Engineering of electrocatalyst/electrolyte interface for ambient ammonia synthesis

Lei Du, Lixin Xing, Gaixia Zhang, Xianhu Liu, Diane Rawach, Shuhui Sun

1 Institut National de la Recherche Scientifique (INRS)-Center Énergie Matériaux et Télécommunications, Varennes, Québec J3X 1S2, Canada
2 School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
3 Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China

Correspondence
Dr. Gaixia Zhang and Dr. Shuhui Sun, Institut National de la Recherche Scientifique (INRS)-center Énergie Matériaux et Télécommunications, Varennes, Québec J3X 1S2, Canada. Email: gaixia.zhang@emt.inrs.ca; shuhui@emt.inrs.ca

Funding information
Natural Sciences and Engineering Research Council of Canada (NSERC); Fonds de Recherche du Québec-Nature et Technologies (FRQNT); Centre Québécois sur les Matériaux Fonctionnels (CQMF); Institut National de la Recherche Scientifique (INRS); National Natural Science Foundation of China, Grant/Award Numbers: 21805064, 51803042; International Postdoctoral Exchange Fellowship Program by the Office of China Postdoctoral Council, Grant/Award Number: 20180072; FRQNT for the Postdoctoral scholarship, Grant/Award Number: 274384

Abstract
Ammonia is not only an important platform chemical for industrial and agricultural use but is also a novel energy-carrying molecule. The electrochemical reduction method for ambient ammonia synthesis is emerging as a promising strategy for the replacement of the current Haber–Bosch ammonia synthesis method, which consumes a large amount of energy and natural gas (hydrogen resource) while releasing substantial greenhouse gases (eg, carbon dioxide). The challenges in electrochemical ammonia synthesis, also known as nitrogen reduction reaction, primarily include the cleavage of extremely stable N≡N bonds and the competitive hydrogen evolution reaction in routine aqueous media, which significantly leads to a low production rate and Faradaic efficiency. The rational design and engineering of the electrocatalyst/electrolyte interface are crucial to address these challenges. Herein, recent achievements for catalyst/electrolyte interface engineering are reviewed to provide insights into enhancing the production rate and Faradaic efficiency. Perspectives on future research and development of the electrochemical ammonia synthesis from theory to practice will be provided.

KEYWORDS
ammonia synthesis, Faradaic efficiency, interfacial effects, nitrogen reduction reaction, production rate

1 INTRODUCTION

Ammonia is an important raw material in the chemical industry and agriculture. Meanwhile, ammonia also acts as an important carbon-free energy carrier because of its high hydrogen content of 17.6%. Due to its wide applications, the annual global demand for the production of ammonia is about 200 million tons, which is expected to increase in the near future due to the booming population as well as the search for new energy conversion and storage strategies.

Essentially, ammonia is produced by reducing nitrogen in the presence of hydrogen, that is, nitrogen reduction reaction (NRR, \(\text{N}_2 + 3\text{H}_2 \rightarrow 2\text{NH}_3 \)). In thermodynamics, the NRR is considered as an exothermal and spontaneous reaction. However, the extremely stable N≡N bonds in nitrogen...
lead to sluggish kinetics.\(^5\) To efficiently activate and break the N≡N bond, an extremely large external energy (>600 kJ/mol NH\(_3\))\(^6\) is needed. Therefore, the widely used Haber–Bosch approach requires high temperature and high pressure—reaching 300–550°C and 200–350 atm in the reactors to practically produce ammonia. This ammonia synthesis consumes large quantities of H\(_2\) and approximately 1–2% of the world’s annual fossil energy, leading to about 300 metric tons of CO\(_2\) emission.\(^4,7\)

Similar to the electrochemical strategies for the synthesis of value-added chemicals,\(^8\) the electrocatalytic NRR used for the production of ammonia is an emerging and promising alternative for the replacement of the conventional Haber–Bosch ammonia synthesis. The advantages of the electrocatalytic methods include but are not limited to: (i) the mild working conditions—electrocatalytic NRR can be operated at ambient or near-ambient temperature and pressure; (ii) direct extraction of required hydrogen element from electrolyte—no additional hydrogen resources are needed; and (iii) more importantly, an easily controlled production process—the electrocatalytic reactions highly depend on interfacial parameters in the electrochemical double layers including catalyst surfaces, electrolyte, and applied potential, etc. So far, the electrochemical ammonia synthesis or NRR study has become one of the most fast-growing fields. However, this method still faces some challenges, namely, the low production/yield rate and low selectivity, which can usually be addressed through catalyst-surface-electrolyte interface engineering.\(^9\) For example, the interfacial effects of both the catalyst, including active site composition and configuration, and the electrolyte, including pH value and the cations, have been intensively investigated to improve the production rate of ammonia and Faradaic efficiency (FE) of NRR. Inspired by recent advances, we therefore present herein a crucial progress report for the improvement of the production rate and FE of electrochemical ammonia synthesis which will be discussed in terms of interfacial effects for the catalyst and the electrolyte. Our insights into future research and development to minimize the gaps between the theoretical and practical NRR will be provided.

2 | REACTION PATHWAY AND CATALYST/ELECTROLYTE INTERFACE FOR NRR

2.1 | NRR mechanisms

The net NRR follows equations below:

In acidic media

\[
\text{N}_2 + 6\text{H}^+ + 6\text{e}^- \rightarrow 2\text{NH}_3
\]

(1)

In basic media

\[
\text{N}_2 + 6\text{H}_2\text{O} + 6\text{e}^- \rightarrow 2\text{NH}_3 + 6\text{OH}^-
\]

(2)

Although abundant reaction mechanisms have been proposed, it should be noted that the detailed NRR pathways are complicated and they are not yet fully understood. The NRR probably follows either a dissociative or associative pathway.\(^10\) The dissociative pathway can be described using the Equations (3–6) (referring to Figure 1):

\[
\text{N}_2^* \rightarrow 2\text{N}^*
\]

(3)

\[
\text{N}^* + \text{H}^+ + \text{e}^- \rightarrow \text{NH}^*
\]

(4)

\[
\text{NH}^* + \text{H}^+ + \text{e}^- \rightarrow \text{NH}_2^*
\]

(5)

\[
\text{NH}_2^* + \text{H}^+ + \text{e}^- \rightarrow \text{NH}_3^*
\]

(6)

Such a pathway follows the initial cleavage of the N≡N bonds, thus, requiring large external energy, which is not likely to be the favorable pathway. In contrast to the dissociative pathway having a huge energy barrier, the associative pathway gradually breaks the N≡N bond step-by-step, which is plausibly the favorable pathway. The associative
pathway steps can vary according to the adsorption configurations of the nitrogen molecules on the catalyst surface. When the nitrogen molecules adsorb through the “end-on” configuration, the pathways can be associative alternating pathway (Equations 7–12) and associative distal pathway (Equations 13–18) (Figure 1).

Associative alternating pathway

\[\text{N}_2^* + \text{H}^+ + e^- \rightarrow \text{NNH}^* \]
(7)

\[\text{NNH}^* + \text{H}^+ + e^- \rightarrow \text{NNNH}^* \]
(8)

\[\text{NNNH}^* + \text{H}^+ + e^- \rightarrow \text{NNNH}_2^* \]
(9)

\[\text{NNNH}_2^* + \text{H}^+ + e^- \rightarrow \text{NH}_2\text{NH}_2^* \]
(10)

\[\text{NH}_2\text{NH}_2^* + \text{H}^+ + e^- \rightarrow \text{NH}_2^* + \text{NH}_3 \]
(11)

\[\text{NH}_2^* + \text{H}^+ + e^- \rightarrow \text{NH}_3^* \]
(12)

Associative distal pathway

\[\text{N}_2^* + \text{H}^+ + e^- \rightarrow \text{NNH}^* \]
(13)

\[\text{NNH}^* + \text{H}^+ + e^- \rightarrow \text{NNNH}_2^* \]
(14)

\[\text{NNNH}_2^* + \text{H}^+ + e^- \rightarrow \text{N}^* + \text{NH}_3 \]
(15)

\[\text{N}^* + \text{H}^+ + e^- \rightarrow \text{NH}^* \]
(16)

\[\text{NH}^* + \text{H}^+ + e^- \rightarrow \text{NH}_2^* \]
(17)

\[\text{NH}_2^* + \text{H}^+ + e^- \rightarrow \text{NH}_3^* \]
(18)

An associative enzymatic pathway was proposed when the nitrogen molecules adsorb via the “side-on” configuration (Figure 1), based on the theoretical calculations where two nitrogen atoms in one molecule are simultaneously adsorbed on an active site, a pathway believed favorable for NRR on a single Mo/BN model.11 With the technology and techniques developed so far, the distinction of these configurations is extremely difficult on the real-world NRR catalyst surfaces. Therefore, more efforts for the advancement of experimental technologies and theoretical calculations are encouraged in the future.

In addition to the cathodic NRR, the coupled anodic reaction, that is, oxygen evolution reaction (OER), which always takes place during the electrochemical ammonia synthesis, should also be considered in the electrolyzer reactor. The net OER equations in acidic (Equation 19) and alkaline (Equation 20) media are given as follows:

In acidic media

\[2\text{H}_2\text{O} \rightarrow \text{O}_2 + 4\text{H}^+ + 4\text{e}^- \]
(19)

In basic media

\[4\text{OH}^- \rightarrow \text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}^- \]
(20)

The OER always suffers from sluggish kinetics, leading to a huge overpotential at the anodes.12-14 On the other hand, the NRR also requires a large overpotential to overcome the activation energy barrier. These challenges lead to significant energy waste, that is, low energy efficiency, indicating that the investigations of electrochemical ammonia synthesis in reactors should also include the OER anode in addition to the NRR cathode. Although the anodic OER is not in the scope of this article, we would like to point out that the advanced OER catalysts with low overpotential need to be developed.15,16 An alternating route includes the replacement of the OER by other anodic reactions that produce value-added chemicals.8

By combining cathodic NRR and anodic OER (Equations 1 and 19, 2 and 20), the overall reaction equation can be obtained for the electrolyzers to synthesize ammonia:

\[2\text{N}_2 + 6\text{H}_2\text{O} \rightarrow 3\text{O}_2 + 4\text{NH}_3 \]
(21)

As shown in Equation (21), the hydrogen element required for ammonia synthesis can be directly extracted from the water in the electrolyte. However, the hydrogen evolution reaction (HER) usually takes place following Equations (22) and (23) at the potential range where NRR takes place.

