REVIEW

Insect–plant–pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture

Piotr Trębicki1, Beatriz Dáder2, Simone Vassiliadis3 and Alberto Fereres4
1Biosciences Research, Department of Economic Development Jobs, Transport and Resources (DEDJTR), Horsham, VIC, Australia; 2INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), Campus International de Baillarguet, Montpellier, France; 3Biosciences Research, DEDJTR, La Trobe University, AgriBio Centre, 5 Ring Road, Bundoora, VIC, Australia and 4Institute of Agricultural Sciences-CSIC, Madrid, Spain

Abstract Carbon dioxide (CO2) is the main anthropogenic gas which has drastically increased since the industrial revolution, and current concentrations are projected to double by the end of this century. As a consequence, elevated CO2 is expected to alter the earth’s climate, increase global temperatures and change weather patterns. This is likely to have both direct and indirect impacts on plants, insect pests, plant pathogens and their distribution, and is therefore problematic for the security of future food production. This review summarizes the latest findings and highlights current knowledge gaps regarding the influence of climate change on insect, plant and pathogen interactions with an emphasis on agriculture and food production. Direct effects of climate change, including increased CO2 concentration, temperature, patterns of rainfall and severe weather events that impact insects (namely vectors of plant pathogens) are discussed. Elevated CO2 and temperature, together with plant pathogen infection, can considerably change plant biochemistry and therefore plant defense responses. This can have substantial consequences on insect fecundity, feeding rates, survival, population size, and dispersal. Generally, changes in host plant quality due to elevated CO2 (e.g., carbon to nitrogen ratios in C3 plants) negatively affect insect pests. However, compensatory feeding, increased population size and distribution have also been reported for some agricultural insect pests. This underlines the importance of additional research on more targeted, individual insect–plant scenarios at specific locations to fully understand the impact of a changing climate on insect–plant–pathogen interactions.

Key words carbon dioxide; climate change; food security; pests; trophic interactions

Introduction

Carbon dioxide (CO2) concentrations have now surpassed 400 μmol/mol, with the industrial revolution acknowledged as the triggering point before when its concentration was at around 280 μmol/mol (IPCC, 2013). Carbon dioxide is an important gas, affecting global temperatures, weather patterns and directly altering many biological functions, particularly plant photosynthesis (Kimball, 2016). Therefore, changes in CO2 concentrations will have significant impacts on all living organisms, including interactions between insects, plants and pathogenic microorganisms. Insects and pathogens transmitted by insects, despite the latest control strategies, can considerably reduce the yield and quality of all food crops (Chakraborty &Newton, 2011), posing great risks for...
future food security (Garrett et al., 2006; Griffiths et al., 2010; Luck et al., 2010, 2011; Trębicki, 2016). The demand for food is expected to double by 2050 and likewise, CO$_2$ concentrations are predicted to continue to increase (Tilman et al., 2011; Alexandratos & Bruinsma, 2012). Therefore, understanding the impacts of global climate change on insect, plant and pathogen interactions is imperative in order to sustain or increase future food production. Despite this, relatively few studies have examined the importance of climate change and its effect on the combined persistence of insects, microorganisms (viruses, bacteria, and fungi) and plants. However, general conclusions can be made on the effects of either temperature or CO$_2$ concentrations on particular groups of insects, plants and to a lesser extent, pathogens.

The geographic distribution of plants, including food crops, are expected to shift as certain areas will become unsuitable for food production due to reduced rainfall and increased temperature under future climates. In addition, indirect changes to host plant biochemistry (facilitated by aspects of climate change) are likely to have a greater impact on insect herbivores and pathogens compared to the direct effects of CO$_2$ or temperature (Coviella & Trumble, 1999; Ben-Yakir & Fereres, 2016). Increased CO$_2$ levels are generally beneficial for C$_3$ plants, increasing biomass, yield and enhancing water use efficiency due to increased stomata closure and rates of photosynthesis (Conroy et al., 1994; Aben et al., 1999; Seneewera et al., 2002; Ainsworth & Long, 2005; Fitzgerald et al., 2010; Fitzgerald et al., 2016). Additionally, eCO$_2$ (elevated CO$_2$) has been documented to increase plant canopy temperatures, alter plant carbon (C) and nitrogen (N) ratios (C : N), and decrease grain protein content, nutritional value and baking quality (Myers et al., 2014; Panozzo et al., 2014; Fernando et al., 2015; Kimball, 2016; Trębicki et al., 2016). Conversely, increased temperatures can reduce or reverse the positive effects of eCO$_2$, especially in agricultural regions where currently food production is proven to be extremely challenging (Wheeler et al., 1996; Gibson & Paulsen, 1999; Nuttall et al., 2012). The persistence and distribution of insects and pathogens will be further affected by changes in summer and winter temperatures, severity of drought, rain, humidity as well as cyclones and hurricanes (Cannon, 1998; Chakraborty et al., 2000; Rosenzweig et al., 2001; Jones, 2016). It is very likely that abiotic factors including temperature, CO$_2$ and rainfall will differentially affect insects, plants and pathogens under future climates. It is also reasonable to predict that the interactions between them may be altered, as was observed for aphids and virus in wheat (Trębicki et al., 2016), leading to changes in the severity of both insects and pathogens on the host plant. Other pathogens (such as fungi), which are not necessarily transmitted by insects, but rather coinfect the host together with the insects, can also significantly impact the plant and/or the insect itself, however, these effects are not well understood. Furthermore, biocontrol agents, particularly predators and parasitoids, will also be altered by climate change, as will their interactions with their insect hosts. As an example, the combined effects of increased temperature and drought had a detrimental effect on the aphid parasitoid Diaperetiella rapae which resulted in a less efficient control of aphids (Romo & Tylianakis, 2013).

This review aims to consolidate the current research regarding how climate change, specifically elevated CO$_2$ and temperature, may influence individual insect, plant and pathogens interactions with an emphasis on agricultural food production, thereby identifying important research gaps.

Insect vectors and plant pathogens

Currently, it is well understood that insect pests and plant diseases can substantially reduce crop yield and quality, and increase input costs. Sap-sucking insects can inflict direct damage to plants and are also important vectors of many plant viruses, which further complicates control practices (Hull, 2013). There can be a very close relationship between insects and the plant viruses they transmit. Insects and viruses can modify plants to their advantage, by increasing host suitability by increasing vector populations and by reducing plant resistance. Plant viruses can also increase the attractiveness of host plants for their insect vectors by changing the plants’ volatile profile and therefore increasing the probability of virus acquisition and subsequent spread (Eigenbrode et al., 2002; Bosque-Pérez & Eigenbrode, 2011; Ingwell et al., 2012; Fereres et al., 2016). As a result of virus presence, aphid behavior can also be changed; virus-free aphids have been shown to prefer virus-infected hosts, but viruliferous aphids preferred noninfected hosts (Ingwell et al., 2012). Since eCO$_2$ can significantly alter plant biochemistry, further changes in insect–plant interactions are expected. This, for example, may include exacerbating insect–pathogen severity, favoring one over the other (insect or pathogen), or altering plant defenses. Understanding how plants, insects or pathogens alone will respond to future climates will only partially provide appropriate information for future food security. Although there is limited information regarding the impacts of climate change (e.g., temperature and CO$_2$) on vectors of important plant virus (Table 1), only extensive studies focused on bipartite or
Table 1 Aphid (Hemiptera: Aphididae), plant and virus interaction studies under different climatic scenarios.

