Acousto-optical method for measuring the displacements of a laser beam in two directions orthogonal to its axis

E V Leun
Lavochkin Association, 24 str. Leningradskaya, Khimki, 141402, Russia

Abstract. The issues of improving the method for controlling the two-coordinate displacements Δl_y and Δl_z of a laser beam in the OY and OZ directions orthogonal to its OX axis are considered. It is proposed to use a fiber photodetector with a micro-optical lens at the input of the light guide to register the interference picture produced in the Fresnel zone by the first and zero diffraction orders formed by an acousto-optical (AO) modulator.

In the method, it is proposed to use a prismatic optical scheme placed in front of a single-axis AO modulator for a laser beam displaced Δl_y and Δl_z along two axes OY and OZ, forming two output beams. For the first beam, displacements along the OY axis are excluded: Δl_y-var, Δl_z=0, and the second beam is rotated relative to the first beam by 90° around the OX axis (i.e., $\Delta l_y$$\rightarrow$$\Delta l_z$) with the same exception of displacements along the OY axis with the achievement of the following: Δl_y=0, Δl_z-var. This technique allows you to use a single-axis (1D) AO modulator to control the two-coordinate (2D) displacements Δl_y, Δl_z of the initial laser beam. We also discuss the implementation of a differential measurement method by using two phase measuring devices: an interpolator and a phase meter, and the effect of signal noise on the resolution.

1. Introduction
The production of high-precision products of rocket and space technology, aviation, ship, machine, instrument and machine tool construction and other industries can be provided by the use of high-precision control of object movements, in particular, acousto-optical (AO) laser measuring systems (LMS). The measurement of laser beam displacements in the directions orthogonal to its axis (for future - lateral displacements) is a local and very difficult problem, especially when striving for equal resolution of l_{rx}, l_{ry}, and l_{rz} in three directions, along the OX, OY, and OZ axes [1,2]:

$$l_{rx}$$≈$$l_{ry}$$≈ $$l_{rz}$$.

The necessity for its solution arises for providing high-precision control of deviations from the straightness [3-14] of product surfaces, during the movement of working bodies of technological equipment, displacements of the scanning laser beam in the hybrid head [15] and other tasks.

To solve such problems, you can use two single-axis (1D) AO modulators located perpendicular to each other according to the sequential diffraction scheme (figure 1a) with the formation of a set of symmetric diffraction orders (figure 1b) [3].

We have already discussed the construction issues high-precision AO LMS for 3D measurements based on the use of a single-aperture two-axis (2D) L-shaped liquid AO modulator (figure 1c,d), which forms a two-coordinate region of the so-called "cell" with perpendicular moving ultrasonic waves [3]. The resolution of $l_{y}=l_{z}$$\approx$$\Lambda_{us}$/1214 was achieved, where Λ_{us} is the length of the ultrasonic wave (for water, $\Lambda$$\approx$200 μm, and...
l_{y_1}≈l_{z_2}=0.16 \mu m), but this result does not allow us to fulfill condition (1): since l_{y_1}≈l_{z_2}=\Lambda_u/1214>>l_{rz}≈\lambda/1000 [16-19]... \chi/3000 [20], and the ratio \Lambda_u/\lambda can be from ≈10 to ≈350 for different AO modulators [1].

Now scientific works [1,2] are the basis for creating AO LMS three-coordinate (3D) measurement with condition (1) by using the phase-locked loop (PLL) system. For this purpose, it was supposed to use the above-described single-aperture two-axis (2D) L-shaped liquid AO modulators, but their production in solid-state or planar design is problematic. Therefore, the issue of developing the AO LMS lateral displacements of the laser beam along the two axes OY and OZ (2D) using single-axis (1D) AO modulators is still relevant.

![Figure 1. AO modulators for measuring lateral displacements of the laser beam: sequential diffraction scheme with two orthogonally positioned AO modulators (a) and its diffraction spectrum (b), L-shaped liquid AO modulator forming orthogonally moving ultrasonic waves: sketch (c) and its photo (d).](image)

2. Formulation of the problem
In accord with above, the objectives of this work are to develop and study a high-precision AO LMS lateral displacements of the laser beam along the two axes OY and OZ (2D) using a single-axis (1D) AO modulator.

3. Theory
This part discusses the design, operating principle, and relationships of parameters developed by AO LMS for high-precision measurements of lateral displacements of a laser beam using a single-axis (1D) two-aperture AO modulator.

