Multivariate Bernoulli polynomials

Genki Shibukawa*

MSC classes: 11B68, 33C67, 43A90

Abstract

We introduce a multivariate analogue of Bernoulli polynomials and give their fundamental properties: difference and differential relations, symmetry, explicit formula, inversion formula, multiplication theorem, and binomial type formula. Further, we consider a multivariate analogue of the multiple Bernoulli polynomials and give their fundamental properties.

1 Introduction

The Bernoulli numbers B_m are defined by the generating function

$$\frac{u}{e^u - 1} = \sum_{m=0}^{\infty} \frac{B_m u^m}{m!}, \quad |u| < 2\pi, \quad (1.1)$$

and the Bernoulli polynomials $B_m(z)$ by means of

$$\frac{u}{e^u - 1} e^{zu} = \sum_{m=0}^{\infty} \frac{B_m(z) u^m}{m!}, \quad |u| < 2\pi. \quad (1.2)$$

Bernoulli polynomial $B_m(z)$ has the following fundamental properties (see for example [E] 1.13).

*This work was supported by Grant-in-Aid for JSPS Fellows (Number 18J00233).
Let us describe proofs of (1.3) - (1.10).

(1.3) It follows from the definition of Bernoulli numbers (1.1) and polynomials (1.2).

(1.4) By the generating function of Bernoulli polynomials (1.2), the index law and the definition of exponential function e^{zu}, we have

$$\sum_{m \geq 0} (B_m(z + 1) - B_m(z)) \frac{u^m}{m!} = \frac{u}{e^u - 1} (e^{(z+1)u} - e^{zu})$$

$$= \frac{u}{e^u - 1} (e^u e^{zu} - e^{zu})$$

$$= \frac{u}{e^u - 1} e^{zu}$$

$$= \sum_{m \geq 0} z^m \frac{u^m}{m!}$$

$$= \sum_{m \geq 0} z^m \frac{u^{m+1}}{(m+1)!} (m+1)$$

$$= \sum_{m \geq 0} m z^{m-1} \frac{u^m}{m!}.$$
\[\sum_{m \geq 0} B_m'(z) \frac{u^m}{m!} = \frac{u}{e^u - 1} \partial_z e^{zu}\]
\[= \frac{u}{e^u - 1} e^{zu}u\]
\[= \sum_{m \geq 0} B_m(z) \frac{u^m}{m!}\]
\[= \sum_{m \geq 0} B_m(z) \frac{u^{m+1}}{(m+1)!} (m+1)\]
\[= \sum_{m \geq 0} mB_{m-1}(z) \frac{u^m}{m!}.
\]

\[\sum_{m \geq 0} B_m(1-z) \frac{u^m}{m!} = \frac{u}{e^u - 1} e^{(1-z)u}\]
\[= \frac{ue^u}{e^u - 1} e^{-zu}\]
\[= \frac{-u}{e^{-u} - 1} e^{-zu}\]
\[= \sum_{m \geq 0} B_m(z) \frac{(-u)^m}{m!}\]
\[= \sum_{m \geq 0} (-1)^m B_m(z) \frac{u^m}{m!}.
\]

\[\sum_{m \geq 0} B_m(z) \frac{u^m}{m!} = \frac{u}{e^u - 1} e^{zu}\]
\[= \sum_{N \geq 0} B_N \frac{u^N}{N!} \sum_{n \geq 0} z^n \frac{u^n}{n!}\]
\[= \sum_{N \geq 0} B_N \sum_{n \geq 0} z^n \frac{u^N}{N!} \frac{u^n}{n!}\]
\[= \sum_{m \geq 0} \sum_{n=0}^m B_{m-n} z^n \binom{m}{n} \frac{u^m}{m!}.
\]
\[\sum_{m \geq 0} z^m \frac{u^m}{m!} = e^{zu}\]

\[= \frac{e^u - 1}{u} \sum_{n \geq 0} B_n(z) \frac{u^n}{n!}\]

\[= \sum_{N \geq 0} \frac{1}{N+1} \frac{u^N}{N!} \sum_{n \geq 0} B_n(z) \frac{u^n}{n!}\]

\[= \sum_{N \geq 0} \sum_{n \geq 0} \frac{1}{N+1} B_n(z) \frac{u^N u^n}{N! n!}\]

\[= \sum_{N \geq 0} \sum_{n \geq 0} \frac{1}{N+1} B_n(z) \sum_{m \geq 0} \binom{m}{n} \frac{u^m}{m!}\]

\[= \sum_{m \geq 0} \sum_{n=0}^{m} \frac{1}{m-n+1} \binom{m}{n} B_n(z) \frac{u^m}{m!}.

\[\sum_{m \geq 0}^{N-1} B_m \left(z + \frac{i}{N} \right) \frac{u^m}{m!} = \sum_{i=0}^{N-1} \frac{u}{e^u - 1} e^{(z + \frac{i}{N})u}\]

\[= \frac{u}{e^u - 1} e^{zu} \sum_{i=0}^{N-1} e^{i \frac{u}{N}}\]

\[= \frac{u}{e^u - 1} e^{zu} e^{u \frac{u}{N}} - 1\]

\[= N \frac{u}{e^u - 1} e^{Nz \frac{u}{N}}\]

\[= N \sum_{m \geq 0} B_m(Nz) \frac{1}{m!} \left(\frac{u}{N} \right)^m\]

\[= \sum_{m \geq 0} N^{1-m} B_m(Nz) \frac{u^m}{m!}.

\[\sum_{i=0}^{N-1} \frac{u}{e^u - 1} e^{(z + \frac{i}{N})u}\]
\[
\sum_{m \geq 0} B_m(z) + 1 \frac{u^m}{m!} = \frac{u}{e^u - 1} e^{(z+1)u} \\
= e^u \frac{u}{e^u - 1} e^{zu} \\
= \sum_{n \geq 0} B_n(z) e^u \frac{u^n}{n!} \\
= \sum_{n \geq 0} B_n(z) \sum_{m \geq 0} \left(\begin{array}{c} m \\ n \end{array} \right) \frac{u^m}{m!} \\
= \sum_{m \geq 0} \sum_{n \geq 0} \left(\begin{array}{c} m \\ n \end{array} \right) B_n(z) \frac{u^m}{m!}.
\]

We remark that in the above proofs we only use the following formulas which are trivial results in the one variable case.

