Analysis of the Distribution of Movement Speed from Time of Day

E V Goryaeva¹, A P Mokhirev², S O Medvedev², N A Bragina²

¹Siberian Federal University, Krasnoyarsk, Russia
²Lesosibirsk Branch of Reshetnev Siberian State University of Science and Technology, Lesosibirsk, Russia

Abstract. Logging is carried out in difficult natural and climatic conditions, being often unprofitable for large industrial enterprises. However, it is the provision of forest resources that allows all other enterprises of the timber industry to carry out their activities. Transportation of forest products is most interesting from the point of view of setting and solving problems to improve the efficiency of the production process. Indeed, when delivering goods from the forest, there are many possible problems that need to be solved and ultimately affect its overall efficiency: the choice of route, traffic schedule, equipment, removal period, etc. At the same time, even when selecting optimal parameters, there are always factors that affect the work of equipment and personnel when removing wood in specific conditions. One of these factors is the time of day. The purpose of this study is to identify the nature of the dependence of the speed of movement of logging equipment on the time of day.

1. Introduction
In the context of the tendency of the forest and logging industry to constantly improve efficiency, the search for ways to increase productivity, production speed and volumes, transportation and distribution are the most important goals of scientific and applied research. Logging is carried out in difficult natural and climatic conditions and is often unprofitable for large industrial enterprises [1,2]. However, it is the provision of forest resources that allows all other timber enterprises to carry out their activities. Thus, achieving high efficiency of logging processes is an important task that is solved at different levels of management. Meanwhile, providing enterprises with timber can include three main processes - directly harvesting, storage (warehousing) and transportation. The last of them is the most interesting from the point of view and solving problems to improve its efficiency. Indeed, there are many different tasks that need to be solved during the timber carting out, which ultimately influence its overall effectiveness: the choice of route, traffic schedule, equipment, carting out period, and others. [3]. At the same time, there are always factors that influence the work of equipment and personnel when forest carting out in specific conditions, even when selecting optimal parameters [4,5]. One of these factors is the time of day. The goal of any enterprise and almost all economic and mathematical models is a constant speed of movement of logging trucks and execution of all technological operations. This allows you to calculate the parameters of all production processes, and control them [6,7]. However, in practice, such constant speed and stability is almost impossible to achieve.
The purpose of this study is to identify the nature of the dependence of the speed of movement of logging trucks on the time of day.

2. Methods and materials
For the research, the reports of the movement of the KAMAZ logging truck, generated by GLONASS from March 1 to March 30 (in the Excel format) were used. The population universe is represented by 43442 observations.

Two samples of volumes n and m were extracted from the population universe, and their sample averages were found. The samples are formed by the time of day, based on the time of sunrise and sunset at the place where logging equipment is moving: from 6 AM to 19 PM – daytime, from 19 PM to 6 AM - night time.

The results of statistical processing of samples are presented in table 1 and figures 1 and 2. Calculations have shown that the distributions under consideration are close to normal.

Table 1. Statistical analysis of samples.

Descriptive statistics	Population universe	Sample “night”	Sample “day”
Average	31,98	31,14	32,28397
Standard error	0,0584	0,1043	0,068781
Median	31,6225	30,7866	31,89579
Standard deviation	12,1764	11,9506	12,1624
Dispersion	148,2649	142,8182	147,924
Kurtosis	2,1616	1,9729	2,26978
Skewness	0,5219	0,3852	0,57292
Range	140,3641	140,26803	140,3641
Minimum	0	0	0
Maximum	140,3641	140,2680	140,3641
Sum	1389579	408663,5608	1009455
Number	43441	13120	31268
Confidence level (95,0%)	0,114506	0,2045	0,1348
The movement of logging trucks is recorded as the geographical coordinates of the start and end points of each trip. Data on the movement of logging trucks is shown in figure 2.
Figure 3. Area movement of logging trucks.

Figure 3 shows the fixation of the position of the end points of movement of logging trucks. The cartographic interpretation shows that the logging truck was traveling on a single highway in the GLONASS file under consideration. This excludes the influence of such factors as the type of logging transport route (highway, moustache, portage), the type of road surface and terrain.

