SYMPLECTIC 4-MANIFOLDS WITH ARBITRARY FUNDAMENTAL GROUP NEAR THE BOGOMOLOV-MIYAOKA-YAU LINE

SCOTT BALDRIDGE AND PAUL KIRK

ABSTRACT. In this paper we construct a family of symplectic 4–manifolds with positive signature for any given fundamental group \(G \) that approaches the BMY line. The family is used to show that one cannot hope to do better than than the BMY inequality in finding a lower bound for the function \(f = \chi + b_2 \sigma \) on the class of all minimal symplectic 4-manifolds with a given fundamental group.

1. Introduction

Let \(\chi(S) \) and \(\sigma(S) \) denote the Euler characteristic and signature of a 4-manifold respectively. Minimal complex surfaces \(S \) of general type satisfy \(c_2^1(S) > 0, \chi(S) > 0 \) and

\[
2\chi_h(S) - 6 \leq c_2^1(S) \leq 9\chi_h(S)
\]

where \(c_2^1(S) = 2\chi(S) + 3\sigma(S) \) and \(\chi_h(S) = \frac{1}{4}(\chi(S) + \sigma(S)) \). The second inequality is usually referred to as the Bogomolov-Miyaoka-Yau inequality. Finding symplectic (or Kähler) 4-manifolds on or near the BMY line has a long and interesting history (c.f. [8], [2], [3], [9], [5], [10], [11]). In particular this means looking for symplectic 4-manifolds with positive signature.

All known examples of symplectic 4–manifolds on the BMY line have large fundamental groups. In fact, if \(S \) is a complex surface differing from \(\mathbb{CP}^2 \) (the only known simply-connected example on the BMY line), the equality \(c_2^1(S) = 9\chi_h(S) \) holds if and only if the unit disk \(D^4 = \{ (z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 \leq 1 \} \) covers \(S \) [6], [13], [7]. This implies for such \(S \) that \(|\pi_1(S)| = \infty \). The goal has generally been to produce examples that fill in the geography with respect to \((c_2^1, \chi_h) \). In this paper we are interested what can be said for a given fundamental group.

Stipsicz constructed simply connected symplectic 4–manifolds \(C_n \) for which \(c_2^1(C_n)/\chi_h(C_n) \to 9 \) as \(n \to \infty \) in [11]. Our main theorem generalizes this result to any fundamental group.

Theorem 1. Let \(G \) have a presentation with \(g \) generators \(x_1, \cdots, x_g \) and \(r \) relations \(w_1, \cdots, w_r \). For each integer \(n > 1 \), there exists a symplectic
4–manifold \(M(G, n)\) with fundamental group \(G\) with Euler characteristic
\[
\chi(M(G, n)) = 75n^2 + 256n + 130 + 12(g + r + 1),
\]
and signature
\[
\sigma(M(G, n)) = 25n^2 - 68n - 78 - 8(g + r + 1).
\]

Our interest in this question developed while investigating pairs \((a, b)\) \(\in \mathbb{R}^2\) for which the function \(f = a\chi + b\sigma\) has a lower bound on the class of symplectic manifolds with a given fundamental group (see [1]). In that article we considered the following.

Fix a finitely presented group \(G\) and let \(\mathfrak{M}\) denote either the class \(\mathfrak{M}(G)\) of closed symplectic 4-manifolds with fundamental group \(G\) or the class \(\mathfrak{M}^{\text{min}}(G)\) of minimal, closed symplectic 4-manifolds with fundamental group \(G\).

For \(b \in \mathbb{R}\), define \(f_{\mathfrak{M}}(b) \in \mathbb{R} \cup \{-\infty\}\) to be the infimum
\[
f_{\mathfrak{M}}(b) = \inf_{M \in \mathfrak{M}} \{\chi(M) + b\sigma(M)\}.
\]
(In [1] we considered the infimum \(f_{\mathfrak{M}}(a, b)\) of \(a\chi + b\sigma\) on \(\mathfrak{M}\) and showed that if \(a \leq 0\) the infimum is \(-\infty\). Thus we restrict to \(f_{\mathfrak{M}}(1, b)\), which we more compactly denote by \(f_{\mathfrak{M}}(b)\) in the present article.)

