Seiberg and Witten’s solution to \(N=2 \) SU(2) Yang-Mills with \(N_f=0 \) flavors has a one-complex-dimensional Coulomb branch of degenerate vacua labeled by a coordinate \(u \). The effective U(1) theory is described in terms of two functions \(a(u) \) and \(a_D(u) \). The gauge coupling, \(\tau \equiv (\theta/2\pi) + i(4\pi^2/g^2) \) is given by \(\tau = da_D/da \); it must satisfy \(\text{Im}(\tau) > 0 \). The theory is governed by a dynamically generated strong-coupling scale which we set to 1.

The mass of a dyon hypermultiplet with electric and magnetic charges \(n_e \) and \(n_m \) is given by \(M = \sqrt{2}|n_ma_D(u) + n_ea(u)|\). Whenever \(\text{Im}(a_D/a) = 0 \), any dyon becomes marginally unstable to decay into two or more other dyons (conserving electric and magnetic charges). This note presents a simple argument that determines the shape of the curve of marginal stability \(\text{Im}(a_D/a) = 0 \).

The effective theory has a duality group that acts on \((a_D/a) \) as a vector under \(SL(2, \mathbb{Z}) \), and on \(\tau \) in the usual way. Note that \(f(u) \equiv a_D/a \) transforms like \(\tau \).

The \(U(1) \) effective theory breaks down at \(u = \pm 1 \) and \(\infty \), where a dyon hypermultiplet becomes massless. The \(SL(2, \mathbb{Z}) \) monodromies around these points are \(ST^2S^{-1}, (TS)T^2(TS)^{-1}, \) and \(-T^2 \). These matrices generate the group \(\Gamma(2) \subset SL(2, \mathbb{Z}) \). \(u(\tau) \) is a one-to-one map of a single fundamental domain of \(\Gamma(2) \) onto the complex plane, which has cusp points at \(\tau = 0, 1, \) and \(i\infty \). These cusp points correspond to the three singularities in the \(u \)-plane, and are fixed points of the corresponding \(SL(2, \mathbb{Z}) \) monodromies—see Fig. 1.

The range of the function \(f(u) \) is a subset of the complex plane with similar properties to the fundamental domain of \(\tau \). \(\Gamma(2) \) acts identically on both the \(f \)-plane and the \(\tau \)-plane, and its generators fix the same 3 points. However, since \(\text{Im}f \) is not necessarily positive the range of \(f \) may extend below the real axis, unlike \(\tau \). Indeed, since we know (from expanding the explicit expressions\(^1\) for \(a \) and \(a_D \) around \(u = \pm 1 \)) that there are whole lines where \(f \) is real, it follows that \(f^{-1} \) must map an infinite number of \(\Gamma(2) \) domains, both above and below the real axis,
onto the u-plane.

There is only one possibility for the shape of the range of $f(u)$, due to the fact that the generators ST^2S^{-1} and $(TS)T^2(TS)^{-1}$ are of infinite order, which implies that the opening angles of the corresponding cusps must also be of infinite order, i.e., 0 or 2π. An opening angle of 0 would correspond to a single fundamental domain of $\Gamma(2)$, which we have ruled out. Opening angles of 2π correspond to the domain shown in Fig. 1, a full strip in the f-plane with one $\Gamma(2)$ domain removed. It is easy to see that the monodromies for this region are correct. As a check, it is easily verified using the explicit expressions\(^1\) that $f(0) = -(i \pm 1)/2$.

The curve of marginal stability is the image under f^{-1} of the interval $[-1,1]$, which is a simple closed curve in the u-plane (with $f(-1) = \pm 1$ and $f(+1) = 0$) as conjectured in Ref. 1. Outside of this curve are the images of the infinite number of $\Gamma(2)$ domains between $\text{Re}(f) = +1$ and -1 and with $\text{Im}(f) \geq 0$. Inside the curve are the images of all but one of the $\Gamma(2)$ domains with $\text{Im}(f) < 0$.

The curve $\text{Im} f = 0$ has been shown by independent methods to be simple and closed.\(^2\) Also, we have numerically computed it to be the curve shown in Fig. 1.

The methods presented here are easily extended to the massless $N_f = 1, 2,$ and 3 cases.\(^3\) For nonzero masses, as well as for $N_c > 2$, the curves of marginal stability become dense in moduli space.

Fig. 1: The shaded regions are the images of the u-plane in the τ and f-planes. The dashed lines are the images of $\text{Im} f = 0$.

It is a pleasure to thank M. Douglas, M. Matone, R. Plesser, K. Ranganathan, N. Seiberg, and E. Witten for useful discussions. P.C.A. is supported by NSF grant PHY92-45317 and by the Ambrose Monell Foundation, A.E.F. by DOE grant DE-FG02-90ER40542, and A.D.S. by DOE grant DE-FC02-91ER75661 and by an A.P. Sloan Fellowship.

\(^*\). Talk given by P.C.A. at Strings ’95, U.S.C, March 1995.
\(^1\). N. Seiberg and E. Witten, *Nucl. Phys.* B\textbf{426} (1994) 19.
\(^2\). A. Fayyazuddin, [hep-th/9504120](http://arxiv.org/abs/hep-th/9504120)
\(^3\). N. Seiberg and E. Witten, *Nucl. Phys.* B\textbf{431} (1994) 484.