Sperm morphology in Estonian and Tori Breed Stallions

By A. Kavak1,3, N. Lundeheim2, M. Aidnik1, S. Einarsson3

1Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, Estonian Agricultural University, Tartu, Estonia, 2Department of Animal Breeding and Genetics, Faculty of Agriculture, Landscape Planning and Horticulture, and 3Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, CRU, Uppsala, Sweden.

Kavak A, Lundeheim N, Aidnik M, Einarsson S: Sperm morphology in Estonian and Tori Breed stallions. Acta vet. scand. 2004, 45, 11-18. – The standard procedure for assessing the breeding potential of a stallion includes the parameter total number of spermatozoa classified as morphologically normal. This study investigated sperm morphology of fresh semen in randomly chosen Estonian (E, n=8) and Tori (T, n=7) breed stallions with proven fertility. Two ejaculates were examined from each stallion. An aliquot from each ejaculate was fixed in 1 mL formol-saline immediately after collection and examined with phase-contrast microscope at a magnification 1000x for all types of morphological abnormalities. Furthermore smears were prepared and stained according to Williams (carbolfuchsin-eosin) for a more detailed examination of the sperm heads with light microscope at a magnification 1000x. Analysis of variance was applied to the data, and results are presented as LSmeans (±SE). One T stallion that had a disturbance in the spermatogenesis and one 22-year-old E stallion were not included in the analyses. The T stallions had on average 57.5±4.1% and the E-stallions 74.4±3.8% morphologically normal spermatozoa (p=0.012). In 4 of 7 T stallions and 7 of 8 E stallions both ejaculates had >50% morphologically normal spermatozoa. There was a significant difference between breeds in mean percentage of proximal droplets (17.3±2.7% and 2.9±2.5% for T and E stallions, respectively; p=0.003).

Introduction
One criterion used to assess the breeding potential of a stallion is the total number of spermatozoa classified as morphologically normal (Kenney et al. 1983). Attempts to correlate the percentage of morphologically normal or abnormal spermatozoa with fertility have given conflicting results. Thus Bielanski & Kaczmarski (1979), Bielanski et al. (1982), Hurtgen & Johnson (1982), Jasko et al. (1990), Hellander et al. (1991) reported that sperm morphology is related with fertility to various degrees, while others (Voss et al. 1981, Dowsett & Pattie 1982) did not find any relationship between sperm morphology and fertility. Several investigators found a considerable inter-stallion (Pattie & Dowsett 1982, Roussel et al. 1987, Love et al. 2000) and intra-stallion (Roussel et al. 1987, Jasko et al. 1991, Love et al. 2000) variation in semen quality.

The standard evaluation of sperm morphology is performed with phase and/or light microscopy (Kenney et al. 1983). Computer-assisted methods have also been used (Ball & Mohammed 1995, Casey et al. 1997). However, available computer-assisted methods can only evaluate the sperm head, not count morpholog-
ical abnormalities of mid-pieces, tails and acro-
somes.
The aim of the present study was to investigate
the sperm morphology in fresh semen of Tori
and Estonian breed stallions.

Materials and methods
The investigation was performed on 15 clini-
cally healthy, randomly chosen stallions of 2
different breeds (7 Tori (T) and 8 Estonian (E)
breed stallions) with proven fertility aged be-
tween 4-15 years (one E stallion 22 years). The
stallions were transported to, and housed at, the
Veterinary Clinic of Estonian Agricultural Uni-
versity.

Semen collection and processing
Semen was collected during the non-breeding
season (October - January). One ejaculate of se-
men was collected daily for 10 subsequent days
from each stallion. Semen was collected using
a Missouri type artificial vagina while the stal-
lion was mounting a teased mare in oestrus. The
ejaculate was filtered through gauze to remove
the gel fraction. The semen was immediately
put into an incubator at +34 °C, and all manipu-
lations were conducted using warmed glass-
ware. Two ejaculates, one among the first 5
ejaculates and one among the last 3 ejaculates,
were chosen for evaluation of sperm morphol-
ogy. An aliquot from the ejaculates was fixed in
1 mL formol-saline immediately after collec-
tion. One drop of semen was also placed on
each of 3-4 glass slides, and smears were pre-
pared and air-dried.

