Patterns of primes in arithmetic progressions

János Pintz

1 Introduction

In their ground-breaking work Green and Tao [GT 2008] proved the existence of infinitely many \(k \)-term arithmetic progressions in the sequence of primes for every integer \(k > 0 \). I showed a conditional strengthening of it [Pin 2010] according to which if the primes have a distribution level \(\vartheta > 1/2 \) (for the definition of the distribution level see (1.1) below), then there exists a constant \(C(\vartheta) \) such that we have a positive even \(d \leq C(\vartheta) \) with the property that \(0 < d \leq C(\vartheta) \) and for every \(k \) there exist infinitely many arithmetic progressions \(\{ p^*_i \}_{i=1}^k \) of length \(k \) with \(p^*_i \in \mathcal{P} \) (\(\mathcal{P} \) denotes the set of primes) such that \(p^*_i + d \) is a prime too, in particular, the prime following \(p^*_i \). After the proof of Zhang [Zhang 2014], proving the unconditional existence of infinitely many bounded gaps between primes (this was proved earlier in our work [GPY 2009] under the condition that primes have a distribution level \(\vartheta > 1/2 \)) I showed this without any unproved hypotheses [Pin 2015].

We say that \(\vartheta \) is a distribution level of the primes if

\[
\sum_{q \leq x^\vartheta} \max_{(a,q)=1} \left| \frac{\pi(x, q, a) - \pi(x)}{\varphi(q)} \right| \ll A \frac{x}{(\log x)^A}
\]

holds for any \(A > 0 \) where the \(\ll \) symbol of Vinogradov means that \(f(x) = O(g(x)) \) is abbreviated by \(f(x) \ll g(x) \).

In his recent work James Maynard [May 2015] gave a simpler and more efficient proof of Zhang’s theorem. In particular he gave an unconditional proof of a weaker version of Dickson’s conjecture [Dic 1904] which we abbreviate as Conjecture DHL since Hardy and Littlewood formulated a stronger quantitative version of it twenty years later [HL 1923].

*Supported by OTKA Grants NK104183, K100291 and ERC-AdG. 321104.

Conjecture DHL (Prime k-tuples Conjecture). Let $\mathcal{H} = \{h_1, \ldots, h_k\}$ be admissible, which means that for every prime p there exists an integer a_p such that for any $i a_p \not\equiv h_i (\text{mod } p)$. Then there are infinitely many integers n such that all of $n + h_1, \ldots, n + h_k$ are primes.

The weaker version showed by Maynard (and simultaneously and independently by T. Tao (unpublished)) was that Conjecture DHL (k, k_0) (formulated below) holds for $k \gg k_0^2 e^{4k_0}$.

Conjecture DHL(k, k_0). If \mathcal{H} is admissible of size k, then there are infinitely many integers n such that \{$n + h_i\}_{i=1}^k$ contains at least k_0 primes.

A brief argument, given by Maynard [May 2015] (see Theorem 1.2 of his work) shows that if there exists a $C(k_0)$ such that DHL(k, k_0) holds for $k \geq C(k_0)$, then a positive proportion of all admissible m-tuples satisfy the prime m-tuple conjecture for every m (for the exact formulation see Theorem 1.2 of [May 2015]).

The purpose of the present work is to show a common generalization of the result of Maynard (and Tao) and that of Green–Tao.

Theorem 1. Let $m > 0$ and $\mathcal{A} = \{a_1, \ldots, a_n\}$ be a set of r distinct integers with r sufficiently large depending on m. Let $N(\mathcal{A})$ denote the number of integer m-tuples $\{h_1, \ldots, h_m\} \subseteq \mathcal{A}$ such that there exist for every ℓ infinitely many ℓ-term arithmetic progressions of primes $\{p_i^*\}_{i=1}^\ell$ where $p_i^* + h_j$ is also prime for each pair i, j. Then

\[(1.2) \quad N(\mathcal{A}) \gg_m \# \{(h_1, \ldots, h_m) \in \mathcal{A}\} \gg_m |\mathcal{A}|^m = r^m.\]

This is an unconditional generalization of the result in [Pin 2010].

