Quantum mechanics on Riemannian Manifold in Schwinger’s Quantization Approach II

Chepilko Nicolai Mikhailovich

Physics Institute of the Ukrainian Academy of Sciences, Kyiv-03 028, Ukraine
e-mail: chepilko@zeos.net

Romanenko Alexander Victorovich

Kyiv Taras Shevchenko University, Department of Physics, Kyiv-03 022, Ukraine
e-mail: ar@ups.kiev.ua

January 11, 2019

Abstract

Extended Schwinger’s quantization procedure is used for constructing quantum mechanics on a manifold with a group structure. The considered manifold M is a homogeneous Riemannian space with the given action of isometry transformation group. Using the identification of M with the quotient space G/H, where H is the isotropy group of an arbitrary fixed point of M, we show that quantum mechanics on G/H possesses a gauge structure, described by the gauge potential that is the connection 1-form of the principal fiber bundle $G(G/H, H)$. The coordinate representation of quantum mechanics and the procedure for selecting the physical sector of states are developed.

1 Introduction

The purpose of this paper is to propose the natural development of the method described in our previous paper [2], where we have introduced an extension of Schwinger’s quantization procedure [1] in order to consider quantum mechanics on a manifold with a group structure. In [2] this approach has been realized for the case of a homogeneous Riemannian manifold admitting the action of a simply transitive group of isometries.

In this paper we consider a more general type of the n-dimensional homogeneous Riemannian manifold M with the p-dimensional group of isometries acting on M transitively (but not simply transitively). In this case the part of isometry transformations form an isotropy group of any point of M, so it is possible to treat this group as a group of local gauge transformations.

The paper is organized as follows. In section (2) we briefly examine the geometry structure of a homogeneous Riemannian manifold. Such a manifold is isomorphic to the quotient space G/H, where H denotes the isotropy group of an arbitrary fixed point of M. In section (3) the operator Lagrangian L describing a free particle in the configuration space G is presented in accordance with [2], where its form has been derived by requiring L to be scalar invariant under a general coordinate transformation on G. The extension of the configuration space from
$M \cong G/H$ to G causes the problem of fixing the gauge invariance associated with additional degrees of freedom.

To eliminate unphysical states that appears due to the presence of the gauge degrees of freedom we use $(m+n)$-decomposition that is usual in the theories of Kaluza-Klein type [3]. After introducing the special coordinate system on G that provides this decomposition, the algebra of commutation relations is constructed in section (4). In section (5) we give the Heisenberg equation of motion describing a free particle on G/H. It turns out that dynamics on G/H is governed by a Lorentz-type force expressed in terms of the gauge field by the usual way. The gauge potential is the same as the connection 1-form of the principal fiber bundle $G(G/H,H)$. In section (6) the coordinate representation of quantum mechanics on G/H is discussed. The special feature of the theory consists of the emergence of the gauge structure induced by some isotropy group $H \subset G$, and described by the concrete unitary representation of H in the space of states. Different irreducible representations determine unequivalent quantum theories on G/H. The corresponding quantum states are classified by eigenvalues of the Casimir operator of the representation of H.

The conclusions obtained from the model we are considering are in accordance with the conceptions introduced in [4], where the method of investigation is somewhat different from ours.

2 Structure of Homogeneous Riemannian Manifold

A smooth manifold M is called a homogeneous one, if it admits the transitive action of a Lie group G. We assume that $\text{dim}(M) = n$, $\text{dim}(G) = p > n$. This assumption means that the action of G on M is not simply transitive; the case of a simply transitive transformation group (i.e. when $p = n$) has been investigated in our previous paper [2].

A left action of G on M is determined by the following differentiable map

$$\rho_g : M \rightarrow M \quad q \rightarrow \overline{q} := \rho_g(q)$$

(2.1)

where $\rho_g \in \text{Diff}(M)$ satisfies the conditions

1. $\forall g_1, g_2 \in G, \quad \rho_{g_1} \circ \rho_{g_2} = \rho_{g_1g_2}$;

2. $\rho_e = \text{id}_M, \quad e \in G$ is the unit element

(here id_M denotes an identity map on M).

For a point $q \in M$ the subset $I(q) := \{g \in G : \rho_g q = q\} \subset G$ is a subgroup of G. This group is called the isotropy group (or stabilizer) of $q \in M$. As the action ρ of G is transitive, all isotropy groups are conjugate, i.e. $\forall \overline{q} = \rho_q q, \quad I(\overline{q}) = \text{aut}_g I(q) := gI(q)g^{-1}$.

Fixing an arbitrary point $q_o \in M$, we introduce a subgroup $H := I(q_o) \subset G$, $\text{dim}(H) = m$. By means of this subgroup we construct the quotient space $G/H = \{gH : g \in G\}$, $\text{dim}(G/H) = p - m = n$. We denote the element of G/H by $[g]$, where the element $g \in G$ in brackets represents the equivalence class gH.

We define a canonical projection

$$p : G \rightarrow G/H \quad q \rightarrow p(g) := [g]$$

(2.2)
that determines the structure of a principal fiber bundle $G(G/H, H)$ with the total space G, the base space G/H and the structure group H. The fiber under the point $[g] \in G/H$ is $p^{-1}([g]) = gH \subset G$.

On the other hand, we can naturally define the left transitive action of G on G/H by the following map

$$\rho_g : G/H \rightarrow G/H$$

$$[g]_1 \rightarrow \rho_g[g]_1 := [g g_1]$$

(2.3)

The stabilizer of $[e] \in G/H$ under the transformation (2.3) is the subgroup $H \subset G$, because $\forall g \in G$, $[gH] = [g]$. For $[g] \in G/H$ we have $I([g]) = gHg^{-1}$.

Hence, there is one-to-one correspondence between the points of M and those of G/H. Namely, $q_0 \in M$ and $g = \rho_g q_0$ correspond to $[e] \in G/H$ and $[g] \in G/H$ respectively. We will identify M with G/H through this text.

In order to analyze the local properties of the principal fiber bundle $G(G/H, H)$ and the metric structure of G and G/H we introduce local coordinates on G, H and G/H.

Hereafter we utilize the notations of indices as follows. The first lot of Latin capital letters $A, B, \ldots = 1, \bar{p}$ is used to represent the frame $\{T_A|_e : A = 1, \bar{p}\}$ of $T_e G$ (the space of tangent vectors to G at $e \in G$). The final lot of Latin capital letters $M, N \ldots = 1, \bar{p}$ is used to mark the local coordinates $\{x^M(g) : M = 1, \bar{p}\}$ of $g \in G$.

The structure equation for a (left) Lie algebra $\text{Lie}(G)$, which consists of left translations of the elements of $T_e G$, has the usual form

$$[L_A, L_B] = c^{C}_{AB} L_C,$$

(2.4)

where c^{C}_{AB} are structure constants of G, L_A is a left-invariant vector field over G, defined as $L_A|_g := d_e L_g(T_A|_e)$ (L_g denotes a left translation map, see Appendix 1).

