The massive star IMF

Daniel Schaerer

Laboratoire d'Astrophysique, Observatoire de Midi-Pyrénées, 14 Av. E. Belin, F-31400 Toulouse, France

Abstract. We review our current knowledge on the IMF in nearby environments, massive star forming regions, super star clusters, starbursts and alike objects from studies of integrated light, and discuss the various techniques used to constrain the IMF.

In most cases, including UV-optical studies of stellar features and optical-IR analysis of nebular emission, the data is found to be compatible with a “universal” Salpeter-like IMF with a high upper mass cut-off over a large metallicity range. In contrast, near-IR observations of nuclear starbursts and LIRG show indications of a lower M_{up} and/or a steeper IMF slope, for which no alternate explanation has yet been found. Also, dynamical mass measurements of seven super star clusters provide so far no simple picture of the IMF.

Finally we present recent results of a direct stellar probe of the upper end of the IMF in metal-rich H II regions, showing no deficiency of massive stars at high metallicity, and determining a lower limit on M_{up} of $\gtrsim 60$–90 M_\odot.

1. Introduction

The stellar initial mass function (IMF) describes the relative distribution of stars with different masses after their formation. This basic quantity determines the relative radiative, chemical and mechanical “production” of stars of different masses/types. It is is therefore of fundamental importance for a variety of issues in astrophysics, such as the understanding of stellar populations and the star formation history of the Universe, studies of the chemical evolution of galaxies, the interactions between stars and the interstellar medium etc.

The most fundamental question concerning the IMF is of course that of its physical origin, which remains largely unknown today. This issue, including e.g. competing theories tracing the IMF back to fragmentation properties, negative feedback, or competitive accretion, is beyond the scope of the present review. Other questions include the existence of lower and upper mass limits of the IMF (e.g. does an upper mass limit M_{up} exist? If so, is it “intrinsic” – e.g. due to fragmentation properties – due to stellar self-limitation, or both?), and the possible dependence of the IMF on “environmental” conditions (e.g. metallicity, gas pressure, stellar density, background radiation, etc.). Several of these questions are addressed in the recent proceedings edited by Gilmore et al. (1998).

The more “empirical” approach taken here is mainly to review our current knowledge on the IMF, its functional behaviour (single/multiple power law, or
other), constraints on the upper and lower mass limits, and also techniques used to derive these quantities. Although observations of resolved stellar populations are briefly discussed (Sect. 2), the main focus of the review is on the massive star IMF in unresolved stellar populations, including especially massive star forming regions of various scales, i.e. from giant H II regions to full blown starburst galaxies. Another recent review on the IMF in starbursts is found in Leitherer (1998).

The following notation will be used subsequently. The IMF χ is defined by $dN = \chi(m) dm$, which gives the number of stars with initial mass in the interval $[m, m + dm]$. Generally the IMF is described by a powerlaw $\chi = A m^{-\alpha}$, where the Salpeter (1955) slope is given by $\alpha = 2.35$. Other frequently used exponents are related to α by $\Gamma = -x = 1 + \gamma = 1 - \alpha$.

2. The IMF in the local Universe – resolved populations

Let us briefly recall what is known about the IMF from studies of resolved stellar systems in the local Universe.

Star counts in Galactic and Magellanic Cloud (MC) clusters/associations reveal an IMF with a slope close to Salpeter ($\alpha = 2.3 \pm 0.3$) above $\sim 1 M_\odot$ and two turn-overs below, as summarised in the detailed review of Kroupa (2002). Using a correction for binaries according to Sagar & Richtler (1991), Kroupa (2002) lists $\alpha = 2.7 \pm 0.3$. However, the reliability of this correction method for the massive star IMF, especially for masses $\gtrsim 10 M_\odot$, is not established. According to Kroupa (2002) no statistically significant variation of the slope is found, except seemingly for the Arches cluster analysed by Figer et al. (1999, cf. Figer these proceedings).

Recent studies of starburst like objects (e.g. giant H II regions R136 in 30 Dor, NGC 3603) have shown that low mass stars with masses down to $\sim 0.1–0.6 M_\odot$ are also formed in such environments (e.g. Brandl et al. 1999, Sirianni et al. 2000). So far, no change of the lower mass cut-off compared to more quiescent star forming regions has thus been found.

