Sterilization Method for Reducing Microbial Contamination and Phenolic Compounds present in Coconut (Cocos Nucifera L.) Leaf Culture

1,2NWITE, PA; 2,3OHANMU, EO; 1AISAGBONHI, EP; 1OBAHIAGBON, O; 2,4IKHAJIAGBE, B

1Physiology Division, Nigeria Institute for Oil Palm Research, Benin City, Nigeria
2Environmental Biotechnology and Sustainability Research Group, Department of Plant Biology and Biotechnology, University of Benin, Nigeria.
3Department of Biological Sciences, Edo State University Uzairue, Edo State, Nigeria
4Applied Environmental Bioscience and Public Health Research Group, Department of Microbiology, University of Benin, Benin City, Nigeria

*Corresponding Author E-mail: edos.ricky@yahoo.com; peacekaino@gmail.com; Tel: +2348135897349

ABSTRACT: The aim of the study was to investigate efficient sterilization methods for reducing microbial contamination and phenolic compound of coconut (Cocos nucifera L.) leaf culture. The non-chlorophyllous immature coconut leaves explant used were taken from unopened spear leaves tissue of the coconut seedling, from the apical growing regions close to the meristem of the palm sucker of about 15 months old. Murasihige and Skoog (MS medium) supplemented with 2,4-Dichlorophenoxyacetic acid (2,4-D) at concentration of 30 mg/L and 6-Benzyl amino purine (BAP) at concentration of 1.5 mg/L were used for morphologic responses. Mercuric chloride, ethanol, calcium hypochlorite and sodium hypochlorite were used to sterilize the explants at concentrations of 0.1 %, 0.2 %, 0.3 % and 0.4 % and 70-95 % of ethanol for 5 minutes. This was followed by rinsing the explants with distilled water four successive times. The sterilized explants were inoculated on MS media and were incubated at 25±2°C in the dark.

Results showed that contamination was less in the cultures, particularly in explants sterilized with 70 % ethanol. Although, all the sterilants did well, but ethanol is more preferable than the rest sterilants, in solving both problems.

DOI: https://dx.doi.org/10.4314/jasem.v26i2.8

Open Access Article: (https://pkp.sfu.ca/ojs/) This an open access article distributed under the Creative Commons Attribution License (CCL), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Impact factor: http://sjifactor.com/passport.php?id=21082

Google Analytics: https://www.ajol.info/stats/bdf07303d34706088fffb8a92e9c1491b12470

Copyright: © 2022 Nwite et al

Keywords: Cocos nucifera, immature leaf, Sterilizing agents, Contamination, Browning.

Coconut palms play an important role in agriculture and tourism. In the tropical Pacific Islands, coconut is grown worldwide in about 14.4 million, hectare of which 87 % are located in the Asia Pacific region (Foale, 2003). This palm grows in more than 80 countries which can be grouped into eight distinct coastal/oceanic regions on four continents (Howard et al., 2001). In the tropics, most parts of the plant are used for food, oil production, construction material, source of energy, and cosmetics (Campbell et al., 2000). Coconut cultivars are generally classified into the tall and dwarf types. The tall palm can grow at a rate of more than 50 cm annually when young and flowers 6 -10 years with an economic life span of 60-70 years. The dwarf type can grow at a rate of 15 to 30 cm annually, with a productive life span of 30 - 40 years but usually start flowering in the third year (Bourdeix et al., 2005). Apart from their usually short height, most of the dwarfs also play an important role in genetic improvement programs. However, this variety is suffering from drastic production constraints, including pests and diseases. In addition, a number of aging coconut plantations are now being uprooted in order to make way for the planting of new ones (Warner et al., 2007). Therefore, there is an urgent need to implement efficient coconut germplasm development via in vitro technique of tissue culture that allows germination and conversion into disease free plantlets in a controlled environment. Sterilization is the process of making explants free of contamination before establishment of cultures. Various sterilization agents are used to decontaminate the tissues. The disinfectants usually used are sodium hypochlorite, calcium hypochlorite, ethanol, mercuric chloride, hydrogen peroxide and silver nitrate (Himabindu et al., 2012). Clonal propagation through
Sterilization Method for Reducing Microbial Contamination and Phenolic...

