Asteroseismology from solar-like oscillations

Timothy R. Bedding

School of Physics A28, University of Sydney, NSW 2006, Australia

Hans Kjeldsen

Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark

Abstract. There has been tremendous progress in observing oscillations in solar-type stars. In a few short years we have moved from ambiguous detections to firm measurements. We briefly review the recent results, most of which have come from high-precision Doppler measurements. We also review briefly the results on giant and supergiant stars and the prospects for the future.

1. Introduction

Measuring stellar oscillations is a very elegant experiment in physics. A star is a gaseous sphere that oscillates in many different modes when excited. The oscillation frequencies depend on the sound speed inside the star, which in turn depends on properties such as density, temperature and composition. The Sun oscillates in many modes simultaneously and comparing the mode frequencies with theoretical calculations (helioseismology) has led to significant revisions to solar models (e.g., Christensen-Dalsgaard 2002).

Measuring oscillation frequencies in other stars (asteroseismology) allows us to probe their interiors in exquisite detail and study phenomena that do not occur in the Sun. We expect asteroseismology to produce major advances in our understanding of stellar structure and evolution, and of the underlying physical processes.

Here we review progress in observing so-called solar-like oscillations. This term refers to oscillations that are thought to be excited by convection (but note that they can occur in stars whose properties are very different from the Sun).

2. Main-sequence and subgiant stars

There has been tremendous progress in observing oscillations in solar-type stars, lying on or just above the Main Sequence. In a few short years we have moved from ambiguous detections to firm measurements. Most of the recent results have come from high-precision Doppler measurements using spectrographs such as CORALIE, HARPS, UCLES and UVES (see Fig. 1 for an example). The best data have been obtained from two-site campaigns, although single-site observations are also being carried out. Meanwhile, photometry from space gives
a much better observing window than is usually achieved from the ground but
the signal-to-noise is poorer. The WIRE and MOST missions have reported os-
cillations in several stars, although not without controversy, as discussed below.

Observations of solar-like oscillations are accumulating rapidly, and mea-
surement have now been reported for several main-sequence and subgiant stars.
The following list includes the most recent observations and is ordered according
to decreasing stellar density (i.e., decreasing large frequency separation):

- **τ Cet (G8 V):** this star was observed with HARPS by T. C. Teixeira et al.
 (in prep.). The data were compromised by noise at 3 and 6 mHz caused
 by a periodic error in the guiding system. Nevertheless, they were able to
 measure the large separation (170 µHz) and extract a number of individual
 oscillation frequencies.

- **70 Oph A (K0 V):** this is the main component of a spectroscopic visual
 binary (the other component is K5 V). It was observed over 6 nights with
 HARPS by Carrier & Eggenberger (2006), who found Δν = 162 µHz but
 were not able to give unambiguous mode identifications from these single-
 site data.

- **α Cen A and B (G2 V and K1 V):** see Sec. 2.1.

- **µ Ara (G3 V):** this star has multiple planets. Oscillations were measured
 over 8 nights using HARPS by Bouchy et al. (2005) (see Fig. 1) and the
 results were modelled by Bazot et al. (2005). They found Δν = 90 µHz
 and identified over 40 frequencies, with possible evidence for rotational
 splitting.

- **HD 49933 (F5 V):** this is a potential target for the COROT space mis-
 sion and was observed over 10 nights with HARPS by Mosser et al. (2005).
 They reported a surprisingly high level of velocity variability on timescales
 of a few days. This was also present as line-profile variations and is there-
 fore presumably due to stellar activity. The observations showed excess
 power from p-mode oscillations and the authors determined the large sepa-
 ration (Δν = 89 µHz) but were not able to extract individual frequencies.

- **β Vir (F9 V):** oscillations in this star were detected in a weather-affected
 two-site campaign with ELODIE and FEROS by martić et al. (2004).
 Subsequently, Carrier et al. (2005b) used CORALIE with good weather
 but a single site, and reported 31 individual frequencies. Those results
 were modelled by Eggenberger & carrier (2006), who also reported tentative
 evidence for rotational splittings. The large separation is 72 µHz.

- **Procyon A (F5 IV):** see Sec. 2.3.

- **β Hyi (G2 IV):** see Sec. 2.2.

- **δ Eri (K0 IV):** Carrier et al. (2003) observed this star over 12 nights in
 2001 with CORALIE and found a large separation of 44 µHz.

- **η Boo (G0 IV):** see Sec. 2.3.