As far as H is a Lie subgroup of G, for the corresponding Lie algebras we have the similar inclusion: $\text{Lie}(H) \subset \text{Lie}(G)$ (subalgebra) and $T_e H \subset T_e G$ (vector subspace). We can chose the basic fields of $T_e G$ in such a way that part of them forms the basis of $T_e H$. So we can decompose the set $\{T_A : A = 1, \bar{p}\}$ as $T_A = (T_a, T_i)$, where $\{T_i : i = n+1, \bar{p}\}$ is the basis of $T_e H$, marked by small Latin letters $i, j, k \ldots = n + 1, \bar{p}$, with the structure equation

$$[L_i, L_j] = c^{k}_{ij} L_k, \quad c^{a}_{ij} = 0,$$

(2.5)

and $\{T_a : a = 1, \bar{n}\}$ corresponds to the remaining part of the basic vectors of $T_e G$. In other words, the index $A = 1, \bar{p}$ can be decomposed as $A = (a, i)$.

Due to (2.5) the following system of partial differential equations

$$L_i^M \partial_M \varphi(x(g)) = 0$$

(2.6)

has n independent solutions $\{\varphi^\alpha(x(g)) : \alpha = 1, \bar{n}\}$. Here $L = \{L_A^M\}$ denotes the matrix of left translations on G (see appendix 1 for its properties).

Now we introduce a new coordinate system on G by means of the following transformation

$$\begin{cases}
\bar{x}^\alpha = \varphi^\alpha(x(g)) \\
\bar{x}^\mu = x^\mu
\end{cases}$$

(2.7)

Hereafter $\{x^M\}$ are assumed to refer to the new coordinate system on G. Therefore, the coordinate index $M = 1, \bar{p}$ is decomposed like the group one, namely $M = (\alpha, \mu)$, where $\alpha, \beta \ldots = 1, \bar{n}$ and $\mu, \nu \ldots = n + 1, \bar{p}$. The meaning of $\{x^\alpha\}$ and $\{x^\mu\}$ will be determined later.
In new coordinates the matrix of left translations on G receives the form

$$L = \{L^M_A\} = \begin{pmatrix} L^\alpha_a & L^\mu_i \\ 0 & L^i_i \end{pmatrix}, \quad L^\alpha_i = 0. \quad (2.8)$$

If $\det(L) = \det(L^\alpha_a) \det(L^\mu_i) \neq 0$, the matrix (2.8) has the inverse

$$L^{-1} := L^{-1} = \begin{pmatrix} T^\alpha_a \\ T^\mu_i \end{pmatrix}, \quad T^\mu_i = 0, \quad (2.9)$$

where

$$T^\alpha_a = (L^{-1})^\alpha_a, \quad T^\mu_i = (L^{-1})^\mu_i, \quad T^\alpha_i = -L^\alpha_a L^\mu_i T^\mu_a \quad (2.10)$$

The matrices $\{L^\alpha_a\}, \{L^\mu_i\}$ and their inverses satisfy the equations following from (2.4) and the Maurer-Cartan equation taking into account the fact that $c^\alpha_{ij} = 0$.

As far as a left Lie algebra commutes with a right one we can generally write $R^M_A \partial_M L^N_B = L^M_B \partial_M R^N_A$ and, in particular

$$\begin{cases} \partial_\mu R^\alpha_A = 0 \\ \partial_\alpha R^\beta_A = R^A_\alpha T^\alpha_a \partial_M L^\beta_a \end{cases} \quad (2.11)$$

As to the other relations like (2.11), their explicit forms are not important in later consideration.

The set of coordinates $\{x^\alpha: \alpha = 1, n\}$ in the decomposition $x^M = (x^\alpha, x^\mu)$ is independent on the point at the orbit: $\forall h \in H, \ x^\alpha(gh) = x^\alpha(g)$. To prove this statement one can rewrite $x^M(gh)$ as a Taylor expansion

$$x^M(gh) = x^M(g) + x^M(h) + \ldots$$

taking into account $L^\alpha_i = 0$.

Therefore, we can write the local form of the projection map as

$$p : \begin{cases} G \\ \{x^\alpha(g), x^\mu(g)\} \end{cases} \longrightarrow G/H \quad \{x^\alpha(g)\} \quad (2.12)$$

Hence, the local coordinate system on G/H can be defined as

$$x^\alpha([g]) := x^\alpha(g). \quad (2.13)$$

According to (2.2) and (2.12), the action of G on the quotient space can be presented as follows

$$x^\alpha(\rho_g[g_1]) = x^\alpha([gg_1]) = x^\alpha(gg_1). \quad (2.14)$$

Let $g_A(\tau) \in G, g_A(0) = e$ be the integral curve of the basic vector field

$$L_A|_e = L^M_A|_e \partial_M|_e = T_A|_e \in T_eG. \quad (2.15)$$

Then the corresponding vector field over G/H, induced by the action of G on G/H has the form

$$\frac{d}{d\tau} \bigg|_{\tau=0} x^\alpha(g_A(\tau)g) = \frac{\partial x^\alpha(g_A(\tau)g)}{\partial x^M(g_A(\tau))} \bigg|_{g_A=e} \cdot \frac{dx^M(g_A(\tau))}{d\tau} \bigg|_{\tau=0} = R^\alpha_M(g)\delta^M_A = R^\alpha_A(g). \quad (2.16)$$
In particular
\[\forall h \in H, \quad R_A^\alpha(h) = R_A^\alpha(e) = \delta_A^\alpha \]
determines the transformations of \(I([e]) \) on \(G/H \), as it must be.

In the special coordinate system, defined in (2.7), using the diagonal form of the metric of \(T_eG \) (see appendix 1)
\[\{\eta_{AB}\} = \begin{pmatrix} g_{ab} & 0 \\ 0 & g_{ij} \end{pmatrix}. \] (2.17)
we find the following form for the left-invariant metric of \(G \)
\[\eta^{MN} := \eta^{AB} L_A^M L_B^N = g_{ab} L_a^M L_b^N + g_{ij} L_i^M L_j^N; \] (2.18)
\[\eta^{MN} := \eta^{AB} L_A^M L_B^N = g^{ab} L_a^M L_b^N + g^{ij} L_i^M L_j^N \] (2.19)

