Genetic interaction of the histone chaperone hip1+ with double strand break repair genes in Schizosaccharomyces pombe

W. Miguel Disbennett1*, Tila M. Hawk2*, P. Daniel Rollins3, Devi D Nelakurti4, Bailey E Lucas2, Matthew T McPherson5, Hannah M Hylton5, Ruben C Petreaca6§

1Microbiology Undergraduate Program, The Ohio State University, Columbus, OH
2James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
3Molecular Genetics Undergraduate Program, The Ohio State University, Columbus, OH
4Biomedical Science Undergraduate Program, The Ohio State University Medical School, Columbus, OH
5Biology Undergraduate Program, The Ohio State University, Marion, OH
6Department of Molecular Genetics, The Ohio State University, Marion, OH
§To whom correspondence should be addressed: petreaca.1@osu.edu
*These authors contributed equally.

Abstract

Schizosaccharomyces pombe hip1+ (human HIRA) is a histone chaperone and transcription factor involved in establishment of the centromeric chromatin and chromosome segregation, regulation of histone transcription, and cellular response to stress. We carried out a double mutant genetic screen of Δhip1 and mutations in double strand break repair pathway. We find that hip1+ functions after the MRN complex which initiates resection of blunt double strand break ends but before recruitment of the DNA damage repair machinery. Further, deletion of hip1+ partially suppresses sensitivity to DNA damaging agents of mutations in genes involved in Break Induced Replication (BIR), one mechanism of rescue of stalled or collapses replication forks (rad51+, cdc27+). Δhip1 also suppresses mutations in two checkpoint genes (cds1+, rad3+) on hydroxyurea a drug that stalls replication forks. Our results show that hip1+ forms complex interactions with the DNA double strand break repair genes and may be involved in facilitating communication between damage sensors and downstream factors.
Figure 1. Genetic interaction of Δhip1 with DNA double strand break repair genes.

A screen for genetic interaction of Δhip1 with replication, repair and checkpoint genes. The Δhip1 deletion was combined with mutations in DNA damage break sensors, checkpoint genes and DNA damage repair genes. Various agents that either create DNA damage or stall replication forks were used. 5X serial dilutions were spotted unto the indicated plates and incubated at 32°C or 36°C for 3-4 days. The strains used in this study are indicated in parenthesis and listed in Table 1 in the Reagents section. Please see Methods section for extended information on methods used.
Description

In eukaryotes, accurate DNA double strand break (DSB) repair involves chromatin remodeling of the DSB neighboring regions, a checkpoint response, recruitment of the repair machinery and repair and re-deposition of chromatin to conserve epigenetic settings (reviewed in (Mladenov et al., 2016)). The DSB repair mechanisms in eukaryotes are generally classified in two pathways: non-homologous end joining (NHEJ) and homologous recombination (HR) (reviewed in (Mehta and Haber, 2014)). In S. pombe, Rad52 (also known as Rad22) is similar in both structure and function to S. cerevisiae Rad52 gene (Ostermann et al., 1993) and participates in homologous recombination (Muris et al., 1997). Rad52 has been conserved in all eukaryotes (reviewed in (Krogh and Symington, 2004; Nogueira et al., 2019)). Additional accessory factors such as Rad55 and Rad57 help mediate the function of Rad51 while in higher eukaryotes BRCA2 and BRCA1 have replaced some RAD52 functions.

The HIR (Histone Regulatory Complex) controls histone transcription and has been reported to have mainly replication independent histone assembly functions, such as those required for chromatin reassembly following DSB repair and transcription restart during damage (reviewed in (Amin et al., 2013)). Novel interactions between Rad52 (human RAD52), Hip1 (human HIRA) and the Mst1 (human TIP60/KAT5, also known as KAT5 in yeast) histone acetyltransferase were identified in the fission yeast Schizosaccharomyces pombe in a two-hybrid screen (Gomez et al., 2008). Genome wide epistasis analysis also uncovered genetic interactions of Δhip1 with various DNA damage response genes based on colony growth (Roguev et al., 2008; Ryan et al., 2012).

