A Brief Proof of Bochner’s Tube Theorem and
a Generalized Tube

J. Noguchi*

The University of Tokyo

Abstract

The aim of this note is firstly to give a new brief proof of classical Bochner’s Tube Theorem (1938) by making use of K. Oka’s Boundary Distance Theorem (1942), showing directly that two points of the envelope of holomorphy of a tube can be connected by a line segment. We then apply the same idea to show that if an unramified domain $D := A_1 + iA_2 \to \mathbb{R}^n + i\mathbb{R}^n = \mathbb{C}^n$ with unramified real domains $A_j \to \mathbb{R}^n$ is pseudoconvex, then both A_j are univalent and convex (a generalization of Kajiwara’s theorem). From the viewpoint of this result we discuss a generalization by M. Abe with giving an example of a finite tube over \mathbb{C}^n for which Abe’s theorem no longer holds. The present method may clarify the point where the (affine) convexity comes from.

Keywords: tube domain; Oka’s boundary distance theorem; Kajiwara’s Theorem; analytic continuation; envelope of holomorphy.

MSC2020: 32D10, 32Q02, 32D26.

1. Introduction

The following statement is classical and well-known as Bochner’s Tube Theorem:

Theorem 1.1 (Bochner [2, 3], Stein [18] $(n = 2)$). Let $T_R = R + i\mathbb{R}^n$ be a tube (domain) of \mathbb{C}^n with a domain (open, connected) $R \subset \mathbb{R}^n$ as real base. Then the envelope of holomorphy of T_R is $T_{\text{co}(R)}$, where $\text{co}(R)$ denotes the (affine) convex hull of R.

Our first aim is to give a new brief simple proof of this theorem, based on Oka’s Boundary Distance Theorem (§2).

We then deal with a generalized tube $\pi : A_1 + iA_2 \to \mathbb{C}^n$ with real unramified domains $\pi_j : A_j \to \mathbb{R}^n (j = 1, 2)$ and $\pi = \pi_1 + i\pi_2$. In §3 we also give another proof to Porten [17], Theorem 1.1:

Theorem 1.2 (Generalized tube). If $A_1 + iA_2$ is pseudoconvex, then the both A_j are univalent and convex subdomains of \mathbb{R}^n.

The case where A_j are univalent was obtained by J. Kajiwara [12], and the case where $A_2 = \mathbb{R}^n$ was dealt with by M. Abe [1]. We will give counter-examples such that M. Abe’s Theorem does not holds for a finite tube; i.e., the part A_2 is bounded in \mathbb{R}^n (see §4).

We will see the point where the (affine) convexity comes from (see Remark [24]).

Acknowledgment. The author is very grateful to Professor Makoto Abe for useful and helpful discussions during the preparation of the present paper, and to Professors P. Pflug, P. Shapira and E. Porten for valuable informations on the present topics.

*Research supported in part by Grant-in-Aid for Scientific Research (C) 19K03511.
2. Proof of Theorem 1.1

To be precise, a ‘domain’ of \mathbb{R}^n (or \mathbb{C}^n) is an open and connected subset of \mathbb{R}^n (or \mathbb{C}^n). If X is a connected Hausdorff topological space with a local homeomorphism $p : X \to \mathbb{R}^n$ (or \mathbb{C}^n), we call $p : X \to \mathbb{R}^n$ (or \mathbb{C}^n) or simply X ap domain over \mathbb{R}^n (or \mathbb{C}^n). If p is injective, it is said to be univalent (schlicht) or otherwise multivalent in general; a univalent domain over \mathbb{R}^n (or \mathbb{C}^n) may be identified with a domain of \mathbb{R}^n (or \mathbb{C}^n). In this paper, domains are always unramified.

For our proof we use the next two basic theorems: As for the envelope of holomorphy we add the constructive existence for a convenience as an appendix (cf. §5 Appendix (1) at the end).

