Supporting Information

for

Selective synthesis of α-organylthio esters and α-organylthio ketones from β-keto esters and sodium S-organyl sulfurothioates under basic conditions

Jean C. Kazmierczak, Roberta Cargnelutti, Thiago Barcellos, Claudio C. Silveira and Ricardo F. Schumacher

Beilstein J. Org. Chem. 2021, 17, 234–244. doi:10.3762/bjoc.17.24

Experimental procedures, characterization data, control experiments, and copies of the 1H, 13C, and 19F NMR spectra
Table of Contents	Page
General Methods	S2
Typical procedure for the synthesis of α-thioesters 3	S2
Typical procedure for the synthesis of α-thioketones 4	S7
Typical procedure for the synthesis of 6, 7 and 8	S8
Control experiments	S9
References	S12
Copies of 1H, 13C(1H) and 19F NMR spectra	S13
General Methods

Commercial reagents were used without further purification. Bunte salts were prepared based on literature procedures. All reactions were monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm), and components were visualized by observation under UV light (254 and 365 nm) followed by spraying with acidic vanillin solution. Hydrogen nuclear magnetic resonance spectra (1H NMR) were obtained on Bruker Avance III HD 400 MHz employing a direct broadband probe at 400 MHz. The spectra were recorded in CDCl3 solutions. The chemical shifts are reported in ppm, referenced to tetramethylsilane (TMS) as the internal reference. Coupling constants (J) are reported in Hertz. Carbon-13 nuclear magnetic resonance spectra (13C NMR) were obtained on Bruker Avance III HD 400 MHz employing a direct broadband probe at 100 MHz. The chemical shifts are reported in ppm, referenced to the solvent peak of CDCl3 (δ 77.0 ppm). Fluor-19 nuclear magnetic resonance spectra (19F NMR) were obtained on Bruker Avance III HD 400 MHz employing a direct broadband probe at 376 MHz. The chemical shifts are reported in ppm, referenced to 2-fluorobenzaldehyde (δ -122.4 ppm) as the external reference. The high-resolution electrospray ionization mass spectrometry (ESI-QTOF) analysis were performed on a Bruker Daltonics micrOTOF-Q II instrument in positive mode. The samples were solubilized in HPLC-grade acetonitrile and injected into the APCI source by means of a syringe pump at a flow rate of 5.0 µL min-1. The follow instrument parameters were applied: capillary and cone voltages were set to +3500 V and -500 V, respectively, with a desolvation temperature of 180 °C. For data acquisition and processing, Compass 1.3 for micrOTOF-Q II software (Bruker Daltonics, USA) was used. The data were collected in the m/z range of 50-1200 at the speed of two scans per second. Low-resolution mass spectra were obtained with a Shimadzu GC-MS-QP2010 mass spectrometer. Melting point (mp) values were measured in a Marte PFD III instrument with a 0.1 °C precision.

Typical procedure for the synthesis of α-thioesters: To a reaction tube equipped with a stir bar containing a solution of β-keto ester (0.5 mmol) in toluene (3.0 mL) were added sodium S-organyl sulfothioate (1.0 mmol) and NaOH (2.0 mmol, 0.080 g). Oxygen was bubbled in the reaction mixture, which was stirred at 100 °C for 18-22 h. After being cooled to room temperature, the resulting mixture was quenched with...
water (20 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic phases were washed with brine (20 mL), dried over anhydrous MgSO$_4$, filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (99:1) as eluent to give 3.

Ethyl 2-(benzylthio)acetate (3a): The product was isolated as a colorless oil. Yield: 0.09 g (86%). 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 7.40–7.20 (m, 5H), 4.17 (q, $J = 7.1$ Hz, 2H), 3.83 (s, 2H), 3.06 (s, 2H), 1.28 (t, $J = 7.1$ Hz, 3H). 13C(1H) NMR (CDCl$_3$, 100 MHz): δ (ppm) 170.4, 137.3, 129.1, 128.5, 127.2, 61.2, 36.4, 32.4, 14.1. MS (El, 70 eV; m/z (relative intensity)): 210 (24), 137 (10), 123 (97), 91 (100), 65 (20). HRMS: calcd for C$_{11}$H$_{14}$O$_2$S (ESI-TOF, [M + Na]$^+$), 233.0607; found, 233.0607.

