In ovo injection of black cumin (Nigella sativa) extract on hatching and post hatch performance of thermally challenged broiler chickens during incubation

O. E. Oke,*1†, O. B. Oyelola,† O. S. Iyasere,‡ C. P. Njoku,‡ A. O. Oso,‡ O. M. Oso,‡ S. T. Fatoki,† K. O. Bankole,† I. O. Jimoh,† N. I. Sybill,‡ H. O. Awodipe,† H. O. Adegbite,† S. A. Rahman,‡* and J. O. Daramola†

*Centre of Excellence in Avian Science, University of Lome, Lome, Togo; †Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria; ‡Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria; and #Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria

ABSTRACT The objective of this study was to investigate the effects in ovo injection of black cumin (BC) extract on chick’s quality and response of thermally challenged broiler chickens. A total of 700 hatching eggs of broiler chickens (Marshall) were assigned to 7 treatments of 100 eggs each and incubated using the conventional protocol (37.8°C) for the first 10 d and then exposed to a high temperature (39.6°C) for 6 h daily from day 10 until day 18 of the incubation. At embryonic day 17.5, the eggs were randomly allotted to 7 treatment groups, viz.: eggs without in ovo injection (WA), eggs injected with 0.9% saline solution (SA), 3 mg ascorbic acid (AA), 2 mg BC (TB), 4 mg BC (FB), 6 mg BC (SB), and 8 mg BC (EB) extracts. Experiment was laid out in a Completely Randomized Design. After hatching, the chicks were reared separately according to in ovo treatments for 8 wk. Data were collected on hatchability, chick quality, internal organs, growth performance, plasma superoxide dismutase, malondialdehyde, and triiodothyronine (T3). The results showed that the hatchability of the eggs in the AA group was similar to that of SB eggs and higher than that of the other treatment groups. The intestinal weights of SB and EB birds were significantly higher (P < 0.05) than those of TB, SA, and WA. The final weights of the birds of SB and AA were higher (P < 0.05) than those of other treatments. The feed conversion ratio of the birds of TB and FB was comparable to that of EB and WA but higher than that of SB and AA. At hatch, the creatinine of the birds in SA and WA was similar to that of EB, FB, and TB but higher (P < 0.05) than that of AA and SB. Also, the plasma malondialdehyde, T3, and superoxide dismutase of SB and AA birds were better (P < 0.05) than those of the control groups. Overall, it was concluded that 6 mg of BC extract improved the antioxidant status and posthatch performance of thermally challenged broiler chickens.

Key words: physiology, in ovo injection, broiler, incubation, antioxidant

INTRODUCTION Several attempts have been made to improve the thermo-tolerance of chickens to adapt to heat stress conditions such as heat acclimation, including the use of thermal conditioning (Yahav and Hurwitz 1996; Yahav and Plavnik, 1999; Willemsen et al., 2010; Nyuiadzi et al., 2020). During the last few days of incubation, chicken embryos grow faster, and their rate of nutrient utilization increases (Elwan et al., 2019). However, the nutrients in the eggs are not sufficient at this critical period (Straus and Takemoto, 1991; Foye et al., 2006). The fast growth of chicken embryos is connected with the production of free radicals that are capable of causing oxidative stress (Deeming and Pike, 2013). Oxidative stress results when birds are exposed to thermal stress, disrupting the redox balance of antioxidant and proantioxidant at the expense of antioxidant,
causing cellular/tissue damage (Barrett et al., 2017). As the antioxidant defense is crucial for the optimal performance of the birds (Surai et al., 1996), efficient antioxidant capability in the embryonic tissues is important to protect the developing embryo against peroxidative damage during embryogenesis and also in readiness for the increase in oxidative stress during postembryonic development (Sies, 1993; Surai et al., 1996) to ensure optimal growth. Embryos may experience thermal stress at the stage of hatching as a result of the heat produced from metabolism and incubator (Tullett, 1990). Ameliorating the antioxidant status of developing embryos can enhance their development, particularly at the late phase of incubation. Thus, the use of in ovo feeding of antioxidant constituents may be of immense benefits to the embryo at prehatch and posthatch growth phases (Yigit et al., 2014).

