Registration of 'LCS Compass' Wheat

L. Liu
Virginia Tech, limeiliu@vt.edu

M. D. Barnett
Limagrain Cereal Seeds LLC

C. A. Griffey
Virginia Tech

S. Malla
Virginia Tech

W. S. Brooks
Virginia Tech

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub

Liu, L.; Barnett, M. D.; Griffey, C. A.; Malla, S.; Brooks, W. S.; Seago, J. E.; Kirby, K.; Thomason, W. E.; Rucker, E. G.; Behl, H. D.; Pitman, R. M.; Dunaway, D. W.; Vaughn, M. E.; Custis, J. T.; Seabourn, B.; Chen, R.; Fountain, M.; Marshall, D.; Graybosch, R. A.; Divis, L. A.; Hansen, L. E.; Cowger, C.; Cambron, S.; Jin, Y.; Beahm, B. R.; Hardiman, T. H.; Lin, C. J.; Mennel, D. F.; and Mennel, D. L., "Registration of 'LCS Compass' Wheat" (2018). Publications from USDA-ARS / UNL Faculty. 2157. https://digitalcommons.unl.edu/usdaarsfacpub/2157

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
L. Liu, M. D. Barnett, C. A. Griffey, S. Malla, W. S. Brooks, J. E. Seago, K. Kirby, W. E. Thomason, E. G. Rucker, H. D. Behl, R. M. Pitman, D. W. Dunaway, M. E. Vaughn, J. T. Custis, B. Seabourn, R. Chen, M. Fountain, D. Marshall, R. A. Graybosch, L. A. Divis, L. E. Hansen, C. Cowger, S. Cambron, Y. Jin, B. R. Beahm, T. H. Hardiman, C. J. Lin, D. F. Mennel, and D. L. Mennel
Registration of ‘LCS Compass’ Wheat

L. Liu,* M. D. Barnett, C. A. Griffey, S. Malla, W. S. Brooks, J. E. Seago, K. Kirby, W. E. Thomason, E. G. Rucker, H. D. Behl, R. M. Pitman, D. W. Dunaway, M. E. Vaughn, J. T. Custis, B. Seabourn, R. Chen, M. Fountain, D. Marshall, R. A. Graybosch, L. A. Divis, L. E. Hansen, C. Cowger, S. Cambron, Y. Jin, B. R. Beahm, T. H. Hardiman, C. J. Lin, D. F. Mennel, and D. L. Mennel

Abstract

‘LCS Compass’ (Reg. No. CV-1149, PI 675458), a hard red winter (HRW) wheat (*Triticum aestivum* L.), was developed and tested as VA10HRW-13 and co-released by the Virginia Agricultural Experiment Station and Limagrain Cereal Seeds, LLC, in 2015. LCS Compass was derived from the cross ‘Vision 20’ /‘Stanof’ using a modified bulk breeding method. LCS Compass is a widely adapted, high-yielding, awned, semidwarf (*Rht1*) HRW wheat with early to medium maturity and resistance or moderate resistance to diseases prevalent in the mid-Atlantic and Great Plains regions of the United States. In the 2013 Uniform Bread Wheat Trial conducted over 18 locations in eastern states, LCS Compass produced an average grain yield of 4609 kg ha$^{-1}$ that was similar to ‘Vision 30’ (4697 kg ha$^{-1}$). In the northern Great Plains, the average grain yield of LCS Compass (4015 kg ha$^{-1}$) over 44 locations in 2013 was similar to ‘Jerry’ (4013 kg ha$^{-1}$). In the South Dakota crop zone 3 variety test, LCS Compass had a 3-yr (2015–2017) yield average of 5575 kg ha$^{-1}$ and was one of highest-yielding cultivars among the 19 cultivars tested over the 3-yr period. LCS Compass has good end-use quality in both the eastern and Great Plains regions of the United States.

THE HARD WINTER WHEAT (*Triticum aestivum* L.) breeding program at Virginia Tech, Blacksburg, VA, was initiated in the early 1990s. The primary objective of this program is to develop hard winter wheat cultivars to meet market demands in the eastern United States. Hard wheat is mainly grown in the Great Plains and soft red winter wheat in eastern states, thus requiring mills in eastern states to transport hard wheat from the Great Plains. Hard wheat production in eastern states will benefit mills by reducing these transportation expenses and provide economic benefit to growers via the higher prices paid for hard versus soft wheat (Hall et al., 2011a). Hard winter wheat lines developed at Virginia Tech are tested in the eastern and Great Plains regions in collaboration with Limagrain Cereal Seeds (LCS), LLC.

‘LCS Compass’ (Reg. No. CV-1149, PI 675458) is well adapted in South Dakota and Nebraska in the northern Great Plains region. It provides growers in those regions with a hard red winter (HRW) wheat cultivar with short stature, early to medium maturity, high grain volume weight, and high grain yields similar to those of ‘Wesley’ (PI 605742; Peterson et al., 2001) and ‘Overland’ (PI 647959; Baenziger et al., 2008). In

Abbreviations: AACC, American Association of Cereal Chemists; FHB, Fusarium head blight; HRW, hard red winter; LCS, Limagrain Cereal Seeds; NRPN, Northern Regional Performance Nursery; UBWT, Uniform Bread Wheat Trial.
addition, LCS Compass expresses resistance to many of the diseases endemic in one or both regions, including Barley yellow dwarf virus, Fusarium head blight (FHB; caused by Fusarium graminearum Schwabe), and stem rust (caused by Puccinia graminis Pers.:Pers. f. sp. tritici Erikk. & E. Hem.). The milling quality and baking quality of LCS Compass are excellent. For HRW wheat producers in South Dakota and Nebraska, LCS Compass is an improvement over Overland and Wesley as it provides more FHB and stem rust resistance.

