Tri-modal liquid biopsy: Combinational analysis of circulating tumor cells, exosomes, and cell-free DNA using machine learning algorithm

Dear Editor,

Analysis of tumor biomarkers in circulation, commonly known as liquid biopsy, has been highlighted as an effective real-time monitoring technique for the surveillance of therapeutic responses and tumor progression. However, existing liquid biopsy assays that utilize a single tumor biomarker lack the sensitivity and specificity required to obtain clinically reliable information. In this study, we established a multimodal liquid biopsy (MMLB) system that integrates the expression profiles of the three different tumor biomarkers, circulating tumor cells (CTCs), exosomes, and cell-free DNA (cfDNA), using a machine learning algorithm (Figure 1).

CTCs, exosomes, and cfDNA were isolated using alginate beads functionalized with anti-epithelial cell adhesion molecule antibodies (aEpCAM), anti-CD63 antibodies (aCD63), and polydopamine-silica (PDA-SiO$_2$), respectively. Prior to clinical application, the capture capability of the bead-based systems was validated using in vitro samples (Figure S1). The aEpCAM-functionalized beads achieved $\sim$73.1% capture efficiency of EpCAM$^+$ SW480 cells, with $\sim$99.4% leukocyte removal, $\sim$93.4% cell retrieval, and $\sim$87.0% cell viability (Figure 2A). Meanwhile, aCD63-functionalized beads achieved slightly lower recovery of exosome nucleic acids ($\sim$38% less) and PDA-SiO$_2$ beads achieved 1.27-fold more capture of cfDNA compared with commonly-used commercial kits (Figures 2B and 2C). Furthermore, all three assays demonstrated high selectivity toward their target biomarkers (Figures 2D–2F).

The clinical applicability of the beads was investigated using samples obtained from 72 colorectal cancer patients, 14 patients with benign colorectal tumors, and 14 healthy individuals (Table S1). All three systems were capable of differentiating cancer patients from non-cancer controls, with an AUC-ROC of 0.826 (CTCs; $p < 0.001$), 0.763 (exosomes; $p < 0.001$), and 0.820 (cfDNA; $p < 0.001$), which was greater than commercially available assays (Figures 2G–2L and S2–S5). However, the diagnostic capabilities of the bead-based systems were still insufficient to be applied in clinical practice due to the inherent variability of each measurement. CTCs were only found in 65.3% of cancer patients, exosomes were elevated in both benign and malignant tumor patients, and cfDNA levels of early-stage patients were similar to those of the non-cancer cohorts.

To improve the diagnostic accuracy, k-means clustering was utilized to deduce patterns among the three assays (Figures 3A and 3B). The optimal number of clusters ($k$) was determined to be five based on the elbow method (denoted as A1–A5; Figure S6). Between the clusters, there was a significant difference in the expression profiles of the three biomarkers (Figures 3C–3E). Interestingly, 92.9% (13/14) of healthy individuals and 85.7% (12/14) of patients with benign tumors belonged to cluster A1, which exhibited the lowest expression of all three biomarkers (Table S2). Principle component analysis (PCA) was then used to simplify CTC-exosome-cfDNA expressions into a 2D plot (Figure 3F). The x-axis of the plot (PCA-X) demonstrated moderate-to-strong correlations with all three biomarkers. The PCA-X was thus defined as MMLBScore which was equivalent to the linear combination of CTCs, exosomes, and cfDNA, with standardized coefficients of 0.600, 0.592, and 0.184, respectively (Figure S7). The MMLBScore was significantly higher among cancer patients ($0.40 \pm 1.11$) compared to non-cancer cohorts ($−1.03 \pm 0.33$; $p < 0.001$), exhibiting a greater AUC-ROC (0.894; $p < 0.001$) than any of the single biomarkers (Figures 3G–3K).

We repeated the clustering and PCA on samples from patients with malignant tumors (MMLBCancer) to determine if the score was predictive of pathological status and survival outcomes (Table S3). A strong correlation was found between MMLBCancer and the T-stage of a tumor (Figures 4A–4E and S8), with an AUC-ROC of

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The MMLB analysis was further applied to detect KRAS mutations (MMLBKRAS) by combining CTC counts, miR-100 expression in exosomes, and the fraction of cfDNA KRAS mutant alleles, which have all been reported to be overexpressed in patients with KRAS mutation.5,6 Clustering analysis revealed that the group which had the lowest expression for all three biomarkers (K1) showed significantly lower tissue KRAS mutant allele fraction (∼5.5%) than the other two groups (∼16.9%) (Figures 4P, 4Q, and S12–S15). Furthermore, PCA demonstrated that MMLBKRAS exhibited a strong correlation with tissue KRAS mutation status and detected the mutation with high accuracy (Figures 4R–4U and S16).

