SEMI-INVARIANTS FOR CONCEALED-CANONICAL ALGEBRAS

GRZECDZ BOBIŃSKI

Abstract. In the paper is we generalize known descriptions of rings of semi-invariants for regular modules over Euclidean and canonical algebras to arbitrary concealed-canonical algebras.

Throughout the paper \(\mathbb{k} \) is a fixed algebraically closed field. By \(\mathbb{Z} \), \(\mathbb{N} \) and \(\mathbb{N}_+ \), we denote the sets of the integers, the non-negative integers and the positive integers, respectively. Finally, if \(i, j \in \mathbb{Z} \), then \([i, j] := \{k \in \mathbb{Z} | i \leq k \leq j\}\) (in particular, \([i, j] = \emptyset \) if \(i > j \)).

Introduction

Concealed-canonical algebras have been introduced by Lenzing and Meltzer [22] as a generalization of Ringel’s canonical algebras [26]. An algebra is called concealed-canonical if it is isomorphism to the endomorphism ring of a tilting bundle over a weighted projective line. The concealed-canonical algebras can be characterized as the algebras which posses sincere separating exact subcategory [23] (see also [28]). Together with tilted algebras [7,20], the concealed-canonical algebras form two most prominent classes of quasi-tilted algebras [19]. Moreover, according to a famous result of Happel [18], every quasi-tilted algebra is derived equivalent either to a tilted algebra or to a concealed-canonical algebra.

Despite investigations of a structure of the categories of modules over concealed-canonical algebras, geometric problems have been studied for this class of algebras (see for example [2,3,6,14,15,17,29]). Often these problem were studied for canonical algebras only and sometimes the authors restrict their attention to the concealed-canonical algebras of tame representation type.

In the paper we study a problem, which has been already investigated in the case of canonical algebras. Namely, given a concealed-canonical algebra \(\Lambda \) and a module \(R \), which is a direct sum of modules from of sincere separating exact subcategory of \(\text{mod} \Lambda \), we want to describe a structure of the ring of semi-invariants associated to \(\Lambda \) and the dimension vector of \(R \). This problem has been solved provided \(\Lambda \) is a canonical algebra and \(R \) comes from a distinguished sincere separating exact subcategory.

2000 Mathematics Subject Classification. Primary: 16G20; Secondary: 13A50.

Key words and phrases. concealed-canonical algebra, semi-invariant, sincere separating exact subcategory.
exact subcategory of mod Λ (the answers have been obtained independently by Skowroński and Weyman [29] and Domokos and Lenzing [14, 15]). This problem has also been solved for another class of concealed-canonical algebras, namely the path algebras of Euclidean quivers [30] (see also [12, 27]). The obtained results are very similar, although the methods used in the proof are completely different. The aim my paper is to obtain a unified proof of the above results, which would generalize to an arbitrary concealed-canonical algebra. This aim is achieved if the characteristic of k equals 0. If char $k > 0$, then we show that an analogous result is true if we study the semi-invariants which are the restrictions of the semi-invariants on the ambient affine space. The precise formulation of the obtained results can be found in Section 6. In particular we prove that the studied rings of semi-invariants are always complete intersections, and are polynomial rings if the considered dimension vector is “sufficiently big”.

The paper is organized as follows. In Section 1 we introduce a setup of quivers and their representations, which due to a result of Gabriel [16] is an equivalent way of thinking about algebras and modules. Next, in Section 2 we gather facts about concealed-canonical algebras (equivalently, quivers). In Section 3 we introduce semi-invariants and present their basic properties. Next, in Section 4 we study the semi-invariants in the case of concealed-canonical quivers more closely. Section 5 is devoted to presentation of necessary facts about the Kronecker quiver, which is the minimal concealed-canonical quiver. Finally, in Section 6 we present and proof the main result.

The author gratefully acknowledges the support of the Alexander von Humboldt Foundation. The research was also supported by National Science Center Grant No. DEC-2011/03/B/ST1/00847.

1. Quivers and their representations

By a quiver Δ we mean a finite set Δ_0 (called the set of vertices of Δ) together with a finite set Δ_1 (called the set of arrows of Δ) and two maps $s, t : \Delta_1 \to \Delta_0$, which assign to each arrow α its starting vertex $s\alpha$ and its terminating vertex $t\alpha$, respectively. By a path of length $n \in \mathbb{N}_+$ in a quiver Δ we mean a sequence $\sigma = (\alpha_1, \ldots, \alpha_n)$ of arrows such that $s\alpha_i = t\alpha_{i+1}$ for each $i \in [1, n - 1]$. In the above situation we put $t\sigma := n$, $s\sigma := s\alpha_n$ and $t\sigma := t\alpha_1$. We treat every arrow in Δ as a path of length 1. Moreover, for each vertex x we have a trivial path 1_x at x such that $t1_x := 0$ and $s1_x := x := t1_x$. For the rest of the paper we assume that the considered quivers do not have oriented cycles, where by an oriented cycle we mean a path σ of positive length such that $s\sigma = t\sigma$.

Let Δ be a quiver. We define its path category $k\Delta$ to be the category whose objects are the vertices of Δ and, for $x, y \in \Delta_0$, the morphisms from x to y are the formal k-linear combinations of paths starting at
and terminating at \(y \). If \(\omega \) is a morphism from \(x \) to \(y \), then we write \(s\omega := x \) and \(t\omega := y \). By a representation of \(\Delta \) we mean a functor from \(k\Delta \) to the category \(\text{mod} k \) of finite dimensional vector spaces. We denote the category of representations of \(\Delta \) by \(\text{rep} \Delta \). Observe that every representation of \(\Delta \) is uniquely determined by its values on the vertices and the arrows. Given a representation \(M \) of \(\Delta \) we denote by \(\dim M \) its dimension vector defined by the formula \((\dim M)(x) := \dim_k M(x) \), for \(x \in \Delta_0 \). Observe that \(\dim M \in \mathbb{N}^{\Delta_0} \) for each representation \(M \) of \(\Delta \). We call the elements of \(\mathbb{N}^{\Delta_0} \) dimension vectors. A dimension vector \(d \) is called sincere if \(d(x) \neq 0 \) for each \(x \in \Delta_0 \).

By a relation in a quiver \(\Delta \) we mean a \(k \)-linear combination of paths of lengths at least 2 having a common starting vertex and a common terminating vertex. Note that each relation in a quiver \(\Delta \) is a morphism in \(k\Delta \). A set \(\mathfrak{R} \) of relations in a quiver \(\Delta \) is called minimal if \(\langle \mathfrak{R} \setminus \{ \rho \} \rangle \neq \langle \mathfrak{R} \rangle \) for each \(\rho \in \mathfrak{R} \), where for a set \(\mathfrak{X} \) of morphisms in \(\Delta \) we denote by \(\langle \mathfrak{X} \rangle \) the ideal in \(k\Delta \) generated by \(\mathfrak{X} \). Observe that each minimal set of relations is finite. By a bound quiver \(\Delta \) we mean a quiver \(\Delta \) together with a minimal set \(\mathfrak{R} \) of relations. Given a bound quiver \(\Delta \) we denote by \(k\Delta \) its path category, i.e. \(k\Delta := k\Delta / \langle \mathfrak{R} \rangle \). By a representation of a bound quiver \(\Delta \) we mean a functor from \(k\Delta \) to \(\text{mod} k \). In other words, a representation of \(\Delta \) is a representation \(M \) of \(\Delta \) such that \(M(\rho) = 0 \) for each \(\rho \in \mathfrak{R} \). We denote the category of representations of a bound quiver \(\Delta \) by \(\text{rep} \Delta \). Moreover, we denote by \(\text{ind} \Delta \) the full subcategory of \(\text{rep} \Delta \) consisting of the indecomposable representations. It is known that \(\text{rep} \Delta \) is an abelian Krull–Schmidt category.

An important role in the study of representations of quivers is played by the Auslander–Reiten translations \(\tau \) and \(\tau^- \) [1, Section IV.2], which assign to each representation of a bound quiver \(\Delta \) another representation of \(\Delta \). In particular, we will use the following consequences of the Auslander–Reiten formulas [1, Theorem IV.2.13]. Let \(M \) and \(N \) be representations of a bound quiver \(\Delta \). If \(\text{pdim} \Delta \leq 1 \), then

\[
(1.1) \quad \dim_k \text{Ext}^1_{\Delta}(M, N) = \dim_k \text{Hom}_{\Delta}(N, \tau M).
\]

Dually, if \(\text{idim} \Delta \leq 1 \), then

\[
(1.2) \quad \dim_k \text{Ext}^1_{\Delta}(M, N) = \dim_k \text{Hom}_{\Delta}(\tau^- N, M).
\]

Let \(\Delta \) be a bound quiver. We define the corresponding Tits form \(\langle -,- \rangle_{\Delta} : \mathbb{Z}^{\Delta_0} \times \mathbb{Z}^{\Delta_0} \to \mathbb{Z} \) by the formula

\[
\langle d', d'' \rangle_{\Delta} := \sum_{x \in \Delta_0} d'(x) \cdot d''(x) - \sum_{\alpha \in \Delta_1} d'(s\alpha) \cdot d''(t\alpha) + \sum_{\rho \in \mathfrak{R}} d'(s\rho) \cdot d''(t\rho),
\]

for \(d', d'' \in \mathbb{Z}^{\Delta_0} \). Bongartz [8, Proposition 2.2] has proved that

\[
\langle \dim M, \dim N \rangle_{\Delta} = \dim_k \text{Hom}_{\Delta}(M, N) - \dim_k \text{Ext}^1_{\Delta}(M, N) + \dim_k \text{Ext}^2_{\Delta}(M, N)
\]
for any $M, N \in \text{rep} \Delta$ provided $\text{gldim} \Delta \leq 2$.

2. SEPARATING EXACT SUBCATEGORIES

In this section we present facts about sincere separating exact subcategories, which we use in our considerations. For the proofs we refer to [23, 26].

Let Δ be a bound quiver and \mathcal{X} a full subcategory of $\text{ind} \Delta$. We denote by $\text{add} \mathcal{X}$ the full subcategory of $\text{rep} \Delta$ formed by the direct sums of representations from \mathcal{X}. We say that \mathcal{X} is an exact subcategory of $\text{ind} \Delta$ if $\text{add} \mathcal{X}$ is an exact subcategory of $\text{rep} \Delta$, where by an exact subcategory of $\text{rep} \Delta$ we mean a full subcategory \mathcal{E} of $\text{rep} \Delta$ such that \mathcal{E} is an abelian category and the inclusion functor $\mathcal{E} \hookrightarrow \text{rep} \Delta$ is exact.

We put $\mathcal{X}_- := \{ X \in \text{ind} \Delta : \text{Hom}_\Delta(\mathcal{X}, X) = 0 \}$ and $\mathcal{X}_+ := \{ X \in \text{ind} \Delta : \text{Hom}_\Delta(X, \mathcal{X}) = 0 \}$.