Insect vector	Host plant	Virus	Climatic scenario	Main focus	Main outcome	Reference
Myzus persicae	*Nicotiana benthamiana, Physalis floridana*	*Potato virus Y-O, Potato virus A, Potato leafroll virus*	Temperature	Plant–insect–virus	Optimum temperatures for proliferation of PVY-O/PVA and PLRV differed.	Chung et al., 2016
Pentalonia nigronervosa	Banana	*Banana bunchy top virus*	Temperature	Plant–insect	Adult aphids transmitted virus more efficiently at 25 °C and 30 °C than at 20 °C.	Anhalt and Almeida, 2008
Rhopalosiphum padi	Wheat	*Barley yellow dwarf virus*	Temperature	Plant–virus	Virus titer increased under higher temperature.	Nancarrow et al., 2014
M. persicae	Tobacco	*Cucumber mosaic virus*	Elevated CO₂	Plant–insect–virus	Aphid density increased on infected plants under aCO₂, but not under eCO₂.	Fu et al., 2010
M. persicae	Bell pepper	*Cucumber mosaic virus*	Elevated CO₂	Plant–insect–virus	ECO₂ reduced aphid fecundity and CMV transmission.	Däder et al., 2016
R. padi	Oat	*Barley yellow dwarf virus*	Elevated CO₂	Plant–virus	Biomass increased in infected oats grown under eCO₂.	Malmstrom and Field, 1997
R. padi	Wheat	*Barley yellow dwarf virus*	Elevated CO₂	Plant–virus	Virus titer increased in wheat under eCO₂.	Trębicki et al., 2015
R. padi	Wheat	*Barley yellow dwarf virus*	Elevated CO₂	Plant–virus	Aphid fecundity was reduced on virus-free plants, but not on virus-infected plants. Increased feeding observed on virus-free plants under eCO₂.	Trębicki et al., 2016
R. padi	Wheat	*Barley yellow dwarf virus*	Elevated CO₂	Plant–virus	ECO₂ decreased the fraction of oxidized ascorbate in plants.	Vandegeer et al., 2016
R. padi	Wheat	*Barley yellow dwarf virus*	Elevated CO₂	Plant–virus	Virus and eCO₂ changes primary plant metabolism and early virus symptom expression.	Vassiliadis et al., 2016
R. padi	Wheat	*Yellow dwarf virus*	Elevated CO₂	Plant–virus	Natural incidence of yellow dwarf viruses (including BYDV) increased in the field (FACE) by over 10% as a result of eCO₂.	Trębicki et al., 2017
tripartite interactions will effectively increase our knowledge so that future food production can be maintained.

Based on the knowledge from plant systems and their responses to climate change, current research is quickly expanding into more complex systems including higher trophic levels. Current technologies such as controlled environment growth chambers, CO$_2$ tunnels, open top chambers, and more advanced systems like Free Air Carbon Enrichment (FACE) facilities (Kimball, 2016), are being used to understand insect, plant and pathogen interactions, with some studies showing both general and specific trends for particular insect, plant and pathogen combinations (Jones, 2016; Tębjerg et al., 2016; Tębjerg et al., 2017).

Direct effects of climate change

The plant epidemic triangle illustrates the interactions between the environment, plant hosts and pathogens. Climate change can influence the environment from micro to macro scales (Jones, 2016), thereby altering the disease triangle in different ways (Fig. 1). These changes can either facilitate or reduce insect outbreaks, which are often specific to a particular insect exposed to a particular host. Increases in insect numbers, particularly vectors of plant pathogens, would likely increase the spread of viruses or bacteria that they transmit (Tębjerg et al., 2010, 2016; Jones, 2016). Predicting the direct effect of differential climate change scenarios on insect pests and plant diseases is complex. This is because the insect herbivores and their host plants are exposed to the same environmental conditions, yet they can respond to these changes differently. For example, changes in CO$_2$ concentration from ambient (400 μmol/mol) to elevated (650 μmol/mol) levels will not likely have a significant direct effect on insect herbivores (Coviella & Trumble, 1999), but it will have an indirect effect through changes to plant biochemistry. Hence, insect populations and pathogen spread can be impacted (Đáder et al., 2016; Tębjerg et al., 2016) as relatively small changes to diet composition can significantly affect the insect (Tębjerg et al., 2009). In many cases, it is difficult to assess the impacts of climate change on insect herbivores and pathogens, when changes in plant biochemistry mediated by either temperature or CO$_2$ overshadow the direct effects. However, use of artificial diet, or providing insects with fresh plants from those grown under ambient CO$_2$ (aCO$_2$) can be used to understand the direct effects of eCO$_2$.

Increased temperatures associated with future climate have been shown to directly affect chewing herbivores. As an example, *Pieris napi* L. larval developmental traits were affected by temperature, and larval time, pupal time and pupal mass were higher at lower temperatures, which resulted from increased leaf consumption at 17 °C versus 25 °C (Bauerfeind & Fischer, 2013a). Low temperature also caused higher adult stress resistance to desiccation and starvation in *P. napi*, *Spodoptera exigua* Hübnér and the woodland butterfly *Bicyclus anynana* Butler (Pi-jpe et al., 2007; Lee & Roh, 2010; Bauerfeind & Fischer; 2013b). The literature shows a variety of altered responses for sap-sucking insects to different aspects of climate change, but overall, aphid responses to temperature changes alone can be somewhat comparable. Aphids react strongly to small changes in temperatures due to their short generation times and great capacity for reproduction (Jones & Barbetti, 2012). Abundance of the green peach aphid, *Myzus persicae* Sulzer increased and its developmental time was reduced with increased temperature (Bezemer & Jones, 1998; Himanen et al., 2008). Adult and progeny weights decreased for *Macrosiphum euphorbiarum* Thomas and *M. persicae* at 26 °C and 24 °C, respectively, versus 20 °C (Flynn et al., 2006; Himanen et al., 2008). The lettuce aphid, *Nasonovia ribisnigri* had a much shorter developmental time at high temperatures but also a much higher mortality than at lower temperatures (Diaz & Fereres, 2005). Authors concluded that the lettuce aphid is better adapted to survive and reproduce at low (8 °C) than at high (28 °C) temperatures, and its best performance occurred within the 20–24 °C range. The corn aphid *Rhopalosiphum maidis* Fitch had the highest intrinsic rate of increase under higher temperature (26 °C) and increased CO$_2$ (750 μmol/mol) (Xie et al., 2014).

In the context of global climate change, a small increase in temperature during winter can alter aphid peak densities and more importantly, cause aphid flights to occur earlier in the season, increasing the chance of virus pathogen outbreaks and altering the timing of outbreaks relative to crop development stage. Temperature increase will also favor the proportion of alate morphs over apterous morphs (Diaz & Fereres, 2005), which may expand virus disease epidemics over long distances. Higher temperature and CO$_2$ increased *R. maidis* alate production, which may enhance aphid migration and dispersal with subsequent spread of plant viruses (Xie et al., 2014). These results indicate that the combined effects of both elevated temperature and CO$_2$ level on aphid biology may facilitate greater virus spread and exacerbate crop damage. Whiteflies, especially *Bemisia tabaci* Gennadius, are serious pests and vectors of many plant pathogens, decreasing the yield and quality of fruit and plants, or killing the host altogether. Overall, it has been demonstrated that 28 °C was most favorable for *B. tabaci* fitness; however reproduction parameters such as oviposition and nympha
Insects, plants, and pathogens under future climate

Fig. 1 Illustration of the tripartite interactions (disease triangle) between plant, insect and pathogens, influencing one another and by different environmental factors. Solid lines represent direct effects of elevated CO$_2$ (eCO$_2$), dashed lines represent indirect effects of eCO$_2$ changes via plant biochemistry or changes mediated through virus or insect vectors.

survival were optimal between 28 °C and 33 °C, with net reproductive success declining at 33 °C (Curnutte et al., 2014). Therefore, rising temperatures would also increase the risk of epidemics of viral pathogens transmitted by whiteflies. Whiteflies have shown unchanged life history under eCO$_2$ (Curnutte et al., 2014). However, the presence of Tomato yellow leaf curl virus (TYLCV) increased developmental rate and susceptibility to thermal stress in B. tabaci (Q biotype) (Pusag et al., 2012).

The severity of virus infection can also be significantly altered by increased temperature. Barley/Cereal yellow dwarf virus (B/CYDV), a phloem restricted pathogen of cereals worldwide, is exclusively transmitted by aphids and can result in significant losses ranging from 9% to 79% (Sward & Lister, 1987; McKirdy et al., 2002). Incidence of B/CYDV depends on viruliferous aphid numbers and dispersal, which can be affected directly by temperature and wind. Additionally, timing of infection and virus titer can also influence the severity of this pathogen with early infection, significantly reducing yield and increasing virus titer and therefore the chance of disease spread. For example, future elevated temperatures predicted for grain growing regions of Australia were simulated in growth chamber experiments with results showing increased and earlier peak of virus titer associated with elevated temperature (Nancarrow et al., 2014). In this case, the increased virus titer observed under higher temperature can further escalate disease progression resulting in greater yield losses, but above all, it can increase aphid prevalence and cause greater virus spread.

Indirect effects of climate change mediated through changes to plant hosts

Plants encounter a variety of abiotic factors, such as extreme temperatures, CO$_2$ or drought, and biotic factors including insect herbivory and infection by viral, bacterial or fungal pathogens. These stresses can substantially alter the microclimate by influencing plant growth, water use and transpiration, and by modifying plant biochemistry to favor insects. Additionally, infection with a pathogen can modify host appearance and physiology, making it more attractive to vectors (Mauck et al., 2010; Bosque-Pérez & Eigenbrode, 2011; Ingwell et al., 2012; Fereres et al., 2016).

