Cantor-solus and Cantor-multus Distributions

STEVEN FINCH

March 20, 2020

ABSTRACT. The Cantor distribution is obtained from bitstrings; the Cantor-solus distribution (a new name) admits only strings without adjacent 1 bits. We review moments and order statistics associated with these. The Cantor-multus distribution is introduced – which instead admits only strings without isolated 1 bits – and more complicated formulas emerge.

A bitstring is solus if all of its 1s are isolated. Such strings were called Fibonacci words (more fully, words obeying the Fibonacci restriction) in [1]. We shall reserve the name Fibonacci for a different purpose, as in [2, 3].

A bitstring is multus if each of its 1s possess at least one neighboring 1. Such strings were called good sequences in [4]. Counts of solus \(n \)-bitstrings have a quadratic character, whereas counts of multus \(n \)-bitstrings have a cubic character. More on the meaning of this and on other related combinatorics will appear later.

1. Cantor Distribution

Let \(0 < \vartheta \leq 1/2 \); for instance, we could take \(\vartheta = 1/3 \) as in the classical case. Let \(\vartheta = 1 - \vartheta \). Consider a mapping [5]

\[
F(\omega_1\omega_2\omega_3\cdots\omega_m) = \frac{\vartheta}{\vartheta} \sum_{i=1}^{m} \omega_i \vartheta^i
\]

from the set \(\Omega \) of finite bitstrings \((m < \infty) \) to the nonnegative reals. The \(2^m \) bitstrings in \(\Omega \) of length \(m \) are assumed to be equiprobable. Consider the generating function [1]

\[
G_n(z) = \sum_{\omega \in \Omega} F(\omega)^n z^{\mid\omega\mid}
\]

where \(\mid \omega \mid \) denotes the length of the bitstring. Clearly

\[
G_0(z) = \sum_{\omega \in \Omega} z^{\mid\omega\mid} = \sum_{m=0}^{\infty} 2^m z^m = \frac{1}{1 - 2z}.
\]
The quantity
\[
\frac{[z^m]G_n(z)}{[z^m]G_0(z)} = \frac{1}{2^m} \frac{[z^m]G_n(z)}{[z^m]G_0(z)}
\]
is the \(n\)th Cantor moment for strings of length \(m\); let \(\mu_n\) denote the limit of this as \(m \to \infty\). Denote the empty string by \(\epsilon\). From values
\[
F(\varepsilon) = 0, \quad F(0\omega) = \vartheta F(\omega), \quad F(1\omega) = \bar{\vartheta} + \vartheta F(\omega)
\]
and employing the recurrence \([6]\)
\[
\Omega = \varepsilon + \{0, 1\} \times \Omega,
\]
we have
\[
\begin{align*}
G_n(z) &= \sum_{\omega \in \Omega} \vartheta^n F(\omega)^n z^{1+|\omega|} + \sum_{\omega \in \Omega} (\bar{\vartheta} + \vartheta F(\omega))^n z^{1+|\omega|} \\
&= \vartheta^n z G_n(z) + z \sum_{i=0}^{n} \binom{n}{i} \bar{\vartheta}^{n-i} \vartheta^i G_i(z) \\
&= 2\vartheta^n z G_n(z) + z \sum_{i=0}^{n-1} \binom{n}{i} \bar{\vartheta}^{n-i} \vartheta^i G_i(z)
\end{align*}
\]
for \(n \geq 1\); thus
\[
G_n(z) = \frac{z}{1 - 2\vartheta^n} \sum_{i=0}^{n-1} \binom{n}{i} \bar{\vartheta}^{n-i} \vartheta^i G_i(z).
\]
Dividing both sides by \(G_0(z)\), we have \([5, 7, 8, 9]\)
\[
\mu_n = \frac{1}{2(1 - \vartheta^n)} \sum_{i=0}^{n-1} \binom{n}{i} \bar{\vartheta}^{n-i} \vartheta^i \mu_i
\]
because
\[
\lim_{z \to z_0} \frac{z}{1 - 2\vartheta^n z} = \frac{1}{2(1 - \vartheta^n)}
\]
and the singularity \(z_0 = 1/2\) of \(G_n(z)\) is a simple pole. In particular, when \(\vartheta = 1/3\),
\[
\mu_1 = 1/2, \quad \mu_2 = 3/8, \quad \mu_2 - \mu_1 = 1/8
\]
and, up to small periodic fluctuations \([9, 10, 11]\),
\[
\mu_n \sim C n^{-\ln(2)/\ln(3)},
\]
\[C = \frac{1}{2 \ln(3)} \int_0^\infty \left(\prod_{k=2}^\infty \frac{1 + e^{-2x/3^k}}{2} \right) e^{-2x/3} x^{\ln(2)/\ln(3)-1} dx = 0.733874 \ldots \]
as \(n \to \infty \).