The goal of this study was a preliminary analysis of the genetic interactions between hip1+ and factors required for DSB repair (reviewed in (Li et al., 2019)) with the aim to place hip1+ in a DSB repair epistatic pathway. To understand whether deletion of hip1+ affects DSB repair, we tested the genetic interaction of Δhip1 with key genes involved DNA end resection repair, DNA replication, and DNA damage checkpoint (reviewed in (Mehta and Haber, 2014; Ovejero et al., 2020)). We chose several DNA damaging agents that produce different forms of damage. Methyl methanesulfonate (MMS) is an alkylating agent that creates various forms of damage including single and double strand breaks (reviewed in (Wyatt and Pittman, 2006)). Hydroxyurea (HU) is a nucleotide analog that inhibits ribonucleotide reductase and significantly decreases the nucleotide pools in the cell (reviewed in (Musialek and Rybaczek, 2021)). This stalls replication forks during S-phase. Camptothecin (CPT) blocks Topo I in the cleavable complex which resembles DNA double strand breaks (reviewed in (Mei et al., 2020)). Bleomycin (Bleo) and phleomycin (Phleo) are ionizing radiation mimetics (reviewed in (Bolzan and Bianchi, 2018; van de Kamp et al., 2021)). Ultraviolet light (UV) creates thymidine dimers (reviewed in (Strzalka et al., 2020)). Thiabendazole (TBZ), a spindle poison (reviewed in (Crebelli et al., 1991)), was also used because hip1+ was initially shown to affect chromosomal segregation (Blackwell et al., 2004).

Δhip1 is sensitive to every DNA damage drug tested in agreement with previous results suggesting that it plays a role in DNA damage repair (Roguev et al., 2008; Ryan et al., 2012) (Fig.1). Because Δhip1 is heat sensitive (Blackwell et al., 2004) the experiments were carried at two different temperatures, permissive (32°C) and non-permissive (36°C) as we investigated Δhip1 genetic interaction with DNA damage repair genes.

Resection. MRN (Mre11, Rad50, Nbs1) is a hetero-hexameric complex that recognizes DNA double strand breaks and initiates blunt end resection to generate a free 3’ overhang, activate the DNA damage checkpoint and recruit the repair machinery (reviewed in (Rupnik et al., 2010; Tisi et al., 2020)). Activation of the DNA damage checkpoint and resection are the first steps in DNA break processing. Deletion of any of the MRN components renders the complex ineffective and affects repair of DNA damage (Ueno et al., 2003). At 32°C, we found that Δrad50 is epistatic to Δhip1 on MMS, CPT and HU suggesting that it functions upstream of hip1+ (Fig. 1). Remarkably, Δmre11 shows synthetic enhancement with Δhip1 on HU, bleomycin, phleomycin, UV and TBZ but not on MMS. CPT is incredibly toxic to MRN mutations and cells die even at low concentrations. This suggests that MRN processes various types of DNA damage differently. Although, all three Mre11, Rad50 and Nbs1 associate in a complex, separable roles have been identified in S. pombe particularly related to their function in modulating the DNA damage checkpoint (Limbo et al., 2018). We also see that the three components of the MRN complex show various genetic interactions with Δhip1. Thus, hip1+ may play a role in activation of the DNA damage checkpoint (see below).

Recombination and replication. We next investigated the genetic interaction of Δhip1 with Δrad52, Δrad51 and Δpku70. In S. pombe as in other eukaryotes, Rad52 binds double strand breaks, can anneal complementary DNA strands, and loads the Rad51 recombinase onto the resected single stranded DNA to initiate homology search and strand invasion (de Vries et al., 2007; Kim et al., 2000; Kim et al., 2002; Kurokawa et al., 2008; Watson et al., 2011). Additionally, Rad52 also facilitates Single Strand Annealing (SSA) and Microhomology Mediated End Joining (MMEJ) (Decottignies, 2005; Lucas et al., 2019;
Other strains were generated by random spore analysis. Tetrad dissection followed by replica plating on minimal media or media with antibiotics to determine marker segregation.

