Ubiquitous light real-space pairing from long-range hopping and interactions

G D Adebajo,1 J P Hague,1 and P E Kornilovitch2

1School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
2Department of Physics, Oregon State University, Corvallis, OR, 97331, USA

(Dated: April 11, 2024)

We systematically examine how long-range hopping and its synergy with extended interactions leads to light bound pairs. Pair properties are determined for a dilute extended Hubbard model with large on-site repulsion (U) and both near- and next-nearest neighbour hopping (t and t′) and attraction (V and V′), for cubic and tetragonal lattices. The presence of t′ and V′ promotes light pairs. For tetragonal lattices, t′ < 0 pairs can be lighter than non-interacting particles, and d-symmetric pairs form. Close packing transition temperatures, T∗ are estimated for the Bose-Einstein condensation (BEC) of pairs to be kBT∗ ∼ 70.1, where T is the geometric mean of the hoppings on the Cartesian axes. When pairs have d-symmetry, the condensate has d-wave character. Thus, the presence of both t′ and V′ leads ubiquitously to small strongly bound pairs with an inverse mass that is linear in hopping, which could lead to high temperature BECs.

Keywords: pairing properties, preformed pair superconductivity, Bose–Einstein condensation, extended Hubbard model

I. INTRODUCTION

The properties of real-space pairs are important in the context of scenarios of superconductivity driven by BEC. Real-space pairs have long been known to adequately describe many aspects of the high-Tc phenomenology [1[5]. Recently, real space pairs were detected in iron-based superconductors [6[7] and in shot noise in copper oxide tunneling junctions [8]. The mass and effective radius of bound pairs define the maximal critical temperature attainable in the system [9][11] making them important quantities to determine. Real-state fermion pairs have also been shown to be stable against further clustering and phase separation [12][18].

In this paper we examine pair properties in dilute extended Hubbard models, concluding that small and light pairs are a ubiquitous consequence of next-nearest neighbor (NNN) interactions and hopping terms in the Hamiltonian, and discuss their contribution to the high transition temperatures in unconventional superconductors. NNN hopping and NNN interaction are often neglected, but longer range effects may be significant for many materials and lattices. Our goal is to examine the relevance of NNN hopping, t′, and interaction, V′, to pairs in a range of lattices.

Both the mass and size of real-space pairs contribute to superconducting transition temperatures in the BEC regime. BEC transition temperatures in the dilute limit (where particles rarely scatter) have the form

\[T_{\text{BEC}} = \frac{3.31\hbar^2 n_b^{2/3}}{k_B m^*}. \] (1)

In this equation, the geometric mean of the mass, \(m^* = (m_\parallel^*)^{2/3} (m_\perp^*)^{1/3} \) where \(m_\parallel^* \) is pair mass in the xy plane, \(m_\perp^* \) is pair mass in the z direction (out of the plane), and \(n_b \) is density of pairs. We use subscript ∥ (⊥) to denote properties in the xy- (z-) directions respectively. \(T_{\text{BEC}} \) increases with \(n_b \) until pairs begin to overlap, at which point \(T_{\text{BEC}} \) first saturates and then starts to decrease. We estimate that \(T_{\text{BEC}} \) saturates in the vicinity of close packing, and define a close packing transition temperature,

\[T^* \sim \frac{3.31k^2}{k_B m^* \Omega_p^{2/3}}. \] (2)

where \(\Omega_p \) is pair volume. Substituting for the bare mass for the case of near-neighbor (NN) hopping only \((m_{0,NN} = \hbar^2/(2m^2)) \) in all cases this becomes:

\[\frac{k_B T^*}{\Omega_p} \sim \frac{6.62}{m^* \Omega_p^{2/3}}. \] (3)

where \(T = t_\parallel^{2/3} t_\perp^{1/3} \), \(m = m_\parallel^{2/3} m_\perp^{1/3} \) with dimensionless masses \(m_\parallel = m_{0,NN}^*/m_{0,NN}, m_\perp = m_{0,NN}^*/m_{0,NN} \) and \(\Omega_p \) is the pair volume in units of lattice constant \(a \) in the xy plane and \(b \) in the z direction (\(a = b \) for SC and BCC lattices). \(m_{0,NN} = 2\hbar^2/\Omega_p \). For tetragonal cases, \(t_\parallel (t_\perp) \) is hopping parallel (perpendicular) to the xy plane. For isotropic cases (simple and body centered cubic) \(t_\parallel = t_\perp = t \) and \(m_\parallel = m_\perp \). The precise definition of \(\Omega_p \) is subtle, as it needs to be sufficiently large that scattering between pairs is does not significantly affect Eq. 1. However, some statements can be made: A high \(T^* \) requires compact (small \(\Omega_p^* \)) and light (small \(m^* \)) pairs, which in some models leads to a trade off. For example, for large on-site repulsion and NN attraction only, \(\Omega_p \) decreases with the attractive strength \(V \), but at same time the mass increases as \(m^* \propto V \) so mass and volume cannot be simultaneously small. It is therefore of interest to examine situations where pair mass and size can be decoupled. In particular, we are interested in systems where the mass remains of the order of bare mass, \(m^* \sim m_0, \) in the strong coupling regime, \(V \rightarrow \infty \) \((m_0 \) is defined for different lattices in Tab. 1). We shall refer to such real-space pairs as light.
There are several physical mechanisms that can lead to light pairs. In some lattices, the pairs remain light for purely geometric reasons. Consider a triangular lattice with a strong NN attraction V, Fig. 1(A). The pair members can hop in turn without ever breaking the attractive bond. The pair mass is limited to $m^* < 6m_0$ even in the $V \to \infty$ limit [19, 20]. Staggered chains [21], staggered square planes [22], and the face-centered-cubic lattice [23] are further examples of the geometric mechanism. In other lattices, the geometric mechanism does not work. For example, on a square lattice with only NN attraction and hopping, the pair can only move via an intermediate, higher-energy state. As a result, the pair mass scales as $m^* \propto m_0^2 V$. The same reasoning applies to simple cubic and body-centered cubic (BCC) lattices with NN V and t, and to the attractive Hubbard model on all lattices.

The situation changes qualitatively with the inclusion of NNN hopping, t'. NNN hopping increases lattice connectivity and the pairs can now move in the first order in t', see Fig. 1(B). Although in general $t' < t$, it is still finite, which means the pair mass no longer scales $\propto V$ but instead saturates at a value defined by t'. One should note that typically NNN hopping is excluded from a model “for simplicity” to make it more tractable. This implicitly assumes that the omission of t' does not change basic physics of the system under study. As we have argued, this is not the case for pair mass. t' is essential for the physics of real-space pairs and for real-space superconductivity in general. The effects of t' are especially prominent in lattices with small NNN-to-NN distance ratios, such as the BCC lattice.

An even more interesting physics emerges if t and t' are of opposite signs. (Typically, $t < 0$ and $t' > 0$.) In this case, destructive interference between NN and NNN hopping can lead to a relatively large bare mass m_0. Pairing disrupts the interference by effectively enhancing t or t', depending on the details of attraction. With some parameter tuning, one can create a situation where a bound pair is lighter than the bare mass of the constituent particles, $m^* < 2m_0$, and even lighter than one bare mass, $m^* < m_0$. We will refer to such pairs as superlight.