We merely mention a problem involving order statistics. Let \(\xi_n \) denote the expected value of the minimum of \(n \) independent Cantor-distributed random variables. It is known that \[\xi_n = \frac{1}{2^n - 2} \left[\vartheta + \vartheta \sum_{i=1}^{n-1} \binom{n}{i} \xi_i \right] \]
in general. In the special case \(\vartheta = 1/3 \), it follows that
\[\xi_1 = 1/2, \quad \xi_2 = 3/10, \quad \xi_3 = 1/5, \quad \xi_4 = 33/230, \quad \xi_5 = 5/46 \]
and, up to small periodic fluctuations \[\xi_n \sim c n^{-\ln(3)/\ln(2)}, \]
by symmetry.

A final problem concerns the sum of all moments of the classical Cantor distribution \[\sum_{n=0}^\infty \mu_n = -\frac{1}{3} + \frac{2}{3} \sum_{k=1}^\infty \left(\frac{2}{3} \right)^k \sum_{j=1}^{2^k-1} \frac{1}{j} \]
answering a question asked in \[\text{[15].} \]

2. Cantor-solus Distribution
We examine here the set \(\Omega \) of finite solus bitstrings \((m < \infty) \). Let
\[f_k = f_{k-1} + f_{k-2}, \quad f_0 = 0, \quad f_1 = 1 \]
denote the Fibonacci numbers. The \(f_{m+2} \) bitstrings in \(\Omega \) of length \(m \) are assumed to be equiprobable. Clearly
\[G_0(z) = \sum_{\omega \in \Omega} z^{\lvert \omega \rvert} = \sum_{m=0}^\infty f_{m+2} z^m = \frac{1 + z}{1 - z - z^2}. \]
From additional values

\[F(1) = \vartheta, \quad F(10\omega) = \vartheta + \vartheta^2 F(\omega) \]

and employing the recurrence \[6\]

\[\Omega = \varepsilon + 1 + \{0, 10\} \times \Omega, \]

we have

\[
G_n(z) = \vartheta^n z + \sum_{\omega \in \Omega} \vartheta^n F(\omega)^n z^{1+|\omega|} + \sum_{\omega \in \Omega} (\vartheta + \vartheta^2 F(\omega))^n z^{2+|\omega|}
\]

\[= \vartheta^n z + \vartheta^n z G_n(z) + z^2 \sum_{i+j=n, \ i<n} \binom{n}{i, j} \vartheta^i \vartheta^{2j} G_j(z) \]

\[= \vartheta^n z + \vartheta^n z G_n(z) + \vartheta^2 n z^2 G_n(z) + z^2 \sum_{i+j=n, \ j<n} \binom{n}{i, j} \vartheta^i \vartheta^{2j} G_j(z) \]

for \(n \geq 1 \); thus

\[
G_n(z) = \frac{1}{1 - \vartheta^n z - \vartheta^{2n} z^2} \left[\vartheta^n z + z^2 \sum_{i+j=n, \ j<n} \binom{n}{i, j} \vartheta^i \vartheta^{2j} G_j(z) \right].
\]

