Evaluation of Cardiac Biomarkers and Expression Analysis of IL-1, IL-6, IL-10, IL-17, and IL-25 among COVID-19 Patients from Pakistan

Razi Ullah 1, Jadoon Khan 2, Nosheen Basharat 2, Danqun Huo 1, Ahmad Ud Din 3,* and Guixue Wang 1,*

1 Key Laboratory for Bioreheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants College of Bioengineering Chongqing University, Chongqing 400030, China
2 Molecular Virology Laboratory, Department of Biosciences, COMSATS University, Islamabad 45320, Pakistan
3 Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610212, China
* Correspondence: ahmadnwa@gmail.com (A.U.D.); wanggx@cqu.edu.cn (G.W.); Tel.: +86-23-6511-2675 (G.W.); Fax: +86-23-6511-2672 (G.W.)

Abstract: Coronavirus disease 19 (COVID-19) is caused by viral infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Where upregulation of several important biomarkers and multiple organ dysfunction occurs, this study aimed to evaluate the association of cardiac biomarkers and CS induced acute lung damage with disease severity and mortality in survival of COVID-19 patients. A total of 500 COVID-19 patients with elevated cardiac biomarkers were studied for the analysis of myocardial abnormality through cardiac enzymes, inflammatory biomarkers, and the expression analysis of various cytokines, including IL-1, IL-6, IL-10, IL-17, and IL-25 genes. The elevation of various cardiac enzymes including LDH (87%), CK (78.4%), TNI (80.4%), CK-MB (83%), and D-dimer (80.8%) were found correlated (\(p < 0.001\)) with COVID-19 infection. Cardiac enzyme elevation was highly associated with an increased level of inflammatory biomarkers such as CRP (14.2%), SAA (11.4%) and erythrocyte sedimentation rate (ESR) (7.8%) (\(p = 0.001\) for all). The quantitative expression analysis of IL-10, IL-17, and IL-25 were found to be high, while those of IL-1 and IL-6 were moderately elevated. The death-to-live ratio of COVID-19 patients was 457:43 indicating that the patients having elevated levels of both CKMB, D-dimer, CK and IL-1, IL-6, IL-10 and D-dimer, Troponin, CK and IL-1, IL-10 had high fatality rate (73% and 12% respectively). The current finding concludes that the evaluation of cardiac biomarkers with cytokine storm plays a significant role in COVID-19-associated anatomical organ damage, myocardial injury, and mortality. Physicians should pay special attention to cardiac biomarkers in patients with old age, inflammation, and comorbidities among COVID-19 infections.

Keywords: COVID-19; cardiac biomarkers; interleukins; Pakistan

1. Introduction

Coronavirus disease (COVID-19) is a global pandemic, infectious, and viral disease caused by the SARS-CoV-2 [1]. SARS-CoV-2 belongs to the genus Beta coronavirus, like MERS (Middle East Respiratory Syndrome) and SARS [2–4]. A total of 12,236,677 confirmed cases of COVID-19 with 6,514,397 deaths have been reported worldwide [5]. COVID-19 is infectious with systemic infection that subsequently infects many organ systems; however, the lungs are the most significant and primary infecting organ. Several characteristics/factors, including preexisting comorbidities, immune status, and patient age, are involved in the severity of COVID-19 [3,6]. Generally, COVID-19 is responsible for acute respiratory distress syndrome and lung injury; however, cardiac injury associated with this multisystemic viral infection is yet the topic of debate.

The adverse effects of various systemic viral infections such as SARS [7] and influenza [8] on the cardiovascular system have been reported since the 1930s [9]. The
development of severe symptoms among COVID-19 patients among individuals with pre-existing coronary artery disease has been previously observed in China from the literature of the Centers for Disease Control and Prevention (CDC) [5]. The disease severity among intensive care unit (ICU) admitted with previous cardiovascular complications was three times more severe than non-ICU patients [10]. However, evidence of myocardial injury caused by COVID-19 has not yet been reported [11,12]. The acute COVID-19 cardiovascular syndrome (AcovCS), i.e., myocardial injury caused by COVID-19, might be due to increased myocardial demand in response to the stress of infection, endothelial dysfunction, and platelets activation due to the thrombogenic environment produced by increased cytokines production as well as direct myocardial damage [2,3]. The over-expression of several cardiac biomarkers associated with cardiac injury in several reports [13–15] show a linkage, while several others show a lack of association [16,17].

The first step of the defense mechanism is the activation of the innate immune arm during viral infections. The successful recognition of genomic RNA or DNA of viruses through PRRs (pattern recognition receptors) found on dendritic cells of the host leads to the production of various chemokines and cytokines [18], which attracts other immune cells such as T-cells, neutrophils, and macrophages to recruit to the infection site based on their source and targeted cells [19]. The cytokine storm (CS), which is the sudden elevation of various cytokines causing active inflammation, leads to critical conditions like acute respiratory distress syndrome (ARDS) and multiorgan failure-associated death [16]. The important pro-inflammatory cytokines such as TNF-α (Tumour Necrosis Factor-α) and interleukins (IL), including IL-6 and IL-1, are critical players in the initial immune response against infection. However, anti-inflammatory cytokines, including IL-10, are responsible for maintaining homeostasis in the immune response during sustained infection [20]. The increased synthesis of both anti-inflammatory and pro-inflammatory cytokines in COVID-19 patients has been reported previously [21–24]. A recent comprehensive meta-analysis reported the enhanced level of Interferon-γ (IFN-γ), TNF-α, IL-10, IL-8, IL-6, IL-4, IL-2R and IL-2, whereas no significant increase in IL-17 and IL-1β level among severe COVID-19 patients [25].

Keeping the above literature in view, it is of utmost importance to evaluate the association between CS-associated acute lung damage and cardiac biomarkers and their impact on the survival and death of COVID-19 patients. So, the current study evaluated the cardiac biomarkers and expression analysis of IL-1, IL-6, IL-10, IL-17 and IL-25 among COVID-19 patients from Pakistan.

2. Materials and Methods

2.1. Study Design and Ethical Consideration

The current retrospective cohort study evaluated cardiac biomarkers and various cytokines among COVID-19 patients. Molecular diagnosis of COVID-19 patients followed by its classification as the severe or common type was made according to interim guidelines of the World Health Organization. Ethical approval was granted by the Ethical Review Board of COMSATS University, Islamabad, Pakistan.

2.2. Inclusive Criteria and Control Group

Patients initially positive for SARS-CoV-2 through RT-PCR were included in this study. The studied control individuals had similar demographic and physiological characteristics (age, gender, residence, etc). However, they were non-infected for various common viral (HBV, HCV, HIV, Corona) and metabolic disorders such as (diabetes, CVD, CPD, and Hypertension).

