The Exact Critical Bubble Free Energy and the Effectiveness of Effective Potential Approximations*

David E. Brahm1
\textit{Carnegie Mellon, Pittsburgh PA 15213}

and

Clarence L. Y. Lee2
\textit{California Institute of Technology, Pasadena, CA 91125}

Abstract

To calculate the temperature at which a first-order cosmological phase transition occurs, one must calculate $F_c(T)$, the free energy of a critical bubble configuration. $F_c(T)$ is often approximated by the classical energy plus an integral over the bubble of the effective potential; one must choose a method for calculating the effective potential when $V'' < 0$. We test different effective potential approximations at one loop. The agreement is best if one pulls a factor of μ^4/T^4 into the decay rate prefactor [where $\mu^2 = V''(\phi_f)$], and takes the real part of the effective potential in the region $V'' < 0$. We perform a similar analysis on the 1-dimensional kink.

November, 1993

*Work supported in part by the U.S. Dept. of Energy under Contract No. DE-FG03-92-ER40701.

1Email: brahm@fermi.phys.cmu.edu

2Email: lee@theory3.caltech.edu
1. Introduction

Thermal Tunneling and the Critical Bubble Free Energy

A scalar field theory whose potential V has two local minima may tunnel out of the false vacuum (ϕ_f) by the nucleation and subsequent growth of bubbles of true vacuum (ϕ_t). While we will refer to V as the “classical” potential, it may arise in part from integrating out other particles in the theory, e.g. gauge bosons\cite{1}, so V may have implicit temperature (T) dependence. The nucleation rate per unit volume in the static limit ($RT \gg 1$) is calculated in the Gaussian approximation (i.e. to 1-loop order) to be\cite{2–4}

$$
\frac{\Gamma}{V} = \frac{1}{V} \frac{|\omega_-|}{2T} T \left| \frac{\det[\partial^2 + V''(\bar{\phi})]}{\det[\partial^2 + \mu^2]} \right|^{-1/2} e^{-E_c/T} \quad (1.1)
$$

where $\mu^2 = V''(\phi_f)$. E_c is the classical energy of the critical bubble, a static and spherically symmetric field configuration $\bar{\phi}(r)$, of radius R, which extremizes the classical action\cite{5} subject to periodic boundary conditions in Euclidean time. The determinants range over a complete basis of fluctuations about the classical solution ($\bar{\phi}(r)$ or ϕ_f), subject to the same boundary conditions. $\omega_-^2 < 0$ is the eigenvalue of the “breathing” mode about $\bar{\phi}(r)$. The second term on the RHS of Eq. (1.1) is from Affleck\cite{3}, and the $\frac{1}{2}$ is from analytically continuing the breathing mode integration\cite{2}.

With the periodic boundary conditions,

$$
\det[\partial^2 + V''(\bar{\phi})] = \exp \left\{ \sum_{n=-\infty}^{\infty} \sum_j \ln \left[(2\pi nT)^2 + \omega_j^2 \right] \right\} , \quad (1.2)
$$

where the ω_j^2 are eigenvalues of $[-\nabla^2 + V''(\bar{\phi})]$, and the (ω_j^2) are eigenvalues of $[-\nabla^2 + \mu^2]$. We use the identity\cite{6}

$$
\frac{T}{2} \sum_n \ln \left[(2\pi nT)^2 + \omega^2 \right] = \frac{\omega_-}{2} + T \ln(1 - e^{-\omega_-/T}) + C = T \ln \left[2 \sinh \left(\frac{\omega_-}{2T} \right) \right] + C . \quad (1.3)
$$

The constants C cancel out in Eq. (1.1). The ω_- contribution is then traditionally pulled back into the prefactor. The 3 “translation” modes ($n = 0$ and $\omega_0 = 0$) are not treated correctly above; they actually give $V(E_c/2\pi T)^{3/2}$ in the prefactor\cite{2}, and the remaining ω_0 contribution (from $n \neq 0$ modes) gives T^3 in the prefactor. This gives

$$
\frac{\Gamma}{V} = \frac{T^4}{2\pi} \left(\frac{E_c}{2\pi T} \right)^{3/2} \frac{|\omega_-|/2T}{\sin(|\omega_-|/2T)} e^{-F^{trad}_{c/T}/T} \quad (1.4)
$$

where the “traditional” bubble free energy

$$
F^{trad}_{c/T} \equiv E_c + \Delta F^{\text{trad}}_{1+T} \equiv E_c + \Delta F^{\text{trad}}_1 + \Delta F^{\text{trad}}_T , \quad (1.5)
$$
\[\Delta F_{I}^{\text{trad}} = \sum_{j} \left(\omega_j - \frac{\omega_j^0}{2} \right) + F^c, \quad \Delta F_{T}^{\text{trad}} = \sum_{j} T \ln \left(\frac{1 - e^{-\omega_j/T}}{1 - e^{-\omega_j^0/T}} \right). \] (1.6)