Increasing CO$_2$ is not only the main driver for global climate change through trapping heat, it also plays an important role in plant growth and metabolism as it is the substrate for photosynthesis (Ziska, 2008). The main reported effects on plants include increased biomass and canopy size, earlier canopy development, higher photosynthetic rates and reduced stomatal conductance (Ainsworth & Long, 2005; Ainsworth & Rogers, 2007;
Kimball, 2016). At the same time, eCO₂ causes chemical changes such as the accumulation of nonstructural carbohydrates (Ainsworth et al., 2008; Gao et al., 2008; Johnson & Riegler, 2013; Ryan et al., 2014a) and a decrease in plant N concentration and grain protein content (Taub & Wang, 2008; Ryan et al., 2014b; Dáder et al., 2016; Trębicki et al., 2016). The reduction in stomatal conductance also leads to a decrease in microminerals due to improved water uptake efficiency from the soil (Taub & Wang, 2008). Insects and pathogens depend on plant water and nutritional status for sustenance and habitat. Therefore, changes in host nutritional quality and resistance are likely to indirectly impact the performance and feeding behavior of insect pests, the interactions between insects and pathogens (Hughes & Bazzaz, 2001; Himanen et al., 2008; Sun et al., 2009a; Oehme et al., 2013; Stiling et al., 2013), and also the incidence and severity of plant pathogens (Malmstrom & Field, 1997; Luck et al., 2011; Jones & Barbetti, 2012; Trębicki et al., 2015).

Among the sap-feeding insects, aphids have responded either positively or negatively to CO₂-induced changes in plants without the presence of a pathogen (Coviella & Trumble, 1999; Newman et al., 2003). Although, overall trends among insects reared on plants exposed to eCO₂ show either a negative effect on population growth or increased feeding rates to compensate for lower N content. Plant defoliator insects (such as some lepidopterans and coleopterans) can engage in compensatory feeding of low-quality food to meet critical nutrient requirements, which may induce greater herbivore damage to both managed and natural ecosystems as CO₂ continues to increase (Cornelissen, 2011).

Aphids are one of the few examples where eCO₂ can increase population abundance, but this is often species and host specific (Robinson et al., 2012). For example, eCO₂ increased the abundance of Aphis gossypii Glover, on Gossypium hirsutum L., Sitobion avenae Fabricius on Triticum aestivum L. and Acyrthosiphon pisum Harris on Medicago truncatula Gaertn while also M. persicae on Solanum dulcamara L. and Arabidopsis thaliana L. and Rhopalosiphum maidis on Hordeum vulgare L. (Chen et al., 2004; Chen et al., 2005; Sun et al., 2013; Xie et al., 2014; Guo et al., 2014b). Elevated CO₂ also increased R. padi weight and growth rates on wheat (Sun et al., 2009a; Oehne et al., 2013). On the contrary, a negative response was found in A. pism abundance on Vicia faba L. and R. padi on Schedonorus arundinaceus Schreb (Hughes & Bazzaz, 2001; Ryan et al., 2014b) and wheat (Trębicki et al., 2016). Results suggested that eCO₂ was also detrimental for M. persicae overall fitness and adult weight on brassicaceae and A. gossypii on Capsicum annuum L. (Stacey & Fellows, 2002; Himanen et al., 2008; Oehme et al., 2013; Dáder et al., 2016). Brevicoryne brassicae L. colonized Brassica oleracea var. gemmifera L. at a lower extent after long-term exposure to increasing CO₂ (Klaiber et al., 2013). Several aphid species, such as M. euphorbiae and Aulacorthum solani Kaltenbach, have shown a neutral response (Hughes & Bazzaz, 2001; Flynn et al., 2006). In addition, aphid responses seem to be host and even genotype-specific, and can be linked to quantitative and qualitative changes in foliar amino acids (Johnson et al., 2014). Using the examples mentioned above, a similar species-specificity (including population size and feeding rates) was applied to other hemipteran insects such as planthoppers Nilaparvata lugens Stål, Laodelphax striatellus Fallen and Sogatella furcifera Horváth, which showed different abundance responses when raised on rice (Oryza sativa) under eCO₂ conditions (Wan et al., 2014).

The feeding behavior of insect vectors, particularly aphids, has been monitored under rising CO₂ by the electrical penetration graph (EPG) technique (Dáder et al., 2016; Trębicki et al., 2016), which provides a live real time visualization of plant penetration by insect mouthparts (Tjallingii, 1978; Trębicki et al., 2012). Decreased salivation into sieve elements, increased phloem sap ingestion and shorter nonpathway phase are among the responses observed for the aphid A. pism on M. truncatula and M. persicae on C. annuum (Guo et al., 2013; Dáder et al., 2016). On noninfected wheat plants, R. padi phloem feeding significantly increased by 34% when the plants were grown under eCO₂, but when infected with Barley yellow dwarf virus (BYDV, Luteovirus), no significant changes to feeding were observed as a result of increased CO₂ (Trębicki et al., 2016).

Feeding of late-instar Operophthera brumata L. larvae increased on leaves of Betula pendula Roth under eCO₂ because of inadequate host nutrition (Lavola et al., 1998). As a result of inferior host plant quality, herbivores were forced to consume more plant material to obtain necessary levels of nitrogen. Additionally, it has been demonstrated that the soil-dwelling insect Xylotrapus gideon L. has the potential to arrest the effects of eCO₂ on eucalypt physiology (Johnson & Riegler, 2013). Root damage caused by these insects impaired water uptake, which reduced photosynthesis activity and limited eucalyptus capacity for biomass accumulation under increasing CO₂.

The plant stress hypothesis predicts that environmental stresses on plants decrease host resistance to pests or pathogens by altering biochemical relationships and foliar chemistry (Bauerfeind & Fischer, 2013b). Effects on host plant quality are expected to be more pronounced when temperatures are high, due to less efficient growth...
and reduced time for compensatory feeding. Furthermore, prolonged drought limits vector populations, causing a potential decrease in pathogen spread and economic losses. However, higher temperatures usually increase plant susceptibility to virus inoculation and the rate of virus multiplication within the host plant, which causes an earlier appearance of disease symptoms (Kassanis, 1952; Matthews, 1991). Other responses include alteration of secondary pathways and defense signaling routes. As mean global temperatures increase, viruses adapted to warm regions are likely to expand alongside with vectors. Additionally, vectors can be further affected by climate change as it can lead to heavy rainfall events that could wash insects off foliage or effect their establishment. Epidemics of viruses transmitted by fungi or nematodes in the soil are also predicted to change in response to altered rainfall patterns, potentially increasing in temperate regions, but decreasing in sub-tropical regions (Jones & Barbetti, 2012).

There is a limited body of literature on the indirect consequences of rising CO2 on viral dynamics but the main assumption is that the larger amount of biomass (resulting from CO2 fertilization) could constitute an increased reservoir of infected tissue leading to a higher risk of virus transmission by insect vectors (Malmstrom & Field, 1997). Additionally, symptomatology of viruses can also be enhanced earlier or be more pronounced, expressed by increased virus titer and symptoms, making infected hosts more attractive to vectors (Trebciki et al., 2015; Vassiliadis et al., 2016). In this sense, BYDV incidence has been predicted to be greater in wheat (Trebciki et al., 2015), which was recently shown to increase by over 10% under eCO2 under outdoor, FACE conditions (Trebciki et al., 2017). On the other hand, a deviation of plant defenses from viruses toward pests appears to take place (Fu et al., 2010), causing resistance against infection with *Tobacco mosaic virus* (TMV, *Tobamovirus*) in *Solanum lycopersicum* L. (Zhang et al., 2015), *Potato virus Y* (PVY, *Potyvirus*) (Matros et al., 2006) in *Nicotiana tabacum* L. and *Cucumber mosaic virus* (CMV, *Cucumovirus*) in *N. tabacum* and *C. annuum* (Fu et al., 2010; Dáder et al., 2016).

Plant-pathogenic bacteria are most destructive under warm or moist climatic conditions, although prolonged heatwaves have the potential to diminish bacterial infections such as *Xanthomonas* and *Pseudomonas* species (Grondeau et al., 1994). Most bacteria are spread through moisture films, therefore, altered timing and amount of rainfall patterns due to climate change could be a critical driving element because bacteria can be washed into natural openings or wounds (Jones & Barbetti, 2012). These films are present under high relative humidity conditions so dry microclimate of the leaf surface would be a disadvantage for pathogen movement. There are limited findings that show that eCO2 may either accelerate or diminish bacterial epidemics (Ibe & Grogan, 1983; Shin & Yun, 2010). With regard to other pathogens, fungal epidemics could become less widespread in temperate regions where rainfall declines. However, eCO2 has been shown to increase the fecundity and severity of fungal pathogens and increased plant biomass can exacerbate this further (Garrett et al., 2006; Melloy et al., 2010; Chakraborty & Newton, 2011). Although the importance of fungal pathogens is paramount, the question of future climates on their induced disease severities and aggressiveness has been addressed in limited studies. Additionally, little is known about how the changes mediated by increased CO2, temperature and fungal infection affect insect establishment, feeding damage and population structure. It is quite apparent that the interactions between insects and pathogens, including fungal pathogens which are not vectored by the insects, are unrepresented in light of the future climate; however, they can inhabit the same host and modify/respond to changes in temperature, rainfall and CO2 in different ways, thus effecting each other.