3.1. Design and principle of operation of AO LMS lateral displacement
The developed AO LMS of transverse displacements (figure 2) consist of three main ideas:
1) convert the two-axis displacement (2D) \Delta l_y and \Delta l_z in the plane YOZ of the input laser beam in single-axis displacement along the axes OY and OZ forming two output laser beams by introducing a prismatic optical system (in future - the optical system) before the AO modulator and measuring the displacements of the two beams single-axis (1D) AO modulator with two apertures;
2) using the first \text{E}_1 and zero \text{E}_0 diffraction orders in the near diffraction zone (Fresnel zone) after AO modulation and registering the resulting interference pattern by a sequentially located raster and a fiber photodetector (FPD) with a micro-optical lens at the input of the light guide;
3) implementation of a differential measurement method by using two phase measuring devices that work together: an interpolator and a phase meter for "fast inaccurate" and "slow accurate" measurements.

The optical system 1 (figure 2a) forms from one input beam 2, which has two-coordinate displacements \Delta l_y and \Delta l_z in the YOZ plane, two output optical streams 3 and 4, displaced only along the OY axis:
\[\Delta l_y = \Delta l'_y, \Delta l'_y = \Delta l''_y. \] The optical stream 3 is used to measure the displacements \(\Delta l_y \) along the OY axis of the input optical flow (displacements \(\Delta l_z \) along the OZ axis are excluded):

\[
\begin{align*}
\Delta l_y &= \Delta l'_y, \\
\Delta l'_y &= \Delta l''_y.
\end{align*}
\] (2)

and for the second, a 90° rotation is performed - to measure the offsets \(\Delta l_z \) along the OZ axis of the input optical flow (displacements \(\Delta l_y \) along the OY axis are excluded):

\[
\begin{align*}
\Delta l_z &= 0, \\
\Delta l'_z &= \Delta l''_z.
\end{align*}
\] (3)

The first and second laser beams 3 and 4 pass through the AO modulator 5 excited by the generator 6 with the appearance of two pairs of optical streams at its output in the Bragg diffraction mode, each of which consists of the first \(E_1 \) and zero \(E_0 \) diffraction orders. In future the description is compiled for the first channel with using of numbering for the second channel in parentheses. The first \(E_1 \) diffraction order is deflected along the OY axis by a double Bragg angle \(\alpha_{br} \) [21] and until it goes beyond the zero \(E_0 \) diffraction order, i.e. in the near diffraction zone (Fresnel zone), it interferes with it to form a running interference pattern with an interval \(\Lambda_{ip} \). The running interference pattern illuminates the raster 7 (8) with the interval \(\Lambda_{r} \) with the formation of running combination lines with the step \(\Lambda_{cl} \) and is recorded in the FPD 9 (13), consisting of a series of connected input microlens 10 (14), a light guide 11 (15) and a photodetector 12 (16). The optical fiber allows remove the photodetector 12 (16) from the measuring circuit, due to its small diameter (200-500 μm), its end acts as a diaphragm when registering an interference pattern in the near Fresnel zone. And the input microlens 10 (14) facilitates the introduction of optical beams into the light guide, reducing the requirements for angular adjustments. So, this makes it possible to simplify the optical scheme of AO LMS lateral displacement.

The photodetector 12 (16) converts interfering optical fluxes into an output electrical signal at a difference frequency (taking into account the Doppler frequency shift \(f_{dop} \) from beam displacements). It is fed to the input of the measuring circuit 17 (18), namely the input of the series-connected system PLL (figure 2b) allows to weaken the noise in the signal and then to the entrance phase measurement unit 22, consisting of phase interpolator (in future - the interpolator) 23 and high-precision phase meter (in future – phase meter) 24.

In addition, the generator 6 creates two reference antiphase signals following to the phase measurement unit 22, the first of which is also used to excite the AO modulator 5. The PLL system circuit is classical, consisting of a phase detector 19, a low-pass filter 20, and a voltage-controlled generator 21.

Displacements of the two laser beams lead to corresponding displacements of the traveling interference patterns past the fiber, leading to registration and measurements by both channels of two phase shifts and displacements \(\Delta l'_y \) and \(\Delta l''_y \), by which the corresponding two-coordinate displacements \(\Delta l_y \) and \(\Delta l_z \) in the YOZ plane are judged.