The determination of M_{up} (if such a limit exists) from stellar counts requires sufficient statistics. The minimum required stellar mass M_{tot} of a cluster in order to contain at least 1 star with mass M_{max} is given by $M_{\text{tot}} \sim (2 - 3) \times 10^3 (M_{\text{max}}/100 M_\odot)^{1.3} M_\odot$. The range indicated here is valid for a slope $\alpha = 2.3$ and $M_{\text{low}} = 1 M_\odot$ or for the Kroupa (2002) IMF and $M_{\text{low}} = 0.01 M_\odot$. E.g. in clusters with $M_{\text{tot}} \sim 10^4 M_\odot$ one expects thus one star of $\sim 250 M_\odot$. Therefore a determination of the upper mass limit above $\sim 100 M_\odot$ is indeed not possible for most Galactic and MC clusters/associations (Massey 1998). However, in the few most massive clusters (e.g. Arches, R136, Cyg OB2), provided they are also very young, this should in principle be possible. At the present stage, we simply note that stars with masses of the order of $\sim 100 M_\odot$ exist (cf. special session: Moffat & Puls, these proceedings).

Local studies have also found no dependence of the IMF on metallicity (Massey et al. 1995, Massey 1998).
3. The IMF measured in super star clusters

The determination of dynamical masses of super star clusters (SSC), based on velocity dispersion and cluster size measurements, has been pioneered by Ho & Filippenko (1996ab). So far such mass determinations have been achieved for seven SSCs (Ho & Filippenko 1996, Smith & Gallagher 2001, Mengel et al. 2002, Gilbert & Graham 2001) Together with an age determination, the comparison of their mass/light ratio to predictions from evolutionary synthesis models can be used to constrain the IMF. This technique provides likely the most direct/best available constraints on the IMF among the studies dealing with integrated light measurements.

The current studies suggest diverse results (see overview in Mengel et al. 2002): four SSCs tend to show L/M ratios compatible with IMF slopes close to Salpeter, two SSCs lying in the interaction region of the Antennae galaxies indicate a steeper IMF ($\alpha \sim 3$), and one SSC (M82-F) shows a flatter IMF, implying a dissolution over $\lesssim 2$ Gyr (Smith & Gallagher 2001). No simple picture emerges from this small sample. Given the importance of such combined dynamical and integrated light studies, it is likely that much larger samples will be studied in the near future.

4. UV, optical, and IR studies of starbursts

4.1. Starbursts and high-z galaxies in the UV

Numerous studies have analysed the rest-frame UV spectra of starbursts from nearby objects to high redshift. Among the stellar features detected (cf. review by Schaerer 2000), the strongest ones (UV wind lines of Si iv $\lambda 1400$, C iv $\lambda 1550$, N v $\lambda 1240$ and lines in the FUSE domain) can be used to constrain the parameters of the integrated population, such as age, SF history, and IMF, by means of evolutionary synthesis techniques. The most up-to-date model suited to such analysis is Starburst99 (Leitherer et al. 1999, de Mello et al. 2000).

Summarised in one sentence (...) the main result of these studies is that all the objects contain young populations ($\lesssim 10$–20 Myr) characterised by continuous star formation or instantaneous bursts – the distinction being often difficult to draw – which are populated with a rather normal Salpeter-like IMF with stars up to $M_{\text{up}} \sim 60$ – 100 M_\odot. In a recent study Tremonti et al. (2001) examine the stellar populations in the field of NGC 5253 and find a possible indication for a steeper IMF, although other explanations (e.g. dissolution of clusters) are possible.

