Diamond Subgraphs in the Reduction Graph of a One-Rule String Rewriting System

Arthur Adinayev *

✉ arthuad@ac.sce.ac.il

Itamar Stein†

✉ Steinita@gmail.com

Abstract

In this paper, we study a certain case of a subgraph isomorphism problem. We consider the Hasse diagram of the lattice M_k (the unique lattice with $k+2$ elements and one anti-chain of length k) and want to find the maximal k for which it is isomorphic to a subgraph of the reduction graph of a given one-rule string rewriting system. We obtain a complete characterization for this problem and show that there is a dichotomy. There are one-rule string rewriting systems for which the maximal such k is 2 and there are cases where there is no maximum. No other intermediate option is possible.

Mathematics Subject Classification. 68Q42, 68R15

1 Introduction

The (directed) reduction graph of a string rewriting system (SRS) S is the graph whose vertices are words, and whose edges are the one-step reductions. This graph plays a central role in the study of properties of S. In this paper we want to study the reduction graph of one-rule SRSs. Despite being very simple objects,
there are many open problems regarding one-rule string rewriting systems (see [6] and [4, Problems 95 and 21b]). Therefore, any progress in understanding this type of reductions is of value. One way to have a better understanding of a graph G is by finding basic graphs that are or aren’t isomorphic to a subgraph of G. The reduction graph of a one-rule SRS \(\langle A \mid u \rightarrow v \rangle \) is always a graded graph (in the sense that for any two vertices \(x, y \) any two paths from \(x \) to \(y \) has the same length), so clearly it has only graded subgraphs. One of the most basic graded graphs is the Hasse diagram of the lattice \(M_k \), where \(M_k \) is the lattice with \(k + 2 \) elements \(\{x, y, z_1, \ldots, z_n\} \) such that \(x \leq z_i \leq y \) for \(1 \leq i \leq n \) and \(\{z_1, \ldots, z_n\} \) are pairwise incomparable. For the sake of simplicity, we use \(M_k \) also for the Hasse diagram of this lattice. Given a one-rule SRS \(S = \langle A \mid u \rightarrow v \rangle \) we denote its reduction graph by \(G_S \). We consider the question of whether \(M_k \) is isomorphic to a subgraph of \(G_S \). In other words, we want to know what is the maximal \(k \) for which \(M_k \) is embeddable in \(G_S \). It turns out that the answer is closely related to some other well-known notions and properties of one-rule systems. Neglecting few trivial cases (\(u = v \) or \(|A| = 1 \)) and assuming without loss of generality that \(|u| \leq |v| \), we divide the problem into several cases. In Section 3.1 we prove that if \(S \) is left (right) cancellative (i.e., \(u \) and \(v \) has different first (respectively, last) letters) then \(M_3 \) is not embeddable in \(G_S \), hence \(k = 2 \) is maximal. In Section 3.2 we generalize this to any system where \(v \) is not bordered with \(u \), i.e., \(u \) is not a prefix or not a suffix of \(v \). In Section 3.3 we discuss systems where \(u = 1 \) and prove that if \(v \neq b^n \) for every \(b \in A \) then \(M_k \) is embeddable in \(G_S \) for any natural \(k \). On the other hand, if \(v = b^n \) for some \(b \in A \) then \(k = 2 \) is again the maximum. In Section 3.4 we deal with the remaining case where \(u \neq 1 \) and \(v \) is bordered with \(u \). We use Adyan reduction [2] to reduce this case to a system of the form \(\langle \tilde{A} \mid 1 \rightarrow \tilde{v} \rangle \) which is the case solved in Section 3.3. In conclusion, we have obtained a dichotomy between cases where \(M_k \) is embeddable in \(G_S \) for every natural \(k \) and cases where \(k = 2 \) is the maximal value for which \(M_k \) is embeddable in \(G_S \).

2 Preliminaries

A directed graph is a tuple \((V, E, d, r)\) consists of a set (of vertices) \(V \), a set (of edges) \(E \) and two functions \(d, r : E \rightarrow V \) associating each edge \(e \in E \) with a domain vertex \(d(e) \) and a range vertex \(r(e) \). A subgraph \(G' = (V', E', d', r') \) of \(G \) is a graph such that \(V' \subseteq V, E' \subseteq E \) and \(d', r' : E' \rightarrow V' \) are the
corresponding restrictions of \(\mathbf{d} \) and \(\mathbf{r} \) (in particular, this requires that \(\mathbf{d}(E') \subseteq V' \) and \(\mathbf{r}(E') \subseteq V' \)). Let \(G_1 = (V_1, E_1, \mathbf{d}_1, \mathbf{r}_1) \) and \(G_2 = (V_2, E_2, \mathbf{d}_2, \mathbf{r}_2) \) be two graphs. A graph homomorphism \(f : G_1 \to G_2 \) consists of two functions \(f_V : V_1 \to V_2 \) and \(f_E : E_1 \to E_2 \) such that