The differential measurement method for both channels of the AO LMS is described in detail in [22]. It consists in the implementation by the interpolator 23 and the phase meter 24 “fast inaccurate” and “slow accurate” measurements of lateral displacements in large and small ranges, respectively. And the part of the digital code \(\Delta N_{int} \) the interpolator 23 measured for “fast inaccurate” measurements corresponding to the fractional part of the movements, i.e. a small range, is fed to the input of the phase meter 24 for “slow accurate” measurements.

Now the schemes of the interpolator 23 have been sufficiently developed [23,24] and the phase meter 24 can be implemented on the basis of digital signal processing [25-27] too.
3.2. The definition of the interval raster

In accordance with the above description of the design, the AO LMS lateral displacements uses a raster 7 (8) with an interval Λ_r. And it makes it possible to switch from registering an interference pattern with a small interval Λ_{ip} to registering combination lines with a big interval Λ_{cl} formed by their spatial combination. The Λ_{cl} value increases according to the expression:

$$\Lambda_{cl} = \Lambda_{ip} \cdot \frac{\Lambda_r}{\Lambda_{ip} - \Lambda_r}$$

(4)

For a stable photodetection the condition is met usually: $d_{ml} \leq \Lambda_{cl}/6$... , taking into account which the raster interval Λ_r is determined by the formula (for the worst case, when $d_{ml} \leq \Lambda_{cl}/6$):

$$\Lambda_r = \frac{6d_{ml} \cdot \Lambda_{ip}}{d_{ml} - \Lambda_{ip}}$$

(5)

When $d_{ml} = 0.3$ mm and $\Lambda_{ip} = 15.4$ μm, the raster interval Λ_r should be $\Lambda_r \approx 15.5$ μm, being a well-executed value.

3.3. The parameters of the diffraction orders in AO modulation

In accordance with the ratio of the diameters d_0 and d_1 of the zero E_0 and first E_1 diffraction orders (figure 3a), we can write $d_0 = d_1 + 2\Delta d_{tp}$, respectively. Also, taking into account the deviation of the first E_1 diffraction order, we can write and, accordingly, get $d_0 = d_1 + L_{aom} \cdot \tan \alpha_{br}$. And then the expression for the ratio of the intensities of diffraction orders can be written as the formula:

$$\eta = \frac{I_1}{I_1 + I_0} = \frac{S_1}{S_1 + S_0} = \frac{d_1^2}{d_1^2 + d_0^2} = \frac{d_1^2}{d_1^2 + (d_1 + L_{aom} \cdot \tan \alpha_{br})^2},$$

(6)

where I_0, I_1, S_0, S_1 are the intensity, area, and diameter of the zero E_0 and first E_1 diffraction orders.

For ray dilution (double Bragg angle) $\alpha_{br} = 2.17^\circ$ [17-19] and $L_{aom}=20$ mm we have $L_{aom} \cdot \tan \alpha_{br}=0.76 \cdot 10^{-3}$ m, allowing you to plot the dependence of (6) on d_1. As can be seen, it asymptotically tends to 0.5 when d_1 changes from 0.5 to 3 mm (figure 3b).
3.4. The range of measurement

The measurement range L_{meas} depends on the diameters of the microlens d_{ml} and interference pattern $d_{\text{ip}}=d_1$ depending on the size of the first diffraction order E_1 (figure 4):

$$L_{\text{meas}} = d_{\text{ip}} - d_{\text{ml}}.$$ \hspace{1cm} (7)

The maximum value of L_{meas} has no fundamental design limitations and when $d_{\text{ml}}=0.3 \text{ mm}$ and $d_{\text{ip}}=2 \text{ mm}$, it is equal to 1.7 mm. And for this data we can get almost ≈ 110 spatial periods can be met (for $L_{\text{aom}}=15.4 \mu\text{m}$), i.e. the total phase shift reaches $\approx 220\pi$ rad, which significantly exceeds the technical characteristics of AO LMS lateral displacements described in [3].

