Associations between TG/HDL ratio and insulin resistance in the US population: a cross-sectional study

Rongpeng Gong1,*, Gang Luo2,*, Mingxiang Wang1, Lingbo Ma1, Shengnan Sun1 and Xiaoxing Wei1

1Medical College, Qinghai University, Xining, People’s Republic of China
2College of Eco-Environmental Engineering, Qinghai University, Xining, People’s Republic of China

Correspondence should be addressed to S Sun or X Wei: sunsn@qhu.edu.cn or weixiaoxing@tsinghua.org.cn

*(R Gong and G Luo contributed equally to this work)

Abstract

Background: Clinical data on the relationship between triglycerides (TG)/HDL ratio and insulin resistance (IR) suggest that TG/HDL ratio may be a risk factor for IR. However, there is evidence that different races have different risk of developing IR. The relationship on TG/HDL ratio and IR in various populations needs to be improved. Therefore, we investigated whether TG/HDL ratio was linked to IR in different groups in the United States after controlling for other covariates.

Methods: The current research was conducted in a cross-sectional manner. From 2009 to 2018, the National Health and Nutrition Examination Survey (NHANES) had a total of 49,696 participants, all of whom were Americans. The target-independent variable was TG/HDL ratio measured at baseline, and the dependent variable was IR. Additionally, the BMI, waist circumference, education, race, smoking, alcohol use, alanine transaminase, aspartate transaminase, and other covariates were also included in this analysis.

Results: The average age of the 10,132 participants was 48.6 ± 18.4 years, and approximately 4936 (48.7%) were males. After correcting for confounders, fully adjusted logistic regression revealed that TG/HDL ratio was correlated with IR (odds ratio = 1.51, 95% CI 1.42–1.59). A nonlinear interaction between TG/HDL ratio and IR was discovered, with a point of 1.06. The impact sizes and CIs on the left and right sides of the inflection point were 6.28 (4.66–8.45) and 1.69 (1.45–1.97), respectively. According to subgroup analysis, the correlation was strong in females, alcohol users, and diabetes patients. Meanwhile, the inverse pattern was observed in the aged, obese, high-income, and smoking populations.

Conclusion: In the American population, the TG/HDL ratio is positively associated with IR in a nonlinear interaction pattern.

Background

Insulin resistance (IR) is the insensitivity to insulin in insulin-dependent organs and tissues (1). The clinical manifestation of IR is the failure to respond to increase in blood sugar, which is associated with metabolic disorders of fat, protein, and carbohydrate storage in the body (2). The development of obesity usually accompanies IR (3). Moreover, IR is a key pathological driver of the development of type 2 diabetes and cardiovascular disease (4, 5, 6, 7, 8), and the presence of IR has been linked to metabolic disturbances in several studies (9).
Furthermore, IR is most likely to intensify those conditions and increase death rate from all causes (10, 11, 12). Welsh et al. found that older adults without IR had a much lower incidence of diabetes than those with IR (13). Another 13-year follow-up study showed that patients with IR also had a considerably increased risk of cardiovascular disease (14). Perseghin et al. conducted a 15-year cohort study and concluded a 5.6% higher mortality rate of cancer patients with IR relative to non-IR cancer cases (15). Therefore, it is highly desirable to prevent the occurrence of IR for patient survival and public health (16).

Many causes, such as smoking, alcohol, hyperlipidemia, and hypertension, have been identified as risk factors for developing IR. Since these causes are common in modern life, we expect IR to become increasingly common in the general population unless public awareness is increased (17).

There are currently a variety of approaches for making a primary diagnosis of IR, either directly or indirectly (18). The gold standard for diagnosing IR is the hyperinsulinemic-euglycemic clamp test, which was initially developed by DeFronzo et al. (19). Unfortunately, this strategy has a number of drawbacks due to its high cost, time requirements, and invasiveness. As a result, this procedure is unsuitable for clinical use, especially when assessing a large number of samples (20). It is necessary to study the effective method in clinical prediction of IR, and correlated factors need to be found.

Triglycerides (TG) and HDL have been shown to be important factors in the formation of IR (21, 22). An increase in TG was shown to be a risk factor for the development of IR, while an increase in HDL was considered a protective factor. Many scholars have used the ratio of the two to investigate the relationship of both factors with IR. The TG/HDL ratio was found to be more closely linked to the development of IR than either TG or HDL alone. Notably, studies indicate that the TG/HDL ratio is a straightforward quantifiable measurement of IR and a marker of diabetes and coronary heart disease (23, 24).

However, results from previous studies on the relationship between TG/HDL ratio and IR suggest that more investigation is needed, especially since the sample sizes were small (25, 26). It should be noted that the conditions for the development of IR vary among populations. Therefore, more research is needed to understand the differences in study design, target population, and data processing. In this study, we used data from the National Health and Nutrition Examination Survey (NHANES) to investigate whether the TG/HDL ratio was linked to IR in adults in the United States.

Participants and methods

Study design

This was a cross-sectional study. The target-independent and outcome variable was the TG/HDL ratio and IR, respectively. All indicators of each sample were detected at the same time and collected by the NHANES database. The total population was divided into two groups according to the outcome, IR positive and IR negative group.

