Functionalized Fluorescent silica nanoparticles for bioimaging of cancer cells

Ruth Prieto-Montero¹, Alberto Katsumiti², Miren Cajaraville², Íñigo López Arbeloa³ and Virginia Martinez-Martinez ¹*

¹Departamento de Química Física, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) Apartado 644, 48080, Bilbao, Spain.

²Departamento de Zoología y Biología Celular Animal, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) Apartado 644, 48080, Bilbao, Spain.

*Correspondence: virginia,martinez@ehu.eus; Tel.: +34 946015969
Figure S1. SEM image of MSNs

Figure S2. TEM images for ORMOSIL nanoparticles using different second silica source and proportions
Figure S3. TEM images for MSN-C-R101-80

Figure S4: FT-IR spectra of MSN (black) and MSN-PEG (red). Most of the peaks from 400 cm$^{-1}$ to 1200 cm$^{-1}$, and particularly the main vibration band at 1100 cm$^{-1}$ are attributed to Si-O-Si vibrations, are present in both samples. The presence of PEG molecules can be verified by the IR band at 2960 cm$^{-1}$ assigned to stretching vibration of CH$_2$ groups of the alkyl chains and the peak at 1460 cm$^{-1}$ to their deformation vibration. The broad band at 2875 cm$^{-1}$ can be assigned to stretching modes of the CH$_3$ groups. The shoulder at 1260 cm$^{-1}$ that appears in the main band may be assigned to stretching vibrations of C-O-C ether bonds.
Figure S5. Normalized absorption spectra to the absorption peak of R101 for MSN-S-R101-60-PEG-FA (black), and MSN-S-R101-60-PEG (brown) and FA (blue) (right) and emission spectra for MSN-S-R101-60-PEG-FA under 355 nm excitation wavelength (left). Black and red arrows correspond to absorption (left) and emission (right) bands of folic acid and rhodamine 101, respectively.

Video 1. Fluorescence images of MSN-S-R101-60-PEG internalized into lysosomes of HeLa cells; images show lysosomes (green), rhodamine 101 from (red). Scale br 10 μm.

Video 2. Fluorescence images of MSN-S-R101-60-PEG internalized into lysosomes of HeLa cells; images show lysosomes (green), rhodamine 101 from (red). Scale br 10 μm.
Technical note:

The relative brightness of the nanoparticles with respect to free dye in solution is calculated following the equation[1]:

$$\text{Relative Brightness} = \frac{(I_{fl}^{NP}) / C^{NP}}{(I_{fl}^{R101}) / C^{R101}}$$

Being I_{fl}^{NP} and I_{fl}^{R101} the fluorescence intensity of the nanoparticles suspension and dye solution, respectively and C^{NP} and C^{R101} the number of particles and R101 dye molecules in suspension and diluted solution, respectively.

The number of particles is estimated by the concentration of the particles in solution (mg mL$^{-1}$), the density of the porous silica nanoparticles (1.6 g cm$^{-3}$) and the average diameter of the nanoparticles (d = 60 nm).

[1] Cho, E.B.; Volkov, D.O.; Sokolov, I. Ultrabright fluorescent silica mesoporous silica nanoparticles: Control of particle size and dye loading. *Adv. Funct. Mater.* **2011**, *21*, 3129–3135, doi:10.1002/adfm.201100311.