Management of Finger Pulse using Oximeter – A Case Study in Scientific and Marketing Viability

R.Amuthan

Department of Management Studies, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India.

Email: prof.drramuthan@gmail.com

Abstract: The original purpose of this device was to create a lightweight, simple, and easy-to-use pulse oximeter for seniors and others who wanted to check their oxygen saturation at home. A portable pulse oximeter has become a must-have for all Covid-19 patients, particularly those who are quarantined at home, since the virus's effects on the body require them to constantly track their oxygen saturation levels. The pulse oximeter's design may be more advantageous to the average hospital patient

Keywords: Anti-movement, Algorithm, pulse oximetry, Marketing Plan

1. Uniqueness of the Study:

The oximeter's unique technology is its highly ergonomic and simplistic nature, as well as its wireless display. Since the monitor is wireless, the measuring unit may be much smaller and less obstructive to the consumer. The user would also benefit from easier placement of digital readouts and improved audio and visual alerts. Other advances on both sides are also possible as a result. The purpose of pulse oximetry is to check how well your heart is pumping oxygen through your body. To decide whether anyone needs breathing assistance. To determine how effective supplemental oxygen therapy is, especially when treatment is new and to assess someone’s ability to tolerate increased physical activity to evaluate whether someone momentarily stops breathing while sleeping — like in cases of sleep apnea — during a sleep study.-to see how effective a ventilator is. To control oxygen levels during or after sedation-inducing surgical procedures. It may be used to monitor the health of individuals with any type of condition that can affect blood oxygen levels, especially while they’re in the hospital.

1.1. Technical Feasibility of the Study:

Product Features

The AHS product will design a much smaller and more ergonomic measuring device as well as a wireless display system. The product will fit on one’s finger. Some of the other feature that include are

- Humanized Design
- Light and Compact
Pulse oximetry is a test that determines how efficiently the heart pumps oxygen across the body. It can be used to track the health of people with any condition that affects blood oxygen levels, particularly when they're in the hospital. These conditions include: determining how effective a new lung drug is to determine if anyone needs assistance with breathing.

The theory behind pulse oximetry is that O2Hb and HHb absorb red and near-infrared (IR) light differently. Since red and near-IR light penetrate tissues well, but blue, green, yellow, and far-IR light is heavily absorbed by non-vascular tissues and water, it's lucky that O2Hb and HHb absorb light at these wavelengths differently. O2Hb has a higher absorption rate. The light that passes through the finger is detected by a photodiode on the probe's opposite arm; in other words, the pulse oximeter measures the amount of red and IR light absorbed to determine the proportion of Hb bound to oxygen. The ability of pulse oximetry to detect SpO2 in only arterial blood is based on the concept that the amount of red and infrared light absorbed varies.

The red-blue ratio is measured in pulse oximeters using the amplitude of absorbances. Where A is absorbance and R is the ratio of pulsatile and non-pulsatile red light absorption to IR light absorption, \(R = \frac{A_{\text{red,AC}}/A_{\text{red,DC}}}{A_{\text{IR,AC}}/A_{\text{IR,DC}}} \), where A is absorbance and R is the ratio of pulsatile and non-pulsatile red light absorption to IR light absorption. A microprocessor in a pulse oximeter uses this ratio (calculated over a series of pulses) to calculate SpO2 based on an empirical calibration curve created by measuring R in healthy volunteers whose saturations were reduced from 100% to around 70% (Fig. 1C). SpO2 readings below 70% should not be deemed dangerous because clinical decompensation is impossible.

Pulse oximetry is a test that determines how efficiently the heart pumps oxygen across the body. It can be used to track the health of people with any condition that affects blood oxygen levels, particularly when they're in the hospital. These conditions include: determining how effective a new lung drug is to determine if anyone needs assistance with breathing. The theory behind pulse oximetry is that O2Hb and HHb absorb red and near-infrared (IR) light differently. Since red and near-IR light penetrate tissues well, but blue, green, yellow, and far-IR light is heavily absorbed by non-vascular tissues and water, it's lucky that O2Hb and HHb absorb light at these wavelengths differently. O2Hb has a higher absorption rate. The light that passes through the finger is detected by a photodiode on the probe's opposite arm; in other words, the pulse oximeter measures the amount of red and IR light absorbed to determine the proportion of Hb bound to oxygen. The ability of pulse oximetry to detect SpO2 in only arterial blood is based on the concept that the amount of red and infrared light absorbed varies.

