BOHR-ROGOSINSKI PHENOMENON FOR $S^*(\psi)$ AND $C(\psi)$

KAMALJEET GANGANIA AND S. SIVAPRASAD KUMAR

Abstract. In Geometric function theory, occasionally attempts have been made to solve a particular problem for the Ma-Minda classes, $S^*(\psi)$ and $C(\psi)$ of univalent starlike and convex functions, respectively. Recently, a popular radius problem generally known as Bohr’s phenomenon has been studied in various settings, however a little is know about Rogosinski radius. In this article, for a fixed $f \in S^*(\psi)$ or $C(\psi)$, the class of analytic subordinants $S_f(\psi) := \{ g : g \prec f \}$ is studied for the Bohr-Rogosinski phenomenon in a general setting. It’s applications to the classes $S^*(\psi)$ and $C(\psi)$ are also shown.

2010 AMS Subject Classification. Primary 30C45, 30C50, Secondary 30C80.
Keywords and Phrases. Subordination, Radius problem, Bohr Radius, Bohr-Rogosinski radius.

1. Introduction

Let \mathcal{A} denote the class of analytic functions of the form $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ in the open unit disk $D := \{ z : |z| < 1 \}$. Using subordination [20], Ma and Minda [19] (also see [15]) introduced the unified class of univalent starlike and convex functions defined as follows:

$$S^*(\psi) := \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec \psi(z) \right\}$$

and

$$C(\psi) := \left\{ f \in \mathcal{A} : 1 + \frac{zf''(z)}{f'(z)} \prec \psi(z) \right\},$$

where ψ is analytic and univalent with $\Re \psi(z) > 0$, $\psi'(0) > 0$, $\psi(0) = 1$ and $\psi(D)$ is symmetric about real axis. Note that $\psi \in \mathcal{P}$, the class of normalized Carathéodory functions. Also when $\psi(z) = (1+z)/(1-z)$, $S^*(\psi)$ and $C(\psi)$ reduces to the standard classes S^* and C of univalent starlike and convex functions.

In GFT, radius problems have a rich history which is being followed till today, see the recent articles [9, 10, 11, 13, 14, 15, 17, 28]. In 1914, Harald Bohr [8] proved the following remarkable radius problem related to the power series:

K. Gangania thanks to University Grant Commission, New-Delhi, India for providing Junior Research Fellowship under UGC-Ref. No.:1051/(CSIR-UGC NET JUNE 2017).
Theorem 1.1 (Bohr’s Theorem, [8]). Let \(g(z) = \sum_{k=0}^{\infty} a_k z^k \) be an analytic function in \(\mathbb{D} \) and \(|g(z)| < 1 \) for all \(z \in \mathbb{D} \), then
\[
\sum_{k=0}^{\infty} |a_k||z|^k \leq 1, \quad \text{for} \quad |z| \leq \frac{1}{3}.
\]

Bohr actually proved the above result for \(r \leq 1/6 \). Further Wiener, Riesz and Shur independently sharpened the result for \(r \leq 1/3 \). Presently, the Bohr inequality for functions mapping unit disk onto different domains, other than unit disk is an active area of research. For the recent development on Bohr-phenomenon, see the articles [2, 3, 6, 7, 21, 22, 23] and references therein. The concept of Bohr phenomenon in terms of subordination can be described as:

Definition 1.2 (Muhanna, [21]). Let \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) and \(g(z) = \sum_{k=0}^{\infty} b_k z^k \) are analytic in \(\mathbb{D} \) and \(f(\mathbb{D}) = \Omega \). For a fixed \(f \), consider a class of analytic functions \(S(f) := \{g : g < f\} \) or equivalently \(S(\Omega) := \{g : g(z) \in \Omega\} \). Then the class \(S(f) \) is said to satisfy Bohr-phenomenon, if there exists a constant \(r_0 \in (0, 1] \) satisfying the inequality \(\sum_{k=1}^{\infty} |b_k|^r \leq d(f(0), \partial \Omega) \) for all \(|z| = r \leq r_0 \) and \(g \in S(f) \), where \(d(f(0), \partial \Omega) \) denotes the Euclidean distance between \(f(0) \) and the boundary of \(\Omega = f(\mathbb{D}) \). The largest such \(r_0 \) is called the Bohr-radius.

In 2014, Muhanna et al. [23] proved the Bohr phenomenon for \(S(W_{\alpha}) \), where \(W_{\alpha} := \{w \in \mathbb{C} : |\arg w| < \alpha \pi/2, 1 \leq \alpha \leq 2\} \), which is a Concave-wedge domain (or exterior of a compact convex set) and the class \(R(\alpha, \beta, h) \) defined by \(R(\alpha, \beta, h) := \{f \in A : f(z) = g(z) + \alpha zg'(z) + \beta z^2 g''(z) < h(z), g \in A\} \), where \(h \) is a convex function (or starlike) and \(R(\alpha, \beta, h) \subset S(h) \). In 2018, Bhowmik and Das [6] proved the Bohr-phenomenon for the classes: \(S(f) = \{g \in A : g < f \text{ and } f \in \mu(\lambda)\} \), where \(\mu(\lambda) = \{f \in A : |z/f(z)|^2 f'(z) < \lambda, 0 < \lambda \leq 1\} \) and \(S(\alpha) = \{g \in A : g < f \text{ and } f \in S^*(\alpha), 0 \leq \alpha \leq 1/2\} \), where \(S^*(\alpha) \) is the well-known class of starlike functions of order \(\alpha \).

