Sepsis in cancer patients residing in Zimbabwe: Spectrum of bacterial and fungal aetiologies and their antimicrobial susceptibility patterns.

CURRENT STATUS: ACCEPTED

BMC Infectious Diseases

FRANK CHINOWAITA
Midlands State University

fchinowaita@gmail.com
ORCiD: https://orcid.org/0000-0002-7974-8278

Wendy Chaka
University of Zimbabwe

Tinashe K Nyazika
University of Malawi

Tendai C Maboreke
University of Zimbabwe College of Health Sciences

Emmanuel Tizauone
University of Zimbabwe College of Health Sciences

Prichard Mapondera
Africa society laboratory medicine

Inam Chitsike
University of Zimbabwe College of Health Sciences

Andrew Z Cakana
University of Zimbabwe College of Health Sciences

Rooyen Tinago Mavenyengwa
University of Zimbabwe College of Health Sciences

DOI: 10.21203/rs.2.10948/v2

SUBJECT AREAS

Infectious Diseases
KEYWORDS

-
Abstract
Introduction: Cancer and sepsis comorbidity is a major public health problem in most parts of the world including Zimbabwe. The microbial aetiologies of sepsis and their antibiograms vary with time and locations. Knowledge on local microbial aetiologies of sepsis and their susceptibility patterns is critical in guiding empirical antimicrobial treatment choices. Methods: This was a descriptive cross sectional study which determined the microbial aetiologies of sepsis from blood cultures of paediatric and adult cancer patients obtained between July 2016 and June 2017. The TDR-X120 blood culture system and TDR 300B auto identification machine were used for incubation of blood culture bottles and identification plus antimicrobial susceptibility testing, respectively. Clinical and laboratory standards institute (CLSI) standard breakpoints were used to interpret the antimicrobial susceptibility results. Results: A total of 142 participants were enrolled; 50 (35.2%) had positive blood cultures with 56.0% Gram positive, 42.0% Gram negative bacteria and 2.0% yeast isolates. Most common isolates were coagulase negative Staphylococcus spp. (CoNS) (22.0%), Escherichia coli (16.0%), Klebsiella pneumoniae (14.0%), Enterococcus faecalis (14.0%) and Staphylococcus aureus (8.0%) in all cancer patients. These isolates were similar in both haematological and solid cancers. Gram negative isolates exhibited high resistance to gentamicin (61.9%) and ceftriaxone (71.4%) which are the empiric antimicrobial agents used in our setting. Amikacin and meropenem showed 85.7% and 95.2% activity respectively against all Gram negative isolates while vancomycin and linezolid were effective against 96.2% and 100.0% of all Gram positive isolates respectively. Ten (66.7%) isolates of E. coli and K. pneumoniae were extended spectrum β-lactamase (ESBL) positive. Among Staphylococcus species it was also observed that 10/15 (66.7%) of the isolates were methicillin resistant. Conclusions : The major microbial aetiologies of sepsis among patients with cancer in Zimbabwe were CoNS, E. coli , K. pneumoniae , E. faecalis and S. aureus . Most isolates were resistant to commonly used empirical antibiotics and there was high level of ESBL and methicillin resistance carriage. A nationwide survey on microbial aetiologies of sepsis and their susceptibility patterns would assist in the guidance of effective sepsis empiric antimicrobial treatment among patients with cancer.

Background
Despite the major advances in the care of patients with cancer over the past few decades and the resultant improvement in survival, there are still complications during the course of disease that are associated with significant morbidity and mortality (1). Cancer is one of the leading risk factors of developing sepsis, as patients with cancer has a 10-times risk relative to non-cancer patients (2). In addition to being a leading cause of hospitalisation in this population, sepsis represents a common pathway of mortality among cancer patients (3). The comorbidity of sepsis and cancer poses serious complications with very poor prognosis with a case fatality ratio of greater than 50% in the Americas (4). Sepsis as a syndrome can result from healthcare-associated or community-acquired infection by organisms and these organisms can develop resistance to commonly prescribed antimicrobial agents (5). Without proper determination of antimicrobial susceptibility patterns of these organisms, treatment may prove to be difficult, leading to other complications like organ failure, shock and death (6).

Among cancer patients with sepsis the organisms commonly isolated are bacterial or fungal pathogens, with the predominant pathogens being *Staphylococcus aureus*, *Pseudomonas* species, *Escherichia coli*, and *Candida* species (1,7). Laboratory investigations in sepsis include measurement of inflammatory markers, organ function tests and identification of infectious source through blood culture plus any culture specimens to identify source of infection (5,8). In Zimbabwe, sepsis diagnosis is primarily clinical based and confirmation of infection with blood cultures is not always adhered to particularly in the public health institutions.