Theorem 2.1. Every holomorphically separable domain \mathcal{D} over \mathbb{C}^n admits an envelope of holomorphy, containing \mathcal{D} as a subdomain. In particular, a univalent domain Ω of \mathbb{C}^n admits an envelope of holomorphy (multivalent in general), containing Ω as a subdomain.

Theorem 2.2 (Boundary distance: Oka [15, 16 VI (1942), IX (1953); 9, 13]). If \mathcal{D} is a domain of holomorphy over \mathbb{C}^n, then $-\log \delta(\zeta, \partial \mathcal{D})$ ($\zeta \in \mathcal{D}$) is a continuous plurisubharmonic function, where $\delta(\zeta, \partial \mathcal{D})$ denotes the distance function to the boundary (cf. §5 Appendix (2)).

Let $\pi : \hat{T} \to \mathbb{C}^n$ be the envelope of holomorphy of T_R by Theorem 2.1. With $\hat{R} := \hat{T} \cap \pi^{-1}\mathbb{R}^n$, $\varpi = \pi|_{\hat{R}} : \hat{R} \to \mathbb{R}^n$ is a real domain over \mathbb{R}^n and $\varpi(R) \subset \text{co}(R)$. Then T has a structure of a tube in the following sense:

\[(\mathbb{R}^n+i\mathbb{R}^n) \to \mathbb{R}^n + i\mathbb{R}^n = \mathbb{C}^n.\]

It follows from Oka’s Boundary Distance Theorem 2.2 that $-\log \delta(\zeta, \partial \hat{T})$ is plurisubharmonic and satisfies

\[\tag{2.4} -\log \delta(\zeta, \partial \hat{T}) = -\log(\zeta + iy, \partial \hat{T}), \quad \forall y \in \mathbb{R}^n.\]

With the local coordinates $\pi(p) = (x_j + iy_j)$, if $\delta(p, \partial \hat{T})$ is of C^2-class, it satisfies the semi-positive definiteness:

\[\tag{2.5} \left(\frac{\partial^2}{\partial z_j \partial z_k} - \log \delta(\zeta, \partial \hat{T}) \right)_{j,k} = \left(\frac{\partial^2}{\partial x_j \partial x_k} - \log \delta(\zeta, \partial \hat{T}) \right)_{j,k} \geq 0.\]

We define a line segment $L[p,q] \subset \hat{R}$ connecting two points $p, q \in \hat{R}$ as follows. Let $L[\varpi(p), \varpi(q)] \subset \mathbb{R}^n$ be a line segment connecting $\varpi(p)$ and $\varpi(q)$. Then there is a unique connected component L_p of the inverse $\pi^{-1} L[\varpi(p), \varpi(q)]$, containing p. If $L_p \ni q$, we write $L_p = L[p,q] \subset \hat{R}$. For mutually close $p, q \in \hat{R}$, $L[p,q]$ exists, but in general the existence is unknown at this moment. If $p = q$, then $L[p,q] = \{p\}$ is considered as a special case of degenerate line segment. Assuming the existence of $L[p,q]$, we see by (2.5) that the restricted function $-\log \delta(\zeta, \partial \hat{T})|_{L[p,q]}$, even if it is not differentiable, is a convex function on the line segment $L[p,q]$. Therefore we have

\[\tag{2.6} \min_{L[p,q]} \delta(\zeta, \partial \hat{T}) = \min_{L[p,q]} \delta(\zeta, \partial \hat{T}).\]

Claim 2.7. If $S := \{(p, q) \in \hat{R}^2 : \exists L[p,q] \subset \hat{R} \} \subset \hat{R}^2$, then $S = \hat{R}^2$.