In the recent decades, attention has been given to the use of phytogenic additives as antioxidant constituents and growth promoters from spice, herbs, and their products (Wenk, 2003; Pathak et al., 2016; Oke et al., 2017; Oke 2018) as a result of the several benefits obtained from them. Black cumin (Nigella Sativa L.) is an aromatic Ranunculaceae herbaceous plant, and its seeds have been used around the world for its pharmacological actions and medicinal properties for over 2,000 yr. The black cumin seeds have been reported to contain pharmacologically active constituents such as dithymoquino-none, carvacrol, thymohydroquinone, thymol, and thymoquinone (Nasir et al., 2005; Al-Saleh et al., 2006). About 24% of the essential oil of black cumin seeds is thymoquinone which has antihistaminic, antibacterial, anti-inflammatory, and antioxidant properties (Arslan et al., 2005).

The use of in ovo feeding has been receiving attention in the recent years because beneficial biochemical and physiological balances, including improved oxidative protection, can be offered to the embryos during incubation (Malheiro et al., 2012). The technique is effective in offering nutrient directly to the embryos at a cheaper cost than dietary additives (Kadam et al., 2013). In ovo injection technology can improve the hatching quality and subsequent growth of broiler chickens (Ipek et al., 2004). This technique can be used to deliver bioactive compounds with antioxidant properties to the developing embryos. Several nutrients, including L-carnitine, carbohydrates, nucleotides, amino acids, creatine, egg white, peptides, electrolytes, vitamins, and plant extracts, have been investigated in ovo (Kucharska-Gaca et al., 2017). Several plant extracts, such as moringa, tomato, garlic, savory, and thyme extracts, have been used (Fazli et al., 2015; Saki and Salary, 2015; N’nanle et al., 2017).

As avian embryos are subjected to thermal stress by the excessive production of environmental and metabolic heat during the later hatching phase (Tullett, 1990), in ovo injection of black cumin may be of tremendous benefits by improving the chick quality and the posthatch performance. Mortality of hatchlings may also be improved. The injection of the extract may be of benefits also to the hatchling as they migrate from chorioallantoic respiration to pulmonary respiration. To our knowledge, there is no information on the in ovo injection of black cumin extract on thermally challenged chickens. The aim of this study was therefore to investigate the in ovo injection of black cumin extract on chick quality, response of thermally challenged broiler chickens.

MATERIAL AND METHODS

Ethical Approval

This research was carried out in accordance with the Institutional Animal Ethics Committee guidelines of the Federal University of Agriculture, Abeokuta, Nigeria. The hatching eggs and the chicks in the experiment were provided proper care and management without unnecessary discomfort.

Experimental Animals and Management

A total of 700 hatching eggs of Marshall broiler chickens were assigned to 7 treatments of 100 eggs each, set in an incubator (Avida G4; Chick Master) with a temperature of 37.8°C and relative humidity of 60% from day 1 to 10 and then exposed to a high temperature (39.6°C) for 6 h daily from day 10 until day 18 of the incubation period. On the 18th d of incubation, eggs were transferred from the setter tray to the hatcher basket, with an incubation temperature of 37.5°C and relative humidity 65 to 70%.

Black Cumin Seed Extraction

Nigella sativa dry seeds, purchased from a reputable dealer, were cleaned, dried, and mechanically grounded to the powdered form, and this was soaked in a liquid containing 96% ethanol and distill water at a ratio of 50:50 for 72 h. The homogenized mixture obtained was filtered thoroughly using sterile filter paper, and the pure solution obtained was evaporated with rotary evaporator to render the extract alcohol free, and the extract was kept in refrigerator at 4°C until used (Musa et al., 2004).

