Clinical Utility of Ambulatory Blood Pressure Monitoring to Define Phenotypes of Hypertension

Anastasia S. Mihailidou\(^1,2\)

\(^1\)Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia, \(^2\)Department of Cardiology and Kolling Institute, Royal North Shore Hospital, St. Leonards, Sydney, Australia

Abstract

Blood pressure (BP) is one of the vital markers of health and high BP (hypertension) continues to be a major health burden, with high systolic BP the leading preventable risk factor for cardiovascular disease. Early detection and management require accurate measurement of BP, with clinical practice guidelines now universally recommending out-of-clinic ambulatory or home BP monitoring to confirm the diagnosis of hypertension. Ambulatory BP monitoring (ABPM) provides detailed information of the pattern and fluctuations of BP throughout a 24 h period. This brief review provides a summary of several of these different patterns which indicate specific BP phenotypes and how these may guide better prognosis of cardiovascular risk as well as efficacy of treatment of hypertension. Although patient awareness and acceptance are important for reliable AMBP measurements, there are limited reports and the results of a pilot survey assessing patient satisfaction are presented.

Key words: Ambulatory blood pressure, hypertension management, hypertension phenotypes

Introduction

Clinic blood pressure (BP) remains the measurement for initial screening and management of hypertension, although there are recognized limiting factors, including accuracy of the measurement and the “white coat effect.” Introduction of automated office BP overcomes these factors,\(^1\) although the importance of out-of-clinic measurement with either home or ambulatory BP monitoring (ABPM) for confirming diagnosis of hypertension is recommended by clinical practice guidelines for Australia,\(^2\) Europe,\(^3\) the America,\(^4\) and Canada.\(^5\) The advantage of ABPM is that it allows multiple measurements of BP over 24 h period without patient intervention, ambulant, and during sleep and reveals variations in circadian BP profile which would have been missed with clinic alone. This brief review provides a summary of several of these different patterns which indicate specific BP phenotypes of hypertension, such as nocturnal hypertension and masked hypertension. Although there is specific guidance for physicians/health professionals for the measurement of ABPM,\(^6,7\) patient satisfaction in wearing the equipment also needs to be considered\(^8\) for reliability of the measures but also for engagement in their health and adherence to treatment. While ABPM is increasing in use in Australia, there are no reports on patient satisfaction and the results of a pilot survey are presented.

Nocturnal BP

Ambulatory BP is a stronger predictor of cardiovascular risk than clinic BP,\(^12,13\) as well as provides the pattern/profile of BP changes throughout the 24 h period to assess variability, especially during sleep (nocturnal) and early morning. Lack of a decrease in BP of at least 10% during sleep is often referred to as non-dipping\(^14\) and when it rises compared to daytime, it is reverse dipping pattern, which has been shown to be a marker of cardiovascular dysautonomia in Parkinson disease.\(^15\) Adjusting for this dipping and daytime BP, Yang et al. (2019)\(^16\) found that higher 24 h and nocturnal BP were associated with greater risk of

Address for correspondence:
Dr. Anastasia S. Mihailidou, Department of Cardiology and Kolling Institute, Royal North Shore Hospital, St. Leonards, NSW 2065, Sydney, Australia. E-mail: anastasia.mihailidou@mq.edu.au

Received 31-10-2020; Accepted 15-11-2020
doi: 10.15713/ins.johtn.0203
cardiovascular outcomes. Interestingly, variability in nocturnal BP is also an independent predictor of all-cause mortality and cardiovascular events.\(^{[17]}\)

Masked Hypertension

The clinical utility of ABPM for diagnosis of hypertension and treatment is particularly evident with identifying masked hypertension which is normal clinic BP with elevated ambulatory or home BP. When there is treatment initiated and BP is elevated away from the clinic but is assumed to be controlled during the clinic visit, it is labeled “masked uncontrolled hypertension (MUCH). Both masked hypertension and MUCH are associated with increased cardiovascular risk almost equivalent to sustained hypertension.\(^{[18]}\) A recent meta-analysis\(^{[19]}\) found that while the prevalence of masked hypertension was comparable when determined by ABPM (11%) compared to home BP monitoring (13%); ABPM had greater sensitivity to identify patients with masked hypertension/MUCH when both methods were compared in the same patients.

Patient Satisfaction with AMBP

While ABPM is recommended for out-of-clinic BP measurement by clinical practice guidelines, the patient perspective needs to be considered since it is not often assessed but may influence treatment adherence and engagement in their health. Consecutive patients who had ABPM were asked their satisfaction in wearing the monitoring equipment once the 24 h monitoring was completed. The question was “how did they feel about wearing the monitoring equipment” and there were three options to select: 1 – “didn’t mind,” 2 was “uncomfortable but necessary,” and 3 was “disliked and not for repeat.” Of the 59 patients asked for this pilot survey, 32/59 (54%) did not mind having the 24 h monitoring, while 26/59 (44%) found it uncomfortable but necessary and only 2/59 (0.11%) could not tolerate. The higher acceptance by patients may have resulted from the communication of the need testing by AMBP and also how BP is measured during monitoring. This pilot study is supported with similar findings by Ernst and Bergus (2014)\(^{[20]}\) who found that ABPM was well accepted by patients even though they reported to have disturbed sleep and discomfort.