2.3. Exclusive Criteria

Patients who were negative for COVID-19 RT-PCR, and missing medical information were excluded from the current study.
2.4. Blood Samples and Data Collection

A total of 500/793 patients were included in the study. At the same time, others with missing medical information, CK, LDH, CK-MB, TNI and D-dimer laboratory results, and duplicated records were excluded. Approximately 10cc of blood from each patient in DNA/RNA Shield Blood Collection Tube (cat#R1150, Zymo Research, 2911 Dow Ave., Tustin, CA 92780, USA) was collected. Clinical and demographic data were collected from the hospital patients’ records, including name, age, sex, clinical symptoms, and underlying comorbidities. Other laboratory tests such as complete blood count (CBC), Liver functional tests (LFTs), renal functional tests (RFTs), random blood sugar, lipids profile, inflammatory and cardiac biomarkers (CK-MB (creatine kinase-myocardial band), LDH (lactate dehydrogenase), CK (creatine kinase), D-dimer and TNI (troponin I)) were recorded and compared. Serum TNI level above the 99th-percentile upper reference limit (>26.2 µg/L) was used for cardiac injury evaluation. The clinical observation with death and discharge were critically monitored, and patients were categorized according to the absence and presence of myocardial injury and cardiac biomarkers abnormality.

2.5. Extraction and Preparation of RNA from PBMCs

The isolation of Peripheral Blood Mononuclear Cells (PBMCs) was carried out on Ficoll–Paque solution (Amersham Biosciences AB Björkgatan 30, SE-751 84 Uppsala, Sweden) through density gradient centrifugation following the standard procedure of the manufacturer. According to the manufacturer’s instructions, total RNA was extracted from PBMCs by RNX™-Plus reagent (SinaClon, Tehran, Iran). The removal of genomic DNA was done by treating the extracted RNA with DNase I (Fermentas, Lithuania) at 37°C for 15 min, followed by verification through spectrophotometry and 1% agarose gel electrophoresis.

2.6. Synthesis of cDNA and Genes Expression Analysis

Copied DNA (cDNA) was synthesized through reverse transcription of RNA with Random Hexamer primers (MWG, Fraunhoferstr. 22 D-82152 Martinsried, Germany) and Oligo dT through RevertAid™ M-MuLV RT (Fermentas, Lithuania) as per manufacturer’s guidelines. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) for selected gene expression through Step One Applied Biosystems PCR system (Applied Biosystem/MDS SCIEX, Foster City, CA, USA) was performed by using Primer set for each of FoxP3 [26]. Complement of differentiation (CD4, CD25) [27], IL10 were analyzed, and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [28] was used as an internal control. The final reaction volume of 20 µL containing 4 µL of 5X EvaGreen® qPCR Mix Plus (ROX) (Solis BioDyne, Teaduspargi 9, 50411 Tartu, Estonia), 10 ng of cDNA template, and 4 pM of each forward and reverse primers. The entire samples were run in triplicate, and the normalized expression was used for data analysis. Determination of normalized expression and calculation of ∆ΔCt values were done by subtracting the average Ct value of GAPDH from the average Ct value of IL-10, CD4, CD25, and FoxP3. Relative expression was calculated by 2^−∆∆Ct formula as described [29]. The thermal reaction conditions are shown in Table 1.

Table 1. RT-PCR Primers and Thermocycler conditions.

Primer	Primer Sequence	Annealing	Reference
IL-1	F-5’ TCT GGGGCATACTCACAGGGGT-3’ R-5’ AGCTGGGTTGTGGTAGCCTTACTG-3’	52 °C/30 s	[30]
IL-6	F-5’ CATGTTCTCTGGAAATCGTGG-3’ R-5’ AACGCACTAGGTTTGCCGAGTA-3’	51.4 °C/30 s	[28]
IL-10	F-5’ ACTACTAAGGCTTCTTTGGGAA-3’ R-5’ CAGTGCAACTGAGAATTTGG-3’	56 °C/30 s	[31]
Table 1. Cont.

Primer	Primer Sequence	Annealing	Reference
IL-17	F-5′ GCCCTCCTGGGCTTGATGATG-3′ R-5′ CTGTAGCCTCAACGCGAGATG-3′	53 °C/30 s	[32]
IL-25	F-5′ GTGCCCTGTGCCTCCCCTA-3′ R-5′ CCG CTGTAGAAGACA GTCTG-3′	57 °C/30 s	[33]
GAPDH	F-5′ CTGTGGAAGCTATTTCTTGTCG-3′ R-5′ TCTTCCTCTTGTGCTCTGC-3′	57 °C/30 s	[28]

2.7. Statistical Analysis

The entire data was reviewed and entered in SPSS (Ver. 16) (IBM Corp., Armonk, NY, USA) and GraphPad (version 7.00, San Diego, CA, USA) for statistical analysis. Percentage (%) was used for categorical variables, while mean (standard deviation (SD) and median (IQR interquartile range) were used for normal and nonnormal distribution of continuous variables. The difference and association between myocardial injury and enzymes with COVID-19 were analyzed using Mann–Whitney U or χ² test and One Way ANOVA. Pearson’s correlation analysis and univariable logistic regression analysis were used for binary variables to explore the risk factors associated with myocardial enzyme abnormality and myocardial injury. Multivariable and univariable logistic regression models explored the risk factors associated with in-hospital death.

3. Results

3.1. Clinical and Demographic Characteristics

Cardiac biomarkers including CK-MB, LDH, CK or TNI were hyperregulated among 481/500 (96.2%) compared to 19/500 (3.8%) patients within the normal range. The ratio of severe to non-severe COVID-19 cases were 467/33 (93.4%:6.6%). The significantly observed common symptoms include cough (303, 60.6%) followed by fever (297, 59.4%) and chest pain/tightness (218, 43.6%). Older age was significantly associated with abnormal cardiac enzymes (>49 years; p < 0.001); however, male patients dominated females (70:30; p = 0.009). Furthermore, the abnormality in cardiac biomarkers 18.2% (p = 0.005) was more commonly observed in COVID-19 patients showing two or more comorbidities. The common comorbidities observed among COVID-19 in the current study was chronic pulmonary disease (5.2%; p = 0.044), diabetes (11.4%; p = 0.002) and hypertension (22.6%; p = 0.01). The entire clinical and demographic observations are presented in Table 2.

Table 2. Clinical, Demographic and Laboratory Parameter of COVID-19 admitted Patients.

