.1	0.79	41.2	0.85	38.6
2018.1	0.80	35.3	0.89	26.6
2019.1	0.64	49.2	0.69	48.6

Table 2. Performance of machine learning in predicting hourly PM$_{10}$.
Figure 2. Observed and simulated PM$_{10}$ in January 2019: Scenario one.
Table 3. Monthly average observed and predicted PM$_{10}$ in January of 2019: Scenario one.

Location, Region	Observation (μg/m3)	RF-simulated (μg/m3)	RNN-simulated (μg/m3)
Beijing, BTH	77.2	61.6	45.7
Tianjin, BTH	102.0	88.8	76.2
Shanghai, YRD	59.1	47.4	36.1
Nanjing, YRD	116.6	73.6	66.6
Hangzhou, YRD	89.2	62.5	56.3
Guangzhou, PRD	66.1	43.3	34.0
Shenzhen, PRD	61.6	40.1	37.9
Chengdu, SCB	107.0	87.2	78.4
Chongqing, SCB	102.6	64.3	64.0
Average	86.8	63.2	55.0

Figure 2. (continued)
Figure 3. Observed and simulated PM$_{10}$ in January 2019: Scenario two.
PM$_{10}$ Pattern. RNN and RF are able to accurately predict hourly PM$_{10}$ using only SO$_2$, NO$_2$ and CO as inputs. The long-range transported PM$_{10}$ was insignificant for haze. The severity of PM$_{10}$ was impacted by the lopsided shift of thermodynamic equilibrium and the phenology of local flora.

Received: 8 January 2021; Accepted: 9 April 2021
Published online: 26 April 2021

References
1. Tilt, B. China’s air pollution crisis: science and policy perspectives. Environ. Sci. Policy 92, 275–280. https://doi.org/10.1016/j.envsci.2018.11.020 (2019).
2. Tian, Y. et al. Ambient air pollution and daily hospital admissions: a nationwide study in 218 Chinese cities. Environ. Pollut. 242B, 1042–1049. https://doi.org/10.1016/j.envpol.2018.07.116 (2018).
3. Sanjurjo-Sánchez, J. & Alves, C. Geologic materials and gamma radiation in the built environment. Environ. Chem. Lett. 15(4), 561–589. https://doi.org/10.1007/s10311-017-0643-1 (2017).
4. Wu, J. et al. Residential emissions predicted as a major source of fine particulate matter in winter over the Yangtze River Delta, China. Environ. Chem. Lett. 16(3), 1117–1127. https://doi.org/10.1007/s10311-018-0735-6 (2018).
5. Fan, X. et al. More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM$_{10}$. Environ. Pollut. 251, 668–680 (2019).
6. Zhai, Y. et al. A review on airborne microorganisms in particulate matters: composition, characteristics and influence factors. Environ. Int. 113, 74–90. https://doi.org/10.1016/j.envint.2018.01.007 (2018).
Author contributions
R.F. and X.F. wrote the main manuscript text. R.Z. prepared all the figures. W.S. and N.S. prepared all the tables. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to R.F. or X.F.