The red-blue ratio is measured in pulse oximeters using the amplitude of absorbance. Where A is absorbance and R is the ratio of pulsatile and non-pulsatile red light absorption to IR light absorption, \(R = \frac{A_{\text{red,AC}}/A_{\text{red,DC}}}{A_{\text{IR,AC}}/A_{\text{IR,DC}}} \), where A is absorbance and R is the ratio of pulsatile and non-pulsatile red light absorption to IR light absorption.
ratio of pulsatile and non-pulsatile red light absorption to IR light absorption. A microprocessor in a pulse oximeter uses this ratio (calculated over a series of pulses) to calculate SpO2 based on an empirical calibration curve created by measuring R in healthy volunteers whose saturations were reduced from 100% to around 70% (Fig. 1C). SpO2 readings below 70% should not be deemed dangerous because clinical decompensation is impossible. The Beer–Lambert Law of Absorbance can be used to demonstrate how pulse oximeters overlook the effects of venous and capillary blood, as well as other stationary tissues, when measuring SpO2. Because it has a much higher vascular density than the skin on the chest wall, pulse oximeter probes look at the skin on the finger, nose, earlobe, and forehead. Reusable clip probes (forefinger)

2. Marketing Strategy

Target market

The primary market that we are targeting is the vital parameter device market, where we are targeting a portion of the consumer oximeter market where an oximeter is used at homes and old age homes. Additionally, we are targeting the healthcare sectors, especially emergency response.

Major Customer Groups

Senior Citizens/ General Users

The initial purpose of AHS is to create a portable, simple, user friendly pulse oximeter for senior citizens and the general user who would like to check their oxygen saturation at the comfort of their homes.

Covid-19 Effected Patients

A portable pulse oximeter has become a necessity for all Covid-19 effected patients, especially those who are quarantined at home as they need to constantly check their oxygen saturation levels because of the effects of the virus in the body.

Medical

The design of the AHS pulse oximeter could prove to be more beneficial to the everyday hospital patient. The smaller device would cause less discomfort than the bulky finger ones used today, as well as giving more important information to the nurses and doctors. Once again, the need for a high-end product would put some pressure on the quality control of the devices sold to the medical field.

Emergency Response Units

The smaller design as well as the wireless display will prove to be much simpler for medical teams in ambulances to use. Quicker and easier is the whole goal of these units, so the AHS product will be a clear advantage.
Customer’s motivation to buy

Customers will be motivated to buy our product as it will be the only comfortable and easy to use portable finger pulse oximeter with good display along with this the pandemic situation has created a need for pulse oximeters in every single house due to the increase awareness of patient monitoring. Due to Covid-19, this product is become more familiar. Hospitals are usually going for checking Co-morbidities when they admitted with the complain of Covid-19 infected disease.

Market size and trends

During the forecast period, the pulse oximeter market in India is expected to expand at a rapid pace. The sudden outbreak and spread of pandemic COVID-19 in India has prompted the development of a pulse oximeter in the region. Due to a lack of hospital beds for COVID-19 patients in most parts of the country, various governments across the country have adopted home quarantine options.

3. Conclusion:

This paper primarily focuses on various methods for automated detection of acute lymphoblastic leukemia using image processing techniques. An automated system can significantly reduce the time required for the analysis and also reduces the human errors which might occur in a manual examination as it depends completely on the examiner’s experience, attentiveness and state of mind. Automated systems provide a simple, robust and precise technique with minimal time and errors. However, as promising as all these techniques may seem, further research is required for a practical application of these techniques so that examiner can easily diagnose the disorder and classify ALL. Techniques need to be more accurate and precise for a practical application. There is a lot of areas yet to be covered like technique to properly classify all the subtypes of ALL, which is still a major challenge. Further research into this may reveal more efficient methods to identify ALL and it’s subtypes to better help the medical practitioners so that ALL could be identified at an early stage and help people with their fast recovery.

