RESEARCH ARTICLE

Glibenclamide, ATP and metformin increases the expression of human bile salt export pump ABCB11 [version 1; peer review: 1 approved, 2 approved with reservations]

Nisha Vats¹, Ravi Chandra Dubey², Madhusudana Girija Sanal³¹, Pankaj Taneja³, Senthil Kumar Venugopal²

¹Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, Delhi, 110070, India
²Department of Life Sciences, South Asian University, New Delhi, Delhi, 110021, India
³Department of Biotechnology, Sharda University, Noida, Uttar Pradesh, 201310, India

First published: 22 Dec 2020, 9:1497
https://doi.org/10.12688/f1000research.26632.1

Abstract

Background: Bile salt export pump (BSEP/ABCB11) is important in the maintenance of the enterohepatic circulation of bile acids and drugs. Drugs such as rifampicin and glibenclamide inhibit BSEP. Progressive familial intrahepatic cholestasis type-2, a lethal pediatric disease, some forms of intrahepatic cholestasis of pregnancy, and drug-induced cholestasis are associated with BSEP dysfunction.

Methods: We started with a bioinformatic approach to identify the relationship between ABCB11 and other proteins, microRNAs, and drugs. A microarray data set of the liver samples from ABCB11 knockout mice was analyzed using GEO2R. Differentially expressed gene pathway enrichment analysis was conducted using ClueGo. A protein-protein interaction network was constructed using STRING application in Cytoscape. Networks were analyzed using Cytoscape. CyTargetLinker was used to screen the transcription factors, microRNAs and drugs. Predicted drugs were validated on human liver cell line, HepG2. BSEP expression was quantified by real-time PCR and western blotting.

Results: ABCB11 knockout in mice was associated with a predominant upregulation and downregulation of genes associated with cellular component movement and sterol metabolism, respectively. We further identified the hub genes in the network. Genes related to immune activity, cell signaling, and fatty acid metabolism were dysregulated. We further identified drugs (glibenclamide and ATP) and a total of 14 microRNAs targeting the gene. Western blot and real-time PCR analysis confirmed the upregulation of BSEP on the treatment of HepG2 cells with glibenclamide, ATP, and metformin.

Conclusions: The differential expression of cell signaling genes and those related to immune activity in ABCB11 KO animals may be secondary to cell injury. We have found glibenclamide, ATP, and
metformin upregulates BSEP. The mechanisms involved and the clinical relevance of these findings need to be investigated.

Keywords
BSEP/ABCB11, ABCB11-KO, Insilico, upregulation, HepG2, glibenclamide, ATP, and metformin, Nuclear Receptors
Introduction

The bile salt export pump (BSEP), the major bile salt transporter in the liver canalicular membrane, is coded by *ABCB11* gene, and mutations in this gene cause progressive familial intrahepatic cholestasis type-2 (PFIC-2)\(^1\). Besides PFIC-2, mutations or insufficiency of BSEP is associated with a variety of diseases such as drug-induced cholestasis, pregnancy induced cholestasis, cryptogenic cholestasis, cholangiocarcinoma and hepatocellular carcinoma, which are cancers of the liver\(^2\). Naturally, *ABCB11* expression is induced by bile salts and is mediated by FXR- RXR heterodimer\(^3\). Here in this pilot study we explored *in silico* the interactions/networks around *ABCB11*. We wanted to identify the genes, drugs, microRNAs which might influence the expression of *ABCB11*. Drugs which could upregulate *ABCB11* expression may be useful in *ABCB11* haploinsufficiency and inhibition of the pump could result in the accumulation of toxic bile salts inside hepatocytes. Modulation of *ABCB11* expression could be clinically beneficial in a variety of medical conditions.

Methods

Identification of differentially expressed genes

We analyzed the microarray data set of the liver samples from *ABCB11* knockout mice (GEO accession GSE70179) using GEO2R online tool from NCBI\(^4\). All differentially expressed genes (DEGs) were filtered with two criteria: \(-1> \log_{10} FC >+1\) and adj. p-value <0.05.

Pathway enrichment analysis

To identify DEGs which are significant, pathway enrichment analysis was conducted using the ClueGo v2.5.5 app from Cytoscape\(^5\). ClueGo constructed and compared networks of functionally related GO terms with kappa statistics, which was adjusted at >0.4 in this study.

