Rapid identification of Stenotrophomonas maltophilia by peptide nucleic acid fluorescence in situ hybridization

N. Hansen, A. K. I. Rasmussen, M. J. Fiandaca, K. N. Kragh, T. Bjarnsholt, N. Høiby, and L. Guardabassi

1) Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen, Frederiksberg, Denmark, 2) Dako Denmark A/S, Produktionsvej, Glostrup, Denmark, 3) AdvanDx Inc., Woburn, MA, USA, 4) Department for Clinical Microbiology, University Hospital of Copenhagen, Juliane Mariesvej, 5) Department for International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen and 6) Stender Diagnostics, Gentofte, Denmark

Abstract

The objective of this study was to design and evaluate a novel peptide nucleic acid (PNA) probe for S. maltophilia identification by fluorescence in situ hybridization (FISH). A PNA probe targeting 16S rRNA (Flu-OO-CGCCATG-GATGTTC, 5'-3') specific for S. maltophilia and conjugated with fluorescein isothiocyanate (FITC) was added a PNA blocker probe (Ac-CCACGGATGTTCC, 5'-3') to prevent cross-reaction with closely related species such as Xanthomonas campestris (Panagene, Daejeon, Korea). Sensitivity and specificity of the probe were evaluated using 35 human and veterinary clinical S. maltophilia isolates, and 43 reference and clinical strains representing common bacterial species in the airways of humans and animals (Table I). All strains were cultured on solid media (5% calf blood agar, chocolate agar or nutrient/yeast/glycerol agar as deemed appropriate) and cultured on solid media (5% calf blood agar, chocolate agar or nutrient/yeast/glycerol agar as deemed appropriate) and sub-cultured in tryptic soy broth. Ten microliters of broth were placed onto a microscopic slide prepared with one drop of fixation solution (phosphate-buffered saline with detergent) and fixed by heating (methanol fixation for sputum smears). After adding one drop of hybridization solution (AdvanDx, Woburn, MA, USA) containing the S. maltophilia PNA probe, a coverslip was applied and hybridization performed by incubating the slides at 55°C for 30 min (90 min for sputum smears). Limited to Gram-negative strains, slides were immersed in preheated deionized water (55°C) for 1 min. All slides were then placed in a wash jar with a preheated (55°C) wash solution (diluted Tris-buffered saline with detergent) in a water bath for 30 min, coverslips removed. After air drying, a drop of mounting medium (photobleaching inhibitor in glycerol) and a coverslip were applied. A positive control slide with S. maltophilia and a negative control slide with the relevant strain hybridized with a universal PNA FISH probe (BacUni PNA, AdvanDx) according to manufacturer’s instructions were included in all runs. All slides were evaluated within 2 h under a fluorescence microscope (×60 objective, Olympus BX51, Ballerup, Denmark; Mercury U-LH100HG 100 W lamp) equipped with an FITC/Texas Red Dual Band Filter. Fluorescence images were obtained using an Olympus DP72 camera (1360 × 1024 pixels, 1 s exposure). Samples were considered positive when single cells had a strong fluorescence and clear...
maltophilia microscopy of the smears showed at least one to ten S. maltophilia cells in most fields when the concentration in the sample was 10^5 CFU/mL. The probe specificity was further tested on sputum samples from seven patients with CF. The samples underwent routine culture at the University Hospital of Copenhagen, Denmark. The probe produced positive results in all four samples from S. maltophilia-infected patients and negative results in all control samples (two patients infected with Pseudomonas aeruginosa, one patient infected with Burkholderia multivorans). No background fluorescence was observed.

Isolation and identification of S. maltophilia can be problematic [9–13]. Selective differential media have been recommended for improved detection of S. maltophilia from non-sterile sites such as respiratory secretions [14–16]. Problems related to misidentification of S. maltophilia by phenotypic methods can be overcome by the use of molecular methods. Pinot et al. [17] used vancomycin, imipenem, amphotericin B medium agar for isolation and multiplex PCR for identification of S. maltophilia. Hogardt et al. [18] designed a species-specific DNA probe for S. maltophilia identification and demonstrated that the probe could be used successfully on sputum and throat samples from CF patients. However, the limit for microscopic detection of bacteria within sputum was 4×10^5 CFU/mL and the sensitivity of the DNA FISH method (90%) was lower than that of the PNA FISH approach described in this study. PNA probes are small in size with a hands-on time. Furthermore, FISH is useful for in situ detection of this microorganism directly in clinical samples and mixed bacterial populations without prior cultivation. Thus, the S. maltophilia PNA FISH probe described in this study has
important applications for studies of biofilm infections and *S. maltophilia* colonization in patients with CF, where colonization and chronic infection with *S. maltophilia* is commonly reported.

In conclusion, the *S. maltophilia* PNA FISH probe demonstrated excellent sensitivity and specificity when tested against clinically relevant bacteria occurring in the respiratory tract of humans and animals. The PNA FISH assay can be implemented in diagnostic laboratories for rapid, simple and reliable identification of *S. maltophilia* in clinical specimens. It can only be a valuable tool for research aimed at understanding the role played by this organism in CF and in equine respiratory tract infections. For this purpose, further studies are warranted to evaluate the use of the probe for studying spatial distribution in polymicrobial biofilms.

