Laboratory spectroscopic study of isotopic thioformaldehyde, H$_2$CS, and determination of its equilibrium structure

Holger S. P. Müller1, Atsuko Maeda2, Sven Thorwirth1, Frank Lewen1, Stephan Schlemmer1, Ivan R. Medvedev2,**, Manfred Winnewisser2, Frank C. De Lucia2, and Eric Herbst2,**

1 I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
e-mail: hsmp@ph1.uni-koeln.de
2 Department of Physics, The Ohio State University, Columbus, OH 43210-1107, USA

Received 26 October 2018 / Accepted 22 November 2018

ABSTRACT

Context. Thioformaldehyde is an abundant molecule in various regions of the interstellar medium. However, available laboratory data limit the accuracies of calculated transition frequencies in the submillimeter region, in particular for minor isotopic species.

Aims. We aim to determine spectroscopic parameters of isotopologs of H$_2$CS that are accurate enough for predictions well into the submillimeter region.

Methods. We investigated the laboratory rotational spectra of numerous isotopic species in natural isotopic composition almost continuously between 110 and 377 GHz. Individual lines were studied for most species in two frequency regions between 566 and 930 GHz. Further data were obtained for the three most abundant species in the 1290–1390 GHz region.

Results. New or improved spectroscopic parameters were determined for seven isotopic species. Quantum-chemical calculations were carried out to evaluate the differences between ground state and equilibrium rotational parameters to derive semi-empirical equilibrium structural parameters.

Conclusions. The spectroscopic parameters are accurate enough for predictions well above 1 THz with the exception of H$_{13}$C$_{34}$S where the predictions should be reliable to around 700 GHz.

Key words. molecular data – methods: laboratory: molecular – techniques: spectroscopic – radio lines: ISM – ISM: molecules – astrochemistry

1. Introduction

Thioformaldehyde, H$_2$CS, was among the molecules detected early in space, namely in the giant high-mass starforming region Sagittarius B2 near the Galactic center (Sinclair et al. 1973). The molecule was also detected in dark clouds, such as TMC-1 and L134N (Irvine et al. 1989), and in the circumstellar envelope of the C-rich asymptotic giant branch (AGB) star CW Leonis, also known as IRC +10216 (Agúndez et al. 2008). Concerning solar system objects, H$_2$CS was detected in the comet Hale Bopp (Woodney et al. 1997). Furthermore, it was detected in nearby galaxies, such as the Large Magellanic Cloud (Heikkilä et al. 1999) and NGC 253 (Martin et al. 2005), and also in more distant galaxies, such as the $z = 0.89$ foreground galaxy in the direction of the blazar PKS 1830–211 (Müller et al. 2011). Several isotopic species were detected as well; H$_2$C$_{34}$S (Gardner et al. 1985), H$_{13}$CS (Cummins et al. 1986), HDCS (Minowa et al. 1997), and even D$_2$CS (Marcelino et al. 2005); unlabeled atoms refer to 13C and 32S.

Spectroscopic identifications of thioformaldehyde were based on molecular parameters which were obtained to a large extent from laboratory rotational spectroscopy. The first results were reported by Johnson & Powell (1970) followed by additional measurements of H$_2$CS and, to a much lesser extent, of H$_2$C$_{34}$S, H$_{13}$CS, and D$_2$CS up to 70 GHz (Johnson et al. 1971). Beers et al. (1972) measured further transitions of H$_2$CS up to 244 GHz. Cox et al. (1982) carried out microwave measurements of several minor thioformaldehyde isotopologs and determined dipole moments for H$_2$CS and D$_2$CS; a very accurate H$_2$CS dipole moment was reported by Fabricant et al. (1977). Brown et al. (1987) investigated the 33S and 34C hyperfine structure (HFS) from microwave transitions. Minowa et al. (1997) determined HDCS transition frequencies from the millimeter to the lower submillimeter regions. Additional, though less accurate data for H$_2$CS and H$_2$C$_{34}$S were obtained in a far-infrared study of thioformaldehyde (McNaughton & Bruget 1993) and from the A–X electronic spectrum of H$_2$CS (Clouthier et al. 1994). Further, quite accurate transition frequencies of HDCS and D$_2$CS were obtained from radio-astronomical observations (Marcelino et al. 2005).

