Measurement of Effective Thermal Conductivity of Cupra and Polyester Fiber Assemblies in Low Fiber Volume Fraction

YONEDA Morihiro a, *, NAKAJIMA Chie b

a Faculty of Human Life and Environment, Nara Women's University, Kitauoya-Nishimachi, Nara 630-8506, Japan
b Graduate School of Human Culture, Nara Women's University, Kitauoya-Nishimachi, Nara 630-8506, Japan

Received 16 August 2015; accepted for publication 16 June 2016

Abstract

In this study, the effective thermal conductivity of Cupra, Polyester and Polytrimethyleneterephthalate (PTT) fiber assemblies in low fiber volume fraction is measured using KES-F7 Thermo Labo II apparatus. In order to eliminate thermal perturbation by external heat, the radiation shielding board is set up between samples and operator. Heat flux to calculate thermal conductivity is measured including heat leakage from the side wall of sample and is calibrated in the analysis. The results are analyzed using non-linear regression method. The results are obtained as follows. Thermal conductivity curve is convex downward within the range of fiber volume fraction measured. The effective thermal conductivity, \(\lambda \) is expressed as following equation, \(\lambda = A\phi + B/\phi + C \) where, \(\phi \): fiber volume fraction, \(A, B \): coefficients and \(C \): constant determined by non-linear regression analysis. Based on this equation, the effective thermal conductivity is divided into three parts, i.e. \(A\phi \): heat conduction within fiber, \(B/\phi \): radiative heat transfer and \(C \): heat conduction within air. Component of conduction in air, \(C \) plays a most important role in thermal conductivity of fiber assembly, and component of heat conduction in fiber, \(A\phi \) follows in higher fiber volume fraction.

Key Words: Effective thermal conductivity, Fiber assembly, Cupra fiber, Polyester fiber, Non-linear regression

低体積分率におけるキュプラ・ポリエステル短繊維集合体の
有効熱伝導率の測定

米田守宏 a, *, 中島千恵 b

a 奈良女子大学生活環境学部, b 奈良女子大学大学院人間文化研究科

1. 緒 言

寝具用充填材料においては、天然繊維および化学繊維などからなる低い体積分率の短繊維集合体が使用されている。これら短繊維集合体の熱伝導性は、主に有効熱伝導率によって評価される。一般に、布帛や繊維集合体などの有効熱伝導率の評価法としては、平行平板法を用い、定常状態において、高温側から低温側へ向けて試料を通して流れる熱流束を測定する方法が用いられている。これまでも、繊維集合体の熱伝導に関する研究としては、ポリエステル繊維集合体の伝熱構造に関する理論的および実験的研究 [1,2]、および防寒用被服材料あるいは繊維質断熱材などの有効熱伝導率に関する研究 [3,5] などが報告されていない。いずれの研究においても、低い体積分率（10%以下）の繊維集合体における有効熱伝導率対繊維体積分率の関係は、下に凸な曲線形を示すことが明らかにされている。このように、低繊維体積分率において有効熱伝導率が極小を持つことは、これまで繊維集合体が断熱材料として広く用いられてきたことに対する大きな理由である。さらに、有効熱伝導率が低体積分率において極小をもつ理由は、空隙率の増加に伴い空間を伝験する輻射伝熱成分が増加するためであることが、それぞれの伝熱モデルおよび測定結果により示されてい

* 連絡先：奈良女子大学 生活環境学部 630-8506 奈良市北魚屋西町 E-mail : yoneda@cc.nara-wu.ac.jp, Tel/Fax : +81-742-20-3463
その一部を取り扱うため、測定部位と測定者の間には幅熱を遮る板（以下、幅熱ガード板と呼ぶ）を設置する場合と設置しない場合での幅熱伝導率測定値の比較・検討を行った。このようない予備実験の結果を踏まえて、本実験ではヒートシンクとしてペルチェ素子冷却装置を用い、幅熱ガード板を設置するという条件の下で、上記繊維集合体の幅熱伝導率を測定した。測定結果を整理するため、建築用繊維質熱材の性能評価に利用されている嵩密度対幅熱伝導率の実験式を採用して、幅熱伝導率に関して検討した。実験結果を踏まえて、得られた幅熱伝導率を繊維伝導成分、幅射成分、ガス伝導成分および熱の漏れ成分の分離を試みた。以下に、検討の結果について報告する。

