Research Article

Fisher Information of Mine Collapse Hole Detection Based on Sensor Nodes Connectivity

Shengbo Hu, Heng Shu, and Xiaowei Song

1 Institute of Intelligent Information Processing, Guizhou Normal University, Guiyang 550001, China
2 Center for RFID and WSN Engineering, Department of Education, Guiyang, Guizhou 550001, China

Correspondence should be addressed to Shengbo Hu; hsb@nssc.ac.cn

Received 15 January 2013; Accepted 14 August 2013

Abstract

Coal mine collapse is one of the main reasons of coal mine fatalities in the past 10 years in the world [1]. Hence, it is very important to detect a collapse hole and accurately provide location references for coal mine workers. Since the coal mine collapse may destroy some coal safety monitoring devices, detecting the collapse hole in coal mine becomes a great challenge. The utilization of wire sensors to monitor coal mine is the primary method at present. However, the wired method makes the monitoring systems less scalable and vulnerable because of poor working conditions in the tunnel of coal mine. Once coal mine collapse happens, all wired sensors may be destroyed, and it is impossible to detect the collapse hole.

Wireless sensor network (WSN) is an event-based self-organized wireless network that relies on deploying spatially dense sensor nodes observing a physical phenomenon [2, 3]. Compared with traditional wire sensing, WSN can achieve larger coverage area, greater accuracy, and more flexible deployment. The utilization of WSN to monitor coal mine is of benefit. Once coal mine collapse happens, not all sensor nodes of WSN are destroyed. So, it is possible to detect the collapse hole in coal mine. For example, Li and Liu present a method based on a regular beacon strategy to detect the collapse hole in coal mine by regulating a mesh sensor network deployment [1].

When a collapse happens, the group of destroyed sensor nodes in the coal mine wireless sensor network creates a hole [4]. The collapse hole boundary separates all the faulty sensor nodes from the working nodes. Generally, there can be three types of the hole detection methods. The approaches based on geometric location methods [5, 6] rely on the nodes having geographical locations and can find more accurate boundary nodes than the other two methods, but each node has to be equipped with an extra device such as GPS to obtain the geographical locations. Unlike above approaches, the statistical methods [7, 8] without location information usually assume the sensor nodes are uniformly distributed on the sensing field. The major weakness of the statistical methods is that the criteria for detecting hole acquired from the statistical characteristics cannot guarantee to find hole precisely. The connectivity-based methods [9–11] use the information of neighboring sensor nodes connectivity to detect the hole. Normally, the method has higher packet control overhead than the previous two methods due to having to collect

1. Introduction

Coal mine collapse is one of the main reasons of coal mine fatalities in the past 10 years in the world [1]. Hence, it is very important to detect a collapse hole and accurately provide location references for coal mine workers. Since the coal mine collapse may destroy some coal safety monitoring devices, detecting the collapse hole in coal mine becomes a great challenge. The utilization of wire sensors to monitor coal mine is the primary method at present. However, the wired method makes the monitoring systems less scalable and vulnerable because of poor working conditions in the tunnel of coal mine. Once coal mine collapse happens, all wired sensors may be destroyed, and it is impossible to detect the collapse hole.

Wireless sensor network (WSN) is an event-based self-organized wireless network that relies on deploying spatially dense sensor nodes observing a physical phenomenon [2, 3]. Compared with traditional wire sensing, WSN can achieve larger coverage area, greater accuracy, and more flexible deployment. The utilization of WSN to monitor coal mine is of benefit. Once coal mine collapse happens, not all sensor nodes of WSN are destroyed. So, it is possible to detect the collapse hole in coal mine. For example, Li and Liu present a method based on a regular beacon strategy to detect the collapse hole in coal mine by regulating a mesh sensor network deployment [1].

