INTRODUCTION

Bone metabolism including osteoclasts-mediated bone resorption and osteoblasts-mediated bone formation is a lifelong process occurring within cancellous as well as cortical bones. Bone resorption starts with recruitment of osteoclasts to mineralized bone tissues and leads to acidification of extracellular microenvironment. Osteoclasts dissolve hydroxyapatite mineral crystals by producing hydrogen ions and digesting organic bone matrix via synthesis of hydrolytic enzymes, both resulting in calcium transfer from bone tissue into...
Blood. Bone formation is initiated by bone marrow mesenchymal stem cells (BMMSCs) migrating from vascular channels circulation to bone surface. Osteoblasts deposit organic bone matrix and regulate its mineralization and eventually differentiate into osteocytes that are embedded in the cavities of mineralized matrix. In addition to osteoclasts, BMMSCs and osteoblasts, other bone cell types participating in bone metabolism include macrophages, surface bone-lining cells, chondrocytes as well as osteocytes (Figure 1).

Accumulating evidence has established essential roles of fatty acids in bone metabolism (Table 1). Categorization of fatty acids involved in bone metabolism has been reviewed by Natalia S. Harasymowicz et al. In general, ω-3 long-chain polyunsaturated fatty acids (LCPUFAs) are a group of well-known fatty acids obtained from diet and supplemented via in vivo synthesis, and eicosapentaenoic acid (EPA), alpha-linolenic acid (ALA) and docosahexaenoic acid (DHA) are the three major representatives of ω-3 LCPUFAs. ω-3 LCPUFAs could mediate bone metabolism via processes including lipid oxidation, calcium absorption and prostaglandin synthesis, and they can exert beneficial effects on bone remodelling by inhibiting osteoclast activity and enhancing osteoblast activity. Several studies have investigated the therapeutic properties of ω-3 LCPUFAs. By promoting bone formation, ω-3 LCPUFAs significantly affect peak bone mass, increase bone calcium levels as well as bone mineral content (BMC) and density. Therefore, they represent a non-pharmacological strategy for preventing bone loss and accelerating fracture healing and thus to reduce risks of osteoporosis and rheumatoid arthritis.

In addition, ingestion of ω-3 LCPUFAs eliminates adriamycin- or cyclophosphamide-induced toxicity in bone marrow and bone tissues, suggesting potential roles of ω-3 LCPUFAs in combating side effects of specific bone-targeted drugs. Long-chain monounsaturated fatty acids (LCMUFA) such as ω-5, ω-7 and ω-9 categories are commonly recognized as potential agents against osteoporosis and other osteolytic diseases. They promote bone formation and inhibit bone degeneration and thereby facilitate bone metabolism. By contrast, long-chain saturated fatty acids (LCSFAs) might negatively affect bone metabolism. Intake of common dietary SFAs such as lauric acid (LA, C12:0), myristic acid (MA, C14:0), palmitic acid (PA, C16:0) or stearic acid (SA, C18:0) might initiate inflammatory osteoarthritis and obesity. Moreover, medium-chain fatty acids (MCFAs) such as capric acid (CA) have been reported to suppress osteoclastogenesis and thereby alleviate bone resorption. Short-chain fatty acids (SCFAs) including acetate, butyrate and propionate have been suggested to inhibit bone resorption and combat inflammation. As a result, SCFAs are promising in the prevention of inflammatory bone loss and arthritis. Furthermore, fatty acid derivatives such as lipoxin A₄ (LXA₄) and resolvins E1 (RvE1) have also been involved in bone resorption attenuation. Therefore, considering large quantities of fatty acids in our daily diets, it is worthwhile to understand influences of fatty acids on bone metabolism and the underlying mechanisms, for further exploring their beneficial therapeutic applications in a wide variety of metabolic bone disorders.

2 | IMPLICATIONS OF FATTY ACIDS IN BONE DISEASES

2.1 | Periodontitis

Periodontitis is a chronic bacterial infection disease characterized by primary gingival and extended alveolar bone inflammation, accompanied by periodontal tissue damage with connective tissue degradation and even tooth loss. Consistent links between fatty acids and periodontitis have been established by evidence...
Fatty acid	Effects on bone metabolism	Molecular formula	Structural formula	Class	Targeted cell	Receptor	Pathway	Relevant disease	References
Eicosapentaenoic acid (EPA)	Promote bone formation	C_{20}H_{30}O_{2}	ω-3 LCPUFAs	Osteoblasts, Osteoclasts, BMSCs, Chondrocytes	PPAR-γ, PTH1R, GPR120, GPR40	MAPK, mTOR		Rheumatoid arthritis; Periodontitis; Osteocarcinoma	181-184, 205
Docosahexaenoic acid (DHA)	Promote bone formation; Inhibit bone resorption	C_{22}H_{32}O_{2}	ω-3 LCPUFAs	Osteoblasts, Osteoclasts, BMSCs, Chondrocytes	PPAR-γ, PTH1R, TLR4, GPR120, GPR40	MAPK, NF-kB		Rheumatoid arthritis; Periodontitis; Bone fracture; Osteocarcinoma	181-184, 205
a-Linolenic Acid (ALA)	Inhibit bone resorption	C_{18}H_{30}O_{2}	ω-6 LCPUFAs	Osteoblasts, Chondrocytes	GPR40	MAPK, NF-kB		Osteoarthritis; Osteoporosis; Osteosclerosis	181
Arachidonic Acid (AA)	Inhibit bone resorption	C_{20}H_{32}O_{2}	ω-6 LCPUFAs	Osteoblasts, Chondrocytes	TLR4, GPR40	MAPK, NF-kB		Rheumatoid arthritis; Bone fracture	181-184, 205
Myristic acid (MA)	Inhibit bone resorption	C_{14}H_{26}O_{2}	ω-5 LCMUFAs	Osteoblasts, Chondrocytes	GPR40, RANKL		Osteolysis; Osteoporosis	25, 26	
Palmitoleic acid (PLA)	Inhibit bone resorption	C_{16}H_{30}O_{2}	ω-7 LCMUFAs	Osteoblasts, Chondrocytes	GPR40	NF-kB, MAPK		Rheumatoid arthritis; Osteoporosis; Osteosclerosis	166
Oleic acid (OA)	Inhibit bone resorption	C_{18}H_{32}O_{2}	ω-9 LCMUFAs	Osteoblasts, BMSCs	GPR40	NF-kB, MAPK	Bone healing; Osteoporosis; Periodontitis	168, 202	
Palmitic acid (PA)	Enhance bone resorption; Inhibit bone formation	C_{16}H_{32}O_{2}	LCSFAs	Osteoblasts, Osteoclasts, BMSCs, Chondrocytes	TLR4, PPAR-γ, BMP	MAPK, mTOR, NF-kB	Osteoarthritis; Bone loss; Periodontitis	105, 180	
Stearic acid (SA)	Enhance bone resorption; Inhibit bone formation	C_{18}H_{36}O_{2}	LCSFAs	Chondrocytes, Osteocytes	—	NF-kB		—	29, 64
Capric acid (CA)	Inhibit bone resorption	C_{10}H_{20}O_{2}	MCFAs	Osteoblasts, Chondrocytes	GPR120, GPR40, GPR84	MAPK, NF-kB	Osteoporosis; Rheumatoid arthritis	214	
Short chain FAs				Osteoblasts, Chondrocytes	GPR41, GPR43, GPR109		Inflammatory bone loss; Arthritis; Osteoporosis	29, 64	

(Continues)
derived from animal and human subjects. Investigations in animal models from different groups such as Bendyk et al34 and Azuma et al35,36 come to conclusions that tissue levels of ω-3 LCPUFAs is inversely associated with periodontic alveolar bone loss34 and ω-3 LCPUFAs EPA metabolite RvE1 is also established to enhance bone formation and reduce bone resorption in rabbit periodontitis models37. As for the anti-inflammatory effects, LCMUFAs oleic acid (OA) exhibits anti-inflammatory potentials to decrease alveolar bone loss, while LCSFAs PA shows contrary effects with elevated tumour necrosis factor α (TNF-α) levels in obesity mice models38, suggesting that the anti-inflammatory potentials of fatty acids in periodontitis might be varied based on specific fatty acids types. In human subjects, increased concentrations of specific SCFAs (lactic acid, propionic acid, butyric acid, isovaleric acid) have been found in the gingival fluid of periodontitis patients, demonstrating a possible association between SCFAs and inflammatory alveolar bone loss39,40. Moreover, a preliminary clinical study by El-Sharkawy et al41 suggests that dietary supplementation of ω-3 LCPUFAs might have therapeutic values against periodontitis.41-45 However, there are also clinical investigations report that benefits of dietary ω-3 LCPUFAs might not be applied to periodontitis prevention and treatment44,46.

In mechanism, fatty acids might exert effects on periodontitis pathogenesis and intervention via direct and indirect mechanisms. Fatty acids could directly affect periodontitis-associated bone destruction. LCSFAs such as PA could trigger \(P\) gingivalis-induced alveolar bone loss directly31. In benefit, EPA metabolite RvE1 could target BLT1 receptors in osteoclasts to inhibit osteoclast fusion and maturation, and RvE1 can induce the release of osteoprotegerin (OPG) to antagonize the proresorptive role of osteoclast-stimulating receptor activator of nuclear kappa-β ligand (RANKL), and thus facilitates the prevention of alveolar bone loss and enhances periodontal bone regeneration in periodontitis patients47. The indirect effects of fatty acids in periodontitis are mainly through inflammatory response. Studies have shown that LCSFAs (such as PA) at high levels in plasma may facilitate \(P\) gingivalis-induced chemokine production in human gingival fibroblasts and further promote inflammatory response in periodontium31. PA-induced chemokine secretion in human gingival fibroblasts could be inhibited by LCPUFAs (such as DHA), and such effects presumably involving the suppression of toll-like receptor (TLR) dimerization as well as nuclear factor-kappa B (NF-κB) activation48. In addition to exert effects on chemokine, fatty acids such as RvE1 could also act on inflammatory cells by enhancing the migration of monocytes and neutrophils and promoting the clearance of apoptotic neutrophils to enhance pro-inflammatory response31. Last but not the least, ω-3 fatty acids such as DHA and EPA exhibit extensive antibacterial effects against putative periodontal pathogens including \(F\) nucleatum and \(P\) gingivalis, and SCFA butyrate derived from anaerobic bacterial metabolism could inhibit the differentiation of gingival fibroblasts to promote chronic periodontitis.49 Given that refractory periodontitis significantly decreases the life quality of patients, studies investigating the interaction between fatty acids and periodontitis are required to develop novel intervention strategies.
2.2 | Osteoporosis

Osteoporosis, marked by low bone mineral density (BMD) and deteriorated bone tissue microarchitecture, contributes to a high incidence of bone fracture on average up to 50% of women > 50 years.\(^{50}\)

Osteoporosis is mainly caused by excessive bone resorption resulting from imbalance between overactive osteoclasts and inactive osteoblasts.\(^{51,52}\) Hence, inhibiting bone resorption or promoting bone formation are promising strategies for osteoporosis prevention and treatment.\(^{53}\) It has been well acknowledged that osteoporosis is associated with levels of fatty acid in bone microenvironment.\(^{54}\) As reviewed earlier by Salari et al,\(^{55}\) investigations conducted in humans have shown inconsistent correlations between fatty acids and osteoporosis, while studies in animal models have confirmed that supplementation of ω-3 LCPUFAs alleviates osteoporosis by suppressing bone breakdown, promoting calcium absorption from diet, reducing prostaglandin E2 (PGE2) production and increasing skeletal calcium.\(^{56}\) In mechanism, ω-6 LCPUFAs intake results in a high ratio of ω-6 versus ω-3 LCPUFAs, and thus facilitating osteoporosis by promoting low-grade chronic inflammation and regulating MSC lineage commitment.\(^{57}\) ω-3 LCPUFAs inhibit osteoclastogenesis, decrease PGE2 content, and thus increasing BMD to benefit osteoporosis prevention and alleviation.\(^{51,58}\) In addition, fatty acids such as palmitate could enhance energy generation for osteoblast differentiation, thus accelerating bone formation.\(^{52}\) Moreover, since LCPUFAs are highly prone to reactive oxygen species (ROS)-induced oxidative damage, adoption of antioxidant CoQ as adjuvant could eliminate the disadvantages of LCPUFAs during osteoporosis therapeutics.\(^{59,60}\)

Estrogen deficiency-induced postmenopausal osteoporosis is the most common type of osteoporosis. Along with decrease in estrogen levels, reduction in OPG delays osteoblast maturation and attenuates bone formation;\(^{61}\) also, drop in OPG/RANKL ratio enhances osteoclast differentiation and promotes bone resorption and eventually results in bone loss.\(^{52}\) Moreover, endogenous fatty acids could serve as energy sources of skeletal and bone marrow cells to contribute to postmenopausal women bone health,\(^{62}\) while exogenous supply of fatty acids might favour or harm postmenopausal women bone condition. As illustrated by animal models, supplementation of fatty acids such as and SCFAs and ω-3 LCPUFAs substantially reduces bone loss and restores bone mass and thus ameliorates postmenopausal bone loss in ovariectomized mice, and the protective roles of SCFAs on bone loss were mainly attributed to the suppression of osteoclast differentiation and function.\(^{64}\) According to data derived from human subjects, although earlier investigations indicate that ω-3 LCPUFAs intake plays positive roles in enhancing bone mass and limiting postmenopausal osteoporosis risks,\(^{65}\) effects of PUFA on bone are shown to be contradictory in general. For example, there is one study demonstrated that PUFA supplementation significantly enhanced lumbar spine and femoral neck BMD in a population of 65 postmenopausal women; however, another trial reported no significant therapeutic effects in 42 postmenopausal women receiving similar PUFA supplements.\(^{56}\) Taken together, understanding the functions and mechanisms of fatty acids in osteoporosis might help to develop novel preventive or therapeutic strategies to benefit bone health maintenance in osteoporotic patients.\(^{50,66}\)

2.3 | Bone fracture

The high risk of bone fractures may result from osteoporosis with low BMD, or more specifically, deterioration of bone structure and loss of bone mass.\(^{67-69}\) Studies in mice models have suggested that endogenously produced ω-3 LCPUFAs could facilitate fracture healing process, and supplementation of ω-3 LCPUFAs exert positive effects on fracture healing.\(^{21}\) Consistently, investigations in human subjects by Sadeghi et al\(^{68}\) and Harris et al\(^{67}\) have indicated that increased intake of total PUFAs is positively correlated with higher BMD and reduced bone fracture risk in populations including elder men. However, epidemiological investigation by Virtanen et al\(^{62}\) demonstrates that low total PUFA, ω-6 PUFA or LA intakes might promote the risk of hip fractures in women.\(^{70}\) Apart from heterogeneity in study design, sample inclusion and data process among different studies, diversity in fatty acid types might be an important factor contributing to the conflicting involvement of fatty acids in bone fractures. Correspondingly, specific mechanisms of fatty acid modulation on bone fractures vary a lot. For example, ω-6 LCPUFAs such as arachidonic acid (AA) could stimulate PGE2 production to regulate bone metabolism and fracture healing, while ω-3 PUFAs increase BMD by increasing calcium resorption and bone collagen synthesis, decreasing urinary calcium excretion, and thus inhibiting bone resorption.\(^{67,68}\) Overall, fatty acids of different types might exert differential effects on bone fractures pathophysiology, and much more work needs to be done on exploiting them for bone fracture prevention and therapeutics.

