Low Ply Drawings of Trees

Patrizio Angelini1, Michael A. Bekos1, Till Bruckdorfer1, Jaroslav Hanč Jr.2, Michael Kaufmann1, Stephen Kobourov3, Antonios Symvonis4, and Pavel Valtr2

1 Institut für Informatik, Universität Tübingen, Tübingen, Germany
2 Dept. of Applied Mathematics, Charles University (KAM), Prague, Czech Republic
3 Dept. for Computer Science, University of Arizona, Tucson, USA
4 School of Applied Mathematical & Physical Sciences, NTUA, Athens, Greece.

Abstract. We consider the recently introduced model of low ply graph drawing, in which the ply-disks of the vertices do not have many common overlaps, which results in a good distribution of the vertices in the plane. The ply-disk of a vertex in a straight-line drawing is the disk centered at it whose radius is half the length of its longest incident edge. The largest number of ply-disks having a common overlap is called the ply-number of the drawing.

We focus on trees. We first consider drawings of trees with constant ply-number, proving that they may require exponential area, even for stars, and that they may not even exist for bounded-degree trees. Then, we turn our attention to drawings with logarithmic ply-number and show that trees with maximum degree 6 always admit such drawings in polynomial area.

1 Introduction

Let Γ be a straight-line drawing of a graph G. For a vertex $v \in G$, let the ply-disk D_v of v be the open disk with center v and radius r_v that is half of the length of the longest incident edge of v. For a point $q \in \mathbb{R}^2$ in the plane, denote by S_q the set of disks with q in their interior, i.e., $S_q = \{D_v \mid \|v - q\| < r_v\}$.

The ply-number of a straight-line drawing Γ is $\text{pn}(\Gamma) = \max_{q \in \mathbb{R}^2} |S_q|$. In other words, it describes the maximum number of ply-disks that have a common non-empty intersection. The ply-number of a graph G is $\text{pn}(G) = \min_{\Gamma \in G} \text{pn}(\Gamma)$.

The ply-number is one of the most recent quality measures for graph layouts \cite{4}. While traditional measures, such as edge crossings \cite{3} and symmetries \cite{5}, have been studied for decades, the notion of optimizing a graph layout so that the spheres of influence of each vertex (see \cite{11} for different variants) are well distributed is new. Goodrich and Eppstein \cite{6} observed that real-world geographic networks usually have only constant sphere-of-influence overlap, or in the terminology of this paper, constant ply-number.

* Research partially supported by DFG grant Ka812/17-1. The research by Pavel Valtr was supported by the grant GAČR 14-14179S of the Czech Science Foundation.
The problem of computing graph drawings with low ply-number is related to circle-contact representations of graphs, where vertices are interior-disjoint circles in the plane and two vertices are adjacent if the corresponding pair of circles touch each other \cite{8,9}. Every maximal planar graph has a circle-contact representation \cite{10}. A drawback of such representations is that the sizes of the circles may vary exponentially, making the resulting drawings difficult to read. In balanced circle packings and circle-contact representations, the ratio of the maximum and minimum diameters for the set of circles is polynomial in the number of vertices in the graph. Such drawings could be drawn with polynomial area, for instance, where the smallest circle determines the minimum resolution.

It is known that trees and planar graphs with bounded tree-depth have balanced circle-contact representation \cite{11}. Breu and Kirkpatrick \cite{2} show that it is NP-complete to test whether a graph has a perfectly-balanced circle-contact representation, in which all circles have the same size, i.e., they are unit disks.

Very recently, Di Giacomo et al. \cite{4} showed that binary trees, stars, and caterpillars have drawings with ply-number 2 (with exponential area, that is, the ratio of the longest to the shortest edge is exponential in the number of vertices), while general trees with height h admit drawings with ply-number $h + 1$. Also, they showed that the class of graphs with ply-number 1 coincides with the class of graphs that have a weak contact representation with unit disks, which makes the recognition problem NP-hard for general graphs \cite{7}. On the other hand, testing whether an internally triangulated biconnected planar graph has ply-number 1 can be done in $O(n \log n)$ time. This paper left several natural questions open. Of particular interest are the following two questions:

(i) Is it possible to draw a binary tree, a star, or a caterpillar in polynomial area with ply-number 2?

(ii) While binary trees have constant ply-number, is this true also for trees with larger bounded degree?

In this paper we provide answers to the two above questions (Section 3). For the first question, we prove an exponential lower bound on the area requirements of drawings with constant ply-number of stars, and hence of caterpillars. For the second question, we prove that there exist trees with maximum degree 11 that do not have constant ply-number. Motivated by these two negative results, we consider in Section 4 drawings of trees with logarithmic ply-number. In this case, we present an algorithm to construct a drawing of every tree with maximum degree 6 in polynomial area\cite{5}. We give preliminary definitions in Section 2 and discuss some open problems in Section 5.