In the aforesaid work, the role of the sharp coefficient’s bound of \(f \) was prominent to achieve the respective Bohr radius for the class \(S(f) \), see [3, 15, 16]. But in general, the sharp coefficient’s bounds for functions in a given class are not available, for example see [3, 13, 14, 15, 28], thus certain power series inequalities are needed. In this direction, Bhowmik and Das obtained the following important inequality to achieve the Bohr radius for the class \(S(f) \), where \(f \in \mu(\lambda) \) and \(S^*(\alpha), 0 \leq \alpha \leq 1/2 \) respectively:

Lemma 1.1 ([6]). Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) and \(g(z) = \sum_{k=0}^{\infty} b_k z^k \) be analytic in \(\mathbb{D} \) and \(g < f \). Then
\[
\sum_{k=0}^{\infty} |b_k|r^k \leq \sum_{n=0}^{\infty} |a_n|r^n, \quad \text{for} \quad |z| \leq \frac{1}{3}.
\]

Motivated by the class \(S(f) \), Kumar and Gangania in [16, Sec. 5] further used the above Lemma 1.1 in the absence of the sharp coefficient’s bounds.
of f to study the Bohr phenomenon for the class $S_f(\psi)$, which eventually holds for the class $S^*(\psi)$:

Definition 1.3. Let $f \in S^*(\psi)$ or $\mathcal{C}(\psi)$ be fixed. Then the class of subordinants functions g is defined as:

$$S_f(\psi) := \left\{ g(z) = \sum_{k=1}^{\infty} b_k z^k : g \prec f \right\}.$$

Theorem 1.4. [16 Theorem 5.1] Let r_* be the Koebe-radius for the class $S^*(\psi)$, $f_0(z)$ be given by the equation (2.2) and $g(z) = \sum_{k=1}^{\infty} b_k z^k \in S_f(\psi)$.

Assume $f_0(z) = z + \sum_{n=2}^{\infty} z^n$ and $\hat{f}_0(r) = r + \sum_{n=2}^{\infty} |t_n|r^n$. Then $S_f(\psi)$ satisfies the Bohr-phenomenon

$$\sum_{k=1}^{\infty} |b_k|r^k \leq d(f(0), \partial \Omega), \quad \text{for } |z| = r \leq r_b,$$

where $r_b = \min\{r_0, 1/3\}$, $\Omega = f(\mathbb{D})$ and r_0 is the least positive root of the equation

$$\hat{f}_0(r) = r_*.$$

The result is sharp when $r_b = r_0$ and $t_n > 0$.

Note that Muhanna et al. [24] recently discussed the Bohr type of inequalities for the k-th section for the analytic functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$ using the Bohr Operator

$$M_r(f) = \sum_{n=0}^{\infty} |a_n||z^n| = \sum_{n=0}^{\infty} |a_n|r^n.$$

Paulsen and Singh [25] used this operator provided an simple elementary proof of the Bohr’s Theorem [11] and extended it to the Banach algebras (for the basic important discussion, see [24, 25]). Now for the simplicity and further discussion, we define the following basic operator for f, where $S^N(f(z)) = \sum_{n=N}^{\infty} a_n z^n$:

$$M_r^N(f) = \sum_{n=N}^{\infty} |a_n||z^n| = \sum_{n=N}^{\infty} |a_n|r^n,$$

and thus the following observations hold for $|z| = r$ for each $z \in \mathbb{D}$

(i) $M_r^N(f) \geq 0$, and $M_r^N(f) = 0$ if and only if $f \equiv 0$

(ii) $M_r^N(f + g) \leq M_r^N(f) + M_r^N(g)$

(iii) $M_r^N(\alpha f) = |\alpha|M_r^N(f)$ for $\alpha \in \mathbb{C}$

(iv) $M_r^N(f \cdot g) \leq M_r^N(f) M_r^N(g)$

(v) $M_r^N(1) = 1$.

Using this operator, we now can get similar type of results as obtained by Muhanna et al. [24] for the interim k-th sections $S^N_k(f(z)) = \sum_{n=N}^{k} a_n z^n$ and the function $S^N(f(z))$.

BOHR-ROGOSINSKI PHENOMENON FOR $S^*(\psi)$ AND $\mathcal{C}(\psi)$
In analogy with Bohr’s Theorem, there is also the notion of Rogosinski radius, however a little is known about Rogosinski radius as compared to Bohr radius, which is defined as follows, also see [18, 26, 27]:

Theorem 1.5 (Rogosinski Theorem). If \(g(z) = \sum_{k=0}^{\infty} b_k \) with \(|f(z)| < 1 \), then for every \(N \geq 1 \) we have

\[
\left| \sum_{k=0}^{N-1} b_k z^k \right| \leq 1, \quad \text{for } |z| \leq \frac{1}{2}.
\]

The radius \(1/2 \) is called the Rogosinski radius.

Kayumov et al. [12] considered a new quantity, called Bohr-Rogosinski sum, which is described as follows:

\[
|g(z)| + \sum_{k=N}^{\infty} |b_k||z|^k, \quad |z| = r.
\]

For the case \(N = 1 \), note that this sum is similar to the Bohr’s sum, where \(g(0) \) is replaced by \(|g(z)| \). We also refer the readers to see [1, 4]. Now we say the family \(S(f) \) has Bohr-Rogosinski phenomenon, if there exists \(r_f \in (0, 1] \) such that the inequality:

\[
|g(z)| + \sum_{k=N}^{\infty} |b_k||z|^k \leq |f(0)| + d(f(0), \partial \Omega)
\]

holds for \(|z| = r \leq r_f \). The largest such \(r_f \) is called the Bohr-Rogosinski radius. Authors [12] also proved the following interesting results:

Theorem 1.6. [12, Theorem 5-6] Let \(g \in S(f) \), where \(f \) is univalent in \(\mathbb{D} \). Then for each \(m, N \in \mathbb{N} \), the inequality

\[
|g(z^m)| + \sum_{k=N}^{\infty} |b_k||z|^k \leq |f(0)| + d(f(0), \partial \Omega)
\]

holds for \(|z| = r \leq r_{m,N}^f \), where \(r_{m,N}^f \) is the smallest positive root of:

\[
4r^m - (1 - r^m)^2 + 4r^N(N(1 - r) + r) \left(\frac{1 - r^m}{1 - r} \right)^2 = 0.
\]

The radius is sharp for the Koebe function \(z/(1 - z)^2 \). Moreover, if \(f \) is convex (univalent) in \(\mathbb{D} \), then \(r_{m,N}^f \) is the smallest positive root of:

\[
3r^m - 1 + 2r^N \left(\frac{1 - r^m}{1 - r} \right) = 0.
\]

The radius is sharp for the convex function \(z/(1 - z) \).

