ISOTROPIC MEASURES AND MAXIMIZING ELLIPSOIDS: BETWEEN JOHN AND LOEWNER

SHIRI ARTSTEIN-AVIDAN, DAVID KATZIN

Abstract. We define a one parameter family of positions of a convex body which interpolates between the John position and the Loewner position: for $r > 0$, we say that K is in maximal intersection position of radius r if $\Vol_n(K \cap rB^2_n) \geq \Vol_n(K \cap rTB^2_n)$ for all $T \in SL_n$. We show that under mild conditions on K, each such position induces a corresponding isotropic measure on the sphere, which is simply a normalized Lebesgue measure on $r^{-1}K \cap S^{n-1}$. In particular, for r_M satisfying $r_M^2\kappa_n = \Vol_n(K)$, the maximal intersection position of radius r_M is an M-position, so we get an M-position with an associated isotropic measure. Lastly, we give an interpretation of John’s theorem on contact points as a limit case of the measures induced from the maximal intersection positions.

1. Introduction and main results

Given a convex body (that is, a compact convex set with non-empty interior) in \mathbb{R}^n, the John ellipsoid $J(K)$ is the maximum-volume ellipsoid contained in K. The body K is in John position if $J(K) = B^2_n$, the Euclidean unit ball. Dually, the Loewner ellipsoid $L(K)$ is the minimum-volume ellipsoid containing K, and K is in Loewner position if $L(K) = B^2_n$. The John and Loewner positions always exist and are unique up to orthogonal transformations. They are dual in the sense that $J(K^\circ) = (L(K))^\circ$ where $L^\circ = \{ y : \langle x, y \rangle \leq 1 \ \forall x \in L \}$ is the dual body of L (see [1] for more details).

A finite Borel measure μ on S^{n-1} is isotropic if

$$\int_{S^{n-1}} \langle x, \theta \rangle^2 d\mu(x) = \frac{\mu(S^{n-1})}{n}$$

for all $\theta \in S^{n-1}$. In 1948, Fritz John [6] showed the following:

Theorem 1.1 (John). Let $K \subset \mathbb{R}^n$ be a convex body in John position. Then there exists an isotropic measure whose support is contained in $\partial K \cap S^{n-1}$. Moreover, there exists such a measure whose support is at most $n(n+1)/2$ points.

A reverse result was given by K. Ball [2], who showed that if $B^2_n \subseteq K$ and there is an isotropic measure supported on $\partial K \cap S^{n-1}$, then K is in John position. By duality, the same result holds for a body in Loewner position.

John’s theorem is a special case of a general phenomenon: the family $\{TK : T \in SL_n\}$ of a convex body K is called the family of positions of K. Giannopoulos and Milman [3] showed that solutions to extremal problems over the positions of a convex body often give rise to isotropic measures, and demonstrated this fact for, among others, the John position, the isotropic position, the minimal surface area position, and an M-position.

In this work, we consider a one-parametric family of extremal positions which seems not to have been considered before:

Definition 1.2. For a centrally symmetric convex body $K \subset \mathbb{R}^n$, the ellipsoid E_r of volume $r^n\kappa_n$ is a maximum intersection ellipsoid of radius r, if

$$\Vol_n(K \cap E_r) \geq \Vol_n(K \cap E)$$

for all ellipsoids E of volume $r^n\kappa_n$, where $\kappa_n = \Vol_n(B^2_n)$. We say that K is in maximal intersection position of radius r if rB^2_n is a maximum intersection ellipsoid of radius r.

Date: December 4, 2016.

2010 Mathematics Subject Classification. 52A40, 52A05, 28A75.

Key words and phrases. John position; John ellipsoid; M-position; Isotropic measures; Maximal intersection position.

Authors were supported in part by ISF grant No. 665/15.
In the following, \mathcal{E}_r will always denote a maximum intersection ellipsoid of radius r. The set of maximal intersection positions interpolates between the John and Loewner positions: indeed, let r_J be a positive number satisfying $\text{Vol}_n(\partial K) = r_J^n \kappa_n$, and let r_L be such that $\text{Vol}_n(L(K)) = r_L^n \kappa_n$. It can be easily shown that K is in maximal intersection position of radius r_J if and only if $r_J^{-1} K$ is in John position, and similarly for the Loewner position. In other words, up to a scaling, the maximal intersection position of radius r_J is the John position, and the maximal intersection position of radius r_L is the Loewner position.

Our first result is the following:

Theorem 1.3. Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body such that $\text{Vol}_{n-1}(\partial K \cap \partial \mathcal{E}) = 0$ for all but finitely many ellipsoids \mathcal{E}, $\text{Vol}_{n-1}(\partial K \cap r S^{n-1}) = 0$, and $\text{Vol}_{n-1}(K \cap r S^{n-1}) > 0$. If K is in maximal intersection position of radius r, then the restriction of the surface area measure on the sphere to $S^{n-1} \cap r^{-1} K$ is an isotropic measure.

Remark 1.4. Note that the condition $\text{Vol}_{n-1}(\partial K \cap r S^{n-1}) = 0$ cannot be omitted. As an example, consider the convex hull of a ball and two points, e.g., $K = \text{conv}\{B^2_2 \cup (\pm \sqrt{2}, 0)\} \subset \mathbb{R}^2$. Here one may check that K is in John position, and so it is in maximal intersection position of radius 1. However, the restriction of the surface area measure to $K \cap S^{n-1}$ is clearly not isotropic, as it has more weight in the direction of the y axis than in the direction of the x axis.

