Lattice Points, Dedekind-Rademacher Sums and a Conjecture of Kronheimer and Mrowka

Liviu I. Nicolaescu

Version 2, January 1998

Abstract

We express the number of lattice points inside a certain simplex with vertices in \(\mathbb{Q}^3 \) or \(\mathbb{Q}^4 \) in terms of Dedekind-Rademacher sums. As an application we prove a conjecture of Kronheimer and Mrowka in the special case of Brieskorn homology spheres \(\Sigma(a_1, \ldots, a_n), n \leq 4 \). This conjecture relates the Euler characteristic of the Seiberg-Witten-Floer homology to the Casson invariant.

Introduction

Since the very beginning it was apparent that the Seiberg-Witten analogue of the instanton Floer homology of a homology 3-sphere is no longer a topological invariant since it can vary with the metric.

Recently, M. Marcolli explained in \[7\] the metric dependence of the Euler characteristic of the SWF (= Seiberg-Witten-Floer) homology. More precisely, if \(g_i (i = 0, 1) \) are two generic Riemann metrics on a homology 3-sphere \(N \) and \(\chi_{SW}(N, g_i) \) is the Euler characteristic of the SWF homology of \((N, g_i) \) the results of \[7\] imply that

\[
\chi_{SW}(N, g_1) - \chi_{SW}(N, g_0) = \frac{1}{8} F(g_1) - \frac{1}{8} F(g_0)
\]

where

\[
F(g) = 4\eta_{\text{dir}}(g) + \eta_{\text{sign}}(g)
\]

\(\eta_{\text{dir}}(g) \) denotes the eta invariant of the Dirac operator of \((N, g) \) while \(\eta_{\text{sign}}(g) \) denotes the eta invariant of the odd signature operator on \((N, g) \). In particular, the above equality shows that the quantity

\[
\alpha(N) = -\chi_{SW}(N, g) + \frac{1}{8} F(g)
\]

\footnote{Current address: Dept. of Math., McMaster University, Hamilton, Ontario, L8S 4K1, Canada; nicolaes@icarus.math.mcmaster.ca}
is independent of g and thus is a topological quantity.

In 1996, Kronheimer and Mrowka conjectured (see [6]) that this quantity coincides (up to a sign) with the Casson invariant of N. W. Chen ([1],[2]) has established many interesting properties of this invariant.

The topological goal of this paper is to provide a proof of this conjecture, in the special case of Brieskorn homology sphere $\Sigma(a_1,\cdots,a_n)$, $n \leq 4$. Our proof is arithmetic in nature and is based on a count of lattice points inside a certain n-simplex in \mathbb{R}^n with vertices in \mathbb{Q}^n, $n = 3,4$.

More precisely, recent work ([10], [13]) shows that for a certain natural metric g_0 on $\Sigma(a,b,c)$ (realizing the Thurston geometry of this Seifert manifold) we have

$$-\chi_{SW}(\Sigma(a_1,\cdots,a_n),g_0) = 2C_{a_1,\cdots,a_n}, \quad n = 3,4$$

where C_{a_1,\cdots,a_n} is the number of lattice points in the simplex

$$\Delta(a_1,\cdots,a_n) := \left\{ (x_1,\cdots,x_n) \in \mathbb{R}^n ; x_i \geq 0, \sum_{i=1}^{n} \frac{x_i}{a_i} < \frac{1}{2} \left(n - 2 - \sum_{i=1}^{n} \frac{1}{a_i} \right) \right\}.$$

The arithmetic goal of this paper is the determination of C_{a_1,\cdots,a_n} when $n = 3,4$. This is a problem of independent interest since the vertices of the simplex $\Delta(a_1,\cdots,a_n)$ are not lattice points and none of the counting techniques using Riemann-Roch on toric manifolds seem to apply. We will use instead a variation of a trick of Mordell; see [9] or [15].

R. Fintushel and R. Stern have shown in [3] that the Casson invariant of the Brieskorn sphere $\Sigma(a,b,c)$ is $\frac{1}{8}\sigma(a,b,c)$ where $\sigma(a,b,c)$ denotes the signature of the Milnor fiber of $\Sigma(a,b,c)$. This result was extended to arbitrary $\Sigma(a_1,\cdots,a_n)$ by Neuwmann-Wahl in [11]. The Kronheimer-Mrowka conjecture in this case is equivalent to

$$-2C_{a_1,\cdots,a_n} - \frac{1}{8}F(g_0) = \frac{1}{8}\sigma(a_1,\cdots,a_n). \quad (0.1)$$

The key objects in this paper will be the so called Dedekind-Rademacher sums defined for every coprime positive integers h, k and any real numbers x, y by

$$s(h,k;x,y) = \sum_{\mu=0}^{k-1} \left(\frac{\mu + y}{k} \right) \left(\frac{h(\mu + y)}{k} + x \right)$$

where for any $r \in \mathbb{R}$ we set

$$((r)) = \begin{cases} 0 & r \in \mathbb{Z} \\ \{q\} - \frac{1}{2} & r \in \mathbb{R} \setminus \mathbb{Z} \end{cases} \quad \{r\} := r - [r].$$

Despite their apparent complexity these sums are computationally very friendly due mainly to the reciprocity law they satisfy (see [14] or the Appendix). The sums
s(h, k; 0, 0) are precisely the Dedekind sums s(h, k) discussed in great detail in [1] or [15].

