A Split-Merge MCMC Algorithm for the Hierarchical Dirichlet Process

Chong Wang · David M. Blei

Abstract The hierarchical Dirichlet process (HDP) has become an important Bayesian nonparametric model for grouped data, such as document collections. The HDP is used to construct a flexible mixed-membership model where the number of components is determined by the data. As for most Bayesian nonparametric models, exact posterior inference is intractable—practitioners use Markov chain Monte Carlo (MCMC) or variational inference. Inspired by the split-merge MCMC algorithm for the Dirichlet process (DP) mixture model, we describe a novel split-merge MCMC sampling algorithm for posterior inference in the HDP. We study its properties on both synthetic data and text corpora. We find that split-merge MCMC for the HDP can provide significant improvements over traditional Gibbs sampling, and we give some understanding of the data properties that give rise to larger improvements.

Keywords hierarchical Dirichlet process · Markov chain Monte Carlo · split and merge

1 INTRODUCTION

The hierarchical Dirichlet process (HDP) [14] has become an important tool for the unsupervised data analysis of grouped data [16], for example, image retrieval and object recognition [11], multi-population haplotype phasing [18], time series modeling [7] and Bayesian nonparametric topic modeling [4]. Specially, topic modeling is the scenario when the HDP is applied to document collections, and each document is considered to be a group of observed words. This is an extension of latent Dirichlet allocation (LDA) [4] that allows a potentially unbounded number of topics (i.e., mixture components). Given a collection of documents, posterior inference for the HDP determines the number of topics from the data.

As for most Bayesian nonparametric models, however, exact posterior inference is intractable. Practitioners must resort to approximate inference methods, such as Markov chain Monte Carlo (MCMC) sampling [14] and variational inference [15]. The idea behind both of these methods is to form an approximate posterior distribution over the latent variables that is used as a proxy for the true posterior.

We will focus on MCMC sampling, where the approximate posterior is formed as an empirical distribution of samples from a Markov chain whose stationary distribution is the posterior of interest. The central MCMC algorithm for the HDP is an incremental Gibbs sampler [14, 8], which may be slow to mix (i.e., the chain must be run for many iterations before reaching its stationary distribution). For example in topic modeling—where each word of each document is assigned to a topic—the incremental Gibbs sampler only allows changing the topic status of one observed word at a time. This precludes large changes in the latent structure.

Our goal is to improve Gibbs sampling for the HDP.

We develop and study a split-merge MCMC algorithm for the HDP. Our approach is inspired by the success of split-merge MCMC samplers for Dirichlet process (DP) mixtures.

1 We focus on topic modeling in this paper. We will use “HDP” and “HDP topic model” interchangeably.
2 In [14], the Gibbs sampling based on the Chinese restaurant franchise (CRF) representation does allow the possibility of changing the status of some words in a document together. However, as stated in [14], this is a prior clustering effect and does not have practical advantages.
The DP mixture is an “infinite clustering model” where each observation is associated with a single component. (In contrast, the HDP is a mixed-membership model.) In split-merge inference for DP mixtures, the Gibbs sampler is embellished with split-merge operations. Two observations are picked at random. If the observations are in the same component then a split is proposed: all the observations associated with that component are divided into two new components. If the observations are in different components then a merge is proposed: the observations from the two components are placed in the same component. Finally, whether the resulting split or merged state is accepted is determined by Metropolis-Hastings. As demonstrated in [9][5], split-merge MCMC is effective for DP mixtures when the mixture models have overlapping clusters.

Our split-merge MCMC algorithm for the HDP is based on the Chinese restaurant franchise (CRF) representation of a two-level HDP [14], where “customers” are partitioned at the group-level and “dishes” are partitioned at the top level. In an HDP topic model, the customer partition represents the per-document partition of words; the top level partition represents the sharing of topics between documents. The split-merge algorithm for HDPs operates at the top level—thus, the assignment of subsets of documents across the corpus may be split or merged with other subsets. (The reason we don’t do split-merge operations for the lower level DP is detailed in Section 3.) We first demonstrate our algorithm on synthetic data, and then study its performance on three real-world corpora. We see that our split-merge MCMC algorithm can provide significant improvements over traditional Gibbs sampling, and we give some understanding of the data properties that give rise to larger improvements.

