Supplementary Table S1

The summary of *S. aureus* data acquired by mini-MLST and spa-HRM. The MLST STs and MLST CCs highlighted in bold indicate the sequencing provided in our laboratory. The non-bold MLST STs and MLST CCs are marked with a symbol referring to the publication from which the data were obtained.

MelT	spa-type	MRSA	MSSA	spa repeat	length (bp)	ST	CC
224	t689	1	0	11-19-12-22-25	255	8	8
	t190	0	1	11-17-34-24-34-22-25	303	8	8
	t648	0	1	11-21-17-34-24-34-22-25	327	8	8
	t024	3	254	11-12-21-17-34-24-34-22-25	351	8	8
	t18941	0	2	11-19-21-17-194-24-34-22-25	351	8	8
	t1576	1	1	11-12-21-17-34-24-34-22-25	375	8	8
	t1709	1	0	11-19-12-21-17-34-24-34-22-24	375	474	8
	t008	15	5	11-19-12-21-17-34-24-34-22-25	375	8	8
	t211	3	0	11-19-12-12-21-17-34-24-34-22-25	399	4750	8
	t1767	6	2	11-19-12-21-17-34-24-34-22-25	399	8	8
351	t586	12	0	26-16	183	225	5
	t151	1	0	26-17-20-17-16	255	5(1)	
	t564	1	0	26-17-17-17-16	255	225	5
	t045	146	0	26-17-20-17-12-17-16	303	225	5
	t003	1	0	26-17-20-17-12-17-16	327	225	5
	t1623	1	1	07-17-20-17-12-17-16-17-17-16	328	225	5
	t014	17	0	26-17-20-17-12-17-17-16	315	225	5
	t481	1	0	26-17-20-17-12-17-17-16	351	225	5
	t626	1	0	26-17-20-17-12-17-17-16	351	225	5
	t1323	1	0	26-17-20-17-12-17-17-17-16	375	225	5
	t18037	2	0	26-17-20-17-12-17-12-17-17-17-17-16	447	225	5
474	t3698	3	0	08-12-23-02-12-23	280	6695	15
	t335	0	1	07-23-12-34-34-12-23	303	5(2)	15(2)
	t18007	0	27	26-23-12-34-34-23-02-12-23	327	15	15
	t360	0	2	07-23-12-34-12-23-02-12-23	351	15(3)	15(3)
	t2216	0	2	07-23-34-12-12-23-02-12-23	351	15(4)	15(4)
	t346	0	3	07-23-12-34-12-12-23-02-12-23	375	15(3)	15(3)
	t368	0	1	26-23-12-34-34-12-23-02-12-23	375	15	15
	t085	0	2	07-23-12-34-34-12-23-02-12-23	375	15(3)	15(3)
	t084	5	19	07-23-12-34-34-12-12-23-02-12-23	399	15(3)	15(3)
	t4309	0	1	07-23-12-34-34-12-23-02-12-23	399	15	15
	t5721	0	1	07-34-12-34-12-02-12-23-02-12-23	399	15	15
	t120	0	1	07-23-12-34-34-12-12-23-02-12-23	422	15(6)	15(6)
	t774	0	3	07-23-12-34-34-12-12-23-02-12-23	423	15(2)	15(2)
	t1727	0	2	07-23-12-34-34-12-12-23-02-12-23	447	582	15
404B	t918	1	0	09-02	183	45	45
	t026	5	0	08-16-34	207	45	45
	t635	1	0	08-16-13	207	45	45
	t1040	0	3	08-16-34-34	231	45	45
	t728	0	1	08-16-34-16-34	255	45(3)	45(3)
---	---	---	---	---	---	---	
t18036	0	1	09-34-17-34-34	255	6289	45	
t3000	0	1	09-02-17-34-16-34	279	45	45	
t095	0	6	08-16-02-16-34-34	279	45	45	
t1081	0	3	08-16-02-43-34-17-34	303	5246	45	
t130	0	2	09-34-13-17-34-16-34	303	45	45	
t5032	0	1	08-16-02-16-13-17-34-34	327	278	45	
t665	0	5	09-02-16-34-13-17-34-16-34	351	45	45	
t1248	0	1	09-02-16-34-13-17-34-16-3	351	45	45	
t737	1	1	08-16-34-13-17-34-16-34	351	45	45	
t18010	0	2	09-02-16-34-34-34-16-34	351	45	45	
t330	0	2	09-02-16-34-34-17-34-16-34	351	45	45	
t2275	0	1	09-02-16-34-13-17-34-16-34	351	45	45	
t2623	0	1	08-16-02-16-13-17-34-16-34	351	45	45	
t1510	1	0	08-16-02-16-34-13-17-34-16-3	375	45	45	
t116	1	1	08-16-02-16-13-17-34-16-34	375	45	45	
t105	2	3	08-16-02-16-34-13-17-34-16-34	375	45	45	
t18694	0	2	08-16-34-13-17-34-16-34-13-13	375	45	45	
t589	0	1	08-16-02-16-34-34-34-13-17-34-16	399	508	45 (2)	
t069	0	1	08-16-02-16-34-13-17-34-16-34	399	45	45	
t1231	0	2	08-16-02-16-34-13-17-34-16-34	423	45	45	

