Rapid and sensitive detection of UGT1A1 polymorphisms associated with irinotecan toxicity by a novel DNA microarray

Ryuichi Tsunedomi,1 Shoichi Hazama,1,2 Naoko Okayama,3 Masaaki Oka4 and Hiroaki Nagano1

1Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube; 2Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University Faculty of Medicine, Ube; 3Department of Clinical Laboratory, Yamaguchi University Hospital, Ube; 4Yamaguchi University, Yamaguchi, Japan

Key words
- DNA microarray, in vitro diagnostics, irinotecan, polymorphism, precision medicine

Correspondence
Ryuichi Tsunedomi, Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
Tel: +81-836-22-2264; Fax: +81-836-22-2263;
E-mail: tsune-r@yamaguchi-u.ac.jp

Funding information
R & D Promotion Subsidy System from Yamaguchi Prefecture Government

Received January 23, 2017; Revised April 19, 2017;
Accepted May 1, 2017

Cancer Sci 108 (2017) 1504–1509
doi: 10.1111/cas.13272

Recent progress in human genome analysis has paved the way for a new approach in disease treatment called precision or personalized medicine, which is tailored to the patient’s distinction. Genotyping methods that assist precision medicine by determining the direction of treatment are selected on the basis of rapid availability, accuracy, and low cost.

Presently, irinotecan treatment dosages are decided based on the presence of UGT1A1 polymorphisms. Irinotecan, a camptothecin derivative, is approved for the treatment of metastatic colorectal and other cancers. Carboxylesterases catalyzed irinotecan to 7-ethyl-10-hydroxycamptothecin (SN-38), which is a potent topoisomerase I inhibitor leading to cell death. SN-38 is then further catalyzed by hepatic uridine 5’-diphospho-glucuronosyltransferase (UGT) 1A (UGT1A) enzymes to form the inactive compound SN-38 glucuronide (SN-38G). In Japan, genotyping by the Invader assay has been approved for in vitro detection of two UGT1A1 polymorphisms, UGT1A1*28 and UGT1A1*6, known to be significantly associated with severe irinotecan toxicity, resulting from irinotecan-based chemotherapy for several carcinomas.

The polymorphism UGT1A1*28 contains an additional TA repeat in the UGT1A1 promoter region, giving seven rather than six TA repeats, while UGT1A1*6 has a G to A substitution at position +211 relative to the UGT1A1 translation start site, which results in impaired irinotecan metabolism. The relative frequency of UGT1A variants varies between Caucasian and Asian populations, and UGT1A1*6 is reportedly strongly associated with severe neutropenia in Asian patients in particular.

In this study, using a DNA array technique, we accurately and simultaneously detected both the 2-bp repeated sequence insertion and single nucleotide polymorphism (SNP) in UGT1A.
of 0.000–0.613, 0.916–1.340, and 1.472–2.000 were designated (TA)0/(TA)n, (TA)0/(TA)7, and (TA)7/(TA)7, respectively. Similarly, values of 0.000–0.332, 0.629–1.051, and 1.865–2.000 were designated homozygous of wild-type (G/G), heterozygous (G/A), and homozygous of UGT1A1*6 (A/A), respectively. If the FI from both probes were more than twofold lower than the BG, the genotype was not determined.

DNA microarray for the detection of seven polymorphisms at the UGT1A locus. We developed an additional DNA microarray capable of simultaneously detecting UGT1A polymorphisms at seven loci: UGT1A1*6 (211G > A, rs4148323), UGT1A1*27 (686C > A, rs3530960), UGT1A1*28 (T>A, rs8175347), UGT1A1*60 (–3279T > G, rs4124874), UGT1A7 (–57T > G, rs7586110), UGT1A7 (387T > G, rs178632), and UGT1A9*1b (–118T > T, rs3832043), also called UGT1A9*22 (26,29,30). For this, seven sets of primers and probes were used (Table 2). In the first PCR reaction, genomic DNA was amplified with Cy5-labeled dCTP (GE Healthcare, Tokyo, Japan). Multiplex PCR was performed in a 20 μL volume with 0.5 U FastStart Taq DNA polymerase (Roche diagnostics) and 10 ng DNA, using the following cycle procedure: 35 cycles of denaturation at 95°C for 30 s, 95°C for 30 s, annealing at 64°C for 30 s, and elongation at 72°C for 30 s were performed. Second, IC5-labeled DNA were hybridized to probes on the microarray at 56°C for 60 min. Third, the fluorescence intensities of the IC5-labeled PCR products hybridized to the microarray were measured using a Bioshot chip coupled device camera (Toyko Kohan, Tokyo, Japan).