Strain engineering

Methods

DNA damage response pathway. Taken together the data from the preliminary genetic screen described here show that deletion of \(\Delta mrc1 \) rescue growth defects on DNA damaging agents of mutations in several genes involved in DNA damage repair. It is possible onto damaged DNA to facilitate transcription re-initiation following repair (Adam et al., 2013). Here we show that \(\Delta hip1 \) also suppresses the cdc27-D1 phenotypes (Fig. 1). Thus, deletion of \(hip1^+ \) appears to affect the function of BIR genes.

Checkpoint. Genetic interaction of \(\Delta hip1 \) checkpoint genes based on colony growth has previously been shown (Roguev et al., 2008; Ryan et al., 2012) but we investigated their growth phenotypes on DNA damage agents. In yeast, \(rad3^+ \) is the central checkpoint signal transducer of both replication-associated damage and damage that does not occur during DNA replication (e.g. G2/M) (reviewed in (Humphrey, 2000) and references therein (Bentley et al., 1996; Enoch et al., 1992; Jimenez et al., 1992; Martinho et al., 1998)). The \(rad3^+ \) kinase signals S-phase arrest and damage by phosphorylating \(cds1^+ \) and DSB damage by phosphorylating \(chk1^+ \). Consequently, \(\Delta rad3 \) is sensitive to all forms of damage while \(\Delta cds1 \) is mainly sensitive to replication dependent damage and \(\Delta chk1 \) is sensitive to non-replication dependent damage (Fig. 1). Deletion of \(hip1^+ \) suppresses both \(\Delta rad3 \) and \(\Delta cds1 \) on HU. Cells are still able to sense S-phase dependent stress when \(hip1^+ \) is deleted because \(\Delta mrc1 \) is epistatic to \(\Delta hip1 \) on HU. In S. pombe, \(mrc1^+ \) appears to have several distinct functions: to promote efficient fork stalling and activate the DNA damage checkpoint (Pardo et al., 2017). These data suggest that \(hip1^+ \) does not interfere with the \(mrc1^+ \) functions. Rather, it appears to affect the communication between \(mrc1^+ \) and checkpoint genes. Remarkably, \(\Delta hip1 \) shows synthetic enhancement with \(\Delta chk1 \) suggesting that it works in parallel with \(chk1^+ \). Finally, \(hip1^+ \) does not appear to function in translesion synthesis because there is no genetic interaction with \(pcn1-K164R \). This PCNA mutant severely affects translesion synthesis (Ramabhadran et al., 2010).

On TBZ, \(\Delta hip1 \) is epistatic to every other mutation suggesting that the role of \(hip1^+ \) in establishing centromeric heterochromatin (Blackwell et al., 2004) to promote efficient chromosome segregation may be separable from the DNA damage repair function (Fig. 1).

Conclusion. Our analysis suggests that \(hip1^+ \) forms complex interactions with DNA damage repair genes. Most importantly, these data show that \(hip1^+ \) appears to be involved in rescue of stalled or collapsed replication forks because it interacts genetically with BIR genes and DNA damage checkpoint genes on hydroxyurea. The exact function of \(hip1^+ \) in DNA damage repair remains to be identified.

Deletion of certain helicases or nuclease has been previously shown to rescue \(\Delta rad51 \) phenotypes (Hope et al., 2007; Onaka et al., 2016). In \(\Delta rad51 \), toxic recombination intermediates may occur that are funneled through other pathways and inactivation of these other pathways relieves the toxicity. Additionally, \(\Delta rad51 \) and \(\Delta hip1 \) suppress the growth defects of each other (e.g., the double mutant grows better than the single mutants) (Misova et al., 2021). Hip1 also functions in gene silencing (Anderson et al., 2009; Misova et al., 2021) and in HeLa cells, HIRA has been shown to modulate histone H3.3 deposition onto damaged DNA to facilitate transcription re-initiation following repair (Adam et al., 2013). Here we show that \(\Delta hip1 \) can rescue growth defects on DNA damaging agents of mutations in several genes involved in DNA damage repair. It is possible that deletion of \(hip1^+ \) upregulates other genes involved in DSB repair that may help rescue the growth defects of these mutations.

Taken together the data from the preliminary genetic screen described here show that \(hip1^+ \) plays an important function in the DNA damage response pathway.