\[
\mathbf{d}_2(f_E(e)) = f_V(\mathbf{d}_1(e)), \quad \mathbf{r}_2(f_E(e)) = f_V(\mathbf{r}_1(e))
\]

for every \(e \in E_1 \). We say that \(f \) is an embedding (so \(G_1 \) is embedded in \(G_2 \)) if \(f_E \) and \(f_V \) are injective functions.

The set of all words over an alphabet \(A \) is denoted by \(A^* \). We denote the empty word by \(1 \) and the set of all non-empty words by \(A^+ \). Let \(u, v \in A^+ \) be some words. We say that \(u \) is a prefix (suffix) of \(v \) if there exists \(x \in A^* \) such that \(v = ux \) (respectively, \(v = xu \)). Also, \(u \) is called a factor of \(v \) if there exist \(x, y \in A^* \) such that \(v = xuy \). We say that \(v \) is bordered with \(u \) if \(u \) is both a prefix and a suffix of \(v \). Recall that the length of a word \(u \in A^* \) is the number of letters in \(u \) and it is denoted \(|u| \). Assume that \(u = xay \) where \(a \in A \) is a letter. We say that the letter \(a \) is at position \(i \) of \(u \) if \(|x| = i \).

Let \(A \) be some set and let \(R \) be a relation on \(A^* \). A tuple \(S = \langle A \mid R \rangle \) is called a string rewriting system (SRS). Elements of \(R \) are usually written in the form \(u_i \to v_i \) instead of \((u_i, v_i) \). Let \(S = \langle A \mid R \rangle \) be an SRS. The single-step reduction relation induced by \(R \) is a relation on \(A^* \) denoted \(\to_R \) which is defined by \(w \to_R w' \) if \(w = xuy \) and \(w' = xvy \) for some \(x, y \in A^* \) and \(u \to v \in R \). If \(|x| = i \) we say that the rule \(u \to v \) is being used at position \(i \) in the reduction \(w \to_R w' \). We denote by \(G_S \) the reduction graph of \(S \). It is the (directed) graph defined as follows. The set of vertices of \(G_S \) is the set \(A^* \) of all words over \(A \). Given \(w, w' \in A^* \), edges \(w \to w' \) correspond to tuples \((i, u \to v) \) where \(u \to v \) is a rule in \(R \) and \(w \to_R w' \) is a one-step reduction where \(u \to v \) is being used at position \(i \). If \(S \) has only one rule, we can identify an edge only with the position \(i \) where the unique rewrite rule is being used. A path in the reduction graph is called a reduction of \(S \).

3 The embeddability of \(M_k \) in the reduction graph of a one-rule SRS

Definition 3.1. Denote by \(M_k \) the directed graph whose set of vertices is \(\{x, y, z_1, \ldots, z_k\} \) and for every \(1 \leq i \leq k \) there are two edges \(x \to z_i \) and \(z_i \to y \).
Note that M_k is “diamond shaped”, for instance, M_3 is the Hasse diagram of the diamond lattice:

![Hasse diagram of the diamond lattice](image)

We want to consider the following question. Given a one-rule SRS $S = \langle A \mid u \rightarrow v \rangle$, what is the maximal k for which M_k is isomorphic to a subgraph of the reduction graph G_S?

We start with some simple observations. If $u = v$ then the reduction graph contains only loops and even M_1 is not embeddable in G_S so from now on we assume $u \neq v$. If $|A| = 1$ then every connected component of G_S with more than one vertex is just an (infinite) path graph. Therefore only M_1 is embeddable in G_S and we can assume from now on that $|A| > 1$. Another simple observation is that M_k is embeddable in G_S for $S = \langle A \mid u \rightarrow v \rangle$ if and only if it is embeddable in G_{SC} where S^C is the converse system $S^C = \langle A \mid v \rightarrow u \rangle$. Therefore, without loss of generality we can assume that $|u| \leq |v|$.

If an SRS $S = \langle A \mid u \rightarrow v \rangle$ satisfy both $|A| > 1$ and $u \neq v$, it is easy to see that M_2 is embeddable in G_S. Indeed, choose a word $w \in A^*$ such that $uvw \neq vwv$ (for instance, if $\max\{|u|, |v|\} < l$ we can choose $w = a^l b^l$). The reduction graph of S contains the subgraph

![Subgraph isomorphic to M_2](image)

which is isomorphic to M_2. The question left is whether there are other values of k for which M_k is embeddable in G_S? We split this question into several cases.

