Duffy antigen receptor for chemokines and its involvement in patterning and control of inflammatory chemokines
Novitzky-basso, Igor; Rot, Antal

DOI:
10.3389/fimmu.2012.00266

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Novitzky-basso, I & Rot, A 2012, ‘Duffy antigen receptor for chemokines and its involvement in patterning and control of inflammatory chemokines’, Frontiers in immunology, vol. 3, 266.
https://doi.org/10.3389/fimmu.2012.00266

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Eligibility for repository: checked 27/06/2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 10. Mar. 2020
Duffy antigen receptor for chemokines and its involvement in patterning and control of inflammatory chemokines

Igor Novitzky-Basso and Antal Rot*

MRC Centre for Immune Regulation, Institute of Biomedical Research, School of Infection and Immunity, University of Birmingham, Birmingham, UK

*Correspondence: Antal Rot, MRC Centre for Immune Regulation, Institute of Biomedical Research, School of Infection and Immunity, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK. e-mail: a.rot@bham.ac.uk

Leukocyte functions are linked to their migratory responses, which, in turn, are largely determined by the expression profile of classical chemokine receptors. Upon binding their cognate chemokines, these G-protein-coupled receptors (GPCRs) initiate signaling cascades and downstream molecular and cellular responses, including integrin activation and cell locomotion. Chemokines also bind to an alternative subset of chemokine receptors, which have a serpentine structure characteristic for GPCRs but lack DRYLAIV consensus motive required for coupling to G-proteins. Duffy antigen receptor for chemokines (DARC) is a member of this atypical receptor subfamily. DARC binds a broad range of inflammatory CXC and CC chemokines and is expressed by erythrocytes, venular endothelial cells, and cerebellar neurons. Erythrocyte DARC serves as blood reservoir of cognate chemokines but also as a chemokine sink, buffering potential surges in plasma chemokine levels. Endothelial cell DARC internalizes chemokines on the basolateral cell surface resulting in subsequent transcytosis of chemokines and their immobilization on the tips of apical microvilli. These DARC-mediated endothelial cell interactions allow chemokines produced in the extravascular tissues to optimally function as arrest chemokines on the luminal endothelial cell surface.

Keywords: atypical chemokine receptors, chemokines, DARC, duffy antigen, endothelial cells, erythrocytes, inflammation, transcytosis