Ethyl 2-((2-chlorobenzyl)thio)acetate (3b): The product was isolated as a yellow oil. Yield: 0.076 g (62%). 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 7.41–7.35 (m, 2H), 7.25–7.17 (m, 2H), 4.19 (q, $J = 7.1$ Hz, 2H), 3.96 (s, 2H), 3.14 (s, 2H), 1.29 (t, $J = 7.1$ Hz, 3H). 13C(1H) NMR (CDCl$_3$, 100 MHz): δ (ppm) 170.3, 135.1, 134.2, 131.0, 130.0, 128.7, 126.7, 61.4, 34.0, 32.8, 14.1. MS (El, 70 eV; m/z (relative intensity)): 246 (13), 244 (33), 159 (33), 157 (86), 127 (34), 125 (100). HRMS: calcd for C$_{11}$H$_{13}$ClO$_2$S (ESI-TOF, [M+Na]$^+$), 267.0217; found, 267.0209.

Ethyl 2-((4-chlorobenzyl)thio)acetate (3c): The product was isolated as a light yellow oil. Yield: 0.094 g (78%). 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 7.30–7.26 (m, J = 4H), 4.17 (q, $J = 7.1$ Hz, 2H), 3.79 (s, 2H), 3.06 (s, 2H), 1.28 (t, $J = 7.1$ Hz, 3H). 13C(1H) NMR (CDCl$_3$, 100 MHz): δ (ppm) 170.2, 135.8, 133.0, 130.5, 128.6, 61.3, 35.6, 32.2, 14.1. MS (El, 70 eV; m/z (relative intensity)): 246 (6), 244 (17), 159 (24), 157 (66), 127 (32), 125 (100). HRMS: calcd for C$_{11}$H$_{13}$ClO$_2$S (ESI-TOF, [M+Na]$^+$), 267.0217; found, 267.0213.

Ethyl 2-((3-(trifluoromethyl)benzyl)thio)acetate (3d): The product was isolated as a colorless oil. Yield: 0.082 g (60%). 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 7.61 (s, 1H), 7.53 (t, $J = 7.8$ Hz, 2H), 7.44 (t, $J = 7.8$ Hz, 1H), 4.18 (q, $J = 7.1$ Hz, 2H), 3.88 (s, 2H), 3.06 (s, 2H), 1.2 (t, $J = 7.1$ Hz, 3H). 13C(1H) NMR (CDCl$_3$, 100MHz): δ (ppm) 170.0, 138.4, 132.5, 130.9 (q, J = 32.3 Hz), 129.0, 125.8 (q, J = 3.8 Hz), 124.1 (q, J = 3.8 Hz),
124.0 (q, J = 272.4 Hz), 61.4, 35.9, 32.3, 14.1. 19F NMR (CDCl$_3$, 376 MHz): δ (ppm) - 63.1. MS (EI, 70 eV; m/z (relative intensity)): 278 (36), 191 (70), 159 (100), 109 (36), 88 (90). HRMS: calcd for C$_{12}$H$_{13}$F$_3$O$_2$S (ESI-TOF, [M+Na]$^+$), 301.0480; found 301.0475.

Ethyl 2-((4-nitrobenzyl)thio)acetate (3e): The product was isolated as a yellow oil. Yield: 0.056 g (45%). 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 8.19 (d, J = 8.9 Hz, 2H), 7.53 (d, J = 8.9 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 3.92 (s, 2H), 3.06 (s, 2H), 1.29 (t, J = 7.1, 3H). 13C{1H} NMR (CDCl$_3$, 100 MHz): δ (ppm) 169.8, 147.2, 145.0, 129.9, 123.7, 61.4, 35.6, 32.2, 14.1. MS (EI, 70 eV; m/z (relative intensity)): 255 (39), 136 (27), 89 (30), 88 (100), 70 (30). HRMS: calcd for C$_{11}$H$_{13}$NO$_4$S (ESI-TOF, [M+Na]$^+$), 278.0457; found 278.0457.