Another light pair mechanism is illustrated in Fig. 1(C). In this case, the NNN attraction V' is of the same strength as V. The pair can move with the NN hopping only because now the intermediate states has the same energy and the mass remains $m^* \propto m_0$. One might think that this mechanism would be rare since it requires fine tuning of parameters. However, in real systems the inter-particle potential is the combination of a short-range repulsion and a longer-range attraction (mediated by phonons or other mechanisms [24-31]). Such a potential has a shallow minimum that extends over several lattice constants. Thus, the probability of two potential values being close is not small.

The focus of this paper is mechanism (B), i.e., the effects of the NNN hopping t' on the real-space pair mass. The reason is two-fold. First, this mechanism has not been thoroughly discussed in the literature, unlike mechanisms (A) and (C) [19,23,32]. Second, mechanism (B) is universal, i.e., it does not require fine tuning. Any system with a nonzero t' will host pairs with $m^* \propto (t')^{-1}$ or lighter. With t' taken into account, the lightness of pairs becomes a common and ubiquitous feature of models with intersite attraction, with important implications for unconventional superconductivity discussed earlier. We also investigate interplay between mechanisms (B) and (C) inspired by the high k_BT_c/T ratio in BCC fulleride superconductors where t' and V' are expected to be particularly large.

II. MODEL AND METHODOLOGY

We examine pairs in the dilute limit of an extended Hubbard model which includes NN and longer-range attractive interactions and hopping, with Hamiltonian,

$$\hat{H} = \sum_{n,b,\sigma} t_b \hat{c}_{n+b,\sigma}^\dagger \hat{c}_{n\sigma} + U \sum_n \hat{\rho}_{n\uparrow} \hat{\rho}_{n\downarrow} + \sum_{n,b} \frac{V_b}{2} \hat{\rho}_{n+b} \hat{\rho}_{n},$$

(4)
where the Hubbard repulsion has been separated out from the other interactions. In the above equation, b are the set of vectors to neighbor sites, $\rho_{\sigma n} (e_{\sigma n})$ creates (annihilates) an electron of spin σ at site n, $\rho_{\sigma n}$ and $\rho_{n\sigma}$ is the number operator on site n. One-particle hopping and inter-particle interaction are defined by functions t_b (hopping through a displacement b) and V_b (interaction at separation b), respectively. The factor $\frac{1}{2}$ takes account of double counting of the interaction terms. The models described by Eq. (4) are generally known as UV models [22].

A two-particle version of Eq. (4) can be found in two cases. The first case is the dilute limit of the Hamiltonian. Both electron (mostly negative t_b’s) and hole (mostly positive t_b’s) variants have physical meaning. The second, less trivial case occurs close to half filling for the special case $U \gg t_b$. Then two holes interact according to Eq. (4) but with renormalized kinetic energy because movement of holes is restricted by strong correlations [33, 34, 35]. As a result, we expect that the bands could be flattened and hopping amplitudes of holes (and thus kinetic energy) would be smaller than the t_b of the original electron Hamiltonian the hole model is derived from. This increases the relative importance of V/t which could be Coulomb or electron-phonon in origin. A NN interaction can originate from an number of sources. Attractive long-range electron-phonon interactions can lead to instantaneous interactions at large phonon frequency, including an intersite V [36] (strong phonon mediated intersite attractions have been measured in 1D cuprates [37, 38]). In some materials, attractive V were predicted from first-principle chemistry calculations [26, 27]. Coulomb repulsion can generate a repulsive V. The Hubbard U can cause an effective intersite Heisenberg interaction J, which while spin dependent could act like U in a dilute system [39]. There are rich phases in extended Hubbard models, including Mott insulators [40], stripe order [41], d-wave superconductivity [36, 42], and XY antiferromagnetism [43]. Extended Hubbard models with NN interaction have been applied to superconductors including cuprates [42, 44].

We find the exact properties of a pair of spin-$\frac{1}{2}$ fermions in the UV model by solving the following lattice Schrödinger equation:

$$\sum_b t_b \left[\Psi(n_1 + b, n_2) + \Psi(n_1, n_2 + b) \right] + U\delta_n \Psi(n_1, n_2) + \sum_b V_b \delta_{n_1 - n_2} \Psi(n_1, n_2) = E \Psi(n_1, n_2),$$

where E is the total pair energy and δ is the Kronecker delta function. The pair wavefunction is $\Psi(n_1, n_2)$. A complete solution methodology can be found in Ref. [22]. Here we outline key steps and features. (i) In momentum space, Eq. (5) becomes an integral equation with a separable kernel. The former is reducible to a system of linear equations, thus leading to a mathematically exact solution. The size of the linear system is $(1 + n_b)$ where n_b is the number of neighbor vectors with $V_b \neq 0$. The system’s matrix elements are two-body lattice Green’s functions. The solution’s complexity grows sharply with the radius of interaction and lattice dimensionality. (ii) By symmetrizing or antisymmetrizing $\Psi(n_1, n_2)$, one can focus the solution either on spin-singlet or spin-triplet pair states. Sizes of the respective systems of linear equations are $(1 + \frac{1}{2}n_b)$ and $\frac{1}{2}n_b$. In most cases, this trick significantly reduces the mathematical complexity of the solution. (iii) The linear system includes pair total momentum P as a parameter. Therefore, the exact solution provides pair dispersion $E(P)$ as well as pair mass m^* defined via a second derivative of $E(P)$. (iv) At the Γ-point of the pair Brillouin zone, $P = 0$, the full linear system can be further decomposed into blocks corresponding to particular orbital symmetries. Sometimes, the mass can also be obtained from the partial blocks. (v) The eigenvector of the linear system defines the pair wave function $\Psi(n_1, n_2)$. From there, the pair effective radius and volume can be computed after proper normalization. The final set of linear equations for specific lattices are given in Supplemental Material.

In addition to the exact solution, we employ an analytical approach to determine pair mass in the strong attraction limit. In this limit, pairs are tightly bound and the basis reduces to a small number of dimer states, which enables a simple derivation of the mass [19, 20, 22, 23, 32]. This mass serves as a useful validation check for the all-coupling solution.

III. Qualitative Considerations

In this section, we examine the effects of NNN hopping on real-space pairs in a square UV model with NN attraction. The model serves as a good illustration of the physical ideas explored in this paper and is inspired by the unconventional superconductivity in the underdoped cuprates. Two-dimensional copper-oxygen planes host mobile holes at low densities. The multiorbital model describing these can be mapped to a one-orbital model using a variety of reduction schemes [45–48]. Such procedures typically produce long-range hopping, which we wish to study in this work. An attractive V can originate from several physical mechanisms including mediation by phonons [9, 31], spin waves [49], and the Jahn-Teller effect [28, 29]. An attractive interaction, $V \sim t$ between two holes within a CuO$_2$ plane was inferred from ab initio quantum chemistry calculations [26, 27].

