Mitochondrial genomes of two *Polydora* (Spionidae) species provide further evidence that mitochondrial architecture in the Sedentaria (Annelida) is not conserved

Lingtong Ye1,2*, Tuo Yao1, Jie Lu1, Jingzhe Jiang1 & Changming Bai2

Contrary to the early evidence, which indicated that the mitochondrial architecture in one of the two major annelida clades, Sedentaria, is relatively conserved, a handful of relatively recent studies found evidence that some species exhibit elevated rates of mitochondrial architecture evolution. We sequenced complete mitogenomes belonging to two congeneric shell-boring Spionidae species that cause considerable economic losses in the commercial marine mollusk aquaculture: *Polydora brevipalpa* and *Polydora websteri*. The two mitogenomes exhibited very similar architecture. In comparison to other sedentarians, they exhibited some standard features, including all genes encoded on the same strand, uncommon but not unique duplicated *trnM* gene, as well as a number of unique features. Their comparatively large size (17,673 bp) can be attributed to four non-coding regions larger than 500 bp. We identified an unusually large (putative) overlap of 14 bases between *nad2* and *cox1* genes in both species. Importantly, the two species exhibited completely rearranged gene orders in comparison to all other available mitogenomes. Along with Serpulidae and Sabellidae, *Polydora* is the third identified sedentarian lineage that exhibits disproportionally elevated rates of mitogenomic architecture rearrangements. Selection analyses indicate that these three lineages also exhibited relaxed purifying selection pressures.

Abbreviations

NCR Non-coding region
PCG Protein-coding gene

Metazoan mitochondrial genomes (mitogenomes) usually encode the set of 37 genes, comprising 2 rRNAs, 22 tRNAs, and 13 proteins, encoded on both genomic strands. Mitogenomic gene rearrangements can affect genome replication and transcription mechanisms, and produce disruptions in the gene expression co-regulation, so they should be strongly selected against1. Indeed, mitogenomic architecture is generally highly conserved2, but some unrelated lineages exhibit exponentially accelerated mitochondrial architecture rearrangement rates2-8.

The phylogeny of the phylum Annelida remains debated, but the latest review of its phylogeny proposed that the phylum is split into two major groups: Pleistoannelida, comprised of the subclasses Errantia and Sedentaria, and six 'basal' (early-branching) lineages: Sipuncula, Amphinomida, Chaetopteridae, Magelonidae, Oweniidae and *Lobatocebrum*. Unlike in other lophotrochozoan groups, the mitochondrial gene order (GO) in annelids long appeared to be relatively conserved, with an additional feature of all genes encoded on a single strand9,10.

1Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China. 2Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China. *email: lingtong2753@126.com
However, a more complex picture emerged during the last ten years. The early-branching lineages exhibit relatively high rearrangement rates. Among the Errantia, species from the family Syllidae, several genera from the family Polynoidae, and genus Ophryotrocha exhibit relatively rapidly evolving mitochondrial architecture. Among the Sedentaria, Urechis species exhibit somewhat rearranged GOs, and species from families Sabelldiae and Serpulidae exhibit highly rearranged GOs.

The sedentarian family Spionidae (order Spionida) is one of the largest and most common polychaete families, whose members occur in a wide variety of benthic habitats. There is only one mitogenome belonging to this family available in the GenBank: Marenzelleria neglecta. Moreover, this is the only mitogenome available in the GenBank for the entire nominal sedentarian order Spionida (the status of this order remains debated). To address this dearth of data, and thereby improve our understanding of the dynamics of mitochondrial evolution in Sedentaria, we sequenced and characterised the entire mitogenomes of two congeneric Spionidae species: *Polydora brevipalpa* and *Polydora websteri*.

The spionid genus *Polydora* includes species that inhabit clastic sediments, shale rock, corraline algae, living coral, sponges, and mollusk shells. While most of the shell-boring polydorids do not cause harm to the host, a handful of species can cause considerable harm. *Polydora websteri* Hartman in Loosanoff and Engle, 1943 is a highly invasive shell-boring species native to the Asian Pacific that nowadays occurs around the globe, mostly as a result of global trade of commercial oyster species. It causes distress to the host, reduces their growth rates, makes them susceptible to parasites or diseases, and their presence (so-called ‘mud blisters’) lowers the market value of bivalves. In this way, *P. websteri* causes considerable economic losses in commercial marine mollusk aquaculture globally. The congenic and morphologically similar *Polydora brevipalpa* Zachs, 1933 is a relatively poorly studied species with an apparently broad range throughout the North Pacific. It primarily infests scallops (Pectinidae), and there is some evidence that it can also cause economic losses. Therefore, apart from contributing to the understanding of evolutionary dynamics of the mitochondrial genome in Sedentaria, the sequencing of these two mitogenomes will also contribute useful data for future biogeographic and evolutionary studies of these two economically important polychaete species.

