Global surgery, obstetric, and anesthesia indicator definitions and reporting: an Utstein Consensus Report

Steering and writing group, in alphabetical order: The Utstein Global Surgery Indicators Writing Group (Justine Ina Davies*, Adrian W Gelb, Julian Gore-Booth, Janet Martin, and Jannicke Mellin-Olsen) on behalf of the Utstein Global Surgery Indicators Group

* Correspondence to Justine Ina Davies. Postal Address:
Professor of Global Health
Institute for Applied Research
Birmingham University
Birmingham
UK
B15 2TT

Affiliations
JID: 1. Institute of Applied Health Research, University of Birmingham, Birmingham, UK; 2. Centre for Global Health, Stellenbosch University, Stellenbosch, South Africa; 3. Department of Public Health, Wits University, Johannesburg, South Africa.

AWG: 1. President, World Federation of Societies of Anaesthesiologists, London, UK
2. Department of Anesthesia and Perioperative Care, University of California San Francisco, USA

JGB: CEO, World Federation of Societies of Anaesthesiologists, London, UK

JM: Associate Professor, Department of Anesthesia & Perioperative Medicine and Department of Epidemiology & Biostatistics, Director, MEDICI Centre, Western University, London, Ontario, Canada

JMO: Immediate Past President, World Federation of Societies of Anaesthesiologists, London, UK
2. Consultant anaesthesiologist, Department of Anaesthesia and Intensive Care Medicine, Baerum Hospital, Sandvika, Norway

Panel members:
Please note that all panel members were present in an independent capacity and the results of these discussions represent their own opinions, not those of their organisations. The findings, interpretations, and conclusions expressed in this article are entirely those of the authors and do not represent the views of the affiliated organisations.

1. Christina Åkerman (MD) Affiliate Faculty, Dell Medical School, University of Texas at Austin / Senior Institute Associate, Institute for Strategy and Competitiveness (ISC), Harvard Business School.
2. Professor Emmanuel A. Ameh (FWACS) Division of Paediatric Surgery at the National Hospital, Abuja, Nigeria / Co-chair of the NSOAP Committee at the Federal Ministry of Health, Abuja, Nigeria.

3. Professor Bruce M. Biccard (PhD) Department of Anaesthesia and Perioperative Medicine, Groote Schuur Hospital / University of Cape Town, Western Cape, South Africa.

4. Geir Sverre Braut (MD) Professor, specialist in community medicine, Stavanger University Hospital, University of Stavanger.

5. Kathryn Chu (FACS) Director, Centre for Global Surgery, Department of Global Health, Faculty of Medicine and Health Sciences, Cape Town, South Africa.

6. Miliard Derbew (FRCS) Professor of Pediatric Surgery, Consultant Pediatric Surgeon, MEPI JF& HEPI project PI, School of Medicine, College of Health Sciences, Addis Ababa University, Ethiopia.

7. Hege Langli Ersdal (MD) Critical Care and Anaesthesiology Research Group, Stavanger University Hospital, Norway / Faculty of Health Sciences, University of Stavanger, Norway.

8. Jose Miguel Guzman (PhD) NoBrainerData, Maryland, USA.

9. Lars Hagander (PhD) WHO Collaborating Centre on Surgery and Public Health, Department of Clinical Sciences in Lund, Faculty of Medicine, Lund University, Sweden.

10. Carolina Haylock-Loor (MD) Department of Anesthesia, Intensive Care Medicine, Interventional Pain Unit, Hospital Del Valle, San Pedro Sula, Honduras.

11. Hampus Holmer (MD) Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden / WHO Collaborating Centre on Surgery and Public Health, Faculty of Medicine, Lund University, Lund, Sweden.

12. Walter Johnson (MD) Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA.

13. Sabrina Juran (PhD) Sr Technical Specialist, Population Census and Geospatial Data, United Nations Population Fund / Lecturer, Harvard Medical School, Program in Global Surgery and Social Change, Boston, USA.

14. Nicolas J. Kassebaum (MD) Associate Professor for the Department of Anesthesiology and Pain Medicine, Adjunct Associate Professor for the Department of Health Metrics Sciences, Adjunct Associate Professor for the Department of Global Health and GBD Research Team Lead, Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA.

15. Tore Laerdal (MSc) Executive Director, Laerdal Foundation / Executive Chairman, Laerdal Global Health and Laerdal Medical.

16. Andrew JM Leather (MS) King’s Centre for Global Health and Health Partnerships, School of Population Health and Environmental Sciences, King’s College London, London, UK.

17. Michael S. Lipnick (MD) Anesthesia Division of Global Health Equity, University of California San Francisco, USA.

18. David Ljungman (MD) Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden / Region Västra Götaland, Sahlgrenska University Hospital, Department of Surgery, Gothenburg, Sweden.

19. Emmanuel Malabo Mwenda Makasa (FCS) Director, Wits Centre of Surgical Care for Primary Health and Sustainable Development, University of the Witwatersrand, Johannesburg, South Africa.