We will denote the surface area measure on the sphere by σ, and for a Borel set $A \subset \mathbb{R}^n$ with $\sigma(A \cap S^{n-1}) > 0$ we let μ_A denote the restriction of σ to A, i.e.,

$$\mu_A(B) = \frac{\sigma(B \cap A \cap S^{n-1})}{\sigma(A \cap S^{n-1})}.$$

Note that if μ_A is isotropic and $\sigma(S^{n-1} \setminus A) > 0$, then $\mu_{S^{n-1} \setminus A}$ is also isotropic.

Theorem 1.3 shows that as in [5], an extremal position induces an isotropic measure. Contrary to John’s Theorem 1.3, in our case we have an explicit description of the isotropic measure, which is uniform on $r^{-1} K \cap S^{n-1}$, namely it is $\mu_{r^{-1} K}$.

Theorem 1.3 does not formally include the result of Theorem 1.4, in the case $r = r_J = 1$, since for K in John position we have $S^{n-1} \subset K$, so Theorem 1.3 merely states that σ is isotropic, a triviality. Nevertheless, our second result gives a new interpretation to John’s Theorem. We show that when K is in John position, the isotropic measure which is guaranteed to exist by Theorem 1.3 may be constructed as a limit of the isotropic measures from Theorem 1.3. In other words, as r approaches r_J, the corresponding induced measures approach a measure of the type described in John’s theorem:

Theorem 1.5. Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body in John position such that $\text{Vol}_{n-1}(\partial K \cap \partial \mathcal{E}) = 0$ for all but finitely many ellipsoids \mathcal{E}. For every $r > 1$, denote by μ_r the uniform probability measure on $S^{n-1} \cap r^{-1} T_r K$, where $T_r K$ is in maximal intersection position of radius r. Then there exists a sequence $r_J \downarrow 1$ such that the sequence of measures μ_{r_J} weakly converges to an isotropic measure whose support is contained in $\partial K \cap S^{n-1}$.

A similar result holds for the Loewner position:

Theorem 1.6. Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body in Loewner position such that $\text{Vol}_{n-1}(\partial K \cap \partial \mathcal{E}) = 0$ for all but finitely many ellipsoids \mathcal{E}. For every $r < 1$, denote by ν_r the uniform probability measure on $S^{n-1} \cap r^{-1} T_r K$, where $T_r K$ is in maximal intersection position of radius r. Then there exists a sequence $r_J \uparrow 1$ such that the sequence of measures ν_{r_J} weakly converges to an isotropic measure whose support is contained in $\partial K \cap S^{n-1}$.

In the range $[r_J, r_L]$ there is a special radius which we denote r_M, defined so that $\text{Vol}_n(K) = r_M^n \kappa_n$, and for this special radius the maximal intersection position of radius r_M is an M-position. To explain what this means we need a few more definitions and background.

In the mid-80s, Vitali Milman [9] discovered the existence of a position for convex bodies which enabled him, and the researchers following, to prove many new results, and had a major influence on the field. This position, now called M-position, can be described in many different and equivalent ways. We choose one such way, and for an extensive description and the many equivalences see [1].
Theorem 1.7 (Milman). There exists a universal constant $C > 0$ such that for every $n \in \mathbb{N}$ and any centrally symmetric convex body $K \subset \mathbb{R}^n$, there exists a centrally symmetric ellipsoid E with $\text{Vol}_n(E) = \text{Vol}_n(K)$ such that

$$\frac{\text{Vol}_n(K^{o} + E^{o})}{\text{Vol}_n(K^{o} + E^{o})} \geq C^n.$$

(1.1)

In fact, one may show that if an ellipsoid of the same volume as K satisfies any of the four inequalities

$$\text{Vol}(K^{o} + E^{o}) \leq c_1^n \text{Vol}_n(K), \quad \text{Vol}_n(K^{o} \cap E^{o}) \geq c_1^{-n} \text{Vol}_n(K),$$

$$\text{Vol}(K + E) \leq c_0^n \text{Vol}_n(K), \quad \text{Vol}_n(K \cap E) \geq c_0^{-n} \text{Vol}_n(K),$$

then it must satisfy inequality (1.1) with some constant $C = C(c_1)$ depending only on c_1 and not on the body K or on the dimension. For this reason, we shall use the following simple definition for M-position:

Definition 1.8. A centrally symmetric convex body K is in M-position with constant C if the centrally symmetric Euclidean ball of radius $\lambda = \left(\frac{\text{Vol}(K)}{\kappa_n}\right)^{1/n}$ satisfies

$$\text{Vol}_n(K \cap \lambda B^n_2) \geq C^{-n} \text{Vol}_n(K).$$

Since Milman’s theorem implies that there exists some universal C for which any body has an affine image in M-position with constant C, we shall usually omit the words “with constant C” and talk simply of “M-position”, by which we mean an M-position with respect to the constant C guaranteed by Milman’s Theorem 1.7.

Clearly, when we maximize the volume of the intersection of K and an ellipsoid of volume $\text{Vol}_n(K)$, we get an M-ellipsoid, and when it is a Euclidean ball we get that K is in M-position. We have then:

Corollary 1.9. Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body such that $\text{Vol}_{n-1}(\partial K \cap \partial E) = 0$ for all but finitely many ellipsoids E, $\text{Vol}_{n-1}(\partial K \cap r_M S^{n-1}) = 0$, and $\text{Vol}_{n-1}(K \cap r_M S^{n-1}) > 0$, where $r_M = \left(\frac{\text{Vol}(K)}{\kappa_n}\right)^{1/n}$. If K is in maximal intersection position of radius r_M, then K is in M-position, and the restriction of the surface area measure on the sphere to $S^{n-1} \cap r_M^{-1} K$ is an isotropic measure.

