Review

Unnatural base pair systems toward the expansion of the genetic alphabet in the central dogma

By Ichiro HIRAO*1,*2† and Michiko KIMOTO*1,*2

(Communicated by Takao SEKIYA, M.J.A.)

Abstract: Toward the expansion of the genetic alphabet of DNA, several artificial third base pairs (unnatural base pairs) have been created. Synthetic DNAs containing the unnatural base pairs can be amplified faithfully by PCR, along with the natural A–T and G–C pairs, and transcribed into RNA. The unnatural base pair systems now have high potential to open the door to next generation biotechnology. The creation of unnatural base pairs is a consequence of repeating “proof of concept” experiments. In the process, initially designed base pairs were modified to address their weak points. Some of them were artificially evolved to ones with higher efficiency and selectivity in polymerase reactions, while others were eliminated from the analysis. Here, we describe the process of unnatural base pair development, as well as the tests of their applications.

Keywords: unnatural base pair, genetic alphabet, replication, transcription, translation, PCR

Introduction

Through molecular biology studies, from the discovery of the double helix structure of DNA in 19531) to the deciphering of the genetic code in the 1960s,2)–4) researchers revealed that the complementarity of the A–T(U) and G–C base pairs is the fundamental rule of the genetic information flow of terrestrial life (Fig. 1). With surprising foresight, during that period, Alexander Rich proposed the possibility of an artificial, third base pair between isoguanine (isoG, 6-amino-2-ketopurine) and isocytosine (isoC, 2-amino-4-ketopyrimidine) in his article in 1962 (Fig. 2a).5) The artificially designed isoG–isoC pair has three hydrogen bonds with specific geometry of the proton donor and acceptor combinations, which are different from those in the A–T and G–C pairs. If the third base pair (unnatural base pair), along with the natural base pairs, selectively functions in the central dogma comprising replication, transcription, and translation, then the genetic alphabet and code could be expanded, providing a new method for the site-specific incorporation of novel components into nucleic acids and proteins with increased functionality (Fig. 3). In addition, unnatural base pair studies could also provide new aspects for biological mechanisms related to the genetic information flow and for elucidating the origin of the A–T(U) and G–C pairs in the prebiotic era on Earth.6)–11) Furthermore, the creation of unnatural base pairs is a challenging theme for synthetic biology researchers seeking the possibility of artificially rebuilding the present life system to a further evolved one.

In 1989, Benner’s group reported the chemical synthesis of the nucleoside derivatives of isoG and isoC, and tested the isoG–isoC pair in in vitro replication and transcription.12) They also designed other unnatural base pairs with different hydrogen bonding geometries, such as X–κ (Fig. 2b).13) In 1992, they demonstrated an in vitro translation system using the isoG–isoC pair for the site-specific incorporation of a non-standard amino acid, 3-iodotyrosine, into a peptide, by creating a new isoCAG codon.14) Through these experiments, the possibility and potential of unnatural base pairs were examined, and recently, the isoG–isoC pair was utilized in a multiplex real-time PCR system to

*1 RIKEN Systems and Structural Biology Center (SSBC), Yokohama, Japan.
*2 TagCyx Biotechnologies, Yokohama, Japan.
† Correspondence should be addressed: I. Hirao, RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan (e-mail: ihirao@riken.jp).

doi: 10.2183/pjab.88.345
©2012 The Japan Academy
detect a target nucleic acid sequence. However, the pairing selectivities of these unnatural base pairs were not sufficient in polymerase reactions, and thus their applications have been severely limited.

In the mid-1990s, Kool’s group synthesized a non-hydrogen-bonded natural base pair analog between 4-methylbenzimidazole (Z) and 2,4-difluorotoluene (F), as a steric isostere of the A–T pair.
mutations of bases in replicated DNA fragments are accumulated by repeated amplification, such as increased numbers of PCR cycles. If the selectivity of an unnatural base pair is 99.9% per replication, then 98% of the unnatural base pair could be retained at a specific position in its amplified DNA after 20 cycles of PCR (0.99920 = ~0.98 in a theoretical exponential amplification). However, when using an unnatural base pair with 99.0% replication selectivity, the retention of the unnatural base pair in its amplified DNA after 20-cycle PCR would decrease to 82% (0.99020 = ~0.82).

Since the late 1990s, the creation of unnatural base pairs for new biological systems has competitively and rapidly advanced. At present, three types of unnatural base pairs have been developed by Benner's, Ronesberg's and our groups, and DNA fragments containing these unnatural base pairs can be efficiently and faithfully amplified by PCR with high selectivity (>99%). However, in the early stages, when the difficulties with the isoG–isoC pair were revealed, most researchers were skeptical about the possibility of artificially introducing an unnatural base pair into the present sophisticated biology systems that have evolved over several billion years. Here, we will describe the developmental process of unnatural base pairs and their applications, by focusing on our research as well as the progress made by other groups.

I. Base pairing complementarity in polymerase reactions

In general, the creation of unnatural base pairs is initiated by designing the molecular structures or modifying the A–T and G–C pairs, based on a certain idea or concept underlying the mechanism of the selective complementarity of the natural base pairings in polymerase reactions. The natural base pairs comprise two pairs between purine (A, G) and pyrimidine (T, C) bases, in which the distances between the glycoside bond positions of the pairing bases are constant (10.7–11.0 Å) (Fig. 1). The constant distance in double-stranded DNA is essential to allow the access of polymerases. Each pair is formed by hydrogen bonding interactions. This suggestion initiated some controversy, since it contradicted the traditional fundamental role of the base pair selectivity. However, another key point of Kool’s discovery was that non-hydrogen-bonded hydrophobic base analogs could be potential candidates for creating unnatural third base pairs.

In a genetic expansion system, highly exclusive selectivity of the unnatural base pair is required for it to function as a third base pair in polymerase reactions, such as PCR amplification and transcription. The error rates for natural base pairing by proofreading-deficient DNA polymerases (without 3’-exonuclease activity) range from 10−3 to 10−6 error/bp. This means that the incorporation selectivity of the natural base substrates opposite their complementary base in templates ranges from 99.9 to 99.9999% in replication. Since replicated DNA fragments also act as templates for further replication,
shapes between pairing bases is also considered as an important factor for the base pair selectivity in replication. From our experiments using several base pair analogs with different numbers of hydrogen bonds, we consider both the shape complementarity and the strength of the hydrogen-bonding interaction as affecting the base pair formation in replication.\(^\text{38}\)

Other factors, such as polarity, electrical repulsion, and hydrophobicity between pairing bases, and minor groove interactions with polymerases, should also be considered when creating unnatural base pairs. X-ray crystallography of the ternary complexes among DNA templates, triphosphate substrates, and polymerases revealed that the 3-nitrogen atoms of A and G and the 2-keto groups of C and T on the minor groove side (Fig. 1) interact with the side chains of amino acids in polymerases directly or via a water molecule.\(^\text{39,40}\) Replication experiments using base analogs proved the importance of these minor groove interactions. The nucleoside triphosphates of pyrimidine analogs (2-aminopyridin-5-yl and 3-methyl-2-pyridon-5-yl), which lack the 2-keto group of C and T, strongly inhibited PCR amplification by Taq DNA polymerase or the Klenow fragment of *Escherichia coli* DNA polymerase I (KF).\(^\text{41}\) Kool’s group developed a modified Z base (9-methyl-1H-imidazol[4,5-b]pyridazine, Q), in which the carbon of the Z base, corresponding to position 3 of purines, was replaced with nitrogen (Fig. 4c), and found the increased efficiency of the Q-F pairing in replication using KF, as compared to that of the Z-F pairing.\(^\text{42}\) Both the oxygen of the pyrimidine 2-keto groups and the purine 3-nitrogen are located in similar relative positions from the nucleic acid backbone, and thus polymerases can equally recognize all four bases with the same interaction mechanism (Fig. 1). However, the position and the orientation of the lone-pair electrons of the oxygen in the pyrimidines are slightly different from those of the nitrogen in the purines. Therefore, slight fluctuations of these proton donor atom positions are acceptable. As for interactions with polymerases, the higher hydrophobicity of the substrate and template bases is favorable. X-ray crystallographic analyses of DNA and RNA polymerases revealed that these bases are stacked with aromatic amino acid residues in the polymerases.\(^\text{40,43,44}\) For the creation of unnatural base pairs, these factors should also be considered, besides the hydrogen-bonding pattern and shape-complementarity of the base pairings.