2 Preliminaries

Let G be a graph. We denote by $\ell(e)$ (by $\ell(u,v)$) the length of an edge $e \in G$ (an edge $(u,v) \in G$) in a straight-line drawing of G. Also, for a path $P = v_1, \ldots, v_m$,

\footnote{The area of a drawing is the area of the smallest axis-aligned rectangle containing it, under the resolution rule that each edge has length at least 1.}
we denote by \(\ell(P) = \sum_{i=1}^{m-1} \ell(v_i, v_{i+1}) \) the total length of its edges. Further, we denote by \(D_v \) the ply-disk in \(\Gamma \) of a vertex \(v \in G \) and by \(r_v \) the radius of \(D_v \). Finally, we call constant-ply drawing (or log-ply drawing) a straight-line drawing \(\Gamma \) such that \(pn(\Gamma) = O(1) \) (such that \(pn(\Gamma) = O(\log n) \)).

Let \(T \) be a tree rooted at a vertex \(r \). The depth \(d_v \) of a vertex \(v \in T \) is the length of the path between \(v \) and \(r \); note that \(d_r = 0 \). The height \(h \) of \(T \) is the maximum depth of a vertex of \(T \).

3 Constant-Ply Drawings of Trees

In this section we provide negative answers to two open questions [4] about constant-ply drawings of trees. In Subsection 3.1 we prove that drawings of this type may require exponential area, even for stars, while in Subsection 3.2 we prove that there exist bounded-degree trees not admitting any of such drawings.

3.1 Area Lower Bound for Stars

In the original paper on the topic [4], it has been shown that a star admits a drawing with ply-number 1 if and only if it has at most six leaves, and that every star admits a drawing with ply-number 2, independently of the number of leaves. The algorithm for the latter result is based on a placement of the leaves at exponentially-increasing distances from the central vertex, which results in a drawing with exponential area; see Figure 1a. In this subsection we prove that this is in fact unavoidable, as we give an exponential lower bound for the area requirements of any drawing of a star with constant ply-number.

Theorem 1. Any constant-ply drawing of an \(n \)-vertex star has exponential area.

Proof. Let \(K_{1,n-1} \) be an \(n \)-vertex star with central vertex \(v \), and let \(\Gamma \) be a straight-line drawing of \(K_{1,n-1} \) with ply-number \(p \), where \(p = O(1) \). We prove the statement by showing that the ratio of the longest to the shortest edge in
\(\Gamma\) is exponential in \(n\). Assume that the longest edge \(e\) of \(\Gamma\) has length \(\ell(e) = 2\), after a possible scaling of \(\Gamma\); thus, the largest ply-disk in \(\Gamma\) has radius 1.

For any \(i \in \mathbb{N}\) we define \(A_i\) to be the annulus delimited by two circles centered at \(v\) with radius \(3^{-i+2}\) and \(3^{-i+1}\), respectively. Refer to Figure 1b. Then, we partition the ply-disks of the \(n - 1\) leaves of \(K_{1,n-1}\) into the classes \(T_1, \ldots, T_k\) in such a way that all the disks with radius in \((3^{j-1}, 3^{j+1}]\) belong to \(T_j\), with \(1 \leq j \leq k\). We observe that every disk in class \(T_j\) is entirely contained inside the annulus \(A_j \cup A_{j+1}\); see Figure 1b. However, there can be at most

\[
\frac{p|A_j \cup A_{j+1}|}{\min_{D \in T_j} |D|} \leq \frac{p(\pi 3^{-2j+4} - \pi 3^{-2j})}{\pi 3^{-2j}} = 80p
\]
disks in any \(A_j \cup A_{j+1}\), and hence at most 80p disks belong to class \(T_j\). Therefore, \(n = 1 + \sum_{j=1}^{k} |T_j| \leq 80pk\) implies that the smallest radius of the ply-disk of a vertex in a drawing is at most \(3^{-k}\). This implies that the ratio between the largest and the smallest ply-disk radii in \(\Gamma\), and hence between the longest and the shortest edge, is at least \(3^k \geq 3^{n/(80p)}\). This concludes the proof. \(\square\)

3.2 Large Bounded-Degree Trees

In this section we consider the question posed in [4] on whether bounded-degree trees admit constant-ply drawings. While the answer is positive for binary trees [4], as they admit drawings with ply-number 2, we prove that this positive result cannot be extended to all bounded-degree trees, and in particular to 10-ary trees, that is, rooted trees with maximum degree 11.

In the following we denote a complete 10-ary tree of height \(h\) by \(T_{10}^h\); note that \(T_{10}^h\) has \(10^h\) leaves and \(10^d\) vertices with depth \(d \leq h\). The root of a tree \(T\) is denoted by \(\text{root}(T)\). In the rest of the section we prove the following theorem.

Theorem 2. For every \(M > 0\) there is an integer \(h > 0\) such that \(pn(T_{10}^h) \geq M\).

A branch of \(T_{10}^h\) is a path in \(T_{10}^h\) connecting the root with a leaf. Let \(e\) and \(f\) be two edges of \(T_{10}^h\). Refer to Figure 2a. We say that \(e\) dominates \(f\) and write \(e \triangleright_D f\), if \(e\) and \(f\) lie on a common branch and \(\ell(e) \geq 3^{s+1}\ell(f)\), where \(s\) is the number of edges on the path between \(e\) and \(f\) different from \(e\) and \(f\). Observe that on each branch of \(T_{10}^h\) the relation \(\triangleright_D\) is transitive. We say that \(e\) first-hand dominates \(f\) and write \(e \triangleright_{FD} f\), if the following three conditions are satisfied:

(i) \(f\) lies on the path connecting \(e\) with the root of \(T_{10}^h\),
(ii) \(e\) dominates \(f\), and
(iii) no other edge on the path between \(e\) and \(f\) dominates \(f\).

