The object of research is the hydrophobization of a coating based on styrene-acrylic copolymer and cellulose acetate butyrate with pyrogenic silicon dioxide. The hydrophobicity or hydrophilicity of a surface depends mainly on the chemical structure of the surface and its roughness. A relief hydrophilic surface will be wetted much more easily than a flat surface of the same material, and vice versa – an increase in the roughness of a hydrophobe is accompanied by a more pronounced repulsion of water. The size and number of irregularities significantly affect the wetting characteristics of the investigated surface. The combination of low surface energy and relief structure forms a superhydrophobic surface. Such surfaces have found application in self-cleaning, frost-resistant, anti-friction, electrically conductive and oil-sorbing coatings. In this work, styrene-acrylic copolymer and cellulose acetate butyrate were used as a film former. Pyrogenic silicon dioxide Aerosil R 972, which was hydrophobized with dimethyldichlorosilane, was used as a nanofiller. In this work, the compositions were applied to laboratory glasses by dip coating. The determination of surface energy was carried out using glicerin and diiodomethane. The hydrophobic properties of the coatings were evaluated by measuring the contact angles with water using a goniometer. The analysis of the morphological structure of the coating surface with photographs of a scanning electron microscope has been carried out. The energy state of the surface of the created superhydrophobic coatings has been determined and their surface energies have been calculated using the technique based on the Owens-Wendt model. The process of hydrophobization of polymer-based coatings is investigated, which occurs both due to chemical modification with the introduction of silicon dioxide and due to the creation of nanoroughness of the surface layer of the coatings. The dependences of this process on materials are investigated using an electron microscope and the determination of their surface energy depending on the SiO2 filling. The values of the critical concentration of the modifier for the transition of polymers to the superhydrophobic state have been determined. As a result, the influence of polymer crystallinity on hydrophobization was determined by comparing changes in the surface energy of materials during their modification.

Keywords: superhydrophobic coatings, fumed silica, Owens-Wendt method, surface energy, water-repellent surfaces.

References

1. Téth, A., László, K. (2012). Chapter 5 – Water Adsorption by Carbons. Hydrophobicity and Hydrophobicity. Novel Carbon Adsortent. Elsevier, 147–171. doi: http://doi.org/10.1016/B078-0-08-097744-7.00005-3

2. Livey, D. T., Murray, P. (1956). Surface Energies of Solid OXides and Carbides. Journal of the American Ceramic Society, 39 (11), 363–372. doi: http://doi.org/10.1111/j.1151-2916.1956.tb15606.x

3. Myronyuk, O., Dudko, V., Baklan, D., Melnyk, L. (2017). Study of structure influence on wear resistance of hierarchical superhydrophobic coatings. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 44–49. doi: http://doi.org/10.15587/1729-4061.2017.103028

4. Myronyuk, O., Raks, V. A., Baklan, D., Vasylyev, G., Vanagas, E., Kuridil, N., Sivolapov, P. (2021). Water repellent coatings with hierarchical structures obtained on anodized aluminium with femtosecond laser ablation. Applied Nanoscience. doi: http://doi.org/10.1007/s13204-021-01697-8

5. Shircliffe, N. J., Mc Hale, G., I., Newton M. (2011). The superhydrophobicity of polymer surfaces: Recent developments. Journal of Polymer Science Part B: Polymer Physics, 49 (17), 1203–1217. doi: http://doi.org/10.1002/polb.22286

6. Kim, J., Choi, S. (2018). 11 – Superhydrophobicity. Waterproof and water repellent textiles and clothing. Oxford: Woodhead Publishing. 267–297. doi: http://doi.org/10.1016/rot8-0-08-101212-3.00004-1

7. Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28 (8), 988–994. doi: http://doi.org/10.1021/ic60320a004

8. Cassie, A. B. D., Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551. doi: http://doi.org/10.1039/t3944400546

9. Bhushan, B., Nosonovsky, M. (2010). The role petal effect and the modes of superhydrophobicity. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368 (1929), 4713–4728. doi: http://doi.org/10.1098/rsta.2010.0203

10. Rahmanawan, Y., Moon, M.-W., Kim, K.-S., Lee, K.-R., Suh, K.-Y. (2009). Wrinkled, Dual-Scale Structures of Diamond-Like Carbon (DLC) for Superhydrophobicity. Langmuir, 26 (1), 484–491. doi: http://doi.org/10.1021/la902129k

11. Lu, H., Cai, R., Zhang, L.-Z., Lu, L., Zhang, L. (2020). Experimental investigation on deposition reduction of different types of dust on solar PV cells by self-cleaning coatings. Solar Energy, 206, 365–373. doi: http://doi.org/10.1016/j.solener.2020.06.012

12. Chen, H., Wang, F., Fan, H., Hong, R., Li, W. (2021). Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and load-increasing research. Chemical Engineering Journal, 408, 127343. doi: http://doi.org/10.1016/j.cej.2020.127343

13. Li, P., Chen, X., Yang, G., Yu, L., Zhang, P. (2014). Preparation of silver-cuprous oxide/stearic acid composite coating with superhydrophobicity on copper substrate and evaluation of its friction-reduc-
ing and anticorrosion abilities. Applied Surface Science, 289, 21–26. doi: http://doi.org/10.1016/j.apsusc.2013.10.068
14. Suryapratha, T., Sethuraman, M. G. (2017). Design of electrically conductive superhydrophobic antibacterial cotton fabric through hierarchical architecture using bimetallic deposition. Journal of Alloys and Compounds, 724, 240–248. doi: http://doi.org/10.1016/j.jallcom.2017.07.009
15. Barthwal, S., Barthwal, S., Singh, B., Bahadur Singh, N. (2020). Multifunctional and fluorine-free superhydrophobic composite coating based on PDMS modified MWCNTs/ZnO with self-cleaning, oil-water separation, and flame retardant properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 597, 124776. doi: http://doi.org/10.1016/j.colsurfa.2020.124776
16. Owens, D. K., Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13 (8), 1741–1747. doi: http://doi.org/10.1002/app.1969070130815
17. Myronuk, O. V., Prydakov, A. V., Sivolapov, P. V., Svidersky, V. A. (2014). Aspects of polymer surfaces wetting. Eastern-European Journal of Enterprise Technologies, 1 (6 (67)), 23–26. doi: http://doi.org/10.15587/1729-4061.2014.20797
18. Van Oss, C. (2006). Interfacial Forces in Aqueous Media. Boca Raton: CRC Press. doi: http://doi.org/10.1201/9781420015768
19. Liu, W., Zhou, Z., Liao, X., Li, C., Tang, H., Xie, M. et. al. (2020). Tailoring ordered microporous structure of cellulose-based membranes through molecular hydrophobicity design. Carbohydrate Polymers, 229, 115425. doi: http://doi.org/10.1016/j.carbpol.2019.115425
20. Ozbay, S., Erbil, H. Y. (2014). Solution copolymerization of perfluoroalkyl ethyl methacrylate with methyl methacrylate and butyl acrylate: Synthesis and surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 452, 9–17. doi: http://doi.org/10.1016/j.colsurfa.2014.03.054
21. Shafrin, E. G., Zisman, W. A. (1960). Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers. The Journal of Physical Chemistry, 64 (5), 519–524. doi: http://doi.org/10.1021/j100834fa002
22. Wypych, G.; Wypych, G. (Ed.) (2016). CAB cellulose acetate butyrate. Handbook of Polymers. CRC Press.
23. Siljanovska Petreska, G., Auschra, C., Paulis, M. (2018). Confined melt crystallization of ABA crystalline-soft-crystalline block copolymers synthesized via RAFT mediated miniemulsion polymerization. Polymer, 158, 327–337. doi: http://doi.org/10.1016/j.polymer.2018.10.073
DOI: 10.15587/2706-5448.2021.235243
RESEARCH INTO THE PROCESS OF CARBONATE CONVERSION OF PHOSPHOGYPSUM IN THE WATER MEDIA
pages 10–13
Dmytro Veliatontsev, PhD, Associate Professor, Department of Chemical Technology of Inorganic Substances, Dniprovsk State Technical University, Kamianske, Ukraine, ORCID: https://orcid.org/0000-0003-1043-418X, e-mail: sauron11652@gmail.com

For a long time, the problem of phosphogypsum disposal was not given due attention, which led to the accumulation of huge reserves of this environmentally hazardous waste. Transportation of phosphogypsum in dumps and its storage requires significant capital investment and operating costs, as well as the allocation of large land areas. The storage of phosphogypsum harms the environment, as it leads to the entry of significant amounts of toxic substances into groundwater and the atmosphere. The object of the study was phosphogypsum, which is formed during the production of phosphoric acid from apatites and phosphorites. To date, numerous studies have focused on finding effective ways to use phosphogypsum, but its composition usually limits its reuse. The research aims to study the scientific prerequisites for creating an effective control scheme for phosphogypsum by converting it to calcium carbonate. For this purpose, the chemical composition and technological parameters of phosphogypsum conversion from the dumps of «Dnipro Mineral Fertilizer Plant» (Kamianske, Ukraine) were studied. The proposed conversion method involved a reaction between phosphogypsum and aqueous NaOH solution to form Ca(OH)₂, which was converted to CaCO₃ by carbonization in a CO₂ stream. The influence of temperature on the conversion of phosphogypsum into Ca(OH)₂ has been established. The conversion was investigated at 25 °C, 40 °C, and 70 °C for 3 hours. It was found that at the first stage of the process the impurities contained in phosphogypsum were transferred to the precipitate of Ca(OH)₂. As a result of carbonization, low-quality CaCO₃ was obtained, which contained more than 10% of impurities. Increasing the duration of carbonization to 1 hour allowed to obtain CaCO₃ with content of Ca(OH)₃<0.4 %. The results of the study show that the method of carbonate conversion of phosphogypsum requires further optimization of technological parameters to improve the purity of the finished product.

Keywords: carbonate conversion phosphogypsum, sodium hydroxide, calcium hydroxide, carbon dioxide, carbonization, X-ray phase analysis, mass spectrometry, conversion temperature, mineralogical composition.