Methods

Parentage, Breeding History, and Line Selection

LCS Compass was derived as an F$_3$ head row from the cross ‘Vision 20’/‘StanoF’. Vision 20 was a red seed repurification of line KS00F5-58-3 that was segregating for seed color. KS00F5-58-3 was developed by Kansas State University from the cross ‘Hickok’ (PI 591802)/KS94U213/‘Karl 92’ (PI 564245). Parental line KS94U213 has the gene Lr12; however, its pedigree is unknown as it was derived as a bulk selection. StanoF is a sib of ‘KS90WGR10’ (PI 549278), which was derived from the cross ‘TAM107’ (PI 495954)/TA2460. TA2460 is an Aegilops squarrosa accession (KU 2084) from Kyoto University with leaf rust resistance gene Lr41.

The cross Vision 20/StanoF was made in spring 2004, and the F$_1$ generation was grown in a field as a single 1.2-m headrow in 2005 to produce F$_2$ seed. The population was advanced from the F$_2$ to F$_3$ generation using a modified bulk breeding method. Wheat spikes were selected from the population in each segregating generation (F$_3$-F$_4$) on the basis of absence of obvious disease, early maturity, short straw, and desirable head shape and size. Selected spikes were threshed in bulk and the seed was planted in 20.9-m2 blocks at Blacksburg and/or Warsaw, VA, each fall. Spikes selected from the F$_3$ bulk were threshed individually and planted in separate 1.2-m headrows at Warsaw. LCS Compass was derived from one of these F$_3$ headrows selected in 2009. It was evaluated as entry 13 in nonreplicated observation yield tests at Blacksburg and Warsaw in 2010. LCS Compass was evaluated in Virginia Tech’s replicated Bread Wheat Preliminary Yield Test at two locations in 2011 (data not presented). LCS Compass was evaluated in the Virginia Bread Wheat Elite Tests over total 12 environments for 4 yr (2012–2016) and in the USDA–ARS Uniform Bread Wheat Trial (UBWT) in 2013. In collaboration with Limagrain Cereal Seeds LLC, LCS Compass was evaluated in the USDA–ARS Northern Regional Performance Nursery (NRPN) in 2012 and 2013 over 98 environments, and it was also evaluated in their program’s 2012, 2013, and 2014 replicated yield trials under 41 environments in Kansas, Nebraska, Oklahoma, and Montana (data not presented). LCS Compass was tested in the South Dakota winter wheat variety trial from 2015 to 2017 and was recommended as a winter wheat variety for crop zone 3 of South Dakota in 2017.

Evaluation in Replicated Yield Trials

LCS Compass, previously designated and tested as VA10HRW-13, was evaluated in Virginia Tech’s replicated bread wheat variety trials from 2012 to 2016, in replicated regional tests in the UBWT in 2013, and in the NRPN in 2012 and 2013 in Great Plains regions. The UBWT (USDA–ARS, 2018b) and NRPN (2018a) were conducted using randomized complete block designs with two to four replications, standard variety testing protocols, and recommended management practices that vary slightly from state to state. LCS Compass was tested as LCH10-13 in the NRPN. Plant traits assessed visually (e.g., winter kill, straw strength, and disease resistance) were rated using ordinal scales such as 0 (no visible symptoms) to 9 (severe symptoms) on the basis of intensity and severity of the affected plant area.

All replicated yield tests in Virginia were conducted according to small grain production and management protocols recommended by Brann et al. (2000), with late-season nitrogen applied to tests at Warsaw according to Thomason et al. (2007). Conventional-till yield plots were planted at 22 seeds per 0.304 m of row with a harvest area of 4.2 m2. At Painter, VA, plots were composed of six rows with 17.8 cm between rows with two replications; at Warsaw and Blacksburg, plots consisted of seven rows with 15.2 cm between rows with three replications. Assessment of reaction to FHB was conducted in replicated inoculated and mist-irrigated nurseries according to the procedures described by Chen et al. (2006).

Grain subsamples (1000 g) were supplied to the USDA Hard Winter Wheat Quality Laboratory in Manhattan, KS, for grain, flour, and milling and baking quality analysis. Grain samples from Virginia Tech tests came from a bulk of three replicated plots at Warsaw; samples from the 2012–2013 Northern Regional Performance Nursery were a bulk composite of grain from Lincoln, NE, Crookston, MN, Brookings, SD, Dakota Lakes, SD, and Winner, SD. Single kernel wheat characteristics were determined by the single kernel characterization system (American Association of Cereal Chemists [AACC] Method 55-31) (AACC, 2000). Wheat and flour protein (% N × 5.7) were determined by a nitrogen determinator (Leco Corp.) (AACC Method 46-30). Moisture and ash contents were determined by AACC Methods 08-01 and 44-15A, respectively. Wheat samples, tempered to constant moisture (16%), were milled on a Quadrumat Senior experimental mill (C.W. Brabender Co.) according to AACC Methods 26-10A and 26-50. Flour yield was determined as percentage of straight grade flour. A mixograph for each flour sample (10 g, on a 14% moisture basis) was obtained using a 10-g mixograph (National Mfg. Co.) with optimum water adsorption (Finney and Shogren, 1972). Mix time was visually determined from the mixograph. Mix time and mixing tolerance were also determined from the mixograph (AACC Method 54-40). Corrected mixograph mix time was adjusted on the basis of protein content of flour. Mixograph mix time for one cultivar growing at different locations increases with reducing protein content if protein content is lower than 12%, so corrected mixograph mix time is necessary for a good comparison. A straight-dough, 100-g pup-loaf bake test method was used to measure bread-making properties, including crumb grain score and loaf volume (AACC Method 10-10B). Crumb grain was graded from poor open grain (0) to outstanding closed grain (6).

