Pharyngeal Airway Dimensions Assessed by Acoustic Pharyngometry in a Mixed Indian Population: A Cross-sectional Study

Sanjeev Datana¹, Shiv Shankar Agarwal², Prasanna Kumar³, Mohit Sharma⁴

ABSTRACT

Background: Acoustic pharyngometry (AP) is a noninvasive modality for the assessment of upper airway dimensions. Early detection of structural narrowing of the upper airway may enable the clinician early detection of upper airway sleep disorders like obstructive sleep apnea (OSA). At present, norms for various airway parameters assessed on AP for the Indian population are not available.

Material and methods: This cross-sectional study was conducted on AP records of 560 subjects (428 males and 132 females) in the age-group of 20–40 years. The study included subjects with body mass index (BMI) and neck circumference within normal limits, having a straight facial profile and Angle’s class I with no discrepancy in transverse, sagittal, and vertical dimensions. The data were analyzed using a statistical package for social sciences (SPSS version 21.0, IBM Corporation, USA) for MS Windows.

Results: The results of the study indicated that the mean volume of the pharyngeal airway in males and females was 27.98 cm³ and 28.5 cm³, respectively. The mean area in males and females was 2.84 cm² and 2.85 cm², respectively. The minimum area in males and females was 1.76 cm² and 1.74 cm², respectively.

Conclusions: The mean values of various airway parameters obtained in the present study can serve as reference values in respect of the mixed Indian population and as a guideline for screening of large number of patients, especially with regard to the detection of the compromised upper airway.

Keywords: Acoustic pharyngometry, Mixed Indian population, Upper airway.

Indian Journal of Sleep Medicine (2021): 10.5005/jp-journals-10069-0070

INTRODUCTION

Pharyngeal airway is an important anatomical requisite for favorable growth and development of the craniofacial structures. The relationship between pharyngeal, oral, and craniofacial structures determines their mutual interaction during life and various stages of growth and development.¹,² Early detection of structural narrowing of the upper airway may enable early detection and management of upper airway sleep disorders like obstructive sleep apnea (OSA). However, it is necessary to compare the individual subject’s data with those of existing norms in the literature to arrive at a conclusion so as to determine or quantify the amount of deviation of parameters in the subject under consideration with regard to those of existing norms.

Various techniques like lateral cephalogram, cone beam computed tomography (CBCT), fiberoptic pharyngoscopy, magnetic resonance imaging (MRI), etc. have been reported in the literature for the assessment of upper airway dimensions.³,⁴ However, most of these studies have been done either on 2D modalities like lateral cephalograms or more recently on 3D modalities like CBCT, both of which fail to assess the upper airway in a dynamic state as these methods are static in nature. These cutting-edge techniques for airway assessment are more expensive, incur extra cost and radiation exposure to the patient, may not be accessible at all places, and, most importantly, are invasive procedures.⁵ Acoustic pharyngometry (AP) is a relatively newer technique used to assess pharyngeal airway in three dimensions and also in a dynamic state. It works on the principle of acoustic reflection in which there is a reflection of sound waves that are projected down the subject’s airway through a mouthpiece and are reflected back and assessed by the processing unit to display the results on the computer. The validity of this technique in measuring upper airway has been well established in the literature, and the pharyngeal airway dimensions measured by this technique have been found to be comparable to those obtained by computed tomography⁶ and MRI.⁷

In modern-day practice, the demand for orthodontic treatment is primarily for improvement in the facial profile and smile esthetics of the patient. Ethnicity that influences the skeletal and dental parameters definitely plays a critical role in the planning of treatment for orthodontic and orthognathic surgical corrections in these patients. One of the goals of orthodontic treatment includes meticulous assessment of upper airway dimensions prior to orthodontic and orthognathic corrections.

¹,²Department of Orthodontics and Dentofacial Orthopedics, Armed Forces Medical College, Pune, Maharashtra, India
³,⁴Department of Orthodontics and Dentofacial Orthopedics, Army Dental Centre (R&R) New Delhi, India
Corresponding Author: SS Agarwal, Department of Orthodontics and Dentofacial Orthopedics, Armed Forces Medical College, Pune, Maharashtra, India, e-mail: docshivagarwal@rediffmail.com
How to cite this article: Datana S, Agarwal SS, Kumar P, et al. Pharyngeal Airway Dimensions Assessed by Acoustic Pharyngometry in a Mixed Indian Population: A Cross-sectional Study. J Sleep Med 2021;16(2):40–43.
Source of support: Nil
Conflict of interest: None
to treatment and improvement and/or maintenance of optimal upper airway area and volumes postorthodontic or ortho-surgical treatment.

