MAGNETISM

Accelerated discovery of new magnets in the Heusler alloy family

Stefano Sanvito,1,2* Corey Oses,2,3 Junkai Xue,2,3 Anurag Tiwari,1† Mario Zic,1 Thomas Archer,1 Pelin Tozman,1 Munuswamy Venkatesan,1 Michael Coey,1 Stefano Curtarolo2,3*

Magnetic materials underpin modern technologies, ranging from data storage to energy conversion to contactless sensing. However, the development of a new high-performance magnet is a long and often unpredictable process, and only about two dozen magnets are featured in mainstream applications. We describe a systematic pathway to the design of novel magnetic materials, which demonstrates a high throughput and discovery speed. On the basis of an extensive electronic structure library of Heusler alloys containing 236,115 prototypical compounds, we filtered those displaying magnetic order and established whether they can be fabricated at thermodynamic equilibrium. Specifically, we carried out a full stability analysis of intermetallic Heusler alloys made only of transition metals. Among the possible 36,540 prototypes, 248 were thermodynamically stable but only 20 were magnetic. The magnetic ordering temperature, \(T_C \), was estimated by a regression calibrated on the experimental \(T_C \) of about 60 known compounds. As a final validation, we attempted the synthesis of a few of the predicted compounds and produced two new magnets: Co2MnTi, which displays a remarkably high \(T_C \) in perfect agreement with the predictions, and Mn2PdPd, which is an antiferromagnet. Our work paves the way for large-scale design of novel magnetic materials at potentially high speed.

INTRODUCTION

Very few types of macroscopic order in condensed matter are as sensitive to details as magnetism. The magnetic interaction is usually based on the \(m\)-\(j \) paradigm, where localized magnetic moments, \(m \), are magnetically coupled through the exchange interaction, \(J \). Only a few elements in the periodic table can provide localized moments in the solid state, namely, 3d transition metals, 4f rare earths, and some 4d ions. Lighter 2p elements are prone to form close shells, whereas Hund’s coupling is not strong enough to sustain a high-spin configuration in heavier elements (1). The magnetic coupling then depends on how the wave functions of the magnetic ions overlap with each other, either directly, through other ions, or via delocalized electrons. This generates a multitude of mechanisms for magnetic coupling, operating at both sides of the metal/insulator transition boundary, and specific to the details of the chemical environment. In general, \(J \) is sensitive to the bond length, the bond angle, and the magnetic ion valence. It is thus not surprising that, among the ~100,000 unique inorganic compounds known to mankind (2), only about 2000 show magnetic order of any kind (3).

If one focuses on the magnets that are useful for consumer applications, then the choice becomes even more restricted, with no more than two dozens of compounds taking practically the entire global market. A useful magnet, regardless of the particular technology, should operate in the \(-50^\circ \) to \(+120^\circ \)C range, imposing the ordering temperature, \(T_C \), to be at least 300°C. Specific technologies set additional constraints. Permanent magnets should display large magnetization and hysteresis (3). Magnetic electrodes in high-performance tunnel junctions should grow epitaxially on a convenient insulator and have a band structure suitable for spin filtering (4). If the same tunnel junction is used as spin-transfer torque magnetic memory element, then the magnet should also have a low Gilbert damping coefficient and a high Fermi-level spin polarization (4). There are not many magnets matching all the criteria; hence, the design of a new magnet suitable for a target application is a complex and multifaceted task.

The search for a new magnet usually proceeds by trial and error, but the path may hide surprises. For instance, chemical intuition suggests that Sr2CoO4 should be a poor magnet, because all SrXO3 perovskites, with \(X \) in the chemical neighborhood of \(T_C \), are either low-temperature magnetic (\(X = \text{Ru, Cr, Mn, and Fe} \)) or do not present any magnetic order (\(X = \text{Mo} \)). However, Sr2CoO4 is a G-type antiferromagnet (5) with a remarkably high Neel temperature of 750°C, originating from a subtle interplay between \(p\)-\(d \) hybridization and Jahn-Teller distortion (6). This shows that often a high-temperature magnet may represent a singularity in physical/chemical trends and that its search can defy intuition. For this reason, we take a completely different approach to the discovery process and demonstrate that a combination of advanced electronic structure theory and massive database creation and search, the high-throughput computational materials design approach (7), can provide a powerful tool for finding new magnetic materials.

Our computational strategy consists of three main steps. First, we construct an extensive database containing the computed electronic structures of potential novel magnetic materials, and we consider Heusler alloys (HAs) (8). This extends to existing AFLOW.org set of repositories (9). A rough stability analysis, based on evaluating the enthalpy of formation against reference single-phase compounds, provides a first screening of the database. However, this is not a precise measure of the thermodynamic stability of a material, because it does not consider decomposition into competing phases (single-element, binary, and ternary compounds). This analysis requires the computation of the enthalpy of formation of all possible decomposition members associated with the given Heusler compounds. This is our second step, and it is carried out only for intermetallic HAs, for which an extensive database is available (9). Finally, we analyze the magnetic order of the predicted stable magnetic intermetallic HAs and, via a regression trained on available magnetic data, estimate their \(T_C \). The theoretical screening is then validated by experimental synthesis of a few of the predicted compounds.

