DISCONTINUOUS QUANTUM AND CLASSICAL MAGNETIC RESPONSE OF THE PENTAKIS DODECAHEDRON

N. P. Konstantinidis

The American University of Iraq in Sulaimani, Kurdistan Region, Iraq

cond-mat/2101.06739
MOTIVATION

→ Fullerene molecules: 12 pentagons and (n/2) - 10 hexagons.

→ Edge-sharing polygons.

→ Frustration (pentagons)

→ classical magnetization and susceptibility discontinuities.

→ quantum magnetization discontinuities (I_h symmetry).

→ singlets inside the singlet-triplet gap.
MOTIVATION

→ Icosahedron: dual of dodecahedron (I_h symmetry).

→ 12 vertices, 20 edge-sharing triangles → Frustration (triangles)

→ classical magnetization discontinuity.

C. Schroeder, H.-J. Schmidt, J. Schnack, and M. Luban, Phys. Rev. Lett. 94, 207203 (2005)

→ singlets inside the singlet-triplet gap.

→ strong similarities in low-energy spectrum with dodecahedron.

→ consider bigger I_h fullerene duals → quantum discontinuities?

→ next bigger: pentakis dodecahedron.
PENTAKIS DODECAHEDRON

32 vertices

→ 20 6-fold vertices,
 12 5-fold vertices,
 60 edge-sharing triangles.

→ 2 nonequivalent edges (black-red).

Dual of the truncated icosahedron.

I_h spatial symmetry group
→ 120 symmetry operations.
→ 10 irreducible representations.
Antiferromagnetic Heisenberg Model

\[
H = \sum_{ij} s_i \cdot s_j + J \sum_{ij} s_i \cdot s_j - h \sum_i s_i^z , \quad J > 0
\]

\(J=0 \): dodecahedron + uncoupled spins.

\(J \to \infty \): quadrangles linked together.

\([H,S]=0\), \([H,S^z]=0\)

\(I_h \) and spin inversion symmetry characterize states.

FRUSTRATION: \(s_i = 1/2, 1, 3/2, \ldots, \infty \)
CLASSICAL SPINS $S_i \to \infty$

Zero-magnetic-field ground-state energy

Dashed lines: change of the symmetry of the lowest-energy configuration.
CLASSICAL SPINS $s_i \rightarrow \infty$

Zero-magnetic-field ground-state correlations

6-fold spins correlations (black bonds)

6-fold and 5-fold spins correlations (red bonds)
CLASSICAL SPINS $s_i \to \infty$

Zero-magnetic-field ground-state magnetization

black: total magnetization, red: total of six-fold spins, green: total of five-fold spins.
CLASSICAL SPINS \(S_i \to \infty \)

Ground-state magnetization and susceptibility discontinuities in a field

\[+: \text{magnetization discontinuity, } x: \text{susceptibility discontinuity.} \]
CLASSICAL SPINS $s_i \to \infty$

Ground-state magnetization and susceptibility discontinuities in a field

10 magnetization, 1 susceptibility.

3 magnetization, 8 susceptibility.

+: magnetization discontinuity, x: susceptibility discontinuity.
CLASSICAL SPINS $s_i \to \infty$

Ground-state magnetization and susceptibility discontinuities in a field

appear	disappear	J	$\frac{\hbar}{k_B}$	N_M, N_N	appear	disappear	J	$\frac{\hbar}{k_B}$	N_M, N_N
1		0	0+	4.0	34		-	0.75554	6.3
2		0	0.26350	4.0	35	33,11'	1.010	0.132	6.2
3		0	0.26983	4.0	36,12'	4	1.012	0.597	6.3
4		0	0.73428	4.0	37	3,36	1.015	0.597	5.3
1', 2'		0	0+	4.2	38	37,12'	1.619	0.998	5.2
5, 6		0	0.228	0.07	6,2	39,40	38	1.023	6.2
7, 8		0	0.229	0.07	8,2	41,42	-	1.04939	8.2
9		0	0.281	0.0414	7,2	13'	41	1.04942	7.3
10		0	0.406	0.225	5,2	14', 13'	1.04984	0	7.3
11, 13	1'	0	0.147	0.240	6,1	43	34,42	1.0497	6.3
12	4'	0	0.4194	0.233	6.2	44	35,43	1.0509	5.3
13, 15	5'	0.247	0.024	6,1	50	40,48	1.06266	0.654	4.4
14, 16	6'	0.503	0.024	7,1	51	46,49	1.06271	0.548	3.4
15, 17	12	0.512	0.0166	7,2	52	51,15'	1.0664	0.506	3.3
16	7'	0.526	0.0228	8,1	53	45,10'	1.0706	0.296	3.2
17, 18		0	0.526	0.026	10,1	54	53,9'	1.0714	3.1
18	16, 17	0.526	0.024	9,1	55,16'	52	1.07262	0.425	3.2
19	8'	0.527	0.01656	10,0	56,17'	54	1.073852	0.371	3.3
20		0	0.532	0.0168	9,0	57,18'	56	1.073859	3.4
21	14, 19	0.544	0.0171	8,0	-	55,17'	55	1.0738508	3.5
22	21, 22	0.535	0.0164	7,0	58,50	50	1.07625	0.897	2.4
23	24, 25	0.355	0.053	8,0	60,19'	59	1.07643	0.8991	2.5
26, 9'	28	0.511	0.114	8,1	20', 21'	19'	1.07647	0.8996	2.6
10'	26	0.586	0.117	7,2	61,22', 23'	-	1.0788	1	3.8
27, 28	24	0.588	0.0127	8,2	62	60,22'	1.07923	0.933	3.7
29	15, 23	0.590	0.0021	7,2	63	62,23'	1.07959	0.937	3.6
30	9	0.5015500	0	7,2	64	61,63	1.080146	0.9435	2.6
31	29, 30	0.596	0.0007	6,2	-	58,20', 21'	1.085	0.9101	1.4
32	27, 31	0.600	0.0004	5,2	-	64	$\frac{1}{2}(5 + \sqrt{5})$	1	0.4
	32	0.603929	0	4,2	24', 25'	11', 16', 17', 18'	$\frac{3}{2}(5 + \sqrt{5})$	$\frac{1}{3}$	0.2
33		0.620646	0	5,2	-	24'	$\frac{24}{25} \frac{5 + \sqrt{5}}{5}$	0	0.1
11'		0.64075	0	5,3					
CLASSICAL SPINS $s_i \to \infty$