20. John G Meara (MD) Program in Global Surgery and Social Change, Harvard Medical School, Boston, USA / Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, USA.
21. Mark W. Newton (FAAP) Professor, Anesthesiology and Pediatrics, Vanderbilt University Medical Center, USA / AIC Kijabe Hospital, Kenya.

22. Doris Østergaard (DMSc) Copenhagen Academy for Medical Education and Simulation, Denmark / the University of Copenhagen, Denmark.

23. Teri Reynolds (MD) Unit Head, Clinical Services and Systems, Integrated Health Services, World Health Organization.

24. Lauri J. Romanzi (FACOG) Program in Global Surgery and Social Change Lecturer, Department of Global Health and Social Medicine, Harvard Medical School, New York, USA.

25. Vatshalan Santhirapala (MRCP) Senior Research Fellow, Program in Global Surgery and Social Change, Harvard Medical School, Boston, USA / Anaesthesia Fellow, Department of Anaesthesia and Perioperative Care, Guy’s and St. Thomas’ Hospital, London, UK.

26. Mark G. Shrime (FACS) Institute of Global Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland / Department of Global Health and Social Medicine, Harvard Medical School, Boston, USA.

27. Kjetil Søreide (FRCS) Department of Gastrointestinal Surgery, Stavanger University Hospital / Department of Clinical Medicine, University of Bergen, Norway.

28. Margit Steinholt (MD) Helgeland Hospital Trust, Sandnessjøen, Norway / NTNU, Trondheim, Norway.

29. Emi Suzuki (PhD) Demographer, The World Bank.

30. John E. Varallo (FACOG) Global Director, Safe Surgery, Jhpiego.

31. Gerard H. A. Visser (MD) Dept. Obstetrics, University Medical Center, Utrecht, The Netherlands.

32. David Watters AM OBE (FRACS) University Hospital Geelong, Barwon Health / Alfred Deakin Professor, Deakin University / Chair, Victorian Perioperative Consultative Council.

33. Thomas G Weiser (FACS) Department of Surgery, Stanford University, Stanford, USA / Department of Clinical Surgery, University of Edinburgh, Edinburgh Royal Infirmary, Edinburgh, Scotland.

Funding
The work was funded by the Laerdal Foundation

Article type
Original article

Abstract: Background: Indicators to evaluate progress towards timely access to safe surgical, anaesthesia, and obstetric (SAO) care were proposed in 2015 by the Lancet Commission on Global Surgery. Despite being rapidly taken up by practitioners, datapoints from which to derive them were not defined, limiting comparability across time or settings. We convened global experts to evaluate and explicitly define - for the first time - the indicators to improve comparability and support achievement of 2030 goals to improve access to safe affordable surgical and anaesthesia care. Methods and findings: The Utstein process for developing and reporting guidelines through a consensus building process was followed. In-person discussions at a two day meeting were followed by an iterative process conducted by email and virtual group meetings until consensus was reached. Participants consisted of experts in surgery, anaesthesia, and obstetric care, data science, and health indicators from high, middle, and low income countries. Considering each of the six indicators in turn, we refined overarching descriptions and agreed upon data points needed for construction of each indicator at current time (basic data points), and as each evolves over 2-5
(intermediate) and >5 year (full) timeframes. We removed one of the original six indicators (one of two financial risk protection indicators was eliminated) and refined descriptions and defined data points required to construct the 5 remaining indicators: geospatial access, workforce, surgical volume, perioperative mortality, and catastrophic expenditure. Conclusions: To track global progress toward timely access to quality SAO care, these indicators – at the basic level - should be implemented universally. Intermediate and full evolutions will assist in developing national surgical plans, and collecting data for research studies.

Keywords: data; indicator; Utstein; consensus; report; health; meeting; anaesthesia; international

Introduction

In 2015, The Lancet Commission on Global Surgery (LCoGS), Disease Control Priorities-3 Surgery, and World Health Assembly Resolution 68/15 on “Strengthening Emergency and Essential Surgical Care and Anaesthesia as a Component of Universal Health Coverage” showed the dire global state of surgical and anaesthesia care provision globally and the necessity for large and rapid improvements in many low and middle income countries (LMICs). (1, 2)

Given there were no widely accepted indicators used to track progress towards improved timely access to quality surgical and anaesthetic care, members of LCoGS proposed a set of six indicators (appendix table 1) for this purpose. These were to be used as a set to illustrate access and quality, and broadly classified under preparedness for care (access to timely surgery and workforce density), delivery of surgical and anaesthesia care (surgical volume and perioperative mortality), and effect of surgery and anaesthesia (protection against catastrophic expenditure and protection against impoverishing expenditure). These indicators were rapidly adopted into the WHO’s 100 Basic Global Health Indicators and the World Bank’s World Development Indicators. (3, 4) They have also been used in research studies to assess state of provision of surgical care in multiple country settings and proposed for use by ministries of health to assess progress towards improving surgical care nationally. (5-8)