DUFFY BLOOD GROUP ANTIGEN

The Duffy antigen receptor for chemokines (DARC) has recently become the focus of studies investigating interactions of inflammatory chemokines with erythrocytes during systemic inflammatory responses as well as with venular endothelial cells during chemokine-induced leukocyte adhesion and emigration. These studies uncovered new functional facets of this rather "old" molecule. DARC was first described in 1950 as the Duffy blood group antigen (Cutbush and Mollison, 1950; Cutbush et al., 1950). An antibody termed anti-Fya present in the plasma of a polytransfused hemophiliac, Mr. Duffy, was found to cause a delayed hemolytic transfusion reaction. In the following year, an antibody to the antigenic antibody, Fy(B), was found in a multigravida exposed to fetal Fy(B) erythrocytes (Klein et al., 1951). Subsequently, three "Duffy-positive" phenotypes were described: Fya(b−b−), Fya(b−+b+), and Fya(b+ b+), arising from combinations of the allelic-centromeric FYA and FYB genes (Klein and Anstee, 2003). However, some individuals, designated "Duffy-negative," express neither Fy(b+) nor Fy(b−) antigens, Fya(b−+). This phenotype results from a polymorphic form of the FYB gene, FYB*5, "erythroid silent," present in up to 99% of West Africans and the majority of African Americans (68%; Mourant et al., 1976). The DARC (FYB) gene is located on chromosome 1, position 1922 and segregates with the erythrocyte Duffy (FYA and FYB) gene in the southern USA (Miller et al., 1975; Horuk et al., 1993a), leading to the hypothesis that the FYA(b−+ b−) phenotype evolved as a result of selective pressure to protect its carriers from the bites of Plasmodium vivax-infected mosquitoes, in contrast to Duffy-positives, who did not develop malaria (Miller et al., 1976). This confirmed the long standing clinical observation that African populations appeared resistant to this form of malaria, noted also during the treatment of neurosyphilis by therapeutic P. vivax inoculation (O’Leary, 1927; Boyd and Stratman-Thomas, 1933). Further work showed that this parasite requires DARC binding for entry into the erythrocytes (Miller et al., 1975; Horuk et al., 1993a), leading to the hypothesis that the FYA(b−+ b−) phenotype evolved as a result of selective pressure to protect its carriers from vivax but not falciparum malaria. Geostatistical maps show that in West Africa the areas of prevalence of the FYA(b−+ b−) phenotype of almost 100% (Howes et al., 2011), overlap with areas of expected but absent...
across cellular monolayers expressing DARC (Lee et al., 2003a; Pruenster and Rot, 2006; Ulvmar et al., 2011). DARC's extracellular N-terminal domain, which bears the blood group determinants, is linked with the CC and CXC chemokines to erythrocytes (Horuk et al., 1993b; Graham et al., 2012). However, some intracellular responses take place following DARC ligation by cognate chemokines. It was demonstrated in heterologous transfectants that chemokine binding induces redistribution of DARC from the basolateral cell membrane, via an intracellular vesicular compartment onto the apical membrane and that chemokine cargo is translocated together with DARC (Pruenster et al., 2009). Such chemokine in situ binding mimicking exactly the ligand specificity of DARC (Hub and Rot, 1998) as well as chemokine transcytosis and luminal surface presentation (Milditton et al., 1997) have been shown to place in venular endothelial cells in vivo and ex vivo in intact viable tissues. Unlike other atypical chemokine receptors, D6 in particular, no degradation of chemokines occurs after their internalization by DARC. Accordingly, neutrophil and monocyte migration toward cognate chemokines was enhanced across cellular monolayers expressing DARC (Lee et al., 2003a; Pruenster et al., 2009). Also in vivo, chemokine injections into transgenic mice, which over-express DARC on the endothelium, induced significantly greater leukocyte recruitment (Pruenster et al., 2009). Thus endothelial DARC mediates abluminal internalization and transcellular transport of chemokines. This activity of DARC prevents the escape of soluble tissue-derived chemokine molecules into circulation and allows them to associate with the tips of luminal microvilli and stimulate firm adhesion of leukocytes. Inflammation can further up-regulate DARC expression in postcapillary venules and veins, and induce DARC to appear in vascular segments usually devoid of it (Liu et al., 1999; Segerer et al., 2006; Patterson et al., 2002; Lee et al., 2003b; Bruhl et al., 2003; Gardner et al., 2006; Geleff et al., 2010). It is not clear whether DARC over-expression is the consequence of the development of the inflammatory lesions or their pre-requisite. Primary lymphatic vessels do not express DARC although a small segment, the podoplanin-dull pre-collectors, do express DARC, suggesting that chemokines mediated cell migration may occur at this site (Wick et al., 2008).

Despite the fact that chemokine internalization by DARC does not lead to their degradation, DARC may physically remove chemokines from extracellular environments and thus, e.g., negatively influence angiogenesis induced by extravascular pro-inflammatory chemokines. This was shown in mice over-expressing endothelial DARC, which have reduced angiogenic responses to CXC2L2 (Du et al., 2002) and in the context of tumor angiogenesis (Horton et al., 2007). Also, DARC-deficient mice used in a transgenic model of prostate cancer developed tumors with increased vessel density, greater intratumor angiogenic chemokine levels, and augmented growth (Shen et al., 2006). CD82, a tetraspan which was identified as a prostate cancer metastasis suppressor gene, apparently directly interacts with DARC which thus can inhibit tumor cell proliferation and induce senescence (Bandyopadhyay et al., 2006). It appears therefore that DARC may negatively affect tumor development and metastatic spread either directly by binding to CD82 or by removing angiogenic chemokines from perivascular spaces. Additionally, DARC has been shown to heterodimerize with a classical chemokine receptor CCR5, and through this interaction down-modulate CCR5 mediated signaling responses (Chakera et al., 2008).

