Micellisation thermodynamics of sodium lauroylsarcosinate in water–alcohol binary mixtures

Olanrewaju Owoyomi*, Oludare Alo, Oladega Soriyan and Grace Ogunlusi

Department of Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria

(Received 10 July 2013; final version received 2 August 2013)

Aggregation of sodium lauroylsarcosinate (SLS) in aqueous solutions of methanol, ethanol, propanol and ethylene glycol at 288–313 K has been determined from conductivity measurement in the range 0–20% v/v of additives. The precise values of the critical micelle concentration (CMC) and the degree of counter-ion dissociation of micelles were obtained at each temperature by fitting the specific conductivity-surfactant concentration curve to the integrated form of the Boltzmann-sigmoid equation. The CMC was found to increase with increase in additive concentrations in the case of methanol and ethylene glycol, while it decreases with increase in ethanol and propanol concentration. The equilibrium model of micelle formation was applied to obtain the thermodynamic parameters of micellisation. The Gibbs free energies were observed to vary only slightly with temperature and additive concentrations. Enthalpy–entropy compensation was observed for all the systems with a constant compensation temperature of ≈300 K and negative compensation enthalpy.

Keywords: alcohols; sodium lauroylsarcosinate; micellisation; thermodynamic parameters; enthalpy–entropy compensation

1. Introduction

The formation of surfactant aggregates in mixed aqueous-organic solvents systems has been extensively studied with the aim of characterising the effects of the solvent properties on the aggregation behaviour [1–6]. Polar organic solvents with properties similar to those of water, such as dimethylsulphoxide, acetonitrile, dimethylformamide, ethylene glycol, glycerol and monohydric alcohols, which are characterised by high dielectric constant, high cohesive energy and considerable hydrogen bond, have been widely studied [7–15]. The alcohols apparently are the most widely studied additives probably because of their important role in the preparation of microemulsions [16–20].

It is generally believed that the alcohol is partitioned between the water and the micellar pseudo-phase with the alcohol molecules in the micellar pseudo-phase intercalated between the surfactant head groups by replacing the water molecules around the ionic head groups, thus increasing the electrostatic repulsion between the surfactant head groups [21,22]. This also leads to a decrease in the dielectric constant at the micellar surface [23].

Sodium lauroylsarcosinate (SLS) is one of the salts of N-acylsarcosine, a group of amino-acid-based surfactants, which is gaining importance in industrial as well as personal care and cosmetic applications because it has been found to be mild, less irritating to

*Corresponding author. Email: oowoyomi@oauife.edu.ng

© 2013 Taylor & Francis
the skin, easily biodegradable, has better stability towards hard water and possesses antimicrobial activities [24, 25].

Although a considerable insight has been gained about the factors governing the surface and bulk properties of aqueous solutions of SLS, such as the effect of temperature, added electrolyte and pH variation on its aggregation behaviour [26], no work has been reported on its micellar properties in the presence of organic co-solvent; hence, it follows that the solution and interfacial properties of this sarcosinate have not been adequately studied.

Moreover, most practical applications of surfactants involve the presence of other species, such as glycols and monohydric alcohols; it is therefore important to establish the effects of such and related compounds on the micellisation process in order to explore their fundamental behaviour. In view of its immense biological and industrial importance, such information is essential for its profitable applications and uses in practice. In this work, we have investigated the effects of chain length as well as the number of hydroxyl group of alcohols on the micellisation of SLS.

2. Experimental

2.1. Chemicals

The surfactant SLS was purchased from Sigma Aldrich with ≥94% purity and was used without further purification. Analytical grade methanol, ethanol and 1-propanol were also purchased from Sigma Aldrich and were also used without further purification. Ethylene glycol (99% purity) was from British Drug House (BDH) and was re-distilled to ascertain its purity.

2.2. Method

All solutions were prepared using glass-distilled water with conductivity not greater than 3 μS·cm⁻¹ at 25°C. The conductivity measurements were made with CMD 210 digital conductivity meter from Walden Precision Apparatus, United Kingdom. The cell constant was determined by calibration with several standard solutions of KCl of known specific conductivities. Conductometric titration method, involving the titration of a known volume of surfactants into a fixed volume of water contained in a thermostatted beaker, was employed. All measurements were made in a thermostatted water bath (Grant Y14, Grant Instruments Ltd., Cambridge, UK), maintaining the temperature constant within ±0.1°C.

