Chronic inflammation is linked to the development and progression of multiple cancers, including those of the lung, stomach, liver, colon, breast and skin. Inflammation not only drives the oncogenic transformation of epithelial cells under the stress of chronic infection and autoimmune diseases, but also promotes the growth, progression and metastatic spread of cancers. Tumor-infiltrating inflammatory cells are comprised of a diverse population of myeloid and immune cell types, including monocytes, macrophages, dendritic cells, T and B cells, and others. Different myeloid and lymphoid cells within tumor microenvironment exert diverse, often contradicting, effects during skin cancer development and progression. The nature of tumor-immune interaction determines the rate of cancer progression and the outcome of cancer treatment. Inflammatory environment within skin tumor also inhibits naturally occurring anti-tumor immunity and limits the efficacy of cancer immunotherapy. In this article we aim to give an overview on the mechanism by which inflammation interferes with the development and therapeutic intervention of cancers, especially those of the skin.

Key words: inflammation; skin cancer; cytokine; cancer immunotherapy

Introduction

Inflammation is characterized by the infiltration of plasma and leukocytes to tissues that undergo disrupted homeostasis [1]. The causes of inflammation range from pathogenic infection, tissue injury to tissue stress and malfunction [1]. Inflammatory process is critical for normal physiological responses against infection and tissue damage, and promotes the clearance of invading pathogens and the regeneration of damaged host tissues. Inflammation is also important for maintaining homeostasis and monitoring stress signals that arise with tissue malfunction [1, 2]. However, the process of inflammation may bring detrimental side effects to the host, depending on the nature, duration and magnitude of inflammatory response elicited during infections and diseases. Examples of such side effects include allergies, autoimmune diseases, and life-threatening immune responses induced by viral and bacterial infection in humans [3–6]. Inflammation is also recognized as one important player in the entire course of carcinogenesis [7, 8]. Different myeloid and lymphoid cells infiltrate into tumor stroma and exert divergent, even contradicting effects on the growth, progression and metastatic spread of cancers [7, 8]. In this review we will summarize our current understanding on the nature of immune-cancer interaction, focusing primarily on skin malignancies.

There are four major types of skin malignancies: basal cell carcinoma, squamous cell carcinoma, melanoma and nonepithelial skin cancers [9]. Among them, melanoma is the most deadly form of skin cancer and contributes to 10,000 deaths per year in the United States [10]. About 132,000 new cases of melanoma arise globally each year, leading to vast majority of skin cancer-related deaths [11]. Risk factors of skin carcinogenesis include chronic cutaneous inflammation, viral infection, ultraviolet radiation (UVR), and other inflammation-inducing agents and traumas [12, 13]. UVR promotes the transformation of skin cells by damaging cellular DNA. The major DNA damage products generated through UVR exposure are cyclobutane pyrimidine dimers and pyrimidine [4–6] pyrimidone [14]. Damaged DNA is typically repaired by the nucleotide excision repair pathway, whereas defective repair of the damaged DNA results in cancer predisposition [15]. UVR also serves as a link between skin cancer and inflammation, as its exposure alters immunological functions in the skin [16]. For example, exposure to UV light results in the upregulation of COX-2 protein in keratinocytes and increased production of prostaglandin E2 (PGE2), which leads to cutaneous tissue inflammation [17]. UV exposure also adversely affects skin immune system by suppressing the function of antigen-presenting cells, inducing the expression of immune-suppressive cytokines and modulating contact and delayed-type hypersensitivity reactions [18]. The suppression on adaptive immunity by UVR
has been proposed to contribute to the evasion of skin cancer cells from immune surveillance [18]. UVR therefore promotes skin carcinogenesis through both direct action on skin cells and indirect modulating effect on local microenvironment that is shaped by the process of chronic inflammation and immune response.

Chronic inflammation has been recognized a driving force for epidermal cell transformation and malignant progression. In this article, we aim to summarize our current knowledge on the role of inflammatory signaling in different types of cancers, followed by a more detailed description on the role of inflammation in skin cancer development.

Chronic inflammation promotes cancer development and progression

The link between inflammation and cancer has long been suspected due to the pioneering work of Rudolf Virchow over 150 years ago [19]. Since that point these tumor-infiltrating cells have been suspected to play a role in cancer development and progression. Experimental evidence linking inflammatory and immune cells to cancer development, however, was only provided in the past decade by the use of mouse models of cancers [7, 8, 20]. Tumor infiltrating myeloid and lymphoid cells can either promote or inhibit cancer development, depending on the nature of the immune-cancer interaction [7, 20, 21]. Through the production of cytokines, chemokines and extracellular enzymes, tumor infiltrating immune cells may serve as tumor promoter by supporting tumor cell proliferation and inhibiting programmed cell death [7, 8, 20]. On the other hand, innate and adaptive immune cells recognize tumor-specific antigens and molecular patterns and actively destroy transformed cells [22]. In addition to the direct tumor-immune interaction, different branches of immune cells also crosstalk within the tumor microenvironment and regulate their counterparts’ recruitment and activity. Immune cells also signal to other stromal cells in the tumor, such as fibroblasts and endothelial cells, to promote the production of cytokines and chemokines and regulate oxygen and nutrient supply to tumor cells [23, 24]. The eventual outcome of this complicated network of regulation is the formation of a unique tumor microenvironment that has profound impacts on the development, progression, and metastatic spread of cancers. Shaping the tumor microenvironment by immune cells also plays an important role in determining the outcome of anti-cancer therapy in humans.

Chronic inflammation contributes to about 20% of all human cancers [7]. Examples of such association include hepatitis B and C virus infection with liver cancer [25]; *Helicobacter pylori* colonization with gastric cancer [26]; ulcerative colitis [27, 28] and Crohn’s disease [29, 30] contributing to colorectal cancer; and smoking [31, 32] and asbestos exposure [33, 34] with lung cancer. Under normal conditions, inflammation serves as a mechanism of host defense and tissue regeneration following pathogen infection or tissue damage. However, under persistent infection or injury, chronic inflammation drives the transformation of cancer-originating cells by producing reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI) that are capable of inducing DNA damage and genomic instability [35, 36]. In addition, tumor-infiltrating myeloid and lymphoid cells produce cytokines that signal to transformed cells and support their growth and survival. These pro-tumorigenic cytokines include interleukin (IL)-6, IL-11, IL-21 and IL-22 that activate the STAT3 transcription factor; TNFα, IL-1 and IL-18 that activate NF-κB; and the IL-23 to IL-17 axis of inflammation that activates both STAT3 and NF-κB in tumor cells [37, 38] (Figure 1).

NF-κB and STAT3 are essential for inflammation-promoted cancer development [39–42]. NF-κB signaling plays important roles in normal physiology and immunity. Activation of NF-κB depends on the phosphorylation of the IκB protein by the IKK complex comprised of IKK-α, IKK-β and IKK-γ. Phosphorylation of IκB leads to its poly-ubiquitination and proteasomal degradation, thereby releasing NF-κB to cellular nucleus for transcriptional activation of its target genes [43, 44]. NF-κB signaling promotes cancer development by its activity within both cancer cells and immune cells [45]. Activation of NF-κB in immune cells results in the expression and production of multiple pro-inflammatory cytokines, including TNFα, IL-1, IL-6, IL-17 and IL-23, which promote cancer development in multiple mouse models [37, 45–49]. Activation of NF-κB in cancer cells enhances their survival as a result of the upregulation of anti-apoptotic genes such as Bcl-xl, Bcl-2, c-IAP2, A1 and c-FLIP [50, 51].