Pieri type formulas For any nonnegative integer \(m \in \mathbb{Z} \),

\[
e^u \frac{u^m}{m!} = \sum_{n \geq 0} \left(\begin{array}{c} n \\ m \end{array} \right) \frac{u^n}{n!}.
\]

(1.11)

Since

\[
e^u = \sum_{N \geq 0} \frac{1}{N!} u^N
\]

and comparing the terms of degree \(N + m \) in (1.11), we have

\[
\frac{u^N u^m}{N! m!} = \left(\begin{array}{c} m + N \\ m \end{array} \right) \frac{u^{m+N}}{(m+N)!}.
\]

(1.12)

In particular, the \(N = 1 \) case of (1.12) is the following :

\[
u \frac{u^m}{m!} = \left(m + 1 \right) \frac{u^{m+1}}{(m+1)!} = (m+1) \frac{u^{m+1}}{(m+1)!}.
\]

(1.13)

Properties of \(e^{zu} \)

\[
\partial_z e^{zu} = e^{zu} u.
\]

(1.14)

In particular, we obtain the index law of \(e^{zu} \)

\[
e^{(z+1)u} = e^{\partial_z e^{zu}} = e^{zu} e^u.
\]

(1.15)

Other formula (trivial!) For any nonnegative integer \(N \in \mathbb{Z} \),

\[
u^N = N! \frac{u^N}{N!}.
\]

(1.16)
On the other hand, a multivariate analogue of the formulas (1.11) - (1.16) has been studied (see Section 2), which is non-trivial results unlike the one variable case. Therefore if we give a good multivariate analogue of Bernoulli polynomials which can be applied a multivariate analogue of (1.11) - (1.16), then we drive a multivariate analogue of (1.3) - (1.10).

In this article, we introduce a multivariate analogue of Bernoulli polynomials $B_m(z)$ by Jack polynomials and others, which we call “multivariate Bernoulli polynomials”. We also provide a multivariate analogue of (1.3) - (1.10) based on a multivariate analogue of (1.11) - (1.16). Further, we consider a multivariate analogue of the multiple Bernoulli polynomials and give their fundamental properties.

The content of this article is as follows. In Section 2, we introduce a multivariate analysis which is a natural generalization of special functions for matrix arguments. In particular, we explain a multivariate analogue of (1.11) - (1.16). Section 3 is the main part of this article. In this section, we introduce multivariate Bernoulli polynomials by a generating function which is a natural multivariate analogue of (1.2), and give their fundamental properties. We also investigate a multivariate analogue of the multiple Bernoulli polynomials which is a multiple analogue of our multivariate Bernoulli polynomials in Section 4.

2 Preliminaries

Refer to [Ka], [Ko], [L], [M], [S], [VK] for the details in this section. Let $r \in \mathbb{Z}_{\geq 1}$, $d \in \mathbb{C}$ and

$$P := \{m = (m_1, \ldots, m_r) \in \mathbb{Z}^r \mid m_1 \geq \cdots \geq m_r \geq 0\},$$

$$\delta := (r-1, r-2, \ldots, 2, 1, 0) \in P,$$

$$|z| := z_1 + \cdots + z_r,$$

$$E_k(z) := \sum_{j=1}^{r} z_j^k \frac{\partial}{\partial z_j} \quad (k \in \mathbb{Z}_{\geq 0}),$$

$$D_k(z) := \sum_{j=1}^{r} z_j^k \frac{\partial^2}{\partial z_j^2} + d \sum_{1 \leq j \neq l \leq r} \frac{z_j^k}{z_j - z_l} \frac{\partial}{\partial z_j} \quad (k \in \mathbb{Z}_{\geq 0}).$$

For any partition $m = (m_1, \ldots, m_r) \in P$ and $z = (z_1, \ldots, z_r) \in \mathbb{C}^r$, put

$$m_m(z) := \sum_{n \in \mathcal{S}_r, m} z^n,$$

where \mathcal{S}_r is the symmetric group in r letters and $z^n := z_1^{m_1} \cdots z_r^{m_r}$. We define Jack polynomials $P_m(z; \frac{d}{2})$ by the following two conditions.

1. \[D_2(z)P_m \left(z; \frac{d}{2} \right) = P_m \left(z; \frac{d}{2} \right) \sum_{j=1}^{r} m_j (m_j - 1 - d(r-j)) \]

2. \[P_m \left(z; \frac{d}{2} \right) = m_m(z) + \sum_{k < m} c_{mk}m_k(z). \]
Here, \(< \) is the dominance partial ordering which is defined by
\[
\mathbf{k} < \mathbf{m} \iff k_l \leq m_l, \quad i = 1, \ldots, r.
\]

Similarly, the shifted (or interpolation) Jack polynomials \(P_{\mathbf{m}}^{ip}(z; \frac{d}{2}) \) are defined by the following two conditions.
\[
(1)^{ip} P_{\mathbf{k}}^{ip}\left(\mathbf{m} + \frac{d}{2}; \frac{d}{2}\right) = 0, \quad \text{unless } \mathbf{k} \subset \mathbf{m} \in \mathcal{P}
\]
\[
(2)^{ip} P_{\mathbf{m}}^{ip}(z; \frac{d}{2}) = P_{\mathbf{m}}(z; \frac{d}{2}) + \text{(lower terms)}.
\]

Further, we put
\[
\Phi_{\mathbf{m}}^{(d)}(z) := \frac{P_{\mathbf{m}}(z; \frac{d}{2})}{P_{\mathbf{m}}(1; \frac{d}{2})} \quad \text{(normalized Jack polynomials)},
\]
\[
\Psi_{\mathbf{m}}^{(d)}(z) := \frac{P_{\mathbf{m}}^{ip}(z; \frac{d}{2})}{P_{\mathbf{m}}^{ip}(\mathbf{m} + \frac{d}{2}; \frac{d}{2})}
\]
and
\[
\left(\begin{array}{c}
z \\ \mathbf{k}
\end{array}\right)^{(d)} := \frac{P_{\mathbf{k}}^{ip}(z + \frac{d}{2}; \frac{d}{2})}{P_{\mathbf{k}}^{ip}(\mathbf{k} + \frac{d}{2}; \frac{d}{2})} \quad \text{(generalized (or Jack) binomial coefficients)},
\]
\[
0 F_0^{(d)}(z, u) := \sum_{\mathbf{m} \in \mathcal{P}} \Psi_{\mathbf{m}}^{(d)}(z) \Phi_{\mathbf{m}}^{(d)}(u) = \sum_{\mathbf{m} \in \mathcal{P}} \Phi_{\mathbf{m}}^{(d)}(z) \Psi_{\mathbf{m}}^{(d)}(u).
\]

Special values From [M] VI (6.14), (10.20) and [Ko] (4.8), we have
\[
P_{\mathbf{m}}\left(1; \frac{d}{2}\right) = \prod_{(i,j) \in \mathbf{m}} \frac{j - 1 + \frac{d}{2}(r - i + 1)}{m_i - j + \frac{d}{2}(m'_j - i + 1)} = \prod_{1 \leq i < j \leq r} \frac{\left(\frac{d}{2}(j - i + 1)\right)_{m_i - m_j}}{\left(\frac{d}{2}(j - i)\right)_{m_i - m_j}}.
\]
(2.1)

Further, by [Ko] (7.4) and (7.5)
\[
P_{\mathbf{m}}^{ip}\left(\mathbf{m} + \frac{d}{2}; \frac{d}{2}\right) = \prod_{(i,j) \in \mathbf{m}} \left(m_i - j + 1 + \frac{d}{2}(m'_j - i) \right)
\]
\[
= \prod_{j=1}^r \left(\frac{d}{2}(r - j) + 1 \right) \prod_{1 \leq i < j \leq r} \frac{\left(\frac{d}{2}(j - i - 1) + 1\right)_{m_i - m_j}}{\left(\frac{d}{2}(j - i) + 1\right)_{m_i - m_j}}.
\]
(2.2)

Although these multivariate special functions are very complicated, we write down these functions explicitly in \(r = 1, r = 2 \) and \(d = 2 \).