Increasing CO2 also implies further consequences for interactions between plants and endophytic microorganisms. Recent findings suggest that nutrient exchange dynamics are indispensable for maintaining the symbiotic relationship between fungal endophytes and their hosts and may be altered under eCO2, where endophyte presence is increased (Ryan et al., 2014b). Enhanced photosynthetic rates allow for the translocation of more carbohydrates from leaves to roots, favoring nodule development and, at the same time, the presence of nitrogen-fixing rhizobial bacteria associated with roots. This enhances the rate of photosynthesis as a consequence of the increased sink (Rylls et al., 2013; Baslam et al., 2014).

Plant metabolism and defense: insect pests and viruses

Excess carbon resulting from CO2 fertilization can be allocated to other carbon-based compounds (such as soluble carbohydrates), resulting in the dilution of other essential nutrients (Bartelt et al., 1990; Awmack & Leather, 2002). This can lead to compensatory feeding and increased consumption rates. CO2 enrichment has been shown to reduce the total concentrations of amino acids in barley and in cotton plants grown under CO2 enrichment (Sicher, 2008; Sun et al., 2009b). Similarly, amino acid concentrations have been found to decrease in the phloem of *Gossypium hirsutum* L. plants grown under elevated CO2,
whilst increased amounts were found in cotton aphids (A. gossypii) after feeding on CO₂-enriched cotton (Sun et al., 2009a). Moreover, both feeding rates and ingestion efficiency of the sycamore aphid (Drepanosiphum platanoidis Schr.) increased as the amino acid concentrations of its host plant, sycamore (Acer pseudoplatanus L.) decreased (Dixon et al., 1993).

Plant primary metabolism is also altered by the inclusion of virus and vector associations. Recent work has assessed the primary metabolism of wheat grown under eCO₂ (650 μmol/mol) and infected with BYDV (Vassiliadis et al., 2016). Results showed that eCO₂ significantly enhances the composition of wheat carbohydrates, including fructose, mannitol and trehalose, irrespective of BYDV infection. Virus infection, however, enhanced amino acids such as histidine, lysine, phenylalanine and tryptophan, which are documented as being essential to aphid diet (Dadd, 1985), and this was irrespective of CO₂ concentration. Because the amino acid content in plants is species-specific, it is difficult to predict exactly how the amino acid content of important crop plants and their interactions with insect pests and pathogens will change under future atmospheric CO₂ conditions, thus further biochemical work is required.

Further, increased photosynthetic rates caused by greater CO₂ concentration can impact plant metabolism by re-allocating excess carbon to structural compounds such as pectin and cellulose or to carbon-based secondary metabolites such as phenolics, tannins and terpenoids (Sun et al., 2009a). Such changes in biochemistry can modify how plants interact with insect pests and invading pathogens.

Secondary defense metabolites (allelochemicals) are produced by plants when attacked by herbivores, and this generally involves signaling by phytohormones such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). Elevated CO₂ is likely to negatively impact JA and ET-mediated defenses in plants, but positively enhances that of SA. For example, a down-regulation of the defense genes relating to the JA pathways has been observed in soybean (Glycine max L.) grown under eCO₂, allowing increased susceptibility of the plants to herbivory by the Japanese beetle (Popillia japonica Newman) and the western corn rootworm (Diabrotica virgifera virgifera LeConte) (Zavala et al., 2008, 2009, 2013). JA suppression is also known to benefit aphids by allowing them more time to locate the phloem, whilst enhanced SA signaling reduces phloem probing time, thereby reducing aphid fitness (Casteel et al., 2012; Guo et al., 2014a; Sun et al., 2016).

This signaling cascade gives rise to alternative secondary defense metabolites which may also be impacted by CO₂ enrichment. Chickpea plants (Cicer arrietinum L.) grown under eCO₂ (750 μmol/mol) expressed higher levels of resistance to the pod borer, Helicoverpa armigera Hübn. Compared to ambient CO₂ (350 μmol/mol), these plants also had greater levels of phenols, condensed tannins, and the defensive enzymes, peroxidase (POD), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) (Sharma et al., 2016). DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), a major hydroxamic acid (benzoxazanoid) found in wheat and other cereals, has been shown to have toxic and antifeedings properties toward aphids (Bohidar et al., 1986; Thackray et al., 1990; Nicol et al., 1992; Givovich & Niemeyer, 1994; Elek et al., 2013; Vaughan et al., 2016). R. padi population sizes were negatively correlated with foliar concentrations of DIMBOA in wheat grown under elevated CO₂ (700 μmol/mol) and elevated soil moisture levels (40% and 60% of field water capacity) (Zhang et al., 2003).

The elicitation of plant defensive metabolites can also impact the way in which viruses are transmitted to host plants. For example, aphids were found to preferentially select wheat leaves with lower concentrations of hydroxamic acids and also spent more time attempting to reach the phloem vessels compared to those with higher concentrations (Givovich & Niemeyer, 1991). In turn, viruliferous aphids infected fewer plants, which had high levels of DIMBOA. It was suggested that plants expressing higher concentrations of hydroxamic acids under field conditions would be more tolerant to BYDV infection compared to those with lower concentrations (Givovich & Niemeyer, 1991). Nonetheless, viruses can modify their host plants to indirectly manipulate their vectors. This is achieved by altering sap amino acid compositions (Ajayi, 1986) and by modulating plant defense pathways (Ziebell et al., 2011). Secondary metabolites emitted as volatile organic compounds (VOCs) are also induced by virus-infected plants and are important in aphid host selection and behavior (Pickett et al., 1992; Jan et al., 1996; Visser et al., 1996). For example, several studies have shown that non-viruliferous R. padi preferentially migrate toward BYDV-infected plants (Jiménez-Martínez et al., 2004; Medina-Ortega et al., 2009; Bosque-Pérez & Eigenbrode, 2011; Ingwell et al., 2012). In contrast, methyl salicylate acts as a repellent to aphids and may be responsible for host discrimination during migration (Glinwood & Pettersson, 2000).

Since many viruses are dependent on insect vectors, it is difficult to separate the biochemical changes in plants caused by insect feeding or by the virus itself. For instance, research has shown that tobacco plants grown under eCO₂ (750 μmol/mol) produced greater secondary
defense metabolites when infected with CMV, but the authors attributed this more strongly to aphid herbivory rather than virus infection, and these defenses are thought to be transferred from the virus to aphids (Fu et al., 2010). Alternative studies have, however, elucidated the biochemical impact of nonvectored viruses in plants. Accompanied by lower virus titers, phenylpropanoid levels including chlorogenic acid (CGA) and the coumarins, scopolin, and scopoletin, were increased in the foliage of tobacco infected with PVY and grown under eCO₂ (1000 μmol/mol) (Matros et al., 2006). Additionally, the phytohormone SA was dramatically enhanced in tomato plants infected with TYLCV and TMV when grown under eCO₂ (~750 and 800 μmol/mol respectively) and this was mirrored by reduced disease incidence and severity (Huang et al., 2012; Zhang et al., 2015).

Elevated temperatures have also been associated with increased disease symptoms and virus titer in wheat infected with BYDV (Nancarrow et al., 2014). In contrast, increased resistance to Potato virus X (PVX) or PYV in tobacco plants (N. glutinosa) (Ma et al., 2015), and to PVX in N. benthamiana (Aguilar et al., 2015) has been documented with elevated temperatures. Furthermore, ozone (O₃) also contributes to plant resistance against viruses. Soybean plants infected with Soybean mosaic virus (SMV) and exposed to elevated O₃ induced viral defense-related genes as well as genes synthesizing flavonoid production. This resulted in elevated concentrations of quercetin and kaempferol derivatives, and was accompanied by lower disease severity (Bilgin et al., 2008).

