I-PfoP3I: A Novel Nicking HNH Homing Endonuclease Encoded in the Group I Intron of the DNA Polymerase Gene in *Phormidium foveolarum* Phage Pf-WMP3

Shuanglei Kong, Xinyao Liu, Liwen Fu, Xiangchun Yu, Chengcai An*

State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China

Abstract

Homing endonucleases encoded in a group I self-splicing intron in a protein-coding gene in cyanophage genomes have not been reported, apart from some free-standing homing endonucleases. In this study, a nicking DNA endonuclease, I-PfoP3I, encoded in a group IA2 intron in the DNA polymerase gene of a T7-like cyanophage PF-WMP3, which infects the freshwater cyanobacterium *Phormidium foveolarum* is described. The PF-WMP3 intron splices efficiently in *vitro* and self-splices in *vivo* simultaneously during transcription. I-PfoP3I belongs to the HNH family with an unconventional C-terminal HNH motif. I-PfoP3I nicks the intron-minus PF-WMP3 DNA polymerase gene more efficiently than the PF-WMP4 DNA polymerase gene that lacks any intervening sequence in *vitro*, indicating the variable capacity of I-PfoP3I. I-PfoP3I cleaves 4 nt upstream of the intron insertion site on the coding strand of EXON 1 on both intron-minus PF-WMP3 and PF-WMP4 DNA polymerase genes. Using an in *vitro* cleavage assay and scanning deletion mutants of the intronless target site, the minimal recognition site was determined to be a 14 bp region downstream of the cut site. I-PfoP3I requires Mg$^{2+}$, Ca$^{2+}$ or Mn$^{2+}$ for nicking activity. Phylogenetic analysis suggests that the intron and homing endonuclease gene elements might be inserted in PF-WMP3 genome individually after differentiation from PF-WMP4. To our knowledge, this is the first report of the presence of a group I self-splicing intron encoding a functional homing endonuclease in a protein-coding gene in a cyanophage genome.

These two nicking HEases are encoded in group I introns in the DNA polymerase genes of *B. subtilis* phages SP01 and SP82 [11]. HEases are divided into five families based on conserved nuclease active-site core motifs, catalytic mechanisms, biological distributions and wider relationships to non-homing nuclease systems. They are LAGLIDADG, HNH, His-Cys box, GIY-YIG and PD-(D/E)-XK motif in one HEase I-Ssp6803I [12,13,14]. HEases recognize extremely specific target sites spanning 14–40 bp. This means that cleavage by HEases is rare, making them possible to be used in genome engineering and gene therapy by highly efficient gene targeting in mammalian cells [15,16]. However, HEases are tolerant to a variety of sequence variations within the recognition sequences [9].

Introduction

Group I introns are self-splicing RNA sequences that are inserted into genes of a diverse range of bacteriophages of gram-negative bacteria, gram-positive bacteria and cyanobacteria. Most introns have been encountered in phages of *Mycoviridae* or *Siphoviridae* family such as *Escherichia coli* phage T4 [1], *Bacillus subtilis* phage SPO1 [2], marine cyanomyovirus S-PM 2 [3,4,5] or *Xanthomonas Campestris* phage phiL7 [6]. Although the first description of group I introns in T7-like enteric bacteria phages *Φ1* and W31 (*Podoviridae* family) in 2004 [7], group I introns in T7-like phages have not been widely reported since, especially in T7-like cyanobacteria phages.

Many group I introns contain reading frames encoding a homing endonuclease gene (HEG) which is described as selfish genetic element [8]. Homing endonucleases (HEases) cleave single (nick) or double (DSB) strands at or close to the intron insertion site (IIS), generating strand breaks in homologous alleles that lack the intervening sequence (IVS). Subsequently, the strand breaks are repaired by homologous recombination using the allele that contains the HEG as a template [9]. As a result, group I introns are transferred into a new site [10]. However, different from typical intron-encoded HEases, I-HmuI and I-HmuII can cleave both intron-plus and intronless versions of their cognate genes.
capacity of I-PfoP3I. The recognition site of I-PfoP3I covers base pairs 2 to 15 downstream of the cut site on the coding strand. The endonuclease activity of I-PfoP3I purified from E. coli was independent of any added divalent cations, but apo-I-PfoP3I (I-PfoP3I without metal co-factors) required one of the metal ions, Mg²⁺, Ca²⁺ or Mn²⁺ to resume the endonuclease activity. Phylogenetic analysis suggests that the intron and the HEG elements might be inserted in Pf-WMP3 genome individually after differentiation from Pf-WMP4.

Results

In vivo Splicing of the Group I Intron in Pf-WMP3 DNAP Gene

The intron of Pf-WMP3 DNAP gene was tested for in vivo splicing activity from the primary transcript by nonquantitative RT-PCR. P3f1 and P3r1 specific primers gave products of 630 bp from genomic DNA (Figure 1) and unspliced transcripts (Figure 2A, lane gDNA) and 178 bp from the spliced transcript (Figure 2A, lane cDNA). From Figure 2A, we can observe that RNA isolated from cells presented both unspliced and spliced DNAP mRNAs. Additionally, RT-PCR amplified product was cloned into pEASY-T1 cloning vector (TRANS) and sequenced near the 5' end of the intron, promoting an alignment between the 3' and 5' splicing sites required for the ligation of exons. The characteristic sequence elements with a terminal exonic uracil at the 5' spliced position forming a pair with guanosine in the P1 stem and a guanosine at the 3' end are typical in most group I introns.

The intron also has a typical ribosome binding site (RBS), located 6 to 12 bp upstream of the start codon. Like introns in DNAP genes of T7-like bacteriophages 7 [7] and W31 [7], the RBS of Pf-WMP3 intron may reduce overall expression of the HEase compared with the product DNAP (in whose transcript the HEG is embedded).

The Pf-WMP3 Intron Retards the Growth Rate of E. coli

Like some introns such as 26S rRNA intron from Tetrahymena thermophila [25] and 23S rRNA introns from Coxiella burnetii [26], the Pf-WMP3 intron displayed a significantly decreased growth rate relative to controls when expressed in E. coli. We monitored the growth rates of E. coli strains transformed with pETP3DNAP[P+int] and pETP4DNAP spectrophotometrically for 5 h. As shown in Figure 3, E. coli expressing the intron had a significant retarded growth rate when compared to the control after 0.05 mM IPTG was added.