In acidic media

\[2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2 \]
(22)

In basic media

\[2\text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{H}_2 + 2\text{OH}^- \]
(23)

Therefore, the competitive HER leads to low FE for ammonia synthesis, that is, a large amount of the supplied
electrons are used for HER, rather than NRR. The competitive HER is the one reaction that must be considered when investigating NRR.

Based on the above discussion on reactions, including NRR as well as the competitive HER, the key parameters that the researchers should focus on during electrochemical NRR investigations can be concluded. On one hand, the NRR kinetics is sluggish due to the stability of the N_\equivN bonds and therefore, the yield or production rate, which represents the amount of ammonia produced in a specific period over a specific amount of catalyst, emerges as a key parameter. On the other hand, given that the HER is highly competitive at the catalyst/electrolyte interfaces, a part of the electrons are consumed to generate hydrogen, leading to low FE of NRR. In this report, we mainly discuss the interfacial effects on the NRR production rate and FE. Accordingly, Table 1 summarizes recently reported production rates and FEs in the literature regarding NRR under ambient or near-ambient conditions.

2.2 | Catalyst/electrolyte interface

The heterogeneous electrocatalytic process is significantly influenced by the interface properties between the catalyst and the electrolyte, that is, the electrochemical double layer. In fundamental electrochemistry, the conventional hydrogen- and oxygen-related reactions in aqueous media have been more investigated. The interface between catalyst surface and local electrolyte phase determines the mechanisms and kinetics of electrochemical reactions. Particularly, the inner Helmholtz plane (IHP) plays a crucial role in the electrocatalytic process of the specifically absorbed species where the kinetics is strongly determined by the nature of the electrode, that is, the catalyst surface. On the other hand, the outer Helmholtz plane (OHP) is the locus of the nonspecifically adsorbed, hydrated species (Figure 2).95 For NRR, the specifically absorbed hydrogen and nitrogen species might be in IHP simultaneously as HER is a competitive reaction. Some hydrated metal cations in OHP might also influence the kinetics and selectivity of NRR. There is still a lack of specific investigations on the electrochemical double layers toward NRR. Due to the similarity between NRR and hydrogen-/oxygen-related reactions, the interfacial effects are expected to play important roles in determining the production rate of ammonia and/or hydrogen (relevant to the FE) under electrocatalytic conditions.

The catalyst surfaces and the local electrolyte are important for the construction of the electrochemical double layer. In the following sections, we will focus on the catalyst surface-related (e.g., active site composition and configuration) and electrolyte-related effects (e.g., pH value and cation), which significantly determine the production rate of ammonia and FE for NRR.

3 | EFFECTS OF ELECTROCATALYST/ELECTROLYTE INTERFACE ON THE PRODUCTION RATE OF AMMONIA

3.1 | Catalyst surfaces

3.1.1 | Metal-free active sites

The pristine carbon material is inert for electrocatalysis—the defects and/or surface dopant can break the well-defined C-C bonds, modify the local electronic structure and trigger adsorption of reactant species, that is, nitrogen molecule for NRR.96 As a rising-star material, the N-doped carbon has been emerging as a promising metal-free catalyst towards many different electrocatalytic reactions including oxygen reduction reaction,97 carbon dioxide reduction reaction,98 as well as the NRR.99,100 There are different N-dopant configurations in the N-doped carbon materials97 and their effect on NRR production rate was recently investigated.

The ZIF-8 was employed as the nitrogen and carbon precursor (Figure 3A), which derived a highly disordered N-doped carbon (Figure 3B).17 The N dopant configurations are found dependent on the pyrolysis temperatures. To be specific, the pyridinic and pyrrolic N are formed below 900°C and the pyrrolic N disappears at the temperature over 1000°C. However, only pyridinic and graphic
Catalyst	Production rate (µg/mg cat/h)	Faradaic efficiency (%)	Working conditions	Electrolyte	Ref.
Metal-free catalysts					
N-doped nanoporous carbon	72.25\(^a\)	10.2	−0.3	0.1 M KOH	[17]
Black phosphorus nanosheets	31.37\(^b\) (−0.7 V)	5.07 (−0.6 V)	−0.7 to −0.6	0.01 M HCl	[18]
B\(_2\)C nanosheets	26.57	15.95	−0.75	0.1 M HCl	[19]
S-doped graphene	27.3\(^b\) (−0.6 V)	11.5 (−0.5 V)	−0.6 to −0.5	0.1 M HCl	[20]
N-doped porous carbon	23.8\(^a\)	1.42	−0.9	0.05 M H\(_2\)SO\(_4\)	[21]
O-doped hollow carbon microribbons	22.3\(^a\)	9.98	−0.4	0.005 M H\(_2\)SO\(_4\)	[22]
Black phosphorus nanosheets	31.37\(^b\) (−0.7 V)	5.07 (−0.6 V)	−0.7 to −0.6	0.01 M HCl	[18]
S-doped carbon nanosphere	19.07	7.47	−0.7	0.1 M Na\(_2\)SO\(_4\)	[24]
Defect-rich fluorographene nanosheet	9.3	4.2	−0.7	0.1 M Na\(_2\)SO\(_4\)	[25]
Polymeric carbon nitride	8.09	11.59	−0.2	0.1 M HCl	[26]
N-doped porous carbon	15.7	1.45	−0.2	0.1 M KOH	[27]
B-N pairs enriched defective carbon nanosheets	7.75	13.79	−0.3	0.1 M HCl	[28]
N,P codoped porous carbon	0.97	4.2	−0.2	0.1 M HCl	[29]
N-doped carbon nanospheres	97.18\(^b\)	11.56	−1.19	0.25 M LiClO\(_4\)	[30]
Defective nitrogen-free carbon cloth	15.85\(^a\)	6.92	−0.3	0.1 M Na\(_2\)SO\(_4\) + 0.02 M H\(_2\)SO\(_4\)	[31]
Pristine N-doped porous graphitic carbon membrane	0.8\(^b\) (−0.3 V)	5.2 (−0.2 V)	−0.3~−0.2	0.1 M HCl	[32]
Noble metal-based catalysts					
Ru SAs/N-C	120.9	29.6	−0.2	0.05 M H\(_2\)SO\(_4\)	[33]
PdRu tripods	37.23	1.85	−0.2	0.1 M KOH	[34]
PdRu nanorod	34.2	2.4	−0.2	0.1 M HCl	[35]
Au flowers	25.57	6.05	−0.2	0.1 M HCl	[36]
Au clusters/TiO\(_2\)	21.4	8.11	−0.2	0.1 M HCl	[37]
PdCuIr	13.43	5.29	−0.3	0.1 M Na\(_2\)SO\(_4\)	[38]
Ultrathin Rh nanosheet nanoassemblies	23.88	0.217	−0.2	0.1 M KOH	[39]
Au SAs/N-doped porous and highly oxidizing carbon	3.87\(^a\)	12.3	−0.2	0.1 M HCl	[40]
Amorphization Au/Co\(_3\)O\(_2\)-RGO	8.3	10.1	−0.2	0.1 M HCl	[41]
Pd\(_{0.5}\)Cu\(_{0.5}\)/rGO	2.8\(^b\) (−0.2 V)	4.5 (−0 V)	−0.2 to 0	0.1 M KOH	[42]
Ru/MoS\(_2\)	5.57\(^a\)	12.2	−0.15	0.01 M HCl	[43]
Au SAs/C\(_3\)N\(_4\)	1305\(^a\)	11.1	−0.1	0.005 M H\(_2\)SO\(_4\)	[44]
Pd/C	4.5\(^b\)	8.2	+0.1	0.1 M PBS (pH = 7.2)	[45]
Au NPs/pristine N-doped porous graphitic carbon membrane	3600\(^b\)\(^c\) (−0.2 V)	22 (−0.1 V)	−0.2 to −0.1	0.1 M HCl	[32]
Ru NPs/Carbon Papers	55\(^b\)\(^c\) (−0.1 V)	5.4 (+0.01V)	−0.1 to 0.01	0.01 M HCl	[46]
RuPt/C	18.36\(^b\)\(^c\)	13.2	0.123	1.0 M KOH	[47]
Porous Au film/Ni foam	9.42\(^a\)	13.36	−0.2	0.1 M Na\(_2\)SO\(_4\)	[48]
Hollow Au nanocages	4.22\(^b\)\(^c\) (−0.5 V)	35.9 (−0.4V)	−0.5 to −0.4	0.5 M LiClO\(_4\)	[49]
Au hollow gold nanocages	3.9\(^b\)\(^c\) (−0.5 V)	30.2 (−0.4V)	−0.5 to −0.4	0.5 M LiClO\(_4\)	[50]
Ag nanosheet	2.83\(^b\)\(^c\)	4.8	−0.6	0.1 M HCl	[51]

(Continues)
TABLE 1 (Continued)

