The association of follicle stimulating hormone receptor (FSHR) gene polymorphism of on egg productivity in hybrid chicken
(Gallus gallus gallus, Linnaeus 1758)

RIKHA RISKI KURNIA1, INDRA LESMANA1, ADITYA RAHMAN ERNANTO1, AYUDHA BAHANA ILHAM PERDAMAIAN1, TRIJOKO2, BUDI SETIADI DARYONO1,*

1Laboratory of Genetics and Breeding, Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia. Tel.: +62-274-580839, Fax.: +62-274-6492355, *email: bs_daryono@mail.ugm.ac.id, ayudha.bahana1@mail.ugm.ac.id
2Laboratory of Animals Systematic, Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia

Abstract. Kurnia RR, Lesmana I, Ernanto AR, Perdamaian ABI, Trijoko, Daryono BS. 2021. The association of follicle stimulating hormone receptor (FSHR) gene polymorphism of on egg productivity in hybrid chicken (Gallus gallus gallus, Linnaeus 1758). Biodiversitas 22: 1221-1226. Pelung chicken genetics Improvement by selective breeding to Layer Lohmann Brown was successfully developed F1 which yielded 140 eggs for 300 days of production. BC1 chicken derived from ♀ Layer and ♂ FSHR (♀ Layer vs ♂ Pelung chicken). Polymorphism on cFSHR gene promoter was potential genetic marker candidate to assist the selection. This research aims to study the BC1 chicken egg-related traits performance for 16 weeks and study the correlation of cFSHR polymorphism to egg productivity. FSHR gene promoter was showed using sanger sequencing. Chicken were grouped based on their haplotype. Chicken were maintained in battery cage for observation of egg production. The results show that there is a difference of BC1 chicken DOC weight from different egg weight. The six SNP polymorphisms exist on cFSHR gene promoter fragments on 10, 51, 59, 121, 233, 331 nucleotides and conducted 7 haplotype group. The highest egg production in BC1 chicken on TTGCYA and lowest egg production on TGYYG haplotype. Based on the correlation test there was a positive correlation at p > 0.05 between BC1 chicken TTGCYA haplotype with egg production and positive correlation at p < 0.05 between BC1 TAGTTA haplotype with egg length.

Keywords: Backcross, cFSHR gene promoter, egg productivity, hybrid chicken

INTRODUCTION

Chicken eggs are one of the economically important products in Indonesia. Egg price is relatively affordable compared with other sources of animal protein. The consumption of chicken eggs increased in 2015 by 3.57% per year while the consumption of local chicken eggs during 1996-2015 on average decreased by 2.62% per year. Layer chicken egg consumption in Indonesia is higher than the local chicken eggs, this is because the price is relatively more expensive and limited in number.

Indonesia is known as the largest chicken germplasm center after China and India. This is evidenced by the presence of various types of local chickens spread in Indonesia with different morphological characters, such as Pelung chicken in Cianjur, West Java (Daryono et al. 2020), Kokok-Balenggek chicken in Solok District, West Sumatra, and Kedu chicken in Temanggung, Central Java (Ulfa et al. 2016). Local chicken in Indonesia has low productivity, so it has not been able to serve as a national food source. Therefore, it is necessary to perform genetic improvement to support the independence of the provision of food sources of animal protein.

Marker Assisted Selection (MAS) approach can accelerate the selection process by analyzing the interrelationship between quantitative traits and genetic variations. Chicken egg productivity was one of the interesting quantitative traits. Laboratory of Genetics and Breeding, Faculty of Biology, Universitas Gadjah Mada (UGM) since 2006 has performed breeding program to produce new chicken lines with local chicken qualitative character but have broiler fast growth rate (Utama et al. 2018; Tanjung et al. 2019; Perdamaian and Daryono 2020). Hybrid chicken (F1) derived from female broiler vs male Pelung, has a faster growth rate than Pelung, but its plumage color varies and still resembles a broiler. Another breeding scheme was brown layer chicken to produce F1 hybrid chicken, which possesses an appropriate growth rate (Perdamaian et al. 2017). It is also necessary to use brown layer chicken as female parent to produce hybrid chicken with high egg productivity.