Study population

The data for this study were derived from the NHANES cross-sectional study by the Centers for Disease Control (CDC) and Prevention National Center for Health Statistics (NCHS; http://www.cdc.gov/nchs/nhanes/). The sample source of NHANES was based on a complex, stratified, multi-stage design with a resident sample derived from a nationally representative population sample (17, 27). The NHANES program began in the early 1960s as a series of surveys of different populations or health topics. The NHANES study program is described in detail at the website of CDC. The NHANES protocol has been revised and approved by the NCHS Research Ethics Committee. All participants provided written informed consent before participation. The survey consists of a combination of interviews and medical examinations.

The study ensured that the results were representative of the American population, and we selected data from five NHANES cycles over 10 years (2009–2018). A total of 49,696 participants were enrolled in the survey over five cycles. The inclusion criteria were as follows: (1) at least 18 years old; (2) fasting blood glucose and insulin were measured; and (3) biochemical indexes such as TG and HDL were measured. Exclusion criteria included were (1) acute complications (diabetic ketoacidosis, diabetic hypertensive coma, or lactic acidosis); (2) combined liver, biliary, and renal diseases or diseases affecting calcium and phosphorus metabolism; (3) patients taking any drugs for blood lipid metabolism and patients with abnormal secretion of thyroid and parathyroid hormones; (4) patients with infectious diseases, immune diseases, and malignant tumors; (5) history of osteoporosis or other diseases characterized by abnormal bone metabolism; (6) recent history of surgery, trauma, severe infection, or other severe stress; and (7) patients with mental illness. Finally, a total of 10,132 participants were enrolled in the study. There is no significant statistical difference of sample sensitivity between the selected and excluded groups.
Variables

The TG/HDL ratio was measured at the start of the study and followed as a constant variable. Blood samples from the patients were frozen at −30°C and sent to the University of Minnesota for processing. In all tests, each stage of specimen reception, transport, and examination was defined. The tests were on a random subset comprising 2% of the sample, and NHANES used a lot of approaches to ensure that the results were accurate. Detailed analysis methods can be accessed on the NHANES website (https://www.cdc.gov/nchs/nhanes/index.htm).

According to the published guidelines, HOMA-IR was calculated as the fasting glucose-insulin (µU/mL) × fasting glucose (mmol/L)/22.5 (28). In a study of HOMA-IR in American adults, IR was considered to have occurred when the HOMA-IR index was higher than or equal to 2.73 (29), and no IR was thought to have occurred when the HOMA-IR index was lower than 2.73 (29, 30, 31). Accordingly, IR was defined as HOMA-IR ≥ 2.73 in this study.

In this study, we selected potential covariates as follows: (1) demographic data, (2) variables that were previously reported to affect TG/HDL ratio or IR, (3) introducing covariance resulted in a change of more than 10% in the regression coefficient of the basic model, and (4) other variables based on our clinical experience. Therefore, the following variables were used to construct the fully adjusted model: (1) continuous variables: age, BMI, waist circumference (WC), alanine transaminase (ALT), aspartate transaminase (AST), urea nitrogen (BUN), γ-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), and vitamin D3 (VD3) (obtained at baseline); (2) categorical variables: gender, race, education, income, smoking, alcohol use, diabetes, hypertension, and hyperuricemia.

Figure 1
Flowchart of participant selection.
Table 1 Descriptive characteristics of the study participants.

Variables	Total (n = 10,132)	IR-negative (n = 5810)	IR-positive (n = 4322)	P value
Sex, n (%)				
Male	4936 (48.7)	2772 (47.7)	2164 (50.1)	0.02
Female	5196 (51.3)	3038 (52.3)	2158 (49.9)	
Age, mean ± SD	48.6 ± 18.4	47.0 ± 18.7	50.7 ± 17.9	<0.001
Race, n (%)				
Mexican American	1407 (13.9)	673 (11.6)	734 (17)	
Other Hispanics	1077 (10.6)	558 (9.6)	519 (12)	
Non-Hispanic White	3809 (37.6)	2296 (39.5)	1513 (35)	
Non-Hispanic Black	2172 (21.4)	1228 (21.1)	944 (21.8)	
Other race	1667 (16.5)	1055 (18.2)	612 (14.2)	
BMI, mean ± SD	29.1 ± 7.1	26.2 ± 5.3	33.0 ± 7.4	<0.001
WC, mean ± SD	99.1 ± 17.0	91.8 ± 13.4	109.0 ± 16.2	<0.001
Smoking, n (%)				0.116
No	5896 (58.2)	3420 (58.9)	2476 (57.3)	
Yes	4236 (41.8)	2390 (41.1)	1846 (42.7)	
Alcohol use, n (%)				<0.001
No	6591 (65.1)	3737 (67.3)	2854 (62.3)	
Yes	3541 (34.9)	1814 (32.7)	1727 (37.7)	
Diabetes, n (%)				<0.001
No	8519 (84.1)	5392 (92.8)	3127 (72.4)	
Yes	1613 (15.9)	418 (7.2)	1195 (27.6)	
Education, n (%)				<0.001
No higher education	1615 (15.9)	390 (7)	1225 (26.7)	
Received higher education	4488 (44.3)	2428 (41.8)	2060 (47.7)	
Income, n (%)				<0.001
No more than $100,000	6557 (64.7)	3621 (62.3)	2936 (67.9)	
More than $100,000	3575 (35.3)	2189 (37.7)	1386 (32.1)	
Hypertension, n (%)				<0.001
No	4809 (47.5)	3268 (56.2)	1541 (35.7)	
Yes	5323 (52.5)	2542 (43.8)	2781 (64.3)	
ALT, median (IQR)	20.0 (15.0, 27.0)	18.0 (14.0, 24.0)	23.0 (17.0, 32.0)	<0.001
AST, median (IQR)	22.0 (18.0, 26.0)	21.0 (18.0, 26.0)	22.0 (18.0, 28.0)	<0.001
BUN, median (IQR)	4.6 (3.6, 5.7)	4.6 (3.6, 5.7)	4.6 (3.6, 6.1)	<0.001
GGT, median (IQR)	19.0 (14.0, 29.0)	17.0 (12.0, 25.0)	23.0 (17.0, 35.0)	<0.001
LDH, median (IQR)	130.0 (113.0, 150.0)	128.0 (112.0, 149.0)	131.0 (115.0, 152.0)	<0.001
VD3, median (IQR)	48.0 (29.1, 64.6)	50.5 (31.2, 68.3)	44.8 (26.6, 60.2)	<0.001
TG, median (IQR)	1.2 (0.8, 1.7)	1.0 (0.7, 1.4)	1.5 (1.0, 2.1)	<0.001
HDL, median (IQR)	1.3 (1.1, 1.6)	1.4 (1.2, 1.8)	1.2 (1.0, 1.4)	<0.001
TG/HDL, median (IQR)	0.9 (0.5, 1.4)	0.7 (0.4, 1.1)	1.2 (0.8, 2.0)	<0.001

