Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
From Your Nose to Your Toes: A Review of Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic–Associated Pernio

Lisa M. Arkin¹, John J. Moon¹, Jennifer M. Tran¹, Samira Asgari², Cliona O'Farrelly³, Jean-Laurent Casanova⁴,⁵, Edward W. Cowen⁶, Jacqueline W. Mays⁷, Anne Marie Singh⁸ and Beth A. Drolet¹, on behalf of the COVID Human Genetic Effort⁹

Despite thousands of reported patients with pandemic-associated pernio, low rates of seroconversion and PCR positivity have defied causative linkage to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pernio in uninfected children is associated with monogenic disorders of excessive IFN-1 immunity, whereas severe COVID-19 pneumonia can result from insufficient IFN-1. Moreover, SARS-CoV-2 spike protein and robust IFN-1 response are seen in the skin of patients with pandemic-associated pernio, suggesting an excessive innate immune skin response to SARS-CoV-2. Understanding the pathophysiology of this phenomenon may elucidate the host mechanisms that drive a resilient immune response to SARS-CoV-2 and could produce relevant therapeutic targets.

Journal of Investigative Dermatology (2021) 141, 2791–2796; doi:10.1016/j.jid.2021.05.024

INTRODUCTION

In March 2020, just weeks after the onset of community spread of COVID-19 in Italy, reports of pandemic-associated pernio emerged. Shortly thereafter, dermatologists in the United States were inundated with pernio referrals as the first surge of COVID-19 arrived in the United States (Bouaziz et al., 2020; Cordoro et al., 2020; Duong et al., 2020; Galván Casas et al., 2020; Landa et al., 2020; López-Robles et al., 2020; Piccolo et al., 2020). The phenotype of cool extremities with pain/swelling followed by red–violaceous discoloration and finally vesiculation of the toes and fingers were strikingly consistent (Figure 1a). Whereas older age was an important risk factor for severe infection, most patients with pernio were young, with a median age of 25 years in an international dermatology registry (Castelo-Soccio et al., 2021; Freeman et al., 2020). Many had close contact with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected individuals; yet, nearly all were otherwise healthy and denied typical respiratory manifestations of COVID-19 (Castelo-Soccio et al., 2021; Freeman et al., 2020). The spatial and temporal association between pernio and the COVID-19 pandemic has now been independently observed across multiple countries, including Italy, Spain, Germany, the United Kingdom, France, and the United States.

The strength of this spatial and temporal association along with its consistency across multiple countries supports a SARS-CoV-2–triggered phenomenon. Yet, low rates of positive PCR testing of nasopharyngeal samples (0–20%) and antibody positivity (0–55%) across 175 publications and thousands of reported patients have led some authors to suggest that this is an epiphenomenon (Baek and Herman, 2021; Galván Casas et al., 2020). This review will summarize and integrate the growing evidence for a causal relationship with SARS-CoV-2 and construct a mechanistic hypothesis. Pandemic-associated pernio augments the knowledge regarding the spectrum of SARS-CoV-2 infection and reinforces the critical importance of IFN-1 signaling in disease outcomes. A robust IFN-1 response in patients who remain asymptomatic and antibody negative could suggest a population with intrinsic resistance to severe COVID-19. Because the host immune response to SARS-CoV-2 infection is a critical determinant for COVID-19 outcomes, understanding those with natural resiliency to SARS-CoV-2 exposure could produce clinically relevant therapeutic targets.

INBORN ERRORS OF IFN-1 AND LIFE-THREATENING INFECTION

IFN-1 responses are tightly regulated to ensure protective immunity while avoiding toxicity from excessive and prolonged IFN signaling. They are largely produced in the blood by plasmacytoid dendritic cells (pDCs) in response to viral
infection through the activation of toll-like receptors 3, 7, and 9; RIG-I; and MDA5. IFN-1 is produced in lower amounts by >400 discernable cell types (intrinsic immunity). On binding to IFN-1 receptor, the IFN-1 (IFN-α, IFN-β, IFN-ε, IFN-κ, IFN-ω) activates robust antiviral defense programs of INF-stimulated genes, which obstruct various steps of viral replication. Monogenic variants that impair key IFN-1–related genes are associated with life-threatening infections due to influenza pneumonia, respiratory syncytial virus, rhinovirus, and herpes encephalitis (Asgari et al., 2017; Ciancanelli et al., 2015; Lamborn et al., 2017; Zhang et al., 2007).