2 Preparation. First part of the proof of Theorem 2

The arguments in the last three paragraphs of Section 4 of [May 2015] can be applied here practically without any change and so, similarly to Theorems 1.1 and 1.2 of [May 2015], our Theorem 1 will also follow in essentially the same way from (the weaker)

Theorem 2. Let m be a positive integer, $\mathcal{H} = \{h_1, \ldots, h_k\}$ be an admissible set of k distinct non-negative integers $h_i \leq H$, $k = \lceil C m^2 e^{4m} \rceil$ with a
sufficiently large absolute constant C. Then there exists an m-element subset
\begin{equation}
\{h'_1, h'_2, \ldots, h'_m\} \subseteq \mathcal{H}
\end{equation}
such that for every positive integer ℓ we have infinitely many ℓ-element non-trivial arithmetic progressions of primes p^*_i such that $p^*_i + h'_j \in \mathcal{P}$ for $1 \leq i \leq \ell$, $1 \leq j \leq m$, further $p^*_i + h'_j$ is always the j-th prime following p^*_i.

Remark.

(i) For $\ell = m = 1$ this is Zhang’s theorem,

(ii) for $\ell = 1$, m arbitrary this is the Maynard–Tao theorem,

(iii) for $m = 0$, ℓ arbitrary this is the Green–Tao theorem,

(iv) for $m = 1$, ℓ arbitrary this was proved under the condition that primes have a distribution level $\theta > 1/2$ in [Pin 2010], unconditionally (using Zhang’s method) in [Pin 2015].

In order to show our Theorem 2 we will follow the scheme of [May 2015]. We therefore emphasize just a few notations here, but we will use everywhere Maynard’s notation throughout our work. Similarly to his work, k will be a fixed integer, $\mathcal{H} = \{h_1, \ldots, h_k\} \subseteq [0, H]$ a fixed admissible set. Any constants implied by the \ll and 0 notations may depend on k and H. N will denote a large integer and asymptotics will be understood as $N \to \infty$. Most variables will be natural numbers, p (with or without subscripts) will denote always primes, $[a, b]$ the least common multiple of $[a, b]$ (however, sometimes the closed interval $[a, b]$). We will weight the integers with a non-negative weight w_n which will be zero unless n lies in a fixed residue class ν_0 (mod W) where $W = \prod_{p \leq D_0} p$. D_0 tends in [May 2015] slowly to infinity with N. His choice is actually $D_0 = \log \log \log N$. However, it is sufficient to choose
\begin{equation}
D_0 = C^*(k),
\end{equation}
with a sufficiently large constant $C^*(k)$, depending on k.

The proof runs similarly in this case as well just we lose the asymptotics then, but the dependence on D_0 is explicitly given in [May 2015]. The weights w_n are defined in (2.4) of [May 2015] as
\begin{equation}
w_n = \left(\sum_{d_i | n+h_i \forall i} \lambda_{d_1, \ldots, d_k} \right)^2.
\end{equation}
The choice of \(\lambda_{d_1,...,d_k} \) will be through the choice of other parameters \(y_{r_1,...,r_k} \) by the aid of the identity

\[
\lambda_{d_1,...,d_k} = \left(\prod_{i=1}^{k} \mu(d_i) d_i \right) \sum_{r_1,...,r_k \atop d_i|r_i \forall i} \frac{\sum_{i=1}^{k} \varphi(r_i)}{\prod_{i=1}^{k} \varphi(r_i)} y_{r_1,...,r_k}
\]

whenever \(\prod_{i=1}^{k} d_i W = 1 \) and \(\lambda_{d_1,...,d_r} = 0 \) otherwise. Here \(y_{r_1,...,r_k} \) will be defined by the aid of a piecewise differentiable function \(F \), the distribution \(\theta > 0 \) of the primes, with \(R = N^{\theta/2-\varepsilon} \) as

\[
y_{r_1,...,r_k} = F \left(\frac{\log r_1}{\log R}, \frac{\log r_k}{\log R} \right)
\]

where \(F \) will be real valued, supported on

\[
R_k = \left\{ \left(x_1, \ldots, x_k \right) \in [0,1]^k : \sum_{i=1}^{k} x_i \leq 1 \right\}.
\]

