A Second Regularized Trace Formula for a Fourth Order Differential Operator

Erdal Gül * and Aylan Ceyhan

Department of Mathematics, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey; t2506203@std.yildiz.edu.tr
* Correspondence: gul@yildiz.edu.tr

Abstract: In applications, many states given for a system can be expressed by orthonormal elements, called “state elements”, taken in a separable Hilbert space (called “state space”). The exact nature of the Hilbert space depends on the system; for example, the state space for position and momentum states is the space of square-integrable functions. The symmetries of a quantum system can be represented by a class of unitary operators that act in the Hilbert space. The operators called ladder operators have the effect of lowering or raising the energy of the state. In this paper, we study the spectral properties of a self-adjoint, fourth-order differential operator with a bounded operator coefficient and establish a second regularized trace formula for this operator.

Keywords: self-adjoint operator; trace-class operator; spectrum; regularized trace

1. Introduction

The trace formulae of a differential operator may be seen as a generalization of the traces of matrices or trace-class operators. These formulae are, in general, referred as regularized trace formulae for operators, and they can be used to solve inverse problems [1] and can be applied to index theory [2]. The regularized trace formula of a scalar differential operator was first introduced by I. M. Gelfand and B. M. Levitan [3]. Then, several works on the regularized traces of scalar differential operators appeared (see [4–9]). The trace formulae for differential operators with operator coefficients were studied in several works [10–18]. Recently a second regularized trace formula was obtained in [19] for the Sturm–Liouville operator with the antiperiodic boundary conditions.

To explain our motivation here, let \(H \) be a separable Hilbert space. On Hilbert space \(H_1 = L^2(H; [0, \pi]) \), we consider two differential operators \(L_0 \) and \(L \) given by the differential statements:

\[
I_0(u) = u''''(t) \quad \text{and} \quad I(u) = u''''(t) + Q(t)u(t)
\]

with the identical symmetric boundary conditions \(u''(0) = u''(\pi) = u''''(0) = u''''(\pi) = 0 \). Our aim was to find a trace formula called the second regularized trace for the operator \(L \) by taking advantage from spectral properties of the unperturbed operator \(L_0 \). Here we refer to [20] for the first regularized trace formula of the same operator.

Here \(Q(t) \) is an operator function with the properties:

(i) \(Q(t) \) has a weak fourth-order derivative in interval \([0, \pi]\) and for every \(t \in [0, \pi] \), \(Q^{(i)}(t) \) \((i = 0, 4) \) are self-adjoint trace-class operators on \(H \).

(ii) \(\|Q\| < \frac{1}{2} \).

(iii) \(H \) has an orthonormal basis \(\{ \varphi_n \}_{n=1}^{\infty} \) such that \(\sum_{n=1}^{\infty} \|Q(t)\varphi_n\| < \infty \).

(iv) \(\|Q^{(i)}(t)\|_{\sigma_1(H)} \) \((i = 0, 4) \) is bounded and measurable in \([0, \pi]\).

Let \(\sigma_1(H) \) denote the space of trace-class operators from \(H \) to \(\mathbb{H} \) [21]. Moreover, the norms in \(H \) and \(H_1 \) are denoted by \(\|\cdot\|_H \) and \(\|\cdot\| \) and the inner products are denoted...
Each point in the spectrum \(\sigma(L_0) \) gives an eigenvalue of \(L_0 \) with its infinite multiplicity. We can easily check that the orthonormal eigenvectors corresponding to these eigenvalues are given by the system

\[
\psi_{mn}(t) = d_m \cos mt \cdot \varphi_n \quad (m = 0, 1, 2, \ldots; n = 1, 2, \ldots),
\]

where

\[
d_m = \begin{cases} \frac{1}{\sqrt{n}} & \text{if } m = 0 \\ \frac{2}{\sqrt{n}} & \text{if } m = 1, 2, \ldots. \end{cases}
\]

This system constitutes an orthonormal basis of the Hilbert space \(\mathcal{H}_1 \), and we will often refer to this fact through the paper.

At the end, we will obtain a formula for the sum of

\[
\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \left[(\lambda_{mn}^2 - m^4) - \frac{2m^4}{\pi} \int_0^\pi \text{tr}Q(t)dt \right.
\]

\[
- \frac{m^2}{2\pi} \left(\text{tr}Q'(\pi) - \text{tr}Q'(0) \right) + 2C
\]

where the sequences \(\{\lambda_{mn}\}_{n=1}^{\infty} \) represent the eigenvalues of \(L \) for \(m = 0, 1, 2, \ldots \) belonging to the interval \([m^4 - 1/2, m^4 + 1/2]\), and \(C \) is a constant depending on \(Q(t) \). This formula is said to be a second regularized trace formula of the operator \(L \).

2. Some Relations about Eigenvalues and Resolvents

Let \(R_0^{\lambda} \) and \(R_{\lambda} \) be resolvents of \(L_0 \) and \(L \), respectively. Since the operator function \(Q(t) \) satisfies condition (iii) and the system (1) is an orthonormal basis of \(\mathcal{H}_1 \), the operator \(QR_0^{\lambda} : \mathcal{H}_1 \rightarrow \mathcal{H}_1 \) is a trace-class operator for every \(\lambda \not\in \{m^4\}_{m=0}^{\infty} \) [20]. Moreover, since \(Q(t) \) satisfies also conditions (ii) and (iii), then the spectrum of \(L \) is a subset of the union of pairwise disjoint intervals \(I_m = [m^4 - \|Q\|, m^4 + \|Q\|] \quad (m = 0, 1, 2, \ldots) \) on the real line. Furthermore, we have:

(a) Each point of the spectrum of \(L \) which is not the same as \(m^4 \) in \(I_m \) is an isolated eigenvalue of finite multiplicity.

(b) \(m^4 \) is the possible eigenvalue of \(L \) of any multiplicity.

(c) \(\lim_{n \rightarrow \infty} \lambda_{mn} = m^4 \) such that \(\{\lambda_{mn}\}_{n=1}^{\infty} \) are the eigenvalues of \(L \) in \(I_m \).

Let \(\rho(L) \) be the resolvent set of \(L \). Since \(QR_0^{\lambda} \in \sigma_1(\mathcal{H}_1) \) for every \(\lambda \in \rho(L) \), the equation

\[
R_{\lambda} - R_0^{\lambda} = -R_{\lambda}QR_0^{\lambda}
\]

gives \(R_{\lambda} - R_0^{\lambda} \in \sigma_1(\mathcal{H}_1) \). On the other hand, since the series

\[
\sum_{n=1}^{\infty} (\lambda_{mn} - m^4), \quad m = 0, 1, 2, \ldots
\]

are absolutely convergent, we have:

\[
\text{tr}(R_{\lambda} - R_0^{\lambda}) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \left(\frac{1}{\lambda_{mn} - \lambda} - \frac{1}{m^4 - \lambda} \right)
\]

for every \(\lambda \in \rho(L) \). Multiply by \(\lambda^2/2\pi i \) both sides of this equality and integrate it over the circle \(|\lambda| = b = (p^2 + p + 1)^{1/2} - 1/2 \quad (p = 1, 2, \ldots) \). We obtain

\[
\frac{1}{2\pi i} \int_{b^p} \lambda^2 \text{tr}(R_{\lambda} - R_0^{\lambda})d\lambda = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} (m^8 - \lambda_{mn}^2).
\]
By using the relation (2) we find, for any positive integer N:

$$R_\lambda - R_\lambda^0 = \sum_{j=1}^{N} (-1)^j R_\lambda^0 (QR_\lambda^0)^j + (-1)^{N+1} R_\lambda (QR_\lambda^0)^{N+1}.$$

If we use this expression in (3), we obtain

$$\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} (\lambda_{mn}^2 - m^2) = \sum_{j=0}^{N} D_{pj} + D_{pj}^{(N)}$$

