Real-world clinical outcomes of anticancer treatments and prognostic factors in patients with advanced melanoma in China

Chuanliang Cui, MDa, Xieqiao Yan, MDa, Ben Li, MDb, Lu Si, MDa, Chi Zhihong, MDa, Xinan Sheng, MDa, Bin Lian, MDa, Xuan Wang, MDa, Lilu Mao, MDa, Bixia Tang, MDa, Li Zhou, MDb, Xue Bai, MDb, Siming Li, MDa, Jun Guo, MDa,*

\textbf{Purpose:} China has much lower 5-year survival rates among melanoma patients than Western countries. This retrospective study describes real-world clinical outcomes and prognostic factors in locally advanced/metastatic melanoma in China.

\textbf{Materials and methods:} Adults with unresectable stage III or IV melanoma treated between January 1, 2014 and December 31, 2015, at the Beijing Cancer Hospital were eligible (data cutoff: December 31, 2017). The Kaplan-Meier method and Log-Rank test were used to estimate the median value of time-to-event outcomes. A Cox proportional hazards model was simulated to evaluate associations of patients’ characteristics with survival.

\textbf{Results:} Overall, there were 221 and 116 Chinese locally advanced and/or metastatic melanoma patients were enrolled in the first line (1L) and the second line (2L) treatments, respectively. The real-world objective response rate was <10% (1L: 6.3%; 2L: 3.4%); median progression-free survival was under 4 months (1L: 3.5; 2L: 2.3); median overall survival (OS) was <1 year (1L: 10.5; 2L: 7.5) with a low 12-month OS rate (43.5% for 1L, 30.5% for 2L). Based on univariate analyses, those with Eastern Cooperative Oncology Group (ECOG) Performance Status ≥2 (vs. ECOG = 0) in 1L, and 2L treatment (vs. 1L treatment) or ECOG ≥2 (vs. ECOG = 1) among 1L/2L were associated with statistically significantly worse outcomes.

\textbf{Conclusion:} The current clinical outcomes in advanced melanoma patients in China are poor. High ECOG performance score independently increase risk of death both from 1L and 2L treatments, suggesting a high unmet medical need for immunotherapy in advanced melanoma.

\textbf{Keywords:} Melanoma, Prognosis, China, Observational study, Treatment

Malignant melanoma is one of the most aggressive types of skin cancer with the highest rates of metastasis and mortality, accounting for >75% of skin cancer deaths\cite{1}. In 2018, it was estimated by GLOBOCAN that worldwide 287,723 new cases and 60,712 deaths were caused by melanoma, with age standardized rates of 3.1/100,000 for incidence and 0.63/100,000 for mortality, respectively\cite{3}. Although China has relatively lower annual melanoma incidence (7379 cases) and mortality (3766 deaths) than western countries, the 5-year survival rates among Chinese melanoma patients (45.1%, 2012–2015)\cite{4} were much lower than those from the United States (91.8%, 2008–2014)\cite{5} and Europe (91%, 2011–2015)\cite{5}.

The relatively poor prognosis of Chinese melanoma patients might be attributed to late stage at diagnosis, histopathologic characteristics, and treatment patterns. In China, about 40% of Chinese melanoma patients have advanced-stage disease at the time of diagnosis (stage III, 25.1% and stage IV, 12.8%)\cite{6}, while a population-based retrospective study conducted in Sweden indicated 92.0% of melanoma patients were diagnosed with localized diseases (stage I and II)\cite{7}. A significant difference in histopathologic patterns of Chinese melanoma cases from those from Western countries may also explain outcomes. In the United States <5% of melanoma cases are classified as mucosal and acral\cite{8}, whereas 22.6% and 41.8% of Chinese melanoma cases are mucosal and acral melanomas, respectively\cite{6}.

Despite the steady progress that has been made in the development of targeted therapies and immunotherapies for locally advanced and metastatic melanoma in Western countries\cite{9,10,11,12}, our previous investigations (unpublished data with cut-off date as December 31st of 2017) found that the treatment options for Chinese unresectable locally advanced or metastatic melanoma are still limited to chemotherapeutic agents. Only 1.4% of first line (1L) and 3.5% of second line (2L) from Chinese advanced melanoma patients had previously received targeted and/or immunotherapy.
In our previous study among 248 Chinese locally advanced/metastatic melanoma patients (95% stage IV; 40.7% acral and 30.6% mucosal histology), we reported that dacarbazine plus cisplatin plus rh-endostatin and paclitaxel plus carboplatin plus bevacizumab were the most used therapeutic regimens in the 1L setting, accounting for 36.7% and 22.2%, respectively. With those chemotherapeutic agents, the objective response rate (ORR) was 6.3% [95% confidence interval (CI), 3.5%–10.4%]; the median progression-free survival (PFS) and overall survival (OS) being 3.5 and 10.5 months, respectively. The paclitaxel albumin plus carboplatin plus bevacizumab; paclitaxel plus carboplatin plus Endostar and paclitaxel albumin plus cisplatin plus Endostar accounted for 36.7% and 22.2%, respectively. With those chemotherapeutic agents, the objective response rate (ORR) was 3.4% (95% CI, 0.9%–8.6%) and median of PFS and OS as 2.3 and 7.5 months, respectively.

