DISCRETENESS AND HOMOGENEITY OF THE TOPOLOGICAL FUNDAMENTAL GROUP

JACK S. CALCUT AND JOHN D. MCCARTHY

Abstract. For a locally path connected topological space, the topological fundamental group is discrete if and only if the space is semilocally simply-connected. While functoriality of the topological fundamental group for arbitrary topological spaces remains an open question, the topological fundamental group is always a homogeneous space.

1. Introduction

The concept of a natural topology for the fundamental group appears to have originated with Hurewicz [8] in 1935. It received further attention by Dugundji [2] in 1950 and by Biss [1], Fabel [3, 4, 5, 6], and others more recently. The purpose of this note is to prove the following folklore theorem.

Theorem 1. Let X be a locally path connected topological space. The topological fundamental group $\pi_1^{\top}(X)$ is discrete if and only if X is semilocally simply-connected.

Theorem 5.1 of [1] is Theorem 1 without the hypothesis of local path connectedness. However a counterexample of Fabel [4] shows that this stronger result is false. Fabel [4] also proves a weaker version of Theorem 1 assuming that X is locally path connected and a metric space. In this note we remove the metric hypothesis.

Our proof proceeds from first topological principles making no use of rigid covering fibrations [1] nor even of classical covering spaces. We make no use of the functoriality of the topological fundamental group, a property which was also a main result in [1, Cor. 3.4] but in fact is unproven [6, pp. 188–189]. Beware that the misstep in the proof of [1, Prop. 3.1], namely the assumption that the product of quotient maps is a quotient map, is repeated in [7, Thm. 2.1].

In general the homeomorphism type of the topological fundamental group depends on a choice of basepoint. We say that $\pi_1^{\top}(X)$ is discrete without reference to basepoint provided $\pi_1^{\top}(X, x)$ is discrete for each $x \in X$. If x and y are connected by a path in X, then $\pi_1^{\top}(X, x)$ and $\pi_1^{\top}(X, y)$ are homeomorphic. This fact was proved in [1, Prop. 3.2] and a detailed proof is in Section 4 below for completeness. Theorem 1 now immediately implies the following.

Corollary. Let X be a path connected and locally path connected topological space. The topological fundamental group $\pi_1^{\top}(X, x)$ is discrete for some $x \in X$ if and only if X is semilocally simply-connected.
As mentioned above it is open whether π_{1}^{top} is a functor from the category of pointed topological spaces to the category of topological groups. The unsettled question is whether multiplication

$$\pi_{1}^{\text{top}}(X, x) \times \pi_{1}^{\text{top}}(X, x) \xrightarrow{\mu} \pi_{1}^{\text{top}}(X, x)$$

\(([f], [g]) \mapsto [f] \cdot [g]\)

is continuous. By Theorem 1 if X is locally path connected and semilocally simply-connected, then $\pi_{1}^{\text{top}}(X, x)$, and hence $\pi_{1}^{\text{top}}(X, x) \times \pi_{1}^{\text{top}}(X, x)$, is discrete and so μ is trivially continuous. Continuity of μ in general remains an interesting question.

Lemma 4 below shows that if (X, x) is an arbitrary pointed topological space, then left and right multiplication by any fixed element in $\pi_{1}^{\text{top}}(X, x)$ are continuous self maps of $\pi_{1}^{\text{top}}(X, x)$. Therefore $\pi_{1}^{\text{top}}(X, x)$ acts on itself by left and right translation as a group of self homeomorphisms. Clearly these actions are both transitive. Thus we obtain the following result.

Theorem 2. If (X, x) is a pointed topological space, then $\pi_{1}^{\text{top}}(X, x)$ is a homogeneous space.

This note is organized as follows. Section 2 contains definitions and conventions, Section 3 proves two lemmas and Theorem 1, Section 4 addresses change of basepoint, and Section 5 shows left and right translation are homeomorphisms.

2. Definitions and Conventions

By convention, neighborhoods are open. Unless stated otherwise, homomorphisms are inclusion induced.

Let X be a topological space and $x \in X$. A neighborhood U of x is *relatively inessential* (in X) provided $\pi_{1}(U, x) \to \pi_{1}(X, x)$ is trivial. X is *semilocally simply-connected* at x provided there exists a relatively inessential neighborhood U of x. X is *semilocally simply-connected* provided it is so at each $x \in X$. A neighborhood U of x is *strongly relatively inessential* (in X) provided $\pi_{1}(U, y) \to \pi_{1}(X, y)$ is trivial for every $y \in U$.