Results and discussion

Identity and phylogeny

Morphological identification was successfully corroborated using DNA barcoding: *P. brevipalpa* and *P. websteri* barcode sequences (coxl fragment) exhibited a similarity of 99.81% and 100% to the top conspecific barcode matches respectively. Several studies found that mitochondrial data produce artefactual relationships in annelids, so we conducted only orientational phylogenetic analyses. As compositional heterogeneity in mitochondrial data can produce artefactual relationships in phylogenetic reconstruction, first we tested the dataset for compositional homogeneity. All sequences included in the analysis failed the composition Chi-Square test (p-value < 5%; df = 3). Phylogenetic inference highly unorthodox relationships, with paraphyletic, Spionidae, Hirudinidae and Erpobdellidae (Supplementary File S1). Spionidae (represented by the two *Polydora* species and *M. neglecta*) were paraphyletic due to the unorthodox position of *M. neglecta* at the base of the Sedentaria. Sabelldiae, Spionidae, and Serpulidae formed a clade, which is in disagreement with the accepted relationships of these families.

Mitochondrial architecture

The mitogenomes of *P. websteri* and *P. brevipalpa* exhibited very similar architecture and identical sizes of 17,673 bp (Table 1). This is somewhat larger than common in sedentarians, which on average have mitogenomes of around 15 Kbp (Supplementary File S2: sheet A). Only 5 sedentarian mitogenomes were larger: *Spirobranchus giganteus*, *Siboglinium fiordicum* and three *Decemunciger* sp. mitogenomes. Both *Polydora* species possess the standard set of 37 genes, plus a duplicated trnM gene copy between trnl1 and nad1 (Fig. 1). Duplicated trnM genes have been observed in a handful of annelid species before. The two *Polydora* aside, six more species in our sedentarian dataset exhibited a duplicated trnM gene (as well as some species from the early-branching lineages) (Fig. 1). However, aside from the two *Polydora* species and *S. giganteus*, in all other species the two copies were adjacent (or very near each other). As common in annelids, all genes are encoded on the same strand. *Palaeoannelida, Magelona mirabilis* (Mageloniidae), and *S. spallanzanii* (Sabelldida) are the only annelids described so far with genes transcribed on both strands of the mitochondrial genome. In terms of base composition, the two *Polydora* species (AT bias of 65–66%) are average among the Sedentaria (55–78%) (Supplementary File S2: sheet A).

The two *Polydora* species exhibited more large noncoding regions (NCRs, four were larger than 150 bp) than most other species included in the analysis (Fig. 1). This was reflected in the relatively large noncoding/coding ratio of 17.2% in their mitogenomes (Supplementary File S2: sheet A). Only *S. giganteus* and three *Decemunciger* species exhibited comparable numbers of large NCRs. NCR-1, located between trnQ and trnA was the largest with over 1000 bp, but the remaining three were also very large: 535 to 661 bp (Table 1). This is the underlying reason for the comparatively large size of these two mitogenomes. Tandem-duplication-random-loss (TDRL) events were proposed as the most likely mechanism underlying the expansion of NCRs in *S. giganteus*. Given the highly rearranged architecture of these two genomes, this may also be a likely explanation for their unusually high number of large NCRs, but this remains hypothetical due to absence of evidence. We attempted to align all four large NCRs against the entire mitogenome, but none of them exhibited a similarity to the nearby coding regions. This was expected, as non-coding mitochondrial sequences tend to evolve very rapidly due to strong mutation pressures, and this architecture was shared by both species, which indicates that the four NCRs appeared in the common ancestor of these two species, or even the entire genus. We also examined all 4 NCRs for open-reading-frames (ORFs). NCR1 had 5 ORFs > 50 AAs, with one large ORF spanning most of the length of the NCR (349 AAs); NCR2 had 2 ORFs > 50 AAs (57 and 58); NCR3 had only 1 ORF > 50 AAs (145); and NCR4
had 2 ORFs > 50 AAs (187 and 182). However, BLASTp analysis did not find any similarity to known proteins for any of these putative protein products, so it is unlikely that these ORFs are functional proteins.

