Tracheal, laryngeal and pulmonary mucormycosis followed by organizing pneumonia in a patient with Adult Onset Still’s Disease

Fabian Leoa, Michael Zehb, Annegret Prothmannc, Oliver Kurzaid,e,⁎, Sylke Kurza, Christian Grohéa

a Department of Respiratory Medicine, Evangelische Lungenklinik Berlin, Lindenberger Weg 27, 13125 Berlin, Germany
b Biopisches Institut, Institute of Pathology, Lindenberger Weg 27, 13125 Berlin, Germany
c Department of Radiology, Evangelische Lungenklinik Berlin, Lindenberger Weg 27, 13125 Berlin, Germany
d German National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
e Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080 Würzburg, Germany

A R T I C L E I N F O

Keywords:
Tracheal mucormycosis
Pulmonary mucormycosis
Lichtheimia
Organizing pneumonia

A B S T R A C T

We report a case of tracheal, laryngeal and pulmonary mucormycosis in a patient receiving immunosuppressive medication for an autoinflammatory fever syndrome. Mucormycosis was confirmed by histopathology from tracheal specimens and molecular evidence of Lichtheimia.

A surgical approach was not possible because of the multifocal disease pattern and the extent of tracheal involvement. The patient was successfully treated with liposomal amphotericin B followed by posaconazole maintenance therapy. After 9 months, recurrent pulmonary mucormycosis was suspected but emerged as organizing pneumonia without evidence of active fungal infection.

1. Introduction

Invasive mucormycosis (formerly known as zygomycosis) is an often fatal opportunistic infection caused by fungi belonging to the ubiquitous order Mucorales. Underlying conditions include hematologic malignancies, immunosuppressive pharmacotherapy, diabetes and trauma. Pulmonary disease, caused by inhalation of asexual spores, is among the most common manifestations and is associated with high mortality, reaching up to 56% [1]. Tracheal and laryngeal mucormycosis have rarely been described and can lead to local complications, such as airway obstruction and cartilage damage [2–4]. Clinical guidelines for the diagnosis and management of mucormycosis were published in 2014. Diagnosis is usually based on direct microscopy of clinical specimens, histopathology and culture. The reversal of predisposing factors and surgical debridement in addition to liposomal amphotericin B are recommended as first-line therapies, and posaconazole is recommended for salvage treatment [5].

2. Case

A 74-year-old male was referred after ineffective antibacterial therapy for pneumonia. He had a 12-year-history of glucocorticoid use for an autoinflammatory fever syndrome classified as Adult Onset Sill’s Disease (AOSD). He had received prednisolone pulse therapy at 0.6 mg/kg/d for 7 days (d = 72 to day = 66) and was on 5 mg/day at admission (day = 8). There had been molecular evidence of respiratory infection with Influenza H1N1/09 infection (day = 60), which had not been treated specifically. Empiric antibiotic treatment regimens had included cefuroxime, clarithromycin and levofloxacin. The patient presented a slightly reduced general condition with persistent cough, hemoptysis, chest pain, hoarseness and weight loss (5 kg in 2 months). He was afebrile, had no dyspnea and there were no rales or wheezes on lung auscultation. Blood pressure was 125/75 mmHg, heart rate was 100/min and respiratory rate was 18/min.

The blood C-reactive peptide (CRP) level was > 400 mg/L in the absence of leucocytosis and procalcitonin elevation. There was no serologic evidence of invasive aspergillosis. Blood gas analysis was remarkable at admission and during the hospital course. Selected laboratory parameters are shown in Table 1. Chest radiography (day = 8) demonstrated infiltrates in the left upper and lower lobe (Fig. 1A). Contrast-enhanced computed tomography (CT) at day = 7 revealed left upper lobe consolidation, small cavitory lesions in the right upper lobe.
and irregularities of the posterior tracheal wall (Fig. 1B). The corresponding finding on tracheobronchoscopy (Fig. 2A-C) was a necrotic alteration comprising the lower two-thirds of the pars membranacea. A whitish plaque was noted on the left vocal cord and an ulcerating lesion of the lower two-thirds of the pars membranacea. A corresponding finding on tracheobronchoscopy (Fig. 1B) was a necrotic alteration comprising the lower two-thirds of the pars membranacea. A whitish plaque was noted on the left vocal cord and an ulcerating lesion of the lower two-thirds of the pars membranacea.