Methods

Strain engineering. Strains used in this manuscript are listed in Supplementary Table S1. Most strains were engineered by tetrad dissection followed by replica plating on minimal media or media with antibiotics to determine marker segregation. Other strains were generated by random spore analysis.
Cell spotting assays. Strains were grown in liquid YES overnight at 32°C. The next day cells were counted using a hemocytometer and an equal number of cells for each strain were placed in a 96 well microtiter dish and 5X serial dilutions were done in water. Strains were spotted onto YES or YES with the indicated DNA damaging agents and incubated at 32°C or 36°C. Each experiment was repeated 2-3 times. Experiments for the various repair genes were done independently (e.g., resection and recombination were done on different days). Comparisons should be made between mutants and controls (WT) within the same plate. Plates were photographed, and images were made using Photoshop.

Reagents

Strain name	Genotype	Source
RCP 9	h- his3-D1 ade6-M216 ura4-D18 leu1-32	Forsburg
RCP 10	h+ his3-D1 ade6-M210 ura4-D18 leu1-32	Forsburg
RCP 19	h- Δrad22::kanMX6-Bioneer leu1-32 ura4-D18 ade6-M216/210?	Forsburg
RCP 20	h+ Δrad22::kanMX6-Bioneer leu1-32 ura4-D18 ade6-M216/210?	Forsburg
RCP 21	h- Δhip1::kanMX6-Bioneer leu1-32 ura4-D18 ade6-M216/210?	Forsburg
RCP62	h- Δhip1::KanMX6-Bioneer his3-D1 ade6-M216 ura4-D18 leu1-32	This study
RCP 89	h+ Δrad50::kanMX6 ade6-M210 leu1-32 his7-366 ura4-D18	Forsburg
RCP 90	h- Δrad50::KanMX6 ade6-M210	Forsburg
RCP 93	h+ Δrhp51::ura4+ ade6-704 leu1-32 ura4-D18	Forsburg
RCP 100	h+ Δrhp55::ura4+ can1-1 ura4-D18 ade6-M210 (can1-1?)	Forsburg
RCP 101	h+ Δrhp57::ura4+ ade6-M210 ura4-D18 leu1-32 his3-D1	Forsburg
RCP 125	h+ Δhip1::kanMX6-BioneerΔrhp51::ura4+ leu1-32 ura4-D18 ade6-M216/210?	This study
RCP 134	h- Δhip1::kanMX6-Bioneer Δrhp55::ura4+ ura4-D18 ade6-M210/216 leu1-32	This study
RCP 142	h- Δhip1::kanMX6-Bioneer Δrhp57::ura4+ ade6-M210/216 ura4-D18 leu1-32	This study
RCP 151	h+ Δpku70::KanMX6 leu1-32 ura4-D18 his3-D1 ade6-M210	Forsburg
RCP 176	h- Δhip1::kanMX6-Bioneer Δrhp51::ura4+ his3-D1 leu1-32 ura4-D18 ade6-M216/210?	This study
RCP 194	h+ Δhip1::KanMX6-Bioneer Δrad22::KanMX6-Bioneer ura4::ura4-his3-HO-ura4 his3-D1 leu1-32 ade6-M210/216?	This study
RCP 195	h+ Δhip1::KanMX6-Bioneer Δrad22::KanMX6-Bioneer ura4::ura4-his3-HO-ura4 his3-D1 leu1-32 ade6-M210/216?	This study
Acknowledgments

We thank Susan Forsburg, Jian-Qiu Wu and Stuart MacNeill for providing some strains. In addition, Jian-Qiu Wu is also thanked for providing some laboratory space. WMD, BEL and HMH were funded through OSU James Cancer Center Undergraduate Pelotonia fellowships. RCP also received research funds from OSU James Cancer Center. PDR received a summer fellowship from the OSU Molecular Genetics Hopper Memorial fund. MTM received a summer research scholarship from the OSU Marion campus.

