Introduction

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by increased permeability of the alveolar–capillary barrier, resulting in influx of protein-rich edema fluid and consequent impairment in arterial oxygenation. Although mortality has decreased over recent decades, it remains high (30–40%), and pulmonary and nonpulmonary morbidity in ARDS survivors is significant [1]. Although ALI has been described in neutropenic patients, activation and transmigration of circulating neutrophils (polymorphonuclear leukocytes [PMNs]) are thought to play a major role in the early development of ALI [2]. In most animal models, elimination of PMNs markedly decreases the severity of ALI [3]. In addition, recovery from neutropenia in some patients with lung injury is associated with a deterioration in pulmonary function [4].

Various animal models have been developed to study the molecular basis of PMN trafficking in the lung (Table 1), but each mimics only some aspects of the clinical situation. Pre-existing pulmonary or nonpulmonary diseases, fluid resuscitation, and mechanical ventilation significantly influence the course of ALI but are not considered in most animal models. In addition, experimental methods with which to study PMN recruitment are limited; for example, intravital

Abstract

Acute lung injury and its more severe form, acute respiratory distress syndrome, are major challenges in critically ill patients. Activation of circulating neutrophils and transmigration into the alveolar airspace are associated with development of acute lung injury, and inhibitors of neutrophil recruitment attenuate lung damage in many experimental models. The molecular mechanisms of neutrophil recruitment in the lung differ fundamentally from those in other tissues. Distinct signals appear to regulate neutrophil passage from the intravascular into the interstitial and alveolar compartments. Entry into the alveolar compartment is under the control of CXC chemokine receptor (CXCR)2 and its ligands (CXC chemokine ligand [CXCL]1–8). The mechanisms that govern neutrophil sequestration into the vascular compartment of the lung involve changes in the actin cytoskeleton and adhesion molecules, including selectins, β_2 integrins and intercellular adhesion molecule-1. The mechanisms of neutrophil entry into the lung interstitial space are currently unknown. This review summarizes mechanisms of neutrophil trafficking in the inflamed lung and their relevance to lung injury.

Keywords acute respiratory distress syndrome, adhesion molecules, chemokines, neutrophil recruitment
microscopy has produced great insight into leukocyte–endothelial interactions in many organs, but it is still technically challenging in the lung.

The specific architecture of the lung leads to unique properties of the pulmonary microcirculation. Even under physiologic conditions, neutrophils must stop several times and change their shape to traverse the small pulmonary capillaries (2–15 µm). This leads to an increased transit time through the pulmonary capillary bed and a significant 40- to 100-fold PMN accumulation (‘marginated pool’) in the lungs (Fig. 1) [6].

In the systemic microcirculation, PMN recruitment from blood into tissue at sites of inflammation usually occurs in post-capillary venules and requires capture, rolling, and firm adhesion on activated endothelial cells. Selectin, integrin and immunoglobulin adhesion molecules, cytokines, chemokines, and other chemoattractants participate in this sequential process in a variety of vascular beds [7–9]. In contrast, the principal site of leukocyte migration in the lung is the capillary bed. PMN migration into the different lung compartments (intravascular, interstitial, and intra-alveolar) is differentially regulated because PMNs can enter the pulmonary interstitium without advancing to the alveolar airspace. However, crossing the epithelial barrier seems to be pivotal for inducing lung damage and it is associated with an increase in mortality [10]. Bacterial endotoxin (lipopolysaccharide [LPS]) is known to induce a large influx of PMNs into the alveolar airspace, but only when it is given intratracheally. In contrast, systemic LPS leads to PMN sequestration in the pulmonary vasculature, but most of these cells never appear in bronchoalveolar lavage (BAL) fluid [11].

This review summarizes experimental findings that provide insight into the mechanisms of PMN recruitment in the pulmonary microvasculature, including the migration steps from blood to alveolar airspace. The interrelation between lung inflammation and coagulation provides a target for potential future pharmacological interventions, and we critically discuss the clinical relevance of these experimental findings.

Sequestration of neutrophils in the inflamed lung

In contrast to physiologic margination, neutrophil sequestration reflects the process of neutrophil accumulation in the pulmonary vasculature in response to an inflammatory stimulus. Inflammatory challenge results in a rapid depression in circulating neutrophils in the blood, mainly due to a dramatic increase in PMN sequestration in the pulmonary microvasculature. Altered biomechanical properties of neutrophils are thought to be important for PMN sequestration in the lung in response to various mediators such as tumor necrosis factor (TNF)-α, IL-8, platelet-activating factor, and N-formylmethionyl-leucyl-phenylalanine (fMLP) [12,13]. Activated neutrophils lose their ability to deform mainly because of intracellular polymerization of actin filaments. Actin filaments are redistributed from the central, perinuclear regions to the peripheral regions in response to chemoattractants, forming actin stress fibers, lamellipodia, ruffles, and filopodia. As a result of these changes in cell shape in response to a chemoattractant, transit time through the pulmonary vasculature is prolonged, resulting in an increased concentration of PMNs [14]. Inhibition of cellular actin organization with cytochalasin D prevents fMLP-induced
PMN sequestration [15]. Circulating neutrophils in ARDS patients were found to be less deformable [16], emphasizing the key role played by structural changes in PMN entrapment in the lung microvasculature.