1School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland.
2Center for Materials Genomics, Duke University, Durham, NC 27708, USA. Departments of Mechanical Engineering and Materials Science, Physics, and Chemistry, Duke University, Durham, NC 27708, USA.
*Corresponding author. Email: sanvito@tcd.ie (S.S.); stefano@duke.edu (S.C.)
†Present address: Indian Institute of Technology, New Delhi, India.

Sanvito et al., Sci. Adv. 2017;3:e1602241 14 April 2017 1 of 9
We comment on the choice of the HAs. First, HA is a family of ternary compounds populated with several high-performance magnets (8), because many of them incorporate magnetic ions. Second, it is a rather large class that spans a wide variety of chemical compositions, giving us a large number of prototypes and a high chance of finding new compounds. Third, constructing a large library will allow us, at another time, to search for interesting material properties other than magnetism. Finally, most of the known magnetic HAs are metallic and they are well described by semi-local density functional theory (DFT), so we expect our method to be accurate.

RESULTS
The prototypical HA, X_2YZ (Cu_2MnAl-type), crystallizes in the $Fm\bar{3}m$ cubic space group, where the X atoms occupy the $8c$ Wyckoff position $(1/4, 1/4, 1/4)$ and the Y and Z atoms are at the $4a$ $(0, 0, 0)$ and $4b$ $(1/2, 1/2, 1/2)$ positions, respectively. The crystal can be described as four interpenetrating face-centered cubic lattices, where the Y and Z atoms form an octahedral-coordinated rock-salt structure, whereas the X atoms occupy the tetrahedral voids (see Fig. 1A). Two alternative structures also exist. In the inverse Heusler ($XY)XZ$ (Hg_2CuTi-type), the X and Z atoms form the rock-salt lattice, whereas the remaining X and Y atoms fill the tetrahedral sites (Fig. 1B); therefore, one X atom presents sixfold octahedral coordination and the other presents fourfold tetrahedral coordination. The second structure, the half Heusler XYZ ($MgCuSb$-type), is obtained by removing one of the X atoms, thus leaving a vacancy at one of the tetrahedral sites (Fig. 1C). The minimal unit cell describing all three types can be constructed as a tetrahedral $F\bar{4}3m$ cell, containing four (three for the half Heusler) atoms (Fig. 1D). This cell allows for a ferromagnetic spin configuration and for a limited number of antiferromagnetic configurations.

We construct the HA library by considering all possible three-element combinations made of atoms from the $3d$, $4d$, and $5d$ periods and some elements from groups III to VI. In particular, we use Ag, Al, As, Au, B, Ba, Be, Bi, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Ga, Ge, Hf, Hg, In, Ir, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, Os, P, Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Se, Si, Sn, Sr, Ta, Tc, Te, Ti, Tl, V, W, Y, Zn, and Zr. Note that we have deliberately excluded rare earths, responding to the global need to design new magnets with a reduced rare earth content. Furthermore, we have not imposed constraints on the total number of valence electrons ($10, 11$), because magnetism is found in a broad range of electron counts. For each combination of three elements (X, Y, and Z), all the possible regular, inverse, and half HAs are constructed, for a total of $236,115$ prototypes. The electronic structure of all the prototypes is computed by DFT in the generalized gradient approximation (GGA) of the exchange correlation functional as parameterized by Perdew-Burke-Ernzerhof (12). Our DFT platform is the Vienna Ab initio Simulation Package (VASP) code (13), and each structure is fully relaxed. The typical convergence tolerance is 1 meV/atom, and this is usually achieved by sampling the Brillouin zone over a dense grid of 3000 to 4000 k-points per reciprocal atom. A much denser grid of $10,000$ k-points is used for the static run to obtain accurate charge densities and density of states. The large volume of data is managed by the AFLOW code (14), which also generates the appropriate entries for the AFLOW database (9). Additional details about the computational method can be found in the study of Calderon et al. (15).

Let us begin our analysis by providing a broad overview of the database. A minimal criterion of stability for the $236,115$ calculated compounds is that the enthalpy of formation of the X_2YZ structure, H_{X_2YZ}, is lower than the sum of the enthalpies of formation of its elementary constituents, namely, $\Delta H = H_{X_2YZ} - (2H_X + H_Y + H_Z) < 0$. This criterion returns us $35,602$ compounds, where 6778 present a magnetic moment. Note that this number can be slightly underestimated because our unit cell may be different and incompatible with the magnetic cell, a priori unknown. This may result in the unit cell calculation to converge to a diamagnetic solution. In any case, this number is certainly significantly larger than the actual number of stable magnetic HAs. This can only be established by computing the entire phase diagram of each ternary compound, that is, by assessing the stability of any given X_2YZ structure against decomposition over all the possible alternative binary and ternary prototypes (for example, X_3YZ can decompose into $XY + XZ$, $X_2Y + Z$, and $XYZ + X$). This calculation is extremely intensive. An informative phase diagram for a binary alloy needs to be constructed over approximately $10,000$ prototypes (16), which means that at least $30,000$ calculations are needed for every ternary. As a consequence, mapping the stability of every calculated HA will require the calculation of approximately 15 million prototypes, which is quite a challenging task.