IFN-1 SIGNALING IS CRITICAL IN COVID-19 OUTCOMES

Recent investigations of host-specific responses to SARS-CoV-2 have confirmed the central role of IFN-1 signaling in COVID-19 outcomes. An attenuated IFN-1 response was found in critically ill patients with SARS-CoV-1 (Channappanavar et al., 2016). In an international cohort, our team found that 3% of patients with life-threatening COVID-19 harbor loss-of-function variants involved in IFN-1 signaling, with pDCs that did not produce IFN-1 in response to SARS-CoV-2 (Zhang et al., 2020). An accompanying study found that 10% of patients with critical COVID-19 infection had circulating neutralizing autoantibodies against IFN-1. These autoantibodies were pre-existing and were a cause of severe disease rather than a consequence of infection. Remarkably, 94% of these patients were men, half of whom were aged >65 years, and more than a third died from COVID-19 (Bastard et al., 2020).

EXCEPTIONAL INNATE IMMUNITY MAY PROVIDE RESISTANCE TO VIRAL INFECTION WITHOUT ENGAGING THE ADAPTIVE IMMUNE SYSTEM

In theory, robust innate and intrinsic immune responses may be sufficient to clear a viral exposure without triggering antibody production. This is a difficult phenomenon to study because most patients with viral clearance are identified by their postinfectious seroconversion. However, potential resistance to hepatitis C virus (HCV) infection has been described in high-risk injection drug users who lack HCV-specific T-cell responses and seroconversion despite a long history of HCV exposure, suggesting that individuals may be resistant to viral infection or protected from viral replication by an exceptional innate antiviral response without seroconversion (Shawa et al., 2017). The pandemic provides an opportunity to investigate antiviral resistance through the study of close contacts of patients with critical COVID-19 who remain asymptomatic and seronegative. Patients with pandemic-associated pernio may also serve as a model for a mild or resistant SARS-CoV-2 phenotype and are readily identifiable by their skin findings.

ASSOCIATION OF PERNIO/CHILBLAINS WITH MONOGENIC DISORDERS OF CONSTITUTIVELY ACTIVE IFN-1 PRODUCTION

Both clinically and histologically, pandemic-associated pernio mimics the skin lesions of familial chilblain lupus and Aicardi–Goutières syndrome, which are characterized by IFN-1 excess. These monogenic disorders, referred to as type 1 interferonopathies, are caused by mutations associated with impaired nucleic acid sensing that lead to sustained and upregulated IFN-1 signaling (Rice et al., 2007; Uggenti et al., 2019; Zimmermann et al., 2019). In affected patients, pernio develops in early infancy, followed by systemic vasculopathy due to autoinflammation. IFN-1 is profoundly increased in affected skin and blood. Similar to pandemic-associated pernio, cold is a critical precipitant. In familial chilblain lupus, 5-day cold exposure of primary fibroblasts followed by rewarming enhanced ROS, a known trigger of DNA damage, and increased IFN-1 activation, switching cells from a quiescent to a proinflammatory state (Günther et al., 2015).

INVESTIGATION OF COVID TOES IDENTIFIES SPIKE PROTEIN

COVID-19 autopsy studies have shown a SARS-CoV-2 tropism for the skin. Angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor, is expressed on dermal blood vessels, the basal layer of the epidermis, and unexpectedly on eccrine glands (Flamming et al., 2004) (Figure 1b). We hypothesize that this expression may explain the localization of inflammation to hands and feet because these sites harbor the highest concentration of eccrine glands.
This is further supported by the recent demonstration of SARS-CoV-2–associated spike protein in cutaneous vascular endothelium and eccrine glands in biopsies from patients with COVID toes (Colmenero et al., 2020; Ko et al., 2021; Magro et al., 2021; Moon et al., 2021; Santonja et al., 2020). It should be noted that not all biopsy specimens detected spike protein, which could reflect the timing and depth of skin biopsy. Importantly, nucleocapsid antibody staining has been negative.

