Nguyen Bin

Some unlimited families of minimal surfaces of general type with the canonical map of degree 8

Received: 18 April 2018 / Accepted: 28 August 2019 / Published online: 5 September 2019

Abstract. In this note, we construct nine families of projective complex minimal surfaces of general type having the canonical map of degree 8 and irregularity 0 or 1. For six of these families the canonical system has a non trivial fixed part.

1. Introduction

Let X be a smooth complex surface of general type (see [3] or [1]) and let $\varphi|_{K_X} : X \rightarrow \mathbb{P}^{p_g(X)-1}$ be the canonical map of X, where $p_g(X) = \dim \left(H^0(X, K_X) \right)$ is the geometric genus and K_X is the canonical divisor of X. A classical result of Beauville [2, Theorem 3.1] says that if the image of $\varphi|_{K_X}$ is a surface, either $p_g \left(\text{im} \left(\varphi|_{K_X} \right) \right) = 0$ or $\text{im} \left(\varphi|_{K_X} \right)$ is a surface of general type. In addition, the degree d of the canonical map of X is less than or equal to 36.

While surfaces with $d = 2$ has been studied thoroughly by Horikawa in his several papers such as [7–10], the case where d bigger than 2 remains to be one of the most interesting open problems in the theory of surfaces. Several surfaces with d bigger than 2 have been constructed, for example with $d = 3, 5, 9$ by Pardini [13] and Tan [18], $d = 6, 8$ by Beauville [2], $d = 4$ by Beauville [2], and Gallego and Purnaprajna [6], $d = 16$ by Persson [14] and Rito [17], $d = 12, 24$ by Rito [15, 16], etc.

In the same paper [2], Beauville also proved that the degree of the canonical map is less than or equal to 9 if $\chi(O_X) \geq 31$. Later, Xiao showed that if the geometric genus of X is bigger than 132, the degree of the canonical map is less than or equal to 8 [19]. In addition, he also proved that if the degree of the canonical map is 8 and geometric genus is bigger than 115, the irregularity $q = h^0 \left(\Omega^1_X \right)$ is less than or equal to 3 (see [20]). Beauville constructed an unlimited family of surfaces with

The author is supported by Fundação para a Ciência e Tecnologia (FCT), Portugal under the framework of the program Lisbon Mathematics Ph.D. (LisMath), Programa de Doutoramento FCT - PD/BD/113632/2015.

N. Bin (✉): Departamento de Matemática, Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. e-mail: nguyenbin@tecnico.ulisboa.pt

Mathematics Subject Classification: 14J29

https://doi.org/10.1007/s00229-019-01147-4
d = 8 and arbitrarily high geometric genus [2]. These surfaces have irregularity $q = 3$ and the canonical linear system of these surfaces is base point free.

In this note, we construct nine unlimited families of surfaces with $d = 8$ and $q = 0$ or $q = 1$. Furthermore, for some families the canonical linear systems are not base point free. The following theorem is the main result of this note:

Theorem 1. Let n be an integer number such that $n \geq 2$. Then there exist minimal surfaces of general type X with canonical map $\varphi_{|K_X|}$ of degree 8 and the following invariants

| K^2_X | $p_g(X)$ | $q(X)$ | $|K_X|$ is base point free |
|---------|----------|--------|--------------------------|
| $16n - 8$ | $2n + 1$ | 0 | Yes |
| $16n - 16$ | $2n$ | 0 | Yes |
| $16n - 16$ | $2n$ | 1 | Yes |
| $16n - 10$ | $2n$ | 0 | No |
| $16n$ | $2n + 1$ | 0 | No |
| $16n - 8$ | $2n$ | 0 | No |
| $16n - 8$ | $2n$ | 1 | No |
| $16n - 2$ | $2n$ | 0 | No |
| $16n$ | $2n$ | 1 | No |

The approach to construct these surfaces is using \mathbb{Z}_3^2—covers with some appropriate branch loci. Note that canonical maps defined by abelian covers of \mathbb{P}^2, and in particular the abelian covers with the group \mathbb{Z}_3^2, have been studied very explicitly by Du and Gao [5].

2. \mathbb{Z}_3^2 coverings

The construction of abelian covers was studied by Pardini [12]. Let H_{i_1,i_2,i_3} denote the nontrivial cyclic subgroup generated by (i_1, i_2, i_3) of \mathbb{Z}_3^2 for all $(i_1, i_2, i_3) \in \mathbb{Z}_3^2 \setminus (0, 0, 0)$, and denote by χ_{j_1,j_2,j_3} the character of \mathbb{Z}_3^2 defined by

$$\chi_{j_1,j_2,j_3}(a_1,a_2,a_3):= e^{(\pi a_1 j_1)i}e^{(\pi a_2 j_2)i}e^{(\pi a_3 j_3)i}$$

for all $j_1, j_2, j_3, a_1, a_2, a_3, a_4 \in \mathbb{Z}_2$. For sake of simplicity, from now on we use notations $D_1, D_2, D_3, D_4, D_5, D_6, D_7$ instead of $D(H_{0,0,1,0,0,1}), D(H_{0,1,0,0,1,0}), D(H_{0,1,0,1,0,0}), D(H_{1,0,0,1,0,0}), D(H_{1,0,1,0,0,0}), D(H_{1,1,0,0,0,0}), D(H_{1,1,1,0,0,0})$, respectively. For details about the building data of abelian covers and their notations, we refer the reader to Sections 1 and 2 of R. Pardini’s work ([12]). From [12, Theorem 2.1] we can define \mathbb{Z}_3^2—covers as follows:

Proposition 1. Let Y be a smooth projective surface with no 2-torsion. Let L_χ be divisors of Y such that $L_\chi \neq \mathcal{O}_Y$ for all nontrivial characters $\chi \in (\mathbb{Z}_3^2)^* \setminus \{\chi_{0,0,0}\}$. Let D_1, D_2, \ldots, D_7 be effective divisors of Y such that the branch divisor
Surfaces with the canonical map

B := \sum_{i=1}^7 D_i is reduced. Then \{L_x, D_j\}_{j, i} is the building data of a \(\mathbb{Z}_2^3 \)-cover \(f : X \rightarrow Y \) if and only if

\[
2L_{1,0,0} = D_4 + D_5 + D_6 + D_7 \\
2L_{0,1,0} = D_2 + D_3 + D_6 + D_7 \\
2L_{0,0,1} = D_1 + D_3 + D_5 + D_7 \\
2L_{1,1,0} = D_2 + D_3 + D_4 + D_5 \\
2L_{1,0,1} = D_1 + D_3 + D_4 + D_6 \\
2L_{0,1,1} = D_1 + D_2 + D_5 + D_6 \\
2L_{1,1,1} = D_1 + D_2 + D_4 + D_7.
\]

By [12, Theorem 3.1] if each \(D_\sigma \) is smooth and \(B \) is a simple normal crossings divisor, then the surface \(X \) is smooth.

Also from [12, Lemma 4.2, Proposition 4.2] we have:

Proposition 2. Let \(f : X \rightarrow Y \) be a smooth \(\mathbb{Z}_3^2 \)-cover with the building data \(D_1, D_2, \ldots, D_7, L_x, \forall x \in (\mathbb{Z}_3^2)^* \setminus \{\chi_{0,0,0}\} \). The invariants of \(X \) are as follows:

\[
2K_X \equiv f^* \left(2K_Y + \sum_{j=1}^7 D_j \right) \\
K_X^2 = 2 \left(2K_Y + \sum_{j=1}^7 D_j \right)^2 \\
p_g (X) = p_g (Y) + \sum_{x \in (\mathbb{Z}_3^2)^* \setminus \{\chi_{0,0,0}\}} h^0 (L_x + K_Y) \\
\chi (\mathcal{O}_X) = 8\chi (\mathcal{O}_Y) + \sum_{x \in (\mathbb{Z}_3^2)^* \setminus \{\chi_{0,0,0}\}} \frac{1}{2} L_x (L_x + K_Y).
\]

Notation 1. We denote \(P = (k_1, k_2, \ldots, k_7) \) when \(D_1, D_2, \ldots, D_7 \) contain \(P \) with multiplicity \(k_1, k_2, \ldots, k_7 \), respectively.

3. Constructions

3.1. Construction 1

In this section, we construct the surfaces in the first four rows of Theorem 1.

3.1.1. Construction and computation of invariants Let \(F_1 \) denote the Hirzebruch surface with the negative section \(\Delta_0 \) with self-intersection \(-1\) and let \(\Gamma \) denote a fiber of the ruling. Let \(D_2 = 2n \Gamma \) be \(2n \) fibers in \(F_1 \) and \(D_3, D_6, D_7 \in [2\Delta_0 + 2\Gamma] \) be smooth curves in general position. Let \(f : X \rightarrow F_1 \) be a \(\mathbb{Z}_2^3 \)-cover with the following branch locus

\[
B = D_1 + D_2 + D_3 + D_4 + D_5 + D_6 + D_7.
\]
where \(D_1 = D_4 = D_5 = 0 \). By Proposition 1, \(L_{0,1,0} \equiv 3 \Delta_0 + (n + 3) \Gamma \) and \(L_X \) is equivalent to either \(2 \Delta_0 + 2 \Gamma \) or \(\Delta_0 + (n + 1) \Gamma \) for all \(L_X \neq L_{0,1,0} \). Since each \(D_\sigma \) is smooth and \(B \) is a normal crossings divisor, \(X \) is smooth. Moreover, by Proposition 2, we get

\[
2K_X \equiv f^* (2 \Delta_0 + 2n \Gamma) .
\]

This implies that \(X \) is a minimal surface of general type. Furthermore, by Proposition 2, the invariants of \(X \) are as follows:

\[
K_X^2 = 8 (2n - 1) \quad (1)
\]

\[
p_g (X) = h^0 (\Delta_0 + n \Gamma) = 2n + 1 \quad (2)
\]

\[
\chi (\mathcal{O}_X) = 2n + 2. \quad (3)
\]

From (2) and (3), we get \(q (X) = 0 \).