Clinical and Demographics Parameters	Normal Value	Total Samples (500)	Abnormal Cardiac Biomarkers (n=481)	Normal Cardiac Biomarkers (n=19)	Z/χ²	p-Value
Age Groups						
Age group 1 (18–28)	95	65 (13%)	30 (6%)	5.870	<0.001	
Age group 2 (29–38)	89	73 (14.6%)	16 (3.2%)			
Age group 3 (39–48)	96	89 (17.8%)	7 (1.4%)			
Age group 4 (49–58)	116	91 (18.2%)	25 (5%)			
Age group 5 (58 and above)	104	88 (17.6%)	16 (3.2%)			
Gender and Symptoms						
Male	351	236 (47.2%)	115 (23%)	6.676	0.008	
Female	149	107 (21.4%)	42 (8.4%)			
Fever	413	297 (59.4%)	116 (23.2%)	0.009	0.926	

Table 2. Cont.

Clinical and Demographics Parameters	Normal Value	Total Samples (500)	Abnormal Cardiac Biomarkers (n = 481)	Normal Cardiac Biomarkers (n = 19)	Z/χ²	p-Value
Cough	382	303 (60.6%)	79 (15.8%)	0.261	0.61	
Chest pain/tightness	295	218 (43.6%)	77 (15.4%)	0.303	0.582	
Respiratory rate	273	229 (45.8%)	44 (8.8%)	0.014	0.004	
Systolic pressure 90–140 mm Hg	327	299 (59.8%)	28 (5.6%)	−3.046	0.002	
Diastolic pressure 60–90 mm Hg	358	307 (61.4%)	51 (10.2%)	−0.027	0.978	

Comorbidities

Comorbidities	Normal Value	Total Samples (500)	Abnormal Cardiac Biomarkers (n = 481)	Normal Cardiac Biomarkers (n = 19)	Z/χ²	p-Value
Hypertension	181	113 (22.6%)	68 (13.6%)	6.655	0.01	
Diabetes	95	57 (11.4%)	38 (7.6%)	9.571	0.002	
Other CVD	83	63 (12.6%)	20 (4%)	0.398	0.528	
CPD	56	26 (5.2%)	30 (6%)	4.058	0.044	
With more than one comorbidity	139	91 (18.2%)	48 (9.6%)	7.865	0.005	

Laboratory Observations

Blood routine tests	Normal Value	Total Samples (500)	Abnormal Cardiac Biomarkers (n = 481)	Normal Cardiac Biomarkers (n = 19)	Z/χ²	p-Value
White blood cells	3.5–9.5 10⁹/L	201 (40%)	76 (15.2%)	125 (25%)	3.59	<0.001
Neutrophils	1.8–6.3 10⁹/L	232 (46%)	92 (18.4%)	140 (28%)	5.282	<0.001
Lymphocyte	1.1–3.2 10⁹/L	185 (37%)	102 (20.4%)	83 (16.6%)	−5.25	<0.001
Platelet count	125–350 10⁹/L	255 (51%)	97 (19.4%)	157 (31.4%)	−0.188	0.851
Haemoglobin	130–175 g/L	49 (98%)	31 (6.2%)	18 (3.6%)	−1.62	0.105
Monocyte count	0.1–0.6 10⁹/L	352 (70%)	165 (33%)	187 (37.4%)	−0.799	0.424

Random Blood Sugar and Lipids

FBG	4.1–5.9 mmol/L	189 (37.8%)	92 (18.4%)	97 (19.4%)	3.185	0.001
Total cholesterol	<5.2 mmol/L	316 (63%)	200 (40%)	116 (23.2%)	0.22	
Triglyceride	<1.7 mmol/L	281 (56%)	196 (39.2%)	85 (17%)	−0.591	0.555
HDL	1.16–1.42 mmol/L	132 (26%)	69 (13.8%)	63 (12.6%)	−2.091	0.036
LDL	2.7–3.1 mmol/L	199 (39%)	115 (23%)	84 (16.8%)	0.18	

Cytokines and Inflammatory Biomarkers

CRP	<8 mg/L	152 (30%)	71 (14.2%)	81 (16.2%)	−6.588	<0.001
Procalcitonin	<0.5 µg/L	183 (36%)	101 (20.2%)	82 (16.4%)	−5.242	<0.001
SAA	<10 mg/L	93 (18.6%)	57 (11.4%)	36 (7.2%)	5.326	<0.001
ESR	<20 mm/h	117 (23.4%)	39 (7.8%)	78 (15.6%)	5.998	<0.001
IL-1	0–5 pg/mL	431 (86%)	157 (31.4%)	274 (54.8%)	−4.201	<0.001
IL-6	0.12–2.9 ng/L	465 (93%)	186 (37.2%)	279 (55.8%)	−4.912	<0.001
IL-10	0.1–5 ng/L	472 (94%)	135 (27%)	337 (67.4%)	−4.832	<0.001
IL-17	≤10 pg/mL	416 (83%)	162 (32.4%)	254 (50.8%)	−4.710	<0.001
IL-25	23 and 200 pg/mL	422 (84%)	179 (35.8%)	243 (48.6%)	−4.347	<0.001

Cardiac Biomarkers

CK	138–174 U/L	438 (27%)	392 (78.4%)	46 (9.2%)	−5.743	<0.001
LDH	109–245 U/L	481 (96%)	435 (87%)	46 (9.2%)	−9.962	<0.001
TN1	<26.2 µg/L	450 (90%)	402 (80.4%)	48 (9.6%)	−5.207	<0.001
CKMB	2–24 µg/L	476 (95%)	415 (83%)	61 (12.2%)	−2.404	0.016
D-dimer	487 (97%)	404 (80.8%)	83 (16.6%)			
Table 2. Cont.

Clinical and Demographics Parameters	Normal Value	Total Samples (500)	Abnormal Cardiac Biomarkers (n= 481)	Normal Cardiac Biomarkers (n = 19)	Z/χ²	p-Value
Renal and Liver Functional Tests						
ALT	5–40 U/L	236	160 (32%)	76 (15.2%)	−3.466	0.001
AST	8–40 U/L	179	101 (20.2%)	78 (15.6%)	−5.522	<0.001
ALP	40–150 U/L	153	89 (17.8%)	64 (12.8%)	−2.122	0.034
γ–Transglutaminase	11–50 U/L	211	176 (35.2%)	35 (7%)	−4.053	<0.001
Total bilirubin	5.1–19 µmol/L	189	132 (26.4%)	57 (11.4%)	−3.307	0.001
Urea nitrogen	2.9–8.2 mmol/L	103	67 (13.4%)	36 (7.2%)	−2.557	0.011
Creatinine	46–92 µmol/L	197	130 (26%)	67 (13.4%)	−1.754	0.079
Uric acid	149–369 µmol/L	156	102 (20.4%)	54 (10.8%)	−1.055	0.292
Clinical Typing and Outcome						
Severe	467	461 (92.2%)	6 (1.2%)	41.314	<0.001	
Non—severe	33	22 (4.4%)	11 (2.2%)			
Death	457	441 (88.2%)	16 (3.2%)		<0.001	
Discharge	43	16 (3.2%)	23 (4.6%)			