The Hamiltonian we wish to in this section is Eq. (4) with $t_b = t, t_b = t', V_b = V, V_b = V'$, it is that $b_1 = \{\pm x; \pm y\}$ and $b_2 = \{\pm x \pm y\}$ are the NN and NNN lattice vectors of the square lattice, respectively (x and y are unit vectors on cartesian axes). Note that we defined hopping amplitudes with negative signs. We are mostly interested in the electron channel, $t, t' > 0$, although we will also consider $t' < 0$ when discussing the superlight...
FIG. 2. (a) Two types of spin-singlet dimers in the $|V| \gg t, t'$ limit of Eq. (1). (b) Illustration for the first line in Eq. (9). NNN hopping, t', connects a starting dimer of type \(x \) with four dimers of type \(y \). The latter are circled by dashed ovals.

...effect. The two-particle problem of the square UV model, and of the related $t-J$ model has been considered by several authors [49–53], although the effects of t' have not been fully elaborated yet.

The physical effects discussed below also occur in other lattices with NNN hopping, including the 1D chain and 3D simple cubic lattice. The square UV model serves as a convenient proxy for all hyper-cubic UV models. The non-interacting (one particle) dispersion of Eq. (4) is

$$\varepsilon_k = -2t (\cos k_x a + \cos k_y a) - 4t' \cos k_x a \cos k_y a,$$

where \(a \) is the lattice constant, \(k_x \) and \(k_y \) are \(x \) and \(y \) components of momentum. The bare effective mass for the square lattice is

$$m_0 = \frac{\hbar^2}{2a^2(t + 2t')}.$$

A. Strong-coupling limit and light pairs

We first consider the case of electron-type NNN hopping with $t' > 0$ (in our sign convention). We begin with considering the strong-coupling limit of Eq. (4) with NN attraction only, $V' = 0$, $V < 0$, and $|V| \gg t, t'$. The state basis reduces to tightly bound NN dimers shown in Fig. 2(a). We consider only spin singlets, hence there are only two dimer types

$$D_{n,b}^s = \frac{1}{\sqrt{2}} (|\uparrow\rangle_n |\downarrow\rangle_{n+b} + |\downarrow\rangle_n |\uparrow\rangle_{n+b}),$$

where \(b = x \) or \(y \) and $|\sigma\rangle_n = c_{n,\sigma}^\dagger |0\rangle$ ($\sigma = \uparrow, \downarrow$). The dimer states have energy $-|V|$ and are connected by NNN hopping.

Operating by the t' term of \hat{H}_{sq}, one obtains, see Fig. 2(b)

$$\hat{H}_{\text{sq}}'D_{n,x}^s = -t' \left(D_{n,y}^s + D_{n,y-n}^s + D_{n+y,x}^s + D_{n+y-x,y}^s \right)$$

and

where the band minimum is not at $k = (0, 0)$.

This leads to a Schrödinger equation in momentum space

$$E(P) = -|V| + 4t' \cos \frac{P_x a}{2} \cos \frac{P_y a}{2},$$

and pair mass

$$m^* = \frac{\hbar^2}{t' a^2}.$$

The pair mass only depends on t' and is independent of the binding energy that scales as $|V|$. The pair remains mobile even in the strong coupling limit. This is the light-pair effect. On the square lattice, it is entirely due to NNN hopping. We also note that since $t' > 0$, it follows from Eq. (10) near $P = 0$ that $D_{P,x}^s = D_{P,y}^s$, that is, the pair has s-type orbital symmetry.

When expressed in terms of m_0, the pair mass becomes

$$\left| \frac{m^*}{m_0} \right|_{V \to \infty} = \frac{2(t + 2t')}{t'}.

Although m^* is independent of V, the enhancement relative to m_0 can still be large if $t' \ll t$. The enhancement is minimal when $t' \approx t$.

B. “Superlight” bound pairs

We now consider the case of hole-type NNN hopping, i.e., $t' < 0$ with our sign convention. We note that negative t' routinely appears in one-orbital models of CuO$_2$...
In the following, we do not consider this mass-enhancement function for this parameter region the band bottom shifts from t_0, then destructive interference between $t' \to -\frac{1}{2} t$. The dimer Schrödinger equation is dispersion-less level, $E = 0$. The full dispersion equation factorizes into the following blocks. (i) Dispersion-less level, $E = 0$. (ii) $d_{x^2-y^2}$ pair with $E = 2t'(1 + \cos P)$. (iii) $s - d_{xy}$ block with energy defined by

$$E^2 + 2t'(1 + \cos P)E - 8t^2(1 + \cos P) = 0.$$

The s-symmetric ground state is the lowest root of the above equation

$$E_s = -t'(1 + \cos P) - \sqrt{t^2(1 + \cos P)^2 + 8t^2(1 + \cos P)}.$$

Expanding for small P, the pair effective mass when $V' = V$ is,

$$\frac{m_s}{m_0} = \frac{4(t + 2t')\sqrt{t^2 + 4t^2}}{(t^2 + 2t^2) + t'\sqrt{t^2 + 4t^2}},$$

where m_0 is given in Eq. (7). m_s/m_0 varies between 4 and a maximum of ~ 5.2, depending on t'.

IV. EXACT PAIR PROPERTIES

In this section, we present pair properties obtained from numerical solution of Eq. (4). We study square, quasi-2D tetragonal, 3D simple cubic (SC), and 3D body-centered cubic (BCC) lattices. Study of the tetragonal lattice is inspired by superconductivity in the cuprates while the BCC is inspired by superconductivity in fullerides [24]. In this section, we limit the parameter space to $|V'| < |V|$ and $t' < t$. The one-particle properties of the model for these systems are summarized in Table I. For the tetragonal case, we select $t_{\perp} = 0.04$ for hopping between planes. The specific eigenvalue equations are provided in the Supplemental Material.

Pairs on the square lattice with $V' = 0$ and $t' \neq 0$ may be either heavy (with s symmetry), light (also with s symmetry) or superlight (with d symmetry) depending on the parameters. Figure 4 shows the spin-singlet...
ground state for a pair of particles on a square lattice. The parameters for the pairing regimes can be categorized as: (i) NN hopping only, $t' = 0$. In this “heavy pair” regime, the pair only moves in the second order in t, hence the mass grows as $m^* \propto |V|$ to infinity. (ii) Nonzero positive (electron-like) t'. The mass starts at $m^* = 2m_0$ at formation. As $|V|$ increases, the mass saturates at a value prescribed by Eq. (13). The pair remains light and mobile even in the strong coupling limit, $V \to -\infty$, as discussed on Sec. III A. The ground state has s-orbital symmetry in all regimes. (iii) Finally, there is the superlight regime, $t' < 0$. In this case, there is level crossing. As $|V|$ increases, s pairs are first to form. The mass either decreases or increases, depending of the value of t'. Upon further increase of V, d pairs form and then become the ground state. This effect has been described by Bak and Micnas [35]. At the crossover, the mass jumps discontinuously. After the crossover, the pairs become superlight (for t' close enough to $-\frac{1}{2}t$), i.e., lighter than two separate free particles. In the $V \to -\infty$ limit, the mass approaches Eq. (14).