References
1. Kovalenko, H. D., Durasova, N. S. (2015). Otsinka radiatsionnoi nebezpeky khvostoskhovyshch Prydniprovskoho khimichnoho zavodu dlia naseleniia. Yadernaja technika i radiatsionnye bezpechiya, 3 (67), 49–53. Available at: http://nbro.gov.ua/JTRJ/vdp/2015_3_11
2. Nazarenko, O., Ivanchenko, A. (2020). Research on technology of complex processing of phosphogypsum. Naubovyi Visnykh Natsional'noho Hirnychoho Universytetu, 5, 109–114. doi: http://doi.org/10.33271/avnugr/2020-5/109
3. Walawalkar, M., Nichol, C. K., Azimi, G. (2016). Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO₃, and H₂SO₄. Hydrometallurgy, 166, 195–204. doi: http://doi.org/10.1016/j.hydromet.2016.06.008
4. Rashad, A. M. (2017). Phosphogypsum as a construction material. Journal of Cleaner Production, 166, 732–743. doi: http://doi.org/10.1016/j.jclepro.2017.08.049
5. Saadaoui, E., Glazel, N., Ben Romdhane, C., Massoudi, N. (2017). Phosphogypsum: potential uses and problems – a review. International Journal of Environmental Studies, 74 (4), 558–567. doi: http://doi.org/10.1080/00207233.2017.1330582
6. Wang, J. (2020). Utilization effects and environmental risks of phosphogypsum in agriculture: A review. Journal of Cleaner Production, 276, 123337. doi: http://doi.org/10.1016/j.jclepro.2020.123337
7. Lin, J., Sun, W., Desmarais, J., Chen, N., Feng, R., Zhang, P. et. al. (2018). Uptake and speciation of uranium in synthetic gypsum (CaSO₄·2H₂O): Applications to radioactive mine tailings. Journal of Environmental Radioactivity, 181, 8–17. doi: http://doi.org/10.1016/j.jenvrad.2017.10.010
8. Massoudi-Sousi, A., Hammars-Nasri, I., Horchani-Naifer, K., Fërid, M. (2020). Rare earths recovery by fractional precipitation from a sulfuric liquor obtained after phosphogypsum processing. Hydro metallurgy, 191, 105253. doi: http://doi.org/10.1016/j.hydromet.2020.105253
9. Hammars-Nasri, I., Horchani-Naifer, K., Fërid, M., Barca, D. (2019). Production of a rare earths concentrate after phosphogypsum treatment with dietary NaCl and Na₂CO₃ solutions. Minerals Engineering, 172, 169–174. doi: http://doi.org/10.1016/j.mineng.2018.12.013
The object of this research is the herb Adonis vernalis and hydroalcoholic extracts obtained on its basis. By the nature of the action, the drugs Adonis vernalis belong to the group of cardiac glycosides and occupy an intermediate place between strophanthin and digitals. In official medicine, biologically active compounds of Adonis vernalis are included in drugs such as Cardioalen, Adonisbromine, Cardiolin and Cardiophyte. In the extemporal formulation, the extract is part of the Bechterew’s medicine. Until recently, scientists have made significant progress in studying the phytochemical and pharmacological action of the herb Adonis vernalis. However, one should not be limited to the use of Adonis vernalis only for stimulating cardiac activity, one should also consider the promising antioxidant effect of flavonoids and phenolic compounds that are contained in this medicinal plant. Also, studies of the extraction conditions of the herb Adonis vernalis are not described in the scientific literature.

The study carried out the extraction of the grass Adonis vernalis by various methods (static and dynamic). The type of extract was chosen as the most rational, which provides the maximum yield of extractives (phenolic compounds and cardiac glycosides). For this, the optimal extraction conditions were selected, namely, the particle size, the type of extractant, the value of the hydromodule and the extraction method. Accordingly, the optimal particle diameter for maximum extraction of biologically active substances of the herb Adonis vernalis is 2.5 mm, the optimal extractant is 70 % ethyl alcohol, the optimal ratio of raw materials: extractant is 1:10, the optimal extraction of biologically active substances was carried out using calorimetric and spectrophotometric methods of analysis. As a result of the optimization of the process and its introduction into production on an industrial scale, the value added effect will be achieved. And also a high-quality product has been created that will compete with broad-spectrum drugs already existing on the market.

Keywords: flavonoids, cardiac glycosides, phenolic compounds, Adonis vernalis, extraction process, optimal conditions, extraction method.

References

1. Orhan, I. E., Gokbulut, A., Senol, F. S. (2017). Adonis sp., Convallaria sp., Strophanthus sp., Thvetia sp., and Leonurus sp. — Cardiotonic Plants with Known Traditional Use and a Few Preclinical and Clinical Studies. Current Pharmaceutical Design, 23 (7), 1051–1069. doi: http://dx.doi.org/10.2174/13816128216661610101014588

2. Herslut, A. O., Petrina, R. O. (2016). Vyroshchuvannia horyzvitvo vesnianoho (Adonis Vernalis) v umovakh vitro. Khimia, tehnologiya ta zastosuvannia rechovyn, 841 (80), 133–137.

3. Chernohai, V. T., Komissarenko, N. F. and Livinienko, V. I. (1968). Structure of flavonoid glycoside from Adonis vernalis. Khim. Prir. Soedin., 4, 51.

4. Gostin, I. N. (2011). Anatomical and micromorphological peculiarities of Adonis vernalis L. (Ranunculaceae). Pakistan Journal of Botany, 43, 811–820.

5. Kim, S.-J., Pham, T.-H., Bak, Y., Ryu, H.-W., Oh, S.-R., Yoon, D.-Y. (2018). Orientin inhibits invasion by suppressing MMP-9 and IL-8 expression via the PKCθ/ ERK/PAK-1/STAT3-mediated signaling pathways in TPA-treated MCF-7 breast cancer cells. Phytomedicine, 30, 35–42. doi: http://doi.org/10.1016/j.phymed.2018.09.172

6. Derzhavna Farmakopeia Ukrainy (2001). Kharkiv: RIREH, 376.

7. Tabart, J., Kevers, C., Evers, D., Dommes, J. (2011). Ascorbic Acid, Phenolic Acid, Flavonoid, and Carotenoid Profiles of Selected Extracts from Ribes nigrum. Journal of Agricultural and Food Chemistry, 59 (9), 4763–4770. doi: http://doi.org/10.1021/jf104454e

8. Skott, E., Anastasaki, E., Kanelou, G., Polissiou, M., Tarantilis, P. A. (2014). Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Industrial Crops and Products, 53, 46–54. doi: http://dx.doi.org/10.1016/j.indcrop.2013.12.013

9. Romanenko, Y. A., Koshyoyi, O. M., Komissarenko, A. M., Golembiovskaya, O. I., Gladyshe, Y. I. (2018). The study of the chemical composition of the components of the motherwort herb. News of Pharmacy, 3 (95), 34–38. doi: http://dx.doi.org/10.24095/nphb.18.2222

10. Simonovska, B., Vovk, I., Andrensek, S., Valentov, K., Ulrichova, J. (2003). Investigation of phenolic acids in yacon (Smallanthus sonchifolius) leaves and tubers. Journal of Chromatography A, 1016 (1), 89–98. doi: http://dx.doi.org/10.1016/j.chroma.2002.07.033(01)01183-x

11. Liu, F. F., Ang, C. Y. W., Springer, D. (2000). Optimization of Extraction Conditions for Active Components inHypericum perforatumUsing Response Surface Methodology. Journal of Agricultural and Food Chemistry, 48 (11), 5788–5788. doi: http://doi.org/10.1021/jf001124y
The object of research is traditional mining technologies and technical means in combination with underground block leaching (UBL) of metals from rock ores with their preliminary crushing with explosives in installations mounted in mine workings. One of the most problematic areas is the difficulty of achieving a given crushing quality, as well as the required height of ore storage in the chamber for the subsequent leaching of metals and a loosening factor, taking into account the control of the energy of explosive destruction of rock ores.

The study used:
- data from literary sources and patent documentation in the field of technologies and technical means for UBL of metals from ores in energy disturbed masses, substantiation of technological parameters of operational blocks;
- laboratory and production experiments;
- physical modeling of metal extraction from ores from the average linear size of a piece of blasted ore.

Analytical studies, comparative analysis of theoretical and practical results using standard and new methods were carried out with the participation of the authors. It was found that the most intensive infiltration leaching occurs when the size class of ore lumps is \(100 \pm 0 \) mm. Metals are extracted from fractions \(200 \pm 100 \) mm less intensively and for a longer time. To neutralize and flush the spent ore mass, it is recommended to treat it with lime solution and mine water through wells for supplying leaching solutions (irrigation system). The protection of the hydrogeological environment is carried out by silting the bottom of the chamber for collecting productive solutions through wells for supplying leaching solutions (irrigation system).

The research results can be used in underground mining of ore deposits of complex structure in Ukraine, the Russian Federation, the Republic of Kazakhstan and other developed mining countries of the world.

Keywords: ore deposits, underground mining, block leaching, mine workings, environmental safety.

References

1. Golik, V., Mitsik, M., Morkun, V., Morkun, N., Tron, V. (2019). Transportation of concentration and leaching tailings in underground mining of metal deposits. Mining of Mineral Deposits, 13 (2), 111–120. doi: http://doi.org/10.33271/mining13.02.111

2. Aben, E., Markenbayev, Z., Khairullaev, N., Myrzakhmetov, S., Aben, K. (2019). Study of change in the leaching solution activity after treatment with a cavator. Mining of Mineral Deposits, 13 (4), 114–120. doi: http://doi.org/10.33271/mining13.04.114

3. Malanchnik, Z., Kornienko, V., Malanchnik, Y., Soroka, V., Vasylechuk, O. (2018). Modeling the formation of high metal concentration zones in man-made deposits. Mining of Mineral Deposits, 12 (2), 76–84. doi: http://doi.org/10.15407/mining12.02.076

4. Stupnik, O., Kalinichenko, O., Kalinichenko, V., Pysmenyi, S., Morhun, O. (2018). Choice and substantiation of stable crown shapes in deep-level iron ore mining. Mining of Mineral Deposits, 12 (4), 56–62. doi: http://doi.org/10.15407/mining12.04.056

5. Lyashenko, V., Khomenko, O., Chekushina, T., Topolnij, F., Dudar, T. (2020). Assessment of environmental and resource-saving technologies and technical means for processing and disposal of man-made formations and waste. Technology Audit and Production Reserves, 4 (3 (54)), 21–28. doi: http://doi.org/10.15587/2706-76-84.

