Supplementary Table 1: Raw data sheet.

Author	Year	Country	Criteria (Cut-Off)	Sample Size	Cognitively Impaired (ANI, MND, HAD in %)	Mean Age (SD) or Median (IQR), Range	ART Coverage (%)	Male (%)	Exclusion Criteria for Study Participants	Recruitment Year(s) / Time of Testing	Cohort / Place of Recruitment	NOS Score
Arentoft et al.	2015	USA	Frascati	134	68 (56, 5, 7)	47.6 (8.1)	90.6	70	yes	.	community outreach in NYC (East Harlem), Icahn School of Medicine at Mount Sinai	7
Agarwal et al.	2020	India	MoCA (26)	160	52.5	44 (10)	50	75.6	yes	.	Chandra Laxmi Hospital, Vaishali, Ghaziabad	7
Akena et al.	2010	Uganda	MMSE	64	70.3	32 (6.5)	.	21.9	no, only depression included	2007	mental health units of Mulago general hospital and Butabika psychiatric hospital	6
Akolo et al.	2014	Nigeria	GDS	133	30.8	33.6 (7.3)	0	42.1	yes	.	National Hospital (NH) & University of Abuja Teaching Hospital (UATH)	8
Alford et al.	2019	UK	Frascati (uncategorised)	52	31	55‘median’, 36-64	98	79	no, BUT score is adjusted	2016-2018	The Orange Clinic, Brighton (memory clinic)	6
Animit et al.	2019	Ethiopia	IHDS (9.5)	684	67.1	38.8 (8.8)	100	44	only neurological disorders & psychiatric disorders excluded	2017	Gamo Gola zone	8
Araya et al.	2020	Ethiopia	IHDS (9.5)	581	35.6	38 (9.8)	100	38.7	no	2018	four federal hospitals in Addis Ababa	7
Arenas-Pinto et al.	2014	UK	Frascati (uncategorised)	548	52	44 (9)	100	76	unspecified	2008-2010	Protease Inhibitor monotherapy Versus Ongoing Triple-therapy (PIVOT) trial	8
Asiedu, Kretchy & Asampong	2020	Ghana	IHDS	104	48	37.2 (10.1)	100	21.2	only psychiatric disorders & head injuries excluded	2017	Ridge Hospital in Accra	7
Atashili et al.	2013	Cameroon	IHDS (10)	400	85	41 (34-47)	100	26	unspecified	2010	Bamenda Regional Hospital AIDS Treatment Centre	7
Atkins et al.	2010	Canada	clinical NP ratings	357	48.5	41.5, 19-64	70	100	unspecified	.	St. Michael’s Hospital in Toronto	8
Aung et al.	2021	Australia	GDS	254	42	49.4 (9.5)	91.7	.	only alcohol/substance intoxication at time of assessment excluded	2011-2012	primary care clinic in Sydney	8
Awori et al.	2018	Kenya	MoCA (26)	215	69	44.5, 18-65	100	47.2	only CNS abnormalities excluded	2015-2016	Aga Khan University Hospital	8
Bai et al.	2017	Italy	Frascati	155	32.3 (25.8, 6.5, 0)	39 (31-46)	0	92	yes	.	.	8
Banerjee, McIntosh & Ironson	2019	USA	HDS (10)	209	14.8	37.7 (8.7)	49.3	71.8	yes	1997-2000	physician’s offices, specialty clinics, service organizations, and hospitals in Miami, Florida	8
Barber et al.	2017	UK	IHDS (10)	144	21.5	41 (37-45)	.	100	yes	.	MSM Neurocoog Study	6
Authors	Year	Country	Type of Test	Mean (SD)	N	%	Notes					
-------------------------	------	---------	--------------	-----------	---	---	--					
Becker et al.	2004	USA	clinical NP ratings	280 20.2 39.3 (8.2)	17	83.9	no	Allegheny County Neuropsychiatric Survey (ACNS)				
Belete, Medfu & Yemiayrew	2017	Ethiopia	IHDS (9.5)	234 33.3 38.3 (9.9)	88	35 yes	2016	Ayder Comprehensive Specialized Hospital				
Bharti et al.	2021	Nigeria	GDS	174 27.6 34.3 (7.6)	0 39.7 unspecifed, 36% ASYMPTOMATIC MALARIA	2011-2012	neuroAIDS study in Abuja, Nigeria					
Bloch et al.	2016	Australia	Frascati	264 30.7 (15, 12.6, 3.1)	48.5 (15.1)	91.7	99.6 no	2011-2012	Holdsworth House Medical Practice, Sydney			
Boccellari et al.	1993	USA	Gislen (uncategorised)	55 22 39.6 (5.5)	12.7	100 yes	1989	San Francisco General Hospital				
Bornstein et al.	1993	USA	(1.5 SD in at least 6 out of 15 measures)	233 12.8 34.4 (7.1)	. 100	only neurological, head injuries & history of drug use excluded	.	AIDS Clinical Trials Unit and local HIV-related community-based support groups				
Bourgeois et al.	2020	USA	MoCA (26)	359 33.7 57.4 (5.9)	98 85 unspecifed	2012-2014	two San Francisco HIV clinics					
Braganca & Palha	2011	Portugal	GDS	130 51 39.3 (6.1)	100	63.1 yes	2008	Infectious Diseases Service (IDS) of Hospital of S. João				
Brito-Marques et al.	2020	Brazil	MoCA (23)	133 83.5 44.7 (8.8)	.	57.9 yes	2016-2017	Hospital Universitário Oswaldo Cruz (HUCC), Universidade de Pernambuco (UPE), Recife				
Broutille et al.	2015	USA	Frascati (HAD)	200 33 43 (11)	100	72 yes	.	outpatient Infectious Disease Clinic at Washington University in St. Louis (WUSTL)				
Broutille et al.	2021	Canada	GDS	263 52.5 54.4 (8.0)	.	84 yes	2014-2017	Positive Brain Health Now Canadian cohort				
Bryant et al.	2015	USA	Frascati (uncategorised)	120 58.1 45.2 (9.5)	82.4	63.6 no	.	The Miriam Hospital Immunology Center				
Bunupuradah et al.	2012	Thailand	Frascati (uncategorised)	93 31.2 36.9 (32.8-40.5)	100	60.2 only CNS infections excluded	2008-2009	HIV STAR study				
Carvalhal et al.	2016	Canada	GDS	417 60 46.8 (9.7)	100	81 no	.	Ontario HIV Treatment Cohort Study (OCS)				
Casado et al.	2014	Spain	Frascati (uncategorised)	229 13 44.6 (36-51)	100	77 only psychiatric disorders & CNS infections excluded	2011-2012	.				
Chaermchai et al.	2013	Thailand	clinical NP ratings	75 51 34 (7)	0 44 yes	2008-2012	SEARCH 007 & 011, Bangkok					
Chan et al.	2012	Singapore	Frascati	132 22.7 (15.9, 5.3, 1.5)	45.9 (10.1)	. 86.4 only neurological & psychiatric disorders excluded	2010	Communicable Disease Centre of Singapore				
Chan et al.	2021	Thailand	Frascati (uncategorised)	67 30 28 'median'	0 96 unspecified	.	RV254 Thai AHI cohort					
Chan et al.	2019	China	IHDS (10)	98 39 31 (26-43)	0 94 only neurological & psychiatric disorders excluded	2013-2015	AIDS Clinical Service, Queen Elizabeth Hospital, Hong Kong					
Chang et al.	2011	USA	Frascati	69 42 (18.8, 21.7, 1.4)	47.4 (1.2)	80 91 yes	.	.				
Ciccarelli et al.	2011	Italy	Frascati	146 47.2 (35.6, 11.6, 5)	46.6 (20.4-54.8)	88.4 58 yes	2008-2010	.				
Ciccarelli et al.	2013	Italy	Frascati	101 49.5 (49.5, 0, 0)	47 (42-52)	100 66 yes	2008-2010	.				
Year	Country	Study	Description	Sample Size	Age	Sex	Duration	Location	Notes			
------	---------	-------	-------------	-------------	-----	-----	----------	----------	-------			
2019	Italy	Ciccarelli et al.	Gissén (uncategorised)	366	12	46 (40-52)	96.1	79.3	yes, 19.4% HCV-CONFECTION	Agostino Gemelli University Hospital, Rome and S. Caterina Novella Hospital, Galatina		
2014	India	Cook et al.	Frascati (uncategorised)	60	57	38.2 (8.4)	100	70	only psychiatric disorders & substance use excluded	PGIMER Immunodeficiency Clinic in Chandigarh, India		
2016	India	Cook et al.	IHDS (10)	75	36	29 (6)	0	62.7	only CNS infections, head injuries & substance use excluded	Postgraduate Institute of Medical Education & Research, Chandigarh		
2013	USA	Cross et al.	IHDS (10)	507	41	42 (33-49)	75	65.1	no	2008		
2013	USA	Crum-Cianflone et al.	GDS	200	19	36.4 (28.1-43.6)	70.5	95.5	only acute medical events excluded	Reference and Treatment Center for STD/AIDS in the city of São Paulo		
2015	Brazil	Cruz & Ramos	MMSE (23)	142	28.1	60-81	82.3	56.3	unspecified	Anhui province, local hospital in Fuyang City		
2010	China	Cysique et al.	GDS	192	42.7	40.2 (6.3)	60.9	61	unspecified	CARES cohort		
2017	USA	Dampier et al.	GDS	112	59.3	51 (46-56)	100	64.3	only alcohol/substance intoxication at time of assessment excluded	Guangxi Zhuang autonomous region of Southern China		
2015	China	Dang et al.	IHDS	230	37.5	18-65	.	.	yes	2011-2012		
2021	Switzerland	Darling et al.	Frascati	981	39.8 (25.4, 0.8, 0.6)	54.5 (7.5)	97.8	79.7	no	NAMACO study		
2019	UK	Davies et al.	MNC	76	28	46.9 (12.4)	100	100	yes	2013-2016		
2016	China	Day et al.	GDS	308	26.6	36 (32-40)	37	65	unspecified, 91% HCV CONFECTION	Anhui and Yunnan, China		
2017	Brazil	de Almeida et al.	Frascati	60	60 (48.3, 3.3, 8.3)	42.5 (9.1)	78	50	yes, BUT 20% with HCV CONFECTION	Hospital de Clinicas UFPR (HC-UFPR), Curitiba		
2002	Italy	de Ronchi, Faranca & Berardi	Frascati (HAD)	182	20.3	.	98.9	79.1	only neurological, psychiatric disorders & CNS infections excluded	University of Bologna		
2019	USA	Deiss et al.	GDS	189	18.5	36 (28-44)	65.6	100	no	2009-2011		
2020	USA	Derry et al.	McCa (23)	162	35	61.2 (5.8)	.	67	unspecified	Weill Cornell Clinical and Translational Science Center		
2017	China	Ding et al.	IHDS (10)	345	46.7	52.7 (9.5)	87	78	unspecified	Taizhou Prefecture of Zhejiang Province		
2020	Italy	Donne et al.	Frascati	85	7 (7, 0, 0)	54 (48-60)	78	78	yes	Infectious Diseases Institute of Policlinico Gemelli Foundation of Rome		
2020	Brazil	Duarte et al.	IHDS (10)	148	69.6	43'median'	.	38.5	unspecified	Hospital Nereu Ramos (HNR)		
2015	France	Dufouil et al.	Frascati	400	58.5 (20.8, 31, 6.8)	47.3 (10.2)	95	79.2	unspecified	Center for Aquitaine cohort		
2013	USA	Dufour et al.	GDS	355	22.1	47.7 (10.5)	82.2	74	yes	2007-2011		
2014	China	Dwyer et al.	Frascati (uncategorised)	50	69	35 (7.3)	70	84	unspecified	Ditan Hospital		
Authors	Year	Country	Methodology	N	Age (Range)	Gender	Psychiatric Disorders & CNS Infections Excluded	Study Period	Location	Notes		
--------------------	------	----------	-------------	---	-------------	--------	---	--------------	---	-------		
Elham et al.	2020	Iran	Frascati	93	50.6 (23.7, 18.3, 8.6)	36.6 (9)	92.5	yes	2016-2017	VCT center, Tehran	8	
Ene et al.	2016	Romania	GDS	194	36.5	24 (1.5)	91.7	48.4	2014	.	8	
Erlanson et al.	2019	USA	Frascati (uncategorised)	987	17	51 'median'	.	81	unspecifieed	2013-2014	HAILO study	6
Estiasari et al.	2015	Indonesia	Frascati (uncategorised)	62	51	31 (19-48)	0	68	only neurological, psychiatric disorders, head injuries & CNS infections excluded	2013-2014	Cipto Mangunkusumo Hospital, Jakarta	7
Fabbiani et al.	2018	Italy	Frascati	266	16.2 (16.2, 0, 0)	44 (36-50)	100	79.7	.	ATLAS-M trial	7	
Fabbiani et al.	2017	Italy	Frascati (uncategorised)	54	13	50 'median', 27-60	100	85.2	only CNS infections & substance use excluded	.	.	6
Fabbiani et al.	2019	Italy	T-Score (40)	146	24	50 (46-54)	92.5	76	yes, ALL COINFECTED WITH HCV	2009-2018	Rome, Monza and Siena	7
Falide-Garrido et al.	2008	Spain	Frascati (HAD)	88	52.3	33.8 (5.2)	83	64.8	yes	.	hospitals in Ourense	7
Fazeli, Woods & Vance	2019	USA	clinical NP ratings	174	53	51.3 (7)	91	62	.	University HIV/AIDS Clinic	8	
Ferrando et al.	2003	USA	Frascati (uncategorised)	141	62	40 (8)	.	100	only history & current substance use excluded	1995-1997	.	6
Fialho et al.	2013	Portugal	HDS (10)	103	57.3	43.9 (12.4)	100	0	only neurological, psychiatric disorders & current substance use excluded	2010	Infectious Diseases Service (IDS) of the Portuguese National Health System Hospital (Lisbon)	7
Filho & de Melo	2012	Brazil	MMSE (24)	52	36.5	57.6 (6.2)	94.2	55.8	only neurological & psychiatric disorders excluded	2006	Correia Picuço Hospital and the University Hospital of the Universidade Federal de Pernambuco (UPPE)	7
Fitri, Rambe & Fitri	2018	Indonesia	MoCA (26)	85	75.3	38.5 (9.8)	.	61.2	only neurological, psychiatric disorders & CNS infections excluded	2017	Adam Malik General Hospital Medan North Sumatera Indonesia	6
Flatt et al.	2021	Tanzania	Frascati	253	47.1 (25.3, 18.2, 3.6)	57 'median'	95.5	27.7	no	2016	Mawenzi Regional Referral Hospital (MMRH) HIV Care and Treatment Centre (CTC)	8
Foca et al.	2016	Italy	Frascati	206	47.1 (30.6, 15.1, 5.0)	40.2 (10.4)	.	85	only neurological, psychiatric disorders & CNS infections excluded	2009-2013	University Department of Infectious and Tropical Diseases of University of Brescia and Spedali Civili General Hospital (Brescia, Italy)	8
Foley et al.	2013	USA	GDS	79	21.5	21-79	.	78.5	only CNS infections & brain injuries excluded	.	local hospitals and community agencies in the Los Angeles area	7
Study	Year	Country	Location	Sample Size	Mean	Standard Deviation	Median	Sample Type	Exclusion Criteria	Hospital/Institution		
-----------------	------	---------	----------	-------------	------	--------------------	--------	-------------	---	--		
Ganasen et al.	2008	South Africa	HDS (10)	474	17.1	34.3 (7.9)		unspecified	Venture healthcare HIV clinics, in the Western Cape of South Africa			
Gandhi et al.	2011	USA	Frascati	114	86	32.5, 19.3, 34.2	46.8	(6.4)	only neurological, psychiatric disorders & CNS infections excluded	General Clinical Research Clinic at Johns Hopkins Hospital in Baltimore		
Garvey, Surendrakumar & Winston	2011	UK	Frascati (uncategorised)	101	19	53 (43-62)	100	88	only neurological & substance use history excluded			
Gascon et al.	2018	Brazil	Frascati	412	73.6	50.9, 16.2, 6.3	45.3	(10.7)	yes	Institute of Infectious Diseases Emilio Ribas (IER), Sao Paulo		
Gibbie et al.	2006	Australia	HDS (10)	129	7	44.7	93	95	unspecified	Melbourne		
Gomez et al.	2019	Canada	Frascati	381	21.2	8.1, 11, 2.1	47.3	(11.1)	only neurological, psychiatric disorders, CNS infections & head injuries excluded	Southern Alberta HIV Clinic (SAC) in Calgary, Alberta		
Goodkin et al.	2014	South Africa	Frascati (uncategorised)	70	43	31.5 (8)	0	18.6	unspecified			
Gott et al.	2017	Australia	GDS	96	55.2	56.1 (7.9)	100	97.9	only neurological, psychiatric disorders & substance use excluded	St Vincent's Hospital		
Grauer et al.	2015	Germany	Frascati	86	87.2	(29.1, 43, 15.1)	49' median', 19-72	89	82.6	unspecified	University Hospital Muenster	
Greene et al.	2015	USA	MoCA (26)	155	46.5	57 (54-62)	100	93.6	no	University of California San Francisco SCIOPE cohort		
Grima et al.	2012	Italy	Frascati	116	46.6	46.6, 0, 0	44 (37-49)	97.4	78.5	yes		
Groff et al.	2020	USA	Frascati	77	37.7	(28, 9, 2, 6)	47.5	100	59.7	only neurological, psychiatric disorders & substance use excluded		
Grundt et al.	2013	Australia, USA, Brazil, Thailand	Frascati (HAD)	258	13.6	40 (35-45)	96.1	57.8	unspecified	SMART study		
Gupta & Venugopal	2020	India	Frascati (uncategorised)	384	48	38.3 (9.2)	100	62.5	yes			
Gupta et al.	2007	India	Frascati (below 15th percentile in at least 2 domains)	119	60.5	29.9 (5.6)	0	43.7	only neurological & CNS infections history excluded	National Institute of Mental Health and Neuro Sciences (NMHANS), Bangalore		
Haddow et al.	2018	UK, Denmark, Belarus, Italy	Frascati	448	25.8 (20, 4.9, 0.9)	45.8 (9.6)	89.1	84.4	no	MULTICENTER study: CIPHER study		
Halman et al.	2014	Canada	Frascati (uncategorised)	83	48.2	49.2 (10.5)	74.7	80.7	no	Casey House		
Hanna et al.	2020	USA	Frascati	108	37	21.3, 9.2, 6.5	26-72	.	58	yes		
Heaton et al.	2008	China	GDS	201	35.5	40.9 (6.4)	64	60.7	yes	Fuyang, Anhui		
Study	Year	Country	Methodology	N	Age (Range)	Test	Gender	Diagnosis	Other Information	Location	Notes	
---	------	-------------	-------------	---	-------------	------	--------	-----------	--	---------------------------------	---	
Hestad et al.	2019	Zambia	GDS	275	36.7	41.1 (8.8)	100	38.6	only neurological, psychiatric disorders & substance use excluded	.	Lusaka 8	
Hirasuthikul et al.	2019	Thailand	MoCA (25)	340	59.4	55 (52-68)	.	61.5	unspecified	2015-2017 HIV-NAT 006 long-term cohort	6	
Holguín et al.	2011	Zambia	IHDS (10)	54	22	34 (0.8)	0	35	only brain injuries excluded	.	Lusaka 7	
Imai et al.	2020	Japan	Frascati	444	26.1 (16, 9.7, 0.4)	45 (40-55)	.	95	yes, BUT 13% with hemophilia	2016-2018 AIDS Clinical Center in National Center for Global Health and Medicine (ACC)	8	
Imam	2007	Nigeria	MMSE (25)	202	12.3	35.7 (12-60)	59.9	47.6	no	2003 State House Clinic in Abuja	7	
Invernizzi et al.	2018	Italy	MoCA (26)	69	49.2	53 (7.3)	.	69.6	no	2015-2016 Luigi Sacco Hospital	6	
Janssen et al.	2015	Netherlands	Frascati	95	41.1 (35.8, 5.3, 0)	48.2 (10.1)	.	87.4	yes	2012-2014 Art-NeCo study	7	
Janssen et al.	1989	USA	Frascati (HAD)	100	20	35.1 (4)	.	100	yes	1979-1980 San Francisco City Clinic	Institute of Infectious and Tropical Diseases in Belgrade	6
Jevtovic et al.	2009	Serbia	HDS	96	41.7	44 (12.1)	100	80.2	unspecified	.	Institute of Infectious and Tropical Diseases in Belgrade	6