Plant metabolism and defense: fungi and bacteria

Climatic changes are also likely to impact the defense response of plants to invading bacterial and fungal pathogens. High temperatures have resulted in increased disease symptoms and inhibited resistance gene-mediated responses in Arabidopsis infected with Pseudomonas syringae pv. tomato (Wang et al., 2009). Conversely, eCO₂ lowered the incidence and severity of disease induced by P. syringae in tomato plants, but enhanced the susceptibility of tomato to the fungal pathogen, Botrytis cinerea; and this was due to the silencing of SA and JA-mediated pathways (Zhang et al., 2015). Furthermore, phenolic compounds such as flavonoids play an important role in plant resistance to microbes (Treutter, 2006). Soybean grown under eCO₂ and elicited with a fungal elicitor, β-glucan (from Phytophthora sojae), has been shown to accumulate high concentrations of glyceollins (phytoalexins) (dos Santos Kretzschmar et al., 2009).

Recent work has assessed the acclimation of both fungal pathogens and plants to eCO₂ concentrations, with results showing increased Fusarium head blight and Septoria tritici blotch (STB) disease severities occurring in wheat infected with Fusarium graminearum and Zymoseptoria tritici, respectively (Váry et al., 2015). Similarly, the combination of both eCO₂ and drought enhanced maize susceptibility to F. verticillioides (FV), producing higher levels of the carcinogenic mycotoxin, fumonisin (Vaughan et al., 2016). A compromised host defense response was supported by the dampening of SA and JA response as well as reduced maize benzoxazanoid defense metabolites. In contrast, terpenoid phytoalexins were significantly influenced by the combined effects of elevated CO₂, drought and infection, as observed by increased concentrations of zealexins and kauralexins (Vaughan et al., 2016).

Plants exposed to differing climatic conditions will impact future pathogen and insect interactions. The continuing increases in atmospheric CO₂, O₃, and temperature threaten agriculturally important crops. It is therefore critical to continue studying the alterations in plant biochemistry in association with different pests and pathogens to help mitigate disease spread and crop loss, and enhance food security in the future.

Conclusions

Uncertainty around future climate, its effect on the Earth, the biosphere and specifically on humans, results in ever-increasing attention by governments, scientists and the general public. Agriculture and food security will be on the forefront, as the demand for food will increase and potentially, land and suitable climatic conditions will decrease. Identifying the difficulties which affect agriculture, including insect pests and plant pathogens associated with a changing climate, has progressed rapidly in the last decade, revealing a high level of scientific complexity. Changes to plant distribution, growth rates and biochemistry mediated by future climates will likely have a greater impact on insect and pathogen dispersal and spread compared to the direct impacts of climate change. Ongoing research is therefore required to further understand these interactions. However, since real-world situations are much more complex than common laboratory or field practices, additional research is needed to incorporate insects, plants and pathogens overlaid with different climatic variables, often for specific and for each pathosystem. General trends can be identified for plants, insects and pathogen when exposed to increased temperature and/or CO₂. However, to protect specific crops against pests or diseases within particular geographic locations, direct and
site specific approaches might be required; therefore, a detailed understanding of the biotic and abiotic factors for the particular location is needed to model the future effects of pests and diseases on the food crops.

Acknowledgments

We thank Agriculture Victoria, Bioscience Research and the Grains Research and Development Corporation (GRDC), Australia for support. We also thank Institute of Agricultural Sciences-CSIC, Madrid, Spain; and INRA, Campus International de Baillarguet, Montpellier, France for in-house funding to support this review. B.D. is supported by the AgreenSkills fellowship program which has received funding from the EU’s Seventh 470 Framework Program under grant agreement No. FP7-609398 (AgreenSkills+ contract). Additionally, we thank Nilsa Bosque-Perez, Narelle Nancarrow, Hollie Riley and Glenn Fitzgerald for comments on early versions of the manuscript.

Disclosure

The authors declare that they have no conflict of interest.

References

Aben, S.K., Seneweera, S.P., Ghannoum, O. and Conroy, J.P. (1999) Nitrogen requirements for maximum growth and photosynthesis of rice, Oryza sativa L. cv. Jarrah grown at 36 and 70 Pa CO₂. Functional Plant Biology, 26, 759–766.

Aguilar, E., Allende, L., Del Toro, F.J., Chung, B.N., Canto, T. and Tenllado, F. (2015) Effects of elevated CO₂ and temperature on pathogenicity determinants and virulence of Potato virus X/Potyvirus–associated synergism. Molecular Plant–Microbe Interactions, 28, 1364–1373.

Ainsworth, E.A., Beier, C., Calfapietra, C., Ceulemans, R., Durand-Tardif, M., Farquhar, G.D. et al. (2008) Next generation of elevated [CO₂] experiments with crops: a critical investment for feeding the future world. Plant, Cell & Environment, 31, 1317–1324.

Ainsworth, E.A. and Long, S.P. (2005) What have we learned from 15 years of free–air CO₂ enrichment (FACE)? A meta–analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. New Phytologist, 165, 351–372.

Ainsworth, E.A. and Rogers, A. (2007) The response of photosynthesis and stomatal conductance to rising [CO₂]: mechanisms and environmental interactions. Plant, Cell and Environment, 30, 258–270.

Ajayi, B.O. (1986) The effect of Barley yellow dwarf virus on the amino acid composition of spring wheat. Annals of Applied Biology, 108, 145–149.

Alexandratos, N. and Bruinsma, J. (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03.

Anhalt, M. and Almeida, R. (2008) Effect of temperature, vector life stage, and plant access period on transmission of Banana bunchy top virus to banana. Phytopathology, 98, 743–748.

Awmack, C. and Leather, S. (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47, 817–844.

Bartelt, R.J., Mcguire, M.R. and Black, D.A. (1990) Feeding stimulants for the European corn borer (Lepidoptera: Pyralidae): additives to a starch-based formulation for Bacillus thuringiensis. Environmental Entomology, 19, 182–189.

Baslam, M., Antolin, M.C., Gogorcena, Y., Muñoz, F. and Goicoechea, N. (2014) Changes in alfalfa forage quality and stem carbohydrates induced by arbuscular mycorrhizal fungi and elevated atmospheric CO₂. Annals of Applied Biology, 164, 190–199.

Bauerfeind, S.S. and Fischer, K. (2013a) Targeting the right trait: the relative suitability of a host plant depends on the herbivore trait considered and ambient temperature. Basic and Applied Ecology, 14, 555–564.

Bauerfeind, S.S. and Fischer, K. (2013b) Testing the plant stress hypothesis: stressed plants offer better food to an insect herbivore. Entomologia Experimentalis et Applicata, 149, 148–158.

Ben-Yakir, D. and Fereres, A. (2016) The effects of UV radiation on arthropods: a review of recent publications (2010–2015). Acta Horticulure, 1134, 335–342.

Bezem, T.M. and Jones, T.H. (1998) Plant–insect herbivore interactions in elevated atmospheric CO₂: quantitative analyses and guild effects. Oikos, 82, 212–222.

Bilgin, D.D., Aldea, M., O’neill, B.F., Benitez, M., Li, M., Clough, S.J. et al. (2008) Elevated ozone alters soybean–virus interaction. Molecular Plant–Microbe Interactions, 21, 1297–1308.

Bohidar, K., Watten, S. and Niemeyer, H. (1986) Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. Annals of Applied Biology, 109, 193–198.

Bosque-Pérez, N.A. and Eigenbrode, S.D. (2011) The influence of virus-induced changes in plants on aphid vectors: insights from luteovirus pathosystems. Virus Research, 159, 201–205.

Cannon, R.J.C. (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Global Change Biology, 4, 785–796.

Casteel, C.L., Segal, L.M., Niziolok, O.K., Berenbaum, M.R. and Delucia, E.H. (2012) Elevated carbon dioxide increases salicylic acid in Glycine max. Environmental Entomology, 41, 1435–1442.
Chakraborty, S. and Newton, A.C. (2011) Climate change, plant diseases and food security: an overview. Plant Pathology, 60, 2–14.

Chakraborty, S., Tiedemann, A. and Teng, P. (2000) Climate change: potential impact on plant diseases. Environmental Pollution, 108, 317–326.

Chen, F., Ge, F. and Parajulee, M.N. (2005) Impact of elevated CO₂ on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis. Environmental Entomology, 34, 37–46.

Chen, F., Wu, G. and Ge, F. (2004) Impacts of elevated CO₂ on the population abundance and reproductive activity of aphid Sitobion avenae Fabricius feeding on spring wheat. Journal of Applied Entomology, 128, 723–730.

Chung, B.N., Canto, T., Tenllado, F., San Choi, K., Joa, J.H., Ahn, J.J. et al. (2016) The effects of high temperature on infection by Potato virus Y, Potato virus A, and Potato leafroll virus. The Plant Pathology Journal, 32, 321.

Conroy, J., Seneweera, S., Basra, A., Rogers, G. and Nissen-Wooler, B. (1994) Influence of rising atmospheric CO₂ concentrations and temperature on growth, yield and grain quality of cereal crops. Functional Plant Biology, 21, 741–758.

