Research Article

Ji Gu, Wei Wang, Rong Yin, Chinh V Truong*, and Bibhu Prasad Ganthia

Complex circuit simulation and nonlinear characteristics analysis of GaN power switching device

https://doi.org/10.1515/nleng-2021-0046
Received Aug 29, 2021; accepted Dec 11, 2021

Abstract: To overcome the problem of energy losses in the electrical circuits and to improve the energy conversion efficiency, it is necessary to increase the power switch frequency and reduce the open resistance of the power switch. Moreover, based on energy saving, failure protection, circuit design and other aspects of the research of enhanced devices are also essential, a new static and dynamic model of GaN power transistor is proposed, and the steady-state and dynamic characteristics of GaN power transistors are simulated and tested. The GaN power transistor used in the test has a constant voltage of 450 V and a current of 4 A. By changing the driving power U_g (take 2, 3, 4V) and the stray inductance L_s (take 2 μH, 5 μH), the switching characteristics of the simulation model were studied, and the simulation was carried out by changing the absorption capacitance C_c (select 1.5 μF and 3.0 μF). This proposed simulation model can be used to analyze the protection effect of the buffer circuit under various stray inductors and help to guide the design of the buffer circuit. The simulation results of the static and dynamic models of the new GaN power transistor agree well with the experimental results. With the increase of U_g, the opening speed is faster, but the turn-off delay is longer. With the increase of L_s, the peak of the turn-off voltage increases. After increasing the absorption capacitance, the peak voltage during the turnoff is limited to the rated voltage, and the buffer circuit plays a protective role and the greater the C_c, the better the protection. The simulation results are consistent with the theoretical analysis, which verifies the effectiveness of the model.

Keywords: Gallium nitride; power transistor; complex circuit simulation

1 Introduction

With the rapid development of the national economy, the demand for electric energy is increasing day by day. Power electronic devices and power converters including power electronic devices play a key role in the improvement of power energy control technology and utilization efficiency. In the ideal state, the resistance approaches zero when the switch is “on” and infinity when the switch is “off”, and the switching time between “on” and “off” approaches zero [1]. In the electrical circuits especially in heavy transmission lines, there is always a huge of energy due to the resistance. There is a need for a better circuit design which will increase the power switch frequency and reduce the open resistance. Now days, various transistors are used in wide range of applications like telecommunications, charger for electrical vehicles. They are basically high electron mobility transistors which are capable of minimizing the switch losses [2, 3]. Therefore, to improve the energy conversion efficiency and reduce energy loss, it is necessary to increase the power switch frequency (that is, the working speed) and reduce the open resistance of the power switch. In addition, based on energy saving, failure protection, circuit design and other aspects of the research of enhanced devices are also essential.

Since the beginning of the last century, the research on SI transistors has opened the prelude of the information industry revolution. In the past decades, the microelectronics industry has developed rapidly, and increasingly new technologies have sprung up like bamboo shoots after a spring rain, which has greatly driven the development of the world economy and the improvement of people’s living standards [4]. Thanks to this, the information exchange between people living all over the world is more efficient and convenient, and the cycle of knowledge update is also
shorter, which puts forward higher requirements for the development of microelectronic devices, in semiconductor materials, silicon (Si), germanium (Ge) and other basic traditional semiconductors are generally regarded as the first generation of semiconductor materials, semiconductors such as GaAs and InP are considered second-generation semiconductor materials, the wide band gap semiconductor such as gallium nitride (GaN) and silicon carbide (SiC) is regarded as the third generation semiconductor materials [5]. To a large extent, the physical properties of the material determine the performance of the device.

GaN, as the representative of the third generation of semiconductor materials, has many excellent materials and physical properties and is likely to meet the requirements of power switching devices in the next generation of power electronic systems [6]. GaN has a unique crystal structure with a band gap of up to 3.4 eV, much higher than that of GaAs (1.4 eV) and Si (1.1 eV), and has the following characteristics: (1) The breakdown electric field is as high as 3.3*10^6 V/cm, about 10 times that of Si, and the voltage level is high. (2) After the growth of AlGaN layer on GaN layer, the concentration of two-dimensional electron gas formed by AlGaN/GaN heterojunction is higher, which can achieve the goal of high current density? (3) High electron saturation drift speed, the highest 2.5*10^7 cm/s, suitable for high frequency switching occasions. (4) The operating temperature is very high, and the theoretical junction temperature can reach 600°C, so that the cooling system volume of the device can be reduced and thus greatly simplified. (5) Low thermal resistance, suitable for high temperature environment. (6) The ability to resist illumination is stronger than GaAs and Si. (7) Hardness higher than GaAs and Si, easy to implement high power integration of devices. Gallium nitride (GaN) is the third generation semiconductor material. GaN-based power switching devices have broad application prospects in high speed and high power fields [7].

