Remark on the Swarm data residual distribution

Andrey Khokhlov (fbmotion@gmail.com)

Full paper

Keywords: Probability distributions, Magnetic field variations through time, Satellite magnetics

Posted Date: April 16th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-22463/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Remark on the Swarm data residual distribution

A. Khokhlov1,2

1IEPT RAS, 84/32, Profsoyuznaya 117997 Moscow, Russia, fbmotion@gmail.com

2Geophysical Center RAS, 3, Molodezhnaya st., 119296 Moscow, Russia
Abstract

In Khokhlov & Hulot (2017), we addressed non-Gaussian shapes of histograms of quantities that related to uncertainties in data. We showed that such non-Gaussian features are very likely the result of a mixture of statistical distributions; the presentation there was mainly qualitative and related to various geomagnetic data. In this short remark, we use the Swarm data and present the natural quantitative description of the data distribution and hence suggest additional data control. Such an approach is also applicable in more general situations.

Keywords

Probability distributions, Magnetic field variations through time; Satellite magnetics

Introduction

Recall that typical appropriate statistical assumptions are being made with respect to the distribution of the uncertainties σ_i affecting the data used. The statistical properties of these uncertainties, however, are not always well characterized. In such circumstances, assuming that uncertainties follow a Gaussian distribution would a priori make sense, since such a distribution often arises naturally as a consequence of the central limit theorem when errors act in an additive manner (see, e.g., Feller 1971). Relying on this assumption, and provided that s_i is an adequate measure of the error affecting the datum γ_i, standard statistical estimations then used to infer the model. The normalized residuals $\left\{ \frac{\gamma_i - \hat{\gamma}_i}{s_i} \right\}$ (here $\hat{\gamma}_i$ being the datum value predicted by the model) are expected to follow a standard normal distribution.

Yet, residuals often display a sharper distribution, sometimes much closer to that of so-called Laplace distribution (e.g., Jackson et al. 2000; Walker & Jackson 2000; Panovska et al. 2012, 2015). We showed in Khokhlov & Hulot (2017) that residuals may be incorrectly normalized and therefore their common statistical distribution is a mixture of gaussian distributions (Barndorff-Nielsen et al. 1982) — this is, generally speaking, not at all new. In particular we demonstrated in Khokhlov & Hulot (2017) several examples of the variativity in σ determination, that indeed leads to the non-gaussian shape of the histogram. Thus we assume that observable residuals θ is the mixture of individual gaussian random variables with zero expectations and random variances β^2. The artificial intelligence approach provides
the algorithm that, in principle, can recover the distribution of variances. However, this computational
generation (EM-algorithm) is not perfect and too sensitive to the errors in the data. In the present note we
argue that the distribution of random variable β can be well approximated by the lognormal distribution
with pdf
\[
 f_\beta(t) = \frac{1}{ts\sqrt{2\pi}} \exp \left[-\frac{\ln^2 t}{2s^2} \right]
\]
We also provide the method that recovers the value of s in the real data case.

Mixture model

The unformal interpretation

The mixture model is appropriate for the situation when the data is inhomogenous, for instance it comes
from a several locations such that each region perturbe slightly the assumed data distribution law, i.e.
the corresponding distribution formulae differes slightly in their parameters. In practice we often face
with even simpler situation: each regional data is gaussian with mean zero but the corresponding σ-values
depend on the region. However we rarely can select the region with absolutely homogenous data in it,
therefore we better simulate this situations by means of sequential small perurbations of the initially
homogenous gaussian population. Whether the limit distribution can be described providing the very
small intermediate perturbations?

