Chronic hepatitis B in pregnant women: Current trends and approaches

Maria Belopolskaya, Viktor Avrutin, Olga Kalinina, Alexander Dmitriev, Denis Gusev

ORCID number: Maria Belopolskaya 0000-0002-5107-8831; Viktor Avrutin 0000-0001-7931-8844; Olga Kalinina 0000-0003-1916-5705; Alexander Dmitriev 0000-0002-6214-9771; Denis Gusev 0000-0001-9202-3231.

Author contributions: Belopolskaya M: Conceptualization, Methodology, Investigation, Formal Analysis, Writing - original draft, Writing - review & editing. Avrutin V: Conceptualization, Formal Analysis, Writing - review & editing, Validation. Kalinina O: Methodology, Writing - review & editing. Dmitriev A and Gusev D: Writing - review & editing, Supervision.

Conflict-of-interest statement: Authors declare no conflict of interests for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/License

Abstract
Chronic hepatitis B (CHB) is a significant public health problem worldwide. The aim of the present review is to summarize the actual trends in the management of CHB in pregnant women. The prevalence of hepatitis B virus (HBV) infection in pregnant women is usually comparable to that in the general population in the corresponding geographic area. All women have to be screened for hepatitis B surface antigen (HBsAg) during pregnancy. Additional examinations of pregnant women with CHB may include maternal hepatitis B e antigen, HBV viral load, alanine aminotransferase level, and HBsAg level. The management of pregnancy depends on the phase of the HBV infection, which has to be determined before pregnancy. In women of childbearing age with CHB, antiviral therapy can pursue two main goals: Treatment of active CHB, and vertical transmission prevention. During pregnancy, tenofovir is the drug of choice in both cases. A combination of hepatitis B immunoglobulin and vaccine against hepatitis B should be administered within the first 12 h to all infants born to mothers with CHB. In such cases, there are no contraindications to breastfeeding.

Key Words: Chronic hepatitis B; Hepatitis B viral load; Pregnancy; Antiviral treatment;
Core Tip: All women have to be screened for hepatitis B surface antigen (HBsAg) during pregnancy. Additional examinations of pregnant women with chronic hepatitis B (CHB) may include maternal hepatitis B e antigen, hepatitis B virus (HBV) viral load, alanine aminotransferase level, and HBsAg level. The management of pregnancy depends on the phase of the HBV infection, which has to be determined before pregnancy. During pregnancy, tenofovir is the drug of choice both for active CHB treatment and vertical transmission prevention. A combination of hepatitis B immunoglobulin and vaccine against hepatitis B should be administered within the first 12 h to all infants born to mothers with CHB.

INTRODUCTION

Chronic hepatitis B (CHB) is a significant public health problem worldwide. According to the current estimation by the World Health Organization (WHO), in 2015 about 257 million people in the world were living with CHB[1,2]. The geographic distribution of CHB is highly heterogeneous. There are regions with high (more than 8%), medium (2%-8%) and low (less than 2%) levels of hepatitis B (HB) prevalence. The course of CHB varies from asymptomatic carriage of hepatitis B surface antigen (HBsAg) to severe, active variants with progression of fibrosis, formation of liver cirrhosis, and the development of hepatocellular carcinoma (HCC). Despite the successes achieved by the introduction of mass vaccination against hepatitis B, the vertical route of transmission remains an important factor. Every year, 4-5 million children in the world are infected from mothers with CHB[3]. In endemic regions, more than 50% of patients with CHB become infected at birth or in early childhood[4]. The problem of HBV mother-to-child transmission (MTCT) is important because patients infected in early childhood develop CHB in most cases, while the risk of CHB development in patients infected in adulthood is not higher than 20%. Without prophylaxis, MTCT rates vary significantly depending on the mother’s hepatitis B e antigen (HBeAg) status: the transmission rate for HBeAg-positive mothers is about 70%-90%, vs 10%-40% for HBeAg-negative mothers[5]. In 2016, the WHO set the goal of eliminating viral hepatitis as a major public health threat by 2030[6]. However, this goal cannot be achieved without solving the problem of vertical transmission of HBV. In this context, in order to reduce the HBV MTCT risk, it is important to apply different approaches to the management of pregnancy in women with CHB.

CURRENT LIMITATION ON SCREENING FOR HBSAG IN PREGNANT WOMEN

In most developed and developing countries, all pregnant women are screened for HBsAg. Examining pregnant women only from the so-called risk groups (intravenous drug use, promiscuous sex, work in sex industry, sexual contact with HBsAg carriers) was not enough, since such an examination leaves up to 50% of pregnant women with CHB undetected[7].

Particular attention should be given to women who are diagnosed with CHB for the first time during pregnancy. In these patients, acute hepatitis B has to be excluded. Additional examinations of pregnant women with CHB may differ depending on the region. Table 1 presents the recommendations of the main hepatological communities.
Table 1 Examination of pregnant women

	APASL 2016[8]	EASL 2017[9]	AASLD 2018[10]
All pregnant women	Pregnant female (preferably during the first trimester to vaccinate unprotected mothers) should be tested for HBV infection	Screening for HBsAg in the first trimester of pregnancy is strongly recommended	All pregnant women should be screened for HBV infection
Examination of HBsAg-positive women during pregnancy	Maternal HBeAg, HBV DNA status, and ALT level should be checked during pregnancy	ALT, HBV DNA level, and HBsAg level	ALT level, HBV DNA or imaging for HCC surveillance if indicated

APASL: Asia-Pacific Association Society for the Study of the Liver; EASL: European Association for the Study of the Liver; AASLD: American Association for the Study of Liver Diseases; HBV: Hepatitis B virus; HBsAg: Hepatitis B surface antigen; HBeAg: Hepatitis B e antigen; ALT: Alanine aminotransferase; HCC: Hepatocellular carcinoma.