If the electronic structure and the enthalpy of formation of the relevant binaries are available, then one can construct the convex hull diagram for the associated ternary compounds (17). An example of this convex hull diagram for Al-Mn-Ni is shown in Fig. 1E. The figure shows that there is a stable phase, namely, Ni_3MnAl, with a formation energy of -404 meV/atom. In this case, there are also three other unstable ternary structures with $\Delta H < 0$, namely, Mn_2NiAl, $NiMnAl$, and Al_3MnNi. The enthalpy of formation of Mn_2NiAl is $\Delta H = -209$ meV/atom, and it is 121 meV/atom higher than the tie plane, that of $NiMnAl$ is -39 meV/atom (400 meV/atom above the tie plane), and that of Al_3MnNi is -379 meV/atom (100 meV/atom above the tie plane). This shows that $\Delta H < 0$ alone is not a stringent criterion for stability and that a full analysis needs to be performed before a call on a given ternary is made. Notably, Ni_3MnAl has been synthesized in a mixture of $B2$ and $L1_2$ phases (18), and it is a well-established magnetic shape memory alloy.

Given the enormous computational effort of mapping the stability of the entire database, we limited further analysis to intermetallic HAs made only with elements of the $3d$, $4d$, and $5d$ periods. These form a subset of the original $236,115$ prototypes comprising $36,540$ compounds, for which the corresponding binaries and known ternary

Fig. 1. Unit cells and phase stability of HAs. Possible HAs: (A) regular Heusler, (B) inverse Heusler, and (C) half Heusler. In (D), we show the unit cell used to construct the electronic structure database. (E) Ternary convex hull diagram for Al-Mn-Ni (note the presence of the stable HA, Ni_3MnAl).
energies are available in the AFLOW database (9). Our convex hull analysis thus establishes that, of the 36,540 compounds, only 248 are thermodynamically stable (see full list in the Supplementary Materials), among which 22 have a magnetic ground state compatible with the used unit cells (see Fig. 1D). Their calculated properties are presented in Table 1. Note that, in the last column of the table, we include an estimate of the robustness of a particular compound against decomposition, Δ^{30}.

A material is deemed as decomposable (“Y” in the table) if its enthalpy of formation is negative but <30 meV/atom lower than the most stable balanced decomposition. In contrast, a material is deemed robust (“N” in the table) when ΔH is >30 meV/atom away from that of the closest balanced decomposition. When this criterion is applied, we found that 14 of the predicted HAs can potentially decompose, whereas the other 8 are robust.

Table 1. Calculated properties of the 22 magnetic HAs found among all possible intermetallics. The table lists the unit cell volume of the $F4\bar{3}m$ cell, the c/a ratio for tetragonal cells (a), the Mn-Mn distance for Mn-containing alloys ($d_{\text{Mn-Mn}}$), the magnetic moment per formula unit (m), the spin polarization at the Fermi level (P), the enthalpy of formation (D_H), the entropic temperature (T_S), and the magnetic ordering temperature (T_C). Note that T_C is evaluated only for Co$_2$YZ and X$_2$MnZ compounds for which a sufficiently large number of experimental data are available for other chemical compositions. In the case of Mn$_2$YZ compounds, we report the magnetic moment of the ground state and, in brackets, that of the ferromagnetic solution. The last column provides a more stringent criterion of stability. Δ^{30} = Y if the given compound has an enthalpy within 30 meV/atom from that of its most favorable balanced decomposition (potentially decomposable), and Δ^{30} = N if this enthalpy is >30 meV/atom away (robust).

Alloy	V (Å3)	c/a	a (Å)	$d_{\text{Mn-Mn}}$ (Å)	m (μB/f.u.)	P_F (meV)	D_H (meV/atom)	T_S (K)	T_C (K)	Δ^{30}
Mn$_2$PtRh	58.56	6.16	3.08	0.00 (9.05)	0.00 (0.86)	0.29	3247	—	N	
Co$_2$MnTi	49.68	5.84	4.92	0.58	0.02	0.29	3122	940	N	
Co$_2$VZn	46.87	5.73	1.01	0.93	0.19	0.29	2502	125	N	
Co$_2$TaZn*	51.80	1.0	0.98	0.63	0.29	0.29	2203	331	Y	
Co$_2$TaZn	51.55	1.12	0.90	0.00	0.23	0.29	2502	0	N	
Rh$_2$MnTi	58.08	6.15	4.35	4.80	0.51	0.29	6500	417	Y	
Rh$_2$MnZr	64.50	6.37	4.50	4.70	0.34	0.29	6518	338	Y	
Rh$_2$MnHf	63.22	6.32	4.47	4.74	0.34	0.29	7031	429	N	
Rh$_2$MnSc	61.62	6.27	4.43	4.31	0.27	0.29	3444	372	Y	
Rh$_2$MnZn	54.95	6.02	3.37	0.00	0.23	0.29	2203	853	Y	
Ru$_2$MnAl*	64.21	1.0	0.98	0.63	0.29	0.29	2203	331	Y	
Ru$_2$MnCu	57.63	6.13	4.34	4.53	0.06	0.29	2492	415	Y	
Ru$_2$MnAl	58.88	1.0	0.98	0.63	0.29	0.29	4399	894	Y	
Ru$_2$MnZn	58.74	1.18	4.84	4.22	0.16	0.29	4399	402	Y	
Pt$_2$MnAl*	59.23	1.0	0.98	0.63	0.29	0.29	5035	694	Y	
Pt$_2$MnZn	58.95	1.22	4.10	4.13	0.02	0.29	5035	381	Y	
Ru$_2$MnV	54.98	6.02	4.25	4.00	0.71	0.29	1832	342	Y	
Rh$_2$FeZn	54.60	6.02	4.24	0.49	0.28	0.29	3150	—	N	

