Laparoscopic correction of perforated peptic ulcer: first choice?
A review of literature

Mariëtta J. O. E. Bertleff · Johan F. Lange

Abstract

Background Perforated peptic ulcer (PPU), despite anti-ulcer medication and Helicobacter eradication, is still the most common indication for emergency gastric surgery associated with high morbidity and mortality. Outcome might be improved by performing this procedure laparoscopically, but there is no consensus on whether the benefits of laparoscopic closure of perforated peptic ulcer outweigh the disadvantages such as prolonged surgery time and greater expense.

Methods An electronic literature search was done by using PubMed and EMBASE databases. Relevant papers written between January 1989 and May 2009 were selected and scored according to Effective Public Health Practice Project guidelines.

Results Data were extracted from 56 papers, as summarized in Tables 1–7. The overall conversion rate for laparoscopic correction of perforated peptic ulcer was 12.4%, with main reason for conversion being the diameter of perforation. Patients presenting with PPU were predominantly men (79%), with an average age of 48 years. One-third had a history of peptic ulcer disease, and one-fifth took nonsteroidal anti-inflammatory drugs (NSAIDs). Only 7% presented with shock at admission. There seems to be no consensus on the perfect setup for surgery and/or operating technique. In the laparoscopic groups, operating time was significant longer and incidence of recurrent leakage at the repair site was higher. Nonetheless there was significant less postoperative pain, lower morbidity, less mortality, and shorter hospital stay.

Conclusion There are good arguments that laparoscopic correction of PPU should be first treatment of choice. A Boey score of 3, age over 70 years, and symptoms persisting longer than 24 h are associated with higher morbidity and mortality and should be considered contraindications for laparoscopic intervention.

Keywords Laparoscopic surgery · Perforated peptic ulcer · Omentoplasty · Review

Since the late 1980s, laparoscopy has become increasingly popular. In the beginning laparoscopy was mainly used for elective surgery since it was not clear what the influence was of the pneumoperitoneum on the acute abdomen with peritonitis. However the benefits of laparoscopy with regard to the acute abdomen as a diagnostic tool have been established since, and also its therapeutic possibilities seem to be advantageous [1–3]. The rapid development of laparoscopic surgery has further complicated the issue of the best approach for the management of perforated peptic ulcer (PPU) [4]. PPU is a condition in which laparoscopic repair is an attractive option. Not only is it possible to identify the site and pathology of the perforation, but the procedure also allows closure of the perforation and peritoneal lavage, just like in open repair but without a large upper abdominal incision [5, 6]. Nonetheless, not all patients are suitable for laparoscopic repair [5]. Despite many trials (mostly nonrandomized or retrospective), the routine treatment for perforated peptic ulcer still seems to be by upper laparotomy, representing the main motive for
reviewing the literature and summarizing all (significant) results.

Materials and methods

An extensive electronic literature search was done by using PubMed and EMBASE databases. Keywords used for searching were “laparoscopic,” “correction,” “repair,” and “peptic ulcer.” All papers in English or German language published between January 1989 and May 2009 were included. Papers were scored according to Effective Public Health Practice Project (EPHPP) guidelines as advised in Jackson’s guidelines for systematic reviews [7]. Using this rating system each paper was classified as weak, moderate or strong.

Results

Fifty-six relevant articles were found by PubMed and EMBASE search. Of these, 36 were prospective or retrospective trials, 5 were review articles, 3 articles described new techniques making laparoscopic correction of PPU more accessible, and 12 were general, of which 1 was the European Association for Endoscopic Surgery (EAES) prospective randomized trials have been performed (n = 3). Still, data extracted from these papers are interesting.