When a collapse happens, the group of destroyed sensor nodes in the coal mine wireless sensor network creates a hole [4]. The collapse hole boundary separates all the faulty sensor nodes from the working nodes. Generally, there can be three types of the hole detection methods. The approaches based on geometric location methods [5, 6] rely on the nodes having geographical locations and can find more accurate boundary nodes than the other two methods, but each node has to be equipped with an extra device such as GPS to obtain the geographical locations. Unlike above approaches, the statistical methods [7, 8] without location information usually assume the sensor nodes are uniformly distributed on the sensing field. The major weakness of the statistical methods is that the criteria for detecting hole acquired from the statistical characteristics cannot guarantee to find hole precisely. The connectivity-based methods [9–11] use the information of neighboring sensor nodes connectivity to detect the hole. Normally, the method has higher packet control overhead than the previous two methods due to having to collect
information from neighboring sensor nodes. However, it does not need location information and has better accuracy of finding boundary nodes than the statistical method. The sensor nodes neither can be equipped with any additional devices such as GPS nor are uniformly distributed because of the narrow tunnel and the poor working conditions of it in coal mine. So, the connectivity-based methods are used to detect coal mine collapse better.

Connectivity is just a binary variable determined by whether or not a sensor node can demodulate and decode a packet transmitted by another sensor node. Connectivity measurements can be obtained by comparing the received signal strength (RSS) value between the two nodes against a power threshold. The RSS can be used to implement range-based localization [12]. The localization methods are popular because no additional hardware is required on the sensor nodes. However, the range estimates using RSS are inaccurate and can lead to large localization error because the RSS value is affected by unpredictable shadowing and fading in the tunnel in coal mine. Yet connectivity is the binary variable carrying information regarding sensor nodes location and is often discussed without considering the effect of shadowing and fading channel. So, the connectivity-based methods for localization have been actively researched in hole detection and ad hoc routing in WSN [13–15].

Connectivity measurements are actually just a binary quantization of the RSS measurements against a power threshold. Because RSS measurements are affected by unpredictable shadowing and fading in the tunnel in coal mine, it is very important to analyze accuracy of detecting the coal mine collapse hole using the connectivity-based methods. The rest of this paper is organized as follows. Section 2 discusses the system models including a hierarchy WSN topology in coal mine underground and 2D model of the coal mine collapse hole. Section 3 introduces a class of algorithms for detecting the coal mine collapse hole using the connectivity-based methods. Section 4 analyzes the accuracy of detecting collapse hole using Fisher information. Section 5 presents numerical calculation and discussion. Section 6 concludes this paper.

2. System Models

2.1. A Hierarchy Underground WSN Topology in Coal Mine. In view of the characteristics of narrow and poor environment in coal mine underground, it is better to use the hierarchy WSN topology for improving coverage and connectivity [16, 17]. The hierarchy WSN comprises sensor nodes, relay nodes, and sink nodes. The sensor nodes gather methane data autonomously. Multisensors form a cluster, and the cluster heads are the addresses of relay nodes. Methane data collected by the sensor nodes are forwarded to sink nodes through relay nodes. Communication between relay nodes forms a multihop route, and monitoring data are processed at sink nodes. Finally, the gateway passes the data processed at sink nodes to methane monitoring center. Table 1 shows the various types of nodes in the hierarchy WSN. These nodes will form a hierarchy that is shown in Figure 1.

2.2. 2D Model of Coal Mine Collapse Hole. Generally, the tunnel of coal mine can be classified as arch-shaped, rectangle, trapezium, or semicircle tunnel. For convenience, we consider the rectangle tunnel in this paper. A cluster of sensor nodes are deployed on the walls and roofs of the tunnel, as shown in Figure 2(a). To facilitate collapse hole detection, Figure 2(a) can be unfolded to a 2D representation as depicted in Figure 2(b).
Comparing Figure 2(a) with Figure 2(b), the relationships between the neighboring sensor nodes in Figure 2(b) are the same as in Figure 2(a). However, the distance between any two nodes in Figure 2(b) is greater than or equal to the distance between the pair in Figure 2(a). Thus, the real connectivity of the WSN is no less than shown in the 2-D representation in Figure 2(b), and the accuracy of the collapse hole detection in Figure 2(b) is preserved in Figure 2(a).