Our proof of (0.1) is based on the following facts.
• According to Zagier (see [1] or [11]) the signature σ(a_1, ⋯, a_n) can be expressed in terms of Dedekind sums.
• According to the computations in [13] the quantity \(\frac{1}{2}η_{dir}(g_0) + \frac{1}{8}η_{sign}(g_0) \) can be expressed in terms of Dedekind-Rademacher sums.
• For \(n = 3, 4 \) the number \(C_{a_1, ⋯, a_n} \) can be expressed in terms of Dedekind-Rademacher sums.

As an arithmetic byproduct of the proof we obtain a divisibility result for certain expressions involving Dedekind-Rademacher sums (see Remark 1.2).

The present paper consists of three sections and an appendix. In the first section we use the results of [13] to express \(F \) in terms of Dedekind-Rademacher sums and to reduce the computation of \(χ_{SW} \) to a lattice point count. In the next section we describe a variation of the Mordell trick which reduces the lattice point count to a certain arithmetic expression. The third section describes this arithmetic expression in terms of Dedekind-Rademacher sums and completes the proof of (1.13). For the reader’s convenience we have included a brief appendix containing the basic properties of Dedekind-Rademacher sums used in this paper.

Note After this paper was completed we found out that the Kronheimer-Mrowka conjecture was proved independently and in its entire generality by Lim and Carey-Marcolli-Wang. We believe the nice arithmetic behind the Brieskorn homology spheres is interesting enough to warrant a separate treatment.

Contents

Introduction 1

1 Geometric preliminaries 4

2 The Mordell trick 7

3 The proof of Theorem 1.1 8
\hspace{1em} §3.1 The case \(n = 3 \) \hspace{2em} 8
\hspace{1em} §3.2 The case \(n = 4 \) \hspace{2em} 12

A Basic facts concerning Dedekind-Rademacher sums 14

References 16
1 Geometric preliminaries

For pairwise coprime integers $a_1, \cdots, a_n \geq 2$, $n \geq 3$ we denote by $\Sigma(\vec{a})$ the Brieskorn homology sphere $\Sigma(a_1, \cdots, a_n)$ with n singular fibers (see [3] for a precise definition). We orient $\Sigma(\vec{a})$ as the boundary of a complex manifold. $\Sigma(\vec{a})$ is a Seifert manifold. With respect to the above orientation it is a singular S^1 fibration over the orbi-sphere $S^2(\vec{a})$ which has n cone points of isotropies \mathbb{Z}_{a_i}, $1 \leq i \leq n$. This fibration has rational degree

$$\ell = -\frac{1}{A}, \quad A := a_1 a_2 \cdots a_n.$$

Set $b_i := A/a_i$. The Seifert invariants $\vec{\beta} = (\beta_1, \cdots, \beta_n)$ (normalized as in [13]) are defined by

$$\beta_i b_i \equiv -1 \pmod{a_i}, \quad 0 \leq \beta_i < a_i$$

Set $q_i = \beta_i^{-1} = -b_i \mod a_i$, $i = 1, \ldots, n$. The canonical line bundle of $S^2(\vec{a})$ has rational degree

$$\kappa = (n-2) - \sum_{i=1}^{n} \frac{1}{a_i}.$$

The universal covering space of $\Sigma(\vec{a})$ is a Lie group $G = G(\vec{a})$ determined by

$$G = \begin{cases}
SU(2) & \kappa < 0 \\
\tilde{PSL}_2(\mathbb{R}) & \kappa > 0
\end{cases}$$

where $\tilde{PSL}_2(\mathbb{R})$ denotes the universal cover of $PSL_2(\mathbb{R})$. Moreover $\Sigma(\vec{a}) \cong \Gamma/G(\vec{a})$ where Γ is a discrete subgroup of G. The natural left invariant metrics on G (see [17]) induce a natural metric g_0 on $\Sigma(\vec{a})$. All the geometric quantities discussed in the sequel are computed with respect to this metric and for simplicity we will omit g_0 from the various notations. Thus $F(\vec{a})$ is $F(g_0)$.

Set

$$\rho := \left\{ \begin{array}{ll}
\kappa / 2\ell \\
\frac{1}{2} & A \text{ even} \\
0 & A \text{ odd}
\end{array} \right.$$

and define $\vec{\gamma} = (\gamma_1, \cdots, \gamma_n)$ by the equalities

$$\gamma_i = m\beta_i \pmod{a_i}, \quad 1 \leq i \leq n$$

where m is the integer

$$m := \frac{\kappa - \rho}{2\ell} - \rho = \frac{u - A - 2\rho}{2}, \quad u := \sum_{i} b_i.$$

In [13] we have proved the following.

