ON CABLED KNOTS, DEHN SURGERY, AND LEFT-ORDERABLE FUNDAMENTAL GROUPS

ADAM CLAY AND LIAM WATSON

Abstract. Previous work of the authors establishes a criterion on the fundamental group of a knot complement that determines when Dehn surgery on the knot will have a fundamental group that is not left-orderable [6]. We provide a refinement of this criterion by introducing the notion of a decayed knot; it is shown that Dehn surgery on decayed knots produces surgery manifolds that have non-left-orderable fundamental group for all sufficiently positive surgeries. As an application, we prove that sufficiently positive cables of decayed knots are always decayed knots. These results mirror properties of L-space surgeries in the context of Heegaard Floer homology.

Definition 1. A group G is left-orderable if there exists a partition of the group elements $G = \mathcal{P} \sqcup \{1\} \sqcup \mathcal{P}^{-1}$ satisfying $\mathcal{P} \cdot \mathcal{P} \subseteq \mathcal{P}$ and $\mathcal{P} \neq \emptyset$. The subset \mathcal{P} is called a positive cone.

This is equivalent to G admitting a left-invariant strict total ordering. For background on left-orderable groups relevant to this paper see [2, 6]; a standard reference for the theory of left-orderable groups is [12]. As established by Boyer, Rolfsen and Wiest [2] (compare [11]), the fundamental group $\pi_1(K)$ of the complement of a knot K in S^3 is always left-orderable. Indeed, this follows from the fact that any compact, connected, irreducible, orientable 3-manifold with positive first Betti number has left-orderable fundamental group [2, Theorem 1.1]. However, the question of left-orderability for fundamental groups of rational homology 3-spheres is considerably more subtle (see [2, 6]) and seems closely tied to certain codimension one structures on the 3-manifold (see [2, 3, 17]). Continuing along the lines of [6] this paper focuses on Dehn surgery, an operation on knots that produces rational homology 3-spheres. We recall this construction in order to fix notation and conventions.

For any knot K in S^3 there is a preferred generating set for the peripheral subgroup $\mathbb{Z} \oplus \mathbb{Z} \subset \pi_1(K)$ provided by the knot meridian μ and the Seifert longitude λ. The latter is uniquely determined (up to orientation) by the existence of a Seifert surface for K. We orient μ so that it links positively with K, and orient λ so that $\mu \cdot \lambda = 1$. For any rational number r with reduced form $\frac{p}{q}$ we denote the peripheral element $\mu^p \lambda^q$ by α_r. At the level of the fundamental group, the result of Dehn surgery along α_r is summarized by the short exact sequence

$$1 \rightarrow \langle \langle \alpha_r \rangle \rangle \rightarrow \pi_1(K) \rightarrow \pi_1(S^3_r(K)) \rightarrow 1.$$
Here \(\langle \langle \alpha_r \rangle \rangle\) denotes the normal closure of \(\alpha_r\), and \(S^3_\nu(K)\) is the 3-manifold obtained by attaching a solid torus to the boundary of \(S^3 \setminus \nu(K)\), sending the meridian of the torus to a simple closed curve representing the class \([\alpha_r] \in H_1(\partial (S^3 \setminus \nu(K)); \mathbb{Z})/\{\pm 1\}\).

We will blur the distinction between \(\alpha_r\) as an element of the fundamental group or as a primitive class in the (projective) first homology of the boundary, and refer to these peripheral elements as slopes.

While many examples of rational homology 3-spheres have left-orderable fundamental group [2], there exist infinite families of knots for which sufficiently positive Dehn surgery (that is, along a slope parametrized by a suitable large rational number) yields a manifold with non-left-orderable fundamental group [6]. To make this precise, consider the set of slopes

\[S_r = \{\alpha_{r'} | r' \geq r\} \]

for some fixed rational \(r\).

Definition 2. A nontrivial knot \(K\) in \(S^3\) is called \(r\)-decayed if, for any positive cone \(\mathcal{P}\) in \(\pi_1(K)\), either \(\mathcal{P} \cap S_r = S_r\) or \(\mathcal{P} \cap S_r = \emptyset\).

The existence of decayed knots is established in [6]. For example, the torus knot \(T_{p,q}\) is \((pq - 1)\)-decayed (for \(p,q > 0\)), and the \((-2,3,q)\)-pretzel knot is \((10 + q)\)-decayed for odd \(q \geq 5\) (see Theorem 11). Our interest in this property stems from the following:

Theorem 3. If \(K\) is \(r\)-decayed then \(\pi_1(S^3_{r'}(K))\) is not left-orderable for all \(r' \geq r\).

As a result, it is not restrictive to assume that \(r\) is a positive rational number since \(\pi_1(S^3_0(K))\) is always left-orderable [2]. Notice however that it is not immediately clear how Theorem 3 might be applied in practice, as there is no obvious method for checking when a knot is \(r\)-decayed. For this reason, in Section 1 we describe an equivalent formulation of \(r\)-decay whose statement is more technical, but easier to verify, than the definition. Together with the proof of Theorem 3, the results of Section 1 provide a useful refinement of the ideas from [6].