3.2. Laboratory Parameters

Various blood parameters, including white blood count (15.2%), neutrophil count (18.4%), and lower lymphocyte count (20.4) (all \(p < 0.001 \)), were significantly associated with abnormal cardiac biomarkers containing COVID-19 patients. C-reactive protein (CRP) among 14.2% individuals, Erythrocyte Sedimentation Rate (ESR) (7.8%), and SAA (11.4%) (all \(p < 0.001 \)) were elevated inflammatory biomarkers among hyperregulated cardiac enzymes linked COVID-19 patients. Elevated cardiac biomarkers including CK-MB (83; \(p = 0.016 \)), TNI (80.4%; \(p < 0.001 \)), CK (78.4%; \(p < 0.001 \)), D-dimer (80.8%; \(p < 0.001 \)) and LDH (87%; \(p < 0.001 \)) were found strongly associated with higher levels of urea nitrogen (\(p = 0.011 \)), γ-transglutamate (\(p < 0.001 \)), aspartate aminotransferase (AST) (\(p < 0.001 \)) and alanine aminotransferase (ALT) (median 36 vs. 21.5 U/L; \(p = 0.001 \)) as shown in Table 2.

3.3. Correlation of Cytokines with Cardiac Biomarkers

Analysis of various clinical parameters with respect to cardiac biomarkers shows a strong correlation (\(p < 0.05 \)), as shown in Figure 1.

Figure 1. Scatter plot showing correlation among clinical parameters and cardiac biomarkers.
3.4. Risk Factors for COVID-19 Associated Death in Hospitalized Patients

The death to live/discharge ratio among the abnormal cardiac biomarker associated COVID-19 patients were 91.4:8.6% or 457:43. Most of the deaths were observed in patients with older age ($p < 0.001$), rate of respiration ($p = 0.001$), myocardial injury patients ($p < 0.001$), patients with comorbidities ($p = 0.003$), levels of urea nitrogen ($p = 0.001$), direct bilirubin ($p = 0.049$) and total bilirubin ($p = 0.030$), AST ($p = 0.009$), ALP ($p = 0.004$), SAA ($p = 0.034$), ESR ($p = 0.017$), procalcitonin ($p = 0.017$), CRP ($p = 0.001$), LDH ($p = 0.001$), CK ($p = 0.003$), TN1 levels ($p = 0.014$), platelets ($p = 0.001$), neutrophils ($p = 0.001$), white blood cells ($p = 0.001$) and IL-6 ($p = 0.004$) as shown in (Table 3).

Table 3. Risk Factors for COVID-19 Associated Death.

Clinical Parameters	p-Value	OR/Univariate Analysis (95% CI)
Old age	0.002	1.201 (1.03–1.132)
Gender	0.341	0.618 (0.23–1.664)
Rate of Respiration	0.003	1.231 (1.213–1.341)
Tightness/Chest pain	0.712	1.31 (0.551–3.483)
Non-severe vs. Severe	0.005	2.621 (1.342–5.117)
Underlying comorbidities	0.001	5.121 (1.809–13.531)
Platelets	0.001	0.977 (0.966–0.988)
Neutrophil	0.001	1.415 (1.207–1.658)
WBC	0.001	1.315 (1.142–1.514)
IL-6	0.004	1.018 (1.006–1.031)
IL-10	0.060	1.229 (0.991–1.524)
TN1	0.014	1.009 (1.002–1.017)
LDH	0.001	1.004 (1.002–1.007)
CK	0.003	1.002 (1.001–1.004)
EGFR	0.001	0.952 (0.932–0.972)
SAA	0.034	1.003 (1–1.005)
ESR	0.017	1.031 (1.006–1.057)
CRP	0.001	1.031 (1.018–1.045)
AST	0.009	1.007 (1.002–1.013)
ALT	0.683	0.998 (0.987–1.009)
ALP	0.004	1.014 (1.004–1.023)
Procalcitonin	0.017	1.654 (1.093–2.504)
Creatinine	0.085	1.004 (0.999–1.009)
UREA nitrogen	0.001	1.714 (1.339–2.149)
Total bile acid	0.158	1.066 (0.976–1.165)
Direct bilirubin	0.049	1.069 (1–1.142)
Total bilirubin	0.030	1.062 (1.006–1.121)
γ-Transglutaminase	0.500	1.002 (0.995–1.01)

3.5. Expression Analysis of IL-1, IL-6, IL-10, IL-17 and IL-25 Genes

The quantitative expression analysis of IL-1, IL-6, IL-10, IL-17, and IL-25 genes revealed that IL-1 and IL-6 had moderately high while IL-10, IL-17 and IL-25 were highly expressed, which were significantly correlated with COVID-19 infection ($p < 0.05$) (Figure 2).
Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) can attack and infect many vital organs of the human host [14]. SARS-CoV-2-associated cardiac injury is mainly responsible for an increased mortality rate among COVID-19 patients [34]. The availability of limited literature on the degree of myocardial injury caused by COVID-19 leads to uncertainty in their prognosis and clinical outcomes. That is why the current retrospective study was designed to evaluate the association of cardiac biomarkers and cytokine storm (CS) induced acute lung damage with disease severity and mortality or survival of COVID-19 patients.

A recent study reported that elevated levels of myoglobin, CK-MB, hs-TNI and older age was strongly correlated with the severity of COVID-19 infection [35] Another study found cardiac injury among 7.2% of COVID-19 patients [13], such as myocardial injury among 27.8% of those COVID-19 patients having elevated cardiac troponin T level [36].

A previous study reported an increased level of LDH among 16.0% and CK-MB among 10.8% of severe acute respiratory syndrome (SARS) patients in 2003 in Guangzhou institute of respiratory diseases, China [37]. This study observed that 467/500 (93.4%) of COVID-19 patients have abnormal cardiac enzymes, and 457 exhibited myocardial injury, parallel to the study of Zhang et al. [37] from China. The rate of mortality, disease severity, Novel Coronavirus Pneumonia (NCP), Alkaline Phosphatase (ALP), Aspartate Aminotransferase (AST), TNI, Serum Amyloid A (SAA), Erythrocyte Sedimentation Rate (ESR) and C-reactive protein (CRP) were highly elevated among the patients with abnormal cardiac enzymes, corresponding with other reports where one or several factors were significantly enhanced [13–15,37]. A comprehensive report declared cardiovascular diseases a potential risk factor for COVID-19 infection [14,17]. The literature, as mentioned earlier, suggested that abnormal cardiac biomarkers and myocardial injury may lead to severe outcomes among COVID-19 patients. The elevation in CK, LDH and cardiac TNI levels among COVID-19 patients works as a death warrant, which needs proper investigation and special attention of clinicians [37]. The above-mentioned literature suggested that COVID-19 associated myocardial injury might be caused due to initiation of a severe inflammatory response. Therefore, it is necessary to give exceptional and early attention to anti-inflammatory therapy during clinical observation and hospital admission [38].

