INTRODUCTION

Non-variceal upper gastrointestinal bleeding (UGIB) remains a common and challenging emergency for gastroenterologists and general physicians. The annual incidence is 50 to 150 per 100,000 of the population, and, even though there have been significant improvements in endoscopic and supportive therapies, the overall mortality stubbornly remains around 10%, and may even reach 35% in hospitalized patients with serious co-morbidity. Patients aged over 80 years of age now account for around 25% of all UGIB and 33% of UGIB occurring in hospitalized patients and therefore tend to account for much of the poor outcome of this condition.1

The causes of non-variceal UGIB are shown in (Table I), although the commonly quoted figure of 50% for peptic ulcer bleeding may be overestimated. In a recent large CORI (Clinical Outcome Research Initiative) study of UGIB, peptic ulcer was the probable cause of UGIB in only 20% of cases.2 The incidence of peptic ulcer disease is expected to continue to decline with more widespread helicobacter pylori eradication and proton pump inhibitor (PPI) usage.

RISK ASSESSMENT AND INITIAL MANAGEMENT

Several clinical scoring systems e.g. Rockall score, the Baylor bleeding score, the Cedars-Sinai Medical Centre Predictive Index and the Blatchford score, have been developed to direct appropriate patient management and enable cost effective use of resources. These systems weigh a combination of clinical, laboratory and endoscopic variables to produce a score that predicts the risk of mortality, recurrent haemorrhage, need for clinical intervention or suitability for early discharge. Factors commonly associated with poor outcome from UGIB may be related to the patient’s presentation and co-morbidities, or to the behaviour of the ulcer (Table II). Risk stratification using non-endoscopic parameters has the advantage that it can be performed readily on initial presentation in the emergency department, and appropriate initial risk assessment is still possible, even if early endoscopy, which requires skilled staff and resources, is not always available.

Inclusion of endoscopic stigmata of recent haemorrhage (SRH) that relate to increased risk of re-bleeding and death into scoring systems increases the sensitivity for predicting patients at high or low risk compared to non-endoscopic assessments.3-5 High risk lesions such as actively bleeding ulcers, non-bleeding visible vessels (NBVV) and adherent clots (Table III) require effective aggressive intervention to reduce re-bleeding which is associated with a 5-16 fold increase in mortality.6,7 The re-bleeding rate of ulcers with a clean base or red or blue spots are low and endoscopic intervention is usually not recommended.8-10 In fact, early endoscopy-based triage may permit safe and early discharge of “low risk” patients with no increased rate of re-bleeding or mortality.11

Endoscopic SRH, particularly NBVV and flat pigmented spots, can be difficult to differentiate.12 Doppler assessment is unlikely to be widely available for some time because of technical and resource
Table I

Causes of non-variceal UGIB

Diagnosis	Incidence [%]
Peptic ulcer	20 – 50
Mallory-Weiss tear	15 – 20
Erosive gastritis/ duodenitis	10 – 15
Oesophagitis/ oesophageal ulcer	5 – 10
Malignancy	1 – 2
Angiodysplasia/ vascular malformations	5
Other	5

Table II

Predictors of adverse outcome from UGIB

Patient:	Shock
Melaena	
Significant fresh blood in vomit, gastric aspirate or rectum	
Sepsis	
Anaemia at presentation	
Cardiac/ liver/ renal disease	

Ulcer:	Large ulcer size
Persistent bleeding despite endoscopic therapy	
Recurrent bleeding	