MelT						
t2302	0	1	26-23-17-34	231	5	5
t688	1	0	26-23-17-34-17-16	279	5	5
t18022	0	1	07-23-17-34-17-20-16	303	5	5
t18046	2	0	26-23-22-17-12-17-16	303	5	5
t212	0	1	26-17-20-17-12-16	303	5	5
t101	1	1	26-17-34-17-20-17-12-17-16	351	5	5
t1105	0	1	08-23-17-34-17-17-16	351	5	5
t1303	0	2	08-16-34-17-20-17-12-12-16	351	5	5
t179	2	13	26-23-17-34-17-20-17-12-11-16	375	5	5
t18041	0	1	08-16-02-17-13-17-34-16-34-16-16	375	45	45
t002	4	8	26-17-13-34-17-20-17-12-12-16	375	5	5

MelT						
t10060	0	5	07-02-25-34-25	255	398	398
t11729	0	3	08-16-34-24-24-25	279	398	398
t1451	0	2	08-16-02-25-34-25	279	398	398
t011	5	0	08-16-02-25-34-24-25	303	398	398
t18045	0	1	08-12-16-02-25-34-25	303	398	398
t571	0	6	08-16-02-25-02-25-34-25	327	398	398
t034	22	0	08-16-02-25-02-25-34-24-25	351	398	398
t17741	1	0	08-16-02-25-02-25-34-24-24-25	399	398	398

MelT						
t1509	0	1	07-23-12-23	231	6 alleles	7
t803	0	7	07-23-02-12-23	255	6 alleles	7
t867	0	2	07-23-17-34-12-23-02-12-23	351	7	7
t2932	0	1	07-23-21-17-34-12-23-12-23	351	7	7
t091	0	22	07-23-21-17-34-12-23-02-12-23	375	7	7

MelT									
t338	0	2	15-21-16-02-25-17-24	303	30 (8)				
t347	0	1	08-02-16-02-25-17-24	303	30 (9)	30 (9)			
t019	0	2	08-16-02-16-02-25-17-24	327	30 (4)	30 (4)			
t665	2	1	15-12-16-16-02-16-02-25	327	30 (10)	30 (10)			
t122	1	3	08-16-02-16-02-25-17-24	351	30 (11)	30 (11)			
t18351	0	2	08-16-784-16-02-25-17-24-24	351	30	30			
---	---	---	---	---	---	---	---	---	---
t1641	0	1	15-12-16-02-16-02-25-16-17-24	375	30(12)	30(12)			
t318	1	0	15-12-16-02-16-02-25-16-17-24	375	30(4)	30(4)			
t3508	0	1	15-12-16-02-16-02-31-25-17-24-24	399	30	30			
MelT	**t127**	13	2	07-23-21-16-34-33-13	303	1	1		
423	**t901**	0	1	07-23-12-17-20-17-12-12-17	351	72	72		
357	**t3092**	1	0	07-23-12-21-12-17-20-17-12-12-17	375	72(2)	72(2)		
	t148	0	10	07-23-12-21-12-17-20-17-12-12-17	399	72	72		
	t16914	0	1	07-23-12-21-12-17-20-17-12-12-20-17	423	72	72		
	t1346	0	1	07-23-12-21-12-17-20-17-12-12-12-17	423	72(2)	72(2)		

Number of isolates tested by MLST within a spa type (in case >1 isolates detected within a spa-type): t024 (n = 57), t18941 (n = 1), t1576 (n = 1), t008 (n = 1), t211 (n = 1), t1767 (n = 1), t586 (n = 1), t045 (n = 1), t003 (n = 2), t014 (n = 2), t18037 (n = 1), t18007 (n = 2), t1727 (n = 1), t026 (n = 1), t1040 (n = 1), t095 (n = 1), t1081 (n = 2), t130 (n = 1), t065 (n = 1), t737 (n = 1), t18010 (n = 1), t330 (n = 1), t116 (n = 1), t015 (n = 1), t18694 (n = 1), t1231 (n = 1), t18046 (n = 1), t010 (n = 2), t1303 (n = 1), t179 (n = 2), t242, t002 (n = 1), t10060 (n = 1), t11729 (n = 1), t1451 (n = 1), t011 (n = 1), t571 (n = 1), t034 (n = 1), t18351 (n = 1), t127 (n = 1), t148 (n = 2).
REFERENCES

