Age-related change of auditory functional connectivity in Human Connectome Project data and tinnitus patients

Shujiro B. Minami MD, PhD1,2 | Naoki Oishi MD, PhD3 | Takahisa Watabe MD3 | Koichiro Wasano MD1,2 | Kaoru Ogawa MD, PhD3

1National Hospital Organization Tokyo Medical Center, National Institute of Sensory Organs, Meguro City, Tokyo, Japan
2Department of Otolaryngology, National Hospital Organization Tokyo Medical Center, Meguro City, Tokyo, Japan
3Department of Otolaryngology, Head and Neck Surgery, Keio University, School of Medicine, Shinjuku City, Tokyo, Japan

Correspondence
Shujiro B. Minami, Department of Otolaryngology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan.
Email: shujirominami@me.com

Funding information
This work was supported by JSPS KAKENHI Grant Number 19K09881

Abstract

Background: We reported that tinnitus patients showed reduced levels of auditory functional connectivity (FC) in comparison with normal hearing control subjects, and that we succeeded in objective diagnosis of tinnitus with 86% sensitivity and 74% specificity by focusing only on auditory-related FC. However, the age-related change of auditory FC is not clarified. In this study, we examine age-related change of the auditory FC using the database of Human Connectome Project (HCP) and compared with our database of tinnitus patients.

Method: From the HCP database HCP Lifespan Pilot project, we studied five age groups, 8 to 9 years old, 14 to 15, 25 to 35, 45 to 55, and 65 to 75. We also applied our tinnitus patients’ resting-state functional magnetic resonance imaging (fMRI) database, which is divided into three generations; 20 to 40 years old, 40 to 60, and 60 to 80 to compare with the HCP database. The resting state fMRI analyses were performed using the CONN toolbox version 18. As auditory-related regions, Heschl’s gyrus, planum temporale, planum polare, operculum, insular cortex, and superior temporal gyrus were set as the regions of interest from our previous reports.

Result: Auditory FC is strongest among adolescents and reduces with age. But the auditory FC of tinnitus patients were significantly less than those of HCP data in each generation.

Conclusion: Although auditory FC decreases with age, tinnitus patients have less auditory FC compared with age-matched controls. The age-matched cutoff values are necessary for an objective diagnosis of tinnitus with resting state fMRI.

KEYWORDS
auditory functional connectivity, resting state functional magnetic resonance imaging, tinnitus

1 | INTRODUCTION

Age-related changes in hearing ability occur at all levels of the auditory system. There are several pieces of evidence for age-related changes in auditory cortex morphology or function.1 Although substantial variability is seen across individuals, the aging brain shows widespread changes in cortical structure and network dynamics that carry cognitive function.2 Functional connectivity (FC) refers to the statistical association or dependency between two or more anatomically distinct time series and is measured via imaging modalities such as functional magnetic resonance imaging (fMRI). The aging brain shows widespread changes in cortical structure and network dynamics that carry cognitive function.2 Functional connectivity (FC) refers to the statistical association or dependency between two or more anatomically distinct time series and is measured via imaging modalities such as functional magnetic resonance imaging (fMRI).
as resting-state functional magnetic resonance imaging (rs-fMRI) using cross correlation-based techniques. Rs-fMRI is used to study connectivity in the brain by acquiring fMRI data from a subject lying "at rest" in the scanner and is based upon the premise that spontaneous activity patterns in functionally related brain regions are temporally correlated. We previously reported that tinnitus patients with or without hearing loss showed reduced levels of statistically significant auditory related FC in comparison with normal hearing control subjects, and we succeeded in objective diagnosis of tinnitus with 86% sensitivity and 74% specificity by focusing only on auditory-related FC. The prevalence of hearing loss and tinnitus is more common in the older population compared with the younger population. However, age-related changes of auditory FC have not been clarified. In this study, we examined the age-related change in auditory FC using the database of Human Connectome Project (HCP) and compared with our database of tinnitus patients.

2 | METHOD

From the HCP database HCP Lifespan Pilot project, we studied five age groups, 8 to 9 years old (n = 6: three female and three male), 14 to 15 years old (n = 6: five female and one male), 25 to 35 years old (n = 5: three female and two male), 45 to 55 years old (n = 5: two female and three male), and 65 to 75 years old (n = 5: two female and three male). MRI structure images (T1 w) and resting fMRI images were analyzed. The Lifespan-HCP protocol acquires T1w (MPRAGE) structural images at a resolution of 0.8 mm isotropic voxels, and the resting fMRI at a voxel unit of 2 mm, multi-band 8, and TR 720 ms with eyes open by 3 T MRI. The fMRI images were preprocessed with SPM version 12 according to typical procedures, including realignment, smoothing, coregistration, segmentation, and normalization. Images were then band-pass filtered from 0.008 to 0.09 Hz, and region of interest (ROI)-based correlation analyses were performed using the CONN toolbox version 18. CONN allowed ROI-based analysis to be performed by grouping voxels into ROIs on the basis of anatomical partitions. Bivariate correlations were calculated between each pair of ROIs to act as measures of connectivity. Fisher-transformed correlation values (beta values) were obtained for each ROI pair, and significance tests (unpaired t test) were performed on these beta values. The significance threshold was set at P < .05 (false discovery rate-corrected). As auditory-related regions, Heschl's gyrus, planum temporale, planum polare, operculum, insular cortex, and superior temporal gyrus were set as the ROI from our previous reports.

