I. INTRODUCTION

Quantum information science offers a wealth of new and potentially important phenomena to explore. One hope is that these possibilities will translate into practical and unique devices, with functionalities unmatched by classical devices. One field that has explored quantum mechanical effects and quantum coherence in particular is the field of light-matter interactions, and especially the couplings and effects investigated in the physics of optically driven multi-level atoms. Moving from atomic systems, with particular level structures, to spatial systems, perhaps defined lithographically, provides dramatic opportunities to tailor the Hilbert space and connectivity of the resultant quantum system. This allows natural translations of known effects from the atomic realm, to the electronic realm. Examples include charge qubits, adiabatic passage, and electromagnetically-induced transparency. A review of some of the progress in mesoscopic electronic systems, focussing on the quantum electronics/quantum optics/quantum information interface can be found in Ref.1.

The solid-state provides exceptional possibilities for realizing spatially defined Hilbert spaces, especially in the context of superconductors, donors in silicon and quantum dots. Here we focus on the latter for conceptual simplicity, but our ideas are equally relevant to all these implementations. Quantum dots provide a rich platform for exploring novel experiments in quantum mechanics and often allow for fine control over many system parameters. Chains of connected dots are of particular interest, with recent studies including examinations of triple quantum dots in GaAs 2DEG structures, carbon nanotubes, and double quantum dots in silicon, which extend the accessible spatial Hilbert space to allow clear connections with the quantum optical case.

Coherent Tunnelling Adiabatic Passage (CTAP) has been proposed for transporting quantum information and is a spatial analogue of the well known STIRAP protocol from quantum optics. It transports a particle coherently using a counter-intuitive coupling sequence of tunnelling matrix elements. CTAP has been recently demonstrated by Longhi et al. using photons in three and multi-waveguides structures, but it has also been proposed for observation in quantum dots. Other platforms for which demonstrations of CTAP have been proposed include phosphorus donors in silicon, where CTAP can be used as the transport mechanism in a quantum computer architecture, and also in superconductors, single atoms in optical potentials, and Bose-Einstein Condensates. STIRAP has also been discussed for spatial particle motion in quantum dots, see for example Ref.2.

The extensible nature of controlling the spatial location of states and their connectivity has led to CTAP being extended to multiple recipients (MRAP) as a means of implementing a form of fanout for a quantum computer. This branching ability, and the fact that CTAP is a coherent process, lends itself to investigating interferometry with devices using the CTAP as the transport mechanism.

Interferometry is a well-known means of probing the wave-like properties of particles, and non-trivial quantum phases. There have also been solid-state experiments that utilise interferometry to observe the wave-like nature of electrons in Aharonov-Bohm (AB) and related interferometers for ‘which-path’ measurements. The AB effect is a topological effect where a charged particle (for example an electron) traverses a loop. If the loop encloses a magnetic flux, this will break the symmetry of the paths and introduce a non-trivial phase. Interferometry then allows this phase to be revealed in oscillations in the final state population, as a function of the enclosed flux.

Here we are considering an adiabatic realization of the electrostatic Aharonov-Bohm (EAB) effect. This effect is named by analogy with the AB effect, but is not a topological effect. Instead, an external electrostatic field is used to break the symmetry of the two paths, which again gives rise to non-trivial phases and population oscillations as a function of the field. The EAB...
device we consider uses adiabatic-passage as the means of transport. This provides interesting flexibility and a rich phase space to explore. In particular this six-dot geometry is the simplest topology that permits both adiabatic passage and a non-trivial loop. Furthermore, our model shows an interesting interplay between adiabatic and nonadiabatic features, as is discussed below.

In our proposed quantum dot geometry, the Tunneling Matrix Elements (TMEs) are controlled via surface gates using the alternating coupling scheme with counter-intuitive pulse ordering (described below), a variation of the CTAP protocol called Alternating CTAP (ACTAP). This geometry has been investigated in linear chains for quantum dots and in the context of a five donor Si:P device. Again, we do not wish to explore the microscopic details of particular implementations too strongly, instead focusing on the physics that can be demonstrated in all potential platforms. Because of the wide range of possible implementations, we do not treat decoherence here, although its effect will be to wash out the interference patterns.