II. Developmental process of unnatural base pairs

The creation of unnatural base pairs has been achieved by repeating “proof of concept” experiments. First, an unnatural base pair is designed by considering the known factors mentioned above. Second, nucleoside 5’-triphosphates (as substrates in replication and transcription)\(^\text{45,46}\) and amidite derivatives (for automated DNA synthesis) of the designed unnatural bases are chemically synthesized. Third, replication and transcription using the unnatural base substrates and DNA templates are examined in a test tube. Then, the designed base pairs are modified or new pairs are redesigned, by addressing the problems revealed by the experiments. This process is repeated over and over, until satisfactory base pairs are created for practical use in replication, transcription, and/or translation systems.

The enzymatic incorporation efficiency and selectivity of designed unnatural base pairs are assessed in *in vitro* polymerase reactions. For replication studies, the steady-state kinetic parameters (\(V_{\text{max}}/K_{\text{M}}\) or \(k_{\text{cat}}/K_{\text{M}}\)) of cognate and non-cognate base pairings are determined by a conventional single-nucleotide insertion experiment,\(^\text{47-49}\) which is useful to assess the enzymatic incorporation efficiency of a substrate, opposite a template base, into a primer strand (see Fig. 15). The single-nucleotide insertion experiments are performed by using combinations of each substrate with each template base in a primer/template complex, and KF without 3’-exonuclease activity. Usually, a gel-based analysis using radioactive labeled-primers is employed to determine the parameters of all possible combinations of cognate and non-cognate natural and unnatural base pairs. However, the gel-based analysis is tremendously laborious and time-consuming. Therefore, we improved the method by using an automated DNA sequencer with dye-labeled primers.\(^\text{50}\) This method has greatly accelerated our repetitive ‘proof of concept’ experiments.

Primer extension and PCR amplification in the presence of all substrates of natural and unnatural bases are more practical assessments of unnatural base pairings in replication. *In vitro* transcription using T7 RNA polymerase is also often used to assess the site-specific incorporation of unnatural bases into RNA. In these experiments, new methods should be developed for determining the incorporation positions and selectivities of unnatural base pairs in the replicated DNA and transcribed RNA fragments. In
the following sections, we describe several methods associated with the process of unnatural base pair development.

III. Hydrogen-bonded, unnatural base pairs

1. Early stage of unnatural base pair studies

Benner’s group pioneered the examination of the abilities of hydrogen-bonded unnatural base pairs, such as isoG–isoC and X–κ (xanthine–2,6-diaminopyrimidine) (Figs. 2a and 2b). Although their efforts revealed the possibility of a genetic system utilizing unnatural base pairs, they also highlighted several weaknesses of their base pairs for practical use. First, in contrast to the natural bases, the isoC, X and κ bases have proton-donor 2-amino (in isoC and κ) or 3-imino (in X) groups on the minor groove side, which are unfavorable for polymerase recognition, thus decreasing their incorporation efficiencies. Second, the isoC nucleoside is chemically unstable under alkaline and acidic conditions, which makes it difficult to prepare isoC-containing oligonucleotides by chemical synthesis. Third, hydrogen-bonded unnatural base pairs sometimes suffer from the instability of the hydrogen-bonding geometry, due to tautomerism. Especially, isoG undergoes keto-enol tautomerization, depending on the solvent polarity, and the enol form of isoG mispairs with T (Fig. 2c), greatly decreasing the isoG–isoC pairing selectivity. Due to these shortcomings, unnatural base pair studies slowed down for a period in the mid-1990s.

We initiated our unnatural base pair studies in 1997, by addressing the base pair problems identified by Benner’s group. By combining Benner’s hydrogen-bonding geometry concept with a steric hindrance idea, we first designed and synthesized a series of unnatural base pairs between 2-amino-6-modified-purines and pyridine-2-one (y), such as 2-amino-6-(N,N-dimethylamino)purine (x) and y. In these unnatural base pairs, the bulky substituents at the 6-position of the x, s and v bases exclude the mis-pairing with the natural pyrimidines, by sterically clashing with the 4-keto group of T(U) and the 4-amino group of C (Fig. 5c), but in the cognate pairing with y, the bulky 6-substituents can accommodate the 6-hydrogen atom of y, corresponding to position 4 of the pyrimidines. The x–y, s–y and v–y pairs function well in transcription, and T7 RNA polymerase site-specifically incorporates the substrate of y (yTP) into RNA opposite x, s or v in chemically-synthesized DNA templates.

Among these unnatural base pairs, the order of the efficiency and selectivity of the unnatural base pairing in T7 transcription is v–y > s–y > x–y. In comparison with the freely rotated 6-dimethylamino group of x, the planarity and the electronegative atoms of the 6-heterocycles, thiazolyl in v and thienyl in s, efficiently exclude the pairing with the natural bases, especially T or U, by the electron negative repulsion with the 4-keto group of T or U, as well as the steric clash. In addition, the DNA duplexes containing the s–y or v–y pair exhibit higher thermal stability than those with the x–y pair. This is because the 6-heterocycles stack with their neighboring natural bases in the duplex DNA. However, the nucleoside derivatives of v are chemically less stable under basic conditions, relative to those of s. Thus, among them, the s–y pair is the most useful unnatural base pair for the transcription system. Interestingly, we found that the s and v bases are fluorescent.

2. Transcription system using the s–y pair.

The site-specific incorporation of yTP into RNA was confirmed by a 2D-TLC nucleotide-composition analysis of transcripts (Fig. 6a). For the analysis, we used partially double-stranded 37-mer DNA templates, from which 19-mer RNA fragments were
transcribed. T7 transcription was performed in the presence of [α-32P]ATP, besides the natural and unnatural substrates. Since the following base of the unnatural base was T in the templates (position 13 of the template in Fig. 6a), the 5'-32P-labeled A was incorporated into the opposite position after the y incorporation in the transcripts. Thus, the 3'-phosphate of y was radioactively labeled, and by RNase T2 digestion of the transcripts, the 3'-labeled nucleotides of y and some other labeled natural bases.
were obtained. These labeled nucleotides were analyzed and quantified by 2D-TLC. The analysis revealed that more than 90% of \(yTP \) was site-specifically incorporated into RNA, opposite \(s \) in templates, by T7 transcription in the presence of 1 mM each substrate (see TLC for \(NFs \) in Fig. 6a). In addition, no significant misincorporations of \(yTP \) opposite the natural bases were observed (see TLC for \(NFA \) and \(G \) in Fig. 6a).

This specific transcription involving the \(s-y \) pair was combined with an \textit{in vitro} translation system, and in 2002, we succeeded in the site-specific incorporation of a non-standard amino acid, 3-chlorotyrosine, into the human Ras protein (185 amino acid residues with a (His)\(_6\) tag) by a coupled T7 transcription and \textit{E. coli} translation system (Fig. 6b).\(^{57}\) For the transcription of the 747-mer \(y \)-containing RNA, we prepared DNA templates containing a CTs sequence, as a new \(y \)AG codon for a non-standard amino acid, by the chemical synthesis of a short DNA fragment containing \(s \), followed by enzymatic ligation with 5′- and 3′-ras gene fragments. Separately, a 3-chlorotyrosine-charged tRNA containing a CU\(_s\) anticodon, was prepared by a combination of chemical synthesis and enzymatic ligation, followed by aminoaaclylation of 3-chlorotyrosine using an aminoaaclyl-tRNA synthetase (Fig. 7). We chose the sequence of \textit{Saccharomyces cerevisiae} tRNA\(_{Ty}^N\) for the CU\(_s\)-anticodon tRNA (tRNA\(_{CTs}\)), since it is a very poor substrate for any \textit{E. coli} aminoaaclyl-tRNA synthetase. In contrast, a mutated \textit{S. cerevisiae} tyrosyl-tRNA synthetase\(^{60}\) efficiently aminoaaclylated tRNA\(_{CTs}\) with 3-chlorotyrosine. The \textit{in vitro} coupled transcription and translation system was tested, using 3-chlorotyrosyl-tRNA\(_{CTs}\) and the DNA template containing the CTs sequence with \(yTP \). A mass spectrometric analysis of the obtained protein confirmed the site-specific incorporation of 3-chlorotyrosine into position 32 of the Ras protein. This was the first achievement of the direct synthesis of a protein containing a non-standard amino acid at a specific position by the transcription and translation system, using its long DNA template.