Firstly, S is non-empty and open. It suffices to show that S is closed in \hat{R}^2. Let $(p, q) \in \hat{R}^2$ be an accumulation point of S. Then there is a sequence of points $(p_\nu, q_\nu) \in S$ ($\nu = 1, 2, \ldots$) such that

\[\lim_{\nu \to \infty} p_\nu = p, \quad \lim_{\nu \to \infty} q_\nu = q, \quad L[p_\nu, q_\nu] \subset \hat{R}.\]

By (2.6) there is a constant $r_0 > 0$ independent of ν such that the tubular neighborhood U_ν (univalent) of every $L[p_\nu, q_\nu]$ with width r_0 is contained in \hat{R}. Then for every sufficiently large ν, $U_\nu \ni p, q$. Therefore $L[p, q] \subset U_\nu \subset \hat{R}$; thus, $(p, q) \in S$ and hence $S = \hat{R}^2$.

It follows that $\varpi : \hat{R} \to \mathbb{R}^n$ is univalent. For, otherwise, there were two points, $p, q \in \hat{R}$ such that $p \neq q$ and $\varpi(p) = \varpi(q)$. But there would be no line segment $L[p,q]$; contradiction. Moreover, for arbitrary distinct $p, q \in \hat{R}$, $L[p,q] \subset \hat{R}$, and hence \hat{R} is convex. Thus, $\hat{R} = \text{co}(R)$ and $\hat{T} = T_{\text{co}(R)}$. \hfill \Box

The above proof immediately implies the following generalization due to M. Abe [1].
Theorem 2.8. Let \(\varpi : R \to R^n \) be a real domain over \(R^n \) and let \(\pi : T_R = R + iR^n \to C^n \) be a domain as in (2.3). Then, \(T_R \) is a domain of holomorphy if and only if \(T_R \) is univalent and convex.

Remark 2.9. In the above proof, it was the point to deduce the (affine) convexity from (2.5), provided that the domain is pseudoconvex or a domain of holomorphy.

Notes. Theorem 1.1 was proved by S. Bochner [2, 3], and by K. Stein [13] (Hilfssatz 1) in \(n = 2 \). Since then there have been many papers dealing with the proof (cf. Jarnicki–Pflug [10], §3.2 for more informations). The proofs were rather technically involved (cf., e.g., [4] Chap. V, [9] Chap. II). The methods may be classified into four kinds:

(i) By Legendre polynomial expansions (Bochner [3], Bochner–Martin [4]).
(ii) By a family of ellipses (Stein [18] (n = 2), S. Hitotsumatsu [7], L. Hörmander [9] (Theorem 2.5.10), etc.)
(iii) By the boundary distance function (H.J. Bremermann [5] in the case of \(n = 2 \)).
(iv) An approximation theorem of Bauendi-Treves (J. Hounie [8]).

The present proof may belong to (iii) and was inspired by Fritzsche–Grauert [6] p. 87 Exercise 1, while in the textbook the notion of unramified domains is presented in the subsequent section after it; so the supposed situation might be different to the present one. It is also noticed that the presentation of (2.5) goes back to Bremermann [5] §3.5. In the present proof as above, the univalence of the envelope of holomorphy \(T \) and the convexity are proved at the same time.

3. Proof of Theorem 1.2

Let \(\pi_j : A_j \to R^n \) \((j = 1, 2) \) be domains and put

\[\pi : D := A_1 + iA_2 \ni x + iy \to \pi_1(x) + i\pi_2(y) \in C^n. \]

We call \(D \) a generalized tube (domain). Let \(y_0 \in A_2 \) be arbitrarily fixed point, and take a univalent ball neighborhood \(B(y_0; 2\rho_0) \subset A_2 \) with center \(y_0 \) and radius \(2\rho_0 > 0 \). The assumption implies that the continuous function \(\varphi(z) := -\log \delta(z, \partial\Omega) \) is plurisubharmonic in \(D \). Set

\[V = \{ x \in A_1 : \delta(x, \partial A_1) < \rho_0 \}. \]

Then the function \(\varphi(x + iy) \) in \(x + iy \in V + iB_0(y_0; \rho_0) \) is a function only in \(x \). Therefore, \(\varphi(x + iy) = \varphi(x + iy_0) \) is convex in \(x \in V \). We set

\[\psi(x) = \max\{\varphi(x + iy_0), -\log \rho_0\}, \quad x \in A_1. \]

Then \(\psi(x) \) is a continuous convex function in \(A_1 \). The same arguments as in (2) with \(\psi(x) \) imply that \(A_1 \) is univalent and convex; the same is applied to \(A_2 \).