The need for higher frequency data was apparent in molecular line surveys of Orion KL carried out with the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii covering 325–360 GHz (Schilke et al. 1997) and 607–725 GHz.
(Schilke et al. 2001), and those carried out with the Odin satellite covering 486–492 GHz and 541–577 GHz (Olofsson et al. 2007; Persson et al. 2007), the one carried out with the Herschel satellite covering 480–1280 GHz and 1426–1907 GHz (Crockett et al. 2014), and the Herschel molecular line survey of Sagittarius B2(N) (Neill et al. 2014). Moreover, the identification of H₂C³⁴S in the Protostellar Interferometric Line Survey (PILS) of IRAS 16293−2422 with the Atacama Large Millimeter/submillimeter Array (ALMA) between 329 and 363 GHz (Drozdovskaya et al. 2018) may have been hampered by insufficient accuracies of some of the rotational transitions.

The apparent lack of accuracy in the H₂CS rest-frequencies in the higher frequency CSO survey (Schilke et al. 2001) and a specific request from a member of the Odin team to one of us (E.H.) initiated our study covering 110−377 GHz, 566−670 GHz, and 848−930 GHz. An account on the H₂CS data in the ground vibrational state has been given by Maeda et al. (2008). Later, we extended measurements to the 12.2−13.9 THz region. Here, we report on the ground state rotational data of seven isotopic species, H₂CS, H₂C³⁴S, H₂C³³S, H₂C⁵⁷S, H13CS, H13C³⁴S, and HDCS obtained from samples in natural isotopic composition. The derived, often greatly improved, spectroscopic parameters permit predictions of accurate rest-frequencies well above 1 THz except for H₁₂⁷C³⁴S, where the experimental data are more limited. The rotational parameters of these isotopologs plus a set of redetermined values for D₂CS combined with vibration-rotation parameters from quantum-chemical calculations were used to derive equilibrium structural parameters.

2. Laboratory spectroscopic details

We employed the Fast Scan Submillimeter-wave Spectroscopic Technique (FASSST) of The Ohio State University (OSU) to cover the 110−377 GHz range with a small gap at 190−200 GHz (Petkiewicz et al. 1997; Medvedev et al. 2004). Additionally, we used two different spectrometer systems at the Universität zu Köln to record higher frequency transitions up to almost 1.4 THz (Winnewisser et al. 1994; Winnewisser 1995; Xu et al. 2012).

The FASSST system employs backward wave oscillators (BWOs) as sources; in the present study one that covered about 110−190 GHz and two spanning the region of 200−377 GHz. The frequency of each BWO was swept quickly so that a wide frequency range (~90 GHz) can be measured in a short period and any voltage instability of the BWOs can be overcome. The frequency of the FASSST spectrum was calibrated with sulfur dioxide (SO₂) rotational lines whose spectral frequencies are well known (Müller & Brünken 2005). A portion of the source radiation propagated through a Fabry-Perot cavity to produce an interference fringe spectrum with a free spectral range of ~9 GHz. The gas produced from the pyrolysis was swept through a 2 cm diameter quartz tubing stuffed with quartz pieces and quartz cotton to enlarge the reaction surface. The quartz tubing was heated with a cylindrical furnace to ~680°C. The gas produced from the pyrolysis was introduced to a 6 m long aluminum cell at room temperature and pumped to a pressure of 0.4−1.5 mTorr (1 mTorr = 0.1333 Pa). The spectrum of trimethylene sulfide almost totally disappeared after the pyrolysis, at which time the spectrum of thioformaldehyde appeared. Spectral lines due to the by-products, CS, H₂S, and H₂CCS, were also observed, but with less intensity compared with thioformaldehyde.

A 3 m long glass absorption cell kept at room temperature was used for measurements in Cologne. A higher temperature of about 1300°C was required in the pyrolysis zone in order to maximize the thioformaldehyde yield and to minimize absorptions of (CH₃)₂S because no quartz cotton was used in the quartz pyrolysis tube. The total pressure was around 1−3 Pa for weaker lines and around 0.01−0.1 Pa for stronger lines.

Liquid He-cooled InSb bolometers were used in both laboratories as detectors.

3. Quantum-chemical calculations

Hybrid density functional calculations of the B3LYP variant (Becke 1993; Lee et al. 1988) and Möller-Plesset second order perturbation theory (MP2) calculations (Möller & Plesset 1934) were carried out with the commercially available program Gaussian 09 (Frisch et al. 2013). We performed also coupled cluster calculations with singles and doubles excitations augmented by a perturbative correction for triple excitations, CCSD(T) (Raghavachari et al. 1989) with the 2005 Mainz-Austin-Budapest version of ACESII and its successor CFOUR.¹ We employed correlation consistent basis sets cc-pV(X) for H and C and the cc-pV(X + d)Z basis sets for S (Dunning et al. 2001); diffuse basis functions were augmented for some calculations, denoted as aug-cc-pVXZ and aug-cc-pV(X + d)Z. We abbreviate these basis sets as XZ

¹ CFOUR, a quantum chemical program package written by J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay et al. For the current version, see http://www.cfour.de
and aXZ, respectively. In addition, we employed weighted core-correlating basis functions in some cases, yielding the (aug-) cc-pwCVXZ basis sets (Peterson & Dunning 2002). These basis sets were abbreviated as wCXZ and awCXZ, respectively. All calculation were carried out at the Regionales Rechenzentrum der Universität zu Köln (RRZK).