Selected laboratory test results before and during antifungal treatment. Liver enzymes and blood gas analysis were unremarkable at all times and are not reported. Renal function deteriorates with liposomal amphotericin B administration (day + 21), resulting in renal failure at day + 42 with concomitant bacterial infection. Posaconazole maintenance therapy was started at day + 62.

Selected parameter and unit	day − 3	Day + 20	Day + 42	Day + 62	Day + 124
Leukocytes × 10^9/L	4.64	3.95	7.88	4.06	7.59
Segmented	35	81	54		
Granulocytes %	46	14	29		
Lymphocytes %	13	3	8		
Monocytes %	5	1	9		
Eosinophils %	6.4	5.0	5.9	4.9	7.0
Hemoglobin mmol/L	105	166	501	177	115
C-reactive protein (CRP) mg/L	0.09	1.49	0.2		
Procalcitonin µg/L	105	166	501	177	115
Creatinine µmol/L	60	35	10	32	54
GFR (CKD-EPI) ml/min/1.73²m					
Aspergillus-Ag (galactomannan)	Negative				
Aspergillus antibody titer	1: < 80				
(indirect hemagglutinin test)					

These complications were successfully managed, including the administration of piperacillin/tazobactam, while no antifungal therapy was applied between day + 42 and day + 62. Oral posaconazole (300 mg once daily) was established as an antifungal maintenance therapy at day + 63. Eight weeks later (day + 124), the patient presented in good a condition. His symptoms had resolved and laboratory findings were unremarkable except for a mild elevation of serum creatinine. Radiological findings had improved substantially (Fig. 4a, b). Endoscopy showed remission of the tracheal (Fig. 4c), laryngeal and endobronchial alterations. As no significant adverse drug reactions had occurred, antifungal therapy was continued. A maintenance dose of 4 mg prednisolone was considered necessary by the patient’s rheumatologist.

The patient was followed up with chest radiography, laboratory tests and bronchoscopy every two months. At day + 306, the patient was hospitalized with increasing dyspnea and treated with piperacillin/tazobactam for suspected pneumonia before being referred to our hospital again. Imaging at day + 316 and day + 321 showed progressive bilateral pulmonary consolidations, predominantly in the right upper lobe (Figs. 5a, 6a). Tracheobronchoscopy was unremarkable. BAL and transbronchial lung biopsy depicted no causative organism. Histology revealed intra-alveolar granulation tissue consistent with organizing pneumonia (OP). Antifungal therapy was terminated at day + 321 and the patient was started on prednisolone (beginning at 0.5 mg/kg prednisolone per day), which led to a gradual remission of the consolidations (Fig. 6a-c). At the last follow-up 8 months later (day + 522) the patient was well and there were no signs of recurrent fungal infection, but he still required steroids for control of his autoimmune inflammatory disease.

3. Discussion

The presented case illustrates a variety of manifestations of mucormycosis in the respiratory system. Diagnosis was delayed because bronchoscopy was not conducted in a timely manner. However, medical management with liposomal amphotericin B and posaconazole led to a favorable outcome. In contrast, in six of seven other previously reported cases of tracheal mucormycosis, endoscopic debridement [4] or surgical debridement and/or resection [2,3,7–9] were performed in addition to conventional or liposomal amphotericin B. Five of these six

Fig. 1. a: Chest radiograph showing opacities in the left upper lobe, lingula and lower lobe. b: Contrast-enhanced computed tomography of the chest showing left upper lobe consolidation (segment 2, black arrow), right upper lobe cavities within foci of consolidation, measuring up to 1.5 cm in diameter (white arrows), and irregularities of the posterior tracheal wall (red arrow).
patients survived, but two of them retained a tracheostomy after 4 months and 9 months, respectively [8,9]. Only one patient developed a fulminant disease course and died before any surgical intervention could be attempted [10].

