The electrophoretic deposition of ZnO on highly oriented pyrolytic graphite

To cite this article: Milad Ghalamboran et al 2017 J. Phys.: Conf. Ser. 939 012016

View the article online for updates and enhancements.
The electrophoretic deposition of ZnO on highly oriented pyrolytic graphite

Milad Ghalamboran1(c), Mojtaba Jahangiri2, and Ehsan Yousefiazari3

Electronic Materials Laboratory, Electrical Engineering Department, K. N. Toosi University of Technology, Tehran 16317-14191, Iran.

1(c)miladghalamboran@gmail.com 2mojtaba.jahangiri@gmail.com 3ehsanyousefiazari@gmail.com

Abstract. Intensive research has been conducted on ZnO thin and thick films in recent years. Such layers, used in different electronic devices, are deposited utilizing various methods, but electrophoretic deposition (EPD) has been chosen because of the advantages like low energy consumption, economical superiority, ecofriendliness, controllability, and high deposition rate. Here, we report electrophoretically depositing ZnO layers onto highly oriented pyrolytic graphite. Well-dispersed and stable ZnO suspensions are used for the deposition of continuous and even layers of ZnO on the substrate. ZnO powder is dispersed in acetone. The electric field applied is in the 250 V/cm to 2000 V/cm range. The morphology of the deposits are studied by SEM at the different stages of the deposition process.

1. Introduction
Electrophoretic deposition (EPD) is one of the most attractive methods employed to form thin or thick films of ceramic materials on conductive substrates [1-3]. Compared to other deposition techniques, EPD has advantages of lower energy consumption, economical superiority, higher growth rate, and ecofriendliness. The method is applicable for production of both dense and porous coatings on a variety of substrates with different shapes, sizes, and surface properties [4, 5]. In addition, nanostructured materials such as carbon nanotubes [6], graphene nanosheets [7], and metal oxide (MO) nanorods [8] have been successfully developed by EPD processing.

MOs are the building blocks for fabrication of chemical sensors, effectively functioning as substrates, heating elements, and sensing pellets in their structure [9-15]. Furthermore, MOs have shown promising efficacy in energy harvesting field and are ideal candidates for utilization in numerous optoelectronic devices including radiation detectors, solar cells, and display panels [16-20]. Zinc oxide, having wide applications in electronic and optoelectronic devices, is of particular interest [21].

Graphene, a 2-dimensional network of carbon hexagons, is viewed as the way to atomic-scale electronics. Excellent properties such as visible transparency, high thermal and electrical conductivity, mechanical strength, and chemical stability have given rise to intense research in the field of graphene electronics [22, 23]. Highly oriented pyrolytic graphite (HOPG) is a layered semimetal, consisting of many graphene sheets stacked on each other. In this work, HOPG is utilized to assess the functionality of the EPD process for forming oxide layers on graphene sheets. ZnO is electrophoretically deposited on the conductive HOPG substrates and the deposits are characterized by scanning electron microscopy (SEM) images.
2. Experimental
Analytical grade ZnO powder is used as purchased (Merck Millipore, 108846). Absolute acetone is used for the EPD process. In order to attain 5×10^{-4} wt% suspensions, 1 mg of ZnO powder is dispersed in 250 mL of acetone. The container of the suspension is placed in an ultrasonic bath for 30 minutes. The electrophoresis cell includes a 50 mL borosilicate glass beaker and the aluminum electrodes. Electrodes are tightly covered by aluminium foils, and an HOPG flake (3×3 mm2) is placed on the cathode electrode. The apparent surface areas of both cathode and the anode are 2 cm2. The distance between cathode and anode is 4 mm. The schematic diagram of the experimental setup is shown in figure 1. The voltage source is a regulated DC power supply, and current variation is recorded by monitoring the voltage drop on a contact resistor.

3. Results
The temporal variation of the EPD cell current is presented in figure 2. These curves can be used for the calculation of cell conductivity and determining contamination levels. Current variations are recorded immediately after applying the EPD voltage between the cathode and anode. According to this curve, the current decreases with the duration of deposition. The measurements and the tests are carried out at room temperature (25°C).

Figure 3 shows the SEM image of the deposits on the HOPG substrate. Images (a) and (b) are related to the deposition at 250 V/cm and 2000 V/cm, respectively. According to the previous reports [24], the electrophoretic deposition rate increases with the applied voltage up to a certain level, it decreases with voltage afterwards. Figure 4 shows the relationship between the weight of ZnO deposit on the cathode and the established electric field. ZnO particles formed a porous surface layer at 250 V/cm. the deposited layer becomes denser by increasing the field.

![Figure 1. Schematic diagram of the experimental setup used for the EPD of ZnO.](image-url)
Figure 2. The variation of the cell current with the time of deposition at the stated applied voltages.