Prediction of the Secondary Structure of the Intron

Group I introns share conserved secondary structure elements which are necessary for ribozyme activity [22]. The secondary structure of Pf-WMP3 intron was predicted by Mfold program [23] with manual correction according to conventions for group I introns. The introns of 7I and W31 [7] were referred to as models (Figure 2D). It folded into a typical group I intron structure with all conserved stem-loops P1 through P10 except P2. Secondary structure and the characteristic helical elements P7.1 and P7.2 linked by a G-U-A sequence in the intron assign it to subgroup IA2 [7,24]. The conserved secondary structure elements are necessary for proper folding and excision. The open reading frame (ORF) is predicted to start in the P6a region and to span the P7 region with 486 bp, contributing to key structure elements of P6a, P6, P7, P7.1 and P7.2. The intron has a 4-bp long P10 paring between the sequence around the start of 3' exon and a sequence near the 5' end of the intron, promoting an alignment between the 3' and 5' splicing sites required for the ligation of exons. The characteristic sequence elements with a terminal exonic uracil at the 5' spliced position forming a pair with guanosine in the P1 stem and a guanosine at the 3' end are typical in most group I introns.

Splicing of the Group I Intron in Pf-WMP3 DNAP Gene

To examine whether the intron can be excised in vitro from the primary transcript, intron sequence including flanking exons was cloned into pET-28a+ in a proper orientation. The DNAP [+int] gene was under the control of the T7 promoter. RNA was obtained using T7 RNA polymerase from XhoI linearized plasmid pETDNAP[+int] (Materials and methods). This produced an RNA transcript with a 709 base 5' exon, 672 base intron and 780 base 3' exon. PCR was done using cDNA (from RNA generated by in vitro transcription) with P3f3 and P3r2 primers that recognized the flanking exons (Figure 1). The PCR product was 312 bp in size, corresponding to the size of the ligated exons (Figure 2C). This result indicated that the intron was able to self-splice in vitro simultaneously during transcription [20,21]. Additionally, sequencing of the 312-bp PCR product confirmed correct exon ligation (data not shown).

Figure 1. Schematic diagram of PF-WMP3 and PF-WMP4 DNAP genes. A HNH HEase is encoded in the 672-bp intron in the PF-WMP3 DNAP gene compared to PF-WMP4 which does not contain any IVS. The half arrows indicate locations of oligonucleotides used. doi:10.1371/journal.pone.0043738.g001
The Pf-WMP3 Intron Encodes a Nicking DNA Endonuclease

As shown in Figure 1, the Pf-WMP3 DNAP gene was interrupted by a 672-bp intron, located between Pro363 and Asn364. This intron contains an ORF encoding a 161-amino-acid-residue putative HEase of the HNH family using the protein blast tool at NCBI [27] with default parameters. According to the suggested nomenclature for HEase [28], we named the ORF I-PfoP3I (Intron-encoded HEase, P. foveolarum phage Pf-WMP3, I). I-PfoP3I is inserted into the stem of P6a, which is the same location where the T7-like phages W1 and W31 encode HEases. There are eight subsets of proteins containing the HNHc domain. Subset 2 has mostly phage proteins which are intron-encoded site-specific endonucleases with the HNHc domain closer to the N-terminal end of the protein in contrast to the other subsets [29]. Figure 4A, B show the conserved HNH motif of I-PfoP3I and other five subset 2 HEases. The intron containing I-PfoP3I, I-HmuI, I-HmuII, I-BasI is inserted in exactly the same genomic position of the respective DNAP gene, but from very widely divergent phages.

To address the question of whether the Pf-WMP3 intron ORF encodes a functional endonuclease, I-PfoP3I was expressed including a His6 affinity tag at the C-terminal end. The expressed protein product was consistent with its predicted size (18.5 kDa) (Figure 5).

Figure 2. Splicing activity and predicted secondary structure of the group I intron of Pf-WMP3. A. In vivo splicing of the Pf-WMP3 intron. RNA isolated from Pf-WMP3-infected P. foveolarum was analyzed by reverse transcription. PCR was done using intron primers P3f1 and P3r1 on genomic DNA (gDNA), RNA before reverse transcription (RNA), cDNA and a no-template control (NTC). The times of RNA isolation (in minutes) after infection are indicated. An ethidium bromide-stained agarose gel (2% agarose [wt vol 2]) is shown. The sizes (in bases) of prominent bands of the DNA size standard (lane M) are indicated on the left. Post-infection times are indicated at the top left of each lane. B. Determination of the splicing point by DNA sequencing of RT-PCR products of in vivo spliced transcripts. T7 primer in pEASY-T1 was used. C. In vitro splicing analysis of the Pf-WMP3 intron. PCR was done using intron primers P3f3 and P3r2 on genomic DNA (gDNA), cDNA (RNA was from in vitro transcription), in vitro-transcribed RNA and a no-template control (NTC). An ethidium bromide-stained agarose gel (2% agarose [wt vol 2]) is shown. The sizes (in bases) of prominent bands of the DNA size standard (lane M) are indicated on the left. D. Predicted secondary structure of the group I intron of Pf-WMP3. Exon and intron sequences are in lower and upper case letters respectively. Filled arrows indicate 5′ and 3′ splice sites. Conserved structural elements P1 through P9 are shown. Boxed regions designate the P10 pairing. Gray boxes indicate the start and stop codons of the I-PfoP3I coding sequence. The line next to AGGAGGU in the stem P6b indicates the putative ribosomal binding site (RBS). The 438-nucleotide sequence of the intron-encoded ORF is indicated.

doi:10.1371/journal.pone.0043738.g002

Intron-Homing Endonuclease Element in Cyanophage

Plasmids pETP3DNAP[+int], pETP3DNAP[−int] and pETP4DNAP were used as substrates to detect supercoiled plasmid DNA cleavage by I-PfoP3I. pETP4DNAP contained DNAP gene from Pf-WMP4, which was isolated from Lake Weiming as Pf-WMP3 [17]. Both of the two phages infect the freshwater cyanobacterium P. foveolarum and they are closely related at the protein level and genome architecture [18]. However, DNAP gene from Pf-WMP4 did not contain any IVS. As shown in Figure 6A, a small amount of nicked products of plasmids pET28a and pETP3DNAP[+int] were generated by I-PfoP3I at 200 mM after 20 min. I-PfoP3I nicked the intron-minus Pf-WMP3 DNAP gene more efficiently than Pf-WMP4 DNAP gene. The supercoiled form of plasmid pETP3DNAP[−int] was completely converted to other forms by I-PfoP3I at 20 mM after 20 min while pETP4DNAP was completely converted to other forms by I-PfoP3I at 200 mM after 20 min.

As shown in Figure 6B, PCR products of Pf-WMP3 DNAP gene (intron-plus or intron-minus) and wild type Pf-WMP4 DNAP gene were used as substrates (10 nM). One strand of both intron-minus Pf-WMP3 DNAP gene and wild type Pf-WMP4 DNAP gene were cleaved by purified I-PfoP3I at 1000 nM after 20 min. No cleavage activity was detected on intron-plus Pf-WMP3 DNAP gene when incubated with I-PfoP3I under the same condition. No
activity was detected using purified protein derived from cells transformed with the expression plasmid pET28a(+) vector without insert (Figure 6B, Lane Control Protein). Substrates with 5' end-labeled on both strands showed a cleavage product about 1089 nt or 1053 nt in size, indicating that I-PfoP3I introduced a nick in the sense strand of EXON 1 of the target DNA. No cleavage of the antisense strand was detected under the same condition [30].

