Application of SNP in Genetic Sex Identification and Effect of Estradiol on Gene Expression of Sex-Related Genes in *Strongylocentrotus intermedius*

Ya-Lun Han, Zhi-Hui Sun*, Shuai Chang, Bin Wen, Jian Song, Ran-Tao Zuo and Ya-Qing Chang*

Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China

Sea urchin (*Strongylocentrotus intermedius*) is an economically important mariculture species in Asia, and its gonads are the only edible part. The efficiency of genetic breeding in sea urchins is hampered due to the inability to distinguish gender by appearance. In this study, we first identified a sex-associated single nucleotide polymorphism (SNP) by combining type IIB endonuclease restriction site-associated DNA sequencing (2b-RAD-seq) and genome survey. Importantly, this SNP is located within *spata4*, a gene specifically expressed in male. Knocking down of *spata4* by RNA interference (RNAi) in male individuals led to the downregulation of other conserved testis differentiation-related genes and germ cell marker genes. We also revealed that sex ratio in this validated culture population of *S. intermedius* is not 1:1. Moreover, after a 58-day feeding experiment with estradiol, the expression levels of several conserved genes that are related to testis differentiation, ovary differentiation, and estrogen metabolism were dynamically changed.

Taken together, our results will contribute toward improving breeding efficiency, developing sex-controlled breeding, and providing a solid base for understanding sex determination mechanisms in sea urchins.

Keywords: SNP, sea urchin, estradiol, 2b-RAD, sex identification

INTRODUCTION

Sea urchin (*Strongylocentrotus intermedius*) belongs to Echinodermata and is an important commercial species mainly distributed in several Asian countries, such as China, Korea, and Japan (1). It is well known that gonads of sea urchins are rich in unsaturated fatty acids and are the only edible parts for people (2). It has been reported that gender is one of the strongest influencing factors on the commercial value of sea urchin; for example, increasing rates of body size and gonadal growth in male sea urchins have advantages than females (3). In addition, the immunocompetence of female *Paracentrotus lividus* urchins might be superior to that of males (4), and the contents of free amino acids and lipid concentrations are different based on gender. As previously described, the
gonads of sea urchins are classified into four stages, namely, intergametogenesis and nutritive phagocytosis (NP) phagocytosis (stage 1), pregametogenesis and NP renewal (stage 2), gametogenesis and NP utilization (stage 3), and the end of gametogenesis, NP exhaustion, and spawning (stage 4) (5). Recently, three female-specific markers were identified and could be used to identify the genetic sex of Mesocentrotus nudus (6). In addition, the number of genes and micro-RNAs associated with sex determination and sex differentiation have been identified by RNA sequencing (7, 8). However, no literature about sex control was reported, and a large part about sex determination and sex differentiation in sea urchin is still unknown.

With the development of next-generation sequencing (NGS) technologies, restriction site-associated DNA sequencing (RAD-seq) was developed to identify sex-specific markers and discover the mechanisms of sex determination in various species (9–11). In M. arnavatus, two male-specific DNA fragments and two single nucleotide polymorphisms (SNPs) were identified by RAD-seq, and the Tcl gene was regarded as a candidate sex determination gene (12). In crab species, sex-specific SNPs were identified via RAD-seq, and a WZ/ZZ sex determination system was suggested based on male homogamy and female heterogamy in those sex-specific SNP loci (13). Sea cucumber (Apostichopus japonicus) also belongs to Echinodermata, a male-specific DNA fragment was verified, and a rapid genetic identifying method was developed by sex-specific primer design coupled with PCR amplification (14). Therefore, sex-specific molecular markers obtained by RAD-seq will be helpful in revealing the genetic basis of sex determination and improving breeding efficiency because genetic sex could be identified at early developmental stages.

Vertebrate steroid hormones play important roles in regulating sex differentiation and maintaining secondary sexual characteristics, especially sex steroid hormones including estradiol-17β (E2), testosterone, and progesterone (15, 16). In several aquatic vertebrates, the hormonal-induced sex reversal technique had been widely used to achieve monosex culture; thus, the quality, output, and economic value had been dramatically increased (17, 18). For example, XY physiological female yellow catfish was obtained by E2 treatment, then YY super-males will be obtained by gynogenesis of XY physiological female fish, and finally all-male yellow catfish will be obtained by crossing YY super-males with normal XX males (19). What is more, the YY super-males, XY males, and XX females can be identified by Y chromosome-linked and X chromosome-linked markers (20). It has been reported that vertebrate-type steroids can be measured in some invertebrates, such as Portunus trituberculatus (27) and Saccostrea glomerata (28). In sea urchins, treatment with estradiol dipropionate will change the rate of protein synthesis in oocytes, increase gonad development, accelerate vitellogenesis, and induce maturation of the germ cells (29). Besides, feeding E2 will increase the rate of ovarian growth but inhibited oocyte growth in Lytechinus variegatus (30). However, it is still a mystery whether vertebrate-type steroids can be measured in S. intermedius and whether they have potential effects on gonadal development and gene expression patterns related to sex differentiation.

Spermatogenesis associated 4 gene (spata4) was first identified in human testes and involved in cryptorchidism development (31). Subsequently, the spata4 gene had been cloned from diverse organisms. In Mammalia, SPATA4 is specifically expressed in the testis and may play a significant role in maintaining spermatogenesis ability during adolescence (31, 32). In chicken, the spata4 gene is also specifically expressed in the testis, and along with development progress of the testis, its expression level is gradually upregulated (33). In zebrafish and rainbow trout (Oncorhynchus mykiss), the spata4 gene is expressed specifically in the testis and slightly in the ovary (34, 35). Moreover, the potential function of spata4 had been investigated by in vitro cell experiment, and it was revealed that regulatory factor X1 (RFX1) could bind the spata4 promoter, regulating its transcriptional activity and endogenous expression, and further regulate the proliferation of Sertoli cells (36). To date, no literature about spata4 was reported in sea urchin.

