Numerical Analysis of Piezoelectric Nanobeams with Flexoelectric Effect

Veena Phunpenga,*, Janjira Aphirakmethawongb, Predo M Baizc

aMechanical Engineering, Suranaree University of Technology, Nakhon Ratchasima, 30000 THAILAND
bManufacturing Engineering, Suranaree University of Technology, Nakhon Ratchasima, 30000 THAILAND
cDepartment of Aeronautics, Imperial College London, London, SW7 2AZ UNITED KINGDOM

*Corresponding Author: veenap@g.sut.ac.th

Abstract

Cutting edge composite materials now play an essential role in micro-nano-structural systems. Micro-nano particles and/or structural systems are embedded into a material matrix in order to enhance material properties, and make them a ‘smart material’. A widely used type of smart material is piezoelectric materials, which have the property of piezoelectricity - an electromechanical effect that occurs in some micronano-structural materials. A further electromechanical effect called the flexoelectric effect is also induced due to the fact that strain gradient on the micro-nano scale provides an electrical polarization. In this work, the Finite Element Method (FEM) formulation for beam theories is used to investigate materials including both piezoelectric and flexoelectric effects. The variational form of 2D piezoelectric nanobeams with flexoelectric effect is also presented and solved using FEM. The results from beam theories and 2D planar beams will be compared with analytical solutions and other numerical techniques.

Keywords: Finite element Method, Piezoelectric Nanobeam, flexoelectric effect.

1. Introduction

With the advancement of electro-mechanic technology, the nano-structure devices have attracted many researchers’ enthusiasm and size-dependent effects of materials have become one of the hottest topics.

Piezoelectricity, first discovered in 1880 by French physicists Jacques and Pierre Curie, is the electrical polarization in response to applied mechanical stress. In 2009, Maranganti and Sharma \cite{1} gave a more explicit definition of piezoelectricity. Upon application of a uniform strain, internal sub-lattice shifts within the unit cell of a non-centrosymmetric dielectric crystal result in the appearance of a net dipole moment. It has also been observed that the piezoelectric effect is symmetric in the sense that charge separation occurs due to stress (the direct piezoelectric effect) and stress and strain are induced when an electric field is applied inverse piezoelectric effect.

The flexoelectric effect is a further electromechanical effect in insulating materials in which gradients in the strain induce an electrical polarisation. The similarity between piezoelectricity and flexoelectricity is that both produce polarizations, however they differ in that piezoelectricity is a macroscopic effect while flexoelectricity is a microscopic one. Therefore, theories of strain-gradient elasticity are needed to predict the response of a micro-nano beam when the flexoelectric effect is involved. Toupin \cite{4} put forward a variational principle for a linear piezoelectric material. The polarization can be also induced by a strain gradient, which is the well known ‘flexoelectric effect’. The contributed polarization in response to macroscopic strain gradient can be written as

\begin{equation}
P_i = f_{\omega \theta} \frac{\partial \varepsilon_y}{\partial x_i} \end{equation}

Where \(P_i \) denote the component of resultant polarization, \(f_{\omega \theta} \) is the flexoelectric coefficients, \(\varepsilon_y \) is the component of the elastic strain and \(x_i \) is the direction of the gradient.

A lot of pioneering work investigating flexoelectric effect has been undertaken. Yan and Jiang \cite{5} acquired the electromechanical coupling behavior of piezoelectric nanowires with Bernoulli-Euler Beam theory. Two years...
after, they investigated the flexoelectric effect on the bending of piezoelectric nano-beams by different boundary conditions with different beams theories. In 2014, Liang et al. (6) incorporated the flexoelectric and surface effect into his Bernoulli-Euler beam model, and solved them analytically.

In this paper, the one dimensional beam theories will be used to simulate the beam’s behavior along with piezoelectricity and flexoelectricity. The new 2D beam models for piezoelectric nanobeams with the flexoelectric effect will be expressed.

2. Formulation

The development of a continuum electromechanical coupling framework by Hu et al. (7) has resulted in a great deal of interest in nanobeam modelling including the flexoelectric effect. Taking the flexoelectric effect into account, the bulk electric Gibbs free energy has been proposed as a hybrid of the internal energy of elastic deformation and electrostatic field.

\[
U_b = -\frac{1}{2} a_{ij} E_i E_j + \frac{1}{2} c_{ijkl} \varepsilon_i \varepsilon_j - d_{ijkl} E_i \varepsilon_j - f_{ijkl} \eta_{ij} \quad (2)
\]

where \(a_{ij}, c_{ijkl}, d_{ijkl} \) and \(f_{ijkl} \) denote second-order permittivity, four-order elastic, piezoelectric and flexoelectric tensors, respectively. The other terms are the strain tensor, \(\varepsilon_{ij} \), the strain gradient tensor, \(\eta_{ij} \), and the electric field tensor, \(E_i \). Here, the constitutive equations (6) are

\[
\sigma_{ij} = C_{ijkl} \varepsilon_{kl} - d_{ijkl} E_k \\
\tau_{ijkl} = f_{ijkl} \varepsilon_{ij} \\
D_i = a_{ij} E_j + d_{ijkl} \varepsilon_{ij} + f_{ijkl} \eta_{ij} \quad (5)
\]

where \(\sigma_{ij} \) is the classical stress tensor, \(D_i \) is the electrical displacement vector and \(\tau_{ijkl} \) is the high-order stress tensor. Substituting these into Eq. 2, the final form of the bulk electric Gibbs energy can be rewritten as

\[
U_b = \frac{1}{2} \sigma_{ij} \varepsilon_{ij} + \frac{1}{2} \tau_{ijkl} \eta_{ij} - \frac{1}{2} D_i E_i \\
\]

and these can be expressed in the variational form as:

\[
\int \delta \varepsilon_{ij} \sigma_{ij} dV + \int \delta \eta_{ij} \tau_{ijkl} dV - \int \delta E_i D_i = 0 \\
\]