2 THE HDP TOPIC MODEL

The hierarchical Dirichlet process [14] is a hierarchical generalization of the Dirichlet process (DP) distribution on random distributions [6]. We will focus on a two-level HDP, which can be used in an infinite capacity mixed-membership model. In a mixed-membership model, data are groups of observations, and each exhibits a shared set of mixture components with different proportion. We will further focus on text-based topic modeling, the HDP topic model. In this setting, the data are observed words from a vocabulary grouped into documents; the mixture components are distributions over terms called “topics.”

In an HDP mixed-membership model, each group is associated with a draw from a shared DP whose base distribution is also a draw from a DP,

\[G_0 \sim \text{DP}(\gamma, H) \]
\[G_j | G_0 \sim \text{DP}(\alpha_0, G_0), \quad \text{for each } j, \]

where \(j \) is a group index. At the top level, the distribution \(G_0 \) is a draw from a DP with concentration parameter \(\gamma \) and base distribution \(H \). It is almost surely discrete, placing its mass on atoms drawn independently from \(H \) [6]. At the bottom level, this discrete distribution is used as the base distribution for each per-group distribution \(G_j \). Though they may be defined on a continuous space (e.g., the simplex), this ensures that the per-group distributions \(G_j \) share the same atoms as \(G_0 \).

In topic modeling, each group is a document of words and the atoms are distributions over words (topics). The base distribution \(H \) is usually chosen to be a symmetric Dirichlet over the vocabulary simplex, i.e., the atoms \(\phi = (\phi_k)_{k=1}^\infty \) are drawn independently \(\phi_k \sim \text{Dirichlet}(\eta) \). To complete the HDP topic model, we draw the \(i \)th word in the \(j \)th document \(x_{ji} \) as follows,

\[\theta_{ji} \sim G_j, \quad x_{ji} \sim \text{Mult}(\theta_{ji}). \]

We will show how \(\theta_{ji} \) is related to \(\phi \) in next section. The clustering effect of the Dirichlet process ensures that this yields a mixed-membership model, where the topics are shared among documents but each document exhibits them with different proportion. Based on this important property, we now turn to an alternative representation of the HDP.

2.1 The Chinese Restaurant Franchise

Consider a random distribution \(G \) drawn from a DP and a set of variables drawn from \(G \). Integrating out \(G \), these variables exhibit a clustering effect—they can be grouped according to which take on the same value [6]. The values associated with each group are independent draws from the base distribution. The distribution of the partition is a Chinese restaurant process (CRP) [1].

In the HDP, the two levels of DPs enforce two kinds of grouping of the observations. First, words within a document are grouped according to those drawn from the same “unique” atom in \(G_j \). (By “unique,” we mean atoms drawn independently from \(G_0 \).) Second, the grouped words in each document are themselves again grouped according to those associated with the same atom in \(G_0 \). Note that this corpus-level partitioning connects groups of words from different documents. (And, it may connect two groups of words from the same document.) These partitions—the grouping of words within a document and the grouping of word-groups within the corpus—are each governed by a CRP.

As a consequence of this construction, the atoms of \(G_0 \), i.e., the population of topics, are shared by different documents. And, because of the clustering of words, each document individually may exhibit several of those topics. This is the key property of the HDP.

The split-merge Gibbs sampler that we develop below relies on a representation of the HDP based on these parti-
This representation is known as the Chinese restaurant franchise (CRF) \cite{14}, a hierarchy of CRPs. At the document level, words in a document are grouped into “tables” according to a CRP for that document; at the corpus level, tables are grouped into “dishes” according a corpus-level CRP. All the words that are attached (via their table) to the same dish are drawn from the same topic. This is illustrated in Figure 1.

We now give the generative process for an HDP topic model based on the CRF representation, which is important for developing the split-merge MCMC algorithm. Let t_{ji} denote table index for x_{ji}, the word i in document j, and k_{ji} denote the dish index, i.e., the global topic index, for table t in document j. The model probabilities are based on several types of counts using on these fundamental elements. Notation is tabulated in Table 1.

There are three steps to the process. First, we generate table indices for each word in each document—this partitions the words (which are groups of words) according to topics. Finally, for each word we generate its type (e.g., “house” or “train”) from the assigned topic of its assigned table.

