Selecting the dosage of ceftazidime–avibactam in the perfect storm of nosocomial pneumonia

Shampa Das 1,2, Diansong Zhou 3, Wright W. Nichols 3,4, Andy Townsend 1,5, Paul Newell 1,6, Jianguo Li 3,7

Received: 14 May 2019 / Accepted: 20 November 2019 / Published online: 14 December 2019
© The Author(s) 2019

Abstract
Purpose Ceftazidime–avibactam is a novel β-lactam/β-lactamase inhibitor combination recently approved in Europe and the USA for the treatment of adults with hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), among other indications. In the phase III REPROVE trial (NCT01808092), ceftazidime–avibactam demonstrated non-inferiority to meropenem for the treatment of patients with nosocomial pneumonia (NP), including VAP. As ceftazidime–avibactam was not studied in patients with NP prior to REPROVE, selecting an appropriate dosage regimen in the “perfect storm” of NP required careful consideration of potential determinants and confounders of response specific to the NP patient population.
Methods This review describes the series of preclinical studies and pharmacokinetic/pharmacodynamic (PK/PD) analyses that supported ceftazidime–avibactam dosage selection for patients with NP/VAP (2000/500 mg by 2-h intravenous infusion every 8 h, adjusted for renal function). In parallel, important considerations for antibiotic dosage selection in patients with NP are highlighted, including adequate drug penetration into the lungs, the suitability of murine-derived plasma PK/PD targets, evaluation of MIC distributions against clinical bacterial isolates from patients with NP, and consideration of PK in patients with NP, who are often critically ill. These analyses also supported the European approval of ceftazidime–avibactam for adults with HAP, including VAP, before the completion of REPROVE.
Conclusions This work serves as a successful practical example of dosage design for a new antibacterial drug therapy in the indication of NP, including VAP, where previous drug therapies have failed, possibly as a result of evaluation of too few variables, thereby limiting the accuracy of pharmacodynamic predictions.

Keywords Ceftazidime–avibactam · Nosocomial pneumonia · Antibiotic therapy · Pharmacokinetics · Pharmacodynamics · Dosage selection

Introduction
Nosocomial pneumonia (NP), also referred to as hospital-acquired pneumonia (HAP), accounts for approximately 15% of hospital-acquired infections [1], and ventilator-associated pneumonia (VAP), a subgroup of NP, is among the most common infections in intensive care units [2, 3]. NP, and particularly VAP, are associated with high morbidity and mortality rates [4, 5], and in many regions, antimicrobial resistance is making these infections increasingly difficult to treat [5]. Pseudomonas aeruginosa and Enterobacteriaceae including Klebsiella pneumoniae and Escherichia coli are the most frequently isolated Gram-negative bacteria from hospitalized patients with pneumonia worldwide, of which many show reduced (≤ 90%) susceptibility to commonly used antimicrobials for pneumonia such as third-generation cephalosporins, thereby increasing reliance on carbapenems [6–8].
Unfortunately, the increasing resistance among clinically important Gram-negative bacteria in recent decades has occurred in the context of declining development of new antimicrobial therapies, particularly those targeting Gram-negative bacteria [9]: between 2005 (approval of tigecycline) and 2017 (approval of ceftazidime–avibactam), no new treatments were approved for NP/VAP due to Gram-negative bacteria.

NP represents a “perfect storm” for antimicrobial drug therapy for various reasons. First, as the infection occurs in the lungs, there is a potential for delayed or insufficient free drug penetration to the infection site. Second, there is evidence that bacteria isolated from patients with NP/VAP are less susceptible to antibacterial agents than isolates of the same species from other infections; such increased minimum inhibitory concentrations (MICs) have adversely influenced the outcomes of some clinical trials of new drugs in this population [10, 11]. Third, the reduced susceptibility of these bacteria to currently available antibiotics [6] can be compounded by the rapid elimination of renally cleared agents in some patients due to augmented renal clearance (ARC) [12]. Finally, alterations in organ function and hemodynamics in critically ill patients with NP can result in wide variability in antibiotic pharmacokinetics (PKs) and thus affect the ability to achieve therapeutic concentrations [13–15].

As highlighted by Ambrose and colleagues [10], for sponsors of new antimicrobial candidate therapies for NP/VAP, careful consideration of PK/pharmacodynamic (PD) determinants and confounders of response is required to ensure appropriate dosage regimen selection before starting clinical trials. The pitfalls of developing drugs for use in pneumonia without accounting for the above factors have been demonstrated for other antimicrobial therapies. The decreased in vitro activity of daptomycin against Gram-positive bacteria in the presence of pulmonary surfactant was suggested as a possible explanation for its failure in clinical trials for community-acquired pneumonia [16]. Initial preclinical studies of ceftobiprole assessed penetration of the drug into mouse but not human epithelial lining fluid (ELF), the fluid layer covering the mucosae of the alveoli and of the small and large airways [17]. The median ceftobiprole area under the curve (AUC) ratio for ELF/plasma was 0.69 in mice, whereas the ratio in humans was subsequently found to be only 0.15, resulting in an underestimation of the effective dosage required for phase III trials in patients with NP. Moreover, failure to consider ARC when determining dosages may also result in the failure of clinical trials. For example, in trials of doripenem, tigecycline, and ceftobiprole, ARC was implicated as a factor in their relatively low efficacy [18].

In this narrative review, we describe how the ceftazidime–avibactam dosage regimen was selected for the treatment of patients with NP, including VAP, and highlight important considerations for selecting antibiotic dosage regimens for this indication. Reviewing these considerations may be instructive, because other antibacterial drugs have failed to demonstrate adequate efficacy in NP/VAP, possibly as a consequence of such analyses being incomplete prior to clinical trials [10].

Ceftazidime–avibactam: development overview

Ceftazidime–avibactam combines the established cephalosporin ceftazidime (which, among other indications, is approved as a monotherapy for HAP/VAP caused by susceptible bacteria), with avibactam, a novel, non-β-lactam inhibitor of Ambler class A, class C, and some class D β-lactamases [19]. The combination is active against a wide range of Gram-negative bacteria, including most carbapenemase-resistant Enterobacteriaceae (with the exception of those producing metallo-β-lactamases), and some multidrug-resistant P. aeruginosa strains [20–22].

The efficacy and safety of ceftazidime–avibactam, including in patients with infections caused by ceftazidime-resistant bacteria, have been demonstrated in a comprehensive adult clinical trial program, including two phase II [23, 24] and five phase III trials [25–29]. The phase II trials, and the first four phase III trials, enrolled adults with complicated intra-abdominal infection (cIAI) or complicated urinary tract infection (cUTI), and supported initial US (in 2015) and European (in 2016) approvals in these indications [30, 31]. Population PK modeling and probability of target attainment (PTA) analyses, using phase I and II clinical PK data and PK/PD targets derived from preclinical data (discussed below), were used to select a ceftazidime–avibactam dosage of 2000/500 mg by 2-h intravenous infusion q8h for patients with normal renal function across all of the phase III trials. The phase III trials all included sparse PK sampling schedules, and at various stages during the development program, additional patient PK and covariate data were incorporated into updated iterations of the ceftazidime and avibactam population PK models to evaluate the performance of the selected dose by assessing model predictions versus actual exposures. These analyses provided assurance that the selected regimen would provide adequate exposures for various clinically important patient subgroups, including patients with NP/VAP [31–33], and also supported selection of dosage adjustments for renal function [34, 35]. In conjunction with microbiological surveillance data and data from in vitro and animal models, the simulations also supported determination of ceftazidime–avibactam MIC susceptibility breakpoints [36].