Equilibrium geometries were determined by analytic gradient techniques, harmonic force fields by analytic second derivatives, and anharmonic force fields by numerical differentiation of the analytically evaluated second derivatives of the energy. The main goal of these anharmonic force field calculations was to evaluate first order vibration-rotation parameters (Mills 1972), see also Sect. 6. Core electrons were kept frozen in MP2 and CCSD(T) calculations unless “ae” indicates that all electrons were correlated. We evaluated the hyperfine parameters of H$_2$C3S using the awCQZ basis set (wCQZ for CCSD(T) calculation) at the equilibrium geometry calculated at the same level.

4. Spectroscopic properties of thioformaldehyde

Thioformaldehyde is an asymmetric rotor with $\kappa = \frac{(2B - A - C)}{(A - C)} = -0.9924$, much closer to the symmetric limit of -1 than the isovalent formaldehyde for which $\kappa = -0.9610$, see, for example, Müller & Lewen (2017). The H$_2$CS dipole moment of 1.6491 D (Fabricant et al. 1977) is aligned with the a inertial axis. The strong rotational transitions are therefore those with $\Delta K_a = 0$ and $\Delta J = \pm 1$, that is, the R-branch transitions. Transitions with $\Delta K_a = 0$ and $\Delta J = 0$ (Q-branch transitions) are also allowed as are transitions with $\Delta K_a = \pm 2$. These transitions are not only much weaker than the strong R-branch transitions, but also relatively weaker than the equivalent transitions in H$_2$CO because H$_2$CS is closer to the symmetric prolate limit.

Isotopologs with two H or two D have C_{2v} symmetry whereas isotopologs with one H and one D have C_{3v} symmetry. Spin-statistics caused by the two equivalent H lead to ortho and para states with a 3:1 intensity ratio. The ortho states are described by K_a being odd. The ortho to para ratio in D$_2$CS is 2:1, and the ortho states are described by K_a being even. No non-trivial spin-statistics exist in HDCS and related isotopologs.

Sulfur has four stable isotopes with mass numbers 32, 33, 34, and 36 and with terrestrial abundances of 95.0%, 0.75%, 4.2%, and ~0.015%, respectively (Berglund & Wieser 2011). The respective abundances are 98.89% and 1.11% for 13C and 13S, and 99.98% and ~0.015% for H and D.

5. Spectroscopic results

We used Pickett’s SPCAT and SPFIT programs (Pickett 1991) to predict and fit rotational spectra of the various isotopic species of thioformaldehyde. Predictions were generated from the published data for the isotopic species H$_2$CS, H$_2$C34S, H$_2$C33S, H1CS, and HDCS (Johnson et al. 1971; Beers et al. 1972; Cox et al. 1982; Brown et al. 1987; McNaughton & Bruget 1993; Minowa et al. 1997). Higher order spectroscopic parameters of isotopic species with heavy atom substitution were estimated from those of H$_2$CS by scaling the parameters with appropriate powers of the ratios of $2A - B - C$, $B + C$, and $B - C$. Even though these estimates do not hold strictly, they are almost always better than constraining the parameters to zero and also mostly better than constraining the parameters to values directly taken from the main isotopic species, see, e.g., below or the examples of isotopic CH$_3$CN (Müller et al. 2016) or H$_2$CO (Müller & Lewen 2017). This scaling procedure is not recommended for H to D substitution especially in molecules with relatively few atoms, such as HDCS. The resulting spectroscopic line lists are or were available in the Cologne Database for Molecular Spectroscopy, CDMS2 (Endres et al. 2016) as version 1, mostly from February 2006. An updated entry (version 2) has been available for the H$_2$CS main isotopic species since early 2008.

We carried out the rotational assignment for the FASSST spectra of thioformaldehyde with the Computer Aided Assignment of Asymmetric Rotor Spectra (CAAARS) program applying the Loomis-Meck procedure, with which the observed spectrum is visually compared with predicted line positions and intensities to make new assignments (Medvedev et al. 2005). The strong $\Delta K_a = 0$ R-branch transitions of the abundant isotopic species H$_2$CS, H$_2$C34S, H1CS, and H$_2$C33S were found easily first for low values of K_a (0–4) and later up to $K_a = 9$. The upper frequency of 377 GHz limited the J quantum numbers to a maximum of 10–9 for H$_2$CS and 11–10 for the other isotopologs because of the smaller values of B+C. Several transitions of H$_2$C33S displayed splitting caused by the electric nuclear quadrupole moment and the magnetic nuclear dipole moment of the I = 3/2 nucleus of 33S. We could also make extensive assignments for the weaker Q-branch transitions with $K_a = 1$. These covered all and almost all of $J = 15–26$ for H$_2$CS and H$_2$C34S, respectively; fewer lines were found for H1CS and H$_2$C33S. In the case of the main isotopic species, we could assign most of the even weaker $K_a = 2$ Q-branch transitions with $32 \leq J \leq 41$.