Generate the table index t_{ji}. In the document-level CRP for document j, table index t_{ji} is generated sequentially according to

$$p(t_{ji} = t | t_{j1}, \ldots, t_{ji-1}, \alpha_0) \propto \begin{cases} n_{jt}, & \text{if } t = 1, \ldots, m_j, \\ \alpha_0, & \text{if } t = t_{\text{new}}, \end{cases}$$

This induces the probability of partitioning the words of document j into tables,

$$p(t_j) = \frac{\alpha_0^{m_j} \prod_{t=1}^{m_j} (n_{jt} - 1)!}{\prod_{i=1}^{n_j} (i + \alpha_0 - 1)}.$$ \hspace{1cm} (2)

Generate the topic index k_{ji}. After all words in all documents are partitioned into tables, we generate the topic index k_{ji} for each table in each documents. As above, the topic index comes from the corpus-level CRP,

$$p(k_{ji} | k_{i1}, k_{i2}, \ldots, k_{iK}, k_{ji-1}, \gamma) \propto \begin{cases} m_{kj}, & \text{if } k = 1, \ldots, K, \\ \gamma, & \text{if } k = k_{\text{new}}, \end{cases}$$

which induces the probability for the partition of all the tables. Below, D is the number of documents and K is the number of used topics in the set of topic indices,

$$p(k) = \frac{\gamma^K \prod_{k=1}^{K} ((m_k - 1)!}{\prod_{k=1}^{K} (s + \gamma - 1)}.$$ \hspace{1cm} (4)

Let \mathbf{c} denote the complete collection of table and topic indices, $t = (t_j)_{j=1}^{D}$ and k. We combine Eq. 2 and 4

$$p(\mathbf{c}) = p(k)p(t) = p(k) \prod_{j=1}^{D} p(t_j).$$ \hspace{1cm} (5)

Generate word observations x_{ji}. Finally, we generate the observed words x_{ji}. In the previous representation of the HDP in Eq. \text{[1]} the words were generated given a topic θ_{ji}. In this representation, each x_{ji} is associated with a table index t_{ji}, and each table is associated with a topic index k_{ji}, which links to one of the topics ϕ_k. Define $z_{ji} = k_{ji}$.

$$\theta_{ji} = \phi_{z_{ji}}, \quad x_{ji} \sim \text{Mult}(\theta_{ji}).$$

We call z_{ji} the topic index for word x_{ji}. It locates the topic ϕ_k from which x_{ji} is generated.

Since different words with the same value of z_{ji} are drawn from the same topic $\phi_{z_{ji}}$, we can consider the conditional likelihood of the corpus $\mathbf{x} = \{x_j\}_{j=1}^{D}$ given all the latent indices \mathbf{c}. We are integrating out the topics Φ. (Recall $\phi_k \sim \text{Dirichlet}(\eta_k)$.) This conditional likelihood is

$$p(\mathbf{x}|\mathbf{c}) = \prod_k f_k(\{x_j : z_{ji} = k\}).$$ \hspace{1cm} (6)
where

\[f_k(\{x_{ji} : z_{ji} = k\}) = \frac{\Gamma(V \eta) \prod_{v} \Gamma(n_{vk} + \eta)}{\Gamma(n_{k} + V \eta) \Gamma(V(\eta))} . \]

The size of the vocabulary is \(V \) and the number of words assigned to topic \(k \) is \(n_{vk} \). This completes the generative process for an HDP topic model.

3 SPLIT-MERGE MCMC FOR THE HDP

Given a collection of documents, the goal of posterior inference is to compute the conditional distribution of the latent structure, the assignment of documents to topics and the distributions over words associated with each topic. In [13], posterior inference is based on the CRF representation presented above. Their Gibbs sampler iteratively samples the table indices \(t \) and topic indices \(k \). Details are in [14].

We now develop split-merge MCMC for the HDP. Our motivation is that incremental Gibbs samplers can be slow to converge, as they only sample one variable at a time. Split-merge algorithms can consider larger moves in the state space and have the potential to converge more quickly. To construct the split-merge MCMC algorithm for the HDP, we first recall that, from Eq. 3 and 1, the top level of the HDP can be described as the corpus-level CRP with tables from all documents as observations. The idea behind our algorithm is to use split-merge MCMC algorithm for the DP mixtures [9] at this top-level.

To make the above concrete, we first review the traditional Gibbs sampling algorithm for the topic indices \(k \) and then present the split-merge MCMC algorithm. At the end of this section, we discuss when we only use split-merge operations on the top level of the HDP.