This paper is organized as follows: in Section 2 we provide some basic results regarding the maximal intersection position. The section concludes with a detailed proof of the main ingredient for the proof of Theorem 1.3. In Section 3 we prove the main theorems 1.5 and 1.6. The last section discusses the question of uniqueness of the maximum intersection position, a question that is still open. We show that uniqueness follows from a variant of the (B) conjecture.

2. Preliminaries

In this section we provide some results needed for the proof of the main theorems. We start by showing that for $r > 0$, the maximal intersection position of radius r does in fact exist. We will make frequent use of the following function:

Definition 2.1. For a centrally symmetric convex body $K = -K \subset \mathbb{R}^n$, define for every $r > 0$,

$$m(r) = \sup \{ \text{Vol}_n(K \cap E) : E \text{ is an ellipsoid of volume } r^n \kappa_n \}.$$

(2.1)

Our first lemma shows that a maximal intersection ellipsoid always exists:

Lemma 2.2. For every centrally symmetric convex body $K \subset \mathbb{R}^n$ and every $r > 0$, the supremum in (2.1) is attained.

Proof. First note that since $K = -K$, the Brunn-Minkowski inequality implies that for every $x \in \mathbb{R}^n$ and every $T \in SL_n$, we have

$$\text{Vol}_n(K \cap (TB^n_2 + x)) \leq \text{Vol}_n(K \cap TB^n_2)$$

(2.2)

and so if the supremum is attained, it is attained on a centrally symmetric ellipsoid. Note that the supremum may also be attained on a non-centrally symmetric ellipsoid only if we have equality in (2.2), which is only possible if $K \cap (TB^n_2 + x)$ and $K \cap (TB^n_2 - x)$ are homothetic. This occurs, for instance, in the case $(TB^n_2 + x) \subset K$ or $K \subset (TB^n_2 + x)$, i.e., when $r < r_J$ or $r > r_L$.

Let $\mathcal{E}_j = T_jB_2^n$ be a sequence of centrally symmetric ellipsoids where T_j is positive definite with $\det T_j = r^n$ and $\text{Vol}_n(K \cap T_jB_2^n) \to m(r)$. If the sequence defined by the maximum eigenvalue of T_j grows to infinity then $\text{Vol}_n(K \cap T_jB_2^n) \to 0 \neq m(r)$, so the set of eigenvalues of $\{T_j\}_{j=1}^\infty$ must be bounded, which implies that the ellipsoids $T_jB_2^n$ are all contained in a compact set. It now follows from Blaschke’s selection theorem that there exists a subsequence of ellipsoids converging in the Hausdorff distance to a centrally symmetric ellipsoid \mathcal{E} of volume $r^n\kappa_n$ with $\text{Vol}_n(K \cap \mathcal{E}) = m(r)$.

Note the following properties of $m(r)$:

Lemma 2.3. Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body. We have that

1. For $0 < r \leq r_j$ we have $m(r) = r^n\kappa_n$ and for $r \geq r_L$ we have $m(r) = \text{Vol}_n(K)$.
2. The function $m(r)$ is strictly monotone increasing in $[r_J, r_L]$.
3. $m(r)$ is continuous, and satisfies for $t \leq s$ that
 \[m(t) \leq m(s) \leq \left(\frac{s}{t}\right)^n m(t). \]

Proof. Fact (1) is trivial. For (2) let $r_J \leq t < s \leq r_L$ and choose some intersection maximizing ellipsoid \mathcal{E}_i. Then
 \[m(t) = \text{Vol}_n(K \cap \mathcal{E}_i) \leq \text{Vol}_n \left(K \cap \frac{s}{t} \mathcal{E}_i \right) \leq \text{Vol}_n \left(K \cap \mathcal{E}_s \right). \]

If the last inequality is an equality then $K \cap \mathcal{E}_i = K \cap \frac{s}{t} \mathcal{E}_i$ which is only possible if $K \subset \mathcal{E}_i$ (which is impossible since $t < r_L$) or if $\frac{s}{t} \mathcal{E}_i \subset K$ (which is impossible since $s > r_J$).

To prove (3) it is enough to show the right hand side inequality and to this end simply note that
 \[m(t) = \text{Vol}_n(K \cap \mathcal{E}_i) \geq \text{Vol}_n \left(K \cap \frac{t}{s} \mathcal{E}_s \right) \geq \text{Vol}_n \left(\frac{t}{s} K \cap \frac{t}{s} \mathcal{E}_s \right) = \left(\frac{t}{s} \right)^n \text{Vol}_n \left(K \cap \mathcal{E}_s \right) = \left(\frac{t}{s} \right)^n m(s). \]

By continuity of $m(r)$, we have:

Lemma 2.4. Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body. As $r \searrow r_J$ the ellipsoids \mathcal{E}_r converge to $\mathcal{E}_{r_J} = J(K)$ in the Hausdorff distance.

Proof. Since $\text{Vol}_n(K \cap J(K)) = \text{Vol}_n(J(K))$ then by the continuity of $m(r)$, both $\text{Vol}_n(K \cap \mathcal{E}_r)$ and $\text{Vol}_n(\mathcal{E}_r)$ approach $m(r_J) = r_J^n\kappa_n$ as $r \searrow r_J$. Let T_r be a sequence of transformations such that $T_r \mathcal{E}_r = B_2^n$. As before, since $\text{Vol}_n(K \cap T_r^{-1}B_2^n) \to m(r_J)$ then the set \mathcal{E}_r is contained in a compact set. We thus have a converging subsequence $\mathcal{E}_{r_j} \to \mathcal{E}$ with $\text{Vol}_n(\mathcal{E}) = \text{Vol}_n(K \cap K) = r_J^n\kappa_n$, so \mathcal{E} is an ellipsoid contained in K with the same volume as $J(K)$, which is unique. It follows that $\mathcal{E} = J(K)$. Since this was true for any converging subsequence, we get that \mathcal{E}_r converges to $J(K)$ as $r \searrow r_J$.