- If A is even then

$$F(\vec{a}) = 1 - 4 \sum_{i} s(\beta_i, a_i) - 4 \sum_{i} \left(\left(\frac{q_i \gamma_i + \rho}{a_i} \right) + 2s(\beta_i, a_i; \gamma_i + \beta_i \rho, -\rho) \right) \quad (1.2)$$
The above expression can be further simplified using the identities

\[s(\beta_i, a_i) = -s(b_i, a_i) \] \hspace{1cm} (1.3)

\[s(\beta_i, a_i; \gamma_i + \beta_i/2, -1/2) = -s(b_i, a_i, 1/2, 1/2) - \frac{1}{2} \left(\left(\frac{\gamma_i + 1/2}{a_i} \right) \right) \] \hspace{1cm} (1.4)

The identity (1.3) is elementary and can be safely left to the reader. The identity (1.4) is proved in the Appendix. Putting the above together we deduce that when \(A \) is even we have

\[F(\vec{a}) = 1 + 4 \sum_i s(b_i, a_i) + 8 \sum_i s(b_i, a_i; 1/2, 1/2). \] \hspace{1cm} (1.5)

- If \(A \) is odd then

\[F(\vec{a}) = 1 - \frac{1}{A} - 4 \sum_i s(\beta_i, a_i) - 4 \sum_{i=1}^n \left(2s(\beta_i, a_i; \gamma_i + \beta_i, -\rho) + \left(\left(\frac{\gamma_i + \rho}{a_i} \right) \right) \right). \] \hspace{1cm} (1.6)

Similarly, we have an identity

\[s(\beta_i, a_i; \gamma_i, 0) + \frac{1}{2} \left(\left(\frac{\gamma_i}{a_i} \right) \right) = -s(b_i, a_i; 1/2, 1/2) \] \hspace{1cm} (1.7)

and we deduce

\[F(\vec{a}) = 1 - \frac{1}{A} + 4 \sum_i s(b_i, a_i) + 8 \sum_i s(b_i, a_i; 1/2, 1/2). \] \hspace{1cm} (1.8)

The signature \(\sigma(\vec{a}) \) of the Milnor fiber of \(\Sigma(\vec{a}) \) can be expressed in terms of Dedekind sums as well (see [11], Sect.1) and we have

\[\sigma(\vec{a}) = -1 - \frac{(n - 2)A}{3} + \frac{1}{3A} + \frac{1}{3} \sum_i b_i a_i - 4 \sum_i s(b_i, a_i). \] \hspace{1cm} (1.9)

We deduce that

\[F(\vec{a}) + \sigma(\vec{a}) = -\frac{(n - 2)A}{3} + \frac{\varepsilon}{3A} + \frac{1}{3} \sum_i b_i a_i + 8 \sum_i s(b_i, a_i; 1/2, 1/2) \] \hspace{1cm} (1.10)

where

\[\varepsilon = \begin{cases} 1 & \text{if } A \text{ even} \\ -2 & \text{if } A \text{ odd} \end{cases} \]

The description of \(\chi_{SW} \) requires a bit more work. Introduce the simplex

\[\Delta(\vec{a}) = \{ \vec{x} \in \mathbb{Z}^n ; x_i \geq 0, \sum_i \frac{x_i}{a_i} < \kappa/2 \}. \]
For each \(\vec{x} \in \Delta(\vec{a}) \) set
\[
d(\vec{x}) = \sum_i \left[\frac{x_i}{a_i} \right]
\]
and \(S_{\vec{x}} \) = symmetric product of \(d(\vec{x}) \) copies of \(S^2 \). Note that if \(n = 3, 4 \) then \(d(\vec{x}) = 0 \) for all \(\vec{x} \in \Delta(\vec{a}) \).

The irreducible part of the adiabatic Seibert-Witten equations on \(\Sigma(\vec{a}) \) (studied in \cite{10} and \cite{12}) can be described as
\[
\mathcal{M}_{\vec{a}} = \bigcup_{\vec{x}} \mathcal{M}_{\vec{x}}
\]
where
\[
\mathcal{M}_{\vec{x}} = \mathcal{M}_{\vec{x}}^+ \cup \mathcal{M}_{\vec{x}}^- \quad \text{and} \quad \mathcal{M}_{\vec{x}}^\pm \cong S_{\vec{x}}.
\]
Moreover, the virtual dimensions of the spaces of finite energy gradient flows originating at the unique reducible solution and ending at one of the \(\mathcal{M}_{\vec{x}} \) are all odd. Using the adiabatic argument in §3.3 of \cite{13} we deduce that if all \(d(\vec{x}) \) are zero the Seiberg-Witten-Floer homology obtained using the usual Seiberg-Witten equations is isomorphic with the Seiberg-Witten-Floer homology obtained using the adiabatic equations. Moreover, all the even dimensional Betti numbers of the Seiberg-Witten-Floer homology are zero and we deduce
\[
\chi_{SW}(\vec{a}) = -2C_{\vec{a}} := -2\#\Delta(\vec{a}). \tag{1.11}
\]

In 1996 Kronheimer and Mrowka conjectured that
\[
\chi_{SW}(N, g) - \frac{1}{8}\mathcal{F}(N, g) = \lambda(N)
\]
for any homology sphere \(N \) and any generic metric \(g \) on \(N \). Above, \(\lambda(N) \) denotes the Casson invariant of \(N \). It was shown in \cite{11} that for the Brieskorn homology spheres \(\Sigma(\vec{a}) \)
\[
\lambda(\Sigma(\vec{a})) = \frac{1}{8}\sigma(\vec{a}). \tag{1.12}
\]

The main result of this paper is the following.