2.4 | Rheumatoid arthritis

Rheumatoid arthritis, with manifestations of arthralgia, redness and swelling, and limited range of motion,\(^{71}\) is a chronic and autoimmune inflammatory disease affecting 0.5%–1% of the world population.\(^{72-74}\) If left untreated or ineffectively treated, rheumatoid arthritis typically leads to primary joints destruction caused by erosion of cartilage and bone, as well as subsequent systemic complications and even death.\(^{72-75}\) Several studies have investigated the individual and combinational protective effects of LCPUFAs in rheumatoid arthritis. For example, ω-3 LCPUFAs could lower the risk of cardiovascular disease in rheumatoid arthritis patients,\(^{73}\) and combinational utilization of ω-3 LCPUFAs with low-dose vitamin E could substantially reduce the side effects of disease-modifying anti-rheumatic drugs (DMARDs).\(^{75}\) The attenuation effects of ω-3 LCPUFAs on rheumatoid arthritis-induced bone and cartilage destruction are mainly mediated by reduced synthesis of cartilage-degrading enzymes as well as the inflammatory response cytokines. ω-3 LCPUFAs, especially EPA and DHA,\(^{23,76}\) could alleviate morning stiffness and decrease number of swollen and tender joints in patients with rheumatoid
arthritiis and thus show anti-inflammatory and restorative effects against rheumatoid arthritis. Importantly, since LCPUFAs AA could drive the synthesis of pro-inflammatory cytokines, restriction of AA enhances ω-3 LCPUFAs-mediated anti-inflammatory responses by decreasing the production of metalloproteinases and pro-inflammatory cytokines as well as the migration of leucocytes in vivo, and thus strengthens the action of ω-3 LCPUFAs in combating rheumatoid arthritis. Another kind of LCPUFAs, ω-6 LCPUFAs are eventually metabolized into AA and inflammatory eicosanoids and function as pro-inflammatory agents. ω-3 LCPUFAs could reduce the synthesis of ω-6 LCPUFAs by competing with the rate-limiting delta-6 desaturation enzyme and thus exert a therapeutic effect on rheumatoid arthritis. Moreover, SCFAs also play crucial roles in bone metabolism and immune responses in pathological bone loss and thus regulate systemic bone mass and protect from rheumatoid arthritis. Investigations are needed to further elucidate mechanisms underlying the pharmacological roles and therapeutic potentials of multiple types of fatty acids in arthritis such as temporomandibular joint arthritis.

2.5 | Tumour-associated bone destruction

Multiple myeloma is a destructive cancer that mainly occurs in bone marrow. Studies have shown that fatty acids of different types play either pro-death or pro-survival roles in multiple myeloma. For example, PA could activate apoptosis in multiple myeloma cells and thereby serves as a potentially direct anti-myeloma strategy. EPA and DHA could also initiate apoptosis and promote drug sensitivity in multiple myeloma cells, with a mechanism involving NF-κB inhibition concomitant with activation of mitochondrial defects leading to caspase-3 activation and apoptosis. In addition, EPA and DHA modulate p53/miR-34a/Bcl-2 axis to enhance dexamethasone (Dex)-sensitivity in multiple myeloma cells where they trigger p53 expression and subsequent increase of miR-34a levels in U266 cells, and finally activate Bcl-2 to induce apoptosis of multiple myeloma cells. By contrast, SFAs and ω-6 LCPUFAs represent energy sources for multiple myeloma cells, and ratio of ω-3/ω-6 fatty acid intake is critical for the maintenance of multiple myeloma cell survival.

Bone metastasis is a pernicious complication occurring in virtually 60% of patients with osteolytic breast or osteogenic prostate cancers and at a smaller rate in patients with other cancer types. Patients with bone metastasis suffer from severe pain, bone fracture and osteolytic lesions, which symptoms are primarily attributed to aberrant bone resorption mediated by osteoclasts. In osteolytic metastasis mice model originating from MDA-MB-231 human breast cancer, researchers found that supplementation with DHA and EPA-enriched fish oil prevented breast cancer metastasis-induced bone osteolysis, suggesting potential therapeutic effects of fatty acids for osteolytic bone metastasis. In mechanism, both DHA and EPA reduce the mRNA and protein levels of CD44 in breast cancer cells to inhibit cancer invasion; moreover, compared to EPA, DHA has profound anti-inflammatory effects via inhibiting TNF-α secretion and NF-κB activation in macrophages and thus exhibits stronger suppression of osteoclast activity to attenuate the related osteolysis. However, in osteogenic metastasis derived from prostate cancer, fatty acids such as AA could facilitate metastatic cancer cell implantation and propagation via preparation of bone microenvironment “soil” for cancer cells by activating bone marrow adipocyte formation, demonstrating promotional roles of fatty acids in favour of osteogenic bone metastasis. This might be explained by the fact that fatty acids synthesized by bone marrow adipocytes could serve as energy source for certain types of tumour cells engaged in metastasis. During bone metastasis of prostate cancer, free fatty acid influx into cells induces the expression of lipid transport mediator fatty acid-binding protein (FABP4), and expression of FABP4 between tumour cells and adipocytes could mediate adipocyte-induced metabolic switch in prostate microenvironment and thus promotes osteogenic prostate cancer metastasis. Such roles of fatty acids in facilitating bone metastasis have also been confirmed in melanoma cancer, where bone marrow adipocytes play a pivotal role in bone metastasis by releasing free fatty acids to meet the energy demands of metastatic cancer cells for survival and growth. Therefore, fatty acids of different types behave significantly differently in cancer bone metastasis, and osteolytic or osteogenic mixed bone lesion conditions derived from specific cancer types should be definitely taken into account when employing fatty acids for cancer bone metastasis therapeutics.

2.6 | Other bone disorders

Fatty acids are also involved in non-typical skeletal diseases such as osteomyelitis, a bone inflammatory process initiated by infection of pyogenic organisms that predominantly occurs in long bones of children, and in hips, feet, jaws and spine of adults. This disease is characterized by severe damage to bone tissue and bone marrow, and probably accompanied by high morbidity and mortality. Accumulating evidence has shown that ω-3 LCPUFAs could effectively combat microbial pathogenesis in osteomyelitis. Furthermore, combination of vancomycin and ω-3 LCPUFAs has been suggested to be a reliable therapeutic strategy against Staphylococcus aureus-induced osteomyelitis, with a mechanism involving inflammation alleviation by reducing TNF-α and interleukin 6 (IL-6) levels as well as antioxidant activity by decreasing SOD activity.

Taken together, according to currently available pre-clinical experiments (Table 2) and clinical studies (Table 3), various factors contribute to implications of different fatty acids types in multiple bone disorders. With most associations between fatty acids and bone disorders remain obscure (Figure 2), much more work needs to be done by collaboration of biological and clinical researchers to maximize the therapeutic potentials and minimize the side effects of fatty acids against bone diseases.
Class	Disease	Animal	Treatment	Study period	Bone-related outcome	Conclusion	Year	Reference
ω-3 LCPUFAs	Periodontitis	Male Wistar rats	Control group (C)	45d	Areas of bone resorption/inflammatory intensity: AP group > AP + O, C + O and C groups	ω-3 LCPUFAs decrease inflammatory cell infiltration and AP bone resorption	2018	35
			Group 1: ω-3 PUFAs (C + O)					
			Group 2: pulp exposure-induced apical periodontitis (AP)					
			Group 3: pulp exposure-induced AP + ω-3 PUFAs (AP + O)					
			Groups 1 and 2 were treated with DEX					
			Group 3: treated with ω-3 PUFAs					
	Osteoporosis	Male piglets	Diet: suckling/standard formula/formula containing LCPUFAs	15d	DEX group: BMC of whole body, femur, and lumbar spine ↓	ω-3 LCPUFAs give rise to BMC of femur and whole body	2002	277
			Drug: placebo/ dexamethasone (DEX)					
	Osteoporosis	c57Bl/6 mice	High-fat diet/normal control	24w	Trabecula number and surface↑ Trabecular separation↓	HFD-induced obesity promotes bone formation	2010	278
			Groups 1 and 2 were treated with DEX					
			Group 3: treated with ω-3 PUFAs					
	Osteoporosis	Fat-1 mice	Group 1: Fat-1 mice sham	5mo	Bone marrow adiposity↓ Bone parameters↑ in the distal femoral metaphysis	ω-3 LCPUFAs improve osteoblastogenesis to treat osteoporosis	2013	279
			Group 2: Fat-1 mice ovariectomized (OVX)					
			Group 3: WT sham					
			Group 4: OVX					
	Osteoporosis	Fat-1 mice	Ovariectomized (OVx) and sham operated AIN-93M diet containing 10% corn oil	24w	Osteotropic factors↓ BMD↑	ω-3 LCPUFAs effectively prevent post-menopausal osteoporosis	2009	280
			Group 1: ω-6 + ω-3 diet (control)	20w	Group 1: BMD↓ Group 2: bone PGE2 production↑ Group 3: bone-specific alkaline phosphatase activity ↑ + highest bone mineral and BMD	ω-3 LCPUFAs protect gonad-intact middle-aged male rats from bone loss	2005	281
	Aging-related bone loss	Gonad-intact middle-aged male rats	Group 1: ω-6 + ω-3 diet (control)					
			Group 2: ω-6 diet (almost devoid of ω-3 LCPUFA)					
			Group 3: ω-3 diet (rich in ω-3 LCPUFA)					
	Aging-related bone loss	Male Wistar rats	Diet: virgin olive oil/ sunflower oil/ (ω-6 LCPUFAs)/ fish oil (ω-3 LCPUFAs)	24mo	Bone loss : sunflower oil (+++) fish oil (+++) virgin olive oil (+)	Dietary ω-3 LCPUFAs prevent aging-associated bone loss	2013	282
						ω-6 LCPUFAs prevent aging-related alveolar bone loss		
		Polycystic kidney disease (PKD) rats						
	Aging-related bone loss	Female Polycystic kidney disease (PKD) rats		12w	Femur length: SPI + SO < Casein + CO	ω-3 LCPUFAs influence bone longitudinal growth and mineral balance	2015	283

(Continues)
TABLE 2 (Continued)

Class	Disease	Animal	Treatment	Study period	Bone-related outcome	Conclusion	Year	Reference
Aging-related bone loss	Male Wistar rats	Group 1: fish oil	Aged rats bone mineral density: group 1 < group 2	24mo	CoQ10 avoids aging-related bone loss		2017	59
		Group 2: fish oil + coenzyme Q10 (CoQ10)						
Osteoarthritis	Guinea pigs	High ω-3 diet/typical western diet	OA average histological scores↓; cartilage parameters modified	20w	ω-3 LCPUFAs decrease OA in prone strain and increase no marker of pathology in either strain		2011	284
Bone fracture	Fat-1 × C57BL/6 mice	Diets containing 10% corn oil	Fat-1 × C57BL/6 mice exhibited acceleration in endochondral ossification, callus formation and remodeling process compared to fat-1 × C57BL/6 mouse group	12w	ω-3 PUFAs positively affect fracture healing		2017	21
Bone growth	Female white rabbits	Diet: soy bean oil (SBO control)/sesame oil (SO)/fish oil (FO)/algae oil	Bone marrow fatty acids ↑; FO diet: highest ω-3 LCPUFAs	100d	ω-6/ω-3 LCPUFAs ratios are involved in bone resorption decrease and bone mass improvement during growth		2014	285
Bone growth	Post-partum female Wistar rats	Diet: flaxseed flour + semi-purified diet	Bone maximum force/breaking strength/ rigidity/ femoral head radiodensity ↑	51d	ω-3 LCPUFAs enhance bone density and bone strength		2017	286
Cancer bone metastasis	Immune-compromised (nu/nu) mice	Lab chow diet/fish oil + intracardiac injection of the MDA-MB-231 cells	Fish oil diet osteolytic lesions ↓; migration of breast cancer cells↓; CD44 expression ↓	6w	ω-3 LCPUFAs prevent breast cancer bone metastasis		2011	93
Cancer bone metastasis	Female BALB/c mice	ω-3/ω-6 LCPUFAs diet + orthotopic implantation of 4T1 mammary tumor cells	Bone metastases frequencies: ω-3 group < ω-6 group	147d	Dietary ω-3 LCPUFAs reduce tumor metastasis to bone		2018	287
ω-6 LCPUFAs	C57BL/6 mice	Group 1: palmitic acid (PA)-enriched high-fat diet	Weight↑ (group 1 and group 2) alveolar bone loss and TNF-α levels: group 1 (+++) bone remodeling markers: group 3 (+++) group 2 (+) group 1 (+)	16w	PA aggravates alveolar bone loss and osteoclast inflammation		2016	38
		Group 2: oleic acid (OA)-enriched high-fat diet						
		Group 3: normal caloric diet						
Periodontitis	C57BL/6 mice	Diet: virgin olive oil/sunflower oil/ω-6 LCPUFAs/fish oil (ω-3 LCPUFAs)	Bone loss: sunflower oil (+++) fish oil (+) virgin olive oil (+)	24mo	ω-3 PUFAs prevent aging-related bone loss ω-6 LCPUFAs are associated with aging-related alveolar bone loss		2013	282

