Abstract: In this paper, we consider a straight screw dislocation near a flat interface between two elastic media in the framework of strain gradient elasticity (as studied by Gutkin et. al. [1]) by now taking care of some incomplete calculations. Closed form solutions for stress components and the Peach-Koehler force on the dislocation have been derived. It is shown that the singularities of the stress components at the dislocation line are eliminated and both components are continuous and smooth across the interface. The effect of the distance of the dislocation position from the interface on the maximum value of stress is investigated. Unlike in the case of classical solution, the image force remains finite when the dislocation approaches the interface. It is shown that the dislocation is attracted by the medium with smaller shear modulus or smaller gradient coefficient.

Keywords: Strain gradient elasticity; Screw dislocation; Bi-medium; Image force

1 Introduction

The study of the elastic interaction of dislocations and inclusions is of considerable importance for understanding the strengthening and hardening mechanism of crystalline materials, especially composite materials [2, 3]. Several investigations have been conducted to assess dislocation-inclusion interaction of a straight dislocation with a semi-infinite interface between two dissimilar media [1, 4–7]; interactions of edge and screw dislocations with a circular inclusion [8–11]; and the interaction of dislocations with coated fibers [12–16]. Most of these attempts have been made in the context of conventional or classical elasticity. However, classical elasticity solutions are characterized by singularities in the components of the stress and strain fields. In addition, the force acting on the dislocation due to the existing interface becomes infinite as the dislocation approaches the interface, and some components of the stress field experience abrupt jumps at the interface. Gutkin et. al. [1, 7] indicated that these jumps can be justified only from a macroscopic point of view, and these solutions are inadmissible from a nanoscopic point of view. Thus, classical elasticity breaks down at the dislocation core and at the interface.

Additionally, it has been experimentally and computationally shown that elastic (see, e.g., [17–21]) and plastic (see, e.g., [21–30]) responses of materials at small length scales can be size dependent. Classical continuum theories are, however, scale-free and, hence, they cannot predict the behavior of materials at very small scales. In order to remedy this critical shortcoming, one or more material length scales are incorporated into the continuum constitutive equations. One of these fortiﬁed continuum theories is strain gradient elasticity where strain energy density or Hooke’s law contains gradients of elastic strain and/or stress fields.

The constitutive equation of a simple theory of strain gradient elasticity proposed by the second author and coworkers (for a recent review see [31] and refs quoted therein) reads

\[
\sigma = \left(1 - \lambda^2 \nabla^2\right) \sigma = \left(1 - c^2 \nabla^2\right) \left[\lambda (tr \epsilon) + 2\mu \epsilon\right],
\]

where \(\epsilon\) and \(\sigma\) denote the elastic strain and stress tensors, \(\lambda\) and \(\mu\) are the usual Lamé constants, 1 the unit tensor, \(\nabla^2\) the Laplacian, and \(c\) is a different gradient coefficient with the dimension of length. The stress and strain gradients are added to dispense the singularity of the stress and strain at the dislocation core and the crack tips. In analogy with what is now commonly known as the Ru-Aifantis theorem [31], a simple approach to solve boundary-value problems (BVPs) associated with Eq. (1) is to use existing solutions of classical elasticity for the same (traction) BVP. In fact, providing that appropriate care is
taken for extra boundary conditions (on account of the higher order terms) or conditions at infinity, \(u \) and \(\sigma \) can be found through the inhomogenous Helmholtz equations

\[
\begin{align*}
(1 - c^2 \nabla^2) u &= u^0, \\
(1 - l^2 \nabla^2) \sigma &= \sigma^0,
\end{align*}
\]

where \(u^0 \) and \(\sigma^0 \) are the solutions of the same BVP in classical elasticity. Eqs. (2) have been successfully applied to study the interaction between a dislocation and an interface [1, 7, 11, 32–34].

In this paper, we use the theory of strain gradient elasticity described by Eq. (1) to study the interaction between a straight screw dislocation and a flat interface. The same problem was studied by Gutkin et al. [1] with some deficiencies. For example, the stress components were not smooth or continuous despite the additional boundary conditions they imposed. In addition, it was not explained why the behavior of screw and edge dislocations near the interface stress jump to be eliminated from the solution.