4. Counter-examples of Abe’s Theorem 2.8 for finite tubes

Here we give examples of ‘finite tubes’ by replacing the imaginary part \(R^n \) in Theorem 2.8 by a bounded domain, to say, an open ball, for which the theorem no longer holds.

Let \(0 < R_1 < R_2 \leq \infty \) and set

\[A = \{ x = (x_1, x_2) \in R^2 : R_1 < \| x \| := (x_1^2 + x_2^2)^{1/2} < R_2 \}, \]
\[B = \{ y = (y_1, y_2) \in R^2 : \| y \| < R_1 \}. \]

With complex coordinates \(z_j = x_j + iy_j \) \((j = 1, 2) \) we define a ‘finite tube’ or a ‘tube of finite length’ by

\[\Omega = A + iB \subset C^2. \]

We consider a holomorphic function \(f(z) = z_1 + iz_2 \in O(\Omega) \) (it is the same with \(f(z) = z_1 - iz_2 \)). Since

\[|f(z)| = \| x_1 + ix_2 + i(y_1 + iy_2) \| \geq \| x_1 + ix_2 \| - \| y_1 + iy_2 \| > 0, \]

\[g(z) = 1/f(z) \in O(\Omega); \]

in particular, \(g(z) \) is not holomorphic at the origin 0. Therefore we first note:
Remark 4.1. The envelope of holomorphy Ω of Ω is not equal to $\text{co}(A) + iB$. This gives a counterexample for Kajiwara [12], from which $\hat{\Omega} = \text{co}(A) + iB$ should follow. Cf. Jarnicki–Pflug [10], §3.3 for more examples and discussions.

Let $2 \leq \nu \leq \infty$. For $2 \leq \nu < \infty$ we put

$$A_\nu = \left\{ u = (u_1, u_2) \in \mathbb{R}^2 : R_1^{1/\nu} < \|u\| < R_2^{1/\nu} \right\},$$

$$p_\nu : A_\nu \ni u = u_1 + iu_2 \mapsto u' = x_1 + ix_2 = (x_1, x_2) = x \in A,$$

where the complex structures of `$u_1 + iu_2$' and `$x_1 + ix_2$' are different and independent to that of $(z_1, z_2) \in \mathbb{C}^2$. It follows that p_ν is a local real analytic diffeomorphism between the annuli. We put

$$\pi_\nu : \Omega_\nu = A_\nu \times B \ni (u, y) \mapsto p_\nu(u) + iy \in \Omega \hookrightarrow \mathbb{C}^2.$$

Then $\pi_\nu : \Omega_\nu \rightarrow \mathbb{C}^2$ is a local real analytic diffeomorphism and hence an unramified domain over \mathbb{C}^2. We consider $f_\nu(z) = (f(z))^{1/\nu} = (x_1 + ix_2 + iy_1 + iy_2)^{1/\nu}$, which is ν-valued holomorphic in $z \in \Omega$. Note that

$$f_\nu(z) = (x_1 + ix_2)^{1/\nu} \left(1 + i \frac{y_1 + iy_2}{x_1 + ix_2} \right)^{1/\nu} :$$

Here the latter product factor $\left(1 + i \frac{y_1 + iy_2}{x_1 + ix_2} \right)^{1/\nu}$ has a 1-valued branch in Ω, because

$$\left| \frac{y_1 + iy_2}{x_1 + ix_2} \right| < 1.$$

Whereas the first factor $(x_1 + ix_2)^{1/\nu}$ is defined to be 1-valued in A_ν, and hence $f_\nu(z)$ is 1-valued holomorphic in Ω_ν. It follows that the domain $\pi_\nu : \Omega_\nu \rightarrow \mathbb{C}^2$ is holomorphically separable and $g_\nu = 1/f_\nu \in \mathcal{O}(\Omega_\nu)$.