Joska et al.	2016	South Africa, USA	Frascati	156	74 (26.2, 29.4, 12.2)	40 'median'	100	37.2	unspecified	.	Cape Town and Baltimore	8
Joska et al.	2011	South Africa	Frascati	170	76.5 (8.8, 42.4, 25.3)	29.5 (3.6)	0	26	only mental health problems, substance use & head injuries excluded	2008-2009 three primary health care centers in Cape Town	8	
Joska et al.	2019	South Africa	CSID	55	18.18	.	86.1	29.1	unspecified	.	Eastern Cape in South Africa	6
Jumare et al.	2020	Nigeria	Frascati	190	24.2 (16.8, 7.4, 0)	33 (29-40)	0	34.7	yes	2011-2014 Abuja, Nigeria	7	
Jumare et al.	2019	China, India, Nigeria	GDS	767	27.1	35 (9)	.	58.2	unspecified	.	.	6
Kabuba et al.	2017	Zambia	GDS	266	34.6	40.7 (8.7)	100	40	only neurological disorders & substance use excluded	.	Chilenje, Chipata, Kabwata, Kalingalinga, Matero Main, and Matero Referral Clinics	8
Kalayjian et al.	2019	USA	GDS	225	22.7	.	100	90.9	only neurological disorders excluded	.	AIDS Clinical Trials Group Study AS303	7
Kalayjian et al.	2014	USA	BNCS	1872	24	40 (33-47)	89	82	unspecified	.	ALLRT study	7
Kalianpur et al.	2016	USA	GDS	1261	36.2	43 (8.5)	70.3	77	yes	2003-2007 CHARTER study	8	
Kalunweka et al.	2014	Zambia	MMSE (22)	58	50	36.8 (24-47)	36	53	unspecified	2011-2013 University Teaching Hospital in Lusaka	6	
Kamal et al.	2017	Switzerland	Frascati	59	27.1 (15.2, 6.8, 5.1)	53 (47-58)	100	66	no, BUT subsequently excluded	.	Swiss HIV Cohort Study (SHCS)	7
Kamat et al.	2017	India	GDS	69	33	37.4 (8.1)	61	66.7	unspecified	2010-2013 YRG CARE in Chennai	7	
Kammenga et al.	2017	Australia	GDS	55	47.2	49.3 (8.9)	87	100	only neurological, psychiatric disorders & current substance use excluded	2011-2012 Sydney	8	
Karlsen, Froland & Reindvag	1994	Norway	T-Score (40)	52	26.9	36 (8.4)	.	88.5	only drug use excluded	1986-1990 National Hospital (Rikshospitalet)	6	
Kelly et al.	2014	Malawi	Frascati	106	70 (55, 12, 3)	39 'median', 18-71	100	27	only neurological disorders excluded	2011-2012 Queen Elizabeth Central Hospital (QECH), Blantyre	8	
Kemp et al.	2021	UK	NMM	140	40.7	52.2 (9.7)	96	83	only neurological disorders excluded	.	HIV-POGO study	8
Study	Location	Frascati/	MMSE/	GDS/	Age	Gender						
---	--------------	------------	-----------	--------	---------	--------						
Kim et al.	South Korea	Frascati	194	26.3	45.1	yes	Seoul					
Kinal et al.	Japan	Frascati	728	25.3	45.6	yes						
Klusman et al.	USA	Frascati (HAD)	103	37.9	28.7							
Korten et al.	Turkey	Frascati	162	45.7	43.5		Istanbul					
Ku et al.	South Korea	Frascati	194	26.3	45.1	yes						
Kumar et al.	India	MMSE	200	21		65	65					
Kupprat et al.	USA	MMSE	169	23.7	55.8							
Lawler et al.	Botswana	Frascati (uncategorised)	60	36.7	37.5	yes	2009					
Lawler et al.	Botswana	IHDS (9.5)	120	38	37.5	yes	2008					
Libertone et al.	Italy	Frascati	556	31.7	57.7							
Lu et al.	Australia	Frascati	55	49.1	96.4	yes	2011-2012					
Madan, Singh & Golecha	India	MMSE (20)	172	10.5								
Maj et al.	Germany, Brazil, Zaire, Kenya, Thailand	(2 SD in at least 3 out of 10 measures)	602	13								
Makinson et al.	France	Frascati	200	35.5	62.7		The ANRS EP58 HAND 55–70 Study					
Marin-Webb et al.	Germany	Frascati	480	43	43	yes						
Matchanova et al.	USA	GDS	142	59.6	57.1		greater San Diego county					
Mayeux et al.	USA	Frascati (uncategorised)	111	44.1	41.2							
McCutchan et al.	USA	Frascati (uncategorised)	266	27	40.0	no	1999					
McNamara et al.	Ireland	BNCS	604	51.5	40.9	yes	St. James’s Hospital, Dublin (SJH)					
Metral et al.	Switzerland	Frascati	981	26.8	54.5							
Millanini et al.	USA	Frascati	74	52.7	67.0	yes						
Millanini et al.	Kenya, Tanzania, Uganda, Nigeria	Frascati (uncategorised)	2472	38	39.7							
Authors	Year	Country	Methodology	Sample Size	Age	Gender	Diagnosis Excluded	Study Details	Reference			
---------------------	------	--------------	-------------	-------------	-----	--------	--------------------	--	-----------			
Mogamby et al.	2017	South Africa	IHDS (10)	146	53	35 (18-56)	0	45.9 only psychiatric disorders & CNS infections excluded 2014-2015 peri-urban HIV clinic in KwaZulu-Natal	7			
Mohamed, Oduor & Kinyanjui	2020	Kenya	MoCA	360	81.1	40.2 (11.5)	100	35 yes Moi Teaching and Referral Hospital (MTRH) 8	8			
Molinaro et al.	2020	Uganda	IHDS (10)	399	59	35 (8)	0	53 only neurological disorders excluded 2013-2015 Rakai Community Cohort Study	8			
Moore et al.	2012	USA	GDS	200	19	36.4 (28.1-43.6)	64	95.5 unspecified 7	7			
Mugendi et al.	2019	Kenya	IHDS (10)	345	12.5	42 (9.5)	100	58.6 yes 2015 HIV clinic of the Kenyatta National Hospital in Nairobi 8	8			
Mukherjee et al.	2018	Malaysia	MoCA (26)	342	22.8	44.7 (10.2)	100	82.2 no 2014-2016 University of Malaya Medical Center (UMMC) in Kuala Lumpur 7	7			
Munoz-Moreno et al.	2010	Spain	Frascati	83	42.2 (19.3, 16.9, 6)	44 (37-51)	.	73.5 yes 2006-2008 University of Malaya Medical Center (UMMC) in Kuala Lumpur	7			
Munoz-Moreno et al.	2013	Spain	Frascati	106	48 (33, 15, 0)	44 (39-48)	86	87 no 2008-2011 7 hospitals in Barcelona 7	7			
Munoz-Moreno et al.	2008	Spain	Frascati (uncategorised)	64	60.9	.	73.4	70.3 yes 2008 HIV outpatient clinic of the hospital, which is located on the outskirts of Barcelona	6			
Nakku, Kinyada & Hoskins	2013	Uganda	IHDS (10)	618	64.4	35	64.6	27.3 no . semi-urban district of Entebbe 7	7			
Namagga et al.	2019	Uganda	IHDS (10)	393	58.2	37.9 (8.6)	100	26.7 yes 2017 Mbarara and Kunguriri districts in rural Southwestern Uganda 8	8			
Naveed et al.	2021	USA	T-Score (40)	877	39.1	47.1 (10.7)	81.1	80.5 no 2000-2017 Adolescent Medicine Trials Network for HIV/AIDS Interventions & International Maternal Pediatric AIDS Clinical Trials sites 8	7			
Nichols et al.	2013	USA	GDS	215	64.7	20.9 (1.8)	0	80.4 yes . Adolescent Medicine Trials Network for HIV/AIDS Interventions & International Maternal Pediatric AIDS Clinical Trials sites 8	8			
Njamshi et al.	2008	Cameroon	IHDS (10)	204	21.1	37.2 (8.8)	.	31.4 yes 2006 The Day Care Hospital 7	7			
Nyamayaro et al.	2020	Zimbabwe	GDS	155	49.7	37.8 (11.2)	100	30 only neurological, psychiatric disorders & alcohol use excluded 2018 .	8			
Odase, Ogurin & Ogwumyi	2006	Nigeria	CSID	192	65.6	32.5 (7)	0	50 yes 2004 University Teaching Hospital, Benin City 8 .	8			
Oshinaikhe et al.	2012	Nigeria	MMSE (26)	208	2.9	36.8 (8.3)	100	34.1 yes 2007-2008 Lagos University Teaching Hospital (LUTH) 8	8			
Overton et al.	2013	USA	MoCA	200	51	43.3 (10.7)	100	72 yes . Washington University in St. Louis 6 ART clinic of Queen Elizabeth Central Hospital in Blantyre 8	8			
Patel et al.	2010	Malawi	IHDS (10)	179	14	18-85	74.9	35.2 only CNS infections & alcohol use excluded 2007 ART clinic of Queen Elizabeth Central Hospital in Blantyre 8	8			
Pereda et al.	2000	Spain	Frascati (HAD)	100	27	33.6 (6.2)	51	71 only substance use excluded 1996-1997 ART clinic of Queen Elizabeth Central Hospital in Blantyre 8	7			
Perez-Valero et al.	2013	Spain	Frascati	191	27.2 (19.9, 7.3, 0)	45 (41-46)	100	73.3 yes 2011-2012 ART clinic of Queen Elizabeth Central Hospital in Blantyre 8	7			
Pinheiro et al.	2016	Brazil	IHDS (10)	392	54.1	42.8 (11.6)	89.3	44.7 yes 2015 Servicio de Asistencia Especializada (SAE), Pelotas 8	8			
Study	Year	Region	Method	Age (range)	Sample size	Diagnosis	Exclusion Criteria	Duration	Notes			
---------------	-------	------------	--------	-------------	-------------	------------------------------------	--	----------	---			
Portilla et al.	2019	Spain	Frascati	29.8 (19, 8.3, 2.4)	46 (7.5)	yes	2014-2015 Infectious Diseases Unit of the General University Hospital of Alicante	8				
Pumpradit et al.	2010	Thailand	Frascati	37.5 (21.9, 14.1, 1.6)	41 (36-46)	100 59.4	only CNS infections & head injuries excluded	.	.			
Qiao et al.	2019	China	MMSE	12.4	47.7 (11.2)	92.8 66.7	no	2017 Comparative HIV and Aging Research in Taizhou (CHART)	7			
Robbins et al.	2011	South Africa	IHDS (10)	65 80	38.5 (9.3)	100 35.4	only psychiatric disorders excluded	.	general medical clinic in the Western Cape Region of South Africa	6		
Robertson et al.	2019	Brazil, India, Malawi, Peru, South Africa, Zimbabwe	Frascati (uncategorised)	860 45	34 'median' 0 47.7	only psychiatric disorders excluded	.	AIDS Clinical Trials Group (ACTG) 5175, not ALLRT according to Smurzynski et al. (2008)	8			
Robertson et al.	2014	Canada	BNCS	2663 41.5	43 (19-83)	68.8 61.7	only opportunistic infections & substance use excluded	2010-2011 MULTICENTER study: CRANIUM study	8			
Rodrigues et al.	2013	Brazil	Frascati (uncategorised)	167 52.4	44 'median' 61.5 53.5	yes	.	.	7			
Ruhanya et al.	2020	South Africa	GDS	147 36.7	31.5 (5.2)	17.8 16.6	unspecified	.	primary care HIV-1 clinics in Cape Town	7		
Sacktor et al.	2016	USA	Frascati	364 33 (14, 14, 5)	47.4 (8.9)	74.7 100	yes	2007 Multicenter AIDS Cohort Study	8			
Sacktor et al.	2014	Uganda	Frascati	117 92 (19, 32, 41)	36.7 (5.3)	0 33.3	yes	2009-2010 Infectious Disease Clinic in Kampala	8			
Saini & Barar	2016	India	IHDS	80 32.5	21-50	100 56.3	only psychiatric disorders & substance use excluded	2011-2012 ART Centre of PBM and AG Hospital, Bikaner, Rajasthan	7			
Salauhuddin et al.	2020	Ethiopia	IHDS (10)	244 39.3	.	. 36	only neuropsychiatric medications excluded	2018 Muzan-Tepi University Teaching Hospital (MTUTH), Aman	7			
Salawu et al.	2008	Nigeria	Frascati (uncategorised)	60 56.7	32 (7.6)	0 40	only psychiatric disorders, head injuries & history of substance use excluded	.	.	6		
Sanmarti et al.	2020	Tanzania	Frascati (uncategorised)	243 19.3	44.3 (36-52)	100 29	yes	.	Chronic Diseases Clinic of ifakara (CDC)	8		
Sereia et al.	2012	Brazil	MMSE	100 27	20-64	100 62	no	.	Parana	7		
Sevigny et al.	2007	USA	Frascati (uncategorised)	329 68.5	41.9 (7.2)	76.8 68.6	only neurologic disorders, psychiatric disorders & CNS infections excluded	1998-2002 Northeast AIDS Dementia Study cohort	8			
Sheppard et al.	2015	USA	Frascati (uncategorised)	75 16	56.4 (5.9)	100 84	yes	.	greater San Diego community and local, urban HIV clinics	7		
Simioni et al.	2010	Switzerland	Frascati	200 84 (24, 52, 8)	46 (30-69.6)	72	only CNS infections & substance use excluded	.	Lausanne and Geneva University hospitals	7		
Spector et al.	2010	China	GDS	201 36.8	40.2 (6.4)	56.7 60.7	yes, BUT 93% HCV COINFECTION	.	Anhui	8		
Study	Year	Country	Methodology (uncategorised)	Sample Size	Mean Age (SD)	Follow-up	Study Details					
----------------------	------	------------	-----------------------------	-------------	---------------	-----------	---					
Starace et al.	2002	Italy	Gisslen	395	17.9	100	67.8 only psychiatric disorders excluded	1999-2000	NeuroICONA study	8		
Stern et al.	1991	USA	Frascati (uncategorised)	124	58.1	100	unspecified		AdeHIV Cohort Study	6		
Su et al.	2018	Netherlands	MNC	103	17	100	100 yes	2011-2013	Paris University Hospital	7		
Suarez et al.	2001	France	MMSE	91	58.2	100	67.9 only psychiatric disorders excluded	1995-1999	UCSD HRP (HIV Neurobehavioral Research Program)	7		
Sundermann et al.	2018	USA	GDS	1361	42.7	85	yes		UCSD HRP (HIV Neurobehavioral Research Program)	8		
Tamargo et al.	2021	USA	MMSE (24)	394	14.7	53.6	no	2016-2020	MASH cohort	6		
Temereanca et al.	2020	Romania	GDS	214	35	48	unspecified	2012-2014		7		
Thiyagarajan et al.	2010	UK	Frascati (uncategorised)	72	18	97	83.3 only neurological & substance use excluded, 37.5% HCV infection		St Mary's Hospital, London	7		
Tilghman et al.	2014	India	GDS	155	36.1	97	57.1 yes		National AIDS Research Institute (NARI) in Pune	8		
Tomita et al.	2019	South Africa	IHDS (10)	151	43.5	21-59	100 15.2 only substance use excluded, 100% MDR-TB	2015-2016	TB-specialist hospital in KwaZulu-Natal (KZN) Province	8		
Tozzi et al.	2005	Italy	Frascati (uncategorised)	412	54.4	59.7	71.1 yes	1996-2004	Infectious Diseases Lazzaro Spallanzani, Rome	8		
Tremont-Lukas, Teixeira & Hernandez	1999	Venezuela	MMSE (24)	75	36	34, 18-57	92 only neurological & substance use history excluded	Hospital Vargas de Caracas, Venezuela	7			
Troncoso & de Oliveira Contero	2015	Brazil	IHDS (10)	111	52.2	46.7	87.7 56.6 only opportunistic infections excluded	2013	Infectious Diseases of the Faculdade de Medicina de Marilia (FAMEMA), Marilia City, State of Sao Paulo	7		
Truffo et al.	2018	Italy	Frascati	650	21.6 (15.7, 4.9, 1)	50 (42-68)	89.1 76.3 yes	2010-2017	Amedeo di Savoia Hospital, Turin	8		
Tsegaw et al.	2017	Ethiopia	IHDS (9.5)	593	36.4	38.6	100 47.9 only psychiatric disorders excluded		Deesse Referral Hos-pital (DRH) and Kombolcha Health Center (KHC) HIV care Clinic	8		
Underwood et al.	2019	UK	NMM	639	21.4	57 (53-62)	98.8 88.6 no	POPPY study (COBRA and CHARTER excluded since separate larger cohort analysis available)	8			
Valcour et al.	2013	Thailand	Frascati	61	45.9 (22.9, 13.1, 9.9)	34.7 (6.9)	0 43 yes	2009-2011		7		
Valcour et al.	2004	USA	adapted MSK staging	202	19.7	45.6	72.7 82.8 only neurological & psychiatric disorders excluded	2001	Hawaii Aging with HIV Cohort Study	8		
van den Dries et al.	2017	Netherlands	GDS	69	40.6	53 (11)	82.6 only neurological disorders excluded	2012-2013	The Dutch TREVI Cohort Study	7		
van Gorp et al.	1999	USA	Frascati (HAD)	130	16.2	41 (8)	100 unspecified	1995		6		
Vassallo et al.	2015	France	Frascati	204	29.9 (20.1, 7,8, 2)	51.9 (10.1)	77.5 only neurological disorders & opportunistic infections excluded	2007-2013	Neuradapt & Eldadapt studies	8		
Vergori et al.	2019	Italy	Frascati	542	22.7 (16.2, 5.7, 0.7)	49 (42-56)	96.7 81 yes	2011-2016		8		
Study	Year	Country	Measure	N	Mean	SD (Range)	Age Mean	Gender	Exclusion Criteria	Study Dates	Setting	
------------------	------	---------	---------	-----	------	------------	----------	--------	--	----------------------	--------------------------	
Villa et al.	1996	Italy	2 SD in at least 5 out of 24 measures	78	28.2	32.3 (6.9)	64.1	.	yes	.	.	
Vitiello et al.	2007	USA	GDS	179	19	39.6 (7.5)	67	96.1	only psychiatric disorders & substance use excluded	1991-1994	Multicenter AIDS Cohort Study	
Wang et al.	2019	USA	MNC	1531	7.45	38.6 (8.4)	.	100	no	.	Multicenter AIDS Cohort Study	
Wang et al.	2013	China	MoCA	309	48.2	34 (28-43.5)	76.4	88	only neurological disorders & substance use excluded	2012-2013	Shanghai Public Health Clinical Center	
Widyadharma et al.	2017	Indonesia	MMSE (25) (below defined cut-offs in at least 2 out of 10 measures)	96	33.3	15-49	77.1	68.8	yes	2008-2009	Edelweiss Clinic Dr. Sardjito Hospital	
Wilkins et al.	1991	USA	(uncategorised)	77	36.4	33.5 (8.3)	.	92.2	yes	.	.	
Winston et al.	2013	UK	Frascati (uncategorised)	557	51.2	44 (9)	100	77	no	.	PIVOT study	
Wojna et al.	2007	Puerto Rico	Frascati	60	68.4 (30, 11.7, 26.7)	36.4 (7)	80	0	only neurological disorders excluded	.	NeuroAIDS Specialized Neuroscience Research Program (SNRP)	
Wright et al.	2015	Australia, Thailand, Brazil, Argentina, Chile, USA, UK, Belgium, Italy, Switzerland & Germany	Frascati (uncategorised)	608	19.9	34 'median'	0	89	no	.	MULTICENTER START study	
Wright et al.	2008	Thailand, China, Indonesia, Malaysia, Cambodia, Papua New Guinea, Fiji	Frascati (HAD)	647	11.7	35.9 (9.5)	65	59.2	no	2005-2006	MULTISITE Asia Pacific NeuroAIDS Consortium (APNAC)	
Wubetu, Asefa & Gebregiorgis	2021	Ethiopia	MMSE (25)	422	41	20-64	100	39.6	no	2019-2020	public hospitals of North Shoa Zone	
Xiao et al.	2020	China	MoCA (26)	250	87.2	65.7 (5.73)	100	70.8	only psychiatric disorders, sensory impairments & head injuries excluded	2017	Hunan province's main HIV clinics	
Yakasai et al.	2015	Nigeria	Frascati	80	76.3 (41.3, 23.8, 11.3)	36.8 (8.9)	50	55	yes	.	Aminu Kano Teaching Hospital (AKTH) in Northwestern Nigeria	