Most recommendations agree that viral load determination is necessary to understand the advisability of antiviral treatment during pregnancy. Recommendations differ as to the timing of therapy initiation and timing of the examination. The viral load determination should be performed no later than week 30 of gestation.

Determination of the HBsAg level during pregnancy is currently prescribed only in the European clinical guidelines for the management of patients with CHB[9]. Meanwhile, available studies indicate a significant correlation between the level of HBsAg during pregnancy and the risk of vertical transmission[11-13]. During pregnancy, HBsAg level is a more stable parameter than viral load, and its measurement is cheaper. Therefore, it can be recommended as a predictor of the vertical transmission of HBV infection, especially in a resource-limited setting. In a pregnant woman with a low HBsAg level, HBV viral load testing is not necessary.

PREVALENCE OF HEPATITIS B IN PREGNANT WOMEN

The prevalence of HBV infection in pregnant women is usually comparable to that in the general population in the same geographic area. In China the prevalence of HBV infection among women of childbearing age is 2%-8%[14,15], while in the United States it is only 0.4%[16].

The prevalence of HBsAg positive patients among pregnant women in several countries is shown in Table 2.

At present, a high HBV prevalence among pregnant women persists in African countries, while the rate of HBsAg-positive pregnant women in Europe and America is low. Even in China, where the prevalence of HBV was very high in the past, a significant reduction in the rate of HBsAg-positive pregnant women is now observed.

COURSE OF CHB AND VERTICAL TRANSMISSION RISK

As agreed by most researchers, there are five phases of the natural course of CHB.

The first phase, called the phase of immune tolerance, usually occurs during perinatal infection and is characterized by a prolonged and low-symptom course, normal serum alanine aminotransferase (ALT) level and minimal changes in liver tissue. As shown in Table 3, patients in this phase of CHB are seropositive for HBeAg and have mostly a high viral load (10⁸-10⁹ IU/mL HBV DNA)[30,31]. In patients infected in adulthood, the duration of this phase is usually short[32].

The second phase, known as the immunoreactive phase, occurs in patients infected at birth or in early childhood. It starts after two or three decades and is characterized by occasionally increasing ALT values. The anti-HBV immune response results in a moderate (as compared to the first phase) decrease in HBV DNA level. The age of patients when this phase occurs depends on the HBV genotype and varies by geographic region. In Taiwan, 90% of HBeAg seroconversion occurs in patients under the age of 40 years, with genotype B seroconversion occurring earlier than with genotype C[30]. In the European region, no more than 30% of patients remain HBeAg-positive after the age of 40 years[30]. This is important, because the earlier pregnancy occurs, the higher the chances that the woman is in the first phase of CHB, with high viral replication, and, accordingly, a high risk of vertical transmission of HBV for the examination of pregnant women with CHB[8-10].
Table 2 Prevalence of hepatitis B surface antigen among pregnant women

Ref.	Country	Years	Number	HBsAg-positive (%)
Kirbak et al[17], 2017	Republic of South Sudan	2013-2014	280	11
Fouelifack et al[18], 2018	Cameroon	2016	360	9.4
Bittaye et al[19], 2019	Gambia	2015	426	9.2
Tanga et al[20], 2019	South Western Ethiopia	2017	253	7.9
Kishk et al[21], 2020	Egypt	2018-2019	600	5
Fessehaye et al[22], 2018	Eritrea	2016	5009	3.2
Sheng et al[23], 2018	China	2016	14314	3.1
Cetin et al[24], 2018	Turkey	2016	475	2.1
Mishra et al[25], 2017	India	2016	3567	1.09
Biondi et al[26], 2020	Canada	2012-2016	651745	0.63
Lembo et al[27], 2017	Italy	2010-2015	7558	0.5
Ruiz-Extremera et al[28], 2020	Spain	2015	21870	0.42
Harris et al[29], 2018	United States	2011-2014	870888	0.14

HBsAg: Hepatitis B surface antigen.

Table 3 Clinical features and vertical transmission risk in different phases of chronic hepatitis B

Phase of CHB	ALT	Fibrosis (Metavir score)	HBV DNA level	Markers of HBV-infection	Vertical transmission risk
Phase of immune tolerance	Normal	F0	Very high (10³-10⁹ IU/mL)	HBsAg+; HBeAg+; HBeAb-; HBcorAb+	Very high
Immunoreactive phase	Elevated	F1-F4	High (10⁶-10⁷ IU/mL)	HBsAg+; HBeAg+/-; HBeAb-/+; HBcorAb+	High
Inactive carriage of HbsAg	Normal	F0	Less than 2000 IU/mL	HBsAg+; HBeAg-; HBcorAb+	Low
Phase of HBeAg-negative CHB	Elevated	F1-F4	Middle (10⁶-10⁷ IU/mL)	HBsAg+; HBeAg-; HBcorAb+	Depends on HBV viral load
Occult CHB	Normal	F1-F4	+/-, HBV DNA in liver+	HBsAg-; HBeAg-; HBcorAb+/+	Low

CHB: Chronic hepatitis B; ALT: Alanine aminotransferase; HBV: Hepatitis B virus; HBsAg: Hepatitis B surface antigen; HBeAg: Hepatitis B e antigen; HBeAB: Hepatitis B e antibody; HBcorAb: Hepatitis B core antibody.

infection.

The third phase—the phase of inactive carriage of HBsAg—is characterized by the presence of HBsAg, the absence of HBeAg, and a low (less than 2000 IU/mL) or undetectable HBV viral load. The ALT level is normal in this phase, and no fibrosis progression is observed. Spontaneous HBsAg seroconversion is possible. This phase can continue for decades. The risk of vertical transmission at this stage is low.

