LONG–RANGE INTERACTIONS
OF SMALL COLOR DIPOLESa

H. Fujii and D. Kharzeev
RIKEN-BNL Research Center,
Brookhaven National Laboratory,
Upton, NY 11973, USA

We study the scattering of small color dipoles (e.g., heavy quarkonium states) at low energies. We find that even though the couplings of color dipoles to the gluon field can be described in perturbation theory, at large distances the interaction becomes totally non–perturbative. The structure of the scattering amplitude, however, is fixed by the (broken) chiral and scale symmetries of QCD; the leading long–distance contribution arises from the correlated two–pion exchange. We use the spectral representation technique to evaluate both perturbative and non–perturbative contributions to the scattering amplitude. Our main result is the sum rule which relates the overall strength of the non–perturbative interaction between color dipoles to the energy density of QCD vacuum.

1 Introduction

In a 1972 article entitled “Zero pion mass limit in interaction at very high energies”1 A.A. Anselm and V.N. Gribov posed an interesting question: what is the total cross section of hadron scattering in the chiral limit of $m_\pi \to 0$? On one hand, as everyone believes since the pioneering work of H. Yukawa, the range of strong interactions is determined by the mass of the lightest meson, i.e. is proportional to $\sim m_\pi^{-1}$. The total cross sections may then be expected to scale as $\sim m_\pi^{-2}$, and would tend to infinity as $m_\pi \to 0$. On the other hand, soft–pion theorems, which proved to be very useful in understanding low–energy hadronic phenomena, state that hadronic amplitudes do not possess singularities in the limit $m_\pi \to 0$, and one expects that the theory must remain self-consistent in the limit of the vanishing pion mass.

aInvited talk at the Third “Continuous Advances in QCD” Workshop dedicated to the memory of V.N. Gribov; Minneapolis, April 16–19, 1998.
At first glance, the advent of QCD has not made this problem any easier; on the contrary, the presence of massless gluons in the theory apparently introduces another long-range interaction. In this article, we try to address this problem considering the scattering of small color dipoles. The reason for choosing this, somewhat specific, example is simple: asymptotic freedom dictates that strong coupling becomes weak at short distances, and since the small size of dipoles r introduces a natural infrared cut-off $r \ll \Lambda_{QCD}^{-1}$, one expects that their interactions can be systematically treated in QCD. This approach was pursued both at low and high energies.

It has been found, however, that at sufficiently high energies the perturbative description of “onium–onium” scattering breaks down. The physical reason for this is easy to understand: the higher the energy, the larger impact parameters contribute to the scattering, and at large transverse distances the perturbation theory inevitably fails, since the virtualities of partons in the ladder diffuse to small values (“Gribov diffusion”). At this point, the following questions arise: Does this mean that the problem becomes untreatable? Does the same difficulty appear at large distances in low-energy scattering? And, finally, what (if any) is the role played by pions?

2 Perturbation Theory

The Wilson operator product expansion allows one to write down the scattering amplitude (in the Born approximation) of two small color dipoles in the following form:

$$V(R) = -i \int dt \langle 0 | T \left(\sum_i c_i O_i(0) \right) \left(\sum_j c_j O_j(x) \right) | 0 \rangle,$$ \hspace{1cm} (1)

where $x = (t, R)$, $O_i(x)$ is the set of local gauge-invariant operators expressible in terms of gluon fields, and c_i are the coefficients which reflect the structure of the color dipole. At small (compared to the binding energy of the dipole) energies, the leading operator in (1) is the square of the chromo-electric field $(1/2) g^2 E^2$ — other twist–two operators contain covariant derivatives leading to the powers of momentum in the amplitude and are therefore suppressed at small energies.
Keeping only this leading operator, we can rewrite (1) in a simple form

\[V(R) = -i \left(\tilde{d}_2 \frac{a_0^2}{\epsilon_0} \right)^2 \int dt \langle 0 | T \left(\frac{1}{2} g^2 E^2(0) - \frac{1}{2} g^2 E^2(t, R) \right) | 0 \rangle, \]

(2)

where \(\tilde{d}_2 \) is the corresponding Wilson coefficient defined by

\[\tilde{d}_2 \frac{a_0^2}{\epsilon_0} = \frac{1}{3N} \langle \phi | r^i \frac{1}{H + \epsilon} r^i | \phi \rangle, \]

(3)

where we have explicitly factored out the dependence on the quarkonium Bohr radius \(a_0 \) and the Rydberg energy \(\epsilon_0 \); \(N \) is the number of colors, and \(| \phi \rangle \) is the quarkonium wave function, which is Coulomb in the heavy quark limit.\footnote{The Wilson coefficients \(\tilde{d}_2 \), evaluated in the large \(N \) limit, are available for \(S \) and \(P \) quarkonium states.} The factors \(a_0 \) and \(\tau \sim 1/\epsilon_0 \) represent the characteristic dimension and fluctuation time of the color dipole, respectively. The approximate expression (2) is justified when the wavelength of gluon fields is large compared to \(a_0 \) and they change slowly compared to \(1/\epsilon_0 \).

