Reactive oxygen species mediate proinflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to *Pseudomonas pyocyanin*

Balázs Rada, Paul Gardina, Timothy G. Myers and Thomas L. Leto

Online supplementary figures

Supplementary Figure 1. Exposure to pyocyanin does not lead to STAT6 phosphorylation in H292 cells. H292 cells were exposed to 8 µM pyocyanin or 10 ng/mL interleukin (IL)-4 (used as a positive control for STAT6 activation) for 0-2 days. Cell lysates were subjected to Western blotting, phosphorylated and total STAT6 levels were detected by specific antibodies and compared to loading control (β-actin).

Supplementary Figure 2. Confirmation of gene expression data obtained from the microarray experiment by real-time RT-PCR for EGF, ADAM17 and MEK1. Changes in gene expression levels were followed over time for 2 days in H292 cells exposed to pyocyanin (8 µM) (mean +/- S.E.M., n=2-4).

Supplementary Figure 3. Microarray analysis of pyocyanin-exposed bronchial epithelial cells. The volcano plot shows the log₂ ratio of expression values in pyocyanin-treated relative to untreated cells (x-axis) and the -log(p-value) (y-axis) for each probe on the microarray. The dashed red line at 1.80 indicates the significance cutoff for multiple comparisons as determined by FDR of 0.05. Dashed blue lines represent selected thresholds at 4-fold difference (vertical lines) and an un-adjusted p-value of 10⁻³ (horizontal line). Probes exceeding the thresholds (upper left and right quadrants) were taken for further study. This set comprises 389 probes representing 302 unique transcripts and 268 unique Entrez gene identifiers.

Supplementary Figure 4. Network #1 was generated by Ingenuity Pathway Analysis (IPA) software as the most statistically significant set of connections derived from 268 pyocyanin-responsive genes identified by microarray. The resulting gene set is strongly associated with tumor necrosis factor alpha signaling. The top three functions associated with Network #1 (score = 52) were: Cell-mediated immune response, Cellular development, Cellular growth & proliferation. Color coding: red = up with pyocyanin; green = down with pyocyanin.

Supplementary Figure 5. Network #2 identified by Ingenuity Pathway Analysis (IPA) software contains pyocyanin-responsive genes associated with NF-κB signaling. The top three functions associated with Network #2 were: Cell death, Cancer, Cell-to-cell signaling.
Supplementary Figure 1.

Rada et al.

Untreated
Pyocyanin
IL-4

Phospho-STAT6

Untreated
Pyocyanin
IL-4

STAT6

Untreated
Pyocyanin
IL-4

Actin

Time: 0 0.25 0.5 1 2 8 24 60 hrs
Supplementary Figure 2.

Rada et al.
Supplementary Figure 3.
Supplementary Figure 4.

Red - up in pyocyanin
Green - down
(darker = higher fold difference)
Supplementary Figure 5.

Red - up in pyocyanin
Green - down
(Arrows = higher fold difference)
Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to *Pseudomonas* pyocyanin

Balázs Rada, Paul Gardina, Timothy G. Myers and Thomas L. Leto

Online supplementary Material

Supplementary Table 1. List of up-regulated genes.

Supplementary Table 2. List of down-regulated genes.
Supplementary Table 1.