Based on the characteristics of the device, a new static and dynamic model of GaN power transistor is proposed, and the steady-state and dynamic characteristics of GaN power transistor are simulated and tested.

Semiconductor technology is the decisive force to promote the development of power electronics industry. The applications of power devices based on silicon have been quite mature. GaN and SiC are an important research direction in the future high-efficiency power switching systems. To date, working transistor prototypes using these wide band gap materials have proven superior performance and show great potential [8]. Jia et al. proposed a field-path coupling model for parallel Schottky (MPS) silicon carbide (SiC) diodes. The physical model was established by using the lumped charge modeling method based on the MPS chip structure, and the thermal model was established by using the finite element simulation software in accordance with the package structure and size of the SiC module. Based on the electrical model and thermal model of MPS-SiC diode, the field-circuit coupling model was established by using the PSPICE-COMSOL co-simulation platform [9].

Wide-band gap devices such as gallium nitride (GaN) have been widely used due to their low on-resistance and parasitic parameters [10]. Liang et al. introduced in detail the research results of the preparation of AlGaN/GaN HEMT epitaxial structure, power electronic materials on a 6-inch silicon substrate, and the preparation of Si-based GaN power MIS-HEMT on a 6-inch CMOS production line, as well as the research progress of normally close co-source co-gate GaN devices [11]. Wei et al. proposed a PSPICE based GaN power transistor model suitable for complex circuit simulation, the model is based on the theoretical analysis of the nonlinear characteristics of source-drain current and parasitic capacitance between poles, and the correctness of the proposed model is verified by the comparison of experimental and simulation results [12]. Wang et al. evaluated the switching performance of 1.2kV vertical GaN power field effect tube by using TCAD simulation of a mixed mode element circuit [13]. Frivaldska et al. experimentally analyzed the switching performance of GaN (GaAln) power transistor selected and prospect its application in bidirectional Buck/Boost DC-DC converters. The switching performance of GaN system GS61008P transistor simulation model with high precision and verification was evaluated [14]. Wang et al. proposed a device model for finite element simulation to study the relationship between the frequency characteristics of the on-resistance and the internal current distribution of GaN devices [15]. Sarnago et al. proposed an improved gate drive circuit for GaN devices based on a constant current regulator (CCR). This circuit realizes a constant current without being affected by working conditions, and solves the influence of temperature, aging, and working conditions on the performance of the converter [16]. Zhang et al. proposed a multiphysical analysis model based on GaN high electron mobility transistor (HEMT). The electromagnetic – electro-thermal coupling model of GaN-HEMT is beneficial to simulate the influence of different stray parameters on the external characteristics waveform of the device [17]. On this basis, a simulation model suitable for the new GaN power transistor is proposed, and the application of the model in the analysis of switching effects and buffer circuit is briefly introduced, the theoretical basis and guidance are provided for the application of GaN power transistor in practical engineering [18]. The high electron mobility transistor offers a low operating resistance as well as high breakdown voltage. It
is suitable power semiconductor for next generation which can increase the efficiency and minimize the various kinds of power and energy equipment [19, 20].

In the proposed algorithm, GaN power transistor was used to solve complex circuit stimulation in electrical circuits. Static as well as dynamic models were tested at certain voltage and current value. It was observed that this model proved out to be energy conversion efficient and helped in controlling energy losses. Its application in the buffer circuit and switching effects was also discussed in detail.

2 Research methods

2.1 Static feature modeling

According to the device structure analysis, a GaN power transistor simulation model is proposed, as shown in Figure 1. Using voltage – controlled current source id simulator static characteristics.