Cornelissen, T. (2011) Climate change and its effects on terrestrial insects and herbivory patterns. Neotropical Entomology, 40, 155–163.

Coviella, C.E. and Trumble, J.T. (1999) Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Conservation Biology, 13, 700–712.

Curnutte, L.B., Simmons, A.M. and Abd-Rabou, S. (2014) Climate change and Bemisia tabaci (Hemiptera: Aleyrodidae): impacts of temperature and carbon dioxide on life history. Annals of the Entomological Society of America, 107, 933–943.

Dadd, R.H. (1985) Nutrition: organisms. Comprehensive Insect Physiology, Biochemistry and Pharmacology (eds. G. Kerkut & L. Gilbert). Pergamon Press, Oxford, UK.

Dáder, B., Fereres, A., Moreno, A. and Trebicki, P. (2016) Elevated CO₂ impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability. Scientific Reports, 6, 19120.

Diaz, B.M. and Fereres, A. (2005) Life table and population parameters of Nasonovia ribisnigri (Homoptera: Aphididae) at different constant temperatures. Environmental Entomology, 34, 527–534.

Dixon, A., Wellings, P.W., Carter, C. and Nichols, J. (1993) The role of food quality and competition in shaping the seasonal cycle in the reproductive activity of the sycamore aphid. Oecologia, 95, 89–92.

Dos Santos Kretzschmar, F., Aidar, M.P.M., Salgado, I. and Braga, M.R. (2009) Elevated CO₂ atmosphere enhances production of defense-related flavonoids in soybean elicited by NO and a fungal elicitor. Environmental and Experimental Botany, 65, 319–329.

Eigenbrode, S.D., Ding, H., Shiel, P. and Berger, P.H. (2002) Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proceedings of the Royal Society of London, 269, 455–460.

Elek, H., Smart, L., Martin, J., Ahmad, S., Gordon-Weeks, R., Welham, S. et al. (2013) The potential of hydroxamic acids in tetraploid and hexaploid wheat varieties as resistance factors against the bird-cherry oat aphid, Rhopalosiphum padi. Annals of Applied Biology, 162, 100–109.

Fereres, A., Penaflor, M.F.G., Favaro, C.F., Azevedo, K.E., Landi, C.H., Maluta, N.K. et al. (2016) Tomato infection by whitefly-transmitted circulative and non-circulative viruses induce contrasting changes in plant volatiles and vector behaviour. Virusx, 8, 225. https://doi.org/10.3390/v8080225.

Fernando, N., Panozzo, J., Tausz, M., Norton, R., Fitzgerald, G. and Khan, A. (2015) Rising CO₂ concentration altered wheat grain proteome and flour rheological characteristics. Food Chemistry, 170, 448–454.

Fitzgerald, G., Norton, R., Tausz, M., O’Leary, G., Seneweera, S., Posch, S. et al. (2010) Future effects of elevated CO₂ on wheat production—an overview of FACE research in Victoria, Australia. Proceedings of 15th Agronomy Conference, pp. 15–18.

Fitzgerald, G., Tausz, M., O’Leary, G., Mollah, M., Tausz-Posch, S., Seneweera, S. et al. (2016) Elevated atmospheric [CO₂] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves. Global Change Biology, 22, 2269–2284.

Flynn, D.F., Sudderth, E.A. and Bazzaz, F. (2006) Effects of aphid herbivory on biomass and leaf-level physiology of Solanum dulcamara under elevated temperature and CO₂. Environmental and Experimental Botany, 56, 10–18.

Fu, X., Ye, L., Kang, L. and Ge, F. (2010) Elevated CO₂ shifts the focus of tobacco plant defences from Cucumber mosaic virus to the green peach aphid. Plant, Cell and Environment, 33, 2056–2064.

Gao, F., Zhu, S.R., Sun, Y.C., Du, L., Parajulee, M., Kang, L. et al. (2008) Interactive effects of elevated CO₂ and cotton cultivar on tri–trophic interaction of Gossypium hirsutum, Aphis gossypii, and Propylaea japonica. Environmental Entomology, 37, 29–37.

Garrett, K., Dendy, S., Frank, E., Rouse, M. and Travers, S. (2006) Climate change effects on plant disease: genomes to ecosystems. Annual Review of Phytopathology, 44, 489–509.

Gibson, L. and Paulsen, G. (1999) Yield components of wheat grown under high temperature stress during reproductive growth. Crop Science, 39, 1841–1846.

Givovich, A. and Niemeyer, H. (1991) Hydroxamic acids affecting Barley yellow dwarf virus transmission by the aphid Rhopalosiphum padi. Entomologia Experimentalis et Applicata, 59, 79–85.
Givovich, A. and Niemeyer, H.M. (1994) Effect of hydroxamic acids on feeding behaviour and performance of cereal aphids (Hemiptera: Aphididae) on wheat. *European Journal of Entomology*, 91, 371–371.

Glinwood, R.T. and Pettersson, J. (2000) Change in response of *Rhopalosiphum padi* spring migrants to the repellent winter host component methyl salicylate. *Entomologia Experimentalis et Applicata*, 94, 325–330.

Griffiths, W., Aurambout, J., Parry, H., Trębicki, P., Kriticos, D., O’Leary, G. *et al.* (2010) Insect–pathogen–crop dynamics and their importance to plant biosecurity under future climates: Barley yellow dwarf virus and wheat—a case study. *Proceedings of 15th Agronomy Conference*.

Grondeau, C., Samson, R. and Sands, D. (1994) A review of thermotherapy to free plant materials from pathogens, especially seeds from bacteria. *Critical Reviews in Plant Sciences*, 13, 57–75.

Guo, H., Sun, Y., Li, Y., Liu, X., Wang, P., Zhu-Salzman, K. *et al.* (2014a) Elevated CO2 alters the feeding behaviour of the pea aphid by modifying the physical and chemical resistance of *Medicago truncatula*. *Plant, Cell & Environment*, 37, 2158–2168.

Guo, H., Sun, Y.C., Li, Y., Liu, X., Zhang, W. and Ge, F. (2014b) Elevated CO2 decreases the response of the ethylene signaling pathway in *Medicago truncatula* and increases the abundance of the pea aphid. *New Phytologist*, 201, 279–291.

Guo, H., Sun, Y.C., Li, Y., Tong, B., Harris, M., Zhu-Salzman, K. *et al.* (2013) Pea aphid promotes amino acid metabolism both in *Medicago truncatula* and bacteriocytes to favor aphid population growth under elevated CO2. *Global Change Biology*, 19, 3210–3223.

Himanen, S.J., Nissinen, A., Dong, W.X., Nerg, A., Stewart, C., Poppy, G.M. *et al.* (2008) Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: are *Bacillus thuringiensis* (Bt) plants more susceptible to nontarget herbivores in future climate? *Global Change Biology*, 14, 1437–1454.

Huang, L., Ren, Q., Sun, Y.C., Ye, L., Cao, H. and Ge, F. (2012) Lower incidence and severity of tomato virus in elevated CO2 is accompanied by modulated plant induced defence in tomato. *Plant Biology*, 14, 905–913.

Hughes, L. and Bazzaz, F.A. (2001) Effects of elevated CO2 on five plant–aphid interactions. *Entomologia Experimentalis et Applicata*, 99, 87–96.

Hull, R. (2013) *Plant Virology*. London, Academic press.

Ibe, S. and Grogan, R. (1983) Effect of controlled oxygen and carbon dioxide atmospheres on bacterial growth rate and soft rot of tomato fruits caused by *Pseudomonas marginalis*. *Plant Disease*, 67, 1005–1008.

Ingwell, L.L., Eigenbrode, S.D. and Bosque-Pérez, N.A. (2012) Plant viruses alter insect behavior to enhance their spread. *Scientific Reports*, 2, 1–6.

IPCC (2013) *Climate Change 2013: The Physical Science Basis*. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press.

Jan, P., Andres, Q. and Elham, F.A. (1996) Aphid antixenosis mediated by volatiles in cereals. *Acta Agriculturae Scandica B-Plant Soil Sciences*, 46, 135–140.

Jiménez-Martínez, E.S., Bosque-Pérez, N.A., Berger, P.H., Zemeta, R.S., Ding, H. and Eigenbrode, S.D. (2004) Volatile cues influence the response of *Rhopalosiphum padi* (Homoptera: Aphididae) to Barley yellow dwarf virus–infected transgenic and untransformed wheat. *Environmental Entomology*, 33, 1207–1216.