The purpose of using multinomial coefficients here, rather than binomial coefficients as in Section 1, is simply to establish precedent for Section 3. Let \(\varphi = (1 + \sqrt{5})/2 \approx 1.6180339887... \) be the Golden mean. Dividing both sides by \(G_0(z) \), we have \[\Pi\]

\[
\mu_n = \frac{1}{1 - \vartheta^n / \varphi - \vartheta^{2n} / \varphi^2} \left[0 + \frac{1}{\varphi^2} \sum_{i+j=n, \ j<n} \binom{n}{i, j} \vartheta^i \vartheta^{2j} \mu_j \right]
\]

\[= \frac{1}{\varphi^2 - \vartheta^n \varphi - \vartheta^{2n}} \sum_{i+j=n, \ j<n} \binom{n}{i, j} \vartheta^i \vartheta^{2j} \mu_j \]

because

\[
\lim_{z \to z_0} \frac{\vartheta^n z}{G_0(z)} = \lim_{z \to z_0} \frac{1 - z - z^2}{1 + z} \vartheta^n z = 0
\]

and the singularity \(z_0 = 1/\varphi \) of \(G_n(z) \) is a simple pole. In particular, when \(\vartheta = 1/3 \),

\[
\mu_1 = 0.338826..., \quad \mu_2 = 0.203899..., \quad \mu_2 - \mu_1^2 = 0.089096...
\]
and, up to small periodic fluctuations,
\[\mu_n \sim (0.616005...) n^{-\ln(\varphi)/\ln(3)} (3/4)^n, \]
as \(n \to \infty \). An integral formula in [1] for the preceding numerical coefficient involves a generating function of exponential type:
\[M(x) = e^{-x/3} \sum_{k=0}^{\infty} \frac{\mu_k}{k!} \left(\frac{4x}{9} \right)^k, \]
namely
\[\frac{1}{2\varphi \ln(3)} \int_{0}^{\infty} M(x)e^{-2x/3} x^{\ln(\varphi)/\ln(3)-1} dx \]
(we believe that the fifth decimal given in [1] is incorrect, perhaps a typo). Unlike the formula for \(C \) earlier, this expression depends on the sequence \(\mu_1, \mu_2, \mu_3, \ldots \) explicitly.

With regard to order statistics, it is known that [16]
\[\xi_n = \frac{1}{1 - \vartheta \varphi^{-n} - \vartheta^2 \varphi^{-2n}} \left[\tilde{\vartheta} \varphi^{-2n} + \vartheta \sum_{i=1}^{n-1} \binom{n}{i} \varphi^{-i} \varphi^{-2(n-i)} \xi_i \right], \]
\[\eta_n = \frac{1}{1 - \vartheta \varphi^{-n} - \vartheta^2 \varphi^{-2n}} \left[\tilde{\vartheta} (1 - \varphi^{-n}) + \vartheta^2 \sum_{j=1}^{n-1} \binom{n}{j} \varphi^{-2j} \varphi^{-2(n-j)} \eta_j \right] \]
in general. In the special case \(\vartheta = 1/3 \), we have, up to small periodic fluctuations,
\[\xi_n \sim (3.31661...) n^{-\ln(3)/\ln(\varphi)}, \]
\[3/4 - \eta_n \sim (5.35114...) n^{-\ln(3)/\ln(\varphi)} \]
as \(n \to \infty \).