In our previous study using High-Resolution Melt (HRM) approach, hybrid chicken derived from crossing Layer Lohmann Brown to male Pelung has improved follicular development than Pelung chicken (data not shown). Those follicular development related to the different frequency of alleles in FSHR gene promoter polymorphism. That hybrid chicken has high egg productivity which produces approximately 140 eggs during 300 days of production (unpublished data). Back Crossing hybrid chicken to Layer Lohmann Brown was necessary to produce First Back Cross (BC1) chicken which
hopely possesses higher accumulated of egg quantitative traits.

One of importance genes related to eggs productivity, follicle-stimulating hormone receptor (FSHR) gene express protein which serve as receptor of follicle-stimulating hormone (FSH). The FSH role was to regulate follicle development and recruitment in the ovary (Lee et al. 2019; Guo et al. 2020). Polymorphism in the follicle-stimulating hormone receptor (FSHR) gene was widely reported to affect egg productivity-related traits in chicken (Lee et al. 2011; Lee et al. 2019). Polymorphism on the 181 A > T of FSHR positively correlates to the Beijing You chicken breed egg productivity (Lee et al. 2011).

In this research, FSHR gene polymorphism was investigated for egg quality and productivity in the BC1 lines of Indonesian hybrid chicken.

MATERIALS AND METHODS

This research was conducted in April 2017-June 2019, Lohman Brown and F1 hybrid chicken (Figure 1) mating were done in breeding facility located at Innovation Center of Agro Technology, Universitas Gadjah Mada (PIAT UGM), Yogyakarta, Indonesia. Eggs were collected and artificially incubated. Molecular analysis was done at Laboratory of Genetics and Breeding, and Central Laboratory (FALITMA) of Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Hens maintenance

Standard broiler chicken feed (AD II, Japfa, Indonesia) was used for raising Day Old Chicken (DOC) of BC1 chicken. Ten chicken was given free access of food and water. Ten female chickens of adult BC1 line were kept in semi-intensive 4x4 meters pens and adequate ventilation at PIAT UGM. Natural lighting with no special photoperiodization treatment was chosen. Chickens were maintained in battery cage for 4 months from the start laying period.

Egg weight

In this research, the weight of female Lohmann Brown chicken eggs was discriminated against for early selection of BC1 chicken line. Eggs with more than or equal to 60 grams in insert in group A, while eggs less than 60 grams in insert in group B. This grouping aims to determine whether there is any influence of egg weight on the weight of DOC. Independent T-test was used to differentiate the two groups.

![Figure 1. The picture of BC1 chicken, female Layer and F1 (Layer x Pelung)](image)
Egg width and length

Egg produced from BC1 chicken was collected and its weight and length recorded each haplotype. Chicken egg length and width were measured using vernier caliper.

Genomic DNA isolation

Genomic DNA was extracted using Chelex method followed our previous report (Ernanto et al. 2018). with the addition of TE Buffer in the sample, centrifuge was done at 13,000 rpm for 13 minutes. Supernatant was discarded, and 5% Chelex solution, 18 μL 0.05 M DTT, 2 μL proteinase K (10 mg /mL) was added to the remaining pellet. The solution was then vortexed prior to incubated at 56 ºC for 2 hours with vortexed every 15 minutes. Samples were centrifuged at 13,000 rpm for 3 minutes and its supernatant was transferred into new microtubes and stored at -20 ºC before use.

Genomic DNA amplification

Gene of interest was amplified using thermocycler (BioRad, US) with specific primer (IDT, Malaysia). 25 μL cocktail consisted of 12.5 μL Master mix PCR kit (KAPAtaqTM; US), 2.5 μL forward (5'-TCA-GCT-GAG-GCC-TGT-GAT-TTC-3') and reverse (5'-GGA-GAG-AAG-CGA-GGC-TGA-TTT-3') primer, 10 μL DNA template (±50 ng/μL), and 10 μL ddH2O.