Results connecting left-orderability and Dehn surgery may be expected to mirror similar results relating to L-spaces, since there is no known example of an L-space with left-orderable fundamental group, while many L-spaces have fundamental group that is not left-orderable. (see [1, 5, 6, 16, 21]). Recall that an L-space is a rational homology sphere with Heegaard Floer homology that is as simple as possible, in the sense that \(\text{rk} \widehat{HF}(Y) = |H_1(Y; \mathbb{Z})|\) (see [15]). Theorem 3 mirrors a fundamental property of knots admitting L-space surgeries: if \(S^3_0(K)\) is an L-space, then \(S^3_r(K)\) is an L-space as well for any \(r \geq n\).

In the interest of further investigating left-orderability of fundamental groups of 3-manifolds along the lines of [6], we consider the behaviour of Dehn surgery on cables of \(r\)-decayed knots (for necessary background, see Section 2). Denoting the \((p,q)\)-cable of the knot \(K\) as \(C_{p,q}(K)\), the main theorem of this article is:
Theorem 4. If K is r-decayed then $C_{p,q}(K)$ is pq-decayed whenever $\frac{q}{p} > r$.

The proof of Theorem 4 is contained in Section 2. Notice that combining Theorem 11 and Theorem 4 provides a rather large class of knots for which sufficiently positive surgery yields a non-left-orderable fundamental group.

Dehn surgery on cabled knots and non-left-orderability of the resulting fundamental groups may again be viewed in the context of Heegaard Floer homology. Referring to knots admitting L-space surgeries as L-space knots, Hedden proves:

Theorem 5. [9, Theorem 1.10] If K is an L-space knot then $C_{p,q}(K)$ is an L-space knot whenever $\frac{q}{p} \geq 2g(K) - 1$.

Here, the quantity $g(K)$ is the Seifert genus of K. Note that the converse of this statement has been recently established by Hom [10].

In order to assess the strength of Theorem 4, it is natural to ask when Dehn surgery on a cable knot yields a manifold that has left-orderable fundamental group. It turns out that, in the case that K is r-decayed, Theorem 4 is close to describing all possible non-left-orderable surgeries on a cable knot $C_{p,q}(K)$, in the following sense:

Theorem 6. Suppose that C is the (p, q)-cable of some knot. If $r \in \mathbb{Q}$ satisfies $r < pq - p - q$, then $\pi_1(S^3_r(C))$ is left-orderable.

This result is a special case of a more general observation pertaining to satellite knots that is discussed in Section 3. Notice that Theorem 6 makes no reference to the original knot being r-decayed. However, restricted to r-decayed knots, Theorem 4 and Theorem 6 combine to produce an interval of surgery coefficients for which the left-orderability of the associated quotient is not determined. More precisely:

Question 7. If K is r-decayed and C is a (p, q)-cable of K with $\frac{q}{p} > r$, can Theorem 4 and Theorem 6 be sharpened to determine when $\pi_1(S^3_{r'}(C))$ is left-orderable for r' satisfying $pq - p - q < r' \leq pq$?

Acknowledgments. We thank Josh Greene, Tye Lidman and Dale Rolfsen for helpful comments on an earlier draft of this paper.

1. A practical reformulation of Theorem 8

We begin with a reformulation of r-decay that will be essential in connecting this work with the results of [6]. This will require the following lemma:

Lemma 8. Let G be a left-orderable group containing elements g, h. If $g \in \mathcal{P}$ implies $h \in \mathcal{P}$ for every positive cone \mathcal{P}, then $g \in \mathcal{P}$ if and only if $h \in \mathcal{P}$.
Proof. We need only show the converse, namely $h \in \mathcal{P}$ implies $g \in \mathcal{P}$ for every positive cone $\mathcal{P} \subset G$. For a contradiction, suppose this is not the case, so there exists a positive cone such that $h \in \mathcal{P}$ and $g \notin \mathcal{P}$. Consider the positive cone $\mathcal{Q} = \mathcal{P}^{-1}$, defining the reverse ordering of G. This gives $g \in \mathcal{Q}$ and $h \notin \mathcal{Q}$, contradicting our assumption. \hfill \Box

Proposition 9. A knot K is r-decayed if and only if for every positive cone $\mathcal{P} \subset \pi_1(K)$ there exists a strictly increasing sequence of positive rational numbers $\{r_i\}$ with $r_i \to \infty$ satisfying

(1) $r = r_0$, and
(2) $\alpha_r \in \mathcal{P}$ implies $\alpha_{r_i} \in \mathcal{P}$ for all i.

Proof. Suppose that K is r-decayed, and let \mathcal{P} be any positive cone. Choose a strictly increasing sequence of rational numbers $\{r_i\}$ with $r_0 = r$ and $r_i \to \infty$. Whenever $\alpha_r = \alpha_{r_0} \in \mathcal{P}$ we have $\mathcal{S}_r \cap \mathcal{P} \neq \emptyset$, so that $\mathcal{S}_r \cap \mathcal{P} = \mathcal{S}_r$ since K is r-decayed. It follows that $\alpha_{r_i} \in \mathcal{S}_r \subset \mathcal{P}$ for all i.