(4)

where

$$D_{pj} = \frac{(-1)^j}{2\pi i} \int_{|\lambda|=b_p} \lambda^2 \operatorname{tr}[R_\lambda^0 (QR_\lambda^0)^j] d\lambda,$$

(5)

$$D_{pj}^{(N)} = \frac{(-1)^N}{2\pi i} \int_{|\lambda|=b_p} \lambda^2 \operatorname{tr}[R_\lambda (QR_\lambda^0)^{N+1}] d\lambda.$$

(6)

The fact that $Q(t)$ satisfies the condition (iii) implies $QR_\lambda^0 \in \sigma_1(\mathcal{H}_1)$ for every $\lambda \neq m^4$ ($m = 0, 1, \ldots$), and the operator function QR_λ^0 in the domain $\mathbb{C} - \{m^4\}_{m=0}^{\infty}$ is analytic with respect to the norm in $\sigma_1(\mathcal{H}_1)$. By [8], we have:

$$D_{pj} = \frac{(-1)^j}{\pi i} \int_{|\lambda|=b_p} \lambda \operatorname{tr}[(QR_\lambda^0)^j] d\lambda.$$

(7)

Theorem 1. If $\|Q(t)\|_{\sigma_1(\mathcal{H})}$ is integrable in the interval $[0, \pi]$ and $Q'(0), Q'(\pi), Q''(0), Q'''(\pi) \in \sigma_1(\mathcal{H})$ then we have:

$$D_{pl} = \frac{2}{\pi} \sum_{m=1}^{p} m^4 \int_{0}^{\pi} \operatorname{tr}(Q(t)) dt + \frac{1}{12\pi} p(p + 1)(2p + 1)(\operatorname{tr}Q'(\pi) - \operatorname{tr}Q'(0)) + \frac{1}{8\pi} p(\operatorname{tr}Q''(0) - \operatorname{tr}Q''(\pi)) + \frac{1}{8\pi} \sum_{m=1}^{p} \int_{0}^{\pi} \operatorname{tr}Q''(t) \cos 2mt dt.$$

(8)

Proof. According to (7) we get

$$D_{pl} = \frac{-1}{\pi i} \int_{|\lambda|=b_p} \lambda \operatorname{tr}(QR_\lambda^0) d\lambda.$$

(9)

Since the system in (1) is an orthonormal basis of \mathcal{H}_1 and QR_λ^0 is a trace-class operator for every $\lambda \in \rho(L_0)$, we have

$$\operatorname{tr}(QR_\lambda^0) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \langle QR_\lambda^0 \psi_{mn}, \psi_{mn} \rangle.$$

Replacing this expression in (9), we get:

$$D_{pl} = -\frac{1}{\pi i} \int_{|\lambda|=b_p} \sum_{m=0}^{p} \sum_{n=1}^{\infty} \langle QR_\lambda^0 \psi_{mn}, \psi_{mn} \rangle d\lambda.$$

(10)

By (1) and the fact that

$$R_\lambda^0 \psi_{mn} = (L_0 - \lambda L)^{-1} \psi_{mn} = (m^4 - \lambda)^{-1} \psi_{mn}$$

we obtain

$$|\langle QR_\lambda^0 \psi_{mn}, \psi_{mn} \rangle| \leq \sqrt{\pi} |m^4 - \lambda|^{-1} \|Q(t) \psi_n\|.$$
Together with the condition (iii) on \(Q(t) \) and last inequality, the series
\[
\sum_{n=1}^{\infty} \langle QR_0^q \psi_{mn}, \psi_{mn} \rangle \quad (m = 0, 1, 2, \ldots) \quad \text{and} \quad \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \langle QR_0^q \psi_{mn}, \psi_{mn} \rangle
\]
are absolutely and uniformly convergent on the circle \(|\lambda| = b_p\). Therefore, using Cauchy integral formula and the system (1), the equality (10) becomes
\[
D_{p1} = \frac{2}{\pi} \sum_{m=1}^{p} m^4 \int_0^{\pi} \text{tr}Q(t) \, dt + \frac{2}{\pi} \sum_{m=1}^{p} m^4 \int_0^{\pi} \text{tr}Q(t) \cos 2mt \, dt. \tag{11}
\]
By applying partial integration four times successively to the second integral in (11), we get (8). \(\square \)

Theorem 2. With the same hypothesis as in Theorem 1, we have the following equality:
\[
D_{p2} = \frac{6p + 7}{8\pi} \int_0^{\pi} \text{tr}Q^2(t) \, dt + \frac{1}{\pi} \sum_{m=1}^{p} \int_0^{\pi} \text{tr}Q^2(t) \cos 2mt \, dt
\]
\[
+ 2p + 1 \frac{1}{8\pi^2} \int_0^{\pi} Q(t) dt \Big)^2 + \mathcal{O}(p^{-1}). \tag{12}
\]

Proof. Using (7) we have:
\[
D_{p2} = \frac{1}{2\pi i} \int_{|\lambda|=b_p} \lambda \text{Tr}[\langle QR_0^q \rangle^2] \, d\lambda = \frac{1}{2\pi i} \int_{|\lambda|=b_p} \lambda \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \langle QR_0^q \rangle^2 \psi_{mn}, \psi_{mn} \rangle \, d\lambda. \tag{13}
\]
Since \(QR_0^q \psi_{mn} = (m^4 - \lambda)^{-1} Q \psi_{mn}\) we obtain
\[
\langle QR_0^q \rangle^2 \psi_{mn} = \frac{QR_0^q}{m^4 - \lambda} \sum_{r=0}^{\infty} \sum_{q=1}^{\infty} \langle \psi_{mn}, \psi_{rq} \rangle \psi_{rq} = \frac{1}{m^4 - \lambda} \sum_{r=0}^{\infty} \sum_{q=1}^{\infty} \langle \psi_{mn}, \psi_{rq} \rangle \psi_{rq}.
\]
Inserting this expression into (13), we get:
\[
D_{p2} = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \sum_{r=0}^{\infty} \sum_{q=1}^{\infty} \left| \langle \psi_{mn}, \psi_{rq} \rangle \right|^2 \frac{1}{2\pi i} \int_{|\lambda|=b_p} \lambda \frac{1}{(\lambda - m^4)(\lambda - r^4)} \, d\lambda.
\]
By separating the series according to \(m \) and \(r \) into four series and applying the Cauchy integral formula, we obtain:
\[
D_{p2} = \sum_{m=0}^{p} \sum_{n=1}^{\infty} \sum_{r=0}^{\infty} \sum_{q=1}^{\infty} \left| \langle \psi_{mn}, \psi_{rq} \rangle \right|^2 - \sum_{m=0}^{p} \sum_{n=1}^{\infty} \sum_{r=p+1}^{\infty} \sum_{q=1}^{\infty} \left(1 + \frac{2m^4}{r^4 - m^4} \right) \left| \langle \psi_{mn}, \psi_{rq} \rangle \right|^2.
\]
Let
\[
\alpha_p := \sum_{m=0}^{p} \sum_{r=p+1}^{\infty} \left(\frac{r^4 + m^4}{r^4 - m^4} \right) \left| \langle \psi_{mn}, \psi_{rq} \rangle \right|^2. \tag{14}
\]
Hence, we get:
\[
D_{p2} = \sum_{m=0}^{p} \sum_{n=1}^{\infty} \left| \psi_{mn} \right|^2 - \sum_{n=1}^{\infty} \sum_{q=1}^{\infty} \alpha_p. \tag{15}
\]
For $m = 0, p$ and $r = p + 1, \infty$ we have:

\[
|\langle \Psi_{m,n}, \Psi_{q} \rangle|^2 = \frac{d_m^2}{2\pi} \left| \int_0^\pi \langle Q(t) \varphi_n, \varphi_q \rangle_{H} \cos(m-r)t \, dt \right|^2
\]

\[
+ \frac{d_m^2}{\pi} \Re \left[\int_0^\pi \langle Q(t) \varphi_n, \varphi_q \rangle_{H} \cos(m-r)t \, dt \int_0^\pi \langle Q(t) \varphi_n, \varphi_q \rangle_{H} \cos(m+r)t \, dt \right]^2
\]

\[
+ \frac{d_m^2}{2\pi} \left| \int_0^\pi \langle Q(t) \varphi_n, \varphi_q \rangle_{H} \cos(m+r)t \, dt \right|^2.
\]

