Letter to the Editor

SARS-CoV-2 rapid antigen testing for departing passengers at Vancouver International Airport

Mawath A. Qahtani, MASc1, Cheng Wei Tony Yang, PhD2, Lynda Lazosky, MSc1,2, Xuan Li, MSc2, Jonathan D’Cruz, BSc3, Marc G. Romney, MD1,4,†, and Don D. Sin5, MD, MPH1,2,5, *,†

1Providence Health Care, St. Paul’s Hospital, Vancouver, British Columbia, V6Z 1Y6, Canada, 2Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, V6Z 1Y6, Canada, 3Vancouver Airport Authority, Vancouver, British Columbia, V7B 0A4, Canada, 4Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada and 5Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada

*To whom correspondence should be addressed. Tel: +1-604-806-8395; Fax: +1-604-806-9274; Email: don.sin@hli.ubc.ca

Submitted 26 April 2021; Revised 12 May 2021; Accepted 25 May 2021

Key words: Rapid testing, COVID-19, travel

Air travel is thought to be a major route of spread of severe acute respiratory coronavirus-2 (SARS-CoV-2),1 the virus responsible for coronavirus disease-2019 (COVID-19), across the world.2 Accordingly, airports have instituted strict screening measures to reduce the risk of transmission on flights. Here, we describe the experience of using a point-of-care lateral flow device for COVID-19 screening in airports.

We invited passengers between the ages of 19 and 80 years, who were boarding on a same-day domestic flight on WestJet at the Vancouver International Airport (YVR) between 23 November 2020 and 28 February 2021 to participate (Supplementary Figure S1 available as Supplementary data at JTM online). In February, we added four international flights, travelling from YVR to Amsterdam, the Netherlands (operated by KLM Royal Dutch Airlines). All international passengers had received polymerase chain reaction (PCR) testing for COVID-19 within 3 days prior to departure; by contrast, none of the domestic passengers had been previously tested for COVID-19. The study was approved by the University of British Columbia/Providence Research Ethics Board (#H20-03225) and was registered at ClinicalTrials.gov (NCT04665193).

We collected nasopharyngeal (NP) swabs from study participants in the departure area of YVR and performed rapid antigen testing using the Panbio COVID-19 Ag Rapid Test Device (Abbott®)3 according to the manufacturer’s instructions. We also performed PCR on all remnant NP swab samples according to standard protocols. Continuous variables are reported as mean ± standard deviation (SD), and categorical variables are reported as % of total.

In total, 627 travellers (405 WestJet and 187 KLM) were approached; 592 (94.4%) met the eligibility criteria and consented. All of the refusals (n = 35) occurred on WestJet flights. The most common reason for refusal was the possibility of being denied boarding with a positive test (n = 10; 28.6%), which was followed by the possibility of receiving a false-positive result (n = 6; 17.1%), fear of NP swabs (n = 6; 17.1%) and a preference for PCR testing (n = 5; 14.3%); eight travellers (22.9%) did not meet the study’s eligibility criteria. The demographic characteristics are summarized in Table 1. The swab-to-test-result time was less than 20 min. All NP swabs tested negative on Panbio with no invalid results and were confirmed to be negative on PCR (at a cycle threshold >40). Based on a Bayesian hierarchical model with 10 000 simulations in WinBUGS software and assuming a Beta prior with an exponential hyperprior and hyperparameter 1, the median prevalence of COVID-19 in our setting was 1.2 cases per 1000 tested individuals with a 95% credible interval of 4 × 10⁻⁵ – 6 × 10⁻³ (Supplementary Figure S2 available as Supplementary data at JTM online), which is consistent with a previous finding.4

Here, we demonstrated that COVID-19 screening using a lateral flow device is feasible in passengers departing on same-day flights. All passengers tested negative both on Panbio and PCR, indicating no false negatives. There were limitations to the study. Participants were volunteers and as such selection bias...
Table 1. Demographic and clinical characteristics of participants (N = 592).

Characteristic	Value
Age, years	40.32 ± 15.62
Sex, females	47.8%
Ethnicity/race	
White	67.9%
Asian	13.5%
Hispanic	1.7%
First Nations	2.6%
Others	14.4%
Body mass index, kg/m²	25.45 ± 5.33
Vaccination status	
Influenza (flu shot)	43.9%
Pneumococcal	10.6%
COVID-19	0.3%
Nicotine smoking status	
Current	10.1%
Former	17.8%
Never	72.1%
Cannabis smoking status*	
Current	8.4%
Former	12.0%
Never	79.6%
Vaper (nicotine/cannabis)	5.6%
Symptoms	
Cough	0.18%
Sore throat	0.91%
Runny nose	2.6%
Muscle aches	0.55%
Phlegm	1.1%
Night sweats	0.74%
Co-morbidities	
Lung disease	5.2%
Heart disease	4.5%
Diabetes	4.7%

*denotes N = 167

Supplementary data

Supplementary data are available at JTM online.

Acknowledgements

The authors would also like to thank Black Tusk Research Group, the operational team at YVR, the WestJet staff and the lab staff at the Centre for Heart Lung Innovation at St. Paul’s Hospital for the kind support throughout the study.

Funding

Vancouver Airport Authority and WestJet. The study sponsors had no role in the design or implementation of the study or decision to publish. D.D.S. is a Tier 1 Canada Research Chair in COPD and holds the de Lazzari Family Chair at the Centre for Heart Lung Innovation in Vancouver.

Conflict of interest

JD is an employee of the Vancouver Airport Authority. All the others declare no conflict of interest.

References

1. Phan LT, Nguyen TV, Luong QC et al. Importation and human-to-human transmission of a novel coronavirus in Vietnam. N Engl J Med 2020; 382:872–4.
2. Pombal R, Hosegood I, Powell D. Risk of COVID-19 during air travel. JAMA 2020; 324:1798–8.
3. Peeling RW, Olliaro PL, Boeras DI, Fongwen N. Scaling up COVID-19 rapid antigen tests: promises and challenges. Lancet Infect Dis 2021; 23:S1473-3099(21)00048-7.
4. Russell TW, Wu JT, Clifford S et al. Effect of internationally imported cases on internal spread of COVID-19: a mathematical modelling study. Lancet Public Health 2021; 6:e12–20.