Primes on the sums in Eq. (1.6) indicate omission of the translation and breathing modes \((\omega_j, j = 1 - 4)\). Counterterms \(F^c\) are discussed below.

We now define
\[F_{\text{sub}}^c \equiv E_c + \Delta F_{1+T}^{\text{sub}} \equiv E_c + \Delta F_{1}^{\text{sub}} + \Delta F_{T}^{\text{sub}}, \] (1.7)
\[\Delta F_{1}^{\text{sub}} \equiv \Delta F_{1}^{\text{trad}}, \quad \Delta F_{T}^{\text{sub}} \equiv \Delta F_{T}^{\text{trad}} - 4T \ln(T/\mu). \] (1.8)

Now Eq. (1.4) becomes
\[\frac{\Gamma}{\mathcal{V}} = \frac{\mu^4}{2\pi} \left(\frac{E_c}{2\pi T} \right)^{3/2} \frac{|\omega_-|/2T}{\sin(|\omega_-|/2T)} e^{-F_{c}^{\text{sub}}/T}. \] (1.9)

We will find that the effective potential approximation most closely approximates \(F_{c}^{\text{sub}}\).

The Effective Potential

The sums in Eq. (1.6) are often approximated by treating the fluctuations locally as plane waves to get an effective potential \(V_{1+T} = V_1 + V_T\), then integrating \([V_{1+T}(\tilde{\phi}) - V_{1+T}(\phi_f)]\) over all space. No attempt is made to remove the 4 translation and breathing modes. In Eq. (1.6) one substitutes
\[\sum_{j} \rightarrow \int d^3x \int_0^\Lambda \frac{d^3k}{(2\pi)^3}, \quad \omega_j \rightarrow \sqrt{k^2 + V''(\tilde{\phi})}, \quad \omega_j^0 \rightarrow \sqrt{k^2 + \mu^2}, \] (1.10)
and one finds, with \(m^2 \equiv V''(\phi), \)
\[V_1(\phi) = \frac{1}{64\pi^2} \left\{ m^4 \ln \left(\frac{m^2}{\mu^2} \right) - \frac{3}{2} m^4 + 2 m^2 \mu^2 - \frac{1}{2} \mu^4 \right\}, \] (1.11)
\[V_T(\phi) = \frac{T^4}{2\pi^2} I(m/T), \quad I(y) \equiv \int_0^\infty dx \, x^2 \ln \left(1 - e^{-\sqrt{x^2+y^2}} \right). \] (1.12)

The expansion of \(I(y)\) for real \(y < 2\pi\) is\(^{[6,7]}\)
\[I(y) = -\frac{\pi^4}{45} + \frac{\pi^2}{12} y^2 - \frac{\pi}{6} y^3 - \frac{y^4}{32} \left[\ln y^2 - c_3 + \sum_{k=1}^\infty \frac{4(2k)! \zeta(2k+1)}{k!(k+2)!} \left(-\frac{y^2}{16\pi^2} \right)^k \right] \] (1.13)

\(^{1}\)This is somewhat like removing the lowest 4 \(\omega_j^0\)'s from the sums in Eq. (1.6), in addition to the lowest 4 \(\omega_j\)'s, since their contribution to \(F_{c}^{\text{trad}}\) is \(-4\left[\frac{T^4}{2\pi^2} + T \ln(1 - e^{-\mu/T}) \right] \approx 4T \ln(T/\mu).\)
where \(c_3 = \frac{3}{2} + 2 \ln(4\pi) - 2\gamma \approx 5.4076 \). We choose a renormalization scheme in which all divergent graphs are precisely cancelled by counterterms so that at zero external momenta, \(V_1(\phi_f) = V'_1(\phi_f) = V''_1(\phi_f) = 0 \) (and there is no wavefunction renormalization), specifically:

\[
F^{\text{ct}} = - \frac{1}{64\pi^2} \int d^3x \left\{ \left[4\Lambda^4 + \frac{1}{2}\mu^4 \right] + m^2 [4\Lambda^2 - 2\mu^2] + m^4 \left[2 - \ln \left(\frac{4\Lambda^2}{\mu^2} \right) \right] \right\} |m^2 = \mu^2 - c_3 + c| \approx 5.4076.
\] (1.14)