2. 実験

2.1 試料

本実験に使用した短繊維材料は、繊度と繊維長をほぼ等しくした繊度1.4dtex・繊維長38mmのキュプラ(CU)、繊度1.3dtex・繊維長38mmの丸断面ポリエステル(RPE)、繊度1.4dtex・繊維長38mmの異型断面ポリエステル(WPE)、および、繊度1.7dtex・繊維長51mmのポリトリメチレンテレフタレート(PTT)の計4種である。これらの原綿を開繊し、カーディングしたウェブを用い、恒温恒湿室における20±2℃、65±2％RHの環境条件にて24時間以上調湿した後に実験に供した。これら試料の性状をTable 1に示す。

繊維集合体における幅熱伝導率の主要な測定条件として体積分率がある。ここで素材ごとの体積分率をほぼ等しくした繊維質熱材の性能評価に利用されている嵩密度対幅熱伝導率の実験式を採用して、幅熱伝導率に関して検討した。実験結果を踏まえて、得られた幅熱伝導率を繊維伝導成分、幅射成分、ガス伝導成分および熱の漏れ成分の分離を試みた。以下に、検討の結果について報告する。

Sample code	Detail of sample	Fineness (dtex)	Fiber length (mm)	Fiber diameter (μm)	Fiber gravity (n.d.)	Percentage of crimp (%)
CU	Cupra-ammonium (Cupra) staple fiber	1.4	38	11.84	1.50	8.79
RPE	Polyester staple fiber with round section	1.3	38	12.76	1.38	26.70
WPE	Polyester staple fiber with w-shaped heteromorphic section	1.4	38	24.22*1, 6.27*2	1.38	14.80
PTT	Polytetramethylene terephthalate staple fiber	1.7	51	15.02	1.34	15.43

*1: a major-axis, *2: a minor-axis

106
で表される。この一定量の短繊維材料を、有効測定面積25cm²（辺の長さ5cm）に、高さがそれぞれ2, 3, 5cmの発泡スチロール製の四角柱状試料充填枠の中にできるだけ均一になるように、ピンセットを使用して充填したものを実験試料とした。

辐射熱環境の影響を検討するための予備実験は、Cupraおよびポリエステル系の代表としてRPの2種の試料を用いて行った。体積分率は0.010，試料の厚さを5cmとした。試料充填用断熱枠に試料を充填した様子をFig.1に、試料充填用断熱枠の平面図をFig.2に示す。Cupraの試料重量は1.9g、RPの試料重量は1.7gである。

有効熱伝導率の測定に関する本実験に使用した短繊維材料はCupra、RP、WPE、PTTの計4種である。本実験では繊維体積分率および試料厚さに関して熱伝導特性を調べるため、繊維体積分率は、0.001、0.005、0.010、0.025、0.030の5条件、試料の厚さを2cm、3cm、5cmの3条件とし、試料1種につき計15条件の測定を行った。各試料（Cupra、RP、WPE、PTT）の試料重量をTable 2に示す。

2.2 実験装置および実験方法

有効熱伝導率の測定はサーモラボⅡ型試験機（㈱カトーテック製KES-F7）を用いて行った[4]。平行平板法により、定常状態において高温側熱源（BT-Box）から低温側（ヒートシンク）へ向けて試料を介して流れる熱流量を測定する。測定部分（断面図）の模式図をFig.3に示す。試料である繊維集合体を一定の厚さの発泡スチロール製の枠内に均質充填した状態で熱移動の測定を行う。実験は20±2℃、65±2％RHの環境条件下で行った。