3.1 Gibbs sampling for topic indices \(k \)

Since all tables in the corpus are partitioned into topics according to the corpus-level CRP (see Eq. 3 and 4), we follow the standard procedure (Algorithm 3 in Neal’s paper [13]) to derive their Gibbs sampling updates. Let \(f_k^{-x_{j}}(x_{j}) \) denote the conditional density of \(x_{j} \) (all the words at table \(t \) in document \(j \)) given all words in topic \(k \), excluding \(x_{jt} \).

\[f_k^{-x_{j}}(x_{j}) = \frac{\Gamma(n_{k}^{-x_{j}} + V \eta) \prod_{v} \Gamma(n_{vk}^{-x_{j},v} + \eta)}{\Gamma(n_{k}^{-x_{j}} + n_{vk}^{x_{j},v} + \eta) \prod_{v} \Gamma(n_{vk}^{x_{j},v} + \eta)} , \tag{7} \]

where \(n_{vk}^{x_{j},v} \) is the number of word \(v \) with topic \(k \), excluding \(x_{ji} \). See the appendix for the relevant derivations, which is same as in [14].

Because of the exchangeability of the CRP, we can view the table \(k_{jt} \) as the last table. Thus, by combining Eq. 3 and 7 we obtain the Gibbs sampling algorithm for \(k_{jt} \) [13].

\[p(k_{jt} = k | t, k^{-j}, x) \propto \begin{cases} n_{k}^{-j} f_k^{-x_{j}}(x_{j}) & \text{if } k = 1, \ldots, K, \\ \gamma f_k^{-x_{j}}(x_{j}) & \text{if } k = k_{new}. \end{cases} \]

Note that changing \(k_{jt} \) changes the topic of all the words in \(x_{jt} \) together. However, as discussed in [14], assigning words to different tables with the same \(k \) is a prior clustering effect of a DP with \(n_{j,k} \) customers (and only happens in one document). Reassigning \(k_{jt} \) to other topics is unlikely.

3.2 A split-merge algorithm for topic indices \(k \)

The split-merge MCMC algorithm for DP mixture models [9] starts by randomly choosing two observations. If they are in the same component then a split is proposed, where all the observations in this component are assigned into two new components (and the old components is removed). If they are in two different components then a merge is proposed, where all the observations in the two components are merged into one new component (and the two old components are removed). Whether the proposal of split or merge is accepted or not is determined by the Metropolis-Hastings ratio.

Based on the discussion in section 3.2, the split-merge MCMC algorithm for DP mixture models can be used at the top level of the HDP by viewing the tables as the observations for the corpus-level CRP. We present our algorithm using the sequential allocation approach proposed in [5]. (This is easy to modify to use the intermediate scans used in [9].) Thus, the sketch of this algorithm is similar to the one presented in [5].

We describe the procedure when a split is proposed. Two tables have been selected and their assigned topics are the same—this is the selected topic. We then create two new topics with each containing one of the tables just selected. Finally, we consider all the other tables in the corpus assigned to the selected topic, and assign those tables into the two new topics. Following [5], this is done by running a “mini one-pass” Gibbs sampler over only the two new topics, and partitioning each table into one or other. We call the new state containing the two new topics the split state.

In more detail, let \(e \) be the current state and \(e_{split} \) be the split state. We use \((j,t)\) to indicate the table \(t \) in document \(j \). Then two selected tables are represented as \((j_{1},t_{1})\) and \((j_{2},t_{2})\). In state \(e \), the selected topic is \(k = k_{j_{1}t_{1}} = k_{j_{2}t_{2}} \). Further, let \(S_{e} \) be the set of tables whose topic is \(k \) excluding table \((j_{1},t_{1})\) and \((j_{2},t_{2})\).

\[S_{e} = \{(j,t) : (j,t) \neq (j_{1},t_{1}), (j,t) \neq (j_{2},t_{2}), k_{jt} = k \}. \]

