Füllerène

Un fullerène est une molécule de carbone sous la forme d’une sphère creuse, d’un ellipsoïde, d’un tube et de nombreuses autres formes. Les fullerènes sphériques, également appelés Buckminsterfullerenes ou buckyballs, ressemblent aux balles utilisées dans le football association. Les fullerènes cylindriques sont également appelés nanotubes de carbone (Buckytubes). Les fullerènes sont semblables à la structure au graphite, qui est composé de feuilles de graphène empilées d’anneaux hexagonaux liés. Ils sont cylindriques, ils doivent donc contenir des anneaux pentagonaux (ou parfois heptagonaux).

Structure du Fullerène (Source Photo: pubchem.ncbi.nlm.nih.gov)

Les découvreurs de l’allotrope de carbone buckminsterfullerene (C60) du nom de Richard Buckminster Fuller, un modeleur architectural noté qui a popularisé le dôme géodésique. Puisque buckminsterfullerenes ont une forme similaire à celle des dômes, et ils ont trouvé le nom approprié.

La famille des fullerènes est venue à Buckminsterfullerene, le nom raccourci «fullerene» est utilisé pour désigner la famille
des fullerènes. Le suffixe « -ene » indique que chaque atome C est lié de manière covalente à trois autres (au lieu du maximum de quatre), une situation qui correspondrait classiquement à l’existence de deux liaisons d’électrons (« doubles liaisons »).

Types de fullerènes

Depuis la découverte des fullerènes en 1985, les variations structurelles des fullerènes ont évolué bien au-delà des grappes individuelles elles-mêmes. Les exemples incluent:

Clusters de Buckyball: le plus petit membre est le C20 (version allemande de dodécaèdre) et le plus commun est le C 60;

Nanotubes: tubes creux de très petites dimensions, à parois simples ou multiples; applications potentielles dans l’industrie électronique;

Megatubes: nanotubes plus grands que le diamètre et préparés avec des parois d’épaisseurs différentes; potentiellement utilisé pour le transport de diverses molécules de différentes tailles;

Polymères: des polymères à chaîne, bidimensionnels et tridimensionnels sont formés dans des conditions de haute température à haute pression; les polymères monocaténaires sont formés en utilisant la voie de polymérisation radicale par transfert d’atomes (ATRAP);

Nano « oignons »: particules sphériques basées sur de multiples couches de carbone entourant un noyau de buckyball; proposées pour les lubrifiants;

Des dimères « ball-and-chain » liés: deux buckyballs reliés par une chaîne carbonée;

Anneaux de fullerène.
Au début des années 2000, les propriétés chimiques et physiques des fullerènes étaient un sujet très intéressant dans le domaine de la recherche et du développement. La science populaire a examiné les utilisations possibles des fullerènes (graphène) dans les armure. En avril 2003, des fullerènes étaient à l’étude pour un usage médicinal potentiel: la liaison d’antibiotiques spécifiques à la structure pour cibler des bactéries résistantes et même cibler certaines cellules cancéreuses telles que le mélanome. Le numéro d’octobre 2005 de Chemistry & Biology émet un article décrivant l’utilisation du fullerène en tant qu’agent antimicrobien activé par la lumière.

Dans le domaine de la nanotechnologie, la résistance à la chaleur et la supraconductivité font partie des propriétés les plus étudiées.

Dans une atmosphère inerte. Le plasma de carbone résultant entre les électrodes se refroidit dans la suie à partir de laquelle de nombreux fullerènes peuvent être isolés.

Méthodes quantiques ab initio appliquées aux fullerènes. Par les méthodes DFT et TD-DFT on peut obtenir les spectres IR, Raman et UV. Les résultats de ces calculs peuvent être comparés aux résultats expérimentaux.
Aromaticité

Les chercheurs ont été en mesure d’augmenter la réactivité des fullerènes en attachant des groupes actifs à leurs surfaces. Buckminsterfullerene ne présente pas de « superaromaticité », c’est-à-dire que les électrons des anneaux hexagonaux ne se délocalisent pas sur toute la molécule.

Un fullerène sphérique de \(n \) atomes de carbone possède \(n \) électrons pi-liants, libres de se délocaliser. Ceux-ci devraient essayer de se délocaliser sur toute la molécule. La mécanique quantique d’un tel arrangement ne devrait ressembler qu’à une seule coquille de la structure mécanique quantique bien connue d’un seul atome, avec une coquille remplie stable pour \(n = 2, 8, 18, 32, 50, 72, 98, 128, \text{etc.} \); soit deux fois un nombre carré parfait ; mais cette série ne comprend pas 60. Cette règle est l’analogue tridimensionnel de la règle de Hückel. Le cation 10+ satisfait cette règle, et devrait être aromatique. Ceci a été montré pour être le cas en utilisant la modélisation chimique quantique, qui a montré l’existence de forts courants sphériques diamagnétiques dans le cation.