3.1 Left (right) cancellative SRSs

Let $S = \langle A \mid u \rightarrow v \rangle$ be a one-rule SRS such that $u, v \neq 1$. We say that S is left cancellative if the first letter of u and v are different.
Remark 3.2. The term “left cancellative” comes from the well-known fact that the first letter of u and v are different if and only if the semigroup presented by S is left cancellative, i.e., $ax = ay$ implies $x = y$ (see [1], Chapter II Theorem 2, also stated clearly in [3] Theorem 16).

In this section we will prove that M_3 is not embeddable in G_S if S is a left cancellative SRS.

Given a reduction of some SRS

$$x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_n$$

we want a way to mark letters that are involved in the rewriting. For this we introduce a technical tool. Given a set of letters $A = \{a_1, \ldots, a_n\}$ we define a set of “decorated” copies $A^* = \{a_1^*, \ldots, a_n^*\}$. Let $u \in A^*$ and assume $u = u_1 \ldots u_k$ where every u_i is a letter of A. We denote by $u^* = u_1^* \ldots u_k^*$ a decorated copy of the word u. Denote by $\pi : A \cup A^* \rightarrow A$ a function defined $\pi(a_i) = \pi(a_i^*) = a_i$ which clearly extends to a projection $\pi : (A \cup A^*)^* \rightarrow A^*$. Now we can define:

Definition 3.3. Let $S = \langle A \mid R \rangle$ be an SRS. Define a new SRS, denoted $\overline{S} = \langle \overline{A}, \overline{R} \rangle$, in the following way. The set of letters of \overline{S} is $\overline{A} = A \cup A^*$. For every rule $u \rightarrow v$ in R and for every word $\overline{u} \in (\overline{A} \cup \overline{A^*})^*$ such that $\pi(\overline{u}) = u$ the relation \overline{R} will have the rule $\overline{u} \rightarrow \overline{v}^*$.

Example 3.4. If $S = \langle a, b \mid ab \rightarrow bba \rangle$ then the SRS \overline{S} is

$$\overline{S} = \langle a, a^*, b, b^* \mid ab \rightarrow b^*b^*u^*, \quad a^*b \rightarrow b^*b^*a^*, \quad ab^* \rightarrow b^*b^*a^*, \quad a^*b^* \rightarrow b^*b^*a^* \rangle$$

It is obvious that every reduction

$$\overline{x}_1 \rightarrow \ldots \rightarrow \overline{x}_n$$

of \overline{S} can be projected into a reduction of S

$$\pi(\overline{x}_1) \rightarrow \ldots \rightarrow \pi(\overline{x}_n)$$

by deleting all the “decorations”. Moreover, it is easy to see that every reduction of S

$$x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_n$$
can be “lifted” into a reduction of \(\overline{S} \)

\[
\overline{x}_1 \rightarrow \overline{x}_2 \ldots \rightarrow \overline{x}_n
\]
such that \(\pi(\overline{x}_i) = x_i \) and \(\overline{x}_1 = x_1 \). The decorated letters in this reduction will be the letters that are “involved” in the reduction or “affected” by it.

Example 3.5. Consider the SRS \(S \) in example 3.4 and the reduction

\[
abaabb \rightarrow^{(3)} ababbab \rightarrow^{(2)} abbbbab \rightarrow^{(4)} abbbbbaab
\]

where the numbers over the arrows are the positions in which the rewrite is being done. This reduction can be lifted to the reduction

\[
abaabb \rightarrow^{(3,ab \rightarrow b \cdot b \cdot a)} abab\cdot a \cdot b \rightarrow^{(2,ab \rightarrow b \cdot b \cdot a)} ab\cdot b \cdot a \cdot b \rightarrow^{(4,ab \rightarrow b \cdot b \cdot a)} ab\cdot b \cdot b \cdot a \cdot b
\]

of the SRS \(\overline{S} \).

The following observation about reductions in \(\overline{S} \) will be useful.