Table III

Forrest classification of peptic ulcers in UGIB

Forrest class	Type of lesion	Risk of rebleed if untreated [%]
Ia	Arterial spurting	100
Ib	Arterial oozing	17-100
IIa	Visible vessel	8-81
IIb	Sentinel clot	14-36
IIc	Haematin covered flat spot	0-13
III	No stigmata	0-10
The role of adrenaline in 1ml aliquots around the bleeding of homeostasis. Injection of dilute (1:10 000) combination therapies and mechanical means injection. Recent focus has been directed towards the value of “stand alone” therapy with adrenaline when used alone, although doubt has been cast on the use of it as the preferred strategy in the United States. Adrenaline injection results in haemostasis in up to 100% of patients with bleeding peptic ulcers, probably by a combination of vascular tamponade and vasoconstriction, with a concomitant reduction in re-bleeding rates from 40 to 15%. The dose of adrenaline required to achieve haemostasis is variable but larger volumes (13-20ml vs. 5-10ml) in high risk patients (Forrest type I or Ila lesions) results in less re-bleeding (15.4% vs. 30.8%). Although injection with adrenaline is successful in achieving initial haemostasis, 15-36% of patients rebleed, a figure that is unacceptably high. Sclerosants such as ethanol, polidocanol and ethanamine are equally effective as adrenaline but carry more risk. In one study, ethanol injection alone was shown to have a re-bleeding rate as low as 4%; however, most other published studies have achieved similar haemostasis to adrenaline alone. Combination therapy with adrenaline and ethanol may improve haemostasis and shorten hospital stay for patients with spurting haemorrhage. The evidence for thrombin injection is mixed with differing reports of effect on clinical outcomes. Repeated daily injection of fibrin glue following treatment with dilute adrenaline in patients with active bleeding or NBVV until the ulcer base is clean or covered is expensive but reduces re-bleeding although not mortality rates. N-butyl-2-cyanoacrylate (Histoacryl) injection has been shown to be effective for control of variceal bleeding, but its role in non-variceal UGIB remains uncertain. In a small study of 32 patients with bleeding ulcers, Histoacryl injection was no more effective than injection with dilute adrenaline. More recently, Lee et al demonstrated significantly lower re-bleeding rate for patients with Forrest type Ia lesions treated with Histoacryl compared to injection with hypertonic saline-adrenaline injection. However, there was no overall benefit in the use of Histoacryl with regards to haemostasis rates, emergency surgery or mortality. Arterial embolisation is a recognized complication of this treatment and means that this therapy is recommended as a measure of last resort because of potentially fatal adverse effects. In contrast to injection techniques, thermal haemostasis is achieved by compression of the artery during heating (coaption) and/or the

ENDOSCOPIC MANAGEMENT

Endoscopic intervention reduces the rate of re-bleeding, need for surgical intervention and mortality in high risk patients with UGIB. The optimum timing of endoscopy remains a balance between clinical need and resources, but endoscopy performed within 24 hours of hospital admission has been shown to reduce the length of hospital stay and may reduce the likelihood of re-bleeding or surgical intervention in the highest risk patients. Not infrequently, excessive blood in the upper GI tract may preclude an accurate endoscopic diagnosis in a small number of patients. These patients have a significantly higher rate of complications, rebleeding, need for surgery and mortality. Bolus administration of intravenous erythromycin prior to endoscopy has been shown to clear the stomach of blood, increase the likelihood of successful haemostasis and reduce the need for subsequent interventions.