3. Results and discussion

3.1. Determination of critical micelle concentration

The conductivity of increasing concentrations of SLS in different water–co-solvent mixtures was measured at \(T = 288, 293, 298, 303, 308 \) and 313 K. The conductivity can be linearly correlated to the surfactant concentration in both the pre-micellar and the post-micellar regions. The intersection point between the two straight lines gave the critical micelle concentration (CMC). The slope in the pre-micellar region is greater than in the post-micellar region and the ratio of the slopes of the post-micellar region to that of the pre-micellar region gives the effective degree of counter-ion dissociation. However, it was found that an increase in the percentage by volume of the alcohols results in a less abrupt change in conductivity in going from the surfactant concentration
in the pre-micellar range to surfactant concentration in the post-micellar range, as compared to that in pure water, thus making the determination of the CMC values difficult with an increase in the percentage by volume of the alcohols. To overcome this, the method proposed by Carpena et al. [27] was adopted for the accurate determination of the CMC and the degree of counter-ion dissociation values that are necessary for calculating the thermodynamic parameters.

The method involves fitting of the raw experimental conductivity data, \(\kappa \), as a function of surfactant concentration, \(c \), to the equation

\[
\kappa(c) = \kappa(c = 0) + A_1 c + \Delta c (A_2 - A_1) \ln \left[\frac{1 + e^{(c-c_0)/\Delta c}}{1 + e^{-(c-c_0)/\Delta c}} \right]
\] (1)

Here, \(\kappa(c = 0) \) represents the conductivity of solution when \(c = 0 \), \(A_1 \) and \(A_2 \) represent the pre-micellar and post-micellar slopes, \(\Delta c \), the width of transition whose central point, \(c_0 \), corresponds to the CMC. Plots of conductivity against SLS concentration are shown in Figures 1 and 2. The CMC, \(A_1, A_2 \) and the degree of counter-ion dissociation values (\(\alpha = A_2/A_1 \)), obtained directly from the fittings of conductivity–concentration plots to Equation (1) are summarised in Tables 1 and 2.

At a given temperature, the CMC of SLS increases with an increase in concentration of methanol and ethylene glycol through all the additive concentrations studied whereas, the CMC values decrease from 5 to 15% v/v of ethanol before increasing again at 20% v/v of ethanol. The CMC values decrease with an increase in propanol concentration up to

![Figure 1. Plot of specific conductivity vs. [SLS] in water (open circle), 10% v/v methanol (open inverted triangle) and 10% v/v ethanol (cross).](image_url)
15% v/v of propanol beyond which no micellisation was observed. These variations in CMC values with an increase in co-solvent concentrations are shown in Figure 3. The observations above can be rationalised as follows; all the alcohols used as co-solvents in this study have significantly lower dielectric constant than water and consequently are expected to decrease the polarity of the medium and as a result decreasing the hydrophobic interactions between the hydrocarbon tails of the surfactant and hence delay the micellisation process to a higher concentration [28]. However, a second factor which favours the micellisation process is the possibility of the alcohol to penetrate the micellar core, intercalating between the surfactant head group thereby reducing the charge density at the micellar surface with a concomitant decrease in the electrostatic repulsion between the ionic head groups of the surfactant; this effect will increase with an increase in chain length of the alcohol [28,29].

In water–methanol systems, the former factor appears to predominate and this resulted in an increase in CMC values with an increase in methanol concentration. The increase in CMC with an increase in ethylene glycol concentration in the ethylene glycol–water mixtures was also due to the first factor explained above, with a slight contribution from the second factor because of the number of carbon atoms in ethylene glycol compared to methanol. At any given concentration, the increase in CMC values is greater in methanol than in ethylene glycol. For both ethanol and propanol, the second factor appears to predominate, hence the observed decrease in CMC values with an increase in concentration of either of these two co-solvents up to 15% v/v with the lowering in CMC values being higher in propanol than in ethanol.
Table 1. Values of the pre-micellar slope A_1 and post-micellar slope A_2 for the micellisation of SLS in different (water + co-solvent) mixtures of co-solvent volume per cent at various temperatures T as obtained from Equation (1).

Temperature / K	288	293	298	303	308	313
Water	71316.42	34685.71	70056.58	36901.18	71358.44	37074.49
Methanol % v/v						
5	60878.73	32131.65	60800.03	33428.55	62691.86	34918.53
10	55822.58	30193.17	58709.25	31048.47	60131.89	34810.97
15	52749.31	25714.62	52278.52	31637.39	53750.32	35502.22
20	47610.51	31378.09	51023.65	30848.34	52958.39	32309.97
Ethanol % v/v						
5	62170.89	32741.56	64382.59	33440.48	68100.72	33138.97
10	52946.48	30779.15	54837.32	35053.55	59898.92	36602.62
15	49805.48	31243.97	52471.87	34561.62	57829.72	36469.63
20	42080.19	36045.62	49138.03	32351.62	51318.39	36493.06
Propanol % v/v						
5	60115.23	39412.49	60947.69	40785.54	64936.67	42412.01
10	49269.55	41703.63	54893.76	44146.43	55965.42	49280.49
15	51153.31	43478.31	51177.71	44526.28	50686.83	45962.30
Ethylene glycol % v/v						
5	59164.21	30415.95	60567.00	32653.50	61868.79	33193.15
10	52209.29	29005.31	57078.84	29513.16	57298.02	30898.23
15	46877.67	25921.11	48421.50	26572.15	51081.43	26977.72
20	43279.62	23429.59	44099.72	23867.23	44977.50	24746.96