According to guidelines in Zimbabwe, sepsis is empirically treated with gentamicin and either benzylpenicillin or cloxacillin with ceftriaxone and chloramphenicol being used as empiric antibiotics when involvement with the central nervous system is suspected (9). Evidence from literature demonstrates variations in aetiological agents of sepsis in different geographical settings, thus profiling should be country/region specific (6,7,10,11). With the rise of antimicrobial resistance among clinical isolates, it is imperative to profile the causative pathogens of sepsis and their antimicrobial patterns. This could aid in reducing patient hospital costs, sepsis related complications and deaths. To date, the burden of sepsis in cancer patients and or their causative pathogens remain sparse in
Zimbabwe and Africa at large, despite the growing burden of cancer. Thus, this study aimed to ascertain the microbial agents of sepsis and their antimicrobial susceptibility patterns among hospitalised paediatric and adult patients with cancer in Zimbabwe.

Methods

Study design and study population

Between July 2016 and June 2017, we performed a prospective descriptive cross-sectional study among hospitalised paediatric and adult haematology/oncology patients at a single centre, Parirenyatwa Group of Hospitals. This hospital is the biggest and major referral centre for patients with cancer in Zimbabwe and is located in the capital city, Harare. The target population was paediatric patients with at least 1 year of birth and adult patients who had a diagnosis of cancer as well as presenting with signs of sepsis. Patients without any cancer diagnosis as well as neonates and infants (<1 year of birth) were not included in this study. The participants include patients with suspected infection and at least one of temperature, heart rate, respirations and white cell count.

Clinical assessment of sepsis was done using the quick Sequential Organ Failure (qSOFA) score which includes (1) respirations >22 breaths/minute, (2) altered mentation, (3) systolic blood pressure <100 mmHg, with two or more considered ‘high’ risk (12). The qSOFA score ranges from 0 to 3, with each criterion being worth one point. When respirations rate, altered mentation, or systolic blood pressure data was not available, the corresponding criterion was set to be worth zero point. For the 48% of patients (68/142) for whom clinical data was complete, the SOFA score (12), including (1) creatinine >110 µMol/L, (2) platelets <150 x 103/µL, and (3) total bilirubin >20 µMol/L was also calculated.

Sample collection and analysis

At least two peripheral vein blood samples were consecutively drawn aseptically for blood cultures from paediatrics (3 ml each) and adult (8 ml each) per participant. The TDR Resin Aerobic or TDR Resin Peds (Hunan Changsha Tiandiren Bio-Tech Co., Ltd., Changsha, China) blood culture bottles, which support growth of both aerobic bacteria and mycotic yeasts, were used for sample collection from participants. The collected blood culture samples were processed and cultured using the relevant protocols of the hospital as per standard microbiology. Briefly, TDR Resin Aerobic or TDR
Resin Peds (Hunan Changsha Tiandiren Bio-Tech Co., Ltd., Changsha, China) blood culture bottles, from the participants were incubated at 37°C in an automated microbial detection blood culture system TDR-X120 (Hunan Changsha Tiandiren Bio-Tech Co., Ltd., Changsha, China). Blood cultures read as positive by the analyser were immediately retrieved, Gram stained and sub-cultured on Blood agar, MacConkey agar, Chocolate agar and Sabouraud dextrose agar supplemented with chloramphenicol (0.5 g/l) plates (all Mast Group Ltd., Merseyside, UK) for 48 hours. The blood culture system has an incubation period of up to 5 days after which it report a blood culture specimen as negative for growth. All negative blood cultures, as red by the machine, after completion of their 5-day incubation period were also Gram stained and sub-cultured similarly as the positive ones to confirm this negative result. For a patient to be considered truly infected, at least two of the blood cultures should have been positive. A single positive blood culture result was interpreted as possible contamination.

Identification and antimicrobial susceptibility testing of isolates

Isolates grown from culture plates were identified as lactose fermenting coliform, non-lactose fermenting coliform, oxidase positive (non-fermenter) Gram negative rods, *Staphylococcus*, *Streptococcus* species or yeasts based on colony morphology. These were taken for further identification to species level by means of various biochemical tests and antimicrobial susceptibility test (AST) using standard methods on the Mindray TDR 300B (Hunan Changsha Tiandiren Bio-Tech Co., Ltd., Changsha, China) following the manufacturer’s manual. Probabilities were calculated from these results using the Bifido-Matrix method to identify the most possible organism. Antimicrobial susceptibility testing plates were read on the TDR 300B based on turbidity and interpretations were made using breakpoints stipulated in the Clinical and Laboratory Standards Institute (CLSI) 2017 guidelines. Isolates that were found to be multidrug resistant were tested for Extended Spectrum β-Lactamase production, methicillin resistance and carbapenemase production as described in the CLSI standard (13). *Pseudomonas aeruginosa* ATCC® 27853, *E. coli* ATCC® 25922 and *S. aureus* ATCC® 25923 strains were used as quality control (QC) strains for both identification and AST on the Mindray TDR 300B machine.
Ethical approval