The fourth phase, referred to as the HBeAg-negative CHB phase, is characterized by an undulating course, with periodic ALT increases. The HBV viral load can vary significantly, while HBsAg level is a more stable indicator[33]. HBeAg is absent during this phase. There is a gradual progression of fibrosis, and the risk of developing HCC increases. In this phase, the vertical transmission risk depends on HBV viral load.

The fifth phase, called the HBsAg-negative phase or "occult" CHB, is characterized by the disappearance of HBsAg, although the virus continues to replicate in the liver. Clinical symptoms are usually not pronounced, the ALT level remains normal. There is a possibility of CHB reactivation, especially due to immunosuppression, for example a physiological immunosuppression during pregnancy. A few cases of CHB reactivation during pregnancy are reported[34,35]. The vertical transmission risk in
such situations is low.

Management of pregnancy depends on the phase of HBV-infection. Unfortunately, women frequently only learn about their CHB diagnosis during pregnancy. Thus, it is advisable to examine all women for markers of viral hepatitis before pregnancy. During pregnancy, there are limitations for reliably determining the stage of CHB, since several indicators change significantly from the beginning of pregnancy. The level of alpha-fetoprotein increases as early as in the first weeks of pregnancy. Some pathological conditions (toxosis of the first half of pregnancy, excessive vomiting of pregnant women, etc.) can lead to significant changes in cytolytic indicators. In such cases, it is sometimes difficult to determine whether an increase in ALT is caused by these conditions or by CHB activity. Some standard examinations are unreliable during pregnancy. For example, a significant change in circulating blood volume during pregnancy can lead to inaccurate data on liver fibrosis obtained using transient elastography. For this reason, it is preferable to determine the stage of CHB before pregnancy.

Typically, women of childbearing age do not have significant liver fibrosis and cirrhosis. However, due to the increasing age of primiparous women and to the fact that before mass vaccination of newborns against hepatitis B was introduced, one of the main routes of transmission was the vertical route, CHB with advanced fibrosis is not unique. Pregnancy at the stage of liver cirrhosis is also associated with an increased risks of complications for the mother[36].

EFFECT OF PREGNANCY ON THE COURSE OF CHB

In most cases, no exacerbation of CHB occurs during pregnancy, and the cytolytic activity indicators are usually normalized. Nevertheless, a few cases of CHB exacerbation during pregnancy, including development of fulminant liver failure[37,38]. The level of HBV viral load during pregnancy may vary. Cases of CHB reactivation during pregnancy have been known. In one study, in mothers without detectable HBV DNA in the first trimester, HBV DNA was detected in 19.6% of cases in the second trimester and in 30.4% of cases in the third trimester[39]. In another study, the viral load in women with CHB increased during pregnancy and decreased after childbirth[34]. In addition, some studies describe exacerbation of hepatitis in the first months after childbirth[34,40,41]. The majority of women, the ALT level decreases during pregnancy, but after childbirth there is a significant increase in the cytolytic activity. For example, an increase in ALT level of three times or more was observed in 45% of women within 6 mo after childbirth[34]. Cases of HBeAg seroconversion during pregnancy have also been described in 12.5%-17% of patients[40,41].

Clinical manifestations of CHB in pregnant women are characterized by the predominance of asthenic and dyspeptic syndromes (63%). Hemorrhagic syndrome, such as bleeding gums, was observed in 15% of pregnant women, and hepatomegaly occurred in 10% of cases[42].

PREGNANCY OUTCOMES IN HBV INFECTED WOMEN

The effect of chronic maternal HBV infection on pregnancy outcome has not been well studied. Published works on this topic contradict each other. Some studies show that there is no association between pregnancy outcomes and maternal CHB[43]. Other studies have shown that chronic HBV infection does not result in negative perinatal outcomes, except for lower Apgar scores in newborns[44,45]. However, some studies indicate a high rate of diseases such as fetal distress syndrome, preterm labor and meconium peritonitis among HBV infected women and their newborns[41,46]. A large cohort study carried out in China showed that HBsAg positive pregnant women had a higher risk of gestational diabetes mellitus, postpartum hemorrhage, and intrahepatic cholestasis[44]. A recent study showed a significant correlation between HBV viral load and blood glucose level (fasting blood glucose, 2-h postprandial blood glucose and hemoglobin A1c) [47]. No statistical associations were found between HBsAg positivity and pre-eclampsia, as well as between HBsAg positivity and placenta previa. HBsAg positivity during pregnancy was associated with a higher risk of multiple adverse maternal outcomes.

In a large case-control study in China[48], it was shown that maternal HBsAg carriage was associated with several adverse pregnancy outcomes. In particular, it was correlated with an increased risk of pregnancy-induced hypertension, fetal distress,
cesarean delivery and macrosomia. This study also demonstrated a statistically significant association between high maternal viral load in the second trimester and a high risk of preterm birth. Other previous studies have also reported that maternal HBV infection was associated with an increased risk of preterm birth\cite{49,50}, although there are also studies showing the opposite results\cite{51,52}.

Some studies indicate a more frequent development of bleeding during childbirth in women with CHB\cite{53}. It was also reported that women with CHB are less likely to have hypertension and pre-eclampsia during pregnancy\cite{51}.

CHB THERAPY DURING PREGNANCY

At present, the therapy of CHB cannot yet achieve complete HBV elimination in patients. Therefore, depending on the status of the patient, the goals of CHB therapy may be the following: (1) Suppression of virus replication; (2) Reduction of the inflammatory process in the liver; (3) Reverse the development of fibrosis; (4) Prevention of cirrhosis and HCC development; and (5) Reduction of the HBV vertical transmission risk.