When we use a round interference pattern for illuminate the round input microlens of the FPD light guide, only its central working part, which is close to the elliptical shape, is used (in figure 4 highlighted with broken lines). And the efficiency of using the interference pattern G in this case can be estimated as the ratio of the area of such an ellipse S_{el} associated with the radius of the microlens r_{ml} to the area of the round interference pattern S_{ip}:

$$G = \frac{S_{\text{el}}}{S_{\text{ip}}} = \frac{\pi r_{\text{ml}}^2}{\pi r_1^2} = \frac{r_{\text{ml}}^2}{r_1^2}. \hspace{1cm} (8)$$

And for $d_{\text{ml}}=0.3 \text{ mm}$ and $d_1=2 \text{ mm}$, we have $G=0.15$ or just 15%. So the improvement of AO LMS should be aimed at a significant increase in the value of G.

Figure 3. Geometric model of diffracted beam propagation E_1 (a), intensity ratio η of the diffraction order E_1.

Figure 4. Displacement of the interference pattern within the measurement range L_{meas} formed by the optical fluxes E_0 and E_1 relative to the microlens of the light guide (the part of the interference pattern used is highlighted with a gray background with a dotted contour).
3.5. Analysis of the measurement error of AO LMS lateral displacements

The accuracy of measurements in the LMS lateral displacements is determined by four blocks: FPD, PLL system, interpolator and phase meter and its different combinations affect the measurement error when implementing two modes of operation "fast inaccurate" and "slow accurate" measurements.

The measurement error for "fast inaccurate" measurements is determined by the noise of the measurement signal $\Delta \phi_n$ from the FPD and attenuated by the PLL system, the intrinsic noise of the PLL system $\Delta \phi_{pll}$ and the quantization error of the interpolator $\Delta \phi_{int}$.

The measurement error for the "slow accurate" measurement also consists of three components: noise measurement signal $\Delta \phi_n$ made by FPD and attenuated by the PLL, the intrinsic noise of the PLL system of $\Delta \phi_{pll}$ and error phase meter $\Delta \phi_{phas}$. So, the noise’s error $\Delta \phi_n$ can be determinate by the expression [16]:

$$\Delta \phi_n = \frac{1}{\pi \sqrt{Q}}$$

(9)

where Q is the signal-to-noise ratio. In the late 80's last century, the level of Q≤600 was achievable [16], and now for modern photodetectors it can be than Q≈1000. Therefore the phase measurement error calculated by the formula (9) will be $\Delta \phi_n=0.01$ rad and the absolute error of displacement measurements determined by the next relation

$$\Delta l_n = \frac{\lambda_{632}}{8\pi} \Delta \phi_n$$

(10)

will be equal to $\Delta l_n = \frac{\lambda_{632}}{8\pi} \approx 25$ nm. The signal-to-noise ratio Q depends on the bandwidth Δf_{bw} of the measuring circuit $Q = \frac{k_{pld}}{\Delta f_{bw}}$, which for different studies [16-19], taking into account the photodetecting coefficient of the photodetector k_{pld}, allows us to write

$$\Delta \phi_n = \frac{1}{\pi \sqrt{\frac{\Delta f_{bw}}{k_{pld}}}}$$

(11)

When using a PLL system, the above – defined value of $\Delta l_n=25$ nm corresponds to the bandwidth Δf_{bw} determined by the cutoff frequency of the low-pass filter and associated with the maximum Doppler frequency range - $\Delta f_{dop}=30$ MHz. A decrease in Δf_{bw} leads to a corresponding decrease $\Delta \phi_n$. Assuming that, provided that the PLL is stable, the Δf_{bw} decreases up to 100 times - from 30 MHz to 300 kHz, then we get $\Delta \phi_n=0.001$ rad. Substituting expression (9) into formula (10):

$$\Delta l_n = \frac{\lambda_{632}}{2\pi^2} \sqrt{\frac{\Delta f_{bw}}{k_{pld}}}$$

(12)

The graph of the $\Delta \phi_n$ dependence on the change in the bandwidth Δf_{bw} in the range from 100 kHz to 1 MHz is shown in figure 5 and is almost linear.
The intrinsic noise of a PLL system consists of the noise of its main elements: a voltage-controlled generator and a phase detector. Now, for modern electronics we can to ignore the noise of modern phase detectors. The noise of a voltage-controlled generator is manifested in jitter, i.e. in the uncertainty of the signal front Δt_{jit} in the time scale (in fractions of seconds), which is associated with the spectral power density of the noise $S_{\phi}(f) = \sum \Delta_f f^{1}$.