Motivated by the above work, let us now introduce the Bohr-Rogosinski phenomenon for the class of analytic subordinants \(S_f(\psi) \):
Definition 1.7. The class $S_f(\psi)$ has a Bohr-Rogosinski phenomenon, if there exists an $0 < r_0 \leq 1$ such that

$$|g(z)| + \sum_{k=N}^{\infty} |b_k||z|^k \leq d(f(0), \partial \Omega)$$

for $|z| = r \leq r_0$, where $N \in \mathbb{N}$, $\Omega = f(\mathbb{D})$ and $d(f(0), \partial \Omega)$ denotes the Euclidean distance between $f(0)$ and the boundary of Ω.

Note that $S^*(\psi) \subset \bigcup_{f \in S^*(\psi)} S_f(\psi)$. Further, the connection between the Bohr-Rogosinski and Bohr phenomenon can be seen through Definition 1.7, if we replace $|g(z)|$ by $|g(z^m)|$, where $m \in \mathbb{N}$, and then consider the special case by taking $m \to \infty$ with $N = 1$. In Section 2, for a fixed $f \in S^*(\psi)$ or $C(\psi)$, the class of subordinants $S_f(\psi) := \{ g : g \prec f \}$ is studied for the Bohr-Rogosinski phenomenon in general settings along with its applications to the standard classes of univalent starlike and convex functions.

2. Bohr-Rogosinski Phenomenon

The following fundamental result is an extension of the Lemma 1.1:

Lemma 2.1. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ be analytic in \mathbb{D} and $g \prec f$, then

$$\sum_{k=N}^{\infty} |b_k|r^k \leq \sum_{n=N}^{\infty} |a_n|r^n$$

(2.1)

for $|z| = r \leq \frac{1}{3}$ and $N \in \mathbb{N}$.

Proof. Since $g \prec f$, we have $g(z) = f(\omega(z))$, where ω is a Schwarz function. For the case $\omega(z) = cz$, $|c| = 1$, the function g is a rotation of f or $g = f$, and the inequality (2.1) easily holds. So consider the case: $\omega(z) \neq cz$, $|c| = 1$. Now the coefficient b_k of the function g is given by: for any $k \geq N \in \mathbb{N}$

$$b_k = \sum_{n=N}^{k} a_n \beta_k^{(n)},$$

where the t-th power of the analytic function ω is represented as $\omega^t(z) = \sum_{l \geq t} \beta_l^{(t)} z^l$, $t \in \mathbb{N}$. Now we see that

$$\sum_{k=N}^{m} |b_k|r^k = \sum_{k=N}^{m} \left| \sum_{n=N}^{n} a_n \beta_k^{(n)} \right| r^k \leq \sum_{k=N}^{m} \sum_{n=N}^{n} |a_n||\beta_k^{(n)}|r^k = \sum_{n=N}^{m} |a_n|M_m^{(n)}(r),$$
where \(M_m(n)(r) = \sum_{k=n}^{\infty} |\beta_k(n)| r^k \) and \(m \in \mathbb{N} \). Since \(|\omega^n(z)/z^n| < 1\) for any \(n \geq 1 \), using Bohr’s Theorem \(1.1\) we have

\[
\sum_{k=n}^{m} |\beta_k(n)| r^{k-n} \leq \sum_{k=n}^{\infty} |\beta_k(n)| r^{k-n} \leq 1, \quad r \leq \frac{1}{3},
\]

that is, \(M_m(n)(r) \leq r^n \) holds for \(r \leq 1/3 \). Hence, for any \(m \geq N \geq 1 \) and \(r \leq 1/3 \)

\[
\sum_{k=N}^{m} |b_k| r^k \leq \sum_{n=N}^{m} |a_n| r^n.
\]

The result now follows by taking \(m \to \infty \). \(\square\)

Proof. [Alternate proof of the Lemma 2.1] Since \(g(z) = f(\omega(z)) \), where \(\omega \) is the Schaurz function, we have

\[
M_r^n(g) = M_r^n \left(\sum_{k=N}^{\infty} a_k(\omega(z))^k \right) \\
\leq \sum_{k=N}^{\infty} |a_k| (M_r(\omega(z)))^k \\
\leq \sum_{k=N}^{\infty} |a_k||z|^k
\]

for \(|z| = r \leq 1/3\). \(\square\)

Remark 2.1. In Lemma \(2.1 \) taking \(N \to 1 \) and the fact the \(g(0) = f(0) \) we obtain Lemma \(1.1 \)

Moreover, the following results is obtained using the properties of the operator \(M_r^N(f) \) and Lemma \(2.1 \)

Corollary 2.1. Let the analytic functions \(f, g \) and \(h \) satisfies \(g(z) = h(z)f(\omega(z)) \) in \(\mathbb{D} \), where \(\omega \) is the Schaurz function. Assume \(|h(z)| \leq \tau\) for \(|z| < \tau \leq 1\). Then

\[
M_r^N(g) \leq \tau M_r^N(f), \quad 0 \leq |z| = r \leq \frac{\tau}{3}.
\]

Corollary 2.2. Let \(\tau = 1 \) in Theorem \(2.1 \). Then

\[
M_r^N(g) \leq M_r^N(f), \quad 0 \leq |z| = r \leq \frac{1}{3}.
\]

Lemma 2.2. (\cite{19}) Let \(f \in S^*(\psi) \) and \(|z_0| = r < 1\). Then \(f(z)/z \prec f_0(z)/z \) and

\[
-f_0(-r) \leq |f(z_0)| \leq f_0(r).
\]

Equality holds for some \(z_0 \neq 0 \) if and only if \(f \) is a rotation of \(f_0 \), where \(zf_0(z)/f_0(z) = \psi(z) \) such that

\[
f_0(z) = z \exp \int_0^z \frac{\psi(t) - 1}{t} \, dt. \quad (2.2)
\]
Our next results discuss Bohr-Rogosinski phenomenon for the classes $S_f(\psi)$ and $S^*(\psi)$, respectively.