When choosing a therapy, it is necessary to take into account the safety and effectiveness of antiviral drugs, as well as the possibility of drug resistance developing. In women of childbearing age with CHB, antiviral therapy can pursue two main goals: the treatment of women with active CHB and the prevention of vertical transmission (see Table 4). At present, the necessity to treat inactive HBsAg carriers\cite{54} is being discussed, but currently it is recommended only by the Asia-Pacific Association for the Study of the Liver (APASL)\cite{8}, while the European Association for the Study of the Liver (EASL)\cite{9} and American Association for the Study of Liver Diseases (AASLD)\cite{10} societies refrain from such recommendations.

A large trial\cite{55} has reported reduced HBV transmission and HBsAg-positivity in infants born to telbivudine or lamivudine treated HBsAg-positive mothers. A systematic review\cite{56} has shown that antiviral therapy of pregnant women with nucleoside analogues (NAs), such as lamivudine, telbivudine or tenofovir, significantly decreases maternal HBV viral load. During pregnancy, tenofovir is the drug of choice, due to its profile of antiviral activity and a low risk of developing resistance. Tenofovir in pregnancy is well tolerated and reduces viral load prior to parturition\cite{57}.

NA prophylaxis is also useful in HBeAg-negative women with a high HBV DNA level but normal ALT level\cite{11,55}.

The administration of NAs at 28-30 wk of gestation leads to a rapid decrease in the viral load by the time of delivery\cite{38}, and, as a consequence, to a significant reduction in vertical transmission risk. However, if the drug intake is discontinued, the viral load quickly returns to its original level. It is reported\cite{58} that a prescription of telbivudine in the third trimester to women with a high viral load leads to an HBV DNA decrease up to an undetectable level at the time of delivery in 33% of patients. In the control group, no such decrease was observed. In the same study, it was shown that there were no cases of vertical transmission in the group of women who received telbivudine in the third trimester, while in the control group, 8% of children 7 mo after delivery were HBsAg-positive. Another large prospective study of 450 HBeAg-positive women with high viral load also showed no vertical transmission in women receiving telbivudine, while in the control group HBsAg was detected in 14.7% of newborns 6 mo after birth\cite{59}.

If antiviral therapy was administered in order to prevent MTCT, it is usually discontinued after delivery. However, there is no common opinion how soon after delivery this can be done. As shown in Table 5, according to the AASLD recommendations, the drug can be discontinued soon after delivery; according to EASL — at delivery or within the first 3 mo; while APASL recommends continuing drug intake for 4-12 wk.

HBV PROPHYLAXIS IN NEWBORNS

HBV vaccination reduces the vertical transmission risk from 90% to 21% in HBeAg-positive women and from 30% to 2.6% in HBeAg-negative women\cite{60}. With the addition of hepatitis B immunoglobulin (HBIG), the risk of MTCT is decreased to 6% in HBeAg-positive women and to 1% in HBeAg-negative women\cite{60}. This prophylaxis has to be administered within 12 h after birth (see Table 6).
For the Study of Liver; HBIG: Hepatitis B immunoglobulin; HBsAg: Hepatitis B surface antigen; HBV: Hepatitis B virus.

APASL: Asia-Pacific Association Society for the Study of the Liver; EASL: European Association for the Study of the Liver; AASLD: American Association for the Study of Liver Diseases; NA: Nucleoside analogues; ALT: Alanine aminotransferase.

To prevent vertical transmission

To prevent vertical transmission

Table 5 Cessation of nucleoside analogues treatment after delivery

APASL 2016[8]	EASL 2017[9]	AASLD 2018[10]
Cessation of NA therapy (at delivery or 4-12 wk after delivery) is recommended in females without ALT flares and without pre-existing advanced liver fibrosis/cirrhosis. Continuation of NA treatment after delivery may be necessary according to maternal liver disease status	If NA therapy is given as prophylaxis, *i.e.*, only for the prevention of perinatal transmission, its duration is not well defined (stopping at delivery or within the first 3 mo after delivery)	HBV-infected pregnant women who are not on antiviral therapy as well as those who stop antiviral at or early after delivery should be monitored closely for up to 6 mo after delivery for hepatitis flares and seroconversion. Long-term follow-up should be continued to assess need for future therapy

APASL: Asia-Pacific Association Society for the Study of the Liver; EASL: European Association for the Study of the Liver; AASLD: American Association for the Study of Liver Diseases; NA: Nucleoside analogues; ALT: Alanine aminotransferase.

Table 6 Hepatitis B virus prophylaxis in newborns

APASL 2016[8]	EASL 2017[9]	AASLD 2018[10]
HBIG and hepatitis B vaccine can be given to newborns from HBsAg-positive mothers immediately after delivery	The combination of HBIG and vaccination is administered within 12 h of birth	HBIG and HBV vaccine should be administered to the newborn < 12 h after delivery

APASL: Asia-Pacific Association Society for the Study of the Liver; EASL: European Association for the Study of the Liver; AASLD: American Association for the Study of Liver Diseases; HBIG: Hepatitis B immunoglobulin; HBsAg: Hepatitis B surface antigen; HBV: Hepatitis B virus.

The 3-dose vaccine against hepatitis B produces a protective antibody response (anti-HBs ≥ 10 mIU/mL) in approximately 95% of healthy infants[61].