We used our tinnitus patients' resting fMRI database, whose study was approved by the ethics committee of Keio University, to compare with the HCP database. The inclusion criteria for tinnitus patients were more than 20 years of age, suffering from chronic (more than 3 months) tinnitus and giving written informed consent. The exclusion criteria were the patients who had contraindications for MRI scanning. The median age was 57.5 (21-80) years. Subjects divided into three generations: 20 to 40 years old (n = 6), 40 to 60 (n = 11), and 60 to 80 (n = 11). The average ages of each generation were 28.5, 49, and 65 years, respectively.
generations are 29 ± 5.5, 54 ± 5.6, and 70 ± 5.7 respectively. The average Japanese version of the Tinnitus Handicap Inventory (THI) in each generation were 36.0 ± 27.7, 49.1 ± 19.1, and 48.4 ± 28.0 respectively. In the tinnitus 20 to 40 groups, all patients have normal hearing thresholds at all tested frequencies. In the tinnitus 40 to 60 groups, five patients have normal hearing, five have mild hearing impairment, and one has severe hearing impairment. In the tinnitus 60 to 80 groups, three patients have normal hearing, four have mild hearing impairment, one has moderate hearing impairment, and three have severe hearing impairment. Their functional and anatomical images were acquired on a PHILIPS Achieva 1.5T A-Series singli/G Eco scanner (Philips Medical Systems, Best, The Netherlands). Anatomical images were collected using a three-dimensional isotropic T1-weighted magnetization prepared rapid gradient echo sequence (matrix scan 304, reconstruction 512, voxel size: 0.72 × 0.72 × 4 mm). The rs-fMRI images were obtained using an echo planar sequence (TR 2500 ms, echo time 40 ms, flip angle 90°, field-of-view 220 mm, voxel size 3.44 × 3.44 mm, slice thickness 4 mm, interslice gap 0 mm). Subjects were asked to lie motionless with their eyes open during the rs-fMRI acquisition. The rs-fMRI data analysis was the same as above.

3 | RESULT

Beta values obtained for each auditory-related ROI pair were averaged across subjects in the HCP database and are presented in a matrix with a heat color scale representing connection strength in
Figure 1. At a beta threshold of more than 0.2, the percentages of all possible connections between the auditory-related ROIs remaining intact in the five age groups (8-9, 14-15, 25-35, 45-55, and 65-75) are 84% ± 8, 98 ± 2, 89 ± 1, 81 ± 6, and 78 ± 2 (Figure 2A). ANOVA with SNK (Student-Newman-Keuls) comparison showed that the mean percentage score from groups 14 to 15 was significantly more than groups 8 to 9 and 25 to 35. Both groups 14 to 15 and 25 to 35 scored significantly higher than groups 45 to 55 and 65 to 75. When a stricter threshold of beta greater than 0.5 was applied, the percentages of all possible connections between the auditory-related ROIs with a beta threshold of more than 0.7, the sensitivity of tinnitus diagnosis is 86%, the specificity is 74%. Because the older patients tend to decrease in the objective diagnostic yield for tinnitus, we examined the age-related change of the auditory FC using the HCP database. Although the auditory FC is decreased with age, the tinnitus patients have less auditory FC compared with age-matched controls. The stricter threshold of beta more than 0.5 is more appropriate for objective diagnosis of tinnitus, because there was a further widening of the gaps between the auditory FS of control and tinnitus patients. However, the gaps narrowed with age as the control group showed decreasing auditory FC. Some older patients' auditory FC is close to the control or greater than the control. Therefore, the age-matched cutoff values are necessary for the tinnitus objective diagnosis with the rs-fMRI. As a limitation, first, because HCP database does not include hearing level information, it is not clear how hearing impairment influences auditory-related FC. Second, there are some methodological differences between HCP data and tinnitus patients' data, such as different MRI devise and the age range of each generation. It is reported that the amount of activated voxels do not depend on the system, but the positions of these voxels do. The different MRI scanners between HCP subjects and tinnitus patients might add variability, but the results are comparable, because we evaluated relatively large amount of signals in auditory ROIs. The high-level noise produced by the MRI scanner can induce an overload the posterior cingulate cortex. To reduce the possible influence by high noise levels, the subjects were physically attenuated about 40 dB of noise by using earmuffs and earplugs. The number of sample size is small and statistically underpowered. Further research with presbycusis patients without tinnitus and more number of tinnitus patients should be done.