Genes Up-Regulated by Pyocyanin *(p-value < 0.001, log₂ ratio > 2)*

RefSeq	Entrez Gene ID	Gene	Description	Log₂ Ratio	Neg. log₁₀ p-value
NM_172219	1440	CSF3	colony stimulating factor 3, variant 2	7.88	4.32
NM_181339	11009	IL24	interleukin 24, variant 2	7.01	5.05
NM_000600	3569	IL6	interleukin 6 (interferon, beta 2)	7.00	4.61
NM_000600	3569	IL6	interleukin 6 (interferon, beta 2)	6.93	4.82
NM_000600	3569	IL6	interleukin 6 (interferon, beta 2)	6.86	5.32
NM_000600	3569	IL6	interleukin 6 (interferon, beta 2)	6.81	4.68
NM_000600	3569	IL6	interleukin 6 (interferon, beta 2)	6.81	4.16
NM_000600	3569	IL6	interleukin 6 (interferon, beta 2)	6.80	4.54
NM_000600	3569	IL6	interleukin 6 (interferon, beta 2)	6.80	4.39
NM_181339	11009	IL24	interleukin 24, variant 2	6.74	4.78
NM_000600	3569	IL6	interleukin 6 (interferon, beta 2)	6.74	4.97
NM_000600	3569	IL6	interleukin 6 (interferon, beta 2)	6.74	4.73
NM_000600	3569	IL6	interleukin 6 (interferon, beta 2)	6.66	4.00
NM_004864	9518	GDF15	growth differentiation factor 15	6.13	4.56
NM_004591	6364	CCL20	chemokine (C-C motif) ligand 20, variant 1	5.88	4.43
NM_000576	3553	IL1B	interleukin 1, beta	5.77	6.32
NM_000576	3553	IL1B	interleukin 1, beta	5.77	6.15
NM_000576	3553	IL1B	interleukin 1, beta	5.73	6.01
NM_000576	3553	IL1B	interleukin 1, beta	5.71	5.90
NM_000576	3553	IL1B	interleukin 1, beta	5.70	5.71
Accession	Gene ID	Description	Expression	Functional Score	
-----------	---------	--	------------	------------------	
NM_000576	3553	interleukin 1, beta	5.70	6.55	
NM_000576	3553	interleukin 1, beta	5.70	7.00	
NM_000576	3553	interleukin 1, beta	5.67	6.07	
NM_000576	3553	interleukin 1, beta	5.67	6.25	
NM_002090	2921	chemokine (C-X-C motif) ligand 3	5.67	5.46	
NM_000576	3553	interleukin 1, beta	5.67	5.77	
NM_000575	3552	interleukin 1, alpha	5.47	5.27	
NM_000575	3552	interleukin 1, alpha	5.46	5.28	
NM_000575	3552	interleukin 1, alpha	5.38	3.98	
NM_000575	3552	interleukin 1, alpha	5.34	5.11	
NM_000575	3552	interleukin 1, alpha	5.32	4.52	
NM_000575	3552	interleukin 1, alpha	5.29	5.25	
NM_000575	3552	interleukin 1, alpha	5.27	4.67	
NM_000575	3552	interleukin 1, alpha	5.20	3.85	
NM_000575	3552	interleukin 1, alpha	5.14	6.14	
NM_002089	2920	chemokine (C-X-C motif) ligand 2	5.11	5.68	
MUC5A	9586	CAMP responsive element binding protein 5	5.20	5.48	
NM_000575	3552	interleukin 1, alpha	5.20	3.85	
NM_000575	3552	interleukin 1, alpha	5.14	6.14	
NM_000575	3552	interleukin 1, alpha	5.01	3.77	
NM_004165	6236	Ras-related associated with diabetes, variant 2	4.90	3.67	
NM_004165	6236	Ras-related associated with diabetes, variant 2	4.84	4.79	
NM_015714	50486	G0/G1switch 2	4.69	4.98	
Accession	Start	Gene	Description	R1	R2
-----------	-------	------	-------------	----	----
NM_000584	3576	IL8	interleukin 8	4.51	4.19
NM_003467	7852	CXCR4	chemokine (C-X-C motif) receptor 4, variant 2	4.46	4.52
NM_003467	7852	CXCR4	chemokine (C-X-C motif) receptor 4, variant 2	4.45	4.45
NM_002090	2921	CXCL3	chemokine (C-X-C motif) ligand 3	4.42	3.68
NM_003467	7852	CXCR4	chemokine (C-X-C motif) receptor 4, variant 2	4.41	5.11
NM_003467	7852	CXCR4	chemokine (C-X-C motif) receptor 4, variant 2	4.41	4.78
SERPINB	5055	2	Serpin peptidase inhibitor, clade B (ovalbumin), member 2	4.39	4.43
NM_003467	7852	CXCR4	chemokine (C-X-C motif) receptor 4, variant 2	4.39	3.94
NM_003467	7852	CXCR4	chemokine (C-X-C motif) receptor 4, variant 2	4.37	4.99
NM_003467	7852	CXCR4	chemokine (C-X-C motif) receptor 4, variant 2	4.35	4.37
NM_003467	7852	CXCR4	chemokine (C-X-C motif) receptor 4, variant 2	4.34	4.84
NM_003467	7852	CXCR4	chemokine (C-X-C motif) receptor 4, variant 2	4.28	4.45
NM_002842	5794	PTPRH	protein tyrosine phosphatase, receptor type	4.25	4.68
NM_003467	7852	CXCR4	chemokine (C-X-C motif) receptor 4, variant 2	4.24	3.41
NM_002421	4312	MMP1	matrix metalloproteinase 1	4.19	4.21
HSD17B	3294	2	hydroxysteroid (17-beta) dehydrogenase 2	4.17	4.52
NM_002421	4312	MMP1	matrix metalloproteinase 1 (interstitial collagenase)	4.16	4.66
NM_002421	4312	MMP1	matrix metalloproteinase 1 (interstitial collagenase)	4.14	4.16
NM_002421	4312	MMP1	matrix metalloproteinase 1 (interstitial collagenase)	4.13	5.31
NM_002421	4312	MMP1	matrix metalloproteinase 1 (interstitial collagenase)	4.13	5.35
NM_002421	4312	MMP1	matrix metalloproteinase 1 (interstitial collagenase)	4.11	4.40
NM_002421	4312	MMP1	matrix metalloproteinase 1 (interstitial collagenase)	4.09	4.03
NM_007123	7399	USH2A	Usher syndrome 2A (autosomal recessive, mild), variant 1	4.06	3.69
Gene ID	Accession	Symbol	Description	Log2 Fold Change	Log2 Fold Change
-----------	-----------	--------	---	------------------	------------------
NM_002421	4312	MMP1	matrix metalloproteinase 1 (interstitial collagenase)	4.05	4.43
NM_001009	991	SYTL3	synaptotagmin-like 3	4.02	4.23
NM_002089	2920	CXCL2	chemokine (C-X-C motif) ligand 2	4.01	4.69
NM_000963	5743	PTGS2	prostaglandin-endoperoxide synthase 2	4.00	4.65
NM_002421	4312	MMP1	matrix metalloproteinase 1 (interstitial collagenase)	3.99	3.97
NM_000963	5743	PTGS2	prostaglandin-endoperoxide synthase 2	3.98	5.01
NM_000963	5743	PTGS2	prostaglandin-endoperoxide synthase 2	3.97	4.03
NM_000963	5743	PTGS2	prostaglandin-endoperoxide synthase 2	3.96	5.17
NM_002421	4312	MMP1	matrix metalloproteinase 1 (interstitial collagenase)	3.95	4.21
NM_000963	5743	PTGS2	prostaglandin-endoperoxide synthase 2	3.95	5.08
NM_000963	5743	PTGS2	prostaglandin-endoperoxide synthase 2	3.95	4.67
NM_001030	287	ATF3	activating transcription factor 3, variant 3	3.93	4.57
NM_000963	5743	PTGS2	prostaglandin-endoperoxide synthase 2	3.93	4.88
NM_000963	5743	PTGS2	prostaglandin-endoperoxide synthase 2	3.93	4.31
NM_000963	5743	PTGS2	prostaglandin-endoperoxide synthase 2	3.91	4.48
NM_000963	5743	PTGS2	prostaglandin-endoperoxide synthase 2	3.88	6.29
NM_016584	51561	IL23A	interleukin 23, alpha subunit p19	3.85	4.59
Gene Name	Accession	Description	Log2 Fold Change	Fold Change	
--------------	-----------	---	------------------	-------------	
PTGS2	NM_000963	Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)	3.81	3.84	
C15orf4	NM_197955	Chromosome 15 open reading frame 48, variant 1	3.77	4.68	
MUC5A	NM_173343	Mucin 5AC, oligomeric mucus/gel-forming	3.74	4.24	
F10	NM_000504	Coagulation factor X	3.66	3.70	
ELF3	1999	E74-like factor 3 (ets domain transcription factor, epithelial-specific)	3.65	3.42	
CDKN1A	NM_00389	Cyclin-dependent kinase inhibitor 1A (p21, Cip1), variant 1	3.54	3.97	
CDKN1A	NM_00389	Cyclin-dependent kinase inhibitor 1A (p21, Cip1), variant 1	3.53	4.45	
MUC5A	NM_020130	Mucin 5AC, oligomeric mucus/gel-forming	3.50	4.84	
C8orf4	NM_02130	Chromosome 8 open reading frame 4	3.50	4.44	
CDKN1A	NM_00389	Cyclin-dependent kinase inhibitor 1A (p21, Cip1), variant 1	3.49	4.02	
CDKN1A	NM_00389	Cyclin-dependent kinase inhibitor 1A (p21, Cip1), variant 1	3.48	3.79	
PPBP	NM_002704	Pro-platelet basic protein (chemokine (C-X-C motif) ligand 7)	3.48	3.39	
CDKN1A	NM_00389	Cyclin-dependent kinase inhibitor 1A (p21, Cip1), variant 1	3.46	4.88	
IL13RA2	NM_000640	Interleukin 13 receptor, alpha 2	3.46	4.65	
SAA2	NM_030754	Serum amyloid A2, variant 1	3.45	3.66	
S100A7	NM_002963	S100 calcium binding protein A7	3.43	4.34	
Accession	Exon	Gene/Symbol	Description	Log2Ratio	Log2FoldChange
-----------	------	-------------	-------------	------------	---------------
NM_001030	287	ATF3	activating transcription factor 3, variant 3	3.42	4.91
			cyclin-dependent kinase inhibitor 1A (p21, Cip1), variant 1		
NM_000389	1026	CDKN1A	cyclin-dependent kinase inhibitor 1A (p21, Cip1), variant 1	3.42	3.93
NM_182962	330	BIRC3	baculoviral IAP repeat-containing 3, variant 2	3.41	3.94
NM_000389	1026	CDKN1A	cyclin-dependent kinase inhibitor 1A (p21, Cip1), variant 1	3.41	5.62
NM_000389	1026	CDKN1A	cyclin-dependent kinase inhibitor 1A (p21, Cip1), variant 1	3.40	4.42
NM_000805	2520	GAST	gastrin	3.40	3.70
NM_00594	7124	TNF	tumor necrosis factor (TNF superfamily, member 2)	3.38	4.02
NM_014330	23645	PPP1R1	protein phosphatase 1, regulatory (inhibitor) subunit 15A	3.34	4.88
NM_002619	5196	PF4	platelet factor 4 (chemokine (C-X-C motif) ligand 4)	3.34	4.69
NM_000389	1026	CDKN1A	cyclin-dependent kinase inhibitor 1A (p21, Cip1), variant 1	3.34	3.91
NM_033413	90506	LRRC46	leucine rich repeat containing 46	3.33	3.61
XM_001716	387763	LOC387	PREDICTED: hypothetical LOC387763	3.33	4.07
NM_000389	1026	CDKN1A	cyclin-dependent kinase inhibitor 1A (p21, Cip1), variant 1	3.33	4.08
NM_001009	991	SYTL3	synaptotagmin-like 3	3.32	3.62
NM_001124	758	SPNS2	spinster homolog 2 (Drosophila)	3.31	4.27
NM_002565	5030	P2RY4	pyrimidinergic receptor P2Y, G-protein coupled, 4	3.27	3.70
			Unknown	3.25	3.92
NM_199161	6288	SAA1	serum amyloid A1, variant 2	3.24	4.02
Gene	Unigene	Description	Fold Change		
---------	---------	---	------------		
NM_004433	1999 ELF3	E74-like factor 3 (ets domain transcription factor, epithelial-specific), variant 1	3.24		
NM_004406	1755 DMBT1	deleted in malignant brain tumors 1, variant 1	3.21		
		HIST1H2			
NM_080593	85236 BK	histone cluster 1, H2bk	3.16		
NM_004079	1520 CTSS	cathepsin S	3.15		
NM_153840	266977 GPR110	G protein-coupled receptor 110, variant 1	3.14		
NM_001945	1839 HBEGF	heparin-binding EGF-like growth factor	3.13		
NM_014467	27286 SRPX2	sushi-repeat-containing protein, X-linked 2	3.13		
NM_017527	54742 LY6K	lymphocyte antigen 6 complex, locus K	3.13		
NM_000389	1026 CDKN1A	cyclin-dependent kinase inhibitor 1A (p21, Cip1), variant 1	3.08		
GALNTL		UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-like 2	3.06		
NM_054110	117248 2	PR domain containing 1, with ZNF domain, variant 2	3.05		
NM_182907	639 PRDM1	serpin peptidase inhibitor, clade B (ovalbumin), member 2	3.05		
NM_002575	5055 2	protease, serine, 22	3.03		
NM_032149	84103 C4orf17	chromosome 4 open reading frame 17	3.04		
NM_006290	7128 TNFAIP3	tumor necrosis factor, alpha-induced protein 3	3.04		
NM_022119	64063 PRSS22	leukemia inhibitory factor (cholinergic differentiation factor)	2.99		
NM_005987	6698 SPRR1A	small proline-rich protein 1A	2.97		
NM_020698	57458 TMCC3	transmembrane and coiled-coil domain family 3	2.97		
NM_002309	3976 LIF	predicted: misc_RNA	2.94		
NM_006290	7128 TNFAIP3	tumor necrosis factor, alpha-induced protein 3	2.94		
LOC646		PREDICTED: misc_RNA	2.94		
Gene Symbol	Accession Number	Description	Log2 Fold Change	Expression Ratio	
-------------	------------------	-------------	-----------------	-----------------	
Homo sapiens, clone IMAGE:4445372	9	HMOX1 heme oxygenase (decycling) 1	2.94	4.39	
NM_002133	3162	HMOX1 heme oxygenase (decycling) 1	2.94	3.66	
NM_017527	54742	LY6K lymphocyte antigen 6 complex, locus K	2.92	4.53	
NM_002133	3162	HMOX1 heme oxygenase (decycling) 1	2.92	3.93	
NM_005319	3006	HIST1H1 histone cluster 1, H1c	2.92	3.56	
NM_002133	3162	HMOX1 heme oxygenase (decycling) 1	2.91	3.48	
NM_006988	9510	ADAMT ADAM metallopeptidase with thrombospondin type S1 1 motif, 1	2.90	3.68	
NM_002133	3162	HMOX1 heme oxygenase (decycling) 1	2.90	3.72	
NM_015589	23034	SAMD4 sterile alpha motif domain containing 4A	2.89	4.03	
NM_032572	84659	RNASE7 ribonuclease, RNase A family, 7	2.89	3.95	
NM_001024	466	SOD2 superoxide dismutase 2, mitochondrial, nuclear	2.88	4.13	
NM_001945	6648	HBEGF heparin-binding EGF-like growth factor	2.88	4.73	
NM_002133	3162	HMOX1 heme oxygenase (decycling) 1	2.87	3.82	
NM_001024	912	CEACA carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein), variant 2	2.87	6.29	
NM_002133	3162	HMOX1 heme oxygenase (decycling) 1	2.86	4.49	
NM_003897	8870	IER3 immediate early response 3	2.86	3.26	
NM_001040	059	8334 AC Histone cluster 1, H2ac	2.86	5.90	
068	CD68 CD68 molecule, variant 2	2.85	3.91		
NM_002133	3162	HMOX1 heme oxygenase (decycling) 1	2.84	3.83	
NM_198447	127845	GOLT1A golgi transport 1 homolog A (S. cerevisiae)	2.84	3.84	
NM_006495	2124	EVI2B ecotropic viral integration site 2B	2.84	4.12	
Gene Accession	Gene Symbol	Description	Fold Change	Expression Level	
---------------	-------------	-------------	-------------	-----------------	
NM_001039	ANGPTL4	angiopoietin-like 4, variant 3	2.83	4.00	
NM_002133	HMOX1	heme oxygenase (decycling) 1	2.80	3.74	
NM_002133	HMOX1	heme oxygenase (decycling) 1	2.79	5.42	
NM_002133	HMOX1	heme oxygenase (decycling) 1	2.78	4.29	
NM_006851	GLIPR1	GLI pathogenesis-related 1	2.74	3.76	
NM_032935	MT4	metallothionein 4	2.73	3.09	
NM_006871	RIPK3	receptor-interacting serine-threonine kinase 3	2.73	3.54	
NM_004417	DUSP1	dual specificity phosphatase 1	2.73	3.95	
NM_153675	FOXA2	forkhead box A2, variant 2	2.72	3.04	
NM_002298	LCP1	lymphocyte cytosolic protein 1 (L-plastin)	2.69	3.70	
	HIST2H2	histone cluster 2, H2aa3	2.67	3.89	
NM_003516	AA3	histone cluster 2, H2ac	2.65	3.62	
NM_003512	AC	histone cluster 1, H2ac	2.64	3.93	
NM_004751	GCNT3	glucosaminyl (N-acetyl) transferase 3, mucin type	2.63	3.90	
NM_012304	FBXL7	F-box and leucine-rich repeat protein 7	2.62	4.11	
NM_080741	NEU4	sialidase 4	2.62	4.10	
NM_004419	DUSP5	dual specificity phosphatase 5	2.62	4.10	
NM_001097	FUT3	fucosyltransferase 3 (galactoside 3(4)-L-fucosyltransferase, Lewis blood group), variant 4	2.60	4.45	
NM_001109	ADAM8	ADAM metallopeptidase domain 8	2.60	3.26	
NM_003528	BE	histone cluster 2, H2be	2.60	4.46	
		Transcribed locus	2.60	3.34	
NM_007115	TNFAIP6	tumor necrosis factor, alpha-induced protein 6	2.58	3.29	
NM_153840	GPR110	G protein-coupled receptor 110, variant 1	2.56	3.91	
Accession	Value	Description	Fold Ch	Expression	
------------	----------	--	---------	------------	
NM_001257	1012	CDH13 cadherin 13, H-cadherin (heart)	2.55	3.63	
NM_015364	2364	LY96 lymphocyte antigen 96	2.55	4.05	
NM_001039	667	ANGPTL angiopoietin-like 4, variant 3	2.55	4.48	
NM_022664	1893	ECM1 extracellular matrix protein 1, variant 2	2.54	3.62	
NM_003516	8337	HIST2H2 histone cluster 2, H2aa3	2.54	4.61	
NM_005658	7185	TRAF1 TNF receptor-associated factor 1	2.53	5.02	
NM_004753	9249	DHRS3 dehydrogenase/reductase (SDR family) member 3	2.53	4.98	
NM_002727	5552	SRGN Serglycin	2.53	3.59	
NM_173842	3557	IL1RN interleukin 1 receptor antagonist, variant 1	2.49	4.08	
NM_004431	1969	EPHA2 EPH receptor A2	2.48	3.57	
NM_138788	120224	TMEM4 transmembrane protein 45B	2.48	4.74	
NM_016084	5165	RASD1 RAS, dexamethasone-induced 1	2.47	4.45	
	9245	GCNT3 Glucosaminyl (N-acetyl) transferase 3, mucin type	2.47	4.52	
NM_15329	2	TMEM9 transmembrane protein 92	2.46	3.58	
NM_178450	115123	MARCH membrane-associated ring finger (C3HC4) 3	2.46	3.38	
NM_002659	5329	PLAUR plasminogen activator, urokinase receptor, variant 1	2.46	3.82	
NM_153675	3170	FOXA2 forkhead box A2, variant 2	2.45	3.56	
NM_006988	9510	ADAMT ADAM metallopeptidase with thrombospondin type	2.44	3.74	
NM_198593	114897	C1QTNF C1q and tumor necrosis factor related protein 1, variant 2	2.44	3.27	
Accession	Gene	Description	Fold Change	Expression	
------------	---------	--	-------------	-------------	
NM_015685	27111	SDCBP2 syndecan binding protein (syntenin) 2, variant 2	2.44	3.48	
NM_144729	11221	DUSP10 dual specificity phosphatase 10, variant 3	2.44	4.14	
207107	SFTPF	Surfactant associated protein F	2.44	4.16	
HIST2H2					
NM_003528	8349	BE histone cluster 2, H2be	2.44	4.96	
NM_000758	1437	CSF2 colony stimulating factor 2 (granulocyte-macrophage)	2.44	3.91	
NM_001570	3656	IRAK2 interleukin-1 receptor-associated kinase 2	2.43	3.34	
NM_000499	1543	CYP1A1 cytochrome P450, family 1, subfamily A, polypeptide 1	2.43	3.07	
NM_001005	367	TTYH1 tweety homolog 1 (Drosophila), variant 2	2.43	3.82	
NM_024636	79689	STEAP4 STEAP family member 4	2.42	3.50	
NM_001353	1645	AKR1C1 aldo-keto reductase family 1, member C1 (dihydropyridine dehydrogenase 1; 20-alpha (3-alpha)-hydroxysteroid dehydrogenase)	2.40	3.65	
NM_144975	162394	SLFN5 schlafen family member 5	2.40	3.73	
NM_002638	5266	PI3 peptidase inhibitor 3, skin-derived (SKALP)	2.40	4.39	
NM_016084	51655	RASD1 RAS, dexamethasone-induced 1	2.39	3.39	
NR_002786	152302	CIDECP cell death-inducing DFFA-like effector c pseudogene on chromosome 3	2.38	3.84	
XM_001720	100130	LOC100 PREDICTED: hypothetical protein LOC100	2.34	5.04	
237	938	130938 PREDICTED: hypothetical protein LOC100	2.34	3.76	
NM_024780	79838	TMC5 transmembrane channel-like 5, variant 3	2.34	3.76	
ALDH1A					
NM_000693	220	3 aldehyde dehydrogenase 1 family, member A3	2.34	3.90	
Accession	Entry	Description	Log2 Ratio	Log2 Fold Change	
-----------	-------	-------------	------------	------------------	
NM_004210	9148	NEURL neuralized homolog (Drosophila)	2.34	4.04	
NM_002965	6280	S100A9 S100 calcium binding protein A9	2.34	3.52	
		CDNA FLJ39181 fis, clone OCBBF2004235	2.33	3.46	
NM_020716	57476	GRAMD GRAM domain containing 1B	2.32	3.40	
NR_002834	574029	DUSP5P dual specificity phosphatase 5 pseudogene on chromosome 1	2.32	3.84	
NM_199335	2533	FYB FYN binding protein (FYB-120/130), variant 2	2.32	4.17	
266977	GPR110	G protein-coupled receptor 110	2.31	4.70	
NM_004040	388	RHOB ras homolog gene family, member B	2.31	3.38	
NM_004822	9423	NTN1 netrin 1	2.30	3.56	
NM_003364	7378	UPP1 uridine phosphorylase 1, variant 1	2.29	3.49	
NM_000024	154	ADRB2 adrenergic, beta-2-, receptor, surface	2.29	5.30	
	100132	LOC100 Hypothetical protein	2.29	3.56	
	244	132244	Hypothetical protein	2.29	3.56
NM_058172	118429	ANTXR2 anthrax toxin receptor 2	2.29	4.28	
NM_003856	9173	IL1RL1 interleukin 1 receptor-like 1, variant 2	2.29	3.44	
NM_016321	51458	RHCG Rh family, C glycoprotein	2.27	4.13	
NM_001248	956	ENTPD3 ectonucleoside triphosphate diphosphohydrolase 3	2.27	4.13	
NM_002527	4908	NTF3 neurotrophin 3, variant 2	2.27	3.16	
NM_002195	3641	INSL4 insulin-like 4 (placenta)	2.26	4.16	
		interleukin 8 receptor, beta pseudogene on chromosome 2	2.26	3.27	
NR_002712	3580	IL8RBP	2.26	3.27	
NM_000024	154	ADRB2 adrenergic, beta-2-, receptor, surface	2.26	3.44	
NM_000024	154	ADRB2 adrenergic, beta-2-, receptor, surface	2.26	3.67	
NM_004083	1649	DDIT3 DNA-damage-inducible 3	2.24	3.97	

