ON THE BOUNDEDNESS OF THRESHOLD OPERATORS IN $L_1[0, 1]$ WITH RESPECT TO THE HAAR BASIS

S. J. DILWORTH, S. GOGYAN, DENKA KUTZAROVA, AND TH. SCHLUMPRECHT

Abstract. We prove a near-unconditionality property for the normalized Haar basis of $L_1[0, 1]$.

1. Introduction

Let (e_i) be a semi-normalized basis for a Banach space X. For a finite subset $A \subset \mathbb{N}$, let $P_A(\sum a_i e_i) := \sum_{i \in A} a_i e_i$ denote the projection from X onto the span of basis vectors indexed by A. Recall that (e_i) is an unconditional basis if there exists a constant C such that, for all finite $A \subset \mathbb{N}$, $\|P_A\| \leq C$.

We say that (e_i) is near-unconditional if for all $0 < \delta \leq 1$ there exists a constant $C(\delta)$ such that for all $x = \sum a_i e_i$ satisfying the normalization condition $\sup |a_i| \leq 1$, and for all finite $A \subseteq \{i : |a_i| \geq \delta\}$,

$$\|P_A(x)\| \leq C(\delta)\|x\|.$$

Every unconditional basis is near-unconditional, and it is easy to check that a near-unconditional basis is unconditional if and only if $C(\delta)$ can be chosen to be independent of δ.

It was proved in \cite{1} that a basis is near-unconditional if and only if the thresholding operators $G_\delta(x) := \sum_{|a_i| \geq \delta} a_i e_i$ satisfy, for some constant $C_1(\delta)$,

$$\|G_\delta(x)\| \leq C_1(\delta)\|x\|,$$

and that the class of near-unconditional bases strictly contains the important class of quasi-greedy bases, defined by Konyagin and Temlyakov.

2000 Mathematics Subject Classification. 46B15, 46B22.

The first author was supported by the National Science Foundation under Grant Number DMS–1361461. The third author was partially supported by the Bulgarian National Science Fund under Grant DFNI/I02/10. The fourth author was supported by the National Science Foundation under Grant Numbers DMS–1160633 and DMS–1464713. The first and third authors were partially supported by the Workshop in Analysis and Probability at Texas A&M University in 2015.
as the class of bases for which $C_1(\delta)$ may be chosen to be independent of δ.

Elton [2] proved that every semi-normalized weakly null sequence contains a subsequence which is a near-unconditional basis for its closed linear span. On the other hand, Maurey and Rosenthal [6] gave an example of a semi-normalized weakly null sequence with no unconditional subsequence.

By a theorem of Paley [7], the Haar system is an unconditional basis of $L_p[0,1]$ for $1 < p < \infty$. For $p = 1$, on the other hand, a well-known example (see e.g. [4]) shows that the normalized Haar basis is not unconditional. The same example, which we now recall, also shows that the Haar basis fails to be near-unconditional.

Define $h_0 = 1_{[0,1]}$, and for $k \in \mathbb{N}$, set

$$h_1^{(k)} = 2^{k-1}(1_{[0,2^{-k})} - 1_{[2^{-k},2^{1-k})}).$$

Observe that for any $n \in \mathbb{N}$

$$\left\| h_0 + \sum_{k=1}^{2n} h_1^{(k)} \right\| = 1,$$

and for some constant $c > 0$

$$\left\| h_0 + \sum_{k=1}^{2n} h_1^{(2k)} \right\| > cn.$$

So, setting $f_n = h_0 + \sum_{k=1}^{2n} h_1^{(k)}$, and $A_n = \{0, 2, 4, \ldots, 2n\}$, we have $\|f_n\| = 1$ and $\|P_{A_n}(f_n)\| \geq cn$, which witnesses the failure of near-unconditionality with $\delta = 1$. In this example the nonzero coefficients of f_n are equal and they lie along the left branch of the Haar system. Our main result shows that in a certain sense every example of the failure of near-unconditionality must be of this type.

We state our main result precisely below but the idea is as follows. Suppose that the Haar coefficients of $f \in L_1[0,1]$, δ, and A are as stated in the definition of near-unconditionality. We show that there is an enlargement $B \supseteq A$ such that $\|P_B(f)\| \leq C(\delta)\|f\|$ and we provide an explicit construction of B. Roughly speaking, the ‘added’ coefficients in $B \setminus A$ are those which lie along a segment of a branch of the Haar system such that the coefficient of the maximal element of the segment (with respect to the usual tree ordering) belongs to A and all the coefficients of f along the segment are approximately equal to each other (to within some prescribed multiplicative factor of $1 + \varepsilon$). For f_n and the sets A_n, the enlargements are $B_n = \{0, 1, 2, \ldots, 2n\}$, and so $P_{B_n}(f_n) = f_n$, which renders the example harmless. Here the enlargement is as large
as possible. The interest of our result, however, resides in the fact that, for certain \(f \) and \(A \), the enlargement will often be trivial, i.e., \(B = A \), or quite small.

The normalized Haar basis is not a quasi-greedy basis of \(L_1[0,1] \), i.e., the Thresholding Greedy Algorithm fails to converge for certain initial vectors. In a remarkable paper \([3]\) Gogyan exhibited a weak thresholding algorithm which produces uniformly bounded approximants converging to \(f \) for all \(f \in L_1[0,1] \). The proof of our main theorem uses results and techniques from \([3]\). We have chosen to reprove some of these results to achieve what we hope is a self-contained and accessible presentation.

2. Notation and basic facts

We denote the dyadic subintervals of \([0,1] \) by \(\mathcal{D} \), and put \(\overline{\mathcal{D}} = \mathcal{D} \cup \{[0,2]\} \). We think of \(\mathcal{D} \) and \(\overline{\mathcal{D}} \) being partially ordered by “\(\subset \)”. We denote by \(I^+ \) and \(I^- \) the left and the right half subinterval of \(I \in \mathcal{D} \), respectively. \(I^+ \) and \(I^- \) are then the direct successors of \(I \), while the set \(\text{succ}(I) = \{ J \in \mathcal{D} : J \subset I \} \) is called the successors of \(I \in \mathcal{D} \). The predecessors of an \(I \in \mathcal{D} \) is the set \(\text{pred}(I) = \{ J \in \overline{\mathcal{D}} : J \supseteq I \} \).

It follows that the \(\text{pred}(I) \) is a linearly ordered set. If \(I \subseteq J \) are in \(\overline{\mathcal{D}} \) we put \([I,J] = \{ K \in \overline{\mathcal{D}} : I \subseteq K \subseteq J \} \).

Let \(S \subset \overline{\mathcal{D}} \) be finite and not empty. Then \(S \) contains elements \(I \) which are minimal in \(S \), i.e., there is no \(J \in S \) for which \(J \subset I \). We put in this case \(S' = S \setminus \{ I \in S : I \text{ is minimal in } S \} \).

Inductively we define \(S^{(n)} \) for \(n \in \mathbb{N}_0 \), by \(S^{(0)} = S \), and, assuming \(S^{(n)} \) has been defined, we put \(S^{(n+1)} = (S^{(n)})' \). Since \(S \) was assumed to be finite, there is an \(n \in \mathbb{N} \), for which \(S^{(n)} = \emptyset \), and we define the order of \(S \) by \(\text{ord}(S) = \min \{ n \in \mathbb{N} : S^{(n)} = \emptyset \} - 1 = \max \{ n \in \mathbb{N} : S^{(n)} \neq \emptyset \} \) and for \(I \in S \) we define the order of \(I \) in \(S \) to be the (unique) natural number \(m \in [0, \text{ord}(S)] \), for which \(I \in S^{(m)} \setminus S^{(m+1)} \), and we denote it by \(\text{ord}(I,S) \).