In addition, the specific transcription involving the \(s-y \) pair was also applied to generate RNA molecules with extra functional components at desired positions. In general, the site-specific modification of RNA molecules is achieved by chemical RNA synthesis, post-transcriptional modification, and enzymatic incorporation of nucleotide analogs as substrates. Although chemical synthesis is commonly used, it is only practical for preparing small RNA molecules. Post-transcriptional modification\(^{61-66}\) are restricted to only the 5′- or 3′-termini of RNA molecules, and the incorporation efficiency and selectivity are not always high. In contrast, the transcription mediated by the \(s-y \) and \(v-y \) pairs allows the selective site-specific incorporation of a
wide variety of modified \(y \) bases, which are linked with functional groups of interest via a linker, into desired positions of RNA transcripts. A series of modified \(y \)TPs, such as iodo-, amino-, biotin- and fluorophore-linked \(y \) bases, were chemically synthesized (Fig. 8a).\(^{67)}\)–\(^{71)}\) These modified \(y \)TPs can be site-specifically incorporated into RNA, opposite \(s \) or \(v \) in templates, by T7 transcription.

The iodo-\(y \) base is a photosensitive component, capable of cross-linking with proximal reactive residues by irradiation at 312 nm.\(^{68)}\) RNA molecules containing iodo-\(y \) at specific positions can be used for studying RNA-RNA and RNA-protein interactions and for fixing the interactions by photo-crosslinking, as reported in RNA photoaptamers.\(^{72)}\),\(^{73)}\) We demonstrated the photo-crosslinking ability using the iodo-\(y \) base, by introducing it into an RNA aptamer and examining the interaction of the aptamer and its target protein.\(^{67)}\),\(^{74)}\) We also demonstrated the 3′-terminal labeling of RNA molecules by T7 transcription using modified \(y \)TPs. DNA templates containing \(s \) or \(v \) at the terminal position can be easily prepared by PCR using \(s \) or \(v \)-containing 3′-primers (Fig. 8a). By T7 transcription using fluoroscein- or biotin-linked \(y \) substrates (FAM-\(y \)TP, FAM-hx-\(y \)TP or Biotin-\(y \)TP in Fig. 8a), we performed both the fluorescent labeling and immobilization of an RNA aptamer.\(^{69)}\),\(^{70)}\)

By rational design based on structural information, the site-specific modified-\(y \) incorporation could be a powerful tool to endow RNA molecules with new functions. To show this, we developed a fluorescence sensor system using an anti-theophylline RNA aptamer.\(^{69)}\) We introduced FAM-\(y \) into a specific position of the anti-theophylline aptamer, on the basis of the tertiary structure of the aptamer—
the non-cognate A-y pair. The s-y pair transcription system is useful for the incorporation of y into RNA opposite s in DNA templates. However, the opposite case, namely, the s incorporation into RNA opposite y, is less effective. Although the 6-thienyl group of s efficiently prevents the mispairing with the natural pyrimidine bases, y has no such functional group to exclude mispairing with the natural purine bases. In addition, y possesses good shape complementarily with A as well as s (Figs. 9a and 9b). Thus, the misincorporation of ATP opposite y is the main problem, and the s-y pair is only used as a unidirectional third base pair for transcription.

To address this problem, we redesigned the pairing partner of s, instead of y, and developed imidazolizin-2-one (z) (Fig. 9c). The five-membered ring of z reduces the shape complementarity of the pairing with A (Fig. 9d), relative to that of y. Usually, hydrophilic bases are hydrated with surrounding waters, and a pairing partner with less shape complementarity cannot exclude the waters and form the base pair. In addition, the small ring of z is accommodated well in the s-z pair. We synthesized the nucleoside derivatives of z, and examined the efficiency and selectivity of the s-z pairing in replication and transcription, by comparison to those of the s-y pairing. As expected, the steady-state kinetics of single-nucleotide insertion experiments using KF revealed that the selectivity of the non-cognate A-z pair \(V_{\text{max}}/K_M = 1.6 \times 10^6 \) for the dATP incorporation opposite z was greatly reduced, as compared to that of the non-cognate A-y pair \(V_{\text{max}}/K_M = 1.5 \times 10^5 \) for the dATP incorporation opposite y. In T7 transcription, z is superior to y as a template base for the site-specific s incorporation into RNA.75)

However, the z incorporation opposite s into DNA and RNA was less effective, relative to the y incorporation opposite s. This might be due to the lower hydrophobicity of the z base, which would reduce the interaction with polymerases. From the single-nucleotide insertion experiments using KF, the \(K_M \) value for the z incorporation opposite s (\(K_M = 600 \mu M \)) was much larger than that for the s incorporation opposite z (\(K_M = 95 \mu M \)), indicating that the low stacking ability of the z substrate, because of the low hydrophobicity, reduced the affinity between the DNA polymerase and the z substrate. Like DNA polymerase, T7 RNA polymerase also prefers hydrophobic bases as substrates. Similarly, the thermal stability of duplex DNA fragments containing the s-z pair was lower, as compared to those with the s-y pair. Thus, for a new codon and anticodon in translation, the s-y pair is better than the s-z pair. For all of these reasons, a two-unnatural base pair system of the s-y and s-z pairs could be used as a coupled transcription and translation system for the site-specific incorporation of non-standard amino acids into proteins. The s-y pair can be used for preparing mRNA containing y, and the s-z pair is useful for preparing tRNA containing z by T7 transcription.75)

Fig. 9. Structures of the hydrogen-bonded, unnatural base pairs designed by our group. (a) The cognate s-y pair. (b) The non-cognate A-y pair. (c) The cognate s-z pair. (d) The non-cognate A-z pair. Space filling models of the base alone (with a methyl group in place of the ribose) are shown.
Throughout our studies so far, the hydrogen-bonded, unnatural base pairs function well as a third base pair in transcription and translation. However, in replication, the selectivity of our unnatural base pairs is still insufficient. Some of the hydrogen-bonding residues and atoms of the s, y and z bases attract the natural hydrophilic bases in replication. In addition, small, hydrophilic molecules, such as the z base, are not favorable for interactions with polymerases. Therefore, we shifted the focus of our studies to the creation of hydrophobic, unnatural base pairs.

IV. Hydrophobic, unnatural base pairs

1. Struggling with hydrophobic base pairs.

From Kool’s study in the mid-1990s, non-hydrogen bonded, hydrophobic base analogues became candidates for a third base pair. In addition, hydrophobic base analogs are well recognized by polymerases, because an aromatic amino acid residue in the polymerases stacks with an incoming substrate base. Our first attempt to design a hydrophobic base pair was the self-pair between 4-methylpyridine-2-one (4MP) bases (Fig. 10a). Kool’s study of the Z–F pair also revealed slight mispairing between the F bases in replication using KF, and thus we designed the 4MP base from the F base. Unlike F, the 4MP base has a 4-methyl group to prevent mispairing with A by clashing between the 4-methyl group of 4MP and the 6-amino group of A, and it has the 2-keto group for the minor groove interaction with polymerases. We synthesized the amidite and triphosphate of 4MP, and tested the 4MP–4MP self-pairing in replication using KF. However, contrary to our expectations, the 4MP substrate was not incorporated opposite 4MP at all, although we found that 4MP has unique dual specificity for pairing with A or G.

Meanwhile, in 1999, Romesberg’s group reported their successful hydrophobic self-pair between the 7-propynylisocarostyril (PICS) bases in single-nucleotide insertion experiments (Fig. 10b). The PICS substrate was efficiently incorporated into DNA, opposite PICS in templates, by KF. Furthermore, DNA duplexes containing the PICS–PICS pair exhibited high thermal stability, relative to those containing non-cognate pairs between PICS and each of the natural bases. However, after the PICS incorporation opposite PICS, the following extension was prevented in replication. The PICS–PICS pair is too large for accommodation in the 10.7–11.0 Å distance of the DNA duplex, and thus, the large and hydrophobic PICS molecules stack on each other in the pairing, and this unusual stacked structure cannot be recognized by polymerases during primer extension.