However, although widely accepted as valuable indicators, the LCoGS only broadly defined them, leaving much flexibility in the choice of data points from which to derive them. Given each indicator is formed from multiple data points (for example, perio-operative mortality requires assessment of death, the time of death, and, potentially, the risk of death for patients undergoing surgery) lack of clarity has resulted in confusion and delays in data collection, and difficulty in comparing results among countries and over time. Indeed, recently, an assessment of country-level indicator reporting found poor availability and heterogenous definitions which limited comparability and utility of the indicators. When using the indicators put forward by LCoGS, although 154 countries out of the WHO member states had data on workforce, only 19 had data on timely access to a facility capable of providing surgical care, 72 had data on the numbers of procedures done, and 9 had data on perioperative mortality. No country had empirical data on the 2 indicators of effect of surgery and anaesthesia. Even for the most available indicator of workforce, definitional issues limited its comparability across countries and its utility. (9) For peri-operative mortality, there are several different reporting times in use i.e. 24-hour mortality, 7-day mortality, in-hospital mortality, 30-day mortality, or surgical mortality. This greatly hinders the ability to assess achievement of global targets for surgery or combine results from research studies in meta-analyses. (9-11)

Our aim was therefore to bring experts in surgical, obstetric, and anaesthesia clinical care and academia together with global indicators experts, data scientists, and policy makers to appraise the existing indicators; refine their descriptions; and define data points needed for their
derivation. The intention was to both reinforce and clarify the global indicator set for use in research and development purposes.

Methodology

We assembled an international group of experts in policy; surgery, anaesthesia, obstetrics; and data science for an in-person meeting to develop consensus using the principles of the Utstein Process. (12-16) Previous Utstein initiatives have focused on defining core outcome sets for out of hospital cardiac arrest and cardiopulmonary resuscitation, time-points at which they should be collected, and the way in which they should be reported. Our aim was to bring this Utstein evidence-based rigour and consensus-informed consolidation to Global Surgery Indicators.

The meeting took place at the Utstein Abbey, Mosteroy Island, Norway on June 16-18, 2019. The meeting was followed up by email correspondence amongst all members of the panel and virtual group discussions to resolve ongoing issues.

Panel selection

The steering committee (JD, JM, AG, JMO, JGB) identified potential participants with relevant expertise as well as experience of working in multiple settings and country income strata. Snowball sampling was then used to identify further participants within these areas. 60 potential participants were identified, however, meetings space available was limited to 40. Therefore 40 were shortlisted by the steering committee based upon the relevance of their expertise and the need to achieve a balance across areas of expertise. All 40 participants were invited.

Preparation

Prior to the meeting, relevant literature on global surgery/anaesthesia and indicators were sent to participants.(1, 7-9, 11, 17-25) In addition, all participants were sent information on guiding principles previously used to establish global surgery indicators (table 1). (20) Members were informed that the purpose of the meeting was to appraise, revise, and define but not necessarily abandon, the existing indicators which have already garnered global momentum. Members were also encouraged to shared their own experience of indicator collection in their own specialty fields and recommendations, successes, and failures informed development of these indicators. (3, 26, 27)

Table 1: Guiding Principles for Global Surgery Indicators. (20)

Principle	Description
Simplicity	Indicators should be simple, clear, and inexpensive to obtain from hospitals, providers, professional societies, and governmental agencies. Health resources should not be diverted or unduly burdened by demands for data collection.
Wide applicability	Indicators should use definitions relevant to the span of surgical care worldwide. They should also be meaningful to health professionals, researchers, and policy makers, and provide information allowing reasonable conclusions on the state of surgical services within a country.
Relevance to public health	Surgical indicators should incorporate measures of access and outcome. They should provide indicators likely to respond to substantial changes in the delivery or quality of surgical care.
Unintended negative consequences of measurement reduced to a minimum	Potentially negative consequences should be considered, since scrutiny can result in perverse effects, driving practice patterns that bolster statistics at the expense of patient care.
Consensus process

Methods were in accordance with Utstein methodology on developing reporting guidelines, (12-15) and other guidelines for developing reporting criteria.(16) Utstein-style conferences use an established consensus process to consolidate definitions and reporting criteria to improve comparability of outcomes reported in studies, databases, demographic surveys, and administrative reports. The resulting outputs are guidelines and templates which can subsequently be adopted by governments, policymakers, journals, demographers, and researchers as unifying reporting criteria. This ensures global consistency and comparability across data types, definitions, and reporting style.

The steering committee assigned attendees to one of 6 working groups based on attendee’s knowledge and expertise. Each working group related to one indicator; Access, Volume, Workforce, Peri-Operative Mortality Rate (POMR). Catastrophic and Impoverishing expenditure was discussed by one group, given their similarity. An additional group, entitled the ‘Parking Lot’, was included to address gaps in the current set of indicators that should be further developed in future iterations of the Utstein consensus, and/or through future research – results of this group are not presented here, but will be used for future evolutions of the indicators.