The \(r = 1 \) case For non positive integer \(m \) and \(z \in \mathbb{C} \),
\[
P_{\mathbf{m}}(z; \frac{d}{2}) = z^m, \quad P_{\mathbf{m}}^{ip}(z; \frac{d}{2}) = \begin{cases}
z(z-1) \cdots (z-m+1) & (m \neq 0) \\
1 & (m = 0) \end{cases}.
\]
Further,

\[P_m \left(1; \frac{d}{2} \right) = 1, \quad P_{ip}^m \left(m; \frac{d}{2} \right) = m!, \quad \Phi_{m}^{(d)}(z) = z^m, \quad \Psi_{m}^{(d)}(z) = \frac{z^m}{m!}, \]

\[\binom{z}{(d)} \binom{k}{(d)} = \begin{cases} \frac{z(z-1) \ldots (z-k+1)}{k!} & (k \neq 0) \\ 1 & (k = 0) \end{cases}, \]

\[0F_0^{(d)}(z, u) = \sum_{m \geq 0} \frac{z^m}{m!} u^m = \sum_{m \geq 0} \frac{z^m u^m}{m!} = e^{zu}. \]

The \(r = 2 \) case (see [Ko] 10.3, [VK] 3.2.1) For any partition \(\mathbf{m} = (m_1, m_2) \in \mathcal{P} \) and \(\mathbf{z} = (z_1, z_2) \in \mathbb{C}^2 \),

\[P_m \left(\frac{d}{2}; z \right) = z_1^{m_1} z_2^{m_2} F_1 \left(\begin{array}{c} -m_1 + m_2, \frac{d}{2} \\ 1 - m_1 + m_2 - \frac{d}{2} \end{array} \middle| z_2 \right) \]

\[P_{ip}^m \left(\frac{d}{2}; z \right) = (-1)^{m_1+m_2} (-z_1)_{m_2} (-z_2)_{m_1} F_2 \left(\begin{array}{c} -m_1 + m_2, \frac{d}{2}, -m_1 + 1 - \frac{d}{2} + z_1, 1 \\ 1 - m_1 + m_2 - \frac{d}{2}, -m_1 + 1 + z_2, 1 \end{array} \middle| \right). \]

Further,

\[P_m \left(1; \frac{d}{2} \right) = \frac{(d)_{m_1-m_2}}{(\frac{d}{2})_{m_1-m_2}}, \]

\[P_{ip}^m \left(\mathbf{m}; \frac{d}{2} \right) = \frac{(\frac{d}{2} + 1)_{m_1} m_2! (m_1 - m_2)!}{(\frac{d}{2} + 1)_{m_1-m_2}}, \]

\[\Phi_{m}^{(d)}(z) = \frac{(\frac{d}{2} - m_1 - m_2) z_1^{m_1} z_2^{m_2} F_1 \left(\begin{array}{c} -m_1 + m_2, \frac{d}{2}, \frac{z_2}{z_1} \\ 1 - m_1 + m_2 - \frac{d}{2} \end{array} \middle| \right)}{(d)_{m_1-m_2}}, \]

\[\Psi_{m}^{(d)}(z) = \frac{(\frac{d}{2} + 1)_{m_1-m_2} z_1^{m_1} z_2^{m_2} F_1 \left(\begin{array}{c} -m_1 + m_2, \frac{d}{2}, \frac{z_2}{z_1} \\ 1 - m_1 + m_2 - \frac{d}{2} \end{array} \middle| \right)}{(\frac{d}{2} + 1)_{m_1} (m_1 - m_2)! m_2!}, \]

\[\binom{z}{(d)} \binom{k}{(d)} = \frac{(\frac{d}{2} + 1)_{k_1-k_2}}{(\frac{d}{2} + 1)_{k_1} (k_1-k_2)! k_2!} (-1)^{k_1+k_2} \frac{(z_1 - \frac{d}{2})_{k_2}}{k_2} (-z_2)_{k_1}, \]

\[0F_0^{(d)}(z, u) = e^{z_1 u_1 + z_2 u_2} F_1 \left(\begin{array}{c} \frac{d}{2} \\ \frac{z_1}{z_2} - (z_1 - z_2)(u_1 - u_2) \end{array} \middle| \right). \]

The \(d = 2 \) case In this case, \(P_m(\mathbf{z}; 1) \) and \(P_{ip}^m(\mathbf{z}; 1) \) are Schur polynomials and shifted Schur polynomials respectively [OO].

\[P_m(\mathbf{z}; 1) = s_m(\mathbf{z}) = \frac{\det \left(z_i^{m_j+r-j} \right)_{1 \leq i,j \leq r}}{\Delta(\mathbf{z})}, \]

\[P_{ip}^m(\mathbf{z}; 1) = \frac{\det \left(P_{ip}^{m_j+r-j}(z_i + r - i; 1) \right)_{1 \leq i,j \leq r}}{\Delta(\mathbf{z})}. \]
where $\Delta(z) := \prod_{1 \leq i < j \leq r} (u_i - u_j)$. Further,

$$P_m(1; 1) = s_m(1) = \prod_{1 \leq i < j \leq r} \frac{(j - i)_{m_i - m_j}}{(j - i + 1)_{m_i - m_j}},$$

$$P^{ip}_m \left(m + \frac{d}{2}; 1 \right) = \prod_{j=1}^r (r - j + 1)_{m_j} \prod_{1 \leq i < j \leq r} \frac{(j - i)_{m_i - m_j}}{(j - i + 1)_{m_i - m_j}},$$

$$\Phi_m^{(2)}(z) = \prod_{1 \leq i < j \leq r} \frac{(j - i + 1)_{m_i - m_j}}{(j - i)_{m_i - m_j}} s_m(z),$$

$$\Psi_m^{(2)}(z) = \prod_{j=1}^r (r - j + 1)_{m_j} \prod_{1 \leq i < j \leq r} \frac{(j - i + 1)_{m_i - m_j}}{(j - i)_{m_i - m_j}} s_m(z),$$

$$\left(\frac{z}{k} \right)^{(2)} = \frac{1}{\Delta(z)} \det \left(\begin{array}{c} z_i + r - i \\ k_j + r - j \end{array} \right)_{1 \leq i, j \leq r}, \quad \mathcal{F}_0^{(d)}(z; u) = \frac{\det(e^{z_i u_j})_{1 \leq i, j \leq r}}{\Delta(z) \Delta(u)}.$$

Remark 2.1. We remark normalization of various Jack polynomials. First, we list some notations of Jack polynomials and their special values at $z = 1$ (see Table 1). In this article, our notations are based on [FK]. In particular,

$$\Psi_m^{(d)}(z) = d_m \frac{1}{\left(\frac{z}{r} \right)_m} \Phi_m^{(d)}(z),$$

where

$$n := r + \frac{d}{2} r (r - 1),$$

$$(\alpha)_m := \begin{cases} \alpha (\alpha + 1) \cdots (\alpha + m - 1) & (m \in \mathbb{Z}_{>0}) \\ 1 & (m = 0) \end{cases},$$

$$(\alpha)_m := \prod_{j=1}^r \left(\alpha - \frac{d}{2} (j - 1) \right)_{m_j},$$

$$d_m := \prod_{1 \leq i < j \leq r} \frac{m_i - m_j + \frac{d}{2} (j - i)}{\frac{d}{2} (j - 1)} \frac{(\frac{d}{2} (j - i + 1))_{m_i - m_j}}{(\frac{d}{2} (j - i + 1) + 1)_{m_i - m_j}} \quad ([FK], p315).$$