Version of the general formula

If ζ is an arbitrary random variable with density f_ζ, then for fixed $y_0 > 0$ the ratio ζ/y_0 has density
$f_\zeta(xy_0)y_0$, see also (see, e.g., Feller 1971). Let now denominator is not fixed but a positive random
variable with density g_η, then we get the pdf for this ratio
\[
 h(x) = \int_0^{+\infty} f_\zeta(xy)g_\eta(y)dy
\]
We may now compare the mixture of unbiased Gaussian distributions (i.e. with pdf $f_\alpha = \mathcal{N}(0, \sigma^2)$) by
randomizing their standard deviations using a random variable $\beta > 0$:
\[
 f_\theta(x) = \frac{1}{\sqrt{2\pi}} \int_0^\infty \exp \left(-\frac{1}{2} \frac{x^2}{t^2} \right) t^{-1} f_\beta(t)dt
\]
\[
 = \int_0^{+\infty} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} y^2 x^2 \right) yg_\eta(y)dy
\]
Obviously f_θ can be interpreted as the pdf of the ratio.
For instance, recall the following example of Khokhlov & Hulot (2017): the uniform mixture of unbiased Gaussian distributions with standard deviations varying between 0 and 1, i.e. mixing pdf is

\[
 f_\beta(t) = \begin{cases}
 1 & 0 < t < 1 \\
 0 & \text{otherwise}
\end{cases}
\]

we may treat that mixture as the ratio of standard gaussian \(\alpha \) devided by \(\eta \) — the inverse of uniform distribution:

\[
 g_\eta(y) = \begin{cases}
 \beta & y > 1 \\
 0 & y \leq 1
\end{cases}
\]

Sequential small mixtures

The small multiplicative randomization is described in terms of a random \(\beta \) > 0 with pdf \(f_\beta \sim 0 \) out of \([1 - \varepsilon, 1 + \varepsilon]\) for some small \(\varepsilon \), we may assume \(\beta = e^\delta \) where expectancy \(E(\delta) \sim 0 \) and variance \(D(\delta) \sim \varepsilon^2 \).

For the sequential small mixtures (with independent \(\beta_i \)) then we get the ratio

\[
 \frac{\alpha}{\eta_1 \cdot \eta_2 \cdots \eta_m} = \frac{\alpha}{e^{-\sum_i \delta_i}}
\]

But under the mild conditions the distribution of \(\sum_i \delta_i \) rapidly converges to gaussian distribution \(\mathcal{N}(a, s^2) \) with \(a \sim 0 \) and \(s \sim \sqrt{\sum_i \varepsilon_i^2} \), thus the limit pdf for the sequential *arbitrary, but small* mixtures can be approximated by

\[
 f_\theta(x) = \int_0^\infty \frac{1}{t \sigma \sqrt{2\pi}} \exp \left(-\frac{x^2}{2t^2 \sigma^2} \right) \frac{1}{ts \sqrt{2\pi}} \exp \left[-\frac{\ln^2 t}{2s^2} \right] dt
\]

for \(a = 0 \) and some suitable parameters \(s \) and \(\sigma \).

Real data application

Here we use the same data as in Khokhlov & Hulot (2017): we consider the absolute scalar data acquired by two of the Swarm satellites (Satellites Alpha and Bravo) at quasi-latitudes ranging between +55° and −55°, and computed residuals with respect to the so-called VFM model of Vigneron et al. (2015): for the the array \(ST_1 \) of one-day std of residuals, take a look at Fig.1 borrowed from our article.

The satellite scalar data (Vigneron et al. 2015) cover a little less than a year (between November 29, 2013 and September 25, 2014) and were further selected following a number of criteria, among which magnetically quiet and night time conditions, to ensure that as little as possible non-modeled external signal is included in the data. This resulted in 42 160 data for the Alpha satellite and 42 175 for the
Bravo satellite. These data can be expected to reflect the signal of the field of internal origin the model aims at modeling, any other source of signal being treated as a source of noise acting on top the very low instrumental and satellite noise (less than 0.3 nT, see Léger et al. 2015; Olsen et al. 2015; Fratter et al. 2016). The datasets used and analysed during the current study are available from the author on reasonable request.

Method and Numerical results

Rescale this array ST_1 as $r \mapsto \frac{r}{\sigma_1} = y$ where $\sigma_1 = \text{mean}(ST_1)$ and $r \in ST_1$; in virtue of the eq.2 the array $\{y_i\}$ is expected to obey the lognormal distribution with parameter s_1 (see eq.2), let’s directly calculate σ_1 and s_1.