To prove the converse, let \mathcal{P} be a positive cone for $\pi_1(K)$. Fix a strictly increasing sequence $\{r_i\}$ of rational numbers limiting to infinity and satisfying (1) and (2). Suppose that $\alpha_r \in \mathcal{P}$, then by assumption $\alpha_{r_i} \in \mathcal{P}$ for all $i > 0$.

Now suppose that $\mu^m \lambda^n$ is an element of \mathcal{S}_r. Choose r_i, r_{i+1} with corresponding reduced forms $\frac{p_i}{q_i}, \frac{p_{i+1}}{q_{i+1}}$ such that $r_i < \frac{m}{n} < r_{i+1}$. By solving

$$q_i a + q_{i+1} b = cn$$
$$p_i a + p_{i+1} b = cm$$

we can find positive integers a, b and c such that $(\mu^{p_i} \lambda^{q_i})^a (\mu^{p_{i+1}} \lambda^{q_{i+1}})^b = (\mu^m \lambda^n)^c$. Explicitly, Cramer’s rule gives

$$a = \begin{vmatrix} n & q_{i+1} \\ m & p_{i+1} \end{vmatrix}, \quad b = \begin{vmatrix} q_i & n \\ p_i & m \end{vmatrix}, \quad c = \begin{vmatrix} q_i & q_{i+1} \\ p_i & p_{i+1} \end{vmatrix};$$

note that all these quantities are positive because of our restriction $r_i < \frac{m}{n} < r_{i+1}$ (compare \[\text{Lemma 17}\]) . This shows that $\mu^m \lambda^n$ is positive, since its c-th power is expressed as a product of positive elements. Hence $\mathcal{S}_r \cap \mathcal{P} = \mathcal{S}_r$.

This establishes the implication $\alpha_r \in \mathcal{P} \Rightarrow \mathcal{S}_r \subset \mathcal{P}$ for every positive cone \mathcal{P}. By Lemma \[\text{13}\], this is equivalent to $\mathcal{S}_r \cap \mathcal{P} = \mathcal{S}_r$ or $\mathcal{S}_r \cap \mathcal{P} = \emptyset$ for every positive cone \mathcal{P}, so that K is r-decayed. \hfill \Box

Remark 10. In practice, it is often more natural to establish $\alpha_r \in \mathcal{P}$ implies $\alpha_{r^w_i} \in \mathcal{P}$ for all i, where $w_i \in \mathbb{N}$ (see in particular the proofs of Lemma \[\text{13}\] and Lemma \[\text{14}\]). This situation arises when one constructs (for a given positive cone \mathcal{P}) a sequence of unreduced rationals $\{r_i\} = \{\frac{p_i}{q_i}\}$ for which $\gcd(p_i, q_i) = w_i \geq 1$, and $\mu^{p_i} \lambda^{q_i} \in \mathcal{P}$ implies $\mu^{p_{i+1}} \lambda^{q_{i+1}} \in \mathcal{P}$ for all i. Notice that the implication $\alpha_r \in \mathcal{P}$ implies $\alpha_{r^w_i} \in \mathcal{P}$ still allows us to apply Proposition \[\text{14}\] since $\alpha_{r^w_i} \in \mathcal{P}$ if and only if $\alpha_{r_i} \in \mathcal{P}$ (this simple observation holds in any left-orderable group). Ultimately, this results in more flexibility in selecting the sequence $\{r_i\}$.
The equivalence established in Proposition 9 shows that all examples considered in [6] are \(r \)-decayed for certain \(r \), as [6, Corollary 11] is a special case of Proposition 9.

Theorem 11. [6, Theorem 24, Theorem 28 and Theorem 30]

1. The \((p, q)\)-torus knot is \((pq - 1)\)-decayed for all positive, relatively prime pairs of integers \(p, q \).
2. The \((-2, 3, q)\)-pretzel knot is \((10 + q)\)-decayed for all odd \(q \geq 5 \).
3. The \((3, q)\)-torus knot with one positive full twist added along two strands is \((3q + 2)\)-decayed, for all positive \(q \) congruent to 2 modulo 3.

Proof. We consider the case of \(K_q \), the \((-2, 3, q)\)-pretzel knot with \(q \geq 5 \) odd, the other cases are similar. Set \(r = 10 + q \), and \(r_i = r + i \). It is shown in [6] that for every positive cone \(\mathcal{P} \) in \(\pi_1(K_q) \), the implication \(\alpha_r \in \mathcal{P} \Rightarrow \alpha_{r_i} \in \mathcal{P} \) holds for all \(i \geq 0 \). This means that for every left-ordering of \(\pi_1(K_q) \), the integer sequence \(\{r_i\} \) satisfies the properties required by Proposition 9 and we conclude that \(K_q \) is \(r \)-decayed.