From special values of Jack polynomials $P_m(z; \frac{d}{2})$ and interpolation Jack polynomials $P^{ip}_k(z + \frac{d}{2}; \frac{d}{2})$ ([2.1] and [2.2]), we have

$$d_m \frac{1}{\left(\frac{z}{r} \right)_m} = \frac{P_m(1; \frac{d}{2})}{P^{ip}_m \left(m + \frac{d}{2}; \frac{d}{2} \right)}.$$

Next, we remark the relationship between Stanley style $J_m^{(\frac{d}{2})}(z)$ and Macdonald style $P_m(z; \frac{d}{2})$

$$J_m^{(\frac{d}{2})}(z) = \left(\frac{2}{d} \right)^{|m|} \prod_{(i,j) \in m} \left(m_i - j + \frac{d}{2} (m_j' - i + 1) \right) P_m \left(z; \frac{d}{2} \right) \quad ([M] VI (10.22))$$
where a partition \(\mathbf{m} \) is identified with its diagram:

\[
\mathbf{m} = \{ s = (i, j) \mid 1 \leq i \leq r, 1 \leq j \leq m_i \}.
\]

Hence we have

\[
\Psi^{(d)}_{\mathbf{m}}(z) = \frac{P_m(z; \frac{d}{2})}{P^{\text{up}}_m(\mathbf{m} + \frac{d}{2} \delta; \frac{d}{2})} = \left(\frac{d}{2} \right)^{|\mathbf{m}|} \prod_{(i,j) \in \mathbf{m}} \left(\frac{1}{m_i - j + \frac{d}{2}(m'_j - i + 1)} \right) \frac{1}{P^{\text{up}}_m(\mathbf{m} + \frac{d}{2} \delta; \frac{d}{2})} J^{(\frac{d}{2})}_{\mathbf{m}}(z).
\]

The relationship between \(C^{(\frac{d}{2})}_{\mathbf{m}}(1) \) (Kaneko style) and \(\Psi^{(d)}_{\mathbf{m}}(1) \) (our style)

\[
C^{(\frac{d}{2})}_{\mathbf{m}}(1) = |\mathbf{m}|! \prod_{(i,j) \in \mathbf{m}} \left(j - 1 + \frac{d}{2}(r - i + 1) \right) \left(m_i - j + \frac{d}{2}(m'_j - i + 1) \right) \left(m_i - j + 1 + \frac{d}{2}(m'_j - i) \right)
\]

follows from [2.1], [2.2] and [Ka] (18). Thus, we have

\[
\Psi^{(d)}_{\mathbf{m}}(z) = \frac{1}{|\mathbf{m}|!} C^{(\frac{d}{2})}_{\mathbf{m}}(z).
\]

To summarize the above results, we obtain

\[
\Psi^{(d)}_{\mathbf{m}}(z) = d_{\mathbf{m}} \frac{1}{(r)^{\mathbf{m}}} \Phi^{(d)}_{\mathbf{m}}(z) = \frac{1}{P^{\text{up}}_m(\mathbf{m} + \frac{d}{2} \delta; \frac{d}{2})} P_m(z; \frac{d}{2}) = \frac{1}{|\mathbf{m}|!} C^{(\frac{d}{2})}_{\mathbf{m}}(z). \tag{2.3}
\]

notation	special value at \(z = 1\)		
Faraut-Korányi	\(\Phi^{(d)}_{\mathbf{m}}(z) \)		
Stanley	\(\left(\frac{d}{2} \right)^{	\mathbf{m}	} \prod_{(i,j) \in \mathbf{m}} \left(j - 1 + \frac{d}{2}(r - i + 1) \right) \) (S Thm. 5.4)
Macdonald	\(P_m(z; \frac{d}{2}) \prod_{(i,j) \in \mathbf{m}} \frac{j - 1 + \frac{d}{2}(r - i + 1)}{m_i - j + \frac{d}{2}(m'_j - i + 1)} \) (M VI (10.20))		
Kaneko	\(C^{(\frac{d}{2})}_{\mathbf{m}}(z) \)		
S	\(\Psi^{(d)}_{\mathbf{m}}(z) \prod_{(i,j) \in \mathbf{m}} \frac{m_i - j + \frac{d}{2}(m'_j - i + 1) + \frac{d}{2}(m'_j - i)}{m_i - j + \frac{d}{2}(m'_j - i) + \frac{d}{2}(m'_j - i)} \) (Ka) (18)		

Table 1: Notations and normalizations of Jack polynomials

Under the following, we provide all necessary formulas to prove our main results.

Pieri type formulas for Jack polynomials For any partition \(\mathbf{m} \in \mathcal{P} \),

\[
e^{\mathbf{u}} \Psi^{(d)}_{\mathbf{m}}(\mathbf{u}) = \sum_{n \in \mathcal{P}} \left(\begin{array}{c} n \\ m \end{array} \right)^{(d)} \Psi^{(d)}_{n}(\mathbf{u}) \quad (S \text{ Section 14}). \tag{2.4}
\]
Since
\[e^{[u]} = \sum_{N \geq 0} \frac{1}{N!} |u|^N \]
and comparing the terms of degree \(N + |m| \) in (2.4), we have
\[\frac{|u|^N}{N!} \Psi_m^{(d)}(u) = \sum_{|n| = |m| = N, \ n \in \mathcal{P}} \binom{n}{m}^{(d)} \Psi_n^{(d)}(u). \]
(2.5)

From [L] Section 14,
\[\left(\binom{m^i}{m}^{(d)} \right) = \left(m_i + 1 + \frac{d}{2}(r - i) \right) h_{i,j}^{(d)}(m^i), \]
where \(\epsilon_i := (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{Z}^r \), \(m^i := m + \epsilon_i \) and
\[h_{i,j}^{(d)}(m) := \prod_{1 \leq k \neq i \leq r} \frac{m_i - m_k - \frac{d}{2}(i - k) \pm \frac{d}{2}(j - k)}{m_i - m_k - \frac{d}{2}(i - k)} \]
In particular, the \(N = 1 \) case of (2.5) is the following :
\[|u| \Psi_m^{(d)}(u) = \sum_{1 \leq i \leq r, \ m^i \in \mathcal{P}} \binom{m^i}{m}^{(d)} \Psi_m^{(d)}(u) = \sum_{1 \leq i \leq r, \ m^i \in \mathcal{P}} \Psi_m^{(d)}(u) \left(m_i + 1 + \frac{d}{2}(r - i) \right) h_{i,i}^{(d)}(m^i). \]
(2.6)