Figure 1: A screw dislocation near a bi-medium interface

where \(r_1 = \sqrt{(x-x_0)^2 + y^2}, \ r_2 = \sqrt{(x+x_0)^2 + y^2} \) as depicted in Fig. 1 and \(\gamma \) is defined by

\[
\gamma = \frac{\mu_2 - \mu_1}{\mu_1 + \mu_2}.
\]

As indicated earlier, the \(zx \)-component of the classical stress field should be continuous on \(x = 0 \), while the component \(\sigma_{zy} \) has an abrupt jump across the interface:

\[
\sigma_{zy}^{(1)}(x = 0, y) - \sigma_{zy}^{(2)}(x = 0, y) = 2\gamma \frac{x_0}{x_0^2 + y^2}.
\]

It is worthwhile to note that this jump goes to infinity when the dislocation nears the interface. Since the \(zy \)-component of the stress field does not contribute to the traction vector, this jump is justified in classical elasticity. Gutkin et al. [1, 7] indicate that this jump is unphysical and the nature of it is quite unclear in nanoscopic point of view: In fact, the jump in \(zy \)-component is a consequence of the approximation of classical continuum models, which may become insufficient for describing nanoscale phenomena [1, 7]. It may, thus, be desirable for the interface stress jump to be eliminated from the solution of this problem within any generalized theory of elasticity aiming to consider nanoscale phenomena.

2 Classical solution

Consider two elastic isotropic, perfectly bonded semi-infinite bodies denoted by region 1 \((x \geq 0)\) and region 2 \((x \leq 0)\) with different Lamé coefficients and gradient constants. Such a solid is called a bi-medium. Super- and sub-scripts 1 and 2 are exclusively used for reference to these two regions and the omission of super- or subcript indicates that the relationship is true for both regions. Suppose a straight screw dislocation with the Burgers vector \(b = (0, 0, b) \) is situated in region 1 on the \(x \)-axis at \(x = x_0 \), and the dislocation line is parallel to the interface of the media (Fig. 1).

In classical elasticity, the \(zx \)-component of the stress field and the \(z \)-component of the displacement field due to the interaction of the screw dislocation and the interface should be continuous across the interface \((x = 0)\). Imposing these boundary conditions, the classical stresses (in the units of \(\mu_1 b/2\pi \)) are given by Head [4] as

\[
\begin{align*}
\sigma_{zx}^{(1)} &= -\frac{Y}{r_1^2} + \gamma \frac{r_1}{r_2^2}, &\sigma_{zx}^{(2)} &= -(1 + \gamma) \frac{Y}{r_1^2}, \\
\sigma_{zy}^{(1)} &= \frac{X - x_0}{r_1^2} + \gamma \frac{X + x_0}{r_2^2}, &\sigma_{zy}^{(2)} &= (1 + \gamma) \frac{X - x_0}{r_1^2}.
\end{align*}
\]

3 Gradient solution

Let us consider the same problem within the theory of strain gradient elasticity. Equations (2) must be solved for both regions 1 and 2. Also as mentioned in section 2, due to the presence of higher gradient terms, prescription of extra boundary conditions is required.
To find the \(\sigma_{xz} \)-component of the stress field, it is convenient to decompose it into a particular part, \(\sigma_{xz}^{(p)} (j = 1, 2) \) and the homogeneous part, \(\sigma_{xz}^{(h)} \). It can easily be shown that

\[
\sigma_{xz}^{(1)} = \sigma_{xz}^{(0)} + \frac{Y}{K_1} K_1 \left(\frac{F_1}{F_2} \right),
\]

\[
\sigma_{xz}^{(2)} = \sigma_{xz}^{(2)},
\]

where \(\sigma_{xz}^{(1)} \) and \(\sigma_{xz}^{(2)} \) are the classical solutions given by Eq. (3). Using the Fourier transform with respect to \(y \),

\[
\tilde{\sigma}_{xz}^{(j)}(x, s) = F \{ \sigma_{xz}^{(j)}(x, y); y \to s \}
\]

where \(s = \sqrt{s^2 + \frac{1}{l_r^2}} \). Substitution of \(\tilde{\sigma}_{xz}^{(j)} \) into Eqs. (11) gives us the unknown functions \(A(s) \) and \(a(s) \). After some simplifications, we obtain

\[
\tilde{\sigma}_{xz}^{(1)} = \tilde{\sigma}_{xz}^{(0)} + \frac{Y}{K_1} K_1 \left(\frac{F_1}{F_2} \right)
\]

\[
+ \int_0^\infty \frac{\sin(sy)}{\lambda_1 + \lambda_2} \left(\frac{\lambda_1 - \lambda_2}{\lambda_1} e^{-x\lambda_1} - 2\gamma \lambda_2 e^{-x\lambda_2} \right) ds,
\]

\[
\tilde{\sigma}_{xz}^{(2)} = 2 \int_0^\infty \frac{\sin(sy)}{\lambda_1 + \lambda_2} e^{x\lambda_2} \left(s e^{-x\lambda_1} + 2\gamma \lambda_1 e^{-x\lambda_2} \right) ds.
\]