In the present study, 2b-RAD-seq technology was employed to identify sex-specific tags and SNP loci of sea urchin (S. intermedius). Subsequently, we investigated the 2b-RAD markers by PCR in 100 individuals, and a sex-related SNP locus had been identified. Based on the annotation of the sex-related SNP, a male specifically expressed gene spata4 had been characterized. Then, the function implication of spata4 in testis development had been investigated by means of RNAi. Furthermore, we measured vertebrate-type steroids in S. intermedius and detected the effect of dietary administration of estradiol on testis development and sex-related gene expression in male individuals. Besides the practical implications for improving breeding efficiency, these findings also provide a molecular basis for understanding sex determination mechanisms in sea urchin.

MATERIALS AND METHODS

Sample Preparation and Phenotypic Sex Identification

Twenty sea urchin individuals (10 males and 10 females), randomly collected from the Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, were used to identify the potential sex-specific markers by 2b-RAD-seq. In addition, 100 aquaculture individuals of S. intermedius were purchased.
from markets in Dalian Haibao Fishery Limited Company and used to confirm the sex-specific markers. The tube feet tissues of each sea urchin were removed and stored in absolute ethanol at −20°C for genomic DNA extraction. Genomic DNA was extracted using the protocols of a marine animal tissue genomic DNA extraction kit (Tiangen, DP324).

To determine the phenotypic sex of individuals, the corresponding gonadal tissues were removed and fixed in 4% paraformaldehyde (PFA) at 4°C overnight, and then the gonadal tissues were washed three times with phosphate buffered solution (PBS) at room temperature. Subsequently, the gonadal tissues were embedded in optimal cutting temperature (O.C.T) compound and frozen sections (5 µm) were cut. After stained with hematoxylin/eosin, the gonadal structure was observed in Leica DM4B microscope to determine the phenotypic sex of each sea urchin.

Library Construction and 2b-RAD Sequencing

The 2b-RAD libraries were constructed at Qingdao OE Biotech Co., Ltd. (Qingdao, China) according to a previously report (37). In brief, 1 U BsaXI restriction enzyme was used to digest 200 ng genomic DNA from each individual (10 females and 10 males). The digestion products were ligated to adapter 1 and adapter 2. Then, a set of four primers that introduce individual specific barcodes and sequencing primers was used to amplify the ligation products by PCR. The PCR products were separated in 8% polyacrylamide gels by electrophoresis. After purification, each product was digested with SapI restriction enzyme and purified using streptavidin-coated magnetic beads, and 200 U T4 DNA ligase was added to the supernatant. After purification of the ligation products, barcodes were introduced by PCR with using a MinElute PCR Purification Kit and pooled for sequencing on the Illumina NovaSeq platform (Illumina Inc., USA) and 150 bp paired-end reads were generated. The above 150-bp paired-end reads were clustered to build reference sequences for further locus genotyping using ustacks software version 1.34 (39). To identify candidate sex-specific markers, high-quality reads were aligned to the genome reference using SOAP2 (version 2.21) with the following parameters: \(r = 0, M = 4, v = 2\) (40). SNP loci were developed by RAD typing program with default parameter. Finally, candidate sex-specific markers for each individual were generated for further analyses.

Validation of Sex-Specific Markers

PCR amplification was used to validate each candidate sex-specific tag and SNP locus. Firstly, specific primers of candidate sex-specific markers were designed using online software (http://biotools.nubic.northwestern.edu/OligoCalc.html) according to the flank sequences (Supplementary Table S1). Then, the PCR reactions were carried out with a total volume of 20 µl, containing 50 ng template DNA, 10 µl of 2× Taq buffer (Kang Wei, China), and 0.5 µl of each primer (10 µM), and sterile water was added to the final volume. The PCR programs were as follows: predenaturation at 94°C for 2 min, then 30 cycles of 94°C for 30 s, annealing temperature of primer pair for 30 s, followed by 72°C for 60 s, and a final extension of 10 min at 72°C. The PCR products were separated via 1% agarose gel electrophoresis, and the expected PCR fragments were directly sequenced in both directions by Tsingke Biotechnology (Tianjin, China).

RNA Extraction, Rapid Amplification of cDNA End, and Real-Time Quantitative PCR

Total RNA was extracted from different tissues, including the ovary, testis, tube feet, and intestines, using the SV Total RNA Isolation System (Promega Z3100). Total RNA (1 µg) of the testis was used to establish a cDNA library using the SMARTer Rapid Amplification of cDNA End (RACE) cDNA Amplification Kit (Clontech 634923) according to the recommendations and protocols of the manufacturer. Meanwhile, the first-strand cDNAs of each sample were synthesized according to the protocols of RevertAid First Strand cDNA Synthesis Kit (Fermentas). Real-time quantitative PCR (RT-qPCR) was performed on the LightCycler™ 96 Instrument (Roche) according to a previous description (41), and 18S ribosomal RNA (18S rRNA) was used as the internal control. The relative expression of the target genes was calculated with the 2\(^{-ΔΔCt}\) method. For statistical analysis, one-way ANOVA was calculated with SPSS software and a probability (\(p\)) of <0.05 was considered statistically significant. All primers used were designed by online software http://biotools.nubic.northwestern.edu/OligoCalc.html (Supplementary Table S1).