Properties of \(0 \mathcal{F}_0^{(d)} \) By [L] Section 14, we have
\[E_0(z)_0 \mathcal{F}_0^{(d)} \left(; z, u \right) = 0 \mathcal{F}_0^{(d)} \left(; z, u \right) |u|. \]
(2.7)
In particular, we obtain the index law of \(0 \mathcal{F}_0^{(d)} \left(; z, u \right) \)
\[0 \mathcal{F}_0^{(d)} \left(; 1 + z, u \right) = e^{E_0(z)} 0 \mathcal{F}_0^{(d)} \left(; z, u \right) = 0 \mathcal{F}_0^{(d)} \left(; z, u \right) e^{[u]}. \]
(2.8)

Other formula
\[|u|^N = N! \sum_{|m| = N, \ m \in \mathcal{P}} \Psi_m^{(d)}(u) \]
([S] Prop. 2.3 or [Ka] (17)).
(2.9)
To summarize the above results, we obtain the following dictionary.

\[P_m \left(1; \frac{d}{2} \right) = 1 \Rightarrow P_m \left(1; \frac{d}{2} \right) = \prod_{1 \leq i < j \leq r} \left(\frac{d}{2} (j - i + 1) \right)_{m_i - m_j}, \]

\[P^p_m \left(m; \frac{d}{2} \right) = m! \Rightarrow P^p_m \left(m + \frac{d}{2} \delta; \frac{d}{2} \right) = \prod_{j=1}^{r} \left(\frac{d}{2} (r - j) + 1 \right)_{m_j}, \]

\[\Phi^{(d)}_m(z) := z^m \Rightarrow \Phi^{(d)}_m(z) := \frac{P_m(z; \frac{d}{2})}{P_m \left(1; \frac{d}{2} \right)}, \]

\[\Psi^{(d)}_m(z) := \frac{z^m}{m!} \Rightarrow \Psi^{(d)}_m(z) := \frac{P_m \left(1; \frac{d}{2} \right) \Phi^{(d)}_m(z)}{P_m \left(m + \frac{d}{2} \delta; \frac{d}{2} \right)} = \frac{P_m(z; \frac{d}{2})}{P^p_m \left(m + \frac{d}{2} \delta; \frac{d}{2} \right)}, \]

\[\binom{m}{k} := \frac{P^p_k \left(m; \frac{d}{2} \right)}{P^p_k \left(k; \frac{d}{2} \right)} \Rightarrow \binom{m}{k} \Rightarrow \binom{m}{k} := \frac{P^p_k \left(m + \frac{d}{2} \delta; \frac{d}{2} \right)}{P^p_k \left(k + \frac{d}{2} \delta; \frac{d}{2} \right)}, \]

\[e^{zu} = \sum_{m=0}^{\infty} \frac{1}{m!} z^m u^m \Rightarrow 0F_0^{(d)}(z, u) := \sum_{m \in \mathcal{P}} \psi^{(d)}_k(z) \psi^{(d)}_k(u) \]

\[e^{zu} \frac{u^{m}}{m!} = \sum_{n=0}^{\infty} \binom{n}{m} \frac{u^n}{n!} \Rightarrow e^{zu} \frac{u^{m}}{m!} = \sum_{n \in \mathcal{P}} \left(\binom{n}{m} \psi^{(d)}_m(u) \right), \]

\[\frac{u^m}{m!} = \frac{u^{m+1}}{(m+1)!} (m+1) \Rightarrow \frac{u^m}{m!} = \sum_{1 \leq i \leq r, m_i \in \mathcal{P}} \psi^{(d)}_m(u) \left(m_i + 1 + \frac{d}{2} (r - i) \right) h_{-i,i}(m^i), \]

\[\partial_z e^{zu} = e^{zu} u \Rightarrow E_0(z)_{0F_0^{(d)}}(z, u) = 0F_0^{(d)}(z, u) |u|, \]

\[e^{(1+z)u} = e^u e^{zu} \Rightarrow 0F_0^{(d)}(1+z, u) = e^{u} 0F_0^{(d)}(z, u), \]

\[u^N = N! \frac{u^N}{N!} \Rightarrow \frac{|u|^N}{N!} = \sum_{|m|=N, m_i \in \mathcal{P}} \psi^{(d)}_m(u), \]
3 Multivariate Bernoulli polynomials

We define multivariate Bernoulli polynomials $B^{(d)}_m(z)$ or $B^m\left(z; \frac{d}{2}\right)$ by the following generating function.

$$\frac{u}{e^u - 1} e^{zu} = \sum_{m=0}^{\infty} B_m(z) \Psi_m(u) \quad (|u| < 2\pi)$$

$$\downarrow$$

$$\frac{|u|}{e^{|u|} - 1} \mathcal{F}_0^{(d)}(z, u) = \sum_{m \in \mathcal{P}} B^{(d)}_m(z) \Psi^{(d)}_m(u) \quad (|u_1 + \cdots + u_r| < 2\pi). \quad (3.1)$$

Remark 3.1. Originally, we consider the following type generating function and multivariate analogue of Bernoulli polynomials.

$$\prod_{j=1}^{r} \frac{u_j}{e^{u_j} - 1} \mathcal{F}_0^{(d)}(z, u) = \sum_{m \in \mathcal{P}} \tilde{B}^{(d)}_m(z) \Psi^{(d)}_m(u)$$

In the $d = 2$ case, this type generating function has the determinant expression

$$\prod_{j=1}^{r} \frac{u_j}{e^{u_j} - 1} \mathcal{F}_0^{(2)}(z, u) = \frac{\det \left(\frac{u_i e^{u_j}}{e^{|u|} - 1} \right)_{1 \leq i, j \leq r}}{\Delta(z) \Delta(u)}$$

and $\tilde{B}^{(2)}_m(z)$ has the Jacobi-Trudi type formula

$$\tilde{B}^{(2)}_m(z) = \frac{\det \left(B_{m+r-i}(z_j) \right)}{\Delta(z)}.$$

However, for this multivariate analogue of Bernoulli polynomials, we can not find an analogue of the formulas (1.3) - (1.10). Therefore, we investigate the above type (3.1) multivariate Bernoulli polynomials.

Theorem 3.2. (1) Special value at $z = 0$

$$B^{(d)}_m(0) = B^m|_m, \quad (3.2)$$

(2) Difference equation

$$B^{(d)}_m(z + 1) - B^{(d)}_m(z) = \sum_{i=1}^{r} \Phi^{(d)}_{m_i}(z) \left(m_i + \frac{d}{2}(r - i) \right) h^{(d)}_{-i}(m). \quad (3.3)$$

(3) Differential equation

$$E_0(z) B^{(d)}_m(z) = \sum_{i=1}^{r} B^{(d)}_{m_i}(z) \left(m_i + \frac{d}{2}(r - i) \right) h^{(d)}_{-i}(m). \quad (3.4)$$
(4) Symmetry

\[B_m^{(d)}(1 - z) = (-1)^{|m|} B_m^{(d)}(z) \] \hspace{1cm} (3.5)

(5) Explicit formula

\[B_m^{(d)}(z) = \sum_{n \subseteq m} B_{|m| - |n|}^{(d)} \binom{m}{n} \Phi_n^{(d)}(z). \] \hspace{1cm} (3.6)