高温側のBT-Boxの設定温度を30℃、低温側のヒートシンクの設定温度を20℃とし、温度差は10℃である。また、高温側を上下面として、低温側を下面に設定し、測定される熱流量の熱流の方向は重力の向きに一致させた。ヒートシンクとしてペルチェ素子冷却装置サーモクール（以下、冷却ベースと呼ぶ）を使用した。冷却ベースでは熱電半導体の一種であるペルチェ素子を利用した冷却装置により試料下面を温度一定に保つ。ペルチェ効果を利用して冷却を行うため、モーター、ファンなどの可動要素が不要であるという特徴を持つ。試料充填用断熱枠は1試行終了ごとに、20℃に設定したペルチェ素子冷却装置上に置く。このような処理をすることで断熱材に蓄積した熱を放出させ、熱履歴の影響を極力少なくするよう

Table 2 Sample weight for each measurement condition. (unit: g)

Sample	Volume fraction	Thickness of a sample
Cupra		2cm 3cm 5cm
0.001	0.075	0.113 0.188
0.005	0.375	0.563 0.938
0.010	0.750	1.125 1.875
0.025	1.875	2.813 4.688
0.030	2.250	3.375 5.625
0.001	0.069	0.104 0.173
0.005	0.345	0.518 0.863
0.010	0.690	1.035 1.725
0.025	1.725	2.588 4.313
0.030	2.070	3.105 5.175
Polyester		2cm 3cm 5cm
0.001	0.067	0.101 0.168
0.005	0.335	0.503 0.838
0.010	0.670	1.005 1.675
0.025	1.675	2.513 4.188
0.030	2.010	3.015 5.025
PTT		2cm 3cm 5cm

Fig. 1 Schematic diagram of filling fiber sample into frame made of polystyrene foam.

Fig. 2 Frame made of polystyrene foam (a) Top view (b) Bottom view.

Fig. 3 Measurement of thermal conductivity.
国の衛星の計画と実施

予備実験として, ヒートシンクの環境温度の影響を検討する目的で, 測定者の放射熱が繊維集合体の有効熱伝導率の測定に与える影響に関する実験を行った. 試料, 測定条件および有効熱伝導率の測定結果をまとめたものを Table 3 に示す. ヒートシンクとして冷却ベースを使用している. 試料 2 種類 (CU, RP) それぞれに対し, 輻射熱ガード板の有無を組み合わせて計 4 通りの測定を実施した. 各条件につき 10 回の測定を行い, 平均値, 標準偏差および変動係数を求めた. 各条件の間の平均値の差の検定を行った.

次に, 輻射熱ガード板の有効性を確認した後, BT-Box およびヒートシンクの前面と左右両側面の3面を幅45cmx 奥行45cmx 厚み3cm の発泡スチロール板 (以下, 輻射熱ガード板と記す) で覆った場合と覆わない場合の 2 通りの条件で行った. 試料枠内に繊維試料を充填しない状態 (ブランクと呼ぶ) での有効熱伝導率の測定を行った. 試料厚さ5mmの試料 5 枚を用い, 定常法を用いて測定を行った. 結果として, 発泡スチロール板の有効熱伝導率の平均値は 0.035W/mK となり, 後述する繊維集合体の有効熱伝導率値と近似した値となった. したがって, 試料枠側面からの熱の漏れ量は, 試料である繊維集合体本体を通る熱流量と同程度となることが予想される.

3. 結 果

3.1 測定条件に関する検討

3.1.1 ヒートシンクに関する検討

予備研究として, 対流熱環境について検討するため, ヒートシンクに Water Box を使用した場合と冷却ベースを使用した場合を比較した. その結果, ヒートシンクとして冷却ベースを使用した場合のほうが Water Box を使用した場合に比べて, 平均有効熱伝導率の測定値が有意に大きくなることが認められた (数値データはとくに示さない). 冷却ベースを使用した場合の測定部周辺の環境温度の上昇は約 0.6℃であるのに対し, Water Box を使用した場合は時間経過とともに環境温度の上昇が続き, 最大で約2.1℃の温度上昇がみられた. このような Water Box を使用した場合の環境温度の上昇は, 恒温循環水槽に付属するモーターおよびファンにより加熱された空気の対流伝熱によるものと考えられる. 環境温度の上昇により, 温められた空気が測定部空間に侵入し, 有効熱伝導率の測定が非常に妨げられていることが確かめられた. 以上より, 繊維集合体の有効熱伝導率の測定には, 対流熱伝達による測定部周辺の環境温度上昇をより低く抑えることができるサーモクールを使用することが望ましいと考えられる.