The immunohistochemistry patterns in published studies, coupled with lack of detection of viral RNA by in situ hybridization or PCR from tissue, suggests that pandemic-associated pernio may result from hematogenous spread of viral material and may not require viral replication in the skin (Herman et al., 2020; Ko et al., 2021). Emerging reports of pernio after mRNA vaccination also raise speculation that this could be an immune response to viral proteins or RNA without viral replication (Davido et al., 2021; McMahon et al., 2021). In unaffected skin of patients with critical COVID-19 infection, Magro et al. (2020) found microvascular complement deposition (an end-terminal event driving thrombosis) strongly colocalized with spike protein and the ACE2 receptor but without in situ evidence of viral RNA. The colocalization of the ACE2 receptor and viral capsid proteins suggests that circulating viral debris may dock onto the endothelium/eccrine ducts. This would be consistent with the hypothesis that patients with pandemic-associated pernio clear the SARS-CoV-2 through a robust IFN-1 response but shower viral debris that binds ACE2 receptors in the skin. Finally, the renin-angiotensin system (RAS) is expressed locally in the skin and may be indirectly activated by ACE2 binding from SARS-CoV-2 (Moon et al., 2021; Silva et al., 2020; Steckelings et al., 2004). We hypothesize that persistent vasoconstriction, poor capillary refill, and the chronicity of the response in some patients could also be linked to local cutaneous RAS activation (Figure 2).

Evidence of Robust IFN-1 Response in COVID Toes
Pandemic-associated pernio exhibits a lymphocytic infiltrate in a perivascular and perieccrine distribution (Figure 1b),
which is composed predominantly of lymphocytes and pDCs. pDCs are responsible for the initiation of IFN-1 signaling in response to recognition of viral RNA. Immuno-histochemistry studies have revealed robust MxA staining (a downstream product of IFN-1 activation) in affected specimens in a perivascular and perieccrine distribution (Aschoff et al., 2020). A recent paper suggested a viral-induced interferonopathy in affected patients, demonstrating a significant increase of in vitro IFN-α production after stimulation compared with that in patients with mild or severe acute COVID-19 infection (Hubiche et al., 2021).

COLD FEET: AMBIENT TEMPERATURE AFFECTS VIRUS–HOST RESPONSES

A cold environment is crucial to the induction of COVID toes. Humans maintain a narrow range of core body temperatures through neural, vascular, and biochemical mechanisms. Increases in body temperature through fever enhance immune function and pathogen killing. Colder ambient temperatures are known to diminish the efficiency of the innate immune response, facilitating viral replication in other infections (Foxman et al., 2015). Indeed, in vitro SARS-CoV-2 replication significantly increases with colder temperatures, demonstrating 10-fold higher infectious titers when incubated at 33 °C versus incubating at 37 °C (V’kovski et al., 2021). Importantly, attenuated IFN-1 expression is responsible for the increased viral replication efficiency at 33 °C. In pandemic-associated pernio, one could hypothesize that after clearance from the warmer respiratory tract, dispersed viral material settles at these colder acral sites owing to skin tropism through ACE2 expression, evading immune clearance. With rewarming of the toes, a local IFN-1 response could be initiated by pDCs after migration into the skin.

CONCLUSIONS

The striking spatial and temporal association with the pandemic, the accumulating evidence of both viral material and MxA in the affected skin, and the biologic plausibility of pernio linked to the critical role of IFN-1 signaling in COVID-19 all suggest a causal linkage with SARS-CoV-2. This evidence implicates a robust IFN-1 response in affected patients. The absence of antibody production supports rather than undermines this hypothesis because an exceptional innate and intrinsic immune activity may be enough to clear the viral infection without seroconversion. These findings further intimate IFN-1 signaling in host outcomes to COVID-19.