All this is in complete agreement with the notation of Proposition 1 and (6.3) of [May 2015].

Our proof will also make use of the main pillars of Maynard’s proof, his Propositions 1–3, which we quote now with the above notations as Proposition 1’.

Proposition 1’. With the above notation let

\[
S_1 := \sum_{N \leq n < 2N \atop n \equiv \nu_0 \pmod{W}} w_n, \quad S_2 := \sum_{N \leq n < 2N \atop n \equiv \nu_0 \pmod{W}} \left(w_n \sum_{i=1}^{k} \chi_P(n+h_i) \right),
\]

where \(\chi_P(n) \) denotes the characteristic function of the primes. Then we have as \(N \to \infty \)

\[
S_1 = \frac{\left(1 + O\left(\frac{1}{D_0} \right) \right) \varphi(W)^k N (\log R)^k}{W^{k+1}} I_k(F),
\]

\[
S_2 = \frac{\left(1 + O\left(\frac{1}{D_0} \right) \right) \varphi(W)^k N (\log R)^{k+1}}{W^{k+1}} \sum_{j=1}^{k} J_k^{(j)}(F),
\]
provided $I_k(F) \neq 0$ and $J_k^{(j)}(F) \neq 0$ for each j, where

$$I_k(F) = \int_0^1 \ldots \int_0^1 F(t_1, \ldots, t_k)^2 dt_1 \ldots dt_k,$$

(2.10)

$$J_k^{(j)}(F) = \int_0^1 \ldots \int_0^1 \left(\int_0^1 F(t_1, \ldots, t_k) dt_j \right)^2 dt_1 \ldots dt_{j-1} dt_{j+1} \ldots dt_k.$$

(2.11)

Proposition 2’. Let S_k denote the set of piecewise differentiable functions with the earlier given properties, including $I_k(F) \neq 0$ and $J_k^{(j)}(F) \neq 0$ for $1 \leq j \leq k$. Let

$$M_k = \sup \frac{\sum_{j=1}^k J_k^{(j)}(F)}{I_k(F)}, \quad r_k = \left\lceil \frac{\theta M_k}{2} \right\rceil$$

(2.12)

and let \mathcal{H} be a fixed admissible sequence $\mathcal{H} = \{h_1, \ldots, h_k\}$ of size k. Then there are infinitely many integers n such that at least r_k of the $n + h_i$ $(1 \leq i \leq k)$ are simultaneously primes.

Proposition 3’. $M_{105} > 4$ and $M_k > \log k - 2 \log \log k - 2$ for $k > k_0$.

Remark. In the proof Maynard will use for every k an explicitly given function $F = F_k$ satisfying the above inequality. Therefore the additional dependence on F will be actually a dependence on k.

The main idea (beyond the original proof of Maynard–Tao) is that in the weighted sum S_1 in (2.7) all those weights w_n for numbers $n \in [N, 2N]$ are in total negligible for which any of the $n + h_i$ terms $(1 \leq i \leq k)$ has a small prime factor p (i.e. with a sufficiently small $c_1(k)$ depending on k, $p \mid n + h_i$, $p < n^{c_1(k)}$).