In 2003, while considering Kool’s Z–F and Q–F pairs, which are hydrophobic isosteres of the natural A–T pair, we found that the shape complementarity of these base pair is still imperfect, and the hydrogen atoms in the center on the pairing surface clash with each other (Fig. 10c). We noticed that this clash could be eliminated by employing a five-membered ring base analog, in place of the six-membered F base. Therefore, we designed pyrrole-2-carbaldehyde (Pa) (Fig. 10d), as a pairing partner of Kool’s Q base. Like the effective cognate s–z and less effective non-cognate A–z pairs, the hydrophobic, five-membered Pa base was expected to reduce the shape complementarity with A in the A–Pa pair, relative to that of the A–F pair. In addition, we added an aldehyde group to Pa, to increase the minor groove interaction with polymerases.

We synthesized the substrate and amidite of Pa, and examined the efficiency and selectivity of the Q–Pa pairing in replication by KF. As expected, the single-nucleotide insertion experiments using KF revealed the improved selectivity of the cognate Q–Pa pair (Fig. 15), relative to those of the Q–F pair. We also determined the tertiary structure of a DNA duplex containing the Q–Pa pair by NMR, and confirmed that the geometry of the Q–Pa pair in the duplex closely resembles those of the natural base pairs, rather than that of the Z–F pair. From the study, we realized that the fine-tuning of the shape
complementarity of unnatural base pairs is important to create a third base pair.

Although we made a favorable start in our analysis of hydrophobic base pairs, the Q–Pa pair still did not work complementarily as a third base pair in replication. Since the Q base is an isostere of A, Q also pairs with T. In addition, we found that dQTP was self-complementarily incorporated into DNA opposite Q in templates, and like the PICS–PICS pair,\(^78\) after the Q–Q pair formation, the following extension was paused.

In 2005, Benner’s group reported a new genetic expansion system using the isoG–isoC, G–C and A–2-thiothymine (T\(^8\)) pairs, by addressing the tautomerism problem of isoG.\(^80\) To prevent the pairing of the enol form of isoG with T, they replaced T with T\(^8\), in which the large 2-sulfur atom clashes with the 2-hydroxy group of the enol form of isoG (Figs. 2d and 2e). This new set of three base pairs functions in PCR: the selectivity of the isoG–isoC pair reached 98% per PCR cycle, while the isoG–isoC selectivity without the help of T\(^8\) was about 93% per PCR cycle. Although the 98% selectivity of the unnatural base pairing is not sufficient for practical use in replication (the retention rate of the isoG–isoC pair in 20-cycle PCR amplified DNA fragments becomes around 67% (0.98\(^8\) = \(\sim 0.67\))), this is a unique expansion system for PCR amplification. At this point, we had no further breakthrough ideas other than the Q–Pa pair. As a desperate measure, we collected all of the efficiency and selectivity data of our unnatural base pairs, and examined all possible pairing combinations comprehensively, using the unnatural bases that we had developed thus far.

The comprehensive experiments fortunately revealed that the base pair between s and Pa functioned well in the site-specific incorporation of sTP into RNA opposite Pa, with higher efficiency than that of the s–z pair, in T7 transcription (Figs. 11a and 11b).\(^81\) Despite the lower shape complementarity of the s–Pa pair, relative to the s–z pair, the incorporation efficiency of sTP opposite Pa was higher than that opposite z in templates. This might be due to the higher hydrophobicity of Pa than that of z. Although the s–Pa pair cannot be used in replication, this finding led to a new idea for creating an unnatural base pair. Furthermore, since the s base is fluorescent, the efficient, site-specific incorporation of the s base into RNA provides a new tool for the local structural analysis of functional RNA molecules. The s base is an analog of the well-known fluorescent 2-aminopurine base, and the ribonucleoside of s exhibits fluorescence emission centered at 434 nm by excitation at 352 nm in phosphate buffer (pH 7).\(^80\) The fluorescent intensity of the s base in RNA molecules varies, depending on its structural environment. The s fluorescence is reduced by quenching when the s base stacks with neighboring bases in a tertiary RNA structure. Thus, the site-specific s labeling can be used as a probe for analyzing the local structural features of RNA molecules and their intra- or intermolecular interactions. We demonstrated the site-specific s labeling of an RNA hairpin and tRNA molecules by T7 transcription mediated by the s–Pa pair (Figs. 11c–11e). By introducing the s base at several positions within the tRNA, the magnesium ion dependency and the thermal stability of the L-shape structure formation were examined by the changes in the fluorescence of the s base at each position.\(^81\),\(^82\)

2. Hydrophobic, unnatural base pairs functioning in PCR. More importantly, the s–Pa pair gave us a new idea for creating further unnatural base pairs. The problem with using it in replication was that the hydrogen-bonding residues and atoms in the s base attract one of the natural bases. Therefore, we replaced the 1-nitrogen of s with C-H and removed the 2-amino group, and designed the hydrophobic base, 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds), as a new pairing partner of Pa (Fig. 12a).\(^34\) This Ds–Pa pair was also derived by improving the Q–Pa pair. To prevent the Q–T mispair, the methyl group of Q was replaced with a thienyl group, like that of the s base. We then chemically synthesized the substrates and amide of Ds. However, at that point, we missed the disturbing possibility of the Ds–Ds self-pairing in replication, like the PICS–PICS and Q–Q pairings. Unfortunately, it was true that the efficiency of the Ds incorporation opposite Ds was as high as that opposite Pa in replication using KF, and after the Ds incorporation opposite Ds, the extension was paused. This was a difficult problem specific to hydrophobic, unnatural base pairs. To address the same problem with the PICS–PICS pair, Romesberg’s group engineered DNA polymerases by an evolutional technique, to develop mutated polymerases capable of continuous extension after the PICS–PICS pairing.\(^83\),\(^84\)

Serendipitously, we solved this Ds–Ds self-pairing problem in a different way from Romesberg’s approach. We accidentally synthesized a modified Ds substrate, the \(\gamma\)-amidotriphosphate of Ds
DsTPNH2, Fig. 12b), instead of the usual Ds triphosphate substrate by modifying the synthetic route, as described below. We tested this unique substrate out of curiosity, and thereby found that DNA polymerases sensitively recognize dDsTPNH2 as a pairing partner of Pa, but not of Ds, in templates. In single-nucleotide insertion experiments using KF, the incorporation efficiency of dDsTPNH2 opposite Ds (Vmax/KM = 9.9 × 105) was lower than those of both dDsTP opposite Ds (Vmax/KM = 2.0 × 105) and dDsTPNH2 opposite Pa (Vmax/KM = 6.7 × 104). Furthermore, we found that this γ-amidotriphosphate effect has broad utility. Thus, we also employed the γ-amidotriphosphate of A (dATPNH2), because the slight misincorporation of dATP opposite Pa is another problem. In 2006, we achieved an efficient genetic expansion PCR system involving the Ds–Pa pair with a combination of the usual (dPaTP, dGTP, dCTP and dTTP) and modified (dDsTPNH2 and dATPNH2) substrates.

The γ-amidotriphosphate derivatives were synthesized by a modification of a Eckstein’s standard method (Fig. 13). In the conventional method, 2′-deoxyribonucleoside 5′-triphosphates (compound 4, dDsTP in Fig. 13) are prepared from 3′-protected deoxyribonucleosides (compound 1) via 5′-dioxycyclotriphosphite derivatives (compound 2). Compound 2 is oxidized with iodine, and the resulting
cyclic phosphates are usually hydrolyzed with water to yield their triphosphates (compound 3). The 3’-protected acyl group is then removed by hydrolysis with concentrated ammonia water. One day, one of our researchers omitted the water hydrolysis of the cyclic phosphates, and directly treated them with concentrated ammonia water, to simplify the triphosphate synthesis. However, this process primarily generated the \(-\text{amidotriphosphate derivatives (compound 5, dDsP} \text{TPNH}_2 \). We still do not know the mechanism underlying the improved fidelity of the unnatural base pairing using the \(\gamma\)-amidotriphosphates. The use of \(\gamma\)-modified triphosphates, \(\gamma\text{-F-aminonaphthalene-5-sulfonate triphosphates, also reportedly improves the fidelity of the natural base pairing in reverse transcription.}^5)\) In our study, the \(\gamma\)-amidotriphosphates also exhibited reduced incorporation efficiency even in the cognate base pairings, although the efficiency is still much higher than those of the non-cognate base pairings. Thus, DNA polymerases might sensitively recognize the \(\gamma\)-amidotriphosphate moiety of the substrates, and the geometrical fluctuation caused by non-cognate pairings, such as Ds–Ds and A–Pa, significantly reduces the interaction between the amino acid residues in the polymerase and the \(\gamma\)-amidotriphosphate moiety, resulting in the loss of the function of the amidodi-phosphate part as a leaving group, like the pyrophosphate moiety of triphosphate substrates.

