Dogs and Humans Share a Common Susceptibility Gene SRBD1 for Glaucoma Risk

Nobuyuki Kanemaki, Kissaou T. Tchedere, Masaki Imayasu, Shinpei Kawarai, Masahiro Sakaguchi, Atsushi Yoshino, Norihiko Itoh, Akira Meguro, Nobuhisa Mizuki

1 Veterinary Teaching Hospital, Azabu University, Sagamihara, Kanagawa, Japan, 2 Central R&D Laboratory, Menicon Co., Ltd., Kasugai, Aichi, Japan, 3 Department of Veterinary Microbiology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan, 4 Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan

Abstract

Glaucoma is a degenerative optic neuropathy that is associated with elevated intraocular pressure. Primary open angle glaucoma is the most common type of glaucoma in canines, and its highest incidence among dog breeds has been reported in Shiba-Inus, followed by Shih-Tzus. These breeds are known to have an abnormal iridocorneal angle and dysplastic prectinate ligament. However, the hereditary and genetic backgrounds of these dogs have not yet been clarified.

In this study, we investigated the association between polymorphisms of the glaucoma candidate genes, SRBD1, ELOVL5, and ADAMTS10, and glaucoma in Shiba-Inus and Shih-Tzus. We analyzed 11 polymorphisms in these three genes using direct DNA sequencing. Three SRBD1 SNPs, rs8655283, rs22018514 and rs22018513 were significantly associated with glaucoma in Shiba-Inus, while rs22018513, a synonymous SNP in exon 4, showed the strongest association ($P=0.00039$, OR = 3.03). Conditional analysis revealed that rs22018513 could account for most of the association of these SNPs with glaucoma in Shiba-Inus. In Shih-Tzus, only rs9172407 in the SRBD1 intron 1 was significantly associated with glaucoma ($P=0.0014$, OR = 5.25). There were no significant associations between the ELOVL5 or ADAMTS10 polymorphisms and glaucoma in Shiba-Inus and Shih-Tzus. The results showed that SRBD1 polymorphisms play an important role in glaucoma pathology in both Shiba-Inus and Shih-Tzus. SRBD1 polymorphisms have also been associated with normal- and high-tension glaucomas in humans. Therefore, SRBD1 may be a common susceptibility gene for glaucoma in humans and dogs. We anticipate that the nucleotide sequencing data from this study can be used in genetic testing to determine for the first time, the genetic status and susceptibility of glaucoma in dogs, with high precision. Moreover, canine glaucoma resulting from SRBD1 polymorphisms could be a useful animal model to study human glaucoma.

Citation: Kanemaki N, Tchedere KT, Imayasu M, Kawarai S, Sakaguchi M, et al. (2013) Dogs and Humans Share a Common Susceptibility Gene SRBD1 for Glaucoma Risk. PLoS ONE 8(9): e74372. doi:10.1371/journal.pone.0074372

Editor: Reiner Albert Veitia, Institut Jacques Monod, France

Received December 17, 2012; Accepted August 6, 2013; Published September 9, 2013

Competing Interests: Two of the authors, KTT and MI are employed by the Menicon Co., Ltd. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: mizunobu@med.yokohama-cu.ac.jp

Introduction

Glaucoma is a degenerative optic neuropathy comprising a group of eye disorders, including visual field defects, progressive loss of retinal ganglion cells, and degeneration of optic nerve axons, and is frequently associated with elevated intraocular pressure (IOP) [1]. Glaucoma is classified into three types: primary open angle glaucoma (POAG), primary closed angle glaucoma (PCAG), and primary congenital glaucoma (PCG) [1]. POAG is the most common type of glaucoma, and is usually associated with high IOP. Japanese populations, however, have a substantially higher incidence of normal tension glaucoma (NTG), a form of glaucoma in which optic nerve damage occurs even though the IOP is not elevated [2,3].

