Multiple-gate SOI MOSFETs with gate length equal to 25 nm are compared using device Monte Carlo simulation. In such architectures, the short channel effects may be controlled with much less stringent body and oxide thickness requirements than in single-gate MOSFET. Our results highlight that planar double-gate MOSFET is a good candidate to obtain both high current drive per unit-width and weak subthreshold leakage with large integration density and aggressive delay time, compared to non planar devices such as triple-gate or quadruple-gate structures.

Introduction

Multiple-gate structures on undoped SOI (Silicon On Insulator) are promising architectures likely to overcome short channel effects (SCE) in nanometer-scaled MOSFET [1]. Contrary to bulk MOSFETs, Double- (DG) [2], Triple- (TG) [3] and Quadruple-gate (QG) MOS transistors do not need drastic doping channel engineering. Moreover, they allow relaxing the oxide thickness T_{ox} and the body thickness T_{Si} requirements, which are severe in fully depleted Single Gate MOSFETs (SG) on SOI [4].

In this article, different intrinsic SOI MOSFET architectures, SG, DG, TG and QG, have been examined, in particular in terms of on-state I_{on} and off-state I_{off} currents. Considering nanometer scale devices where quasi ballistic transport is of great importance [5], simulations have been made using particle Monte Carlo method. SG and DG (resp. TG and QG) are simulated using a 2D (resp. 3D) Poisson solver. Details about the device Monte Carlo simulator may be found in Ref. [6]. Quantization effects are not taken into account. Scattering mechanisms with impurities, phonons and rough interfaces are considered in the algorithm.

1. Studied devices

Unless otherwise stated, the scaling of the considered structures obeys ITRS 2002 requirements corresponding to the high performance 65 nm-node [7]. The gate length L_G (along x-axis) is 25 nm. The SiO$_2$ gate oxide T_{ox} thickness is equal to the upper limit, 1.2 nm. The work function of the metallic gate material is 4.46 eV to achieve a threshold voltage V_{T} of 0.2 V. The power supply voltage V_{DD} is 0.7 V. The doping density is $N_D = 5 \times 10^{19}$ cm$^{-3}$ in N^+ source-drain regions and $N_A = 2 \times 10^{15}$ cm$^{-3}$ in the body (P type). Moreover, the N^+/P junctions are assumed to be abrupt. In SG and TG, the buried oxide (BOX) thickness T_{box} is 25 nm and the bulk doping (P type) is 2×10^{17} cm$^{-3}$. The bulk is ground biased. The channel of TG and QG has a square cross section: the channel width W (along z-axis) between the side gates is equal to the body thickness T_{Si}. In the planar DG, the thickness T_{Si} of the body (from $y = 0$ to $y = T_{Si}$) separates the top gate from the bottom gate.

In order to facilitate the comparison, the drain current I_D per unit-width (A/m) is first calculated in all cases by dividing the drain current (A) resulting from Monte Carlo simulation by W. However different approaches may be used in current normalization [1], considering in particular the multi-fingered architecture of non planar devices (see Ref. [3] for TG). The intrinsic gate delay $C_G V_{DD}/I_{on}$, where C_G is the gate capacitance at $V_{GS} = V_{DD}$ and low V_{DS}, may provide an unambiguous figure of merit to compare multiple-gate architectures.

In this work, ITRS 2002 recommendations will be used to provide acceptable performances but not strict specifications. We first consider reference devices in which T_{Si} is 10 nm and the channel length L_{ch} is 15 nm (the gate overlap on source-drain junctions is 5 nm and the length L_{SD} of N^+ source-drain regions is 25 nm). Such low form factor L_{ch}/T_{Si} and relatively high T_{ox} are not favorable to control SCE in the SG device. Other paragraphs will analyze the influence of T_{Si} and L_{ch}. At last, a discussion will summarize the main issues of multiple-gate scaling in terms of $C_G V_{DD}/I_{on}(I_{off})$ comparison.

2. Results

2.1 On-state characteristics

We first examine the electron transport in the simulated devices in the on-state ($V_{GS} = V_{DS} = V_{DD}$). As illustrated in Figure 1 that represents the percentage of electrons which have crossed the channel from source-end to drain-end as a function of the number of experienced scattering events N_{int} (see Ref. [5]), the transport is strongly ballistic for these 15 nm long channels: the fraction of ballistic electrons is about 50%. It is important to note that increasing the number of rough SiO$_2$/Si interfaces does not strongly impact the
electron transport in the channel. Besides, similar curves are obtained for the thinner devices ($T_{Si} = 5$ nm) studied. However, the impact of the increase of rough interfaces is then more visible in the thinner QG as shown in Figure 1.