NM_004040 | 388 | RHOB ras homolog gene family, member B | 2.31 | 3.38 |
NM_004822 | 9423 | NTN1 netrin 1 | 2.30 | 3.56 |
NM_003364 | 7378 | UPP1 uridine phosphorylase 1, variant 1 | 2.29 | 3.49 |
NM_000024 | 154 | ADRB2 adrenergic, beta-2-, receptor, surface | 2.29 | 5.30 |
Accession	ID	Symbol	Description	Fold
NM_000024	154	ADRB2	adrenergic, beta-2-, receptor, surface	2.24
LOC728				3.98
XR_036845	728364	364	PREDICTED: misc_RNA	2.22
				3.33
NM_002034	2527	FUT5	fucosyltransferase 5 (alpha (1,3) fucosyltransferase)	2.22
				5.51
NM_198174	57822	GRHL3	grainyhead-like 3 (Drosophila), variant 3	2.22
				3.49
NM_000024	154	ADRB2	adrenergic, beta-2-, receptor, surface	2.21
			oxidative stress induced growth inhibitor 1, variant	
NM_182981	29948	OSGIN1		2.21
				3.02
NM_000024	154	ADRB2	adrenergic, beta-2-, receptor, surface	2.21
			six transmembrane epithelial antigen of the prostate 1	2.20
NM_012449	26872	STEAP1		4.21
NM_006350	10468	FST	follistatin, variant FST317	2.20
				3.80
NM_058172	118429	ANTXR2	anthrax toxin receptor 2	2.19
				4.80
NM_021181	57823	SLAMF7	SLAM family member 7	2.19
				3.63
HIST2H4	554313	B	Histone cluster 2, H4b	2.18
				3.78
NM_003155	6781	STC1	stanniocalcin 1	2.17
				4.60
NM_000024	154	ADRB2	adrenergic, beta-2-, receptor, surface	2.17
				4.23
NM_001003	794	MGLL	monoglyceride lipase, variant 2	2.17
				3.31
NM_000024	154	ADRB2	adrenergic, beta-2-, receptor, surface	2.17
				4.14
NM_001248	956	ENTPD3	ectonucleoside triphosphate diphosphohydrolase 3	2.16
			dehydrogenase/reductase (SDR family) member 2, variant 2	3.76
NM_005794	10202	DHRS2		2.16
			variant 2	3.54
NM_021800	56521	DNAJC1	DnaJ (Hsp40) homolog, subfamily C, member 12, variant 1	2.16
				4.35

Nature Publishing Group
Accession	Chromosome	Description	Exp	Log2FDR
NM_000024	154	ADRB2 adrenergic, beta-2-, receptor, surface	2.16	3.79
NM_002160	3371	TNC tenascin C	2.15	3.41
NM_002281	3887	KRT81 keratin 81	2.15	3.76
NM_000024	154	ADRB2 adrenergic, beta-2-, receptor, surface	2.14	4.34
NM_005723	10098	TSPAN5 tetraspanin 5	2.14	3.56
NM_144497	9590	AKAP12 A kinase (PRKA) anchor protein (gravin) 12, variant	2.14	3.12
NM_153685	196500	chromosome 12 open reading frame 53	2.13	4.07
NM_004235	9314	KLF4 Kruppel-like factor 4 (gut)	2.13	3.54
NM_002032	2495	FTH1 ferritin, heavy polypeptide 1	2.13	3.59
NM_178863	253980	KCTD13 potassium channel tetramerisation domain containing 13	2.12	3.64
LR_042007	728978	LOC728 PREDICTED: misc_RNA	2.12	3.55
NM_005379	4640	MYO1A myosin IA	2.12	4.37
NM_021065	3013	AD histone cluster 1, H2ad	2.12	3.48
NM_144497	9590	AKAP12 A kinase (PRKA) anchor protein (gravin) 12, variant	2.11	3.36
NM_001172	384	ARG2 arginase, type II, nuclear gene encoding mitochondrial protein	2.11	3.88
NM_005764	10158	PDZK1IP PDZK1 interacting protein 1	2.11	3.22
NM_022094	63924	CIDE cell death-inducing DFFA-like effector c	2.11	3.56
Gene ID	Transcript ID	Description	Log2 Fold	p-Value
--------------	---------------	--	-------------	----------
NM_017899	54997	TESC tescalcin	2.10	4.04
NM_021013	3885	KRT34 keratin 34	2.10	3.65
NM_001037	165	FOXK1 forkhead box K1	2.09	3.06
	221937	ALDO-KRT1 aldo-keto reductase family 1, member C1		
		(dihydrodiol dehydrogenase 1; 20-alpha (3-alpha)-		
		hydroxysteroid dehydrogenase)		
NM_001353	1645	AKR1C1 aldo-keto reductase family 1, member C1	2.09	3.58
NM_001001	437	CCL3L3 chemokine (C-C motif) ligand 3-like 3	2.08	3.14
NM_001110	354	ZP3 zona pellucida glycoprotein 3 (sperm receptor)		
	7784	PLAC8 placenta-specific 8, variant 2	2.08	3.48
		Transcribed locus	2.07	3.36
NM_175884	168455	FLJ3603 hypothetical protein FLJ36031	2.08	4.94
NM_016619	51316	PLAC8 placenta-specific 8, variant 2	2.08	3.48
NM_001097	600	TMEM2 transmembrane protein 22, variant 3	2.07	3.12
NM_003975	9047	SH2D2A SH2 domain protein 2A	2.07	3.69
NM_182743	7296	TXNRD1 thioredoxin reductase 1, variant 4	2.07	3.95
NM_005555	3854	KRT6B keratin 6B	2.07	3.48
NM_001102	595	DTX2 deltex homolog 2 (Drosophila), variant 3	2.07	3.58
	113878	GTP binding protein overexpressed in skeletal		
		muscle, variant 2		
NM_181702	2669	GEM CDNA FLJ10586 fis, clone NT2RP2003986	2.06	3.46
NM_001179	419	ART3 ADP-riboseyltransferase 3, variant 2	2.06	3.69
Accession	Gene ID	Gene Name	Expression Ratio	
-----------	---------	---------------------------------	------------------	
NM_001353	1645	AKR1C1 (aldo-keto reductase)	2.06 3.59	
NM_005953	4502	MT2A (metallothionein 2A)	2.05 3.53	
NM_002502	4791	NFKB2 (nuclear factor of kappa)	2.05 3.12	
			mRNA; cDNA DKFZp434M054	2.04 4.71
NM_001098	212	HRH1 (histamine receptor H1)	2.03 4.45	
NM_022767	64782	AEN (apoptosis enhancing nuclease)	2.03 3.94	
		SEC61A		
NM_018144	55176	Sec61 alpha 2 subunit	2.03 4.01	
		(S. cerevisiae)		
NM_182507	144501	KRT80 (keratin 80)	2.02 3.52	
NM_021972	8877	SPHK1 (sphingosine kinase)	2.02 3.01	
NM_033646	1005	CDH7 (cadherin 7)	2.02 5.43	
		(type 2, variant a)		
NM_015657	26154	ABCA12 (ATP-binding cassette)	2.01 4.00	
		(sub-family A (ABC1), member)		
NM_003841	8794	TNFRSF10C (tumor necrosis factor)	2.01 4.57	
	10C	receptor superfamily, member 10c, decoy		
NM_003965	9034	CCRL2 (chemokine (C-C motif)	2.00 3.08	
		receptor-like 2)		
NM_001097	600	TMEM2 (transmembrane protein)	2.00 3.36	
	80723	2 (variant 3)		
Supplementary Table 2.