The fluorescence intensity (FI) measured for each spot was subtracted from the background intensity (BG), and the discrimination values were calculated using the following equation: Discrimination value = FI of minor allele/average FIs of both alleles. To discriminate the UGT1A1*28 genotype, values

Table 2. Sequences of the primers and probes used to detect seven UGT1A polymorphisms in the DNA microarray

Name	Sequence (5’ to 3’)
UGT1A1*6-S	CATCTGTCTCTCTCTGATG
UGT1A1*6-AS	GACCTGCTCTCTGAGAAG
UGT1A1*27-S	TGCTGCTCTCTCTCTCTCT
UGT1A1*27-AS	TCTCTGCTCTCTCTCTCT
UGT1A1*28-S	TCTCTGCTCTCTCTCTCT
UGT1A1*28-AS	TCTCTGCTCTCTCTCTCT
UGT1A1*60-S	AAACCGAGCTTGAC
UGT1A1*60-AS	TCACTGCTCTCTC
UGT1A7_-57-S	ACAACGAGCTTGAC
UGT1A7_-57-AS	ACAACGAGCTTGAC
UGT1A7-S	GCAGAGCTTGAC
UGT1A7-AS	GCAGAGCTTGAC
UGT1A9-S	GCAGAGCTTGAC
UGT1A9-AS	GCAGAGCTTGAC

Primers

Name	Sequence (5’ to 3’)
UGT1A1*6-S	CATCTGTCTCTCTCTGATG
UGT1A1*6-AS	GACCTGCTCTCTGAGAAG
UGT1A1*27-S	TGCTGCTCTCTCTCTCTCT
UGT1A1*27-AS	TCTCTGCTCTCTCTCTCT
UGT1A1*28-S	TCTCTGCTCTCTCTCTCT
UGT1A1*28-AS	TCTCTGCTCTCTCTCTCT
UGT1A1*60-S	AAACCGAGCTTGAC
UGT1A1*60-AS	TCACTGCTCTCTC
UGT1A7_-57-S	ACAACGAGCTTGAC
UGT1A7_-57-AS	ACAACGAGCTTGAC
UGT1A7-S	GCAGAGCTTGAC
UGT1A7-AS	GCAGAGCTTGAC
UGT1A9-S	GCAGAGCTTGAC
UGT1A9-AS	GCAGAGCTTGAC

Probes

Name	Sequence (5’ to 3’)
UGT1A1*6-211G	TAAAGGTCGCTCTGTGAG
UGT1A1*6-211A	TAAAGGTCGCTCTGTGAG
UGT1A1*27-686C	GATTTAACGCTGTAGAC
UGT1A1*27-686A	GATTTAACGCTGTAGAC
UGT1A1*28_T6	TTTTTTCGAAATAAGACTGGA
UGT1A1*28_TA7	TTTTTTCGAAATAAGACTGGA
UGT1A1*60_-3279T	GCTCTGCTCTCTCTCT
UGT1A1*60_-3279G	GCTCTGCTCTCTCTCT
UGT1A7_-57T	GTACTGCTCTCTCTCT
UGT1A7_-57G	GTACTGCTCTCTCTCT
UGT1A7_387G	TAAATCTTTTTTTCGAAATAAGACTGGA
UGT1A7_387T	TAAATCTTTTTTTCGAAATAAGACTGGA
UGT1A9_1b_T9	AGTCTGAGTCTGTGAGAAG
UGT1A9_1b_T11	AGTCTGAGTCTGTGAGAAG

†These primers are used in multiplexed PCR reactions at final concentrations of 70 nM (UGT1A1*27, UGT1A1*60), 300 nM (UGT1A1*6, UGT1A1*28), 400 nM (UGT1A7_-57, UGT1A7_-3279), and 600 nM (UGT1A9_1b) primer sets. These reactions were performed using FastStart Taq DNA Polymerase (Roche Diagnostics). †The positions within probes that correspond to UGT1A1 polymorphisms are underlined.

(15) The authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
annealing at 58°C for 5 s, and elongation at 72°C for 30 s. Cy5-labeled DNAs were then hybridized to probes on the microarray in 3 × saline sodium citrate (SSC) buffer with 0.3% sodium dodecyl sulfate (SDS) at 55°C for 60 min. Hybridized microarrays were then washed sequentially with 1 × SSC with 0.1% SDS, 1 × SSC, and 0.5 × SSC. Fluorescence intensities of the hybridized PCR products were measured using the GenePix 4000B Microarray Scanner (Molecular Devices, Sunnyvale, CA, USA), and the discrimination value was calculated as described above using these fluorescence intensities.