Identification of hub genes and subnetwork analysis

The protein-protein interaction (PPI) networks were built by the Search Tool for the Retrieval of Interacting Genes (STRING v11.0)\(^6\) and Cytoscape v3.7.1 software. The Molecular Complex Detection (MCODE v1.6), app from Cytoscape was used to screen modules of the PPI network with degree cut-off = 2, node score cut-off = 0.2, k-core = 2, and maximum depth = 100. The hub genes were identified by the CytoHubba v0.1 app. The top 10 nodes were considered as notable hub genes and displayed.

Identification of transcription factor and drug target

CyTargetLinker v4.1.0 from Cytoscape was used to identify the transcription factors (TFs) and microRNAs using ENCODE and Target-scan databases, respectively. We drew *Homo sapiens* TF-target interactions linkset from database (ENCODE)\(^7\) and drug-target interactions linkset from the database (DrugBank)\(^8\). The networks were visualized and analyzed using Cytoscape v3.7.1 Cytoscape app CyTargetLinker version 4.1.0[6] was used to screen the transcription factors and microRNAs.

Cell culture

HepG2 cells were grown in high-glucose DMEM (Hi-Media Lab, Mumbai, Cat. # AL111-500ML) supplemented with 10% fetal bovine serum (CellClone, Genetix Biotech Asia, New Delhi, Cat.# CCS-500-SA-U), penicillin and streptomycin (Hi-Media, Mumbai Cat. # A018-5X100ML). When cells became 80% confluent, they were individually treated with glibenclamide (500 ng/mL)\(^9\), metformin (25 mg/L)\(^10\) or ATP (1 mM) for 48 h. After 48 h cells were scraped out for total protein and RNA.

Western blot analysis

Total proteins from HepG2 cells were prepared and run on 10% SDS-PAGE and transferred to a PVDF membrane using a transfer apparatus following the standard protocols (Bio-Rad). After incubation with 5% nonfat milk in TBST (10 mM Tris, pH 8.0, 150 mM NaCl, 0.5% Tween 20) for 1 h the membrane was washed once with TBST and incubated overnight at 4°C with rabbit antibodies against human ABCB11 (Affinity, Catalog # DF 9278): 1: 2000 dilution; mouse anti-human β-actin (Santa Cruz Cat.# SC4778), dilution 1:1000. The membrane was washed three times (TBST) and incubated with a 1:5000 dilution of horseradish peroxidase-conjugated anti-rabbit (Santa Cruz Cat# SC-2004)/anti-mouse antibodies (Cat.#SC-2005) for 2 h. Blots were washed with TBST four times and developed with the ECL system (Bio-Rad, US Cat.#170-5060) according to the manufacturer’s protocol. The western blot images were acquired using iBright CL1000 (Invitrogen, Thermo Fisher Scientific).

Real-time PCR

Total RNA was isolated using NucleoZOL (Takara Cat. No. 740404.200) following manufacturer’s instruction. cDNA was prepared from (deoxyribonuclease treated) total RNA using RevertAid Reverse Transcriptase (Thermo Cat. No. EP0441) following the standard protocols (Bio-Rad). Real Time PCR was done with unique oligonucleotide primers targeting *ABCB11* and GAPDH, Ta=60°C, in triplicates and two repeats, using GoTaq® qPCR Master Mix (Promega Cat. No. A6001) following manufacturer’s instructions on a Veriti Thermo Cycler from Applied Biosystems Waltham, Massachusetts, USA and data was acquired using the software associated with the same machine (ViiA7 V1.2) and relative quantification was calculated using the by 2\(^\Delta\Delta Ct\) method. Oligonucleotide primer sequences are listed in Table 3.

An earlier version of this article can be found on biorxiv.org (DOI: https://doi.org/10.1101/2020.09.01.277434).