Most haemostatic techniques are equally effective when used alone, although doubt has been cast on the value of “stand alone” therapy with adrenaline injection. Recent focus has been directed towards combination therapies and mechanical means of homeostasis. Injection of dilute (1:10 000) adrenaline in 1ml aliquots around the bleeding points has traditionally been the main method of haemostasis in Europe, whereas application of heat is the preferred strategy in the United States. Adrenaline injection results in haemostasis in up to 100% of patients with bleeding peptic ulcers, probably by a combination of vascular tamponade and vasoconstriction, with a concomitant reduction in re-bleeding rates from 40 to 15%. The dose of adrenaline required to achieve haemostasis is variable but larger volumes (13-20ml vs. 5-10ml) in high risk patients (Forrest type I or Ila lesions) results in less re-bleeding (15.4% vs. 30.8%). Although injection with adrenaline is successful in achieving initial haemostasis, 15-36% of patients rebleed, a figure that is unacceptably high. Sclerosants such as ethanol, polidocanol and ethanamine are equally effective as adrenaline but carry more risk. In one study, ethanol injection alone was shown to have a re-bleeding rate as low as 4%; however, most other published studies have achieved similar haemostasis to adrenaline alone. Combination therapy with adrenaline and ethanol may improve haemostasis and shorten hospital stay for patients with spurting haemorrhage. The evidence for thrombin injection is mixed with differing reports of effect on clinical outcomes. Repeated daily injection of fibrin glue following treatment with dilute adrenaline in patients with active bleeding or NBVV until the ulcer base is clean or covered is expensive but reduces re-bleeding although not mortality rates. N-butyl-2-cyanoacrylate (Histoacryl) injection has been shown to be effective for control of variceal bleeding, but its role in non-variceal UGIB remains uncertain. In a small study of 32 patients with bleeding ulcers, Histoacryl injection was no more effective than injection with dilute adrenaline. More recently, Lee et al demonstrated significantly lower re-bleeding rate for patients with Forrest type Ia lesions treated with Histoacryl compared to injection with hypertonic saline-adrenaline injection. However, there was no overall benefit in the use of Histoacryl with regards to haemostasis rates, emergency surgery or mortality. Arterial embolisation is a recognized complication of this treatment and means that this therapy is recommended as a measure of last resort because of potentially fatal adverse effects. In contrast to injection techniques, thermal haemostasis is achieved by compression of the artery during heating (coaption) and/or the
Mechanical haemostasis with endoloops or clips, e.g. the Hemoclip (Teleflex Medical, PA), has an increasing role in the control of non-variceal UGIB. Endoclips are deployed on a visible vessel to achieve vascular compression and can achieve homeostasis in up to 100% of cases. Comparative studies suggest lower re-bleeding rates than adrenaline injection, ethanol or saline/adrenaline injection. The additional benefit of adrenaline with a mechanical method is unclear, although one randomised comparative study of combination epinephrine-polidocanol injection and Hemoclip versus Hemoclip alone for bleeding peptic ulcers showed clipping to be inferior to combination therapy. Two small studies have evaluated Hemoclips for control of bleeding due to Dieulafoy’s lesion, demonstrating a trend towards reduction in the need for repeat procedures. Hemoclips can be technically difficult to apply if the ulcer is relatively inaccessible, for instance high on the gastric lesser curve or on the posterior duodenal wall. In fact, application of a clip with successful haemostasis in either of these locations has been as low as 30% in published series. Rotatable, versatile endoclips that can deploy multiple and/or stronger clips are needed.

Endoscopic band ligation (EBL) is currently technically easier to use than endoclips and has been shown to be safe and effective for control of small lesions in a small series of acute peptic ulcer bleeding and with bleeding due to Dieulafoy’s lesions.

ADHERENT CLOTS

Subgroup analysis of patients with adherent clots in early endoscopic studies demonstrated little or no benefit of endoscopic therapy for ulcers with adherent clots. However, a subsequent meta-analysis showed significant benefit in the group of patients with active bleeding or NBVV. To further address this issue, a recent controlled trial in patients with severe UGIB and adherent clot randomised 32 patients to “medical” or combination endoscopic therapy following clot removal. Endoscopic therapy consisted of adrenaline injection, shaving of the clot with cold guillotine and BPE of the underlying ulcer SRH. Combination endoscopic therapy was safe and associated with less early re-bleeding compared to medical therapy, although the small sample size, unexpectedly low re-bleed rates in the combination therapy group [0%] and unequal distribution of confounding
factors in the two groups means that caution needs to be taken when extrapolating the results. Also, even in clinical trials there tends to be significant intra-observer variation in the labelling of SRH and the degree clot “adherence” depending on the method of removal employed.60, 61 For instance, in one study five minutes of irrigation via a bipolar probe was found to remove clot in 43% of patients, whereas irrigation with a syringe via the endoscope channel only removed 9% of clots.62 Placement of a transparent irrigating hood over the endoscope tip that allows forceful irrigation yet maintains a reasonable endoscopic view may prove useful for clot removal and may reduce total procedure time.63, 64 Although the optimum technique for clot removal is unclear, clot removal should be attempted as high risk SRH may be exposed in the underlying ulcer in around a further 30% of patients. Current practice among experienced endoscopists involves targeted irrigation and possibly snare guillotine of an adherent clot followed by treatment of the underlying lesion.42

Finally, a variety of endoscopic suturing devices have been developed primarily for gastroplication in patients with gastro-oesophageal reflux. Endoscopic suturing for UGIB management is an attractive prospect, but further development of new devices is required before endoscopic suturing for UGIB can be widely adopted.

