Elbow stiffness is defined as an arc of flexion-extension motion of less than 100° and/or a contracture of more than 30° in flexion. Stiff elbow is common and can be very disabling, preventing individuals from carrying out the basic activities of daily living. The most common cause of stiff elbow is the sequela of an injury, but osteoarthritis can also produce limitations of mobility, which can benefit from surgical treatment. The treatment of stiff elbow is initially orthopedic. If the patient still has functional limitations of the elbow after 6 months of suitable rehabilitation treatment, the option of surgical treatment must be considered. Surgical arthrolysis of the elbow can be performed by open surgery as well as with arthroscopic surgery. Good results can be obtained with both techniques achieving a functional arc of at least −30° extension to 130° of flexion. Arthroscopic surgery enables results comparable with those of open surgery but with a lower percentage of complications.

Introduction

Elbow stiffness is defined as an arc of flexion-extension motion of less than 100° and/or a contracture of more than 30° in flexion. Morrey et al. defined a functional range of mobility of the elbow of 100° in both planes (130°-30° in flexion-extension and 50°-50° in supination-pronation), with which the majority of activities of daily living could be carried out. Stiff elbow is common and can be very disabling, preventing the carrying out of basic activities of daily living like fastening a shirt button, lifting a spoon to the mouth, or washing the face. The most common cause of stiff elbow found in the clinic of an elbow surgeon is the sequela of an injury, usually of a bone or osteochondral fracture, with or without surgical treatment. Osteoarthritis of the elbow can also produce limitations of mobility of the elbow, which can benefit from surgical treatment.

The treatment of stiff elbow is initially conservative, with rehabilitation, exercises, and stretching, for at least 6 months. If after 6 months of suitable rehabilitation treatment, the patient still has functional limitations of the elbow (due to a deficiency in mobility or pain), the option of surgical treatment may be considered. Surgical arthrolysis of the elbow can be performed by open surgery as well as with arthroscopic surgery. Good results can be obtained with both techniques, achieving a functional arc of at least −30° extension to 130° of flexion in the majority of the patients. Arthroscopic surgery enables results comparable with those of open surgery, but with a lower percentage of complications (Table 1). In open surgery these can be up to 23% and include cutaneous and muscular fibrosis, soft tissue injuries, hematomas, infection, heterotopic ossification, or injuries to nerves. In both cases, the patients must have an early and lengthy postoperative rehabilitation after the surgery. It is essential that the patient is aware of the postsurgical phase and is motivated to carry out the rehabilitation.

Indications and Preoperative Planning

If after 6 months of rehabilitation, the patient still has functional limitations of the elbow and severe or very severe stiffness according to the Morrey scale (very severe: less than 30° of mobility; severe, 30° to 60°), surgical treatment would be indicated. If the patient has complete pronosupination but an elbow extension of −80° and an elbow flexion of 100°, the patient has a severe elbow stiffness and an arthroscopic arthrolysis of stiffness could be indicated (Figs. 1 and 2) (Video 1). Three-dimensional CT scanning is performed prior to the surgery, which is mandatory to prepare for the surgery and studying where and how many osteophytes and free bodies have to be resected (Fig. 3).
Patient Setup

The intervention is performed with the patient in the lateral decubitus position and under brachial plexus block anesthesia. An ischemic cuff is used on the arm at 250 mm Hg. The ischemia time has to be less than 2 hours. If more than 30° of elbow motion is expected, ulnar nerve release is performed, using an incision of about 2 cm at the beginning of the surgery as suggested by O'Driscoll and Morrey or Blonna and O'Driscoll. This also served to protect the nerve during the arthroscopy (Fig. 4).

After the release of the ulnar nerve, the arthroscopy is performed, by first accessing the anterior part of the elbow. It is insufflated via the anterior “soft spot” (a point in the center of the triangle between the epicondyle, the olecranon, and the radial head) with 20-40 ml of normal saline in order to distend the joint and reduce the risk of neurovascular injury, as suggested by Hilgersom et al. The elbow is accessed through the anteromedial portal, where the scope is placed. The anterolateral portal is made, being guided with a needle of a 14 Abbocath catheter (an outside-to-inside technique).