It is well known that glaucoma is genetically heterogeneous and many genes, such as CYP1B1, MYOC, OPTN, and OPTC, are linked to POAG and PCG in humans and/or dogs [4–9]. Recently, the Normal Tension Glaucoma Genetic Study Group of the Japan Glaucoma Society performed a genome-wide association study with NTG patients and controls in a Japanese population [2]. The study identified two new susceptibility genes for NTG, SRBD1 and ELOVL5, with strong statistical significance. Similarly, Mabuchi et al. also reported the association of an SRBD1 polymorphism with Japanese POAG patients, including late-onset NTG and high tension glaucoma [10].

Canine primary glaucoma has been investigated since almost 50 years ago [11], and high incidences have been reported in Beagles [12–14], Welsh Springer Spaniels [15], and other breeds [16,17]. Recent study reported the Gly661Arg variant in ADAMTS10 as the candidate disease-causing variant for POAG Beagles [12]. Kato et al. investigated the incidence of canine POAG, and reported that Shiba-Inus exhibited the highest incidence of glaucoma among 29 breeds, followed by Shih-Tzus [18]. They also reported that an abnormal iridocorneal angle and dysplastic prectinate ligament were associated with a high incidence of glaucoma in Shiba-Inus and Shih-Tzus. However, the hereditary and genetic backgrounds of glaucoma in these dogs have not yet been clarified.

In this study, to verify recent genetic findings, we investigated the association between glaucoma in Shiba-Inu and Shih-Tzu
Results

The average ages of glaucoma cases and controls were 8.5 ± 2.9 and 10.0 ± 3.0 years, respectively, in Shiba-Inu dogs. Those in Shih-Tzu dogs were 9.2 ± 2.0 and 10.1 ± 2.5 years old, respectively. We genotyped 11 polymorphisms in \textit{SRBD1}, \textit{ELOVL5}, and \textit{ADAMTS10} in 98 Shiba-Inus and 67 Shih-Tzu dogs using the direct DNA sequencing method (Table 1).

Table 2 shows the details of five single nucleotide polymorphisms (SNPs) in \textit{SRBD1}, including their genomic locations and allele frequencies in Shiba-Inus and Shih-Tzus. In Shiba-Inus, the most statistically significant association was observed for rs22018513 (\(P = 0.00039\); the G allele of rs22018513 had a 3.03-fold (95% CI = 1.62–5.65) increased risk of glaucoma, with a frequency of 78.6% in cases vs. 54.8% in controls. Significant associations were also observed for rs8655283 and rs22018514 in Shiba-Inus; the frequencies of the T allele of rs8655283 and the G allele of rs22018514 were significantly greater among glaucoma cases than among controls (rs8655283, 37.5% vs. 21.4%; rs22018514, 41.1% vs. 21.4%, \(P = 0.0037\), OR = 2.56, 95% CI = 1.34–4.36). In Shih-Tzus, we observed a significant association for rs9172407 (\(P = 0.0014\)) and the G allele of rs9172407 had a 5.25-fold (95% CI = 1.76–15.63) increased risk of glaucoma (25.9% in cases vs. 9.7% in controls). Significant associations were also not reached statistically significant for either breed.

Discussion

The aim of the present study was to assess the potential associations of polymorphisms in the candidate genes \textit{SRBD1}, \textit{ELOVL5}, and \textit{ADAMTS10}, with the development of canine glaucoma. To this end, we genotyped 11 polymorphisms of these genes in two breeds of dogs with cases of glaucoma or without, as controls. Here we report that the \textit{SRBD1} polymorphisms exhibited significant association with canine glaucoma, while the \textit{ELOVL5} and \textit{ADAMTS10} polymorphisms that were examined in this study were not associated with canine glaucoma. In Shiba-Inus, the strongest association with glaucoma in \textit{SRBD1} was observed at rs22018513, which is a synonymous SNP in exon 4. Two other SNPs, rs8655283 and rs22018514, were associated with glaucoma in Shiba-Inus, as well as rs22019922, also did not achieve statistically significant associations with glaucoma in Shih-Tzu. However, the odds-ratios of these variants in Shih-Tzus were suggestive of an association, with the T allele of rs8655283, the G allele of rs22018514, and the A allele of rs22019922, each having a 2.43 or 2.49-fold increased risk of glaucoma.