We show that \(|K_X|\) is not composed with a pencil by considering the following double cover

\[
f_1 : X_1 \longrightarrow \mathbb{P}_1
\]

ramifying on \(D_2 + D_3 + D_6 + D_7 \). We have

\[
K_{X_1} \equiv f_1^* (\Delta_0 + n \Gamma) .
\]

Because \(|\Delta_0 + n \Gamma|\) is not composed with a pencil, \(|K_{X_1}|\) is not composed with a pencil, either. This leads to the fact that \(|K_X|\) is not composed with a pencil and the degree of the canonical map is 8. Moreover, \(\deg (\text{im} \varphi_{|K_X|}) = 2n - 1 \).

3.1.2. Variations

Now by adding a singular point to the above branch locus, we obtain the surfaces described in the second row of Theorem 1. In fact, by Proposition 1, a new branch locus can be formed by adding a point \(P = (0, 1, 1, 0, 0, 1, 1) \) (see Notation 1). And we consider the \(\mathbb{Z}_2^3 \)-cover on \(Y \) instead of \(\mathbb{P}_1 \), where \(Y \) is the blow up of \(\mathbb{P}_1 \) at \(P \). More precisely, let \(P \) be a point in \(\mathbb{P}_1 \) such that \(D_2, D_3, D_6, D_7 \) contain \(P \) with multiplicity 1, 1, 1, 1, respectively. Let \(Y \) be the blow up of \(\mathbb{P}_1 \) at \(P \) and \(E \) be the exceptional divisor. If we abuse notation and denote \(D_2, D_3, D_6, D_7, \Delta_0, \Gamma \) their pullbacks to \(Y \), then \(D_2 = 2n \Gamma + E, D_3 = 2 \Delta_0 + 2 \Gamma - E, D_6 = 2 \Delta_0 + 2 \Gamma - E \) and \(D_7 = 2 \Delta_0 + 2 \Gamma - E \). Let \(f : X \longrightarrow Y \) be a \(\mathbb{Z}_2^3 \)-cover with the following branch locus

\[
B = D_1 + D_2 + D_3 + D_4 + D_5 + D_6 + D_7,
\]

where \(D_1 = D_4 = D_5 = 0 \). The building data is as follows:

\[
\begin{align*}
L_{1,0,0} & \equiv 2 \Delta_0 + 2 \Gamma - E \\
L_{0,1,0} & \equiv 3 \Delta_0 + (n + 3) \Gamma - 2E \\
L_{0,0,1} & \equiv 2 \Delta_0 + 2 \Gamma - E \\
L_{1,1,0} & \equiv \Delta_0 + (n + 1) \Gamma - E \\
L_{1,0,1} & \equiv 2 \Delta_0 + 2 \Gamma - E \\
L_{0,1,1} & \equiv \Delta_0 + (n + 1) \Gamma - E \\
L_{1,1,1} & \equiv \Delta_0 + (n + 1) \Gamma - E.
\end{align*}
\]
Similarly to the above, we obtain minimal surfaces of general type with

\[K^2 = 16n - 16, \ p_g = 2n, q = 0, \ d = 8, \]

and \(\deg(\text{im} \varphi_{|K_X|}) = 2n - 2. \) Moreover, \(\varphi_{|K_X|} \) is a morphism.

Analogously, by Proposition 1, a point \((0, 0, 0, 0, 0, 2, 2)\) can be added to the original branch locus. In fact, let \(P \) be a point in \(\mathbb{P}^1 \) such that \(D_6, D_7 \) contain \(P \) with multiplicity 2, 2, respectively. Let \(Y \) be the blow up of \(\mathbb{P}^1 \) at \(P \) and \(E \) be the exceptional divisor. If we abused notation and denote \(D_2, D_3, D_6, D_7, \Delta_0, \Gamma \) their pullbacks to \(Y \), then \(D_2 = 2n\Gamma, D_3 = 2\Delta_0 + 2\Gamma, D_6 = 2\Delta_0 + 2\Gamma - 2E \) and \(D_7 = 2\Delta_0 + 2\Gamma - 2E. \) Let \(f : X \rightarrow Y \) be a \(\mathbb{Z}_2^3 \)-cover with the following branch locus

\[B = D_1 + D_2 + D_3 + D_4 + D_5 + D_6 + D_7, \]

where \(D_1 = D_4 = D_5 = 0. \) The building data is as follows:

\[
\begin{align*}
L_{1,0,0} &\equiv 2\Delta_0 + 2\Gamma - 2E \\
L_{0,1,0} &\equiv 3\Delta_0 + (n + 3)\Gamma - 2E \\
L_{0,0,1} &\equiv 2\Delta_0 + 2\Gamma - E \\
L_{1,1,0} &\equiv \Delta_0 + v(n + 1)\Gamma \\
L_{1,0,1} &\equiv 2\Delta_0 + 2\Gamma - E \\
L_{0,1,1} &\equiv \Delta_0 + (n + 1)\Gamma - E \\
L_{1,1,1} &\equiv \Delta_0 + (n + 1)\Gamma - E.
\end{align*}
\]