Lemma 1. Let \(P\) be a path with edges \(f_0, f_1, \ldots, f_p\). Suppose that \(f_0\) dominates each of the edges \(f_1, \ldots, f_p\). Let \(v\) be the common vertex of the edges \(f_0\) and \(f_1\). Then the edges \(f_1, \ldots, f_p\) lie entirely inside the ply-disk \(D_v\) of \(v\).

Proof. See Figure 2a. Since the radius of \(D_v\) is at least \(\frac{\ell(f_0)}{2}\), it suffices to prove \(\ell(f_1) + \cdots + \ell(f_p) < \frac{\ell(f_0)}{2}\). Let \(i \in \{1, \ldots, p\}\). Since \(f_0\) dominates \(f_i\), we have \(\ell(f_i) < \frac{\ell(f_0)}{2}\). Thus, \(\ell(f_1) + \cdots + \ell(f_p) \leq \ell(f_0)(\frac{1}{3} + \frac{1}{3^2} + \cdots + \frac{1}{3^p}) < \frac{\ell(f_0)}{2}\). \(\square\)
Fig. 2: (a) A path P with $\ell(f_0) = 28$, $\ell(f_1) = 6$, $\ell(f_2) = 4$, and $\ell(f_3) = 1$. Edge f_0 dominates each of f_1, f_2, and f_3, which in fact lie inside D_v. Also, f_0 first-hand dominates f_1 and f_2, but does not first-hand dominate f_3, since f_2 dominates f_3. (b) Illustration for the proof of Lemma 3.

Lemma 2. Let e_1, \ldots, e_M be M edges in T_{10}^h such that $e_1 >_F D e_2 >_F D \cdots >_F D e_M$. Then, $\text{pn}(T_{10}^h) \geq M$.

Proof. By definition, e_1, \ldots, e_M appear in this order, possibly not consecutively, along the same branch of T_{10}^h. Let \overrightarrow{P} be the oriented path that is the subpath of this branch from e_1 to e_M. Since $e_i >_F D e_{i+1}$, edge e_i dominates all the edges between e_i and e_{i+1}. Due to the transitivity of $>_F D$, each edge e_i dominates all the edges e_{i+1}, \ldots, e_M, and hence all the edges appearing after it along \overrightarrow{P}.

By Lemma 1 the endvertex v_M of e_M lies inside the ply-disk D_{v_i} of v_i, for each $i = 1, \ldots, M$, where v_i is the last vertex of e_i along \overrightarrow{P}. Thus, the M disks D_{v_1}, \ldots, D_{v_M} have a non-empty intersection, and the statement follows. \qed

Consider a vertex v with depth d in T_{10}^h. We say that a vertex $u \neq v$ is a descendant of v if the path from root($T_{10}^h(h)$) to u contains v. For any $i = 1, \ldots, h - d$, we denote by $T_i^h(v)$ the subtree of T_{10}^h rooted at v induced by v and by all the descendants of v with depth $d + 1, d + 2, \ldots, d + i$. Note that $T_i^h(v)$ is a 10-ary tree of height i, thus it has 10^i leaves. We have the following.

Lemma 3. Let T' be a subtree of a rooted 10-ary tree T and let P be the path from root(T) to root(T'). If every edge of T' is dominated by at least one edge of P, then there exists a vertex $v \in P$ such that T' lies completely inside D_v.

Consequently, $\text{pn}(T) \geq \text{pn}(T') + 1$.

Proof. Refer to Figure 2. Let e_0, e_1, \ldots, e_t be the edges of P in the order in which they appear along P, when P is oriented from root(T) to root(T'). Let i be an index maximizing the value of $3^i \cdot \ell(e_i)$. Then e_i dominates all the edges $e_{i+1}, e_{i+2}, \ldots, e_t$. Also, due to the choice of i and since any edge of T' is dominated by some edge of P, any edge of T' is dominated by e_i. Let v be the root of T, if $i = 0$, or the common vertex of e_{i-1} and e_i otherwise. Then Lemma 1 can be applied on the path from v to any leaf of T' to show that its subpath from root(T') to the leaf lies inside D_v, which proves the statement.

As a consequence, we have $\text{pn}(T) \geq \text{pn}(T') + 1$. \qed
Lemma 4. Let h, h', M be three positive integers such that $h' \geq h(M - 1) + 1$. If there exists a drawing Γ of T'_{10} that contains no M edges e_1, \ldots, e_M such that $e_1 >_{\text{FD}} e_2 >_{\text{FD}} \cdots >_{\text{FD}} e_M$, then there exists a vertex v in T'_{10} with depth $1 \leq d_v \leq h' - h$ such that no edge of $T'_{10}(v)$ in Γ dominates the edge (v, v'), where v' is the neighbor of v with depth $d_v - 1$. Refer to Figure 3a.

Proof. We fix h and proceed by induction on M. If $M = 1$, then there exists no drawing Γ of T'_{10} satisfying the conditions of the lemma, and thus the statement holds. Suppose now that $M > 1$ and that the lemma holds for $M - 1$. We want to show that the lemma holds for M. Let $h' \geq h(M - 1) + 1$. Suppose that a drawing of T'_{10} contains no M edges e_1, \ldots, e_M such that $e_1 >_{\text{FD}} e_2 >_{\text{FD}} \cdots >_{\text{FD}} e_M$.