Theorem 1.1 The Kronheimer-Mrowka conjecture is true for Brieskorn homology spheres \(\Sigma(a_1, \cdots, a_n) \), \(n = 3, 4 \). According to (1.11), (1.12) and (1.10) this is equivalent to
\[
-16C_{\vec{a}} = \mathcal{F}(\vec{a}) + \sigma(\vec{a})
\]
\[
= -\frac{(n-2)A}{3} + \frac{\varepsilon}{3A} + \frac{1}{3} \sum_i b_i a_i + 8 \sum_i s(b_i, a_i; 1/2, 1/2). \tag{1.13}
\]

Remark 1.2 As indicated in \cite{13}, Rohlin’s theorem implies that the term \(\mathcal{F}(\vec{a}) \) is divisible by 8. The results of \cite{11} show the signature \(\sigma(\vec{a}) \) is also divisible by 8. Thus the right-hand-side of (1.10) is an integer divisible by 8. The above theorem shows that \(\mathcal{F}(\vec{a}) + \sigma(\vec{a}) \) is in effect divisible by 16!!!
2 The Mordell trick

Let $\vec{a} \in \mathbb{Z}^n$ be as in the previous section. Denote by $\mathcal{P} = \mathcal{P}_\vec{a}$ the parallelopiped

$$\mathcal{P} := ([0, a_1 - 1] \times \cdots \times [0, a_n - 1]) \cap \mathbb{Z}^n.$$

When $n = 3$ we will use the notation $\vec{a} = (a, b, c)$. Define $q : \mathcal{P} \to \mathbb{R}$ by

$$q(\vec{x}) = \sum_i \frac{x_i + 1/2}{a_i} = \sum_i \frac{x_i}{a_i} + \frac{u}{2A}.$$

Remark 2.1 (a) Suppose $n = 3$, $\vec{a} = (a, b, c)$. Note that $q(p) \in \frac{1}{2}\mathbb{Z}$ for some $p \in \mathcal{P}$ if and only if abc is odd and

$$p = p_0 = (\frac{a - 1}{2}, \frac{b - 1}{2}, \frac{c - 1}{2}).$$

In this case $q(p_0) = \frac{3}{2}$.

(b) Suppose $n = 4$, $\vec{a} = (a_1, \cdots, a_4)$. Then $q(p) \in \mathbb{Z}$ for some $p \in \mathcal{P}$ if and only if A is odd and

$$p = p_0 = (\frac{a_1 - 1}{2}, \cdots, \frac{a_4 - 1}{2})$$

in which case $q(p_0) = 2$.

For every interval $I \subset \mathbb{R}$ we put

$$N_I := \#q^{-1}(I).$$

Note that

$$C_\vec{a} = N_{(0,(n-2)/2)}.$$

In particular, if $n = 3$

$$C_{a,b,c} = N_{(0,1/2)}.$$

while if $n = 4$

$$C_{a_1,\cdots,a_4} = N_{(0,1)}.$$

For every $r \in \mathbb{R}$ define $\|r\| = [r + 1/2]$ where $[\cdot]$ denotes the integer part function. Note that $\|r\|$ is the integer closest to r. We now discuss separately the two cases, $n = 3$ and $n = 4$

- The case $n = 3$, $\vec{a} = (a, b, c)$. Inimitating Mordell (see [9] or [15]) we introduce the quantity

$$\alpha := \sum_{I} (\|q\| - 1)(\|q\| - 2).$$

Observe that

$$\alpha = 2N_{[0,1/2]} + 2N_{[5/2,3]} = 2N_{(0,1/2)} + 2N_{(5/2,3)}.$$

The importance of the last equality follows from the following elementary result.
Lemma 2.2

\[N_{(0,1/2)} = N_{(5/2,3)} \]

Proof Consider the involution

\[\omega : \mathcal{P} \rightarrow \mathcal{P}, \quad (x,y,z) \mapsto (a-1-x, b-1-y, c-1-z). \]

It has the property

\[q(\omega(p)) = 3 - q(p) \]

from which the lemma follows immediately. \(\square \)

Using the lemma and the equalities (2.1), (2.3) we deduce

\[4C_{a,b,c} = \sum_{P} (\|q\| - 1)(\|q\| - 2). \quad (2.4) \]

- **The case** \(n = 4, \vec{a} = (a_1, \cdots, a_4) \). Arguing exactly as above we deduce

\[4C_{\vec{a}} = N_{(0,1)} = \sum_{P} ([q] - 1)([q] - 2). \quad (2.5) \]

The proof of Theorem 1.1 will be completed by providing an expression for the above sums in terms of Dedekind-Rademacher sums. This will be achieved in the next section following the strategy of [9] (see also [15]).

3 The proof of Theorem 1.1

We will consider separately the two cases \(n = 3 \) and \(n = 4 \).

§3.1 **The case** \(n = 3 \) Set \(\vec{a} = (a, b, c) \) so that \(A = abc, u = ab + bc + ca \). We will distinguish two cases: \(A \) is even and \(A \) is odd.