Covariate definitions

Education
The study population was divided into (1) participants who received a college education or above and (2) participants who have not received a junior college degree or above.

Income
Based on the American Average Income Report, we defined participants in this study as high income with a household income of more than $100,000 per year and low income with less than $100,000 per year.

Smoking
We divided the participants into three groups depending on their smoking status: (1) current smokers: smoked more than one cigarette per day within the past 30 days; (2) current nonsmokers: smoked less than one cigarette per day on average within the past 30 days or smoked more than 100 cigarettes in total over their lifetime; and (3) nonsmokers: smoked less than 100 cigarettes in total over their lifetime or never smoked. In this study, because the number of nonsmokers was too small, we finally defined the population as current nonsmokers as nonsmokers (27).
Alcohol use
We looked at the classification of alcohol consumption in previous studies and classified alcohol consumption into drinkers, those who consume more than 12 drinks a year; and nondrinkers, those who do not drink more than 12 drinks a year (32, 33).

Diabetes mellitus
The 2015 American Diabetes Association criteria were used as the basis for the definition of diabetes. In this study, we defined diabetic patients as a population of participants with self-reported diabetes, those taking medication for diabetes, HbA1c ≥ 6.5, fasting glucose ≥ 7.0, based on questionnaires and laboratory tests (34).

Hypertension
In this study, we averaged the blood pressure values based on the participants’ three measurements in the resting state and used the mean to determine whether the participants had hypertension. Hypertension was diagnosed based on systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg or those who self-reported having hypertension or were taking antihypertensive drugs (33, 35). This definition is consistent with the 2017 American Heart Association blood pressure guidelines.

Hyperuricemia
Through multiplying the measured value by 59.48, the unit was converted from mg/dL to μmol/L. According to the literature, the hyperuricemia is diagnosed as a level of uric acid higher than 420 μmol/L in men or higher than 360 μmol/L in women.

Statistical analyses
Categorical variables were expressed as frequencies or percentages. We used the χ² test (categorical variables), means, and 95% CIs (normal distribution), or median and Q1–Q3 (skewed distribution) to test for differences between distinct IR-positive and IR-negative groups. Based on previous studies, participants with HOMA-IR ≥ 2.73 (30) were defined as the IR-positive group, while those with HOMA-IR < 2.73 were defined as the IR-negative group. Step 1: Univariate and multivariate logistics regression was employed. We constructed four models: model 1, no covariates were adjusted; model 2, only adjusted for sociodemographic factors; model 3, model 2+ BMI, WC, smoking, alcohol use, education, and income; model 4, model 3+ other covariates. Step 2: To address the nonlinearity of TG/HDL ratio and IR, logistic regression and smoothed curve fitting (penalized spline method) were conducted. If nonlinearity was detected, we first calculated the inflection point using a recursive algorithm and then constructed a two-part logistic regression on both sides of the inflection point of the logistic regression. Step 3: Subgroup analyses were performed using stratified logistic regression models. Continuous variables were first converted into categorical variables according to

Variables	OR (95% CI)	P value
Age	1.01 (1.01–1.01)	<0.001
Gender	1	0.019
Male	1	
Female	0.92 (0.85–0.99)	
Race	1	
Mexican American	1	
Other Hispanics	0.85 (0.73–1)	0.049
Non-Hispanic White	0.6 (0.53–0.68)	<0.001
Non-Hispanic Black	0.7 (0.62–0.81)	<0.001
Other race	0.53 (0.46–0.61)	<0.001
BMI	1.20 (1.19–1.21)	<0.001
WC	1.08 (1.08–1.09)	<0.001
TG	2.15 (2.03–2.27)	<0.001
HDL	0.13 (0.12–0.15)	<0.001
TG/HDL	2.12 (2.01–2.24)	<0.001
ALT	1.03 (1.02–1.03)	<0.001
AST	1.00 (1.00–1.01)	0.002
BUN	1.06 (1.04–1.08)	<0.001
VD3	0.99 (0.99–0.99)	<0.001
Hypertension	1	
No	2.32 (2.14–2.52)	<0.001
Yes	1	
Smoking	1	
No	1.07 (0.99–1.16)	0.112
Yes	1	
Alcohol use	1	
No	1.25 (1.15–1.35)	<0.001
Yes	1	
Diabetes	1	
No	4.93 (4.37–5.56)	<0.001
Yes	1	
Education	1	
No higher education	0.79 (0.73–0.85)	<0.001
Received higher education		
Income	1	
No more than $100,000	0.78 (0.72–0.85)	<0.001
More than $100,000	1	