To characterize metal ions effect on the endonuclease activity of apo-I-PfoP3I, purified I-PfoP3I was first treated with EDTA to remove the endogenous ions bound to the enzyme expressed in E. coli. ~1 μM of EDTA remained in the protein solution, extracting any residual metal ions to eliminate any metal contamination. We found that the apo-I-PfoP3I did not cleave plasmid or PCR product DNA (Figure 7A, B, C). However, the endonuclease activity of apo-I-PfoP3I resumed by the presence of one of the metal ions, Mg²⁺, Ca²⁺ or Mn²⁺. The lowest Mg²⁺ concentration used to digest DNA completely is 1000 fold higher than the residual concentration of EDTA. Ca²⁺ and Mn²⁺ were able to activate apo-I-PfoP3I at 10 mM. Co²⁺ and Zn²⁺ make the assay system precipitate (data not shown). To test if the exogenous metal ions would enhance or inhibit endonuclease activity, the enzyme untreated with EDTA was incubated with Mg²⁺ at a concentration range of 0–125 mM. Cleavage analyses indicate that metal-bounding I-PfoP3I expressed in E. coli was independent of any divalent cations for activity. Lower concentration of Mg²⁺ had no effect on the nuclease activity of I-PfoP3I, while a higher concentration of Mg²⁺ was progressively detrimental to the enzyme activity. When the Mg²⁺ concentration reached 125 mM, that is ~10⁴-fold to I-PfoP3I, the Mg²⁺ ion completely inhibited the endonuclease activity (Figure 7D). The metal-bounding enzyme was precipitated in the presence of Mn²⁺, Zn²⁺ or Ca²⁺ (data not shown).

Figure 3. Effect of Pf-WMP3 intron on E. coli growth. E. coli cells expressing cloned partial Pf-WMP3 DNAP gene with intron or an irrelevant control RNA (pETP4DNAP) were induced with (0.05 mM) or without IPTG and assayed spectrophotometrically for growth at 37°C over 5 h. E. coli growth assays were performed three times and the averaged optical density was used to construct the growth curve. When the error bar cannot be seen, the deviation is less than the size of the symbol.
doi:10.1371/journal.pone.0043738.g003

Figure 4. Sequence features of HEases inserted into phage DNAP gene introns. A. Shown is I-PfoP3I and highly similar HNH HEases encoded within mobile introns found in DNAP host genes from phages SPO1 (I-Hmul), SP82 (I-Hmul), Bastile (I-BasI), W31 (I-TslI) and phiL7 (phiL7_gp45). Black boxes indicate the positions of the HNH motif in these endonucleases. B. Amino acid sequence alignment of the conserved HNH motif. Brackets indicate number of residues in front of and following the aligned sequence. The black bar indicates residues of the active site domain and black spheres indicate the most conserved Asn and His residues. Alignment was generated with Clustalw1.83. Conserved residues are shaded using the BOXSHADE 3.21 program (http://www.ch.embnet.org/software/BOX_form.html). GenBank accession numbers: I-Hmul (YP_002300418.1), I-Hmul (AAS56884.1), I-BasI (AA093095.1), I-TslI (AAV53690), phiL7_gp45 (ACE75785.1), I-PfoP3I (YP_001285778.1).
doi:10.1371/journal.pone.0043738.g004
Mapping of DNA Cleavage Site Introduced by I-PfoP3I

As shown in endonuclease activity assays, the breakpoints introduced by I-PfoP3I were located on the coding strands of both Pf-WMP3 and Pf-WMP4 DNA genes. Nucleotide sequencing was used to determine precise cleavage sites of I-PfoP3I. Both substrates were cleaved on the coding strands 4 nt upstream of the IIS despite considerable differences in the nucleotide sequence surrounding the cleavage site (Figure 8A, B). Pf-WMP3 intron was inserted in the same site as introns in SPO1, SP82 and Bastille according to the corresponding amino acid sequence alignment for related genes (Figure 8C). The fact that both substrates were cleaved at the same site of both Pf-WMP3 and Pf-WMP4 DNA genes indicates that I-PfoP3I binds homologous stretches of its respective DNA genes.

To map the approximate size of the recognition site, we focused our investigation on a 30 bp region surrounding the I-PfoP3I cleavage site in intronless Pf-WMP3 DNA gene. We used a PCR-based mutagenesis strategy to introduce site-directed 1 to 81 bp deletions into the region to make short wild-type flanking sequences either upstream or downstream of the IIS (Figure 9A). We presumed that deletion of base pairs within the recognition site would greatly reduce or eliminate cleavage of the substrate by I-PfoP3I [14]. Figure 9B shows that PCR products containing deletions extending from positions –5 to +11 (with respect to IIS) were cleaved with reduced efficiency (Figure 9B 8, 17, 21 and 22) or not cleaved by I-PfoP3I. Targets with deletions outside this region including base pairs around the cleavage site (Figure 9B 5–7, 23 and 24) showed full activity of I-PfoP3I cleavage. The results indicate that the sequence necessary for full cleavage activity by I-PfoP3I comprises at least 14 bp (Figure 9C). As shown in Figure 9D, plasmids pT1-23 and pT1-25 were used as substrates to detect supercoiled plasmid DNA cleavage by I-PfoP3I. pT1-23 contained the minimal recognition sequence and pT1-25 contained the same sequence with 14 bp sequence deleted (Figure 9A). I-PfoP3I nicked pT1-23 efficiently, confirming the short nicking site.