In state \(e_{split} \), in order to replace topic \(k \), we create two new topics, \(k_{1} \) and \(k_{2} \), then assign \(k_{j_{1}t_{1}} = k_{1} \) and \(k_{j_{2}t_{2}} = k_{2} \) for the two initially selected tables. Let us now show how we use sequential allocation restricted Gibbs sampling (the “mini one-pass Gibbs sampler” we just mentioned) [5] to reach split state \(e_{split} \) from state \(e \).
Sequential allocation restricted Gibbs sampling. Define $S_1 = \{(j_1, t_1)\}$ and $S_2 = \{(j_2, t_2)\}$ and recall that $k_{j_1, t_1} = k_1$ and $k_{j_2, t_2} = k_2$. Let $m_{k_1} = |S_1|$ and $m_{k_2} = |S_2|$ be the number of tables in S_1 and S_2. We will use set S_1 or S_2 to receive the tables from S_c that will be assigned to k_1 or k_2 in the sequential restricted Gibbs sampling procedure. Let (j, t) be successive table indexes in a uniformly permuted S_c and sample k_{jt} according to the following,

$$p(k_{jt} = k_j | S_1, S_2) \propto m_{k_j} f_{k_j}^x_j (x_j), \ell = 1, 2.$$

This is a one-pass Gibbs sampling of k_{jt} but restricted over only topic k_1 and k_2—called sequential allocation restricted Gibbs sampling in [5]. We have

If $k = k_1$, then $S_1 \leftarrow S_1 \cup (j, t)$, $m_{k_1} \leftarrow m_{k_1} + 1$,

otherwise, $S_2 \leftarrow S_2 \cup (j, t)$, $m_{k_2} \leftarrow m_{k_2} + 1$

Repeat this until all tables in S_c are visited. The final S_1 and S_2 will contain all the tables that are assigned to k_1 and k_2 in state c_{split}. Let the realization of k_{jt} be $k_{jt}(r)$, then we can compute the transition probability from state c to split state c_{split} as

$$q(c \rightarrow c_{\text{split}}) = \prod_{(j, t) \in S} p(k_{jt} = k_{jt}(r) | S_1, S_2).$$

Note that we have abused notation slightly, since S_1 and S_2 are changing when we sample k_{jt}. The transition probability from split state c_{split} to state c is

$$q(c_{\text{split}} \rightarrow c) = 1.$$

This is because there is only one way to merge two topics k_1 and k_2 in state c_{split} into topic k in state c.

Now we decide whether to retain the new partition, with the split topics in place of the original topic, or whether to return to the partition before the split. This decision is sampled from the Metropolis-Hastings acceptance ratio. The probability of accepting the split is

$$\alpha = \frac{p(c_{\text{split}})}{p(c)} \frac{L(c_{\text{split}})}{L(c)} \frac{q(c_{\text{split}} \rightarrow c)}{q(c \rightarrow c_{\text{split}})}.$$

We obtain the prior ratio from Eq. [5]

$$\frac{p(c_{\text{split}})}{p(c)} = \gamma^2 (m_{k_1} - 1)! (m_{k_2} - 1)! (m - k)!$$

Define $L(c) = p(x | c)$ in Eq. [6]. The likelihood ratio is

$$\frac{L(c_{\text{split}})}{L(c)} = \frac{\prod_{(j, t) \in S} f_{k_1}(\{x_{ji} : z_{ji} = k_1\}) f_{k_2}(\{x_{ji} : z_{ji} = k_2\})}{f_k(\{x_{ji} : z_{ji} = k\})}.$$

The validity of the MCMC proposal can be verified by following [25]. The complete algorithm is described in Figure[2] which also contains the merge proposal, i.e., the case where the two initially selected tables are attached to different topics.

Discussion. There are two other possible ways to introduce split-merge operations in the HDP. First, we can split and merge within the document-level DP. This is of little interest because we care more about the words global topic assignments than their local table assignments. Second, we can split and merge by choosing two words and resample all the other words in the same topic(s). However, this will be inefficient. Two different words have zero similarity, and so two random picked words will hardly serve a good guidance and could have a very low acceptance ratio. (This is different from a DP mixture model applied to continuous data, where different data points can have different similarities/distances.) In contrast, tables can be seen as word vectors with many non-zero entries, which mitigates this issue.

4 EXPERIMENTS

We studied split-merge MCMC for the HDP topic model on synthetic and real data. To initialize the sampler, we use sequential prediction—we iteratively assign words to a table and a topic according to the predictive distribution given the previously seen data and the algorithm proceeds until all words are “added” into the model. This works well empirically and was used in [12] for DP mixture models. In addition, we use multiple random starts. Our C++ code is available as a general software tool for fitting HDP topic models with split-merge and traditional Gibbs algorithms at http://www.cs.princeton.edu/~chongw/software/hdp.tar.gz.