\textbf{“SECOND-LOOK” ENDOSCOPY AND ENDOSCOPIC RE-TREATMENT}

Routine “second look” endoscopy, in the absence of established rebleeding or patient instability, has gone out of vogue after studies showed no benefit with regards to clinically significant outcomes for unselected patient populations,65 although there may be a role in high risk patients.66, 67 Repeat therapeutic endoscopy may be indicated (depending on local endoscopic and surgical expertise) if there is clinical evidence of re-bleeding or if the initial therapeutic procedure was unsuccessful or partially successful.10, 68 In expert hands, endoscopic re-treatment is associated with fewer complications and no increased mortality risk compared to surgery.69

\textbf{ACID SUPPRESSION}

In vitro studies of the effect of gastric pH on platelet aggregation and coagulation provide the rationale for acid suppression in UGIB. If gastric pH is maintained above pH6 (by infusional PPI), platelet aggregation is optimized and fibrinolysis relatively inhibited, thereby potentially improving the likelihood of clot stability at an ulcer site. Individual trials of H2 receptor antagonists (H2RA) have generally failed to demonstrate a clinical benefit in UGIB,70 although one meta-analysis has suggested a weak effect.71 A recent consensus statement suggested that the available data on H2RAs does not support their use in ulcer bleeding.10

Several studies have evaluated intravenous proton pump inhibitors (PPI) for non-variceal UGIB; unfortunately, these trials are heterogeneous in terms of patient population, regimen of PPI and timing/type of endoscopic intervention, making comparisons difficult. However, meta-analyses of PPIs in non-variceal UGIB have now shown a benefit in terms of re-bleeding and need for surgery, but not for mortality.2, 72-75 The usual intravenous regime for omeprazole therapy in the more robust studies was an 80mg intravenous bolus of omeprazole followed by a continuous infusion of 8mg/hour for up to 72 hours. This regimen resulted in a reduction of rebleeding from 22.5% to 6.7%, representing a NNT of 6 to prevent one person bleeding within 30 days.74 Subsequent studies using lower intravenous doses of omeprazole76 or high dose oral omeprazole77-79 also demonstrated a reduction in rebleeding rate. Further study is required to determine the optimum dose, route of administration and dosing schedule of PPI in UGIB. In the meantime, and with the evidence currently available, it seems appropriate to treat patients with high risk peptic ulcers with intravenous or high dose oral PPI after endoscopic therapy has been administered.

\textbf{FUTURE DIRECTIONS IN ENDOSCOPY}

Endoscopic suturing has already been mentioned earlier in this article. Currently available suturing devices are somewhat awkward to use and are not suitable for management of bleeding, although the principle of suturing peptic ulcers to control bleeding is well established in surgery. Further development is required before suturing becomes possible in the endoscopic sphere.

The risks associated with application of heat to bleeding lesions are due to the requirement for tissue contact, lack of control of depth of injury and difficulty in treating multiple or diffuse lesions. Gastric freezing to achieve haemostasis during variceal and non-variceal bleeding has been possible for several decades although evidence of therapeutic
benefit from the original techniques was lacking and delivery systems were clumsy. However, recent delivery of new liquid nitrogen or nitrous oxide delivery systems has made endoscopic cryotherapy feasible although still experimental. Cryotherapy using nitrous oxide relies on the Joule-Thompson effect: rapid expansion of compressed gas results in a drop in temperature of the gas. The resultant “no contact” therapy has been tested in proctitis and may also be possible in upper gastrointestinal lesions.