Let Δ be a bound quiver. Following [23] we say that \mathcal{R} is a sincere separating exact subcategory of $\text{ind} \Delta$ provided the following conditions are satisfied:

1. \mathcal{R} is an exact subcategory of $\text{ind} \Delta$ stable under the actions of the Auslander–Reiten translations τ and τ^-.
2. $\text{ind} \Delta = \mathcal{R}_- \cup \mathcal{R} \cup \mathcal{R}_+$.
3. $\text{Hom}_\Delta(X, \mathcal{R}) \neq 0$ for each $X \in \mathcal{R}_-$ and $\text{Hom}_\Delta(\mathcal{R}, X) \neq 0$ for each $X \in \mathcal{R}_+$.
4. $P \in \mathcal{R}_-$, for each indecomposable projective representation P of Δ, and $I \in \mathcal{R}_+$, for each indecomposable injective representation I of Δ.

Lenzing and de la Peña [23] have proved that there exists a sincere separating exact subcategory \mathcal{R} of $\text{ind} \Delta$ if and only if Δ is concealed-canonical, i.e. $\text{rep} \Delta$ is equivalent to the category of modules over a concealed-canonical algebra. In particular, if this is the case, then $\text{gldim} \Delta \leq 2$.

For the rest of the section we fix a concealed-canonical bound quiver Δ and a sincere separating exact subcategory \mathcal{R} of $\text{ind} \Delta$. Moreover, we put $\mathcal{P} := \mathcal{R}_-$ and $\mathcal{Q} := \mathcal{R}_+$. Finally, we denote by \mathcal{P}, \mathcal{R} and \mathcal{Q} the dimension vectors of the representations from $\text{add} \mathcal{P}$, $\text{add} \mathcal{R}$ and $\text{add} \mathcal{Q}$, respectively.

It is known that $\text{pdim}_\Delta P \leq 1$ for each $P \in \mathcal{P}$ and $\text{idim}_\Delta Q \leq 1$ for each $Q \in \mathcal{Q}$. Next, $\text{pdim}_\Delta R = 1$ and $\text{idim}_\Delta R = 1$ for each $R \in \mathcal{R}$. The categories \mathcal{P} and \mathcal{Q} are closed under the actions of τ and τ^-, hence using the Auslander–Reiten formulas (1.1) and (1.2) we obtain...
that $\text{Ext}^1_{\Delta}(\mathcal{P}, \mathcal{R}) = 0 = \text{Ext}^1_{\Delta}(\mathcal{R}, \mathcal{Q})$. In particular,

$$\langle d', d \rangle_{\Delta} \geq 0 \quad \text{and} \quad \langle d, d'' \rangle_{\Delta} \geq 0$$

for all $d' \in P, d \in R$ and $d'' \in Q$.

We have $\mathcal{R} = \bigsqcup_{\lambda \in P_1} \mathcal{R}_\lambda$ for connected uniserial categories \mathcal{R}_λ, $\lambda \in \mathbb{P}_k^1$. For $\lambda \in \mathbb{P}_k^1$ we denote by r_λ the number of the pairwise non-isomorphic simple objects in $\text{add} \mathcal{R}_\lambda$. Then $r_\lambda < \infty$ for each $\lambda \in \mathbb{P}_k^1$. Moreover, $\sum_{\lambda \in \mathbb{P}_k^1} (r_\lambda - 1) = |\Delta_0| - 2$. In particular, if $\mathcal{X}_0 := \{ \lambda \in \mathbb{P}_k^1 : r_\lambda > 1 \}$, then $|\mathcal{X}_0| < \infty$.

Fix $\lambda \in \mathbb{P}_k^1$. If $R_{\lambda, 0}, \ldots, R_{\lambda, r_\lambda - 1}$ are chosen representatives of the isomorphisms classes of the simple objects in $\text{add} \mathcal{R}_\lambda$, then we may assume that $\tau R_{\lambda, i} = R_{\lambda, i - 1}$ for each $i \in [0, r_\lambda - 1]$, where we put $R_{\lambda, i} := R_{\lambda, i \mod r_\lambda}$, for $i \in \mathbb{Z}$. For any $i \in \mathbb{Z}$ and $n \in \mathbb{N}_+$ there exists a unique (up to isomorphism) representation in \mathcal{R}_λ whose socle and length in $\text{add} \mathcal{R}_\lambda$ are $R_{\lambda, i}$ and n, respectively. We fix such representation and denote it by $R_{\lambda, i}^{(n)}$ and its dimension vector by $e^{n}_{\lambda, i}$. Then the composition factors of $R_{\lambda, i}^{(n)}$ are (starting from the socle) $R_{\lambda, 0}, \ldots, R_{\lambda, i + n - 1}$. Consequently, $e^{n}_{\lambda, i} = \sum_{j \in [i, i+n-1]} e_{\lambda, j}$, where $e_{\lambda, j} := \text{dim} R_{\lambda, j}$, for $j \in \mathbb{Z}$. Moreover, for all $i \in \mathbb{Z}$ and $n, m \in \mathbb{N}_+$ there exists an exact sequence

$$0 \to R_{\lambda, i}^{(n)} \to R_{\lambda, i}^{(n+m)} \to R_{\lambda, i+n}^{(m)} \to 0.$$

Obviously, for each $R \in \mathcal{R}_\lambda$ there exist $i \in \mathbb{Z}$ and $n \in \mathbb{N}_+$ such that $R \simeq R_{\lambda, i}^{(n)}$. Moreover, it is known that the vectors $e_{\lambda, 0}, \ldots, e_{\lambda, r_\lambda - 1}$ are linearly independent. Consequently, if $R \in \text{add} \mathcal{R}_\lambda$, then there exist uniquely determined $q_{i0}^R, \ldots, q_{i(r_\lambda - 1)}^R \in \mathbb{N}$ such that $\text{dim} R = \sum_{i \in [0, r_\lambda - 1]} q_i^R e_{\lambda, i}$. We put $q_i^R := q_i^R \mod r_\lambda$, for $i \in \mathbb{Z}$. Observe that for each $i \in \mathbb{Z}$ the number q_i^R counts the multiplicity of $R_{\lambda, i}$ as a composition factor in the Jordan–Hölder filtration of R in the category $\text{add} \mathcal{R}_\lambda$.

Let $R = \bigoplus_{\lambda \in \mathbb{P}_k^1} R_{\lambda}$, for $R_{\lambda} \in \text{add} \mathcal{R}_\lambda$, $\lambda \in \mathbb{P}_k^1$. Then we put $q_{i\lambda}^R := q_i^R \lambda$ for $\lambda \in \mathbb{P}_k^1$ and $i \in \mathbb{Z}$. Next, we put $p_i^R := \min\{q_{i\lambda}^R : i \in \mathbb{Z}\}$, for $\lambda \in \mathbb{P}_k^1$, and $p_{i\lambda}^R := q_{i\lambda}^R - p_i^R$, for $\lambda \in \mathbb{P}_k^1$ and $i \in \mathbb{Z}$. Then

$$\text{dim} R = \sum_{\lambda \in \mathbb{P}_k^1} p_i^\lambda \cdot h_\lambda + \sum_{\lambda \in \mathbb{P}_k^1} \sum_{i \in [0, r_\lambda - 1]} p_{i\lambda}^R \cdot e_{\lambda, i},$$

where $h_\lambda := \sum_{i \in [0, r_\lambda - 1]} e_{\lambda, i}$, for $\lambda \in \mathbb{P}_k^1$. It is known that $h_\lambda = h_\mu$ for any $\lambda, \mu \in \mathbb{P}_k^1$. We denote this common value by h. Then

$$\text{dim} R = p^R \cdot h + \sum_{\lambda \in \mathbb{P}_k^1} \sum_{i \in [0, r_\lambda - 1]} p_{i\lambda}^R \cdot e_{\lambda, i},$$

where $p^R := \sum_{\lambda \in \mathbb{P}_k^1} p_{i\lambda}^R$. It is known that if $R, R' \in \text{add} \mathcal{R}$ and $\text{dim} R = \text{dim} R'$, then $p^R = p^{R'}$ and $p_{i\lambda}^R = p_{i\lambda}^{R'}$ for any $\lambda \in \mathbb{P}_k^1$ and $i \in [0, r_\lambda - 1]$.
Consequently, for each \(d \in \mathbb{R}\) there exist uniquely determined \(p^d \in \mathbb{N}\) and \(p^d_{\lambda,i} \in \mathbb{N}\) for \(\lambda \in \mathbb{P}^1_k\) and \(i \in [0, r_\lambda - 1]\), such that
\[
d = p^d \cdot h + \sum_{\lambda \in \mathbb{P}^1_k} \sum_{i \in [0, r_\lambda - 1]} p^d_{\lambda,i} \cdot e_{\lambda,i}
\]
and for each \(\lambda \in \mathbb{P}^1_k\) there exists \(i \in [0, r_\lambda - 1]\) with \(p^d_{\lambda,i} = 0\). Again we put \(p^d_{\lambda,i} := p^d_{\lambda,i \text{ mod } r_\lambda}\), for \(d \in \mathbb{R}\), \(\lambda \in \mathbb{P}^1_k\) and \(i \in \mathbb{Z}\).

It is known that \(h\) is sincere. Moreover, \(h\) can be used in order to distinguish between representations from \(\mathcal{P}\), \(\mathcal{Q}\) and \(\mathcal{R}\). Namely, if \(X\) is an indecomposable representation of \(\Delta\), then
\[
\langle \dim X, h \rangle_{\Delta} > 0.
\]
Dually, if \(X\) is an indecomposable representation of \(\Delta\), then
\[
\langle h, \dim X \rangle_{\Delta} > 0.
\]

Let \(\lambda, \mu \in \mathbb{P}^1_k\), \(i, j \in \mathbb{Z}\) and \(m, n \in \mathbb{N}_+\). Then
\[
\dim_k \text{Hom}_\Delta(R_{\lambda,i}^{(n)}, R_{\mu,j}^{(m)}) = \min \{q_{\lambda,i+n-1}, q_{\mu,j}^{(m)}\}
\]
in particular, \(\text{Hom}_\Delta(R_{\lambda,i}^{(n)}, R_{\mu,j}^{(m)}) = 0\) if \(\lambda \neq \mu\). The above formula, together with the Auslander–Reiten formula (1.1), implies that
\[
\langle e_{\lambda,i}^n, d \rangle_{\Delta} = p^d_{\lambda,i+n-1} - p^d_{\lambda,i-1}
\]
for any \(\lambda \in \mathbb{P}^1_k\), \(i \in \mathbb{Z}\), \(n \in \mathbb{N}_+\) and \(d \in \mathbb{R}\). In particular,
\[
\langle h, d \rangle_{\Delta} = 0 = \langle d, h \rangle_{\Delta}
\]
for each \(d \in \mathbb{R}\).