To make it more precise let $c_1(k)$ be a sufficiently small fixed constant (to be determined later and fixed for the rest of the work). Let $P^-(n)$ be the smallest prime factor of n. Then we have

Lemma 1. We have

$$S_1^{-} = \sum_{n \equiv r_0 \pmod{W}} \sum_{n \leq N < 2N} w_n \ll_{k,H} c_1(k) \frac{\log N}{\log R} S_1.$$

(2.13)
Since $R = N^\frac{\theta}{2} - \varepsilon$, S_1^-/S_1 will be arbitrarily small if $c_1(k)$ is chosen sufficiently small. The proof of Lemma 1 will be postponed to Section 3. This means that during the whole proof we can neglect those numbers n for which $P^{-\left(\prod_{i=1}^{k}(n+h_i)\right)} < n^{c_1(k)}$ and it is sufficient to deal with numbers n with $n + h_i$ being almost primes for each $i = 1, 2, \ldots, k$ (by which we mean that $n + h_i$ has only prime factors at least $n^{c_1(k)}$). A trivial consequence of this fact is that for such numbers n $\prod_{i=1}^{k}(n+h_i)$ has a bounded number of prime factors. Consequently we have for these numbers n by (5.9) and (6.3)

\begin{equation}
(2.14)
 w_n \ll_{c_1(k), k} \lambda_{\text{max}}^2 \ll_{c_1(k), k} y_{\text{max}}^2 (\log R)^{2k} \ll_{c_1(k), k, F} (\log R)^{2k} \ll (\log R)^{2k}
\end{equation}

with the convention that the constants implied by the \ll and O constants can depend on k and both $c_1(k)$ and $F = F_k$ will only depend on k.

The essence of Maynard’s proof is that (see (4.1)–(4.4) of [May 2015])

\begin{equation}
(2.15)
 S_2 > \left(\left(\frac{\theta}{2} - \varepsilon\right)(M_k - \varepsilon) + O\left(\frac{1}{D_0}\right)\right) S_1
\end{equation}

which directly implies the existence of infinitely many values n such that there are at least

\begin{equation}
(2.16)
 r_k = \left\lfloor \frac{\theta M_k}{2} \right\rfloor
\end{equation}

primes among $n + h_i$ $(1 \leq i \leq k)$.

Let us denote, in analogy with (2.7)

\begin{equation}
(2.17)
 S_1^+ := \sum_{\substack{N \leq n < 2N \\ n \equiv \nu_0 \pmod{W} \\ P^{-\left(\prod_{i=1}^{k}(n+h_i)\right)} \geq n^{c_1(k)}}} w_n, \quad S_2^+ := \sum_{\substack{N \leq n < 2N \\ n \equiv \nu_0 \pmod{W} \\ P^{-\left(\prod_{i=1}^{k}(n+h_i)\right)} \geq n^{c_1(k)}}} w_n \left(\sum_{i=1}^{k} \chi_P(n+h_i)\right).
\end{equation}

Then Lemma 1 i.e. (2.13) implies together with (2.15) that (if $c_1(k)$ and ε are chosen sufficiently small, D_0 sufficiently large, then)

\begin{equation}
(2.18)
 S_2^+ > \left(\left(\frac{\theta}{2} - \varepsilon\right)(M_k - \varepsilon) + O(c_1(k)) + O\left(\frac{1}{D_0}\right) + o(1)\right) S_1,
\end{equation}
which implies the existence of a large number of n values in $[N, 2N)$, $n \equiv \nu_0 \pmod{W}$, with at least r_k primes among them and additionally almost primes with $P^-(n + h_i) > n^{\nu_1(k)}$ in all other components $i \in [1, k]$.

