An Averaging Theorem for Perturbed KdV Equation

HUANG Guan
C.M.L.S, Ecole Polytechnique, Palaiseau, France
E-mail: guan@math.polytechnique.fr

Abstract. We consider a perturbed KdV equation:
\[\dot{u} + u_{xxx} - 6uu_x = \epsilon f(x, u(\cdot)), \quad x \in \mathbb{T}, \quad \int_{\mathbb{T}} u dx = 0. \]

For any periodic function \(u(x) \), let \(I(u) = (I_1(u), I_2(u), \cdots) \in \mathbb{R}_+^\infty \) be the vector, formed by the KdV integrals of motion, calculated for the potential \(u(x) \). Assuming that the perturbation \(\epsilon f(x, u(\cdot)) \) is a smoothing mapping (e.g. it is a smooth function \(\epsilon f(x) \), independent from \(u \)), and that solutions of the perturbed equation satisfy some mild a-priori assumptions, we prove that for solutions \(u(t, x) \) with typical initial data and for \(0 \leq t \leq \epsilon^{-1} \), the vector \(I(u(t)) \) may be well approximated by a solution of the averaged equation.

AMS classification scheme numbers: 35Q53, 70K65, 34C29, 37K10, 74H40
0. Introduction

We consider a perturbed Korteweg-de Vries (KdV) equation with zero mean-value periodic boundary condition:

\[\dot{u} + u_{xxx} - 6uu_x = \epsilon f(x, u(\cdot)), \quad x \in \mathbb{T} = \mathbb{R}/\mathbb{Z}, \quad \int_{\mathbb{T}} u(x, t) dx = 0. \quad (0.1) \]

Here \(\epsilon f(x, u(\cdot)) \) is a nonlinear perturbation, specified below. For any \(p \in \mathbb{R} \) we denote by \(H^p \) the Sobolev space of order \(p \), formed by real-valued periodic functions with zero mean-value, provided with the homogeneous norm \(\| \cdot \|_p \). Particularly, if \(p \in \mathbb{N} \) we have

\[H^p = \left\{ u \in L^2(\mathbb{T}) : \|u\|_p < \infty, \int_{\mathbb{T}} u dx = 0 \right\}, \quad \|u\|^2_p = \int_{\mathbb{T}} \left\| \frac{\partial^p u}{\partial x^p} \right\|^2 dx. \]

For any \(p \), the operator \(\frac{\partial}{\partial x} \) defines a linear isomorphism: \(\frac{\partial}{\partial x} : H^p \to H^{p-1} \). Denoting by \((\frac{\partial}{\partial x})^{-1}\) its inverse, we provide the spaces \(H^p, p \geq 0 \), with a symplectic structure by means of the 2-form \(\Omega \):

\[\Omega(u_1, u_2) = -\left\langle (\frac{\partial}{\partial x})^{-1}u_1, u_2 \right\rangle, \quad (0.2) \]

where \(\langle \cdot, \cdot \rangle \) is the scalar product in \(L^2(\mathbb{T}) \). Then in any space \(H^p, p \geq 1 \), the KdV equation \((\text{I})_{\epsilon=0}\) may be written as a Hamiltonian system with the Hamiltonian \(\mathcal{H} \), given by

\[\mathcal{H}(u) = \int_{\mathbb{T}} \left(\frac{1}{2} u_x^2 + u^3 \right) dx. \]

That is, KdV may be written as

\[\dot{u} = \frac{\partial}{\partial x} \nabla \mathcal{H}(u). \]

It is well-known that KdV is integrable. It means that the function space \(H^p \) admits analytic symplectic coordinates \(v = (v_1, v_2, \cdots, v_j) = \Psi(u(\cdot)) \), where \(v_j = (v_j, v_{-j}) \in \mathbb{R}^2 \), such that the quantities \(I_j = \frac{1}{2} |v_j|^2, j \geq 1 \), are actions (integrals of motion), while \(\varphi_j = \text{Arg} v_j, j \geq 1 \), are angles. In the \((I, \varphi)\)-variables, KdV takes the integrable form

\[\dot{I} = 0, \quad \dot{\varphi} = W(I), \quad (0.3) \]

where \(W(I) \in \mathbb{R}^{\infty} \) is the frequency vector (see [1, 2]). The integrating transformation \(\Psi \), called the nonlinear Fourier transform, for any \(p \geq 0 \) defines an analytic isomorphism \(\Psi : H^p \to h^p \), where

\[h^p = \left\{ v = (v_1, v_2, \cdots) : |v|^2_p = \sum_{j=1}^{+\infty} (2\pi j)^{2p+1} |v_j|^2 < \infty, v_j \in \mathbb{R}^2, j \in \mathbb{N} \right\}. \]

It is well established that for a perturbed integrable finite-dimensional system,

\[\dot{I} = \epsilon f(I, \varphi), \quad \dot{\varphi} = W(I) + \epsilon g(I, \varphi), \quad \epsilon << 1, \]

where \(I \in \mathbb{R}^n, \varphi \in \mathbb{T}^n \), on time intervals of order \(\epsilon^{-1} \) the actions \(I(t) \) may be well approximated by solutions of the averaged equation:

\[\dot{J} = \epsilon \langle f(J) \rangle, \quad f(J) = \int_{\mathbb{T}^n} f(J, \varphi) d\varphi, \]

provided that the initial data \((I(0), \varphi(0))\) are typical (see [3, 4, 5, 6]). This assertion is known as the \textit{averaging principle}. But in the infinite dimensional case, there is no
similar general result. In [7, 8], S. Kuksin and A. Piatniski proved that the averaging principle holds for the randomly perturbed KdV equation of the form:

$$\dot{u} - \epsilon u_{xx} + u_{xxx} - 6uu_x = \sqrt{\epsilon} \eta(t, x), \quad x \in S^1, \quad \int u dx = \int \eta dx = 0, \quad (0.4)$$

where the force η is a white noise in t, is smooth in x and is non-degenerate. Our goal in this work is to justify the averaging principle for the KdV equation with deterministic perturbations, using the Anosov scheme (see [3]), exploited earlier in the finite dimensional situation. The main technical difficulty to achieve this goal comes from the fact that to perform the scheme one has to use a measure in the function space which is quasi-invariant under the flow of the perturbed equation (it is needed to guarantee that a small 'bad' set which we have to prohibit for a solution of the perturbed equation at a time $t > 0$ corresponds to a small set of initial data). For a reason, explained in Section 3, to construct such a quasi-invariant measure we have to assume that the perturbation ϵf is smoothing. More precisely, we assume that:

Assumption A. (i) For any $p \geq 0$, the mapping defined by the perturbation in (0.1):

$$\mathcal{P} : H^p \rightarrow H^{p+\zeta_0}, \quad u \mapsto f(x, u(\cdot)), \quad (0.5)$$

is analytic. Here $\zeta_0 > 1$ is a constant.

(ii) For any $p \geq 3$ and $T > 0$, the perturbed KdV equation (0.1) with initial data $u(0) = u_0 \in H^p$,

has a unique solution $u(t, x) \in H^p$ in the time interval $[-T\epsilon^{-1}, T\epsilon^{-1}]$, and

$$||u(t)||_p \leq C(p, ||u_0||_p, T), \quad |t| \leq T\epsilon^{-1}.$$

We are mainly concerned with the behavior of the actions $I(u(t)) \in \mathbb{R}^\infty$ for $|t| \lesssim \epsilon^{-1}$. For this end, it is convenient to pass to the slow time $\tau = \epsilon t$ and write the perturbed KdV equation (0.1) in the action-angle coordinates (I, φ):

$$\frac{dI}{d\tau} = F(I, \varphi), \quad \frac{d\varphi}{d\tau} = \epsilon^{-1} W(I) + G(I, \varphi). \quad (0.6)$$

Here $I \in \mathbb{R}^\infty$, $\varphi \in T^\infty$ and $T^\infty := \{\theta = (\theta_i)_{i \geq 1}, \theta_i \in T\}$ is the infinite-dimensional torus, endowed with the Tikhonov topology. The two functions $F(I, \varphi)$ and $G(I, \varphi)$ are the perturbation term ϵf, written in action-angle variables, see below (1.3) and (1.4). The corresponding averaged equation is

$$\frac{dJ}{d\tau} = \langle F \rangle(J), \quad \langle F \rangle(J) = \int_{T^\infty} F(J, \varphi)d\varphi, \quad (0.7)$$

where $d\varphi$ is the Haar measure on T^∞. It turns out that the (0.7) is a Lipschitz equation, see below (4.17). We denote by h^p_{I+} the image of the space h^p under the action-mapping

$$\pi_I : v \mapsto I, \quad I_j(v) = \frac{1}{2} |v_j|^2, \quad j \geq 1.$$

Clearly, $I = \pi_I(v) \in h^p_{I+} \subset h^p_I$, where h^p_I is the weighted l^1-space

$$h^p_I = \left\{ I \in \mathbb{R}^\infty : |I|_{h^p_I} = |I|_p = 2 \sum_{j=1}^\infty (2\pi j)^{2p+1} |I_j| < \infty \right\}.$$
and $h^p_{I^+}$ is its positive octant, $h^p_{I^+} = \{ I \in h^p_I : I_j \geq 0, \forall j \}$. This is a closed subset of h^p_I.

For any $\theta = (\theta_i)_{i \geq 1} \in \mathbb{T}^\infty$, let us denote by Φ_θ the linear operator on the space of sequences $(v_1, v_2, \cdots) \in h^p$ which rotates each component $v_j \in \mathbb{R}^2$ by the angle θ_j.

Definition 0.1 A Gaussian measure μ on the Hilbert space h^p is said to be ζ_0-admissible (where $\zeta_0 > 1$ is the same as in assumption A), if the following conditions are fulfilled:

(i) It is non-degenerate and has zero mean value.

(ii) It has a diagonal correlation operator $(v_1, v_2, \cdots) \mapsto (\sigma_1 v_1, \sigma_2 v_2, \cdots)$, where every $\sigma_j > 0$, $\sum_{j \geq 1} \sigma_j < \infty$ and $j^{-\zeta_0}/\sigma_j = O(1)$. In particular, μ is invariant under the rotations Φ_θ.

Such measures can be written as:

$$
\prod_{j=1}^{+\infty} \left(\frac{2\pi j}{2\pi \sigma_j} \right)^{1+2p} \exp \left\{ -\frac{\left(2\pi j\right)^{1+2p}|v_j|^2}{2\sigma_j} \right\} dv_j, \quad (0.8)
$$

where $dv_j, j \geq 1$, is the Lebesgue measure on \mathbb{R}^2 (see [9 10]). Clearly, they are invariant under the KdV flow (0.3).

The main result of this work is the following theorem:

Theorem 0.2. Fix any $p \geq 3$ and $\bar{T} > 0$. Let the curve $u^\epsilon(t) \in H^p, |t| \leq \epsilon^{-1}\bar{T}$ be a solution of equation (0.1) and $v^\epsilon(\tau) = \Psi(u^\epsilon(\epsilon^{-1}\tau)), \tau = ct, |\tau| \leq \bar{T}$. If assumption A is fulfilled and μ is a ζ_0-admissible Gaussian measure on h^p, then

(i) For any $\rho > 0$, there exists a Borel subset Γ^ρ_ϵ of h^p and $\epsilon_\rho > 0$ such that $\lim_{\epsilon \to 0} \mu(h^p \setminus \Gamma^\rho_\epsilon) = 0$, and for $\epsilon \leq \epsilon_\rho$ we have

$$
|I(v^\epsilon(\tau)) - J(\tau)|_\rho \leq \rho, \quad \text{for } |\tau| \leq \bar{T}, \quad v^\epsilon(0) \in \Gamma^\rho_\epsilon, \quad (0.9)
$$

where $J(\tau), |\tau| \leq \bar{T}$, is a solution of the averaged equation (0.7) with the initial data $J(0) = \pi_1(v^\epsilon(0))$.