The PCR reaction was performed on a thermal cycler with a pre-denaturation condition at 95 ºC for 3 minutes. Then 30 cycles of denaturation at 95 ºC for 15 seconds, annealing at 60 ºC for 20 seconds, and extension at 72 ºC for 25 seconds. Post extension for 5 minutes at 72 ºC. Horizontal DNA electrophoresis was done at 2% agarose gel.

Sanger sequencing of FSHR gene

The obtained PCR product was quoted to Sanger sequencing (1st BASE, Malaysia). FSHR gene promoter (348 bp) were sequenced with forward (5’-TGCCTGGGTGAGGCACATA-3’) and reverse (5’-CACCCTTCTTGAAGGTC-3’) primer. DNA Baser software was used to observe the presence of single nucleotide polymorphism (SNP).

Statistical analysis

The correlation test was done using SPSS 16.0 software to determine the relationship between the polymorphism of the cFSHR gene promoter and the productivity of the hybrid chicken egg backcross1 at a 95% confidence level.

RESULTS AND DISCUSSION

In this study, Backcross or BC1 chicken line was derived from crossing female Lohmann Brown chicken with F1 (female Lohmann Brown x male Pelung) chicken. Lohmann Brown chicken eggs weight were discriminated for early selection of BC1 chicken. The average weight of group A and group B DOC were significantly different at 99% confidence level (p <0.01). The result of this selection is chicken with higher body weight and good egg productivity than Pelung chicken which had 500g body weight and around 30.17 eggs/23 weeks (Kilatsih et al. 2020).

Ten females of BC1 chicken has six different variations of the feather which was white (9%), yellow (27%), brown (37%), light brown (9%), dark brown (9%), and brown-gray color (9%). Genomic DNA was extracted using the phenol-chloroform technique and amplified by using a conventional thermal cycler (Figure 2).

After amplified using conventional thermal cycler, PCR products were Sanger sequenced (Figure 3).

Figure 3. The partial sequence of FSHR promoter gene of BC1 chicken

Figure 2. The DNA band of chicken FSHR gene visualized by 2% agarose gel electrophoresis shift. Line 1 to 10 indicate the BC1 chicken
Figure 4. The egg productivity of BC1 chicken each haplotype group.

Table 1. The genotype of BC1 chicken according to cFSHR gene polymorphism

Chicken	SNP position					
	10	51	59	121	233	331
1	TT	TT	AA	CC	TT	AA
2	CC	TT	AA	CC	CT	GG
3	TT	TT	GG	CT	CT	GG
4	TT	TT	GG	CT	CT	AA
5	TT	TT	GG	CC	CT	AA
6	TT	TT	AA	CC	CT	AA
7	TT	AA	GG	TT	TT	AA
8	TT	TT	GG	CT	CT	AA
9	CC	TT	AA	CC	TT	GG
10	TT	TT	GG	CC	CT	AA

BC1 chickens were comprised of seven haplotypes. Of which, three haplotypes consisted of two individuals, and four haplotypes consisted of one individual. The eggs productivity of BC1 chickens of each haplotype was observed for 16 weeks. The eggs production BC1 chickens each haplotype per week for 16 weeks is presented in Figure 4.

In this study, the egg production of BC1 chickens began recorders after 11th week of egg production then observed for 16 weeks. There was a trend line showing the cumulative average number of eggs for 16 weeks. In general, BC1 chickens with TTACYA haplotype has two production peaks at 6th and 15th week. In BC1 chickens with CTACTG and CTACTA haplotypes have three peaks. First production peak of CTACTA occurring at the 2nd week while CTACTG at 3rd week of observation. The second and third peaks are the same at 9th and 15th week of observation.

BC1 chickens with TTGGYYA and TTGCYA haplotypes have the same 3 peaks at 2, 8, and 15 weeks. BC1 chickens with haplotype TAGTTA have 2 peaks at 8 and 15 weeks. In haplotype TTGGYYG of BC1 chickens has 2 peaks that are on weeks 2 and 10. The average number of cumulative productions of BC1 chicken in each haplotype group for 16 weeks presented in Figure 5.