Mitochondrial genes of Annelids exhibit a rather large variability in size16. Most protein-coding genes (PCGs) of the two Polydora species were within the range observed in other Sedentaria (Supplementary File S2: sheet B), and the two species exhibited genes of very similar size (Table 1). A few outliers in terms of gene sizes among closely related species exhibited matching insertions/deletions in both Polydora species, which makes it very unlikely that these were sequencing or annotation artefacts. Cox2 was longer in these two species than in any other sedentarian mitogenome due to two insertions in the middle of the gene, and cytb was longer than in most other species due to an insertion at the 3' end. The two species exhibited relatively similar start/stop codon usage (Table 1), comparable to other studied sedentarian species (Supplementary File S2: sheet B). Both species

Gene	Position	Size	IGN	Codons	Identity		
trnK	1/1	66/66	66/66	93.94			
trnM	65/65	128/128	64/64	92.19			
trnL	128/129	1336/1341	1208/1213	83.63			
trnT	1337/1342	1401/1406	65/65	90.77			
nad5	1407/1412	1895/1900	489/489	5/5	ATG/ATG	TAA/TAA	75.05
atp8	1898/1902	2075/2079	178/178	2/1	ATG/ATG	T–/T–	75.84
trnG	2071/2074	2132/2138	62/65	5/5	ATG/ATG	TAA/TAA	89.23
trnN	2135/2139	2302/2206	68/68	2/2	ATG/ATG	TAA/TAA	85.51
trnC	2202/2206	2260/2264	59/59	1/1	ATG/ATG	TAA/TAA	92.22
trnQ	2260/2264	2324/2328	65/65	1/1	ATG/ATG	TAA/TAA	93.85
NCR 1	2325/2329	3383/3389	1059/1061	62.48			
trnA	3384/3390	3448/3454	65/65	83.08			
rnm5	3449/3455	4256/4260	808/806	87.79			
nad3	4257/4261	4616/4620	360/360	ATG/ATG	TAA/TAA	75	
NCR 2	4617/4621	5275/5281	65/65	53.51			
trnL2	5276/5282	5339/5345	64/64	10.38			
cytb	5338/5344	6495/6501	1158/1158	2/2	ATG/ATG	TAA/TAA	80.4
nad4	6495/6501	7850/7856	1356/1356	1/1	ATG/ATG	TAG/TAA	74.26
cox3	7912/7915	8698/8701	787/787	61/58	ATA/ATC	T–/T–	80.94
trnS2	8775/8775	8843/8843	69/69	76/73	86.96		
atp6	8854/8854	9559/9559	706/706	10/10	ATG/ATG	T–/T–	77.05
NCR 3	9560/9560	10,094/10,093	535/534	66.92			
trnR	10,095/10,094	10,155/10,156	61/63	85.71			
nad5	10,158/10,163	11,867/11,867	1710/1705	2/2	ATG/ATG	TAA/T–	75.74
trnF	11,871/11,869	11,934/11,934	64/66	81.82			
nad4L	11,943/11,944	12,227/12,231	285/288	8/9	ATG/ATG	TAA/TAG	75
trnL	12,216/12,227	12,290/12,290	65/64	2/2	ATG/ATG	TAA/TAG	87.69
cox2	12,291/12,291	13,001/13,001	711/711	84.11			
trnW	13,004/13,003	13,068/13,068	65/66	2/1	86.36		
trnY	13,069/13,069	13,122/13,128	64/60	79.69			
trnL1	13,133/13,134	13,198/13,198	66/65	85.33			
trnM 2	13,199/13,199	13,263/13,263	65/65	89.23			
nad1	13,281/13,280	14,187/14,186	907/907	17/16	ATG/ATG	T–/T–	80.26
trnP	14,188/14,187	14,252/14,251	65/65	89.23			
trnT	14,245/14,252	14,316/14,315	63/64	92.19			
trnS1	14,317/14,316	14,382/14,381	66/66	95.45			
nad2	14,385/14,384	15,350/15,349	966/966	2/2	ATG/ATG	TAA/TAA	75.36
cox1	15,337/15,336	16,881/16,880	1545/1545	14/14	ATG/ATG	TAG/TAG	82.91
trnH	16,915/16,914	16,979/16,977	65/64	93.85			
trnD	16,979/16,977	17,042/17,041	64/64	93.85			
trnE	17,043/17,042	17,101/17,100	59/59	91.67			
NCR 4	17,102/17,101	17,673/17,673	572/573	70.21			

Table 1. Comparative table of the architecture of mitogenomes of P. brevipalpa (left) versus P. websteri (right). IGN stands for the intergenic region, where negative values indicate overlap. Intergenic regions larger than 150 bp are annotated as NCR.
Figure 1. Mitochondrial architecture in the studied annelid dataset. GenBank numbers of sequences are shown next to species’ names. The two newly sequenced *Polydora* species are highlighted by the yellow background. Taxonomic identity is shown to the right at the family level. The colour legend for mitogenomic architecture is shown in the figure.
exhibited matching deletions at the 5’ end of cox1, which also explains the use of a different start codon (ATA) than in most other species (ATG).