Theorem 2.3. Let r_* be the Koebe-radius for the class $S^*(\psi)$, $f_0(z)$ be given by the equation (2.2) and $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S^*(\psi)$. Assume $f_0(z) = z + \sum_{n=2}^{\infty} t_n z^n$ and $\hat{f}_0(r) = r + \sum_{n=2}^{\infty} |t_n|r^n$. If $g \in S_f(\psi)$. Then

$$|g(z^m)| + \sum_{k=N}^{\infty} |b_k||z|^k \leq d(0, \partial \Omega)$$

(2.3)

holds for $|z| = r_0 \leq \min \{ \frac{1}{3}, r_0 \}$, where $m, N \in \mathbb{N}, \Omega = f(\mathbb{D})$ and r_0 is the unique positive root of the equation:

$$\hat{f}_0(r^m) + \hat{f}_0(r) - p_{f_0}(r) = r_*,$$

(2.4)

where

$$p_{f_0}(r) = \begin{cases} 0, & N = 1; \\ r, & N = 2 \\ r + \sum_{n=2}^{N-1} |t_n|r^n, & N \geq 3 \end{cases}$$

The result is sharp when $r_0 = r_0$ and $t_n > 0$.

Proof. Let $g(z) = \sum_{k=1}^{\infty} b_k z^k \prec f(z)$, where $f \in S^*(\psi)$. Now by Lemma 2.1, for $r \leq 1/3$, we have

$$\sum_{k=N}^{\infty} |b_k|r^k \leq \sum_{n=N}^{\infty} |a_n|r^n.$$

Again applying Lemma 2.1 on $f(z)/z \prec f_0(z)/z$ (Lemma 2.2), we get that

$$\sum_{k=N}^{\infty} |b_k|r^k \leq \sum_{n=N}^{\infty} |a_n|r^n \leq \sum_{n=N}^{\infty} |t_n|r^n, \quad r \leq \frac{1}{3}.$$ (2.5)

Now $g \prec f$ implies that $g(z) = f(\omega(z))$, which using the Lemma 2.2 yields

$$|g(z)| = |f(\omega(z))| \leq f_0(r)$$

for $|z| = r$, where ω is a Schwarz function. Moreover,

$$|g(z^m)| \leq \hat{f}_0(r^m).$$ (2.6)

Also, by letting r tends to 1 in Lemma 2.2, we obtain the Koebe-radius $r_* = -f_0(1)$. Therefore, the open ball $B(0, r_*) \subset f(\mathbb{D})$, which implies that for $|z| = 1$

$$r_* \leq d(0, \partial \Omega).$$ (2.7)

Now using the equations (2.5), (2.6) and (2.7), we have

$$|g(z^m)| + \sum_{k=N}^{\infty} |b_k||z|^k \leq \hat{f}_0(r^m) + \sum_{n=N}^{\infty} |t_n|r^n$$

$$= \hat{f}_0(r^m) + \hat{f}_0(r) - p_{f_0}(r)$$

$$\leq r_* \leq d(0, \partial \Omega).$$
holds whenever \(|z| = r \leq \min\{\frac{1}{3}, r_0\}\), where \(r_0\) is the smallest positive root of the equation:

\[
G(r) := \hat{f}_0(r^m) + \hat{f}_0(r) - p_{f_0}(r) - r_* = 0.
\]

Note that \(G(0) < 0\), and since \(\hat{f}_0(1) \geq |f_0(1)| \geq r_*\), we see that

\[
2\hat{f}_0(1) - \sum_{n=1}^{N-1} |t_n| - r_* = (\hat{f}_0(1) - \sum_{n=1}^{N-1} |t_n|) + (\hat{f}_0(1) - r_*) > 0
\]

where \(t_1 = 1\), which implies \(G(1) > 0\). Clearly, for \(0 \leq r \leq 1\)

\[
G'(r) = \hat{f}'_0(r^m) + (\hat{f}'_0(r) - p'_{f_0}(r)) > 0,
\]

which implies \(G\) is a continuous increasing function in \([0, 1]\). Thus \(G(r) = 0\) has a root in the interval \((0, 1)\). The sharpness follows for the function \(f_0\) as

\[
f_0(r^m_0) + \sum_{n=N}^{\infty} t_n r_b^n = r^* = d(0, \partial\Omega)
\]

when \(r_b = r_0\) and \(t_n > 0\).

\(\square\)

Remark 2.2. Let \(\psi(z) = (1 + z)/(1 - z)\), then Theorem 2.3 reduces to [12, Theorem 5].

Remark 2.3. Observe that if we take \(m \to \infty\) and \(N = 1\), then Theorem 2.3 reduces to [16, Theorem 5.1].

Corollary 2.4. Let \(r_*\) be the Koebe-radius for the class \(S^s(\psi)\), \(f_0(z)\) be given by the equation (2.2). Assume \(f_0(z) = z + \sum_{n=2}^{\infty} t_n z^n\) and \(\hat{f}_0(r) = r + \sum_{n=2}^{\infty} |t_n| r^n\). If \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S^s(\psi)\). Then

\[
|f(z^m)| + \sum_{n=N}^{\infty} |a_n||z|^n \leq d(0, \partial\Omega)
\]

(2.8)

holds for \(|z| = r_b \leq \min\{\frac{1}{3}, r_0\}\), where \(m, N \in \mathbb{N}\), \(\Omega = f(\mathbb{D})\) and \(r_0\) is the unique positive root of the equation:

\[
\hat{f}_0(r^m) + \hat{f}_0(r) - p_{f_0}(r) = r_*,
\]

where \(p_{f_0}\) is as defined in Theorem 2.3. The radius is sharp for the function \(f_0\) when \(r_b = r_0\) and \(t_n > 0\).