Table 1. Primer pairs for PCR of glaucoma-related genes.

Gene	Allele	5'-3' Forward	5'-3' Reverse
SRBD1	rs22019922	TGTGTTGTGTTGTCAGCAAGT	TCACTCTTTTCCTCATCTCTC
	rs8655283	TTAGGATGAAACATCGGAGAC	TGGCGGATTATTGAACTAAC
	rs22018513, rs22018514	GCTATTGCTGATGTTGATTTG	TGAAGCGGAGGTGGCAAGG
	rs9172407	GTGAACCTGAAATGGCAAA	TTAACAGCTTCTCCGTCTCC
ELOVL5	rs22226301	AGTATGGTGTTGTCAGCAAGT	AGCAACGGCAGATAGTCTC
	rs9194033	AGTATGGTGTTGTCAGCAAGT	GCTCAGGTCAATGCAAGAG
	rs22202438	CATGCTGAACTCCTGTTGAG	GCTGGTCTGGATGAGTCTA
	rs8643563	AATGTATGGTGTTGAGAACAA	ACCACAGAGACCTCTACAA
	rs22194174	AATGTATGGTGTTGAGAACAA	ACCACAGAGACCTCTACAA
ADAMTS10	Gly661Arg (rs6097365 G>A)	CACAGACAGCAAGGGAGT	GGGTTGGAAGTGGCAAGAG

doi:10.1371/journal.pone.0074372.t001

Table 2. Primer pairs for PCR of glaucoma-related genes.

Gene	Allele	5'-3' Forward	5'-3' Reverse
SRBD1	rs22019922	TGTGTTGTGTTGTCAGCAAGT	TCACTCTTTTCCTCATCTCTC
	rs8655283	TTAGGATGAAACATCGGAGAC	TGGCGGATTATTGAACTAAC
	rs22018513, rs22018514	GCTATTGCTGATGTTGATTTG	TGAAGCGGAGGTGGCAAGG
	rs9172407	GTGAACCTGAAATGGCAAA	TTAACAGCTTCTCCGTCTCC
ELOVL5	rs22226301	AGTATGGTGTTGTCAGCAAGT	AGCAACGGCAGATAGTCTC
	rs9194033	AGTATGGTGTTGTCAGCAAGT	GCTCAGGTCAATGCAAGAG
	rs22202438	CATGCTGAACTCCTGTTGAG	GCTGGTCTGGATGAGTCTA
	rs8643563	AATGTATGGTGTTGAGAACAA	ACCACAGAGACCTCTACAA
	rs22194174	AATGTATGGTGTTGAGAACAA	ACCACAGAGACCTCTACAA
Table 2. Association analysis for five polymorphisms in the SRBD1 gene region for Shiba-Inu and Shih-Tzu dog breeds.

SNP ID	Chr. Position (CanFam2.0)	Allele	SNP Type	Risk Allele	Breed	N	Cases	Controls	Cases	Controls	Risk Allele Frequency (%)	P	OR (95% CI)
rs22019922	10 50924623	A/C	Intron	A	Shiba-Inu	56	42	8.9	7.1	0.65	1.27 (0.44–3.66)		
					Shih-Tzu	27	40	96.3	91.3	0.25	2.49 (0.50–12.49)		
					Overall	83	82	0.40		1.59 (0.66–3.80)			
rs8655283	10 50989281	C/T	Intron	T	Shiba-Inu	56	42	37.5	21.4	0.016	2.20 (1.15–4.20)		
					Shih-Tzu	27	40	92.6	83.8	0.13	2.43 (0.75–7.89)		
					Overall	83	82	0.0068		2.25 (1.28–3.97)			
rs22018514	10 51,049,600	C/G	Non-synonymous	G	Shiba-Inu	56	42	41.1	21.4	0.0037	2.56 (1.34–4.86)		
					Shih-Tzu	27	40	92.6	83.8	0.13	2.43 (0.75–7.89)		
					Overall	83	82	0.0018		2.52 (1.43–4.44)			
rs22018513	10 51,049,604	A/G	Synonymous	G	Shiba-Inu	56	42	78.6	54.8	0.00039	3.03 (1.62–5.65)		
					Shih-Tzu	27	40	94.4	93.8	0.87	1.13 (0.26–4.95)		
					Overall	83	82	0.0015		2.59 (1.46–4.61)			
rs9172407	10 51062753	A/G	Intron	G	Shiba-Inu	56	42	8.9	6.0	0.44	1.55 (0.51–4.71)		
					Shih-Tzu	27	40	25.9	6.3	0.0014	5.25 (1.76–15.63)		
					Overall	83	82	0.0074		2.90 (1.34–6.26)			