Analysis of variance was conducted on data from individual locations and years as well as averages of locations and years in Virginia Tech tests using Agrobase 20 (Agronomix Software, 1999), Agrobase Generation II SQL version 36.5.1 (Agronomix Software, 2004) for data of UBWT, and SAS version 9.2 (SAS
Institute, 2009) for data of NRPN. The analysis of variance and mean for grain, milling, and baking data were obtained with Microsoft Excel 2010 (Microsoft, 2013). There is no replication for quality data each year. The data from 1 yr were treated as one replication for the analysis. The common lines in different year were included analysis, but only the checks are presented here. The mean comparisons of traits between genotypes were based on an unprotected LSD (P = 0.05) test (Saville, 1990; Piepho, 2004).

Seed Purification and Increase

Initial breeder seed of LCS Compass was derived in 2012 from a 21-m² F₁₄ seed increase block grown at the Virginia Tech Eastern Virginia Agricultural Research and Extension Center in Blacksburg, in which visible variants were removed before harvest. This seed was grown in a 0.09-ha field at Milliken, CO, in 2012–2013 by Limagrain Cereal Seeds and produced 179 kg of an initial seed increase. Yields were approximately one-fourth of normal due to poor stand establishment and winter desiccation. The field was rogued for variants in July 2013, including removal of 18 awnless plants and 18 red-chaffed plants. In fall 2013, 0.4 ha of LCS Compass was planted in Fort Collins, CO; the field was rogued three times and produced 1796 kg of foundation seed. The foundation seed was treated with Dividend Extreme fungicide (Syngenta) and split into two lots for planting in fall 2014. One lot was planted on 12 ha in Onida, SD, and the other on 12 ha in Hemingford, NE. In fall 2015, a total of 108 t of foundation seed was available for sale.

During spring 2013, approximately 300 F₁₄ heads of LCS Compass were hand harvested at Wichita, KS. These heads were threshed individually, planted in progeny rows, and evaluated for purity and trueness of type at Fort Collins during 2013–2014. Among the 266 breeder seed headrows planted, 6 rows (2%) were taller and 1 row (<0.05%) was taller and darker in chaff color. These variant rows were removed before harvest. The remaining 259 rows that were similar in phenotype and visually homogenous were harvested in bulk, resulting in 54 kg of purified LCS Compass breeder seed. This seed was used in subsequent years to generate foundation seed.

Characteristics

Botanical and Agronomic Characteristics

The juvenile growth of LCS Compass is semi-erect. At the boot stage, plants of LCS Compass are blue-green in color and have flag leaves that are erect, nontwisted, and without wax. Stems are hollow and lack anthocyanin. Auricles and coleoptiles lack anthocyanin. LCS Compass has yellow colored anthers. Spikes of LCS Compass are awned, erect, oblong, mid-dense, and white in color at maturity. Straw lacks anthocyanin at physiological maturity. The white, glabrous glumes are medium in length, are narrow in width, and have short acuminate beaks and oblique shoulders. The hard red kernels of LCS Compass are ovoid in shape with rounded cheeks and short brush hairs.

In Virginia, the 3-yr average (Table 1) for spike emergence (days to heading from 1 January) of LCS Compass (127 d) is

Table 1. Three-year (2014–2016) performance of LCS Compass hard red winter wheat in the Virginia Tech Bread Wheat Elite Test.†

Cultivar	Grain yield	Grain volume weight	Heading date	Plant height	Lodging	Disease resistance					
	kg ha⁻¹	kg L⁻¹	d after 1 Jan.	cm	0–9#	Leaf rust	Powdery mildew	BYDV‡	FHB§ incidence	FHB severity	FHB index¶
S187†‡	5544 a§§	78.5 a	124 de	80 b	1.6 a	0.8 bc	1.2 cd	0.7 c	67.5 abcd	35.7 a	25.6 abc
Shirley	5514 a	72.4 d	126 bc	79 b	0.3 c	0.6 c	0.3 e	0.9 bc	78.3 a	34.6 a	28.9 a
Vision 45	5310 a	74.9 c	129 a	94 a	0.6 c	0.6 c	0.6 de	0.9 bc	60.0 bcd	29.6 a	17.0 bc
Tribute †‡	4941 b	78.1 ab	124 de	78 b	1.2 bc	0.8 bc	3.1 b	1.9 ab	50.8 d	27.8 a	15.1 c
LCS Wizard	4667 bcd	75.8 c	126 bc	81 b	0.5 c	1.4 bc	0.9 de	0.5 c	73.3 ab	38.4 a	28.5 ab
Vision 30	4610 cd	75.0 c	124 de	82 b	1.5 b	3.2 a	0.4 e	0.6 c	70.0 abc	32.2 a	23.5 abc
LCS Compass	4605 cd	77.0 b	127 b	90 a	2.3 a	0.9 bc	0.7 de	0.9 bc	55.8 cd	34.0 a	18.2 ab
Soissons	4360 d	71.8 d	127 b	77 c	0.1 c	2.9 a	0.6 de	0.6 c	68.3 abc	30.9 a	20.4 abc
Karl 92	4019 e	75.8 c	123 e	81 b	1.1 bc	3.1 a	1.7 c	1.1 bc	70.0 ab	28.7 a	21.3 abc
Jagger	3925 e	75.8 c	120 f	79 b	1.6 a	2.1 b	4.8 a	2.2 a	56.7 cd	32.9 a	18.4 abc
Mean (N = 27)	4767 bc	74.9 c	125 cd	81.8 b	0.9 bc	1.2 bc	1.1 cd	1.1 bc	65.6 abcd	33.9 a	22.5 abc
LSD (0.05)	3290.0	1.1	1.5	4.3	0.8	1.4	0.7	1.0	17.3	12.5	11.8
CV (%)	4.2	0.9	0.7	3.2	53.9	72.1	37.0	58.6	16.1	22.4	32.0
No. of site-years	9	9	6	6	6	5	8	4	3	3	3