An important role in the proofs will be played by ext-minimal representations. We call a representation \(V\) ext-minimal if there is no decomposition \(V = V_1 \oplus V_2\) with \(\text{Ext}^1_\Delta(V_1, V_2) \neq 0\). We recall facts on ext-minimal representations belonging to add \(\mathcal{R}\).

First assume that \(d \in \mathbb{R}\) and \(p^d = 0\). In this case there is a unique (up to isomorphism) ext-minimal representation \(W \in \text{add} \mathcal{R}\) with dimension vector \(d\), which is constructed inductively in the following way. For \(\lambda \in \mathbb{P}^1_k\), let \(I_\lambda := \{i \in [0, r_\lambda - 1]: p^d_{\lambda,i} \neq 0\}\). For \(\lambda \in \mathbb{P}^1_k\) and \(i \in I_\lambda\), we denote by \(m_{\lambda,i}\) the minimal \(m \in \mathbb{N}_+\) such that \(p^d_{\lambda,i+m} = 0\). By induction there exists (unique up to isomorphism) ext-minimal representation \(W' \in \text{add} \mathcal{R}\) with dimension vector \(d - \sum_{\lambda \in \mathbb{P}^1_k} \sum_{i \in I_\lambda} e_{\lambda,i}^{m_{\lambda,i}}\). Then \(W := W' \oplus \bigoplus_{\lambda \in \mathbb{P}^1_k} \bigoplus_{i \in I_\lambda} R_{\lambda,i}^{(m_{\lambda,i})}\) is ext-minimal.

We will use the following property of the above representation.

Lemma 2.1. Assume \(d \in \mathbb{R}\) and \(p^d = 0\). Let \(W \in \text{add} \mathcal{R}\) be an ext-minimal representation with dimension vector \(d\). If \(\lambda \in \mathbb{P}^1_k\), \(i \in \mathbb{Z}\), \(n \in \mathbb{N}_+\), \(p^d_{\lambda,i} = p^d_{\lambda,i+n}\) and \(p^d_{\lambda,j} \geq p^d_{\lambda,i}\) for each \(j \in [i, i+n]\), then \(\text{Hom}_\Delta(R_{\lambda,i+1}^{(n)}, W) = 0\).
Proof. Observe that $\text{Hom}_R(R_{\lambda,k}^{(n)}, R_{\lambda,k}^{(m,k)}) = 0$ for each $k \in I_\lambda$, since one easily checks that either $q_{\lambda,i}^{d_{k,i}} = 0$ (if $p_{\lambda,i}^d = 0$) or $p_{\lambda,k}^{d_{k,i}+1} = 0$ (if $p_{\lambda,i}^d > 0$). Now the claim follows by induction. \qed

Now let $d \in R$ be arbitrary. The description of the ext-minimal representations with dimension vector d, which belong to add R, has been given in [25, Theorem 3.5] (this theorem has been formulated in the case $\Delta = (\Delta, \emptyset)$ for a Euclidean quiver Δ, but its proof translates to an arbitrary concealed-canonical bound quiver). We will not repeat the formulation here, but only mention some consequences. First, if $W \in \text{add } R$ and $\text{dim } W = d$, then W is ext-minimal if and only if $\text{dim}_k \text{End}_\Delta(W) = p^d + \langle d, d \rangle_\Delta$. In particular,

$$\text{(2.7)} \quad p^d + \langle d, d \rangle_\Delta = \min \{ \text{dim}_k \text{End}_\Delta(W) : W \in \text{add } R \text{ such that } \text{dim } W = d \}$$

(here we use also [25 Lemma 2.1]). Next, if $W \in \text{add } R$ is an ext-minimal representation with dimension vector d and $W' \in \text{add } R$ is an ext-minimal representation with dimension vector $d - p^d \cdot h$, then there exists an exact sequence $0 \to \bigoplus_{\lambda \in \mathbb{P}_k} R_\lambda \to W \to W' \to 0$ with $R_\lambda \in R_\lambda$ (in particular, indecomposable) for each $\lambda \in \mathbb{P}_k$ (obviously, $\text{dim } R_\lambda$ is a multiplicity of h for each $\lambda \in \mathbb{P}_k$).

3. Semi-invariants

Let Δ be a bound quiver and d a dimension vector. By $\text{rep}_\Delta(d)$ we denote the set of the representations M of Δ such that $M(x) = \mathbb{k}^{d(x)}$ for each $x \in \Delta_0$. We may identify $\text{rep}_\Delta(d)$ with a Zariski-closed subset of the affine space $\text{rep}_\Delta(d) := \prod_{\alpha \in \Delta_1} \text{M}_{d(\alpha) \times d(\alpha)}(\mathbb{k})$, hence it has a structure of an affine variety. The group $\text{GL}(d) := \prod_{x \in \Delta_0} \text{GL}(d(x))$ acts on $\text{rep}_\Delta(d)$ by conjugation: $(g \cdot M)(\alpha) := g(\alpha) \cdot M(\alpha) \cdot g(\alpha)^{-1}$, for $g \in \text{GL}(d)$, $M \in \text{rep}_\Delta(d)$ and $\alpha \in \Delta_1$. The set $\text{rep}_\Delta(d)$ is a $\text{GL}(d)$-invariant subset of $\text{rep}_\Delta(d)$ and the $\text{GL}(d)$-orbits in $\text{rep}_\Delta(d)$ correspond to the isomorphism classes of the representations of Δ with dimension vector d. If \mathcal{X} is a full subcategory of $\text{ind } \Delta$, then we denote by $\mathcal{X}(d)$ the set of $V \in \text{rep}_\Delta(d)$ such that $V \in \text{add } \mathcal{X}$.

Let Δ be a quiver and $\theta \in \mathbb{Z}_{\Delta_0}$. We treat θ as a \mathbb{Z}-linear function $\mathbb{Z}_{\Delta_0} \to \mathbb{Z}$ in a usual way. If d is a dimension vector, then by a semi-invariant of weight θ we mean every function $f \in \mathbb{k}[ext{rep}_\Delta(d)]$ such that $f(g^{-1} \cdot M) = \chi^\theta(g) \cdot f(M)$ for any $g \in \text{GL}(d)$ and $M \in \text{rep}_\Delta(d)$, where $\chi^\theta(g) := \prod_{x \in \Delta_0} (\text{det } g(x))^{\theta(x)}$ for $g \in \text{GL}(d)$.

Now let Δ be a bound quiver and d a dimension vector. If $\theta \in \mathbb{Z}_{\Delta_0}$, then a function $f \in \mathbb{k}[ext{rep}_\Delta(d)]$ is called a semi-invariant of weight θ if f is the restriction of a semi-invariant of weight θ from $\mathbb{k}[ext{rep}_\Delta(d)]$. This definition differs from the definition used in other papers on the subject
(see for example [5][11][13][15]), however these are the semi-invariants which one needs to understand in order to study King’s moduli spaces for representations of bound quivers [21]. Moreover, the two definitions coincide if the characteristic of \(k \) equals 0. We denote the space of the semi-invariants of weight \(\theta \) by \(\text{SI}[\Delta, d]_\theta \). If \(d \) is sincere, then we put \(\text{SI}[\Delta, d] := \bigoplus_{\theta \in \mathbb{Z}_{\Delta_0}} \text{SI}[\Delta, d]_\theta \) and call it the algebra of semi-invariants for \(\Delta \) and \(d \) (we assume sincerity of \(d \), since under this assumption \(\mathbb{Z}_{\Delta_0} \) is isomorphic with the character group of \(\text{GL}(d) \)).

We recall a construction from [13]. Let \(\Delta \) be a bound quiver. Fix a representation \(V \) of \(\Delta \) and define \(\theta^V : \mathbb{Z}_{\Delta_0} \to \mathbb{Z} \) by the condition:

\[
\theta^V(\dim M) = \dim_k \text{Hom}_\Delta(V, M) - \dim_k \text{Hom}_\Delta(M, \tau V)
\]

for each representation \(M \) of \(\Delta \). The formula (1.1) implies that \(\theta^V = \langle \dim, - \rangle_\Delta \) if \(\text{pdim}_{\Delta} V \leq 1 \). Dually, if \(V \) has no indecomposable projective direct summands (i.e. \(\tau^\ast \tau V \simeq V \) [11, Theorem IV.2.10]) and \(\text{idim}_\Delta \tau V \leq 1 \), then \(\theta^V = -\langle - , \dim \tau V \rangle_\Delta \) by the formula (1.2).

Now let \(d \) be a dimension vector. If \(\theta^V(d) = 0 \), then we define a function \(c^V_d \in \mathbb{k}[\text{rep}_\Delta(d)] \) in the following way. Let \(P_1 \xrightarrow{f} P_0 \to V \to 0 \) be the minimal projective presentation of \(V \). One shows that

\[
\dim_k \text{Ker} \text{Hom}_\Delta(f, M) = \dim_k \text{Hom}_\Delta(V, M)
\]

and

\[
\dim_k \text{Coker} \text{Hom}_\Delta(f, M) = \dim_k \text{Hom}_\Delta(M, \tau V),
\]

hence

\[
(3.1) \quad \dim_k \text{Hom}_\Delta(P_0, M) - \dim_k \text{Hom}_\Delta(P_1, M) = \dim_k \text{Hom}_\Delta(V, M) - \dim_k \text{Hom}_\Delta(M, \tau V) = \theta^V(d) = 0,
\]

for each \(M \in \text{rep}_\Delta(d) \). Thus, we may define \(c^V_d \in \mathbb{k}[\text{rep}_\Delta(d)] \) by the formula \(c^V_d(M) := \text{det} \text{Hom}_\Delta(f, M) \) for \(M \in \text{rep}_\Delta(d) \). Note that \(c^V_d \) is defined only up to a non-zero scalar. If \(M \in \text{rep}_\Delta(d) \), then \(c^V_d(M) = 0 \) if and only if \(\text{Hom}_\Delta(V, M) \neq 0 \). Moreover, if \(\text{pdim}_\Delta V \leq 1 \) and \(M \in \text{rep}_\Delta(d) \), then \(c^V_d(M) = 0 \) if and only if \(\text{Ext}_1^\Delta(V, M) \neq 0 \). It is known that \(c^V_d \in \text{SI}[\Delta, d]_{\theta^V} \). This function depends on the choice of \(f \), but the functions obtained for different \(f \)’s differ only by non-zero scalars.

In fact, we could start with an arbitrary \(\Delta \)-admissible projective presentation, where, for a representation \(V \) of a bound quiver \(\Delta \) and a dimension vector \(d \), we call a projective representation \(P_1' \to P_0' \to V \to 0 \) of \(V \) \(\Delta \)-admissible if \(\dim_k \text{Hom}_\Delta(P_0', M) = \dim_k \text{Hom}_\Delta(P_1', M) \) for any (equivalently, some) \(M \in \text{rep}_\Delta(d) \).