Morphological examination of spermatozoa
Morphological abnormalities of spermatozoa
were studied in wet preparations made from the
formol-saline fixed samples (Hancock 1957)
under a phase-contrast microscope at a magni-
fication of 1000x. Altogether 200 spermatozoa
were counted in each preparation and all differ-
ent abnormalities (see below) in each sperma-
tozoon were recorded. The abnormalities were
classified according to a system developed by
Bane (1961).
For a more detailed examination of the sperm
heads, smears were prepared as described
above, stained with carbolfluchsin-eosin ac-
cording to the method described by Williams
(1920) and modified by Lagerlöf (1934). Five
hundred spermatozoa were counted in each
smear at a magnification of 1000x in a light mi-
croscope. The head abnormalities were classi-
fied according to Lagerlöf (1934). If the per-
centage of head abnormalities recorded in the
spermatozoa stained with carbolfluchsin-eosin
deviated from the percentage recorded in the
formol-saline fixed samples, the former was
used in the calculations.
The morphological abnormalities were counted
as a percentage of the total number of counted
spermatozoa. Morphological categories used in
this study were: I. Abnormal heads (including
pear shaped, narrow at the base, abnormal con-
tour, undeveloped, loose abnormal head, nar-
row, big, little-normal, short-broad), II. Loose
heads (including both those with normal and
abnormal head morphology), III. Acrosome de-
fects, IV. Proximal cytoplasmic droplets, V. Ab-
normal midpieces, VI. Abnormal tails (includ-
ing double folded, single bent and coiled tails
under the head) (see also Fig. 1a, 1b).
Presence of spermatogenetic cells or debris of
spermatogenetic cells was recorded in smears
stained according to a modification of a method
originally described by Papanicolaou (1942) in
a light microscope at a magnification of 250x.

Statistical analyses
Statistical analyses were performed using SAS
Version 8 software (SAS Institute Inc., Cary,
NC, USA). Analysis of variance was performed
using the MIXED-procedure according to a sta-
tistical model including the fixed effect of breed.
Sperm morphology in stallions

Figure 1a. Some sperm abnormalities in stallion.

Figure 1b. Some sperm abnormalities in stallion.
collection number (2) and the interaction between breed and collection number. The statistical model also included the random effect of stallion nested within breed (6 Tori; 7 Estonian).

Results

One of the T stallions had signs of a moderate disturbance in the spermatogenesis (high percentage of morphologically abnormal spermatozoa and presence of spermatogenetic cells in both ejaculates) and one E stallion was 22 years old. Their results were not included in the analysis of variance, but are presented separately. The LS means ± SE and ranges of morphological categories in the ejaculates of the remaining 6 T and 7 E stallions are presented in Table 1. There were significant differences in the mean values between breeds in percentages of proximal droplets (p=0.003) and of morphologically normal spermatozoa (p=0.012). The LSmean ± SE of percentage proximal droplets were 17.3 ± 2.7% in T stallions and 2.9 ± 0.9% in E stallions and the percentage of normal spermatozoa 57.5 ± 4.1% and 74.4 ± 3.8% in T and E stallions, respectively. The T stallion with a disturbance in the spermatogenesis had 23.7 ± 10.8% normal spermatozoa, and the 22-year-old E stallion had 49.1 ± 8.2% normal spermatozoa.

There was a significant interaction between breed and collection for percentage of abnormal heads (p<0.01). Differences in least squares means show that for E stallions, this abnormality decreased with time (by 2.6% units) whereas for T stallions this abnormality increased with time (by 2.8% units).

For both the percentage of abnormal tails and the percentage of normal spermatozoa there were significant interactions between breed and collection time (p<0.05). Differences in least squares means show that for E stallions, percentage of abnormal tails decreased with time by 4.7% units, whereas for T stallions it increased with time by 1% unit. For the percentage of normal spermatozoa, the corresponding differences were: E stallions: -5.3% units; T stallions: -0.7% units.

In 4 out of 7 T stallions and 7 out of 8 E stallions both ejaculates contained >50% morphologically normal spermatozoa. Six T stallions and all E stallions had >50% morphologically normal spermatozoa in at least one of 2 examined ejaculates.

Table 1. LSmean ± SE and range of percentage of different sperm abnormalities in the ejaculates of 6 Tori and 7 Estonian breed stallions.