![Figure 1: Simulation model of GaN power transistor](image)

When source-drain voltage is added to the device, source-drain current I_D can be expressed as, according to the current density equation:

$$I_D = q W n (x) = q W \mu \epsilon (x) n (x)$$ \hspace{1cm} (1)

In the formula:
- q – electronic quantity;
- W – Channel width;
- $n (x)$ – The concentration of 2DEG at x;
- μ – Electron mobility;
- $\epsilon (x)$ – Channel electric field intensity at point x.

According to the energy relationship, it can be known that:

$$qn (x) = C_1 [U_{gs} - U_{th} - U(x)]$$ \hspace{1cm} (2)

Type:
- C_1 – Capacitance value per unit area between gate and channel;
- U_{th} – Threshold voltage.

Substituting Eq. (2) into Eq. (1), the source leakage current can be expressed as

$$I_D = \mu WC_1 [U_{gs} - U_{th} - U(x)]$$ \hspace{1cm} (3)

Integrating channel length, we can get:

$$I_D = \alpha [2(U_{gs} - U_{th})U_{ds} - U_{ds}^2]$$ \hspace{1cm} (4)

$$\alpha = \mu WC_1$$ \hspace{1cm} (5)

Where:
- α – current coefficient.

When U_{ds} increases to $U_{Ds} = U_{gs} - U_{th}$, it can be known from Eq. (2) that, $qn (x) = 0$, at this time, the channel is clipped at the leak end, and the current reaches saturation; in the saturated region, channel current I_{Dsat} is

$$I_{Dsat} = \alpha (U_{gs} - U_{th})^2$$ \hspace{1cm} (6)

2.2 Dynamic characteristic modeling

1. Parasitic capacitors C_{gs} and C_{gd}. GaN dynamic characteristics of power transistors are mainly determined by the charge and discharge processes of parasitic capacitors C_{gs}, C_{gd} between electrodes [21]. Since the breakdown field strength and band gap width of GaN materials are much higher than those of Si materials, under the same pressure conditions, GaN power transistors have lower parasitic capacitance, resulting in lower switching losses and faster switching speeds, therefore, the parasitic capacitors C_{gs}, C_{gd} in the model must be set to more accurate and reasonable values.

To determine the parasitic capacitances C_{gs} and C_{gd} of the device, the total gate charge Q_g must first be calculated. This can be obtained from the integral of the gate to the source charge in the channel:

$$Q_g = W \int_0^L (-qn) dx = -W \int_0^{U_{gs}} qn \frac{dx}{dU} dU$$

$$= -W \int_0^{U_{gs}} \frac{qn}{\epsilon (x)} dU$$
Substituting Eq. (1) in, we get:

\[Q_g = -\frac{\mu W^2}{\lambda_0} \int_0^{U_{ds}} (q\eta)^2 \, dU \quad (8) \]

Substituting Eqs. (2) and (4) in, we get:

\[Q_g = \frac{2}{3} \beta \frac{U_{gd}}{U_{gs}}^2 - \frac{U_{gs}}{U_{gd}} \quad (9) \]

Among them, \(U_{gs} = U_{gs} - U_{th} \), \(U_{gd} = U_{gs} - U_{ds} \);

Coefficient of capacitance \(\beta = WC_1L \).

Take the partial differential of \(Q_g \), and we can get:

\[C_{gs} = -\frac{\partial Q_g}{\partial U_{gs}} = \frac{2}{3} \beta \left[1 - \frac{(U_{gs} - U_{ds})^2}{(2U_{gs} - U_{ds})^2} \right] \quad (10) \]

\[C_{gd} = -\frac{\partial Q_g}{\partial U_{gd}} = \frac{2}{3} \beta \left[1 - \frac{U_{gs}^2}{(2U_{gs} - U_{ds})^2} \right] \quad (11) \]

2. Parasitic resistance \(R_g, R_d \) and \(R_s \). The internal gate resistance \(R_g \) affects the time constant of the gate voltage, the switching speed limit of the device is determined, but the resistance value is negligible compared to the external gate resistance used to suppress switching oscillations [22]. Both drain resistance \(R_d \) and source resistance \(R_s \) are related to the static and dynamic characteristics of the device. Replace the values of \(R_d \) and \(R_s \) with \(R_{ds(\text{on})} \), the values of \(R_{ds(\text{on})} \) can be looked up in the data sheet.

3 Results analysis and discussion

The steady state and dynamic characteristics of GaN power transistor are simulated and tested. The GaN power transistor used in the test is EPC2027. The device has a quota voltage of 450 V and a current of 4 A.