(ii) There is a full measure subset Γ_φ of h^p with the following property:

If $v^\epsilon(0) \in \Gamma_\varphi$, then for any $0 \leq \bar{T}_1 < \bar{T}_2 \leq \bar{T}$ the image $\mu_{\bar{T}_1, \bar{T}_2}$ of the probability measure $(\bar{T}_2 - \bar{T}_1)^{-1} d\tau$ on $[\bar{T}_1, \bar{T}_2]$ under the mapping $\tau \mapsto \varphi(v^\epsilon(\tau)) \in \mathbb{T}^\infty$ converges weakly, as $\epsilon \to 0$, to the Haar measure $d\varphi$ on \mathbb{T}^∞.

The assertion (ii) of the theorem means that for any bounded continuous function $g(\varphi)$ on \mathbb{T}^∞,

$$
\frac{1}{\bar{T}_2 - \bar{T}_1} \int_{\bar{T}_1}^{\bar{T}_2} g(\varphi(v^\epsilon(\tau)))d\tau \to \int_{\mathbb{T}^\infty} g(\varphi)d\varphi, \quad \epsilon \to 0.
$$

In particular, we have

Proposition 0.3. The assumption A holds if in (0.1) $f = f(x)$ is a smooth function, independent from u.

It is unknown for us that if the result of Theorem 0.2 remains true for equation (0.1) with non-smoothing perturbations, e.g. if the right hand side of equation (0.1) is ϵu_{xx} or $-\epsilon u$. So we do not know whether a suitable analogy of the result in [7 8] holds true if in equation (0.4) the noise η vanishes.
An Averaging Theorem for Perturbed KdV Equation

The paper has the following structure: Section 1 is about the transformation which integrates the KdV and its Birkhoff normal form. In Section 2 we discuss the averaged equation. We prove that the \(\zeta_0 \)-admissible Gaussian measures are quasi-invariant under the flow of equation (0.1) in Section 3. Finally in Section 4 and Section 5 we establish the main theorem and Proposition 0.3.

Agreements. Analyticity of maps \(B_1 \to B_2 \) between Banach spaces \(B_1 \) and \(B_2 \), which are the real parts of complex spaces \(B_c^i \) and \(B_c^2 \), is understood in the sense of Fréchet. All analytic maps that we consider possess the following additional property: for any \(R \), a map extends to a bounded analytical mapping in a complex \((\delta_R > 0)\)-neighborhood of the ball \(\{|u|_{B_1} < R\} \) in \(B_c^i \).

Notation. We use capital letters \(C \) or \(C(a_1, a_2, \ldots) \) to denote positive constants that depend on the parameters \(a_1, a_2, \ldots \) but not on the unknown function \(u \). We denote \(Z_{\geq 0} = \{n \in Z, n \geq 0\} \). For an infinite-dimensional vector \(w = (w_1, w_2, \ldots) \) and any \(n \in \mathbb{N} \) we denote \(w^n = (w_1, \ldots, w_n, 0, 0, \ldots) \). We often identify \(w^n \) with a corresponding \(n \)-vector.

1. Preliminaries on the KdV equation

In this section we discuss integrability of the KdV equation (0.1)\(_{\varepsilon=0}\).

1.1. Nonlinear Fourier transform for KdV

We provide the \(L^2 \)-space \(H^0 \) with the Hilbert basis \(\{e_s, s \in Z \setminus \{0\}\} \),

\[
e_s = \begin{cases}
\sqrt{2} \cos(2\pi sx) & s > 0, \\
\sqrt{2} \sin(2\pi sx) & s < 0.
\end{cases}
\]

Theorem 1.1. There exists an analytic diffeomorphism \(\Psi : H^0 \mapsto h^0 \) and an analytic functional \(K \) on \(h^0 \) of the form \(K(v) = \tilde{K}(I(v)) \), where the function \(\tilde{K}(I) \) is analytic in a suitable neighborhood of the octant \(h^0_{I+} \) in \(h^0_I \), with the following properties:

(i) The mapping \(\Psi \) defines an analytic diffeomorphism \(\Psi : H^p \mapsto h^p \), for any \(p \in Z_{\geq 0} \). This is a symplectomorphism of the spaces \((H^p, \Omega) \) (see (0.2) and \((h^p, \omega_2)\), where \(\omega_2 = \sum dv_k \wedge dv_{-k} \).

(ii) The differential \(d\Psi(0) \) takes the form \(\sum u_s e_s \mapsto v, v_s = |2\pi s|^{-1/2} u_s \).

(iii) A curve \(u \in C^1(0, T; H^0) \) is a solution of the KdV equation (0.1)\(_{\varepsilon=0}\) if and only if \(v(t) = \Psi(u(t)) \) satisfies the equation

\[
\dot{v}_j = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \frac{\partial \tilde{K}}{\partial I_j}(I)v_j, \quad v_j = (v_j, v_{-j}) \in \mathbb{R}^2, \quad j \in \mathbb{N}.
\]

Since the maps \(\Psi \) and \(\Psi^{-1} \) are analytic, then for \(m = 0, 1, 2 \ldots \), we have

\[
||d^j\Psi(u)||_m \leq P_m(||u||_m), \quad ||d^j\Psi^{-1}(v)||_m \leq Q_m(||v||_m), \quad j = 0, 1, 2,
\]

where \(P_m \) and \(Q_m \) are continuous functions (cf. the agreements).
We denote
\[W(I) = (W_1, W_2, \ldots), \quad W_k(I) = \frac{\partial \tilde{K}}{\partial I_k}(I), \quad k = 1, 2, \ldots. \]

Lemma 1.2. For any \(n \in \mathbb{N} \), if \(I_{n+1} = I_{n+2} = \cdots = 0 \), then
\[
\text{det}
\left(
\left(\frac{\partial W_i}{\partial I_j}\right)_{1 \leq i, j \leq n}
\right) \neq 0.
\]

Let \(l_\infty^{-1} \) be the Banach space of all real sequences \(l = (l_1, l_2, \ldots) \) with the norm
\[
|l|_{-1} = \sup_{n \geq 1} n^{-1}|l_n| < \infty.
\]
Denote \(\kappa = (\kappa_n)_{n \geq 1} \), where \(\kappa_n = (2\pi n)^3 \).

Lemma 1.3. The normalized frequency map \(\tilde{W} : I \mapsto \tilde{W}(I) = W(I) - \kappa \)
is real analytic as a map from \(h_1^1 \) to \(l_\infty^{-1} \).

The coordinates \(v = \Psi(u) \) are called the Birkhoff coordinates, and the form (1.1) of KdV is its Birkhoff normal form. See [1] for Theorem 1.1 and Lemma 1.3. A detailed proof of Lemma 1.2 can be found in [2].

1.2. Equation (0.1) in the Birkhoff coordinates.

For \(k = 1, 2, \ldots \) we denote:
\[
\Psi_k : H^m \to \mathbb{R}^2, \quad \Psi_k(u) = v_k,
\]
where \(\Psi(u) = v = (v_1, v_2, \ldots) \). Let \(u(t) \) be a solution of equation (0.1). We get
\[
\dot{v}_k = d\Psi_k(u)(\varepsilon f(x, u) + V(u)), \quad k \geq 1,
\]
where \(V(u) = -u_{xxx} + 6uu_x \). Since \(I_k(v) = \frac{1}{2}|\Psi_k|^2 \) is an integral of motion of KdV equation (0.1), we have
\[
\dot{I}_k = \varepsilon(d\Psi_k(u)f(x, u), v_k) := \varepsilon F_k(v),
\]
where \(v_k = (v_{-k}, v_k) \). Denoting for brevity, the vector field in equation (1.4) by \(\dot{I}_k + \varepsilon G_k(v) \), we rewrite the equation for the pair \((I_k, \varphi_k)(k \geq 1) \) as
\[
\dot{I}_k(t) = \varepsilon F_k(v) = \varepsilon F_k(I, \varphi), \quad \dot{\varphi}_k(t) = W_k(I) + \varepsilon G_k(v).
\]
We set
\[
F(I, \varphi) = (F_1(I, \varphi), F_2(I, \varphi), \ldots).
\]
In the following lemma \(P_k \) and \(P_k^j \) are some fixed continuous functions.

Lemma 1.4. For \(k, j \in \mathbb{N} \), we have for any \(p \geq 0 \)
(i) The function \(F_k(v) \) is analytic in each space \(h^p \).

(ii) For any \(p \geq 0, \delta > 0 \), the function \(G_k(v)\chi_{\{I_k>\delta\}} \) is bounded by \(\delta^{-1/2}P_k(|v|_p) \).

(iii) For any \(\delta > 0 \), the function \(\frac{\partial F}{\partial I_j}(I, \varphi)\chi_{\{I_j>\delta\}} \) is bounded by \(\delta^{-1/2}P^j_k(|v|_p) \).

(iv) The function \(\frac{\partial F}{\partial \varphi_j}(I, \varphi) \) is bounded by \(P^j_k(|v|_p) \), and for any \(n \in \mathbb{N} \) and \((I_1, \ldots, I_n) \in \mathbb{R}^n_+ \), the function \(F_k(I_1, \varphi_1, \ldots, I_n, \varphi_n, 0, \ldots) \) is analytic on \(\mathbb{T}^n \).

Proof: Items (i) and (ii) follow directly from Theorem 1.1. Items (iii) and (iv) follow from item (i) and the chain-rule:

\[
\frac{\partial F_k}{\partial \varphi_j} = \sqrt{2I_j} \left(\frac{\partial F_k}{\partial v_j} \cos(\varphi_j) - \frac{\partial F_k}{\partial v_j} \sin(\varphi_j) \right),
\]

\[
\frac{\partial F_k}{\partial I_j} = (\sqrt{2I_j})^{-1} \left(\frac{\partial F_k}{\partial v_j} \cos(\varphi_j) + \frac{\partial F_k}{\partial v_j} \sin(\varphi_j) \right). \quad \square
\]

From this lemma we know that equation (1.5) may have singularities at \(\partial h^p_{I_+} \). We denote

\[
\Pi_I : h^p \to h^p_I, \quad \Pi_I(v) = I(v),
\]

\[
\Pi_{I,\varphi} : h^p \to h^p_I \times \mathbb{T}^\infty, \quad \Pi_{I,\varphi}(v) = (I(v), \varphi(v)).
\]

Abusing notation, we will identify \(v \) with \((I, \varphi) = \Pi_{I,\varphi}(v)\).