Phylogenetic Relationships of DNA Group I Introns and their HNH Proteins

The trees (Figure 10) demonstrated that most introns and HNH proteins in DNA gene of phages infecting the same host appeared to be more closely related. However, HNH proteins were closely related in Pf-WMP3 and phiL7, which are biogeographically and morphologically distantly related. Cyanophage Pf-WMP3 of Podoviridae family, infecting the freshwater cyanobacterium P. foveolarum, was found in Beijing, China. The lytic phage phiL7 of Siphoviridae family, infecting Xanthomonas campestris pv. campestris, was isolated in the laboratory in Taiwan [6]. The introns in Pf-WMP3 and PhiL7 are inserted in a similar position of their respective DNA genes and the HEases have a similar location of the HNH motif in the C-terminal half. It is possible that their HNH motifs and their DNA recognition sequences may be related.
Discussion

A group I Intron in the Genome of Cyanophage Pf-WMP3

Self-splicing group I introns are rarely found in T7-like phages. In this study, we show that the DNAP gene, an essential enzyme for the replication for phage DNA, carries a group I intron that is efficiently spliced in vivo and in vitro. The intron is inserted in the DNAP gene at the site 674 (E. coli numbering), homologous to the introns in SPO1, SP82 and Bastille, all of which are closely related phages infecting B. subtilis. Other two group I introns inserted in DNAP genes of W1 and W31 are at the site 881 [7]. The group I intron in Xanthomonas campestris phage phiL7 is inserted at the site 676 [6], indicating that there are at least three sites within these genes that can contain intron insertions (Figure 8C). Like other group I introns [31,32], the insertion site is located in a highly conserved region of functional importance within the coding sequence. According to the crystal structure of a bacteriophage T7 DNA replication complex, the insertion site is in the finger subdomain of DNAP [33]. A BLASTP search of the protein database using the I-PfoP3I amino acid sequence revealed only one protein to be highly similar, with maximum similarity in the C-termini, which contain the HNH motif, but conservation extending throughout, extending through the N-termini (which presumably contain the DNA binding regions). Interestingly, this presumptive HEase is from phage phiL7, whose intron is inserted into the homologous region of its DNAP gene. The E values of the subsequent BLASTP hits are much lower. The next two have good alignments with the HNH at their C-termini. But the very next one which is from Natronomonas aligns its N-terminal HNH region with the C-terminal motif in I-PfoP3I, as do almost all the remaining hits on the list. The proteins in this list are referred to as “putative” HEases or “hypothetical” proteins because their biochemical activities have not been determined. The co-crystal structure of I-HmuI, which includes the HNH motif in the N-terminal part (Figure 4A), displays a 2-domain arrangement with N-terminal catalytic and C-terminal DNA-binding domains (although significant specific DNA contacts are made near the N-terminus), leading to the proposal that these phage endonucleases have a two-domain structure [34].

A Functional HEase Encoded by this Intron

A BLASTP search of the protein database using the I-PfoP3I amino acid sequence revealed only one protein to be highly similar, with maximum similarity in the C-termini, which contain the HNH motif, but conservation extending throughout, extending through the N-termini (which presumably contain the DNA binding regions). Interestingly, this presumptive HEase is from phage phiL7, whose intron is inserted into the homologous region of its DNAP gene. The E values of the subsequent BLASTP hits are much lower. The next two have good alignments with the HNH at their C-termini. But the very next one which is from Natronomonas aligns its N-terminal HNH region with the C-terminal motif in I-PfoP3I, as do almost all the remaining hits on the list. The proteins in this list are referred to as “putative” HEases or “hypothetical” proteins because their biochemical activities have not been determined. The co-crystal structure of I-HmuI, which includes the HNH motif in the N-terminal part (Figure 4A), displays a 2-domain arrangement with N-terminal catalytic and C-terminal DNA-binding domains (although significant specific DNA contacts are made near the N-terminus), leading to the proposal that these phage endonucleases have a two-domain structure [34].

Apo-I-PfoP3I required one of the metal ions, Mg2+, Ca2+ or Mn2+ for endonuclease activity, indicative of a relatively relaxed divalent metal requirement (Figure 7C). However, the fact that I-PfoP3I
expressed and purified from *E. coli* cleaved DNA substrates independently of any divalent cations indicates that endogenous metal is sufficient for promoting the activity. A higher concentration of Mg\(^{2+}\) is progressively detrimental to the enzyme activity (Figure 7D).

From the results presented in Figure 6, we suggest that I-PfoP3I possess nicking activity *in vitro* as DNA endonucleases I-HmuI, I-HmuII and I-BasI encoded in the introns of phages SPO1, SP82 and Bastille respectively. All these five HEases belong to the HNH endonuclease family ([2], [3]). I-PfoP3I was unable to cleave intron-plus DNA, indicating the disruption to the target site caused by the acquisition of the intron. Although the plasmid pETP3DNAP[−int] became relaxed circular after exposure to the enzyme (Figure 6A), the nick could have occurred anywhere in the plasmid, not necessarily at the normal cleavage site of the enzyme. The recognition sequence for this enzyme is short (Figure 9) and a secondary cleavage site could be recognized at very high enzyme concentrations. I-HmuI, I-HmuII and I-BasI cleave the template strand of the homologous alleles ([30], [34]). I-PfoP3I produced a nick in the coding strand like HNH HEase I-Twod which is encoded in *nieE* gene of *Staphylococcus aureus* phage Twort ([31]). The incision that each of the five HNH HEases generates is 5\('\) of the IIS, independent of which stand is cleaved ([31]). Cleavage of the recipient DNA with HEase encoded within the intron makes the intron spread to cognate intron-less genes and persists in a host gene. As shown in Figure 9D, we compared the nt sequence flanking the cleavage site of the Pf-WMP3 and Pf-WMP4 DNA genes to those of HEases residing within group I introns of DNA genes such as I-HmuI, I-HmuII and I-BasI. I-Hmu cleaves 3 nt downstream of the IIS on both SPO1 and SP82 DNA genes in a region with few differences between them ([11]). In contrast, I-PfoP3I cleaves 4 nt upstream of the IIS on both intron-minus Pf-WMP3 DNA gene and PF-WMP4 DNA gene in a region with more differences between these two DNA genes, indicating the tolerance of multiple substitutions within the target sequences. From the results in Figure 9, we suggest that the recognition site of I-PfoP3I covers 2 to 13 bps downstream of the cut site (i.e. the recognition site covers 3 bp upstream and 11 bp downstream of IIS).

The Intron-HEG Element Might Insert in Pf-WMP3 Genome Individually after Differentiation from Pf-WMP4

Phylogenetic analysis suggests that these intron-HEG elements have been transferred horizontally among phages infecting similar hosts, indicating these elements can continue to persist into new populations or species via horizontal transfer ([36]). Pf-WMP4 is closely related to Pf-WMP3 in genome sequence, size and structure. However, Pf-WMP4 genome does not contain any IVS, suggesting that the intron-HEG element in Pf-WMP3 genome might be obtained after differentiation of these phages. Although Pf-WMP3 and *Xanthomonas campestris* phage phiL7 contain close IISs and closely related HNH proteins, the group I introns of these two phages are distant respectively ([10]). This might favor the model that the chimeric mobile element was formed by group I introns and HEGs individually targeting the same set of highly conserved DNA sequences for insertion and cleavage respectively ([37]).

In cyanophages, HEases were only reported as free-standing HEases such as F-CphiI found in S-PM2 ([4]) and some similar HEases. All of these HEases are encoded adjacent to an intron-containing *psbA* gene, encoding the D1 core component of the photosynthetic reaction center PSII ([photosystem II]) ([5]). Apart from these HEases, this is the first report of the presence of a functional HEase encoded in
a group I self-splicing intron in a protein-coding gene (DNAP gene) in a cyanophage genome.