The role of adhesion molecules in this process is not clear. L-selectin-deficient mice exhibit attenuation of prolonged (5 min after complement injection) capillary sequestration, whereas rapid PMN accumulation is only reduced in noncapillary vessels [17]. L-selectin is required for the sequestration of neutrophils in the lung in response to the formyl peptide fMLP, but not C5a, as shown by blocking antibodies and L-selectin-deficient mice [18]. In a model of sepsis-induced ARDS, antibodies to E-selectin and L-selectin did not affect PMN sequestration [19]. Deficiency in either E-selectin and P-selectin or CD18 alone did not affect sequestration [20]. However, blocking CD18, αv, and α5 integrin in combination resulted in a significant attenuation of fMLP-induced sequestration into the lung. Additional inhibition of E-selectin and L-selectin further attenuated PMN sequestration, whereas inhibition of these selectins alone had no effect [21]. Interestingly, these blocking antibodies did not inhibit the physical deformation properties of PMNs, suggesting that neutrophil deformability is not the only regulator of sequestration.

Transendothelial migration of neutrophils
Transendothelial PMN migration in response to inflammatory stimuli occurs in the pulmonary capillary bed, mainly by penetrating interendothelial junctions or at bicellular or tricellular corners of endothelial cells, although there is an alternative, transcellular route [22]. Sequestered and adherent neutrophils induce cytoskeletal changes in the endothelial cells. Adhesive interactions between leukocytes and endothelial cells, leading to intracellular signaling through transmembrane proteins in the area of tight junctions (e.g. platelet endothelial cell adhesion molecule [PECAM]-1, CD99, VE-cadherin), might trigger transient remodeling of the junction [23,24]. It has been suggested that neutrophil proteases may digest the subendothelial matrix. However,
The inhibition of these proteases does not affect neutrophil transendothelial migration [25] or migration through the basement membrane [26].

Role of adhesion molecules

The initial steps of the leukocyte adhesion cascade include capture and rolling of circulating leukocytes and require E-, L- and P-selectin [27], whereas integrins – heterodimeric transmembrane glycoproteins – mediate firm adhesion by interacting with intercellular adhesion molecules (e.g. intercellular adhesion molecule [ICAM]-1, ICAM-2, vascular cell adhesion molecule [VCAM]-1) [28]. Selectins and β2 integrins (CD18) are the most studied adhesion molecules in ALI.

Integrins

PMN migration in the lung can occur in both CD18-dependent and CD18-independent pathways, depending on the stimulus (Table 2). Neutrophil recruitment requires CD18 when induced by *Escherichia coli*, *Pseudomonas aeruginosa*, IL-1, or IgG immune complexes, whereas migration in response to Gram-positive bacteria, hyperoxia, and complement factor C5a is CD18 independent. Aspiration of hydrochloric acid induces a CD18-independent PMN migration at the site of instillation but CD18-dependent PMN recruitment in the contralateral lung [29]. The way of application also influences the CD18 dependency of PMN migration. Intratracheal instillation of LPS leads to a CD18 dependent recruitment into the alveolar airspace [30]. However, the same endotoxin given intraperitoneally [20] results in a neutrophil sequestration that is independent of CD18 and attenuates PMN recruitment in response to intratracheal LPS [31].

Most stimuli inducing a CD18-dependent PMN migration upregulate ICAM-1 – a major ligand for CD18 – on endothelial cells. Endothelial ICAM-1 expression was increased following *E. coli* LPS, but not *Streptococcus pneumoniae* challenge [32]. The fact that IL-1 and TNF-α, both of which are nuclear factor-κB-dependent proinflammatory cytokines that regulate expression of ICAM-1, are required for CD18/ICAM-1-dependent pathways supports this hypothesis. In addition, members of the β1 integrin family (very late antigen-4 and -5) may mediate CD18-independent PMN migration [22].

The CD18 integrin Mac-1 (CD11b/CD18) appears to be very important in PMN recruitment in the lung because antibodies to Mac-1, but not to lymphocyte function-associated antigen-1 (LFA-1, CD11a/CD18), inhibited neutrophil migration significantly in an inhaled LPS model [33]. Neutrophil inhibiting factor, a hookworm-derived protein that binds to and blocks CD11b, also prevents PMN recruitment into the lung [34].

PECAM-1, a member of the immunoglobulin superfamily, localizes close to interendothelial clefts and has been suggested to regulate PMN migration in the pulmonary vasculature. In an early study [35], antibodies to PECAM-1 attenuated neutrophil emigration into the lung in response to IgG immune complex deposition. However, PECAM-1 expression does not change in response to inflammatory changes [36,37], and in a more recent study [38] blocking PECAM-1 did not prevent *E. coli* or *S. pneumoniae* induced lung injury in rats or mice.