Consider the subtree $T' := T'_{10}((\text{root}(T'_{10})))$ of T'_{10}, with the same root as T'_{10}, that is induced by the vertices with depth at most $h' - h$. If T' does not contain $M - 1$ edges e_1, \ldots, e_{M-1} such that $e_1 >_{\text{FD}} e_2 >_{\text{FD}} \cdots >_{\text{FD}} e_{M-1}$, then the required vertex v exists by induction. Otherwise, consider $M - 1$ edges e_2, \ldots, e_{M} in T' such that $e_2 >_{\text{FD}} e_3 >_{\text{FD}} \cdots >_{\text{FD}} e_{M}$. Let d and $d + 1$, with $d < h' - h$, be the depth of the endvertices v' and v of e_2, respectively, in T' (it is the same depth as they have in T'_{10}). Consider the subtree $T'_{10}(v)$ of T'_{10} rooted at v. Suppose, for a contradiction, that there exists an edge in $T'_{10}(v)$ dominating e_2. Then, consider the edge e_1 in $T'_{10}(v)$ dominating e_2 with the property that no other edge on the path from e_1 to e_2 dominates e_2, that is, e_1 first-hand dominates e_2. Thus, $e_1 >_{\text{FD}} e_2 >_{\text{FD}} \cdots >_{\text{FD}} e_{M}$, a contradiction. This implies that no edge of $T'_{10}(v)$ dominates edge e_2, and the statement follows.

We are now ready to complete the proof of the main result of the section.

Proof (of Theorem 2). We proceed by induction on M. For $M = 1$ the statement trivially holds.

Suppose now that $M > 1$ and that for $M - 1$ there is an h with the required properties. We need to show that for M there is an h' with the required properties. We set $h' := \max\{h^2M, Ch(h + M)\}$, where C is a (large) constant to be specified later. We fix a drawing of T'_{10}.
If there are M edges e_1, \ldots, e_M in $T_{10}^{h'}$ such that $e_1 >_{FD} e_2 >_{FD} \cdots >_{FD} e_M$, then Lemma 2 implies $\rho_n(T_{10}^{h'}) \geq M$. Otherwise, due to Lemma 2, there is a rooted 10-ary subtree T of $T_{10}^{h'}$ with height $\bar{h} \geq \frac{h'}{10}$ such that root(T) \neq root($T_{10}^{h'}$) and no edge of T dominates the first edge on the path from root(T) to root($T_{10}^{h'}$). From now on, we focus on the rooted tree T. In particular, in the following we refer to the depth of a vertex as its depth in T. We distinguish two cases.

In Case 1 there exists a vertex v with depth $h - h$ in T such that every edge of the tree $T_{10}^{h}(v)$ is dominated by at least one edge of the path from v to root(T). In this case, Lemma 3 (applied on tree $T_{10}^{h}(v)$) and the inductive hypothesis show that $\rho_n(T_{10}^{h}(v)) \geq \rho_n(T_{10}^{h}(v)) + 1 \geq M$.

In Case 2 there exists no vertex in T with the above properties. Refer to Figure 3b. Thus, for any vertex v with depth $\bar{h} - h$ in T, the subtree $T_{10}^{h}(v)$ rooted at v contains at least one edge that is not dominated by any edge of the path from v to root(T); among these edges of $T_{10}^{h}(v)$ we choose one, denoted by $e(v)$, whose endvertices have the smallest possible depth. This implies that $e(v)$ is not dominated by any edge of the path P_v from its endvertex u_v to root(T).

Let g be the first edge from root(T) to root(T_{10}^{h}). Note that edges of P_v dominate neither g nor $e(v)$. W.l.o.g., assume $\ell(g) = 1$. Since edges g and $e(v)$ do not dominate each other, we have $1/3^h < \ell(e(v)) < 3^h$. Thus, there is a unique integer $k(v) \in \{-\bar{h}, -\bar{h} + 1, \ldots, \bar{h} - 1\}$ such that $\ell(e(v)) \in [3^k(v), 3^{k(v)+1})$.

Let k be a most frequent value of $k(v)$ over all the vertices v with depth $\bar{h} - h$. Since $k(v)$ may have different values, the set V_k of vertices v at level $\bar{h} - h$ with $k(v) = k$ has size at least $10^{\bar{h} - h} / (2\bar{h})$. Consider now a vertex $v \in V_k$ and the path P_v from root(T) to u_v. Since no edge of this path dominates g or $e(v)$, we have the following two upper bounds on the length of the i-th edge e_i of the path P_v oriented from root(T) to u_v:

\[
\ell(e_i) \leq 3^i \quad \text{and} \quad \ell(e_i) \leq 3^{\bar{h} - i} \cdot \ell(e(v)) < 3^{\bar{h} - i + k + 1}.
\]

For the latter, we use $\ell(e(v)) < 3^{k+1}$, which follows from the fact that $v \in V_k$.