4.1 Synthetic Data

We use synthetic text data to give an understanding of how the algorithm works. We generated 100 documents, each with 50 words, from a model with 5 topics. There are 12 words in the vocabulary and each document uses at most 2 topics. The topic multinomial distributions over the words are shown in Figure[3]. In this model, topics 1 and 2 are very similar—they share 7 words (word 3 to 9) with the same highest probability. Topic 1 places high probability on word 1 but low probability on word 2; topic 2 is reversed. Others topics are less similar to each other—topics 3-5 share no words with 1 and 2 and have different distributions over the remaining words. Thus, it’s expected that topics 1 and 2 are difficult to distinguish; identifying the rest should be easier. Our goal is to demonstrate that without split-merge operations, it is difficult for the traditional Gibbs sampler to separate topics 1 and 2.

For the HDP topic models, we set the topic Dirichlet parameter $\eta = 0.5$, hyperparameters γ and α with Gamma priors Gamma(0.1, 1) to favor sparsity. (Without sampling γ and α, the results are similar.) For this experiment, we run one split-merge trial after each Gibbs sweep. We run the algorithms for 1000 iterations.

Figure[4] shows the results. In Figure[4](a), we compare the *modes* by plotting the difference of the best per-word
Assume the current state is ϵ.

1. Choose two distinct tables, (j_1, t_1) and (j_2, t_2), at random uniformly.

2. Split case: if $k_{jt_1} = k_{jt_2} = k$, then
 (a) Let S_ϵ be the set of tables whose topic is k excluding table (j_1, t_1) and (j_2, t_2) in state ϵ, that is $S_\epsilon = \{(j, t) : (j, t) \neq (j_1, t_1), (j, t) \neq (j_2, t_2), k_y = k\}$.
 (b) Assign $k_{jt_1} = k_1$ and $k_{jt_2} = k_2$. Randomly permute S_ϵ, then run sequential allocation restricted Gibbs algorithm to assign the tables in S_ϵ to k_1 or k_2 to obtain the split state ϵ_{split}. Calculate the product of the probability used as $q(\epsilon \rightarrow \epsilon_{\text{split}})$.
 (c) Calculate the acceptance ratio:
 $$\alpha' = \frac{p(\epsilon_{\text{split}})|L(\epsilon_{\text{split}})|q(\epsilon_{\text{split}} \rightarrow \epsilon)}{p(\epsilon)|L(\epsilon)|q(\epsilon \rightarrow \epsilon_{\text{split}})},$$
 where $q(\epsilon_{\text{split}} \rightarrow \epsilon) = 1$, since there is only one way to merge two topics from ϵ_{split} to ϵ.

3. Merge case: if $(k_{jt_1} = k_1) \neq (k_{jt_2} = k_2)$, then
 (a) Let S_ϵ be the set of tables whose topics are either k_1 or k_2 excluding table (j_1, t_1) and (j_2, t_2) in state ϵ, that is $S_\epsilon = \{(j, t) : (j, t) \neq (j_1, t_1), (j, t) \neq (j_2, t_2), k_y = k_1$ or $k_y = k_2\}$.
 (b) Randomly permute S_ϵ, then run sequential allocation restricted Gibbs algorithm to assign the tables in S_ϵ to k_1 or k_2 to reach the original split state ϵ. Calculate the product of the probability used as $q(\epsilon_{\text{merge}} \rightarrow \epsilon)$.
 (c) Assign $k_{jt_1} = k$ and $k_{jt_2} = k$ for $(j, t) \in S_\epsilon$ to obtain merge state ϵ_{merge}.
 (d) Calculate the acceptance ratio:
 $$\alpha' = \frac{p(\epsilon_{\text{merge}})|L(\epsilon_{\text{merge}})|q(\epsilon_{\text{merge}} \rightarrow \epsilon)}{p(\epsilon)|L(\epsilon)|q(\epsilon \rightarrow \epsilon_{\text{merge}})},$$
 where $q(\epsilon \rightarrow \epsilon_{\text{merge}}) = 1$, since there is only one way to merge two topics from ϵ to ϵ_{merge}.

4. Sample $u \sim \text{Unif}(0, 1)$, if $u < \alpha'$, accept the move; otherwise, reject it.

Fig. 2 The split-merge MCMC algorithm for the HDP.