RNA Interference

The gene-specific dsRNA of spata4 was designed by https://www.dkfz.de/signaling/e-rna3/ and synthesized by the T7 RiboMAX™ Express RNAi System (Promega) according to the
protocol. Firstly, the genetic sex of sea urchins was identified by PCR reaction and Sanger sequencing depended on the sex-specific SNP marker. Then, a total of nine male *S. intermedius* with a mean shell diameter of 52.5 ± 2.10 mm was selected to inject dsRNA. Meanwhile, the testis development of selected *S. intermedius* was during gametogenesis and NP utilization (stage 3), and this is a critical stage in spermatogenesis. Before injection, three sea urchins were randomly removed and their gonads were surgically sampled as control samples. Then, *spatada*-specific dsRNA was heated to 95°C for 3min and cooled to room temperature (25–30°C). Subsequently, sea urchin was injected with 100 µl PBS containing 100 µg dsRNA according to a previous report (5). On day 3 after the first injection, three sea urchins were randomly removed and their gonads were surgically sampled. Then, a second injection was performed on the remaining sea urchins. On day 7 after the first injection, the gonadal tissues of remaining three sea urchins were surgically sampled. Histological examination of the gonads was carried out according to the method above. RT-qPCR was performed to investigate the knockdown effect and the dynamic expression change of other conserved sex-related genes.

Enzyme-Linked Immunosorbent Assay and Dietary Administration of Estradiol

Strongylocentrotus intermedius used for this experiment were purchased from markets in Dalian Haibao Fishery Limited Company, and after being acclimatized to laboratory conditions for 2 weeks, E2 concentration in the gonadal tissues was detected via a commercial enzyme-linked immunosorbent assay (ELISA) kit (Fish estradiol ELISA kit, Mibio) according to the protocol of the manufacturer. A total of 54 sea urchins individuals with a mean diameter of 31.3 ± 0.43 mm were randomly divided into three groups and cultured in separate seawater tanks at 15°C–17°C. In addition, we made little plastic frames and put them in the seawater tanks, and each sea urchin was cultured and fed on the little plastic frame independently. Among the three groups, two experimental groups had diets with different estradiol contents, one group was fed with food mixed with 50 mg/kg E2 and another group was fed with food mixed with 100 mg/kg E2, while the control group was fed without E2. E2 was purchased from Sigma-Aldrich (E8875-250). Feeding experiments lasted 58 days, and sea urchins were fed with dietary supplementation of E2 every day. On days 3, the excrement of sea urchins was collected to detect E2 level. In addition, on days 15, 30, and 58, six individuals were randomly removed from each group, and their gonads were sampled to analyze the E2 level and histological examination.

Transcriptome Sequencing, Assembly, Annotation, and Discovery of Differentially Expressed Unigenes

On day 58 after the feeding experiments, 12 gonadal samples from the control group and those fed with 100 mg/kg E2 were selected for RNA extraction and transcriptome sequencing. For transcriptome sequencing, every three gonadal samples from the same group were mixed as one sequencing sample and each group had two sequencing samples. The transcriptome sequencing was performed on the Illumina sequencing platform (HiSeqTM 2500 or Illumina HiSeq X Ten) by Qingdao OE Biotech Co., Ltd. (Qingdao, China) according to a previous report (42). The clean reads were obtained after being trimmed off of reads with ploy-N and of low quality. To assemble the clean reads, *de novo* assemblies were carried out with Trinity (version: trinityrnaseq_r20131110) software. Subsequently, the assembled unigenes were used to perform the BLAST program on the databases of NCBI RefSeq (NR), Swiss-Prot, and KOG protein databases. In order to identify the differentially expressed genes (DEGs), FPKM and read count value of each annotation unigene was calculated using bowtie2 and eXpress, and DEGs were identified using the DESeq functions estimateSizeFactors and nbinomTest with the following parameters: *p* < 0.05 and fold change >2 or fold change <0.5. Then, DEGs were assigned to different Gene Ontology (GO) terms using the Blast2GO software. Meanwhile, DEGs were blasted against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database by using the automated assignment server (KAAS, http://www.genome.jp/kaas-bin/kaas_main) to identify the biological pathways of these unigenes.

Multiple Sequence Alignment and Phylogenetic Analyses

The amino-acid sequence was predicted by using the DNAMAN software. Multiple sequence alignment was performed using ClustalW. The phylogenetic trees were constructed using the neighbor-joining method in MEGA version 7.0, with 1,000 replicates of bootstrap analysis. The sequences used in this study were downloaded from the NCBI database (Supplementary Table S2).

RESULTS

2b-RAD-Seq Data Analysis

In total, the 2b-RAD-seq produced 140,265,655 raw reads (GenBank: PRJNA761225), and we obtained 131,644,844 clean reads after filtering low-quality reads. In order to cluster and assemble these clean reads, two female and two male samples were selected as references based on read quality and quantity. Following alignment with reference samples, we obtained 979,411 putative tags with an average depth of 33.75× from all 10 female and 10 male samples (Table 1). In addition, 43,922 putative SNP loci were screened by alignment analysis.