(Continues)
Class	Disease	Animal	Treatment	Study period	Bone-related outcome	Conclusion	Year	Reference
Aging-related bone loss	Male Wistar rats	Diet: virgin olive oil (V group)/ sunflower oil (S group)	24mo	Bone Mineral Density/ Bone Mineral Content/ Bone Areal Size : V group > S group	MUFAs prevent aging-related BMD decrease	2017	288	
Osteoarthritis	Female mice	Group 1: C2/C3/C4 supplementation Group 2: fibre-rich diet Group 3: bacterial transfer	8w	Group 1: bone volume per tissue volume↑, trabecular separation↓ Group 2: systemic bone mass↑, trabecular separation↓ Group 3: osteoclast numbers↓, systemic bone mass↓	SCFAs regulate bone metabolism to optimize arthritis severity	2018	64	
Osteoarthritis	8-week-old female mice	Group 1: C2/C3/C4 supplementation Group 2: fibre-rich diet Group 3: Prevotella transfer into WT mice	8w	Group 1: bone volume per tissue volume↑, trabecular separation↓ Group 2: systemic bone mass↑, trabecular separation↓ Group 3: osteoclast numbers↓, systemic bone mass↓	SCFAs regulate bone metabolism and immune responses to alleviate arthritis	2018	64	
Partum-related bone loss	Wistar rats	Control group: placebo Test group: flaxseed flour	51d	Test group: arachidonic acid (ARA)↓, alpha-linolenic acid (ALA) eicosapentaenoic (EPA)↑, femoral head radiodensity↑	ALA together with calcium increase bone density in post-partum period	2017	286	
SFAs	Periodontitis	Male C57BL/6 mice	Diet: regular chow/ high-fat diet	16w	LPS-induce alveolar bone loss↑ LPS-induce osteoclastogenesis ↑	SFAs are potentially involved in MetS-related periodontitis	2015	36
Osteoarthritis	Male rats	H group:20% beef tallow HLA group: 20% lauric acid HAS group: 20% stearic acid	16w	Articular cartilage degeneration Bone architecture changes Average osteocyte lacunae↓	SFAs prevent OA development	2017	260	
MUFAs	Periodontitis	C57BL/6 mice	Group 1: PA-enriched high-fat diet Group 2: OA-enriched high-fat diet Group 3: normal caloric diet	16w	Weight↑ (group 1 and group 2) alveolar bone loss and TNF-α levels: group 1 (+++) bone remodeling markers: group 3 (+++) group 2 (+) group 1 (+)	OA can aggravate the alveolar bone loss and inflammation of osteoclasts	2016	38
Class	Disease	Intervention	Study Period	Enrolment	Bone-related outcome	Conclusion	Year	Reference
------------	-----------------------	--	--------------	-----------	--	---	------	-----------
ω-3 LCPUFAs	Periodontitis	Control group: placebo Test group: DHA	3mo	55	IL-1β ↓ mean pocket depth ↓ gingival index ↓	DHA greatly contributes to moderate periodontitis and gingival inflammation	2014	45
		Group 1: EPA 500 mg Group 2: borage oil 500 mg Group 3: EPA 500 mg and borage oil 500 mg	12w	30	Periodontal probing depth and gingival inflammation group 1 (+) group 2 (+++) group 3 (++)	Borage oil have better influences on periodontal inflammation than EPA	2003	289
		Control group: decalcified freeze dried bone allograft (DFDBA) + placebo Test group: DFDBA + omega-3 polyunsaturated fatty acids combined with low-dose aspirin o	6mo	40	Probing pocket depth ↓ (T) IL-1β and IL-10 ↓ (T)	ω-3 LCPUFAs combined with low-dose aspirin decrease gingival inflammation, pocket depth and attachment level gain	2011	290
Rheumatoid arthritis	Control group: placebo Test group: daily liquid nutrient supplementation	4mo	66	EPA, DHA and docosapentaenoic acid ↑ arachidonic acid ↓	EPA and GLA do not benefit RA patients at test doses	2004	291	
Rheumatoid arthritis	Control group: diet group regarding the fatty acid intake Test group: Mediterranean diet	52w	13	Ratio of ω-6 to ω-3 fatty acids ↓ intake of ω-3 fatty acids ↑	Revealed by dietary assessments and through fatty acids in s-phospholipids, the fatty acid profile is different in the Cretan Mediterranean diet	2005	292	
Rheumatoid arthritis	2 mL/kg fish oil emulsion intra- venously	5mo	34	Short-term efficacy ↑ rapid onset excellent tolerability	ω-3 PUFAs are safe and effective for RA	2006	293	
Rheumatoid arthritis	Drug: cod liver oi Drug: placebo	9mo	97	Daily NSAID requirement ↓	ω-3 LCPUFAs decrease NSAID-sparing agents	2008	294	
Rheumatoid arthritis	Control group: placebo Test group: Step 1:0.2g of fish oil emulsion/ kg intravenously Step 2:0.05 g of fish oil/kg orally	14d	23	Swollen joint count ↓ Tender joint count ↓	ω-3 LCPUFAs improve symptoms of RA and extend the beneficial effects of infusion therapy	2010	295	
Rheumatoid arthritis	Drug: ω-3 LCPUFAs Drug: Placebo	12w	60	Clinical benefit concomitant analgesic medication ↓ no weight change	ω-3 LCPUFAs decrease use of concomitant analgesic without weight changes	2015	75	

(Continues)
Class	Disease	Intervention	Study Period	Enrolment	Bone-related outcome	Conclusion	Year	Reference
	Rheumatoid arthritis	High-dose/Low-dose fish oil + disease-modifying anti-rheumatic drug(DMARD)	12mo	140	Failure of DMARD therapy ↓	ω-3 LCPUFAs increase RA remission and decrease DMARD therapy failure	2015	296
	Rheumatoid arthritis	RA-free participants at increased risk for RA	10y	136	Percent of ω-3 LCPUFAs in red blood cells ↑ → rheumatoid factor (RF) positivity in shared epitope (SE)-positive participants ↓	ω-3 LCPUFAs exert pronounced effects on RA-related autoimmunity	2017	297
	ω-6 LCPUFAs	Periodontitis						
	Group 1: EPA 500 mg	Group 2: borage oil 500 mg	12w	30	Periodontal probing depth and gingival inflammation group 1 (+) group 2 (+++) group 3 (++)	Borage oil has better effects on periodontal inflammation than EPA	2003	289
	Group 3: EPA 500 mg and borage oil 500 mg							
	SCFAs	Periodontitis	6mo	21	Levels of formic acid ↑ Levels of lactic acid, propionic acid, butyric acid and isovaleric acid ↓	Formic acid in gingival crevicular fluid is inversely associated with periodontitis severity Butyric and isovaleric acids can indicate development and progression of periodontitis	2012	39
Fatty acids and their metabolites could modulate bone metabolism via mechanisms such as inflammation, apoptosis, autophagy, and oxidative stress. Normally, fatty acids bind to specific cellular membrane-bound or nucleus-located targets, induce subsequent transduction of transmembrane/nucleus-specific signals, further result in modulation of target gene transcription and protein synthesis and finally contribute to the regulation of cell growth, behaviour and function. Given that a multitude of factors are involved in these processes, understanding the underlying mechanisms will substantially facilitate the nutritional and therapeutic applications of fatty acids in bone homeostasis and disorders.

3.1 | Receptors involved in fatty acids-modulated bone metabolism

Cellular membrane-bound and nuclear receptors, such as G protein-coupled receptors (GPRs), peroxisome proliferator-activated receptors (PPARs), TLRs and receptors for metabolites such as chemokine-like receptor (ChemR), play essential roles in mediating the effects of fatty acids on bone metabolism.

GPRs are a superfamily of more than 1000 distinct membrane receptors; several GRPs among these have been reported to be modulated by fatty acids. GPR18, GPR41, GPR43 and GPR109A are receptors for SCFAs (C2-C5) found in both osteoclasts and osteoblasts, where GPR41 could regulate leptin production, while GPR43 is the main receptor in mediating effects of SCFAs on osteoclasts. GPR40, which is expressed on osteoclasts and could be activated by medium/long-chain fatty acids with a chain length of C8-C22, positively affects bone metabolism by downregulating osteoclastogenesis, combating bone loss and protecting cartilage. GPR84, whose expression in macrophages and adipocytes could be enhanced under inflammatory conditions, is a receptor for MCFAs (C9-C14). GPR120, which is expressed on osteoblasts and osteoclasts and could be stimulated by long-chain saturated (C14-C18) and long-chain unsaturated fatty acids (C16-C22), has been shown to mediate the anti-inflammatory effects of DHA in macrophages. And GRP120 could enhance ω-3 LCPUFAs-induced osteoblastic bone formation by inducing β-catenin activation and reduce osteoclastic bone resorption by suppressing NF-κB signalling. And GPR120 could also modulate the bi-potential differentiation of BMMSC in a dose-dependent manner. In addition to the
acknowledged roles of GPR40 and GPR120 in preventing bone disorders such as osteoporosis and osteoarthritis.120 GPR2 family member parathyroid hormone type 1 receptor (PTH1R) also plays a role in bone metabolism. PTH1R could mediate \(\omega\)-3 LCPUFAs-induced activation of extracellular signal-regulated kinases (ERK) to enhance osteoblasts proliferation and differentiation121,122; moreover, EPA and DHA could act as agonists of PTH1R to attenuate osteoblast apoptosis and promote bone formation.123

PPARs, with known ligands including LCPUFAs and metabolites such as PGE2, are nuclear receptors that regulate lipid metabolism by acting as transcription factors in BMMSCs, osteoblasts and osteoclasts.124-128 When BMMSCs are exposed to a mixture of palmitic, oleic and linoleic acids, upregulation of PPARs and reduction of Runx2 facilitate differentiation of towards adipocyte-like cells.129 Influences of PPARs on osteoblasts and osteoclasts depend on specific receptor isoform. Specifically, PPAR\(\alpha/\beta\) promotes bone resorption,130 whereas PPAR\(\gamma\) is known inhibitors of osteoclastogenesis.131 Roles of PPAR\(\gamma\) in osteoblasts are still disputed; it has been shown that conditional deletion of PPAR\(\gamma\) in osteoblasts enhances bone mass and increased bone formation by activating mTOR signalling,132 while studies from other groups reported conflicting results.133-135 Moreover, recent findings have indicated that treatment of multiple myeloma cells with PPARs resulted in apoptotic effects,136 suggesting PPARs might serve as promising therapeutic targets for bone diseases.

TLRs mainly mediate the inflammatory action of fatty acids in bone cells. PA particularly activates TLR2 and induces IL-1\(\beta\) expression and secretion to promote inflammatory response.137-139 Binding of SFAs to TLR4 on osteoclasts induces chronic inflammation140-142 by enhancing the expression of macrophage inflammatory protein-1a, which leads to hyperactivation of NF-\(\kappa\)B and subsequent enhancement of osteoclastic activities143 as well as further decrease in bone size, BMC and BMD.144 Moreover, studies have shown that DHA treatment could block the pro-inflammatory effects of lauric acid-induced TLR2/4 activation in Raw264.7 cells,145 suggesting TLRs might be involved in the crosstalk among multiple downstream signalling pathways of different fatty acids types.

ChemR23 can act as chemerin receptor146,147 as well as RvE1 receptor in bone tissue cells such as monocytes.148 Binding of RvE1 with ChemR23 could prevent inflammation by inhibiting NF-\(\kappa\)B activation,149 enhancing bone formation150 and reducing bone loss via RANKL/OPG ratio modulation.151,152 while the detailed mechanisms involved in the downstream of Chem23 have yet to be fully elucidated.

3.2 RANK/RANKL/OPG signalling in fatty acids-modulated bone metabolism

To our knowledge, various signalling pathways including RANKL,153 NF-\(\kappa\)B,154 mitogen-activated protein kinase (MAPK),155 Wnt,156 Notch,157 Hedgehog,158 transforming growth factor-\(\beta\) (TGF-\(\beta\)),159 mTOR159 and bone morphogenetic protein (BMP)155 are involved in bone metabolism. Among these, RANK/RANKL/OPG signalling is most frequently implicated in bone remodelling via modulation by a wide variety of fatty acids.150,161 (Figure 3). Upon activation, RANK/ RANKL/OPG signalling substantially inhibits osteoclastogenesis but enhances osteogenesis via downstream signalling cascades such as MAPK, NF-\(\kappa\)B and phosphatidylinositol 3-kinase (PI3K)/mTOR.160 Specifically, MAPK signalling162-165 could be activated by \(\omega\)-7 LCPUFAs,166 PA and MCFAs167 and activation of MAPK signalling normally leads to enhanced proliferation of both osteoblasts and chondrocytes.155,163,165 By contrast, ALA,168 \(\omega\)-7 LCPUFAs166 and MCFAs167 could inhibit NF-\(\kappa\)B cascade, and repression of NF-\(\kappa\)B cascade attenuates osteoclastogenesis by enhancing both cell death and differentiation.154,165,169,170 Moreover, PI3K/mTOR pathway could be downregulated by EPA or LXA\(_4\) but upregulated by PA159 and thus involved in BMMSC differentiation, osteoblast function and osteocyte formation during bone metabolism.171,177

4 MODULATION OF FATTY ACIDS ON SPECIFIC BONE CELL TYPES

4.1 Fatty acids and osteoblasts

Osteoblasts are mononuclear cells predominantly involved in bone formation 4, 5. A growing body of evidence supports the promotional or inhibitory action of fatty acids on osteoblasts. In general, fatty acids such as PA suppress osteoblast function, whereas EPA, DHA and RvE1 predominantly promote osteoblastic function. Exploring the modulation effects of fatty acids on osteoblasts might provide new insights into therapeutic intervention targeting skeletal disorders associated with dysregulated bone formation.

4.1.1 Fatty acids as negative regulators of osteoblasts

Palmitate, a kind of LCSFAs, impedes osteoblast differentiation and induces cell death via lipotoxicity.105 Palmitate could induce autophagy in osteoblasts dependent on Beclin and PI3K,178 and autophagy serves as a protection mechanism in preserving osteoblasts from lipotoxicity.179 Palmitate also promotes apoptosis of osteoblasts through both extrinsic and intrinsic pathways, and PA-induced high expression of cytosolic cytochrome C could be disrupted by inhibition of \(c\)-Jun N-terminal kinase (JNK).105 In foetal rat calvarial cell cultures, palmitate affects neither proliferation nor apoptosis of calvarial cells but represses BMP-7-induced osteoblastic differentiation by reducing the activity of transcription factor SMAD, and thus further abrogating expression of osteogenic markers Runx2, osteocalcin, alkaline phosphatase and bone sialoprotein.180 Interestingly, enhancing fatty acid oxidation could block all lipotoxic effects of palmitate suggested above, indicating that fatty acid oxidation might relieve the negative effects of palmitate on osteoblasts.105
4.1.2 | Fatty acids as positive regulators of osteoblasts

LCPUFAs and SCFAs

ω-3 LCPUFAs such as EPA and DHA could stimulate osteoblast survival by activating pro-survival Akt signal and suppressing glucocorticoid-induced pro-death pathway. They also promote osteoblastogenesis and prevent bone resorption by altering membrane function, regulating calcium balance and enhancing osteoblast activity. Involvement of EPA and DHA in preosteoblasts differentiation and maturation is largely associated with their anti-inflammatory effects, which function by reducing the synthesis of inflammatory ARA-derived PGE2, modulating PPAR-γ signalling and thus lower levels of inflammatory cytokines such as IL-1, IL-6 and TNF-α, and suppressing AA-derived synthesis of eicosanoids as well as activity of cyclooxygenase and 5-lipoxygenase. Therefore, as illustrated above, intake of EPA and DHA might have potent therapeutic implications in inflammatory bone disorders such as osteoporosis.

ω-6 LCPUFAs are activators of PPARγ, and lower dietary ratio of ω-6/ω-3 LCPUFAs blocks PPAR-γ activation and thus enhancing...
osteoblastogenesis. Besides, SCFAs such as butyrate promote osteoblast formation and differentiation by enhancing production of bone sialoprotein and osteopontin; moreover, it stimulates osteoblasts to secret OPG and thus facilitating the blocking of osteoclast differentiation. 185

Fatty acids derivatives

RvE1 is an EPA metabolite that is closely associated with inflammation-induced bone disorders. In IL-6-stimulated osteoblasts, supplementation of RvE1 leads to significant disruption of PI3K-Akt pathway, which interacts with NF-κB, MAPK and p53 signalling to modulate protein synthesis, cell differentiation and apoptosis. In inflammatory bone disorders, changes in production of pro-inflammatory cytokines such as TNF-α, IL-6, IL-1 and Gas6 modulate RANKL/OPG ratio and downstream events and thus enhance osteoclasts-mediated pathological inflammation-induced bone resorption.