We will make use of the following fact. The proof is a simple exercise, see e.g. [1]:

Lemma 2.5. A Borel measure μ on S^{n-1} is isotropic if and only if every $A \in M_n(\mathbb{R})$ such that $trA = 0$ has
 \[\int_{S^{n-1}} \langle x, Ax \rangle d\mu(x) = 0. \]

Lastly, the following theorem is essential for the proof of Theorem 2.3:

Theorem 2.6. Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body such that $\text{Vol}_{n-1}(\partial K \cap \partial \mathcal{E}) = 0$ for all but finitely many ellipsoids \mathcal{E}, $\text{Vol}_{n-1}(\partial K \cap S^{n-1}) = 0$ and $\text{Vol}_{n-1}(K \cap S^{n-1}) > 0$. Let $A \in M_n(\mathbb{R})$ with $trA = 0$, and let $V(t) : \mathbb{R} \to \mathbb{R}$ be defined by $V(t) = \text{Vol}_n(K \cap e^{tA}B_2^n)$. If K is in maximal intersection position of radius 1, then
 \[\frac{dV(t)}{dt} \bigg|_{t=0} = \int_{S^{n-1} \cap K} \langle x, Ax \rangle dS(x) \]
where $S = \text{Vol}_{n-1}$ is the surface area measure.
We will see in the next section that Theorem 1.3 is almost a direct corollary of Theorem 2.6. However, Remark 1.4 shows that some caution is needed, and especially, the use of the assumption \(\text{Vol}_{n-1}(\partial K \cap S^{n-1}) = 0 \) should be identified. Therefore, while the following proof is basically a direct application of some fundamental results in calculus, we provide full details.

Proof of Theorem 2.6. Let \(\{\phi_j\}_{j=1}^\infty \) be a sequence of continuous functions from \(\mathbb{R}^n \) to \(\mathbb{R} \) approximating \(1_{\text{int}B_2} \), chosen as

\[
\phi_j(x) = \begin{cases}
1 & |x| \leq 1 - \frac{1}{j} \\
g_j(x) & 1 - \frac{1}{j} \leq |x| \leq 1 \\
0 & |x| \geq 1
\end{cases}
\]

where \(g_j(x) : \mathbb{R}^n \to [0,1] \) is chosen such that \(\phi_j(x) \) is continuously differentiable and there is a constant \(c \) such that \(0 < |\nabla \phi_j(x)| < j c \) for all \(x \). For instance we may take \(g_j(x) = \frac{1}{j} - \frac{1}{2} \cos j \pi (|x| - 1) \) to have \(\nabla g_j(x) = \frac{j \pi}{2} \sin j \pi (|x| - 1) \).

Similarly, let \(\psi_j(x) \) be a family of functions approximating \(1_{\text{int}K} \), chosen as

\[
\psi_j(x) = \begin{cases}
1 & \|x\|_K \leq 1 - \frac{1}{\sqrt{j}} \\
h_j(x) & 1 - \frac{1}{\sqrt{j}} \leq \|x\|_K \leq 1 \\
0 & \|x\|_K \geq 1
\end{cases}
\]

where \(h_j(x) : \mathbb{R}^n \to [0,1] \), \(\psi(x) \) is continuously differentiable, and \(0 < |\nabla \psi_j(x)| < c \sqrt{j} \) for all \(x \).

As \(j \to \infty \), \(\phi_j(x) \) converges pointwise to \(1_{\text{int}B_2} \) and \(\psi_j(x) \) converges pointwise to \(1_{\text{int}K} \). We have then:

\[
\frac{d}{dt} \big|_{t=0} V(t) = \frac{d}{dt} \big|_{t=0} \int_{\mathbb{R}^n} 1_{\text{int}B_2}(e^{-tA}x) \, 1_{\text{int}K}(x) dx = \frac{d}{dt} \big|_{t=0} \int_{\mathbb{R}^n} \phi_j(e^{-tA}x) \psi_j(x) dx.
\]

We will show that the following hold in a neighborhood of \(t = 0 \):

(2.3) \[\frac{d}{dt} \int_{\mathbb{R}^n} \lim_{j \to \infty} \phi_j(e^{-tA}x) \psi_j(x) dx = \lim_{j \to \infty} \int_{\mathbb{R}^n} \phi_j(e^{-tA}x) \psi_j(x) dx \]

(2.4) \[\frac{d}{dt} \int_{\mathbb{R}^n} \phi_j(e^{-tA}x) \psi_j(x) dx = \lim_{j \to \infty} \frac{d}{dt} \int_{\mathbb{R}^n} \phi_j(e^{-tA}x) \psi_j(x) dx \]

(2.5) \[\frac{d}{dt} \int_{\mathbb{R}^n} \phi_j(e^{-tA}x) \psi_j(x) dx = \int_{\mathbb{R}^n} \langle \nabla \phi_j(x), -\psi_j(e^{-tA}x)A x \rangle dx \]

(2.6) \[\lim_{j \to \infty} \int_{\mathbb{R}^n} \langle \nabla \phi_j(x), -\psi_j(e^{-tA}x)A x \rangle dx = \int_{S^{n-1} \cap e^{-tA}K} \langle x, Ax \rangle dS \]

The equality (2.3) is a direct consequence of Lebesgue’s dominated convergence theorem. For (2.5), note that

\[
\frac{d}{dt} \phi_j(e^{-tA}x) \psi_j(x) dx = \langle \nabla \phi_j(e^{-tA}x), -\psi_j(x)A e^{-tA} x \rangle
\]

and that by Leibniz’s integral rule,

\[
\frac{d}{dt} \int_{\mathbb{R}^n} \phi_j(e^{-tA}x) \psi_j(x) dx = \int_{\mathbb{R}^n} \frac{d}{dt} \phi_j(e^{-tA}x) \psi_j(x) dx.
\]

It follows that for every fixed \(j \in \mathbb{N} \) (recall \(\text{tr} A = 0 \)),

\[
\frac{d}{dt} \int_{\mathbb{R}^n} \phi_j(e^{-tA}x) \psi_j(x) dx = \int_{\mathbb{R}^n} \langle \nabla \phi_j(e^{-tA}x), -\psi_j(x)A e^{-tA} x \rangle dx
\]

\[
= \int_{\mathbb{R}^n} \langle \nabla \phi_j(x), -\psi_j(e^{-tA}x)A x \rangle dx,
\]

proving (2.5).