Physics and Chemistry of Liquids
Table 2. Calculated CMC values and degree of counter-ion dissociation \(\alpha \) for SLS in different (water + co-solvent) mixtures of co-solvent volume per cent at various temperatures \(T \).

\(T/K \)	Water	Methanol (%v/v)	Ethanol (%v/v)	Propanol (%v/v)	Ethylene glycol (% v/v)							
	[CMC] mol·dm\(^{-3}\)	\(\alpha \)										
288	0.0132	0.49	0.0129	0.53	0.0125	0.52	0.0124	0.53	0.0126	0.54	0.0130	0.40
293	0.0142	0.53	0.0139	0.55	0.0136	0.56	0.0135	0.57	0.0139	0.58	0.0144	0.57
298	0.0144	0.54	0.0142	0.53	0.0140	0.58	0.0139	0.56	0.0143	0.63	0.0150	0.52
303	0.0154	0.49	0.0152	0.56	0.0145	0.66	0.0155	0.63	0.0146	0.64	0.0174	0.60
308	0.0158	0.66	0.0156	0.46	0.0154	0.61	0.0171	0.64	0.0190	0.63	0.0212	0.68
313	0.0142	0.53	0.0119	0.52	0.0117	0.49	0.0121	0.50	0.0123	0.45	0.0127	0.55
5	0.0118	0.58	0.0112	0.64	0.00107	0.65	0.0113	0.62	0.0120	0.64	0.0124	0.61
10	0.0104	0.63	0.0097	0.66	0.0089	0.63	0.0099	0.69	0.0107	0.66	0.0118	0.66
15	0.0122	0.86	0.0117	0.66	0.0108	0.71	0.0112	0.84	0.0119	0.84	0.0128	0.87
20	0.0105	0.66	0.0094	0.67	0.0087	0.65	0.0080	0.72	0.0091	0.66	0.0097	0.71
5	0.0099	0.84	0.0090	0.80	0.0079	0.88	0.0076	0.83	0.0085	0.86	0.0091	0.82
10	0.0088	0.85	0.0079	0.87	0.0069	0.91	0.0072	0.82	0.0082	0.76	0.0088	0.92
15	0.0135	0.51	0.0133	0.54	0.0130	0.54	0.0132	0.55	0.0134	0.55	0.0136	0.58
20	0.0137	0.56	0.0135	0.52	0.0131	0.54	0.0137	0.54	0.0142	0.54	0.0146	0.60
5	0.0139	0.55	0.0142	0.55	0.0144	0.53	0.0152	0.52	0.0158	0.59	0.0167	0.59
10	0.0142	0.54	0.0147	0.54	0.0152	0.55	0.0160	0.55	0.0169	0.60	0.0178	0.61
3.2. Thermodynamics of micellisation

The CMC values of the surfactant in the absence and presence of co-solvents showed a minimum in the plots of the variation of CMC with temperature (Figure 4). The minimum in these curves is noticed between 298 K and 303 K, which appears to conform to the general finding that the minimum for ionic surfactants with 12 carbon chain lengths is close to room temperature [30,31].

The relevant thermodynamic parameters, such as ΔG^o_M, ΔH^o_M and ΔS^o_M, of micellisation were determined on the basis of the phase separation model [32]. Accordingly

$$\Delta G^o_M = (2 - \alpha)RT \ln \chi_{\text{CMC}}$$

(2)

Figure 3. Plot of CMC vs. co-solvent concentrations at 298 K: methanol (open circle), ethylene glycol (open inverted triangle), ethanol (filled circle) and propanol (filled triangle).