Definition 1.5. For \(p \geq 3 \), we say that a curve \((I(t), \varphi(t)), |t| \leq T\), is a regular solution of equation (1.5), if there exists a solution \(u(t) \in H^p \) of equation (0.1) such that \(u(t) \in H^p \) and

\[
\Pi_{I,\varphi}(\Psi(u(t))) = (I(t), \varphi(t)), \quad |t| \leq T.
\]

If \((I(t), \varphi(t))\) is a regular solution of (1.5) and \(|I(0)|_p \leq M_0 \), then by assumption A we have

\[
|I(t)|_p = |v(t)|_p^2 \leq C(p, M_0, T), \quad |t| \leq T\epsilon^{-1}. \quad (1.6)
\]

2. Averaged equation

For a function \(f \) on a Hilbert space \(H \), we write \(f \in Lip_{loc}(H) \) if

\[
|f(u_1) - f(u_2)| \leq P(R)||u_1 - u_2||, \quad ||u_1||, ||u_2|| \leq R,
\]

for a suitable continuous function \(P \) which depends on \(f \). Clearly, the set of functions \(Lip_{loc}(H) \) is an algebra. By the Cauchy inequality, any analytic function on \(H \) belongs to \(Lip_{loc}(H) \) (see agreements). In particularly, for any \(k \geq 1, \)

\[
W_k(I) \in Lip_{loc}(h^p_I), \quad p \geq 1, \quad \text{and} \quad F_k(v) \in Lip_{loc}(h^p), \quad p \geq 0.
\]

In the further analysis, we systematically use the fact that the functional \(F_k(v) \) only weakly depends on the tail of the vector \(v \). Now we state the corresponding results. Let \(f \in Lip_{loc}(h^p) \) and \(v \in h^{p_1}, p_1 > p \). Denoting by \(\Pi^M, M \geq 1 \) the projection

\[
\Pi^M : h^0 \to h^0, \quad (v_1, v_2, \ldots) \mapsto (v_1, \ldots, v_M, 0, \ldots),
\]

\[
\Pi^M : h^0 \to h^0, \quad (v_1, v_2, \ldots) \mapsto (v_1, \ldots, v_M, 0, \ldots),
\]
we have $|v - \Pi^M v|_p \leq (2\pi M)^{-(p_1 - p)}|v|_{p_1}$. Accordingly,
$$
|f(v) - f(\Pi^M v)| \leq P(|v|_{p_1})(2\pi M)^{-(p_1 - p)}.
$$
(2.2)

The torus \mathbb{T}^M acts on the space $\Pi^M h^0$ by linear transformations $\Phi_{\theta M}, \theta M \in \mathbb{T}^M$, where $\Phi_{\theta M} : (I_M, \varphi_M) \mapsto (I_M, \varphi_M + \theta M)$. Similarly, the torus \mathbb{T}^∞ acts on h^0 by linear transformations $\Phi_{\theta} : (I, \varphi) \mapsto (I, \varphi + \theta)$ with $\theta \in \mathbb{T}^\infty$.

For a function $f \in \text{Lip}_{loc}(h^p)$ and a positive integer N we define the average of f in the first N angles as the function
$$
\langle f \rangle_N(v) = \int_{\mathbb{T}^N} f((\Phi_N \oplus \text{Id})(v))d\theta_N,
$$
and define the averaging in all angles as
$$
\langle f \rangle(v) = \int_{\mathbb{T}^\infty} f(\Phi_{\theta}(v))d\theta,
$$
where $d\theta$ is the Haar measure on \mathbb{T}^∞. The estimate (2.2) readily implies that
$$
|\langle f \rangle_N(v) - \langle f \rangle(v)| \leq P(R)(2\pi N)^{-(p_1 - p)}, \quad |v|_{p_1} \leq R.
$$

Let $v = (I, \varphi)$, then $\langle f \rangle_N$ is a function independent of $\varphi_1, \cdots, \varphi_N$, and $\langle f \rangle$ is independent of φ. Thus $\langle f \rangle$ can be written as $\langle f \rangle(I)$.

Lemma 2.1. (See [7]). Let $f \in \text{Lip}_{loc}(h^p)$, then

(i) The functions $\langle f \rangle_N(v)$ and $\langle f \rangle(v)$ satisfy (2.1) with the same function P as f and take the same value at the origin.

(ii) These two functions are smooth (analytic) if f is. If f is smooth, then $\langle f \rangle(I)$ is a smooth function with respect to vector (I_1, \cdots, I_M), for any M. If $f(v)$ is analytic in the space h^p, then $\langle f \rangle(I)$ is analytic in the space h^p.

We recall that a vector $\omega \in \mathbb{R}^n$ is non-resonant if
$$
\omega \cdot k \neq 0, \quad \forall k \in \mathbb{Z}^n \setminus \{0\}.
$$

Denote by $C^{0+1}(\mathbb{T}^n)$ the set of all Lipschitz functions on \mathbb{T}^n.

Lemma 2.2. Let $f \in C^{0+1}(\mathbb{T}^n)$ for some $n \in \mathbb{N}$. Then for any non-resonant vector $\omega \in \mathbb{R}^n$ we have
$$
\lim_{T \to \infty} \frac{1}{T} \int_0^T f(x_0 + \omega t)dt = \langle f \rangle,
$$
uniformly in $x_0 \in \mathbb{T}^n$. The rate of convergence depends on n, ω and f.

Proof. Let us write $f(x)$ as the Fourier series $f(x) = \sum f_k e^{ik \cdot x}$. Since the Fourier series of a Lipschitz function converges uniformly (see [11]), for any $\epsilon > 0$ we may find $R = R_\epsilon$ such that $\sum_{|k| > R} f_k e^{ik \cdot x} \leq \frac{\epsilon}{2}$ for all x. Now it is enough to show that
$$
\left| \frac{1}{T} \int_0^T f_R(x_0 + \omega t)dt - f_0 \right| \leq \frac{\epsilon}{2}, \quad \forall T \geq T_\epsilon,
$$
(2.3)
for a suitable \(T_\varepsilon \), where \(f_R(x) = \sum_{|k| \leq R} f_k e^{ik \cdot x} \). Observing that

\[
\left| \frac{1}{T} \int_0^T e^{ik \cdot (x_0 + \omega t)} dt \right| \leq \frac{2}{T|k \cdot \omega|},
\]

for each nonzero \(k \). Therefore the l.h.s of (2.3) is smaller than

\[
2T \left(\inf_{|k| \leq R} |k \cdot \omega| \right)^{-1} \sum_{|k| \leq R} |f_k|.
\]

The assertion of the lemma follows. \(\square \)

3. Quasi-invariance of Gaussian measures

Fix any integer \(p \geq 3 \), and let \(\mu \) be a \(\zeta_0 \)-admissible Gaussian measure on the Hilbert space \(h^p \). In this section we will discuss how this measure evolves under the flow of the perturbed KdV equation (0.1). We follow a classical procedure based on finite-dimensional approximations (see e.g. [12, 10]).

We suppose the assumption A holds. Let us write the equation (0.1) in the Birkhoff normal form, using the slow time \(\tau = \epsilon t \):

\[
\frac{d}{d\tau} v_j = \epsilon^{-1} \mathcal{J} W_j(I) v_j + X_j(v), \quad j \in \mathbb{N},
\]

where \(X_j = (X_j, X_{-j})^t \in \mathbb{R}^2 \) and \(\mathcal{J} = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \).

For any \(n \in \mathbb{N} \), we consider the \(2n \)-dimensional subspace \(\pi_n(h^p) \) of \(h^p \) with coordinates \(v^n = (v_1, \ldots, v_n, 0, \ldots, 0) \). On \(\pi_n(h^p) \), we define the following finite-dimensional systems:

\[
\frac{d}{d\tau} \bar{\omega}_j = \epsilon^{-1} \mathcal{J} W_j(I(\omega^n)) \bar{\omega}_j + X_j(\omega^n), \quad 1 \leq j \leq n,
\]

where \(\bar{\omega}_j = (\omega_j, \omega_{-j})^t \in \mathbb{R}^2 \) and \(\omega^n = (\bar{\omega}_1, \ldots, \bar{\omega}_n, 0, \ldots) \in \pi_n(h^p) \).

We denote \(X^n(v^n) = (X_1(v^n), \ldots, X_n(v^n), 0, \ldots) \) and \(X(v) = (X_1(v), \ldots) \). By assumption A and Theorem 1.1, for any \(p \geq 0 \) the mapping

\[
X : h^p \to h^{p+\zeta_0}, \quad v \mapsto X(v) \text{ is analytic.}
\]

Theorem 3.2. For any \(T > 0 \), \(\omega^n(\cdot) \) converges to \(v(\cdot) \) as \(n \to \infty \) in \(C([-T, T]; h^p) \), where \(v(\cdot) \) and \(\omega^n(\cdot) \) are, respectively, solutions of (3.1) and (3.2) with initial data \(v(0) \in h^p \) and \(\omega^n(0) = v^n(0) \in \pi_n(h^p) \).

Proof. Fix any \(M_0 > 0 \). From (1.6) we know that there exists a constant \(M_1 \) such that if \(|v(0)|_p \leq M_0 \), then

\[
|v(\tau)|_p \leq M_1, \quad \tau \in [0, T].
\]

The equation (3.2) yields that

\[
\frac{d}{d\tau} |\omega^n|_p^2 = 2 \sum_{j=1}^n j^{1+2p} \bar{\omega}_j \cdot X_j(\omega^n) := \chi^n(\omega^n).
\]
We define
\[\chi(v) := 2 \sum_{j=1}^{\infty} j^{1+2p} v_j \cdot X_j(v). \]

By (3.3), we know that there exists a constant \(C_1 > 0 \) such that
\[|\chi^n(\omega^n)| \leq C_1, \quad |\omega^n|_p \leq 2M_1, \quad \forall n \in \mathbb{N}. \] (3.6)

Denote \(\bar{\tau} = M_1/C_1 \), then if \(|\omega^n(0)|_p \leq M_0 \), then
\[|\omega^n(\tau)|_p \leq 2M_1, \quad \tau \in [-\bar{\tau}, \bar{\tau}], \quad \forall n \in \mathbb{N}. \] (3.7)

Lemma 3.3. In the space \(C([-\bar{\tau}, \bar{\tau}], h^{p-1}) \), we have the convergence
\[\omega^n(\cdot) \to v(\cdot) \quad \text{as} \quad n \to \infty. \]

Proof: Denote \(\bar{\xi}_j = v_j - \bar{\omega}_j \), \(I_v = I(v) \) and \(I_{\omega^n} = I(\omega^n) \). Since \(\mathcal{J}v_j = v_j^\perp \), using equations (3.1) and (3.2), for \(1 \leq j \leq n \), we get
\[
\frac{d}{d\tau} |\bar{\xi}_j|^2 = 2(\bar{\xi}_j)^t \mathcal{J}(W_j(I_v)v_j - W_j(I_{\omega^n})\bar{\omega}_j) + X_j(v) - X_j(\omega^n))
= 2\epsilon^{-1}[W_j(I_v) - W_j(I_{\omega^n})]v_j \cdot (\bar{\omega}_j)^\perp + 2(\bar{\xi}_j)^t \cdot (X_j(v) - X_j(\omega^n)).
\]

By Lemma 1.3 and Cauchy’s inequality, we know that
\[|W_j(I(v)) - W_j(I(\omega^n))| \leq C_2(M_1)j|v - \omega^n|_{p-1}. \]

Using (3.3) we get that
\[
\frac{d}{d\tau} |v - \omega^n|_{p-1} \leq C_3(\epsilon, M_1)|v - \omega^n|_{p-1} + a_n(v), \quad \tau \in [-\bar{\tau}, \bar{\tau}],
\]
where
\[a_n(v) = \sum_{j=n+1}^{\infty} j^{2p-1} v_j \cdot X_j(v). \]

Obviously, \(a_n(v) \to 0 \) as \(n \to \infty \) uniformly for \(|v|_p \leq M_1 \).