The cumulative average production of BC1 chicken egg for 16 weeks reached as many as 39.11. local chicken can produce as many as 25 eggs and the layer chicken can produce as many as 75 eggs at the same age which is maintained by the litter system. Figure 6 shows that the TTGCYA haplotype has an average high egg production compared to the other six haplotypes. The TTGGYYG haplotype is the second-highest, followed by the CTACTG haplotype. There are 3 groups of haplotypes with the same amount of egg productivity: TTACYA, CTACTA, and TTGGYYA. Then haplotype TAGTTA relatively low productivity eggs. Thus, the TTGCYA haplotype can be used as a marker or marker in egg productivity selection.

Table 2. The haplotype of BC1 chicken based on cFSHR gene polymorphism

Haplotype	Population percentage (%)
TTGCYA	20%
TTGYYA	20%
TTACYA	20%
CTACTG	10%
CTACTA	10%
TAGTTA	10%
TTGGYYG	10%

FSHR gene sequences of ten BC1 chickens were analyzed using DNA Baser software. The genotype of BC1 chicken based on FSHR gene polymorphism can be seen in Table 1.

Based on Table 1, BC1 chicken has six polymorphisms on fragment DNA of 10, 51, 59, 121, 233, and 331. The recapitulation of these SNP further grouped into seven haplotypes. The result of grouping of individuals based on haplotype can be seen in Table 2.
Based on Figure 3 it is known that the TAGTTA haplotype has a higher average egg length than the other six haplotypes. The correlation test using SPSS 16.0 shows a positive correlation \(r = 0.725 \) and shows the level of significance at the level of trust \(p < 0.05 \). The correlation test between chicken haplotype and average egg width using SPSS showed that the positive correlation was very weak \(r = 0.194 \) and did not show the significance level \(p > 0.05 \).

Discussion

Chicken crossbreeding aims to produce hybrid which possesses heterosis effect (Isa et al. 2020). The breeding program for layer chicken was exhaustive job since heritability of egg-related traits is low to medium (Du et al. 2020). In this study, BC1 chicken line was derived from crossing female Lohmann Brown chicken with F1 (female Lohmann Brown x male Pelung) chicken. Originally, this crossing aim to produce a chicken with more homoyzygous plumage and eggs productivity related traits but BC1 remains had plumage color variation.

There was a positive correlation between the weight of eggs against the resulting hatching weight. The weightier the egg will produce weightier DOC. This is because the eggs with a high weight have a high egg yolk and egg white’s composition, while the eggs with a small weight have a yellow and egg whites are slightly composition. Egg yolk is a source of energy used for the growth of day-old chicken during the hatching process (Ayeni et al. 2020; Duman and Şekeroğlu 2017).

Haplotype is an interaction between alleles in DNA fragments. Haplotype analysis that known demonstrates the identification of more efficient genetic variations compared with one single nucleotide polymorphism (SNP) analysis. Grouping of haplotypes BC1 chickens was performed on a battery cage for egg production observation for 16 weeks.

The productivity of BC1 chicken was still relatively low around 39.11 egg/chicken, this is because not able to produce the same amount of egg production as its parent F1, but its egg productivity has been above the productivity of Pelung chicken. Low egg productivity levels BC1 chickens can be caused by different maintenance systems using a cage system or battery enclosure.

The promoter of FSHR gene was widely studied in poultry (Liu et al. 2015; Liu et al. 2018; Li et al. 2019; Sun et al. 2020; Du et al. 2020). Several studies found causative DNA mutations at promoter region of FSHR gene associated with egg-related traits. These mutations affect gene expression (Xu et al. 2017; Brady et al. 2020). The miRNA expression pattern in ovarian tissue was also reported to be linked to egg production (Wu et al. 2016).

Study in Khorasan native fowl, mutation in exon 1 of IL-2 compromises the protein structure (Tohidi and Javanmard 2020). Expression level of FSHR is marker for human ovarian cancer (Wei et al. 2018).