BREASTFEEDING

It is known that in many women infected by HBV, HBsAg can be detected in the breast milk[62]. Moreover, there is evidence that HBV DNA can also be found in breast milk and colostrum[63]. As a result, there are frequent concerns that breastfeeding may facilitate MTCT, although the studies available so far have not confirmed this. No statistically significant differences between breastfed and artificially fed perinatally infected children were detected, and provided a timely vaccination[64-66]. A recent study showed that the frequency of vertical transmission in mothers with similar HBV DNA level is independent of the type of feeding[67]. Thus, HBV infection is not currently considered to be a contraindication to breastfeeding infants receiving HBIG.
Table 7 Breastfeeding of newborns

APASL 2016[8]	EASL 2017[9]	AASLD 2018[10]
Breastfeeding is not recommended while the woman is receiving antiviral therapy	Breastfeeding is not contraindicated in women not receiving antiviral therapy and during treatment with tenofovir	Breastfeeding is not prohibited for women with or without antiviral therapy

Breastfeeding is not recommended while the woman is receiving antiviral therapy. Breastfeeding is not contraindicated in women not receiving antiviral therapy and during treatment with tenofovir. Breastfeeding is not prohibited for women with or without antiviral therapy.

APASL: Asia-Pacific Association Society for the Study of the Liver; EASL: European Association for the Study of the Liver; AASLD: American Association for the Study of Liver Diseases.

CONCLUSION

Despite the continuously decreasing prevalence of CHB achieved after the introduction of vaccination against hepatitis B, this disease remains a significant public health problem worldwide. In the present study, we summarized the major trends in the management of CHB in pregnant women and provided recommendations for clinical practice necessary to achieve the elimination of hepatitis B as a public health threat, as proposed by the WHO. The most important of these recommendations are: (1) All women have to be screened for HBsAg during pregnancy. Additional examinations of pregnant women with CHB may include maternal HBeAg, HBV viral load, ALT level, and HBsAg level; (2) The management of pregnancy depends on the phase of the HBV infection, which has to be determined before pregnancy; (3) In women of childbearing age with CHB, antiviral therapy can pursue two main goals: treatment of active CHB, and vertical transmission prevention. During pregnancy, tenofovir is the drug of choice in both cases; and (4) A combination of HBIG and vaccine against hepatitis B should be administered within the first 12 h to all infants born to mothers with CHB. In such cases, there are no contraindications to breastfeeding.

REFERENCES

1 World Health Organization. Global Hepatitis Report 2017. [cited 15 April 2021]. In: World Health Organization [Internet]. Available from: https://www.who.int/hepatitis/publications/global-hepatitis-report2017/en
2 Aslam A, Campoverde Reyes KJ, Malladi VR, Ishtiaq R, Lau DTY. Management of chronic hepatitis B during pregnancy. *Gastroenterol Rep (Oxf)* 2018; 6: 257-262 [PMID: 30430013 DOI: 10.1093/gastro/goy025]
3 Thio CL, Guo N, Xie C, Nelson KE, Ehrhardt S. Global elimination of mother-to-child transmission of hepatitis B: revisiting the current strategy. *Lancet Infect Dis* 2015; 15: 981-985 [PMID: 26145195 DOI: 10.1016/S1473-3099(15)00158-9]
4 Alter MJ. Epidemiology of hepatitis B in Europe and worldwide. *J Hepatol* 2003; 39 Suppl 1: S64-S69 [PMID: 14708680 DOI: 10.1016/s0168-8278(03)00141-7]
5 Tran TT. Hepatitis B in Pregnancy. *Clin Infect Dis* 2016; 62 Suppl 4: S314-S317 [PMID: 27190321 DOI: 10.1093/cid/ciw092]
6 World Health Organization. Global health sector strategy on viral hepatitis 2016–2021. [cited 15 April 2021]. In: World Health Organization [Internet]. Available from: https://apps.who.int/iris/bitstream/handle/10665/246177/WHO-HIV-2016.06-eng.pdf?sequence=1
7 Jonas MM. Hepatitis B and pregnancy: an underestimated issue. *Liver Int* 2009; 29 Suppl 1: 133-139 [PMID: 19207797 DOI: 10.1111/j.1478-3231.2008.01933.x]
8 Sarin SK, Kumar M, Lau GK, Abbas Z, Chan HL, Chen CJ, Chen DS, Chen HL, Chen PI, Chien RN, Dokmeci AK, Gane E, Hou JL, Jafri W, Jia J, Kim JH, Lai CL, Lee HC, Lim SG, Liu CJ, Locarnini S, Al Mahtab M, Mohamed R, Omata M, Park J, Piratvisuth T, Sharma BC, Sollano J, Wang FS, Wei L, Yuen MF, Zheng SS, Kao JH. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. *Hepatol Int* 2016; 10: 1-98 [PMID: 26563120 DOI: 10.1007/s12072-015-9675-4]
9 European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. *J Hepatol* 2017; 67: 370-398 [PMID: 28427875 DOI: 10.1016/j.jhep.2017.03.021]
10 Terrault NA, Lok ASF, McMahon BJ, Chang KM, Hwang JP, Jonas MM, Brown RS Jr, Bzowej NH, Wong JB. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018
hepatitis B guidance. *Hepatology* 2018; 67: 1560-1599 [PMID: 29405329 DOI: 10.1002/hep.29800]

11 **Sun KX**, Li J, Zhu FC, Liu JX, Li RC, Zhai XJ, Li YP, Chang ZJ, Nie JI, Zhuang H. A predictive value of quantitative HBsAg for serum HBV DNA level among HBsAg-positive pregnant women. *Vaccine* 2012; 30: 5335-5340 [PMID: 22749833 DOI: 10.1016/j.vaccine.2012.06.036]

12 **Wen WH**, Huang CW, Chie WC, Yeung CY, Zhao LL, Lin WT, Wu JF, Ni YH, Hsu HY, Chang MH, Lin LH, Chen HL. Quantitative maternal hepatitis B surface antigen predicts maternal transmitted hepatitis B virus infection. *Hepatology* 2016; 64: 1451-1461 [PMID: 27044007 DOI: 10.1002/hep.28589]

13 **Belopolskaya M**, Avrutin V, Firsov S, Yakovlev A. HBsAg level and hepatitis B viral load correlation with focus on pregnancy. *Ann Gastroenterol* 2015; 28: 379-384 [PMID: 26127004]