- **A is even** In this case \(q(p) + \frac{1}{2} \notin \mathbb{Z} \) so that

\[\|q\| = q + 1/2 - \{q + 1/2\} = q - ((q + 1/2)). \]

The sum can be rewritten as

\[
\sum_{P} q - ((q + 1/2)) - 1)(q - ((q + 1/2)) - 2) = \sum_{P} q^2 - 3 \sum_{P} q + 2 \sum_{P} 1 - 2 \sum_{P} q((q + 1/2)) + \sum_{P} ((q + 1/2))^2 + 3 \sum_{P} ((q + 1/2)).
\]
We compute each of these 6 sums separately.

\[
\sum_{p} 1 = \#\mathcal{P} = abc.
\]

\[
\sum_{p} q = \sum_{p} \frac{x + 1/2}{a} + \sum_{p} \frac{y + 1/2}{b} + \sum_{p} \frac{z + 1/2}{c}
\]

\[
= \frac{bc}{2a} \sum_{x=0}^{a-1} (2x + 1) + \frac{ca}{2b} \sum_{y=0}^{b-1} (2y + 1) + \frac{ab}{2c} \sum_{z=0}^{c-1} (2z + 1)
\]

\[
= \frac{3}{2} abc.
\]

\[
\sum_{p} q^2 = \sum_{p} \left(\frac{x + 1/2}{a} \right)^2 + \sum_{p} \left(\frac{y + 1/2}{b} \right)^2 + \sum_{p} \left(\frac{z + 1/2}{c} \right)^2
\]

\[
+2c \left(\sum_{x=0}^{a-1} \frac{x + 1/2}{a} \right) \left(\sum_{y=0}^{b-1} \frac{y + 1/2}{b} \right) + 2b \left(\sum_{x=0}^{a-1} \frac{x + 1/2}{a} \right) \left(\sum_{z=0}^{c-1} \frac{z + 1/2}{c} \right)
\]

\[
+2a \left(\sum_{z=0}^{c-1} \frac{z + 1/2}{c} \right) \left(\sum_{y=0}^{b-1} \frac{y + 1/2}{b} \right)
\]

Using basic properties of Bernoulli polynomials (see [16]) we deduce

\[
\sum_{x=0}^{a-1} \left(\frac{x + 1/2}{a} \right)^2 = \frac{1}{3a^2} \left(B_3(a + \frac{1}{2}) - B_3(\frac{1}{2}) \right)
\]

where

\[
B_3(t) = \frac{t(2t-1)(t-1)}{2}
\]

is the third Bernoulli polynomial. Note that \(B_3(1/2) = 0 \) and

\[B_3(t + 1/2) = t(t^2 - 1/4). \]

Using the identity

\[
\frac{1}{n} \sum_{k=0}^{n-1} k + 1/2 = \frac{n}{2}
\]

we conclude

\[
\sum_{p} q^2 = \frac{5}{2} abc - \frac{1}{12} \left(\frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c} \right).
\]

Next

\[
\sum_{p} ((q + 1/2)) = \sum_{p} \left(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} + \frac{u}{2abc} \right)
\]
\[
= \sum_{k=0}^{abc-1} \left(\left(\frac{k}{abc} + \frac{u}{2abc} \right) \right)
\]

According to the Kubert identity [A.4] in the Appendix the last sum is equal to \(((u/2)) \) which is zero. Thus
\[
\sum_{p} (\left(q + \frac{1}{2} \right)) = 0.
\]

The sum \(\sum q((q + 1)/2) \) requires a bit more work. Note first that it decomposes as
\[
\sum_{x=0}^{a-1} \frac{x + 1/2}{a} \sum_{y,z} \left(\left(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} + \frac{u + abc}{2abc} \right) \right)
\]
\[
+ \sum_{y=0}^{b-1} \frac{y + 1/2}{b} \sum_{z,x} \left(\left(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} + \frac{u + abc}{2abc} \right) \right)
\]
\[
+ \sum_{z=0}^{c-1} \frac{z + 1/2}{c} \sum_{x,y} \left(\left(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} + \frac{u + abc}{2abc} \right) \right)
\]
\[
= S_1 + S_2 + S_3.
\]

We describe in detail the computation of \(S_1 \). The other two sums are entirely similar.

Note first that
\[
\sum_{y,z} \left(\left(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} + \frac{u + abc}{2abc} \right) \right) = \sum_{y,z} \left(\left(\frac{y}{b} + \frac{z}{c} + \frac{x}{a} + \frac{u + abc}{2abc} \right) \right)
\]
\[
= \sum_{k=0}^{bc-1} \left(\left(\frac{k}{bc} + \frac{x}{a} + \frac{u + abc}{2abc} \right) \right)
\]

(use the Kubert identity [A.4])
\[
= \left(\left(\frac{bcx}{a} + \frac{u + abc}{2a} \right) \right).
\]
\[
= \left(\left(\frac{bc(x+1/2)}{a} + \frac{bc + b + c}{2} \right) \right) = \left(\left(\frac{bc(x+1/2)}{a} + \frac{1}{2} \right) \right).
\]

We conclude
\[
S_1 = \sum_{x=0}^{a-1} \left(\left(\frac{bc(x+1/2)}{a} + \frac{1}{2} \right) \right)
\]
\[
= \sum_{x=0}^{a-1} \left(\left(\frac{x+1/2}{a} \right) \right) \left(\left(\frac{bc(x+1/2)}{a} + \frac{1}{2} \right) \right) - \frac{1}{2} \sum_{x=0}^{a-1} \left(\left(\frac{bc(x+1/2)}{a} + \frac{1}{2} \right) \right)
\]
(use the Kubert identity)

\[
\sum_{x=0}^{a-1} \left(\left(\frac{x + 1/2}{a} \right) \left(\frac{bc(x + 1/2)}{a} + \frac{1}{2} \right) \right) = s(bc, a; 1/2, 1/2).
\]

Hence

\[
\sum q((q + 1/2)) = s(bc, a; 1/2, 1/2) + s(ca, b; 1/2, 1/2) + s(ab, c; 1/2, 1/2).
\]