Corollary 2.5. Let \(\psi(z) = 1 + \frac{4}{3}z + \frac{2}{3}z^2\), \(f_0(r) = r \exp\left(\frac{4}{3}r + \frac{r^2}{3}\right)\) and \(m = 1\). If \(g \in S_f(\psi)\). Then the inequality (2.3) holds for \(|z| = r \leq r_N\), where \(N \in \mathbb{N}\) and \(r_N < 1/3\) is the unique positive root of the equation:

\[
2r \exp\left(\frac{4}{3}r + \frac{r^2}{3}\right) - p_{f_0}(r) - \exp(-1) = 0,
\]

where \(p_{f_0} = p_{\hat{f}_0}\) is as defined in Theorem 2.3 with \(|t_n| = t_n = f_0^n(0)/n!\). Moreover, if \(f \in S^s(\psi)\). Then the inequality (2.8) also holds for \(r \leq r_N\). The radius \(r_N\) is sharp.
Remark 2.4. In Corollary 2.5 we observe that the radius r_N approaches $r_0 = 0.25588 \cdots$ for large value of N, where r_0 is the unique positive root of
\[
r \exp \left(\frac{4}{3}r + \frac{r^2}{3} \right) - \exp(-1) = 0.
\]
Moreover, if $m \geq 2$ then the inequalities (2.3) and (2.8) hold for $r \leq 1/3$.

Corollary 2.6. Let $\psi(z) = 1 + z e^z$ and $m = 1$. If $g \in S_f(\psi)$. Then the inequality (2.3) holds for $|z| = r \leq r_N = \{r_0, 1/3\}$, where $N \in \mathbb{N}$ and r_0 is the unique positive root of the equation:
\[
2r \exp(e^r - 1) - T(r) - \exp(e^{-1} - 1) = 0,
\]
where
\[
T(r) = \begin{cases}
0, & N = 1; \\
r, & N = 2; \\
\sum_{n=1}^{N-1} \frac{B_{n+1}}{(n-1)!} r^n, & N \geq 3
\end{cases}
\]
and B_n are the bell numbers such that $B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$. Moreover, if $f \in S^*(\psi)$. Then the inequality (2.8) also holds for $r \leq r_N$. The radius $r_N < 1/3$ is sharp for $N \leq 3$.

Corollary 2.7. Let $\psi(z) = 1 + \frac{x}{k} \left(\frac{k+x}{k-x} \right)$ with $k = \sqrt{2} + 1$. If $g \in S_f(\psi)$. Then the inequality (2.3) holds for $|z| = r \leq r_b = \min\{1/3, r_0\}$, where $N \in \mathbb{N}$ and r_0 is the unique positive root of the equation:
\[
r^{m} \exp \left(\frac{k}{k-r} \right) - \frac{r}{e^r} \left(\frac{k}{k-r} \right)^{2k} - p_{f_0}(r) - e \left(\frac{k}{k+1} \right)^{2k} = 0,
\]
where $p_{f_0} = p_{f_0}$ is as defined in Theorem 2.3 and $t_n = |t_n|$ are the Taylor coefficients of the function $f_0(r) = r \exp \left(\frac{k}{k-r} \right)$. Moreover, if $f \in S^*(\psi)$. Then the inequality (2.8) also holds for $r \leq r_b$. The radius r_b is sharp when $m = 1$ and $N \leq 4$.

Since all the Taylor coefficients of the function $1 + \sin z$ are not positive, $f_0 \neq f_0$. So we consider the radius r_N upto three decimal places only, which also reveals the connection of positive coefficients of ψ to the sharp Bohr-Rogosinski radius.

Corollary 2.8. Let $\psi(z) = 1 + \sin z$ and $m = 1$. If $g \in S_f(\psi)$. Then the inequality (2.3) holds for $|z| = r \leq r_N$, where $N \in \mathbb{N}$ and $r_N(<1/3)$ is the unique positive root of the equation:
\[
2r \exp(Si(r)) - \exp(Si(-1)) - p_{f_0}(r) = 0,
\]
where $f_0(r) = r \exp(Si(r))$, where $Si(x)$ is the Sin Integral defined as:
\[
Si(x) := \int_0^x \frac{\sin(x)}{x} dx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)(2n+1)!}
\]
Moreover, if $f \in S^*(\psi)$. Then the inequality (2.8) also holds for $r \leq r_N$.

BOHR-ROGOSINSKI PHENOMENON FOR $S^*(\psi)$ AND $C(\psi)$
Remark 2.5. In Corollary 2.8, the numerical computations reveal that the Bohr-Rogosinski radius $r_N \approx 0.290 \cdots < 1/3$ for any $N > 4$, where $* = 6$ or 7. Also $r_N < 1/3$ for $N \leq 4$. Moreover, as $N \to \infty$, the required radius $r_0 \approx 0.290 \cdots$ is the unique positive root of

$$r \exp(Si(r)) - \exp(Si(-1)) = 0.$$

Next we discuss the Bohr-Rogosinski phenomenon for the celebrated Janowski class of univalent starlike functions. For this, we first need the following: for simplicity write $S_*((1+Dz)/(1+Ez)) \equiv S[D,E]$, where $-1 \leq E < D \leq 1$.