Using the definition of the connection on the principal fiber bundle \(G(G/H, H) \) (see appendix 2)
\[A_\mu := \overline{\partial}_\mu g_{\alpha\beta}, \] (2.20)
the metric tensor (2.18) and its inverse (2.19) receive the form
\[\{\eta_{MN}\} = \begin{pmatrix} \eta_{\alpha\beta} & \eta_{\mu\beta} \\ \eta_{\nu\alpha} & \eta_{\mu
u} \end{pmatrix} = \begin{pmatrix} g_{\alpha\beta} + g_{\mu\nu} A_\alpha^\mu A_\beta^\nu & g_{\mu\nu} A_\nu^\beta \\ A_\alpha^\mu g_{\nu\rho} & g_{\mu\nu} \end{pmatrix}, \] (2.21)
\[\{\eta^{MN}\} = \begin{pmatrix} \eta^{\alpha\beta} & \eta^{\mu\beta} \\ \eta^{\nu\alpha} & \eta^{\mu\nu} \end{pmatrix} = \begin{pmatrix} g^{\alpha\beta} A_\gamma^\mu & g^{\gamma\beta} A_\delta^\mu \\ -g^{\alpha\gamma} A_\nu^\beta & g^{\mu\nu} + g^{\gamma\delta} A_\gamma^\mu A_\delta^\nu \end{pmatrix}, \] (2.22)
where we denote the metric tensors of \(G/H \) and \(H \) as
\[g_{\alpha\beta} = g_{ab} L_a^\alpha L_b^\beta, \quad g^{\alpha\beta} = g^{ab} L_a^\alpha L_b^\beta \] (2.23)
and
\[g_{\mu\nu} = g_{ij} L_\mu^i L_\nu^j, \quad g^{\mu\nu} = g^{ij} L_\mu^i L_\nu^j \] (2.24)
correspondingly.

Note that the similar form of the metric tensor (2.21), (2.22) appears in the Kaluza-Klein scheme [3].

The right-invariant vector fields \(R_A = R_A^M \partial_M \) are the Killing vectors for the left-invariant metric \(\eta_{MN} \) of \(G \), as it follows from the definition of \(\{R^M_A\} \).

Using (2.21) we can rewrite the Killing equation for \(\{\eta_{MN}\} \) in the following form
\[-R_A^\gamma \partial_\gamma g^{\alpha\beta} + g^{\alpha\gamma} \partial_\gamma R_A^\beta + g^{\beta\gamma} \partial_\gamma R_A^\alpha = R^\mu \partial_\mu g^{\alpha\beta}. \] (2.25)
On the other hand, we can define the metric of \(G/H \) from the metric \(\{\eta_{MN}\} \) of \(G \), requiring the map \(dp \) to be an isometry.

A direct calculation shows, that the metric of \(G/H \) is described by \(\{g_{\alpha\beta}\} \). If we treat \(G/H \) as a homogeneous Riemannian manifold, we have to conclude from (2.27) that \(\partial_\mu g^{\alpha\beta} = 0 \). This condition means that the Lie variation of \(\eta_{MN} \) for left-invariant vector fields \(L_A = L_A^M \partial_M \)
vanishes, i.e. \(\{ \eta_{MN} \} \) is both invariant. It is possible if and only if \(G \) is semisimple group. In this case the metric \(\{ \eta_{AB} \} \) of \(T_e G \) can be identified with an adjoint-invariant Cartan-Killing form.

It is useful to write down here the explicit form of the Killing equations \(\delta \eta_{MN} = 0 \) for left-invariant vector fields in the special coordinate system

\[
\begin{align*}
\partial_\mu g_{\alpha \beta} &= 0 \\
L^i_\alpha \partial_\mu A_\nu^i &= A_\nu^j \partial_\mu L^j_\alpha - \partial_\alpha L^i_\mu \\
L^\sigma_\alpha \partial_\sigma g_{\mu \nu} + g_{\mu \sigma} \partial_\nu L^\sigma_\alpha + g_{\nu \sigma} \partial_\mu L^\sigma_\alpha &= 0.
\end{align*}
\]

(2.26)

Hence, we have shown that the homogeneous Riemannian manifold \(M \) can be identified with the quotient space \(G/H \), where \(G \) is the isometry group of \(M \) and \(H = I(q_0) \) is a stabilizer of an arbitrary fixed point \(q_0 \in M \). The general geometric analyses of this problem is presented in [3].

3 Quantum Lagrangian for Free Particle in Homogeneous Riemannian Space

Now we consider quantum mechanics for a free particle in a homogeneous Riemannian space \(M \), \(\dim(M) = n \) with a given action of the group \(G \) of isometries, \(\dim(G) = p > n \). As it has been shown in the previous section, the configuration space \(M \) can be identified with the quotient space \(G/H \), where \(H \), \(\dim(H) = m = p - n \) denotes the stabilizer of an arbitrary fixed point of \(M \).

In the construction of quantum theory, based on Schwinger’s quantization approach, the key role is played by the realization of a Lie algebra \(\text{Lie}(G) \) of \(G \), induced by the realization of \(G \) on \(M \). The set of independent Killing vectors, associated with the basis of \(\text{Lie}(G) \), possesses the properties of permissible variations \(\{ \delta q^\mu \} \), where \(\{ q^\mu \} \) denote the set of coordinate operators describing the position of a particle.

In the case of the homogeneous Riemannian manifold \(G/H \) the number \(p = \dim(G) \) of independent Killing vectors is bigger than the dimension \(n \) of the manifold \(G/H \). Some of these vectors form the representation of the isotropy group \(I([g]) \), \(\dim(I([g])) = m = p - n \) that depends on a choice of a point \([g] \in G/H \). The transformations of \(I([g]) \) we can treat as local gauge ones. Therefore, we can divide independent Killing vectors at \([g] \in G/H \) into two sets. The first one generates non-trivial transformations on \(G/H \), the second one realizes the action of the stabilizer subgroup \(I([g]) \subset G \) on \(M \) (the group of local gauge transformations).

Making an attempt to realize Schwinger’s quantization procedure immediately as in [2], one observe the same difficulties as in usual gauge models. Here, as in any theory with first-class constraints, there is a problem of fixing the gauge degrees of freedom, which number in our model equals to \(m = \dim(G) - \dim(G/H) \).

This procedure is performed in the present model by means of introducing a new configuration space \(G \) (the space of an isometry group). The local coordinate system in \(G \) is described by

\[
x^M = \{ x^M(g) : x^M(g) = \{ x^\alpha([g]), x^\mu(g) \}, g \in G \}, \quad M = \overline{1, p}, \ \alpha = \overline{1, n}, \ \mu = \overline{n + 1, p} \quad (3.1)
\]
where \(\{ x^\mu(\cdot) \} \) are coordinates in the orbit \(gH \).

The metric \(\{ \eta_{MN}(g) : M, N = 1, \ldots, p \} \) has been defined in the previous section by the formulae (2.21), (2.22).

Of course, the enlargement of the number of degrees of freedom from \(n = \dim(G/H) \) to \(p = \dim(G) \) brings the appearance of unphysical quantum states. The procedure for its elimination will be presented later.