Moving to 3D lattices, the light pair effect can be demonstrated by examining four extremal cases of the parameter space: (i) $V'/V = 0, t'/t = 0$, (ii) $V'/V = 1, t'/t = 0$, (iii) $V'/V = 0, t'/t = 1$, and (iv) $V'/V = 1, t'/t = 1$. The additional cases of (v) $V'/V = 0, t'/t = -0.45$ and (vi) $V'/V = 1, t'/t = -0.45$ are also studied for the tetragonal case. Panels (a)-(c) of Figure 5 show how the strong-attraction limit is approached for these cases. When $t' = 0$ and $V' = 0$, the “heavy pair” regime is seen with mass increasing proportionally to V. Introduction of t' and V' leads to qualitative changes to the strong coupling mass, which plateaus for strong binding, demonstrating the “light pair” regime. The mass reduces with decreasing V until the pairs unbind. Importantly, pairs related to these light asymptotes at strong coupling also remain light at weak binding. Panel (a) shows how the “superlight” effect, where pairs are lighter than the unbound particles is seen for both tetragonal cases with $t'/t = -0.45$. Moreover, in both of those cases, only a small V is required to bind pairs. The d-symmetric pairs found in the square lattice persist in the tetragonal lattice for the case of $V'/V = 0$, $t'/t = -0.45$, whereas when $V'/V = 1$ pairs have an s-symmetry. Out-of-plane masses are large, for the tetragonal lattice, as shown in the inset of Panel (a). The bare mass m_0 for a particle for each lattice is given in Table I.

The middle row (panels d-f) of Fig. 5 shows the inverse pair radius, calculated as the inverse root mean square (RMS) pair radius. The radius diverges at small V near the pairing threshold. For the smallest V no pairs are formed. In the strong attraction limit ($V \to -\infty$) the radius converges to small values of order d_{NN} if only V is present, or between d_{NN} and d_{NNN} if V' is also present. In the tetragonal case, pairs are confined to planes and the out-of-plane radius is small (much less than a lattice spacing), as shown in the inset of Panel (d). We note that similar masses and radii are found for the chain (not shown here).

The close-packing critical temperature k_BT^*/T defined in Eq. 3 is shown in Panels (g)-(i) of Fig. 5 and has a maximum value at small to moderate V depending on lattice and model parameters. We select an estimate of Ω_0^{**} that limits scattering by accounting for the exponentially decaying tails of the pair wavefunction $(\Omega_0^{**} \sim (\alpha R_0/b + 1)(\alpha R_0/a + 1)^2$, where $R_\perp (R_0)$ is the out-of-plane (in-plane) radius. For cubic lattices, $R_\perp = R_\parallel = R$ and $b = a$. We note that the location of the maximum in T^* is insensitive to the value of α. For the results shown here we selected $\alpha = 5$, to ensure that the exponentially decaying pair tails have very small overlap and scattering is small (essentially eliminating many body effects). A key feature is a maximum in T^* that occurs between $V \sim -0.1W_0$ and $V \sim -3W_0$ and is typically broad. The maximum occurs for the following reason: In the low attraction limit, T^* is dominated by pair radius, with smaller radius leading to higher potential transition temperatures. As attraction increases the pair volume collapses to a minimum before the mass approaches its strong coupling limit, and at this point T^* is maximal. The maximum occurs at small V for tetragonal cases, since the threshold V for binding is small. Depending on whether the strong attraction limit has light pairs, further increase in V either increases the pair mass, which causes a corresponding gradual decrease of T^*, or the pair mass plateaus, in which case T^* also plateaus. For the parameters shown, the overall height of the maximum ranges from $T^* \sim 0.02t$ to $\sim 0.2t$. Large out-of-plane mass in the tetragonal case limits T^*. These calculations illustrate the potential of real-space superconductivity to reach high critical temperatures if scattering between pairs is small.
FIG. 5. Scaling of mass, inverse radius, and T^* into the deep potential limit for a subset of the parameter space. The presence of t' or V' leads to light behavior at deep coupling. Such pairs remain lighter in the weak binding limit with small V, and higher predicted transition temperatures also persist to weaker binding. For the tetragonal cases, $t'/t = 0.45$. For strong binding, the radius tends to $R \approx a$ and for the tetragonal case, $R_{\perp} \to 0$ for the parameters shown. Lines are a guide to the eye.

paragraph with a discussion of phase separation. Rigorous analysis of pair-pair interaction at the model level indicates that real-space pairs can form clusters when V exceeds the pairing threshold by a few ts, i.e., a fraction of W_0. This implies that the physical part of Fig. 5 is limited to a narrow interval of V close to the binding threshold. In this interval, pair mass is barely above $2m_0$, but the volume consistently decreases and T^* is increases with V as a result. This suggests a route to higher critical temperatures: increase V to make the pairs more compact but without going over the phase separation threshold. The anisotropy in the tetragonal lattice case may be important in this regard, since deep binding occurs for very small V reducing the risk of crossing the phase separation threshold.

The presence of t' and V' lead to reductions in the mass, and there is a range of parameters for which pairs are both small and light with masses of just a few single particle masses and radii of a few lattice spacings. Figures 6 and 7 supplement the data of Fig. 5 by showing dependence of mass, radius and T^* on V' and t' at a fixed value of $V = -W_0$. Panels (a)-(d) of Figure 6 show the pair mass and Panels (e)-(h) show the inverse radius. We note a jump around $t' \sim 0.4$ in Panels (a),(d),(e) and (h) where the ground state changes from s to d symmetric character in the tetragonal lattice. Otherwise, the plots show smooth interpolation between the four corner cases, demonstrating a lack of special points in the $t' - V'$ parameter space, and showing that the corner cases are representative of the physical picture above. The inverse radius is typically smallest (radius is largest) for $V' = 0$ and $t'/t = 1$. In the case of the SC lattice (Panel (f)), the zero inverse radius shows that no bound pair is found in that corner of the plot. In the tetragonal case, pairs are bound in-plane, and in the direction perpendicular to the plane, radius is small and the mass is large, because pairs have to break to move between planes. Moreover, Panel (a) shows the superlight regime of $t' < t$, where pairs are lighter than their component particles. Figure 7 shows that close packing transition temperatures vary smoothly, with the exception of the tetragonal lattice where d-symmetry pairs are associated with a small and discontinuous increase in transition temperature as levels cross.

V. DISCUSSION AND CONCLUSIONS

In this paper we investigated the factors affecting the masses of real-space bound pairs in models with short-
range phenomenological attraction V. We showed that inclusion of next-nearest-neighbor (NNN) hopping t' limits m^* to be of the order of bare particle mass m_0 on several common lattices. The pairs remain light even in the strong-coupling limit because they continue moving via resonant configurations without ever breaking the most attractive bond. In cases of tetragonal lattices where t and t' are of opposite signs, bound pairs can be superlight, i.e., lighter than one free particle, $m^* < m_0$. This effect occurs because the negative interference between NN and NNN hopping produces a relatively large m_0, whereas coupling between particles disrupts the interference and liberates the pair.

Light and superlight pairs are essential for real-space superconductivity because the BEC temperature scales inversely with m^*. The small and V-independent mass offers a recipe for high T_{BEC}: systematically increase V to produce more compact pairs. The latter enable higher packing densities and hence higher T^*s. The model calculations of Section [IV] show that the close-packed temperatures can be of the order of tenths of T, which in physical units amounts to hundreds of degrees. However, this mechanism is limited by phase separation which occurs at intermediate Vs. Thus, practically achievable T^*s are smaller. Nonetheless, increasing V is a viable path of searching for new high-temperature superconductors.