In Ovo Feeding Procedure

At day 17.5 of incubation, the eggs were randomly allotted to 7 treatment groups, viz.: eggs without in ovo injection (WA), eggs injected with saline solution (0.9% saline) (SA), eggs injected with ascorbic acid (3 mg/egg) (AA), eggs injected with 2 (TB), 4 (FB), 6 (SB), and 8 mg (EB) of black cumin extract. Saline solution was injected into the eggs to serve as a negative control because a previous study (Mcgruder et al., 2011) showed that there was no difference in hatching traits and posthatch performance between eggs injected with saline solution and intact eggs. Also, in ovo ascorbic acid was adopted as a positive control in this study because of the fact that it has been conventionally...
used to improve hatching and growth of broiler chickens (Nowaczewski et al., 2012; El-Senousy et al., 2018; Zhu et al., 2019). The extract and ascorbic acid were homogeneously dissolved in saline solution. The extract was injected into the air chamber of incubated eggs with evidence of a living embryo. The dose of ascorbic acid was adopted following the recommendation of Zakaria and Al-Anesi (1996). A hole was carefully drilled through the shell above the air chamber by using a needle, the eggs were injected through the air sac with 0.5 mL of solution using a 24G hypodermic needle (25-mm long), and the pinpoint hole was sealed using wax (Zhai et al., 2011). The eggs were placed back in the hatcher at the temperature of 37.5°C and relative humidity of 65 to 70%.

Post Hatch Chicks’ Management and Feeding

The hatched chicks were reared according to the in ovo treatments on a deep litter system, with the floors of the pens covered with 4-cm-deep wood shavings. Rearranging temperature of 32°C was used during the first week and then reduced by 2 to 3°C/wk until it got to 24°C. The birds were fed diets formulated to meet NRC (1994) nutrient recommendations for different ages. Feed and fresh water were available for ad libitum consumption. The posthatch experiment lasted for 56 d (the average market age of broiler chickens in our region). The birds were subjected to acute heat stress at day 56 of age.

Data Collection

Embryonic Development Index and Chick Quality

Egg Weight Initial weights of eggs were measured before incubation with the aid of a sensitive scale.

Hatchability The percentage hatchability was calculated as the number of chicks hatched per the fertile eggs after candling.

Chick Weights At hatch, the weights of chicks were measured on an electronic weighing balance and expressed in grams.

Chick to Egg Ratio This was calculated from the weight of the eggs and the chicks that hatched from them.

Internal Organs and Breast Muscle Eight chicks per treatment group were euthanized by cervical dislocation, just after hatching. The birds were dissected, and the liver, heart, pectoral muscles, small intestine, left lung, and residual yolk were carefully removed and weighed; the weights were expressed as percentage of the chick weights.

Chicks’ Quality Parameters After 510 h of incubation, all hatched chicks were individually weighed and examined macroscopically to identify the different characteristics associated with chick quality, using the score proposed by Tona et al. (2003). The chick length was obtained as described by Wolanski et al. (2007). Chick quality was determined on the basis of physical parameters. These included activity, feathering, condition of eyes, conformation of legs, condition of the navel area, yolk retraction, and status of the membrane.

Growth Performance Feed intake was determined by subtracting the feed left over from the feed offered to birds daily:

\[
\text{Feed intake} = \text{Quantity of feed offered} - \text{Quantity of feed left over}
\]

Average feed intake (g/bird) = Feed intake / Number of birds per replicate

Body weights of the birds were taken weekly:

Average body weight gain (g/bird) = final weight (g) - initial weight (g) / Number of birds per replicate

Feed conversion ratio (FCR) was obtained by dividing the feed intake by the weight gain of the birds:

\[
\text{FCR} = \frac{\text{Feed consumed (g)}}{\text{Body weight gain (g)}}
\]