We showed in [1] that the set
\[
D_{\mathfrak{M}} = \{b \mid f_{\mathfrak{M}}(b) \neq -\infty\}
\]
(the domain of \(f_{\mathfrak{M}}\)) is an interval satisfying
\[
[-1, 1] \subset D_{\mathfrak{M}(G)} \subset (-\infty, 1] \text{ and } [-1, \frac{3}{2}] \subset D_{\mathfrak{M}^{\text{min}}(G)} \subset (-\infty, \frac{3}{2}].
\]
The upper bounds are sharp; in fact \(1 \in D_{\mathfrak{M}(G)}\) and \(\frac{3}{2} \in D_{\mathfrak{M}^{\text{min}}(G)}\).

We are interested in the value of the left endpoint \(e_G\) of \(D_{\mathfrak{M}(G)}\), which is an intriguing invariant of a group \(G\). (It may or may not be contained in \(D_{\mathfrak{M}(G)}\).) Since \(e_G \leq -1\), a straightforward argument shows that \(e_G\) is also the left endpoint of \(D_{\mathfrak{M}^{\text{min}}(G)}\).

In [1] we observed that the results of Stipcitz gives a better lower bound (than \(-\infty\)) when \(G\) is the trivial group, and so a consequence of the result of this article is an extension to all \(G\). In fact Theorem 1 easily implies the following corollary.

Corollary 2. For any finitely presented group \(G\),
\[
D_{\mathfrak{M}(G)} \subset [-3, 1] \text{ and } D_{\mathfrak{M}^{\text{min}}(G)} \subset [-3, \frac{3}{2}].
\]

The BMY inequality \(c_1^2 \leq 9\chi_h\) is equivalent to \(f_{\mathfrak{M}^{\text{min}}(G)}(-3) \geq 0\) provided \(G\) is not a surface group. Hence the BMY conjecture and Corollary 2 together imply that \(e_G = 3\). Thus, a weaker form of the BMY conjecture could be stated as follows.

Conjecture 3 (Weak BMY Conjecture). For each finitely presented group \(G\), \(e_G = -3\).
2. The construction

We use the following notation. If X and Y are symplectic 4-manifolds containing symplectic surfaces $F_X \subset X$ and $F_Y \subset Y$ such that $F_X^2 + F_Y^2 = 0$, then the symplectic sum ([4]) of X and Y along F_X and F_Y will be denoted by

$$X \#_{F_X, F_Y} Y.$$

Recall that topologically $X \#_{F_X, F_Y} Y$ is obtained by removing tubular neighborhoods of F_X and F_Y and identifying the resulting boundaries in a fiber-preserving way. Moreover, if $E_X \subset X$ (resp. $E_Y \subset Y$) is a symplectic surface intersecting F_X once transversally (resp. intersecting F_Y transversally), then the fiber sum can be constructed so that (the connected sum) $E_X \# E_Y$ is a symplectic surface in $X \#_{F_X, F_Y} Y$.

2.1. The first piece: symplectic manifolds with given fundamental group. The following theorem was proven in [1].

Theorem 4. Let G have a presentation with g generators x_1, \cdots, x_g and r relations w_1, \cdots, w_r. Then there exists a minimal symplectic 4-manifold $M(G)$ with $\pi_1(M(G)) \cong G$, Euler characteristic $\chi(M(G)) = 12(g + r + 1)$, and signature $\sigma(M(G)) = -8(g + r + 1)$.

We will use the following observation. The manifold $M(G)$ constructed in Theorem 4 is obtained by taking fiber sums of a certain base manifold with $g + r + 1$ copies of the basic elliptic surface $E(1)$. Since $E(1)$ admits a singular fibration with symplectic generic fibers and 6 cusp fibers (which are simply connected), so does $E(1) - F$, where F denotes the generic fiber in $E(1)$ along which the fiber sum giving M is constructed. Thus each $M(G)$ contains a symplectic torus T_0 such that the induced homomorphism $\pi_1(T_0) \to \pi_1(M(G))$ is trivial.

2.2. The second piece: symplectic manifolds near the BMY line. In [11], Stipsicz proved the following theorem.

Proposition 5 (Stipsicz). For each non-negative integer n, there exists a symplectic 4–manifold $X(n)$ which admits a genus-$15n+1$ Lefschetz fibration with a section T_{n+2} of genus $(n+2)$ and self-intersection $-(n+1)$. Furthermore, $X(n)$ can be equipped with a symplectic structure such that T_{n+2} is a symplectic submanifold. The projection map $X(n) \to T_{n+2}$ induces an isomorphism on fundamental groups. The Euler characteristic of $X(n)$ is $\chi(X(n)) = 75n^2 + 180n + 12$ and the signature is $\sigma(X(n)) = 25n^2 - 60n - 8$.