In cuprates, $t \sim 0.05$ eV (since $t_{\parallel} \sim 0.1$ eV [50] for holes near half filling and estimating $t_{\perp} \sim 0.04$ eV) so for the cuprates with highest $T_c \sim 133K$, $k_B T_c / T \sim 0.15$. Since the pair size in the cuprates is estimated to be 3-10 unit cells from measurements of the upper critical field [57], the transition temperature is consistent with a close packing picture. Moreover, d-symmetric pairs form condensates with a d-wave character [58]. Phonon medi-
ated momentum space pairing can also lead to d-wave superconductivity. d-wave superconducting order parameters can also be found when large U and attractive V with long tails are present \cite{39} and can also be found in dynamical cluster approximation (DCA) studies of the Holstein model of local electron-phonon coupling \cite{59}.

We note that the fulleride superconductors are characterized by an unusually high ratio of $k_B T_c/t$. The BCC fulleride Cs$_3$C$_{60}$ has the record transition temperature $T_c = 38$ K\cite{54}. Models including next-nearest neighbor hopping and interaction may be particularly relevant to BCC lattices, where the ratio of NN to NNN distances is particularly large: $d_{NN}/d_{NNN} \sim 0.866$. This ratio is closer to unity in BCC lattices than in any other Bravais lattices. Thus we expect that t'/t and V'/V is larger than in other Bravais lattices. For fullerides, the approximate hopping value ranges from $t \sim 0.02$ eV to 0.04 eV (based on the width of 0.61 eV of the t_u band \cite{60} and using a range of $t \sim t'$), so $k_B T_c/t \sim 0.1$ consistent with the close packing estimates here. We advise that further study of many-body effects (such as phase separation) would be required to obtain values for transition temperatures beyond the close-packing estimates and defer this for future work.

APPENDIX: SUPPLEMENTAL MATERIAL

The supplemental material contains specifics related to the solution of the Schrödinger equation for specific lattices. It also derives some strong coupling results for the chain, square lattice and BCC lattice.

Appendix A: Solving the Schrödinger equation on specific lattices

In this section, we provide information on the solution of the Schrödinger equation for pairs on the specific lattices considered in this paper. Refer to Ref. \cite{22} for detailed exposition of the procedure. The symmetrized (+, spin singlets) and anti-symmetrized (−, spin triplets) Schrödinger equation in momentum space is given as

\[
(E - \varepsilon_{k_1} - \varepsilon_{k_2}) \phi_{k_1,k_2}^\pm = \frac{1}{N} \sum_{q_b} \hat{V}_b \left\{ e^{i(q-k_1)b} \pm e^{i(q-k_2)b} \right\} \phi_{q,k_1+k_2-q}^\pm.
\]

(A1)

Here b is a lattice vector for which the interaction parameter $\hat{V}_b \neq 0$. As a result of symmetrization \cite{22}, only one member needs to be retained from any pair $\{b, -b\}$. In the problem under study, there are three groups of b’s: (i) On-site interaction $b = 0$, $\hat{V}_0 = U$; (ii) Nearest-neighbor interaction, $b = b_1$, $\hat{V}_{b_1} = V$, (iii) Next-nearest-neighbor interaction, $b = b_2$, $\hat{V}_{b_2} = V'$. The vectors b_1 and b_2 are listed in Table \ref{table:b}. E is the total pair energy and the single particle dispersion ε_k is summarized in Table \ref{table:eps}. The prime by the sum sign in Eq. (A1) indicates that the $b = 0$ term must be taken with an additional factor of $\frac{1}{2}$ in the (+) case and with a factor of 0 in the (−) case.

By defining the functions

\[
\Phi_b^\pm (P) \equiv \frac{1}{N} \sum_q e^{iqb} \phi_{q,P-q}^\pm,
\]

(A2)

where $P = k_1 + k_2$ is the total momentum of the particle pair, the Schrödinger equation can be rewritten as an eigenvalue equation

\[
\Phi_b^\pm (P) = \sum_{b'} \hat{V}_b \delta_{bb'} (E, P) \Phi_{b'}^\pm (P),
\]

(A3)

with matrix elements defined as

\[
\delta_{bb'}^\pm (E, P) = \frac{1}{N} \sum_q e^{i(q(b-b')/2)} + e^{i(qb-(P-q)b')} \frac{1}{-E + \varepsilon_q + \varepsilon_{P-q}}.
\]

(A4)

In practice the integrals associated with the matrix elements must be carried out numerically using the Matlab functions `integral`, `integral2` and `integral3`.

Next, we define $\Phi_b^\pm (P) = \Phi_b^\pm (P)e^{-\frac{Pb}{2}}$ to simplify the eigenvalue equations. The following subsections list final equations for $E(P)$ for each specific lattice considered in this paper. Equations for spin-singlet and spin-triplets are given separately.
TABLE II. b_1 and b_2 for the lattices considered here. a is the lattice constant.

1. 1D Chain

Spin singlets

\[
\begin{pmatrix}
U G_0 & V(G_1 + G_1) & V'(G_2 + G_2) \\
U G_1 & V(G_0 + G_2) & V'(G_1 + G_3) \\
U G_2 & V(G_1 + G_3) & V'(G_0 + G_4)
\end{pmatrix}
\begin{pmatrix}
\tilde{\Phi}_0^+ \\
\tilde{\Phi}_1^+ \\
\tilde{\Phi}_2^+
\end{pmatrix}
= \begin{pmatrix}
\tilde{\Phi}_0^- \\
\tilde{\Phi}_1^- \\
\tilde{\Phi}_2^-
\end{pmatrix}
\] \hspace{1cm} (A5)

Spin triplets

\[
\begin{pmatrix}
V(G_0 - G_2) & V'(G_1 - G_3) \\
V(G_1 - G_3) & V'(G_0 - G_4)
\end{pmatrix}
\begin{pmatrix}
\tilde{\Phi}_1^- \\
\tilde{\Phi}_2^-
\end{pmatrix}
= \begin{pmatrix}
\tilde{\Phi}_1^+ \\
\tilde{\Phi}_2^+
\end{pmatrix}
\] \hspace{1cm} (A6)

where

\[
G_l(P) = \frac{1}{N} \sum_q e^{iqP} \frac{e^{i\epsilon_q}}{\epsilon_q + \epsilon_q - q}
\] \hspace{1cm} (A7)

\[
= - \int_{-\pi}^{\pi} \frac{dq}{2\pi} \frac{\cos \epsilon_q}{\epsilon_q + \epsilon_q - q}
\] \hspace{1cm} (A8)

Here and in the following, a bar over subscript l implies a sign change, i.e., $l = -l$. q and P have been scaled so they are dimensionless throughout.

