Distribution and analysis of Charcot foot in diabetes through Amit Jain’s extended “SCC” classification

Amit Kumar C Jain, Apoorva HC, Suresh Kumar and Hariprasad TR

Abstract

Objective: To analyze and distribute the Charcot foot in diabetes through the new Amit Jain’s classification for Charcot foot (E “SCC”) and to predict outcomes associated with this new classification. Materials and Methods: A descriptive retrospective analysis was conducted at 2 different centers in Bengaluru city, India. The study period was for 2 years. An IEC clearance was obtained prior to the study. Statistical analysis was done using SPSS 22 and R environment Ver.3.2.2. Results: A total of 16 patients were studied who fulfilled inclusion criteria. Majority were males accounting for 68.85% of the cases. 31.3% had acute Charcot foot. Majority of the patients were in type 1 Charcot foot. Midfoot was most commonly involved with pattern III being most common affecting 75% of the patients. Major amputation occurred in 12.5% of the cases and osteomyelitis was significantly associated with major amputation (P=0.008). TCC and Removable cast walker were significantly used in acute Charcot foot. Conclusion: In this validation study, it is seen that majority of the Charcot foot in clinical practice were of simple type and surgeries were done in type 3 Charcot foot. All the major amputation occurred in type 3 Charcot foot and osteomyelitis had significant association with amputation. There was no mortality in this study. Amit Jain’s classification for Charcot foot is a simple, practical, easy to remember focal classification that guides therapy, serves a good teaching and communicative tool.

Keywords: Diabetes, charcot, amit jain, ulcer, amputation, classification, foot

Introduction

Charcot foot, which is also known as Charcot neuropathic arthropathy, is a progressive, inflammatory, noninfected, destructive disease that affects foot and ankle. [1, 2, 3] This condition can result in fractures, subluxation, dislocation, deformities and can result in limb loss [1, 3, 4, 5]. This condition was first described by Jean Martin Charcot in 1868 in case of tabes dorsalis and in the year 1936, William Riley Jordan noticed its association with diabetes [2, 5, 6]. There are various different classifications for Charcot foot based on radiological features, Clinical, anatomical involvement, etc. [2, 6, 7, 8] Some of the well-known Charcot foot classifications are Eichenholtz, Dounis, Roger’s– Bevilacqua, Sander’s– Frykberg’s, Sella-Barrette classification, etc [2, 6, 7, 8, 9]. All of these novel classifications have their own different merits and are used in different parts of the world.

Amit Jain’s classification for Charcot foot is a newly proposed classification for Charcot foot (Table 1) which is an extension of “SCC” classification concept that was first proposed for diabetic foot ulcer in 2014 [8, 10, 11]. This concept of “Simple, Complex, Complicated” classification system was later extended to Amit Jain’s classification for diabetic foot classifications, offloading, callosity, therapeutic foot wear, toe deformities, foot amputations and Charcot foot [8, 12, 13, 14].

The e “SCC” classification concept is a component of Amit Jain’s system of practice which is a modern diabetic foot surgery concept that was developed by the primary author [8, 15]. The objective of this present study was to analyze the Amit Jain’s extended “SCC” classification for Charcot foot [Figure 1] and describe the results and outcomes associated with this new classification.
Table 1: Showing the Amit Jain’s e”SCC classification for Charcot foot

Type of Charcot foot	Description	Clinical characteristics	Treatment guidelines
Type 1 Charcot foot	Simple	Charcot foot without ulcer [acute/chronic]	TCC/RCW → Acute Charcot foot, Modified footwear → Chronic Charcot foot
	Complex	Charcot foot with ulcer	Offloading, Standard wound care, Surgery like Exostectomy if recurrent ulcer
Type 2 Charcot foot	Complicated	Charcot foot with infection or instability	Surgery like debridement, removal of infected bone, antibiotics, Reconstructive surgery for unstable Charcot foot, Offloading, Standard wound care

Materials and Methods
A descriptive retrospective analysis was carried out at 2 center’s namely Amit Jain’s Institute of Diabetic Foot and Wound Care, Brindhavan Areion hospital and at Department of Surgery of Rajarajeswari medical college, Bengaluru, India. The study period was from May 2017 to April 2019. The charts and records were reviewed to obtain demographic profile, radiological features and surgeries done. The following were inclusion and exclusion criteria.