6. Lyashenko, V., Khomenko, O., Topolnij, F., Helevera, O. (2020). Substantiation of technologies and technical means for disposal of mining and metallurgical waste in mines. Technology Audit and Production Reserves, 3 (3 (53)), 4–11. doi: http://doi.org/10.15587/2706-5448.2020.200897

7. Mosinets, V. N. (1976). Drobnyches i semychnyches deystvye v gornykh polezakh. Moscow: Nedra, 271.

8. Mosinets, V. N., Abramov, A. V. (1982). Razrashenie tretichnoschatych i narushennyh porod. Moscow: Nedra, 248.

9. Mosinets, V. N., Lobanov, D. P., Tedeev, M. N., Abramov, A. V., Kapkansichok, A. M., Arapov, G. P., Bubnov, V. K.; Mosinets, V. N. (Ed.) (1987). Stroitelscko i eksploatatsiia rudnikov podzemnogo vyschelachivaniia. Moscow: Nedra, 304.

10. Chernov, A. P. (Ed.) (2001). Vyschelachy uranovykh rud v Ukraine. Kyiv: ADEF-Ukraine, 238.

11. Sadovsky, M. A. (1997). Geofizika i fizaika vyschely. Moscow: Nedra, 334.

12. Luzin, B. S. (2003). Metodika opredeleniya parametrov sorbsionnogo peredela produktivnykh rastvorov v gornych polezakh. Moscow: Nedra, 59–60.

13. DSTU 4704:2008. (2009). Prowidnennia promyslychikh vyluhkiv. Normy sechnochnoi bezpeki. Kyiv: Derzhstandart Ukrainy, 10.

14. Arens, V. Zh., Babichev, N. I,, Bashkatov, A. D., Gridin, O. M., Khrulev, A. S., Khcheyan, G. Kh. (2011). Konsrstuicchiya gidrodobychy poleznych iskpaemyh. Moscow: «Gorniya kniga», 295.

15. Kaplanov, D. R., Kalmykov, V. N., Rylnikova, M. V. (2003). Kombiniruvannaya geotehtnologiya. Moscow: Ruda i Metally, 558.

16. Volkov, Yu. V., Sokolov, I. V. (2011). Osnovyi geotehtnologii strategii osвоeniiya rudnykh metsrzhdieniy kombiruvannym sposobom. Gornyi zhurnal, 5, 41–44.

17. Sokolov, I. V., Antipin, Yu. G. (2012). Sistematschetnye i ekonomiko-matematicheskie modelirovanie variantov vskrytiya podzemnykh zapasov pri kombiniruvannom rarkabote metsrzhdieniy. Gornyi zhurnal, 5, 67–71.

18. Syvatetskiy, V. S., Litvinchenko, V. G., Morozov, A. A. (2012). O vozmoznosti i usloviyakh primeneniya blochnogo podzemnogo vyschelachivaniia uranovykh rud Sretelkovskogo metsrzhdieniy. Gornyi zhurnal, 10, 90–95.

19. Trubetskoy, K. N. (2014). Razvityi resursoberezhnichikh i resursosposobnych geotehtnologii kompleksnogo osvoeniiya metsrzhdieniy poleznych iskpaemyh. Moscow: IPKON RAN, 196.

20. Komachenko, V. I. (2015). Environmentálno-ekonomicheskii experience of utilizing mining-industrial wastes for their converting. Izvestiya Tbilskogo gosudarstvennoi universtiteta. Nauki o Zemle, 4, 23–30.

21. Golik, V. I., Razorenov, Yu. I., Stradanchenko, S. G., Khasheva, Z. M. (2015). Principles and economic efficiency of ore mining technology
ABSTRACTS AND REFERENCES: ECOLOGY AND ENVIRONMENTAL TECHNOLOGY

FOOD PRODUCTION TECHNOLOGY

DOI: 10.15587/2706-5448.2021.235246

MODELING OF FATTY ACID COMPOSITION OF COMBINED FOOD PRODUCTS

pages 27–33

Alina Kopiiko, Postgraduate Student, Department of Milk Technology, Oil and Fat Products and Beauty Industry, Odessa National Academy of Food Technologies, Odessa, Ukraine, ORCID: https://orcid.org/0000-0002-4137-3116, e-mail: alina.kopenko199@gmail.com

Nataliia Tkachenko, Doctor of Technical Sciences, Professor, Head of Department of Milk Technology, Oil and Fat Products and Beauty Industry, Odessa National Academy of Food Technologies, Odessa, Ukraine, ORCID: https://orcid.org/0000-0002-2557-3927, e-mail: nataliya.n2013@gmail.com

Maryna Mardar, Doctor of Technical Sciences, Professor, Department of Marketing, Business and Trade, Odessa National Academy of Food Technologies, Odessa, Ukraine, ORCID: https://orcid.org/0000-0003-0831-500X, e-mail: marinamardar2003@gmail.com

The object of research is the fatty acid composition of the milk-fat base for combined food products of a healthy diet. The biological effectiveness of fats is determined by the ratio of saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids, including the ratio of omega-3 PUFA/omega-6 PUFA. Not all foods have a balanced fatty acid composition, in particular, dairy products contain excessive amounts of SFAs, the excessive consumption of which leads to an increase in blood cholesterol levels, which increases the risk of cardiovascular disease. The amount of mono- and polyunsaturated fatty acids, essential in nutrition, in milk fat (and, accordingly, in dairy products) is insufficient. Therefore, this study is aimed at developing the composition of the milk-fat base with a balanced fatty acid composition using natural vegetable oils.
The work substantiates the expediency of using vegetable oils, namely pumpkin seed as a source of monounsaturated fatty acids, rice bran oil as a source of polyunsaturated fatty acids, to optimize the ratio of SFA: MUFA: PUFA when combined with milk fat in multicomponent food products. The fatty acid composition of the milk-fat base has been optimized using a three-component mixture of fats – milk fat, pumpkin seed oil and refined rice bran oil. The ratio of fatty acids in the milk-fat base for the production of food products with a balanced fatty acid composition (SFA:MUFA:PUFA – 0.4420:4.030:0.153) has been determined, which is achieved with the optimal ratio of milk fat: rice bran oil: pumpkin seed oil – 20.2:70.5:9.3.

Recommendations are given on the use of the developed milk-fat base with a balanced fatty acid composition in the production of combined dairy-vegetable food products. Since today dairy products with a balanced fatty acid composition are presented in limited quantities in the global consumer market, the implementation of research will expand the niche of «healthy food». And correctly conducted marketing activities, which are proposed in this work, will allow to gain a foothold in the market of healthy food products with a balanced chemical composition and an affordable price.

Keywords: milk-fat base, balanced fatty acid composition, milk fat, pumpkin oil, rice bran oil.

References

1. Gavrilo, N. B. (2004). *Biotekhnologiya kombinirovannykh molochnykh produktov*; Osak: Va-riant-Sibir’, 224.

2. Beare, J. L. (1987). *Lipid in modern nutrition*. New York: Raven Press, 248.

3. Levitsky, A. P. (2002). *Ideal'naya formula zhirovoig pitania*; Odes-sa: NPA «Odesskaya biotekhnologiya», 61.

4. Simopoulos, A. P. (2008). The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. *Experimental Biology and Medicine*, 233 (6), 674–688. doi: https://doi.org/10.3818/1071-mr-311

5. Tkachenko, N. A., Kurenkova, O. A., Kasianova, A. Yu. (2015). Spread with synbiotic properties – new products in butter & fat industry. *Nauchovy visnyk Lvivskoho nationalnoho universytetu vetrovannia tais biotekhnohikh im. Gzhiltsoho*, 17 (1 (61)), 116–127.

6. O’Brayen, R. (2007). Zhyr i masa. Proizvodstvo, sostav i svojstva, primenenie. Sankt-Peterburg: Professiya, 752.

7. Smoliar, V. I. (2006). Kontsepsiyta idealnogo zhyrovogo kharchu-vannia. *Problemy khrashchavannia*, 4, 14–24.

8. Haun, W., Coffman, A., Clason, B. M., Demorest, Z. L., Lowy, A., Ray, E. et al. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. *Plant Biotechnology Journal*, 12 (7), 934–940. doi: https://doi.org/10.1111/pbi.12201

9. Peshuk, L. V., Radziievska, I. H., Shtyk, I. I. (2011). Biosolichna rol zhyrnkyx kyslot tvarynnoho pokhodzhennia. *Kharchova promysh-orest*, 10–17, 42–45.

10. Didukh, N. A., Chaharovskiy, O. P., Lysohor T. A. (2008). Zakvaschivanye komposytya dlya vyrobnictvya molochnykh produktov. *Technologies and Nutritional Implications*. Springer, 336.

11. Tkachenko, N., Nekrasov, P., Makovska, T., Lanzhenko, L. (2016). Optimization of formulation composition of the low-calorie emulsion fat systems. *Eastern-European Journal of Enterprise Technologies*, 3 (11 (81)), 20. doi: https://doi.org/10.15587/1729-4061.2016.79071

12. Box, G. E. P., Draper, N. R. (2007). *Response surfaces, mixtures, and ridge analyses*. John Wiley & Sons. doi: https://doi.org/10.1002/0470072768

13. Tkachenko, N., Nekrasov, P., Makovska, T., Lanzhenko, L. (2016). Optimization of formulation composition of the low-calorie emulsion fat systems. *Eastern-European Journal of Enterprise Technologies*, 3 (11 (81)), 20. doi: https://doi.org/10.15587/1729-4061.2016.79071

14. Tkachenko, N., Nekrasov, P., Vikul, S., Honcharuk, Y. (2017). Modeling formulae of strawberry wey drinks of prophylactic application. *Food Science and Technology*, 11 (1). doi: https://doi.org/10.15673/ fst.v11i1.303

15. Zaytseva, L. V., Nechaev, A. P., Bessonov, V. V. (2012). Trans-isomerz zhirnyx kislot: istoriya coproza, aktual'nost' problemy, pats rechnenia. Moscow: DeLi plyus, 36.