The fundamental group is a functor from the category of pointed topological spaces to the category of groups. Consequently if A and B are any subsets of X such that $x \in A \subset B \subset X$ and $\pi_{1}(B, x) \to \pi_{1}(X, x)$ is trivial, then $\pi_{1}(A, x) \to \pi_{1}(X, x)$ is trivial as well. This observation justifies the convention that neighborhoods are open.

If X is locally path connected and semilocally simply-connected, then each $x \in X$ has a path connected relatively inessential neighborhood U. Such a U is necessarily a strongly relatively inessential neighborhood of x as the reader may verify (see for instance [9, Ex. 5 p. 330]).

Let (X, x) be a pointed topological space and let $I = [0, 1] \subset \mathbb{R}$. The space

$$C_{x}(X) = \{f : (I, \partial I) \to (X, x) \mid f \text{ is continuous}\}$$
is endowed with the compact-open topology. The function
\[C_x(X) \xrightarrow{q} \pi_1(X, x) \]
\[f \mapsto [f] \]
is surjective so \(\pi_1(X, x) \) inherits the quotient topology and one writes \(\pi_{1}^{\text{top}}(X, x) \) for the resulting topological fundamental group. Let \(e_x \in C_x(X) \) denote the constant map. If \(f \in C_x(X) \), then \(f^{-1} \) denotes the path defined by \(f^{-1}(t) = f(1-t) \).

3. Proof of Theorem 1

We prove two lemmas and then Theorem 1.

Lemma 1. Let \((X, x)\) be a pointed topological space. If \(\{[e_x]\} \) is open in \(\pi_{1}^{\text{top}}(X, x) \), then \(x \) has a relatively inessential neighborhood in \(X \).

Proof. The quotient map \(q \) is continuous and \(\{[e_x]\} \subset \pi_{1}^{\text{top}}(X, x) \) is open, so \(q^{-1}([e_x]) = [e_x] \) is open in \(C_x(X) \). Therefore \(e_x \) has a basic open neighborhood
\[
(1) \quad e_x \in V = \bigcap_{n=1}^{N} V(K_n, U_n) \subset [e_x] \subset C_x(X)
\]
where each \(K_n \subset I \) is compact, each \(U_n \subset X \) is open, and each \(V(K_n, U_n) \) is a subbasic open set for the compact-open topology on \(C_x(X) \). We will show that
\[
U = \bigcap_{n=1}^{N} U_n
\]
is a relatively inessential neighborhood of \(x \) in \(X \). Clearly \(U \) is open in \(X \) and, by (1), \(x \in U \). Finally, let \(f : (I, \partial I) \to (U, x) \). For each \(1 \leq n \leq N \) we have
\[
f(K_n) \subset U \subset U_n.
\]
Thus \(f \in [e_x] \) by (1) and so \([f] = [e_x] \) is trivial in \(\pi_1(X, x) \). \(\square \)

Lemma 2. Let \((X, x)\) be a pointed topological space and let \(f \in C_x(X) \). If \(X \) is locally path connected and semilocally simply-connected, then \(\{[f]\} \) is open in \(\pi_{1}^{\text{top}}(X, x) \).

Proof. As \(q \) is a quotient map, we must show that \(q^{-1}([f]) = [f] \) is open in \(C_x(X) \). So let \(g \in [f] \). For each \(t \in I \) let \(U_t \) be a path connected relatively inessential neighborhood of \(g(t) \) in \(X \). The sets \(g^{-1}(U_t), t \in I \), form an open cover of \(I \). Let \(\lambda > 0 \) be a Lebesgue number for this cover. Choose \(N \in \mathbb{N} \) so that \(1/N < \lambda \). For each \(1 \leq n \leq N \) let
\[
I_n = \left[\frac{n-1}{N}, \frac{n}{N} \right] \subset I.
\]
Reindex the \(U_t \)'s so that
\[
g(I_n) \subset U_n \quad \text{for each} \quad 1 \leq n \leq N.
\]
The \(U_n \)'s are not necessarily distinct, nor does the proof require this condition. For each \(1 \leq n \leq N \) let \(W_n \) denote the path component of \(U_n \cap U_{n+1} \) containing \(g(n/N) \), so
\[
(2) \quad g \left(\frac{n}{N} \right) \in W_n \subset (U_n \cap U_{n+1}) \subset X.
\]
Consider the basic open set
\[(3) \quad V = \left(\bigcap_{n=1}^{N} V(I_n, U_n) \right) \cap \left(\bigcap_{n=1}^{N-1} V \left(\left\{ \frac{n}{N} \right\}, W_n \right) \right) \subset C_x(X).\]