Sperm morphology	Tori breed	Estonian breed		
	LSmean ± SE	Range	LSmean ± SE	Range
Proximal droplets %	17.3 ± 2.7	0.5 - 34.0	2.9 ± 2.5	0.0 - 10.0
Loose heads %	2.3 ± 0.9	0.0 - 10.5	2.3 ± 0.9	0.0 - 8.0
Acrosome defects %	0.6 ± 0.4	0.0 - 9.0	1.6 ± 0.4	0.0 - 4.5
Midpiece defects %	5.1 ± 1.2	0.0 - 11.5	2.4 ± 1.1	1.0 - 3.5
Abnormal tails %	6.6 ± 1.4	3.5 - 13.5	6.4 ± 1.3	2.5 - 17.0
Abnormal heads %	12.6 ± 1.7	8.4 - 20.0	13.9 ± 1.5	6.2 - 21.4
Normal %	57.5 ± 4.1	43.7 - 74.1	74.4 ± 3.8	55.1 - 88.8

LSmean values within row with different superscript letters are significantly different (p <0.05)
Discussion

The results of the present study gave information about the sperm morphology in ejaculates of randomly chosen Tori and Estonian breed stallions with proven fertility. A morphological examination of the spermatozoa is widely used in the evaluation procedure of semen in many mammalian species, including stallion. Various stains have been used for stallion spermatozoa (Voss et al. 1981, Hurtgen & Johnson 1982, Malmgren 1997). Hurtgen & Johnson (1982) reported that some staining techniques might induce morphologic changes in the spermatozoa. In the present study, smears were made from raw semen and stained according to the method described by Williams (1920) and modified by Lagerlöf (1934). This method is well established and is outstanding for evaluation of sperm head abnormalities in light microscope. Morphological abnormalities of the acrosome, the midpiece and the tail as well as presence of proximal cytoplasmic droplets were studied in unstained wet preparations made from formol-saline fixed samples under a phase-contrast microscope. The advantage of this method is that sperm morphology remains intact, which is not always the case when staining techniques are used (see above). The disadvantage associated with the buffered-formol saline method is that sperm head abnormalities can be difficult to evaluate in wet preparations. This disadvantage was compensated for by checking the occurrence of sperm head abnormalities in both stained smears and wet preparations (see above).

There were significant differences in one or 2 morphological parameters between the 2 ejaculates examined from a stallion. This indicates the need of a morphological examination of at least 2 ejaculates (not the first one collected) for evaluation of the morphological quality of the semen.

The mean percentages of proximal cytoplasmic droplets were 17.3% and 2.9% in T and E stallions respectively (p=0.002). Similar large differences between breeds within studies and between stallion population from different countries have earlier been reported. Thus Dowsett & Pattie (1982) and Jasko et al. (1990) found mean percentages of 13.1% and 15.5% proximal cytoplasmic droplets, while Voss et al. (1981) reported 0.5%-1.4% of proximal cytoplasmic droplets. The reason for this wide variation is not known. Dowsett & Pattie (1982) recommended a careful interpretation of percentages of this defect in relation to fertility, because stallions appear to differ from other species in which excess numbers of cytoplasmic droplets are considered to be indicative of immature spermatozoa and deleterious to fertility (e.g. in bulls, Söderquist et al. 1991, Amann et al. 2000).

The mean percentages of abnormal sperm heads did not differ between the 2 breeds (12.6% and 13.9% for T- and E-stallions, respectively). In previous studies (Voss et al. 1981, Dowsett & Pattie 1982, Jasko et al. 1990) the mean percentages of head abnormalities varied between 6.4%-21.5%. The present investigation of stallions with proven fertility showed higher mean percentages of head abnormalities than reported for normal stallions (9%), but lower than reported for stallions with testicular degeneration (17%) (Pickett 1993). One T-stallion in the present study had a semen picture of both ejaculates indicating a current testicular degeneration (>30% morphologically abnormal sperm heads plus spermatogenetic cells in the ejaculate). This stallion had given acceptable foaling rate after natural mating during the previous breeding season. At the time of examination this stallion must have suffered from testicular degeneration and was therefore excluded from the mean values of the sperm morphology of randomly sampled stallions.

The mean percentages of loose sperm heads in
the present study were approximately at the same level as reported previously by Voss et al. (1981), Bielanski et al. (1982) and Jasko et al. (1990).

The percentages of abnormal midpieces of the spermatozoa from T and E stallions (5.1% and 2.4%, respectively) were comparable with corresponding results of Jasko et al. (1990) who reported a frequency of 7.4%. Voss et al. (1981) on the other hand reported a mean of 25.3% of midpiece defects in ejaculated semen from 3 stallions, which seems extremely high for normal stallions. No explanation for the high level is given in their report.