16. Zaytseva, L. V., Nechaev, A. P. (2015). Biohimicheskie aspekti potrebleniya trans-isomerov zhirnyx kislot. *Voprosy dietologii*, 2 (4), 17–23.

17. Levachov, M. M., Garbuzov, A. G., Ivaschenko, N. V. (1986). Razvitie isdelovaniya v oblasti otsenki biologicheskogo deystviya zhyrnch chastey rastions pitaniya. Teoreticheskie i klinicheskie aspekti nauki o pitani. VII, 34–44.

18. Simopoulos, A. P., Kiler, R. R., Martin, R. E. (Eds.) (1986). *Health Effects of Polysaturated Fatty Acids in Seafoods*. Academic Press. doi: https://doi.org/10.1016/c2012-0-01660-2

19. Galli, C., Fedeli, E. (Eds.) (1987). *Fat Production and Consumption. Technologies and Nutritional Implications*. Springer. 336. doi: https://doi.org/10.1007/978-1-4615-9495-6

20. Redly, B. S., Burill, C., Rigotty, J. (1991). Effect of diets high in ω-3 and ω-6 fatty acids on initiation and postinitiation stages of colon carcinogenesis. *Cancer Research*, 51, 487–491.

21. Matvieveia, T. V. (2015). Sposoby ozerzhannia indvidualnykh polinenasychenych zhyrnkh kyslot. Visnyk Nationalnoho tehni-chnogo universytetu «Kharkivski polikhimichny instytut». Seriya: Innovatsiyi doslidzhennia u naukovykh robotakh studentiv, 44 (1153), 30–33.

22. Tsisaryk, O. Y., Dronyk, H. V. (2008). Zhyrnokyslotnyi sklad moloch-noho zhyru koriv. *Biologiya tvaryn*, 10 (1/2), 84–102.

23. Kopiyko, A. V., Tkachenko, N. A., Chaharovskyi, O. P., Izbash, Ye. O. (2017). Pat. No. 132828 UA: Spособ vyrobnictvya proizhnstvho molochnoho rysopo kho yhotartsoho nopya z zbalanoseymn khimichnym skladom. No u201709342,Declared: 25.09.2017; published: 12.03.2018, Bul. No. 5.

24. Tkachenko, N. A., Nekrasov, P. O., Kopiyko, A. V. (2016). Mathematichsko modelliruyothe component composition of combined yoghurt drinks. *Zernovi produkty i kombikormy*, 61 (1), 20–25.

DOI: 10.15587/2706-5448.2021.235270

ANALYSIS OF THE PECTIN EXTRACTION PROCESS AT RECYCLING OF SECONDARY MATERIAL RESOURCES

pages 34–39

Oksana Chabanova, PhD, Associate Professor, Department of Technology of Dairy, Olive-Fat Products and Beauty Industry, Odessa National Academy of Food Technologies, Odessa, Ukraine, e-mail: oksana_chabanova17@ukr.net, ORCID: http://orcid.org/0000-0002-1455-2987

Sergei Bondar, PhD, Associate Professor, Department of Ecology and Environmental Technologies, Odessa National Academy of Food Technologies, Odessa, Ukraine, e-mail: sergei.s.s.bondar@gmail.com, ORCID: https://orcid.org/0000-0002-7908-2674

Yevhenii Kotliar, PhD, Associate Professor, Department of Technology of Dairy, Olive-Fat Products and Beauty Industry, Odessa National Academy of Food Technologies, Odessa, Ukraine, e-mail: yevhenii11@ukr.net, ORCID: https://orcid.org/0000-0003-0263-7393

Tatiana Nedobiychuk, PhD, Associate Professor, Department of Commodity Science and Customs, Odessa National Academy of Food Technologies, Odessa, Ukraine, e-mail: nedobiychuk@ukr.net, ORCID: https://orcid.org/0000-0002-8030-0198
The object of research is the secondary material resources of processing plant and animal raw materials, namely fruit pomace and milk whey. One of the most problematic areas is the waste of these industries has high rates of biological and chemical oxygen consumption of wastewater, which significantly impairs the operation of local and city treatment facilities. In addition, the parameters of extraction and determination of the quality indicators of the obtained product are not well defined. The processing of whey and pomace of fruit crops can reduce the environmental burden on the environment and increase the efficiency of technological processes through resource conservation and obtaining a surplus product. The problem is solved, in particular, by using the process of extracting plant waste using milk whey and the process of energy-saving membrane concentration.

In the course of the study, let’s use pectin-containing plant waste from juice production, namely watermelon, pumpkin, quince, beetroot, apple and a mixture of orange and tangerine pomace. The results obtained indicate that the process of extracting apple pomace with milk whey is promising, since the highest pectin content in the extract is established for apple pomace. The main amount of pectin substances passes into the extract starting from 75 minutes to 90 minutes. Extraction-hydrolysis for 2 hours at a temperature of 85 °C, pH=2–2.5 units determines the best results. Ultrafiltration of the obtained extract makes it possible to increase the pectin content up to 3.0 % with a protein content of more than 6.0 %. The membranes used in the experiment are characterized by high selectivity for protein and pectin. The fact is established that diafiltration makes it possible to effectively purify whey-pectin concentrates from ballast impurities with simultaneous enrichment of the concentrate with high-molecular components of whey. A technological scheme for the production of pectin-whey concentrate with high organoleptic and detoxification characteristics is proposed. The proposed technological process has a number of positive features, in particular, a high conversion of local and city treatment facilities. In addition, the parameters of extraction and determination of the quality indicators of the obtained product are not well defined. The processing of whey and pomace of fruit crops can reduce the environmental burden on the environment and increase the efficiency of technological processes through resource conservation and obtaining a surplus product.

Keywords: whey, juice production waste, pectin extraction, ultrafiltration, pectin substances, pectin-whey concentrate, waste disposal.

References
1. Kalaytsev, L. Yu. (1998). Biohimicheskoe obsnosnecie i razrabotka tehnologii pektinov s vuadnym kompleksolubrauzhuychimi svosostvami iz razlichnyh vidov rastitel’nogo syr’ya. Krasnodar, 162.
2. Rao, M., Lopes da Silva, J. (2006). Pectins. Food Polysaccharides and Their Applications, 353–411. doi: https://doi.org/10.1201/9781420015164.ch11
3. About IPPA. Available at: https://ippa.info/about-ippa/#index
4. Seymour, G. B., Knox, J. P. (Eds.) (2002). Pectins and Their Manipulation. Blackwell Publishing, 262.
5. Karpovich, N. S., Donchenko, L. V., Nelina, V. V., Kompaniev, V. A., Mel’nik, G. S. (1989). Pektin. Proizvodstvo i primenenie. Kyiv: «Urozhay», 21–35.
6. Deinychenko, H. V., Mazniak, Z. O., Huzenko, V. N. (2011). Osoblyvosti zastosuvannya nanotekhnolohiy v yborystvakh pektinovych kontsentrativ. Naukovi zbindy molodok — cyrishchennia problem kharchuvannia ljudstva u XXI столiti. 77 vesnyk nauk.-prakt. konf. molo-dych schenokh i studentiv. Kyiv: NUKhT, 75.
7. Li, J., Chase, H. A. (2010). Applications of membrane techniques for purification of natural products. Biotechnology Letters, 32 (5), 601–608. doi: https://doi.org/10.1007/s10529-009-0199-7
8. Tehnolohiya otkryvannya pektinovoho kontsentratu z barbuk-vo ho zhony. Available at: https://nuph.edu.ua/wp-content/uploads/2018/04/pektinovij-konzentrat.pdf
9. Kumar, A., Chauhan, G. S. (2010). Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor. Carbohydrate Polymers, 82 (2), 454–459. doi: https://doi.org/10.1016/j.carbpol.2010.03.001
10. Miceli-Garcia, L. (2014). Pectin from Apple Pomace: Extraction, Characterization, and Utilization in Encapsulating α-Toeophoracetate. University of Nebraska – Lincoln, 118. Available at: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=10404&context=foodscience
11. Vapa, B. M. (2011). Pectic substances: From simple pectic polysaccharides to complex pectins – A new hypothetical model. Carbohydrate Polymers, 86 (2), 373–385. doi: https://doi.org/10.1016/j.carbpol.2011.05.065
12. Zykwinska, A., Boffard, M.-H., Kontkanen, H., Buchert, J., Thibault, J.-F., Bonnin, E. (2008). Extraction of Green Labeled Pectins and Pectic Oligosaccharides from Plant Byproducts. Journal of Agricultural and Food Chemistry, 56 (19), 8926–8935. doi: https://doi.org/10.1021/jf801705a
13. Nguyen, M. H. (2003). Membrane Technology Applications in the Food Industry, with Reference to Food Processing and Cleaner Production. University of Technology, Sydney, 317.
14. Bondar, S., Chabanova, A., Chabanova, O. (2013). Using the residues from fruit and vegetable canning pectin extracts. Ekholohichna bezpeka, 2, 70–73.
15. Muhalinov, Z. K., Fishman, M. L., Avloev, K. K., Norova, M. T., Nasriddinov, A. S., Khalikov, D. K. (2010). Effect of temperature on the intrinsic viscosity and conformation of different pectins. Polymer Science Series A, 52 (12), 1257–1263. doi: https://doi.org/10.1134/s0965545x10120055
16. Vink, B. S., Sogi, D. S. (2004). Extraction and Characterization of Pectin from Apple (Malus Pumila. Cv Anvr) Peel Waste. International Journal of Food Properties, 7 (3), 693–703. doi: https://doi.org/10.1081/jfp-200033095
17. Canteri-Schemin, M. H., Fertonani, H. C. R., Waszczylnskiy, N., Wosiacki, G. (2005). Extraction of pectin from apple pomace. Brazilian Archives of Biology and Technology, 48 (2), 259–266. doi: https://doi.org/10.1590/S1519-8913200500200013
18. Inihov, G. S., Brio, N. P. (1971). Metody analiza molok i molechnykh produktov Moscow: Pischevaya promyshlennost’, 423.