OR, odds ratio; CI, confidence interval.
Overall P values and ORs for meta-analysis were calculated using the Mantel-Haenzel method.
doi:10.1371/journal.pone.0074372.t002

Figure 1. Linkage disequilibrium (LD) plot of five SNPs of the SRBD1 gene. A) LD structure in Shiba-Inus. B) LD structure in Shih-Tzus. The D’ value and r² value (in parentheses) corresponding to each SNP pair are expressed as a percentage and shown within the respective square. The color scheme is based on D’ and LOD score values: bright red (LOD ≥2 and D’ = 1); shades of pink/red (LOD ≥2 and D’ < 1); blue (LOD <2 and D’ = 1); white (LOD <2 and D’ < 1).
doi:10.1371/journal.pone.0074372.g001
Table 3. Conditional logistic regression analysis of rs8655283, rs22018514 and rs22018513 in the SRBD1 gene for Shiba-Inus.

SNP ID	Risk Allele	Model	P*	Covariates	rs8655283	rs22018514	rs22018513
rs8655283	T	Additive	0.021	–	0.92	0.15	
rs22018514	G	Additive	0.00066	0.13	–	0.10	
rs22018513	G	Additive	0.00025	0.0010	0.0021	–	

*P values for each SNP under the recessive, additive, or dominant model that provided the best fit by logistic regression analysis. The lowest P value was selected as the best fit model. The indicated model showed the lowest P value for each SNP.

**P values adjusted for each SNP under the indicated model by conditional logistic regression analysis.

doi:10.1371/journal.pone.0074372.t003

Table 4. Association analysis for six polymorphisms in the ELOVL5 and ADAMTS10 gene regions for Shiba-Inu and Shih-Tzu dog breeds.

SNP ID	Chr. (CanFam2.0)	Gene	Allele	SNP Type	Risk Allele*	Breed	N	Risk Allele Frequency (%)	P	OR (95% CI)
rs22226301	12 20733716	ELOVL5	C/T	3'UTR	T	Shiba-Inu	56	0.0 0.0 0.0 0.0 - -		
rs9194033	12 20739417	ELOVL5	A/G	Intron	G	Shiba-Inu	56	33.9 26.2 0.25 1.45 (0.78–2.70)		
rs22202438	12 20743516	ELOVL5	A/G	Synonymous	G	Shiba-Inu	56	35.7 28.6 0.29 1.39 (0.75–2.56)		
rs8643563	12 20744701	ELOVL5	(-)/T	Frameshift coding	T	Shiba-Inu	56	0.0 0.0 0.0 0.0 - -		
rs22194174	12 20749077	ELOVL5	A/C	Intron	A	Shiba-Inu	56	0.0 0.0 0.0 0.0 - -		
Gly661Arg	20 56097365	ADAMTS10	A/G	Non-synonymous	A	Shiba-Inu	56	0.0 0.0 0.0 0.0 - -		

OR, odds ratio; CI, confidence interval.
Overall P values and ORs for meta-analysis were calculated using the Mantel-Haenzel method.