By construction, \(g \in V\). It remains to show that \(V \subset [f]\). So let \(h \in V\). As \([g] = [f]\), it suffices to show that \([h] = [g]\).

By (3) we have
\[(4) \quad h \left(\frac{n}{N} \right) \in W_n \quad \text{for each } 1 \leq n \leq N.\]

For each \(1 \leq n \leq N - 1\) let \(\gamma_n : I \to W_n\) be a continuous path such that
\[
\gamma_n(0) = h \left(\frac{n}{N} \right) \quad \text{and} \quad \gamma_n(1) = g \left(\frac{n}{N} \right),
\]
which exists by (2) and (3). Let \(\gamma_0 = e_x\) and \(\gamma_N = e_x\). For each \(1 \leq n \leq N\) define
\[
\begin{align*}
I & \quad \xrightarrow{s_n} I_n \\
\frac{t}{N} t + \frac{n-1}{N} & \quad \xrightarrow{\gamma_n^{-1}} W_n
\end{align*}
\]
and let
\[
\begin{align*}
g_n &= g \circ s_n \quad \text{and} \\
h_n &= h \circ s_n.
\end{align*}
\]

So \(g_n\) and \(h_n\) are affine reparameterizations of \(g|_{I_n}\) and \(h|_{I_n}\) respectively. For each \(1 \leq n \leq N\)
\[
\delta_n = g_n \ast \gamma_n^{-1} \ast h_n^{-1} \ast \gamma_{n-1}
\]
is a loop in \(U_n\) based at \(g_n(0)\) (see Figure 1). As \(U_n\) is a strongly relatively inessential neighborhood, \([\delta_n] = 1 \in \pi_1(X, g_n(0))\). Therefore \(g_n\) and \(\gamma_{n-1}^{-1} \ast h_n \ast \gamma_n\) are path

\[\text{Figure 1. Loop } \delta_n = g_n \ast \gamma_n^{-1} \ast h_n^{-1} \ast \gamma_{n-1} \text{ in } U_n \text{ based at } g_n(0).\]
homotopic. In \(\pi_1(X, x) \) we have
\[
[h] = [h_1 * h_2 * \cdots * h_N]
= [\gamma_0^{-1} * \gamma_1 * \gamma_1^{-1} * h_2 * \gamma_2 * \cdots * \gamma_N^{-1} * h_N]
= [g_1 * g_2 * \cdots * g_N]
= [g]
\]
proving the lemma. \(\square \)

In the previous proof, the second collection of subbasic open sets in (3) are essential. Figure 2 shows two loops \(g \) and \(h \) based at \(x \) in the annulus \(X = S^1 \times I \). All conditions in the proof are satisfied except \(g(1/N) \) and \(h(1/N) \) fail to lie in the same connected component of \(U_1 \cap U_2 \). Clearly \(g \) and \(h \) are not homotopic loops.

Proof of Theorem 4. First assume \(\pi_1^{\text{top}}(X) \) is discrete and let \(x \in X \). By definition \(\pi_1^{\text{top}}(X, x) \) is discrete and so \(\{[e_x]\} \) is open in \(\pi_1^{\text{top}}(X, x) \). By Lemma 1 \(x \) has a relatively inessential neighborhood in \(X \). The choice of \(x \in X \) was arbitrary and so \(X \) is semilocally simply-connected.