On average, the most highly conserved sequences between the two genomes were exhibited by tRNA genes, only one of which (trnV) exhibited an identity value below 80% (Table 1). As common in mitochondrial genomes33, the most highly conserved PCGs were cox family genes, with identity values of 80–85%. Somewhat surprisingly, the nad gene family was the least conserved one, with identity values mostly between 74 and 76% (nad1 was an exception: 80%). Commonly, atp8 is the least conserved mitochondrial PCG33, but between these two species, it exhibited an identity of 75.84%, higher than most nad family genes. As expected, the fastest-evolving regions were NCRs, with identity values ranging from 53 to 70%.

Several genes exhibited overlaps in the two newly-sequenced mitogenomes. Genes overlapping by 1 or 2 bases have been observed in annelid mitogenomes33, but several overlaps in the two Polydora species were larger than 2 bp (Table 1). The relatively large overlap between atp8 and trnG (P. brevipalpa = 5 bp; P. websteri = 6 bp) can be explained by a 3’ end elongation of the atp8 gene of almost 20 bases. As the 5’ end of trnG is relatively conserved, this suggests that the overlap arose via a mutation that affected the stop codon of the atp8, and caused elongation to the nearest available stop codon (T–). As atp8 often evolves under relaxed selection constraints, it appears that this elongation did not significantly affect the fitness of the mutant phenotype. This is evidenced by both species exhibiting very similar features, which indicates that the event occurred in the common ancestor of these two species, or even the entire genus. For nad5 in P. websteri, we opted for an abbreviated T– stop codon, as this produces no overlap with the adjacent trnF (leaves 1 bp intergenic space between the two genes). An alternative option would be to elongate the gene by 11 bases, thus creating an overlap of 10 bases with trnF, and use the standard TAG stop codon. The codon alignment of the shorter gene (T– stop codon) with the P. brevipalpa orthologue does not indicate that the gene is truncated, so we chose this as a more likely option than a large overlap. The large overlap (14 bases) between nad2 and trnF is unusual. Usually, overlaps in metazoan mitogenomes involve tRNA genes, which is considered to be a consequence of lesser evolutionary constraints on tRNA sequences33. The only common overlaps between two PCGs comprise atp6/atp8 and nad4/nad4L5,34–40, perhaps due to their translation from a bicistronic mRNA34,40. We checked DNA sequencing chromatograms for these (and all other large) overlaps and found no evidence of sequencing artefacts. An alternative option is that nad2 uses an abbreviated stop codon T–, which would produce a 1 bp intergenic region between the two genes in P. websteri, and 9 bp in P. brevipalpa. However, abbreviated codons are usually associated with overlaps with tRNAs41–43, and not conserved between the two species. Given these problems, we deem the overlap to be a more likely option, but transcriptome analyses are needed to confirm this prediction.

Gene order rearrangements. The two newly sequenced Polydora species exhibited completely rearranged GOs in comparison to all other available mitogenomes (Fig. 1, Table 2). Generally, GO rearrangements involving the relatively volatile tRNA genes are much more common than relatively rare PCG rearrangements5, but the order of PCGs was also highly rearranged in these two mitogenomes. Aside from the conserved sedentarian gene order exhibited by a majority of species (Common GO), there were 23 unique GOs in the dataset (among 97 mitogenomes). Three lineages exhibit by far the most highly rearranged GOs in comparison to the common GO: Serpulidae (represented by S. giganteus and Hydroides norvegica), S. spallanzanii (Sabellidae), and the two Polydora species. The common intervals similarity measure (where the value 1326 indicates an identical GO, and 0 indicates no shared common intervals) indicates that S. giganteus had the most rearranged GO (0), followed by S. spallanzanii (4), H. norvegica (6), and the two Polydora species (12) (Table 2). All other species exhibited much higher similarity values (≥ 90). The only other available Spionidae species, M. neglectus, also exhibited a unique GO, but much less rearranged than the two Polydora species (320). CREX analysis indicates that at least five TDRL events were necessary to explain the evolution from the common GO to the one observed in the two newly sequenced Polydora species (Supplementary File S3: Figure S1). The same number of TDRL events was inferred for S. giganteus and H. norvegica, but S. spallanzanii required a much more complex scenario (Supplementary File S3: Figures S2–S4).