3.1 Steady state characteristics

When the grid driving voltage is \(U_{gs} = 2, 3, 4, 5 \) V, the simulation and test results of GaN power transistor output characteristics are shown in Figure 2.

At low driving voltage, there is steady increment in the output value, but as the grid driving voltage increase and reach to 5V, there is a gradual increase in output in the value as clear from the above curve. It can be seen from Figure 2 that the steady-state characteristics of GaN power transistors described by the proposed model are in good agreement with the experimental results.

3.2 Dynamic characteristics

The test circuit topology of GaN power transistor is shown in Figure 3. Where, \(U_{DC} \) is the DC bus voltage, \(R \) and \(L \) are the inductive load, and \(V_D \) is the continuation diode. Inductance \(L_c \), resistance \(R_c \), diode \(V_D \), capacitor \(C_c \) to form \(di/dt \) buffer circuit; \(L_s \) is the equivalent stray inductance of loop.

2. Parasitic resistance \(R_g, R_d \) and \(R_s \). The internal gate resistance \(R_g \) affects the time constant of the gate voltage, the switching speed limit of the device is determined, but the resistance value is negligible compared to the external gate resistance used to suppress switching oscillations [22]. Both drain resistance \(R_d \) and source resistance \(R_s \) are related to the static and dynamic characteristics of the device. Replace the values of \(R_d \) and \(R_s \) with \(R_{ds(\text{on})} \), the values of \(R_{ds(\text{on})} \) can be looked up in the data sheet.

![Figure 2: Simulation and test results of GaN power transistor output characteristics](image)

![Figure 3: GaN power transistor test circuit topology](image)

The test conditions	Circuit features
\(U_{DC} = 200 \) V	\(L_c = 1 \) μH
	\(L_c = 0.5 \) μH
	\(R_c = 2 \) Ω
	\(C_c = 0.5 \) μF
Simulation and nonlinear characteristics analysis of GaN power switching device

3.3 Analysis of switching characteristics of the model

The simulation model can be used to analyze the influence of driving power supply U_g, gate external resistance R_g, stray inductance L_s and the recovery characteristics of continuation diode on the switching characteristics of GaN power transistor. Here, U_g and L_s are taken as examples for analysis and explanation [23, 24]. The analysis methods of other factors are similar. The circuit in Figure 3 is still used, and the working conditions remain unchanged. Except for the selected analysis factors, other parameters remain unchanged.

1. Influence of driving power U_g. The size of the driving power supply will affect the switching speed of the device. Keep $L_s = 1 \mu H$, let U_g be 2, 3, 4 V respectively, and just to make it easier to see, so let us take -5 V for the low level of U_g. The simulation curve of gate voltage U_{gs} under different U_g is shown in Figure 5. As can be seen from Figure 5, with the increase of U_g, the opening speed is accelerated, but the turn-off delay is also longer. Therefore, the appropriate driving power value should be selected when designing the circuit.

The simulation results accord with the theoretical analysis.

![Figure 5: Simulation curve of gate voltage U_{gs} under different U_g conditions](image)

Parameter	Value
L_s	1 μH
U_g	3V
U_g	4V

Table 2: Parameters to investigate the influence of driving power
2. The influence of stray inductance L_s. Stray inductance has a great influence on the device turn-off voltage. Keep $U_g = 3$ V, L_s. Take 2 μH and 5 μH respectively for simulation. The simulation curve of source-drain voltage U_{ds} under different L_s is shown in Figure 6. As can be seen from Figure 6, with the increase of L_s, the peak of the turn-off voltage increases significantly. The simulation results accord with the theoretical analysis. In practical circuit design, low inductive bus design, reasonable structure layout, and proper selection of inductive elements can be used to reduce the stray inductance.

Parameter	Value
U_g	3 V
L_s	2 μH
	5 μH

Table 3: Parameters to study the influence of stray inductance

Figure 6: Source-drain voltage U_{ds} simulation curve under different L_s

3.4 Buffer circuit design

The proposed simulation model can be used to analyze the protection effect of the buffer circuit under various stray inductors and guide the design of the buffer circuit. The simulation results in Figure 6 show that when the buffer circuit parameters are constant and L_s to 5 μH is increased, the device’s turn-off peak voltage exceeds the rated voltage [25]. Under the guidance of the simulation results, the buffer circuit parameters were redesigned, and the absorption capacitance C_c was selected as 1.5 μF and 3.0 μF, respectively, for simulation [26]. The simulation curve of source-drain voltage U_{ds} under different C_c is shown in Figure 7. As can be seen from Figure 7, after increasing the absorption capacitance, the peak voltage during the turnoff is limited to the rated voltage, and the buffer circuit plays a protective role, and the bigger C_c is, the better the protection. Table 4 shows the parameters settings to study the effect of absorption capacitance.