The selected ceftazidime–avibactam dosage regimen for patients with NP/VAP was based on a PK/PD-guided approach, described here in detail, and led to European approval of ceftazidime–avibactam for adults with HAP/VAP before the completion of the final phase III trial (REPROVE), which evaluated ceftazidime–avibactam compared with meropenem.
in patients with NP, including VAP [29, 37]. Since there was no clinical experience with ceftazidime–avibactam in NP/VAP prior to REPROVE, the study also served to validate the dosage selection approach in a clinical setting [29]. A US label extension to include adults with HAP/VAP [38] was granted following the completion of the trial and analyses according to US Food and Drug Administration (FDA)-specified endpoints [39].

Establishing PK/PD targets for NP and VAP

Population PK modeling and PTA analyses using PK/PD targets derived from preclinical data are commonly used to guide and support the selection of appropriate antibiotic dosage regimens for clinical use [40–43]. Achievement of 50% free drug time above the MIC (\(T_{\text{MIC}}\)) is an established PD target for ceftazidime that is associated with up to 2 log_{10} killing of Enterobacteriaceae and *P. aeruginosa* in neutropenic mouse infection models [44–46], and with microbiological eradication in patients with NP caused by Gram-negative pathogens [47, 48]. This has led to the use of 50% \(T_{\text{MIC}}\) as the key exposure target for evaluating ceftazidime PK/PD target attainment and in establishing MIC interpretive criteria (breakpoints) [36, 49, 50]. For avibactam, hollow-fiber and murine thigh and lung infection models with ceftazidime-resistant Enterobacteriaceae and *P. aeruginosa* were used to determine the avibactam PK/PD index in combination with ceftazidime [51, 52]. Based on these experiments, the avibactam PK/PD target in plasma associated with restoration of ceftazidime activity was defined as 50% free time above a critical avibactam threshold concentration of 1 mg/L (\(\%T_{\text{C_T}}\) 1 mg/L) during each dosage interval [33, 51, 52].

For dosage selection in NP, including VAP, it was necessary to study the lung penetration of ceftazidime and avibactam to establish whether these plasma-based PK/PD targets derived from murine infection models were appropriate surrogates for the achievement of adequate ceftazidime–avibactam exposures in human ELF. Moreover, it was important to assess the in vitro activity of ceftazidime–avibactam against clinical bacterial isolates from patients with pneumonia and to evaluate any impact of pulmonary surfactant, a primary component of ELF, or the presence of other antibiotics on in vitro activity.

Bridging the gap between mice and men: confirming the suitability of plasma PK/PD targets derived from murine models for dosage selection in NP and VAP

Successful microbiological eradication requires adequate drug concentrations at the site of infection. Therefore, the extent of penetration of ceftazidime and avibactam into ELF was an important consideration for appropriate dosing in the treatment of NP [10]; however, there are several limitations to this approach (see Supplemental Materials), and in particular it may underestimate the extent of pulmonary penetration of \(\beta\)-lactams [53].

Murine infection models are commonly used to identify PK/PD targets, as it is difficult to determine the PK/PD index from clinical trials, which often have too few clinical failures to conduct exposure–response analyses [54]. However, bridging PK data from mice to humans without considering human ELF data may result in incorrect calculations for the drug exposure expected at the infection site [10].

Plasma and ELF PK data for ceftazidime–avibactam from a phase I trial that sampled ELF in healthy volunteers were compared with plasma and ELF PK data obtained from murine neutropenic thigh and lung infection models [55, 56]. In the human phase I study, ELF/plasma AUC ratios were calculated using total (free + bound) plasma concentrations of ceftazidime and avibactam (i.e., they were not corrected for differences in protein binding in plasma and ELF) [56], resulting in slightly lower estimated human ELF/plasma exposure ratios than if calculated using unbound fractions. In contrast, the murine ELF/plasma AUC ratios accounted for protein binding of ceftazidime and avibactam, and were calculated using free concentrations (protein binding is approximately 10% for both ceftazidime and avibactam in plasma, and negligible in ELF) [53, 55]. Both ceftazidime and avibactam penetrated similarly into mouse (Figs. 1 and 2) and human ELF (Fig. 3) in a dose-proportional manner [55, 56], and concentration-time profiles in ELF were a similar shape to those in plasma (Figs. 1 and 3). The mouse ELF/plasma AUC ratios for ceftazidime and avibactam (20–24%) were slightly lower than the corresponding human values (31–35%) [55, 56], suggesting that the mouse data provided a conservative indication of ELF penetration achieved in humans. Thus, as lower penetration in mouse still resulted in effective bacterial killing, although ELF concentrations in humans were a proportion of those in plasma, these were considered sufficient to achieve adequate free lung exposures.

These findings, in addition to studies showing a lack of interaction between pulmonary surfactant and ceftazidime or avibactam (see below), and of interactions with other antibiotics (see Supplemental Materials), indicated that ceftazidime and avibactam PK in plasma are appropriate surrogates for the PK of these drugs in ELF and confirmed the suitability of the mouse infection model to derive plasma-based PK/PD targets for estimation of PTA appropriate to support dosage selection in NP.
In vitro activity of ceftazidime–avibactam against bacteria isolated from patients with non-ventilated or ventilated pneumonia

To account for potential differences in susceptibility among bacteria causing NP and VAP compared with other infection types, the in vitro activity of ceftazidime–avibactam was evaluated against bacterial isolates from patients with pneumonia. In an international surveillance study, the ceftazidime–avibactam MIC was ≤ 8 mg/L in 92–96% of *P. aeruginosa* isolates from non-ventilated hospitalized patients with pneumonia, and in 79–95% of those obtained from ventilated patients (Fig. 4) [57]. Ceftazidime–avibactam MIC90 values for Enterobacteriaceae ranged from 0.25 to 0.5 mg/L [57]. This was concordant with analyses of isolates from patients with other infection types, which have reported ceftazidime–avibactam MIC90 values of ≤ 8 mg/L for *P. aeruginosa* and Enterobacteriaceae [22, 58–62]. A target-free plasma ceftazidime exposure (fT>MIC) based on high target attainment against bacteria that test with MIC of ceftazidime–avibactam of 8 mg/L was therefore considered appropriate for use in dosage selection for NP and VAP.

In vitro interaction with pulmonary surfactant

Pulmonary surfactant, a complex lipid and protein mixture that is present in the ELF, binds to some antimicrobials, causing their activities to decrease [16]. Dallow and colleagues [63] conducted an in vitro study to evaluate the effect of pulmonary surfactant on the activity of ceftazidime–avibactam and to determine whether there was any antagonistic in vitro interaction with other antimicrobial classes that are commonly used in the treatment of NP. No significant increases in ceftazidime–avibactam MIC were observed at pulmonary surfactant concentrations up to 10% for β-lactamase-producing Gram-negative bacteria, indicating that pulmonary surfactant does not adversely affect the in vitro activity of ceftazidime–avibactam [63].