CONCLUSIONS

Non-variceal UGIB remains a significant cause of morbidity and mortality. Patients at high risk can be identified by risk assessment scoring systems that include clinical and endoscopic variables. Adequate resuscitation, aggressive endoscopic therapy and PPI therapy are effective for achieving haemostasis and preventing adverse clinical outcomes, although the effect on mortality is low. Multidisciplinary care, including endoscopists, surgeons, intensivists and radiologists early in the assessment and decision stages, is vital to optimise care.

CONFLICT OF INTEREST

The authors have no declared conflict of interest.

REFERENCES

1. Rockall TA, Logan RF, Devlin HB, Northfield TC. Incidence of and mortality from acute upper gastrointestinal haemorrhage in the United Kingdom. Steering Committee and members of the National Audit of Acute Upper Gastrointestinal Haemorrhage. BMJ 1995; 311(6999): 222-6.

2. Boonpongmanee S, Fleischer DE, Pezzullo JC, Collier K, Mayoral W, Al-Kawas F, et al. The frequency of peptic ulcer as a cause of upper-GI bleeding is exaggerated. Gastroendosc 1995; 44(7): 788-94.

3. Gralnek IM, Dulai GS. Incremental value of upper endoscopy for triage of patients with acute non-variceal upper-GI hemorrhage. Gastrointest Endosc 2004; 60(1): 9-14.

4. Blatchford O, Murray WR, Blatchford M. A risk score to predict need for treatment for upper-gastrointestinal haemorrhage. Lancet 2000; 356(9238): 1316-21.

5. Forrest JA, Finlayson ND, Shearman DJ. Endoscopy in gastrointestinal bleeding. Lancet 1974; 2(7877): 394-7.

6. Laine L, Peterson WL. Bleeding peptic ulcer. N Engl J Med 1994; 331(11): 717-27.

7. Rockall TA, Logan RF, Devlin HB, Northfield TC. Risk assessment after acute upper gastrointestinal haemorrhage. Gut 1996; 38(3): 316-21.

8. Palmer KR. Ulcers and nonvariceal bleeding. Endoscopy 2000; 32(2): 118-23.

9. Bornman PC, Theodorou NA, Shuttleworth RD, Essel HP, Marks IN. Importance of hypovolaemic shock and endoscopic signs in predicting recurrent haemorrhage from peptic ulceration: a prospective evaluation. Br Med J (Clin Res Ed) 1985; 291(6490): 245-7.

10. Barkun A, Bardou M, Marshall JK. Consensus recommendations for managing patients with nonvariceal upper gastrointestinal bleeding. Ann Intern Med 2003; 139(10): 843-57.

11. Hay JA, Maldonado L, Weingarten SR, EllrodT. Prospective evaluation of a clinical guideline recommending hospital length of stay in upper gastrointestinal tract hemorrhage. JAMA 1997; 278(24): 2151-6.

12. Mondardini A, Barletti C, Roccia G, Garrigoli A, Sambataro A, Perotto C, et al. Non-variceal upper gastrointestinal bleeding and Forrest's classification: diagnostic agreement between endoscopists from the same area. Endoscopy 1998; 30(6): 508-12.

13. Kohler B, Maier M, Benz C, Riemann JF. Acute ulcer bleeding. A prospective randomized trial to compare Doppler and Forrest classifications in endoscopic diagnosis and therapy. Dig Dis Sci 1997; 42(7): 1370-4.

14. Aljebreen AM, Fallone CA, Barkun AN. Nasogastric aspirate predicts high-risk endoscopic lesions in patients with acute upper-GI bleeding. Gastrointest Endosc 2004; 59(2): 172-8.

15. Lipper B, Simon D, Cerrone F. Pulmonary aspiration during emergency endoscopy in patients with upper gastrointestinal hemorrhage. Crit Care Med 1991; 19(3): 330-3.

16. Rudolph SJ, Landsverk BK, Freeman ML. Endotracheal intubation for airway protection during endoscopic suction for severe upper GI hemorrhage. Gastrointest Endosc 2003; 57(1): 58-61.

17. Cook DJ, Guyatt GH, Salena BJ, Laine LA. Endoscopic therapy for acute nonvariceal upper gastrointestinal hemorrhage: a meta-analysis. Gastroenterology 1992; 102(1): 139-48.