Inclusion criteria
1. All patients who were treated for Charcot foot in Diabetes

Exclusion criteria
1. Non-diabetics with Charcot foot
2. Patients admitted in other departments
3. Patients who refused treatment
4. Patients with insufficient data

IEC approval was obtained for this study from Rajarajeswari medical college ethics committee [RRMCH-IEC/43/2018-19]

Statistical analysis
Data was analyzed using statistical software SPSS 22 and R environment Ver. 3.2.2. Microsoft word and excel were used for general graphs and tables. Both descriptive and inferential statistical analysis was carried out in this study. Results on continuous measurements are presented on Mean SD (Min-Max) and results on categorical measurements are presented in number (%). Significance is assessed at 5% level of significance. The assumptions made on data are that the dependent variables should be normally distributed, samples drawn from the population should be random and cases of the samples should be independent. Student t test (two tailed, independent) has been used to find the significance of study parameters on continuous scale between two groups (Inter group analysis) on metric parameters. Leven’s test for homogeneity of variance has been performed to assess the homogeneity of variance. Chi-square/ Fisher Exact test has been used to find the significance of study parameters on categorical scale between two or more groups, Non-parametric setting for Qualitative data analysis. Fisher exact test was used when samples were very small.

Significant figures
1. Suggestive significance (P value: 0.05<P<0.10)
2. Moderately significant (P value: 0.01<P 0.05)
3. Strongly significant (P value: P≤0.01).

Results
The demographic features are presented in table 2. During this study period, 16 patients were included [11 males and 5 females (Figure 2) with mean age of 57.31 ± 9.88 years, the mean duration of diabetes mellitus being 15.16 ± 7.61 years]. Left foot was most commonly involved (43.8%). The prevalence of
hypertension was 75%, chronic kidney disease was 12.5% and ischemic heart disease was 18.8%. 31.3% had acute Charcot foot. 68.8% had single joint involvement on radiographs (Figure 3) with pattern 3 of Charcot being commonest anatomic pattern (Sander’s- Frykberg’s classification) affecting 75% of the cases (Figure 4). Majority of the patients in this study had Amit Jain’s type 1 Charcot foot (50%). 37.5% had some form of infection in Charcot foot thereby complicating the Charcot foot and leading to surgeries. 12.5% had underlying osteomyelitis and equal percentage resulted in major amputation. 81.3% were on some offloading (Table 2).

![Gender Distribution Chart](image)

Table 2: showing demographic and characteristic profile

Characteristics	Number	Percentage
Age	57.31±9.88	
Gender		
Male	11	68.8
Female	5	31.3
Diabetes duration (Years)		
< 10	2	12.5
10-20	13	81.3
>20	1	6.3
Hypertension		
Yes	12	75
No	4	25
Side of the foot		
Right	5	31.3
Left	7	43.8
Bilateral	4	25
X-ray pattern of Charcot foot		
Single	11	68.8
Mixed	5	31.3
Anatomical pattern of Charcot foot		
Pattern I	0	0
Pattern II	3	18.8
Pattern III	12	75
Pattern IV	1	6.3
Pattern V	0	0
Amit Jain’s type of Charcot foot		
Type 1 (Simple)	8	50
Type 2 (Complex)	2	12.5
Type 3 (Complicated)	6	37.5
Major Amputation		
Yes	2	12.5
No	14	87.5
Osteomyelitis		
Present	2	12.5
Absent	14	87.5
Types of Offloading		
Total contact cast (TCC)	2	12.5
Removable Cast Walker (RCW)	3	18.8
Footwears	4	25
Amit Jain’s Offloading	4	25
No association was noted between age, gender, diabetes duration, hypertension, side of foot, x-ray pattern, anatomical pattern, osteomyelitis or major amputation with Amit Jain’s type of Charcot foot (Table 3). Significant association was seen with type of offloading used (P=0.003), clinical type of Charcot foot (P=0.038) and surgery done (P<0.001) with Amit Jain’s type of Charcot foot. Removable cast walker (RCW) and therapeutic footwear was most commonly used offloading method in type 1 Charcot foot [Simple] whereas Amit Jain’s offloading system was most commonly used offloading in type 3 Charcot foot (P=0.003). All the type 3 Charcot foot were chronic Charcot foot and surgeries were done only in type 3 Charcot foot (Figure 5).