3. Cantor-multus Distribution
We examine here the set \(\Omega \) of finite multus bitstrings \((m < \infty) \). Let
\[f_k = 2f_{k-1} - f_{k-2} + f_{k-3}, \quad f_0 = 0, \quad f_1 = f_2 = 1 \]
denote the second upper Fibonacci numbers [17]. The \(f_{m+2} \) bitstrings in \(\Omega \) of length \(m \) are assumed to be equiprobable. Clearly
\[G_0(z) = \sum_{\omega \in \Omega} z^{\mid \omega \mid} = \sum_{m=0}^{\infty} f_{m+2} z^m = \frac{1 - z + z^2}{1 - 2z + z^2 - z^3}. \]
From additional values
\[F(11\omega) = \vartheta + \vartheta\vartheta + \vartheta^2 F(\omega), \]
\[F(1110\omega) = \vartheta + \vartheta\vartheta + \vartheta^2 + \vartheta^4 F(\omega) \]
and employing the recurrence
\[\Omega = \varepsilon + 1 + \{0, 11, 1110\} \times \Omega, \]
we have
\[G_n(z) = \vartheta^n z + \sum_{\omega \in \Omega} \vartheta^n F(\omega)^n z^{|\omega|} + \sum_{\omega \in \Omega} (\vartheta + \vartheta\vartheta + \vartheta^2 F(\omega))^n z^{|\omega|} \]
\[+ \sum_{\omega \in \Omega} (\vartheta + \vartheta\vartheta + \vartheta^2 + \vartheta^4 F(\omega))^n z^{|\omega|} \]
\[= \vartheta^n z + \vartheta^n z G_n(z) + z^2 \sum_{i+j+k=n} \binom{n}{i,j,k} \vartheta^i (\vartheta\vartheta)^j (\vartheta^2)^k G_k(z) \]
\[+ z^4 \sum_{i+j+k+l=n, \ell<n} \binom{n}{i,j,k,\ell} \vartheta^i \vartheta^j \vartheta^{j+k} G_k(z) \]
\[= \vartheta^n z + \vartheta^n z G_n(z) + \vartheta^{2n} z^2 G_n(z) + z^2 \sum_{i+j+k=n, \ell<n} \binom{n}{i,j,k} \vartheta^{i+j} \vartheta^{j+k} G_k(z) \]
\[+ \vartheta^{4n} z^4 G_n(z) + z^4 \sum_{i+j+k+l=n, \ell<n} \binom{n}{i,j,k,\ell} \vartheta^{i+j+k} \vartheta^{j+k+4\ell} G_k(z) \]
for \(n \geq 1 \); thus
\[G_n(z) = \frac{1}{1 - \vartheta^n z - \vartheta^{2n} z^2 - \vartheta^{4n} z^4} \left[\vartheta^n z + \vartheta^n z G_n(z) + z^2 \sum_{i+j+k=n, \ell<n} \binom{n}{i,j,k} \vartheta^{i+j} \vartheta^{j+k} G_k(z) \right. \]
\[+ z^4 \sum_{i+j+k+l=n, \ell<n} \binom{n}{i,j,k,\ell} \vartheta^{i+j+k} \vartheta^{j+k+4\ell} G_k(z) \]
\[= \frac{1}{3} \left[2 + \left(\frac{25 + 3\sqrt{69}}{2} \right)^{1/3} + \left(\frac{25 - 3\sqrt{69}}{2} \right)^{1/3} \right] = 1.7548776662... \]
be the second upper Golden mean \[17, 18\]. Dividing both sides by \(G_0(z) \), we have

\[
\mu_n = \frac{1}{1 - \vartheta^n/\psi - \vartheta^{2n}/\psi^2 - \vartheta^{4n}/\psi^4} \left[0 + \frac{1}{\psi^2} \sum_{i+j+k=n, \ k<n} \binom{n}{i, j, k} \bar{\vartheta}^{i+j+k} \vartheta^{j+2k} \mu_k \right]
\]

\[
+ \frac{1}{\psi^4} \sum_{i+j+k+\ell=n, \ \ell<n} \binom{n}{i, j, k, \ell} \bar{\vartheta}^{i+j+k+2\ell} \vartheta^{j+2k+4\ell} \mu_\ell
\]

\[
= \frac{1}{\psi^4 - \vartheta^n\psi^3 - \vartheta^{2n}\psi^2 - \vartheta^{4n}} \left[\psi^{2} \sum_{i+j+k=n, \ k<n} \binom{n}{i, j, k} \bar{\vartheta}^{i+j+k} \vartheta^{j+2k} \mu_k \right]
\]

\[
+ \sum_{i+j+k+\ell=n, \ \ell<n} \binom{n}{i, j, k, \ell} \bar{\vartheta}^{i+j+k+2\ell} \vartheta^{j+2k+4\ell} \mu_\ell
\]

because

\[
\lim_{z \to z_0} \frac{\bar{\vartheta}^n z}{G_0(z)} = \lim_{z \to z_0} \frac{1 - 2z + z^2 - z^3}{1 - z + z^2} \bar{\vartheta}^n z = 0
\]

and the singularity \(z_0 = 1/\psi \) of \(G_n(z) \) is a simple pole. In particular, when \(\vartheta = 1/3 \),

\[
\mu_1 = 0.504968..., \quad \mu_2 = 0.416013..., \quad \mu_2 - \mu_1^2 = 0.161020...
\]

but no asymptotics for \(\mu_n \) are known. Order statistics likewise remain open.