On the basis of these extensive assignments, we suspected that transitions of HDCS should be strong enough in natural isotopic composition to identify them in our FASSST spectra. Minowa et al. (1997) had reported transition frequencies from laboratory measurements up to 380 GHz. The resulting spectroscopic parameters were sufficiently accurate to identify HDCS transitions in our FASSST spectra. Even though the lines were weak, we could supplement the existing line list with R-branch transition frequencies not reported by Minowa et al. (1997) up to $K_a = 7$.

With the identification of HDCS in the FASSST spectra, it appeared plausible to search for transitions of H$_2$C34S and H$_2$C33S because they have abundances similar to those of HDCS. We derived an A_143 structure (Rudolph 1991), see also Sect. 6, from the known rotational parameters because this structure model can provide good predictions of rotational parameters of isotopologs not yet studied, see, e.g., the example of cyclopropylgermane (Epple & Rudolph 1992) or sulfuryl chloride fluoride (Müller & Gerry 1994). We were able to make assignments of R-branch transition up to $K_a = 5$ for both isotopic species, however, those for H$_2$C34S and H$_2$C33S were only made in the process of writing this manuscript, and assignments extend only up to 362 GHz (see Fig. 1).

Most of the frequencies were assigned uncertainties of 50 kHz; 100 kHz were assigned to the weak Q-branch transition frequencies, to some of the weaker R-branch frequencies, and to some of the weaker Q-branch frequencies, to some of the weaker R-branch frequencies. Uncertainties of 200 kHz were assigned to weaker lines of H$_2$C36S.

Subsequently, improved predictions were used to search for individual transitions of H$_2$CS, H$_2$C34S, H1CS, H$_2$C33S, HDCS, and H$_2$C36S in the regions 566–670 and 848–930 GHz using the Cologne Terahertz Spectrometer. Figure 2 demonstrates the good signal-to-noise ratio achieved for HDCS. Later, we recorded transitions of H$_2$CS, H$_2$C34S, and H1CS in the

2 http://www.astro.uni-koeln.de/cdms/entries. Note that this link, as well as those in footnotes 3 and 4, are temporarily unavailable. They should be redirected in the near future.
1290–1390 GHz region. Figure 3 demonstrates the para to ortho ratio for the main isotopic species. The Boltzmann peak of the room temperature rotational spectrum of H$_2$CS is at \sim800 GHz. Therefore, we did not attempt any measurements for the rarer isotopic species at these high frequencies.

The quantum numbers of the strong R-branch transitions reach $J = 41$–40 and $K_a = 15$ for H$_2$CS; we recorded three $K_a = 1$ Q-branch transitions up to $J = 41$ and five $K_a = 2$–0 or 3–1 P-branch transitions ($\Delta J = -1$) below 1 THz. In the case of H$_2^{13}$CS and H$_2^{15}$CS, $J = 42$–41, $K_a = 12$ and $J = 43$–42, $K_a = 11$ were reached. In addition, we recorded two $K_a = 1$ Q-branch transitions with $J = 34$ and 35 for H$_3^{13}$CS. Finally, $J = 27$–26, $K_a = 11$ and $J = 28$–27, $K_a = 7$, and $J = 30$–29, $K_a = 9$ were reached for H$_2^{133}$S, H$_2^{135}$S, and HDCS, respectively. Unfortunately, we did not attempt to search for transitions of H$_2^{13}$C34S in the (initial) absence of assignments in the FASSST spectra.

Uncertainties of 5 kHz were assigned to the best lines of almost all isotopic species below 1 THz, 10 kHz were assigned to the best lines of H$_2^{13}$C36S and those above 1 THz. The largest uncertainties were around 50 kHz.