The edges e_i with $i \leq (\bar{h} + k)/2$ have total length at most $\sum_{i=0}^{(\bar{h} + k)/2} 3^i \leq 3^{(\bar{h} + k)/2 + 1}$, and the total length of the other edges is at most

\[
\sum_{i=(\bar{h} + k)/2 + 1}^{\bar{h}} 3^{\bar{h} - i + k + 1} = 3^{k + 1} \sum_{i=(\bar{h} + k)/2 + 1}^{\bar{h}} 3^{-i} = 3^{k + 1} \cdot 3^{(\bar{h} + k)/2 - 1 - j} \leq 3^{k + 1} \cdot 3^{(\bar{h} - k)/2 + 1} = 3^{(\bar{h} + k)/2 + 2}.
\]

It follows that the total length of the path P_v is smaller than $12 \cdot 3^{(\bar{h} + k)/2}$.

Thus all the edges $e(v), v \in V_k$, lie in the disk D of radius $12 \cdot 3^{(\bar{h} + k)/2}$ centered at root(T). The area of D is $12^2 \cdot 3^{\bar{h} + k}$. Let $v \in V_k$, and let u'_v be the vertex
of the path P_v adjacent to u_v. The ply-disk $D_{u'_v}$ contains the disk of radius $3^k/2$ centered at u'_v, which is entirely contained in D. It follows that the region $D_{u'_v} \cap D$ has area at least $\pi(3^k/2)^2 = (\pi/4)3^{2k}$. Therefore there is a point of D lying in at least
\[
\frac{|V_k| \cdot (\pi/4)3^{2k}}{\text{area}(D)} \geq \frac{(10\pi - h)/(2\pi)) \cdot (\pi/4)3^{2k}}{12^2 \pi 3^{3k} + k} = \frac{(10/3)\pi/\pi \cdot 3^k}{12^2 \cdot 8 \cdot 10^6} \geq (10/9)\pi/\pi \cdot 3^k/12^2 \cdot 8 \cdot 10^6
\]
disks $D_{u'_v}$, with $v \in V_k$.

Since $h' \geq CM(h + \log M)$, we have $\bar{h} \geq C(h + \log M)$. If C is a sufficiently large constant then some point of D lies in at least
\[
\frac{(10/9)\pi/\pi}{12^2 \cdot 8 \cdot 10^6} \geq M
\]
disks $D_{u'_v}$, with $v \in V_k$, which concludes the proof.

\section{4 Log-Ply Drawings of Bounded-Degree Trees in Polynomial Area}

Motivated by the fact that constant-ply drawings of stars may require exponential area (Theorem 1) and by the fact that not all the bounded-degree trees admit a constant-ply drawing (Theorem 2), in this section we ask whether allowing a logarithmic ply-number makes it possible to always construct drawings of trees, possibly in polynomial area. We give a first answer by proving in Theorem 3 that this is true for 5-ary trees, that is, trees with maximum degree 6.

We start with some definitions. A 2-drawing of a path $P = v_1, \ldots, v_m$ is a straight-line drawing of P in which all the vertices lie along the same straight-line segment in the same order as they appear in P and for each $i = 2, \ldots, m$ we have $\frac{\ell(v_{i-1}, v_i)}{2} \leq \ell(v_i, v_{i+1}) \leq 2\ell(v_{i-1}, v_i)$; see Figure 4a. We have the following.

\textbf{Lemma 5.} A 2-drawing of a path $P = (v_1, \ldots, v_n)$ has ply-number at most 2.

\textbf{Proof.} Refer to Figure 4a. For each vertex v_i, we have radius $r_i \leq \ell(v_i, v_{i+1})$ and $r_i \leq \ell(v_{i-1}, v_i)$, since $\ell(v_{i-1}, v_i) \leq \ell(v_i, v_{i+1}) \leq 2\ell(v_{i-1}, v_i)$. This, together with the fact that all the vertices of P lie on the same straight-line segment, implies that the ply-disk D_{v_i} of v_i may only intersect with $D_{v_{i-1}}$ and with $D_{v_{i+1}}$, but not with any of the other disks (note that D_{v_i} may touch $D_{v_{i-2}}$ and $D_{v_{i+2}}$ in a single point, namely the one where vertices v_{i-1} and v_{i+1} lie, respectively), but cannot overlap with them. \hfill \square

The heavy-path tree T of a rooted tree T is a decomposition tree of T first defined by Sleator and Tarjan \cite{12} as follows; see Figures 1b, 1c. Each node $\mu \in T$ is a path in T between a vertex v_μ of T and a leaf of the subtree T_μ of T rooted at v_μ. At the first step, v_μ is the root of T; T_μ is T, and the path μ we construct is the root of T. To construct μ, we start from v_μ and we always select the child
of the current vertex whose subtree contains the largest number of vertices, until a leaf of \(T_\mu \) is reached. Then, we remove all the vertices of \(\mu \) from \(T_\mu \) and their incident edges, hence obtaining a set of subtrees of \(T_\mu \). For each of these subtrees \(T_\nu \), rooted at a vertex \(\nu_\mu \), we add a new node \(\nu \) as a child of \(\mu \) in \(T \) and recursively construct the corresponding path. Since each subtree \(T_\nu \) has at most half of the vertices of \(T_\mu \), the height of the heavy-path tree \(T \) is \(O(\log n) \).