STAT3 can be activated in cancer cells by multiple cytokines and growth factors, best known for IL-6 and its family members [40]. Activation of STAT3 requires engagement of extracellular ligands (e.g. IL-6) to their cognate receptors, followed by receptor dimerization and activation of JAK kinases. JAKs subsequently phosphorylate the tyrosine 705 residue on STAT3 that permits its dimerization, nuclear translocation and target gene activation [52]. STAT3 activation in cancer cells results in enhanced cell proliferation and survival. The increase in cancer cell proliferation is mediated by STAT3-activated production of Bcl-xl, Bcl-2 and c-IAP2, which are also activated by NF-κB [53–56]. Mcl-1 and Survivin are also upregulated by STAT3 signaling and promote cancer cell survival [53–56]. STAT3 also promotes cell cycle progression by transcribing genes encoding c-Myc and cyclins B and D [54–56]. Taken together, inflammatory environment within tumors promotes cancer development by activating NF-κB and STAT3 signaling and upregulating pro-survival and cell cycle-driving genes (Figure 1).

Chronic inflammation that accelerates skin carcinogenesis

The skin is a unique epithelial tissue that covers our body and provides physical and biological surface protection [57]. It contains three layers: epidermis, dermis and subcutaneous layer [58, 59]. The epidermis is the most outer layer composed of keratinocytes and melanocytes. Keratinocytes originate from the basal layer of the epidermis and migrate toward the surface, where they are gradually shed and replaced by newer cells [58].
Melanocytes are scattered throughout the basal layer of the epidermis and produce melanin that determines our skin color [60, 61]. The main function of melanin is to block the penetration of UVR from the sunlight, which damages DNA and induces skin tumorigenesis [60, 61]. The epidermis also contains residential macrophages called Langerhans cells that defend the body against foreign microbial infection [62]. Below the epidermis is the dermis that contains fibrous and elastic tissue that gives the skin its flexibility and strength. The dermis also contains nerve endings, sweat glands, blood vessels and hair follicles [57–59]. Further below is the subcutaneous layer that insulates our body from heat loss and stores energy in the form of fat [57].

With the use of mouse models of skin cancer, it is now clear that pro-inflammatory immune cells play important roles in skin cancer development (Figure 1) [12, 13, 63]. One of the first studies demonstrating the importance of inflammation in skin cancer pointed to a tumor-promoting role of TNFα [48, 49]. TNFα is known to promote autoimmune inflammation in the skin, including psoriasis [64, 65]. Mice harboring genetic ablation of Tnfa were resistant to skin tumor development that was initiated by DMBA and promoted by TPA protocol [49]. The same resistance was observed when mice were applied repeated doses of DMBA without TPA [49]. TNFα also promotes UVR-induced cutaneous squamous cell carcinomas in PKCε transgenic mice [48]. TNFα signals to both tumor cells and their surrounding stromal cells during skin cancer development [49]. TNFα signaling in early stage skin cancer activates transcription factor AP-1 and promotes the production of GM-CSF, MMP-3, 7 and 9 [48, 66]. Activation
of NF-κB transcription factors by TNFα promotes the upregulation of c-FLIP and enhances skin tumor cell survival, and confers their resistance to RAF inhibitor treatment [48, 67]. Ablation of either TNFR1 or TNFR2 resulted in reduced skin cancer development, with TNFR1 contributing to a larger share of the tumor-promoting effect [68]. Consistent with the pro-tumorigenic role of TNFα in the skin, administration of a TNFα-neutralizing antibody to mice significantly reduced skin tumor development [69].

In addition to TNFα, IL-1/MyD88 signaling has also been attributed to keratinocyte transformation and carcinogenesis [70]. Ablation of the receptor for IL-1 cytokine (IL-1R), or its downstream signaling adaptor molecule MyD88, resulted in reduced topical carcinogenesis that was induced by the DMBA/TPA protocol [70]. Adoptive transfer of WT or MyD88-deficient bone marrow cells showed that MyD88 is needed in both hematopoietic and radio-resistant cells during skin carcinogenesis. Targeted ablation of MyD88 in basal keratinocytes reduced skin tumor load by half, further confirming a direct tumor-promoting role of IL-1R/MyD88 signaling within skin cells [70]. On the other hand, ablation of the MyD88 adaptor protein in all hematopoietic cells also resulted in significant reduction in skin tumor load [70]. Activation of keratinocytes by IL-1R/MyD88 signaling results in the activation of NF-κB and increased production of cytokines and chemokines that have been shown to promote skin carcinogenesis, including TNFα, CXCL1, CSF2 and MMP9 [70]. CXCL1 binds to its cognate receptor CXCR2 on keratinocytes and contributes to tumor formation and metastatic spread [71]. The role of CSF2 (GM-CSF) in skin cancer is context-dependent. Over-expression of CSF2 in the skin resulted in increased tumor burden in a mouse model of squamous cell carcinoma, whereas expression of its antagonist inhibits the rejection of B16 melanoma cells [72], suggesting a dual role of CSF2 in regulating pro- and anti-tumor immunity. Regarding the source of IL-1 cytokine in skin cancer, it has been shown that UV challenge or TPA stimulation leads to production of IL-1α by keratinocytes [73, 74]. Activation of K-Ras, a potent oncogene that drives the development of multiple cancers [75], in transformed skin cells resulted in production of IL-1α, which signals in an autocrine manner through IL-1R/MyD88/NF-κB pathway to synergize with K-Ras for the oncogenic progression of skin cancer [70].

The role of IL-6 family cytokines has been extensively studied in multiple mouse models of cancers. Although the in vivo test on IL-6 in mouse models of skin cancer is lacking at this point, cell line-based studies have shown that IL-6 plausibly promotes skin tumor growth through activation of the STAT3 transcription factor [76]. IL-6 can be produced by keratinocytes that are stimulated by UVR or TPA exposure, thereby akin to IL-1, signals in an autocrine manner in transformed keratinocytes [73, 74]. There are only limited studies on the involvement of the other IL-6 family cytokines in skin cancer, though we now know that IL-11 is over-expressed in skin tumors and promotes tumor development through the activation of STAT3 [77]. Consistent with its role in mediating the signaling of IL-6 and its family members, STAT3 has been shown to drive both the initiation and promotion phases of epithelial carcinogenesis [77, 78]. Epidermal specific ablation of STAT3 resulted in dramatically reduced skin tumor load, in both oncogene- and UVR-driven mouse models of skin cancers [77, 79]. One of the targets of STAT3 signaling in skin cancer development is Bcl-xl, whose ablation resulted in marked reduction in skin tumor load [80]. Similarly, forced expression of another STAT3 target, Survivin, in the skin led to increased chemical-induced carcinogenesis and decreased tumor regression [81]. In addition to supporting primary tumor growth, STAT3 also drives metastatic spread of melanoma by inhibiting cell apoptosis during anoikis (anchorage-independent cell death) [82]. Activation of STAT3 by IL-6 in melanoma cells promotes the expression of Twist and N-cadherin proteins, which are markers of epithelial-to-mesenchymal transition (EMT) [83].

The IL-23/IL-17 axis of inflammation contributes significantly to the development of multiple cancers including that of the skin. IL-23 belongs to the IL-12 family of heterodimeric cytokines. IL-23 shares the 40 kD subunit with IL-12, and has its unique 19 kD subunit encoded by the Il23a gene [47, 84, 85]. IL-12 is comprised of a 35 kD (encoded by the Il12a gene) and a 40 kD (encoded by the Il12b gene) subunit [47, 84, 85]. Ablation of Il23a resulted in marked reduction in DMBA/TPA-induced skin tumors, suggesting a strong tumor-promoting role of IL-23 in the skin [86]. It is intriguing that deletion of IL-12 resulted in increased skin tumorigenesis, opposite to that of IL-23 [86]. Mice harboring deletion of the common p40 subunit that is shared by IL-23 and IL-12 also failed to develop skin tumors [86].