For $\nu = \infty$, we put

$$p_\infty : A_\infty = \left\{ (u_1, u_2) \in \mathbb{R}^2 : \log R_1 < u_1 < \log R_2, \ u_2 \in \mathbb{R} \right\} \ni (u_1, u_2) \mapsto e^{u_1} e^{iu_2} = (e^{u_1} \cos u_2, e^{u_1} \sin u_2).$$

Then $p_\infty : A_\infty \rightarrow A$ is a local real analytic diffeomorphism. Set

$$\pi_\infty : \Omega_\infty = A_\infty \times B \ni (u, y) \mapsto p_\infty(u) + iy \in \Omega \hookrightarrow \mathbb{C}^2.$$

Then, $\pi_\infty : \Omega_\infty \rightarrow \mathbb{C}^2$ is an infinitely-sheeted unramified domain over \mathbb{C}^2.

We take $f_\infty(z) = \log f(z)$. Then we have

$$f_\infty(z) = \log(x_1 + ix_2) + \log \left(1 + i \frac{y_1 + iy_2}{x_1 + ix_2} \right), \quad z \in \Omega :$$

Here, because of (4.2) the second term $\log \left(1 + i \frac{y_1 + iy_2}{x_1 + ix_2} \right)$ has a 1-valued branch in Ω and the first term $\log(x_1 + ix_2)$ is 1-valued in Ω_∞, so that $f_\infty \in \mathcal{O}(\Omega_\infty)$. Therefore, the unramified domain $\pi_\infty : \Omega_\infty \rightarrow \mathbb{C}^2$ is holomorphically separable. Since f_∞ has no zero in Ω_∞, $1/f_\infty \in \mathcal{O}(\Omega_\infty)$.

Thus we have:

Proposition 4.3. Let the notation be as above. For every ν with $2 \leq \nu \leq \infty$, $\pi_\nu : \Omega_\nu \rightarrow \mathbb{C}^2$ is a ν-sheeted holomorphically separable unramified domain over \mathbb{C}^2, and the envelope of holomorphy $\hat{\pi}_\nu : \hat{\Omega}_\nu \rightarrow \mathbb{C}^2$ of Ω_ν is never univalent over \mathbb{C}^2 and $\hat{\pi}_\nu(\hat{\Omega}_\nu) \neq 0$.

We may propose at the end:

Problem 4.4. Let $\Omega = A_1 + iB$ be a univalent generalized tube with $A_1 \subset \mathbb{R}^n$ and an open ball $B \subset \mathbb{R}^n$.

(i) What is the envelope of holomorphy $\hat{\Omega}$ of Ω?
(ii) What is the condition of A_1 with which $\hat{\Omega}$ is univalent. For example, if A_1 is simply connected or contractible, is $\hat{\Omega}$ univalent?

Remark 4.5. Very lately, Jarnicki–Pflug [11] dealt with the above problem for $\Omega = A_1 + iB$ with

$$A_1 = \{ x \in \mathbb{R}^n : R_1 < \|x\| < 1 \}, \quad B = \{ y \in \mathbb{R}^n : \|y\| < R_2 \}.$$

This case is interesting in view of the above counter-example, and they proved that $\hat{\Omega}$ is univalent and given by

$$\hat{\Omega} = \{ x + iy \in \mathbb{R}^n + i\mathbb{R}^n : \|x\| < 1, \|y\| < R_2, \|y\|^2 < \|x\|^2 + R_2^2 - R_1^2 \}.$$

5. Appendix

(1) Envelope of holomorphy. In quite a few references, the notion of the envelope of holomorphy of domains over C^n are presented in a rather sophisticated manner. For our aim the following simple-minded constructive existence is sufficient.