Sterilization and inoculation of explants: The leaf explant (coconut seedling) were chopped or reduced in size, washed with Tween20 due to dirt and debris from the soil, rinsed under running tap water for 5-10 minutes, before taken to laminar flow chamber for proper sterilization and inoculation. Four sterilants and concentrations namely Mercuric chloride, Sodium hypochlorite, calcium hypochlorite all at 0.1, 0.2, 0.3 and 0.4 % and Ethanol at 70, 85, 90 and 95 % concentration were used for the study to standardize the best sterilization protocol for in vitro culture of coconut leaf (Chengalrayan et al., 2005). The leaves were then introduced into the various sterilants solution for 5 minutes with continuous stirring. Later, the disinfectant solution was discarded and explants were rinsed three times with sterile distilled water. Thereafter, the sterilized explants were inoculated on the basal media. Cultures were incubated in dark room at 25±2 °C. Contaminated cultures were picked and counted on weekly bases and necrotic cultures were also observed and recorded. All trials were replicated three times.

Statistical analysis: The data generated was subjected to ANOVA in complete randomized design using R-software at 5 % level of significance.

RESULTS AND DISCUSSION

The effects of different sterilant on contamination of coconut leaf culture have been presented in Table 1. Among the various concentration (0.1, 0.2, 0.3 and 0.4) % of Mercuric chloride used, 0.4% had the less contamination value with a range of 0.10-6.40, compared to 0.1 % value which range from 0.06±0.66 - 22.20±0.22. 0.1 % Mercuric chloride was highly significant in terms of contamination compared to other Mercuric chloride concentrations used. Also 70 % Ethanol had the less contamination value with the range of 0.03±0.33 - 0.10±0.00, while other concentrations had a value range of 0.10±0.00 - 13.43±0.33. Calcium hypochlorite, 0.4 % concentration had less contaminated cultures with 0.06±0.66 - 13.50±0.00. While 0.1 % had the highest contamination value with 20.26±0.66 - 33.40±0.33, followed with other concentrations. At 0.3 % Sodium hypochlorite less, contamination was observed with value range of 0.03±0.33 - 6.43±0.33. 0.1 % had a higher range of 13.13±0.33 - 13.46±0.66, compare with others. There was no browning in all the cultures from concentrations 0.1 – 0.4 % of all the sterilants in the first week (Table 2). Slight browning was observed in mercuric chloride at 0.4 % concentration and ethanol at 95 % contamination after two weeks of culture. At week three slight browning was observed in mercuric chloride at 0.1 % - 0.4 %, ethanol at 95 %. Calcium hypochlorite at 0.3 % and 0.4 % while in sodium hypochlorite cultures were free from browning. At four-week mercuric chloride at 0.1 % to 0.4 % shows high level of browning, while ethanol 70 %, 85 % and 90 % shows no browning but 95 % shows slight browning.
Table 1: Effect of different sterilant on contamination of coconut leaf culture explants