Catalyst	Production rate (µg/mg_cat/h)	Faradaic efficiency (%)	Working conditions	Electrolyte	Ref.
Tetrahexahedral Au nanorod	1.648 (5)		−0.2	0.1 M KOH	[52]
Non-noble metal-based catalysts					
Bi nanocrystals	3400 (a)	66	−0.6 V	Acidic K₂SO₄ (pH 3.5; 1.0 M K⁺)	[53]
Mo,C nanorod	95.1	8.13	−0.3	0.1 M HCl	[54]
Nb₂O₅ nanoparticles	11.6 (−0.65 V)	32 (−0.6 V)	−0.65 to −0.6	0.05 M H₂SO₄	[55]
Nb₂O₅ nanofiber	43.6	9.26	−0.55	0.1 M HCl	[56]
Mo₂N nanorod	78.4	4.5	−0.3	0.1 M HCl	[57]
Fe₃S₄	75.4	6.45	−0.4	0.1 M HCl	[58]
Fe-N/C/CNTs	34.83	9.28	−0.2	0.1 M KOH	[59]
Fe SAs/N-C	7.48	56.55	0	0.1 M KOH	[60]
Mo/N-C	34	14.6	−0.3	0.1 M KOH	[61]
TiO₂/Ti₃C₂Tx MXene	32.17 (−0.55V)	16.07 (−0.45V)	−0.55 to −0.45	0.1 M HCl	[62]
MoO₃ nanosheets	29.43 (−0.5V)	1.9 (−0.3V)	−0.5 to −0.3	0.1 M HCl	[63]
Cr₂O₃ nanofiber	28.13	8.56	−0.75	0.1 M HCl	[64]
Bi₅V₆O₁₉/CeO₂	23.21	10.16	−0.2	0.1 M HCl	[65]
MoO₂	12.2	8.2	−0.15	0.1 M HCl	[66]
Ti₃C₂Tx (T = F, OH) MXene	20.4	9.3	−0.4	0.1 M HCl	[67]
Fe₂O₃/TiO₂	16.5 (5)	0.31	−0.577	1.0 M KOH	[68]
Co hollow nanocage	10.78 (−0.4V)	7.36 (0 V)	−0.4 to 0	1.0 M KOH	[69]
MoS₂	43.4	9.81	−0.2	0.1 M Li₂SO₄	[70]
MoS₂-rGO	24.82	4.58	−0.45	0.1 M LiClO₄	[71]
β-FeOOH nanorods	23.32 (−0.75V)	6.7 (−0.7)	−0.75 to −0.7	0.5 M LiClO₄	[72]
TiO₂-rGO	15.13	3.3	−0.9	0.1 M Na₂SO₄	[73]
CoO quantum dots on rGO	21.5	8.3	−0.6	0.1 M Na₂SO₄	[74]
M₄O₈@rGO	17.4	3.52	−0.85	0.1 M Na₂SO₄	[75]
Mo₃O₄ Nanocube	29.28	8.34	−0.4	0.1 M Na₂SO₄	[76]
M₃O₄ Nanocube	25.3	6.78	−0.9	0.1 M Na₂SO₄	[77]
Bi nanosheet	13.23	10.46	−0.8	0.1 M Na₂SO₄	[78]
Fe₂O₃ nanorods	15.9	0.94	−0.8	0.1 M Na₂SO₄	[79]
Mn₃O₄ Nanocube	11.6	3	−0.8	0.1 M Na₂SO₄	[80]
Cu-CeO₂-3.9	8.1 (a)	19.1	−0.45	0.1 M Na₂SO₄	[81]
Spinel Fe₂O₃ on Ti mesh	4.6 (a)	2.6	−0.4	0.1 M Na₂SO₄	[82]
Fe₂O₃/CNT	22 (a,c)	0.035	−2 (vs. Ag/AgCl)	0.5 M LiClO₄	[83]
V₃O₈ Nanowire on carbon cloth	15.18 (a,c)	3.58	−0.3	0.1 M HCl	[84]
MoN nanosheets/Carbon cloth	18.42 (a,c)	1.15	−0.3	0.1 M HCl	[85]
Sn₂O₃ on carbon cloth	9.0 (b,c)	2.17	−0.8 to −0.7	0.1 M Na₂SO₄	[86]
VN nanosheet on Ti mesh	5.14 (a)	2.25	−0.5	0.1 M HCl	[87]
TiO₂ nanosheets on Ti plate	5.6 (b,c)	3.34	−0.7 to −0.6	0.1 M Na₂SO₄	[88]
Defective TiO₂ on Ti mesh	7.6 (a,c)	9.17	−0.15	0.1 M HCl	[89]
MoS₂	4.9 (a,c)	1.17	−0.5	0.1 M Na₂SO₄	[90]
Ti₃C₂T₂/stainless steel mesh	4.72 (a)	4.62	−0.1	0.5 M Li₂SO₄ + HCl (pH = 2)	[91]

(Continues)
TABLE 1 (Continued)

Catalyst	Production rate $(\mu g/mg_{cat}/h)$	Faradaic efficiency (%)	Working conditions	Electrolyte	Ref.
Ti$_3$C$_2$Tx/FeOOH	0.53b,c $(-0.5V)$	5.78$(-0.2V)$	−0.5 to −0.2	0.5 M Li$_2$SO$_4$ + HCl (pH = 2)	[91]
(110)-oriented Mo nanofilm	1.89a,b,c $(-0.49V)$	0.72$(-0.29V)$	−0.49 to −0.29	0.01 M H$_2$SO$_4$	[92]
α-Fe@Fe$_3$O$_4$	1.44c	32	−0.65 (vs. NHE)	Aprotic fluorinated solvent–ionic liquid mixture	[93]

Fe$_3$O$_4$ | 0.19c | 8.29 | −0.3 | 0.1 M PBS (pH = 7.2) | [94] |

aThe data in the table are recalculated based on the information provided in references, to normalize the units.

bThe highest production rate and FE are obtained at different potentials.

cThe production rate data in the table are reported in the unit of “µg/cm2/h”.

dThe production rate data in the table are reported with respect to the metal mass, rather than the catalyst mass.

N exist in the N-doped carbon sample pyrolyzed at 1100°C; both high temperature and long pyrolysis time lead to the increased ratio of graphitic N to pyridinic N. These facts suggest the series of N-doped carbon catalysts can act as adequate models for the study of the relationship between the N dopant configurations and the production rates. As demonstrated in Figure 3C, the highest production rate achieved was 3.4×10^{-6} mol/cm2/h in 0.1 M KOH at −0.3 V versus RHE under ambient pressure by the N-doped carbon catalyst pyrolyzed at 1100°C for 1 h. By normalizing with respect to the catalyst loading (0.8 mg/cm2), the highest production rate in this work is equal to 72.25 µg/mg/h, which is top ranking compared with the published results (Table 1). The increased production rate is likely related to both the pyridinic and graphitic N as well as the carbon defects.

To further unravel the detailed N-dopant structure, various possible active sites were examined by DFT calculations in this work. However, only the configuration (pyridinic N$_3$) consisting of a protonated pyridinic N and an adjacent vacancy (likely derived from the removal of a pyridinic N at high temperature), as shown in Figure 3D, is thermodynamically favorable for nitrogen adsorption by the vacancy. The energy profile in Figure 3E is presented according to the configurations in Figure 3D, suggesting the promoted reactions at −0.3 V. It should be noted that the graphitic N-related sites are not responsible for the nitrogen adsorption (ie, not the active sites) by theoretical calculation, but more graphitic N is beneficial for high production rate in experiments. This may be due to the modified electronic structure of carbon and the nitrogen adsorption on pyridinic N$_3$ sites, which is still not quite clear.

In addition to N, the effects of other dopants, such as S, B, and dual-element dopants, such as B-N and N-P, on the production rate have also been discussed. However, the understanding of the configurations for the active moieties in these heteroatom-doped carbon catalysts is still not enough. Even the most investigated N-doped carbon, the nitrogen dopant structures have yet to be fully understood, for example, the function of graphitic N mentioned in Ref. [17]. The model heteroatom-doped carbon catalyst with individual dopant structure, for example, the highly oriented pyrolytic graphite with controllable nitrogen dopant, will be helpful in fully understanding the metal-free active site effects on NRR kinetics.

3.1.2 Noble metal-based active sites

Metals are widely used as the active electrocatalysts in many fields due to their unique electronic structure and properties. For example, Pt is used for oxygen reduction reaction and hydrogen oxidation reaction, Ni is used for HER, Ir/Ru oxides for OER, etc. The use of metals which would act as possible active sites for NRR was investigated. According to the Sabatier Law, the active site should bind the reactant species neither too weakly nor too strongly. To be specific, the proper adsorption strength of nitrogen is preferred to achieve fast adsorption of nitrogen as N$_2$H* as well as fast protonation of NH* to NH$_2$* (on flat surfaces) or the removal of NH$_2$* into NH$_3$ (on stepped surfaces). Figure 4 presents the volcano curves where it is possible to observe that the noble metal surfaces, including Ru, Rh, and non-noble metal surfaces, including Mo, Fe, are located near the top of these curves, indicating that
these metals are promising in catalyzing NRR.103 For noble metal-based catalysts, so far, the noble Ru-,34–35,46,105,106 Rh-,39 and Au-based32,36,37 catalysts present good ammonia production rates in practice (Table 1).

Recent study suggests that the single-atom catalysts are promising due to both low noble metal usage and enhanced intrinsic NRR activity.107 As shown in Figure 5A, the Ru single atoms (Ru SAs) loaded by N-doped carbon were synthesized via the carbonized ZIF method.35 The resultant Ru SAs/N-C catalyst demonstrated well-defined single atomic features (Figure 5B and C) and uniformly dispersed Ru, C and N elements (Figure 5D). The Ru SAs/N-C catalyst demonstrated an extremely high ammonia production rate of 120.9 μg/mg/h (Figure 5E). As calculated in this work, the Gibbs free energy on Ru-N$_3$ configuration for Equation 14 ($\text{NNH}^* + \text{H}^++e^- \rightarrow \text{NNH}_2^*$) is 0.12 eV, much lower than Equation 8 ($\text{NNH}^* + \text{H}^++e^- \rightarrow \text{NHNH}^*$, 0.6 eV), which demonstrates that the primary reaction mechanism...
3.1.3 Non-noble metal-based active sites

In the view of cost efficiency, non-noble metal catalysts are an important direction for NRR application. Based on the analysis in Figure 4, the metallic Mo and Mo-based materials as non-noble metal catalysts are promising for NRR. In fact, the facets in Mo metal catalysts significantly influence the NRR kinetics, similarly to the preferential facet effects observed in Pt catalysts for oxygen reduction reaction. To be specific, the increased Mo (110) facet results in improved activity, while the increased Mo (211) facet leads to lowered NRR kinetics. Recently, the single-atom Mo-N-C catalyst demonstrated a high ammonia production rate of 34 μg/mg cat/h, suggesting the potential of Mo-based catalysts for NRR. The detailed structure of single-atom non-noble metal NRR catalysts has not been well understood although some efforts have been made on, for example, the most promising Fe-N-C catalyst.