CONFLICTS OF INTEREST
The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

ORCID
Shujiro B. Minami https://orcid.org/0000-0002-7992-4868
Naoki Oishi https://orcid.org/0000-0001-8204-9518
Koichiro Wasano https://orcid.org/0000-0001-7335-3622
REFERENCES

1. Peelle JE, Wingfield A. The neural consequences of age-related hearing loss. Trends Neurosci. 2016;39:486-497.
2. Andrews-Hanna JR, Snyder AZ, Vincent JL, et al. Disruption of large-scale brain systems in advanced aging. Neuron. 2007;56:924-935.
3. Fox MD. Mapping symptoms to brain networks with the human connectome. N Engl J Med. 2018;379:2237-2245.
4. Biswal BB. Resting state fMRI: a personal history. Neuroimage. 2012;62:938-944.
5. Minami SB, Oishi N, Watabe T, Uno K, Kaga K, Ogawa K. Auditory resting-state functional connectivity in tinnitus and modulation with transcranial direct current stimulation. Acta Otolaryngol. 2015;135:1-7.
6. Minami SB, Oishi N, Watabe T, Uno K, Ogawa K. Auditory related resting state fMRI functional connectivity in tinnitus patients: tinnitus diagnosis performance. Otol Neurotol. 2017;39:1-5.
7. Baguley D, McFerran D, Hall D. Tinnitus. Lancet. 2013;382:1600-1607.
8. Barch DM. Resting-state functional connectivity in the human connectome project: current status and relevance to understanding psychopathology. Harv Rev Psychiatry. 2017;25:209-217.
9. facility Cc. HCP Lifespan Pilot Project. Available at: https://www.humanconnectome.org/study-hcp-lifespan-pilot.
10. Group TFM. SPM. September 25, 2018. Available at: http://www.fil.ion.ucl.ac.uk/spm/.
11. Nieto-Castanon A. CONN toolbox. Available at: www.nitrc.org/projects/conn.
12. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125-141.
13. Sole-Padulles C, Castro-Fornieles J, de la Serna E, et al. Intrinsic connectivity networks from childhood to late adolescence: effects of age and sex. Dev Cogn Neurosci. 2016;17:35-44.
14. Giedd JN. The teen brain: Insights from neuroimaging. J Adolesc Health. 2008;42:335-343.
15. Langen CD, Muetzel R, Blanken L, et al. Differential patterns of age-related cortical and subcortical functional connectivity in 6-10 year old children: a connectome-wide association study. Brain Behav. 2018;8:e01031.
16. Sala-Llonch R, Bartres-Faz D, Junque C. Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psychol. 2015;6:663.
17. Rajah MN, D’Esposito M. Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain J Neurol. 2005;128:1964-1983.
18. Morcom AM, Johnson W. Neural reorganization and compensation in aging. J Cogn Neurosci. 2015;27:1275-1285.
19. Du Y, Buchsbaum BR, Grady CL, Alain C. Increased activity in frontal motor cortex compensates impaired speech perception in older adults. Nat Commun. 2016;7:12241.
20. Siman-Tov T, Bosak N, Sprecher E, et al. Early age-related functional connectivity decline in high-order cognitive networks. Front Aging Neurosci. 2016;8:330.
21. Onoda K, Ishihara M, Yamaguchi S. Decreased functional connectivity by aging is associated with cognitive decline. J Cogn Neurosci. 2012;24:2186-2198.
22. Vlieger EJ, Lavini C, Majoie CB, den Heeten GJ. Reproducibility of functional MR imaging results using two different MR systems. AJNR Am J Neuroradiol. 2003;24:652-657.
23. Rondinoni C, Amaro E Jr, Cendes F, dos Santos AC, Salmon CE. Effect of scanner acoustic background noise on strict resting-state fMRI. Brazil J Med Biol Res Rev Brasil Pesquisas Med Biol. 2013;46:359-367.
24. Ravicz ME, Melcher JR. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: examination of noise conduction through the ear canal, head, and body. J Acoust Soc Am. 2001;109:216-231.

How to cite this article: Minami SB, Oishi N, Watabe T, Wasano K, Ogawa K. Age-related change of auditory functional connectivity in Human Connectome Project data and tinnitus patients. Laryngoscope Investigative Otolaryngology. 2020;5:132–136. https://doi.org/10.1002/lio2.338