14 **Huang Y**, Li L, Sun X, Lu M, Liu H, Tang G, Wang D, Hulin YJ. Screening of pregnant women for hepatitis B virus surface antigen (HBsAg) and subsequent management, Qiongdongnan prefecture, Guizhou, China, 2010. *Vaccine* 2013; 31 Suppl 9: J62-J65 [PMID: 24331022 DOI: 10.1016/j.vaccine.2013.05.103]

15 **Lao TT**, Sahota DS, Law LW, Cheng YK, Leung TY. Age-specific prevalence of hepatitis B virus infection in young pregnant women, Hong Kong Special Administrative Region of China. *Bull World Health Organ* 2014; 92: 782-789 [PMID: 25377339 DOI: 10.2471/BLT.13.134313]

16 **Sorrell MF**, Belongia EA, Costa J, Gareaen IF, Grem JL, Inadomi JM, Kern ER, McHugh JA, Petersen GM, Reinf MF, Strader DB, Trotter HT. National Institutes of Health consensus development conference statement: management of hepatitis B. *Hepatology* 2009; 49: S4-S12 [PMID: 19399804 DOI: 10.1002/hep.22946]

17 **Kirbak ALS**, Ng'ang'a Z, Omolo J, Idris H, Usman A, Mbabazi WB. Sero-prevalence for Hepatitis B virus among pregnant women attending antenatal clinic in Juba Teaching Hospital, Republic of South Sudan. *Pan Afr Med J* 2017; 26: 72 [PMID: 28451049 DOI: 10.1160/panmj.2017.26.72.114110]

18 **Fouelifack FY**, Foudjio JH, Fouogue JT, Fouelifa LD. Seroprevalences and Correlates of Hepatitis B and C Among Cameroon Pregnant Women. *Clin Med Insights Reprod Health* 2018; 12: 1179558118770671 [PMID: 29692639 DOI: 10.1177/1179558118770671]

19 **Bittaye M**, Idoko P, Ekele BA, Obied SA, Nyan O. Hepatitis B virus sero-prevalence amongst pregnant women in the Gambia. *BMJ Infect Dis 2019*; 19: 259 [PMID: 30874397 DOI: 10.1186/s12879-019-3883-z]

20 **Tanga AT**, Teshome MA, Hiko D, Fikru C, Jilo GK. Sero-prevalence of hepatitis B virus and associated factors among pregnant women in Gambella hospital, South Western Ethiopia: facility based cross-sectional study. *BMJ Infect Dis 2019*; 19: 602 [PMID: 10.1186/s12879-019-4220-z]

21 **Kishk R**, Mandour M, Elprince M, Salem A, Nemr N, Eida M, Ragheb M. Pattern and interpretation of hepatitis B virus markers among pregnant women in North East Egypt. *Braz J Microbiol* 2020; 51: 593-600 [PMID: 31670708 DOI: 10.1016/j.bjm.2020.01.047]

22 **Fessahaye N**, Berhane A, Ahmed H, Mohamed S, Tecele F, Gikanjo J, Odari E. Prevalence of Hepatitis B Virus Infection and Associated Seromarkers among Pregnant Women in Eritrea. *J Hum Viral Retrorvirad 2018*; 6: 00191

23 **Sheng QJ**, Wang SJ, Wu YY, Dou XG, Ding Y. Hepatitis B virus serosurvey and awareness of mother-to-child transmission among pregnant women in Shenyang, China: An observational study. *Medicine (Baltimore)* 2018; 97: e10931 [PMID: 29851831 DOI: 10.1097/MD.0000000000010931]

24 **Cetin S**, Cetin M, Turhan E, Dolapcioglu K. Seroprevalence of hepatitis B surface antigen and associated risk factors among pregnant women. *J Infect Dev Ctries* 2018; 12: 904-909 [PMID: 32004160 DOI: 10.3855/jidc.10018]

25 **Mishra S**, Purandare P, Thakur R, Agrawal S, Alwani M. Study on prevalence of hepatitis B in pregnant women and its effect on maternal and fetal outcome at tertiary care centre. *IJRCCOG 2017*; 6: 2238-2240 [DOI: 10.18203/2320-1770.ijrcog20172069]

26 **Biondi MJ**, Marchand-Austin A, Cronin K, Nanwa N, Ravirajan V, Mandel E, Gounoue LW, Mazzulli T, Shah H, Capraru C, Janssen LHA, Sander B, Feld JJ. Prenatal hepatitis B screening, and hepatitis B burden among children, in Ontario: a descriptive study. *CMAJ 2020*; 192: E1299-E1305 [PMID: 33106301 DOI: 10.1503/cmaj.2012390]

27 **Lembo T**, Saffioti F, Chiofalo B, Granese R, Filomia R, Grasso R, Triolo O, Raimondo G. Low prevalence of hepatitis B and hepatitis C virus serum markers in a cohort of pregnant women from Southern Italy. *Dig Liver Dis 2017*; 49: 1368-1372 [PMID: 28818677 DOI: 10.1016/j.dld.2017.07.012]

28 **Ruíz-Estremera Á**, Díaz-Alcázar MDM, Muñoz-Gámez JA, Cabrera-Lafuente M, Martín E, Arias-Llorente RP, Carretero P, Gallo-Vallejo JL, Romero-Narbona F, Salmerón-Ruiz MA, Alonso-Díaz C, Maese-Heredia R, Cerrillos L, Fernández-Alonso AM, Camarena C, Aguayo J, Sánchez-Forte M, Rodríguez-Maresca M, Pérez-Rivilla A, Quiles-Pérez R, Muñoz de Rueda P, Expósito-Ruiz M, García F, Salmerón J. Seroprevalence and epidemiology of hepatitis B and C viruses in pregnant women in Spain. Risk factors for vertical transmission. *PLoS One 2020*; 15: e0233528 [PMID: 32437468 DOI: 10.1371/journal.pone.0233528]