Finally

\[
\sum \left((q + 1/2)^2 \right) = \sum \left(\left(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} + \frac{u + abc}{2abc} \right) \right)^2 = \sum_{k=0}^{abc-1} \left(k + \frac{u + abc}{2abc} \right)^2
\]

(use the fact that \(u + abc \) is odd in this case)

\[
= \sum_{k=0}^{abc-1} \left(\frac{k + 1/2}{abc} \right)^2 = s(1, abc; 0, 1/2)
\]

(use (A.1)

\[
= \frac{abc}{12} - \frac{1}{12abc}.
\]

Putting together the above information we deduce that if \(abc \) is even then

\[
4C_{a,b,c} = \frac{abc}{12} - \frac{1}{12abc} - \frac{1}{12} \left(\frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c} \right)
\]

\[
- 2(s(bc, a; 1/2, 1/2) + s(ca, b; 1/2, 1/2) + s(ab, c; 1/2, 1/2)).
\]

The identity (1.13) is now obvious.

- \(A \) is odd In this case, using Remark 2.1 we deduce

\[
\|q(p)\| = \begin{cases}
q - ((q + 1/2)) & p \neq p_0 \\
q - (q + 1/2) + \frac{1}{2} & p = p_0
\end{cases}.
\]

Thus

\[
(\|q\| - 1)(\|q\| - 2) = \begin{cases}
(q - ((q + 1/2)) - 1)(q - ((q + 1/2)) - 2) & p \neq p_0 \\
(q - ((q + 1/2)) - 1/2)(q - ((q + 1/2)) - 3/2) & p = p_0
\end{cases}
\]

Hence

\[
4C_{a,b,c} = \sum_{p} (q - ((q + 1/2)) - 1)(q - ((q + 1/2)) - 2)
\]
\[+ (q - ((q + \frac{1}{2})) - \frac{1}{2})(q - ((q + \frac{1}{2})) - \frac{3}{2})|_{p_0} -(q - ((q + \frac{1}{2})) - 1)(q - ((q + \frac{1}{2})) - 2)|_{p_0}\]
\[= \sum_{p} (q - ((q + 1/2)) - 1)(q - ((q + 1/2)) - 2) + \frac{1}{4}. \tag{3.2}\]

The above sum can be computed exactly as in the even case with one notable difference namely
\[
\sum((q + 1/2))^2 = \sum_{k=0}^{abc-1} \left(\left(\frac{k}{abc} \right) \right)
\]
(u + abc is even)
\[
= \sum_{k=0}^{abc-1} \left(\left(\frac{k}{abc} \right) \right) = s(1, abc; 0, 0) = \frac{abc}{12} + \frac{1}{6abc} - \frac{1}{4}.
\]

Thus, when abc is odd we have
\[
4C_{a,b,c} = \frac{abc}{12} + \frac{1}{6abc} - \frac{1}{12} \left(\frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c} \right) - 2(s(bc, a; 1/2, 1/2) + s(ca, b; 1/2, 1/2) + s(ab, c; 1/2, 1/2)).
\]

This completes the proof of Theorem 1.1 when \(n = 3\)

§3.2 The case \(n = 4\) We follow a similar strategy with some obvious modifications. Set \(\vec{a} = (a_1, \cdots, a_4)\), \(A = 4\), \(u = b_1 + \cdots + b_4\) and
\[S_{\vec{a}} = \sum_{p_\vec{a}} ([q] - 1)([q] - 2).\]

As in the previous subsection will distinguish two situations.

• A is even Note that for every \(p \in P\) we have \(q(p) \notin \mathbb{Z}\) so that
\[[q] = q - ((q)) - 1/2.\]

Thus
\[S_{\vec{a}} = \sum_{p} (q - ((q)) - 3/2)(q - ((q)) - 5/2) = \sum_{q} (q^2 - 4q + 15/4) - 2 \sum_{p} q((q)) + \sum_{p} ((q))^2 + 4 \sum_{p} ((q)).\]

The computation of the above terms follows the same pattern as in the previous subsection.
\[\sum_{p} ((q)) = 0.\]
\[
\sum_p 15/4 = 15\#P/4 = 15A/4.
\]

\[
\sum_p q = \sum_{i=1}^4 b_i \sum_{x_i=0}^{a_i-1} \frac{x_i + 1/2}{a_i} = \sum_{i=1}^4 b_i a_i = 2A.
\]

\[
\sum_p q^2 = \sum_{i=1}^4 b_i \sum_{x_i=0}^{a_i-1} \left(\frac{x_i + 1/2}{a_i}\right)^2
+ 2 \sum_{i<j} A \frac{a_i}{a_ia_j} \left(\sum_{x_i=0}^{a_i-1} \frac{x_i + 1/2}{a_i}\right) \left(\sum_{x_j=0}^{a_j-1} \frac{x_j + 1/2}{a_j}\right)
= \sum_{i=1}^4 b_i a_i (a_i^2 - 1/4) + \sum_{1 \leq i < j \leq 4} \frac{A}{2}
= \sum_{i=1}^4 \left(\frac{A}{3} - \frac{b_i}{12a_i}\right) + 3A = \frac{13A}{3} - \frac{1}{12} \sum_i b_i / a_i.
\]