(6) Inversion formula

\[\Phi_m^{(d)}(z) = \sum_{n \subseteq m} \frac{1}{|m| - |n| + 1} \binom{m}{n} B_n^{(d)}(z). \] \hspace{1cm} (3.7)

(7) Multiplication formula

\[\sum_{i=0}^{N-1} B_m^{(d)} \left(z + \frac{i}{N} \right) = N^{1-|m|} B_m^{(d)}(Nz) \] \hspace{1cm} (3.8)

(8) Binomial formula

\[B_m^{(d)}(z + 1) = \sum_{n \subseteq m} \binom{m}{n} B_n^{(d)}(z) \] \hspace{1cm} (3.9)

proof. (1) By the definition of the multivariate Bernoulli polynomials and Bernoulli numbers, we have

\[\sum_{m \in \mathcal{P}} B_m^{(d)}(0) \Psi_m^{(d)}(u) = |u| = \sum_{N=0}^{\infty} \frac{B_N}{N!} |u|^N. \]

On the other hand, by (2.9)

\[\sum_{N=0}^{\infty} \frac{B_N}{N!} |u|^N = \sum_{N=0}^{\infty} B_N \sum_{|m|=N} \Psi_m^{(d)}(u) = \sum_{m \in \mathcal{P}} B_{|m|} \Psi_m^{(d)}(u). \]

(2) By (2.8) and (2.6), we have

\[\sum_{m \in \mathcal{P}} \left(B_m^{(d)}(z + 1) - B_m^{(d)}(z) \right) \Psi_m^{(d)}(z) = \frac{|u|}{e^{|u|} - 1} \left(e^{|u|} \mathcal{F}_0^{(d)}(z + 1, u) - \mathcal{F}_0^{(d)}(z, u) \right) \]

\[= \frac{|u|}{e^{|u|} - 1} \left(e^{|u|} \mathcal{F}_0^{(d)}(z, u) - \mathcal{F}_0^{(d)}(z, u) \right) \]

\[= |u| \mathcal{F}_0^{(d)}(z, u) \]

\[= \sum_{m \in \mathcal{P}} \Phi_m^{(d)}(z) |u| \Psi_m^{(d)}(u) \]

\[= \sum_{m \in \mathcal{P}} \Phi_m^{(d)}(z) \sum_{i=1}^{r} \Psi_{m_i}^{(d)}(u) \left(m_i + 1 + \frac{d}{2}(r - i) \right) h_{r-i}^{(d)}(m^i) \]

\[= \sum_{m \in \mathcal{P}} \sum_{i=1}^{r} \Phi_m^{(d)}(z) \left(m_i + \frac{d}{2}(r - i) \right) h_{r-i}^{(d)}(m) \Psi_m^{(d)}(u). \]
(3) By (2.7) and (2.6),
\[
\sum_{m \in \mathcal{P}} E_0(z) B_{m}^{(d)}(z) \Psi_{m}^{(d)}(u) = \frac{|u|}{e^{|u|} - 1} E_0(z) \mathcal{F}_0^{(d)}(z, u) \\
= \frac{|u|}{e^{|u|} - 1} 0 \mathcal{F}_0^{(d)}(z, u) |u| \\
= \sum_{m \in \mathcal{P}} B_{m}^{(d)}(z) |u| \Psi_{m}^{(d)}(u) \\
= \sum_{m \in \mathcal{P}} B_{m}^{(d)}(z) \sum_{i=1}^{r} \Psi_{m}^{(d)}(u) \left(m_i + \frac{d}{2} (r - i) \right) h_{-i}^{(d)}(m) \\
= \sum_{m \in \mathcal{P}} \sum_{i=1}^{r} B_{m_i}^{(d)}(z) \left(m_i + \frac{d}{2} (r - i) \right) h_{-i}^{(d)}(m) \Psi_{m}^{(d)}(u).
\]

(4) By (2.8),
\[
\sum_{m \in \mathcal{P}} B_{m}^{(d)}(1 - z) \Psi_{m}^{(d)}(u) = \frac{|u|}{e^{|u|} - 1} 0 \mathcal{F}_0^{(d)}(1 - z, u) \\
= \frac{|u|}{e^{|u|} - 1} 0 \mathcal{F}_0^{(d)}(z, -u) e^{|u|} \\
= \frac{|-u|}{e^{-|u|} - 1} 0 \mathcal{F}_0^{(d)}(z, -u) \\
= \sum_{m \in \mathcal{P}} B_{m}^{(d)}(z) \Psi_{m}^{(d)}(-u) \\
= \sum_{m \in \mathcal{P}} (-1)^{|m|} B_{m}^{(d)}(z) \Psi_{m}^{(d)}(u).
\]

(5) By (2.5),
\[
\sum_{m \in \mathcal{P}} B_{m}^{(d)}(z) \Psi_{m}^{(d)}(u) = \frac{|u|}{e^{|u|} - 1} 0 \mathcal{F}_0^{(d)}(z, u) \\
= \sum_{N=0}^{\infty} B_{N} \sum_{n \in \mathcal{P}} \frac{|u|^N}{N!} \Phi_{n}^{(d)}(z) \Psi_{n}^{(d)}(u) \\
= \sum_{N=0}^{\infty} B_{N} \sum_{n \in \mathcal{P}} \frac{|u|^N}{N!} \Psi_{n}^{(d)}(u) \\
= \sum_{N=0}^{\infty} B_{N} \sum_{n \in \mathcal{P}} \Phi_{n}^{(d)}(z) \sum_{|m| - |n| = N} \binom{m}{n} \Psi_{m}^{(d)}(u) \\
= \sum_{m \in \mathcal{P}} \sum_{n \in \mathcal{P}} \Phi_{n}^{(d)}(z) \sum_{|m| - |n| = N} \binom{m}{n} \Psi_{m}^{(d)}(u).
(6) By (2.5),

\[
\sum_{m \in P} \Phi_{m}^{(d)}(z) \Psi_{m}^{(d)}(u) = 0 \mathcal{F}_{0}^{(d)}(z, u)
\]

\[
= \frac{e^{|u|} - 1}{|u|} \sum_{n \in P} B_{n}^{(d)}(z) \Psi_{n}^{(d)}(u)
\]

\[
= \sum_{N=0}^{\infty} \frac{1}{N + 1} \frac{1}{N!} |u|^{N} \sum_{n \in P} B_{n}^{(d)}(z) \Psi_{n}^{(d)}(u)
\]

\[
= \sum_{N=0}^{\infty} \frac{1}{N + 1} \sum_{n \in P} B_{n}^{(d)}(z) \frac{|u|^{N}}{N!} \Psi_{n}^{(d)}(u)
\]

\[
= \sum_{N=0}^{\infty} \frac{1}{N + 1} \sum_{n \in P} B_{n}^{(d)}(z) \sum_{|m| - |n| = N} \binom{m}{n}^{(d)} \Psi_{m}^{(d)}(u)
\]

\[
= \sum_{m \in P} \sum_{n \in m} \frac{1}{|m| - |n| + 1} B_{n}^{(d)}(z) \binom{m}{n}^{(d)} \Psi_{m}^{(d)}(u).
\]