To prove (2.4) and (2.6), it is enough to show the following:
Claim 2.7. There is a neighborhood of \(t = 0 \) where the function \(\frac{d}{dt} f_j(t) = \frac{d}{dt} \int_{\mathbb{R}^n} \phi_j(e^{-tA}x) \psi_j(x) dx \) converges uniformly to \(\int_{S^{n-1}} e^{-tA}K(x, Ax) dS \).

Proof. Denote

\[M_j := \left\{ x : 1 - \frac{1}{j} \leq |x| \leq 1 \right\} \supset \text{supp} \nabla \phi_j(x). \]

Then

\[\int_{\mathbb{R}^n} \langle \nabla \phi_j(x), -\psi_j(e^{tA}x)Ax \rangle dx = \int_{M_j} \langle \nabla \phi_j(x), -\psi_j(e^{tA}x)Ax \rangle dx. \]

The functions \(\phi_j(x), -\psi_j(e^{tA}x)Ax \) are continuously differentiable, \(\partial M_j \) is smooth, and so we may integrate by parts to have

(2.7)

\[\int_{M_j} \langle \nabla \phi_j(x), -\psi_j(e^{tA}x)Ax \rangle dx = \]

\[= \int_{\partial M_j} \phi_j(x) \langle \bar{n}, -\psi_j(e^{tA}x)Ax \rangle dS + \int_{M_j} \phi_j(x) \text{div}(\psi_j(e^{tA}x)Ax) dx \]

where \(\bar{n} \) is the outward unit normal of \(M_j \). Note that

\[\text{div}(\psi_j(e^{tA}x)Ax) = \langle \nabla \psi_j(e^{tA}x), Ax \rangle + \psi_j(e^{tA}x)\text{div}Ax = \]

\[= \langle \nabla \psi_j(e^{tA}x), Ax \rangle + \psi_j(e^{tA}x)\text{tr}A = \langle \nabla \psi_j(e^{tA}x), Ax \rangle \]

and so

\[\left| \int_{M(j)} \phi_j(x) \text{div}(\psi_j(e^{tA}x)Ax) dx \right| \leq \int_{M(j)} \left| \langle \nabla \psi_j(e^{tA}x), Ax \rangle \right| dx. \]

There is a constant \(c \) such that

\[\int_{M_j} \left| \langle \nabla \psi_j(e^{tA}x), Ax \rangle \right| dx \leq c \sqrt{j} \text{Vol}_n(M(j)) = c \sqrt{j} \left(1 - \left(\frac{j-1}{j} \right)^n \right) \to 0 \]

as \(j \to \infty \).

Going back to (2.7), we have shown that \(\int_{M_j} \phi_j(x) \text{div}(\psi_j(e^{tA}x)Ax) dS \) converges uniformly to 0. As for \(\int_{\partial M_j} \phi_j(x) \langle \bar{n}, -\psi_j(e^{tA}x)Ax \rangle dS \), note that

\[\partial M_j = S^{n-1} \cup \frac{\bar{j}}{j} S^{n-1} \]

where \(\phi_j(x) = 0 \) on \(S^{n-1} \), and \(\phi_j(x) = 1 \) on \(\frac{\bar{j}}{j} S^{n-1} \). For every \(x \in \frac{\bar{j}}{j} S^{n-1} \), the outer unit normal \(\bar{n} \) of \(M(j) \) is \(-\frac{\bar{j}}{j-1}x\), and so:

\[\int_{\partial M_j} \phi_j(x) \langle \bar{n}, -\psi_j(e^{tA}x)Ax \rangle dS = \int_{\frac{\bar{j}}{j-1} S^{n-1}} \psi_j(e^{tA}x) \langle \bar{n}, -Ax \rangle dS \]

\[\hspace{1cm} = \frac{j}{j-1} \int_{\frac{\bar{j}}{j} S^{n-1}} \psi_j(e^{tA}x) \langle x, Ax \rangle dS = \left(\frac{j-1}{j} \right)^n \int_{\frac{\bar{j}}{j} S^{n-1}} \psi_j \left(\frac{j-1}{j} e^{tA}x \right) \langle x, Ax \rangle dS. \]

We will show that there is some sequence \(\xi(j) \to 0 \) and some \(\delta > 0 \) such that for every \(|t| < \delta \),

\[\left| \int_{S^{n-1}} \left(\frac{j-1}{j} \right)^n \psi_j \left(\frac{j-1}{j} e^{tA}x \right) \langle x, Ax \rangle dS - \int_{S^{n-1}} 1_K(e^{tA}x) \langle x, Ax \rangle dS \right| \leq \xi(j). \]