In the region \(m^2 < 0 \), we must modify these results to give a real answer. For \(V_1 \) we will always take the real part of Eq. (1.11). For \(V_T \) let us keep the first equation of Eq. (1.12), but replace \(I(m/T) \) by \(I^{(\text{neg})}(\theta |m|/T) \) where \(I^{(\text{neg})}(\theta) = -\frac{\pi^4}{45} - \frac{\pi^2}{12} Y^2 + Y^3 \left[a + b \ln(Y^2) \right] - \frac{Y^4}{32} [\ln(Y^2) - c_3 + c] + \cdots \). (1.15)

Methods we consider are then parametrized by \(\{a, b, c\} \). The most common and obvious method (A) is to take the real part of Eq. (1.13), corresponding to \(\{a = b = c = 0\} \). Another method (B), proposed in ref. [9], replaces the lower limit of integration in Eq. (1.10) by \(k = \text{Im}\{m\} \) (eliminating fluctuations with wavelengths longer than the bubble thickness), and corresponds to \(\{a = \frac{4}{9} - \frac{1}{3} \ln(2), b = \frac{1}{6}, c = 0\} \).

The Derivative Expansion

For configurations \(\tilde{\phi}(\tilde{x}) \) which vary slowly, the effective potential approximation is the leading term in a derivative expansion of the free energy. The next term (at high \(T \)) is\(^{[10,11]}\)

\[
\Delta F^\text{der}_T - \Delta F^\text{pot}_T = \frac{T}{192\pi} \int d^3x m^{-1} \nabla^2(m^2),
\] (1.16)

and again we take the real part (Method A) when necessary. More terms are given explicitly in ref. [11]; they become increasingly divergent at \(m^2 = 0 \), where the derivation breaks down (because an integration by parts becomes invalid). Also, no attempt is made to omit modes. The usefulness of Eq. (1.16) is thus highly suspect, but we note that derivative corrections are predicted to be \(\mathcal{O}(T^1) \).

Scales, Approximations, and Goals

Our generic tree-level potential will be quartic in \(\phi \) with \(\phi_f = 0 \), \(V''(0) = \mu^2 \), and \(\phi_t = \sigma \). By rescaling\(^{[12]}\) \(\phi = \sigma \tilde{\phi}, x = \tilde{x}/\mu, T = \mu \tilde{T} \), we can rewrite the 4-action \(S_0 \) as

\[
S_0 = \frac{E_c}{T} = \left(\frac{\sigma}{\mu} \right)^2 \frac{1}{T} \int d^3\tilde{x} \left\{ \frac{1}{2} \left(\frac{d\tilde{\phi}}{d\tilde{T}} \right)^2 - \left[\frac{1}{2} \tilde{\phi}^2 - \frac{2\kappa + 1}{3} \tilde{\phi}^3 + \frac{\kappa}{2} \tilde{\phi}^{4} \right] \right\} . \] (1.17)
κ ≥ 1 is a dimensionless parameter; κ → 1 (degenerate minima) is the thin-wall limit, while larger κ gives thicker bubbles. With tildes indicating dimensionless results,
\[E_c = (\sigma^2/\mu) \tilde{E}_c, \quad \Delta F_{1,T} = \mu \Delta \tilde{F}_{1,T}. \] (1.18)

The loop expansion\(^{[13]}\) is an expansion in \((\mu/\sigma)^2\) and \(\tilde{T}\). It is sometimes claimed that higher loops should eliminate the complex terms in \(F^{pot}_c\), but this cannot be generally true since the higher-loop contributions are suppressed by these arbitrary parameters. Henceforth we will drop the tildes and work in the rescaled theory (i.e. set \(\mu = \sigma = 1\)).

We always use the static approximation\(^{[14]}\) (\(RT \gg 1\)) and the 1-loop approximation. In Section 3 we will use the thin-wall approximation, \(R \gg 1\). At times we will make high-temperature expansions, requiring \(T \geq 1\) (note the thin-wall and high-temperature limits together imply the static limit). We are examining the validity of the effective potential approximation.