References

1. Andreadis EA, Geladari CV, Angelopoulos ET, Savva FS, Georgantonio AI, Papademetriou V. Attended and unattended automated office blood pressure measurements have better agreement with ambulatory monitoring than conventional office readings. J Am Heart Assoc 2018;7:e008994.
2. Gabb GM, Mangoni AA, Anderson CS, Cowley D, Dowden JS, Golledge J, et al. Guideline for the diagnosis and management of hypertension in adults-2016. Med J Aust 2016;205:85-9.
3. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018;39:3021-104.
4. Whelton PK, Carey RM, Aronow WS, Casey DE Jr., Collins KJ, Himmelfarb CD, et al. 2017 ACC/AHA/ASCODS/IDSA/PCNA/SCAI/SCCM guidelines for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American college of cardiology/American heart association task force on clinical practice guidelines. Hypertension 2018;71: e13-115.
5. Rabi DM, McBrien KA, Sapir-Pichhadze R, Nakhla M, Ahmed SB, Dumanski SM, et al. Hypertension canad's 2020 comprehensive guidelines for the prevention, diagnosis, risk assessment, and treatment of hypertension in adults and children. Can J Cardiol 2020;36:596-624.
6. Muntner P, Shimbo D, Carey RM, Charleston JB, Gaillard T, Misra S, et al. Measurement of blood pressure in humans: A scientific statement from the american heart association. Hypertension 2019;73:e35-66.
7. Head GA, McGrath BP, Mihailidou AS, Nelson MR, Schlaich MP, Stowasser M, et al. Ambulatory blood pressure monitoring in Australia: 2011 consensus position statement. J Hypertens 2012;30:253-66.
8. Ernst ME, Bergus GR. Favorable patient acceptance of ambulatory blood pressure monitoring in a primary care setting in the United States: A cross-sectional survey. BMC Fam Pract 2003;4:15.
9. Nasothimiou EG, Karpettas N, Dafni MG, Stergiou GS. Patients’ preference for ambulatory versus home blood pressure monitoring. J Hum Hypertens 2014;28:224-9.
10. Wood S, Greenfield SM, Haque MS, Marten U, Gill PS, Mant J, et al. Influence of ethnicity on acceptability of method of blood pressure monitoring: A cross-sectional study in primary care. Br J Gen Pract 2016;66:e577-86.
11. Carter EJ, Moise N, Alcántara C, Sullivan AM, Kronish IM. Patient barriers and facilitators to ambulatory and home blood pressure monitoring: A qualitative study. J Hum Hypertens 2018;31:919-27.
12. Hansen TW, Kikuya M, Thijs L, Björklund-Bodegård K, Kuznetsova T, Ohkubo T, et al. Prognostic superiority of daytime ambulatory over conventional blood pressure in four populations: A meta-analysis of 7, 030 individuals. J Hypertens 2007;25:1554-64.
13. Verdecchia P, Porcellati C, Schillaci G, Borgioni C, Ciucci A, Battistelli M, et al. Ambulatory blood pressure. An independent predictor of prognosis in essential hypertension. Hypertension 1994;24:793-801.
14. Staessen JA, Bieniaszewski L, O’Brien E, Gosse P, Hayashi H, Imai Y, et al. Nocturnal blood pressure fall on ambulatory monitoring in a large international database. The Ad Hoc working group. Hypertension 1997;29:30-9.
15. Milazzo V, di Stefano C, Vallelonga F, Sobrero G, Zibetti M, Romagnolo A, et al. Reverse blood pressure dipping as marker of dysautonomia in Parkinson disease. Parkinsonism Relat Disord 2018;56:82-7.
16. Yang WY, Melgarejo JD, Thijs L, Zhang ZY, Boggia J, Wei FF, et al. Association of office and ambulatory blood pressure with mortality and cardiovascular outcomes. JAMA 2019;322:409-20.
17. Palatini P, Verdecchia P, Beilin LJ, Eguchi K, Imai Y, Kario K, et al. Association of extreme nocturnal dipping with cardiovascular events strongly depends on age. Hypertension 2020;75:324-30.

18. Pierdomenico SD, Lapenna D, Bucci A, di Tommaso R, di Mascio R, Manente BM, et al. Cardiovascular outcome in treated hypertensive patients with responder, masked, false resistant, and true resistant hypertension. Am J Hypertens 2005;18:1422-8.

19. Thakkar HV, Pope A, Anpalahan M. Masked hypertension: A systematic review. Heart Lung Circ 2020;29:102-11.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ © Mihailidou AS. 2020