DOI: 10.15587/2706-5448.2021.235533

EFFECT OF HEAT TREATMENT WITH BIOPREPARATION ON THE QUALITY OF TOMATO FRUIT DURING STORAGE

Olesia Priss, Doctor of Technical Sciences, Professor, Department of Technology of Processing and Storage of Agricultural Products, Dmytro Motornyi Tavria State Agrotechnological University, Melitopol, Ukraine, e-mail: olesyapriss@gmail.com, ORCID: https://orcid.org/0000-0002-6395-4202

Valentina Zhukova, PhD, Associate Professor, Department of Technology of Processing and Storage of Agricultural Products, Dmytro Motornyi Tavria State Agrotechnological University, Melitopol, Ukraine, e-mail: zhuburiv@gmail.com, ORCID: https://orcid.org/0000-0002-1963-659X

Seryh Holiachuk, PhD, Associate Professor, Department of Technologies and Equipment of Processing Industries, Lutsk National Agricultural University, Lutsk, Ukraine, e-mail: holachukserh@gmail.com, ORCID: https://orcid.org/0000-0002-3499-173X

ABSTRACTS AND REFERENCES: FOOD PRODUCTION TECHNOLOGY
Tomato fruits are characterized by a high content of biologically active substances, which makes them an irreplaceable component of nutrition. However, tomatoes are perishable products and require additional measures to extend storage. One of the most problematic areas is the limited use of synthetic chemicals for processing fruit prior to storage. An alternative to them are natural exogenous preparations with antioxidant and disinfectant effects, which are environmentally friendly. However, the treatment of fruits with natural substances does not have sufficient efficiency in comparison with synthetic ones, which requires a combination with other post-harvest measures to increase cold stress. The object of research is the process of storing tomato fruits using heat treatment with a biological product. Numerous studies indicate the feasibility of using the processing of fruits with biological products to extend their storage duration. Standardized preparations based on bee products are of great interest. The research carried out in this work aimed at extending the shelf life of tomato fruits while maintaining their quality by heat treatment of tomatoes with a solution of a biological product (tincture of the biomass of the larvae of the greater wax moth) before storage. In the course of the study, it was found that such treatment prolongs the shelf life of blank tomatoes up to 50 days, which is 40% longer compared to the control. It has been proven that fruits treated with a biological product demonstrate a low level of metabolic processes. This is due to the fact that the proposed treatment slows down the rate of accumulation and degradation of sugars and organic acids. In particular, in fruits treated with a biological product, the sugar content is 8.8–10.6% higher than in the control. The rate of decrease in the level of titratable acidity in the variants treated with the biological product is 15–19% slower than in the control. The above results indicate the effectiveness of the use of a biological product for storing tomato fruits in comparison with similar measures.

Keywords: storage of tomatoes, tincture of biomass of the larvae of the greater wax moth, sugar content, titratable acidity.

References

1. El Bilali, H., Callenius, C., Strassner, C., Probst, L. (2018). Food and nutrition security and sustainability transitions in food systems. Food and Energy Security, 8 (2), e00154. doi: http://doi.org/10.1002/fees.3.154
2. Ljapski, B., Hanson, C., Lomax, J., Kitinoja, L., Waite, R., and Sarchenger, T. (2013). Reducing Food Loss and Waste. Working Paper, Installment 2 of Creating a Sustainable Food Future. Washington. Available at: https://pdf.wri.org/reducing_food_loss_and_waste.pdf
3. Fabi, C., Cachia, F., Conforti, P., English, A., Rosero Moncayo, J. (2021). Improving data on food losses and waste: From theory to practice. Food Policy, 98, 101934. doi: http://doi.org/10.1016/j.foodpol.2020.101934
4. Serdyuk, M., Baierova, S., Gaprindashvili, N., Sukharenko, E. (2017). The effect of treatment with antioxidant composition on the number of standard fruits after the cold storage. Bulletin of the National Technical University «KhPI» Series: New Solutions in Modern Technologies, 23 (1245), 176–181. doi: http://doi.org/10.20998/2413-4295.2017.23.28
5. Zahorko, N. P., Struchaev, M. I., Tarasenko, V. H. (2018). Vyrobnytstvo aerovanykh zamorozhennykh produktiv. Visnyk Ukrainskoho viddilennia Mizhnarodnoi akademiï uhrarnoi osvity, 6, 124–133.
6. Capobianco-Uriarte, M. de las M., Aparicio, J., De Pablo-Valenciano, J., Casado-Belmonte, M. del P. (2021). The European tomato market. An approach by export competitiveness maps. PLOS ONE, 16 (3), e0250867. doi: http://doi.org/10.1371/journal.pone.0250867
7. Priss, O., Kalytka, V. (2014). Enzymatic antioxidants in tomatoes and sweet bell pepper fruits under abiotic factors. Ukrainian Food Journal, 3 (4), 505–563.
8. Erika, C., Griebel, S., Naumann, M., Pawelzik, E. (2020). Biodiversity in Tomatoes: Is It reflected in Nutrient Density and Nutritional Yields Under Organic Outdoor Production? Frontiers in Plant Science, 11. doi: http://doi.org/10.3389/fpls.2020.589692
9. Hasan, M. U., Ruiz, R., Malik, A. U., Khan, A. S., Anwar, R., Relman, R. N. U., Ali, S. (2021). Potential of Aloe vera gel coating for storage life extension and quality conservation of fruits and vegetables: An overview. Journal of Food Biochemistry, 45 (4). doi: http://doi.org/10.1111/jfbc.13640
10. Romanazzi, G., Feliziani, E., Baños, S. B., Sivakumar, D. (2016). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 57 (3), 579–601. doi: http://doi.org/10.1080/10408398.2014.900474
11. Priss, O. P. (2017). Naukovi osnovy zberihannia plodovych roso- vivch z vykoristanniam ohrobok biolohichno aktynymy rechovyny. Kyiv, 45.
12. Zinukova, V. F., Harpindashvili, N. A., Sukharenko, O. I., Koliadenko, V. V. (2019). Effect of antioxidant treatment of fruits on the quality preservation of tomato heterorosis sort with genes of lower reduction. Proceedings of the Tauria State agrotechnological university, 7 (19), 268–275.
13. Ali,A., Anjum, M. A., Nawaz, A., Naz, S., Hussain, S., Ejaz, S., Sar- dar, H. (2020). Effect of pre-storage ascorbic acid and Aloe vera gel coating application on enzymatic browning and quality of lotus root slices. Journal of Food Biochemistry, 44 (3). doi: http://doi.org/10.1111/jfbc.13136
14. Anjum, M. A., Akram, H., Zaidi, M., Ali, S. (2020). Effect of gam arabic and Aloe vera gel based edible coatings in combination with plant extracts on postharvest quality and storability of «Gola» guava fruits. Scientia Horticulturae, 271, 109506. doi: http://doi.org/10.1016/j.scienta.2020.109506
15. Sanches, A. G., Costa, J. M., Silva, M. B., Moreira, E. G. S., Cosme, S. S. (2017). Tratamentos Químicos na Manutenção da Qualidade Pós-Colheita em Frutos de Pitanga (Eugenia uniflora L.). Nativa, 5 (4), 257–262. doi: http://doi.org/10.3935/2318-7670.v5n4a05
16. Tytkhonov, O. I., Konoshcheyv, L. V., Kudyryk, B. T., Bobro, S. H. (2014). Relevance of the creation in Ukraine drugs preparations of bee products (Apitherapy). Zborny naukovykh prut spirovetbiotiki VNAMO im. P. L. Shupyka, 23 (3), 434–439. Available at: http://nbuv.gov.ua/UJRN/Zpomirazno_2014_23_3%3E8329_%66
17. Santos, E. X. D., Repolho, R. P. J., Sanches, A. G., Lima, K. S. (2020). The preservative effect of bee wax and calcium chloride coating on the quality and firmness of graviolas (Annona muricata l.). International Journal of Food Property, 8 (2), 32–38.
18. El-Moneim, E. A. A. Abd., Hany, M., Zeinab, A. Z., Abo, M. E. A. (2015). Effect of Honey and Citric Acid Treatments on Postharvest Quality of Fruits and Fresh-Cut of Guava. World Journal of Agricultural Sciences, 11, 255–267.
19. Bohutská, O. Ye. (2020). Dosvid zastosuvannia lychynok vohnivky i apipreparatov u medychni, farmatsvetchni i kosmetichni praktyki. Kharkiv: Vyd-vo NfAU, 64–65.
ABSTRACTS AND REFERENCES: FOOD PRODUCTION TECHNOLOGY

20. Bohutska, O. Ye., Tykhonov, O. I. (2018). Lychynky kolibnych belzholynoi – syrovnaya dlia stvorennia preparativ dlia korektiviv vikoryshh zmin u ohranizmi. Kosmetologiya ta aromolohiya: etapy stanovlennia i maibutnie. Kharkiv, 35.

21. Chen, J., Shen, Y., Chen, C., Wan, C. (2019). Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: A Review. Plants, 8 (2), 26. doi: http://doi.org/10.3390/plants8020026

22. Shpychak, O. S. (2005). Rozroba shlsuda ta tekkholohii novoho kompleksnoho pripradnoho preparatu z antymikrobnyym ta immomoduluuuchym chastrostiamy. Kharkiv, 28.

23. Priss, O. P. (2015). Chilling-injury reduction during the storage of tomato fruits by heat treatment with antioxidants. Eastern-European Journal of Enterprise Technologies, 1 (6 (73)), 38–43. doi: http://doi.org/10.15587/1729-4061.2015.37171

24. Priss, O. P., Zhukova, V. F. (2013). Zaleznist urozhainosti ta pokaznyk yakosti ploviv tomata vid pohohdnykh umov. Visnyk Polatskoi derzhasnoi ahrarnoi akademii, 1, 49–51.