Genes Down-Regulated by Pyocyanin (p-value < 0.001, log2 ratio < -2)

RefSeq	Entrez Gene ID	Gene	Description	Log2 Ratio	Neg. log10 p-value
NM_153000	147495	APCDD1	adenomatosis polyposis coli down-regulated 1	-4.76	4.25
NM_002191	3623	INHA	inhibin, alpha	-4.22	4.83
NM_002048	2619	GAS1	growth arrest-specific 1	-4.10	4.97
NM_001885	1410	CRYAB	crystallin, alpha B	-3.63	3.73
NM_005218	1672	DEFB1	defensin, beta 1	-3.33	3.26
	9340	GLP2R	Glucagon-like peptide 2 receptor	-3.31	3.92
NM_002272	3851	KRT4	keratin 4	-3.25	4.11
NM_001216	768	CA9	carbonic anhydrase IX	-3.22	3.84
NM_001122	679	ODZ2	odz, odd Oz/ten-m homolog 2 (Drosophila)	-3.18	4.12
NM_177403	338382	RAB7B	RAB7B, member RAS oncogene family	-3.15	3.67
NM_001878	1382	CRABP2	cellular retinoic acid binding protein 2	-3.09	4.39
NM_001312	1397	CRIP2	cysteine-rich protein 2	-3.04	3.97
NM_175068	319101	KRT73	keratin 73	-3.03	3.91
NM_000093	1289	COL5A1	collagen, type V, alpha 1	-2.93	5.13
NM_001018	057	DKK3	dickkopf homolog 3 (Xenopus laevis), variant 3	-2.88	4.35
NM_001018	057	DKK3	dickkopf homolog 3 (Xenopus laevis), variant 3	-2.86	3.36
NM_181677	5521 B	PPP2R2	protein phosphatase 2 (formerly 2A), regulatory subunit B, beta isoform, variant 5	-2.78	4.17
	10451	VAV3	Vav 3 guanine nucleotide exchange factor	-2.77	3.26
Accession	Start	End	Gene Description	Log2 Fold Change	Log10 Fold Change
-------------	-------	-------	--	------------------	-------------------
NM_001083	896	645832	SEBOX homeobox, variant 2	-2.73	4.76
NM_019601	56241	SUSD2	sushi domain containing 2	-2.69	4.74
NM_001079	874	10451	vav 3 guanine nucleotide exchange factor, variant 2	-2.68	3.46
NM_003016	6427	SFRS2	splicing factor, arginine/serine-rich 2	-2.57	3.46
NM_001111	89797	NAV2	neuron navigator 2, variant 4	-2.51	4.32
NM_007173	11098	PRSS23	protease, serine, 23	-2.48	4.42
NM_016571	51557	GLULD1	domain containing 1	-2.47	4.01
NR_002196	283120	H19	H19, imprinted maternally expressed (non-protein coding) on chromosome 11.	-2.45	4.58
NM_000424	3852	KRT5	keratin 5	-2.44	4.34
NM_000093	1289	COL5A1	collagen, type V, alpha 1	-2.37	3.55
NM_024336	79191	IRX3	iroquois homeobox 3	-2.32	4.00
NM_016588	51299	NRN1	neuritin 1	-2.29	4.81
NM_032229	84189	SLITRK6	SLIT and NTRK-like family, member 6	-2.28	3.34
			Transcribed locus	-2.28	4.38
NM_017848	54954	C	family with sequence similarity 120C	-2.27	4.21
NM_174959	136306	SVOPL	SVOP-like	-2.25	3.83
NM_020686	18	ABAT	4-aminobutyrate aminotransferase, nuclear gene encoding mitochondrial protein, variant 1	-2.25	4.71
NM_030806	81563	C1orf21	chromosome 1 open reading frame 21	-2.22	4.42
	79883	PODNL1	Podocan-like 1	-2.22	3.77
NM_199512	151887	CCDC80	coiled-coil domain containing 80, variant 2	-2.22	3.40
Gene Symbol	Accession Number	Description	Log2 Fold Change		
-------------	------------------	-------------	-----------------		
NM_003621	8495	PPFIBP2	-2.21		
NM_030761	54361	WNT4	-2.20		
NM_001447	2196	FAT2	-2.18		
NM_005581	4059	BCAM	-2.18		
NM_014387	27040	LAT	-2.18		
NM_00435	4854	NOTCH3	-2.17		
	205	AK3L1	-2.16		
NM_016240	51435	SCARA3	-2.15		
NM_004772	9315	C5orf13	-2.14		
	244	ANXA8L	-2.14		
NM_145810	83879	CDCA7	-2.13		
NM_007308	6622	SNCA	-2.12		
	23363	OBSL1	-2.11		
NM_005669	7905	REEP5	-2.09		
NM_007308	6622	SNCA	-2.08		
NM_032812	8498	PLXDC2	-2.08		
NM_173061	831	CAST	-2.08		
NM_001333	1515	CTSL2	-2.08		
NM_181712	163782	KANK4	-2.07		
NM_016240	51435	SCARA3	-2.06		
NM_199512	151887	CCDC80	-2.06		
Gene ID	Accession	Gene Name	Symbol	Log2 Fold Change	P-Value
------------	-----------	----------------------------	------------	------------------	---------
NM_007308	6622	SNCA synuclein, alpha	SNCA	-2.06	6.59
		(non A4 component of amyloid precursor), variant NACP112			
NM_007308	6622	SNCA synuclein, alpha	SNCA	-2.06	4.03
		(non A4 component of amyloid precursor), variant NACP112			
NM_001111	019	NAV2 neuron navigator	NAV2	-2.05	4.17
NM_001964	1958	EGR1 early growth response	EGR1	-2.04	3.78
NM_016731	2348	FOLR1 folate receptor	FOLR1	-2.04	3.43
NM_007308	6622	SNCA synuclein, alpha	SNCA	-2.04	3.20
		(non A4 component of amyloid precursor), variant NACP112			
NM_007308	6622	SNCA synuclein, alpha	SNCA	-2.03	3.92
		(non A4 component of amyloid precursor), variant NACP112			
NM_007308	6622	SNCA synuclein, alpha	SNCA	-2.02	3.60
		(non A4 component of amyloid precursor), variant NACP112			
NM_001127	464	ZNF469 zinc finger protein	ZNF469	-2.01	4.08
NM_001719	655	BMP7 bone morphogenetic	BMP7	-2.00	4.27
NM_153000	147495	APCDD1 adenomatosis polyposis coli down-regulated 1	APCDD1	-4.76	4.25
NM_002191	3623	INHA inhibin, alpha	INHA	-4.22	4.83
NM_002048	2619	GAS1 growth arrest-specific	GAS1	-4.10	4.97
NM_001885	1410	CRYAB crystallin, alpha B	CRYAB	-3.63	3.73
NM_005218	1672	DEFB1 defensin, beta 1	DEFB1	-3.33	3.26
NM_002272	3851	KRT4 keratin 4	KRT4	-3.25	4.11
NM_001216	768	CA9 carbonic anhydrase IX	CA9	-3.22	3.84
NM_001122	679	ODZ2 odz, odd Oz/ten-m homolog 2 (Drosophila)	ODZ2	-3.18	4.12
Accession	Gene ID	Gene Name	Description	Expression Level	
-------------	---------	---------------------------------	---	------------------	
NM_177403	338382	RAB7B	RAB7B, member RAS oncogene family	-3.15 3.67	
NM_001878	1382	CRABP2	cellular retinoic acid binding protein 2	-3.09 4.39	
NM_001312	1397	CRIP2	cysteine-rich protein 2	-3.04 3.97	
NM_175068	319101	KRT73	keratin 73	-3.03 3.91	
NM_000093	1289	COL5A1	collagen, type V, alpha 1	-2.93 5.13	
NM_001018	27122	DKK3	dickkopf homolog 3 (Xenopus laevis), variant 3	-2.88 4.35	
NM_001018	27122	DKK3	dickkopf homolog 3 (Xenopus laevis), variant 3	-2.86 3.36	
		PPP2R2	protein phosphatase 2 (formerly 2A), regulatory subunit B, beta isoform, variant 5	-2.78 4.17	
NM_181677	5521	VAV3	Vav 3 guanine nucleotide exchange factor	-2.77 3.26	
NM_001083	645832	SEBOX	SEBOX homeobox, variant 2	-2.73 4.76	
NM_019601	56241	SUSD2	sushi domain containing 2	-2.69 4.74	
NM_001079	10451	VAV3	vav 3 guanine nucleotide exchange factor, variant 2	-2.68 3.46	
NM_003016	6427	SFRS2	splicing factor, arginine/serine-rich 2	-2.57 3.46	
NM_007173	5087	PBX1	Pre-B-cell leukemia homeobox 1	-2.54 5.20	
NM_001111	89797	NAV2	neuron navigator 2, variant 4	-2.51 4.32	
NM_007173	11098	PRSS23	protease, serine, 23	-2.48 4.42	
NM_016571	51557	GLULD1	glutamate-ammonia ligase (glutamine synthetase) domain containing 1	-2.47 4.01	
NR_002196	283120	H19	H19, imprinted maternally expressed (non-protein coding) on chromosome 11.	-2.45 4.58	
NM_000424	3852	KRT5	keratin 5	-2.44 4.34	
NM_000093	1289	COL5A1	collagen, type V, alpha 1	-2.37 3.55	
Accession	Gene Symbol	Gene Description	Log2 Fold Change	q-value	
------------	-------------	---	-----------------	---------	
NM_024336	IRX3	iroquois homeobox 3	-2.32	4.00	
NM_016588	NRN1	neuritin 1	-2.29	4.81	
NM_032229	SLITRK6	SLIT and NTRK-like family, member 6	-2.28	3.34	
	Trans	Transcribed locus	-2.28	4.38	
NM_017848	C	family with sequence similarity 120C	-2.27	4.21	
NM_174959	SVOPL	SVOP-like	-2.25	3.83	
NM_020686	ABAT	4-aminobutyrate aminotransferase, nuclear gene	-2.25	4.71	
NM_030806	C1orf21	chromosome 1 open reading frame 21	-2.22	4.42	
	PODNL1	Podocan-like 1	-2.22	3.77	
NM_199512	CCDC80	coiled-coil domain containing 80, variant 2	-2.22	3.40	
NM_003621	PPFIBP2	PTPRF interacting protein, binding protein 2	-2.21	3.31	
		(liprin beta 2)			
NM_030761	WNT4	wingless-type MMTV integration site family,	-2.20	3.60	
		member 4			
NM_001447	FAT2	FAT tumor suppressor homolog 2 (Drosophila)	-2.18	3.82	
NM_005581	BCAM	basal cell adhesion molecule (Lutheran blood	-2.18	4.25	
		group), variant 1			
NM_014387	LAT	linker for activation of T cells, variant 1	-2.18	3.66	
NM_00435	NOTCH3	Notch homolog 3 (Drosophila)	-2.17	3.53	
	AK3L1	Adenylate kinase 3-like 1	-2.16	3.84	
NM_016240	SCARA3	scavenger receptor class A, member 3, variant	-2.15	4.01	
NM_004772	C5orf13	chromosome 5 open reading frame 13	-2.14	4.11	
	ANXA8L	Annexin A8-like 2	-2.14	3.57	
NM_145810	CDCA7	cell division cycle associated 7, variant 2	-2.13	4.01	
Accession	Gene ID	Gene Name	log2 Fold Change	Expression Value	
-----------	---------	----------------------------	-----------------	------------------	
NM_007308	6622	SNCA synuclein, alpha (non A4 component of amyloid precursor), variant NACP112	-2.12	4.19	
23363	OBSL1	Obscurin-like 1	-2.11	4.25	
NM_005669	7905	REEP5 receptor accessory protein 5	-2.09	3.58	
NM_007308	6622	SNCA synuclein, alpha (non A4 component of amyloid precursor), variant NACP112	-2.08	3.20	
NM_032812	84898	PLXDC2 plexin domain containing 2	-2.08	3.63	
NM_173061	831	CAST calpastatin, variant 3	-2.08	3.97	
NM_001333	1515	CTSL2 cathepsin L2	-2.08	3.51	
NM_181712	163782	KANK4 KN motif and ankyrin repeat domains 4	-2.07	4.06	
NM_016240	51435	SCARA3 scavenger receptor class A, member 3, variant 1	-2.06	3.54	
NM_199512	151887	CCDC80 coiled-coil domain containing 80, variant 2	-2.06	3.94	
NM_007308	6622	SNCA synuclein, alpha (non A4 component of amyloid precursor), variant NACP112	-2.06	6.59	
NM_007308	6622	SNCA synuclein, alpha (non A4 component of amyloid precursor), variant NACP112	-2.06	4.03	
NM_001111	019	NAV2 neuron navigator 2, variant 4	-2.05	4.17	
NM_001964	1958	EGR1 early growth response 1	-2.04	3.78	
NM_016731	2348	FOLR1 folate receptor 1 (adult), variant 8	-2.04	3.43	
NM_007308	6622	SNCA synuclein, alpha (non A4 component of amyloid precursor), variant NACP112	-2.04	3.20	
NM_007308	6622	SNCA synuclein, alpha (non A4 component of amyloid precursor), variant NACP112	-2.03	3.92	
1266	CNN3	Calponin 3, acidic	-2.03	3.02	
NM_007308	6622	SNCA synuclein, alpha (non A4 component of amyloid precursor), variant NACP112	-2.02	3.60	
ID	Gene ID	Gene Symbol	Description	Log2FoldChange	P-Value
-------	---------	-------------	--	----------------	---------
NM_001127	464	ZNF469	zinc finger protein 469	-2.01	4.08
NM_001719	655	BMP7	bone morphogenetic protein 7	-2.00	4.27
NM_153000	147495	APCDD1	adenomatososis polyposis coli down-regulated 1	-4.76	4.25
NM_002191	3623	INHA	inhibin, alpha	-4.22	4.83
NM_002048	2619	GAS1	growth arrest-specific 1	-4.10	4.97
NM_001885	1410	CRYAB	crystallin, alpha B	-3.63	3.73
NM_005218	1672	DEFB1	defensin, beta 1	-3.33	3.26
	9340	GLP2R	Glucagon-like peptide 2 receptor	-3.31	3.92
NM_002272	3851	KRT4	keratin 4	-3.25	4.11
NM_001216	768	CA9	carbonic anhydrase IX	-3.22	3.84
NM_001122	679	ODZ2	odz, odd Oz/ten-m homolog 2 (Drosophila)	-3.18	4.12
NM_177403	338382	RAB7B	RAB7B, member RAS oncogene family	-3.15	3.67
NM_001878	1382	CRABP2	cellular retinoic acid binding protein 2	-3.09	4.39