\((h_I : I \in \overline{\mathcal{D}})\) denotes the \(L_1 \)-normalized Haar basis, i.e.,

\[h_{[0,2]} = 1_{[0,1]} \text{ and } h_I = 2^n(1_{I^+} - 1_{I^-}), \text{ if } I \in \mathcal{D}, \text{ with } m(I) = 2^{-n}, \]
m denoting the Lebesgues measure. If \(f \in L_1[0,1] \) we denote the coefficients of \(f \) with respect to \((h_I)\) by \(c_I(f) \), and thus

\[
(1) \quad f = \sum_{I \in \mathcal{D}} c_I(f)h_I \quad \text{for } f \in L_1[0,1].
\]

From the normalization of \((h_I)\) it follows that

\[
(2) \quad c_I(f) = \int_{I^+} f \, dx - \int_{I^-} f \, dx.
\]

For \(f \in L_1[0,1] \) the support of \(f \) with respect to the Haar basis is the set

\[
\text{supp}_H(f) = \{I \in \mathcal{D} : c_I(f) \neq 0\}.
\]

We will use the following easy inequalities for \(f \in L_1[0,1] \) and \(I, J \in \mathcal{D} \), with \(J \subseteq I \), i.e.,

\[
(3) \quad \|f\|_I := \int_I |f| \, dx \geq \int_J |f| \, dx \geq \int_{J^+} f \, dx - \int_{J^-} f \, dx = |c_J(f)|.
\]

For a finite set \(\mathcal{S} \subset \mathcal{D} \) we denote by \(P_{\mathcal{S}} \) the canonical projection from \(L_1[0,1] \) onto the span of \((h_I : I \in \mathcal{S})\):

\[
P_{\mathcal{S}} : L_1 \rightarrow L_1, \quad f \mapsto \sum_{I \in \mathcal{S}} c_I(f)h_I.
\]

If \(\mathcal{S} \) is cofinite \(P_{\mathcal{S}} \) is defined by \(\text{Id} - P_{\mathcal{D}\setminus\mathcal{S}} \). We will use the fact that the Haar system is a monotone basis with respect to any order, which is consistent with the partial order “\(\subset \)”. It follows therefore that the projections

\[
S_I : L_1[0,1] \rightarrow L_1[0,1], \quad f \mapsto f - \sum_{J \subseteq I} c_J(f)h_J,
\]

are bounded linear projections with \(\|S_I\| \leq 1 \), for all \(I \in \mathcal{D} \). Moreover we observe that

\[
(4) \quad \|S_I(f)\|_I = \left\| \sum_{J \in \text{pred}(I)} c_J(f)h_J \right\|_I \\
\leq \sum_{J \in \text{pred}(I)} |c_J(f)|\|h_J\|_I \\
= \sum_{J \in \text{pred}(I)} |c_J(f)|\frac{m(I)}{m(J)} \leq \sup_{J \in \text{pred}(I)} |c_J(f)|.
\]
For $f \in L_1[0,1]$, $\varepsilon > 0$, and $\mathcal{A} \subset \text{supp}_H(x)$ we define

$$\mathcal{A}_\varepsilon = \left\{ J \in \overline{D} : \exists I \in \mathcal{A}, \ I \subseteq J \text{ and } \left| \frac{c_K(f) - c_I(f)}{c_I(f)} \right| < \varepsilon, \ \text{for all } K \in [I,J] \right\}.$$

(5)

Since \mathcal{A}_ε depends on ε and the family $(c_I(f) : I \in \overline{D})$, we also write $\mathcal{A}_\varepsilon(f)$ instead of only \mathcal{A}_ε to emphasize the dependence on f.

We are now ready to state our main result;

Theorem 1. There is a universal constant C so that for $f \in L_1$, $\delta, \varepsilon > 0$ and $A \subset \{ I \in D : |c_I(f)| \geq \delta \}$, there is an $E \subset D$, with $A \subset E \subset A_{\varepsilon}(f)$, so that

$$\|P_E(f)\| \leq C \frac{\log^2(1/\delta)}{\varepsilon^2} \|f\|.$$

(6)

Remark 2. The proof of Theorem 1 yields an explicit, albeit laborious, description of \mathcal{E}.

3. Proof of the main Result

We will first state and prove several Lemmas.

Lemma 3. Let $f \in L_1[0,1]$ and let K, J and I be elements of \overline{D}, and assume that K is a direct successor of J, which is a direct successor of I. Then

$$\|f\|_{I \setminus K} \geq \left| \frac{|c_I(f)| - |c_J(f)|}{2} \right|.$$

(7)

Proof. We first note that from the monotonicity property of the Haar basis we deduce that

$$\|f\|_{I \setminus J} = \left\| \sum_{L \in \text{pred}(I \setminus J)} c_L(f) h_L|_{I \setminus J} + c_{I \setminus J}(f) h_{I \setminus J} + \sum_{L \in \text{succ}(I \setminus J)} c_L(f) h_L \right\|$$

$$\geq \left\| \sum_{L \in \text{pred}(I \setminus J)} c_L(f) h_L|_{I \setminus J} \right\| = \|S_{I \setminus J}(f)\|_{I \setminus J}$$

(8)

and similarly we obtain

$$\|f\|_{J \setminus K} \geq \|S_{J \setminus K}(f)\|_{J \setminus K}.$$

$S_I(f)$ takes a constant value H on I. Denote by a the value of $c_I(f) h_I$ on $I \setminus J$ and denote by b the value of $c_J(f) h_J$ on $J \setminus K$, and let $\delta = m(I)$. Then we compute
\[\|f\|_{I\setminus K} = \|f\|_{I\setminus J} + \|f\|_{J\setminus K} \]
\[\geq \|S_{I\setminus J}(f)\|_{I\setminus J} + \|S_{J\setminus K}(f)\|_{J\setminus K} \]
\[= \|S_{I}(f)+c_I(f)h_I\|_{I\setminus J} + \|S_{J}(f)+c_J(f)h_J\|_{J\setminus K} \]
\[= \frac{\delta}{2}|H + a| + \frac{\delta}{4}|H - a + b| \]
\[\geq \frac{\delta}{4}|H + a| + \frac{\delta}{4}|H - a| - b| \]
\[\geq \frac{\delta}{4}|2a - b| \geq \frac{\delta}{4}|2|a| - |b||. \]

Our claim follows then if we notice that \(|a|\delta = |c_I(f)|\) and \(|b|\delta = 2|c_J(f)|\).

\[\square \]

We iterate Lemma 3 to obtain the following result.