The quantum Lagrangian describing a free particle in the new configuration space \(G \) has the following form

\[
L_G := \frac{1}{2} \dot{x}^M \eta_{MN}(g) \dot{x}^N - U_q(g) \tag{3.2}
\]

which has been introduced in [2]. Here \(U_q(g) \) denotes a so-called “quantum potential”. Its role consists of providing the scalar invariance of (3.2) under a general coordinate transformation \(x^M \rightarrow x^M = x^M (x) \) on \(G \) (note that \([x^M, \dot{x}^N] \neq 0\)).

Taking into account \((m + n)\)-decomposition of the metric in a special coordinate system, introduced in the previous section, the Lagrangian (3.2) can be written as

\[
L_G = \frac{1}{2} \dot{x}^\alpha g_{\alpha\beta}(g) \dot{x}^\beta + \frac{1}{2} (\dot{x}^\mu + \dot{x}^\alpha A^\mu_\alpha(g)) g_{\mu\nu}(g) \left(\dot{x}^\nu + A^\nu_\beta(g) \dot{x}^\beta \right) \tag{3.3}
\]

where the first term corresponds to the kinetic energy of a particle on \(G/H \), while the appearance of the second term is caused by the extension of the physical configuration space from \(G/H \) to \(G \).

Since \(G \) acts on itself simply transitively, the method of constructing quantum theory based on the Lagrangian (3.2) (or (3.3)) coincides with that of developed in [2]. Note that due to semisimplicity of \(G \), there are two equivalent sets of Killing vectors \(\{ v^M_A(g) \} \), that correspond to the matrices of left and right translations on \(G \), i.e. \(\{ L^M_A(g) \} \) and \(\{ R^M_A(g) \} \) correspondingly.

In accordance with [3] the permissible variations of the coordinate operators \(\{ x^M \} \) can be written in the following form

\[
\delta x^M = \varepsilon^A v^M_A(g), \quad G = \varepsilon^A v^M_A \circ p_M, \quad p_M := \eta_{MN} \circ \dot{x}^N. \tag{3.4}
\]

Here \(\varepsilon^A \) is an infinitesimal \(c \)-number parameter of a coordinate transformation on \(G \).

4 Algebra of Commutation Relations

Constructing the algebra of commutation relations for operators describing quantum mechanics of the particle on \(G/H \), we will use the fact that the algebra to be found is contained in the wider one associated with quantum mechanics on \(G \).

At first we consider the right isometries of the metric \(\{ \eta_{MN} \} \). In this case, in accordance with the results of the previous sections, Killing vectors coincide with left-invariant vector fields \(\{ L^\mu_i(g) \partial_\mu \} \), which determine the generator of right translations as in following

\[
G_i = L^\mu_i \circ p_\mu, \quad p_\mu := \eta_{\mu\nu} \circ \dot{x}^\nu = g_{\mu\nu} \circ (\dot{x}^\nu + A^\nu_\alpha \circ \dot{x}^\alpha) \tag{4.1}
\]

In this case
\[\delta_i x^\alpha = 0 = \frac{1}{i \hbar} [x^\alpha, L_i^\mu \circ p_\mu] \] \hspace{1cm} \text{(4.2)}

\[\delta_i x^\mu = L_i^\mu = \frac{1}{i \hbar} [x^\mu, L_i^\mu \circ p_\mu]. \]

Since \([x^M, L_i^\mu] = 0 \) and \(\det(L_i^\mu) \neq 0 \) we can conclude from (4.2) that
\[[x^M, p_\mu] = i \hbar \delta^M_\mu. \] \hspace{1cm} \text{(4.3)}

For the case of an arbitrary function \(f(x^M) \) depending on the coordinates \(\{x^M\} \) we have
\[\delta_i f = L_i^M \partial_M f = L_i^\mu \partial_i f = \frac{1}{i \hbar} [f, L_i^\nu \circ p_\nu], \] \hspace{1cm} \text{(4.4)}

then
\[[f, p_\mu] = i \hbar \partial_\mu f. \] \hspace{1cm} \text{(4.5)}

Taking into account the transformation law of \(p_\mu \) under the transformation \(x^M \to x^M + \delta x^M \) one can easily find
\[[p_\mu, p_\nu] = 0. \] \hspace{1cm} \text{(4.6)}

Developed by this way commutation relations determine quantum mechanics on the orbit \(gH \).

Using the commutation relations (4.3-4.6) and the structure equation for \(\{L_i^\mu\} \) one can directly prove that

\[[p_i, p_j] = -i \hbar \epsilon^{k}_{ij} p_k \] \hspace{1cm} \text{(4.7)}

where \(p_i := L_i^\mu \circ p_\mu \).

Further we consider the left isometries of the metric \(\{\eta_{MN}\} \) which are described by the set of the Killing vectors \(\{R^M_A \partial_M\} \). The generator of these transformations has the form
\[G_A = R^M_A \circ p_M = R^\alpha_A \circ \pi_\alpha + (R^\mu_A + A^\mu_A R^\alpha_A) \circ p_\mu \] \hspace{1cm} \text{(4.8)}

where we denote

\[p_\alpha = \eta_{\alpha M} \circ \dot{x}^M = \pi_\alpha + A^\mu_\alpha \circ p_\mu, \quad \pi_\alpha = g_{\alpha \beta} \circ \dot{x}^\beta, \]
\[p_\mu = g_{\mu \nu} \circ (\dot{x}^\nu + A^\nu_\alpha \circ \dot{x}^\alpha). \] \hspace{1cm} \text{(4.9)}

The vector \(\{\pi_\alpha\} \) rewritten as
\[\pi_\alpha = p_\alpha - A^i_\alpha \circ p_i, \quad A^i_\mu = T^i_\mu A^\mu_\alpha = T^\alpha_\mu \] \hspace{1cm} \text{(4.10)}

has the sense of the momentum operator of a free particle on \(G/H \). As far as \(\{R^A_\alpha \partial_\alpha\} \) are Killing vectors of \(G/H \), the first term in (4.8) coincides with the generator of isometry transformations of the metric of \(G/H \), while the second one is caused by extention of the configuration space from \(G/H \) to \(G \).