So, a cluster of sensor nodes is modeled as a 2D graph, \(G = (V, E) \), where each vertex represents a sensor node, \(V \) is the set of a cluster of sensor nodes, and two vertices are connected by an edge in \(E \) if and only if their distance is at most the guaranteed communication radius. Once a mine collapse occurs, some sensor nodes \(n_1, n_2, \ldots, n_k \in V \) are destroyed. The extent of these damaged nodes creates a collapse hole with convex hulls, which is surrounded by alive sensor nodes that contain all the damaged sensor nodes in Figure 3.

3. Algorithm for Detecting Collapse Hole Using Connectivity

Connectivity simply reports whether or not a sensor node can demodulate and decode a packet transmitted by another sensor node. Connectivity measurements can be obtained by comparing the received signal strength (RSS) value between the two nodes against a power threshold. Because the RSS measurements are affected by unpredictable shadowing and fading in the tunnel in coal mine, the connectivity can be described by a random binary variable \(Q_{ij} \):

\[
Q_{ij} = \begin{cases}
1, & P_{ij} \geq P_{ih} \\
0, & P_{ij} < P_{ih}
\end{cases}
\]

where \(P_{ij} \) is the RSS measurement received at sensor node \(i \) transmitted by sensor node \(j \) and \(P_{ih} \) is a power threshold of sensor node \(i \). Equation (1) shows that sensor node \(i \) can demodulate and decode a packet transmitted by sensor node \(j \) if \(P_{ij} \geq P_{ih} \), and \(Q_{ij} = 1 \); sensor node \(i \) cannot demodulate and decode a packet transmitted by sensor node \(j \) if \(P_{ij} < P_{ih} \), and \(Q_{ij} = 0 \).

The connectivity-based methods will use the assumption that two sensor nodes are “connected” if \(Q_{ij} = 1 \) and “disconnected” if \(Q_{ij} = 0 \). The advantage of these methods is that location can be discussed without knowing the propagation model’s parameters. So, a class of algorithms for detecting the collapse hole in coal mine can be described as follows [1, 18].

Step 1 (initialization). Each sensor node broadcasts a ping requesting information to neighboring sensor nodes. If \(P_{ij} \geq P_{ih} \), sensor nodes reply with their ID, and the pinging node can create a list of its neighboring sensor nodes.

Step 2 (integrity checking). If a coal mine collapse occurs, each sensor node pings its neighboring sensor nodes, keeps track of the responses, and compares the list of neighboring sensor nodes. If \(P_{ij} \geq P_{ih} \), sensor node \(i \) receives the ID (identification number) of sensor node \(j \) and marks sensor node \(j \) as alive. If \(P_{ij} < P_{ih} \), sensor node \(i \) cannot receive ID of sensor node \(j \) and marks the sensor node as missed. If the node’s number of missed neighboring nodes exceeds a threshold, sensor node \(i \) marks itself as belonging to the collapse perimeter.

Step 3 (collapse hole scanning). According to the list of sensor nodes marked as “on the collapse perimeter,” the classical Graham algorithm [19] is used to detect the collapse hole with convex hulls.

4. Accuracy of Detecting Collapse Hole

As shown in Section 3, analyzing the accuracy of detecting collapse hole using connectivity is equivalent to analyzing the accuracy of estimating distance \(d \) between neighboring sensor nodes equivalently using \(Q_{ij} \). So, we consider the topic of estimate distance \(d \) between neighboring sensor nodes from connectivity measurements using Fisher information.

4.1. Channel Model

Because the tunnel is narrow and the environment is poor in coal mine, the RSS is attenuated by path losses, fading, and shadowing losses [20]. Path loss is the deterministic reduction function of distance \(d \) between neighboring sensor nodes. Fading is the effect of multipath propagation. Because many wireless sensor nodes use spread-spectrum techniques, the fading can be reduced mostly and its impact on the attenuated RSS is not significant. Shadowing is the loss incurred as a signal passes through permanent obstructions (e.g., walls or buildings). For most sensor nodes in the tunnel, shadowing losses cannot be countered. When a collapse occurs, shadowing losses are greater. So, the RSS values follow the log-normal shadowing model, a channel model widely used in WSN [21, 22].