As a metabolite of AA, PGE2 exerts its effects on BM-MSCs, osteoblasts and osteoclasts in dose-dependent manner. In BM-MSCs, PGE2 binds with EP4 receptor, which activates sphingosine kinase and inhibits caspasases activities and thus prevents apoptosis of BM-MSCs. 187 In osteoblasts, intermittent administration, short-term exposure to high doses or prolonged treatment with lower doses of PGE2 could enhance proliferation and activity of osteoblasts and lead to remarkably enhanced bone formation; such influences of PGE2 on osteoblasts are mediated by EP2/EP4-MAPK signalling pathways. 190 In addition, effects of PGE2 on osteoblasts are accompanied by osteoclast stimulation, which might reverse the overall influence of PGE2 on bone system. 191

4.2 Fatty acids and osteoclasts

Osteoclasts are multinucleated giant cells with bone resorptive activity. Two essential factors secreted by osteoblasts, macrophage colony-stimulating factor (M-CSF) and RANKL, are responsible for osteoclast precursors proliferation and osteoclastogenesis. Importantly, RANKL could prevent apoptosis of osteoclasts and induce expression of osteoclast-specific markers and transcription factors such as nuclear factor of activated T cells c1(NFATc1). As bone-resorbing cells, osteoclasts highly express bone resorption-associated proteins including osteoclast-specific markers cathepsin K (CTSK), tartrate resistant acid phosphatase (TRAP) and matrix metalloproteinase 9 (MMP-9). Specifically, CTSK breaks down organic components in bone. TRAP is implicated in cell adhesion upon activation by CTSK and high levels of MMP-9 commonly occur in resorption lacunae. Multiple fatty acids have been found to promote or suppress osteoclast activity, in most cases via regulation of RANKL signalling. Effects of fatty acids on osteoclast functions demonstrate their potential applications as therapeutic reagents against resorption-associated bone disorders such as osteoporosis and rheumatoid arthritis.

4.2.1 Fatty acids as positive regulators of osteoclasts

Accumulating evidence has shown that PA enhances RANKL-mediated differentiation of osteoclasts by upregulating expression levels of RANK; importantly, PA has been reported to be sufficient for osteoclast differentiation in conditions even without RANKL.

4.2.2 Fatty acids as negative regulators of osteoclasts

LCPUFAs

LCPUFAs such as DHA and AA could exert inhibitory effects on osteoclast proliferation, differentiation and maturation. In mechanism, DHA intervention could inhibit osteoclast precursors proliferation by inhibiting M-CSF-induced activation of AKT and expression of cyclin D1/D2, and DHA triggers apoptosis of mature osteoclasts by inducing Bim expression and thus leads to defective osteoclast formation. In addition, DHA and AA could regulate migration and adhesion of osteoclasts in bone by downregulating expression of RANK and VNR. 204 As for osteoclastogenesis process, LCPUFAs including DHA and AA suppress the expression of osteoclast-specific genes such as CTSK, TRAP, MMP-9, NFATc1, c-Fos and DC-STAMP in differentiating osteoclasts, thus decreasing osteoclast numbers and bone resorption. In detail, DHA and AA bind to TLR4 on cell membrane to suppress TLR4 signalling, MAPK pathways and NF-κB signalling. This further leads to downregulation of c-Fos and NFATc1, which is the master regulator for osteoclast proliferation and differentiation. Also, levels of key cell-to-cell fusion mediator DC-STAMP are decreased, followed by substantial reduction in osteoclast formation and osteoclast number. Of note, there are certain differences between DHA and AA in combating bone resorption. Specifically, AA displays a more profound effect than DHA in inhibiting osteoclast formation at equal concentrations, which probably results from a more significant inhibition of CA2 expression and further prevention of resorption lacunae acidification with facilitation of CTSK and MMP-9 enzymatic activities. These findings provide molecular mechanisms underlying the benefits of DHA supplement, and intake of high doses of EPA and DHA supplements has been suggested to attenuate bone loss associated with breast cancer.

And, ALA intervention leads to apoptosis reactivation and RANKL signalling repression in osteoclasts. In mechanism, ALA reduces RANKL-stimulated phosphorylation of JNK, ERK and AKT together with NF-κB and BCL-2 proteins to exert pro-apoptotic action, reduces inflammatory bone loss via downregulating NF-κB-INOS-COX-2 signalling axis and further inhibits RANKL-induced osteoclast differentiation. Moreover, ALA can be converted into downstream fatty acids and several eicosanoids such as DHA and EPA and further exerts more complicated effects on osteoclastogenesis.
LCMUFAs
Studies have shown that MA could suppress N-myristoyltransferase, a critical enzyme involved in Src myristylation to endoplasmic membrane and further phosphorylation. MA-induced Src inhibition then affects a large number of cytoskeletal changes in osteoclasts, reduces latter stages of osteoclast differentiation and prevents RANKL-induced bone loss in vivo. Such inhibitory effects against osteoclast formation and function suggest MA might serve as a new therapeutic agent against osteolytic bone disorders. In addition, investigations by Heerden et al have suggested that PLA could inhibit RANKL-induced osteoclast formation and promote apoptosis of mature osteoclasts. In mechanism, PLA downregulates the activity of NF-κB, MAPKs, JNK and ERK, inhibits expression of genes involved in osteoclast activity such as DC-STAMP and resorption markers CTSK, MMP9 and TRAP and reduces number of TRAP-positive osteoclasts by repressing actin ring formation and blocking their osteolytic capability, suggesting PLA as a potential therapeutic option for bone disorders related to excessive osteoclast formation. Moreover, as stated previously, PA enhances RANKL-mediated osteoclastogenesis by facilitating expression of TNF-α and RANK; conversely, OA could increase expression of DGAT1 and intracellular accumulation of triglycerides in osteoclasts to attenuate PA-induced osteoclastogenesis. In addition, OA might facilitate osteogenic differentiation of adipose tissue-derived stromal cells and thus serve as potential bone induction agent.

SCFAs
SCFAs represent useful supplements to inhibit bone resorption and restore bone metabolism balance. Among SCFAs, although concentrations of these molecules in vivo are too low to affect bone metabolism, in vitro investigations suggest that butyrate and propionate alone or mixed could inhibit osteoclast differentiation. In mechanism, SCFAs exert effects on bone metabolism (mainly inhibit bone resorption) via direct or indirect mechanisms. Directly, SCFAs bind to receptors (GPR18, GPR41, GPR43, GPR109A) present on osteoclast precursors; in specific, acetate and propionate show higher affinity for GPR41, while butyrate exerts effects mostly via GPR43 activation. Indirectly, SCFAs regulate bone mineral absorption by influencing signalling pathways and gene expression. Butyrate and propionate induce metabolic reprogramming of osteoclasts to enhance glycolysis and thus downregulating critical genes in osteoclasts such as TRAF6 and NFATc1. In addition, production of SCFAs increases serum IGF-1 and peripheral serotonin levels, which affects bone metabolism and decreases PTH levels to inhibit bone resorption. And, SCFAs might play a role in immunoregulation by modulating inflammatory events to prevent inflammatory bone loss such as arthritis.

MCFAs
CA inhibits RANKL-modulated osteoclastogenesis in bone marrow-derived macrophages by preventing M-CSF and RANKL-induced cytoskeletal reorganization, suppresses RANKL-stimulated IκBα phosphorylation and enhanced NF-κB transcription and diminishes RANKL-induced NFATc1 activation. Moreover, CA could promote apoptosis of mature osteoclasts by initiating Bim expression and inhibiting M-CSF-induced ERK activation, demonstrating CA treatment represents a potential strategy for amelioration of bone resorption-associated diseases.

Fatty acids derivatives
As a metabolite of AA generated by lipoxidase, LXA4 could dose-dependently reduce levels of ROS, the expression of osteoclast-specific genes and osteoclast-related transcription factors and thus attenuate osteoclasts-mediated bone loss. And exposure to EPA-derived RvE1 could downregulate STAT1 and subsequently attenuate MAPK and NF-κB signalling, which further restore favourable receptor inducer for RANKL/OPG ratio and rescue OPG production, thus regulating osteoclast differentiation. Moreover, PGE2 could induce activation of osteoclasts in a dose-dependent manner. In vivo studies have revealed that continuous treatment of rats with PGE2 results in bone loss owing to increased osteoclasts stimulation, and higher rates of bone resorption compared with bone formation due to longer bone resorption period. In vitro, PGE2 has been shown to increase osteoclast size, enhance resorptive pit formation and reduce osteoclast apoptosis. In mechanism, PGE2 could trigger osteoclastogenesis in murine bone marrow cultures treated with RANKL and M-CSF, possibly caused by EP2 and EP4 receptor-modulated induction of adenyly cyclase, and by suppression of OPG and osteoblast-induced RANKL secretion and enhanced RANK expression in osteoclasts.

4.3 Fatty acids and BMMSCs
BMMSCs are multipotent cells characterized by surface markers of CD105, CD73, CD90, CD44, CD29 and CD146 with differential potentials into osteoblasts, chondroblasts and bone marrow adipocytes. BMMSCs are critical in maintaining the dynamic homeostasis of bone tissue, and deficiencies of BMMSCs proliferation are correlated with reduced bone mass. Various signalling pathways including Wnt, Notch, Hedgehog, TGF-β and BMP are involved in BMMSCs osteogenesis. Notably, Runx2 plays the most pivotal role in this process by promoting expression of osteogenesis-related genes, regulating cell cycle progression and improving bone microenvironments.

4.3.1 Fatty acids as positive activators of BMMSCs
DHA, a special lipid component of osteoblast membrane, has been reported to fuel wide lipidomic remodelling of BMMSCs. DHA supplementation enhances Akt activation at plasma membrane and thereby potentiates osteogenic differentiation. Long-term and high-dose treatment of inflammatory diseases with Dex facilitates apoptosis of BMMSCs, leading to bone loss and associated metabolic...
bone diseases.223,224 These effects can be eliminated by EPA via activating autophagy and suppressing apoptosis of BMSCs. More specifically in the case of Dex-induced apoptosis, activation of GPR120 by EPA triggers Ras-Erk1/2 cascade, leading to suppression of Dex-induced apoptosis, accompanied by activation of AMPK/mTOR to initiate autophagy.223,224 Interestingly, EPA treatment in the absence of Dex has limited effects on autophagy induction,223,224 demonstrating potential therapeutic role of EPA in managing long-term side effects of Dex abuse.225

Oleate inhibits palmitate (palm)-induced apoptosis and increases BMSCs proliferation.27 Palm has been shown to induce lipotoxicity, whereas oleate fully neutralizes palm-induced lipotoxicity and pro-inflammatory response. Oleate exhibits cytoprotective effects by deactivating palm-induced pathways and fostering stabilization of palm into triglycerides.226 More specifically, Ole inhibits palm-induced activation of ERK and NF-κB signalling, which results in pro-apoptotic effects in BMSCs.226,227 Also, decline in IL-6 and IL-8 expression and secretion levels by Ole treatment was also observed.228 Furthermore, Ole maintains the oxidative levels of palmitate.27 Hence, OA represents a potential therapeutic agent in combating PA-induced lipotoxicity in the bone.

4.3.2 | Fatty acids as negative regulators of BMSCs

As mentioned above, palmitate triggers BMSCs apoptosis and reduces their proliferation.27 Gillet et al have reported that palmitate exerts cytotoxic effects by inducing endoplasmic reticulum stress and activating NF-κB and ERK signalling pathways, thus further regulating secretion of cytokines and chemokines in BMSCs and inducing binding of exogenous ligands to TLRs. Moreover, palmitate triggers pro-inflammatory responses via upregulating TLR4 expression accompanied with enhanced expression and secretion of IL-6 and IL-8, whose overproduction facilitates differentiation of osteoclast precursor cells into mature osteoclasts and results in impaired bone formation and enhanced bone resorption.229-232 And undifferentiated BMSCs have been found to be less sensitive to lipotoxicity than BMSC-derived osteoblastic cells.226

4.4 | Fatty acids and osteocytes

Osteocytes are osteoblast-derived cells located in lacunae surrounded by mineralized bone matrix, with the ability to support bone structure and receive machine sensation. Importantly, osteocytes can serve as endocrine cells to synthesize and express important regulatory molecules including RANKL, Dickkopf-1 (DKK1) and sclerostin (SOST)233-235 and thus participating in bone resorption and formation regulation by coupling osteoclast and osteoblast activities.28 Studies have shown that fatty acids such as PA and PGE2 have noteworthy influences on osteocyte metabolism, which might provide novel therapeutic strategies for bone diseases like osteoporosis.

4.4.1 | Fatty acids in osteocytes-mediated bone metabolism

PGE2 released by osteocytes are important regulators of bone formation. For example, PGE2 produced by low-intensity pulsed ultrasound-stimulated osteocytes could enhance osteoblasts differentiation but inhibit their proliferation in vitro.236 In addition, mechanical loading or fluid flow shear stress on osteocytes can release PGE2 to regulate osteoblast proliferation and differentiation.237 In mechanism, loading-induced PGE2 can activate EP2/EP4 receptors to stimulate downstream PI3K/Akt pathway,238 which further facilitates gap junction communication by transcriptional regulation of Cx43 to promote osteocytes survival.239 And PGE2 can activate MAPK and subsequently induce phosphorylation of Cx43 at S279/282 and closure of Cx43 hemichannels, which thus modulating bone anabolism and protecting osteocytes from harmful effects caused by sustained hemichannels opening.239 Moreover, PGE2 could promote production of 8-nitro-cGMP in osteocytes to enhance osteoclast differentiation.240

4.4.2 | Fatty acids in osteocytes-associated bone disorders

Investigations have suggested that PA can cause lipotoxicity in osteocytes. PA results in apoptosis and inhibits survival in osteocytes by induction of autophagy failure, which is indicated by conspicuous increase in LC3-II and reduction of autophagosomes/lysosomes in cytoplasm.241 In addition, PA exerts effects on bone turnover by decreasing expression of DKK1, RANKL and sclerostin in osteocytes.242 Given osteocyes apoptosis and dysfunction are two common changes in osteoporotic bone, PA might play a part in the pathogenesis as well as potential therapeutic applications in osteoporosis. In addition, fatty acids oxidation can serve as energy source for osteocytes.243 In vivo evidence has shown that fatty acid oxidation could compensate dysfunction of energy metabolism and osteocytes formation caused by glucose transporter-4 deficiency in osteoblasts and osteocytes of mice.244 Importantly, activation of β-catenin regulated by Wnt-Lrp5 signalling affects oxidative potential and fatty acids utilization in osteocytes and thus is responsible for expression of key enzymes during fatty acid oxidation.245 Therefore, fatty acid oxidation in osteocytes exerts regulatory effects on bone fat and body mass, which might have regulatory roles and therapeutic applications in metabolic disease-associated bone disorders.

