An Empirical Exploration in Quality Filtering of Text Data

Leo Gao
EleutherAI
lg@eleuther.ai

Abstract

While conventional wisdom suggests that more aggressively filtering data from low-quality sources like Common Crawl always monotonically improves the quality of training data, we find that aggressive filtering can in fact lead to a decrease in model quality on a wide array of downstream tasks for a GPT-like language model. We speculate that this is because optimizing sufficiently strongly for a proxy metric harms performance on the true objective, suggesting a need for more robust filtering objectives when attempting to filter more aggressively. We hope this work leads to detailed analysis of the effects of dataset filtering design choices on downstream model performance in future work.

1 Introduction

As language models increase in size, the need for large, high-quality text datasets has increased as well. Recent work in dataset construction for large language models has centered largely on taking large internet corpora like Common Crawl and employing some method of filtering using some proxy for quality to extract a smaller, high quality training set (Wenzek et al., 2019; Brown et al., 2020; Raffel et al., 2020; Yang et al., 2020). In particular, we focus on shallow classifier-based quality filtering as in Brown et al. (2020) because it provides a simple, continuous, and quantifiable way to adjust the aggressiveness of filtering, and because this reflects the type of classifier used in prior work.

While intuitively it may seem like the more data is discarded the higher quality the remaining data will be, we find that this is not always the case with shallow classifier-based filtering. Instead, we find that filtering improves downstream task performance up to a point, but then decreases performance again as the filtering becomes too aggressive.

We speculate that this decrease in performance is due to Goodhart’s law (Goodhart, 1984), and specifically regressive Goodharting (Manheim and Garrabrant, 2019):

Goodhart’s Law. Any observed statistical regularity will tend to collapse once pressure is placed upon it for control purposes. (Goodhart, 1984)

In other words, optimizing a metric that is a proxy for a desired outcome tends to invalidate the proxy. By optimizing too strongly for the classifier’s score by discarding too many low-scoring documents, the documents that are kept are consistently biased towards the ones with features superficially resembling the high quality data in a way that satisfies the classifier, rather than truly high quality data.

The average is taken across all task accuracies, with each task weighted equally. The error bars in this plot represent standard error and are computed by $se_{\text{mean}} = \frac{1}{n} \sqrt{\sum se_i^2}$, where se_i represents the standard error for each individual task.
2 Related work

The recent proliferation of ever larger language models has led to increasing demands on training data (Radford et al., 2018, 2019; Gokaslan and Cohen, 2019; Rosset, 2019; Shoeybi et al., 2019; Devlin et al., 2019; Liu et al., 2019; Raffel et al., 2020; Brown et al., 2020; Zeng et al., 2021). This data is increasingly derived from internet corpora like Common Crawl (Radford et al., 2019; Ortiz Suárez et al., 2019; Wenzek et al., 2020; Conneau et al., 2020; Brown et al., 2020; Gao et al., 2020; Raffel et al., 2020).

However, the quality of raw Common Crawl data is often insufficient to be directly used. To combat this, many existing works use some kind of proxy for quality, like a classifier between known high quality data and low quality data (Brown et al., 2020; Gao et al., 2020; Zeng et al., 2021), hand-crafted heuristics (Yang et al., 2020; Raffel et al., 2020), or keeping only documents with perplexity scores that fall in some middle quantile of an existing language model (Wenzek et al., 2020). Brown et al. (2020) in particular filter extremely aggressively using their classifier, discarding about 98.7% of their data.

Previous work has shown that models trained on heuristic-filtered datasets perform better on downstream tasks (Raffel et al., 2020). However, Gao et al. (2020) show that a perplexity-filtered CC-derived dataset actually performs worse than unfiltered CC on certain tasks. Brown et al. (2020) do not provide any detailed analysis, but claim better quality for filtered data as evaluated through loss on held out sets of “generative text samples.”