ALT, alanine transaminase; AST, aspartate transaminase; BUN, urea nitrogen; FPG, fasting plasma glucose; GGT, γ-glutamyl transpeptidase; IR, insulin resistance; TG, triglyceride; UA, uric acid; VD3, vitamin D3 (cholecalciferol).
the clinical cutoff, followed by an interactive test. The likelihood ratio test followed tests for effect modification for subgroup indicators. To ensure the robustness of the data analysis, we did a sensitivity analysis. We converted the TG/HDL ratio into a categorical variable and calculated the P value for trend. The purpose was to test the results of TG/HDL ratio as a continuous variable and observe the possibility of nonlinearity. All the analyses were conducted using the statistical software package R 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria). A two-tailed test was performed, and differences with P < 0.05 (two-sided) were considered statistically significant.

Results

Base characteristics of enrolled participants

A total of 10,132 participants were selected for final data analysis (see flow chart in Fig. 1). The characteristics of the selected participants are listed in Table 1. The IR-positive and IR-negative groups were divided according to HOMA-IR 2.73 as the cutoff value (30).

The average age of the 10,132 selected participants was 48.6 ± 18.4 years, and 48.7% were male. The variables we selected were statistically significant in both groups (all P < 0.05). Participants from the IR-positive group had higher values of age, BMI, WC, TG, ALT, AST, GGT, and LDH than those in the IR-negative group. Additionally, the IR-positive group contained more participants who were smoking, use alcohol, or had hypertension and hyperuricemia than the IR-negative group. The opposite patterns were observed for VD3, HDL, education, and income.

Univariate analyses

The results of univariate analysis are presented in Table 2. Univariate logistic regression indicated that race, BMI, TG, HDL, hypertension, smoking, alcohol use, VD3, diabetes, education, and income were significantly associated with IR. We also concluded that education, income, VD3, and HDL were negatively associated with IR. By contrast, the univariate logistic regression showed that BMI, TG, hypertension, smoking, alcohol use, and diabetes were positively correlated with IR.

Results of unadjusted and adjusted regression model

In this study, we constructed four logistic models to analyze the independent effects of TG/HDL ratio on IR (univariate and multivariate logistic regression). The effect sizes of odds ratios (ORs) and 95% CIs are shown in Table 3. The model-based effect value indicated the probability of IR increased for each addition of TG/HDL ratio. For example, the effect size of 2.12 for IR in the unadjusted model means a 112% increased risk of IR (OR 2.12; 95% CI 2.01–2.24) with each 0.1 increased TG/HDL ratio. In the model only adjusted for sociodemographic data (model 2), with each 0.1 TG/HDL ratio increase, the risk of IR increased 118% (OR 2.18; 95% CI 2.06–2.31). In model 3, with each 0.1 TG/HDL ratio increase, the risk of IR increased 56% (OR 1.56; 95% CI 1.48–1.65). In the fully adjusted model (model 4), with each 0.1 TG/HDL ratio increase, the risk of IR increased 51% (OR 1.51; 95% CI 1.42–1.59).

Meanwhile, four linear regression models were constructed to analyze the association between TG/HDL and IR. The data represent ORs and 95% CIs. Model 1, non-adjusted; model 2, adjusted for age, gender, and race; model 3, adjusted for model 2 + BMI, WC, education, income, diabetes, hypertension, and hypercholesterolemia; model 4, adjusted for model 3 + ALT, AST, BUN, LDH, GGT, and VD3.
The association between TG/HDL ratio and insulin resistance

R Gong, G Luo et al. The association between TG/HDL ratio and insulin resistance

1508

PB –XX

10

:11

ratio and IR when IR was regarded as a continuous variable (Table 4). The effect sizes of βs and 95% CIs showed that with each TG/HDL ratio increase, the β value of HOMA-IR increased. For fully adjusted model (Model 4), the value of HOMA-IR increased 0.43 as TG/HDL ratio increased each 0.1.

For sensitivity analysis, we converted TG/HDL ratio from a continuous variable to a categorical variable. The P value for the trend of TG/HDL ratio with a categorical variable in a fully adjusted model was consistent with the result obtained using TG/HDL ratio as a continuous variable. Additionally, we also found that the tendency of the effect size in different TG/HDL ratio groups was isometric.

Nonlinearity of TG/HDL ratio and IR

In this study, we analyzed the nonlinear relationship between the TG/HDL ratio and IR (Fig. 2). Curve analysis and the results of logistic regression showed that the relationship between the TG/HDL ratio and IR was nonlinear after adjusting for age, race, BMI, WC, TC, ALT, AST, education, income, smoking, alcohol use, and hypertension. We used both logistic regression and two-part logistic regression to fit the association and select the best-fitting model based on the log-likelihood ratio test.