Plasma Antioxidants and Thyroid Hormone Blood samples were collected from 2 chicks from each replicate at hatch and week 8 via the jugular vein, into ethylenediamine tetra-acetic bottle, and then centrifuged (3,000 × g) for 15 min at room temperature to separate the plasma. Plasma samples were kept at −80°C until analyzed. The concentrations of total superoxide dismutase (T-SOD) activity and malondialdehyde (MDA) levels in plasma were analyzed using the commercial assay kits from Nanjing Jiancheng Biochemistry Reagent Co. (NJBC; Nanjing, Jiangsu, China; Bai et al., 2017) according to the instructions of the manufacturer. Plasma triiodothyronine (T3) were also measured by radioimmunoassay (Gupta et al., 1997).

Serum Biochemistry and Haematological Parameters At day 56 of age, 2 birds from each replicate were randomly selected, and 3 mL of blood samples collected via the jugular vein into ethylenediamine tetra-acetic acid and plain bottles for the determination of hematological parameters (pack cell volume, red blood counts, hemoglobin, white blood counts, and the differential counts) and serum metabolites (alanine transferase, aspartate aminotransferase, total protein, albumin, globulin, triglyceride, creatinine, and glucose) according to standard procedures (Jain, 1986). Blood samples in the plain bottles were centrifuged (3,000 × g) for 15 min at room temperature to separate the plasma and serum and kept at −20°C.

Thermal Challenge at Slaughter Age At the 56th d, 2 birds per replicate were transferred to a preheated room (35°C) for acute heat stress experiment. The chickens
Experimental Design

Data were subjected to analysis of variance in a completely randomized design with in ovo treatment as the fixed effect. Means differences were tested at a 0.05 level of significance with Tukey correction for multiple comparisons. Data were analyzed with SAS (2008) statistical package.

RESULTS

Table 1 shows the effect of in ovo injection of black cumin extract on hatchability and chick quality of thermally challenged broiler chickens. The rectal temperature of the chicks was closely related across the treatment, but the rectal temperature of the chicks of FB and SB was lower than that of WA and SA.

Table 2 shows the effect of in ovo injection of black cumin extract on internal organs and breast muscle of day-old chicks. The feed intake of the birds of WA, SA, EB, and TB was comparable but higher than those of WA which was similar to those of SA and TB. The weight gain of the birds followed a similar trend. The feed intake of the birds of AA was similar to that of FB and SB. The feed intake of the birds of WA, SA, EB, and TB was similar to that of birds of FB and SB. The FCR of the

Parameters	TB	FB	SB	EB	AA	SA	WA	SEM	P value
Hatchability (%)	86.48^c	87.75^b	91.93^a	82.57^b	93.53^a	85.27^d	86.07^c	0.778	0.0001
Egg weight (g)	69.46	69.32	70.09	70.25	69.62	69.63	69.73	0.194	0.8981
Chick weight (g)	49.99	49.12	50.72	51.08	50.43	47.93	47.26	0.517	0.3575
Chick/EGG ratio	0.72	0.71	0.72	0.73	0.72	0.69	0.68	0.007	0.3706
Chick length (cm)	11.25	11.50	12.50	11.75	12.00	11.00	11.00	0.166	0.1268
Rectal temp (°C)	38.88^b	38.28^b	38.33^b	38.70^b	38.58^b	39.08^a	39.00^b	0.072	0.0021
Respiratory¹	61.25	56.25	57.50	65.00	57.50	70.00	71.25	2.280	0.3717
Activity	11.00	10.00	11.00	9.00	11.00	10.00	10.00	0.522	0.9539
Appearance	11.00	12.00	12.00	11.00	12.00	11.00	11.00	0.295	0.4984
Eye	11.00	11.00	11.00	12.00	12.00	11.00	11.00	0.295	0.9117
Leg	12.00	11.00	12.00	12.00	12.00	12.00	11.00	0.198	0.5577
Refracted yolk	9.00	12.00	11.00	9.00	11.00	6.00	6.00	0.940	0.4977
Navel area	12.00	11.00	12.00	12.00	12.00	11.00	11.00	0.238	0.6774
Remaining yolk	10.00	10.00	11.00	10.00	10.00	10.00	9.25	0.4.18	0.9463

Means within a row with different superscript letters differ significantly at P < 0.05.