Figure 4. Plot of CMC vs. temperature for the micellisation of SLS in water–co-solvent systems at 10% co-solvents: methanol (open circle), ethylene glycol (open inverted triangle), ethanol (filled circle) and propanol (filled triangle).
where χ_{CMC} is the value of CMC expressed on a mole fraction basis. The values of the degree of counter-ion dissociation (α) did not change appreciably with temperature, hence, the average values of α were used in computing the thermodynamic parameters. The enthalpy of micellisation can be obtained from the temperature dependence of the CMC using the Gibbs–Helmholtz Equation (3).

$$\Delta H^o_M = -T^2 \frac{\partial \left(\frac{\Delta G^o_M}{T} \right)_P}{\partial T} = -RT^2 \left[(2 - \alpha) \left(\frac{\partial \ln \chi_{CMC}}{\partial T} \right)_P \right]$$ (3)

In order to compute ΔH^o_M, the variation of $\ln \chi_{CMC}$ with temperature was fitted to Equation (4), as proposed by Kim and Lim [33];

$$\ln \chi_{CMC} = A_o + A_1 \ln(T) + \frac{A_2}{T}$$ (4)

The entropy of micellisation can then be calculated from the values of the free energy and enthalpy obtained using Equations (2) and (3), respectively, as

$$\Delta S^o_M = \frac{\Delta H^o_M - \Delta G^o_M}{T}$$ (5)

The effect of the co-solvent on the micellisation process can be determined from the free energy of transfer defined by Equation (6) [34] as

$$\Delta G_{transfer} = \left(\Delta G^o_M \right)_{co-solvent/water} - \left(\Delta G^o_M \right)_{water}$$ (6)

The thermodynamic parameters calculated for the micellisation of SLS in different water–co-solvent mixtures at 298 K are listed in Table 3. Data for other temperatures are listed in Tables S1–S6 of the supplementary material.

The data given in Table 3 show that the free energy of micellisation becomes less negative with an increase in co-solvent concentration, indicating reduced spontaneity of the micellisation process in the presence of the co-solvents. The values for the enthalpy change of micellisation are, in most cases, positive at low concentration of the alcohols in the solvent mixtures and become increasingly less positive or more negative with an increase in the co-solvent concentration. The values of the standard entropy of micellisation of the surfactant are generally positive and become less positive, as the concentration of the co-solvents increases. The positive values of ΔS^o_M have been attributed to the disruption of water structure around the hydrocarbon tails of the surfactant monomers and the increased randomness of the hydrocarbon chains in the micellar core [9,35]. However, the micellisation process becomes entropy-destabilised with an increase in the concentration of the alcohol co-solvents, the ΔS^o_M values being less positive in all cases, this is due to the loss of water structuring that occurs with an increase in co-solvent concentrations; meanwhile, the values of ΔH^o_M become increasingly less positive, indicating that that at higher co-solvent concentrations, the contribution of the ΔH^o_M to the micellisation process becomes significant. The above observation could suggest that the micellisation process is entropy-driven at low concentrations of the co-solvents, but enthalpy-driven at high concentrations of the co-solvents.

The values of $\Delta G_{transfer}$ show that the effect of the co-solvent on the micellisation process is positive for all the co-solvents investigated with its value increasing with an
increase in the volume fraction of the co-solvents in the mixture. This results from the interaction of the hydrocarbon part of the surfactant with the hydrocarbon part of the co-solvents, which favours micellisation in the case of ethanol and propanol and increasing solubility of the hydrocarbon chain of the surfactant monomers, which disfavours micellisation as it is the case with methanol and ethylene glycol.

Table 3 also shows that the loss in entropic contribution to the micellisation process with an increase in co-solvent concentration is partially compensated for by the enthalpic gain. This is the so-called enthalpy–entropy compensation effect, which has been observed in a variety of processes including micellisation [36–38]. This phenomenon shows a linear correlation between the enthalpy and the entropy change and can be represented by the following equation

$$\Delta H_M^o = \Delta H^o + T_c \Delta S_M^o$$ \hspace{1cm} (7)

where T_c, the compensation temperature is the slope and is the intercept of the enthalpy–entropy compensation plot; such a typical plot is shown in Figure 5 below.

Generally, for all the systems investigated, the compensation plots are linear with correlation coefficient close to unity. The coefficients of the equation describing such plots are listed in Table 4.

The slope of these plots yields the compensation temperature T_c, which is often used to characterise solute–solute and solute–solvent interactions [37,38]; while the intercept of the plots gives the compensation enthalpy ΔH^o, considers as the index of the chemical part of micellisation (solute–solute interactions). It stands for the enthalpy effect in the absence of any entropic contributions (i.e. at $\Delta S_M^o = 0$). The values of T_c obtained in this work, both in