(7) By (2.8) and the summation of a geometric series,

\[
\sum_{m \in P}^{N-1} \sum_{i=0}^{N-1} B_{m}^{(d)} \left(z + \frac{i}{N} 1 \right) \Psi_{m}^{(d)}(u) = \sum_{i=0}^{N-1} \frac{|u|}{e^{|u|} - 1} \mathcal{F}_{0}^{(d)}(z + \frac{i}{N} 1, u)
\]

\[
= \frac{|u|}{e^{|u|} - 1} \mathcal{F}_{0}^{(d)}(z, u) \sum_{i=0}^{N-1} e^{\frac{i}{N}|u|}
\]

\[
= \frac{|u|}{e^{|u|} - 1} \mathcal{F}_{0}^{(d)}(z, u) \frac{e^{|u|} - 1}{e^{\frac{|u|}{N}} - 1}
\]

\[
= N \frac{|u|}{e^{|u|} - 1} \mathcal{F}_{0}^{(d)}(Nz, \frac{u}{N})
\]

\[
= N \sum_{m \in P} B_{m}^{(d)}(Nz) \Psi_{m}^{(d)}(\frac{u}{N})
\]

\[
= \sum_{m \in P} N^{1-|m|} B_{m}^{(d)}(Nz) \Psi_{m}^{(d)}(u).
\]
By (2.8)

\[\sum_{m \in \mathcal{P}} B^{(d)}_m (z + 1) \Psi^{(d)}_m (u) = \frac{|u|}{e^{d|u| - 1} - 1} F^{(d)}_0 (z + 1, u) \]

\[= \frac{|u|}{e^{d|u| - 1} - 1} - e^{d|u|} \psi^{(d)} (u) \]

\[= \sum_{n \in \mathcal{P}} B^{(d)}_n (z) e^{d|u|} \psi^{(d)} (u) \]

\[= \sum_{n \in \mathcal{P}} B^{(d)}_n (z) \sum_{m \in \mathcal{P}} \binom{m}{n} \psi^{(d)}_m (u) \]

\[= \sum_{m \in \mathcal{P}} \sum_{n \subset m} \binom{m}{n} B^{(d)}_n (z) \psi^{(d)}_m (u). \]

\[\square \]

4 A multivariate analogue of the multiple Bernoulli polynomials

For \(n \)-tuple complex numbers

\[\omega := (\omega_1, \ldots, \omega_n), \quad \omega_j \in \mathbb{C} \setminus \{0\}, \]

we define the multiple Bernoulli polynomials \(B_{n,m} (z \mid \omega) \) with a generating function

\[e^{zu} \prod_{j=1}^{n} \frac{u - e^{\omega_j u}}{u - 1} = \sum_{m \geq 0} B_{n,m} (z \mid \omega) \psi_m (u) \quad (|\omega_j u| < 2\pi, j = 1, \ldots, n). \quad (4.1) \]

Let

\[\hat{\omega}(j) := (\omega_1, \ldots, \omega_{j-1}, \omega_{j+1}, \ldots, \omega_r) \in \mathbb{C}^{r-1} \]

\[= (\omega_1, \ldots, \omega_j, \ldots, \omega_r), \]

\[\omega^-[j] := (\omega_1, \ldots, -\omega_j, \ldots, \omega_r) \in \mathbb{C}^r. \]

For \(B_{n,m} (z \mid \omega) \), the following formulas are well-known (see [N] (12)–(17)).

\[B_{n,m} (cz \mid c\omega) = c^{m-n} B_{n,m} (z \mid \omega) \quad (c \in \mathbb{C}^*), \quad (4.2) \]

\[B_{n,m} (\omega \mid -z \mid \omega) = (-1)^m B_{n,m} (z \mid \omega), \quad (4.3) \]

\[B_{n,m} (z + \omega_j \mid \omega) - B_{n,m} (z \mid \omega) = m B_{n-1,m-1} (z \mid \hat{\omega}(j)), \quad (4.4) \]

\[B_{n,m} (z \mid \omega^{-}[j]) = -B_{n,m} (z + \omega_j \mid \omega), \quad (4.5) \]

\[B_{n,m} (z \mid \omega) + B_{n,m} (z \mid \omega^{-}[j]) = -m B_{n-1,m-1} (z \mid \hat{\omega}(j)), \quad (4.6) \]

\[\frac{d}{dz} B_{n,m} (z \mid \omega) = m B_{n,m-1} (z \mid \omega). \quad (4.7) \]
We also introduce a multivariate analogue of the multiple Bernoulli polynomials by
\[
\mathcal{F}_0^{(d)}(;z,u) = \sum_{m\in \mathcal{P}} B_n^{(d)}(z; \omega) \Psi_m^{(d)}(u) \tag{4.8}
\]
and obtain a multivariate analogue of the above formulas \((4.2)\)–\((4.7)\) easily.

Theorem 4.1. (1)
\[
B_n^{(d)}(cz; c\omega) = c^{\lvert m \rvert - n} B_n^{(d)}(z; \omega) \quad (c \in \mathbb{C}^*). \tag{4.9}
\]

(2)
\[
B_n^{(d)}(\omega^1 - z; \omega) = (-1)^{\lvert m \rvert} B_n^{(d)}(z; \omega). \tag{4.10}
\]

(3)
\[
B_n^{(d)}(z + \omega j 1; \omega) - B_n^{(d)}(z; \omega) = \sum_{i=1}^r B_{n-1,m_i}(z; \tilde{\omega}(j)) \left(m_i + \frac{d}{2} (r - i) \right) h_{i-d}^{(d)}(m). \tag{4.11}
\]

(4)
\[
B_n^{(d)}(z; \omega^{-j}) = - B_n^{(d)}(z + \omega j 1; \omega). \tag{4.12}
\]

(5)
\[
B_n^{(d)}(z; \omega) + B_n^{(d)}(z; \omega^{-j}) = - \sum_{i=1}^r B_{n-1,m_i}(z; \tilde{\omega}(j)) \left(m_i + \frac{d}{2} (r - i) \right) h_{i-d}^{(d)}(m). \tag{4.13}
\]

(6)
\[
E_0(z) B_n^{(d)}(z; \omega) = \sum_{i=1}^r B_{n,m_i}(z; \omega) \left(m_i + \frac{d}{2} (r - i) \right) h_{i-d}^{(d)}(m). \tag{4.14}
\]

proof: (1) From the generating function of the multiple multivariate Bernoulli polynomials and homogeneity of Jack polynomials, we have
\[
\sum_{m \in \mathcal{P}} B_n^{(d)}(cz; c\omega) \Psi_m^{(d)}(u) = \mathcal{F}_0^{(d)}(;cz,u) \prod_{i=1}^n \frac{|u|}{e^{\omega_i |u|} - 1} = c^{-n} \mathcal{F}_0^{(d)}(;z,cu) \prod_{i=1}^n \frac{|cu|}{e^{\omega_i |cu|} - 1} = c^{-n} \mathcal{F}_0^{(d)}(;z,cu) \prod_{i=1}^n \frac{|cu|}{e^{\omega_i |cu|} - 1} = c^{-n} \sum_{m \in \mathcal{P}} B_n^{(d)}(z; \omega) \Psi_m^{(d)}(cu) = \sum_{m \in \mathcal{P}} c^{\lvert m \rvert - n} B_n^{(d)}(z; \omega) \Psi_m^{(d)}(u).
\]
(2) By (2.8),

\[\sum_{m \in P} B_{n,m}^{(d)}(\omega|1 - z | \omega)\Psi_m^{(d)}(u) = 0F_0^{(d)} \left(; |\omega|1 - z, u \right) \prod_{i=1}^{n} \frac{|u|}{e^{\omega_i |u|} - 1} \]

\[= e^{\omega|u|} 0F_0^{(d)} \left(; z, -u \right) \prod_{i=1}^{n} \frac{|u|}{e^{\omega_i |u|} - 1} \]

\[= 0F_0^{(d)} \left(; z, -u \right) \prod_{i=1}^{n} \frac{|u|}{e^{-\omega_i |u|} - 1} \]

\[= \sum_{m \in P} (-1)^{|m|} B_{n,m}^{(d)}(z | \omega)\Psi_m^{(d)}(u). \]