* (SD in at least 5 out of 24 measures)
| Study | Year | Country | Method | Age (SD) | BMI (SD) | Evaluation | Follow-up | Study Location |
|------------------|------|---------|--------|----------|----------|------------|-----------|--|
| Yeohor et al. | 2016 | Uganda | GDS | 181 | 38 | 36 (27-41) | 80.1 | 42 only neurological & psychiatric disorders excluded |
| Yideg et al. | 2019 | Ethiopia| IHDS | 328 | 35.7 | 38.2 (10.5) | 100 | 41.8 yes |
| Yusuf et al. | 2017 | Nigeria | Frascati| 418 | 21.5 (9.6, 9.1, 2.9) | 37.2 (9.3) | 100 | 22.3 no |
| Zaegel-Faucher et al. | 2020 | France | Frascati| 121 | 57 (28.9, 24.8, 3.3) | 53.1 (median) | . | 68 yes 2011-2018 only conditions that may be mistaken as physical frailty excluded |
| Zamudio-Rodriguez et al. | 2018 | Mexico | Frascati| 206 | 66 (60.2, 56.0) | 60.5 (6.3) | 100 | 84.9 ambulatory care at the HIV clinic of a university-affiliated tertiary care center in Mexico City |
| Zhang et al. | 2012 | China | Frascati| 134 | 37.3 (22.4, 10.4, 4.5) | 38.8 (9.5) | 73.1 | 56.7 yes |
| Zhao et al. | 2015 | China | Frascati| 230 | 37.4 (18.3, 10.9, 8.3) | 49.2 (10.2) | 97.8 | 66.1 yes |

8 - Most studies were conducted in Africa and Latin America.
Supplementary Table 2: Raw data summary. The table summarizes the characteristics of the 225 eligible studies for meta-analysis. Table made using PowerPoint.

	North America	Latin America & Caribbean	Europe & Central Asia	East Asia & Pacific	South Asia	Sub-Saharan Africa	Middle East & North Africa
no. of studies	54	13	58	35	10	48	1
publishing years	1989 – 2021	1999 – 2020	1994 – 2021	2006 – 2021	1997 – 2020	2006 – 2021	2020
(range)							
countries	USA (48), Canada (6)	Puerto Rico (1), Venezuela (1), Mexico (1), Brazil (10)	Switzerland (4), Netherlands (3), France (5), Italy (19), Germany (2), UK (10), Spain (8), Belarus (1), Denmark (1), Portugal (2), Romania (2), Ireland (1), Norway (1), Serbia (1), Turkey (1)	Indonesia (4), South Korea (2), Singapore (1), Japan (2), Malaysia (2), Thailand (7), Australia (8), South Korea (2), China (14)	India (10)	Tanzania (3), South Africa (8), Malawi (2), Kenya (4), Nigeria (10), Botswana (2), Uganda (7), Cameroon (2), Ethiopia (7), Ghana (1), Zimbabwe (1), Zambia (4)	Iran (1)
(no. of studies)							
net sample size	20,074	2,078	13,894	7,704	1,494	13,662	93
assessment type							
diagnostic	18%	62%	2%	31%	10%	10%	10%
screening	6%	38%	8%	69%	50%	40%	40%
other	76%	6%	88%	39%	60%	39%	50%
exclusion criteria							
yes	17%	15%	10%	17%	12%	17%	17%
partial	20%	31%	45%	32%	30%	30%	30%
no	26%	46%	35%	37%	40%	40%	40%
unspecified	35%	31%	10%	30%	12%	31%	17%
income level							
high income	100%	100%	100%	100%	100%	100%	100%
upper middle income	8%	8%	8%	8%	8%	8%	8%
lower middle income	8%	8%	8%	8%	8%	8%	8%
low income	91%	91%	91%	91%	91%	91%	91%
mixed / unclassified	2%	2%	2%	2%	2%	2%	2%
age range	16 – 83 *not reported in 2 studies	18 – 81 *not reported in 4 studies	18 – 83 *not reported in 1 study	18 – 74 *not reported in 1 study	18 – 75 *not reported in 2 studies	18 – 64 *not reported in 4 studies	
ART coverage	76.2% *not reported in 17 studies	85.8% *not reported in 2 studies	92.8% *not reported in 11 studies	78.1% *not reported in 6 studies	59.4% *not reported in 2 studies	75.3% *not reported in 4 studies	92.5%
male gender	80.7%	57.7%	78.2%	73.9%	62.4%	37.4%	60.2%
Supplementary Figure 1: Forest plot of study subgroups by geographical region (country). The subgroup “multiple regions” refers to multi-site studies. Figure made using STATA.

Country Region	Effect Size with 95% CI	Weight (%)
East Asia & Pacific	0.39 [0.33, 0.44]	15.45
Europe & Central Asia	0.37 [0.32, 0.41]	25.75
Latin America & Caribbean	0.55 [0.45, 0.65]	5.69
Middle East & North Africa	0.51 [0.40, 0.61]	0.43
North America	0.37 [0.32, 0.41]	24.15
South Asia	0.39 [0.28, 0.49]	4.39
Sub-Saharan Africa	0.44 [0.38, 0.51]	21.38
multiple regions	0.32 [0.13, 0.51]	2.75
Overall (225 studies)		0.40 [0.37, 0.42]

Heterogeneity: $\tau^2 = 0.04$, $I^2 = 98.16\%$, $H^2 = 54.26$

Test of $H_0: \tau = 0$; $Q(224) = 1383.319$, $p = 0.00$

Test of group differences: $Q_e(7) = 19.43$, $p = 0.01$

Random-effects REML model

Supplementary Figure 2: Forest plot including studies from East Asia & Pacific.

Study	Effect Size with 95% CI	Weight (%)
Aung et al. (2021)	0.42 [0.36, 0.48]	2.93
Bloch et al. (2016)	0.31 [0.25, 0.36]	2.94
Bunupuradah et al. (2012)	0.31 [0.22, 0.41]	2.80
Chalermchaisri et al. (2013)	0.51 [0.40, 0.62]	2.71
Chan et al. (2012)	0.39 [0.29, 0.49]	2.79
Chan et al. (2019)	0.23 [0.16, 0.30]	2.89
Chan et al. (2021)	0.30 [0.19, 0.41]	2.73
Cysique et al. (2010)	0.43 [0.36, 0.50]	2.89
Dang et al. (2015)	0.38 [0.31, 0.44]	2.92
Day et al. (2016)	0.27 [0.22, 0.32]	2.96
Ding et al. (2017)	0.47 [0.41, 0.52]	2.95
Dwyer et al. (2014)	0.69 [0.56, 0.82]	2.64
Estiasari et al. (2015)	0.51 [0.40, 0.62]	2.73
Fitri, Rambe & Fitri (2018)	0.75 [0.66, 0.84]	2.81
Gibbie et al. (2006)	0.07 [0.03, 0.11]	2.97
Gott et al. (2017)	0.55 [0.45, 0.65]	2.77
Heaton et al. (2008)	0.35 [0.29, 0.42]	2.91
Hiransuthikul et al. (2019)	0.59 [0.54, 0.65]	2.95
Imai et al. (2020)	0.26 [0.22, 0.30]	2.98
Kamminga et al. (2017)	0.47 [0.34, 0.60]	2.61
Kim et al. (2016)	0.26 [0.20, 0.32]	2.92
Kinai et al. (2017)	0.25 [0.22, 0.28]	3.00
Ku et al. (2014)	0.26 [0.20, 0.32]	2.92
Supplementary Figure 3: Forest plot including studies from Europe & Central Asia.

Study	Effect Size with 95% CI	Weight (%)
Alford et al. (2019) | 0.31 [0.18, 0.44] | 1.59
Arenas-Pinto et al. (2014) | 0.52 [0.48, 0.56] | 1.79
Bai et al. (2017) | 0.32 [0.25, 0.40] | 1.73
Barber et al. (2017) | 0.22 [0.15, 0.28] | 1.75
Braganca & Palha (2011) | 0.51 [0.42, 0.60] | 1.70
Casado et al. (2014) | 0.13 [0.09, 0.17] | 1.79
Ciccarelli et al. (2011) | 0.12 [0.09, 0.15] | 1.80
Ciccarelli et al. (2013) | 0.50 [0.40, 0.59] | 1.67
Ciccarelli et al. (2019) | 0.47 [0.39, 0.55] | 1.71
Darling et al. (2021) | 0.40 [0.37, 0.43] | 1.80
Davies et al. (2019) | 0.28 [0.18, 0.38] | 1.66
de Ronchi, Faranca & Berardi (2002) | 0.20 [0.14, 0.26] | 1.76
Donne et al. (2020) | 0.07 [0.02, 0.12] | 1.77
Dufouil et al. (2015) | 0.58 [0.54, 0.63] | 1.78
Ene et al. (2016) | 0.37 [0.30, 0.43] | 1.74
Fabbiani et al. (2017) | 0.13 [0.04, 0.22] | 1.69
Fabbiani et al. (2018) | 0.24 [0.17, 0.31] | 1.74
Fabbiani et al. (2019) | 0.16 [0.12, 0.21] | 1.79
Failde-Garrido et al. (2008) | 0.52 [0.42, 0.63] | 1.65
Fialho et al. (2013) | 0.57 [0.48, 0.67] | 1.68
Foca et al. (2016) | 0.47 [0.40, 0.54] | 1.74
Garvey, Surendrakumar & Winston (2011) | 0.19 [0.11, 0.27] | 1.72
Grauer et al. (2015) | 0.87 [0.80, 0.94] | 1.74
Grima et al. (2012) 0.47 [0.38, 0.56] 1.69
Haddow et al. (2018) 0.26 [0.22, 0.30] 1.79
Invernizzi et al. (2018) 0.49 [0.37, 0.61] 1.61
Janssen et al. (1989) 0.41 [0.31, 0.51] 1.67
Jevtovic et al. (2009) 0.42 [0.32, 0.52] 1.67
Kamal et al. (2017) 0.27 [0.16, 0.38] 1.62
Karlsen, Froland & Reinvang (1994) 0.19 [0.08, 0.30] 1.64
Kemp et al. (2021) 0.41 [0.33, 0.49] 1.71
Korten et al. (2021) 0.46 [0.38, 0.53] 1.72
Libertone et al. (2014) 0.32 [0.28, 0.36] 1.79
Makinison et al. (2020) 0.35 [0.29, 0.42] 1.75
Marin-Webb et al. (2016) 0.43 [0.39, 0.47] 1.79
McNamara et al. (2017) 0.51 [0.48, 0.55] 1.79
Metral et al. (2020) 0.27 [0.24, 0.30] 1.81
Munoz-Moreno et al. (2008) 0.48 [0.38, 0.58] 1.68
Munoz-Moreno et al. (2010) 0.42 [0.32, 0.53] 1.65
Munoz-Moreno et al. (2013) 0.61 [0.49, 0.73] 1.60
Pereda et al. (2000) 0.27 [0.18, 0.36] 1.70
Perez-Valero et al. (2013) 0.27 [0.21, 0.34] 1.75
Portilla et al. (2019) 0.30 [0.20, 0.40] 1.67
Simioni et al. (2010) 0.84 [0.79, 0.89] 1.78
Starace et al. (2002) 0.18 [0.14, 0.22] 1.79
Su et al. (2016) 0.17 [0.10, 0.24] 1.73
Suarez et al. (2001) 0.58 [0.48, 0.68] 1.66
Temereanca et al. (2020) 0.35 [0.29, 0.41] 1.75
Thiyagarajan et al. (2010) 0.18 [0.09, 0.27] 1.69
Tozzi et al. (2005) 0.54 [0.50, 0.59] 1.78
Trunfio et al. (2018) 0.22 [0.18, 0.25] 1.80
Underwood et al. (2019) 0.21 [0.18, 0.25] 1.80
van den Dries et al. (2017) 0.41 [0.29, 0.52] 1.62
Vassallo et al. (2015) 0.30 [0.24, 0.36] 1.75
Vergori et al. (2019) 0.23 [0.19, 0.26] 1.80
Villa et al. (1996) 0.28 [0.18, 0.38] 1.66
Winston et al. (2013) 0.51 [0.47, 0.55] 1.79
Zaegel-Faucher et al. (2020) 0.57 [0.48, 0.66] 1.70

Overall
Heterogeneity: $\tau^2 = 0.03$, I$^2 = 97.14\%$, $H^2 = 34.93$
Test of $\theta = \theta_0$: $Q(57) = 2014.87$, $p = 0.00$
Test of $\theta = 0$: $z = 16.30$, $p = 0.00$

Random-effects REML model
Supplementary Figure 4: Forest plot including studies from Latin America & Caribbean.