Let \(P_i(0) \) be the received signal power at sensor node with the reference distance \(d_0 \) (typically \(d_0 = 1 \)) and let \(\gamma \) be the path loss exponent, a parameter that depends on the environment where communication occurs (typical values are 2 and 4 [23]). In log-normal shadowing model, the
received power when the two sensor nodes are at a distance \(d \) can be written as

\[
\ln P_e(d) = \ln P_e(0) - \gamma \ln d + w,
\]

where \(w \) is a zero-mean random variable with normal distribution \(N(0, \sigma^2) \).

4.2. Fisher Information. In this paper, we focus on estimating distance \(d \) between neighboring sensor nodes from connectivity measurements, which carry information regarding sensor nodes location. As is well known, the Fisher information measures the amount of information that a random variable carries about an unknown parameter. And the inverse of the Fisher information, known as the Cramer-Rao Bound, is the minimum variance for any unbiased estimator. Here, the random variable \(Q_i \) defined by (1) is used to estimate \(d \).

So, \(\text{Var} \{ \hat{d} \} \), the variance of estimating \(d \), is

\[
\text{Var} \{ \hat{d} \} \geq \frac{1}{I(d)},
\]

where \(I(d) \) is the Fisher information of estimating distance \(d \) using the random variable \(Q_i \).

4.2.1. Fisher Information of RSS Measurements. For notational convenience, we define

\[
\alpha = \frac{2}{\gamma}, \quad z = \left(\frac{P_i(0)}{P_i(d)} \right)^{\alpha}.
\]

Then, (2) can be written as

\[
z = d^2 e^{-\alpha w}.
\]

So, the underlying estimation problem is to estimate \(d \) from the RSS measurements \(z \) satisfying (5), given the knowledge of \(\alpha \) and \(\sigma^2 \).

Taking the logarithm of (5), we obtain

\[
\ln z = 2 \ln d - \alpha w.
\]

Let \(l = \ln z \), where \(l \) is a random variable with normal distribution \(N(2 \ln d, \alpha^2 \sigma^2) \).

The log-likelihood function is given by

\[
\ln [p(l, y)] = -\ln [2\pi \alpha^2 \sigma^2] - \frac{(l - 2 \ln d)^2}{2 \alpha^2 \sigma^2}.
\]

Taking the derivative of the log-likelihood function, we obtain

\[
\frac{\partial \ln [p(l, y)]}{\partial d} = \frac{2(l - 2 \ln d)}{\alpha^2 \sigma^2}.
\]

Hence, the Fisher information of RSS measurements is given by

\[
I_{\text{RSS}}(d) = E \left[\left(\frac{\partial \ln [p(l, y)]}{\partial d} \right)^2 \right] = \frac{4}{d^2 \alpha^2 \sigma^2} = \frac{\gamma^2}{d^2 \sigma^2} = \frac{k^2}{d^2},
\]

where \(k = \gamma / \sigma \).

4.2.2. Fisher Information of Connectivity Measurements. As shown in Section 3, the underlying estimation problem is to estimate \(d \) from the connectivity measurements. Then the Fisher information of connectivity measurements depends not only on \(d \) between neighboring sensor nodes, but also on the value of the power threshold \(P_{th} \) in (1). For convenience, \(P_{th} \) needs to be converted into the distance threshold \(d_{th} \).