Sterilant	Concentration (%)	Contaminated cultures (%)	1 WACI	2 WACI	3 WACI	4 WACI
Mercuric chloride	0.1	0.06±0.66	13.23±0.33	22.2±0.22	22.13±0.33	
	0.2	0.10±0.00	6.50±0.00	6.50±0.00	13.26±0.66	
	0.3	6.53±0.33	13.43±0.33	6.50±0.00	6.46±0.66	
	0.4	6.40±0.00	0.10±0.00	0.13±0.33	0.01±0.00	
Ethanol	70	0.03±0.33	0.06±0.66	0.06±0.66	0.10±0.00	
	85	0.10±0.00	6.60±0.00	6.40±0.00	13.23±0.66	
	90	6.46±0.66	0.06±0.66	0.13±0.33	0.06±0.66	
	95	0.23±0.33	0.10±0.00	6.50±0.55	13.43±0.33	
Calcium hypochlorite	0.1	20.26±0.66	22.2±0.33	33.4±0.33	33.36±0.66	
	0.2	6.46±0.66	13.36±0.66	13.26±0.66	26.26±0.66	
	0.3	6.53±0.33	22.4±0.00	33.4±0.00	22.2±0.00	
	0.4	0.23±0.33	0.06±0.66	0.03±0.33	0.03±0.33	
Sodium hypochlorite	0.1	13.2±0.66	13.16±0.66	13.1±0.66	13.46±0.66	
	0.2	0.03±0.33	0.06±0.66	22.06±0.66	0.03±0.33	
	0.3	0.03±0.33	0.03±0.33	0.03±0.33	6.43±0.33	
	0.4	0.03±0.33	0.06±0.66	0.03±0.33	0.03±0.33	

Key: WACI: weeks after culture initiation

Table 2: Effect of different sterilants on browning of coconut leaf culture

Sterilant	Concentration (%)	Contaminated cultures (%)	1 WACI	2 WACI	3 WACI	4 WACI
Mercuric chloride	0.1	-	-	+	++	
	0.2	-	-	+	++	
	0.3	-	-	+	++	
	0.4	+	+	+	+	
Ethanol	70	-	-	-	-	
	85	-	-	-	-	
	90	-	-	-	-	
	95	+	+	+	+	
Calcium hypochlorite	0.1	-	-	-	+	
	0.2	-	-	-	+	
	0.3	-	-	+	+	
	0.4	-	-	+	+	
Sodium hypochlorite	0.1	-	-	-	-	
	0.2	-	-	-	-	
	0.3	-	-	-	-	
	0.4	-	-	-	-	

Key: WACI: weeks after culture initiation, No browning: -, Slight brown: +, Dark brown: ++
Calcium hypochlorite at 0.1 % – 0.4 % cultures shows slight browning. Lastly, sodium hypochlorite at 0.1 %, 0.2 % and 0.3 % were free from browning, while 0.4 % had slight browning. The purpose of the experiment was to identify the best sterilizing agent and their concentrations that can control contamination and phenolic compound on immature coconut leaf. In the present study, ethanol happens to be the best sterilizing agents tested with less contamination value of 0.03±0.33. Contamination was noticed in coconut leaf cultures after 4 days of inoculation in calcium hypochlorite with a high value of 20.26±0.66, sodium hypochlorite with 13.26±0.66 after one week followed by the rest of the sterilants. This finding was similar with those of (Hadiuzzaman et al., 2001), where they reported that contamination was observed in banana shoot tip after 5 days, using divers sterilants before inoculation. Contamination was less in the cultures that were sterilized with ethanol and less browning was observed in sodium hypochlorite than mercuric chloride and calcium hypochlorite in all the concentrations. Various studies, on in vitro sterilization of explants, with respect to different sterilizing agents has reported that sodium hypochlorite a very effective killer of bacteria and fungi, (Oyebanji et al., 2009). In this study, ethanol was the best sterilizing agent, followed by sodium hypochlorite in terms of bacteria and fungi control of coconut leaf explants. Apart from contamination, another major problem in coconut tissue culture is the browning of explants shortly after inoculation.

The results obtained in this study showed that browning can be controlled after two weeks of inoculation. Slight browning started at week two, on the cultures that had mercuric chloride with concentration 0.4 % and 95 % ethanol. In sodium hypochlorite and calcium hypochlorite at week two, the cultures were still free from slight browning. At week four, most of the cultures in mercuric chloride at all concentrations shows high rate of browning. A similar report had been made in solving the problem of browning on date palm inflorescence explants, (El-Shafey et al., 1999). However, it shows that the rate of contamination and browning were observed more at week three and increases in week four. All sterilants did well, but ethanol at 70 % is the best sterilizing agent that can control contamination and browning rate of coconut leaf for the first 4 weeks of inoculation.