Johnson, S., Ryalls, J. and Karley, A. (2014) Global climate change and crop resistance to aphids: contrasting responses of lucerne genotypes to elevated atmospheric carbon dioxide. *Annals of Applied Biology*, 165, 62–72.

Johnson, S.N. and Riegler, M. (2013) Root damage by insects reverses the effects of elevated atmospheric CO2 on eucalypt seedlings. *PLoS ONE*, 8, e79479.

Jones, R.A. and Barbetti, M.J. (2012) Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. *Plant Sciences Reviews*, 22, 1–31.

Jones, R.A.C. (2016) Future scenarios for plant virus pathogens as climate change progresses. *Advances in Virus Research*, 95, 87–147.

Kassanis, B. (1952) Some effects of high temperature on the susceptibility of plants to infection with viruses. *Annals of Applied Biology*, 39, 358–369.

Kimball, B.A. (2016) Crop responses to elevated CO2 and interactions with H2O, N, and temperature. *Current Opinion in Plant Biology*, 31, 36–43.

Klaiber, J., Najar-Rodriguez, A.J., Piskorski, R. and Dorn, S. (2013) Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect. *Planta*, 237, 29–42.

Lavola, A., Julkonen-Titto, R., Roininen, H. and Aphalo, P (1998) Host-plant preference of an insect herbivore mediated by UV-B and CO2 in relation to plant secondary metabolites. *Biochemical Systematics and Ecology*, 26, 1–12.

Lee, K.P. and Roh, C. (2010) Temperature–nutrient interactions affecting growth rate in an insect ectotherm. *Entomologia Experimentalis et Applicata*, 136, 151–163.

Luck, J., Aurambout, J.P., Finlay, K., Chakraborty, S., Parry, H., Griffiths, W. *et al.* (2010) An integrative approach to understanding the pest and disease threats to agricultural biosecurity under future climates. Building sustainable rural futures: the added value of systems approaches in times of change and uncertainty. 9th European IFSA Symposium, Vienna, Austria, 4–7 July 2010, Citeseer, pp. 1379–1388.
Elevated ambient temperature differentially affects virus resistance in two tobacco species. *Phytopathology*, 106, 94–100.

Malmstrom, C.M. and Field, C.B. (1997) Virus–induced differences in the response of oat plants to elevated carbon dioxide. *Plant, Cell and Environment*, 20, 178–188.

Matros, A., Amme, S., Kettig, B., Buck-Sorlin, G.H., Sonnewald, U. and Mock, H.P. (2006) Growth at elevated CO₂ concentrations leads to modified profiles of secondary metabolites in tobacco cv. Samsun NN and to increased resistance against infection with *potato virus Y*. *Plant, Cell and Environment*, 29, 126–137.

Matthews, R.C.F. (1991) *Plant Virology*. San Diego, Academic Press.

Mauck, K.E., De Moraes, C.M. and Mescher, M.C. (2010) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. *Proceedings of the National Academy of Sciences USA*, 107, 3600–3605.

Mckirdy, S.J., Jones, R.A.C. and Nutter, F.W.J. (2002) Quantification of yield losses caused by *Barley yellow dwarf virus* in wheat and oats. *Plant Disease*, 86, 769–773.

Medina-Ortega, K.J., Bosque-Pérez, N.A., Ngumbi, E., Jiménez-Martinez, E.S. and Eigenbrode, S.D. (2009) *Rhopalosiphum padi* (Hemiptera: Aphididae) responses to volatile cues from *Barley yellow dwarf virus*-infected wheat. *Environmental Entomology*, 38, 836–845.

Melloy, P., Hollaway, G., Luck, J., Norton, R., Aitken, E. and Chakraborty, S. (2010) Production and fitness of *Fusarium pseudograminearum* inoculum at elevated carbon dioxide in FACE. *Global Change Biology*, 16, 3363–3373.

Myers, S.S., Zanobetti, A., Klooq, I., Huybers, P., Leakey, A.D., Bloom, A.J. et al. (2014) Increasing CO₂ threatens human nutrition. *Nature*, 510, 139–142.

Nancarrow, N., Constable, F.E., Finlay, K.J., Freeman, A.J., Rodoni, B.C., Tребик, P. et al. (2014) The effect of elevated temperature on *Barley yellow dwarf virus*-PAV in wheat. *Virus Research*, 186, 97–103.

Newman, J., Gibson, D., Parsons, A. and Thornley, J. (2003) How predictable are aphid population responses to elevated CO₂? *Journal of Animal Ecology*, 72, 556–566.

Nicol, D., Copaja, S., Watten, S. and Niemeyer, H. (1992) A screen of worldwide wheat cultivars for hydroxamic acid levels and aphid antixenosis. *Annals of Applied Biology*, 121, 11–18.

Nuttall, J., O’Leary, G., Khimashia, N., Asseng, S., Fitzgerald, G. and Norton, R. (2012) ‘Haying-off’ in wheat is predicted to increase under a future climate in south-eastern Australia. *Crop and Pasture Science*, 63, 593–605.

Oehme, V., Högy, P., Zebitz, C.P. and Fangmeier, A. (2013) Effects of elevated atmospheric CO₂ concentrations on phloem sap composition of spring crops and aphid performance. *Journal of Plant Interactions*, 8, 74–84.

Panozzo, J.F., Walker, C.K., Parpington, D.L., Neumann, N.C., Tausz, M., Seneweera, S. et al. (2014) Elevated carbon dioxide changes grain protein concentration and composition and compromises baking quality. A FACE study. *Journal of Cereal Science*, 60, 461–470.

Pickett, J., Wadhams, L., Woodcock, C. and Hardie, J. (1992) The chemical ecology of aphids. *Annual Review of Entomology*, 37, 67–90.

Pijpe, J., Brakefield, P.M. and Zwaan, B.J. (2007) Phenotypic plasticity of starvation resistance in the butterfly *Bicyclus anynana*. *Evolutionary Ecology*, 21, 589–600.

Pusag, J.C.A., Jahan, S.H., Lee, K.S., Lee, S. and Lee, K.Y. (2012) Upregulation of temperature susceptibility in *Bemisia tabaci* upon acquisition of *Tomato yellow leaf curl virus* (TYLCV). *Journal of Insect Physiology*, 58, 1343–1348.

Robinson, E.A., Ryan, G.D. and Newman, J.A. (2012) A meta-analytical review of the effects of elevated CO₂ on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. *New Phytologist*, 194, 321–336.

Romo, C.M. and Tylianakis, J.M. (2013) Elevated temperature and drought interact to reduce parasitoid effectiveness in suppressing hosts. *PLoS ONE*, 8, e58136.

Rosenzweig, C., Iglesias, A., Yang, X., Epstein, P.R. and Chiayan, E. (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. *Global Change & Human Health*, 2, 90–104.

Ryalls, J.M.W., Riegler, M., Moore, B.D., Lopaticki, G. and Johnson, S.N.J. (2013) Effects of elevated temperature and CO₂ on aboveground–belowground systems: a case study with plants, their mutualistic bacteria and root/shoot herbivores. *Frontiers in Plant Science*, 4, 1–7. https://doi.org/10.3389/fpls.2013.00445.

Ryan, G.D., Emiljanowicz, L., Haerri, S.A. and Newman, J.A. (2014a) Aphid and host-plant genotype × genotype interactions under elevated CO₂. *Ecological Entomology*, 39, 309–315.

Ryan, G.D., Rasmussen, S., Xue, H., Parsons, A.J. and Newman, J.A. (2014b) Metabolite analysis of the effects of elevated CO₂ and nitrogen fertilization on the association between tall fescue (*Schedonorus arundinaceus*) and its fungal symbiont *Neotyphodium coenophialum*. *Plant, Cell and Environment*, 37, 204–212.

Seneweera, S.P., Ghannoun, O., Conroy, J.P., Ishimaru, K., Okada, M., Lieffring, M. et al. (2002) Changes in source-sink relations during development influence photosynthetic
acclimation of rice to free air CO$_2$ enrichment (FACE). *Functional Plant Biology*, 29, 947–955.

Sharma, H.C., War, A.R., Pathania, M., Sharma, S.P., Akbar, S.M. and Munghate, R.S. (2016) Elevated CO$_2$ influences host plant defense response in chickpea against *Helicoverpa armigera*. *Arthropod–Plant Interactions*, 10, 171–181.

Shin, J.W. and Yun, S.C. (2010) Elevated CO$_2$ and temperature effects on the incidence of four major chili pepper diseases. *The Plant Pathology Journal*, 26, 178–184.

Sicher, R.C. (2008) Effects of CO$_2$ enrichment on soluble amino acids and organic acids in barley primary leaves as a function of age, photoperiod and chlorosis. *Plant Science*, 174, 576–582.