Our data set for the main isotopic species is very similar to that of our earlier account by Maeda et al. (2008). The main exception are 58 transitions corresponding to 42 frequencies because of unresolved asymmetry splitting at higher K_a that were recorded between 1290 and 1390 GHz. We omitted the far-infrared transition frequencies from McNaughton & Bruget (1993) below 1390 GHz or 46.37 cm$^{-1}$ because of the lower accuracy of these data (\sim3 MHz). Additional data beyond our transition frequencies are the ground state combination differences from the A–X electronic spectrum of H$_2$CS (Clouthier et al. 1994) and lower frequency rotational transition frequencies (Fabricant et al. 1977; Johnson et al. 1971; Beers et al. 1972). Some transition frequencies for H$_2^{13}$CS and H$_2^{15}$CS were taken from Johnson et al. (1971) and from Cox et al. (1982); Brown et al. (1987) contributed data for H$_2^{13}$CS and for H$_2^{13}$CS, and Minowa et al. (1997) for HDCS. We determined also spectroscopic parameters for D$_2$CS in particular for the structure determination even though we did not record any transitions of this rare isotopolog. We combined earlier laboratory data (Johnson et al. 1971; Cox et al. 1982) with more recent rest frequencies from radio astronomical observations (Marcelino et al. 2005).

The HFS components of the 2$_{1,1}$–2$_{1,2}$ transition of H$_2^{13}$CS (Brown et al. 1987) displayed average residuals between measured and calculated frequencies of 28 kHz, much larger than the assigned uncertainties of 4–8 kHz and with considerable scatter. Therefore, we omitted the HFS components of this transition from the final fit.

The additional very accurate data for the main isotopic species from the 1290–1390 GHz region required two additional parameters, L_{JJK} and L_{JL}, in the fit compared with our previous report (Maeda et al. 2008). The parameter values changed only very little for the most part with the exception of H_{JJ}, which changed from (-3.33 ± 0.29) mHz to (-5.81 ± 0.31) mHz.

Sets of spectroscopic parameters were evaluated for H$_2^{13}$CS and H$_2^{15}$CS as described above. Parameters derived from the main isotopic species were fit starting from the lower order parameters. A parameter was considered to be kept floating if the resulting quality of the fit improved substantially and if the uncertainty of the parameter was much smaller than a fifth of the magnitude of the parameter. Generally, we searched for the parameter whose fitting improved the quality most among the parameters. A parameter was considered to be kept floating if the resulting quality of the fit improved substantially and if the uncertainty of the parameter was much smaller than a fifth of the magnitude of the parameter. Generally, we searched for the parameter whose fitting improved the quality most among the parameters reasonable to be fit. This procedure was repeated until the quality of the fit did not improve considerably anymore.

We evaluated initial spectroscopic parameters of H$_2^{13}$CS, H$_2^{13}$C34S, and H$_2^{13}$C36S in a similar manner; the main difference was that we considered not only parameters of H$_2$CS, but also of H$_2^{13}$CS and H$_2^{15}$CS. Nuclear HFS parameters had to be included in the fit of H$_2^{13}$CS. The dominant contribution comes from...
the nuclear electric quadrupole coupling. There are only three parameters, χ_{aa}, χ_{bb}, and χ_{cc}, because of the symmetry of the molecule; χ_{cc} was derived from the other two because the sum of the three is zero. Nuclear magnetic spin-rotation coupling parameters needed to be included in the fit also. However, the values of C_{bb} and C_{cc} were poorly determined and were quite different from values obtained from quantum-chemical calculations. It turned out that $C_{bb} - C_{cc}$ is well determined whereas $C_{bb} + C_{cc}$ appears to be insufficiently constrained. Therefore, we constrained $C_{bb} + C_{cc}$ to the value from an MP2 calculation because the remaining two experimental parameters agreed well with the calculated ones. Distortion parameters of HDCS and D$_2$CS that could not be evaluated experimentally were estimated from values taken from a quantum-chemical calculation (Martin et al. 1994) and considering deviations between these calculated equilibrium values and the determined experimental ground state values of these two isotopic species and those of H$_2$CS.

The spectroscopic parameters of H$_2$CS, H$_2$C33S, H$_2$C34S, and H$_2$C36S are given in Table 1, except for the H$_2$C33S hyperfine structure parameters which are presented in Table 2 in comparison to equilibrium values from quantum-chemical calculations.

Table 1. Spectroscopic parameters (MHz) of thioformaldehyde isotopologs with different sulfur isotopes.