*Not stable against tetragonal distortion (Co$_2$NbZn and Co$_2$TaZn become diamagnetic after distortion).
We further checked whether these magnetic ground states are stable against tetragonal distortion, which may occur in HAs, particularly with the Mn$_2$YZ composition. We found that the ground state of five prototypes, namely, Co$_2$NbZn, Co$_2$TaZn, Pd$_2$MnAu, Pd$_2$MnZn, and Pt$_2$MnZn, is tetragonally distorted. Furthermore, for two of them (Co$_2$NbZn and Co$_2$TaZn), the tetragonal distortion suppresses the magnetic order, indicating that the competition between the Stoner and band Jahn-Teller instability favors a distorted nonmagnetic ground state. The analysis so far tells us that the incidence of stable magnetic HAs among the possible intermetallics is about 0.057%. When this is extrapolated to the entire database, we can forecast a total of about 140 stable magnetic alloys, of which about 60 are already known. In the same manner, we can estimate approximately 1450 stable nonmagnetic HAs, although this is just a crude forecast, because regions of strong chemical stability may be present in the complete database and absent in the intermetallic subset.

In Table 1, together with structural details, the magnetic moment per formula unit, m, and the enthalpy of formation, we report a few additional quantities that help us in understanding the potential of a given alloy as a useful magnet. The spin polarization of the density of state at the Fermi level n^\uparrow($\sigma = \uparrow$, \downarrow) is calculated as (20)

$$P_F = \frac{n^\uparrow - n^\downarrow}{n^\uparrow + n^\downarrow}$$

and expresses the ability of a metal to sustain spin-polarized currents (21). We find a broad distribution of P_F’s with values ranging from 0.93 (Co$_2$VZn) to 0.06 (Pd$_2$MnCu). None of the HAs display half-metallicity, and in general, their spin polarization is similar to that of the elementary 3d magnets (Fe, Co, and Ni). We then calculate the entropic temperature, T_s (7, 16, 22). For simplicity, we give the definition for an XY binary alloy, although all our calculations are performed for its ternary equivalent

$$T_s = \max \left[\frac{\Delta H (X_a Y_1 - x_i)}{k_B x_i \log x_i + (1 - x_i) \log (1 - x_i)} \right]$$

where k_B is the Boltzmann constant and i counts all the stable compounds in the XY binary system. Effectively, T_s is a concentration-maximized formation enthalpy weighted by the inverse of its ideal entropic contribution (random alloy). It measures the ability of an ordered phase to resist deterioration into a temperature-driven, entropically promoted, disordered mixture. The sign of T_s is chosen such that a positive temperature is needed for competing against the compound stability (note that $T_s < 0$ if $\Delta H > 0$), and one expects $T_s \to 0$ for a compound spontaneously decomposing into a disordered mixture. If we analyze the T_s distribution for all the intermetallic HAs with $\Delta H < 0$ (8776 compounds), we find the behavior to closely follow that of a two-parameter Weibull distribution with a shape of 1.13 and a scale of 2585.63 (see histogram in the Supplementary Materials). The same distribution for the 248 stable intermetallic HAs is rather uniform in the range of 1000 to 10,000 K and presents a maximum at around 3500 K. A similar trend is observed for the 20 stable magnetic HAs, suggesting that several of them may be highly disordered.

Finally, Table 1 includes an estimate of the magnetic ordering temperatures, T_C. These were calculated on the basis of available experimental data. That is, we collected the experimental T_C’s of approximately 40 known magnetic Heusler compounds (see the Supplementary Materials) and performed a linear regression correlating the experimental T_C’s with a range of calculated electronic and structural properties, namely, equilibrium volume, magnetic moment per formula unit, spin decomposition, and number of valence electrons. The regression is possible only for those compounds for which the set of available experimental data is large enough, namely, for Co$_2$YZ and X$_2$MnZ. We trained the regression over the existing data and found that, for the two classes Co$_2$YZ and X$_2$MnZ, the typical error in the T_C estimate is in the range of 50 K, which is taken as our uncertainty.

DISCUSSION

We found three different classes of stable magnetic HAs: Co$_2$YZ, X$_2$MnZ, and Mn$_2$YZ. In addition, we predicted that Rh$_2$FeZn is also stable. This is rather unique because there are no other HAs with Fe in octahedral coordination and no magnetic ions at the tetrahedral position.

