Prefabricated Prefinished Volumetric Construction: Key Constraints and Mitigation Strategies

W Q Liu¹, B G Hwang², M Shan³ and K Y Looi⁴

¹School of Civil Engineering, Central South University, 22 South Shaoshan Road, Changsha, China, 410075
²Department of Building, National University of Singapore. 4 Architecture Drive, Singapore, 117566
³School of Civil Engineering, Central South University, 22 South Shaoshan Road, Changsha, China, 410075
⁴Arcadis Singapore Pte. Ltd., 1 Magazine Road, #05-01 Central Mall, Singapore, 059567

Email: looi.kitying@arcadis.com

Abstract. Prefabricated prefinished buildings (PPVC) is a more innovative and cleaner way to reorganize production in the construction industry. Although the application of PPVC has been well received over the past few decades, the limitations of using PPVC have not been explored. Therefore, the purpose of this study is to investigate the main factors influencing the adoption of PPVC and propose a set of feasible mitigation strategies to address these factors. To achieve these goals, a comprehensive literature review was conducted first, followed by a structured questionnaire survey of 41 Singapore construction organizations. The analysis showed that the top five major limiting factors and found the top three most effective mitigation strategies. This study contributes to the knowledge system by studying the constraints and mitigation strategies of PPVC. At the same time, the results of this study also have some implications for the industry to understand and implement PPVC better.

1. Introduction
Prefabricated prefinished volumetric construction (PPVC) is a characteristic approach with high efficiency in off-site construction methods in which building elements, components, and modules will be manufactured and assembled in off-site factories and then they are transported to site for installation [1]. Even though PPVC has been widely recognized by construction industry worldwide, up to now, it’s still in the start-up stage. A great deal of knowledge about PPVC is still unmined. Therefore, the purpose of the investigation is to search out significant constraints in adopting PPVC in construction projects as well as existing buildings, and to put forward a set of mitigation strategies which contribute to resolve these constraints. In addition, this study is also beneficial to the study of knowledge system of off-site construction study, particularly for the study of PPVC. At the same time, this study concluded the experience and lessons of PPVC project in real life, which is of significance to industry practitioners that want to adopt PPVC.
2. Background

2.1 Prefabricated Prefinished Volumetric Construction in Singapore
On the basis of the definition of BCA[2], PPVC is a kind of construction method in which independent volume modules (including finishes for walls, floors and ceiling) are manufactured and assembled in approved manufacturing facilities in the light of any approved manufacturing method and then transported to the site for installation to form a building. Unlike the traditional continuous construction methods of design, engineering and construction activities, PPVC can greatly accelerate the implementation of the project, thus improving the productivity [3]. Lately, PPVC has been popular around the world. Since 2010, Singapore's BCA has launched two rounds of the construction productivity roadmap (round 1 in 2010 and round 2 in 2015), for the aim of promoting prosperity in the local construction industry [4].

2.2 The Adoption of PPVC: Constraints and Mitigation Strategies
Literature review reveals that several studies have made outstanding achievements in concluding the limitations, challenges, obstacles and constraints of general off-site construction methods. For instance, Mao et al. [5] conducted a questionnaire survey to investigate the main obstacles hindering the adoption of off-site construction methods in Chinese construction industry. Eventually, 18 constraints that may impede the adoption of PPVC were extracted from the literature review, as shown in table 1.

Code	Constraints
C1	Declined flexibility for future design changes
C2	Unsupportive decision made by designers
C3	Design restrictions because of traffic limitation (e.g. modules’ size)
C4	Limited site distribution (e.g. lack of space for PPVC modules to be stored, unloaded and moved)
C5	Less experiences design about PPVC
C6	Less installation experiences about PPVC
C7	Requirement for extra materials to protect PPVC modules
C8	Added logistics and transportation considerations
C9	Transportation restrictions due to rules and regulations
C10	Less awareness of PPVC’s benefits among owners/developers
C11	Raised organizational demand (e.g. changes in the roles of project participants)
C12	Need for early commitment
C13	Requirement for extra project planning and design efforts
C14	More communication requested before and during construction
C15	Expensive initial costs of traditional construction method
C16	Expensive construction cost of the traditional construction method
C17	Requirement of more communication among all stakeholders
C18	Complicated process for inspection

In order to solve the above limitations, challenges, and obstacles, a variety of mitigation strategies have been put forward. For example, plenty of studies put forward to apply information technologies such as BIM, three-dimensional visualization, and product information model to solve these information barriers met with in implementing off-site construction projects. According to a literature review, there are totally 9 mitigation strategies determined to help deal with the constraints related to PPVC, and they are compiled in table 2.
Table 2. Mitigation Strategies for the Constraints on Using PPVC