THE ROLE OF DARC IN CHEMOKINE HOMEOSTASIS

Erythrocyte DARC was originally described as a chemokine "sink" (Darzineh et al., 1991) and this function was further supported when DARC was shown to reduce the levels of circulating inflammatory chemokines, thus dampening systemic leukocyte activation (Dawson et al., 2000). Chemokines in circulation can induce the desensitization of their cognate receptors. By protecting circulating leukocytes from chemokine excess, DARC may preserve subsequent leukocyte responsiveness to chemokine signals present on the endothelial surface or in the tissues. Conversely, systemic pre-exposure to chemokines may prime leukocytes for enhanced chemokine-induced migration (Brandt et al., 1998) or other effector functions (Green et al., 1996; Hauser et al., 1999). These two opposing potential outcomes may explain the following apparently conflicting observations in DARC-deficient mice exposed to various inflammatory stimuli (Dawson et al., 2000; Reuter et al., 2009; Velhauer et al., 2009; Mei et al., 2010; Zarbock et al., 2010). In an initial study DARC knockout (KO) animals received systemic LPS and responded by a marked increase...
in neutrophil infiltrate in the lungs and livers as compared to the wild type controls (Dawson et al., 2009). Another study showed that DARC KO mice have significantly less leukocyte infiltrate in the bronchoalveolar lavage in response to chemokine instilled into pulmonary airspace (Lee et al., 2003a). These experiments used DARC KO mice lacking this receptor on all cells. Subsequently, bone marrow chimeras were constructed allowing the examination of respective roles of DARC on erythrocytes and endothelium (Lee et al., 2006). Here, mice lacking erythrocyte DARC had significantly fewer airspace neutrophils following intratracheal LPS instillation, suggesting that erythrocyte DARC supports leukocyte emigration. The lack of DARC in the lungs was associated with higher chemokine concentrations in the airspaces compared with mice lacking DARC on erythrocytes. In a model of LPS-inhalation-induced acute lung injury neutrophil migration into the alveolar spaces was increased in DARC KO animals, along with elevated levels of CXC chemokines (Reutersthan et al., 2009). In chimeric animals, the absence of erythrocyte DARC was the most significant factor determining leukocyte trafficking. Differences between the outcomes in these two studies may be due to the divergent dose of LPS administered. With higher LPS concentrations the role for erythroid DARC as a sink may become more significant (Reutersthan et al., 2009). Of note is that duration of systemic inflammation erythrocyte-bound chemokines amounted to 30% of plasma chemokine concentrations, suggesting only a limited sink effect of erythrocyte DARC during severe inflammation (Reutersthan et al., 2009). Conversely, in humans, following endotoxin challenge several hundred fold increases in chemokine levels in erythrocyte lysates were noted (Mayr et al., 2008). Further investigation into the role of DARC in acute lung inflammation revealed that a lack of DARC in mice results in down-regulation of CXCR2 on neutrophils because of high levels of circulating chemokines during severe inflammation (Zarbock et al., 2010). It this study DARC was essential for chemokine-mediated leukocyte recruitment, whereby DARC KO animals were protected from acid-induced lung injury and experienced preserved oxygenation. This occurred as a result of impaired leukocyte arrest on endothelial cells and consequently reduced pulmonary neutrophil recruitment. Adoptive transfer of neutrophils showed that the latter effect is dependent on neutrophils and independent of endothelial cells and erythrocytes, suggesting that the contribution of DARC is in the maintenance of receptor expression in the environments with excess ligands. Because neutrophils, which are activated by chemokines in the systemic circulation (Castillo et al., 2007), may be passively trapped in the lung circulation and contribute to the lung damage (Rot, 1991), inflammatory models in other organs may be more revealing in dissecting local vs. systemic effects of DARC on chemokine-driven leukocyte emigration. Renal models of inflammation have shown that DARC-deficient mice are protected from ischemic and LPS-induced acute renal injury (Zarbock et al., 2007). Furthermore, chemokine presentation on renal endothelial cells was absent, and renal neutrophil recruitment was impaired, in the context of lower inflammatory chemokine levels during systemic inflammation (Zarbock et al., 2007). In contrast, Voelhauer et al. (2009) studied tubule-interstitial inflammation and glomerulonephritis in DARC-deficient mice and demonstrated that in these models macrophage and T lymphocytes were recruited equally well in DARC KO and wild type mice.

Both human and murine studies suggest that DARC can sustain inflammatory chemokine levels on erythrocytes and in plasma (Jilma-Stohlawetz et al., 2001; Fukuma et al., 2003), but the biological purpose of this reservoir function is not clear. Basal plasma CCL2 levels are one-third lower in DARC KO mice than in control wild type animals (Fukuma et al., 2003). When CCL11 or hCXCL1 were administered intravenously, these chemokines disappeared more rapidly from the plasma of DARC KO animals (Fukuma et al., 2003). Duffy-negative humans were noted to have significantly lower basal CCL2 levels than Duffy-positives (Jilma-Stohlawetz et al., 2001) and following endotoxin administration, higher levels of plasma CCL2 were observed in Duffy-positive individuals as compared to the Duffy-negative ones (Mayr et al., 2008). Also CCL2 and CXCL1 levels, but not CXCL8 or CCL4 levels were higher in erythrocyte lysates of Duffy-positive individuals at baseline, whereas following endotoxin administration CCL2 and CXCL8, but not CCL4, levels increased significantly in erythrocyte lysates of Duffy-positive subjects. Given that chemokine plasma levels, including of CXCL8 (Wong et al., 2008) and CCL2 (Bozza et al., 2007) have been shown to be predictive of survival and correlate with sepsis severity, it is tempting to speculate that the loss of DARC expression may affect the outcome in sepsis. It has been recently suggested that chemokines with different binding affinities for DARC can modify the levels of other erythrocyte-bound and free plasma chemokines, affecting resultant leukocyte responses (Mei et al., 2010). In addition, heparin and activated coagulation factors can elute chemokines off erythrocyte DARC (Schnabel et al., 2010). Thus chemokines with range of affinities for DARC and other factors may significantly interfere with the ability of DARC to bind any particular chemokine introducing further complexity into mechanistic understanding of erythrocyte DARC function.