Figure 2. Immune genes expression in COVID-19 patients and control group (** significantly different than control (p < 0.05).}

4. Discussion

The severity of COVID-19 is also correlated with several risk factors such as former heart diseases, kidney diseases and old age [14]. The current study observed high infectivity...
and severity of COVID-19 among the old age population, as reported by [14,37]. In the case of SARS and MERS-associated infections and death, old age was a significantly associated factor [17,39,40]. It has been suggested that most older patients are immune tolerant, and the T-lymphocytes are not properly working inflammatory cytokines such as TNF-α and IL-6 are hyperregulated and lead to cytokine storm [41,42]. Being responsible for the development of severe pneumonia. All this phenomenon potentially contributes to unsatisfactory outcomes among old-age patients infected with COVID-19 compared to young individuals [37].

The exact mechanism of COVID-19-associated cardiac injury is yet the topic of research; however, the association between inflammation and severe clinical outcomes among COVID-19 patients, viral load versus clinical symptoms progression might support the hypothesis of COVID-19-derived exaggerated inflammatory response [16,43]. The expression of both IL-1β and IL-6 might be responsible for this inflammatory process [16,43–46]. The current study observed hyperregulation of IL-1 and IL-6 among COVID-19 infected individuals as observed previously [47]. Elevated activity of IL-1β and IL-6 cytokines has been observed at the nasopharynx region, which is the key site of infection where higher bioactivity of IL-6 is strongly correlated with a higher load of SARS-CoV-2. The finding mentioned above suggests that IL-6 mediated inflammation is associated with the presence of SARS-CoV-2 antigens. However, we could not conclude that IL-6 mediated inflammation may continue in the tissues during the latter stages of severe COVID-19, when the viral load ends [43]. An enhanced cytokine response has been detected among COVID-19 isolated leukocytes and whole blood during transcriptome analysis as well as from the tissues of nasopharyngeal origin compared to the control population [48]. The literature, as mentioned earlier, suggests that IL-6 and IL-1β play a prominent role in the pathogenesis and severity of COVID-19, and that is why the IL-6 and IL1β antagonists are in clinical trials of COVID-19 patients. The initiation of inflammatory response activates the various immune cells, further enhancing the inflammation and gene expression during COVID-19 responsible for severe outcomes in patients [50].

The hyperregulation of anti-inflammatory cytokines IL-10 has been observed in patients of severe COVID-19 infection [16,45]. Being multifunctional nature, the primary function of IL-10 is to control the inflammatory response. In contrast, it has been known for introducing non-responsiveness or energy of T-cells in anti-tumor cell response [51] and during viral infection [52]. The removal of IL-10 on a genetic level or blockade of its receptors or through anti-IL-10 antibodies leads to the elimination of viral infection [52–54] or bacterial pathogen [55]. The current observation of the hyper-regulation of IL-10 gene among COVID-19 patients supported the finding that elevated levels of IL-10 in severe COVID-19 patients were initially ascribed to the negative feedback through its anti-inflammatory activities [56]. Furthermore, the hyper-regulation of IL-10 was significantly linked with an increased risk for future cardiovascular and coronary atherosclerosis [57].

An elevated level of IL-17 has been observed in the serum of human influenza-infected patients [58,59] and COVID-19 [60]. Accordingly, an elevated level of serum IL-17 among COVID-19 was observed in this study also. In contrast to our study, the downregulation of tissue IL-17A/IL-8 and lower neutrophil scores among COVID-19 patients have been reported earlier [4]. The neutrophil reduction observed in COVID-19 patients might support the immune evasion of the virus and continuous survival in the patients [61,62]. However, IL-17 might enhance the destruction of lung parenchyma through inadequate recruitment of neutrophils, hyper-regulation of pro-inflammatory mediators responsible for the prevention of apoptosis through expression of granulocyte-colony stimulating factor during acute respiratory distress syndrome (ARDS) [24,63].

A hyper-regulation of IL-17E, also known as IL-25, among COVID-19 patients was observed in the current study, produced by all epithelial cells [64–66]. As per previous reports, IL-17E can actively participate in T-helper type 2 immune responses in the lungs and gut [64,66–68] however, recent reports observed that IL-17E/IL-25 actively participates
in several inflammatory disorders of the skin [69,70]. Besides its new role in COVID-19 patients, the IL-25 possesses unique structures and can regulate immune and inflammatory responses [71] and angiogenesis [72]. Further evidence showed that IL-25 promotes cell proliferation, inhibits apoptosis [73], and affects the development of fibrosis and hypoxic-ischemic injury [6,74], tumor metastasis [75] and metabolism processes [76,77]. IL-17 and IL-17E (IL25) were also highly elevated.

5. Conclusions

It is concluded from the current finding that the elevation of cardiac biomarkers and inflammatory markers with upregulation of several cytokines have a significant role in COVID-19 associated anatomical organ damage, myocardial injury, and mortality. Cardiac Biomarkers should be appropriately investigated soon after COVID-19 hospitalization, and proper attention should be given to inflammatory markers with cardiac enzymes, especially those with older age and other comorbidities. There is a need of further confirmation of the various pro-inflammatory and anti-inflammatory cytokines; however, due to lack of resources, we were not able to proceed further. The non-availability of resources for western blot confirmation was one of the study’s main limitations. The evaluation of cytokines expression inside a suitable animal model will be a valuable addition.

Author Contributions: G.W. and A.U.D. planned study; Data was collected by R.U., J.K. and N.B.; Lab work and Data Analysis were done by R.U., J.K., D.H., and N.B.; Critical review, evaluation and final drafting of the manuscript was done by A.U.D. and G.W. All authors have read and agreed to the published version of the manuscript.

Funding: The work is supported by the Chongqing Municipal Education Commission, China (KYY202001) and the Chongqing Science and Technology Bureau (cstc2019jcyj-zdxmX0028) and Fundamental Research Funds for Central Universities (2021CDJCGJ007).

Institutional Review Board Statement: Before starting this study, the Ethical Review Board of COMSATS University, Islamabad, Pakistan, was approved (Ethical Review Board Approval# CUI/Notif/21/3395).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. Written informed consent has been obtained from the patient(s) to publish this paper.