3.1.2 輻射熱ガード板に関する検討

繊維集束体の影響について検討する目的で, 測定者の放射熱が繊維集束体の有効熱伝導率の測定に与える影響に関する実験を行った. 試料, 測定条件および有効熱伝導率の測定結果をまとめたものを Table 3 に示す. ヒートシンクとして冷却ベースを使用している. 試料 2 種類 (CU, RP) それぞれに対し, 輻射熱ガード板の有無を組み合わせて計 4 通りの測定を実施した. 各条件につき 10 回の測定を行い, 平均値, 標準偏差および変動係数を求めた. 各条件の間の平均値の差の
検定を、試料別に検定により行った。Fig.5 に、各条件下での熱伝導率の平均値、標準偏差を示す。試料 CU および RPE について転射熱ガード板がある場合は無い場合に比べて、有効熱伝導率が有意に低く、標準偏差が小さくなる傾向がある。この理由として、転射熱ガード板が無い場合は、人体（測定者）からの転射伝熱がもう一つの熱源となって式 (2) の熱流束 Q を大きくしており、その結果ガード板がある場合に比べて、有効熱伝導率の値を大きくてしているものと推測される。したがって、繊維集合体の有効熱伝導率の測定に際しては、転射熱ガード板を測定部に設置した方が、測定者からの転射伝熱を遮蔽するため、より正確な熱伝導率値を求めることができると考えられる。Fig.6 は試料の厚さが 2cm の場合、Fig.7 は試料の厚さが 3cm の場合、Fig.8 は試料の厚さが 5cm の場合の結果である。いずれも横軸は有効熱伝導率（W/mK）、縦軸は繊維体積分率（n.d.）である。有効熱伝導率の大きさのレベルは、同一試料について試料厚さが 2cm、3cm、5cm と増加するにつれて増加している。このような厚さによる変化については後述として、ここでは、有効熱伝導率権述体積分率の関係に及ぼす繊維素材の影響について、主として試料厚さ 3cm における結果 (Fig.8) に関して検討する。試料厚さが一定の場合、各素材の有効熱伝導率の大きさを比較すると、同じ体積分率では CU が最も大きく、次にポリエステル繊維のグループ (RPE, WPE, PTT) の順である。RPE, WPE および PTT の間では本測定法の範囲内で有意な差は認められない。次に、有効熱伝導率権述体積分率の関係に及ぼす繊維素材の影響について検討する。いずれの試料においても、有効熱伝導率権述体積分率の関係は下に凸な曲線を示す。繊維集合体の有効熱伝導率の結果について、繊維体積分率、試料の厚さ、繊維素材等との関係を検討する。本実験では、各条件下、試料の厚さ 3cm における結果を、測定に際しては、繊維体積分率、試料の厚さ、繊維素材等との関係を検討する。本実験では、各条件下、試料の厚さ 3cm における結果を、繊維体積分率、試料の厚さ、繊維素材等との関係を検討する。
素材による曲線形状の特徴は以下の通りである。CU は熱伝導率の極小値が体積分率 0.005 付近にあり、体積分率の増加とともに増加の傾向にある。RPE, WPE および PTT については、熱伝導率の極小値は体積分率 0.01 付近にあり、体積分率 0.03 に向けてやや增加している。また、CU は纖維体積分率が 0.005 から 0.001 にかけて減少するとき、RPE, WPE, PTT は纖維体積分率が 0.01 から 0.001 にかけて減少すると、熱伝導率はわずかに増加している。さらに、試料の厚さが 3cm, 2cm と減少することにより、熱伝導率値のレベルが低下するとともに、曲線形状が平坦化して繊維素材の特徴が薄れ、繊維素材間の差が小さくなる傾向にある。