*Risk allele is for Shiba-Inu dogs.

doi:10.1371/journal.pone.0074372.t004
region (http://asia.ensembl.org/Canis_familiaris/Transcript/Exons?db=core&g=ENSCAFG00000002554;r=10:47923593-47924593; t=ENSCAFG000000049409). SRBD1 transcript is reportedly expressed in the retinal ganglion cell and neuroblast layers in neonatal mouse tissue [2], but its localization in dogs remains unknown.

The present study found that a synonymous SNP (rs22018513) and intronic SNP (rs9172407) in SRBD1 were associated with glaucoma in Shiba-Inus and Shih-Tzus, respectively. Synonymous and intronic polymorphisms can significantly affect gene expression by various mechanisms and lead to the development of disease [22–24]. We did not compare SRBD1 mRNA levels in normal and affected dogs; however, a similar experiment has been conducted in humans [2]. Results from that study showed a significant correlation between increased SRBD1 expression and the NTG-associated risk allele of intronic SNP. These results suggest that rs22018513 and rs9172407 in canine SRBD1 could cause enhanced SRBD1 expression. Reports show that SRBD1 is indirectly involved in cell growth, general protein synthesis, induction of apoptosis, and maintaining homeostasis [2]. Therefore, we hypothesize that enhanced expression, leading to increased activity of SRBD1, which could induce apoptosis, could result in retinal ganglion cell death during the development of glaucoma.

ELOVL5 is a fatty acid condensing enzyme involved in the biosynthesis of long-chain polyunsaturated fatty acids [25], and is one of the candidate genes for retinitis pigmentosa [26]. The Normal Tension Glaucoma Genes Study Group of the Japan Glaucoma Society reported ELOVL5 as a new susceptibility gene for human NTG [2]. However, the present study did not show any significant association of ELOVL5 polymorphisms with canine glaucoma. The difference between our results and those reported by the study group may be due to the different types of glaucoma that were studied (human NTG without IOP elevation, and canine glaucoma with IOP elevation, respectively). In contrast, SRBD1 polymorphisms were associated with canine glaucoma and human glaucoma independent of IOP, suggesting that SRBD1 polymorphisms may affect a common disease condition in canine and human glaucoma. Therefore, detection of any common phenotypes in these glaucoma studies [2,10] is important because it will help to clarify how SRBD1 affects the development of glaucoma. Moreover, canine glaucoma resulting from SRBD1 polymorphisms could be used as an excellent genetic animal model for human glaucoma and contribute significantly to the development of novel diagnostic and therapeutic options for glaucoma.

Kato, et al., reported that the Beagle breed has the fourth-highest incidence of canine glaucoma, after Shiba-Inu, Shih-Tzu, and American Cocker Spaniel breeds [18]. Kuchety et al. recently reported that the Gly661Arg variant (56097365 G>A) of ADAMTS10 in Beagles with POAG is a candidate, predictive gene allele for canine POAG [12]. We did not observe an association between this 56097365 G>A variant and glaucoma in Shiba-Inus or Shih-Tzus, possibly because of breed-specific allelic differences between Beagles and Shiba-Inus or Shih-Tzus. More recently, Kuchety, et al., reported that the Gly661Arg variant was not found in any of the other dog breeds analyzed. (Shiba-Inu, Shih-Tzu, American Cocker Spaniels, Chihuahua, Australian Cattle Dog, Jack Russell Terrier, Jindo, Siberian Husky, and Yorkshire Terrier), suggesting that this allele is Beagle-specific, and that other genes may be associated with glaucoma in other breeds [27]. However, ADAMTS10 may be still a candidate gene for glaucoma in dogs, including Shiba-Inu and Shih-Tzu, because other ADAMTS10 variants have yet to be investigated for their association with canine glaucoma. The Ensembl database (http://asia.ensembl.org/index.html) shows 16 genetic polymorphisms in the canine ADAMTS10 gene region. Since the dog genome information is still incomplete, it is predicted that more even polymorphisms exist in the canine ADAMTS10 gene region. Therefore, it is necessary to perform a comprehensive genetic analysis of the region and clarify whether ADAMTS10 is a candidate gene for glaucoma not only in Beagles, but also in other breeds.