References

Adam S, Polo SE, Almouzni G. 2013. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell 155: 94-106. PubMed ID: [24074863](https://www.ncbi.nlm.nih.gov/pubmed/24074863)
Amin, A.D., N. Vishnoi, and P. Prochasson. 2013. A global requirement for the HIR complex in the assembly of chromatin. *Biochim Biophys Acta*. 1819:264-276. PubMed ID: 24459729

Anderson HE, Wardle J, Korkut SV, Murton HE, López-Maury L, Bähler J, Whitehall SK. 2009. The fission yeast HIRA histone chaperone is required for promoter silencing and the suppression of cryptic antisense transcripts. Mol Cell Biol 29: 5158-67. PubMed ID: 19620282

Bentley NJ, Holtzman DA, Flagg G, Keegan KS, DeMaggio A, Ford JC, Hoekstra M, Carr AM. 1996. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J 15: 6641-51. PubMed ID: 8978690

Bhargava R, Onyango DO, Stark JM. 2016. Regulation of Single-Strand Annealing and its Role in Genome Maintenance. Trends Genet 32: 566-575. PubMed ID: 27450436

Blackwell C, Martin KA, Greenall A, Pidoux A, Allshire RC, Whitehall SK. 2004. The Schizosaccharomyces pombe HIRA-like protein Hip1 is required for the periodic expression of histone genes and contributes to the function of complex centromeres. Mol Cell Biol 24: 4309-20. PubMed ID: 15121850

Bolzán AD, Bianchi MS. 2018. DNA and chromosome damage induced by bleomycin in mammalian cells: An update. Mutat Res Rev Mutat Res 775: 51-62. PubMed ID: 29555029

Crebelli R, Conti G, Conti L, Carere A. 1991. In vitro studies with nine known or suspected spindle poisons: results in tests for chromosome malsegregation in Aspergillus nidulans. Mutagenesis 6: 131-6. PubMed ID: 2056914

Cullen JK, Hussey SP, Walker C, Prudden J, Wee BY, Davé A, Findlay JS, Savory AP, Humphrey TC. 2007. Break-induced loss of heterozygosity in fission yeast: dual roles for homologous recombination in promoting translocations and preventing de novo telomere addition. Mol Cell Biol 27: 7745-57. PubMed ID: 17724078

de Vries FA, Zonneveld JB, de Groot AJ, Koning RI, van Zeeland AA, Pastink A. 2007. Schizosaccharomyces pombe Rad22A and Rad22B have similar biochemical properties and form multimeric structures. Mutat Res 615: 143-52. PubMed ID: 17208257

Decottignies A. 2005. Capture of extranuclear DNA at fission yeast double-strand breaks. Genetics 171: 1535-48. PubMed ID: 16143617

Enoch T, Carr AM, Nurse P. 1992. Fission yeast genes involved in coupling mitosis to completion of DNA replication. Genes Dev 6: 2035-46. PubMed ID: 1427071

Gómez EB, Nugent RL, Laria S, Forsburg SL. 2008. Schizosaccharomyces pombe histone acetyltransferase Mst1 (KAT5) is an essential protein required for damage response and chromosome segregation. Genetics 179: 757-71. PubMed ID: 18505873

Hope JC, Cruzata LD, Duvshani A, Mitsumoto J, Mafaih M, Freyer GA. 2007. Mus81-Eme1-dependent and -independent crossovers form in mitotic cells during double-strand break repair in Schizosaccharomyces pombe. Mol Cell Biol 27: 3828-38. PubMed ID: 17353272

Humphrey T. 2000. DNA damage and cell cycle control in Schizosaccharomyces pombe. Mutat Res 451: 211-26. PubMed ID: 10915874

Jimenez G, Yucel J, Rowley R, Subramani S. 1992. The rad3+ gene of Schizosaccharomyces pombe is involved in multiple checkpoint functions and in DNA repair. Proc Natl Acad Sci U S A 89: 4952-6. PubMed ID: 1594599

Kim WJ, Lee S, Park MS, Jang YK, Kim JB, Park SD. 2000. Rad22 protein, a rad52 homologue in Schizosaccharomyces pombe, binds to DNA double-strand breaks. J Biol Chem 275: 35607-11. PubMed ID: 10956666

Kim WJ, Park EJ, Lee H, Seong RH, Park SD. 2002. Physical interaction between recombinational proteins Rhp51 and Rad22 in Schizosaccharomyces pombe. J Biol Chem 277: 30264-70. PubMed ID: 12050150