Abbreviations: AA, 3 mg ascorbic acid; BC, black cumin; EB, 8 mg BC extracts; FB, 4 mg BC; SA, eggs injected with 0.9% saline solution; SB, 6 mg BC; TB, 2 mg BC; WA, eggs without in ovo injection.

Means within a row with different superscript letters differ significantly at P < 0.05.

*Rate/min.

Table 1. Effect of in ovo injection of black cumin extract on hatchability and chick quality of thermally challenged broiler chickens.

Parameters	TB	FB	SB	EB	AA	SA	WA	SEM	P value
Chick weight (g)	49.99	49.12	50.72	51.08	50.43	47.93	47.26	0.517	0.3575
Pectoral muscle %	3.61	2.90	4.11	5.33	3.59	2.58	2.37	0.336	0.2355
Intestinal weight %	1.59^b	1.92^{a,b}	2.44^a	2.52^a	1.93^b	1.39^b	1.45^b	0.123	0.0049
Intestinal length (cm)	8.50	8.50	9.00	11.00	9.00	8.50	8.00	0.355	0.4201
Proventriculus %	0.66	0.74	0.70	0.66	0.73	0.67	0.46	0.035	0.4707
Gizzard %	3.03	4.24	3.35	3.56	3.56	4.14	3.58	0.153	0.3309
Heart %	0.61^b	0.62^a	0.75^a	0.72^{a,b}	0.74^b	0.53^{a,b}	0.51^b	0.028	0.0173
Liver %	1.85	2.14	2.24	2.35	2.12	1.67	1.49	0.096	0.0798
Residual yolk %	14.50	14.77	13.85	11.03	13.15	15.27	16.34	0.654	0.5217
Left lung %	0.38	0.39	0.34	0.37	0.35	0.44	0.33	0.019	0.8922

Means within a row with different superscript letters differ significantly at P < 0.05.

Abbreviations: AA, 3 mg ascorbic acid; BC, black cumin; EB, 8 mg BC extracts; FB, 4 mg BC; SA, eggs injected with 0.9% saline solution; SB, 6 mg BC; TB, 2 mg BC; WA, eggs without in ovo injection.
Effect of in ovo injection of black cumin extract on plasma MDA, SOD, and triiodothyronine (T₃) of newly hatched chicks is presented in Table 6. The plasma MDA of the birds of SA and WA was comparable and higher than that of the other treatment groups whose values were alike. The plasma SOD of the birds of SA and WA was comparable to that of SA and WA and AA. The triiodothyronine of the chickens in SA was similar to that of TB and SA but higher than that of SA and WA. The birds of TB, FB, EB, SA, and WA had similar plasma T₃.

Table 4 shows the effect of in ovo injection of black cumin extract on plasma biochemical parameters of broiler chickens at hatch. The albumin, globulin, and total protein of the chicks were similar across the treatment groups. However, the creatinine levels of the birds in SA and WA was similar to that of EB, FB, and TB but higher than that of AA and SB whose values were comparable. The ALT of the birds of SA was higher than that of the other treatment groups. The ALT level in the birds of SA was higher than that of the other treatment groups but FB, SB, EB, and AA had similar level. AST of the birds of WA was higher than that of SA and WA. The blood glucose and triglycerides of the birds were somewhat similar, but the birds of SA and WA had higher levels than those of SB.

The effect of in ovo injection of black cumin extract on hematological parameters of broiler chicks at hatch is presented in Table 5. Apart from the red blood cell, all the other hematological parameters of the chicks were not influenced by the treatments. The red blood cell value of the chicks of EB was similar to that of TB, FB, SB, and AA but higher than that of SA and WA.