Materials and Methods

Cyanobacterial Strains, Phages, Media and General Methods

P. foveolarum was purchased from the Freshwater Algae Culture Collection of the Institute of Hydrobiology, Chinese Academy of Sciences. It was inoculated in BG11 medium supplemented with NaNO₃ (1.5 g l⁻¹) and incubated at 28°C under continuous fluorescent light (28 microeinsteins m⁻² s⁻¹) [38]. PF-WMP3 and PF-WMP4 were obtained from a surface water sample from Lake Weiming in Peking University of Beijing City in People’s Republic of China, on July 22, 2003. After water samples were filtered through a 0.22-μm filter (Millipore), the filters were mixed with exponentially growing cultures of *P. foveolarum* and then spread.

Figure 8. The cleavage sites and the host target site reading frame. (A, B) Determination of the cleavage sites by direct DNA sequencing of cleaved PCR products of PF-WMPP3 DNAP gene and PF-WMP4 DNAP gene using reverse primers P3r1 and P4r1, respectively. Taq DNA polymerase was used for sequencing and a non-template 3’ A was added. C. The corresponding amino acid sequence alignment for related DNAP genes, including the three IISs. The alignment was generated and the conserved residues were shaded as before. GenBank accession numbers: PF-WMP3 (ABQ12452), PF-WMP4 (YP_762649), SPO1 (P30314), SP82 (S53691), Bastille (AAO63094.1), phiL7 (YP_002922660), E. coli (P00582), Taq (BAA06775). The arrows indicate the IIS. Numbers in parenthesis indicate *E. coli* numbering. Organisms and their IISs in the DNAP gene are in the same color. Numbers in brackets indicate numbers of residues in front of and following the aligned sequence. D. Comparison of DNA cleavage sites of four HNH endonucleases encoded in phage group I introns in DNAP genes. The sequences of the coding strands of five DNAP genes are presented. The alignment was generated and the conserved residues were shaded as before. GenBank accession numbers for nt sequences as follows: PF-WMP3 (EF537008.1: 9191.10279, EF537008.1: 10952.11731), PF-WMP4 (NC_008367.1: 10336.12228), Bastille (AY256517), SPO1 (SP1GP31A), SP82 (BSU04812). The filled arrows indicate IIS, the open arrows indicate cleavage position of the PF-WMP3 intron endonuclease (I-PfoP3I) and the open arrowheads indicate the SPO1 intron endonuclease (I-HmuI), the Bastille intron endonuclease (I-BasI) and the SP82 intron endonuclease (I-HmuII). Only I-PfoP3I nicks the coding strand in EXON 1 while the other three HNH HEases nick the template strand in EXON 2.

doi:10.1371/journal.pone.0043738.g008
Figure 9. Mapping of the minimal sequence required for I-PfoP3I cleavage. A. Recognition site sequences. The intron-less sequence of the sense strand of the Pf-WMP3 DNAP gene is shown. Wild-type (WT) sequence is indicated in upper case. The portion of each sequence that is out of register as a result of deletion is indicated in lower case. The filled arrow indicates IIS. The open arrows indicate cleavage site (CS) of I-PfoP3I. Cleavage is indicated with + for efficient cleavage, (+) for low or nearly no cleavage and – for no detected cleavage. B. Polyacrylamide gels showing products from cleavage assays with short wild-type flanking sequences either upstream or downstream of the IIS. The substrate lengths are successively shortened by 1 to 81 base pairs for each substrate (S) tested as specified in A. Note that only one cleavage product (P) was visualized, as the other strand was less than 180 nt in size and ran out of the gel by electrophoresis. I-PfoP3I cleavage sites on substrates (5, 6, 7) were determined by direct DNA sequencing using reverse primers P3r1 (Figure S2). C. Summary of recognition site mapping. S, sense strand; A, antisense strand. The region of the target site is indicated in bold. The filled arrows indicate IIS. The open arrows indicate cleavage site (CS) of I-PfoP3I. D. Cleavage of plasmid substrates (10 nM) of pT1-23 and pT1-25 by I-PfoP3I at 20 nM. N, nicked; L, linear; S, supercoiled. An ethidium bromide-stained agarose gel (1.5% agarose) is shown.

Figure 10. Phylogenetic relationships of group I introns inserted into phage DNAP genes (A) and their HNH proteins (B). All introns belong to IA2 subgroup of group I introns. The trees include only those HNH HEG-containing group I introns that are inserted in Bacillus phages (purple), Enterobacteria phages (blue), Xanthomonas phage (green) and cyanophage Pf-WMP3 (black). Horizontal distances are proportional to evolutionary divergence expressed as substitutions per site. Branch lengths higher than 0.1 are indicated on the tree branches. The scale bars represent 0.2 fixed mutations per amino acid position. GenBank accession numbers for intron sequences as follows: phiE (U04813.1), SP82 (BSU04812), SPO1 (M37686), Bastille (AY256517), Pf-WMP3 (EF537008.1), phiI (AY769989.1), W31 (AY769990.1), phiL7 (EU717894.1). GenBank accession numbers for HEase sequences as follows: phiE (AAA56886.1), phiI (AAV53690.1), W31 (AAV53693.1). A phylogenetic tree was constructed using the neighbor-joining method in MEGA 4.

doi:10.1371/journal.pone.0043738.g009
doi:10.1371/journal.pone.0043738.g010
onto BG11 agar plates. Plaque formation was used to isolate phages [39].

Isolation of Pf-WMP3 and Pf-WMP4 Phage DNA
To obtain a template for PCR reactions, genomic DNA was isolated from Pf-WMP3 and Pf-WMP4 according to previously published methods [40,41]. Briefly, after the addition of MgSO4 (final concentration 20 mM) to lysates, phage particles were precipitated using polyethylene glycol grade 6000 (PEG 6000) and then further purified by sucrose density gradient. Purified phage particles were broken with SDS and protease K. DNA was extracted with phenol-chloroform and precipitated with NaOAc and ethanol. The purified DNA was then resuspended in sterile H2O and stored at −20°C.

Plasmid Construction
Intron P3I2 and P3R primer sites flank the intron sequence 709 bp upstream and 780 bp downstream respectively (Figure 1). Pf-WMP3 genomic DNA was used as a template for PCR with a pair of primers P3I2 and P3R. The PCR product was cloned into pEASY-T1 cloning vector (TRANS) boundaries were cloned into pEASY-T1 cloning vector (TRANS) to generate plasmid pET

P3f4 and P3r3 and the PCR product was digested with restriction enzymes BamHI and Sall and then was ligated into a pET28a(+) vector (Novagen) and the resulting plasmid was termed pETP3DNAP(+int).