NM_001312	1397	CRIP2	cysteine-rich protein 2	-3.04	3.97
NM_175068	319101	KRT73	keratin 73	-3.03	3.91
NM_000093	1289	COL5A1	collagen, type V, alpha 1	-2.93	5.13
NM_001018	057	DKK3	dickkopf homolog 3 (Xenopus laevis), variant 3	-2.88	4.35
NM_001018	057	DKK3	dickkopf homolog 3 (Xenopus laevis), variant 3	-2.86	3.36
NM_181677	5521	PPP2R2B	protein phosphatase 2 (formerly 2A), regulatory subunit B, beta isoform, variant 5	-2.78	4.17
	10451	VAV3	Vav 3 guanine nucleotide exchange factor	-2.77	3.26
NM_001083	896	SEBOX	SEBOX homeobox, variant 2	-2.73	4.76
Accession	ID	Symbol	Description	Fold Change	log2FC
-----------	--------	--------	---	-------------	--------
NM_019601	56241	SUSD2	sushi domain containing 2	-2.69	4.74
NM_001079	874	VAV3	vav 3 guanine nucleotide exchange factor, variant 2	-2.68	3.46
NM_003016	6427	SFRS2	splicing factor, arginine/serine-rich 2	-2.57	3.46
	5087	PBX1	Pre-B-cell leukemia homeobox 1	-2.54	5.20
NM_001111	019	NAV2	neuron navigator 2, variant 4	-2.51	4.32
NM_007173	11098	PRSS23	protease, serine, 23	-2.48	4.42
NM_016571	51557	GLULD1	glutamate-ammonia ligase (glutamine synthetase) domain containing 1	-2.47	4.01
NR_002196	283120	H19	H19, imprinted maternally expressed (non-protein coding) on chromosome 11.	-2.45	4.58
NM_000424	3852	KRT5	keratin 5	-2.44	4.34
NM_000093	1289	COLSA1	collagen, type V, alpha 1	-2.37	3.55
NM_024336	79191	IRX3	iroquois homeobox 3	-2.32	4.00
NM_016588	51299	NRN1	neuritin 1	-2.29	4.81
NM_032229	84189	SLITRK6	SLIT and NTRK-like family, member 6	-2.28	3.34
			Transcribed locus	-2.28	4.38
NM_017848	54954	C	family with sequence similarity 120C	-2.27	4.21
NM_174959	136306	SVOPL	SVOP-like	-2.25	3.83
NM_020686	18	ABAT	4-aminobutyrate aminotransferase, nuclear gene encoding mitochondrial protein	-2.25	4.71
NM_030806	81563	C1orf21	chromosome 1 open reading frame 21	-2.22	4.42
	79883	PODNL1	Podocan-like 1	-2.22	3.77
NM_199512	151887	CCDC80	coiled-coil domain containing 80, variant 2	-2.22	3.40
NM_003621	8495	PPFIBP2	PTPRF interacting protein, binding protein 2 (liprin beta 2)	-2.21	3.31
NM_030761	WNT4	-2.20	3.60		
NM_001447	FAT2	-2.18	3.82		
NM_005581	BCAM	-2.18	4.25		
NM_014387	LAT	-2.18	3.66		
NM_000435	NOTCH3	-2.17	3.53		
205 AK3L1	-2.16	3.84			
NM_016240	SCARA3	-2.15	4.01		
NM_007308	SNCA	-2.18	4.19		
244 ANXA8L	-2.14	3.57			
NM_145810	CDC7	-2.13	4.01		
NM_007308	SNCA	-2.12	4.19		
23363 OBLS1	-2.11	4.25			
NM_005669	REEP5	-2.09	3.58		
NM_173061	CAST	-2.08	3.90		
NM_001333	CTSL2	-2.08	3.51		
NM_199512	CCDC80	-2.06	3.94		
NM_000435	SNCA	-2.06	6.59		
Accession	Gene ID	Gene Symbol	Description	Fold Change	Log Fold Change
-----------	----------	-------------	-------------	-------------	----------------
NM_007308 6622	SNCA	synuclein, alpha (non A4 component of amyloid precursor), variant NACP112	-2.06	4.03	
NM_001111 019	NAV2	neuron navigator 2, variant 4	-2.05	4.17	
NM_001964 1958	EGR1	early growth response 1	-2.04	3.78	
NM_016731 2348	FOLR1	folate receptor 1 (adult), variant 8	-2.04	3.43	
NM_007308 6622	SNCA	synuclein, alpha (non A4 component of amyloid precursor), variant NACP112	-2.04	3.20	
NM_007308 6622	SNCA	synuclein, alpha (non A4 component of amyloid precursor), variant NACP112	-2.03	3.92	
NM_007308 6622	SNCA	synuclein, alpha (non A4 component of amyloid precursor), variant NACP112	-2.02	3.60	
NM_001127 464	ZNF469	zinc finger protein 469	-2.01	4.08	
NM_001719 655	BMP7	bone morphogenetic protein 7	-2.00	4.27	
NM_153000 147495	APCDD1	adenomatosis polyposis coli down-regulated 1	-4.76	4.25	
NM_002191 3623	INHA	inhibin, alpha	-4.22	4.83	
NM_002048 2619	GAS1	growth arrest-specific 1	-4.10	4.97	
NM_001885 1410	CRYAB	crystallin, alpha B	-3.63	3.73	
NM_005218 1672	DEFB1	defensin, beta 1	-3.33	3.26	
NM_002272 3851	KRT4	keratin 4	-3.25	4.11	
NM_001216 768	CA9	carbonic anhydrase IX	-3.22	3.84	
NM_001122 679	ODZ2	odz, odd Oz/ten-m homolog 2 (Drosophila)	-3.18	4.12	
NM_177403 338382	RAB7B	RAB7B, member RAS oncogene family	-3.15	3.67	
NM_001878 1382	CRABP2	cellular retinoic acid binding protein 2	-3.09	4.39	
NM_001312	1397	CRIP2	cysteine-rich protein 2	-3.04	3.97
NM_175068	319101	KRT73	keratin 73	-3.03	3.91
NM_000093	1289	COL5A1	collagen, type V, alpha 1	-2.93	5.13
NM_001018	27122	DKK3	dickkopf homolog 3 (Xenopus laevis), variant 3	-2.88	4.35
NM_001018	27122	DKK3	dickkopf homolog 3 (Xenopus laevis), variant 3	-2.86	3.36
NM_181677	5521	PPP2R2	protein phosphatase 2 (formerly 2A), regulatory subunit B, beta isoform, variant 5	-2.78	4.17
NM_001083	645832	SEBOX	SEBOX homeobox, variant 2	-2.73	4.76
NM_019601	56241	SUSD2	sushi domain containing 2	-2.69	4.74
NM_001079	10451	VAV3	Vav 3 guanine nucleotide exchange factor	-2.77	3.26
NM_003016	5087	PBX1	Pre-B-cell leukemia homeobox 1	-2.54	5.20
NM_001111	89797	NAV2	neuron navigator 2, variant 4	-2.51	4.32
NM_007173	11098	PRSS23	protease, serine, 23	-2.48	4.42
NM_016571	51557	GLULD1	glutamate-ammonia ligase (glutamine synthetase) domain containing 1	-2.47	4.01
NR_002196	283120	H19	H19, imprinted maternally expressed (non-protein coding) on chromosome 11.	-2.45	4.58
NM_000424	3852	KRT5	keratin 5	-2.44	4.34
NM_000093	1289	COL5A1	collagen, type V, alpha 1	-2.37	3.55
NM_024336	79191	IRX3	iroquois homeobox 3	-2.32	4.00
NM_016588	51299	NRN1	neuritin 1	-2.29	4.81
Accession	Log2FoldChange	Description			
-----------	----------------	-------------			
NM_032229	-2.28	SLITR6 SLIT and NTRK-like family, member 6			
NM_017848	-2.27	FAM120C family with sequence similarity 120C			
NM_174959	-2.25	SVOPL SVOP-like			
NM_020686	-2.25	ABAT 4-aminobutyrate aminotransferase, nuclear gene			
NM_030806	-2.22	C1orf21 chromosome 1 open reading frame 21			
NM_199512	-2.22	CCDC80 coiled-coil domain containing 80, variant 2			
NM_003621	-2.21	PPFIBP2 PTPRF interacting protein, binding protein 2 (liprin beta 2)			
NM_030761	-2.20	WNT4 wingless-type MMTV integration site family, member 4			
NM_001447	-2.18	FAT2 FAT tumor suppressor homolog 2 (Drosophila)			
NM_005581	-2.18	BCAM basal cell adhesion molecule (Lutheran blood group), variant 1			
NM_014387	-2.18	LAT linker for activation of T cells, variant 1			
NM_000435	-2.17	NOTCH3 Notch homolog 3 (Drosophila)			
NM_016240	-2.15	SCARA3 scavenger receptor class A, member 3, variant 1			
NM_004772	-2.14	C5orf13 chromosome 5 open reading frame 13			
ANXA8L	-2.14	Annexin A8-like 2			
NM_145810	-2.13	CDCA7 cell division cycle associated 7, variant 2			
NM_007308	-2.12	SNCA synuclein, alpha (non A4 component of amyloid precursor), variant NACP112			
NM_004772	-2.11	OBSL1 Obscurin-like 1			
Gene Name	Accession	Description	Log2 Fold Change	p-Value	
-----------------	-----------	---	------------------	---------	
NM_005669	7905	REEP5 receptor accessory protein 5	-2.09	3.58	
NM_007308	6622	SNCA synuclein, alpha (non A4 component of amyloid	-2.08	3.20	
		precursor), variant NACP112			
NM_032812	84898	PLXDC2 plexin domain containing 2	-2.08	3.63	
NM_173061	831	CAST calpastatin, variant 3	-2.08	3.97	
NM_001333	1515	CTSL2 cathepsin L2	-2.08	3.51	
NM_181712	163782	KANK4 KN motif and ankyrin repeat domains 4	-2.07	4.06	
NM_016240	51435	SCARA3 scavenger receptor class A, member 3, variant 1	-2.06	3.54	
NM_199512	151887	CCDC80 coiled-coil domain containing 80, variant 2	-2.06	3.94	
NM_007308	6622	SNCA synuclein, alpha (non A4 component of amyloid	-2.06	6.59	
		precursor), variant NACP112			
NM_007308	6622	SNCA synuclein, alpha (non A4 component of amyloid	-2.06	4.03	
		precursor), variant NACP112			
NM_001111019	89797	NAV2 neuron navigator 2, variant 4	-2.05	4.17	
NM_001964	1958	EGR1 early growth response 1	-2.04	3.78	
NM_016731	2348	FOLR1 folate receptor 1 (adult), variant 8	-2.04	3.43	
NM_007308	6622	SNCA synuclein, alpha (non A4 component of amyloid	-2.04	3.20	
		precursor), variant NACP112			
NM_007308	6622	SNCA synuclein, alpha (non A4 component of amyloid	-2.03	3.92	
		precursor), variant NACP112			
	1266	CNN3 Calponin 3, acidic	-2.03	3.02	
NM_007308	6622	SNCA synuclein, alpha (non A4 component of amyloid	-2.02	3.60	
		precursor), variant NACP112			
NM_001127	464	ZNF469 zinc finger protein 469	-2.01	4.08	
NM_001719	655	BMP7 bone morphogenetic protein 7	-2.00	4.27	
NM_153000	147495	APCDD1 adenomatosis polyposis coli down-regulated 1	-4.76	4.25	
NM_002191	3623	INHA	inhibin, alpha	-4.22	4.83
NM_002048	2619	GAS1	growth arrest-specific 1	-4.10	4.97
NM_001885	1410	CRYAB	crystallin, alpha B	-3.63	3.73
NM_005218	1672	DEFB1	defensin, beta 1	-3.33	3.26
9340	GLP2R	Glucagon-like peptide 2 receptor	-3.31	3.92	
NM_002272	3851	KRT4	keratin 4	-3.25	4.11
NM_001216	768	CA9	carbonic anhydrase IX	-3.22	3.84
NM_001122	679	ODZ2	odz, odd Oz/ten-m homolog 2 (Drosophila)	-3.18	4.12
NM_177403	338382	RAB7B	RAB7B, member RAS oncogene family	-3.15	3.67
NM_001878	1382	CRABP2	cellular retinoic acid binding protein 2	-3.09	4.39
NM_001312	1397	CRIP2	cysteine-rich protein 2	-3.04	3.97
NM_175068	319101	KRT73	keratin 73	-3.03	3.91
NM_000093	1289	COL5A1	collagen, type V, alpha 1	-2.93	5.13
NM_001018	057	DKK3	dickkopf homolog 3 (Xenopus laevis), variant 3	-2.88	4.35
NM_001018	057	DKK3	dickkopf homolog 3 (Xenopus laevis), variant 3	-2.86	3.36
NM_181677	5521	B	protein phosphatase 2 (formerly 2A), regulatory subunit B, beta isoform, variant 5	-2.78	4.17
10451	VAV3	Vav 3 guanine nucleotide exchange factor	-2.77	3.26	
NM_001083	896	SEBOX	SEBOX homeobox, variant 2	-2.73	4.76
NM_019601	56241	SUSD2	sushi domain containing 2	-2.69	4.74
NM_001079	874	VAV3	Vav 3 guanine nucleotide exchange factor, variant 2	-2.68	3.46
NM_003016	6427	SFRS2	splicing factor, arginine/serine-rich 2	-2.57	3.46
Accession	Gene ID	Gene Symbol	Description	log2 Fold Change	p-value
-----------	---------	-------------	-------------	-----------------	---------
NM_001111	5087 PBX1	Pre-B-cell leukemia homeobox 1	-2.54	5.20	
NM_007173	89797 NAV2	neuron navigator 2, variant 4	-2.51	4.32	
NM_016571	11098 PRSS23	protease, serine, 23	-2.48	4.42	
NM_007173	51557 GLULD1	glutamate-ammonia ligase (glutamine synthetase) domain containing 1	-2.47	4.01	
NR_002196	283120 H19	H19, imprinted maternally expressed (non-protein coding) on chromosome 11.	-2.45	4.58	
NM_000424	3852 KRT5	keratin 5	-2.44	4.34	
NM_000093	1289 COL5A1	collagen, type V, alpha 1	-2.37	3.55	
NM_024336	79191 IRX3	iroquois homeobox 3	-2.32	4.00	
NM_016588	51299 NRN1	neuritin 1	-2.29	4.81	
NM_032229	84189 SLITRK6	SLIT and NTRK-like family, member 6	-2.28	3.34	
NM_017848	54954 C	family with sequence similarity 120C	-2.27	4.21	
Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to *Pseudomonas pyocyacin*