Population PK modeling and PTA analyses to guide dosage selection for NP and VAP

Population PK models were developed for ceftazidime and avibactam using patient PK data from clinical trials and...
updated as additional data were generated throughout the clinical development program, with key iterations including two early phase I–II models [64, 65], two interim phase I–III models [66, 67], and a final model [32], with each new iteration incorporating all previously available data; the model iterations have been reviewed in detail by Das et al. (2019) [68], and details of the final model, including NONMEM codes, as well as descriptions of the model construction, selection of covariates, and model evaluation, have been reported by Li et al. (2019) [32]. Ceftazidime and avibactam plasma concentration–time data were analyzed using nonlinear mixed-effects modeling, which described the PK of both ceftazidime and avibactam as a two-compartment disposition model with first-order elimination from a central compartment following intravenous infusion, parameterized by clearance (CL), volume of the central compartment (V_c), intercompartmental clearance (Q), and volume of the peripheral compartment (V_p) [32]. The final model parameter estimates are shown in the Supplementary Materials. Prediction-corrected visual predictive checks confirmed that the various model iterations reflected the observed data [32, 68]. These models were used in Monte Carlo simulations to support and
validate dosage selection, with simulation methods summarized in the Supplementary Materials. Based on the in vitro and in vivo studies described above, free plasma PK/PD targets of 50% $fT > 8\text{ mg/L}$ for ceftazidime (8 mg/L was selected as it was the ceftazidime–avibactam MIC$_{90}$ for the target species, $P.\ aeruginosa$, and higher than the MIC$_{90}$ for species of the Enterobacteriaceae, as described above) and 50% $fT > C_T 1\text{ mg/L}$ for avibactam (see Nichols et al. (2018) [33] for a review of PK/PD target selection), to be attained simultaneously in each simulated patient, were used in PTA analyses to guide dosage selection based on achievement of > 90% joint PTA [31, 32, 68].

The overall phase III dosage selection and optimization process for ceftazidime–avibactam has been reviewed by Das et al. [68]. In brief, ceftazidime 2000 mg q8h was selected as the “starting point,” as this is the recommended monotherapy dose for severe infections [69], co-administered with avibactam 500 mg q8h in a 4:1 fixed-dose ratio. At the time of dosage selection for REPROVE, PK data for ceftazidime–avibactam were available from five phase I studies in healthy volunteers and a phase II study in patients with cIAI treated with ceftazidime–avibactam 2000/500 mg 30-min intravenous infusions q8h. Ceftazidime and avibactam population PK models were developed using data from these studies and used to guide dosage selection for REPROVE, because no clinical trial PK data were available at the time for ceftazidime–avibactam in patients with NP/VAP. For both ceftazidime and avibactam, the final models were two-compartmental, with body-surface-area-normalized creatinine clearance (CL$_{CR}$), age, body weight, and study population (healthy subjects vs patients) identified as covariates [64, 70]. The use of population PK models based on patients with cIAI was considered appropriate for dosage selection in NP, as the PK profile of ceftazidime alone was previously shown to be comparable across cIAI and NP patient populations [71, 72]. We assumed that the same would be true for avibactam, given the generally similar PK profiles of the two compounds [73].

ARC occurs commonly in patients who are critically ill, such as those with VAP, resulting in faster elimination of renally cleared drugs [10, 15]. As both ceftazidime and avibactam are almost entirely cleared by the kidneys, and CL$_{CR}$ was identified as a significant covariate affecting the exposures of both drugs in the population PK models, the effect of high CL$_{CR}$ was an important consideration in dosage selection for NP/VAP [10]. Following completion of the ceftazidime–avibactam phase III cIAI and cUTI trials, updated population PK models were developed which included data from 101 phase III patients with estimated CL$_{CR}$ 150–180 mL/min and 76 with CL$_{CR}$ 180–395 mL/min [31]. These updated models were used to explore specific considerations for the CL$_{CR}$ distribution in simulations of patients with NP/VAP [70]. We assumed that the relationships between ceftazidime and avibactam exposures and high CL$_{CR}$ were already well characterized in the models based on patients with cIAI. This assumption was supported by data from a phase I study which explored the impact of ARC on avibactam exposure when dosed in combination with ceftaroline fosamil in complicated skin and soft-tissue infection. This distribution was used as these trials contained many patients with infection and high CL$_{CR}$ (truncated at CL$_{CR}$ > 80 mL/min). Dashed lines show the alignment of the distribution. Data from Li et al. (2015) [70]. Simulations were conducted for 3000 patients each in case 1 and case 2 (of which 2000 simulated subjects had CL$_{CR}$ > 80 mL/min and 1000 had CL$_{CR}$ 50–80 mL/min), and 1000 patients in case 3, receiving ceftazidime–avibactam 2000/500 mg q8h 2-h intravenous infusions. Case 1 and 2 panels adapted from Ambrose et al. (2010) [10].
28.4% lower AUC₀–τ, which was comparable to the avibactam exposure seen in phase III patients with cIAI with estimated CLᵦᵦ ≥ 150 mL/min [31]. There was a similar impact of CLᵦᵦ ≥ 150 mL/min on the exposure of ceftazidime. The similar magnitudes of differences in exposures (compared to healthy subjects with normal renal function) between patients with cIAI with high estimated CLᵦᵦ (≥ 150 mL/min) and patients with ARC and sepsis suggested that it was plausible to use estimations of high CLᵦᵦ from the phase III data to model the impact of ARC on PTA.

To assess the impact of higher renal clearance in patients with NP, additional simulations based on the updated models were conducted to evaluate whether the proportion of patients with high CLᵦᵦ significantly affected PTA [70]. During typical PTA simulations, the CLᵦᵦ distribution is re-sampled using the population model patient dataset. In the original simulations for NP dose selection, the population PK models were developed using data from patients with cIAI, and did not include patients with NP. Therefore, the impact of high CLᵦᵦ on PTA was analyzed in three scenarios (Fig. 5). First, the CLᵦᵦ distribution from patients with cIAI was replaced with literature-reported values from patients with NP, using CLᵦᵦ distributions from non-ventilated (case 1) and ventilated (case 2) patients [10]. A third approach (case 3), simulated a “high CLᵦᵦ distribution” by removing low clearances from a natural patient distribution (i.e., of the CLᵦᵦ range seen in a clinical trial, the distribution of values > 80 mL/min was taken and re-sampled). In this instance, the CLᵦᵦ distribution was derived from two phase III studies of ceftaroline fosamil in complicated skin and soft-tissue infection [74]. These two studies included multiple subjects with infection and high CLᵦᵦ, and were therefore considered informative for simulations of patients with NP (Fig. 5). In this distribution, at least 25% of patients had CLᵦᵦ > 160 mL/min and could be considered to have ARC. Other covariates (age, weight, height, and gender) were simulated from their distribution functions obtained from the phase II trial in patients with cIAI [24, 70].

For each CLᵦᵦ distribution case defined above, joint PTA by MIC curves were compared with ceftazidime–avibactam MIC distributions for P. aeruginosa isolates from patients with NP and VAP (Fig. 4) [57]. Joint PTA > 90% was predicted for ceftazidime–avibactam 2000/500 mg 2-h intravenous infusions q8h for all three CLᵦᵦ distribution cases (NP, VAP, and high CLᵦᵦ) for ceftazidime–avibactam MICs ≤ 8 mg/L (Table 1) [70]. These simulations thus supported the selected ceftazidime–avibactam dosage regimen for patients with NP, including VAP, and CLᵦᵦ ≥ 50 mL/min. Dosage adjustments are required for patients with CLᵦᵦ < 50 mL/min, as described elsewhere [32].