In this paper we will study several systems: the 1-dimensional kink, the thin-wall bubble, and two thick-wall bubbles. We will calculate \(\Delta F_1\) and \(\Delta F_T\) for each system exactly [\(F^{sub}_c\) in Eq. (1.8)], in the effective potential approximation [\(F^{pot}_c\) from Eqs. (1.11-1.12), using different methods to calculate \(I^{(neg)}\) in Eq. (1.15)], and using the next term of the derivative expansion [\(F^{der}_c\) from Eq. (1.16)].

2. The 1-Dimensional Kink

Classical Results

We warm up by calculating the free energy of a kink in 1 spatial dimension.\(^{[15]}\)

\[\frac{d^2 \tilde{\phi}}{dx^2} = V''(\tilde{\phi}), \quad \frac{d \tilde{\phi}}{dx} = -\sqrt{2V(\tilde{\phi})}, \quad V(\phi) = \frac{1}{2} \phi^2 (1 - \phi)^2. \] (2.1)

The potential is that of Eq. (1.17) with \(\kappa = 1\). The kink solution is (up to an arbitrary shift in coordinate)

\[\tilde{\phi}(x) = \frac{1}{2} [1 - \tanh(\frac{1}{2}x)], \quad V''(\tilde{\phi}(x)) = 1 - \frac{3}{2} \text{sech}^2(\frac{1}{2}x). \] (2.2)

Eq. (2.1) allows us to convert integrals over \(x\) into integrals over \(\phi\):

\[\int_{-\infty}^{\infty} dx \to \int_{0}^{1} \frac{d\phi}{\phi(1-\phi)}. \] (2.3)

For example, the classical energy is

\[E^{1D}_c = \int_{0}^{1} \frac{d\phi}{\phi(1-\phi)} \phi^2 (1-\phi)^2 = \frac{1}{6}. \] (2.4)

Note that in 1D [compare to Eq. (1.18)] \(E_c = \mu \sigma^2 \tilde{E}_c\) and \(\Delta F_{1,T} = \mu \Delta \tilde{F}_{1,T}\), so with scales restored \(E^{1D}_c = \mu \sigma^2 / 6\).
Table 1: Kink free energy in low- and high-T regimes.

Exact Results from the Eigenvalue Sum

The solutions to the eigenvalue equations (setting $\mu = 1$) are known:\[15,16\]

$$\omega_0 = \sqrt{(k_0 s)^2 + 1}, \quad \omega_1 = 0, \quad \omega_2 = \sqrt{3}/2, \quad \omega_{s>2} = \sqrt{(k_s)^2 + 1},$$

$$k_0^s = \frac{\pi s}{L}, \quad k_s = \frac{\pi s - \delta(k_s)}{L}, \quad \delta(k) = 2\pi - 2\tan^{-1}(k) - 2\tan^{-1}(2k), \quad (2.5)$$

where we have imposed vanishing boundary conditions on a box of length L, so s is a positive integer. We drop the translation mode eigenvalue ω_1; there is no negative eigenvalue in 1D.

In the continuum limit,

$$\Delta F_{1\text{trad}} = \frac{\sqrt{3}}{4} + \int_0^\Lambda \frac{dk}{\pi} \frac{d\delta}{dk} \frac{\sqrt{k^2 + 1}}{2} - \frac{3}{2\pi} + F^{\text{ct}},$$

$$\Delta F_{T\text{trad}} = T \ln \left(1 - e^{-\sqrt{3}/2T}\right) + \int_0^\infty \frac{dk}{\pi} \frac{d\delta}{dk} T \ln \left(1 - e^{-\sqrt{k^2+1}/T}\right). \quad (2.6)$$

In our renormalization scheme the 1D counterterms analogous to Eq. (1.14) are

$$F^{\text{ct}} = \frac{-1}{16\pi} \int dx \left\{ [4\Lambda^2 + 1] + m^2 [2 + 2\ln(4\Lambda^2)] - m^4 \right\}_{m^2 = \mu^2}^{\Lambda' \mu'} = \frac{1}{8\pi} [3 + 6\ln(4\Lambda^2)] . \quad (2.7)$$