\[\mathcal{H} = \Omega_1 (|1\rangle\langle 2| + |3_u\rangle\langle 4| + |3_d\rangle\langle 4|) + h.c. \]
\[+ \Omega_2 (|2\rangle\langle 3_u| + |2\rangle\langle 3_d| + |4\rangle\langle 5|) + h.c. \]
\[+ \Delta_u |3_u\rangle\langle 3_u| + \Delta_d |3_d\rangle\langle 3_d| \]

where Ω_1 and Ω_2 are the gate controlled tunnelling matrix elements (TMEs) and Δ_u, Δ_d the energy detunings of sites $|3_u\rangle$ and $|3_d\rangle$ respectively and h has been set to 1. In general the TMEs between nearest neighbours will be independent, however by construction, we have chosen gate values that ensure the form of the Hamiltonian shown in Eq. 1. This form is necessary to enforce the ideal ACTAP coupling scheme. It should be realised, however, that complete symmetry is not required. The ACTAP scheme has some robustness to variations from the ideal case, and this was explored for the linear ACTAP chain in Ref. 28. The choice of equality greatly simplifies the analysis and encapsulates all of the physics of CTAP. Indeed this is the simplest coupling scheme that provides interferometry with a non-trivial loop and CTAP coupling. For simplicity, we choose squared sinusoid functions for the form of the TMEs:

\[\Omega_1 = \Omega_{1\text{max}} \sin^2 \left(\frac{\pi t}{2t_{\text{max}}} \right) , \]
\[\Omega_2 = \Omega_{2\text{max}} \cos^2 \left(\frac{\pi t}{2t_{\text{max}}} \right) , \]

where $\Omega_{1\text{max}} = \Omega_{2\text{max}} = \Omega_{\text{max}}$ is depicted in Fig. 2(a).
that the particle occupies site $|1\rangle$ at $t = 0$, and apply an alternating pulse sequence in the counter-intuitive order - $\Omega_1(t)$ and $\Omega_2(t)$, effecting the counter-intuitive pulse sequence. (b) Eigenspectra with varying detuning, $\Delta_u = \Delta_d = 0$ (solid lines), $\Delta_u = -\Delta_d = 0.25\Omega_{\text{max}}$ (dashed) and $\Delta_u = -\Delta_d = \Omega_{\text{max}}$ (dotted). The eigenstates can be ordered as indicated. The double degeneracy of the null space is lifted with nonzero detuning is taken to infinity as in this case we can retrieve some relatively simple analytical expressions. In Section III. Superimposed on this, is a line of alternating high- and low-fidelity regions where $\Delta_u = -\Delta_d$. This line corresponds to the EAB effect and is governed by nonadiabatic oscillations, and is discussed in Section [V].

In the case $\Delta_u = \Delta_d = 0$ the time dependent eigenvalues of the Hamiltonian are

\[
E_0 = 0,
E_{\pm} = \pm \frac{\sqrt{3\Omega_1^2 + 3\Omega_2^2 - \sqrt{\Omega_1^2 + 14\Omega_1^2\Omega_2^2 + \Omega_2^2}}}{\sqrt{2}},
E_{2\pm} = \pm \frac{\sqrt{3\Omega_1^2 + 3\Omega_2^2 + \sqrt{\Omega_1^2 + 14\Omega_1^2\Omega_2^2 + \Omega_2^2}}}{\sqrt{2}}, \quad (3)
\]

where E_0 is doubly degenerate. These eigenvalues are plotted in Fig. (2b), along with eigenspectra with nonzero detuning for selected values of $\Delta_u = -\Delta_d$, for comparison. The corresponding states are labelled $|D_0^{(\pm)}\rangle$, $|D_0^{(-)}\rangle$, $|D_{\pm}\rangle$, and $|D_{2\pm}\rangle$. They are in general difficult to represent in closed form, however the eigenvalues order naturally, and these are indicated in Fig. (2b). In certain limits we may extract some useful information about these states, and some of these will be given below. These plots illustrate the lifting of the degeneracy of the $|D_0\rangle$ states with detuning, in these cases with opposite detunings, ie $\Delta_u = -\Delta_d$.

To enact the CTAP protocol we initialise the device so that the particle occupies site $|1\rangle$ at $t = 0$, and apply an alternating pulse sequence in the counter-intuitive order-
states without any population (in our case the even numbered sites), or the end of chains, and so this case represents an interesting alternative detuning regime, which appears well suited to interferometric applications.

Without detuning the eigenstates are eigenvectors of the five site chain can be fairly easily represented, as is done in Ref. 45, but the central site detuning makes this problematic. However, we can write down the states in appropriate limits, namely at the extrema of the protocol, and in the middle (when the adiabaticity is highest) as a series in the detuning, \(\Delta \). Note that for consistency, we shall keep the notation \(|D_0\rangle\) for the CTAP transport state, and the other eigenstates similarly labelled, however as mentioned above, there is no longer a null state with \(\Delta \neq 0 \).