Together with (2.14) this implies

\begin{equation}
S^*_1 := \sum_{\substack{N \leq n < 2N \\ n \equiv \nu_0 \pmod{W}}} 1 \gg \frac{S_1}{(\log R)^2k} = \left(1 + O \left(\frac{1}{D_0}\right)\right) \frac{\varphi(W)^k N I_k(F)}{W^{k+1}(\log R)^k}.
\end{equation}

(2.19)

Since $D_0 = C^*(k)$ we have $\varphi(W)^k/W^{k+1} \geq C'(k)$. Thus a positive proportion (depending on k) of the integers $n \in [N, 2N)$ with $n \equiv \nu_0 \pmod{W}$ and $P^-(\prod_{i=1}^{k} (n + h_i)) > n^{c_1(k)}$ contain at least r_k primes among $n + h_i$ ($1 \leq i \leq k$). This follows from (2.19) and

\begin{equation}
\sum_{\substack{N \leq n < 2N, n \equiv \nu_0 \pmod{W}}} 1 \ll \frac{N}{\log^k N}
\end{equation}

(2.20)

where the implied constant in the \ll symbol depends only on k, H and $c_1(k)$, therefore only on k, finally. (2.20) is a consequence of Selberg’s sieve (see, for example, Theorem 5.1 of [HR 1974] or Theorem 2 in §2.2.2 of [Gre 2001]).

If Lemma 1 will be proved (see Section 3) then Theorem 2 will follow from Theorem 5 of [Pin 2010] which we quote here as

Main Lemma. Let k be an arbitrary positive integer and $\mathcal{H} = \{h_1, \ldots, h_k\}$ be an admissible k-tuple. If the set $\mathcal{N}(\mathcal{H})$ satisfies with constants $c_1(k)$, $c_2(k)$

\begin{equation}
\mathcal{N}(\mathcal{H}) \subseteq \left\{ n; P^-(\prod_{i=1}^{k} (n + h_i)) \geq n^{c_1(k)} \right\}
\end{equation}

(2.21)

and

\begin{equation}
\#\{n \leq X, n \in \mathcal{N}(\mathcal{H})\} \geq \frac{c_2(k)X}{\log^k X}
\end{equation}

(2.22)

for $X > X_0$, then $\mathcal{N}(\mathcal{H})$ contains ℓ-term arithmetic progressions for every ℓ.
In order to see that the extra condition that the given prime pattern occurs also for consecutive primes we have to work in the following way. For any given $\mathcal{H} = \{h_1, \ldots, h_k\}$ with $k = \lceil Cm^2 \log m \rceil$ we choose an m-element subset $\mathcal{H}' = \{h'_1, \ldots, h'_m\} \subseteq \mathcal{H}$ with minimal diameter $h'_m - h'_1$ such that with some constants $c'_1(k), c'_2(k) > 0$ the relations (2.21)–(2.22), more exactly (2.23)

$$
\#\left\{n \leq X; \mathcal{P} - \prod_{i=1}^{k} (n + h_i) \geq n^{c'_1(k)}, n + h'_i \in \mathcal{P} \ (1 \leq i \leq m) \right\} \geq c'_2(k)X \log^k X
$$

should hold for $X > X_0$.

By the condition that \mathcal{H}' has minimal diameter we can delete from our set $\mathcal{N}(\mathcal{H})$ those n’s for which there exists any $h_i \in \mathcal{H} \setminus \mathcal{H}'$, $h'_1 < h_i < h'_m$ such that beyond (2.23) also $n + h_i \in \mathcal{P}$ would hold.

On the other hand we can also neglect those $n \in \mathcal{N}(\mathcal{H})$ for which with a given $h \in [1, H]$, $h \notin \mathcal{H}_k$ we would have additionally $n + h \in \mathcal{P}$ since the total number of such $h \in [1, H]$ is by (2.20) at most

$$
O_k \left(\frac{NH}{\log^{k+1} N} \right) = o \left(\frac{N}{\log^k N} \right)
$$

since our original H in Theorem 2 was fixed.

We note that the above way of specifying the m-element sets \mathcal{H}'_m for which we have arbitrarily long (finite) arithmetic progressions of n’s such that $n + h'_i$ ($1 \leq i \leq m$) would be a given bounded pattern of consecutive primes does not change the validity of the argument of Maynard (see Theorem 1.2 of [May 2015]) which shows that the above is true for a positive proportion of all m-element sets (the proportion depends on m).

