Atrial fibrillation and cryptogenic stroke. What is the current evidence? Role of electrocardiographic monitoring

Raimundo Carmona-Puerta MD1 | Yaniel Castro-Torres MD2

1Cardiocentro Ernesto Che Guevara, Santa Clara, Cuba
2Hospital Universitario Celestino Hernández Robau, Santa Clara, Cuba

Correspondence
Yaniel Castro-Torres, Hospital y Alejandro Oms, Santa Clara, Cuba.
Emails: yanielct@infomed.sld.cu and castrotorresy@gmail.com

Funding information
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Abstract
The diagnosis of cryptogenic stroke is made by exclusion. However, current evidence supports the role of atrial fibrillation episodes as a cause of this condition. Prospective data have demonstrated the benefits of long-term electrocardiographic monitoring to identify atrial fibrillation in association with cryptogenic stroke. This aim of this article was to analyze the contemporary evidence for the possible relationship between atrial fibrillation and cryptogenic stroke and the role of continuous electrocardiographic monitoring to clarify this hypothesis.

KEYWORDS
atrial fibrillation, atrial fibrillation burden, cryptogenic stroke, electrocardiogram, monitoring devices

1 | INTRODUCTION

About 15% to 40% of all ischemic strokes have no identifiable etiology.1 These cases are defined as cryptogenic stroke (CS). The diagnosis of CS is made by exclusion. In clinical practice, the diagnosis of CS is considered in 3 circumstances: (i) when the diagnostic assessment is incomplete, (ii) when a single cause cannot be determined because there are several reasonable causes, or (iii) when despite extensive assessment, there is no identifiable cause.2

Recent studies suggest that atrial fibrillation (AF) is a possible cause of CS. Most of these studies are based on continuous electrocardiographic (EKG) monitoring. However, there is no consensus on the usefulness of EKG monitoring in this setting and many questions about the association between AF and CS remain. We therefore review the evidence favoring an association between AF and CS with emphasis on future steps that make help reaching definitive conclusions.

2 | WHAT WE HAVE LEARNED FROM EKG MONITORING IN PATIENTS WITH CS?

Following a transient ischemic attack (TIA) or stroke event, paroxysmal AF is detected by a single 12-lead electrocardiogram or 24-hour Holter recording in 2% to 4%. If EKG monitoring extends to 24-72 hours, the incidence of AF increases to 18%.3 Dahal et al4 carried out a meta-analysis of 4 randomized controlled trials including a total of 1149 patients. Their analysis showed that in comparison with short-term monitoring (≤ 48 hours), prolonged monitoring (≥ 7 days) increases the detection rate of AF episodes lasting ≥ 30 seconds after a CS or TIA (2.5% vs 13.8%, P < .00001). The advantage of long-term EKG monitoring over conventional follow-up using serial electrocardiograms or 24-hour Holter was confirmed in the CRYS-TAL-AF5 study. In this investigation, detection rates of new AF with an implanted long-term monitoring recording device were significantly higher than following conventional monitoring: 8.9% vs 1.4% at 6 months, 12.4% vs 2.0% at 12 months, and 30.0% vs 3.0% at 36 months (P < .001 for all comparisons).

Although there are recommendations to perform at least 24 hours of EKG monitoring to rule out AF following an ischemic stroke, some studies suggest that this recommendation is poorly accomplished in clinical practice. Edwards et al6 evaluated the use of EKG monitoring following an ischemic stroke among 17 398 patients from the Ontario Stroke Registry studied between 2003 and 2013. They found that only 30.6% of patients received a 24-hour Holter monitoring and less than 1% received EKG monitoring longer than 48 hours. Based on these results, the researchers concluded that (i)
there is a gap between evidence and practice that favors the over-
diagnosis of CS and (ii) the potential underdiagnosis of AF results in
missed opportunities for secondary prevention of cerebral infarction
with anticoagulants.

3 | WHAT IS THE MEANING OF FIRST
EPISODE OF AF AFTER A CS? CAUSALITY,
ASSOCIATION, OR RISK FACTOR?