4. Reference:

[1] R.G Bagasjvara, “Automated Detection and Classification Techniques of Acute Leukemia using Image Processing”, International Conference on Science and Technology-Computer (ICST),2016
[2] Prasidhi G. Fal Desai, Geeta Shet, “Detection of leukemia using image processing”, International journal of advance research in science and engineering, April 2018.
[3] Sarmad Shafique and Samabia Tehsin, “Computer-Aided Diagnosis of Acute Lymphoblastic Leukaemia”, Computational and Mathematical Methods in Medicine,2018
[4] Amjad Rehman, Naveed Abbas, Tanzila Saba, Zahid Mehmood, Hoshang Kolivand, “Classification of acute lymphoblastic leukemia using deep learning”, Microscopy Research and Technique,2018
[5] Fabio Scotti, “Automatic Morphological Analysis for Acute Leukemia Identification in Peripheral Blood Microscope Images”, IEEE International Conference on Computational Intelligence for Measurement Systems and Applications(CIMSA),2005
[6] Shubhangi Khobragade, Dheeraj D Mor, Dr. C.Y.Patil, “Detection of Leukemia in Microscopic White Blood Cell Images”, International Conference on Information Processing (ICIP), 2015.

[7] J. Rodellar S. Alférez A. Acevedo A. Molina A. Merino, “Image processing and machine learning in the morphological analysis of blood cells”, International journal of laboratory hematology, 2018.

[8] W. Ladines-Castro, G. Barragán-Ibanez, “Morphology of leukaemias”, UNAM, 2015.

[9] Rohit Agrawal, Sachinandan Satapathy, Govind Bagla, “Detection of White Blood Cell Cancer using Image Processing”, International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), 2019.

[10] Ashikur Rahman and Md. Mehedi Hasan, “Automatic Detection of White Blood Cells from Microscopic Images for Malignancy Classification of Acute Lymphoblastic Leukemia”, International Conference on Innovation in Engineering and Technology (ICIET), 27-29 December, 2018.

[11] Jyoti Rawat A. Singh, H.S. Bhadauria, I. Kumar, “Comparative analysis of segmentation algorithms for leukocyte extraction in the acute lymphoblastic leukemia images, International Conference on Parallel, Distributed and Grid Computing, 2014.

[12] Lorenzo Putzua, Giovanni Caoccib, Cecilia Di Rubertoa, “Leucocyte classification for leukaemia detection using image processing techniques”, Artificial intelligence in medicine, September 2014.

[13] Ivan Vincent, Ki-Ryong Kwon, S. Lee, K. Moon, “Acute lymphoid leukemia classification using two-step neural network classifier”, 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV), Mokpo, Korea (South), 2015.

[14] Furong Huang, Peiwen Guang, Fucui Li, Xuewen Liu, Weimin Zhang, Wendong Huang, “AML, ALL, and CML classification and diagnosis based on bone marrow cell morphology combined with convolutional neural network”, A STARD compliant diagnosis research, 2020.

[15] Hyuna Sung, Jacques Ferlay, Rebecca L. Siegel, Mathieu Laversanne, Isabelle Soerjomataram, Ahmedin Jamal, Freddie Bray, “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries”, CA: A Cancer Journal for Clinicians.

[16] Alexander Kratz, Szu-hee Lee, Gina Zini, Jurgen A. Riedi, Mina Hur, Sam Machin, “Digital morphology analyzers in hematology: ICSH review and recommendations”, International Journal of Laboratory Hematology, April 2019.

[17] Sarmad Shafique and Samabia Tehsin, “Computer-Aided Diagnosis of Acute Lymphoblastic Leukaemia”, Computational and Mathematical Methods in Medicine, 2018.

[18] Silvana ANGELESCU, Nicoleta Mariana BERBEC, Andrei COLITA, Doina BARBU, Anca Roxana LUPU, “Value of Multifaced Approach Diagnosis and Classification of Acute Leukemias”, MAEDICA – A Journal of Clinical Medicine, August 2012.