Table 3: showing Association of clinical variables in relation to Amit Jain’s (AJ) Classification for Charcot foot

Variables	AJ Type of Charcot foot	Total (n=16)	P value		
	Simple (n=8)	Complex (n=2)	Complicated (n=6)		
Age in years					
41-50	3 (37.5%)	1 (50%)	2 (33.3%)	6 (37.5%)	0.880
51-60	3 (37.5%)	0 (0%)	3 (50%)	6 (37.5%)	0.319
61-70	1 (12.5%)	0 (0%)	0 (0%)	1 (6.3%)	0.319
71-80	1 (12.5%)	1 (50%)	1 (16.7%)	3 (18.8%)	0.319
Gender					
Male	5 (62.5%)	1 (50%)	5 (83.3%)	11 (68.8%)	0.615
Female	3 (37.5%)	1 (50%)	1 (16.7%)	5 (31.3%)	0.615
Diabetes Duration					
<10	1 (12.5%)	0 (0%)	1 (16.7%)	2 (12.5%)	0.319
10-20	7 (87.5%)	1 (50%)	5 (83.3%)	13 (81.3%)	0.319
>20	0 (0%)	1 (50%)	0 (0%)	1 (6.3%)	0.319
Hypertension					
Yes	6 (75%)	2 (100%)	4 (66.7%)	12 (75%)	1.000
No	2 (25%)	0 (0%)	2 (33.3%)	4 (25%)	1.000
Side of Foot					
Right	3 (37.5%)	1 (50%)	1 (16.7%)	5 (31.3%)	0.107
Left	5 (62.5%)	0 (0%)	2 (33.3%)	7 (43.8%)	0.107

Fig 3: showing X-ray pattern distribution

Fig 4: showing the anatomical pattern of Charcot foot
X-ray pattern

Pattern	Bilateral (0%)	Single (75%)	Mixed (25%)	Total (16)	P value
	0 (0%)	2 (100%)	3 (50%)	11 (68.8%)	0.462

Anatomical pattern of Charcot foot

Pattern	Bilateral (0%)	Single (25%)	Mixed (50%)	Total (11)	P value
Pattern I	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0.407
Pattern II	2 (25%)	0 (0%)	1 (16.7%)	3 (18.8%)	
Pattern III	6 (75%)	1 (50%)	5 (83.3%)	12 (75%)	
Pattern IV	0 (0%)	1 (50%)	0 (0%)	1 (6.3%)	
Pattern V	0 (0%)	0 (0%)	0 (0%)	0 (0%)	

Major Amputation

Major Amputation	Yes (n=2)	No (n=14)	Total (n=16)	P value
Bilateral	0 (0%)	8 (100%)	8 (100%)	
Single	2 (100%)	2 (100%)	4 (25%)	0.233
Mixed	3 (50%)	3 (50%)	6 (37.5%)	0.003**

Osteomyelitis

Osteomyelitis	Yes (n=2)	No (n=14)	Total (n=16)	P value
Bilateral	0 (0%)	8 (100%)	8 (100%)	
Single	2 (100%)	2 (100%)	4 (25%)	0.233
Mixed	3 (50%)	3 (50%)	6 (37.5%)	0.003**

Types of offloading

Types of offloading	Yes (n=2)	No (n=14)	Total (n=16)	P value
TCC	2 (25%)	0 (0%)	2 (12.5%)	0.003**
RCW	3 (37.5%)	0 (0%)	3 (18.8%)	
Footwear	3 (37.5%)	1 (50%)	4 (25%)	
Amit Jain’s offloading	0 (0%)	1 (50%)	1 (6.3%)	
None	0 (0%)	3 (50%)	3 (18.8%)	

Clinical type of Charcot

Clinical type of Charcot	Yes (n=2)	No (n=14)	Total (n=16)	P value
Acute	5 (62.5%)	0 (0%)	5 (31.3%)	0.038+
Chronic	3 (37.5%)	6 (100%)	9 (56.2%)	<0.001**

Surgery done

Surgery done	Yes (n=2)	No (n=14)	Total (n=16)	P value
Bilateral	0 (0%)	8 (100%)	8 (100%)	
Single	2 (100%)	2 (100%)	4 (25%)	0.233
Mixed	3 (50%)	3 (50%)	6 (37.5%)	

Resurgeries

Resurgeries	Yes (n=2)	No (n=14)	Total (n=16)	P value
Bilateral	0 (0%)	8 (100%)	8 (100%)	
Single	2 (100%)	2 (100%)	4 (25%)	0.233
Mixed	3 (50%)	3 (50%)	6 (37.5%)	

Major amputation occurred in type 3 Charcot foot and it had significant association (P=0.008) with osteomyelitis (Table 4).