% v/v co-solvent	ΔG_M^o (kJ·mol$^{-1}$)	ΔH_M^o (kJ·mol$^{-1}$)	ΔS_M^o (J·mol$^{-1}$·K$^{-1}$)	$\Delta G_{transfer}$ (kJ·mol$^{-1}$)
Water	-31.26	2.67	113.88	—
Methanol				
5	-29.58	1.40	103.95	1.68
10	-29.36	0.58	100.48	1.90
15	-28.25	-2.93	84.97	3.01
20	-27.26	-8.83	61.85	4.00
Ethanol				
5	-31.22	0.26	105.63	0.04
10	-28.91	-0.03	96.92	2.35
15	-28.80	-1.08	93.03	2.46
20	-25.07	1.87	90.39	6.19
Propanol (% v/v)				
5	-28.60	8.39	124.12	2.66
10	-25.20	7.95	111.25	6.06
15	-25.08	4.73	100.02	6.18
Ethylene glycol (% v/v)				
5	-30.05	0.72	103.26	1.21
10	-29.76	-1.45	95.01	1.50
15	-29.15	-6.81	74.96	2.11
20	-28.64	-8.99	65.95	2.62
the absence and presence of the additives are within the range 300 ± 3 K, which implies that the presence of the co-solvents has little or no effect on the solute–solvent interactions. The values of the compensation temperature fits well in the general framework proposed by Sugihara and Hisatomi, in which all surfactants should be included in the range from 299 to 315 K [38]. The values of ΔH^*, the intrinsic enthalpy gain are all negative indicating that the micellisation process is favoured even in the absence of any entropic gain.

Table 4. Enthalpy–entropy compensation parameters for the micellisation of SLS in different (water + co-solvent) mixtures.

% v/v co-solvent	ΔH^* (kJ·mol$^{-1}$)	T_c (K)
Water	-31.61	303.3
Methanol		
5	-29.91	300.2
10	-29.70	300.3
15	-28.48	300.3
20	-27.49	297.5
Ethanol		
5	-31.51	299.3
10	-29.60	300.3
15	-29.09	300.3
20	-25.37	300.3
Propanol		
5	-29.20	300.3
10	-25.68	300.4
15	-25.46	300.3
Ethylene Glycol		
5	-30.31	300.3
10	-30.00	300.3
15	-29.33	300.3
20	-28.81	300.4
4. Conclusion

The effect of methanol, ethanol, propanol and ethylene-glycol on the micellisation of SLS at different temperatures has been studied using conductometric method. It can be concluded that the micellisation process in water–alcohol solvent mixtures depends on the nature as well as on the concentration of alcohol used. The CMC values were found to increase with increase in volume fractions of methanol and ethylene-glycol in the mixed solvent system, while the values were found to decrease with an increase in the volume fraction of ethanol and propanol in the mixed solvent system with the increase in CMC values following the trend methanol > ethylene-glycol > ethanol > propanol.

The thermodynamic studies revealed that the ΔG_M^o values are generally negative in the presence of the alcohols but less negative than the value in pure water, indicating reduced spontaneity in micelle formation in the water–alcohol mixed solvent systems. The result also showed that the micellisation process is entropy-driven at low concentrations of the alcohols but enthalpy-driven at high concentrations of the alcohols in water with the micellisation process showing enthalpy–entropy compensation phenomenon.

References

[1] Myers D. Surfactant science and technology. 3rd ed. Hoboken, NJ: Wiley; 2006.
[2] Sjoberg M, Hendriksen U, Warnheim T. Deuteron nuclear magnetic relaxation of [1, 1-2H] hexadecyltrimethylammonium bromide in micellar solutions of nonaqueous polar solvents and their mixtures with water. Langmuir. 1990;6:1205–1211.
[3] Bakshi MS, Cristaino R, De Lisi R, Milloso S. Volume and heat capacity of sodium dodecyl sulfate-dodecylmethylene oxide mixed micelles. J Phys Chem. 1993;97:6914–6919.
[4] Palepu R, Gharibi H, Bloor DM, Wyne-Jones E. Electrochemical studies associated with cationic surfactants in aqueous mixtures of ethylene glycol and glycerol. Langmuir. 1993;9:110–112.
[5] Wasserman AM. Spin probes in micelles. Russ Chem Rev. 1994;63:373–382.
[6] Attwood D, Mosquera V, Rodriguez J, Gracia M, Suarez MJ. Effects of alcohols on the micellar properties in aqueous solutions of alkyltrimethylammonium bromides. Colloid Polym Sci. 1994;272:584–591.
[7] Almgren M, Swarup S, Loefroth JE. Effect of formamide and other organic polar solvents on the micelle formation of sodium dodecyl sulfate. J Phys Chem. 1985;89:4621–4626.
[8] Beesley AH, Evans DF, Laughlin RG. Evidence for the essential role of hydrogen bonding in promoting amphiphilic self-assembly: measurements in 3-methylsydnone. J Phys Chem. 1988;92:791–793.
[9] Chauhan MS, Kumar G, Kumar A, Sharma K, Chauhan S. Conductance and viscosity studies of sodium dodecyl sulfate in aqueous solutions of dimethylsulfoxide and methanol. Colloids Surf. 2000;180:111–119.
[10] Jalali F, Shamsipur M, Alizadeh NJ. Conductance study of the thermodynamics of micellization of 1-hexadecylpyridinium bromide in (water + cosolvent). J Chem Thermodyn. 2000;32:755–765.
[11] Akbas H, Kartal C. Conductometric studies of hexadecyltrimethylammonium bromide in aqueous solution of ethanol and ethylene glycol. Colloids J. 2006;68:125–130.
[12] Alawi SM, Akhter MS. Formation of micelles of cetlytrimethylammonium chloride and cetlytrimethylammonium bromide in N-methyl acetamide-alcohol and N, N-dimethyl acetamide-alcohol mixtures. Colloid J. 2010;72:295–300.
[13] Tikariha D, Ghosh KK. Micellization of cetyldiethylethanolammonium bromide in mixed aqueous organic solvents. J Disp Sci Tech. 2010;31:1249–1253.
[14] Dubey NJ. Studies of monohydric alcohols in aqueous sodium dodecyl sulfate solutions at $T = (298.15$ and $308.15)$ K. Chem Eng Data. 2010;55:1219–1226.
[15] Kumar B, Tikariha D, Ghosh KK, Quaglioni PJ. Effect of short chain length alcohols on micellization behaviour of cationic gemini and monomeric surfactants. J Mol Liquids. 2012;172:81–87.
[16] Hoiland H, Ljosland E, Backlund SJ. Solubilization of alcohols and alkanes in aqueous solution of sodium dodecylsulfate. J Colloid Interface Sci. 1984;101:467–471.