3. Results
It was necessary to test two competing hypotheses at the significance level $\alpha=0.05\%$: population universe are equal and not equal.

To test the hypothesis, a two-sample F-test was performed for variances. The results of the calculations are shown in table 2.

Descriptive statistics	Sample “night”	Sample “day”
Average	32,28397	31,14814
Dispersion	147,924	142,8182
Number	31268	13120
df	31267	13119
F	1.03575	-
P($F\leq f$) one-tailed	0.008657	-
F critical one-tailed	1.024565	-

The calculations show that $F \geq F_{cr}$. This means that the sample variances differ, but since the difference is small, additional statistical calculations are required.
Thus, the z test was calculated to check whether the average speeds of the two samples differ statistically. For this purpose, a two-tailed critical area is constructed. The critical value of the Zcr is determined from the condition:

$$F(Z_{cr}) = \frac{1 - \alpha}{2},$$

where $F(z)$ is the Laplace function.

Z_{cr} is determined after calculating $F(z_{cr})$ from the Laplace Transform Table. The results of the calculations are shown in table 3.

Table 3. Two-Sample Z-test for averages.

Descriptive statistics	Sample “night”	Sample “day”
Average	32.28397	31.14814
Population mean (known variance)	147,924	142,8182
Number	31268	13120
Hypothetical definition	0.38818	-
z	5.982856	-
$P(Z<=z)$ one-tailed	1.1E-09	-
z critical one-tailed	1.644854	-
$P(Z<=z)$ two-tailed	2.19E-09	-
z critical two-tailed	1,959964	-

The calculations show that $Z > Z_{cr}$, so the hypothesis of equality of averages is not confirmed. This means that the sample averages are statistically different from each other, meaning that the average speed during the day differs from the average speed at night.

For subsequent research, it was decided to analyze the change in the speed of logging trucks during the day. For this purpose, samples were formed for each hour of the day and statistical indicators of these samples were found. The data is presented in table 4. All samples have more than 30 observations, so they are considered representative. The results show that average speeds differ at different times of the day. The maximum range of the average values is more than 16.17 km/h.

Table 4. Descriptive statistics of samples by hours of the day with a confidence level of 95 %.

Time of day, lh:mm	Number	Standard error	Average, km/h
00:00 - 00:59	45	1.1120	25.15±2.24
01:00 - 01:59	1676	0.2419	31.34±0.47
02:00 - 02:59	749	0.4017	32.97±0.78
03:00 - 03:59	230	0.8168	30.95±1.61
04:00 - 04:59	513	0.4073	21.77±0.80
05:00 - 05:59	1004	0.2474	26.55±0.48
06:00 - 06:59	1178	0.3062	27.45±0.60
07:00 - 07:59	998	0.4605	27.38±0.90
08:00 - 08:59	1722	0.1818	27.07±0.35
09:00 - 09:59	2140	0.2853	30.95±0.55
10:00 - 10:59	2717	0.2982	35.16±0.58
11:00 - 11:59	3272	0.2294	36.26±0.44
12:00 - 12:59	3838	0.1785	34.12±0.35
13:00 - 13:59	3691	0.1902	31.74±0.37
Table 4. Average traffic speeds in the cargo and empty directions