The intronless version of Pf-WMP3 DNAP gene was amplified using an overlapping extension technique of PCR [42] and the PCR product of Pf-WMP3 DNAP(−int) gene was digested with restriction enzymes BamHI and Sall and then was ligated into a pET28a(+) vector to yield plasmid pETP3DNAP(−int). PCR product of wild type Pf-WMP4 DNAP gene without any IVS was digested with restriction enzymes BamHI and Sall and then was ligated into a pET28a(+) vector to yield plasmid pETP4DNAP.

I-PfoP3I gene was obtained from Pf-WMP3 intron using primers P3f4 and P3r3 and the PCR product was digested with restriction enzymes Ncol and Xhol and then cloned into a pET28a(+) vector to generate plasmid pETI-PfoP3I which was used for over-expression of I-PfoP3I.

Targets (23, 25) used to determine the I-PfoP3I recognition site boundaries were cloned into pEASY-T1 cloning vector (TRANS) to yield plasmids pT1-23, pT1-25.

In vivo Splicing Assay
P. falciparum was grown in BG11 medium at 28°C to an OD600 of 1.0 and infected with Pf-WMP3 at a multiplicity of 8 per cell. RNA was isolated at various times after infection using TRNZol Reagent (TIANGEN). RNase-free DNaseI (TaKaRa) was used to remove contaminating DNA. The total RNA was then incubated with sequence-specific primer P3r3 and the PCR product was digested with restriction enzymes Ncol and Xhol and then cloned into a pET28a(+) vector to generate plasmid pETI-PfoP3I which was used for over-expression of I-PfoP3I.

Transcription and Splicing Assay
In vitro

P. falciparum was grown in BG11 medium at 28°C to an OD600 of 1.0 and infected with Pf-WMP3 at a multiplicity of 8 per cell. RNA was isolated at various times after infection using TRNZol Reagent (TIANGEN). RNase-free DNaseI (TaKaRa) was used to remove contaminating DNA. The total RNA was then incubated with sequence-specific primer P3r3 and the PCR product was digested with restriction enzymes Ncol and Xhol and then cloned into a pET28a(+) vector to generate plasmid pETI-PfoP3I which was used for over-expression of I-PfoP3I.

The P3f3 and P3r2 primers flank the intron 184 bp upstream and 780 bp downstream respectively (Figure 1). The pre-RNA for the in vitro splicing experiment was prepared by transcription using Riboprobe® in vitro Transcription System-T7 (Promega). The Xhol linearized pETP3DNAP(+int) (1 μg) was incubated with 40 mM Tris-HCl (pH 7.9), 10 mM NaCl, 6 mM MgCl2, 2 mM spermidine, 10 mM DTT, 40 u Recombinant RNAsin Ribonuclease Inhibitor. 0.5 mM each of rATP, rGTP, rCTP and rUTP, 20 u T7 RNA Polymerase in a total volume of 20 μl at 37°C for 1 h. Template DNA was digested with RNase-free DNaseI (Promega). Reverse transcription was performed using sequence-specific primer P3r2 and M-MLV Reverse Transcriptase (Promega) according to the manufacturer’s recommendations. PCR was carried out using primers P3f3 and P3r2. The resulting products were analyzed by electrophoresis in a 2% agarose gel.

Prediction of Intron Secondary Structure
Prediction of the intron secondary structure was performed using Mfold default settings (http://www.bioinfo.rpi.edu/applications/mfold/rna/form1.cgi) and modified by hand using published intron secondary structures as a reference and was drawn using Adobe Photoshop (version 7.0).

E. coli Growth Assay
E. coli BL21 (DE3) transformed with pET5P3DNAP(−int) and pETP4DNAP were grown overnight at 37°C in Luria-Bertani broth plus 50 μg ml−1 kanamycin. Cells were then used to inoculate 50 ml fresh Luria-Bertani broth with 50 μg ml−1 kanamycin and 0.05 mM isopropyl-beta-D-thiogalactopyranoside (IPTG; Merck). The starting OD600 (optical density at 600 nm) value was 0.03. Growth of IPTG-induced cells was assayed spectrophotometrically at 600 nm every hour for 5 h (37°C, shaking) [26].

Expression and Purification of I-PfoP3I
E. coli BL21 (DE3) bacteria transformed with pETI-PfoP3I were grown in Luria-Bertani broth supplemented with 50 μg ml−1 kanamycin at 37°C until the density reached an OD600 of 0.6. Expression of His6-I-PfoP3I was induced by adding IPTG to a final concentration of 0.1 mM. After an additional 4 h of culture growth at 30°C, cells were harvested and disrupted by sonication in lysis buffer (50 mM NaH2PO4 (pH 8.0), 300 mM NaCl, 10 mM imidazole). The lysate was centrifuged at 10 000 g for 30 min at 4°C to pellet the cellular debris. The soluble fraction was added with Ni-NTA resin (Novagen) and then mixed gently for 30 min at 4°C. The resin was settled by low speed centrifugation (1000 g) for 10 s and then was washed several times with wash buffer (50 mM NaH2PO4 (pH 8.0), 300 mM NaCl, 20 mM imidazole). The protein was eluted with elution buffer containing high concentrations of imidazole (50 mM NaH2PO4 (pH 8.0), 300 mM NaCl, 250 mM imidazole). Protein concentration was determined using the Bradford method [43].

EDTA Treatment of the Purified I-PfoP3I
To examine the effect of a single divalent metal ion on the enzymatic activity of I-PfoP3I, preparation of apo-enzyme without any metal ion cofactor is necessary. The concentrated I-PfoP3I (∼0.6 mg ml−1) was incubated with 1 M divalent metal chelating agent EDTA at room temperature for 1 h. The EDTA-treated I-PfoP3I was dialyzed against 1 l of 10 mM Tris-HCl buffer (pH 8.0) three times at 4°C overnight. A residual EDTA concentration of ∼1 μM remained in the protein solution to ensure the absence of contamination of divalent metal ions. After dialysis, the apo-enzyme sample was concentrated to 1 ml (0.3 mg ml−1) by an Ultrafree-15 centrifugal filter (Millipore, Bedford, MA, USA).
Endonuclease Assays

For endonuclease assays, 10 nM plasmids pET28a, pETP3D-NAP[+int], pETP3DNAP[−int], and pETP4DNAP were used as substrates. Cleavage reactions were carried out in 50 mM Tris-Cl pH 8.0, 5 mM DTT at 200, 20 and 2 nM enzyme and incubated at room temperature for 20 min. Reactions were stopped by the addition of 5 μl of proteinase K (20 mg ml⁻¹) and further incubated at 37°C for 1 h. BamHI digested pET28a, pETP3D-NAP[+int], pETP3DNAP[−int], and pETP4DNAP were used as controls. After ethanol precipitation, samples were analyzed by ethrophoresis in a 1% agarose gels [wt vol⁻¹] stained with ethidium bromide and analyzed with ImageJ 1.42q.