When \(A\) is even \(u\) is odd and we have
\[
\sum_p ((q))^2 = \sum_{k=0}^{A-1} \left(\frac{k + u/2}{A}\right)^2 = s(1, A; 0, 1/2) = \frac{A}{12} + \frac{1}{2A}.
\]

Finally,
\[
\sum_p q((q)) = S_1 + \cdots + S_4
\]
where
\[
S_1 = \sum_{x_1=0}^{a_1-1} \frac{x_1 + 1/2}{a_1} \cdot \sum_{x_2,x_3,x_4} \left(\frac{x_2}{a_2} + \frac{x_3}{a_3} + \frac{x_4}{a_4} + \frac{x_1}{a_1} + \frac{u}{2A}\right).
\]

\(S_2, S_3, S_4\) are defined similarly. To compute \(S_1\) note that
\[
\sum_{x_2,x_3,x_4} \left(\frac{x_2}{a_2} + \frac{x_3}{a_3} + \frac{x_4}{a_4} + \frac{x_1}{a_1} + \frac{u}{2A}\right)
= \sum_{k=0}^{b_1-1} \left(\frac{k + x_1}{b_1} + \frac{u}{2A}\right)
= \left(\frac{b_1 x_1}{a_1} + \frac{u}{2A}\right) = \left(\frac{b_1(x_1 + 1/2)}{a_1} + \frac{u - b_1}{2a_1}\right)
\]
\((u - b_1)/a_1\) is odd
\[
= \left(\frac{b_1(x_1 + 1/2)}{a_1} + \frac{1}{2}\right).
\]
Thus

\[S_1 = \sum_{x_1} a_1 - 1 \cdot \frac{x_1 + 1/2}{a_1} \left(\left(\frac{b_1(x_1 + 1/2)}{a_1} + \frac{1}{2} \right) \right) \]

and we deduce as in the previous subsection that

\[S_1 = s(b_1, a_1; 1/2, 1/2). \]

By adding all the above together we deduce that if \(A \) is odd then

\[4C \vec{a} = S \vec{a} = \frac{A}{6} - \frac{1}{12A} - \frac{1}{12} \sum_i b_i a_i - 8 \sum_i s(b_i, a_1; 1/2, 1/2). \]

The identity (1.13) is now obvious.

A is odd In this case \(u \) is even. Arguing as in the previous subsection we deduce

\[S \vec{a} = \sum_p (q - ((q)) - 3/2)(q - ((q)) - 5/2) + \frac{1}{4}. \]

The only term in the previous computations which is influenced by the parity of \(A \) is

\[\sum_p ((q))^2 = \sum_{k=0}^{A-1} \left(\frac{k + u/2}{A} \right)^2 = s(1, A) \]

\[= \frac{A}{12} + \frac{1}{6A} - \frac{1}{4}. \]

Putting together all the terms we obtain again the identity (1.13). The Theorem 1.1 is proved. \(\square \)

A Basic facts concerning Dedekind-Rademacher sums

In [14] Rademacher consider for every pair of coprime integers \(h, k \) and any real numbers \(x, y \) the following generalization of the classical Dedekind sums

\[s(h, k; x, y) = \sum_{\mu=0}^{k-1} \left(\frac{\mu + y}{k} \right) \left(\frac{h(\mu + y)}{k} + x \right). \]

A simple computations shows that \(s(h, k; x, y) \) depends only on \(x, y \) mod 1. When \(h = 1 \) and \(x = 0 \) one can prove (see [14])

\[s(1, k; 0, y) = \begin{cases} \frac{k}{12} + \frac{1}{6k} - \frac{1}{4} & y \in \mathbb{Z} \\ \frac{k}{12} + \frac{1}{k} B_2(\{y\}) & y \in \mathbb{R} \setminus \mathbb{Z} \end{cases} \quad (A.1) \]

where \(B_2(t) = t^2 - t + 1/6 \) is the second Bernoulli polynomial.
Perhaps the most important property of these Dedekind-Rademacher sums is their reciprocity law which makes them computationally very friendly. To formulate it we must distinguish two cases.

• Both \(x\) and \(y\) are integers. Then

\[
s(\beta, \alpha; x, y) + s(\alpha, \beta; y, x) = -\frac{1}{4} + \frac{\alpha^2 + \beta^2 + 1}{12\alpha\beta}.
\]

(A.2)

• \(x\) and/or \(y\) is not an integer. Then

\[
s(\beta, \alpha; x, y) + s(\alpha, \beta; y, x) = ((x)) \cdot ((y)) + \frac{\beta^2\psi_2(y) + \psi_2(\beta y + \alpha x) + \alpha^2\psi_2(x)}{2\alpha\beta}.
\]

(A.3)

where \(\psi_2(x) := B_2(\{x\})\).

An important ingredient behind the reciprocity law is the following identity (Lemma 1 in [14])

\[
\sum_{\mu=0}^{k-1} \left(\frac{\mu + w}{k} \right) = (w) \quad \forall w \in \mathbb{R}.
\]

(A.4)

Following the terminology in [8] we will call the above equality the Kubert identity.

We conclude with a proof of the identity (1.4). For simplicity we consider only the case \(n = 3\) and \(i = 1\). Set \(\vec{a} = (a, b, c)\). Thus \(A = \text{even}\), \(u = bc + ca + ab\) and \(b_1 = bc\). For arbitrary \(n\) the proof is only notationally more complicated.