Given the varied tumor stages at diagnosis, histopathologic and treatment patterns observed among Chinese melanoma patients, it would be valuable to identify the most important prognostic factors for their poor outcomes. To our knowledge, there are few real-world evidence studies that have addressed these issues both for 1L and 2L therapies in patients with melanoma in China. Therefore, a retrospective analysis was conducted to estimate the prognostic impact of age, sex, stage at diagnosis, histopathologic characteristics, metastatic stage, serine/threonine-protein kinase B-Raf (BRAF) gene mutation, Eastern Cooperative Oncology Group (ECOG) Performance Status, and serum lactate dehydrogenase (LDH) on survival among patients with advanced and metastatic melanoma in China.

Materials and methods

Study setting and data sources
This was a retrospective, observational cohort study using electronic medical records (EMRs) from the Beijing Cancer Hospital (BCH) in China, which treats the highest volume of patients with melanoma, locally and nationwide. A melanoma patient pool was identified from EMRs and eligible patients who initiated treatments between January 1, 2014 and December 31, 2015 (index date) were enrolled according to study inclusion/exclusion criteria.

Table 1

| Objective response rates by treatment line and patients’ characteristics (all-patients-as-treated population). |
|---|---|---|
| **1L Treatment** | **2L Treatment** |
| N | Number of Responders | ORR (95% CI) | N | Number of Responders | ORR (95% CI) |
| Overall | 221 | 14 | 6.3 (3.5–10.4) | 116 | 4 | 3.5 (1.0–8.6) |
| Age (y) | | | | | | |
| < 65 | 182 | 9 | 5.0 (2.3–9.2) | 103 | 3 | 2.9 (0.6–8.3) |
| ≥ 65 | 39 | 5 | 12.8 (4.3–27.4) | 13 | 1 | 7.7 (0.2–36.0) |
| Sex | | | | | | |
| Male | 111 | 9 | 8.1 (3.8–14.8) | 66 | 3 | 4.6 (1.0–12.7) |
| Female | 110 | 5 | 4.6 (1.5–10.3) | 50 | 1 | 2.0 (0.1–10.7) |
| TNM stage | | | | | | |
| Unresectable III | 13 | 0 | 0.0 (0–24.7) | 3 | 0 | 0.0 (0–70.8) |
| N | 208 | 14 | 6.7 (3.7–11.0) | 112 | 4 | 3.6 (1.0–8.9) |
| Metastases | | | | | | |
| M0 | 13 | 0 | 0.0 (0–24.7) | 3 | 0 | 0.0 (0–70.8) |
| M1A | 41 | 2 | 4.9 (0.6–16.5) | 23 | 1 | 4.4 (0.1–22.0) |
| M1B | 48 | 5 | 10.4 (3.5–22.7) | 21 | 2 | 9.5 (1.2–30.4) |
| M1C | 118 | 7 | 5.9 (2.4–11.8) | 67 | 1 | 1.5 (0.0–8.0) |
| BRAF | | | | | | |
| Wild type | 122 | 9 | 7.4 (3.4–13.5) | 72 | 2 | 2.8 (0.3–9.7) |
| Mutant | 26 | 2 | 7.7 (1.0–25.1) | 15 | 1 | 6.7 (0.2–32.0) |
| Unknown | 73 | 3 | 4.1 (0.9–11.5) | 27 | 1 | 3.7 (0.1–19.0) |
| ECOG | | | | | | |
| 0 | 66 | 5 | 7.6 (2.5–16.8) | 37 | 1 | 2.7 (0.1–14.2) |
| 1 | 113 | 8 | 7.1 (3.1–13.5) | 45 | 1 | 2.2 (0.1–11.8) |
| ≥ 2 | 11 | 0 | 0.0 (0–28.3) | 6 | 0 | 0.0 (0–45.9) |
| Unknown | 31 | 1 | 3.2 (0.1–16.7) | 27 | 2 | 7.4 (0.9–24.3) |
| LDH | | | | | | |
| Normal (< 1.1 x ULN) | 29 | 1 | 3.5 (0.1–17.8) | 28 | 2 | 7.1 (0.9–23.5) |
| Elevated (≥ 1.1 x ULN) | 192 | 13 | 6.8 (3.7–11.3) | 87 | 2 | 2.3 (0.3–8.1) |
| Histology | | | | | | |
| Acral | 67 | 4 | 6.0 (1.6–14.6) | 41 | 1 | 2.4 (0.1–12.9) |
| Mucosal | 95 | 6 | 6.3 (2.3–13.2) | 29 | 1 | 3.5 (0.1–17.8) |
| NCSD | 36 | 2 | 5.6 (0.7–18.7) | 24 | 1 | 4.2 (0.1–21.1) |
| CSD | 13 | 2 | 15.4 (1.9–45.4) | 14 | 1 | 7.1 (0.2–33.9) |
| Unknown | 10 | 0 | 0.0 (0–30.8) | 7 | 0 | 0.0 (0–41.0) |

Data cutoff date: December 31, 2017.