The double-stranded DNA endonuclease activity of I-PfoP3I was assayed using purified PCR product with or without intron sequence of Pf-WMP3 and Pf-WMP4 DNAP genes. Both of the two strands were labeled with [γ-32P] ATP at 5’ end. I-PfoP3I was incubated with 4000 counts per minute (cpm) of the fragments in 50 μl of assay buffer (50 mM Tris-Cl pH 8.0, 5 mM DTT) at room temperature for 20 min. Reactions were stopped by the addition of 5 μl of proteinase K (20 mg ml⁻¹) and further incubated at 37°C for 1 h. After ethanol precipitation, samples were analyzed by ethorphoresis in a 1% agarose gels [wt vol⁻¹] stained with ethidium bromide and analyzed with ImageJ 1.42q.

The double-stranded DNA endonuclease activity of I-PfoP3I was assayed using purified PCR product with or without intron sequence of Pf-WMP3 and Pf-WMP4 DNAP genes. Both of the two strands were labeled with [γ-32P] ATP at 5’ end. I-PfoP3I was incubated with 4000 counts per minute (cpm) of the fragments in 50 μl of assay buffer (50 mM Tris-Cl pH 8.0, 5 mM DTT) at room temperature for 20 min. Reactions were stopped by the addition of 5 μl of proteinase K (20 mg ml⁻¹) and further incubated at 37°C for 1 h. After ethanol precipitation, samples were analyzed by ethorphoresis in a 1% agarose gels [wt vol⁻¹] stained with ethidium bromide and analyzed with ImageJ 1.42q.

The double-stranded DNA endonuclease activity of I-PfoP3I was assayed using purified PCR product with or without intron sequence of Pf-WMP3 and Pf-WMP4 DNAP genes. Both of the two strands were labeled with [γ-32P] ATP at 5’ end. I-PfoP3I was incubated with 4000 counts per minute (cpm) of the fragments in 50 μl of assay buffer (50 mM Tris-Cl pH 8.0, 5 mM DTT) at room temperature for 20 min. Reactions were stopped by the addition of 5 μl of proteinase K (20 mg ml⁻¹) and further incubated at 37°C for 1 h. After ethanol precipitation, samples were analyzed by ethorphoresis in a 1% agarose gels [wt vol⁻¹] stained with ethidium bromide and analyzed with ImageJ 1.42q.

The double-stranded DNA endonuclease activity of I-PfoP3I was assayed using purified PCR product with or without intron sequence of Pf-WMP3 and Pf-WMP4 DNAP genes. Both of the two strands were labeled with [γ-32P] ATP at 5’ end. I-PfoP3I was incubated with 4000 counts per minute (cpm) of the fragments in 50 μl of assay buffer (50 mM Tris-Cl pH 8.0, 5 mM DTT) at room temperature for 20 min. Reactions were stopped by the addition of 5 μl of proteinase K (20 mg ml⁻¹) and further incubated at 37°C for 1 h. After ethanol precipitation, samples were analyzed by ethorphoresis in a 1% agarose gels [wt vol⁻¹] stained with ethidium bromide and analyzed with ImageJ 1.42q.

The double-stranded DNA endonuclease activity of I-PfoP3I was assayed using purified PCR product with or without intron sequence of Pf-WMP3 and Pf-WMP4 DNAP genes. Both of the two strands were labeled with [γ-32P] ATP at 5’ end. I-PfoP3I was incubated with 4000 counts per minute (cpm) of the fragments in 50 μl of assay buffer (50 mM Tris-Cl pH 8.0, 5 mM DTT) at room temperature for 20 min. Reactions were stopped by the addition of 5 μl of proteinase K (20 mg ml⁻¹) and further incubated at 37°C for 1 h. After ethanol precipitation, samples were analyzed by ethorphoresis in a 1% agarose gels [wt vol⁻¹] stained with ethidium bromide and analyzed with ImageJ 1.42q.

The double-stranded DNA endonuclease activity of I-PfoP3I was assayed using purified PCR product with or without intron sequence of Pf-WMP3 and Pf-WMP4 DNAP genes. Both of the two strands were labeled with [γ-32P] ATP at 5’ end. I-PfoP3I was incubated with 4000 counts per minute (cpm) of the fragments in 50 μl of assay buffer (50 mM Tris-Cl pH 8.0, 5 mM DTT) at room temperature for 20 min. Reactions were stopped by the addition of 5 μl of proteinase K (20 mg ml⁻¹) and further incubated at 37°C for 1 h. After ethanol precipitation, samples were analyzed by ethorphoresis in a 1% agarose gels [wt vol⁻¹] stained with ethidium bromide and analyzed with ImageJ 1.42q.

The double-stranded DNA endonuclease activity of I-PfoP3I was assayed using purified PCR product with or without intron sequence of Pf-WMP3 and Pf-WMP4 DNAP genes. Both of the two strands were labeled with [γ-32P] ATP at 5’ end. I-PfoP3I was incubated with 4000 counts per minute (cpm) of the fragments in 50 μl of assay buffer (50 mM Tris-Cl pH 8.0, 5 mM DTT) at room temperature for 20 min. Reactions were stopped by the addition of 5 μl of proteinase K (20 mg ml⁻¹) and further incubated at 37°C for 1 h. After ethanol precipitation, samples were analyzed by ethorphoresis in a 1% agarose gels [wt vol⁻¹] stained with ethidium bromide and analyzed with ImageJ 1.42q.
References

1. Bellott M, Pedersenlange J, West D, Ehrenman K, Maley G, et al. (1985) Processing of the intron-containing thymidylate synthase (thyB) gene of phage T4 is at the RNA level. Cell 41: 375–382.

2. Landthaler M, Shen BW, Stoddard BL, Shub DA (2006) I-Basl and I-Hmnl: Two phage intron-encoded endonucleases with homologous DNA recognition sequences but distinct DNA specificities. Journal of Molecular Biology 358: 1157–1151.

3. Millard A, Clokie MRJ, Shub DA, Mann NH (2004) Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proceedings of the National Academy of Sciences of the United States of America 101: 11007–11012.

4. Zeng QL, Bonocora RP, Shub DA (2009) A free-standing homing endonuclease targets an intron insertion site in the psbA gene of cyanophages. Current Biology 19: 218–222.

5. Millard AD, Gierga G, Clokie MRJ, Evans DJ, Hess WR, et al. (2010) An antiserum in a lytic cyanophage links psbA to a gene encoding a homing endonuclease. Isme Journal 4: 1121–1135.