In cooperation with the National Institutes of Health–funded Human Genome Effort and the International COVID Human Genomic Effort, the COVID toes biobank at the University of Wisconsin-Madison seeks to identify the genetic and immunologic basis to provide clinically relevant insights into SARS-CoV-2–associated pernio and could provide a framework for considering preventative approaches to SARS-CoV-2 infection utilizing early administration of IFNs.

LM Arkin et al.
From Your Nose to Your Toes: A Review of Pandemic–Associated Pernio

Samira Asgari: http://orcid.org/0000-0002-2347-8985
Cliona O’Farrelly: http://orcid.org/0000-0002-0616-2874
Jean-Laurent Casanova: http://orcid.org/0000-0002-7782-4169
Edward W. Cowen: http://orcid.org/0000-0003-1918-4324
Jacqueline W. Mays: http://orcid.org/0000-0002-4472-9974
Beth A. Drolet: http://orcid.org/0000-0002-0844-7195

CONFlict of Interest
The authors have no conflict of interest.

Acknowledgments
This research was supported in part by the Intramural Research Program of the National Institute of Dental and Craniofacial Research (NIDCR) and the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (NIH). In addition, research at the University of Wisconsin-Madison is supported through a Wisconsin Partnership Program COVID-19 Response Grant. Figure 1c was contributed by Ana Costa da Silva and Clara H. Kim from the JW Mays Lab, NIDCR, NIH with support from the NIDCR Imaging Core: ZIC DE000750. Figure 2 was created with BioRender.com. This review was conducted in Madison, WI. The other authors (COVID Human Genetic Effort) contributed to conceptualization of the review and to the writing (review and editing). The full list of authors (COVID Human Genetic Effort) and their affiliations are given as follows:

Alessandro Aiuti1,2, Alexandre Belot1, Alexandre Bolze2, Anastasia Bondarenko1, Anna Sedeva3, Anna Shecherbina3, Anna M. Planas1, Antonio Condino-Neto1, Aurora Pujol1,11,12, Beth A. Drolet1,6, Biggs Catherine1, Chris Florijn1,6,17,18, Carlos Rodriguez-Gallegos1, Carolina Pardillo1, Clifton L. Dalgaard2, Cliona O’Farrelly1, Colohan Roger1, Davoud Mansouri1, Diederick van de Beek1, Donald C. Vink1,2, Elena Hscheid2,30, Evangelos Andreakos31, Filomena Haenyck32, Furkan Uddin33,14,15, Giorgio Casarini34, Giuseppe Novelli35, Graziano Pesole36,37, Isabel Meys38,40,41, Ivan Tanevski39, Jacques Felly45,46,47, Jean-Laurent Casanova45, Jordi Tur46, Kai Kisand47, Keisuke Okamoto48,49, Kristina Mironova50,51, Laurent Abel52, Laurent Renou52,60, Lisa F.P. Ng52,53, Mohamed Shabroo60,61, Pere Soler-Palacios61,62, Petter Brolin63,64, Qiang Pan-Hammström65, Rabih Halwani66,67, Rebeca Perez de Diego68,69, Saleh Al-Muhisen70, Sana Espinosa-Padilla71, Satoshi Okada72, Tayfun Ozcelik73, Tayoum Abou74, Timokratis Karamitos75,76, Trine H. Mogensen77,78, and Yu-Lung Lai79