The AP norms of one ethnic group may not be applicable to another ethnic group because of the marked difference of the craniofacial morphology (and thereby upper airway dimensions) in different ethnic groups. Studies involving the assessment of pharyngeal airway space with AP are limited in orthodontic literature. In addition to this, at present, there are no norms for Indian subjects regarding the pharyngeal airway dimensions as determined by pharyngometry. Hence, the present study was undertaken to obtain the measurements of the upper airway through AP analysis in healthy adult Indian subjects with no existent facial deformity. It aims to obtain preliminary data to establish normal values and range of upper airway dimensions by AP in both sexes for its larger clinical use in the mixed Indian population.

MATERIALS AND METHODS

Study Design

Cross-sectional record-based study.

Sample Size Estimation

This study was undertaken in the Department of Orthodontics and Dentofacial Orthopedics of a tertiary care teaching institute. Sample size estimation was based on convenient sampling. AP records of 560 subjects (428 males and 132 females) in the age-group of 20–40 years (Table 1; Fig. 1) who underwent routine AP evaluation of pharyngeal airway in males and females was 27.98 cm² respectively (Fig. 2). The mean area in males and females was 2.84 cm² and 2.85 cm², respectively. The minimum mean area in males and females was 1.76 cm² and 1.74 cm², respectively (Table 1; Fig. 4).

RESULTS

The results of the study indicated that the mean volume of pharyngeal airway in males and females was 27.98 cm³ and 28.05 cm³, respectively (Table 1; Fig. 3). The mean area in males and females was 2.84 cm² and 2.85 cm², respectively. The minimum mean area in males and females was 1.76 cm² and 1.74 cm², respectively (Table 1; Fig. 4).

DISCUSSION

The craniofacial skeleton undergoes constant change throughout the life of the individual secondary to the functional requirements. The influence of pharyngeal airway on growth and development of craniofacial structures, its physiology, and various influences that contribute toward its patency and collapsibility during sleep and
India is a vast country with diverse population groups of different ethnicity and cultural origins. Maharashtra being the second most populous and geographically third largest state of the country is characterized by the inhabitation of a mixed Indian population, including natives and migrants from throughout the country. A study of this population would yield values representative of a mixed Indian population, which can be utilized in clinical practice.

With respect to the upper airway study by pharyngometry, no such norms exist for the mixed Indian population till date. Hence, this study was undertaken.

The mean upper airway area obtained in the present study was $2.84 \pm 0.74 \text{ cm}^2$ in males and $2.85 \pm 0.78 \text{ cm}^2$ in females. When comparing our results with those carried out by Brigadier General Kamal, the measurements obtained in the present study are slightly lesser in males and almost similar for females.
Comparing our study with a study by Samman, the measurements of the area obtained in the present study are lower. In comparison to the study by Kaur, 15 the area measurements obtained in the present study are slightly lower for males and higher for females. Our study reveals an area of 2.84 ± 0.74 cm\(^2\) when compared to that of 3.035 cm\(^2\) in their study and a slightly higher area for females which according to our study is 2.85 ± 0.78 cm\(^2\) when compared to that of 2.75 cm\(^2\) in their study. Overall, the results of area measurement in the present study are in consonance with that of area measurements obtained by other methods in the literature.

The mean upper airway volume obtained in the present study was 27.98 ± 7.52 cm\(^3\) for males. On comparing this with a study conducted by Dan Grauer, 16 the airway volume obtained in the present study is greater when compared to the mean volume of 20.3 ± 7.3 cm\(^3\) in their study. However, it needs to be considered that their study was based on CBCT. In addition to this, when the upper airway volume was compared to the study by Mevlut Celikoglu, 17 the measurements obtained in the present study are slightly greater in both males and females.

Although some differences were observed in the airway parameters of males and females in this study, the overall curvature followed by the pharyngogram was similar in all subjects. Hence, it can be inferred that despite the fact that males and females have different pharyngeal cross-sectional areas, it does not affect the geometric configuration of the curve. Both males and females showed the same curve topography in our study. 18,19

Conclusion

The mean values of various airway parameters obtained in the present study can serve as reference values in respect of mixed Indian population and as a guideline for screening of a large number of patients, especially with regard to the detection of the compromised upper airway. However, a multicenter study with a larger sample size is recommended to validate the findings of this study.