Selectins

Although selectins are essential for initiating the rolling process in the systemic vasculature, their role for PMN transmigration in the pulmonary microcirculation is less clear and depends on the inflammatory stimulus. LPS-induced migration into the alveolar airspace was not inhibited by blocking all three selectins [39]. Neutrophil emigration is unaffected by *Streptococcus pneumoniae* in mice lacking E-selectin and P-selectin with L-selectin function blocked [40]. In contrast, all selectins have been shown to participate in the development of lung injury induced by complement or intratracheal deposition of IgG complexes [41] or bacterial LPS [42], suggesting that the involvement of selectins may be stimulus-dependent. L-selectin function is necessary for sustained intracapillary accumulation of neutrophils, but not for emigration of neutrophils [43].

The impact of adhesion molecule mediated leukocyte–endothelium interaction in patients with ALI is yet to be elucidated. In lung tissue samples from patients who had died from ARDS, a strong upregulation of ICAM-1, VCAM-1 and

Role of CD18 integrins for neutrophil recruitment in different rodent and rabbit models of acute lung injury
CD18 dependency
Dependent
Independent

IL, interleukin.
E-selectin was found, suggesting that these adhesion molecules play a role in human lung injury [36]. In an ex vivo study [44], human PMNs were found to express higher levels of CD18 after incubation with BAL fluid from ARDS patients who received a conventional as opposed to a lung protective ventilation strategy. It was suggest that this, in addition to lower mechanical stress, could explain the beneficial effect of mechanical ventilation using low tidal volumes [45].

Chemokines

Chemokines are a group of approximately 40 small chemoattractant proteins (70–125 amino acids; 6–14 kDa) that bind to G-protein coupled receptors [46]. In humans, CXC chemokine ligand (CXCL)1–CXCL3 and CXCL5–CXCL8 bind to CXC chemokine receptor (CXCR)1 and CXCR2, and are potent chemotactic factors for neutrophils. In mice, CXCL1–3, CXCL5 and CXCL6 bind to CXCR2. CXCL1 and CXCL2 have been shown to induce rapid integrin activation, causing arrest from rolling and chemotaxis [47]. Chemotaxis to chemokines or other soluble chemoattractants such as C5a, platelet-activating factor, leukotriene B4, or FMLP might be the most important trigger for PMN recruitment into the lung.

Chemokines are produced by activated macrophages, monocytes, neutrophils, endothelium, epithelium, platelets, and various parenchymal cells [48]. After having been secreted, some chemokines are immobilized by specific glycosaminoglycans (GAGs) on target cells. GAG-bound chemokines may be able to activate neutrophils, or they must first dissociate from GAGs to interact with their receptors [49]. Neutrophils stimulated by chemokines generate a chemokine receptor-rich pseudopod at the leading edge and a tail-like uropod, allowing for a directional movement toward the chemokine gradient [50]. Actin polymerization and depolymerization required for this cell remodeling are regulated by Rho, Rac, and Cdc42 proteins, which are members of the Rho family of small G proteins [51]. Chemokines are able to activate these small G proteins and thereby induce locomotion (Rac), unidirectional movement (Cdc42), and uropod retraction (Rho) [49]. Lack of Rac2, the predominant Rac isoform in human neutrophils, results in a severe immunodeficiency with impaired neutrophil polarization and chemotaxis [52].

The best studied CXC chemokine in humans is CXCL8 (IL-8), which has significant relevance to lung injury. High concentrations of IL-8 in BAL fluid from ARDS patients are associated with increased neutrophil influx into the airspace, and in vitro chemotactic activity of BAL fluid can be attenuated by removing IL-8 [53]. Intratracheal instillation of IL-8 leads to a PMN influx in models of ALI, and blocking IL-8 has been shown to ameliorate lung damage in models of acid aspiration [54], pancreatitis [55], and reperfusion injury [56]. Recent studies suggest that IL-8 in BAL fluid from ARDS patients is bound to an anti-IL-8 autoantibody. This immune complex exhibits chemotactic and proinflammatory activity [57] and its concentration might be an important prognostic factor for the development and outcome of ARDS [58,59].

In rodents, the two most important chemokines for PMN recruitment into the lung are keratinocyte-derived chemokine (KC) and macrophage inflammatory protein (MIP)-2 [46]. Both bind to and activate CXCR2, but differ in their biological potency and affect PMN migration into the lung in different ways [60]. Only KC is selectively transported from the lung to the blood, whereas MIP-2 is retained in the lung compartment [61]. Circulating KC may be able to ‘prime’ circulating PMNs to migrate into the lung in response to MIP-2. After an intraperitoneal LPS challenge in mice, mRNA for both KC and MIP-2 is increased in lung tissue [62]. MIP-2 and CINC (the rat orthologue of KC) are upregulated in a hindlimb ischemia/reperfusion-induced lung injury model [63]. Neutralization of either chemokine significantly decreases neutrophil recruitment into the lung [64]. Similarly, absence or blockade of CXCR2 attenuates neutrophil influx into the lung [65]. In a murine model of ventilator-induced lung injury, mechanical ventilation with high peak pressures resulted in an increase in both KC and MIP-2, and their level correlated with lung injury and neutrophil sequestration [66].