Because the P value of the log-likelihood ratio test was less than 0.05, we chose two-part logistic regression to fit the association between TG/HDL ratio and IR because it can accurately represent the relationship. The two-part logistic regression and recursive algorithm indicated that the inflection point was 1.06. On the left side of the

Table 5 Threshold effect analysis of TG/HDL ratio on incidence of IR in the NHANES study, 2009–2018. Adjusted for age, gender, race, BMI, WC, smoking, alcohol use, diabetes, hypertension, hypercholesterolemia, education, income, ALT, AST, BUN, GGT, LDH, and VD3.

Outcome	OR (95% CI)	P value
Break point	1.06 (1.04–1.08)	<0.001
Two-part logistic		
regression model		
TG/HDL < 1.06	6.278 (4.663–8.452)	<0.001
TG/HDL ≥ 1.06	1.69 (1.448–1.973)	<0.001
Likelihood ratio test		
Nonlinearity test		

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
https://doi.org/10.1530/EC-21-0414

Published by Bioscientifica Ltd

Figure 2 Multifactor logistic regression analysis of the association between the TG/HDL ratio and IR.
Table 1

Subgroup	Variable	n. total	n.event, %	OR(95%CI)	P.forinteraction
Gender group					
male	TG/HDL	4936	2164 (43.8)	1.38 (1.3-1.47)	<0.001
Female	TG/HDL	5196	2158 (41.5)	1.95 (1.75-2.16)	
Age group					
<30	TG/HDL	1994	683 (34.3)	1.42 (1.2-1.67)	<0.001
>=30,<40	TG/HDL	1608	590 (36.7)	1.89 (1.63-2.19)	
>=40,<50	TG/HDL	1594	703 (44.1)	1.27 (1.15-1.4)	
>=50,<60	TG/HDL	1626	758 (46.6)	1.37 (1.22-1.54)	
>=60,<70	TG/HDL	1709	846 (49.5)	1.56 (1.35-1.8)	
>=70	TG/HDL	1601	742 (46.3)	2.85 (2.32-3.52)	
BMI group					0.017
<18.5	TG/HDL	185	15 (8.1)	1.6 (0.41-6.2)	
>=18.5,<24	TG/HDL	2252	285 (12.7)	1.96 (1.62-2.36)	
>=24,<28	TG/HDL	2666	808 (30.3)	1.5 (1.36-1.65)	
>=28	TG/HDL	5029	3214 (63.9)	1.46 (1.35-1.57)	
Diabetes group					0.01
No	TG/HDL	6519	3127 (36.7)	1.45 (1.36-1.53)	
Yes	TG/HDL	1613	1195 (74.1)	1.67 (1.56-2.24)	
Race group					<0.001
Mexican American	TG/HDL	1407	734 (52.2)	1.99 (1.68-2.36)	
Other Hispanics	TG/HDL	1077	519 (48.2)	1.17 (1.02-1.34)	
Non-Hispanic white	TG/HDL	3809	1513 (39.7)	1.49 (1.37-1.62)	
Non-Hispanic black	TG/HDL	2172	944 (43.5)	2.05 (1.71-2.45)	
Other Race	TG/HDL	1667	612 (36.7)	1.31 (1.17-1.48)	
Smoking group					<0.001
No	TG/HDL	5896	2476 (42)	1.81 (1.66-1.98)	
Yes	TG/HDL	4236	1846 (43.6)	1.34 (1.25-1.44)	
Alcohol use					<0.001
No	TG/HDL	6591(65.1)	28547(43.3)	1.47 (1.37-1.57)	
Yes	TG/HDL	3541(34.9)	17277(68)	1.88 (1.67-2.12)	

Figure 3

Subgroup analysis based on the analysis of multi-factor logistic regression for the association between the TG/HDL ratio and IR.
The association between TG/HDL ratio and insulin resistance

Subgroup analyses

We used age, gender, race, BMI, smoking, and diabetes as the stratification variables to study the trend of effect sizes in these variables (Fig. 3). Interactions were observed based on our a priori specification, including age, gender, BMI, smoking, and diabetes (all with P values for interaction < 0.05). In this study, a stronger association was detected for women, alcohol user, and diabetes patients compared with male and non-diabetes cases. In the age groups, the highest association was observed in group of older than 70s, the second strong level of the association was in the group of 30–40 years old, and the weakest association was in the 40–60 groups. Meanwhile, a weaker association was observed in the obese and smokers. It should also be noted that compared with Mexican and non-Hispanic Black Americans, other American races have a relatively weaker association between TG / HDL ratio and IR.

Discussion

Our results indicate that the TG/HDL ratio is positively associated with IR after adjusting for covariates. Notably, a nonlinear interaction between TG/HDL ratio and IR was discovered. The trend of the effect sizes for the left and right sides of the inflection point is not consistent (left: OR 6.28, 95% CI 4.66–8.45; right: OR 1.69, 95% CI 1.45–1.97). These results suggest an L curve for the independent association between the TG/HDL ratio and IR. Subgroup analysis will help us better understand the trend of the TG/HDL ratio and IR in atypical populations. This study found a stronger association in women, patients with diabetes, and those who consume alcohol. By contrast, a weaker association was detected in obese and smokers. In the age groups, the highest association was in old group (≥70 years) and the second relationship was in the middle age group (Fig. 3). Compared with Mexican and non-Hispanic Black Americans, other American races have a relatively weaker association between TG / HDL ratio and IR.