(13)

Figure 2 compares the classical and gradient solutions of the \(\sigma_{xz} \)-component of the stress field. Both \(\sigma_{xz}^{(p)}(x, y = 2l_1) \) and \(\sigma_{xz}(x, y = 2l_1) \) are continuous across the interface. Unlike \(\sigma_{xz}^{(h)}(x, y = 2l_1) \), \(\sigma_{xz}(x, y = 2l_1) \) is also smooth at the interface.
The unknown functions, $D(s)$ and $d(s)$, can be given by imposing the following boundary conditions
\[
\begin{align*}
\sigma_{zy}^{(1)}(x = 0, y) &= \sigma_{zy}^{(2)}(x = 0, y), \\
\frac{\partial \sigma_{zy}^{(1)}}{\partial x}(x = 0, y) &= \frac{\partial \sigma_{zy}^{(2)}}{\partial x}(x = 0, y),
\end{align*}
\]
(15)
or in terms of their Fourier transforms
\[
\begin{align*}
\hat{\sigma}_{zy}^{(1)}(x = 0, s) &= \hat{\sigma}_{zy}^{(2)}(x = 0, s), \\
\frac{\partial \hat{\sigma}_{zy}^{(1)}}{\partial x}(x = 0, s) &= \frac{\partial \hat{\sigma}_{zy}^{(2)}}{\partial x}(x = 0, s),
\end{align*}
\]
(16)
where $\hat{\sigma}_{zy}^{(1)}(x, s) = \mathcal{F}\{\sigma_{zy}^{(1)}(x, y); y \rightarrow s\}$. After some simplifications, the final results turn out
\[
\begin{align*}
\sigma_{zy}^{(1)} &= \sigma_{zy}^{(0)}(1) - \frac{x - x_0}{l_1 l_2} K_1 \left(\frac{r_1}{l_1} \right) \\
&\quad + \int_0^\infty \frac{\lambda_2 \cos (sy)}{\lambda_1 + \lambda_2} e^{-\lambda_1 x} \left[\frac{\lambda_1 - \lambda_2}{\lambda_2} e^{-x_0 \lambda_1} - 2 \gamma e^{-x_0 s} \right] ds,
\end{align*}
\]
(17)
where $\sigma_{zy}^{(0)}(x, y) = \sigma_{zy}^{(0)}(x = 0, y; y \rightarrow s)$. After some simplifications, the final results turn out
\[
\begin{align*}
\sigma_{zy}^{(2)} &= \sigma_{zy}^{(0)}(2) + 2 \left[\frac{\lambda_1 \cos (sy)}{\lambda_1 + \lambda_2} e^{x_0 \lambda_1} + \gamma e^{-x_0 s} \right] ds.
\end{align*}
\]
(17)
The gradient solution (in units of $\mu_1 b^2/(2\pi)$) reads

$$F_x = b \alpha_x^{(1)}(x = x_0, y = 0) = \frac{\gamma}{2x_0}$$

$$+ \int_0^\infty \frac{\lambda_2}{\lambda_1 + \lambda_2} \left(\frac{\lambda_1 - \lambda_2}{\lambda_2} e^{-2x_0\lambda_1} - 2\gamma e^{-x_0(s+\lambda_3)} \right) ds,$$ \hspace{1cm} (18)

in which the first term on the right-hand side forms the classical solution and the integral term comes from the gradient solution. It is evident that the classical image force becomes infinite as the dislocation nears the interface ($x_0 \rightarrow 0$).

The sign of F_x determines whether the dislocation is repelled or attracted toward the interface. Since $x_0 \geq 0$, the positive value of F_x means attraction and the negative value of it indicates repulsion.