These chemokines may be released by alveolar macrophages, alveolar type II cells, and endothelial cells [20,67,68]. After an intratracheal LPS challenge, both KC and MIP-2 are found in the alveolar airspace. KC is synthesized, secreted, and deposited on syndecan-1 (a cell-bound proteoglycan) molecules. Matrilysin, a matrix metalloproteinase, cleaves this KC–syndecan-1 complex and thereby may create a chemotactic gradient. Matrilysin-deficient mice lack the ability to create such a chemotactic gradient, and transepithelial efflux of neutrophils is attenuated [10]. In the setting of ALI, the p38 mitogen-activated protein kinase pathway appears to play a major role. P38 has been shown to stimulate the nuclear factor-κB mediated production of various cytokines, such as IL-1β and TNF-α, and to affect chemotaxis, adhesion and oxygen release, particularly in neutrophils [2]. P38 is activated in neutrophils after endotoxin exposure, and inhibition of p38 attenuates intratracheal LPS-induced neutrophil migration into the airspace without affecting the PMN accumulation in the lung and, even more interesting, without affecting the alveolar expression of chemokines KC and MIP-2 [69].

Although KC and MIP-2 are the most studied chemokines in rodent models of ALI, other CXC chemokines might be involved. Epithelial neutrophil-activating peptide (ENA)-78 (CXCL5) has been measured in the airspace of ARDS patients and correlated with neutrophil counts in BAL fluid [70], although the chemotactic potency appeared to be less when compared with IL-8 [71]. Increased ENA-78 expression was also found in a model of lung injury in rats induced by hepatic ischemia/reperfusion [72]. In contrast, LPS-induced
CXC chemokine (LIX; the murine orthologue of ENA-78) expression in the lung was not affected in a model of abdominal sepsis [73].

Lungkine (CXCL15) is exclusively expressed in lung epithelial cells and is upregulated in various lung inflammation models. In a Klebsiella pneumoniae infection model, lungkine-deficient mice exhibited reduced PMN migration into the alveolar space, whereas recruitment from the blood into the lung parenchyma appeared to be unaffected, suggesting a role for this chemokine in migration through the alveolar epithelium [74].

Neutrophil recruitment: crosstalk between inflammation and coagulation

More than 80 years ago, the deposition of fibrin strands in the inflamed lung tissue was suggested to be responsible for the emigration of neutrophils into the alveolar airspace [75]. Using modern methods, these observations have been confirmed [22]. There is clear evidence that fibrin deposition and microvascular thrombosis are early events in the development of ALI/ARDS, although the mechanisms remain unclear. Several attempts were made to regulate the crosstalk between coagulation and inflammation in clinical trials. Although not focused on the treatment of ARDS, human recombinant protein C has been shown to increase survival in patients with severe sepsis [76].

Because of its central role in triggering blood coagulation with extensive consequences for both fibrin deposition and inflammatory response, the modulation of tissue factor (TF)-dependent pathways has gained interest in animal and human studies. TF is the cellular transmembrane receptor for factor VIIa. It is expressed by circulating monocytes and, at least under inflammatory conditions, by endothelial cells. In the lung, TF is expressed by alveolar macrophages and alveolar epithelial cells [77]. During inflammation, TF expression and activity are increased in lung, brain, and kidney [78]. Beyond its importance for hemostasis and thrombosis, TF has direct and indirect effects on the inflammatory system, mainly via production of thrombin, which activates proteinase activated receptor-1 to -4 and cleaves fibrinogen [79]. Activated by the binding of factor VIIa, TF induces the expression of several proinflammatory genes (e.g. IL-1β, IL-6, IL-8) [80] that may be involved in the development of ARDS [81]. TF levels in patients with ARDS are correlated with lung injury score, suggesting that blocking TF-dependent inflammation might be promising for the development of new therapeutic strategies.

TF pathway inhibitor (TFPI)-1 is an endogenous inhibitor of the TF–factor VIIa complex. However, its physiological role in controlling excessive TF-induced coagulation and inflammation in the clinical setting of sepsis and lung injury might be limited [82]. Although treatment with recombinant TFPI-1 in animal models of lung injury was promising, it failed to improve survival of patients with severe sepsis in a phase III clinical trial [83]. TFPI-1 does not affect the internalization of factor Vlla, which is pivotal for further TF-dependent signaling [84], and requires factor Xa for the formation of the inhibitory quaternary complex [85]. Therefore, TFPI-1 strategies might be less effective than blocking TF and/or factor VIIa directly. Blocking TF might interrupt a self-amplifying loop in which further signaling promotes inflammation [86]. Experimental findings showed that inhibition of the TF–factor VIIa complex increased survival in endotoxin-induced sepsis and ALI [87,88], even in a state of established sepsis [89].