The proof of (1.4) goes as follows.

\[
s(\beta_1, a; \frac{\gamma_1 + \beta_1/2}{a}, -1/2) = \sum_{x=0}^{a-1} \left(\frac{x - 1/2}{a} \right) \left(\frac{\beta_1 x + \gamma_1}{\alpha_1} \right)
\]

\((\gamma_1 = \beta_1(u - abc - 1)/2 \text{ mod } a)\)

\[
= \sum_{x=0}^{a-1} \left(\frac{x - 1/2}{a} \right) \left(\frac{\beta_1(x - abc/u + 1)}{2} \right)
\]

\((y := x - \frac{abc-u+1}{2} \text{ mod } a)\)

\[
= \sum_{y=0}^{a-1} \left(\frac{y + abc - u + 1}{2} - 1/2 \right) \left(\frac{\beta_1 y}{a} \right)
\]

(use \(z = -bcy \text{ mod } a\) and \(\beta_1 bc \equiv 1 \text{ mod } a_1\))

\[
= -\sum_{z=0}^{a-1} \left(\frac{bcz - abc - u}{2} \right) \left(\frac{z}{a} \right)
\]

\[
= -\sum_{z=0}^{a-1} \left(\frac{bc(z + 1/2) + b + c - bc}{2} \right) \left(\frac{z}{a} \right)
\]

15
\[= - \sum_{z=0}^{a-1} \left(\left(\frac{bc(z + 1/2)}{a} + \frac{1}{2} \right) \left(\frac{z}{a} \right) \right).\]

At this point we use the elementary identity
\[
\left(\left(\frac{z}{a} \right) \right) = \left(\left(\frac{z + 1/2}{a} \right) \right) - \frac{1}{2a} + \frac{1}{2} \delta(z)
\]

where
\[
\delta(z) = \begin{cases}
1 & z \equiv 0 \ (ext{mod} \ a) \\
0 & \text{otherwise}
\end{cases}
\]

We deduce
\[
s(\beta_1, \alpha_1; \frac{\gamma_1 + \beta_1/2}{\alpha_1}, -1/2) = - \sum_{z=0}^{a-1} \left(\left(\frac{bc(z + 1/2)}{a} + \frac{1}{2} \right) \left(\frac{z + 1/2}{a} \right) \right)
\]
\[+ \frac{1}{2a} \sum_{z=0}^{a-1} \left(\left(\frac{bc(z + 1/2)}{a} + \frac{1}{2} \right) \right) - \frac{1}{2} \left(\left(\frac{bc}{2a} + \frac{1}{2} \right) \right).
\]

The Kubert identity shows that the second sum above vanishes. Also
\[
\left(\left(\frac{q_1 \gamma_1 + 1/2}{\alpha_1} \right) \right) = \left(\left(\frac{\alpha_1 - abc}{2a} \right) \right) = \left(\left(\frac{b + c - bc}{2} + \frac{bc}{2a} \right) \right)
\]
\[= \left(\left(\frac{bc}{2a} + \frac{1}{2} \right) \right).\]

The identity (1.4) is proved. The proof of (1.7) is similar and is left to the reader.

References

[1] W. Chen: Casson invariant and Seiberg-Witten gauge theory, preprint.

[2] W. Chen: Dehn surgery formula for Seiberg-Witten invariants of homology 3-spheres, dg-ga 9703009.

[3] R. Fintushel, R. Stern: Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. 61(1990), 109-137.

[4] F. Hirzebruch, D. Zagier: The Atiyah-Singer Index Theorem and Elementary Number Theory, Math. Lect. Series 3, Publish or Perish Inc., Boston, 1974.

[5] M. Jankins, W. D. Neumann: Lectures On Seifert Manifolds, Brandeis Lecture Notes, 1983.
[6] P. Kronheimer, T. Mrowka: *Lectures at the 1st International Press Conference at U.C. Irvine, 1996*

[7] M. Marcolli: *Equivariant Seiberg-Witten-Floer homology*, dg-ga 9606003.

[8] J.W. Milnor: *On polylogarithms, Hurwitz zeta functions and the Kubert identities*, L’Enseignement Mathématique, 29(1983), p.281-322.

[9] L. J. Mordell: *Lattice points in a tetrahedron and generalized Dedekind sums*, J. Indian Math. Soc., 15(1951), 41-46.

[10] T. Mrowka, P. Ozsvath, B. Yu: *Seiberg-Witten monopoles on Seifert fibered spaces*, MSRI preprint, 1996/93.

[11] W. Neumann, J. Wahl: *Casson invariant of links of singularities*, Comment. Math. Helvetici, 65(1990), 58-78.

[12] L.I. Nicolaescu: *Adiabatic limits of the Seiberg-Witten equations on Seifert manifolds*, to appear in Comm. Anal. and Geom..

[13] L.I. Nicolaescu: *Finite energy Seiberg-Witten moduli spaces on 4-manifolds bounding Seifert fibrations*, dg-ga 9711006.

[14] H. Rademacher: *Some remarks on certain generalized Dedekind sums*, Acta Arithmetica, 9(1964), 97-105.

[15] H. Rademacher, E. Grosswald: *Dedekind Sums*, The Carus Math. Monographs, MAA, 1972.

[16] H. Rademacher: *Topics in Analytic Number Theory*, Springer Verlag, 1973.

[17] P. Scott: *The geometries of 3-manifolds*, Bull. London. Math. Soc. 15(1983), 401-487.