1. **Abstract**

 This document describes the setting procedure to use the A/D converter in repeat mode.

2. **Introduction**

 The application example described in this document applies to the following microcomputer (MCU):

 - MCU: M16C/63 Group

 This application note can be used with other M16C Family MCUs which have the same special function registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation is recommended before using the sample code described in this application note.
3. Operation in Repeat Mode

This section describes operation when using the A/D converter in repeat mode with a software trigger.

(1) When the ADST bit in the ADCON0 register is set to 1 (A/D conversion start), A/D conversion starts.
(2) After completing A/D conversion, the value in the successive conversion register (conversion result) is transferred to the ADi register (i = 0 to 7). The IR bit in the ADIC register does not become 1 (interrupt requested).
(3) A/D conversion continues until the ADST bit in the ADCON0 register is set to 0 by a program. The conversion result is transferred to the ADi register every time A/D conversion is completed.

Figure 3.1 shows Operation Timing in Repeat Mode.

![Figure 3.1 Operation Timing in Repeat Mode](image-url)
4. **A/D Conversion Time**

This section describes how to calculate A/D conversion time.

4.1 **A/D Conversion Cycle**

Table 4.1 shows Cycles of A/D Conversion Item. A/D conversion time is described below. Start processing time depends on which φAD is selected.

A/D conversion starts after the start processing time elapses by setting the ADST bit in the ADCON0 register to 1 (A/D conversion start). When reading the ADST bit before starting A/D conversion, 0 (A/D conversion stop) is read. In repeat mode, inter-execution processing time is inserted between A/D conversions.

- Repeat mode:

 Start processing time + (A/D conversion execution time + inter-execution processing time + A/D conversion execution time + inter-execution processing time + ...)

Table 4.1 **Cycles of A/D Conversion Item**

A/D Conversion Item	Number of Cycles
Start processing time	
φAD = fAD	1 to 2 cycles of fAD
φAD = fAD divided by 2	2 to 3 cycles of fAD
φAD = fAD divided by 3	3 to 4 cycles of fAD
φAD = fAD divided by 4	3 to 4 cycles of fAD
φAD = fAD divided by 6	4 to 5 cycles of fAD
φAD = fAD divided by 12	7 to 8 cycles of fAD
A/D conversion execution time	
Open-circuit detection disabled	40 cycles of φAD
Open-circuit detection enabled	42 cycles of φAD
Inter-execution processing time	1 cycle of φAD
End processing time	2 to 3 cycles of fAD

4.2 **A/D Operation Clock Frequencies**

Table 4.2 lists the A/D Operation Clock Frequencies.

Table 4.2 **A/D Operation Clock Frequencies (1)**

Symbol	Parameter	Measuring Condition	Standard Unit	
φAD	A/D operating clock frequency	4.0 V ≤ VREF ≤ AVCC ≤ 5.5 V	2	20 MHz
		3.2 V ≤ VREF ≤ AVCC ≤ 5.5 V	2	16 MHz
		3.0 V ≤ VREF ≤ AVCC ≤ 5.5 V	2	10 MHz
		1.8 V ≤ VREF ≤ AVCC ≤ 5.5 V	2	5 MHz

Note:

1. Use when AVCC = VCC1 = VCC2.
5. Settings

Figure 5.1 shows the Setting Procedure When Using Repeat Mode. Refer to the User’s Manual: Hardware for details on registers.

![Diagram showing the setting procedure for repeat mode](image)

- **Setting for repeat mode**
 - Set a pin to be used for analog input to input mode, and set the PCR register for the pin.