Hence, (14) becomes

\[
\alpha_p = \alpha_{p1} + \alpha_{p2} + \alpha_{p3}
\]

(16)

with

\[
\alpha_{p1} = \frac{1}{2\pi} \sum_{m=0}^p \sum_{r=p+1}^\infty \frac{r^4 + m^4}{r^4 - m^4} \left| \int_0^\pi \langle Q(t) \varphi_n, \varphi_q \rangle_{H} \cos(m-r)t \, dt \right|^2,
\]

(17)

\[
\alpha_{p2} = \frac{1}{\pi} \sum_{m=0}^p \sum_{r=p+1}^\infty \frac{r^4 + m^4}{r^4 - m^4} \Re \left[\int_0^\pi \langle Q(t) \varphi_n, \varphi_q \rangle_{H} \cos(m-r)t \, dt \int_0^\pi \langle Q(t) \varphi_n, \varphi_q \rangle_{H} \cos(m+r)t \, dt \right]^2
\]

\[
\times \left| \int_0^\pi \langle Q(t) \varphi_n, \varphi_q \rangle_{H} \cos(m+r)t \, dt \right|^2,
\]

(18)

\[
\alpha_{p3} = \frac{1}{2\pi} \sum_{m=0}^p \sum_{r=p+1}^\infty \frac{r^4 + m^4}{r^4 - m^4} \left| \int_0^\pi \langle Q(t) \varphi_n, \varphi_q \rangle_{H} \cos(m+r)t \, dt \right|^2.
\]

(19)

For any positive integers p and i, let $E = \{(r, m) : r, m \in \mathbb{N}; r - m = i, r > p\}$. Therefore, we rewrite (17) as

\[
\alpha_{p1} = \frac{1}{2\pi^2} \sum_{r=p+1}^\infty \left| \int_0^\pi \langle Q(t) \varphi_n, \varphi_q \rangle_{H} \cos rt \, dt \right|^2
\]

\[
+ \frac{1}{\pi^2} \sum_{i=1}^\infty \left| \int_0^\pi \langle Q(t) \varphi_n, \varphi_q \rangle_{H} \cos it \, dt \right|^2 \sum_{m,r \in E} \frac{r^4 + m^4}{r^4 - m^4}.
\]

(20)

Consider the case $i \leq p \ (m \geq 1)$. First we get:

\[
\sum_{m,r \in E} \frac{r^4 + m^4}{r^4 - m^4} = \sum_{m=0}^\infty \sum_{r=m+1}^{\infty} \frac{(p-1)^4}{(p-j+i)^4 - (p-j)^4}
\]

\[
= i + 2 \sum_{j=0}^{i-1} \left[\frac{p - j}{4i} - \frac{3}{8i} \right] + \frac{1}{4} \left[\frac{2(p-j)+i}{2(p-j)+2i} \right] \]

\[
= i + 2 \sum_{j=0}^{i-1} \left[\frac{p - j}{4i} - \frac{3}{8i} \right] + \frac{1}{2} \sum_{j=0}^{i-1} \frac{2(p-j)^2+i}{2(p-j)^2+2i(p-j)+i^2}
\]

\[
= p + \frac{1}{4} \sum_{j=0}^{i-1} \frac{1}{2p-j+i} + \frac{1}{2} \sum_{j=0}^{i-1} \frac{2(p-j)^2+i}{2(p-j)^2+2i(p-j)+i^2}.
\]

Since

\[
\frac{1}{4} \sum_{j=0}^{i-1} \frac{1}{2p-j+i} < \frac{1}{4} \sum_{j=0}^{i-1} \frac{1}{p+(p-j)+(i-j)} < \frac{1}{4} \sum_{j=0}^{i-1} \frac{1}{p} < \frac{p^2}{p}
\]
we obtain
\[
\sum_{m,r \in E} \frac{r^4 + m^4}{r^4 - m^4} = p + 1 + i^2 \mathcal{O}(\frac{1}{p}),
\]
where \(0 < \mathcal{O}(\frac{1}{p}) < \text{const} \cdot \frac{1}{p}\).

Similarly, for \(i > p\) with \(m \geq 1\) we get:

\[
\sum_{m,r \in E} \frac{r^4 + m^4}{r^4 - m^4} = \sum_{r = m = 1}^{p} \frac{1 + 2m^4}{r^4 - m^4} = i + 2 \sum_{m,r \in E} \frac{m^4}{r^4 - m^4}
\]

\[
= p + 2 \sum_{j=1}^{p} \frac{1}{(i+j)^4 - j^4}
\]

\[
= p + \frac{p(p+1)}{4i} - \frac{3p}{4} + \frac{i}{4} \sum_{j=1}^{p} \frac{1}{1+2j} + i \sum_{j=1}^{p} \frac{1}{2j^2 + 2ij + i^2}
\]

\[
< p + \frac{1}{4} + i \sum_{j=1}^{p} \frac{1}{i+j}
\]

or

\[
\sum_{m,r \in E} \frac{r^4 + m^4}{r^4 - m^4} = \mathcal{O}(p),
\]
where \(\mathcal{O}(p)\) depends on \(p\) and \(i\) and

\[
0 < \mathcal{O}(p) < \text{const} \cdot p.
\]
(23)

From (20)–(22) we get

\[
\alpha_{p1} = \alpha_{p1}^{(1)} + \alpha_{p1}^{(2)} + \alpha_{p1}^{(3)}
\]
(24)

where

\[
\alpha_{p1}^{(1)} = \frac{1}{\pi^2} \left(\frac{p}{2} + \frac{1}{4}\right) \sum_{i=1}^{\infty} \left| \int_{0}^{\pi} \langle Q(t) \varphi_n, \varphi_q \rangle_{\mathcal{H}} \cos it dt \right|^2
\]

\[
\alpha_{p1}^{(2)} = \sum_{i=1}^{p} i^2 \mathcal{O}(p-1) \left| \int_{0}^{\pi} \langle Q(t) \varphi_n, \varphi_q \rangle_{\mathcal{H}} \cos it dt \right|^2
\]

\[
\alpha_{p1}^{(3)} = \sum_{i=p+1}^{\infty} \mathcal{O}(p) \left| \int_{0}^{\pi} \langle Q(t) \varphi_n, \varphi_q \rangle_{\mathcal{H}} \cos it dt \right|^2.
\]

Clearly we get:

\[
\alpha_{p1}^{(1)} = \frac{1}{8\pi^2} (2p + 1) \int_{0}^{\pi} \left| \langle Q(t) \varphi_n, \varphi_q \rangle_{\mathcal{H}} \right|^2 dt - \frac{1}{8\pi^2} (2p + 1) \left| \int_{0}^{\pi} \langle Q(t) \varphi_n, \varphi_q \rangle_{\mathcal{H}} dt \right|^2,
\]

\[
0 < \alpha_{p1}^{(2)} < \frac{1}{\pi} \int_{0}^{\pi} \left| \langle Q'(t) \varphi_n, \varphi_q \rangle_{\mathcal{H}} \right|^2 dt,
\]

\[
|\alpha_{p1}^{(3)}| < \frac{1}{\pi} \int_{0}^{\pi} \left| \langle Q'(t) \varphi_n, \varphi_q \rangle_{\mathcal{H}} \right|^2 dt.
\]
These relations give:

\[
\sum_{n=1}^{\infty} \sum_{q=1}^{\infty} a_{pq} = \frac{2p+1}{8\pi} \int_0^\pi \frac{1}{\lambda} \int_0^\pi Q^2(t) - \frac{2p+1}{8\pi^2} \int_0^\pi Q(t) + O(p^{-1}).
\]