*Analysis population includes patients with valid treatment lines and histologic types.

1L indicates first line; 2L, second line; CI, confidence interval; CSD, chronically sun damaged; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase level; NCSD, nonchronically sun damaged; ORR, objective response rate; ULN, upper limit of normal.
criteria. The cohort end date was December 31, 2017 and served as the cut-off value for censoring survival follow-up.

Medical charts in BCH contain detailed information about patient disease characteristics, therapies, laboratory data, computable tomography (CT), magnetic resonance imaging (MRI), and clinical outcomes. This hospital performs regular imaging in patients with melanoma as a part of routine care, which was a valuable resource for confirmation of clinical responses in the current study. Generally, clinical responses are assessed according to Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST v 1.1)[14] and patients are followed up after discharge to Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST v 1.1)[14] and patients are followed up after discharge to

| Study population |

Adult patients with unresectable, locally advanced (stage IIIB or IIIIC) or metastatic (stage IV) melanoma were enrolled in this retrospective study based on the following inclusion/exclusion criteria.

| Inclusion criteria |

(1) Eighteen years or older at the time of initiation of 1L or 2L therapy.

| Table 2 |

Overall survival by treatment line and patients’ characteristics (all-patients-as-treated population).

N	Events	Person-month	Median OS (mo, 95% CI)	OS	OS	OS		
Overall	221	171	2988.1	5.7	10.5 (9.2-12.1)	74.5	43.5	21.1
Age (y)								
< 65	182	145	2379.0	6.1	10.3 (8.4-11.6)	72.4	42.0	19.2
≥ 65	39	26	609.1	4.3	13.4 (8.4-20.6)	83.9	50.3	30.3
Sex								
Male	111	85	1469.6	5.8	10.6 (8.0-13.1)	75.7	43.5	19.7
Female	110	86	1518.5	5.7	10.5 (8.2-13.3)	73.2	43.5	22.6
TNM stage								
Unresectable III	13	8	181.9	4.4	8.9 (5.8-0.0)	67.7	42.3	31.7
IV	208	163	2806.2	5.8	10.6 (9.3-12.1)	74.9	43.6	20.6
Metastases								
M0	13	8	181.9	4.4	8.9 (5.8-0.0)	67.7	42.3	31.7
M1A	41	28	673.3	4.2	14.5 (10.8-22.1)	92.2	66.9	29.1
M1B	48	33	755.7	4.4	13.9 (9.9-18.8)	84.2	53.6	28.9
M1C	118	101	1375.1	7.4	8.4 (6.7-10.5)	66.3	32.8	15.1
BRAF								
Wild type	122	92	1682.1	5.5	10.3 (8.0-13.2)	73.8	43.8	22.4
Mutant	26	22	270.8	8.1	10.3 (6.5-12.8)	71.3	31.8	9.1
Unknown	73	57	1035.2	5.5	10.8 (8.7-14.6)	76.4	46.6	23.0
ECOG								
0	66	48	965.6	5.0	13.6 (10.3-17.3)	81.8	56.1	23.5
1	113	86	1547.1	5.6	9.8 (7.7-12.1)	74.4	41.6	22.5
≥ 2	11	10	61.0	16.4	4.1 (2.2-7.1)	30.7	10.2	8.8
Unknown	31	27	144.4	6.5	10.7 (8.1-13.3)	74.1	35.9	18.0
LDH								
Normal (<1×ULN)	29	21	423.4	5.0	12.2 (8.4-18.6)	81.4	57.9	24.8
Elevated (≥1×ULN)	192	150	2564.7	5.9	10.3 (8.7-11.5)	73.4	41.4	20.6

Data cutoff date: December 31, 2017.

*Analysis population includes patients with valid treatment lines and histologic types.

1L indicates first line; 2L, second line; CI, confidence interval; CSD, chronically sun damaged; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase level; NA, not available; NCSD, nonchronically sun damaged; OS, overall survival; ULN, upper limit of normal.
(2) Histologically confirmed diagnosis of stage IIIB, IIIC, or IV melanoma.
(3) At least 1 measurable lesion as defined by RECIST v1.1 on imagine studies (CT or MRI).
(4) Initiated either systemic 1L or 2L anticancer therapy in the BCH between January 1, 2014 and December 31, 2015 (adjuvant therapy was not considered 1L treatments).
(5) Documented response status data (ie, complete response, partial response, progressive disease, and stable) available in the EMRs according RECIST v1.1.