Approval of ceftazidime–avibactam for the treatment of NP and VAP in Europe prior to the completion of REPROVE

Ceftazidime–avibactam was approved in Europe for the treatment of HAP, including VAP, prior to the completion of REPROVE [31, 37]. This decision was supported by the PK analyses described above and the following additional data. At the time of the European approval in HAP/VAP, results from the RECLAIM, REPRISE, RECAPTURE, and RECLAIM 3 phase III clinical trials had confirmed the efficacy in patients with cIAI and cUTI of the proposed NP dosage regimen [25–28]. Blinded interim plasma concentration data were also available from 308 patients (109 with VAP) from REPROVE, which demonstrated similar ceftazidime and avibactam plasma exposures in patients with NP or VAP compared with those for patients with cIAI [31]. Updated ceftazidime and avibactam population models, including data from the phase III clinical trials in cIAI and cUTI, were used together with blinded demographic data from patients with NP and VAP in REPROVE to simulate joint PTA for patients with NP, including VAP, and confirmed high joint PTA (> 98%) in these patients at ceftazidime–avibactam MICs up to 8 mg/L [31]. Ceftazidime and avibactam plasma–ELF relationships were also further characterized by developing population PK models for ceftazidime and avibactam in plasma and ELF using data from the phase I ELF study [56, 75]. ELF penetration of ceftazidime and avibactam from plasma occurred rapidly and was nonlinear, with penetration of both drugs greater than previously calculated using noncompartamental AUC methods [75]. Simulation of ELF concentration–time profiles demonstrated that most subjects achieved ceftazidime and avibactam ELF exposures exceeding their respective plasma PK/PD targets by the midpoint of the dosing interval (Fig. 6). This analysis confirmed that substantial ELF penetration is achieved in healthy subjects, and that the exposures in the lungs of both drugs administered at the proposed dosage regimen were predicted to exceed levels required for efficacy.

Validation of the ceftazidime–avibactam dosage regimen for patients with NP, including VAP

In REPROVE, 879 adults with NP, including VAP, were randomized 1:1 to receive ceftazidime–avibactam 2000/500 mg 2-h intravenous infusion q8h or meropenem 1000 mg 30-min infusion q8h, with dosage regimens of both drugs adjusted for impaired renal function [29, 68]. Ceftazidime–avibactam was non-inferior to meropenem with respect to clinical cure at test of cure (primary endpoint) [29] and for the US FDA–specified endpoint of all-cause mortality at day 28 [39]. Adverse events were as expected for the patient population and consistent
with the established safety profile of ceftazidime–avibactam [29, 39]. Of note, ceftazidime–avibactam dosage adjustments for CLCR < 50 mL/min were modified by protocol amendment during the study to reflect approved European and US labeling [68]. Patients in REPROVE receiving the original dosage adjustments were excluded from the primary efficacy analyses; however, in both cases, the non-inferiority criteria were met [29, 39]. Thus, the selected ceftazidime–avibactam dosage regimens (including recommended adjustments for impaired renal function) were associated with clinical efficacy in patients with NP, including VAP, validating the dosage selection approach.

As noted above, patients with NP, and particularly VAP, are often critically ill, which can affect the PK of many drugs, including some antibiotics [13]. Therefore, updated ceftazidime and avibactam population PK models, based on patient PK data from all five adult ceftazidime–avibactam phase III trials (including REPROVE), were used to confirm that appropriate exposures and high target attainment were maintained in patients with NP and VAP, and in subgroups of patients with characteristics of critical illness [32]. The final models included ceftazidime and avibactam PK data from 1975 and 2249 individuals, respectively, including 412 patients with NP, of whom 138 had VAP. A high proportion of patient PK data was included in these models, including patients with a wide range of renal function, and substantial numbers of patients with more severe infection (438 patients with Acute Physiology and Chronic Health Evaluation [APACHE] II score > 10, and 773 patients with systemic inflammatory response syndrome [SIRS] at baseline). Consistent with the earlier population PK models, CLCR was the key covariate that affected CL of both drugs. The CL of avibactam and ceftazidime was close to proportional to CLCR at CLCR values < 80 mL/min and < 100 mL/min, respectively; at higher CLCR values, CL increased modestly (shallow slope) as CLCR increased.

The final models were used to predict steady-state exposures and joint PK/PD target attainment in actual phase III patients, and conduct joint PTA simulations for multiple patient subgroups including indication (cIAI, cUTI, or NP), baseline APACHE II score, presence of SIRS, renal function, age, sex, and race. Covariate values for simulations in the different indications were obtained by sampling with replacement from the corresponding set of phase III study patients for each indication (bootstrapped from the respective trial populations). Patients with NP were stratified into VAP and non-VAP patient subgroups for the covariate analysis. To further assess the effect of ventilation, an additional subgroup was defined for “patients with a ventilator in the hospital room,” which included patients with HAP or VAP who were ventilated on the day of PK sampling (denoted as NPv).

Predicted plasma ceftazidime and avibactam exposures in phase III patients with NP (including non-VAP, VAP, and NPv subgroups) were broadly comparable with (but slightly higher than) exposures in patients with cIAI and cUTI. Joint PK/PD target attainment exceeded 97% in all NP subgroups, as well as in patients with markers of severe disease, including APACHE II > 10, SIRS, or bacteremia [32]. In phase III

Table 1

Predicted joint PTA (%) by ceftazidime–avibactam MIC for patients receiving ceftazidime–avibactam 2000/500 mg q8h as a 2-h intravenous infusion for three different cases of CLCR distributions (dose selection population PK model)

Ceftazidime–avibactam MIC (mg/L)	Non-ventilatedNP patients (case 1)	VentilatedNP patients (case 2)	Patients with high CLCR (case 3)
0.125	98.2	98.2	97.9
0.25	98.2	98.2	97.9
0.5	98.2	98.2	97.9
1	98.2	98.2	97.9
2	98.2	98.2	97.9
4	98.0	98.2	97.7
8	95.7	94.8	92.5
16	65.6	63.8	53.8
32	12.3	12.1	6.3

CLCR, creatinine clearance; MIC, minimum inhibitory concentration; NP, nosocomial pneumonia; PK, pharmacokinetic; PTA, probability of target attainment; q8h, every 8 h.

*a For case 1 (non-ventilated NP) and case 2 (ventilated NP) simulations, 3000 patients were simulated for each case, of which 2000 were simulated from the distribution region CLCR > 80 mL/min, and 1000 from the region CLCR 50–80 mL/min; covariate distributions for CLCR were obtained from the literature [10].

*b For case 3, 1000 patients were simulated; the covariate distribution for CLCR was obtained from two phase III studies of ceftaroline fosamil in patients with complicated skin and soft-tissue infection with high CLCR, excluding values < 80 mL/min (case 3). See Fig. 5 for details.

Data from Li et al. (2015) [70]. Simulations were conducted for 3000 patients each in case 1 and case 2 (of which 2000 simulated subjects had CLCR > 80 mL/min and 1000 had CLCR 50–80 mL/min), and 1000 patients in case 3, receiving ceftazidime–avibactam 2000/500 mg q8h 2-h intravenous infusions.
NP receiving the recommended ceftazidime also predicted across renal function categories in patients with (Table 2). Appropriate exposures and > 96% joint PTA were – patients with high (151–180 mL/min) or very high (181–610 mL/min) CRCL, predicted joint PK/PD target attainment rates 98.4% and 95.7%, respectively, reflecting the relatively small increases in ceftazidime and avibactam CL at higher CLCR values [32]. These findings, consistent with the clinical outcomes, suggest that the selected dosage regimen provided appropriate exposures and high joint target attainment in patients with NP, including VAP, regardless of infection severity or ARC.