Genome Survey and Validation of Candidate Sex-Specific Tags and SNPs

A total of 102.37G clean reads with a GC content of 37.16% and 99.94G clean reads with a GC content of 36.75% were acquired from the female and male samples, respectively (GenBank: PRJNA762987). The corresponding draft genomes were then assembled for both female and male. In order to identify sex-
Among the 51 candidate sex-specific tags identified initially, six were too short to be analyzed and were thus excluded. These were female-tag 2, female-tag 5, male-tag 6, male-tag 12, male-tag 13, and male-tag 16. To confirm the authenticity of the remaining 45 tags, we designed primers based on the flanking sequences of these tags and performed PCR verification in 10 female and 10 male sea urchins. Unfortunately, we obtained the same PCR products from all 45 tags in both male and female sea urchins. Sanger sequencing analysis of the PCR products in 100 sea urchins confirmed one candidate sex-specific SNP locus in all samples we analyzed (Supplementary Table S4, Additional Fasta File 2), indicating that S. intermedius may have a ZW/ZZ sex determination system.

Specific tag candidates, the 2b-RAD tags of each sample were aligned with both the female and male genome survey. We obtained 38 male-specific candidates that present exclusively in 10 male samples and 13 female-specific tags that only exist in 10 female samples (Supplementary Table S3, Additional Fasta File 1). Since a smaller p-value of SNP means a higher correlation with sex, the top 10 sex-specific SNP loci were screened with the lowest p-values for further analysis. Notably, the females appeared to be heterozygous, whereas the males seemed to be homozygous for all 10 sex-specific SNP loci candidates in all samples we analyzed (Supplementary Table S4, Additional Fasta File 2), indicating that S. intermedius may have an ZW/ZZ sex determination system.

The sex-associated SNP locus is located on scaffold ref128486. Ref128486 is 6,149 bp in length. To search for homologous genes on the scaffold, we performed a BLAST program on NCBI databases. Interestingly, a spermatogenesis-associated (SPATA) family gene (spata4) was identified, and it has been reported that SPATA family genes play important roles in spermatogenesis, sperm maturation, and fertilization (43). The spata4 cDNA is used to assess the authenticity of the 10 candidate SNP loci. PCR reactions with the same primers in 100 sea urchins. Prior to PCR amplification, gonadal histology analyses were performed to determine the phenotypic sex of each sea urchin and 65 females and 35 males were identified (Supplementary Figure S1). Among all 65 phenotypic female individuals, 56 (86.15%) exhibited the G/ A heterozygous genotype (the dominant female genotype) and 9 (16.07%) exhibited the A/A homozygous genotype at the SNP locus. For the rest of the phenotypic male individuals, 33 (94.29%) exhibited the G/G homozygous genotype (the dominant male genotype) and 2 (5.71%) exhibited the G/A heterozygous genotype at the SNP locus (Table 2). Despite the fact that high consistency (89%) was obtained rapidly from the PCR amplification, the PCR products from 11 individuals (11%) were inconsistent with their phenotypic sex. Importantly, the segregation ratio of female to male was 65:35 (1.86:1) in this culture population. The above data indicate that sex reversal is possible in S. intermedius.

Genetic Sex Validation of Strongylocentrotus intermedius in Breeding Populations

To assess whether the above sex-specific SNP locus can be used to characterize the phenotypic sex of sea urchin, we ran PCR reactions with the same primers in 100 sea urchins. Prior to PCR amplification, gonadal histology analyses were performed to determine the phenotypic sex of each sea urchin and 65 females and 35 males were identified (Supplementary Figure S1). Among all 65 phenotypic female individuals, 56 (86.15%) exhibited the G/A heterozygous genotype (the dominant female genotype) and 9 (16.07%) exhibited the A/A homozygous genotype at the SNP locus. For the rest of the phenotypic male individuals, 33 (94.29%) exhibited the G/G homozygous genotype (the dominant male genotype) and 2 (5.71%) exhibited the G/A heterozygous genotype at the SNP locus (Table 2). Despite the fact that high consistency (89%) was obtained rapidly from the PCR amplification, the PCR products from 11 individuals (11%) were inconsistent with their phenotypic sex. Importantly, the segregation ratio of female to male was 65:35 (1.86:1) in this culture population. The above data indicate that sex reversal is possible in S. intermedius.

Annotation of Sex-Associated SNP Sequence

The sex-associated SNP locus is located on scaffold ref128486. Ref128486 is 6,149 bp in length. To search for homologous genes on the scaffold, we performed a BLAST program on NCBI databases. Interestingly, a spermatogenesis-associated (SPATA) family gene (spata4) was identified, and it has been reported that SPATA family genes play important roles in spermatogenesis, sperm maturation, and fertilization (43). The spata4 cDNA is

TABLE 1 | Summary of 2b-RAD data obtained from 10 male and 10 female Strongylocentrotus intermedius.

Name	Gender	Raw Reads	Clean Reads	Tags	Sequencing Depth
F1	Female	5,983,929	5,623,039	48,632	29.58
F2	Female	5,983,929	5,629,286	48,844	29.01
F3	Female	5,983,929	5,638,825	47,767	28.75
F4	Female	5,983,929	5,620,946	47,849	29.00
F5	Female	5,983,929	5,544,541	49,888	28.91
F6	Female	7,389,608	6,925,516	49,433	36.62
F7	Female	7,389,608	6,943,441	49,675	35.06
F8	Female	7,389,608	6,948,866	49,765	35.16
F9	Female	7,389,608	6,944,041	49,016	35.06
F10	Female	7,389,608	6,801,838	49,235	35.21
M1	Male	8,065,553	7,626,951	49,378	40.47
M2	Male	8,065,553	7,692,999	50,167	37.96
M3	Male	8,065,553	7,646,038	49,089	38.86
M4	Male	8,065,553	7,648,063	49,250	38.44
M5	Male	8,065,553	7,553,171	49,824	38.55
M6	Male	6,614,041	6,182,752	48,796	32.89
M7	Male	6,614,041	6,189,270	49,302	32.11
M8	Male	6,614,041	6,206,661	47,963	31.40
M9	Male	6,614,041	6,192,075	48,335	31.45
M10	Male	6,614,041	6,116,705	49,193	31.37