Exclusion criteria

(1) Diagnosis of uveal or ocular melanoma.
(2) Immunotherapy between January 1, 2014 and December 31, 2015 (adjuvant treatments such as interferon was allowed).
(3) Enrolled as a clinical trial participant for any melanoma therapies between January 1, 2014 and December 31, 2015.
(4) Known to be HIV positive or have active hepatitis B or C infection at the time of treatments under evaluation.

Measurements

Patients received 1L or 2L anticancer therapy during routine care. This information was extracted from EMRs. Outcomes of interest included real-world ORR, disease control rate, duration of response, time to response, PFS, time to progression, and OS. Outcomes were stratified according to 1L and 2L regimens.

Table 3

Event Rate/100 Person-months	Median PFS (months, 95% CI)	PFS ≥ 3 mo	PFS ≥ 6 mo	PFS ≥ 12 mo				
1L Treatment*								
N	Events	Person-month	Median PFS	PFS ≥ 3 mo	PFS ≥ 6 mo	PFS ≥ 12 mo		
Overall	221	203	1119.3	18.1	3.6 (2.9–4.2)	55.1	28.2	10.6
Age (y) < 65	182	170	795.1	21.4	3.2 (2.7–4.1)	52.1	24.8	8.1
≥ 65	39	33	324.2	10.2	5.5 (3.0–7.2)	69.2	43.6	21.8
Sex Male	111	101	518.2	19.5	3.6 (2.8–4.2)	56.8	26.3	10.0
Female	110	102	601.1	17.0	3.3 (2.7–4.5)	53.5	30.0	11.0
Tumor stage Unresectable III	13	11	64.9	16.9	4.2 (1.6–10.6)	69.2	34.6	11.5
IV	208	192	1054.4	18.2	3.3 (2.9–4.2)	54.2	27.9	10.5
Metastases MD	13	11	64.9	16.9	4.2 (1.6–10.6)	69.2	34.6	11.5
M1A	41	40	184.8	21.6	3.6 (2.0–5.6)	58.0	30.3	5.1
M1B	48	41	352.3	11.6	5.8 (4.2–7.1)	77.0	47.9	21.6
M1C	118	110	516.3	21.3	2.7 (1.6–3.6)	44.1	19.3	8.3
BRAF Wild type	122	111	630.2	17.6	3.3 (2.8–4.2)	53.9	24.5	11.6
Mutant	26	25	116.7	21.4	3.6 (1.6–4.7)	61.5	21.6	4.3
Known	73	67	372.4	18.0	4.1 (2.0–5.7)	54.8	36.6	11.5
EGOG 0	66	57	392.4	14.5	4.1 (3.0–5.0)	61.8	29.1	18.8
1	113	104	584.6	17.8	4.2 (2.9–5.2)	58.4	31.9	7.9
≥ 2	11	11	25.9	42.5	1.6 (1.0–3.6)	36.4	9.1	NA
Unknown	31	31	116.4	26.6	1.6 (1.3–3.6)	35.5	19.4	6.5
LDH Normal (<1.1 x ULN)	29	28	103.5	27.1	2.7 (1.4–4.6)	44.8	19.0	3.8
Elevated (≥1.1 x ULN)	192	175	1015.8	17.2	3.6 (3.0–4.2)	56.7	29.6	11.6
Histology Acral	67	63	342.8	18.4	3.3 (1.7–4.2)	53.7	25.4	12.5
Mucosal	95	87	509.2	17.1	4.1 (2.9–4.7)	56.6	31.1	11.4
NCS	36	34	136.7	24.9	1.8 (1.0–4.2)	41.7	14.9	3.0
CS	13	9	76.9	11.7	5.8 (2.4–7.0)	76.9	43.1	21.5
Unknown	10	10	53.7	18.6	5.4 (0.8–7.1)	70.0	50.0	10.0

Data cutoff date: December 31, 2017.
*Analysis population includes patients with valid treatment lines and histologic types.
1L indicates first line; 2L, second line; CI, confidence interval; CSD, chronically sun damaged; EGOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase level; NCS, nonchronically sun damaged; PFS, progress-free survival; ULN, upper limit of normal.
Statistical analysis

ORR point estimates and 95% CIs were calculated using the binomial exact method. The Kaplan-Meier method and Log-Rank test were used to estimate the median value of time to event outcomes and statistical difference among patients with varied characteristics. A Cox proportional hazards model was simulated to evaluate the impact of age (below 65 as reference), gender (female as reference), TNM stage at diagnosis (unresectable stage III as reference), histopathologic characteristics (histopathology types other than mucosal and acral melanomas as reference), metastases (M0 as reference), ECOG status (0 as reference), and LDH (normal as reference) on survival among patients with advanced and metastatic melanoma in China. R software was used for data analysis (Version 1.1.453-2009-2018 RStudio, Inc.).