Code	Mitigation Strategy	Targeted Constraint
MS1	Encouraging project stakeholders to collaborate closely in early period of project	C1, C2, and C3
MS2	Applying for temporary occupational permits (TOL) to build temporary sites	
	near construction sites to overcome site layout limitations	C4
MS3	Apply of Just-in-Time delivery	
MS4	Providing project teams and workers with training sessions to enhance the skills	
	and knowledge	C5, C6, and C7
MS5	Fabricating and assembling the module components closely to the	
	construction site to decrease transportation workload	C8 and C9
MS6	Using Information Technologies (e.g. electronic file transfer) to overcome the	
	additional demand of planning, coordination and communication	
	C10 and C11	
MS7	Conducting feasibility study on PPVC method	C12, C13, C14, C15, C16, C17, and C18
MS8	Developing systems/computer programs for detailed economic analysis of PPVC	C12, C13, C14, C15, C16, C17, and C18
	and conventional construction methods	
MS9	Applying BIM to promote coordination and increase communication among	
	project stakeholders	C12, C13, C14, C15, C16, C17, and C18

3. Methods and Data Presentation

3.1 Data Collection and Presentation

This study adopted a variety of qualitative and quantitative research methods such as literature review, pilot interview and questionnaire survey. In the study of construction engineering and management (CEM), interviewing experienced industry experts is a great chance for a research to absorb meaningful opinions from practice [7]. Therefore, after the literature review, the study conducted preliminary interviews with industry experts to verify the limitations and mitigation strategies determined in the literature review. We invited three experienced industry experts in local PPVC projects to conduct pilot interviews for this research. They are senior members of the architectural innovation group. After that, this research adopts questionnaire survey to collect professionals' cognition of limitations and mitigation strategies. According to the results of the preliminary interview, a questionnaire was prepared. It was made up three parts, including the first part which recorded the respondents' background about their employer type and years of experience in construction and PPVC, the second part requiring respondents to use a five-point system (1 to 5 present different level of insignificance, 1 is the lowest level and 5 is the significance level, and so on), and the third part requesting respondents to use another 5-point scale (1 to 5 present different level of efficiency, 1 is the lowest level and 5 is the highest level, and so on). The research determined 100 institutions with prefabricated engineering experience in Singapore as potential respondents and sent them questionnaires via email to collect data. Eventually, 41 respondents were received, showing a response rate of 41%.

3.2 Data Analysis Methods

This study carried out statistical test and analysis on the questionnaire survey data. Parametric statistical test and non-parametric statistical test are two popular statistical tests at present [8]. Firstly, the normality of data should be checked in data analysis. If the p-value of the test is less than the selected alpha level (e.g., 0.05), then rejecting the null hypothesis and concluding that the test data is not normally distributed
In this research, an ordinary alpha level of 0.05 was adopted. Meanwhile, SPSS statistical 17.0 was employed for the test. Since the respondents come from all kinds of institutions, it’s necessary to make inter-group comparisons to see if there are significant differences in the respondents' views on institutions. ANOVA and Kruskal-Wallis test were used for comparison between groups. Therefore, the normality of the data presented by the Shapiro-Wilk test will decide the method to use for inter-group comparison.

Finally, constraint/mitigation strategies were compared in pairs to determine the most important constraints as well as the best mitigation strategies in PPVC.

4. Results and Discussions

4.1 Significant Constraints on Adopting PPVC

Table 3 and table 4 show the respondents’ evaluation of constraints and the results of statistical tests. The results of Shapiro-Wilk test in table 3 present that the constraint data are non-normal distribution. Thus, Kruskal-Wallis test was chosen for inter-group comparison, while Wilcoxon signed-rank test was employed for variable comparison. Results of Kruskal-Wallis test in table 3 indicate that, except for C7 "Requirement for extra materials to protect PPVC modules", all constraints have no significant difference in the respondents' institutional backgrounds. Such results mean that the respondents' evaluations are basically consistent and can be analyzed as a whole. At the same time, the evaluation results indicated in table 4 that C14 "More communication requested before and during construction", C13 "Requirement for extra project planning and design efforts", C8 "Added logistics and transportation considerations", C12 "Need for early commitment", and C15 “Expensive initial costs of traditional construction method”. In addition, according to Wilcoxon signed-rank test results in table 4, C14 and C13 were statistically higher than most constraints, indicating that they were the most important constraints when adopting PPVC.