† Gran yield and grain volume weight data from Blacksburg (2014–2016), Warsaw (2014–2016), and Painter (2014–2016); leaf rust from Blacksburg (2014, 2016) and Warsaw (2014–2016); powdery mildew data from Blacksburg (2014–2016), Warsaw (2014–2016), and Painter (2014, 2015); heading date, plant height, and lodging from Blacksburg (2014–2016) and Warsaw (2014–2016); powdery mildew data from Blacksburg (2014–2016), Warsaw (2014–2016), and Painter (2014, 2015); heading date, plant height, and lodging from Blacksburg (2014–2016) and Warsaw (2014–2016).

‡ BYDV = *Barley yellow dwarf virus.*

§ FHB = Fusarium head blight.

¶ FHB index = % incidence × % severity ÷ 100.

0 = erect; 9 = completely lodged.

†† 0 = highly resistant; 9 = highly susceptible.

‡‡ Soft red winter wheat check cultivar.

§§ Means in a column followed by the same letter are not significantly different at 0.05 probability level based on Fisher’s unprotected LSD pairwise comparison.
Table 2. Mean performance of LCS Compass hard red winter wheat in the 2012–2013 USDA-ARS UBWT (Table 2). The average grain yield of LCS Compass (4609 kg ha⁻¹) over locations was similar to those of HRW wheat cultivars Vision 30 (4697 kg ha⁻¹) and 'Vision 40' (4643 kg ha⁻¹; PI 661154; Hall et al., 2011b) and the overall trial mean (4510 kg ha⁻¹). Average grain volume weight of LCS Compass (73.5 kg hL⁻¹) was similar to HRW wheat check NuEast (73.2 kg hL⁻¹) but significantly \(P < 0.05\) higher than the other soft and hard wheat checks. LCS Compass has good winterhardness based on winter kill ratings \(0 = \text{no injury}, 9 = \text{severe injury}\), with a value of 1.9, which was significantly \(P < 0.05\) lower than those of Vision 30 (3.1), Vision 40 (3.1) and Vision 45 (3.2).

In the northern Great Plains region, LCS Compass had an average grain yield (4015 kg ha⁻¹) that was similar to those of the other checks and the NRPN average over all locations (Table 3). LCS Compass had the highest mean test weight (77.6 kg hL⁻¹) compared with the checks and was 2.3 kg hL⁻¹ higher than the overall nursery average. LCS Compass was also tested in 2012 NRPN, and data are available on the USDA website (USDA-ARS, 2018a).

LCS Compass was evaluated in the South Dakota Winter Wheat Variety Trial over 14, 17, and 17 environments, divided into seven crop zones on the basis of soil and climate information, in 2015, 2016, and 2017, respectively. LCS Compass performed best in crop zone 3, which includes 13 counties in southeastern South Dakota (Table 4). The 3-yr average yield of LCS Compass (5575 kg ha⁻¹) was significantly \(P < 0.05\) higher than the overall trial mean and was one of the highest yielding of

Table 2. Mean performance of LCS Compass hard red winter wheat in the 2012–2013 USDA-ARS UBWT

Cultivar	Grain yield	Weight volume	Head date	Plant height	Lodging	Winter kill	Powdery mildew	Leaf rust	Stripe rust	BYDV†	Stag. nod.	SBWMV§§	Kernel weight	Kernel diam.	
Shirley§§	5368 a	70.6 cd	133 abc	85 e	2.0 f	2.5 cde	0.3 d	0.0 c	4.0	3.0	b	0.8	1.0	37.7	2.7 bc
USG 3120§§	5201 a	71.2 bc	128 f	87 de	2.9 def	5.5 a	2.6 b	0.3 c	0.0	4.2	b	1.0	2.5	37.9	2.8 a
Vision 30	4891 ab	72.3 ab	135 a	102 a	2.6 ef	3.2 cd	1.0 cd	2.7 a	0.0	4.5	a	0.5	1.5	36.8	2.8 a
Vision 40	4697 bc	69.9 cd	129 ef	87 de	4.1 abc	4.5 ab	0.7 d	1.7 abc	2.0	5.4	a	1.0	1.3	31.4	2.7 bc
LCS Compass	4609 bc	73.5 a	131 cde	97 b	3.7 bc	1.9 e	2.2 b	1.3 abc	0.0	5.9	a	1.0	1.7	33.5	2.7 bc
NuEast	4482 c	73.2 a	127 f	94 c	3.7 bc	3 cde	4.0 a	0.0 c	1.0	6.3	a	2.8	1.8	34.8	2.8 a
TAM 303	4441 cd	69.5 d	128 f	90 d	5.0 a	2.1 de	3.0 ab	0.7 bc	1.0	5.9	a	2.2	4.5	34.1	2.8 bc
Endurance	4058 de	70.2 cd	132 bc	94 bc	3.8 bc	4.5 ab	2.8 b	0.3 c	0.0	6.0	a	1.7	3.8	34.3	2.7 bc
Appalachian White	4025 e	69.2 d	134 ab	93 c	4.5 ab	2.5 cde	1.9 bc	0.0 c	3.5	1.0	c	1.5	31.7	2.6	2.7 bc
Mean (N = 46)	4510 bc	70.6 cd	129 def	89 d	3.2 cde	3.4 bc	2.0 bc	0.9 bc	0.5	4.5	a	1.5	2.7	33.8	2.8 ab
LSD (0.05)	390	1.4	2.3	2.8	1	1.2	1.1	1.4	0.5	2.9	1	1.3	2.2	0.08	
CV (%)	15.7	3.4	2.3	5	42.9	17.8	57.8	108.9	46.3	38.9	68.7	47.1	6.1	2.63	
No. of locations	18	15	9	14	10	1	6	1	1	3	2	3	5		