To define the operator properties of \(\pi_\alpha \), we consider the variation of an arbitrary function \(f(x) \) of only \(\{x^M\} \)’s:
\[\delta_A f = R_A^M \partial_M f = \frac{1}{i\hbar} [f, G_A]. \]

(4.11)

Substituting the explicit form of the generator \(G \) into (4.11) one can rewrite (4.11) as

\[R_M^\alpha \circ [f, \pi_\alpha] = i\hbar R_A^\alpha \left(\partial_\alpha - A_\alpha^i L_i \right) f, \quad L_i = L^\mu_i \partial_\mu. \]

(4.12)

Using the fact that \(\{ R_M^A \} \) is the inverse of \(\{ R_A^\mu \} \) we can contract (4.12) with \(R_M^A \), then

\[[f, \pi_\alpha] = i\hbar \partial_\alpha f, \quad \pi_\alpha := \partial_\alpha - A_\alpha^i L_i. \]

(4.13)

The commutator of new derivatives \(\pi_\alpha \) acts on a scalar function \(f(\{ x^M \}) \) as

\[[\pi_\alpha, \pi_\beta] f = -F_{\alpha\beta}^i L_i \]

(4.14)

where

\[F_{\alpha\beta}^i = \partial_\alpha A_\beta^i - \partial_\beta A_\alpha^i + \dot c_{jk} A_\alpha^j A_\beta^k. \]

(4.15)

A direct calculation leads to

\[[\pi_\alpha, \pi_\beta] = i\hbar F_{\alpha\beta}^i \circ p_i. \]

(4.16)

The object \(\{ F_{\alpha\beta}^i \} \) in (4.14-4.16) can be treated as a strength tensor of the gauge field \(A_\alpha^i \) on \(G/H \). The corresponding gauge group is the isotropy group \(H \subset G \).

5 Equations of Motion and Hamiltonian

Using the same procedure as developed in [2] one can construct the Hamiltonian for the system in the configuration space \(G \), expressed in terms of momentum operators \(p_M = \eta_{MN} \circ \dot x^N \). The Hamiltonian is completely determined by the initial Lagrangian

\[H_G = \frac{1}{2} \left(p_M - \frac{i\hbar}{2} \Gamma_M \right) \eta^{MN} \left(p_N + \frac{i\hbar}{2} \Gamma_N \right) = \frac{1}{2} p_M \eta^{MN} p_N + V_G(x) \]

(5.1)

where

\[V_G = \frac{\hbar^2}{4} \left(\partial_M \Gamma^M + \frac{1}{2} \Gamma_M \Gamma^M \right), \quad \Gamma_M = \Gamma^N_{MN} = \frac{1}{2} \det(\eta_{MN}) \partial_M \det(\eta_{MN}). \]

(5.2)

The Christoffel symbol constructed with the metric \(\{ \eta_{MN} \} \). Using the properties of (\(m + n \))-decomposition one can rewrite (5.1) as

\[H_G = H_{G/H} + H_{orb}, \]

(5.3)

where

\[H_{G/H} = \frac{1}{2} \left(\pi_\alpha - \frac{i\hbar}{2} \Gamma_\alpha \right) g^{\alpha\beta} \left(\pi_\beta + \frac{i\hbar}{2} \Gamma_\beta \right) = \frac{1}{2} \pi_\alpha g^{\alpha\beta} \pi_\beta + V_{G/H}, \]

(5.4)

\[H_{orb} = \frac{1}{2} p_i g^{ij} p_j = \frac{1}{2} \left(p_\mu - \frac{i\hbar}{2} \Gamma_\mu \right) g^{\mu\nu} \left(p_\nu + \frac{i\hbar}{2} \Gamma_\nu \right) = \frac{1}{2} p_\mu g^{\mu\nu} p_\nu + V_{orb} \]

(5.5)
The objects $\Gamma_\alpha = \Gamma^\beta_{\alpha\beta}$ and $\Gamma_\mu = \Gamma^\nu_{\mu\nu}$ are defined analogously to Γ_M. The “quantum potentials” $V_{G/H}$ and V_{orb} have the form

$$V_{G/H} = \frac{\hbar^2}{4} \left(\partial_\alpha \Gamma^\alpha + \frac{1}{2} \Gamma^\alpha \Gamma_\alpha \right), \quad V_{orb} = \frac{\hbar^2}{4} \left(\partial_\mu \Gamma_\mu + \frac{1}{2} \Gamma^\mu \Gamma_\mu \right). \quad (5.6)$$

The Heisenberg equations of motion describing dynamics in G can be derived by means of $(m + n)$-decomposition of the metric

$$\dot{p}_M = \frac{1}{i\hbar} [p_M, H_G]. \quad (5.7)$$

Performing the direct calculation and using commutative relations, one can find

$$\dot{\pi}_\alpha = \frac{1}{2} \pi_\beta \partial_\alpha g^{\beta\gamma} \pi_\gamma + \left(F_{\alpha\beta} \circ g^{\beta\gamma} \right) \circ \pi_\gamma + \partial_\alpha V_{G/H}, \quad (5.8)$$

$$\dot{p}_i = 0, \quad (5.9)$$

where we denote $F_{\alpha\beta} := F^i_{\alpha\beta} \circ p_i$.

So we can conclude from (5.8, 5.9) that the motion of a particle is governed by a Lorentz-type force represented by the second term in the right hand side of (5.8). This object is determined by the strength tensor (4.15) of the gauge potential A_i^α. The motion of a particle on the orbit gH is completely flat due to the conservation law (5.9).

The main result of this section consists of the emergence of a gauge structure in quantum theory on a homogeneous manifold. Such a structure is induced by additional degrees of freedom caused by an isotropy group. This result is not surprising because the given theory can be considered as a version of the Kaluza-Klein scheme, that has been exhaustively investigated in a great number of works [3].

6 Coordinate Representation and Physical Sector of States

The procedure for constructing the quantum space of states for quantum mechanics on a homogeneous Riemannian manifold with the simply transitive action of the transformation group G has been introduced in [2]. The obtained results are quite applicable in the case we are considering. The problem arising here is how to eliminate unphysical states (that does not refer to quantum mechanics on G/H) from the whole set of states describing quantum mechanics on G. The simplest way to perform such a procedure consists of using $(m + n)$-decomposition.

According to [3] the coordinate representation of the operators, corresponding to quantum mechanics on G, is defined by its action on the wave functions

$$\psi(x) := \langle x | \psi \rangle. \quad (6.1)$$

(here $|x\rangle$ is an eigenvector of the coordinate operator and $|\psi\rangle$ denotes an arbitrary vector of state) has the following form

$$\hat{x}^M = x^M, \quad (6.2)$$

$$\hat{p}_M = -i\hbar \left(\partial_M + \frac{1}{2} \Gamma_M \right).$$
Similarly we can write

$$\hat{H}_G = -\frac{\hbar^2}{2} (\partial_M + \Gamma_M) \eta^{MN} (\partial_N + \Gamma_N) = \frac{\hbar^2}{2} \frac{1}{\sqrt{\eta}} \partial_M \left(\sqrt{\eta} \eta^{MN} \partial_N \right),$$ \hspace{1cm} (6.3)

where $\eta = \det(\eta_{MN})$.

