Polymorphisms of MTHFR and susceptibility to oesophageal adenocarcinoma in a Caucasian United Kingdom population

Richard Keld, Manyi Thian, Chia Hau, Jamil Sajid, Narveen Kumar, Yeng Ang

Abstract

AIM: To identify if methylene tetra-hydrofolate reductase (MTHFR) C677T polymorphisms are associated with oesophageal adenocarcinomas in a Caucasian population and to test whether folic acid and homocysteine levels are linked with cancer risk.

METHODS: A case control study comprising of 58 non cancer and 48 cancer patients, MTHFR C677T genotyping was made and serum folate, homocysteine and vitamin B12 levels were made. Tumour stage, differentiation and survival was recorded. A P value of less than 0.05 was taken to be significant. The χ² used to compare discrete variables and the Mantel-Cox was used to compare survival. A P value less than 0.05 was deemed to be significant.

RESULTS: MTHFR polymorphisms is associated with an increased risk of several cancers. A link between MTHFR C677T polymorphisms and oesophageal squamous cell carcinoma and gastric cardia adenocarcinoma has been demonstrated in at risk Chinese populations. In a Western European population the role of the MTHFR gene has not previously been investigated in the setting of oesophageal adenocarcinoma. No association between folic acid levels and cancer patients was found. The unstable MTHFR 667 TT genotype occurred in 11% cancers and 7% controls, but statistical significance was not reached, homocysteine levels and folic acid levels were not affected, cancer patients with TT genotype displayed a trend for a shorter survival 7 vs 20 mo. Serum vitamin B12 levels were higher in the cancer group. The MTHFR 667 TT genotype is much lower than previous population studies.

CONCLUSION: We conclude that serum folic acid and MTHFR polymorphisms are not associated with an increased risk of oesophageal adenocarcinoma, although cancers with unstable TT genotype may indicate a more aggressive disease course.

Key words: Polymorphisms of 5,10-methylenetetrahydrofolate reductase; Oesophageal adenocarcinoma; Caucasian population; Helicobacter pylori; Polymorphism

Core tip: Our paper is the first Western population study and shows that methylene tetra-hydrofolate reductase (MTHFR) C677T polymorphisms is not associated with risk of oesophageal adenocarcinoma in contrast to Chinese and perhaps Far East populations. This highlights the difference in terms of the biology, genetics and epigenetics between Western and Eastern cancer populations and adds to our understanding of the etiology of
oesophageal squamous cell carcinoma and gastric cardia adenocarcinoma has been demonstrated in at risk Chinese populations[17,21]. In a Western European population the role of the MTHFR gene has not previously been investigated in the setting of oesophageal adenocarcinoma. Here we have tested the association of MTHFR C677T polymorphisms in a population with oesophageal adenocarcinoma. The intention of this study was to identify if MTHFR C677T polymorphisms are associated with oesophageal adenocarcinomas and to test whether folate acid and homocysteine levels are linked with cancer risk.

MATERIALS AND METHODS

Ethical approval for this study was granted from Warrington, Wigan and Leigh ethics committee in 2003. A trial of 102 Caucasian patients were recruited from the Royal Albert Edward Infirmary, Wigan, Greater Manchester in North West England. There were 44 patients with oesophageal adenocarcinoma (recruited at the time of diagnosis) and 58 patients without cancer. Exclusion criteria included a previous diagnosis of other cancers and previous or current use of anti folate medication including anticonvulsants and antibiotics. Age, gender, smoking status, tumour differentiation and survival from diagnosis was recorded. Survival (mo) was determined from the time of cancer diagnosis to date of death or date of cessation for the study. Serum analysis of folate acid, red cell folate, and vitamin B12 were measured in selected cases at the time of recruitment. Folate levels were determined by measuring serum or red cell folate levels and according to laboratory references. Groups were divided into “normal”, “low” or “high” levels if the determined level was within normal range, lower or higher respectively. Serum Vitamin B12 levels were determined and according to laboratory references. Groups were divided in to “normal”, “low” or “high” levels if the recorded level was within range, lower or higher respectively. Homocysteine was analysed in 41 patients in total, 12 had oesophageal adenocarcinoma. Blood samples were stored at 4 °C until analysed for serum homocysteine and MTHFR C677T genotyping [KBioscience Ltd, competitive allele-specific PCR system (KASPar) for SNP analysis].

Statistical analysis

SSP version 14 was used for statistical analysis and to calculate survival curves, the t test was used to compare continuous variables. The χ² used to compare discrete variables and the Mantel-Cox was used to compare survival. A P value less than 0.05 was deemed to be significant.