Figure 3. The SEM micrographs of ZnO on multilayer graphene formed 10 minutes after the application of the cell voltage, which is 100V in (a) and 800V in (b).
4. Conclusions
The results of our preliminary experimental work on the electrophoretic deposition of ZnO on multilayer graphene is reported. It was shown that the deposition rate increases with the field applied up to a certain level. Afterwards, the trend is different and deposition rate decreases with the field. The reason for this behaviour is presently under investigation.

References
[1] Hossein-Babaei F and Raissidehkordi B 2000 Electrophoretic deposition of MgO thick films from an acetone suspension J. Eur. Ceram. Soc. 20 2165-8.
[2] Hossein-Babaei F and Taghibakhsh F 2000 Electrophoretically deposited zinc oxide thick film gas sensor Electron. Lett. 36 1815-6.
[3] Sarkar P and Nicholson P S 1996 Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics J. Am. Ceram. Soc. 79 1987-2002.
[4] Besra L and Liu M 2007. A review on fundamentals and applications of electrophoretic deposition (EPD) Prog. Mater. Sci. 52 1-61.
[5] Corni I, Ryan M P and Boccaccini A R 2008 Electrophoretic deposition: from traditional ceramics to nanotechnology J. Eur. Ceram. Soc. 28 1353-67.
[6] Chen L, He H, Yu H, Cao Y, Lei D, Menggen Q, Wu C and Hu L 2014 Electron field emission characteristics of graphene/carbon nanotubes hybrid field emitter J. Alloys Compd. 610 659-64.
[7] Chavez-Valdez A Shaffer M S P and Boccaccini A R 2012 Applications of graphene electrophoretic deposition. A review J. Phys. Chem. B 117 1502-15.
[8] Limmer S J and Cao G 2003 Sol–gel electrophoretic deposition for the growth of oxide nanorods Adv. Mater. 15 427-31.
[9] Hossein-Babaei F and Orvatinia M 2003 Thickness dependence of sensitivity in thin film tin oxide gas sensors deposited by vapor pyrolysis Int. J. Eng., Trans. B 16 33-40.
[10] Bai Z, Wang A and Xie C 2006 Laser grooving of Al2O3 plate by a pulsed Nd:YAG laser: characteristics and application to the manufacture of gas sensors array heater. Mater. Sci. Eng. A 435 418-24.
[11] Hossein-Babaei F, Paknahad M and Ghafarinia V 2012 A miniature gas analyzer made by
integrating a chemoresistor with a microchannel Lab Chip 12 1874-80.

[12] Hosseini-Golgoo S M and Hossein-Babaei F 2011 Assessing the diagnostic information in the response patterns of a temperature-modulated tin oxide gas sensor Meas. Sci. Technol. 22 035201.

[13] Ghalamboran M and Saedi Y 2016 TiO$_2$-TiO$_2$ composite resistive humidity sensor: ethanol crosssensitivity IOP Conf. Ser.: Mater. Sci. Eng. 108 012039.

[14] Hossein-Babaei F and Rahbarpour S 2014 Alteration of pore size distribution by sol-gel impregnation for dynamic range and sensitivity adjustment in Kelvin condensation-based humidity sensors Sens. Actuators, B 191 572-8.

[15] Gharesi M and Ansari M 2016 Tin oxide microheater for chemical sensors IOP Conf. Ser.: Mater. Sci. Eng. 108 012018.

[16] Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M and Hosono H 2007 Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO$_3$ Nat. Mater. 6 129-34.

[17] Lajvardi M M and Jahangiri M 2016 Ni/TiO$_2$ ultraviolet detector IOP Conf. Ser.: Mater. Sci. Eng. 108 012031.

[18] You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q and Liu Y 2016 Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers Nat. Nanotechnol. 11 75-81.

[19] Hossein-Babaei F, Lajvardi M M and Alaei-Sheini N 2015 The energy barrier at noble metal/TiO$_2$ junctions Appl. Phys. Lett. 106 083503.

[20] Park S, Kim K H, Jo J W, Sung S, Kim K T, Lee W J, Kim J, Kim H J, Yi G R, Kim Y H and Yoon M H 2015 In-depth studies on rapid photochemical activation of various sol–gel metal oxide films for flexible transparent electronics Adv. Funct. Mater. 25 2807-15.

[21] Krzywiecki M, Grządziel L, Sarfraz A, Iqbal D, Szwajca A and Erbe A 2015 Zinc oxide as a defect-dominated material in thin films for photovoltaic applications–experimental determination of defect levels, quantification of composition, and construction of band diagram Phys. Chem. Chem. Phys. 17 10004-13.

[22] Ma Y and Chen Y 2015 Three-dimensional graphene networks: synthesis, properties and applications Natl. Sci. Rev. 2 40-53.

[23] Liu R, You X C, Fu X W, Lin F, Meng J, Yu D P and Liao Z M 2015 Gate modulation of graphene-ZnO nanowire Schottky diode Sci. Rep. 5 10125.

[24] Gutierrez C P, Mosley J R and Wallace T C 1962 Electrophoretic deposition: a versatile coating method J. Electrochem. Soc. 109 923-7.