Lemma 2.3. [5, Theorem 3] If

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S[D,E].$$

Then for $n \geq 2$, the following sharp bounds occur:

$$|a_n| \leq \prod_{k=0}^{n-2} \frac{|E-D+Ek|}{k+1}.$$

Corollary 2.9. Let

$$\psi(z) = (1+Dz)/(1+Ez), \quad -1 \leq E < D \leq 1.$$

If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S^*(\psi)$. Then

$$|f(z^m)| + \sum_{n=N}^{\infty} |a_n||z|^n \leq d(0,\partial \Omega)$$

holds for $|z| = r \leq r_0$, where $m, N \in \mathbb{N}$, $\Omega = f(\mathbb{D})$ and r_0 is the unique positive root of the equations:

$$r^m(1+Er^m)\frac{D-E}{E-D} + A(r) + \sum_{n=N}^{\infty} \prod_{k=0}^{n-2} \frac{|E-D+Ek|}{k+1} r^n - (1-E) \frac{D-E}{E-D} = 0, \quad \text{if } E \neq 0,$$

where $A(r) = r$ for $N = 1$ and 0 otherwise, and

$$r^m e^{Dr^m} + (1-E) D - J(r) - e^{-D} = 0, \quad \text{if } E = 0,$$

where

$$J(r) = \begin{cases} 0, & N = 1; \\ r, & N = 2; \\ \sum_{n=2}^{N-1} \prod_{k=0}^{n-2} \frac{D}{k+1} r^n, & N \geq 3. \end{cases}$$

The radius r_0 is sharp.

Proof. Let us consider the function f_0 such that $zf_0'(z)/f_0(z) = (1+Dz)/(1+Ez)$, which is given by

$$f_0(z) = \begin{cases} z(1+Ez) \frac{D-E}{E-D}, & E \neq 0; \\ ze^{Dz}, & E = 0. \end{cases}$$

(2.11)

Now using the Lemma 2.2 and Lemma 2.3 we have

$$|f(z^m)| \leq f_0(r^m), \quad r_* = -f_0(-1)$$

and

$$\sum_{n=N}^{\infty} |a_n||z|^n \leq \sum_{n=N}^{\infty} \prod_{k=0}^{n-2} \frac{|E-D+Ek|}{k+1} r^n, \quad N \geq 2.$$
Now proceeding as in Theorem 2.3 for r_0 as defined in the statement, the result follows. To prove the sharpness of the radius r_0, we see that at $|z| = r = r_0$ and $f = f_0$ given in (2.11):

$$|f(z^m)| + \sum_{n=N}^{\infty} |a_n||z|^n$$

$$= \begin{cases} (r_0)^m(1 + E(r_0)^m)\frac{D-E}{E} + A(r_0) + \sum_{n=N}^{\infty} n^{-2} \prod_{k=0}^{n-2} \frac{|E-D+E_k|}{k+1}(r_0)^n, & E \neq 0; \\ (r_0)^m e^{D(r_0)^m} + (r_0) e^{Dr_0} - J(r_0), & E = 0. \end{cases}$$

$$= \begin{cases} (1 - E)\frac{D-E}{E}, & E \neq 0; \\ e^{-D}, & E = 0. \end{cases}$$

$$= -f_0(-1) = d(0, \partial \Omega),$$

where $J(r)$ is as defined in (2.10), and $A(r) = r$ for $N = 1$ and 0 otherwise for the case $E \neq 0$. \hfill \Box$

Remark 2.6. Taking $m \to \infty$ and $N = 1$ in Corollary 2.9, we obtain the Bohr radius for the class $S[D, E]$, which covers many classical cases.

In Corollary 2.9, putting $D = 1 - 2\alpha$ and $E = -1$, where $0 \leq \alpha < 1$, we get the result for the class of univalent starlike functions of order α, that is, $S^*(\alpha)$:

Corollary 2.10. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S^*(\alpha)$. Then the inequality (2.9) holds for $|z| = r \leq r_0$, where $m, N \in \mathbb{N}$, $\Omega = f(\mathbb{D})$ and r_0 is the smallest positive root of the equations:

$$\frac{r^m}{(1 - r^m)^{2(1-\alpha)}} + A(r) + \sum_{n=N}^{\infty} n^{-2} \prod_{k=0}^{n-2} k + 2(1-\alpha) \frac{r^n}{k+1} - \frac{1}{4^{1-\alpha}} = 0,$$

where $A(r) = r$ for $N = 1$ and 0 otherwise. The radius r_0 is sharp.

Putting $\alpha = 0$ in Corollary 2.10, we get the following:

Corollary 2.11. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S^*$. Then the inequality (2.9) holds for $|z| = r \leq r_0$, where $m, N \in \mathbb{N}$, $\Omega = f(\mathbb{D})$ and r_0 is the smallest positive root of the equations:

$$4r^m - (1 - r^m)^2 + 4r^N(N(1-r)+r) \left(\frac{1 - r^m}{1-r} \right)^2 = 0.$$

The radius r_0 is sharp.

To proceed further, we need to recall the following fundamental result:

Lemma 4. \cite{19} Let $f \in C(\psi)$. Then $zf''(z)/f'(z) \prec zl''_0(z)/l'_0(z)$ and $f'(z) \prec l'_0(z)$. Also, for $|z| = r$ we have

$$-l_0(-r) \leq |f(z)| \leq l_0(r),$$

where

$$zl''_0(z)/l'_0(z) = \psi(z).$$

(2.12)
Now we discuss the results for the convex analogue $C(\psi)$ of $S^*(\psi)$.

Theorem 2.12. Let r_* be the Koebe-radius for the class $C(\psi)$, $l_0(z)$ be given by the equation (2.12) and $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in C(\psi)$. Assume $l_0(z) = z + \sum_{n=2}^{\infty} l_n z^n$ and $\hat{l}_0(r) = r + \sum_{n=2}^{\infty} |l_n| r^n$. If $g \in S_f(\psi)$. Then

$$|g(z^m)| + \sum_{k=N}^{\infty} |b_k||z|^k \leq d(0, \partial \Omega)$$

(2.13)

holds for $|z| = r_b \leq \min\{\frac{1}{3}, r_0\}$, where $m, N \in \mathbb{N}$, $\Omega = f(\mathbb{D})$ and r_0 is the unique positive root of the equation:

$$\hat{l}_0(r^m) + \hat{l}_0(r) - p_{l_0}(r) = r_*,$$

where

$$p_{l_0}(r) = \begin{cases} 0, & N = 1; \\ r, & N = 2; \\ r + \sum_{n=2}^{N-1} |l_n| r^n, & N \geq 3. \end{cases}$$

The result is sharp when $r_b = r_0$ and $l_n > 0$.