† BYDV = Barley yellow dwarf virus.
‡ Stag. nod. = Stagonospora nodorum.
§ SBWMV = Soil-borne wheat mosaic virus.
¶ 0 = erect; 9 = completely lodged.
Winter kill (late-winter rating plant damage): 0 = no injury to 9 = complete kill.
†† 0 = highly resistant; 9 = highly susceptible.
†‡† 1 = highly resistant; 9 = highly susceptible.
§§ Soft red winter wheat check cultivar.
¶¶ Means in a column followed by the same letter are not significantly different at 0.05 probability level based on Fisher’s unprotected LSD pairwise comparison.
Table 3. Performance of LCS Compass hard red winter wheat in the 2013 Northern Regional Performance Nursery.

Cultivar	Grain yield	Grain volume weight	Plant height	Heading date	Winter survival	Powdery mildew	BYDV†	Stag. nod.†	Glume blotch	Bacterial leaf streak	Stripe rust††	Disease severity	Fusarium head blight incidence	Fusarium head blight severity	Stem rust‡‡	Disease resistance	Leaf rust	Acid soil tolerance		
	kg ha⁻¹	kg hl⁻¹	cm	d after 1 Jan.	%	1–5%	0–5%	0–10#	0–9#	5	0–9#		5	%	%	%	Rating		%	
Overland	4342†††	33.0	76.7	87	146	27.5	3.5	0.3	2.8	1	5	3.0	0.9	80	31.7	16.7	60S	15MS,MR	20MS	100
Lyman	4346†††	33.0	76.7	85	144	22.5	1.0	1.7	1.1	3.5	5	9.0	48.3	13.3	40MR	15MS,MR	10R	96		
LCS Compass	4015†††	33.0	77.6	82	143	27.5	2.0	0.3	3.3	2.5	5	50.0	18.3	10	40MR	15MS,MR	40S+	0		
Jerry	4013†††	33.0	74.7	95	147	47.5	2.5	1.3	2.1	3.5	6	80.0	26.7	10	50S	20MS	0	3.3		
Wesley	3923†††	33.0	75.0	76	143	15	3.0	1	3.5	1.5	0	40.0	28.3	46.7	20MR/70S	30MS	0	2.3		
LCS Wizard	3864†††	33.0	74.8	76	145	15	1.0	0	2.8	1.5	3	5	23.3	23.3	90S	DEAD	40S	96		
Kharkof	3353†††	33.0	76.9	111	147	40	1.5	1	1.6	5.5	2	3	40.0	13.3	70S	30MS	30MS	0		
Mean (n = 37)	3953†††	33.0	75.3	84.6	145.1	22.3	–	–	–	–	–	–	–	–	–	–				
CV (%)	11.5	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–				
No. of sites	44	11	9	6	–	–	–	–	–	–	–	–	–	–	–	–				
LSD (0.05)	363	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–				

† BYDV = Barley yellow dwarf virus.
†† Stag. nod. = Stagonospora nodorum.
§ 1 = highly resistant; 5 = highly susceptible.
¶ 0 = highly resistant; 5 = highly susceptible.
0 = highly resistant; 10 = highly susceptible.
††† Stripe rust was rated at Rossville, KS, in nursery inoculated with race PST100.
‡‡‡ Stem rust was rated at St. Paul, MN, in a nursery inoculated with a bulk of races QFCSC, QTHJC, CRSC, RKQCC and TPMKC. Stem rust and leaf rust ratings included severity as percentage area affected from 0 to 100%, and infection response types of resistant (R), moderately resistant (MR), moderately susceptible (MS), and susceptible (S); Tr = trace.
§§ 0 = highly resistant; 9 = highly susceptible.
¶¶ Means in a column followed by the same letter are not significantly different at 0.05 probability level based on Fisher’s unprotected LSD pair-wise comparison.

Reaction of LCS Compass to diseases (0–100%), and infection response types of resistant (R), moderately resistant (MR), moderately susceptible (MS), and susceptible (S); Tr = trace.