Now repeat all these computations for arrays $ST_{0.25}, ST_{0.5}, ST_{0.75}$ (i.e. corresponding to time intervals of 0.25 to 0.75 day), here are the results:

- ST_1: Satellite A $\sigma_1 = 2.41$, $s_1 = 0.33$, Satellite B $\sigma_1 = 2.40$, $s_1 = 0.36$
- $ST_{0.75}$: Satellite A $\sigma_{0.75} = 2.34$, $s_{0.75} = 0.36$, Satellite B $\sigma_{0.75} = 2.35$, $s_{0.75} = 0.39$
- $ST_{0.5}$: Satellite A $\sigma_{0.5} = 2.22$, $s_{0.5} = 0.39$, Satellite B $\sigma_{0.5} = 2.21$, $s_{0.5} = 0.46$
- $ST_{0.25}$: Satellite A $\sigma_{0.25} = 1.99$, $s_{0.25} = 0.43$, Satellite B $\sigma_{0.25} = 1.96$, $s_{0.25} = 0.49$

As often happens, a limited amount of lognormal data cannot provide stable statistical estimates, so what are the ”true values” of s and σ? To answer this question let’s use the following well-known method of the statistical moments of θ, namely:

\[
E[\theta] = \int_{-\infty}^{+\infty} |x| f_\theta(x) dx \\
= \int_0^{+\infty} \left[\int_0^{+\infty} \frac{1}{t\sigma\sqrt{2\pi}} \exp \left(-\frac{1}{2t\sigma^2} x^2 \right) dx \right] \cdot \frac{\exp \left(-\frac{\ln^2 t}{2s^2} \right)}{t\sigma\sqrt{2\pi}} dt \\
= \int_0^{+\infty} \sigma \frac{2}{\pi} \cdot \frac{1}{t\sigma\sqrt{2\pi}} \exp \left(-\frac{\ln^2 t}{2s^2} \right) dt = \sigma \sqrt{\frac{2}{\pi}} E\beta \\
= \sigma \sqrt{\frac{2}{\pi}} e^{s^2/2} \\
E\theta^2 = \int_{-\infty}^{+\infty} x^2 f_\theta(x) dx = \int_{0}^{+\infty} E\theta^2 \cdot \frac{1}{t\sigma\sqrt{2\pi}} \exp \left(-\frac{\ln^2 t}{2s^2} \right) dt \\
= \sigma^2 E\beta^2 = \sigma^2 e^{2s^2}
\]
Thus we get the explicit expressions of the unknown parameters

\[
\begin{align*}
 s^2 &= \ln \frac{2}{\pi} + \ln E\theta^2 - 2 \ln E|\theta| \\
 \sigma^2 &= \frac{s^2}{4} \cdot \left(\frac{E|\theta|}{E\theta^2}\right)^3
\end{align*}
\]

In practice we recover from real data the estimates of the moments $E\theta^2$, $E|\theta|$ and then get (the estimates of) the unknown parameters.

Conclusions

Hereby we added the quantitative details of the data distribution to the qualitative analysis of it that was published in Khokhlov & Hulot (2017): namely, using formula 3, we may now recover the estimates of the parameters s and σ (the latter can be treated as an estimate for the "inner precision" of measurements); Fig. 2 actually confirm the fact that this close-to-Laplacian distribution indeed can be represented as the result of lognormal mixture according to formula 2.

Declarations

Availability of data

Here we use the same Swarm data as in Khokhlov & Hulot (2017). The data simulated and analysed during the current study are available from the author on reasonable request.

Competing interests

There are no competing interests.

Funding

This work is partly supported by the Russian Science Foundation grant 17-77-20034.

Authors contributions

I am the single author of this short note and all results above are created by myself.

Acknowledgments

Author wish to thank Gauthier Hulot for discussions and suggestions.