We get minimal surfaces of general type with

\[K^2 = 16n - 16, \ p_g = 2n, q = 1, \ d = 8, \]

and \(\deg(\text{im} \varphi_{|K_X|}) = 2n - 2. \) Furthermore, \(\varphi_{|K_X|} \) is a morphism. Therefore we obtain the surfaces described in the third row of Theorem 1. The Albanese pencil of these surfaces \(X \rightarrow \text{Alb}(X) \) is the pullback of the Albanese pencil of the intermediate surface \(Z, \) where \(Z \) is obtained by the \(\mathbb{Z}_2 \)-cover ramifying on \(2L_{1,0,0}. \) For details about the surfaces with \(q > 0, \) we refer the reader to the work of Mendes Lopes and Pardini [11].

Remark 1. These surfaces in the first three rows of Theorem 1 can be obtained by taking three iterated \(\mathbb{Z}_2 \)-covers. First, we ramify on \(D_2, D_3, D_6, \) and \(D_7 \) (i.e. \(B = 2L_{0,1,0} \)) and we get Horikawa’s surfaces with \(K^2 = 2p_g - 4 \) [7]. The second cover ramifies only on nodes (i.e. \(B = 2L_{1,0,0} \)). These nodes come from the intersection points between \(D_2 + D_3 \) and \(D_6 + D_7. \) The last cover ramifies on nodes coming from the intersection points between \(D_2 \) and \(D_3, \) and \(D_6 \) and \(D_7 \) (i.e. \(B = 2L_{0,0,1} \)) (see [4, Prop. 3.1]). Moreover, the following diagram commutes
Now, by Proposition 1, a point \((0, 0, 1, 0, -1, 1, 2)\) can be imposed on the original branch locus, where \(-1\) in the fifth component means the exceptional divisor is added to \(D_5\). In fact, let \(P\) be a point in \(\mathbb{P}^1\) such that \(D_3, D_6, D_7\) contain \(P\) with multiplicity 1, 1, 2, respectively. Let \(Y\) be the blow up of \(\mathbb{P}^1\) at \(P\) and \(E\) be the exceptional divisor. If we abuse notation and denote \(\phi: X \to Y\) be a \(\mathbb{Z}_2^3\)-cover with the following branch locus

\[
B = D_1 + D_2 + D_3 + D_4 + D_5 + D_6 + D_7,
\]

where \(D_1 = D_4 = 0\) and \(D_5 = E\). The building data is as follows:

\[
\begin{align*}
L_{1,0,0} &\equiv 2\Delta_0 + 2\Gamma - E \\
L_{0,1,0} &\equiv 3\Delta_0 + (n+3)\Gamma - 2E \\
L_{0,0,1} &\equiv 2\Delta_0 + 2\Gamma - E \\
L_{1,1,0} &\equiv \Delta_0 + (n+1)\Gamma \\
L_{1,0,1} &\equiv 2\Delta_0 + 2\Gamma - E \\
L_{0,1,1} &\equiv \Delta_0 + (n+1)\Gamma \\
L_{1,1,1} &\equiv \Delta_0 + (n+1)\Gamma - E.
\end{align*}
\]

We get minimal surfaces of general type with

\[
K^2 = 16n - 10, \quad pg = 2n, \quad q = 0,
\]

and \(\text{deg}(\text{im} \phi|_{K_X}) = 2n - 2\). Moreover, \(|K_X|\) is not base point free (we will prove this in the next Sect. 3.1.3). Therefore, we obtain the surfaces described in the fourth row of Theorem 1.

3.1.3. The fixed part of the canonical system

In this section, we show that the canonical linear system \(|K_X|\) of the surfaces in the fourth row of Theorem 1 has a nontrivial fixed part. Indeed, the \(\mathbb{Z}_2^3\)-cover \(\phi: X \to Y\) factors through \(X_2\), where \(X_2\) is obtained by the \(\mathbb{Z}_2\)-cover ramifying on \(2L_{1,1,1}, 2L_{1,0,1}\). The linear system \(|K_{X_2}|\) is base point free. The surface \(X\) is obtained by the \(\mathbb{Z}_2\)-cover ramifying on the pullback of \(D_5 = E\) and some \(A_1\) points. So the moving part of \(|K_X|\) is
the pullback of $|K_X|$. Therefore, the fixed part of $|K_X|$ is $\frac{1}{2} f^* (E)$. More precisely, we consider the \mathbb{Z}_2^3—cover as the composition of the following \mathbb{Z}_2—covers

![Diagram](image)