Conclusion

Patients with ALI still have a poor prognosis in terms of survival and long-term morbidity. The decrease in ARDS-related mortality is mainly based on improvement in supportive therapies such as protective ventilatory strategies [45]. Other supportive approaches such as restrictive fluid management are currently being investigated. Despite great effort, our understanding of the molecular and cellular mechanisms of ALI and ARDS were recently found to be 'embryonic at best' [90].

The excessive activation and migration of circulating neutrophils from blood to the alveolar airspace is one of the key events in the early development of ALI. Blocking Mac-1, ICAM-1, or combinations of adhesion molecules has been shown to protect against lung injury in many experimental studies. In animal models, reliable methodologic approaches to assess PMN recruitment in the lung can elucidate the different mechanisms of PMN trafficking in the intravascular, interstitial, and alveolar compartments. However, the clinical relevance of these animal models remains unclear, and translation into clinical studies is difficult. These limitations include the absence of comorbidity, mechanical ventilation, fluid management, antibiotic treatment, nutrition, and other factors that may have an impact on outcome in humans. In addition, classical ARDS criteria are usually not tested in animal models. Therefore, clinical studies are required to obtain definitive answers [90].

Finally, neutrophil recruitment into the lung is essential for host defense against bacterial infections [91,92]. The dual role of neutrophils in the lung – defending against infection and mediating lung injury – is not well understood, but must be considered in evaluation of therapeutic approaches.

Competing interests

The author(s) declare that they have no competing interests.

References

1. Ware LB, Matthay MA: The acute respiratory distress syndrome. N Engl J Med 2000, 342:1334-1349.
2. Abraham E: Neutrophils and acute lung injury. Crit Care Med 2003, Suppl:S195-S199.
3. Abraham E, Carmody A, Shenkar R, Arcaroli J: Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-
induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2000, 279:L137-L1145.

4. Azoulay E, Darmon M, Delcaux C, Feux F, Bornstein C, Moreau D, Attal H, Le Gall JR, Schlemmer B: Deterioration of previous acute lung injury during neutropenia recovery. Crit Care Med 2002, 30:781-786.

5. Doerschuk CM, Beyers N, Coxson HO, Wiggs B, Hogg JC: Comparison of neutrophil and capillary diameters and their relationship to neutrophil sequestration in the lung. J Appl Physiol 1993, 74:3040-3045.

6. Doerschuk CM, Allard MF, Martin BA, MacKenzie A, Autor AP, Hogg JC: Margined pool of neutrophils in rabbit lungs. J Appl Physiol 1987, 63:1806-1815.

7. Girchheimer EL: Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 1991, 67:1033-1036.

8. Springer TA: Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994, 76:301-314.

9. Ley K: Integration of inflammatory signals by rolling neutrophils. Immunol Rev 2002, 186:8-18.

10. Li Q, Park PW, Wilson CL, Parks WC: Contribution of matrix metalloproteinase-9 to neutrophil sequestration in the lung: the key molecule in LPS-induced neutrophil sequestration and emigration in the lungs of L-selectin-deficient mice. Eur J Immunol 2002, 32:393-403.

11. Wagner JG, Harkema JR, Roth RA: Pulmonary leukostasis and the inhibition of airway neutrophil recruitment are early events in the endotoxic rat. Shock 2002, 17:151-158.

12. Dvorak HM, Macara IG: Potential role of IL-8, platelet-activating factor and TNF-alpha in the sequestration of neutrophils in the lung: effects on neutrophil deformability, adhesion receptor expression, and chemotaxis. Eur J Immunol 2002, 32:183-196.

13. Takka H, Nishino M, Dahme TE: Physiologic responses to small emboli and hemodynamic effects of changes in deformability of polymorphonuclear leukocytes in isolated rabbit lung. Microvasc Res 2002, 63:81-90.

14. Doerschuk CM: The role of CD18-mediated adhesion in neutrophil sequestration induced by infusion of activated plasma in rabbits. Am J Respir Cell Mol Biol 1992, 7:140-148.

15. Worthy GS, Schwab B, III, Elson EL, Downey GP: Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science 1989, 245:183-186.

16. Skotetis AT, Kalandis V, Athanassiou GM, Kokkinis KI, Missirlis SG, Que LG, Kishimoto TK, Piantadosi CA: The beta2, alpha4, and beta1 integrins are involved in pulmonary neutrophil recruitment in lipopolysaccharide-induced airway disease. Am J Respir Cell Biol 2002, 27:474-480.

17. Ohno S, Malik AB: Polymorphonuclear leucocyte (PMN) inhibitor function prevents PMN-dependent endothelial cell injury by an anti-adhesive mechanism. J Cell Physiol 1999, 171:212-216.