4. **Bitsums**

We turn to a more fundamental topic: given a set \(\Omega \) of finite bitstrings, what can be said about the bitsum \(S_n \) of a random \(\omega \in \Omega \) of length \(n \)? If \(\Omega \) is unconstrained, i.e., if all \(2^n \) strings are included in the sample, then

\[
\mathbb{E}(S_n) = n/2, \quad \mathbb{V}(S_n) = n/4
\]

because a sum of \(n \) independent Bernoulli(1/2) variables is Binomial(\(n, 1/2 \)). Expressed differently, the average density of 1s in a random unconstrained string is 1/2, with a corresponding variance 1/4.

Let us impose constraints. If \(\Omega \) consists of solus bitstrings, then the total bitsum \(a_n \) of all \(\omega \in \Omega \) of length \(n \) has generating function \[19, 20\]

\[
\sum_{n=0}^\infty a_n z^n = \frac{z}{(1 - z - z^2)^2} = z + 2z^2 + 5z^3 + 10z^4 + 20z^5 + \cdots
\]
and the total bitsum squared \(b_n \) has generating function

\[
\sum_{n=0}^{\infty} b_n z^n = \frac{z(1 - z + z^2)}{(1 - z - z^2)^3} = z + 2z^2 + 7z^3 + 16z^4 + 38z^5 + \cdots ;
\]

hence \(c_n = f_{n+2}b_n - a_n^2 \) has generating function

\[
\sum_{n=0}^{\infty} c_n z^n = \frac{z(1 - z)}{(1 + z)^2(1 - 3z + z^2)^2} = z + 2z^2 + 10z^3 + 28z^4 + 94z^5 + \cdots
\]

where \(f_n \) is as in Section 2. Standard techniques [6] give asymptotics

\[
\lim_{n \to \infty} \frac{\mathbb{E}(S_n)}{n} = \lim_{n \to \infty} \frac{a_n}{nf_{n+2}} = \frac{5 - \sqrt{5}}{10} = 0.2763932022\ldots,
\]

\[
\lim_{n \to \infty} \frac{\mathbb{V}(S_n)}{n} = \lim_{n \to \infty} \frac{c_n}{nf_{n+2}^2} = \frac{1}{5\sqrt{5}} = 0.0894427190\ldots
\]

for the average density of 1s in a random solus string and corresponding variance.

If instead \(\Omega \) consists of multus bitstrings, then the total bitsum \(a_n \) of all \(\omega \in \Omega \) of length \(n \) has generating function [21]

\[
\sum_{n=0}^{\infty} a_n z^n = \frac{z^2(2 - z)}{(1 - 2z + z^2 - z^3)^2} = 2z^2 + 7z^3 + 16z^4 + 34z^5 + \cdots
\]

and the total bitsum squared \(b_n \) has generating function

\[
\sum_{n=0}^{\infty} b_n z^n = \frac{z^2(4 - 7z + 4z^2 + 3z^3 - z^4)}{(1 - 2z + z^2 - z^3)^3} = 4z^2 + 17z^3 + 46z^4 + 116z^5 + \cdots ;
\]

hence \(c_n = f_{n+2}b_n - a_n^2 \) has generating function

\[
\sum_{n=0}^{\infty} c_n z^n = \frac{z^2(4 - 9z + 9z^2 - 9z^3 - 6z^4 + z^5 - 6z^6 + z^8)}{(1 - z + 2z^2 - z^3)^2(1 - 2z - 3z^2 - z^3)^2} = 4z^2 + 19z^3 + 66z^4 + 236z^5 + \cdots
\]

where \(f_n \) is as in Section 3. We obtain asymptotics

\[
\lim_{n \to \infty} \frac{\mathbb{E}(S_n)}{n} = \lim_{n \to \infty} \frac{a_n}{nf_{n+2}} = \frac{1}{3} \left[2 - \left(\frac{23 + 3\sqrt{69}}{1058} \right)^{1/3} + \left(\frac{-23 + 3\sqrt{69}}{1058} \right)^{1/3} \right] = 0.5885044113\ldots,
\]
for the average density of 1s in a random multus string and corresponding variance. Unsurprisingly $0.588 > 1/2 > 0.276$ and $0.281 > 1/4 > 0.089$; a clumping of 1s forces a higher density than a separating of 1s.

A famous example of an infinite aperiodic solus bitstring is the Fibonacci word [2, 3], which is the limit obtained recursively starting with 0 and satisfying substitution rules $0 \rightarrow 01$, $1 \rightarrow 0$. The density of 1s in this word is $1 - 1/\varphi \approx 0.382$ [22], which exceeds the average 0.276 but falls well within the one-sigma upper limit $0.276 + \sqrt{0.089} = 0.575$. We wonder if an analogously simple construction might give an infinite aperiodic multus bitstring with known density.