次に試料の厚さと熱伝導率の関係について検討する。一例として Fig.9 に体積分率 0.01 における試料の厚さと有効熱伝導率の関係を示す。縦軸は熱伝導率(W/mK)、横軸は試料の厚さ (cm) である。Fig.9 よりいずれの試料についても、試料の厚さに対して熱伝導率は直線的に増加していることがわかる。直線の傾きから判断すると、CU は他の合成繊維（RPE, WPE, PTT）に比べて増加の割合がやや大きい傾向がみられる。次節以下において、本測定で得られた有効熱伝導率の各要素過程への成分分離について検討する。有効熱伝導率の厚さ依存性については、成分分離に関する検討を行った後で、改めて考察する。

4. 非線形回帰モデルによる解析

本研究で取り扱っている繊維集合体の空隙率は非常に大きいため、集合体内部での熱移動の形態には空隙に関わる効果が強く現れているものと考えられる。すなわち、纖維中の熱伝導、纖維間空隙内の幅射伝熱、および、空隙中の気体（空気）を介した熱伝導である。これら 3 つの伝熱要素が熱流に対して並列に配置されていると仮定する（並列モデル）と、有効熱伝導率の測定値λは密度ρ（bulk density, kg/m^3）の関数として、3 つの要素の和で表される [5-8]。

\[\lambda = A\rho + B/\rho + C \tag{3} \]

ここで、A (W/m^2/Kkg), B (W/kg/m^K) は係数、C (W/mK) は定数である。右辺第 1 項は纖維中の伝導熱伝導、第 2 項は繊維間空隙内の幅射伝熱、第 3 項は空隙中の気体を介した伝導熱伝導を表している。（パラメータ A, B, C の詳細については付録に示す。）

各種繊維集合体における有効熱伝導率の測定結果について、式 (3) を適用して解析を行い、A, B, C を決定した。ただし、
本研究においては以下のように密度 \(\rho \) を繊維体積分率 \(\phi \) に読み替えて解析を行っている。これは、回帰式における \(\phi \) の役割が \(\rho \) と同等であるためである。

\[\lambda = A\phi + B/\phi + C \] \hspace{1cm} (4)

非線形回帰分析は R 言語（Ver.3.1.1）を用いて行った。非線形回帰分析による各パラメータの推定値を Table 4 に、および、推定値に基づく計算結果を Figs.10 ～ 12 に示す。それぞれ \(A \) は繊維伝導成分の係数、\(B \) は放射成分の係数、\(C \) はガス伝導成分（定数）である。Fig.10 は CU、Fig.11 は RPE、Fig.12 は WPE、Fig.13 は PTT の比較を示している。

Fig. 10
Comparison between calculated and measured values for CU.
Symbol ○, △, ▲ and Straight line: measured values
Broken line: calculated values obtained by nonlinear regression analysis

Fig. 11
Comparison between calculated and measured values for RPE.
Symbol ○, △, ▲ and Straight line: measured values
Broken line: calculated values obtained by nonlinear regression analysis

Fig. 12
Comparison between calculated and measured values for WPE.
Symbol ○, △, ▲ and Straight line: measured values
Broken line: calculated values obtained by nonlinear regression analysis

Fig. 13
Comparison between calculated and measured values for PTT.
Symbol ○, △, ▲ and Straight line: measured values
Broken line: calculated values obtained by nonlinear regression analysis
Fig. 12 は WPE, Fig. 13 は PTT について, それぞれ試料の厚さ d が 2cm, 3cm, 5cm の場合の結果を示している。縦軸は有効熱伝導率 λ, 横軸は繊維体積分率である。ここで記号（○, □, △）および実線は実測値, 破線は実測値を用いて得られた近似曲線である。図に示したように, いずれの繊維集合体においても有効熱伝導率の実測値と非線形回帰分析による計算結果の一致は良好であると考えられる。