From (5), it can be observed that \(l \) has a nonaffine dependence on \(d \) and an affine dependence on \(w \). Hence, no efficient estimator exists for this problem [24]. This leads us to choose the maximum likelihood estimator (MLE) \(\hat{d}_{th} \) of the distance threshold \(d_{th} \). The \(\hat{d}_{th} \) is given by

\[
\hat{d}_{th} = \arg \max_d \ln [p(l, y)] = \gamma \left(\frac{P_i(0)}{P_{th}} \right) = \left(\frac{P_i(0)}{P_{th}} \right)^{1/\gamma}.
\]

From [25], consider the case of 2-level quantized RSS. The Fisher information of connectivity measurements is given by

\[
I_{\text{CON}}(d, d_{th}) = \frac{4}{d^2 \alpha^2 \sigma^2} h_r(d, d_{th})
\]

\[
= \frac{\gamma^2}{d^2 \sigma^2} h_r(d, d_{th}) = \frac{k^2}{d^2} h_r(d, d_{th}),
\]

where the term \(h_r(d, d_{th}) \) depends on the ratio between \(d \) and \(d_{th} \):

\[
h_r(d, d_{th}) = \frac{2}{\pi} \exp \left[-k^2 \ln \left(\frac{d}{d_{th}} \right) \right] \frac{1}{\sqrt{2}}.
\]

where \(\text{erf}(\cdot) \) is an error function.

5. Numerical Calculation and Discussion

To analyze the accuracy of detecting collapse hole based on connectivity measurements, we examine the Fisher information using numerical calculation in this section.

5.1. Numerical Calculation. In this subsection, we investigate the Fisher information \(I_{\text{RSS}}(d) \) and \(I_{\text{CON}}(d, d_{th}) \) using numerical calculation.

5.1.1. The Path Loss Exponent’s Effects on the Fisher Information \(I_{\text{RSS}}(d) \). Figure 4 shows that \(I_{\text{RSS}}(d) \) is a function of \(\gamma \) for different \(\gamma \) values (\(\gamma = 4, 3, 2.5 \)) and fixed \(\sigma \) value (\(\sigma = 2 \)).

Figure 4 describes that the amount of the \(I_{\text{RSS}}(d) \) available to estimate \(d \) decreases for increasing values of the distance \(d \) and increases for increasing values of \(\gamma \). This shows that the estimates become more accurate because the attenuation caused by the path loss clears the RSS measurement.

5.1.2. The \(\sigma \) Values’ Effects on the Fisher Information \(I_{\text{RSS}}(d) \). Figure 5 shows that \(I_{\text{RSS}}(d) \) is a function of \(d \) for different \(\sigma \) values (\(\sigma = 2, 3, 4 \)) and fixed \(\gamma \) value (\(\gamma = 3 \)).

Figure 5 describes that the amount of \(I_{\text{RSS}}(d) \) available to estimate \(d \) decreases for increasing values of the distance
d and increasing values of σ. This shows that the estimates become less accurate because the variability caused by the RF shadowing blurs the RSS measurement.

5.1.3. The k Values’ Effects on the Fisher Information $I_{\text{CON}}(d, d_{\text{th}})$. Figure 6 shows that $I_{\text{CON}}(d, d_{\text{th}})$ is a function of d_{th} when $d = 5$ m for different k values ($k = 3/4, 3/3, 3/2$), and Figure 7 shows that $I_{\text{CON}}(d, d_{\text{th}})$ is a function of d_{th} when $k = 4/2$ for different d values ($d = 2, 3, 4$).

Figures 6 and 7 describe that $I_{\text{CON}}(d, d_{\text{th}})$ always peaks when $d_{\text{th}} = d$. In other words, connectivity measurements reach the maximum information if the distance threshold is equal to the true distance between neighboring sensor nodes. From (12), the maximum Fisher information of connectivity measurements $I_{\text{CON}}(d, d_{\text{th}}) = 0.63I_{\text{RSS}}(d)$ if $d_{\text{th}} = d$. So, $I_{\text{CON}}(d, d_{\text{th}})$ is always lower than $I_{\text{RSS}}(d)$.

5.2. Discussion about Accuracy of Detecting Collapse Hole. As shown in Section 5.1, RSS measurements carry greater Fisher information than connectivity ones. However, this is only true as long as the neighboring sensor nodes are within the radio coverage of each other. When sensor nodes are within
each other’s radio coverage, they are able to communicate and successfully exchange radio message.