Fig. 3 The “word” and “topic” axes indicate the word and topic indexes. The different sizes of the dots indicate the relative probability values of the words in that topic.

Log likelihood up to the same time (here time is the same as iteration), which is,
$$y_t = M_t, \text{Gibbs} + SM - M_t, \text{Gibbs},$$
where $M_t, \text{Gibbs} + SM$ and M_t, Gibbs indicate the modes found before time t, i.e., the best per-word log likelihoods for Gibbs sampling with split-merge and the pure Gibbs sampling up to time t. (This log likelihood is proportional in log space to the true posterior—higher log likelihood indicates a state with higher posterior probability.) We found that split-merge explores the space to a better mode.

In Figure 2(b), we compared the topic trace plot, which contains cumulative ratios of the words assigned to the most popular, two most popular, . . . , to all topics. (This was adapted from [9].) Ideally, for our problem, these will be 0.2, 0.4, 0.6, 0.8 and 1.0. In this experiment, the traditional Gibbs sampler gets trapped with 4 topics while our algorithm finds 5 topics after several iterations.

In Figure 2(c) and (d), we visualized the topics obtained by each algorithm. Both methods identify the three easy topics—topics 3, 4 and 5 in the data, and these correspond to topic 2, 3 and 4 in Figure 2(c) and topic 1, 2 and 5 in Figure 2(d). However, the traditional Gibbs sampling cannot identify the difference between topic 1 and 2 in the data—see topic 1 in Figure 2(c), which is a combination of the two true topics. In contrast, the split-merge algorithm distinguishes them—see topic 3 and 4 in Figure 2(d).

Split-merge algorithm introduces new Metropolis-Hastings moves and, thus, is computationally more expensive than the traditional Gibbs sampling. However, we only split or merge at the top-level DP, where a table is treated as an observation, and the number of tables is usually much smaller than the number of words. So, we expect the additional expense to be minimal. In the synthetic data, the difference was negligible.

Finally, in the experiments in [9] for DP mixtures, reverse split-merge moves (i.e. from state A to state B, then from state B to state A) are frequent, while we do not see this behavior here. We hypothesize that this is because large moves, like a split or merge, are only accepted when the HDP reaches a much better local mode and therefore the chance of making the reverse move is very small. Although running the Markov chain for a sufficient long time might
mitigate this issue, in practice we recommend running the split-merge operations in the burn-in phase. (This is also the strategy we use in the analysis on real data.)

4.2 Analysis of Text Corpora

We studied split/merge MCMC on three text corpora:

- \textit{ARXIV}: This is a collection of 2000 abstracts (randomly sampled) from online research abstracts\footnote{http://arxiv.org}. The vocabulary has 2441 unique terms and the entire corpus contains around 89K words.

- \textit{ML+IR}: This is a collection of 2080 conference abstracts downloaded from machine learning (ML) and informational retrieval (IR) conferences, including CIKM, ICML, KDD, NIPS, SIGIR and WWW from year 2005-2008\footnote{http://www.cs.princeton.edu/~chongw/data/6conf}. The vocabulary has 3237 unique terms and the corpus contains around 118K words.

- \textit{NIPS}: This is a collection of 1392 abstracts, a subset of the NIPS articles published between 1988-1998\footnote{http://www.cs.utoronto.ca/~sroweis/nips}. The vocabulary has 4368 unique terms and the entire corpus contains around 263K words.

HDP analysis is unsupervised, so there is no ground truth. Thus we compare algorithms by only examining the modes using the per-word log likelihood of the training set (80% entire data) and the per-word heldout log likelihood, for the testing set (20% entire data). We use hyperparameters γ and α with Gamma priors Gamma(1., 1.). We let $\eta = 0.1, 0.2, 0.5$. In general a smaller η leads to more topics, because the prior enforces that the topics are sparser. In addition, as we find
Second, for $\eta = 0.2$ and $\eta = 0.5$ in ML+IR, there are fewer topics (but not few enough so that they cannot be distinguished) than when $\eta = 0.1$ in the corpus—each topic contains more tables, and thus the chance of picking two informative tables that can serve a good guidance for the split-merge operation is higher. For NIPS, the reason it works for $\eta = 0.2$ is the same as ML+IR, for $\eta = 0.5$, the corpus might just need very few topics to explain itself and thus the topics obtained are easy to separate.