The similarity of the spectra of many high redshift galaxies (e.g. Lyman break galaxies) with local starbursts is well recognised and offers many exciting possibilities. For example, from the beautiful spectrum of the lensed $z \sim 2.7$ Galaxy MS 1512-CB58 of Pettini et al. (2000) these authors and de Mello et al. (2000) derive a constant star formation, and IMF slope between Salpeter and ~ 2.8. A spectral analysis of the lensed galaxy S2 by Le Borgne et al. (2002) also finds compatibility with a Salpeter IMF although time dependent dust obscuration (cf. Leitherer et al. 2002) may need to be invoked. Analysis from overall SEDs do not provide strong constraints on the IMF (Papovich et al. 2001).
4.2. Optical studies of $\text{H} \text{II}$ galaxies and alike objects

The optical spectra of massive star forming regions show both nebular and stellar lines and provide thus indirect (nebular) and direct (stellar) information on their stellar content, and thus information on the IMF. The former case is discussed in Sect. 5.

Among the stellar features detected in the optical (for a review see Schaerer 2000) are the Wolf-Rayet features (broad emission lines of He II $\lambda 4686$, C IV $\lambda 5808$, C III $\lambda 5896$, possibly also N III $\lambda 5512$, Si III $\lambda 4565$) which are observed in objects covering a large range of metallicity ($1/50 \leq Z/Z_\odot \leq 2$). Catalogues of these “WR galaxies” have been compiled by Conti (1991) and Schaerer et al. (1999b). Studies on WR galaxies (mostly BCD, Irr, spirals) are summarised in the reviews of Schaerer (1999ab).

Including the detections of spectral signatures from both WN and WC stars in a fair number of objects covering a large metallicity range, the following overall conclusions emerge from the studies of Schaerer et al. (1999a) and Guseva et al. (2000). Except possibly at the lowest metallicities a good agreement is found between the observations and the evolutionary synthesis models of Schaerer & Vacca (1998). From this comparison one finds clear indications for short bursts ($\Delta t \leq 2$–4 Myr) in objects with subsolar metallicity, an IMF compatible with Salpeter, and a large upper mass cut-off of the IMF, in agreement with several earlier studies (Mas-Hesse & Kunth 1999, Schaerer 1996). In addition, the observed WC/WN star ratios provide new constraints for mass loss and mixing scenarios in stellar evolution models (Schaerer et al. 1999a), which should soon be confronted with predictions from rotation stellar models (cf. Maeder, Meynet, these proceedings).

New results on the IMF metal-rich starbursts have recently been obtained. They are summarised in Sect. 6.

4.3. Near-IR studies

Observations at longer wavelengths are of great interest, as massive star formation occurs frequently in regions hidden behind significant amounts of dust at UV-optical wavelengths.

Pioneering work on prototypical nearby starburst galaxies such as M82 (distance 3.3 Mpc, where 1 arcsec corresponds to 15 pc) has been undertaken by Rieke et al. (1980, 1993), who measured a dynamical mass, the K-band and IR luminosities, L_K and L_{IR}, and the number of ionising photons of the nuclear region (~ 30 arcsec). From the relatively low M/L_K, and the large 2 μm and UV flux, they concluded from synthesis modeling that an IMF favouring stars in the mass range 3–$6 \leq M/M_\odot \leq 10$ over lower masses was required. Other indirect indications for such a so-called “top-heavy” IMF have e.g. been found for M82 by Doane & Matthews (1993).

Subsequent observations at high spatial resolution have been obtained by several groups. E.g. Satyapal et al. (1995, 1997) have obtained 1” resolution Fabry-Perot observations of Paschen-α, Brackett-γ, and CO bandheads, showing a strong spatial variation of extinction (with A_V varying from ~ 2–12) and on average a smaller extinction than determined from the large aperture in the Rieke et al. studies. From their analysis they conclude that there is no need for an IMF differing from the Salpeter IMF.
K-band integral field spectroscopic observations of a 16x10 arcsec region of M82 has been obtained by Förster-Schreiber et al. (2000, 2002). A complex spatial structure including clusters of different ages and varying spatial extinction (whose derived amount is dust geometry dependent) is found. These studies illustrate the potential difficulty of obtaining robust conclusions from large aperture observations and the use of “global models”.

4.4. The IMF in nuclear starbursts and LIRG

CO absorption features, H recombination line fluxes, and near-IR photometry have been used to study the stellar populations in luminous IR galaxies (LIRG, defined by $L > 10^{11}L_\odot$). Generally these objects show a relatively weak recombination line spectrum and soft spectra, and RSG features indicative of star formation over $\sim 10^7$–10^8 yr (Goldader et al. 1997). As the apertures sample rather large regions, it is thought that the overall activity can reasonably be represented by constant star formation.