(25)

Since

\[
\left| \int_0^\pi \left(Q(t) \varphi_n, \varphi_q \right)_H \cos(m-r)t \, dt \right|^2 \leq \frac{1}{(m-r)^2} \left[\left| \left(Q'(0) \varphi_n, \varphi_q \right)_H \right| + \left| \left(Q'(\pi) \varphi_n, \varphi_q \right)_H \right| + \int_0^\pi \left| \left(Q''(t) \varphi_n, \varphi_q \right)_H \right| \, dt \right]
\]

we obtain:

\[
\left| \int_0^\pi \left(Q(t) \varphi_n, \varphi_q \right)_H \cos(m-r)t \, dt \int_0^\pi \left(Q(t) \varphi_n, \varphi_q \right)_H \cos(m+r)t \, dt \right| \leq \frac{3}{(m-r)^2(m+r)^2} \left[\left| \left(Q'(0) \varphi_n, \varphi_q \right)_H \right|^2 + \left| \left(Q'(\pi) \varphi_n, \varphi_q \right)_H \right|^2 + \pi \int_0^\pi \left| \left(Q''(t) \varphi_n, \varphi_q \right)_H \right|^2 \, dt \right].
\]

By (18) and the last inequality, we find:

\[
|a_{pq}| \leq \frac{3}{\pi} \sum_{m=0}^{p} \sum_{n=1}^{\infty} \frac{r^4 + m^4}{(r + m)^2(r - m)^2(r^4 - m^4)} \left[\left| \left(Q'(0) \varphi_n, \varphi_q \right)_H \right|^2 + \left| \left(Q'(\pi) \varphi_n, \varphi_q \right)_H \right|^2 + \pi \int_0^\pi \left| \left(Q''(t) \varphi_n, \varphi_q \right)_H \right|^2 \, dt \right].
\]

Using (21)–(23) we get \(\sum_{m,r \in E} \frac{r^4 + m^4}{r^4 - m^4} < O(p) \). Therefore, we can show that:

\[
\sum_{m=0}^{p} \sum_{n=0}^{\infty} \sum_{q=1}^{\infty} \frac{r^4 + m^4}{(r + m)^2(r - m)^2(r^4 - m^4)} \leq \frac{1}{p^2} \sum_{i=1}^{p} \sum_{m,r \in E} \frac{r^4 + m^4}{r^4 - m^4} < \text{const} \cdot p^{-1}.
\]

By the last two inequalities we find:

\[
\left| \sum_{n=1}^{\infty} \sum_{q=1}^{\infty} a_{pq} \right| \leq \left(\sum_{n=1}^{\infty} \sum_{q=1}^{\infty} \frac{\text{const}}{p} \left[\left| \left(Q'(0) \varphi_n, \varphi_q \right)_H \right|^2 + \left| \left(Q'(\pi) \varphi_n, \varphi_q \right)_H \right|^2 + \pi \int_0^\pi \left| \left(Q''(t) \varphi_n, \varphi_q \right)_H \right|^2 \, dt \right] \right) < \text{const} \cdot \frac{p^2}{p}.
\]

(26)

The inequality

\[
\sum_{m=0}^{p} \sum_{n=1}^{\infty} \frac{r^4 + m^4}{(r + m)^4(r^4 - m^4)} < \sum_{m=0}^{p} \sum_{n=1}^{\infty} \frac{r^4 + m^4}{(r + m)^4(r - m)^2(r^4 - m^4)}
\]

gives

\[
0 \leq \sum_{n=1}^{\infty} \sum_{q=1}^{\infty} a_{pq} \leq \text{const} \cdot \frac{p}{p}.
\]

(27)

Moreover, the first part of (15) becomes:

\[
\sum_{m=0}^{p} \sum_{n=1}^{\infty} \left\| Q_{mn} \right\|^2 = \frac{p+1}{\pi} \int_0^\pi \text{tr} Q^2(t) \, dt + \frac{1}{\pi} \sum_{m=1}^{p} \int_0^\pi \text{tr} Q^2(t) \cos 2mt \, dt.
\]
we rewrite which is absolutely convergent. Taking recall that we have:

\[|D_1| = (p^2 + p + 1)^2 - \frac{1}{2}. \]

Then we give the second regularized trace formula. Let us first recall that we have:

\[
D_{pj} = \frac{(-1)^j}{\pi i} \sum_{m_1=0}^{\infty} \sum_{n_1=0}^{\infty} \cdots \sum_{m_j=0}^{\infty} \sum_{n_j=0}^{\infty} \sum_{s=0}^{\infty} \sum_{k=1}^{\infty} \left[\int_{|\lambda| = b_p} \lambda \prod_{s=1}^{j} (m_s^4 - \lambda)^{-1} d\lambda \right] \prod_{s=1}^{j} \langle Q\psi_{m,n}, \psi_{m(r_s)\pi(r_s)} \rangle
\]

where the sign \(*\) indicates the existence of the numbers greater or less than \(b_p\) between \(m_1^4, m_2^4, \ldots, m_s^4\), and

\[g(s) = \begin{cases}
 s + 1 & \text{if } s < j \\
 s & \text{if } s = j
\end{cases} \]

Hence, we get:

\[
D_{p3} = -\frac{1}{3\pi i} \sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} G(m, r, s) F(m, r, s)
\]

we rewrite \(D_{p3}\) as:

\[
D_{p3} = -\frac{1}{3\pi i} \sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} G(m, r, s) F(m, r, s). \tag{28}
\]

Moreover, the inner product in \(H_1\) says that \(F(m, r, s)\) is given by:

\[
F(m, r, s) = d_m^2 d_r^2 d_s^2 \sum_{k=1}^{\infty} \sum_{q=1}^{\infty} \int_0^\pi \langle Q(t)\phi_n, \phi_q \rangle_{H_1} \cos mt \cos rt dt \\
\times \int_0^\pi \langle Q(t)\phi_n, \phi_q \rangle_{H_1} \cos st \cos rt \cos mt dt \tag{29}
\]

We have:

\[F(m, r, s) = F(m, s, r) = F(r, s, m) = F(r, m, s) = F(s, m, r) = F(s, r, m). \]

Using the Cauchy integral formulae, (28) becomes:

\[
D_{p3} = 4 \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=0}^{p} \frac{m^4}{(m^4 - r^4)(m^4 - s^4)} F(m, r, s) - 2 \sum_{m=0}^{p} \sum_{s=p+1}^{\infty} \frac{s^4}{(s^4 - m^4)^2} F(m, m, s)
\]

\[
+ 2 \sum_{m=0}^{p} \sum_{r=p+1}^{\infty} \sum_{s=p+1}^{\infty} \frac{m^4}{(m^4 - r^4)(m^4 - s^4)} F(m, r, s).
\]
Let us denote by

\[
F_1(m, r, s) := \frac{d_1^2 d_2^2 d_2^2}{8} \sum_{n=1}^{\infty} \sum_{q=1}^{\infty} \sum_{k=1}^{\infty} \int_0^{\pi} (Q(t) \varphi_n(r, \varphi_q))_H \cos(m-r) t dt
\]

\[
\times \int_0^{\pi} (Q(t) \varphi_n(r, \varphi_q))_H \cos(r-s) t dt \int_0^{\pi} (Q(t) \varphi_n(r, \varphi_q))_H \cos(s-m) t dt,
\]

\[
F_2(m, r, s) := F(m, r, s) - F_1(m, r, s)
\]

and

\[
A_i := \sum_{m=0}^{p} \sum_{r=p+1}^{\infty} \sum_{s=p+1}^{r} \frac{m^4}{(m^4 - r^4)(m^4 - s^4)} F_i(m, r, s), \quad (i = 1, 2) \tag{30}
\]

\[
B_i := \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{m^4}{(m^4 - r^4)(m^4 - s^4)} F_i(m, r, s), \quad (i = 1, 2) \tag{31}
\]

\[
C_i := \sum_{m=0}^{p} \sum_{s=p+1}^{\infty} \frac{s^4}{(s^4 - m^4)^2} F_i(m, m, s). \quad (i = 1, 2). \tag{32}
\]