Data Availability Statement: All the collected relevant research data is presented and included in this paper; however, further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WHO. World Health Organization. 2022. Available online: https://www.who.int/health-topics/coronavirus#tab=tab_1 (accessed on 1 June 2022).
2. Alhogbani, T. Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus. *Ann. Saudi Med.* 2016, 36, 78–80. [CrossRef] [PubMed]
3. Sala, S.; Peretto, G.; Gramegna, M.; Palmisano, A.; Villatore, A.; Vignale, D.; De Cobelli, F.; Tresoldi, M.; Cappelletti, A.M.; Basso, C.; et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. *Eur. Heart J.* 2020, 41, 1861–1862. [CrossRef] [PubMed]
4. Azevedo, M.L.V.; Zanchettin, A.C.; Vaz de Paula, C.B.; Motta Júnior, J.D.S.; Malaquias, M.A.S.; Raboni, S.M.; de Noronha, L. Lung neutrophilic recruitment and IL-8/IL-17A tissue expression in COVID-19. *Front. Immunol.* 2021, 12, 656350. [CrossRef] [PubMed]
5. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 27 September 2022).
6. Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. *J. Adv. Res.* 2020, 24, 91–98. [CrossRef] [PubMed]
7. Madjid, M.; Vela, D.; Khalili-Tabrizi, H.; Casscells, S.W.; Litovsky, S. Systemic infections cause exaggerated local inflammation in atherosclerotic coronary arteries: Clues to the triggering effect of acute infections on acute coronary syndromes. *Tex Heart Inst. J.* 2007, 34, 11–18.
8. Kwong, J.C.; Schwartz, K.L.; Campitelli, M.A.; Chung, H.; Crowcroft, N.S.; Karnaouchow, T.; Katz, K.; Ko, D.T.; McGeer, A.J.; McNally, D.; et al. Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection. *N. Engl. J. Med.* 2018, 378, 2540–2541. [CrossRef]
Viruses 2022, 14, 2149

11 of 13

9. Nunes, B.; Viboud, C.; Machado, A.; Ringholz, C.; Rebelo-de-Andrade, H.; Nogueira, P.; Miller, M. Excess mortality associated with influenza epidemics in Portugal, 1980 to 2004. *PLoS ONE* 2011, 6, e20661. [CrossRef]

10. Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. *N. Engl. J. Med.* 2020, 382, 1708–1720. [CrossRef]

11. Bhattacharya, P.K.; Ghassamieh, B.J.; Nichols, M.; Kim, R.; Jerome, K.R.; Nalla, A.K.; Greninger, A.L.; Pipavath, S.; Wurfel, M.M.; Evans, L.; et al. COVID-19 in Critically Ill Patients in the Seattle Region—Case Series. *N. Engl. J. Med.* 2020, 382, 2012–2022. [CrossRef]

12. Fried, J.A.; Ramasubbu, K.; Bhatt, R.; Topkara, V.K.; Clerkin, K.J.; Horn, E.; Rabbani, L.; Brodie, D.; Jain, S.S.; Kirtane, A.J.; et al. The Variety of Cardiovascular Presentations of COVID-19. *Circulation* 2020, 141, 1930–1936. [CrossRef]

13. Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. *JAMA* 2020, 323, 1061–1069. [CrossRef] [PubMed]

14. Chen, C.; Yan, J.T.; Zhou, N.; Zhao, J.P.; Wang, D.W. Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19. *Zhonghua Xue Xue Gai Bu Zhi* 2020, 48, E008. [CrossRef]

15. Deng, Q.; Hu, B.; Zhang, Y.; Wang, H.; Zhou, X.; Hu, W.; Cheng, Y.; Yan, J.; Ping, H.; Zhou, Q. Suspected myocardial injury in patients with COVID-19: Evidence from front-line clinical observation in Wuhan, China. *Int. J. Cardiol.* 2020, 311, 116–121. [CrossRef] [PubMed]

16. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* 2020, 395, 497–506. [CrossRef] [PubMed]

17. Zhu, Z.; Wang, M.; Lin, W.; Cai, Q.; Zhang, L.; Chen, D.; Liu, F.; Xiong, X.; Chu, J.; Peng, J.; et al. Cardiac biomarkers, cardiac injury, and comorbidities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. *Immun. Inflamm. Dis. Sci.* 2021, 9, 1071–1100. [CrossRef] [PubMed]

18. Kawai, T.; Akira, S. Innate immune recognition of viral infection. *Nat. Immunol.* 2006, 7, 131–137. [CrossRef]

19. Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. *Biochim. Biophys. Acta Mol. Cell Res.* 2014, 1843, 2563–2582. [CrossRef]

20. Rojas, J.M.; Avia, M.; Martin, V.; Sevillia, N. IL-10: A multifunctional cytokine in viral infections. *J. Immunol. Res.* 2017, 2017, 6104054. [CrossRef]

21. Ragab, D.; Eldin, H.S.; Taemaim, M.; Khattab, R.; Salem, R. The COVID-19 cytokine storm: what we know so far. *Front. Immunol.* 2020, 16, 1446. [CrossRef]

22. Chan, J.F.W.; Lau, S.K.P.; To, K.K.W.; Cheng, V.C.C.; Woo, P.C.Y.; Yue, K.Y. Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. *Clin. Microbiol. Rev.* 2015, 28, 465–522. [CrossRef]

23. Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodriguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. *Cytokine Growth Factor Rev.* 2020, 54, 62–75. [CrossRef] [PubMed]

24. Tan, M.; Liu, Y.; Zhou, R.; Deng, X.; Li, F.; Liang, K.; Shi, Y. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. *Immunology* 2020, 160, 261–268. [CrossRef] [PubMed]

25. Akbari, H.; Tabrizi, R.; Lankarani, K.B.; Aria, H.; Vakili, S.; Asadian, F.; Noroozi, S.; Keshavarz, P.; Faramarz, S. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. *Life Sci.* 2020, 258, 118167. [CrossRef] [PubMed]

26. Javid, A.; Hussain, N. Mutational analysis of Forkhead box P3 gene in Pakistani Human Immunodeficient Virus Patients. *Pak. J. Zool.* 2019, 51, 1987–1990. [CrossRef]

27. Fichna, M.; Zurawek, M.; Bratland, E.; Husebye, E.S.; Kasperlik-Zaluska, A.; Czarnocka, B.; Januszkiewicz-Lewandowska, D.; Nowak, J. Interleukin-2 and subunit alpha of its soluble receptor in autoimmune Addison’s disease–An association study and expression analysis. *Autoimmunity* 2015, 48, 100–107. [CrossRef] [PubMed]

28. Wongchana, W.; Palaga, T. Direct regulation of interleukin-6 expression by Notch signaling in macrophages. *Cell. Mol. Immunol.* 2012, 9, 155–162. [CrossRef]

29. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. *Methods* 2001, 25, 402–408. [CrossRef]