25. Gautier, H., Dikour-Verdin, V., Bignard, C., Reich, M., Buret, M., Bourgaud, F. et. al. (2008). How Does Tomato Quality (Sugar, Acid, and Nutritional Quality) Vary with Ripening Stage, Temperature, and Irradiance? Journal of Agricultural and Food Chemistry, 56 (4), 1241–1250. doi: http://doi.org/10.1021/jf072196t

26. Gruda, N. (2005). Impact of Environmental Factors on Product Quality of Greenhouse Vegetables for Fresh Consumption. Critical Reviews in Plant Sciences, 24 (3), 227–247. doi: http://doi.org/10.1080/07352680510006828

27. Parisi, M., Giordano, L., Pentangelo, A., D’Onofrio, B., Villari, G. (2006). Effects of different levels of nitrogen fertilization on yield and fruit quality in processing tomato. Acta Horticulturae, 700, 129–132. doi: http://doi.org/10.17660/actahortic.2006.700.19

28. Rosales, M. A., Cervilla, L. M., Sánchez-Rodríguez, E., Rubio-Willehlm, M. del M., Blasco, B., Rios, J. J. et. al. (2010). The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 91 (1), 152–162. doi: http://doi.org/10.1002/jsfa.4166

29. Bénard, C., Gautier, H., Bourgaud, F., Graselly, D., Navez, B., Caris-Veyrat, C. et. al. (2009). Effects of Low Nitrogen Supply on Tomato (Solanum lycopersicum) Fruit Yield and Quality with Special Emphasis on Sugars, Acids, Ascorbate, Carotenoids, and Phenolic Compounds. Journal of Agricultural and Food Chemistry, 57 (10), 4112–4123. doi: http://doi.org/10.1021/jf8053674

30. Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63 (1), 129–140. doi: http://doi.org/10.1016/j.postharvbio.2011.03.016

31. Fernández-Ruiz, V., Sánchez-Mata, M. C., Cámara, M., Torija, M. E., Chaya, C., Galíana-Balagueir, L. et. al. (2004). Internal Quality Characterization of Fresh Tomato Fruits. HortScience, 39 (2), 339–345. doi: http://doi.org/10.21273/hortsoci.39.2.339

DOI: 10.15587/2706-5448.2021.232352

DETERMINATION OF THE COMPREHENSIVE INDICATOR OF PASTILLE WITH THE USE OF MULTI-COMPONENT FRUIT-BERRY PASTE

pages 46–49

Kateryna Kasabova, PhD, Associate Professor, Department of Technology of Bakery, Confectionary, Pasta and Food Concentrates, Kharkiv State University of Food Technology and Trade, Kharkiv, Ukraine, e-mail: kasabova_kateryna@hduht.edu.ua, ORCID: http://orcid.org/0000-0001-6277-4768

The object of research in this work is the technology of pastille with the addition of multicomponent fruit and berry paste. Pastille are becoming more and more popular in the world for all segments of the population. Usually, the main ingredients for their manufacture are fruit raw materials, a structurant and egg white, therefore, the products contain practically no fat and have a low calorie content.

It is proposed to replace 75 % of traditional applesauce in the recipe with a multicomponent fruit and berry paste made from apples, cranberries, hawthorn. It was found that such a composition makes it possible to obtain products with increased content of pectin substances, ascorbic acid, polyphenols, including anthocyanins, catechins and flavonoids.

The work is aimed at studying the application of the principles of quality to determine a complex indicator of the quality of pastille. For this, the organoleptic and physicochemical indicators of the quality of the developed pastille were taken from previous studies and the chemical composition was determined and the content of biologically active substances was calculated relative to the average daily human need. The content of pectin substances in new products increases 1.7 times and satisfies the average daily human need by 18.2 %. The content of ascorbic acid is 4.2 times higher, which is 20.5 % of the average daily human need, and polyphenols 3.2 times higher – 579.0 %. The data obtained make it possible to consider the developed product functional.

The next step was to determine the complex indicator of products by the qualitative method. For a more complete disclosure of product properties, a structure of pastille quality indicators has been developed – a 'tree of properties'. Thus, the comprehensive assessment of the quality of the control sample corresponds to the indicator «good» (0.66), while the integrated assessment of pastille with multicomponent paste corresponds to the indicator «very good» (0.98).

On the basis of organoleptic, physicochemical indicators and chemical composition of products, it was established that the indicator of a comprehensive assessment of the quality of a pastille with a multicomponent paste, taking into account all group indicators, is 48 % higher compared to the control.

Keywords: pastille technology, complex indicator, multicomponent paste, quality indicators, nutritional value.

References

1. Sokolovska, O. O. (2016). Modeling pastille products recipe using un-conventional raw materials in accordance with predetermined quality indicators. Technology Audit and Production Reserves, 3 (1) (299), 21–27. doi: http://doi.org/10.15587/2312-8372.2016.72035
The object of research is a refrigerated complex for short-term storage of tropical fruits in conditions of significant seasonal and daily fluctuations in ambient temperature, that typical for regions with a tropical climate. One of the problems is that the complexes are autonomous small firms for the year-round processing and storage of tropical fruits, located far from the central electric networks. In the presence of solar radiation, the complexes receive energy from small solar power plants. Such complexes are called «trigeneration system». In the course of the study, data on modes were used low temperature heat treatment and preservation of various tropical fruits, ripening times and climatic conditions of Tunisia. It has been established that citrus fruits are stored in chambers with high temperature, olives are frozen and stored for a short time before processing. The total amount of heat entering the citrus chambers is determined by changes in the ambient temperature. The thermal load of the olives chamber is determined by the heat treatment time. It was found that the cargo capacity of chambers with different temperatures differs six times. The thermal load of the olive storage chambers is only four times less. This is due to the peculiarities of the building structure of the complex, technological processes of cooling and freezing. Based on the thermal calculation, the cooling of the chambers is provided by a two-stage booster refrigeration machine with CO₂ refrigerant in a transcritical cycle. To ensure the operation of the complex, a solar photoelectric converter is designed. This ensures the environmental safety of the complex and the possibility of obtaining energy savings by regulating the thermal power of the compressors with frequency converters, depending on the ambient temperature. The designed complex can be offered to a private investor for practical implementation.

Keywords: short-term storage of tropical fruits, transcritical two-stage refrigeration machine, solar photovoltaic converter.

References

1. Mironova prodovolstvennaya problema. Available at: https://vuzlit.ru/1211757/mironova_prodovolstvennaya_problema
2. Yasin, E. (2010). Prodovolstvennaya programma v mire i v Rossii: perspektivy i reshenie. Available at: https://liberal.ru/scientific-seminar/bprodovolstvennaya-programma-v-mire-i-v-rossiiperspektivy-i-rashennie
3. Bashurova, D. (2009). Problemy goloda v mire. Available at: http://diplomba.ru/work/122393
4. Aste, N., Del Pero, C., Leonforte, F. (2017). Active refrigeration technologies for food preservation in humanitarian context – A review. Sustainable Energy Technologies and Assessments, 22, 150–160. doi: http://doi.org/10.1016/j.seta.2017.02.014
5. Medved, D. (2011). Trigeneration units. Intensive Programme «Renewable Energy Sources», 47–50. Available at: http://home.xcu.cz/~tesarova/1P/Proceedings/Proc_2011/Files/Medved.pdf
6. Bassol, J., Kuckelkorn, B., Langreck, J., Schneider, R., Veelen, H. (2002). Trigeneration in the food industry. Applied Thermal Engineering, 22 (6), 595–602. doi: http://doi.org/10.1016/s1359-4311(01)00111-9
7. Energetika Tunis. Available at: https://knoema.com/atlas/%D0%92%D1%83%D0%BD%D0%B8%D1%81/topics/%D0%AD%D0%B2%D0%B5%D1%80%D0%B3%BD%D1%82%D0%B8%D0%BD%A%0B
8. Tassou, S. A., Lewis, J. S., Ge, Y. T., Hadaway, A., Claer, I. (2010). A review of emerging technologies for food refrigeration applications. Applied Thermal Engineering, 30 (4), 263–276. doi: http://doi.org/10.1016/j.applthermaleng.2009.09.001
9. Tunis – strana – proizvoditel tropicheskoy selkhozproduktov. Available at: https://ru.wikipedia.org/wiki/Tunis

Design of a Refrigerated Complex for Short-Term Storage of Tropical Fruits with a Solar Energy Plant

pages 50–57

Larissa Morozyn, Doctor of Technical Sciences, Professor, Department of Cryogenic Technique, Odessa National Academy of Food Technologies, Odessa, Ukraine, ORCID: https://orcid.org/0000-0003-4173-1984, e-mail: laras.morozynuk@gmail.ru

** Viktoria Sabolovska-Veymenko,** PhD, Associate Professor, Department of Cryogenic Technique, Odessa National Academy of Food Technologies, Odessa, Ukraine, ORCID: https://orcid.org/0000-0002-7275-5061, e-mail: kl24062006@gmail.com

Vasyl Petushok, Department of Cryogenic Technique, Odessa National Academy of Food Technologies, Odessa, Ukraine, ORCID: https://orcid.org/0000-0002-4001-2001, e-mail: garbogesko@gmail.com

Maksym Sharaiev, Department of Cryogenic Technique, Odessa National Academy of Food Technologies, Odessa, Ukraine, ORCID: https://orcid.org/0000-0002-2903-7195, e-mail: maksymsharaiev@gmail.com