Fig. 12. Hydrophobic, unnatural base pairs designed by our group. (a) The unnatural Ds–Pa pair. (b) The usual triphosphate (R=OH) and \(\gamma\)-amidotriphosphate (R=NH\(_2\)) used as substrates in the unnatural Ds–Pa pair system for PCR. (c) The unnatural Ds–Pn pair. (d) The non-cognate A–Pn pair. (e) The unnatural Ds–Px pair. (f) The unnatural Ds–Diol-Px pair.
In the unique PCR system using the \(\gamma \)-amidotriphosphates of Ds and A, the Ds–Pa pair exhibited high selectivity (>99% per replication), and about 97% of the Ds–Pa pair was retained in the amplified DNA fragments after 20 cycles of PCR, using the exonuclease-proficient Vent DNA polymerase. The incorporation site and retention rate of the Ds–Pa pair in the amplified DNA fragments after PCR amplification were determined by two dideoxy-dye terminator cycle-sequencing methods in the presence and absence of dPa’TP (Pa’ \(= \) 4-propynylpyrrole-2-carbaldehyde, which is a modified Pa base, and the incorporation efficiency of dPa’TP opposite Ds is higher than that of dPaTP.) (Fig. 14). In the presence of dPa’TP (Method 1), the unnatural base position can be identified as a gap in the sequencing peak patterns, because we do not add the dideoxy-dye terminator corresponding to Pa’. In contrast, in the absence of dPa’TP (Method 2), there are no substrates for the incorporation opposite Ds in the sequencing reaction, and the polymerase pauses at the unnatural base position. Thus, the sequencing peaks disappear after the unnatural base position. Method 1 is useful for the confirmation of the unnatural base position in the DNA fragments, and Method 2 is used to determine the retention rate of the unnatural base pair in the amplified DNA fragments. If the misincorporation of the natural base substrates opposite unnatural bases occurs at the original unnatural base position, then the sequencing peak heights after the unnatural base position in Method 2 increase, in correlation with the misincorporation rates. Using Method 2, we developed a quantification method to determine the misincorporation rate of the natural bases at the Ds–Pa pair position, and assessed the selectivity (>99% per replication) of the Ds–Pa pairing in PCR using Vent DNA polymerase (exo+).

The hydrophobic Ds–Pa pair also functions complementarily in T7 transcription. Both DsTP and PaTP are site-specifically incorporated into RNA, opposite Pa and Ds, respectively, in templates, with more than 94% selectivities by T7 RNA polymerase. Furthermore, we chemically synthesized modified-Pa substrates, in which functional groups, such as biotin and fluorophores, can be attached to the Pa base via a propynyl linker, and these substrates are also site-specifically incorporated into RNA by T7 transcription. We compared the selectivity of the Ds–Pa pairing and the misincorporation of the unnatural base substrates opposite the natural bases in transcription with those of the natural A–U pairing, by using biotin-linked Pa and U substrates (Biotin-PaTP and Biotin-UTP). Although the selectivity of the Biotin-PaTP incorporation opposite Ds (90%) was lower than that of...
the Biotin-UTP incorporation opposite A (100%), the misincorporation rate of Biotin-PaTP opposite any natural bases (0.06%) was lower than that of Biotin-UTP opposite G, C, or U (0.14% per base).34) We recently chemically synthesized and tested various modified PaTPs for their site-specific incorporation in large RNA molecules by T7 transcription.86)

3. Successful unnatural base pair, Ds–Pa.

The Ds–Pa pair is the first third base pair that selectively functions in PCR along with the natural base pairs. However, the application of the Ds–Pa pair system is still limited, because of the use of the γ-amidotriphosphates of Ds and A. The use of the modified substrates decreases the PCR amplification efficiency and restricts the range of in vivo applications. Therefore, we further improved the unnatural base pair system to bypass the need for the γ-amidotriphosphates, while maintaining the high selectivity (more than 99%) of the unnatural base pairing, in PCR. We first replaced the aldehyde group of Pa with a nitro group and synthesized 2-nitropyrrole (Pn) (Fig. 12c), to avoid the use of the γ-amidotriphosphate of A by preventing the A–Pa mispairing.35) The nitro group of Pn reduces the misincorporation of A opposite Pa, by the electrostatic repulsion between the oxygen of the nitro group and the 1-nitrogen of A (Fig. 12d). Next, we added a propynyl group to position 4 of the Pn base, and developed 4-[3-(6-aminohexanamido)-1-propynyl]-2-nitropyrrole (Px) as a pairing partner of Ds (Fig. 12e). Increasing the hydrophobicity and the stacking ability of the unnatural base strengthens the affinity for polymerases, allowing higher incorporation efficiency of dPxTP opposite Ds than those of dPaTP opposite Ds and dPnTP opposite Ds (Fig. 15), as well as dDsTP opposite Ds, in the single-nucleotide insertion experiments using KF. Thus, in 2009, we reported the efficient PCR amplification system with the expanded genetic alphabet, by introducing the Ds–Px pair.36)

In the absence of the γ-amidotriphosphates, DNA fragments containing the Ds–Px pair were amplified 107-fold by 30 cycles of PCR. In the amplified DNA fragments, more than 99% of the unnatural base pair was retained, and thus, the selectivity of the Ds–Px pair exceeded 99.7% per replication. In this PCR amplification, we employed DeepVent DNA polymerase with 3′-exonuclease
activity. Detailed experiments revealed that the exonuclease activity of the polymerase is essential to eliminate the misincorporated unnatural bases in the strands.37) Recently, we performed 100-cycle PCR of DNA fragments containing the Ds–Px pair, to determine how much of the unnatural base survived in a huge amount of amplified DNA fragments. DNA amplification is saturated during 20–30 cycles of PCR in general, and thus, to maintain the exponential amplification throughout 100 cycles of PCR, the process of a 10-cycle PCR and the dilution of the PCR solution was repeated ten times. After 100 cycles of PCR using DeepVent DNA polymerase (exoD), the DNA fragment containing the Ds–Px pair was amplified 5 × 10²⁷-fold, and more than 97% of the unnatural base pair was retained in the amplified DNA fragments. The selectivity of the Ds–Px pair reached 99.97% per replication in the PCR system.37)

To increase the versatility of the new biotechnology, we enhanced the sophistication of the PCR system involving the Ds–Px pair. Through our studies, we found that the efficiency and selectivity of the Ds–Px pair in PCR depend on the natural base sequence contexts around the unnatural bases.37) For example, DNA templates containing 3’-purine-Ds-purine-5’ sequences are less effective and selective, as compared to those containing 3’-pyrimidine-Ds-pyrimidine-5’ sequences. However, by fine-tuning the PCR conditions, we diminished the sequence dependency. Furthermore, we found that a certain modification of the side chain in the Px base reduced the misincorporation rate of the Px substrate opposite the natural bases in templates, without decreasing the incorporation efficiency and selectivity of the Ds and modified Px base pair. The fidelity of unnatural base pairing in the polymerase reaction is determined by both the selectivity of the unnatural base substrates opposite the unnatural pairing partner bases and the misincorporation rate of the unnatural base substrates opposite the natural bases. From extensive experiments with the Ds–Px pair, we finally developed an unnatural base pair between Ds and the dihydroxyethyl derivatives of Px (Diol-Px) (Fig. 12f), for which the selectivity is 99.77–99.92% per replication, depending on the sequence contexts, and the misincorporation rate of the unnatural base substrates is 0.005% per base per replication, in PCR amplification using DeepVent DNA polymerase (exo⁺).37) The intrinsic mispairing error rate among the natural bases of DeepVent DNA polymerase (exo⁺) is around 2 × 10⁻⁵ error per base pair, which...