IL-23 is mainly produced by activated macrophages in response to engagement of Toll like receptors (TLRs) and subsequent activation of NF-κB and STAT3 transcription factors [87–89]. IL-23 is important for the expression of another cytokine IL-17 by phenotypically stabilizing and inducing the expansion of IL-17 producing T cells (Th17 cells) or through activation of innate lymphoid cells (iLC) and γδ T cells together with IL-1 [90–93]. IL-17, in conjunction with IL-22 that are both produced by Th17 cells, supports the development of skin cancer by activating STAT3 in tumor and stromal cells and promoting the infiltration of myeloid cells into the tumor microenvironment [94–96]. In addition to IL-22, IL-6 and IL-11 also drives the malignant progression of skin cancer cells through the activation of STAT3 and upregulation of inflammatory and angiogenic factors [76, 77].

Cytotoxic T cell-related cytokines suppress skin cancer development

Though in many cases cancer-associated inflammation promotes the development of skin malignancies, our immune system does provide protection against cancer development through both innate and adaptive immunity [97, 98]. These naturally occurred anti-cancer immunity not only limits the rate of carcinogenesis in humans but also provides the ground for cancer immunotherapy. Among anti-tumor immune cells and cytokines are IL-12
and interferon-gamma (IFN-γ) that play central roles in limiting skin cancer development. IL-12 is a heterodimeric cytokine that is composed of a p35 subunit and a p40 subunit [47, 84, 85]. The p40 subunit is shared with IL-23, which has been shown to promote skin tumorigenesis [86]. Unlike that of IL-23, ablation of IL-12 by knocking out the p35 subunit resulted in marked increase in mouse skin tumor load, suggesting an anti-tumor role of IL-12 [86]. Importantly, when the common p40 subunit was knocked out in mice under DMBA/TPA protocol for skin cancer induction, these mice developed few skin tumors, similar to that of IL-23 knockout [86]. These results suggest that the effect of tumor promotion by IL-23 dominates early phase skin carcinogenesis [86].

Consistent with the known role of IL-12 in activating cell-mediated immunity through CD4+ type 1 T helper cells (Th1 cells) and CD8+ cytotoxic lymphocytes (CTLs), ablation of CD8+ cells in mice resulted in marked increase in skin tumor load following DMBA/TPA protocol [99]. Similarly, mouse models of skin cancer also showed a critical role for IFN-γ in anti-tumor immunity [100, 101]. Mice lacking the receptor for IFN-γ, or its downstream signaling mediator STAT1, are prone to chemical carcinogen mediated sarcoma induction [102, 103]. IFN-γ is produced by Th1 cells, CTLs and γδ T cells and potently activates cell-mediated immunity against tumor cells [100, 101, 104]. In response to IFN-γ signaling, natural killer cells (NK cells) and CTLs recognize tumor-specific surface traits and eliminate transformed cells [100, 101]. Of special interest are the discovery of immune modulatory mechanisms that limit T cell anti-tumor activity, and the invention of novel therapies targeting T cell modulating or co-stimulatory pathways for the treatment of melanomas and other solid tumors [105, 106]. These progress have been reviewed extensively in recent publications and we will not go into details here.

Immune-modulating cytokines in skin cancer

In addition to pro- and anti-tumorigenic cytokines that we introduced in the previous sessions, immune modulatory cytokines also play important, sometimes controversial roles in skin cancer development and therapy. These molecules include IL-10 and transforming growth factor-β (TGF-β) that are both produced by regulatory T cells (Treg) and other immune and stromal cells in the tumor.

IL-10 is produced by Treg cells, macrophages, dendritic cells (DC) and epithelial cells, and dampens inflammatory and immune responses [107, 108]. UV irradiation induces Treg cell expansion in the skin, whereas Treg suppresses Th1-driven immunity against skin cancer through the production of IL-10 [18, 109]. IL-10 knockout mice are resistant to UV-induced skin carcinogenesis [109]. Adoptive transfer of UV-induced regulatory T cells from IL-10-deficient mice failed to suppress Th1 response against skin cancer [109]. These results suggest that IL-10 mainly limits anti-tumor adaptive immunity during skin cancer development.

TGF-β is another immune modulating cytokine that is produced by Treg cells in tumor microenvironment [110, 111]. Intriguingly, TGF-β also promotes the differentiation of naïve T cells into Treg cells in the periphery, thereby forming an auto-enforcing loop for the suppression of autoimmunity and prolonged inflammation in animals and humans [112]. The role of TGF-β in cancer is manifested by its function in limiting both tumor-promoting inflammation and anti-tumor immunity, thereby the outcome of its ablation depends on the quality of immune response within tumor microenvironment [113]. TGF-β inhibits the proliferation of keratinocytes and its inactivation (by targeted expression of a dominant negative form of TGF-β receptor TGFBR-2) resulted in increased keratinocyte number and thickened skin in mice [114]. Development of papilloma was also accelerated in mice lacking TGF-β signaling and persisted after the cessation of TPA treatment and progressed to squamous cell carcinoma with increased angiogenesis and metastasis [115]. Similarly, skin-specific ablation of TGFBR-2 resulted in enhanced cutaneous carcinogenesis that was induced by K-Ras activation or DMBA treatment [116]. Therefore TGF-β suppresses primary skin tumor development by limiting cancer-promoting inflammatory pathways and by its direct action on transformed epithelial cells.

In contrary to its role in limiting primary tumor development, TGF-β promotes the metastatic spread of multiple cancers including that of the skin [117, 118]. The major mechanism by which TGF-β promotes metastasis is through its signaling into cancer cells and activation of the epithelial-mesenchymal transition (EMT) process, through which cancer cells acquire enhanced capacity in cell motility and tissue invasion [118, 119]. Suppression of adaptive immune response within tumor microenvironment by TGF-β also interferes with the ability of the immune system to eradicate cancer [120]. Depending on the stage of the cancer development and the strategy of intervention, blocking TGF-β signaling can be beneficial, especially in the case of cancer vaccination and immunotherapy.

Taken together, the role of immune modulating cells and cytokines in skin cancers is circumstance-specific. Immune suppressive activity of IL-10 and TGF-β limits both cancer-promoting inflammation and anti-cancer immunity. Targeting these immune pathways for the prevention and/or treatment of cancers require careful evaluation on their effects on both arms of immunity in cancer, so that pro-tumorigenic inflammation is limited to its minimal level while Th1-lineage adaptive immunity can be maximized for cancer eradication. The list of pro- and anti-cancer cytokines is shown in Table 1.

A cellular perspective on inflammation and cancer

Thus far we have been focusing on cytokines as mediators of immune responses that support or limit cancer development. Cancer-infiltrating immune cells are the major source of these cytokines. There are a variety of myeloid and lymphoid cells that infiltrate tumor stroma, demonstrating the complexity of tumor-immune interacting network. These include natural killer cells (NK cells), CTL, Th1, Th17 and Treg lymphocytes, macrophages, monocytes, dendritic cells (DCs) and other cell types [121]. In a sim-
Activated STAT3 in tumor cells and promotes skin cancer

Mechanism of Action

DMBA/TPA;

Activation of CTLs and NK cells in tumor.

Effect

UVR-induced skin cancer

Pro-tumor

IL-1

K-Ras activation in skin cells.

Activates NF-κB in tumor cells. Enhances tumor cell survival. Exacerbates tumor-associated inflammation.