The most studied single atom moiety is the FeN₄, which is believed to demonstrate the lowest activation energy barrier for NRR, although this subject is still controversial. In a recent report, the single-atom Fe-N-C catalyst was controlled by using the popular ZIF-8 precursor method in the presence of carbon nanotubes (Figure 6A). The resultant catalyst presents well-defined tubular morphology (Figure 6B and C), absent crystalline Fe phase (Figure 6D and E), and uniform element distribution (Figure 6F), suggesting single atomic characters. Interestingly, based on the theoretical calculation results, the FeN₃ site, rather than the conventional FeN₄ active site for ORR, is believed to deliver a lower free energy barrier (Figure 6G and H), which is consistent with other reports.

As representative Mo-based NRR catalysts, Mo₂C, Mo₂N, Mo₂S, MoO₃, and MoO₂ were investigated and are listed in Table 1. The surface engineering of these materials is an important direction for NRR application. For example, oxygen vacancy (OV) of MoO₂ was facilely tuned by changing the hydrogen concentration of atmosphere from 5 to 20% during the pyrolysis process (Figure 7A), deriving two types of MoO₂: oxygen vacancy-poor (OVs-poor) and oxygen vacancy-rich (OVs-rich) MoO₂. As shown in Figure 7B-D, the OVs-rich MoO₂ presented much higher production rate of ammonia than the OVs-poor MoO₂ (Figure 7E) indicating the significantly promoted effect of surface oxygen vacancy. On one hand, the oxygen vacancy facilitates the chemical adsorption of nitrogen and its activation as well as electron transfer. On the other hand, more importantly, the OVs-rich MoO₂ favors the hybrid associative distal/alternating pathway with the formation of NNH* from N₂* as the rate-determining step (Figure 7F). It is notable that the OVs-excess MoO₂ (treated under 20% hydrogen) suffers a different rate-determining step in the associative distal pathway, that is, the conversion from NH* to NH₂* (Figure 7G), which might be due to the extremely strong chemical adsorption for nitrogen on the OVs-excess MoO₂.

3.2 Local electrolyte environments and catalyst/electrolyte interface

3.2.1 Cations

The cations in the electrolyte are crucial for the NRR process because of the possible interaction between the cations and nitrogen that might influence the absorption and activation of nitrogen for NRR. Accordingly, the perchlorates having counterions with Li⁺, Na⁺, and K⁺ were used as the electrolyte. As shown in Figure 8A, it is clear that the Li⁺ is beneficial for enhancing the ammonia production rate in a wide potential range followed by Na⁺ and K⁺. This is due to the strong interaction between Li⁺ and nitrogen (attracting high-concentration nitrogen) and the enhanced electric field by decreasing the thickness of the double layer (the radius of Li⁺ is lower than the other.
FIGURE 5 (A) The synthetic illustration of Ru SAs/N-C catalyst; (B) the HAADF-STEM image of Ru SAs/N-C catalyst; (C) the magnified HAADF-STEM image of Ru SAs/N-C catalyst; (D) the EDS elemental mapping results of Ru SAs/N-C catalyst; (E) the ammonia production rates at different potentials using Ru SAs/N-C and referential Ru NPs/N-C catalysts; (F) the free energy profile of the NRR mechanisms on Ru1N3, Ru1N4, and Ru (101) sites. (A-F) Reproduced with permission from Geng Z, Liu Y, Kong X, et al. Copyright 2018, Wiley

Two ions. This experimental result seems true because the same trend in the neutral electrolyte can be obtained when the anion is alternating, for example, from perchlorate salt (Figure 8A) to sulfate salt (Figure 8B), although different electrocatalysts are employed in these two studies (nitrogen-doped carbon nanospikes for Ref. [30] and S-rich MoS2 nanosheets for Ref. [70]). In the latter case, the Li-S interaction on the S-edge sites in MoS2 (i.e., at the catalyst/electrolyte interface) was proposed: the Li-S interaction leads to positively charged Mo sites, which was proved to be beneficial for the nitrogen adsorption and following reduction. As shown in Figure 8C, the presence of Li-S interactions improved the electron transfer from Mo-edge site to nitrogen (gaining 0.40 e). The calculated free energy profile in Figure 8D demonstrated that the Li-S interaction leads to decreased activation energy which is required to push the first hydrogenation process of nitrogen.

It should be emphasized that the cation effects might be dependent on the employed environments. For example, in alkaline electrolyte, the KOH with potassium cation is more favorable than NaOH by using N-doped carbon as an NRR catalyst. This was attributed to the K+ ion which probably donates electrons and promotes the evolution of the second ammonia. Compared with Figure 8A, where the nitrogen-doped carbon nanospikes counterpart is used as the catalyst (Na+ is more favorable than K+), the cation effects probably dependent on the pH value, for example, alkaline versus neutral. The relationship between cation effects and the catalyst surface still needs much more work.

3.2.2 pH values

The pH value of the electrolyte is an important factor for electrocatalysis. One can see that the pH value might influence the cation effects as discussed above. Three typical electrolytes, including acidic 0.05 M H2SO4 (pH = 1.2), neutral 0.1 M phosphate buffer solution (PBS, pH = 7.2), and alkaline 0.1 M NaOH (pH = 12.9), were employed to
investigate the pH value effects through using the same Pd/C as the NRR catalyst. As shown in Figure 9, the ammonia production rate in PBS is almost two times that in H₂SO₄ and NaOH. This is primarily attributed to the suppressed HER process in PBS electrolyte. The competitive pH-dependent HER significantly affect the production rate, which has been confirmed by both Refs. [45] and [17]. Once the HER consume abundant electrons at the cathode in the electrolyzer reactors, the resulting overall current density might be high, but the ammonia production rate will be low and the FE for ammonia production will be pretty low as well. In this regard, the FE, another important parameter for NRR, will be discussed in the next section.

4 | EFFECTS OF ELECTROCATALYST/ELECTROLYTE INTERFACE ON THE FARADAIC EFFICIENCY FOR NRR

Since the targeted reaction for ammonia synthesis is NRR, we hope the supplied electrons will be completely used for NRR, rather than participate in the side reactions. Therefore, high FE is required during electrochemical ammonia synthesis process. As shown in Table 1, in practice, most cases show a similar tendency for the production rate and FE versus different applied potentials. That is, at the optimal applied potential, both the highest production rate and FE can be achieved. However, in some cases the tendencies...
are slightly different,47,83 indicating that high production rate is not equivalent to the high FE. The key to enhance FE is to suppress the competitive side reaction, that is, HER.113,114

4.1 Catalyst surfaces

To compare the HER and NRR overpotentials on specific metallic catalysts, the limiting potentials of these two reactions were plotted versus the N* binding energy.115 Note that the descriptor for HER should be the binding energy of H*, which scales with the binding energy of N*, so that the N* binding energy was reasonably used as the descriptor for HER. As shown in Figure 10, the HER on all the investigated metal surfaces, that is, both (111) and (211) facets, demonstrate less negative limiting potentials than NRR. Besides, the gaps in limiting potential between HER and NRR on the (111) facets are smaller than that on the (211) facets in a specific range; even though, the investigated metals show the smallest gap larger than 0.4 V in limiting potential. This is bad news which indicates that the HER is a non-negligible competitor toward NRR and can significantly reduce the FE.

It is still difficult to screen the ideal electrocatalysts with a very low overpotential for NRR and a high overpotential for HER. Fortunately, the interface engineering strategies have proven to be promising for the suppression of the HER, such as decreasing the size of Mo\textsubscript{2}C as catalyst, that is, the Mo\textsubscript{2}C nanodots on carbon nanosheets.116 The isolated Mo\textsubscript{2}C nanodots can reduce the surficial coverage of hydrogen spillover, providing higher possibility for nitrogen adsorption. As an ultimate small catalyst size, the effects of a single atom catalyst for the competitive HER have been investigated. As shown in Figure 11A-D, four different single-atom models, M@C\textsubscript{3}, M@C\textsubscript{4}, M@N\textsubscript{3}, and M@N\textsubscript{4} were built.117 Based on the calculation results, it can be concluded that most single-atom catalysts have suppressed H adsorption compared with the corresponding metal surface (Figure 11E). This is good news providing strategies to suppress the competitive HER during electrochemical ammonia synthesis. By comparing the
NRR and HER, it is expected that the single-atom catalysts locating in the *N$_2$ dominant region in Figure 11F are beneficial for nitrogen adsorption, which will be less hindered by H adsorption. Experimentally, the single Ru atom catalyst has demonstrated remarkably enhanced FE as near as 30%, which is superior in Table 1. These investigations indicate that the single-atom catalysts are a promising direction to increase the FE for NRR.