In this study, correlation test result shows a weak positive correlation \(r = 0.250 \) but does not show the level of significance \(p > 0.05 \). This suggests that the presence of polymorphisms in eFSHR gene promoters although single nucleotide polymorphism will affect allele interactions in egg productivity.
The results showed a positive trend between polymorphism of cFSHR gene promoter and egg production although it did not show the level of significance at p < 0.05. This research needs to be further developed to see the promoter activity at mRNA level. It is known for its polymorphism impact on gene expression with a large chicken population. Further research must evaluate the Food conversion ratio (FCR) of BC1 chicken since feed contributes up to 80% of total cost.

The eggs productivity of BC1 chicken was higher than Pelung chicken, but lower than its predecessor F1 and Lohmann Brown. There was polymorphism within six SNPs in the cFSHR gene promoter in the 10, 51, 59, 121, 233, and 159 nucleotides, and there was a positive correlation at p > 0.05 between polymorphism of cFSHR gene promoter fragment to egg number, egg weight, egg width and positive correlation at p < 0.05 between polymorphism of cFSHR gene promoter to egg length.

ACKNOWLEDGEMENTS

The authors want to thank Gama Ayam Research Team for valuable assistance during chicken handling, Faculty of Biology, Universitas Gadjah Mada (UGM) for providing molecular genetics laboratory, and Pusat Inovasi Agro Teknologi (PIAT) UGM for providing breeding facility. In 2019 this research was financially supported by Applied Biology, Universitas Gadjah Mada for valuable assistance during chicken handling, Faculty of Research Technology and Higher Education of Indonesia.

REFERENCES

Ayeni AO, Agbede JO, Ibagan FA, Onbi GE, Adegehenro M. 2020. Effects of storage periods and positioning during breeding on hatchability and weight of the hatched chicks from different egg sizes. Bull Natl Res Cent 44: 101. DOI: 10.1186/s42269-020-00362-4.

Brady K, Long JA, Liu HC, Porter TE. 2020. Differences in in vitro responses of the hypothalamo–pituitary–gonadal hormonal axis between low- and high-egg-producing turkey hens. Poul Sci 99 (11): 6221-6232. DOI: 10.1016/j.psj.2020.08.048.

Daryono BS, Maslah M, Perdamaian ABI. 2020. Vocalization characters and forkhead box P2 (FoxP2) polymorphism in Indonesian crowing-type chicken (Gallus gallus domesticus). Iranian J Appl Anim Sci 10 (2): 131-140.

Du Y, Liu L, He Y, Dou T, Jia J, Ge C. 2020. Endocrine and genetic factors affecting egg laying performance in chickens: A review. Br Poult Sci 61: 538-549. DOI: 10.1080/00071668.2020.1758299.

Duman M, Sekeroglu A. 2017. Effect of egg weights on hatching results, broiler performance and some stress parameters. Brazilian J Poult Sci 19 (2): 255-262. DOI: 10.1590/1806-9061-2016-0372.

Guo C, Liu G, Zhao D, Mi Y, Zhang C, Li J. 2019. Interaction of follicle-stimulating hormone and stem cell factor to promote primordial follicle assembly in the chicken. Front Endocrinol 10: 1-13. DOI: 10.3389/fendo.2019.00091.

Isla AM, Sun Y, Shi L, Jiang L, Li Y, Fan J, Wang P, Ni A, Huang Z, Ma H, Li D, Chen J. 2020. Hybrids generated by crossing elite laying chickens exhibited heterosis for clutch and egg quality traits. Poult Sci 99: 6332-6340.

Kilatish R, Perdamaian ABI, Joko T, Purwanto SH, Daryono BS. 2020. Effect analysis of Prolactin (PRL) gene polymorphisms on chicken egg productivity (Gallus gallus domesticus) BC1 from crossbreeding between Pelung and Layer chicken. Iranian J Appl Anim Sci 10 (4): 717-726.

Li X, Lu Y, Liu X, Xie X, Wang K, Yu D. 2019. Identification of chicken FSHR gene promoter and the correlations between polymorphisms and egg production in Chinese native hens. Reprod Domest Anim 54 (4): 702-711. DOI: 10.1111/rdia.13412.