18. Nisa A, Cziporki A, Kandt P, Neumann HH, Muller MM: Heterogenous expression of cell adhesion molecules by endothelial cells in ARDS. J Pathol 2002, 198:270-275.

19. Granger DN: Differential expression of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science 1993, 262:1580-1582.

20. Muller AM, Cronen C, Muller KM, Kirkpatrick CJ: The dynamic regulation of integrin adhesiveness. Semin Immunol 2002, 14:73-81.

21. Diamond MS, Springer TA: The dynamic regulation of integrin adhesiveness. Curr Biol 1994, 4:506-517.

22. Motsugu S, Quinlan WM, Bree M, Doerschuk CM: Role of CD11b in focal acute lung injury. Am J Respir Crit Care Med 1998, 157:192-198.

23. Mackarel AJ, Cottell DC, Russell KJ, FitzGerald MX, O’Connor CM: Migration of neutrophils across human pulmonary endothelial cells is not blocked by matrix metalloproteinase or serine protease inhibitors. Am J Respir Cell Mol Biol 1999, 20:1209-1219.

24. Betsuyaku T, Shiple J, Liu Z, Senior RM: Neutrophil emigration in the lungs, peritoneum, and skin does not require gelatinase B. Am J Respir Cell Mol Biol 1999, 20:1303-1309.

25. Nobori S, Czarnocki V, Tsukita S: Selectins: critical mediators of leukocyte recruitment. Semin Immunol 2002, 14:73-81.

26. Norton SA, Kouchi MM, Lambris D, Henson PM: Leukocyte adhesion to the vascular endothelium: the multistep paradigm. Annu Rev Immunol 2000, 18:219-296.

27. Davis H, Kouchi MM, Lambris D, Henson PM: Leukocyte adhesion to the vascular endothelium: the multistep paradigm. Annu Rev Immunol 2000, 18:219-296.

28. Granger DN: Platelet-endothelial cell adhesion molecule-1 (PECAM-1) in murine tissues. Microcirculation 1998, 5:179-188.

29. Taksa S, Qin L, Saio A, Albeda SM, DeLisser HM, Doerschuk CM: Platelet endothelial cell adhesion molecule-1 (PECAM-1) in murine tissues. Microcirculation 1998, 5:179-188.

30. Miller MA, Bochner BS, Kunkel SL: Protective effects of sodium salicylate against lipopolysaccharide-induced acute lung injury in rabbits. Am J Respir Cell Mol Biol 1994, 10:318-322.

31. Miller MA, Bochner BS, Kunkel SL: Protective effects of sodium salicylate against lipopolysaccharide-induced acute lung injury in rabbits. Am J Respir Cell Mol Biol 1994, 10:318-322.

32. Granger DN, Henson PM, Lambris D, Henson PM: Leukocyte adhesion to the vascular endothelium: the multistep paradigm. Annu Rev Immunol 2000, 18:219-296.

33. Davis H, Kouchi MM, Lambris D, Henson PM: Leukocyte adhesion to the vascular endothelium: the multistep paradigm. Annu Rev Immunol 2000, 18:219-296.

34. Davis H, Kouchi MM, Lambris D, Henson PM: Leukocyte adhesion to the vascular endothelium: the multistep paradigm. Annu Rev Immunol 2000, 18:219-296.

35. Davis H, Kouchi MM, Lambris D, Henson PM: Leukocyte adhesion to the vascular endothelium: the multistep paradigm. Annu Rev Immunol 2000, 18:219-296.

36. Davis H, Kouchi MM, Lambris D, Henson PM: Leukocyte adhesion to the vascular endothelium: the multistep paradigm. Annu Rev Immunol 2000, 18:219-296.

37. Davis H, Kouchi MM, Lambris D, Henson PM: Leukocyte adhesion to the vascular endothelium: the multistep paradigm. Annu Rev Immunol 2000, 18:219-296.

38. Davis H, Kouchi MM, Lambris D, Henson PM: Leukocyte adhesion to the vascular endothelium: the multistep paradigm. Annu Rev Immunol 2000, 18:219-296.

39. Davis H, Kouchi MM, Lambris D, Henson PM: Leukocyte adhesion to the vascular endothelium: the multistep paradigm. Annu Rev Immunol 2000, 18:219-296.