Study	Effect Size with 95% CI	Weight (%)
Brito-Marques et al. (2020)	0.83 [0.77, 0.90]	7.93
Cruz & Ramos (2015)	0.28 [0.21, 0.35]	7.63
de Almeida et al. (2017)	0.60 [0.48, 0.72]	7.26
Duarte et al. (2020)	0.70 [0.62, 0.77]	7.83
Filho & de Melo (2012)	0.37 [0.23, 0.50]	7.16
Gascon et al. (2018)	0.74 [0.69, 0.78]	8.07
Pinheiro et al. (2016)	0.54 [0.49, 0.59]	8.03
Rodrigues et al. (2013)	0.52 [0.45, 0.60]	7.85
Sereia et al. (2012)	0.27 [0.18, 0.36]	7.70
Tremont-Lukats, Teixeira & Hernandez (1999)	0.36 [0.25, 0.47]	7.45
Troncoso & de Oliveira Contero (2015)	0.52 [0.43, 0.61]	7.64
Wojna et al. (2007)	0.68 [0.57, 0.80]	7.34
Zamudio-Rodriguez et al. (2018)	0.66 [0.60, 0.72]	7.91

Overall

Heterogeneity: $\tau^2 = 0.03$, $I^2 = 95.71\%$, $H^2 = 23.31$

Test of $\theta = 0$; $Q(12) = 274.18$, $p = 0.00$

Test of $\theta = 0$; $z = 10.83$, $p = 0.00$

Random-effects REML model

Supplementary Figure 5: Forest plot including studies from Middle East & North Africa.

Study	Effect Size with 95% CI	Weight (%)
Elham et al. (2020)	0.51 [0.40, 0.61]	100.00

Overall

Heterogeneity: $\tau^2 = 0.00$, $I^2 = .\%$, $H^2 = .$

Test of $\theta = 0$; $Q(0) = 0.00$, $p = .$

Test of $\theta = 0$; $z = 9.76$, $p = 0.00$

Random-effects REML model
Supplementary Figure 6: Forest plot including studies from North America.

Study	Effect Size with 95% CI	Weight (%)
Arentoft et al. (2015)	0.68 [0.60, 0.76]	1.83
Atkins et al. (2010)	0.49 [0.43, 0.54]	1.88
Banerjee, McIntosh & Ironson (2019)	0.15 [0.10, 0.20]	1.89
Becker et al. (2004)	0.20 [0.16, 0.25]	1.89
Boccellari et al. (1993)	0.22 [0.11, 0.33]	1.75
Bornstein et al. (1993)	0.13 [0.08, 0.17]	1.89
Bourgeois et al. (2020)	0.34 [0.29, 0.39]	1.89
Brouillette et al. (2015)	0.33 [0.26, 0.40]	1.86
Brouillette et al. (2021)	0.52 [0.46, 0.59]	1.87
Bryant et al. (2015)	0.58 [0.49, 0.67]	1.81
Carvalhal et al. (2016)	0.60 [0.55, 0.65]	1.89
Chang et al. (2011)	0.42 [0.30, 0.54]	1.73
Cross et al. (2013)	0.41 [0.37, 0.45]	1.90
Crum-Cianflone et al. (2013)	0.19 [0.14, 0.24]	1.88
Dampier et al. (2017)	0.59 [0.50, 0.68]	1.80
Deiss et al. (2019)	0.19 [0.13, 0.24]	1.88
Derry et al. (2020)	0.35 [0.28, 0.42]	1.84
Dufour et al. (2013)	0.22 [0.18, 0.27]	1.89
Erlandson et al. (2019)	0.17 [0.15, 0.19]	1.92
Fazeli, Woods & Vance (2019)	0.53 [0.46, 0.60]	1.84
Ferrando et al. (2003)	0.62 [0.54, 0.70]	1.83
Foley et al. (2013)	0.22 [0.12, 0.31]	1.80
Gandhi et al. (2011)	0.86 [0.80, 0.92]	1.86
Gomez et al. (2019)	0.21 [0.17, 0.25]	1.90
Greene et al. (2015)	0.47 [0.39, 0.54]	1.83
Groff et al. (2020)	0.38 [0.27, 0.49]	1.75
Haiman et al. (2014)	0.48 [0.37, 0.59]	1.76
Hanna et al. (2020)	0.37 [0.28, 0.46]	1.80
Janssen et al. (2015)	0.20 [0.12, 0.28]	1.83
Kalajian et al. (2014)	0.23 [0.17, 0.28]	1.88
Kalajian et al. (2019)	0.24 [0.22, 0.26]	1.92
Kallianpur et al. (2016)	0.36 [0.34, 0.39]	1.91
Klusman et al. (1991)	0.38 [0.29, 0.47]	1.79
Kupprat et al. (2017)	0.24 [0.17, 0.30]	1.86
Matchanova et al. (2020)	0.60 [0.52, 0.68]	1.83
Mayeux et al. (1993)	0.44 [0.35, 0.53]	1.80
McCutchan et al. (2007)	0.27 [0.22, 0.32]	1.88
Milanini et al. (2020)	0.53 [0.41, 0.64]	1.74
Moore et al. (2012)	0.19 [0.14, 0.24]	1.88
Naveed et al. (2021)	0.39 [0.36, 0.42]	1.91
Nichols et al. (2013)	0.65 [0.58, 0.71]	1.86
Overton et al. (2013)	0.51 [0.44, 0.58]	1.85
Robertson et al. (2019)	0.41 [0.40, 0.43]	1.92
Supplementary Figure 7: Forest plot including studies from South Asia.

Study	Effect Size with 95% CI	Weight (%)
Agarwal et al. (2020)	0.52 [0.45, 0.60]	10.12
Cook et al. (2014)	0.36 [0.25, 0.47]	9.57
Cook et al. (2016)	0.57 [0.46, 0.68]	9.57
Gupta & Venugopal (2020)	0.48 [0.43, 0.53]	10.49
Gupta et al. (2007)	0.61 [0.52, 0.69]	9.95
Kamat et al. (2017)	0.33 [0.22, 0.44]	9.51
Kumar et al. (2019)	0.21 [0.15, 0.27]	10.42
Madan, Singh & Golechha (1997)	0.10 [0.06, 0.15]	10.53
Saini & Barar (2016)	0.32 [0.22, 0.43]	9.68
Tighman et al. (2014)	0.36 [0.29, 0.44]	10.15
Overall	0.39 [0.28, 0.49]	

Heterogeneity: $\tau^2 = 0.02$, $I^2 = 94.70\%$, $H^2 = 18.88$

Test of $\theta = \theta_0$: $Q(9) = 226.54$, $p = 0.00$

Test of $\theta = 0$: $z = 7.51$, $p = 0.00$

Random-effects REML model
Supplementary Figure 8: Forest plot including studies from Sub-Saharan Africa.

Study	Effect Size with 95% CI	Weight (%)
Akena et al. (2010)	0.70 [0.59, 0.81]	2.00
Akolo et al. (2014)	0.31 [0.23, 0.39]	2.07
Animut et al. (2019)	0.67 [0.64, 0.71]	2.13
Araya et al. (2020)	0.36 [0.32, 0.39]	2.12
Asiedu, Kretchy & Asampong (2020)	0.48 [0.38, 0.58]	2.04
Atashili et al. (2013)	0.85 [0.82, 0.88]	2.13
Awori et al. (2018)	0.69 [0.63, 0.75]	2.10
Belete, Medfu & Yemiyamrew (2017)	0.33 [0.27, 0.39]	2.10
Bharti et al. (2021)	0.28 [0.21, 0.34]	2.09
Flatt et al. (2021)	0.47 [0.41, 0.53]	2.10
Ganasen et al. (2008)	0.17 [0.14, 0.20]	2.13
Goodkin et al. (2014)	0.43 [0.31, 0.55]	1.99
Hestad et al. (2019)	0.37 [0.31, 0.42]	2.10
Hoiguin et al. (2011)	0.22 [0.11, 0.33]	2.01
Imam (2007)	0.12 [0.08, 0.17]	2.12
Joska et al. (2016)	0.18 [0.08, 0.28]	2.03
Joska et al. (2019)	0.76 [0.70, 0.83]	2.09
Jumare et al. (2019)	0.24 [0.18, 0.30]	2.10
Kabuba et al. (2017)	0.35 [0.29, 0.40]	2.10
Kalungwana et al. (2014)	0.50 [0.37, 0.63]	1.96
Kelly et al. (2014)	0.70 [0.61, 0.79]	2.06
Lawler et al. (2010)	0.38 [0.29, 0.47]	2.06
Lawler et al. (2011)	0.37 [0.25, 0.49]	1.98
Milanini et al. (2017)	0.38 [0.36, 0.40]	2.14
Mogambery et al. (2017)	0.53 [0.45, 0.61]	2.07
Mohamed, Oduor & Kinyanjui (2020)	0.81 [0.77, 0.85]	2.12
Molinaro et al. (2020)	0.59 [0.54, 0.64]	2.11
Mugenci et al. (2019)	0.12 [0.09, 0.16]	2.13
Nakk, Kinyada & Hoskins (2013)	0.64 [0.61, 0.68]	2.12
Namagga et al. (2019)	0.58 [0.53, 0.63]	2.11
Njamnshi et al. (2008)	0.21 [0.16, 0.27]	2.11
Nyamayaro et al. (2020)	0.50 [0.42, 0.58]	2.07
Odiase, Ogunrin & Ogunniiyi (2006)	0.66 [0.59, 0.72]	2.09
Oshinaike et al. (2012)	0.03 [0.01, 0.05]	2.14
Patel et al. (2010)	0.14 [0.09, 0.19]	2.11
Robbins et al. (2011)	0.80 [0.70, 0.90]	2.04
Ruhanya et al. (2020)	0.37 [0.29, 0.44]	2.07
Sacktor et al. (2016)	0.92 [0.87, 0.97]	2.11
Salahuddin et al. (2020)	0.39 [0.33, 0.45]	2.10
Salawu et al. (2008)	0.57 [0.44, 0.69]	1.97
Sanmarti et al. (2020)	0.19 [0.14, 0.24]	2.11
Tomita et al. (2019)	0.44 [0.36, 0.51]	2.07
Tsegaw et al. (2017)	0.36 [0.33, 0.40]	2.12
Wubetu, Asefa & Gebregiorgis (2021) 0.41 [0.36, 0.46] 2.12
Yakasai et al. (2015) 0.76 [0.67, 0.86] 2.04
Yechoor et al. (2016) 0.38 [0.31, 0.45] 2.08
Yideg et al. (2019) 0.36 [0.31, 0.41] 2.11
Yusuf et al. (2017) 0.22 [0.18, 0.25] 2.12

Overall

Heterogeneity: $\tau^2 = 0.05$, $I^2 = 98.64\%$, $H^2 = 73.59$
Test of $\theta_1 = \theta_0$: $Q(47) = 4447.12$, $p = 0.00$
Test of $\theta = 0$: $z = 13.92$, $p = 0.00$

Random-effects REML model
Supplementary Figure 9: Forest plot of study subgroups by neurological assessment type. The subgroup “other criteria” refers to six studies using unvalidated approaches. Figure made using STATA.

Neurological Assessment (by type & criteria)	Effect Size with 95% CI	Weight (%)
Diagnostic Method		
Frascati	0.44 [0.39, 0.49]	26.17
Frascati (uncategorised)	0.41 [0.35, 0.47]	14.08
Frascati (HAD only)	0.25 [0.17, 0.34]	4.01
Gisslen (uncategorised)	0.16 [0.11, 0.21]	1.35
GDS	0.37 [0.33, 0.42]	15.60
T-Score	0.28 [0.16, 0.40]	1.34
clinical NP ratings	0.43 [0.27, 0.58]	1.77
MNC	0.17 [0.05, 0.28]	1.34
NMM	0.31 [0.12, 0.50]	0.90
Screening Method		
IHDS	0.44 [0.37, 0.51]	12.93
HDS	0.27 [0.09, 0.46]	2.24
CSID	0.42 [-0.04, 0.89]	0.88
MoCA	0.57 [0.46, 0.67]	6.26
BNCS	0.39 [0.23, 0.55]	1.38
MMSE	0.29 [0.20, 0.38]	7.07
other criteria		
mixed	0.28 [0.14, 0.43]	2.63
Overall (225 studies)		
Heterogeneity: $\tau^2 = 0.04$, $I^2 = 98.16\%$, $H^2 = 54.26$	0.40 [0.37, 0.42]	
Test of $\theta_i = \theta$; $Q(224) = 13833.19$, $p = 0.00$		
By individual criteria:		
Test of group differences: $Q_{(15)} = 110.23$, $p = 0.00$		
Between assessment types:		
Test of group differences: $Q_{(2)} = 3.25$, $p = 0.20$		
Random-effects REML model		
Supplementary Figure 10: Forest plot including studies categorised as a diagnostic method.

Study	Effect Size with 95% CI	Weight (%)	
Frascati			
Arentoft et al. (2015)	0.68 [0.60, 0.76]	0.66	
Bai et al. (2017)	0.32 [0.25, 0.40]	0.67	
Bloch et al. (2016)	0.31 [0.25, 0.36]	0.68	
Chan et al. (2019)	0.23 [0.16, 0.30]	0.67	
Chang et al. (2011)	0.42 [0.30, 0.54]	0.63	
Ciccarelli et al. (2013)	0.50 [0.40, 0.59]	0.65	
Ciccarelli et al. (2019)	0.47 [0.39, 0.55]	0.66	
Darling et al. (2021)	0.40 [0.37, 0.43]	0.69	
de Almeida et al. (2017)	0.60 [0.48, 0.72]	0.62	
Donne et al. (2020)	0.07 [0.02, 0.12]	0.68	
Dufouil et al. (2015)	0.58 [0.54, 0.63]	0.69	
Elham et al. (2020)	0.51 [0.40, 0.61]	0.64	
Fabbiani et al. (2019)	0.16 [0.12, 0.21]	0.69	
Flatt et al. (2021)	0.47 [0.41, 0.53]	0.68	
Foca et al. (2016)	0.47 [0.40, 0.54]	0.67	
Gandhi et al. (2011)	0.86 [0.80, 0.92]	0.68	
Gascon et al. (2018)	0.74 [0.69, 0.78]	0.69	
Gomez et al. (2019)	0.21 [0.17, 0.25]	0.69	
Grauer et al. (2015)	0.87 [0.80, 0.94]	0.67	
Grima et al. (2012)	0.47 [0.38, 0.56]	0.65	
Groff et al. (2020)	0.38 [0.27, 0.49]	0.64	
Haddow et al. (2018)	0.26 [0.22, 0.30]	0.69	
Hanna et al. (2020)	0.37 [0.28, 0.46]	0.65	
Imai et al. (2020)	0.26 [0.22, 0.30]	0.69	
Janssen et al. (1989)	0.41 [0.31, 0.51]	0.65	
Joska et al. (2011)	0.74 [0.67, 0.81]	0.67	
Joska et al. (2019)	0.76 [0.70, 0.83]	0.68	
Jumare et al. (2019)	0.24 [0.18, 0.30]	0.68	
Kamal et al. (2017)	0.27 [0.16, 0.38]	0.63	
Kelly et al. (2014)	0.70 [0.61, 0.79]	0.66	
Kim et al. (2016)	0.26 [0.20, 0.32]	0.68	
Kinai et al. (2017)	0.25 [0.22, 0.28]	0.69	
Korten et al. (2021)	0.46 [0.38, 0.53]	0.67	
Ku et al. (2014)	0.26 [0.20, 0.32]	0.68	
Libertone et al. (2014)	0.32 [0.28, 0.36]	0.69	
Lu et al. (2014)	0.49 [0.36, 0.62]	0.61	
Makinson et al. (2020)	0.35 [0.29, 0.42]	0.67	
Marin-Webb et al. (2016)	0.43 [0.39, 0.47]	0.69	
Metral et al. (2020)	0.27 [0.24, 0.30]	0.69	
Milanini et al. (2020)	0.53 [0.41, 0.64]	0.63	
Munoz-Moreno et al. (2008)	0.48 [0.38, 0.58]	0.65	
Munoz-Moreno et al. (2010)	0.42 [0.32, 0.53]	0.64	
Perez-Valero et al. (2013)	0.27 [0.21, 0.34]	0.68	
Study	Effect Size	95% CI	p
---	-------------	------------	-------
Portilla et al. (2019)	0.30 [0.20, 0.40]	0.65	
Pumpraudit et al. (2010)	0.38 [0.26, 0.49]	0.63	
Sacktor et al. (2014)	0.33 [0.28, 0.38]	0.69	
Sacktor et al. (2016)	0.92 [0.87, 0.97]	0.69	
Simioni et al. (2010)	0.84 [0.79, 0.89]	0.68	
Trunfo et al. (2018)	0.22 [0.18, 0.25]	0.69	
Valcour et al. (2013)	0.46 [0.33, 0.58]	0.62	
Vassallo et al. (2015)	0.30 [0.24, 0.36]	0.68	
Vergori et al. (2019)	0.23 [0.19, 0.26]	0.69	
Wojna et al. (2007)	0.68 [0.57, 0.80]	0.63	
Yakasai et al. (2015)	0.76 [0.67, 0.86]	0.65	
Yusuf et al. (2017)	0.22 [0.18, 0.25]	0.69	
Zaegel-Faucher et al. (2020)	0.57 [0.48, 0.66]	0.66	
Zamudio-Rodiguez et al. (2018)	0.66 [0.60, 0.72]	0.68	
Zhang et al. (2012)	0.37 [0.29, 0.45]	0.66	
Zhao et al. (2015)	0.37 [0.31, 0.44]	0.68	