Although in the presented case the pathogen could not be isolated from peripheral lung biopsies or BAL fluid, proof of tracheal mucormycosis strongly suggested pulmonary involvement. Considering the abnormal computed tomographic findings and the relative frequency of
morphologic features facilitate discrimination from other molds, primarily aspergillus. This differentiation is of particular importance, because voriconazole and echinocandins are not effective against Mucorales. Angioinvasion and necrosis are characteristic histopathological patterns. Culturing allows genus and species identification and drug susceptibility testing, but its sensitivity is not optimal. In cases with positive cultures, Rhizopus species, Mucor species and Lichtheimia species were the most commonly identified genera in a European registry study. Lichtheimia species (commonly L. corymbifera and L. ramosa) accounted for 19% of all mucormycoses [1]. PCR targeting the 18S-ribosomal DNA of Mucorales has higher sensitivity than cultures [16] but no assays are commercially available. Genus and species identification usually does not guide therapeutic management at this time, but helps to enhance epidemiological knowledge.

Whereas the use of polyenes, such as Amphotericin B, is often limited by severe adverse drug effects, azoles usually have acceptable toxicity profiles. In the presented case, despite precautious dosing (3 mg/kg instead of 5 mg/kg), liposomal Amphotericin B had to be discontinued after 6 weeks. Between day + 42 and day + 62, no antifungal treatment was given due to bacterial infection and acute renal failure. Posaconazole maintenance therapy was well tolerated for 9 months. No adverse events were reported and there was no indication of liver injury. No prospective studies have been undertaken to investigate optimal treatment duration and risk of recurrence in mucormycosis. According to current clinical guidelines, antifungal treatment should be sustained until a complete response is confirmed on imaging and a permanent reversal of predisposing factors is achieved [5]. However, adequately timing the withdrawal of antifungal therapy is challenging and remains a highly individualized decision.

Organizing pneumonia (OP) is defined pathologically by the presence of granulation tissue in distal air spaces, containing fibrin exudates, loose collagen and fibroblasts. It reflects a non-specific inflammatory process resulting from different types of lung injury. OP is most commonly associated with infection, connective tissue disorders, vasculitis or drugs [17]. Fungal pathogens that have been reported in this context are Cryptococcus neoformans, Pneumocystis jiroveci and Aspergillus [17–20]. Organizing pneumonia has also been described as a form of lung involvement in patients with AOSD [21]. As it is not possible to differentiate between organizing pneumonia and active infection on diagnostic imaging, careful histological clarification is essential [22]. Steroid therapy is the treatment of choice and, as seen in this case, the excellent response can confirm the diagnosis clinically.

Acknowledgements

Work of the NRZMyk is supported by the Robert-Koch-Institute from...
funds provided by the German Ministry of Health (grant-No. 1369-240).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

[1] A. Skiada, L. Pagano, A. Groll, S. Zimmerli, B. Dupont, K. Lagrou, et al. Zygomyces in Europe: analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomyces between 2005 and 2007. Clin. Microbiol. Infect. 17 (12), pp.1859–1867.

[2] J. Mattioni, J.E. Portnoy, J.E. Moore, D. Carlson, R.T. Sataloff, Laryngotracheal mucormycosis: report of a case. Ear nose Throat J. 95 (1) (2016) 29–39.

[3] J.R. Schwartz, M.G. Nagle, R.C. Elkins, J.A. Mohr, Mucormycosis of the trachea: an unusual cause of acute upper airway obstruction, Chest 81 (5) (1982) 653–654.

[4] L.C. Luo, D.Y. Cheng, H. Zhu, X. Shu, W.B. Chen, Inflammatory pseudotumoural endotracheal mucormycosis with cartilage damage, Eur. Respir. Rev.: Off. J. Eur. Respir. Soc. 18 (113) (2009) 186–189.

[5] O.A. Cornely, S. Arikan-Akdagli, E. Dannaoui, A.H. Groll, K. Lagrou, A. Chakrabarti, et al., ESCMID and ECMM joint clinical guidelines for the diagnosis and management of mucormycosis 2013, Clin. Microbiol. Infect.: Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 20 (Suppl 3) (2014) S5–S26.

[6] R. Bialek, F. Konrad, J. Kern, C. Aepinus, L. Cecenas, G.M. Gonzalez, PCR based identification and discrimination of agents of mucormycosis and aspergillosis in paraffin wax embedded tissue, J. clin. pathol. 58 (11) (2005) 1180–1184.