![Figure 1: Fraction of electrons flowing through the channel from source-end to drain-end versus the number of scattering events undergone in the on-state. Reference devices and thin QG ($T_{Si} = 5$ nm).](image1)

The $I_D(V_{DS})$ curves at $V_{GS} = V_{DD}$ and $I_D(V_{GS})$ curves at $V_{DS} = V_{DD}$ are plotted in solid lines for reference devices in Figure 2 and Figure 3, respectively. The on-state current I_{on} in the SG (1625 A/m) is much higher than 2002 ITRS recommendations (900 A/m). However, other transistor characteristics are deplorable, for instance the drain conductance g_D in the on-state is unacceptably high: 880 S/m. The current I_{on}, the transconductance g_m at $V_{DS} = 0.7$ V and g_D are improved as the number of gates increases: 2140 A/m, 4170 S/m and 540 S/m respectively for the DG, 2420 A/m, 5700 S/m and 480 S/m for the TG and 2815 A/m, 7070 S/m and 370 S/m for the QG.

![Figure 2: I_D versus V_{DS} at $V_{GS} = 0.7$ V in reference devices. In dashed lines, I_D divided by the gate number: by 2 for DG, by 3 for TG and by 4 for QG.](image2)

In reference devices, variations of drain current I_D as a function of gate voltage V_{GS} obtained at low drain voltage V_{DS} (not shown) indicates that V_T-values are close: 0.18 V for SG, 0.2 V for DG, and 0.23 V for TG and QG. Then as shown in dashed lines in Figure 2, the current I_{on} of reference DG, TG and QG are less than 2, 3 and 4 times, respectively, higher than that of the reference SG in which I_{on} is significantly enhanced by strong SCE. So, multiple-gates seem to be less effective in the on-state than a SG of equivalent geometry. It is more problematic to note the following point: the pitch P between two active 3D devices in the multi-fingered architecture has to be small enough to challenge planar devices in a given design area.

2.2 Subthreshold characteristics

As represented in Figure 3, in the reference SG the off-state current I_{off} at $V_{GS} = 0$ V and $V_{DS} = V_{DD}$ is unacceptably high: 200 A/m. Such poor characteristics are related to a high leakage current at the body/BOX interface (not shown). The subthreshold characteristics of DG are clearly better than that of the SG but remain far from ITRS recommendations, despite the fact that L_{ch} is equal to $3T_{Si}/2$ [3]. For example, the subthreshold slope S is 110 mV/dec at $V_{DS} = 0.7$ V while it should not be higher than 80 mV/dec. The conduction band evolution along the DG in the centre of the body ($y = T_{Si}/2$) is plotted in Figure 4 for different bias voltages. This illustrates clearly the drain induced barrier lowering (DIBL). The insert of Figure 4 showing the evolution of the conduction band injection barrier as a function of the bias voltage, highlights that the DIBL is not a linear function of the drain voltage V_{DS}. Besides, estimating the evolution of the barrier for V_{DS} varying between 0.05 V and 0.7 V, appears to be sufficient. So, for $V_{GS} = 0$ V and V_{DS} varying between 0.05 V and 0.7 V, the DIBL is 73 mV i.e. a relative variation of 35%. Just underneath the top gate, the DIBL is weaker: 46 mV (16%). So, the form factor L_{ch}/T_{Si} is in fact too weak to prevent from significant SCE in the centre of the body that is the region furthest from the gates. It also explains the high values of V_T roll-off: $\Delta V_T = -135$ mV for V_{DS} varying between 0.05 V and 0.7 V.

![Figure 3: $I_D(V_{GS})$ at $V_{GS} = 0.7$ V in reference devices.](image3)
In the reference TG and QG, the gate control is improved. For comparison, the electron density \(n \) is plotted in Figure 5 and Figure 6 in the reference DG and QG, and SG and TG, respectively, as a function of the distance \(y \) between the top and bottom gates, at \(x = L_{ch}/2, z = W/2 \), low \(V_{DS} \) and different \(V_{GS} \) values. For \(V_{GS} \) varying between 0 V and 0.3 V, \(n \) is quite homogenous all along the TG and QG thickness \(T_{Si} \), contrary to the cases of the SG and DG where the density near the buried oxide and in the body centre \((n_c) \) respectively are much greater than that at \(\text{SiO}_2/\text{Si} \) interface \((n_i) \). So a significant leakage current takes place near the buried oxide for SG and in the centre of the body for DG which are deficiently controlled by the gates. For higher \(V_{GS} \) values, \(n_i \) is greater than \(n_c \) in both cases but the difference is higher in QG than in DG: \(n_i/n_c \) is equal to about 11 in QG and 19 in DG at \(V_{GS} = 0.7 \) V.

As a consequence, \(S \) and \(\Delta V_T \) are reduced in reference TG (resp. 96 mV/dec and 100 mV) and QG (resp. 83 mV/dec and 44 mV). Those values remain however a bit too high for practical applications, despite the fact that \(L_{ch} \) is greater than \(T_{Si} = W \) [3]. At \(V_{GS} = 0 \) V and in the region furthest away from the gates, the DIBL is equal to 76 mV (23%) in TG and 35 mV (12%) in QG.