For a purely elastic interface ($\mu_1 \neq \mu_2$, $l_1 = l_2$), the formula of the image force, $F_{el}^x = F_x$, is simplified to

$$F_{el}^x = \frac{\gamma}{2x_0} - \gamma \int_0^\infty e^{-x_0(s+\lambda)} ds, \quad \lambda_1 = \lambda_2 = \lambda.$$ \hspace{1cm} (19)

The numerical evaluation of F_{el}^x is depicted in Fig. 6a. It is seen that when $\mu_2 > \mu_1$, F_{el}^x is positive and when $\mu_2 < \mu_1$, F_{el}^x becomes negative. This means that the dislocation is pushed away by the harder medium. The maximum force on the dislocation occurs when the dislocation is at $x_0 = l$.

In the case of a purely gradient interface ($\mu_1 = \mu_2$, $l_1 = l_2$), the image force, $F_{gr}^x = F_x$, reduces to

$$F_{gr}^x = \int_0^\infty \frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2} e^{-2x_0\lambda_1} ds.$$ \hspace{1cm} (20)

In the case of $l_1 > l_2$ or $\lambda_1 < \lambda_2$, the gradient image force is negative and in the case of $l_1 < l_2$ or $\lambda_1 > \lambda_2$, the gradient image force has a positive value (Fig. 6b). In other words, the dislocation is pulled into the medium having a smaller gradient coefficient. This result agrees with what Mikaelyan et. al. [7] obtained for an edge dislocation in a bi-medium. Since Gutkin et. al. [1] made certain miscalculations in obtaining the gradient solution for a screw dislocation in a bi-medium, their results differ from the result obtained by Mikaelyan et. al. [7] for an edge dislocation in a bi-medium; the nature of this difference could not be determined.

6 Conclusions

In this paper, we have employed gradient elasticity theory to calculate the nonsingular stress components are not singular at the dislocation line which also experiences a continuous and smooth transition at the interface. The classi-
cal and gradient stress fields coincide at a distance larger than \(-5-7l\) from the dislocation line or the interface.

For a purely elastic interface, when \(\mu_2 > \mu_1 \), the maximum shear stress in the media, \(\max |\sigma_{xy}| \), monotonically increases as the dislocation approaches the interface. When \(\mu_2 < \mu_1 \), however, \(\max |\sigma_{xy}| \) reaches its peak value when the dislocation is a few \(l \)’s away from the interface. For a purely gradient interface, \(\max |\sigma_{xy}| \) attains its peak value when the dislocation is at the interface.

The force on the dislocation remains finite no matter where the dislocation is, unlike the classical force on the dislocation which approaches infinity as the dislocation approaches the interface. It is shown that the dislocation is pulled into the medium of smaller shear stress for a purely elastic interface and of smaller gradient coefficient for a purely gradient interface.