Acknowledgements

Xanthomonas campestris pv. *campestris* strain 8004 was kindly provided by Mari-Anne Newmann, Section for Transport Biology, University of Copenhagen, Denmark.

Conflict of Interest

None declared.

References

1. Brooke JS. *Stenotrophomonas maltophilia*: an emerging global opportunistic pathogen. *Clin Microbiol Rev* 2012; 25: 2–41.
2. Dalboge CS, Hansen CR, Pressler T, Hoiby N, Johansen HK. Chronic pulmonary infection with *Stenotrophomonas maltophilia* and lung function in patients with cystic fibrosis. *J Cyst Fibros* 2011; 10: 318–325.
3. Ryan RP, Monchy S, Cardinale M et al. The versatility and adaptation of bacteria from the genus *Stenotrophomonas*. *Nat Rev Microbiol* 2009; 7: 514–525.
4. Albini S, Abril C, Franchini M, Huussy D, Filioussis G. *Stenotrophomonas maltophilia* isolated from the airways of animals with chronic respiratory disease. *Schweiz Arch Tierheilkd* 2009; 151: 323–328.
5. Winther L, Andersen RM, Baptiste KE, Aalbaek B, Guardabassi L. Association of *Stenotrophomonas maltophilia* infection with lower airway disease in the horse: a retrospective case series. *Vet J* 2010; 186: 358–363.
6. Berger S, Froehlich W. *Stenotrophomonas maltophilia* as a causative agent of bacterial infections in the horse: two clinical cases. *Pferdeheilkunde* 2011; 27: 381–385.
7. Kralova-Kovarikova S, Husnik R, Honzak D, Kohout P, Fictum P. *Stenotrophomonas maltophilia* urinary tract infections in three dogs: a case report. *Vet Med* 2012; 57: 380–383.
8. Johnson E, Al-Busaidy R, Hameed M. An outbreak of lymphadenitis associated with *Stenotrophomonas* (*Xanthomonas*) *maltophilia* in Omani goats. *J Vet Med Ser B Infect Dis Vet Public Health* 2003; 50: 102–104.
9. Anderson SW, Stapp JR, Burns JL, Qin X. Characterization of small-colony-variant *Stenotrophomonas maltophilia* isolated from the sputum specimens of five patients with cystic fibrosis. *J Clin Microbiol* 2007; 45: 529–535.
10. Bittar F, Rolain JM. Detection and accurate identification of new or emerging bacteria in cystic fibrosis patients. *Clin Microbiol Infect* 2010; 16: 809–820.
11. Burdge D, Noble M, Campbell M, Krell V, Speert D. *Xanthomonas maltophilia* misidentified as *Pseudomonas cepacia* in cultures of sputum from patients with cystic fibrosis: a diagnostic pitfall with major clinical implications. *Clin Infect Dis* 1995; 20: 445–448.
12. Carmody LA, Spilker T, LiPuma JJ. Reassessment of *Stenotrophomonas maltophilia* phenotype. *J Clin Microbiol* 2011; 49: 1101–1103.
13. Svensson-Stadler LA, Mihaylova SA, Moore ERB. *Stenotrophomonas* interspecies differentiation and identification by gyrB sequence analysis. *FEMS Microb Lett* 2012; 327: 15–24.
14. Foster NF, Chang BJ, Riley TV. Evaluation of a modified selective differential medium for the isolation of *Stenotrophomonas maltophilia*. *J Microbiol Methods* 2008; 75: 153–155.
15. Goncalves-Vidigal P, Grosse-Onnebrink J, Mellies U, Buer J, Rath PM, Steinmann J. *Stenotrophomonas maltophilia* in cystic fibrosis: improved detection by the use of selective agar and evaluation of antimicrobial resistance. *J Cyst Fibros* 2011; 10: 422–427.
16. Kerr K, Denton M, Todd N, Corps C, Kumari P, Hawkey P. A new selective differential medium for isolation of *Stenotrophomonas maltophilia*. *Eur J Clin Microbiol Infect Dis* 1996; 15: 607–610.
17. Pinot C, Deredjian A, Nazaret S et al. Identification of *Stenotrophomonas maltophilia* strains isolated from environmental and clinical samples: a rapid and efficient procedure. *J Appl Microbiol* 2011; 111: 1185–1193.
18. Hogardt M, Trebesius K, Geiger AM, Hornef M, Rosenecker J, Heesemann J. Specific and rapid detection by fluorescent in situ hybridization of bacteria in clinical samples obtained from cystic fibrosis patients. *J Clin Microbiol* 2000; 38: 818–825.
19. Pellesstor F, Paulasova P, Hamamah S. Peptide nucleic acids (PNAs) as diagnostic devices for genetic and cytogenetic analysis. *Curr Pharm Des* 2008; 14: 2439–2444.
20. Bjarnsholt T, Jensen PO, Fiandaca MJ et al. *Pseudomonas aeruginosa* biofilms in the respiratory tract of cystic fibrosis patients. *Pediatr Pulmonol* 2009; 44: 547–558.