Ethyl 2-((2-bromo-5-methoxybenzyl)thio)acetate (3f): The product was isolated as a colorless oil. Yield: 0.109 g (68%). 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 7.44 (d, J = 8.8 Hz, 1H), 6.98 (d, J = 3.1 Hz, 1H), 6.69 (dd, J = 8.8, 3.1 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.91 (s, 2H); 3.79 (s, 3H), 3.15 (s, 2H), 1.29 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (CDCl$_3$, 100 MHz): δ (ppm) 170.3, 158.8, 137.5, 133.7, 116.7, 114.9, 114.7, 61.4, 55.5, 36.7, 32.7, 14.1. MS (EI, 70 eV; m/z (relative intensity)): 320 (39), 318 (37), 233 (100), 231 (99), 201 (67), 199 (69). HRMS: calcd for C$_{12}$H$_{15}$BrO$_3$S (ESI-TOF, [M+Na]$^+$), 340.9817; found 340.9826.

Ethyl 2-((4-methylbenzyl)thio)acetate (3g): The product was isolated as a yellow oil. Yield: 0.083 g (75%). 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 7.21 (d, J = 7.8 Hz, 2H), 7.12 (d, J = 7.8 Hz, 2H), 4.17 (q, J = 7.1 Hz, 2H), 3.79 (s, 2H), 3.06 (s, 2H), 2.33 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (CDCl$_3$, 100 MHz): δ (ppm) 170.4, 136.9, 134.1, 129.2, 129.0, 61.2, 36.0, 32.3, 21.0, 14.1. MS (EI, 70 eV; m/z (relative intensity)): 225 (3), 224 (16), 137 (72), 105 (100), 77 (13). HRMS: calcd for C$_{12}$H$_{16}$O$_2$S (ESI-TOF, [M+Na]$^+$), 247.0763; found 247.0775.

Ethyl 2-((2-methylbenzyl)thio)acetate (3h): The product was isolated as a yellow oil. Yield: 0.103 g (90%). 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 7.24-7.21 (m, 1H), 7.18-7.11 (m, 3H), 4.19 (q, J = 7.1 Hz, 2H), 3.85 (s, 2H), 3.11 (s, 2H), 2.40 (s, 3H), 1.30 (t, 3H), 1.28 (t, J = 7.1 Hz, 3H).
Ethyl 2-((3-methoxybenzyl)thio)acetate (3i): The product was isolated as a colorless oil. Yield: 0.088 g (74%). \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) (ppm) 7.24-7.20 (m, 1H), 6.93-6.88 (m, 2H), 6.81-6.78 (m, 1H), 4.18 (q, \(J = 7.1\) Hz, 2H), 3.80 (s, 5H), 3.08 (s, 2H), 1.29 (t, \(J = 7.1\) Hz, 3H). \(^{13}\)C\(^{1}\)H NMR (CDCl\(_3\), 100 MHz): \(\delta\) (ppm) 170.3, 159.7, 138.8, 129.4, 121.5, 114.5, 112.9, 61.2, 55.1, 36.3, 32.3, 14.1. MS (EI, 70 eV; m/z (relative intensity)): 240 (50), 153 (100), 122 (17), 121 (92), 91 (34). HRMS: calcd for C\(_{12}\)H\(_{16}\)O\(_3\)S (ESI-TOF, [M+Na]+), 263.0763; found 263.0760.

Ethyl 2-(butylthio)acetate (3j):[6] The product was isolated as a yellow oil. Yield: 0.035 g (40%). \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) (ppm) 4.19 (q, \(J = 7.1\) Hz, 2H), 3.20 (s, 2H), 2.64 (t, \(J = 7.1\) Hz, 2H), 1.59 (quint, \(J = 7.1\) Hz, 2H), 1.42 (sext, \(J = 7.1\) Hz, 2H), 1.29 (t, \(J = 7.1\) Hz, 3H), 0.92 (t, \(J = 7.1\) Hz, 3H). \(^{13}\)C\(^{1}\)H NMR (CDCl\(_3\), 100 MHz): \(\delta\) (ppm) 170.6, 61.2, 33.7, 32.4, 31.1, 21.8, 14.1, 13.6. MS (EI, 70 eV; m/z (relative intensity)): 176 (42), 89 (57), 88 (87), 61 (100), 55 (45). HRMS: calcd for C\(_8\)H\(_{16}\)O\(_2\)S (ESI-TOF, [M+Na]+), 199.0763; found 199.0760.