In addition, in table 3, the sign “*” present that the Shapiro-Wilk test was significant at the significance level of 0.05, indicating the data was non-normal distribution, while “**” the Kruskal-Wallis test was significant at the significance level of 0.05, indicating statistical difference among respondents from different institutions. In table 4, the sign “*” The Wilcoxon Signed-Ranks test was significant at the significance level of 0.05, indicating the two compared variables were statistically different.

Table 3. Evaluations and Statistical Test Results of Constraints

Code	Constraint	Mean	Rank	Shapiro-Wilk test (p-value)	Kruskal-Wallis test (p-value)
C14	More communication requested before and during construction	4.37	1	0.000*	0.344
C13	Requirement for extra project planning and design efforts	4.27	2	0.000*	0.810
C8	Added logistics and transportation considerations	4.10	3	0.000*	0.153
C12	Need for early commitment	4.00	4	0.000*	0.162
C15	Expensive initial costs of traditional construction method	3.95	5	0.000*	0.054
C3	Design restrictions because of traffic limitation (e.g. modules’ size)	3.94	6	0.000*	0.677
C1	Declined flexibility for future design changes	3.93	7	0.000*	0.403
C9	Apply of BIM to improve coordination and facilitate communication among project stakeholders	3.80	8	0.000*	0.381
C4	Limited site distribution (e.g. lack of space for PPVC modules to be stored, unloaded and moved)	3.78	9	0.000*	0.499
Expensive construction cost of the traditional construction method

Requirement of more communication among all stakeholders

Complicated process for inspection

Less awareness of PPVC’s benefits among owners/developers

Less experiences design about PPVC

Less installation experiences about PPVC

Unsupportive decision made by designers

Requirement for extra materials to protect PPVC modules

Raised organizational demand (e.g. changes in the roles of project participants)

Table 4. The Results of Constraints in Wilcoxon Signed-Ranks Test

	C14	C13	C8	C12	C15	C3	C1	C9	C4
C14	-	0.285	0.100	0.050	0.028*	0.056	0.014*	0.006*	0.016*
C13	-	0.213	0.114	0.065	0.133	0.031*	0.021*	0.014*	
C8	-	0.715	0.399	0.516	0.382	0.058	0.154		
C12	-	0.701	0.911	0.526	0.315	0.306			
C15	-	0.987	0.809	0.325	0.466				
C3	-	0.813	0.305	0.287					
C1	-	0.498	0.474						
C9	-	0.967							
C4	-	-							
C16	-	-							
C17	-	-							
C18	-	-							
C10	-	-							
C5	-	-							
C6	-	-							
C2	-	-							
C7	-	-							
C11	-	-							

	C14	C17	C18	C10	C5	C6	C2	C7	C11
C14	0.002*	0.001*	0.000*	0.001*	0.001*	0.000*	0.000*	0.000*	0.000*
C13	0.006*	0.001*	0.000*	0.001*	0.000*	0.000*	0.000*	0.000*	0.000*
C8	0.053	0.039*	0.002*	0.004*	0.005*	0.001*	0.006*	0.000*	0.000*
C12	0.157	0.073	0.027*	0.009*	0.007*	0.014*	0.032*	0.000*	0.002*
C15	0.040*	0.231	0.009*	0.027*	0.024*	0.014*	0.012*	0.000*	0.001*
C3	0.248	0.247	0.018*	0.035*	0.029*	0.013*	0.036*	0.001*	0.010*
C1	0.211	0.344	0.024*	0.066	0.019*	0.015*	0.029*	0.000*	0.005*
C9	0.699	0.802	0.147	0.145	0.167	0.083	0.615	0.081	0.643
C4	0.709	0.725	0.164	0.192	0.172	0.099	0.227	0.023*	0.129
C16	-	0.837	0.319	0.230	0.283	0.213	0.124	0.016*	0.070
C17	-	0.323	0.397	0.243	0.154	0.301	0.003*	0.081	
C18	-	0.962	0.815	0.656	0.578	0.049*	0.535		
C10	-	0.922	0.631	0.615	0.081	0.643			
C5	-	0.790	0.868	0.025*	0.863				
C6	-	0.973	0.179	0.867					
C2 - 0.240 0.990
C7 - 0.140
C11 -

4.2 Effective Mitigation Strategies for Constraints

Table 5 and table 6 revealed the respondents' assessment of the proposed mitigation strategy and the related statistical test results. As shown in table 5, the results of Shapiro-Wilk test were non-normal data distribution, so inter-group comparison and variable comparison will choose Kruskal-Wallis test and Wilcoxon Signed-Ranks test. Kruskal-Wallis test presented that all mitigation strategies except MS1 were evaluated unanimously by respondents, indicating that respondents had basically the same views on mitigation strategies. The evaluation results in table 5 mean that MS1, MS9 and MS4 are the top three effective mitigation strategies to tackle PPVC constraints. Furthermore, the Wilcoxon signed-rank test results in table 6 show that evaluation of MS1, MS9, and MS4 are statistically higher than most mitigation strategies, meaning that they are the best mitigation strategies for PPVC constraints. Meanwhile, the meanings of “*” and “**” in table 5 are same with those in table 3, and the implication of “*” in table 6 is same with that in table 4.