Patient characteristics

Often it was mentioned that age of patients presenting with PPU is increasing, due to better medical antiulcer treatment and also because of more NSAID and aspirin usage in the elderly population [4, 17, 56]. The results in Table 2 show that the average age of patients with PPU was 48 years and that only 20% of these patients had used NSAIDs. One-third of patients had a history of peptic ulcer. Although Helicobacter pylori is known to be present in about 80% of patients with PPU, this might indicate that there are more factors related to PPU for which the pathology is not yet clear [4]. Sixty-seven percent of perforations were located in the duodenum and only 17% were gastric ulcers (Table 2), according to findings in literature [58]. In 85% there was free air visible on X-ray (Table 2), which supports the diagnosis, but free air could be caused by other perforations as well and, although the diagnosis of PPU is not difficult to make, sometimes there is a good indication for diagnostic laparoscopic to exclude other pathology [2]. In 93–98%, definitive diagnosis could be made by performing diagnostic laparoscopy in the patient with an abdominal emergency, of which 86–100% could be treated laparoscopically during the same session [1, 2].
Study	Design	Study design	Number patients	Procedure	Conversion rate (%)
Vaidya 2009	Weak	NRP	31	Lap	6.5
Ates 2008	Moderate	NRP	17	Lap	17.6
Song 2008	Weak	NRP	35	Lap	5.7
Bhogal 2008	Moderate	NRP	19	Lap	0.0
Ates 2007	Weak	NRP	17	Lap	17.6
Malkov 2004	Moderate	NRP	42	Lap	0.0
Siu 2004	Moderate	NRP	172	Lap	21.5
Arnaud 2002	Weak	NRP	30	Lap	16.6
Lee 2001	Weak	NRP	155	Lap	28.5
Khourseed 2000	Weak	NRP	21	Lap	4.7
Kathkouda 1999	Weak	NRP	30	Lap	17.0
Bergamaschi 1999	Weak	NRP	17	Lap	23.5
Matsuda 1995	Weak	NRP	11	Lap	21.4
Lee 2004	Weak	NRP	30	Lap	3.3
Druart 2002	Strong	PR	63	Lap	14.2
Siu 2002	Strong	PR	58	Open	
Lau 1996	Moderate	PR	52	Lap	23.0
Bentleff 2009	Strong	PR	52	Lap	7.7
Palanivelu 2007	Weak	R	120	Lap	0.0
Lunevicius 2005	Moderate	R	60	Lap	23.3
Lunevicius IV	Weak	R	60	Lap	23.3
Kirshtein 2005	Weak	R	68	Lap	4.4
Tsumura 2004	Weak	R	58	Lap	12.0
Seelig 2003	Weak	R	24	Lap	12.5
Al Aali 2002	Weak	R	60	Lap	6.6
Lee 2001 I	Weak	R	209	Lap	26.8
Robertson	Weak	R	20	Lap	10.0
So 1996	Weak	R	16	Open	
Johansson 1996	Weak	R	10	Lap	0.0
Total			2788		12.4

NRP nonrandomized prospective, *PR* prospective randomized, *R* retrospective, *EPHPP* Effective Public Health Practice Project
Table 2 Demographics of patients with perforated peptic ulcer disease

	Total (n = 2,784)
Age (years)	48
Male (%)	79
History of ulcer (%)	29
History of NSAID use (%)	20
Smokers (%)	62
Alcohol use (%)	29
ASA I (%)	35
ASA II (%)	37
ASA III (%)	20
ASA IV (%)	9
Boey 0	59
Boey 1	23
Boey 2	16
Boey 3	2
Shock at admission (%)	7
Duration of symptoms (h)	13.6
Free air on X-ray (%)	85
Symptoms >24 h (%)	11
Size perforation (mm)	5.5
Manheim peritonitis index	15.1
WBC	12.3
Localization ulcer	
Duodenal (%)	67
Juxtapyloric (%)	23
Gastric (%)	17