Results

Baseline characteristics

Overall, there were 221 and 116 Chinese locally advanced and/or metastatic melanoma patients enrolled in 1L and 2L treatments, respectively. In the 1L setting, 17.6% of enrolled patients were 65 years and above; 50.2% were male; ~95% were stage IV with distant metastasis; 26 out of 148 patients with definite BRAF genotyping were mutant; 124 of 190 with ECOG results had score ≥ 1; and 86.9% had elevated LDH. Among 116 patients receiving 2L treatments, 11.2% were 65 years and above; 56.9% were male; 97.4% were stage IV with distant metastasis; 15 of 87 and 54 of 90 were BRAF mutant and ECOG ≥ 1, respectively; and 75.7% patients had elevated LDH.

	N	Number of Events	Median OS
Age (year)			
<65	162	145	10.3
≥ 65	39	26	13.4
Gender			
Male	111	85	10.6
Female	110	86	10.5
TNM stage			
Unresectable III	13	8	8.9
IV	208	163	10.6
Metastases			
M0	13	8	8.9
M1A	41	28	14.5
M1B	48	33	13.9
M1C	118	101	8.4
BRAF			
Wild type	122	92	10.3
Mutant	26	22	10.3
Unknown	73	57	10.8
ECOG			
0	66	48	13.6
1	113	86	9.8
≥ 2	11	10	4.1
Unknown	31	27	10.7
LDH			
Normal ($<1.1 \times $ULN)	29	21	12.2
Elevated ($\geq 1.1 \times $ULN)	192	150	10.3
Histology			
Acral	67	55	10.6
Mucosal	95	73	10.3
NCSD	36	27	10.8
CSD	13	6	13.1
Unknown	10	10	10.0

Figure 1. Overall survival of advanced melanoma patients after receiving 1L treatments and potential prognostic factors. 1L, indicates first line; CSD, chronically sun damaged; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase level; NCSD, nonchronically sun damaged; OS, overall survival; ULN, upper limit of normal.
Descriptive characteristics of ORR, OS, and PFS measurements

Tables 1–3 and Figs. 1–4 show the ORR, OS, and PFS estimates for Chinese locally advanced and/or metastatic melanoma patients. Data indicate that clinical outcomes in advanced melanoma patients in this study were poor: real-world ORR was <10% (1L: 6.3% [95% CI: 3.5%–10.4%]; 2L: 3.4% [95% CI: 0.9%–8.6%]); median PFS was under 4 months (1L: 3.5 mo [95% CI: 2.9–4.2]; 2L: 2.3 mo [95% CI: 2.0–3.0]); median OS was <1 year (1L: 10.5 mo [95% CI: 9.2–12.1]; 2L: 7.5 mo [95% CI: 6.5–8.7]) with a low 12-month OS rate (43.5% for 1L, 30.5% for 2L).

Among patients receiving 1L treatments, the median OS (months) among those patients with ECOG ≥2 and ECOG = 1 were 4.1 (95% CI: 2.2–7.1) and 9.8 (95% CI: 7.7–12.1) respectively, which was significantly shorter than those with ECOG = 0 (OS = 13.6 mo; 95% CI: 10.3–17.3). Similar statistically significant trends were found among patients receiving 2L treatments in Table 2. The median PFS (months) for patients with ECOG = 0, 1 and ≥2 were 4.1 (95% CI: 3.0–5.0), 4.2 (95% CI: 2.9–5.2) and 1.6 (95% CI: 1.0–3.6) for those receiving 1L treatments; findings were statistically significant. Similar statistically significant trends were found among patients receiving 2L treatments in Table 3. Those patients with ECOG ≥2 had significantly lower ORRs, compared with those with ECOG = 0 and 1 regardless of line of therapy.

No statistically significant difference was observed neither in the 1L nor 2L treatments for ORR, OS and PFS between age, sex, stage at diagnosis, histopathologic characteristics, metastatic stage, BRAF gene mutation, and LDH status among locally advanced and/or metastatic melanoma patients.

![Figure 2. Overall survival of advanced melanoma patients after receiving 2L treatments and potential prognostic factors. 2L indicates second line; CSD, chronically sun damaged; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase level; NCSD, nonchronically sun damaged; OS, overall survival; ULN, upper limit of normal.](image-url)
Multivariate analysis for the decreased prognosis

Cox regression analyses were performed to evaluate the association between multiple potential factors (including age, sex, TNM stage, metastases, ECOG score, and LDH status) with poor outcomes of melanoma patients enrolled from 1L (n = 181 patients), 2L treatments (n = 81 patients), and both (n = 262 patients), respectively (Table 4). BRAF gene mutation status was not included in multivariate analyses because a high proportion of missing data was observed in the present study.

Data indicated that among those melanoma patients with ECOG Performance Status ≥ 2 (vs. ECOG = 0, P < 0.001) in 1L, and 2L treatment (vs. 1L treatment, P = 0.006) or ECOG ≥ 2 (vs. ECOG = 1, P < 0.001) among 1L/2L were associated with statistically significantly worse outcomes, while no significant risk increases from those ECOG = 1, compared with those ECOG = 0 (P = 0.503), nor from those ECOG ≥ 2 (P = 0.359) to those ECOG = 0 in the 2L due to limited patients (n = 6). The present study did not observe statistical significance independently (P > 0.05) among melanoma patients within age group, sex, TNM stages, metastatic and LDH status, as well as histologic types, regardless of whether they had received 1L, 2L treatments, or both.