$$\Delta t_{jit} = \frac{1}{2\pi} \sqrt{\int S_{\phi}(f) df}.$$ \hfill (13)

determining the corresponding component of the measurement error from the phase shift

$$\Delta \phi_{jit} = 2\pi f \cdot \Delta t_{jit}.$$ \hfill (14)

and by movement

$$\Delta \phi_{jit} = \frac{\Lambda_{jit} \cdot \Delta \phi_{jit}}{2\pi},$$ \hfill (15)

For different voltage-controlled generators, the we can have $\Delta t_{jit} \approx 1$ ps [28] and then when using a solid-state AO modulator based on paratellurite with $f_{\text{com}}=40$ MHz [19] and assuming that the Doppler frequency range $f_{\text{dop}}<<f_{\text{com}}$, we get $\Delta \phi_{jit}=0.25\cdot10^{-3}$ rad and $\Delta \phi_{jit}=\frac{\Lambda_{jit}}{25\cdot10^{-3}}$ respectively.

The measurement error caused by quantization introduced by the interpolator $\Delta \phi_{int}$ is determined by the expression:

$$\Delta \phi_{int} = \frac{2\pi}{k_{int}} = \frac{2\pi}{2^n},$$ \hfill (16)

where $k_{int} = 2^n$, and k_{int} and N_{int} are the number of quanta (discrete) and the bit depth of the interpolator. For $k_{int}=5$, as in [23,24], we get $\Delta \phi_{int}=2\pi/32=0.2$ rad and $\Delta \phi_{int}=0.48$ mm, respectively.

Assuming that the error $\Delta \phi_n$, $\Delta \phi_{jit}$ и $\Delta \phi_{int}$ independent from each other and have normal distribution, it is possible with their geometric addition to error AO LMS lateral displacement $\Delta \phi_n$ for "fast inaccurate" measurements $\Delta \phi_n = \sqrt{\Delta \phi^2 + \Delta \phi_{jit}^2 + \Delta \phi_{int}^2} = \sqrt{(10^{-3})^2 + (0.25\cdot10^{-3})^2 + 0.2^2} \approx 0.2$ rad. Using this value to determine the absolute measurement error according to the formula (15), we finally get $\Delta 1_n = 0.5 \mu$m.

The measurement error analysis for "slow accurate" measurements is as follows. This mode of operation is characterized by a significant decrease in the speed of controlled object movements, as well as a
corresponding decrease in the Doppler frequency range. For calculations taking into account such a narrow "frequency" approach, we can use the above example, in which, provided that the PLL is stable, the Δf_{bw} decreases by a factor of 100 from 30 MHz to 300 kHz, the phase measurement error will be $\Delta \phi_n = 0.001$ rad.

The measurement error of the PLL $\Delta \phi_{pll}$ due to the intrinsic noise of its elements has already been determined above and is $\Delta \phi_{pll} = 0.25 \cdot 10^{-3}$ rad, and this value does not change for this operating mode. For a phase meter, the measurement error due to intrinsic noise is at the level of $\Delta \phi_{phas} = 2 \pi \cdot 10^{-7}$ rad [25].

Also, as before, assuming that the errors of $\Delta \phi_n$, $\Delta \phi_{pll}$ and $\Delta \phi_{phas}$ are independent with a normal distribution law, it is possible to obtain the error of AO LMS of lateral displacements for "slow accurate" measurements when adding them geometrically:

$$\Delta \phi_{sa} = \sqrt{\Delta \phi_n^2 + \Delta \phi_{pll}^2 + \Delta \phi_{phas}^2} = \sqrt{(10^{-5})^2 + (0.25 \cdot 10^{-3})^2 + (6.28 \cdot 10^{-7})^2} \approx 0.001 \text{ rad}.$$ Then the absolute measurement error Δl_{sa} by the formula (15) is obtained:

$$\Delta l_{sa} = \frac{\Lambda_{aim} \cdot 0.001}{6.283} = \frac{\Lambda_{aim}}{6283} \approx 2.4 \text{ nm}.$$ Thus, the measurement errors for the stages of "fast inaccurate" and "slow accurate" measurements are $\Delta l_{fi}=0.5 \mu m$ and $\Delta l_{sa}=2.4 \text{ nm}$, respectively, differing by almost 200 times.

4. Experimental result

To clarify the optical parameters, we used the results of experimental studies in various areas related to individual blocks or issues of the work of the developed AO LMS lateral displacement.