(This differs from ref. [15] by $3/8\pi$ due to different renormalization schemes; also note their $m^2 \equiv \mu^2/2$.) We define $\Delta F_{1\text{sub}} \equiv \Delta F_{1\text{trad}}$ and $\Delta F_{T\text{sub}} \equiv \Delta F_{T\text{trad}} - T \ln(T/\mu)$, and find

$$\Delta F_{1\text{sub}} = \frac{1}{4\sqrt{3}} - \frac{9}{8\pi} = -.2138 . \quad (2.8)$$

$$\Delta F_{1+T\text{sub}} = -(\ln \sqrt{12}) T + \frac{3}{2\pi} \ln(T) + \frac{6c_1 - 3}{8\pi} + \frac{3\zeta(3)}{32\pi^3} T^{-2} + \cdots \quad (2.9)$$

where $c_1 = 1 + 2\ln(4\pi) - 2\gamma \approx 4.9076$, and $\zeta(3) \approx 1.2021$. These results are in the row marked “sub” of Table 1.
1D Effective Potential and Derivative Expansion Results

The 1D effective potential for real \(m \) is\[^{[7]}\]

\[
V_1 = \frac{-m^2}{8\pi} \ln(m^2) + \frac{m^4 - 1}{16\pi}, \quad V_T = \frac{T^2}{\pi} \hat{I}(m/T) \quad (2.10)
\]

\[
\hat{I}(y) = \frac{-\pi^2}{6} + \frac{\pi y}{2} + \frac{y^2}{8} \left[\ln(y^2) - c_1 \right] - \frac{\zeta(3)y^4}{64\pi^2} + \cdots. \quad (2.11)
\]

For \(m^2 < 0 \) we replace \(\hat{I}(m/T) \) by \(\hat{I}^{(neg)}(|m|/T) \) where

\[
\hat{I}^{(neg)}(Y) = \frac{-\pi^2}{6} + Y \left[\hat{a} + \hat{b} \ln(Y^2) \right] - \frac{Y^2}{8} \left[\ln(Y^2) - c_1 + \hat{c} \right] + \cdots \quad (2.12)
\]

Method A gives \(\{ \hat{a} = \hat{b} = \hat{c} = 0 \} \), and Method B gives \(\{ \hat{a} = 1 - \ln(2), \hat{b} = -\frac{1}{2}, \hat{c} = 0 \} \).

We integrate (the real part of) \(V_1 \) from Eq. (2.10) over all space, using Eq. (2.3), to get \(\Delta F_{pot}^{1+T} = -\ln \left[\frac{2}{\sqrt[6]{6}} \right] T \) as shown in the line marked “pot(A)” of Table 1. Note that the difference between the true result and the potential approximation no longer lies in the constant term, but only (as far as we have taken the expansion) in the \(T \) term! It is

\[
\Delta F_{pot}^{1+T} = \ln[2(\sqrt{3} - \sqrt{2})^{\sqrt{6}}] T + \frac{3}{2\pi} \ln(T) + \frac{6c_1 - 3}{8\pi} + \frac{3\zeta(3)}{32\pi^3} T^{-2} + \cdots, \quad (2.13)
\]

as incorporated in the third line of Table 1. It is a very poor approximation to Eq. (2.14)!

The next term of the derivative expansion [analogous to Eq. (1.16)] is

\[
\Delta F_{der}^{1+T} - \Delta F_{pot}^{1+T} = -\ln \left[4\sqrt{3}(\sqrt{3} - \sqrt{2})^{\sqrt{6}} \right] T = 0.585 T \quad (2.15)
\]

Results from Method B are given in the fourth line of Table 1; these are also unsatisfactory. In fact, the choice \(\{ \hat{a} = 1.940, \hat{b} = \hat{c} = 0 \} \) in Eq. (2.12) would give the correct (“sub”) results, but it is not clear if there is any physics in this choice.
3. The Thin-Wall Critical Bubble

Classical Results

For κ close to (but larger than) unity in Eq. (1.17), the solution to

$$\nabla^2 \bar{\phi} = V'(\bar{\phi})$$

(3.1)

is a thin-wall bubble, given approximately by the kink solution in the radial coordinate, Eq. (2.2) with $x = r - R$ and $R \gg 1$. The tree-level critical bubble energy has volume and surface terms:

$$E_c = 4\pi \int r^2 dr \left[\frac{1}{2} \left(\frac{d\bar{\phi}}{dr} \right)^2 + V(\bar{\phi}(r)) \right] \approx -\frac{4}{3} \pi R^3 |V(1)| + 4\pi R^2 E_c^{1D},$$

(3.2)

where $E_c^{1D} = \frac{1}{6}$ was given in Eq. (2.4), and $|V(1)| = (\kappa - 1)/6$. We extremize to find the bubble radius R and energy E_c,

$$R = \frac{2}{\kappa - 1}, \quad E_c = \frac{8\pi}{9(\kappa - 1)^2} = \frac{2\pi R^2}{9}.$$ \hspace{1cm} (3.3)

The wall thickness is $O(1)$ (i.e. μ^{-1}). It can also be shown that $\omega^2 \approx -2/R^2$, so the static and thin-wall limits imply that the third factor of Eq. (1.4) is near unity.