[7] S. Hashemzadeh, R.S. Tubbs, M.B. Fakhree, M.M. Shoja, Mucormycotic pseudoaneurysm of the common carotid artery with tracheal involvement, Mycoses 51 (4) (2008) 347–351.

[8] S. Mohindra, B. Gupta, K. Gupta, A. Bal, Tracheal mucormycosis pneumonia: a rare clinical presentation, Respir. Care 59 (11) (2014) e178–e181.

[9] O. Wolf, Z. Gil, L. Leider-Trejo, A. Khaif, P. Riderman, D.M. Fliss, Tracheal mucormycosis presented as an intraluminal soft tissue mass, Head Neck 26 (6) (2004) 541–543.

[10] D.B. Andrews, A. Allan, R.I. Larbaletier, Tracheal mucormycosis, Ann. Thorac. Surg. 63 (1) (1997) 230–232.

[11] C. Garcia-Vidal, P. Barba, M. Arnan, A. Moreno, I. Ruiz-Camps, C. Gudiel, et al., Invasive aspergillosis complicating pandemic influenza A (H1N1) infection in severely immunocompromised patients, Clin. Infect. Dis.: Off. Publ. Infect. Dis. Soc. Am. 53 (6) (2011) e16–e19.

[12] J.J. Vehreschild, P.J. Brockelmann, C. Bangard, J. Verheyen, M.J. Vehreschild, G. Michels, et al., Pandemic 2009 influenza A(H1N1) virus infection coinciding with invasive pulmonary aspergillosis in neutropenic patients, Epidemiol. Infect. 140 (10) (2012) 1848–1852.

[13] F.L. van de Veerendonk, E. Kolvrijck, P.P. Lestrade, C.J. Hodiamont, B.J. Rijnders, J. van Paassen, et al., Influenza-associated Aspergillosis in critically ill patients, Am. J. Respir. Crit. Care Med. (2017).

[14] E. Lin, T. Moua, A.H. Limper, Pulmonary mucormycosis: clinical features and outcomes, Infection (2017).

[15] F.Y. Lee, S.B. Mossad, K.A. Adal, Pulmonary mucormycosis: the last 30 years, Arch. Intern. Med. 159 (12) (1999) 1301–1309.

[16] J. Springer, M. Lackner, C. Ensinger, B. Risslegger, C.O. Morton, D. Nachbaur, et al., Clinical evaluation of a Mucorales-specific real-time PCR assay in tissue and serum samples, J. Med. Microbiol. 65 (12) (2016) 1414–1421.

[17] J.F. Cordier, Organising pneumonia, Thorax 55 (4) (2000) 318–328.

[18] A. Sakurai, H. Yanai, T. Ishida, K. Kamei, S. Izumi, Possible relationship between organizing pneumonia and chronic pulmonary aspergillosis: a case report and literature review, Respir. Investig. 55 (1) (2017) 74–78.

[19] A. Fernandez-Codina, B. Caralt-Ramisa, J.R. Masclans, M. Farre, C. Bravo, J. Rello, An unusual case of organizing pneumonia and infection by P. jirovecii, Med. Intensiv. 37 (4) (2013) 299–300.

[20] A.T. Kessler, T. Al Kharrat, A.P. Kourtis, Cryptococcus neoformans as a cause of bronchiolitis obliterans organizing pneumonia, J. Infect. Chemother.: Off. J. Jpn. Soc. Chemother. 16 (3) (2010) 206–209.

[21] M. Gerfaud-Valentin, V. Cotin, V. Jamiloux, A. Hot, A. Gaillard-Coadon, I. Durieu, et al., Parenchymal lung involvement in adult-onset Still disease: a STROBEC-compliant case series and literature review, Medicine 95 (30) (2016) e4258.

[22] F. Forghieri, L. Potenza, M. Morselli, M. Maccaferri, L. Pedrazzi, P. Barozzi, et al., Organising pneumonia mimicking invasive fungal disease in patients with leukaemia, Eur. J. Haematol. 85 (1) (2010) 76–82.