Then we get \(D_{p3} = 2A_1 + 4B_1 - 2C_1 + 2A_2 + 4B_2 - 2C_2\). The relations

\[
F_1(m, r, s) = F_1(m, s, r) = F_1(r, s, m) = F_1(r, m, s) = F_1(s, m, r) = F_1(s, r, m),
\]

\[
F_1(m, m, s) = \frac{d_1^2}{d_1^2} F_1(m, m, m) = F_1(m, m, s) \quad (m \geq 1)
\]

replaced in \(A_1\) give:

\[
A_1 = 2 \sum_{m=0}^{p} \sum_{r=p+1}^{\infty} \sum_{s=p+1}^{r} \frac{m^4}{(m^4 - r^4)(m^4 - s^4)} F_1(m, r, s)
\]

\[
+ \sum_{m=0}^{p} \sum_{s=p+1}^{\infty} \frac{m^4}{(m^4 - s^4)^2} F_1(m, m, s). \tag{33}
\]

Similarly, by (33) we first get

\[
B_i = \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{m=r}^{p} \frac{m^4}{(m^4 - r^4)(m^4 - s^4)} F_i(m, m, r)
\]

\[
+ \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{m^4}{(m^4 - r^4)(m^4 - s^4)} F_i(m, r, s)
\]

\[
= \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{m^4}{(m^4 - r^4)(m^4 - s^4)} F_i(m, m, r)
\]

\[
+ \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{r^4}{(r^4 - m^4)(r^4 - s^4)} F_i(r, m, s)
\]

and we obtain:

\[
B_i = \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{s^4}{(s^4 - m^4)(s^4 - r^4)} F_i(m, m, r). \tag{34}
\]

Thus, \(D_{p3}\) takes the form

\[
D_{p3} = 4A' - 4B' - 2C' + 2A_2 + 4B_2 - 2C_2 \tag{35}
\]
where

\[A' = \sum_{m=0}^{p} \sum_{r=p+1}^{\infty} \sum_{s=p+1}^{\infty} \frac{m^4}{(m^4 - r^4)(m^4 - s^4)} F_1(m, r, s), \]

(38)

\[B' = \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{m \leq s}^{\infty} \frac{s^4}{(s^4 - m^4)(s^4 - r^4)} F_1(m, r, s), \]

(39)

\[C' = \sum_{m=0}^{p} \sum_{s=p+1}^{\infty} \frac{1}{(s^4 - m^4)} F_1(m, m, s). \]

(40)

For any integers \(p, i \) and \(j \) such that \(i > j \) and \(p \geq j \), let

\[E_1 = \{(m, r, s) : m, r, s \in \mathbb{N}; r - m = i; s - m = j; m \leq p; r, s > p\}. \]

Let us consider

\[\sum_{m=0}^{p} \sum_{r=p+1}^{\infty} \sum_{s=p+1}^{\infty} \frac{m^4}{(m^4 - r^4)(m^4 - s^4)} |F_1(m, r, s)| < \infty \]

and

\[\gamma_{ij} = \frac{1}{\pi^2} \sum_{n=1}^{\infty} \sum_{q=1}^{\infty} \sum_{k=1}^{\infty} \int_{0}^{\pi} \langle Q(t) \varphi_n, \varphi_q \rangle_{\mathcal{H}} \cos it \, dt \int_{0}^{\pi} \langle Q(t) \varphi_q, \varphi_k \rangle_{\mathcal{H}} \cos (i - j) t \, dt \]

\[\times \int_{0}^{\pi} \langle Q(t) \varphi_k, \varphi_n \rangle_{\mathcal{H}} \cos jt \, dt. \]

(41)

Then we rewrite \(A' \) as the following:

\[A' = \sum_{i=2}^{p} \sum_{j=1}^{p} \left[\left(\sum_{m, r, s \in E_1} \frac{m^4}{(m^4 - r^4)(m^4 - s^4)} \right) \gamma_{ij} \right] \]

\[+ \sum_{m=0}^{p} \sum_{r=p+1}^{\infty} \sum_{s=p+1}^{\infty} \frac{m^4}{(m^4 - r^4)(m^4 - s^4)} F_1(m, r, s) \]

\[= A'^1 + A'^2. \]

(42)

It is clear that

\[\sum_{m, r, s \in E_1} \frac{m^4}{(m^4 - r^4)(m^4 - s^4)} = \frac{1}{i\pi} \mathcal{O}(1) \]

where \(|\mathcal{O}(1)| < \text{const} \) and, \(\mathcal{O}(1) \) depends on \(p, i \) and \(j \). Hence,

\[A'^1 = \sum_{i=2}^{p} \sum_{j=1}^{p} \left(\frac{1}{i\pi} \mathcal{O}(1) \right) \gamma_{ij}. \]

(43)

Put:

\[B'^1 = \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{m \leq s}^{\infty} \frac{s^4}{(s^4 - m^4)(s^4 - r^4)} F_1(m, r, s), \]

(44)

\[B'^2 = \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{m \leq s}^{\infty} \frac{s^4}{(s^4 - m^4)(s^4 - r^4)} F_1(m, r, s); \]

(45)
then (39) can be written shortly as

\[B' = B^3 + B'^2. \]

(46)

By the fact

\[\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=p+1}^{\infty} \frac{s^4}{(s^4-m^4)(s^4-r^4)} |F_1(m, r, s)| < \infty \]

and by (30) and (41), we write (44) as:

\[B'^3 = \sum_{p=2}^{p-1} \left(\sum_{m, r, s \in E_2} \frac{s^4}{(s^4-m^4)(s^4-r^4)} \right) \gamma_{ij}. \]

(47)

Here \(E_2 \) expresses a set for any integers \(p, i \) and \(j \), providing \(i < j \leq p \), that is,

\[E_2 = \{(m, r, s) : m, r, s \in \mathbb{N}; r - m = i; s - m = j; m, r \leq p; s > p \}. \]

This gives:

\[\sum_{m, r, s \in E_2} \frac{s^4}{(s^4-m^4)(s^4-r^4)} = \frac{1}{ij\pi} O(1) \]

(48)

By (47) and (48), we get:

\[B'^3 = \sum_{i=1}^{p-1} \left(\sum_{j>i} \frac{1}{ij\pi} O(1) \right) \gamma_{ij} \]

(49)

Since \(\gamma_{ij} = \gamma_{ji} \) and, by (37), (40), (42), (43), (46) and (49), we obtain:

\[D_{p3} = 4 \sum_{i=1}^{p} \sum_{j>i} \left(\frac{O(1)}{ij\pi} \right) \gamma_{ij} - 4 \sum_{i=2}^{p} \sum_{j>i} \left(\frac{O(1)}{ij\pi} \right) \gamma_{ij} + 4A^2 - 4B^2 - 2C' + 2A_2 + 4B_2 - 2C_2. \]

Moreover, if \(O(t) \) has a continuous derivative of second order with respect to the norm in \(\mathcal{C}_1(\mathcal{H}) \) on the interval \([0, \pi]\), then \(|\gamma_{ij}| \leq \frac{\text{const}}{ij\pi} \). This implies that

\[\left| \sum_{i=2}^{p} \sum_{j=1}^{p} \left(\frac{O(1)}{ij\pi} \right) \gamma_{ij} \right| \leq \frac{1}{p} \sum_{i=2}^{p} \sum_{j=1}^{p} \left(\frac{1}{ij} \right) |\gamma_{ij}| < \text{const} \frac{1}{p} \left(\sum_{i=2}^{p} \frac{1}{i^3} \right) \left(\sum_{j=1}^{p} \frac{1}{j^3} \right) < O\left(\frac{1}{p} \right), \]

\[\left| \sum_{i=2}^{p} \sum_{j=1}^{p-1} \left(\frac{O(p^{-1})}{ij} \right) \gamma_{ij} \right| \leq \frac{2}{p} \sum_{i=2}^{p} \sum_{j=1}^{p-1} \left(\frac{1}{ij} \right) |\gamma_{ij}| < \text{const} \frac{1}{p} \left(\sum_{i=2}^{p} \frac{1}{i^3} \right) \left(\sum_{j=1}^{p-1} \frac{1}{j^3} \right) < O\left(\frac{1}{p} \right). \]