Abnormal tails were found in 6.6% and 6.4% of the spermatozoa in T and E stallions respectively. These results are comparable with earlier investigations done by Dowsett & Pattie (1982) (10.9 %), Jasko et al. (1990) (2.4%) and Voss et al. (1981) (4.0%-5.5%).

The overall percentages of morphologically normal spermatozoa were 57.5% and 74.4% for T and E stallions respectively (p < 0.05). These mean values correspond to earlier findings by Jasko et al. (1990) (52.5%), Pattie & Dowsett (1982) (60.8%), but lower than findings by Bielanski et al. (1982) (85%) who presented sperm morphology of stallions with high fertility, and with at least 60% motile spermatozoa in their ejaculates.

In the Netherlands it has been recommended that minimal values of semen quality of young (3 years old) stallions for registration in the studbook is a mean total number of progressive motile morphologically normal spermatozoa of 2x10^9 and a mean of 50% for motility and 50% of morphology of 2 ejaculates collected at one h interval (Parlevliet et al. 1994). The mean number of spermatozoa per ejaculate of the 3-year-old Dutch Warmblood stallions was 11.3 ± 7.1x10^9 spermatozoa. In the present study 4/7 T stallions fulfilled the Dutch criteria. Of E stallions 6/8 had more than 50% morphologically normal spermatozoa and at least 50% motile spermatozoa in both ejaculates. However, not all of these E stallions had at least 2x10^9 morphologically normal and motile spermatozoa per ejaculate, because the size of the Estonian horse is much smaller than the Tori horse. In a previous study, Kavak et al. (2003) showed that the daily sperm output (DSO) was 12.9 ± 0.8x 10^9 for T stallions compared with 4.5±0.3x10^9 for E stallions (p < 0.001). Therefore 6 out of 7 E stallions (the 22 year old stallion did not fulfill these criteria) must be considered to have an acceptable production of morphologically normal and motile spermatozoa.

Conclusion

The T stallions had 57.5% ± 4.1% and the E-stallions 74.4% ± 3.8% morphologically normal spermatozoa (p=0.026). In T stallions 4 of 7 stallions had more than 50% of morphologically normal spermatozoa in both ejaculates; one ejaculate was under the limit in 2 stallions and both ejaculates in one stallion (testicular degeneration). In E stallions 7 of 8 stallions had more than 50% of morphologically normal spermatozoa in both ejaculates, and all 8 in at least one of 2 ejaculates.

Acknowledgement

The authors are grateful to Mrs. K. Selin-Wretling and Mrs. A. Rikberg for the excellent technical assistance. This study was financially supported by Swedish Institute, AGRIA, Estonian Scientific Foundation Grant no. 4111.

References

Amann RP, Seidel Jr GE, Mortimer RG: Fertilizing potential in vitro of semen from young beef bulls containing a high or low percentage of sperm with a proximal droplet. Theriogenology 2000, 54, 1499-1515.

Ball BA, Mohammed HO: Morphometry of stallion spermatozoa by computer-assisted image analysis. Theriogenology 1995, 44, 367-377.
Bane A: Acrosomal abnormality associated with sterility in boar. Proc. 4th Int. Congr. Anim. Reprod. & A.I., The Hague IV 1961, 810-817.

Bielanski W, Dudek E, Bittmar A, Kosiniak K: Some characteristics of common abnormal forms of spermatozoa in highly fertile stallions. J. Reprod. Fert. 1982, Suppl. 32, 21-26.

Bielanski W, Kaczmarski F: Morphology of spermatozoa in semen from stallions of normal fertility. J. Reprod. Fert. 1979, Suppl. 27, 39-45.

Casey PJ, Gravance CG, Davis RO, Chabot DD, Liu IKM: Morphometric differences in sperm head dimensions of fertile and subfertile stallions. Theriogenology 1997, 47, 575-582.

Dowsett KF, Pattie WA: Characteristics and fertility of stallion semen. J. Reprod. Fert. 1982, Suppl. 32, 1-8.

Hancock JL: The morphology of boar spermatozoa. J. R. Microse. Soc. 1957, 76, 84-97.

Hellander JC, Samper JC, Crabo BG: Fertility of a stallion with low sperm motility and a high incidence of an unusual sperm tail defect. Vet. Rec. 1991, 128, 449-451.

Hurtgen JP, Johnson LA: Fertility of stallions with abnormalities of the sperm acrosome. J. Reprod. Fert. 1982, Suppl. 32, 15-20.