Heterogeneity: $\tau^2 = 0.04, I^2 = 97.92\%, H^2 = 48.02$

Test of $\theta_i = \theta$: $Q(58) = 2969.35, p = 0.00$

Frascati (HAD)

Study	Effect Size	95% CI	p
Brouillette et al. (2015)	0.33 [0.26, 0.40]	0.68	
de Ronchi, Faranca & Berardi (2002)	0.20 [0.14, 0.26]	0.68	
Falide-Garrido et al. (2008)	0.52 [0.42, 0.63]	0.64	
Grund et al. (2013)	0.14 [0.09, 0.18]	0.69	
Janssen et al. (2015)	0.20 [0.12, 0.28]	0.66	
Klusman et al. (1991)	0.38 [0.29, 0.47]	0.65	
Pereda et al. (2000)	0.27 [0.18, 0.36]	0.66	
van Gorp et al. (1999)	0.16 [0.10, 0.23]	0.68	
Wright et al. (2008)	0.12 [0.09, 0.14]	0.70	

Heterogeneity: $\tau^2 = 0.02, I^2 = 94.90\%, H^2 = 19.60$

Test of $\theta_i = \theta$: $Q(8) = 113.01, p = 0.00$

Frascati (uncategorised)

Study	Effect Size	95% CI	p	
Alford et al. (2019)	0.31 [0.18, 0.44]	0.62		
Arenas-Pinto et al. (2014)	0.52 [0.48, 0.56]	0.69		
Bryant et al. (2015)	0.58 [0.49, 0.67]	0.66		
Bunupuradah et al. (2012)	0.31 [0.22, 0.41]	0.65		
Casado et al. (2014)	0.13 [0.09, 0.17]	0.69		
Chan et al. (2021)	0.30 [0.19, 0.41]	0.64		
Cook et al. (2016)	0.57 [0.46, 0.68]	0.64		
Dwyer et al. (2014)	0.69 [0.56, 0.82]	0.62		
Erlanson et al. (2019)	0.17 [0.15, 0.19]	0.70		
Estiasari et al. (2015)	0.51 [0.40, 0.62]	0.64		
Fabbiani et al. (2017)	0.13 [0.04, 0.22]	0.66		
Ferrando et al. (2003)	0.62 [0.54, 0.70]	0.66		
Garvey, Surendrakumar & Winston (2011)	0.19 [0.11, 0.27]	0.67		
Goodkin et al. (2014)	0.43 [0.31, 0.55]	0.63		
Study	T Score	Test of Heterogeneity	Q (df)	p Value
-------------------------------	---------	-----------------------	--------	---------
Gupta & Venugopal (2020)	0.48 [0.43, 0.53]	0.68		
Halman et al. (2014)	0.48 [0.37, 0.59]	0.64		
Lawler et al. (2011)	0.37 [0.25, 0.49]	0.62		
Mayeux et al. (1993)	0.44 [0.35, 0.53]	0.65		
McCutchan et al. (2007)	0.27 [0.22, 0.32]	0.68		
Milanini et al. (2017)	0.38 [0.36, 0.40]	0.70		
Munoz-Moreno et al. (2013)	0.61 [0.49, 0.73]	0.62		
Robertson et al. (2014)	0.45 [0.42, 0.48]	0.69		
Rodrigues et al. (2013)	0.52 [0.45, 0.60]	0.67		
Salawu et al. (2008)	0.57 [0.44, 0.69]	0.62		
Sanmarti et al. (2020)	0.19 [0.14, 0.24]	0.68		
Sevigny et al. (2007)	0.69 [0.63, 0.74]	0.68		
Sheppard et al. (2015)	0.16 [0.08, 0.24]	0.66		
Stern et al. (1991)	0.58 [0.49, 0.67]	0.66		
Thiyagarajan et al. (2010)	0.18 [0.09, 0.27]	0.66		
Tozzi et al. (2005)	0.54 [0.50, 0.59]	0.69		
Winston et al. (2013)	0.51 [0.47, 0.55]	0.69		
Wright et al. (2015)	0.20 [0.17, 0.23]	0.69		
Heterogeneity: $\tau^2 = 0.03$, $I^2 = 97.55\%$, $H^2 = 40.90$	$Q(31) = 1170.36$, p = 0.00			

Study	T Score	Test of Heterogeneity	Q (df)	p Value
Akolo et al. (2014)	0.31 [0.23, 0.39]	0.66		
Aung et al. (2021)	0.42 [0.36, 0.48]	0.68		
Bharti et al. (2021)	0.28 [0.21, 0.34]	0.67		
Braganca & Palha (2011)	0.51 [0.42, 0.60]	0.66		
Brouillette et al. (2021)	0.52 [0.46, 0.59]	0.68		
Carvalhal et al. (2016)	0.60 [0.55, 0.65]	0.69		
Crum-Cianflone et al. (2013)	0.19 [0.14, 0.24]	0.68		
Cysique et al. (2010)	0.43 [0.36, 0.50]	0.67		
Dampier et al. (2017)	0.59 [0.50, 0.68]	0.65		
Day et al. (2016)	0.27 [0.22, 0.32]	0.69		
Deiss et al. (2019)	0.19 [0.13, 0.24]	0.68		
Dufour et al. (2013)	0.22 [0.18, 0.27]	0.69		
Ene et al. (2016)	0.37 [0.30, 0.43]	0.67		
Foley et al. (2013)	0.22 [0.12, 0.31]	0.65		
Gott et al. (2017)	0.55 [0.45, 0.65]	0.65		
Heaton et al. (2008)	0.35 [0.29, 0.42]	0.67		
Hestad et al. (2019)	0.37 [0.31, 0.42]	0.68		
Jumare et al. (2020)	0.28 [0.25, 0.31]	0.69		
Kabuba et al. (2017)	0.35 [0.29, 0.40]	0.68		
Kalayjian et al. (2014)	0.23 [0.17, 0.28]	0.68		
Kallianpur et al. (2016)	0.36 [0.34, 0.39]	0.69		
Kamat et al. (2017)	0.33 [0.22, 0.44]	0.63		
Kamminga et al. (2017)	0.47 [0.34, 0.60]	0.61		
Matchanova et al. (2020)	0.60 [0.52, 0.68]	0.66		
Moore et al. (2012)	0.19 [0.14, 0.24]	0.68		
Nichols et al. (2013) 0.65 [0.58, 0.71] 0.68
Nyamayaro et al. (2020) 0.50 [0.42, 0.58] 0.66
Ruhanya et al. (2020) 0.37 [0.29, 0.44] 0.67
Spector et al. (2010) 0.37 [0.30, 0.43] 0.67
Sundermann et al. (2018) 0.43 [0.40, 0.45] 0.69
Temereanca et al. (2020) 0.35 [0.29, 0.41] 0.68
Tlighman et al. (2014) 0.36 [0.29, 0.44] 0.67
van den Dries et al. (2017) 0.41 [0.29, 0.52] 0.63
Vitiello et al. (2007) 0.19 [0.13, 0.25] 0.68
Yechoor et al. (2016) 0.38 [0.31, 0.45] 0.67
Heterogeneity: $\tau^2 = 0.02$, $I^2 = 95.01\%$, $H^2 = 20.06$ Test of $\theta_i = \theta; Q(34) = 603.77$, $p = 0.00$

Gisslen
Boccellari et al. (1993) 0.22 [0.11, 0.33] 0.64
Ciccarelli et al. (2011) 0.12 [0.09, 0.15] 0.69
Starace et al. (2002) 0.18 [0.14, 0.22] 0.69
Heterogeneity: $\tau^2 = 0.00$, $I^2 = 71.57\%$, $H^2 = 3.52$ Test of $\theta_i = \theta; Q(2) = 7.13$, $p = 0.03$

MNC
Davies et al. (2019) 0.28 [0.18, 0.38] 0.65
Su et al. (2016) 0.17 [0.10, 0.24] 0.67
Wang et al. (2019) 0.08 [0.06, 0.09] 0.70
Heterogeneity: $\tau^2 = 0.01$, $I^2 = 90.70\%$, $H^2 = 10.76$ Test of $\theta_i = \theta; Q(21) = 21.71$, $p = 0.00$

NMM
Kemp et al. (2021) 0.41 [0.33, 0.49] 0.66
Underwood et al. (2019) 0.21 [0.18, 0.25] 0.69
Heterogeneity: $\tau^2 = 0.02$, $I^2 = 94.66\%$, $H^2 = 18.74$ Test of $\theta_i = \theta; Q(1) = 18.74$, $p = 0.00$

T-Score
Fabbiani et al. (2018) 0.24 [0.17, 0.31] 0.67
Karlsen, Froland & Reinvang (1994) 0.19 [0.08, 0.30] 0.64
Naveed et al. (2021) 0.39 [0.36, 0.42] 0.69
Heterogeneity: $\tau^2 = 0.01$, $I^2 = 90.23\%$, $H^2 = 10.23$ Test of $\theta_i = \theta; Q(2) = 24.22$, $p = 0.00$

clinical NP ratings
Atkins et al. (2010) 0.49 [0.43, 0.54] 0.68
Becker et al. (2004) 0.20 [0.16, 0.25] 0.69
Chalermchai et al. (2013) 0.51 [0.40, 0.62] 0.63
Fazeli, Woods & Vance (2019) 0.53 [0.46, 0.60] 0.67
Heterogeneity: $\tau^2 = 0.02$, $I^2 = 95.68\%$, $H^2 = 23.17$ Test of $\theta_i = \theta; Q(3) = 93.10$, $p = 0.00$
Random-effects REML model

Supplementary Figure 11: Forest plot including studies categorised as a screening method.

Study	Effect Size with 95% CI	Weight (%)	
BNCS			
Kalayjian et al. (2019)	0.24 [0.22, 0.26]	1.49	
McNamara et al. (2017)	0.51 [0.48, 0.55]	1.48	
Robertson et al. (2019)	0.41 [0.40, 0.43]	1.49	
Heterogeneity: $\tau^2 = 0.02$, $I^2 = 99.29\%$, $H^2 = 140.28$	0.39 [0.23, 0.55]	1.49	
Test of $\theta_i = \theta_j$; $Q(2) = 246.50$, $p = 0.00$			
CSID			
Joska et al. (2016)	0.18 [0.08, 0.28]	1.40	
Odiasa, Oggunrin & Ogunnyi (2006)	0.66 [0.59, 0.72]	1.45	
Heterogeneity: $\tau^2 = 0.11$, $I^2 = 98.27\%$, $H^2 = 57.91$	0.42 [-0.04, 0.89]		
Test of $\theta_i = \theta_j$; $Q(1) = 57.91$, $p = 0.00$			
HDS			
Banerjee, McIntosh & Ironson (2019)	0.15 [0.10, 0.20]	1.47	
Fialho et al. (2013)	0.57 [0.48, 0.67]	1.42	
Ganasen et al. (2008)	0.17 [0.14, 0.20]	1.48	
Gibbie et al. (2006)	0.07 [0.03, 0.11]	1.48	
Jevtic et al. (2009)	0.42 [0.32, 0.52]	1.41	
Heterogeneity: $\tau^2 = 0.04$, $I^2 = 98.31\%$, $H^2 = 59.00$	0.27 [0.09, 0.46]		
Test of $\theta_i = \theta_j$; $Q(4) = 112.98$, $p = 0.00$			
IHDS			
Animut et al. (2019)	0.67 [0.64, 0.71]	1.48	
Araya et al. (2020)	0.36 [0.32, 0.39]	1.48	
Asiedu, Kretchy & Asampong (2020)	0.48 [0.38, 0.58]	1.41	
Atashili et al. (2013)	0.85 [0.82, 0.88]	1.48	
Barber et al. (2017)	0.22 [0.15, 0.28]	1.45	
Belete, Medfu & Yemiyanrew (2017)	0.33 [0.27, 0.39]	1.46	
Chan et al. (2012)	0.39 [0.29, 0.49]	1.41	
Cook et al. (2014)	0.36 [0.25, 0.47]	1.39	
Cross et al. (2013)	0.41 [0.37, 0.45]	1.48	
Dang et al. (2015)	0.38 [0.31, 0.44]	1.46	
Ding et al. (2017)	0.47 [0.41, 0.52]	1.47	
Study	Effect Size	95% CI	p
-------------------------------	-------------	------------	-----
MMSE			
Akena et al. (2010)	0.70	[0.59, 0.81]	1.39
Cruz & Ramos (2015)	0.28	[0.21, 0.35]	1.45
Filho & de Melo (2012)	0.37	[0.23, 0.50]	1.35
Imam (2007)	0.12	[0.08, 0.17]	1.48
Kalungwana et al. (2014)	0.50	[0.37, 0.63]	1.36
Kumar et al. (2019)	0.21	[0.15, 0.27]	1.47
Kupprat et al. (2017)	0.24	[0.17, 0.30]	1.46
Madan, Singh & Golechha (1997)	0.10	[0.06, 0.15]	1.47
Oshinaike et al. (2012)	0.03	[0.01, 0.05]	1.49
Qiao et al. (2019)	0.12	[0.10, 0.15]	1.49
Sereia et al. (2012)	0.27	[0.18, 0.36]	1.43
Suarez et al. (2001)	0.58	[0.48, 0.68]	1.41
Tamargo et al. (2021)	0.15	[0.11, 0.18]	1.48
Tremont-Lukats, Teixeira & Hernandez (1999)	0.36	[0.25, 0.47]	1.39
Widyadharma et al. (2017)	0.33	[0.24, 0.43]	1.42
Wubetu, Asefa & Gebregiorgis (2021)	0.41	[0.36, 0.46]	1.47
Heterogeneity: $r^2 = 0.03$, $I^2 = 98.01\%$, $H^2 = 50.35$	0.29	[0.20, 0.38]	
Test of $\theta_i = \theta$: Q(15) = 496.86, p = 0.00			
MoCA			
Agarwal et al. (2020)	0.52	[0.45, 0.60]	1.44
Awori et al. (2018)	0.69	[0.63, 0.75]	1.46
Bourgeois et al. (2020)	0.34	[0.29, 0.39]	1.47
Brito-Marques et al. (2020)	0.83	[0.77, 0.90]	1.46
Derry et al. (2020)	0.35	[0.28, 0.42]	1.45
Fitri, Rambe & Fitri (2018)	0.75	[0.66, 0.84]	1.42
Random-effects REML model

Supplementary Figure 12: Forest plot including studies categorised as other criteria.

Study	Effect Size with 95% CI	Weight (%)
other criteria		
Bornstein et al. (1993)	0.13 [0.08, 0.17]	17.18
Gupta et al. (2007)	0.61 [0.52, 0.69]	16.40
Maj et al. (1994)	0.13 [0.10, 0.16]	17.34
Valcour et al. (2004)	0.20 [0.14, 0.25]	17.02
Villa et al. (1996)	0.28 [0.18, 0.38]	16.12
Wilkins et al. (1991)	0.36 [0.26, 0.47]	15.93
Overall		
Heterogeneity: \(\tau^2 = 0.03 \), \(I^2 = 97.57\% \), \(H^2 = 41.18 \)		
Test of \(\theta_i = \theta \); \(Q(5) = 124.38 \), \(p = 0.00 \)		
Heterogeneity: \(\tau^2 = 0.03 \), \(I^2 = 97.57\% \), \(H^2 = 41.18 \)		
Test of \(\theta_i = \theta \); \(Q(5) = 124.38 \), \(p = 0.00 \)		
Test of group differences: \(Q_5(0) = 0.00 \), \(p = . \)		
Supplementary Figure 13: Forest plot of study subgroups by income level (country). The subgroup “mixed or unclassified” refers to multi-site studies and studies from Venezuela, which is not classified by The World Bank. Figure made using STATA.

Country Income Level	Effect Size with 95% CI	Weight (%)
high income	0.37 [0.33, 0.40]	52.94
upper middle income	0.50 [0.40, 0.60]	19.82
lower middle income	0.41 [0.34, 0.48]	15.91
mixed or unclassified	0.31 [0.18, 0.43]	4.56
low income	0.45 [0.40, 0.50]	6.76

Overall (225 studies)

Heterogeneity: $\tau^2 = 0.04$, $I^2 = 98.16\%$, $H^2 = 54.26$

Test of θ; $Q(224) = 13833.19$, $p = 0.00$

Test of group differences: $Q(4) = 14.08$, $p = 0.01$

Random-effects REML model

Supplementary Figure 14: Forest plot including studies from high-income countries.