5. Longest Bitruns

We turn to a different topic: given a set Ω of finite bitstrings, what can be said about the duration $R_{n,1}$ of the longest run of 1s in a random $\omega \in \Omega$ of length n? If Ω is unconstrained, then [6]

$$E(R_{n,1}) = \frac{1}{2n} \sum_{k=1}^{\infty} \left(\frac{1}{1-2z} - \frac{1 - z^k}{1 - 2z + z^{k+1}} \right),$$

the Taylor expansion of the numerator series is [23]

$$z + 4z^2 + 11z^3 + 27z^4 + 62z^5 + 138z^6 + 300z^7 + 643z^8 + 1363z^9 + 2866z^{10} + \cdots$$

and, up to small periodic fluctuations [24, 25],

$$E(R_{n,1}) \sim \frac{\ln(n)}{\ln(2)} - \left(\frac{3}{2} - \frac{\gamma}{\ln(2)} \right)$$

as $n \rightarrow \infty$. Of course, identical results hold for $R_{n,0}$, the duration of the longest run of 0s in ω.

If Ω consists of solus bitstrings, then it makes little sense to talk about 1-runs. For 0-runs, over all $\omega \in \Omega$, we have

$$E(R_{n,0}) = \frac{1}{f_{n+2}} \sum_{k=1}^{\infty} \left(\frac{1 + z}{1 - z - z^2} - \frac{1 + z - z^k - z^{k+1}}{1 - z - z^2 + z^{k+1}} \right)$$
and the Taylor expansion of the numerator series is

\[z + 4z^2 + 9z^3 + 18z^4 + 34z^5 + 62z^6 + 110z^7 + 192z^8 + 331z^9 + 565z^{10} + \cdots \]

where \(f_n \) is as in Section 2.

If instead \(\Omega \) consists of multus bitstrings, then we can talk both about 1-runs:

\[
E(R_{n,1}) = \frac{1}{f_{n+2}} [z^n] \left\{ -\frac{z}{(1-z)(1-z+z^2)} + \sum_{k=1}^{\infty} \left(\frac{1+z^2}{1-2z+z^2-z^3} - \frac{1+z^2-z^{k-1}-z^k}{1-2z+z^2-z^3+z^{k+1}} \right) z \right\},
\]

\[
\text{num} = 2z^2 + 7z^3 + 16z^4 + 32z^5 + 62z^6 + 118z^7 + 221z^8 + 409z^9 + 751z^{10} + \cdots
\]

and 0-runs:

\[
E(R_{n,0}) = \frac{1}{f_{n+2}} [z^n] \sum_{k=1}^{\infty} \left(\frac{1+z^2}{1-2z+z^2-z^3} - \frac{1+z^2-z^{k-1}+z^k-2z^{k+1}}{1-2z+z^2-z^3+z^{k+2}} \right) z,
\]

\[
\text{num} = z + 2z^2 + 5z^3 + 11z^4 + 23z^5 + 45z^6 + 87z^7 + 165z^8 + 309z^9 + 573z^{10} + \cdots
\]

where \(f_n \) is as in Section 3. Proof: the number of multus bitstrings with no runs of \(k \) 1s has generating function

\[
\frac{1+z^2-z^{k-1}-z^k}{1-2z+z^2-z^3+z^{k+1}} z \quad \text{if } k > 1; \quad \frac{z}{1-z} \quad \text{if } k = 1;
\]

we conclude by use of the summation identity

\[
\sum_{j=0}^{\infty} j \cdot h_j(z) = \sum_{k=0}^{\infty} (\sum_{i=0}^{\infty} h_i(z) - \sum_{i=0}^{k} h_i(z)).
\]

Study of runs of \(k \) 0s proceeds analogously. The solus and multus results here are new, as far as is known. Asymptotics would be good to see someday.