- **Set an analog input pin**
 - Select A/D converter functions
 - b2, b1: Select A/D input group
 - b4: Select an operation clock frequency

- **Set the ADCON2 register**
 - Select A/D converter functions
 - b2-b0: Select an analog input pin
 - b4, b3: Set to 01b when using repeat mode
 - b5: Select an A/D conversion start trigger
 - b6: A/D conversion start flag
 - b7: Select an operation clock frequency

- **Set the ADCON0 register**
 - Select A/D converter functions
 - b2: Set to 0 when using repeat mode
 - b4: Select an operation clock frequency
 - b5: Set to 1 when enabling A/D conversion
 - b7, b6: Select a setting for extended pins

- **Wait for one or more cycles of φAD**
 - Wait time until the A/D converter is ready for a conversion when changing the ADSTBY bit from 0 to 1.

- **Start A/D conversion**
 - Generate the A/D conversion start trigger.

Figure 5.1 Setting Procedure When Using Repeat Mode
6. Sample Code

A sample code can be downloaded from the Renesas Electronics website. To download, click “Application Notes” in the left-hand side menu of the M16C Family page.

6.1 Sample Code Operation

In repeat mode, functions listed in Table 6.1 can be selected. The settings used in the sample code are marked with “✓” in the table. The sample code operation is as follows; set the CPU clock as the main clock with no division by executing functions for CPU initialization, transition from 125 kHz on-chip oscillator mode to high-speed mode, then execute the function for A/D conversion in repeat mode. Refer to 6.2 Function Tables for details on functions.

Functions	Settings
Operating clock φAD	✓ f1
	✓ f1 divided by 2
	✓ f1 divided by 3
	✓ f1 divided by 4
	✓ f1 divided by 6
	✓ f1 divided by 12
	✓ fOCO40M divided by 2
	✓ fOCO40M divided by 3
	✓ fOCO40M divided by 4
	✓ fOCO40M divided by 6
	✓ fOCO40M divided by 12
A/D conversion start conditions	✓ Software trigger
	Trigger by ADTRG
Analog input pins	✓ 1 pin from AN0 to AN7
	✓ 1 pin from AN0_0 to AN0_7
	✓ 1 pin from AN2_0 to AN2_7
Extended analog pins	✓ Not used
	ANEX0 pin
	ANEX1 pin
A/D open-circuit detection assist function	✓ Not used
6.2 Function Tables

Function Tables for This Document

Declaration	void ad_repeat(void)
Outline	A/D conversion in repeat mode
Argument	None
Variable	None
Returned value	None
Function	Set the A/D converter to repeat mode and set the functions as marked in Table 6.1. Set an analog input pin to AN0, and set P10 to input mode. Generate a software trigger and start A/D conversion of the input voltage at the AN0 pin.

Declaration	unsigned short read_ad_register(unsigned char ch)
Outline	Read A/D register
Argument	unsigned char ch Select the A/D register to be read
Variable	None
Returned value	unsigned short read_ad_data Value read from the A/D register
Function	Read the A/D register selected with the unsigned char ch argument. Then return the read value as a returned value.

Other Function Tables

Declaration	void mcu_init(void)
Outline	CPU initialization
Argument	None
Variable	None
Returned value	None
Function	Set to single-chip mode. Switch the CPU clock from 125 kHz on-chip oscillator mode divided-by-8 to 125 kHz on-chip oscillator mode divided-by-1.

Declaration	void highspeed_from_foco125k(void)
Outline	Transition from 125 kHz on-chip oscillator mode to high-speed mode
Argument	None
Variable	None
Returned value	None
Function	Switch the CPU clock from 125 kHz on-chip oscillator mode (fOCO-S divided by 1) to high-speed mode.
7. Reference Documents

M16C/63 Group User’s Manual: Hardware Rev.1.00
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

M16C Series/R8C Family C Compiler Package V.5.45 C Compiler User’s Manual Rev.3.00
The latest version can be downloaded from the Renesas Electronics website.

Website and Support
Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
Rev.	Date	Description
1.00	2011.03.15	First edition issued

All trademarks and registered trademarks are the property of their respective owners.
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as an overall design, software and hardware including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of non-interactive software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Notice 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Notice 2) "Renesas Electronics products" means any product developed and manufactured or by for Renesas Electronics.

© 2011 Renesas Electronics Corporation. All rights reserved.