First, a mild synovectomy with the shaver without suction is made, just to improve the visibility. Suction is not used to decrease the risk of collapse of the anterior capsule and neurovascular damage. Then the loose bodies are removed (Fig. 5) and the osteophytes of the coronoid process and the coronoid fossa are resected (Fig. 6). Once the bone part is finished, a synovectomy and anterior capsulotomy are performed to improve the elbow extension. The anterior capsulotomy is started

Patient Setup
Advantages
Less pain, inflammation, and soft tissue injury of the elbow
Good results comparable with open surgery
Lower percentage of complications (23%) in open surgery: cutaneous and muscular fibrosis, soft tissue injury, bruising, infection, heterotopic ossification, or nerve lesions
Allows earlier start of rehabilitation
Better cosmetic results
Disadvantages
Complex technique with long learning curve. First cases may get worse results
Risk of continuous drainage of portals and infection
Specific arthroscopic instrumentation is necessary
Most expensive technique
There is still a risk of neurovascular injury
Open surgery is necessary for the removal of plates or other osteosynthesis

Table 1. Advantages and Disadvantages of the Arthroscopic Arthrolysis Technique
from medial to lateral, approximately 1 cm to the tip of
the coronoid process using a “hook” radiofrequency
ablation probe (VAPR, DePuy Synthes, Raynham, MA)
(a tool that is very useful and very advisable for this
task, as it provides very good control of the depth of the
resection of the capsule in order to avoid injuring the
neighboring neurovascular structures) (Fig. 7). It is
advisable to take great care with the joint capsule that is
above the radial head, since the posterior interosseous
nerve is close and is at risk. The capsule above the radial
head is leaved intact or just partially resected and later
with forced extension of the elbow the resection of this
part of the capsule is completed. Once the anterior
capsulotomy is completed, the muscle tissue of the
brachial muscle should be seen (Fig. 8) (Video 1).

Next, the work is performed in the posterior chamber
of the elbow, using the central transtricipital portal as
viewing portal and the posterolateral portal as the
working portal (these portals will change their function
during the surgery and more central and proximal
portal is created). A posteromedial portal is not made
so as not to put the ulnar nerve at risk, as suggested by
Hilgersom et al. In the posterior part, work is per-
formed in the same order, first, the extraction of the
loose bodies and the resection of the osteophytes in the
olecranon tip, olecranon fossa, and the lateral and
medial part of the elbow (protecting the ulnar nerve in
this last step). After the bone part, the posterior
capsulotomy is performed, in order to obtain complete
flexion of the elbow (Table 2).

Fig. 3. Three-dimensional computed tomography is per-
formed before surgery. This is mandatory to prepare for
surgery and to know the locations and quantities of the
osteophytes and free bodies we will resect. This surgery has to
be planned in detail to locate free bodies in the anterior and
posterior chambers of the elbow and to locate osteophytes in
the coronoid tip and coronoid fossae, in the olecranon and
olecranon fossae, and in the lateral and medial gutters of the
elbow. These osteophytes and free bodies must be resected to
recover mobility of the elbow.
Before closing the portals, a passive mobilization of the elbow and a measure of the final mobility achieved are performed. Then the skin portals are closed with mattress stitches. No drains are left in.

Postoperative Management

A plaster splint with the elbow in extension is used. The patient is discharged from the hospital at 24 hours. The plaster splint is removed at 48 hours in the clinic, and the first cure is performed and instructions to do active and self-assisted exercises are given to the patient. An CPM is not used on the elbow. The patient is referred to the Rehabilitation Department within 7-10 days to start treatment.

References

1. Morrey BF, Askew LJ, Chao EY. A biomechanical study of normal functional elbow motion. J Bone Joint Surg Am 1981;63:872-877.
2. Myden C, Hildebrand K. Elbow joint contracture after traumatic injury. J Shoulder Elbow Surg 2011;20:39-44.
3. Bruno RJ, Lee ML, Strauch RJ, Rosenwasser MP. Post-traumatic elbow stiffness: Evaluation and management. J Am Acad Orthop Surg 2002;10:106-116.
4. Sojdjerg JO. The stiff elbow. Acta Orthop Scand 1996;67:626-631.
5. Aldridge JM III, Atkins TA, Gunnesson EE, Urbaniak JR. Anterior release of the elbow for extension loss. J Bone Joint Surg Am 2004;86:1955-1960.
6. Gosling T, Blauth M, Lange T, Richter M, Bastian L, Krettek C. Outcome assessment after arthrolysis of the elbow. Arch Orthop Trauma Surg 2004;124:232-236.
7. Olivier LC, Assenmacher S, Setareh E, Schmitte Neuerburg KP. Grading of functional results of elbow joint arthrolysis after fracture treatment. Arch Orthop Trauma Surg 2000;120:562-569.
8. Park MJ, Kim HG, Lee JY. Surgical treatment of post-traumatic stiffness of the elbow. J Bone Joint Surg Br 2004;86:1158-1162.
Table 2. Pearls and Pitfalls of the Arthroscopic Arthrolysis Technique

