Clinical characteristics and outcomes of primary bone lymphoma in Korea

So Yeon Kim1,*, Dong-Yeop Shin1,*, Seung-Sook Lee2, Cheolwon Suh3, Jae-Yong Kwak4, Hoong-Gu Kim5, Jae Hoon Lee6, Soon II Lee7, Ye Rim Lee7, Seung Hwa Kang1, Se Kwon Mun1, Min Jae Lee1, Hyo-Rak Lee1, Sung Hyun Yang1, Hye Jin Kang1

Departments of 1Internal Medicine, 2Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 3Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 4Division of Hematology-Oncology, Department of Internal Medicine, Chonbuk National University Medical School and Hospital, Jeonju, 5Division of Hematology-Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Incheon, 6Department of Hematology-Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Incheon, 7Division of Hematology-Oncology, Department of Internal Medicine, Dankook University Hospital, Cheonan, Korea

Background
This study evaluates the effectiveness of immunochemotherapy and radiation therapy in the treatment of patients with primary bone lymphoma (PBL).

Methods
We retrospectively reviewed the medical records of 33 patients with PBL who were treated at 6 medical centers in Korea from 1992 to 2010. Clinopathological features and treatment outcomes were analyzed.

Results
The median age of the patients participating in our study was 40 years. The most common sites of involvement were the pelvis (12.36%) and femur (11.33%). CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisolone) or CHOP-like regimens were administered to 20 patients (61%), and R-CHOP (rituximab plus CHOP) was administered to the remaining 13 patients (39%). The overall response rate was 89% (complete response, 76%; partial response, 12%). The overall survival (OS) of patients with solitary bone lesions was longer than that of patients with multiple bone lesions (median OS: not reached vs. 166 months, respectively; P=0.089). Addition of rituximab to CHOP did not significantly affect either OS or progression-free survival (P=0.53 and P=0.23, respectively). Combining radiation therapy with chemotherapy also did not improve the OS or progression-free survival of patients with solitary bone lesions.

Conclusion
Conventional cytotoxic chemotherapy remains an effective treatment option for patients with PBL. Additional benefits of supplementing chemotherapy with either rituximab or radiation therapy were not observed in this study. Further investigation is needed to characterize the role of immunochemotherapy in treating patients with PBL.

Key Words Bone lymphoma, Radiotherapy, Rituximab

INTRODUCTION

Primary bone lymphoma (PBL) is a rare disease, accounting for only 7% of primary bone malignancies and approximately 5% of extranodal non-Hodgkin lymphomas (NHLs). PBL represents <2% of all lymphomas in adults [1]. PBL was first described by Oberling in 1928 and was later defined as a separate clinical entity in 1939, following the publication of a 17-case series by Parker and Jackson.

Traditionally, PBL was defined as lymphoma localized to the bone without evidence of soft tissue or nodal involvement. In this study, diagnosis of PBL was based on the 2002 World Health Organization classification of tumors...
of soft tissue and bone [2]. Hence, positive diagnosis was
defined by the presence of either a single bone lesion, with
or without regional lymph node (LN) involvement, or a
multiple bone lesion, without visceral or LN involvement.

According to the World Health Organization classi-
fication, the most common histopathological subtype of PBL
is diffuse large B-cell lymphoma (DLBCL) [3]. Initial diag-
nosis of PBL can be challenging due to nonspecific symptoms
and ambiguous radiological results. Furthermore, standard
treatment regimens have not yet been established because
of the low incidence rates of PBL. Prior to the availability
of effective chemotherapeutic drugs, PBL was treated with
radiotherapy (RT) or surgery. Since introducing cyto-
toxic agents as treatment options for PBL, several studies
have established that chemotherapy combined with RT is
better than RT alone [1, 4]. However, some recently pub-
lished studies have reported that no differences were ob-
served between the overall survival (OS) of patients treated
with chemotherapy alone and those given a combination
of chemotherapy and RT, although the number of cases
involved in these studies was too low to achieve statistical
significance. Other reports have suggested that patients treat-
ed with rituximab-based chemotherapy have improved sur-

vival rates [5]. Rituximab, a monoclonal antibody directed
against the CD20 antigen expressed on lymphocytes, was
approved by the US Food and Drug Administration for the

treatment of B-cell NHL in 1997. Multiple randomized trials
have shown that the addition of rituximab to chemotherapy regimens improves outcomes in patients with aggressive
non-osseous NHL [6-9]. One retrospective analysis of PBL
showed that the addition of rituximab to chemotherapy im-
proved the progression-free survival (PFS) but not the OS
[2]. However, the roles of rituximab and RT in the treatment
of patients with PBL have not been established thus far.

The present study aimed at examining the clinical character-
istics of PBL among Korean patients and assessing the out-
comes of different treatment options, including rituximab-

based regimens.