Denote by $F_{15n+1} \subset X(n)$ a fixed generic fiber of $X(n)$. This is a symplectic surface with trivial normal bundle.

2.3. The third piece: a simply connected manifold. Gompf constructs a symplectic 4-manifold $S_{1,1}$ in [4, Lemma 5.5] which contains a disjoint pair T, F of symplectically embedded surfaces T of genus one and F of genus two,
with trivial normal bundles such that $S_{1,1} - (T \cup F)$ is simply connected. Thus the symplectic sum A of two copies $S_{1,1}$ along the genus two surfaces

$$A = S_{1,1} \#_{F,F} S_{1,1}$$

contains a pair of disjointly embedded symplectic tori $T_1 \cup T_2 \subset A$ with trivial normal bundles so that the complement $A - (T_1 \cup T_2)$ is simply connected. Since $S_{1,1}$ has Euler characteristic 23 and signature -15, $\chi(A) = 50$ and $\sigma(A) = -30$.

The manifold A has a useful property, whose proof is a simple application of the Seifert-Van Kampen theorem.

Proposition 6. Suppose B and C are symplectic 4-manifolds containing symplectic tori $i_B : T_B \subset B$ and $i_C : T_C \subset C$ with trivial normal bundles.

Let $D = B \#_{T_B,T_1} A \#_{T_2,T_C} C$ be the fiber sum of B, A, and C. Then

$$\pi_1(D) = (\pi_1(B) / N((i_B)_*(\pi_1(T_B)))) \ast (\pi_1(C) / N((i_C)_*(\pi_1(T_C))))$$

where \ast denotes free product and $N(H)$ denotes the normal closure of a subgroup H. \hfill \square

2.4. The fourth piece: “Elbows”. Let T be a torus and $\{a, b\}$ a pair of smoothly embedded loops forming a symplectic basis of $\pi_1 T$. Let $\varphi : T \to T$ be the Dehn twist around a. The mapping torus Y_φ fibers over S^1 with fiber T. Let $t_1 : S^1 \to Y_\varphi$ denote a section. Taking a product of Y_φ with S^1 yields a symplectic 4-manifold $Y_\varphi \times S^1$ (this is just Thurston’s manifold from [12]) which fibers over a torus with symplectic torus fibers. Moreover, the symplectic structure can be chosen so that the section $t_1 \times \mathrm{id} : S^1 \times S^1 \to Y_\varphi \times S^1$ is symplectic. Denote by $s_1 : S^1 \to \{p\} \times S^1 \subset Y_\varphi \times S^1$ the loop representing the second factor.

Note that $Y_\varphi \times S^1$ contains a torus $T' = b \times s_1$, where b is the curve described above in the fiber of Y_φ. The torus T' is homologically non-trivial by the Kunneth theorem, since b is non-trivial in $H_1(Y_\varphi)$, and is Lagrangian with respect to the symplectic structure on $Y_\varphi \times S^1$. Thus the symplectic structure on $Y_\varphi \times S^1$ can be perturbed slightly to make T' symplectic. Note moreover that T' is disjoint from the section $t_1 \times s_1 : S^1 \times S^1 \to Y_\varphi \times S^1$ since we can assume that t_1 intersects the fiber containing b in a point which does not lie on b. The tubular neighborhood of T' in $Y_\varphi \times S^1$ is trivial since b can isotoped off itself in a fiber of $Y_\varphi \to S^1$. Similarly the tubular neighborhood of the section $t_1 \times s_1$ is trivial since t_1 can be pushed off itself in Y_φ.