次に, 非線形回帰分析により分離した成分の係数 A, B および定数 C の値を用いて, 各種別に計算した結果について検討する。各繊維素材の解析結果の一例を Figs.14 ～ 17 に示す。Fig.14 は CU, Fig.15 は RPE, Fig.16 は WPE, Fig.17 は PTT について, 試験厚さ d が 3cm の場合の結果を示している。縦軸は有効熱伝導率 λ (W/mK), 横軸は繊維体積分率 (n.d.) である。破線が繊維伝導成分 Aφ, 一点錐線が輻射成分 Bφ, 2 点錐線がガス伝導成分 C であり, 実線は有効熱伝導率の実測値を示す。このグラフを利用することにより, 各繊維素材における各要素成分の割合, および, これらに対する繊維集合体の空隙の効果について検討することができる。また, 繊維
素材および繊維の断面形状によって、繊維伝導成分 $A\phi$ と輻射成分 B/ϕ およびガス伝導成分 C の割合が異なることがわかる。

はじめに、繊維伝導成分 $A\phi$ について検討する。係数 A は繊維素材によって大きく異なることがわかる。キュプラ（CU）はポリエステル系繊維素材（RPE, WPE, PTT）に比べて大きな係数であり、繊維体積分率 ϕ に対する増加率が大きい。結果として、$\phi=0.03$ において有効熱伝導率のうち 3 割以上を占めることになる。一方、ポリエステル系素材の場合、もっとも A が大きい WPE でも $\phi=0.03$ において 2 割以下と小さい。以上のように、本測定の範囲内において CU は繊維伝導成分の占める割合、および、繊維体積分率に対する増加の割合がポリエステル系素材に比べて大きいことが特徴的である。

次に、輻射伝熱成分 B/ϕ について検討する。本測定の範囲内において、B/ϕ が有効熱伝導率に対して占める割合は一般的に無視できるほど小さい。B/ϕ の寄与は $\phi=0.005$ 以下でわずかに認められる。$\phi=0.005$ から 0.001 にかけて、いず れの試料においても空隙率の増加に対して輻射伝熱成分の増加が認められる。結果として、本測定の範囲内において C 値は試料にかかわらず、ほぼ一定値をとっている。一方、Table4 最下段に、本測定条件（25℃, 1atm）における空気の有効熱伝導率の文献値を示す [9]。ここで、C 値が試料にかかわらず一定値と仮定すると、C 値を次の形に表す。

$$C = \lambda_{\text{air}} + C'$$

ここで、C' は繊維体積分率 ϕ に依存しない定数とする。Table5 に本考察に関わるパラメータとして、各厚さにおける C' の推定値を示す。

Table 5 Figures for the calibration of leakage of heat.

Thickness(cm)	C_{mean}	λ_{air}	C'
2	4.49x10⁻²	2.62x10⁻²	1.875x10⁻²
3	5.19x10⁻²	2.62x10⁻²	2.57x10⁻²
5	7.33x10⁻²	2.62x10⁻²	4.71x10⁻²

(单位: W/mK)

Fig. 18 Function for the calibration of leakage of heat.
YONEDA Morihiro, NAKAJIMA Chie

Fig. 19 Estimated values of effective thermal conductivity and its component. (Sample: CU, d=3cm)

Fig. 20 Estimated values of effective thermal conductivity and its component. (Sample: RPE, d=3cm)

Fig. 21 Estimated values of effective thermal conductivity and its component. (Sample: WPE, d=3cm)

Fig. 22 Estimated values of effective thermal conductivity and its component. (Sample: PTT, d=3cm)
4. 輸出成分

4.1 結合は、主として繊維素材の違い、およびそれに伴う空気の効果が関係していることが推測される。輸出成分は、繊維体積分率の小さい部分で、わずかに認めた。以上の知見は、保温性の実現を目的とした低い体積分率の繊維集合体の材料設計にあたって基礎的な情報となる。