Parameter	H$_2$CS	H$_2$C33S	H$_2$C34S	H$_2$C36S
$A - (B + C)/2$	274437.5932 (115)	274588.054 (306)	274729.12 (34)	274987.91 (94)
$(B + C)/2$	17175.745955 (196)	17024.740821 (110)	16882.911552 (112)	16621.73726 (35)
$(B - C)/4$	261.6240523 (165)	257.050936 (39)	252.729307 (73)	245.04552 (43)
D_K	23.34378 (164)	23.408	23.468 (141)	23.6
D_{JK}	0.5229383 (43)	0.5132638 (95)	0.5048431 (51)	0.489486 (38)
$D_l \times 10^3$	19.01875 (39)	18.700456 (105)	18.404173 (172)	17.86334 (29)
$d_l \times 10^3$	$-1.208429 (105)$	$-1.176656 (78)$	$-1.148425 (108)$	$-1.09806 (36)$
$H_K \times 10^3$	$-0.177322 (222)$	$-0.171180 (81)$	$-0.165589 (136)$	$-0.15585 (27)$
$H_{KKJ} \times 10^6$	5.946 (35)	5.97	6.00	6.05
$H_{JJJ} \times 10^6$	$-28.155 (86)$	$-27.839 (211)$	$-28.071 (109)$	$-28.16 (109)$
$H_{KJ} \times 10^6$	1.50409 (270)	1.4502 (39)	1.41629 (70)	1.3346 (203)
$H_{JJ} \times 10^6$	$-5.81 (32)$	-5.46	$-5.100 (40)$	-4.48
$h_l \times 10^3$	3.018 (141)	2.792	2.600 (37)	2.216
$L_{K} \times 10^6$	$-2.109 (206)$	-2.00	-2.00	-2.00
$L_{KKJ} \times 10^6$	$-21.36 (69)$	$-23.18 (128)$	$-20.86 (65)$	-20.37
$L_{JK} \times 10^6$	0.2032 (90)	0.200	0.197	0.1909
$L_{JJJ} \times 10^{12}$	$-10.32 (81)$	-9.66	-9.0	-7.85
$L_{J} \times 10^{12}$	0.833 (87)	0.766	0.760	0.588
$l_{1} \times 10^{12}$	$-0.358 (47)$	-0.330	-0.304	-0.258
$P_{KKJ} \times 10^{12}$	$-18.63 (180)$	-18.8	-19.0	-19.0

Notes. Watson’s S reduction has been used in the representation. Parameters without uncertainties were estimated and kept fixed in the analyses. 33S HFS parameters are given in Table 2.

Table 2. Experimental 33S hyperfine structure parameters (MHz) of H$_2$C33S in comparison to equilibrium values from quantum-chemical calculations.

Parameter	exptl.	B3LYP	MP2	ae-MP2	ae-CCSD(T)
χ_{aa}	$-11.8893 (124)$	-12.27	-10.31	-9.99	-12.18
χ_{bb}	$49.9646 (156)$	50.26	49.08	48.93	50.030
χ_{cc}	$-38.0775 (158)$	-37.99	-38.77	-38.94	-37.212
$(C_{aa} - (C_{bb} + C_{cc})/2) \times 10^3$	475.5 (24)	526.5	469.3	468.5	456.0
$(C_{bb} + C_{cc}) \times 10^3$	13.6	15.28	13.61	13.63	13.6
$(C_{bb} - C_{cc}) \times 10^3$	10.68 (105)	10.98	10.29	10.33	10.2

Notes. Numbers in parentheses are one standard deviation in units of the least significant figures. Parameters without uncertainties were estimated and kept fixed in the analyses. Basis sets: aug-cc-pwCVQZ for B3LYP and MP2 calculations, cc-pwCVQZ for ae-CCSD(T); see also Sect. 3. $^{(a)}$Derived value because the sum of the χ_{ii} is zero.
Table 3. Spectroscopic parameters (MHz) of H$_2$CS, H$_2$C34S, HDCS, and D$_2$CS.

Parameter	H$_2$CS	H$_2$C34S	HDCS	D$_2$CS
A − (B + C)/2	275113.82 (35)	275418.9 (161)	187214.14 (44)	132198.92 (26)
(B + C)/2	16514.989247 (141)	16219.21788 (122)	15501.179704 (242)	14200.0562 (59)
(B − C)/4	241.897858 (82)	233.32414 (81)	304.81583 (44)	352.105440 (153)
D$_K$	23.465 (129)	23.51	13.364 (198)	5.5
D$_{JK}$	0.4960263 (70)	0.478799 (57)	0.3208611 (107)	0.29091 (146)
D$_J$ × 103	17.692846 (203)	17.09998 (66)	15.40446 (68)	12.492 (158)
d$_1$ × 103	−1.071785 (122)	−1.01853	−1.38941 (86)	−1.40268 (225)
d$_2$ × 103	−0.152488 (113)	−0.14239	−0.23009 (42)	−0.28995 (37)
H$_K$ × 103	6.00	6.00	3.0	0.75
H$_{JK}$ × 106	−25.846 (164)	−25.77	−37.662 (110)	−4.7
H$_{JK}$ × 106	1.34969 (281)	1.271	1.2332 (61)	0.88
L$_K$ × 106	−2.00	−2.00		
L$_{KKJ}$ × 109	−22.16 (106)	−21.65		
L$_{JK}$ × 109	0.189	0.183		
L$_{JJK}$ × 1012	0.106	−8.80		
L$_J$ × 1012	0.750	0.630		
l$_1$ × 1012	−0.320	−0.272		
P$_{KKJ}$ × 1012	−19.0	−19.0		

Notes. Watson’s S reduction has been used in the representation P. Numbers in parentheses are one standard deviation in units of the least significant figures. Parameters without uncertainties were estimated and kept fixed in the analyses.