Using a standard Salpeter IMF, evolutionary synthesis models have difficulties in reproducing simultaneously the low $\text{Br}\gamma$ equivalent width and the CO strength; fitting the latter implies an overproduction of ionising photons. This result is interpreted as a possible reduction of the upper mass cut-off of the IMF (values of $30 \leq M_{\text{up}} < 100M_\odot$) and/or a steeper IMF slope (Goldader et al. 1997). Similar observational trends and results are obtained for nuclear starbursts by Coziol et al. (2001).

If true, it is not clear what causes this deviation of the IMF from the otherwise seemingly “universal” Salpeter IMF. Is this related to a higher metallicity (cf. however Sect. 6), which could be expected in such evolved regions of galaxies, or possibly related to a high ISM pressure due to interactions in LIRGs?

Potential problems affecting the analysis include underlying populations which dilute/reduce $W(\text{Br}\gamma)$ (there are good indications for this, cf. Coziol et al. 2001), absorption of ionising photons by dust (however, absorption of more than 50 % would be needed to reproduce the observed $L_{\text{Br}\gamma}/L_{\text{IR}}$), and mixed stellar populations or discontinuous SF. However, to date no alternative solution to the above near-IR analysis of LIRG and nuclear starbursts is known.

We note also that contradictory results were obtained from a detailed optical study of the massive star content of 6 metal-rich nuclear starbursts (Schaerer et al. 2000).

5. Stellar populations and the IMF from nebular studies

For many years optical studies have been used to reconstruct the stellar content of giant H II regions, H II galaxies or alike objects from their emission line spectra, including recombination lines and forbidden metallic transitions (e.g. reviews by Stasińska 1996, García-Vargas 1996).

The development of extended grids of combined starburst and photoionisation models at various metallicities has allowed to reproduce the main observed emission line trends and the observed increase of the electron temperature with decreasing metallicity. Concerning the IMF such comparisons have in particular shown a compatibility of the Salpeter IMF for metallicities down to $\sim 1/50$
Z⊙ (the metallicity of I Zw 18), and a presence of massive stars with \(M_{\text{up}} \geq 80 \, M_{\odot} \) (García-Vargas et al. 1995, Stasinska & Leitherer 1996).

Other advances e.g. in the understanding of nebular diagnostics, the origin of the emission line sequences, and the presence of underlying populations have been made by such extensive studies; also some interesting unsolved questions remain (cf. Stasińska et al. 2001, Moy et al. 2001, Kewley et al. 2001, Stasińska & Izotov 2002).

5.1. ISO observations

Interesting advances have been made with the advent of mid-IR spectroscopic observations of starbursts and LIRGs observed with ISO in the 4-200 μm range and apertures typically between 14-30 arcsec (SWS/LWS). This wavelength range is in particular rich in atomic fine structure lines originating in the ionised gas.

A case study of M82 using LWS (40-200 μm) spectra was undertaken Colbert et al. (1999), who find that the observed EL spectrum of M82 is compatible with an instantaneous burst at ages \(\sim 3-5 \) Myr, a Salpeter IMF, and a high upper mass cut-off. However, as already pointed out earlier (Schaerer 2000), the shorter wavelength (SWS) data is clearly incompatible with the Colbert et al. model predicting too hard a spectrum; their photoionisation model is underconstrained.

A different approach was adopted by Förster-Schreiber (1998) and Thornley et al. (2000), who aim at an interpretation of the observed relatively low excitation as traced by the [Ne ii] 15.5 / [Ne ii] 12.8μm line ratio. In their model the ensemble of clusters / H II regions and the gas clouds in M82 are described by a single “effective” ionisation parameter, whose value is adopted as typical for a sample of 27 starbursts in the starburst and photoionisation models of Thornley et al. (2000). From their modeling they conclude that the observations are compatible with a high upper mass cut-off (\(M_{\text{up}} \sim 50-100 \, M_{\odot} \)). However, to reproduce the relatively low average [Ne ii]/[Ne ii] ratio, short timescales of SF (attributed to possible negative feedback) are required.