Fig. 15. Single-nucleotide incorporation efficiencies and selectivities of our unnatural base pairs by KF. A* corresponds to the γ-amidotriphosphate of A.
corresponds to ~0.002% per base per replication for the misincorporation rate of the natural bases (from New England BioLabs data). Therefore, the misincorporation rate of the Ds-Diol-Px pair is very close to that of the natural base pairs.

Summary and perspectives

During the past fifteen years, we created a series of unnatural base pairs that can be used as a third base pair in replication, transcription, and/or translation. By repeating the ‘proof of concept’ experiments, the efficiency and selectivity of the unnatural base pairs in replication were gradually improved (Fig. 15). Finally, we developed the Ds–Px pair, which exhibits extremely high efficiency and selectivity in PCR. The selectivity of the Ds–modified-Px pairing is as high as 99.8–99.9% per replication, and the misincorporation rate of unnatural bases opposite the natural bases is 0.005% per base per replication. Recently, Benner’s and Romesberg’s groups have also developed unnatural base pairs for practical use in PCR amplification as a third base pair. In 2009, Romesberg’s group reported two types of hydrophobic base pairs (5SICS–MMO2 and 5SICS–NaM pairs) (Figs. 16a and 16b), by improving the shape complementarily of their initial PICS–PICS pair.\(^{32,33}\) The best selectivity of the 5SICS–NaM pairs reached 99.8% per replication in PCR. Benner’s group addressed the shortcomings of their initial isoG–isoC pair, and developed a hydrogen-bonded base pair between 2-aminimidazo[1,2-a]-1,3,5-triazin-4(8H)-one (P) and 6-amino-5-nitro-2(1H)-pyridine (Z) (Fig. 16c).\(^{30,31}\) The selectivity and misincorporation rate of the P–Z pair in PCR are 99.8% per replication and 0.2% per base per replication, respectively. Representative of unnatural base pairs that function as a third base pair in replication, transcription, and/or translation are summarized in Table 1. These unnatural base pairs exhibit unique specificity and can be practically used for the site-specific incorporations of extra components into nucleic acids and/or proteins. Thus, over the past twenty years, researchers have made progress toward the possible artificial rebuilding of the central dogma by introducing a third base pair, at least in a test tube.

By using these unnatural base pair systems, a wide range of new applications for manipulating nucleic acids is anticipated. As shown here, any functional groups of interest can be attached to unnatural bases, allowing researchers to endow nucleic acids with desired new functionalities. In addition, some unnatural bases have unique properties themselves (e.g., the fluorescent s and hydrophobic Ds bases). Recently, we developed a strongly fluorescent unnatural base, 7-(2,2′-bithien-5-yl)-imidazo[4,5-6]pyridine (Dss) (Fig. 17a),\(^{88}\) by attaching an extra thienyl group to the Ds base. Similar to Ds, Dss retained the same shape complementarity toward the pyrrole base analogs of Pa, Pn, and Px, and these Dss–Pa, Dss–Pn, and Dss–Px pairs also functioned as a third base pair in replication and transcription. Furthermore, during the development, we found that the 2-nitropyrrrole of Pn and Px functions as a fluorescence quencher (Figs. 17a and 17b).\(^{89}\) Therefore, the Dss–Pn and Dss–Px pairs are a third base pair between fluorophore and quencher base analogs. We applied these unique unnatural base pairs to function as a molecular beacon (Fig. 17c) and in real-time quantitative PCR to detect a target nucleic acid sequence.\(^{89,90}\) Hydrophobic unnatural bases are also useful, because the natural nucleic acids are relatively hydrophilic. We recently developed a method for generating DNA aptamers containing the hydrophobic Ds bases, which tightly bind to target proteins (unpublished data).

Researchers now have several types of unnatural base pairs with the potential for use in in vitro systems (Table 1). The next goal is to apply unnatural base pairs to in vivo systems, by which the present genetic recombination techniques would be changed to a new genetic expansion technology. This new technology could provide safer containment
Unnatural base pair	Structure	Design concept	Functions	Remarks		
isoG–isoC	[Image of isoG–isoC structure]	Hydrogen-bonding-pattern	Less selective PCR Selectivity: 93% per PCR cycle	Modified isoG incorporation Peptide synthesis	Real-time PCR (Plexor) Weak points: Chemical instability of isoC Tautomerism of isoG	
s–y	[Image of s–y structure]	Hydrogen-bonding-pattern Steric hindrance	Less selective	Modified y incorporation coupled with transcription	Protein synthesis	Aaptamer functionalization Weak points: Less selective for s-incorporation in replication and transcription
s–Pa	[Image of s–Pa structure]	Non-hydrogen-bonded	Less selective	s incorporation Not reported	Not reported	
Ds–Pa	[Image of Ds–Pa structure]	Hydrophobic Shape-fitting	PCR with γ-amidotriphosphates of Ds and A Selectivity: >99% per replication	Ds and modified Pa incorporation	First unnatural base pair for PCR Weak points: Need γ-amidotriphosphates for PCR	
Ds–Px	[Image of Ds–Px structure]	Hydrophobic Shape-fitting	Misincorporation rate: <0.01% per base per replication	Not reported Not reported	Exhibits highest fidelity in PCR Weak points: Slight chemical instability of Px under basic conditions	
5SICS–NaM	[Image of 5SICS–NaM structure]	Hydrophobic	PCR Selectivity: 98.0–99.8% per replication	NaM and modified 5SICS incorporation	High thermal stability	
P–Z	[Image of P–Z structure]	Hydrogen-bonding-pattern	PCR Selectivity: ~99.8% per PCR cycle	NaM and modified 5SICS incorporation	Consecutive multiple incorporation in PCR Weak points: Slight pH dependency of the pairing selectivity	
Dss–Px	[Image of Dss–Px structure]	Hydrophobic Shape-fitting	PCR Selectivity: >99.5% per replication	Dss incorporation (opposite Pa)	Fluorescent (Dss) and quencher (Px) pair Weak points: Slight chemical instability of Px under basic conditions	
technology than the present recombination technology. Since unnatural base pairs cannot be synthesized in a metabolic pathway, their nucleoside materials must be supplied as a nutrient from the outside, to maintain the artificial genes containing the unnatural base pairs in the cell. Thus, a cell lacking the nutrient cannot live. In the artificial cells, a specific gene and its expression can be traced by labeling with unnatural bases, and new proteins containing non-standard amino acids can be efficiently produced.

In the in vivo system, mRNA and tRNA species containing unnatural bases could be transcribed from DNA templates and translated to proteins containing non-standard amino acids. By the translation system, we could generate unique proteins with increased functionality. To realize this, the unnatural base pair systems require further refinement. Codon and anticodon interactions are composed of only three base pairings, and thus the unnatural base pairings require thermal stabilities as high as those of the natural base pairs, for the development of an efficient translation system. In addition, we will need to learn more about the abilities and dynamics of unnatural base pairs in the cell, which in turn will provide the new synthetic biology tool of unnatural base pair systems, to elucidate molecular mechanisms in living organisms. We look forward to further advancements in this area of synthetic biology, toward next generation biotechnologies.