Table 4. Effect of in ovo injection of black cumin extract on serum biochemical parameters of broiler chicks at hatch.

Parameters	TB	FB	SB	EB	AA	SA	WA	SEM	P value
Creatinine₃	0.40ᵇ	0.40ᵇ	0.35ᵇ	0.40ᵇ	0.35ᵇ	0.50ᵃ	0.50ᵃ	0.018	0.0207
ALT (U/L)	47.00ᵇ	36.00ᵇ	25.50ᵇ	33.00ᵇ	32.50ᵇ	343.50ᵃ	169.00ᵇ	30.664	<0.0001
AST (U/L)	246.00ᵇ	191.50ᵇ	163.50ᵇ	186.50ᵇ	157.00ᵇ	348.00ᵇ	500.00ᵇ	32.467	<0.0001
Total protein¹	4.00	4.55	4.80	5.10	4.80	3.30	3.50	0.250	0.4581
Albumin¹	1.50	1.55	1.70	1.35	1.65	1.05	1.10	0.076	0.0497
Globulin¹	2.50	3.00	3.10	3.75	3.15	2.25	2.40	0.237	0.7471
Glucose¹	187.50ᵇ	181.00ᵇ	158.50ᵇ	182.50ᵇ	162.00ᵇ	208.50ᵇ	212.00ᵇ	5.724	0.0122
Triglycerides¹	84.00ᵇ	81.50ᵇ	60.00ᵇ	79.50ᵇ	73.50ᵇ	114.00ᵇ	114.50ᵇ	5.676	0.0127

Means within a row with different superscript letters differ significantly at P < 0.05.
Abbreviations: AA, 3 mg ascorbic acid; ALT, alanine transaminase; AST, aspartate aminotransferase; BC, black cumin; BWG, body weight gain; EB, 8 mg BC extracts; FB, 4 mg BC; FCR, feed conversion ratio; FI, feed intake; FW, final weight; IW, initial weight; SA, eggs injected with 0.9% saline solution; SB, 6 mg BC; TB, 2 mg BC; WA, eggs without in ovo injection.

¹mg/dL.
of TB was similar to that of SA and WA and higher than that of FB, SB, EB, and AA. There was no difference in AST between the birds of SB and AA, but it was lower than that of the treatment groups. The total protein of the chickens in AA was not different from that of SB chickens but higher than that of the other treatment groups. There was no difference in triglyceride between birds of SA and WA, but it was higher than that of the other treatment groups.

DISCUSSION

The use of plant-derived extracts has shown to be residue free, natural, and less toxic, and they are thought to be ideal feed additives, in contrast to the use of synthetic inorganic chemicals in food animal production (Wang et al., 1998). The findings in this study indicate that the use of black cumin in ovo was beneficial to broiler chickens at hatch and posthatch growth. Despite the various studies on the dietary inclusion of black cumin in the diets of chickens in literature, there is a scarcity of information on the effect of in ovo injection of black cumin extract. The use of in ovo is a possible way of improving hatchability and posthatch performance of chickens (Bello et al., 2013; Li et al., 2016). The results of the hatchability in the present study suggest that the solutions injected were safe to the developing embryos as shown by the control groups. The extract influenced the hatchability of the birds in a dose-dependent manner. The higher hatchability in the eggs of AA in the present study is in agreement with the findings of Ipek et al. (2004) and Žakaria and Al-Anazi (1996). The similarity in the hatchability of AA and SB eggs in this study indicates the solution at this dose enhanced the hatching process. This improvement in the hatchability may support the earlier finding on the antioxidant properties of black cumin (Arslan et al., 2005). Moreover, the lower hatchability in TB and EB groups than that of SB is an indication that these levels were suboptimal. The lack of significant difference in the hatchability of SA and WA is in agreement with an earlier report (Mcgruder et al. (2011)).