Pearls	Pitfalls
Open release of ulnar nerve before arthroscopy: prevents ulnar neuritis, protects the nerve during the surgery, allows to section the posterior band of the medial collateral ligament in cases of limitation of elbow flexion.	Elbow stiffness is not an indication for beginners. Gain experience in elbow arthroscopy with simpler indications.
Insufflate 20–40 ml of normal saline in order to distend the joint and reduce the risk of neurovascular injury.	Never exceed 2 hours of arm ischemia. If more than 2 hours are expected for the procedure, go to open surgery.
Go first to anterior elbow, the most risky and difficult part.	Take great care with the joint capsule that is above the radial head, since the posterior interosseous nerve is close and is at risk.
First do the bony part of the procedure.	Do not resect bone after capsulotomy; vascular structures have a higher risk of injury without protection of anterior capsule.
Use a “hook” radiofrequency ablation probe; provides very good control of the depth of the resection of the capsule.	Avoid bleeding from the brachial muscle to reduce the risk of heterotopic calcifications.
Leave the capsule above the radial head just partially resected and later do a forced extension of the elbow to complete the anterior capsulotomy.	Avoid posteromedial portal: risk of ulnar nerve damage.
Before closing of the portals, do an elbow mobilization and measure the achieved motion.	Hermetic closing of the portals to avoid drainage and infection risk.

9. Wilson PD. Capsulectomy for the relief of flexion contractures of the elbow following fracture. Clin Orthop Relat Res 1944;2000:3-8.
10. Kodde IF, van Rijn J, van den Bekerom MP, Eygendaal D. Surgical treatment of post-traumatic elbow stiffness: A systematic review. J Shoulder Elbow Surg 2013;22:574-580.
11. Marti RK, Kerkhoffs GM, Maas M, Blankevoort L. Progressive surgical release of a posttraumatic stiff elbow. Technique and outcome after 2–18 years in 46 patients. Acta Orthop Scand 2002;73:144-150.
12. O’Driscoll SW, Morrey BF. Arthroscopy of the elbow. Diagnostic and therapeutic benefits and hazards. J Bone Joint Surg Am 1992;74:84-94.
13. Blonna D, O’Driscoll SW. Delayed-onset ulnar neuritis after release of elbow contracture: Preventive strategies derived from a study of 563 cases. Arthroscopy 2014;30:947-956.
14. Steinmann SP, King GJ, Savoie FH III. Arthroscopic treatment of the arthritic elbow. Instr Course Lect 2006;55:109-117.
15. Kelly EW, Morrey BF, O’Driscoll SW. Complications of elbow arthroscopy. J Bone Joint Surg Am 2001;83:25-34.
16. Savoie FH III. Complication. In: Savoie III FH, Field LD, (eds). Arthroscopy of the elbow. New York: Churchill-Livingstone, 1996:151-156.
17. Xinghuo W, Hong W, Chunqing M. Outcomes of arthroscopic arthrolysis for the post-traumatic elbow stiffness. Knee Surg Sports Traumatol Arthrosc 2015;23:2715-2720.
18. Hilgersom NFJ, Oh LS, Flipsen M, Eygendaal D, van den Bekerom MPJ. Tips to avoid nerve injury in elbow arthroscopy. World J Orthop 2017;8:99-106.
19. Pederzini LA, Nicoletta F, Tosi M. Elbow arthroscopy in stiff elbow. Knee Surg Sports Traumatol Arthrosc 2014;22:467-473.
20. Willinger L, Siebenlist S, Lenich A. Arthroscopic arthrolysis provides good clinical outcome in post-traumatic and degenerative elbow stiffness. Knee Surg Sports Traumatol Arthrosc 2017.
21. Achtinich A, Forkel P, Metzlaff S, Petersen W. Arthroscopic arthrolysis of the elbow joint. Oper Orthop Traumatol 2013;25:205-214.
22. Cañete P. Can we obtain good results in the treatment of elbow stiffness of degenerative or posttraumatic origin? Acta Sci Orthop 2020;3:1-13.