Let \(\mu = (v_\mu = v_1, \ldots, v_m) \) be any node in \(T \) and let \(\tau \) be its parent. The vertex of \(\tau \) that is adjacent to \(v_\mu \) is the anchor \(a_\mu \) of \(\mu \); in order to have an anchor \(a_\mu \) also when \(\mu \) is the root of \(T \), we add a dummy vertex to \(T \) that is only incident to its root. The proof of the main theorem of this section is based on the following algorithm, which we call \textsc{DrawPath}, to construct a special 2-drawing of the path \(P \) that is the concatenation of edge \((a_\mu, v_\mu)\) and of path \(\mu \).

Let \(n_\mu \) be the total number of vertices in the subtrees of \(T_\tau \) whose corresponding paths have \(a_\mu \) as an anchor. Since \(T_\mu \) is one of these subtrees, we have that \(n_\mu > \sum_{i=1}^{m} n_i \), where \(n_i \) is the total number of vertices in the subtrees \(T_{\nu_1}, \ldots, T_{\nu_m} \) of \(T_\mu \) such that paths \(v_1, \ldots, v_m \) have \(v_i \) as anchor. Also, since \(\mu \) is a path in a heavy-path tree, we have \(n_i \leq n_\mu / 2 \) for each \(1 \leq i \leq m \).

Algorithm \textsc{DrawPath} starts by initializing \(\ell(a_\mu, v_1) = n_1 \) and \(\ell(v_i, v_{i+1}) = n_i + n_{i+1} \), for each \(i = 1, \ldots, m-1 \). Then, it visits the edges of \(P \) one by one in decreasing order of their length in the current drawing. When an edge \((v_i, v_{i+1})\), with \(1 \leq i \leq m-1 \), is visited, set \(\ell(v_{i-1}, v_i) = \max\{\ell(v_i, v_{i+1})/2, \ell(v_{i-1}, v_i)\} \) and \(\ell(v_{i+1}, v_{i+2}) = \max\{\ell(v_i, v_{i+1}), \ell(v_{i+1}, v_{i+2})\} \). We have the following.

Lemma 6. Algorithm \textsc{DrawPath} constructs a 2-drawing \(\Gamma \) of \(P \) such that \(\ell(a_\mu, v_1) \geq n_1, \ell(v_i, v_{i+1}) \geq n_i + n_{i+1}, \) for each \(i = 1, \ldots, m-1, \) and \(\ell(P) \leq 6 n_\mu \).

Proof. First observe that \(\ell(a_\mu, v_1) \geq n_1 \) and \(\ell(v_i, v_{i+1}) \geq n_i + n_{i+1} \) for each \(i = 1, \ldots, m-1, \) since this is true already after the initialization and since no operation performed by the algorithm reduces the length of any edge.

Also, the fact that \(\Gamma \) is a 2-drawing can be derived from the operations that are performed when an edge is visited. Note that after an edge has been visited by \textsc{DrawPath}, its length is not modified any longer, since the edges are visited
in decreasing order of edge lengths and since the length of an edge is modified only if this edge is shorter than one of its adjacent edges.

For the same reason, if an edge \((v_i, v_{i+1})\), with \(1 \leq i \leq m - 1\), determines a local maximum in the sequence of edge lengths in \(\Gamma\) (that is, \(\ell(v_h, v_{h+1}) \geq \ell(v_{h-1}, v_h)\) and \(\ell(v_h, v_{h+1}) \geq \ell(v_{h+1}, v_{h+2})\)), then \(\ell(v_i, v_{i+1}) = n_i + n_{i+1}\). We use this property to prove that the total length of the edges in \(\Gamma\) is at most \(6n_\mu\).

Consider any two edges \((v_h, v_{h+1})\) and \((v_q, v_{q+1})\), with \(1 \leq h < q \leq m - 1\), such that \(\ell(v_h, v_{h+1}) = n_h + n_{h+1}\), \(\ell(v_q, v_{q+1}) = n_q + n_{q+1}\), and such that \(\ell(v_i, v_{i+1}) > n_i + n_{i+1}\) for each \(i = h + 1, \ldots, q - 1\); namely, \((v_h, v_{h+1})\) and \((v_q, v_{q+1})\) are two edges that have not been modified by algorithm DRAWPATH after the initialization and such that all edges between them have been modified.

Claim. The total length of the edges in the subpath \(\Gamma'\) of \(\Gamma\) between \(v_h\) and \(v_{q+1}\) is at most \(2(n_h + n_{h+1}) + 2(n_q + n_{q+1})\).

Proof. Note that there exists no edge in \(\Gamma'\) different from \((v_h, v_{h+1})\) and \((v_q, v_{q+1})\) that determines a local maximum in the sequence of edge lengths, since this would contradict the fact that \(\ell(v_i, v_{i+1}) > n_i + n_{i+1}\) for each \(i = h + 1, \ldots, q - 1\). Hence, \(\Gamma'\) is composed of a sequence of edges starting at \((v_h, v_{h+1})\) and ending at an edge \((v_{j-1}, v_j)\), with \(h < j \leq q - 1\), with decreasing edge lengths, and of a sequence of edges starting at \((v_j, v_{j+1})\) and ending at \((v_q, v_{q+1})\) with increasing edge lengths. We have \(\ell(v_h, v_{h+1}) = n_h + n_{h+1}\) and \(\ell(v_q, v_{q+1}) = n_q + n_{q+1}\), by construction. Also, \(\sum_{i=h+1}^{q-1} \ell(v_i, v_{i+1}) = \sum_{i=1}^{q-1-i} \frac{n_h+n_i}{m} < n_h + n_{q+1}\), since \(\Gamma\) is a 2-drawing. Analogously, \(\sum_{i=1}^{q-1} \ell(v_i, v_{i+1}) < n_q + n_{q+1}\). \(\square\)