Lemma 3.6. Let \(S = \langle A | u \rightarrow v \rangle \) be a one-rule SRS and consider a reduction

\[
x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_n
\]
of \(S \) and its lifting

\[
\overline{x}_1 \rightarrow \overline{x}_2 \rightarrow \ldots \rightarrow \overline{x}_n
\]
to a reduction of \(\overline{S} \). Assume that the first decorated letter of \(\overline{x}_n \) is at position \(i \) then

1. No step in the reduction is carried out at position \(j \) for \(j < i \).
2. There is a step in the reduction carried out at position \(i \).
3. If \(S \) is left cancellative then the letter at position \(i \) of \(x_1 \) is the first letter of \(u \) and the letter at position \(i \) of \(x_n \) is the first letter of \(v \).

Proof. Statements (1) and (2) are clear so we will prove (3). Denote by \(a \) the first letter of \(u \) and by \(b \) the first letter of \(v \). Assume that in the step \(x_k \rightarrow x_{k+1} \) the rewrite rule is carried out at position \(i \) (such step exists by (2)). Therefore, the letter at position \(i \) of \(x_k \) is \(a \) and the letter at position \(i \) of \(x_{k+1} \) is \(b \). Since no step is carried out at position \(j \) for \(j < i \), the first letter of \(x_1 \) is also \(a \). In
addition, the first letter of u and v are different so we can not carry out any step at position i in the reduction $x_{k+1} \rightarrow \ldots \rightarrow x_n$. Therefore, the letter at position i of x_n is b as required.

Lemma 3.7. Let $S = \langle A \mid u \rightarrow v \rangle$ be a left cancellative SRS and let $x \rightarrow z_1 \rightarrow y$ and $x \rightarrow z_2 \rightarrow y$ be two reductions in S. Denote the corresponding “lifted” reductions in \bar{S} by

$$\bar{x} \rightarrow \bar{z}_1 \rightarrow \bar{y}_1, \quad \bar{x} \rightarrow \bar{z}_2 \rightarrow \bar{y}_2.$$

(a priory, $\bar{y}_1 \neq \bar{y}_2$ because they might have different decorations). Then, the first decorated positions of \bar{y}_1 and \bar{y}_2 are equal.

Proof. Denote by i_1 (i_2) the first decorated position of \bar{y}_1 (respectively, \bar{y}_2). We continue to use a for the first letter of u and b for the first letter of v. Assume without loss of generality that $i_1 < i_2$. Applying part (3) of Lemma 3.6 on the reduction $x \rightarrow z_1 \rightarrow y$, we obtain that b is the letter at position i_1 of y and a is the letter at position i_1 of x. Applying part (1) of Lemma 3.6 on $x \rightarrow z_2 \rightarrow y$, we obtain that a is the letter at position i_1 of y (since there are no steps carried out in this reduction at position j for $j < i_2$). This is a contradiction so $i_1 = i_2$ as required.

Proposition 3.8. Let $S = \langle A \mid u \rightarrow v \rangle$ be a left cancellative SRS. Then M_3 is not isomorphic to a subgraph of G_S.

Proof. Consider three reductions

$$x \rightarrow z_1 \rightarrow y, \quad x \rightarrow z_2 \rightarrow y, \quad x \rightarrow z_3 \rightarrow y$$

such that z_1, z_2, z_3 are all distinct and lift them into three reductions in \bar{S}

$$\bar{x} \rightarrow \bar{z}_1 \rightarrow \bar{y}_1, \quad \bar{x} \rightarrow \bar{z}_2 \rightarrow \bar{y}_2, \quad \bar{x} \rightarrow \bar{z}_3 \rightarrow \bar{y}_3.$$

According to Lemma 3.7 the first decorated positions of \bar{y}_1, \bar{y}_2 and \bar{y}_3 are identical. Denote this position by i. Part (2) of Lemma 3.6 implies that in each one of the three reduction there is a rewrite step carried out at position i. Without loss of generality we assume that in the first reduction this is the first step

$$x \stackrel{(i)}{\rightarrow} z_1.$$
In the second reduction this cannot be the first step
\[x^{(i)} \rightarrow z_2 \]
because this will imply \(z_1 = z_2 \) in contradiction to our assumption. Therefore, this must be the second step \(z_2^{(i)} \rightarrow y \).

For the third reduction we cannot have
\[x^{(i)} \rightarrow z_3 \]
as this implies \(z_1 = z_3 \) and we cannot have
\[z_3^{(i)} \rightarrow y \]
as this implies \(z_2 = z_3 \). This is a contradiction which finishes the proof. \(\square \)

Remark 3.9. Clearly, a dual result holds for right cancellative SRSs.

3.2 SRSs where \(v \) is not bordered with \(u \)

In this section we generalize the results of Section 3.1 to a wider class of SRSs.

Proposition 3.10. Let \(S = \langle A \mid u \rightarrow v \rangle \) be an SRS such that \(u \) is not a prefix of \(v \), then \(M_3 \) is not embeddable in \(G_S \).