In simulations based on the final models and covariate distributions, exposures were highest in patients with NP (compared to those with cIAI or cUTI), and PTA > 95% at a ceftazidime–avibactam MIC of 8 mg/L was predicted for patients with NP/VAP/NPv, including those with high CLCR (Table 2). Appropriate exposures and > 96% joint PTA were also predicted across renal function categories in patients with NP receiving the recommended ceftazidime–avibactam dosage adjustments for renal impairment [32].

Fig. 6 Simulated total ELF concentration–time profiles in 1000 subjects receiving ceftazidime–avibactam 2000/500 mg q8h for a ceftazidime and b avibactam, superimposed with observed ELF concentration data. ELF epithelial lining fluid, MIC minimum inhibitory concentration, PK/PD pharmacokinetic/pharmacodynamic. The solid line represents the median percentile of 1000 simulated individuals, and the dashed lines are 5th and 95th percentiles. The circles represent the observed data points. The horizontal hashed line represents the plasma PK/PD target for ceftazidime (50% fT>MIC of 8 mg/L) and avibactam (50% fT > 1 mg/L), and the vertical hashed line represents the midpoint of the 8-h dosing interval. Figure from Dimelow et al. (2018) [75]

Perspectives on selecting antibiotic dosage regimens for the treatment of NP and VAP

In selecting an appropriate dosage of ceftazidime–avibactam for use in patients with NP and VAP, we followed Ambrose and colleagues’ advice to “look before you leap” [10]. Specifically, we considered ceftazidime–avibactam MIC distributions against bacteria isolated from patients with pneumonia, drug penetration to the infection site, potential antagonism by lung surfactant (and antagonistic interaction with other antimicrobials [63]), the suitability of using murine-derived plasma PK/PD targets for human dosage selection, and the phenomenon of ARC that may occur in critically ill patients. These analyses had an important role in supporting the approval of ceftazidime–avibactam in Europe for the treatment of patients with HAP, including VAP [37], prior to the availability of clinical data in this indication. Results from the REPROVE trial subsequently confirmed the efficacy and safety of the approved ceftazidime–avibactam dosage regimen in patients with NP, including VAP [29, 39]. In 2018, ceftazidime–avibactam was approved in the USA for the treatment of HAP and VAP based on data from REPROVE [38].

Notwithstanding the successful outcome of dosage selection for ceftazidime–avibactam reported here, there were some limitations to the overall modeling approach, and in the data available for the population PK analyses. For example, we did not use a joint population PK model, which would have allowed for parametric simulations with consideration of PK parameter correlations. Moreover, the lack of ELF data from patients with lung infections required extrapolation from murine data and modeling of ELF penetration based on plasma concentrations. While recognizing the limitations of ELF measurements, we believe that the ceftazidime and avibactam ELF population PK models and exposure calculations can be considered conservative, and the positive outcome of the REPROVE trial provides further validation of the view that adequate lung tissue penetration is achieved in patients. Initial dosage selection was based on PK data from subjects with a limited range of CLCR, with updated models based on phase III cIAI data subsequently used for evaluating exposures and PTA in patients with NP/VAP, a population with highly variable renal function, including ARC. In addition, there are limitations in the use of the Cockcroft–Gault formula for estimation of renal function in subjects with high CLCR. Similarly, there are known effects of mechanical ventilation on the PK of multiple drugs, including antibiotics. Our analysis identifying patients in REPROVE as NPv, VAP, or non-VAP was based on the presence of a ventilator in the hospital room (using available study data), which limited exploration of the impact of mechanical ventilation. However, it should again be emphasized that the results from REPROVE support the selected ceftazidime–avibactam dosage as efficacious in patients with NP and VAP. Finally, owing to restrictions in the available clinical data, the population PK models were unable to provide specific exposure and PTA predictions for some patient groups of clinical
ions, conclusions, and interpretation of the data in this review are the
Funding information Medical writing support for manuscript preparation
was funded by AstraZeneca and Pfizer. AstraZeneca’s rights to
ceftazidime–avibactam were acquired by Pfizer in December 2016.

Conclusions

Selection of inappropriate dosage regimens is likely to have contributed
to the failure of some antibiotic development programs in the NP and VAP indications [10]. As Ambrose and colleagues have suggested, this can potentially be avoided by considering the confounders and determinants of response in this patient population and conducting appropriate experiments to inform dosage regimen decisions [10]. Based on the work described here, ceftazidime–avibactam 2000/500 mg every 8 h intravenous infusion was associated with efficacy in patients with NP, including VAP, validating the approach described here for dosage selection in REPROVE. The present work serves as a clinically successful example of designing dosing for clinical trialing of a new antibacterial agent in the “perfect storm” of NP, including VAP.

Acknowledgments Medical writing support was provided by Risha Bulusu, MBiochem, and Mark Waterlow, BSc, ISMPP CMPP of Prime, Knutsford, Cheshire, UK, funded by AstraZeneca and Pfizer. The opinions, conclusions, and interpretation of the data in this review are the responsibility of the authors.

References

1. Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, Cardo DM (2007) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep 122(2):160–166. https://doi.org/10.1177/003335490712200205
2. Bassetti M, Taramasso L, Giacobbe DR, Pelosi P (2012) Management of ventilator-associated pneumonia: epidemiology, diagnosis and antimicrobial therapy. Expert Rev Anti Infect Ther 10(5):585–596. https://doi.org/10.1586/eri.12.36

3. Kalil AC, Metersky ML, Klompas M, Medcalf EJ, Sweeney DA, Palmer LB, Napolitano LM, O’Grady NP, Bartlett JG, Carballa J, El Solh AA, Ewig S, Fey PD, File TM Jr, Restrepo MI, Roberts JA, Waterer GW, Crase P, Knight SL, Brozek JL (2016) Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 63(5):e61–e111. https://doi.org/10.1093/cid/ciw353

4. Charles MP, Kalil A, Easow JM, Joseph NM, Ravishankar M, Solh AA, Ewig S, File TM Jr, Restrepo MI, Roberts JA, Waterer GW, Crase P, Knight SL, Brozek JL (2016) Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 63(5):e61–e111. https://doi.org/10.1093/cid/ciw353

5. Bassetti M, Welte T, Wunderink RG (2016) Treatment of Gram-negative pneumonia in the critical care setting: is the beta-lactam antibiotic backbone broken beyond repair? Crit Care 20:19. https://doi.org/10.1186/s13054-016-1197-5

6. Sader H, Farrell DJ, Flamm RK, Jones RN (2014) Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalised with pneumonia in US and European hospitals: results from the SENTRY Antimicrobial Surveillance Program, 2009-2012. Int J Antimicrob Agents 43(4):328–334. https://doi.org/10.1016/j.ijantimicag.2014.01.007

7. Sader HS, Castanheira M, Arendt SJ, Goosens H, Flamm RK (2019) Geographical and temporal variation in the frequency and antimicrobial susceptibility of bacteria isolated from patients hospitalised with bacterial pneumonia: results from 20 years of the SENTRY Antimicrobial Surveillance Program (1997–2016). J Antimicrob Chemother. https://doi.org/10.1093/jac/dkz074

8. Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, Wilson LE, Kainer MA, Lyndfield R, Greissman S, Ray SM, Beldavs Z, Gross C, Bamborg W, Stevens M, Concannon C, Blyth N, Warre L, Maloney M, Ocampo V, Brooks J, Owyumi T, Sharrin S, Richards K, Rainbow J, Samper M, Hancock EB, Leaptrot D, Scalise E, Badrun F, Phelps R, Edwards JR, Emerging Infections Program Hospital Prevalence Survey Team (2018) Changes in prevalence of health care-associated infections in U.S. hospitals. N Engl J Med 379(18):1732–1744. https://doi.org/10.1056/NEJMoa1801550

9. Theuretzbacher U (2017) Global antimicrobial resistance in Gram-negative pathogens and clinical need. Curr Opin Microbiol 39:106–112. https://doi.org/10.1016/j.mib.2017.10.028

10. Ambrose P, Bhavnani S, Ellis-Grosse E, Drusano G (2010) Pharmacokinetic-pharmacodynamic considerations in the design of hospital-acquired or ventilator-associated bacterial pneumonia studies: look before you leap! Clin Infect Dis 51(Suppl 1):S103–S110. https://doi.org/10.1086/653057

11. Jones RN (2010) Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 51(Suppl 1):S81–S87. https://doi.org/10.1086/653057

12. Claus BO, Hoste EA, Colpaert K, Hoste EA, Colpaert K, Robays H, Decruyenaere J, De Waele JI (2013) Augmented renal clearance is a common finding with worse clinical outcome in critically ill patients receiving antimicrobial therapy. J Crit Care 28(5):695–700. https://doi.org/10.1016/j.jcrc.2013.03.003

13. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, Hope WW, Farkas A, Necely MN, Schentag JJ, Drusano G, Frey OR, Theuretzbacher U, Kuti JL, International Society of Anti-Infective Pharmacology and the Pharmacokinetics and Pharmacodynamics Study Group of the European Society of Clinical Microbiology and Infectious Diseases (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14(6):498–509. https://doi.org/10.1016/S1473-3099(14)70036-2

14. Tengden T, Ramos Martin V, Felton TW, Nielsen EI, Marchand S, Bruggemann RJ, Bulitta JB, Bassetti M, Theuretzbacher U, Tsuji BT, Wareham DW, Friberg LE, De Waele JI, Tam VH, Roberts JA (2017) The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections. Intensive Care Med 43(7):1021–1032. https://doi.org/10.1007/s00134-017-4780-6

15. Vincent JL, Bassetti M, Francois B, Karam G, Chastre J, Torres A, Roberts JA, Taccone FS, Rello J, Calandra T, De Backer D, Welte T, Antonelli M (2016) Advances in antibiotic therapy in the critically ill. Crit Care 20(1):133. https://doi.org/10.1186/s13054-016-1285-6

16. Silverman JA, Mortin LJ, Vanpraagh AD, Li T, Alder J (2005) Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J Infect Dis 191(12):2149–2152. https://doi.org/10.1086/403052

17. Rodvold KA, Nicolau DP, Lodise TP, Kshahab M, Noel GJ, Kahn JB, Gottfried M, Murray SA, Nicholson S, Laohavaleson S, Tessier PR, Drusano GL (2009) Identifying exposure targets for treatment of staphylococcal pneumonia with cefotibiprole. Antimicrob Agents Chemother 53(8):3294–3301. https://doi.org/10.1128/AAC.00144-09

18. Udy AA, Roberts JA, De Waele JI, Paterson DL, Lipman J (2012) What’s behind the failure of emerging antibiotics in the critically ill? Understanding the impact of altered pharmacokinetics and augmented renal clearance. Int J Antimicrob Agents 39(6):455–457. https://doi.org/10.1016/j.ijantimicag.2012.02.010

19. Lagacé-Wiens P, Walkey A, Karlowsky JA (2014) Ceftazidime-avibactam: an evidence-based review of its pharmacology and potential use in the treatment of Gram-negative bacterial infections. Core Evid 9:13–25. https://doi.org/10.2147/CE.S40698

20. de Jonge BL, Karlowsky JA, Kazmierczak KM, Biedenbach DJ, Sahm DF, Nichols WW (2016) In vitro susceptibility to ceftazidime-avibactam of carbapenem-nonsusceptible Enterobacteriaceae isolates collected during the INFORM global surveillance study (2012 to 2014). Antimicrob Agents Chemother 60(5):3163–3169. https://doi.org/10.1128/aac.03042-15

21. Sader H, Castanheira M, Mendes RE, Flamm RK, Farrell DJ, Jones RN (2015) Ceftazidime-avibactam activity against multidrug-resistant Pseudomonas aeruginosa isolated in U.S. medical centers in 2012 and 2013. Antimicrob Agents Chemother 59(6):3656–3659. https://doi.org/10.1128/aac.05024-14

22. Nichols WW, de Jonge BL, Kazmierczak KM, Karlowsky JA, Sahm DF (2016) In vitro susceptibility of global surveillance isolates of Pseudomonas aeruginosa to ceftazidime-avibactam (INFORM 2012 to 2014). Antimicrob Agents Chemother 60(8):4743–4749. https://doi.org/10.1128/AAC.00220-16

23. Vazquez JA, Gonzalez Patzan LD, Stricklin D, Duttaroy DD, Kreydly Z, Lipka J, Sable C (2012) Efficacy and safety of ceftazidime-avibactam versus imipenem-cilastatin in the treatment of complicated urinary tract infections, including acute pyelonephritis, in hospitalized adults: results of a prospective, investigator-blinded, randomized study. Curr Med Res Opin 28(12):1921–1931. https://doi.org/10.1185/03007995.2012.748653

24. Lucasti C, Popescu I, Ramesh MK, Lipka J, Sable C (2013) Comparative study of the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infections in hospitalized adults: results of a randomized, double-blind, Phase II trial. J Antimicrob Chemother 68(5):1183–1192. https://doi.org/10.1093/jac/dks523

25. Mazzusi JE, Gasink LB, Armstrong J, Broadhurst H, Stone GG, Rank D, Llorens L, Newell P, Pachl J (2016) Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, phase 3 program. Clin Infect Dis 62(11):1380–1389. https://doi.org/10.1093/cid/ciw133
26. Carmeli Y, Armstrong J, Laud PJ, Newell P, Stone G, Wardman A, Gasink LB (2016) Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and *Pseudomonas aeruginosa* complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis 16(6):661–673. https://doi.org/10.1016/S1473-3099(16)30004-4

27. Wagenlehner FM, Sobel JD, Newell P, Armstrong J, Huang X, Stone GG, Yates K, Gasink LB (2016) Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a phase 3 randomized trial program. Clin Infect Dis 63(6):754–762. doi.org/10.1093/cid/ciw378

28. Qin X, Tran BG, Kim MJ, Wang L, Nguyen DA, Chen Q, Song J, Laud PJ, Stone GG, Chow JW (2017) A randomised, double-blind, phase 3 study comparing the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem for complicated intra-abdominal infections in hospitalised adults in Asia. Int J Antimicrob Agents 49(5):579–588. https://doi.org/10.1016/j.ijantimicag.2017.01.010