Since the routine aqueous electrolytes contain the reactant species for HER, the interface engineering strategy to appropriately limit the access of aqueous solution will be helpful to increase the FE for NRR. For example, the surface engineering method by coating a layer of hydrophobic ZIF-71 (Figure 12A and B) was proposed to suppress the HER on Ag-Au catalyst. Meanwhile, the conventional aqueous electrolyte was replaced by 0.2 M LiCF$_3$SO$_3$ in a solvent containing approximately 1% ethanol and dry tetrahydrofuran. As shown in Figure 12C and D, compared with the Ag-Au catalyst without ZIF coating (Figure 12D), Ag-Au@ZIF electrode presented no signal related to “water electrolysis” (Figure 12C). More importantly, the coated Ag-Au@ZIF shows significantly improved NRR selectivity (Figure 12E), which can be due to the hydrophobicity of ZIF-71 coating that prevents water molecules, and nitrogen enrichment of MOF materials enabling high nitrogen concentration near the catalyst/electrolyte interface (Figure 12F).
Figure 10 Comparison of HER and NRR limiting-potential volcanoes. Reproduced with permission from Montoya JH, Tsai C, Vojvodic A, and Norskov JK. Copyright 2015, Wiley.

Figure 11 Four calculation models for single-atom catalysts including (A) M@C₃, (B) M@C₄, (C) M@N₃, and (D) M@N₄ (red, brown, and blue balls represent transition metal, carbon, and nitrogen atom); (E) Difference between H adsorption free energy on the single-atom sites and the adsorption free energy on the corresponding surfaces; (F) the locations of different single-atom catalysts in *N₂ and *H dominant regions. (A-F) Reproduced with permission from Choi C, Back S, Kim N-Y, et al. Copyright 2018, American Chemical Society.
4.2 Local electrolyte environments and catalyst/electrolyte interface

To suppress the HER, two strategies are proposed: lowering the proton availability and the enhancement of nitrogen solubility at the catalyst/electrolyte interface, which have been discussed in terms of the interface engineering of catalyst surfaces. For local electrolyte, the aprotic, highly fluorinated solvents are promising in this regard. Accordingly, the unique ionic liquid (IL) salt with high solubility is required in these solvents. The salt 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate as the IL salt and 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether as the solvent were used to identify the effects of solvent-IL ratio (X_{IL}) on the FE employing α-Fe@Fe$_3$O$_4$ nanorods as the NRR catalyst. As shown in Figure 13A, the different cathodic current densities can be obtained using the electrolytes with different X_{IL} values. Specifically, at $X_{\text{IL}} = 0.23$, the current density is about 23 μA/cm2, only higher than the $X_{\text{IL}} = 0.12$ case and lower than the other cases. Interestingly, the $X_{\text{IL}} = 0.23$ case demonstrates the highest FE of 23.8% as well as the highest production rate of ammonia as shown in Figure 13B. The NRR mechanisms were calculated as shown in Figure 13C and D, where the most endergonic steps including both the $\text{NHNH}^* \text{to NNNH}_2^*$ and $\text{NH}^* \text{to NH}_2^*$. It should be noted that a number of proton is necessary because it is the reactant for ammonia synthesis; otherwise, the production rate will be low. The mixed solvent with organic and water, for example, 2-propanol and water, is promising but the negative effects of water are still challenging. This dilemma requires breakthroughs in suppressing HER in the presence of proton-involved electrolyte.
Reference [53] presents an excellent example in achieving both high production rate and FE in an aqueous electrolyte. This work employs the Bi nanocrystals (NCs) as the NRR catalysts and K\(^+\) ion as the counterion in the electrolyte because Bi has lower free energy for the potential determining step (Figure 14A). Interestingly, the presence of K\(^+\) further decreases the free energy barrier (Figure 14B) and tunes the diffusion pathways for the favorable nitrogen and competitive proton (Figure 14C and D). In this work, the Bi NC catalyst is composed of Bi(012), (110), and (104) facets (Figure 14E). As shown in Figure 14F, the Bi NCs catalyst unprecedentedly demonstrated a FE of up to 66% in aqueous media. The presence of K\(^+\) also decreases the free energy barrier, thus, leading to extremely high production rate of ammonia.

5 SUMMARY AND PERSPECTIVES

5.1 Summary

The electrochemical ammonia synthesis is conducted based on NRR. At ambient and near-ambient conditions, the NRR suffers from sluggish kinetics, thus leading to
unsatisfactory ammonia production rate. On the other hand, the HER is competitive and is difficult to avoid during the NRR process, significantly lowering the FE. It should be noted that obtaining high production rate does not mean high FE will be achieved. The interfacial effects related to the catalyst surface and local electrolyte environment significantly determine the production rate and FE. Rational design of catalysts, including single-atom materials, preferential facets, etc., as well as the electrolyte, such as the use of appropriate cations, pH values, non-aqueous solvent, etc. has been proved to be beneficial for promoting the NRR kinetics and suppressing the HER. Great efforts have been made to push the milestones forward. Today’s production rate and FE have achieved up to over 3000 μg/mgcat/h and >50% through rational engineering of catalyst/electrolyte interface. However, it should be emphasized that the electrochemical ammonia synthesis is still in its preliminary stage, and more efforts are needed to study the fundamental mechanisms and to fill the gap between the fundamental understanding and practical ammonia production.

5.2 | Perspectives

5.2.1 | Fundamental study

Toward reaction mechanisms

The active sites and reaction mechanisms of NRR are still not well understood. For example, in Ref. [122], the double-atom sites were believed to be more favorable for NRR than the conventional single-atom sites. We can see that most publications regarding NRR include theoretical calculations to obtain more information about the active sites and reaction mechanisms. However, the majority of theoretical calculations are conducted under the ideal vacuum...
environment using models, that is, the effects of applied potential, free ions and hydrated ions in electrolyte, and the heterogeneity of real catalyst surface, have to be ignored. In this regard, the development of advanced tools for theoretical calculations should be gaining much more attention. Besides, the developed physical characterizations, especially the in-situ/operando technique, will be helpful in detecting the intermediates in electrochemical systems and understanding the reaction mechanism. In addition, the controllable design and synthesis methods will be powerful to fabricate well-defined model catalysts. By combining the electrochemical performance, the structure of model catalysts, the physical and chemical characters and theoretical simulation results, the active sites and reaction mechanisms will be uncovered.

Towards degradation mechanisms
There have not been much investigations focusing on the degradation mechanisms, which are important for industrial production. On one hand, the degradation of catalyst will lead to a decrease in its performance and the failure of electrolyzer reactors will be observed; and on the other hand, the degraded catalyst may result in impurities for the NRR. To fully understand the degradation mechanisms, efficient test protocols should be proposed and generally agreed in accelerating the catalyst degradation during NRR. Again, the controllable model catalyst synthesis, advanced physical characterizations and accurate theoretical calculations will be helpful in identifying the degradation mechanism.

Towards interface study
Although the optimal electrolyte and engineered catalyst/electrolyte interface have been proved promising in promoting NRR and suppressing HER, the relationships among catalyst (composition and configuration) and electrolyte (cation and pH) effects are still not well understood. For example, on the similar nitrogen-doped carbon catalysts, the Na\(^+\) cation is more favorable than K\(^+\) in neutral media; while the K\(^+\) cation is better than Na\(^+\) in alkaline media. In this case, the relationship of cation effect with pH value and catalyst surfaces has not been confirmed and investigated. The researches on this kind of topic will be helpful in rational design for the catalyst/electrolyte interface.

Towards experimental standard operating procedures
It should be particularly pointed out that the standard operating procedures (SOP) in different laboratories are different in NRR investigations. It has been claimed that the most promising catalysts for ammonia synthesis did not actually produce ammonia—some N-containing products were wrongly identified as ammonia. Besides, the metal nitride as a catalyst was challenged if it provides the nitrogen element and participates in the ammonia production; the commercial catalysts were reported involving nitrogen-containing species, which, however, were overlooked. Such problems significantly hinder the progress of NRR. Therefore, more efforts are necessary to find all the possible and uncontrollable factors that could arise during NRR investigations, as well as to determine the efficient and effective SOP. The insights into counterpart electrochemical reactions, including oxygen/hydrogen reduction/evolution reactions, as well as carbon dioxide reduction, etc., can be learned in the field of electrochemical ammonia synthesis.

5.2.2 Practical ammonia production

Towards reactors
To push the ammonia production from laboratory level to industry level is an important direction for the future. In a laboratory, the NRR is usually performed in a conventional three-electrode system and/or two-electrode system filled with aqueous solutions. However, an electrolyzer cell can suffer from low nitrogen solubility and heavy weight/big volume. Adapting from the fuel cell technology, the NRR can also be operated in the membrane electrode assembly which consists of a cathode, an anode, and an ion-exchange polymer membrane, for example, Nafion membrane. For example, the ammonia can be produced directly using air and water as reactants in the fuel cell-type device. It is noteworthy that, based on Equation 5, the electrochemical ammonia synthesis requires a large amount of water, so that the rational design of cells, especially in water management, should be considered in practical applications, for example, insertion of a hydrophobic layer on the catalyst layer. To overcome the challenges of using and managing water and production separation, the solid-state electrolyte can be a promising alternative.

To obtain higher production rate, increasing the operating temperature is promising. However, the high temperature not only improves the production rate but also lowers the FE in some cases because HER is facilitated at high temperature. Although this report is focused on ambient ammonia synthesis, we believe the high-temperature ammonia synthesis should be studied as well.

Towards coupled reactions
In a real-world reactor for ammonia synthesis, the related reactions in addition to NRR should be considered. The overall energy efficiency of the devices should be a key parameter to compete with the existing technique. As
pointed out in Section 2.1, the coupled anodic reactions, for example, OER, should be considered due to the large overpotential, which leads to the waste of a large amount of electronic energy. Besides, the coupled OER should also be taken into consideration during the integration of catalysts into the devices. For example, the optimal electrolytes for OER and NRR are probably different. When integrating them into a device, the excellent membrane/separater matching both electrolyte requirements is needed. Last but not least, suppressing the competitive HER is expected extremely important in practical ammonia synthesis. The knowledge and insights into this topic are highly recommended in the future research and developments. Novel strategies to construct advanced catalyst/electrolyte interface will be needed.