This result could also be affected by several uncertainties. E.g. how reliable/appropriate is the use of a single mean ionisation parameter for such a diversity of objects? Also, metallicity variations, which – as shown by Martin-Hernandez et al. (2002) – are known to affect the Neon line ratio, are not taken into account. Finally, it is well possible that physically unrelated regions, all included in the large ISO aperture, contribute to the emission of Ne\(^{2+}\) and Ne\(^+\). Future high spatial resolution observations (ground-based and with SIRTF) should help to establish the reliability of mid-IR diagnostics and allow many interesting applications.

5.2. Metal-rich H II regions

Emission lines in low excitation H II regions have e.g. been used to study the properties of metal-rich regions in spiral galaxies. From their analysis of the emission line trends, the observed [O ii]/[O iii] ratio, and He I λ5876/Hβ Bresolin et al. (1999) found indications for a limitation of the upper mass cut-off of the IMF of \(M_{\text{up}} \lesssim 35 \, M_{\odot} \).

However, such indirect diagnostics depend strongly on the adopted stellar tracks (e.g. outdated tracks from 1991 in the above study) and model atmo-
spheres (cf. Schaerer 2000, and special session summarised by Schaerer, Crowther & Oey, these proceedings). In fact, new sophisticated non-LTE line blanketed atmosphere models for O and WR stars predict a softening of the radiation field, as required to reconcile the photoionisation models and a higher value of M_{up} with the observations (Smith et al., 2002, and these proceedings). However, whether this can fully reproduce the observed line trends with a “normal” IMF at high metallicities remains to be shown.

We now discuss a direct approach to constrain the IMF in metal-rich environments.

![Figure 1. Maximum predicted Hβ equivalent width at the beginning of the WR phase as a function of M_{up} for solar metallicity ($Z = 0.02$) burst models with a Salpeter IMF (upper three curves) and a steeper IMF ($\alpha = 3.3$, lower two curves). The dotted curves show models for $Z = 0.04$. The short dashed line corresponds to an extended burst of duration $\Delta t = 4$ Myr (Salpeter IMF, $Z = 0.02$). The observations are plotted at arbitrary M_{up}. The observed maximum ($\log W(\text{H}\beta) \sim 2.2$–2.4) indicates $M_{\text{up}} \sim 80–90 \, M_\odot$ for a Salpeter slope, and $\gtrsim 120 \, M_\odot$ for $\alpha = 3.3$, or somewhat lower values for extended bursts.]

6. New light on the IMF in metal-rich environments

To probe the upper end of the IMF in metal-rich environments we have recently undertaken FORS1/VLT observations of 5 relatively nearby galaxies targeting
known metal-rich $\text{H} \, \text{II}$ regions in their disks (Pindao et al. 2002). The nuclei were avoided due to the complex mix of their stellar populations.

Spectra of ~ 90 $\text{H} \, \text{II}$ regions with a mean metallicity close to solar ($12 + \log(O/H) \sim 8.9 \pm 0.2$) were obtained. As suspected, we found stellar signatures of WR (WN and WC) stars in a large number of regions, i.e. 27 regions plus 15 candidate WR regions. Including previous studies (Castellanos 2001, Bresolin & Kennicutt 2002, Castellanos et al. 2002) our observations now nearly quadruple the number of metal-rich $\text{H} \, \text{II}$ regions where WR stars are known. The salient result concerning the IMF is the following (see Pindao et al. 2002 for details).

The large sample of WR regions allows us to derive fairly model independent constraints on M_{up} from the maximum observed $\text{H} \beta$ equivalent width of the WR regions. Independently of the exact tracks and metallicity we derive a lower limit for M_{up} of $60–90 \, M_\odot$ in the case of a Salpeter slope, and larger values for steeper IMF slopes. This constitutes a lower limit on M_{up} as all observational effects known to affect potentially the $\text{H} \beta$ equivalent width (loss of photons in slit or leakage, dust inside $\text{H} \, \text{II}$ regions, differential extinction, underlying population) can only reduce the observed $W(\text{H} \beta)$. This result is also consistent with our previous analysis of 6 metal-rich nuclear starbursts with WR features indicating $M_{\text{up}} \gtrsim 35-50 \, M_\odot$ (Schaerer et al. 2000). From these analysis we conclude that the most direct stellar probes show no deficiency of massive stars at high metallicity.