Results

The total required time for our DNA microarray system. In our procedure, the fluorescent labeling PCR reaction took approximately 90 min, and hybridization of the fluorescent-labeled PCR products took approximately 60 min (Table 3). Following hybridization, it took approximately 15 min to obtain the resulting genotypes, giving a total of approximately 165 min to obtain genotype information from extracted genomic DNA using our DNA microarray assay system. Using the Invader \textit{UGT1A1} Molecular Assay system according to the manufacturer’s recommendations, it takes approximately 250 min to obtain genotype information from extracted genomic DNA, meaning that our DNA microarray system reduced the required time by approximately 1.5-fold.

Accuracy and Sensitivity of focused DNA microarray. Results obtained from LDTs were compared with those obtained from the DNA microarray and Invader assays (Table 4). DNA microarray assay results for both \textit{UGT1A1}*28 and \textit{UGT1A1}*6 were consistent with LDT results of the 111 samples. However, the genotype of one heterozygous for \textit{UGT1A1}*28 sample could not be determined by the Invader assay because of low sample quantity (0.2 ng/assay was used for the DNA microarray while 85 ng/assay was used for the Invader assay). The quantities of the remaining 110 samples ranged from 5.3 to 60.8 ng/assay, with a mean of 12.4 ng/assay, for the DNA microarray assay and 420 to 4870 ng/assay, with a mean of 994 ng/assay, for the Invader assay. Of the 111 samples tested, we found that seven were homozygous for \textit{UGT1A1}*28 [(TA)\textsubscript{6}/(TA)\textsubscript{7}] and 19 were heterozygous for \textit{UGT1A1}*28 [(TA)\textsubscript{6}/(TA)\textsubscript{7}]; the remaining 85 samples were homozygous for the reference allele \textit{UGT1A1}*1 [(TA)\textsubscript{6}/(TA)\textsubscript{6}]. Among the patients, six with A/A and 72 with G/G genotypes were homozygous for \textit{UGT1A1}, while 33 patients with the G/A genotype were heterozygous for \textit{UGT1A1} at the +211 position.

DNA microarray for the simultaneous detection of seven \textit{UGT1A} polymorphisms. We also developed a DNA microarray to simultaneously detect several types of polymorphisms, including single nucleotide substitutions, single nucleotide insertion/deletion, and repeated TA sequences. Using the genotypes determined by established methods as a baseline, the discrimination values from the DNA microarray showed that the genotypes were fully resolved by this system (Fig. 1).

Table 3. Comparison of the total required time for each system

Process	Our focused DNA microarray	The Invader assay
Time (min)	Time (min)	
PCR	90	5
Hybridization at 56°C	60	240
Wash & Detection	15	5
Total†	165	250

†Our focused DNA microarray was able to obtain genotype results approximately 1.5-times faster than the Invader assay.

Table 4. Correlation between the \textit{UGT1A1}*28 and \textit{UGT1A1}*6 genotyping results from the DNA microarray system and conventional assay systems

\textit{UGT1A1}*28 by the fragment size analysis	\textit{UGT1A1}*28 by the Invader assay
TA\textsubscript{6}/TA\textsubscript{6}	TA\textsubscript{6}/TA\textsubscript{6}
TA\textsubscript{6}/TA\textsubscript{7}	TA\textsubscript{6}/TA\textsubscript{7}
TA\textsubscript{7}/TA\textsubscript{7}	TA\textsubscript{7}/TA\textsubscript{7}
nd.†	nd.†
Total	Total†
UGT1A1*28 by our DNA microarray‡	UGT1A1*28 by the Invader assay
TA\textsubscript{6}/TA\textsubscript{6}	TA\textsubscript{6}/TA\textsubscript{6}
TA\textsubscript{6}/TA\textsubscript{7}	TA\textsubscript{6}/TA\textsubscript{7}
TA\textsubscript{7}/TA\textsubscript{7}	TA\textsubscript{7}/TA\textsubscript{7}
nd.†	nd.†
Total	Total†

‡, nd., not determined. †Probes were spotted in duplicates. The fluorescence intensity (FI) of each spot was subtracted from the background intensity, and the discrimination values were calculated as follows: (FI of minor allele)/average FIs of both alleles.