Average / 7,013,282.75 / 6,582,242.2 / 48,970.55 / 33.753

Total / 140,265,655 / 131,644,844 / 979,411 / 675.06
Knockdown of spata4 by RNAi in Strongylocentrotus intermedius

Considering that spata4 is expressed predominantly in the testis (Figure 3), we further explored its function in spermatogenesis by RNAi, a strategy that has been successfully utilized to study sex-related gene function in sea urchin (3). The genetic sex of nine sea urchins were first identified by PCR amplification and the corresponding products were sequenced. Gonadal tissues from three male sea urchins were removed and sampled as a control group before injection. The specific spata4-targeting double-stranded RNA (dsRNA) was then injected into adult S. intermedius. At 3 and 7 days post injection (dpi), gonadal samples were collected to perform histological analysis and to detect the spata4 mRNA expression with RT-qPCR. We observed that, compared with the control groups, the expression levels of spata4 in the testis were significantly decreased (about 60%) in knockdown samples (Figure 4A). Moreover, the results of histological examination showed that no obvious apoptotic cells were observed in the dsRNA-treated sea urchins (Supplementary Figure S3).

We also measured the expression levels of other well-studied genes involved in testis differentiation, ovary differentiation, and germ cell development. As shown in Figure 4A, the expression of dmrt1 and soxE in the testis differentiation signaling pathway significantly decreased in spata4-knockdown samples compared with the control groups at 3 and 7 dpi. Interestingly, the transcripts of foxl2 and hsd17b8 were similarly suppressed significantly in spata4-knockdown samples at 3 dpi, but the hsd17b8 expression increased about 2.74-fold in the knockdown samples at 7 dpi (Figure 4B). In addition, the germ cell marker genes, including boule and nanos1 expression, were also significantly decreased after injection in knockdown samples (Figure 4C).

Dietary Administration of Estradiol in Male Strongylocentrotus intermedius

Invertebrates show a high degree of variability in sex, and phenotypic sex may be affected by environmental factors, such as sex hormone, temperature, and stocking density (44). Because the genetic sex of 11 individuals identified by PCR amplification was inconsistent with their phenotypic sex and the sex ratio of females to males was not 1:1, we speculated that sex reversal is possible in S. intermedius. To test this hypothesis, we first determined the level of E2 in the gonads of S. intermedius by ELISA and found that the concentration of E2 was 17.4 and 13.75 pmol/L in the ovary and testis, respectively. We then characterized male sea urchins with the above SNP by RNAi, a strategy that has been successfully utilized to study sex-related gene function in sea urchin (3). The genetic sex of nine sea urchins were first identified by PCR amplification and the corresponding products were sequenced. Gonadal tissues from three male sea urchins were removed and sampled as a control group before injection. The specific spata4-targeting double-stranded RNA (dsRNA) was then injected into adult S. intermedius. At 3 and 7 days post injection (dpi), gonadal samples were collected to perform histological analysis and to detect the spata4 mRNA expression with RT-qPCR. We observed that, compared with the control groups, the expression levels of spata4 in the testis were significantly decreased (about 60%) in knockdown samples (Figure 4A). Moreover, the results of histological examination showed that no obvious apoptotic cells were observed in the dsRNA-treated sea urchins (Supplementary Figure S3).

We also measured the expression levels of other well-studied genes involved in testis differentiation, ovary differentiation, and germ cell development. As shown in Figure 4A, the expression of dmrt1 and soxE in the testis differentiation signaling pathway significantly decreased in spata4-knockdown samples compared with the control groups at 3 and 7 dpi. Interestingly, the transcripts of foxl2 and hsd17b8 were similarly suppressed significantly in spata4-knockdown samples at 3 dpi, but the hsd17b8 expression increased about 2.74-fold in the knockdown samples at 7 dpi (Figure 4B). In addition, the germ cell marker genes, including boule and nanos1 expression, were also significantly decreased after injection in knockdown samples (Figure 4C).

Dietary Administration of Estradiol in Male Strongylocentrotus intermedius

Invertebrates show a high degree of variability in sex, and phenotypic sex may be affected by environmental factors, such as sex hormone, temperature, and stocking density (44). Because the genetic sex of 11 individuals identified by PCR amplification was inconsistent with their phenotypic sex and the sex ratio of females to males was not 1:1, we speculated that sex reversal is possible in S. intermedius. To test this hypothesis, we first determined the level of E2 in the gonads of S. intermedius by ELISA and found that the concentration of E2 was 17.4 and 13.75 pmol/L in the ovary and testis, respectively. We then characterized male sea urchins with the above SNP and feed them with formulated diet supplemented with 50 or 100 mg/kg E2 (defined as group 1 and group 2, respectively) for 58 days. At 3 days post feeding (dpf), the excrement was collected to detect E2 level. As shown in Figure 5A, the E2 concentration increased along with the dietary supplementation of E2. Gonadal tissues were also collected at 15, 30, and 58 dpf to examine the concentration of E2. As shown in Figure 5B, the E2 concentrations from sea urchins fed

TABLE 2 | SNP genotype and phenotypic sex of the Strongylocentrotus intermedius.