In physical terms, the structure of (2) is transparent: it describes the elastic scattering of two dipoles which act on each other by chromo-electric dipole fields; color neutrality permits only the square of dipole interaction in the elastic scattering.

The amplitude (2) was evaluated before\footnote{The Wilson coefficients \(\tilde{d}_2 \), evaluated in the large \(N \) limit, are available for \(S \) and \(P \) quarkonium states.} in perturbative QCD using functional methods. For our purposes, however, it is convenient to use a different technique based on the spectral representation. As a first application of this approach, we will reproduce the result of (2) by a different method.

It is convenient, as a first step, to express \(g^2 E^2 \) in terms of the gluon field strength tensor \(\mathcal{F} \):

\[g^2 E^2 = -\frac{1}{4} g^2 G_{\alpha\beta} G^{\alpha\beta} + g^2 \left(-G_{00} G_0^0 + \frac{1}{4} g_{00} G_{\alpha\beta} G^{\alpha\beta} \right) = \frac{8\pi^2}{b} \theta^\mu_{\mu} + g^2 \theta_{00}^{(G)} \]

(4)

where

\[\theta^\mu_{\mu} = \frac{\beta(g)}{2g} G^{\alpha\beta} G^\alpha_{\alpha\beta} = -\frac{b g^2}{32\pi^2} G^{\alpha\beta} G^\alpha_{\alpha\beta}. \]

(5)

Note that as a consequence of scale anomaly \footnote{The Wilson coefficients \(\tilde{d}_2 \), evaluated in the large \(N \) limit, are available for \(S \) and \(P \) quarkonium states.}, \(\theta^\mu_{\mu} \) is the trace of the energy-momentum tensor of QCD in the chiral limit of vanishing light quark masses.
and the β function in (3) does not contain the contribution of heavy quarks (i.e. $b = \frac{1}{3}(11N - 2N_f) = 9$).

Let us now write down the spectral representation for the correlator of the trace of energy-momentum tensor:

$$\langle 0 | T^\mu_\nu(0) T^\alpha_\beta(x) | 0 \rangle = \int d\sigma^2 \rho_\theta(\sigma^2) \Delta_F(x; \sigma^2),$$

where the spectral density is defined by

$$\rho_\theta(k^2) = \sum_n (2\pi)^3 \delta^4(p_n - k) \langle 0 | \theta^\mu_\nu | n \rangle \langle n | \theta^\alpha_\beta | 0 \rangle,$$

and

$$i\Delta_F(x; \sigma^2) = i \int \frac{d^4k}{(2\pi)^3} \delta(k^2 - \sigma^2) \theta(k_0)(e^{-ikx_0} + e^{ikx_0})$$

is the Feynman propagator of a scalar field.

Using the representation (1) in (2), we get

$$V_\theta(R) = -i \left(\frac{a_0^2}{\epsilon_0} \right)^2 \left(\frac{4\pi^2}{b} \right)^2 \int dt \int d\sigma^2 \rho_\theta(\sigma^2) \Delta_F(x; \sigma^2)$$

$$= -\left(\frac{a_0^2}{\epsilon_0} \right)^2 \left(\frac{4\pi^2}{b} \right)^2 \int d\sigma^2 \rho_\theta(\sigma^2) \frac{1}{4\pi R} e^{-\sigma R}.$$

We see that the potential (3) can be represented as a superposition of Yukawa potentials corresponding to the exchange of scalar quanta of mass σ.

Our analysis so far has been completely general; the dynamics enters through the spectral density (3). Let us first evaluate this quantity in perturbation theory. In this case we have to evaluate the contribution of two–gluon states (see Fig. 1(a)) defined by

$$\rho^{pt}_\theta(q^2) = \sum_n (2\pi)^3 \delta^4(p_1 + p_2 - q) \langle 0 | \theta^\mu_\nu | p_1 \epsilon a, p_2 \epsilon b \rangle^2,$$

where the phase-space integral should be understood as well as the summations over the polarization and the color indices of the gluons.