Depending on the choice of P_{th}, two neighboring sensor nodes that are within each other’s radio range can be considered connected or disconnected. When the neighboring sensor nodes are far from radio coverage, they will not be able to communicate. So, no RSS information can be collected, and $I_{RSS}(d) = 0$. Instead, the sensor nodes far from radio coverage can be associated with the value Q_{ij}, and $I_{CON}(d, d_{th}) > 0$.

As shown above, RSS range-based localization schemes are more accurate when the neighboring sensor nodes are in the radio coverage of each other, but connectivity-based localization schemes are naturally suited to localize nodes that are far from radio coverage. Hence, connectivity-based localization schemes are used to detect collapse hole of coal mine better.

6. Conclusion

It is very important to detect a collapse hole for coal mine workers. This paper presents the possibility of detecting the collapse hole using WSN. Comparing three types of hole detection methods, we think that the connectivity-based methods are better to detect coal mine collapse. By establishing a 2D model of the collapse hole in coal mine, we describe a class of algorithms for detecting the collapse hole in coal mine. Based on log-normal shadowing channel model, we analyze the accuracy of detecting the collapse hole in coal mine using Fisher information and make numerical calculation. Finally, we make the conclusion as follows.

(i) The larger the path loss exponent, the greater the Fisher information.

(ii) The larger the variability caused by the RF shadowing, the less the Fisher information.

(iii) When sensor nodes are within each other’s radio coverage, the accuracy of detecting the collapse hole using RSS measurements is higher than that when using connectivity ones; when the neighboring sensor nodes are far from radio coverage, no RSS information can be collected, and $I_{RSS}(d) = 0$. Instead, the sensor nodes far from radio coverage can be associated with the value Q_{ij}, and $I_{CON}(d, d_{th}) > 0$. Hence, connectivity-based localization schemes are used to detect collapse hole of coal mine better.

Acknowledgments

The authors wish to thank the editor and reviewers for their valuable comments, corrections, and suggestions, which led to an improved version of the original paper. This research is a project partially supported by the National Natural Science Foundation of China (Grant no. 61064614), Guizhou Science and Technology Innovation Group for RFID & WSN, and Guizhou Natural Science Foundation (Grant no. [2012] 38).

References

[1] M. Li and Y. Liu, “Underground coal mine monitoring with wireless sensor networks,” ACM Transactions on Sensor Networks, vol. 5, no. 2, article 10, 2009.

[2] K. Kavi, P. Rajiv, and M. Arivash, “A wireless sensor network air pollution monitoring system,” International Journal of Wireless and Mobile Networks, vol. 12, no. 2, pp. 31–45, 2010.

[3] W. U. Bajwa, A. Sayeed, and R. Nowak, “Matched source-channel communication for field estimation in wireless sensor networks,” in Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN ’05), pp. 332–339, Los Angeles, Calif, USA, April 2005.

[4] Y. Wang, J. Gao, and J. S. B. Mitchell, “Boundary recognition in sensor networks by topological methods,” in Proceedings of the 12th Annual International Conference on Mobile Computing and Networking (MOBICOM ’06), pp. 122–133, Los Angeles, Calif, USA, September 2006.

[5] Q. Fang, J. Gao, and L. J. Guibas, “Locating and bypassing holes in sensor networks,” Mobile Networks and Applications, vol. 11, no. 2, pp. 187–200, 2006.

[6] P. K. Sahoo, K.-Y. Hsieh, and J.-P. Sheu, “Boundary node selection and target detection in wireless sensor network,” in Proceedings of the 4th IEEE and IFIP International Conference on Wireless and Optical Communications Networks (WOCN ’07), Singapore, July 2007.

[7] S. P. Fekete, M. Kaufmann, A. Kröller, and N. Lehmann, “A new approach for boundary recognition in geometric sensor networks,” in Proceedings of 17th Canadian Conference on Computational Geometry, Prince Edward Island, Canada, August, 2005.

[8] S. P. Fekete, A. Krölker, D. Pfisterer, S. Fischer, and C. Buschmann, “Neighborhood-based topology recognition in sensor networks,” in Proceedings of 1st International Workshop on Algorithmic Aspects of Wireless Sensor Networks, Turku, Finland, July 2004.