The lemma now follows directly from Gronwall’s Lemma. \(\square \)

Lemma 3.4. If \(\omega^n(0) \to v(0) \) strongly in \(h^p \) and \(\tau_n \to \tau \), \(\tau_n \in [-\bar{\tau}, \bar{\tau}] \), as \(n \to \infty \), then
\[\lim_{n \to \infty} |v(\tau) - \omega^n(\tau_n)|_p = 0. \]

Proof: From (3.5) we know that for any \(\tau_n \in [-\bar{\tau}, \bar{\tau}] \),
\[|\omega^n(\tau_n)|_p^2 - |\omega^n(0)|_p^2 = \int_{0}^{\tau_n} \chi^n(\omega(s))ds. \]

Since \(\omega^n(0) \to v(0) \) strongly in \(h^p \), then using (3.3) and Lemma 3.3 we get
\[|v(\tau)|_p^2 \leq \liminf_{n \to \infty} |\omega^n(\tau_n)|_p^2 \leq \limsup_{n \to \infty} |\omega^n(\tau_n)|_p^2 \]
\[= \limsup_{n \to \infty} \left(|\omega^n(0)|_p^2 + \int_{0}^{\tau_n} \chi^n(\omega(s))ds \right) = |v(0)|_p^2 + \int_{0}^{\tau} \chi(v(s))ds \]
\[= |v(\tau)|_p^2. \]
Therefore, \(\lim_{n \to \infty} |\omega^n(\tau_n)|_p = |v(\tau)|_p \). Since \(\omega^n(\tau_n) \to v(\tau) \) in the space \(h^{p-1} \) as \(n \to \infty \), then the required convergence follows. \(\square \)

Lemma 3.5. In the space \(C([-\tau, \tau], h^p) \), \(\omega^n(\cdot) \to v(\cdot) \) as \(n \to \infty \).

Proof. Suppose this statement is invalid. Then there exists \(\delta > 0 \) and a sequence \(\{\tau^n\}_{n \in \mathbb{N}} \subset [-\tau, \tau] \) such that

\[
|\omega^n(\tau^n) - v(\tau^n)|_p \geq \delta.
\]

Let \(\{\tau^m\}_{m \in \mathbb{N}} \) be a subsequence of the sequence \(\{\tau^n\}_{n \in \mathbb{N}} \) converging to some \(\tau^0 \in [-\tau, \tau] \). But \(v(\tau^m_k) \to v(\tau^0) \) in \(h^p \) as \(k \to \infty \), and using Lemma 3.4, we can get \(\omega^{mk}(\tau^m_k) \to v(\tau^0) \) as \(k \to \infty \) in \(h^p \). So we get a contradiction, and Lemma 3.5 is proved. \(\square \)

If \(T \leq \bar{\tau} \), the theorem is proved, otherwise we iterate the above procedure. This finishes the proof of Theorem 3.2. \(\square \)

Let \(\mathcal{S}_n^\tau \) denote the flow determined by equations (3.1) in the space \(h^p \), and

\[
B_p^v(M) := \{v \in h^p : |v|_p \leq M\}.
\]

Theorem 3.6. For any \(M_0 > 0 \) and \(T > 0 \), there exists a constant \(C > 0 \) which depends only on \(M_0 \) and \(T \), such that if \(A \) is a open subset of \(B_p^v(M_0) \), then for \(\tau \in [0, T] \), we have

\[
e^{-C\tau} \mu(A) \leq \mu(\mathcal{S}_n^\tau(A)) \leq e^{C\tau} \mu(A).
\]

Proof. From (1.6) we know that there is constant \(M_1 \) which only depends on \(M_0 \) and \(T \), such that if \(v(0) \in B_p^v(M_0) \), then

\[
v(\tau) \in B_p^v(M_1), \quad |\tau| \leq T.
\]

(3.8)

For any \(n \in \mathbb{N} \), consider the measure \(\mu_n = \pi_n \circ \mu \) on the subspace \(\pi_n(h^p) \). Since \(\mu \) is a \(\zeta_0 \)-admissible Gaussian measure, by (0.8) \(\mu_n \) has the following density with respect to the Lebesgue measure:

\[
b_n(v^n) := (2\pi)^{-n} \prod_{j=1}^{n} (2\pi j)^{1+2p}\sigma_j^{-1} \exp\{-\frac{1}{2} \sum_{j=1}^{n} \frac{j^{1+2p}|v_j|^2}{\sigma_j}\}.
\]

Let \(\mathcal{S}_n^\tau \) be the flow determined by equations (3.2) on subspace \(\pi_n(h^p) \). For any open set \(A_n \subset \pi_n(B_p^v(M_0)) \), due to Theorem A in the appendix, we have

\[
\frac{d}{d\tau} \mu_n(\mathcal{S}_n^\tau(A_n)) = \int_{\mathcal{S}_n^\tau(A_n)} \sum_{j=1}^{n} \left(\frac{\partial (b_n(v^n)X_j(v^n))}{\partial v_j} + \frac{\partial (b_n(v^n)X_{-j}(v^n))}{\partial v_{-j}} \right) dv^n
\]

\[
= \int_{\mathcal{S}_n^\tau(A_n)} \sum_{j=1}^{n} j^{2p+1} \left(\frac{v_j X_j + v_{-j} X_{-j}}{\sigma_j} + \frac{\partial X_j}{\partial v_j} + \frac{\partial X_{-j}}{\partial v_{-j}} \right) b_n(v^n) dv^n
\]

\[
:= \int_{\mathcal{S}_n^\tau(A_n)} e^n(v^n) b_n(v^n) dv^n
\]
An Averaging Theorem for Perturbed KdV Equation

Since \(j^{-\zeta_0/\sigma} = O(1) \), using (3.3) and the Cauchy’s inequality, there exists a constant \(C \) which depends only on \(M_1 \), such that
\[
|c_n(v^n)| \leq C, \quad v^n \in \pi_n(B^\nu_p(M_1)), \quad \forall n \in \mathbb{N}.
\] (3.9)

We have
\[
e^{-C\tau} \mu_n(A_n) \leq \mu_n(S^\tau_n(A_n)) \leq e^{C\tau} \mu_n(A_n),
\] (3.10)
as long as \(S^\tau_n(A_n) \subset \pi_n(B^\nu_p(M_1)) \).

Since \(\mu_n \) converges weakly to \(\mu \), the theorem follows from (3.8), (3.10) and Theorem 3.2 (see [12, 10]). □

4. Proof of the main theorem

In this section we prove Theorem 0.2 by developing a suitable infinite-dimensional version of the Anosov scheme (see [3, 4, 5, 6]), and by studying the behavior of the regular solutions of equation (1.5) and the corresponding solutions of (0.1). We fix \(p \geq 3 \). Assume \(u(0) = u_0 \in H^p \). So
\[
\Pi_{I,\varphi}(\Psi(u_0)) = (I_0, \varphi_0) \in h^p_{I_+} \times \mathbb{T}^\infty, \quad p \geq 3.
\] (4.1)

4.1. Proof of the assertion (i)

We denote
\[
B^I_p(M) = \{ I \in h^p_{I_+} : |I|_p \leq M \}.
\]
Without loss of generality, we assume that \(\bar{T} = 1 \) and \(t \geq 0 \).

Fix any \(M_0 > 0 \). Let
\[
(I_0, \varphi_0) \in B^I_p(M_0) \times \mathbb{T}^\infty := \Gamma_0,
\]
that is,
\[
v_0 = \Psi(u_0) \in B^\nu_p(\sqrt{M_0}).
\]

Let \((I(t), \varphi(t))\) be a regular solution of the system (1.5) with \((I(0), \varphi(0)) = (I_0, \varphi_0)\). Then by (1.6), there exists \(M_1 \geq M_0 \) such that
\[
I(t) \in B^I_p(M_1), \quad t \in [0, \epsilon^{-1}].
\] (4.2)

By the definition of the perturbation we know that
\[
|F(I, \varphi)|_1 \leq C_{M_1}, \quad \forall (I, \varphi) \in B^I_p(M_1) \times \mathbb{T}^\infty,
\] (4.3)
where the constant \(C_{M_1} \) depends only on \(M_1 \).

We denote \(I^m = (I_1, \ldots, I_m, 0, 0, \ldots) \), \(\varphi^m = (\varphi_1, \ldots, \varphi_m, 0, 0, \ldots) \), and \(W^m(I) = (W_1(I), \ldots, W_m(I), 0, 0, \ldots) \), for any \(m \in \mathbb{N} \).

Fix \(n_0 \in \mathbb{N} \). By (2.2), for any \(\rho > 0 \), there exists \(m_0 \in \mathbb{N} \), depending only on \(n_0 \) and \(\rho \), such that if \(m \geq m_0 \), then
\[
|F_k(I, \varphi) - F_k(I^m, \varphi^m)| \leq \rho, \quad \forall (I, \varphi) \in B^I_p(M_1) \times \mathbb{T}^\infty,
\] (4.4)
where $k = 1, \cdots, n_0$.

From now on, we always assume that

$$(I, \varphi) \in B^l_p(M_1) \times \mathbb{T}^\infty, \quad \text{i.e.} \quad v \in B^o_p(\sqrt{M_1}).$$

By Lemma 1.4, we have

$$|G_j(I, \varphi)| \leq \frac{C_0(j, M_1)}{\sqrt{T_j}},$$

$$\left| \frac{\partial F_k}{\partial I_j}(I, \varphi) \right| \leq \frac{C_0(k, j, M_1)}{\sqrt{T_j}},$$

$$\left| \frac{\partial F_k}{\partial \varphi_j}(I, \varphi) \right| \leq C_0(k, j, M_1).$$

From Lemma 1.3 and Lemma 2.1, we know that

$$|W_j(I) - W_j(\bar{I})| \leq C_1(j, M_1)|I - \bar{I}|_1,$$

$$|\langle F_k \rangle(I) - \langle F_k \rangle(\bar{I})| \leq C_1(k, j, M_1)|I - \bar{I}|_1. \quad (4.6)$$

By (2.1) we get

$$|F_k(I^m, \varphi^m) - F_k(\bar{I}^m, \bar{\varphi}^m)| \leq C_2(k, m_0, M_1)|v^m - \bar{v}^m|, \quad (4.7)$$

where $| \cdot |$ is the maximum norm.