The evaluation of (10) is straightforward: for $SU(N)$, one has

$$\rho^{pt}_\theta(q^2) = \left(\frac{bg^2}{32\pi^2} \right)^2 \frac{N^2 - 1}{4\pi^2} q^4.$$

Then, substituting (11) into (9) and performing the integration over invariant mass σ^2, we get, for $N = 3$

$$V_\theta(R) = -g^4 \left(\frac{\bar{d}_2 a_0^2}{\epsilon_0} \right)^2 \frac{15}{8\pi^3 R^7}. \quad (12)$$

The $\propto R^{-7}$ dependence of the potential (12) is a classical result known from atomic physics \cite{footnote}, as is apparent in our derivation (note the time integration in (9)), the extra R^{-1} as compared to the Van der Waals potential $\propto R^{-6}$ is the consequence of the fact that the dipoles we consider fluctuate in time, and the characteristic fluctuation time $\tau \sim \epsilon_0^{-1}$, is small compared to the spatial separation of the “onia” : $\tau \ll R$. Finally we note that in perturbation theory θ_μ^μ is of order g^2, (even though the matrix element of the θ_μ^μ, as will be discussed below, is in general non-perturbative), and accordingly the potential (12) has the prefactor g^4. Then the second term in (4) gives the contribution of the same order in g; this contribution is due to the tensor 2^{++} state of two gluons and can be evaluated in a completely analogous way. Adding this contribution to (12), we reproduce the result of Ref.\cite{footnote}.

$$V(R) = -g^4 \left(\frac{\bar{d}_2 a_0^2}{\epsilon_0} \right)^2 \frac{23}{8\pi^3 R^7}; \quad (13)$$

note that our \bar{d}_2 is related to the d_2 of Ref.\cite{footnote} by $d_2 a_0 \epsilon_0 = \bar{d}_2 g^2$.

Figure 1: Contributions to the scattering amplitude from (a) two gluon exchange and (b) correlated two pion exchange.
3 Beyond the Perturbation Theory: The Role of Pions

At large distances, the perturbative description breaks down, because, as can be clearly seen from (9), the potential becomes determined by the spectral density at small q^2, where the transverse momenta of the gluons become small. To see this explicitly in the dispersive language, let us consider the correlator

$$\Pi(q^2) = \int d^4 x e^{iqx} \langle 0 | T \theta^\mu(x) \theta^\mu(0) | 0 \rangle = \int d\sigma^2 \frac{\rho_\theta(\sigma^2)}{\sigma^2 - q^2 - i\epsilon}.$$ \hspace{1cm} (14)

An important low–energy theorem states that, as a consequence of the broken scale invariance,

$$\Pi(0) = -4 \langle 0 | \frac{\beta(g)}{2g} G_{a}^{\alpha\beta} G_a^{\alpha\beta} | 0 \rangle.$$ \hspace{1cm} (15)

The operator on the r.h.s. of (15) is regularized by subtracting the contribution of perturbation theory. The vacuum expectation value of this operator therefore measures the energy density of non–perturbative fluctuations in the QCD vacuum. The low–energy theorem therefore implies the sum rule for the spectral density:

$$\int \frac{d\sigma^2}{\sigma^2} [\rho_\theta^{\text{phys}}(\sigma^2) - \rho_\theta^{\text{pt}}(\sigma^2)] = -4 \langle 0 | \frac{\beta(g)}{2g} G_{a}^{\alpha\beta} G_a^{\alpha\beta} | 0 \rangle = -16 \epsilon_{\text{vac}} \neq 0,$$ \hspace{1cm} (16)

where $\rho_\theta^{\text{pt}}(\sigma^2)$ is given by (11), and the vacuum energy density is $\epsilon_{\text{vac}} = (1/4) \langle \theta^\mu \rangle \simeq -0.24 \text{ GeV}^4$. Since the physical spectral density, $\rho_\theta^{\text{phys}}$, should approach the perturbative one at high σ^2, the integral in (16) can accumulate its value required by the r.h.s. only in the region of relatively small σ^2.

At small invariant masses, we have to saturate the physical spectral density in the sum rule by the lightest state allowed in the scalar channel – two pions:

$$\rho_\theta^{\text{phys}}(q^2) = \sum (2\pi)^3 \delta^4(p_1 + p_2 - q) |\langle 0 | \theta_a \pi(p_1) \pi(p_2) | 0 \rangle|^2,$$ \hspace{1cm} (17)

where, as in (11), the phase–space integral is understood.