Lemma 4. Let \(f \in L_1[0, 1] \) and let \(K, J \) and \(I \) be elements of \(\overline{D} \), and assume that \(K \) is a successor of \(J \), which is a successor of \(I \). Then

\[\|f\|_{I\setminus K} \geq \left\{ c_I(f) - |c_J(f)| \right\}. \]

Proof. First we can, without loss of generality, assume that \(K \) is a direct successor of \(J \), we write \([K, I]\) as \([K, I] = \{I_{n+1}, I_n, I_{n-1}, \ldots I_0\}\), with \(K = I_{n+1} \subset I_n = J \subset I_{n-1} \subset \ldots I_0 = I \), so that \(I_{m+1} \) is a direct successor of \(I_m \) for \(m = 0, 1, 2, \ldots, n \). From Lemma 3 we obtain

\[\|f\|_{I\setminus K} = \sum_{j=0}^{n} \|f\|_{I_j\setminus I_{j+1}} \]
\[\geq \frac{1}{2} \left(\|f\|_{I_0\setminus I_1} + \|f\|_{I_1\setminus I_2} \right) + \frac{1}{2} \left(\|f\|_{I_1\setminus I_2} + \|f\|_{I_2\setminus I_3} \right) \]
\[\ldots + \frac{1}{2} \left(\|f\|_{I_{n-1}\setminus I_n} + \|f\|_{I_n\setminus I_{n+1}} \right) \]
\[= \frac{1}{2} \sum_{j=0}^{n-1} \|f\|_{I_j\setminus I_{j+2}} \]
\[\geq \sum_{j=0}^{n-1} \left\{ \frac{|c_I(f)| - |c_{I_{j+1}}(f)|}{4} \right\} \geq \left\{ \frac{|c_I(f)| - |c_J(f)|}{4} \right\} \]

which finishes the proof of our assertion. \[\square \]

Lemma 5. Assume that \(f, g \in L_1[0, 1] \) and \(F \subset \overline{D} \) and that the following properties hold for some \(\alpha, \varepsilon \in (0, 1) \)

a) \(\text{supp}_H(f) \cap \text{supp}_H(g) = \emptyset \),
b) For every $I \in \mathcal{F}$ there is a $J \in \text{succ}(I)$, so that

$$[J, I] \cap \mathcal{F} = \{I\}$$

$$|c_J(f)| \geq \alpha$$

$$|c_I(g) - c_J(f)| \geq \varepsilon |c_J(f)|.$$

Then

(10) $$\|f + g\| \geq \frac{\alpha \varepsilon}{6} |\mathcal{F}|.$$

In order to prove Lemma 5 we will first show the following observation.

Proposition 6. Let $\mathcal{F} \subset \mathcal{D}$, and define the following partition of \mathcal{F} into sets \mathcal{F}_0, \mathcal{F}_1 and \mathcal{F}_2

$$\mathcal{F}_0 = \{I \in \mathcal{F} : I \text{ is minimal in } \mathcal{F}\} = \{I \in \mathcal{F} : \text{succ}(I) \cap \mathcal{F} = \emptyset\};$$

$$\mathcal{F}_1 = \{I \in \mathcal{F} : \text{succ}(I) \cap \mathcal{F} \text{ has exactly one maximal element}\}, \text{ and }$$

$$\mathcal{F}_2 = \{I \in \mathcal{F} : \text{succ}(I) \cap \mathcal{F} \text{ has at least two maximal element}\}.$$

Then

(11) $$|\mathcal{F}_2| < |\mathcal{F}_0|.$$

Proof. In order to verify (11) we first show for $I \in \mathcal{F}_2$ that

(12) $$\left|\{J \in \mathcal{F}_2 : J \subseteq I\}\right| < \left|\{J \in \mathcal{F}_0 : J \subset I\}\right|.$$

Assuming that (12) is true for all $I \in \mathcal{F}_2$, we let $I_1, I_2, \ldots I_t$ be the maximal elements of \mathcal{F}_2. Since the I_j’s are pairwise disjoint, observe that

$$|\mathcal{F}_2| = \sum_{j=1}^{t} \left|\{I \in \mathcal{F}_2 : I \subseteq I_j\}\right| < \sum_{j=1}^{t} \left|\{J \in \mathcal{F}_0 : J \subset I_j\}\right| \leq |\mathcal{F}_0|.$$

We now prove (12) by induction on $n = \left|\{J \in \mathcal{F}_2 : J \subseteq I\}\right|$. If $n = 1$ then I must have at least two successor, say J_1 and J_2 in \mathcal{F} which are incomparable, and thus there are elements $I_1, I_2 \in \mathcal{F}_0$ so that $I_1 \subset J_1$ and $I_2 \subset J_2$. Assume that our claim is true for n, and assume that $\left|\{J \in \mathcal{F}_2 : J \subseteq I\}\right| = n + 1 \geq 2$. We denote the maximal elements of $\{J \in \mathcal{F}_2 : J \subseteq I\}$ by $I_1, I_2, \ldots I_m$. Either $m \geq 2$, then it follows from the induction hypothesis, and the fact that $I_1, I_2, \ldots I_m$ are incomparable, that

$$\left|\{J \in \mathcal{F}_2 : J \subseteq I\}\right| = 1 + \sum_{j=1}^{m} \left|\{J \in \mathcal{F}_2 : J \subseteq I_j\}\right|.$$
\[\leq 1 + \sum_{j=1}^{m} \left(|\{ J \in \mathcal{F}_0 : J \subseteq I_j \}| - 1 \right) \]
\[\leq |\{ J \in \mathcal{F}_0 : J \subseteq I \}| - 1 < |\{ J \in \mathcal{F}_0 : J \subseteq I \}|. \]

Or \(m = 1 \), and if \(\tilde{I} \) is the only maximal element of \(\{ J \in \mathcal{F}_2 : J \not\subseteq I \} \), then by the definition of \(\mathcal{F}_2 \) there must be a \(J_0 \in \mathcal{F}_0 \) with \(J_0 \subset I \setminus \tilde{I} \), and we deduce from our induction hypothesis that
\[|\{ J \in \mathcal{F}_2 : J \subseteq I \}| = 1 + |\{ J \in \mathcal{F}_2 : J \subseteq \tilde{I} \}| \]
\[< 1 + |\{ J \in \mathcal{F}_0 : J \subseteq \tilde{I} \}| \leq |\{ J \in \mathcal{F}_0 : J \subseteq I \}|, \]
which finishes the proof of the induction step, and the proof of (12).

Proof of Lemma 6. Assume now that \(\alpha, \varepsilon > 0 \) and \(f, g \in L_1[0, 1] \), and \(\mathcal{F} \subset \mathcal{D} \) are given satisfying (a), (b). Let \(\mathcal{F}_0, \mathcal{F}_1, \) and \(\mathcal{F}_2 \) the subsets of \(\mathcal{F} \) introduced in Proposition 6. We distinguish between two cases.

Case 1. \(|\mathcal{F}_0| \geq \frac{1}{6}|\mathcal{F}| \).

Fix \(I \in \mathcal{F}_0 \), and let \(J \in \text{succ}(I) \) be chosen so that condition (b) is satisfied. It follows then from condition (a) and (3)
\[\| f + g \|_I \geq \| f + g \|_J \geq |c_J(f)| \geq \alpha. \]

Since all the elements in \(\mathcal{F}_0 \) are disjoint it follows that
\[\| f + g \| \geq \sum_{I \in \mathcal{F}_0} \| f + g \|_I \geq |\mathcal{F}_0| \alpha \geq |\mathcal{F}| \alpha \frac{4}{6}. \]

Case 2. \(|\mathcal{F}_0| < \frac{1}{6}|\mathcal{F}| \).