Denote \(\nu_j(x) = \left(\frac{j-1}{j} \right)^n \psi_j \left(\frac{j-1}{j} e^{tA}x \right) \), and consider

\[\left| \int_{S^{n-1}} \nu_j(e^{tA}x) \langle x, Ax \rangle dS - \int_{S^{n-1}} 1_K(e^{tA}x) \langle x, Ax \rangle dS \right| \leq c \int_{S^{n-1}} |\nu_j(e^{tA}x) - 1_K(e^{tA}x)| dS \]
The set S^{n-1} is a union of the following three sets:

$$S_1(j, t) = \left\{ x \in S^{n-1} : \|e^T x\|_K \geq \frac{j}{j-1} \right\}$$

$$S_2(j, t) = \left\{ x \in S^{n-1} : \|e^T x\|_K \leq 1 - \frac{1}{\sqrt{j}} \right\}$$

$$S_3(j, t) = \left\{ x \in S^{n-1} : \frac{\sqrt{j} - 1}{\sqrt{j}} \leq \|e^T x\|_K \leq \frac{j}{j-1} \right\}.$$

On S_1 we have that $\nu_j(x) = \mathbf{1}_K(e^T x) = 0$ and so $\int_{S_1(j, t)} |\nu_j(e^T x) - \mathbf{1}_K(e^T x)| \, dS = 0$ for all j, t. On S_2 we have that $\nu_j(e^T x) = \left(\frac{j-1}{j}\right)^n \mathbf{1}_K(e^T x) = 1$ and so:

$$\int_{S_2(j, t)} |\nu_j(e^T x) - \mathbf{1}_K(e^T x)| \, dS = \left| \left(\frac{j-1}{j}\right)^n - 1 \right| \text{Vol}_{n-1}(S_2(j, t)).$$

There is a constant c such that $\text{Vol}_{n-1}(S_2(j, t)) \leq c$ for all $j \in \mathbb{N}$ and for all $t \in [1, -1]$. It follows that

$$\left| \left(\frac{j-1}{j}\right)^n - 1 \right| \text{Vol}_{n-1}(S_2(j, t)) \leq \left| \left(\frac{j-1}{j}\right)^n - 1 \right| c \to 0.$$

Finally, on S_3 we have that

$$\int_{S_3(j, t)} |\nu_j(e^T x) - \mathbf{1}_K(e^T x)| \, dS \leq \xi_j(t)$$

where

$$\xi_j(t) = \text{Vol}_{n-1}(S_3(j, t)) = \text{Vol}_{n-1}\left\{ x \in S^{n-1} : \frac{\sqrt{j} - 1}{\sqrt{j}} \leq \|e^T x\|_K \leq \frac{j}{j-1} \right\}$$

is monotonically decreasing in j for every fixed t. By Dini’s theorem, $\xi_j(t)$ converges uniformly to $\xi(t) = \text{Vol}_{n-1}\left(S^{n-1} \cap \partial e^T K\right)$. Assuming $\text{Vol}_{n-1}\left(S^{n-1} \cap \partial K\right) = 0$ and $\text{Vol}_{n-1}\left(\partial \mathcal{E} \cap \partial K\right) = 0$ for all but finitely many ellipsoids, there is some $\delta > 0$ such that $\xi(t) = \text{Vol}_{n-1}\left(S^{n-1} \cap \partial e^T K\right) = 0$ for all $|t| < \delta$, and so on the set $|t| < \delta$, the sequence $\int_{S_3} |\nu_j(e^T x) - \mathbf{1}_K(e^T x)| \, dS$ converges uniformly to 0. This proves Claim 2.7 and with it Theorem 2.6.

Remark 2.8. Note that the proof above shows that the conditions of Theorem 2.6 (and therefore of Theorem 1.3) may be slightly relaxed: in fact, we do not need $\text{Vol}_{n-1}(K \cap \mathcal{E}) = 0$ for all but finitely many ellipsoids. It is enough to have a neighborhood $N \subset SL_n$ of I_n such that $\text{Vol}_{n-1}(K \cap T \mathcal{E}) = 0$ for all $T \in N$.

3. PROOF OF THE MAIN THEOREMS

In this section we use the results of Section 2 to provide short proofs to the three main Theorems 1.3, 1.5, and 1.6.

As we mentioned, the proof of Theorem 1.3 follows almost directly from Theorem 2.6.

Proof of Theorem 1.3. First note that K is in maximal intersection position of radius r if and only if $r^{-1} K$ is in maximal intersection position of radius 1, and so it is enough to prove the theorem in the case $r = 1$.

Let $W : SL_n \rightarrow \mathbb{R}$, $W(T) = \text{Vol}_{n}(K \cap T B^n_2)$. If I_n is a local maximum of W, then for any $A \in M_n(\mathbb{R})$ such that $\text{tr} A = 0$, the derivative $\frac{dW(e^T)}{dt} \bigg|_{t=0} = \frac{dW(t)}{dt} \bigg|_{t=0}$ is either zero or does not exist. Theorem 2.6 states that the derivative does exist for all A, and it equals $\int_{S^{n-1} \cap K} \langle x, Ax \rangle \, dS(x)$. It follows that

$$\int_{S^{n-1}} \langle x, Ax \rangle \, d\mu_K = \frac{1}{\text{Vol}_{n-1}(S^{n-1} \cap K)} \int_{S^{n-1} \cap K} \langle x, Ax \rangle \, dS = 0$$

for all A such that $\text{tr} A = 0$, and by Lemma 2.5, μ_K is isotropic.

\[\square \]
As we have mentioned, the result of Theorem 1.3 resembles that of John’s Theorem (Theorem 1.1), but does not include it. However, Theorem 1.3 provides a family of isotropic measures which are used in the proof of Theorem 1.5.