Cytokine	Model	Effect	Mechanism of Action	References
TNFα | DMBA/TPA; UVR-induced skin cancer | Pro-tumor | Activates NF-κB in tumor cells. Enhances tumor cell survival. Exacerbates tumor-associated inflammation. | [48, 49]
IL-1 | DMBA/TPA; K-Ras activation in skin cells. | Pro-tumor | Activates NF-κB in tumor cells. Synergizes with K-Ras to drive cancer progression. Exacerbates tumor-associated inflammation. | [70]
IL-6 | Skin cancer cell culture | Pro-tumor | Activates STAT3 transcription factor and upregulates Bcl-xL to promote cell survival. | [76]
IL-17 | DMBA/TPA | Pro-tumor | Activates Th17 cells and upregulates the production of IL-17. | [86]
IL-23 | DMBA/TPA | Pro-tumor | Activates Th17 cells and promotes skin tumor-associated inflammation | [94–96]
IL-12 | DMBA/TPA | Anti-tumor | Activation of CTLs and NK cells in tumor. | [86]
IFN-γ | Carcinogen-induced sarcoma | Anti-tumor | Activation of CTLs and NK cells in tumor. | [100, 101]
IL-10 | UVR-induced skin cancer | Pro-tumor | Limits Th1 response in tumor. | [109]
TGF-β | DMBA/TPA, melanoma | Pro-tumor/ anti-tumor | Inhibits keratinocyte proliferation; limits tumor-associated inflammation; limits cell-mediated immunity against cancer; promotes cancer metastasis. | [115–118, 120]

Table 1: Cytokines in skin cancer development.

plified view, tumor infiltrating monocytes, macrophages and Th17 lymphocytes produce cytokines like IL-1, IL-6, IL-17, IL-23 and TNFα, which signal to exacerbate tumor-associated inflammation and activate survival and proliferation machinery in cancer cells [7, 8, 20, 42]. On the other hand, NK cells and Th1/CTL lymphocytes (with the facilitation of antigen-presenting DCs) recognize tumor-specific surface patterns and eradicate cancer cells [22, 63, 101, 105]. Regulatory T cells produce immune modulatory cytokines IL-10 and TGF-β, and exert immune suppression via contact dependent and independent mechanisms [110]. The role of Treg cells in cancer development is stage and context-specific, depending on the relative strength of pro- and anti-tumor immunity in the local environment [105, 122] (Figure 2).

Concluding remarks
The interaction between immune cells and cancer cells has long been speculated, but experimental evidence demonstrating the roles of different myeloid and lymphoid cells in cancer development and prognosis only became available in the last decade or so. We now know that the immune system acts like a double-edged sword that can either promote or inhibit cancer development. The ultimate goal for cancer immunological study is to achieve a treatment outcome where cancer-promoting cytokine signaling (TNFα, IL-1, IL-6, IL-17 and IL-23) is blocked to slow down cancer cell growth and reduce their survival and therapy resistance (8, 123). On the other side of the coin, we hope to boost the activity of anti-cancer immune cells, mainly Th1/ CTL lymphocytes and NK cells, by facilitating antigen-presentation and T cell co-activation [22, 105, 106]. It is important to note that cancer promoting and inhibiting immune responses do not function in isolation, but cross-regulate each other within tumor stroma, further demonstrating the need to couple anti-inflammatory and T cell-activating agents for the treatment of cancers in the skin and other organs [7, 8, 37].

While the research on cancer vaccine and more recently T cell modulatory/co-stimulatory pathways has led to significant progress in the treatment of melanoma and other solid tumors [105, 106], clinical trial on anti-inflammatory agents against cancers is lacking at this point [8, 123]. Agents that inhibit inflammatory cytokine production, receptor binding or receptor signaling may prove useful in the treatment or even prevention of skin malignancies. Several types of agents should be considered for clinical development. These include anti-TNFα monoclonal antibody that has been shown to be effective in the treatment for human rheumatoid arthritis, psoriatic arthritis and IBD [124, 125], humanized anti-IL-6R antibody used against rheumatoid arthritis, systemic juvenile idiopathic arthritis and Castleman’s disease [126], and IL-23 and IL-17A antibodies already found to be effective and non-toxic in the treatment of various chronic inflammatory conditions such as rheumatoid arthritis, ankylosing spondylitis, IBD and psoriasis [127–132]. It is important to note that chronic inflammatory molecules drive skin cancer development by signaling to both tumor cells and immune cells. In the case of cancer immune surveillance and immunotherapy, tumor-promoting cytokines also function as inhibitors against effective anti-cancer immune response [7, 105]. It remains to be tested if the inhibition of proinflammatory cytokines can further improve the efficacy and/or safety of cancer immune therapies, such as checkpoint blockade therapies that have achieved significant improvement in the survival of patients with advanced melanoma [105, 133].
Figure 2: The roles of tumor infiltrating immune cells. Tumor infiltrating macrophages and neutrophils produce IL-6, IL-23, IL-1 and TNFα, and activate Th17 lymphocytes for the production of IL-17, IL-21 and IL-22. These cytokines act on cancer cells to drive their proliferation and survival. Dendritic cells (DC) facilitate T cell-mediated immunity against cancer by IL-12 production and antigen presentation. Th1 cells further activate natural killer (NK) cells and CTLs by secreting IFN-γ. NK cells and CTLs target cancer cells for destruction. Regulatory T cells (Treg) produce IL-10 and TGF-β and inhibit both pro- and anti-cancer immunity by contact dependent and independent mechanisms.

Competing Interests

The authors declare that they have no competing interests.

References

1. Medzhitov, R. Origin and physiological roles of inflammation. Nature. 2008; 454(7203): 428–35. DOI: http://dx.doi.org/10.1038/nature07201
2. Kotas, ME and Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell. 2015; 160(5): 816–27. DOI: http://dx.doi.org/10.1016/j.cell.2015.02.010
3. Rittirsch, D, Flierl, MA and Ward, PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008; 8(10): 776–87. DOI: http://dx.doi.org/10.1038/nri2402
4. Chan, AC and Carter, PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol. 2010; 10(5): 301–16. DOI: http://dx.doi.org/10.1038/nri2761
5. Barnes, PJ. Pathophysiology of allergic inflammation. Immunol Rev. 2011;242(1): 31–50. DOI: http://dx.doi.org/10.1111/j.1600-065X.2011.01020.x
6. Parrillo, JE. Pathogenetic mechanisms of septic shock. N Engl J Med. 1993; 328(20): 1471–7. DOI: http://dx.doi.org/10.1056/NEJM199305203282008
7. Grivennikov, SI, Greten, FR and Karin, M. Immunity, inflammation, and cancer. Cell. 2010; 140(6): 883–99. DOI: http://dx.doi.org/10.1016/j.cell.2010.01.025
8. Coussens, LM and Werb, Z. Inflammation and cancer. Nature. 2002; 420(6917): 860–7. DOI: http://dx.doi.org/10.1038/nature01322
9. Martinez, JC and Otley, CC. The management of melanoma and nonmelanoma skin cancer: a review for the primary care physician. Mayo Clin Proc. 2001; 76(12): 1253–65. DOI: http://dx.doi.org/10.4065/76.12.1253
10. Siegel, RL, Miller, KD and Jemal, A. Cancer statistics, 2015. CA Cancer J Clin. 2015; 65(1): 5–29. DOI: http://dx.doi.org/10.3322/caac.21254
11. Ferlay, J, Soerjomataram, I, Dikshit, R, Eser, S, Mathers, C, Rebelo, M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136(5): E359–86. DOI: http://dx.doi.org/10.1002/ijc.29210
12. Maru, GB, Gandhi, K, Ramchandani, A and Kumar, G. The role of inflammation in skin cancer. Adv Exp Med Biol. 2014; 816: 437–69. DOI: http://dx.doi.org/10.1007/978-3-0348-0837-8_17
13. Lund, AW, Medler, TR, Leachman, SA and Coussens, LM. Lymphatic Vessels, Inflammation, and Immunity in Skin Cancer. Cancer Discov. 2015.
14. Pfeifer, GP and Besaratinia, A. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem Photobiol Sci. 2012; 11(1): 90–7. DOI: http://dx.doi.org/10.1039/C1PP05144J
15. Marteijn, JA, Lans, H, Vermeulen, W and Hoeijmakers, JH. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014; 15(7): 465–81. DOI: http://dx.doi.org/10.1038/nrm3822
16. Clydesdale, GJ, Dandie, GW and Muller, HK. Ultraviolet light induced injury: immunological and
imflammatory effects. *Immunol Cell Biol.* 2001; 79(6): 547–68. DOI: http://dx.doi.org/10.1046/j.1440-1711.2001.01047.x