WBC white blood cells

Surgical technique

There seems to be no consensus on how to perform the surgical procedure, which probably means that the perfect setup has not yet been found. Forty-four percent of surgeons preferred to stand between the patient’s legs, while 33% performed the procedure at the patient’s left side. Also, the number, position, and size of trocars differed between surgeons. Placing and tying sutures was more demanding laparoscopically, and two techniques were used (Table 4). Theoretically there is a preference for intracorporeal knotting over extracorporeal suturing, because the latter is likely to cut through the friable edge of the perforation [12]. One of the disadvantages of laparoscopic correction of PPU often mentioned was the significant longer operating time, which causes more costs and may be nonpreferable in a hemodynamically unstable patient [5, 16, 18, 35, 42, 43, 45, 46]. Ates et al. presented results with simple suture repair of PPU without using pedicled omentoplasty [11]. This significantly shortened operating time, but the question remains of whether it is safe to abandon omentoplasty completely. Cellan-Jones emphasized the necessity for omentoplasty [59]. His advised technique, to prevent tearing out of sutures and prevent enlargement of the size of perforation by damaging the friable edges, is to place a plug of pedicled omentum into the “hole” and secure this with three tie-over sutures. His technique is often called the Graham patch, but Graham describes in his article the use of a free omental plug, a technique that hardly any surgeon uses nowadays [60]. It might be less confusion to use the term “pedicled omentoplasty.” The usefulness of pedicled omentoplasty has been emphasized by others, and Schein even stated: “first suturing the hole and then sticking omentum over the repair is wrong, if you cannot patch it, then you must resect” [59, 61]. Avoiding omentoplasty might shorten operating time but might be the reason for a higher incidence of leakage at the repaired ulcer side [5, 24]. Another reason for longer operating time during the laparoscopic procedure might be the irrigation procedure. Peritoneal lavage is one of the key interventions in the management of PPU [4]. Lavage was performed with 2–6 L warm saline, but even up to 10 L has been described (Table 3) [4]. By using a 5-mm or even 10-mm suction device, this part of surgery took even up to 58 min [30]. Whether generous irrigation is really necessary has not yet been proven.

Patient selection

Not all patients are suitable for laparoscopic repair, and it is important to preselect patients who are good candidates for laparoscopic surgery [5]. Boey’s classification appears to be a helpful tool in decision-making [4, 56]. The Boey score is a count of risk factors, which are: shock on admission, American Society of Anesthesiologists (ASA) grade III–V, and duration of symptoms [52]. The maximum score is 3, which indicates high surgical risk. Laparoscopic repair is reported only to be safe with Boey score 0 and 1 [16, 42]. Since the incidence of patients with Boey score 2 and 3 is low (according to Table 2, only 2% of patients were admitted with Boey score 3, 7% were in shock at admission, and 11% had prolonged symptoms for more than 24 h) and Boey 2 and 3 is associated with high morbidity and mortality rate anyway, independent of type of surgery, it is difficult to find significant foundation for this statement. Other reported contraindications are age >70 years and perforation larger than 10 mm in diameter [16, 17, 32, 33].

Reasons for conversion

Overall conversion rate was 12.4%, with a range of 0–28.5% (Table 1). The most common reason for conversion was the size of perforation, but by using an omental
patch this might not necessarily have to be a reason anymore to convert. From literature it was already known that other common reasons for conversion include failure to locate the perforation [17]. Shock at admission was associated with a significant higher conversion rate (50% versus 8%) [4]. Furthermore, time lapse between perforation

Table 3 Results of prospective randomized trials

	Siu 2002	Lau 1996	Bertleff 2009	Average
Laparoscopic correction				
Operating time (min)	42	94	75	70.3
Nasogastric tube (days)	3.0	2.5	2.0	2.5
Normal diet (days)	4.0			4.0
Postoperative opiate use	0 injections	1.5 days	1 day	
Hospital stay (days)	5.5	5.5	6.5	6.0
Morbidity (%)	25	23	18	22.0
Normal daily activities (days)	10.4			10.4
Mortality (%)	1.6	2	3.8	2.5
Ileus (days)	0			0.0
Wound infection (%)				0.0
Leakage (%)				3.0
VAS day 1	3.5	4.0	3.8	3.8
VAS day 3	1.6		2.1	1.9

Open correction PPU

	Siu 2002	Lau 1996	Bertleff 2009	Average
Operating time (min)	52.3	54	50	52.1
Nasogastric tube (days)	3.0	2.5	3.0	2.8
Normal diet (days)	4.0			4.0
Postoperative opiate use	6 injections	3.5 days	1 day	
Hospital stay (days)	5	8	8	6.5
Morbidity (%)	50	22	36	36.0
Normal daily activities (days)	26.1			26.1
Mortality (%)	5.2	4.0	8.1	5.8
Ileus (days)				2.0
Wound infection (%)				6.1
Leakage (%)		2.2	0	1.1
VAS day 1	6.4	5.0	5.2	5.5
VAS day 3	3.3		3.0	3.2