Discussion

The retrospective longitudinal, population-based China study aimed to demonstrate the importance and utility of potential covariates as prognostic factors for survival among patients with unresectable, locally advanced (stage IIIb or IIIc) or metastatic (stage IV) melanoma during a chemotherapy-dominated era in China. We showed that those patients with ECOG ≥ 2 had only one-third to one-half median OS (months) and PFS (months)
compared with those with ECOG = 0. When considering late stage at diagnosis, histopathologic characteristics and treatment patterns, poor performance status (ECOG ≥ 1) was associated with poor prognosis. Among Chinese melanoma patients with ECOG ≥ 2, prior chemotherapy would significantly associate with poor outcomes, especially for those receiving 1L treatments. A pooled analysis conducted by Manola and colleagues using 1362 eligible patients with metastatic melanoma treated in 8 ECOG trials conducted in the past 25 years found factors conferring the highest increased risk of death to be ECOG performance status of 1 or more, with relative risk of 1.5 (95% CI: 1.3–1.7)\(^{[15]}\). These authors also suggest that “chemoresistance needs to be considered in planning long term therapy and that immunotherapy may be a better option in early treatments of melanoma.”

The present study also demonstrated a statistically significant increase in odds of death for patients enrolled from 2L treatments, compared with those from 1L treatments. The median OS (months) of patients enrolled from 1L treatments was 10.5 (95% CI: 9.2–12.1), which was statistically significantly higher than those enrolled from 2L treatments (7.5 mo, 95% CI: 9.2–12.1), as was median PFS (months) inpatients from 1L treatments (3.6, 95% CI: 2.9–4.2) and from 2L treatments (2.3, 95% CI: 2.0–3.0). A Cox regression model considering age, sex, TNM stage, metastases, ECOG score, and LDH status, estimated 50% increased odds of death from those patients enrolled from 2L treatments, compared those from 1L treatments. These findings are different from what has been reported previously. Pflugfelder et al (2011) reported that response, PFS and OS were equivalent in 61 German patients with metastatic melanoma using carboplatin and paclitaxel as 1L and 2L treatments\(^{[16]}\). A retrospective observational study conducted in 1170 Polish advanced metastatic melanoma patients treated with vemurafenib, dabrafenib and ipilimumab, indicated no significant

N	Number of Events	Median PFS		
Overall	116	115	2.3	
Age (year)				
<65	103	102	2.2	
≥65	13	13	2.7	
Gender				
Male	66	66	2.1	
Female	50	49	2.6	
TNM stage	Unresectable II	3	3	2.4
	IV	112	111	2.3
Metastases	MO	3	3	2.4
	M1A	23	23	2.5
	M1B	21	21	3.5
	M1C	67	66	2.0
BRAF	Wild type	72	72	2.7
	Mutant	15	15	2.1
	Unknown	27	26	2.0
ECOG	0	37	37	3.7
	1	45	45	2.0
	≥2	6	6	1.9
	Unknown	27	26	2.8
LDH	Normal (<1.1×ULN)	28	28	2.4
	Elevated(>1.1×ULN)	87	86	2.2
Histology	Acral	41	41	3.3
	Mucosal	29	26	2.1
	NCSD	24	24	2.0
	CSD	14	14	2.1
	Unknown	7	7	1.0

Figure 4. PFS of advanced melanoma patients after receiving 2L treatments and potential prognostic factors. 2L indicates second line; CSD, chronically sun damaged; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase level; NCSD, nonchronically sun damaged; PFS, progress-free survival; ULN, upper limit of normal.
difference in response rates regardless of line of vemurafenib (first, second, or next)\[^{15}\]. However, those published studies did not consider the overall impact from metastases, ECOG score, and LDH status, and they included immunotherapeutic agents or had limited sample size.

Acral lentiginous melanoma and mucosal melanoma are the most common subtypes of melanoma in the Asian population, accounting for >60% of all melanomas in China\[^{6}\], while only 5% among all types of melanoma from Caucasians in Europe and United States\[^{18}\]. The present study did not observe significant difference in ORR, OS, and PFS measurements among those with different histologic types, nor an increased odds of death from those with chronic sun-induced (CS) or non–chronic sun-induced damage to those with acral lentiginous melanoma or mucosal melanoma (P > 0.05). These results were not consistent with previous publications in China\[^{19}\], Korea\[^{20,21}\], and Japan\[^{22}\], however, those studies did not include covariate factors potentially related to therapeutic outcomes, like ECOG status.