This study was approved by the Joint Research Ethics Committee of the Parirenyatwa Group of Hospitals (Harare, Zimbabwe) and the College of Health Sciences under the University of Zimbabwe (JREC57/16), and the Medical Research Council of Zimbabwe (MRCZ/B/1093). Informed written consent was sought from each participant, parent or guardian.

Statistical analysis

Characteristics of the study participants were analysed using descriptive statistics with results expressed as frequencies and percentages. Aetiological profiles were described for the overall sample using percentages and their distribution by cancer types. All data analysis was performed using Stata software v13 (StataCorp). Observations with missing values were coded as missing and reported as such.

Results

Demographic characteristics of the population

A total of 142 consecutive hospitalised cancer participants with clinical diagnosis of sepsis were recruited into the study, with females 76 (53.5%) and paediatric patients 86 (60.6%) being the majority. The age ranged between 1 and 85 years. Infants and neonates were not included into the study. The overall median age was 10 (interquartile range [IQR]: 5 – 24) years and a median in-patient hospital stay of 7 (IQR: 4 – 15) days before diagnosis of sepsis was suspected. One hundred and ten (77.5%) participants had haematological neoplasms which comprised of leukaemias and lymphomas whilst 32 (22.5%) had solid tumours such as Wilms tumour, rhabdomyosarcoma, hepatocellular carcinoma etc. Neutropenia, one of the major risk factors sepsis, was assessed from the patients’ absolute neutrophil counts. The absolute neutrophil count of patients on blood culture sample collection ranged from 20 to 102 700 cells/µl. Neutropenia (< 1000 cells/µl as previously defined in other studies (7,14) was observed in 43 (39.1%) of the participants with haematological neoplasm and one participant with a solid tumour giving a total of 44 (31.0%) neutropenic patients. There was a strong association between having a haematological neoplasm and being neutropenic than in patients with solid tumours (p-value <0.001; Odds Ratio, 19.9; 95% CI, 3.0-829.2).
Participants’ demographic characteristics are summarised in Table 1.

Blood cultures and pathogens isolated

Of the 142 participants, fifty (35.2%) had positive blood cultures and one was deemed to have grown a contaminant as it had only one positive blood culture out of the two that had been collected. Thirty-nine of the 110 patients with haematological malignancies had positive cultures with a positive isolation rate of 35.5% contributing 78% of the total number of isolates. Gram positive bacterial pathogens were the predominant 28 (56.0%) of the causative agents of sepsis in this study population. Coagulase negative *Staphylococcus* spp. (CoNS) were the majority contributing 22.0% of the pathogens isolated followed by *E. coli* 8 (16.0%). *Candida albicans* was the only fungal pathogen isolated from one participant with sepsis in this study. Table 2 summarises our findings.

Exposure to antimicrobials and antimicrobial susceptibility profiles

Approximately ninety-one per cent (129) of our participants were exposed to at least one antimicrobial agent at least 48 hours prior to blood culture collection. The most commonly prescribed antibiotic was ceftriaxone 100/129 (77.5%) followed by gentamicin 75/129 (58.1%) and ciprofloxacin 33 (25.6%). Twenty-seven (20.9%) participants were on fluconazole therapy. At least 3 antibiotics had been administered to 58.0% the participants prior to blood culture collection.

When we did the AST on the isolates, we found out that among the *Staphylococci* species, the highest resistance was in penicillin 14 (93.7%). Methicillin resistance was observed in 10 (66.7%) of the *Staphylococci* isolates thus the same results can be applied to cloxacillin, augmentin and cefazolin as guided by the CLSI 2017 standard. However, all the isolates were fully susceptible to vancomycin and linezolid.