We first fix a notation. If D is a connected Hausdorff space and $\pi : D \rightarrow C^n$ is a local homeomorphism, $\pi : D \rightarrow C^n$ or simply D is called a (unramified Riemann) domain over C^n. If π is injective, D is said to be univalent. A domain D over C^n naturally admits a structure of complex manifold such that π is a local biholomorphism; the set of all holomorphic functions on D is denoted by $O(D)$.

For an element $f \in O(D)$ and a point $p \in D$ there is a small polydisk neighborhood of $a = \pi(p)$ which is identified with a neighborhood of p, and f is written there as a convergent power series in the local coordinate z:

$$f_p := f(z) = \sum_\alpha c_\alpha(z - a)\alpha.$$

If for two points $p, q \in D$ with $p \neq q$ and $\pi(p) = \pi(q)$ there is an element $f \in O(D)$ such that $f_p \neq f_q$, then $\pi : D \rightarrow C^n$ is said to be holomorphically separable.

We fix a point $p_0 \in D$. We consider a curve C^b in C^n with the initial point $a = \pi(p_0)$ and the end point $b \in C^n$ such that every analytic function f_{C^b} at a defined by $f \in O(D)$ can be analytically continued along C^b, and defines an analytic function, denoted by $f_{C^b}(z)$, at the end point b. Let Γ denote the set of all such curves C^b. If $C^b, C'^b \in \Gamma$ are homotope through a continuous family of curves belonging to Γ, then $f_{C^b} = f_{C'^b}$. We denote by $\{C^b\}$ the homotopy class in the above sense, and write $f_{\{C^b\}} := f_{C^b}$.

We fix a polydisk $P_{\Delta} \subset C^n$ with center at the origin. For $f \in O(D)$ and $C^b \in \Gamma$ there is a polydisk neighborhood $b + rP_{\Delta} (r > 0)$ of b where $f_{\{C^b\}}(z)$ converges. Let $r(\{C^b\}, f)$ be the supremum of such r, and let Γ^r denote all of $\{C^b\}$ such that $\inf_{f \in O(D)} r(\{C^b\}, f) > 0$.

For two element $\{C^b\}, \{C'^b\}$ of Γ^r we define an equivalence relation $\{C^b\} \sim \{C'^b\}$ by

$$b = b', \quad f_{\{C^b\}} = f_{\{C'^b\}}, \quad \forall f \in O(D).$$

Let $\{\{C^b\}\}$ stand for the equivalence class, and let $D = \Gamma^r / \sim$, $\hat{\pi} : \{\{C^b\}\} \rightarrow b \in C^n$ be respectively the quotient set and the natural map. It follows from the construction that $\hat{\pi} : D \rightarrow C^n$ gives rise to a holomorphically separable (unramified) domain over C^n. Since D is arc-wise connected, D is independent of the choice of $p_0 \in D$. There is a natural holomorphic map $\eta : D \rightarrow \hat{D}$ with $\pi = \hat{\pi} \circ \eta$. If D is holomorphically separable, then η is an inclusion map and D is a subdomain of \hat{D}.

We call $\hat{\pi} : D \rightarrow C^n$ the envelope of holomorphy of D. In the case of $n \geq 2$, even if D is univalent, the envelope of holomorphy \hat{D} of D may be (infinitely) multi-sheeted over C^n in general. If $\eta : D \rightarrow \hat{D}$ is biholomorphic ($D = \hat{D}$), D is called a domain of holomorphy.