RESULTS

Results from 102 cases were analysed. Age and gender were similar in the cancer and non cancer groups. The results are summarised in Table 1. We did not identify any difference in the proportion of cases with low folate acid levels between the cancer and control groups. Specific-
The characteristics of the cancer and control groups are displayed, patient numbers are shown and percentages or SD are indicated in brackets. The gender and average age of the study population at the time of study are shown. Mean levels of homocysteine are presented with standard deviations in brackets. Methylene tetra-hydrofolate reductase (MTHFR) C667T polymorphisms, TT, CT and CC were determined, the percentage in the cancer and control groups are displayed. Mean survival times in months and standard errors are displayed.

The MTHFR C677T genotype identified that the cancer group have a slightly higher prevalence of the TT variant compared to the non cancer group (25% vs 4%, \(P = 0.010 \)). Analysis of the MTHFR C667T genotype for the MTHFR C667T polymorphism, TT, CT and CC were determined, the percentage in the cancer and control groups are displayed. Mean survival times in months and standard errors are displayed.

The role of folic acid and the pathogenesis of gastrointestinal cancers has been extensively studied. It appears that a diet low in folic acid has the potential to increase the risk of carcinogenesis. Assessment of folic acid consumption by measurement of serum folic acid levels has been investigated in pancreatic adenocarcinoma and squamous cell carcinoma of the oesophagus, a low serum folic acid level is associated with a higher risk of cancer. Recently a study in a Turkish population has identified low serum folic acid levels in oesophageal adenocarcinoma patients compared to a normal control population, low serum folic acid levels were also seen in patients with reflux oesophagitis and Barrett's oesophagus. In gastric and oesophageal squamous cell carcinoma, the risk of carcinogenesis is also associated with MTHFR 677 TT polymorphisms, however this association is more apparent in Chinese populations that display a higher prevalence of the dysfunctional TT phenotype in the general population. The increased risk of oesophageal squamous cell carcinoma also seems to be associated in combination with low folic acid consumption/levels. A combination of a diet low in folic acid and an impaired folic acid metabolism may reduce DNA methylation and DNA repair and subsequently increase cancer risk. In oesophageal adenocarcinomas in North West England, we identified that the unstable TT polymorphism is more frequently seen compared to non cancer population, however this only accounts for 10% of cancer cases and the frequency of the TT polymorphism did not reach statistical significance when compared between cancer and control populations. The frequency of the TT polymorphism occurrence in the oesophageal adenocarcinoma cancer population in North West England is similar to previous studies in non cancer populations, this is in contrast to the higher prevalence in China, Japan and German.

Table 1 Study group characteristics a (%)

Cancer	Control	Significance																
Male 36 (82)	Female 8 (18)	Age (yr) 69 ± 12	Folate level Normal 26 (84)	Low 0	High 5 (16)	Vitamin B12 level Normal 23 (72)	Low 1 (3)	High 8 (25)	Homocysteine level μmol/L 10.3 ± 4.4	MTHFR C677T Total TT vs CT and CC TT 5 (11)	CT 20 (46)	CC 19 (43)	MTHFR C667T Normal folate 3 (10)	Low folate 0	High folate 0	Survival (mo) TT 7 ± 4.4	CT 17 ± 4.4	CC 21 ± 7.0

The characteristics of the cancer and control groups are displayed, patient numbers are shown and percentages or SD are indicated in brackets. The gender and average age of the study population at the time of study are shown. Mean levels of homocysteine are presented with standard deviations in brackets. Methylene tetra-hydrofolate reductase (MTHFR) C667T polymorphisms, TT, CT and CC were determined, the percentage in the cancer and control groups are displayed. Mean survival times in months and standard errors are displayed.

The MTHFR C677T genotype identified that the cancer group have a slightly higher prevalence of the TT variant compared to the non cancer group (25% vs 4%, \(P = 0.010 \)). Analysis of the MTHFR C667T genotype for the MTHFR C667T polymorphism, TT, CT and CC were determined, the percentage in the cancer and control groups are displayed. Mean survival times in months and standard errors are displayed.