VAS visual analog scale

Table 4 Surgical technique (29 studies)

	Siu 2002	Lau 1996	Bertleff 2009	Average
Closure of perforation	66% omental patch	24% mixed techniques	10% sutures only	
Pneumoperitoneum	26% Hassan trocar	47% Veress needle	26% mixed	
Pneumoperitoneum pressure	75% 12 mmHg	25% 11 or 14 mmHg		
Camera position	35% supraumbilical	35% umbilical	30% infraumbilical	
Number of trocars used	60% four trocars	40% three trocars		
Surgeon position	44% between legs	33% left side patient	16% between or left side	6% right side
Irrigation fluid	45% generous	55% between 2 and 6 L		
Camera angle	80° 30°	10° 40°	10° 0°	
Nasogastric tubing	94% yes	6% no		
Abdominal drains	79% yes	21% no		
Suture material	64% resorbable	38% nonresorbable		
Knotting technique	64% intracorporeal	14% extracorporeal	14% mix	
Comparing results shows a remarkable difference in morbidity (14.3% in the laparoscopic group versus 26.9% in the open group) and mortality (3.6% versus 6.4%) (Table 6). Many trials measured the amount of postoperative opiate usage, but since this was scored in different ways (days used, number of injections, amount of opiates in mg) these data were not comparable. However, overall, many studies showed significant reduction in pain, mortality, morbidity, wound infection, resuming normal diet, and hospital stay (Tables 6 and 7). Of course there are some negative results which cannot be ignored (Table 7). Three papers reported a significant higher incidence of suture leakage, associated in one with a higher incidence of reoperations, but leakage mainly occurred in the sutureless repair group or in the group in which (pedicled) omentoplasty was not routinely used [18, 24, 32].

Overall there seems to be significant proof of the benefits of laparoscopic repair, but it is technical demanding surgery which needs a surgeon experienced with laparoscopy [4, 17]. CO2 insufflation of the peritoneal cavity in the presence of peritonitis has been shown in rat models to cause an increase in bacterial translocation [4]. This led to the assumption that laparoscopic surgery might be dangerous in patients with prolonged peritonitis. Vaidya et al. performed laparoscopic repair in patients with symptoms of PPU for more than 24 h and concluded that it was safe even in patients with prolonged peritonitis, which has been confirmed by others [4, 8, 39, 44].

Alternative techniques

Closing the perforation site using suture repair is challenging, which is why alternative methods have been described [5, 15, 21, 24, 25, 31]. Examples are represented by the sutureless repair of PPU, in which the perforation is closed by a gelatin sponge glued into the perforation or the perforation is closed by fibrin glue. Song et al. proposed the simple “one-stitch” repair with omental patch [9]. The automatic stapler has been used for perforation site closure, use of running suture was suggested to avoid intracorporeal or extracorporeal knotting, and combined laparoscopic–endoscopic repair has been described as well [21].

Definitive ulcer surgery

The need for definitive surgical management of peptic ulcer disease has markedly decreased, but 0–35% of patients admitted for PPU received definitive ulcer surgery [8, 16, 20, 56]. Definitive ulcer surgery can be performed safely with laparoscopic techniques [4, 12, 36]. Palanivelu et al. performed definitive surgery in 10% of cases admitted for PPU. All procedures (posterior truncal vagotomy and anterior highly selective vagotomy) were
performed laparoscopically without conversion or mortality [12].

Research

A few aspects regarding laparoscopic repair of PPU are still unclear, and further research on these topics would be interesting. One of the remaining questions is whether there is less formation of intra-abdominal adhesions after laparoscopic repair [4]. If this is the case, it would be another convincing reason to perform this procedure laparoscopically. Often mentioned as one of the major disadvantages of laparoscopic surgery are the high costs, caused by the need for more surgical staff and laparoscopic equipment. However, no specified calculation of per- and postoperative costs have been made so far, and also the costs saved by possible earlier return to work have to be taken into account.