Among the Gram negative bacterial isolates, antibiotics such as levofloxacin, cefepime, cefoxitin, piperacillin-tazobactum, amikacin and meropenem displayed moderate to high potency against all Gram negative isolates with 52.4%, 61.9%, 66.7%, 71.9, 85.7% and 95.2% of the isolates being susceptible respectively. Ampicillin and trimethoprim-sulfamethoxazole were least effective with only 4.8% of the isolates being sensitive. High level of resistance was observed among *K. pneumoniae* followed by *E. coli* isolates. Among *K. pneumoniae* isolates, resistance was observed in ampicillin,
trimethoprim-sulfamethoxazole and third generation cephalosporins and this was 100%, 85.7% and 71.4% respectively. Resistance to gentamicin, one of the first line empiric antimicrobial in our setting, was 57.1% among these *K. pneumoniae* isolates. Against third generation cephalosporins that is ceftriaxone, an empiric antimicrobial in the local EDLIZ guideline, and ceftazidime, resistance was observed in 71.4% of these isolates. However, isolates were fully sensitive to amikacin and meropenem and moderately sensitive to cefoxitin (85.7%). *E. coli* isolates were also fully susceptible to meropenem and amikacin while 75.0% of the isolates were resistant to ceftriaxone, ceftazidime, gentamicin, ciprofloxacin and levofloxacain. Trimethoprim-sulfamethoxazole and ampicillin displayed the least activity against *E. coli* isolates with sensitivities of 0.0% and 12.5% respectively. Other isolates were few to make inferences as they were only a single isolate of each species. These included *Serratia odorifera, Acinetobacter* species, *Salmonella enteritidis, Enterobacter intermedium* and *Hafnia alvei*. Of note, the *S. odorifera* was only sensitive to levofloxacain and resistant to meropenem and ertapenem. Overall, the proportions of isolates resistant to empiric antimicrobial agents, that is, gentamicin and ceftriaxone among *Enterobacteriaceae* species were 61.9% and 71.4 respectively.

All *Enterococcus* species isolates were fully sensitive to linezolid and vancomycin, while they showed high resistance to Tetracycline (20.0%) and ciprofloxacin (40.0%). *E. gallinarum* was resistant to most of the drugs with the two isolates being sensitive to vancomycin and linezolid plus one which was also sensitive to fosfomycin. *Streptococcus* species on the other hand were highly resistant with a 66.7% resistance observed to each of tetracycline, ampicillin and penicillin. One *Streptococcus* species which was identified as *Streptococcus bovis*, showed resistance to vancomycin. Overall, 69.2% isolates of *Enterococcus* and *Streptococcus* species were susceptible to the empiric antimicrobial agents, high dose gentamicin and penicillin.

Finally, a single isolate of *C. albicans* was the only fungal pathogen isolated from the blood cultures. It proved to be resistant to terbinafine, itraconazole and fluconazole. However, with other antifungals such as micafungin, caspofungin, voriconazole, ketoconazole, miconazole, amphotericin B and flucytosine, the isolate was sensitive. Tables 3 to 5 summarises the antimicrobial susceptibility
patterns of all the isolates.

Incidence of ESBL production among E. coli and K. pneumoniae isolates

Fifteen isolates of both *E. coli* and *K. pneumoniae* obtained in this study were screened for *ESBL* enzyme production and 10 (66.7%) were phenotypically confirmed to be *ESBL* producers. *E. coli* isolates 6/8 (75.0%) were the main *ESBL* producers. Four (57.1%) of the total *K. pneumoniae* isolates were also confirmed *ESBL* producers.

Discussion

Sepsis is a serious life-threatening condition that commonly manifests itself in the cancer patients. Although there are studies that have been conducted in Africa on cancer patients presenting with sepsis (10,15), limited data regarding the profiles of the organisms implicated and antibiotic susceptibility data exist. In this study we report the isolation rate of bacterial and fungal pathogen from blood cultures of cancer patients (both adults and paediatric) presenting with sepsis, as well as the effectiveness of commonly used antibiotics in our setting. We also demonstrate that there is a high level of resistance among pathogen causing sepsis in our setting.

Patients with haematological malignancies were the majority (77.5%) and this could be due to neutropenia secondary to chemotherapy which further exposes them to infections. This also could be due to a short duration of this current study compared to other previous studies where solid cancers predominated and where study duration was longer (14,16). The overall proportion of the patients who were neutropenic was 31.0% which is almost the same with 30.0% reported in the USA (7). Patients with haematological malignancies showed a significantly higher proportion of neutropenia (p< 0.001) than those with solid cancers, a finding similar to the Chinese and European populations (14,17).