The intestinal weight of the newly hatched chicks from the eggs of SB and EB was higher than that of SA and WA (negative control groups) in the present study. This suggests that the intestinal development of the chicks benefited from the antioxidant constituents of black cumin. This observation partially agrees with the observation of Italo et al. (2019) who reported that the use of different levels of vitamin E in ovo resulted in higher intestinal weights of newly hatched chicks. The use of antioxidants on developing embryos has been reported to confer oxidative protection on the intestines and other organs from free radicals that could impair development before hatching (Surai et al., 1999). Indeed, antioxidant protection is an important mechanism on chick development at hatching time (Surai, 2002). The enhanced intestinal development of the chicks may explain the better performance of the birds in this treatment group. Bhanja et al. (2008) reported a higher relative weight of small intestine in glucose-injected embryos on the day of hatch (Bhanja et al., 2008). The lower intestinal weights of the chicks of TB than those of SB and EB in the present study indicate the dose-dependence effect of the extract on the gut development of the chicks. The similarity between the chicks of SA and WA corroborates the findings of Mcgruder et al. (2011) who reported that there was no
The higher weights of the broiler chickens of SB and AA in the present trial clearly illustrate that the bioactive compounds in black cumin influenced the growth of the birds. It is interesting to note that the final weights of the birds of AA and SB were comparable. There is a scarcity of information on the use of black cumin extract in birds of AA and SB were comparable. There is a scarcity of information on the use of black cumin extract in ovo injection of black cumin extract on plasma malondialdehyde (MDA), superoxide dismutase (SOD), and triiodothyronine (T₃) of broiler chickens at market age (day 56).

Parameters	TB	FB	SB	EB	AA	SA	WA	SEM	P value
MDA (ng/mL)	0.68ᵇᵃ	0.64ᵇᵃ	0.64ᵇᵃ	0.66ᵇᵃ	0.65ᵇᵃ	0.71ᵇᵃ	0.71ᵇᵃ	0.008	0.0004
SOD (Unit/mL)	2.10ᵇ	4.00ᵇ	3.71ᵇ	3.55ᵇ	3.30ᵇ	0.55ᵇ	0.56ᵇ	0.385	0.0031
Total T₃ (ng/mL)	2.23ᵇᵃ	3.29ᵇᵃ	2.53ᵇᵃ	2.58ᵇᵃ	2.53ᵇᵃ	2.03ᵇ	1.94ᵇ	0.129	0.0320

Means within a row with different superscript letters differ significantly at P < 0.05.

Table 8. Effect of in ovo injection of black cumin extract on haematological parameters of broiler chickens at market age.

Parameters	TB	FB	SB	EB	AA	SA	WA	SEM	P value
RBC (×10⁶/μL)	1.93	2.89	3.25	2.88	2.08	2.47	2.42	0.167	0.3614
WBC (×10³/μL)	2.38	2.35	3.33	2.48	2.83	2.35	3.56	0.361	0.2229
PCV (%)	26.00	32.00	39.00	31.00	38.50	35.50	36.00	2.046	0.7289
Hemoglobin (g/dL)	8.30	9.80	12.75	10.00	12.65	11.65	11.95	0.785	0.7918
Basophil (%)	0.50	0.50	0.00	0.50	0.50	0.50	0.50	0.133	0.8991
Eosinophil (%)	2.00	1.50	1.00	1.50	1.00	2.50	1.50	0.228	0.6813
Heterophil (%)	30.00	34.00	25.50	25.50	31.00	34.50	37.50	1.95	0.6861
Lymphocyte (%)	65.00	60.00	68.50	66.50	63.00	59.00	55.50	2.002	0.7144
Monocyte (%)	5.00	4.00	2.50	5.00	3.50	5.00	6.00	0.429	0.4335

Abbreviations: AA, 3 mg ascorbic acid; BC, black cumin; EB, 8 mg BC extracts; FB, 4 mg BC; SA, eggs injected with 0.9% saline solution; SB, 6 mg BC; TB, 2 mg BC; WA, eggs without in ovo injection; WBC, white blood cells.
FB, WA, and SA was statistically similar, indicating the levels of black cumin in TB and FB did not upregulate this hormone differently.