We denote

$$C^m_{M_1} = m_0 \cdot \max\{C_0, C_1, C_2 : 1 \leq j \leq m_0, 1 \leq k \leq n_0\}.$$

Below we define a number of sets, depending on various parameters. All of them also depend on m_0 and n_0, but this dependence is not indicated. For any $\delta > 0$, and $T_0 > 0$, we define a subset $E(\delta, T_0) \subset B^l_p(M_1)$ as the collection of all $I \in B^l_p(M_1)$ such that for every $\varphi \in \mathbb{T}^\infty$ and any $T \geq T_0$, we have

$$\left| \frac{1}{T} \int_0^T [F_k(I^m, \varphi^m + W^m(I)t) - \langle F_k \rangle(I^m)]dt \right| \leq \delta, \quad (4.8)$$

for $k = 1, \cdots, n_0$. Let S^t_ϵ be the flow generated by regular solutions of the system (1.5). We define two more groups of sets.

$$S(t) = S(t, \epsilon, \delta, T_0, I, \varphi) := \{t_1 \in [0, t] : S^t_{\epsilon_1}(I, \varphi) \notin E(\delta, T_0) \times \mathbb{T}^\infty\}.$$

$$N(\bar{T}) = N(\bar{T}, \epsilon, \delta, T_0) := \{(I, \varphi) \in \Gamma_0 : \text{Mes}[S(\epsilon^{-1}, \epsilon, \delta, T_0, I, \varphi)] \leq \bar{T}\}.$$

Here and below $\text{Mes}[\cdot]$ stands for the Lebesgue measure in \mathbb{R}.

Clearly, $E(\delta, T_0)$ is a closed subset of $B^l_p(M_1)$ and $S(t, \delta, T_0, I, \varphi)$ is an open subset of $[0, t]$. The following result is the main lemma of this work:

Lemma 4.1. For $k = 1, \cdots, n_0$, the I_k-component of any regular solution of (1.5) with initial data in $N(\bar{T}, \epsilon, \delta, T_0)$ can be written as:

$$I_k(t) = I_k(0) + \epsilon \int_0^t \langle F_k \rangle(I(s))ds + \Xi(t),$$
An Averaging Theorem for Perturbed KdV Equation

where for any $\gamma \in (0, 1)$ the function $|\Xi(t)|$ is bounded on $[0, \frac{1}{\epsilon}]$ by

$$4\epsilon C_{M_1}^{\rho_0, \rho_0} \left\{ \left[2(\gamma + 2T_0C_{M_1}\epsilon)^{1/2} \right] (T_0 + \tilde{T} + \epsilon^{-1}) \right. \left. + \left[\frac{T_0C_{M_1}\epsilon}{\gamma^{1/2}} + T_0C_{M_1}\epsilon + \left(\frac{T_0\epsilon}{2\gamma^{1/2}} + \frac{\epsilon C_{M_1}T_0^2}{3} \right) \right] (T_0 + \tilde{T} + \epsilon^{-1}) \right\}$$

$$+ 2\epsilon C_{M_1} \tilde{T} + 2\rho + 2\delta + 2\epsilon C_{M_1}(T_0 + \tilde{T}).$$

Proof: For any $(I, \varphi) \in N(\tilde{T})$, we consider the corresponding set $S(t)$. It is composed of open intervals of total length less than $\min\{\tilde{T}, t\}$. Thus at most $[\tilde{T}/T_0]$ of them have length greater than or equal to T_0. We denote these long intervals by $(a_i, b_i), 1 \leq i \leq d, d \leq [\tilde{T}/T_0]$ and denote by $C(t)$ the complement of $\cup_{1 \leq i \leq d}(a_i, b_i)$ in $[0, t]$.

By (4.1), we have

$$\int_0^t F_k(I(s), \varphi(s))dt = \int_{C(t)} F_k(I^{\rho_0}(s), \varphi^{\rho_0}(s))ds + \xi_1(t),$$

where $|\xi_1(t)| \leq C_{M_1}\tilde{T} + pt$.

The set $C(t)$ is composed of segments $[b_{i-1}, a_i]$ (if necessary, we set $b_0 = 0$, and $a_{d+1} = t$). We proceed by dividing each segment $[b_{i-1}, a_i]$ into shorter segments by points t^i_j, where $b_i = t^i_1 < t^i_2 < \cdots < t^i_{n_i} = a_i$. The points t^i_j lie outside the set $S(t)$ and $T_0 \leq t^i_{j+1} - t^i_j \leq 2T_0$ except for the terminal segment containing the end points a_i, which may be shorter than T_0.

This partition is constructed as follows:

- If $a_{i-1} - b_{i-1} \leq 2T_0$, then we keep the whole segment with no subdivisions. ($t^i_1 = b_{i-1}$, $t^i_2 = a_i$).

- If $a_{i-1} - b_{i-1} > 2T_0$, we divide the segment in the following way:
 a) If $b_{i-1} + 2T_0$ does not belong to $S(t)$, we chose $t^i_2 = b_{i-1} + 2T_0$, and continue by subdividing $[t^i_2, a_i]$;
 b) if $b_{i-1} + 2T_0$ belongs to $S(t)$, then there are points in $[b_{i-1} + T_0, b_{i-1} + 2T_0]$ which do not, by definition of b_{i-1}. We set t^i_2 equal to one of these points and continue by subdividing $[t^i_2, a_i]$.

We will adopt the notation: $h^i_j = t^i_{j+1} - t^i_j$ and $s(i, j) = [t^i_j, t^i_{j+1}]$. So

$$C(t) = \bigcup_{i=1}^d \bigcup_{j=1}^{n_i-1} s(i, j), T_0 \leq h^i_j = |s(i, j)| \leq 2T_0, j \leq n_i - 2.$$

By its definition, $C(t)$ contains at most $[\tilde{T}/T_0] + 1$ segments $[b_{i-1}, a_i]$, thus $C(t)$ contains at most $[\tilde{T}/T_0] + 1$ terminal subsegments of length less than T_0. Since all other segments have length no less than T_0 and $t \leq \frac{1}{\epsilon}$, the number of these segments is not greater than $[\epsilon T_0]^{-1}$. So the total number of subsegments $s(i, j)$ is bounded by

$$1 + [(\epsilon T_0)^{-1} + [\tilde{T}/T_0]].$$
For each segment \(s(i, j) \) we define a subset \(\Lambda(i, j) \) of \(\{1, 2, \ldots, m_0\} \) in the following way:

\[
l \in \Lambda(i, j) \iff \exists t \in s(i, j), \; I_t < \gamma.
\]

If \(l \in \Lambda \), then by (4.3) we have

\[
|I_t| < 2T_0C_{M_1} \epsilon + \gamma, \quad t \in s(i, j).
\]

(4.9)

For \(I = (I_1, I_2, \ldots) \) and \(\varphi = (\varphi_1, \varphi_2, \ldots) \) we set

\[
\lambda_{i,j}(I) = \hat{I}, \quad \lambda_{i,j}(\varphi) = \hat{\varphi},
\]

where \(\hat{\varphi} = (\hat{\varphi}_1, \hat{\varphi}_2, \ldots) \) and \(\hat{I} = (\hat{I}_1, \hat{I}_2, \ldots) \) are defined by the following relation:

If \(l \in \Lambda(i, j) \), then \(\hat{I}_l = 0, \; \hat{\varphi}_l = 0 \); else \(\hat{I}_l = I_l, \; \hat{\varphi}_l = \varphi_l \).

We also denote \(\lambda_{i,j}(I, \varphi) = (\lambda_{i,j}(I), \lambda_{i,j}(\varphi)) \) and when the segment \(s(i, j) \) is clearly indicated, we write for short \(\lambda_{i,j}(I, \varphi) = (\hat{I}, \hat{\varphi}) \).

Then on \(s(i, j) \), using (4.7) and (4.9) we obtain

\[
\int_{s(i, j)} \left| F_k\left(I_{ma}(s), \varphi_{ma}(s)\right) - F_k\left(\lambda_{i,j}(I_{ma}(s), \varphi_{ma}(s))\right) \right| ds \\
\leq \int_{s(i, j)} \left| C_{M_1}^{ma, ma} \right| I_{ma}(s) - \lambda_{i,j}(I_{ma}(s)) \right|^{1/2} ds \\
\leq 2T_0C_{M_1}^{ma, ma} (\gamma + 2T_0C_{M_1} \epsilon)^{1/2}.
\]

In Proposition 1-5 below, \(k = 1, \ldots, n_0 \).

Proposition 1.

\[
\int_{C(t)} F_k\left(I_{ma}(s), \varphi_{ma}(s)\right) ds = \sum_{i,j} \int_{s(i, j)} F_k\left(I_{ma}(t^i_j), \varphi_{ma}(s)\right) ds + \xi_2(t),
\]

where

\[
|\xi_2| \leq 4C_{M_1}^{ma, ma} \left(\gamma + 2T_0C_{M_1} \epsilon\right)^{1/2} + \gamma^{-1/2} T_0C_{M_1} \epsilon \left(T_0 + \tilde{T} + \epsilon^{-1}\right).
\]

(4.11)

Proof: We may write \(\xi_2(t) \) as

\[
\xi_2(t) = \sum_{i,j} \int_{s(i, j)} \left[F_k\left(I_{ma}(s), \varphi_{ma}(s)\right) - F_k\left(I_{ma}(t^i_j), \varphi_{ma}(s)\right) \right] ds
\]

\[
:= \sum_{i,j} I(i, j).
\]

For each \(s(i, j) \), we have

\[
\int_{s(i, j)} \left| F_k\left(\hat{I}_{ma}(s), \hat{\varphi}_{ma}(s)\right) - F_k\left(\hat{I}_{ma}(t^i_j), \hat{\varphi}_{ma}(s)\right) \right| ds \\
\leq \int_{s(i, j)} \gamma^{-1/2} C_{M_1}^{ma, ma} \left| \hat{I}_{ma}(s) - \hat{I}_{ma}(t^i_j) \right| ds \\
\leq 2\gamma^{-1/2} T_0^2 C_{M_1} \epsilon.
\]

(4.12)
We replace the integrand $F_k(I^{mo}, \varphi^{mo})$ by $F_k(I^{mo}, \varphi^{mo})$. Using (4.10) and (4.12) we obtain that

$$I(i, j) \leq 4T_0C_{M_1}^{mo, mo} \left[(\gamma + 2T_0C_{M_1}\epsilon)^{1/2} + \gamma^{-1/2}T_0C_{M_1}\epsilon \right].$$

The inequality (4.11) follows. □

On each subsegment $s(i, j)$, we now consider the unperturbed linear dynamics $\varphi_j(t)$ of the angles $\varphi^{mo} \in \mathbb{T}^{mo}$:

$$\varphi_j(t) = \varphi^{mo}(t_i^j) + W^{mo}(I(t_i^j))(t - t_i^j) \in \mathbb{T}^{mo}, \quad t \in s(i, j).$$

Proposition 2.

$$\sum_{i,j} \int_{s(i,j)} F_k \left(I^{mo}(t_i^j), \varphi^{mo}(s) \right) ds = \sum_{i,j} \int_{s(i,j)} F_k \left(I^{mo}(t_i^j), \varphi(s) \right) ds + \xi_3(t),$$

where

$$|\xi_3(t)| \leq 4C_{M_1}^{mo, mo} (\gamma + 2T_0C_{M_1}\epsilon)^{1/2} (T_0 + \tilde{T} + \epsilon^{-1})$$

$$+ (C_{M_1}^{mo, mo})^2 \left(\frac{2T_0\epsilon}{\gamma} + \frac{4\epsilon C_{M_1}T_0^2}{3} \right) (T_0 + \tilde{T} + \epsilon^{-1}). \quad (4.13)$$

Proof: For each $s(i, j)$ we have

$$\int_{s(i,j)} \left| \lambda_{i,j} \left(\varphi^{mo}(s) - \varphi(s) \right) \right| ds$$

$$\leq \int_{s(i,j)} \int_{t_i^j}^s \left| \lambda_{i,j} \left(\epsilon G^{mo}(I(s'), \varphi(s')) + W^{mo}(I(s')) - W^{mo}(I(t_i^j)) \right) \right| ds' ds$$

$$\leq \int_{s(i,j)} \int_{t_i^j}^s C_{M_1}^{mo, mo} \left[\epsilon \gamma^{-1/2} + |I(s') - I(t_i^j)|_1 \right] ds' ds$$

$$\leq \int_{s(i,j)} C_{M_1}^{mo, mo} \left[\gamma^{-1/2} \epsilon (s - t_i^j) + \frac{1}{2} C_{M_1}\epsilon(s - t_i^j)^2 \right] ds$$

$$\leq C_{M_1}^{mo, mo} \left(\frac{2T_0^2\epsilon}{\sqrt{\gamma}} + \frac{4\epsilon C_{M_1}T_0^3}{3} \right).$$

Here the first inequality comes from equation (1.4), and using (4.5) and (4.6) we can get the second inequality. The third one follows from (4.3).