4.1. Using the interference pattern of diffraction orders in the Fresnel zone, registering it using the FPD.

In [29], the possibility of using the Fresnel zone of the first E_1 and zero E_0 diffraction orders after AO modulation and photodetecting the interference pattern was experimentally confirmed. The equality of the period of ultrasonic waves in the AO modulator Λ_{aim} and the period of the interference pattern Λ_{ip} is shown:

$$\Lambda_{aim} = \Lambda_{ip}.$$ In [30], the use of two diffraction orders in the Fresnel zone after the AO modulation for recording the shifted interference pattern is considered using the example of the AO LMS for controlling the position of the product boundary.

4.2. Optical matching of optical flows after AO modulation and FPD

The study of the efficiency W of introducing a divergent optical flow into an optical fiber with a core diameter of 62.5 μm with a flat end W_e and an input hemispherical microlens W_{ml} (figure 6a) is considered in [31,32] on the example of using a radiation source of a semiconductor laser diode LED LASER HLDP-650-A-5-02 ($\lambda=0.65 \mu m$) with a rectangle radiating area with dimensions of 1×6 μm (figure 6b). It is shown that the dependence of W_e on the gap is close to a linearly decreasing dependence, and the dependence of W_{ml} is nonlinear, exceeding the values of W_e in the section [0; l_1] and reaching level 1, i.e. 100% at the l_1 coordinate (figure 6c). Thus, the use of microlens increases the efficiency of the process of introducing a divergent optical flow into the optical fiber up to 25-35% with the optimal selection of all parameters of the optical connection.

To find the required diameter of the microlens d_{mle} optical fiber, the relationship between the ratio of the microlens diameter d_{ml} to the diameter of the fiber d_f for a spherical microlens (figure 6d) d_{ml} / d_f with the numerical aperture NA (figure 6e) [31] transmitting a divergent optical flow for a quartz-polymer fiber with a core diameter of 400 μm is determined. As can be seen, for next condition $d_{ml} / d_f \leq 1.05$ [32] we get $\text{NA} \leq 0.35$ with the angle of entry of rays into the light guide in the range of $\alpha_t \leq 20^\circ$, reducing the requirements for angular alignment of the light guide relative to optical flows.
5. The discussion of the results
1. When we use an AO modulator based on para tellurite (TeO₂) the interval of the interference pattern can be just \(\Lambda_{ip} = 15.4 \mu m \). And introduction a raster with an interval of \(\approx 15.5 \mu m \) allows you to increase the step of the combination lines \(\Lambda_{cl} \) to \(\approx 2.3 mm \), providing reliable photo detection for the input microlens of the VFU with a diameter of \(d_{ml} = 0.3 mm \).

2. The measurement range is \(L_{meas} = 1.7 mm \) for diameters of the VFU’s input microlens and the first diffraction order \(E_1 \), respectively, \(d_{ml} = 0.3 mm \) and \(d_1 = 2 mm \). So we can get the total phase run of \(\Delta \Psi_c = 220\pi \) rad for the interference pattern \(\Lambda_{ip} = 15.4 \mu m \), but the efficiency of using optical streams of circular cross-section does not exceed \(G = 0.15 \) or just 15%.

3. Due to the use in the Fresnel zone of the first and zero diffraction orders with the use of solid-state AO modulator based on para tellurite (TeO₂) with \(v_{sys} = 616 m/s \) and \(f_{sys} = 40 MHz \) with dual Bragg angle=2,17° the ratio of intensities of the first diffraction order to the input optical flow \(\frac{I_1}{I_0} \) tends to \(\approx 0.5 \).

4. Measurement errors for the steps of "fast inaccurate" and "slow accurate" measurement is \(\Delta l_{fi} = 0.5 \mu m \) and \(\Delta l_{sa} = 2.4 nm \), respectively, differing by almost 200 times.

5. The using of the input microlens can increase the efficiency of the introducing a divergent optical flow into the optical fiber by 25-35% with the optimal selection of all parameters of the optical connection. And the ratio of the microlens diameter \(d_{ml} \) to the fiber diameter \(d_f \) should be \(d_{ml}/d_f \leq 1.05 \), providing \(NA \leq 0.35 \) with the angle of entry of rays into the fiber in the range of \(\leq 20^\circ \) and reducing the requirements for angular alignment of the fiber relative to optical flows.
6. Conclusion

1. The converting two-coordinate displacements (2D) Δl_y and Δl_z in the YOZ plane of the laser beam into single-coordinate (1D) displacements of two laser beams along the axe OY allows you to use a single-axis (1D) AO modulator with two apertures to measure these displacements by introducing a prismatic optical system in front of the AO modulator.