Our MMLB analysis demonstrated that the utilization of machine learning algorithms has great advantages, as our system was shown to have greater diagnostic/prognostic values than simply adding or multiplying individual tumor biomarkers (Table S5). It should also be noted that the MMLB analysis is not only limited to our bead-based systems but is also applicable to other liquid biopsy assays. In
future studies, improvements will be validated in a larger patient cohort with various tumor types using highly sensitive liquid biopsy assays that our group has developed previously.7–10

In conclusion, we have demonstrated that a machine learning-based approach that integrates CTC, exosome, and cfDNA liquid biopsy measurements into a single-score MMLB system was more predictive than each marker alone. This approach may overcome the limitations of existing liquid biopsies with limited sensitivity and specificity. MMLB analysis demonstrated significantly improved accuracy in diagnosing malignancies, determining the pathological status of patients, predicting survival outcomes, and detecting gene mutations. These findings suggest that our approach markedly enhances liquid biopsy assays to ultimately achieve personalized medicine and improve patient outcomes.
Figure 3  Machine learning-based clustering of the three tumor biomarkers (CTCs, exosomes, and cfDNA) to establish MMLB<sub>score</sub> and validate its diagnostic potential: (A) A 3D scatter plot demonstrating CTC count, exosome NA amount, and plasma cfDNA level of each patient depending on the status (malignant, benign, and healthy) of the cohorts. (B) A k-means clustering of the cohorts based on the expression levels of the three tumor biomarkers. A total of 41, 18, 20, 8, and 13 samples were designated to each cluster, denoted as A1, A2, A3, A4, and A5, respectively. (C-E) CTC count, exosome NA amount, and plasma cfDNA level for each cluster. (F) PCA applied to reduce the complexity of the 3D plot (CTCs, exosomes, and cfDNA) into the arbitrary 2D plot, with the x- and y-axes consisted of two best linear approximations for stratifying the clusters. The x-axis in the 2D scatterplot was determined as MMLB<sub>score</sub>, which minimized the mean-squared reconstruction error of the clusters and demonstrated a strong correlation with the status of the cohorts. (G and H) MMLB<sub>score</sub> depending on the status of the cohorts. (I and J) The ROC curve and a heatmap of AUC-ROC values demonstrating the enhanced diagnostic capability of MMLB<sub>score</sub>, compared to any of the single tumor biomarkers used in this study. (K) A heatmap showing expression levels of the three biomarkers compared to MMLB<sub>score</sub> for each cohort.

Acknowledgment
This study was partially supported by National Science Foundation (NSF) under grant #DMR-1808251. The authors also acknowledge the partial support from NIAMS/NIH under grant #1R01AR069541, NIBIB/NIH under grant #1R21EB022374, the Wisconsin Head & Neck Cancer SPORE Grant (P50-DE026787), The Falk Medical Research Trust – Catalyst Awards Program, Office of the Vice Chancellor for Research and Graduate Education State Economic Engagement and Development (OVC-GRE SEED) Program, and Chungnam National University Sejong Hospital Research Fund 2021.