The first cover ramifies on $D_2 + D_7$ (i.e. $B = 2L_{1,1,1}$) and we get a surface X_1 with $K_{X_1} = f_1^* (-\Delta_0 + (n - 2) \Gamma)$. Moreover, $f_1^* (E) = E_1$ with $E_1^2 = -2$, $g (E_1) = 0$. The second cover ramifies on $D_3 + D_6$ (i.e. $B = 2L_{1,0,1}$). We have

$$K_{X_2} = f_2^* f_1^* (\Delta_0 + n \Gamma - E).$$

So $|K_{X_2}|$ is base point free. Moreover, $f_2^* (E_1) = E_2$ with $E_2^2 = -4$, $g (E_2) = 1$. The last cover ramifies on $f_2^* f_1^* (E)$ and $8n + 6$ nodes (i.e. $B = 2L_{1,0,0}$). These nodes come from the intersection points between D_2 and D_7, and D_3 and D_6. And we obtain $f_3^* (E_2) = 2E_3$ with $E_3^2 = -2$, $g (E_3) = 1$. In addition, by the projection formula (see [5, Corollary 2.3]), we get

$$h^0 (K_X) = h^0 (f_3^* (K_{X_2})) = 2n. \quad (4)$$

On the other hand, $K_X = f_3^* (K_{X_2}) + R$, where R is the ramification of f_3. Hence,

$$K_X = f_3^* (K_{X_2}) + E_3. \quad (5)$$

From (4) and (5), the elliptic curve E_3 is the fixed part of $|K_X|$.

3.2. Construction 2

In this section, we construct the surfaces in the last five rows of Theorem 1.

3.2.1. Construction and computation of invariants

Let $D_3 = \Gamma$, $D_4 \in |\Delta_0 + \Gamma| + \Delta_0$, $D_7 = (2n + 1) \Gamma$ be in \mathbb{F}_1 and $D_5, D_6 \in |2\Delta_0 + 2\Gamma|$ be smooth curves in general position in \mathbb{F}_1. Let $f : X \to \mathbb{F}_1$ be a \mathbb{Z}_2^3—cover with the following branch locus

$$B = D_1 + D_2 + D_3 + D_4 + D_5 + D_6 + D_7,$$

where $D_1 = D_2 = 0$. By Proposition 1, $L_{1,0,0} \equiv 3\Delta_0 + (n + 3) \Gamma$ and L_X is equivalent to either $2\Delta_0 + 2\Gamma$, $\Delta_0 + (n + 2) \Gamma$ or $\Delta_0 + (n + 1) \Gamma$ for all $L_X \neq$
Since each D_σ is smooth and B is a normal crossings divisor, X is smooth. Furthermore, by Proposition 2, we get
\[2K_X \equiv f^* (2\Delta_0 + (2n + 1) \Gamma) . \]
This implies that X is a minimal surface of general type. Moreover, by Proposition 2, the invariants of X are as follows:
\[K_X^2 = 16n \]
\[p_g (X) = h^0 (\Delta_0 + n \Gamma) = 2n + 1 \]
\[\chi (\mathcal{O}_X) = 2n + 2. \]
From (7) and (8), we get $g (X) = 0$.

We show that $|K_X|$ is not composed with a pencil by considering the following double cover
\[g_1 : Y_1 \longrightarrow \mathbb{P}_1 \]
ramifying on $D_4 + D_5 + D_6 + D_7$. We have
\[K_{Y_1} \equiv g_1^* (\Delta_0 + n \Gamma) . \]
Because $|\Delta_0 + n \Gamma|$ is not composed with a pencil, $|K_{Y_1}|$ is not composed with a pencil, either. This yields that $|K_X|$ is not composed with a pencil and the degree of the canonical map is 8.

3.2.2. The fixed part of the canonical system
In this section, we show that the canonical linear system $|K_X|$ has a nontrivial fixed part. In fact, the \mathbb{Z}_2^3–cover $f: X \longrightarrow Y$ factors through X_2, where X_2 is obtained by the \mathbb{Z}_2^2–cover ramifying on $2L_{1,1,1}, 2L_{0,1,1}$. The linear system $|K_{X_2}|$ is base point free. The surface X is obtained by the \mathbb{Z}_2–cover ramifying on the pullback of $D_3 = \Gamma$ and some A_1 points. So the moving part of $|K_X|$ is the pullback of $|K_{X_2}|$. Therefore, the fixed part of $|K_X|$ is $\frac{1}{2} f^* (\Gamma)$. More precisely, we consider the \mathbb{Z}_2^3–cover as the compositions of the following \mathbb{Z}_2–covers

The first cover ramifies on $D_4 + D_7$ (i.e. $B = 2L_{1,1,1}$). We get a surface X_1 with $K_{X_1} \equiv f_1^* (\Delta_0 + (n - 2) \Gamma)$. Furthermore, $f_1^* (D_3) = \Gamma_1$ with $g (\Gamma_1) = 0$. The
second cover ramifies on \(D_5 + D_6 \) (i.e. \(B = 2L_{0,1,1} \)). We get surface of general type \(X_2 \) with

\[
K_{X_2} \equiv f_2^* f_1^* (\Delta_0 + n\Gamma).
\]