The majority (90.8%) of the study participants were on at least one antimicrobial agent at least 48 hours prior to blood culture collection and this was as a consequence of their immunosuppression being caused by the cancer. However, it was also observed that 82 (57.7%) were on a cocktail of 3 to 6 broad spectrum antimicrobial agents contrary to the standard empirical treatment of sepsis.
stipulated in the local EDLIZ (9). Ceftriaxone and gentamicin were the major empirical antibiotics used despite the recommendations that ceftriaxone should only be used as second line (9). Use of ceftriaxone and others antimicrobials as first line empiric antimicrobial treatment could be due to limited knowledge on the implications such as antimicrobial resistance and presumed resistance to prescribed empiric treatment.

Our microbial pathogen isolation rate was 35.2% which is slightly higher than the average of 20 and 30% range in most studies (2,4,8). Other studies from high income countries have, on the contrary, reported lower prevalence of sepsis among patients with cancer including studies in Oman (5.0%) and Europe (17%) (14,18). Among the isolates identified, Gram positive to Gram negative percentage ratio was 57:43 which was comparable with the median ratio of 60:40 (range 85:15 to 26:76) obtained in Europe (16,19). This reflects a similarity in the distribution of organisms despite geographical differences although minor difference can be encountered, like a study in Sudan where the ratio was 83%:17% (10). Most of the isolates (78.0%) came from patients with haematological malignancies, a finding comparable to other earlier studies (4,14). The major aetiological agents of sepsis obtained from patients with haematological cancers were CoNS, E. coli, E. faecalis and K. pneumoniae.

Similarly, other studies from Europe have reported the same organisms as the causative agents of sepsis but with some minor variations in proportions (14,16). Most studies had not stratified aetiological agents with cancer type but a study in Europe with the same stratification showed similar aetiological agents between the two major cancer groups (14).

Amikacin and meropenem were the most potent drugs against Gram negative isolates with more than 80.0% of the isolates being sensitive, similar to findings from a study in the USA (7). Conversely, more than 60.0% of the isolates were resistant to third generation cephalosporins, in contrast with the USA and an earlier study in Zimbabwe where 80-100% were sensitive (7,20). This difference could be due to the wide availability and uncontrolled use of ceftriaxone as first line treatment, as was found in this study. As also shown in this and other studies (16,21–23), the increase in the emergence of ESBL producing isolates has also lead to this high level of resistance to the third generation cephalosporins. Gentamicin, the most commonly used empirical aminoglycoside, also had a low activity against these
Gram negative isolates as noted with more than 60.0% of the isolates being resistant. Resistance to the third generation cephalosporins and gentamicin has been reported in earlier studies to be rising in low-income countries (22,24). Such resistance to the empiric antimicrobial agents poses a challenge in the management of sepsis among this population as it limits treatment options hence the need to review empiric treatment options. Cefoxitin and piperacillin-tazobactum were effective against 66.7% and 71.4% of all the Gram negative isolates. However, more than 90.0% of the isolates were resistant to trimethoprim-sulfamethoxazole and ampicillin, a finding similar to most studies worldwide (17,20,24). The resistance to trimethoprim-sulfamethoxazole has been attributed to overuse of the drug as prophylaxis against *Pneumocystis jirovecii* pneumonia in HIV endemic regions such as Zimbabwe. Notably, there was one *S. odorifera* isolate that was resistant to meropenem and ertapenem. This is surprising as carbapenem resistance *Enterobacteriaceae* has not been reported before in Zimbabwe. However, the isolate was not confirmed with polymerase chain reaction for carbapenemase resistance gene carriage. Nevertheless, this could be a possible emergence of carbapenemase resistance since carbapenems are being employed routinely for management of patients in the institution under study.

Expectedly, due to their limited use locally, minocycline, chloramphenicol, linezolid and vancomycin showed to be effective against more than 80.0% of the *Staphylococcus* isolates. A moderately high activity was displayed by gentamicin, clindamycin and erythromycin. These results were partly in agreement with findings from Ghana and India (24,25). Conversely, there was high rate of methicillin resistance which impliedly apply to cloxacillin, one of the EDLIZ prescribed empiric antimicrobial agent. The low activity observed in penicillin was previously reported in Ghana, India and Zimbabwe (20,24,25). *Enterococcus* and *Streptococcus* species in our study were sensitive to fosfomycin, vancomycin and linezolid with the latter being the most effective (isolates were 100.0% sensitive) antibiotic. Contrary to findings in India where they found 50% of *Enterococcus* species to be susceptible to vancomycin, all our isolates were sensitive vancomycin (26). These isolates also displayed a moderate sensitivity to gentamicin, ampicillin and penicillin. Surprisingly, there was one isolated that was resistant to vancomycin, a finding that has not been reported before in Zimbabwe.
However, vancomycin resistance in *Streptococcus bovis* has been reported before in some parts of the world (27). Only one fungal isolate was obtained in this study and antimicrobial susceptibility patterns could not be fully established for statistical inference.