The role of folic acid and the pathogenesis of gastrointestinal cancers has been extensively studied. It appears that a diet low in folic acid has the potential to increase the risk of carcinogenesis. Assessment of folic acid consumption by measurement of serum folic acid levels has been investigated in pancreatic adenocarcinoma and squamous cell carcinoma of the oesophagus, a low serum folic acid level is associated with a higher risk of cancer. Recently a study in a Turkish population has identified low serum folic acid levels in oesophageal adenocarcinoma patients compared to a normal control population, low serum folic acid levels were also seen in patients with reflux oesophagitis and Barrett’s oesophagus. In gastric and oesophageal squamous cell carcinoma, the risk of carcinogenesis is also associated with MTHFR 677 TT polymorphisms, however this association is more apparent in Chinese populations that display a higher prevalence of the dysfunctional TT phenotype in the general population. The increased risk of oesophageal squamous cell carcinoma also seems to be associated in combination with low folic acid consumption/levels. A combination of a diet low in folic acid and an impaired folic acid metabolism may reduce DNA methylation and DNA repair and subsequently increase cancer risk. In oesophageal adenocarcinomas in North West England, we identified that the unstable TT polymorphism is more frequently seen compared to non cancer population, however this only accounts for 10% of cancer cases and the frequency of the TT polymorphism did not reach statistical significance when compared between cancer and control populations. The frequency of the TT polymorphism occurrence in the oesophageal adenocarcinoma cancer population in North West England is similar to previous studies in non cancer populations, this is in contrast to the higher prevalence in China, Japan and German.

DISCUSSION

This study is limited by its small sample size in a case-control setting and hence the possibility of a type 2 statistical error. Our results are in keeping with an established
ny (13%-44%)[23]. This suggests that TT polymorphisms are unhelpful to identify patients at risk of oesophageal adenocarcinoma, at least in this particular population and this is in keeping with the population in Turkey. Adenocarcinoma patients with TT polymorphisms may indicate a poorer outcome in terms of survival but larger studies, that can adjust for tumour staging and treatment, are needed to confirm this. In contrast to the Turkish population, we did not find a link between low serum folic acid levels and oesophageal adenocarcinoma however this may be due to study design, due to less stringent exclusion criteria for the normal control population. This finding also differs with previous studies in oesophageal squamous cell carcinoma and proximal gastric adenocarcinoma in China[28] and pancreatic adenocarcinoma in Finland[29]. The majority of studies investigating the role of folic acid in oesophageal adenocarcinoma have suggested that low folate consumption (measured by dietary questionnaires rather than serum folic acid levels) are a significant risk factor for carcinogenesis.

Homocysteine is closely related to folic acid metabolism it is important for methylation by supplying methionine. An inverse relationship with homocysteine and folic acid exists, with high homocysteine levels occurring when folic acid levels are low. Overall homocysteine levels did not differ between cancer and non cancer groups, this is consistent with the findings of similar serum folic acid levels in cancer and non cancer groups. In this particular study, the lack of correlation with oesophageal adenocarcinoma patients and serum low folic acid levels, together with a lack of a relationship with homocysteine and MTHFR $C677T$ polymorphism, indicates that folic acid levels are unlikely to be an important factor in the pathogenesis or predictor in the of the mainstay of oesophageal adenocarcinoma cases in North West England. The lack of relationship may be accounted by the small sample size or the absence of knowledge of the dietary consumption of folic acid. Folic acid levels were only analysed once the diagnosis of cancer had been made therefore we have no information of the levels in the years leading up to the diagnosis. However by the nature of the disease, oesophageal adenocarcinoma is often associated with malnutrition and vitamin deficiency. Because folic acid levels were similar in the cancer and non cancer groups, this suggests that folic acid levels are unlikely to be lower in the cancer group in the mo prior to the diagnosis. Taken together with the low proportion of $MTHFR$ $677 TT$ genotypes in the cancer group, this indicates that analysis of $MTHFR$ $C677T$ genotypes, folic acid and vitamin B12 levels is unlikely to predict at risk individuals that may develop oesophageal adenocarcinoma. Future studies should be conducted with similar designs but with much larger sample size and in a prospective manner. Other $MTHFR$ polymorphisms like $A1298C$ should also be studied to see if there is any association with oesophageal adenocarcinoma in a Caucasian United Kingdom population.

ACKNOWLEDGMENTS

We thank Dr. Rijadz S for helping to collect blood samples for genotyping (Wrightington, Wigan and Leigh NHS Foundation Trust). We thank Prof. Mahmud N and Dr. Molloy A for their help in organising the genotyping for the specimens (Dublin Molecular Centre).