Note that the above proof illustrates some particularly special behaviour, as the rational sequences \(\{r_i\} \) required by Proposition 9 (which a priori may be different for each left-ordering) are replaced by a single integer sequence sufficient for every left-ordering. Thus, Proposition 9 provides a more workable method (than used previously) for checking when a knot has surgeries that yield a non-left-orderable fundamental group. Combined with the material established in [6, Section 2], we provide a short proof of Theorem 3.

Proof of Theorem 3. For contradiction, assume that \(\pi_1(S^3_{r'}(K)) \) is left-orderable for some \(r' \geq r \), and consider the short exact sequence

\[
1 \rightarrow \langle \langle \alpha_r' \rangle \rangle \xrightarrow{i} \pi_1(K) \xrightarrow{f} \pi_1(S^3_{r'}(K)) \rightarrow 1,
\]

as defined in the introduction. Let \(\mu, \lambda \in \pi_1(K) \) denote the meridian and longitude. Since \(\pi_1(S^3_{r'}(K)) \) is left-orderable, \(\langle \langle \alpha_r' \rangle \rangle \cap \langle \mu, \lambda \rangle = \langle \alpha_r' \rangle \) (see proof of [6, Proposition 20]). In particular, if we fix an arbitrary rational number \(s_0 > r' \), then \(f(\alpha_{s_0}) \neq 1 \). Thus, we may choose a positive cone \(\mathcal{Q} \) in \(\pi_1(S^3_{r'}(K)) \) that contains \(f(\alpha_{s_0}) \). Next, choose a positive cone \(\mathcal{Q}' \subset \langle \langle \alpha_r' \rangle \rangle \) not containing \(\alpha_r' \), and define a positive cone \(\mathcal{P} \subset \pi_1(K) \) by

\[
\mathcal{P} = i(\mathcal{Q}') \cup f^{-1}(\mathcal{Q}).
\]

Note that \(\alpha_r' \notin \mathcal{P} \), and \(\alpha_{s_0} \in \mathcal{P} \).

This is a standard construction for creating a left-ordering of a group using a short exact sequence, here the result is a left-ordering of \(\pi_1(K) \) with positive cone \(\mathcal{P} \), relative to which the subgroup \(\langle \langle \alpha_r' \rangle \rangle \) is convex. Because \(\langle \langle \alpha_r' \rangle \rangle \) is convex, the intersection \(\langle \langle \alpha_r' \rangle \rangle \cap \langle \mu, \lambda \rangle = \langle \alpha_r' \rangle \) is convex in the restriction ordering of \(\langle \mu, \lambda \rangle \). Therefore, [6, Proposition 18] shows that all slopes \(\alpha_s \) with \(s > r' \) must have the same sign. In particular, since \(\alpha_{s_0} \) is positive it follows that all slopes \(\alpha_s \) with \(s > r' \) are positive, so that

\[
Q \cap S_r = \{ \alpha_s \mid s > r' \}.
\]

Therefore, \(K \) is not \(r \)-decayed. \(\square \)
We remark that there is a more geometric argument establishing Theorem 3, that relies upon an understanding of the topology of the space of left-orderings of \(\mathbb{Z} \oplus \mathbb{Z} \) (see [18, Section 3] and [4, Chapter 6]). Roughly, every left-ordering of the knot group \(\pi_1(K) \) restricts to a left-ordering of the peripheral subgroup that defines a line in \(\mathbb{Z} \oplus \mathbb{Z} \), with all positive elements of \(\mathbb{Z} \oplus \mathbb{Z} \) on one side of the line, and all the negative elements on the other side. As a result, given two rationals \(r_1 < r_2 \) corresponding to slopes \(\alpha_{r_1} \) and \(\alpha_{r_2} \) that have the same sign in every left-ordering, no left-ordering can restrict to an ordering of the peripheral subgroup with corresponding slope \(s \) between \(r_1 \) and \(r_2 \). The proof of Theorem 3 then follows from checking that whenever \(\pi_1(S_{r_1}^3(K)) \) is left-orderable, we can define a left-ordering of \(\pi_1(K) \) that restricts to yield a line of slope \(r' \) in the peripheral subgroup (compare [6, Proof of Theorem 9]).

2. The proof of Theorem 4

We recall the construction of a cabled knot in order to fix notation. Consider the \((p, q)\)-torus knot \(T_{p,q} \), where \(p, q > 0 \) are relatively prime. As the closure of a \(p \)-strand braid, this knot may be naturally viewed in a solid torus \(T \) by removing a tubular neighbourhood of the braid axis. The complement of \(T_{p,q} \) in \(T \) is referred to as a \((p, q)\)-cable space. Now given any knot \(K \) in \(S^3 \), the cable knot \(C_{p,q}(K) \) is obtained by identifying the boundary of \(T_{p,q} \) with \(\nu(K) \), identifying the longitude of \(T_{p,q} \) with the longitude \(\lambda \) of \(K \). We will denote this cable knot by \(C \) whenever this simplified notation does not cause confusion.