Lemma 3.1. Let \(\Delta \) be a bound quiver, \(d \) a dimension vector and \(P_1' \xrightarrow{f'} P_0' \to V \to 0 \) a \(\Delta \)-admissible projective presentation of a representation \(V \) of \(\Delta \).
(1) If \(\theta^V(d) = 0 \), then there exists \(\xi \in k \) such \(\xi \neq 0 \) and \(c_d^V(M) = \xi \cdot \det \Hom_\Delta(f', M) \) for each \(M \in \rep_\Delta(d) \).

(2) If there exists \(M \in \rep_\Delta(d) \) such that \(\det \Hom_\Delta(f', M) \neq 0 \), then \(\theta^V(d) = 0 \).

Proof. Let \(P_1 \xrightarrow{f} P_0 \to V \to 0 \) be the minimal projective presentation of \(V \). There exists projective representations \(P \) and \(Q \) of \(\Delta \) and isomorphisms \(g_1 : P' \to P \oplus P \oplus Q \) and \(g_0 : P'_0 \to P_0 \oplus P \) such that
\[
f' = g_0^{-1} \circ \begin{bmatrix} f & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \circ g_1.
\]
Consequently,
\[
(3.2) \quad \Hom_\Delta(f', M) = \Hom_\Delta(g_1, M)
\]
\[
\circ \begin{bmatrix}
\Hom_\Delta(f, M) & 0 \\
0 & \Hom_\Delta(Id_P, M) \\
0 & 0
\end{bmatrix} \circ \Hom_\Delta(g_0^{-1}, M)
\]
for each \(M \in \rep_\Delta(d) \). Since the presentation \(P'_1 \xrightarrow{f'} P'_0 \to V \to 0 \) is \(d \)-admissible, \((3.1)\) implies that the condition \(\theta^V(d) = 0 \) is equivalent to the condition \(\dim_k \Hom_\Delta(Q, M) = 0 \) for each \(M \in \rep_\Delta(d) \). Together with \((3.2)\) this implies our claims. \(\square \)

As an immediate consequence we obtain the following.

Corollary 3.2. Let \(\Delta \) be a bound quiver, \(d \) a dimension vector and \(0 \to V_1 \to V \to V_2 \to 0 \) an exact sequence such that \(\theta^{V_1}(d) = 0 = \theta^{V_2}(d) \).

(1) If \(\theta^V(d) = 0 \), then (up to a non-zero scalar) \(c_d^V = c_d^{V_1} \cdot c_d^{V_2} \).

(2) If \(c_d^{V_1} \cdot c_d^{V_2} \neq 0 \), then \(\theta^V(d) = 0 \) and (up to a non-zero scalar)
\[
c_d^V = c_d^{V_1} \cdot c_d^{V_2}.
\]

Proof. Let \(P'_1 \xrightarrow{f'} P'_0 \to V_1 \to 0 \) and \(P''_1 \xrightarrow{f''} P''_0 \to V_2 \to 0 \) be the minimal projective presentations of \(V_1 \) and \(V_2 \), respectively. Then there exists a projective presentation of \(V \) of the form
\[
P'_1 \oplus P''_1 \xrightarrow{f} P'_0 \oplus P''_0 \to V \to 0,
\]
where \(f = \begin{bmatrix} f' & g \\ 0 & f'' \end{bmatrix} \) for some \(g \in \Hom_\Delta(P''_1, P'_0) \). One easily sees that
\[
\det \Hom_\Delta(f, M) = c_d^{V_1}(M) \cdot c_d^{V_2}(M)
\]
for each \(M \in \rep_\Delta(d) \), hence the claims follows from Lemma \((3.1)\). \(\square \)

The following fact is an extension of \([10], \text{Lemma 1(a)}\) to the setup of bound quivers.

Lemma 3.3. Let \(\Delta \) be a bound quiver and \(d \) a dimension vector. If \(0 \to V_1 \to V \to V_2 \to 0 \) is an exact sequence, \(\theta^V(d) = 0 \) and \(c_d^V \neq 0 \), then \(\theta^{V_2}(d) \leq 0 \).
Proof. If \(\theta^V(d) > 0 \), then
\[
\dim_k \text{Hom}_{\Delta}(V_2, M) \geq \theta^V(d) > 0
\]
for each \(M \in \text{rep}_{\Delta}(d) \). This immediately implies that \(\text{Hom}_{\Delta}(V, M) \neq 0 \) for each \(M \in \text{rep}_{\Delta}(d) \), hence \(c_d^V = 0 \), contradiction. \(\square \)

We have the following multiplicative property.

Lemma 3.4. Let \(\Delta \) be a bound quiver and \(d \) a dimension vector. If \(V_1 \) and \(V_2 \) are representations of \(\Delta \), \(V := V_1 \oplus V_2 \), \(\theta^V(d) = 0 \) and \(c_d^V \neq 0 \), then \(\theta^{V_1}(d) = 0 = \theta^{V_2}(d) \) and \(c_d^{V_1} \cdot c_d^{V_2} \) (up to a non-zero scalar).

Proof. See [13, Lemma 3.3]. \(\square \)

We will also use another multiplicative property.

Lemma 3.5. Let \(\Delta \) be a bound quiver and \(V \) a representation of \(\Delta \). If \(d' \) and \(d'' \) are dimension vectors and \(\theta^V(d') = 0 = \theta^V(d'') \), then
\[
c_d^V(W' \oplus W'') = c_{d'}^V(W') \cdot c_{d''}^V(W'')
\]
for all \((W', W'') \in \text{rep}_{\Delta}(d') \times \text{rep}_{\Delta}(d''). \)

Proof. Let \(P_1 \xrightarrow{f} P_0 \to V \to 0 \) be the minimal projective presentation of \(V \). If \((W', W'') \in \text{rep}_{\Delta}(d') \times \text{rep}_{\Delta}(d'') \), then
\[
\text{Hom}_{\Delta}(f, W' \oplus W'') = \begin{bmatrix}
\text{Hom}_{\Delta}(f, W') & 0 \\
0 & \text{Hom}_{\Delta}(f, W'')
\end{bmatrix}
\]
and both \(\text{Hom}_{\Delta}(f, W') \) and \(\text{Hom}_{\Delta}(f, W'') \) are square matrices, hence the claim follows. \(\square \)

The following result follows from the proof of [13, Theorem 3.2] (note that the assumption about the characteristic of \(k \) made in [13, Theorem 3.2] is only necessary to prove surjectivity of the restriction morphism, which we have for free with our definition of semi-invariants).

Proposition 3.6. Let \(\Delta \) be a bound quiver, \(d \) a dimension vector and \(\theta \in \mathbb{Z}^{\Delta_0} \).

1. If \(\theta(d) \neq 0 \), then \(\text{SI}[\Delta, d]_{\theta} = 0 \).
2. If \(\theta(d) = 0 \), then the space \(\text{SI}[\Delta, d]_{\theta} \) is spanned by the functions \(c_d^V \) for \(V \in \text{rep} \Delta \) such that \(\theta^V = \theta \) and \(c_d^V \neq 0 \). \(\square \)

In fact we may take a smaller spanning set.

Corollary 3.7. Let \(\Delta \) be a bound quiver and \(d \) a dimension vector. If \(\theta \in \mathbb{Z}^{\Delta_0} \) and \(\theta(d) = 0 \), then the space \(\text{SI}[\Delta, d]_{\theta} \) is spanned by the functions \(c_d^V \) for \(\text{Ext}_{\Delta}^1(V, V_2) \neq 0 \) and there is a decomposition \(V = V_1 \oplus V_2 \) with \(\text{Ext}_{\Delta}^1(V_1, V_2) \neq 0 \). Lemma 3.4 implies that \(\theta^{V_1}(d) = 0 = \theta^{V_2}(d) \) and \(c_d^{V_1} \cdot c_d^{V_2} \neq 0 \).

Proof. Assume that \(V \) is a representation of \(\Delta \) such that \(\theta^V = \theta \), \(c_d^V \neq 0 \) and there is a decomposition \(V = V_1 \oplus V_2 \) with \(\text{Ext}_{\Delta}^1(V_1, V_2) \neq 0 \). Lemma 3.4 implies that \(\theta^{V_1}(d) = 0 \) and \(c_d^{V_1} \cdot c_d^{V_2} \neq 0 \). If \(0 \to V_2 \to W \to V_1 \to 0 \) is a non-split exact sequence, then...
Corollary 3.2 and Lemma 3.4 imply that (up to a non-zero scalar)
\(c_d^W = c_{d_1}^{x_1} \cdot c_{d_2}^{x_2} = c_d^V \). Since \(\dim_k \text{End}_{\Delta}(W) < \dim_k \text{End}_{\Delta}(V) \) (see for example [25 Lemma 2.1]), the claim follows by induction. \(\square \)

We may even take a smaller set, if we are only interested in generators of \(\text{SI}[\Delta, d] \). Namely, we have the following.

Corollary 3.8. Let \(\Delta \) be a bound quiver and \(d \) a sincere separating exact subcategory. Then the algebra \(\text{SI}[\Delta, d] \) is generated by the semi-invariants \(c_d^V \) for \(V \in \text{rep}_\Delta(d) \) such that \(\theta^V(d) = 0 \), \(c_d^V \neq 0 \) and \(V \) is indecomposable.

Proof. This follows from Proposition 3.6 and Lemma 3.4 (this is also the content of [13 Corollary 3.4]). \(\square \)

4. Preliminary results

Throughout this section we fix a concealed-canonical bound quiver \(\Delta \) and a sincere separating exact subcategory \(R \) of \(\text{ind} \Delta \). We will use notation introduced in Section 2. We also fix \(d \in R \) such that \(p := p^d > 0 \). Notice that this implies that \(d \) is sincere.

First we prove that the algebra \(\text{SI}[\Delta, d] \) is controlled by the representations from \(\text{add} R \).

Lemma 4.1. Let \(V \) be a representation of \(\Delta \) such that \(\theta^V(d) = 0 \). If \(c_d^V \neq 0 \), then \(V \in \text{add} R \) and \(\theta^V = \langle \text{dim} V, - \rangle_\Delta \).

Proof. Assume that \(P \in \mathcal{P} \) is a direct summand of \(V \). Since \(\text{pdim}_\Delta P \leq 1 \), (2.1) and (2.3) imply that
\[\theta^P(d) = \langle \text{dim} P, d \rangle_\Delta \geq \langle \text{dim} P, h \rangle_\Delta > 0. \]
Consequently, \(c_d^V = 0 \) by Lemma 3.4 contradiction. Dually, \(V \) cannot have a direct summand from \(Q \). Finally, since \(\text{pdim}_\Delta V = 1 \), \(\theta^V = \langle \text{dim} V, - \rangle_\Delta \). \(\square \)

Together with Corollary 3.7 this lemma immediately implies the following.