5. 結 言

本研究では、寝装用中わた部材を構成する繊維として現在流通している試料の中から、キュプラ（CU）、丸断面ポリエステル（RP）、異型断面ポリエステル（WP）、ポリトリメチルエンテラテラート（PTT）からなる4種の短繊維集合体を採り上げ、それぞれの有効熱伝導率を測定した。本測定で用いる試料特有の性質を考慮して、熱源以外からの測定装置-試料系への熱の流入を極力排除し、あわせて、試料枠からの熱の漏れ量の校正を考慮に入れた有効熱伝導率の測定を行ったよう注意を払った。

有効熱伝導率の測定は、繊維体積分率の水準をいくつか変化させて行い、有効熱伝導率曲線を求める。有効熱伝導率曲線の解析には伝熱成分の成分分離を考慮に入れた実験式を採用し、非線形回帰分析により解析を行った。試料枠側面からの熱の漏れ量を精度よく校正するためには、ガス伝導成分Cの測定精度が重要である。以上の知見は、保温性の実現を目的とした低い体積分率の繊維集合体の材料設計にあたって基礎的な情報となる。

謝 辞

本研究の遂行に際し、奈良女子大学生活環境学部学生（当時）川原幸乃氏の多大なる協力をいただきました。ここに記して謝意を表します。

References

[1] Nogai T (1980) Sen'i Gakkaishi, 36, 389-396
[2] Nogai T, Ihara M (1980) Sen'i Gakkaishi, 36, 427-434
[3] Fujimoto T, Niwa M (1989) J Text Mach Soc Japan (predecessor journal of J Text Eng), 42, 27-35
[4] Kawabata S (1984) J Text Mach Soc Japan (predecessor journal of J Text Eng), 37, 130-138
[5] Ohmura T, Tsuboi M, Onodera M, Tomimura T (2002) Proceedings of the Institute for Functional Material Science (Kyusyu University), 16, 13-17
[6] Rennex B, Somers T (1985) Journal of Buildings Physics, 8, 175-197
[7] Symons JG, Clarke RE, Peirce JV (1995) J Thermal Insul and Bldg Envs, 19, 72-88
[8] Campanale M, Moro L (1997) J Thermal Insul and Bldg Envs, 21, 153-170
[9] Japan Society of Thermophysical Properties Ed. (1990) "Thermophysical Properties Handbook", p.59, Yokendo Pub.
[10] Ibid., p.178
[11] Kawabata S (1986) J Text Mach Soc Japan (predecessor journal of J Text Eng), 39, 184-186

附録 非線形回帰モデル

本研究で取り扱っている繊維集合体の空際率は非常に大きいため、集合体内部での熱移動の形態には繊維の熱伝導に加えて、空気に関わる効果が強く現れているものと考えられる。すなわち、繊維中の熱伝導、繊維間空気内での輻射伝熱、および、空気中の気体（空気）を介した熱伝導からなるものと考えられる。これら3つの伝熱要素が熱流に対して並列に配置されていると仮定する（並列モデル）と、有効熱伝導率の
測定値λ(W/mK)は、密度ρ(bulk density, kg/m³)の関数として、3つの要素の和で表される[5]。

\[\lambda = \lambda_v + \lambda_f + \lambda_a \]
\[= \lambda_v + B/\rho + C \] (A1a)
\[= \lambda_v + B\rho + C \] (A1b)

ここで、\(\lambda_v \)は繊維の等価熱伝導率、\(\lambda_f \)は気体の等価熱伝導率、\(A_v/(\text{W/m}^2\text{Kkg}) \), B(Wkg/mK)は係数、C(W/mK)は定数である。(A1b)式第1項は繊維中の伝導熱項、第2項は繊維間空隙内の輻射熱伝導項、第3項は空気中の気体を介した伝導熱項を表している。