References

Barndorff-Nielsen O, Kent J, Sørensen M (1982) Normal variance-mean mixtures and z distributions. International Statistical Review 50:145–159, doi: 10.2307/1402598
Feller W (1971) An introduction to probability theory and its applications. Vol.2 (3rd edition) Wiley

Fratter I, Léger JM, Bertrand F, Jager T, Hulot G, Brocco L, Vigneron P, (2016) Swarm Absolute Scalar Magnetometers first in-orbit results. Acta Astronautica 121:76–87 doi: 10.1016/j.actaastro.2015.12.025

Jackson A, Jonkers ART, Walker MR (2000) Four centuries of geomagnetic secular variation from historical records. Phil Trans R Soc Lond A 358:957–990 doi: 10.1098/rsta.2000.0569.

Khokhlov A, Hulot G (2017) On the cause of the non-Gaussian distribution of residuals in geomagnetism. Geophys J Int 209:1036–1047 doi: 10.1093/gji/ggx071

Léger JM, Jager T, Bertrand F, Hulot G, Brocco L, Vigneron P, Lalanne X, Chulliat A, Fratter I (2015) In-flight performances of the absolute scalar magnetometer vector mode on board the Swarm satellites. Earth Planets Space 67:57–68 doi: 10.1186/s40623-015-0231-1

Olsen N, Hulot G, Lesur V, Finlay CC, Beggan C, Chulliat A, Sabaka TJ, Floberghagen R, Friis-Christensen E, Haagmans R, Kotsiaros S, Lühr H, Tøffner-Clausen L, Vigneron P (2015) The Swarm Initial Field Model for the 2014 geomagnetic field. Geophys Res Lett 42:1092–1098 doi: 10.1002/2014GL062659

Panovska S, Finlay CC, Donadini F, Hirt A, (2012) Spline analysis of Holocene sediment magnetic records: Uncertainty estimates for field modeling. JGR Solid Earth 117:B02101 doi:10.1029/2011JB008813

Panovska S, Korte M, Finlay CC, Constable CG (2015) Limitations in paleomagnetic data and modelling techniques and their impact on Holocene geomagnetic field models. Geophys J Int, 202(1):402–418 doi:10.1093/gji/ggv137

Vigneron P, Hulot G, Olsen N, Léger JM, Jager T, Brocco L, Sirol O, Coïsson P, Lalanne X, Chulliat A, Bertrand F, Boness A, Fratter I (2015) A 2015 International Geomagnetic Reference Field (IGRF) Candidate Model Based on Swarms Experimental Absolute Magnetometer Vector Mode Data. Earth Planets Space 67:95 doi:10.1186/s40623-015-0265-4

Walker MR, Jackson A (2000) Robust modelling of the Earth’s magnetic field. Geophys J Int, 143(3):799–808 doi:10.1046/j.1365-246X.2000.00274.x
Figure 1. Standard deviations (in nT) computed every day for the mid-latitude residuals of the Swarm scalar data used to compute the VFM model of Vigneron et al. (2015). Blue large dots: data from the Swarm Alpha satellite and red dots: data from the Swarm Bravo satellite. Days are counted in Julian days, with 2000 January 1 taken as the reference.
Figure 2. Left: Histogram of the residuals (circles) of the Swarm Alpha scalar data used to compute the VFM model of Vigneron et al. (2015) together with histogram (triangles) of an identical number of simulated mixture of Gaussian distributions according to the parameters $s = 0.41$, $\sigma = 2.18$ recovered from the real data; right: the same plots but for the Swarm Bravo scalar data, parameters $s = 0.47$ and $\sigma = 2.10$.
Figure 1

Standard deviations (in nT) computed every day for the mid-latitude residuals of the Swarm scalar data used to compute the VFM model of Vigneron et al. (2015). Blue large dots: data from the Swarm Alpha satellite and red dots: data from the Swarm Bravo satellite. Days are counted in Julian days, with 2000 January 1 taken as the reference.
Figure 2

Left: Histogram of the residuals (circles) of the Swarm Alpha scalar data used to compute the VFM model of Vigneron et al. (2015) together with histogram (triangles) of an identical number of simulated mixture of Gaussian distributions according to the parameters $s = 0.41$, $\sigma = 2.18$ recovered from the real data; right: the same plots but for the Swarm Bravo scalar data, parameters $s = 0.47$ and $\sigma = 2.10$.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- GraphAbstract.pdf