17. Buckman, SY, Gresham, A, Hale, P, Hruza, G, Anast, J, Masferrer, J, et al. COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. *Carcinogenesis.* 1998; 19(5): 723–9. DOI: http://dx.doi.org/10.1039/carcin.19.5.723

18. Beissert, S and Schwarz, T. Mechanisms involved in ultraviolet light-induced immunosuppression. *J Investig Dermatol Symp Proc.* 1999; 4(1): 61–4. DOI: http://dx.doi.org/10.1038/sj.jids.5640183

19. Balkwill, F and Mantovani, A. Inflammation and cancer: back to Virchow? *Lancet.* 2001; 357(9255): 539–45. DOI: http://dx.doi.org/10.1016/S0140-6736(00)04046-0

20. Mantovani, A, Allavena, P, Sica, A and Balkwill F. Cancer-related inflammation. *Nature.* 2008; 454(7203): 436–44. DOI: http://dx.doi.org/10.1038/nature07205

21. de Visser, KE, Eichten, A and Coussens, LM. Paradoxical roles of the immune system during cancer development. *Nat Rev Cancer.* 2006; 6(1): 24–37. DOI: http://dx.doi.org/10.1038/ntrc1782

22. Schreiber, RD, Old, LJ and Smyth, MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. *Science.* 2011; 331(6024): 1565–70. DOI: http://dx.doi.org/10.1126/science.1203486

23. Hanahan, D and Weinberg, RA. Hallmarks of cancer: the next generation. *Cell.* 2011; 144(5): 646–74. DOI: http://dx.doi.org/10.1016/j.cell.2011.02.013

24. Kalluri, R and Zeisberg, M. Fibroblasts in cancer. *Nat Rev Cancer.* 2006; 6(5): 392–401. DOI: http://dx.doi.org/10.1038/nrc1877

25. El-Serag, HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. *Gastroenterology.* 2012; 142(6): 1264–73 e1.

26. An international association between Helicobacter pylori infection and gastric cancer. The EUROGAST Study Group. *Lancet.* 1993; 341(8857): 1359–62. DOI: http://dx.doi.org/10.1016/0140-6736(93)90938-D

27. Ekbom, A, Helmick, C, Zack, M and Adami, HO. Ulcerative colitis and colorectal cancer. A population-based study. *N Engl J Med.* 1990; 323(18): 1228–33. DOI: http://dx.doi.org/10.1056/NEJM199010313231802

28. Eaden, JA, Abrams, KR and Mayberry, JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. *Gut.* 2001; 48(4): 526–35. DOI: http://dx.doi.org/10.1136/gut.48.4.526

29. Ekbom, A, Helmick, C, Zack, M and Adami, HO. Increased risk of large-bowel cancer in Crohn’s disease with colonic involvement. *Lancet.* 1990; 336(8711): 357–9. DOI: http://dx.doi.org/10.1016/0140-6736(90)91889-I

30. Choi, PM and Zelig, MP. Similarity of colorectal cancer in Crohn’s disease and ulcerative colitis: implications for carcinogenesis and prevention. *Gut.* 1994; 35(7): 950–4. DOI: http://dx.doi.org/10.1136/gut.35.7.950

31. Doll, R and Hill, AB. Lung cancer and other causes of death in relation to smoking; a second report on the mortality of British doctors. *Br Med J.* 1956; 2(5001): 1071–81. DOI: http://dx.doi.org/10.1136/bmj.2.5001.1071

32. Correa, P, Pickle, LW, Fontham, E, Lin, Y and Haenszel, W. Passive smoking and lung cancer. *Lancet.* 1983; 2(8350): 595–7. DOI: http://dx.doi.org/10.1016/S0140-6736(83)90680-3

33. Doll, R. Mortality from lung cancer in asbestos workers 1955. *Br J Ind Med.* 1993; 50(6): 485–90. DOI: http://dx.doi.org/10.1136/oem.50.6.485

34. Hughes, JM and Weill, H. Asbestosis as a precursor of asbestos-related lung cancer: results of a prospective mortality study. *Br J Ind Med.* 1991; 48(4): 229–33. DOI: http://dx.doi.org/10.1136/oem.48.4.229

35. Khansari, N, Shakiba, Y and Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. *Recent Pat Inflamm Allergy Drug Discov.* 2009; 3(1): 73–80. DOI: http://dx.doi.org/10.2174/187221309787158371

36. Reuter, S, Gupta, SC, Chaturvedi, MM and Aggarwal, BB. Oxidative stress, inflammation, and cancer: how are they linked? *Free Radic Biol Med.* 2010; 49(11): 1603–16. DOI: http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006

37. Wang, Kand Karin, M. Tumor-Elicited Inflammation and Colorectal Cancer. *Adv Cancer Res.* 2015; 128: 173–96. DOI: http://dx.doi.org/10.1016/bs.acr.2015.04.014

38. Elinav, E, Nowarski, R, Thaiss, CA, Hu, B, Jin, C and Flavell, RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. *Nat Rev Cancer.* 2013; 13(11): 759–71. DOI: http://dx.doi.org/10.1038/nrc3611

39. DiDonato, JA, Mercurio, Fand Karin, M. NF-kappaB and the link between inflammation and cancer. *Immunol Rev.* 2012; 246(1): 379–400. DOI: http://dx.doi.org/10.1111/j.1600-065X.2012.01099.x

40. Yu, H, Kortylewski, M and Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. *Nat Rev Immunol.* 2007; 7(1): 41–51. DOI: http://dx.doi.org/10.1038/nri1995

41. He, G and Karin, M. NF-kappaB and STAT3 – key players in liver inflammation and cancer. *Cell Res.* 2011; 21(1): 159–68. DOI: http://dx.doi.org/10.1038/cr.2010.183

42. Grivennikov, SI and Karin, M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. *Cytokine Growth Factor Rev.* 2010; 21(1): 11–9. DOI: http://dx.doi.org/10.1016/j. cytokgrf.2009.11.005

43. Hayden, MS and Ghosh, S. Signaling to NF-kappaB. *Genes Dev.* 2004; 18(18): 2195–224. DOI: http://dx.doi.org/10.1101/gad.1228704
44. Ghosh, S and Karin, M. Missing pieces in the NF-kappaB puzzle. Cell. 2002; 109 Suppl: S81–96. DOI: http://dx.doi.org/10.1016/S0092-8674(02)00703-1

45. Karin, M and Greten, FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005; 5(10): 749–59. DOI: http://dx.doi.org/10.1038/nri1703

46. Cho, ML, Kang, JW, Moon, YM, Nam, HJ, Jhun, JY, Heo, SB, et al. STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol. 2006; 176(9): 5652–61. DOI: http://dx.doi.org/10.4049/jimmunol.176.9.5652