パラメータA, B, Cの物理的意味について、文献[5]の記述をもとにして本研究における状況を加味して以下に要約する。

(a) 繊維中の熱伝導
繊維集合体中の繊維を介した熱移動に関連する要因としては、単位体積あたりの繊維の本数、繊維−繊維間接触点数などが考えられる。これらの要因は密度が大きいほど大きくなるものと考えられる。簡単化のためこれを比例関係とするとき、繊維による伝導熱伝導率\(\lambda_v \)は係数\(A \)を用いて次のように表される。

\[\lambda_v = Ap \] (A2)

(b) 繊維間空隙における輻射伝導
繊維集合体内の空隙における輻射伝導成分に等価な熱伝導率\(\lambda_a \)は次式で表される。

\[\lambda_a = 4\gamma d_0 \alpha c T^3 \] (A3)

ここで、\(\gamma \)係数(n.d.), \(d \)：平行平板間の距離(m), \(\alpha \)：ステファン・ボルツマン定数(W/m²K²), \(\lambda \)：幅射率(n.d.), T:絶対温度(K)である。測定セル内に充填する繊維集合体試料の質量をM、断面積をSとすると、\(d=M/S \)で表される。これを式(A3)に代入すると、

\[\lambda_v = 4\gamma d_0 \alpha c T^3 = \frac{B}{\rho} \] (A4)

\[B = 4\gamma d_0 \alpha c T^3 \] (A5)

となる。野口ら[1,2]は、繊維集合体内の熱伝達に対する輻射成分の寄与を次の4つの要素に分けている。すなわち、

(1) 熱源−繊維間、(2) 熱源−ヒートシンク間、(3) 繊維−繊維間、(4) 繊維−ヒートシンク間。このうち、式(A3)で表されているのは、(2)の熱源−ヒートシンク間の輻射熱伝達であると考えられる。

(e) 空隙中の気体を介した伝導伝熱
第3項のC(W/mK)については検討する。本実験で用いている空気のサイズは大気圧下における気体の平均自由行程Lと比較してほんの小さいことが確認されている。したがって、空気の変化により自己対流が発生するかどうかについて検討しておく必要がある。

繊維集合体での自己対流の発生の検討には、次式の通常のレイリーノ数に対して繊維集合体における形状因子を付け加えた修正レイリーノ数[10]を用いる。

\[Ra = \frac{g\beta d^4 k}{\nu} \] (A6)

ここで、\(g \)（m/s²）は重力加速度（=9.8 m/s²）、\(\beta \)（1/K）は気体の体膨張係数、\(\Delta / \theta \) (K)は熱源とヒートシンクの温度差。d (m)は試料の厚さ、v(m/s)は気体の動粘性係数、\(\kappa \) (m²/s)は空気の熱拡散係数である。また、k(m²)はDarcyの透過率で、繊維集合体における繊維径\(t \) (m)と空隙率\(\phi \) (n.d.)に依存した形状因子である。これは次式で表される。

\[k = \frac{\rho^2 \phi^4}{122(1-\phi)^2} \] (A7)

以上から、Raが臨界修正レイリー数Racr=39.5より大きくなると、繊維集合体内で自己対流が発生することになる。

たとえば、RPEの体積分率0.03の場合で考えた時、温度が25℃、繊維径1が1.276×10⁻⁴m、空隙率\(\phi \)が0.97、重力加速度gが9.8m/s²、気体の膨張係数\(\beta \)が1/373 (1/K)、BT-Boxと冷却ペースの温度差\(\Delta / \theta \)が10K、試料の厚さdが0.02m、0.03m、0.05mの3条件、気体の動粘性係数\(\nu \)を1.579×10⁻⁶m²/s、空気の熱拡散係数\(\kappa \)を2.215×10⁻⁶m²/sとするとき、

\[d=0.02 \quad Ra=0.0202 \]
\[d=0.03 \quad Ra=0.0304 \]
\[d=0.05 \quad Ra=0.0513 \]

を得る。したがって、Ra<Racr=39.5となり、繊維集合体では自己対流発生しないことから、Cは定数であり、\(\lambda_v = C \)と考えられる。これをガス伝導成分と呼ぶことにする。