To conclude, the results of this review support the statement of the EAES already made in 2006 that, in case of suspected perforated peptic ulcer, laparoscopy should be advocated as diagnostic and therapeutic tool [14].

Disclosures Mariëtta Bertleff and Johan Lange have no conflicts of interest or financial ties to disclose.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Ates M, Coban S, Sevil S, Terzi A (2008) The efficacy of laparoscopic surgery in patients with peritonitis. Surg Laparosc Endosc Percutan Tech 18:453–456
2. Agresta F, Mazzaro G, Ciardo LF, Bedin N (2008) The laparoscopic approach in abdominal emergencies: has the attitude changed? A single-center review of a 15-year experience. Surg Endosc 22:1255–1262
3. Sanabria AE, Morales CH, Villegas MI (2005) Laparoscopic repair for perforated peptic ulcer disease. Cochrane Database Syst Rev CD004778
4. Lagoo S, McMahon RL, Kahiha M, Pappas TN, Eubanks S (2002) The sixth decision regarding perforated duodenal ulcer. JSLS 6:359–368
5. Lau WY (2002) Perforated peptic ulcer: open versus laparoscopic repair. Asian J Surg 25:267–269
6. Druart ML, Van Hee R, Etienne J, Cadière GB, Gigot JF, Legrand M, Limbosch JM, Navez B, Tugilimana M, Van Vyve E, Vereecken L, Wibin E, Yvergneaux JP (1997) Laparoscopic
repair of perforated duodenal ulcer. A prospective multicenter clinical trial. Surg Endosc 11:1017–1020.

7. Jackson N, Waters E (2005) Criteria for the systematic review of health promotion and public health interventions. Health Promotion Int 20:367–374.

8. Vaidya BB, Garg CP, Shah JB (2009) Laparoscopic repair of perforated peptic ulcer with delayed presentation. J Laparoendosc Adv Surg Tech A 19(2):153–156.

9. Song KY, Kim TH, Kim SN, Park CH (2008) Laparoscopic repair of perforated duodenal ulcers: the simple “one-stitch” suture with omental patch technique. Surg Endosc 22:1632–1635.

10. Bhogal RH, Athwal R, Durkin D, Deakin M, Cheruvu CN (2008) Comparison between open and laparoscopic repair of perforated peptic ulcer disease. World J Surg 32:2371–2374.

11. Lunevicius R, Morkevicius M (2005) Laparoscopic repair of peptic ulcer perforation without omental patch versus conventional open repair. J Laparoendosc Adv Surg Tech A 17:615–619.

12. Palanivelu C, Jani K, Senthilnathan P (2007) Laparoscopic management of duodenal ulcer perforation: is it advantageous? Indian J Gastroenterol 26:64–66.

13. Wong BP, Chao NS, Leung MW, Chung KW, Kwok WK, Liu KK (2006) Complications of peptic ulcer disease in children and adolescents: minimally invasive treatments offer feasible surgical options. J Pediatr Surg 41:2073–2075.

14. Sauerland S, Agresta F, Bergamaschi R, Borzellino G, Budzynski A, Champaugt G, Fingerhut A, Isla A, Johansson M, Lundorpf P, Navez B, Saad S, Neugebauer EA (2006) Laparoscopy for abdominal emergencies: evidence-based guidelines of the European Association for Endoscopic Surgery. Surg Endosc 20:14–29.

15. Lam PW, Lam MC, Hui EK, Sun YW, Mok FP (2005) Laparoscopic repair of perforated duodenal ulcers: the "three-stitch" Graham patch technique. Surg Endosc 19:1627–1630.

16. Lunevicius R, Morkevicius M (2005) Comparison of laparoscopic versus open repair for perforated duodenal ulcers. Surg Endosc 19:1565–1571.

17. Lunevicius R, Morkevicius M (2005) Management strategies, early results, benefits, and risk factors of laparoscopic repair of perforated peptic ulcer. World J Surg 29:1290–1310.