The wave function (6.1) satisfies the Schrödinger equation

$$-\frac{\hbar^2}{2} \frac{1}{\sqrt{\eta}} \partial_M \left(\sqrt{\eta} \eta^{MN} \partial_N \psi \right) = E \psi.$$ \hspace{1cm} (6.4)

The coordinate representation of the generator of permissible variations on G has the form

$$\hat{G} = \varepsilon^A \hat{v}_A \circ \hat{p}_M = -i\hbar \varepsilon^A v^M_A \partial_M,$$ \hspace{1cm} (6.5)

that can be derived using (6.2) and the properties of the Killing vectors $\{v^A_M \partial_M : a = \Gamma, p\}$.

Hence, the coordinate and momentum operators can be rewritten in terms of $(m + n)$-decomposition as

$$\hat{x}^\mu = x^\mu, \quad \hat{p}_\mu = -i\hbar \left(\partial_\mu + \frac{1}{2} \Gamma_\mu \right)$$ \hspace{1cm} (6.6)

for the operators describing quantum mechanics on the orbit gH, and

$$\hat{x}^\alpha = x^\alpha, \quad \hat{p}_\alpha = -i\hbar \left(\partial_\alpha + \frac{1}{2} \Gamma_\alpha \right)$$ \hspace{1cm} (6.7)

for the operators describing quantum mechanics on the quotient space G/H.

Further we consider the procedure of selection of the physical sector, or, in other words, the states represented by the subset $L_2(G/H) \subset L_2(G)$ that describe quantum mechanics on G/H.

The wave function $\psi \in L_2(G)$ performs the map

$$\psi : G \rightarrow \mathbb{C}^n,$$

that can be restricted to the function on G/H by means of the section of $G(G/H, H)$

$$s : \begin{array}{c} G/H \\ [g] \end{array} \rightarrow \begin{array}{c} G \\ s([g]) \in gH \end{array}$$ \hspace{1cm} (6.8)

that meets the condition $\rho(s([g])) = g$ and performs the correspondence between the equivalence class $[g]$ and its representative $gh = s([g]) \in gH \subset G$ for some $h \in H$. In this expression the element $h \in H$ completely determines the section s, therefore we denote this section as s_h.

Hence

$$\psi \circ s_h := \phi : \begin{array}{c} G/H \\ [g] \end{array} \rightarrow \mathbb{C}^n$$ \hspace{1cm} (6.9)

is the wave function on G.

The matrix elements of physical observables calculated on the wave functions $\phi = \psi \circ s$ in $L_2(G/H)$ have to be independent on the choice of the section s_h. It is possible if and only if the wave functions $\phi := \psi \circ s_h$ and $\phi' := \psi \circ s_{h'}$ are connected by the unitary transformation

$$\phi'([g]) \equiv \psi(gh') \equiv \psi(ghh'^{-1}h') = U(h, h') \psi(gh) = U(h, h') \phi([g]).$$ \hspace{1cm} (6.10)
Therefore one can show that the wave functions of the physical sector obey the condition

$$
\psi_{\text{phys}}(gh) = \sigma_{h^{-1}} \psi_{\text{phys}}(g) .
$$

(6.11)

where \(\sigma_{h^{-1}} \) is the right unitary representation of \(H \subset G \) in \(\mathbb{C}^n \) (while \(\sigma_h \) is the left one).

The representation of \(H \) on physical states induces the representation of Lie(\(H \)) as

$$
\tilde{\sigma}_i := \left. \frac{d}{d\tau} \right|_{\tau=0} \sigma_{h_i(\tau)} \in \text{vect}(\mathbb{C}^n) \cong \mathbb{C}^n ,
$$

(6.12)

where \(h_i(\tau) \in H \) is an integral curve for the basic element \(T_i|_e \in T_e H \). The connection between (6.12) and the generator of coordinate transformation can be expressed as

$$
\tilde{\sigma}_i \psi_{\text{phys}} = \left. \frac{d}{d\tau} \right|_{\tau=0} \psi_{\text{phys}}(gh_i^{-1}(\tau)) = \frac{\partial \psi_{\text{phys}}(gh_i^{-1})}{\partial x^\alpha(gh_i^{-1})} x^\mu(h_i^{-1}) \frac{dx^\mu(h_i^{-1})}{d\tau} \bigg|_{\tau=0} = -L_i^\alpha(g) \partial_\alpha \psi_{\text{phys}} .
$$

Hence, the wave functions of the physical sector of states satisfy the equation

$$
L_i^\alpha \partial_\alpha \psi_{\text{phys}} = \frac{1}{i\hbar} \hat{p}_i \psi_{\text{phys}} = -\tilde{\sigma}_i \psi_{\text{phys}} ,
$$

(6.13)

that points to the fact that \(p_i = L_i^\mu \circ p_\mu \) describe the representation of Lie(\(H \)).

Using (6.13) one can express the “horizontal derivative” \(D_\alpha \) in terms of the generators \(\tilde{\sigma}_i \).

The derivative \(D_\alpha \) acts on physical sector as

$$
D_\alpha = \left(\partial_\alpha + A_i^\alpha \tilde{\sigma}_i \right) \psi_{\text{phys}} .
$$

(6.14)

This formula coincides with the definition of the invariant derivative associated with the action of the gauge group.

Finally, using (6.14) in (6.3) we find a coordinate representation of \(\hat{H}_{G/H} \) on physical sector:

$$
\hat{H}_{G/H} = -\frac{\hbar^2}{2} (D_\alpha + \Gamma_\alpha) g^{\alpha\beta} D_\beta - \frac{\hbar^2}{2} \hat{C}
$$

(6.15)

where \(\hat{C} = \eta^{ij} \tilde{\sigma}_i \tilde{\sigma}_j \) is the Casimir operator of the unitary representation of \(H \).

According to general theory of unitary representations [7], the irreducible representations of Lie groups are finite dimensional and can be described by eigenvalues of the Casimir operator.

Therefore, the given irreducible unitary representation describes one from several inequivalent theories on \(G/H \) based on the Hamiltonian (6.3).

The analyses of inequivalent quantum theories has been performed in [4] in terms of representation theory of Weyl relations. Our final results, obtained by means of extended Schwinger quantization scheme, completely correspond to the results of ([4]).

7 Summary and Discussion

Quantum mechanics on the homogeneous manifold \(G/H \) has been constructed using our extension of Schwinger quantization procedure. The essential feature of quantum mechanics on \(G/H \) consists of the appearance of the gauge structure induced by some unitary (irreducible) representation of the isotropy subgroup \(H \subset G \) (\(H \) plays the role of a gauge group). The gauge field corresponds to the connection 1-form of the fiber bundle \(G(G/H,H) \). There exist
a number of unequivalent quantum theories classified by eigenvalues of the Casimir operator of the unitary representation.

Successful development of quantum mechanics on a homogeneous Riemannian manifold with simply and non-simply transitive transformation groups of isometries shows that extended Schwinger’s quantization scheme is suitable in constructing quantum mechanics on a manifold with a group structure. This approach can be applied to analyze a number of models such as Kaluza-Klein theories \[3\] or to generalize simplest hadron models \[6\].