The knot group \(\pi_1(C) \) may be calculate via the Seifert-Van Kampen Theorem, by viewing the complement \(S^3 \setminus \nu(C) \) as the identification of the boundaries of \(S^3 \setminus \nu(K) \) and a solid torus \(D^2 \times S^1 \) along an essential annulus with core curve given by the slope \(\mu^q \lambda^p \). If \(\pi_1(D^2 \times S^1) = \langle t \rangle \) then this gives rise to a natural amalgamated product

\[
\pi_1(C) \cong \pi_1(K) \ast_{\mu^q \lambda^p = t^p} \mathbb{Z}.
\]

Consulting [6 Section 3], the meridian and longitude for \(C \) may be calculated as

\[
\mu_C = \mu^u \lambda^v t^{-v} \quad \text{and} \quad \lambda_C = \mu_C^{-pq} t^p
\]

where \(u \) and \(v \) are positive integers satisfying \(pu - qv = 1 \) (compare [20, Proof of Theorem 3.1]).

Suppose that the knot \(K \) is \(r \)-decayed, and choose cabling coefficients \(p \) and \(q \) so that \(q/p > r \). To begin, we choose a positive cone \(\mathcal{P} \subset \pi_1(C) \) and assume that \(\mu_C^{pq} \lambda = t^p \) is positive. This means that \(t^p = \mu^q \lambda^p \in \mathcal{P} \), so every element \(\mu^m \lambda^n \) is positive whenever \(m/n > r \), since \(K \) is \(r \)-decayed.

Our method of proof will be to check that the cable is \(pq \)-decayed by using the equivalence from Proposition 9. In particular, we will show that for the given positive cone \(\mathcal{P} \subset \pi_1(C) \) there exists an unbounded sequence of increasing rationals \(\{r_i\} \) with \(r_0 = pq \), such that our assumption \(\alpha_{pq} = \mu_C^{pq} \lambda_C \in \mathcal{P} \) implies \(\alpha_{r_i} \in \mathcal{P} \) for all \(i > 0 \).
First consider the case when μ_C is positive in the left-ordering defined by P. Here, $\mu_C^{pq+N}\lambda_C$ is positive for $N \geq 0$, as it is a product of positive elements. Therefore in this case it suffices to choose $r_i = pq + i$ for all $i \geq 0$.

For the remainder of the proof, we assume that μ_C is negative. For repeated use below, we also observe the crucial identity

$$((t-v)^p(\mu^u\lambda^v))^p = (t^p-v^p\mu^u\lambda^v) = (\mu^{-pq}\lambda^{-pv}\mu^u\lambda^v = \mu^{pv-qv} = \mu,$$

and recall that t^p commutes with μ, λ, μ_C, and λ_C. Therefore, we also have

$$(\mu^u\lambda^v)^p(t^{-v})^p = (t^{-v})^p(\mu^u\lambda^v)^p = \mu.$$

Let k be an arbitrary non-negative integer, and consider the element

$$\mu^{-k}(t^{-v}\mu^u\lambda^v)\mu^k.$$

If this element is positive for some k, then the required sequence is provided by Lemma 13 (proved below). Therefore, we may assume that

$$(1) \quad \mu^{-k}(t^{-v}\mu^u\lambda^v)\mu^k \notin P$$

for all k.

Similarly, for k a non-negative integer, we consider

$$(\mu^{-k}t^{-v}\mu^k)^{p-1}(\mu^u\lambda^v)^{p-1}.$$

If this element is positive for some non-negative k, then we can create the required sequence using Lemma 14 (proved below). Therefore, we may assume that

$$(2) \quad (\mu^{-k}t^{-v}\mu^k)^{p-1}(\mu^u\lambda^v)^{p-1} \notin P$$

for all k.

Observe that

$$(\mu^{-k}t^{-v}\mu^k)^{p-1}(\mu^u\lambda^v)^{p-1} = (\mu^{-k}t^p\mu^k)(\mu^{-k}t^{-vp}\mu^k)(\mu^u\lambda^v)$$

which, recalling that t^p commutes with the elements μ and λ, simplifies to give

$$(\mu^{-k}t^p\mu^k)(\mu^{-u}\lambda^{-v})t^{-vp}\mu^u\lambda^v = (\mu^{-k}t^p\mu^k)(\mu^{-u}\lambda^{-v})\mu = \mu^{-k}t^p\lambda^{-v}\mu^{-u}\mu^{k+1} \notin P$$

for all k. Taking inverses yields

$$\mu^{-k-1}\mu^u\lambda^v\mu^{-v}\mu^k = \mu^{-k-1}\mu_C\mu^k \in P.$$

For the following lemmas, let $>_{\text{left}}$ denote the left-ordering defined by the positive cone P, so that $h > g$ whenever $g^{-1}h \in P$. We can then calculate:

Lemma 12. If (1) and (2) hold for all $k \geq 0$, then $\mu^{N+q}\lambda^p$ must be positive for all $N \geq 0$.
Proof. Since \(\mu^{-k-1} \mu_C \mu^k > 1 \), left-multiplying by \(\mu^{k+1} \) gives \(\mu_C \mu^k > \mu^{k+1} \) for all \(k \geq 0 \). Setting \(k = 0 \) we obtain \(\mu_C > \mu \), so that left-multiplying by \(\mu_C \) gives rise to

\[
\mu_C^2 > \mu C \mu.
\]