Hence, \(|K_{X_2}| \) is base point free and \(\deg \left(\text{im} \varphi_{|K_{X_2}|} \right) = 2n - 1 \). Furthermore,
\(f_2^* (\Gamma_1) = \Gamma_2 \) with \(g (\Gamma_2) = 3 \). The last cover ramifies on \(f_2^* f_1^* (D_3) \) and \(8n + 12 \) nodes (i.e. \(B = 2L_{0,1,0} \)). These nodes come from the intersection points between \(D_4 \) and \(D_7 \), and \(D_5 \) and \(D_6 \). And we get
\(f_3^* (\Gamma_2) = 2\Gamma_3 \) with \(g (\Gamma_3) = 3 \). In addition, by the projection formula, we get

\[
h^0 (K_X) = h^0 (f_3^* (K_{X_2})) = 2n + 1. \tag{9}
\]

On the other hand, \(K_X \equiv f_3^* (K_{X_2}) + R \), where \(R \) is the ramification of \(f_3 \). Hence,

\[
K_X \equiv f_3^* (K_{X_2}) + \Gamma_3. \tag{10}
\]

Therefore, from (9) and (10), the curve \(\Gamma_3 \) is the fixed part of \(|K_X| \).

3.2.3. Variations

By Proposition 1, the branch locus can be imposed a point \((0, 0, 0, 1, 1, 1, 1)\). In fact, let \(P \) be a point in \(\mathbb{P}_1 \) such that \(D_4, D_5, D_6, D_7 \) contain \(P \) with multiplicity 1, 1, 1, 1, respectively. Let \(Y \) be the blow up of \(\mathbb{P}_1 \) at \(P \) and \(E \) be the exceptional divisor. If we abuse notation and denote \(D_3, D_4, D_5, D_6, D_7, \Delta_0, \Gamma \) their pullbacks to \(Y \), then \(D_3 = \Gamma, D_4 = 2\Delta_0 + \Gamma - E, D_5 = 2\Delta_0 + 2\Gamma - E, D_6 = 2\Delta_0 + 2\Gamma - E \) and \(D_7 = (2n + 1)\Gamma - E \). Let \(f : X \longrightarrow Y \) be a \(\mathbb{Z}_2^3 \)-cover with the following branch locus

\[
B = D_1 + D_2 + D_3 + D_4 + D_5 + D_6 + D_7,
\]

where \(D_1 = D_2 = 0 \). The building data is as follows:

\[
\begin{align*}
L_{1,0,0} & = 3\Delta_0 + (n + 3)\Gamma - 2E \\
L_{0,1,0} & = \Delta_0 + (n + 2)\Gamma - E \\
L_{0,0,1} & = \Delta_0 + (n + 2)\Gamma - E \\
L_{1,1,0} & = 2\Delta_0 + 2\Gamma - E \\
L_{1,0,1} & = 2\Delta_0 + 2\Gamma - E \\
L_{0,1,1} & = 2\Delta_0 + 2\Gamma - E \\
L_{1,1,1} & = \Delta_0 + (n + 1)\Gamma - E.
\end{align*}
\]

Similarly to the above, we get minimal surfaces of general type with

\[
K^2 = 16n - 8, \quad p_g = 2n, \quad q = 0, \quad d = 8,
\]

and \(\deg \left(\text{im} \varphi_{|K_X|} \right) = 2n - 2 \). Moreover, \(\frac{1}{2} f^* (\Gamma) \) is the fixed part of \(|K_X| \) and the following diagram commutes
So we obtain the surfaces in the sixth row of Theorem 1.

Analogously, by Proposition 1, we can put a point \((0, 0, 0, 2, 2, 0)\) into the original branch locus. In fact, let \(P\) be a point in \(\mathbb{P}^1\) such that \(D_5, D_6\) contain \(P\) with multiplicity 2, 2, respectively. Let \(Y\) be the blow up of \(\mathbb{P}^1\) at \(P\) and \(E\) be the exceptional divisor. If we abuse notation and denote \(D_3, D_4, D_5, D_6, D_7, \Delta_0, \Gamma\) their pullbacks to \(Y\), then \(D_3 = \Gamma, D_4 = 2\Delta_0 + \Gamma, D_5 = 2\Delta_0 + 2\Gamma - 2E, D_6 = 2\Delta_0 + 2\Gamma - 2E\) and \(D_7 = (2n + 1)\Gamma\). Let \(f: X \rightarrow Y\) be a \(\mathbb{Z}_2^3\)-cover with the following branch locus

\[
B = D_1 + D_2 + D_3 + D_4 + D_5 + D_6 + D_7,
\]

where \(D_1 = D_2 = 0\). The building data is as follows:

\[
\begin{align*}
L_{1,0,0} &\equiv 3\Delta_0 + (n + 3)\Gamma - 2E \\
L_{0,1,0} &\equiv \Delta_0 + (n + 2)\Gamma - E \\
L_{0,0,1} &\equiv \Delta_0 + (n + 2)\Gamma - E \\
L_{1,1,0} &\equiv 2\Delta_0 + 2\Gamma - E \\
L_{1,0,1} &\equiv 2\Delta_0 + 2\Gamma - E \\
L_{0,1,1} &\equiv 2\Delta_0 + 2\Gamma - 2E \\
L_{1,1,1} &\equiv \Delta_0 + (n + 1)\Gamma.
\end{align*}
\]