In summary, on real data, Gibbs+SM is at least as good as Gibbs sampling and sometimes helps speed convergence. On average, split-merge operations are accepted at around 3%. In general, the split-merge operations improve performance when sets of similar topics exist in the corpus.

5 CONCLUSIONS AND FUTURE WORK

We presented a split-merge MCMC algorithm for the HDP topic model. We showed on both synthetic and real data that split-merge MCMC algorithm is effective during the burn-in phase of HDP Gibbs sampling. Further, we gave intuitions for what properties of the data lead to improved performance from split-merge MCMC.

Recently, Gibbs samplers based on the distance dependent Chinese restaurant process (ddCRP) \[3\] have demonstrated improved convergence for DP mixture models. Applying these ideas to the HDP is worth exploring.

Acknowledgement

Chong Wang is supported by a Google PhD fellowship. David M. Blei is supported by ONR 175-6343, NSF CAREER 0745520, AFOSR 09NL202, the Alfred P. Sloan foundation, and a grant from Google.

References

1. Aldous, D.: Exchangeability and related topics. In: École d’été de probabilités de Saint-Flour, XIII—1983, pp. 1–198. Springer, Berlin (1985)
2. Antoniak, C.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics 2(6), 1152–1174 (1974)
3. Blei, D., Frazier, P.: Distance dependent Chinese restaurant processes. In: International Conference on Machine Learning (2010)
4. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)
5. Dahl, D.B.: An improved merge-split sampler for conjugate Dirichlet process mixture models. Tech. Rep. 1086, Department of Statistics, University of Wisconsin (2003)
6. Ferguson, T.: A Bayesian analysis of some nonparametric problems. The Annals of Statistics 1, 209–230 (1973)
7. Fox, E.B., Sudderth, E.B., Jordan, M.I., Willsky, A.S.: An HDP-HMM for systems with state persistence. In: Proceedings of the 25th international conference on Machine learning, ICML ’08, pp. 312–319 (2008)
8. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)
Fig. 6 Experimental results for the difference of the per-word log likelihood between Gibbs+SM and Gibbs. Horizontal lines indicate zeros. Results are averaged over 20 runs, variance is not shown, and time is in log-scale to allow better view. “ARXIV, 0.1” indicates the experiment on ARXIV with $\eta = 0.1$. Others are similarly defined.

Fig. 7 Difference of the per-word heldout likelihood on test set between Gibbs+SM and Gibbs. Horizontal lines indicate zeros. Settings are the same as those in Figure 6.
the likelihood is calculated by integrating out since table be similarly derived.

\[f = \text{a function,} \]

The likelihood for \(f \) is a Dirichlet distribution, \(\text{Dir}(\phi) \), where \(\phi \) is the prior density for \(f \).

\[f(\phi) = \text{Mult}(\phi) \]

Since \(\text{Dir}(\phi) \) is a Dirichlet distribution, \(f_{x}^{\phi}(xji) \),

\[f_{x}^{\phi}(xji) = \frac{n_{xji} + \eta}{n_{x} + V\eta}, \]

Note \(f_{x}^{\phi}(xji) \) and \(f_{x}(\{xji:zji=k\}) \) in the main text can be similarly derived.

The likelihood for \(tji = t \), when \(t = 1, \ldots, m_j \), \(f_{k}^{j}(xji) \), since table \(t \) is linked to the topics through \(kji \). For \(tji = t_{\text{new}}, \) the likelihood is calculated by integrating out \(G_{0} \).

\[p(xji|tji = t_{\text{new}}, t_{j}, k) = \]

\[\frac{\sum_{k=1}^{K} m_{k} f_{k}^{j}(xji) + \gamma f_{k}^{j}(xji)}{m_{j} + \gamma f_{k}^{j}(xji)}, \]

where \(f_{k}^{j}(xji) = \int f(xji|\phi)h(\phi)\text{d}\phi \) is the prior density for \(xji \). We have

\[p(tji = t_{j}, k) = \]

\[\begin{cases} n_{tji} f_{k}^{j}(xji), & \text{if } tji = 1, \ldots, m_j, \\ \alpha_{0} p(xji|tji = t_{\text{new}}, t_{j}, k), & \text{if } tji = t_{\text{new}}. \end{cases} \]