30. Vasiliyev, F.F.; Silkov, A.N.; Sennikov, S.V. Relationship between interleukin-1 type 1 and 2 receptor gene polymorphisms and the expression level of membrane-bound receptors. *Cell. Mol. Immunol.* 2015, 12, 222–230. [CrossRef]

31. Afzal, M.S.; Anjum, S.; Zaidi, N.U.S.S. Effect of functional interleukin-10 polymorphism on pegylated interferon-α plus ribavirin therapy response in chronic hepatitis C virus patients infected with 3a genotype in Pakistani population. *Hepatitis Mon.* 2013, 13. [CrossRef]

32. Okamura, Y.; Morimoto, N.; Ikeda, D.; Mizusawa, N.; Watabe, S.; Miyanishi, H.; Saeki, Y.; Takeyama, H.; Aoki, T.; Kinoshita, M.; et al. Interleukin-17A/F1 deficiency reduces antimicrobial gene expression and contributes to microbiome alterations in intestines of Japanese medaka (Oryzias latipes). *Front. Immunol.* 2020, 11, 425. [CrossRef]

33. Barati, M.; Sinai, M.; Shokrollahi Barough, M.; Pak, F.; Semnani, V.; Kokhaei, P.; Momtazi-Borojeni, A.A. Evaluation of interleukin 25 and interleukin 25 receptor expression in peripheral blood mononuclear cells of breast cancer patients and normal subjects. *J. Interferon Cytokine Res.* 2020, 40, 139–144. [CrossRef] [PubMed]
Santoso, A.; Pranata, R.; Wibowo, A.; Al-Farabi, M.J.; Huang, I.; Antariksa, B. Cardiac injury is associated with mortality and critically ill pneumonia in COVID-19: A meta-analysis. *Am. J. Emerg. Med.* 2021, 44, 352–357. [CrossRef] [PubMed]

Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. *JAMA Cardiol.* 2020, 5, 802–810. [CrossRef] [PubMed]

Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wän, J.; Wang, X.; Lu, Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). *JAMA Cardiol.* 2020, 5, 811–818. [CrossRef] [PubMed]

Zhang, Q.; Zheng, Z.; Zhang, Y. Association of Myocardial Enzyme Abnormality with Clinical Outcomes of Patients with COVID-19: A Retrospective Study. *Dis. Markers.* 2021, 2021, 340714. [CrossRef]

Mureddu, G.F.; Ambrosetti, M.; Venturini, E.; La Rovere, M.T.; Mazza, A.; Pedretti, R.; Sarullo, F.; Fattirolli, F.; Faggiano, P.; Giallauria, F.; et al. Cardiac rehabilitation activities during the COVID-19 pandemic in Italy. Position Paper of the AIICP (Italian Association of Clinical Cardiology, Prevention and Rehabilitation). *Monaldi Arch. Chest Dis.* 2020, 90. [CrossRef] [PubMed]

Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. *Semin. Immunopathol.* 2017, 39, 529–539. [CrossRef]

Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. *Respir. Res.* 2020, 21, 224. [CrossRef] [PubMed]

Nidadavolu, L.S.; Walston, J.D. Underlying Vulnerabilities to the Cytokine Storm and Adverse COVID-19 Outcomes in the Aging Immune System. *J. Gerontol. A. Biol. Sci. Med. Sci.* 2021, 76, e13–e18. [CrossRef]

Yao, Z.; Zheng, Z.; Wu, K.; Junhua, Z. Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV-2, SARS-CoV and SARS-CoV-2. *Aging 2020*, 12, 7639–7651. [CrossRef]

Bell, L.C.K.; Pollara, G.; Pascoe, M.; Tomlinson, G.S.; Lehoeneya, R.J.; Roe, J.; Meldau, R.; Miller, R.F.; Ramsay, A.; Chain, B.M.; et al. In Vivo Molecular Dissection of the Effects of HIV-1 in Active Tuberculosis. *PLOS Pathog.* 2016, 12, e1005469. [CrossRef] [PubMed]

Liao, M.; Liu, Y.; Yuan, J.; Wen, Y.; Xu, G.; Zhao, J.; Cheng, L.; Li, J.; Wang, X.; Wang, F.; et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. *Nat. Med.* 2020, 26, 842–844. [CrossRef] [PubMed]

Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. *Clin. Infect. Dis.* 2020, 71, 762–768. [CrossRef]

Yang, X.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. *Respir. Res.* 2020, 21, 224. [CrossRef] [PubMed]

Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Characterization of Altered Gene Expression and Histone Methylation in Peripheral Blood Mononuclear Cells Regulating Immunopathology. *Semin. Immunopathol.* 2017, 39, 529–539. [CrossRef]

Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; Chain, B.M.; et al. Interleukin-10 and the Interleukin-10 Receptor. *Annu. Rev. Immunol.* 2001, 19, 683–765. [CrossRef]

Maris, C.H.; Chappell, C.P.; Jacob, J. Interleukin-10 plays an early role in generating virus-specific T cell anergy. *BMI Immunol.* 2007, 8, 8–9. [CrossRef]

Brooks, D.G.; Trifilo, M.J.; Edelmann, K.H.; Teyton, L.; McGavern, D.; Oldstone, M.B. Interleukin-10 determines viral clearance or persistence in vivo. *Nat. Med.* 2006, 12, 1301–1309. [CrossRef]

Ejrnæs, M.; Filippi, C.M.; Martinic, M.; Ling, E.M.; Togher, L.M.; Crotty, S.; Von Herrath, M.G. Resolution of a chronic viral infection after interleukin-10 receptor blockade. *J. Exp. Med.* 2006, 203, 2461–2472. [CrossRef] [PubMed]

Biswas, P.S.; Pedicord, V.; P Loss, A.; Menet, E.; Leiner, I.; Pamer, E.G. Pathogen-Specific CD8 T Cell Responses Are Directly Inhibited by IL-10. *J. Immunol.* 2007, 179, 4520–4528. [CrossRef] [PubMed]

Zhao, Y.; Qin, L.; Zhang, P.; Li, K.; Liang, L.; Sun, J.; Xu, B.; Dai, Y.; Li, X.; Zhang, C.; et al. Longitudinal profiling of cytokines and chemokines in COVID-19 reveals inhibitory mediators IL-1RA and IL-10 are associated with disease severity while elevated RANTES is an early predictor of mild disease. *Lancet* 2020. [CrossRef]

Lakoski, S.G.; Liu, Y.; Brosnihan, K.B.; Herrington, D.M. Interleukin-10 concentration and coronary heart disease (CHD) event risk in the estrogen replacement and atherosclerosis (ERA) study. *Atherosclerosis* 2008, 197, 443–447. [CrossRef] [PubMed]