Moriyama suggested that the TG/HDL-C ratio is linked to IR, components of metabolic syndrome (MetS), exercise, physical activity, and smoking, but lack of alcohol intake, in a sample of 1068 healthy Japanese subjects (36).

Similar findings were also reported by Sánchez-Escudero et al. (37) Rodríguez-Gutiérrez et al. (38), and He et al. (39) and consistent with the result of this study.

However, there are still important differences between the studies. Here, we elaborated the association between TG/HDL ratio and IR from different perspectives and in different subpopulations. We concluded that the association between TG/HDL ratio and IR gradually decreased with BMI, and the association was strongest in people with a BMI of 18.5–24. Moreover, we found the previous studies did not show a two-stage effect. The different results may be due to the following reasons: (1) the targeted population is different; (2) their studies did not analyze the relationship between the TG/HDL ratio and IR by curve fitting; and (3) these studies did not consider the effects of VD3, LDH, GGT, income, and education on the relationship between the TG/HDL ratio and IR when adjusting for covariates. However, these previous studies have confirmed the relationship of TG/HDL ratio and IR.

According to experimental studies, high TG/HDL ratio will lead to less retention of fatty acids, resulting in more fatty acids to be transported to the liver for TG synthesis, which become a vicious circle (40). TG-rich lipoproteins may accelerate the synthesis of factors including leptin, angiotensinogen, tumor necrosis factor α, interleukin 6, plasminogen activator inhibitor 1, transforming growth factor B, adiponectin, adiponectin and resistin. These factors, at least in experimental level, are risk factors for insulin resistance or diabetes (41, 42, 43, 44).

The clinical value of this study can be summarized in the following two aspects: (1) to our best knowledge, this is the first report of an independent association between the TG/HDL ratio and IR in US adults, as well as the first report that shows age, BMI, and VD3 influence the relationship between TG/HDL ratio and IR in American adults; (2) the findings of this study will aid future research on the establishment of diagnostic or predictive models of IR.

The clinical value of this study can be summarized as follows: (1) as far as we know, our study samples is larger than previous samples; (2) we performed logistic regression curve fitting to analyze the relationship between the TG/HDL ratio and IR; (3) the adjustment strategies in our study are better suited than those used in previous ones, and the results were more reliable after including VD3, LDH, and GGT as the adjusted variables; (4) we conducted a sensitivity analysis in this study; and (5) we conducted a subgroup analysis and discovered an interaction among gender, age, BMI, diabetes, race, smoking, and drinking.

Finally, there are also some limitations in the present study. (1) This study is based on American adults, which is...
a definite limitation for the universality and extrapolation of this research. (2) This study did not consider pregnant women, children, or people with specific medical conditions, so it is difficult to know whether the results of this study would apply to these populations. These limitations mainly come from the characteristics of NHANES database and do not affect the applicability of our results to the US adults. In this study, we have controlled the confounding factors to minimize the bias so as to make the results more credible.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This work was supported by grants from National Natural Science Foundation of China (81860370, 32160233), General Project of National Natural Science Foundation of Qinghai Province (2019-Z-970Q), CAS ‘Light of West China’ Program (2019), and Qinghai Scientific Innovation Project of Traditional Chinese-Tibetan Medicine (J2020007).

Ethics approval and consent to participate
All data from the NHANES database have undergone ethical review, for details please see the NHANES website (https://www.cdc.gov/nchs/nhanes/index.htm).

Availability of data and materials
Data can be downloaded from the ‘NHANES’ database (https://www.cdc.gov/nchs/nhanes/index.htm).

Author contribution statement
Rongpeng Gong and Gang Luo conceived the study; Rongpeng Gong wrote the manuscript; Mingxiang Wang, Shengnan Sun, and Lingbo Ma collected the data; Xiaoxing Wei read and revised the manuscript. All authors read and approved the final manuscript. Rongpeng Gong is the first author, Gang Luo is co-first author, Shengnan Sun and Xiaoxing Wei are the corresponding authors.