[17] Bravo C, Leis JR, Pena ME. Effect of alcohols on catalysis by dodecylsulfate micelles. J Phys Chem. 1992;96:1957–1961.

[18] Trotta M, Gasco MR, Pattarino F. Effect of a series of alcohols on critical micelle concentration of hexylphosphate: a quantitative structure-CMC relationship study. J Colloid Interface Sci. 1993;158:133–135.

[19] Edmondson S, Nguyen NT, Lewis AL, Armes SP. Co-nonsolvency effects for surface initiated poly (2-(methacryloyloxy) ethylphosphorylcholine) brushes in alcohol/water mixtures. Langmuir. 2010;26:7216–7226.

[20] Mendonca CRB, Bica CID, Piatnicki CMS. Physical chemical properties and kinetics of redox processes in water/soybean oil microemulsion. J Braz Chem Soc. 2008;19:775–781.

[21] Gjerde MI, Nerda W, Hoiland H. Solubilization of 1-butanol in a sodium dodecyl sulfate-poly (ethylen oxide) system by NMR and conductivity at 298.1 and 283.1 K. Colloid Polym Sci. 1998;276:503–510.

[22] Romani AP, Gehlen MH, Lima AR, Quina FH. The change in the properties of sodium dodecyl sulfate micelles upon addition of isomeric and unsaturated short-chain alcohols probed by photophysical methods. J Colloid Interface Sci. 2001;240:335–339.

[23] Dubey NJ. Conductometric study of the interaction between sodium dodecyl sulfate and 1-propanol, 1-butanol, 1-pentanol and 1-hexanol at different temperatures. J Surface Sci Tech. 2008;24:139–148.

[24] Karande P, Jain A, Arora A, Ho MJ, Mitragotri S. Synergistic effects of chemical enhancer on skin permeability: a case study of sodium lauroylsarcosinate and sorbitan monolaurate. Eur J Pharm Sci. 2007;31:1–7.

[25] Langan RS. Final report on the safety assessment of cocoyl sarcosine, lauroyl sarcosine, myristoyl sarcosine, oleoyl sarcosine, stearyl sarcosine, sodium cocoyl sarcosinate, sodium lauroyl sarcosinate, sodium myristoyl sarcosinate, ammonium cocoyl sarcosinate, and ammonium lauroyl sarcosinate. Int J Toxicol. 2001;20(Suppl. 1):1–14.

[26] Ray GB, Ghosh S, Moulik SP. Physicochemical studies on the interfacial and bulk behaviors of sodium-N-dodecanoyl sarcosinate (SDDS). J Surf Deterg. 2009;12:131–143.

[27] Carpena P, Aguiar J, Bernaola-Gaván P, Ruiz CC. Problems associated with treatment of conductivity-concentration data in surfactant solutions: simulations and experiments. Langmuir. 2002;18:6054–6058.

[28] Dubey N. Studies of monohydric alcohols in aqueous sodium dodecyl sulfate solutions at \(T = (298.15 \text{ and } 308.15) \text{ K} \). J Chem Eng Data. 2010;55:1219–1226.