Each group was assigned a lead and a deputy, based on their previous leadership in the indicator under consideration. The group lead presented an outline of the current definition of the indicator (1) and issues found in its availability, comparability, and utility.(9) After which, the groups were asked to develop a clear overall definition for each indicator and consider the overarching data-points needed to derive it. Then, given the potential levels of granularity and complexity inherent in each indicator, each group was asked to consider minimum basic data-points (Basic) to allow global comparisons using nationally-led data collection initiatives. To be defined as Basic, we agreed that reporting at the country level should be feasible within the next 2-years). We then asked groups to consider how these data-points should evolve to Intermediate (2-5 years) and Full (>5 years) sets which can be used to guide research studies and aid policy making at the national level.

Each indicator working group was initially divided in half to address the indicator independently, and then re-convened as a complete group to compare notes and recommendations. After agreement within the working group, each presented their suggestions to the full panel for a plenary session to build consensus across all attendees. Thus, all participants contributed to the discussions on each of the indicators. Key points of discussion and the outcomes of the plenary discussions were recorded by the working group lead and deputy.

After the meeting, each working group lead and deputy entered the discussion results for their indicator into a template. Templates were compiled by the steering group and then circulated to all attendees for feedback. Comments were again compiled by the steering group who, on discussion, further refined indicators or their data-points to ensure that there was consistency in reporting across all indicators. After this process, any adjustments were sent to all attendees for further feedback and then correction by the writing group, until consensus was built. Where disagreement remained after this process, small working groups of panel members with relevant expertise were assembled to enable consensus to be reached. These groups were facilitated by one of the steering group members.
Results

38 participants attended the meeting; country of origin and speciality are shown in table 2. Working group members and leads are shown in appendix table 2. Small group discussions to achieve consensus were complete by August 2020.

Table 2: country of origin and specialty of meeting attendees

Role	Number
Surgery	14
Anaesthesia	12
Demography, Statistics, and Policy (WHO, UNFPA, World Bank, USAID Demographic and Health Surveys, UN Statistical Commission)	5
Obstetrics	3
Global Health Expert	3
General physician	1

Country of residence of attendees

Country	Number
Australia	1
Canada	1
Denmark	1
Ethiopia	1
Germany	1
Honduras	1
Netherlands	1
Nigeria	1
Norway	6
South Africa	2
Sweden	3
UK	3
USA	15
Zambia	1

There was consensus that the overarching descriptions and datapoints used to derive all indicators required further clarification in order to improve their availability, comparability, and utility for research, reporting, and national and international planning. The meeting resulted in changing the overarching descriptions of the indicators. Importantly, the panel reached consensus on datapoints and how to use these to derive all indicators across three progressive levels: Basic, Intermediate, and Full, whereas these were previously not defined.
Indicator 1: Geospatial access

LCoGS indicator definition	Proportion of the population that can access, within 2 hours, a facility that can do caesarean delivery, laparotomy, and treatment of open fracture (the Bellwether procedures)
Utstein revised definition	Proportion of a country’s population with geographic access (within 2 hours) to a facility capable of providing surgical and anaesthesia care for the Bellwether procedures (caesarean section, laparotomy, and surgical management of open long bone fracture)

Overall summary of data elements
- Population estimates
- Facility locations
- Capacity of health facilities to do Bellwether procedures
- Distance and travel time of population to facilities

Basic data points needed to construct the indicator (<2 years)
- Population data or modelled estimates at resolution of 1x1km (disaggregated by 5 year age groupings and sex, if available)
- Location of health facilities offering Bellwether procedures
- Estimated time to travel to facilities from population locations

Indicator 2: Workforce

LCoGS indicator definition	Number of specialist surgical, obstetric, and anaesthetic physicians who are working per 100 000 population.
Utstein revised definition	Number of each of surgery, obstetric, or anaesthesia providers who are actively practicing, per 100 000 population

Overall summary of data elements
- Provider** numbers as:
 - Number of nationally certified*** specialist-physician**** practitioners for each of surgery, obstetric, or anaesthesia care, excluding trainees
 - Number of nationally certified non-specialist physician practitioners of surgery, obstetric, or anaesthesia care, excluding trainees
 - Number of other practitioners (“other practitioners”) of surgery, obstetric, or anaesthesia care who do not fit into aforementioned categories (includes physician trainees and non-certified non-physician providers)
- Total country population

Basic data points needed to construct the indicator (<2 years)
- Total number of nationally certified specialist physician practitioners for each of surgery, anaesthesia, or obstetric care
 Disaggregated by cadre (surgery, obstetric, or anaesthesia providers)
- Total number of other nationally certified providers of surgery, obstetric, or anaesthesia care
 Disaggregated by cadre (surgery, obstetric, or anaesthesia providers)