The mere presence of AF discovered within days, weeks, or months
following a CS does not establish the etiology of cardiogenic embo-

lism. In fact, there are no published studies that establish this caus-

ality. Furthermore, there is evidence that stroke, including lacunar
infarcts, may trigger AF episodes.7

The ASSERT study8 included 2580 patients with implanted pace-
makers or defibrillators with long-term ECG monitoring capabilities.
Fifty-one patients developed a stroke or a systemic embolism. The
authors could not find a straightforward temporal relationship
between these events and the occurrence of AF. Twenty-six patients
with stroke or systemic embolism had subclinical AF. Fourteen cases
of this group suffered the arrhythmia 30 days before the index event,
4 patients had AF within 30 days to the index event, and 8 cases
showed AF to 101 days after the occurrence of stroke. A recent
review article mentions the lack of evidence on the true clinical sig-
nificance of AF diagnosed de novo in cases of CS. However, there is
accumulating evidence on the role of AF burden and the benefits of
the anticoagulants use to prevent a new stroke. It should also be
noted that there is a clear benefit in the use of anticoagulants in
patients with ischemic stroke or prior transient ischemic attacks in
whom AF is demonstrated. In this case, the decision of anticoagula-
tion is based on the implementation of the CHA2DS2-VASc score,
even if the mechanistic basis of this result is not entirely clear.9

Prolonged ECG recordings identify patients with low AF burden
(<1% of the monitoring time).10 This type of AF has a low risk of
stroke albeit higher than that of patients without AF. In fact, among
patients with 2 years of continuous ECG monitoring as little as one
hour of AF doubles the risk of ischemic stroke.11 Nowadays, there is
no consensus whether patients with low AF burden in the setting of
a CS will benefit from anticoagulant or antiplatelet drugs. Further
studies are needed to clarify this topic. However, Bridge et al10 pro-
pose the use of intermittent anticoagulation in patients at high risk
of bleeding and low AF burden who are also continuously and reli-
bly monitored. In this study, there were no patients with stroke,
and bleeding events were manifested only in patients who used con-
tinuous anticoagulation.

4 | WHICH PATIENTS WILL BENEFIT FROM
PROLONGED ECG MONITORING?

Poli et al12 conducted a study in patients with CS/TIA and
assigned them to receive an implantable prolonged ECG
monitoring device based on the presence of known risk factors
for AF. The authors concluded that selecting patients using this
strategy allows identification of AF in 1 of 3 patients within
1 year of monitoring. The stronger predictors of AF after CS were
atrial size >45 mm and the presence of atrial ectopic beats. Thijs
et al13 found that the best predictors of AF were (i) a prolonged
PR interval and (ii) advanced age. However, they recognized their
moderate predictive ability to discriminate patients with and with-
out AF after CS.

A recent review article summarized the main conditions that pre-
dispose to develop low AF burden.10

1. Increasing age.
2. High CHA2DS2-VASc scores.
3. Cerebral infarction with typical topographic features such as cor-
tical location or multiple vascular territories.
4. Suspicious of left atrial disease (left atrial dilatation, distension,
size and morphology of left atrial appendage, P wave dispersion,
infarcts, may trigger AF episodes.7

Another investigation found that the total atrial conduction time
measured by Doppler echocardiography using the PA-TDI interval
predicts hidden AF in patients with CS with a sensitivity of 93.8%
and specificity of 90.5%. After a multivariate analysis, the last param-
eter was an independent predictor of hidden AF.14

There are other proposed schemes for prediction of paroxysmal
AF following an ischemic stroke. One of the best one studied is the
iPAB score, which includes a personal history of arrhythmia or antiarrhythmic drug use, atrial dilatation, and elevation of brain natri-
uretic peptide.15

The evidence regarding the monitoring time to be employed in
patients with CS for detecting AF is still inconclusive. A recent
consensus document recommends “extended ECG monitoring” in
patients with CS to detect undiagnosed AF. This expert panel pro-
poses a careful evaluation of each patient prior to device use
based on cost-efficacy, patient’s acceptance, and compliance.16 Fur-
ther investigations are necessary to achieve definitive conclusions,
but the recommendation by Montalvo et al17 of 30 days of ECG
monitoring after a CS appears to be a feasible choice in clinical
practice.