Author Contributions
Seungpyo Hong, Jiyoon Bu, and Tae Hee Lee designed the concept. Tae Hee Lee and Sung Hee Hyun conducted experiments. Jiyoon Bu and Tae Hee Lee performed the statistical analysis. Piper A. Rawding, Michael J. Poellmann, Rachel S. Hong, and Woo-Jin Jeong reviewed the analysis. Jiyoon Bu, Seungpyo Hong, Piper A. Rawding, and Rachel S. Hong wrote the manuscript. Tae Hee Lee, Piper A. Rawding, Woo-Jin Jeong, Michael J. Poellmann, and Sung Hee Hyun revised the manuscript.
FIGURE 4  MMLB analysis for determining the pathological features of a tumor, estimating the survival outcomes, and detecting KRAS mutation: (A) A heatmap representing MMLB\textsubscript{Cancer} for each patient, along with their TNM stage, tumor biomarker expressions, and serum antigen expressions. (B) MMLB\textsubscript{Cancer} for each patient depending on their T stage. (C-E) ROC curves demonstrating the diagnostic capability of MMLB\textsubscript{Cancer} (black), CTCs (red), exosomes (blue), and cfDNA (green) for differentiating advanced T stage patients. (F) A heatmap of AUC-ROC values demonstrating the capability of MMLB\textsubscript{Cancer} for differentiating patients depending on the pathological features of the tumor, including its size (T stage), the existence of nodal metastasis (N stage), the prevalence of distant metastasis (M stage), and LVI status. (G-N) Kaplan–Meier survival analysis for (G-J) DFS and (K-N) OS between the patients with high (dark) and low (bright) MMLB\textsubscript{Cancer}, CTC counts, exosome NA level, and cfDNA expressions. The median value for each biomarker (or score) was determined as a threshold for dividing the high versus low groups. (O) A heatmap of HR values demonstrating the prognostic capability of MMLB\textsubscript{Cancer} was compared with the individual tumor biomarkers and serum antigens. (P-U) The clinical capability of MMLB analysis to determine the tissue KRAS mutation. (P) A k-means clustering of patients based on CTC counts, miR-100 expression in exosomes, and the KRAS MAF in cfDNA. The size of the sphere is proportional to the fraction of KRAS mutant allele found in tissue. (Q) The KRAS MAF in tissue for each cluster. (R-U) 2D scatterplots representing a correlation with the tissue KRAS MAF for MMLB\textsubscript{KRAS} and the single tumor biomarkers.
AVAILABILITY OF DATA AND MATERIALS
All data generated from this study are included in this published article and supporting information. Raw data are available from the corresponding author on reasonable request.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
Informed consent was obtained in accordance with the Declaration of Helsinki. This study was approved by the Ethics Committee of Eulji University (study numbers: EU 2017–44 and EU2018-68)

Jiyoon Bu1,2,†
Tae Hee Lee3,4,†
Michael J. Poellmann1,2
Piper A. Rawding1,2
Woo-Jin Jeong1,2,5
Rachel S. Hong5
Sung Hee Hyun4
Hyuk Soo Eun6
Seungpyo Hong1,2,7

1 Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
2 Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
3 Research Institute for Future Medical Science, Chungnam National University Sejong Hospital (CNUSH), Sejong, Republic of Korea
4 Department of Senior Healthcare, BK21 Plus Program, Graduated School, Eulji University, Daejeon, Republic of Korea
5 Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
6 Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
7 Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul, Republic of Korea

† Both the authors contributed equally to this work.

ORCID
Seungpyo Hong https://orcid.org/0000-0001-9870-031X

REFERENCES
1. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531–548.
2. Bu J, Kang Y-T, Lee Y-S, et al. Lab on a fabric: mass producible and low-cost fabric filters for the high-throughput viable isolation of circulating tumor cells. Biosens Bioelectron. 2017;91:747–755.
3. Myung JH, Eblan MJ, Caster JM, et al. Multivalent binding and biomimetic cell rolling improves the sensitivity and specificity of circulating tumor cell capture. Clin Cancer Res. 2018;24:2539–2547.
4. Finotti A, Allegretti M, Gasparello J, et al. Liquid biopsy and PCR-free ultrasensitive detection systems in oncology (Review). Int J Oncol. 2018;53:1395–1434.
5. Punnoose EA, Atwal S, Liu W, et al. Evaluation of circulating tumor cells and circulating tumor DNA in non–small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res. 2012;18:2391.
6. Lundberg IV, Wikberg ML, Ljuslinder I, et al. MicroRNA expression in KRAS- and BRAF-mutated colorectal cancers. Anticancer Res. 2018;38:677.
7. Poellmann MJ, Nair A, Bu J, et al. Immunoadvity-based capture of tumor exosomes using poly(amidoamine) dendrimer surfaces. Nano Lett. 2020;20:5686–5692.
8. Bu J, Nair A, Kubiatowicz LJ, et al. Surface engineering for efficient capture of circulating tumor cells in renal cell carcinoma: from nanoscale analysis to clinical application. Biosens Bioelectron. 2020;125:1112250.
9. Bu J, Lee TH, Jeong W-J, et al. Enhanced detection of cell-free DNA (cfDNA) enables its use as a reliable biomarker for diagnosis and prognosis of gastric cancer. PLoS One. 2020;15:e0242145.
10. Bu J, Kim YJ, Kang Y-T, et al. Polyester fabric sheet layers functionalized with graphene oxide for sensitive isolation of circulating tumor cells. Biomaterials. 2017;125:1–11.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.