The first class is Co$_2$YZ, a class already populated by about 25 known compounds all lying on the Slater-Pauling curve (8). Our analysis reveals four new stable alloys: three of them (Co$_2$VZn, Co$_2$NbZn, and Co$_2$TaZn) have low valence electron counts of 25, and one (Co$_2$MnTi) presents the large count of 29. The regression correctly places these four on the Slater-Pauling curve (see Fig. 2) and predicts the remarkably high T_C of 940 K for Co$_2$MnTi. This is rather interesting because only about two dozen magnets are known to have a T_C in that range (3). Therefore, the discovery of Co$_2$MnTi has to be considered as exceptional. The other three new compounds in this class are all predicted to have a T_C of around 200 K, but two of them become nonmagnetic upon tetragonal distortion, leaving only Co$_2$VZn magnetic ($T_C \sim 228$ K).

The second class is X$_2$MnZ, in which we find 13 new stable magnets, most of them including a 4d ion (Ru, Rh, and Pd) in the tetrahedral X position. In general, all these compounds have a magnetic moment per
The critical temperature and magnetic moment for X_2MnZ HAs. Magnetic data for X_2MnZ HAs (left) and magnetic moment per formula unit (right) as a function of the Mn-Mn distance, $d_{\text{Mn-Mn}}$. Note that the T_C is limited to about 550 K and peaks at a volume of about 60 Å3. In contrast, the magnetic moment is approximately constant, with values in between 4 and 5 μ_B. Closed circles (with associated chemical compositions) correspond to the predicted compounds, whereas the other symbols correspond to experimental data. Different colors correspond to different number of valence electrons, N_v. Blue chemical formulas correspond to compounds displaying tetragonal distortion. The two red lines denote Castelliz-Kanomata curves, whereas the black line is meant to guide the eye.

Fig. 3. Critical temperature and magnetic moment for X_2MnZ HAs. Magnetic data for X_2MnZ HAs (left) and magnetic moment per formula unit (right) as a function of the Mn-Mn distance, $d_{\text{Mn-Mn}}$. Note that the T_C is limited to about 550 K and peaks at a volume of about 60 Å3. In contrast, the magnetic moment is approximately constant, with values in between 4 and 5 μ_B. Closed circles (with associated chemical compositions) correspond to the predicted compounds, whereas the other symbols correspond to experimental data. Different colors correspond to different number of valence electrons, N_v. Blue chemical formulas correspond to compounds displaying tetragonal distortion. The two red lines denote Castelliz-Kanomata curves, whereas the black line is meant to guide the eye.

Fig. 4. Enthalpy of formation difference between the regular and inverse Heusler structure, ΔH_{RI}, for Mn2-containing compounds as a function of the cell volume. The solid red squares (with chemical formulas) are the predicted stable intermetallic compounds. These have recently received significant attention because of their high T_C and the possibility of displaying tetragonal distortion and hence large magnetocrystalline anisotropy (27). Experimentally, when the $4c$ position is occupied by an element from groups III, IV, or V, one finds the regular Heusler structure if the atomic number of the Y ion is smaller than that of Mn, $Z(Y) < Z(\text{Mn})$, and the inverse one if $Z(Y) > Z(\text{Mn})$. To date, only Mn$_2$VAl and Mn$_2$VGa have been grown with a Y element lighter than Mn so that, except those two, all other Mn$_2$YZ HAs crystallize with the inverse structure (see Fig. 4). In the case of the two regular HAs (Mn$_2$VAl and Mn$_2$VGa), the magnetic order is ferrimagnetic, with the two Mn ions at the tetrahedral sites being antiferromagnetically coupled to Y (28–30). In contrast for the inverse Mn$_2$-based HAs, the antiferromagnetic alignment is between the two Mn ions, and the magnetic ground state thus depends on whether there are other magnetic ions in the compound. In general, however, site disorder is not uncommon (see the Supplementary Materials), and so is tetragonal distortion, so that the picture becomes more complicated. There are also some complex cases, such as that of Mn$_2$Ga, presenting a ground state with a noncollinear arrangement of both the spin and angular momentum (31).

If we now turn our attention to the predicted compounds, we find five stable compositions, of which three match the Δ^{30} robustness criterion. Most intriguingly, the regular $Fm\overline{3}m$ structure appears to be the ground state for all the compounds, regardless of their chemical composition. This sets Mn$_2$-based intermetallic compounds aside from those with elements from the main groups. In Fig. 4, we present the enthalpy of formation difference between the regular and the inverse structure, $\Delta H_{RI} = \Delta H_R - \Delta H_I$, for the computed and the experimentally known Mn$_2$-based HAs, together with their T_S and reference data for Co$_2$-based alloys. In general, we find that ΔH_{RI} for the Mn$_2$YZ class is significantly smaller than that for the Co$_2$YZ one. There are cases (for example, Mn$_2$PtGa and Mn$_2$PtIn) in which the two phases are almost
degenerate, and different magnetic configurations can favor one over the other. Overall, one thus expects these compounds to be highly disordered. Finally, we take a look at the magnetic ground state. In all cases, the compounds present some degree of antiferromagnetic coupling, which results in either a zero-moment ground state when Mn is the only magnetic ion or a ferrimagnetic configuration when other magnetic ions are present.