Balázs Rada, Paul Gardina, Timothy G. Myers and Thomas L. Leto

Online supplementary Material

Supplementary Table 3. GO FAT terms associated with gene-function clusters.

Supplementary Table 4. List of reports documenting elevated levels of inflammatory mediators in CF patients.

Supplementary Table 5. Sequences of primers used in this study.
Supplementary Table 3.

Rada et al.

Constituent GO FAT functions for functional clusters.

Summary Function(s)	Constituent GO FAT Functions
C3 Apoptosis	apoptosis; cell death; death; programmed cell death
C7 Inflammatory/wound response, chemotaxis	behavior; chemotaxis; defense response; inflammatory response; locomotory behavior; response to wounding; taxis
C11 Hemostasis, wound healing	blood coagulation; coagulation; hemostasis; regulation of body fluid levels; wound healing
C2 Positive regulation of cell proliferation/cell communication	positive regulation of cell communication; positive regulation of cell proliferation; positive regulation of protein kinase cascade; positive regulation of signal transduction; regulation of protein kinase cascade
C8 Response to stimuli	response to drug/endogenous stimulus/estradiol stimulus/extracellular stimulus/hydrogen peroxide/inorganic substance/molecule of bacterial origin/nutrient/nutrient levels/organic cyclic substance/organic substance/oxidative stress/oxygen levels/reactive oxygen species/steroid hormone stimulus/vitamin
C6 Angiogenesis, cell migration	angiogenesis; blood vessel development; blood vessel morphogenesis; cell migration; cell motility; cell motion; localization of cell; regulation of cell migration; regulation of cell motion; regulation of locomotion; vasculature development
C10 Anti-apoptosis, apoptosis	anti-apoptosis; apoptosis; cell death; death; negative regulation of apoptosis; negative regulation of cell death; negative regulation of programmed cell death; programmed cell death; regulation of apoptosis; regulation of cell death; regulation of programmed cell death
C9 Positive regulation of apoptosis	positive regulation of apoptosis; positive regulation of cell death; positive regulation of programmed cell death
C5 Chromatin assembly	chromatin assembly; DNA packaging; nucleosome assembly; nucleosome organization; protein-DNA complex assembly
C1 Positive regulation of gene expression/macromolecule biosynthesis	positive regulation of biosynthetic process; positive regulation of cellular biosynthetic process; positive regulation of gene expression; positive regulation of macromolecule biosynthetic process; positive regulation of macromolecule metabolic process; positive regulation of nitrogen compound metabolic process
C4 Cation homeostasis	cation homeostasis; cellular homeostasis; cellular ion homeostasis; di-, trivalent inorganic cation homeostasis; homeostatic process; ion homeostasis
Supplementary Table 4. Rada et al.

List A. List of reports documenting elevated levels of inflammatory mediators in CF patients infected with *Pseudomonas aeruginosa* compared to CF patients without *Pseudomonas* infection.

Ref.	Sample	Inflammatory mediator
1	Breath condensate	IL-6, LTB4
2	BAL	IL-1β, IL-6, TNF-α, IL-4, IL-13, TARC (CCL17), ITAC (CXCL11)
3	Serum	IL-8, G-CSF
4	Serum	IL-4, G-CSF

PA-associated inflammatory mediators in CF: CCL17, CXCL11, IL-1β, IL-4, IL-6, IL-8, IL-13, G-CSF (CSF3), LTB4, TNF-α.

List B. Collection of studies reporting increased levels of inflammatory mediators in CF patients compared to healthy controls.

Ref.	Sample	Inflammatory mediator
5	Sputum	LTB4
6	Sputum	IL-1β, IL-8, TNF-α, IL-1Ra, sTNFRII
7	Serum	IL-6, TNF-α, CRP
8	BAL	s100A8, s100A9, s100A12
9	Sputum	s100A8, IL-8
10	BAL	s100A8, s100A9, s100A12
11	Serum	SAA
12	Serum	SAA, CRP
13	Serum	IL-8, LTB4
14	Sputum	IL-1β, -6, -8, -17A, -17F, IL-23p19, G-CSF, GM-CSF, GRO-α, MCP-1, MIP-1β, TNF-α

CF-associated inflammatory mediators not listed in list A: CRP (C-reactive protein), CXCL1 (GRO-α), GM-CSF (CSF2), IL-17A, IL-17F, IL-23p19, IL-1Rα, MCP-1 (CCL2), MIP-1β (CCL4), s100A8 (calgranulin A), s100A9 (calgranulin B), s100A12 (calgranulin C), SAA (serum-amyloid A).
Supplementary Table 5. Sequences of primers used in this study.