Proof. Denote by \(p \) the maximal prefix of \(u \) which is also a prefix of \(v \). Therefore, we can write \(u = pu' \) and \(v = pv' \) for some words \(u', v' \). It might be the case that \(p = 1 \) (if \(S \) is left cancellative) but note that \(u' \neq 1 \) since \(u \) is not a prefix of \(v \) and \(v' \neq 1 \) since we are assuming \(|u| \leq |v| \). The maximality of \(p \) implies that the SRS defined by \(S' = \langle A \mid u' \rightarrow v' \rangle \) is left cancellative. Now, note that any reduction \(x \rightarrow y \) which is carried out using the rule \(pu' \rightarrow pv' \) can be carried out using the rule \(u' \rightarrow v' \). Therefore, \(G_S \) is a subgraph of \(G_{S'} \). Since \(M_3 \) is not embeddable in \(G_{S'} \) by Proposition 3.8, it is not embeddable in \(G_S \) as well. \(\square \)

Clearly, a dual result holds for SRSs where \(u \) is not a suffix of \(v \) so we can conclude:
Proposition 3.11. Let $S = \langle A \mid u \rightarrow v \rangle$ be an SRS. If v is not bordered with u (i.e., u is not a prefix of v or not a suffix of v) then M_3 is not embeddable in G_S.

3.3 Special one-rule SRSs

In this section we deal with SRSs of the form $S = \langle A \mid 1 \rightarrow \rangle$. We remark that SRSs of the form $\langle A \mid v_i \rightarrow 1 \rangle$ are called special (see [3, Definition 3.4.1]).

We have already mentioned that M_k is embeddable in G_S if and only if it is embeddable in G_{SC} where S^C is the converse system. So we can say that in this section we consider special one-rule SRSs. There are few subcases.

Lemma 3.12. If $v = b^n$ for some letter $b \in A$ then M_3 is not embeddable in G_S.

Proof. Any word $x \in A^*$ can be uniquely decomposed into

$$x = b^{m_0}a_{i_1}b^{m_1}a_{i_2}b^{m_2} \ldots b^{m_{l-1}}a_{i_l}b^{m_l}$$

where $a_{i_1}, \ldots, a_{i_l} \in A$ are letters distinct from b and m_0, \ldots, m_l are non-negative integers. If $x \rightarrow z$ is a one-step reduction then

$$z = b^{m'_0}a_{i_1}b^{m'_1}a_{i_2}b^{m'_2} \ldots b^{m'_{l-1}}a_{i_l}b^{m'_l}$$

such that $m'_i = m_i + n$ for some $i \in \{0, \ldots, l\}$ and $m'_j = m_j$ if $j \neq i$. It is clear that we can identify x with the tuple (m_0, \ldots, m_l) and a one-step reduction is equivalent to adding n to one of the entries. Therefore, a two step reduction $x \rightarrow z_1 \rightarrow y$ is equivalent to adding n to two of the entries (or twice to the same one). Now, it is clear that there could be at most one additional reduction $x \rightarrow z_2 \rightarrow y$ from x to y with $z_1 \neq z_2$. This finishes the proof.

Lemma 3.13. For any $k \in \mathbb{N}$, the graph M_k is embeddable in G_S for $S = \langle A \mid 1 \rightarrow ab \rangle$.

Proof. Choose $k \in \mathbb{N}$ and take $x = (aabb)^{k-1}$. For $0 \leq i \leq k - 1$ define $z_i = (aabb)^i ab (aabb)^{k-i-1}$. It is clear that z_i is obtained from x by applying the rewrite rule at position $4i$. Moreover, it is clear that $z_i \neq z_j$ for $i \neq j$. Now, applying the rewrite rule at position $4i + 1$ we obtain a reduction $z_i \rightarrow y$ where $y = (aabb)^k$. This yields a subgraph isomorphic to M_k as required.
Lemma 3.14. Let $S = \langle A \mid 1 \to v \rangle$ be an SRS such that $v \neq b^n$ for every $b \in A$. Then, M_k is embeddable in G_S for every k.

Proof. Assume that the first letter of v is a so $v = av'$ where v' contains at least one letter distinct from a. Define a monoid homomorphism $f : \{a, b\}^* \to A^*$ which is the extension of

$$f(a) = a, \quad f(b) = v'.$$

It is easy to see that f is injective and that $f(ab) = av' = v$. Therefore, it induces a graph embedding

$$\hat{f} : G_T \to G_S$$

where $T = \langle a, b \mid 1 \to ab \rangle$. In particular, it embeds the subgraph of G_T isomorphic to M_k (which exists by Lemma 3.13) onto an isomorphic subgraph of G_S.