3 Proof of Lemma 1. End of the proof of Theorem 2

The proof of Lemma 1 will be a trivial consequence of the following

Lemma 2. The following relation holds for any prime $D_0 < p < N^{c_1}$ and all $i \in [1, \ldots, k]$:

$$
S_{1,p}^* := \sum_{n \leq n < 2N \atop p \equiv 0 \pmod{W}} w_n \ll_{F,H,k} \frac{\log p}{p \log R} \sum_{n \leq n < 2N \atop p \equiv 0 \pmod{W}} w_n = \frac{\log p}{p \log R} S_1.
$$
Proof. It is clear that it is enough to show this for $i = 1$, for example. During the proof we will use the analogue of Lemma 6 of [GGPY 2010] for the special case $k = 1$, $\delta = p \in \mathcal{P}$ and for squarefree n with

$$f(n) = n \quad f_1(n) = \mu * f(n) = \prod_{p | n} (p - 1) = \varphi(n)$$

which is as follows:

$$T_p := \sum_{d,e} \frac{\lambda_d \lambda_e}{[d,e,p]/p} = \sum_{r \in \mathbb{R}^+} \frac{\mu^2(r)}{\varphi(r)} (y_r - y_{rp})^2.$$

This form appears as the last displayed equation on page 85 of Selberg [Sel 1991] or equation (1.9) on page 287 of Greaves [Gre 2001]. We note the general starting condition that similarly to [May 2015] the numbers $W, [d_1,e_1], \ldots, [d_k,e_k]$ will be always coprime to each other.

Writing $n + h_1 = pm$ we see that we have for any $\varepsilon > 0$ and denoting \sum^* for the conditions $n \in [N, 2N)$, $n \equiv \nu_0 \pmod{W}$; $d_i, e_i \mod n + h_i$ ($2 \leq i \leq k$)

$$S_{1,p} = \sum_1 + \sum_2 + O(R^{2+\varepsilon})$$

where

$$\sum_1 = \sum^* \lambda_{d_1, \ldots, d_k} \lambda_{e_1, \ldots, e_k} \prod_{i=1}^{k} \frac{\lambda_{d_i, e_i}}{[d_i, e_i]}$$

$$\sum_2 = \sum^* \lambda_{d_1, \ldots, d_k} \lambda_{e_1, \ldots, e_k} \prod_{i=1}^{k} \frac{\lambda_{d_i, e_i}}{[d_i, e_i]} \prod_{i=1}^{k} \frac{\lambda_{d_i, e_i}}{[d_i, e_i]}$$

Distinguishing further in \sum_2 according to $p^2 | d_1 e_1$ or not we obtain from (3.5) and (3.6) for any $\varepsilon > 0$

$$\sum_1 = \frac{N}{pW} \sum^* \lambda_{d_1, \ldots, d_k} \lambda_{e_1, \ldots, e_k} \prod_{i=1}^{k} \frac{\lambda_{d_i, e_i}}{[d_i, e_i]} + O(R^{2+\varepsilon})$$
and

\[
\sum_2 = \frac{N}{pW} \left\{ \left(\sum^{\ast} \frac{\lambda_{pd_1', \ldots, d_k} \lambda_{e_1, \ldots, e_k}}{d_1' e_1 \prod_{i=2}^{k} [d_i, e_i]} \right) + \sum^{\ast} \frac{\lambda_{d_1, \ldots, d_k} \lambda_{pe_1', \ldots, e_k}}{e_1 = pe_1' \prod_{i=2}^{k} [d_i, e_i]} \right\} + \sum^{\ast} \frac{\lambda_{pd_1', \ldots, d_k} \lambda_{e_1', \ldots, e_k}}{d_1' e_1' \prod_{i=2}^{k} [d_i, e_i]} \right\} + O(R^{2+\varepsilon}).
\]