Exact Results for a Domain Wall

In the thin-wall limit, the surface free-energy density $f_{1,T} = \Delta F_{1,T}/(4\pi R^2)$ of the bubble wall equals that of a planar domain wall. We can thus solve the eigenvalue equation in Cartesian coordinates, using Eq. (2.5) for the radial wavenumber k_r, and plane waves for the tangential k_t, to get

$$f_{1{sub}} = \int_0^\Lambda \frac{k_t \, dk_t}{2\pi} \left\{ \frac{k_t}{2} + \frac{\sqrt{k_t^2 + 3/4}}{2} - \frac{\sqrt{\Lambda^2 + 1}}{2\pi} \right\} + \frac{3\Lambda^2}{8\pi^2} - \frac{3}{32\pi^2} \ln(4\Lambda^2),$$

(3.4)

$$f_{T{sub}} = T \int_0^\infty \frac{k_t \, dk_t}{2\pi} \left\{ \ln \left[1 - e^{-k_t/T} \right] + \ln \left[1 - e^{-\sqrt{k_t^2 + 3/4}/T} \right] \right\} + \int_0^\infty \frac{dk_t}{\pi} \times \left(\frac{-2}{k_t^2 + 1} + \frac{-4}{4k_t^2 + 1} \right) \ln \left[1 - e^{-\sqrt{k_t^2 + k_t^2 + 1}/T} \right].$$

(3.4)

We have performed the f_T integral numerically, and fit to an expansion in T^{-1}; the results are shown in Table 2 in the row marked “sub”.\footnote{These results are also useful for the study of second-order phase transitions, in which the domain wall free...}
Table 2: Thin-wall bubble free energy density for low- and high-T.

Method	f_1	f_{1+T}						
		T^2	$T \ln(T)$	T	$\ln(T)$	1	T^{-1}	T^{-2}
sub	-.02474	-1/4	0	.15215	-.01900	-.03712	0	-.00012
pot(A)	-.00661	-1/4	0	.15452	-.01900	-.05612	0	-.00012
der(A)	-.00661	-1/4	0	.15187	-.01900	-.05612	0	-.00012
pot(B)	-.00661	-1/4	.00864	.16409	-.01900	-.05612	.00006	-.00012

Effective Potential and Derivative Expansion Results

Results from integrating the effective potential, and the next term of the derivative expansion, over the bubble [again using Eq. (2.3)] are shown in the rest of Table 2. Using the general $I^{(\text{neg})}$ of Eq. (1.15) gives

$$f_{1+T}^{\text{pot}} = -\frac{1}{4} T^2 - (0.0518 b) T \ln(T) + (0.1545 + 0.0259 a - 0.0242 b) T$$

$$- (0.0190) \ln(T) + (-0.05612 - 0.000514 c).$$

(3.5)

Matching this to the true f_{1+T}^{sub} gives the coefficients \{a, b, c\} shown in the first line ($\kappa = 1$) of Table 3.\(^\S\)

We see “derivative corrections” are $O(T)$. The derivative expansion prediction, f_{1+T}^{der} from Eq. (1.16), is a reasonable approximation to them in this case.

κ	a	b	c
1	-.0913	0	-36.974
1.5	.2834	0	-1.424
2.5	.4188	0	-0.180

Table 3: $I^{(\text{neg})}$ parameters that make $\Delta F_{1+T}^{\text{pot}} = \Delta F_{1+T}^{\text{sub}}$.

energy density is set to zero.\^[17] Restoring units,

$$f_{\text{\bar{\phi}} \text{wall}} = \mu \left[\frac{\sigma^2}{6} - \frac{T^2}{4} + 0.15215 \mu T_c - 0.01900 \mu^2 \ln(T_c/\mu) - \cdots \right] = 0$$

giving, for $\mu \ll \sigma$, $T_c = \sqrt{2/3} \sigma + 0.3\mu + \cdots$. That is, the critical temperature is a bit higher than the leading result which is in the literature.