Applying (11) we obtain that
\[|\mathcal{F}_1| = |\mathcal{F}| - |\mathcal{F}_0| - |\mathcal{F}_2| > |\mathcal{F}| - 2|\mathcal{F}_0| > \frac{2}{3}|\mathcal{F}|. \]

Fix \(I \in \mathcal{F}_1 \), and let \(J \in \text{succ}(I) \) satisfy the conditions in (c), and let \(\tilde{I} \), be the unique maximal element of \(\text{succ}(I) \cap \mathcal{F} \). It follows that \(J \not\subseteq I \) and, since by condition (b) \(\tilde{I} \not\in [J, I] \), we deduce that \(J \not\subseteq \tilde{I} \) which implies that either \(\tilde{I} \not\subseteq J \) or \(\tilde{I} \cap J = \emptyset \). In the first case we deduce from Lemma 4 and condition (b) that
\[\| f + g \|_{I \setminus \tilde{I}} \geq \left| \frac{|c_J(f)| - |c_{J}(f)|}{4} \right| \geq \varepsilon \frac{|c_J(f)|}{4} \geq \frac{\varepsilon \alpha}{4}. \]

In the second case we deduce from (3) and condition (c) that
\[\| f + g \|_{I \setminus \tilde{I}} \geq \| f + g \|_J \geq |c_J(f)| \geq \alpha. \]
We conclude therefore from the fact that the sets \(I \setminus \tilde{I} \), with \(I \in \mathcal{F}_1 \), are pairwise disjoint and therefore
\[
\|f + g\| \geq \sum_{I \in \mathcal{F}_1} \|f + g\|_{I \setminus \tilde{I}} \geq |\mathcal{F}_1| \frac{\varepsilon \alpha}{4} \geq \frac{2}{3} \varepsilon \alpha |\mathcal{F}| = \frac{\alpha \varepsilon}{6} |\mathcal{F}|.
\]

\(\square \)

In order to formulate our next step we introduce the following Symmetry Operators \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \). For that assume that \(f \in L_1[0,1] \) and \(I \in \mathcal{D} \). We define the following two functions \(\mathcal{L}_1(f, I) \) and \(\mathcal{L}_2(f, I) \) in \(L_1[0,1] \). For \(\xi \in [0,1] \) we put
\[
\mathcal{L}_1(f, I)(\xi) = \begin{cases}
 f(\xi) & \text{if } \xi \notin I^- \\
 f(\xi - \frac{m(I)}{2}) & \text{if } \xi \in I^-
\end{cases}
\]
\[
\mathcal{L}_2(f, I)(\xi) = \begin{cases}
 f(\xi) & \text{if } \xi \notin I^+ \\
 f(\xi + \frac{m(I)}{2}) & \text{if } \xi \in I^+
\end{cases}
\]

Note that \(\mathcal{L}_1(f, I) \) restricted to \(I^- \) is a shift of \(f \) restricted to \(I^+ \), and vice versa \(\mathcal{L}_2(f, I) \) restricted to \(I^+ \) is a shift of \(f \) restricted to \(I^- \).

We will use this symmetrization only for \(f \in L_1[0,1] \) and \(I \in \mathcal{D} \), for which \(c_I(f) = 0 \). We observe in that case that letting \(f' = \mathcal{L}_1(f, I) \) or \(f'' = \mathcal{L}_2(f, I) \), and any \(J \in \mathcal{D} \)
\[
(13) \quad c_J(f') = \begin{cases}
 c_J(f) & \text{if } J \supsetneq I \text{ (here we use that } c_I(f) = 0) \\
 c_J(f) & \text{if } J \cap I = \emptyset \\
 0 & \text{if } J = I \\
 c_J(f) & \text{if } J \subset I^+ \text{ and } f' = L_1(f, I), \text{ or} \\
 c_J(f) & \text{if } J \subset I^- \text{ and } f' = L_2(f, I), \\
 c_{J-m(I)/2}(f) & \text{if } J \subset I^- \text{ and } f' = L_1(f, I) \\
 c_{J+m(I)/2}(f) & \text{if } J \subset I^+ \text{ and } f' = L_2(f, I).
\end{cases}
\]

Moreover it follows that
\[
(14) \quad \|L_1(f, I)\| = \|f\| + \Delta(f, I) \text{ and } \|L_2(f, I)\| = \|f\| - \Delta(f, I),
\]
with \(\Delta(f, I) = \|f\|_{I^+} - \|f\|_{I^-} \).

Lemma 7. Assume that \(f, g \in L_1[0,1] \), so that \(\text{supp}_H(f), \text{supp}_H(g) \subset \mathcal{D} \) and \(I \in \mathcal{D} \) are given. Suppose that \(c_I(f) = c_I(g) = 0 \) and that the following properties hold:

a) \(\text{supp}_H(f) \cap \text{supp}_H(g) = \emptyset \),

b) \(\|f\| > 0 \), and thus, by (a), also \(\|f + g\| > 0 \).
Then for either \(f' = L_1(f, I) \) and \(g' = L_1(g, I) \), or \(f' = L_2(f, I) \) and \(g' = L_2(g, I) \) it follows that

\[
\text{supp}_H(f') \cap \text{supp}_H(g') = \emptyset \quad \text{and} \quad I \notin \text{supp}_H(f') \cup \text{supp}_H(g');
\]

(15) for any \(J \in \mathcal{D} \) it follows that

\[
c_J(f') \in \{ c_I(f') : I \in \text{supp}(f) \} \cup \{ 0 \} \quad \text{and} \quad c_J(g') \in \{ c_I(g') : I \in \text{supp}(g) \} \cup \{ 0 \},
\]

(16) \(\| f' + g' \| > 0 \) and \(\frac{\| f \|}{\| f + g \|} \leq \frac{\| f' \|}{\| f' + g' \|} \).

(17)

\[
\text{Proof.} \quad \text{It follows immediately from (13) that (16) and (15) are satisfied for either of the possible choices of } f' \text{ and } g'.
\]

To satisfy (17) we will first consider the case that \((f + g)[0,1] \setminus I^+ \equiv 0 \). In this case it follows from (a) that \(c_J(f) = c_J(g) = 0 \) for all \(J \in \mathcal{D} \), with \(J \subset [0,1] \setminus I^+ \), and thus by (b) \(f|I^+ \neq 0 \) and \((g+f)|I^+ \neq 0 \). If we choose \(f' = L_1(f, I) \) and \(g' = L_1(g, I) \) we obtain that \(\| f' + g' \| > 0 \), \(\| f' \| = 2\| f \| \) and \(\| f' + g' \| = 2\| f + g \| \).

A similar argument can be made if \((f + g)[0,1] \setminus I^- \equiv 0 \).

If neither of the two previously discussed cases occurs we conclude that

\[
\| f + g \| = \| f + g \|_{[0,1] \setminus I} + \| f + g \|_{I^+} + \| f + g \|_{I^-} > \| f + g \|_{I^+} - \| f + g \|_{I^-}
\]

and

\[
\| f + g \| = \| f + g \|_{[0,1] \setminus I} + \| f + g \|_{I^+} + \| f + g \|_{I^-} > \| f + g \|_{I^-} - \| f + g \|_{I^+}
\]

which implies by (14) that in either of the two possible choices for \(f' \) and \(g' \) it follows that \(\| f' + g' \| > 0 \).