Results

Expression of 560 genes changed significantly following *ABCB11-KO* in 1.5 m mice

Gene expression profile *ABCB11* knockdown dataset GSE70179 from GEO datasets were analysed with GEO2R tool. Genes with >2-fold change in expression value and <0.05 adjusted p-value was filtered. Identified differentially expressed
genes (DEG) from the GSE dataset were classified in two groups - upregulated (375 genes) and downregulated (185 genes) (Extended data, Supp.Table-1). Gene ontology analysis was performed for functional analysis of DEGs by using ClueGo app from Cytoscape. PPIs of DEGs were constructed using STRING database showed an upregulation of genes related to cellular transport (pink colored nodes), and these nodes were also shared by Toll-like receptor (TLR) signalling (Figure 1). Downregulated genes were involved in metabolic pathways (sterol, carbohydrate, alcohol, etc.) (Extended data, Supp. Table-2). We next identified top hub genes in PPI network using CytoHubba app from Cytoscape (Table 1). Immunologically important genes were among the top ranked upregulated hub genes (Figure 2a) downregulated group majorly represents cell signaling and fatty acid metabolism (Figure 2b). Epidermal growth factor receptor (EGFR) ranked first among the genes involved in signaling pathways. Kinases play a role in the transcription, activity, or intracellular localization of ABC transporters as do protein interactions\(^\text{16}\). Proteins interacting with ABCB11 are represented in Figure 3 which includes nuclear receptors NR1H4 and NR0B2. Most proteins were associated with bile acid metabolism and transport.

As described, sub-network analysis was performed using MCODE (Figure 4), and CMPK2, ACTG1, and SSTR2 emerged as seed nodes among upregulated genes (Table 2). Among downregulated gene groups, only one subnetwork was found to be significant which had three genes: MIA3 (which codes a protein which is important in the transport of cargos that are too large to fit into COPII-coated vesicles such as collagen VII), IGFBP4 (encoding a protein that binds to both insulin-like growth factors and modifies their functions) and NOTUM (encoding a carboxylesterase that acts as a key negative regulator of the Wnt signaling pathway by specifically mediating depalmitoleoylation of WNT proteins).

Using CyTargetLinker identified two drugs, glibenclamide, and ATP, directly targeting ABCB11. We subsequently looked for microRNAs [Target-scan database]\(^\text{17}\) that were associated with ABCB11, and a total of 14 microRNAs were identified targeting the gene (Figure 5). Transcription factors and microRNAs targeting ABCB11 and interacting partners are represented in Figure 6.

Glibenclamide ATP and Metformin upregulates ABCB11

We evaluated in vitro, the effect of three drugs, two of which were bioinformatically predicted (Glibenclamide, ATP) and one based on literature\(^\text{18}\). We found all the three compounds upregulating ABCB11 expression based on qPCR, and this was

Figure 1. Protein-protein interaction networks (PPIs) of DEGs were constructed using STRING database. Gene ontology analysis was performed for functional analysis of DEGs by using ClueGo app from Cytoscape. This app allows simultaneous analysis of multiple annotation and ontology sources. Functionally grouped network is represented Figure 1a (upregulated genes) 1b (downregulated genes). The node size represents enrichment significance and connections are based on kappa score (> 0.4). In upregulated gene group maximum number of nodes which are in pink color represent the cellular component movement. These nodes are shared by toll like receptor signaling pathway.
confirmed by western blot (Figure 7). Unannotated western blot images and raw qPCR Ct values are available as Underlying data.

Discussion

We identified several immunologically important genes being upregulated during ABCB11 deficiency. The reason could be liver cell injury secondary to bile salt accumulation, which triggers the sterile immune response19,20 and the downregulation of transport proteins and metabolically important genes could be because of decreased liver function following damage. A regenerative response follows cell injury, and a host of genes involved in regeneration are upregulated21–23; however, it appears that bile salts in the absence of BSEP hamper the regenerative response reflected by dysregulated collagen transporting protein MIA3 and NOTUM a protein involved in Wnt signaling. It’s also possible that EGFR is dysregulated via accumulating bile salts mediated by STAT324. We have observed an upregulation of ABCB11 in a liver cell line (HepG2) on treatment with glibenclamide, metformin, and ATP. This expression is upregulation may be a compensatory mechanism in the case of glibenclamide and metformin because these drugs are known to inhibit ABCB1125. Metformin is known to interfere with ABCB11 function, mediated through AMPK-FXR crosstalk18 involving metformin induced FXR phosphorylation. ATP acts through ATP receptors on hepatocytes26,27. ATP is known to cross the plasma membrane28 and this can act via AMPK. However, ATP has a very short half-life29, and it may be converted to ADP, which can activate AMPK30. In a recent report, metformin was shown to suppress ABCB11 expression, which is not in agreement with our observation, however, they performed their experiment on primary human hepatocytes.

Table 1. Genes with the greatest changes in expression. We observed that the top ranked hub genes in PPI network which were upregulated were associated with immune activity while those downregulated are associated with cell signaling and fatty acid metabolism. EGFR came first in the ranking which is a critical receptor in several cell signaling pathways.