Using again (4.5), we get

$$\int_{s(i,j)} \left[F_k \left(\lambda_{i,j} \left(I^{mo}(t_i^j), \varphi^{mo}(s) \right) \right) - F_k \left(\lambda_{i,j} \left(I^{mo}(t_i^j), \varphi(s) \right) \right) \right] ds$$

$$\leq \int_{s(i,j)} C_{M_1}^{mo, mo} \left| \lambda_{i,j} \left(\varphi^{mo}(s) - \varphi(s) \right) \right| ds$$

$$\leq (C_{M_1}^{mo, mo})^2 \left(\frac{2T_0^2\epsilon}{\sqrt{\gamma}} + \frac{4\epsilon C_{M_1}T_0^3}{3} \right).$$

Therefore (4.13) holds for the same reason as (4.11). □

We will now compare the integral $\int_{s(i,j)} F_k(I^{mo}(t_i^j), \varphi(s)) ds$ with the average value $\langle F_k(I^{mo}(t_i^j)) \rangle h_i^j$. **An Averaging Theorem for Perturbed KdV Equation**
Proposition 3.

\[\sum_{i,j} \int_{s(i,j)} F_k \left(I^{ma}(t_j^i), \varphi_j^i(s) \right) ds = \sum_{i,j} h_j^i(F_k) \left(I^{ma}(t_j^i) \right) + \xi_4(t), \]

where

\[|\xi_4(t)| \leq \frac{2\delta}{\epsilon} + 2C_{M_1}(T_0 + \tilde{T}). \]

(4.14)

Proof: We divide the set of segments \(s(i, j) \) into two subsets \(\Delta_1 \) and \(\Delta_2 \). Namely, \(s(i, j) \in \Delta_1 \) if \(h_j^i \geq T_0 \) and \(s(i, j) \in \Delta_2 \) otherwise.

(i) \(s(i, j) \in \Delta_1 \). In this case, by (4.8), we have

\[\left| \int_{s(i,j)} \left[F_k \left(I^{ma}(t_j^i), \varphi_j^i(s) \right) - \langle F_k \rangle \left(I^{ma}(t_j^i) \right) \right] ds \right| \leq \delta h_j^i. \]

So

\[\sum_{s(i,j) \in \Delta_1} \left| \int_{s(i,j)} F_k \left(I^{ma}(t_j^i), \varphi_j^i(s) \right) ds - \langle F_k \rangle \left(I^{ma}(t_j^i) \right) h_j^i \right| \leq \delta \sum_{s(i,j) \in \Delta_1} h_j^i \leq \frac{2\delta}{\epsilon}. \]

(ii) \(s(i, j) \in \Delta_2 \). Now, using (4.3) we get

\[\left| \int_{s(i,j)} F_k \left(I^{ma}(t_j^i), \varphi_j^i(s) \right) ds - \langle F_k \rangle \left(I^{ma}(t_j^i) \right) h_j^i \right| \leq 2C_{M_1} h_j^i \leq 2C_{M_1} T_0. \]

Since \(\text{Card}(\Delta_2) \leq (1 + \tilde{T}/T_0) \), then

\[\sum_{s(i,j) \in \Delta_2} \left| \int_{s(i,j)} F \left(I^{ma}(t_j^i), \varphi_j^i(s) \right) ds - \langle F_k \rangle \left(I^{ma}(t_j^i) \right) h_j^i \right| \leq 2C_{M_1}(\tilde{T} + T_0). \]

This implies the inequality (4.14). \(\square \)

Proposition 4.

\[\sum_{i,j} h_j^i(F_k) \left(I^{ma}(t_j^i) \right) = \int_{C(t)} \langle F_k \rangle \left(I^{ma}(s) \right) ds + \xi_5(t), \]

where

\[|\xi_5(t)| \leq 4\epsilon C_{M_1} C^{ma}_{M_1} T_0(T_0 + \tilde{T} + \epsilon^{-1}). \]

(4.15)

Proof: Indeed, as

\[|\xi_5(t)| = \left| \sum_{i,j} \int_{s(i,j)} \left[\langle F_k \rangle(I^{ma}(s)) - \langle F_k \rangle(I^{ma}(t_j^i)) \right] ds \right|, \]

using (4.3) and (4.6) we get

\[|\xi_5(t)| \leq \epsilon \sum_{i,j} \int_{s(i,j)} C_{M_1}^{ma} |I^{ma}(s) - I^{ma}(t_j^i)| ds \]

\[\leq \epsilon \sum_{i,j} C_{M_1} C_{M_1}^{ma} (h_j^i)^2 \leq 4\epsilon C_{M_1} C^{ma}_{M_1} T_0(T_0 + \tilde{T} + \epsilon^{-1}). \] \(\square \)

Finally,
An Averaging Theorem for Perturbed KdV Equation

Proposition 5.

$$\int_{C(t)} \langle F_k \rangle \left(I^{m_o}(s) \right) ds = \int_0^t \langle F_k \rangle \left(I(s) \right) ds + \xi_6(t),$$

and $|\xi_6(t)|$ is bounded by $C_{M_1}\tilde{T} + \rho t$. □

Gathering the estimates in Propositions 1-5, we obtain

$$I_k(t) = I_k(0) + \epsilon \int_0^t F_k \left(I(s), \varphi(s) \right) ds$$

$$= I_k(0) + \epsilon \int_0^t \langle F_k \rangle \left(I(s) \right) ds + \Xi(t),$$

where

$$|\Xi(t)| \leq \epsilon \sum_{i=1}^6 |\xi_i(t)|$$

$$\leq 4\epsilon C_{M_1}^{r_0, r_0} \left[2(\gamma + 2T_0C_{M_1}\epsilon)^{1/2} + \frac{T_0C_{M_1}\epsilon}{\gamma^{1/2}} + T_0C_{M_1}\epsilon \right]$$

$$+ \left(\frac{T_0\epsilon}{2\gamma^{1/2}} + \frac{\epsilon C_{M_1}T_0^2}{3} \right) (T_0 + \tilde{T} + \epsilon^{-1}) + 2\epsilon C_{M_1}T_1$$

$$+ 2\rho + 2\delta + 2\epsilon C_{M_1}(T_0 + \tilde{T}), \quad t \in [0, \frac{1}{\epsilon}].$$

Lemma 4.1 is proved. □

Corollary 4.2. For any $\bar{\rho} > 0$, with a suitable choice of ρ, γ, δ, T_0, \tilde{T}, the function $|\Xi(t)|$ in Lemma 4.1 can be made smaller than $\bar{\rho}$, if ϵ is small enough.

Proof: We choose

$$\gamma = \epsilon^\alpha, \quad T_0 = \epsilon^{-\sigma}, \quad \tilde{T} = \frac{\bar{\rho}}{9C_{M_1}\epsilon}, \quad \delta = \rho = \frac{\bar{\rho}}{9}$$

with

$$1 - \frac{\alpha}{2} - \sigma > 0, \quad 0 < \sigma < \frac{1}{2}.$$

Then for ϵ sufficiently small we have

$$|\Xi(t)| < \bar{\rho}. \quad \Box$$

On the Hilbert space h^p, we adopt a ζ_0-admissible Gaussian measure μ. Define corresponding measures $\mu_I = \Pi_1 \circ \mu$ and $\mu_{I, \varphi} = \Pi_{I, \varphi} \circ \mu$ in the spaces $h^p_{I^+}$ and $h^p_{I^+} \times \mathbb{T}^\infty$.

Lemma 4.3. The measure $\mu_{I, \varphi}$ is a product measure $d\mu_{I, \varphi} = d\mu_I d\varphi$, where $d\varphi$ is the Haar measure on \mathbb{T}^∞.

Proof: Since the measure μ is invariant under rotations Φ_θ, the $\Pi_\varphi \circ d\mu$ is a measure on \mathbb{T}^∞, invariant under the rotations. So this is the Haar measure $d\varphi$. Consequently the image of the measure $\mu_{I, \varphi}$ under the natural projection $(I, \varphi) \mapsto \varphi$ is $d\varphi$. Since the spaces $h^p_{I^+}$ and \mathbb{T}^∞ are separable, then for $\varphi \in \mathbb{T}^\infty$ there exists a Borel probability
measure \(\pi_\varphi(dI) \) on \(h_{1+}^p \) such that \(\mu_{I, \varphi} = \pi_\varphi(dI) d\varphi \). That is, for any bounded continuous function \(f(I, \varphi) \), we have
\[
\langle \mu_{I, \varphi}, f \rangle = \int_{\mathbb{T}^\infty} \left(\int_{h_{1+}^p} f(I, \varphi) \pi_\varphi(dI) \right) d\varphi.
\]
(see e.g. [9]). For any \(\theta \in \mathbb{T}^\infty \) we have
\[
\langle \mu_{I, \varphi}, f \rangle = \langle \mu_{I, \varphi}, f \circ \Phi_\theta \rangle \quad = \quad \int \int f(I, \varphi + \theta) \pi_\varphi(dI) d\varphi = \int \int f(I, \varphi) \pi_{\varphi - \theta}(dI) d\varphi.
\]
Integrating in \(d\theta \) we see that
\[
\mu_{I, \varphi}(dId\varphi) = d\mu'(dI)d\varphi,
\]
where \(d\mu'(dI) = \int_{\mathbb{T}^\infty} \pi_\theta(dI) d\varphi \). We must have \(d\mu' = d\mu_I \), and the assertion of the lemma is proved. \(\square \)

The two lemmas below deal with the sets \(E \) and \(N \), defined at the beginning of this section.

Lemma 4.4. For any \(\delta > 0 \), \(\lim_{T_0 \to \infty} \mu_I(B_{p}^I(M_1) \setminus E(\delta, T_0)) = 0 \).