Corollary 4.2. Let \(\theta \in \mathbb{Z}^{\Delta_0} \) be such that \(\text{SI}[\Delta, d]_\theta \neq 0 \). Then there exists \(r \in R \) such that \(\theta = \langle r, - \rangle_\Delta \) and \(\langle r, d \rangle_\Delta = 0 \). \(\square \)

Taking into account Corollary 3.8 we need to identify \(V \in \text{ind} \Delta \) such that \(\theta^V(d) = 0 \) and \(c_d^V \neq 0 \). The first step in this direction is the following.

Lemma 4.3. Let \(V \) be an indecomposable representation of \(\Delta \). If \(\theta^V(d) = 0 \) and \(c_d^V \neq 0 \), then \(V = P_{\lambda, i+1}^{(n)} \) for some \(\lambda \in \mathbb{P}_{k,i}, i \in \mathbb{Z} \) and \(n \in \mathbb{N}_+ \) such that \(p^d_{\lambda, i} = p^d_{\lambda, i+n} \) and \(p^d_{\lambda, j} \geq p^d_{\lambda, i} \) for each \(j \in [i+1, i+n-1] \).

Proof. We know from Lemma 4.1 that \(V \in \mathcal{R} \), hence there exists \(\lambda \in \mathbb{P}_{k,i}, i \in \mathbb{Z} \) and \(n \in \mathbb{N}_+ \) such that \(V = P_{\lambda, i+1}^{(n)} \). Then \(\theta^V(d) = p^d_{\lambda, i+n} - p^d_{\lambda, i} \) by (2.5), thus the condition \(\theta^V(d) = 0 \) means that \(p^d_{\lambda, i} = p^d_{\lambda, i+n} \). Finally,
the condition \(e_d^V \neq 0 \) and Lemma 3.3 imply that \(\theta^{V'}(d) \leq 0 \) for each factor representation \(V' \) of \(V \). The sequence (2.2) implies that \(R_{\lambda,j+1}^{(n_i+j-j)} \) is a factor representation of \(V \) for each \(j \in [i+1, i+n-1] \), hence the claim follows. \(\square \)

Now we show that the representations described in the above lemma give rise to non-zero semi-invariants.

Lemma 4.4. Let \(\lambda \in \mathbb{P}^1_k \), \(i \in \mathbb{Z} \) and \(n \in \mathbb{N} \) be such that \(p_{\lambda,i}^d = p_{\lambda,i+n}^d \) and \(p_{\lambda,j}^d \geq p_{\lambda,i+n}^d \) for each \(j \in [i+1, i+n-1] \). If \(V := R_{\lambda,i+1}^{(n)} \), then \(\theta^V(d) = 0 \) and there exists \(R \in \mathcal{R}(d) \) such that \(e_d^V(R) \neq 0 \).

Proof. We only need to show that there exists \(R \in \mathcal{R}(d) \) such that \(c_d^V(R) \neq 0 \). Let \(W \in \mathcal{R} \) be an ext-minimal representation for \(d - p \cdot h \) and fix \(\mu \in \mathbb{P}^1_k \) different from \(\lambda \) such that \(r_{\mu} = 1 \). If \(R := W \oplus R_{\mu,0}^{(p)} \), then \(R \in \text{rep}_{\lambda}(d) \) and \(\text{Hom}_{\lambda}(V, R) = \text{Hom}_{\lambda}(V, W) = 0 \) by Lemma 2.1, hence the claim follows. \(\square \)

As a consequence we present a smaller generating set of \(\text{SI}[\Delta, d] \). First we introduce some notation. For \(\lambda \in \mathbb{P}^1_k \) we denote by \(I_{\lambda} \) the set of \(i \in [0, r_{\lambda}-1] \) such that there exists \(n \in \mathbb{N}_+ \) with \(p_{\lambda,i}^d = p_{\lambda,i+n}^d \) and \(p_{\lambda,j}^d > p_{\lambda,i}^d \) for each \(j \in [i+1, i+n-1] \) (such \(n \), if exists, is uniquely determined by \(\lambda \) and \(i \), and we denote it by \(n_{\lambda,i} \)). Observe that \(I_{\lambda} = \{0\} \) and \(n_{\lambda,0} = 1 \) if \(r_{\lambda} = 1 \).

Corollary 4.5. The algebra \(\text{SI}[\Delta, d] \) is generated by the semi-invariants \(c_d^{R_{\lambda,i+1}^{(n)}} \) for \(\lambda \in \mathbb{P}^1_k \) and \(i \in I_{\lambda} \).

Proof. For \(\lambda \in \mathbb{P}^1_k \) we denote by \(I_{\lambda} \) the set of all pairs \((i, n)\) such that \((i, n) \in [0, r_{\lambda}-1] \times \mathbb{N}_+ \) such that \(p_{\lambda,i}^d = p_{\lambda,i+n}^d \) and \(p_{\lambda,j}^d \geq p_{\lambda,i+n}^d \) for each \(j \in [i+1, i+n-1] \). Observe that if \(\lambda \in \mathbb{P}^1_k \) and \((i, n) \in I_{\lambda} \), then \(i \in I_{\lambda} \). Corollary 3.8 and Lemma 4.3 imply that the algebra \(\text{SI}[\Delta, d] \) is generated by the semi-invariants \(c_d^{R_{\lambda,i+1}^{(n)}} \) for \(\lambda \in \mathbb{P}^1_k \) and \((i, n) \in I_{\lambda} \). Now, let \(\lambda \in \mathbb{P}^1_k \) and \((i, n) \in I_{\lambda} \). Obviously, \(n \geq n_{\lambda,i} \). If \(n > n_{\lambda,i} \), then (up to a non-zero scalar) \(c_d^{R_{\lambda,i+1}^{(n)}} = c_d^{R_{\lambda,i+1}^{(n_{\lambda,i})}} \cdot c_d \) by Corollary 3.3(1), as according to (2.2) we have an exact sequence

\[
0 \to R_{\lambda,i+1}^{(n_{\lambda,i})} \to R_{\lambda,i+1}^{(n)} \to R_{\lambda,i+1}^{(n-n_{\lambda,i})} \to 0.
\]

Since \(R_{\lambda,i+n_{\lambda,i}+1}^{(n-n_{\lambda,i})} = R_{\lambda,(i+n_{\lambda,i}+1)\mod r_{\lambda}}^{(n-n_{\lambda,i})} \) and \((i+n_{\lambda,i}) \mod r_{\lambda}, n-n_{\lambda,i}) \in I_{\lambda} \), the claim follows by induction. \(\square \)

At the later stage we will prove that for each non-zero semi-invariant \(f \) there exists \(R \in \mathcal{R}(d) \) such that \(f(R) \neq 0 \). At the moment we formulate the following versions of this fact.
Lemma 4.6. Let \(V \) be a representation of \(\Delta \) such that \(\theta^V(d) = 0 \) and \(c^V_d \neq 0 \). Then there exists \(R \in \mathcal{R}(d) \) such that \(c^R_d(R) \neq 0 \).

Proof. Let \(X \) be an indecomposable direct summand of \(V \). Lemma 3.4 implies that \(c^X_d \neq 0 \). Consequently, Lemmas 4.3 and 4.4 imply that there exists \(R_X \in \mathcal{R}(d) \) such that \(c^X_d(R_X) \neq 0 \). Since \(\mathcal{R}(d) \) is an irreducible and open subset of \(\text{rep}_\Delta(d) \) \([15\, Section 4]\), there exists \(R \in \mathcal{R}(d) \) such that \(c^X_d(R) \neq 0 \) for each indecomposable direct summand \(X \) of \(V \). Using once more Lemma 3.4 we obtain that \(c^R_d(R) \neq 0 \). \(\square \)

Lemma 4.7. If \(q \in \mathbb{N} \) and \(f \in \text{SI}[\Delta, d]_{(q \cdot h, -)\Delta} \) is non-zero, then there exists \(R \in \mathcal{R}(d) \) such that \(f(R) \neq 0 \).

Proof. If \(q = 0 \), then the claim is obvious, since \(\text{SI}[\Delta, d]_0 = k \). Thus assume \(q > 0 \). We know that \(\text{SI}[\Delta, d]_{(q \cdot h, -)\Delta} \) is spanned by the functions \(c^V_d \) for \(V \in \text{add} \mathcal{R} \) with dimension vector \(q \cdot h \). It is enough to prove that \(c^V_d(M) = 0 \) for all \(V \in \text{add} \mathcal{R} \) and \(M \in \text{rep}_\Delta(d) \) such that \(\dim V = q \cdot h \) and \(M \not\in \mathcal{R}(d) \). Every such \(M \) has an indecomposable direct summand \(Q \) from \(Q \). Indeed, since \(M \not\in \mathcal{R}(d) \), it has an indecomposable direct summand \(X \) which belongs to \(\mathcal{P} \cup Q \). If \(X \in Q \), then we take \(Q := X \). If \(X \in \mathcal{P} \), then \(\langle \dim M - \dim X, h \rangle_\Delta < 0 \) by \([2.3]\) and \([2.0]\). Consequently, \(M \) has an indecomposable direct summand \(Q \) with \(\langle \dim Q, h \rangle_\Delta < 0 \). Using again \([2.3]\) and \([2.6]\) we get \(Q \in Q \).

Then

\[
\dim_k \text{Hom}_\Delta(V, M) \geq \dim_k \text{Hom}_\Delta(V, Q) = \langle q \cdot h, \dim Q \rangle_\Delta > 0
\]

by \([2.4]\) and the claim follows. \(\square \)

Recall from Corollary 4.2 that the possible weights are of the form \(\langle r, - \rangle_\Delta \) for \(r \in \mathbb{R} \) such that \(\langle r, d \rangle_\Delta = 0 \). Our next aim is to show that it is enough to understand those which are for the form \(\langle q \cdot h, - \rangle_\Delta \) for \(q \in \mathbb{N} \).

We start with the following easy lemma.

Lemma 4.8. Let \(W \in \text{add} \mathcal{R} \) be such that \(\theta^W(d) = 0 \) and \(c^W_d \neq 0 \). If \(q \in \mathbb{N} \) and \(f \in \text{SI}[\Delta, d]_{(q \cdot h, -)\Delta} \) is non-zero, then there exists \(R \in \mathcal{R}(d) \) such that \(c^W_d(R) \cdot f(R) \neq 0 \).