SNP genotype	Phenotypic male	Phenotypic female
G/A	2	56
G/G	33	0
A/A	0	9
with E2 were comparable with those of the control group during a period of 15 days. On day 30, the concentrations of E2 in group 2 were 1.16 times higher than those of the control group. On day 58, the E2 concentrations from group 1 and group 2 were 1.20- and 1.20-fold against the control group, respectively (Figure 5B). These data suggested that *S. intermedius* can absorb estradiol from food and accumulate in the gonads.

FIGURE 3 | Expression pattern of spata4 mRNA in *S. intermedius*. 18S was used as the control. Each bar represents mean ± standard deviation (SD) (*n* = 3). One-way ANOVA was used to determine statistical analysis. Asterisks (*) indicate significant differences (*p* ≤ 0.05).
Comparative Transcriptome Analysis of *Strongylocentrotus intermedius* Between E2 Treatment and Wild Type

To explore the dynamic expression changes of sex-related genes after E2 treatment, we performed comparative transcriptome analysis to investigate the expression characteristics and differentially expressed genes (DEGs) in the control group and in the 100-mg/kg E2-treated sea urchins (i.e., group 2). In total, 96.13M and 94.57M clean reads were acquired from group 2 and the control group libraries, respectively (GenBank: PRJNA761244). After assembly with *de novo* methods and functional annotation, 67,492 unigenes were identified. The expression levels of unigenes were then compared, and 2,355 DEGs with at least two-fold changes \((p < 0.05)\) were identified. Of these DEGs, 1,050 were downregulated and 1,305 were upregulated in the E2 treatment group. In order to categorize the transcripts according to putative function, GO assignment was performed on all DEGs. Not surprisingly, several upregulated genes were enriched significantly in GO terms that are related to estrogen metabolism, spermatogenesis, and oogenesis (Figure 6A). These include development of primary sexual characteristics (GO:0045137), sperm-egg recognition (GO:0035036), ER-nucleus signaling pathway (GO:0006984), and sexual reproduction (GO:0019953). By contrast, many downregulated genes were significantly enriched in terms of germ plasm (GO:0060293) and positive regulation of fibroblast apoptotic process (GO:2000271) (Figure 6B). Searching the downregulated unigenes in the KOG database showed significant enrichment of unigenes in pathways previously implicated in ovarian steroidogenesis (ko04913), drug metabolism (ko00982), and cytochrome P450 estrogen signaling pathway (ko04915). Besides, the pathway of oocyte meiosis (ko04114) was recognized as a significantly upregulated term. Together, these data suggested that E2 treatment leads to

FIGURE 4 | RT-qPCR measured the mRNA levels of *spata4* and other sex-related genes after RNAi. **(A)** The expression of testis differentiation genes, including *spata4*, *dmrt1*, and *soxE*. **(B)** The expression of ovary differentiation genes, including *foxl2* and *hsd17b8*. **(C)** The expression of germ cell marker genes, including *boule* and *nanos1*. 18S was used as the control. The gene expression in the control group was set to 1. Each bar represents mean ± standard deviation (SD) from three individuals. Independent-sample t-test was used to perform statistical analysis. Asterisks (*) indicate significant differences \((p \leq 0.05)\) between knockdown and control.
FIGURE 5 | The concentration of estradiol levels in *S. intermedius*. (A) Concentration of estradiol in excrement after 3 days of dietary supplementation of E2. (B) Concentration of estradiol in testis on different days after dietary supplementation of E2 (*n* = 6). E2, estradiol; d, day. One-way ANOVA was used to determine statistical analysis. Different letters indicate significant differences (*p* ≤ 0.05).

FIGURE 6 | The significant Gene Ontology (GO) annotation of differentially expressed genes. (A) The GO cluster of upregulated genes. (B) The GO cluster of downregulated genes.
downregulation of testis-biased genes but upregulation of ovary-biased genes and genes associated with estrogen metabolism pathway in *S. intermedius*.

Lastly, we analyzed the dynamic expression patterns of several sex-related markers that were reported to have been involved in gonad development in the testis of E2-treated *S. intermedius* by RT-qPCR. As shown in Figure 7A, testis differentiation-associated genes, including *dmrt1*, *soxE*, and *sp17*, were significantly downregulated in the testis samples of E2-treated *S. intermedius*. Curiously, genes needed for ovary differentiation including *hsd17b8*, *foxl2*, and *had17b14* were also downregulated (Figure 7B). Notably, E2 treatment led to a significant decrease in germ cell marker genes including *nans2*, *boule*, *seali*, *sycp3*, and *vasa* in sea urchins (Figure 7C). In addition, steroidgenic enzyme genes related to active androgen biosynthesis such as *cyp17a*, *cyp450*, and *nek1* were also downregulated in the testis of E2-treated sea urchins (Figure 7D). As expected, genes associated with estrogen metabolism including *ER membrane protein complex subunit 4* (*Emc4*) were significantly upregulated (Figure 7E). However, no phenomenon of sex reversal was observed in the testis of E2-treated *S. intermedius* according to histological analysis (Supplementary Figure S4).

DISCUSSION

Identification of sex-specific markers is fundamental to understand the sex determination mechanism and is crucial for genetic sex identification and sex-controlled breeding (45, 46). Recently, 2b-RAD-seq has been successfully applied to identify sex-specific markers in a great diversity of aquatic organisms (9, 10). RNA interference is an effective genetic tool for studying gene function *in vivo*, especially in animals with low survival rates and long reproductive cycles (5). Currently, a green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is usually used as control in RNAi studies, and no RNAi effect was detected...
using dsRNA–GFP suggesting target sequence specificity of the RNAi effect (47). However, according to a previous report in Apis mellifera, the expression of nearly 1,400 genes was dynamically changed in response to dsRNA–GFP (48). Hence, it is indeed a big challenge to evaluate target sequence specificity of interference effect.