ACKNOWLEDGMENTS

This work is financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds de Recherche du Québec-Nature et Technologies (FRQNT), Centre Québécois sur les Materiaux Fonctionnels (CQMF), Institut National de la Recherche Scientifique (INRS) and National Natural Science Foundation of China (Grant Nos. 21805064 and 51803042). L.D. acknowledges the scholarship under the International Postdoctoral Exchange Fellowship Program by the Office of China Postdoctoral Council (Grant No. 20180072) and FRQNT for the Postdoctoral scholarship (V2, file number: 274384) in Quebec Canada.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Shuhui Sun https://orcid.org/0000-0002-0508-2944

REFERENCES

1. Li M, Huang H, Low J, et al. Recent Progress on Electrocatalyst and Photocatalyst Design for Nitrogen Reduction. Small Methods. 2018;3:1800388.
2. Siddharth K, Hong Y, Qin X, et al. Surface engineering in improving activity of Pt nanocubes for ammonia electrooxidation reaction. Appl Catal B. 2020;269:118821.
3. Huang P, Liu W, He Z, et al. Single atom accelerates ammonia photosynthesis. Sci China Chem. 2018;61:1187-1196.
4. Ithuesuphalap K, Zhang H, Guo L, et al. Photocatalysis and Photocatalysis Methods of Nitrogen Reduction for Sustainable Ammonia Synthesis. Small Methods. 2018;3:1800352.
5. Legare MA, Belanger-Chabot G, Dewhurst RD, et al. Nitrogen fixation and reduction at boron. Science. 2018;359:896-900.
6. Brown KA, Harris DF, Wilker MB, et al. Light-driven dinitrogen reduction catalyzed by a CdS:niitrogenase MoFe protein biohybrid. Science. 2016;352:448-450.
7. Guo C, Ran J, Vasileff A, Qiao S-Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ Sci. 2018;11:45-56.
8. Du L, Shao YY, Sun JM, et al. Electrocatalytic valorisation of biomass derived chemicals. Catal Sci Technol. 2018;8:3216-3232.
9. Suryanto BHR, Du H-L, Wang D, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat Catal. 2019;2:290-296.
10. Shipman MA, Symes MD. Recent progress towards the electro-synthesis of ammonia from sustainable resources. Catal Today. 2017;286:57-68.
11. Zhao J, Chen Z. Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. J Am Chem Soc. 2017;139:12480-12487.
12. Sun W, Du L, Du C, Gao Y, Yin G. Three-dimensional layered double hydroxides on carbon nanofibers: The engineered mass transfer channels and active sites towards oxygen evolution reaction. Appl Surf Sci. 2019;485:41-47.
13. Sun J, Du L, Sun B, et al. Bifunctional LaMn0.3Co0.7O3 perovskite oxide catalyst for oxygen reduction and evolution reactions: the optimized eg electronic structures by manganese dopant. ACS Appl Mater Interfaces. 2020;12:24717-24725.
14. Sun J, Du L, Sun B, et al. A bifunctional perovskite oxide catalyst: The triggered oxygen reduction(evolution electrocatalysis by moderated Mn-Ni co-doping. J Energy Chem. 2020;54:217-224.
15. Du L, Xing L, Zhang G, Dubois M, Sun S. Strategies for engineering high-performance PGM-free catalysts toward oxygen reduction and evolution reactions. Small Methods. 2020;4.
16. Du L, Luo L, Feng Z, et al. Nitrogen–Doped Graphitized Carbon Shell Encapsulated NiFe Nanoparticles: A Highly Durable Oxygen Evolution Catalyst. Nano Energy. 2017;39:245-252.
17. Mukherjee S, Cullen DA, Karakalos S, et al. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy. 2018;48:217-226.
18. Zhang L, Ding L, Chen GF, Yang X, Wang H. Ammonia Synthesis Under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets. Angew Chem Int Ed. 2019;58:2612-2616.
19. Qiu W, Xie XY, Qiu J, et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat Commun. 2018;9:3485.
20. Xia L, Yang J, Wang H, et al. Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation. Nat Commun. 2019;55:3371-3374.
21. Liu Y, Su Y, Quan X, et al. Facile Ammonia Synthesis from Electrocatalytic N2 Reduction under Ambient Conditions on N-Doped Porous Carbon. ACS Catal. 2018;8:1186-1191.
22. Zhao C, Zhang S, Han M, et al. Ambient Electrosynthesis of Ammonia on a Biomass-Derived Nitrogen-Doped Porous Carbon Electrocatalyst: Contribution of Pyridinic Nitrogen. ACS Energy Lett. 2019;4:377-383.
23. Wu T, Li P, Wang H, et al. Biomass-derived oxygen-doped hollow carbon microtubes for electrocatalytic N2-to-NH3 fixation under ambient conditions. Chem Commun. 2019;55:2684-2687.
24. Xia L, Wu X, Wang Y, et al. S-Doped Carbon Nanospheres: An Efficient Electrocatalyst toward Artificial N2 Fixation to NH3. Small Methods. 2018;3:1800251.
25. Zhao J, Yang J, Ji L, et al. Defect-rich fluorographene nanosheets for artificial N2 fixation under ambient conditions. Chem Commun. 2019;55:4266-4269.

26. Lv C, Qian Y, Yan C, et al. Defect Engineering Metal-Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angew Chem Int Ed. 2018;57:10246-10250.

27. Yang X, Li K, Cheng D, et al. Nitrogen-doped porous carbon: highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction. J Mater Chem A. 2018;6:7762-7769.

28. Chen C, Yan D, Wang Y, et al. BN Pairs Enriched Defective Carbon Nanosheets for Ammonia Synthesis with High Efficiency. Small. 2019;15:e1805029.

29. Song P, Wang H, Kang L, et al. Electrochemical nitrogen reduction to ammonia at ambient conditions on nitrogen and phosphorus co-doped porous carbon. Chem Commun. 2019;55:687-690.

30. Song Y, Johnson D, Peng R, et al. A physical catalyst for the electrolysis of nitrogen to ammonia. Sci Adv. 2018;4:e1700336.

31. Li W, Wu T, Zhang S, et al. Nitrogen-free commercial carbon cloth with rich defects for electrocatalytic ammonia synthesis under ambient conditions. Chem Commun. 2018;54:11188-11191.

32. Wang H, Wang L, Wang Q, et al. Ambient Electroosynthesis of Ammonia: Electrode Porosity and Composition Engineering. Angew Chem Int Ed. 2018;57:12360-12364.

33. Geng Z, Liu Y, Kong X, et al. Achieving a Record-High Yield Rate of 120.9 μgNH3 mgcat.-1 h-1 for N2 Electrochemical Reduction over Ru Single-Atom Catalysts. Adv Mater. 2018;30:1803498.

34. Wang H, Li Y, Li C, et al. One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for electrocatalytic nitrogen reduction to ammonia. J Mater Chem A. 2019;7:801-805.

35. Wang H, Li Y, Yang D, et al. Direct fabrication of bi-metallic PdRu nanorod assemblies for electrochemical ammonia synthesis. Nanoscale. 2019;11:5499-5505.

36. Wang Z, Li Y, Yu H, et al. Ambient Electrochemical Synthesis of Ammonia from Nitrogen and Water Catalyzed by Flower-Like Gold Microstructures. ChemSusChem. 2018;11:3480-3485.

37. Shi MM, Bao D, Wulan BR, et al. Au Sub-Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions. Adv Mater. 2017;29:1606550.

38. Kumar RD, Wang Z, Li C, et al. Trimetallic PdCuIr with long-spined sea-urchin-like morphology for ambient electroreduction of nitrogen to ammonia. J Mater Chem A. 2019;7:3190-3196.

39. Liu H-M, Han S-H, Zhao Y, et al. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J Mater Chem A. 2018;6:3211-3217.

40. Qin Q, Heil T, Antonietti M, Oschatz M. Single-Site Gold Catalysts on Hierarchical N-Doped Porous Noble Carbon for Enhanced Electrochemical Reduction of Nitrogen. Small Methods. 2018;2:1800202.

41. Li SJ, Bao D, Shi MM, et al. Amorphizing of Au Nanoparticles by CeOx-RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions. Adv Mater. 2017;29:1700001.

42. Shi M-M, Bao D, Li S-J, et al. Anchoring PdCu Amorphous Nanocluster on Graphene for Electrochemical Reduction of N2 to NH3 under Ambient Conditions in Aqueous Solution. Adv Energy Mater. 2018;8:1800124.

43. Suryanto BHR, Wang D, Azofra LM, et al. MoS2 Polymorph Engineering Enhances Selectivity in the Electrochemical Reduction of Nitrogen to Ammonia. ACS Energy Lett. 2018;4:430-435.

44. Wang X, Wang W, Qiao M, et al. Atomically dispersed Au catalyst towards efficient electrochemical synthesis of ammonia. Sci Bull. 2018;63:1246-1253.

45. Wang J, Yu L, Hu L, et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat Commun. 2018;9:1795.

46. Wang D, Azofra LM, Harb M, et al. Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions. ChemSusChem. 2018;11:3416-3422.

47. Manjunatha R, Schechter A. Electrochemical synthesis of ammonia using ruthenium–platinum alloy at ambient pressure and low temperature. Electrochim Commun. 2018;90:96-100.

48. Wang H, Yu H, Wang Z, et al. Electrochemical Fabrication of Porous Au Film on Ni Foam for Nitrogen Reduction to Ammonia. Small. 2019;15:e1804769.

49. Nazemi M, El-Sayed MA. Electrochemical Synthesis of Ammonia from N2 and H2O under Ambient Conditions Using Pore-Size-Controlled Hollow Gold Nanocatalysts with Tunable Plasmonic Properties. J Phys Chem Lett. 2018;9:5160-5166.

50. Nazemi M, Panikkanvalappil SR, El-Sayed MA. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy. 2018;49:316-323.

51. Huang H, Xia L, Shi X, Asiri AM, Sun X. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem Commun. 2018;54:11427-11430.