Methyl 2-(benzylthio)acetate (3k):[7] The product was isolated as a colorless oil. Yield: 0.029 g (35%). \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) (ppm) 7.35-7.31 (m, 5H), 3.82 (s, 2H), 3.71 (s, 3H), 3.08 (s, 2H). \(^{13}\)C\(^{1}\)H NMR (CDCl\(_3\), 100MHz): \(\delta\) (ppm) 170.8, 137.2, 129.1, 128.5, 127.2, 52.3, 36.4, 32.1. MS (EI, 70 eV; m/z (relative intensity)): 196 (18), 123 (82), 92 (8), 91 (100), 65 (18). HRMS: calcd for C\(_{10}\)H\(_{12}\)O\(_2\)S (ESI-TOF, [M+Na]+), 219.0450; found 219.0446.

Octyl 2-(benzylthio)acetate (3l): The product was isolated as a yellow oil. Yield: 0.064 g (44%). \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) (ppm) 7.35-7.23 (m, 5H), 4.05 (q, \(J = 7.1\) Hz, 2H), 3.83 (s, 2H), 3.07 (s, 2H), 1.42-1.26 (m, 9H), 0.93-0.88 (m, 6H). \(^{13}\)C\(^{1}\)H NMR (CDCl\(_3\), 100 MHz): \(\delta\) (ppm) 171.1, 137.3, 129.1, 128.5, 127.3, 67.7, 38.8, 36.4, 33.1, 30.4, 28.9, 24.5, 22.9, 16.1, 11.8. MS (EI, 70 eV; m/z (relative intensity)): 294 (5), 123.
(100), 91 (62), 71 (23), 57 (28). HRMS: calcd for C_{17}H_{26}O_2S (ESI-TOF, [M+Na]^+), 317.1546; found 317.1545.

Cyclohexyl 2-(benzylthio)acetate (3m): The product was isolated as a yellow oil. Yield: 0.056 g (42%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.35-7.23 (m, 5H), 4.84-4.77 (m, 1H), 3.83 (s, 2H), 3.05 (s, 2H), 1.90-1.73 (m, 4H), 1.51-1.22 (m, 6H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 170.4, 137.3, 129.1, 128.5, 127.2, 73.7, 36.3, 32.6, 31.5, 25.3, 23.7. MS (EI, 70 eV; m/z (relative intensity)): 264 (8), 182 (28), 181 (27), 123 (100), 91 (91), 55 (45). HRMS: calcd for C_{15}H_{20}O_2S (ESI-TOF, [M+Na]^+), 287.1076, found 287.1073.

tert-Butyl 2-(benzylthio)acetate (3n):[8] The product was isolated as a colorless oil. Yield: 0.081 g (70%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.35-7.21 (m, 5H), 3.82 (s, 2H), 2.98 (s, 2H), 1.49 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 169.5, 137.4, 129.1, 128.4, 127.1, 81.5, 36.1, 33.5, 28.0. MS (EI, 70 eV; m/z (relative intensity)): 238 (3), 182 (30), 181 (34), 91 (90), 57 (100). HRMS: calcd for C_{13}H_{18}O_2S (ESI-TOF, [M+Na]^+), 261.0919; found 261.0915.

Allyl 2-(benzylthio)acetate (3o): The product was isolated as a light pink oil. Yield: 0.021 g (20%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.35-7.28 (m, 5H), 5.97-5.87 (m, 1H), 5.38-5.35 (m, 1H), 4.61 (dtd, J = 5.8, 1.4 Hz, 2H), 3.83 (s, 2H), 3.09 (s, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 170.0, 137.2, 131.8, 129.1, 128.5, 127.2, 118.6, 65.8, 36.4, 32.3. MS (EI, 70 eV; m/z (relative intensity)): 222 (8), 181 (14), 123 (56), 91 (100), 65 (18). HRMS: calcd for C_{12}H_{14}O_2S (ESI-TOF, [M + Na]^+), 245.0607; found 245.0613.