29. Torres A, Zhong N, Pachl J, Timsit JF, Kollef M, Chen Z, Song J, Taylor D, Laud PJ, Stone GG, Chow JW (2018) Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis 18(3):285–295. https://doi.org/10.1016/S1473-3099(17)30747-8

30. Center for Drug Evaluation and Research. (2015) Application number: 206494Orig1s000. Ceftazidime-avibactam. Clinical Pharmacology and Biopharmaceutics Review(s), 2015. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/206494Orig1s000clnlpharmrr.pdf

31. European Medicines Agency (2016) Committee for Medicinal Products for Human Use (CHMP). Zavicafexa assessment report. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/004027/WC500210236.pdf

32. Li J, Lovern M, Green ML, Chiu J, Zhou D, Comisar C, Xiong Y, Hing J, MacPherson M, Wright JG, Riccobene T, pelanni F, Riccobene TA, Talley AK (2019) Randomized trial of ceftazidime-avibactam vs meropenem for treatment of hospital-acquired and ventilator-associated bacterial pneumonia (REPROVE): analyses per US FDA-specified end points. Open Forum Infect Dis 6(4):ozl149. https://doi.org/10.1093/ofid/ozl149

33. MacVane SH, Kuti JL, Nicolau DP (2014) Clinical pharmacodynamics of antipseudomonal cephalosporins in patients with different renal function. Paper presented at the American Association of Pharmaceutical Scientists (AAPS) Annual Meeting and Exposition, Orlando, FL, USA, October 25, 2015

34. Nichols WW, Stone GG, Newell P, Broadhurst H, Wardman A, MacPherson M, Yates K, Riccobene T, Critchley IA, Das S (2018) Ceftazidime-avibactam susceptibility breakpoints against Enterobacteriaceae and *Pseudomonas aeruginosa*. Antimicrob Agents Chemother 62:e02590–e02517. https://doi.org/10.1128/AAC.02590-17

35. Pfizer (2019) Summary of Product Characteristics: Zavicefta 2 g/0.5 g powder for concentrate for solution for infusion. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/004027/WC500210234.pdf

36. Allergan (2019) AVYCAZ (ceftazidime and avibactam) for injection, for intravenous use. https://www.allergan.com/assets/pdfs/avycaz_pi.

37. Torres A, Rank D, Melnick D, Rekeda L, Chen X, Riccobene T, Critchley JA, Lakkis HD, Taylor D, Talley AK (2019) Personalized antibiotic dosing for the critically ill. Intensive Care Med 45(5):715–718. https://doi.org/10.1007/s00134-019-05522-3

38. de Velde F, Mouton JW, de Winter BCM, van Gelder T, Koch BCP (2018) Clinical applications of population pharmacokinetic models of antibiotics: challenges and perspectives. Pharmacol Res 134: 280–288. https://doi.org/10.1016/j.phrs.2018.07.005

39. Onufriak NJ, Forrest A, Gonzalez D (2016) Pharmacokinetic and pharmacodynamic principles of anti-infective dosing. Clin Ther 38(9):1930–1947. https://doi.org/10.1016/j.clinthera.2016.06.015

40. Asin-Prieto E, Rodriguez-Gascon A, Isla A (2015) Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of anti-microbial agents. J Infect Chemother 21(5):319–329. https://doi.org/10.1016/j.jiac.2015.02.001

41. Andes D, Craig WA (2002) Animal model pharmacokinetics and pharmacodynamics: a critical review. Int J Antimicrob Agents 19(4):261–268. doi.org/10.102987857920020225

42. Wagenlehner FM, Sobel JD, Newell P, Armstrong J, Laud PJ, Stone GG, Chow JW (2017) A randomised, double-blind, phase 3 study comparing the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem for complicated intra-abdominal infections in hospitalised adults in Asia. Int J Antimicrob Agents 49(5):579–588. https://doi.org/10.1016/j.ijantimicag.2017.01.010

43. Torres A, Zhong N, Pachl J, Timsit JF, Kollef M, Chen Z, Song J, Taylor D, Laud PJ, Stone GG, Chow JW (2018) Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis 18(3):285–295. https://doi.org/10.1016/S1473-3099(17)30747-8

44. Center for Drug Evaluation and Research. (2015) Application number: 206494Orig1s000. Ceftazidime-avibactam. Clinical Pharmacology and Biopharmaceutics Review(s), 2015. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/206494Orig1s000clnlpharmrr.pdf

45. European Medicines Agency (2016) Committee for Medicinal Products for Human Use (CHMP). Zavicafexa assessment report. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/004027/WC500210236.pdf

46. Li J, Lovern M, Green ML, Chiu J, Zhou D, Comisar C, Xiong Y, Hing J, MacPherson M, Wright JG, Riccobene T, Carrothers TJ, Das S (2019) Ceftazidime-avibactam population pharmacokinetic modeling and pharmacodynamic target attainment across adult indications and patient subgroups. Clin Transl Sci 12(2):151–163. https://doi.org/10.1111/cts.12858

47. Nichols WW, Newell P, Critchley IA, Riccobene T, Das S (2018) Avibactam pharmacokinetic/pharmacodynamic targets. Antimicrob Agents Chemother 62(6):e02446-e02417. https://doi.org/10.1128/AAC.02446-17

48. Li J, Zhou D, Nichols WW, Das S (2012) Evaluation of ceftazidime-avibactam (CAZ-AVI) dose regimens for phase III study in patients with different renal function. Paper presented at the 52nd Interscience Conference of Antimicrobial Agents and Chemotherapy (ICACC), San Francisco, CA, USA.

49. Li J, Zhou D, Das S, Lovern MR, Wada R, Bellanti F, Riccobene TA, Carrothers TJ, Al-Huniti N (2015) PK/PD target attainment analyses and assessment of dose adjustments for renal insufficiency for ceftazidime-avibactam (CAZ-AVI) in patients with complicated intra-abdominal infection (cIAI), complicated urinary tract infection (cUTI) or nosocomial pneumonia (NP). Paper presented at the American Association of Pharmaceutical Scientists (AAPS) Annual Meeting and Exposition, Orlando, FL, USA, October 25, 2015

50. Nichols WW, Stone GG, Newell P, Broadhurst H, Wardman A, MacPherson M, Yates K, Riccobene T, Critchley IA, Das S (2018) Ceftazidime-avibactam susceptibility breakpoints against Enterobacteriaceae and *Pseudomonas aeruginosa*. Antimicrob Agents Chemother 62:e02590–e02517. https://doi.org/10.1128/AAC.02590-17

51. Pfizer (2019) Summary of Product Characteristics: Zavicefta 2 g/0.5 g powder for concentrate for solution for infusion. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/004027/WC500210234.pdf

52. Allergan (2019) AVYCAZ (ceftazidime and avibactam) for injection, for intravenous use. https://www.allergan.com/assets/pdfs/avycaz_pi.
Pharmacodynamics of ceftazidime and avibactam in neutropenic mice with thigh or lung infection. Antimicrob Agents Chemother 60(1):368–375. https://doi.org/10.1128/AAC.01269-15

53. Kien S, Schentag JI (2008) Interpretation of antibiotic concentration ratios measured in epithelial lining fluid. Antimicrobial Agents Chemother 52(1):24–36. https://doi.org/10.1128/aac.00133-06

54. Mouton J, Brown DF, Apfalter P, Canton R, Giske CG, Ivanova M, MacGowan AP, Rodloff A, Sader HS, Schentag JJ (2013) The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clin Microbiol Infect 18(3):E37–E45. https://doi.org/10.1111/j.1469-0691.2011.03752.x