Proof. Since \(\mathcal{R}(d) \) is an open irreducible subset of \(\text{rep}_\Delta(d) \), the claim follows from Lemmas 4.6 and 4.7. \(\square \)

Proposition 4.9. Let \(r \in \mathbb{R}, \langle r, d \rangle_\Delta = 0 \) and \(W \in \text{add} \mathcal{R} \) be an ext-minimal representation for \(r - p^r \cdot h \).

1. If \(c^W_d = 0 \), then \(\text{SI}[\Delta, d]_{(r, -)\Delta} = 0 \).
2. If \(c^W_d \neq 0 \), then the map

\[
\text{SI}[\Delta, d]_{(p^r \cdot h, -)\Delta} \to \text{SI}[\Delta, d]_{(r, -)\Delta}, f \mapsto c^W_d \cdot f,
\]

is an isomorphism of vector spaces.
Proof. Let \(\Phi : \text{SI}[\Delta, d]_{(\gamma, h, -)\Delta} \to \text{SI}[\Delta, d]_{(\varepsilon, -)\Delta} \) be the map given by \(\Phi(f) := c^W_d \cdot f \), for \(f \in \text{SI}[\Delta, d]_{(\gamma, h, -)\Delta} \).

It follows from Corollary 3.7 and Lemma 4.1 that \(\text{SI}[\Delta, d]_{(\varepsilon, -)\Delta} \) is spanned by the functions \(c^W_d \) for ext-minimal \(V \in \text{add } R \) such that \(\text{dim } V = r \). If \(V \in \text{add } R \) is ext-minimal and \(\text{dim } V = r \), then there exists an exact sequence \(0 \to R \to V \to W \to 0 \), where \(R \in \text{add } R \) and \(\text{dim } R = p^x \cdot h \). Thus Corollary 3.2 implies that \((\text{up to a non-zero scalar}) c^W_d = c^W_d \cdot c^R_d = \Phi(c^R_d) \). This shows that \(\Phi \) is an epimorphism. In particular, \(\text{SI}[\Delta, d]_{(\varepsilon, -)\Delta} = 0 \) if \(c^W_d = 0 \). On the other hand, if \(c^W_d \neq 0 \), then \(\Phi \) is a monomorphism (hence an isomorphism) by Lemma 4.8. \(\square \)

In the previous papers on the subject the authors have studied either the semi-invariants on the whole variety \(\text{rep}_{\Delta}(d) \) \([14, 15]\) or on the closure of \(\mathcal{R}(d) \) only \([29]\). However, the answers they have obtained did not differ. We have the following explanation of this phenomena.

Proposition 4.10. If \(f \in k[\text{rep}_{\Delta}(d)] \) is a non-zero semi-invariant, then there exists \(R \in \mathcal{R}(d) \) such that \(f(R) \neq 0 \).

Proof. Fix \(r \in \mathbb{R} \) such that \(f \in \text{SI}[\Delta, d]_{(\varepsilon, -)\Delta} \). The previous lemma implies that \(f = c^W_d \cdot f' \), where \(W \in \text{add } R \) is an ext-minimal representation with dimension vector \(r - p^x \cdot h \) and \(f' \in \text{SI}[\Delta, d]_{(\gamma, h, -)\Delta} \).

Consequently, the claim follows from Lemma 4.8. \(\square \)

Observe that this proposition means in particular, that \(\text{SI}[\Delta, d] \) is a domain, hence the product of two non-zero semi-invariants is non-zero again.

Proposition 4.9 implies that the subalgebra \(\bigoplus_{\gamma \in \mathbb{N}} \text{SI}[\Delta, d]_{(\gamma, h, -)\Delta} \) of \(\text{SI}[\Delta, d] \) plays a crucial role. In Section 6 we show that the study of this subalgebra can be reduced to the case of the Kronecker quiver. Thus in the next section we recall facts about semi-invariants for the Kronecker quiver.

5. The Kronecker Quiver

Our aim in this section is to collect necessary facts about representations and semi-invariants for the Kronecker quiver \(K_2 \), i.e. the quiver

\[
\begin{array}{c}
\bullet \\
\alpha \\
\beta \\
\bullet
\end{array}
\]

with the empty set of relations. In this case a sincere separating exact subcategory is uniquely determined. Let \(\mathcal{T} = \bigsqcup_{\lambda \in \mathbb{P}_k} \mathcal{T}_\lambda \) by the sincere separating exact subcategory of \(\text{ind } K_2 \).

For \(\zeta, \xi \in k \) let \(N_{\zeta, \xi} \) be the representation \(\begin{array}{c} \zeta \\ \xi \end{array} \). Then the simple objects in \(\mathcal{T} \) are precisely the representations \(N_{\zeta, \xi} \) for \((\zeta : \xi) \in \mathbb{P}^1_k \). Moreover, if \((\zeta : \xi), (\zeta' : \xi') \in \mathbb{P}^1_k \), then \(N_{\zeta, \xi} \simeq N_{\zeta', \xi'} \) if and only if \((\zeta : \xi) = (\zeta' : \xi') \). Consequently, by abuse of notation, we will denote
appropriately we may assume that $N_\lambda \in \mathcal{T}_\lambda$ for each $\lambda \in \mathbb{P}_k$. In particular, $\tau N_\lambda = N_\lambda$ for each $\lambda \in \mathbb{P}_k$.

The Kronecker quiver can be viewed as the minimal concealed-canonical bound quiver. Namely, we can embed the category $\text{rep} K_2$ into the category of representations of an arbitrary concealed-canonical quiver. We describe a construction of such an embedding more precisely.

Let Δ be a concealed-canonical bound quiver with a sincere separating exact subcategory \mathcal{R} of $\text{ind} \Delta$. Let $R := \bigoplus_{\lambda \in \mathbb{P}_k} \bigoplus_{i \in I_\lambda} R_{\lambda, i}$ for subsets $I_\lambda \subseteq [0, r_\lambda - 1)$ such that $|I_\lambda| = r_\lambda - 1$ (in particular, $I_\lambda = \emptyset$ if $r_\lambda = 1$), where we use notation introduced in Section 4.2. Let R^\perp denote the full subcategory of $\text{rep} \Delta$, whose objects are $M \in \text{rep} \Delta$ such that $\text{Hom}_\Delta(R, M) = 0 = \text{Ext}^1_\Delta(R, M)$. Lenzing and de la Peña [23, Proposition 4.2] have proved that there exists a fully faithful exact functor $F : \text{rep} K_2 \to \text{rep} \Delta$ which induces an equivalence between $\text{rep} K_2$ and R^\perp. Moreover, F induces an equivalence between \mathcal{T} and $R^\perp \cap \mathcal{R}$. The simple objects in $R^\perp \cap (\text{add} \mathcal{R})$, which are the images of the simple objects in $\text{add} \mathcal{T}$, are of the form $R^{(r_\lambda)}_{\lambda, i}$ for $\lambda \in \mathbb{P}_k$, where for $\lambda \in \mathbb{P}_k$ we denote by i the unique element of $[0, r_\lambda - 1] \setminus I_\lambda$. Consequently, (if we choose appropriate parameterization) $F(N_\lambda) \simeq R^{(r_\lambda)}_{\lambda, i}$ for each $\lambda \in \mathbb{P}_k$.

Let $p \in \mathbb{N}$. We define the functions $f^{(0)}_{(p,p)}, \ldots, f^{(p)}_{(p,p)} \in \mathbb{k}[\text{rep} K_2(p, p)]$ by the condition: if $V \in \text{rep} K_2(p, p)$, then

$$\det(S \cdot V_\alpha - T \cdot V_\beta) = \sum_{i \in [0, p]} S^i \cdot T^{p-i} \cdot f^{(i)}_{(p,p)}(V).$$

Note that $f^{(0)}_{(p,p)}, \ldots, f^{(p)}_{(p,p)}$ are semi-invariants of weight $(-1, 1)$. If $(\zeta : \xi) \in \mathbb{P}_k$, then (by choosing a projective presentation of $N_{\zeta, \xi}$ in an appropriate way) we get

$$c^{N_{\zeta, \xi}}_{(p,p)}(V) = \det(\xi \cdot V_\alpha - \zeta \cdot V_\beta) = \sum_{i \in [0, p]} \xi^i \cdot \zeta^{p-i} \cdot f^{(i)}_{(p,p)}(V).$$

It is well known (see for example [30]) that $\text{SI}[K_2, (p, p)]$ is the polynomial algebra in $f^{(0)}_{(p,p)}, \ldots, f^{(p)}_{(p,p)}$. In particular,

$$\dim_{\mathbb{k}} \text{SI}[K_2, (p, p)]_{(-q, q)} = \binom{q + p}{q}$$

for each $q \in \mathbb{N}$.

We will need the following lemma.

Lemma 5.1. If $f_1, f_2 \in \text{SI}[K_2, (p, p)]_{(-1, 1)}$ and

$$\{V \in \text{rep} K_2(p, p) : f_1(V) = 0\} = \{V \in \text{rep} K_2(p, p) : f_2(V) = 0\},$$

then (up to a non-zero scalar) $f_1 = f_2$.
Proof. From the description of $SI[K_2, (p, p)]$ it follows that f_1 and f_2 are irreducible, hence the claim follows. \(\square\)

6. The main result

Throughout this section we fix a concealed-canonical bound quiver Δ and a sincere separating exact subcategory \mathcal{R} of $\text{ind} \Delta$. We use freely notation introduced in Section 2. We also fix $d \in \mathbb{R}$ such that $p := p^d > 0$.

First we investigate the algebra $\bigoplus_{q \in \mathbb{N}} SI[\Delta, d]_{(q \cdot h, -)} \Delta$. We introduce some notation. For $\lambda \in \mathbb{P}^1_k$ we denote by I^0_{λ} the set of $i \in [0, r \lambda - 1]$ such that $p^d_{\lambda,i} = 0$. Observe that $I^0_{\lambda} \subseteq I_{\lambda}$ for each $\lambda \in \mathbb{P}^1_k$ (the sets I_{λ} for $\lambda \in \mathbb{P}^1_k$ were introduced before Corollary 4.5). Recall that, for $\lambda \in \mathbb{P}^1_k$ and $i \in I_{\lambda}$, $n_{\lambda,i}$ denotes the minimal $n \in \mathbb{N}_+$ such that $p^d_{\lambda,i} + n = 0$.

We put $c^\lambda_d := \prod_{i \in I^0_{\lambda}} c^R_{\lambda,i}$. An iterated application of Corollary 3.2(1) to exact sequences of the form (2.2) implies that $c^\lambda_d = c^R_{\lambda,i}$ for each $i \in I^0_{\lambda}$.

We have the following fact.

Lemma 6.1. The algebra $\bigoplus_{q \in \mathbb{N}} SI[\Delta, d]_{(q \cdot h, -)} \Delta$ is generated by the semi-invariants c^λ_d for $\lambda \in \mathbb{X}$.

Proof. This fact has been proved in [4], but for completeness we include its (shorter) proof here.