Kramara J, Osia B, Malkova A. 2018. Break-Induced Replication: The Where, The Why, and The How. Trends Genet 34: 518-531. PubMed ID: 29735283

Krogh BO, Symington LS. 2004. Recombination proteins in yeast. Annu Rev Genet 38: 233-71. PubMed ID: 15568977

Kurokawa Y, Murayama Y, Haruta-Takahashi N, Urabe I, Iwasaki H. 2008. Reconstitution of DNA strand exchange mediated by Rhp51 recombinase and two mediators. PLoS Biol 6: e88. PubMed ID: 18416603

Li J, Sun H, Huang Y, Wang Y, Liu Y, Chen X. 2019. Pathways and assays for DNA double-strand break repair by homologous recombination. Acta Biochim Biophys Sin (Shanghai) 51: 879-889. PubMed ID: 31294447
Limbo O, Yamada Y, Russell P. 2018. Mre11-Rad50-dependent activity of ATM/Tel1 at DNA breaks and telomeres in the absence of Nbs1. Mol Biol Cell 29: 1389-1399. PubMed ID: 29851556

Lucas BE, McPherson MT, Hawk TM, Wilson LN, Kroph JM, Hickman KG, Fitzgerald SR, Disbennett WM, Rollins PD, Hylton HM, Baseer MA, Montgomery PN, Wu JQ, Petreaea RC. 2019. An Assay to Study Intra-Chromosomal Deletions in Yeast. Methods Protoc 2: . PubMed ID: 31454903

Manolis KG, Nimmo ER, Hartsuiker E, Carr AM, Jeggo PA, Allshire RC. 2001. Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J 20: 210-21. PubMed ID: 11226171

Martinho RG, Lindsay HD, Flagg G, DeMaggio AJ, Hoekstra MF, Carr AM, Bentley NJ. 1998. Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. EMBO J 17: 7239-49. PubMed ID: 9857181

Mehta A, Haber JE. 2014. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6: a016428. PubMed ID: 25104768

S. Lucas BE, McPherson MT, Hawk TM, Wilson LN, Kroph JM, Hickman KG, Fitzgerald SR, Disbennett WM, Rollins PD, Hylton HM, Baseer MA, Montgomery PN, Wu JQ, Petreaea RC. 2019. An Assay to Study Intra-Chromosomal Deletions in Yeast. Methods Protoc 2: . PubMed ID: 31454903

Manolis KG, Nimmo ER, Hartsuiker E, Carr AM, Jeggo PA, Allshire RC. 2001. Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J 20: 210-21. PubMed ID: 11226171

Martinho RG, Lindsay HD, Flagg G, DeMaggio AJ, Hoekstra MF, Carr AM, Bentley NJ. 1998. Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. EMBO J 17: 7239-49. PubMed ID: 9857181

Mehta A, Haber JE. 2014. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6: a016428. PubMed ID: 25104768

Musiałek MW, Rybaczek D. 2021. Hydroxyurea-The Good, the Bad and the Ugly. Genes (Basel) 12: . PubMed ID: 34356112

Musiałek MW, Rybaczek D. 2021. Hydroxyurea-The Good, the Bad and the Ugly. Genes (Basel) 12: . PubMed ID: 34356112

Nogueira A, Fernandes M, Catarino R, Medeiros R. 2019. RAD52 Functions in Homologous Recombination and Its Importance on Genomic Integrity Maintenance and Cancer Therapy. Cancers (Basel) 11: . PubMed ID: 31652722

Ostermann K, Lorentz A, Schmidt H. 1993. Homologous recombination in the fission yeast Schizosaccharomyces pombe: different requirements for the rhp51+, rhp54+ and rad22+ genes.Curr Genet 31: 248-54. PubMed ID: 9065388

Ramosubramanyan S, Coulon S, Fuchs RP, Lehmann AR, Green CM. 2010. Ubiquitin-PCNA fusion as a mimic for mono-ubiquitinated PCNA in Schizosaccharomyces pombe. DNA Repair (Amst) 9: 777-84. PubMed ID: 20452294