By setting \(k = 1 \), we get

\[
\mu_C \mu > \mu^2,
\]

which combines with the previous expression to give \(\mu_C^2 > \mu^2 \). Continuing in this manner, we obtain \(\mu_C^N > \mu^N \) for all \(N \geq 0 \). Left-multiplying by \(t^p \), it follows that

\[
\mu_N^{np} \lambda_C = \mu_C^N t^p > \mu^N t^p = \mu^{N+q} \lambda > 1,
\]

where the final inequality follows from the fact that \((N + q)/p > q/p > r \) and \(K \) is \(r \)-decayed. \(\square \)

As in the first case, we may now choose the sequence of rationals \(r_i = pq + i \) for all \(i \geq 0 \), and the requirements of Proposition 9 are met.

To conclude the proof, we establish Lemma 13 and Lemma 14.

Lemma 13. If \(\mu^{-k}(t^{-v} \mu^u \lambda^v) \mu^k \in \mathcal{P} \) for some \(k \geq 0 \), then there exists a sequence of rationals \(\{r_i\} \) such that \(\alpha_{r_i} > 1 \) for all \(i \).

Proof. For \(N \geq 0 \), we rewrite \(\mu_C^N \) as

\[
\mu_C^N = \mu^u \lambda^v \mu^k (\mu^{-k}(t^{-v} \mu^u \lambda^v) \mu^k) \mu^{-u-k} \lambda^{-v}.
\]

Fix a positive integer \(s \) that is large enough so that \((sq - u - k)/(sp - v) > r \), this is possible because \(q/p > r \). Next, the product \(\mu_C^{N+qs} \lambda_C^s \mu_C^{N+qs} \lambda^{sp} \) becomes \(\mu_C^N \mu^{sq} \lambda^{sp} \), which is equal to

\[
\mu^{u+k} \lambda^v (\mu^{-k}(t^{-v} \mu^u \lambda^v) \mu^k) (\mu^{qs-u-k} \lambda^{ps-v}).
\]

This is a product of positive elements, because:

1. \(\mu^{u+k} \lambda^v > 1 \) because \((u + k)/v > q/p > r \), and
2. \(\mu^{qs-u-k} \lambda^{ps-v} > 1 \) because \((sq - u - k)/(sp - v) > r \),

while the quantity \(\mu^{-k}(t^{-v} \mu^u \lambda^v) \mu^k \) is positive by assumption. Therefore, in this case we choose our sequence of rationals to be

\[
\alpha_{r_i} = \frac{pq + i}{s}
\]

for \(i \geq 0 \), this guarantees that the associated slopes \(\alpha_{r_i} \) are positive in the given left-ordering. \(\square \)

Lemma 14. If \(\mu^{-k}(t^{-v} \mu^u \lambda^v) \mu^k \notin \mathcal{P} \) for all \(k \geq 0 \), and \((\mu^{-k}t^{-v} \mu^k)^{p-1}(\mu^u \lambda^v)^{p-1} \in \mathcal{P} \) for some \(k \geq 0 \), then there exists a sequence of rationals \(\{r_i\} \) such that \(\alpha_{r_i} > 1 \) for all \(i \).
Proof. Fix \(k \geq 0 \) such that \(\mu^{-k}(t^{-v}u^\lambda v^\mu)^k < 1 \) and \((\mu^{-k}t^{-v}u^\lambda v^\mu)^{p-1}(\mu^u\lambda^v)^{p-1} > 1 \), and let \(n \) be the smallest positive integer such that
\[
(\mu^{-k}t^{-v}u^\lambda v^\mu)^n(\mu^u\lambda^v)^n > 1,
\]
and
\[
(\mu^{-k}t^{-v}u^\lambda v^\mu)^{n-1}(\mu^u\lambda^v)^{n-1} < 1,
\]
note that \(1 < n \leq q - 1 \). Note that we may rearrange these two expressions, so that
\[
\mu^{-k}t^{-vn}(\mu^u\lambda^v)^n\mu^k > 1,
\]
and
\[
\mu^{-k}(\mu^u\lambda^v)^{1-n}t^{-v(1-n)}\mu^k > 1.
\]
Then we can rewrite \(\mu_C^N \) for \(N \geq 1 \) as follows:
\[
\mu_C^N = \mu^{u+k}\lambda^v(\mu^{-k}t^{-v(1-n)}\mu^k)(\mu^{-k}t^{-vn}(\mu^u\lambda^v)^n\mu^k)\mu^{-k}(\mu^u\lambda^v)^{1-n}t^{-v(1-n)}\mu^k)^{N-1}\mu^{-k}t^{-vn}.
\]
In the above expression, the quantity inside the square brackets is a product of positive elements. Denote this quantity by \(P \). Choose an integer \(s \) such that \((qs - k)/ps > r \). Then considering the slope \(\mu_C^{N+pq(v+s)}\lambda_C^{v+s} = p_C^{N}\mu^{(v+s)} \), we find
\[
\mu_C^{N}\mu^{(v+s)} = \mu^{u+k}\lambda^v(\mu^{-k}t^{-v(1-n)}\mu^k)\mu^{N-1}\mu^{qs-k}\lambda^{ps}t^{pv-vn}.
\]
This is a product of positive elements, because:

1. \(\mu^{u+k}\lambda^v > 1 \), since \((u + k)/v > q/p > r \).
2. \(\mu^{-k}t^{-v(1-n)}\mu^k > 1 \), because if we consider its \(p \)-th power, we can use the fact that \(t^p \) commutes with all peripheral elements so that
 \[
 (\mu^{-k}t^{-v(1-n)}\mu^k)^p = t^{-pv(1-n)} > 1.
 \]
 The final inequality follows from \(-pv(1-n) > 0 \).
3. \(\mu^{qs-k}\lambda^{ps} > 1 \), because \(s \) is chosen so that \((qs - k)/ps > r \).
4. \(t^{pv-vn} > 1 \), because \(pv - vn > 0 \).

Therefore, in this case we may choose our sequence of rationals to be
\[
r_i = \frac{i + pq(v+s)}{v + s}
\]
for \(i \geq 0 \), as the corresponding elements \(\mu_C^{i+pq(v+s)}\lambda_C^{v+s} \) are positive in the left-ordering for \(i \geq 0 \).

\[
3. \text{Surgery on satellites}
\]

Let \(T \) denote the solid torus containing a knot \(K^P \), we require that \(K^P \) is not contained in any 3-ball inside \(T \). The knot \(K^P \) will be called the pattern knot. Let \(K^C \) denote a knot in \(S^3 \), \(K^C \) will be called the companion knot. We construct the satellite knot \(K \) with pattern \(K^P \) and companion \(K^C \) as follows.
Let \(h : \partial T \to \partial(S^3 \setminus \nu(K^C)) \) denote a diffeomorphism from the boundary of \(T \) to the boundary of the complement of \(\nu(K^C) \), which carries the longitude of \(\partial T \) onto the longitude of the knot \(K^C \). The knot \(K \) is then realized as the image of the knot \(K^P \) in the manifold \(S^3 \setminus \nu(K^C) \cup_h T = S^3 \).

Lemma 15. [19] Proposition 3.4 There exists a homomorphism \(\phi : \pi_1(K) \to \pi_1(K^P) \) that preserves peripheral structure.

Proof. We can compute the fundamental group \(\pi_1(K) \) by using the Seifert-Van Kampen theorem. Since

\[
S^3 \setminus \nu(K) = S^3 \setminus \nu(K^C) \cup_h T \setminus \nu(K^P),
\]

the group \(\pi_1(K) \) is the free product \(\pi_1(K^C) \ast \pi_1(T \setminus \nu(K^P)) \), with amalgamation as follows: The meridian of \(K^C \) is identified with the meridian of \(T \), and the longitude of \(K^C \) is identified with the longitude of \(T \).

Let \(N \) denote the normal closure in \(\pi_1(K) \) of the commutator subgroup of \(\pi_1(K^C) \). The quotient \(\pi_1(K)/N \) can be considered as the result of killing the longitude of \(T \). Topologically we can think of this quotient as gluing a second solid torus \(T' \) to the torus \(T \) containing \(K^P \), in such a way that the meridian of \(T' \) is glued to the longitude of \(T \). The result is that \(\pi_1(K^C) \) collapses to a single infinite cyclic subgroup, and the group \(\pi_1(K)/N \) is isomorphic to \(\pi_1(K^P) \). The desired homomorphism \(\phi \) is the quotient map \(\pi_1(K) \to \pi_1(K)/N \). \(\square \)

Proposition 16. Suppose that \(K \) is a satellite knot with pattern knot \(K^P \), and \(r \in \mathbb{Q} \) is any rational number. If \(\pi_1(S^3_r(K^P)) \) is left-orderable and \(S^3_r(K) \) is irreducible, then \(\pi_1(S^3_r(K)) \) is left-orderable.

Proof. By Lemma [19] there exists a homomorphism \(\phi : \pi_1(K) \to \pi_1(K^P) \) that preserves peripheral structure, so there exists an induced map

\[
\phi_r : \pi_1(S^3_r(K)) \to \pi_1(S^3_r(K^P))
\]

for every \(r \in \mathbb{Q} \). Whenever \(\pi_1(S^3_r(K^P)) \) is left-orderable the image of \(\phi_r \) is nontrivial and \(\pi_1(S^3_r(K)) \) is left-orderable [2] Theorem 1.1. \(\square \)

Proof of Theorem 4 By [7], \(pq \)-surgery on a \((p,q)\)-cable knot yields a reducible manifold. Since the minimal geometric intersection number between reducible slopes is \(\pm 1 \) [8], \(r \)-surgery on a \((p,q)\)-cable yields an irreducible manifold whenever \(r < pq - p - q \). Moreover, a \((p,q)\)-cable knot can be described as a satellite knot with pattern knot \(T_{p,q} \), the \((p,q)\)-torus knot. Therefore, for \(r < pq - p - q \) we can apply Proposition [16] to conclude that \(\pi_1(S^3_r(K)) \) will be left-orderable whenever \(\pi_1(S^3_r(T_{p,q})) \) is left-orderable.