3 Downstream Evaluation Experiment

To evaluate the effect of different degrees of filtering, we create a series of training sets with a controlled filtering methodology but with different hyperparameter settings to result in varied filtering ratios. We filter using the same method used in Brown et al. (2020), with a Pareto-distribution thresholded filtering method and a shallow CommonCrawl-WebText classifier. In this method, rather than using a hard threshold, the threshold $\tau \sim \text{Pareto}(\alpha)$ is sampled from a Pareto distribution, such that each document is kept if $\tau > 1 - \text{score}$, where α is a hyperparameter that controls the permissivity of the filter (see Table 1).

α	Fraction Discarded
1	0.4107
2	0.6351
3	0.7610
4	0.8329
5	0.8761
6	0.9026
7	0.9198
8	0.9315

Table 1: Percentage of discarded documents of various settings using our classifier.

In effect, this relaxes the filter when compared to a hard threshold and allows some low-scoring data to be kept.

As none of the data or models used in Brown et al. (2020) has been made public, we instead use the same type of fasttext (Joulin et al., 2017) classifier between unfiltered Common Crawl and OpenWebText2 as used in Gao et al. (2020).

We use GPT-Neo (Black et al., 2021) to train a series of models on each training set and evaluate on downstream tasks using the EleutherAI LM evaluation harness (Gao et al., 2021). Each model is 1.3 billion parameters, has a GPT-2 architecture (Radford et al., 2019) with the same model hyperparameters as the GPT-3-XL setting in Brown et al. (2020), and is trained for 25k iterations with a batch size of 256.

To ensure that the effect is not confined to any specific task, we evaluate on a series of many downstream tasks. We use zero-shot prompting with no task-specific fine tuning and with prompting inspired by Brown et al. (2020) for many tasks. In total, we evaluate on ANLI Round 3 (Nie et al., 2020), BoolQ (Clark et al., 2019), CommitmentBank (de Marneffe et al., 2019), COPA (Gordon et al., 2012), Hellaswag (Zellers et al., 2019), LAMBADA (Paperno et al., 2016), MathQA (Amini et al., 2019), MultiRC (Khashabi et al., 2018), OpenbookQA (Mihaylov et al., 2018), PiQA (Bisk et al., 2019), PubmedQA (Jin et al., 2019), SciQ (Welbl et al., 2017), and Winograd (Sakaguchi et al., 2019). Error bars in all evaluation task plots indicate standard error with respect to instances of the evaluation task.

For the training data, we create 40 GB filtered
Figure 2: Plots of results for all downstream tasks explored in this paper. Higher is better on all metrics except LAMBADA perplexity (first plot in the third row), where lower is better.
chunks of the Common Crawl data for each value of \(\alpha \in \{1, 2, 3, 4, 5, 8\} \); in other words, different amounts of raw Common Crawl data are consumed for different \(\alpha \) to produce the same fixed 40GB size result. For reference, Brown et al. (2020) filter even more aggressively than we do, discarding about 98.7% of their data. The 40GB size is chosen because it is approximately the size of OpenWebText, which is representative of the amount of data usually used to train models of this size.

3.1 Results

Of the tasks evaluated, several tasks remained near chance or had very high variance, resulting in no clear trend. Of the remainder, an absolute majority exhibited an initial increase in performance and then a decrease in performance after the amount of documents discarded surpassed a threshold that varied by task. Additionally, for almost all tasks the most filtered model was not the best performing. Some tasks like BoolQ exhibit little clear trend. Not all tasks have the same optimal \(\alpha \)—compare PiQA and LAMBADA—and some tasks like PubmedQA show a much more sudden decrease in accuracy. For results on all tasks, see Figure 2.

3.2 Analysis

We hypothesize that this decline in performance is because of misalignment between the classifier objective, intended to be a proxy for quality, and actual document quality. For instance, a classifier to distinguish WebText2 from Common Crawl, as in GPT-3, would also exclude domains of text data not found as often in WebText2.