1San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Milano, Italy; 2Vita Salute San Raffaele University, Milano, Italy; 3Pediatric Nephrology, Rheumatology, Dermatology, HFM, Hosspices Civils de Lyon, National Reference Centre RAISE, & INSERM U1111, Université de Lyon, Lyon, France; 4Helix, San Mateo, California, USA; 5Department of Pediatric Infectious Diseases and Pediatric Immunology, Shupky National Medical Academy for Postgraduate Education, Kiev, Ukraine; 6Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital in Motol, Prague, Czech Republic; 7Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematolog-ogy, Oncology and Immunology, Moscow, Russia; 8Department of Brain Ischemia and Neurodegeneration, IIBB-CSIC, IDIBAPS, Barcelona, Spain; 9Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; 10Neurometabolic Diseases Laboratory, Bell-vítge Biomedical Research Institute (IDIBELL), L’Hospitale de llobregat, Barcelona, Spain; 11Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; 12Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain; 13School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA; 14Division of Allergy and Immunology, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada; 15Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain; 16Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, Santa Cruz de Tenerife, Spain; 17Instituto de Tecnologı́as Biome´dicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife, Spain; 18CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; 19Department of Immunology, Hospital Universitario de Gran Canaria Dr Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain; 20Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain; 21Facultades Pequeño Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil; 22Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; 23Comparative Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland 24Immunology Division, Genetics Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research
REFERENCES

Aschoff R, Zimmermann N, Beissert S, Günther C. Type I interferon signature in chilblain-like lesions associated with the COVID-19 pandemic. Dermatopathology (Basel) 2020;7:57–63.

Asgar S, Schlaptchik LJ, Anchisi S, Hammer C, Barth, J, Junier T et al. Severe viral respiratory infections in children with IFIH1 loss-of-function mutations. Proc Natl Acad Sci USA 2017;114:8342–7.

Baack M, Herrman A. COVID toes: where do we stand with the current evidence? Int J Infect Dis 2021;102:53–5.

Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020;370:eabd4585.

Bouaziz JD, Duong TA, Jachiet M, Velter C, Lestang P, Cassius C, et al. Vascular skin symptoms in COVID-19: a French observational study. J Eur Acad Dermatol Venereol 2020;34:e421–2.

Castelo-Soccio L, Lara-Corrales I, Pallier AS, Bean E, Rangú S, Oboite M, et al. Acral changes in pediatric patients during COVID 19 pandemic: registry report from the COVID 19 response task force of the society of pediatric dermatology (SPD) and pediatric dermatology research alliance (PeDRA). Pediatr Dermatol 2021;38:364–70.

Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 2016;19:181–93.

Ciancimini ML, Huang SX, Luthra P, Garner H, Itan Y, Volpi S, et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 2015;348:448–53.

Colmenero I, Santonja C, Alonso-Riaño M, Noguera-Morel L, Hernández-Martín A, Andina D, et al. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br J Dermatol 2020;183:729–37.

Cordoro KM, Reynolds SD, Wattier R, Mccalmont A. Clustered cases of acral pernio-like clinical features: specific histopathology, and relationship to COVID-19. Pediatr Dermatol 2020;37:419–23.

Davido B, Mascitti H, Fortier-Bouleiu M, Jaffal K, de Truchis P. Blue toes’ follows vaccinations (it’s Vaksinda for Science, Technology and Research (A*STAR), Singapore, Singapore). Singapore Immunology Network (Sign), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. Singapore Immunology Network (Sign), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. Saeed Pathobiology and Genetics Lab, Tehran, Iran; 2016;3(5):1977.

Foxman EF, Storer JA, Fitzgerald ME, Wasik BR, Hou L, Zhao H, et al. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proc Natl Acad Sci USA 2015;112:827–32.

Freeman EE, McMahon DE, Lipoff JB, Rosenbach M, Kovarik C, Takeshita J, et al. Pernio-like skin lesions associated with COVID-19: a case series of 318 patients from 8 countries. J Am Acad Dermatol 2020;83:851–852.

Galván Casas C, Catalá A, Carretero Hernández G, Rodríguez-Jiménez P, Fernández-Nieto D, Rodríguez-Villa Lario A, et al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol 2020;183:71–7.

Günther C, Berndt N, Wolf C, Lee-Kirsch MA. Familial chilblain lupus due to a novel mutation in the exonuclease III domain of 3’ repair exonuclease 1 (TREX1). JAMA Dermatol 2015;151:426–31.