Benzyl 2-(benzylthio)acetate (3q):[4] The product was isolated as a colorless oil. Yield: 0.056 g (44%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.39-7.33 (m, 5H), 7.30-7.25 (m, 5H), 5.15 (s, 2H), 3.80 (s, 2H), 3.11 (s, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 170.1, 137.1, 135.6, 129.1, 128.6, 128.5, 128.4, 128.3, 127.2, 67.0, 36.3, 32.3. MS (EI, 70 eV; m/z (relative intensity)): 272 (1), 181 (63), 107 (22), 92 (8), 91 (100), 65 (16). HRMS: calcd for C_{16}H_{16}O_2S (ESI-TOF, [M+Na]^+), 295.0763, found 295.0765.
Typical procedure for the synthesis of α-thioketones 4: To a reaction tube equipped with a stir bar containing a solution of β-keto ester 1 (0.5 mmol) in toluene (3.0 mL) were added sodium S-organyl sulfurothioate 2 (1.0 mmol) and NaOH (1.0 mmol, 0.040 g). The tube was sealed, and the mixture was stirred at 100 °C under air for 18 h. After being cooled to room temperature, the resulting mixture was quenched with water (20 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic phases were washed with brine (20 mL), dried over anhydrous MgSO₄, filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (99:1) as eluent to give 4.

1-(Benzylthio)propan-2-one (4a): The product was isolated as a colorless oil. Yield: 0.0547 g (68%) / 0.073g (80%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.34 – 7.22 (m, 5H), 3.68 (s, 2H), 3.10 (s, 2H), 2.23 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 203.5, 137.2, 129.1, 128.5, 127.2, 40.8, 36.0, 27.9. MS (EI, 70 eV; m/z (relative intensity)): 180 (12), 123 (45), 122 (21), 91 (100), 65 (20). HRMS: calcd for C₁₀H₁₂OS (ESI-TOF, [M+Na]+), 203.0501, found 203.0507.

1-((2-Chlorobenzyl)thio)propan-2-one (4b): The product was isolated as a colorless oil. Yield: 0.0900 g (84%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.41 – 7.30 (m, 2H), 7.25 – 7.17 (m, 2H), 3.80 (s, 2H), 3.17 (s, 2H), 2.26 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 203.6, 135.0, 134.1, 131.2, 129.9, 128.7, 126.7, 41.1, 33.6, 27.8. MS (EI, 70 eV; m/z (relative intensity)): 216 (6), 214 (16), 156 (50), 127 (34), 12 (100), 89 (22). HRMS: calcd for C₁₀H₁₁ClOS (ESI-TOF, [M+Na]+), 237.0111, found 237.0113.

1-((4-Chlorobenzyl)thio)propan-2-one (4c): The product was isolated as a yellow oil. Yield: 0.0480 g (45%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.28 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 3.64 (s, 2H), 3.08 (s, 2H), 2.24 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 203.2, 135.8, 133.1, 130.5, 128.7, 40.6, 35.3, 27.9. MS (EI, 70 eV; m/z (relative intensity)): 214 (24), 157 (58), 156 (26), 127 (35), 125 (100). HRMS: calcd for C₁₀H₁₁ClOS (ESI-TOF, [M+Na]+), 237.0111, found 237.0114.

1-((3-(Trifluoromethyl)benzyl)thio)propan-2-one (4d): The product was isolated as a colorless oil. Yield: 0.0867 g (70%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.59 (s, 1H),
7.54 – 7.48 (m, 2H), 7.47 – 7.39 (m, 1H), 3.73 (s, 2H), 3.10 (s, 2H), 2.25 (s, 3H).

13C1H NMR (CDCl$_3$, 100 MHz): δ (ppm) 203.0, 138.4, 132.5, 131.0 (q, $J = 32.3$ Hz), 129.0, 125.8 (q, $J = 3.8$ Hz), 124.1 (q, $J = 3.8$ Hz), 124.0 (q, $J = 272.0$ Hz), 40.6, 35.4, 27.9.