The last step in our approach consisted of validating the theoretical predictions by experiments. We have attempted the synthesis of four HAs: Co$_2$MnTi, Mn$_2$PtPd, Mn$_2$PtCo, and Mn$_2$PtV. Co$_2$MnTi is chosen because of its predicted high T_C, whereas, among the Mn$_2$-based alloys, we have selected two presenting ferrimagnetic ground states (Mn$_2$PtCo and Mn$_2$PtV) and one meeting the stringent Δ^{40} robustness criterion (Mn$_2$PtPd). The alloys have been prepared by arc melting in high-purity Ar, where the ingots were remelted four times to ensure homogeneity. An excess of 3 weight % (wt %) Mn is added to compensate for Mn losses during arc melting (see the Supplementary Materials for details). Structural characterization was carried out by powder x-ray diffraction (XRD), whereas magnetic measurements were made using a superconducting magnetometer in a field of up to 5 T. Furthermore, the microstructure was analyzed by scanning electron microscopy of the polished bulk samples, whereas the compositions were determined by energy-dispersive x-ray (EDX) spectroscopy.

Two of the four HAs have been successfully synthesized (Co$_2$MnTi and Mn$_2$PtPd), whereas the other two (Mn$_2$PtCo and Mn$_2$PtV) decomposed into binary compounds (see the Supplementary Materials for details). In Fig. 5, we present the structural and magnetic characterization of Co$_2$MnTi. It crystallizes in a cubic structure related to the regular $Fd\bar{3}m$ Heusler structure, with no evidence of secondary phases and a lattice parameter of $a = 5.89$ Å, in close agreement with theory, $a = 5.84$ Å. The measured XRD pattern shows little intensity corresponding to the superstructure peaks, and we cannot exclude that the samples present a large degree of site disorder. This means that our crystallographic analysis is also compatible with a B2 (CsCl-type) or A2 (body-centered cubic) structure. The magnetization curve displays little temperature dependence and a saturation moment of 4.29 μ_B/f.u. at 4 K, consistent with the calculated ferromagnetic ground state (see Table 1). Notably, the T_C extrapolated from the zero-field cooled magnetization curve in a field of 1 T is found to be 938 K, essentially identical to that predicted by our regression, 940 K. Note that the regression calibrated to the experimental data, including disordered compounds, is largely controlled by the total number of valence electrons so that possible site-occupation disorder should affect little the prediction. This is a remarkable result, because it is the first time that a new high-temperature ferromagnet has been discovered by high-throughput means.

In addition, in the case of Mn$_2$PtPd, a single phase is found without evidence of decomposition. The XRD pattern (Fig. 6B) corresponds to a tetragonally distorted regular Heusler with space group $I4/mmm$ (TiAl$_3$-type) and lattice parameters $a = 4.03$ Å and $c = 7.24$ Å. Our magnetic data show a magnetic transition at ~320 K, which shifts to a slightly higher temperature upon field cooling (Fig. 6A). Magnetization curves at room temperature and 4 K show no hysteresis or spontaneous magnetization, indicating that the compound is antiferromagnetic at low temperature. From Table 1, it appears that the only difference between the calculated and experimental data for Mn$_2$PtPd concerns the tetragonal distortion. However, the search for tetragonal distortion reported in the table was performed only for the ferromagnetic state.

Further analysis of the antiferromagnetic ground state (see the Supplementary Materials) reveals that Mn$_3$PtPd is antiferromagnetic and tetragonally distorted, with a c/a ratio of around 1.3, in good agreement with experiments.

In conclusion, we have demonstrated a new systematic pathway to the discovery of novel magnetic materials. We have created an extensive library of Heusler compounds, including about 250,000 prototypes. For the subclass of intermetallic alloys, we have been able to establish the material stability against decomposition of 20 novel magnetic HAs belonging to the Co$_2$YZ, Mn$_2$YZ, and X$_2$MnZ classes. A simple machine learning method, correlating calculated microscopic electronic structure quantities with macroscopic measured properties, has been used to predict the magnetic T_C of these compounds. The method has been put to the test with the experimental synthesis of four compounds and validated by the growth of two. In particular, we have discovered a new high-temperature ferromagnet (Co$_2$MnTi) and a tetragonally distorted antiferromagnet (Mn$_3$PtPd). Our method offers a new high-throughput tool for the discovery of new magnets, which can now be applied to...
The electronic structure of all the Heusler prototypes was computed by DFT in the GGA of the exchange correlation functional as parameterized by Perdew-Burke-Ernzerhof (12). Our DFT platform was the VASP code (13), and each structure was fully relaxed. The typical convergence tolerance was 1 meV/atom, and this was usually achieved by sampling the Brillouin zone over a dense grid of 3000 to 4000 k-points per reciprocal atom. A much denser grid of 10,000 k-points was used for the static run to obtain accurate charge densities and density of states. All calculations were performed by including spin polarization and were initialized from a ferromagnetic ground state. Additional antiferromagnetic initializations were considered in the case of the Mn$_2$-based HAs.

The large volume of data was managed by the AFLOW code (14), which also generated the appropriate entries for the AFLOW database (9).

The alloys were prepared by arc melting in high-purity Ar, with the ingots remelted four times to ensure homogeneity. An excess of 3 wt % Mn was added to compensate for Mn losses during arc melting (see the Supplementary Materials for details). Structural characterization was carried out by powder XRD, whereas magnetic measurements were made using a superconducting magnetometer in a field of up to 5 T. Furthermore, the microstructure was analyzed by scanning electron microscopy of the polished bulk samples, whereas the compositions were determined by EDX spectroscopy.