29 **Harris AM**, Isenhour C, Schillie S, Vellozzi C. Hepatitis B Virus Testing and Care among Pregnant Women Using Commercial Claims Data, United States, 2011-2014. *Infect Dis Obstet Gynecol* 2018; 2018: 4107329 [PMID: 29805248 DOI: 10.1155/2018/4107329]

30 **Ott JJ**, Stevens GA, Wiersma ST. The risk of perinatal hepatitis B virus transmission: hepatitis B e antigen (HBeAg) prevalence estimates for all world regions. *BMJ Infect Dis 2012*; 12: 131 [PMID: 22947160]
Belopolskaya M et al. Chronic hepatitis B in pregnant women

22682147 DOI: 10.1186/1471-2334-12-131

31 Liaw YF, Brunetto MR, Hadziyannis S. The natural history of chronic HBV infection and geographical differences. *Antivir Ther* 2010; **15** Suppl 3: 25-33 [PMID: 21041901 DOI: 10.3855/imp162]

32 Lao TT. Hepatitis B - chronic carrier status and pregnancy outcomes: An obstetric perspective. *Best Pract Res Clin Obstet Gynaecol* 2020; **68**: 66-77 [PMID: 32312688 DOI: 10.1016/j.bpbgy.2020.03.006]

33 Belopolskaya MA, Volokobinskaya TV, Firsov SL, Yakovlev AA. Using the quantitative determination of HBsAg to predict the course of chronic hepatitis B in women during pregnancy and after childbirth. *J Infectol* 2013; **5**: 50-54

34 ter Borg MJ, Leemans WF, de Man RA, Janssen HL. Exacerbation of chronic hepatitis B infection after delivery. *J Viral Hepat* 2008; **15**: 37-41 [PMID: 18088243 DOI: 10.1111/j.1365-2893.2007.00894.x]

35 Giles M, Visvanathan K, Lewin S, Bowden S, Locarnini S, Spelman T, Sadasuesz J. Clinical and virological predictors of hepatic flares in pregnant women with chronic hepatitis B. *Gut* 2015; **64**: 1810-1815 [PMID: 25431458 DOI: 10.1136/gutjn-2014-308211]

36 Shaheen AA, Myers RP. The outcomes of pregnancy in patients with cirrhosis: a population-based study. *Liver Int* 2010; **30**: 275-283 [PMID: 19874491 DOI: 10.1111/j.1477-3231.2009.02153.x]

37 Liu Y, Hussain M, Wong S, Fung SK, Yim HJ, Lok AS. A genotype-independent real-time PCR assay for quantification of hepatitis B virus DNA. *J Clin Microbiol* 2007; **45**: 553-558 [PMID: 17182753 DOI: 10.1128/JCM.00709-06]

38 Mahlat MA, Rahman S, Khan M, Maman AA, Afroz E. Etiology of fulminant hepatic failure: experience from a tertiary hospital in Bangladesh. *Hepatobiliary Pancreat Dis Int* 2008; **7**: 161-164 [PMID: 18397851]

39 Lao TT, Leung TY, Chan HL, Wong VW. Effect of pregnancy on the activity and infectivity of hepatitis B virus in women with chronic hepatitis B infection. *Hong Kong Med J* 2015; **21** Suppl 7: S4-S7 [PMID: 26698264]

40 Lin HH, Wu WY, Kao JH, Chen DS. Hepatitis B post-partum e antigen clearance in hepatitis B carrier mothers: Correlation with viral characteristics. *J Gastroenterol Hepatol* 2006; **21**: 605-609 [PMID: 16638107 DOI: 10.1111/j.1440-1446.2006.04198.x]

41 Nguyen G, Garcia RT, Nguyen N, Trinh H, Keeffe EB, Nguyen MH. Clinical course of hepatitis B virus infection during pregnancy. *Aliment Pharmacol Ther* 2009; **29**: 755-764 [PMID: 19183158 DOI: 10.1111/j.1365-2036.2009.03932.x]

42 Fedoseeva LR, Aleksseeva MN, Imeneva VI, Samsonov VK, Ivanova E. D. Clinical features of viral hepatitis in pregnant women in the Republic of Sakha (Yakutia). *Fundamental Res* 2004; **2**: 101-102

43 Connell LE, Salihi HM, Salemi JL, August EM, Wedeselashe H, Mbah AK. Maternal hepatitis B and hepatitis C carrier status and perinatal outcomes. *Liver Int* 2011; **31**: 1163-1170 [PMID: 21745298 DOI: 10.1111/j.1478-3231.2011.02556.x]

44 Lao TT, Chan BC, Leung WC, Ho LF, Tse KY. Maternal hepatitis B infection and gestational diabetes mellitus. *J Hepatol* 2007; **47**: 46-50 [PMID: 17434231 DOI: 10.1016/j.jhep.2007.02.014]

45 Suen SS, Lao TT, Sahota DS, Lau TK, Leung TY. Implications of the relationship between maternal age and parity with hepatitis B carrier status in a high endemicity area. *J Viral Hepat* 2010; **17**: 372-378 [PMID: 19780465 DOI: 10.1111/j.1365-2893.2009.01195.x]

46 Pothoff A, Rifai K, Wedemeyer H, Deterding K, Manns M, Strassburg C. Successful treatment of fulminant hepatitis B during pregnancy. *Z Gastroenterol* 2009; **47**: 667-670 [PMID: 19606409 DOI: 10.1055/s-0028-1109148]