Table 4. Frequencies ν (GHz) and J values for which deviations between old calculations and present data exceed 1 MHz given for selected thioformaldehyde isotopic species and K_a values.

Isotopolog	K_a	ν (GHz)	J
H$_2$CS	5	>198.0	≥5
	2a	>330.5	≥9
	0	>641.0	≥13
H$_2$C34S	5	>202.4	≥5
	4	>269.9	≥7
	3	>405.0	≥11
H$_2$C33S	6	>238.0	≥6
	5	>306.1	≥8
	4	>476.3	≥13

Notes. a)Transitions with $K_a = J - 2$; transitions with $K_a = J - 1$ deviate less.

article at cds (see also Table A.1). The line, parameter, and fit files along with auxiliary files are available in the data section of the CDMS. Calculated and experimental transition frequencies for radio astronomical observations and other purposes are provided in the catalog section of the CDMS.

Since Cox et al. (1982) determined the D$_2$CS dipole moment to be slightly larger than that of H$_2$CS, we discuss changes of dipole moments upon isotopic substitution. The experimentally determined difference between H$_2$CS and D$_2$CS is only 0.0105 ± 0.0011 D, equivalent to an overestimation of the D$_2$CS column density by about 1.3%, which is negligible by astronomical standards. Fabricant et al. (1977) determined that the dipole moments of D$_2$CO is 0.0154 D larger than that of H$_2$CO whereas the one of D$_2$CCO is only 0.0024 D larger than the one of H$_2$CCO, suggesting that dipole moment differences upon deuteration decrease rapidly for increasingly larger molecules. Heavy atom substitution leads to much smaller differences. As may be expected, the dipole moment of H$_2$CS is only 0.0002 D larger than that of H$_2$CO (Fabricant et al. 1977). Our ground state dipole moments, which we calculated at the B3LYP/QZ and MP2/QZ levels, yielded differences of similar magnitude upon heavy atom substitution. The difference in the case of D$_2$CS was 0.0136 D and 0.0132 D after scaling the values with the ratio between calculated H$_2$CS ground state dipole moment and the experimental value. These isotopic changes agree with the experimental one of Cox et al. (1982) within three times the uncertainty. Finally, we point out that the slight rotation of the inertial axis system in the case of HDCS leads to a minute b-dipole moment component of -0.08 D. The strongest b-type transitions are around three orders of magnitude weaker than the strongest a-type transitions at similar frequencies. Only the uncertainties of the $K_a = 1 \leftrightarrow 0$ transitions (~0.2 MHz) may be small enough to permit detection in astronomical spectra at least in theory. The uncertainties increase rapidly with increasing K_a.

Astronomers will be interested to know the impact of the present data on the calculated line positions. Deviations between initial calculations of transition frequencies and the present ones increase usually strongly with K_a and less strongly with J. We show in Table 4 for three isotopic species and selected values of K_a the J values and the corresponding frequencies for which these deviations exceed 1 MHz. This corresponds to the line width

\[
\text{https://www.astro.uni-koeln.de/cdms/daten/H2CS/}
\]

\[
\text{http://www.astro.uni-koeln.de/cdms/entries/; see also http://www.astro.uni-koeln.de/cdms/catalog/}
\]
Table 5. Spectroscopic parameters (MHz) of thioformaldehyde in comparison to those of related molecules.