If mitogenomic architecture rearrangements are strongly selected against1, it would be expected that elevated rearrangement rate would be associated with relaxed purifying selection pressure, which in turn should be reflected on the molecular evolution rate. To test this hypothesis, we used RELAX tool and concatenated 13 PCGs (nucleotide sequences). With all sedentarian species (and Polydora node) in the dataset selected as test branches (exploratory mode), the Polydora branch (representing the common ancestor of the two sequenced Polydora species) exhibited somewhat relaxed purifying selection (but not exceptional in the sedentarian dataset): k = 0.63 (where k > 1 intensified, k < 1 relaxed selection). However, the two Polydora species themselves exhibited highly intensified selection (k = 15–17). Following this, we conducted the analysis with most species set as the reference dataset, and only the species exhibiting elevated rates of architecture rearrangements as test branches: the two Polydora species, Polydora branch, S. spallanzanii, H. norvegica and S. giganteus. This test for selection relaxation was significant (p = 0.00). The Polydora branch exhibited a highly relaxed purifying selection within the dataset (0.33), but the two Polydora species still exhibited intensified selection pressures (P. websteri k = 19.60, P. brevipalpa k = 18.77). The remaining three species exhibited relaxed selection pressures: S. spallanzanii k = 0.44, H. norvegica k = 0.45 and S. giganteus k = 0.45. This corroborates that there is an association between the mitochondrial architecture rearrangement rate and purifying selection pressure in sedentarians, but the signal from Polydora species is rather puzzling and requires further studies.
Conclusions

Among the Sedentaria, three lineages exhibit disproportionally highly elevated rates of mitogenomic architecture rearrangements: Serpulidae (represented by *S. giganteus* and *H. norvegica*), *S. spallanzanii* (Sabellidae) and the two newly sequenced *Polydora* mitogenomes. Whereas all available Serpulidae and Sabellidae species,
exhibit a highly elevated mitochondrial architecture evolution rate, among the Spionidae this is limited to the genus Polydora. The other available species, M. neglecta, exhibits only a moderate gene order rearrangement rate. Intriguingly, species from these lineages formed a paraphyletic clade in phylogenetic analysis, which is most likely to be a classical example of a long-branch attraction artefact. Indeed, it was previously observed that S. giganteus s exhibits a highly elevated evolutionary rate, and proposed that this may be causing artefactual relationships in phylogenetic analyses. Due to scarcity of data, the exact phylogenetic scope, and the underlying reason for, these elevated evolutionary rates remains unknown. This further supports previous observations that mitochondrial architecture is not fully conserved among the Sedentaria and, indirectly corroborates the proposal that the evolution of mitogenomic architecture is highly discontinuous: long periods of stasis are interspersed with periods of exponentially accelerated evolutionary rate of mitogenomic rearrangements. The previous observation that S. spallanzanii has genes encoded on both mitochondrial strands raises intriguing questions about the evolution of mitochondrial transcription mechanism in Annelida, as Boore proposed a ‘ratchet’ effect that would constitute a barrier to further strand switches once the replication mechanism has been lost on one strand. As introns were described in mitochondrial genes of three separate annelid lineages so far, this implies that mitochondrial evolution in Sedentaria deserves more scientific attention than it is currently receiving and that further annelid mitogenomes should be sequenced in order to further elucidate the intriguing patterns of mitogenomic evolution in this class.

Methods

Sample, sequencing, assembly and annotation.

Samples used for sequencing were procured at two different locations (Table 3). Samples were identified morphologically according to and more recent redescriptions as well as via cox1 barcoding using the BOLD database. As the animal handling included only unprotected invertebrates, no special permits were required to retrieve and process the samples.

Species	Host	Geographic coordinates	Salinity (ppt)	Habitat
Polydora brevipalpa	Crassostrea hongkongensis	Long. 112.049, Lat. 21.784	20	Estuary
	Mizuhopecten yessoensis	Long. 122.738, Lat. 39.02	33	Open sea

Table 3. Sampling details.
used to test whether the strength of natural selection has been statistically significantly relaxed or intensified along a specified set of test branches. We used concatenated nucleotide sequences of 13 PCGs for this analysis.

Ethics declaration. As the animal handling included only unprotected invertebrates, no special permits were required to retrieve and process the samples.

Data availability

All data generated or analysed during this study are included in this published article, its supplementary information files, and the NCBI's GenBank repository under the accession numbers MW316633 (P. brevipalpa) and MW316635 (P. websteri).

Received: 9 April 2021; Accepted: 18 June 2021

Published online: 30 June 2021

References

1. Boore, J. L. The Duplication/Random Loss Model for Gene Rearrangement Exemplified by Mitochondrial Genomes of Deuterostome Animals 133–147 (Springer, Berlin, 2000). https://doi.org/10.1007/978-94-011-4309-7_13.