4.5 | Fatty acids and chondrocytes

Chondrocytes is the main cartilage cell type existing in cartilaginous interstitium and cartilage lacuna, and they can produce cartilage extracellular matrix that composed mainly of proteoglycans and collagen.246 Fatty acids are integrated into chondrocytes mainly in the form of phosphatidylcholine and triacylglycerols and then mediate downstream signalling pathways via receptors expressed on chondrocytes.
Disease	Pathologic mechanism	Fatty acid	Detrimental mechanism	Potential drug formula	Therapeutic mechanism	Reference
Periodontitis	Specific bacterial colonization Increased function of osteoclasts Increased dysfunction of osteoblasts	PA	Induces pro-inflammatory response	ω-3 LCPUFAs	Inhibit putative periodontal pathogens Inhibit PA-induced chemokine secretion	31,33,49
		Butyrate	Inhibit differentiation of HGFs		Inhibit putative periodontal pathogens Inhibit PA-induced chemokine secretion	
		SFAs	Induce oxidative stress Facilitate inflammatory processes		Reduce inflammation Inhibit osteoclast activities	
Osteoporosis	Increased function of osteoclasts Increased dysfunction of osteoblasts	ω-6 LCPUFAs	Induce chronic inflammation Induce MSC chronic deregulation	ω-3 LCPUFAs	Inhibit osteoclastogenesis Reduce PGE2	51,52,58
Osteoporosis	Reduced OPG Facilitated osteoclast differentiation	—	—	—	—	47,61,64,65
		—	—	SCFAs	Inhibit osteoclast differentiation Provide energy generation for differentiation of osteoblasts	
Bone fracture	Deterioration of bone structure Loss of bone mineral	ω-6 LCPUFAs	Induce PGE2 production	ω-3 LCPUFAs	Increase calcium resorption Increase synthesis of bone collagen Inhibit urinary calcium excretion	67,68
Rheumatoid arthritis	Autoimmune inflammatory disease of unknown aetiology	ω-6 LCPUFAs	Induce production of pro-inflammatory cytokines	ω-3 LCPUFAs	Reduce inflammation Reduce cartilage-degrading enzymes	75,76
Osteocarcinoma	Derives from primary bone sarcomas or prostate cancer, breast cancer etc	AA	Supports implantation and propagation of metastatic cells	DHA	Reduce CD44 expression in metastatic cells Inhibit osteoclast formation	88-92,94-96
				EPA	Reduce CD44 expression in metastatic cells	
Osteomyelitis	Bone infection of pyogenic organisms	—	—	—	Reduce levels of TNF-α and IL-6 Reduce SOD activity	97,101-103,298
Multiple myeloma	Cancer growing in bone marrow	SFA s	—	PA	Activate multiple myeloma cell apoptosis Promote drug sensitivity of myeloma cell apoptosis	94-101
		ω-6 LCPUFAs	—	ω-3 LCPUFAs	Activate multiple myeloma cell apoptosis Inhibit function of ω-6 LCPUFAs	
membrane such as GPR40, GPR120, CD36 and TLR4, as well as a few LRP and PPAR family members. As an energy source for chondrocytes, fatty acids participate in chondrocytes energy metabolism and further alleviate or enhance chondrocytes damage and cartilage degeneration via multiple mechanisms. Understanding the regulation effects of fatty acids in chondrocytes might help to explore their potential therapeutic values for bone disorders associated with chondrocytes inflammation and cartilage degeneration.

4.5.1 Fatty acids as positive regulators of chondrocytes

ω-3 PUFAs and metabolites

EPA plays anti-inflammatory roles by competitively suppressing AA oxidation pathway, and EPA treatment could delay IL-1β-induced chondrocyte death. In addition, EPA treatment could inhibit oxidative stress-induced chondrocyte apoptosis via poly (ADP-ribose) polymerase and caspase 3 cleavage, p38 MAPK, p53 phosphorylation and MMPs expression and thus ameliorating cartilage degeneration. p38 MAPK-dependent mechanism is also involved in DHA-involved alleviation of cartilage damage.

EPA and DHA can be converted to SPM and novel bioactive lipid mediators such as resolvins in vivo. Articular chondrocytes could participate in SPM metabolism by expressing biosynthetic enzymes like 15-LO type 1 and SPM exhibits a more potent anti-inflammatory effect than their precursors in protecting chondrocytes and cartilage. As for resolvins, resolvin D1 demonstrated anti-arthritis nature in a model of inflammatory arthritis indicated by significantly attenuated arthritic score and hind paw oedema and reduced leucocytes infiltration within paw.

Resolvin D3 also shows similar effect on arthritis model. In mechanism, investigations by Benabdoune et al in an experimental osteoarthritis in human chondrocytes have found that RvD1 inhibits IL-1β-induced COX2, PGE2, inducible NO and MMP-13 by stifling IL-1β-induced activation of p38/MAPK, JNK1/2 and NF-κB/p65.

Moreover, resolvin D1 could maintain cartilage integrity in inflammatory arthritis by stimulating the production of chondrocytes extracellular matrix and inhibiting IL-1β-induced cells degradation via direct ALX/FPR2 receptor ligation. And, resolvin D1 could reduce 4-hydroxynonenal-induced oxidative stress and chondrocytes apoptosis. These findings suggest that it is promising to develop novel therapeutic strategies based on the functional mechanisms of SPM for the therapeutics of chondrocyte-related diseases such as osteoarthritis.

AA derivatives

As epoxide metabolites of AA, epoxyeicosatrienoic acids (EETs) have been reported to reduce inflammatory cytokines such as TNF-α and IL-6 and decrease cytotoxicity in canine chondrocytes. However, since EETs could be rapidly metabolized into corresponding vicinal diols by soluble epoxide hydrolyase (sEH), sEH inhibitors that are able to stabilize anti-inflammatory EETs might have therapeutic potentials for chondrocytes survival and cartilage protection.

4.5.2 Fatty acids as negative regulators of chondrocytes

SFA and its metabolites

Several studies have shown that animals fed with high-SFAs diet exhibit accelerated cartilage degeneration, and long-chain SFAs are considered as important negative regulators of chondrocyte metabolism. Studies have shown that BMMSCs and adipose stem cells-derived chondrocytes which generate long-chain SFAs have decreased cartilaginous matrix production, and SFAs with different chain lengths might exert relative effects in chondrocytes. It has been found that diet rich in longer chain SFAs such as PA and SA promotes more expression of collagenase-10 and MMP-13 and increases much more chondrocyte apoptosis than diet rich in shorter chain SFAs.

PA and SA have been reported to participate in inflammatory reactions by augmenting pro-inflammatory markers such as IL-6 in human chondrocytes. In primary mouse chondrocytes, SA could promote lactate dehydrogenase-dependent production of lactate to stabilize HIF-1α protein and facilitate pro-inflammatory cytokines expression. SA-stimulated NF-κB p65 activation and pro-inflammatory cytokines expression in chondrocytes could be attenuated by miRNA-26a; conversely, NF-κB p65 could also inhibit miRNA-26a production by directly targeting the promoter region of miRNA-26a. In addition, PA and SA treatment could enhance autophagy activation in chondrocytes, which is strongly associated with increased activation of NF-κB signalling pathway, while opposite effects have been observed upon LA stimulation.

Palmitate has been reported to synergize with IL-1β to induce caspase activation and chondrocyte apoptosis, as well as increase expression of cyclooxygenase 2 and IL-6 in chondrocytes via TLR-4 signalling, which are all involved in the pathological processes of cartilage destruction. Lipotoxicity of palmitate could also be mediated by endoplasmic reticulum (ER) stress and further suppresses...
IGF-1-mediated signalling and succedent proteoglycans and collagen type II synthesis in chondrocytes. And utilization of either JNK inhibitor or small molecule chemical chaperone could weaken the effect of palmitate to facilitate cartilage matrix synthesis and chondrocytes survival. Importantly, palmitate-induced ER stress could activate unfolded protein response signalling and subsequently promote apoptosis of meniscus cells to affect the development of obesity-related osteoarthritis.

Moreover, in human chondrocytes, palmitate could induce expression of pro-apoptotic molecules such as cleaved caspase-3 (CC3) and negative cell survival regulators such as tribbles related protein 3 (TRB3) and nuclear protein 1 (Nupr1) and thus induces apoptosis of chondrocytes. Taken together, palmitate has potent therapeutic implications for inflammatory bone diseases such as osteoarthritis.
ω-6 PUFAs and their metabolites

A growing body of evidence has shown that a higher ratio of ω-6-to-ω-3 PUFAs might exert negative influences on cartilage. As for specific mechanisms, ω-6 PUFAs such as ALA and AA aggravate cartilage damage by serving as precursors for pro-inflammatory prostanooids, while ω-3 PUFAs such as EPA and DHA protect cartilage by being metabolized to anti-inflammatory mediators such as protectins and resolvins. Moreover, AA-derived PGE2 could serve as an important inflammatory mediator to regulate inflammatory reactions of chondrocytes. Studies have shown that PGE2 could suppress differentiation of chondrocytes by activating downstream receptors protein kinase A (PKA) and protein kinase C (PKC), which might be responsible for activation of transcription factors associated with collagen X production.

Taken together, fatty acids exert multiple effects on specific bone cell types and thereby associated bone diseases (Table 4), which might be mediated via distinct mechanisms at cellular and molecular levels (Figure 4). Understanding the mechanistic implications of fatty acids in bone cells will greatly benefit their further utilization in related bone disorders.

5 | CONCLUDING REMARKS

In this review, we reviewed impacts of fatty acids on bone metabolism, summarized molecular mechanisms involved in actions of fatty acids in distinct bone cell types, and discussed their potential implications for metabolic bone disorders. Currently available findings imply that LCPUFAs mainly exert protective functions on bone by promoting functions of BMMSCs and osteoblasts while inhibiting activities of osteoclasts. MCFAs such as CA suppress osteoclastogenesis and thereby alleviate bone resorption. SCFAs and associated combinational treatment might inhibit bone resorption and inflammatory response for potential therapeutics against inflammatory bone loss including arthritis. Overall, these fatty acids might serve as potential therapeutic and nutritional agents in managing metabolic bone disorders such as osteoporosis, rheumatoid arthritis and oral-maxillofacial diseases such as periodontitis. Moreover, as natural compounds occurring widely in human body, fatty acids are available in a variety of ways and might be potent to antagonize possible side effects of current drug therapies. Nevertheless, currently available investigations have only reported roles of fatty acids in a limited number of bone disorder conditions, and further bench and clinical investigations are needed to comprehensively elucidate the underlying mechanisms for their possible applications in additional skeletal disorders such as temporomandibular joint disorder and osteosarcoma. Taken together, we conclude that involvement of fatty acids in bone diseases pathogenesis might provide potential therapeutic targets for interventional bone disorders, and promising fatty acids with therapeutic effects might be used directly or indirectly in nutritional or drug formulations for prevention and treatment of specific types of bone disorders.

ACKNOWLEDGEMENTS

This work was supported by grants from the National Natural Science Foundation of China for Distinguished Young Scholars (81825005) to Prof. Ling Ye, and grants from the project of Science & Technology Department of Sichuan Province (2018JY0568) and the National Natural Science Foundation of China (81903033) to Dr Xin Li.

CONFLICT OF INTERESTS

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

Bao M and Zhang K gathered relevant literature and wrote the manuscript; Wei Y, Hua W and Gao Y interpreted data from pathological and experimental studies; and Li X and Ye L provided financial support, revised and reviewed the manuscript.

ORCID

Xin Li https://orcid.org/0000-0002-2521-2099

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

1. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504-1508.
2. Doherty AH, Ghalambor CK, Donahue SW. Evolutionary physiology of bone: bone metabolism in changing environments. Physiology. 2015;30:17-29.
3. Locatelli V, Bianchi VE. Effect of GH/IGF-1 on bone metabolism and osteoporosis. Int J Endocrinol. 2014;2014:235060.
4. Mediero A, Cronstein BN. Adenosine and bone metabolism. Trends Endocrinol Met. 2013;24:290-300.
5. Thent ZC, Froemming GRA, Muid S. Bisphenol A exposure disturbs the bone metabolism: an evolving interest towards an old culprit. Life Sci. 2018;198:1-7.
6. Insua A, Monje A, Wang HL, Miron RJ. Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss. J Biomed Mater Res A. 2017:105:2075-2089.
7. Kokubu S, Lowery JW, Jimi E. Cell fate and differentiation of bone marrow mesenchymal stem cells. Stem Cells Int. 2016;2016:3753581.
8. Xu J, Li Z, Hou Y, Fang W. Potential mechanisms underlying the Runx2 induced osteogenesis of bone marrow mesenchymal stem cells. Am J Transl Res. 2015;7:2527-2535.
9. Galli D, Vitale M, Vaccarezza M. Bone marrow-derived mesenchymal cell differentiation toward myogenic lineages: facts and perspectives. Biomed Res Int. 2014;2014:762695.
10. Loi F, Cordova LA, Pajarinen J, et al. Inflammation, fracture and bone repair. Bone. 2016;86:119-130.
11. Beermann C, Jelinek J, Reinecker T, et al. Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers. Lipids Health Dis. 2003;2:10.
12. Harasymowicz NS, Dicks A, Wu CL, et al. Physiologic and pathologic effects of dietary free fatty acids on cells of the joint. Ann NY Acad Sci. 2019;1440:36-53.
13. Takahashi Y, Ide T. Dietary n-3 fatty acids affect mRNA level of brown adipose tissue uncoupling protein 1, and white
adipose tissue leptin and glucose transporter 4 in the rat. *Br J Nutr.* 2000;84:175-184.

14. Ahn SH, Park SY, Baek JE, et al. Free fatty acid receptor 4 (GPR120) stimulates bone formation and suppresses bone resorption in the presence of elevated n-3 fatty acid levels. *Endocrinology.* 2016;157:2621-2635.

15. Watkins BA, Li Y, Lippman HE, et al. Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism. *Prostag Leukot Ess.* 2003;68:387-398.

16. Griel AE, Kris-Etherton PM, Hilpert KF, et al. An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans. *Nutr J.* 2007;6:2.

17. Mangano KM, Kerstetter JE, Kenny AM, et al. An investigation of the association between omega 3 FA and bone mineral density among older adults: results from the National Health and Nutrition Examination Survey years 2005-2008. *Osteoporos Int.* 2014;25:1033-1041.

18. Weiss LA, Elizabeth BC, Denise VM. Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: the Rancho Bernardo Study. *Am J Clin Nutr.* 2005;81:934-938.

19. Hogstrom M, Nordstrom P, Nordstrom A. n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study. *Am J Clin Nutr.* 2007;85:803-807.

20. Dongxu S, Aparna K, Khaliquz Z, et al. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. *J Bone Miner Res.* 2010;18:1206-1216.