At the beginning of the protocol, \(t = 0 \), we have \(\Omega_1 = 0 \) and the eigenvalues and eigenvectors are:

\[
E_0 = 0, \quad E_{\pm} = \pm \Omega_2, \quad E_{2\pm} = \pm \Omega_2 - \frac{\Delta}{2} + O[\Delta]^2,
\]

\[
|D_0\rangle = |1\rangle,
\]

\[
|D_{\pm}\rangle = \frac{1}{\sqrt{2}} (|4\rangle \pm |5\rangle),
\]

\[
|D_{2\pm}\rangle = \frac{(\pm 1 - \frac{\Delta}{2\Omega_2} + O[\Delta]^2) |2\rangle + |3\rangle}{\sqrt{2} \pm \frac{\Delta}{\Omega_2} + O[\Delta]^2},
\]

and at the end of the protocol, \(t = t_{\text{max}} \), we have \(\Omega_2 = 0 \) and

\[
E_0 = 0, \quad E_{\pm} = \pm \Omega_1, \quad E_{2\pm} = \pm \Omega_1 - \frac{\Delta}{2} + O[\Delta]^2,
\]

\[
|D_0\rangle = |5\rangle,
\]

\[
|D_{\pm}\rangle = \frac{1}{\sqrt{2}} (|1\rangle \pm |2\rangle),
\]

\[
|D_{2\pm}\rangle = \frac{(\pm 1 - \frac{\Delta}{2\Omega_1} + O[\Delta]^2) |3\rangle + |4\rangle}{\sqrt{2} \pm \frac{\Delta}{\Omega_1} + O[\Delta]^2}.
\]

The more interesting case is at the midpoint of the transport protocol, i.e. \(t = t_{\text{max}}/2 \), and for simplicity, setting \(\Omega_1 = \Omega_2 = \Omega_{\text{max}}/2 \), we have

\[
E_0 = \frac{\Delta}{3} + O[\Delta]^2, \quad E_{\pm} = \pm \frac{\Omega_{\text{max}}}{2}, \quad E_{2\pm} = \pm \frac{\sqrt{3} \Omega_{\text{max}}}{2} + \frac{\Delta}{3} + O[\Delta]^2,
\]

\[
|D_0\rangle = \frac{(|1\rangle - |3\rangle + |5\rangle) + \left(\frac{2\Delta}{\Omega_{\text{max}}} + O[\Delta]^2 \right) (|2\rangle + |4\rangle)}{\sqrt{3}},
\]
|D_±⟩ = \frac{1}{2} (|1⟩ ± |2⟩ ± |4⟩ − |5⟩),

|D_{2±}⟩ = \frac{1}{\sqrt{12 + \frac{4\Delta \sqrt{3}}{\Omega_{\text{max}}} + O[\Delta]^2}} (|1⟩ + |5⟩) + \left(\pm \sqrt{3} + \frac{2\Delta}{\Omega_{\text{max}}} + O[\Delta]^2 \right) (|2⟩ + |4⟩) + \left(\pm \frac{\sqrt{\Delta}}{\Omega_{\text{max}}} + O[\Delta]^2 \right) |3⟩.

To quantify the adiabatic transfer in this five-site limit, and thereby gain insight over the adiabatic cross, we use the adiabaticity parameter defined for the five-site configuration

A = \frac{|⟨D_{±}| \frac{\partial H}{\partial t} |D₀⟩|}{|E_+ - E_0|^2}. (19)

For adiabatic evolution of the system we require \(A \ll 1 \). Applying a detuning to the central site the adiabaticity changes and may shift the system out of the adiabatic regime. Numerically one sees the increase in the adiabaticity parameter with increasing \(\Delta \) as is shown in Fig. 4. High fidelity transfer (low \(A \)) occurs over a range of detunings. The effect of the detuning has been examined for STIRAP\(^1\) and for straddling CTAP in Ref.\(^4\). However it is worth noting that these cases are different from the one we are considering at present, as they other treatments examine energy shifts of states with vanishing occupation. Here, the populations are explicitly non-zero due to the construction of the alternating coupling scheme, increasing the effect of the detuning. This is an important feature and in fact necessary to achieve an interferometric readout signature. With the sinusoidal pulse scheme, the maximal value of the adiabaticity occurs at \(t = t_{\text{max}}/2, \Omega_{1\text{max}} = \Omega_{2\text{max}} = \Omega_{\text{max}} \) and \(\Delta = 0 \), we find\(^{22}\)

A = \frac{4\pi}{\sqrt{3}\Omega_{\text{max}} t_{\text{max}}}. (20)

To include the effect of the detuning on the adiabaticity we perform a series expansion on the adiabaticity in \(\Delta \). The adiabaticity parameter, to second order in \(\Delta \) is

A = \frac{4\pi}{\sqrt{3}\Omega_{\text{max}} t_{\text{max}}} + \frac{20\pi \Delta}{3\sqrt{3}\Omega_{\text{max}} t_{\text{max}}} + \frac{56\pi \Delta^2}{9\sqrt{3}\Omega_{\text{max}} t_{\text{max}}}.