Time of day, h	Cargo Direction	Empty Direction	Average per Day
00:00 - 00:59	3470	2598	42569
01:00 - 01:59	2769	2133	
02:00 - 02:59	1970	1605	
03:00 - 03:59	1190	747	
04:00 - 04:59	3243±0,31	29,18±0,34	
05:00 - 05:59	30,85±0,41	32,64±0,50	
06:00 - 06:59	32,43±0,31	30,85±0,41	
07:00 - 07:59	32,64±0,50	30,85±0,41	
08:00 - 08:59	30,85±0,41	30,85±0,41	
09:00 - 09:59	30,85±0,41	30,85±0,41	
10:00 - 10:59	30,85±0,41	30,85±0,41	
11:00 - 11:59	30,85±0,41	30,85±0,41	
12:00 - 12:59	30,85±0,41	30,85±0,41	
13:00 - 13:59	30,85±0,41	30,85±0,41	
14:00 - 14:59	30,85±0,41	30,85±0,41	
15:00 - 15:59	30,85±0,41	30,85±0,41	
16:00 - 16:59	30,85±0,41	30,85±0,41	
17:00 - 17:59	30,85±0,41	30,85±0,41	
18:00 - 18:59	30,85±0,41	30,85±0,41	
19:00 - 19:59	30,85±0,41	30,85±0,41	
20:00 - 20:59	30,85±0,41	30,85±0,41	
21:00 - 21:59	30,85±0,41	30,85±0,41	
22:00 - 22:59	30,85±0,41	30,85±0,41	
23:00 - 23:59	30,85±0,41	30,85±0,41	

Figure 4 shows a graph of the dependence of the average speed of logging trucks on the time of day.

The graph shows that the lowest speed is observed in the period from 4 to 5 AM, and the highest from 20 to 21 PM. There are three distinct peaks: from 2 to 3 AM, from 11 to 12 AM and from 20 to 21 PM. Two characteristic declines from 4 to 5 AM in the morning and from 0 to 1 AM show that after all, the lowest speed is observed at night.

Many factors affect the speed of logging trucks (terrain, surface characteristics and type of road, time of year and day, technical characteristics of the car, the degree of its load, etc.) [8,9,10]. For subsequent research of the studied dependence, it is necessary to divide each sample into two more samples that characterize the movement of cars in the cargo and empty direction. The results of sample processing are shown in Table 5. The average values of traffic speeds in the cargo and empty directions are very close. It should be noted that the average speed in the "Night" sample is higher than the average speed in the "Day" sample, regardless of the cargo or empty direction.

Figure 4. Average speed of logging trucks during the day.
Table 5. Statistical processing of the results of observations of the speed of movement of logging trucks in the cargo and empty direction at different times of the day.

Descriptive statistics	Sample “night” Cargo	Sample “night” Empty	Sample “day” Cargo	Sample “day” Empty
Average	32,20052	32,42711994	31,39719	30,71211
Standard error	0,092499	0,104353097	0,132351	0,167204
Median	31,83944	32,043397	30,49189	31,06207
Standard deviation	11,99461	12,3503114	11,66342	12,06883
Dispersion	143,8706	152,5301916	136,0353	145,6566
Kurtosis	2,307158	2,4434977	2,81539	0,653372
Skewness	0,551617	0,6023467	0,57287	0,084155
Range	126,8759	140,364072	140,268	93,0367
Minimum	0	0	0	0
Maximum	126,8759	140,364072	140,268	93,0367
Sum	541451,7	454206,669	243830,6	160010,1
Number	16815	14007	7766	5210

The test of the null hypothesis about the equality of the average values of traffic speeds in the cargo and empty direction is presented in table 6.

Table 6. Two-Sample z-test for averages values.

Descriptive statistics	Sample “night”	Sample “day”
z	0,190771916	-6,42527
P(Z<=z) one-tailed	0,424352146	6,58E-11
z critical one-tailed	1,644853627	1,644854
P(Z<=z) two-tailed	0,848704293	1,32E-10
z critical two-tailed	1,959963985	1,959964

According to the Z-test, in the daytime and at night, Z < Zcr consequently, the hypothesis of equality of average speeds is confirmed.