In pufferfish, a female homozygous (C/C) type and a male heterozygous (C/G) SNP in anti-Mullerian hormone receptor type 2 (amhr2) were identified, and this SNP site can be used to identify the genotypic sex of pufferfish with high accuracy (49). Notably, the missense SNP that resulted in an amino acid mutation (His/Asp) in amhr2 affects its kinase activity, and the combination of the two alleles of amhr2 may determine the sex of Takifugu rubripes (50, 51). In the current study, a sex-linked SNP locus was identified in S. intermedius amhr2 gene. The SNP locus is located at the 175th codon of the spata4 gene, but the CAC➔CAU change only causes a synonymous mutation in the predicted Spata4 protein. Synonymous mutations are thought to be silent for a long time. Recently, more and more studies reveal that synonymous sites do not evolve neutrally, and synonymous mutations can regulate protein conformation and function by affecting mRNA stability (52, 53). However, the effect of synonymous mutations on the expression and function of spata4 gene remains unclear and should be investigated in the future. In most of the species, spata4 is specifically expressed in the testis and may play important roles in maintaining spermatogenesis ability and infertility process (31, 43, 54). Herein, we revealed that spata4 is expressed predominantly in the testis (Figure 3). As previously reported, dmrt1 and soxE were demonstrated to play critical roles in testis differentiation regulatory pathway (55, 56). Meanwhile, boule and nanos1 were previously described as germ cell markers and played conserved roles in regulating germ cell development (57, 58). Knocking down spata4 expression in sea urchins led to the downregulation of soxE, dmrt1, boule, and nanos1, indicating a close correlation between spata4 expression and testis development.

Although estradiol can be detected in the gonadal tissues of S. intermedius, we are uncertain whether it is absorbed from the environment or is endogenously synthesized. It has been reported that vertebrate steroids can be absorbed and utilized by invertebrates, especially those living in water, and all reproductively mature fish can release steroids into the environment (23, 25, 59). Sea urchins (L. variegatus, S. purpuratus, and S. intermedius) are also capable of absorbing vertebrate steroids. A notable example is that estradiol-17β exposure can induce protein synthesis in oocytes of S. intermedius (29).

It has been suggested that sex determination and sex differentiation of invertebrates may be influenced by environment factors such as temperature, nutrition level, and photoperiod (44). Because the ratio between female and male was not around 1:1 in the current study, we speculated that sex reversal might be the case in S. intermedius. After 58 days of dietary administration of estradiol, we did not observe significant sex reversal in male individuals by gonadal histology analysis. However, it should be noted that the expression levels of multiple genes have changed dynamically after estradiol treatment. In particular, many of these genes are known to be involved in testis differentiation, ovary differentiation, and germ cell development. Thus, it is possible that E2 treatment may affect gonadal development in sea urchin.

A vertebrate homologous estrogen receptor (ER) (ADL71443.1) is annotated in transcription database. Nonetheless, its expression level is relatively stable following E2 treatment, implying that the interacting mechanisms between exogenous estrogens and sea urchins may be different from that of vertebrates. In Marisa cornuarietis, estradiol-17β treatment has no obvious impact on the expression levels of ER-like or estrogen-related receptor (ERR) gene. This is not surprising because estradiol-17β does not bind to ER-like or ERR (60, 61). Hence, it is attempted to reveal the interactions between estrogen and estrogen receptor in sea urchin.

In conclusion, the current studies identified a sex-related SNP site in S. intermedius and revealed that this SNP is located within the spata4 gene. We confirmed that spata4 is expressed predominantly in the testis, and spata4 may be involved in testis development. In addition, S. intermedius can absorb vertebrate estradiol from dietary food, which caused dynamic changes of the sex-related genes. Taken together, our results provide a powerful tool for understanding the sex-determination mechanisms in sea urchins and have important implications for improving the breeding efficiency of sea urchins.

DATA AVAILABILITY STATEMENT

The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA761225, https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA762987, https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA761244. You can also get raw data by searching the accession numbers (PRJNA761225, PRJNA761244, PRJNA762987) in NCBI. The accession number of spata4 sequence is OK078897. This sequence will be accessible after the indicated release date or the article was published.

AUTHOR CONTRIBUTIONS

Conceptualization: Z-HS. Software: Y-LH. Validation: Y-LH, SC, and BW. Investigation, Y-LH. Resources: JS and R-TZ. Data curation: Y-LH. Writing—original draft preparation: Z-HS. Writing—review and editing: Y-QC and Z-HS. Funding acquisition: Y-QC and Z-HS. All authors have read and agreed to the published version of the manuscript.