Width of ground-state magnetization discontinuities in a field
CLASSICAL SPINS $s_i \rightarrow \infty$

Lowest-energy configuration unique polar angles

$J=0.3$

red arrows: magnetization discontinuities,

green arrows: susceptibility discontinuities,

CF_i: lowest energy configurations.

$J=1$

$J=1.08$
QUANTUM SPINS $s_i = 1/2$

Block-diagonalization with symmetries

Hilbert space: $2^{32} = 4,294,967,296$ states.

Biggest S^z subsector: $S^z=0$ with $601,080,390$ states.

Biggest symmetry subsector: H_g of $S^z=1$ with $23,585,037$ states.
QUANTUM SPINS $s_i = 1/2$

Zero-magnetic-field ground-state energy

Dashed lines: change of the total spin S and the symmetry of the lowest-energy configuration.

J-range	S	Irreducible representation	Degeneracy	Spin inversion
$0 \leq J < 0.371$	0	A_u	1	s
$0.371 \leq J \leq 0.642$	2	A_g	5	s
$0.642 < J \leq 1.506$	0	A_u	1	s
$1.506 < J \leq 1.542$	1	T_{1u}	9	a
$1.542 < J < 1.609$	2	H_g	25	s
$1.609 \leq J < 1.685$	3	T_{2u}	21	a
$1.685 \leq J$	4	A_g	9	s
QUANTUM SPINS $s_i = 1/2$

Zero-magnetic-field ground-state correlations

Black circles: 6-fold spins correlations.
Red squares: 6-fold and 5-fold spins correlations.
J=0.9, 1.1, and 1.2: singlets inside the singlet-triplet gap.
QUANTUM SPINS \(s_i = 1/2 \)

Ground-state magnetization discontinuities in a field

Black circles: \(\Delta S^z = 1 \)
Red squares: \(\Delta S^z = 2 \)
Green diamonds: \(\Delta S^z = 3 \)

Higher J: weaker frustration, equidistant jumps
QUANTUM SPINS $s_i = 1/2$

Ground-state magnetization discontinuities in a field

- Black circles: $\Delta S^z = 1$
- Red squares: $\Delta S^z = 2$
- Green diamonds: $\Delta S^z = 3$
QUANTUM SPINS $s_i = 1/2$

Ground-state magnetization discontinuities in a field

J-range	S^z_{below}	S^z_{above}	Irrep. below	Irrep. above
$0 \leq J \leq 1.012$	10	12	A_g	A_u
$0.279 < J < 0.302$	1	3	T_{2g}	F_g
$0.302 < J < 0.307$	0	3	A_u	F_g
$0.307 \leq J \leq 0.371$	0	2	A_u	A_g
$0.642 < J < 0.743$	0	2	A_u	A_g
$0.707 < J \leq 1.032$	4	6	A_g	A_u
$0.980 \leq J \leq 1.071$	6	8	A_u	A_g
$1.050 \leq J \leq 1.056$	4	6	A_g	A_u
$1.074 < J \leq 1.075$	6	8	A_g	A_g

Three discontinuities

$\rightarrow 0.707 < J < 0.743$

$\rightarrow 0.980 \leq J \leq 1.012$

Can have degenerate irreducible representations on either side of a jump
CONCLUSIONS

→ Antiferromagnetic Heisenberg model on the pentakis dodecahedron.

→ Frustration results in nontrivial magnetic properties
 → classical magnetization and susceptibility discontinuities.
 → quantum magnetization discontinuities (I_h symmetry) as big as $\Delta S^z = 3$.
→ singlets inside the singlet-triplet gap.