Hamming I, Timens W, Bultuius ML, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203:631–7.
Herman A, Peeters C, Verroken A, Tromme I, Tennstedt D, Marot L, et al. Evaluation of chilblains as a manifestation of the COVID-19 pandemic. JAMA Dermatol 2020;156:998–1003.

Hubiche T, Cardot-Leccia N, Le Duff F, Seitz-Polski B, Giordana P, Chiaverini C, et al. Clinical, laboratory, and interferon-alpha response characteristics of patients with chilblain-like lesions during the COVID-19 pandemic. JAMA Dermatol 2021;157:202–6.

Ko CJ, Harigopal M, Gehlhausen JR, Bosenberg M, McNiff JM, Damsky W. Discordant anti-SARS-CoV-2 spike protein and RNA staining in cutaneous perniotic lesions suggests endothelial deposition of cleaved spike protein. J Cutan Pathol 2021;48:47–52.

Lamborn IT, Jing H, Zhang Y, Drutman SB, Abbott JK, Munir S, et al. Recurrent rhinovirus infections in a child with inherited MDA5 deficiency. J Exp Med 2017;214:1949–72.

Landa N, Mendieta-Eckert M, Fonda-Pascual P, Aguirre T. Chilblain-like lesions on feet and hands during the COVID-19 pandemic. Int J Dermatol 2020;59:739–43.

López-Robles J, de la Hera I, Pardo-Sánchez J, Ruiz-Martínez J, Cutillas-Marco E. Chilblain-like lesions: a case series of 41 patients during the COVID-19 pandemic. Clin Exp Dermatol 2020;45:106–10.

Magro CM, Mulvey JJ, Laurence J, Sanders S, Crowson AN, Grossman M, et al. The differing pathophysiologies that underlie COVID-19-associated perniosis and thrombotic retiform purpura: a case series. Br J Dermatol 2021;184:141–50.

Moon JJ, Costa da Silva A, Tran JM, Kim C, Sharma R, Hinhaw M, et al. SARS-CoV-2-associated ‘covid toes’: multiplex immunofluorescent characterization of its pathophysiology. Society for Investigative Dermatology. https://www.sidannualmeeting.org/wp-content/uploads/2021/05/SID-2021-Virtual-Meeting-LB-Abstract-Booklet-FINAL.pdf; 2021 (accessed 24 May 2021).

Piccolo V, Neri I, Filippeschi C, Oranges T, Argenziano G, Battarra VC, et al. Chilblain-like lesions during COVID-19 epidemic: a preliminary study on 63 patients. J Eur Acad Dermatol Venereol 2020;34:e291–3.

Rice G, Newman WG, Dean J, Patrick T, Parmar R, Flintoff K, et al. Heterozygous mutations in TREG1 cause familial chilblain lupus and dominant Aicardi-Goutieries syndrome. Am J Hum Genet 2007;80:811–5.

Santonja C, Heras F, Núñez L, Requena L. COVID-19 chilblain-like lesion: immunohistochemical demonstration of SARS-CoV-2 spike protein in blood vessel endothelium and sweat gland epithelium in a polymerase chain reaction-negative patient. Br J Dermatol 2020;183:778–80.

Shawa IT, Felmlee DJ, Hegazy D, Sheridan DA, Cramp ME. Exploration of potential mechanisms of hepatitis C virus resistance in exposed uninfected intravenous drug users. J Viral Hepat 2017;24:1082–8.

Silva IMS, Assersen KB, Willadsen NN, Jepsen J, Artuc M, Steckelings UM. The role of the renin-angiotensin system in skin physiology and pathophysiology. Exp Dermatol 2020;29:891–901.

Steckelings UM, Wollschläger T, Peters J, Henz BM, Hermes B, Artuc M. Human skin: source of and target organ for angiotensin II. Exp Dermatol 2004;13:148–54.

Uggenti C, Lepelley A, Crow YJ. Self-awareness: nucleic acid-driven inflammation and the type 1 interferonopathies. Annu Rev Immunol 2019;37:247–67.