(A) Upregulated genes

Rank	Gene	UniportKB/Swiss-Prot Function
1	CXCL10	Pro-inflammatory cytokine
2	IFIH1	Cytoplasmic sensor of viral nucleic acids
3	IFT1	IFN-induced antiviral protein
4	IFT2	IFN-induced antiviral protein
5	OASL	Antiviral activity
6	RSAD2	Induces type 1 and type 2 interferon
7	GBP2	Hydrolyzes GTP TO GMP
8	SAMD9L	Growth factor signaling
9	ISG20	Interferon - induced antiviral activity
10	CMPK2	Participate in DUTP and dCTP synthesis in mitochondria

(B) Downregulated genes

Rank	Gene	Function
1	EGFR	Convert extracellular cues into appropriate cellular responses
2	PPARA	Ligand - activated transcription factor
3	CXCL12	Chemoattractant active on T-lymphocytes and monocytes
4	ENPP1	Nucleotide pyrophosphatase that generates diphosphate(ppi)
5	DGAT2	Triacylglycerol synthesis
6	PPAP2B	Lipid phosphatase activity
7	LPIN1	Fatty acid metabolism
8	MGLL	Converts mono-acylglycerides to free fatty acids and glycerol
9	SYT1	Calcium sensor
10	MIA3	Vesicle mediated transport
Figure 3. A protein-protein interaction network of the *ABCB11* gene was constructed using the STRING app in Cytoscape with confidence score > 0.4 for *Homo sapiens*. This network was constructed to analyze the relationship between *ABCB11* and other proteins. Cytohubba app was used to calculate centrality of each node by MCC method. Node colour (red to yellow) represents the significance of the centrality in the group. In this analysis, we counted 11 nodes and 42 edges. These proteins majorly involved in bile acid metabolism and transport. Most of these genes are participant of more than one pathway which was expected because these pathways intersect and coregulated. We also mapped the NR0B2 protein, which is participate in sterol metabolism.
Figure 4. Sub-network analysis was conducted by using the Molecular Complex Detection (MCODE) app from Cytoscape. Top sub-networks on the basis of MCODE score (Degree cut-off = 2, node score cut-off = 0.2, k-core = 2 and max. depth = 100). Upregulated gene group clusters, we identified seed nodes (CMPK2, ACTG1 and SSTR2) in the network (green and blue). In downregulated gene group, we identified only one subnetwork which qualified cut off criteria. Three genes in this sub-network was identified: MIA3, IGFBP4 and NOTUM (red).

Table 2. Sub-network analysis. Sub-network analysis was performed using the Molecular Complex Detection (MCODE) app from Cytoscape and CMPK2, ACTG1 and SSTR2 emerged as seed nodes among upregulated.

Sub-network	Seed gene	UniportKB/Swiss-Prot Function	Diseases involved
1	CMPK2	This gene encodes one of the enzymes in the nucleotide synthesis salvage pathway that may participate in terminal differentiation of monocytic cells	Retinitis Pigmentosa 39 and Thiamine-Responsive Megaloblastic Anemia Syndrome
		May participate in dUTP and dCTP synthesis in mitochondria	
2	ACTG1	Actins are highly conserved proteins that are involved in various types of cell motility	Deafness, Autosomal Dominant 20 and Baraitser-Winter Syndrome 2
3	SSTR2	Receptor for somatostatin-14 and -28	Neuroendocrine Tumor and Growth Hormone Secreting Pituitary Adenoma Cirrhotic liver and HCC express SSTRs.

Table 3. Oligonucleotide primers used for real time PCR.

Gene	Forward	Reverse
GAPDH	GAAAGGTAAGGTCGGAGT	GAAAGATGGTGTGGGGATTTCC
ABCB11	CCTCCATCGGCAACGCT	CACTGAATTCAGAATCTCCAATCTGGG
Figure 5. CyTargetlinker was used to screen microRNAs using the Target-scan database. We identified microRNAs that were associated with $ABCB11$. In total, 14 microRNAs were identified targeting this gene.