Some isolates phenotypically showed multidrug resistance capabilities. Our methicillin resistance carriage was comparable to USA isolates where MRSA was 50.0% in our current study versus 41.0% in USA while that of methicillin resistant CoNS was 75.0% versus 72.0% respectively (7). In Ghana, a low proportion of MRSA (5.8%) was reported in contrast to our findings (24). This high level methicillin resistance limits the choices of antimicrobial treatment since it also implies that these isolates will also be clinically resistant to most if not all commonly used beta-lactam antibiotics. We also found a high proportion of ESBL producers among *E. coli* and *K. pneumoniae* isolates and this was in agreement with some studies around the world (16,21,22,28). However, of note was a higher proportion of ESBL producing *E. coli* (75.0%) than *K. pneumoniae* (57.1%), a different finding from most reports in other parts of the world where ESBL production is predominantly found in *K. pneumoniae* isolates (21,22).

In summary, sepsis remains a leading cause of morbidity and mortality among patients with cancer with the major aetiological agents being CoNS, *E. coli, K. pneumoniae, E. faecalis* and *S. aureus*. Similar aetiological pathogens were present in both haematological and solid cancers in the Zimbabwean population. Most of the microbial aetiological agents of sepsis showed high levels of resistance to commonly used antimicrobial drugs as well as to those prescribed as local empiric treatment. Resistance to gentamicin, penicillin and third generation cephalosporins is a major cause for concern as these are the major empirical antibiotics in resource limited settings. Apart from vancomycin, linezolid was shown to be another better option to be considered in the treatment of serious and non-responsive Gram positive infections while amikacin and meropenem can also be considered in Gram negative infections. The emergence of multidrug resistance mechanisms like ESBL carriage and methicillin resistance among isolates is disturbing. This indicates the need for surveillance to reduce their transmission with a goal to mitigate mortality and morbidity among patients.
Declarations

Acknowledgements

The authors thank the A6 adult oncology, A4 paediatric oncology/haematology and C3 adult haematology wards staff for their valuable assistance in the identification of potential participants and blood culture specimen collection.

Funding

This study was self-funded

Authors’ contributions

FC, RTM and WC conceived the idea for the project. RTM, WC, AZC, IC, supervised the study. AZC, TCM and IC helped with the clinical diagnosis of sepsis, haematological and solid cancers. FC and ET analysed the samples and collected data. TN and PM analysed and interpreted the data. FC and RTM wrote the first draft of the manuscript. FC, RTM, WC, TN and TCM revised the manuscript and approved the final version to be submitted.

Competing interests

The authors declare that they have no competing interests.

References

1. Torres VB, Azevedo LC, Silva UV, Caruso P, Torelly AP, Silva E, et al. Sepsis-associated outcomes in critically ill patients with malignancies. Annals of the American Thoracic Society. 2015;12(8):1185-1192.

2. Danai PA, Moss M, Mannino DM, Martin GS. The epidemiology of sepsis in patients with malignancy*. Chest. 2006 Jun 1;129(6):1432-40.

3. Vincent J-L, Marshall JC, Namendys-Silva SA, François B, Martin-Loeches I, Lipman J, et al. Assessment of the worldwide burden of critical illness: the Intensive Care Over Nations (ICON) audit. The Lancet Respiratory Medicine. 2014 May;2(5):380-6.

4. Williams MD, Braun LA, Cooper LM, Johnston J, Weiss RV, Qualy RL, et al. Hospitalized cancer patients with severe sepsis: analysis of incidence, mortality, and associated costs of care. Critical Care. 2004;8(5):1.
5. Dellinger RP, Levy MM, Rhodes A, Anane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensive Care Medicine. 2013 Jan 30;39(2):165–228.

6. Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014 Jan 1;5(1):4-11.

7. Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clinical Infectious Diseases. 2003;36(9):1103–10.

8. Lever A, Mackenzie I. Sepsis: definition, epidemiology, and diagnosis. British Medical Journal. 2007 Oct 25;335(7625):879–83.

9. National Medicine and Therapeutics Policy Advisory Committee (Zimbabwe). EDLIZ 2015: 7th Essential Medicines List and Standard Treatment Guidelines for Zimbabwe [Internet]. National Medicine and Therapeutics Policy Advisory Committee; 2015. Available from: https://books.google.co.zw/books?id=yFaOswEACAAJ

10. Elseed YHAEA, Ibrahim MA, Ahmed WAM. Isolation and Identification of Aerobic Bacterial Pathogens from Septicaemic Cancer Patients in Khartoum, Sudan. Clinical Medicine. 2015;1(4):122–5.