This form of the adiabaticity parameter is plotted in Fig. 5 and compared with a full numerical calculation of \(A \).

IV. INTERFEROMETRY IN THE SIX SITE SYSTEM

Returning to the map of final state population as a function of the middle site detunings in Fig. 3 as well

![Graph showing adiabaticity changes](image)

FIG. 4: Maximum adiabaticity through the protocol as a function of middle site detuning for A-CTAP in a 5 site system, corresponding to the case in the interferometer where one detuning has been taken to \(\infty \). The solid line is the numerical determination, Eq. (19) and the dashed is the analytical result to second order in \(\Delta \), Eq. (22). The smooth increase in adiabaticity correlates to the smooth reduction in fidelity seen in Fig. 3 in the zones where \(\Delta_u \) and \(\Delta_d \) have the same sign.

We can understand the interference by considering the eigenspectrum with non-zero detuning, in particular focusing on the lifting of the null state degeneracy. As we see in Fig. 2(b) when the sites are oppositely detuned (\(\Delta_u = -\Delta_d \)), the states \(|D_0^{(+)}\rangle = |D_0^{(-)}\rangle \) are degenerate at the start and end, but are split evenly during the protocol and it is the population oscillations between these states which will be important, rather than the adiabaticity treated in Eq. (22).
To first order in Δ, at the midpoint of the protocol we find

$$E_0^{(\pm)} = \pm \frac{\Delta}{\sqrt{5}}$$

$$|D_0^{(\pm)}\rangle = \frac{1}{\sqrt{5}} \left((|1\rangle + |5\rangle) \pm \frac{\Delta}{\sqrt{5}\Omega_{\text{max}}} (|2\rangle + |4\rangle) + \frac{1}{2} \left(-1 \mp \sqrt{5} \right) |3_u\rangle + \frac{1}{2} \left(-1 \pm \sqrt{5} \right) |3_d\rangle \right).$$

The interference observed in the final state population can be understood as resulting from the electron undergoing Landau-Zener oscillations between these two states as the Hamiltonian is evolving with the protocol. The non-adiabatic behaviour can be thought of as arising due to the total protocol time required for the system to be able to resolve these two states. That is, when the total time is large compared to the energy gap between them the system is able to resolve the lifted degeneracy of the null states. This energy gap depends on the detunings of the central sites. Empirically, we find for a given time t_{max}, maxima in the transfer fidelity occur when

$$\Delta_n = \frac{f_n}{t_{\text{max}}}$$

where Δ_n is the detuning of the n^{th} maximum with $\Delta_n = \pm \Delta_u = \mp \Delta_d$ and a factor $f \sim 20$ which has been determined empirically. Since the states we are interested in are approximately parallel, a doubling in the total time will correspond approximately to a doubling in the frequency. Since these oscillations are periodic the non-adiabatic behaviour will also be periodic in the total time. This is plotted in Fig. 5 where we see very clear linear relations on a log-log scale, except in the large Δ limit. With increasing detuning there is an overall reduction in fidelity, as the barrier between sites 1 and 5 increases, thereby suppressing population transfer. This effect is most evident in the lower fidelity transport regions outside the central cross feature in Fig. 5(a).

The distinct regions of adiabatic and non-adiabatic behaviour suggest that such a device might be interesting for charge sensing. Mapping out the rate of change of the final state population with respect to one detuning, as shown in Fig. 5(b) we can identify device detuning configurations which will display a large response to any change in the energy level of the one of the middle sites due to a charge being in close proximity. Using one arm as the detector arm and selecting a detuning configuration which will show this large response we can see that the final state populations respond to the presence of a nearby charge. Fig. 5(b) also shows the dependence of the sensitivity on time for the first fringe from Fig. 5(a). The sensitivity of the interferometer at these operating points scales linearly with the total protocol time.