Figure 6. Cytoscape app CyTargetlinker version 4.1.0 was used to screen the transcription factors and microRNAs using ENCODE and Target-scan databases, respectively. In the screen of transcription factors of $ABCB11$ interaction network, we observed 21 nodes and 52 edges. Among these transcription factors, FOXA have been suggested as an important factor in bile duct development and lipid accumulation, HNF4A in the regulation of dyslipidaemia and terminal liver failure, and JUND in fibrosis development. Others can be investigated in future studies. We counted 55 nodes and 89 edges in the search of microRNA targeting the $ABCB11$ network. Four genes ($ABCB11$, ATP8B1, SLC10A2, and NR1H4) targeted by multiple microRNAs as well as some microRNA such as has-miR-203a-5p.2 and has-miR-203a-3p.2 target more than one gene. By nature, a microRNA can regulate several pathways; therefore, it would be interesting to study in future the dysregulation of these microRNAs and interaction with identified transcription factors.
and they have also treated their cells with dimethylsulfoxide (DMSO). There are many reports stating the influence of DMSO on human gene expression. For example, Verheijen et al. "exposed 3D cardiac and hepatic microtissues to medium with or without 0.1% DMSO and analyzed the transcriptome, proteome and DNA methylation profiles". They found that "in both tissue types, transcriptome analysis detected >2000 differentially expressed genes affecting similar biological processes, thereby indicating consistent cross-organ actions of DMSO". In both tissue types, the transcriptome analysis detected over 2000 differentially expressed genes affecting similar biological processes. Moskot et al. reported alterations of lysosomal ultrastructure upon DMSO treatment. Alizadeh et al. reported that DMSO catalyzes hepatic differentiation of adipose tissue-derived mesenchymal stem cells. It has been observed that "culturing pluripotent stem cells in DMSO activates the retinoblastoma protein, increases the proportion of cells in the early G1 phase of the cell cycle, and subsequently improves their competency for directed differentiation into multiple lineages in more than 25 stem cell lines". However, we are not sure whether the observed difference is attributed to DMSO.

In conclusion, we need more experiments to determine the mechanisms of action of these drugs on the upregulation of ABCB11. Many changes in gene expression following ABCB11 knockout could be secondary to stress, immune and regenerative responses following hepatocyte injury in mice liver.

Data availability

Underlying data

Harvard Dataverse: Real Time PCR for ABCB11 and few NRs. https://doi.org/10.7910/DVN/AOYKY7.

This project contains the following underlying data:

- 2020-09-12_092712-ViiA7-export.xls. (qPCR data following addition of ATP, metformin or glibenclamide.)
- ABCB11 WESTERN BLOT DRUG.tif. (Unannotated western blot image for ABC11.)
- ABCB11_WB_Repeat_Drugs.tif. (Unannotated repeat western blot image for ABC11.)
- actin drug.tif. (Unannotated western blot image for β-actin.)
- Actin_2020_07_11_182456.jpg. (Unannotated western blot image, including β-actin loading control.)
- Actin_2020_07_11_182456.tif. (As above, but in tif format.)
- nisha_qPCR_DATA_ 7142020.xls. (qPCR data for ABC11 and other indicated genes.)
realtime and western blot (1).pptx. (Western blot and qPCR data pooled into a single file.)
Repeat_Actin_drug_WB.tif. (Unannotated repeat western blot image for β-actin.)

Extended data
Harvard Dataverse: Real Time PCR for ABCB11 and few NRs. https://doi.org/10.7910/DVN/AOYKY736.

This project contains the following extended data:
- Supp-Table-1-Dysregulated genes GSE70179, GEO2R, NCBI. (Differentially expressed genes)
- Supp-Table-2-Gene ontology analysis, DAVID. (Gene ontology analysis of Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

References

1. Strautnieks SS, Byrne JA, Pawlikowska L, et al.: Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology. 2008; 134(4): 1203-1214. PubMed Abstract | Publisher Full Text

2. Childs S, Yeh RL, Georges E, et al.: Identification of a sister gene to P-glycoprotein. Cancer Res. 1995; 55(10): 2029-2034. PubMed Abstract

3. Davit-Spraul A, Gonzales E, Jacquemin E: The ENCODE (encyclopedia of DNA elements) project. Cell. 2015; 162(4): 689-695. PubMed Abstract

4. Kameyama Y, Ozaki M, Ohnuki M, et al.: Identification of a key regulator for the expression of ABCB11. J Clin Transl Res. 2012; 6(1): 52-55. PubMed Abstract | Publisher Full Text