There are no genetic tests currently available to assist in glaucoma diagnosis, identification of people at risk, initiation of treatment, and timing of surgical intervention. We performed the present SNP analysis of candidate genes in Shiba-Inu and Shih-Tzu dog breeds for the possibility to help develop diagnostic, genetic analyses for glaucoma risk factors. However, the mechanism by which these genes contribute to the development of glaucoma remains to be determined. Future studies are expected to examine the roles of SRBD1 in humans and dogs, in an effort to determine whether genetic testing might not only help predict whether someone will develop glaucoma, but may also, perhaps, be a valuable prognostic factor for the clinical course of the disease, and/or predictive factor for its treatment. Despite new and improving diagnostic and therapeutic options for glaucoma, blindness resulting from glaucoma remains a major public health problem. These future experiments will help to optimize glaucoma treatment.

Materials and Methods

Ethics Statement

This study was performed as part of research approved by the Ethical Committee of Azabu University (Permit Number: 110408-2). Informed written consent was obtained from each dog owner. All procedures in this study were conducted in accordance with the Guide for the Care and Use of Laboratory Animals of Azabu University.

Diagnosis of Glaucoma

98 Japanese Shiba-Inu dogs and 67 Shih-Tzu dogs were recruited from the Veterinary Teaching Hospital at Azabu University. All dogs received complete ophthalmologic examinations using a hand-held slit-lamp biomicroscope (SL-14, Kowa, Tokyo, Japan), indirect ophthalmoscopy, and tonometry. After the application of topical anesthesia (oxybuprocaine hydrochloride, Santen, Osaka, Japan), IOP was measured by tonometry using the Tono-Pen XL (Mentor O&O Inc., Norwell, MA). 42 Shiba-Inus and 40 Shih-Tzus were diagnosed as normal (<25 mmHg IOP). 56 Shiba-Inus and 27 Shih-Tzus had elevated IOP (>25 mmHg) in at least one eye, and were diagnosed with glaucoma. Since glaucoma is a late-onset disorder, we did not recruit dogs younger than four years in the control group, in an attempt to exclude potential glaucomatous dogs.

DNA Preparation

Genomic DNA from glaucomatous and normal dogs was collected from peripheral blood and purified using a DNA whole blood spin kit (Fuji Film, Tokyo, Japan). The purity and concentration of DNA were examined using GeneQuant Pro (GE Healthcare, Cambridge, UK).

Determination of DNA Sequences

In the SRBD1 and ELOVL5 regions, a total of ten polymorphisms were selected to cover the entire gene regions (rs22019922, rs8655283, rs22018514, rs22018513 and rs9172407 in SRBD1; rs22226301, rs9194033, rs22202438, rs8643363 and rs22194174 in ELOVL5) (Table 2,4). In the ADAMTS10 gene
region, we selected the Gly661Arg variant (56097365 G>A) for analysis (Table 4). PCR primer pairs listed in Table 1 were used to amplify regions containing the SNPs mentioned above. The PCR products were electrophoretically separated on a 1% agarose gel, and the PCR product bands were cut and frozen at −20°C in Tris-EDTA buffer. The frozen samples were thawed, homogenized, and centrifuged at 15,000 g for 5 minutes. The supernatants were subjected to cycle sequencing using the Big Dye terminator sequencing kit (Life Technologies, Foster City, CA). The sequence data were analyzed using Sequence Scanner v. 1.0 (Life Technologies) and GENETYX-WIN v. 4.0 (Genetyx, Tokyo, Japan). We did not find any novel DNA

Statistical Analysis
Hardy-Weinberg equilibrium was tested for each SNP among glaucomatous and normal dogs. Differences in allele frequency