- **ν Ind (G0 IV):** this a metal-poor subgiant ([Fe/H] = −1.4) which was ob-
 served from two sites using UCLES and CORALIE. The large separation
 of 25 µHz, combined with the position of the star in the H-R diagram,
 indicated that the star has a low mass (0.85 ± 0.04 M☉) and is at least
Figure 1. Radial velocity time series of the star μ Ara made over 8 nights with the HARPS spectrograph. Figure from Bouchy et al. (2005).
2.1. \(\alpha \) Cen A and B

On the main-sequence, the most spectacular results have been obtained for the \(\alpha \) Cen system. The clear detection of p-mode oscillations in \(\alpha \) Cen A by Bouchy & Carrier (2002) using the CORALIE spectrograph represented a key moment in this field. This was followed by a dual-site campaign on this star with UVES and UCLES (Butler et al. 2004), that yielded more than 40 modes, with angular degrees of \(l = 0 \) to 3 (Bedding et al. 2004). The mode lifetime is about 2–4 days and there is now evidence of rotational splitting from photometry with the WIRE satellite analysed by Fletcher et al. (2006) (see Fig. 2) and also from ground-based spectroscopy with HARPS (M. Bazot et al., submitted to A&A).

Meanwhile, oscillations in the B component were detected from single-site observations with CORALIE by Carrier & Bourban (2003). Dual-site observations with UVES and UCLES (see Fig. 3) allowed measurement of nearly 40 modes and of the mode lifetime (Kjeldsen et al. 2005).
We have previously pointed out (Bedding & Kjeldsen 2006) that the power spectrum of Procyon appears to show a dip at 1.0 mHz that is apparently consistent with the theoretical models of Houdek et al. (1999). A similar dip for low-mass stars was also suggested by G. Houdek (private comm.; see also Chaplin et al., submitted to MNRAS), and the observations of α Cen B in Fig. 3 do indeed show such a dip, although not at the frequency indicated by the models. It seems that the shape of the oscillation envelope is an interesting observable that can be extracted from the power spectrum and compared with theoretical models.

2.2. β Hyi

This star is a bright southern subgiant that is slightly more massive and much more evolved than the Sun. Oscillations were detected in β Hyi in 2001 using UCLES (Bedding et al. 2001) and CORALIE (Carrier et al. 2001). These single-site observations allowed us to measure the large frequency separation (57.5 μHz) but did not produce unambiguous identification of individual modes.

Meanwhile, theoretical models for β Hyi have been published by Fernandes & Monteiro (2003) and Di Mauro et al. (2003), which indicate the occurrence of avoided crossings (also called mode bumping). Avoided crossings are an important complication with subgiants in which mode frequencies are shifted from their usual almost-regular spacing by effects of gravity modes in the stellar core. This goes a long way toward explaining our earlier difficulty in mode identification. The shifts arise from a strong abundance gradient in the hydrogen-burning shell, just outside the helium core. Quantifying such effects should provide information about the properties of the convective core, including any mixing beyond the region that is convectively unstable (so-called core overshoot).

This star was the target for a two-site campaign in 2005, with HARPS and UCLES (Bedding et al., submitted to ApJ). We confirmed the earlier detection of oscillations and were able to identify nearly 30 modes, including some which show the clear effect of mode bumping (see Fig. 4).

We used the large frequency separation of β Hyi to infer the mean stellar density to an accuracy of just 0.6%. Combining this with the angular diameter measured with the Sydney University Stellar Interferometer (SUSI) gives a direct estimate of the stellar mass, to an accuracy of 2.7% (J. North et al, submitted to MNRAS). This is probably the most precise mass determination of a solar-type star that is not in a binary system, illustrating the power of combining asteroseismology and interferometry (for other examples, see Kervella et al. 2003; Pieters et al. 2003; Kervella et al. 2004; Thévenin et al. 2005; van Belle et al. 2007; Creevey et al. 2007).

2.3. η Boo

This star, being the brightest G-type subgiant in the sky, remains a very interesting target. The claimed detection of oscillations almost decade ago by Kjeldsen et al. (1995), based on fluctuations in Balmer-line equivalent-widths, has now been confirmed by further equivalent-width and velocity measurements by the same group (Kjeldsen et al. 2003) and also by independent velocity measurements with the CORALIE spectrograph (Carrier et al. 2005a). With the benefit of hindsight, we can now say that η Boo was the first star for which the
large separation and individual frequencies were measured. However, there is still disagreement on some of the individual frequencies, which reflects the subjective way in which genuine oscillation modes must be chosen from noise peaks and corrected for daily aliases. Fortunately, the large separation is $\Delta \nu = 40 \mu \text{Hz}$, which is halfway between integral multiples of the 11.57-µHz daily splitting ($40/11.57 = 3.5$). Even so, daily aliases are problematic, especially because some of the modes in η Boo appear to be shifted by avoided crossings.