2. The construction of the AO LMS lateral displacements by using the first and zero diffraction orders in the Fresnel zone and registering the resulting interference pattern with a fiber photodetector with a micro-optical lens at the input of the light guide makes it possible to simplify its optical scheme, reducing the requirements for angular adjustments.

3. The implementation of the differential measurement method by using two phase measuring devices: an interpolator and a phase meter for “fast inaccurate” and “slow accurate” measurements allows to increase the resolution of the AO LMS the lateral displacements of the laser beam.

4. An increase in the resolution is possible by reducing the bandwidth Δf_{bw} of the PLL system used.

5. The improvement of the AO LMS lateral displacements also involves further research in the following areas:
 – the features to create AO LMS lateral displacements of the laser beam along the two axes (2D) OY and OZ based on a single-aperture single-axis (1D) AO modulator, including in the Raman-Nat diffraction;
 – the ability to create a AO LMS for controlling three-coordinate (3D) displacements using a single-axis (1D) single-aperture AO modulator;
 – the increasing the efficiency of using the optical flow due to the formation of an elliptical interference pattern.

7. References

[1] Leun E 2019 Improving methods and tools for controlling deviations from straightness based on acousto-optic heterodyne laser measurement systems (Omsk: J. Omsk Scien. Bulletin №4(166) pp.71-77, DOI: 10.25206/1813-8225-2019-166-71-77.

[2] Pichkhadze K, Martynov M, Sysoev V and Leun E 2014 Acousto-optical method for measuring displacements (Patent of the Russian Federation №2523780 IPC G 01 B 21/00 №20).

[3] Teleshesvsky V, Yakovlev N and Ignatov S 1990 Method for measuring spatial movements of an object (Patent of the USSR №1610252, IPC G01B 11/00, publ. 30.11.1990 Bul. №44)

[4] Yoshizawa T 2009 Handbook of Optical Metrology: Principles and Applications CRC Press Taylor &Francis Group, Boca Raton. p.744.

[5] Chapman M.A.V., Fergusson-Kelly R and Lee W 2017 Interferometric straightness measurement and application to moving table machines URL: https://www.renishaw.com/en/calibration-white-papers--38803 (date accessed: 13.10.2020)

[6] Liu L, Chen Y, Zhang K and Zhang H 2017 Optical system for use in laser interferometer for measuring straightness of guiding rail (Patent WO2017193680, IPC G01B11/26, G01B11/27, publ. 07.03.2017)

[7] Jiang H and Wu J 2019 Double-frequency laser interferometer capable of simultaneously measuring roll angle and straightness (Patent CN110514147, IPC G01B11/26, G01B11/27, G01B9/02, publ. 2019-11-29)

[8] Borisov O, Fletcher S, Longstaff A and Myers A 2014 Performance evaluation of a new taut wire system for straightness measurement of machine tools Precision Engineering №38 pp.492–498

[9] Borisov O, Fletcher S, Longstaff A and Myers A 2013 New low cost sensing head and taut wire method for automated straightness measurement of machine tool axes Optics and Lasers in Engineering 51(8) pp 978-985