55. Berkhout J, Melchers MJ, van Mil AC, Seydoumousavi S, Lagaarde CM, Nichols WW, Mouton JW (2015) Pharmacokinetics and penetration of ceftazidime and avibactam into epithelial lining fluid in thigh- and lung-infected mice. Antimicrobial Agents Chemother 59(4):2299–2304. https://doi.org/10.1128/AAC.04627-14

56. Nicolau D, Siew L, Armstrong J, Li J, Edeki T, Learoyd M, Das S (2015) Phase 1 study assessing the steady-state concentration of ceftazidime and avibactam in plasma and epithelial lining fluid following two dosing regimens. J Antimicrob Chemother 70(10):2862–2869. https://doi.org/10.1093/jac/dkv170

57. Flamm R, Nichols WW, Sader HS, Farrell DJ, Jones RN (2016) In vitro activity of ceftazidime/avibactam against Gram-negative pathogens isolated from pneumonia in hospitalised patients, including ventilated patients. Int J Antimicrobial Agents 47(3):235–242. https://doi.org/10.1016/j.ijantimicag.2016.01.004

58. Levasseur P, Girard A-M, Claudon M, Goossens H, Bassetti M, Coleman K, Miossec C (2012) In vitro antibacterial activity of the ceftazidime-avibactam (NXL104) combination against Pseudomonas aeruginosa clinical isolates. Antimicrobial Agents Chemother 56(3):1606–1608. https://doi.org/10.1128/AAC.00644-11

59. Wang X, Zhang F, Zhao C, Wang Z, Nichols WW, Testa R, Li H, Chen H, He W, Wang Q (2014) In vitro activities of ceftazidime-avibactam and aztreonam-avibactam against 372 Gram-negative bacilli collected in 2011 and 2012 from 11 teaching hospitals in China. Antimicrob Agents Chemother 58:1774–1778. https://doi.org/10.1128/AAC.02123-13

60. Walkty A, DeCorby M, Lagace-Wiens P, Karlowsky J, Hoban D, Zhanel G (2011) In vitro activity of ceftazidime combined with NXL104 versus Pseudomonas aeruginosa isolates obtained from patients in Canadian hospitals (CANWARD 2009 study). Antimicrobial Agents Chemother 55(6):2992–2994. https://doi.org/10.1128/AAC.01606-10

61. Flamm RK, Stone GG, Sader HS, Jones RN, Nichols WW (2014) Avibactam reverts the ceftazidime MIC of Pseudomonas aeruginosa from >256 mg/L to ≤8 mg/L. J Antimicrob Agents Chemother 69(2):527–531. https://doi.org/10.1128/JAC.00577-13

62. Huband MD, Castanheira M, Flamm RK, Farrell DJ, Jones RN, Sader HS (2016) In vitro activity of ceftazidime-avibactam against contemporary Pseudomonas aeruginosa isolates from U.S. medical centers by census region, 2014. Antimicrob Agents Chemother 60(4):2537–2541. https://doi.org/10.1128/aac.03056-15

63. Dallow J, Otterson LG, Huband MD, Krause KM, Nichols WW (2014) Microbiological interaction studies between ceftazidime-avibactam and pulmonary surfactant and between ceftazidime-avibactam and antibacterial agents of other classes. Int J Antimicrob Agents 44(6):552–556. https://doi.org/10.1016/j.ijantimicag.2014.07.023

64. Li J, Knebel W, Riggs M, Zhou D, Nichols WW, Das S (2012) Population pharmacokinetic modelling of ceftazidime (CAZ) and avibactam (AVI) in healthy volunteers and patients with complicated intra-abdominal infection (cIAI). Paper presented at the 52nd Interscience Conference of Antimicrobial Agents and Chemistry (ICAAC), San Francisco, CA, USA, 2012

65. Carrothers TJ, Green M, Chiu J, Riccobene T, Lovem M (2014) Population pharmacokinetic modeling of combination treatment of intravenous ceftazidime and avibactam. Paper presented at the 5th American Conference on Pharmacometrics, Las Vegas, NV, USA, 2014

66. Li J, Zhou D, Das S, Lovem M, Green M, Chiu J, Riccobene T, Carrothers T, Al-Hunti N (2015) Population PK modeling for ceftazidime-avibactam (CAZ-AVI) in patients with complicated intra-abdominal infection (cIAI) and complicated urinary tract infection (cUTI). Paper presented at the American Association of Pharmaceutical Scientists Annual Meeting and Exposition, Orlando, FL, USA, October 25–29, 2015

67. Das S, Wright JG, Riccobene T, MacPherson M, Carrothers TJ, Lovem M (2016) Comparison of ceftazidime-avibactam (CAZ-AVI) exposure and PK/PD target attainment (TA) across patient subgroups. Paper presented at the American Society for Microbiology (ASM) Microbes, Boston, MA, USA, 16–20 June 2016

68. Das S, Li J, Riccobene T, Carrothers TJ, Newell P, Melnick D, Critchley IA, Stone GG, Nichols WW (2019) Dose selection and validation for ceftazidime-avibactam in adults with complicated intra-abdominal infections, complicated urinary tract infections, and nosocomial pneumonia. Antimicrobial Agents Chemother 63(4). https://doi.org/10.1128/AAC.02187-18

69. GlaxoSmithKline (2010) Summary of product characteristics: ceftazidime 1 g, 2 g, 3 g powder for solution for injection or infusion. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Fortum_30/WC000098366.pdf

70. Li J, Nichols WW, Zhou D, Das S (2015) Population pharmacokinetic modeling of ceftazidime and avibactam and probability of target attainment to support the dosing regimen in patients with nosocomial pneumonia including ventilator-associated pneumonia. Paper presented at the 25th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Copenhagen, Denmark, 2015

71. Bressolle F, de la Coussaye JE, Ayoub R, Fabre D, Gomem R, Saissi G, Eledjam JJ, Galter M (1992) Endotracheal and aerosol administrations of ceftazidime in patients with nosocomial pneumonia: pharmacokinetics and absolute bioavailability. Antimicrobial Agents Chemother 36(7):1404–1411. https://doi.org/10.1128/AAC.36.7.1404

72. Hanes SD, Wood GC, Herring V, Croce MA, Fabian TC, Pritchard E, Boucher BA (2000) Intermittent and continuous ceftazidime infusion for critically ill trauma patients. Am J Surg 179(6):436–440. https://doi.org/10.1016/S0002-9610(00)00388-3

73. Mendjhan H, Tarral A, Das S, Li J (2017) Phase 1 study assessing the pharmacokinetic profile and safety of avibactam in patients with renal impairment. J Clin Pharmacol 57(2):211–218. https://doi.org/10.1002/jcph.793

74. Corey GR, Wilcox M, Talbot GH, Friedland HD, Baculik T, Witherell GW, Critchley I, Das AF, Thye D (2010) Integrated analysis of CANVAS 1 and 2: phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of cefaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection. Clin Infect Dis 51(6):641–650. https://doi.org/10.1086/655827

75. Dimelow R, Wright JG, MacPherson M, Newell P, Das S (2018) Population pharmacokinetic modelling of ceftazidime and avibactam in the plasma and epithelial lining fluid of healthy volunteers. Drugs R D 18(3):221–230. https://doi.org/10.1007/s40268-018-0241-0

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.