2. Gissi, C., Iannelli, F. & Pesole, G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. **Hereditas** **101**, 301–320 (2000).

3. Moritz, C. & Brown, W. M. Tandem duplications in animal mitochondrial DNAs: Variation in incidence and gene content among lizards. **Proc. Natl. Acad. Sci. USA** **84**, 7183–7187 (1987).

4. Gissi, C. et al. Hypervariability of ascidian mitochondrial gene order: Exposing the mystery of deuterostome organelle genome stability. **Mol. Biol. Evol.** **27**, 211–215 (2010).

5. Zou, H. et al. The complete mitochondrial genome of parasitic nematode Camallanus cotti: Extreme discontinuity in the rate of mitogenomic architecture evolution within the Chromadorea class. **BMC Genom.** **18**, 406 (2017).

6. Zou, H. et al. Architectural instability, inverted skews and mitochondrial phylogenomics of Isopoda: outgroup choice affects the long-branch attraction artefacts. **R. Soc. Open Sci.** **7**, 191887 (2020).

7. Fujita, M. K., Boore, J. L. & Moritz, C. Multiple origins and rapid evolution of duplicated mitochondrial genes in pathogenetic geckos (Heteronota binoei; Squamata, Gekkonidae). **Mol. Biol. Evol.** **24**, 2775–2786 (2007).

8. Bernt, M. et al. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. **Mol. Phylogenet. Evol.** **69**, 352–364 (2013).

9. Weigt, A. & Bleidorn, C. Current status of annelid phylogeny. **Org. Divers. Evol.** **16**, 345–362 (2016).

10. Jennings, R. M. & Halanych, K. M. Mitochondrial genomes of Clymenella torquata (Maldanidae) and Riftia pachyptila (Siboglinidae): Evidence for conserved gene order in Annelida. **Mol. Biol. Evol.** **22**, 210–222 (2005).

11. Weigt, A. et al. Evolution of mitochondrial gene order in Annelida. **Mol. Phylogenet. Evol.** **94**, 196–206 (2016).

12. Aguadó, M. T. et al. Syllidae mitochondrial gene order is unusually variable for Annelida. **Gene** **594**, 89–96 (2016).

13. Tempestiti, A. et al. Extensive gene rearrangements in the mitogenomes of congeneric annelid species and insights on the evolutionary history of the genus Ophryotrocha. **BMC Genom.** **21**, 815 (2020).

14. Zhang, Y. et al. Phylogeny, evolution and mitochondrial gene order rearrangement in scale worms (Aphroditiformia, Annelida). **Mol. Phylogenet. Evol.** **125**, 220–231 (2018).

15. Golombek, A., Tobergte, S., Nesnidal, M. P., Purschke, G. & Struck, T. H. Mitochondrial genomes to the rescue: Diurodrilidae in the myzostomid trap. **Mol. Phylogenet. Evol.** **68**, 312–326 (2013).

16. Seixas, V. C., Russo, C. A. D. M. & Paiva, P. C. Mitochondrial genome of the Christmas tree worm *Spirobranchus giganteus* (Annelida: Serpulidae) reveals a high substitution rate among annelids. **Gene** **605**, 43–53 (2017).

17. Daffe, G., Sun, Y., Ahyong, S. T. & Kureyeva, E. K. Mitochondrial genome of *Sabella spallanzanii* (Gmelin, 1791) (Sibbelidae). **Mitochondrial DNA Part B** **6**, 409–501 (2021).

18. Sun, Y. et al. Another blow to the conserved gene order in Annelida: Evidence from mitochondrial genomes of the calcareous tubeworm genus Hydroides. **Mol. Phylogenet. Evol.** **160**, 107124 (2021).

19. Gastineau, R., Wawrzyniak-Wydrowska, B., Lemieux, C., Turmel, M. & Witkowski, A. Complete mitogenome of a Baltic Sea specimen of the non-indigenous polychaete *Marenzelleria neglecta*. **Mitochondrial DNA Part B** **4**, 581–582 (2019).

20. Blake, J. A. Family Spionidae Grube, 1850. In *Taxonomic Atlas of the Benthic Fauna of the Santa Maria Basin and Western Santa Barbara Channel, Vol. 6 The Annelida Part 3-Poly vol. 6* 81–224 (Santa Barbara Museum of Natural History, 1996).

21. Waser, A. M. et al. Spread of the invasive shell-boring annelid *Polydora websteri* (Polychaeta, Spionidae) into naturalised oyster reefs in the European Wadden Sea. **Mar. Biodivers.** **50**, 63 (2020).