Roguev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T, Collins SR, Qu H, Shales M, Park HO, Hayles J, Hoe KL, Kim DU, Ideker T, Grewal SI, Weissman JS, Krogan NJ. 2008. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322: 405-10. PubMed ID: 18818364
Rupnik A, Lowndes NF, Grenon M. 2010. MRN and the race to the break. Chromosoma 119: 115-35. PubMed ID: 19862546
Ryan CJ, Roguev A, Patrick K, Xu J, Jahari H, Tong Z, Beltrao P, Shales M, Qu H, Collins SR, Kliegman JI, Jiang L, Kuo D, Tosti E, Kim HS, Edelmann W, Keogh MC, Greene D, Tang C, Cunningham P, Shokat KM, Cagney G, Svensson JP, Guthrie C, Espenshade PJ, Ideker T, Krogan NJ. 2012. Hierarchical modularity and the evolution of genetic interactomes across species. Mol Cell 46: 691-704. PubMed ID: 22681890
Seol JH, Shim EY, Lee SE. 2018. Microhomology-mediated end joining: Good, bad and ugly. Mutat Res 809: 81-87. PubMed ID: 28754468
Strzałka W, Zglobicki P, Kowalska E, Bażant A, Dziga D, Banaś AK. 2020. The Dark Side of UV-Induced DNA Lesion Repair. Genes (Basel) 11: . PubMed ID: 33276692
Tanaka H, Ryu GH, Seo YS, MacNeill SA. 2004. Genetics of lagging strand DNA synthesis and maturation in fission yeast: suppression analysis links the Dna2-Cdc24 complex to DNA polymerase delta. Nucleic Acids Res 32: 6367-77. PubMed ID: 15576681
Tinline-Purvis H, Savory AP, Cullen JK, Davé A, Moss J, Bridge WL, Marguerat S, Bähler J, Ragoussis J, Mott R, Walker CA, Humphrey TC. 2009. Failed gene conversion leads to extensive end processing and chromosomal rearrangements in fission yeast. EMBO J 28: 3400-12. PubMed ID: 19798055
Tisi R, Vertemara J, Zampella G, Longhese MP. 2020. Functional and structural insights into the MRX/MRN complex, a key player in recognition and repair of DNA double-strand breaks. Comput Struct Biotechnol J 18: 1137-1152. PubMed ID: 32489527
Ueno M, Nakazaki T, Akamatsu Y, Watanabe K, Tomita K, Lindsay HD, Shinagawa H, Iwasaki H. 2003. Molecular characterization of the Schizosaccharomyces pombe nbs1+ gene involved in DNA repair and telomere maintenance. Mol Cell Biol 23: 6553-63. PubMed ID: 12944481
van de Kamp G, Heemskerk T, Kanaar R, Essers J. 2021. DNA Double Strand Break Repair Pathways in Response to Different Types of Ionizing Radiation. Front Genet 12: 738230. PubMed ID: 34659358
Watson AT, Werler P, Carr AM. 2011. Regulation of gene expression at the fission yeast Schizosaccharomyces pombe urg1 locus. Gene 484: 75-85. PubMed ID: 21664261
Wyatt MD, Pittman DL. 2006. Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks. Chem Res Toxicol 19: 1580-94. PubMed ID: 17173371
Funding: NIH R03-CA223545-01 and R03-CA252498-01A1 to Ruben Petreaca

Author Contributions: W. Miguel Disbennett: investigation, formal analysis. Tila M. Hawk: formal analysis, investigation. P. Daniel Rollins: investigation. Devi D Nelakurti: investigation. Bailey E Lucas: investigation. Matthew T McPherson: investigation. Hannah M Hylton: investigation. Ruben C Petreaca: conceptualization, formal analysis, project, resources, supervision, writing - original draft, writing - review editing.

Reviewed By: Anonymous

History: Received February 18, 2022 Revision Received March 15, 2022 Accepted March 22, 2022 Published March 28, 2022

Copyright: © 2022 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Disbennett, WMiguel; Hawk, TM.; Rollins, PDaniel; Nelakurti, DD; Lucas, BE; McPherson, MT; Hylton, HM; Petreaca, RC (2022), Genetic interaction of the histone chaperone hip1+ with double strand break repair genes in Schizosaccharomyces pombe. microPublication Biology. 10.17912/micropub.biology.000545