References

1. Uslu-Akcam O. Pharyngeal airway dimensions in skeletal class II: A cephalometric growth study. Imaging Sci Dent. 2017;47(1):1-9. DOI: 10.5624/isd.2017.47.1.1.
2. McNamara JA. Influence of respiratory pattern on craniofacial growth. Angle Orthod 1981;51:269–300. DOI: 10.1043/0003-3219(1981)051<0269:IORPOC>2.0.CO;2.
3. Han S, Choi YJ, Chung CJ, et al. Long-term pharyngeal airway changes after bionator treatment in adolescents with skeletal Class II malocclusions. Korean J Orthod 2014;4:13–19. DOI: 10.4041/kjod.2014.44.1.13.
4. Guttal KS, Burde KN. Cephalometric evaluation of upper airway in healthy adult population: a preliminary study. J Oral Maxillofac Radiol 2013;1:55–60. DOI: 10.4103/2231-3841.120115.
5. Samman N, Mohammadi H, Xia J. Cephalometric norms for the upper airway in a healthy Hong Kong Chinese population. Hong Kong Med J 2003;9:25–30. DOI: 10.12809/hkmj154641.
6. D’Urzo AD, Lawson VG, Vassal KP, et al. Airway area by acoustic response measurements and computerized tomography. Am Rev Respir 1987;125:392–398. DOI: 10.1164/arrd.1987.135.2.392.
7. Marshall II, Maran NJ, Martin S, et al. Acoustic reflectometry for airway measurements in man: implementation and validation. Physiol Meas 1993;14:157–169. DOI: 10.1088/0967-3334/14/2/007.
8. Qureshi NK, Hossain T, Hassan MI, et al. Neck circumference as a marker of overweight and obesity and cutoff values for Bangladeshi adults. Indian J Endocr Metab 2019;21:803–808. DOI: 10.4103/ijem.Ijem_196_17.
9. Battagel JM, Johal A, Kotecha B. A cephalometric comparison of subjects with snoring and obstructive sleep apnoea. Eur J Orthod 2000;22:353–365. DOI: 10.1093/ejo/22.4.353.
10. Johnston CD, Richardson A. Cephalometric changes in adults with pharyngeal morphology. Eur J Orthod 1999;21:357–362. DOI: 10.1093/ejo/21.4.357.
11. Ozpek MM, Miyamoto K, Lowe AA, et al. Natural head posture, upper airway anatomy and obstructive sleep apnoea severity in adults. Eur J Orthod 1998;20:133–143. DOI: 10.1093/ejo/20.2.133.
12. Jackson AC, Kervans JR. Tracheal cross sectional area from acoustic reflections in dogs. J Appl Physiol 1984;57:351. DOI: 10.1152/jappl.1984.57.2.351.
13. Fredberg JJ, Wohl MEB, Glass GM, et al. Airway area by acoustic reflections measured at the mouth. J Appl Physiol 1980;48:749–758. DOI: 10.1152/jappl.1980.48.3.749.
14. Kamal I. Normal standard curve for acoustic pharyngometry. Otolaryngol Head Neck Surg 2001;124:323–330. DOI: 10.1067/mhn.2001.113136.
15. Kaur S, Rai S, Kaur M. Comparison of reliability of lateral cephalogram and computed tomography for assessment of airway space. Niger J Clin Pract 2014;17:629–636. DOI: 10.4103/1119-3077.141431.
16. Grauer D. Pharyngeal airway volume and shape from cone-beam computed tomography: relationship to facial morphology. Am J Orthod Dentofacial Orthop 2009;136:805–814. DOI: 10.1016/j.ajodo.2008.01.020.
17. Celikoglu M, Bayram M. Comparison of pharyngeal airway volume among different vertical skeletal patterns: a cone-beam computed tomography study Angle Orthod 2014;84:782–787. DOI: 10.2319/101013-748.1.
18. White DP, Lombard RM, Cadieux RJ, et al. Pharyngeal resistance in normal humans: influence of gender, age and obesity. J Appl Physiol 1985;58:365–371. DOI: 10.1152/jappl.1985.58.2.365.
19. D’Urzo AD, Rebuck AS, Lawson VG, et al. Effect of CO2 on acoustic inferences of airway area. J Appl Physiol 1986;60:398–401. DOI: 10.1152/jappl.1986.60.2.398.