21. Bai X, Lin C, Jiang H, et al. Endogenous production of n-3 polyunsaturated fatty acids promotes fracture healing in mice. *J Healthc Eng.* 2017;2017:1-6.

22. Appleton KM, Fraser WD, Rogers PJ, et al. Supplementation with a low-moderate dose of n-3 long-chain PUFA has no short-term effect on bone resorption in human adults. *Br J Nutr.* 2011;105:1145-1149.

23. Navarinii L, Aflatea G, Allo Affilito G, et al. Polysaturated fatty acids: any role in rheumatoid arthritis? *Lipids Health Dis.* 2017;16:197.

24. Lavado-Garcia J, Roncero-Martin R, Moran JM, et al. Long-chain omega-3 polyunsaturated fatty acid dietary intake is positively associated with bone mineral density in normal and osteoporotic Spanish women. *PLoS ONE.* 2018;13:e0190539.

25. Kwon JO, Jin WJ, Kim B, et al. Myristoleic acid inhibits osteoclast formation and bone resorption by suppressing the RANKL activation of Src and Pyk2. *Eur J Pharmacol.* 2015;768:189-198.

26. Najumudeen AK, Kohnke M, Solman M, et al. Cellular FRET-biosensors to detect membrane targeting Inhibitors of N-Myristoylated proteins. *PLoS ONE.* 2013;8:e66425.

27. Fillmore N, Huqi A, Jaswal JS, et al. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival. *PLoS ONE.* 2015;10:e0120257.

28. Yan J, Takakura A, Zandi-Nejad K, et al. Mechanisms of gut microbiota-mediated bone remodeling. *Gut Microbes.* 2018;9:84-92.

29. Weaver CM. Diet, gut microbiome, and bone health. *Curr Osteoporos Rep.* 2015;13:125-130.

30. Montalvany-Antonucci CC, Duffles LF, de Arruda JAA, et al. Short-chain fatty acids and FFA2 as suppressors of bone resorption. *Bone.* 2019;125:112-121.

31. Shikama Y, Kudo Y, Ishimaru N, et al. Potential role of free fatty acids in the pathogenesis of periodontitis and primary Sjogren’s syndrome. *Int J Mol Sci.* 2017;18(4):836.

32. Peddis N, Musu D, Idoe F, et al. Interaction of biologic therapy with apical periodontitis and periodontitis: a systematic review. *Aust Dent J.* 2019;64:122-134.

33. Sima C, Van Dyke TE. Therapeutic targets for management of periodontitis and diabetes. *Curr Pharm Des.* 2016;22:2216-2237.

34. Bendyk A, Marino V, Zilm PS, et al. Effect of dietary omega-3 polyunsaturated fatty acids on experimental periodontitis in the mouse. *J Periodontal Res.* 2009;44:211-216.

35. Azuma MM, Gomes-Filho JE, Cardoso CBM, et al. Omega 3 fatty acids reduce the triglyceride levels in rats with apical periodontitis. *Braz Dent J.* 2018;29:173-178.

36. Li Y, Lu Z, Zhang X, et al. Metabolic syndrome exacerbates inflammation and bone loss in periodontitis. *J Dent Res.* 2015;94:362-370.

37. Balta MG, Loos BG, Nicu EA. Emerging concepts in the resolution of periodontal inflammation: a role for resolin E1. *Front Immunol.* 2018;7:1682.

38. Muluke M, Gold T, Kiefhaber K, et al. Diet-induced obesity and its differential impact on periodontal bone loss. *J Dent Res.* 2016;95:223-229.

39. Qi-Qiang L, Huanxin M, Xuejun G. Longitudinal study of volatile fatty acids in the gingival crevicular fluid of patients with peri-odontitis before and after nonsurgical therapy. *J Periodontal Res.* 2012;47:740-749.

40. Lu R, Meng H, Gao X, et al. Effect of non-surgical periodontal treatment on short chain fatty acid levels in gingival crevicular fluid of patients with generalized aggressive periodontitis. *J Periodontal Res.* 2014;49:574-583.

41. El-Sharkawy H, Aboelsaad N, Elia M, et al. Adjunctive treatment of chronic periodontitis with daily dietary supplementation with omega-3 Fatty acids and low-dose aspirin. *J Periodontol.* 2010;81:1635-1643.

42. Deore GD, Gurav AN, Patil R, et al. Omega 3 fatty acids as a host modulator in chronic periodontitis patients: a randomised, double-blind, placebo-controlled, clinical trial. *J Periodontal Implant Sci.* 2014;44:25-32.

43. Wang SH, Hung HC, Tsai CC, et al. Plasma polyunsaturated fatty acids and periodontal recovery in Taiwanese with periodontitis: a significant relationship. *Arch Oral Biol.* 2014;59:800-807.

44. Keskiner I, Saygun I, Bal V, et al. Dietary supplementation with low-dose omega-3 fatty acids reduces salivary tumor necro- sis factor-alpha levels in patients with chronic periodonti- tis: a randomized controlled clinical study. *J Periodontal Res.* 2017;52:695-703.

45. Naqvi AZ, Hasturk H, Mu L, et al. Docosahexaenoic acid and periodontitis in adults: a randomized controlled trial. *J Dent Res.* 2014;93:767-773.

46. Martinez GL, Koury JC, Brito F, et al. The impact of non-surgical periodontal treatment on serum levels of long chain-polyunsaturat- ed fatty acids: a pilot randomized clinical trial. *J Periodontal Res.* 2014;49:268-274.

47. Gyurko R, Van Dyke TE. The role of polyunsaturated omega-3 fatty acid eicosapentaenoic acid-derived resolin E1 (RvE1) in bone preservation. *Crit Rev Immunol.* 2014;34:347-357.

48. Varela-Lopez A, Giampieri F, Bullon P, et al. Role of Lipids in the onset, progression and treatment of periodontal disease. A system- atic review of studies in humans. *Int J Mol Sci.* 2016;17(8):1202.

49. Szfranski SP, Deng ZL, Tomasz J, et al. Functional biomarkers for chronic periodontitis and insights into the roles of Prevotella ni- grescens and Fusobacterium nucleatum; a metatranscriptome analy- sis. *NPJ Biofilms Microbiomes.* 2015;1:15017.

50. Kanis JA, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women—what is the current message for clinical practice? *Pol Arch Med Wewn.* 2008;118:538-540.

51. Banu J. Causes, consequences, and treatment of osteoporosis in men. *Drug Des Devel Ther.* 2013;7:849-860.

52. Lee WC, Guntur AR, Long F, et al. Energy metabolism of the osteo- blast: implications for osteoporosis. *Endocr Rev.* 2017;38:255-266.

53. Chen JS, Sambrook PN. Anti-resorptive therapies for osteoporosis: a clinical overview. *Nat Rev Endocrinol.* 2011;8:81-91.
54. Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;2:35-43.
55. Saleri P, Rezaie A, Larjani B, et al. A systematic review of the impact of n-3 fatty acids in bone health and osteoporosis. Med Sci Monit. 2008;14:RA37-44.
56. Venek C, Connor WE. Do n-3 fatty acids prevent osteoporosis? Am J Clin Nutr. 2007;85:647-648.
57. Kelly OJ, Gilman JC, Kim Y, et al. Long-chain polyunsaturated fatty acids may mutually benefit both obesity and osteoporosis. Nutr Res. 2013;33:521-533.
58. Casado-Diaz A, Santiago-Mora R, Dorado G, et al. The omega-6 arachidonic fatty acid, but not the omega-3 fatty acids, inhibits osteoblastogenesis and induces adipogenesis of human mesenchymal stem cells: potential implication in osteoporosis. Osteopores Int. 2013;24:1647-1661.
59. Varela-Lopez A, Ochoa JJ, Llamas-Elvira JM, et al. Age-related loss of bone mineral density of rats fed lifelong on a fish oil-based diet is avoided by coenzyme Q10 addition. Nutrients. 2017;9(2):176.
60. Lau BY, Cohen DJ, Ward WE, et al. Investigating the role of polyunsaturated fatty acids in bone development using animal models. Molecules. 2013;18:14203-14227.
61. Xu X, Jia X, Mo L, et al. Intestinal microbiota: a potential target for the treatment of postmenopausal osteoporosis. Bone Res. 2017;5:17046.
62. Miranda M, Pino AM, Fuenzalida K, et al. Characterization of fatty acid composition in bone marrow fluid from postmenopausal women: modification after hip fracture. J Cell Biochem. 2016;117:2370-2376.
63. Yan J, Herzog JW, Tsang K, et al. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci USA. 2016;113:E7554-E7563.
64. Lucas S, Omata Y, Hofmann J, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun. 2018;9:55.
65. Choi E, Park Y. The association between the consumption of fish/shellfish and the risk of osteoporosis in men and postmenopausal women aged 50 years or older. Nutrients. 2016;8:113.
66. Milam SB. Pathogenesis of degenerative temporomandibular joint arthritides. Odontology. 2005;93:7-15.
67. Longo AB, Ward WE. PUFAs, bone mineral density, and fragility fracture: findings from human studies. Adv Nutr. 2016;7:299-312.
68. Sadeghi O, Djalarian K, Ghorabi S, et al. Dietary intake of fish, n-3 polyunsaturated fatty acids and risk of hip fracture: A systematic review and meta-analysis on observational studies. Crit Rev Food Sci Nutr. 2019;59:1320-1333.
69. Li J, He W, Liao B, et al. FFA-ROS-P53-mediated mitochondrial apoptosis contributes to reduction of osteoblastogenesis and bone mass in type 2 diabetes mellitus. Scit Rep. 2015;5:12724.
70. Virtanen JK, Mozaffarian D, Willett WC, et al. Dietary intake of polyunsaturated fatty acids and risk of hip fracture in men and women. Osteopores Int. 2012;23:2615-2624.
71. Guo W, Wang Y, Xu D, et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15.
72. Gerlag DM, Norris JM, Tak PP. Towards prevention of autoantibody-positive rheumatoid arthritis: from lifestyle modification to preventive treatment. Rheumatology. 2016;55:607-614.
73. Kaneko Y, Takeuchi T. A paradigm shift in rheumatoid arthritis over the past decade. Intern Med. 2014;53:1895-1903.
74. Giori A, Kaliora AC, Maranditiou F, et al. Intake of omega-3 polyunsaturated fatty acids in patients with rheumatoid arthritis: a systematic review and meta-analysis. Nutrition. 2018;45:114-124.e4.
75. Rajaei E, Mowla K, Ghorbani A, et al. The effect of omega-3 fatty acids in patients with active rheumatoid arthritis receiving DMARDs therapy: double-blind randomized controlled trial. Glob J Health Sci. 2015;8:18-25.
76. Miles EA, Calder PC. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br J Nutr. 2012;107(Suppl 2):S171-184.
77. Abdulrazag M, Innes JK, Calder PC. Effect of omega-3 polyunsaturated fatty acids on arthritic pain: A systematic review. Nutrition. 2017;39:40-57-66.
78. Gan RW, Young KA, Zerbe GO, et al. Lower omega-3 fatty acids are associated with the presence of anti-cyclic citrullinated peptide autoantibodies in a population at risk for future rheumatoid arthritis: a nested case-control study. Rheumatology. 2016;55:367-376.
79. Woo SJ, Lim K, Park SY, et al. Endogenous conversion of n-6 to n-3 polyunsaturated fatty acids attenuates K/BxN serum-transfer arthritis in fat-1 mice. J Nutr Biochem. 2015;26:713-720.
80. Falank C, Fairfield H, Reagan MR. Signaling interplay between bone marrow adipose tissue and multiple myeloma cells. Front Endocrinol. 2016;7:67.
81. Yasuyuki N, Itsuko I, Michihiko W, et al. Palmitic acid, verified by lipid profiling using secondary ion mass spectrometry, demonstrates anti-multiple myeloma activity. Leuk Res. 2015;39:638-645.
82. Abdi J, Garssen J, Faber J, et al. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells. J Nutr Biochem. 2014;25:1254-1262.
83. Dai X, Li M, Geng F. Omega-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid enhance dexamethasone sensitivity in multiple myeloma cells by the p53/miR-34a/Bcl-2 axis. Biochemistry. 2017;82:826-833.
84. Kaïyan H, Yang Y, Kejian S, et al. The p38 MAPK-regulated PKD1/CREB/Bcl-2 pathway contributes to selenite-induced colorectal cancer cell apoptosis in vitro and in vivo. Cancer Lett. 2014;354:189-199.
85. Hai-Yan S, Xiao-Hui D, Guo-Yan Y, et al. Expression of bcl-2 and p53 in induction of esophageal cancer cell apoptosis by ECRG2 in combination with cisplatin. Asian Pac J Cancer Prev. 2014;15:1397-1401.
86. Fernandez E, Chatenoud L, La Vecchia C, et al. Fish consumption and cancer risk. Am J Clin Nutr. 1999;70:85-90.
87. Jurczyszyn A, Czepiel J, Gdula-Argasińska J, et al. Plasma fatty acid profile in multiple myeloma patients. Leuk Res. 2015;39:400-405.
88. Song ZP, Xiong BR, Guan XH, et al. Minocycline attenuates bone cancer pain in rats by inhibiting NF-kappaB in spinal astrocytes. Acta Pharmacol Sin. 2016;37:753-762.
89. Wang J, Chen GL, Cao S, et al. Adipogenic niches for melanoma cell colonization and growth in bone marrow. Lab Invest. 2017;97:737-745.
90. Brown MD, Johnson RW. Bone as a preferential site for metastasis. JBM R Plus. 2019;3:e10126.
91. Potepan P, Spagnoli I, Danesini GM, et al. The radiodiagnosis of bone metastases from melanoma. Radiol Med (Torino). 1994;87:741-746.
92. Hesse E, Taipaleenmaki H. MicroRNAs in bone metastasis. Curr Osteoporos Rep. 2019;17:122-128.
93. Mandal CC, Ghosh-Choudhury T, Yoneda T, et al. Fish oil prevents breast cancer cell metastasis to bone. Biochem Biophys Res Commun. 2010;402:602-607.
94. Rahman MM, Veigas JM, Williams PJ, et al. DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA. Breast Cancer Res Treat. 2013;141:341-352.
95. Brown MD, Hart C, Gazi E, et al. Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancer. Br J Cancer. 2010;102:403-413.
96. Herroon MK, Rajagurubandara E, Hardaway AL, et al. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget. 2013;4:2108-2123.

97. Zhou P, Wu J, Wang Y, et al. The synergistic therapeutic efficacy of vancomycin and omega-3 fatty acids alleviates Staphylococcus aureus-induced osteomyelitis in rats. Biomed Pharmacother. 2019;111:1228-1233.

98. Patel M, Rojavin Y, Jamali AA, et al. Animal models for the study of osteomyelitis. Semin Plast Surg. 2009;23:148-154.