Study	Effect Size with 95% CI	Weight (%)
Alford et al. (2019)	0.31 [0.18, 0.44]	0.77
Arenas-Pinto et al. (2014)	0.52 [0.48, 0.56]	0.87
Arentoft et al. (2015)	0.68 [0.60, 0.76]	0.84
Atkins et al. (2010)	0.49 [0.43, 0.54]	0.86
Aung et al. (2021)	0.42 [0.36, 0.48]	0.85
Bai et al. (2017)	0.32 [0.25, 0.40]	0.84
Banerjee, McIntosh & Ironson (2019)	0.15 [0.10, 0.20]	0.86
Barber et al. (2017)	0.22 [0.15, 0.28]	0.85
Becker et al. (2004)	0.20 [0.16, 0.25]	0.86
Bloch et al. (2016)	0.31 [0.25, 0.36]	0.86
Boccellari et al. (1993)	0.22 [0.11, 0.33]	0.80
Bornstein et al. (1993)	0.13 [0.08, 0.17]	0.87
Bourgeois et al. (2020)	0.34 [0.29, 0.39]	0.86
Braganca & Palha (2011)	0.51 [0.42, 0.60]	0.83
Brouillette et al. (2015)	0.33 [0.26, 0.40]	0.85
Brouillette et al. (2021)	0.52 [0.46, 0.59]	0.85
Bryant et al. (2015)	0.58 [0.49, 0.67]	0.82
Carvalhal et al. (2016)	0.60 [0.55, 0.65]	0.86
Casado et al. (2014)	0.13 [0.09, 0.17]	0.87
Chan et al. (2021)	0.30 [0.19, 0.41]	0.80
Chang et al. (2011)	0.42 [0.30, 0.54]	0.79
Ciccarelli et al. (2011)	0.12 [0.09, 0.15]	0.87
Ciccarelli et al. (2013)	0.50 [0.40, 0.59]	0.81
Ciccarelli et al. (2019)	0.47 [0.39, 0.55]	0.83
Cross et al. (2013)	0.41 [0.37, 0.45]	0.87
Crum-Cianflone et al. (2013)	0.19 [0.14, 0.24]	0.86
Study	Effect Size	Weight
---	-------------	-----------
Dampier et al. (2017)	0.59 [0.50, 0.68]	0.82
Darling et al. (2021)	0.40 [0.37, 0.43]	0.87
Davies et al. (2019)	0.28 [0.18, 0.38]	0.81
de Ronchi, Faranca & Berardi (2002)	0.20 [0.14, 0.26]	0.86
Deiss et al. (2019)	0.19 [0.13, 0.24]	0.86
Derry et al. (2020)	0.35 [0.28, 0.42]	0.84
Donne et al. (2020)	0.07 [0.02, 0.12]	0.86
Dufouil et al. (2015)	0.58 [0.54, 0.63]	0.86
Dufour et al. (2013)	0.22 [0.18, 0.27]	0.87
Erlanson et al. (2019)	0.17 [0.15, 0.19]	0.88
Fabbiani et al. (2017)	0.13 [0.04, 0.22]	0.82
Fabbiani et al. (2018)	0.24 [0.17, 0.31]	0.85
Fabbiani et al. (2019)	0.16 [0.12, 0.21]	0.87
Falde-Garrido et al. (2008)	0.52 [0.42, 0.63]	0.80
Fazeli, Woods & Vance (2019)	0.53 [0.46, 0.60]	0.84
Ferrando et al. (2003)	0.62 [0.54, 0.70]	0.83
Fialho et al. (2013)	0.57 [0.48, 0.67]	0.82
Foca et al. (2016)	0.47 [0.40, 0.54]	0.85
Foley et al. (2013)	0.22 [0.12, 0.31]	0.82
Gandhi et al. (2011)	0.86 [0.80, 0.92]	0.85
Garvey, Surendrakumar & Winston (2011)	0.19 [0.11, 0.27]	0.84
Gibbie et al. (2006)	0.07 [0.03, 0.11]	0.87
Gomez et al. (2019)	0.21 [0.17, 0.25]	0.87
Gott et al. (2017)	0.55 [0.45, 0.65]	0.81
Grauer et al. (2015)	0.87 [0.80, 0.94]	0.84
Greene et al. (2015)	0.47 [0.39, 0.54]	0.84
Grima et al. (2012)	0.47 [0.38, 0.56]	0.82
Groff et al. (2020)	0.38 [0.27, 0.49]	0.80
Halman et al. (2014)	0.48 [0.37, 0.59]	0.80
Hanna et al. (2020)	0.37 [0.28, 0.46]	0.82
Imai et al. (2020)	0.26 [0.22, 0.30]	0.87
Invernizzi et al. (2018)	0.49 [0.37, 0.61]	0.79
Janssen et al. (1989)	0.41 [0.31, 0.51]	0.81
Janssen et al. (2015)	0.20 [0.12, 0.28]	0.84
Kalayjian et al. (2014)	0.23 [0.17, 0.28]	0.86
Kalayjian et al. (2019)	0.24 [0.22, 0.26]	0.88
Kallianpur et al. (2016)	0.36 [0.34, 0.39]	0.88
Kamal et al. (2017)	0.27 [0.16, 0.38]	0.79
Kamminga et al. (2017)	0.47 [0.34, 0.60]	0.76
Karlsen, Froland & Reinvang (1994)	0.19 [0.08, 0.30]	0.80
Kemp et al. (2021)	0.41 [0.33, 0.49]	0.83
Kim et al. (2016)	0.26 [0.20, 0.32]	0.85
Kinai et al. (2017)	0.25 [0.22, 0.28]	0.87
Klusman et al. (1991)	0.38 [0.29, 0.47]	0.82
Ku et al. (2014)	0.26 [0.20, 0.32]	0.85
Kupprat et al. (2017)	0.24 [0.17, 0.30]	0.85
Libertone et al. (2014)	0.32 [0.28, 0.36]	0.87
Random-effects REML model

- Test of Overall
 - Vergori et al. (2019)
 - van den Dries et al. (2017)
 - Valcour et al. (2004)
 - Thiyagarajan et al. (2010)
 - Tamargo et al. (2021)
 - Suarez et al. (2001)
 - Su et al. (2016)
 - Stern et al. (1991)
 - Simioni et al. (2010)
 - Starace et al. (2002)
 - Stern et al. (1991)
 - Su et al. (2016)
 - Suarez et al. (2001)
 - Sundermann et al. (2018)
 - Tamargo et al. (2021)
 - Thiagarajan et al. (2010)
 - Tozzi et al. (2005)
 - Trufño et al. (2018)
 - Underwood et al. (2019)
 - Valcour et al. (2004)
 - van den Dries et al. (2017)
 - van Gorp et al. (1999)
 - Vassallo et al. (2015)
 - Vergori et al. (2019)
 - Villa et al. (1996)
 - Vitiello et al. (2007)
 - Wang et al. (2019)
 - Wilkins et al. (1991)
 - Winston et al. (2013)
 - Wojna et al. (2007)

\[\theta = 0: z = 22.56, p = 0.00 \]

\[\theta_j: Q(118) = 5580.33, p = 0.00 \]

\[\tau = 0.03, I^2 = 97.96\% \]

\[H^2 = 0.51 [0.36, 0.79] \]

\[0.49 [0.36, 0.62] \]

\[0.35 [0.29, 0.42] \]

\[0.43 [0.39, 0.47] \]

\[0.60 [0.52, 0.68] \]

\[0.44 [0.35, 0.53] \]

\[0.27 [0.22, 0.32] \]

\[0.51 [0.48, 0.55] \]

\[0.27 [0.24, 0.30] \]

\[0.53 [0.41, 0.64] \]

\[0.19 [0.14, 0.24] \]

\[0.48 [0.38, 0.58] \]

\[0.42 [0.32, 0.53] \]

\[0.61 [0.49, 0.73] \]

\[0.39 [0.36, 0.42] \]

\[0.65 [0.58, 0.71] \]

\[0.51 [0.44, 0.58] \]

\[0.27 [0.18, 0.36] \]

\[0.27 [0.21, 0.34] \]

\[0.30 [0.20, 0.40] \]

\[0.41 [0.40, 0.43] \]

\[0.33 [0.28, 0.38] \]

\[0.69 [0.63, 0.74] \]

\[0.16 [0.08, 0.24] \]

\[0.84 [0.79, 0.89] \]

\[0.18 [0.14, 0.22] \]

\[0.58 [0.49, 0.67] \]

\[0.17 [0.10, 0.24] \]

\[0.58 [0.48, 0.68] \]

\[0.43 [0.40, 0.45] \]

\[0.15 [0.11, 0.18] \]

\[0.18 [0.09, 0.27] \]

\[0.54 [0.50, 0.59] \]

\[0.22 [0.18, 0.25] \]

\[0.21 [0.18, 0.25] \]

\[0.20 [0.14, 0.25] \]

\[0.41 [0.29, 0.52] \]

\[0.16 [0.10, 0.23] \]

\[0.30 [0.24, 0.36] \]

\[0.23 [0.19, 0.26] \]

\[0.28 [0.18, 0.38] \]

\[0.19 [0.13, 0.25] \]

\[0.08 [0.06, 0.09] \]

\[0.36 [0.26, 0.47] \]

\[0.51 [0.47, 0.55] \]

\[0.68 [0.57, 0.80] \]
Supplementary Figure 15: Forest plot including studies from upper middle-income countries.

Study	Effect Size with 95% CI	Weight (%)
Brito-Marques et al. (2020)	0.83 [0.77, 0.90]	2.27
Bunupuradah et al. (2012)	0.31 [0.22, 0.41]	2.18
Chaiermchal et al. (2013)	0.51 [0.40, 0.62]	2.12
Chan et al. (2012)	0.39 [0.29, 0.49]	2.18
Chan et al. (2019)	0.23 [0.16, 0.30]	2.25
Cruz & Ramos (2015)	0.28 [0.21, 0.35]	2.24
Cysique et al. (2010)	0.43 [0.36, 0.50]	2.25
Dang et al. (2015)	0.38 [0.31, 0.44]	2.27
Day et al. (2016)	0.27 [0.22, 0.32]	2.30
de Almeida et al. (2017)	0.60 [0.48, 0.72]	2.08
Ding et al. (2017)	0.47 [0.41, 0.52]	2.29
Duarte et al. (2020)	0.70 [0.62, 0.77]	2.24
Dwyer et al. (2014)	0.69 [0.56, 0.82]	2.07
Ene et al. (2016)	0.37 [0.30, 0.43]	2.26
Filho & de Melo (2012)	0.37 [0.23, 0.50]	2.05
Ganasen et al. (2008)	0.17 [0.14, 0.20]	2.32
Gascon et al. (2018)	0.74 [0.69, 0.78]	2.31
Goodkin et al. (2014)	0.43 [0.31, 0.55]	2.11
Heaton et al. (2008)	0.35 [0.29, 0.42]	2.26
Hirasuthikul et al. (2019)	0.59 [0.54, 0.65]	2.29
Jevtovic et al. (2009)	0.42 [0.32, 0.52]	2.17
Joska et al. (2011)	0.74 [0.67, 0.81]	2.26
Joska et al. (2016)	0.18 [0.08, 0.28]	2.16
Korten et al. (2021)	0.46 [0.38, 0.53]	2.24
Lawler et al. (2010)	0.38 [0.29, 0.47]	2.21
Lawler et al. (2011)	0.37 [0.25, 0.49]	2.09
Mogambery et al. (2017)	0.53 [0.45, 0.61]	2.22
Mukherjee et al. (2018)	0.23 [0.18, 0.27]	2.31
Pinheiro et al. (2016)	0.54 [0.49, 0.59]	2.30
Pumpradit et al. (2010)	0.38 [0.26, 0.49]	2.10
Qiao et al. (2019)	0.12 [0.10, 0.15]	2.33
Robbins et al. (2011)	0.80 [0.70, 0.90]	2.17
Rodrigues et al. (2013)	0.52 [0.45, 0.60]	2.25
Ruhanya et al. (2020)	0.37 [0.29, 0.44]	2.23
Sereia et al. (2012)	0.27 [0.18, 0.36]	2.21
Supplementary Figure 16: Forest plot including studies from lower middle-income countries.

Study	Effect Size with 95% CI	Weight (%)
Agarwal et al. (2020)	0.52 [0.45, 0.60]	2.78
Akolo et al. (2014)	0.31 [0.23, 0.39]	2.78
Asiedu, Kretchy & Asampong (2020)	0.48 [0.38, 0.58]	2.73
Atashili et al. (2013)	0.85 [0.82, 0.88]	2.86
Awori et al. (2018)	0.69 [0.63, 0.75]	2.82
Bharti et al. (2021)	0.28 [0.21, 0.34]	2.81
Cook et al. (2014)	0.36 [0.25, 0.47]	2.69
Cook et al. (2016)	0.57 [0.46, 0.68]	2.69
Elham et al. (2020)	0.51 [0.40, 0.61]	2.72
Estiasari et al. (2015)	0.51 [0.40, 0.62]	2.69
Fitri, Rambe & Fitri (2018)	0.75 [0.66, 0.84]	2.74
Flatt et al. (2021)	0.47 [0.41, 0.53]	2.82
Gupta & Venugopal (2020)	0.48 [0.43, 0.53]	2.84
Gupta et al. (2007)	0.61 [0.52, 0.69]	2.75
Hestad et al. (2019)	0.37 [0.31, 0.42]	2.83
Holguin et al. (2011)	0.22 [0.11, 0.33]	2.69
Imam (2007)	0.12 [0.08, 0.17]	2.84
Jumare et al. (2019)	0.24 [0.18, 0.30]	2.82
Kabuba et al. (2017)	0.35 [0.29, 0.40]	2.83
Kalungwana et al. (2014)	0.50 [0.37, 0.63]	2.62
Kamat et al. (2017)	0.33 [0.22, 0.44]	2.68
Kumar et al. (2019)	0.21 [0.15, 0.27]	2.83
Madan, Singh & Golecha (1997)	0.10 [0.06, 0.15]	2.84
Mohamed, Oduor & Kinyanjui (2020)	0.81 [0.77, 0.85]	2.85
Mugendi et al. (2019)	0.12 [0.09, 0.16]	2.86
Supplementary Figure 17: Forest plot including studies from low-income countries.

Study	Effect Size with 95% CI	Weight (%)
Njampash et al. (2008)	0.21 [0.16, 0.27]	2.83
Nyamayaro et al. (2020)	0.50 [0.42, 0.58]	2.78
Odias, Ogunrin & Ogunniyi (2006)	0.66 [0.59, 0.72]	2.81
Oshainike et al. (2012)	0.03 [0.01, 0.05]	2.87
Saini & Barar (2016)	0.32 [0.22, 0.43]	2.71
Salawu et al. (2008)	0.57 [0.44, 0.69]	2.64
Sanmari et al. (2020)	0.19 [0.14, 0.24]	2.84
Tilghman et al. (2014)	0.36 [0.29, 0.44]	2.79
Widyadharma et al. (2017)	0.33 [0.24, 0.43]	2.74
Yakasai et al. (2015)	0.76 [0.67, 0.86]	2.74
Yusuf et al. (2017)	0.22 [0.18, 0.25]	2.85

Overall

Heterogeneity: $\tau^2 = 0.04$, $I^2 = 98.07\%$, $H^2 = 51.72$

Test of $\theta_i = \theta_j$: $Q(35) = 3071.91$, $p = 0.00$

Test of $\theta = 0$: $z = 11.54$, $p = 0.00$

Random-effects REML model
Supplementary Figure 18: Forest plot including studies from mixed or unclassified countries.

Study	Effect Size with 95% CI	Weight (%)
Grund et al. (2013)	0.14 [0.09, 0.18]	10.04
Haddow et al. (2018)	0.26 [0.22, 0.30]	10.05
Joska et al. (2019)	0.76 [0.70, 0.83]	9.88
Jumare et al. (2020)	0.28 [0.25, 0.31]	10.09
Maj et al. (1994)	0.13 [0.10, 0.16]	10.11
Milanini et al. (2017)	0.38 [0.36, 0.40]	10.13
Robertson et al. (2014)	0.45 [0.42, 0.48]	10.08
Tremont-Lukats, Teixeira & Hernandez (1999)	0.36 [0.25, 0.47]	9.40
Wright et al. (2008)	0.12 [0.09, 0.14]	10.12
Wright et al. (2015)	0.20 [0.17, 0.23]	10.09
Overall	**0.31 [0.18, 0.43]**	

Heterogeneity: $\tau^2 = 0.04$, $I^2 = 99.29\%$, $H^2 = 140.56$

Test of $\theta = \theta^*$; $Q(9) = 783.68$, $p = 0.00$

Test of $\theta = 0$: $z = 4.92$, $p = 0.00$

Random-effects REML model

Supplementary Figure 19: Forest plot of study subgroups by study exclusion criteria. Figure made using STATA.