Primer pairs	Forward primer 5' - 3'	Reverse primer 5' - 3'	Amplicon (bp)	Source
Acn-1	CTCAGTGGACTGGCTGTGG	AAGGAGGCTGAAGAGTGC	528	15
Acn-2	CCAAGCGCAGAGATGAGA	CCAAGGCGTGACAGGATAG	97	15
ADAM-17	CCTCTGGCAGAAGAGGAGC	CACCTGCGAAGATTTCAG	69	15
ALD5	AAGAGCGCTGGCGACACAGATG	CATCCTCGCGGATTGTC	62	15
Catalase	CGAGTGTGGTTCCCTCACC	GGGTCCCACCTGTTGCA	60	15
CCL20	GCTGCTGGATGTGAGGCTT	GCAGCTAAAGTGGTCTGCC	66	15
CRYAB	ACATAGGAGACGCAGAGA	TCCTGATTTCTGCGGAGAC	62	15
CSF2	TCTCAAGAATTTTGGCTCCTA	GCCCTTGGCTGTGGTGGAG	98	15
CSF3	GACGCAAGGGCAAGACGCAA	GCAGTGCGTCGGCAGACTCTC	78	15
CXCL1	TCTGCTACCCCAATGTTA	CCTCAGAAGCCTCAGCAAT	105	15
CXCL2	CCACTGTTATAGAAATCATCG	CCTCAGAACAGGCACCAAT	95	15
CXCL3	AAAATCATGAAAAGGATGCAAAA	GGTGAGCCGAGGACAC	110	
CXXL11	AGTGTAAGGAGGCTGCACT	TGTCTTGGACATGGGAGAC	78	15
D2T3	CAGAGCTGCAAAGTGGAGAGA	TGATACGCTGAGAACAGCA	95	15
DHR22	TGAGATCTACATCAGTCCTCAGA	CACGATGCTGGTGGTCTCTG	69	15
Duox1	CACCTCGTGAGACGGCTTTC	GGCTCGTTGAGGTTGCA	60	15
Duox2	TACCCAGGGTGGATGAGC	TCTCAGAACCTGAGAATCTG	60	15
DURP1	CGACGAGTATGCCTCTGATA	TGCCAGTGAGCACAACCTCA	64	15
EGF	AAGATGCTGAGGGTTACAGCT	TGAATGTGGTGTGGAGAC	69	15
EGRF	GCTGATCTGGAGTGACCTG	CGGGATACGATAGAGTTGTC	60	15
GDF15	CCCAGTACATGGAACAGA	AGAGATAAGCAGGCTGGAG	61	15
HB-EGF	TGGGCGTCTCACTGATTAGG	TGCCACAACCTACCTTCTC	75	15
HMOX1	GGGTGATAGAAGAGGACAGA	AGCTCCTGCAACTCCTCAA	67	15
IL-1α	GTGGATGTTACTACCTCATCA	TGTCAGCTAGGCTTGAGTA	89	15
IL-1β	GTGCTGCTGGGCTGTAAGGA	TGGTAAATTTTGAGGGTACCA	70	15
IL-6	GATGAGCTAAAGTGCTCACTG	TCTCAGACCTGCTCCGTCG	130	15
IL-8	CAGGATGTGAGGTGTTGGC	AAACCAAGGCGACAGTGCA	180	15
IL-11	GGGACAGGAGGTTAGTAAAAG	GCAGTCAGCAGCCAGAGC	109	15
IL-19	GGCCAGAGAACAGCTAGAGG	AGCAGAAGGGAAGAACACTG	86	15
IL-20	AAGAAGAGCTCGCCTGCTG	TGACATGGAATCTGGTGATTCA	86	15
IL-23A	GCTTGCCACTATACCTCATG	TCTTGGAGCAAGAAGTGGA	77	15
IL-24	GTCGACGAGGAGGTTCC	CGGAGGTTGGACAGGATTA	65	15
IL-1R type2	TACGACCCACAGCTACAGAA	AAGAAGCCGATGGAAGTTG	76	15
IL-1RN	AAGAACACTACTGCTCTAAAG	CTGGACGCTGCTACCTTGCT	73	15
MUC1	GTCCGGCCACACTGAGAGCC	GAGTGGCCTACTGACAGTGG	123	17
MUC2-1	CAAGAGCAAGACGGCTTCG	CACCGTCTGTCTGTAGATGCTT	438	17
MUC2-2	CTGCCAGCTCAAGGAGA	CGACGACGCTCTAGTGGTCG	76	15
MUC4	CTCAGATGGAGGTTGCTCA	GTTCATGCTGACGTTCTCA	200	18
MUC5AC-1	TGCCGGTCATCTCCTCCA	ACGTGGTGGACGTGGCGT	683	19
MUC5AC-2	ACCTGCGCCAGCCGACAGA	ACGTGGGGCGTGCTGCTG	164	19
MUC5B	GCAGGGCCGTGGTGCTC	GTTGGGCCGTGACTTCC	94	3
MUC7	CACGCTGCTGCTTCTCGG	AGTGGTGATTATTCAGCTGATGTTAGT	108	17
MUC8	TACCACCACTGACCTCTTC	GGAGTGTAACCTGCTGCTC	240	20
MUC11	CTCATCTCCGGCTCTGCAA	GGGCGGGAGGTATGTGCTCA	93	22
MUC13	CCACTGCGCAGCCTATTT	TACTTGAGCCGAGTAGTTGCT	145	22
MUC15	TCTAAGACGCTGGACTCTGCTGTACTA	AACATGTTAGGGTTCTTGTTGATTGGT	145	22
MUC19	TGAGCTGGCTGTGGAAGAAAC	GGGGTCGGCAAAGCCTCTC	61	17
MUC20	TCTTGCTGTGGGAGAGGTT	TGTTCAGCTGAGTGCTCTC	77	15
Nax1	AGATGAACAGCGGGCTGCTT	AGATTGGAGGCGAATTAAACCAA	66	11
Nax2	ACTTCAGGCTTATGATGGA	ACAGTTTTGAAATGTCCTCCTA	76	16
Nax3	GACATTGGGCGCGCTTCTTCC	CAGGGTGAGTGGATCTGCTG	60	16
Nax4	TGCTCCCTCATGAATGCTCT	CTAGAGACACATCCACCAAA	103	16
Nax5	CGATGCACTACGCTACATGG	AAGAAGGAGGCTACACCTAC	74	16
PTGS2	TCCTCAGGCTATGCTTCCAG	TCACGTTAATATTTTTGATTCGCCAC	96	16
S100A7	CCAACAAACAACACATCCTCACA	TCGAGCTTGGAGGTTCTC	89	22
S100A8	CAAAGCGTGGGGCCATCAT	GAGCTGCTAGTGTGATGCAAGG	61	22
S100A9	GTCCGGAAAGAACAGTCCAAA	TGTCAGCTTGGCTCTGATT	103	22
S100A12	CACGTGGCTTCTGCTTCTGAG	TACCATCCTCAATGCAAGAGAC	51	15
SCAR0	TGGGAGATGCTTCCTTCTTC	TCCTGAGAGAAGGCTGCTCTT	92	15
SNAcA	CAAAGGAGGGTGCCGAGA	TCCTGGTGTGCTGAGCTTAC	72	15
SOd1	GACATGATCTTCTTGAGCAG	CGACGCGCTCCAGTCTGCTT	80	15
SOd2	GTCCGAGGAGCTACGGCTCTA	TGAATGTGGCTGCGAATCTC	62	15
SOd3	GCTGGAGAGGCTTGAAGAAGAT	GAGCGAGGAGGCAAGGACATGA	64	15
TGp-α	GCGAGGACGCTAGTGCTGAGA	TATGCTAGCTGGCGACAGGA	78	15
TNFα	CACCGCTCTGCTCTGCTA	GGGCGAGGCGTGGTAGTGAAG	123	
Supplementary references (s1-22)

1. Carpagnano, G.E., Barnes, P.J., Geddes, D.M., Hodson, M.E. & Kharitonov, S.A. Increased leukotriene B4 and interleukin-6 in exhaled breath condensate in cystic fibrosis. *Am J Respir Crit Care Med* **167**, 1109-1112 (2003).

2. Hartl, D. *et al.* Pulmonary Th2 response in Pseudomonas aeruginosa-infected patients with cystic fibrosis. *J Allergy Clin Immunol* **117**, 204-211 (2006).

3. Jensen, P.O. *et al.* Increased serum concentration of G-CSF in cystic fibrosis patients with chronic Pseudomonas aeruginosa pneumonia. *J Cyst Fibros* **5**, 145-151 (2006).

4. Moser, C. *et al.* Serum concentrations of GM-CSF and G-CSF correlate with the Th1/Th2 cytokine response in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. *APMIS* **113**, 400-409 (2005).

5. Zakrzewski, J.T., Barnes, N.C., Piper, P.J. & Costello, J.F. Detection of sputum eicosanoids in cystic fibrosis and in normal saliva by bioassay and radioimmunoassay. *Br J Clin Pharmacol* **23**, 19-27 (1987).

6. Osika, E. *et al.* Distinct sputum cytokine profiles in cystic fibrosis and other chronic inflammatory airway disease. *Eur Respir J* **14**, 339-346 (1999).

7. Nixon, L.S., Yung, B., Bell, S.C., Elborn, J.S. & Shale, D.J. Circulating immunoreactive interleukin-6 in cystic fibrosis. *Am J Respir Crit Care Med* **157**, 1764-1769 (1998).

8. MacGregor, G. *et al.* Biomarkers for cystic fibrosis lung disease: application of SELDI-TOF mass spectrometry to BAL fluid. *J Cyst Fibros* **7**, 352-358 (2008).

9. Gray, R.D. *et al.* Sputum proteomics in inflammatory and suppurrative respiratory diseases. *Am J Respir Crit Care Med* **178**, 444-452 (2008).

10. McMorran, B.J. *et al.* Novel neutrophil-derived proteins in bronchoalveolar lavage fluid indicate an exaggerated inflammatory response in pediatric cystic fibrosis patients. *Clin Chem* **53**, 1782-1791 (2007).

11. Smith, J.W., Colombo, J.L. & McDonald, T.L. Comparison of serum amyloid A and C-reactive protein as indicators of lung inflammation in corticosteroid treated and non-corticosteroid treated cystic fibrosis patients. *J Clin Lab Anal* **6**, 219-224 (1992).

12. Marhaug, G., Permin, H. & Husby, G. Amyloid-related serum protein (SAA) as an indicator of lung infection in cystic fibrosis. *Acta Paediatr Scand* **72**, 861-866 (1983).

13. Wyatt, H.A., Sampson, A.P., Balfour-Lynn, I.M. & Price, J.F. Production of the potent neutrophil chemokine, growth-related protein alpha (GROalpha), is not elevated in cystic fibrosis children. *Respir Med* **94**, 106-111 (2000).

14. McAllister, F. *et al.* Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. *J Immunol* **175**, 404-412 (2005).

15. Yan, F. *et al.* Reactive oxygen species regulate Pseudomonas aeruginosa lipopolysaccharide-induced MUC5AC mucin expression via PKC-NADPH oxidase-ROS-TGF-alpha signaling pathways in human airway epithelial cells. *Biochem Biophys Res Commun* **366**, 513-519 (2008).

16. Boudreau, H.E., Emerson, S.U., Korzeniowska, A., Jendrysik, M.A. & Leto, T.L. Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor beta-dependent manner: a new contributor to HCV-induced oxidative stress. *J Virol* **83**, 12934-12946 (2009).

17. Russo, C.L. *et al.* Mucin gene expression in human male urogenital tract epithelia. *Hum Reprod* **21**, 2783-2793 (2006).