Jasko DJ, Lein DH, Foote RH: Determination of the relationship between sperm morphologic classifications and fertility in stallions: 66 cases (1987-1988). J. Amer. Vet. Med. Assoc. 1990, 197, 389-394.

Jasko DJ, Lein DH, Foote RH: The repeatability and the effect of season on seminal characteristics and computer-aided sperm analysis in the stallion. Theriogenology 1991, 35, 317-327.

Kavak A, Lundeheim N, Aidnik M, Einarsson S: Testicular measurements and daily sperm output of Tori and Estonian breed stallions. Reprod. Dom. Anim. 2003, 38, 167-169.

Kenney RM, Hurtgen J, Pierson R, Witherspon D, Simons J: Manual for clinical sperm fertility evaluation of the stallion. J. Soc. Theriogenology 1983, 9, 3-100.

Lagerlöf N: Morphologische Untersuchungen über Veränderungen im Spermabild und in den Hoden bei Bullen mit vermindertem oder aufgehobenen Fertilität. (Researches concerning morphologic changes in the semen picture and in the testicles of sterile and subfertile bulls.) Acta Path. Microbiol. Scand. 1934, Suppl. 19, Thesis, Stockholm.

Love CC, Varner DD, Thompson JA: Intra- and inter-stallion variation in sperm morphology and their relationship with fertility. J. Reprod. Fert. 2000, Suppl. 56, 93-100.

Malmgren L: Assessing the quality of raw semen: a review. Theriogenology. 1997, 48, 523-530.

Papanicolaou GN: A new procedure for staining vaginal smears. Science 1942, 95, 438-439.

Parlevliet JM, Kemp B, Colenbrander B: Reproductive characteristics and semen quality in maiden Dutch Warmblood stallions. J. Reprod. Fert. 1994, 101, 183-187.

Pattie WA, Dowsett KF: The repeatability of seminal characteristics of stallions. J. Reprod. Fert. 1982, Suppl. 32, 9-13.

Rousset H, Chanteloube PH, Magistri M, Palmer E: Assessment of fertility and semen evaluations of stallions. J. Reprod. Fert. 1987, Suppl. 35, 25-31.

SAS Institute Inc.: SAS/STAT Users Guide, Version 8, Cary, NC 1989.

Söderquist L, Janson L, Larsson K, Einarsson S: Sperm morphology and fertility in A.I. bulls. J. Vet. Med. 1991, Av., 38, 534-543.

Voss JL, Pickett B, Squires E: Stallion spermatozoal morphology and motility and their relationship to fertility. J. Amer. Vet. Med. Assoc. 1981, 178, 287-289.

Williams WW: Technique of collecting semen for laboratory examination with a review of several diseased bulls. Cornell Vet. 1920, 10, 87-94.

Sammanfattning

Spermiermorfologi hos hingstar av estländsk och tori ras.

Bedömningen av en hingsts avelsvärde omfattar bland annat spermasamling och beräkning av totalantalet morfologiskt normala spermier i ejakulatet. Denna studie omfattar spermiermorfolologisk undersökning av 2 ejakulat från slumpmässigt utvalda fertila hingstar av estländsk (E, n=8) och tori (T, n=7) ras. Omedelbart efter spermasamlingen fixerades en liten mängd sperma i en mL fysiologisk formolsaltslution för bedömning av samtliga spermiermorfolologiska avvikelsen i faskontrastmikroskop (1000x). Dessutom gjordes utstryk på objektglas, som färgades enligt Williams metod (carbolfuchsin-eosin), för en mer detaljerad ljusmikroskopisk undersökning av spermehuvudet (1000x). Den statistiska bearbetningen av erhållna data omfattade variansanalys och resultaten redovisas som LSmeans (±SE). En T-
hingst, som visade sig ha en störning i spermiogene-

sen och en 22 år gammal E-hingst inkluderades inte i
de statistiska bearbetningarna. T-hingstarna hade i
medeltal 57,5±4,1% och E- hingstarna 74,4±3,8%
morfologiskt normala spermier (p=0,012). Hos 4 av
7 T-hingstar och 7 av 8 E-hingstar innehöll båda ejak-

(Received June 26, 2003; accepted october 14, 2003).

Reprints may be obtained from A. Kavak, Department of Obstetrics and Gynaecology, Faculty of Veterinary Me-
dicine, Estonian Agricultural University, Kreutzwaldi 62, 51014, Tartu, Estonia. E-mail: ants.kavak@og.slu.se,
tel: 372 7 422 482, fax: 372 7 422 259.