Population
- Total country population

Indicator 3: Volume

LCoGS indicator definition	Number of procedures done in an operating theatre, per 100 000 population per year
Utstein revised definition	Number of surgical procedures done in an operating theatre using any form of anaesthesia****, per 100,000 population per year

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 April 2021

doi:10.20944/preprints202104.0061.v1
Table 3: Revised LCoGS indicators and basic data points

Overall summary of data elements	Basic data points needed to construct the indicator (<2 years)
- Number of surgical procedures done in an operating theatre, using any anaesthesia, per year	
- Total country population	
Procedures	Population
- Total number of procedures done in an operating theatre using any form of anaesthesia, per year	
Overall indicator definition	Utstein revised definition
All-cause death rate before discharge in patients who have undergone a procedure in an operating theatre using any form of anaesthesia, divided by the total number of procedures, presented as a percentage, per year	
Deaths from all causes, before discharge (up to 30 days), in all patients who have received any anaesthesia for a procedure done in an operating theatre, divided by the total number of procedures, per year, expressed as a percentage	
Overall summary of data elements	Basic data points needed to construct the indicator (<2 years)
- Number of patients undergoing a surgical procedure in an operating theatre using any form of anaesthesia who died before hospital discharge, per year	
- Number of procedures done in an operating theatre, using any anaesthesia, per year	
Deaths	Procedures
- Number of deaths in all patients who received any anaesthesia for a surgical procedure performed in an operating theatre, per year	
Procedures	Time point
- Number of surgical procedures done in an operating theatre using any form of anaesthesia, per year	

Indicator 4: Perioperative Mortality Rate (POMR)

LCoGS indicator definition
All-cause death rate before discharge in patients who have undergone a procedure in an operating theatre using any form of anaesthesia, divided by the total number of procedures, presented as a percentage, per year

Utstein revised definition
Deaths from all causes, before discharge (up to 30 days), in all patients who have received any anaesthesia for a procedure done in an operating theatre, divided by the total number of procedures, per year, expressed as a percentage

Indicator 5: Financial Risk Protection (FRP)

LCoGS indicator definition
Financial Risk Protection: “Risk of Catastrophic Expenditure from Surgical Care”

Utstein revised definition
Percentage of the population at risk of catastrophic expenditure if they were to require a surgical procedure

Overall summary of data elements
- Out of pocket expenditure (OOP)
- OOP is the direct medical costs incurred from receiving surgical care from time of admission to a facility capable of providing surgical and anaesthesia care to the time of discharge.
- Household expenditure
 - Total household expenditure (Y) is defined as “the sum of the monetary values of all items (goods and services) consumed by each household” over 12 months.
- Catastrophic expenditure threshold
 - The catastrophic expenditure threshold should be set at 10% of total household expenditure.

Basic data points needed to construct the indicator (<2 years)
- Nationally-representative survey of direct OOP expenditure
- National total household expenditure (per individual household)

Table footnotes:
The Basic data sets are for use for global reporting at the macro-level only since they provide insufficient granularity to inform national planning or service refinement at the meso- or micro-level. For example, the Basic data set does not provide meaningful comparison of POMR across settings since the results are not adjusted for baseline patient risk or type of procedure.
* For comparability, travel time means ideal time to travel between a location and a facility. It does not mean experienced travel time from recognition of the need for surgery to arriving at a facility, which may incorporate delays in seeking care or delays in obtaining transport.

** We have not provided a definition of what a surgery, anaesthetic, or obstetric provider is; we agreed these should be defined by each country, with recognition that the definitions are likely to vary locally. Providers are persons directly involved in delivering the surgery, obstetric, or anaesthetic care; i.e. the person doing the operation or giving the anaesthetic.

*** Certified means completion of a government and/or professionally approved advanced education program that leads to a nationally recognised qualification to provide surgery, anaesthesia, or obstetric care.

**** Specialist physicians are providers who have obtained a medical degree (physician) and undergone specialty post-graduate training (certification)

***** This recognises that, at the current time, definitions of procedures that constitute surgery differ between countries and data sources. We have therefore agreed upon a broad definition of procedures for the Basic data set (<2 year timeframe), without defining a list. This definition includes incision, excision, or manipulation of tissue needing anaesthesia in an operating theatre. This includes day-cases, but excludes procedures in other locations i.e. outside of the operating theatre. Definition of anaesthesia is regional or general anaesthesia, or profound sedation to control pain. Number of surgical codes in a single anaesthesia procedure are counted as one case. If only a subset of procedures is feasible to collect for this indicator, then the type of procedures included should be transparently reported.

****** Catastrophic expenditure is usually calculated at the individual level (with data collected on OOP and household expenditure for each individual undergoing a medical admission episode). However, many people do not access surgery care because of fear of catastrophic expenditure. This indicator thus uses individual OOP expenditure for those who seek surgery in combination with national average level household expenditure to estimate the proportion of people who would suffer catastrophic expenditure if they were to need surgery.