References
1 Lebovitz HE. Insulin resistance: definition and consequences. Experimental and Clinical Endocrinology and Diabetes 2001 109 (Supplement 2) S135–S148. (https://doi.org/10.1055/s-2001-18576)
2 Abdul-Ghani MA & DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. Journal of Biomedicine and Biotechnology 2010 2010 476279. (https://dx.doi.org/10.1155/2010/476279)
3 Yazici D & Sezer H. Insulin resistance, obesity and lipotoxicity. Advances in Experimental Medicine and Biology 2017 960 277–304. (https://doi.org/10.1007/978-3-319-48382-5_12)
4 Balakumar P, Maung-U K & Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacological Research 2018 113 600–609. (https://doi.org/10.1016/j.phrs.2016.09.040)
5 Taylor R. Type 2 diabetes: etiology and reversibility. Diabetes Care 2013 36 1047–1055. (https://doi.org/10.2337/dc12-1805)
6 Rosenberg DE, Jabbour SA & Goldstein BJ. Insulin resistance, diabetes, and cardiovascular risk: approaches to treatment. Diabetes, Obesity and Metabolism 2005 7 642–653. (https://doi.org/10.1111/j.1463-1326.2004.00446.x)
7 Laakso M & Kuusiisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nature Reviews: Endocrinology 2014 10 293–302. (https://doi.org/10.1038/nrendo.2014.29)
8 Adeva-Andany MM, Martínez-Rodríguez J, González-Lucán M, Fernández-Fernández C & Castro-Quintela E. Insulin resistance is a cardiovascular risk factor in humans. Diabetes and Metabolic Syndrome 2019 13 1449–1455. (https://doi.org/10.1016/j.dsx.2019.02.023)
9 Eckel RH, Grundy SM & Zimet PD. The metabolic syndrome. Lancet 2005 365 1415–1428. (https://doi.org/10.1016/S0140-6736(05)66378-7)
10 Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT & Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circulation Research 2019 124 799–815. (https://doi.org/10.1161/CIRCRESAHA.118.312669)
11 Pan X, Nelson EA, Wachtowski-Wende J, Lee DJ, Manson JE, Aragaki AK, Mortimer LS, Phillips LS, Rohan T, Ho GYF, et al. Insulin resistance and cancer-specific and all-cause mortality in postmenopausal women: the women’s health initiative. Journal of the National Cancer Institute 2020 112 170–178. (https://doi.org/10.1093/jnci/djz069)
12 Ju SY, Lee JJ & Kim DH. Association of metabolic syndrome and its components with all-cause and cardiovascular mortality in the elderly: a meta-analysis of prospective cohort studies. Medicine 2017 96 e6491. (https://doi.org/10.1097/MD.00000000000068491)
13 Welsh P, Preiss D, Lloyd SM, de Craen AJ, Jukema JW, Westendorp RG, Buckley BM, Kearney PM, Briggs A, Stott DJ, et al. Contrasting associations of insulin resistance with diabetes, cardiovascular disease and all-cause mortality in the elderly: PROSPER long-term follow-up. Diabetologia 2014 57 2513–2520. (https://doi.org/10.1007/s00125-014-3383-9)
14 Bigazzi R, Bianchi S, Buoncristiani E & Campese VM. Increased cardiovascular events in hypertensive patients with insulin resistance: a 13-year follow-up. Nutrition, Metabolism, and Cardiovascular Diseases 2008 18 314–319. (https://doi.org/10.1016/j.numecd.2006.11.001)
15 Perseghin G, Calori G, Lattuada G, Ragogna F, Dugnani E, Garancini MP, Crosignani P, Villa M, Bosi E, Ruotolo G, et al. Insulin resistance/hyperinsulinemia and cancer mortality: the Cremona study at the 15th year of follow-up. Acta Diabetologica 2012 49 421–428. (https://doi.org/10.1007/s00592-012-0361-2)
16 Peples J, Bornhorst C, Gunther K, Fraterman A, Russo P, Veldhaem T, Tornaritis M, De Henauw S, Marild S, Molnar D, et al. Longitudinal associations of lifestyle factors and weight status with insulin resistance (HOMA-IR) in preadolescent children: the large prospective cohort study IDEFICS. International Journal of Behavioral Nutrition and Physical Activity 2016 13 97. (https://doi.org/10.1186/s12966-016-0424-4)
17 Gong R, Xu Z & Wei X. The association between vitamin D3 and diabetes in both hyperuricemia and non-hyperuricemia populations. Endocrine 2021 74 90–99. (https://doi.org/10.1007/s12020-021-02778-y)
18 Muniyappa R, Lee S, Chen H & Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. American Journal of Physiology: Endocrinology and Metabolism 2008 294 E15–E26. (https://doi.org/10.1152/ajpendo.00645.2007)
19 DeFronzo RA, Tobin JD & Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. American Journal of Physiology 1979 237 E214–E223. (https://doi.org/10.1152/ajpendo.1979.237.3.E214)
20 Keskin M, Kurtoğlu S, Kendirci M, Atabek ME & Yazıcı C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 2003 111 e500–e503. (https://doi.org/10.1542/peds.2004-1921)
21 Lewis GE, Uffelman KD, Szeto LW & Steiner G. Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals. *Diabetes* 1993 **42** 833–842. (https://doi.org/10.2337/diab.42.6.833)

22 Van Lintshout S, Spellman F, Schultheiss HP & Tchèope C. High-density lipoprotein at the interface of type 2 diabetes mellitus and cardiovascular disorders. *Current Pharmaceutical Design* 2010 **16** 1504–1516. (https://doi.org/10.2174/138161210791051031)

23 McLaughlin T, Abbasi F, Cheal K, Chu J, Lamendola C & Reaven G. Use of metabolic markers to identify overweight individuals who are insulin resistant. *Annals of Internal Medicine* 2003 **139** 802–809. (https://doi.org/10.7326/0003-4819-139-11180-00007)

24 McLaughlin T, Reaven G, Abbasi F, Lamendola C, Saad M, Waters D, Simon J & Krauss RM. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? *American Journal of Cardiology* 2005 **96** 399–404. (https://doi.org/10.1016/j.ajcard.2005.03.085)

25 Krawczyk M, Rumińska M, Witkowska-Sędek E, Majcher A & Pyrzak B. Usefulness of the triglycerides to high-density lipoprotein cholesterol ratio (TG/HDL-C) to predict metabolic syndrome in Polish obese children and adolescents. *Acta Biochimica Polonica* 2018 **65** 605–611. (https://doi.org/10.18388/abp.2018.2649)

26 Young KA, Maturu A, Lorenzo C, Langefeld CD, Wagenknecht LE, Chen YJ, Taylor KD, Rotter JI, Norris JM & Basouli N. The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance, β-cell function, and diabetes in Hispanics and African Americans. *Journal of Diabetes and its Complications* 2019 **33** 118–122. (https://doi.org/10.1016/j.jdiacomp.2018.10.018)

27 Johnson CL, Paulose-Ram R, Ogden CL, Carroll MD, Kruszon-Moran D, Doehrmann SM & Curtin LR. National Health and Nutrition Examination Survey: analytic guidelines, 1999–2010. *Vital and Health Statistics: Series 2, Data Evaluation and Methods Research* 2013 **161** 1–24.