Song, X.; He, X.; Li, X.; Qian, Y. The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. *Cell. Mol. Immunol.* 2016, 13, 418–431. [CrossRef] [PubMed]
59. Vidy, A.; Maisonnasse, P.; Da Costa, B.; Delmas, B.; Chevalier, C.; Le Goffic, R. The Influenza Virus Protein PB1-F2 Increases Viral Pathogenesis through Neutrophil Recruitment and NK Cells Inhibition. *PLoS ONE* 2016, 11, e0165361. [CrossRef]

60. Xu, Y. Interleukin-25 increases in human coronary artery disease and is associated with the severity of coronary stenosis. *Anatol. J. Cardiol.* 2019, 23, 151–159. [CrossRef]

61. Naumenko, V.; Turk, M.; Jenne, C.N.; Kim, S.-J. Neutrophils in viral infection. *Cell Tissue Res.* 2018, 371, 505–516. [CrossRef]

62. Kickert, M. Innate Immune Evasion by Human Respiratory RNA Viruses. *J. Innate Immun.* 2020, 12, 4–20. [CrossRef]

63. Muir, R.; Osbourn, M.; Dubois, A.V.; Doran, E.; Small, D.M.; Monahan, A.; O’Kane, C.M.; McAllister, K.; Fitzgerald, D.C.; Kissenpfennig, A.; et al. Innate Lymphoid Cells Are the Predominant Source of IL-17A during the Early Pathogenesis of Acute Respiratory Distress Syndrome. *Am. J. Respir. Crit. Care Med.* 2016, 193, 407–416. [CrossRef] [PubMed]

64. Angkasekwinai, P.; Park, H.; Wang, Y.-H.; Wang, Y.-H.; Chang, S.H.; Corry, D.B.; Liu, Y.-J.; Zhu, Z.; Dong, C. Interleukin 25 promotes the initiation of proallergic type 2 responses. *J. Exp. Med.* 2007, 204, 1509–1517. [CrossRef] [PubMed]

65. Johnston, A.; Fritz, Y.; Dawes, S.M.; Diaconu, D.; Al-Attar, P.M.; Guzman, A.M.; Chen, C.S.; Fu, W.; Gudjonsson, J.E.; McCormick, T.S.; et al. Keratinocyte Overexpression of IL-17C Promotes Psoriasiform Skin Inflammation. *J. Immunol.* 2013, 190, 2252–2262. [CrossRef] [PubMed]

66. Xu, M.; Dong, C. IL-25 in allergic inflammation. *Immunol. Rev.* 2016, 278, 185–191. [CrossRef] [PubMed]

67. Caruso, R.; Sarra, M.; Stolfi, C.; Rizzo, A.; Fina, D.; Fantini, M.C.; Pallone, F.; MacDonald, T.T.; Monteleone, G. Interleukin-25 Inhibits Interleukin-12 Production and Th1 Cell-Driven Inflammation in the Gut. *Gastroenterology* 2009, 136, 2270–2279. [CrossRef]

68. Owyang, A.M.; Zaph, C.; Wilson, E.H.; Guild, K.; McClanahan, T.; Miller, H.R.P.; Cua, D.J.; Goldschmidt, M.; Hunter, C.A.; Kastelein, R.A.; et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. *J. Exp. Med.* 2006, 203, 843–849. [CrossRef]

69. Hvid, M.; Vestergaard, C.; Kemp, K.; Christensen, G.B.; Deleuran, B.; Deleuran, M. IL-25 in Atopic Dermatitis: A Possible Link between Inflammation and Skin Barrier Dysfunction? *J. Investig. Dermatol.* 2011, 131, 150–157. [CrossRef] [PubMed]

70. Deleuran, M.; Hvid, M.; Kemp, K.; Christensen, G.B.; Deleuran, B.; Vestergaard, C. IL-25 Induces Both Inflammation and Skin Barrier Dysfunction in Atopic Dermatitis. *New Trends Allergy Atopic Eczema* 2012, 96, 45–49. [CrossRef]

71. Valizadeh, A.; Khosravi, A.; Zadeh, L.J.; Parizad, E.G. Role of IL-25 in Immunity. *J. Clin. Diagn. Res.* 2015, 9, OE01. [CrossRef]

72. Corrigan, C.J.; Wang, W.; Meng, Q.; Fang, C.; Wu, H.; Reay, V.; Lv, Z.; Fan, Y.; An, Y.; Wang, Y.-H.; et al. T-helper cell type 2 (Th2) memory T cell-potentiating cytokine IL-25 has the potential to promote angiogenesis in asthma. *Proc. Natl. Acad. Sci. USA* 2011, 108, 1579–1584. [CrossRef] [PubMed]

73. Jiang, L.; Xue, W.; Wang, Y. RETRACTED: Inhibition of miR-31a-5p decreases inflammation by down-regulating IL-25 expression in human dermal fibroblast cells (CC-2511 cells) under hyperthermic stress via Wnt/β-catenin pathway. *Biomed. Pharmacother.* 2018, 107, 26–33. [CrossRef] [PubMed]

74. Vannella, K.M.; Ramalingam, T.R.; Borthwick, L.A.; Barron, L.; Hart, K.M.; Thompson, R.W.; Kindrachuk, K.N.; Cheever, A.W.; White, S.; Budelsky, A.; et al. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine–driven inflammation and fibrosis. *Sci. Transl. Med.* 2016, 8, 337ra65. [CrossRef] [PubMed]

75. Luo, Y.; Yang, Z.; Su, L.; Shan, J.; Xu, H.; Xu, Y.; Liu, L.; Zhu, W.; Chen, X.; Liu, C.; et al. Non-CSCs nourish CSCs through interleukin-17E-mediated activation of NF-κB and JAK/STAT3 signaling in human hepatocellular carcinoma. *Cancer Lett.* 2016, 375, 390–399. [CrossRef] [PubMed]

76. Feng, J.; Li, L.; Ou, Z.; Li, Q.; Gong, B.; Zhao, Z.; Qi, W.; Zhou, T.; Zhong, J.; Cai, W.; et al. IL-25 stimulates M2 macrophage polarization and thereby promotes mitochondrial respiratory capacity and lipolysis in adipose tissues against obesity. *Cell. Mol. Immunol.* 2017, 15, 493–505. [CrossRef] [PubMed]

77. Huang, Q.; Niu, Z.; Tan, J.; Yang, J.; Liu, Y.; Ma, H.; Lee, V.; Sun, S.; Song, X.; Guo, M.; et al. IL-25 Elicits Innate Lymphoid Cells and Multipotent Progenitor Type 2 Cells That Reduce Renal Ischemic/Reperfusion Injury. *J. Am. Soc. Nephrol.* 2015, 26, 2199–2211. [CrossRef]