19F NMR (CDCl$_3$, 376 MHz,): δ (ppm) -63.1

MS (EI, 70 eV; m/z (relative intensity)): 248 (31), 191 (76), 190 (28), 159 (100), 109 (18). HRMS: calcd for C$_{11}$H$_{11}$F$_3$OS (ESI-TOF, [M+Na]$^+$); 271.0375, found 271.0381.

1-((2-Methylbenzyl)thio)propan-2-one (4e): The product was isolated as a colorless oil. Yield: 0.0686 g (70%). 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 7.20 – 7.10 (m, 4H), 3.69 (s, 2H), 3.14 (s, 2H), 2.38 (s, 3H), 2.24 (s, 3H). 13C1H NMR (CDCl$_3$, 100 MHz): δ (ppm) 203.6, 136.8, 134.8, 130.7, 130.0, 127.6, 125.8, 41.2, 34.1, 27.8, 19.0. MS (EI, 70 eV; m/z (relative intensity)): 194 (18), 137 (29), 136 (27), 135 (26), 105 (100), 104 (27). HRMS: calcd for C$_{11}$H$_{14}$OS (ESI-TOF, [M+Na]$^+$), 217.0658, found 217.0659.

2-(Benzylthio)-1-phenylethan-1-one (4g): The product was isolated as a yellow solid. Yield: 0.0595 g (50%), m.p. 75-77 °C. 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 7.94-7.91 (m, 2H), 7.59 – 7.51 (m, 1H), 7.49 – 7.41 (m, 2H), 7.38 – 7.27 (m, 5H), 3.76 (s, 2H), 3.67 (s, 2H). 13C1H NMR (CDCl$_3$, 100 MHz): δ (ppm) 194.4, 137.3, 135.5, 133.3, 129.2, 128.7, 128.6, 128.5, 127.2, 36.1, 35.9. MS (EI, 70 eV; m/z (relative intensity)): 242 (13), 120 (70), 105 (100), 91 (43), 77 (38). HRMS: calcd for C$_{15}$H$_{14}$OS (ESI-TOF, [M+Na]$^+$); 265.0658, found 265.0652.

Typical procedure for the synthesis of 6, 7 and 8: To a reaction tube equipped with a stir bar containing a solution of β-keto ester 1 (0.5 mmol) in toluene (3.0 mL) were added sodium S-organyl sulfurothioate 2 (1.0 mmol) and NaOH (1.0 mmol, 0.040 g). The mixture was stirred at 100 °C under air for 0.5 h. After being cooled to room temperature, the resulting mixture was quenched with water (20 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic phases were washed with brine (20 mL), dried over anhydrous MgSO$_4$, filtered, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (99:1) as eluent to give 6, 7 or 8.
(E)-3-(Benzythio)-4-hydroxypent-3-en-2-one (6):[10] The product was isolated as white solid. Yield: 0.0953 g (86%), m.p. 52-54 °C. 1H NMR (CDCl₃, 400 MHz): δ (ppm) 17.17 (s, 1H), 7.32 – 7.21 (m, 3H), 7.11 (dd, J = 7.9, 1.6 Hz, 2H), 3.62 (s, 2H), 2.11 (s, 6H). 13C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 198.2, 137.7, 129.1, 128.6, 127.1, 103.2, 41.1, 24.0. MS (EI, 70 eV; m/z (relative intensity)): 222 (21), 180 (3), 92 (9), 91 (100), 65 (13). HRMS: calcd for C₁₂H₁₄O₂S (ESI-TOF, [M+Na]+), 245.0607; found, 245.0606.

Mixture of keto-enol tautomers (7):[10] The products were isolated as a colorless oil. Yield: 0.0881 g (70%). Enol: 1H NMR (CDCl₃, 400 MHz): δ (ppm) 13.54 (s, 1H), 7.31 – 7.23 (m, 3H), 7.15 (d, J = 6.5 Hz, 2H), 4.28 (q, J = 7.1 Hz, 2H), 3.71 (s, 2H), 1.91 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). 13C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 184.08, 173.0, 138.0, 129.0, 128.3, 126.8, 92.7, 61.4, 39.9, 20.4, 14.2. MS (EI, 70 eV; m/z (relative intensity)): 180 (10), 123 (40), 122 (18), 91 (100), 65 (18). HRMS: calcd for C₁₃H₁₆O₃S (ESI-TOF, [M+Na]+), 275.0712; found, 275.0719.