Proof of Theorem 1.4 Let \(r < 1 \). By Lemma 2.2, we may choose an intersection maximizing ellipsoid \(E_r \) for each \(r \). By Lemma 2.3, \(E_r \to B_2^n \) and so we may choose a sequence of positive definite transformations \(T_r \to I_n \) such that \(B_2^n = T_r E_r \). Then \(T_r K \) is in maximal intersection position of radius \(r \) and \(\text{Vol}_{n-1}(\partial T_r K \cap S^{n-1}) = 0 \) for almost all \(r \). By Theorem 1.3, the probability measures on the sphere

\[
\mu_r(A) = \mu_{S^{n-1}\setminus T_r K}(A) = \frac{\sigma(A \setminus T_r K)}{\sigma(S^{n-1} \setminus T_r K)}
\]

are isotropic.

Note that \(S^{n-1} \) is a compact metric space, and so the family of measures \(\mu_r \) has a weakly converging subsequence \(\mu_j \to \mu \) where \(\mu \) is a probability measure on \(S^{n-1} \). We will show that the limit measure \(\mu \) is an isotropic measure whose support lies in \(\partial K \cap S^{n-1} \).

First, weak convergence implies

\[
\int_{S^{n-1}} (x, \theta)^2 \, d\mu_j(x) \to \int_{S^{n-1}} (x, \theta)^2 \, d\mu(x)
\]

and

\[
\frac{1}{n} \to \frac{\mu_j(S^{n-1})}{n} \to \frac{\mu(S^{n-1})}{n}
\]

so \(\int_{S^{n-1}} (x, \theta)^2 \, d\mu(x) = \frac{\mu(S^{n-1})}{n} = \frac{1}{n}, \) i.e., \(\mu \) is isotropic.

Second, let

\[
U_k = \left\{ x \in S^{n-1} : d(x, \partial K) > \frac{1}{k} \right\}
\]

where \(d(\cdot, \cdot) \) is a metric on \(S^{n-1} \). The measure \(\mu_j \) is supported on \(S^{n-1} \setminus T_r K \) where \(T_r K \to K \), and so there is \(M \) such that for any \(k > M \) there is some \(N(k) \) such that \(\mu_j(U_k) = 0 \) for all \(j > N(k) \). Since \(U_k \) is open, weak convergence implies \(\mu(U_k) \leq \lim \inf \mu_j(U_k) = 0 \), so \(\mu(U_k) = 0 \) for all \(k > M \). It follows that \(\mu(\bigcup_{k=M}^{\infty} U_k) = \lim_{k \to \infty} \mu(U_k) = 0 \), where

\[
\bigcup_{k=M}^{\infty} U_k = \left\{ x \in S^{n-1} : d(x, \partial K) > \frac{1}{k} \right\} = S^{n-1} \setminus \partial K = S^{n-1} \setminus \partial K.
\]

It follows that \(\mu(S^{n-1} \setminus \partial K) = 0 \) and so \(\text{supp} \mu \subset S^{n-1} \cap \partial K \).

The proof of Theorem 1.6 is analogous to that of Theorem 1.4, only here we use

\[
\nu_j(A) = \mu_{T_r K}(A) = \frac{\sigma(A \cap T_r K)}{\sigma(S^{n-1} \setminus T_r K)}
\]

which is isotropic by Theorem 1.3. In this case, it is the measures \(\nu_j \) that satisfy \(\nu_j(U_k) = 0 \) for all \(j > N(k) \), rather than the measures \(\mu_j \). In other words, for a John-type measure we use a sequence of uniform measures “outside” \(T_r K \), whereas for a Loewner-type measure we use a sequence of uniform measures “inside” \(T_r K \).

4. **Remarks about uniqueness following from the (B) property**

Throughout this text we discussed maximal intersection positions of a body \(K \). While Lemma 2.2 shows that such a position always exists, we did not show that this measure is unique. If \(0 < r < r_J \) or \(r > r_L \) then the maximum intersection ellipsoid \(E_r \) of radius \(r \) is clearly not unique. If \(r = r_J \) or \(r = r_L \) then \(E_r \) is unique, by John’s theorem. The question of uniqueness remains open for the case \(r_J < r < r_L \), but it is implied by a variant of a well known conjecture which we next discuss:

Conjecture 4.1. For a convex body \(K \subset \mathbb{R}^n \) and a diagonal \(n \times n \) matrix \(\Lambda \), the function

\[
\phi(t) = \text{Vol}_n(e^{t \Lambda} K \cap B_2^n)
\]
is log-concave in t, i.e.

$$\text{(4.1)} \quad \text{Vol}_n \left(e^{\frac{\lambda}{2} K \cap B_2^n} \right)^2 \geq \text{Vol}_n \left(e^{\lambda K \cap B_2^n} \right) \text{Vol}_n \left(K \cap B_2^n \right)$$

for all $t \in \mathbb{R}$ and all diagonal Λ. Furthermore, equality is attained if and only if one of the following hold: $K \subset B_2^n$, $B_2^n \subset K$, or $\Lambda = \lambda I_n$ for some $\lambda \in \mathbb{R}$.

Proposition 4.2. Assuming Conjecture 4.1 is true, if K is a centrally symmetric convex body, the maximum intersection ellipsoid of radius r is unique for $r_J < r < r_L$.

Proof. Letting $r_J < r < r_L$, assume there are two distinct maximum intersection ellipsoids of radius r. We may assume that one of these ellipsoids is B_2^n, and the other is of the form $e^\Lambda B_2^n$ where Λ is a diagonal matrix with $\text{tr}\Lambda = 0$. Conjecture 4.1 now gives

$$\text{Vol}_n \left(K \cap e^{\frac{\Lambda}{2} B_2^n} \right) \geq \text{Vol}_n \left(K \cap B_2^n \right)$$

where maximality of B_2^n implies equality in the above. Since $r_J < r < r_L$, we have $K \not\Subset B_2^n$ and $B_2^n \not\subset K$. It follows that Λ is a traceless scalar matrix, i.e. Λ is the zero matrix and $e^\Lambda = I_n$.