REFERENCES AND NOTES

1. J. F. Janak, Uniform susceptibilities of metallic elements. Phys. Rev. B 16, 255–262 (1977).
2. F. Karlruhe and NIST. Inorganic crystal structure database; http://icsd.fz-karlsruhe.de/icsd/.
3. J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge Univ. Press, 2010).
4. E. V. Tsybuly, J. Zöll, Eds., in Handbook of Spin Transport and Magnetism (CRC Press, 2012).
5. E. E. Rodriguez, F. Poinotu, A. Llobet, B. J. Kennedy, M. Avdeev, G. J. Thorogood, M. L. Carter, R. Seshadri, D. J. Singh, A. K. Cheetham, High temperature magnetic ordering in the 4d perovskite SrTiO$_3$. Phys. Rev. Lett. 106, 067201 (2011).
6. C. Franchini, T. Archer, J. He, X.-Q. Chen, A. Filippetti, S. Sanvito, Exceptionally strong magnetism in the 4d perovskites RTeO$_3$ (R = Cr, Sr, Ba). Phys. Rev. B 83, 220402 (2011).
7. S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvitto, O. Levy, The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).
8. T. Graf, C. Felser, S. S. P. Parkin, Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011).
9. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvitto, M. B. Buongiorno-Nardell, N. Mingo, O. Levy, AFLOWLIB: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012).
10. X. Zhang, L. Yu, A. Zakutayev, A. Zunger, Sorting stable versus unstable hypothetical compounds: The case of multi-functional ABX$_2$ half-Heusler filled tetrahedral structures. Adv. Funct. Mater. 22, 1425–1435 (2012).
11. F. Yan, X. Zhang, Y. Y. G. Yu, L. Yu, A. Nagaraja, T. O. Mason, A. Zunger, Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements. Nat. Commun. 6, 7308 (2015).
12. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
13. G. Kreise, J. Furthmuller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
14. S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. Mehl, D. Morgan, AFLOW: An automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).
15. C. E. Calderon, J. J. Plata, C. Toher, C. Oses, O. Levy, M. Fornari, A. Natan, M. J. Mehl, G. L. W. Hart, M. B. Nardelli, S. Curtarolo, The AFLOW standard for high-throughput materials science calculations diagrams. Comput. Mater. Sci. 108, 233–238 (2015).
16. G. L. W. Hart, S. Curtarolo, T. B. Masalski, O. Levy, Comprehensive search for new phases and compounds in binary alloy systems based on platinum-group metals, using a computational first-principles approach. Phys. Rev. X 3, 041035 (2013).
17. H. L. Lukas, S. G. Fries, B. Sundman, Computational Thermodynamics: The Calphad Method (Cambridge Univ. Press, 2007).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/3/4/e1602241/DC1

fig. S1. Magnetization curves for Mn$_2$PtCo.

fig. S2. Structural and chemical characterization of Mn$_2$PtCo.

fig. S3. Magnetization curves for Mn$_2$PtV.

fig. S4. Structural and chemical characterization of Mn$_2$PtV.

fig. S5. Histogram of the entropic temperature, S, for all the 248 intermetallic HAs estimated stable after the construction of the convex hull diagrams for the ternary phase. fig. S6. Total energy as a function of the c/a ratio for Mn$_2$PtPd calculated with GGA-DFT.

REFERENCES AND NOTES

1. J. F. Janak, Uniform susceptibilities of metallic elements. Phys. Rev. B 16, 255–262 (1977).
2. F. Karlruhe and NIST. Inorganic crystal structure database; http://icsd.fz-karlsruhe.de/icsd/.
3. J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge Univ. Press, 2010).
4. E. V. Tsybuly, J. Zöll, Eds., in Handbook of Spin Transport and Magnetism (CRC Press, 2012).
5. E. E. Rodriguez, F. Poinotu, A. Llobet, B. J. Kennedy, M. Avdeev, G. J. Thorogood, M. L. Carter, R. Seshadri, D. J. Singh, A. K. Cheetham, High temperature magnetic ordering in the 4d perovskite SrTiO$_3$. Phys. Rev. Lett. 106, 067201 (2011).
6. C. Franchini, T. Archer, J. He, X.-Q. Chen, A. Filippetti, S. Sanvitto, Exceptionally strong magnetism in the 4d perovskites RTeO$_3$ (R = Cr, Sr, Ba). Phys. Rev. B 83, 220402 (2011).
7. S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvitto, O. Levy, The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).
8. T. Graf, C. Felser, S. S. P. Parkin, Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011).
9. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvitto, M. B. Buongiorno-Nardell, N. Mingo, O. Levy, AFLOWLIB: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012).
10. X. Zhang, L. Yu, A. Zakutayev, A. Zunger, Sorting stable versus unstable hypothetical compounds: The case of multi-functional ABX$_2$ half-Heusler filled tetrahedral structures. Adv. Funct. Mater. 22, 1425–1435 (2012).
11. F. Yan, X. Zhang, Y. Y. G. Yu, L. Yu, A. Nagaraja, T. O. Mason, A. Zunger, Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements. Nat. Commun. 6, 7308 (2015).
12. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
13. G. Kreise, J. Furthmuller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
14. S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. Mehl, D. Morgan, AFLOW: An automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).
15. C. E. Calderon, J. J. Plata, C. Toher, C. Oses, O. Levy, M. Fornari, A. Natan, M. J. Mehl, G. L. W. Hart, M. B. Nardelli, S. Curtarolo, The AFLOW standard for high-throughput materials science calculations diagrams. Comput. Mater. Sci. 108, 233–238 (2015).
16. G. L. W. Hart, S. Curtarolo, T. B. Masalski, O. Levy, Comprehensive search for new phases and compounds in binary alloy systems based on platinum-group metals, using a computational first-principles approach. Phys. Rev. X 3, 041035 (2013).
17. H. L. Lukas, S. G. Fries, B. Sundman, Computational Thermodynamics: The Calphad Method (Cambridge Univ. Press, 2007).
G. D. Liu, X. F. Dai, H. Y. Liu, J. L. Chen, G. Wu, Mn₂CoZ (Z = Al, Ga, In, Si) compounds. Structural, electronic, and magnetic properties. Phys. Rev. B 87, 014424 (2013).