\(^\S\)First subtracting the derivative correction of Eq. (1.16) from $\Delta F_{1+T}^{\text{sub}}$ would give a values of .0109, .3877, and .5128, respectively. For the kink it gives $\hat{a} = 2.070$. These results are no more enlightening.
4. Thick-Wall Critical Bubbles

Classical Results

From Eq. (1.17), the (scaled) potential (Fig. 1) is

\[V = \frac{1}{2} \phi^2 - \frac{2\kappa + 1}{3} \phi^3 + \frac{\kappa}{2} \phi^4. \]

(4.1)

Larger \(\kappa > 1 \) gives thicker bubbles. The minima are at \(\phi = 0 \) and \(\phi = 1 \), with \(V''(0) = 1 \) and \(V''(1) = 2\kappa - 1 \). The bubble profile is the solution to

\[\ddot{\phi}'' + 2 \ddot{\phi}' / r = \ddot{\phi}(1 - \ddot{\phi})(1 - 2\kappa \ddot{\phi}). \]

(4.2)

Fig. 2 plots \(\ddot{\phi}(r) \) and \(V''(r) \) for \(\kappa = 1.5 \) and \(\kappa = 2.5 \). From ref. [12], the classical energy is approximately

\[E_c \approx \frac{4.85\alpha}{\kappa} \left[1 + \frac{\alpha}{4} \left(1 + \frac{2.4}{1 - \alpha} + \frac{.26}{(1 - \alpha)^2} \right) \right], \quad \alpha \equiv \frac{9\kappa}{(1 + 2\kappa)^2}. \]

(4.3)

Exact, Effective Potential, and Derivative Expansion Results

Our method of calculating the exact free energy \(F_c^{\text{sub}} \), formally given by Eq. (1.7), is described in ref. [8]. The results for \(\kappa = 1.5 \) are in Table 4, and for \(\kappa = 2.5 \) in Table 5**, along with effective potential and derivative expansion approximations. Thin-wall predictions are also shown for two values of \(R \): one chosen to give the correct \(T^2 \) coefficient ("thin-1"), and one given by Eq. (3.3) ("thin-2"). Finally, the parameters in \(I^{(\text{neg})} \) needed to match the effective potential approximation to the exact result are given in Table 3.

**In our fit to the data, we allowed a \(T^{-2} \) term, not shown, and constrained the \(T^2, T \ln(T), \) and \(\ln(T) \) terms.
Table 5: Thick-wall bubble free energy for $\kappa = 2.5$.

Method	ΔF_1	ΔF_{1+T}				
	T^2	$T \ln(T)$	T	$\ln(T)$	1	
sub	−1.34	−24.90	0	17.17	−1.408	−4.60
pot(A)	−1.009	−24.90	0	14.05	−1.408	−4.64
der(A)	−1.009	−24.90	0	13.35	−1.408	−4.64
pot(B)	−1.009	−24.90	2.48	15.60	−1.408	−4.64
thin-1	−0.572	−24.90	0	15.15	−1.892	−5.59
thin-2	−0.553	−5.59	0	3.40	−0.424	−0.83

5. Conclusions: A New Prefactor, and Derivative Corrections

We have tested the effective potential approximation to the critical bubble free energy. The agreement is best if one pulls a factor of μ^4/T^4 into the decay rate prefactor, Eq. (1.9), and takes the real part of the effective potential in the region $V'' < 0$ (Method A). That is, $F_{1+T}^{\text{pot}(A)}$ closely approximates $F_{1+T}^{\text{sub}} = F_{1+T}^{\text{trd}} - 4T \ln(T/\mu)$. Table 3 shows that no single set of $I^{(\text{neg})}$ parameters $\{a, b, c\}$ does consistently better than Method A. With scales restored, $E_c = O(\sigma^2/\mu)$, $\Delta F_{1+T}^{\text{sub}} = O(T^2/\mu)$, and “derivative corrections” are

$$\Delta F_{1+T}^{\text{sub}} - \Delta F_{1+T}^{\text{pot}(A)} = O(T). \quad (5.1)$$

This difference is numerically fairly small, and very poorly predicted by the derivative expansion [Eq. (1.16)]. In summary,

$$\frac{\Gamma}{\mathcal{V}} = X \frac{\mu^4}{2\pi} \left(\frac{E_c}{2\pi T} \right)^{3/2} \frac{|\omega_-|/2T}{\sin(|\omega_-|/2T)} e^{-F_{1+T}^{\text{pot}(A)}/T}, \quad (5.2)$$

where X is a dimensionless number representing derivative corrections, typically 10^{-2} to 10^2.