40. Davis H, Kouchi MM, Lambris D, Henson PM: Leukocyte adhesion to the vascular endothelium: the multistep paradigm. Annu Rev Immunol 2000, 18:219-296.
volumes for acute lung injury and the acute respiratory dis-
tress syndrome. The Acute Respiratory Distress Syndrome
Network. N Engl J Med 2000, 342:1301-1308.
46. Olson TS, Ley K: Chemokines and chemokine receptors in
leukocyte trafficking in the lung. Am J Physiol Regul Int Comp
Physiol 2002, 283:R7-R28.
47. Ley K: Arrest chemokines. Microcirculation 2003, 10:289-295.
48. Rollins BJ: Chemokines. Blood 1997, 90:909-928.
49. Hagemann A, Von Arberian UH: Chemokin activity in innate and adaptive
host defense: basic chemokine grammar for immune cells.
Annu Rev Immunol 2004, 22:891-928.
50. Nieto M, Frade JM, Sancho D, Mellado M, Martinez A, Sanchez-
Madrid F: Polarization of chemokine receptors to the leading edge
during lympocyte chemotaxis. J Exp Med 1997, 186:
153-158.
51. Takai Y, Sasaki T, Matotaki T: Small GTP-binding proteins.
Phys Rev 2001, 81:153-208.
52. Ambruso DR, Knall C, Abell AN, Panejkat J, Kurckhabsche A, Trupka G, Gonzalez-Allee C, Hiester A, deBoer M, Harbeck RJ, Oyer R, Johnson GL, Roos D: Human neutrophil immunodefi-
ciency syndrome is associated with an inhibitory Rac2 muta-
tion. Proc Natl Acad Sci USA 2000, 97:4654-4659.
53. Miller LJ, Cohen AB, Nagao S, Griffith D, Maurer JD, Martin TR,
Wenby KM, Kriek M, Scichilone NM, Bynoe MA: Elevated levels of
NAP-1/interleukin-8 are present in the air-
spaces of patients with the adult respiratory distress syn-
drome and are associated with increased mortality. Am Rev
Respir Dis 1995, 152:427-432.
54. Folkesson HG, Matthey MA, Hebert CA, Broadus VC: Acid
aspiration-induced lung injury in rabbits is mediated by inter-
leukin-8-dependent mechanisms. J Clin Invest 1995, 96:107-
116.
55. Osman MO, Kristenens JU, Jacobsen NO, Lausten SB, Deleuran
B, Deleuran M, Gesser B, Matsushima K, Larsen CG, Jensen SL: A
monoclonal anti-interleukin 8 antibody (WS-4) inhibits
cytokine response and acute lung injury in experimental
severe acute necrotising pancreatitis in rabbits. Gut 1998, 43:
488-494.
56. Sekido N, Mukaida N, Harada A, Nakashima I, Watanabe Y, Matsu-
sushma K: Prevention of lung reperfusion injury in rabbits by a
monoclonal antibody against interleukin-8. Nature 1993, 365:
654-657.
57. Czermak BJ, Warner RL, Padgaonkar VA, Lentsch AB, Czermak BJ,
Schmal H, Friedl HP, Ward PA: Roles for C-X-C chemokines
and C5a in lung injury after hindlimb ischemia-reperfusion.
J Am Physiol 1999, 276:L57-L63.
58. Greenberger MJ, Strieter RM, Kunkel SL, Danforth JM, Laichalk
LL, McGilluccy DC, Standiford TJ: Neutralization of
macrophage inflammatory protein-2 attenuates neutrophil
recruitment and bacterial clearance in murine Klebsiella
pneumonia. J Infect Dis 1996, 173:159-165.
59. Gonzalez AL, Appleberg R: The involvement of the chemokine receptor
CXCR2 in neutrophil recruitment in LPS-
induced inflammation and in Mycobacterium avium infection.
Scand J Immunol 2002, 55:585-591.
60. Belperio JA, Keane MP, Burdick MD, Loundhe V, Xue YY, Li K,
Phillips RJ, Strieter RM: Critical role for CXCR2 and CXCR2
ligands during the epithelial genesis of ventilator-induced
lung injury. J Clin Invest 2002, 110:1703-1716.
61. Johnson MC, Kajikawa O, Goodman RB, Wong VA, Monglov
SM, Wong WB, Fox-Dewhurst R, Martin TR: Molecular expres-
sion of the alpha-chemokine rabbit GRO in Escherichia coli
and characterization of CXC chemokine receptors in lung cells in vitro and in vivo.
J Biol Chem 1996, 271:10853-10858.
62. Vanderbilt JN, Mager EM, Allen L, Sawa T, Wiener-Kronish J, Gonz-
alez R, Dobbs LG: CXC chemokines and their receptors are
expressed in type II cells and upregulated following lung
injury. Am J Respir Cell Mol Biol 1995, 13:107-
115.
63. Gando S, Kameue T, Matsuda N, Hayakawa M, Morimoto Y, Ishi-
ava K, Kido M, Hattori J, Tsuchiya Y, Nakai K, Okuma Y:
In vivo. J Biol Chem 1996, 271:10853-10858.
64. Dick MJ, Schobersberger W: Alveolar granulocyte colony-stimulating
factor and alpha-chemokines in relation to serum levels, pul-
monary neutrophilia, and severity of lung injury in ARDS.
Chest 2004, 125:219-229.
65. Colletti LM, Green M: Lung and liver injury following hepatic
ischaemia/reperfusion in the rat is increased by exogenous
lipopolysaccharide which also increases hepatic TNF produc-
tion in vivo and in vitro. Shock 2001, 16:312-319.
66. Neumann B, Zantl N, Kunkel SL, Enamandakis K, Pfaffer K, Heidecke CD, Holzmabn B: Mechanisms of acute inflam-
matory lung injury induced by abdominal sepsis. Int Immunol
1999, 11:217-227.
67. Chen SC, Mehrad B, Deng JC, Vassileva G, Mannfar DJ, Cook DN,
Wiekowski MT, Zlotnik A, Standiford TJ, Lira SA: Impaired pul-
monary host defense in mice lacking expression of the CXC
chemokine lungkine. J Immunol 2001, 166:3362-3368.
68. Miller WS: A study of the factors underlying the formation of
alveolar pores in pneumonia. J Exp Med 1923, 38:707-711.
69. Bechard GP, Vincent LJ, Lemaire SP, Dhaunay JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely
EW, Fisher CJ Jr: Recombinant human protein C Worldwide Eval-
uation in Severe Sepsis (PROWESS) study group: Efficacy and
safety of recombinant human activated protein C for severe
infection. N Engl J Med 2001, 344:699-709.
70. Wely-Wolf KE, Carassway MS, Ortel TL, Piantadosi CA: Coagula-
tion and inflammation in acute lung injury. Thromb Haemost
2002, 88:17-25.
71. Erlich J, Fears C, Mathison J, Ulevitch RJ, Mackman N: Lipopolysaccharide induction of tissue factor expression in
rabbits. Infect Immun 1999, 67:2540-2546.
72. Coughlin SR: Thrombin signalling and protease-activated
receptors. Nature 2000, 407:258-264.
73. Taylor FB, Chang AC, Peere G, Li A, Ezban M, Hedner U: Active
site inhibited factor VIIa (DEGR VIIa) attenuates the coagulant
and interleukin-6 and -8, but not tumor necrosis factor,
response of the baboon to LD100 doses of Mycoplasma
pneumonia. J Infect Dis 1996, 173:159-165.
74. Goodno B, Kameue T, Matsuda N, Hayakawa M, Morimoto Y, Ishi-
ava K, Kido M, Hattori J, Tsuchiya Y, Nakai K, Okuma Y:
In vivo. J Biol Chem 1996, 271:10853-10858.
Artigas A, Percell SR, Shu V, Zwingelstein C, Tobias J, Poole L, Stolzenbach JC, Creasey AA; OPTIMIST Trial Study Group: Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA 2003, 290:238-247.