Since, according to (3), θ_a is gluonic operator, the evaluation of (17) requires the knowledge of the coupling of gluons to pions. This is a purely

The analysis of sum rules shows however that the approach to the asymptotic freedom in the scalar channel is rather slow.

6
non–perturbative problem, but it can nevertheless be rigorously solved, as it was shown in Ref. 18 (see also 12). The idea of 18 is the following: at small pion momenta, the energy–momentum tensor can be accurately computed using the low–energy chiral Lagrangian:

\[\theta^\mu_\mu = -\partial_\mu \pi^a \partial^\mu \pi^a + 2m_\pi^2 \pi^a \pi^a + \cdots \]

(18)

Substituting this expression into (17), in the chiral limit of vanishing pion mass one gets an elegant result 18

\[\langle 0 \mid \frac{\beta(g)}{2g} G^{a\beta a} G^{a \alpha | \pi^+ \pi^-} \rangle = q^2. \]

(19)

The result (19) can actually be generalized for the coupling of gluons to any number of pions. Indeed, consider the Lagrangian of non–linear σ model,

\[L = \frac{f^2}{4} \text{tr} \partial_\mu U \partial^\mu U^\dagger - \Lambda \text{tr} (MU + U^\dagger M^\dagger), \]

(20)

where \(U = \exp(2i\pi/f_\pi) \), \(\pi = \pi^a T^a \), \(\text{tr} T^a T^b = \frac{1}{2} \delta^{ab} \), \(M \) is the quark mass matrix, and \(\Lambda = m_\pi^2 f_\pi^2 \hat{m} \), with \(\hat{m} \) being the average light quark mass. Using the mathematical identity for a generic matrix \(A \),

\[\partial^\mu [\exp(A)] = \int_0^1 ds \exp(sA) \partial^\mu A \exp((1-s)A), \]

(21)

one can explicitly evaluate the trace of the energy–momentum tensor for the Lagrangian (20), with the result

\[\theta^\mu_\mu = -2 \frac{f^2}{4} \text{tr} \partial_\mu U \partial^\mu U^\dagger + 4\Lambda \text{tr} (MU + U^\dagger M^\dagger). \]

(22)

Expanding (22) in powers of pion field, one can generalize (18) for any (even) number of pions; to lowest order, we reproduce (18).

Now that we know the coupling of gluons to the two pion state, the pion–pair contribution to the spectral density (17) can be easily computed by performing the simple phase space integration, with the result

\[\rho_{\pi\pi}(q^2) = \frac{3}{32\pi^2} q^4. \]

(23)
Multi–pion contribution can be evaluated using (22); its influence will be discussed elsewhere. However the dominant contribution at small invariant masses σ, in which we are primarily interested here, comes from the $\pi\pi$ state.

Coming back to the initial expressions (2), (4) we find that to complete our derivation of the scattering amplitude we need to evaluate also the transition matrix element of the second term in (4), $\langle 0|g^2\theta^{(G)}|\pi\pi\rangle$. This tensor operator was discussed in the previous Section, where we have found that it contributes a substantial fraction, $8/23$, to the complete perturbative result. However, unlike the scalar operator, the tensor term is not coupled to the anomaly, and therefore $\langle 0|g^2\theta^{(G)}|\pi\pi\rangle \sim g^2$, where the coupling has to be evaluated at the heavy quarkonium scale. This contribution therefore is of higher order in the strong coupling, and will vanish in the heavy quark limit. Omitting it, we come to the following low–energy expression,

$$\langle 0|g^2 E^2 |\pi\pi\rangle = \left(\frac{8\pi^2}{b}\right) q^2 + O(\alpha_s, m^2_{\pi}).$$

Thus, in the heavy quark limit, the matrix element in question is known up to α_s and m^2_{π} corrections.