Acknowledgements

We thank all of our colleagues who contributed to our research described herein. We are especially grateful to Dr. S. Yokoyama, who always provided opportunities to proceed with the unnatural base studies. This work was supported by Grants-in-Aid for Scientific Research [KAKENHI 19201046 and 15350097 to I.H., 20710176 and 18710197 to M.K.] from the Ministry of Education, Culture, Sports, Science and Technology, the Targeted Proteins Research Program and the RIKEN Structural Genomics/Proteomics Initiative, the National Project on Protein Structural and Functional Analyses, Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

1) Watson, J.D. and Crick, F.H. (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738.
2) Nirenberg, M.W. and Matthaei, J.H. (1961) The
dependence of cell-free protein synthesis in E. coli
upon naturally occurring or synthetic polynucleo-
tides. Proc. Natl. Acad. Sci. U.S.A. 47, 1588–
1602.
3) Nirenberg, M. and Leder, P. (1964) RNA codewords
and protein synthesis. The effect of trinucleotides
upon the binding of sRNA to ribosomes. Science
145, 1399–1407.
4) Nishimura, S., Jones, D.S. and Khorana, H.G. (1965)
Studies on polymers. 48. The in vitro syn-
thesis of a co-polypeptide containing two amino
acids in alternating sequence dependent upon a
DNA-like polymer containing two nucleotides in
alternating sequence. J. Mol. Biol. 13, 302–324.
5) Rich, A. (1962) Problems of evolution and biochem-
ical information transfer. In Horizons in Biochem-
istry (eds. Kasha, M. and Pullman, B.). Academic
Press, New York, pp. 103–126.
6) Krueger, A.T. and Kool, E.T. (2009) Redesigning the
architecture of the base pair: toward biochemical
and biological function of new genetic sets. Chem.
Biol. 16, 242–248.
7) Szathmary, E. (2003) Why are there four letters in
the genetic alphabet? Nat. Rev. Genet. 4, 995–
1001.
8) Service, R.F. (2000) Molecular biology. Creation’s
seventh day. Science 289, 232–235.
9) Benner, S.A. and Sismour, A.M. (2005) Synthetic
biology. Nat. Rev. Genet. 6, 533–543.
10) Hirao, I., Kimoto, M. and Yamashige, R. (2012)
Natural versus artificial creation of base pairs in
DNA: Origin of nucleobases from the perspectives
of unnatural base pair studies. Acc. Chem. Res. (in
press).
11) Kimoto, M., Cox. R.S. 3rd and Hirao, I. (2011)
Unnatural base pair systems for sensing and
diagnostic applications. Expert Rev. Mol. Diagn.
11, 321–331.
12) Switzer, C., Moroney, S.E. and Benner, S.A. (1989)
Enzymatic incorporation of a new base pair into
DNA and RNA. J. Am. Chem. Soc. 111, 8322–
8333.
13) Piccirilli, J.A., Krauch, T., Moroney, S.E. and
Benner, S.A. (1990) Enzymatic incorporation of a
new base pair into DNA and RNA extends the
 genetic alphabet. Nature 343, 33–37.
14) Bain, J.D., Switzer, C., Chamberlin, A.R. and
Benner, S.A. (1992) Ribosome-mediated incorpora-
tion of a non-standard amino acid into a peptide
through expansion of the genetic code. Nature 356,
537–539.
15) Sherrill, C.B., Marshall, D.J., Moser, M.J., Larsen,
C.A., Daude-Snow, L., Jurczyk, S., Shapiro, G.
and Prudent, J.R. (2004) Nucleic acid analysis
using an expanded genetic alphabet to quench
fluorescence. J. Am. Chem. Soc. 126, 4550–4556.
16) Switzer, C.Y., Moroney, S.E. and Benner, S.A.
(1993) Enzymatic recognition of the base pair
between isocytidine and isoguanosine. Biochem-
istry 32, 10489–10496.
17) Horlacher, J., Hottiger, M., Podust, V.N., Hubscher,
U. and Benner, S.A. (1995) Recognition by viral
and cellular DNA polymerases of nucleosides
bearing bases with nonstandard hydrogen bonding
patterns. Proc. Natl. Acad. Sci. U.S.A. 92, 6329–
6333.
18) Benner, S.A. (2004) Understanding nucleic acids
using synthetic chemistry. Acc. Chem. Res. 37,
784–797.
19) Martinot, T.A. and Benner, S.A. (2004) Artificial
 genetic systems: exploiting the “aromaticity"
formalism to improve the tautomeric ratio for
isoguanosine derivatives. J. Org. Chem. 69, 3972–
3975.
20) Guckian, K.M., Krugh, T.R. and Kool, E.T. (1998)
Solution structure of a DNA duplex containing a
repetitive difluorotoluene-adenine pair. Nat.
Struct. Biol. 5, 954–959.
21) Morales, J.C. and Kool, E.T. (1998) Efficient
replication between non-hydrogen-bonded nucleo-
side shape analogs. Nat. Struct. Biol. 5, 950–954.
22) Khakshoor, O., Wheeler, S.E., Houk, K.N. and Kool,
E.T. (2012) Measurement and theory of hydrogen
bonding contribution to isosteric DNA base pairs.
J. Am. Chem. Soc. 134, 3154–3163.
23) Kool, E.T. and Sintim, H.O. (2006) The difluoroto-
luene debate – a decade later. Chem. Commun.
(Camb.), 3665–3675.
24) Zhang, X., Lee, I. and Berdis, A.J. (2005) The use of
nonnatural nucleotides to probe the contributions
of shape complementarity and π-electron surface
area during DNA polymerization. Biochemistry
44, 13101–13110.
25) Kincaid, K., Beckman, J., Zivkovic, A., Halcomb,
R.L., Engels, J.W. and Kuchta, R.D. (2005)
Exploration of factors driving incorporation of
unnatural dNTPs into DNA by Klenow fragment
(DNA polymerase I) and DNA polymerase α.
Nucleic Acids Res. 33, 2620–2628.
26) Frey, J.A., Leist, R. and Leutwyler, S. (2006)
Hydrogen bonding of the nucleobase mimic 2-
pyridone to fluorobenzenes: an ab initio investiga-
tion. J. Phys. Chem. A 110, 4188–4195.
27) Henry, A.A. and Romesberg, F.E. (2003) Beyond A,
C, G and T: augmenting nature’s alphabet. Curr.
Opin. Chem. Biol. 7, 727–733.
28) Hirao, I. (2006) Unnatural base pair systems for
DNA/RNA-based biotechnology. Curr. Opin.
Chem. Biol. 10, 622–627.
29) Bergstrom, D.E. (2009) Unnatural nucleosides with
unusual base pairing properties. Curr. Protop.
Nucleic Acid Chem. Chapter 1, Unit 1.4.
30) Yang, Z., Sismour, A.M., Sheng, P., Puskar, N.L.
and Benner, S.A. (2007) Enzymatic incorporation
of a third nucleobase pair. Nucleic Acids Res. 35,
4238–4249.
31) Yang, Z., Chen, F., Alvarado, J.B. and Benner, S.A.
(2011) Amplification, mutation, and sequencing of
a six-letter synthetic genetic system. J. Am. Chem.
Soc. 133, 15105–15112.
32) Malyshiev, D.A., Seo, Y.J., Ondoukhanian, P. and
Romesberg, F.E. (2009) PCR with an expanded
 genetic alphabet. J. Am. Chem. Soc. 131, 14620–
null
cent, unnatural base pairs. Tetrahedron 63, 3528–3537.
60) Ohno, S., Yokogawa, T. and Nishikawa, K. (2001) Changing the amino acid specificity of yeast tyrosyl-tRNA synthetase by genetic engineering. J. Biochem. 130, 417–423.
61) Chatterji, D. and Gopal, V. (1996) Fluorescence spectroscopy analysis of active and regulatory sites of RNA polymerase. Methods Enzymol. 274, 456–478.
62) Qin, P.Z. and Pyle, A.M. (1999) Site-specific labeling of RNA with fluorophores and other structural probes. Methods 18, 69–70.
63) Huang, F., Wang, G., Coleman, T. and Li, N. (2003) Synthesis of adenosine derivatives as transcription initiators and preparation of 5 ‘-fluorescein- and biotin-labeled RNA through one-step in vitro transcription. RNA 9, 1562–1570.
64) Dragoe, E., Hodowadekar, S.C., Gee, K.R. and Brenner, C. (2000) FluT-nucleotide specificity probed with novel fluorescent and fluorogenic substrates. J. Biol. Chem. 275, 4555–4560.
65) Seetharaman, S., Zivarts, M., Sudarsan, N. and Breaker, R.R. (2001) Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nat. Biotechnol. 19, 336–341.
66) Zhang, L., Sun, L., Cui, Z., Gottlieb, R.L. and Zhang, B. (2001) 5 ‘-Sulphydryl-modified RNA: initiator synthesis, in vitro transcription, and enzymatic incorporation. Bioconjug. Chem. 12, 939–948.
67) Kimoto, M., Endo, M., Mitsui, T., Okuni, T., Hirao, I. and Yokoyama, S. (2004) Site-specific incorporation of a photo-crosslinking component into RNA by T7 transcription mediated by unnatural base pairs. Chem. Biol. 11, 47–55.
68) Endo, M., Mitsui, T., Okuni, T., Kimoto, M., Hirao, I. and Yokoyama, S. (2004) Unnatural base pairs mediate the site-specific incorporation of an unnatural hydrophobic component into RNA transcripts. Bioorg. Med. Chem. Lett. 14, 2593–2596.
69) Kawai, R., Kimoto, M., Ikeda, S., Mitsui, T., Endo, M., Yokoyama, S. and Hirao, I. (2005) Site-specific fluorescent labeling of RNA molecules by specific transcription using unnatural base pairs. J. Am. Chem. Soc. 127, 17286–17295.
70) Moriyama, K., Kimoto, M., Mitsui, T., Yokoyama, S. and Hirao, I. (2005) Site-specific biotinylation of RNA molecules by transcription using unnatural base pairs. Nucleic Acids Res. 33, e129.
71) Hirao, I. (2006) Placing extra components into RNA by specific transcription using unnatural base pair systems. Biotechniques 40, 711–715.
72) Petatch, H. and Gold, L. (2002) Dimensionality is the issue: use of photoapamers in protein microarray. Curr. Opin. Biotechnol. 13, 309–314.
73) Brody, E.N., Willis, M.C., Smith, J.D., Jayasena, S., Zichi, D. and Gold, L. (1999) The use of aptamers in large arrays for molecular diagnostics. Mol. Diagn. 4, 381–388.
74) Kimoto, M., Shirouzu, M., Mizutani, S., Koide, H., Kaziro, Y., Hiroa, I. and Yokoyama, S. (2002) Anti-(Raf-1) RNA aptamers that inhibit Ras-induced Raf-1 activation. Eur. J. Biochem. 269, 697–704.
75) Hiroa, I., Harada, Y., Kimoto, M., Mitsui, T., Fujiwara, T. and Yokoyama, S. (2004) A two-unatural-base-pair system toward the expansion of the genetic code. J. Am. Chem. Soc. 126, 13298–13305.
76) Kool, E.T. (1998) Replication of non-hydrogen bonded bases by DNA polymerases: a mechanism for steric matching. Biopolymers 48, 3–17.
77) Hiroa, I., Ohutsuki, T., Mitsui, T. and Yokoyama, S. (2000) Dual specificity of the pyrimidine analogue, 4-methylpyridin-2-one, in DNA replication. J. Am. Chem. Soc. 122, 6118–6119.
78) McMinn, D.L., Ogawa, A.K., Wu, Y., Liu, J., Schultz, P.G. and Ronesberg, F.E. (1999) Efforts toward expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self-pairing hydrophobic base. J. Am. Chem. Soc. 121, 11585–11586.
79) Mitsui, T., Kitamura, A., Hiroa, I. and Yokoyama, S. (2003) An unnatural hydrophobic base pair with shape complementarity between pyrrole-2-carbaldehyde and 9-methylimidazol[4,5-b]pyridine. J. Am. Chem. Soc. 125, 5298–5307.
80) Sismour, A.M. and Benner, S.A. (2005) The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nucleic Acids Res. 33, 5640–5646.
81) Kimoto, M., Mitsui, T., Harada, Y., Sato, A., Yokoyama, S. and Hirao, I. (2007) Fluorescent probing for RNA molecules by an unnatural base-pair system. Nucleic Acids Res. 35, 5360–5369.
82) Hijikida, Y., Kimoto, M., Yokoyama, S. and Hirao, I. (2010) Site-specific fluorescent probing of RNA molecules by unnatural base-pair transcription for local structural conformation analysis. Nat. Protoc. 5, 1312–1323.
83) Xia, G., Chen, L., Sera, T., Fa, M., Schultz, P.G. and Ronesberg, F.E. (2002) Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an efficient RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 99, 6597–6602.
84) Fa, M., Radeghieri, A., Henry, A.A. and Ronesberg, F.E. (2004) Expanding the substrate repertoire of a DNA polymerase by directed evolution. J. Am. Chem. Soc. 126, 1748–1754.
85) Mulder, B.A., Anaya, S., Yu, P., Lee, K.W., Nguyen, A., Murphy, J., Wilson, R., Briggs, J.M., Gao, X. and Hardin, S.H. (2005) Nucleotide modification at the 3'-phosphate leads to the improved fidelity of HIV-1 reverse transcriptase. Nucleic Acids Res. 33, 4865–4873.
86) Morohashi, N., Kimoto, M., Sato, A., Kawai, R. and Hirao, I. (2012) Site-specific incorporation of functional components into RNA by an unnatural base pair transcription system. Molecules 17, 2855–2876.
87) Kimoto, M. and Hirao, I. (2010) Site-specific incorporation of extra components into RNA by
transcription using unnatural base pair systems. Methods Mol. Biol. 634, 355–369.