6. Lee CN, Lin JW, Weng SF, Tseng YH (2009) Genomic characterization of the intron-containing T7-like phage phiB7 of Zoogloea ramigera. Applied and Environmental Microbiology 75: 7828–7837.

7. Bonocora RP, Shub DA (2004) A self-splicing group I intron in DNA polymerase genes of T7-like bacteriophages. Journal of Bacteriology 186: 4153–4155.

8. Nord D, Torrens E, Sjoberg BM (2007) A functional homing endonuclease in the Bacillus anthracis sdeG group I intron. Journal of Bacteriology 189: 5293–5301.

9. Stoddard BL (2005) Homing endonuclease structure and function. Quarterly Reviews of Biophysics 38: 49–93.

10. Colicinol L, Dauriol L, Betemir M, Cottarell G, Jacquier A, et al. (1986) Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell 44: 523–533.

11. Goodrich-Blair H, Shub DA (1996) Beyond homing: Competition between intron endonucleases confers a selective advantage on flankng genetic markers. Cell 86: 211–221.

12. Zhao L, Bonocora RP, Shub DA, Stoddard BL (2007) The restriction fold turns to the dark side: A bacterial homing endonuclease with a PD-(D/E)-XK motif. Embo Journal 26: 2432–2442.

13. Binnsdewicz D, Genavierci E, Shub DA (1994) Self-splicing group I intron in cyano bacterial initiator methionine transfer RNA : Evidence for lateral transfer of introns in bacteria. Embo Journal 13: 4629–4635.

14. Bonocora RP, Shub DA (2001) A novel group I intron-encoded endonuclease specific for the anticondon region of RNA (Bac) genes. Molecular Microbiology 39: 1299–1306.

15. Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: Perspectives for gene therapy. Current Gene Therapy 7: 49–66.

16. Asbertain M, Ruy BY, Banks L, Rawlings DJ, Scharenberg AM, et al. (2011) Successful targeting and disruption of an integrated reporter lentivirus using the engineered homing endonuclease Y2I-Alnl. PloS One 6.

17. Liu XY, Shi M, Cong SL, Gao Y, An GC (2007) Cyanophage Pf-WMP1, a T7-like phage infecting the freshwater cyanobacterium Phormidium foveolatum. Complete genome sequence and DNA translocation. Virology 360: 29–39.

18. Liu XY, Kong SL, Shi M, Fu LW, Gao Y, et al. (2000) Genomic analysis of freshwater cyanophage Pf-WMP3 infecting cyanobacterium Phormidium foveulatum: The conserved elements for a phage. Microbial Ecology 56: 671–680.

19. Ko M, Choi H, Park C (2002) Group I self-splicing intron in the mcl gene of Bacillus anthracis. Journal of Bacteriology 184: 3917–3922.

20. Kaghanavan R, Miller SR, Hicks LD, Minnick MF (2007) The unusual 23S rRNA gene of Casilia hamata. Two self-splicing group I intron in a flanking 54 base-pair exon, and one element lacks the canonical Omega G. Journal of Bacteriology 189: 6527–6579.

21. Johnson RM, Kesavan C, Usha S, Malathi R (2009) Analysis of group I intron splicing in the presence of naturally occurring methyltransferases. Clinica Chimica Acta 400: 74–76.

22. Cech TR, Danheger SH, Gurell RR (1994) Representation of the secondary and tertiary structure of group I introns. Nature Structural Biology 1: 273–280.

23. Zucker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31: 3406–3415.

24. Michel F, Westhof E (1990) Modeling of the 3-dimensional architecture of group I catalytic introns based on comparative sequence-analysis. Journal of Molecular Biology 216: 585–610.

25. Nikolcheva T, Woodson SA (1997) Association of a group I intron with its splice junction in 508 ribosomes: Implications for intron toxicity. RNA-a Publication of the RNA Society 3: 1016–1027.

26. Kaghanavan R, Hicks LD, Minnick MF (2008) Toxic introns and parasitic intrin in Casilda hamata: Legacies of a promiscuous past. Journal of Bacteriology 190: 2934–2943.

27. Marchler-Bauer A, Anderson JB, Chenchukuri PF, DeWewsee-Scott C, Geer LY, et al. (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Research 33: D192–D196.

28. Roberts RJ, Bellott M, Bestor T, Bhagwat AS, Bickie TA, et al. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Research 31: 1805–1812.

29. Mehta P, Kanta K, Krishnaawamy S (2004) HNH family subclassification leads to identification of commonality in the His-Me endonuclease superfamily. Protein Science 13: 295–300.

30. Landthaler M, Shub DA (2003) The nicking homing endonuclease I-Basl is encoded by a group I intron in the DNA polymerase gene of Bacillus thuringiensis phage Banille. Nucleic Acids Research 31: 3071–3077.

31. Landthaler M, Begley U, Lau NC, Shub DA (2002) Two self-splicing group I introns in the ribonucleotide reductase large subunit gene of Syphnlococcus aureus' phage Twork. Nucleic Acids Research 30: 1935–1941.

32. Edgell DR, Bellott M, Shub DA (2004) Barriers to intron promiscuity in bacteria. Journal of Bacteriology 186: 5283–5289.

33. Doublet S, Tabors S, Long AM, Richardson CC, Ellenberger T (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 angstrom resolution. Nature 391: 251–258.

34. Shen BW, Landthaler M, Shub DA, Stoddard BL (2004) DNA binding and cleavage by the NHM homing endonuclease I-Hmnl. Journal of Molecular Biology 342: 45–56.

35. Landthaler M, Lau NC, Shub DA (2004) Group I intron homing in Bacillus phages SP01 and SP02: a gene conversion event initiated by a nicking homing endonuclease. Journal of Bacteriology 186: 4307–4314.

36. Haugen P, Bhattacharya D, Palmer JD, Turner S, Lewis LA, et al. (2007) Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns. Biochemistry 6.

37. Bonocora RP, Shub DA (2009) A likely pathway for formation of mobile group I introns. Current Biology 19: 223–228.

38. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111: 1–61.

39. Wilson WH, Joint IR, Carr NG, Mann NH (1993) Isolation and molecular characterization of 5 marine cyanophages propagated on Synechococcus sp. strain WH7803. Applied and Environmental Microbiology 59: 3736–3743.

40. Rohwer F, Segall A, Steward G, Seguritan V, Breitbart M, et al. (2003) The complete genomic sequence of the marine phage Roseophage S01 shares homology with nonmarine phages. Limnology and Oceanography 45: 408–418.

41. Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, et al. (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proceedings of the National Academy of Sciences of the United States of America 101: 11013–11018.

42. Horton RM, Ho SN, Pullen JK, Hunt HD, Cai ZL, et al. (1993) Gene-splicing by overlap extension. Methods in Enzymology 217: 270–279.

43. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry 72: 248–254.