2. 2D square and 3D tetragonal

Spin singlets

\[
\begin{pmatrix}
U G_{00} & V(G_{10} + G_{10}) & V(G_{01} + G_{01}) & V'(G_{11} + G_{11}) & V'(G_{11} + G_{11}) \\
U G_{11} & V(G_{00} + G_{20}) & V(G_{11} + G_{11}) & V'(G_{01} + G_{21}) & V'(G_{01} + G_{21}) \\
U G_{02} & V(G_{11} + G_{11}) & V'(G_{00} + G_{02}) & V'(G_{10} + G_{12}) & V'(G_{10} + G_{12}) \\
U G_{12} & V(G_{01} + G_{21}) & V'(G_{10} + G_{12}) & V'(G_{02} + G_{22}) & V'(G_{02} + G_{22})
\end{pmatrix}
\begin{pmatrix}
\tilde{\Phi}_0^+ \\
\tilde{\Phi}_1^+ \\
\tilde{\Phi}_2^+ \\
\tilde{\Phi}_3^+
\end{pmatrix}
= \begin{pmatrix}
\tilde{\Phi}_0^- \\
\tilde{\Phi}_1^- \\
\tilde{\Phi}_2^- \\
\tilde{\Phi}_3^-
\end{pmatrix}
\] \hspace{1cm} (A9)

Spin triplets

\[
\begin{pmatrix}
V(G_{00} - G_{20}) & V(G_{11} - G_{11}) & V'(G_{01} - G_{21}) & V'(G_{01} - G_{21}) \\
V'(G_{11} - G_{11}) & V(G_{00} - G_{02}) & V'(G_{10} - G_{12}) & V'(G_{10} - G_{12}) \\
V(G_{01} - G_{21}) & V'(G_{10} - G_{12}) & V'(G_{00} - G_{22}) & V'(G_{00} - G_{22}) \\
V'(G_{01} - G_{21}) & V'(G_{12} - G_{10}) & V'(G_{02} - G_{20}) & V'(G_{02} - G_{20})
\end{pmatrix}
\begin{pmatrix}
\tilde{\Phi}_1^- \\
\tilde{\Phi}_2^- \\
\tilde{\Phi}_3^- \\
\tilde{\Phi}_4^-
\end{pmatrix}
= \begin{pmatrix}
\tilde{\Phi}_1^+ \\
\tilde{\Phi}_2^+ \\
\tilde{\Phi}_3^+ \\
\tilde{\Phi}_4^+
\end{pmatrix}
\] \hspace{1cm} (A10)
where
\[G_{\text{lm}}(P) = \frac{1}{N} \sum_q \frac{e^{i(lq_x + mq_y)}}{E - \varepsilon_{\eta q} - \varepsilon_{\eta q}} = - \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} dq_x dq_y \cos(lq_x + mq_y) \left(\frac{(2\pi)^2}{|E| + \varepsilon_{\eta q} + \varepsilon_{\eta q}} \right). \] (A11)
and the tetragonal case is similar, except that the integral is over three dimensions and the dispersion, \(\varepsilon \) differs from the square case to take account of the hopping between planes (see Table II):

\[G_{\text{lm}}(P) = - \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} dq_x dq_y dq_z \cos(lq_x + mq_y) \left(\frac{(2\pi)^3}{|E| + \varepsilon_{\eta q} + \varepsilon_{\eta q}} \right). \] (A12)

Again, \(q \) and \(P \) are dimensionless here.

3. 3D Simple Cubic (SC)

Due to the size of the matrices in the simple cubic case, we have not included the column matrices, \(\Phi_{\eta}^{\pm} \). The process of finding pair energies consists of varying \(E \) until one or more eigenvalues of the following matrix equals 1.

Spin singlets

\[\begin{align*}
(\nu_{G_{000}} V(\nu_{G_{000}} + 2\nu_{G_{000}}) V(\nu_{G_{010}} + 2\nu_{G_{010}}) V(\nu_{G_{011}} + 2\nu_{G_{011}}) V(\nu_{G_{100}} + 2\nu_{G_{100}}) V(\nu_{G_{101}} + 2\nu_{G_{101}}) V(\nu_{G_{110}} + 2\nu_{G_{110}}) V(\nu_{G_{111}} + 2\nu_{G_{111}})) \end{align*} \] (A13)

Spin triplets

\[\begin{align*}
V(\nu_{G_{000}} - \nu_{G_{200}}) V(\nu_{G_{100}} - \nu_{G_{210}}) V(\nu_{G_{101}} - \nu_{G_{211}}) V(\nu_{G_{110}} - \nu_{G_{210}}) V(\nu_{G_{111}} - \nu_{G_{211}}) V(\nu_{G_{001}} - \nu_{G_{220}}) V(\nu_{G_{100}} - \nu_{G_{221}}) V(\nu_{G_{110}} - \nu_{G_{221}}) V(\nu_{G_{101}} - \nu_{G_{220}}) V(\nu_{G_{111}} - \nu_{G_{221}}) V(\nu_{G_{002}} - \nu_{G_{222}}) V(\nu_{G_{100}} - \nu_{G_{221}}) V(\nu_{G_{110}} - \nu_{G_{222}}) V(\nu_{G_{101}} - \nu_{G_{222}}) V(\nu_{G_{111}} - \nu_{G_{222}})
\end{align*} \] (A14)

where

\[G_{\text{lmn}}(P) = \frac{1}{N} \sum_q \frac{e^{i(lq_x + mq_y + nq_z)}}{E - \varepsilon_{\eta q} - \varepsilon_{\eta q} - \varepsilon_{\eta q}} = - \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} dq_x dq_y dq_z \cos(lq_x + mq_y + nq_z) \left(\frac{(2\pi)^3}{|E| + \varepsilon_{\eta q} + \varepsilon_{\eta q} + \varepsilon_{\eta q}} \right). \] (A15)

4. 3D Body-Centered Cubic (BCC)

Spin singlets

\[\begin{align*}
(\nu_{G_{000}} V(\nu_{G_{111}} + \nu_{G_{111}}) V(\nu_{G_{111}} + \nu_{G_{111}})) \end{align*} \] (A16)
Spin triplets

\[
\begin{pmatrix}
V(G_{00} - G_{22}) & V(G_{00} - G_{02}) & V(G_{00} - G_{22}) & V(G_{02} - G_{20}) & V(G_{02} - G_{00}) & V'(G_{111} - G_{111}) & V'(G_{111} - G_{111}) & V'(G_{111} - G_{111}) \\
V(G_{20} - G_{02}) & V(G_{00} - G_{22}) & V(G_{02} - G_{00}) & V(G_{02} - G_{00}) & V(G_{02} - G_{00}) & V'(G_{111} - G_{111}) & V'(G_{111} - G_{111}) & V'(G_{111} - G_{111}) \\
V(G_{02} - G_{02}) & V(G_{00} - G_{22}) & V(G_{00} - G_{22}) & V(G_{00} - G_{22}) & V(G_{00} - G_{22}) & V'(G_{111} - G_{111}) & V'(G_{111} - G_{111}) & V'(G_{111} - G_{111}) \\
V(G_{02} - G_{02}) & V(G_{00} - G_{02}) & V(G_{00} - G_{02}) & V(G_{00} - G_{02}) & V(G_{00} - G_{02}) & V'(G_{111} - G_{111}) & V'(G_{111} - G_{111}) & V'(G_{111} - G_{111}) \\
V(G_{111} - G_{111}) & V'(G_{111} - G_{111}) & V'(G_{111} - G_{111}) & V'(G_{111} - G_{111}) \\
\end{pmatrix}
\]

where

\[
G_{lmn}(P) = \frac{1}{N} \sum_q \frac{e^{i(\frac{2\pi}{a} m + n \frac{2\pi}{2} + q \frac{2\pi}{2})}}{E - \varepsilon \frac{2\pi}{a} + \varepsilon \frac{2\pi}{a} - q} = \int_{-2\pi}^{2\pi} \int_{-2\pi}^{2\pi} \int_{-2\pi}^{2\pi} dq_x dq_y dq_z \cos(\frac{q \pi}{2} + m \frac{2\pi}{2} + n \frac{2\pi}{2}) \frac{1}{|E| + \varepsilon \frac{2\pi}{a} + \varepsilon \frac{2\pi}{a} - q} \ .
\]

Appendix B: Strong coupling

In this section, we derive results for strong coupling cases for the chain, square and simple cubic lattices.