Conclusion: This study has shown that all sterilants in this study are capable of reducing or checking contamination in coconut leaf cultures, browning is likely to start occurring after two weeks of inoculation, and can be effectively controlled if the explants is treated with the various sterilants at different concentration. Of all the sterilants used, ethanol was identified as the best sterilants that can control contamination and browning rate in coconut leaf.

Acknowledgements: The authors wish to sincerely thank Dr. I.M. Ugiagbe, the Head of Department of the Physiology Division, Nigeria Institute for Oil Palm
Research (NIFOR), Benin City, Nigeria for his support throughout the experiment.

REFERENCE

Bourdeix, R; Konan, IL; Cho, PN (2005). Coconut: A guide to traditional and improved varieties. Editions, DiversifloraMontpellier. France. 94p.

Campbell-Falck, D; Thomas, T; Falck, TM; Tutuo, N; Clem, K (2000). The intravenous use of coconut. *American J. Emergency Medicine* 18(1): 108–11.

Chengalrayan, K; Abouzid, A; Gallo-Meagher, M (2005). *In vitro* regeneration of plants from sugarcane seed-derived callus. In vitro Cel. Dev. *Biol. Plant* 41: 477-482.

El-Shafey, YE; Nesiem, M; Habib, M; Abdel, M (1999). Browning phenomenon: A serious problem in date palm tissue culture. *J. Agric. Sci.* 11: 78 - 87.

Foale, M (2003). *The Coconut Odyssey - The Bounteous Possibilities of the Tree of Life*. ACIAR: Canberra. Available as a pdf file from www.aciar.gov.au/publications/ MN101 [This popular account describes ways in which the full potential of coconut and its benefits may be realized for better health, food and the environment].

Goerge, EF; Micheal, AH; Geert, JDK (2008). *Plant propagation by tissue culture*. 3rd ed. Vol. 1. Springer. Pp 134-143.

Goswami, N; Handique, P (2013). In Vitro Sterilization Protocol for Micropropagation. *Indian J. Applied Research* 51: 21 - 28.

Hadiuzzaman, SU; Habiba, S; Reza, M; Saha, L; Khan, MR (2001). Development of a sustainable protocol for contamination free culture of table bananas and identification of associated endogenous bacteria. *In*: 4th Intl. Plant Tissue Culture Conference, Dhaka, Bangladesh. Abstracts, pp: 24.

Himabindu, KB; ShanthiPriya, M; Reddy, DM; Sudhakar, P; Srinivasulu, Y; Reddishekhar, M; Latha, P; Reddy, BRK (2012). Studies on the effect of various sterilants and culture conditions on *in vitro* seed germination in tomato (*Solanumlycopersicum*). *Int. J. Applied Bio. Pharm. Techn*. 3(4): 476-480.

Howard, FW; Giblin-Davis, R; Moore, D; Abad, RG (2001). *Insects on Palms*. CABI, UK. This book is recommended reading for tropical biologists and agriculturalists, including entomologists, horticulturists and tropical ecologists as well as palm nursery growers, managers and enthusiasts.

Murashige, T; Skoog, F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. *Physiological Planta* 15: 473-497.

Oyebanji, B; Nweke, O; Odebunmi, O; Galadima, B; Idris, S; Nnodi, N (2009). Simple, effective and economical explant-surface. *Afr. J. Biotec.* 12: 53 - 96.

Pirtilla, AM; Podolich, O; Koskimaki, JJ; Hohtola, E; Hohtola, A (2008). Role of origin and endophyt infection in browning of bud-derived tissue cultures of Scots pine (*Pinussylvestris*).. *Plant Cell Tissue Organisms and Culture* 95: 47-55.

Warner, B; Quirke, D; Longmore, C (2007). A review of the future prospects for the world coconut industry and past research in coconut production and product. ACIAR, Canberra, Australia