7. Summary and conclusions

In short, our current knowledge on the IMF in nearby environments, massive star forming regions, starbursts and alike objects reviewed above can be summarised as follows:

- **Resolved stellar populations** show a general consensus with a Salpeter-like IMF for masses $M \gtrsim 1 \, M_\odot$ and the existence of stars with masses of $\sim 100 \, M_\odot$ or more. Given these strong indications one may consider that the burden of proof is now reversed for studies from integrated light!

- **Analysis of Super Star Clusters** including dynamical mass measurements yield ambiguous conclusions on the slope of the IMF. Few cases are, however, observed so far.

- **UV-optical studies of stellar populations in HII galaxies** and alike objects generally show IMFs compatible with Salpeter and a large upper mass cut-off M_{up}.

- **Near-IR studies of nuclear starburst and LIRG** show indications of a lower M_{up} and/or a steeper IMF slope. No alternate explanation for the relatively weak recombination line spectrum and soft spectra has so far emerged.

- **Nebular studies (optical to mid-IR) of HII galaxies and starbursts** show no variation of the IMF from $1/50 \leq Z/Z_\odot \lesssim 1$. Indications of a lower value of M_{up} at high metallicity from nebular lines are probably due to inadequacies in the adopted stellar evolution / atmosphere models.
Direct probes of WR stars in metal-rich HII regions show no deficiency of massive stars at high metallicity. A lower limit on $M_{\text{up}} \gtrsim 60$–90 M_\odot has recently been derived from a such large sample.

In most cases a seemingly “universal” IMF, with a powerlaw slope close to the Salpeter IMF is thus found. As for the physics of star formation, its origin remains largely unknown.

How universal is such a “universal” IMF? Does this behaviour only breakdown at very low metallicities, such as encountered in the earliest phases of the Universe, and suggested by several investigations on the formation of Population III objects (cf. also Abel these proceedings)? These, and other challenging questions are likely to remain unanswered for several more years.