11. Awoniyi DO, Udo SJ, Oguntibeju OO. An epidemiological survey of neonatal sepsis in a hospital in western Nigeria. African Journal of Microbiology Research. 2009 Jul 31;3(7):385–9.

12. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Journal of the American Medical Association. 2016;315(8):801–810.

13. M100-S25: Performance Standards for Antimicrobial Susceptibility Testing; Twenty-
14. Taccone FS, Artigas AA, Sprung CL, Moreno R, Sakr Y, Vincent J-L. Characteristics and outcomes of cancer patients in European ICUs. Critical Care. 2009;13:R15.

15. El-Mahallawy H, Sidhom I, El-Din NHA, Zamzam M, El-Lamie MM. Clinical and microbiologic determinants of serious bloodstream infections in Egyptian pediatric cancer patients: a one-year study. International Journal of Infectious Diseases. 2005 Jan;9(1):43–51.

16. Mikulska M, Viscoli C, Orasch C, Livermore DM, Averbuch D, Cordonnier C, et al. Aetiology and resistance in bacteraemias among adult and paediatric haematology and cancer patients. Journal of Infection. 2014 Apr;68(4):321–31.

17. Wang S-S, Lee N-Y, Hsueh P-R, Huang W-H, Tsui K-C, Lee H-C, et al. Clinical manifestations and prognostic factors in cancer patients with bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella pneumoniae. Journal of Microbiology, Immunology and Infection. 2011 Aug 1;44(4):282–8.

18. Prakash KP, Arora V, Geethanjali PP. Bloodstream bacterial pathogens and their antibiotic resistance pattern in Dhahira Region, Oman. Oman Medical Journal. 2011;26:240–279.

19. Mikulska M, Del Bono V, Raiola AM, Bruno B, Gualandi F, Occhini D, et al. Blood Stream Infections in Allogeneic Hematopoietic Stem Cell Transplant Recipients: Reemergence of Gram-Negative Rods and Increasing Antibiotic Resistance. Biology of Blood and Marrow Transplantation. 2009 Jan;15(1):47–53.

20. Musiime V, Cook A, Bakeera-Kitaka S, Vhembo T, Lutakome J, Keishanyu R, et al. Bacteremia, Causative Agents and Antimicrobial Susceptibility among HIV-1 Infected Children on Antiretroviral Therapy in Uganda and Zimbabwe: The Pediatric Infectious
21. Yang Q, Zhang H, Wang Y, Xu Y, Chen M, Badal RE, et al. A 10 year surveillance for antimicrobial susceptibility of Escherichia coli and Klebsiella pneumoniae in community-and hospital-associated intra-abdominal infections in China. Journal of medical microbiology. 2013;62(9):1343–9.

22. Alabi AS, Frielinghaus L, Kaba H, Kösters K, Huson MAM, Kahl BC, et al. Retrospective analysis of antimicrobial resistance and bacterial spectrum of infection in Gabon, Central Africa. BMC Infectious Diseases. 2013;13:455.

23. Gudiol C, Bodro M, Simonetti A, Tubau F, González-Barca E, Cisnal M, et al. Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clinical Microbiology and Infection. 2013 May 1;19(5):474–9.

24. Acquah SE, Quaye L, Sagoe K, Ziem JB, Bromberger PI, Amponsem AA. Susceptibility of bacterial etiological agents to commonly-used antimicrobial agents in children with sepsis at the Tamale Teaching Hospital. BMC Infectious Diseases. 2013;13:89.

25. Sharma CM, Agrawal RP, Sharan H, Kumar B, Sharma D, Bhatia SS. “Neonatal Sepsis”: Bacteria & their Susceptibility Pattern towards Antibiotics in Neonatal Intensive Care Unit. Journal of Clinical and Diagnostic Research : JCDR. 2013 Nov;7(11):2511.

26. Prabhash K, Medhekar A, Ghadyalpatil N, Noronha V, Biswas S, Kurkure P, et al. Bloodstream infections in cancer patients: A single center experience of isolates and sensitivity pattern. Indian Journal of Cancer. 2010 Apr 1;47(2):184.

27. Poyart C, Pierre C, Quesne G, Pron B, Berche P, Trieu-Cuot P. Emergence of vancomycin resistance in the genus Streptococcus: characterization of a vanB transferable determinant in Streptococcus bovis. Antimicrobial Agents and Chemotherapy. 1997;41(1):24–29.
28. Gudiol C, Tubau F, Calatayud L, Garcia-Vidal C, Cisnal M, Sánchez-Ortega I, et al. Bacteraemia due to multidrug-resistant Gram-negative bacilli in cancer patients: risk factors, antibiotic therapy and outcomes. Journal of Antimicrobial Chemotherapy. 2011 Mar 1;66(3):657–63.