Define $Elb(n)$ to be the fiber sum $Elb(n) = (Y_\varphi \times S^1) \#_{T,T^2} (T^2 \times \Sigma_{n-1})$. The fiber sum can be carried out so that the sections of $Y_\varphi \times S^1 \to S^1 \times S^1$ and $T^2 \times \Sigma_{n-1} \to \Sigma_{n-1}$ yield a symplectic section of the resulting fibration $Elb(n) \to \Sigma_n$. Thus $Elb(n)$ contains a disjoint pair of symplectic surfaces with trivial normal bundles, a torus $T' = b \times s_1$ and a genus n surface, the image of the section, which we denote by D_n.
Letting $t_2, s_2, \cdots, t_n, s_n$ denote the generators of $\pi_1(\Sigma_{n-1})$, one computes
\[\pi_1(Elb(n)) = \langle a, b, t_1, s_1, \ldots, t_n, s_n \mid a \text{ central}, [b, t_1] = a, [b, t_i] = 1 \text{ for } i > 1, [b, s_i] = 1 \text{ for all } i, \prod_{i=1}^{n}[t_i, s_i] = 1 \rangle. \]

The inclusion of T' into $Elb(n)$ takes the generators of π_1T' to b and s_1, and the inclusion of D_n takes the standard basis to $t_1, s_1, \ldots, t_n, s_n$. The Euler characteristic and signature of $Elb(n)$ both vanish.

The manifold $Elb(n) - D_n$ is a punctured torus fibration over Σ_n, and hence has a presentation with the same generators and all the same relations except that one no longer has a commuting with b, i.e., a commutes with all generators except b.

2.5. The fifth piece: an elliptic surface. We find a symplectically embedded surface J of genus $n + 3$ and self-intersection $n + 1$ in the elliptic surface $E(n + 5)$ such that $E(n + 5) - J$ is simply connected as follows. Consider $n + 3$ copies of the generic fiber and one copy of the section in a fibration $E(n + 5) \rightarrow \mathbb{C}P^1$ with $6(n + 5)$ cusp fibers. The section and fibers are symplectic with regards to the symplectic structure on the elliptic fibration $E(n + 5)$. Resolve the $n + 3$ transverse double points (4) to get a symplectically embedded surface J of genus $n + 3$ and self-intersection $n + 1$ (the fiber hits the section once and that section has self-intersection $-(n + 5)$). The complement $E(n + 5) - J$ is simply connected because $E(n + 5)$ has a simply connected fiber which intersects J in one point: the normal circle of a tubular neighborhood of J is nullhomotopic in $E(n + 5) - J$.

2.6. Putting the pieces together. We begin by a modification of Stipsicz’s construction. Let $Z(n)$ be the fiber sum of $Elb(15n + 1)$ and $X(n)$ along $D_{15n+1} \subset Elb(15n + 1)$ and the fiber F_{15n+1} of the Lefschetz fibration $X(n) \rightarrow \Sigma_{n+2}$
\[Z(n) = Elb(15n + 1)\#D_{15n+1}, F_{15n+1}, X(n). \]

The fiber sum can be constructed so that the fiber $T \subset Elb(15n + 1)$ and the section $T_{n+2} \subset X(n)$ add to yield a symplectic surface of genus $n + 3$, $K_{n+3} = T\#T_{n+2} \subset Z(n)$ [4]. The important property of $Z(n)$ is that it contains a symplectic torus T', since D_{15n+1} and T' are disjoint.

The fundamental group of $Z(n)$ is easily computed, since $Elb(15n + 1) - D_{15n+1}$ is a fiber bundle with punctured torus fibers and $X(n) - F_{15n+1}$ is a Lefschetz fibration over a punctured genus $n + 2$ surface with at least one simply connected fiber. Using the Seifert-Van Kampen theorem and Novikov additivity one obtains the following.

Lemma 7. The fundamental group of $Z(n)$ is the free product of \mathbb{Z} with generator b, and a genus $n + 2$ surface group generated by x_i, y_i:
\[\pi_1(Z(n)) = \mathbb{Z}b \ast \langle x_i, y_i, i = 1, \cdots, n + 2 \mid \prod(x_i, y_i) = 1 \rangle. \]
Moreover, \(Z(n) \) contains a disjoint pair of symplectic surfaces, \(T' \cup K_{n+3} \subset Z(n) \) satisfying \([T']^2 = 0\), and \([K_{n+3}]^2 = -n - 1\). The induced homomorphism \(\pi_1(T') \rightarrow \pi_1(Z(n)) \) is the map
\[
\langle a, s_1 | [a, s_1] \rangle \rightarrow \pi_1(Z(n)) \quad a \mapsto a, s_1 \mapsto 1.
\]
The induced homomorphism \(\pi_1(K_{n+3}) \rightarrow \pi_1(Z(n)) \) is the map
\[
\langle a, b, x_1, y_1, \ldots, x_{n+2}, y_{n+2} | [a, b] \prod [x_i, y_i] = 1 \rangle \rightarrow \pi_1(Z(n))
\]
\[
a \mapsto a, b \mapsto 1, x_i \mapsto x_i, y_i \mapsto y_i.
\]
Moreover, \(\chi(Z(n)) = 75n^2 + 240n + 12 \) and \(\sigma(Z(n)) = 25n^2 - 60n - 8. \)