Expecting improved device performance by reducing the channel thickness, we have simulated devices with \(T_{Si} = W = 5 \) nm. The curves \(I_D(V_{DS}) \) at \(V_{GS} = 0.7 \) V and \(I_D(V_{GS}) \) at \(V_{DS} = 0.7 \) V are drawn in solid lines in Figure 7 and Figure 8 for the thinner SG, DG and QG. Because of the greater \(L_{ch}/T_{Si} \) form factor (equal to 3), the electrical characteristics of SG become more acceptable. But they are far to satisfy the ITRS recommendations in the subthreshold regime: \(S = 127 \) mV/dec, \(\Delta V_T = -200 \) mV. To really control short channel effects in SG, \(T_{Si} \) has to be less than \(L_{ch}/3 \) or \(T_{ox} \) must be much thinner.

With thinner Si body, device performances increase once again with the number of the gate: \(S \) is for example equal to 80 mV/dec in DG, 69 mV/dec in TG and 64 mV/dec in QG. However, all the performances of the thin DG are satisfactory regarding CMOS application: \(I_{on} = 1280 \) A/m, \(\Delta V_T = -24 \) mV, \(g_D = 150 \) S/m and \(g_m = 3350 \) S/m. Moreover, as illustrated in Figure 8 on a logarithmic scale, the DG subthreshold behavior is much closer to that of the TG and QG than in the case of reference devices. Indeed, the gate control on electron density in this device is as good as, or even better than, that in the reference QG. It should be mentioned that, as in reference devices, \(I_{on} \) is not proportional to the gate number as shown by comparison between dashed lines and SG characteristic in Figure 7.

The conduction band evolution along the thin DG shows however a significant ohmic drop in the highly doped source region. It corresponds to a source resistance \(R_S \) equal to 110 \(\mu \Omega \).m while no contribution of contact resistance has been taken into account. ITRS recommends values less than 140 \(\mu \Omega \).m. Hence, series source/drain resistances \(R_{SD} \) become a serious difficulty in such ultrathin devices.

Figure 4: Conduction band in the reference DG along the x-axis at \(y = T_{Si}/2 \) and \(V_{GS} = 0 \) V. Insert: DIBL as a function of the drain voltage \(V_{DS} \).

Figure 5: Electron density versus \(y \) in the reference DG and QG at \(x = L_{ch}/2, z = W/2 \), and low \(V_{DS} \).

Figure 6: Electron density versus \(y \) in the reference SG and TG at \(x = L_{ch}/2, z = W/2 \) and low \(V_{DS} \).

Figure 7: Characteristics: \(I_D(V_{DS}) \) at \(V_{GS} = 0.7 \) V for the thinner DG, TG, and QG.

Figure 8: Characteristics: \(I_D(V_{GS}) \) at \(V_{DS} = 0.7 \) V for the thinner DG, TG, and QG.
2.5 Delay time analysis and discussion

Despite a thick gate oxide, the multiple-gate devices TG and QG have a very remarkable off-state behavior. However, the study of $C_G V_{DD}/I_{on}$ delay, plotted in Figure 10 as a function of I_{off} for all studied devices, moderates those conclusions. The intrinsic MOS capacitance C_G is calculated from Monte Carlo results, as described in [6]. $C_G V_{DD}/I_{on}$ investigations show an obvious advantage to SG devices which present, in parallel, catastrophic subthreshold behavior. Indeed, the increase of the gate number induces, of course, an off-state improvement but also a strong rise of C_G. A properly designed DG appears to be the better compromise at given I_{off}, as also shown by the evolution of I_{on}/I_{off} as a function of the gate number in the insert of Figure 9.

3. Conclusion

We have investigated in detail the electrical characteristics of quasi ballistic multiple-gate MOSFETs. Their efficiency in subthreshold regime compared with SG architectures is obvious. Besides, even if better I_{on}/I_{off} ratios are obtained in TG and QG than in DG, a properly designed planar DG may be a good compromise. The use of thinner body will improve performances if the series resistances increase is controlled.

This work is supported by the French RMNT under project CMOS-D-ALI and by the European Community under Integrated Project NANOCMOS and Network of Excellence SINANO. We also thank M. Vinet and S. Deleoniibus for helpful discussions, and E. Grémion for his contribution.

References
[1] Colinge J-P. Solid-State Electron 2004; 48:897.
[2] Harrison S et al. IEDM 2003.
[3] Chau R et al. Physica E 2003; 19:1.
[4] Fenouillet-Beranger C et al. Solid State Electron 2004, 48:961.
[5] Saint Martin J et al. IEEE Trans Electron Dev 2004; 51:1148.
[6] Dollfus P. J Appl Phys 1997; 82:3911.
[7] International Technology Roadmap for Semiconductors, http://public.itrs.net/.