Mixture of keto-enol tautomers (8): The product was isolated as a light-yellow oil. Yield: 0.0625 g (53%). Enol: 1H NMR (CDCl₃, 400 MHz): δ (ppm) 13.42 (d, J = 0.7 Hz, 1H), 7.29 – 7.22 (m, 3H), 7.12 (dd, J = 8.0, 1.5 Hz, 2H), 3.78 (s, 3H), 3.67 (s, 2H), 1.88 (s, 3H). 13C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 184.3, 173.5, 137.9, 129.0, 128.3, 126.9, 92.5, 52.3, 40.0, 20.4. Ketone: 1H NMR (CDCl₃, 400 MHz): δ (ppm) 7.33 – 7.30 (m, 5H), 3.75 (s, 3H), 3.71 (s, 2H), 3.08 (s, 1H), 2.26 (s, 3H). 13C{¹H} NMR (CDCl₃, 100 MHz): δ (ppm) 198.5, 167.7, 136.4, 129.2, 128.6, 127.5, 57.1, 52.9, 35.8, 26.8. MS (EI, 70 eV; m/z (relative intensity)): 180 (13), 123 (48), 122 (22), 91 (100), 65 (17). HRMS: calcd for C₁₂H₁₄O₃S (ESI-TOF, [M+Na]+), 261.0556; found, 261.0559.

Control experiments
To gain further insights into the mechanism of these methods, several control experiments were performed as shown in Schemes 1-6. Initially, 1a (0.5 mmol) was treated with benzyl mercaptan (1.0 mmol) under standard conditions (Typical procedure for the synthesis of α-thioesters 3), but no desired products were obtained (Scheme 1). Then, reactions of 1a (0.5 mmol) with dibenzyl disulfide (1.0 mmol) as a sulfur source were conducted following the typical procedure for the synthesis of α-thioesters 3. Again, under these conditions the expected products were not formed.
These experiments suggested that a thiol or a disulfide might not be crucial intermediates to these processes.

Scheme 1. Reaction of β-keto ester 1a with benzyl mercaptan or dibenzyl disulfide under optimal conditions.

On the other hand, experiments were conducted in the presence of radical scavengers TEMPO (1.0 mmol) and hydroquinone (1.0 mmol) following the typical procedure for the synthesis of α-thioesters 3 (Scheme 2). In these cases, a mixture of products 3a and 4a was obtained. No radical trapping product was detected by GC-MS. Although we cannot discard the formation of radical intermediates, the results depicted in Scheme 2 implied that these reactions proceed predominantly through an ionic pathway.

Scheme 2. Reaction of β-keto ester 1a with Bunte salt 2a in the presence of radical scavengers.

A close inspection in results depicted in Scheme 3 indicated that under O₂ or N₂ conditions, product 3a was preferentially formed, while product 4a was the main product only using lower amounts of base under air conditions. These results suggested that air humidity and residual water in the solvent might dramatically affect the selectivity of the reaction, favoring formation of 4a.
Scheme 3. Reaction of β-keto ester 1a with Bunte salt 2a under O₂, N₂ or air conditions.

To support this information further experiments were conducted using a mixture of toluene / water (98:2) as solvent or adding a phase-transfer catalyst (5 mol%) (PTC)[11] to the reaction system (Scheme 4) (Typical procedure for the synthesis of α-thioketone 4). Water in this case did not benefit the selectivity nor the reaction yield, but similar results were obtained (Scheme 4). The presence of a PTC in the reaction mixture reduced both the products yield and the selectivity.

Scheme 4. Reaction of β-keto ester 1a with Bunte salt 2a in the presence of water or n-Bu₄NBr.

Next, the mixture of keto-enol tautomers 7 was subjected to the reaction conditions depicted in scheme 5 (Typical procedure for the synthesis of α-thioketone 4). This reaction showed experimental evidence for the formation of products 3 and 4 starting from tautomers 7 in 34% and 5% isolated yield, respectively.