Hence, every edge \((v_h, v_{h+1})\) such that \(\ell(v_h, v_{h+1}) = n_h + n_{h+1}\), together with the possible sequence of edges with increasing (decreasing) edge lengths preceding (following) it, gives a contribution of less than \(3(n_h + n_{h+1})\). Since \(\sum_{i=1}^{m-1} (n_i + n_{i+1}) < 2n_\mu\), the total edge length is at most \(6n_\mu\). \(\square\)

We describe an algorithm to construct a log-ply drawing of any rooted \(n\)-vertex 5-ary tree \(T\) with polynomial area. To simplify the description, we first give the algorithm for ternary trees; we discuss later the extension to 5-ary trees.

Construct the heavy-path tree \(T\) of \(T\). Then, construct a drawing of \(T\) recursively according to a bottom-up traversal of \(T\). At each step of the traversal, consider a path \(\mu \in T\). We associate \(\mu\) with a half-disk \(D_\mu\) of radius \(6^{h-d_\mu}n_\mu\), where \(h\) is the height of \(T\) and \(d_\mu\) is the depth of \(\mu\). Refer to Figure 5a. The goal is to construct a drawing with ply-number at most \(2(h - d_\mu + 1)\) of the subtree \(T_\mu\) rooted at \(v_\mu\), augmented with the anchor \(a_\mu\) of \(\mu\) and with edge \((a_\mu, v_\mu)\), inside \(D_\mu\) in such a way that \(a_\mu\) lies on the center of \(D_\mu\) and all the vertices of \(\mu\) lie along the radius of \(D_\mu\) that is perpendicular to the diameter delimiting \(D_\mu\).

If \(\mu = (v_1, \ldots, v_m)\) is a leaf of \(T\), place \(a_\mu\) on the center of \(D_\mu\) and the vertices of \(\mu\) along the radius of \(D_\mu\) perpendicular to the diameter delimiting it, so that each edge has length 1. This drawing has ply-number 1 and satisfies the required properties by construction.

If \(\mu = (v_1, \ldots, v_k)\) is not a leaf, let \(v_1, \ldots, v_k\) be its children. Assume inductively that for each child \(v_j\), with \(j = 1, \ldots, k\), there exists a drawing with
Fig. 5: (a) The half-disk D_μ associated with μ. (b) Illustration for the algorithm for ternary trees. Black dotted circles are the disks D_i; orange solid circles are the ply-disks. (c) Using a quarter-disk instead of a half-disk for 5-ary trees.

ply-number at most $2(h - d_\nu + 1)$ inside the half-disk D_{ν_j} with radius $6^{h-d_{\nu_j}}n_{\nu_j}$ with the required properties. We show how to construct a drawing with ply-number at most $2(h - d_\mu + 1)$ of T_μ inside the half-disk D_μ with radius $6^{h-d_\mu}n_\mu$ with the required properties; recall that $d_\mu = d_{\nu_j} - 1$, for each $j = 1, \ldots, k$.

Refer to Figure 5b. First, apply algorithm DrawPath to construct a 2-drawing of the path P composed of μ and of its anchor a_μ such that $\ell(a_\mu, v_1) \geq n_1$, $\ell(v_i, v_{i+1}) \geq n_i + n_{i+1}$, for $i = 1, \ldots, m - 1$, and the total length of the edges in P is at most $6n_\mu$. Then, scale the obtained drawing by a factor of $6^{h-d_\mu}n_\mu$, which implies that the total length of the edges in P is at most $6^{h-d_\mu}n_\mu$. Hence, it is possible to place the obtained drawing inside D_μ in such a way that a_μ lies on its center and the vertices of μ lie along the radius that is perpendicular to the diameter delimiting D_μ. Further, for each vertex $v_i \in \mu$, consider a disk D_i centered at v_i of diameter $6^{h-d_\mu}n_\mu$. Due to the scaling performed before, no two disks D_i and D_h, with $1 \leq i, h \leq m$, intersect with each other.

Consider now the at most two children ν_s and ν_t of μ whose anchor is v_i; since $d_\mu = d_{\nu_j} - 1$, for each $j = 1, \ldots, k$, and since $n_i = n_{\nu_s} + n_{\nu_t}$, the diameter of the half-disk D_{ν_s} and the one of the half-disk D_{ν_t} are both not larger than the diameter of disk D_i. Thus, we can plug the drawings of T_{ν_s} and T_{ν_t} lying inside D_{ν_s} and D_{ν_t}, which exist by induction, so that the centers of D_{ν_s} and D_{ν_t} coincide with the center of D_i, and the diameters delimiting D_{ν_s} and D_{ν_t} lie along edges (v_{i-1}, v_i) and (v_i, v_{i+1}); see Figure 5b. Hence, the constructed drawing of T_μ lies inside D_μ and satisfies all the required properties.