En conséquence, C\(_{60}\) dans l’eau tend à prendre deux autres électrons et à devenir un anion. Le \(n \) C\(_{60}\) décrit ci-dessous peut être le résultat de C\(_{60}\) essayant de former une liaison métallique lâche.

Chimie

Les fullerènes sont stables, mais pas totalement non réactifs. Les atomes de carbone hybrides sp\(^2\), qui sont à leur minimum d’énergie dans le graphite plan, doivent être courbés pour former la sphère ou le tube fermé, ce qui produit une déformation angulaire. La réaction caractéristique des
fullerènes est plus électrophile au niveau des liaisons 6,6-doubles, ce qui réduit la souche d’angle en changeant sp² atomes de carbone hybridé en sp³ hybridé petits. La modification des orbitales hybridées fait baisser les angles de liaison d’environ 120 ° dans les orbitales sp² à environ 109,5 ° dans les sp³ orbitales. Cette diminution des angles de liaison permet aux liaisons de se courber moins lors de la fermeture de la sphère ou du tube, et ainsi, la molécule devient plus stable.

D’autres atomes peuvent être piégés à l’intérieur des fullerènes pour former des composés d’inclusion connus sous le nom de fullerènes endoédriques. Un exemple inhabituel est le fullerène Tb₃N@C₈₄ en forme d’œuf, qui viole la règle du pentagone isolé. Des preuves récentes d’un impact de météores à la fin de la période permienne ont été trouvées en analysant des gaz nobles ainsi préservés. Les inoculums à base de métallofullérène utilisant le procédé de l’acier rhonditique commencent la production comme l’une des premières utilisations commercialement viables des buckyballs.

Synthèse des fullerènes

Deux théories ont été proposées pour décrire les mécanismes moléculaires qui produisent les fullerènes. L’ancienne théorie «ascendante» propose qu’ils soient construits atome par atome. L’approche «top-down» alternative prétend que les fullerènes se forment quand des structures beaucoup plus grandes se divisent en parties constituantes.

En 2013, les chercheurs ont découvert que les fullerènes asymétriques formés à partir de structures plus grandes se transforment en fullerènes stables. La substance synthétisée était un métallofullérène particulier constitué de 84 atomes de carbone avec deux atomes de carbone supplémentaires et deux atomes d’yttrium à l’intérieur de la cage. Le procédé a produit environ 100 microgrammes.

Cependant, on a trouvé que la molécule asymétrique pourrait
théoriquement s’effondrer pour former presque tous les fullerènes et métallofullérènes connus. Des perturbations mineures impliquant la rupture de quelques liaisons moléculaires rendent la cage très symétrique et stable. Cette idée soutient la théorie selon laquelle les fullerènes peuvent être formés à partir du graphène lorsque les liaisons moléculaires appropriées sont rompues.

 Technologies de production

Les procédés de production de fullerène comprennent les cinq sous-processus suivants: (i) synthèse de fullerènes ou de suie contenant du fullerène; (ii) l’extraction; (iii) séparation (purification) pour chaque molécule de fullerène, donnant des fullerènes purs tels que C_{60}; (iv) la synthèse de dérivés (en utilisant principalement les techniques de synthèse organique); (v) autre post-traitement tel qu’une dispersion dans une matrice. Les deux méthodes de synthèse utilisées dans la pratique sont la méthode de l’arc et la méthode de combustion. Ce dernier, découvert au Massachusetts Institute of Technology, est préféré pour la production industrielle à grande échelle.

 Applications

Les fullerènes ont été largement utilisés pour plusieurs applications biomédicales, notamment la conception d’agents de contraste IRM à haute performance, d’agents de contraste pour l’imagerie radiographique, de thérapie photodynamique et de transport de médicaments et de gènes, résumées dans plusieurs revues complètes.

 Sécurité et Toxicité

Une revue complète et récente sur la toxicité du fullerène a été réalisée par Lalwani et al. Ces auteurs passent en revue les travaux sur la toxicité du fullerène depuis le début des
années 1990 jusqu’au présent et concluent que très peu de preuves recueillies depuis la découverte des fullerènes indiquent que le C_{60} est toxique. La toxicité de ces nanoparticules de carbone dépend non seulement de la dose et du temps, mais dépend également d’un certain nombre d’autres facteurs tels que: le type (par exemple, C_{60}, C_{70}, $M@C_{60}$, $M@C_{82}$, les groupes fonctionnels utilisés pour hydrosolubiliser ces nanoparticules (par exemple, OH, COOH), et la méthode d’administration (par exemple, intraveineuse, intrapéritonéale). Les auteurs recommandent donc que la pharmacologie de chaque nouveau complexe à base de fullerène ou de métallofullérène soit évaluée individuellement en tant que composé différent.