Proof. Let $g(z) = \sum_{k=1}^{\infty} b_k z^k < f(z)$, where $f \in C(\psi)$. From the Alexander relation, it is known that $f \in C(\psi)$ if and only if

$$zf'(z) = \tilde{g}(z),$$

or equivalently $f(z) = \int_0^z \frac{\tilde{g}(t)}{t} dt$

for some $\tilde{g} \in S^*(\psi)$. Now by Lemma 2.1 for $r \leq 1/3$, we have

$$\sum_{k=N}^{\infty} |b_k|r^k \leq \sum_{n=N}^{\infty} |a_n|r^n = \sum_{n=N}^{\infty} \frac{\tilde{b}_n}{n} r^n,$$

(2.14)

where \tilde{b}_n are the Taylor coefficients of \tilde{g}. Again applying Lemma 2.1 on $f'(z) < l'_0(z)$ (Lemma 2.3), we get that

$$M_\tilde{g}(r) - p_{\tilde{g}}(r) \leq M_h(r) - p_h(r), \quad r \leq \frac{1}{3},$$

(2.15)

where $Mg(x) := \sum_{k=1}^{\infty} |b_k|x^k$, and h is given by the relation $zl'_0(z) = h(z)$. Now using the equations (2.14) and (2.15), we have for $r \leq 1/3$

$$\sum_{k=N}^{\infty} |b_k||z|^k \leq \sum_{n=N}^{\infty} \frac{\tilde{b}_n}{n} r^n$$

$$= \int_0^r \frac{M_\tilde{g}(t) - p_{\tilde{g}}(t)}{t} dt$$

$$\leq \int_0^r \frac{M_h(t) - p_h(t)}{t} dt = \sum_{n=N}^{\infty} |l_0| r^n$$

(2.16)

$$= \hat{l}_0(r) - p_{l_0}(r).$$

Now $g \preceq f$ implies that $g(z) = f(\omega(z))$, which using the Lemma 2.4 yields

$$|g(z)| = |f(\omega(z))| \leq l_0(r)$$

\[\text{KAMALJEET AND S. SIVAPRASAD KUMAR} \]
for $|z| = r$, where ω is a Schwarz function. Moreover,

$$|g(z^m)| \leq \hat{l}_0(r^m).$$ \hfill (2.17)

Also, by letting r tends to 1 in Lemma 2.12, we obtain the Koebe-radius $r_* = -l_0(-1)$. Therefore, the open ball $B(0, r_*) \subset f(D)$, which implies that for $|z| = 1$

$$r_* \leq d(0, \partial \Omega).$$ \hfill (2.18)

Hence, using the inequalities (2.16), (2.17) and (2.18), we have

$$|g(z^m)| + \sum_{k=N}^{\infty} |b_k||z|^k \leq \hat{l}_0(r^m) + \hat{l}_0(r) - p_{l_0}(r) \leq r_* \leq d(0, \partial \Omega)$$

holds whenever $|z| = r \leq \min\{\frac{1}{2}, r_0\}$, where r_0 is the smallest positive root of the equation:

$$H(r) := \hat{l}_0(r^m) + \hat{l}_0(r) - p_{l_0}(r) - r_* = 0.$$

Clearly, H is continuous and $H'(r) > 0$ for $0 \leq r \leq 1$. Note that $H(0) < 0$, and since $\hat{l}_0(1) \geq |l_0(1)| \geq r_*$, we see that

$$2\hat{l}_0(1) - \sum_{n=1}^{N-1} |l_n| - r_* = (\hat{l}_0(1) - \sum_{n=1}^{N-1} |l_n|) + (\hat{l}_0(1) - r_*) > 0,$$

which implies $H(1) > 0$. Thus $H(r) = 0$ has a root in the interval $(0, 1)$. The sharpness follows for the function l_0 as

$$l_0(r^m_b) + \sum_{n=N}^{\infty} l_n r_n^m = r_* = d(0, \partial \Omega)$$

when $r_b = r_0$ and $l_n > 0$. \hfill \square

Remark 2.7. Let $\psi(z) = (1 + z)/(1 - z)$, then Theorem 2.12 reduces to [12, Theorem 6].

The following result is explicitly for the class $C(\psi)$.

Corollary 2.13. Let r_* be the Koebe-radius for the class $C(\psi)$, $l_0(z)$ be given by the equation (2.12). Assume $l_0(z) = z + \sum_{n=2}^{\infty} c_n z^n$ and $\hat{l}_0(r) = r + \sum_{n=2}^{\infty} |l_n| r^n$. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in C(\psi)$. Then

$$|f(z^m)| + \sum_{n=N}^{\infty} |a_n||z|^n \leq d(0, \partial \Omega)$$ \hfill (2.19)

holds for $|z| = r_b \leq \min\{\frac{1}{3}, r_0\}$, where $m, N \in \mathbb{N}$, $\Omega = f(D)$ and r_0 is the unique positive root of the equation:

$$\hat{l}_0(r^m) + \hat{l}_0(r) - p_{l_0}(r) = r_*,$$

where p_{l_0} is as defined in Theorem 2.12. The radius is sharp for the function l_0 when $r_b = r_0$ and $l_n > 0$.

BOHR-ROGOSINSKI PHENOMENON FOR $S^*(\psi)$ AND $C(\psi)$
Remark 2.8. The special case of taking $m \to \infty$ and $N = 1$ in Theorem 2.13 and Corollary 2.13 establish the Bohr phenomenon for the classes $S_f(\psi)$ and $C(\psi)$, respectively.