Combining Lemma 3.12 and Lemma 3.14 we conclude this section.

Proposition 3.15. Let $S = \langle A \mid 1 \to v \rangle$ be an SRS. If $v = b^n$ for some $b \in A$ then $k = 2$ is the maximal value such that M_k is embeddable in G_S. Otherwise, M_k is embeddable in G_S for every natural k.

3.4 SRSs where v is bordered with u

In this section we will show that any system $S = \langle A \mid u \to v \rangle$ where v is bordered with u can be reduced using Adyan reduction [2] into an SRS of the form $\tilde{S} = \langle \tilde{A} \mid 1 \to \tilde{v} \rangle$ such that M_k is embeddable in G_S if and only if it is a embeddable in G_S. Therefore, we can use Proposition 3.13 in order to determine whether M_k is a subgraph of S. We remark that a similar approach of using Adyan reductions for other one-rule problems was used in [7] and [8, Section 6].

We start with some basic definitions required for the reduction.

Definition 3.16. Let $u \in A^*$ be some word. Its set of self-overlaps is defined by

$$\text{OVL}(u) = \{w \in A^+ \mid \exists x, y \in A^+ \quad u = xw = wy\}.$$

The word u is called self-overlap-free if $\text{OVL}(u) = \varnothing$.

10
Let T be a self-overlap-free word over some alphabet A. Enumerate all words in A^* without T as a factor by

$$R_1, R_2, \ldots$$

and let B be an infinite set of new letters

$$B = \{b_1, b_2, \ldots\} \quad (B \cap A = \emptyset).$$

Denote the set of words bordered with T by Bord_T and note that every word $x \in \text{Bord}_T$ can be decomposed uniquely into

$$x = TR_{i_1}TR_{i_2} \cdots TR_{i_k}T.$$

Adyan and Oganesyan define a bijection $\varphi_T : \text{Bord}_T \to B^*$ inductively by

$$\varphi_T(x) = \begin{cases}
1 & x = T \\
\varphi_T(x_1)b_i & x = x_1R_iT, \quad x_1 \in \text{Bord}_T.
\end{cases}$$

It is important to observe some properties of φ_T.

Lemma 3.17. For every $x \in \text{Bord}_T$ we have that $|\varphi_T(x)| < |x|$.

Proof. This can easily be proved by induction since $0 = |\varphi_T(T)| < |T|$ and $1 = |b_i| \leq |R_iT|$ even if R_i is the empty word. \qed

Lemma 3.18. Let $u, v \in \text{Bord}_T$ such that u is a prefix of v, then $\varphi_T(u)$ is a prefix of $\varphi_T(v)$.

Proof. It is clear from the definition of φ_T that

$$\varphi_T(Tx_1Tx_2T) = \varphi_T(Tx_1T)\varphi_T(Tx_2T).$$

Therefore, if $u = T\overline{\pi}T$ and $v = T\overline{\pi}TwT$ then

$$\varphi_T(v) = \varphi_T(T\overline{\pi}TwT) = \varphi_T(T\overline{\pi}T)\varphi_T(TwT) = \varphi_T(u)\varphi_T(TwT)$$

so $\varphi_T(u)$ is indeed a prefix of $\varphi_T(v)$. \qed
A dual argument shows that if \(u \) is a suffix of \(v \) then \(\varphi_T(u) \) is a suffix of \(\varphi_T(v) \). Therefore, we obtain:

Lemma 3.19. Let \(u, v \in \text{Bord}_T \) be distinct words such that \(v \) is bordered with \(u \) then \(\varphi_T(v) \) is bordered with \(\varphi_T(u) \).

From now on we consider an SRS \(S = \langle A \mid u \to v \rangle \) such that \(u \neq v \) and \(v \) is bordered with \(u \). This implies that \(u \in \text{OVL}(v) \). Denote by \(T \) the shortest element of \(\text{OVL}(u) \) or \(T = u \) if \(\text{OVL}(u) = \emptyset \). Clearly, \(T \) is self-overlap-free and \(T \in \text{OVL}(v) \) so both \(u \) and \(v \) are bordered with \(T \). (A system \(S = \langle A \mid u \to v \rangle \) with this property is called *reducible* in [2].) We make some observations on the existence of a subgraph of \(G_S \) isomorphic to \(M_k \).

Lemma 3.20. If \(M_k \) is embeddable in \(G_S \) then it is also isomorphic to a subgraph of \(G_S \) whose vertices are in \(\text{Bord}_T \).