Next assume \(X \) is semilocally simply-connected and let \(x \in X \). Points in \(\pi_1^{\text{top}}(X, x) \) are open by Lemma 2 and so \(\pi_1^{\text{top}}(X, x) \) is discrete. The choice of \(x \in X \) was arbitrary and so \(\pi_1^{\text{top}}(X) \) is discrete. \(\square \)

4. **Basepoint change**

Lemma 3. Let \(X \) be a topological space and \(x, y \in X \). If \(x \) and \(y \) lie in the same path component of \(X \), then \(\pi_1^{\text{top}}(X, x) \) and \(\pi_1^{\text{top}}(X, y) \) are homeomorphic.

Proof. Let \(\gamma : I \to X \) be a continuous path with \(\gamma(0) = y \) and \(\gamma(1) = x \). Define the function
\[
\begin{align*}
C_y(X) & \xrightarrow{\gamma} C_x(X) \\
f & \mapsto (\gamma^{-1} * f) * \gamma
\end{align*}
\]
First we show that Γ is continuous. Let $I_1 = [0, 1/4]$, $I_2 = [1/4, 1/2]$, and $I_3 = [1/2, 1]$. Define the affine homeomorphisms

\[
\begin{align*}
I_1 &\xrightarrow{s_1} I \\
t &\xrightarrow{4t} 4t \\
I_2 &\xrightarrow{s_2} I \\
t &\xrightarrow{4t - 1} 4t - 1 \\
I_3 &\xrightarrow{s_3} I \\
t &\xrightarrow{2t - 1} 2t - 1
\end{align*}
\]

and note that

\[
\begin{align*}
I &\xrightarrow{\Gamma(f)} X \\
t &\xrightarrow{\gamma^{-1} \circ s_1(t)} 0 \leq t \leq \frac{1}{4} \\
t &\xrightarrow{f \circ s_2(t)} \frac{1}{4} \leq t \leq \frac{1}{2} \\
t &\xrightarrow{\gamma \circ s_3(t)} \frac{1}{2} \leq t \leq 1
\end{align*}
\]

Consider an arbitrary subbasic open set $V = V(K, U) \subset C_x(X)$. Observe that $\Gamma(f) \in V$ if and only if

(5) $\gamma^{-1} \circ s_1(K \cap I_1) \subset U,$

(6) $f \circ s_2(K \cap I_2) \subset U,$ and

(7) $\gamma \circ s_3(K \cap I_3) \subset U.$

Define the subbasic open set $V' = V(s_2(K \cap I_2), U) \subset C_y(X)$. Observe that $f \in V'$ if and only if (6) holds. As conditions (5) and (7) are independent of f, either $\Gamma^{-1}(V) = \emptyset$ or $\Gamma^{-1}(V) = V'$. Thus Γ is continuous. Next consider the diagram

\[
\begin{array}{ccc}
C_y(X) & \xrightarrow{\Gamma} & C_x(X) \\
\downarrow q_y & & \downarrow q_x \\
\pi^\text{top}_1(X, y) & \xrightarrow{\pi(\Gamma)} & \pi^\text{top}_1(X, x)
\end{array}
\]

The composition $q_x \circ \Gamma$ is constant on each fiber of q_y so there is a unique set function making the diagram commute, namely $\pi(\Gamma) : [f] \mapsto [\Gamma(f)]$. As q_y is a quotient map, the universal property of quotient maps \cite[Thm. 11.1 p. 139]{9} implies that $\pi(\Gamma)$ is continuous. It is well known that $\pi(\Gamma)$ is a bijection \cite[Thm. 2.1 p. 327]{9}. Repeating the above argument with the roles of x and y interchanged and the roles of γ and γ^{-1} interchanged, we see that $\pi(\Gamma)^{-1}$ is continuous. Thus $\pi(\Gamma)$ is a homeomorphism as desired. \hfill \square

5. Translation

Lemma 4. Let (X, x) be a pointed topological space. If $[f] \in \pi^\text{top}_1(X, x)$, then left and right translation by $[f]$ are self homeomorphisms of $\pi^\text{top}_1(X, x)$.