Parameter	Value
L_s	5 μH
C_c	1.5 μF
	3.0 μF

Table 4: Parameters to study the effect of absorption capacitance

Figure 7: Simulation curve of source-drain voltage under different C_c

4 Conclusions

Based on the characteristics of the device, a new static and dynamic model of GaN power transistor is proposed, and a simulation model based on PSPICE is established, the accuracy of the model is verified by the test circuit. The application of the model in the analysis of switching effects and buffer circuit is briefly introduced, the theoretical basis and guidance is provided for the application of GaN power transistor in practical engineering. A new static and
dynamic model of GaN power transistor is presented based on the device’s features, and the steady-state and dynamic characteristics of GaN power transistor are simulated and tested. The GaN power transistor used in the test has a constant voltage of 450 V and a current of 4 A. By changing the values of driving power U_g (take 2, 3, 4V) and stray inductors L_s (take 2 μH, 5 μH), the switching characteristics of the simulation model were studied and the simulation was carried out by changing the absorption capacitance C_C (select 1.5μF and 3.0μF), the protection effect of buffer circuit is studied. The results show that (1) The simulation results of the static and dynamic models of the new GaN power transistor are in good agreement with the experimental results; (2) With the increase of the opening speed increases, but the turn-off delay also becomes longer; (3) With the increase of, the peak of the turn-off voltage increases clearly; (4) After increasing the absorption capacitance, the peak voltage during the turnoff is limited to the rated voltage, and the buffer circuit plays a protective role, and the bigger the C_C, the better the protection. On this basis, a simulation model for the new GaN power transistor is proposed, and the model’s application in the analysis of switching effects and buffer circuit is briefly described. The theoretical foundation and guidance for the application of GaN power transistor in practical engineering are also provided. The simulation results are consistent with the theoretical analysis, which verifies the effectiveness of the model.

Compliance with Ethical Standards: The authors declare that they have no conflict of interest in place and comply with international, national, and/or institutional standards on research involving Human Participants and/or animals and Informed Consent.

Funding information: The authors state no funding involved.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The authors state no conflict of interest.

References

[1] Li B, Wang G, Liu S, Zhao N, Zhang G, Zhang X, et al. Modeling and Analysis of Bridge-Leg Crosstalk of GaN HEMT Considering Nonlinear Junction Capacitances. IEEE Trans Power Electron. 2021;36(4):4429–39.

[2] Saxena S, Vyas S, Kumar BS, Gupta S. Survey on Online Electronic Payments Security. 2019 Amity International Conference on Artificial Intelligence (AICAI); 2019 Feb 4-9; Dubai, United Arab Emirates. IEEE. 2019 p. 756-751.

[3] Rastogi G, Sushil R. Cloud computing implementation: Key issues and solutions. 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom); 2015 March 11-13; New Delhi, India. IEEE 2015 p. 320-324.

[4] Ratta P, Kaur A, Sharma S, Shabaz M, Dhiman G. Application of Blockchain and Internet of Things in Healthcare and Medical Sector: Applications, Challenges, and Future Perspectives. J Food Qual. 2021;2021:1–20.

[5] Chen K, Zhao Z, Yuan L, Lu T, He F. The Impact of Nonlinear Junction Capacitance on Switching Transient and Its Modeling for SiC MOSFET. IEEE Trans Electron Dev. 2015;62(2):333–8.

[6] Chvala A, Donoval D, Satka A, Molnar M, Marek J, Pribytny P. Advanced Methodology for Fast 3-D TCAD Device/Circuit Electrothermal Simulation and Analysis of Power HEMTs. IEEE Trans Electron Dev. 2015;62(3):828–34.

[7] Costinett D, Maksimovic D, Zane R. Circuit-Oriented Treatment of Nonlinear Capacitances in Switched-Mode Power Supplies. IEEE Trans Power Electron. 2015;30(2):985–95.