Proof. Assume

\[
x \to z \to y
\]

is a reduction in \(G_S \). Note that any word \(x \in A^* \) which contains \(T \) as a factor can be written uniquely as \(x = x'x'' \) where \(x' \in \text{Bord}_T \) and \(x', x'' \) do not contain \(T \) as a factor. Therefore, we can write the above reduction as

\[
x'x'' \to z'z'' \to y'y''.
\]

Since \(u \) and \(v \) are bordered with \(T \), it is clear that

\[
x' = z' = y', \quad x'' = z'' = y''
\]

and

\[
x' \to z' \to y'
\]

is also a reduction. Therefore, if we have \(k \) different reductions

\[
x \to z_1 \to y, \ldots, x \to z_k \to y
\]

there are \(k \) corresponding reductions

\[
x' \to z'_1 \to y'_1, \ldots, x' \to z'_k \to y'_k
\]

such that \(x'_i, y'_i, z'_1, \ldots, z'_k \in \text{Bord}_T \). Since the steps \(x \to z_i \) and \(x \to z_j \) are
carried out at different positions for \(i \neq j \) we know that \(x_i \rightarrow z_i \) and \(x_j \rightarrow z_j \) are carried out in different positions and hence \(z_i \neq z_j \). Therefore, we have a subgraph isomorphic to \(M_k \) such that all the vertices are bordered with \(T \) as required.

\[\square \]

Lemma 3.21. Let \(S = \langle A \mid u \rightarrow v \rangle \) be an SRS such that \(v \) is bordered with \(u \) and let \(T \) be defined as above. Then \(M_k \) is embeddable in \(G_S \) if and only if it is embeddable in \(G_{\hat{S}} \) for \(\hat{S} = \langle B \mid \varphi_T(u) \rightarrow \varphi_T(v) \rangle \).

Proof. Recall that \(\varphi_T \) is a bijection \(\varphi_T : \text{Bord}_T \rightarrow B^* \). It is clear that \(\varphi_T^{-1} \) maps any subgraph of \(G_{\hat{S}} \) onto an isomorphic subgraph of \(G_S \). On the other direction, if \(G_S \) has a subgraph isomorphic to \(M_k \), then by Lemma 3.20 it has such subgraph whose vertices are elements of \(\text{Bord}_T \). Therefore, \(\varphi_T \) maps it onto a subgraph of \(G_{\hat{S}} \) isomorphic to \(M_k \) as required.

\[\square \]

Lemma 3.22. Let \(B \) be an alphabet (perhaps infinite) and let \(S = \langle B \mid u \rightarrow v \rangle \) be an SRS. Let \(B' \subseteq B \) be the (finite) set of letters from \(B \) that occur in \(u \) and \(v \) and define \(S' = \langle B' \mid u \rightarrow v \rangle \). Then, \(M_k \) is embeddable in \(G_S \) if and only if it is embeddable in \(G_{S'} \).

Proof. It is clear that \(G_{S'} \) is a subgraph of \(G_S \) by inclusion so any subgraph of \(G_{S'} \) is a subgraph of \(G_S \). On the other direction denote by \(\pi \) the standard projection \(\pi : B^* \rightarrow (B')^* \) defined by

\[
\pi(b) = \begin{cases}
 b & b \in B' \\
 1 & b \notin B'.
\end{cases}
\]

It is clear that if

\[x \rightarrow y \]

is a reduction of \(G_S \) carried out at position \(i \) then

\[\pi(x) \rightarrow \pi(y) \]

is also a reduction of \(G_{S'} \). Moreover, the letter at position \(i \) of \(x \) is a letter of \(B' \) (it is the first letter of \(u \)). Therefore, if

\[x \rightarrow z_1 \rightarrow y, \ldots, x \rightarrow z_k \rightarrow y \]
are k reductions in G_S such that $z_i \neq z_j$ for $i \neq j$ then

$$\pi(x) \to \pi(z_1) \to \pi(y), \ldots, \pi(x) \to \pi(z_k) \to \pi(y)$$

are k reductions in $G_{S'}$ such that $\pi(z_i) \neq \pi(z_j)$ for $i \neq j$. This finishes the proof. \hfill \Box

We can now state the main result of this section.

Proposition 3.23. Let $S = \langle A \mid u \rightarrow v \rangle$ be an SRS such that v is bordered with u then we can effectively construct another SRS $\tilde{S} = \langle \tilde{A} \mid 1 \rightarrow \tilde{v} \rangle$ such that M_k is embeddable in G_S if and only if it is embeddable in $G_{\tilde{S}}$.