18. Cooper GS, Chak A, Way LE, Hammar PJ, Harper DL, Rosenthal GE. Early endoscopy in upper gastrointestinal hemorrhage: associations with recurrent bleeding, surgery, and length of hospital stay. Gastrointest Endosc 1999; 49(2): 145-52.

19. Cheng CL, Lee CS, Liu NJ, Chen PC, Chiu CT, Wu CS. Overlooked lesions at emergency endoscopy for acute nonvariceal upper gastrointestinal bleeding. Endoscopy 2002; 34(7): 527-30.

20. Coffin B, Pocard M, Panis Y, Riche F, Laine MJ, Bitoun A, et al. Erythromycin improves the quality of EGD in patients with acute upper GI bleeding: a randomized controlled study. Gastrointest Endosc 2002; 56(2): 174-9.

21. Frossard JL, Spahr L, Queneau PE, Giostra E, Burckhardt B, Ory G, et al. Erythromycin intravenous bolus infusion in acute upper gastrointestinal bleeding: a randomized, controlled, double-blind trial. Gastroenterology 2002; 123(1): 17-23.

22. Chung SC, Leung JW, Steele RJ, Crofts TJ, Li AK. Endoscopic injection of adrenaline for actively bleeding ulcers: a randomised trial. Br Med J (Clin Res Ed) 1988; 296(6637): 1631-3.

23. Ogra R, Lane M, Wong P, Fraser A. Endoscopic injection therapy for non-variceal upper gastrointestinal bleeding at Auckland Hospital. N Z Med J 2002; 115(1166): U255.

24. Lin HJ, Hsieh YH, Tseng GY, Perng CL, Chang FY, Lee SD. A prospective, randomized trial of large- versus small-volume endoscopic injection of adrenaline: diagnostic agreement between endoscopists from the same area. Endoscopy 1998; 30(6): 508-12.

25. Choudari CP, Palmer KR. Endoscopic injection therapy for bleeding peptic ulcer: a comparison of adrenaline alone with adrenaline plus ethanolamine olate. Gut 1994; 35(5): 608-10.

26. Chung SS, Lau JY, Sung JJ, Chan AC, Lai CW, Ng EK, et al. Randomised comparison between adrenaline injection alone and adrenaline injection plus heat probe treatment for actively bleeding ulcers. BMJ 1997; 314(7090): 1307-11.
Non-variceal upper gastrointestinal bleeding

61. Lau JY, Sung JJ, Chan AC, Lai GW, Lau JT, Ng EK, et al. Stigmata of hemorrhage in bleeding peptic ulcers: an interobserver agreement study among international experts. *Gastrointest Endosc* 1997; 46(1): 33-6.

62. Laine L, Stein C, Sharma V. A prospective outcome study of patients with clot in an ulcer and the effect of irrigation. *Gastrointest Endosc* 1996; 43(2 Pt 1): 107-10.

63. Kume K, Yoshikawa I, Otsuki M. Endoscopic treatment of upper GI hemorrhage with a novel irrigating hood attached to the endoscope. *Gastrointest Endosc* 2003; 57(6): 732-5.

64. Kume K, Yamasaki M, Yamasaki T, Yoshikawa I, Otsuki M. Endoscopic hemostatic treatment under irrigation for upper-GI hemorrhage: a comparison of one third and total circumference transparent end hoods. *Gastrointest Endosc* 2004; 59(6): 712-6.

65. Messmann H, Schaller P, Andus T, Lock G, Vogt W, Gross V, et al. Effect of programmed endoscopic follow-up examinations on the rebleeding rate of gastric or duodenal peptic ulcers treated by injection therapy: a prospective, randomized controlled trial. *Endoscopy* 1998; 30(7): 583-9.

66. Villanueva C, Balanzo J, Torras X, Soriano G, Sainz S, Vilardell F. Value of second-look endoscopy after injection therapy for bleeding peptic ulcer: a prospective and randomized trial. *Gastrointest Endosc* 1994; 40(1): 34-9.