Table 4: showing association of variables of interest in relation to Major Amputation

Variables of interest	Major Amputation	Total (n=16)	P value	
	Yes (n=2)	No (n=14)		
Anatomical type of Charcot				
Pattern I	0 (0%)	0 (0%)	0 (0%)	1.000
Pattern II	0 (0%)	3 (21.4%)	3 (18.8%)	
Pattern III	2 (100%)	10 (71.4%)	12 (75%)	
Pattern IV	0 (0%)	1 (7.1%)	1 (6.3%)	
Pattern V	0 (0%)	0 (0%)	0 (0%)	

Osteomyelitis	Yes (n=2)	No (n=14)	Total (n=16)	P value
Bilateral	2 (100%)	0 (0%)	2 (12.5%)	0.008**
Single	2 (100%)	2 (100%)	4 (25%)	
Mixed	3 (50%)	3 (50%)	6 (37.5%)	

Chronic kidney disease	Yes (n=2)	No (n=14)	Total (n=16)	P value
Bilateral	0 (0%)	14 (100%)	14 (87.5%)	1.000
Single	2 (100%)	12 (85.7%)	14 (87.5%)	
Mixed	3 (50%)	3 (50%)	6 (37.5%)	

Ischemic heart disease	Yes (n=2)	No (n=14)	Total (n=16)	P value
Bilateral	0 (0%)	3 (21.4%)	3 (18.8%)	1.000
Single	0 (0%)	3 (21.4%)	3 (18.8%)	
Mixed	0 (0%)	3 (21.4%)	3 (18.8%)	

Fig 5: showing distribution of surgeries done according to type of Charcot foot

~ 12 ~
Significant association was also seen between anatomical type of Charcot foot and x-ray pattern (P=0.018) wherein 90.9% of pattern 3 Charcot had single joint involvement (Table 5). Significant association was seen between type of offloading used and clinical type of Charcot foot (P<0.001) and surgery (P=0.007). Removable cast walker and total contact cast was significantly used in acute Charcot foot whereas therapeutic footwear and Amit Jain’s offloading system was commonly used in chronic Charcot foot. Amit Jain’s offloading was frequently used in Charcot foot patients who underwent surgeries (Table 5). One patient had history of failure Charcot reconstruction in the past. There was no case of any peripheral arterial occlusive disease and there was no mortality in this study.

Discussion
Charcot foot in diabetes is a rare condition with lifetime prevalence ranging from 0.1% to 10% [6]. It is invariably associated with peripheral neuropathy in diabetes [6, 20]. Although, there is no gender predilection in Charcot foot, there are studies where male gender was considered to be a risk factor for Charcot foot [20]. It is seen often that Charcot foot develops in diabetes usually after 10 years of duration [21]. The mean duration of diabetes in our study was 15.56 years. Although Charcot foot is seen frequently in one-foot, bilateral presentation is also seen ranging from 9 to 75% in different studies [21, 22]. In Salini et al. study [21], bilateral involvement was seen in 18% whereas in our study around 25% had bilateral Charcot foot. In Thewjitcharoen et al. series [23], acute Charcot foot was seen in 33% and chronic Charcot was seen in 67%. In our study, 31.3% had acute and 68.8% had chronic Charcot foot (Figure 6).