In 1D, where $\Delta F_{1+T}^{\text{sub}}$ is only $O(T)$, derivative corrections [still $O(T)$, and numerically larger] are much more significant than in 3D.

Acknowledgments

The authors thank Carlos Aragão de Carvalho, Dan Boyanovsky, Rich Holman, Stephen Hsu, Andrei Linde, Erick Weinberg, and Mark Wise for valuable discussions. DB thanks the Aspen Center for Physics for its hospitality during part of this work.
References:

1. Errors that arise when particles are naively integrated out are discussed (at $T = 0$) by E. Weinberg, Phys. Rev. D47:4614 (1993).
2. S. Coleman, Phys. Rev. D15:2929 (1977), 16:1248(E) (1977); C.G. Callan & S. Coleman, Phys. Rev. D16:1762 (1977); S. Coleman, “The Uses of Instantons”, Proc. 1977 Int. School of Subnuclear Physics, Ettore Majorana, ed. A. Zichichi (Plenum, New York, 1979); reprinted in Aspects of Symmetry (Cambridge University Press, 1985).
3. I. Affleck, Phys. Rev. Lett. 46:388 (1981).
4. J.W. Cahn & J.E. Hilliard, J. Chem. Phys. 31:688 (1959); J.S. Langer, Ann. Phys. 41:108 (1967); ibid. 54:258 (1969); M.B. Voloshin, I.Y. Kobzarev & L.B. Okun’, Yad. Fiz. 20:1229 (1974) [Sov. J. Nucl. Phys. 20:644 (1975)]; P.H. Frampton, Phys. Rev. D15:2922 (1977); A.D. Linde, Phys. Lett. 70B:306 (1977); ibid. 100B:37 (1981); Nucl. Phys. B216:421 (1983); ibid. B223:544 (1983)(E); O.J.P. Eboli & G.C. Marques, Rev. Bras. Fis. 16:147 (1986).
5. M. Gleiser, G.C. Marques & R.O. Ramos, Phys. Rev. D48:1571 (1993).
6. L. Dolan & R. Jackiw, Phys. Rev. D9:3320 (1974).
7. H. Haber & H.A. Weldon, J. Math. Phys. 23, 1852 (1982).
8. C.L.Y. Lee, CALT-68-1903 (Oct. 1993).
9. C.G. Boyd et al., Phys. Rev. D48:4952 (1993).
10. L.-H. Chan, Phys. Rev. Lett. 54:1222 (1985); Phys. Rev. Lett. 56:404(E) (1986).
11. I. Moss, D. Toms & A. Wright, Phys. Rev. D46:1671 (1992).
12. M. Dine et al., Phys. Rev. D46:550 (1992); ibid., Phys. Lett. 283B:319 (1992).
13. T.-P. Cheng & L.-F. Li, Gauge Theory of Elementary Particle Physics (Oxford U. Press, 1984), eq. (6.133).
14. Andrei Linde, private communication.
15. S. Dodelson & B. Gradwohl, Nucl. Phys. B400:435 (1993).
16. R. F. Dashen, B. Hasslacher & A. Neveu, Phys. Rev. D10:4114 (1974); ibid. D10:4130 (1974); R. Rajaraman, Solitons and Instantons (North-Holland, 1987), secs. 5.3–5.4.
17. I. Ventura, Phys. Rev. B24:2812 (1981); C. Aragão de Carvalho et al., Phys. Rev. D31:1411 (1985); C. Aragão de Carvalho et al., Nucl. Phys. B265:45 (1986); D. Bazeia et al., Z. Phys. C46:457 (1990).
Figure 1: The potential $V(\phi)$ for several κ's.

Figure 2: Thick-wall bubble profiles $\phi(r)$ and $V''(r)$.
Scaled $V(\phi)$ for $\kappa = \{1, 1.5, 2.5\}$
\(\phi(r) \) and \(V''(r) \), \(\kappa = 1.5 \)
\(\phi(r) \) and \(V''(r) \), \(\kappa=2.5 \)