1. Chain Lattice

We start by considering the chain lattice with

\[
b_1 = \{a\} , \quad b_2 = \{2a\} .
\]

Application of the Hamiltonian, \(\hat{H}' = -t \sum_{(n, b_1), \sigma} \sigma \hat{c}^\dagger_{n+b_1, \sigma} \hat{c}_{n, \sigma} - t' \sum_{(n, b_2), \sigma} \sigma^2 \hat{c}^\dagger_{n+b_2, \sigma} \hat{c}_{n, \sigma} \) in the space of strong coupling dimers (note that there is only hopping because the infinite \(U \) avoids onsite pairs and strong attractive \(V \) and \(V' \) forces pairs onto NN and NNN sites) gives,

\[
\hat{H}'D_{1,n} = -t'(D_{1,n+b_1} + D_{1,n-b_1}) - t(D_{2,n} + D_{2,n-b_1})
\]

\[
\hat{H}'D_{2,n} = -t(D_{1,n} + D_{1,n+b_1}) .
\]

In Fourier space this reduces to

\[
\begin{pmatrix}
E(P) + t' (e^{iP_a} + e^{-iP_a}) & t(1 + e^{-iP_a}) \\
\end{pmatrix}
\begin{pmatrix}
D_{1,P} \\
D_{2,P}
\end{pmatrix}
\]

\[= 0 ,
\]

which has solution

\[
E^2 + 2t' \cos P a \cdot E - 4t^2 \cos^2 \frac{P a}{2} = 0 ,
\]

with roots

\[
E(P) = -t' \cos P a \pm \left(t^2 \cos^2 P a + 4t^2 \cos^2 \frac{P a}{2} \right)^{\frac{1}{2}} .
\]

This can be expanded in small \(P \) to derive a generalized solution for the pair mass at any arbitrary NNN hopping \(t' = \theta t \), where \(0 \leq \theta \leq 1 \). The effective pair mass can be obtained directly using the expression

\[
\frac{m^*}{m_0} = \frac{2(1 + 4\theta \sqrt{\theta^2 + \frac{4}{\theta^2 + 4}})}{\theta (\theta + \sqrt{\theta^2 + 4} + 1) .
\]
For strongly bound NN and NNN intersite pairs on the square lattice, there are four dimers $D_{i,n}^s$ between the sites
\[b_1 = \{a, 0\}, b_2 = \{a, -a\}, b_3 = \{0, -a\}, b_4 = \{-a, -a\}. \] (B8)

Operating with the Hamiltonian on this strong coupling space leads to
\begin{align*}
\hat{H}'D_{1,n} &= -t(D_{2,n} + D_{2,n-b_1}) - t'(D_{3,n} + D_{3,n+b_1} + D_{3,n-b_1} + D_{3,n-b_1}) - t(D_{4,n+b_1} + D_{4,n-b_1}) \quad (B9) \\
\hat{H}'D_{2,n} &= -t(D_{1,n} + D_{1,n+b_1} + D_{1,n+b_1} + D_{1,n+b_1}) - t(D_{2,n} + D_{2,n-b_1}) \quad (B10) \\
\hat{H}'D_{3,n} &= -t'(D_{1,n} + D_{1,n+b_1} + D_{1,n+b_1} + D_{1,n+b_1}) - t(D_{2,n} + D_{2,n-b_1}) - t(D_{4,n} + D_{4,n+b_1}) \quad (B11) \\
\hat{H}'D_{4,n} &= -t(D_{1,n-b_1} + D_{1,n+b_1} + D_{1,n+b_1}) - t(D_{3,n} + D_{3,n-b_1}) \quad (B12)
\end{align*}

which in Fourier space is
\[
\begin{pmatrix}
E(P) & t'(1 + e^{iP_a}) & t(1 + e^{iP_a}) & 0 \\
0 & E(P) & t(1 + e^{iP_a}) & t(1 + e^{iP_a}) \\
t(1 + e^{iP_a})(1 + e^{iP_a}) & E(P) & t(1 + e^{iP_a}) & 0 \\
0 & 0 & E(P) & E(P)
\end{pmatrix}
= 0. \quad (B13)
\]

For small pair momentum $P = (P_x, 0)$, the determinant yields
\[
E^4 - \left[4t^2(3 + \cos P_x a) + 8t'^2(1 + \cos P_x a)\right] E^2 + 32t^2t'[1 + \cos P_x a] = 0. \quad (B14)
\]

To derive the effective mass with $t' = \theta t$, where $0 \leq \theta \leq 1$, we substitute $E = E_0 + \Delta$, where $\Delta = \frac{\hbar^2 P_x^2}{2m_x} \ll E_0$, and expand Eq. (B14) to the first order in P_x^2 and Δ. After some algebra, we obtain
\[
m^*_x \left|_{SQ} \right. = \frac{2(1 + 2\theta)(\theta^2 + 3\theta\sqrt{\theta^2 + 4} + 4)}{2\theta^3 + 5\theta + \sqrt{\theta^2 + 4(2\theta^2 + 1)}}, \quad (B15)
\]

3. BCC Lattice

For strong intersite pairs on the BCC lattice, there are dimers between the sites
\[
\begin{align*}
b_1 &= \left\{\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right\}, b_2 = \left\{\frac{a}{2}, a, -\frac{a}{2}\right\}, b_3 = \left\{\frac{a}{2}, -a, \frac{a}{2}\right\}, \\
b_4 &= \left\{\frac{a}{2}, -\frac{a}{2}, -\frac{a}{2}\right\}, b_5 = \{a, 0, 0\}, b_6 = \{0, a, 0\}, \\
b_7 &= \{0, 0, a\}.
\end{align*}
\]

After applying the Hamiltonian operator in the dimer lattice subspace and Fourier transforming, we obtain
\[
\begin{pmatrix}
E(P) & t'(1 + e^{-iP_b}) & t'(1 + e^{-iP_b}) & 0 \\
t(1 + e^{-iP_b}) & E(P) & t'(1 + e^{-iP_b}) & t(1 + e^{-iP_b}) \\
t(1 + e^{-iP_b}) & 0 & E(P) & 0 \\
t(1 + e^{-iP_b}) & 0 & 0 & E(P)
\end{pmatrix}
= 0. \quad (B16)
\]

For $P = (P_x, 0, 0)$, the expansion of the determinant in Eq. (B16) gives
\[
E^7 - 24t^2 \left[1 + \cos \frac{P_x a}{2}\right] + 4t'^2 \left(5 + \cos P_x a\right) E^5 + 24t^2t' \left[5 + \cos P_x a + 6 \cos \frac{P_x a}{2} + 64t'^3 \cos \frac{P_x a}{2}\right] E^4
+ \left[24t^2t'^2 \left(3P_x a - 6 \cos P_x a - 13 \cos \frac{P_x a}{2} - 6\right) + 2t'^4 \left(\cos 2P_x a - 12 \cos P_x a - 13\right)\right] E^3
+ 24t^2t'^3 \left[-\cos 2P_x a + 2 \cos \frac{3P_x a}{2} + 4 \cos P_x a + 8 \cos \frac{P_x a}{2} + 5\right] E^2 = 0. \quad (B17)
\]
We note flat bands with $E = 0$. After dividing by E^2, we obtain a quintic that cannot be solved analytically.