Code	Mitigation Strategy	Mean	Rank	Shapiro-Wilk test (p-value)	Kruskal-Wallis test (p-value)
MS1	Encouraging project stakeholders to collaborate closely in early period of project	4.17	1	0.000*	0.046**
MS9	Applying BIM to promote coordination and increase communication among project stakeholders	4.07	2	0.000*	0.437
MS4	Providing project teams and workers with training sessions to enhance the skills and knowledge	4.02	3	0.000*	0.544
MS3	Apply of Just-in-Time delivery	3.68	4	0.000*	0.684
MS5	Fabricating and assembling the module components closely to the construction site to decrease transportation workload	3.63	5	0.000*	0.310
MS6	Using Information Technologies (e.g. electronic file transfer) to overcome the additional demand of planning, coordination and communication	3.63	6	0.000*	0.839
MS8	Developing systems/computer programs for detailed economic analysis of PPVC and conventional construction methods	3.63	7	0.000*	0.673
MS7	Conducting feasibility study on PPVC method	3.56	8	0.000*	0.316
MS2	Applying for temporary occupational permits (TOL) to build temporary sites near construction sites to overcome site layout limitations	3.46	9	0.001*	0.425

Table 6. The Results of Mitigation Strategies in Wilcoxon rank test

MS1	MS9	MS4	MS3	MS5	MS6	MS8	MS7	MS2
-	0.381	0.568	0.005*	0.014*	0.002*	0.003*	0.001*	0.001*
MS9	-	0.741	0.046*	0.039*	0.006*	0.007*	0.001*	0.004*
MS4	-	0.112	0.055	0.043*	0.030*	0.008*	0.012*	
MS3	-		0.826	0.777	0.717	0.562	0.292	

[70x777]ICRMBEE 2019
[70x763]IOP Conf. Series: Earth and Environmental Science 385 (2019) 012001
doi:10.1088/1755-1315/385/1/012001
5. Conclusions and Recommendations

The literature review and empirical management investigation of industry experts was conducted. This study determined 18 important constraints (e.g., "previous extensive coordination requirements and construction period"), which hinder the adoption of PPVC. Besides, nine mitigation strategies to cope with constraints were proposed.

Even though the goal of this study has been achieved, there are still some limitations. First of all, the study collected subjective views of respondents according to their experience. Secondly, the sample quantity of questionnaire survey was not large enough. Finally, the results of this research can only be applied in Singapore, while it is not suitable for other countries. Nevertheless, the results of this research are still beneficial to the knowledge system, since they are the first to investigate the constraints as well as mitigation strategies of the PPVC methods. In addition, results of the research can provide the industry with a comprehensive understanding of the limitations and mitigation strategies of PPVC methods, thus benefiting the industry. In the future, it’s necessary to conduct economic analysis on PPVC and to test the key risks and the influences on project aims when adopting PPVC methods.

6. References

[1] Goodier C and Gibb A 2007. Future opportunities for offsite in the UK. Construction Management and Economics 25 585-595.
[2] BCA S 2017 Prefabricated Prefinished Volumetric Construction.
[3] Saad I 2016 BCA to expand buildability appraisal framework later this year.
[4] Navaratnarajah R 2016 BCA’s new roadmap to raise construction productivity.
[5] Mao C, Xie F, Hou L, W P, Wang J and Wang X 2016. Cost analysis for sustainable off-site construction based on a multiple-case study in China. Habitat International 57 215-222.
[6] Ramaji I J and Memari A M 2016 Product architecture model for multistory modular buildings. Journal of Construction Engineering and Management 142 16-47.
[7] Li A S, Ling F Y Y, Low S P and Ofori G 2016 Strategies for foreign construction-related consultancy firms to improve performance in China Journal of Management in Engineering 32 16-47.
[8] Kim T K 2015 T test as a parametric statistic Korean Journal of Anesthesiology 68 540-546
[9] Villasenor Alva J A and Estrada E G 2009 A generalization of Shapiro-Wilk's test for multivariate normality Communications in Statistics - Theory and Methods 38 1870-1883