COMMENTS

Background

Methylene tetra-hydrofolatereductase (MTHFR) polymorphisms is associated with an increased risk of several cancers. A link between $MTHFR$ $C677T$ polymorphisms and oesophageal squamous cell carcinoma and gastric cardia adenocarcinoma has been demonstrated in at risk Chinese populations. In a Western European population the role of the MTHFR gene has not previously been investigated in the setting of oesophageal adenocarcinoma.

Research frontiers

Authors have tested the association of $MTHFR$ $C677T$ polymorphisms in a United Kingdom Caucasian population with oesophageal adenocarcinoma. The intention of this study was to identify if $MTHFR$ $C677T$ polymorphisms are associated with oesophageal adenocarcinomas and to test whether folic acid, B12 and homocysteine levels are linked with cancer risk.

Innovations and breakthroughs

No association between folic acid levels and cancer patients was found. The unstable MTHFR $677 TT$ genotype occurred in 11% cancers and 7% controls, but statistical significance was not reached. Homocysteine and folic acid levels were not affected, cancer patients with TT genotype displayed a trend for a shorter survival 7 mo vs 20 mo. Serum vitamin B12 levels were higher in the cancer group.

Applications

This indicates that analysis of $MTHFR$ $C677T$ genotypes, folic acid and vitamin B12 levels is unlikely to predict at risk individuals that may develop oesophageal adenocarcinoma. Future studies should be conducted with similar designs but with much larger sample size and in a prospective manner. Other $MTHFR$ polymorphisms like $A1298C$ should also be studied to see if there is any association with oesophageal adenocarcinoma in a Caucasian United Kingdom population.

Peer review

In this case-control study the authors report their interesting results of the risk of oesophageal adenocarcinoma in a United Kingdom Caucasian population with MTHFR genetic polymorphisms.

REFERENCES

1. Blot WJ, Devesa SS, Kneller RW, Fraumeni JF. Rising incidence of adenocarcinoma of the esophagus and gastric cardia. JAMA 1991; 265: 1287-1289 [PMID: 1995976 DOI: 10.1001/jama.1991.03460100089030]
2. Bollschweiler E, Wolfgang E, Gutschow C, Hölsher AH. Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer 2001; 92: 549-555 [PMID: 11505399 DOI: 10.1002/1097-0142(20010801)92:3<549::AID-CNCR1354>3.0.CO;2-L]
3. Gammon MD, Schoenberg JB, Ahsan H, Risch HA, Vaughan TL, Chow WH, Rotterdam H, West AB, Dubrow R, Stanford JL, Mayne ST, Farrow DC, Niwa S, Blot WJ, Fraumeni JF. Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 1997; 89: 1277-1284 [PMID: 9293918 DOI: 10.1093/jnci/89.17.1277]
4. Gray MR, Donnelly RJ, Kingsnorth AN. The role of smoking and alcohol in metaplasia and cancer risk in Barrett’s columnar lined oesophagus. Gut 1993; 34: 727-731 [PMID: 8314502]
Keld R et al. Polymorphisms of MTHFR in a Caucasian United Kingdom population

5 Hampel H, Abraham NS, El-Serag HB. Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. *Ann Intern Med* 2005; 143: 199-211 [PMID: 16061918 DOI: 10.7326(0003-4819-143-3-200508020-00006)

6 Lagergren J, Bergström R, Lindgren A, Nyrén O. Symptom gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. *N Engl J Med* 1999; 340: 825-831 [PMID: 10088844 DOI: 10.1056/NEJM199903183401101]

7 Pandeya N, Williams GM, Sadeghi S, Green AC, Webb PM, Whitman DC. Associations of duration, intensity, and quantity of smoking with adenocarcinoma and squamous cell carcinoma of the esophagus. *Am J Epidemiol* 2008; 168: 105-114 [PMID: 18483122 DOI: 10.1093/aje/kwn091]

8 Rokkas T, Pistoliadis D, Schepoulous P,robotis I, Margantisin G. Relationship between Helicobacter pylori infection and esophageal neoplasia: a meta-analysis. *Clin Gastroenterol Hepatol* 2007; 5: 1413-1417, 1417.e1-2 [PMID: 17979357 DOI: 10.1016/j.cgh.2007.08.010]

9 Solaymani-Dodaran M, Logan RF, West J, Card T, Coupland C. Risk of oesophageal cancer in Barnett’s esophagus and gastro-oesophageal reflux. *Gut* 2004; 53: 1070-1074 [PMID: 15247170 DOI: 10.1136/gut.2003.028076]