Consequently we have

\[
S_{1,p} = \frac{N}{pW} \sum^{\ast} \frac{\lambda_{d_1, \ldots, d_k} \lambda_{e_1, \ldots, e_k}}{[d_1, e_1] \prod_{i=2}^{k} [d_i, e_i]} + O(R^{2+\varepsilon}).
\]

Let us denote the sum in (3.9) analogously to (3.3) by \(T_{p,1} \). Then, similarly to (3.3) we obtain using additionally the argument of Section 5 of May 2015

\[
T_{p,1} = \sum_{u_1, \ldots, u_k} \prod_{i=1}^{k} \mu^2(u_i) \prod_{i=1}^{k} \phi(u_i) (y_{u_1, \ldots, u_k} - y_{u_{1p}, u_2, \ldots, u_k})^2.
\]

However by the choice (6.3) of May 2015 we have

\[
(y_{u_1, \ldots, u_k} - y_{u_{1p}, u_2, \ldots, u_k})^2 \leq F \left(\log \frac{u_1}{\log R}, \ldots, \log \frac{u_k}{\log R} \right)^2 - F \left(\log \frac{u_1 + \log p}{\log R}, \ldots, \log \frac{u_k}{\log R} \right)^2 \leq \frac{\log p}{\log R},
\]

since \(F \) depends only on \(k \), and hence the constant implied by the \(\ll \) symbol may depend on \(k \). Hence we have by Proposition (4.1) of May 2015

\[
T_{p,1} \ll \frac{N}{W} \frac{\log p}{p \log R} \sum_{(u_1, W) = 1}^{k} \prod_{i=1}^{k} (\mu^2(u_i)) \prod_{i=1}^{k} \phi(u_i) \ll \frac{\log p}{p \log R} \cdot S_1
\]

which proves Lemma 2 and thereby Lemma 1 and Theorem 2. \(\square \)
References

[Dic 1904] L. E. Dickson, A new extension of Dirichlet’s theorem on prime numbers, *Messenger Math. (2) 33* (1904), 155–161.

[GPY 2009] D. A. Goldston, J. Pintz and C. Y. Yildirim, Primes in tuples I, *Ann. of Math. 170* (2009), 819–862.

[GGPY 2010] D. A. Goldston, S. W. Graham, J. Pintz and C. Y. Yildirim, Small gaps between products of two primes, *Proc. London Math. Soc. (3) 98* (2009), no. 3, 741–774.

[Gre 2001] G. Greaves, *Sieves in Number Theory*, Springer, Berlin, 2001.

[GT 2008] B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions, *Ann. of Math. (2) 167* (2008), no. 2, 481–547.

[HR 1974] H. Halberstam, H.-E. Richert, *Sieve Methods*, Academic Press, New York, 1974.

[HL 1923] G. H. Hardy, J. E. Littlewood, Some Problems of ‘Partitio Numerorum’. III. On the expression of a number as a sum of primes, *Acta Math.* 44 (1923), 1–70.

[May 2015] J. Maynard, Small gaps between primes, *Ann. of Math. (2) 181* (2015), no. 1, 383–413.

[Pin 2010] J. Pintz, Are there arbitrarily long arithmetic progressions of twin primes? in: *An irregular mind. Szemerédi is 70*, pp. 525–559, Bolyai Soc. Math. Studies 21, Springer, 2010.

[Pin 2015] J. Pintz, Polignac Numbers, Conjectures of Erdős and Gaps between Primes, Arithmetic Progressions in Primes, and the bounded Gap Conjecture, to appear and arXiv: 1305.6289v1, 27 May 2013.

[Sel 1991] A. Selberg, *Collected papers*. Vol. II, Springer, Berlin, 1991.

[Zhang 2014] Yitang Zhang, Bounded gaps between primes, *Ann. of Math (2) 179* (2014), no. 2, 1121–1174.