Sergii Psarov, Postgraduate Student, Department of cryogenic technique, Odessa National Academy of Food Technologies, Odessa, Ukraine, e-mail: psarovgvo1979@gmail.com
10. Sezony fruktov v Tunise. Available at: https://summerhotels.ru/tunisia/staty-o-tunise/sezony-fruktov-v-tunise/
11. Metody khraneniya olivok (2017). Available at: https://oliva.su/blog/perspektivnye-metody-khraneniya-olivok
12. Kim, Y. M., Kim, C. G., Favrat, D. (2012). Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources. Energy, 43 (1), 402–415. doi: http://doi.org/10.1016/j.energy.2012.03.076
13. Yavnel, B. K. (1989). Kursovoe i diplomnoe proektirovanie kholodilnykh ustanovok i sistem konditsionirovaniya vzhukha. Moscow: Agropromizdat, 233.
14. Chumak, I. G. et. al. (1981). Kholodilnye ustanovki. Moscow: Legkaya i pischevaya promyshlenost, 344.
15. Morozuk, T. V. (2006). Teoriya kholodilnykh mashin i teplovkh nasosov. Odessa: Studiya «Negotsant», 712.
16. Solnechnaya energia. Available at: https://akbinfo.ru/alternativa/solnechnaja-energija.html
17. Raschet solnechnoy elektrostantsii. Available at: https://avtonomny-dom.ru/solnechnyie-batarei/raschet-solnechnoyelektrostantsii.html
18. Kilhist elektropryladiv seredini statystychni dami (2018). Available at: https://eenergy.com.ua/korysni-porady/rozrahunok-spzhyvannya-elektroenergii/
19. Sonichni panele. Internet-mahazyn sonichnykh panelei. Available at: https://teplota.ua/shop/solnechnaya-batareya-jinko-solar-310-vt-24-v-polikristallicheskaya-jkm310p-304494p.html
АНОТАЦІЇ

Об’єктом дослідження є гідрофобізація пірогенним діоксидом кремнію покриття на основі стирол-акрилового співвідношення й анестетібутанацетолу. Гідрофобність або гідрофільність поверхонь залежить в основному від хімічної будови поверхні та її волокон. Рельєфна поверхня гідрофобна була зазвичай після натрію гідроксиду та розрахована з емісійними виробництв у відкритих системах. Такі поверхні знайшли завоювання в самоконденсующихся, відновлюваних, екстропровідних та масло-сорбуючих покриттях. У роботі як плівкоутворювач були використані стирол-акрилової співвідношений анестетібутанацетолу і анестет бутацетолу. Наноповільнювачем виступав пірогений діоксид кремнію Aerosil R 972, що гідрофобізований диметилдихлорсиланом. У роботі композиції наносилися на лабораторні стекла методом dip coating. Визначення поверхневої енергії здійснювалося за допомогою гляссерину та біодегуметану. Гідрофобні властивості покриттів було оцінено вимірюванням крайових кутів змочування водою за допомогою великої гідроформи. Проведено аналіз морфологічної структури поверхні покриттів за фотографіями електронного скануючого мікроскопу. Визначено енергетичну та вагову стабільність створених супергідрофобних покриттів і розраховано їх поверхневі енергії за заснованою на моделі Оуенса-Вендта методикою. Дослідження зосереджені на створенні покриттів на основі SiO

Ключові слова: супергідрофобні покриття, пірогений діоксид кремнію, метод Оуенса-Вендта, поверхнева енергія, водовідштовхувачи поверхні.

DOI: 10.15587/2706-5448.2021.235243

ДОСЛІДЖЕННЯ ПРОЦЕСУ КАРБОНАТНОЇ КОНВЕРСІЇ ФОСФОГІПСУ У ВОДНОМУ СЕРЕДОВИЩІ

Сіволапов П. В., Мироначо О. В., Баклан Д. В., Береговий Т. О.

Об’єктом дослідження є трава Adonis vernalis та одержані на її основі водноспиртові екстракти. За характером дії препарати Adonis vernalis несе значні успіхи в вивченні фітохімічної та фармакологічної дії трави Adonis vernalis. Проте не слід обмежуватися застосуванням

Ключові слова: фосфогіпс, що утворюється під час виробництва фосфорної кислоти з апатитів та фосфоритів. Тривалий час проблеми утилізації фосфогіпсу не припиняєську важливою і важливою екологічною проблемою. Tранспортування фосфогіпсу у відвалі з перевезенням відвалів з утворенням каоліну та діоксида кремнію. Встановлено, що на першому етапі процесу домішки, що містяться у фосфогіпсі, перетворювалися в CaCO

DOI: 10.15587/2706-5448.2021.235471

ОПТИМІЗАЦІЯ ПАРАМЕТРІВ ПРОЦЕСУ ЕКСТРАГУВАННЯ БІОЛОГІЧНО АКТИВНИХ РЕЧОВИН ТРАВI ADONIS VERNALIS

Кравчук А. С., Кравчук Р. Т.

Об’єктом дослідження є трава Adonis vernalis, яка використовується в медицині. Трава Adonis vernalis містить багато біологічно активних речовин.

DOI: 10.15587/2706-5448.2021.233535

ФОРМУВАННЯ ЕФЕКТИВНОЇ КОНЦЕНТРАЦІЇ ПЛІВКОУТВОРЮВАЧА СУПЕРГІДРОФОБНИХ ПОКРИТТІВ НА ОСНОВІ ДІОКСИДУ КРЕМНІЮ

Сіволапов П. В., Мироначо О. В., Баклан Д. В., Береговий Т. О.

Об’єктом дослідження є трава Adonis vernalis та одержані на її основі водноспиртові екстракти. За характером дії препарати Adonis vernalis несе значні успіхи в вивченні фітохімічної та фармакологічної дії трави Adonis vernalis. Проте не слід обмежуватися застосуванням

Ключові слова: фосфогіпс, що утворюється під час виробництва фосфорної кислоти з апатитів та фосфоритів. Тривалий час проблеми утилізації фосфогіпсу не припиняєську важливою і важливою екологічною проблемою. Tранспортування фосфогіпсу у відвалі з перевезенням відвалів з утворенням каоліну та діоксида кремнію. Встановлено, що на першому етапі процесу домішки, що містяться у фосфогіпсі, перетворювалися в CaCO

DOI: 10.15587/2706-5448.2021.235243

ДОСЛІДЖЕННЯ ПРОЦЕСУ КАРБОНАТНОЇ КОНВЕРСІЇ ФОСФОГІПСУ У ВОДНОМУ СЕРЕДОВИЩІ

Сіволапов П. В., Мироначо О. В., Баклан Д. В., Береговий Т. О.

Об’єктом дослідження є трава Adonis vernalis та одержані на її основі водноспиртові екстракти. За характером дії препарати Adonis vernalis несе значні успіхи в вивченні фітохімічної та фармакологічної дії трави Adonis vernalis. Проте не слід обмежуватися застосуванням
АНОТАЦІЇ

АНОТАЦІЇ

70

TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/3(59), 2021
ISSN 2664-9969

TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/3(59), 2021
ISSN 2664-9969

Adonis vernalis лише для стимуляції серцевої діяльності, слід розглянути також перспективну антиоксидантну дію флавоноїдів та фенольних сполук, які містяться в даній лікарській рослині. Також в науковій літературі не описані дослідження умов екстракції трави Adonis vernalis.

У дослідження проведено екстракцію трави Adonis vernalis різними методами (статичним та динамічним). Вид екстракту був обраний як найбільш раціональний, що забезпечує максимальний вихід екстрактивних речовин (фенольних сполук та серцевих глікозидів). Для цього підбрані оптимальні умови екстракції, а саме розмір часток, вид екстрагенту, величину гідромоду та спосіб екстракції. Відповідно, оптимальний діаметр частинок для максимального вилучення біологічно активних речовин трави Adonis vernalis – 2,5 мм, оптимальним екстрагентом є 70 % етиловий спирт, співвідношення сировина:екстрагент – 1:10, оптимальний спосіб екстракції – мацерація з постійним перемішуванням. Здійснено фітохімічні дослідження кількісного складу основних груп біологічно активних речовин калориметричним та спектрофотометричним методами аналізу.

В результаті оптимізації процесу та впровадження його у виробництво в промислових масштабах буде досягнуто ефекту доданої вартості. А також створено високоякісний продукт, який буде конкурувати з вже існуючими на ринку препаратами широкого спектру дії.

Ключові слої: флавоноїди, серцеві глікозиди, фенольні сполуки, Adonis vernalis, процес екстрагування, оптимальні умови, метод екстракції.

ECOLOGY AND ENVIRONMENTAL TECHNOLOGY

DOI: 10.15587/2706-5448.2021.235288

ОЦІНКА ЕФЕКТИВНОСТІ ТА ЕКОЛОГІЧНОЇ БЕЗПЕКИ ВИЛУГОВУВАННЯ МЕТАЛІВ ІЗ РУД: ШЛЯХИ РОЗВИТКУ ТА ПЕРСПЕКТИВI

сторінки 19–26

Ляшенко В. І., Хоменко О. Є., Чекушина Т. В., Дудар Т. В., Топольний Ф. П.

Об’єктом дослідження є традиційні гірські технології та технічні засоби в поєднанні з підземним блоковим вилуговуванням (ПБВ) металів зі скельних руд з попереднім їх дробленням вибуховими речовинами в установках, змонтованих в гірських виробках. Одним з найбільш проблемних місць є складність досягнення заданої якості дроблення, а також необхідної висоти вилуговування та мінімізації втрат з урахуванням управління енергією вибухового руйнування скальних руд.

В ході дослідження використовувалися:
– дані літературних джерел і патентної документації в області технологій та технічних засобів для ПБВ металів із руд в енергопорушених масивах, обґрунтування технологічних параметрів експлуатаційних блоків;
– лабораторні та виробничі експерименти;
– фізичне моделювання вилучення металу від середнього лінійного розміру шматка підірваної руди.