Appendix 1. Realizations of Lie Groups on Manifolds

Lie Groups and Lie Algebras

Let \(G\) be a \(p\)-dimensional Lie group with a local coordinate system \(\{x^M(g) : g \in G, M = 1, p\}\) at a point \(g \in G\).

Left- and right translations are defined as

\[
L_g : \ G \rightarrow G \quad h \mapsto L_g h := gh, \quad R_g : \ G \rightarrow G \quad h \mapsto R_g h := hg. \tag{A1.1}
\]

In the tangent space \(T_h G\), \(L_g\) and \(R_g\) induce the following differential maps

\[
dL_g : T_h G \rightarrow T_{gh} G, \quad dR_g : T_h G \rightarrow T_{hg} G. \tag{A1.2}
\]

In the local coordinate system \(\{x^M(\cdot)\}\) the element \(A|_h \in T_h G\) can be written as

\[
A|_h = a^M(h) \frac{\partial}{\partial x^M(h)}. \tag{A1.3}
\]

Therefore we can express the transformations (A1.2) in the local form

\[
dL_g(A|_h) = a^M(h) \frac{\partial x^N(gh)}{\partial x^M(h)} \frac{\partial}{\partial x^N(gh)} = a^M(h) L^N_M(gh,h) \frac{\partial}{\partial x^N(gh)}, \tag{A1.4}
\]

\[
dR_g(A|_h) = a^M(h) \frac{\partial x^N(hg)}{\partial x^M(h)} \frac{\partial}{\partial x^N(hg)} = a^M(h) R^N_M(hg,h) \frac{\partial}{\partial x^N(hg)}, \tag{A1.5}
\]

where we denote the matrices of left and right translations together with their inverses as

\[
L^N_M(gh,h) = \frac{\partial x^N(gh)}{\partial x^M(h)}, \quad T^M_N(h,gh) = \frac{\partial x^M(h)}{\partial x^N(gh)}, \tag{A1.6}
\]

\[
R^N_M(hg,h) = \frac{\partial x^N(hg)}{\partial x^M(h)}, \quad R^M_N(h,hg) = \frac{\partial x^M(h)}{\partial x^N(hg)}, \tag{A1.7}
\]

(here \(T = L^{-1}\), \(R = R^{-1}\))

The Lie algebras of left- and right-invariant vector fields are constructed by left and right translations of the elements of \(T_e G\) (\(e \in G\) denotes the unit element) correspondingly.

We denote the basic element of \(T_e G\) as

\[
T_A|_e = \frac{\partial}{\partial x^A(e)} := A|_e. \tag{A1.8}
\]

Then the set of left [right] invariant vector fields
\[L_A|_g := d L_g \left(\frac{\partial}{\partial x^A} \right)_{e} = d L_g(T_A|_e) = L_A^M(g) \frac{\partial}{\partial x^M}|_g \]
(A1.9)

\[R_A|_g := d R_g \left(\frac{\partial}{\partial x^A} \right)_{e} = d R_g(T_A|_e) = R_A^M(g) \frac{\partial}{\partial x^M}|_g \]
(A1.10)

form a basis of the left [right] Lie algebra \(\text{Lie}(G) \) of the Lie group \(G \). The corresponding matrices \(L(g) = \{ L_A^M(g) \} \) and \(R(g) = \{ R_A^M(g) \} \) are obtained by the reduction of (A1.6), (A1.7):

\[L_A^M(g) = L_A^M(gh, h)|_{h=e}, \quad T_M^A(g) = T_M^A(h, gh)|_{h=e}, \]
(A1.11)

\[R_A^M(g) = R_A^M(hg, h)|_{h=e}, \quad T_M^A(g) = T_M^A(h, hg)|_{h=e}, \]
(A1.12)

Here, as in section (2) the first lot of Latin indices \(A, B, \ldots = 1, p \) is used to indicate the group degrees of freedom (i.e. the frame of \(T_e G \)), and the final one \(M, N, \ldots = 1, p \) describes the tensor degrees of freedom.

The structure equations for the left Lie algebra is:

\[[L_A, L_B] = c^C_{AB} L_C, \]
(A1.13)

or, in a local form

\[L_A^M \partial_M L_N^B - L_B^M \partial_M L_A^N = c^C_{AB} L_C^N . \]
(A1.14)

The right Lie algebra has the basis \(\{ R_A = R_A^M \partial_M \} \) and obeys the similar structure equations, that can be obtained by the following replacement

\[L_A^M \rightarrow R_A^M, \quad c^C_{AB} \rightarrow -c^C_{AB} . \]

The inverse matrix \(T \) satisfies the Maurer-Cartan equations

\[\partial_M T_N^A - \partial_N T_M^A = -c^A_{BC} T_M^B T_N^C . \]
(A1.15)

Note, that left and right Lie algebras are commutative

\[R_A^M \partial_M L_B^N = L_B^M \partial_M R_A^N . \]
(A1.16)

Action of Lie Group on Manifold

Let \(M \) and \(G \) be a smooth manifold and the Lie group of right transformations on \(M \) defined by the map

\[\rho : M \times G \rightarrow M \]

\[(x, g) \rightarrow y := \rho_g x, \]
(A1.17)

with the following properties

1. \(\forall g_1, 2 \in G, \rho_{g_1} \circ \rho_{g_2} = \rho_{g_2 g_1}; \)
2. \(\rho_e = \text{id}_M \) (the identity map);
3. \(\forall g \in G, \rho_g : M \to M \) is a diffeomorphism \((\rho_g \in \text{Diff}(M))\).

The realization (A1.17) of the Lie group as the transformation group induces the realization of the Lie algebra by the following procedure.

Let \(A \in \text{Lie}(G), g_A(\tau) := \exp(\tau A) \in G \) be an integral curve of \(A \) (one-parametric subgroup of \(G, g_A(0) = e \)). Then the vector

\[
\tilde{\rho}_A|_x = \left. \frac{d}{d\tau} \right|_{\tau=0} \rho_{\exp(\tau A)}(x) \in T_x M
\]

defines the realization of \(A \in \text{Lie}(G) \). Due to the homomorphic nature of the map \(\rho : G \to \text{Diff}(M) \), the vector subspace \(\tilde{\rho}_{\text{Lie}(G)} \subset \text{vect}(M) \) is finite dimensional (\(\text{vect}(M) \) denote the space of vector fields over \(M \)).

A Lie group can be realized on itself with the use of left [right] translations. The induced realization of the Lie algebra coincides with the Lie algebra of right [left] invariant vector fields.