We also hypothesize that the difference in optimal \(\alpha \) between different tasks is because the characteristics of the different types of data that help the most with each task are over/underdiscarded to a different extent due to spurious correlations with the quality metric. As such, we do not expect the exact thresholds to transfer to other tasks, classifiers, or datasets. This is an expected consequence of Goodharting, because the degree to which different types of text data correlate with the features learned by the classifier is mostly spurious.

4 Domain Misalignment Experiment

To test the hypothesis that the misalignment of the objective leads to the exclusion of non-OpenWebText2-like data, we train a fasttext classifier to classify between BookCorpus2 (Gao et al., 2020) and OpenWebText (Gokaslan and Cohen, 2019), and compute the mean BookCorpus2-probability of each training set. If the classification model is favoring OpenWebText-like data over generally high-quality data, then as filtering increases in intensity, the proportion of BookCorpus2-like data should decrease as the data consists increasingly of OpenWebText-like text. Conversely, if the classification model is robustly favoring high quality text, then as filtering increases in intensity, the proportion of BookCorpus2-like data should increase, as low-quality text looks nothing like BookCorpus2. We also repeat this experiment for Pubmed Abstracts.

We chose BookCorpus2 and Pubmed Abstracts because of their similarity in distribution to LAMBADA and PubmedQA respectively, in the hopes of observing a similarity between the task evaluation curves and the data domain curves.

4.1 Results

As seen in Figure 3, the fraction of BookCorpus2-like data remains mostly constant until around 0.6, after which it declines sharply. A similar pattern is observed with Pubmed Abstracts, albeit with an earlier drop (Figure 4).

The BookCorpus2-like data curve’s drop precedes the LAMBADA performance drop by about 0.2. Similarly, the Pubmed Abstracts drop also precedes the PubmedQA’s main drop slightly.

4.2 Analysis

The decrease in Pubmed Abstracts and BookCorpus2 like data as filtering increases in aggressiveness supports the hypothesis that part of the problem is that text domains not similar to OpenWebText2 are being discarded.

Our main hypothesis for why the domain data content starts decreasing before the evaluation metric performance does is that these tasks are sufficiently different in distribution to the respective datasets.

5 Limitations

This work is intended to show that the common assumption that more aggressive data filtering is better is not always true, and thus focuses on one particular classifier used in the real world as an illustrative example. Depending on the type of
classifier, the training data used for the classifier, and the downstream task, this effect may not be relevant in certain settings. We leave an exhaustive exploration of the contribution of these various factors to future work.

6 Conclusion

In this paper, we explored the effect of filtering the training data using a shallow model trained on a proxy for quality on downstream language model performance. We showed that increasing the aggressiveness of filtering against this signal actually decreases model performance past a certain point, and speculate that this is due to Goodhart’s law, as the misalignment between proxy and true objective becomes more significant with increased optimization pressure. We hope that this work leads to more careful analysis of the effects of filtering in future language modeling work.

Acknowledgements

The author would like to thank TPU Research Cloud for providing the computational resources for the training, and CoreWeave for providing the computational resources for data processing and evaluation.

The author would also like to thank Stella Biderman, Sid Black, Charles Foster, Eric Hallahan, Kyle McDonell, Jason Phang, and Laria Reynolds for providing feedback on the manuscript.

References

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi. 2019. MathQA: Towards interpretable math word problem solving with operation-based formalisms. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2357–2367, Minneapolis, Minnesota. Association for Computational Linguistics.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. 2019. Piqa: Reasoning about physical commonsense in natural language. arXiv preprint arXiv:1911.11641.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. 2019. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8440–8451, Online. Association for Computational Linguistics.

Marie-Catherine de Marneffe, Mandy Simons, and Judith Tonhauser. 2019. The commitmentbank: Investigating projection in naturally occurring discourse. Proceedings of Sinn und Bedeutung, 23(2):107–124.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Goldberg, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. 2020. The pile: An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Goldberg, Jeffrey Hsu, Kyle McDonell, Niklas Muenninghoff, Jason Phang, Laria Reynolds, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. 2021. A framework for few-shot language model evaluation.