(3) By (2.8), (2.6)

\[\sum_{m \in P} (B_{n,m}^{(d)}(z + \omega_j 1 | \omega) - B_{n,m}^{(d)}(z | \omega))\Psi_m^{(d)}(u) \]

\[= \left(0F_0^{(d)} \left(; z + \omega_j 1, u \right) - 0F_0^{(d)} \left(; z, u \right) \right) \prod_{i=1}^{n} \frac{|u|}{e^{\omega_i |u|} - 1} \]

\[= (e^{\omega_j |u|} - 1)0F_0^{(d)} \left(; z, u \right) \prod_{i=1}^{n} \frac{|u|}{e^{\omega_i |u|} - 1} \]

\[= |u|0F_0^{(d)} \left(; z, u \right) \prod_{1 \leq i \neq j \leq n} \frac{|u|}{e^{\omega_i |u|} - 1} \]

\[= \sum_{m \in P} B_{n-1,m}^{(d)}(z | \hat{\omega}(j))|u|\Psi_m^{(d)}(u) \]

\[= \sum_{m \in P} B_{n-1,m}^{(d)}(z | \hat{\omega}(j)) \sum_{i=1}^{r} \Psi_m^{(d)}(u) \left(m_i + 1 + \frac{d}{2} (r - i) \right) h_{-i}^{(d)}(m^i) \]

\[= \sum_{m \in P} \sum_{i=1}^{r} B_{n-1,m_i}^{(d)}(z | \hat{\omega}(j)) \left(m_i + \frac{d}{2} (r - i) \right) h_{-i}^{(d)}(m)\Psi_m^{(d)}(u). \]

19
(4) By (2.8)

\[
\sum_{m \in P} B_{n,m}(z \mid \omega^{-j}) \Psi_m^{(d)}(u)
= 0_F^{(d)}(z, u) \frac{|u|}{e^{-\omega_j |u|} - 1} \prod_{1 \leq j \leq n} \frac{|u|}{e^{\omega_j |u|} - 1}
= -e^{\omega_j |u|} 0_F^{(d)}(z, u) \prod_{1 \leq j \leq n} \frac{|u|}{e^{\omega_j |u|} - 1}
= -0_F^{(d)}(z + \omega_j 1, u) \prod_{i=1}^{n} \frac{|u|}{e^{\omega_i |u|} - 1}
= \sum_{m \in P} -B_{n,m}(z + \omega_j 1 \mid \omega) \Psi_m^{(d)}(u).
\]

(5) By (4.12) and (4.11), we have

\[
B_{n,m}(z \mid \omega) + B_{n,m}(z \mid \omega^{-j})
= B_{n,m}(z \mid \omega) - B_{n,m}(z + \omega_j 1 \mid \omega)
= -\sum_{i=1}^{r} B_{n-1,m_i}(z \mid \tilde{\omega}(j)) \left(m_i + \frac{d}{2} (r - i) \right) h_{-i}^{(d)}(m).
\]

(6) By (2.7) and (2.6), we have

\[
\sum_{m \in P} E_0(z) B_{n,m}(z \mid \omega) \Psi_m^{(d)}(u) = E_0(z) 0_F^{(d)}(z, u) \prod_{i=1}^{n} \frac{|u|}{e^{\omega_i |u|} - 1}
= |u| 0_F^{(d)}(z, u) \prod_{i=1}^{n} \frac{|u|}{e^{\omega_i |u|} - 1}
= \sum_{m \in P} B_{n,m}(z \mid \omega) \Psi_m^{(d)}(u)
= \sum_{m \in P} B_{n,m}(z \mid \omega) \sum_{i=1}^{r} \Psi_m^{(d)}(u) \left(m_i + 1 + \frac{d}{2} (r - i) \right) h_{-i}^{(d)}(m)
= \sum_{i=1}^{r} B_{n,m_i}(z \mid \omega) \left(m_i + \frac{d}{2} (r - i) \right) h_{-i}^{(d)}(m) \Psi_m^{(d)}(u).
\]

5 Concluding remarks

Since our multivariate Bernoulli polynomials have various properties which are regarded as a natural generalization of (1.3) - (1.10), our multivariate Bernoulli polynomials are
regarded as a good multivariate analogue of Bernoulli polynomials. Therefore we desire to
find a multivariate zeta function whose some special values are written by our multivariate
Bernoulli polynomials $B_m^{(d)}(z)$.

Acknowledgements

We thank Professor M. Noumi for his precious advices on Jack and interpolation Jack polynomials.

References

[E] Erdélyi, A. et al.: *Higher transcendental functions. Vol. 1*, McGraw-Hill New York, 1953.

[FK] J. Faraut and A. Korányi: *Analysis on Symmetric Cones*, Clarendon Press, Oxford, 1994.

[Ka] J. Kaneko: *Selberg integrals and hypergeometric functions associated with Jack polynomials*, SIAM J. Math. Anal., 24 (1993), 1086–1110.

[Ko] T. H. Koornwinder: *Okounkov’s BC-type interpolation Macdonald polynomials and their q = 1 limit*, Sém. Lothar. Combin, 72 (2014/15), 27pp.

[L] M. Lassalle: *Coefficients binomiaux généralisés et polynômes de Macdonald*, J. Funct. Anal., 158 (1998), 289–324.

[M] I. G. Macdonald: *Symmetric Functions and Hall Polynomials*, Oxford University Press, 1995.

[N] A. Narukawa: *The modular properties and the integral representations of the multiple elliptic gamma functions*, Adv. Math. 189-2 (2004), 247–267.

[OO] A. Okounkov and G. Olshanski: *Shifted Jack polynomials, binomial formula, and applications*, Math. Res. Letters, 4 (1997), 69–78.

[S] R. Stanley: *Some combinatorial properties of Jack symmetric functions*, Adv. Math., 77-1 (1989) 76–115.

[VK] N. Ja. Vilenkin and A. U. Klimyk: *Representation of Lie Groups and Special Functions –Recent Advances–*, Kluwer Academic Publishers, 1995.

Department of Mathematics, Graduate School of Science, Kobe University,
1-1, Rokkodai, Nada-ku, Kobe, 657-8501, JAPAN
E-mail: g-shibukawa@math.kobe-u.ac.jp