The first spaced-based observations of η Boo, made with the MOST satellite, have generated considerable controversy. Guenther et al. (2005) showed an amplitude spectrum (their Fig. 1) that rises towards low frequencies in a fashion that is typical of noise from instrumental and stellar sources. However, they assessed the significance of individual peaks by their strength relative to a fixed horizontal threshold, which naturally led them to assign high significance to peaks at low frequency. They did find a few peaks around 600 µHz that agreed with the ground-based data, but they also identified eight of the many peaks at much lower frequency (130–500 µHz), in the region of rising power, as being due to low-overtone p-modes. Those peaks do line up quite well with the regular 40 µHz spacing, but extreme caution is needed before these peaks are accepted as genuine. This is especially true given that the orbital frequency of the spacecraft (164.3 µHz) is, by bad luck, close to four times the large separation of η Boo ($164.3/40 = 4.1$). Models of η Boo based on the combination of MOST and ground-based frequencies have been made by Straka et al. (2006).

2.4. Procyon

Procyon has long been a favourite target for oscillation searches. There have been at least eight separate velocity studies, mostly single-site, that have re-
ported a hump of excess power around 0.5–1.5 mHz. See Martić et al. (2004), Eggenberger et al. (2004), Bouchy et al. (2004), Claudi et al. (2005) and Leccia et al. (submitted to A&A) for the most recent examples. However, there is not yet agreement on the oscillation frequencies, although a consensus is emerging that the large separation is about 55 µHz.

This star generated controversy when MOST data reported by Matthews et al. (2004) failed to reveal oscillations that were claimed from ground-based data. However, Bedding et al. (2005b) argued that the MOST non-detection was consistent with the ground-based data. Using space-based photometry with the WIRE satellite, Bruntt et al. (2005) extracted parameters for the stellar granulation and found evidence for an excess due to p-mode oscillations.

A multi-site campaign on Procyon is being organised for January 2007, which will be the most extensive velocity campaign so far organised on a solar-type oscillator.

3. G and K giants

There have been detections of oscillations in red giant stars with oscillation periods of 2–4 hours. Ground-based velocity observations were presented by Barban et al. (2004), who used CORALIE and ELODIE spectrographs to find excess power and a possible large separation for both ε Oph (G9 III) and η Ser (K0 III). The data for ε Oph have now been published by De Ridder et al. (2006). Hekker et al. (2006) have analysed the line-profile variations and found evidence for non-radial oscillations.

Meanwhile, earlier observations of oscillations in ξ Hya (G7 III) by Frandsen et al. (2002) have been further analysed by Stello et al. (2004), who found evidence that the mode lifetime is only about 2 days. If confirmed, this would significantly limit the the prospects for asteroseismology on red giants.

4. Red giants and supergiants

If we define solar-like oscillations to be those excited and damped by convection then we expect to see such oscillations in all stars on the cool side of the instability strip. Evidence for solar-like oscillations in semiregular variables, based on visual observations by groups such as the AAVSO, has already been reported. This was based on the amplitude variability of these stars (Christensen-Dalsgaard et al. 2001) and on the Lorentzian profiles of the power spectra (Bedding 2003; Bedding et al. 2005a).

Recently, Kiss et al. (2006) used visual observations from the AAVSO to show that red supergiants, which have masses of 10–30 M_\odot, also have Lorentzian profiles in their power spectra (see Fig. 5).

5. The future

In the future, we expect further ground-based observations using Doppler techniques. The new spectrograph SOPHIE at l’Observatoire de Haute-Provence in France should be operating very soon (http://www.obs-hp.fr/). From space, the
Figure 5. Power spectra of red supergiants from visual observations (thin lines) with Lorentzian fits (thick lines). Figure from Kiss et al. (2006).
WIRE and MOST satellites continue to return data and we look forward with excitement to the expected launches of COROT (December 2006) and Kepler (2008).

Looking further ahead, the SIAMOIS spectrograph is planned for Dome C in Antarctica (Seismic Interferometer Aiming to Measure Oscillations in the Interior of Stars; see http://siamois.obspm.fr/). Finally, there are ambitious plans to build SONG (Stellar Oscillations Network Group), which will be a global network of small telescopes equipped with high-resolution spectrographs and dedicated to asteroseismology and planet searches (see http://astro.phys.au.dk/SONG).