Hence, \(D_{p3} \) becomes

\[D_{p3} = 4A^2 - 4B^2 - 2C' + 2A_2 + 4B_2 - 2C_2 + O(p^{-1}). \]

(50)

Now, we will show that

\[\lim_{p \to \infty} A^2 = \lim_{p \to \infty} B^2 = \lim_{p \to \infty} C' = \lim_{p \to \infty} A_2 = \lim_{p \to \infty} B_2 = \lim_{p \to \infty} C_2 = 0. \]
By (29)–(31), and using the partial integration we can show that for \(m \neq r \neq s \), we have:

\[
|F_2(m, r, s)| \leq \text{const} \left[\frac{1}{(m - r)^2(r + s)^2(s - m)^2} + \frac{1}{(m + r)^2(r - s)^2(s - m)^2} + \frac{1}{(m - r)^2(r - s)^2(s + m)^2} \right],
\]

(51)

or

\[
|F_2(m, r, s)| \leq \text{const} \left[\frac{1}{(m - r)^2(r + s)^2(s - m)^2} + \frac{1}{(m + r)^2(s - m)^2} \right],
\]

(52)

or

\[
|F_2(m, r, s)| \leq \text{const} \left[\frac{1}{(s + m)^2(s - m)^2} + \frac{1}{(s - m)^4} \right].
\]

(53)

Moreover, from (30), (35) and (41), we obtain:

\[
|F_1(m, r, s)| \leq \text{const} \frac{1}{(r - m)^2(s^2 - m^2)} \quad \text{for } m \neq r \text{ and } m \neq s,
\]

(54)

\[
|F_1(m, r, s)| \leq \text{const} \frac{1}{(s - m)^2(s^2 - r^2)} \quad \text{for } m \neq s \text{ and } r \neq s.
\]

(55)

From (42) and (54) we get

\[
|A^2| \leq \text{const} \cdot p^{-5/2} \sum_{m=0}^{p} \sum_{s=p+1}^{\infty} \frac{1}{(s^4 - m^4)} < \text{const} \cdot p^{-4}.
\]

Additionally, the formulae (45) and (55) give:

\[
|B^2| \leq \text{const} \frac{(p + 1)^2}{p^5} \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{1}{(s - p)^4} < \text{const} \cdot p^{-3}.
\]

By using (32) and (52), we get the restricted version for \(A_2 \) as:

\[
|A_2| < 4p^{-3} \sum_{r=1}^{\infty} \frac{1}{r^3} \sum_{s=1}^{\infty} \frac{1}{s^3} + 2p^{-2} \sum_{r=p+1}^{\infty} \frac{1}{(r^2 - p^2)} \sum_{s=1}^{\infty} \frac{1}{s^3} < \text{const}(p^{-3} + p^{-5/2}).
\]

The last three inequalities give:

\[
\lim_{p \to \infty} A^2 = 0; \quad \lim_{p \to \infty} B^2 = 0; \quad \lim_{p \to \infty} A_2 = 0.
\]

(56)

Using (36) and (51), we write \(|B_2| \leq \text{const}(B_{21} + B_{22} + B_{23}) \) where

\[
B_{21} = \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{s^4}{(s^4 - m^4)(s^4 - r^4)(m - r)^2(r + s)^2(s - m)^2},
\]

\[
B_{22} = \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{s^4}{(s^4 - m^4)(s^4 - r^4)(m + r)^2(r - s)^2(s - m)^2},
\]

\[
B_{23} = \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{s^4}{(s^4 - m^4)(s^4 - r^4)(m - r)^2(r - s)^2(s + m)^2}.
\]
with their respective restrictions:

\[
B_{21} < \frac{p}{4p^2} \left[\sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{1}{s^4(s-r)^2(s-m)^2} \right]^2 \leq \frac{1}{4p^2} \left[\sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{1}{(m+r)^2(s-r)^3(s-m)^3} \right]
\]

\[
B_{22} \leq \frac{1}{4p^2} \left[\sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{1}{(m+r)^2(s-r)^3(s-m)^3} \right] \leq \frac{1}{4p^2} \left[\sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{1}{(s-r)^6(2m)^2} \right]
\]

\[
\leq \frac{1}{4p^2} \left[\frac{2(p+1)^2}{p^3} \sum_{s=1}^{\infty} \frac{1}{s^3} + \frac{1}{4p} \left(\sum_{r=0}^{p} \frac{1}{(2p+1-r)^6} + \sum_{r=p+1}^{\infty} \frac{1}{(t-r)^6} dt \right) \right]
\]

\[
< \frac{\text{const}}{p^3}
\]

and

\[
B_{23} \leq \sum_{m=0}^{p} \sum_{r=0}^{p} \sum_{s=p+1}^{\infty} \frac{1}{(s-m)(s-r)^3(s+m)^2}
\]

\[
< \sum_{m=0}^{p} \frac{1}{(p+1-m)} \sum_{r=0}^{p} \frac{1}{(p+1-r)^3} \sum_{s=p+1}^{\infty} \frac{1}{s^3}
\]

\[
< \text{const} \left(1 + \int_{1}^{p+1} \frac{1}{t} dt \right) \left(\int_{p}^{\infty} \frac{1}{t^4} dt \right)
\]

\[
= \text{const} \frac{1 + \ln(p+1)}{p^3}.
\]

Hence, we get:

\[
\lim_{p \to \infty} B_2 = 0.
\]

(57)

Now, by using (34) and (53) we restrict \(C_2 \) as

\[
|C_2| \leq \text{const}(C_{21} + C_{22})
\]

where

\[
C_{21} = \sum_{m=0}^{p} \sum_{s=p+1}^{\infty} \frac{s^4}{(s^4-m^4)^2(s+m)^2(s-m)^2},
\]

\[
C_{22} = \sum_{m=0}^{p} \sum_{s=p+1}^{\infty} \frac{s^4}{(s^4-m^4)^2(s-m)^2}.
\]

Since

\[
C_{21} \leq \sum_{m=0}^{p} \sum_{s=p+1}^{\infty} \frac{1}{(s-m)^4(s+m)^4} < \left(\sum_{m=0}^{p} \frac{1}{(p+1-m)^4} \right) \left(\sum_{s=p+1}^{\infty} \frac{1}{s^4} \right) < \frac{\text{const}}{p^3},
\]

\[
C_{22} \leq \sum_{m=0}^{p} \sum_{s=p+1}^{\infty} \frac{1}{(s-m)^4(s+m)^2} < \frac{1}{p^2} \sum_{m=0}^{p} \sum_{s=p+1}^{\infty} \frac{1}{(s-p)^6} < \frac{\text{const}}{p}
\]

we obtain

\[
\lim_{p \to \infty} C_2 = 0.
\]

(58)
By (40) and (55) we get:

\[
|C'| \leq \text{const} \sum_{m=0}^{p} \sum_{s=p+1}^{\infty} \frac{1}{(s^4 - m^4)(s - m)^4}
\]
\[
< \text{const} \left(\sum_{m=0}^{p} \frac{1}{(p + 1 - m)^4} \right) \left(\sum_{s=p+1}^{\infty} \frac{1}{(s^4 - p^4)} \right)
\]
\[
< \text{const} \frac{1}{p^{3/2}}.
\]

This implies

\[
\lim_{p \to \infty} C' = 0. \tag{59}
\]

The conclusion from (50) and (56)–(59) is \(\lim_{p \to \infty} D_{p3} = 0\).