5. Scheinmann AO, Strautnieks SS, Knisely AS, et al.: Mutations in bile salt export pump (ABCB11) in two children with progressive familial intrahepatic cholestasis and cholangiocarcinoma. Pediatr. 2007; 119(5): 556-559. PubMed Abstract | Publisher Full Text

6. Knisely AS, Strautnieks SS, Meier Y, et al.: Hepatocellular carcinoma in ten children under five years of age with bile salt export pump deficiency. Hepatology. 2006; 44(2): 478-486. PubMed Abstract | Publisher Full Text

7. Vitale G, Gittos S, Raimondi F, et al.: Coregulated expression of ABCB11 and ABCB4. Nucleic Acids Res. 2014; 26(4): 537-544. PubMed Abstract | Publisher Full Text

8. Rains JK, Mol O, Helgason J, et al.: Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology. 2002; 35(3): 589-596. PubMed Abstract | Publisher Full Text

9. GEO2R - GEO - NCBI [Internet]. Reference Source

10. Shannon P, Markiel A, Ozier O, et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11): 2498-2504. PubMed Abstract | Publisher Full Text | Free Full Text

11. Szkarczyk D, Gable AL, Lyon D, et al.: STRING v11: protein-protein association networks with increased coverage, coverage, functional enrichment and comparative analysis. Nucleic Acids Res. 2015; 43(1): D607-D613. PubMed Abstract | Publisher Full Text | Free Full Text

12. ENCODE Project Consortium: The ENCODE (encyclopedia of DNA elements) project. Science. 2004; 306(5669): 636-640. PubMed Abstract | Publisher Full Text | Free Full Text

13. Wishart DS, Feunang YD, Guo AC, et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018; 46(O1): D1174-D1182. PubMed Abstract | Publisher Full Text | Free Full Text

14. Matsuda A, Kuzuya T, Sugita Y: Plasma levels of glibenclamide in diabetic patients during its routine clinical administration determined by a specific radioimmunoassay. J Pharm Pharmacol. 1982; 34(10): 556-562. PubMed Abstract | Publisher Full Text | Free Full Text

15. Kojina I, Shibli ME, Lalau JD: Therapeutic concentrations of metformin: A systematic review. Curr Drug Metab. 2016; 17(1): 1-10. PubMed Abstract | Publisher Full Text | Free Full Text

16. Crawford RR, Potukuchi PK, Schuetz EG, et al.: Beyond Competitive Inhibition: Regulation of ABC Transporters by Kinases and Protein-Protein Interactions as Potential Mechanisms of Drug-Drug Interactions. Drug Metab Dispos. 2018; 46(5): 567-586. PubMed Abstract | Publisher Full Text | Free Full Text

17. Agarwal V, Bell GW, Nam JW, et al.: Predicting effective microRNA target sites in mammalian mRNAs. Nucleic Acids Res. 2015; e00505. PubMed Abstract | Publisher Full Text | Free Full Text

18. Lien F, Berthier A, Bouchard E, et al.: Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J Clin Invest. 2014; 124(3): 1037-1051. PubMed Abstract | Publisher Full Text | Free Full Text

19. Allen K, Jaeschke H, Coppole BL: Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am J Pathol. 2011; 178(1): 175-186. PubMed Abstract | Publisher Full Text | Free Full Text

20. Woolbright BL, Jaeschke H: The impact of sterile inflammation in acute liver injury. J Clin Transl Res. 2017; 3(Suppl 1): 170-188. PubMed Abstract | Publisher Full Text | Free Full Text

21. Dransfeld O, Gehrmann T, Köhler K, et al.: Oligonucleotide microarray analysis of differential transporter regulation in the regenerating rat liver. Liver Int. 2005; 25(6): 1243-1258. PubMed Abstract | Publisher Full Text

22. White P, Brodesser JA, Ewekhena AH, et al.: Identification of transcriptional networks during liver regeneration. J Biol Chem. 2005; 280(3): 3715-3722. PubMed Abstract | Publisher Full Text | Free Full Text

23. Li SC, Wang FS, Yang Y, et al.: Microarray Study of Pathway Analysis Expression Profile Associated with MicroRNA-29a with Regard to Murine Cholestatic Liver Injuries. J Biol Chem. 2016; 17(3): 324. PubMed Abstract | Publisher Full Text | Free Full Text