6. Acknowledgements

I am thankful to Alois Heinz for helpful discussions and for providing the generating function associated with 4, 19, 66, 236, \ldots via the Maple gfun package; R and Mathematica have been useful throughout. I am also indebted to a friend, who wishes to remain anonymous, for giving encouragement and support (in these dark days of the novel coronavirus outbreak).
Cantor-solus and Cantor-multus Distributions

References

[1] H. Prodinger, The Cantor-Fibonacci distribution, Applications of Fibonacci Numbers, v. 7, Proc. 1996 Graz conf., ed. G. E. Bergum, A. N. Philippou and A. F. Horadam, Kluwer Acad. Publ., 1998, pp. 311–318; MR1638457.

[2] S. R. Finch, Prouhet-Thue-Morse constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 436–441; MR2003519.

[3] S. R. Finch, Substitution dynamics, Mathematical Constants II, Cambridge Univ. Press, 2019, pp. 599–603; MR3887550.

[4] R. Austin and R. Guy, Binary sequences without isolated ones, Fibonacci Quart. 16 (1978) 84–86; MR0465892.

[5] F. R. Lad and W. F. C. Taylor, The moments of the Cantor distribution, Statist. Probab. Lett. 13 (1992) 307–310; MR1160752.

[6] R. Sedgewick and P. Flajolet, Introduction to the Analysis of Algorithms, Addison-Wesley, 1996, pp. 120–121, 159–161, 366–373, 379.

[7] G. C. Evans, Calculation of moments for a Cantor-Vitali function, Amer. Math. Monthly 64 (1957) 22–27; MR0100204.

[8] C. P. Dettmann and N. E. Frankel, Potential theory and analytic properties of a Cantor set, J. Phys. A 26 (1993) 1009–1022; MR1211344.

[9] O. Dovgoshey, O. Martio, V. Ryazanov and M. Vuorinen, The Cantor function, Expo. Math. 24 (2006) 1–37; MR2195181.

[10] W. Goh and J. Wimp, Asymptotics for the moments of singular distributions, J. Approx. Theory 74 (1993) 301–334; MR1233457.

[11] P. J. Grabner and H. Prodinger, Asymptotic analysis of the moments of the Cantor distribution, Statist. Probab. Lett. 26 (1996) 243–248; MR1394899.

[12] J. R. M. Hosking, Moments of order statistics of the Cantor distribution, Statist. Probab. Lett. 19 (1994) 161–165; MR1256706.

[13] A. Knopfmacher and H. Prodinger, Explicit and asymptotic formulae for the expected values of the order statistics of the Cantor distribution, Statist. Probab. Lett. 27 (1996) 189–194; MR1400005.

[14] H. Prodinger, On Cantor’s singular moments, Southwest J. Pure Appl. Math. (2000), n. 1, 27–29; arXiv:math/9904072; MR1770778.
[15] H. G. Diamond, B. Reznick, K. F. Andersen and O. Kouba, Cantor’s singular moments, *Amer. Math. Monthly* 106 (1999) 175–176; MR1543421.

[16] L.-L. Cristea and H. Prodinger, Order statistics for the Cantor-Fibonacci distribution, *Aequationes Math.* 73 (2007) 78–91; MR2311656.

[17] V. Křížek, A new generalization of the golden ratio, *Fibonacci Quart.* 44 (2006) 335–340; MR2335005.

[18] S. R. Finch, Feller’s coin tossing constants, *Mathematical Constants*, Cambridge Univ. Press, 2003, pp. 339–342; MR2003519.

[19] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000045, A001629 and A224227.

[20] N. Gautheir, A. Plaza and S. Falcón, Binomial coefficients and Fibonacci and Lucas numbers, *Fibonacci Quart.* 50 (2012) 379–381.

[21] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A005251, A259966 and A332863.

[22] J. Grytczuk, Infinite self-similar words, *Discrete Math.* 161 (1996) 133–141; MR1420526.

[23] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A119706, A333394, A333395 and A333396.

[24] D. W. Boyd, Losing runs in Bernoulli trials, unpublished note (1975), https://www.math.ubc.ca/~boyd/bern.runs/bernoulli.html.

[25] M. F. Schilling, The longest run of heads, *College Math. J.* 21 (1990) 196–207; MR1070635.

[26] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000930, A006498, A000570, A079816, A189593 and A189600.

[27] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000931, A003410 and A179070.

Steven Finch
MIT Sloan School of Management
Cambridge, MA, USA
steven_finch@harvard.edu