Acknowledgments. This work was supported financially by the Australian Research Council, the Science Foundation for Physics at the University of Sydney, and the Danish Natural Science Research Council.

References

Barban, C., de Ridder, J., Mazumdar, A., Carrier, F., Eggenberger, P., de Ruyter, S., Vanautgaerden, J., Bouchy, F., & Aerts, C., 2004, In Danesy, D., editor, SOHO 14/GONG 2004 Workshop, Helio- and Asteroseismology: Towards a Golden Future, ESA SP-559, page 113.

Bazot, M., Vauclair, S., Bouchy, F., & Santos, N. C., 2005, A&A, 440, 615.

Bedding, T. R., 2003, Ap&SS, 284, 61.

Bedding, T. R., Butler, R. P., Carrier, F., Bouchy, F., Brewer, B. J., Eggenberger, P., Grundahl, F., Kjeldsen, H., McCarthy, C., Bjorn Nielsen, T., Retter, A., & Tinney, C. G., 2006, ApJ, 647, 558.

Bedding, T. R., Butler, R. P., Kjeldsen, H., Baldry, I. K., O’Toole, S. J., Tinney, C. G., Marcy, G. W., Kiezenl, F., & Carrier, F., 2001, ApJ, 549, L105.

Bedding, T. R., Kiss, L. L., Kjeldsen, H., Brewer, B. J., Dind, Z. E., Kawaler, S. D., & Zijlstra, A. A., 2005a, MNRAS, 361, 1375.

Bedding, T. R., & Kjeldsen, H., 2006, Mem. Soc. Astron. Ital., 77, 384.

Bedding, T. R., Kjeldsen, H., Buzasi, D. L., Christensen-Dalsgaard, J., Frandsen, S., Lebrun, J.-C., Martić, M., & Schou, J., 2005b, A&A, 432, L43.

Bedding, T. R., Kjeldsen, H., Butler, R. P., McCarthy, C., Marcy, G. W., O’Toole, S. J., Tinney, C. G., & Wright, J. T., 2004, ApJ, 614, 380.

Bouchy, F., Bazot, M., Santos, N. C., Vauclair, S., & Sosnowska, D., 2005, A&A, 440, 609.

Bouchy, F., & Carrier, F., 2002, A&A, 390, 205.

Bouchy, F., Maeder, A., Mayor, M., Mégevand, D., Pepe, F., & Sosnowska, D., 2004, Nat, 432, 7015. arXiv:astro-ph/0510303.

Bruntt, H., Kjeldsen, H., Buzasi, D. L., & Bedding, T. R., 2005, ApJ, 633, 440.

Butler, R. P., Bedding, T. R., Kjeldsen, H., McCarthy, C., O’Toole, S. J., Tinney, C. G., Marcy, G. W., & Wright, J. T., 2004, ApJ, 600, L75.

Carrier, F., Bouchy, F., & Eggenberger, P., 2003, In Thompson, M. J., Cunha, M. S., & Monteiro, M. J. P. F. G., editors, Asteroseismology Across the HR Diagram, page P311. Kluwer.

Carrier, F., Bouchy, F., Kienzle, F., Bedding, T. R., Kjeldsen, H., Butler, R. P., Baldry, I. K., O’Toole, S. J., Tinney, C. G., & Marcy, G. W., 2001, A&A, 378, 142.

Carrier, F., & Bourban, G., 2003, A&A, 406, L23.

Carrier, F., & Eggenberger, P., 2006, A&A, 450, 695.

Carrier, F., Eggenberger, P., & Bouchy, F., 2005a, A&A, 434, 1085.

Carrier, F., Eggenberger, P., D’Alessandro, A., & Weber, L., 2005b, NewA, 10, 315.

Christensen-Dalsgaard, J., 2002, Rev. Mod. Phys., 74, 1073.