Exclusion Criteria	Effect Size with 95% CI	Weight (%)
yes	0.40 [0.36, 0.44]	34.57
partial	0.43 [0.38, 0.47]	34.88
no	0.33 [0.27, 0.38]	13.59
unspecified	0.38 [0.32, 0.45]	16.95
Overall (225 studies)		

Heterogeneity: $\tau^2 = 0.04$, $I^2 = 98.16\%$, $H^2 = 54.26$

Test of $\theta = \theta^*$; $Q(224) = 13833.19$, $p = 0.00$

Test of group differences: $Q(3) = 7.39$, $p = 0.06$

Random-effects REML model
Study	Effect Size with 95% CI	Weight (%)
Agarwal et al. (2020)	0.52 [0.45, 0.60]	1.28
Akolo et al. (2014)	0.31 [0.23, 0.39]	1.28
Alford et al. (2019)	0.31 [0.18, 0.44]	1.19
Arentoft et al. (2015)	0.68 [0.60, 0.76]	1.28
Bai et al. (2017)	0.32 [0.25, 0.40]	1.29
Banerjee, McIntosh & Ironson (2019)	0.15 [0.10, 0.20]	1.32
Barber et al. (2017)	0.22 [0.15, 0.28]	1.30
Belete, Medfu & Yemiyamrew (2017)	0.33 [0.27, 0.39]	1.31
Boccellari et al. (1993)	0.22 [0.11, 0.33]	1.22
Braganca & Palha (2011)	0.51 [0.42, 0.60]	1.27
Brito-Marques et al. (2020)	0.83 [0.77, 0.90]	1.30
Brouillette et al. (2015)	0.33 [0.26, 0.40]	1.30
Brouillette et al. (2021)	0.52 [0.46, 0.59]	1.31
Chalermchai et al. (2013)	0.51 [0.40, 0.62]	1.21
Chang et al. (2011)	0.42 [0.30, 0.54]	1.21
Ciccarelli et al. (2013)	0.50 [0.40, 0.59]	1.25
Ciccarelli et al. (2019)	0.47 [0.39, 0.55]	1.28
Dang et al. (2015)	0.38 [0.31, 0.44]	1.30
Davies et al. (2019)	0.28 [0.18, 0.38]	1.24
Donne et al. (2020)	0.07 [0.02, 0.12]	1.31
Dufour et al. (2013)	0.22 [0.18, 0.27]	1.32
Ene et al. (2016)	0.37 [0.30, 0.43]	1.30
Failde-Garrido et al. (2008)	0.52 [0.42, 0.63]	1.23
Gascon et al. (2018)	0.74 [0.69, 0.78]	1.33
Grima et al. (2012)	0.47 [0.38, 0.56]	1.26
Groff et al. (2020)	0.38 [0.27, 0.49]	1.23
Gupta & Venugopal (2020)	0.48 [0.43, 0.53]	1.32
Hanna et al. (2020)	0.37 [0.28, 0.46]	1.26
Heaton et al. (2008)	0.35 [0.29, 0.42]	1.30
Janssen et al. (1989)	0.41 [0.31, 0.51]	1.24
Janssen et al. (2015)	0.20 [0.12, 0.28]	1.28
Jumare et al. (2019)	0.24 [0.18, 0.30]	1.31
Kallianpur et al. (2016)	0.36 [0.34, 0.39]	1.34
Kamal et al. (2017)	0.27 [0.16, 0.38]	1.21
Kim et al. (2016)	0.26 [0.20, 0.32]	1.30
Kinai et al. (2017)	0.25 [0.22, 0.28]	1.33
Ku et al. (2014)	0.26 [0.20, 0.32]	1.30
Lawler et al. (2010)	0.38 [0.29, 0.47]	1.27
Lawler et al. (2011)	0.37 [0.25, 0.49]	1.20
Lu et al. (2014)	0.49 [0.36, 0.62]	1.17
Marin-Webb et al. (2016)	0.43 [0.39, 0.47]	1.32
Matchanova et al. (2020)	0.60 [0.52, 0.68]	1.28
McNamara et al. (2017)	0.51 [0.48, 0.55]	1.33
Random-effects REML model

Heterogeneity: $\tau^2 = 0.03$, $I^2 = 97.43\%$, $H^2 = 38.98$

Test of $\theta = \theta$: $Q(77) = 3969.47$, $p = 0.00$

Test of $\theta = 0$: $z = 19.62$, $p = 0.00$

Study	Effect Size (95% CI)
Metral et al. (2020)	0.27 [0.24, 0.30]
Milanini et al. (2020)	0.53 [0.41, 0.64]
Mohamed, Oduor & Kinyanjui (2020)	0.81 [0.77, 0.85]
Mugendi et al. (2019)	0.12 [0.09, 0.16]
Munoz-Moreno et al. (2010)	0.42 [0.32, 0.53]
Namagga et al. (2019)	0.58 [0.53, 0.63]
Nichols et al. (2013)	0.65 [0.58, 0.71]
Njamnshi et al. (2008)	0.21 [0.16, 0.27]
Odiase, Ogunrin & Ogunniyi (2006)	0.66 [0.59, 0.72]
Oshinaike et al. (2012)	0.03 [0.01, 0.05]
Overton et al. (2013)	0.51 [0.44, 0.58]
Perez-Valero et al. (2013)	0.27 [0.21, 0.34]
Pinheiro et al. (2016)	0.54 [0.49, 0.59]
Portilla et al. (2019)	0.30 [0.20, 0.40]
Rodrigues et al. (2013)	0.52 [0.45, 0.60]
Sacktor et al. (2014)	0.33 [0.28, 0.38]
Sacktor et al. (2016)	0.92 [0.87, 0.97]
Sanmarti et al. (2020)	0.19 [0.14, 0.24]
Sheppard et al. (2015)	0.16 [0.08, 0.24]
Su et al. (2016)	0.17 [0.10, 0.24]
Suarez et al. (2001)	0.58 [0.48, 0.68]
Sundermann et al. (2018)	0.43 [0.40, 0.45]
Tilghman et al. (2014)	0.36 [0.29, 0.44]
Tozzi et al. (2005)	0.54 [0.50, 0.59]
Trufio et al. (2018)	0.22 [0.18, 0.25]
Valcour et al. (2013)	0.46 [0.33, 0.58]
Vergori et al. (2019)	0.23 [0.19, 0.26]
Villa et al. (1996)	0.28 [0.18, 0.38]
Widyadhharma et al. (2017)	0.33 [0.24, 0.43]
Wilkins et al. (1991)	0.36 [0.26, 0.47]
Yakasai et al. (2015)	0.76 [0.67, 0.86]
Yideg et al. (2019)	0.36 [0.31, 0.41]
Zaegel-Faucher et al. (2020)	0.57 [0.48, 0.66]
Zhang et al. (2012)	0.37 [0.29, 0.45]
Zhao et al. (2015)	0.37 [0.31, 0.44]

Overall

Heterogeneity: $\tau^2 = 0.03$, $I^2 = 97.43\%$, $H^2 = 38.98$

Test of $\theta = \theta$: $Q(77) = 3969.47$, $p = 0.00$

Test of $\theta = 0$: $z = 19.62$, $p = 0.00$
Supplementary Figure 21: Forest plot including studies with partial criteria.

Study	Effect Size with 95% CI	Weight (%)	
Akena et al. (2010)	0.70 [0.59, 0.81]	1.22	
Animut et al. (2019)	0.67 [0.64, 0.71]	1.31	
Asiedu, Kretchy & Asampong (2020)	0.48 [0.38, 0.58]	1.24	
Aung et al. (2021)	0.42 [0.36, 0.48]	1.29	
Awori et al. (2018)	0.69 [0.63, 0.75]	1.29	
Bornstein et al. (1993)	0.13 [0.08, 0.17]	1.31	
Bunupuradah et al. (2012)	0.31 [0.22, 0.41]	1.25	
Casado et al. (2014)	0.13 [0.09, 0.17]	1.30	
Chan et al. (2012)	0.39 [0.29, 0.49]	1.24	
Chan et al. (2019)	0.23 [0.16, 0.30]	1.28	
Ciccarelli et al. (2011)	0.12 [0.09, 0.15]	1.31	
Cook et al. (2014)	0.36 [0.25, 0.47]	1.22	
Cook et al. (2016)	0.57 [0.46, 0.68]	1.22	
Crum-Cianflone et al. (2013)	0.19 [0.14, 0.24]	1.30	
Dampier et al. (2017)	0.59 [0.50, 0.68]	1.25	
de Almeida et al. (2017)	0.60 [0.48, 0.72]	1.20	
de Ronchi, Faranca & Berardi (2002)	0.20 [0.14, 0.26]	1.29	
Elham et al. (2020)	0.51 [0.40, 0.61]	1.24	
Estiasari et al. (2015)	0.51 [0.40, 0.62]	1.22	
Fabbiani et al. (2017)	0.13 [0.04, 0.22]	1.25	
Fabbiani et al. (2018)	0.24 [0.17, 0.31]	1.28	
Fabbiani et al. (2019)	0.16 [0.12, 0.21]	1.30	
Fazeli, Woods & Vance (2019)	0.53 [0.46, 0.60]	1.27	
Ferrando et al. (2003)	0.62 [0.54, 0.70]	1.27	
Fialho et al. (2013)	0.57 [0.48, 0.67]	1.24	
Filho & de Melo (2012)	0.37 [0.23, 0.50]	1.18	
Fitri, Rambe & Fitri (2018)	0.75 [0.66, 0.84]	1.25	
Foca et al. (2016)	0.47 [0.40, 0.54]	1.28	
Foley et al. (2013)	0.22 [0.12, 0.31]	1.25	
Gandhi et al. (2011)	0.86 [0.80, 0.92]	1.29	
Garvey, Surendrakumar & Winston (2011)	0.19 [0.11, 0.27]	1.27	
Gomez et al. (2019)	0.21 [0.17, 0.25]	1.31	
Gott et al. (2017)	0.55 [0.45, 0.65]	1.24	
Gupta et al. (2007)	0.61 [0.52, 0.69]	1.26	
Hestad et al. (2019)	0.37 [0.31, 0.42]	1.29	
Holguin et al. (2011)	0.22 [0.11, 0.33]	1.22	
Imai et al. (2020)	0.26 [0.22, 0.30]	1.31	
Joska et al. (2019)	0.76 [0.70, 0.83]	1.29	
Kabuba et al. (2017)	0.35 [0.29, 0.40]	1.29	
Kalayjian et al. (2014)	0.23 [0.17, 0.28]	1.30	
Kammenga et al. (2017)	0.47 [0.34, 0.60]	1.18	
Karlsen, Froland & Reinvang (1994)	0.19 [0.08, 0.30]	1.23	
Kelly et al. (2014)	0.70 [0.61, 0.79]	1.26	
Study	Effect Size	Weight	Proportion Cognitively Impaired
---	-------------	--------	---------------------------------
Kemp et al. (2021)	0.41	0.33	0.49
Klusman et al. (1991)	0.38	0.29	0.47
Korten et al. (2021)	0.46	0.38	0.53
Kupprat et al. (2017)	0.24	0.17	0.30
Makinson et al. (2020)	0.35	0.29	0.42
Mogambery et al. (2017)	0.53	0.45	0.61
Molinaro et al. (2020)	0.59	0.54	0.64
Munoz-Moreno et al. (2013)	0.61	0.49	0.73
Nyamayaro et al. (2020)	0.50	0.42	0.58
Patel et al. (2010)	0.14	0.09	0.19
Pereda et al. (2000)	0.27	0.18	0.36
Pumpradit et al. (2010)	0.38	0.26	0.49
Robbins et al. (2011)	0.80	0.70	0.90
Robertson et al. (2014)	0.45	0.42	0.48
Robertson et al. (2019)	0.41	0.40	0.43
Saini & Barar (2016)	0.32	0.22	0.43
Salahuddin et al. (2020)	0.39	0.33	0.45
Salawu et al. (2008)	0.57	0.44	0.69
Sevigny et al. (2007)	0.69	0.63	0.74
Simioni et al. (2010)	0.84	0.79	0.89
Spector et al. (2010)	0.37	0.30	0.43
Starace et al. (2002)	0.18	0.14	0.22
Thyagarajan et al. (2010)	0.18	0.09	0.27
Tomita et al. (2019)	0.44	0.36	0.51
Tremont-Lukats, Teixeira & Hernandez (1999)	0.36	0.25	0.47
Troncoso & de Oliveira Contero (2015)	0.52	0.43	0.61
Tsegaw et al. (2017)	0.36	0.33	0.40
Valcour et al. (2004)	0.20	0.14	0.25
van den Dries et al. (2017)	0.41	0.29	0.52
Vassallo et al. (2015)	0.30	0.24	0.36
Vitiello et al. (2007)	0.19	0.13	0.25
Wang et al. (2013)	0.48	0.43	0.54
Wojna et al. (2007)	0.68	0.57	0.80
Xiao et al. (2020)	0.87	0.83	0.91
Yechoor et al. (2016)	0.38	0.31	0.45
Zamudio-Rodiguez et al. (2018)	0.66	0.60	0.72

Overall

Heterogeneity: $t^2 = 0.04$, $I^2 = 97.62\%$, $H^2 = 42.05$

Test of $θ = 0$: $Q(78) = 3619.12$, $p = 0.00$

Test of $θ = 0$: $z = 18.86$, $p = 0.00$

Random-effects REML model
Supplementary Figure 22: Forest plot including studies without exclusion criteria.

Study	Effect Size with 95% CI	Weight (%)
Araya et al. (2020)	0.36 [0.32, 0.39]	3.39
Becker et al. (2004)	0.20 [0.16, 0.25]	3.37
Bloch et al. (2016)	0.31 [0.25, 0.36]	3.33
Bryant et al. (2015)	0.58 [0.49, 0.67]	3.18
Carvalhal et al. (2016)	0.60 [0.55, 0.65]	3.37
Cross et al. (2013)	0.41 [0.37, 0.45]	3.38
Darling et al. (2021)	0.40 [0.37, 0.43]	3.41
Day et al. (2016)	0.27 [0.22, 0.32]	3.36
Deiss et al. (2019)	0.19 [0.13, 0.24]	3.34
Flatt et al. (2021)	0.47 [0.41, 0.53]	3.31
Greene et al. (2015)	0.47 [0.39, 0.54]	3.23
Haddow et al. (2018)	0.26 [0.22, 0.30]	3.39
Halman et al. (2014)	0.48 [0.37, 0.59]	3.07
Imam (2007)	0.12 [0.08, 0.17]	3.37
Invernizzi et al. (2018)	0.49 [0.37, 0.61]	3.00
McCutchan et al. (2007)	0.27 [0.22, 0.32]	3.35
Mukherjee et al. (2018)	0.23 [0.18, 0.27]	3.37
Munoz-Moreno et al. (2008)	0.48 [0.38, 0.58]	3.14
Nakku, Kinyada & Hoskins (2013)	0.64 [0.61, 0.68]	3.39
Naveed et al. (2021)	0.39 [0.36, 0.42]	3.41
Qiao et al. (2019)	0.12 [0.10, 0.15]	3.42
Sereia et al. (2012)	0.27 [0.18, 0.36]	3.19
Tamargo et al. (2021)	0.15 [0.11, 0.18]	3.40
Underwood et al. (2019)	0.21 [0.18, 0.25]	3.41
Wang et al. (2019)	0.08 [0.06, 0.09]	3.44
Winston et al. (2013)	0.51 [0.47, 0.55]	3.38
Wright et al. (2008)	0.12 [0.09, 0.14]	3.42
Wright et al. (2015)	0.20 [0.17, 0.23]	3.41
Wubetu, Asefa & Gebregiorgis (2021)	0.41 [0.36, 0.46]	3.37
Yusuf et al. (2017)	0.22 [0.18, 0.25]	3.39
Overall	**0.33 [0.27, 0.38]**	

Heterogeneity: $\tau^2 = 0.02$, $I^2 = 98.51\%$, $H^2 = 66.98$

Test of $\theta_i = \theta_j$: $Q(29) = 2221.86$, $p = 0.00$

Test of $\theta = 0$: $z = 11.23$, $p = 0.00$

Random-effects REML model
Supplementary Figure 23: Forest plot including studies with unspecified exclusion criteria.

Study	Effect Size with 95% CI	Weight (%)
Arenas-Pinto et al. (2014)	0.52 [0.48, 0.56]	2.68
Atashili et al. (2013)	0.85 [0.82, 0.88]	2.69
Atkins et al. (2010)	0.49 [0.43, 0.54]	2.67
Bharti et al. (2021)	0.28 [0.21, 0.34]	2.64
Bourgeois et al. (2020)	0.34 [0.29, 0.39]	2.67
Chan et al. (2021)	0.30 [0.19, 0.41]	2.52
Cruz & Ramos (2015)	0.28 [0.21, 0.35]	2.62
Cysique et al. (2010)	0.43 [0.36, 0.50]	2.63
Derry et al. (2020)	0.35 [0.28, 0.42]	2.62
Ding et al. (2017)	0.47 [0.41, 0.52]	2.67
Duarte et al. (2020)	0.70 [0.62, 0.77]	2.62
Dufouil et al. (2015)	0.58 [0.54, 0.63]	2.67
Dwyer et al. (2014)	0.69 [0.56, 0.82]	2.46
Erlandson et al. (2019)	0.17 [0.15, 0.19]	2.70
Ganaseen et al. (2008)	0.17 [0.14, 0.20]	2.69
Gibbie et al. (2006)	0.07 [0.03, 0.11]	2.68
Goodkin et al. (2014)	0.43 [0.31, 0.55]	2.50
Grauer et al. (2015)	0.87 [0.80, 0.94]	2.63
Grund et al. (2013)	0.14 [0.09, 0.18]	2.68
Hiransuthikul et al. (2019)	0.59 [0.54, 0.65]	2.67
Jevtovic et al. (2009)	0.42 [0.32, 0.52]	2.56
Joska et al. (2011)	0.74 [0.67, 0.81]	2.63
Joska et al. (2016)	0.18 [0.08, 0.28]	2.55
Jumare et al. (2020)	0.28 [0.25, 0.31]	2.69
Kalayjian et al. (2019)	0.24 [0.22, 0.26]	2.71
Kalungwana et al. (2014)	0.50 [0.37, 0.63]	2.46
Kamat et al. (2017)	0.33 [0.22, 0.44]	2.52
Kumar et al. (2019)	0.21 [0.15, 0.27]	2.66
Libertone et al. (2014)	0.32 [0.28, 0.36]	2.69
Madan, Singh & Golechha (1997)	0.10 [0.06, 0.15]	2.68
Maj et al. (1994)	0.13 [0.10, 0.16]	2.70
Mayeux et al. (1993)	0.44 [0.35, 0.53]	2.57
Milanini et al. (2017)	0.38 [0.36, 0.40]	2.71
Moore et al. (2012)	0.19 [0.14, 0.24]	2.66
Ruhanya et al. (2020)	0.37 [0.29, 0.44]	2.61
Stern et al. (1991)	0.58 [0.49, 0.67]	2.59
Temereanca et al. (2020)	0.35 [0.29, 0.41]	2.64
van Gorp et al. (1999)	0.16 [0.10, 0.23]	2.65

Overall

Heterogeneity: $\tau^2 = 0.04$, $I^2 = 98.76\%$, $H^2 = 80.77$

Test of $\theta = \theta_0$: $Q(37) = 2728.22$, $p = 0.00$

Test of $\theta = 0$: $z = 11.39$, $p = 0.00$

Random-effects REML model
Supplementary Figure 24: Forest plot of study subgroups by NOS score (study quality). Figure made using STATA.