Written with these variables, the variational form of Eq 7 appears similar to that of the strain gradient elasticity theory of the strain gradient elasticity theory (8) with the addition of an electric term Eq 2 can be written as in variational form as (8):

\[
\int \delta \varepsilon_{ij} C_{ijkl} \varepsilon_{kl} dV - \int \delta \varepsilon_{ij} d_{ijkl} E_k dV - \int \delta \eta_{ij} f_{ijkl} \tau_{ijkl} dV \\
- \int \delta E_i a_{ij} E_j dV - \int \delta E_i d_{ijkl} \varepsilon_{ij} dV - \int \delta E_i f_{ijkl} \eta_{ij} dV = 0 \\
\]

For 2D beam models in the x-z plane, the internal energy of elastic deformation can be written as (9)

\[
U_b = \frac{1}{2} \sigma_{ij} \varepsilon_{ij} + \frac{1}{2} \tau_{ijkl} \eta_{ij} + \frac{1}{2} \eta_{ij} \varepsilon_{ij} - \frac{1}{2} \tau_{ijkl} \eta_{ij} \varepsilon_{ij} - \frac{1}{2} \eta_{ij} \varepsilon_{ij} E_i - \frac{1}{2} P_i E_i \\
\]

As shown through this section the variational form was derived from the Principal of the Principal of Virtual Work and these can be solved using well known simulation tools, such as Finite element methods.

3. Numerical Results

Piezoelectric nanobeams under different conditions are analysed with the variation of the aspect ratios (L/h = 5, 10, 15, 20). The deflection (w) of beams are observed and these will be compared with the validated results of the 1D piezoelectric nanobeam. In the comparisons, Error_{EB-TB} and Error_{2D-TB} are defined.

\[
\text{Error}_{\text{EB-TB}} = \left| \frac{W_{\text{EB}} - W_{\text{TB}}}{W_{\text{TB}}} \right| \times 100\% \\
\text{Error}_{\text{2D-TB}} = \left| \frac{W_{\text{2D}} - W_{\text{TB}}}{W_{\text{TB}}} \right| \times 100\% \\
\]

Where the subscripts and superscripts represent the beam theories used Euler-Bernoulli beam (EB), Timoshenko beam
Table 1 shows the deflection of beam with the aspect ratio of 5. The ‘Classical’ column represents the beam without the size-dependent effect.

Table 2 shows the deflection of beam with the aspect ratio of 10. It is noted that the displacements calculated from EB theory are unchanged though the aspect ratio under the same loads, whereas the deflections calculated by TB theory changed. This may be due to the fact that TB theory considers the effect of shear deformation in beams, resulting in the observation of a big difference between the results from 1D(EB) and 1D(TB).

In order to illustrate the results more evidently, the data from Table 1 and 2 is presented in Figure 1, where the horizontal axis represents the aspect ratio (L/h) and the vertical axis represents the percentage error.

After looking into the tables deeply, the contribution of electrical load is relatively small for CC beams, comparing with the SS beams and CT beams. This shows the analysis of a piezoelectric nanobeam indicating the flexoelectric effect.

4. Conclusions

The results show that the flexoelectric effect plays a more essential role in the behavior of materials at micronano scale than the piezoelectric effect. Under a purely mechanical load (Vn-0), flexoelectricity acted to stiffen the beams, as can
be seen from the reduced deflection. Under an external electrical load ($V_n=1$), with cantilever beams subjected to a positive voltage, flexoelectricity plays an essential role in preventing bending, greatly reducing the beam displacement.

Acknowledgment

The completion of this work could not have been accomplished without the support of my colleague, Mr. Jian Huang. Thank you.

References

1. R. Maranganti and P. Sharma. "Atomistic determination of exoelectric properties of crystalline dielectrics", Physical Review B, 80, 2009. 054109: 1-10.

2. J. Yang and H.J. Xiang, "Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators", Smart Mater Struct 2007; 16: 784-797. Name: "English Title", Journal, Volume, Number, Pages, Publication Year

3. V. Phunpeng, P.M. Baiz and S.T. Pinho, "Numerical analysis of piezoelectric functionally graded beams", Proceedings of the 20th UK National Conference of the Association for Computational Mechanics in Engineering, 26th-28th March 2012, University of Manchester, UK.

4. L.E. Cross. "Flexoelectric effects Charge separation in insulating solids subjected to elastic strain gradients". J. Mat. Sci., 41:53-63, 2006.

5. Z. Yan and L.Y. Jiang. "Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires". J Phys D Appl Phys, 44:7, Feb 2011.

6. X. Liang, S.L. Hu, and S.P. Shen. "Effects of surface and flexoelectricity on a piezoelectric nanobeam". Smart Mat: Struct, 23, 2014. 035020.

7. S.L. Hu and S.P. Shen. "Electric field gradient theory with surface effect for nanodielectrics". Comput Mat Cont., 13, 2009.

8. V. Phunpeng and P. M. Baiz. "Mixed Finite Element Formulations for Strain-Gradient Elasticity Problems using the FEniCS Environment". Finite Elements in Analysis and Design 96, 2015: 23-40

9. P. Helnwein. "Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors". Comput Methods Appl. Mech. Eng., 190(22-23): 27532770, 2001.