Fix $q \in \mathbb{N}$. Proposition 3.7 and Lemma 4.1 imply that $SI[\Delta, d]_{(q \cdot h, -)} \Delta$ is spanned by the semi-invariants c^V_d for ext-minimal $V \in \text{add} \mathcal{R}$ with dimension vector $q \cdot h$. Fix such V. Since V is ext-minimal with dimension vector $q \cdot h$, $V = \bigoplus_{\lambda \in \mathbb{X}} R^{(k_{\lambda}, r_{\lambda})}$, where $\mathbb{X} \subseteq \mathbb{P}^1_k$ and $i_{\lambda} \in [0, r_{\lambda} - 1]$ and $k_{\lambda} \in \mathbb{N}_+$ for each $\lambda \in \mathbb{X}$. Moreover, Lemma 4.3 implies that $i_{\lambda} \in I^0_{\lambda}$ for each $\lambda \in \mathbb{X}$. An iterated application of Corollary 3.2(1) to exact sequences of the form (2.2) implies that $c^V_d = (c^\lambda_d)^{k_{\lambda}}$ for each $\lambda \in \mathbb{X}$. Consequently, $c^V_d = \prod_{\lambda \in \mathbb{X}} (c^\lambda_d)^{k_{\lambda}}$ by Lemma 3.4, hence the claim follows. \(\square\)

The following fact is crucial.

Proposition 6.2. There exists a regular map

$$\Phi : \text{rep}_{K_2}(p, p) \rightarrow \text{rep}_{\Delta}(d)$$

such that Φ^* induces an isomorphism

$$\bigoplus_{q \in \mathbb{N}} SI[\Delta, d]_{(q \cdot h, -)} \rightarrow \bigoplus_{q \in \mathbb{N}} SI[K_2, (p, p)](-q)$$

of \mathbb{N}-graded rings and (up to a non-zero scalar) $\Phi^*(c^\lambda_d) = c^{N_{(p, p)}}_{(p, p)}$ for each $\lambda \in \mathbb{P}^1_k$.
Proof. For each \(\lambda \in \mathbb{P}^1_k \) we fix \(i_\lambda \in T^0_\lambda \). From Section 5 we know that there exists a fully faithful exact functor \(F : \text{rep} K_2 \to \text{rep} \Delta \) such that \(F(N_\lambda) \approx R^{(\lambda)}_{\lambda} \) for each \(\lambda \in \mathbb{P}^1_k \). Observe that for each \(R \in \text{add} (\bigcup_{\lambda \in \mathbb{P}^1_k \setminus X_0} R_\lambda) \) (recall that \(X_0 \) is the set of all \(\lambda \in \mathbb{P}^1_k \) such that \(r_\lambda > 1 \)) there exists \(N \in T \) with \(F(N) \approx R \).

Put \(E_1 := F(S_1) \) and \(E_2 := F(S_2) \), where \(S_i \) is the simple representation of \(K_2 \) at \(i \), for \(i \in \{1, 2\} \), i.e.

\[
S_1 := k \oplus 0 \quad \text{and} \quad S_2 := 0 \oplus k.
\]

Then [24, Proposition 2.3] (see also [9, Proposition 5.2]) implies that there exists a regular map \(\Phi' : \text{rep} K_2(p, p) \to \text{rep} \Delta(p \cdot h) \) such that \(\Phi'(N) \approx F(N) \) for each \(N \in \text{rep} K_2(p, p) \). Moreover, there exists a morphism \(\varphi : \text{GL}(p, p) \to \text{GL}(p \cdot h) \) of algebraic groups such that \(\Phi'(g * N) = \varphi(g) * \Phi'(N) \), for all \(g \in \text{GL}(p, p) \) and \(N \in \text{rep} \Delta(p \cdot h) \), and

\[
\chi_\theta(\varphi(g)) = (\det(g(1)))^{\theta(\dim E_1)} \cdot (\det(g(2)))^{\theta(\dim E_2)},
\]

for all \(g \in \text{GL}(p, p) \) and \(\theta \in \mathbb{Z}^{\Delta_0} \).

Let \(W \in \text{add} R \) be an ext-minimal representation for \(d' := d - p \cdot h \).

We define \(\Phi : \text{rep} K_2(p, p) \to \text{rep} \Delta(d) \) by \(\Phi(N) := \Phi'(N) \oplus W \) for \(N \in \text{rep} K_2(p, p) \).

Let \(q \in \mathbb{N} \). We show that \(\Phi^*(f) \) is a semi-invariant of weight \((-q, q)\) for each \(f \in \text{SI}[\Delta, d]_{(q, h, -)} \). Using Proposition 3.6 and Lemma 4.1 it suffices to show that \(\Phi^*(c^V) \) is a semi-invariant of weight \((-q, q)\) for each representation \(V \) of \(\Delta \) with dimension vector \(q \cdot h \).

Now, if \(g \in \text{GL}(p, p) \) and \(N \in \text{rep} K_2(p, p) \), then

\[
(\Phi^*(c^V))(g^{-1} * N) = c^V_d(W \oplus \Phi'(g^{-1} * N)) = c^V_{d'}(W) \cdot c^V_{p \cdot h}(\varphi(g^{-1}) * \Phi'(N)) = c^V_{d'}(W) \cdot \chi^{(q, h, -)}_{(q, h, -)}(\varphi(g)) \cdot c^V_{p \cdot h}(\Phi'(N)) = \chi^{(q, h, -)}_{(q, h, -)}(\varphi(g)) \cdot (\Phi^*(c^V_d))(N),
\]

where the second and the last equalities follow from Lemma 3.5. Using (6.1) we get

\[
\chi_{(q, h, -)}^{(q, h, -)}(\varphi(g)) = (\det(g(1))^{-q} \cdot (\det(g(2)))^q,
\]

since

\[
(h, \dim E_i)_{\Delta} = ((1, 1), \dim S_i)_{\Delta} = (-1)^i
\]

for each \(i \in \{1, 2\} \) (we use here that \(F \) is exact).

The above implies that \(\Phi^* \) induces a homomorphism

\[
\bigoplus_{q \in \mathbb{N}} \text{SI}[\Delta, d]_{(q, h, -)} \to \bigoplus_{q \in \mathbb{N}} \text{SI}[K_2, (p, p)]_{(-q, q)}
\]

of \(\mathbb{N} \)-graded rings. We need to show that this is an isomorphism.
First we show $\Phi^*(f) \neq 0$ for each non-zero semi-invariant f (in particular, this will imply that \([6.2]\) is a monomorphism). Let
\[Z := \{ M \in \text{rep}_\Delta(d) : \text{there exists } N \in \text{rep}_{K_2}(p,p) \text{ such that } M \simeq W \oplus \Phi(N) \}. \]
In other words, Z in the closure of the image of Φ under the action of $\text{GL}(d)$. Using Proposition \([4.10]\) it suffices to show that Z contains a non-empty open subset of $\mathcal{R}(d)$. Let
\[\mathcal{U} := \{ M \in \mathcal{R}(d) : c_d^\lambda(M) \neq 0 \text{ for each } \lambda \in \mathbb{X}_0 \} \]
and $\dim_k \text{End}_\Delta(M) = p + \langle d, d \rangle_\Delta$.

Since the function
\[\text{rep}_\Delta(d) \ni M \mapsto \dim_k \text{End}_\Delta(M) \in \mathbb{Z} \]
is upper semi-continuous, \([2.7]\) implies that \mathcal{U} is a non-empty open subset of $\mathcal{R}(d)$, which consists of ext-minimal representations. In particular, if $M \in \mathcal{U}$, then there exists an exact sequence of the form $0 \to R \to M \to W \to 0$ with $R \in \text{add} \mathcal{R}$ such that $\dim R = p \cdot h$. If $p^R_\lambda \neq 0$ for some $\lambda \in \mathcal{X}_0$, then $\text{Hom}_\Delta(R_{\lambda,i}^{(r)}, M) \neq 0$. Consequently, $\text{Hom}_\Delta(R_{\lambda,i}^{(r)}, M) \neq 0$, hence $c_d^\lambda(M) = 0$, contradiction. Thus $p^R_\lambda = 0$ for each $\lambda \in \mathcal{X}_0$, hence $M \simeq W \oplus R$ and $R \in \text{add}(\bigcup_{\lambda \in \mathbb{P}^1 \setminus \mathcal{X}_0} \mathcal{R}_\lambda)$. In particular, there exists $N \in \text{rep} \mathcal{T}$ such that $F(N) \simeq R$, hence $M \in \mathcal{Z}$.

Now we fix $\lambda \in \mathbb{P}^1$. We show that (up to a non-zero scalar) $\Phi^*(c_d^\lambda) = c_{(p,p)}^{N,\lambda}$ for each $\lambda \in \mathbb{P}^1_k$. According to Lemma \([6.1]\), this will imply that \([6.2]\) is an epimorphism, hence finish the proof. Fix $N \in \text{rep}_{K_2}(p,p)$. Then
\[(\Phi^*(c_d^\lambda))(N) = 0 \text{ if and only if } \text{Hom}_\Delta(R_{N,i}^{(r)}, F(N)) \neq 0. \]
Since $R_{N,i}^{(r)} \simeq F(N)$ and F is fully faithful,
\[(\Phi^*(c_d^\lambda))(N) = 0 \text{ if and only if } \text{Hom}_{K_2}(N, N) \neq 0. \]
Similarly, if $N \in \text{rep}_{K_2}(p,p)$, then
\[c_{(p,p)}^{N,\lambda}(N) = 0 \text{ if and only if } \text{Hom}_{K_2}(N, N) \neq 0. \]
Consequently, the claim follows from Lemma \([5.1]\). \(\square\)

Corollary 6.3. If $r \in R$ and $\text{SI}([\Delta, d]_{(r,-)}_\Delta) \neq 0$, then
\[\dim_k \text{SI}([\Delta, d]_{(r,-)}_\Delta) = \binom{p^r + p}{p^r}. \]

Proof. Proposition \([4.9][2]\) implies that
\[\dim_k \text{SI}([\Delta, d]_{(r,-)}_\Delta) = \dim_k \text{SI}[\Delta, d]_{(p^r, h,-)_\Delta}. \]
Next,
\[\dim_k \text{SI}[\Delta, d]_{(p^r, h,-)_\Delta} = \dim_k \text{SI}[K_2, (p, p)]_{(-p^r, p^r)} \]
by Proposition \([6.2]\), hence the claim follows from \([5.2]\). \(\square\)
Let $\Phi : \text{rep}_K[p,p] \to \text{rep}_\Delta(d)$ be a regular map constructed in Proposition 6.2. For $j \in [0,p]$ we denote by $f_d^{(j)}$ the inverse image of $f_{(p,p)}^{(j)}$ under Φ^*. Then (5.1) implies that (up to a non-zero scalar)

$$(6.3) c_d^{(\zeta,\xi)} = \sum_{j \in [0,p]} \xi^j \cdot \zeta^{p-j} \cdot f_d^{(j)}$$

for each $(\zeta : \xi) \in \mathbb{P}_k^1$. As the first application we get the following (smaller) set of generators of $SI[\Delta, d]$.