NOS Score (study quality)	Effect Size with 95% CI	Weight (%)
score = 6	0.38 [0.32, 0.43]	21.47
score = 7	0.37 [0.33, 0.42]	36.27
score = 8	0.43 [0.39, 0.46]	42.25

Overall (225 studies)

Heterogeneity: $t^2 = 0.04$, $I^2 = 98.16\%$, $H^2 = 54.26$

Test of $\theta = 0$; $Q(224) = 13833.19$, $p = 0.00$

Test of group differences: $Q_1(3) = 7.39$, $p = 0.06$

Random-effects REML model

Supplementary Figure 25: Forest plot including studies with NOS scores = 6.

Study	Effect Size with 95% CI	Weight (%)
Akena et al. (2010)	0.70 [0.59, 0.81]	1.97
Alford et al. (2019)	0.31 [0.18, 0.44]	1.93
Barber et al. (2017)	0.22 [0.15, 0.28]	2.09
Bryant et al. (2015)	0.58 [0.49, 0.67]	2.04
Chan et al. (2021)	0.30 [0.19, 0.41]	1.98
Chang et al. (2011)	0.42 [0.30, 0.54]	1.96
Cross et al. (2013)	0.41 [0.37, 0.45]	2.13
Crum-Cianflone et al. (2013)	0.19 [0.14, 0.24]	2.11
Cruz & Ramos (2015)	0.28 [0.21, 0.35]	2.07
Dang et al. (2015)	0.38 [0.31, 0.44]	2.09
Davies et al. (2019)	0.28 [0.18, 0.38]	2.01
Derry et al. (2020)	0.35 [0.28, 0.42]	2.07
Duarte et al. (2020)	0.70 [0.62, 0.77]	2.07
Dwyer et al. (2014)	0.69 [0.56, 0.82]	1.93
Erlandson et al. (2019)	0.17 [0.15, 0.19]	2.15
Fabbiani et al. (2017)	0.13 [0.04, 0.22]	2.03
Ferrando et al. (2003)	0.62 [0.54, 0.70]	2.06
Fitri, Rambe & Fitri (2018)	0.75 [0.66, 0.84]	2.03
Ganasen et al. (2008)	0.17 [0.14, 0.20]	2.14
Gibbie et al. (2006)	0.07 [0.03, 0.11]	2.12
Goodkin et al. (2014)	0.43 [0.31, 0.55]	1.96
Groff et al. (2020)	0.38 [0.27, 0.49]	1.98
Gupta et al. (2007)	0.61 [0.52, 0.69]	2.04
Hanna et al. (2020)	0.37 [0.28, 0.46]	2.03
Hiransuthikul et al. (2019)	0.59 [0.54, 0.65]	2.11
Invernizzi et al. (2018)	0.49 [0.37, 0.61]	1.95
Janssen et al. (2015)	0.20 [0.12, 0.28]	2.06
Jevtovic et al. (2009)	0.42 [0.32, 0.52]	2.01
Joska et al. (2016)	0.18 [0.08, 0.28]	2.00
Supplementary Figure 26: Forest plot including studies with NOS scores = 7.

Study	Effect Size	Weight (%)		
Agarwal et al. (2020)	0.52 [0.45, 0.60]	1.22		
Araya et al. (2020)	0.36 [0.32, 0.39]	1.26		
Arentoft et al. (2015)	0.68 [0.60, 0.76]	1.22		
Asiedu, Kretchy & Asampong (2020)	0.48 [0.38, 0.58]	1.20		
Atashili et al. (2013)	0.85 [0.82, 0.88]	1.26		
Boccellari et al. (1993)	0.22 [0.11, 0.33]	1.17		
Bornstein et al. (1993)	0.13 [0.08, 0.17]	1.26		
Braganca & Palha (2011)	0.51 [0.42, 0.60]	1.21		
Brito-Marques et al. (2020)	0.83 [0.77, 0.90]	1.24		
Bunupuradah et al. (2012)	0.31 [0.22, 0.41]	1.20		
Casado et al. (2014)	0.13 [0.09, 0.17]	1.26		
Chan et al. (2012)	0.39 [0.29, 0.49]	1.19		
Chan et al. (2019)	0.23 [0.16, 0.30]	1.23		
Ciccarelli et al. (2013)	0.50 [0.40, 0.59]	1.19		
Ciccarelli et al. (2019)	0.47 [0.39, 0.55]	1.22		
Study	Effect Size	Weight	No. of Studies	% Cognitively Impaired
---	-------------	--------	----------------	------------------------
Cook et al. (2014)	0.36	1.20	1	0.25, 0.47
Cook et al. (2016)	0.57	1.27	1	0.46, 0.68
de Ronchi, Faranca & Berardi (2002)	0.20	1.16	1	0.14, 0.26
Deiss et al. (2019)	0.19	1.23	1	0.13, 0.24
Ding et al. (2017)	0.47	1.25	1	0.41, 0.52
Donne et al. (2020)	0.07	1.25	1	0.02, 0.12
Estiasari et al. (2015)	0.51	1.18	1	0.40, 0.62
Fabbiani et al. (2018)	0.24	1.23	1	0.17, 0.31
Fabbiani et al. (2019)	0.16	1.26	1	0.12, 0.21
Falde-Garrido et al. (2008)	0.52	1.18	1	0.42, 0.63
Fialho et al. (2013)	0.57	1.20	1	0.48, 0.67
Filho & de Melo (2012)	0.37	1.14	1	0.23, 0.50
Foley et al. (2013)	0.22	1.20	1	0.12, 0.31
Gandhi et al. (2011)	0.86	1.24	1	0.80, 0.92
Garvey, Surendrakumar & Winston (2011)	0.19	1.22	1	0.11, 0.27
Gascon et al. (2018)	0.74	1.26	1	0.69, 0.78
Grauer et al. (2015)	0.87	1.26	1	0.80, 0.94
Greene et al. (2015)	0.47	1.23	1	0.39, 0.54
Grima et al. (2012)	0.47	1.20	1	0.38, 0.56
Grund et al. (2013)	0.14	1.26	1	0.09, 0.18
Gupta & Venugopal (2020)	0.48	1.25	1	0.43, 0.53
Halman et al. (2014)	0.48	1.18	1	0.37, 0.59
Holguin et al. (2011)	0.22	1.17	1	0.11, 0.33
Imam (2007)	0.12	1.26	1	0.08, 0.17
Janssen et al. (1989)	0.41	1.19	1	0.31, 0.51
Jumare et al. (2019)	0.24	1.24	1	0.18, 0.30
Kalayjian et al. (2014)	0.23	1.25	1	0.17, 0.28
Kalayjian et al. (2019)	0.24	1.27	1	0.22, 0.26
Kamal et al. (2017)	0.27	1.17	1	0.16, 0.38
Kamat et al. (2017)	0.33	1.17	1	0.22, 0.44
Kim et al. (2016)	0.26	1.24	1	0.20, 0.32
Kupprat et al. (2017)	0.24	1.24	1	0.17, 0.30
Lawler et al. (2010)	0.38	1.21	1	0.29, 0.47
Lawler et al. (2011)	0.37	1.15	1	0.25, 0.49
Lu et al. (2014)	0.49	1.13	1	0.36, 0.62
Marin-Webb et al. (2016)	0.43	1.26	1	0.39, 0.47
McCutchan et al. (2007)	0.27	1.25	1	0.22, 0.32
Metral et al. (2020)	0.27	1.27	1	0.24, 0.30
Mogambry et al. (2017)	0.53	1.22	1	0.45, 0.61
Moore et al. (2012)	0.19	1.25	1	0.14, 0.24
Mukherjee et al. (2018)	0.23	1.26	1	0.18, 0.27
Munoz-Moreno et al. (2008)	0.48	1.20	1	0.38, 0.58
Munoz-Moreno et al. (2010)	0.42	1.18	1	0.32, 0.53
Nakku, Kinyada & Hoskins (2013)	0.64	1.26	1	0.61, 0.68
Naveed et al. (2021)	0.39	1.26	1	0.36, 0.42
Njamnshi et al. (2008)	0.21	1.25	1	0.16, 0.27
Pereda et al. (2000)	0.27	1.21	1	0.18, 0.36
Supplementary Figure 27: Forest plot including studies with NOS scores = 8.

Study	Effect Size with 95% CI	Weight (%)
Akolo et al. (2014)	0.31 [0.23, 0.39]	1.05
Animut et al. (2019)	0.67 [0.64, 0.71]	1.09
Arenas-Pinto et al. (2014)	0.52 [0.48, 0.56]	1.08
Atkins et al. (2010)	0.49 [0.43, 0.54]	1.07
Aung et al. (2021)	0.42 [0.36, 0.48]	1.07
Awori et al. (2018)	0.69 [0.63, 0.75]	1.06
Bai et al. (2017)	0.32 [0.25, 0.40]	1.05
Banerjee, McIntosh & Ironson (2019)	0.15 [0.10, 0.20]	1.08
Becker et al. (2004)	0.20 [0.16, 0.25]	1.08
Belete, Medfu & Yemiyamrow (2017)	0.33 [0.27, 0.39]	1.07
Bharti et al. (2021)	0.28 [0.21, 0.34]	1.06
Bloch et al. (2016)	0.31 [0.25, 0.36]	1.07
Bourgeois et al. (2020)	0.34 [0.29, 0.39]	1.07
Brouillette et al. (2015)	0.33 [0.26, 0.40]	1.06

Random-effects REML model

Overall
Heterogeneity: $\tau^2 = 0.04$, $I^2 = 98.06\%$, $H^2 = 51.67$
Test of $\theta = \theta_i$: $Q(81) = 5470.07$, $p = 0.00$
Test of $\theta = 0$: $z = 17.31$, $p = 0.00$
Brouillette et al. (2021) 0.52 [0.46, 0.59] 1.07
Carvalhal et al. (2016) 0.60 [0.55, 0.65] 1.08
Chalermchai et al. (2013) 0.51 [0.40, 0.62] 1.00
Ciccarelli et al. (2011) 0.12 [0.09, 0.15] 1.09
Cysique et al. (2010) 0.43 [0.36, 0.50] 1.06
Dampier et al. (2017) 0.59 [0.50, 0.68] 1.03
Darling et al. (2021) 0.40 [0.37, 0.43] 1.09
Day et al. (2016) 0.27 [0.22, 0.32] 1.08
de Almeida et al. (2017) 0.60 [0.48, 0.72] 0.98
Dufouil et al. (2015) 0.58 [0.54, 0.63] 1.08
Dufour et al. (2013) 0.22 [0.18, 0.27] 1.08
Elham et al. (2020) 0.51 [0.40, 0.61] 1.01
Ene et al. (2016) 0.37 [0.30, 0.43] 1.06
Fazeli, Woods & Vance (2019) 0.53 [0.46, 0.60] 1.05
Flatt et al. (2021) 0.47 [0.41, 0.53] 1.07
Foca et al. (2016) 0.47 [0.40, 0.54] 1.06
Gomez et al. (2019) 0.21 [0.17, 0.25] 1.08
Gott et al. (2017) 0.55 [0.45, 0.65] 1.02
Haddow et al. (2018) 0.26 [0.22, 0.30] 1.08
Heaton et al. (2008) 0.35 [0.29, 0.42] 1.06
Hestad et al. (2019) 0.37 [0.31, 0.42] 1.07
Imai et al. (2020) 0.26 [0.22, 0.30] 1.08
Joska et al. (2011) 0.74 [0.67, 0.81] 1.06
Joska et al. (2019) 0.76 [0.70, 0.83] 1.06
Kabuba et al. (2017) 0.35 [0.29, 0.40] 1.07
Kallianpur et al. (2016) 0.36 [0.34, 0.39] 1.09
Kamminga et al. (2017) 0.47 [0.34, 0.60] 0.96
Kelly et al. (2014) 0.70 [0.61, 0.79] 1.03
Kemp et al. (2021) 0.41 [0.33, 0.49] 1.04
Korten et al. (2021) 0.46 [0.38, 0.53] 1.05
Ku et al. (2014) 0.26 [0.20, 0.32] 1.06
Makinson et al. (2020) 0.35 [0.29, 0.42] 1.06
Matchanova et al. (2020) 0.60 [0.52, 0.68] 1.04
McNamara et al. (2017) 0.51 [0.48, 0.55] 1.08
Milanini et al. (2017) 0.38 [0.36, 0.40] 1.09
Milanini et al. (2020) 0.53 [0.41, 0.64] 1.00
Mohamed, Oduor & Kinyanjui (2020) 0.81 [0.77, 0.85] 1.08
Molinaro et al. (2020) 0.59 [0.54, 0.64] 1.08
Mugendi et al. (2019) 0.12 [0.09, 0.16] 1.09
Namagga et al. (2019) 0.58 [0.53, 0.63] 1.08
Nichols et al. (2013) 0.65 [0.58, 0.71] 1.06
Nyamayaro et al. (2020) 0.50 [0.42, 0.58] 1.05
Odiase, Oggunrin & Ogunniyi (2006) 0.66 [0.59, 0.72] 1.06
Oshinaike et al. (2012) 0.03 [0.01, 0.05] 1.09
Overton et al. (2013) 0.51 [0.44, 0.58] 1.06
Patel et al. (2010) 0.14 [0.09, 0.19] 1.08
Perez-Valero et al. (2013) 0.27 [0.21, 0.34] 1.06
Random-effects REML model

Heterogeneity: $\tau^2 = 0.03$, $I^2 = 98.34\%$, $H^2 = 60.25$

Test of $\theta = \theta_0$: $Q(93) = 6159.46$, $p = 0.00$

Test of $\theta = 0$: $z = 22.36$, $p = 0.00$

Overall

Study	Effect Size	CI	Weight
Pinheiro et al. (2016)	0.54	[0.49, 0.59]	1.08
Portilla et al. (2019)	0.30	[0.20, 0.40]	1.02
Robertson et al. (2014)	0.45	[0.42, 0.48]	1.09
Robertson et al. (2019)	0.41	[0.40, 0.43]	1.09
Sacktor et al. (2014)	0.33	[0.28, 0.38]	1.08
Sacktor et al. (2016)	0.92	[0.87, 0.97]	1.08
Sanmarti et al. (2020)	0.19	[0.14, 0.24]	1.08
Sevigny et al. (2007)	0.69	[0.63, 0.74]	1.08
Spector et al. (2010)	0.37	[0.30, 0.43]	1.06
Starace et al. (2002)	0.18	[0.14, 0.22]	1.08
Sundermann et al. (2018)	0.43	[0.40, 0.45]	1.09
Tilghman et al. (2014)	0.36	[0.29, 0.44]	1.05
Tomita et al. (2019)	0.44	[0.36, 0.51]	1.05
Tozzi et al. (2005)	0.54	[0.50, 0.59]	1.08
Trunfo et al. (2018)	0.22	[0.18, 0.25]	1.09
Tsegaw et al. (2017)	0.36	[0.33, 0.40]	1.08
Underwood et al. (2019)	0.21	[0.18, 0.25]	1.09
Valcour et al. (2004)	0.20	[0.14, 0.25]	1.07
Vassallo et al. (2015)	0.30	[0.24, 0.36]	1.06
Vergori et al. (2019)	0.23	[0.19, 0.26]	1.09
Wang et al. (2013)	0.48	[0.43, 0.54]	1.07
Winston et al. (2013)	0.51	[0.47, 0.55]	1.08
Wojna et al. (2007)	0.68	[0.57, 0.80]	0.99
Wright et al. (2008)	0.12	[0.09, 0.14]	1.09
Wubetu, Asefa & Gebregiorgis (2021)	0.41	[0.36, 0.46]	1.08
Xiao et al. (2020)	0.87	[0.83, 0.91]	1.08
Yakasai et al. (2015)	0.76	[0.67, 0.86]	1.03
Yechoor et al. (2016)	0.38	[0.31, 0.45]	1.06
Yideg et al. (2019)	0.36	[0.31, 0.41]	1.07
Yusuf et al. (2017)	0.22	[0.18, 0.25]	1.08
Zamudio-Rodriguez et al. (2018)	0.66	[0.60, 0.72]	1.06
Zhang et al. (2012)	0.37	[0.29, 0.45]	1.04
Zhao et al. (2015)	0.37	[0.31, 0.44]	1.06

Overall

Heterogeneity: $\tau^2 = 0.03$, $I^2 = 98.34\%$, $H^2 = 60.25$

Test of $\theta = \theta_0$: $Q(93) = 6159.46$, $p = 0.00$

Test of $\theta = 0$: $z = 22.36$, $p = 0.00$
Supplementary Figure 28: Bubble plot of cognitive impairment by gender. 221 studies reported the gender of their participants. The size of the data points reflects the study’s sample size. Figure made using STATA.

Supplementary Figure 29: Bubble plot of cognitive impairment by ART coverage. 181 studies reported ART coverage among their participants. The size of the data points reflects the study’s sample size. Figure made using STATA.
Supplementary Figure 30: Bubble plot of cognitive impairment by age. A) 64 studies reported the age as a median. B) 141 studies reported the age as a mean. The size of the data points reflects the study’s sample size. Figure made using STATA.
Supplementary Figure 31: Bubble plot of cognitive impairment by publishing year. All studies are included in this plot. The size of the data points reflects the study’s sample size. Figure made using STATA.

Supplementary Figure 32: Bubble plot of cognitive impairment by sample size. All studies are included in this plot. The size of the data points reflects the study’s sample size. Figure made using STATA.
Supplementary Figure 33: Funnel plot to assess publication bias. Each data point represents a study. Figure made using STATA.