[29] Gonzalez-Perez A, Del-Castillo JL, Czapkiewicz J, Rodriguez JR. Micellization of decyl- and dodecyldimethylbenzylammonium bromides at various temperatures in aqueous solutions. Colloid Polym Sci. 2002;280:503–508.

[30] Muller N. Temperature dependence of critical micelle concentrations and heat capacities for ionic surfactants. Langmuir. 1993;9:96–100.

[31] Koskinuma M, Sasaki T. Activity measurement and colloidal chemical studies of aqueous sodium tetradecyl sulfate solutions. Bull Chem Soc Jpn. 1975;48:2755–2759.

[32] Kim HY, Lim KH. Description of temperature dependence of critical micelle concentration. Bull Korean Chem Soc. 2003;24:1449–1455.

[33] Misra PK, Mishra BK, Behera GK. Micellization of ionic surfactants in tetrahydrofuran-water and acetoniitrile-water mixed solvent systems. Colloids Surf. 1991;57:1–10.

[34] Bakshi MS. Micelle formation by anionic and cationic surfactants in binary aqueous solvents. J Chem Soc Faraday Trans. 1993;89:4323–4326.

[35] Lumry R, Rajender S. Enthalpy-entropy compensation phenomena in water solutions of protein and small molecules: a ubiquitous property of water. Biopolymers. 1970;9:1125–1227.

[36] Chen L, Lin S, Huang C. Effect of hydrophobic chain length of surfactants on enthalpy-entropy compensation of micellization. J Phys Chem B. 1998;102:4350–4356.

[37] Sugihara G, Hisatomi MJ. Enthalpy-entropy compensation observed for different surfactants in aqueous solution. J Colloid Interface Sci. 1999;219:31–36.
Table S1. Thermodynamic parameters of micellization of sodium lauroylsarcosinate in different (water + cosolvent) mixtures at 288 K.

% v/v cosolvent	ΔG_M (kJ mol$^{-1}$)	ΔH_M (kJ mol$^{-1}$)	ΔS_M (J mol$^{-1}$ K$^{-1}$)	$\Delta G_{transfer}$ (kJ mol$^{-1}$)
Water	–30.02	10.06	139.14	–
Methanol				
5	–28.43	8.83	129.39	1.59
10	–28.26	8.31	126.99	1.76
15	–27.11	8.84	124.84	2.91
20	–26.25	8.27	119.87	3.77
Ethanol				
5	–29.96	8.44	133.32	0.06
10	–27.62	13.19	141.71	2.40
15	–27.33	20.73	166.88	2.69
20	–23.86	16.91	141.54	6.16
Propanol				
5	–27.03	32.59	207.01	2.99
10	–23.74	29.72	185.65	6.28
15	–23.57	28.50	180.80	6.45
Ethylene glycol				
5	–28.89	6.23	121.95	1.13
10	–28.62	6.16	120.76	1.40
15	–28.28	–1.97	91.35	1.74
20	–27.91	–5.95	76.25	2.11

Table S2. Thermodynamic parameters of micellization of sodium lauroylsarcosinate in different (water + cosolvent) mixtures at 293 K.

% v/v cosolvent	ΔG_M (kJ mol$^{-1}$)	ΔH_M (kJ mol$^{-1}$)	ΔS_M (J mol$^{-1}$ K$^{-1}$)	$\Delta G_{transfer}$ (kJ mol$^{-1}$)	
Water	–30.64	6.36	126.30	–	
Methanol					
5	–29.01	5.12	116.47	1.63	
10	–28.81	4.45	113.51	1.83	
15	–27.63	2.95	104.37	3.01	
20	–26.75	–0.28	90.34	3.89	
Ethanol					
5	–30.63	4.35	119.39	0.01	
10	–28.29	6.58	119.02	2.35	
15	–28.02	9.82	129.16	2.62	
20	–24.40	9.39	115.30	6.24	
Propanol					
5	–27.85	20.49	164.97	2.79	
10	–24.43	18.84	147.65	6.21	
15	–24.30	16.61	139.64	6.34	
Ethylene glycol					
5	–29.45	3.48	112.38	1.19	
10	–29.18	2.35	107.62	1.46	
15	–28.69	–4.39	82.93	1.95	
20	–28.28	–7.47	71.02	2.36	
% v/v cosolvent	ΔG_M (kJ mol$^{-1}$)	ΔH_M (kJ mol$^{-1}$)	ΔS_M (J mol$^{-1}$ K$^{-1}$)	$\Delta G_{\text{transfer}}$ (kJ mol$^{-1}$)	
-----------------	-----------------------------	-----------------------------	---------------------------------	----------------------------------	
Water	-31.26	2.67	113.88	$-$	
Methanol	5	-29.58	1.40	103.95	1.68
	10	-29.36	0.58	100.48	1.90
	15	-28.25	-2.93	84.97	3.01
	20	-27.26	-8.83	61.85	4.00
Ethanol	5	-31.22	0.26	105.63	0.04
	10	-28.91	-0.03	96.92	2.35
	15	-28.80	-1.08	93.03	2.46
	20	-25.07	1.87	90.39	6.19
Propanol	5	-28.60	8.39	124.12	2.66
	10	-25.20	7.95	111.25	6.06
	15	-25.08	4.73	100.02	6.18
Ethylene glycol	5	-30.05	0.72	103.26	1.21
	10	-29.76	-1.45	95.01	1.50
	15	-29.15	-6.81	74.96	2.11
	20	-28.64	-8.99	65.95	2.62