1. Garbacz K, Piechowicz L, Podkowik M, Mroczkowska A, Empel J, Bania J. 2018. Emergence and spread of worldwide *Staphylococcus aureus* clones among cystic fibrosis patients. Infect Drug Resist 11:247-255.

2. Conceição T, Coelho C, Silva IS, de Lencastre H, Aires-de-Sousa M. 2015. *Staphylococcus aureus* in former Portuguese colonies from Africa and the Far East: missing data to help fill the world map. Clin Microbiol Infect 21:842.

3. Skråmm I, Moen AE, Bukholm G. 2011. Nasal carriage of *Staphylococcus aureus*: frequency and molecular diversity in a randomly sampled Norwegian community population. APMIS 119:522-528.

4. Lepuschitz S. 2015. Subtyping of livestock-associated methicillin-resistant *Staphylococcus aureus* CC398 isolates by next generation sequencing [master's thesis]. Vienna (AU): University of Vienna.

5. Krupa P, Bystroń J, Podkowik M, Empel J, Mroczkowska A, Bania J. 2015. Population structure and oxacillin resistance of *Staphylococcus aureus* from pigs and pork meat in south-west of Poland. Biomed Res Int 2015:141475.

6. Skråmm I, Moen AE, Alm-Kristiansen K, Bukholm G. 2007. Nasal carriage of *Staphylococcus aureus*: which sequence types do orthopedic surgical healthcare workers carry? Infect Control Hosp Epidemiol 28:737-739.

7. Donker GA, Deurenberg RH, Driessen C, Sebastian S, Nys S, Stobberingh EE. 2009. The population structure of *Staphylococcus aureus* among general practice patients from The Netherlands. Clin Microbiol Infect 15:137-143.
8. Balma-Mena A, Lara-Corrales I, Zeller J, Richardson S, McGavin MJ, Weinstein M, Pope E. 2011. Colonization with community-acquired methicillin-resistant *Staphylococcus aureus* in children with atopic dermatitis: a cross-sectional study. Int J Dermatol 50:682-688.

9. Li QT, Zhu YZ, Dong K, Liu C, Zhou YH, Ni YX, Guo XK. 2011. A novel sequence-based coa genotyping method to discriminate nosocomial methicillin-resistant *Staphylococcus aureus* isolates. Ir J Med Sci 180:463-468.

10. Pardos de la Gandara M, Raygoza Garay JA, Mwangi M, Tobin JN, Tsang A, Khalida C, D'Orazio B, Kost RG, Leinberger-Jabari A, Coffran C, Evering TH, Coller BS, Balachandra S, Urban T, Parola C, Salvato S, Jenks N, Wu D, Burgess R, Chung M, de Lencastre H, Tomasz A. 2015. Molecular types of methicillin-resistant *Staphylococcus aureus* and methicillin-sensitive *S. aureus* strains causing skin and soft tissue infections and nasal colonization, identified in community health centers in New York City. J Clin Microbiol 53:2648-2658.

11. Golding GR, Levett PN, McDonald RR, Irvine J, Quinn B, Nsungu M, Woods S, Khan M, Ofner-Agostini M, Mulvey MR. 2011. High rates of *Staphylococcus aureus* USA400 infection, Northern Canada. Emerg Infect Dis 17:722-725.

12. Lozano C, Gómez-Sanz E, Benito D, Asiproz C, Zarazaga M, Torres C. 2011. *Staphylococcus aureus* nasal carriage, virulence traits, antibiotic resistance mechanisms, and genetic lineages in healthy humans in Spain, with detection of CC398 and CC97 strains. Int J Med Microbiol 301:500-505.
Supplementary Figure S1

Representative melting curves of mini-MLST typing for *S. aureus*.
Supplementary Figure S2

Mini-MLST demonstration of 38 samples for gmk286 locus by both normalised melting curves (A) and difference curves (B).
Supplementary Figure S3

Representative melting curves of spa-HRM typing performed for the prevalent MelTs observed in our study (except MelT404B).
Supplementary Figure S4

Representative melting curves of spa-HRM typing performed for the MelT404B.

Pre-segregation was done based on the length of the PCR product.