There are some limitations in the present study that should be acknowledged. Because few patients enrolled were unresectable stage III/prior metastases (n = 13), the present study did not observe significantly increased odds of death from patients at TNM stage IV compared with those at unresectable stage III, nor from those with metastases to those without. BRAF mutation status was not included into the Cox regression analysis, because 33.0% and 24.7% of mutation data were missing from patients receiving 1L and 2L treatments, respectively. In addition, 14.1% and 23.5% of ECOG scores were missing from patients enrolled from 1L and 2L treatments which reduced the statistical power for ECOG = 1 for 1L treatment and ECOG ≥ 2 for 2L treatment.

This study used EMR from BCH, which is the largest melanoma hospital in China and treats patients from all over the country. Our findings indicate a poor clinical outcome from those advanced melanoma patients using current chemotherapies, especially for those with the poor level of functioning in terms of their ability to care for themselves, daily activity, and physical ability (walking, working, etc.), suggesting immunotherapy as a better option in early treatments of melanoma. Although there is a proportion of missing data for key variables (eg, ECOG score, BRAF mutation, histologic types), our findings suggest a high unmet medical need for advanced melanoma patients in China.

Ethical approval

A waiver of patient consent was applied for and approved by the medical ethics committee of Beijing Cancer Hospital (Address: No.52 Fu-cheng Road, Haidian District, Beijing 1000142, P.R. China) on November 20, 2017.

Source of funding

This work was supported by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ.

Author contribution

C.C., X.Y., and J.G.: conceived, designed, or planned the study. C.C., X.Y., L.S., Z.C., X.S., B.L., X.W., L.M., B.T., L.Z., X.B., S.L., and J.G.: acquired the data. C.C., X.Y., B.L., and J.G.: analyzed the data. C.C., X.Y., and J.G.: interpreted the results. C.C., X.Y., and J.G.: drafted the manuscript with contributions from all authors. C.C., X.Y., L.S., Z.C., X.S., B.L., X.W., L.M., B.T., L.Z., X.B., S.L., B.L., J.G.: critically reviewed or revised the manuscript for important intellectual content. B.L.: provided statistical expertise.

Conflict of interest disclosure

B.L. report employment at MSD Beijing, China. The remaining authors declare that they have no financial conflict of interest with regard to the content of this report.

Table 4

1L Treatment*	Coefficients	Odds Ratio (95% CI)	P
Age\[^{1}\]	-0.33	0.72 (0.44–1.15)	0.169
Sex\[^{2}\]	0.13	1.14 (0.80–1.62)	0.461
TNM stage\[^{3}\]	0.32	1.38 (0.60–3.17)	0.454
M stage = 1\[^{4}\]	0.27	1.31 (0.75–2.27)	0.343
ECOG = 1\[^{5}\]	0.13	1.14 (0.78–1.67)	0.502
ECOG ≥ 2\[^{6}\]	1.36	3.87 (1.90–7.89)	<0.001
LDH = evaluated\[^{7}\]	0.11	1.12 (0.58–2.17)	0.734
Histology\[^{8}\]	-0.13	0.88 (0.56–1.39)	0.583
Second line\[^{9}\]	—	—	—

2L Treatment	Coefficients	Odds Ratio (95% CI)	P
Age\[^{1}\]	0.49	1.63 (0.75–3.54)	0.215
Sex\[^{2}\]	-0.03	0.97 (0.58–1.61)	0.897
TNM stage\[^{3}\]	-1.09	0.34 (0.04–2.81)	0.315
M stage = 1\[^{4}\]	-0.36	0.70 (0.32–1.51)	0.362
ECOG = 1\[^{5}\]	0.53	1.69 (1.00–2.85)	0.048
ECOG ≥ 2\[^{6}\]	0.49	1.63 (0.57–4.66)	0.359
LDH = evaluated\[^{7}\]	0.07	1.07 (0.53–2.15)	0.855
Histology\[^{8}\]	-0.19	0.83 (0.49–1.40)	0.478
Second line\[^{9}\]	—	—	—

1L/2L Treatment	Coefficients	Odds Ratio (95% CI)	P
Age\[^{1}\]	-0.17	0.85 (0.57–1.26)	0.412
Sex\[^{2}\]	0.01	1.01 (0.76–1.34)	0.923
TNM stage\[^{3}\]	0.23	1.26 (0.58–2.72)	0.559
M stage = 1\[^{4}\]	0.14	1.15 (0.74–1.79)	0.536
ECOG = 1\[^{5}\]	0.23	1.26 (0.93–1.71)	0.136
ECOG ≥ 2\[^{6}\]	0.94	2.56 (1.44–4.55)	0.001
LDH = evaluated\[^{7}\]	0.01	1.01 (0.64–1.60)	0.906
Histology\[^{8}\]	0.12	0.88 (0.63–1.24)	0.472
Second line\[^{9}\]	0.42	1.52 (1.12–2.05)	0.006

Data cutoff date: December 31, 2017.

*Analysis population includes patients with valid treatment lines and histologic types.

†Those age <65 as reference.

‡Those female as reference.

§Those unresectable stage III as reference.