Proof. From the definition of \(E(\delta, T_0) \), we know that
\[
E(\delta, T_0) \subset E(\delta, T_0'), \quad \text{if} \quad T_0 \leq T_0'.
\]
Let \(E_{\infty}(\delta) := \bigcup_{T_0 > 0} E(\delta, T_0) \). Due to the inclusion above we have to check that
\[
\mu_I(B_{p}^I(M_1) \setminus E_{\infty}(\delta)) = 0.
\]
Denote
\[
\mathcal{R}(N) := \bigcup_{L \in \mathbb{Z}^{2m_0} \setminus \{0\}, |L| \leq N} \{ I \in B_{p}^I(M_1) : \quad W^{m_0}(I) \cdot L = 0 \},
\]
where \(W^{m_0}(I) = (W_1(I), \ldots, W_{m_0}(I)) \). Let us write \(F_k(I^{m_0}, \varphi^{m_0}) \) as a Fourier series
\[
F_k(I^{m_0}, \varphi^{m_0}) = \sum_{L \in \mathbb{Z}^{m_0}} F_k^L e^{iL \cdot \varphi^{m_0}},
\]
where \(F_k^L = F_k^L(I^{m_0}) \). Then there exists \(N_0 > 0 \) such that
\[
\left| F_k(I^{m_0}, \varphi^{m_0}) - \sum_{|L| \leq N_0} F_k^L e^{iL \cdot \varphi^{m_0}} \right| < \frac{\delta}{2}, \quad k = 1, \ldots, n_0.
\]
Arguing as in the proof of Lemma 2.2, we see that if \(I \notin \mathcal{R}(N_0) \), then
\[
\left| \sum_{0 \neq |L| \leq N_0} \frac{1}{T_0} \int_0^{T_0} F_k^L e^{iL \cdot W^{m_0}t} dt \right| \leq \frac{2}{T_0} \left(\inf_{0 \neq |L| \leq N_0} |L \cdot W^{m_0}| \right)^{-1} \sum_{|L| \leq N_0} |F_k^L|.
\]
where \(W^{m_0} = W^{m_0}(I) \). The r.h.s of the above inequality can be made smaller than \(\delta/2 \) by choosing \(T_0 \) large enough. So we have
\[
B_{p}^I(M_1) \setminus \mathcal{R}(N_0) \subset E_{\infty}(\delta),
\]
and it remains to show that
\[
\mu_I(\mathcal{R}(N_0)) = 0.
\]
By Lemma 1.2,
\[W^m(I) \cdot L \neq 0, \quad \forall L \in \mathbb{Z}^m \setminus \{0\}. \]
Since \(W^m(I) \) is analytic with respect to \(I \) and \(\mu_I \) is a non-degenerated Gaussian measure, then due to Theorem 1.6 in [13], for any \(L \in \mathbb{Z}^m \), we have
\[\mu_I(\{ I \in h^p : W^m(I) \cdot L = 0 \}) = 0. \]
Therefore,
\[\mu_I(\mathcal{R}(N)) = 0. \]

Lemma 4.5. Fix any \(\delta > 0, \bar{\rho} > 0 \). Then for every \(\nu > 0 \) we can find \(T_0 > 0 \) such that
\[\mu_{I, \varphi}(\Gamma_0 \setminus N) < \nu, \]
where \(N = N(\rho, \delta, T_0). \)

Proof. Let us denote \(\Gamma_E = E(\delta, T_0) \times \mathbb{T}^\infty \), \(\Gamma_1 = B^t_{\bar{\rho}}(M_1) \times \mathbb{T}^\infty \) and \(\Gamma^\infty_E := \bigcup_{T_0 > 0} \Gamma_E(\delta, T_0) \). Since the sets \(\Gamma_E(\delta, T_0) \) are increasing with \(T_0 \), then from Lemmas 4.3 and 4.4 we know that
\[\lim_{T_0 \to \infty} \mu_{I, \varphi}(\Gamma_1 \setminus \Gamma_E(\delta, T_0)) = \mu_{I, \varphi}(\Gamma_1 \setminus \Gamma^\infty_E) = 0. \] (4.16)

Let \(d\mu_I \) be the measure \(d\mu dt \) on \(h^p \times \mathbb{R} \), and \(S^t_{v, \varepsilon} \) be the flow of the perturbed KdV equation [12] on \(h^p \). We now define following subset of \(h^p \times \mathbb{R} \):
\[B' = \{(v, t) : S^t_{v, \varepsilon}(v) \in \Pi_{I, \varphi}^{-1}(\Gamma_1 \setminus \Gamma_E(\delta, T_0)), v \in B^u_{\rho}(\sqrt{M_0}), t \in [0, \frac{1}{\varepsilon}] \}. \]

By Theorem 3.6, there exists a constant \(C_2(M_1) \) depending only on \(M_1 \) such that
\[\mu_1(B') = \int_0^{\varepsilon^{-1}} \mu\left(S_{v, \varepsilon}^{-t}\left(\Pi_{I, \varphi}^{-1}(\Gamma_1 \setminus \Gamma_E(\delta, T_0))\right) \cap \Pi_{I, \varphi}^{-1}(\Gamma_0)\right)dt \leq \frac{1}{\varepsilon} e^{C_2(M_1)} \mu_1\left(\Pi_{I, \varphi}^{-1}(\Gamma_0)\right) \]
\[= \frac{1}{\varepsilon} e^{C_2(M_1)} \mu_{I, \varphi}(\Gamma_1 \setminus \Gamma_E(\delta, T_0)). \]

For \(v \in \Pi_{I, \varphi}^{-1}(\Gamma_0) \), we define
\[S(I, \varphi) = S(v) = \{ t \in [0, \varepsilon^{-1}] : S^t_{v, \varepsilon}(v) \in B^u_{\rho}(\sqrt{M_1}) \cap \Pi_{I, \varphi}^{-1}(\Gamma_E(\delta, T_0)) \}. \]

By the Fubini theorem, we have
\[\mu_1(B') = \int_{\Pi_{I, \varphi}^{-1}(\Gamma_0)} \text{Mes}(S(v))\mu(dv), \]

Thus
\[\mu_{I, \varphi}(\Gamma_0 \setminus N) = \mu_{I, \varphi}\left(\{ (I, \varphi) \in \Gamma_0 : \text{Mes}(S(I, \varphi) > \frac{\bar{\rho}}{9C_2(M_1)}\} \right) \leq \frac{9C_2(M_1)}{\bar{\rho}} \mu_{I, \varphi}(\Gamma_1 \setminus \Gamma_E(\delta, T_0)), \]

by the Chebyshev inequality. In view of (4.16), the term on the right hand side becomes arbitrary small when \(T_0 \) is large enough. The statement of Lemma 4.5 follows. □
An Averaging Theorem for Perturbed KdV Equation

We pass to the slow time $\tau = \epsilon t$. Let $v^e(\tau)$, $\tau \in [0, 1]$, be a solution of the equation (3.1) and $(I^e(\tau), \varphi^e(\tau)) = \Pi_{t,\varphi}(v^e(\tau))$.

By Lemma 2.1 and (3.3), we know that for any $p \geq 0$, the mapping

$$F_J : h^0_\tau \to h^{l+\alpha}_\tau, \quad J \mapsto \langle F \rangle(J),$$

where $\langle F \rangle(J) = (\langle F_1 \rangle(J), \langle F_2 \rangle(J), \ldots)$ is analytic. Hence, there exists $C_3(M_1)$ such that

$$|F_J(J_1) - F_J(J_2)|_p \leq C_3(M_1)|J_1 - J_2|_p, \quad J_1, J_2 \in B_p^l(2M_1). \quad (4.17)$$

Using Picard’s theorem, for any $J_0 \in B_p^l(M_1)$ there exists a unique solution $J(t)$ of the averaged equation (0.7) with $J(0) = J_0$. We denote

$$T(J_0) := \inf \{ \tau > 0 : |J(\tau)|_p > 2M_1 \}.$$

Now we are in a position to prove the assertion (i) of Theorem 0.2.

For any $\bar{\rho} > 0$, there exist n_1 such that

$$|F(I, \varphi) - F^{n_1}(I, \varphi)|_p < \frac{\bar{\rho}}{8} e^{-C_3(M_1)}, \quad (I, \varphi) \in B_p^l(2M_1) \times \mathbb{T}^\infty,$$

$$|\langle F \rangle(J) - \langle F \rangle^{n_1}(J)|_p < \frac{\bar{\rho}}{8} e^{-C_3(M_1)}, \quad J \in B_p^l(2M_1).$$

Choose ρ_0 such that

$$\sum_{j=1}^{n_1} j^{1+2p} \rho_0 = \bar{\rho} e^{-C_3(M_1)}.$$

By Lemmata 4.1 and 4.2, there is a set $\Gamma_\rho = N(\frac{\rho_0}{9C_3(M_1)}, \epsilon, \frac{\rho_0}{9}, \epsilon^{-\sigma})$, $\sigma < 1/2$, such that if ϵ is small enough and $(I^e(0), \varphi^e(0)) \in \Gamma_\rho$, then

$$I_k(\tau) = I_k(0) + \int_0^\tau \langle F_k \rangle(I(s)) ds + \xi_k(\tau), \quad |\xi_k(\tau)| < \rho_0, \quad \tau \in [0, 1],$$

for $k = 1, \ldots, n_1$. Therefore, by (4.17) and (4.18),

$$|I(\tau) - J(\tau)|_p \leq \int_0^\tau C_3(M_1)|I(\tau) - J(\tau)|_p ds + \xi_0(\tau), \quad |\xi_0(\tau)| \leq \frac{\bar{\rho}}{2} e^{-C_3(M_1)},$$

for $(I(0), \varphi(0)) \in \Gamma_\rho$, $I(0) = J(0)$ and $|\tau| \leq \min\{1, T(J(0))\}$. By Gronwall’s lemma,

$$|I(\tau) - J(\tau)|_p \leq \bar{\rho}, \quad |\tau| \leq \min\{1, T(J(0))\}.$$

Assuming that $\bar{\rho} << M_1$, we get from the definition of $T(J(0))$ that $T(J(0))$ is bigger than 1. This establishes inequality (0.9). From Lemma 4.5 we know that $\lim_{\epsilon \to 0} \mu_{t,\varphi}(\Gamma_0 - \Gamma_\rho) = 0. \quad \Box$

4.2. Proof of the assertion (ii)

It is not hard to see that the assertion for any $0 \leq T_1 < T_2 \leq 1$ would follow if we can prove it for $\bar{T}_1 = 0, \bar{T}_2 = 1$. So we assume that $\bar{T}_1 = 0$, and $\bar{T}_2 = 1$. For any $(m, n) \in \mathbb{N}^2$, we fix $\alpha < 1/8$, and denote

$$\mathcal{B}_m(\epsilon) := \left\{ I \in B_p^l(M_1) : \inf_{k \leq m} |I_k| < \epsilon^\alpha \right\},$$

$$\mathcal{R}_{m,n}(\epsilon) := \bigcup_{|L| \leq n, L \in \mathbb{Z}^m \setminus \{0\}} \left\{ I \in B_p^l(M_1) : |W(I) \cdot L| < \epsilon^\alpha \right\}.$$
Then let
\[\Upsilon_{m,n}(\epsilon) = \left(\bigcup_{m_0 \leq m} \mathcal{R}_{m_0,n}(\epsilon) \right) \cup \mathcal{B}_m(\epsilon). \]