Finally, if \(\Delta(f, I)\| f + g \| \geq \Delta(f + g, I)\| f \| \), we choose \(f' = L_1(f, I) \) and \(g' = L_1(f, I) \) and note that since in this case we have

\[
(\| f \| + \Delta(f, I))\| f + g \| \geq (\| f + g \| + \Delta(f + g, I))\| f \|
\]

it follows that

\[
\frac{\| f' \|}{\| f' + g' \|} = \frac{\| f \| + \Delta(f, I)}{\| f + g \| + \Delta(f + g, I)} \geq \frac{\| f \|}{\| f + g \|}.
\]

If \(\Delta(f, I)\| f + g \| < \Delta(f + g)\| f \| \) and thus \(-\Delta(f, I)\| f + g \| > -\Delta(f + g)\| f \| \), we choose \(f' = L_2(f, I) \) and \(g' = L_2(f, I) \) and note that since in this case we have

\[
(\| f \| - \Delta(f, I))\| f + g \| > (\| f + g \| - \Delta(f + g, I))\| f \|,
\]
and it follows that
\[
\frac{\|f'\|}{\|f' + g'\|} = \frac{\|f\| - \Delta(f, I)}{\|f + g\| - \Delta(f + g, I)} > \frac{\|f\|}{\|f + g\|}
\]
which finishes the verification of (17) and the proof of our claim. \(\square\)

Assume now that \(f, g \subset L_1[0, 1], \|f\| > 0\), are such that \(\text{supp}_H(f)\) and \(\text{supp}_H(g)\) are finite and disjoint subsets of \(D\). We also assume that

\[
c_{[0,1]}(f) = \int_0^{1/2} f(x) \, dx - \int_{1/2}^1 f(x) \, dx = 0 \quad \text{and} \quad c_{[0,1]}(g) = \int_0^{1/2} g(x) \, dx - \int_{1/2}^1 g(x) \, dx = 0.
\]

Define:

\[
\mathcal{F}(f) = \{I \in D : c_I(f) = 0 \text{ but } c_{I+}(f) \neq 0 \text{ or } c_{I-}(f) \neq 0\}
\]
and make the following assumption

\[
\text{supp}_H(g) \cap \mathcal{F}(f) = \emptyset.
\]

Let \(\mathcal{F}(f) = (I_i)_{i=1}^n\), where \(m(I_1) \leq m(I_2) \leq \cdots \leq m(I_n)\). First ‘symmetrize’ the pair \((f, g)\) on \(I_1\) to obtain a pair \((f_1, g_1)\) satisfying \(\|f\|/\|f + g\| \leq \|f_1\|/\|f_1 + g_1\|\). Note that \(\mathcal{F}(f_1) = \mathcal{F}(f)\). Now symmetrize \((f_1, g_1)\) on \(I_2\) to obtain \((f_2, g_2)\) satisfying \(\|f_1\|/\|f_1 + g_1\| \leq \|f_2\|/\|f_2 + g_2\|\). Note that if \(I \in \mathcal{F}(f_2)\) satisfies \(m(I) < m(I_2)\), then \((f_2, g_2)\) on \(I\) is a ‘copy’ of \((f_1, g_1)\) on \(I_1\). Hence, \(f_2\) and \(g_2\) are automatically symmetric on \(I\). On the other hand, if \(I \in \mathcal{F}(f_2)\) satisfies \(m(I) \geq m(I_2)\) then \(I = I_j\) for some \(j \geq 2\). Now symmetrize \((f_2, g_2)\) on \(I_2\) to obtain \((f_3, g_3)\) satisfying \(\|f_2\|/\|f_2 + g_2\| \leq \|f_3\|/\|f_3 + g_3\|\). Note that if \(I \in \mathcal{F}(f_3)\) satisfies \(m(I) < m(I_3)\) then \((f_3, g_3)\) on \(I\) is a copy of \((f_2, g_2)\) on \(I_1\) or \(I_2\). Hence \(f_3\) and \(g_3\) are automatically symmetric on \(I\). Continuing in this way, we finally obtain, after symmetrizing on \(I_n\), a pair \((f_n, g_n)\) such that \(f_n\) and \(g_n\) are symmetric on each \(I \in \mathcal{F}(f_n)\) and \(\|f\|/\|f + g\| \leq \|f_n\|/\|f_n + g_n\|\).

Setting \(\tilde{f} = f_n\) and \(\tilde{g} = f_n\), the following conditions hold:

\[
\begin{align*}
c_{[0,2]}(\tilde{f}) &= c_{[0,2]}(\tilde{g}) = c_{[0,1]}(\tilde{f}) = c_{[0,1]}(\tilde{g}) = 0, \\
\text{For all } I \in \mathcal{F}(\tilde{f}) \text{ it follows that} \\
c_I(\tilde{g}) &= 0 \quad \text{and} \quad \\
\tilde{f}(x) &= \tilde{f}(x - m(I^+)) \quad \text{and} \quad \tilde{g}(x) = \tilde{g}(x - m(I^+)), \quad \text{if } x \in I^-,
\end{align*}
\]

and

\[
\text{supp}_H(\tilde{f}) \cap \text{supp}_H(\tilde{g}) = \emptyset.
\]
for any \(J \in D \) it follows that
\[
c_J(\bar{f}) \in \{c_I(f) : I \in \text{supp}(f)\} \cup \{0\} \quad \text{and} \quad c_J(\bar{g}) \in \{c_I(g) : I \in \text{supp}(g)\} \cup \{0\},
\]
(25) \[\|\bar{f} + \bar{g}\| > 0 \text{ and } \frac{\|f\|}{\|f + g\|} \leq \frac{\|\bar{f}\|}{\|\bar{f} + \bar{g}\|}.\]

Lemma 8. Assume that \(f, g \in L_1[0, 1] \) are such that \(\text{supp}_H(f) \) and \(\text{supp}_H(g) \) are finite disjoint subsets of \(D \setminus \{0, 1\} \), and that \(\text{supp}_H(g) \cap \mathcal{F}(f) = \emptyset \), where \(\mathcal{F}(f) \subset D \), was defined above. Assume moreover that for some \(\alpha > 0 \), we have

(26) \[|c_J(f)| \geq \alpha, \text{ for all } J \in \text{supp}_H(f), \quad \text{and} \quad |c_J(g)| \leq 1, \text{ for all } J \in \text{supp}_H(g).\]

Then

(27) \[\|f\| \leq \left(\frac{5}{\alpha} + 1\right)\|f + g\|.
\]

Proof. Let \(\bar{f} \) and \(\bar{g} \) be the elements in \(L_1[0, 1] \) constructed from \(f \) and \(g \) as before satisfying the conditions (21), (22), (23), (24), and (25). Note also that (24) implies that \(|c_J(\bar{f})| \geq \alpha \), for all \(J \in \text{supp}_H(\bar{f}) \), and \(|c_J(\bar{g})| \leq 1 \), for all \(J \in \text{supp}_H(\bar{g}) \).

By (25) it is enough to show (27) for \(\bar{f} \) and \(\bar{g} \) instead of \(f \) and \(g \).

We will deduce our statement from the following

Main Claim. For all \(I \in \mathcal{F}(\bar{f}) \) it follows that

(28) \[\|\bar{f}\|_I \leq \left(\frac{5}{\alpha} + 1\right)\|\bar{f} + \bar{g}\|_I - 2\alpha - 8.\]

Assuming the Main Claim we can argue as follows. Using (21) it follows that out side of \(J = \bigcup_{I \in \mathcal{F}(\bar{f})} I \) \(\bar{f} \) is vanishing. Thus, we can choose disjoint sets \(I_1, I_2, \ldots, I_n \), in \(\mathcal{F}(\bar{f}) \) so that \(\bar{f} \) vanishes outside of \(\bigcup_{j=1}^n I_j \), and (28) yields

\[\|\bar{f}\| = \sum_{j=1}^n \|\bar{f}\|_{I_j} \leq \left(\frac{5}{\alpha} + 1\right)\sum_{j=1}^n \|\bar{f} + \bar{g}\|_{I_j} \leq \left(\frac{5}{\alpha} + 1\right)\|\bar{f} + \bar{g}\|,
\]

which proofs our wanted statement.