Similarly to the above, we get minimal surfaces of general type with

\[
K^2 = 16n - 8, \ p_g = 2n, \ q = 1, \ d = 8,
\]

and \(\deg(\text{im} \varphi_{|K_X|}) = 2n - 2\). Furthermore, \(\frac{1}{2}f^* (\Gamma)\) is the fixed part of \(|K_X|\) and the following diagram commutes
Thus, we obtain the surfaces in the seventh row of Theorem 1. The Albanese pencil of these surfaces \(X \longrightarrow Alb \, (X) \) is the pullback of the Albanese pencil of the intermediate surface \(Z \), where \(Z \) is obtained by the \(\mathbb{Z}_2 \)-cover ramifying on \(2L_{0,1,1} \).

Similarly, by Proposition 1, a new branch locus can be formed by adding a point \((0,0,−1,1,2,0,1)\), where \(-1\) in the third component means the exceptional divisor \(E \) is added to \(D_3 \). In fact, let \(P \) be a point in \(\mathbb{F}_1 \) such that \(D_4, D_5, D_7 \) contain \(P \) with multiplicity \(1,2,1 \), respectively. Let \(Y \) be the blow up of \(\mathbb{F}_1 \) at \(P \) and \(E \) be the exceptional divisor. If we abuse notation and denote \(D_4, D_5, D_6, D_7, \Delta_0, \Gamma \) their pullbacks to \(Y \), then \(D_4 = 2\Delta_0 + \Gamma - E, D_5 = 2\Delta_0 + 2\Gamma - 2E, D_6 = 2\Delta_0 + 2\Gamma \) and \(D_7 = (2n + 1) \Gamma - E \). Let \(f : X \longrightarrow Y \) be a \(\mathbb{Z}_2^3 \)-cover with the following branch locus

\[
B = D_1 + D_2 + D_3 + D_4 + D_5 + D_6 + D_7,
\]

where \(D_1 = D_2 = 0 \) and \(D_3 = \Gamma + E \). The building data is as follows:

\[
\begin{align*}
L_{1,0,0} &\equiv 3\Delta_0 + (n + 3) \Gamma - 2E \\
L_{0,1,0} &\equiv \Delta_0 + (n + 2) \Gamma \\
L_{0,0,1} &\equiv \Delta_0 + (n + 2) \Gamma - E \\
L_{1,1,0} &\equiv 2\Delta_0 + 2\Gamma - E \\
L_{1,0,1} &\equiv 2\Delta_0 + 2\Gamma \\
L_{0,1,1} &\equiv 2\Delta_0 + 2\Gamma - E \\
L_{1,1,1} &\equiv \Delta_0 + (n + 1) \Gamma - E.
\end{align*}
\]

Similarly to the above, we get minimal surfaces of general type with

\[
K^2 = 16n - 2, \quad p_g = 2n, \quad q = 0, \quad d = 8,
\]

and \(\deg(\text{im} \varphi|_{K_X}) = 2n - 2 \). Moreover, \(\frac{1}{2} f^* (\Gamma + E) \) is the fixed part of \(|K_X| \) and the following diagram commutes

\[
\begin{array}{ccc}
X & \xrightarrow{\varphi|_{K_X}} & X_2 \\
\downarrow & & \downarrow 4:1 \\
\mathbb{P}^{2n-1} & \xrightarrow{\varphi|_{K_{X_2}}} & X_1 \\
\downarrow & & \downarrow \varphi^*|_{K_{X_1}} \\
Y & \xrightarrow{f_2} & X_1 \\
\downarrow & & \downarrow 2L_{0,1,1} \\
2L_{0,1,1} \quad & \xrightarrow{f_1} & \quad 2L_{0,1,1} \\
\downarrow & & \downarrow 2L_{0,1,0} \\
\mathbb{F}_1 & \xrightarrow{\varphi} & \quad \mathbb{F}_1 \\
\end{array}
\]

Therefore, we obtain the surfaces in the eighth row of Theorem 1.

Finally, for \(n \geq 3 \) by Proposition 1, a point \(P = (0,0,−1,1,2,2,1) \) can be added to the original branch locus, where \(-1\) in the third component means the exceptional divisor is added to \(D_3 \). In fact, let \(P \) be a point in \(\mathbb{F}_1 \) such that \(D_4, D_5, D_6, D_7 \) contain \(P \) with multiplicity \(1,2,2,1 \), respectively. Let \(Y \) be the blow up of \(\mathbb{F}_1 \) at \(P \) and \(E \) be the exceptional divisor. If we abuse notation and denote
$D_4, D_5, D_6, D_7, \Delta_0, \Gamma$ their pullbacks to Y, then $D_4 = 2\Delta_0 + \Gamma - E$, $D_5 = 2\Delta_0 + 2\Gamma - 2E$, $D_6 = 2\Delta_0 + 2\Gamma - 2E$ and $D_7 = (2n + 1) \Gamma - E$. Let $f : X \to Y$ be a \mathbb{Z}_2^3–cover with the following branch locus