22. Sato-Okoshi, W., Okoshi, K., Abe, H. & Li, J.-Y. Polydorid species (Polychaeta, Spionidae) associated with commercially important mollusk shells from eastern China. **Aquaculture** **406–407**, 153–159 (2013).

23. Ye, L., Yao, T., Wu, L., Lu, J. & Wang, J. Morphological and molecular diagnoses of *Polydora brevipalpa* Zachs, 1933 (Annelida: Spionidae) from the shellfish along the coast of China. **J. Oceanol. Limnol.** **37**, 713–723 (2019).

24. Zhang, D. et al. Mitochondrial architecture rearrangements produce asymmetrical nonadaptive mutational pressures that subvert the phylogenetic reconstruction in isopoda. **Genome Biol. Evol.** **11**, 1797–1812 (2019).

25. Rubinoff, D., Holland, B. S. & Savolainen, V. Between two extremes: Mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. **Syst. Biol.** **54**, 952–961 (2005).

26. Yang, H., Li, T., Dang, K. & Bu, W. Compositional and mutational rate heterogeneity in mitochondrial genomes and its effect on the phylogenetic inferences of *Cimicomorpha* (Hemiptera: Heteroptera). **BMC Genomics** **19**, 264 (2018).

27. Tulic, E., Atkinson, S. D. & Rouse, G. W. Mitochondrial genome of the freshwater annelid *Manayunkia occidentalis* (Sibbelidae: Fabriciidae). **Mitochondrial DNA Part B** **5**, 3313–3315 (2020).

28. Lartillot, N., Brinkmann, H. & Philippe, H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. **BMC Evol. Biol.** **7**, 54 (2007).

29. Li, Y. et al. Mitogenomics reveals phylogeny and repeated motifs in control regions of the deep-sea family *Siboglinidae* (Annelida). **Mol. Phylogenet. Evol.** **85**, 221–229 (2015).

30. Bernardino, A. F., Li, Y., Smith, C. B. & Halanych, K. M. Multiple introns in a deep-sea Annelid (Decemunciger: Ampharetidae) mitochondrial genome. **Sci. Rep.** **7**, 4295 (2017).

31. Zhong, M., Struck, T. H. & Halanych, K. M. Phylogenetic information from three mitochondrial genomes of *Terebelliformia* (Annelida) worms and duplication of the methionine tRNA. **Gene** **416**, 11–21 (2008).

32. Reyes, A., Gissi, C., Pesole, G. & Saccone, C. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. **Mol. Biol. Evol.** **15**, 957–966 (1998).
33. Castellana, S., Vicario, S. & Saccone, C. Evolutionary patterns of the mitochondrial genome in Metazoa: Exploring the role of mutation and selection in mitochondrial protein-coding genes. *Genome Biol. Evol.* 18, 1413–1416 (2001).

34. Boore, J. L. Complete mitochondrial genome sequence of the polychaete annelid *Platyneris dumerilii*. *Mol. Biol. Evol.* 18, 1413–1416 (2001).

35. Doublet, V. et al. Large gene overlaps and tRNA processing in the compact mitochondrial genome of the crustacean *Armadillidium vulgare*. *RNA Biol.* 12, 1159–1168 (2015).

36. Wen, H. R. et al. The complete maternally and paternally inherited mitochondrial genomes of a freshwater mussel *Potamilus alatus* (Bivalvia: Unioniidae). *PLoS ONE* 12, e0169749 (2017).

37. Wang, J.-G. et al. Sequencing of the complete mitochondrial genomes of eight freshwater snail species exposes pervasive paraphyly within the Viviiparidae family (Caenogastropoda). *PLoS ONE* 12, e0181699 (2017).

38. Liu, F.-F., Li, Y.-P., Jakovlč, I. & Yuan, X.-Q. Tandem duplication of two tRNA genes in the mitochondrial genome of *Tagiades sujuna* (Lepidoptera: Hesperiidae). *EJB* 114, 407–415 (2017).

39. Zhang, D. et al. Sequencing of the complete mitochondrial genome of a fish-parasitic flatworm *Paratetraechoides inermis* (Platyhelmintes: Monogenea): tRNA gene arrangement reshuffling and implications for phylogeny. *Parasit. Vectors* 10, 462 (2017).

40. Boore, J. L. Animal mitochondrial genomes. *Nucleic Acids Res.* 27, 1767–1780 (1999).

41. Montagna, M. et al. Tick-box for 3′-end formation of mitochondrial transcripts in ixodida, basal chelicerates and drosophila. *PLoS ONE* 7, e47538 (2012).