99. Calhoun JH, Manning MM, Shirliff M. Osteomyelitis of the long bones. Semin Plast Surg. 2009;23:59-72.

100. Buch K, Thuesen ACB, Brons C, et al. Chronic non-bacterial osteomyelitis: a review. Calcif Tissue Int. 2018;104:544-553.

101. Svanh SL, Ullerud MA, Granhemo L, et al. Dietary omega-3 fatty acids increase survival and decrease bacterial load in mice subjected to Staphylococcus aureus-induced sepsis. Infect Immun. 2016;84:1205-1213.

102. Desbois AP, Lawlor KC. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar Drugs. 2013;11:4544-4557.

103. Kim YG, Lee JH, Raorane CJ, et al. Herring oil and omega fatty acids inhibit Staphylococcus aureus biofilm formation and virulence. Front Microbiol. 2018;9:1241.

104. Waquier F, Leotoing L, Philippe C, et al. Pros and cons of fatty acids in bone biology. Prog Lipid Res. 2015;58:121-145.

105. Gunaratnam K, Vidal C, Boadle R, et al. Mechanisms of palmitate-induced cell death in human osteoblasts. Biol Open. 2013;2:1382-1389.

106. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861-2873.

107. Ge H, Li X, Weiszmann J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology. 2008;149:4519-4526.

108. Xiong Y, Miyamoto N, Shibata K, et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA. 2004;101:1045-1050.

109. Briscoe CP, Tadayon M, Andrews JL, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem. 2003;278:11303-11311.

110. Cornish J, MacGibbon A, Lin JM, et al. Modulation of osteoclastogenesis by fatty acids. Endocrinology. 2008;149:5688-5695.

111. Blad CC, Tang C, Offermanns S. G protein-coupled receptors for energy metabolites as new therapeutic targets. Nat Rev Drug Discov. 2012;11:603-619.

112. Philippe C, Waquier F, Leotoing L, et al. GPR95, a free fatty acid receptor agonist, specifically induces cell death in bone resorbing precursor cells through increased oxidative stress from mitochondrial origin. Exp Cell Res. 2013;319:3035-3041.

113. Waquier F, Philippe C, Leotoing L, et al. The free fatty acid receptor G protein-coupled receptor 40 (GPR40) protects from bone loss through inhibition of osteoclast differentiation. J Biol Chem. 2013;288:6542-6551.

114. Philippe C, Waquier F, Landrier JF, et al. GPR40 mediates potential positive effects of a saturated fatty acid enriched diet on bone. Mol Nutr Food Res. 2017;61(2):1600219.

115. Wang J, Wu X, Simonavicius N, et al. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem. 2006;281:34457-34464.

116. Bouchard C, Page J, Bedard A, et al. G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditions. Glia. 2007;55:790-800.

117. Naganaki H, Kondo T, Fuchigami M, et al. Inflammatory changes in adipose tissue enhance expression of GPR84, a medium-chain fatty acid receptor: TNFalpha enhances GPR84 expression in adipocytes. FEBS Lett. 2012;586:368-372.

118. Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142:687-698.

119. Gao B, Huang Q, Jie Q, et al. GPR120: A bi-potential mediator to modulate the osteogenic and adipogenic differentiation of BMSCs. Sci Rep. 2015;5:14080.

120. Chen Y, Zhang D, Ho KW, et al. GPR120 is an important inflammatory regulator in the development of osteoarthritis. Arthritis Res Ther. 2018;20:163.

121. Xiao G, Jiang D, Thomas P, et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfα1. J Biol Chem. 2000;275:4453-4459.

122. Sowa H, Kaji H, Yamaguchi T, et al. Activations of ERK1/2 and JNK by transforming growth factor beta negatively regulate Smad3-induced alkaline phosphatase activity and mineralization in mouse osteoblastic cells. J Biol Chem. 2002;277:36024-36031.

123. Candelario J, Tavakoli H, Chachisvilis M. PTHR1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids. PLoS ONE. 2012;7:e52583.

124. Berger J, Bailey P, Biswas C, et al. Thiazolidinediones exhibit a conformational change in peroxisomal proliferator-activated receptor-gamma: binding and activation correlate with antidiabetic actions in db/db mice. Endocrinology. 1996;137:4189-4195.

125. Siersbaek R, Nielsen R, Mandrup S. PPARgamma in adipocyte differentiation and metabolism—novel insights from genome-wide studies. FEBS Lett. 2010;584:3242-3249.

126. Ambrogini E, Almeida M, Martin-Millan M, et al. FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab. 2010;11:136-146.

127. Iyer S, Ambrogini E, Bartell SM, et al. FOXOs attenuate bone formation by suppressing Wnt signaling. J Clin Invest. 2013;123:3409-3419.

128. Rached MT, Kode A, Silva BC, et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest. 2010;120:357-368.

129. Diascro DD Jr, Vogel RL, et al. High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells. J Bone Miner Res. 1998;13:96-106.

130. Mano H, Kimura C, Fujisawa Y, et al. Cloning and function of rabbit peroxisome proliferator-activated receptor delta/beta in mature osteoclasts. J Biol Chem. 2000;275:8126-8132.

131. Chan BY, Garland A, Wilson PJ, et al. PPAR agonists modulate human osteoclast formation and activity in vitro. Bone. 2007;40:149-159.

132. Sun H, Kim JK, Mortensen R, et al. Osteoblast-targeted suppression of PPARgamma increases osteogenesis through activation of mTOR signaling. Stem Cells. 2013;31:2183-2192.

133. Duque G, Li W, Vidal C, et al. Pharmacological inhibition of PPARgamma increases osteoblastogenesis and bone mass in male C57Bl/6 mice. J Bone Miner Res. 2013;28:639-648.

134. Viccica G, Francucci CM, Marcocci C. The role of PPARgamma for the osteoblastic differentiation. J Endocrinol Invest. 2010;33:9-12.

135. Akune T, Ohba S, Kamekura S, et al. PPARgamma insufficiency enhances osteogenesis through osteoclast formation from bone marrow progenitors. J Clin Invest. 2004;113:846-855.

136. Artur J,Jacke C, Joanna GA, et al. Erythrocyte membrane fatty acids in multiple myeloma patients. Leuk Res. 2014;38:1260-1265.

137. Snodgrass RG, Huang S, Choi JW, et al. Inflammamosome-mediated secretion of IL-1beta in human monocytes through TLR2 activation; modulation by dietary fatty acids. J Immunol. 2013;191:4337-4347.

138. Nguyen MT, Favelukis J, Nguyen AK, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem. 2007;282:35279-35292.
139. Huang S, Rutkowsky JM, Snodgrass RG, et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res. 2012;53:2002-2013.

140. Hwang D. Modulation of the expression of cyclooxygenase-2 by fatty acids mediated through toll-like receptor 4-derived signaling pathways. FASEB J. 2001;15:2556-2564.

141. Shi H, Kokeeva MV, Inouye K, et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015-3025.

142. Dasu MR, Ramirez S, Isseroff RR. Toll-like receptors and diabetes: a therapeutic perspective. Clin Sci (Lond). 2012;122:203-214.

143. Oh SR, Sul OJ, Kim YV, et al. Saturated fatty acids enhance osteoclast survival. J Lipid Res. 2010;51:892-899.

144. Johnson GB, Riggs BL, Platt JL. A genetic basis for the “Adonis” phenotype of low adiposity and strong bones. FASEB J. 2004;18:1282-1284.

145. Lee JY, Zhao L, Youn HS, et al. Saturated fatty acid activates TLR-like receptor 2 dimers with Toll-like receptor 6 or 1. J Biol Chem. 2004;279:16971-16979.

146. Samson M, Edinger AL, Stordeur P, et al. ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur J Immunol. 1998;28:1689-1700.

147. Arita M, Ohira T, Sun YP, et al. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol. 2007;178:3912-3917.

148. Arita M, Oh SF, Chonan T, et al. Metabolic inactivation of resolin E1 and stabilization of its anti-inflammatory actions. J Biol Chem. 2005;281:22847-22854.

149. Arita M, Bianchini F, Aliberti J, et al. Stereocellular mechanism, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolin E1. J Exp Med. 2009;201:713-722.

150. Methern A, Hermy G, Schinke B, et al. A novel G protein-coupled receptor with homology to neuropetide and chemoattractant receptors expressed during bone development. Biochem Biophys Res Commun. 1997;233:336-342.

151. Gao L, Faibish D, Fredman G, et al. Resolin E1 and chemokine-like receptor 1 mediate bone preservation. J Immunol. 2013;190:689-694.

152. El Kholy K, Freire M, Chen T, et al. Resolvin E1 promotes bone preservation under inflammatory conditions. Front Immunol. 2018;9:1300.

153. Infante M, Fabi A, Cognetti F, et al. RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. J Exp Clin Cancer Res. 2019;38:12.

154. Hutami IR, Tanaka E, Izawa T. Crosstalk between Fas and S1P1 signaling via NF-kB in osteoclasts controls bone destruction in the TMJ due to rheumatoid arthritis. Jpn Dent Sci Rev. 2019;55:12-19.

155. Wu M, Chen G, Li YP. TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009.

156. Houshyar KS, Tapking C, Borrelli MR, et al. Wnt Pathway in Bone Repair and Regeneration - What Do We Know So Far. Front Cell Dev Biol. 2018;6:170.

157. Canalís E. Notch in skeletal physiology and disease. Osteoporos Int. 2018;29:2611-2621.

158. Cong Q, Xu R, Yang Y. Galphas signaling in skeletal development, homeostasis and diseases. Curr Top Dev Biol. 2019;133:281-307.

159. Bertoldo F, Silvestris F, Ibrahim T, et al. Targeting bone metastatic cancer: role of the mTOR pathway. Biochim Biophys Acta. 2014;1845:248-254.

160. Sigl V, Jones LP, Penninger JM. RANKL/RANK: from bone loss to the prevention of breast cancer. Open Biol. 2016;6(11):160230.

161. Richards JB, Zheng HF, Spector TD. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet. 2012;13:576-588.

162. Choi HK, Kim TH, Jhon GJ, et al. Reactive oxygen species regulate M-CSF-induced monocyte/macrophage proliferation through SHP1 oxidation. Cell Signal. 2011;23:1633-1639.

163. Haagenson KK, Wu GS. The role of MAP kinas and MAP kinase phosphatase-1 in resistance to breast cancer treatment. Cancer Metastasis Rev. 2010;29:143-149.

164. Raingeaud J, Gupta S, Rogers JS, et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 1995;270:7420-7426.

165. Zhou JY, Liu Y, Wu GS. The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Res. 2006;66:4888-4894.

166. van Heerden B, Kasonga A, Kruger MC, et al. Palmitoleic acid inhibits RANKL-induced osteoclastogenesis and bone resorption by suppressing NF-kappaB and MAPK signalling pathways. Nutrients. 2017;9(5):441.

167. Park EJ, Kim SA, Choi YM, et al. Capric acid inhibits NO production and STAT3 activation during LPS-induced osteoclastogenesis. PLoS ONE. 2011;6:e27739.

168. Cardoso GB, Chacon E, Chacon PG, et al. Fatty acid is a potential agent for bone tissue induction: In vitro and in vivo approach. Exp Biol Med. 2017;242:1765-1771.

169. Son Y, Cheong YK, Kim NH, et al. Mitogen-activated protein kinas and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct. 2011;2011:792639.

170. Dai L, Aye Thu C, Liu XY, et al. Tak1, more than just innate immunity. IUBMB Life. 2012;64:825-834.

171. Shen G, Ren H, Qiu T, et al. Mammalian target of rapamycin as a therapeutical target in osteoporosis. J Cell Physiol. 2018;233:3929-3944.

172. Ashworth RE, Wu J. Mammalian target of rapamycin inhibition in hepatocellular carcinoma. World J Hepatol. 2014;6:776-782.

173. Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell. 2010;40:310-322.

174. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21-35.

175. Bayascas JR, Alessi DR. Regulation of Akt/PKB Ser473 phosphorylation. Mol Cell. 2005;18:143-145.

176. Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110:163-175.

177. Pyo JO, Nah J, Jung YK. Molecules and their functions in autophagy. Exp Mol Med. 2012;44:73-80.

178. He C, Levine B. The Beclin 1 interactome. Curr Opin Cell Biol. 2010;22:140-149.

179. Caro LH, Plomp PJ, Wolveant EG, et al. 3-Methyladenine, an inhibitor of autophagy, has multiple effects on metabolism. Eur J Biochem. 1988;175:325-329.

180. Yeh LC, Ford JJ, Lee JC, et al. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells. Biochem Biophys Res Commun. 2014;450:777-781.

181. Kruger MC, Coetzee M, Haag M, et al. Long-chain polyunsaturated fatty acids: selected mechanisms of action on bone. Prog Lipid Res. 2010;49:438-449.

182. Maggio M, Artoni A, Lauretani F, et al. The impact of omega-3 fatty acids on osteoporosis. Curr Pharm Des. 2009;15:4157-4164.

183. Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83:1505S-1519S.

184. Calder PC. n-3 polyunsaturated fatty acids as pharmacologic agents: a fishy tale? Nutrition. 1997;13:1002-1004.
185. Katono T, Kawato T, Tanabe N, et al. Sodium butyrate stimulates mineralized nodule formation and osteoprogerin expression by human osteoblasts. Arch Oral Biol. 2008;53:903-909.

186. Aliciato F, Sainaghi PP, Sola D, et al. TNF-α, IL-6, and IL-1 expression is inhibited by GAS6 in monocytes/macrophages. J Leukoc Biol. 2010;87:869-875.

187. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

188. Tian XY, Zhang Q, Zhao R, et al. Continuous PGE2 leads to net bone loss while intermittent PGE2 leads to net bone gain in lumbar vertebral bodies of adult female rats. Bone. 2008;42:914-920.

189. Gao Q, Xu M, Alander CB, et al. Effects of prostaglandin E2 on bone in mice in vivo. Prostaglandins Other Lipid Mediat. 2009;89:20-25.

190. Minamizaki T, Yoshiko Y, Kozai K, et al. EP2 and EP4 receptors differentially mediate MAPK pathways underlying anabolic actions of prostaglandin E2 on bone formation in rat calvaria cell cultures. Bone. 2009;44:1177-1185.

191. Tsujisawa T, Inoue H, Nishihara T. SC-19220, antagonist of prostaglandin E2 receptor EP1, inhibits osteoclastogenesis by RANKL. J Bone Miner Res. 2005;20:15-22.

192. Vaananen HK, Laitala-Leinonen T. Osteoclast lineage and function. Arch Biochem Biophys. 2008;473:122-138.

193. Agrawal A, Buckley KA, Bowers K, et al. The effects of P2X7 receptor antagonists on the formation and function of human osteoclasts in vitro. Purinerg Signal. 2010;6:307-315.

194. Poulsen RC, Moughan PJ, Kruger MC. Long-chain polyunsaturated fatty acids and the regulation of bone metabolism. PLoS ONE. 2017;2:2584-2601.