Griffey et al., 2005). In tests conducted at a highly resistant soft red winter wheat cultivar (18.2%) were similar to those of the moderate resistance (55.8%), severity (34.0%), and index (4.5). Based on infection type (IT = 0–9) and severity (%) rating (Line and Qayoum, 1992), LCS Compass was rated as moderately resistant (IT = 2 to QFCSC, Rossville, KS, resistant (0.2–0.9) to powdery mildew (caused by Erysiphe graminis) in the 19 cultivars in crop zone 3 (Grow, 2017).
Table 4. Performance of LCS Compass hard red winter wheat in 2015–2017 South Dakota winter wheat variety trial.†

Cultivar	2015–2017	2016–2017	2015–2016	Mean (2015–2017)
	Volume	Leaf yield	Grain protein	
	weight			
	kg ha⁻¹	kg ha⁻¹	g kg⁻¹	
Lyman	4.506±0.64	7.4 6.8	11.4 11.2	
Refield	5.718±0.04	7.4 6.3	12.7 12.3	
Overland	4.853±0.01	7.5 6.7	12.7 12.3	
LCS Compass	5.555±0.02	7.7 6.9	12.2 12.3	
Trial mass	5.575±0.02	7.7 6.9	12.2 12.3	
LSD (0.05)	1.0±0.01	2.0 2.0	2.0 2.0	
CV (%)	na	na	na	

† Crop zone 3 test located in Beresford, SD; crop zones for small grains are based on soil and climate information.
‡ Data adjusted to 13% moisture basis.
§ WSMV = Wheat streak mosaic virus.
¶ Hessian fly biotype.
†† Disease reaction type rating = resistant (R), moderately resistant (MR), moderately susceptible (MS), and susceptible (S).
‡‡ Trial means for yield were based on 19 cultivars; volume weight and grain protein content were based on 83 cultivars for 3 yr.
§§ Means in a column followed by the same letter are not significantly different at 0.05 probability level based on Fisher’s unprotected LSD pairwise comparison.

LCS Compass is susceptible to the Hessian fly [Mayetiola destructor (Say)] Great Plains biotype (Table 3). LCS Compass expressed resistance (1.5) to stem sawfly (Cephus cinctus) at Fort Benton, MT, in the Limagrain Cereal Seeds Y3 trial in 2014 (data not shown). It was susceptible to greenbug (Schizaphis graminum) biotype E in the 2012 NRPN (USDA–ARS, 2018a). LCS Compass expressed moderate tolerance to acid soil conditions in the NRPN test (Table 3).

End-Use Quality

Grain characteristics, milling quality, and baking quality of LCS Compass in Virginia Tech tests have been evaluated by the USDA–ARS Hard Wheat Quality Laboratory in Manhattan, KS, since 2012. Mean data over 3 yr (2013–2015) are presented in Table 5. Grain hardness score from near-infrared analyzers for LCS Compass (71.3) was higher, but not statistically different, than that (63.4) of the HRW wheat quality check Jagger. Flour yield of LCS Compass (67.2 g 100 g⁻¹) was most similar to that of Karl 92 (67.6 g 100 g⁻¹). Grain and flour protein concentrations of LCS Compass (11.7 and 10.2 g 100 g⁻¹) were most similar to those of Jagger (11.7 and 10.4 g 100 g⁻¹). Flour water absorption of LCS Compass (59.6 g 100 g⁻¹) was most similar to that of Vision 45 (59.8 g 100 g⁻¹) but not significantly lower than that of Jagger (60.5 g 100 g⁻¹). Farinogram dough peak time and tolerance (0 = poorest to 6 = best) of LCS Compass (3.6 min and 3.3) were most similar to those of Jagger (3.7 min and 3.0). Bread puff loaf volume and bread crumb grain scores (0 = poorest to 6 = best) of LCS Compass (828 cm³ and 4.0) were most similar to those of Vision 45 (828 cm³ and 3.9). LCS Compass is resistant to FHB with mean values for FHB incidence (18.3%) and severity (10.0%) lower than those of the FHB-resistant check Overland (31.7 and 16.7%). LCS Compass expressed moderate resistance to FHB in South Dakota (Table 4). LCS Compass expressed moderate resistance (2.5) to bacterial leaf streak caused by Xanthomonas campestris pv. translucens (Jones, Johnson, & Reddy) Dye in the NRPN trial conducted at Lincoln, NE (Table 3). In the UBWT (Table 2) and NRPN (Table 3), LCS Compass expressed resistance (1.0) and moderate resistance (3.3) to glume blotch caused by Stagonospora nodorum (Berk.) Castellani & E.G. Germano, while it was moderately susceptible (5.9) to leaf blotch caused by S. nodorum in the eastern region (Table 2). LCS Compass was also moderately susceptible to tan spot (caused by Pyrenophora tritici-repentis) and susceptible to Septoria tritici leaf blotch (caused by Mycosphaerella graminicola) in South Dakota (Table 4). LCS Compass was susceptible to Wheat streak mosaic virus in South Dakota (Table 4). Reaction of LCS Compass to Wheat streak mosaic virus is not known.

Grain characteristics and milling quality of LCS Compass in the northern Great Plains NRPN evaluated by the USDA–ARS Hard Wheat Quality Laboratory in Manhattan, KS are presented in Table 6. The 2-yr mean kernel hardness index (0–100) value for LCS Compass (61.0) was higher than that of Jerry (58.0) (PI 632433; Peel et al., 2004) but lower than those of Wesley (64.0), Overland (67.5), and ‘Lyman’ (69.0) (PI 658067). Average protein concentrations of wheat and flour of LCS Compass (13.4 and 11.9 g 100 g⁻¹) were most similar to those of ‘LCS Wizard’ (13.1 and 11.8
g 100 g⁻¹) (PI 669574; Liu et al., 2016). Mean flour yields and water absorption of LCS Compass (69.7 and 62.4 g 100 g⁻¹) were similar to those of LCS Wizard (69.0 and 62.7 g 100 g⁻¹). Average adjusted dough mixing time and dough mixing tolerance (0 = poorest to 6 = best) for LCS Compass (3.7 min and 3.0) were most similar to those of Jerry (3.7 min and 3.5). Mean bread loaf volume and crumb score (0 = poorest to 6 = best) for LCS Compass (940 cm³ and 5.0) were the highest among all cultivars in Table 6.

