TITLE:
Quantum toroidal algebras and their vertex representations.

AUTHOR(S):
Saito, Yoshihisa

CITATION:
Saito, Yoshihisa. Quantum toroidal algebras and their vertex representations.. 京都大学, 1997, 博士(理学)

ISSUE DATE:
1997-03-24

URL:
http://hdl.handle.net/2433/202423

RIGHT:
氏名	さいとうよしひさ
学位（専攻分野）	博士（理学）
学位記番号	理博 第1786号
学位授与の日付	平成9年3月24日
学位授与の要件	学位規則第4条第1項該当
研究科・専攻	理学研究科数学・数理解析専攻
学位論文題目	Quantum toroidal algebras and their vertex representations.（量子トロイダル代数とその頂点表現）
論文調査委員	教授 柏原正樹 教授 三輪哲二 教授 斉藤恭司

論文内容の要旨

本論文はトロイダル量子群 \(U_q(\mathfrak{sl}_n, \text{tor}) \) のポアソン表示による表現の構成を行ったものである。アフィンリー環やアフィン量子群についてはその表現がすくわしく研究され、特にポアソンを用いた最高重み表現の構成が知られている。こうしたポアソン表示はソリトン理論・可解格子模型・共形場理論等において重要な役割を果たしている。アフィンリー環がおおよそ有限次元単純リー環 \(g \) のループ代数 \(g \otimes \mathbb{C}[t, t^{-1}] \) であるのにたいして、トロイダルリー環はおおよそ \(g \otimes \mathbb{C}[t, s, t^{-1}, s^{-1}] \) であり、アフィンリー環の2次元形である。トロイダルリー環は、Moodyによってアフィンリー環の一般化として導入されたが、その表現論の性質は、よく知られていない。Moody-Rao-Yokonumaがポアソン表示をもって一つの表現を構成しているが、この表現は既約ではない。

申請者は、トロイダルリー環の \(q \)-類似であるトロイダル量子群にたいして、ポアソン表示を用いて、その既約表現を2種類構成した。その最初のものは、上記のMoody-Rao-Yokonumaの構成法の \(q \)-類似となっているが、\(q = 1 \) の場合とは全く異なり、表現は既約となっている。さらにその指標を計算し、この表現が、\(U_q(\mathfrak{sl}_n) \) のFock表現と同じ指標を持つことを示した。また、\(U_q(\mathfrak{sl}_2, \text{tor}) \) の場合にChevalley型生成を導入しその関係式について示した。\(U_q(\mathfrak{sl}_2, \text{tor}) \) が3通りに\(U_q(\hat{\mathfrak{sl}}_2) \) を含むことは定義より明らかであるが、申請者は\(U_q(\mathfrak{sl}_2, \text{tor}) \) が4通りにアフィン量子群 \(U_q(\hat{\mathfrak{sl}}_2) \) を部分環として含むことを示した。この4種のアフィン量子群 \(U_q(\mathfrak{sl}_2) \) にたいして、申請者の構成した表現のcentral chargeを求め、その最初のものは、central chargeが1, 0, 0, 1であり、第二の表現は、central chargeが1, 1, 0, 2であることを示した。

論文審査の結果の要旨

申請者は、量子群、特に結晶基底の構造を研究してきたが、主論文では、その発展としてトロイダル量子群の研究を行なっている。
アフィンリー環やアフィン量子群は，共形場理論や2次元可解格子モデの対称性を記述するものとして，その重要性は広く認められ，その表現論はくわしく研究されている。トロイダルリー環（或は量子群）は高次元の対称性を記述する可能性のあるものと期待できるが，ごく最近に研究が始まったばかりで，その本質については将来の研究に待つことが大きい。アフィン量子群 \(U_q(\mathfrak{sl}_n) \) については，神保が，一般線形群 \(GL(n) \) と対称群 \(S_n \) の間の古典的な Weyl-Schur 双対性の類似として，\(U_q(\mathfrak{sl}_n) \) と affine Hecke 環の間の双対性を見出しているが，最近，Varagnolo-Vasserot は，トロイダル量子群 \(U_q(\mathfrak{sl}_n, \text{tor}) \) と，double affine Hecke 環との間の双対性を見出した。しかし，Varagnolo-Vasserot においてとり扱った表現はアフィン量子群の有限次元表現に対応するものであって，最高重み表現に対応するものは知られていなかった。

申請者は，主論文において，Moody-Rao-Yokonuma によるポゾンを用いたトロイダルリー環の表現の構成法を拡張して，\(U_q(\mathfrak{sl}_n, \text{tor}) \) の表現を二種類構成した。さらに，この表現の指標を求め，\(U_q(\mathfrak{sl}_n) \) の Fock 表現と一致することをしめした。従って，これらの表現は，アフィン量子群の最高重み表現に対応するものと考えられる。この表現は，Uglov 等によってその対称性が研究されている Calogero-Sutherland 模型との関連も予想され，非常に興味深い。

従って，本論文は，トロイダル量子群の表現論の先駆的かつ重要な結果をあたえたものとして，高く評価できる。

参考論文は，結晶基底に関連した研究である。Lusztig は，quiver 多様体をもって量子群を幾何的に表現した。この論文において，申請者は，結晶基底が quiver 多様体の余接束にある種の Lagrangean 多様体と一対一に対応することを示した。その副産物として，次の結果を得ている。Kazhdan-Lusztig は，\(GL(n) \) の Schubert 多様体の偏屈層の特性多様体が既約であるという予想を提出している。この予想が \(n \leq 7 \) において成立するが，\(GL(8) \) において反列のあることをしめした。これは幾何と表現論の両面にまたがる結果であって高く評価できる。

なお，主論文及び参考論文に報告されている研究業績を中心としてこれに関した研究分野について試問を受け，合格と認められたものである。