24. Mair M, Zollner G, Schneller D, et al.: Signal transducer and activator of transcription 3 protects from liver injury and fibrosis in a mouse model of sclerosing cholangitis. Gastroenterology. 2015; 148(7): 2499-2508. PubMed Abstract | Publisher Full Text | Free Full Text

25. Krivoy N, Zaher A, Yaacov B, et al.: Fatal toxic intrahepatic cholestasis secondary to glibenclamide. Diabetes care. 1996; 19(4): 385-6. PubMed Abstract | Publisher Full Text | Free Full Text

26. Schlosser BF, Burgstahler AD, Nathanson MH: Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides. Proc Natl Acad Sci U S A. 1996; 93(18): 9481-9485. PubMed Abstract | Publisher Full Text | Free Full Text

27. Charest R, Blackmore PF, Eton JH: Characterization of responses of isolated rat hepatocytes to ATP and ADP. J Biol Chem. 1985; 260(29): 15789-15794. PubMed Abstract

28. Chaudhury IH: Does ATP cross the cell plasma membrane. Yale J Biol Med. 1982; 55(1): 1-10. PubMed Abstract | Publisher Full Text | Free Full Text

29. Skrabanja A, Bohanac E, Dagnelie PC: Potential value of adenosine 5'-triphosphate (ATP) and adenosine in anaesthesia and intensive care medicine. Br J Anaesth. 2005; 94(5): 556-562. PubMed Abstract | Publisher Full Text | Free Full Text

30. Hardie DG: AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Cell. 2011; 145(5): 743-752. PubMed Abstract | Publisher Full Text | Free Full Text

31. Garzé B, Hu T, Li L, et al.: Metformin disrupts bile acid efflux by repressing bile salt export pump expression. Pharm Res. 2020; 37(2): 26. PubMed Abstract | Publisher Full Text | Free Full Text

32. Verheijen M, Lienhard M, Schroeters Y, et al.: DMSO induces drastic changes
33. Moskot M, Jakóbkiewicz-Banecka J, Kloska A, et al.: The role of dimethyl sulfoxide (DMSO) in gene expression modulation and glycosaminoglycan metabolism in lysosomal storage disorders on an example of mucopolysaccharidosis. *Int J Mol Sci.* 2019; 20(2): 304. PubMed Abstract | Publisher Full Text | Free Full Text

34. Alizadeh E, Zarghami N, Eslaminejad MB, et al.: The effect of dimethyl sulfoxide on hepatic differentiation of mesenchymal stem cells. *Artif Cells Nanomed Biotechnol.* 2016; 44(1): 157-164. PubMed Abstract | Publisher Full Text

35. Chetty S, Pagliuca FW, Honore C, et al.: A simple tool to improve pluripotent stem cell differentiation. *Nat Methods.* 2013; 10(6): 553-556. PubMed Abstract | Publisher Full Text | Free Full Text

36. Madhusudana Girija S: Real Time PCR for ABCB11 and few NRs. Harvard Dataverse, V6, 2020. http://www.doi.org/10.7910/DVN/AOYKY7
Open Peer Review

Current Peer Review Status: ☑️ ⚫❓

Amit Dash
Baylor College of Medicine, Houston, TX, USA

In the article by Vats et al., the authors used the preexisting microarray data set of the liver samples from ABCB11 knockout mice and used different bioinformatics methods to draw a relationship between ABCB11 and other proteins, microRNAs, and drugs. They validated the predicted drugs by real-time PCR and Western blot in HepG2 cells. The authors did an outstanding job in this pilot study which may be helpful for future researchers. Though their approach and methodologies are right but for better reproducibility and understanding, authors need to explain the following points

Major comments:
1. Why authors choose HepG2 cells and not other hepatoma cell lines? They need to describe it in the discussion.

2. Authors need to give justification about their chosen drug concentration. Is it the optimum concentration?

3. For more reproducibility of the data, it will be nice if authors mention the detailed protein extraction method and whether they used whole-cell extract or any fractions like nuclear and cytoplasmic extract.

4. In figure 7a, the authors need to mention what is on the Y-axis of the graph and need to put error bars and statistical significance. The method of statistical analysis needs to discuss in materials and methods. Also, it will be nice if authors make a graph for the western blot taking the averages and errors of three independent experiments and normalized with actin.

5. From their raw data, it is surprising that the endogenous control (GAPDH or 18S) is highly variable between controls and treatments. Did the authors start with an equal amount of RNA? How much RNA they used for cDNA. Also, it is confusing out of 18S and GAPDH, which they used for endogenous control. If they used 18S, they need to mention the primer
sequences.