The basic element of \(T_e G \)

\[
T_A|_e = \delta^M_A \partial_M|_e
\]

is represented by a vector

\[
\left. \frac{d}{d\tau} \right|_{\tau=0} x^M(g g_A(\tau)) \partial_M|_g = L^M_A(g) \partial_M|_g .
\]

(A1.18)

Similarly, for the left action we have

\[
\left. \frac{d}{d\tau} \right|_{\tau=0} x^M(g_A(\tau) g) \partial_M|_g = R^M_A(g) \partial_M|_g .
\]

(A1.19)

Metric of Lie Group

The tangent space \(T_e G \) at the unit element \(e \in G \) is a \(p \)-dimensional vector space. We assume that there exists a scalar product defined by

\[
\langle \cdot, \cdot \rangle : T_e G \times T_e G \longrightarrow \mathbb{R} \\
\langle A|_e, B|_e \rangle \longrightarrow \langle A|_e, B|_e \rangle.
\]

(A1.20)

The scalar products of the basic elements \(\{T_A|_e : A = 1, p\} \) form the matrix

\[
\eta_{AB} := \langle T_A|_e, T_B|_e \rangle = \text{const}
\]

(A1.21)

that obeys the tensor transformation law under \(GL_p \) transformations in \(T_e G \).

Using (A1.21) one can easily show that the scalar product of left-invariant fields \(\{L_A\} \) on \(G \) equals to the matrix (A1.21):

\[
(L_A|_g, L_B|_g) = (L_A|_e, L_B|_e) \equiv \langle T_A|_e, T_B|_e \rangle = \eta_{AB} .
\]

(A1.22)

This scalar product can be identified with the left-invariant metric of \(G \). If \(G \) admits a subgroup \(H \subset G \), the metric can be chosen in the diagonal form

\[
\{\eta_{AB}\} = \begin{pmatrix} g_{ab} & 0 \\ 0 & g_{ij} \end{pmatrix}, \quad \{\eta^{AB}\} = \begin{pmatrix} g^{ab} & 0 \\ 0 & g^{ij} \end{pmatrix}.
\]

(A1.23)
by means of GL_p transformation. The tensor $\{g_{ij}\}$ in (A1.23) has the sense of the metric of T_eH.

The components of the metric of G can be defined with respect to the holonomic frame of vect(G) as the following scalar product

$$\eta_{MN}(g) := \left(\frac{\partial}{\partial x^M} \big|_g , \frac{\partial}{\partial x^N} \big|_g \right).$$

(A1.24)

Thus, using (A1.22), (A1.24) we can write

$$\eta_{AB} = (L_A|_g, L_B|_g) = L^M_A(g)L^N_B(g) \left(\frac{\partial}{\partial x^M} \big|_g , \frac{\partial}{\partial x^N} \big|_g \right).$$

Therefore,

$$\eta_{MN} = T^A_M(g)T^B_N(g)\eta_{AB}$$

(A1.25)

is the left-invariant metric of G.

Under the coordinate transformation being performed by the right translations the metric (A1.23) transforms as

$$\eta_{M_1,M_2}(g_1g_2) = \frac{\partial x^{N_1}(g_2)}{\partial x^{M_1}(g_1g_2)} \frac{\partial x^{N_2}(g_2)}{\partial x^{M_2}(g_1g_2)} \eta_{N_1N_2}(g_2).$$

(A1.26)

Such a transformation law means that the right translations on G are isometric transformations of the metric (A1.25). Equivalently, the Lie variation of (A1.23) associated with the right-invariant vector field vanishes, i.e. the right Lie algebra consists of Killing vectors.

However, the left-invariant vector field is not a Killing vector of (A1.23) in general case. It is possible if and only if the Lie group is semisimple. In this case $\{\eta_{AB}\}$ coincide with an adjoint-invariant Killing-Cartan form and the right-invariant metric of G is the same as the left-invariant one. Therefore, Killing vectors of $\{\eta_{MN}\}$ correspond to both Lie algebras.

Appendix 2. Connection 1-form of Principal Fiber Bundle

The connection 1-form $\omega \in A^1(G, \text{Lie}(H))$ (see, for example, [3]) of the principal fiber bundle $G(G/H, H)$ can be defined as the restriction of the Maurer-Cartan form of G to H by the identification $\text{Lie}(H)$ with T_eH:

$$\omega : \text{vect}(G) \longrightarrow \text{Lie}(H) \cong T_eH.$$

(A2.1)

In this case we can write

$$\omega|_g = \omega_M(g)dx^M|_g, \quad \omega_M(g) = \bar{T}^{i}_{M}T_i|_e,$$

(A2.2)

where $\{T_i|_e : i = n+1,p\}$ denotes a basis of T_eH.

In the local coordinate system corresponded to $(m+n)$-decomposition, (where $L_i^\alpha = 0$), the connection 1-form has the following form

$$\omega|_G = \omega_Mdx^M|_g = \bar{T}^{i}_{M}L_i^Ndx^M|_g \otimes \frac{\partial}{\partial x^N} \big|_g = \omega'^M_Mdx^M|_g \otimes \frac{\partial}{\partial x^\mu} \big|_g.$$

(A2.3)
Due to the properties of the matrices L and \mathcal{U} in such a coordinate system one can observe that

$$\omega^\mu = \omega^\mu_M dx^M = dx^\mu + \mathcal{T}_a^\mu_{\alpha} dx^\alpha = dx^\mu + A_\alpha^\mu dx^\alpha,$$

where $A_\mu^\alpha = \mathcal{T}_a^\mu_{\alpha}$ has the sense of a gauge field.

References

[1] J. Schwinger, Phys. Rev. 82, 914 (1951); ibid. 91, 713 (1953); see also: D. V. Volkov and S. V. Peletminsky JETP 37, 170 (1959); N. Ogawa et al., Prog. Theor. Phys. 96, 437 (1996).

[2] submitted to Europ. J. Phys.

[3] See, for example: Fortschr. der Phys. 32, 607 (1984)

[4] D. McMullan and I. Tsutsui, Ann. Phys. 237, 269 (1995); Y. Ohnuki and S. Kitakado J. Math. Phys. 34, 2827 (1993).

[5] S. Kobayashi, Nomidzu, Foundations of Differential Geometry, vol.II

[6] K. Fujii, K.-I. Sato, N. Toyota, A.P. Kobushkin, Phys. Rev. Lett., 1987, 58, 651 (1987). K. Fujii, A.P. Kobushkin, K.-I. Sato, N. Toyota, Phys. Rev. D 35, 1896 (1987). K. Fujii, K.-I. Sato, N. Toyota, Phys. Rev. D 37, 3663 (1987). K. Fujii, N. Ogawa, K.-I. Sato, N.M. Chepilko, A.P. Kobushkin, T. Okazaki, Phys. Rev. D 44, 3237 (1991).

[7] A. Kirillov, Elements of Representation Theory, Springer-Verlag, 1976