$$B = D_1 + D_2 + D_3 + D_4 + D_5 + D_6 + D_7,$$

where $D_1 = D_2 = 0$ and $D_3 = \Gamma + E$. The building data is as follows:

$$
\begin{align*}
L_{1,0,0} &\equiv 3\Delta_0 + (n + 3) \Gamma - 3E \\
L_{0,1,0} &\equiv \Delta_0 + (n + 2) \Gamma - E \\
L_{0,0,1} &\equiv \Delta_0 + (n + 2) \Gamma - E \\
L_{1,1,0} &\equiv 2\Delta_0 + 2\Gamma - E \\
L_{1,0,1} &\equiv 2\Delta_0 + 2\Gamma - E \\
L_{0,1,1} &\equiv 2\Delta_0 + 2\Gamma - 2E \\
L_{1,1,1} &\equiv \Delta_0 + (n + 1) \Gamma - E.
\end{align*}
$$

After contracting the -1 curve arising from the fiber passing through P, we get minimal surfaces of general type with

$$K^2 = 16n - 16, \ p_g = 2n - 2, \ q = 1, \ d = 8,$$

and $\deg(\text{im } \varphi|_{K_X}) = 2n - 4$.

Furthermore, $\frac{1}{2} f^* (\Gamma + E)$ is the fixed part of $|K_X|$ and the following diagram commutes

Thus, taking $m = n - 1, m \geq 2$, we obtain the surfaces in the last row of Theorem 1. The Albanese pencil of these surfaces $X \to Alb (X)$ is the pullback of the Albanese pencil of the intermediate surface Z, where Z is obtained by the \mathbb{Z}_2–cover ramifying on $2L_{0,1,1}$.

Acknowledgements The author is deeply indebted to Margarida Mendes Lopes for all her help. Many thanks are also due to the anonymous referee for his/her suggestions.
References

[1] Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 3 [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2nd edn, Springer, Berlin (2004)

[2] Beauville, A.: L’application canonique pour les surfaces de type général. Invent. Math. 55, 121–140 (1979)

[3] Beauville, A.: Complex Algebraic Surfaces, London Mathematical Society Student Texts, vol. 34, 2nd edn., Cambridge University Press, Cambridge (Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid) (1996)

[4] Dolgachev, I., Mendes Lopes, M., Pardini, R.: Rational surfaces with many nodes. Compos. Math. 132, 349–363 (2002)

[5] Du, R., Gao, Y.: Canonical maps of surfaces defined by abelian covers. Asian J. Math. 18, 219–228 (2014)

[6] Gallego, F.J., Purnaprajna, B.P.: Classification of quadruple Galois canonical covers. I. Trans. Am. Math. Soc. 360, 5489–5507 (2008)

[7] Horikawa, E.: Algebraic surfaces of general type with small c_1^2. I. Ann. Math. 104, 357–387 (1976)

[8] Horikawa, E.: Algebraic surfaces of general type with small c_1^2. II. Invent. Math. 37, 121–155 (1976)

[9] Horikawa, E.: Algebraic surfaces of general type with small c_1^2. III. Invent. Math. 47, 209–248 (1978)

[10] Horikawa, E.: Algebraic surfaces of general type with small c_1^2. IV. Invent. Math., 50, 103–128 (1978/79)

[11] Lopes, M.M., Pardini, R.: The geography of irregular surfaces. In: Current Developments in Algebraic Geometry, Mathematical Sciences Research Institute Publications, vol. 59, Cambridge Univ. Press, Cambridge, pp. 349–378 (2012)

[12] Pardini, R.: Abelian covers of algebraic varieties. J. Reine Angew. Math. 417, 191–213 (1991)

[13] Pardini, R.: Canonical images of surfaces. J. Reine Angew. Math. 417, 215–219 (1991)

[14] Persson, U.: Double coverings and surfaces of general type. In: Algebraic Geometry Proceedings of Symposia, Univ. Tromsø Tromsø, Lecture Notes in Mathematics, vol. 687, Springer, Berlin 1978, pp. 168–195 (1977)

[15] Rito, C.: New canonical triple covers of surfaces. Proc. Am. Math. Soc. 143, 4647–4653 (2015)

[16] Rito, C.: A surface with canonical map of degree 24. Int. J. Math. 28, 1750041 (2017)

[17] Rito, C.: A surface with $q = 2$ and canonical map of degree 16. Mich. Math. J. 66, 99–105 (2017)

[18] Tan, S.L.: Surfaces whose canonical maps are of odd degrees. Math. Ann. 292, 13–29 (1992)

[19] Xiao, G.: Algebraic surfaces with high canonical degree. Math. Ann. 274, 473–483 (1986)

[20] Xiao, G.: Irregularity of surfaces with a linear pencil. Duke Math. J. 55, 597–602 (1987)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.