4. Discussion

The nature of the dependence is easily explained when logging trucks work in three shifts during the day. In this case, the peaks are in the pre-afternoon. This can be caused by a subjective factor-the desire to finish work faster and start a rest period (break). At the same time declines are near the end of the shift and can be explained to driver fatigue. Thus, the change in the speed of movement of cars is caused by subjective factors, namely, it depends on the drivers. The driver cannot be replaced with an automatic machine - only a person can drive a logging truck at the moment when transporting wood on the forest territory. In this regard, it is possible to minimize the influence of the subjective factor (if necessary) only by changing the modes and schedules of the staff. However, the necessity for this is rather debatable. Reduced speed at night caused by driver fatigue can be eliminated, for example, by starting a shift (replacing the driver of a logging truck) at night (from 23 PM to 2 AM). Of course, this will achieve some speed increase. Do not forget that traffic can be slower at night, as visibility is reduced in the dark. At the same time, changing work schedules, logistics of delivery of personnel (drivers), organization of the process of changing one driver to another, and a number of additional processes at night are somewhat more difficult than in the traditional way of work. Thus, from the organizational and economic side, the transition to changes in the work schedule of drivers is extremely doubtful.
5. Conclusion
As a result of the research, it was found that the lowest speed of movement is observed in the period from 4 to 5 AM, and the highest from 20 to 21 PM. It is also shown that three distinct peaks are observed on the studied objects: from 2 to 3 AM, from 11 to 12 AM and from 20 to 21 PM.

The results were obtained as a result of statistical data processing and were subjected to validation and significance tests. The role of the human factor in changing the speed of logging trucks indicated in the research requires additional research, which is partially performed by the authors and will be continued in the course of further scientific research. The results obtained are consistent with earlier research in this direction, but they expand and supplement them in terms of changes in the speed of movement of equipment in the daytime and at night.

6. References
[1] Mokhirev A P, Goryaeva E V, Mokhirev M P and Ivschina A V 2018 Planning of operation periods of winter logging roads based on the analysis of climate data statistics Forest Engineering journal 2 176-185 DOI: 10.12737/article_5b2406175e7765.44768086
[2] Mel'nik M A and Volkova E S 2019 Seasonal differentiation of dangerous and adverse natural phenomena for the sphere of forest management in the Tomsk region Bulletin SSGA 2019 24 229-237 (in Russian)
[3] Mokhirev A, Medvedev S and Smolina O 2019 Factors influencing the accessibility of timber transport roads Forestry Engineering journal 9 3(35) 103-113 (in Russian) DOI: 10.34220/issn.2222-7962/2019.3/10
[4] Shegelman I R, SHCHegoleva L V and Lukashevich V M 2007 Justification of the period of operation of winter logging roads Bulletin of Higher Educational Institutions. Russian Forestry Journal 2 54-57
[5] Mokhirev A P and Mokhirev P F 2015 study of the specifics of logging in Krasnoyarsk region Resources and Technolog 12(2) 98-108 (in Russian) DOI: 10.15393/j2.art.2015.3061
[6] Kabanov M V and Lykosov V N 2006 Monitoring and modeling of natural and climate changes in Siberia Atmospheric and Oceanic Optics 19.9 753-764
[7] Morozov E V and SHegelman I R 2019 On the application of probabilistic modeling for the analysis of some technological forest harvesting processes Global scientific potencial 67-71 (in Russian)
[8] Shegelman I R, Skrypnik V I and Kuznetsov A V 2010 Analysis of performance indicators and evaluation of efficiency of logging machines in various natural production conditions Scientific notes of Petrozavodsk state University 4 Petrozavodsk: PetrSU 66-75 (in Russian)
[9] Traffic conditions on forest roads Sivkov E N, Skrypnikov A V and Chernysheva E V in the collection: Study of the forest resource base of the Komi Republic: scientific and methodological aspect Collection of materials of the scientific and practical conference on the scientific theme of the Institute "Development of scientific bases and practical recommendations for the transfer of the forest resource base of the Komi Republic to an innovative intensive model of expanded reproduction for 2015-2020" Responsible editor E V Khokhlova 2017 19-23 (in Russian)
[10] Mazurkin P M 2014 Method of identification International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management SGEM 14 427-434

Acknowledgement
The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, to the research project: «Development of the fundamental principles of forest infrastructure design as a dynamically changing system in the conditions of logging production », grant № 19-410-240005; The reported study was funded by RFBR, the Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund and LLC "Krasresurs 24", project number 20-410-242901.