47 Wu D. Correlation of viral load of Hepatitis B with the gestation period and the development of diabetes mellitus. *Saudi J Biol Sci* 2019; **26**: 2022-2025 [PMID: 31889788 DOI: 10.1016/j.sjbs.2019.08.009]

48 Wan Z, Zhou A, Zhu H, Lin X, Hu D, Peng S, Zhang B, Du Y. Maternal Hepatitis B Virus Infection and Pregnancy Outcomes: A Hospital-based Case-control Study in Wuhan, China. *J Clin Gastroenterol* 2018; **52**: 73-78 [PMID: 28723858 DOI: 10.1097/MCG.0000000000000842]

49 Liu J, Zhang S, Liu M, Wang Q, Shen H, Zhang Y. Maternal pre-pregnancy infection with hepatitis B virus and the risk of preterm birth: a population-based cohort study. *Lancet Glob Health* 2017; **5**: e624-e632 [PMID: 28495266 DOI: 10.1016/S2214-109X(17)30142-0]

50 Huang QT, Zhong M. Maternal hepatitis B virus infection and risk of preterm birth in China. *Lancet Glob Health* 2017; **5**: e563-e564 [PMID: 28495254 DOI: 10.1016/S2214-109X(17)30157-5]

51 Lao TT, Sahota DS, Cheng YK, Law LW, Leung TY. Maternal hepatitis B surface antigen status and incidence of pre-eclampsia. *J Viral Hepat* 2013; **20**: 343-349 [PMID: 23565167 DOI: 10.1111/jvhe.12037]

52 Chen J, Zhang S, Zhou YH, Xu B, Hu Y. Minimal adverse influence of maternal hepatitis B carrier status on perinatal outcomes and child's growth. *J Matern Fetal Neonatal Med* 2015; **28**: 2192-2196 [PMID: 25354287 DOI: 10.3109/14767058.2014.981805]

53 Tse KY, Ho LF, Lao T. The impact of maternal HBsAg carrier status on pregnancy outcomes: a case-control study. *J Hepatol* 2005; **43**: 771-775 [PMID: 16139923 DOI: 10.1016/j.jhep.2005.05.023]

54 Li MH, Xie Y, Zhang L, Lu Y, Shen G, Wu SL, Chang M, Mu CQ, Hu LP, Hua WH, Song SJ, Zhang SF, Cheng J, Xu DZ. Hepatitis B surface antigen clearance in inactive hepatitis B surface antigen carriers treated with peginterferon alfa-2a. *World J Hepatol* 2016; **8**: 637-643 [PMID: 27239256 DOI: 10.4245/wjh.v8.i15.637]

https://www.wjgnet.com
Belopolskaya M et al. Chronic hepatitis B in pregnant women

Zhang H, Pan CQ, Pang Q, Tian R, Yan M, Liu X. Telbivudine or lamivudine use in late pregnancy safely reduces perinatal transmission of hepatitis B virus in real-life practice. *Hepatology* 2014; 60: 468-476 [PMID: 25187919 DOI: 10.1002/hep.27034]

Brown RS Jr, McMahon BJ, Lok AS, Wong JB, Ahmed AT, Mouchli MA, Wang Z, Prokop LJ, Mural MH, Mohammed K. Antiviral therapy in chronic hepatitis B viral infection during pregnancy: A systematic review and meta-analysis. *Hepatology* 2016; 63: 319-333 [PMID: 26565396 DOI: 10.1002/hep.28302]

Samadi Kochaksaraei G, Castillo E, Osman M, Simmonds K, Scott AN, Oshiomogho JI, Lee SS, Myers RP, Martin SR, Coffin CS. Clinical course of 161 untreated and tenofovir-treated chronic hepatitis B pregnant patients in a low hepatitis B virus endemic region. *J Viral Hepat* 2016; 23: 15-22 [PMID: 26192022 DOI: 10.1111/jvh.12436]

Han GR, Cao MK, Zhao W, Jiang HX, Wang CM, Bai SF, Deng G, Yan Z, Li D, Li J, Wang Y. Telbivudine prevents vertical transmission of hepatitis B virus from women with high viral loads: a prospective long-term study. *Clin Gastroenterol Hepatol* 2015; 13: 1170-1176 [PMID: 25251571 DOI: 10.1016/j.cgh.2014.08.043]

Wu Q, Huang H, Sun X, Pan M, He Y, Tan S, Zeng Y, Li L, Deng G, Yan Z, He D, Li J, Wang Y. Telbivudine prevents vertical transmission of hepatitis B virus to infants from viral high-load mothers: a prospective open-label study. *J Hepatol* 2011; 55: 1215-1221 [PMID: 21703206 DOI: 10.1016/j.jhep.2011.02.032]

Isaacs D, Kilham HA, Alexander S, Wood N, Buckmaster A, Royle J. Ethical issues in preventing mother-to-child transmission of hepatitis B by immunisation. *Vaccine* 2011; 29: 6159-6162 [PMID: 21723352 DOI: 10.1016/j.vaccine.2011.06.065]

Beasley RP. Rocks along the road to the control of HBV and HCC. *Ann Epidemiol* 2009; 19: 231-234 [PMID: 19348859 DOI: 10.1016/j.annepidem.2009.01.017]

Petrova M, Kamburov V. Breastfeeding and chronic HBV infection: clinical and social implications. *World J Gastroenterol* 2010; 16: 5042-5046 [PMID: 20976840 DOI: 10.3748/wjg.v16.i40.5042]

Chen X, Chen J, Wen J, Xu C, Zhang S, Zhou YH, Hu Y. Breastfeeding is not a risk factor for mother-to-child transmission of hepatitis B virus. *PLoS One* 2013; 8: e55303 [PMID: 23383145 DOI: 10.1371/journal.pone.0055303]