Li G, Sun DX, Yu Y, Liu WJ, Tang SQ, Zhang Y, Zhang SL, Zhang Y. 2011. Genetic effect of the follicle-stimulating hormone receptor gene on reproductive traits in Beijing You chickens. Poult Sci 90 (11): 2487-2492. DOI: 10.3382/ps.2010-01327.

Liu L, Li D, Gilbert ER, Xiao Q, Zhao X, Wang Y, et al. 2015. Effect of monochromatic light on expression of Estrogen Receptor (ER) and Progesterone Receptor (PR) in ovarian follicles of chicken. PLoS ONE 10 (12): e0144102. DOI: 10.1371/journal.pone.0144102.

Liu L, Xiao Q, Gilbert ER, Cui Z, Zhao X, Wang Y, Yin H, Li D, Zhang H, Zhu Q. 2018. Whole-transcriptome analysis of atrophic ovariaries in broody chickens reveals regulatory pathways associated with proliferation and apoptosis. Sci Rep 8: 7231. DOI: 10.1038/s41598-018-25103-6.

Perdamaian ABI, Saragih HTSG, Daryono BS. 2017. Effect of varying level of crude protein and energy on insulin-like growth factor-i expression level in Indonesian hybrid chicken. Int J Poult Sci 16 (1): 1-5. DOI: 10.3923/ijpgs.2017.1.5.

Perdamaian ABI, Daryono BS. 2020. Polymorphism of prolactin and prolactin promoter genes and its association with broodiness and body weight in Indonesian chicken lines. Iranian J Appl Anim Sci 30: 311-316.

Sun Y, Liu R, Lu X, Hu Y, Zhao G, Zheng M, Chen J, Wang H, Wen J. 2013. Associations of polymorphisms in four candidate genes with carcass and/or meat-quality traits in two meat-type chicken lines Ann Biotechnol 24 (5): 53-65. DOI: 10.1080/10495398.2012.742909.

Tanjung A, Saragih HTSG, Trijoko, Soenarwan HP, Widianto S, Mahardhika IWS, Daryono BS. 2019. Short Communication: Polymorphism of myostatin gene and its association with body weight traits in a hybrid of GAMA chicken (Gallus gallus domesticus) Limn. 1758). Biodiversitas 20 (11): 3207-3212. DOI: 10.13057/biodiv/d201113.

Tohari R, Javanmard A. 2020. Identification of novel mutations in IL-2 gene in Khorasan Native Fowls. Poult Sci J 8 (1): 1-8. DOI: 10.22069/PSJ.2020.16789.1465.

Ulfah M, Kawahara-Miki R, Farajallah A, Muladno M, Dorshorst B, Martin A, Kono T. 2016. Genetic features of red and green junglefowl and relationship with Indonesian native chickens Sumatera and Kedu hitam. BMC Genom 17 (1): 320-328. DOI: 10.1186/s12864-016-2652-z.

Utama IV, Perdamaian ABI, Daryono BS. 2018. Plumage uniformity, growth rate and growth hormone polymorphism in Indonesian hybrid chickens. Intl J Poult Sci 17 (10): 486-492. DOI: 10.3923/ijps.2018.486.492.

Wei S, Lai L, Yang J, Zhuandi G. 2018. Expression levels of follicle-stimulating hormone receptor and implication in diagnostic and therapeutic strategy of ovarian cancer. Oncol Res Treat 41: 651-654. DOI: 10.1159/000490810.

Wu N, Gaur U, Zhu Q, Chen B, Xu Z, Zhao X, et al. 2016. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles. Anim Genet 48 (2): 205-216. DOI: 10.1111/age.12516.

Xu J, Gao X, Li X, Ye Q, Jebessa E, Abdalla BA, Nie Q. 2017. Molecular characterization, expression profile of the FSHR gene and its association with egg production traits in Muscovy duck. J Genet 96: 341-351. DOI: 10.1007/s12041-017-0783-x.