MDA is a biomarker of lipid peroxidation, and it is used to assess oxidative damage (Jensen et al., 1997). Similar to the birds of AA in this study, the different doses of black cumin extract resulted in improved plasma MDA in the day-old chicks. Earlier studies have shown that black cumin could be used as a natural antioxidant for avians (Guler et al., 2007). Studies have shown black cumin to possess antioxidant properties under in vitro and in vivo conditions (Ozdemir et al., 2018).

In humans, the use of black cumin also reduced MDA levels of black cumin in TB and FB did not upregulate this hormone differently.

The results of the present study clearly demonstrate the beneficial effect of in ovo supplementation with black cumin on the hatchability, antioxidant status, and growth performance of thermally challenged broiler chickens during incubation. However, in ovo injection of 6 mg of black cumin extract improved the posthatch performance and antioxidant status of broiler chickens.

DISCLOSURES

The authors declare no conflict of interest.

Table 9. Effect of in ovo injection of black cumin extract on serum biochemical parameters of broiler chickens at market age.

Parameters	TB	FB	SB	EB	AA	SA	WA	SEM	P value
Creatinine1	0.40	0.35	0.30	0.35	0.30	0.45	0.45	0.019	0.0996
ALT (U/L)	63.00e	51.50e	45.00e	48.00e	45.00e	58.50e	58.00e	1.920	0.0013
AST (U/L)	128.50*	116.00*	78.50b	118.00a	84.50b	141.00*	136.50*	6.472	0.0005
Total protein	2.60e	2.40e	2.45e	2.45e	4.05a	1.85a	1.75a	0.218	0.0001
Albumin1	1.05c	0.90c	1.50b	0.95e	2.00a	0.85c	0.90c	0.114	0.0005
Globulin1	1.55se	1.50b	1.95c	1.50b	2.05b	1.00b	0.85	0.16	0.0230
Glucose1	117.00	98.00	76.50	103.00	68.00	144.50	141.00	9.856	0.2571
Triglycerides1	64.00c	54.50b	49.50c	57.50b	35.00c	96.00a	96.50a	6.147	0.0004

Means within a row with different superscript differ significantly at P < 0.05.
Abbreviations: AA, 3 mg ascorbic acid; ALT, alanine transaminase; AST, aspartate aminotransferase; BC, black cumin; EB, 8 mg BC extracts; FB, 4 mg BC; SA, eggs injected with 0.9% saline solution; SB, 6 mg BC; TB, 2 mg BC; WA, eggs without in ovo injection.

DISCLOSURES

The authors declare no conflict of interest.

CONCLUSION

The authors declare no conflict of interest.
Yatoo, M. A., R. K. Sharma, N. Khan, A. Rastogi, and A. K. Pathak. 2012. Effect of fenugreek and black cumin seeds as feed additives on blood biochemical profile and performance of broilers. Indian J. Anim. Nutr. 29:174–178.
Yigit, A. A., A. K. Panda, and G. Cherian. 2014. The avian embryo and its antioxidant defence system. Worlds Poult. Sci. J. 70:563–574.
Zakaria, A. H., and M. A. Al-Anezi. 1996. Effect of ascorbic acid and cooling during egg incubation on hatchability, culling, mortality and the body weights of broiler chickens. Poult. Sci. 75:1204–1209.
Zhai, W., D. Rowe, and E. Peebles. 2011. Effects of commercial in ovo injection of carbohydrates on broiler embryogenesis. Poult. Sci. 90:1295–1301.
Zhu, Y. F., S. Z. Li, Q. Z. Sun, and X. J. Yang. 2019. Effect of in ovo feeding of vitamin C on antioxidation and immune function of broiler chickens. Animal 13:1–7.