42. Ojala, D., Montoya, J. & Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. *Nature* 290, 470–474 (1981).

43. Berthier, F., Renaud, M., Alziari, S. & Durand, R. RNA mapping on Drosophila mitochondrial DNA: Precursors and template strands. *Nucleic Acids Res.* 14, 4519 (1986).

44. Valles, Y., Halanych, K. M. & Boore, J. L. Group II introns break new boundaries: Presence in a Bilaterian's genome. *PLoS ONE* 3, e1488 (2008).

45. Richter, S., Schwarz, F., Hering, L., Böggemann, M. & Bleidorn, C. The utility of genome skimming for phylogenomic analyses as demonstrated for glyceridic relationships (Annelida, Glyceridae). *Genome Biol. Evol.* 7, 3443–3462 (2015).

46. Ye, C. et al. Morphological and molecular characterization of *Polydora websteri* (Annelida: Sionidae), with remarks on relationships of adult worms and larve using mitochondrial COI gene as a molecular marker. *PIZ* 49, 699–710 (2017).

47. Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system (http://www.barcodinglife.org). *Mol. Ecol. Notes* 7, 355–364 (2007).

48. Zhang, D. et al. Three new *Diplecoidea mitogenomes* expose unusual compositional biases within the Monogenea class: Implications for phylogenetic studies. *BMC Evol. Biol.* 18, 133 (2018).

49. Allschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. *Nucleic Acids Res.* 25, 3389–3402 (1997).

50. Burland, T. G. DNASTAR's Lasergene sequence analysis software. In *Methods in Molecular Biology* TM Vol. 132 (eds Misener, S. & Krawetz, S. A.) 71–91 (Humana Press, Totowa, 2000).

51. Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and tRNA-like snoRNAs. *Nucleic Acids Res.* 33, W686–W689 (2005).

52. Laslett, D. & Canbäck, B. ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. *Bioinformatics* 24, 172–175 (2008).

53. Zhang, D. et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. *Mol. Ecol. Resour.* 20, 348–355 (2020).

54. Boore, J. L. & Brown, W. M. Mitochondrial genomes of galathealinum, helobdella, and platynereis: Sequence and gene arrangement comparisons indicate that pogonophora is not a phylum and annelida and arthropoda are not sister taxa. *Mol. Biol. Evol.* 17, 87–106 (2000).

55. Lin, G.-M., Audira, G. & Hsiao, C.-D. The complete mitogenome of nereid worm, *Neanthes glandicincta* (Platyhelminthes: Nereididae). *Mitochondrial DNA Part B* 2, 471–472 (2017).

56. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780 (2013).

57. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* 32, 268–274 (2015).

58. Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. *Mol. Biol. Evol.* 30, 1188–1195 (2013).

59. Kalivaamamoorthy, S., Minh, B. Q., Wong, T. K. E., Von Haeseler, A. & Jermini, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. *Nat. Methods* 14, 587–589 (2017).

60. Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. *Syst. Biol.* 65, 997–1008 (2016).

61. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. *Bioinformatics* 23, 127–128 (2007).

62. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. *Mol. Biol. Evol.* 35, 1547–1549 (2018).

63. Wheeler, D. L. et al. Database resources of the national center for biotechnology information. *Nucleic Acids Res.* 35, D5–D12 (2007).

64. Bernt, M. et al. CREx: Inferring genomic rearrangements based on common intervals. *Bioinformatics* 23, 2957–2958 (2007).

65. Weaver, S. et al. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. *Mol. Biol. Evol.* 35, 773–777 (2018).

66. Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L. & Scheffer, K. RELAX: Detecting relaxed selection in a phylogenetic framework. *Mol. Biol. Evol.* 32, 820–832 (2015).

Acknowledgements
We want to express our sincere thanks to Professor Zhongming Huo from Dalian Ocean University for his help in polydorid sample collection, and to anonymous reviewers whose comments helped us improve the manuscript.

Author contributions
L.Y. conceived the study. J.L., T.Y. and C.B. collected samples and conducted data analyses. L.Y., T.Y. and J.J. wrote the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the National Key R&D Program of China (2019YFD0900105), the Natural Science Foundation of Guangdong Province (2018A030313349), the Central Public-interest Scientific Institution Basal
Research Fund, CAFS (2020TD42, 2021SD05), the Shellfish and Large Algae Industry Innovation Team Project of Guangdong Province (2021KJ146), China Agriculture Research System of MOF and MARA, the Professorial and Doctoral Scientific Research Foundation of Huizhou University, the Science and Technology Planning Project of Guangzhou (202002030488), and Guangdong Rural Revitalization Strategy Special Funds (Fishery Industry Development) (YueCaiNong[2020]4).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-92994-3.

Correspondence and requests for materials should be addressed to L.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021