Proof. Choose T to be the shortest element of $OVL(u)$ (or $T = u$ if $OVL(u) = \emptyset$). Take B' to be the set of letters from B that occur in $\varphi_T(u)$ and $\varphi_T(v)$. Denote $A_1 = B'$, $u_1 = \varphi_T(u)$, $v_1 = \varphi_T(v)$ and $S_1 = \langle A_1 \mid u_1 \rightarrow v_1 \rangle$. By Lemma 3.21 and Lemma 3.22 M_k is embeddable in G_S if and only if it is embeddable in G_{S_1}. There is no reason to expect that $u_1 = 1$. However, by Lemma 3.19 v_1 is still bordered with u_1 so we choose T_1 to be the shortest element of $OVL(u_1)$ or $T_1 = u_1$ if $OVL(u_1) = \emptyset$. Now we can continue this process and construct $S_2 = \langle A_2 \mid u_2 \rightarrow v_2 \rangle$ with $u_2 = \varphi_{T_1}(u_1)$, $v_2 = \varphi_{T_1}(v_1)$ and so on. Since $|\varphi_T(x)| < |x|$ this process must terminate. It will terminate when $u_k = \varphi_{T_{k-1}}(u_{k-1}) = 1$. Then we can define $\tilde{A} = A_k$ and $\tilde{v} = v_k$ and obtain a system $\tilde{S} = \langle \tilde{A} \mid 1 \rightarrow \tilde{v} \rangle$ which satisfy the desired result. \hfill \Box

Proposition 3.23 is enough in order to solve the case of this section. Given an SRS $S = \langle A \mid u \rightarrow v \rangle$ such that v is bordered with u we can carry on the procedure described in Proposition 3.23 and obtain an SRS $\tilde{S} = \langle \tilde{A} \mid 1 \rightarrow \tilde{v} \rangle$ which is the case dealt with in Proposition 3.15.

4 Conclusion

In conclusion we obtain the following theorem which gives a complete answer to the question of whether M_k is embeddable in the reduction graph of a one-rule SRS.
Theorem 4.1. Let $S = \langle A \mid u \rightarrow v \rangle$ be a one-rule SRS such that $u \neq v$, $|u| \leq |v|$ and $|A| > 1$. Then:

1. If v is not bordered with u then $k = 2$ is the maximal value such that M_k is embeddable in G_S.

2. If v is bordered with u then we can use Adyan reductions as described in Proposition 3.23 and obtain an SRS $\tilde{S} = \langle \tilde{A} \mid 1 \rightarrow \tilde{v} \rangle$. In this case:

 (a) If $\tilde{v} = b^n$ for some $b \in \tilde{A}$ then $k = 2$ is the maximal value such that M_k is embeddable in G_S.

 (b) If $\tilde{v} \neq b^n$ for every $b \in \tilde{A}$ then M_k is embeddable in G_S for every k.

References

[1] S. I. Adjan. Defining relations and algorithmic problems for groups and semigroups. Proceedings of the Steklov Institute of Mathematics, No. 85 (1966). Translated from the Russian by M. Greendlinger. American Mathematical Society, Providence, R.I., 1966.

[2] SI Adjan and GU Oganesjan. On the word and divisibility problems in semigroups with a single defining relation. Mathematics of the USSR-Izvestiya, 12(2):207, 1978.

[3] Ronald V. Book and Friedrich Otto. String-rewriting systems. Texts and Monographs in Computer Science. Springer-Verlag, New York, 1993.

[4] Nachum Dershowitz. Open. Closed. Open. In Term rewriting and applications, volume 3467 of Lecture Notes in Comput. Sci., pages 376–393. Springer, Berlin, 2005.

[5] Gerard Lallement. The word problem for Thue rewriting systems. In Term rewriting (Font Romeux, 1993), volume 909 of Lecture Notes in Comput. Sci., pages 27–38. Springer, Berlin, 1995.

[6] Yuri Matiyasevich. Word problem for Thue systems with a few relations. In Term rewriting (Font Romeux, 1993), volume 909 of Lecture Notes in Comput. Sci., pages 39–53. Springer, Berlin, 1995.
[7] Kayoko Shikishima-Tsuji, Masashi Katsura, and Yuji Kobayashi. On termination of confluent one-rule string-rewriting systems. *Inform. Process. Lett.*, 61(2):91–96, 1997.

[8] Itamar Stein. Reducing the gradedness problem of string rewriting systems to a termination problem. *RAIRO Theor. Inform. Appl.*, 49(3):233–254, 2015.