O. Meshcheriakova, C. Felser, G. Liu, S. Ueda, K. Kobayashi, T. Nakamura, M. Wójcik, O. V. Tret’yan, A. Tkatchenko, M. Zupan, Large noncollinearity and spin reorientation in the novel Mn₃RhSn Heusler magnet. Phys. Rev. Lett. 113, 087203 (2014).

K. Endo, T. Kanomata, H. Nishihara, K. R. A. Ziebeck, Magnetic properties of new compounds RuMn₃Sn and RuMn₃Si. J. Alloys Compd. 510, 1–5 (2012).

S. Ouardi, G. H. Fecher, C. Felser, J. Kübler, Realization of spin gapless semiconductors: The Heusler compound Mn₃CoAl. Phys. Rev. Lett. 110, 100401 (2013).

M. E. Jamer, B. A. Assaf, T. Devakul, D. Heiman, Magnetic and transport properties of Mn₃CoAl oriented films. Appl. Phys. Lett. 103, 142403 (2013).

Y. J. Zhang, G. J. Li, E. K. Liu, J. L. Chen, W. H. Wang, G. H. Wu. Ferromagnetic structures in Mn₃CoGa and Mn₃CoAl doped by Co, Cu, and Ti. J. Appl. Phys. 113, 123901 (2013).

The Tc is evaluated from the theory of Meineit et al. (83).

M. Meineit, J.-M. Schmalhorst, G. Reiss, Exchange interactions and Curie temperatures of Mn₃CoZ compounds. J. Phys. Condens. Matter 23, 116005 (2011).

G. D. Liu, X. F. Dai, H. Y. Liu, J. L. Chen, Y. X. Li, G. Xiao, G. H. Wu, Mn₃CoZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) compounds: Structural, electronic, and magnetic properties. Phys. Rev. B 77, 014424 (2008).

N. Lakhami, A. Pandey, K. Venugopalan, Hyperfine field distributions in disordered Mn₃CoSn and Mn₃NiSn Heusler alloys. Bull. Mater. Sci. 25, 309–313 (2002).

J. Winterlik, G. H. Fecher, B. Balke, T. Graf, V. Alijani, V. Ksenofontov, C. A. Jenkins, O. Meshcheriakova, C. Felser, G. Liu, S. Ueda, K. Kobayashi, T. Nakamura, M. Wójcik, Electronic, magnetic, and structural properties of the ferromagnet Mn₃CoSn. Phys. Rev. B 83, 174448 (2011).

X. Dai, G. Liu, L. Chen, J. Chen, G. Wu, Mn₃CoSb compound: Structural, electronic, transport and magnetic properties. Solid State Commun. 140, 533–537 (2006).

R. B. Helmholdt, K. H. J. Buschow, Crystallographic and magnetic structure of Ni₃MnSn and NiMn₃Sn. J. Less Common Met. 128, 167–171 (1987).

H. Luo, G. Liu, Z. Feng, Y. Li, L. Ma, G. Wu, X. Zhu, C. Jiang, H. Xu. Effect of the main-group elements on the electronic structures and magnetic properties of Heusler alloys Mn₃NIX (Z=In, Sn, Sb). J. Magn. Magn. Mater. 321, 4063–4066 (2009).

H. Luo, F. Meng, Z. Feng, Y. Li, W. Zhu, G. Wu, X. Zhu, C. Jiang, H. Xu. Ferromagnetism in the Mn₃-based Heusler alloy Mn₃NiSb. J. Phys. 105, 103903 (2009).

J. Winterlik, B. Balke, G. H. Fecher, C. Felser, M. C. M. Alves, F. Bernardi, J. Morais, Structural, electronic, and magnetic properties of tetragonal Mn₃Ga: Experiments and first-principles calculations. Phys. Rev. B 77, 054406 (2008).
Accelerated discovery of new magnets in the Heusler alloy family
Stefano Sanvito, Corey Oses, Junkai Xue, Anurag Tiwari, Mario Zic, Thomas Archer, Pelin Tozman, Munuswamy Venkatesan, Michael Coey and Stefano Curtarolo

Sci Adv 3 (4), e1602241.
DOI: 10.1126/sciadv.1602241