The symplectic sum of \(Z(n) \) with \(E(n+5) \) along \(J \), \(Z(n) \# K_{n+3}, J \cdot E(n+5) \) is a simply connected symplectic 4-manifold containing a torus \(T_1 \) with trivial normal bundle and appropriate Euler characteristic and signature. We take symplectic sum of this manifold with \(A \) to obtain an example with a torus whose complement is simply connected.

Define \(W(n) \) to be the symplectic sum
\[
W(n) = A \#_{T_1, T'} Z(n) \#_{K_{n+3}, J} E(n+5).
\]
Then since \(\pi_1(A - (T_2 \cup T_2)) = 1 \), the following proposition follows straightforwardly.

Proposition 8. The symplectic manifold \(W(n) \) is simply connected and contains a symplectic torus \(T_2 \subset W(n) \) with trivial normal bundle so that \(\pi_1(W(n) - T_2) = 1 \). It has Euler characteristic \(\chi(W(n)) = 75n^2 + 256n + 130 \) and signature \(\sigma(W(n)) = 25n^2 - 68n - 78. \)

We can now prove Theorem 1.

Proof of Theorem 1. The symplectic sum
\[
M(G, n) = M(G) \#_{T_0, T_2} W(n)
\]
has fundamental group \(G \) by Proposition 6. The calculations of \(\chi(M(G, n)) \) and \(\sigma(M(G, n)) \) are routine.

References

[1] S. Baldridge and P. Kirk, *On symplectic 4-manifolds with prescribed fundamental group*, May 2005, E-print GT0504345.
[2] Z. Chen, *On the geography of surfaces — simply connected minimal surfaces with positive index*, Math. Ann. 126 (1987), 141-164.
[3] Z. Chen, *The existence of algebraic surfaces with preassigned Chern numbers*, Math. Z. 206 (1991), 241-254.
[4] R. Gompf, *A new construction of symplectic manifolds*. Ann. of Math. 142 (1995), 527-595.
[5] R. Gompf and A. Stipsicz, ‘4-Manifolds and Kirby Calculus.’ Graduate Studies in Mathematics 20, American Mathematical Society, Providence, Rhode Island, 1999.
[6] F. Hirzebruch, *The signature of ramified coverings*, in Global Analysis (Papers in Honor of K. Kodaira), (D. Spencer and S. Iyanaga, eds.), Princeton University Press 1969, 253-265.
[7] Y. Miyaoka, *The minimal number of quotient singularities on surfaces with given numerical invariants*. Math. Ann. 268 (1984), 159–171.

[8] B. Moishezon and M. Teicher, *Simply connected algebraic surfaces of positive index*. Invent. Math. 89 (1987), 601–644.

[9] U. Persson, C. Peters, and G. Xiao, *Geography of spin surfaces*. Topology 35 (1996), 845–862.

[10] A. Stipsicz, *Simply connected 4-manifolds near the Bogomolov-Miyaoka-Yau line*. Math. Res. Lett. 5 (1998), 723–730.

[11] A. Stipsicz, *Simply connected symplectic 4–manifolds with positive signature*, Tr. J. Mathematics, Proceedings of 6th Gökova Geometry-Topology Conference, 23 (1999), 145–150.

[12] W. P. Thurston, *Some simple examples of symplectic manifolds*. Proc. Amer. Math. Soc. 55 (1976), no. 2, 467–468.

[13] S.-T. Yau, *Calabi’s conjecture and some new results in algebraic geometry* Proc. nat. Acad. Sci. USA 74 (1977), 1798–1799.

Department of Mathematics, Louisiana State University

Baton Rouge, LA 70817

E-mail address: sbaldrid@math.lsu.edu

Mathematics Department, Indiana University

Bloomington, IN 47405

E-mail address: pkirk@indiana.edu