MATERIALS AND METHODS

1. Patients

We retrospectively included patients who were diagnosed
with PBL at 6 medical centers in Korea, between 1992 and
2010. Clinical data retrieved from medical records were
analyzed. PBL was defined as lymphoma with solitary bone
lesions with or without LN involvement, or multiple bone
lesions without LN, visceral, or bone marrow involvement.

Only patients with DLBCL, confirmed by histological ex-
amination, were included. Patients with bone marrow in-
volvement or other histological diagnoses such as anaplastic
large cell lymphoma, Burkitt lymphoma, Hodgkin lympho-

ma, and lymphoplasmacytic lymphoma were excluded from
this study.

All participating patients’ medical records were reviewed,
and the treatment outcomes were noted, including response
to treatment and survival. Clinicopathological features were
also analyzed, including age at diagnosis, sex, stage,
International Prognostic Index (IPI), Eastern Cooperative
Oncology Group (ECOG) performance status, histological
diagnosis, site of disease, number of bone sites involved
(solitary vs. multiple bone involvements), type of treatment,
and dates of the last follow-up visit and of the patient’s
death. Clinical staging was determined according to the Ann
Arbor Staging System [10], using contrast-enhanced com-
puted tomographic scans of the neck, chest, abdomen, and
pelvis and, in most cases, using magnetic resonance imaging
(MRI) results of the affected area. Stage I and II were defined
by the presence of a single skeletal tumor without or with
regional LN involvement (IE or IIE, respectively), and stage
IV was defined by the presence of multiple bone lesions
without visceral, LN, or bone marrow involvement. Stage
I or II PBLs were described as IE or IIE to indicate the
involvement of an extralymphatic organ, referring to primary
bone involvement.

2. Outcome analysis

Treatment response was assessed using the International
Working Group response criteria [11] or the revised response
criteria [12], for pre-positron emission tomography and post-
positron emission tomography data, respectively. In addition,
criteria proposed by a Miami University group were applied
to clarify any ambiguity in the results obtained using imaging
techniques [5]. OS was defined as the period extending from
the date of PBL diagnosis to the date of the last follow-up
visit, or the date of death from any cause. PFS was defined
as the period extending from the date of treatment initiation
to the date of documented disease progression, or the date
of death caused by the disease itself or by treatment toxicity.

3. Statistics

Statistical analysis of the data was performed using SPSS
version 14.0 for Windows (SPSS, Chicago, IL). The \(\chi^2 \)
test was used to compare frequencies between the 2 subgroups
subjected to different treatment modalities. Survival curves
were constructed based on the Kaplan and Meier method and
compared using the log-rank test. The Cox proportional
hazard model was used to identify the prognostic factors
associated with OS and PFS. A 2-sided \(P < 0.05 \) was consid-
ered statistically significant.

4. Ethics

The study protocol was reviewed and approved by each
hospital’s institutional review board.

RESULTS

1. Patient characteristics

This study included a total of 33 patients with primary
DLBCL of the bone; the participating patients’ demographic
characteristics are presented in Table 1. The median age
was 40 years (range, 14-71 years). Nineteen patients (58%)
were men, and 14 (42%) were women. The most common sites of involvement were the pelvis (13.39%), femur (11.33%), and ribs (8.24%) (Table 2). At the time of presentation, 13 patients (39%) had tumors involving a single bone, and 20 patients (61%) had multisite lesions. Clinical stage varied among patients, such that 11 patients (33%) were at stage IE, 2 (6%) at stage IIE, and 20 at stage IV (61%) of the disease.

2. Treatment

Of the 33 patients, 16 (48%) were initially treated with chemotherapy alone, and 17 (52%) with chemotherapy and RT. No patients in our study were treated with RT alone. While the majority of patients with solitary bone lesions underwent combined modality treatment (70%), patients with multiple bone lesions were predominantly treated with chemotherapy alone (60%). All patients received anthracycline-containing regimens such as CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisolone), with or without rituximab, and the median number of chemotherapy cycles was 6 (range, 2-8). R-CHOP (rituximab plus CHOP) was administered to 4 patients (12%) with solitary bone lesions, and to 9 patients (45%) with multiple bone lesions. Combined modality treatment was administered to 17 patients (52%), and consisted of chemotherapy that was followed by RT in most cases (15 patients). The median radiation dose was 4,500 cGy (range, 3,000-5,600 cGy) (Table 3).