After some little computations when $\psi(z) = (1 + z)/(1 - z)$, the Corollary 2.13 yields:

Corollary 2.14. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in C$. Then the inequality (2.19) holds for $|z| = r \leq r_0$, where $m, N \in \mathbb{N}$, $\Omega = f(\mathbb{D})$ and r_0 is the unique positive root of the equations:

$$3r^m - 1 + 2r^N \left(\frac{1 - r^m}{1 - r} \right) = 0.$$

The radius r_0 is sharp.

Corollary 2.15. Let $\psi(z) = 1 + ze^z$ and $m = 1$. If $g \in S_f(\psi)$. Then the inequality (2.13) holds for $|z| = r \leq r_N$, where $N \in \mathbb{N}$ and $r_N(< 1/3)$ is the unique positive root of the equation:

$$2r(1 + re^r) \exp(e^r - 1) - (1 - e^{-1})e^{e^{-1}-1} = 0,$$

where

$$H(r) = \begin{cases}
0, & N = 1; \\
N = 2; \\
\sum_{n=0}^{N-1} \frac{(n+1)B_n}{n!} r^{n+1}, & N \geq 3.
\end{cases}$$

and B_n are the bell numbers such that $B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$. Moreover, if $f \in C(\psi)$. Then the inequality (2.19) also holds for $r \leq r_N$. The radius r_N is sharp.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] L. Aizenberg, Remarks on the Bohr and Rogosinski phenomena for power series, Anal. Math. Phys. 2 (2012), no. 1, 69–78.

[2] R. M. Ali, R. W. Barnard and A. Yu. Solynin, A note on Bohr’s phenomenon for power series, J. Math. Anal. Appl. 449 (2017), no. 1, 154–167.

[3] R. M. Ali, N. K. Jain and V. Ravichandran, Bohr radius for classes of analytic functions, Results Math. 74 (2019), no. 4, Paper No. 179, 13 pp.

[4] S. A. Alkhaleefah, I. R. Kayumov and S. Ponnusamy, Bohr-Rogosinski inequalities for bounded analytic functions, Lobachevskii J. Math. 41 (2020), no. 11, 2110–2119.

[5] M. K. Aouf, On a class of p-valent starlike functions of order α, Internat. J. Math. Math. Sci. 10 (1987), no. 4, 733–744.

[6] B. Bhowmik and N. Das, Bohr phenomenon for subordinating families of certain univalent functions, J. Math. Anal. Appl. 462 (2018), no. 2, 1087–1098.

[7] H. P. Boas and D. Khavinson, Bohr’s power series theorem in several variables, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2975–2979.
BOHR-ROGOSINSKI PHENOMENON FOR $S^*(\psi)$ AND $C(\psi)$

[8] H. Bohr, A Theorem Concerning Power Series, Proc. London Math. Soc. (2) 13 (1914), 1–5.

[9] N. E. Cho, V. Kumar, S.S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (2019), no. 1, 213–232.

[10] K. Gangania and S. S. Kumar, On Certain Generalizations of $S^*(\psi)$, Comput. Methods Funct. Theory (2021), https://doi.org/10.1007/s40315-021-00386-5.

[11] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23 (1970/71), 159–177.

[12] I. R. Kayumov, D. M. Khammatova and S. Ponnusamy, Bohr-Rogosinski phenomenon for analytic functions and Cesàro operators, J. Math. Anal. Appl. 496 (2021), no. 2, 124824, 17 pp.

[13] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2016), no. 2, 199–212.

[14] S. S. Kumar and G. Kamaljeet, A cardioid domain and starlike functions, Anal. Math. Phys. 11 (2021), no. 2, 54.

[15] S. S. Kumar and G. Kamaljeet, On Geometrical Properties of Certain Analytic functions, Iran. J. Sci. Technol. Trans. A Sci. (2020), https://doi.org/10.1007/s40995-021-01116-1

[16] S. S. Kumar and G. Kamaljeet, On Certain Generalizations of $S^*(\psi)$, (2020), arXiv:2007.06069v1

[17] S. S. Kumar and G. Kamaljeet, $S^*(\psi)$ and $C(\psi)$-radii for some special functions, (2020), arXiv:2008.13499v1

[18] E. Landau and D. Gaier, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, third edition, Springer-Verlag, Berlin, 1986.

[19] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.

[20] S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.

[21] Y. A. Muhanna, Bohr’s phenomenon in subordination and bounded harmonic classes, Complex Var. Elliptic Equ. 55 (2010), no. 11, 1071–1078.

[22] Y. Abu Muhanna and R. M. Ali, Bohr’s phenomenon for analytic functions into the exterior of a compact convex body, J. Math. Anal. Appl. 379 (2011), no. 2, 512–517.

[23] Y. Abu Muhanna, R. M. Ali, Z. C. Ng and S. F. M. Hasni, Bohr radius for subordinating families of analytic functions and bounded harmonic mappings, J. Math. Anal. Appl. 420 (2014), no. 1, 124–136.

[24] Y. Abu Muhanna, R. M. Ali and S. K. Lee, The Bohr operator on analytic functions and sections, J. Math. Anal. Appl. 496 (2021), no. 2, 124837, 11 pp.

[25] V.I. Paulsen, D. Singh, A simple proof of Bohr’s inequality, https://www.math.uh.edu/~vern/bohrconf.pdf.

[26] W. Rogosinski, Über Bildschranken bei Potenzreihen und ihren Abschnitten, Math. Z. 17 (1923), no. 1, 260–276.
[27] I. Schur, G. Szegö, Über die Abschnitte einer im Einheitskreise beschränkten Potenzreihe, Sitz.ber. Preuss. Akad. Wiss. Berl. Phys.-Math. Kl. (1925) 545–560.

[28] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (2016), no. 5-6, 923–939.

DEPARTMENT OF APPLIED MATHEMATICS, DELHI TECHNOLOGICAL UNIVERSITY, DELHI–110042, INDIA

Email address: gangania.m1991@gmail.com

DEPARTMENT OF APPLIED MATHEMATICS, DELHI TECHNOLOGICAL UNIVERSITY, DELHI–110042, INDIA

Email address: spkumar@dce.ac.in