FUNDING

This work was funded by the National Key Research and Development Program of China (2018YFD0901603) and the National Natural Science Foundation of China (31802276).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2021.756530/full#supplementary-material
40. Li R, Yu C, Li Y, Lam TW, Yu SM, Kristiansen K, et al. Soap2: An Improved Ultrafast Tool for Short Read Alignment. Bioinformatics (2009) 25:1966–7. doi: 10.1093/bioinformatics/btp356

41. Sun ZH, Wei JI, Cui ZP, Han YL, Zhang J, Song J, et al. Identification and Functional Characterization of Piwi Gene in Sea Cucumber, Apostichopus Japonicas. Comp Biochem Physiol Part B: Biochem Mol Biol (2021) 252:110536. doi: 10.1016/j.cbpb.2020.110536

42. Sun ZH, Zhang J, Zhang WJ, Chang YQ. Gonadal Transcriptomic Analysis and Identification of Candidate Sex-Related Genes in Mesocentrotus Nudus. Gene (2019) 698:78–81. doi: 10.1016/j.gene.2019.02.054

43. Sujit KM, Singh V, Trivedi S, Singh K, Gupta G, Rajender SJA. Increased DNA Methylation in the Spermatogenesis-Associated (SPATA) Genes Correlates With Infertility. Andrology (2020) 8(3):602–9. doi: 10.1111/andr.12742

44. Cook JM. Sex Ratio: Concepts and Research Methods. Cambridge: Cambridge University Press (2002)

45. Arslan T, Phelps RPJA. Production of Monosex Male Black Crappie, Pomoxis nigromaculatus, Populations by Multiple Androgen Immersion. Aquaculture (2004) 234(1-4):561–73. doi: 10.1016/j.aquaculture.2003.12.007

46. Chen SL, Li J, Deng SP, Tian YS, Wang QY, Zhuang ZM, et al. Isolation of Female-Specific AFLP Markers and Molecular Identification of Genetic Sex in Half-Smooth Tongue Sole (Cynoglossus Semilaevis). Mar Biotechnol (2007) 9 (2):273–80. doi: 10.1007/s10126-006-6081-x

47. Ma KY, Chen J, Liu ZQ, Qiu GF. Inhibitory Effects of RNAi-Mediated Knockdown of EsDmrt-Like Gene on Testicular Development in the Chinese Mitten Crab Eriocheir Sinensis. Aquaculture (2016) 463:217–23. doi: 10.1016/j.aquaculture.2016.06.003

48. Nunes FMF, Alexo AC, Barchuk AR, Bomtorin AD, Grozinger CM, Simões ZLP. Non-Target Effects of Green Fluorescent Protein (GFP)-Derived Double-Stranded RNA (dsRNA-GFP) Used in Honey Bee RNA Interference (RNAi) Assays. Insects (2013) 4:100–109. doi: 10.3390/insects4010109

49. Gao FX, Shi Y, Duan W, Lu WJ, Huang W, Zhang XJ, et al. A Rapid and Reliable Method for Identifying Genetic Sex in Obscure Pufferfish (Takifugu Obscurus). Aquaculture (2020) 519:734749. doi: 10.1016/j.aquaculture.2019.734749

50. Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, et al. A Trans-Species Missense SNP in Amhr2 Is Associated With Sex Determination in the Tiger Pufferfish, Takifugu Rubripes (Fugu). PLoS Genet (2012) 8(7):e1002798. doi: 10.1371/journal.pgen.1002798

51. Kikuchi K, Kai W, Hosokawa A, Mizuno N, Suetake H, Asahina K, et al. The Sex-Determining Locus in the Tiger Pufferfish, Takifugu Rubripes. Genetics (2007) 175(4):2039–42. doi: 10.1534/genetics.106.069278

52. Chamary J, Hurst LD. Evidence for Selection on Synonymous Mutations Affecting Stability of mRNA Secondary Structure in Mammals. Genome Biol (2005) 6(9):1–12. doi: 10.1186/gb-2005-6-9-175

53. Sauna ZE, Kimchi-Sarfaty C. Understanding the Contribution of Synonymous Mutations to Human Disease. Nat Rev Genet (2011) 12(10):883–91. doi: 10.1038/nrg3051

54. Liu SF, Li LY, Fu JJ, Liu G, Xing XW, Lu GX. Molecular Cloning of SRG2, A Mouse Testis Spermatoocyte Apoptosis-Related Gene. Acta Biochim Biophys Sin (2002) 34(6):796–800. doi: 10.1016/S1000-939X(02)34670-2

55. Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D. DMRT1 Prevents Female Reprogramming in the Postnatal Mammalian Testis. Nature (2011) 476(7358):101–4. doi: 10.1038/nature10239

56. Barrionuevo F, Scherer G, SOX E Genes: SOX9 and SOX8 in Mammalian Testis Development. Int J Biochem Cell B (2010) 42:433–6. doi: 10.1016/j.biocel.2009.07.015

57. Han YL, Wei JI, Cui ZP, Zhang J, Zhang WJ, Wen B, et al. Expression and Cellular Localization of Maternal Factor Boule In Gonad of Sea Urchin Mesocentrotus Nudus. J Dalian Fish Univ (2021) 36(2):214–21. doi: 10.16535/j.cnki.dlhyxb.2020-074

58. Lai F, Singh A, Xing ML. Xenopus Nanos Is Required to Prevent Endoderm Gene Expression and Apoptosis in Primordial Germ Cells. Development (2012) 139(8):1476–86. doi: 10.1242/dev.079608

59. Scott AP, Ellis T. Measurement of Fish Steroids in Water—a Review. Gen Comp Endocrin (2007) 153:392–400. doi: 10.1016/j.ygeno.2006.11.006

60. Bannister R, Beresford N, Granger DW, Pounds NA, Rand-Weaver M, White R, et al. No Substantial Changes in Estrogen Receptor and Estrogen-Related Receptor Orthologue Gene Transcription in Marisa Cornuarietis Exposed to Estrogenic Chemicals. Aquat Toxicol (2013) 140:19–26. doi: 10.1016/j.aquatox.2013.05.002

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Han, Sun, Chang, Wen, Song, Zuo and Chang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.