© 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Fig. 1. Simultaneous identification of seven UGT1A polymorphisms using the DNA microarray system. Single nucleotide substitutions (a–e), a single nucleotide insertion/deletion (f), and a TA-repeat microsatellite (g) were examined simultaneously using our novel DNA microarray. The discrimination values shown on the y-axis were calculated as described in Materials and Methods. Full separation of each UGT1A genotype is shown. In addition to 133 patients recruited for this analysis, two, seven, and four patients were added for UGT1A1*6, UGT1A1*28, and UGT1A1*27 polymorphisms, respectively, due to the low minor allele frequencies of these polymorphisms. No patients harbored a homozygous UGT1A1*27 polymorphism.
Discussion

While LDTs and the Invader assay detect one SNP at a time, we could detect multiple polymorphisms in a single DNA microarray assay. The assay detects polymorphisms by fluorescent labeling sample DNA, with specific probes for each polymorphism. In this study, we demonstrated that genotyping results of UGT1A*28 and UGT1A*6 by the newly developed DNA microarray assay were in almost complete agreement with those obtained by established methods. Additionally, this DNA microarray assay requires only 10 ng/assay (optimal) for accuracy, which is approximately 20 times less than that required for the Invader assay (optimal: 200–700 ng/assay for detection of a single polymorphism), and genotyping results of multiple polymorphisms can be obtained simultaneously in a single assay. Furthermore, unlike with comprehensive SNP arrays, both single-nucleotide and TA-repeat polymorphisms can be detected simultaneously using this method. While the simultaneous detection of polymorphisms can also be achieved using next-generation sequencing (NGS) platforms, this technique is less practical because it is much more expensive and involves complicated data handling procedures.

The DNA array developed has a diamond-like carbon (DLC) coated base (Gene Silicon; Toyo Kohan) measuring 3 mm² in size with increased signal to background ratio. This DLC-coated DNA array took 1 h for hybridization (Table 3), and fluorescence could be detected not only by a high-resolution scanner but also by a compact instrument with charge coupled device camera. Condensing the focused microarray onto a small chip helped to reduce reaction times and running costs.

Determination of the UGT1A polymorphisms before irinotecan treatment has been known to be clinically useful and important for predicting and preventing related toxicities. Therefore, we also successfully developed a DNA microarray assay system wherein several types of polymorphisms, including worldwide results of UGT1A polymorphisms, could be detected on the same 3-mm² chip. The TA-repeat polymorphism UGT1A*28, the SNP UGT1A*6, and the single nucleotide insertion/deletion polymorphism UGT1A9*1b could all be distinguished simultaneously on the same chip (Fig. 1), which will allow the system to be applied in other situations. As well as the germline mutations, such as SNPs, that were considered in this study, somatic mutations and gene expression in cancer cells are used as in vitro diagnostics based on pharmacogenomics in clinical decision-making. For example, KRAS mutations have been linked to a lack of response to anti-EGFR therapy. Our DNA microarray system can distinguish several types of nucleotide sequence changes at once, and we have preliminary data showing that our DNA microarray system can be applied to KRAS mutations in carcinomas (data not shown). While the sequence-dependent hybridization used in our system could be seen as a limitation in comparison to more comprehensive techniques such as clinical sequencing using NGS, our system also has benefits, including convenience and cost effectiveness.

In conclusion, our newly developed method for detecting UGT1A polymorphisms is feasible and has the potential for wide usage alongside the Invader assay for its rapid and accurate genotyping of UGT1A polymorphisms prior to irinotecan treatment.

Acknowledgments

This study was supported by the R & D Promotion Subsidy System from Yamaguchi Prefecture Government.

Disclosure Statement

Shoichi Hazama and Hiroyuki Nagano received research funds from Toyo Kohan Co., Ltd. The other authors have no conflicts of interest to declare.