195. Halleen JM, Tiitinen SL, Ylipahkala H, et al. Tartrate-resistant acid phosphatase activity by prostaglandin E2-receptor EP1, inhibits osteoclastogenesis by RANKL. Bone. 2007;23:65-73.

196. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

197. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

198. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

199. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

200. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

201. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

202. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

203. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

204. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

205. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

206. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

207. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

208. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

209. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

210. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

211. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

212. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

213. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

214. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

215. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.

216. Weinreb M, Shamir D, Machwate M, et al. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids. 2006;75:81-90.
225. Gao B, Han YH, Wang L, et al. Eicosapentaenoic acid attenuates dexamethasone-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells. Cell Death Dis. 2016;7:e2235.

226. Gillet C, Spruyt D, Rigotto S, et al. Oleate abrogates palmitate-induced lipotoxicity and proinflammatory response in human bone marrow-derived mesenchymal stem cells and osteoblastic cells. Endocrinology. 2015;156:4081-4093.

227. Lu J, Wang Q, Huang L, et al. Palmitate causes endoplasmic reticulum stress and apoptosis in human mesenchymal stem cells: prevention by AMPK activator. Endocrinology. 2012;153:5275-5284.

228. Mundy GR. Osteoporosis and inflammation. Nutr Rev. 2007;65:S147-151.

229. Tamura T, Udagawa N, Takahashi N, et al. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci USA. 1993;90:11924-11928.

230. Bendre MS, Montague DC, Peery T, et al. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone. 2003;33:28-37.

231. Houssiau FA, Devogelaer JP, Van Damme J, et al. Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis Rheum. 1988;31:784-788.

232. Lisignoli G, Toneguzzi S, Pozzi C, et al. Proinflammatory cytokines and chemokine production and expression by human osteoblasts isolated from patients with rheumatoid arthritis and osteoarthritis. J Rheumatol. 1999;26:791-799.

233. Zofkova I. Bone tissue as a systemic endocrine regulator. Physiol Res. 2015;64:439-445.

234. Al Saedi A, Bermeo S, Plotkin L, et al. Mechanisms of palmitate-induced lipotoxicity in osteocytes. Bone. 2019;127:353-359.

235. Wang N, Xue P, Wu X, et al. Role of sclerostin and dkk1 in bone remodeling in type 2 diabetic patients. Endocr Res. 2018;43:29-38.

236. Li L, Yang Z, Zhang H, et al. Low-intensity pulsed ultrasound regulates proliferation and differentiation of osteoblasts through osteocytes. Biochem Bioph Res Comm. 2012;418:296-300.

237. Vazquez M, Evans BA, Riccardi D, et al. A new method to investigate how mechanical loading of osteocytes controls osteoblasts. Front Endocrinol. 2014;5:208.

238. Armstrong VJ, Muzylak M, Sunters A, et al. Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha. J Biol Chem. 2007;282:20715-20727.

239. Riquelme MA, Burra S, Kar R, et al. Mitogen-activated protein kinase (MAPK) activated by prostaglandin E2 phosphorylates CONNEXIN 43 and closes osteocytic hemichannels in response to continuous flow shear stress. J Biol Chem. 2015;290:28321-28328.

240. Nagayama K, Miyamoto Y, Kaneko K, et al. Production of 8-nitro-cGMP in osteocytic cells and its upregulation by parathyroid hormone and prostaglandin E2. Vitro Cell Dev Biol Anim. 2019;55:45-51.

241. Frey JL, Li Z, Ellis JM, et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol Cell Biol. 2015;35:1979-1991.

242. Li Z, Frey JL, Wong GW, et al. Glucose transporter-4 facilitates insulin-stimulated glucose uptake in osteoblasts. Endocrinology. 2016;157:4094-4103.

243. Lee TJ, Jang J, Kang S, et al. Enhancement of osteogenic and chondrogenic differentiation of human embryonic stem cells by mesodermal lineage induction with BMP-4 and FGF2 treatment. Biochem Biophys Res Co. 2013;430:793-797.

244. Damer-Poprawa M, Golub E, Otis L, et al. Chondrocytes utilize a cholesterol-dependent lipid translocator to externalize phosphatidylserine. Biochemistry. 2006;45:3325-3336.

245. Villalvila A, Gomez R, Largo R, et al. Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int J Mol Sci. 2013;14:20793-20808.

246. Wann AK, Mistry J, Blain EJ, et al. Eicosapentaenoic acid and docosahexaenoic acid reduce interleukin-1beta-mediated cartilage degradation. Arthritis Res Ther. 2010;12:R207.

247. Loef M, Schoones JW, Kloppenburg M, et al. Fatty acids and osteoarthritis: different types, different effects. Joints Bone Spine. 2019;86:451-458.

248. Sakata S, Hayashi S, Fujishiro T, et al. Oxidative stress-induced apotosis and matrix loss of chondrocytes is inhibited by eicosapentaenoic acid. J Orthop Res. 2015;33:339-365.

249. Wang Z, Guo A, Ma L, et al. Docosahexaenoic acid treatment ameliorates cartilage degeneration via a p38 MAPK-dependent mechanism. Int J Mol Med. 2016;37:1542-1550.

250. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510:92-101.

251. Perrett M, Norling LV. Actions of SPM in regulating host responses in arthritis. Mol Aspects Med. 2017;58:57-64.

252. Norling LV, Headland SE, Dalli J, et al. Processing and cartilage-protective actions of resolvins D1 in inflammatory arthritis. JCI Insight. 2016;1:e85922.

253. Arnardottir HH, Dalli J, Norling LV, et al. Resolvin D3 is dysregulated in arthritis and reduces arthritis inflammation. J Immunol. 2016;197:2362-2368.

254. Benabdoune H, Rondon EP, Shi Q, et al. The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis. Inflamm Res. 2016;65:635-645.

255. McReynolds CB, Hwang SH, Yang J, et al. Pharmaceutical effects of inhibiting the soluble epoxide hydrolase in canine osteoarthritis. Front Pharmacol. 2019;10:533.

256. Chabane N, Zayed N, Afif H, et al. Histone deacetylase inhibitors suppress interleukin-1beta-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthritis Cartilage. 2008;16:1267-1274.

257. Young DA, Lakey RL, Pennington CJ, et al. Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption. Arthritis Res Ther. 2005;7:R503-512.

258. Bo W, Zhou J, Wang K. Sodium butyrate abolishes the degradation of type II collagen in human chondrocytes. Biochem Pharmacother. 2018;102:1099-1104.

259. Pirozzi C, Francisco V, Guida FD, et al. Butyrate modulates inflammation in chondrocytes via GPR43 receptor. Cell Physiol Biochem. 2018;51:228-243.

260. Sekar S, Shafie SR, Prasadam I, et al. Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Sci Rep. 2017;7:46457.

261. Wu CL, Diekman BO, Jain D, et al. Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids. Int J Obes. 2013;37:1079-1087.

262. Froomer KW, Schaffer A, Rehart S, et al. Free fatty acids: potential proinflammatory mediators in rheumatic diseases. Ann Rheum Dis. 2015;74:303-310.

263. Miao H, Chen L, Hao L, et al. Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1alpha pathway in chondrocytes. Sci Rep. 2015;5:13092.

264. Xie Q, Wei M, Kang X, et al. Reciprocal inhibition between miR-26a and NF-kappaB regulates obesity-related chronic inflammation in chondrocytes. Biosci Rep. 2015;35(3):e00204.

265. Sekar S, Wu X, Friis T, et al. Saturated fatty acids promote chondrocyte matrix remodeling through reprogramming of autophagy pathways. Nutrition. 2018;54:144-152.
266. Alvarez-Garcia O, Rogers NH, Smith RG, et al. Palmitate has proapoptotic and proinflammatory effects on articular cartilage and synergizes with interleukin-1. *Arthritis Rheumatol.* 2014;66:1779-1788.

267. Herrero-Beaumont G, Perez-Baos S, Sanchez-Pernaute O, et al. Targeting chronic innate inflammatory pathways, the main road to prevention of osteoarthritis progression. *Biochem Pharmacol.* 2019;165:24-32.

268. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. *Science.* 2011;334:1081-1086.

269. Nazli SA, Loeser RF, Chubinskaya S, et al. High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes. *Osteoarthritis Cartilage.* 2017;25:1516-1521.

270. Loeser RF. Growth factor regulation of chondrocyte integrins. Differential effects of insulin-like growth factor 1 and transforming growth factor beta on alpha 1 beta 1 integrin expression and chondrocyte adhesion to type VI collagen. *Arthritis Rheum.* 1997;40:270-276.

271. Haywood J, Yammani RR. Free fatty acid palmitate activates unfolded protein response pathway and promotes apoptosis in meniscus cells. *Osteoarthritis Cartilage.* 2016;24:942-945.

272. Tan L, Yammani RR. Nupr1 regulates palmitate-induced apoptosis in human articular chondrocytes. *Biosci Rep.* 2019;39(2):BSR20181473.

273. Wu CL, Jain D, McNeill JN, et al. Dietary fatty acid content regulates wound repair and the pathogenesis of osteoarthritis following joint injury. *Ann Rheum Dis.* 2015;74:2076-2083.

274. Patterson E, Wall R, Fitzgerald GF, et al. Health implications of high dietary omega-6 polyunsaturated Fatty acids. *J Nutr Metab.* 2012;2012:539426.

275. Li TF, Zuscik MJ, Ionescu AM, et al. PGE2 inhibits chondrocyte differentiation through PKA and PKC signaling. *Exp Cell Res.* 2004;300:159-169.

276. Jung ID, Jeong YI, Lee CM, et al. COX-2 and PGE2 signaling is essential for the regulation of IDO expression by curcumin in murine bone marrow-derived dendritic cells. *Int Immunopharmacol.* 2010;10:760-767.

277. Weiler HA, Fitzpatrick-Wong S. Dietary long-chain polyunsaturated fatty acids minimize dexamethasone-induced reductions in arachidonic acid status but not bone mineral content in piglets. *Pediatr Res.* 2002;51:282-289.

278. Lv S, Wu L, Cheng P, et al. Correlation of obesity and osteoporosis: effect of free fatty acids on bone marrow-derived mesenchymal stem cell differentiation. *Exp Ther Med.* 2010;1:603-610.

279. Chen TY, Zhang ZM, Zheng XC, et al. Endogenous n-3 polyunsaturated fatty acids (PUFAs) mitigate ovariectomy-induced bone loss by attenuating bone marrow adipogenesis in FAT1 transgenic mice. *Drug Des Devel Ther.* 2013;7:545-552.

280. Rahman MM, Bhattacharyya A, Banu J, et al. Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis. *J Cell Mol Med.* 2009;13:1833-1844.

281. Shen CL, Yeh JK, Rasty J, et al. Protective effect of dietary long-chain n-3 polyunsaturated fatty acids on bone loss in gonad-intact middle-aged male rats. *Br J Nutr.* 2006;95:462-468.

282. Bullon P, Battino M, Varela-Lopez A, et al. Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alveolar bone resorption by mitochondrial-related mechanisms. *PLoS ONE.* 2013;8:e74234.

283. Maditz KH, Smith BJ, Miller M, et al. Feeding soy protein isolate and oils rich in omega-3 polyunsaturated fatty acids affected mineral balance, but not bone in a rat model of autosomal recessive polycystic kidney disease. *BMC Nephrol.* 2015;16:13.

284. Knott L, Avery NC, Hollander AP, et al. Regulation of osteoarthritis by omega-3 (n-3) polyunsaturated fatty acids in a naturally occurring model of disease. *Osteoarthritis Cartilage.* 2011;19:1150-1157.

285. Alnouri DM, El-Din MF, Al-Khalifa AS. The effect of long-term supplementation with different dietary omega-6/omega-3 ratios on mineral content and ex vivo prostaglandin E2 release in bone of growing rabbits. *Nutr Res Pract.* 2014;8:360-367.

286. Ribeiro DC, Pereira AD, de Santana FC, et al. Incorporation of flaxseed flour as a dietary source for ALA increases bone density and strength in post-partum female rats. *Lipids.* 2017;52:327-333.

287. Khadge S, Thiele GM, Sharp JG, et al. Long-chain omega-3 polyunsaturated fatty acids decrease mammary tumor growth, multiorgan metastasis and enhance survival. *Clin Exp Metastasis.* 2018;35:797-818.

288. Varela-Lopez A, Ochoa JJ, Llamas-Elvira JM, et al. Loss of bone mineral density associated with age in male rats fed on sunflower oil is avoided by virgin olive oil intake or coenzyme Q supplementation. *Int J Mol Sci.* 2017;18(7):1397.

289. Rosenstein ED, Kushner LJ, Kramer N, et al. Pilot study of dietary fatty acid supplementation in the treatment of adult periodontitis. *Prostaglandins Leukot Essent Fatty Acids.* 2003;68:213-218.

290. Elkhouri AM. The efficacy of host response modulation therapy (omega-3 plus low-dose aspirin) as an adjunctive treatment of chronic periodontitis (clinical and biochemical study). *J Periodontal Res.* 2011;46:261-268.

291. Remans PH, Sont JK, Wagenaar LW, et al. Nutrient supplementation with polyunsaturated fatty acids and micronutrients in rheumatoid arthritis: clinical and biochemical effects. *Eur J Clin Nutr.* 2004;58:839-845.

292. Hagfors L, Nilsson I, Skoldstam L, et al. Fat intake and composition of fatty acids in serum phospholipids in a randomized, controlled, Mediterranean dietary intervention study on patients with rheumatoid arthritis. *Nutr Metab.* 2005;2:26.

293. Leeb BF, Sautner J, Andel I, et al. Intravenous application of omega-3 fatty acids in patients with active rheumatoid arthritis. The ORA-1 trial. An open pilot study. *Lipids.* 2006;41:29-34.

294. Galarraga B, Ho M, Youssef HM, et al. Cod liver oil (n-3 fatty acids) as an non-steroidal anti-inflammatory drug sparing agent in rheumatoid arthritis. *Rheumatology.* 2008;47:665-669.

295. Bahadori B, Uitlz E, Thonhofer R, et al. Omega-3 Fatty acids infusions as adjuvant therapy in rheumatoid arthritis. *J Parenter Enteral Nutr.* 2010;34:151-155.

296. Proudmam SM, Cleland LG, Metcalf RG, et al. Plasma n-3 fatty acids and clinical outcomes in recent-onset rheumatoid arthritis. *Br J Nutr.* 2015;114:885-890.

297. Gan RW, Demouruelle MK, Deane KD, et al. Omega-3 fatty acids are associated with a lower prevalence of autoantibodies in shared epitope-positive subjects at risk for rheumatoid arthritis. *Ann Rheum Dis.* 2017;76:147-152.

298. Perevozhikova TV, Avdeeva EY, Fait EA, et al. Influence of saussurea controversa and fillipendula ulmaria extracts on immunological reactivity of rats with experimental osteomyelitis. *Eksp Klin Farmakol.* 2016;79:16-20.

How to cite this article: Bao M, Zhang K, Wei Y, et al. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. *Cell Prolif.* 2020;53:e12735. https://doi.org/10.1111/cpr.12735