Denote
\[S(\epsilon, m, n, I_0, \varphi_0) = \{ \tau \in [0, 1] : I^\epsilon(\tau) \in \Upsilon_{m,n}(\epsilon) \} \]
and fix any \(\nu > 0 \). Then using Theorem 3.6 and arguing as in Lemma 4.4 and Lemma 4.5, we get that, for any \((m, n) \in \mathbb{N}^2\), there exists open subset \(\Gamma_{m,n} \subset \Gamma_0 \), \(\epsilon_{m,n} > 0 \) and a positive function \(\rho_{m,n}(\epsilon) \), converging to zero as \(\epsilon \to 0 \), such that
\[\mu_{I,\varphi}(\Gamma_0 - \Gamma_{m,n}^\epsilon) < \frac{\nu}{2mn} \quad \text{and} \quad \operatorname{Mes}(S(\epsilon, m, n, I_0, \varphi_0)) \leq \rho_{m,n}(\epsilon), \]
if \((I_0, \varphi_0) \in \Gamma_{m,n}^\epsilon \) and \(\epsilon \leq \epsilon_{m,n} \). Let
\[\Gamma_{\nu} = \bigcap_{(m,n) \in \mathbb{N}^2} \Gamma_{m,n}^\nu, \]
then
\[\mu_{I,\varphi}(\Gamma_0 - \Gamma_{\nu}) < \nu. \quad \text{(4.19)} \]

The sets \(\Gamma_{\nu} \) may be chosen in such a manner that
\[\Gamma_{\nu_1} \subset \Gamma_{\nu_2}, \quad \text{if} \quad \nu_2 < \nu_1. \quad \text{(4.20)} \]

For any \((I_0, \varphi_0) \in \Gamma_{\nu}\), consider a solution \((I^\epsilon(\tau), \varphi^\epsilon(\tau))\) such that
\[(I^\epsilon(0), \varphi^\epsilon(0)) = (I_0, \varphi_0). \]

Fix \(m \in \mathbb{N} \), take a bounded Lipschitz function \(g \) defined on the torus \(T^m \subset T^\infty \) such that \(\text{Lip}(g) \leq 1 \) and \(|g|_{L^\infty} \leq 1 \). Let \(\sum_{s \in \mathbb{Z}^m} g_s e^{is \cdot \varphi} \) be its Fourier series. Then for any \(\rho > 0 \), there exists \(n \), such that if we denote \(\bar{g}_n = \sum_{|s| \leq n} g_s e^{is \cdot \varphi} \), then
\[\left| g(\varphi) - \bar{g}_n(\varphi) \right| < \frac{\rho}{2}, \quad \forall \varphi \in T^m. \]

For any \((I_0, \varphi_0) \in \Gamma_{\nu}\), we consider the set \(S(\epsilon, m, n, I_0, \varphi_0) \). It is composed of open intervals of total length less than \(\bar{T} = \rho_{m,n}(\epsilon) \). Proceeding as in Lemma 4.1 and Corollary 4.2, we find that for \(\epsilon \) small enough we have
\[\left| \int_{0}^{1} g(\varphi^\epsilon,m(\tau))d\tau - \int_{T^m} g(\varphi)d\varphi \right| < \rho. \]
That is,
\[\left| \int g(\varphi) \mu_{T_1, T_2}(d\varphi) - \int g(\varphi)d\varphi \right| \to 0 \quad \text{as} \quad \epsilon \to 0, \quad \text{(4.21)} \]
for any Lipschitz function as above. Hence, \(\mu_{T_1, T_2} \) converges weakly to \(d\varphi \) (see [9]). This proves the required assertion with \(\Gamma_{\varphi} \) replaced by \(\Gamma_{\nu} \). Let us choose
\[\Gamma_{\varphi} = \bigcup_{\nu > 0} \Gamma_{\nu}. \]
Then
\[\mu_{I,\varphi}(\Gamma_0 - \Gamma_{\varphi}) = 0, \]
by (4.19) and (4.20), and for any \((I_0, \varphi_0) \in \Gamma_{\varphi}\) the required convergence of measures holds. This proves the second assertion of Theorem 0.2. \(\square \)
5. Application to a special case

In this section we prove Proposition 0.3. Clearly, we only need to prove the statement (ii) of assumption A. Let $F : H^m \to \mathbb{R}$ be a smooth functional (for some $m \geq 0$). If $u(t)$ is a solution of (0.1), then

$$\frac{d}{dt} F(u(t)) = \langle \nabla F(u(t)), -V(u) + \epsilon f(x) \rangle.$$

In particular, if $F(u)$ is an integral of motion for the KdV equation, then we have $\langle \nabla F(u(t), V(u)) = 0$, so

$$\frac{d}{dt} F(u(t)) = \epsilon \langle \nabla F(u(t)), f(x) \rangle.$$

Since $\|u(0)\|^2_0$ is an integral of motion, then

$$\frac{d}{dt} \|u(t)\|^2_0 = 2\epsilon \langle u, f(x) \rangle \leq \epsilon (\|u\|^2_0 + \|f(x)\|^2_0).$$

Thus we have

$$\|u(t)\|^2_0 \leq e^{\epsilon t} (\|u(0)\|^2_0 + \epsilon t \|f(x)\|^2_0). \quad (5.1)$$

The KdV equation has infinitively many integral of motion $J_m(u)$, $m \geq 0$. The integral J_m can be written as

$$J_m(u) = \|u\|^2_m + \sum_{r=3}^{m} \sum_{m} \int C_{r,m} u^{(m_1)} \cdots u^{(m_r)} dx,$$

where the inner sum is taken over all integer r-vectors $m = (m_1, \ldots, m_r)$, such that $0 \leq m_j \leq m - 1$, $j = 1, \ldots, r$ and $m_1 + \cdots + m_r = 4 + 2m - 2r$. Particularly, $J_0(u) = \|u\|^2_0$.

Let consider

$$I = \int u^{(m_1)} \cdots f^{(m_i)} \cdots u^{(m_r)} dx, \quad m_1 + \cdots + m_r = M,$$

where $r \geq 2$, $M \geq 1$, and $0 \leq m_j \leq \mu - 1$. Then, by Hölder’s inequality,

$$|I| \leq \|u^{(m_1)}\|_{L_{\mu_1}} \cdots \|f(x)\|_{L_{\mu_i}} \cdots \|u^{(m_r)}\|_{L_{\mu_r}}, \quad p_j = \frac{M}{m_j} \leq \infty.$$

Applying next the Gagliardo-Nirenberg and the Young inequalities, we obtain that

$$|I| \leq \delta \|u\|^2_m + C_\delta \|u\|^C_0, \quad \forall \delta > 0, \quad (5.2)$$

where C_δ and C_1 do not depend on u. Below we denote C a positive constant independent of u, not necessary the same in each inequality. Let

$$I_1 := \langle \nabla J_m(u), f \rangle = \langle u^{(m)}, f^{(m)} \rangle + \sum_{r=3}^{m} \sum_{m} C'_{r,m} u^{(m_1)} \cdots f^{(m_i)} \cdots u^{(m_r)} dx,$$

where $m_1 + \cdots + m_r = 6 + 2m - 2r$. Using (5.2) with a suitable δ, we get

$$I_1 \leq \|u\|^2_m + C \|u\|^C_0 \leq \|u\|^2_m + C (1 + \|u\|^4_0) + \|f\|^2_m. \quad (5.3)$$
If \(u(t) = u(t, x) \) is a solution of equation (0.1), then
\[
\frac{d}{dt} J_m(u) = \langle \nabla J_m(u), \epsilon f \rangle \leq \epsilon \|u\|_{m}^2 + \epsilon C(1 + \|u\|_{0}^{4m}) + \epsilon \|f\|_{m}^2,
\]
ad
\[
\frac{1}{2} \|u\|_{m}^2 - C(1 + \|u\|_{0}^{4m}) \leq J_m(u) \leq 2 \|u\|_{m}^2 + C(1 + \|u\|_{0}^{4m}).
\]
Denote \(C_m = C(1 + \|u(0)\|_{0}^{4m}) + C\|f\|_{m}^2 \), then from (5.1) and above, we deduce
\[
\frac{d}{dt}(J_m(u) - C_m) \leq \frac{1}{2} \epsilon (J_m(u) - C_m),
\]
thus
\[
J_m(u) - C_m \leq e^{\frac{1}{2} \epsilon t}[J_m(u(0)) - C_m],
\]
so
\[
\|u(t)\|_{m}^2 \leq 4\|u(0)\|_{m}^2 e^{\frac{1}{2} \epsilon t} + C_m.
\]
This prove Proposition 0.3. \(\square \)

Appendix

Consider the following system of ordinary differential equations:
\[
\dot{x} = Y(x), \quad x(0) = x_0 \in \mathbb{R}^n,
\]
where \(Y(x) = (Y_1(x), \cdots, Y_n(x)) : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is a continuously differentiable map. Let \(F(t, x) \) be a (local) flow determined by this equation.

Theorem A (Liouville). Let \(B(x_1, \cdots, x_n) \) be a continuous differentiable function on \(\mathbb{R}^n \). For the Borel measure \(d\mu = B(x)dx \) in \(\mathbb{R}^n \) and any bounded open set \(A \subset \mathbb{R}^n \), we have
\[
\frac{d}{dt} \mu(F(t, A)) = \int_{F(t, A)} \left[\sum_{i=1}^{n} \frac{\partial (B(x)Y_i(x))}{\partial x_i} \right] dx,
\]
where \(T > 0 \) is such that \(F(t, x) \) is well defined and bounded for any \(t \in (-T, T) \) and \(x \in A \).

For \(B = \text{const} \) this result is well known. For its proof for a non-constant density \(B \) see e.g. [14] [10].

Acknowledgement

First of all, I want to thank my PhD supervisor S. Kuksin for formulation of the problem and guidance. I am grateful to A. Boritchev for useful suggestions. Finally, I would like to thank all of the staff and faculty at CMLS of Ecole Polytechnique for help.
Reference

[1] Kappeler T and Pöschel J. KAM & KdV. Springer, 2003.
[2] Kuksin S. Analysis of Hamiltonian PDEs. Oxford University Press, Oxford, 2000.
[3] Lochak P and Meunier C. Multiphase Averaging for Classical systems (with Applications to Adiabatic Theorems). Springer, 1988.
[4] Neistadt A I. Some resonance problem in nonlinear systems. Thesis, Moscow University, 1975.
[5] Neistadt A I. Averaging in multi-frequency systems, I and II. Soviet Phys, Doklady, 20(7) and 21(2):492–494 and 80–82, 1975.
[6] Nekhoroshev N. An exponential estimate of the time of stability of nearly-integrable hamiltonian systems I. Uspekhi Mat. Nauk, 32(6):5–66, 1972.
[7] Kuksin S and Piatnitski A. Khasminskii-whitham averaging for randomly perturbed KdV equation. J. Math. Pures Appl., 89:400–428, 2008.
[8] Kuksin S. Damped-driven KdV and effective equations for long-time behaviour of its solutions. Geometric and Functional Analysis, 20(6):1431–1463, 2010.
[9] Dudley R M. Real Analysis and Probability. Cambridge University Press, 2002.
[10] Zhidkov P E. Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory. Springer, 2001.
[11] Temirgaliev N. A connection between inclusion theorems and the uniform convergence of multiple fourier series. Matematicheskie Zametki, 12(2):139–148, 1972.
[12] Bidegaray B. Invariant measures for some partial differential equations. Physica D, 82:340–364, 1995.
[13] Agrachev A, Kuksin S, Sarychev A, and Shirikyan A. On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier-Stokes equations. Ann. I. H. Poincaré, PR43:300–315, 2007.
[14] Kornfeld I P, Formin S V, and Sinai G. Ergodic Theory. Springer, 1982.