47. Oppmann, B, Lesley, R, Blom, B, Timans, JC, Xu, Y, Hunte, B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000; 13(5): 715–25. DOI: http://dx.doi.org/10.1016/S1074-7613(00)00070-4

48. Singh, A, Singh, A, Bauer, SJ, Wheeler, DL, Havighurst, TC, Kim, K, et al. Genetic deletion of TNFalpha inhibits ultraviolet radiation-induced development of cutaneous squamous cell carcinomas in PKCepsilon transgenic mice via inhibition of cell survival signals. Carcinogenesis. 2016; 37(1): 72–80. DOI: http://dx.doi.org/10.1093/carcin/bgv162

49. Moore, RJ, Owens, DM, Stamp, G, Arnott, C, Burke, F, East, N, et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med. 1999; 5(7): 828–31. DOI: http://dx.doi.org/10.1038/10462

50. Karin, M. NF-kappaB and cancer: mechanisms and targets. Mol Carcinog. 2006; 45(6): 355–61. DOI: http://dx.doi.org/10.1002/mc.20217

51. Greten, FR, Eckmann, L, Greten, TF, Park, JM, Li, ZW, Egan, LJ, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004; 118(3): 285–96. DOI: http://dx.doi.org/10.1016/j.cell.2004.07.013

52. Stark, GR and Darnell, JE, Jr. The JAK-STAT pathway at twenty. Immunity. 2012; 36(4): 503–14. DOI: http://dx.doi.org/10.1016/j.immuni.2012.03.013

53. Yu, H and Jove, R. The STATs of cancer—new molecular targets come of age. Nat Rev Cancer. 2004; 4(2): 97–105. DOI: http://dx.doi.org/10.1038/nrc1275

54. Reuboioussou, S, Amessou, M, Couchy, G, Poussin, K, Imbeaud, S, Pilati, C, et al. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature. 2009; 457(7226): 200–4. DOI: http://dx.doi.org/10.1038/nature07475

55. Taniguchi, K, Wu, LW, Grivennikov, SI, de Jong, PR, Lian, J, Yu, FX, et al. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature. 2015; 519(7541): 57–62. DOI: http://dx.doi.org/10.1038/nature14228

56. Grivennikov, S, Karin, E, Terzic, J, Mucida, D, Yu, GY, Vallabhaparupu, S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009; 15(2): 103–13. DOI: http://dx.doi.org/10.1016/j.ccr.2009.01.001

57. Pasparakis, M, Haase, I and Nestle, FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014; 14(5): 289–301. DOI: http://dx.doi.org/10.1038/nri3646

58. Alonso, L and Fuchs, E. Stem cells of the skin epithelium. Proc Natl Acad Sci U S A. 2003; 100 Suppl 1: 11830–5. DOI: http://dx.doi.org/10.1073/pnas.1734203100

59. Madison, KC. Barrier function of the skin: “la raison d’etre” of the epidermis. J Invest Dermatol. 2003; 121(2): 231–41. DOI: http://dx.doi.org/10.1046/j.1523-1747.2003.12359.x

60. Slominski, A, Tobin, DJ, Shibahara, S and Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004; 84(4): 1155–228. DOI: http://dx.doi.org/10.1152/physrev.00044.2003

61. Hearing, VJ. Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. J Dermatol Sci. 2005; 37(1): 3–14. DOI: http://dx.doi.org/10.1016/j.jdermsci.2004.08.014

62. Merad, M, Ginhoux, F and Collin, M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol. 2008; 8(12): 935–47. DOI: http://dx.doi.org/10.1038/nri2455

63. Medler, TR and Coussens, LM. Duality of the immune response in cancer: lessons learned from skin. J Invest Dermatol. 2014; 134(e1): E23–8. DOI: http://dx.doi.org/10.1038/skinbio.2014.5

64. Gottlieb, AB, Chamian, F, Masud, S, Cardinale, I, Abello, MV, Lowes, MA, et al. TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol. 2005; 175(4): 2721–9. DOI: http://dx.doi.org/10.4049/jimmunol.175.4.2721

65. Gordon, KB, Langley, RG, Leonard, C, Toth, D, Menter, MA, Kang, S, et al. Clinical response to adalimumab treatment in patients with moderate to severe psoriasis: double-blind, randomized controlled trial and open-label extension study. J Am Acad Dermatol. 2006; 55(4): 598–606. DOI: http://dx.doi.org/10.1016/j.jaad.2006.05.027

66. Arnott, CH, Scott, KA, Moore, RJ, Hewer, A, Phillips, DH, Parker, P, et al. Tumour necrosis factor-alpha mediates tumour promotion via a PKC alpha- and AP-1-dependent pathway. Oncogene. 2002; 21(31): 4728–38. DOI: http://dx.doi.org/10.1038/sj.onc.1205588

67. Shao, Y, Le, K, Cheng, H and Aplin, AE. NF-kappaB Regulation of c-FLIP Promotes TNFalpha-Mediated RAF Inhibitor Resistance in Melanoma. J Invest Dermatol. 2015; 135(7): 1839–48. DOI: http://dx.doi.org/10.1038/jid.2015.91
68. Arnott, CH, Scott, KA, Moore, RJ, Robinson, SC, Thompson, RG and Balkwill, FR. Expression of both TNF-alpha receptor subtypes is essential for optimal skin tumour development. *Oncogene*. 2004; 23(10): 1902–10. DOI: http://dx.doi.org/10.1038/sj.onc.1207317

69. Scott, KA, Moore, RJ, Arnott, CH, East, N, Thompson, RG, Scallon, BJ, et al. An anti-tumor necrosis factor-alpha antibody inhibits the development of experimental skin tumors. *Mol Cancer Ther*. 2003; 2(5): 445–51.

70. Cataisson, C, Salcedo, R, Hakim, S, Moffitt, BA, Wright, L, Yi, M, et al. IL-1R-MyD88 signaling in keratinocyte transformation and carcinogenesis. *The Journal of experimental medicine*. 2012; 209(9): 1689–702. DOI: http://dx.doi.org/10.1084/jem.20101335

71. Cataisson, C, Ohman, R, Patel, G, Pearson, A, Tsien, M, Jay, S, et al. Inducible cutaneous inflammation reveals a protumorigenic role for keratinocyte CXCR2 in skin carcinogenesis. *Cancer research*. 2009; 69(1): 319–28. DOI: http://dx.doi.org/10.1158/0008-5472.CAN-08-2490

72. Mann, A, Breuhahn, K, Schirmacher, P, Wilhelmi, A, Beyer, C, Rosenau, A, et al. Up- and down-regulation of granulocyte/macrophage-colony stimulating factor activity in murine skin increase susceptibility to skin carcinogenesis by independent mechanisms. *Cancer research*. 2001; 61(5): 2311–9.