[9] S. Funke and C. Klein, “Hole detection or: ‘How much geometry hides in connectivity?’,” in Proceedings of the 22nd ACM Annual Symposium on Computational Geometry (SCG ’06), pp. 377–385, Sedona, Ariz, USA, June 2006.

[10] O. Saukh, R. Sauter, M. Gauger, P. J. Marrón, and K. Rothermel, “On boundary recognition without location information in wireless sensor networks,” in Proceedings of the 7th International Conference on Information Processing in Sensor Networks (IPSN ’08), pp. 207–218, St. Louis, Mo, USA, April 2008.

[11] Y. Wang, J. Gao, and J. S. B. Mitchell, “Boundary recognition in sensor networks by topological methods,” in Proceedings of the 12th Annual International Conference on Mobile Computing and Networking (Mobicon ’06), Los Angeles, Calif, USA, September 2006.

[12] A. Savvides, C. Han, and M. B. Strivastava, “Dynamic fine-grained localization in ad-hoc networks of sensors,” in Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, pp. 166–179, July 2001.

[13] S. Babaei and S. S. Pirahesh, “Hole detection for increasing coverage in wireless sensor network using triangular structure,” International Journal of Computer Science, vol. 9, no. 2, pp. 213–218, 2012.

[14] C. F. Huang and Y. C. Tseng, “A survey of solutions to the coverage problems in wireless sensor networks,” Journal of Internet Technology, vol. 6, no. 1, pp. 1–8, 2005.
[15] R. Nagpal, H. Shrobe, and J. Bachrach, “Organizing a global coordinate system from local information on an ad hoc sensor network,” in Proceedings of 2nd International Workshop (IPSN ’03), pp. 333–348, Palo Alto, Calif, USA, April 2003.

[16] J. P. Sun, L. Tang, W. Chen, B. Zhang, N. Zhu, and X.-Y. Zhang, “No blind zone placement of methane sensor based on monitoring coverage,” Journal of the China Coal Society, vol. 33, no. 5, pp. 946–950, 2008.

[17] W. Yang, S. Y. Zhou, and H. Qiao, “Node localization in wireless sensor networks for coal mine security monitoring,” Journal of the China Coal Society, vol. 32, no. 6, pp. 652–656, 2007.

[18] I. F. Khan and M. Y. Javed, “Hole healing energy aware algorithm for wireless sensor networks,” International Journal of Computer Theory and Engineering, vol. 2, no. 5, pp. 706–711, 2010.

[19] R. L. Graham, “An efficient algorithm for determining the convex hull of a finite planar set,” Information Processing Letters, vol. 1, no. 4, pp. 132–133, 1972.

[20] T. Rappaport, Wireless Communication: Principles and Practice, IEEE Press Piscataway, New York, NY, USA, 1996.

[21] A. Ghasemi and E. S. Sousa, “Asymptotic performance of collaborative spectrum sensing under correlated log-normal shadowing,” IEEE Communications Letters, vol. 11, no. 1, pp. 34–36, 2007.

[22] P. Stuedi and G. Alonso, “Log-normal shadowing meets SINR: a numerical study of capacity in wireless networks,” in Proceedings of the 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON ’07), pp. 550–559, San Diego, Calif, USA, June 2007.

[23] K. Sohrabi and G. J. Pottie, “Near ground wideband channel measurement in 800–1000 MHz,” in Proceedings of the 50th IEEE VTS Vehicular Technology Conference, pp. 571–575, Houston, Tex, USA, May 1999.

[24] A. H. Madsen, “On the existence of efficient estimators,” IEEE Transactions on Signal Processing, vol. 48, no. 11, pp. 3028–3031, 2000.

[25] N. Patwari and A. Hero III, “Using proximity and quantized RSS for sensor localization in wireless networks,” in Proceedings of the 2nd ACM International Workshop on Wireless Sensor Networks and Applications (WSNA ’03), pp. 20–29, San Diego, Calif, USA, September 2003.
Submit your manuscripts at http://www.hindawi.com