The result (24) has been derived in the chiral limit; the most important correction coming from the finite mass of the pion is the phase space threshold; we correct for it by writing down the spectral density in the form $(q^2 \geq 4m^2_{\pi})$,

$$\rho_{0}^{\pi\pi}(q^2) = \frac{3}{32\pi^2} \left(\frac{q^2 - 4m^2_{\pi}}{q^2}\right)^{1/2} q^4,$$

which should be valid at small q^2. Substituting (23) in (2), we get the potential due to the $\pi\pi$ exchange; at large R

$$V^{\pi\pi}(R) \rightarrow -\left(d_2 \frac{a^2}{c_0}\right)^2 \left(\frac{4\pi^2}{b}\right)^2 \frac{3}{2} (2m_{\pi})^4 \frac{m^2_{\pi}}{(4\pi R)^{5/2}} e^{-2m_{\pi}R}.$$

The same functional dependence of $\pi\pi$ exchange at large R has been obtained previously in Ref.3, but up to an unknown constant; in our approach, the overall strength of the interaction is fixed. Note that, unlike the perturbative result (23) which is manifestly $\sim g^4$, the amplitude (26) is $\sim g^0$ – this “anomalously”
strong interaction is the consequence of scale anomaly.

The low–energy theorems not only allow us to evaluate explicitly the contribution of uncorrelated $\pi\pi$ exchange; they also tell us that this contribution alone is not the full story yet. Indeed, the $\pi\pi$ spectral density alone cannot saturate the sum rule at high σ^2, the physical spectral density approaches the spectral density of perturbation theory, so the integral in does not get any contribution; at small σ^2, the $\pi\pi$ spectral density, according to the chiral and scale symmetries is suppressed by $\sim \sigma^4$. The low energy theorems require the presence of resonant enhancement in the 0^{++} $\pi\pi$, and perhaps multi-pion, KK and $\eta\eta$ channels as well. Here we will leave this interesting problem aside, and study only the influence of these resonances on the potential between the color dipoles. To do this, we introduce the pion scalar form factor $F(q^2)$ and write down the spectral density as

$$\rho_{\pi\pi}(q^2) = \frac{3}{32\pi^2} \left(\frac{q^2 - 4m_{\pi}^2}{q^2} \right)^{1/2} q^4 |F(q^2)|^2.$$ \hspace{1cm} (27)

The form factor is directly related to the experimental $\pi\pi$ phase shifts by the Omnès–Muskhelishvili equation with the solution

$$F(t) = \exp \left[\frac{t}{\pi} \int ds \frac{\delta_0^0(s)}{s(s-t-i\epsilon)} \right]; \hspace{1cm} (28)$$

with this formula we can make a full use of the experimental information on the $\pi\pi$ correlation. For our calculation we have used a simple analytic form for the phase shift δ_0^0 which was shown to fit the experimental data up to $s_{\pi\pi} \simeq (1.2 \text{ GeV})^2$. There are two main contributions to the spectral density, $\rho_{\pi\pi}^0$, which may be interpreted as the broad σ and narrow f_0 resonances.

In Fig. 2 we show the resulting potential between two J/ψ states. In computing it, we assumed that Coulomb relations for the Bohr radius and the Rydberg energy $a_0 = 4/(3 \alpha_s m)$ and $\epsilon_0 = (4/3 \alpha_s)^{-2}m = 1/a_0^2 m$ hold for the J/ψ. Using as an input $\epsilon_0 = 2M_D - M(J/\psi) = 642 \text{ MeV}$ and $m=1.5 \text{ GeV}$, we get $\alpha_s=0.87$ and $a_0=0.20 \text{ fm}$.

It can be clearly seen from Fig. 2 that at large distances the non–perturbative interaction dominates over the perturbative one. To evaluate the amplitude,

\[^d \text{Of course, in the heavy quark limit the amplitude will nevertheless vanish, since } a_0 \to 0 \text{ and } \epsilon_0 \to \infty. \]
Figure 2: The potential between two \(J/\psi \)'s (bold solid line); the perturbative contribution \(V^{pt} \) (dashed line) was evaluated within the invariant mass range \(\sigma > 2 \) GeV in the spectral density; \(V^{np} \) (long-dashed line) is the non-perturbative contribution.

we had to use an experimental input – the \(\pi \pi \) phase shifts, and the detailed shape of the potential depends on this input. However, as we will now see, the dominance of the non-perturbative interaction is a model-independent consequence of the low-energy theorems. Moreover, its overall strength can be shown to be completely determined by the energy density of non-perturbative vacuum of QCD.