73. Feldmeyer, L, Keller, M, Niklaus, G, Hohl, D, Werner, S, and Beer, HD. The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. *Curr Biol*. 2007; 17(13): 1140–5. DOI: http://dx.doi.org/10.1016/j.cub.200705074

74. Kupper, TS, Ballard, DW, Chua, AO, McGuire, JS, Flood, PM, Horowitz, MC, et al. Human keratinocytes contain mRNA indistinguishable from monocyte interleukin 1 alpha and beta mRNA. Keratinocyte epidermal cell-derived thymocyte-activating factor is identical to interleukin 1. *The Journal of experimental medicine*. 1986; 164(6): 2095–100. DOI: http://dx.doi.org/10.1084/jem.164.6.2095

75. Bos, JL. ras oncoproteins in human cancer: a review. *Cancer research*. 1989; 49(17): 4682–9.

76. Lederle, W, Depner, S, Schnur, S, Obermueller, E, Catone, N, Just, A, et al. IL-6 promotes malignant growth of skin SCCs by regulating a network of autocrine and paracrine cytokines. *Int J Cancer*. 2011; 128(12): 2803–14. DOI: http://dx.doi.org/10.1002/ijc.25621

77. Gu, D, Fan, Q, Zhang, X and Xie, J. A role for transcription factor STAT3 signaling in oncogene smoothened-driven carcinogenesis. *J Biol Chem*. 2012; 287(45): 38356–66. DOI: http://dx.doi.org/10.1074/jbc.M112.377382

78. Chan, KS, Sano, S, Kiguchi, K, Anders, J, Komazawa, N, Takeda, J, et al. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. *J Clin Invest*. 2004; 114(5): 720–8. DOI: http://dx.doi.org/10.1172/JCI200421032

79. Kim, DJ, Angel, JM, Sano, S and DiGiovanni, J. Constitutive activation and targeted disruption of signal transducer and activator of transcription 3 (Stat3) in mouse epidermis reveal its critical role in UVB-induced skin carcinogenesis. *Oncogene*. 2009; 28(7): 950–60. DOI: http://dx.doi.org/10.1038/onc.2008.453

80. Kim, DJ, Kataoka, K, Sano, S, Connolly, K, Kiguchi, K and DiGiovanni, J. Targeted disruption of Bcl-xl in mouse keratinocytes inhibits both UVB and chemically induced skin carcinogenesis. *Mol Carcinog*. 2009; 48(10): 873–85. DOI: http://dx.doi.org/10.1002/mc.20527

81. Allen, SM, Florell, SR, Hanks, AN, Alexander, A, Diedrich, MJ, Altieri, DC, et al. Survivin expression in mouse skin prevents papilloma regression and promotes chemical-induced tumor progression. *Cancer research*. 2003; 63(3): 567–72.

82. Fofaria, NM and Srivastava, SK. Critical role of STAT3 in melanoma metastasis through anoikis resistance. *Oncotarget*. 2014; 5(16): 7051–64. DOI: http://dx.doi.org/10.18632/oncotarget.2251

83. Na, YR, Lee, JS, Lee, SJ and Seok, SH. Interleukin-6-induced Twist and N-cadherin enhance melanoma cell metastasis. *Melanoma Res*. 2013; 23(6): 434–43. DOI: http://dx.doi.org/10.1097/CRR.0b013e31826463b3

84. Trinchieri, G, Pflanz, S and Kastelein, RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. *Immunity*. 2003; 19(5): 641–4. DOI: http://dx.doi.org/10.1016/S1074-7613(03)00296-6

85. Vignali, DA and Kuchroo, VK. IL-12 family cytokines: immunological playmakers. *Nature immunology*. 2012; 13(8): 722–8. DOI: http://dx.doi.org/10.1038/ni.2366

86. Langowski, JL, Zhang, X, Wu, L, Mattson, JD, Chen, T, Smith, K, et al. IL-23 promotes tumour incidence and growth. *Nature*. 2006; 442(7101): 461–5. DOI: http://dx.doi.org/10.1038/nature04808

87. Roses, RE, Xu, S, Xu, M, Koldovsky, U, Koski, G and Czerniecki, BJ. Differential production of IL-23 and IL-12 by myeloid-derived dendritic cells in response to TLR agonists. *J Immunol*. 2008; 181(7): 5120–7. DOI: http://dx.doi.org/10.4049/jimmunol.181.7.5120

88. Carmody, RJ, Ruan, Q, Liou, HC and Chen, YH. Essential roles of c-Rel in TLR-induced IL-23 p19 gene expression in dendritic cells. *J Immunol*. 2007; 178(1): 186–91. DOI: http://dx.doi.org/10.4049/jimmunol.178.1.186

89. Kortylewski, M, Xin, H, Kujawski, M, Lee, H, Liu, Y, Harris, T, et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. *Cancer Cell*. 2009; 15(2): 114–23. DOI: http://dx.doi.org/10.1016/j.ccr.2008.12.018
90. Cua, DJ and Tato, CM. Innate IL-17-producing cells: the sentinels of the immune system. *Nat Rev Immunol*. 2010; 10(7): 479–89. DOI: http://dx.doi.org/10.1038/nri2800

91. Harrington, LE, Hatton, RD, Mangan, PR, Turner, H, Murphy, TL, Murphy, KM, et al. Interleukin-17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. *Nature immunology*. 2005; 6(11): 1123–32. DOI: http://dx.doi.org/10.1038/nii1254

92. Park, H, Li, Z, Yang, XO, Chang, SH, Nurieva, R, Wang, YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. *Nature immunology*. 2005; 6(11): 1133–41. DOI: http://dx.doi.org/10.1038/nii1261

93. Langrish, CL, Chen, Y, Blumenschein, WM, Mattson, J, Basham, B, Sedgwick, JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. *The Journal of experimental medicine*. 2005; 201(2): 233–40. DOI: http://dx.doi.org/10.1084/jem.20041257

94. Wang, L, Yi, T, Zhang, W, Pardoll, DM and Yu, H. IL-17 enhances tumor development in carcinogen-induced skin cancer. *Cancer research*. 2010; 70(24): 10112–20. DOI: http://dx.doi.org/10.1158/0008-5472.CAN-10-0775

95. Forcales, SV, Albini, S, Giordani, L, Malecova, B, Cignolo, I, Chernov, A, et al. Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. *The EMBO journal*. 2012; 31(2): 301–16. DOI: http://dx.doi.org/10.1038/emboj.2011.391

96. Nardinocchi, L, Sonego, G, Passarelli, F, Avitabile, S, Scarponi, C, Failla, CM, et al. Interleukin-17 and interleukin-22 promote tumor progression in human nonmelanoma skin cancer. *Eur J Immunol*. 2015; 45(3): 922–31. DOI: http://dx.doi.org/10.1002/eji.201445052

97. Swann, JB and Smyth, MJ. Immune surveillance of tumors. *J Clin Invest*. 2007; 117(5): 1137–46. DOI: http://dx.doi.org/10.1172/JCI31405

98. Schumacher, TN and Schreiber, RD. Neot antigens in cancer immunotherapy. *Science*. 2015; 348(6230): 69–74. DOI: http://dx.doi.org/10.1126/science.aaa4971

99. Yusuf, N, Nasti, TH, Katiyar, SK, Jacobs, MK, Seibert, MD, Ginsburg, AC, et al. Antagonistic roles of CD4+ and CD8+ T-cells in 7,12-dimethylbenz(a)anthracene cutaneous carcinogenesis. *Cancer research*. 2008; 68(10): 3924–30. DOI: http://dx.doi.org/10.1158/0008-5472.CAN-07-3059

100. Ikeda, H, Old, LJ and Schreiber, RD. The roles of IFN gamma in protection against tumor development and cancer immunoeediting. *Cytokine Growth Factor Rev*. 2002; 13(2): 95–109. DOI: http://dx.doi.org/10.1016/S1359-6101(01)00038-7

101. Dunn, GP, Bruce, AT, Ikeda, H, Old, LJ and Schreiber, RD. Cancer immunoeediting: from immunosurveillance to tumor escape. *Nature immunology*. 2002; 3(11): 991–8. DOI: http://dx.doi.org/10.1038/ni1102-991

102. Kaplan, DH, Shankaran, V, Dighe, AS, Stockert, E, Aguet, M, Old, LJ, et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. *Proc Natl Acad Sci U S A*. 1998; 95(13): 7556–61. DOI: http://dx.doi.org/10.1073/pnas.95.13.7556