******* Direct OOP costs could, in reality, include pre-hospital direct medical costs. However, they are not included here as they are small relative to the hospitalisation episode and patients may not recall these as readily as hospitalisation costs. This does not include direct non-medical costs (lodging, food, transport to and from facility). This does not include indirect costs (e.g.: loss of earnings)

******** we note as per SDG Target 3.8.2 there are two recognised thresholds, >10% and > 25%, however, we have chosen 10%

Table 3 shows, for each indicator, the original LCoGS overarching description, the Utstein revised description, a summary description of the data points required to construct the indicator, and the Basic (<2 year) data points needed to construct the indicator. The appendix tables 3-7 contain these parameters for Intermediate and Full data sets.

Two indicators on effect of care were condensed into one: risk of catastrophic expenditure on requirement for surgery replaces protection against catastrophic expenditure and protection against impoverishing expenditure. Use of catastrophic expenditure aligns with the expenditure indicator used in the Sustainable Development Goals and is a key indicator to monitor progress towards Universal Health Coverage.

Regarding changes to the indicator descriptions, the panel agreed that the original indicator Access to Timely Essential Surgery should be changed to Geospatial Access to a facility that has capacity to deliver surgery and anaesthesia care for Bellwether procedures. This is in order to reduce the potential dimensions inherent in the broad concept of access - for example, cultural, quality, and financial - noting that quality and financial dimensions are covered by other indicators. We agreed that the data points for constructing this indicator at the Basic level should allow estimation of the proportion of the population who would have geospatial access to a facility were they to need care. Whilst realised access (a person who needs care actually accesses it) may be feasible to measure in some countries, given the complexity of collecting these data in countries with under-developed health systems, the consensus was that this should not form part of the Basic data set. Information on whether a facility provides the Bellwether procedures (originally caesarean section, laparotomy, treatment of an open fracture) is a necessary component of this indicator. The Bellwethers were developed as a marker of a hospital which, if all
three were provided, could deliver a broad base of surgical care. (1) Although these procedures have been collected as part of research studies, we agreed that their utility for national reporting was limited by lack of definitional clarity, especially for treatment of an open fracture. We discussed this issue at length, including whether we should remove the concept of Bellwethers from this indicator, however, ultimately reached consensus that they should be included, with clarity that treatment of an open fracture should become surgical management of an open long bone fracture.

The main consensus change to the Specialist Surgical Workforce Density indicator was to include all cadres providing surgical, obstetric, and anaesthesia care in the definition, broadening this out from being limited to the physician workforce to now including other nationally certified (non physician practitioners). We also improved clarity in the definition of providers in order to allow evolution of granularity.

The panel agreed that the potential breadth of procedures that can be defined under the umbrella of surgery limits the comparability and utility of the Surgical Volume indicator. (10)(19) For the Basic data set, we have therefore defined surgical procedures in broad terms as procedures done in an operating theatre. These include incision, excision, or manipulation of tissue using anaesthesia in an operating theatre, including day-cases but excluding surgical procedures in other locations i.e. outside of the operating room. Definition of anaesthesia is regional or general anaesthesia, or profound sedation to control pain during the procedure. We agreed a structure to increase the granularity of the data collected over time, acknowledging that whilst providers and operating theatres often capture detailed data on procedures done, these data are held in handwritten log books and are difficult to extract for monitoring purposes.

Regarding Perioperative Mortality Rate (POMR) - the only clinical indicator in the LCoGS indicators – we had disagreement about whether the indicator should simply be that countries are collecting information on POMR, given the potential adverse consequences of reporting a poor POMR. However, after discussion, we reached the consensus that there was utility in reporting POMR, although for global accountability processes, this should be at a national rather than hospital level. There was consensus that for the Basic data set, the time period for reporting should be in-hospital, rather than 30-day mortality, which is a standard indicator reported in high income countries. This is due to strong evidence that mortality out to 30 days is generally currently not available in many countries. We also agreed that risk-adjustment is not currently possible for many countries which lack data related to procedure type and patient risk (derived using the American Society of Anaesthesia [ASA] score), therefore at the Basic level, POMR will not be risk adjusted. We noted that lack of risk-adjustment will limit comparisons across countries given the presence of differences in risk between country populations. Comparisons may become feasible at the Intermediate and Full level, when we agreed that covariates for risk-adjustment at the patient level should also be collected.