By Lemma 6, the ply-number of the 2-drawing of μ constructed by algorithm DrawPath is at most 2, and it remains the same after the scaling. Also, the ply-disk of any vertex in T_{ν_s} (in T_{ν_t}) entirely lies inside half-disk D_{ν_s} (half-disk D_{ν_t}) and hence inside disk D_i; thus, it does not overlap with the ply-disk of any vertex in a different subtree. Since the drawing of T_{ν_j} for each child ν_j of μ, has ply-number at most $2(h - d_{\nu_j} + 1)$, the drawing of T_μ has ply-number at most $2 + 2(h - d_{\nu_j} + 1) = 2(h - d_{\nu_j} + 2) = 2(h - d_\mu + 1)$, given that $d_\mu = d_{\nu_j} + 1$.

At the end of the traversal, when the root ρ of T has been visited, we have a drawing with ply-number at most $2(h - d_\rho + 1) \leq 2\log n$ of $T_\rho = T$ inside the half-disk D_ρ of radius $6^{h-d_\rho} n_\rho \leq 6\log n n = O(n^{1+\log 6}) = O(n^{3.6})$, and hence area $O(n^{7.2})$.

In order to extend the algorithm to work for 5-ary trees, we have to be able to fit inside the ply-disk D_i of each vertex $v_i \in \mu$ the drawings of the at most four subtrees T_{v_j} whose anchor is v_i. Hence, we associate with each node μ a quarter-disk D_μ (a sector of a disk with internal angle $\pi/2$; see Figure 5c), instead of a half-disk, still with radius $6^{h-d_\mu} n_\mu$, and we draw T_μ inside D_μ in such a way that the anchor a_μ of μ lies on the center of D_μ and all the vertices of μ lie along the radius of D_μ along the bisector of D_μ. Also in this case, the ply-disk of each vertex of μ entirely lies inside D_μ. We thus have the following.

Theorem 3. Every n-vertex 5-ary tree has a drawing with ply-number at most $2\log n$ and $O(n^{7.2})$ area.

To extend this approach for trees with larger degree, we should use a disk sector D_μ with an internal angle smaller than $\pi/2$. In this case, however, we could not guarantee that the ply-disk of each vertex of μ lies inside D_μ, and thus we could not compute the ply-number of the subtrees independently of each other.

5 Conclusions and Open Problems

In this work we considered drawings of trees with low ply-number. We proved that requiring the ply-number to be bounded by a constant is often a somewhat too strong limitation, as these drawings may not exist, even for bounded-degree trees, or may require exponential area. On the positive side, we showed that relaxing the requirement on the ply-number, allowing it to be bounded by a logarithmic function, makes the problem easier, as we gave an algorithm for constructing polynomial-area drawings with this property for trees with maximum degree 6.

Our work leaves several interesting open questions:

First, while it is known that stars, caterpillars, and binary trees admit constant-ply drawings in exponential area [4], we were able to prove that this is unavoidable only for stars and caterpillars; this leaves open the question on the area-requirements of constant-ply drawings of binary trees.

Second, it would be interesting to reduce the gap between binary trees, which always admit constant-ply drawings, and 10-ary trees, which may not admit any of such drawings. More in general, a characterization of the trees admitting these drawings is a fundamental open question.

Finally, in this paper we provided the first results on log-ply drawings of trees. It would be worth studying which trees (or other classes of graphs) always admit this type of drawings, possibly with polynomial area.
References

1. Alam, M.J., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Pupyrev, S.: Balanced circle packings for planar graphs. In: Duncan, C.A., Symvonis, A. (eds.) Graph Drawing. LNCS, vol. 8871, pp. 125–136. Springer (2014)
2. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Computational Geometry 9(12), 3 – 24 (1998)
3. Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., Mutzel, P.: Crossings and planarization. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization., pp. 43–85. Chapman and Hall/CRC (2013)
4. Di Giacomo, E., Didimo, W., Hong, S., Kaufmann, M., Kobourov, S.G., Liotta, G., Misue, K., Symvonis, A., Yen, H.: Low ply graph drawing. In: 6th International Conference on Information, Intelligence, Systems and Applications, IISA 2015. pp. 1–6. IEEE (2015)
5. Eades, P., Hong, S.: Symmetric graph drawing. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization., pp. 87–113. Chapman and Hall/CRC (2013)
6. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an algorithmic lens. In: GIS 2008. pp. 1–10. ACM (2008)
7. Fekete, S.P., Houle, M.E., Whitesides, S.: The wobbly logic engine: Proving hardness of non-rigid geometric graph representation problems. In: Battista, G.D. (ed.) Graph Drawing. LNCS, vol. 1353, pp. 272–283. Springer (1997)
8. Hlinený, P.: Contact graphs of curves. In: Brandenburg, F. (ed.) Graph Drawing, LNCS, vol. 1027, pp. 312–323. Springer (1995)
9. Hlinený, P.: Classes and recognition of curve contact graphs. J. Combin. Theory Ser. B 74(1), 87–103 (1998)
10. Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der Sächsischen Akad. der Wissenschaften zu Leipzig. Math.-Phys. Klasse 88, 141–164 (1936)
11. Liotta, G.: Proximity drawings. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization., pp. 115–154. Chapman and Hall/CRC (2013)
12. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)