103. Street, SE, Cretney, E and Smyth, MJ. Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. *Blood*. 2001; 97(1): 192–2. DOI: http://dx.doi.org/10.1182/bloodV97.1.192

104. Gao, Y, Yang, W, Pan, M, Scully, E, Girardi, M, Augenlicht, LH, et al. Gamma delta T cells provide an early source of interferon gamma in tumor immunity. *The Journal of experimental medicine*. 2003; 198(3): 433–42. DOI: http://dx.doi.org/10.1084/jem.20030584

105. Pardoll, DM. The blockade of immune checkpoints in cancer immunotherapy. *Nat Rev Cancer*. 2012; 12(4): 252–64. DOI: http://dx.doi.org/10.1038/nrc3239

106. Melero, I, Berman, DM, Aznar, MA, Korman, AJ, Perez Gracia, JL and Haanen, J. Evolving synergistic combinations of targeted immunotherapies to combat cancer. *Nat Rev Cancer*. 2015; 15(8): 457–72. DOI: http://dx.doi.org/10.1038/nrc3973

107. Moore, KW, de Waal Malefyt, R, Coffman, RL and O’Garra, A. Interleukin-10 and the interleukin-10 receptor. *Annu Rev Immunol*. 2001; 19: 683–765. DOI: http://dx.doi.org/10.1146/annurev.immunol.19.1.683

108. Chaudhry, A, Samstein, RM, Treuting, P, Liang, Y, Pils, MC, Heinrich, JM, et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. *Immunity*. 2011; 34(4): 566–78. DOI: http://dx.doi.org/10.1016/j.immuni.2011.03.018

109. Loser, K, Apelt, J, Voskort, M, Mohaupt, M, Balkow, S, Schwarz, T, et al. IL-10 controls ultraviolet-induced carcinogenesis in mice. *J Immunol*. 2007; 179(1): 365–71. DOI: http://dx.doi.org/10.4049/jimmunol.179.1.365

110. Josefowicz, SZ, Lu, LF and Rudensky, AY. Regulatory T cells: mechanisms of differentiation and function. *Annu Rev Immunol*. 2012; 30: 531–64. DOI: http://dx.doi.org/10.1146/annurev.immunol.25.022106.141623

111. Vignali, DA, Collison, LW and Workman, CJ. How regulatory T cells work. *Nat Rev Immunol*. 2008; 8(7): 523–32. DOI: http://dx.doi.org/10.1038/nri2343

112. Bettelli, E, Carrier, Y, Gao, W, Korn, T, Strom, TB, Oukka, M, et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. *Nature*. 2006; 441(7090): 235–8. DOI: http://dx.doi.org/10.1038/nature04753

113. Glick, AB. The Role of TGFbeta Signaling in Squamous Cell Cancer: Lessons from Mouse Models.
114. Wang, XJ, Greenhalgh, DA, Bickenbach, JR, Jiang, A, Bundman, DS, Krieg, T, et al. Expression of a dominant-negative type II transforming growth factor beta (TGF-beta) receptor in the epidermis of transgenic mice blocks TGF-beta-mediated growth inhibition. Proc Natl Acad Sci U S A. 1997; 94(6): 2386–91. DOI: http://dx.doi.org/10.1073/pnas.94.6.2386

115. Go, C, Li, P and Wang, XJ. Blocking transforming growth factor beta signaling in transgenic epidermis accelerates chemical carcinogenesis: a mechanism associated with increased angiogenesis. Cancer research. 1999; 59(12): 2861–8.

116. Lu, SL, Herrington, H, Reh, D, Weber, S, Bornstein, S, Wang, D, et al. Loss of transforming growth factor-beta type II receptor promotes metastastic head-and-neck squamous cell carcinoma. Genes Dev. 2006; 20(10): 1331–42. DOI: http://dx.doi.org/10.1101/gad.1413306

117. Derynck, R, Akhurst, RJ and Balmain, A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001; 29(2): 117–29. DOI: http://dx.doi.org/10.1038/ng1001-117

118. Katsuno, Y, Lamouille, S and Derynck, R. TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013; 25(1): 76–84. DOI: http://dx.doi.org/10.1097/CCO.0b013e32835b6371

119. Kalluri, R and Weinberg, RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009; 119(6): 1420–8. DOI: http://dx.doi.org/10.1172/JCI39104

120. Gorelik, L and Flavell, RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med. 2001; 7(10): 1118–22. DOI: http://dx.doi.org/10.1038/nm1001-1118

121. Fridman, WH, Pages, F, Sautes-Fridman, C and Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012; 12(4): 298–306. DOI: http://dx.doi.org/10.1038/nrc3245

122. Whiteside, TL. What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol. 2012; 22(4): 327–34. DOI: http://dx.doi.org/10.1016/j.semcancer.2012.03.004

123. Wang, K, Grivennikov, SI and Karin, M. Implications of anti-cytokine therapy in colorectal cancer and autoimmune diseases. Ann Rheum Dis. 2013; 72 Suppl 2: ii100–3. DOI: http://dx.doi.org/10.1136/annrheumdis-2012-202201

124. Palladino, MA, Bahjat, FR, Theodorakis, EA and Moldawer, LL. Anti-TNF-alpha therapies: the next generation. Nature reviews Drug discovery. 2003; 2(9): 736–46. DOI: http://dx.doi.org/10.1038/nrd1175

125. Bongartz, T, Sutton, AJ, Sweeting, MJ, Buchan, I, Matteson, EL and Montori, V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. Jama. 2006; 295(19): 2275–85. DOI: http://dx.doi.org/10.1001/jama.295.19.2275

126. Kishimoto, T. IL-6: from its discovery to clinical applications. International immunology. 2010; 22(5): 347–52. DOI: http://dx.doi.org/10.1093/innim/dxo030

127. Burakoff, R, Barish, CF, Riff, D, Pruitt, R, Chey, WY, Farraye, FA, et al. A phase 1/2A trial of STA 5326, an oral interleukin-12/23 inhibitor, in patients with active moderate to severe Crohn's disease. Inflammatory bowel diseases. 2006; 12(7): 558–65. DOI: http://dx.doi.org/10.1097/01. ibd.0000225337.14356.31

128. Sandborn, WJ, Feagan, BG, Fedorak, RN, Scherl, E, Fleisher, MR, Katz, S, et al. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease. Gastroenterology. 2008; 135(4): 1130–41. DOI: http://dx.doi.org/10.1053/j. gastro.2008.07.014

129. Cottone, M, Orlando, A and Renna, S. Investigational agents for Crohn's disease. Expert opinion on investigational drugs. 2010; 19(10): 1147–59. DOI: http://dx.doi.org/10.1517/13543784.2010.510513

130. Terzic, J, Grivennikov, S, Karin, E and Karin, M. Inflammation and colon cancer. Gastroenterology. 2010; 138(6): 2101–14 e5.

131. Miossec, P and Kolls, JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nature reviews Drug discovery. 2012; 11(10): 763–76. DOI: http://dx.doi.org/10.1038/nrd3794

132. Lebow, MM, Strober, B, Menter, A, Gordon, K, Weglewksa, J, Puig, L, et al. Phase 3 Studies Comparing Brodalumab with Ustekinumab in Psoriasis. N Engl J Med. 2015; 373(14): 1318–28. DOI: http://dx.doi.org/10.1056/NEJMoa1503824

133. Pico de Coana, Y, Choudhury, A and Kiessling, R. Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends Mol Med. 2015; 21(8): 482–91. DOI: http://dx.doi.org/10.1016/j.molmed.2015.05.005