Availability

Foundation seed was sent to seed producers by Limagrain Cereal Seeds LLC in fall 2015. Limagrain Cereal Seeds, LLC will be responsible for distribution of foundation seed of LCS Compass west of the Mississippi River in the Great Plains.

Table 5. Milling and baking quality of LCS Compass and other hard red winter wheat cultivars in 2013–2015 Virginia Tech tests conducted by the USDA–ARS Hard Winter Wheat Quality Laboratory, Manhattan, KS.

Cultivar	Kernel weight	Near infrared hardness	Grain protein†	Flour yield	Flour protein‡	Flour ash§	Flour water absorption	Adjust dough mixing time	Dough mixing tolerance	Pulp-loaf volume	Crumb score
	mg	1–100‡	g 100 g⁻¹	min	cm³	0–6¶					
Jagger	35.9 a#	67.4 a	1.17 ab	68.7 bc	10.4 ab	0.43 a	60.5 ab	3.7 ab	3.0 b	802 a	3.5 ab
Karl 92	36.6 a	63.7 ab	1.28 a	67.6 bc	11.3 a	0.41 a	62.0 a	4.4 a	4.0 a	860 a	3.8 ab
LCS-Wizard	31.6 b	66.4 a	1.14 b	69.8 bc	9.8 b	0.41 a	59.0 bc	2.0 c	2.0 c	802 a	3.2 ab
Soissons	33.6 ab	55.7 c	1.11 b	74.2 a	9.7 b	0.42 a	58.1 c	3.6 ab	4.0 a	810 a	4.2 a
Vision 30	34.1 ab	71.3 a	1.17 b	67.2 c	10.2 ab	0.41 a	59.6 bc	3.6 ab	3.3 ab	828 a	4.0 ab
Vision 45 Mean (n = 21)	35.7 ab	63.8 ab	1.15 b	69.4 bc	10.0 b	0.41 a	58.9 bc	2.8 bc	2.4 bc	777 a	3.0 b
CV (%)	8.5	23.5	5.2	2.5	6.8	7.77	3.2	31.2	39.1	7	28.1
LSD (0.05)	4.1	7.8	1.09	4.0	1.19	0.035	1.7	1.2	0.9	94	1.1
P value | <0.001 | <0.001 | 0.040 | ns | 0.02 | <0.001 | <0.001 | <0.001 | 0.01 | <0.001 |

† 1 = very soft; 100 = very hard.
‡ 0 = weak dough with poor mixing tolerance; 6 = strong dough with good mixing tolerance.
§ 0 = very soft; 100 = very hard.
¶ 0 = weak dough with poor mixing tolerance; 6 = strong dough with good mixing tolerance.
Means in a column followed by the same letter are not significantly different at 0.05 probability level based on Fisher's unprotected LSD pairwise comparison.

Table 6. Grain, milling, and baking quality of LCS Compass in the 2012 and 2013 Northern Regional Performance Nursery evaluated by the USDA–ARS Hard Winter Wheat Quality Laboratory, Manhattan, KS using grain sourced from the North Central Plains: Lincoln, NE, St. Paul, MN, Crookston, MN, Brookings, SD, Dakota Lakes, SD, and Winner, SD.

Cultivar	SKCS† kernel hardness	Wheat protein‡	Flour yield	Flour ash§	Flour protein‡	Adjusted mixing time	Dough mixing tolerance	Pulp-loaf volume	Crumb score		
	— 0–6§	g 100 g⁻¹	min	cm³	0–6¶						
Overland	73	62.675	12.4	13.7	13.1	71.7	71.1	71.4	10.8	12.2	11.5
Wesley	68	60.640	13.5	14.3	13.9	72.4	71.7	72.1	12.2	13.3	12.8
Jerry	64	52.580	13.3	14.0	13.7	71.0	70.4	70.7	12.0	12.9	12.5
Lyman	72	66.690	13.9	14.6	14.3	71.5	69.7	70.6	12.2	13.2	12.7
LCS Wizard	74	64.690	12.4	13.7	13.1	69.8	68.1	69.0	11.1	12.5	11.8
LCS Compass	68	5461.0	12.9	13.9	13.4	70.2	69.2	69.7	11.2	12.5	11.9
			g 100 g⁻¹	min	0–6¶	cm³					
Overland	60.9	61.8	61.4	2.1	2.4	2.3	1.0	1.0	795	800	797.5
Wesley	63.3	63.5	63.4	4.0	4.4	4.2	5.0	4.0	925	930	927.5
Jerry	63.0	64.4	63.7	3.5	3.9	3.7	4.0	3.0	785	910	847.5
Lyman	62.2	64.0	63.1	3.9	3.6	3.8	2.0	2.0	875	930	902.5
LCS Wizard	61.5	63.8	62.7	1.9	2.6	2.3	2.0	2.0	740	930	835.0
LCS Compass	61.1	63.7	62.4	3.4	4.0	3.7	2.0	4.0	885	995	940.0

† SKCS, single kernel characterization system, AACC method 55–31.
‡ 1 = very soft; 100 = very hard.
§ 0 = weak dough with poor mixing tolerance; 6 = strong dough with good mixing tolerance.
¶ 0 = poor open grain; 6 = outstanding closed grain.
region. In the eastern United States, LCS Compass will be marketed by the Mennel Milling Company based in Fostoria, OH, and seed will be produced and distributed by Virginia Identity Preserved Grains, LLC, in West Point, VA. A Plant Variety Protection certificate was awarded to LCS Compass on 6 July 2016. A seed sample of LCS Compass has been deposited in the USDA–ARS National Center for Genetic Resources Preservation and will be available for distribution after expiration of its US Plant Variety Protection. Small amounts of seed for research purposes may be obtained from the corresponding author for at least 5 years after the date of this publication.