V. CONCLUSION

Mapping of the final state population of a 6 site CTAP interferometer in an electrostatic Aharonov-Bohm style geometry shows an interesting interplay between adiabatic and non-adiabatic transport of an electron in the device. We may tune the device between these two regimes easily by modifying the total protocol time for the CTAP transport or by changing the on-site energy of the middle sites in the two different paths. We have modelled the behaviour of this device and the dependence of the detuning on the adiabaticity. We see effects similar to electrostatic Aharonov-Bohm oscillations as seen in the periodic behaviour of the final-state population when the two paths have opposite detuning. In some configurations a small alteration to the energy of a site will
FIG. 6: (Colour Online)(a) Derivative of the final state population with respect to Δu. Regions with a large rate of change may be considered useful for charge sensing applications. The very light regions are of high negative derivative and dark regions high positive derivative. The presence of a charge will alter the final state population due to its effect on the energy of the detuned site $|3_u\rangle$ or $|3_d\rangle$ in the arm being used as the sensor. (b) Dependence of the sensitivity (derivative of the final state population) on t_{max}.

result in the device being shifted from adiabatic transfer to non-adiabatic. This is seen in a large change in the final state population. Such sensitivity suggests a device which may also offer opportunities for charge sensing applications.

Acknowledgments

We thank Andy Martin and David Jamieson for useful discussions and careful proof reading of the manuscript. Andrew Greentree acknowledges the Australian Research Council for financial support under project no. DP0880466. This work was supported by the Australian Research Council, the Australian Government, and the US National Security Agency (NSA) and the Army Research Office (ARO) under contract number W911NF-08-1-0527.
19. J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, Phys. Rev. B 77, 235418 (2008).
20. T. Opatrný and K. K. Das, Phys. Rev. A 79, 012113 (2009).
21. L. C. L. Hollenberg, A. D. Greentree, A. G. Fowler, and C. J. Wellard, Phys. Rev. B 74, 045311 (2006).
22. R. Rahman, S. H. Park, J. H. Cole, A. D. Greentree, R. P. Muller, G. Klimeck, and L. C. L. Hollenberg, Phys. Rev. B 80, 035302 (2009).
23. J. A. Van Donkelaar, A. D. Greentree, L. C. L. Hollenberg, and D. N. Jamieson, arXiv: 0806.2691 (2008).
24. J. Siewert, T. Brandes, and G. Falci, Optics Comm. 264, 435 (2006).
25. K. Eckert, M. Lewenstein, R. Corbalán, G. Birk, W. Ertmer, and J. Mompart, Phys. Rev. A 70, 023606 (2004).
26. K. Eckert, J. Mompart, M. Lewenstein, R. Corbalán, and G. Birk, Optics Comm. 264, 264 (2006).
27. E. M. Graefe, H. J. Korsch, and D. Witthaut, Phys. Rev. A 73, 013617 (2006).
28. M. Rab, J. H. Cole, N. G. Parker, A. D. Greentree, L. C. L. Hollenberg, and A. M. Martin, Phys. Rev. A 77, 061602(R) (2008).
29. F. Renzoni and T. Brandes, Phys. Rev. B 64, 245301 (2001).
30. J. Siewert and B. Brandes, Advances in Solid State Physics (Springer Berlin / Heidelberg, 2004), vol. 44, chap. Applications of Adiabatic Passage in Solid-State Devices, p. 1248.
31. A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, Phys. Rev. A 73, 032319 (2006).
32. S. J. Devitt, A. D. Greentree, and L. C. L. Hollenberg, Quant. Inf. Proc 6, 229 (2007).
33. E. Buks, R. Schuster, M. Heiblum, D. Mahalu, and V. Umansky, Nature 391, 871 (1998).
34. Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H. Shtrikman, Nature 422, 415 (2003).
35. D. Chang, G. Khym, K. Kang, Y. Chung, H. Lee, M. Seo, M. Heiblum, D. Mahalu, and V. Umansky, Nature Physics 4, 205 (2008).
36. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
37. T. H. Boyer, Phys. Rev. D 8, 1679 (1973).
38. S. Washburn, H. Schmid, D. Kern, and R. A. Webb, Phys. Rev. Lett. 59, 1791 (1987).
39. S. Datta, M. Melloch, S. Bandyopadhyay, and M. Lundstrom, Appl. Phys. Lett. 48, 487 (1986).
40. P. G. N. de Vegvar, G. Timp, P. M. Mankiewich, R. Behringer, and J. Cunningham, Phys. Rev. B 40, 3491 (1989).
41. D. Takai and K. Ohta, Phys. Rev. B 48, 1537 (1993).
42. C. E. Creffield, W. Häusler, J. H. Jefferson, and S. Sarkar, Phys. Rev. B 59, 10719 (1999).
43. J. H. Jefferson, M. Fearon, D. L. J. Tipton, and T. P. Spiller, Phys. Rev. A 66, 042328 (2002).
44. E. Alcobi, Master’s thesis, The Technion-Israel Institute of Technology (2007).
45. L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. Jamieson, Nanotechnology 20, 405402 (2009).