References

Brandl, B., Brandner, W., Eisenhauer, F., Moffat, A. F. J., Palla, F., Zinnecker, H., 1999, A&A, 352, L69
Bresolin, F., Kennicutt, R. C., , 2002, ApJ, 572, 838
Bresolin, F., Kennicutt, R. C., Garnett, D. R., 1999, ApJ, 510, 104
Castellanos, M., 2001, PhD thesis, Universida Autónoma de Madrid, Spain
Castellanos, M., et al., 2002b, MNRAS, submitted
Colbert, J.W., et al., 1999, ApJ, 511, 521
Conti, P.S., 1991, ApJ, 377, 115
Coziol, R., Doyon, R., Demers, S., 2001, MNRAS, 325, 1081
de Mello, D.F., Leitherer, C., Heckman, T.M., 2000, ApJ, 530, 251
Doane, J.S., Matthews, W.G., 1993, ApJ, 419, 573
Figer, D. F., Morris, M., Geballe, T. R., Rich, R. M., Serabyn, E., McLean, I. S., Puetter, R. C., Yahil, A., 1999, ApJ, 525, 759
 Förster-Schreiber, N.M., 1998, PhD thesis, Ludwig-Maximilian-Universität, Munich
 Förster-Schreiber, N.M., 2000, NewAR, 44, 263
 Förster Schreiber, N. M., Genzel, R., Lutz, D., Kunze, D., Sternberg, A., 2001, ApJ, 552, 544
 García-Vargas, M.L., 1996, in “From Stars to Galaxies”, Eds. C. Leitherer, U. Fritze-v. Alvensleben, J. Huchra, ASP Conf. Series, 98, 244
 García-Vargas, M.L., Bressan, A., Diaz, A., 1995, A&AS, 112, 13
 Gilbert, A.M., Graham, J.R., 2001, AAS, 199, 1404
 Gilmore, G., Howell, D. 1998, Eds., “The Stellar Initial Mass Function”, ASP Conf. Series, Vol. 142
 Goldader, J.D., et al., 1997, ApJ, 474 104
 Ho, L. C., Filippenko, A. V., 1996, ApJ, 472, 600
 Ho, L. C.,Filippenko, A. V., 1996, ApJ, 466, L83
 Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A., Trevena, J., 2001, ApJ, 556, 121
 Kroupa, P., 2002, Science, 295, 82
 Le Borgne, J.F., et al., 2002, A&A, in preparation
 Leitherer, C., Calzetti, D., Martins, L. P., 2002, ApJ, 574, 114
 Leitherer, C., 1998, in “The Stellar Initial Mass Function”, ASP Conf. Series, Vol. 142, 61
Leitherer, C., et al., 1999, ApJS, 123, 3 (Starburst99)
Massey, P., 1998, in “The Stellar Initial Mass Function”, ASP Conf. Series, Vol. 142,
17
Massey, P., Johnson, K.E., DeGioia-Eastwood, K., 1995, ApJ, 454, 151
Mas-Hesse, J.M., Kunth, D., 1999, A&A, 349, 765
Martín-Hernández, N. L., Vermeij, R., Tielens, A. G. G. M., van der Hulst, J. M.,
Peeters, E., 2002, A&A, 389, 286
Mengel, S., Lehnert, M.D., Thatte, N., Genzel, R., 2002, A&A, 383, 137
Moy, E., Rocca-Volmerange, B., Fioc, M., 2001, A&A, 365, 347
Papovich, C., Dickinson, M., Ferguson, H.C., 2001, ApJ, 559, 620
Pettini, M., et al., 2000, ApJ, 528, 96
Pindao, M., Schaerer, D., González Delgado, R.M., Stasińska, G., 2002, A&A, in press
Rieke, G.H., Lebofsky, M.J., Thompson R.I., Low, F.J., Takunaga, A.T., 1980, ApJ, 238, 23
Rieke, G.H., Loken, K., Rieke, M.J., Tamblyn, P., 1993, ApJ, 412, 99
Sagar, R., Richtler, T., 1991, A&A, 250, 324
Salpeter, E.E, 1955, ApJ, 121 161
Satyapal, S. et al., 1995, ApJ, 448, 611
Satyapal, S. et al., 1997, ApJ, 483, 148
Schaerer, D., 1996, ApJ, 467, L17
Schaerer, D., 1999a, IAU Symp. 193, 539
Schaerer, D., 1999b, in “Spectrophotometric Dating of Stars and Galaxies”, I. Hubeny, S.R. Heap, R.H. Cornett (eds.), ASP Conf. Series 192, 49
Schaerer, D., 2000, in “Stars, Gas and Dust in Galaxies: Exploring the Links”, Eds. D. Alloin, G. Galaz, K. Olsen, ASP Conf. Series, 221, 99
Schaerer, D., Contini, T., Kunth D., 1999a, A&A, 341, 399
Schaerer, D., Contini, T., Pindao M., 1999b, A&AS, 136, 35
Schaerer, D., Guseva, N., Izotov, Y.I., Thuan, T.X., 2000, A&A, 362, 53
Schaerer, D., Vacca, W. D. 1998, ApJ, 497, 618
Sirianni, M., et al., 2000, ApJ, 533, 203
Smith, L. J., Gallagher, J. S., 2001, MNRAS, 326, 1027
Smith L.J., Norris R.P., Crowther P.A., 2002, MNRAS, in press [astro-ph/0207554]
Stasińska, G., 1996, in “From Stars to Galaxies”, Eds. C. Leitherer, U. Fritze-v. Alvensleben, J. Huchra, ASP Conf. Series, 98, 232
Stasińska, G., Izotov, Y.I., 2002, A&A, submitted
Stasińska, G., Leitherer, C., 1996, ApJ, 107, 661
Stasińska, G., Schaerer, D., Leitherer, C., 2001, A&A, 370, 1
Thornley, M.D., Forster Schreiber, N.M., Lutz, D., Genzel, R., Spoon, H. W. W., Kunze, D., Sternberg, A. 2000, ApJ, 539, 641
Tremonti, C.A., Calzetti, D., Leitherer, C., Heckman, T., 2001, ApJ, 555, 322