Table 5: showing association among different variables of interest

Variables of Interest	Osteomyelitis	Total (n=16)	P value
	Yes (n=2)	No (n=14)	
X-ray pattern			
Single	1 (50%)	10 (71.4%)	1.000
Mixed	1 (50%)	4 (28.6%)	
Surgery done			0.125
Yes	2 (100%)	4 (28.6%)	
No	0 (0%)	10 (71.4%)	
Anatomical type of Charcot foot (Sander’s-Frykberg’s)			
X-ray pattern			
Single (n=11)			
Pattern I	0 (0%)	0 (0%)	0.018*
Pattern II	0 (0%)	3 (60%)	
Pattern III	10 (90.9%)	2 (40%)	
Pattern IV	3 (27.3%)	1 (20%)	
Pattern V	0 (0%)	0 (0%)	
Types of offloading used			0.495
Total contact cast	1 (9.1%)	1 (20%)	
Random cast walker	2 (18.2%)	1 (20%)	
Footwear	4 (36.4%)	0 (0%)	
Amit Jain’s offloading	3 (27.3%)	1 (20%)	
None	1 (9.1%)	2 (40%)	
Type of offloading used	Clinical type of Charcot		
Acute			0.001**
Total Contact Cast	2 (40%)	0 (0%)	
Removable cast walker	3 (60%)	0 (0%)	
Footwear	0 (0%)	4 (36.4%)	
Amit Jain’s offloading	0 (0%)	4 (36.4%)	
None	0 (0%)	3 (27.3%)	
Type of offloading used	Surgery Done		0.007**
Yes			
Total Contact Cast (TCC)	0 (0%)	2 (20%)	
Removable cast walker (RCW)	0 (0%)	3 (30%)	
Footwear	0 (0%)	4 (40%)	
Amit Jain’s offloading	3 (50%)	1 (10%)	
None	3 (50%)	0 (0%)	
According to Sander-Frykberg’s anatomical classification for Charcot foot, there are 5 different patterns of which commonest is pattern II (40%) followed by pattern III (30%) [6]. Even in Thewjitcharoen et al series [23], pattern II was commonest seen in 50% of cases followed by pattern III (27.5%). In our study, 75% of the cases had pattern III and only 18.8% had pattern II. In Varma et al. study [21], 38% of the cases had single joint involvement radiologically. In our study, 68.8% had single joint involvement and 90.9% of the pattern III was significantly associated with single pattern involvement.

It is seen that ulcerations and infection are common in Charcot foot. As per Amit Jain’s classification for Charcot foot, presence of ulcer renders a Charcot foot (Figure 7) as a complex Charcot foot (type 2) and once infection sets in, the Charcot foot becomes type 3 (complicated). Our study showed 37.5% of Charcot foot is of complicated type. Around 5% to 51% of the Charcot foot patients may require some form of surgery [22]. The surgical options are debridement, exostectomy, arthrodesis and amputation [12, 23]. There are evidence that <5% of the cases require major surgical correction although in some series it can be as high as 33% [23]. In Varma et al. series [22], around 9% of the cases of Charcot foot required reconstructive foot surgeries.

In our series, none of the patients required any reconstructive surgeries although one patient had past history of failed reconstruction in acute Charcot foot. Studies have shown that presence of ulcer in Charcot foot increased risk of major amputation to more than 6 times compare to Charcot foot without ulcer [23]. Around 37.5% of the patients underwent surgeries in this series and all were done in type 3 Charcot foot (significant association).

There were 2 major amputations (12.5%) and they were done in type 3 Charcot foot (Complicated type). In Thewjitcharoen et al. series [23], 13% of patients had osteomyelitis in Charcot foot. Studies have shown that osteomyelitis is a major risk factor for amputation [7]. In our study, 12.5% had osteomyelitis and it was significantly associated with major amputation as osteomyelitis is seen in type 3 Charcot foot.

Offloading remains mainstay of treatment in Charcot foot [1]. In Thewjitcharoen et al. series [23], 85.7% of acute Charcot foot and 34.6% of chronic Charcot foot were on total contact cast. In our series, total contact cast (40%) and removable cast walker (60%) were used in acute Charcot foot and 36.4% of patients with chronic Charcot foot had Amit Jain’s offloading system and foot wear as offloading modality. Amit Jain’s offloading system was significantly used as deflective offloading [13] in our patients who underwent surgeries.

Conclusion

Charcot foot is a destructive disease which is uncommon and frequently misdiagnosed. Majority of the cases in this study were on simple type (Type 1). Total contact cast and Removable cast walkers were most commonly used only in acute Charcot foot whereas Amit Jain’s offloading system and Therapeutic footwear were commonly used in chronic Charcot foot especially in those patients who underwent surgery. All major amputations were done in type 3 Charcot foot and osteomyelitis was a significant contributing factor for major amputation as it renders Charcot foot to a complicated type (Type 3). None of the patients required reconstructive surgeries. Amit Jain’s extended “SCC” classification for Charcot foot is a simple, practical, easy to remember, focal classification of Charcot foot. It can serve as an excellent teaching tool and also a good communicative tool. It also helps in categorizing Charcot foot and provides a good guide to treatment.

Acknowledgement

Authors would like to thank Dr. K.P. Suresh, Scientist (Biostatistics), National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bangalore, India, for reviewing the research methodology and statistical results of the study and the Institutional ethics committee of RRMCH for approving this study.