Conjecture 4.1 describes a (B)-type property on the Lebesgue measure on B_2^n, under the following terminology:

Definition 4.3. Given a measure μ on \mathbb{R}^n and a measurable set $K \subset \mathbb{R}^n$, we say that μ and K have the weak (B) property if the function

$$t \mapsto \mu(e^t K)$$

is log-concave on \mathbb{R}. Denoting $\text{diag}(t_1, \ldots, t_n)$ the diagonal matrix with diagonal entries t_1, \ldots, t_n, we will say that μ and K have the strong (B) property if the function

$$(t_1, \ldots, t_n) \mapsto \mu(e^{\text{diag}(t_1, \ldots, t_n)} K)$$

is log-concave on \mathbb{R}^n.

The notion of the (B) property arises from a problem proposed by Banaszczyk and described by Latala [2] known as the (B) conjecture (now the (B) theorem), where, in the terminology above, it was conjectured that the standard Gaussian probability measure γ on \mathbb{R}^n and any centrally symmetric convex body $K \subset \mathbb{R}^n$ have the weak (B) property. The (B) conjecture was solved by Cordero-Erausquin, Fradelizi, and Maurey [3], where it was shown that γ and K have in fact a strong (B) property.

Conjecture 4.1 proposes that the uniform Lebesgue measure on B_2^n and any centrally symmetric convex body have the strong (B) property, with further assumptions on the equality case.

Unfortunately not a lot is known about the (B) property of general measures, and even less about the equality case. We will briefly mention what is currently known: Livne Bar-on [8] showed that in \mathbb{R}^2, the uniform Lebesgue measure on a centrally symmetric convex body $L \subset \mathbb{R}^2$ has the weak (B) property with any centrally symmetric convex body $K \subset \mathbb{R}^2$. This result was generalized by Saroglou [10], where it was shown that if the log-Brunn-Minkowski inequality holds in dimension n, then the uniform probability measure on the n-dimensional cube has the strong (B) property, and the uniform probability measure of every centrally symmetric convex body has the weak (B) property, with any centrally symmetric convex body K.

The log-Brunn-Minkowski inequality states that for two centrally symmetric convex bodies $K, L \subset \mathbb{R}^n$ and $\lambda \in [0, 1]$,

$$\text{(4.2)} \quad \text{Vol}_n \left((1 - \lambda) K +, \lambda L \right) \geq \text{Vol}_n(K)^{1-\lambda} \text{Vol}_n(L)^\lambda$$

where

$$(1 - \lambda) K +, \lambda L = \bigcap_{u \in S^{n-1}} \left\{ x : \langle x, u \rangle \leq h_K(u)^{1-\lambda} h_L(u)^\lambda \right\}.$$
the uniform measure on B^n_2 is unconditional log-concave. It follows that Conjecture 4.1 (without the equality case) holds whenever K is unconditional, i.e. $(x_1,\ldots,x_n) \in K$ implies $(\delta_1 x_1,\ldots,\delta_n x_n) \in K$ for any choice of $\delta_i \in \{-1,1\}$ where $i = 1,\ldots,n$.

Still not a lot is known on equality cases in inequalities such as (4.1). In [11], Saroglou expands further on the relationship between the (B) property and the log-Brunn-Minkowski, and conjectures that equality in (4.2) is attained if and only if $K = K_1 \times \ldots \times K_m$ for some convex sets K_1,\ldots,K_m that cannot be written as cartesian products of lower dimensional sets, and $L = c_1 K_1 \times \ldots \times c_m K_m$ for some positive numbers c_1,\ldots,c_m. We have not found similar conjectures or results regarding the equality case in (4.1).

References

[1] S. Artstein-Avidan, A. Giannopoulos, and V.D. Milman. *Asymptotic Geometric Analysis, Part I*, volume 202. American Mathematical Soc., 2015.

[2] K. Ball. Ellipsoids of maximal volume in convex bodies. *Geometriae Dedicata*, 41(2):241–250, 1992.

[3] K.J. Böröczky, E. Lutwak, D. Yang, and G. Zhang. The log-Brunn-Minkowski inequality. *Advances in Mathematics*, 231(3):1974–1997, 2012.

[4] D. Cordero-Erausquin, M. Fradelizi, and B. Maurey. The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. *Journal of Functional Analysis*, 214(2):410–427, 2004.

[5] A. Giannopoulos and V.D. Milman. Extremal problems and isotropic positions of convex bodies. *Israel Journal of Mathematics*, 117(1):29–60, 2000.

[6] F. John. Extremum problems with inequalities as side constraints. *Studies and Essays, Courant Anniversary Volume*, pages 187–204, 1948.

[7] R. Latała. On some inequalities for Gaussian measures. *Proceedings of the International Congress of Mathematicians, Beijing*, II, 2002.

[8] A. Livne Bar-on. The (B) conjecture for uniform measures in the plane. In *Geometric Aspects of Functional Analysis*, pages 341–353, Springer, 2014.

[9] V.D. Milman. Inégalité de Brunn-Minkowski inverse et applicationsa la théorie locale des espaces normés. *CR Acad. Sci. Paris*, 302(1):25–28, 1986.

[10] C. Saroglou. Remarks on the conjectured log-Brunn-Minkowski inequality. *Geometriae Dedicata*, 177(1):353–365, 2015.

[11] C. Saroglou. More on logarithmic sums of convex bodies. *Mathematika*, 62(03):818–841, 2016.

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

E-mail address: shiri@post.tau.ac.il, david.katzin@wur.nl