6. Authors need to recheck the GAPDH primers as the melting point is more than one.

Minor comments:
1. Under introduction, on line “we explored in silico the interactions/networks around,” "the" can be omitted.

2. Fig1 resolution needs to be increased.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Cancer biology, transcription, nuclear receptor, cell biology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 03 February 2021
https://doi.org/10.5256/f1000research.29399.r76680

© 2021 Roy-Chowdhury J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jayanta Roy-Chowdhury
Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
In this manuscript the authors have used the data on hepatic gene expression submitted to NCBI by Zhang Y, Neale G and Schuetz to determine the effect on the haplodeficiency of \textit{ABCB11} (BSEP) in mouse liver. The 375 upregulated genes included those involved in cellular transport and innate immunity (e.g. IFN signaling), whereas the 185 downregulated genes included signal transduction proteins, e.g. epidermal growth factor receptor and those involved with metabolic pathways. In addition, they have examined the effect of Glibenclamide, metformin and ATP on the expression of human \textit{ABCB11} in the human cell line HepG2. All three chemicals were found to increase \textit{ABCB11} expression.

Comments:

The information gene pathway analysis provides useful information as it has revealed "nodes" and "hubs" that mediate the up regulation and down regulation of the genes the expression of which is dysregulated in deficiency of \textit{ABCB11} function. However, as the original data set had been derived from whole mouse liver, it comprises gene expression by hepatocytes as well as non-parenchymal cells. It is known that bile acid accumulation can affect gene expression in various cell types in addition to hepatocytes (such as lung cells). Perhaps, the authors can mention this in the Discussion section.

A second concern is that HepG2 cells are not the most appropriate cell line for modeling the induction of \textit{ABCB11} in human hepatocytes, because, unlike some other human hepatoma cell lines, these cells lack the most abundant hepatocyte microRNA, miR-122. miR-122 is known to target various genes, thereby enhancing IFN signaling. On the other hand IFN downregulates the expression of miR-122. Thus, transcriptional induction of \textit{ABCB11} in HepG2 cell may not parallel that in primary human hepatocytes. Therefore, the drug induction study should be validated in a different human hepatoma cell line, or at least, the authors should discuss this complexity in interpreting the results.

\textbf{Is the work clearly and accurately presented and does it cite the current literature?}
Yes

\textbf{Is the study design appropriate and is the work technically sound?}
Partly

\textbf{Are sufficient details of methods and analysis provided to allow replication by others?}
Yes

\textbf{If applicable, is the statistical analysis and its interpretation appropriate?}
Yes

\textbf{Are all the source data underlying the results available to ensure full reproducibility?}
Yes

\textbf{Are the conclusions drawn adequately supported by the results?}
Partly

\textbf{Competing Interests:} No competing interests were disclosed.
Reviewer Expertise: Hepatology; Genetic disorders; Cell transplantation; Gene therapy

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 25 January 2021

https://doi.org/10.5256/f1000research.29399.r76410

© 2021 Kumpati P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Premkumar Kumpati
Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India

The authors have provided an interesting manuscript that described the role of Bile salt export pump (BSEP/ABCB11) and its relationship with other proteins, microRNAs and Drugs. Various bioinformatics tools were used to explore and carried out experiments to validate and correlate their findings.

Overall, I believe that this manuscript is well written and will provide some useful information for the scientific community. Having said that there are some concerns I have that the authors should address before it is ready/accept for indexing.

Minor Comments to the Author
1. The author can provide more information on biological mechanism of ABCB11.

2. What is the rational for selecting concentration of drugs used glibenclamide (500 ng/mL), metformin (25 mg/L) or ATP (1 mM).

3. What is the basis for selecting Glibenclamide & ATP out of the total hits identified using bioinformatic analysis.

4. Providing Uniport accession number of each gene in table 1 could be more informative, authors may consider doing it.

5. Image quality for Fig.1 & 4 may be increased.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes
Are sufficient details of methods and analysis provided to allow replication by others? Yes

If applicable, is the statistical analysis and its interpretation appropriate? Yes

Are all the source data underlying the results available to ensure full reproducibility? Yes

Are the conclusions drawn adequately supported by the results? Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomics, Genetics, Nanotheraputics, Cancer biology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com