28 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF & Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia* 1985 **28** 412–419. (https://doi.org/10.1007/BF00280883)

29 Sumner AE & Cowie CC. Ethnic differences in the ability of triglyceride levels to identify insulin resistance. *Atherosclerosis* 2008 **196** 696–703. (https://doi.org/10.1016/j.atherosclerosis.2006.12.018)

30 Voruganti VS, Lopez-Alvarenga JC, Nath SD, Rainwater DL, Bauer R, Cole SA, Maccluer JW, Blangero J & Comuzzie AG. Genetics of variation in HOMA-IR and cardiovascular risk factors in Mexican-Americans. *Journal of Molecular Medicine* 2008 **86** 303–311. (https://doi.org/10.1007/s00109-007-0273-3)

31 Qu HQ, Li Q, Lu Y, Hanis CL, Fisher-Hoch SP & McCormick JB. Ancestral effect on HOMA-IR levels quantified in an American population of Mexican origin. *Diabetes Care* 2012 **35** 2591–2593. (https://doi.org/10.2337/dc12-0636)

32 Li Y, Pan A, Wang DD, Liu X, Dhana K, Franco OH, Kaptoge S, Di Angelantonio E, Stampfer M, Willett WC, et al. Impact of healthy lifestyle factors on life expectancies in the US population. *Circulation* 2018 **138** 345–355. (https://doi.org/10.1161/CIRCULATIONAHA.117.032047)

33 White GE, Mair C, Richardson GA, Courcoulas AP & King WC. Alcohol use among U.S. adults by weight status and weight loss attempt: NHANES, 2011–2016. *American Journal of Preventive Medicine* 2019 **57** 220–230. (https://doi.org/10.1016/j.amepre.2019.03.025)

34 Morris A. New test for diabetes insipidus. *Nature Reviews: Endocrinology* 2019 **15** 564–565. (https://doi.org/10.1038/s41574-019-0247-x)

35 Judd E & Calhoun DA. Apparent and true resistant hypertension: definition, prevalence and outcomes. *Journal of Human Hypertension* 2014 **28** 463–468. (https://doi.org/10.1038/jhh.2013.140)

36 Moriyama K. Associations between the triglyceride to high-density lipoprotein cholesterol ratio and metabolic syndrome, insulin resistance, and lifestyle habits in healthy Japanese. *Metabolic Syndrome and Related Disorders* 2020 **18** 260–266. (https://doi.org/10.1089/met.2019.0123)

37 Sánchez-Escudero V, García Lacalle C, González Vergaz A, Remedios Mateo L & Marqués Calvero A. The triglyceride/glucose index as an insulin resistance marker in the pediatric population and its relation to eating habits and physical activity. *Endocrinología, Diabetes y Nutrición* 2021 **68** 296–303. (https://doi.org/10.1016/j.endi.2020.08.015)

38 Rodríguez-Gutiérrez N, Vanoye Tamez M, Vázquez-Garza E, Villarreal-Calderón JR, Castillo EC, Laregosti-Servitje E, Elizondo-Montermayor L & García-Rivas G. Association of the triglyceride/ high-density lipoprotein cholesterol index with insulin resistance in a pediatric population in Northeast Mexico. *Metabolic Syndrome and Related Disorders* 2020 **18** 333–340. (https://doi.org/10.1089/met.2020.0046)

39 He J, He S, Liu K, Wang Y, Shi D & Chen X. The TG/HDL-C ratio might be a surrogate for insulin resistance in Chinese nonobese women. *International Journal of Endocrinology* 2014 **2014** 105168. (https://doi.org/10.1155/2014/105168)

40 Yeh WC, Tsoo YC, Li WC, Tseng IS, Chen LS & Chen JY. Elevated triglyceride-to-HDL cholesterol ratio is an indicator for insulin resistance in middle-aged and elderly Taiwanese population: a cross-sectional study. *Lipids in Health and Disease* 2019 **18** 176. (https://doi.org/10.1186/s12944-019-1123-3)

41 Haluzík M, Parízková J & Haluzík MM. Adiponectin and its role in insulin resistance in middle-aged and elderly Taiwanese population: a cross-sectional study. *Lipids in Health and Disease* 2019 **18** 176. (https://doi.org/10.1186/s12944-019-1123-3)

42 Belotowski J. Adiponectin and resistin – new hormones of white adipose tissue. *Medical Science Monitor* 2003 **9** RA55–RA61.

43 Morton RE. Cholesterol ester transfer protein and its plasma regulator: lipid transfer inhibitor protein. *Current Opinion in Lipidology* 2004 **15** 123–129.

44 Kolovou GD, Anagnostopoulou KK & Cokkinos DV. Pathophysiology of dyslipidaemia in the metabolic syndrome. *Postgraduate Medical Journal* 2005 **81** 358–366. (https://doi.org/10.1136/pgmj.2004.025601)

Received in final form 14 October 2021
Accepted 22 October 2021
Accepted Manuscript published online 22 October 2021