We can find analytic values for the special case $t' = 0$. In that case, there are only two non-zero solutions of E which are given by the equation

$$E(P_x) = \pm \sqrt{24t^2 \left(1 + \cos \frac{P_x a}{2} \right)}, \quad (B18)$$

where the lowest state at small pair momenta has the energy

$$E(P_x a \ll 1) \approx -4\sqrt{3} t + \frac{3}{8} (P_x a)^2 t \equiv E_0 + \frac{\hbar^2 P_x^2}{2m^*_x}, \quad (B19)$$

The pair mass, expressed in terms of the bare mass, is thus

$$m^*_x = \frac{4\hbar^2}{a^2 t \sqrt{3}} = \frac{8}{\sqrt{3}} m_0 = 4.618802 \ldots m_0. \quad (B20)$$

[1] Y.J. Uemura, G.M. Luke, B.J. Sternlieb, J.H. Brewer, J.F. Carolan, W.N. Hardy, R. Kadono, J.R. Kempton, R.F. Kiefl, S.R. Kreitzman, P. Mulhern, T.M. Riseman, D.L. Williams, B.X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A.W. Sleight, M.A. Subramanian, C.L. Chien, M.Z. Cieplak, Gang Xiao, V.Y. Lee, B.W. Statt, C.E. Stromach, W.J. Kossler, and X.H. Yu. Universal correlations between T_c and n_e/m^* (carrier density over effective mass) in high-T_c cuprate superconductors. *Physical Review Letters*, 62:2317–2320, 1989.

[2] Y.J. Uemura, L.P. Le, G.M. Luke, B.J. Sternlieb, W.D. Wu, J.H. Brewer, T.M. Riseman, C.L. Seaman, M.B. Maple, M. Ishikawa, D.G. Hinks, J.D. Jorgensen, G. Saito, and H. Yamochi. Basic similarities among cuprate, bismuthate, organic, Chevrel-phase, and heavy-fermion superconductors shown by penetration-depth measurements. *Physical Review Letters*, 66:2665–2668, 1991.

[3] A.S. Alexandrov and N.F. Mott. *High Temperature Superconductors and other Superfluids*. Taylor & Francis, London, 1994.

[4] A.S. Alexandrov and V.V. Kabanov. Parameter-free expression for superconducting T_c in cuprates. *Phys. Rev. B*, 59:13628–13631, 1999.

[5] R. Micnas, J. Ranninger, and S. Robaszkiewicz. Superconductivity in narrow-band systems with local non retarded attractive interactions. *Reviews of Modern Physics*, 62:113–171, 1990.

[6] Y.I. Seo, W.J. Choi, S.-I. Kimura, and Y.S. Kwon. Evidence for a preformed Cooper pair model in the pseudogap spectra of a Ca$_x$(Pt$_4$As$_8$)/(Pt$_2$As$_2$)$_2$ single crystal with a nodal superconducting gap. *Scientific Reports*, 9:3987, 2019.

[7] B.L. Kang, M.Z. Shi, S.J. Li, H.H. Wang, Q. Zhang, D. Zhao, J. Li, D.W. Song, L.X. Zheng, L.P. Nie, T. Wu, and X.H. Chen. Preformed Cooper pairs in layered FeSe-based superconductors. *Phys. Rev. Lett.*, 125:097003, 2020.

[8] Panpan Zhou, Liyang Chen, Yue Liu, Ilya Sochnikov, Anthony T. Bollinger, Myung-Geun Han, Yimei Zhu, Xi He, Ivan Bozović, and Douglas Natelson. Electron pairing in the pseudogap state revealed by shot noise in copper oxide junctions. *Nature*, 572:493–496, 2019.

[9] V.A. Ivanov, P.E. Kornilovitch, and V.V. Bobryshev. Possible enhancement of the phonon pairing mechanism by a staggered magnetic field. *Physica C*, 235-240:2369–2370, 1994.

[10] P.E. Kornilovitch and J.P. Hague. Optimal interlayer hopping and high temperature Bose–Einstein condensation of local pairs in quasi 2D superconductors. *J. Phys.: Condens. Matter*, 27:075602, 2015.

[11] C. Zhang, N.V. Prokof’ev, and B.V. Svistunov. Bond bipolarons: Sign-free Monte Carlo approach. *Phys. Rev. B*, 105:L020501, 2022.

[12] V.J. Emery, S.A. Kivelson, and H.Q. Lin. Phase separation in the $t – J$ model. *Phys. Rev. Lett.*, 64:475–478, 1990.

[13] E. Dagotto and J. Riera. Indications of $d_{x^2−y^2}$ superconductivity in the two dimensional $t – J$ model. *Phys. Rev. Lett.*, 70:682, 1993.

[14] P.E. Kornilovitch. Stability of three-fermion clusters with finite range of attraction. *Europhys. Lett.*, 103:27005, 2013.

[15] P.E. Kornilovitch. Ferromagnetism and Borromean binding in three-fermion clusters. *Phys. Rev. Lett.*, 112:077202, 2014.

[16] M. Chakraborty, M. Tezuka, and B.I. Min. Interacting-Holstein and extended-Holstein bipolarons. *Phys. Rev. B*, 89:035106, 2014.

[17] P.E. Kornilovitch. Trion formation and unconventional superconductivity in a three-dimensional model with short-range attraction. *Int. J. Mod. Phys. B*, 23:2050042, 2020.

[18] P. Kornilovitch. Stable pair liquid phase in fermionic systems. *Phys. Rev. B*, 107:115135, 2023.

[19] J.P. Hague, P.E. Kornilovitch, J.H. Samson, and A.S. Alexandrov. Superlight small bipolarons. *J. Phys.: Condens. Matter*, 19:255214, 2007.
ume 2 Quasi-averages. Gordon and Breach, Science Publishers Ltd., London and New York, 1970.

[59] J. P. Hague. \textit{d}-wave superconductivity from electron-phonon interactions. \textit{Phys. Rev. B}, 73:060503(R), Feb 2006.

[60] O. Gunnarsson. \textit{Alkali-doped fullerides: narrow-band solids with unusual properties}. World Scientific, Singapore, 2004.