18. Lunevicius R, Morkevicius M (2005) Systematic review comparing laparoscopic and open repair for perforated peptic ulcer. Br J Surg 92:1195–1207.

19. Lunevicius R, Morkevicius M (2005) Risk factors influencing the early outcome results after laparoscopic repair of perforated duodenal ulcer and their predictive value. Langenbecks Arch Surg 390:413–420.

20. Kirshstein B, Bayme M, Mayer T, Lantsberg L, Avinoach E, Mizrahi S (2005) Laparoscopic treatment of gastroduodenal perforations: comparison with conventional surgery. Surg Endosc 19:1487–1490.

21. Alvarado-Aparicio HA, Moreno-Poritillo M (2004) Multimedia article: management of duodenal ulcer perforation with combined laparoscopic and endoscopic methods. Surg Endosc 18:1394.

22. Tsumura H, Ichikawa T, Hiyama E, Murakami Y (2004) Laparoscopic and open approach in perforated peptic ulcer. Hepatogastroenterology 51:1536–1539.

23. Malkov IS, Zaynutdinov AM, Velyiyev NA, Tagirov MR, Merrell RC (2004) Laparoscopic and endoscopic management of perforated duodenal ulcers. J Am Coll Surg 198:352–355.

24. Lau H (2004) Laparoscopic repair of perforated peptic ulcer: a meta-analysis. Surg Endosc 18:1013–1021.

25. Siu WT, Chau CH, Law BK, Tang CN, Ha PY, Li MK (2004) Routine use of laparoscopic repair for perforated peptic ulcer. Br J Surg 91:481–484.

26. Gentileschi P, Rossi P, Manzelli A, Lirosi F, Susanna F, Stolfi VM, Spina C, Gaspari AL (2003) Laparoscopic suture repair of a perforated gastric ulcer in a severely cirrhotic patient with portal hypertension: first case report. JSLS 7:377–382.

27. Seelig MH, Seelig SK, Behr C, Schonleben K (2003) Comparison between open and laparoscopic technique in the management of perforated gastroduodenal ulcers. J Clin Gastroenterol 37:226–229.

28. Aali AYA, Bestoun HA (2002) Laparoscopic repair of perforated duodenal ulcer. Middle East J Emerg Med 2:1–4.

29. Siu WT, Leong HT, Law BK, Chau CH, Li AC, Fung KH, Tai YP, Li MK (2002) Laparoscopic repair for perforated peptic ulcer: a randomized controlled trial. Ann Surg 235:313–319.

30. Arnaud JP, Taeub JJ, Bergamaschi R, Pessaux P, Regenet N (2002) Laparoscopic suture closure of perforated duodenal peptic ulcer. Surg Laparoendosc Percutan Tech 12:145–147.

31. Wemys-Holden S, White SA, Robertson G, Lloyd D (2002) Color coding of sutures in laparoscopic perforated duodenal ulcer: a new concept. Surg Laparoendosc Percutan Tech 12:177–179.

32. Lee FY, Leung KL, Lai PB, Lau JW (2001) Selection of patients for laparoscopic repair of perforated peptic ulcer. Br J Surg 88:133–136.

33. Lee FY, Leung KL, Lai BS, Ng SS, Dexter S, Lau WY (2001) Predicting mortality and morbidity of patients operated on for perforated peptic ulcers. Arch Surg 136:90–94.

34. Bohm B, Abbassmaier B, Muller JM (2001) Laparoscopic surgery of the upper gastrointestinal tract. Chirurg 72:349–361.

35. Millat B, Fingerhut A, Borie F (2000) Surgical treatment of complicated duodenal ulcers: controlled trials. World J Surg 24:299–306.

36. Dubois F (2000) New surgical strategy for gastroduodenal ulcer: laparoscopic approach. World J Surg 24:270–276.

37. Freiston JW (2000) Management of peptic ulcers: emerging issues. World J Surg 24:250–255.

38. Agresta F, Michelet I, Colucci G, Bedin N (2000) Emergency laparoscopy: a community hospital experience. Surg Endosc 14:484–487.

39. Robertson GS, Wemys-Holden SA, Madder DJ (2000) Laparoscopic repair of perforated peptic ulcers. The role of laparoscopy in generalised peritonitis. Ann R Coll Surg Engl 82:6–10.