In order to show the Main Claim let \(I \in \mathcal{F}(\bar{f}) \) and denote \(k = \text{ord}(I, \mathcal{F}(\bar{f})). \) We will show the inequality (28) by induction for all \(k \).

First assume that \(k = 0. \) From (22) and (3) we obtain

(29) \[\|\bar{f} + \bar{g}\|_I = 2\|\bar{f} + \bar{g}\|_{I^+} \geq 2|c_{I^+}(\bar{f} + \bar{g})| = 2|c_{I^+}(\bar{f})| \geq 2\alpha.
\]
Using (4), (23) and (27) we obtain

\[\|S_I(\tilde{g})\|_I \leq 1. \]

From the definition of \(F(\tilde{f}) \), and the assumption that \(\text{ord}(I, F(\tilde{f})) = 0 \), (23) we deduce that if \(J \in \text{supp}_H(\tilde{f}) \) with \(J \subset I^+ \) or \(J \subset I^- \), then \([J, I^+] \subset \text{supp}_H(\tilde{f})\), or \([J, I^-] \subset \text{supp}_H(\tilde{f})\), respectively. But, using (23), this implies that if \(J \in \text{supp}_H(\tilde{g}) \), with \(J \subset I \), then \(\text{succ}(J) \cap \text{supp}_H(\tilde{f}) = \emptyset \). We deduce therefore from the monotonicity properties of the Haar basis that

\[\|\tilde{f} + \tilde{g}\|_I \geq \|f + \sum_{J \in D, J \notin I} c_J(\tilde{g})h_J\|_I = \|\tilde{f} + S_I(\tilde{g})\|_I. \]

We therefore conclude

\[\left(\frac{5}{\alpha} + 2\right)\|\tilde{f} + \tilde{g}\|_I \geq \left(\frac{5}{\alpha} + 1\right)\|\tilde{f} + \tilde{g}\|_I + \|\tilde{f} + S_I(\tilde{g})\|_I \quad \text{(by (31))} \]

\[\geq 10 + 2\alpha + \|\tilde{f}\|_I - \|S_I(\tilde{g})\|_I \quad \text{(by (29))} \]

\[\geq \|f\|_I + 9 + 2\alpha \quad \text{(by (30))}, \]

which proves our claim in the case that \(\text{ord}(I, F(\tilde{f})) = 0 \).

Assume that (28) holds for all \(I \in F \) with \(\text{ord}(I, F(\tilde{f})) < k \), for some \(k \in \mathbb{N} \), and assume that \(I \in F(\tilde{f}) \) with \(\text{ord}(I, F(\tilde{f})) = k \). By the symmetry condition in (22) the number of elements \(J \) of \(F(\tilde{f}) \) for which \(J \subset I \) and \(\text{ord}(J, F) = k - 1 \) is even, half of them being subsets of \(I^+ \), the other being subsets of \(I^- \). We order therefore these sets into \(J_1, J_2, \ldots, J_{2s} \), for some \(s \in \mathbb{N} \), with \(J_i \subset I^+ \) and \(J_{i+i} \subset I^- \), for \(i = 1, 2, \ldots, s \). We note that the \(J_i, i = 1, 2, \ldots \), are pairwise disjoint and that all the \(J \in F(\tilde{f}) \), with \(F \subset I \), and \(\text{ord}(J, F(\tilde{f})) \leq k - 2, \) are subset of some of the \(J_i, i = 1, 2, \ldots, 2s \).

From our induction hypothesis we deduce that

\[\|\tilde{f}\|_{J_i} \leq \left(\frac{5}{\alpha} + 2\right)\|\tilde{f} + \tilde{g}\|_{J_i} - 2\alpha - 8 \text{ for } i = 1, 2, \ldots, 2s. \]

We define \(D = I^+ \setminus \bigcup_{i=1}^{s} J_i \) and

\[\phi = S_{J_1}(S_{J_2}(\ldots S_{J_s}(\tilde{f}) \ldots)) = \sum_{J \in \mathcal{J}} c_J(\tilde{f})h_J \]

\[\gamma = S_{J_1}(S_{J_2}(\ldots S_{J_s}(\tilde{g}) \ldots)) = \sum_{J \in \mathcal{J}} c_J(\tilde{g})h_J \]

with

\[\mathcal{J} = \{ J \in D : \forall j=1,2,\ldots,s \quad J \not\subset I_j \}. \]
It follows that
\[\phi|_D = \tilde{f}|_D \text{ and } \gamma|_D = \tilde{g}|_D, \]
(33) implies that
\[\|\gamma\|_{J_i} \leq 1, \text{ for } i = 1, 2 \ldots s, \]
and since for any \(J \in D \), with \(J \subseteq D \), for which \(c_J(\phi) \neq 0 \), we have \([J, I^+] \subseteq \text{supp}_H(\phi)\) (otherwise there would be an \(K \in \mathcal{F}(\tilde{f}) \) with \(K \subset I^+ \) and \(K \supseteq J_i \), for some \(i \in \{1, 2 \ldots s\} \), or \(K \subset D \)) it follows from the monotonicity property of the Haar system and (4) that
\[\|\phi + \gamma\|_{I^+} \geq \|\phi + S_{I^+}(\gamma)\|_{I^+} \geq \|\phi\|_{I^+} - 1. \]
(35) It follows that
\[\|\phi + \gamma\|_{I^+ \setminus D} \leq \|\phi\|_{I^+ \setminus D} + \|\gamma\|_{I^+ \setminus D} = \|\phi\|_{I^+ \setminus D} + \sum_{i=1}^{s} \|\gamma\|_{J_i} \leq \|\phi\|_{I^+ \setminus D} + s \]
and
\[\|\tilde{f} + \tilde{g}\|_D = \|\phi + \gamma\|_D = \|\phi + \gamma\|_{I^+} - \|\phi + \gamma\|_{I^+ \setminus D} \geq \|\phi\|_{I^+} - 1 - \|\phi\|_{I^+ \setminus D} - s = \|\phi\|_D - s - 1. \]
This implies together with (32) that
\[\|\tilde{f}\|_{I^+} = \|\tilde{f}\|_D + \sum_{i=1}^{s} \|\tilde{f}\|_{J_i} = \|\phi\|_D + \sum_{i=1}^{s} \|\tilde{f}\|_{J_i} \leq \|\tilde{f} + \tilde{g}\|_D + s + 1 + \left(\frac{5}{\alpha} + 2\right) \sum_{i=1}^{s} \|\tilde{f} + \tilde{g}\|_{J_i} - s(2\alpha + 8) \leq \left(\frac{5}{\alpha} + 2\right) \|\tilde{f} + \tilde{g}\|_{I^+} - 7s - 2\alpha s + 1. \]
By the symmetry condition (22) we also obtain that
\[\|\tilde{f}\|_{I^-} \leq \left(\frac{5}{\alpha} + 2\right) \|\tilde{f} + \tilde{g}\|_{I^+} - 7s - 2\alpha s + 1. \]
Adding these two inequalities yields our Main Claim since \(s \geq 1 \). \(\Box \)
Theorem 9. Let \(h \in L_1[0,1] \), with \(\supp_H(h) \subset \text{succ}([0,1]) \), and let \(0 < \varepsilon < 1 \), \(0 < \alpha \leq 1 \) and \(b \in \mathbb{R}^+ \). Assume that \(S \subset \mathcal{D} \), is such that
\[
|c_I(h)| \geq \alpha b, \text{ if } I \in S, \text{ and } |c_I(h)| \leq b, \text{ if } I \notin S.
\]
Then
\[
\|P_S(\varepsilon)h\| \leq \frac{42}{\alpha^2 \varepsilon} \|h\|.
\]

Proof. After rescaling we can assume that \(b = 1 \). Put \(f = P_S(\varepsilon)h \) and \(g = h - P_S(\varepsilon)h \). We note that \(f \) and \(g \) satisfy the assumptions of Lemma 5 with \(\mathcal{F} = \{ I \in \mathcal{D} : I \notin S_\varepsilon \text{ or } I^+ \in S_\varepsilon \text{ or } I^- \in S_\varepsilon \} \).