3. Response to treatment

Of the 33 patients who were treated with chemotherapy, with or without radiation, 24 (76%) achieved complete response (CR) and 4 (12%) achieved partial response (PR). The overall response rate (ORR) following treatment was 88% (95% confidence interval [CI]: 73-97). Eight of the 24 patients who had achieved CR experienced relapse during the follow-up period. The relapse rate was 34%, and the median time to relapse was 87 months (95% CI: 61-114). No differences in ORR and CR rates were observed between patients who had received R-CHOP and those who had received CHOP (85% and 77% vs. 90% and 75%, respectively;
Fig. 2. Survival by number of bones involved. (A) Overall survival (OS) of patients with solitary bone lesions compared to that of patients with multiple bone lesions (median OS: not reached vs. 166 months, \(P=0.089\)) and (B) Progression-free survival (PFS) of patients with solitary bone lesions compared to that of patients with multiple bone lesions (median PFS: 74 months vs. 74 months, \(P=0.99\)).

Fig. 3. Progression-free survival of patients with solitary bone lesions treated with radiation therapy (Median progression-free survival: 74 months vs. 87 months, \(P=0.78\)). Abbreviation: RT, radiation therapy.

Fig. 4. Overall survival of patients at stage IV of the disease, treated with rituximab (Median overall survival: not reached, \(P=0.53\)).

4. Survival

The median OS was 166 months (95% CI: 0.339). The Kaplan-Meier curve of OS of patients with PBL exhibited a downward-sloping curve for a 4-year period, before reaching a plateau (Fig. 1). Longer OS was generally observed among patients with solitary bone lesions than that among those with multiple bone lesions (median OS: not reached vs. 166 months, respectively; \(P=0.089\); Fig. 2). No significant difference in OS was observed between patients treated with chemotherapy alone and those treated with chemotherapy followed by RT (median OS: 87 months vs. not reached, respectively; \(P=0.69\)). Addition of rituximab to CHOP did not result in significant improvement to OS and PFS (\(P=0.53\) and \(P=0.237\), respectively). Supplementing chemotherapy with RT also did not affect OS and PFS in patients with multiple bone lesions (data not shown) and patients with solitary bone lesions (Fig. 3). Moreover, OS and PFS were not significantly affected by the addition of rituximab to the treatment regimens in patients with advanced PBL (Fig. 4) and patients with limited disease (data not shown).

DISCUSSION

PBL is a rare subtype of NHL. Therefore, owing to its low incidence rates, specific therapeutic guidelines for PBL treatment have not yet been established. Therapeutic options include surgery, RT, chemotherapy, or chemoradiation. Prior to the use of chemotherapy as treatment, PBL was treated using radiation or surgery. However, the role of surgery in PBL should be limited to biopsies, bone fracture repair,
or disease control in selected patients with low-grade lymphomas who cannot tolerate additional therapeutic interventions because of other medical conditions.

In the 1960s, RT was established as the standard PBL treatment method, with reported cure rates ranging from 44% to 63% [13-15]. However, despite relatively high CR rates following RT alone, relapse in regions outside the radiation field was commonly observed. Therefore, although radiation provides excellent local control, systemic therapy is needed to prevent recurrence outside the radiation portal [13-15].

While some studies have established that combined modality treatment consisting of chemotherapy and RT provides a superior outcome to RT alone [16], other studies have failed to demonstrate such a significant advantage of combined modality over RT alone [1]. Recently, clinical outcomes of patients treated with immunochemotherapy such as rituximab have been reported [5]. However, no study has yet reported the detailed treatment response characteristics of PBL patients treated with rituximab-containing regimens in Korea. In the present study, we observed that most PBL cases characteristically exhibited male predominance and had a younger median age (40 years) than nodal DLBCL cases [17], which is consistent with previous published studies. On the other hand, previous reports had established that the most common site of involvement was the femur, followed by the pelvis, fibular or tibia, humerus, and spine, in descending order of frequency. However, according to our study, the pelvic bone was the most common involvement site [1, 18].

It is difficult to diagnose PBL and monitor response to treatment using simple imaging techniques such as radiography. Indeed, initial radiographs of patients with PBL may sometimes appear normal, while subsequent examination using bone scans or MRI would detect abnormalities. Therefore, conventional radiography has limited value in the diagnosis of PBL. Moreover, gallium scans, MRI, and positron emission tomography may falsely indicate activity following therapy due to bone remodeling [4], which further complicates the assessment of treatment response. Previous studies have associated certain factors with the survival rates of patients with PBL. The number of bones involved (single vs. multiple) has been established as the main prognostic factor and was demonstrated as such in a large-scale study (422 patients) conducted by Ostrowski et al. [19] In addition, Ramadan et al. and Catlett et al. [2, 20] demonstrated the association of high IPI scores with significantly worse patient outcomes. In the present study, our results confirm that the number of bones involved significantly affects the OS rates (P=0.089, Fig. 2), which is consistent with previous observations.