[8] Zhang Y. Comparison between competing requirements of GaN and sic family of power switching devices. IOP Conf Series Mater Sci Eng. 2020;738(1):012004.

[9] Lin Y, Xiao F, Duan Y, Luo Y. Field-circuit coupling modeling and multirate electro-thermal cosimulation analysis of merged pin Schottky si diodes. Proceedings of the CSEE. 2019.

[10] Chen J, Luo Q, Huang J, He Q, Du X. Analysis and design of an RC snubber circuit to suppress false triggering oscillations for GaN devices i10 half-bridge circuits. IEEE Trans Power Electron. 2020;35(3):2690-2704.

[11] Liang HE, Zhang X, Ni Y, Luo R, Li L, Chen J, et al. Fabrication and research on GaN-based power electronic materials and devices on 6-inch Si substrate. J Power Supply. 2019;17.

[12] Wei C, Zheng L, Ren Q. Modeling and characterization analysis of a novel GaN power transistor. Electr Ener Manage Technol. 2019.

[13] Wang H, Xiao M, Sheng K, Palacios T, Zhang Y. (2019). Switching Performance Evaluation of 1200 V Vertical GaN Power FinFETs. 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WIPDA); 2019 Oct 29-31; Raleigh (NC), USA. IEEE, 2019 p. 314-318.

[14] Frivaldszky M, Morgos J, Zelnik R. Evaluation of GaN power transistor switching performance on characteristics of bidirectional DC-DC converter. Elektron Elektrotech. 2020;26(4):18–24.

[15] Wang K, Li B, Li H, Yang X, Qiu A. Characterization and modeling of frequency dependent resistance for GaN devices at high frequencies. IEEE Trans Power Electron. 2020;35(5):4925–33.

[16] Sarnago H, Lucía S, Popa IO, Burdío JM. Constant-current gate frequencies. IEEE Trans Power Electron. 2020;35(5):4925–33.

[17] Zhang R, Wang Y, Xu H. A novel multi-mechanical field optimization method for GaN HEMT circuit design. J Power Electron. 2021;21:616-623.

[18] Ajaz F, Naseem M, Sharma S, Shabaz M, Dhiman G. COVID-19: Challenges and its Technological Solutions using IoT. Curr Med Imaging Rev. 2021 Feb;17 https://doi.org/10.2174/1573405617666210215143503.

[19] Kumar A, Jagota V, Shawl RJ, Sharma V, Sargam K, Shabaz M, et al. Wire EDM process parameter optimization for D2 steel. Mater
[20] Ren X, Li C, Ma X, Chen F, Wang H, Sharma A, et al. Design of multi-information fusion based intelligent electrical fire detection system for green buildings. Sustainability (Basel). 2021;13(6):3405.

[21] Costinett D, Zane R, Maksimovic D. Circuit-oriented modeling of nonlinear device capacitances in switched mode power converters. 2012 IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL); 2012 Jun 10-13; Kyoto, Japan. IEEE, 2012 p. 1-8 https://doi.org/10.1109/COMPEL.2012.6251765.

[22] Li H, Zhao X, Su W, Sun K, You X, Zheng TQ. Nonsegmented PSpice circuit model of GaN HEMT with simulation convergence consideration. IEEE Trans Ind Electron. 2017;64(11):8992–9000.

[23] Deshmukh S, Thirupathi Rao K, Shabaz M. Collaborative learning based straggler prevention in large-scale distributed computing framework. Secur Commun Netw. 2021;2021:1–9.

[24] Bhatia V, Kaur S, Sharma K, Rattan P, Jagota V, Kemal MA. Design and simulation of capacitive MEMS Switch for Ka Band Application. Wirel Commun Mob Comput. 2021;2021513. https://doi.org/10.1155/2021/2021513.

[25] Moon J, Kim J, Kim B. Investigation of a Class-I Power Amplifier With a Nonlinear $C_{\text{out}}(V_{\text{out}})$ for Optimized Operation. IEEE Trans Microw Theory Tech. 2010;58(11):2800–11.

[26] Long X, Jun Z, Pu L, Chen D, Liang W. Analysis and Suppression of High Speed Dv/Dt Induced False Turn-on in GaN HEMT Phase-Leg Topology. IEEE Access. 2021;9:45259–69.