Indeed, condition (a) of Lemma 5 is clearly satisfied, and in order to verify (b) let \(I \in \mathcal{F} \). Without loss of generality we can assume that \(I^+ \in S_\varepsilon \). Thus there is a \(J \in S \), with \(J \subset I \), and so that \(J \) is maximal with that property. It follows therefore from the definition of \(S_\varepsilon \) that \([J, I^+] \subset S_\varepsilon \), and thus \([J, I] \cap \mathcal{F} = \{ I \} \), \(|c_J(f)| = |c_J(h)| \geq \alpha \), and
\[
|c_I(g) - c_J(f)| = |c_I(h) - c_J(h)| \geq \varepsilon |c_J(f)|.
\]
Lemma 5 yields that
\[
\|f + g\| \geq \frac{\alpha \varepsilon}{6} |\mathcal{F}|.
\]
Setting
\[
\bar{g} = g - \sum_{I \in \mathcal{F}} c_I(g) h_I,
\]
then, by our assumption on \(h \),
\[
\|f + \bar{g}\| \leq \|f + g\| + \|\bar{g} - g\|
\]
\[
\leq \|f + g\| + \left\| \sum_{I \in \mathcal{F}} c_I(h) h_I \right\|
\]
\[
\leq \|f + g\| + |\mathcal{F}|
\]
\[
\leq \left(1 + \frac{6}{\alpha \varepsilon}\right) \|f + g\|.
\]
Note that since \(\mathcal{F} = \mathcal{F}(f) \) (where \(\mathcal{F}(f) \) was defined in (19)) the pair \(f \) and \(\bar{g} \) satisfies the assumption of Lemma 8 and we deduce that
\[
\|h\| = \|f + g\|
\]
\[
\geq \frac{\alpha \varepsilon}{\alpha \varepsilon + 6} \|f + \bar{g}\|
\]
\[
\geq \frac{\alpha \varepsilon}{\alpha \varepsilon + 6} \frac{\alpha}{\alpha \varepsilon + 6} \|f\|
\]
\[
\geq \frac{\alpha^2 \varepsilon}{42} \|f\| = \frac{\alpha^2 \varepsilon}{42} \|P_S(\varepsilon)h\|.
\]
which implies our claim.

Corollary 10. Let \(f \in L_1[0, 1] \), with \(\text{supp}_H(f) \subset \text{succ}([0, 1]) \), \(A \subset \mathcal{D} \), \(0 < \varepsilon < 1 \), \(\rho \in \mathbb{R}^+ \). Put \(B = A \cap \{ I \in \mathcal{D} : \rho < |c_I(f)| \leq 2\rho \} \).

Then there exists \(C \subset \mathcal{D} \), with \(B \subseteq C \subseteq B_\varepsilon(f) \), so that

\[
\|P_C(f)\| \leq \frac{45738}{\varepsilon} \|f\|.
\]

Proof. We first apply Theorem 9 to the set \(S = \{ J \in \mathcal{D} : |c_J(f)| > 3\rho \} \), the numbers \(b = 3\rho \), \(\alpha = 1 \) and \(\varepsilon = \frac{1}{3} \). It follows that

\[
(36) \quad \|P_{S_\varepsilon}(f)\| \leq 120\|f\|.
\]

Note that

\[
S_\varepsilon = \left\{ J \in \mathcal{D} : \exists I \in S, I \subset J \forall K \in [I, J] \left\{ |c_I(f) - c_K(f)| \leq \frac{1}{3} |c_I(f)| \right\} \right\} \subset \{ J \in \mathcal{D} : |c_J(f)| > 2\rho \}
\]

Put \(B^{(1)} := \mathcal{D} \setminus S_\varepsilon \), and \(g = P_{B^{(1)}}(f) \) then,

\[
(37) \quad \|g\| \leq 121\|f\|
\]

and

\[
(38) \quad \{ J \in \mathcal{D} : |c_J(f)| \leq 2\rho \} \subseteq B^{(1)} \subseteq \{ J \in \mathcal{D} : |c_J(f)| \leq 3\rho \}.
\]

Then we apply Theorem 9 again, namely to the function \(g \), the set

\[
B^{(2)} = \{ I \in \mathcal{D} : I \in A, \rho < |c_I(g)| \leq 2\rho \},
\]

and the numbers \(b = 3\rho \), \(\alpha = \frac{1}{3} \). We deduce that for each \(\varepsilon \in (0, 1) \)

\[
(39) \quad \|P_{B^{(2)}_\varepsilon}(g)\| \leq \frac{378}{\varepsilon} \|g\|.
\]

Here we mean by \(B^{(2)}_\varepsilon \), to be precise, the set \(B^{(2)}_\varepsilon(g) \). Since for every \(I \in \mathcal{D} \), with \(c_I(g) \neq 0 \), it follows that \(c_I(g) = c_I(f) \), we deduce that

\[
B^{(2)}_\varepsilon(g) = \left\{ J \in \mathcal{D} : \exists I \in A, I \subset J \forall K \in [I, J] |c_I(f) - c_K(f)| \leq \varepsilon |c_I(f)| \right\} \subseteq \left\{ J \in \mathcal{D} : \exists I \in A, I \subset J \forall K \in [I, J] |c_I(f) - c_K(f)| \leq \varepsilon |c_I(f)| \right\} = B^{(2)}_\varepsilon(f).
\]

Letting therefore \(C = B^{(2)}_\varepsilon(y) \), we deduce our claim from (37), (39) and the fact that \(B \subseteq B^{(1)} \).

We are now in the position to prove Theorem 1.

\[\square\]
Proof of Theorem \[1\] Let \(f \in L_1 \), and \(\varepsilon, \delta > 0 \). We can assume that \(\varepsilon < \frac{1}{3} \) and that \(\text{supp}_H(f) \subset \text{succ}([0,1]) \), with \(|c_I(f)| \leq 1 \), for all \(I \in \text{supp}_H(f) \). We choose \(m_0 \in \mathbb{N} \), so that \(2^{-m_0} < \delta \leq 2^{1-m_0} \), which implies that \(m_0 \leq \log_2(2/\delta) \).

For each \(m = 1, 2, \ldots, m_0 \), we apply Corollary \[10\] to the function \(\rho = 2^{-m} \), the set \(A \cap \{ I \in D : \delta < |c_I(f)| \} \). We put \(C_\varepsilon = 45738/\varepsilon \) and

\[
\mathcal{B}^{(m)} = A \cap \{ I \in D : 2^m \vee \delta < |c_I(f)| \leq 2^{1-m} \} \text{ for } m = 1, 2 \ldots m_0
\]

and deduce that there are sets \(\mathcal{C}_m, \mathcal{B}^{(m)} \subseteq \mathcal{C}^{(m)} \subseteq \mathcal{B}^{(m)}(f) \), so that

\[
(40) \quad \| P_{\mathcal{C}^{(m)}}(f) \| \leq C_\varepsilon \|f\| \text{ for } m = 1, 2 \ldots m_0.
\]

Since \(\varepsilon \leq \frac{1}{3} \), it follows for \(i, j \in \{ 1, 2, 3 \ldots m_0 \} \), with \(|i - j| \geq 2 \), that \(\mathcal{B}^{(i)}_\varepsilon \cap \mathcal{B}^{(j)}_\varepsilon(f) = \emptyset \), and thus, that \(\mathcal{C}^{(i)} \cap \mathcal{C}^{(j)} = \emptyset \).