10 Choi SW, Mason JB. Folate and carcinogenesis: an integrated scheme. *Nutr Rev* 2000; 10: 129-132 [PMID: 10720158]

11 Clarke R, Refsum H, Birks J, Evans JG, Johnston C, Sherliker P, Ueland PM, Schneede J, McPartlin J, Nexo E, Scott JM. Increased prevalence of methylenetetrahydrofolate reductase C677T variant in patients with a common mutation in methylenetetrahydrofolate reductase and folate deficiency in older persons. *Am J Clin Nutr* 2003; 77: 1241-1247 [PMID: 12716678]

12 Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. *Mol Genet Metab* 1998; 64: 169-172 [PMID: 9719624 DOI: 10.1006/mgme.1998.2714]

13 Froost P, Blom HJ, Miles R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. *Nat Genet* 1995; 10: 111-113 [PMID: 7647779 DOI: 10.1038/ng0995-111]

14 Klerk M, Verhoel P, Clarke R, Blom HJ, Kok FJ, Schou ten EG. MTHFR 677C→T polymorphism and risk of coronary heart disease: a meta-analysis. *JAMA* 2002; 288: 2023-2031 [PMID: 12386555 DOI: 10.1001/jama.288.16.2023]

15 Ma J, Stampfer MJ, Christensen B, Giovannucci E, Hunter DJ, Chen J, Willett WC, Selhub J, Hennekens CH, Gravel R, Ma J. Methylenetetrahydrofolate reductase gene polymorphisms and esophageal cancer risk. *American Journal of Epidemiology* 2004; 160: 1951-1956 [PMID: 15491987 DOI: 10.1093/aje/kwn091]

16 Zhang ZF, Kurutz RC, Yu GP, Sun M, Gargan N, Karpeh M, Fein JS, Harlap S. Methylenetetrahydrofolate reductase C677T-A1298C polymorphisms with risk of prostate cancer: a nested case-control study. *Eur J Cancer* 2006; 15: 46-50 [PMID: 16374229 DOI: 10.1016/j.ejca.2005.10.001, DOI: 10.1016/j.ejca.2005.10.002]

17 Battaglia-Hsu SF, Akchiche N, Noel N, Alberto JM, Jeannesson E, Orozco-Barrios CE, Martinez-Fong D, Daval JL, Guéant JL. Vitamin B12 deficiency reduces proliferation and promotes differentiation of neuroblastoma cells and up-regulates PP2A, proNGF, and TACE. *Proc Natl Acad Sci USA* 2009; 106: 21930-21935 [PMID: 19959661 DOI: 10.1073/pnas.081794106]

18 Larsson SC, Giovannucci E, Wolk A. Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. *Gastroenterology* 2006; 131: 1271-1280 [PMID: 17030196 DOI: 10.1053/j.gastro.2006.08.010]

19 Tan W, Miao X, Wang L, Yu C, Xiong P, Liang G, Sun T, Zhou Y, Zhang X, Li H, Lin D. Significant increase in risk of gastroesophageal cancer is associated with interaction between promoter polymorphisms in thymidylate synthase and serum folate status. *Carcinogenesis* 2005; 26: 1430-1435 [PMID: 15817609 DOI: 10.1093/carcin/bgl000]

20 Stolzenberg-Solomon RZ, Albanes D, Nieto FJ, Hartman TJ, Tangeita A, Ravolaitah I, Sehlub J, Vitamin T, Taylor PR. Pancreatic cancer risk and nutrition-related methyl-group availability indicators in male smokers. *J Natl Cancer Inst* 1999; 91: 535-541 [PMID: 10088624 DOI: 10.1093/jnci/91.6.535]

21 Ekiz F, Ormeci N, Coban S, Karabulut HG, Akbas B, Tukun A, Tuncali T, Wikler D, Alpay A. Association of methylenetetrahydrofolate reductase C677T-A1298C polymorphisms with risk for esophageal adenocarcinoma, Barrett’s esophagus, and reflux esophagitis. *Dis Esophagus* 2012; 25: 437-441 [PMID: 21951971 DOI: 10.1111/j.1445-2020.2011.01262.x]

22 Zhang J, Zott RB, Li Y, Wang R, Kiel S, Schulz WA, Wen D, Chen Z, Zhang L, Wang S, Gabbert HE, Sarbia M. Methylenetetrahydrofolate reductase C677T polymorphism and predisposition towards esophageal squamous cell carcinoma in a German Caucasian and a northern Chinese population. *J Cancer Res Clin Oncol* 2004; 130: 574-580 [PMID: 15449187 DOI: 10.1007/s00037-004-0585-4]