Stacey, D.A. and Fellowes, M.D. (2002) Influence of elevated CO$_2$ on interspecific interactions at higher trophic levels. *Global Change Biology*, 8, 668–678.

Stiling, P., Moon, D., Rossi, A., Forkner, R., Hungate, B.A., Day, F.P. et al. (2013) Direct and legacy effects of long-term elevated CO$_2$ on fine root growth and plant–insect interactions. *New Phytopathologist*, 200, 788–795.

Sun, Y.C., Guo, H. and Ge, F. (2016) Plant–aphid interactions under elevated CO$_2$: some cues from aphid feeding behavior. *Frontiers in Plant Science*, 7, 1–10. https://doi.org/10.3389/fpls.2016.00502.

Sun, Y.C., Guo, H., Zhu-Salzman, K. and Ge, F. (2013) Elevated CO$_2$ increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses. *Plant Science*, 210, 128–140.

Sun, Y.C., Chen, F.J. and Ge, F. (2009a) Elevated CO$_2$ changes interspecific competition among three species of wheat aphids: *Sitobion avenae, Rhopalosiphum padi*, and *Schizaphis graminum*. *Environmental Entomology*, 38, 26–34.

Sun, Y.C., Jing, B.B. and Ge, F. (2009b) Response of amino acid changes in *Aphis gossypii* (Glover) to elevated CO$_2$ levels. *Journal of Applied Entomology*, 133, 189–197.

Sward, R. and Lister, R. (1987) The incidence of *Barley yellow dwarf* viruses in wheat in Victoria. *Australian Journal of Agricultural Research*, 38, 821–828.

Taub, D.R. and Wang, X. (2008) Why are nitrogen concentrations in plant tissues lower under elevated CO$_2$? A critical examination of the hypotheses. *Journal of Integrative Plant Biology*, 50, 1365–1374.

Thackray, D., Wattent, S., Edwards, P. and Niemeyer, H. (1990) Resistance to the aphids *Sitobion avenae* and *Rhopalosiphum padi* in Gramineae in relation to hydroxamic acid levels. *Annals of Applied Biology*, 116, 573–582.

Tilman, D., Balzer, C., Hill, J. and Befort, B.L. (2011) Global food demand and the sustainable intensification of agriculture. *Proceedings of the National Academy of Sciences USA*, 108, 20260–20264.

Tjallingii, W. (1978) Electronic recording of penetration behaviour by aphids. *Entomologia Experimentalis et Applicata*, 24, 721–730.

Trębicki, P. (2016) Plant viruses threaten crops as climate warms. *Australasian Science*, 37, 36–37.

Trębicki, P., Harding, R., Rodoni, B., Baxter, G. and Powell, K. (2010) Vectors and alternative hosts of *Tobacco yellow dwarf virus* in southeastern Australia. *Annals of Applied Biology*, 157, 13–24.

Trębicki, P., Harding, R.M. and Powell, K.S. (2009) Anti-metabolic effects of *Galanthus nivalis* agglutinin and wheat germ agglutinin on nymphal stages of the common brown leafhopper using a novel artificial diet system. *Entomologia Experimentalis et Applicata*, 131, 99–105.

Trębicki, P., Nancarrow, N., Bosque-Pérez, N.A., Rodoni, B., Aftab, M., Freeman, A. et al. (2017) Virus incidence in wheat increases under elevated CO$_2$: a 4-year study of *Yellow dwarf viruses* from a free air carbon dioxide facility. *Virus Research*, https://doi.org/10.1016/j.virusres.2017.06.027.

Trębicki, P., Nancarrow, N., Cole, E., Bosque-Pérez, N.A., Constable, F.E., Freeman, A.J. et al. (2015) Virus disease in wheat predicted to increase with a changing climate. *Global Change Biology*, 21, 3511–3519.

Trębicki, P., Tjallingii, W.F., Harding, R.M., Rodoni, B.C. and Powell, K.S. (2012) EPG monitoring of the probing behaviour of the common brown leafhopper *Orosius orientalis* on artificial diet and selected host plants. *Arthropod–Plant Interactions*, 6, 405–415.

Trębicki, P., Vandegeer, R.K., Bosque-Pérez, N.A., Powell, K.S., Dader, B., Freeman, A.J. et al. (2016) Virus infection mediates the effects of elevated CO$_2$ on plants and vectors. *Scientific Reports*, 6, 1–11. https://doi.org/10.1038/srep22785.

Treufter, D. (2006) Significance of flavonoids in plant resistance: a review. *Environmental Chemistry Letters*, 4, 147–157.

Vandegeer, R.K., Powell, K.S. and Tausz, M. (2016) *Barley yellow dwarf virus* infection and elevated CO$_2$ alter the antioxidants ascorbate and glutathione in wheat. *Journal of Plant Physiology*, 96–99.

Váry, Z., Mullins, E., McElwain, J.C. and Doohan, F.M. (2015) The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide. *Global Change Biology*, 21, 2661–2669.

Vassiliadis, S., Plummer, K., Powell, K., Trębicki, P., Luck, J. and Rochfort, S. (2016) The effect of elevated CO$_2$ and virus infection on the primary metabolism of wheat. *Functional Plant Biology*, 43, 892–902.

Vaughan, M.M., Huffaker, A., Schmelz, E.A., Dafoe, N.J., Christensen, S.A., Mcauslane, H.J. et al. (2016) Interactive effects of elevated [CO$_2$] and drought on the maize phytochemical defense response against fycotoxigenic *Fusarium verticillioides*. *PLoS ONE*, 11, e0159270.

© 2017 Institute of Zoology, Chinese Academy of Sciences, 24, 975–989
Visser, J., Piron, P. and Hardie, J. (1996) The aphids’ peripheral perception of plant volatiles. *Entomologia Experimentalis et Applicata*, 80, 35–38.
Wan, G., Dang, Z., Wu, G., Parajulee, M.N., Ge, F. and Chen, F. (2014) Single and fused transgenic Bacillus thuringiensis rice alter the species-specific responses of non-target planthoppers to elevated carbon dioxide and temperature. *Pest Management Science*, 70, 734–742.
Wang, Y., Bao, Z., Zhu, Y. and Hua, J. (2009) Analysis of temperature modulation of plant defense against biotrophic microbes. *Molecular Plant–Microbe Interactions*, 22, 498–506.
Wheeler, T., Hong, T., Ellis, R., Batts, G., Morison, J. and Hadley, P. (1996) The duration and rate of grain growth, and harvest index, of wheat (*Triticum aestivum* L.) in response to temperature and CO$_2$. *Journal of Experimental Botany*, 47, 623–630.
Xie, H., Zhao, L., Wang, W., Wang, Z., Ni, X., Cai, W. *et al.* (2014) Changes in life history parameters of *Rhopalosiphum maidis* (Homoptera: Aphididae) under four different elevated temperature and CO$_2$ combinations. *Journal of Economic Entomology*, 107, 1411–1418.
Zavala, J.A., Casteel, C.L., Delucia, E.H. and Berenbaum, M.R. (2008) Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. *Proceedings of the National Academy of Sciences USA*, 105, 5129–5133.
Zavala, J.A., Casteel, C.L., Nabity, P.D., Berenbaum, M.R. and Delucia, E.H. (2009) Role of cysteine proteinase inhibitors in preference of Japanese beetles (*Popillia japonica*) for soybean (*Glycine max*) leaves of different ages and grown under elevated CO$_2$. *Oecologia*, 161, 35–41.
Zavala, J.A., Nabity, P.D. and Delucia, E.H. (2013) An emerging understanding of mechanisms governing insect herbivory under elevated CO$_2$. *Annual Review of Entomology*, 58, 79–97.
Zhang, J., Xing, G., Liao, J., Hou, Z., Wang, G. and Wang, Y. (2003) Effects of different atmospheric CO$_2$ concentrations and soil moistures on the populations of bird cherry–oat aphid (*Rhopalosiphum padi*) feeding on spring wheat. *European Journal of Entomology*, 100, 521–530.
Zhang, S., Li, X., Sun, Z., Shao, S., Hu, L., Ye, M. *et al.* (2015) Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO$_2$. *Journal of Experimental Botany*, eru538.
Ziebell, H., Murphy, A.M., Groen, S.C., Tungadi, T., Westwood, J.H., Lewsey, M.G. *et al.* (2011) Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant–aphid interactions in tobacco. *Scientific Reports*, 1, 1–7. https://doi.org/10.1038/srep00187.
Ziska, L.H. (2008) Rising atmospheric carbon dioxide and plant biology: the overlooked paradigm. *DNA and Cell Biology*, 27, 165–172.

Manuscript received October 31, 2016
Final version received August 6, 2017
Accepted August 7, 2017