84. Hansen CB, Pyke C, Petersen LC, Rao LV: Tissue factor-mediated endocytosis, recycling, and degradation of factor VIIa by a clathrin-independent mechanism not requiring the cytoplasmic domain of tissue factor. Blood 2001, 97:1712-1720.

85. Doshi SN, Marmur JD: Evolving role of tissue factor and its pathway inhibitor. Crit Care Med 2002, Suppl:S241-S250.

86. Ruf W, Riewald M: Tissue factor-dependent coagulation protease signaling in acute lung injury. Crit Care Med 2003, Suppl:S231-S237.

87. Welty-Wolf KE, Carraway MS, Miller DL, Ortel TL, Ezban M, Ghio AJ, Idell S, Plantadosi CA: Coagulation blockade prevents sepsis-induced respiratory and renal failure in baboons. Am J Respir Crit Care Med 2001, 164:1988-1996.

88. Miller DL, Welty-Wolf K, Carraway MS, Ezban M, Ghio A, Sulman H, Plantadosi CA: Extrinsic coagulation blockade attenuates lung injury and proinflammatory cytokine release after intratracheal lipopolysaccharide. Am J Respir Cell Mol Biol 2002, 26:650-658.

89. Carraway MS, Welty-Wolf KE, Miller DL, Ortel TL, Idell S, Ghio AJ, Petersen LC, Plantadosi CA: Blockade of tissue factor: treatment for organ injury in established sepsis. Am J Respir Crit Care Med 2003, 167:1200-1209.

90. Matthay MA, Zimmerman GA, Esmon C, Bhattacharya J, Coller B, Doerschuk CM, Floros J, Gimbrone MA Jr, Hoffman E, Hubmayr RD, Leppert M, Matalon S, Munford R, Parsons P, Slutsky AS, Tracey KJ, Ward P, Gail DB, Harabin AL: Future research directions in acute lung injury: summary of a National Heart, Lung, and Blood Institute working group. Am J Respir Crit Care Med 2003, 167:1027-1035.

91. Tateda K, Moore TA, Newsstead MW, Tsai WC, Zeng X, Deng JC, Chen G, Reddy R, Yamaguchi K, Standiford TJ: Chemokine-dependent neutrophil recruitment in a murine model of Legionella pneumonia: potential role of neutrophils as immunoregulatory cells. Infect Immun 2001, 69:2017-2024.

92. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK: Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001, 194:519-527.