Recently, differences in plasma and serum chemokine levels were reported in persons with DARC FyA and FyB (Schnabel et al., 2010), although the mechanism for this is not apparent. Further work revealed that FyA erythrocytes have reduced surface DARC expression as compared to FyB erythrocytes; however, the binding affinity of DARC for chemokines was not appreciably different between these two phenotypes (Xiong et al., 2011). As discussed above, endothelial cells of post-capillary and collective venules and small veins express DARC, which functions here as a transcytosis receptor transporting chemokines from the basolateral to the apical side (Pruenster et al., 2009) where they are immobilized on the luminal surface. It is attractive to speculate that that individuals of alternative FyA vs. FyB DARC phenotypes may also show differences in chemokine-binding specificity and patterning by the endothelium, though to date there is no data to support this notion.

CONCLUSION

Since the discovery of its chemokine-binding properties, DARC has been mainly considered as a “decoy” receptor scavenging its ligands. Recent research shed new light on much more multifaceted activities of DARC. On erythrocytes, DARC acts on the one hand as a blood chemokine sink and, on the other, as a reservoir of...
cognate chemokines buffering the bursts in their blood levels, and maintaining these, respectively. Both of these functions are absent in individuals with FYB (ES) DARC “negative” polymorphism. Future work should uncover molecular and cellular mechanisms explaining how the lack of erythrocyte chemokine sink and depot functions in these DARC-negative individuals affects pathomechanisms in various inflammatory diseases and cancer. In endothelial cells DARC functions as a transcytosis receptor leading to correct patterning of chemokines on the tissue–blood interface in veins and veins, thus supporting optimal chemokine-induced leukocyte endothelial cell adhesion and subsequent leukocyte emigration.

ACKNOWLEDGMENTS

Supported by the MRC grants G0802838 and G0818340, and Wellcome Trust grant WT019062MA.

REFERENCES

Bandyopadhyay, S., Zhan, R., Chaudhuri, A., Eidne, K. A., and Greaves, M. L., Zbrzezna, V., Fang, F., Guerra, C. A., Howes, R. E., Patil, A. P., Gething, P. W., van Boeckel, T. P., and Pfeffer, S. C. (1993). A receptor for the malarial parasite specificities, and expression of membrane tinous tissues in Darcy-negative individuals. Blood 83, 615-622.

Chaudhuri, A., Polverya, J., Zenzena, V., and Pogo, A. O. (1995). The coding sequence of the Duffy blood group gene in human and simian restriction fragment length polymorphism, antibody and maternal parasitic species, and expression in nonerythroid tissues in Darcy-negative individuals. Blood 83, 615-622.

Chaudhuri, A., Polyakova, J., Zenzena, V., Williams, K., Galati, J., and Pogo, A. O. (1993). Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc. Natl. Acad. Sci. U.S.A. 90, 10793-10797.

Cutbush, M., and Milou, P. L. (1950). The Duffy blood group system. Hrerdit 4, 305-310.

Chaudhuri, A., Polyakova, J., Zenzena, V., Williams, K., Galati, J., and Pogo, A. O. (1993). Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc. Natl. Acad. Sci. U.S.A. 90, 10793-10797.

Cutbush, M., and Milou, P. L. (1950). The Duffy blood group system. Hrerdit 4, 305-310.

Chaudhuri, A., Polyakova, J., Zenzena, V., Williams, K., Galati, J., and Pogo, A. O. (1993). Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc. Natl. Acad. Sci. U.S.A. 90, 10793-10797.

Cutbush, M., and Milou, P. L. (1950). The Duffy blood group system. Hrerdit 4, 305-310.

Chaudhuri, A., Polyakova, J., Zenzena, V., Williams, K., Galati, J., and Pogo, A. O. (1993). Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc. Natl. Acad. Sci. U.S.A. 90, 10793-10797.

Cutbush, M., and Milou, P. L. (1950). The Duffy blood group system. Hrerdit 4, 305-310.

Chaudhuri, A., Polyakova, J., Zenzena, V., Williams, K., Galati, J., and Pogo, A. O. (1993). Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc. Natl. Acad. Sci. U.S.A. 90, 10793-10797.