Now we claim that \(\lim_{p \to \infty} D_{pj} = 0\) for \(j \geq 4\): It is easy to show that, for \(|\lambda| = b_p = (p^2 + p + 1)^2 - 1/2\) \((p = 1, 2, \ldots)\), there exists a constant \(c\) satisfying the following inequalities:

\[
\|QR^0_\lambda\|_{\sigma_1(H_1)} < c, \quad \|R^0_\lambda\| < p^{-3}, \quad \|R_\lambda\| < cp^{-3}. \tag{60}
\]

Note that

\[
|D_{pj}| = \frac{1}{\pi j} \left| \int_{|\lambda|=b_p} \lambda^{2i} \text{tr}[(QR^0_\lambda)^j] d\lambda \right| \leq \frac{b_p}{\pi j} \int_{|\lambda|=b_p} \|QR^0_\lambda\|_{\sigma_1(H_1)} \|QR^0_\lambda\|^{-1} \|d\lambda\|.
\]

Therefore, by the fact that \(Q(t)\) satisfies the condition (ii), we obtain

\[
|D_{pj}| \leq \frac{cb_p}{\pi j} \int_{|\lambda|=b_p} \|Q\|^{-1} \|R^0_\lambda\|^{-1} \|d\lambda\| \leq \frac{cb_p}{\pi j} \int_{|\lambda|=b_p} \left(\frac{1}{2} \right)^{j-1} p^{3(j-1)} |d\lambda| < \frac{c}{p^{3j-11}}.
\]

This proves our claim. Thus, we have:

\[
\lim_{p \to \infty} D_{pj} = 0 \quad (j \geq 3). \tag{61}
\]

Finally, by (6) and by the inequalities in (60), we get

\[
|D^{(N)}_p| = \frac{1}{2\pi} \left| \int_{|\lambda|=b_p} \lambda^{2i} \text{tr}[(QR^0_\lambda)^{N+1}] d\lambda \right|
\]
\[
\leq \frac{b_p^2}{2\pi} \int_{|\lambda|=b_p} \|R_\lambda(QR^0_\lambda)^{N+1}\|_{\sigma_1(H_1)} d\lambda
\]
\[
\leq \frac{cb_p}{2\pi p^{5}} \int_{|\lambda|=b_p} \|QR^0_\lambda\|^N \|QR^0_\lambda\|_{\sigma_1(H_1)} d\lambda
\]
\[
< \frac{c}{p^{3N-9}}.
\]

Hence, we have:

\[
\lim_{p \to \infty} D^{(N)}_p = 0 \quad (N \geq 4). \tag{62}
\]

Now, we are ready to announce the second regularized trace formula of \(L\).
Theorem 3. If operator function $Q(t)$ satisfies the conditions (i)–(iv), then the following formula is satisfied:

$$
\sum_{m=0}^\infty \left(\sum_{n=1}^\infty (\lambda_{mn}^2 - m^2) - \frac{2m^4}{\pi} \int_0^\pi \text{tr} Q(t) \, dt - \frac{m^2}{2\pi} \left(\text{tr} Q'(\pi) - \text{tr} Q'(0) \right) + 2\mathcal{C} \right)
= C + \frac{1}{32} \left[\text{tr} Q^{iv}(0) + \text{tr} Q^{iv}(\pi) \right] + \frac{1}{4} \left[\text{tr} Q^2(0) + \text{tr} Q^2(\pi) \right],
$$

(63)

where

$$
C = \frac{1}{16\pi} \left(\text{tr} Q''(\pi) - \text{tr} Q''(0) \right) - \frac{3}{8\pi} \int_0^\pi \text{tr} Q^2(t) \, dt - \frac{1}{8\pi^2} \text{tr} \left[\int_0^\pi Q(t) \, dt \right]^2.
$$

Proof. By (4), (8), (12), (61) and (62), and by taking $h(t) = \text{tr} Q^{iv}(t) + 8\text{tr} Q^2(t)$ we obtain

$$
\sum_{m=0}^\infty \left(\sum_{n=1}^\infty (\lambda_{mn}^2 - m^2) - \frac{2m^4}{\pi} \int_0^\pi \text{tr} Q(t) \, dt - \frac{m^2}{2\pi} \left(\text{tr} Q'(\pi) - \text{tr} Q'(0) \right) \right)
- \frac{1}{8\pi} \left(\text{tr} Q''(0) - \text{tr} Q''(\pi) \right) - \frac{3}{4\pi} \int_0^\pi \text{tr} Q^2(t) \, dt - \frac{1}{4\pi^2} \text{tr} \left[\int_0^\pi Q(t) \, dt \right]^2
= \frac{1}{8\pi} \int_0^\pi \text{tr} Q^2(t) \, dt + \frac{1}{8\pi} \sum_{m=1}^\infty \int_0^\pi h(t) \cos 2mt \, dt - \frac{1}{8\pi^2} \text{tr} \left[\int_0^\pi Q(t) \, dt \right]^2
- \frac{1}{8\pi} \left(\text{tr} Q''(0) - \text{tr} Q''(\pi) \right)
,$$

(64)

when $p \to \infty$. Note that

$$
\frac{1}{8\pi} \sum_{m=1}^\infty \int_0^\pi h(t) \cos 2mt \, dt = \frac{1}{16\pi} \sum_{m=1}^\infty \left[\int_0^\pi h(t) \cos 2mt \, dt + (-1)^m \int_0^\pi h(t) \cos 2mt \, dt \right]
= \frac{1}{32} \left(\sum_{m=1}^\infty \left[\frac{2}{\pi} \int_0^\pi h(t) \cos mt \, dt \right] \cos m0 + \frac{1}{\pi} \int_0^\pi h(t) \, dt \cos 0 \right)
+ \frac{1}{32} \sum_{m=1}^\infty \left[\frac{2}{\pi} \int_0^\pi h(t) \cos mt \, dt \right] \cos m\pi + \frac{1}{\pi} \int_0^\pi h(t) \, dt \cos 0 \pi
- \frac{1}{16\pi} \int_0^\pi h(t) \, dt
= \frac{1}{32} \left[h(0) + h(\pi) \right] - \frac{1}{16\pi} \left(\text{tr} Q''(\pi) - \text{tr} Q''(0) \right) - \frac{1}{2\pi} \int_0^\pi \text{tr} Q^2(t) \, dt.
$$

(65)

Thus, from (64) and (65) we find:

$$
\sum_{m=0}^\infty \left(\sum_{n=1}^\infty (\lambda_{mn}^2 - m^2) - \frac{2m^4}{\pi} \int_0^\pi \text{tr} Q(t) \, dt - \frac{m^2}{2\pi} \left(\text{tr} Q'(\pi) - \text{tr} Q'(0) \right) \right)
+ \frac{1}{8\pi} \left(\text{tr} Q''(\pi) - \text{tr} Q''(0) \right) - \frac{3}{4\pi} \int_0^\pi \text{tr} Q^2(t) \, dt - \frac{1}{4\pi^2} \text{tr} \left[\int_0^\pi Q(t) \, dt \right]^2
= \frac{1}{16\pi} \left(\text{tr} Q''(\pi) - \text{tr} Q''(0) \right) - \frac{3}{8\pi} \int_0^\pi \text{tr} Q^2(t) \, dt - \frac{1}{8\pi^2} \text{tr} \left[\int_0^\pi Q(t) \, dt \right]^2
+ \frac{1}{32} \left[\text{tr} Q^{iv}(0) + \text{tr} Q^{iv}(\pi) \right] + \frac{1}{4} \left[\text{tr} Q^2(0) + \text{tr} Q^2(\pi) \right].
$$

Denoting by

$$
C = \frac{1}{16\pi} \left(\text{tr} Q''(\pi) - \text{tr} Q''(0) \right) - \frac{3}{8\pi} \int_0^\pi \text{tr} Q^2(t) \, dt - \frac{1}{8\pi^2} \text{tr} \left[\int_0^\pi \text{tr} Q(t) \, dt \right]^2
$$

we obtain (63), which is the formula for the second regularized trace of the operator L. □
Example