52. Bao D, Zhang Q, Meng FL, et al. Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle. Adv Mater. 2017;29:1604799.

53. Hao Y-C, Guo Y, Chen L-W, et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat Catal. 2019;2:448-456.

54. Ren X, Zhao J, Wei Q, et al. High-Performance N2-to-NH3 Conversion Electrocatalyzed by Mo2C Nanorod. ACS Cent Sci. 2019;5:116-121.

55. Huang L, Wu J, Han P, et al. NbO2 Electrocatalyst Toward 32% Faradaic Efficiency for N2 Fixation. Small Methods. 2018;3:1800386.

56. Han J, Liu Z, Ma Y, et al. Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy. 2018;52:264-270.

57. Ren X, Cui G, Chen L, et al. Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst. Chem Commun. 2018;54:8474-8477.

58. Zhao X, Lan X, Yu D, et al. Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions. Chem Commun. 2018;54:13010-13013.

59. Wang Y, Cui X, Zhao J, et al. Rational Design of Fe-N/C Hybrid for Enhanced Nitrogen Reduction Electrocatalysis
under Ambient Conditions in Aqueous Solution. *ACS Catal.* 2018;9:336-344.

60. Wang M, Liu S, Qian T, et al. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. *Nat Commun.* 2019;10:341.

61. Han L, Liu X, Chen J, et al. Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. *Angew Chem Int Ed.* 2019;58:2321-2325.

62. Fang Y, Liu Z, Han J, et al. High-Performance Electrocatalytic Conversion of N2 to NH3 Using Oxygen-Vacancy-Rich TiO2 In Situ Grown on Ti3C2Tx MXene. *Adv Energy Mater.* 2019;9:1803406.

63. Han J, Ji X, Ren X, et al. MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3. *J Mater Chem A.* 2018;6:12974-12977.

64. Du H, Guo X, Kong RM, Qu F. Cr2O3 nanofiber: a high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. *Chem Commun.* 2018;54:12848-12851.

65. Lv C, Yan C, Chen G, et al. An Amorphous Noble-Metal-Free Electro catalyst that Enables Nitrogen Fixation under Ambient Conditions. *Angew Chem Int Ed.* 2018;57:6073-6076.

66. Zhang G, Ji Q, Zhang K, et al. Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation. *Nano Energy.* 2019;59:10-16.

67. Zhao J, Zhang L, Xie X-Y, et al. Ti3C2Tx (T = F, OH) MXene nanosheets: conductive 2D catalysts for ambient hydrogenation of N2 to NH3. *J Mater Chem A.* 2018;6:24031-24035.

68. Manjunatha R, Karajic A, Goldstein V, Schechter A. Electrochemical Ammonia Generation Directly from Nitrogen and Air Using an Iron-Oxide/Titania-Based Catalyst at Ambient Conditions. *ACS Appl Mater Interfaces.* 2019;11:7981-7989.

69. Guo W, Liang Z, Zhao J, et al. Hierarchical Cobalt Phosphide Hollow Nanocages toward Electro catalytic Ammonia Synthesis under Ambient Pressure and Room Temperature. *Small Methods.* 2018;2:1800204.

70. Liu Y, Han M, Xiong Q, et al. Dramatically Enhanced Ambient Ammonia Electro synthesis Performance by In-Operando Created Li–S Interactions on MoS2 Electro catalyst. *Adv Energy Mater.* 2019;9:1803935.

71. Li X, Ren X, Liu X, et al. A MoS2 nanosheet–reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions. *J Mater Chem A.* 2019;7:2524-2528.

72. Zhu X, Liu Z, Liu Q, et al. Efficient and durable N2 reduction electrocatalysis under ambient conditions: beta-FeOOH nanorods as a non-noble-metal catalyst. *Chem Commun.* 2018;54:11332-11335.

73. Zhang X, Liu Q, Shi X, et al. TiO2 nanoparticles–reduced graphene oxide hybrid: an efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. *J Mater Chem A.* 2018;6:17303-17306.

74. Chu K, Liu Y-p, Li Y-b, Zhang H, Tian Y. Efficient electrocatalytic N2 reduction on CoO quantum dots. *J Mater Chem A.* 2019;7:4389-4394.

75. Huang H, Gong F, Wang Y, et al. Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions. *Nano Res.* 2019;12:1093-1098.

76. Li X, Li T, Ma Y, et al. Boosted Electrocatalytic N2 Reduction to NH3 by Defect-Rich MoS2 Nanoflower. *Adv Energy Mater.* 2018;8:1801357.

77. Zhang Y, Qiu W, Ma Y, et al. High-Performance Electrohydrogenation of N2 to NH3 Catalyzed by Multishelled Hollow Cr2O3 Microspheres under Ambient Conditions. *ACS Catal.* 2018;8:8540-8544.

78. Li L, Tang C, Xia B, et al. Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electro catalytic Nitrogen Reduction. *ACS Catal.* 2019;9:2902-2908.

79. Xiang W, Wang Z, Shi X, Fan M, Sun X. Ammonia Synthesis from Electro catalytic N2 Reduction under Ambient Conditions by Fe2O3 Nanorods. *ChemCatChem.* 2018;10:4530-4535.

80. Wu X, Xia L, Wang Y, et al. Mn3O4 Nanocube: An Efficient Electrocatalyst Toward Artificial N2 Fixation to NH3. *Small.* 2018;14:e1803111.

81. Zhang S, Zhao C, Liu Y, et al. Cu doping in CeO2 to form multiple oxygen vacancies for dramatically enhanced ambient N2 reduction performance. *Chem Commun.* 2019;55:2952-2955.

82. Liu Q, Zhang X, Zhang B, et al. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. *Nanoscale.* 2018;10:14386-14389.

83. Chen S, Perathoner S, Ampelli C, et al. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electro catalyst. *Angew Chem Int Ed.* 2017;56:2699-2703.

84. Zhang X, Kong RM, Du H, Xia L, Qu F. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions. *Chem Commun.* 2018;54:5323-5325.

85. Zhang L, Ji X, Ren X, et al. Efficient Electro catalytic N2 Reduction to NH3 on MoN Nanosheets Array under Ambient Conditions. *ACS Sustainable Chem Eng.* 2018;6:9550-9554.

86. Zhang L, Ren X, Luo Y, et al. Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles. *Chem Commun.* 2018;54:12966-12969.

87. Zhang R, Zhang Y, Ren X, et al. High-Efficiency Electro synthesis of Ammonia with High Selectivity under Ambient Conditions Enabled by VN Nanosheet Array. *ACS Sustainable Chem Eng.* 2018;6:9545-9549.

88. Zhang R, Ren X, Shi X, et al. Enabling Effective Electro catalytic N2 Conversion to NH3 by the TiO2 Nanosheets Array under Ambient Conditions. *ACS Appl Mater Interfaces.* 2018;10:28251-28255.

89. Yang L, Wu T, Zhang R, et al. Insights into defective TiO2 in electro catalytic N2 reduction: combining theoretical and experimental studies. *Nanoscale.* 2019;11:1555-1562.

90. Zhang L, Ji X, Ren X, et al. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies. *Adv Mater.* 2018;30:e1800191.

91. Luo Y, Chen G-P, Ding L, et al. Efficient Electro catalytic N2 Fixation with MXene under Ambient Conditions. *Joule.* 2019;3:279-289.

92. Yang D, Chen T, Wang Z. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. *J Mater Chem A.* 2017;5:18967-18971.
93. Suryanto BHR, Kang CSM, Wang D, et al. Rational Electrode–Electrolyte Design for Efficient Ammonia Electrosynthesis under Ambient Conditions. ACS Energy Lett. 2018;3:1219-1224.

94. Hu L, Khaniya A, Wang J, et al. Ambient Electrochemical Ammonia Synthesis with High Selectivity on Fe/Fe Oxide Catalyst. ACS Catal. 2018;8:9312-9319.

95. Stamenkovic VR, Strmčnik D, Lopes PP, Markovic NM. Energy and fuels from electrochemical interfaces. Nat Mater. 2016;16:57-69.

96. Deng J, Deng D, Bao X. Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective. Adv Mater. 2017;29:1606967.

97. Yang L, Shui J, Du L, et al. Carbon-Based Metal-Free ORR Electro catalysts for Fuel Cells: Past, Present, and Future. Adv Mater. 2019;31:e1804799.

98. Duan X, Xu J, Wei Z, et al. Metal-Free Carbon Materials for CO2 Electrochemical Reduction. Adv Mater. 2017;29:1701764.

99. Zhao S, Lu X, Wang L, Gale J, Amal R. Carbon-Based Metal-Free Catalysts for Electro catalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions. Adv Mater. 2019;31:e1805367.

100. Zhao S, Wang DW, Amal R, Dai L. Carbon-Based Metal-Free Catalysts for Key Reactions Involved in Energy Conversion and Storage. Adv Mater. 2018;31:e1801526.

101. Deng J, Liu C. Boron-Doped Graphene Catalyzes Dinitrogen Fixation with Electricity. Chem. 2018;4:1773-1774.

102. Guo D, Shibuya R, Akiba C, et al. Active Sites of Nitrogen-Doped Carbon Materials for Oxygen Reduction Reaction Clarified Using Model Catalysts. Science. 2016;351:361-365.

103. Skulason E, Bligaard T, Gudmundsdottir S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys Chem Chem Phys. 2012;14:1235-1245.

104. Seh ZW, Kibsgaard J, Dickens CF, et al. Combining Theory and Experiment in Electro catalysis: Insights into Materials Design. Science. 2017;355:eaad4998.

105. Zhao M, Xu L, Vara M, et al. Synthesis of Ru Icosahedral Nanocages with a Face-Centered-Cubic Structure and Evaluation of Their Catalytic Properties. ACS Catal. 2018;8:6948-6960.

106. Höskuldsson AB, Abghoui Y, Gunnarsdóttir AB, Skúlason E. Computational Screening of Rutile Oxides for Electrochemical Ammonia Formation. ACS Sustainable Chem Eng. 2017;5:10327-10333.