40. Khoursheed M, Fuad M, Safar H, Dashti H, Behbehani A (2000) Laparoscopic closure of perforated duodenal ulcer. Surg Endosc 14:565–58.

41. Kabashima A, Maehara Y, Hashizume M, Tomoda M, Kakeji Y, Ohno S, Sugimachi K (1998) Laparoscopic repair of a perforated duodenal ulcer in two patients. Surg Today 28:633–635.

42. Kakhouda N, Mavor E, Mason RJ, Campos GM, Soroushyari A, Berne TV (1999) Laparoscopic repair of perforated duodenal ulcer: outcome and efficacy in 30 consecutive patients. Arch Surg 134:845–848; discussion 849–850.

43. Robertson GS, Wemys-Holden SA, Madder DJ (2000) Laparoscopic repair of perforated peptic ulcers: the simple ‘‘one-stitch’’ suture with omental patch repair. Ann Surg 235:313–319.

44. So JB, Kum CK, Fernandes ML, Goh P (1996) Comparison between laparoscopic and conventional omental patch repair for perforated duodenal ulcer. Surg Endosc 10:1060–1063.

45. Lau YJ, Leung KL, Kwong KH, Davey JC, Robertson C, Dawson JJ, Chung SC, Li AK (1998) A randomized study comparing laparoscopic versus open repair of perforated peptic ulcer using suture or sutureless technique. Ann Surg 224:131–138.
47. Memon MA (1995) Laparoscopic omental patch repair for perforated peptic ulcer. Ann Surg 222:761–762
48. Matsuda M, Nishiyama M, Hanai T, Saeki S, Watanabe T (1995) Laparoscopic omental patch repair for perforated peptic ulcer. Ann Surg 221:236–240
49. Lee KH, Chang HC, Lo CJ (2004) Endoscope-assisted laparoscopic repair of perforated peptic ulcers. Am Surg 70:352–356
50. Golash V, Willson PD (2005) Early laparoscopy as a routine procedure in the management of acute abdominal pain: a review of 1,320 patients. Surg Endosc 19:882–885
51. Rossi S (2005) Laparoscopy in gastrointestinal emergency. Eur Surgery 36:15–18
52. Boey J, Wong J (1987) Perforated duodenal ulcers. World J Surg 11:319–324
53. Urbano D, Rossi M, De Simone P, Berloco P, Alfani D, Cortesini R (1994) Alternative laparoscopic management of perforated peptic ulcers. Surg Endosc 8:1208–1211
54. Miserez M, Eypasch E, Spangenberg W, Lefering R, Troidl H (1996) Laparoscopic and conventional closure of perforated peptic ulcer. A comparison. Surg Endosc 10:831–836
55. Bloechle C, Emmermann A, Zornig C (1997) Laparoscopic and conventional closure of perforated peptic ulcer. Surg Endosc 11:1226–1227
56. Lohsiriwat V, Prapasrivarakul S, Lohsiriwat D (2009) Perforated peptic ulcer: clinical presentation, surgical outcomes, and the accuracy of the Boey scoring system in predicting postoperative morbidity and mortality. World J Surg 33:80–85
57. Bertleff MJ, Halm JA, Bemelman WA, van der Harst E, Oei HI, Smulders JF, Steyerberg EW, Lange JF (2009) Randomized clinical trial of laparoscopic versus open repair of the perforated peptic ulcer: the LAMA trial. World J Surg 33(7):1368–1373
58. Zittel TT, Jehle EC, Becker HD (2000) Surgical management of peptic ulcer disease today—indication, technique and outcome. Langenbecks Arch Surg 385:84–96
59. Cellan-Jones CJ (1929) A rapid method of treatment in perforated duodenal ulcers. BMJ 1076–1077
60. Graham R, R (1937) The treatment of perforated duodenal ulcers. Surg Gynecol Obstet 235–238
61. Schein M (2005) Perforated peptic ulcer. In: Schein’s common sense emergency abdominal surgery: Springer, Berlin Heidelberg, pp 143–150