*Analysis population includes patients with valid treatment lines and histologic types.

\[^{1}\] Those age <65 as reference.

\[^{2}\] Those female as reference.

\[^{3}\] Those unresectable stage III as reference.

\[^{4}\] Those M0 as reference.

\[^{5}\] Those ECOG with 0 as reference.

\[^{6}\] Those age <65 as reference.

\[^{7}\] Those with normal LDH as reference.

\[^{8}\] Those enrolled in the first line treatment as reference.

\[^{9}\] 1L indicates first line; 2L, second line; CI, confidence interval; CSD, chronically sun damaged; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase level; NCSD, nonchronically sun damaged; PFS, progression-free survival; ULN, upper limit of normal.
Research registration unique identifying number (UIN)

Researchregistry5011.

Guarantor

Not applicable.

Acknowledgments

The authors acknowledge Anne C, Deitz, PhD, of Merck & Co. Inc., Kenilworth, NJ, for providing medical writing and/or editorial assistance.

References

[1] Shoo BA, Kashani-Sabet M. Melanoma arising in African-, Asian-, Latino- and Native-American populations. Semin Cutan Med Surg 2009;28:96–102.

[2] Ferlay J, Ervik M, Lam F, et al. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer; 2018. Available at: https://gco.iarc.fr/today. Accessed October 17, 2018.

[3] Zeng H, Chen W, Zhang R, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries. Lancet Glob Health 2018;6:e555–e567.

[4] SEER cancer statistics factsheets: melanoma of the skin. Bethesda, MD: National Cancer Institute.

[5] Australian Government Cancer Australia. Melanoma skin cancer in Australia. Available at: https://melanoma.canceraustralia.gov.au/statistics. Accessed June 22, 2019.

[6] Chi Z, Li S, Sheng X, et al. Clinical presentation, histology, and prognoses of malignant melanoma in ethnic Chinese: a study of 322 consecutive cases. BMC Cancer 2011;11:85–94.

[7] Rockberg J, Amelio JM, Taylor A, et al. Epidemiology of cutaneous melanoma in Sweden-Stage-specific survival and rate of recurrence. Int J Cancer 2016;139:2722–9.

[8] Merkel EA, Gerami P. Malignant melanoma of sun-protected sites: a review of clinical, histological, and molecular features. Lab Invest 2017;97:630–5.

[9] Harries M, Malvehy J, Lebbe C, et al. Treatment patterns of advanced malignant melanoma (stage III-IV)—a review of current standards in Europe. Eur J Cancer 2016;60:179–89.

[10] Franklin C, Livingstone E, Roesch A, et al. Immunotherapy in melanoma: recent advances and future directions. Eur J Surg Oncol 2017;43:604–11.

[11] Amann VC, Ramelyte E, Thurneysen S, et al. Developments in targeted therapy in melanoma. Eur J Surg Oncol 2017;43:581–93.

[12] Tarhini A, Atzinger C, Gupte-Singh K, et al. Treatment patterns and outcomes for patients with unresectable stage III and metastatic melanoma in the USA. J Comp Eff Res 2019;8:461–73.

[13] Namikawa K, Yamazaki N. Targeted therapy and immunotherapy for melanoma in Japan. Curr Treat Options Oncol 2019;20:7–19.

[14] Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228–47.

[15] Manola J, Atkins M, Ibrahim J, et al. Prognostic factors in metastatic melanoma: a pooled analysis of Eastern Cooperative Oncology Group trials. J Clin Oncol 2000;18:3782–93.

[16] Pflugfelder A, Eigentler TK, Keim U, et al. Effectiveness of carboplatin and paclitaxel as first- and second-line treatment in 61 patients with metastatic melanoma. PLoS One 2011;6:e16882.

[17] Polkowska M, Ekk-Czerniakowski P, Czeplewska E, et al. Efficacy and safety of BRAF inhibitors and anti-CTLA4 antibody in melanoma patients-real-world data. Eur J Clin Pharmacol 2019;75:329–34.

[18] McLaughlin CC, Wu XC, Jamal A, et al. Incidence of noncutaneous melanomas in the US. Cancer 2005;103:1000–7.

[19] Hao M, Zhao G, Du X, et al. Clinical characteristics and prognostic indicators for metastatic melanoma: data from 446 patients in North China. Tumour Biol 2016;37:10339–48.

[20] Chan KK, Chan RC, Ho RS, et al. Clinical patterns of melanoma in Asians: 11-year experience in a tertiary referral center. Ann Plast Surg 2016;77(suppl 1):S6–S11.

[21] Chang W, Lee SJ, Park S, et al. Effect of paclitaxel/carboplatin salvage chemotherapy in noncutaneous versus cutaneous metastatic melanoma. Melanoma Res 2013;23:147–51.

[22] Fujisawa Y, Yoshikawa S, Minagawa A, et al. Clinical and histopathological characteristics and survival analysis of 4594 Japanese patients with melanoma. Cancer Med 2019;8:2146–56.