Take $\mathcal{H}_1 = L^2(\mathcal{H}_2; [0, \pi])$ where \mathcal{H} is a separable Hilbert space. Consider the operator function $Q(t) = (2\pi)^{-1}tT \ (t \in [0, \pi])$ where, for every $u \in \mathcal{H}$, $T : \mathcal{H} \rightarrow \mathcal{H}$ is given by

$$
Tu = \sum_{i=1}^{\infty} i^{-2} \langle u, \phi_i \rangle_{\mathcal{H}} \phi_i
$$

with the orthonormal basis $\{\phi_i\}_{i \geq 1}$ in \mathcal{H}. Here $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is the inner product on \mathcal{H}. We first show that, for every $t \in [0, \pi]$ the operator function $Q(t)$ is a trace-class (kernel) operator on \mathcal{H}. To understand this, it is enough to see that T is a trace-class operator: For every $u, v \in \mathcal{H}$ we have

$$
\langle Tu, v \rangle_{\mathcal{H}} = \sum_{i=1}^{\infty} i^{-2} \langle u, \phi_i \rangle_{\mathcal{H}} \langle \phi_i, v \rangle_{\mathcal{H}} = \sum_{i=1}^{\infty} i^{-2} \langle u, \phi_i \rangle_{\mathcal{H}} \langle \phi_i, v \rangle_{\mathcal{H}} = \sum_{i=1}^{\infty} \langle u, i^{-2} \langle \phi_i, \phi_i \rangle_{\mathcal{H}} \phi_i \rangle_{\mathcal{H}} = \langle u, T v \rangle_{\mathcal{H}}.
$$

Since T has eigenvalues $\lambda_i = s_i = i^{-2} \ (i = 1, 2, 3, \cdots)$, called s-numbers, T is also a trace-class operator. It is also easy to see that $Q'(t) = (2\pi)^{-1}T$ and $Q^{(i)}(t) = 0$ for $i \geq 2$ with respect to the norm of $\sigma_1(\mathcal{H})$. This implies the self-adjointness of $Q^{(i)}(t)$ for $i = 0, 1, 2, \cdots$; that is, we have

$$
[Q^{(i)}(t)]^* = Q^{(i)}(t) \quad (i = 0, 1, 2, \cdots).
$$

Here, we also notice that Q is a self-adjoint, trace-class operator from \mathcal{H}_1 to \mathcal{H}_1.

On the other hand, since $\|T\|_{\mathcal{H}} = 1$ we find $\|Q\| < \frac{1}{2}$; and since $\|Q(t)\phi_n\| \leq \sqrt{\pi} n^{-2}$ we get

$$
\sum_{i=1}^{\infty} \|Q(t)\phi_n\| < \infty.
$$

4. Conclusions

We introduced and computed a new second regularized trace formula for a fourth-order differential operator with a bounded operator coefficient defined on a separable Hilbert space. This formula can be generalized to an even-order differential operator through the techniques we used here. On the other hand, the regularized trace can be also computed on a separable Banach space, which is a continuous dense embedding in a separable Hilbert space [23]. The trace formulae of these operators are used in many branches of mathematics, mathematical physics and quantum mechanics. For example, the resonant frequencies of the rotating turbine blade can be determined using fourth-order differential operators with the operator coefficients. The quantum mechanics of particles in the wave mechanical formulation cannot be completely represented by a wave-like structure. For example, electron spin degrees of freedom do not imply the action of a gradient operator. Therefore, it is useful to reformulate quantum mechanics in a framework that only includes differential operators.

Author Contributions: Conceptualization, E.G. and A.C.; methodology, E.G.; software, A.C.; validation, E.G. and A.C.; formal analysis, E.G. and A.C.; investigation, E.G. and A.C.; writing—original draft preparation, E.G. and A.C.; writing—review and editing, E.G. and A.C.; supervision, E.G.; project administration, E.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yurko, V.A. Inverse nodal problems for Sturm-Liouville operators on star-type graphs. J. Inverse Ill Posed Probl. 2008, 16, 715–722. [CrossRef]
2. Rempel, S.; Schulze, B.W. Index Theory of Elliptic Boundary Problems; Akademie-Verlag: Berlin, Germany, 1982.
3. Gelfand, I.M.; Levitan, B.M. On a formula for eigenvalues of a differential operator of second order. Dokl. Akad. Nauk SSSR 1953, 88, 593–596.
4. Dikii, L.A. About a formula of Gelfand-Levitan. Uspekhi Math. Nauk 1953, 8, 119–123.
5. Fulton, T.C.; Pruess, S.A. Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems. J. Math. Anal. Appl. 1994, 188, 297–340. [CrossRef]
6. Guseynov G.S.; Levitan, B.M. On the trace formulas for Sturm-Liouville operator. Vestn. MGUI Ser. Mat Mek. 1978, 1, 40–49. (In Russian)
7. Halberg, C.J.; Kramer, V.A. A generalization of the trace concept. Duke Math. J. 1960, 27, 607–618. [CrossRef]
8. Levitan, B.M. The computation of the regularized trace of Sturm-Liouville operator. Uspekhi Mat. Nauk 1964, 19, 161–164.
9. Levitan, B.M.; Sargsyan, I.S. Sturm-Liouville and Dirac Operators; Kluwer: Dordrecht, The Netherlands, 1991.
10. Adıgüzelov, E.E.; Sezer, Y. The second regularized trace of a self adjoint differential operator given in a finite interval with bounded operator coefficient. Math. Comput. Model. 2011, 53, 553–565. [CrossRef]
11. Baksı, Ö.; Karayel, K.; Sezer, Y. Second regularized trace of a differential operator with second order unbounded operator coefficient given in a finite interval. Oper. Matrices 2017, 11, 735–747. [CrossRef]
12. Chalilova, R.Z. On regularization of the trace of the Sturm-Liouville operator equation. Funkts. Anal. Teor. Funktsiy I Ik Pril. Mahacağıla 1976, 3, 154–161. (In Russian)
13. Gül, E. On the regularized trace of a second order differential operator. Appl. Math. Comput. 2008, 198, 471–480. [CrossRef]
14. Hira, F. The regularized trace of Sturm-Liouville problem with discontinuities at two points. Inverse Probl. Sci. Eng. 2017, 25, 785–794. [CrossRef]
15. Karayel, S.; Sezer, Y. The regularized trace formula for a fourth order differential operator given in a finite interval. J. Inequalities Appl. 2015, 316, 1–10. [CrossRef]
16. Maksudov, F.G.; Bayramoglu, M.; Adıgüzelov, E.E. On regularized trace of Sturm-Liouville operator on a finite interval with the unbounded operator coefficient. Dokl. Akad. Nauk SSSR Sov. Math. Dokl. 1984, 30, 169–173.
17. Polyakov, D.M. Formula for regularized trace of a second order differential operator with involution. J. Math. Sci. 2020, 251, 748–759. [CrossRef]
18. Sen, E.; Bayramov, A.; Orucoglu, K. Regularized trace formula for higher order differential operators with unbounded coefficients. Electron. J. Differ. Equ. 2016, 31, 1–12.
19. Akgun, F.A.; Bayramoglu, M.; Bayramov, A. The second regularized trace formula for the Sturm-Liouville operator. Miskolc Math. Notes 2019, 20, 17–32. [CrossRef]
20. Gül, E. The trace formula for a differential operator of fourth order with bounded operator coefficients and two terms. Turk. J. Math. 2004, 28, 231–254.
21. Gohberg, I.C.; Krein, M.G. Introduction to the Theory of Linear Non-Self Adjoint Operators; AMS: Providence, RI, USA, 1969.
22. Kirillov, A.A. Elementary Theory of Representations; Springer: New York, NY, USA, 1976.
23. Gül, E.; Gill, T.L. Regularized Trace on Separable Banach Spaces. TWMS J. Apl. Eng. Math. 2021, in press.