References
1. Quigley HA (1993) Open-angle glaucoma. N Engl J Med 328: 1097–1106.
2. Writing Committees for the Normal Tension Glaucoma Genetic Study Group of Japan Glaucoma Society, Meguro A, Inoko H, Ota M, Mizuki N, Rahamn S (2010) Genome-wide association study of normal tension glaucoma: common variants in SRBD1 and ELOVL5 contribute to disease susceptibility. Ophthalmology 117: 1331–1338.
3. Nakano M, Ikeda Y, Taniguchi T (2009) Three susceptible loci associated with primary open-angle glaucoma identified by genome-wide association study in a Japanese population. Proc Natl Acad Sci 106: 12838–12842.
4. Kato K, Kamida A, Sasaki N, Shastry BS (2009) Evaluation of the CYP1B1 gene as a candidate gene in beagles with primary-open angle glaucoma (POAG). Mol Vis 15: 2470–2474.
5. Yang M, Guo X, Liu X, Shen H, Jia X, et al. (2009) Investigation of CYP1B1 mutations in Chinese patients with primary congenital glaucoma. Mol Vis 15: 432–437.
6. Kumar A, Basavaraj MG, Gupta SK, Qamar I, Ali AM, et al. (2007) Role of CYP1B1, MYOC, OPTN, and OPTC genes in adult-onset primary open-angle glaucoma: predominance of CYP1B1 mutations in Indian patients. Mol Vis 13: 667–676.
7. Sitorus R, Ardiyo SM, Lorenzo B, Presing M (2003) CYP1B1 gene analysis in primary congenital glaucoma in Indonesian and European patients. J Med Genet 40: e59.
8. Fan BJ, Wang DY, Fan DSP, Lam DSC, et al. (2005) SNPs and interaction analyses of myocilin, optineurin, and apolipoprotein E in primary open angle glaucoma patients. Mol Vis 11: 625–631.
9. Kato K, Sasaki N, Matsunaga S, Nishimura R, Ogawa H, et al. (2006) Incidence of canine glaucoma with goniodysplasia in Japan: a retrospective study. J Vet Med Sci 68: 833–838.
10. Subramanian AR (1983) Structure and functions of ribosomal protein S1. Prog Nucleic Acid Res Mol Biol 20: 101–142.
11. Bycroft M, Hubbard TJ, Proctor M, Freund SM, Murzin AG (1997) The solution structure of the S1 RNA binding domain: a member of an ancient nuclear acid-binding fold. Cell 84: 235–242.
12. Ekdud EA, Lee SW, Kaelin DG (1995) Cloning of a cDNA encoding a human DNA-binding protein similar to ribosomal protein S1. Gene 155: 231–235.
13. Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12: 683–691.
14. Nakagawa A, Iwabusa SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.
15. Wang D, Gao Y, Wrighton SA, Cooke GE, Sadee W (2011) Intrinsic polymorphisms in CYP2J1 affects hepatic expression and response to statin drugs. Pharmacogenomics J 11: 274–286.
16. Moon YA, Hammer RE, Horton JD (2009) Deletion of ELOVL3 leads to fatty liver through activation of SREBP-1c in mice. J Lipid Res 50: 412–423.
17. Baragona L, Marcse I, Borrego S, Amiand G (2003) Mutation screening of three candidate genes, ELOVL5, S1AP1 and GULDL1 in autosomal recessive retinitis pigmentosa. Int J Mol Med 10 suppl 1: 53–62.
18. Nakagawa A, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catalchol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.
19. Nakagawa A, Iwabusa SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catalchol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.
20. Nakagawa A, Iwabusa SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catalchol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.
21. Nakagawa A, Iwabusa SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catalchol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.
22. Nakgawa A, Iwabusa SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catalchol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.
23. Nakagawa A, Iwabusa SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catalchol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.
24. Nakagawa A, Iwabusa SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catalchol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.
25. Nakagawa A, Iwabusa SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catalchol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.
26. Nakagawa A, Iwabusa SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catalchol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.
27. Nakagawa A, Iwabusa SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catalchol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.
28. Nakagawa A, Iwabusa SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catalchol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.
29. Nakagawa A, Iwabusa SA, Tchivileva IE, Satterfield K, Korchynskyi O, et al. (2006) Human catalchol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314: 1930–1933.