References

1. Garraway LA, Jänne PA. Circumventing cancer drug resistance in the era of personalized medicine. *Cancer Discov* 2012; 2: 214–26.
2. Harper AR, Topol EJ. Pharmacogenomics in clinical practice and drug development. *Nat Biotechnol* 2012; 30: 1117–24.
3. Garraway LA, Lander ES. Lessons from the cancer genome. *Cell* 2013; 153: 17–37.
4. Garraway LA. Genomics-driven oncology: framework for an emerging paradigm. *J Clin Oncol* 2013; 31: 1806–14.
5. McDermott U. Next-generation sequencing and empowering personalized cancer medicine. *Drug Discov Today* 2015; 20: 1470–5.
6. Douillard JY, Cunningham D, Roth AD et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. *Lancet* 2000; 355: 1041–7.
7. Saltz LB, Cox JV, Blanke CD et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. *N Engl J Med* 2000; 343: 905–14.
8. Tournigand C, André T, Achille E et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. *J Clin Oncol* 2004; 22: 229–37.
9. Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. *Nat Rev Cancer* 2006; 6: 789–802.
10. Han JY, Lim HS, Shin ES et al. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. *J Clin Oncol Off J Am Soc Clin Oncol* 2006; 24: 2327–44.
11. Boku N, Yamamoto S, Fukuda H et al. Fluorouracil versus combination of irinotecan plus cisplatin versus S-1 in metastatic gastric cancer: a randomised phase 3 study. *Lancet Oncol* 2009; 10: 1063–9.
12. Hazama S, Nagashima A, Kondo H et al. Phase I study of irinotecan and doxiludurin for metastatic colorectal cancer focusing on the UGT1A*28 polymorphism. *Cancer Sci* 2010; 101: 722–7.
13. Hazama S, Mishima H, Tsuchidomi R et al. UGT1A*6, IAP*3, and IAP*922 genotypes predict severe neutropenia in FOLFIRI-treated mCRC in two prospective studies in Japan. *Cancer Sci* 2013; 104: 1662–9.
14. Kanekyo S, Hazama S, Kondo H et al. UDP-glucuronosyltransferase (UGT) 1A1*28 polymorphism-directed phase II study of irinotecan with 5'-deoxy-5-fluorouridine (5'-DFUR) for metastatic colorectal cancer. *Anticancer Res* 2013; 33: 3423–30.
15. Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K. Intracellular roles of SN-38, a metabolite of the camptothecin derivative IRINOTECAN, in the antitumor effect of IRINOTECAN. *Cancer Res* 1991; 51: 4187–91.
16. Rivory LP, Bowles MR, Robert J, Pond SM. Conversion of irinotecan (IRINOTECAN) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase. *Biochem Pharmacol* 1996; 52: 1103–11.
17. Pommier Y, Luo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. *Chem Biol* 2010; 17: 421–33.
18. Mathijsen RH, van Alphen RJ, Verweij J et al. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). *Clin Cancer Res* 2001; 7: 2182–94.
19. Hasegawa Y, Sarashina T, Ando M et al. Rapid detection of UGT1A1 gene polymorphisms by newly developed Invader assay. *Clin Chem* 2004; 50: 1479–80.
20. Okuyama Y, Hazama S, Nozawa H et al. Prospective phase II study of FOLFIRI for mCRC in Japan, including the analysis of UGT1A1*28/6 polymorphisms. *Jpn J Clin Oncol* 2011; 41: 477–82.
21. Hirata K, Nagata N, Kato T et al. Prospective phase II trial of second-line FOLFIRI in patients with advanced colorectal cancer including analysis of UGT1A1 polymorphisms: FLIGHT 2 study. *Anticancer Res* 2014; 34: 195–201.

© 2017 The Authors. *Cancer Science* published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
22 Iyer L, Das S, Janisch L et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2002; 2: 43–7.
23 Toffoli G, Cecchin E, Corona G et al. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol 2006; 24: 3061–8.
24 Gagné JF, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C. Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol 2002; 62: 608–17.
25 Ando Y, Saka H, Ando M et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetics analysis. Cancer Res 2000; 60: 6921–6.
26 Maeda H, Hazama S, Shavkat A et al. Purification of genomic DNA from human whole blood by isopropanol-fractionation with concentrated NaI and SDS. Nucleic Acids Res 1994; 22: 1774–5.
27 Wang L, Hirayasu K, Ishizawa M, Kobayashi Y. Association of interleukin-10 promoter single nucleotide polymorphisms -819 T/C and -592 A/C with aging. J Gerontol A Biol Sci Med Sci 2005; 60: 1525–9.
28 Guerrero S, Casanova I, Farre L et al. K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression. Cancer Res 2000; 60: 6750–6.
29 Karapetis CS, Khambata-Ford S, Jonker DJ et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359: 1757–65.
30 Van Cutsem E, Siena S, Balfour J, Bardelli A. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 2009; 101: 1308–24.
31 Takahashi K, Tange M, Takai O, Okamura H. DNA preservation using diamond chips. Diam Relat Mater 2005; 12: 572–6.
32 Guerrero S, Casanova I, Farre L et al. K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression. Cancer Res 2000; 60: 6750–6.
33 Karapetis CS, Khambata-Ford S, Jonker DJ et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359: 1757–65.
34 Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 2009; 101: 1308–24.