Discussions around the indicator on Catastrophic Expenditure centred on the nearly universal lack of data points from which to derive this indicator, especially in LMICs. For example, documented hospital costs of procedures often grossly under-represent the full extent of direct medical costs, patients may not be aware of their household expenditure, or people who are impoverished may not access surgery care at all. To rigorously collect these data requires doing exit interviews with patients. However, we recommend that at the least, data on costs of surgery are collected using nationally representative surveys where reliable information on costs of care are not available from other sources. To overcome difficulty in ascertaining individual’s household expenses, we recommend the use of national household expenditure, which will allow estimation of the proportion of the population who would be at risk of catastrophic expenditure if they were to
need surgery. We thus agreed to change the overarching description of this indicator to “Percentage of the population at risk of catastrophic expenditure if they were to require care for a surgical procedure”. We recognised that it doesn’t capture non-medical direct and indirect costs, e.g. those incurred in accessing care, but the difficulty in collecting these means they are not feasible for the Basic or Intermediate data sets.

Discussion

The meeting attendees agreed that LCoGS indicators as initially listed were too vague to allow for comparability across or within multiple settings, and their data elements had never been defined. However, we were unanimous that the indicators themselves were useful, especially when used together as a set to assess timely access to quality surgical, obstetric, and anaesthesia care. We also agreed data points should evolve over time and account for the development of countries’ ability to collect data, or the different uses of data. This “evolution” also enables different uses of those data, with the Basic data points – which should be collectable by most countries – used for international or national comparisons and the Intermediate or Full data points being of greater utility for national planning or research studies. (5) Given the broader utility of indicators derived from and disaggregated according to the Full data points, we urge researchers working at local, national, or regional levels to use these definitions in order to later allow compilation of data from across multiple countries using systematic methodologies and meta-analyses. Additionally, although we recognise that these more granular data points (of Intermediate and Full) may not be feasible to collect in countries where data-systems are nascent, we strongly recommend they are collected for national planning purposes as soon as possible.

To ensure political priority for anaesthesia and surgery requires that four elements are in place in the broad areas of i) actor power, ii) ideas, iii) political context, and iv) issue characteristics (broadly, the capture of data to show the issues that need to be addressed). (28-30) The global surgery movement has been shown to be deficient in all of these areas, especially in comparison to the movement to improve maternal health. (28) This Utstein meeting was convened to address, in particular, the area of issue characteristics. Harmonised data collection should facilitate coherent presentation of ideas and their internal and external framing, and, with strong joined-up actors, enable a shift in the political context.

Access to surgical and anaesthetic care is crucial for ensuring the health and wealth of populations. Global reporting of accessible, comparable, and utilizable data is central to ensuring accountability and advocacy, and the newly defined indicators will facilitate such data collection. More granular data for national policy-making will also be improved by these refinements. These updated indicator definitions applied at the international and national level will facilitate progress towards timely access to safe, affordable care and we advocate for their use in all surgery related data collection initiatives. An intended eventual output of this process should be directly actionable by individual countries and the United Nations Statistical Commission, with broad and long-term international impact.

Funding and organisational support for the meeting was provided by the WFSA and Laerdal Foundation

Contributors: Authors are listed alphabetically. JD, AWG, JGB, JM, and JMO organised the meeting; JD and JM wrote the first draft of the of the manuscript before review by the members of the writing group and subsequent review and approval by the Utstein Global Surgery Indicators Group participants (see Appendix).
References