Виконано аналітичні дослідження, порівняльний аналіз теоретичних і практичних результатів за стандартними та новими методиками за участю авторів. Встановлено, що найбільш інтенсивне інфільтраційне вилуговування відбувається при класі крупності рудних шматків –100+0 мм. Менш інтенсивно та триваліше витягають метали з фракцій –200+100 мм. Для нейтралізації та промивання відпрацьованої рудної маси рекомендовано обробляти розчином вапна та шахтною водою через свердловини для подачі відварювального розчину (зрошувальна система). Охорону гідрогеологічного середовища здійснювати шляхом замулювання днища камери зі збору продуктивних розчинів та постійним моніторингом забруднення підземних вод у зоні впливу ПБВ. На основі отриманих позитивних результатів дослідження та впровадження технології ПБВ металів зі скельних руд при відпрацюванні блоку 5–86, відповідно з виданими рекомендаціями, використаний такий же підхід і для блоків 5–84–86 та 5–88–90, а також промислово-експериментального блоку 1–75–79. За рахунок залучення у виробництво некондиційних руд, сировинна база видобутку металів, на діючих шахтах, може бути збільшена в 1,4–1,6 рази.

Результати досліджень можуть бути використані при підземній розробці рудних родовищ складної структури України, Російської Федерації, Республіки Казахстан та інших розвинених гірничодобувних країн світу.

Ключові слова: рудні родовища, підземна розробка, блочне вилуговування, гірничі виробки, екологічна безпека.

FOOD PRODUCTION TECHNOLOGY

DOI: 10.15587/2706-5448.2021.235246

МОДЕЛЮВАННЯ ЖИРНОКИСЛОТОГО СКЛАДУ КОМБІНОВАНЬ ХАРЧОВИХ ПРОДУКТІВ

сторінки 27–33

Копійко А. В., Ткаченко Н. А., Мардар М. Р ., Гончаров Д. С.

Об’єктом дослідження є жирнокислотний склад молочно-жирової основи для комбінованих харчових продуктів здорового харчування. Біологічна ефективність жирів визначається співвідношенням в них насичених (НЖК), мононенасичених (МНЖК) і поліненасичених (ПНЖК) жирних кислот, у т. ч. співвідношенням ПНЖК омега-3:ПНЖК омега-6. Не всі харчові продукти мають збалансований жирнокислотний склад, зокрема, молочні продукти містять надмірну кількість НЖК, надлишкове споживання яких призводить до підвищення в крові рівня холестерину, у результаті чого підвищується ризик появи серцево-судинних захворювань. Кількість незамінних у харчуванні моно- та поліненасичених жирних кислот у молочному жиру (і, відповідно, у молочних продуктах) недостатня. Тому дане дослідження направлене на розробку складу молочно-жирової основи зі збалансованим жирнокислотним складом із застосуванням природних рослинних олій.
У роботі обговорено доцільність використання рослинних олій, а саме гарбузової – як джерела поліенасичених жирних кислот, олії рисових висовів – як джерела поліенасичених жирних кислот, для оптимізації співвідношення НЖК:МНЖК:ПНЖК при комбінуванні з молочним жиром у багатокомпонентних харчових продуктах. Оптимізовано жирнокислотний склад молочно-жирої основи з використанням трикомпонентної суміші жирів: молочного жиру, гарбузової олії та рафінованої олії рисових висовів. Визначено співвідношення жирних кислот у молочно-жирній основі для виробництва харчових продуктів зі збалансованим жирнокислотним складом (НЖК:МНЖК:ПНЖК = 0,4420:4030:1,155), яке досягається при оптимальному співвідношенні молочного жиру: олії рисових висовів: гарбузової олії – 20,2:76,5:9,3. Надано рекомендації щодо застосування розробленої молочно-жирної основи зі збалансованим жирнокислотним складом у виробництві комбінованих молочно-рослісних продуктів харчування. Основні ознаки споживчої активності продукту – це низька калорійність, висока соуксусність, збалансований жирнокислотний склад, молочний жир, гарбузовий жир, олія рисових висовів.

Ключові слова: молочна сироватка, відходи сокового виробництва, екстракція пектину, ультрафільтрація, пектинові речовини,

DOI: 10.15587/2706-5448.2021.2355270

АНАЛІЗ ПРОЦЕСУ ЕКСТРАГУВАННЯ ПЕКТИНУ ПРИ УТИЛІЗАЦІЇ ВТОРИННИХ МАТЕРІАЛЬНИХ РЕСУРСІВ

Чабанова О. Б., Бондар С. М., Котляр Є. О., Недобійчук Т. В., Верхівкер Я. Г.

Об’єктом дослідження є вторинні матеріальні ресурси переробки рослинної та тваринної сировини, а саме фруктових вичувків та молочної сироватки. Одним з найбільш проблемних місць є те, що відходи вказаних виробництв мають високі показники біологічного та хімічного споживання кисню та інших інгредієнтів, що значно погіршує роботу локальних та міських очисних споруд. Окрім того малу виразні значення мають параметри екстрактування та визначення якісних показників отриманого продукту. Переробка молочної сироватки та вичувків плодових культур дозволяє знищити екологічне навантаження на довкілля під час використання технологічних процесів через утилізацію відходів виробництв, а також зменшити погані характеристики продукту. Проблема вирішується, зокрема, застосуванням процесу екстракції пектинових речовин з біопрепаратами, що забезпечує максимальну витягненість пектинових речовин в екстракті. На сьогоднішній день на сироватку пектиновий концентрат прийнято екстрагувати ультрафільтрацією відходів. Екстрагування пектинових речовин з молочної сироватки включає зазначені процеси: пробілізація, глюкозоляція, діафільтрація, редуйована діафільтрація та деселективна діафільтрація. У процесі екстракції використовують необхідні сироватково-пектинові концентрати з високими органолептичними та фізико-хімічними характеристиками.

Ключові слова: молочна сироватка, екстракція пектину, ультрафільтрація, пектинові речовини, пектиново-сироватковий концентрат, утилізація відходів.

DOI: 10.15587/2706-5448.2021.235533

ВПЛИВ ТЕПЛОВОЇ ОБРОБКИ ОБОРОК ПРИ компетенції НЯКІСТЬ ПЛОДІВ ТОМАТУ ПРИ БЕРІГАЧНІ

Приєс О. П., Жукова В. Ф., Голячук С. Є., Карман Т. В.

Плоди томатів характеризуються високим вмістом біологічно активних речовин, зокрема жирнокислотного складу, що визначає їхньої високу якість. Одним з найбільш проблемних місць є визначення якісних показників плодів томату при зберіганні. Високий вміст жирних кислот здатно стабілізувати висококалорійні продукти, також призводить до відносної стабілізації жирових кислот, які значно підвищують вміст жиру в продуктах. Однак, високий вміст жиру в плодах призводить до відповідних впливів на шкіру плодів, що визначає особливість відповідних умов зберігання. Це впливає на якісні характеристики продукту, а також на вміст білка та поліненасичених жирних кислот в плодах.

Ключові слова: молочна сироватка, екстракція пектину, ультрафільтрація, пектинові речовини, пектиново-сироватковий концентрат, утилізація відходів.

DOI: 10.15587/2706-5448.2021.235533
Об’єктом досліджень у роботі є технологія пастили з додаванням багатокомпонентної плодово-ягідної пасти. Пастільні виро
би набувають все більшої популярності в світі для усіх верств населення. Зазвичай, основними інгредієнтами для їх виготовлення
є фруктова сировина, структуроутворювач та яєчний білок, тому вироби практично не містять жирів та мають невисоку калорійність.

Запропоновано заміну 75 % традиційного яблучного пюре в рецептурному складі на багатокомпонентну плодово-ягідну пасту
з яблук, журавлини, глоду. Встановлено, що такий склад дозволяє отримувати вироби з підвищеним вмістом пектинових речовин, аскорбінової кислоти, поліфенолів, у тому числі антиоксидантів, катехінів та флавонів.

Робота направлена на дослідження застосування принципів кваліметрії для визначення комплексного показника якості пастили. Для цього було взято органолептичні та фізико-хімічні показники якості розробленої пастили з відповідними показниками визначення хімічного складу і розраховано вміст біологічно активних речовин відносно середньодобової потреби людини.

На основі органолептичних, фізико-хімічних показників та хімічного складу виробів встановлено, що показник комплексної оцінки якості пастили з багатокомпонентною пастию відповідає показника «дуже добре» (0.98). На підставі органолептичних, фізико-хімічних показників пастили комплексна оцінка виробів з багатокомпонентною пастию відповідає показнику «добре» (0.66), відповідає показнику «дуже добре» (0.98).

Ключові слова: технологія пастили, комплексний показник, багатокомпонентна паста, показники якості, харчова цінність.

Розробка холодильного комплексу короткочасного зберігання тропічних фруктів з сонячною енергетичною установкою

Об’єктом дослідження є холодильний комплекс для короткочасного зберігання тропічних фруктів у умовах значних сезонних і добових коливань температури і водночас із середніх електричних мереж. При наявності сонячної радіації комплекси отримують енергію від невеликих сонячних електростанцій. Такі комплекси називають «системою тригенерації». У ході дослідження використовувалися дані щодо режимів низькотемпературної термообробки та консервації різних тропічних фруктів, часу дозрівання фруктів і кліматичних умов посушивання.

Встановлено, що цитрусові зберігають в камерах з високою температурою впродовж півріччя, оливки збирають, заморожують і короткочасно, не більше двох тижнів, зберігають перед обробкою. Загальна кількість тепла, що надходить в камеру цитрусових, визначається змінами температури навколишнього середовища. Теплове навантаження камер зберігання визначається змінами температури навколишнього середовища. Теплове навантаження камер зберігання визначається змінами температури навколишнього середовища. Теплове навантаження камер зберігання визначається змінами температури навколишнього середовища. Теплове навантаження камер зберігання визначається змінами температури навколишнього середовища.

На основі теплового розрахунку охолодження камера забезпечує двоступеневу бустерну холодильну машину з холодоагентом CO₂ за транскритичним циклом. Для забезпечення роботи комплексу розраховано потужність та розміри сонячного фотоелектричного перетворювача. Завдяки цьому забезпечується екологічна безпека комплексу та можливість отримання енергозбереження шляхом регулювання теплової потужності компресора методом перетворювачів в залежності від температури навколишнього середовища. Спроектований комплекс може бути запропонований приватним інвестором для практичної реалізації.

Ключові слова: короткочасне зберігання тропічних фруктів, транскритична двоступенева холодильна машина, сонячний фотоелектричний перетворювач.

DOI: 10.15587/2706-5448.2021.235594