Scheme 5. Experimental evidence for the obtention of products 3 and 4 from keto-enol tautomers 7.
Finally, when the reaction using β-keto ester 1l (0.5 mmol) was conducted in the presence of 2 equiv of NaOH it was possible to identify from the crude mixture the formation of benzoic acid 9 by gas chromatography-mass spectrometry (GC-MS) analysis (Scheme 6). We consider that this result also supports the reaction mechanism to the formation of esters 3.

Scheme 6. Reaction of β-keto ester 1l with Bunte salt 2a.

3. References

[1] Reeves, J. T.; Camara, K.; Han, Z. S.; Xu, Y.; Lee, H.; Busacca, C. A.; Senanayake, C. H. Org. Lett. 2014, 16, 1196-1199.
[2] Solladié-Cavallo, A.; Bencheqroun, M. J. Organomet. Chem. 1991, 403, 159-164.
[3] He, Y-h; Li, N-b; Chen, Ji-y; Qiu, R-h; Wang, X; Xu, X-h. Synth. Commun. 2015, 45, 1817-1822.
[4] Tyagi, V.; Bonna, R. B.; Fasan, R. Chem. Sci., 2015, 6, 2488-2494.
[5] Tamura, Y.; Tsugoshi, T.; Annoura, H.; Ishibashi, H. Synthesis 1984, 326-327.
[6] Kudo, N.; Yoneda, A.; Sato, K.; Honma, T.; Sugai, S. Chem. Pharm. Bull. 2000, 48, 509-515.
[7] Audubert, C.; Lebel, H. Org. Lett. 2017, 19, 4407–4410.
[8] Zong, L.; Wang, C.; Moeljadi, A.; Ye, X.; Ganguly, R.; Li, Y.; Hirao, H.; Tan, C-h. Nat. Commun. 2016, 7, 13455-13462.
[9] Xu, X.-B.; Lin, Z.-H.; Liu, Y.; Guo, J.; He, Y. Org. Biomol. Chem. 2017, 15, 2716-2720.
[10] Tan, J.; Liang, F.; Wang, Y.; Cheng, X.; Liu, Q.; Yuan, H. Org. Lett. 2008, 10, 2485-2488.
[11] Starks, C. M. J. Am. Chem. Soc. 1971, 93, 195-199.
Copies of 1H, 13C(1H) and 19F NMR spectra

The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3a in CDCl$_3$.

![NMR Spectra of 3a](image)
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3b in CDCl$_3$.

![NMR Spectra of 3b](image)
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3c in CDCl$_3$.

![NMR Spectra of 3c](image)
The ^1H (400 MHz) and ^{13}C (100 MHz) NMR spectra of 3d in CDCl$_3$.
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3e in CDCl$_3$.

![NMR spectra of 3e](image)
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3f in CDCl$_3$.

![NMR Spectra](image-url)
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3g in CDCl$_3$.

![NMR Spectra of 3g](image)
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3h in CDCl$_3$.

![NMR Spectra of 3h](image)
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3i in CDCl$_3$.

![NMR Spectra of 3i in CDCl$_3$]
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3j in CDCl$_3$.

![NMR Spectrum](image)
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3k in CDCl$_3$.

3k
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3l in CDCl$_3$.

![NMR spectra of 3l in CDCl$_3$.](image)
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3m in CDCl$_3$.

![NMR spectra of 3m in CDCl$_3$.](image-url)
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3n in CDCl$_3$.

![NMR Spectra](image)
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3o in CDCl$_3$.

![NMR Spectra of 3o in CDCl$_3$]
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 3q in CDCl₃.
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 4a in CDCl$_3$.
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 4b in CDCl$_3$.

![NMR spectra of 4b in CDCl$_3$.]
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 4c in CDCl$_3$.

![Chemical structure of 4c]
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 4d in CDCl$_3$.

![NMR Spectra of 4d](image)
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 4e in CDCl$_3$.

![NMR Spectra](image)
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 4g in CDCl$_3$.
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 6 in CDCl$_3$.
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 7 in CDCl$_3$.

![NMR Spectra of 7 in CDCl$_3$](image)
The 1H (400 MHz) and 13C (100 MHz) NMR spectra of 8 in CDCl$_3$.

![NMR Spectra Diagram]