HMMvar-func: a new method for predicting the functional outcome of genetic variants

Mingming Liu, Layne T. Watson, Liqing Zhang

Supplement 2: Distance tree of subfamilies

Figure 1: Distance tree of the RAC1 subfamilies ($n = 836$, $k = 140$). Colors indicate different subfamilies. The minimum score S^m_i is calculated from C_{126}. C_0 is the target cluster. C_{135} is an example subfamily that the mutant protein could switch to. The leaves are protein sequences. Two sequences are merged according to the BLOSUM62 matrix by averaging the substitution distance over all the positions in the MSA.
Figure 2: Distance tree of the PTPRD subfamilies ($n = 75$, $k = 21$). Colors indicate different subfamilies. The minimum score S_x^a is calculated from C_{21}. C_0 is the target cluster. C_{20} is an example subfamily that the mutant protein could switch to. The leaves are protein sequences. Two sequences are merged according to the BLOSUM62 matrix by averaging the substitution distance over all the positions in the MSA.
Figure 3: Distance tree of the CDH1 subfamilies ($n = 76, k = 29$). Colors indicate different subfamilies. The minimum score S_i^e is calculated from C_{16}. C_0 is the target cluster. The leaves are protein sequences. Two sequences are merged according to the BLOSUM62 matrix by averaging the substitution distance over all the positions in the MSA.
Figure 4: Distance tree of the CDH1 subfamilies \((n = 826, k = 274)\). Colors indicate different subfamilies. The minimum score \(S^*_i\) is calculated from \(C_{41}\). \(C_0\) is the target cluster. The leaves are protein sequences. Two sequences are merged according to the BLOSUM62 matrix by averaging the substitution distance over all the positions in the MSA.