Table S4. Thermodynamic parameters of micellization of sodium lauroylsarcosinate in different (water + cosolvent) mixtures at 303 K.

% v/v cosolvent	ΔG_M (kJ mol$^{-1}$)	ΔH_M (kJ mol$^{-1}$)	ΔS_M (J mol$^{-1}$ K$^{-1}$)	$\Delta G_{\text{transfer}}$ (kJ mol$^{-1}$)	
Water	-31.83	-1.02	101.67	$-$	
Methanol	5	-30.10	-2.31	91.71	1.73
	10	-29.88	-3.28	87.78	1.95
	15	-28.49	-8.82	64.93	2.91
	20	-27.35	-17.37	32.93	4.48
Ethanol	5	-31.62	-3.83	91.73	0.21
	10	-29.23	-6.64	74.55	2.60
	15	-28.92	-11.98	55.90	2.91
	20	-25.38	-5.65	65.12	6.45
Propanol	5	-29.34	-3.71	84.61	2.49
	10	-25.75	-2.94	75.30	6.08
	15	-25.39	-7.15	60.18	6.44
Ethylene glycol	5	-30.49	-2.03	93.92	1.34
	10	-30.10	-5.26	82.00	1.73
	15	-29.43	-9.23	66.67	2.40
	20	-28.93	-10.51	60.81	2.90
Table S5. Thermodynamic parameters of micellization of sodium lauroylsarcosinate in different (water + cosolvent) mixtures at 308 K.

% v/v cosolvent	ΔG_M^o (kJ mol$^{-1}$)	ΔH_M^o (kJ mol$^{-1}$)	ΔS_M^o (J mol$^{-1}$ K$^{-1}$)	$\Delta G_{transfer}$ (kJ mol$^{-1}$)
Water	−32.29	−4.71	89.53	–
Methanol				
5	−30.50	−6.03	79.45	1.79
10	−30.27	−7.15	75.07	2.02
15	−28.77	−14.70	45.66	3.52
20	−27.44	−25.92	4.93	4.85
Ethanol				
5	−32.07	−7.91	78.43	0.22
10	−29.50	−13.25	52.75	2.79
15	−29.13	−22.88	20.28	3.16
20	−25.60	−13.17	40.34	6.69
Propanol				
5	−29.37	−15.80	44.04	2.92
10	−25.84	−13.82	39.02	6.45
15	−25.43	−19.04	60.18	6.86
Ethylene glycol				
5	−30.93	−4.79	84.88	1.36
10	−30.49	−9.06	69.57	1.80
15	−29.78	−11.64	58.90	2.51
20	−29.21	−12.03	55.80	3.08

Table S6. Thermodynamic parameters of micellization of sodium lauroylsarcosinate in different (water + cosolvent) mixtures at 313 K.

% v/v cosolvent	ΔG_M^o (kJ mol$^{-1}$)	ΔH_M^o (kJ mol$^{-1}$)	ΔS_M^o (J mol$^{-1}$ K$^{-1}$)	$\Delta G_{transfer}$ (kJ mol$^{-1}$)
Water	−32.69	−8.40	77.61	–
Methanol				
5	−30.86	−9.74	67.46	1.83
10	−30.58	−11.01	62.53	2.11
15	−29.01	−20.59	26.91	3.68
20	−27.48	−34.47	−22.32	5.21
Ethanol				
5	−32.48	−12.00	65.41	0.21
10	−29.84	−19.86	31.88	2.85
15	−29.26	−33.78	−14.44	3.43
20	−25.80	−20.69	16.33	6.89
Propanol				
5	−29.63	−27.90	5.52	3.06
10	−26.06	−24.71	4.30	6.63
15	−25.64	−30.92	−16.85	7.05
Ethylene glycol				
5	−31.36	−7.54	76.11	1.33
10	−30.86	−12.87	57.49	1.83
15	−30.05	−14.06	51.07	2.66
20	−29.51	−13.55	51.00	3.18