We let \(\mathcal{F} = \bigcup_{m=1, \text{m odd}}^{m_0} \mathcal{C}^{(m)} \). It follows from \((40)\) that

\[
(41) \quad \| P_\mathcal{F}(f) \| \sum_{m=1, \text{m odd}}^{m_0} \| P_{\mathcal{C}^{(m)}}(f) \| \leq C_\varepsilon \left\lfloor \frac{m_0}{2} \right\rfloor \leq C_\varepsilon \log \left(\frac{1}{\delta} \right).
\]

We are now applying again Corollary \[10\] to the function \(g = f - P_\mathcal{F}(f) \) and the set \(\tilde{A} = (A \cap \{ I \in D : \delta < |c_I(f)| \}) \setminus \mathcal{F} \), and find sets \(\tilde{\mathcal{C}}^{(j)} \), with \(\tilde{\mathcal{B}}^{(j)} \subset \tilde{\mathcal{C}}^{(j)} \subset \tilde{\mathcal{B}}^{(j)}(g) \), where

\[
\tilde{\mathcal{B}}^{(m)} = \tilde{A} \cap \{ I \in D : 2^m \vee \delta < |c_I(f)| \leq 2^{1-m} \} \text{ for } m = 1, 2 \ldots m_0,
\]

so that

\[
(42) \quad \| P_{\tilde{\mathcal{C}}^{(m)}}(g) \| \leq C_\varepsilon \|g\| \text{ for } m = 1, 2 \ldots m_0.
\]

We note that for every odd \(m \) in \(\{ 1, 2 \ldots m_0 \} \) the set \(\tilde{\mathcal{C}}^{(m)} \) is empty and that therefore the \(\tilde{\mathcal{C}}^{(m)} \)'s are pairwise disjoint. We also note that \(\tilde{\mathcal{B}}^{(m)}_\varepsilon(g) \cap \mathcal{F} = \emptyset \) (since \(\tilde{\mathcal{B}}^{(m)}_\varepsilon(g) \subseteq \text{supp}_H(g) \) which is disjoint from \(\mathcal{F} \)) and thus that \(\mathcal{C}^{(m)} \cap \mathcal{F} = \emptyset \), for all \(m = 1, 2 \ldots m_0 \). Putting now \(\mathcal{E} = \mathcal{F} \cup \bigcup_{m=1, \text{m even}}^{m_0} \tilde{\mathcal{C}}^{(m)} \) we obtain

\[
\| P_\mathcal{E}(f) \| \leq \| P_\mathcal{F}(f) \| + \| P_\varepsilon(f - P_\mathcal{F}(f)) \|
\leq \| P_\mathcal{F}(f) \| + \sum_{m=1}^{m_0} \| P_{\tilde{\mathcal{C}}^{(m)}}(g) \|
\leq C_\varepsilon \log \left(\frac{1}{\delta} \right) + \left\lfloor \frac{m_0}{2} \right\rfloor C_\varepsilon \|g\|
\leq C_\varepsilon \log \left(\frac{1}{\delta} \right) + C_\varepsilon \log \left(\frac{1}{\delta} \right) \left(1 + C_\varepsilon \log \left(\frac{1}{\delta} \right) \right)
\]

which proves our claim. \(\square \)
Our next example provides a lower bound for the constant on the right side of (6).

Example 11. For \(n \in \mathbb{N} \) and \(\delta = 2^{-2n} \) we claim that there is a function \(f \in L_1 \) and an \(A \subset \text{supp}_H(f) \), so that for any \(0 < \varepsilon < 1 \) it follows that \(\mathcal{A}_\varepsilon(f) = A \) and

\[
\|P_\varepsilon(f)\| \geq \log \left(\frac{1}{\delta} \right) \|f\|.
\]

Indeed, we define \(h_0 = 1_{[0,1]} \), and for \(k \in \mathbb{N} \) and \(j = 1, 2 \ldots, 2^{k-1} \) we put

\[
h_j^{(k)} = 2^{k-1} \left(1_{[(2j-2)^{-2}, (2j-1)^{-2})} - 1_{[(2j-1)^{-2}, (2j)^{-2})} \right).
\]

We observe that for any \(n \in \mathbb{N} \)

\[
\left\| h_0 + \sum_{k=1}^{2n} h_j^{(k)} \right\| = 1
\]

and for some universal constant \(c > 0 \).

\[
\left\| h_0 + \sum_{k=1}^{2n} h_j^{(2k)} \right\| > cn.
\]

We secondly observe that the joint distribution of the sequence

\[
h_0, \frac{1}{2} (h_1^{(2)} + h_2^{(2)}), \frac{1}{4} (h_1^{(4)} + h_2^{(4)} + h_3^{(4)} + h_4^{(4)}), \frac{1}{8} (h_1^{(6)} + h_2^{(6)} + \ldots + h_8^{(6)}), \ldots,
\]

is equal to the joint distribution of \(h_0, h_1^{(1)}, h_1^{(2)}, \ldots \).

It follows therefore that

\[
\left\| h_0 + \sum_{k=1}^{2n} 2^{-k} \sum_{j=1}^{2^k} h_j^{2k} \right\| = \left\| h_0 + \sum_{k=1}^{2n} h_j^{(k)} \right\| = 1, \text{ and}
\]

\[
\left\| h_0 + \sum_{k=1}^{n} 2^{-2k} \sum_{j=1}^{2^k} h_j^{4k} \right\| \geq cn.
\]

Therefore if we choose

\[
f = h_0 + \sum_{k=1}^{2n} 2^{-k} \sum_{j=1}^{2^k} h_j^{2k}
\]

and \(\mathcal{A} = \{ h_0 \} \cup \{ h_j^{4k} : k = 1, 2 \ldots n \text{ and } j = 1, 2 \ldots 2^{2k} \} \), we obtain for \(\delta = 2^{-2n} \), and any \(0 < \varepsilon < 1 \) that \(\mathcal{A}_\varepsilon(f) = \mathcal{A} \) and \(\|P_\mathcal{A}(f)\| \geq cn \sim \log(1/\delta) \).
References

[1] S. J. Dilworth, N. J. Kalton and Denka Kutzarova, On the existence of almost greedy bases in Banach spaces, Studia Math. 159 (2003), 67-101.
[2] J. Elton, Weakly null normalized sequences in Banach spaces, Ph.D. thesis, Yale Univ. (1978).
[3] S. Gogyan, On convergence of weak thresholding greedy algorithm in $L_1(0, 1)$. J. Approx. Theory 161 (2009), no. 1, 49 – 64.
[4] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. Springer-Verlag, Berlin, 1977.
[5] S. V. Konyagin and V. N. Temlyakov, A remark on greedy approximation in Banach spaces, East J. Approx. 5 (1999), 365–379.
[6] B. Maurey and H. Rosenthal, Normalized weakly null sequence with no unconditional subsequence, Studia Math., 61 (1977), 77-98.
[7] R.E.A.C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241–264.