4 The Sum Rule

Consider the integral over the non-perturbative part of the potential; according to (8), it can be written down as

\[
\int_a^\infty d^3R \left(V(R) - V^{pt}(R) \right) = -\left(\frac{q^2_0}{\epsilon_0} \right)^2 \left(\frac{4\pi^2}{b} \right)^2 \int d\sigma^2 \left(\rho(\sigma^2) - \rho^{pt}(\sigma^2) \right) \int_a^\infty dRR^2 \frac{1}{R} e^{-\sigma R}
\]
\[
\left(-\left(\vec{a}^2_0/b\right)^2 \left(4\pi^2 \right)^2 \int \frac{d\sigma^2}{\sigma^2} \left(\rho(\sigma^2) - \rho^{pt}(\sigma^2)\right) \Gamma(2,\sigma a)\right).
\]

As a consequence of asymptotic freedom, \(\rho(\sigma^2) \to \rho^{pt}(\sigma^2)\) at high \(\sigma\), so the integral in (29) attains its value in the region of \(\sigma < \sigma_0\), where \(\sigma_0\) is some characteristic scale at which the perturbative regime sets in. In the heavy quark limit the size of quarkonium \(a \sim (\alpha_s m)^{-1} \to 0\), and when \(\sigma_0 a \ll 1\), \(\Gamma(2,\sigma a) \simeq 1\) in the entire region of integration. The integral in (29), then, up to perturbative corrections \(\sim O(g^4)\), coincides with the integral in (16). Therefore we can re-write (29), in the heavy quark limit, as a sum rule

\[
\int d^3 R \left(V(R) - V^{pt}(R)\right) = -\left(\vec{a}^2_0/b\right)^2 \left(4\pi^2 \right)^2 16 |\epsilon_{vac}|,
\]

which expresses the overall strength of the interaction between two color dipoles in terms of the energy density of the non-perturbative QCD vacuum.

5 Final Remarks

What are the implications of our results? First, the pion clouds which dominate interactions of small color dipoles at low energies, as revealed by our analysis, may as well be important in high–energy scattering; this was suggested long time ago on general grounds1,21. However it is not yet clear if one can extend our approach to the scattering at high energies1.

Second, the fact that pions (and therefore light quarks) dominate the long–distance interactions of heavy quark systems is important for the lattice QCD simulations. Our findings suggest that to extract the information on the properties and interactions of heavy quarkonia from lattice QCD one should go beyond the “quenched” approximation.

Acknowledgments

We thank M. Gyulassy, T.D. Lee, L.D. McLerran, A.H. Mueller, R.D. Pisarski, E.V. Shuryak and M.B. Voloshin for useful discussions. D. K. is also grateful to J. Ellis for explanations of scale invariance and to H. Mishra and H. Satz for

11For a very interesting related discussion see Ref.\cite{22}.
collaboration on related topics. He thanks the Organizers for their invitation to this memorable Workshop.

References

1. A.A. Anselm and V.N. Gribov, Phys. Lett. B40, 487 (1972).
2. M.B. Voloshin, Nucl. Phys. B154, 365 (1978).
3. M.E. Peskin, Nucl. Phys. B156, 365 (1977); G. Bhanot and M.E. Peskin, Nucl. Phys. B156, 391 (1977).
4. A.B. Kaidalov and P.E. Volkovitsky, Phys. Rev. Lett. 69, 3155 (1992).
5. M. Luke, A. Manohar and M. Savage, Phys. Lett. B288, 355 (1992).
6. D. Kharzeev and H. Satz, Phys. Lett. B334, 155 (1994).
7. A.H. Mueller, Nucl. Phys. B415, 373 (1994).
8. A.H. Mueller, Phys. Lett. B396, 251 (1997).
9. Yu.L. Dokshitzer, hep-ph/9801372.
10. K.G. Wilson, Phys. Rev. 179, 1499 (1969).
11. D. Kharzeev, in Selected Topics in Nonperturbative QCD, A. Di Giacomo and D. Diakonov (Eds.), IOS, 1996; nucl-th/9601029.
12. V.A. Novikov and M.A. Shifman, Z. Phys. C8, 43 (1981).
13. J. Ellis, Nucl. Phys. B22, 478 (1970); R.J. Crewther, Phys. Lett. B33, 305 (1970); M.S. Chanowitz and J. Ellis, Phys. Lett. B40, 397 (1972).
14. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Phys. Lett. B78, 443 (1978).
15. H.B.G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
16. V.A. Novikov et al., Nucl. Phys. B165, 67 (1980).
17. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147, 385 (1980).
18. M.B. Voloshin and V.I. Zakharov, Phys. Rev. Lett. 45, 688 (1980).
19. M.A. Shifman, Z. Phys. C9, 347 (1981).
20. S. Ishida et al. Prog. Theor. Phys. 95, 745 (1996).
21. V.N. Gribov, Sov. J. Nucl. Phys. 9, 246 (1969).
22. J.D. Bjorken, hep-ph/9712240.