Tables

Table 1: Study population demographic characteristics

Characteristic	Total	Haematological neoplasm
Female n (%)	76 (53.5)	58 (76.3)
Age median (IQR) years	-	15 (4 – 34)
Paediatric (oncology ward) n (%)	86	55 (64.0)
Adults (oncology ward) n (%)	1	-
Adult (haematology ward) n (%)	55	55 (100.0)
Hospital stay median (IQR) days	7.0 (4 – 15)	7.0 (4 – 15)
Neutropenia n (%)	44 (31.0)	42 (39.1)

n, number

Table 2: Distribution of sepsis causing pathogens in participants with cancer
Causative pathogen	Number of isolates (n)	Haematological neoplasm	Solid tumour		
		Children	Adults	Children	adults
Gram-negative bacteria (n=21)					
Escherichia coli		4	2	2	-
Klebsiella pneumoniae		2	3	2	-
Enterobacter intermedium		1	-	-	-
Serratia odorifera		-	1	-	-
Acinetobacter species		1	-	-	-
Pseudomonas aeruginosa		1	-	-	-
Salmonella enteritidis		-	1	-	-
Hafnia alvei		-	-	1	-
Gram positive bacteria (n=28)					
CoNS		3	6	2	-
Staphylococcus aureus		2	1	-	1
Enterococcus faecalis		1	5	1	-
Enterococcus gallinarum		2	-	-	-
Enterococcus faecium		1	-	-	-
Streptococcus species		0	1	2	-
Fungi (n=1)					
Candida albicans		1	-	-	-

n, number

Table 3: Distribution of drug susceptible *Staphylococcus* species

Bacterial species isolates	N	VA	LIN	ERY	CD	TET
S. aureus	4	4	4	2	3	3
CoNS	11	11	11	7	7	5

Total sensitive n (%) 15(100) 15(100) 15(100) 9(60.0) 10(66.7) 8(53.3)

Notes: VA, vancomycin; LIN, linezolid; ERY, erythromycin; CD, clindamycin; TET, tetracycline; MINO, minocycline; RIF, rifampicin; CHL, chloramphenicol; CIP, ciprofloxacin; GM, gentamicin; PEN, penicillin;
Table 4: Distribution of antimicrobial susceptibility patterns for gram negative isolates

Bacterial isolates	N	AMP	PTZ	CXM	CRO	CAZ	CEF	FOX
E. coli	8	1	7	2	2	2	4	7
K. pneumoniae	7	0	4	2	2	2	4	6
E. intermedium	1	0	1	0	0	0	1	0
S. odorifera	1	0	0	0	0	0	0	0
S. enteritidis	1	0	1	0	1	1	1	0
Acinetobacter sp.	1	0	0	0	1	1	1	0
P. aeruginosa	1	-	1	-	0	1	1	-
H. alvei	1	0	1	0	0	0	1	1

Total n (%) 21 (100) 1(4.8) 15(71.4) 4(19.0) 6(28.6) 7(33.3) 13(61.9) 14(66.7)

Notes: AMP, ampicillin; PTZ, piperacillin-tazobactam; CRO, ceftriaxone; CAZ, ceftazidime; CXM, cefuroxime; CEF, cefepime; FOX, cefoxitin; GM, gentamicin; AK, amikacin; CIP, ciprofloxacin; LEV, levofloxacin; COT, trimethoprim-sulfamethoxazole; MEM, meropenem; N, number; (-), not tested; (0), zero sensitive isolates

Table 5: Antimicrobial susceptibility patterns for *Streptococcus* and *Enterococcus* species
Bacterial isolates	N	AMP	PEN	VA	LINE	FOSF	GM	TET
E. faecalis	7	7	7	7	7	7	6	2
E. gallinarum	2	0	0	2	2	1	0	0
E. faecium	1	1	1	1	1	1	1	0
Streptococcus sp.	3	1	1	2	3	2	2	1
Total N (%)	13(100)	9(69.2)	9(69.2)	12(92.3)	13(100)	11(84.6)	9(69.2)	3(23.1)

Notes: AMP, ampicillin; PEN, penicillin; VA, vancomycin; LINE, linezolid; FOSF, fosfomycin; GM, gentamicin; TET, tetracycline; LEV, levofloxacin; CIP, ciprofloxacin; GATI, gatifloxacin; N, number; (0), zero sensitive isolates.