88) Kimoto, M., Mitsui, T., Yokoyama, S. and Hirao, I. (2010) A unique fluorescent base analogue for the expansion of the genetic alphabet. J. Am. Chem. Soc. 132, 4988–4989.

89) Kimoto, M., Mitsui, T., Yamashige, R., Sato, A., Yokoyama, S. and Hirao, I. (2010) A new unnatural base pair system between fluorophore and quencher base analogues for nucleic acid-based imaging technology. J. Am. Chem. Soc. 132, 15418–15426.

90) Yamashige, R., Kimoto, M., Mitsui, T., Yokoyama, S. and Hirao, I. (2011) Monitoring the site-specific incorporation of dual fluorophore-quencher base analogues for target DNA detection by an unnatural base pair system. Org. Biomol. Chem. 9, 7504–7509.

Profile

Ichiro Hirao was born in Shizuoka, Japan, in 1956. He graduated from Numazu National College of Technology in 1976, and received his B.S. (1978) degree from the Faculty of Engineering, Shizuoka University, and his M.S. (1980) and Ph.D. (1983) degrees in the chemical synthesis of 2‘-5‘ oligonucleotides and their structures from the Faculty of Science, Tokyo Institute of Technology. In 1984, he joined Dr. Kin-ichiro Miura’s laboratory in the Faculty of Engineering, The University of Tokyo, as a research associate, where he discovered extraordinarily thermostable DNA mini-hairpin structures. In 1992, he became an associate professor at Tokyo University of Pharmacy and Life Sciences. To expand his research areas from organic chemistry and structural biology to molecular biology and evolutilional engineering, in 1995, he moved to Dr. Andrew D. Ellington’s laboratory in the Department of Chemistry, Indiana University. In 1997, to start the unnatural base pair studies, he returned to Japan and joined Dr. Shigeyuki Yokoyama’s project, ERATO, Japan Science and Technology Agency, as a group leader. In 2002, he continued his work as both a Professor at the Research Center for Advanced Science and Technology, The University of Tokyo and a senior visiting scientist at the RIKEN Genomic Sciences Center. Since 2006, he has been managing the Nucleic Acid Synthetic Biology Research Team at the Systems and Structural Biology Center, RIKEN, as the team leader. In 2007, he founded the venture company ‘TagCyx Biotechnologies’ with Dr. Shigeyuki Yokoyama, to provide unnatural base pair technologies toward the expansion of the genetic alphabet of DNA.

Profile

Michiko Kimoto (Hirao) was born in Kanagawa, Japan, in 1974. She graduated from the University of Tokyo, Faculty of Science, Department of Biophysics and Biochemistry in 1997. In the laboratory of Prof. Shigeyuki Yokoyama, in the Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, she worked on the generation of RNA aptamers capable of regulating protein–protein interactions, and the site-specific introduction of functional components into the aptamers by using an unnatural base pair transcription system, and received her Ph.D. in 2002. She became a research associate at the RIKEN Genomic Sciences Center, and joined Dr. Ichiro Hirao’s laboratory. She has been continuing her work on developing unnatural base pair systems that function in replication, transcription, and translation. She established methods to evaluate the fidelity of unnatural base pairs in replication and transcription, by taking advantage of the properties of the unnatural bases. She is currently a research scientist at RIKEN (2006–) and a visiting scientist at TagCyx Biotechnologies (2008–).