1. Meara JG, Leather AJ, Hagander L, Alkire BC, Alonso N, Ameh EA, et al. Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development. Lancet. 2015;386(9993):569-624.
2. Mock CN, Donkor P, Gawande A, Jamison DT, Kruk ME, Debas HT, et al. Essential surgery: key messages from Disease Control Priorities, 3rd edition. Lancet. 2015;385(9883):2209-19.
3. WHO. Global Reference List of 100 Core Health Indicators (plus health-related SDGs). Geneva: WHO; 2018.
4. World Bank. World Development Indicators 2019 [Available from: http://data.worldbank.org.
5. Hanna JS, Herrera-Almario GE, Pinilla-Roncancio M, Tulloch D, Valencia SA, Sabatino ME, et al. Use of the six core surgical indicators from the Lancet Commission on Global Surgery in Colombia: a situational analysis. Lancet Global Health. 2020;8(5):E699-E710.
6. Nataraie RM, Yin Mar O, Andolfatto L, Moore EM, Watters D, Aye A, et al. Analysis of Financial Risk Protection Indicators in Myanmar for Paediatric Surgery. World J Surg. 2020;44(12):3986-92.
7. Guest GD, McLeod E, Perry WRG, Tangi V, Pedro J, Ponifasio P, et al. Collecting data for global surgical indicators: a collaborative approach in the Pacific Region. BMJ Glob Health. 2017;2(4):e000376.
8. Watters DA, Guest GD, Tangi V, Shrimge MG, Meara JG. Global Surgery System Strengthening: It Is All About the Right Metrics. Anesth Analg. 2018;126(4):1329-39.
9. Holmer H, Bekele A, Hagander L, Harrison EM, Kamali P, Ng-Kamstra JS, et al. Evaluating the collection, comparability and findings of six global surgery indicators. Br J Surg. 2019;106(2):e138-e50.
10. Ng-Kamstra JS, Arya S, Greenberg SLM, Kotagal M, Arsenault C, Ljungman D, et al. Perioperative mortality rates in low-income and middle-income countries: a systematic review and meta-analysis. BMJ Glob Health. 2018;3(3):e000810.
11. Biccard BM, Madiba TE, Kluys HL, Munlemvo DM, Madzimbamuto FD, Basenero A, et al. Perioperative patient outcomes in the African Surgical Outcomes Study: a 7-day prospective observational cohort study. Lancet. 2018;391(10130):1589-98.
12. Peberdy MA, Crettikos M, Abella BS, DeVita M, Goldhill D, Kloeck W, et al. Recommended guidelines for monitoring, reporting, and conducting research on medical emergency team, outreach, and rapid response systems: an Utstein-style scientific statement: a scientific statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian Resuscitation Council, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, and the New Zealand Resuscitation Council); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiopulmonary, Perioperative, and Critical Care; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research. Circulation. 2007;116(21):2481-500.
13. Idris AH, Berg RA, Bierena J, Bossaert L, Branche CM, Gabrielli A, et al. Recommended guidelines for uniform reporting of data from drowning: the "Utstein style". Circulation. 2003;108(20):2565-74.
14. Idris AH, Bierena J, Perkins GD, Wenzel V, Nadkarni V, Morley P, et al. 2015 Revised Utstein-Style Recommended Guidelines for Uniform Reporting of Data From Drowning-Related Resuscitation: An ILCOR Advisory Statement. Circ Cardiovasc Qual Outcomes. 2017;10(7).
15. Jacobs I, Nadkarni V, Bahr J, Berg RA, Billi JE, Bossaert L, et al. Cardiac arrest and cardiopulmonary resuscitation outcomes reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation. 2004;110(21):3385-97.
16. Moher D, Schulz KF, Simera I, Altman DG. Guidance for developers of health research reporting guidelines. PLoS Med. 2010;7(2):e1000217.
17. Chao TE, Sharma K, Mandigo M, Hagander L, Resch SC, Weiser TG, et al. Cost-effectiveness of surgery and its policy implications for global health: a systematic review and analysis. The Lancet Global health. 2014;2(6):e334-45.
18. Weiser TG, Gawande A. Excess Surgical Mortality: Strategies for Improving Quality of Care. In: Debas HT, Donkor P, Gawande A, Jamison DT, Kruk ME, Mock CN, editors. Essential Surgery: Disease Control Priorities, Third Edition (Volume 1). Washington (DC)2015.
19. Weiser TG, Haynes AB, Molina G, Lipsitz SR, Esquivel MM, Uribe-Leitz T, et al. Size and distribution of the global volume of surgery in 2012. Bull World Health Organ. 2016;94(3):201-9F.
20. Weiser TG, Makary MA, Haynes AB, Dziekan G, Berry WR, Gawande AA, et al. Standardised metrics for global surgical surveillance. Lancet. 2009;374(9695):1113-7.
21. Kruk ME, Gage AD, Arsenault C, Jordan K, Leslie HH, Roder-DeWan S, et al. High-quality health systems in the Sustainable Development Goals era: time for a revolution. Lancet Global Health. 2018;6(11):E1196-E252.
22. Juran S, Gruendl M, Marks IH, Broer PN, Guzman JM, Davies J, et al. The need to collect, aggregate, and analyze global anesthesia and surgery data. Can J Anaesth. 2019;66(2):218-29.
23. Massenburg BB, Saluja S, Jenny HE, Raykar NP, Ng-Kamstra J, Guilloux AGA, et al. Assessing the Brazilian surgical system with six surgical indicators: a descriptive and modelling study. BMJ Glob Health. 2017;2(2):e000226.
24. Davies JI, Meara JG. Global surgery—going beyond the Lancet Commission. Lancet. 2015;386(9993):507-9.
25. Davies JI, Vreede E, Onajin-Obembe B, Morriss WW. What is the minimum number of specialist anaesthetists needed in low-income and middle-income countries? BMJ Glob Health. 2018;3(6):e001005.
26. Stones W, Visser GHA, Theron G, Motherhood FS, Newborn Health C. FIGO Statement: Staffing requirements for delivery care, with special reference to low- and middle-income countries. Int J Gynaecol Obstet. 2019;146(1):3-7.
27. WHO U, UNFPA, AMDD. Monitoring emergency obstetric care, a handbook. WHO: WHO; 2009.
28. Shawar YR, Shiffman J, Spiegel DA. Generation of political priority for global surgery: a qualitative policy analysis. The Lancet Global health. 2015;3(8):e487-e95.
29. Smith SL, Shiffman J. Setting the global health agenda: The influence of advocates and ideas on political priority for maternal and newborn survival. Soc Sci Med. 2016;166:86-93.
30. Shiffman J, Shawar YR. Strengthening accountability of the global health metrics enterprise. Lancet. 2020;395(10234):1452-6.