[10] Sun Z and Zhou Y 2018 Straightness height -adjusting laser detection ruler and straightness that hangs down detect instrument but wall post template is hung down (Patent CN208171284, IPC G01C15/12, publ. 30.11.2018)
[11] Duan F and Zhang 2019 Calibration system and method for laser collimation and transceiving integrated straightness measurement (Patent CN110455226, IPC G01B11/27, publ. 15.11.2019)
[12] Benyong C, Liping Yan L, Enzheng Z and Bin X 2016 Laser heterodyne interferometric straightness measurement apparatus and method with six dosf determination (Patent US2016370170 IPC G01B 9/02, G01B 11/00, publ. 11.08.2016)
[13] Weichert C, Köchert P, Schötka E, Flügge J and Manske E 2018 Investigation into the limitations of straightness interferometers using a multisensor-based error separation method Measurement Science and Technology 29 064001 https://doi.org/10.1088/1361-6501/aab7e3
[14] Benyong C, Enzheng Z, Liping Yan and Chaorong L 2009 A laser interferometer for measuring straightness and its position based on heterodyne interferometry Review of Scientific Instruments 80(11) pp.115113-115113-5 DOI: 10.1063/1.3266966
[15] Leun E 2020 Improving the accuracy of hybrid scanning 3D fiber-optic measuring heads with an acousto-optic feedback sensor for contact and non-contact coordinate measurements of product sizes (Omsk: Omsk Scien. Bulletin) №2(170) pp 63-70 DOI: 10.25206/1813-8225-2020-170-63-70
[16] Teleshevsky V, Kapezin S and Ignatov S 1988 Method for measuring the phase shift of light waves (Patent of the USSR №1388721, IPC G01B 11/00, publ. 15.01.1988 Bul. №14)
[17] Teleshevsky V and Grishin S 2006 A heterodyne laser interferometer with digital phase conversion Measurement Techniques vol 49 N 6 pp 545-551
[18] Teleshevsky V and Grishin S 2008 Digital transformations of the phase measurement information in the high resolution heterodyne laser interferometry Proc. of SPIE vol 7006 pp 70060E-1-70060E-7
[19] Grishin S 2011 Estimating phase errors in heterodyne laser interferometer measurement systems Measurement Techniques vol 5 N48 pp 865–868
[20] Leun E 2002 Features of design of acousto-optic laser system for measuring displacement with phase-digital conversion Mechanical engineering Technology vol 5 pp 33-40
[21] Balakshy V, Parygin V and Chirikov L 1985 Physical bases of acoustooptics (Moscow: Radio and communication) p 278
[22] Leun E 2020 On the construction of laser acousto-optical heterodyne interferometers with push-pull measurement of product movements. (Omsk: J. Omsk Scien. Bulletin) №3(171) pp 92-98 DOI:10.25206/1813-8225-2020-171-92-98
[23] Mikhailchenko E, Ryumin A and Yakovlev N 1994 A method for automatic interpolation of the interference order and a device for its implementation (Patent of Russian Federation №2016381, IPC G01B 21/00 publ. 15.07.1994)
[24] Mikhailchenko E, Ryumin A and Yakovlev N 1994 A method for automatic interpolation of phase shift in laser interferometers and a device for its implementation (Patent of Russian Federation №2016380, IPC G01B 21/00 publ. 15.07.1994)
[25] Goncharenko A, Burov S, Voevoda A et al 2009 Metrological tests of a digital precision phase meter (Novosibirsk: Proc. of scientific papers of Novosibirsk State Technical University №2 (56) pp. 109-114)
[26] Zhmud V and Lyapidevsky A 2016 Phase meter (Patent of the Russian Federation №2582625, IPC G01R 23/02, publ. 27.04.16 Bul. №12)
[27] Goncharenko A, Vasiliev V and Zhmud V 2004 Phase meter with heterodyne frequency conversion (Patent of the Russian Federation №2225012, IPC G01R 25/00, publ. 27.02.04 Bul. №6)
[28] Voltage-controlled generators, 6U series. Datasheet for 6U-10.000MBE-T (TXC), 6U-25.000MBE-T (TXC), 6U-16.38. URL: https://www.terraelectronica.ru/pdf/show?pdf_file=http%253A%252F%252Fwww.farnell.com%252Fdatasheets%252F52E1740905.pdf (date accessed: 13.10.2020).
[29] Leun E, Abdikarimov N, Teleshevsky V et all 2000 Method for controlling the position of the border of a part and its device for its implementation (Patent of Russian Federation №2157963, IPC G01B 11/02, publ. 20.10.2000)
[30] Teleshevsky V and Abdikarimov N 1992 Method for determining the position of the object boundary (Patent of Russian Federation №1714359, IPC G01B 21/00, publ. 23.02.1992 Bul. №7)
[31] Veiko V, Voznesensky N, Petrov A, Pashin V et al 2003 Optical interconnection optimization based on a classical approach *Proc. of SPIE* vol 4977 pp 569-577

[32] Petrov A and Veiko V 2005 Application of fiber microlenses to improve the efficiency of optical interconnections (Saint Petersburg: Scient. and techn. Bulletin of the Saint Petersburg state University of information technologies, mechanics and optics) №20 pp. 68-72

Acknowledgments

Author wishing to acknowledge assistance from professor of the OmSTU, Ph. D. Zavyalov S.A.