107. Tao H, Choi C, Ding L-X, et al. Nitrogen Fixation by Ru Single-Atom Electro catalytic Reduction. Chem. 2019;5:204-214.

108. Du L, Zhang S, Chen G, et al. Polyelectrolyte Assisted Synthesis and Enhanced Oxygen Reduction Activity of Pt Nanocrystals with Controllable Shape and Size. ACS Appl Mater Interfaces. 2014;6:14043-14049.

109. Wang D, Xiao L, Yang P, et al. Dual-nitrogen-source engineered Fe-Nx moieties as a booster to oxygen electroreduction. J Mater Chem A. 2019;7:11007-11015.

110. Du L, Prabhakaran V, Xie X, et al. Low-PGM and PGM-free catalysts for proton exchange membrane fuel cells: stability challenges and material solutions. Adv Mater. 2021;33:1908232.

111. Li XF, Li QK, Cheng J, et al. Conversion of Dinitrogen to Ammonia by FeN3-Embedded Graphene. J Am Chem Soc. 2016;138:8706-8709.

112. Mikosch H, Uzunova EL, St Nikolov G. Interaction of molecular nitrogen and oxygen with extraframework cations in zeolites with double six-membered rings of oxygen-bridged silicon and aluminum atoms: a DFT study. J Phys Chem B. 2005;109:11119-11125.

113. Hu L, Xing Z, Feng X. Understanding the Electro catalytic Interface for Ambient Ammonia Synthesis. ACS Energy Lett. 2020;5:430-436.

114. Matson BD, Peters JC. Fe-mediated HER vs N2RR: Exploring Factors that Contribute to Selectivity in P3EFe(N2) (E = B, Si, C) Catalyst Model Systems. ACS Catal. 2018;8:1448-1455.

115. Montoya JH, Tsai C, Vojvodic A, Norskov JK. The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations. ChemSusChem. 2015;8:2180-2186.

116. Cheng H, Ding LX, Chen GF, et al. Molybdenum Carbide Nanodots Enable Efficient Electro catalytic Nitrogen Fixation under Ambient Conditions. Adv Mater. 2018;30:e1803694.

117. Choi C, Back S, Kim N-Y, et al. Suppression of Hydrogen Evolution Reaction in Electrochemical N2 Reduction Using Single-Atom Catalysts: A Computational Guideline. ACS Catal. 2018;8:7517-7525.

118. Lee HK, Koh CSL, Lee YH, et al. Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci Adv. 2018;4:eaar3208.

119. Zhou F, Azofra LM, Ali M, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ Sci. 2017;10:2516-2520.

120. Kim K, Lee N, Yoo C-Y, et al. Communication—Electrochemical Reduction of Nitrogen to Ammonia in 2-Propanol under Ambient Temperature and Pressure. J Electrochem Soc. 2016;163:F610.

121. Zhao W, Zhang L, Luo Q, et al. Single Mo1(Cr1) Atom on Nitrogen-Doped Graphene Enables Highly Selective Electroreduction of Nitrogen into Ammonia. ACS Catal. 2019;9:3419-3425.

122. Chen ZW, Yan JM, Jiang Q, Single or Double: Which Is the Altar of Atomic Catalysts for Nitrogen Reduction Reaction. Small Methods. 2018;3:1800291.

123. Abghoui Y, Garden AL, Howalt JG, Vegge T, Skúlason E. Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments. ACS Catal. 2015;5:635-646.

124. Back S, Jung Y. On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. Phys Chem Chem Phys. 2016;18:9161-9166.

125. Yao Y, Zhu S, Wang H, Li H, Shao M. A Spectroscopic Study on the Nitrogen Electrochemical Reduction Reaction on Gold and Platinum Surfaces. J Am Chem Soc. 2018;140:1496-1501.

126. Yang X, Nash J, Anibal J, et al. Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles. J Am Chem Soc. 2018;140:13387-13391.

127. Andersen SZ, Colic V, Yang S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature. 2019;570:504-508.

128. Hu B, Hu M, Seefeldt L, Liu TL. Electrochemical Dinitrogen Reduction to Ammonia by Mo2N: Catalysis or Decomposition. ACS Energy Lett. 2019;4:1053-1054.

129. Chen Y, Liu H, Na N, et al. Revealing nitrogen-containing species in commercial catalysts used for ammonia electrosynthesis. Nature Catalysis. 2020;3:1055–1061.
130. Ye Y, Cai F, Li H, et al. Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. *Nano Energy*. 2017;38:281-289.

131. Dinh CT, Burdyny T, Klibia MG, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. *Science*. 2018;360:783-787.

132. Du L, Shao YY, Sun JM, et al. Advanced catalyst supports for PEM fuel cell cathodes. *Nano Energy*. 2016;29:314-322.

133. Genorio B, Strmcnik D, Subbaraman R, et al. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. *Nat Mater*. 2010;9:998-1003.

134. Xie X, Song M, Wang L, et al. Electrocatalytic hydrogen evolution in neutral pH solutions: dual phase synergy. *ACS Catal*. 2019;9:8712-8718.

135. Herranz J, Durst J, Fabbri E, et al. Interfacial Effects on The Catalysis of The Hydrogen Evolution, Oxygen Evolution and CO2-Reduction Reactions for (co-)Electrolyzer Development. *Nano Energy*. 2016;29:4-28.

136. Chen Z, Zhang G, Prakash J, Zheng Y, Sun S. Rational Design of Novel Catalysts with Atomic Layer Deposition for the Reduction of Carbon Dioxide. *Adv Energy Mater*. 2019;9:1900889.

137. Kim K, Yoo C-Y, Kim J-N, Yoon HC, Han J-I. Electrochemical Synthesis of Ammonia from Water and Nitrogen in Ethylenediamine under Ambient Temperature and Pressure. *J Electrochem Soc*. 2016;163:F1523-F1526.

138. Köleli F, Röpke T. Electrocatalytic hydrogenation of dinitrogen to ammonia on a polyaniline electrode. *Appl Catal, B*. 2006;62:306-310.

139. McEnaney JM, Singh AR, Schwalbe JA, et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. *Energy Environ Sci*. 2017;10:1621-1630.

140. Chen S, Perathoner S, Ampelli C, et al. Room-Temperature Electrocatalytic Synthesis of NH3 from H2O and N2 in a Gas-Liquid–Solid Three-Phase Reactor. *ACS Sustainable Chem Eng*. 2017;5:7393-7400.

141. Kong J, Lim A, Yoon C, et al. Electrochemical Synthesis of NH3 at Low Temperature and Atmospheric Pressure Using a γ-Fe2O3 Catalyst. *ACS Sustainable Chem Eng*. 2017;5:10986-10995.

142. Cui X, Tang C, Zhang Q. A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. *Adv Energy Mater*. 2018;8:1800369.

143. Nash J, Yang X, Anibal J, et al. Electrocatalytic Nitrogen Reduction Reaction on Noble Metal Catalysts in Proton and Hydroxide Exchange Membrane Electrolyzers. *J Electrochem Soc*. 2017;164:F1712-F1716.

144. Du L, Lou S, Chen G, et al. Direct dimethyl ether fuel cells with low platinum-group-metal loading at anode: Investigations of operating temperatures and anode Pt/Ru ratios. *J Power Sources*. 2019;433:126690.

145. Lan R, Irvine JT, Tao S. Synthesis of ammonia directly from air and water at ambient temperature and pressure. *Sci Rep*. 2013;3:1145.

146. Xia C, Xia Y, Zhu P, Fan L, Wang H. Direct electrolysisthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. *Science*. 2019;366:226-231.

147. Xia C, Zhu P, Jiang Q, et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. *Nat Energy*. 2019;4:776-785.

AUTHOR BIOGRAPHIES

Lei Du was a postdoctoral fellow in Prof. Shuhui Sun’s group at the Institut National de la Recherche Scientifique (INRS) and is currently a lecturer at Harbin Institute of Technology (China). He received his PhD degree in 2017 from Harbin Institute of Technology. He also studied at the Pacific Northwest National Laboratory and Washington State University as a visiting student during his PhD period. His main research interests include chemical conversion in electrocatalysis, mechanism, and devices.

Gaixia Zhang is a research fellow at the Institut National de la Recherche Scientifique (INRS), center for Energy, Materials, and Telecommunications, Canada. She received her PhD degree from École Polytechnique, Université de Montréal, followed by postdoctoral training at the University of Western Ontario. Her current research interests are focused on nanomaterials (eg, graphene, MOF-derived, and biomass-based materials) for PEM fuel cells, metal-ion and metal-air batteries, as well as wastewater treatment.

Shuhui Sun is a Full Professor at the Institut National de la Recherche Scientifique (INRS), center for Energy, Materials, and Telecommunications, Canada, and a member of the Royal Society of Canada’s College of New Scholars. His research focuses on functional nanomaterials for energy conversion/storage and environmental applications, such as PEM fuel cells (low-Pt and Pt-free catalysts), Li-/Na-/Zn-ion batteries, metal-air batteries, CO2 reduction, and water splitting for hydrogen production. He has published over 210 peer-reviewed journal articles with citations of over 11,500 times, and edited 3 books and 15 book chapters. His research has been recognized by many awards such as the Canadian Catalysis Lectureship Award, member of Global Young Academy, ECS-Toyota Young Investigator Fellow, IUPAC Novel Materials Youth Prize, Canada.
Governor General’s Academic Gold Medal, and the NSERC Alexander Graham Bell Canada fellowship. He is the Vice President of the International Academy of Electrochemical Energy Science (IAOEES). He serves as the Executive Editor-in-chief of Electrochemical Energy Reviews (EER), and the editor/editorial board of 8 journals related to nanomaterials and sustainable energy.

How to cite this article: Du L, Xing Li, Zhang G, Liu X, Rawach D, Sun S. Engineering of electrocatalyst/electrolyte interface for ambient ammonia synthesis. SusMat. 2021;1:150–173. https://doi.org/10.1002/sus2.7