References

[1] Gutkin M.Y., Mikaelyan K.N., Alfantis E.C., Screw dislocation near interface in gradient elasticity, Scr. Mater. 2000, 43(6), 477.
[2] Haasen P., Physical Metallurgy, 1996, 3rd ed., Cambridge University Press.
[3] Hull D., Bacon D.J., Introduction to Dislocations, 2011, 5th ed. Elsevier.
[4] Head A.K., The Interaction of Dislocations and Boundaries, London, Edinburgh, Dublin Philos. Mag. J. Sci., 1953, 44(348), 92.
[5] Head A.K., Edge Dislocations in Inhomogeneous Media, Proc. Phys. Soc. Sect. B, 1953, 66(9), 793.
[6] Gao F., Screw dislocation in a bi-medium in non-local elasticity, J. Phys. D Appl. Phys., 1990, 23(3), 328.
[7] Mikaelyan K.N., Gutkin M.Y., Alfantis E.C., Edge dislocations near phase boundaries in the gradient theory of elasticity, Phys. Solid State, 2000, 42(9),1659.
[8] Dundurs J., Mura T.J., Interaction between an edge dislocation and a circular inclusion, Mech. Phys. Solids, 1964, 12(3), 177.
[9] Dundurs J., Sendeckyj G., Edge dislocation inside a circular inclusion, J. Mech. Phys. Solids, 1965, 13(3),141.
[10] Pan K., Interaction of a dislocation and an inclusion in nonlocal elasticity, Int. J. Eng. Sci., 1996, 34(14),1675.
[11] Davoudi K.M., Gutkin M.Y., Shodja H.M., A screw dislocation near a circular nano-inhomogeneity in gradient elasticity, Int. J. Solids Struct., 2010, 47(6), 741.
[12] Xiao Z.M., Chen B.J., A screw dislocation interacting with a coated fiber, Mech. Mater., 2000, 32(8), 485.
[13] Liu Y.W., Jiang C.P., Cheung Y.K., A screw dislocation interacting with an interphase layer between a circular inhomogeneity and the matrix, Int. J. Eng. Sci. 2003, 41(16),1883.
[14] Sudak L.J., Interaction between a Screw Dislocation and a Three-Phase Circular Inhomogeneity with Imperfect Interface, Math. Mech. Solids, 2003, 8(2), 171.
[15] Wang X., Pan E., Roy A.K., New phenomena concerning a screw dislocation interacting with two imperfect interfaces, J. Mech. Phys. Solids, 2007, 55(12), 2717.
[16] Honein E., Rai H., Najjar M.I., The material force acting on a screw dislocation in the presence of a multi-layered circular inclusion, Int. J. Solids Struct., 2006, 43(7), 2422.
[17] Miller R.E., Shenoy V.B., Size-dependent elastic properties of nanosized structural elements, Nanotechnology, 2000, 11(3), 139.
[18] Li X., Ono T., Wang Y., Esashi M., Ultrathin single-crystal silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus, Appl. Phys. Lett., 2003, 83(15), 3081.
[19] Chang T., Gao H.J., Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model, Mech. Phys. Solids, 2003, 51(6),1059.
[20] Zhu Y., Xu F., Qin Q., Fung W.Y., Lu W., Mechanical Properties of Vapor-Liquid-Solid Synthesized Silicon Nanowires, Nano Lett., 2009, 9(11), 3934.
[21] Sadeghian H., Goosen H., Bossche A., Thijssse B., Van Keulen F., On the size-dependent elasticity of silicon nanocantilevers: Impact of defects, J. Phys. D Appl. Phys., 2011, 44(7), 072001.
[22] Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W., Train Gradient Plasticity: Theory and Experiment, Acta Metall. Mater., 1994, 42(2), 475.
[23] Fleck N.A., Hutchinson J.W., Strain Gradient Plasticity, Adv. Appl. Mech., 1997, 33, 295.
[24] Ma Q., Clarke D.R., Size dependent hardness of silver single crystals, J. Mater. Res., 1995, 10(4), 853.
[25] McElhaney K.W., Vlassak J.I., Nix W.D., Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res., 1998, 13(5), 1300.
[26] Xiang Y., Tsui T.Y., Vlassak J.J., The mechanical properties of freestanding electroplated Cu thin films, J. Mater. Res., 2006, 21(6), 1607.
[27] Nicola L., Xiang Y., Vlassak J.J., Van der Giessen E., Needleman A., Plastic deformation of freestanding thin films: Experiments and modeling, J. Mech. Phys. Solids, 2006, 54(10), 2089.
[28] Davoudi K.M., Nicola L., Vlassak J.J., Dislocation climb in two-dimensional discrete dislocation dynamics, J. Appl. Phys., 2012, 111(10),103522.
[29] Davoudi K.M., Nicola L., Vlassak J.J., Bauschinger effect in thin metal films: Discrete dislocation dynamics study, J. Appl. Phys., 2014, 115(1), 13507.
[30] Davoudi K.M., Vlassak J.J., Dislocation Evolution During Plastic Deformation: Equations vs. Discrete Dislocation Simulations, J. Appl. Phys., 2018, 123(8), 085302.
[31] Alfantis E.C., Internal length gradient (ILG) material mechanics across scales and disciplines, Adv. Appl. Mech., 2016, 49, 1.
[32] Ru C.Q., Alfantis E.C., A simple approach to solve boundary-value problems in gradient elasticity, Acta Mech., 1993, 101(1-4), 59.
[33] Shodja H.M., Davoudi K.M., Gutkin M.Y., Analysis of displacement and strain fields of a screw dislocation in a nanowire using gradient elasticity theory, Scr. Mater., 2008, 59(3), 368.
[34] Davoudi K.M., Gutkin M.Y., Shodja H.M., Analysis of stress field of a screw dislocation inside an embedded nanowire using strain gradient elasticity, Scr. Mater., 2009, 61(4), 355.
[35] Davoudi K.M., Interaction between an edge dislocation near a circular void within the framework of the theory of strain gradient elasticity, J. Mech. Behav. Mater., 2018, 27(3-4).