We may now combine known results for surgery on torus knots in this setting. On the one hand, \(\pi_1(S^3_r(T_{p,q})) \) is an L-space whenever \(r \geq 2g - 1 \) [14] Proposition 9.5 (see in particular [9] Lemma 2.13), where \(g = g(T_{p,q}) \) is the Seifert genus given by \(g(T_{p,q}) = \frac{1}{2}(p - 1)(q - 1) \). On the other, since \(S^3_r(T_{p,q}) \) is Seifert fibred or a connect sum of lens spaces for every \(r \) [13], \(S^3_r(T_{p,q}) \) is an L-space if and only if \(\pi_1(S^3_r(T_{p,q})) \) is not left-orderable [1] (see also [16] 21).
In particular, $\pi_1(S^3(T_{p,q}))$ is left-orderable whenever r is less than $2g(T_{p,q}) - 1$ and the result follows.

\begin{flushright}
\square
\end{flushright}

\section*{References}

[1] Steven Boyer, Cameron Gordon, and Liam Watson. On L-spaces and left-orderable fundamental groups. Preprint.

[2] Steven Boyer, Dale Rolfsen, and Bert Wiest. Orderable 3-manifold groups. \textit{Ann. Inst. Fourier (Grenoble)}, 55(1):243–288, 2005.

[3] Danny Calegari and Nathan M. Dunfield. Laminations and groups of homeomorphisms of the circle. \textit{Invent. Math.}, 152(1):149–204, 2003.

[4] Adam Clay. \textit{The space of left orderings of a group with applications to topology}. Phd, University of British Columbia, 2010.

[5] Adam Clay and Dale Rolfsen. Ordered groups, eigenvalues, knots, surgery and L-spaces. Preprint, arXiv:1004.3615.

[6] Adam Clay and Liam Watson. \textit{Left-orderable fundamental groups and Dehn surgery}. Preprint, arXiv:1009.4176.

[7] C. McA. Gordon. Dehn surgery and satellite knots. \textit{Trans. Amer. Math. Soc.}, 275(2):687–708, 1983.

[8] C. McA. Gordon and J. Luecke. Reducible manifolds and Dehn surgery. \textit{Topology}, 35(2):385–409, 1996.

[9] Matthew Hedden. On knot Floer homology and cabling. II. \textit{Int. Math. Res. Not. IMRN}, (12):2248–2274, 2009.

[10] Jennifer Hom. A note on cabling and L-space surgeries. \textit{Algebr. Geom. Topol.}, 11(1):219223, 2011.

[11] James Howie and Hamish Short. The band-sum problem. \textit{J. London Math. Soc. (2)}, 31(3):571–576, 1985.

[12] Valeriǐ M. Kopytov and Nikolaǐ Ya. Medvedev. \textit{Right-ordered groups}. Siberian School of Algebra and Logic. Consultants Bureau, New York, 1996.

[13] Louise Moser. Elementary surgery along a torus knot. \textit{Pacific J. Math.}, 38:737–745, 1971.

[14] Peter Ozsváth and Zoltán Szabó. Knot Floer homology and rational surgeries. Preprint, arXiv:0504404.

[15] Peter Ozsváth and Zoltán Szabó. On knot Floer homology and lens space surgeries. \textit{Topology}, 44(6):1281–1300, 2005.

[16] Thomas Peters. On L-spaces and non left-orderable 3-manifold groups. Preprint, arXiv:0903.4495.

[17] R. Roberts, J. Shareshian, and M. Stein. Infinitely many hyperbolic 3-manifolds which contain no Reebless foliation. \textit{J. Amer. Math. Soc.}, 16(3):639–679 (electronic), 2003.

[18] Adam S. Sikora. Topology on the spaces of orderings of groups. \textit{Bull. London Math. Soc.}, 36(4):519–526, 2004.

[19] Daniel S. Silver and Wilbur Whitten. Knot group epimorphisms. \textit{J. Knot Theory Ramifications}, 15(2):153–166, 2006.

[20] Chichen M. Tsau. Isomorphisms and peripheral structure of knot groups. \textit{Math. Ann.}, 282(2):343–348, 1988.

[21] Liam Watson. \textit{Involutions on 3-manifolds and Khovanov homology}. PhD, Université du Québec à Montréal, 2009.

CIRGET, UNIVERSITÉ DU QUÉBEC À MONTRÉAL, CASE POSTALE 8888, SUCCURSALE CENTRE-VILLE, MONTRÉAL QC, H3C 3P8.

\textit{E-mail address: aclay@cirget.ca}

DEPARTMENT OF MATHEMATICS, UCLA, 520 PORTOLA PLAZA, LOS ANGELES CA, 90095.

\textit{E-mail address: lwatson@math.ucla.edu}