18. Gersemann, M. *et al.* Differences in goblet cell differentiation between Crohn's disease and ulcerative colitis. *Differentiation* **77**, 84-94 (2009).
19. Song, J.S. et al. Nitric oxide induces MUC5AC mucin in respiratory epithelial cells through PKC and ERK dependent pathways. Respir Res 8, 28 (2007).

20. Kerschner, J.E. Mucin gene expression in human middle ear epithelium. Laryngoscope 117, 1666-1676 (2007).

21. Ebihara, T. et al. Differential gene expression of S100 protein family in leukocytes from patients with Kawasaki disease. Eur J Pediatr 164, 427-431 (2005).

22. Roche primer design web site: https://www.roche-applied-science.com/servlet/RCConfigureUser?URL=StoreFramesetView&storeId=10202&catalogId=10202&langId=-1&countryId=us
Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to *Pseudomonas pyocyainin*

Balázs Rada, Paul Gardina, Timothy G. Myers and Thomas L. Leto

Online supplementary Material

Supplementary Methods. Western blot, RNA isolation, mucin dot blot assay, qualitative and quantitative RT-PCR, *Pseudomonas* strains, isolation of pyocyanin, ELISA, cell proliferation assay and additional references.
Supplementary Methods.

Pseudomonas aeruginosa strains and purification of pyocyanin

The following strains were used: *P. aeruginosa* ATCC 10145 (PA 10145; American Type Culture Collection); PAO1 wild-type, pilus-, flagellum- and LPS-deficient mutants (*Pseudomonas* Mutant Library, University of Washington, Seattle), PA14 wild-type and pyocyanin-deficient mutant PA14 PhzM (gift from Frederick M. Ausubel, Harvard Medical School, Boston), *P. aeruginosa* ATCC 15442 (PA 15442, American Type Culture Collection). Bacteria were grown in *Luria-Bertani* broth (KD Medical). Pyocyanin was purified from their supernatant as described \(^{22}\) and dissolved in distilled water. Pyocyanin was also purchased from a commercial source (Cayman Chemical).

Western blotting

Airway epithelial cells were washed three times with cold calcium- and magnesium-free PBS and lysed by NP-40 lysis buffer (Boston Biosciences) containing 150 µM PMSF (Fluka Biochemika) and 1% protease inhibitor cocktail (dissolved in DMSO). Lysates were centrifuged and protein concentrations in supernatants were determined using the BCA assay (Pierce). Equal amounts of protein were loaded and electrophoresed on SDS-polycrylamide gels (8%; Tris-Glycine Gel, Invitrogen). Gels were blotted on nitrocellulose membrane (Invitrogen) using the TE Series Transphor Electrophoresis Unit (Hoefer) wet blotting system. Blots were blocked overnight in TTBS (TBS-buffer containing 5% milk powder and 0.05% Tween-20). Blots were incubated with primary antibodies (RT, 1hr, TTBS), washed three times with TTBS and then probed with secondary HRP-linked antibodies (RT, 1hr, TTBS, GE Healthcare). After repeated washes, blots were developed by chemiluminescence using the Lumigen DS detection kit (GE Healthcare).

The primary antibodies used were: \(\alpha\)-MUC5AC (1:100, Clone 45M1, mouse, Sigma), \(\alpha\)-Hsp90 (1:1000, mouse, Santa Cruz), \(\alpha\)-ERK (1:1000, rabbit, Santa Cruz), \(\alpha\)-phospho-ERK (1:1000, rabbit, Cell Signaling), \(\alpha\)–STAT6 (1:1000, rabbit, Cell Signaling), \(\alpha\)-phospho-STAT6 (1:1000, rabbit, Cell Signaling), \(\alpha\)-EGFR (1:1000, rabbit, Cell Signaling), \(\alpha\)-Actin (1:4000, rabbit, Sigma).

To detect MUC5AC in the supernatant of epithelial cells, cells were stimulated by 8 µM pyocyanin for 2 days. The supernatant was collected and cell debris was removed by quick centrifugation (400 g 3min RT). The supernatant was concentrated using Amicon centrifugal filter units (Millipore 0.5 mL volume, 10K membrane) and mixed with 2x protein gel loading buffer (without beta-mercaptoethanol). 40 uL of each sample was run on 4% Tris-Glycine gels (Invitrogen, 100 V 3 hrs) to detect high molecular weight proteins. Further processing of the gels is as it is described above.

RNA isolation and qualitative RT-PCR

RNA was isolated from airway epithelial cells by Trizol/chloroform extraction followed by isopropanol precipitation and wash in 70% ethanol. RNA pellets were taken up in DEPC-treated water (Nalgene). Concentrations and purities of the preparations were determined using Nanodrop spectrophotometer. cDNA synthesis was carried out with the Thermoscript cDNA synthesis kit (Invitrogen) using 2 µg total RNA, oligodT primers and RNaseH (Invitrogen) treatment. To detect the expression of different genes, gene-specific primers of MUC2,
MUC5AC and the NOX/DUOX NADPH oxidases described in Table S5. were used in the PCR reaction (PCR Thermocycler, Biometra). Beta-actin was used as internal control. The PCR products were resolved by gel electrophoresis on 1% agarose gels containing ethidium bromide (MUC2, MUC5AC) or on 10% TBE gels stained with Gelstar DNA stain (Lonza) (NAPDH oxidases). Lack of contaminating DNA was confirmed by PCR without RT.

Quantitative real-time PCR

The abundance of mRNAs of genes of interest was determined by quantitative real-time PCR using SYBR Green. The template cDNAs, No RT controls and gene-specific primers were mixed with SYBR Green/ROX PCR Supermix (Invitrogen) and dispensed on a 96-well PCR plate. The source of primers is listed in Table S5. Changes in fluorescence were followed in 7500 Real-time PCR system (Applied Biosystems). Reaction parameters were 50°C for 2 minutes, 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. The relative abundance of mRNAs was obtained using the comparative cycle threshold method and was normalized to beta-actin as the endogenous control. Results are also expressed as fold changes in the mRNA amount of a gene compared to the pyocyanin-treated or untreated samples. After each measurement melting curve analysis ensured the presence of only one product and the samples were also subjected to gel electrophoresis on 10% TBE gels and stained with GelStar DNA stain (Lonza) to confirm product size.

ELISA

The amount of released MUC5AC, IL-1β, IL-6, TNFα, TGFα and EGF was measured by ELISA. The supernatants of confluent airway epithelial cells grown on 24-well plates in the presence or absence of pyocyanin and different inhibitors, were collected and cleared from debris by low-speed centrifugation. 50 µL of each sample was incubated with carbonate-bicarbonate buffer (50 µL) at 37°C on high absorbance, flat bottom ELISA plates (Corning) until dry. Wells were washed three times with PBS, then blocked with 300 µL PBS containing 2% BSA for 1hr RT. After repeated washes with PBS again, 50 µL first antibody was applied (O/N 4°C). Wells were washed with PBS-Tween 20 again and 50 µL aliquots of the secondary antibody were added (2hrs RT). After three washes with PBS-Tween 20 color reaction was developed with 3,3',5,5'-tetramethylbenzidine (TNB, 0.16 mg/mL, 10-30 min RT) (Sigma) peroxidase solution and the reaction was stopped by adding 1M sulfuric acid. Absorbance was read at 450 nm. Serial dilution samples of bovine submaxillary gland mucin (Sigma) were treated parallel with the experimental samples to quantitate MUC5AC release in unknown samples and to ensure the linear nature of the colorimetric reaction. MUC5AC release was expressed either as mg/mL bovine mucin equivalent or as relative to the pyocyanin-untreated or –treated sample’s results because of the variable amounts of baseline MUC5AC secretion of H292 cells. Cytokine and growth factor release was also calibrated using standard curves.

Primary antibodies used in ELISA were: α-MUC5AC (1:100, Clone 45M1, mouse, Sigma), α-IL-1β (1:100, goat, R&D Systems), α-IL-6 (1:100, mouse, R&D Systems), α-TNFα (1:100, mouse, R&D Systems), α-TGFα (1:100, goat, R&D Systems), α-EGF (1:100, rabbit, Calbiochem). Secondary antibodies used were HRP-linked: donkey α-goat, donkey α-rabbit and sheep α-mouse (1:100, GE Healthcare). Neutralizing antibodies used were: α-IL-1β (goat, R&D Systems), α-IL-6 (goat, R&D Systems), α-TNFα (goat, R&D Systems), α-TGFα (goat, R&D Systems), all 10 µg/mL final concentration.
Cell proliferation assay

Proliferation of H292 cells in response to pyocyanin was assessed by the Click-iT Edu Imaging Kit according to the instructions of the manufacturer (Invitrogen). Cells after Edu-labeling, fixation and permeabilization were stained with Alexa Fluor 555-labelled antibody. DAPI was used to stain nuclei. Cell density was determined by counting the average number of DAPI-stained nuclei on unit surface area. Proportion of proliferating cells was calculated by dividing the number of Edu-labelled cells by the total number of DAPI-stained nuclei.

Dot blot assay of released mucin

To quantitate the amount of mucin secreted by different stimuli, the supernatant of pyocyanin-treated epithelial cells was collected, cleared and concentrated as described at the Western Blot section. 2 µL of the concentrated samples and calibration samples with known amounts of bovine submaxillary mucin were dropped on nitrocellulose membranes (0.45 µm pore size, Invitrogen) and incubated until dry. The membranes were developed by the PAS-staining kit (Sigma), the amount of mucin in each sample was determined by densitometry (UVP BioImaging Systems, Biochemi Systems, Labworks software) and calibrated using bovine mucin samples.

Sample preparation for microarrays

H292 cells were treated with or without 8 µM pyocyanin for 48 hrs in serum-free RPMI medium. RNA was isolated as described earlier. To obtain clean RNA preparations an additional clean-up step was introduced using Quiagen RNeasy RNA isolation kit. The prepared RNAs were run on RNA gel to ascertain the quality of the preparations. RNA was isolated four times in four independent experiments, collected and subjected to microarray analysis simultaneously.

Microarray Hybridization

Total RNA (40 µg) was reverse transcribed to cDNA using oligo dT primers and SuperScript II reverse transcriptase. Double-stranded cDNA was synthesized using DNA polymerase with Cy-labeled dUTP for direct dye incorporation followed by clean-up with Vivaspin column (Qiagen). Labelled samples were hybridized on the Agilent-014850 Whole Human Genome Microarray 4x44K (Product number G4112F; NCBI GEO accession GPL6480) with approximately 41,000 unique 60-mer probes targeting transcripts. Hybridization protocol was completely automated using the TECAN HS Pro 4800 hybridization station with Agilent 2x Gene expression hybridization HI-RPM buffer and 10x Blocking Reagent at 65°C for 17 hours, and washed with Agilent Gene Expression Wash Buffer 1 at room temperature and Gene Expression Wash Buffer 2 at 37°C. Slides were dried under nitrogen gas for 3 minutes at 30°C. The slides were imaged using an Agilent high-resolution DNA microarray scanner G2505C at 5 µm resolution and 100/10% PMT XDR. Agilent Feature Extraction software was used for image analysis.

References (s22-26):
22) Rada, B., Lekstrom, K., Damian, S., Dupuy, C. & Leto, T.L. The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J Immunol 181, 4883-4893 (2008).
23) Benjamini Y and Hochberg Y (1995). “Controlling the false discovery rate: a practical and powerful approach to multiple testing”. Journal of the Royal Statistical Society, Series B (Methodological) 57 (1): 289–300.
24) Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002 Feb 15;30(4):e15.

25) Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc. 2009;4(1):44-57.

26) Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4(5):P3.]