Proof. Fix $[f] \in \pi^\text{top}_1(X, x)$ and consider left translation by $[f]$ on $\pi^\text{top}_1(X, x)$

\[
\begin{array}{ccc}
\pi^\text{top}_1(X, x) & \xrightarrow{L_1[f]} & \pi^\text{top}_1(X, x) \\
\downarrow [g] & & \downarrow [f \cdot [g]]
\end{array}
\]
Plainly $L_{[f]}$ is a bijection of sets. Consider the commutative diagram

$$
\begin{array}{ccc}
C_x(X) & \xrightarrow{L_f} & C_x(X) \\
\downarrow{q} & & \downarrow{q} \\
\pi_1^{\text{top}}(X,x) & \xrightarrow{L_{[f]}} & \pi_1^{\text{top}}(X,x)
\end{array}
$$

where L_f is defined by

$$
\begin{array}{ccc}
C_x(X) & \xrightarrow{L_f} & C_x(X) \\
g & \xrightarrow{f \ast g} & f \ast g
\end{array}
$$

First we show L_f is continuous. Let $I_1 = [0, 1/2]$ and $I_2 = [1/2, 1]$. Define the affine homeomorphisms

$$
\begin{array}{ccc}
I_1 & \xrightarrow{s_1} & I \\
t & \xrightarrow{2t} & 2t
\end{array}
\quad
\begin{array}{ccc}
I_2 & \xrightarrow{s_2} & I \\
t & \xrightarrow{2t - 1} & 2t - 1
\end{array}
$$

and note that

$$
\begin{array}{ccc}
I & \xrightarrow{f \ast g} & X \\
t & \xrightarrow{f \circ s_1(t)} & f \circ s_1(t) \\
& 0 \leq t \leq \frac{1}{2} & 0 \leq t \leq \frac{1}{2}
\end{array}
\quad
\begin{array}{ccc}
I & \xrightarrow{g \circ s_2(t)} & g \circ s_2(t) \\
& \frac{1}{2} \leq t \leq 1 & \frac{1}{2} \leq t \leq 1
\end{array}
$$

Consider an arbitrary subbasic open set

$$
V = V(K, U) \subset C_x(X).
$$

Observe that $f \ast g \in V$ if and only if

$$
\begin{align*}
(9) & \quad f \circ s_1(K \cap I_1) \subset U \\
(10) & \quad g \circ s_2(K \cap I_2) \subset U.
\end{align*}
$$

Define the subbasic open set

$$
V' = V(s_2(K \cap I_2), U) \subset C_x(X).
$$

Observe that $g \in V'$ if and only if (10) holds. As condition (9) is independent of g, either $L_f^{-1}(V) = \emptyset$ or $L_f^{-1}(V) = V'$. Thus L_f is continuous. The composition $q \circ L_f$ is constant on each fiber of the quotient map q and (8) commutes, so the universal property of quotient maps [9, Thm. 11.1 p. 139] implies that $L_{[f]}$ is continuous.

Applying the previous argument to f^{-1} we get $L_{[f]}^{-1} = L_{[f^{-1}]}$ is continuous and $L_{[f]}$ is a homeomorphism. The proof for right translation is almost identical. □

References

[1] D. K. Biss, The topological fundamental group and generalized covering spaces, *Topology Appl.* **124** (2002) 355–371.

[2] J. Dugundji, A topologized fundamental group, *Proc. Nat. Acad. Sci. USA* **36** (1950) 141–143.

[3] P. Fabel, The fundamental group of the harmonic archipelago, preprint, available at http://www2.msstate.edu/~fabel/.

[4] P. Fabel, Metric spaces with discrete topological fundamental group, *Topology Appl.* **154** (2007) 635–638.
[5] P. Fabel, The topological Hawaiian earring group does not embed in the inverse limit of free groups, *Algebr. Geom. Topol.* 5 (2005) 1585–1587 (electronic).

[6] P. Fabel, Topological fundamental groups can distinguish spaces with isomorphic homotopy groups, *Topology Proc.* 30 (2006) 187–195.

[7] H. Ghane, Z. Hamed, B. Mashayekhy, and H. Mirebrahimi, Topological homotopy groups, *Bull. Belg. Math. Soc. Simon Stevin* 15 (2008) 455–464.

[8] W. Hurewicz, Homotopie, Homologie und lokaler Zusammenhang, *Fund. Math.* 25 (1935) 467–485.

[9] J. R. Munkres, *Topology: a first course*, Prentice-Hall, Englewood Cliffs, NJ, 1975.

Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027

E-mail address: jack@math.msu.edu

URL: http://www.math.msu.edu/~jack/

Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027

E-mail address: mccarthy@math.msu.edu

URL: http://www.math.msu.edu/~mccarthy/