(2) Boundary distance. The boundary distance $d(\zeta, \partial D)$ is defined as follows. For a point $\zeta \in D$ there is an open ball $B(\pi(\zeta); r) \subset C^n$ with center $\pi(\zeta)$ and radius $r (> 0)$ such that the connected component $U(\zeta; r)$ of $\pi^{-1}B(\pi(\zeta); r)$ containing ζ is biholomorphically mapped onto $B(\pi(\zeta); r)$ by π. We
write \(\delta(\zeta, \partial D) \) for the supremum of such \(r \), which is called the \textit{boundary distance}. The proof of Theorem 2.2 is similar to the case of univalent domains.

In place of an open ball we may use a polydisk \(P\Delta \) with center at \(0 \) in the above definition. Then the boundary distance is denoted by \(\delta_{P\Delta}(\zeta, \partial D) \); Theorem 2.2 holds with \(-\log_{P\Delta}(\zeta, \partial D) \).

References

[1] M. Abe, Tube domains over \(\mathbb{C}^n \), Memoirs Fac. Sci., Kyushu Univ. Ser. A 39 (2) (1985), 253–259.
[2] S. Bochner, Bounded analytic functions in several variables and multiple Laplace integrals, Amer. J. Math. 59 (1937), 732–738.
[3] ——, A theorem of analytic continuation of functions in several variables, Ann. Math. 39 no. 1 (1938), 14–19.
[4] —— and W.T. Martin, Several Complex Variables, Princeton Univ. Math. Ser. 10, Princeton Univ. Press, N.J., 1948.
[5] H.J. Bremermann, Die Holomorphichüllen der Tuben- und Halbtubengebiete, Math. Ann. 127 (1954), 406–423.
[6] K. Fritzsche and H. Grauert, From Holomorphic Functions to Complex Manifolds, G.T.M. 213, Springer-Verlag, New York, 2002.
[7] S. Hitotsumatsu, Note on the envelope of regularity of a tube domain, Proc. Jpn. Acad. 26 (1950), 21–25.
[8] J. Hounie, A proof of Bochner’s tube theorem, Proc. Amer. Math. Soc. 137-12 (2009), 4203–4207.
[9] L. Hörmander, Introduction to Complex Analysis in Several Variables, Third Edition, North-Holland, 1st Ed. 1966/3’rd Ed. 1990.
[10] M. Jarnicki and P. Pflug, Extension of Holomorphic Functions, 2nd Edition, de Gruyter Exp. Math. 34, de Gruyter, Berlin-New York, 2020; 1st Edition, 2000.
[11] ——, The envelope of holomorphy of a classical truncated tube domain, preprint arXiv 2021.
[12] J. Kajiwara, On the envelope of holomorphy of a generalized tube in \(\mathbb{C}^n \), Kodai Math. Sem. Rep. 15 (1963), 106–110.
[13] J. Noguchi, Analytic Function Theory of Several Variables—Elements of Oka’s Coherence, Springer Sci.+Bus. Media Singapore, 2016; Translated from Japanese edition, Second Ed. 2019, First Ed. 2013, Asakura, Tokyo.
[14] ——, A New Introduction to the Oka Theory — Basis of several complex variables (in Japanese), to be published, 2021.
[15] K. Oka, Sur les fonctions analytiques de plusieurs variables, Iwanami Shoten, Tokyo, 1961.
[16] ——, Collected Works, Translated by R. Narasimhan, Ed. R. Remmert, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984.
[17] E. Porten, On generalized tube domains over \(\mathbb{C}^n \), Complex Variables 50 (2005), 1–5.
[18] K. Stein, Zur Theorie der Funktionen mehrerer komplexen Veränderlichen. Die Regularitätshüllen niederdimensionaler Mannigfaltigkeit, Math. Ann. 114 (1937), 543–569.

Junjiro Noguchi
Graduate School of Mathematical Sciences
University of Tokyo
Komaba 3-8-1, Meguro-ku, Tokyo 153-8914, Japan
E-mail address: noguchi@ms.u-tokyo.ac.jp