Christensen-Dalsgaard, J., Kjeldsen, H., & Mattei, J. A., 2001, ApJ, 562, L141.
Claudi, R. U., Bonanno, A., Leccia, S., Ventura, R., Desidera, S., Gratton, R., Cosentino, R., Paterno, L., & Endl, M., 2005, A&A, 429, L17.
Creevey, O. L., Monteiro, M. J. P. F. G., Metcalfe, T. S., Brown, T. M., Jiménez-Reyes, S. J., & Belmonte, J. A., 2007, ApJ. in press.
De Ridder, J., Barban, C., Carrier, F., Mazumdar, A., Eggenberger, P., Aerts, C., Deruyter, S., & Vanautgaerden, J., 2006, A&A, 448, 689.
Di Mauro, M. P., Christensen-Dalsgaard, J., & Paternò, L., 2003, Ap&SS, 284, 229.
Eggenberger, P., & Carrier, F., 2006, A&A, 449, 293.
Eggenberger, P., Carrier, F., Bouchy, F., & Blecha, A., 2004, A&A, 422, 247.
Fernandes, J., & Monteiro, M. J. P. F. G., 2003, A&A, 399, 243.
Fletcher, S. T., Chaplin, W. J., Elsworth, Y., Schou, J., & Buzasi, D., 2006, MNRAS, 371, 935.
Frandsen, S., Carrier, F., Aerts, C., Stello, D., Maas, T., Burnet, M., Bruntt, H., Teixeira, T. C., de Medeiros, J. R., Bouchy, F., Kjeldsen, H., Pijpers, F., & Christensen-Dalsgaard, J., 2002, A&A, 394, L5.
Guenther, D. B., Kallinger, T., Reegen, P., Weiss, W. W., Matthews, J. M., Kuschnig, R., Marchenko, S., Moffat, A. F. J., Rucinski, S. M., Sasselov, D., & Walker, G. A. H., 2005, ApJ, 635, 547.
Hekker, S., Aerts, C., De Ridder, J., & Carrier, F., 2006, A&A, 458, 931.
Houdek, G., Balmforth, N. J., Christensen-Dalsgaard, J., & Gough, D. O., 1999, A&A, 351, 582.
Kervella, P., Thévenin, F., Morel, P., Berthomieu, G., Bordé, P., & Provost, J., 2004, A&A, 413, 251.
Kervella, P., Thévenin, F., Ségransan, D., Berthomieu, G., Lopez, B., Morel, P., & Provost, J., 2003, A&A, 404, 1087.
Kiss, L. L., Szabo, G. M., & Bedding, T. R., 2006, MNRAS, 372, 1721.
Kjeldsen, H., Bedding, T. R., Baldry, I. K., Bruntt, H., Butler, R. P., Fischer, D. A., Frandsen, S., Gates, E. L., Grundahl, F., Lang, K., Marcy, G. W., Misch, A., & Vogt, S. S., 2003, AJ, 126, 1483.
Kjeldsen, H., Bedding, T. R., Butler, R. P., Christensen-Dalsgaard, J., Kiss, L. L., McCarthy, C., Marcy, G. W., Tinney, C. G., & Wright, J. T., 2005, ApJ, 635, 1281.
Kjeldsen, H., Bedding, T. R., Viskum, M., & Frandsen, S., 1995, AJ, 109, 1313.
Marčić, M., Lebrun, J.-C., Appourchaux, T., & Korzennik, S. G., 2004, A&A, 418, 295.
Marčić, M., Lebrun, J.-C., Appourchaux, T., & Schmitt, J., 2004, In Danesy, D., editor, SOHO 14/GONG 2004 Workshop, Helio- and Asteroseismology: Towards a Golden Future, ESA SP-559, page 563.
Matthews, J. M., Kuschnig, R., Guenther, D. B., Walker, G. A. H., Moffat, A. F., Rucinski, S. M., Sasselov, D., & Weiss, W. W., 2004, Nat, 430, 51. Erratum: 430, 921.
Mosser, B., Bouchy, F., Catala, C., Michel, E., Samadi, R., Thévenin, F., Eggenberger, P., Sosnowska, D., Moutou, C., & Baglin, A., 2005, A&A, 431, L13.
Pijpers, F. P., Teixeira, T. C., Garcia, P. J., Cunha, M. S., Monteiro, M. J. P. F. G., & Christensen-Dalsgaard, J., 2003, A&A, 406, L15.
Stello, D., Kjeldsen, H., Bedding, T. R., De Ridder, J., Aerts, C., Carrier, F., & Frandsen, S., 2004, Sol. Phys., 220, 207.
Straka, C. W., Demarque, P., Guenther, D. B., Li, L., & Robinson, F. J., 2006, ApJ, 636, 1078.
Thévenin, F., Kervella, P., Pichon, B., Morel, P., di Folco, E., & Lebreton, Y., 2005, A&A, 436, 253.
van Belle, G. T., Ciardi, D. R., & Boden, A. F., 2007, ApJ. in press (astro-ph/0701120).