Cutbush, M., and Milou, P. L. (1950). The Duffy blood group system. Hrerdit 4, 305-310.

Chaudhuri, A., Polyakova, J., Zenzena, V., Williams, K., Galati, J., and Pogo, A. O. (1993). Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc. Natl. Acad. Sci. U.S.A. 90, 10793-10797.
Novitzky-Basso and Rot DARC involvement in patterning and control of chemokines

Lee, J. S., Frevert, C. W., Wurfel, M., Mayr, F. B., Spiel, A. O., Leitner, J. A., Peiper, S., and Martin, T. R. (2001). Fy phenotype and gender responses following lipopolysaccharide systemic and local tissue chemokine responses in vitro and protein movement of chemokine across the endothelium in vivo. J. Immunol. 167, 5244–5251.

Drucker, C., Marsik, C., Rot, A., O’Leary, P. A. (1927). Treatment of neurological disease. J. Nerv. Ment. Dis. 80, 1500.

Mollison’s Blood Transfusion in Clinical Medicine, 11th Edn. Malden, MA: Blackwell Publishing.

M., Firbas, C., Kliegel, T., Jilma-Bazin, P., Kreuzer, C. M., Witteman, J. C., Hoogeveen, N., Boerwinkle, E., Larson, M. G., Manning, A. E., Cartron, J. P., and Colin, Y. (2011). Simultaneous determination of thousands of single nucleotide polymorphisms using a new bead-based instrument. J. Immunogenet. 38, 225–233.

M., Pruenster, M., and Rot, A. (2006). The Duffy antigen receptor for chemokines (DARC) regulates plasma levels of monocyte chemotactic protein-1 (MCP-1) in normal and type 1 diabetic patients. J. Immunol. 177, 5528–5535.

Theriault, C., Filipe, A., Wadsworth, K., Gane, P., Lai, S., Lee, W., and Rot, A. (2010). Duffy antigen receptor for chemokines (DARC) regulates plasma levels of monocyte chemotactic protein-1 (MCP-1) in normal and type 1 diabetic patients. Blood 116, 2422–2428.

Ismail, H. G., and Antun, D. J. (2005). Milkospora Blepharoplastae in Clinical and Medical Mycology, 11th Edn. Malvern, M.: Blackwell Publishing.

Lee, J. S., Frevert, C. W., Thorning, D. R. B. (2003a). Duffy antigen receptor for chemokines (DARC) regulates plasma levels of monocyte chemotactic protein-1 (MCP-1) in normal and type 1 diabetic patients. J. Immunol. 171, 1018–1024.

Ismail, H. G., Antun, D. J. (2005). Milkospora Blepharoplastae in Clinical and Medical Mycology, 11th Edn. Malvern, M.: Blackwell Publishing.

Lee, J. S., Frevert, C. W., Wurfel, M., Mayr, F. B., Spiel, A. O., Leitner, J. A., Peiper, S., and Martin, T. R. (2001). Fy phenotype and gender responses following lipopolysaccharide systemic and local tissue chemokine responses in vitro and protein movement of chemokine across the endothelium in vivo. J. Immunol. 167, 5244–5251.

Drucker, C., Marsik, C., Rot, A., O’Leary, P. A. (1927). Treatment of neurological disease. J. Nerv. Ment. Dis. 80, 1500.
Novitzky-Basso and Rot
DARC involvement in patterning and control of chemokines

Zarbock, A., Bishop, J., Müller, H., Schmolke, M., Buschmann, K., Van Aken, H., and Singbartl, K. (2010). Chemokine homostasis vs. chemokine presentation during severe acute lung injury: the other side of the Duffy antigen receptor for chemokines. Am. J. Physiol. Lung Cell. Mol. Physiol. 298, L462–L471.

Zarbock, A., Schmolke, M., Bockhorn, S. G., Scharte, M., Buschmann, K., Ley, K., and Singbartl, K. (2007). The Duffy antigen receptor for chemokines in acute renal failure: a facilitator of renal chemokine presentation. Crit. Care Med. 35, 2156–2163.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 09 May 2012; paper pending published: 09 June 2012; accepted: 02 August 2012; published online: 17 August 2012.

Citation: Novitzky-Basso I and Rot A (2012) Duffy antigen receptor for chemokines and its involvement in patterning and control of inflammatory chemokines. Front. Immunol. 3:266. doi: 10.3389/fimmu.2012.00266

This article was submitted to Frontiers in Chemoattractants, a specialty of Frontiers in Immunology.

Copyright © 2012 Novitzky-Basso and Rot. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.