References

1. Marmolejo VS, Arnold JF, Ponticello M, Andersen CA. Charcot foot: Clinical clues, Diagnostic strategies and Treatment principles. Am Fam Physician. 2018; 97(9):594-599.
2. Rosenbaum AJ, DiPreta JA. Classifications in Brief: Eichenholtz Classification of Charcot arthropathy. Clin Orthop Relat Res. 2015; 473:1168-1171.
3. Rogers LC, Frykberg RG, Armstrong DG, Boulton AJM, Edmonds M, Van GH et al. The Charcot foot in diabetes. Diabetes Care. 2011; 34:2123-2129.
4. Sohn MW, Lee Ta, Stuck RM, Frykberg RG, Mak EB. Mortality risk of Charcot arthropathy compared with that of diabetic foot ulcer and diabetes alone. Diabetes Care. 2009; 32(5):816-21.
5. Durgia H, Saboo J, Kamalanathan S, Palui R, Sridharan K, Raj H et al. Role of bisphosphonates in the management of acute charcot foot. World J Diabetes. 2018; 9(7):115-126.
6. Papanas N, Malezos E. Etiology, Pathophysiology and classifications of the diabetic Charcot foot. Diabetic Foot & Ankle. 2013; 4:20872.
7. Viswanathan V, Kesavan R, Kavitha KV, Kumptla S. Evaluation of Roger’s classification of Charcot foot classification system in South Indian Diabetic subjects with Charcot foot. J Diab Foot Comp. 2012; 4(3):67-70.
8. Jain AKC. Extended application of Amit Jain’s “SCC” classification concept for diabetic foot. Int J Surg Sci. 2019; 3(1):188-191.
9. Bevilacqua NJ. Current insights or classifying Charcot arthropathy. Podiatry Today. 2009; 22(40):22-29.
10. Jain AKC, Apoorva HC, Kumar H, Kumar K, Rajagopalan S. analyzing diabetic foot ulcer through amit Jain’s classification: A descriptive study. Int J Surg Sci. 2018; 2(4):26-32.
11. Jain AKC. A simple new classification for diabetic foot ulcers. Medicine Science. 2015; 4(2):2109-20.
12. Jain AKC. Amit Jain’s classifications for diabetic foot classifications. Saudi J Med. 2018; 3(1):1-5.
13. Jain AKC. Amit Jain’s classification for offloading the diabetic foot wounds. IJMSCI. 2017; 4(5):2922-5.
14. Jain AKC, Tejasvita RS. To determine the pattern and type of amputation done in diabetic foot patients in a teaching hospital. EAS J Med Surg. 2019; 1(3):94-99.
15. Gopal S, Hariadarshan SJ. Amit Jain’s system of practice for diabetic foot: the modern diabetic foot surgery. Int J Res Orthop. 2019; 5(3):532-539.
16. Suresh KP, Chandrasekhar S. Sample Size estimation and Power analysis for Clinical research studies. J Human Rep Sc. 2012; 5(1):7-13.
17. Rosner B. In: Fundamentals of Biostatistics, 5th Edition, Duxbury, 2000.
18. Riffenburg RH. In: Statistics in Medicine, 2nd Edition, Academic press, 2005.
19. Rao PSSS, Richard J. In: An Introduction to Biostatistics, A manual for students in health sciences, New Delhi: Prentice hall of India. 4th Edition, 2006.
20. Petrova NL, Edmonds ME. Acute Charcot neuro-osteoarthropathy. Diabetes Metab Res Rev. 2016; 32:281-286.
21. Salini D, Kumar H, Pillay M, Karimassery RS, Bal A, Chirukanath JS et al. Prevalence of charcot arthropathy in type 2 diabetes patients aged over 50 years with sever peripheral neuropathy: A retrospective study in a tertiary care South Indian Hospital. Indian J Endocr Metab. 2018; 107-11.
22. Varma AK, Jain AKC, Sandhya, Mangalanandan, Kumar H. Charcot foot in diabetes- a six month study from the largest limb salvage centre of the diabetes capital of the world. J Diab Foot Comp. 2016; 8(1):1-5.
23. Thwejitcharoen Y, Sriphatpong J, Parksook W, Krittiyawong S, Porramatickul S, Srikummoon T et al. Salient features and outcomes of Charcot foot. An often-overlooked diabetic complications: a 17 year experience at a diabetic centre in Bangkok. J Clin Trans Endocr. 2018; 11:1-6.