Acknowledgments

LCS Compass was developed with financial support from the Virginia Agricultural Experiment Station, the Virginia Small Grains Board, the Virginia Agricultural Council, the Virginia Crop Improvement Association, the Mennel Milling Company, and the USDA Cooperative State Research, Education, and Extension Service. This work was supported by the Virginia Agricultural Experiment Station (Blacksburg) and the USDA National Institute of Food and Agriculture, US Department of Agriculture (Washington, DC).

References

Agronomix Software. 1999. Agrobease user’s guide and reference manual. Agronomix Software, Winnipeg, MB, Canada.

Agronomix Software. 2004. Agrobease Generation II user’s manual. Agronomix Software, Winnipeg, MB, Canada.

American Association of Cereal Chemists. 2000. Approved methods of the AACCC. 10th ed. American Association of Cereal Chemists, St. Paul, MN.

Baenziger, P.S., B. Beecher, R.A. Graybosch, A.M.H. Ibrahim, D.D. Baltensperger, J. Finney, K.F., and M.D. Shogren. 1972. A ten-gram mixograph for determination of mill characteristics. J. Agric. Food Chem. 20:71–75.

Brann, D.E., D.L. Holshouser, and G.L. Mullins. 2000. Agronomy handbook. Agronomix Software, Winnipeg, MB, Canada.

Department of Agriculture (Washington, DC). 1997. Registration of ‘Tabor’ wheat. Crop Sci. 37:1010.

Hall, M.D., C.A. Griffey, A. Green, S. Liu, P. Gundrum, G. Berger, W.S. Brooks, W.E. Thomason, E.G. Hokanson, H.D. Behl, R.M. Pitman, D.W. Dunaway, M.E. Vaughn, T. Lewis, J.T. Custis, B. Seabourn, R. Chen, M. Fournier, D. Marshall, B.R. Beahm, D.L. Whitt, C.J. Lin, and D.L. Mennell. 2011a. Registration of ‘Vision 30’ wheat. J. Plant Reg. 5:353–359. doi:10.3198/jpr2011.03.0183crc

Hall, M.D., C.A. Griffey, A. Green, S. Liu, P. Gundrum, G. Berger, W.S. Brooks, W.E. Thomason, E.G. Hokanson, H.D. Behl, R.M. Pitman, D.W. Dunaway, M.E. Vaughn, T. Lewis, J.T. Custis, B. Seabourn, R. Chen, M. Fournier, D. Marshall, B.R. Beahm, D.L. Whitt, C.J. Lin, and D.L. Mennell. 2011b. Registration of ‘Vision 40’ wheat. J. Plant Reg. 5:360–366. doi:10.3198/jpr2011.03.0184crc

igGrow. 2017.2017 South Dakota winter wheat variety trial results. South Dakota State University Extension. https://igrow.org/up/resources/03-3016-2017. pdf (accessed 12 Feb. 2018).

Liu, M.D., P.D. Exum, J. Finney, and J.T. Custis. 2006. Validation of two major quantitative trait loci for Fusarium head blight resistance in Chinese wheat line W14. Plant Breed. 125:99–101.

Microsoft. 2013. Description of the Office 2010 update: September 10 2013. Version 14.0.7106.5001 (64 bit). Microsoft, Redmond, WA.

Peel, M.D., J.A. Anderson, J.B. Rasmussen, J.D. Miller, T.C. Olsen, and G.W. Johnson. 2004. Registration of ‘Jerry’ wheat. Crop Sci. 44(3):1026. doi:10.2135/cropsci2004.1026

Piepho, H.-P. 2004. An algorithm for a letter-based representation of all-pairwise comparisons. J. Comput. Graph. Stat. 13(2):456–466.

Peterson, C.J., D.R. Shelton, P.S. Baenziger, D.D. Baltensperger, R.A. Graybosch, W.D. Worrall, L.A. Nelson, D.V. McVey, J.E. Watkins, and J. Kral. 2001. Registration of Wesley wheat. Crop Sci. 41(1):260. doi:10.2135/cropsci2001.411260-

Piepho, H.-P. 2004. An algorithm for a letter-based representation of all-pairwise comparisons. J. Comput. Graph. Stat. 13(2):456–466. doi:10.1198/106186004315

SAS Institute. 2009. What's new in SAS 9.2. SAS Inst., Cary, NC.

Saville, D.J. 1990. Multiple comparison procedures: The practical solution. Am. Stat. 44(2):174–180.

USDA–ARS. 2018a. Hard winter wheat regional nursery program: North Central region nursery. Wheat, sorghum, and forage research, Lincoln, NE. https://www.ars.usda.gov/plains-area/lincoln-ne/wheat-sorghum-and-forage-research/docs/hard-winter-wheat-regional-nursery-program/research/ (accessed 12 Feb. 2018).

USDA–ARS. 2018b. Uniform bread wheat trial: Nursery reports. Plant science research, Raleigh, NC. https://www.ars.usda.gov/southeast-area/raleigh-nc/plant-science-research/docs/nursery-reports/page-1/ (accessed 12 Feb. 2018)/