5 | CONCLUSIONS

Some studies support the relationship between AF and CS, but
further studies are necessary to reach definitive conclusions. The
use of prolonged ECG monitoring devices is an attractive option
for identifying patients with silent AF and for establishing the
association between both AF and CS. The degree of AF burden,
detected by prolonged ECG monitoring, ultimately dictates the
optimal anticoagulation regimen (continuous vs. intermittent anti-
coagulation following detection of AF episodes) for the prevention
of stroke.
ACKNOWLEDGEMENT

The authors gratefully acknowledge to Dr. Sami Vinskin for the critical review and suggestions made to the final version of this article.

CONFLICT OF INTERESTS

Authors declare no Conflict of Interests for this article.

ORCID

Yaniel Castro-Torres http://orcid.org/0000-0003-2019-284X

REFERENCES

1. Hart RG, Halperin JL. Atrial fibrillation and stroke: concepts and controversies. Stroke. 2001;32:803–8.
2. Adams HP Jr, Bendixen BH, Kappelle LJ, et al. Classification of sub-type of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24:35–41.
3. Andrade JG, Field T, Khairy P. Detection of occult atrial fibrillation in patients with embolic stroke of uncertain source: a work in progress. Front Physiol. 2015;6:100.
4. Dahal K, Chapagain B, Majarhan R, et al. Prolonged cardiac monitoring to detect atrial fibrillation after cryptogenic stroke or transient ischemic attack: a meta-analysis of randomized controlled trial. Ann Noninvasive Electrocardiol. 2016;21:382–8.
5. Sanna T, Diener HC, Passman RS, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370:2478–86.
6. Edwards JD, Kapral MK, Fang J, et al. Underutilization of ambulatory ECG monitoring after stroke and transient ischemic attack: missed opportunities for atrial fibrillation detection. Stroke. 2016;47:1982–9.
7. Oppenheimer S. Cerebrogenic cardiac arrhythmias: cortical lateralization and clinical significance. Clin Auton Res. 2006;16:6–11.
8. Brambatti M, Connolly SJ, Gold MR, et al. Temporal relationship between subclinical trial fibrillation and embolic events. Circulation. 2014;129:2094–9.
9. Akarawinthewong K, Prasad KV, Mehdirad AA, et al. Atrial fibrillation monitoring in cryptogenic stroke: the gaps between evidence and practice. Curr Cardiol Rep. 2015;17:118.
10. Bridge F, Thijs VN. How and when to screen for atrial fibrillation after stroke: insights from insertable cardiac monitoring devices. J Stroke. 2016;18:121–8.
11. Saver JL. Cryptogenic stroke. N Engl J Med. 2016;374:2065–74.
12. Poli S, Diedler J, Hartig F, et al. Insertable cardiac monitors after cryptogenic stroke: a risk factor based approach to enhance the detection rate for paroxysmal atrial fibrillation. Eur J Neurol. 2016;23:375–81.
13. Thijs VN, Brachmann J, Morillo CA, et al. Predictors for atrial fibrillation detection after cryptogenic stroke: results from CRYSTAL AF. Neurology. 2016;86;261–9.
14. Muller P, Ivanov V, Kara K, et al. Total atrial conduction time to predict occult atrial fibrillation after cryptogenic stroke. Clin Res Cardiol. 2017;106:113–9.
15. Hariri E, Hachem A, Sarkis G, Nasr S. Optimal duration of monitoring for atrial fibrillation in cryptogenic stroke: a nonsystematic review. Bio Med Res Inter. 2016;2016:5704963.
16. Steinberg JS, Varma N, Cygankiewicz I, et al. 2017 ISHNE-HRS expert consensus statement on ambulatory ECG and external monitoring/telemetry. Ann Noninvasive Electrocardiol. 2017;22:e12447.
17. Montalvo M, Ali R, Silver B, et al. Long-term arrhythmia monitoring in cryptogenic stroke: who, how, and for how long? Open Cardiovasc Med J. 2016;10:89–93.

How to cite this article: Carmona-Puerta R, Castro-Torres Y. Atrial fibrillation and cryptogenic stroke. What is the current evidence? Role of electrocardiographic monitoring. J Arrhythmia. 2018;34:1–3. https://doi.org/10.1002/joa3.12016