Proposition 6.4. The algebra $SI[\Delta, d]$ is generated by the semi-invariants $f_d^{(0)}, \ldots, f_d^{(p)}$ and $c_{d_i}^{R_{\lambda,i}}$ for $\lambda \in \mathbb{X}_0$ and $i \in I_\lambda$.

Proof. Recall from Corollary 4.5 that the algebra $SI[\Delta, d]$ is generated by the semi-invariants $c_{d_i}^{R_{\lambda,i}}$ for $\lambda \in \mathbb{X}_0$ and $i \in I_\lambda$. Thus we only need to express, for each $\lambda \in \mathbb{P}_k^1 \setminus \mathbb{X}_0$ and $i \in I_\lambda$, $c_d^{R_{\lambda,i}}$ as the polynomial in the semi-invariants listed in the proposition. However, if $\lambda \in \mathbb{P}_k^1 \setminus \mathbb{X}_0$ and $i \in I_\lambda$, then $c_d^{R_{\lambda,i}} = c_d$, hence the claim follows from (6.3). \(\square\)

We give another formulation of Proposition 6.4. Let A be the polynomial algebra in the indeterminates S_0, \ldots, S_p and $T_{\lambda,i}$ for $\lambda \in \mathbb{X}_0$ and $i \in I_\lambda$. Proposition 6.4 says that the homomorphism $\Psi : A \to SI[\Delta, d]$ given by the formulas: $\Psi(S_j) := f_d^{(j)}$, for $j \in [0,p]$, and $\Psi(T_{\lambda,i}) := c_d^{R_{\lambda,i}}$, for $\lambda \in \mathbb{X}_0$ and $i \in I_\lambda$, is an epimorphism. Our last aim is to describe its kernel.

First, we introduce an R-grading in A by specifying the degrees of the indeterminates as follows: $\deg(S_j) := h$ for $j \in [0,p]$ and $\deg(T_{\lambda,i}) := e^{\alpha_{\lambda,i}}$, for $\lambda \in \mathbb{X}_0$ and $i \in I_\lambda$. Note that Ψ is a homogeneous map, i.e. $\Psi(\mathcal{A}_r) = SI[\Delta, d]_{(r,-)\Delta}$ for each $r \in R$.

Let R_0 be the submonoid of R generated by the elements h and $e^{\alpha_{\lambda,i}}$, for $\lambda \in \mathbb{X}_0$ and $i \in I_\lambda$. Obviously, if $r \in R$, then $\mathcal{A}_r \neq 0$ if and only if $r \in R_0$. Similarly, Corollary 4.5 implies that $SI[\Delta, d]_{(r,-)\Delta} \neq 0$ if and only if $r \in R_0$ (recall that $SI[\Delta, d]$ is a domain).

Lemma 6.5. If $r \in R_0$, then

$$\text{dim}_k \mathcal{A}_r = \left(\frac{p^r + p + |\mathbb{X}_0|}{p^r} \right).$$

Proof. One easily observes that there is an isomorphism $\mathcal{A}_{p^r \cdot h} \to \mathcal{A}_r$ of vector spaces (induced by multiplying by the unique monomial of degree $r - p^r \cdot h$). Moreover, $\bigoplus_{q \in R_0} \mathcal{A}_{p^q \cdot h}$ is the polynomial algebra generated by S_0, \ldots, S_p and $\prod_{i \in I_\lambda} T_{\lambda,i}$ for $\lambda \in \mathbb{X}_0$. Now the claim follows. \(\square\)
The formula (6.3) implies that for each \(\lambda \in X_0 \) there exist \(\zeta_\lambda, \xi_\lambda \in k \) such that

\[
\prod_{i \in I_0^0} R_{\lambda,i}^{(\xi_{\lambda,i})} = \sum_{j \in [0,p]} \xi_\lambda^j \cdot \zeta_\lambda^{p-j} \cdot f_d^{(j)}.
\]

Obviously, \((\zeta_\lambda, \xi_\lambda) \neq (0,0)\) and \((\zeta_\lambda : \xi_\lambda) = \lambda\).

Proposition 6.6. We have

\[
\text{Ker } \Psi = \left(\sum_{j \in [0,p]} \xi_\lambda^j \cdot \zeta_\lambda^{p-j} \cdot S_j - \prod_{i \in I_0^0} T_{i,\lambda} : \lambda \in X_0 \right).
\]

Proof. Let

\[
\mathcal{J} := \left(\sum_{j \in [0,p]} \xi_\lambda^j \cdot \zeta_\lambda^{p-j} \cdot S_j - \prod_{i \in I_0^0} T_{i,\lambda} : \lambda \in X_0 \right).
\]

Obviously, \(\text{Ker } \Psi \subseteq I \). Observe that both \(\text{Ker } \Psi \) and \(\mathcal{J} \) are graded ideals (with respect to the grading introduced above). Consequently, in order to prove our claim it suffices to show that \(\dim_k \mathcal{J}_r = \dim_k \text{Ker } \Psi_r \) for each \(r \in R_0 \).

We already know from Lemma 6.5 and Corollary 6.3 that

\[
\dim_k \text{Ker } \Psi_r = \dim_k A_r - \dim_k SI[\Delta, r]_{(r, -)_{\Delta}}
\]

\[
= \binom{p^r + p + |X_0|}{p^r} - \binom{p^r + p}{p^r}
\]

for each \(r \in R_0 \). On the other hand, similarly as in the proof of Lemma 6.5, we show that \(\dim_k \mathcal{J}_r = \dim_k J_{p^r h} \) for each \(r \in R_0 \). Moreover, the algebra \(\bigoplus_{q \in \mathbb{N}} (A/\mathcal{J})_{q h} \) is obviously the polynomial algebra in \(p^r + p \) indeterminates. This, together with Lemma 6.5, immediately implies our claim. \(\square \)

We may summarize our considerations in the following theorem (compare [29, Theorem 1.1]).

Theorem 6.7. We have the isomorphism

\[
SI[\Delta, d] \simeq A/ \left(\sum_{j \in [0,p]} \xi_\lambda^j \cdot \zeta_\lambda^{p-j} \cdot S_j - \prod_{i \in I_0^0} T_{i,\lambda} : \lambda \in X_0 \right).
\]

If

\[
i(d) := \{ \lambda \in X_0 : |I_{\lambda}| > 1 \},
\]

then \(SI[\Delta, d] \) is a complete intersection given by \(\max(0, i(d) - p - 1) \) equations. In particular, \(SI[\Delta, d] \) is polynomial algebra if and only if \(i(d) \leq p + 1 \).
REFERENCES

[1] I. Assem, D. Simson, and A. Skowroński, Elements of the Representation Theory of Associative Algebras. Vol. 1, London Math. Soc. Stud. Texts, vol. 65, Cambridge Univ. Press, Cambridge, 2006.

[2] M. Barot and Jan Schröer, Module varieties over canonical algebras, J. Algebra 246 (2001), no. 1, 175–192.

[3] G. Bobiński, Geometry of regular modules over canonical algebras, Trans. Amer. Math. Soc. 360 (2008), no. 2, 717–742.

[4] _____. Normality of maximal orbit closures for Euclidean quivers, Canad. J. Math. 64 (2012), no. 6, 1222–1247.

[5] G. Bobiński, Ch. Riedtmann, and A. Skowroński, Semi-invariants of quivers and their zero sets, Trends in Representation Theory of Algebras and Related Topics (A. Skowroński, ed.), EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 49–99.

[6] G. Bobiński and A. Skowroński, Geometry of periodic modules over tame concealed and tubular algebras, Algebr. Represent. Theory 5 (2002), no. 2, 187–200.

[7] K. Bongartz, Tilted algebras, Representations of algebras, 1981, pp. 26–38.

[8] ____. Algebras and quadratic forms, J. London Math. Soc. (2) 28 (1983), no. 3, 461–469.

[9] C. Chindris, Geometric characterizations of the representation type of hereditary algebras and of canonical algebras, Adv. Math. 228 (2011), no. 3, 1405–1434.

[10] H. Derksen and J. Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc. 13 (2000), no. 3, 467–479.

[11] _____. Semi-invariants for quivers with relations, J. Algebra 258 (2002), no. 1, 216–227.

[12] C. Di Trapano, The algebras of semi-invariants of Euclidean quivers, Comm. Algebra 39 (2011), no. 11, 4357–4373.

[13] M. Domokos, Relative invariants for representations of finite dimensional algebras, Manuscripta Math. 108 (2002), no. 1, 123–133.

[14] M. Domokos and H. Lenzing, Invariant theory of canonical algebras, J. Algebra 228 (2000), no. 2, 738–762.

[15] _____. Moduli spaces for representations of concealed-canonical algebras, J. Algebra 251 (2002), no. 1, 371–394.

[16] P. Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71–103; correction, ibid. 6 (1972), 309.

[17] Ch. Geiss and J. Schröer, Varieties of modules over tubular algebras, Colloq. Math. 95 (2003), no. 2, 163–183.

[18] D. Happel, A characterization of hereditary categories with tilting object, Invent. Math. 144 (2001), no. 2, 381–398.

[19] D. Happel, I. Reiten, and S. O. Smalø, Tilting in abelian categories and quasi-tilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88.

[20] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399–443.

[21] A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515–530.

[22] H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, Representation Theory of Algebras, 1996, pp. 455–473.

[23] H. Lenzing and J. A. de la Peña, Concealed-canonical algebras and separating tubular families, Proc. London Math. Soc. (3) 78 (1999), no. 3, 513–540.
[24] Ch. Riedtmann and A. Schofield, *On open orbits and their complements*, J. Algebra 130 (1990), no. 2, 388–411.

[25] C. M. Ringel, *The rational invariants of the tame quivers*, Invent. Math. 58 (1980), no. 3, 217–239.

[26] ______, *Tame Algebras and Integral Quadratic Forms*, Lecture Notes in Math., vol. 1099, Springer, Berlin, 1984.

[27] D. A. Shmelkin, *Locally semi-simple representations of quivers*, Transform. Groups 12 (2007), no. 1, 153–173.

[28] A. Skowroński, *On omnipresent tubular families of modules*, Representation theory of algebras, 1996, pp. 641–657.

[29] A. Skowroński and J. Weyman, *Semi-invariants of canonical algebras*, Manuscripta Math. 100 (1999), no. 3, 391–403.

[30] ______, *The algebras of semi-invariants of quivers*, Transform. Groups 5 (2000), no. 4, 361–402.

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
E-mail address: gregbob@mat.uni.torun.pl