67. Saeed ZA. Second thoughts about second-look endoscopy for ulcer bleeding? *Endoscopy* 1998; 30(7): 650-2.

68. British Society of Gastroenterology Endoscopy Committee. Non-variceal upper gastrointestinal haemorrhage: guidelines. *Gut* 2002; 51 Suppl 4: iv1-6.

69. Lau JY, Sung JJ, Lam YH, Chan AC, Ng EK, Lee DW, et al. Endoscopic retreatment compared with surgery in patients with recurrent bleeding after initial endoscopic control of bleeding ulcers. *N Engl J Med* 1999; 340(10): 751-6.

70. Walt RP, Cottrell J, Mann SG, Freemantle NP, Langman MJ. Continuous intravenous famotidine for haemorrhage from peptic ulcer. *Lancet* 1992; 340(8827): 1058-62.

71. Collins R, Langman M. Treatment with histamine H2 antagonists in acute upper gastrointestinal hemorrhage. Implications of randomized trials. *N Engl J Med* 1985; 313(11): 660-6.

72. Selby NM, Kubka AK, Hawkey CJ. Acid suppression in peptic ulcer haemorrhage: a ‘meta-analysis’. *Aliment Pharmacol Ther* 2000; 14(9): 1119-26.

73. Gisbert JP, Gonzalez L, Calvet X, Roque M, Gabriel R, Pajares JM. Proton pump inhibitors versus H2-antagonists: a meta-analysis of their efficacy in treating bleeding peptic ulcer. *Aliment Pharmacol Ther* 2001; 15(7): 917-26.

74. Khuroo MS, Farahat KL, Kagevi IE. Treatment with proton pump inhibitors in acute non-variceal upper gastrointestinal bleeding: a meta-analysis. *J Gastroenterol Hepatol* 2005; 20(1): 11-25.

75. Leontiadis GI, Sharma VK, Howden CW. Systematic review and meta-analysis of proton pump inhibitor therapy in peptic ulcer bleeding. *BMJ* 2005; 330(7491): 568.

76. Udd M, Miettinen P, Palmu A, Heikkinen M, Janatuinen E, Pasanen P, et al. Regular-dose versus high-dose omeprazole in peptic ulcer bleeding: a prospective randomized double-blind study. *Scand J Gastroenterol* 2001; 36(12): 1332-8.

77. Khuroo MS, Yattoo GN, Javid G, Khan BA, Shah AA, Gulzar GM, et al. A comparison of omeprazole and placebo for bleeding peptic ulcer. *N Engl J Med* 1997; 336(15): 1054-8.

78. Kaviani MJ, Hashemi MR, Kazemifar AR, Roozitalab S, Mostaghmi AA, Merat S, et al. Effect of oral omeprazole in reducing re-bleeding in bleeding peptic ulcers: a prospective, double-blind, randomized, clinical trial. *Aliment Pharmacol Ther* 2003; 17(2): 211-6.

79. Javid G, Masoodi I, Zargar SA, Khan BA, Yattoo GN, Shah AH, et al. Omeprazole as adjuvant therapy to endoscopic combination injection sclerotherapy for treating bleeding peptic ulcer. *Am J Med* 2001; 111(4): 280-4.

80. Wangensteen SL, Smith RB, Barker HG. Gastric cooling and gastric “freezing”. *Surg Clin North Am* 1966; 46(2): 463-75.

81. Pasricha PJ, Hill S, Wadwa KS, Gislason GT, Okolo PI, Magee CA, et al. Endoscopic cryotherapy: experimental results and first clinical use. *Gastrointest Endosc* 1999; 49(5): 627-31.

82. Kantsevoy SV, Cruz-Correa MR, Vaughan CA, Jagannath SB, Pasricha PJ, Kalloo AN. Endoscopic cryotherapy for the treatment of bleeding mucosal vascular lesions of the GI tract: a pilot study. *Gastrointest Endosc* 2003; 57(3): 403-6.

83. Johnston CM, Schoenfield LP, Mysore JV, Dubois A. Endoscopic spray cryotherapy: a new technique for mucosal ablation in the esophagus. *Gastrointest Endosc* 1999; 50(1): 86-92.