The effects of different treatment modalities on patients with PBL have not been determined. However, several studies have established that chemotherapy is essential for successful treatment of PBL. [21-23]. Moreover, Alencar et al. suggested that the addition of rituximab to chemotherapy regimens has a beneficial effect on the survival of patients with PBL [5]. However, our results showed that the addition of rituximab to the treatment regimen did not significantly affect the OS of patients who underwent chemotherapy alone or the OS of patients who were given a combined modality treatment of chemotherapy and RT. Furthermore, our results demonstrated that the Ann Arbor stage, ECOG performance status, and IPI score were not associated with patient outcomes, which is consistent with the Miami University report [5].

Our study has several limitations. First, the small number of patients included in the study made it difficult to achieve statistically significant results. Second, the retrospective nature of our analysis compromised the analysis of different clinical outcomes between the subgroups. This study faced the inherent challenges of studying such a rare disease. Nevertheless, to our knowledge, this is the first study that investigates the role of immunochemotherapy in the treatment of PBL patients in Korea. Moreover, it is among the largest case series studies on PBL that have ever been conducted. While this study failed to demonstrate the beneficial effects of supplementing standard chemotherapy regimens with either RT or rituximab, it confirmed that conventional cytotoxic chemotherapy is a successful treatment option for patients with PBL. Further investigation is required to characterize the role of immunochemotherapy in treating patients with PBL.

REFERENCES

1. Dubey P, Ha CS, Besa PC, et al. Localized primary malignant lymphoma of bone. Int J Radiat Oncol Biol Phys 1997;37:1087-93.
2. Ramadan KM, Shenkier T, Sehn LH, Gascoyne RD, Connors JM. A clinicopathological retrospective study of 131 patients with primary bone lymphoma: a population-based study of successively treated cohorts from the British Columbia Cancer Agency. Ann Oncol 2007;18:129-35.
3. Jaffe ES. The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology Am Soc Hematol Educ Program 2009:523-31.
4. Baar J, Burkes RL, Gospodarowicz M. Primary non-Hodgkin’s lymphoma of bone. Semin Oncol 1999;26:270-5.
5. Alencar A, Pitcher D, Byrne G, Losos IS. Primary bone lymphoma-the University of Miami experience. Leuk Lymphoma 2010;51:39-49.
6. Coifffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002;346:235-42.
7. Feugier P, Van Hoof A, Sebban C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol 2005;23:4117-26.
8. Sehn LH, Donaldson J, Chhanabhai M, et al. Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J Clin Oncol 2005;23:5027-33.
chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol 2006;7:379-91.

10. Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the committee on Hodgkin's disease staging classification. Cancer Res 1971;31:1860-1.

11. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol 1999;17:1244.

12. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol 2007;25:579-86.

13. Fidias P, Spiro I, Sobczak ML, et al. Long-term results of combined modality therapy in primary bone lymphomas. Int J Radiat Oncol Biol Phys 1999;45:1213-8.

14. Fairbanks RK, Bonner JA, Inwards CY, et al. Treatment of stage IE primary lymphoma of bone. Int J Radiat Oncol Biol Phys 1994;28:363-72.

15. Marshall DT, Amdur RJ, Scarborouugh MT, Mendenhall NP, Virkus WW. Stage IE primary non-Hodgkin's lymphoma of bone. Clin Orthop Relat Res 2002;405:216-22.

16. Fidias P, Spiro I, Sobczak ML, et al. Long-term results of combined modality therapy in primary bone lymphomas. Int J Radiat Oncol Biol Phys 1999;45:1213-8.

17. López-Guillermo A, Colomo L, Jiménez M, et al. Diffuse large B-cell lymphoma: clinical and biological characterization and outcome according to the nodal or extranodal primary origin. J Clin Oncol 2005;23:2797-804.

18. Heyning FH, Hogendoorn PC, Kramer MH, et al. Primary non-Hodgkin's lymphoma of bone: a clinicopathological investigation of 60 cases. Leukemia 1999;13:2094-8.

19. Ostrowski ML, Unni KK, Banks PM, et al. Malignant lymphoma of bone. Cancer 1986;58:2646-55.

20. Catlett JP, Williams SA, O'Connor SC, Krishnan J, Malkovska V. Primary lymphoma of bone: an institutional experience. Leuk Lymphoma 2008;49:2125-32.

21. Nissen NI, Erbsoll J, Hansen HS, et al. A randomized study of radiotherapy versus radiotherapy plus chemotherapy in stage I-II non-Hodgkin's lymphomas. Cancer 1983;52:1-7.

22. Mauch P, Leonard R, Skarin A, et al. Improved survival following combined radiation therapy and chemotherapy for unfavorable prognosis stage I-II non-Hodgkin's lymphomas. J Clin Oncol 1985;3:1301-8.

23. Miller TP, Dahlberg S, Cassady JR, et al. Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate- and high-grade non-Hodgkin's lymphoma. N Engl J Med 1998;339:21-6.