Aaron Gokaslan and Vanya Cohen. 2019. Openwebtext corpus. http://Skylion007.github.io/OpenWebTextCorpus.

C. A. E. Goodhart. 1984. Problems of Monetary Management: The UK Experience, pages 91–121. Macmillan Education UK, London.

Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. 2012. SemEval-2012 task 7: Choice of plausible alternatives: An evaluation of commonsense causal reasoning. In *SEM 2012: The First Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pages 394–398, Montréal, Canada. Association for Computational Linguistics.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. 2019. Pubmedqa: A dataset for biomedical research question answering. arXiv preprint arXiv:1909.06146.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2017. Bag of tricks for efficient text classification. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 427–431. Association for Computational Linguistics.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. 2018. Looking beyond the surface: A challenge set for reading comprehension over multiple sentences. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 252–262, New Orleans, Louisiana. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.

David Manheim and Scott Garrabrant. 2019. Categorizing variants of goodhart’s law. arXiv preprint arXiv:1803.04585.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can a suit of armor conduct electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2381–2391, Brussels, Belgium. Association for Computational Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. 2020. Adversarial nli: A new benchmark for natural language understanding. arXiv preprint arXiv:1910.14599.

Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent Romary. 2019. Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures. Proceedings of the Workshop on Challenges in the Management of Large Corpora (CMLC-7) 2019, Cardiff, 22nd July 2019, pages 9 – 16, Mannheim. Leibniz-Institut für Deutsche Sprache.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaela Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. 2016. The LAMBADA dataset: Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1525–1534, Berlin, Germany. Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding with unsupervised learning. Technical report, OpenAI.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. *arXiv preprint arXiv:1910.10683*.

C Rosset. 2019. Turing-NLG: A 17-billion-parameter language model by Microsoft. *Microsoft Blog*.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2019. Winogrande: An adversarial winograd schema challenge at scale. *arXiv preprint arXiv:1907.10641*.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. 2019. Megatron-LM: Training multi-billion parameter language models using gpu model parallelism. *arXiv preprint arXiv:1909.08053*.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017. Crowdsourcing multiple choice science questions. In *Proceedings of the 3rd Workshop on Noisy User-generated Text*, pages 94–106, Copenhagen, Denmark. Association for Computational Linguistics.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán, Armand Joulin, and Edouard Grave. 2020. CCNet: Extracting high quality monolingual datasets from web crawl data. In *Proceedings of the 12th Language Resources and Evaluation Conference*, pages 4003–4012, Marseille, France. European Language Resources Association.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán, Armand Joulin, and Edouard Grave. 2019. Ccnet: Extracting high quality monolingual datasets from web crawl data. *arXiv preprint arXiv:1911.00359*.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. 2020. Xlnet: Generalized autoregressive pretraining for language understanding. *arXiv preprint arXiv:1906.08237*.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. HellaSwag: Can a machine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 4791–4800, Florence, Italy. Association for Computational Linguistics.

Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao, Zhiwei Wang, Xin Jiang, ZhenZhang Yang, Kaisheng Wang, Xiaoda Zhang, Chen Li, Ziyan Gong, Yifan Yao, Xinjing Huang, Jun Wang, Jianfeng Yu, Qi Guo, Yue Yu, Yan Zhang, Jin Wang, Hengtao Tao, Dasen Yan, Zexuan Yi, Fang Peng, Fangqing Jiang, Han Zhang, Lingfeng Deng, Yehong Zhang, Zhe Lin, Chao Zhang, Shaojie Zhang, Mingyue Guo, ShanZhi Gu, Gaojun Fan, Yaowei Wang, Xuefeng Jin, Qun Liu, and Yonghong Tian. 2021. Pangu-α: Large-scale autoregressive pretrained chinese language models with auto-parallel computation. *arXiv preprint arXiv:2104.12369*.