Parameter	H₂CO⁺	H₂CS⁺	H₂SiO⁻	H₂SiS⁻
A − (B + C)/2	24555.4495 (40)	274437.5932 (115)	148946.49 (173)	162498.0 (14)
(B + C)/2	36419.1152 (25)	17175.745955 (196)	17711.079583 (33)	7844.48028 (22)
(B − C)/4	1207.438721 (33)	261.6240523 (165)	483.74088 (50)	93.23731 (28)
Dₓ	19.39136 (53)	23.34378 (164)	7.63 (87)	9.81
Dₓ/2	70.2050 (50)	19.01875 (39)	16.1803 (94)	3.9283 (27)
Dₓ × 10⁻³	10.437877 (47)	−1.208429 (105)	−2.08116 (236)	−0.19581 (35)
Dₓ × 10⁻⁴	−2.501496 (33)	−0.1773270 (222)	−0.6712 (48)	−0.02938 (17)
Hₓ × 10⁻⁶	4.027 (22)	5.946 (35)	1.0²	1.6²
Hₓ × 10⁻⁷	10.865 (79)	−28.155 (86)	−43.324 (297)	−18.8 (15)
Hₓ × 10⁻⁸	7.465 (16)	1.50409 (270)	3.409 (65)	0.246 (34)
Hₓ × 10⁻⁹	3.54 (33)	−5.81 (32)		
Hₓ × 10⁻¹⁰	32.272 (58)	3.018 (141)		
Hₓ × 10⁻¹¹	47.942 (74)	1.6472 (140)		
Hₓ × 10⁻¹²	15.966 (15)	0.3619 (73)		
Lₓ × 10⁻⁶	−0.610 (177)	−2.109 (206)		
Lₓ × 10⁻⁷	−5.85 (19)	−21.36 (69)		
Lₓ × 10⁻⁸	0.367 (85)	0.2032 (90)		
Lₓ × 10⁻⁹	−105.7 (92)	−10.32 (81)		
Lₓ × 10⁻¹⁰	0.833 (87)			
Lₓ × 10⁻¹¹	−0.358 (47)			
Lₓ × 10⁻¹²	−0.345 (50)			
Pₓ × 10⁻¹³	−0.427 (19)			
Pₓ × 10⁻¹⁴	−0.1520 (32)			
Pₓ × 10⁻¹⁵	−18.63 (180)			
Pₓ × 10⁻¹⁶	3.33			

Notes. Watson’s S reduction has been used in the representation F. Numbers in parentheses are one standard deviation in units of the least significant figures. Parameters without uncertainties were estimated and kept fixed in the analyses.²²⁰Müller & Lewen (2017). This work.

Table 5 continued

Parameter	H₂CO⁺	H₂CS⁺	H₂SiO⁻	H₂SiS⁻
A − (B + C)/2	24555.4495 (40)	274437.5932 (115)	148946.49 (173)	162498.0 (14)
(B + C)/2	36419.1152 (25)	17175.745955 (196)	17711.079583 (33)	7844.48028 (22)
(B − C)/4	1207.438721 (33)	261.6240523 (165)	483.74088 (50)	93.23731 (28)

Notes. Watson’s S reduction has been used in the representation F. Numbers in parentheses are one standard deviation in units of the least significant figures. Parameters without uncertainties were estimated and kept fixed in the analyses.²²⁰Müller & Lewen (2017). This work.²²²Clouthier et al. (1994); refit in the S reduction in the present work.²²⁴McCarthy et al. (2011).²²⁵Estimated in the present work.

of the protostar IRAS 16293−2422 source B around 300 GHz; e.g., Drozdovskaya et al. (2018). Dark clouds may exhibit even smaller line widths, whereas high-mass star-forming regions usually display larger line widths by factors of a few.

Noticing that initially calculated and present transition frequencies of H₂C³⁴S display differences of more than 1 MHz in the upper millimeter and lower submillimeter region for modest values of Kₓ, we wondered if the findings of Drozdovskaya et al. (2018) were affected by this. The paper is based on the Protostellar Interferometric Line Survey (PILS) of the binary IRAS 16293−2422 carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) in the 329.15−362.90 GHz range (Jørgensen et al. 2016). The J = 10−9 transitions of H₂C³⁴S are covered in that survey. The model by Drozdovskaya et al. (2018) shows that the Kₓ = 3 pair of transitions are near the noise limit, but are blended by stronger transitions. Shifts of almost 1 MHz between initially and presently calculated rest frequencies do not change this enough (Drozdovskaya, priv. comm. to H.S.P.M., 2018). But one of the remaining five transitions with lower Kₓ are clearly blended. Therefore, the finding by Drozdovskaya et al. (2018) that only an upper limit to the column density could be determined for H₂C³⁴S remains unaltered.

We were able to determine A − (B + C)/2 for all isotopic species and for some even Dₓ although direct information on the purely K-dependent parameters exists only for the main species through the ΔKₓ = 2 rotational transitions and the ground state combination differences from Clouthier et al. (1994) and even though thioformaldehyde is so close to the symmetric prolate limit.

The experimental ³³S hyperfine structure parameters in Table 2 agree well or quite well with those from quantum-chemical calculations. We note that the calculated values are equilibrium values whereas the experimental ones are values referring to the ground vibrational state. Consideration of vibrational effects may have some influence on the comparison, but their evaluation was beyond the aim of our study.

A comparison of spectroscopic parameters of the isovalent molecules formaldehyde, thioformaldehyde, silanone, and thiosilanone is given in Table 5. Interestingly, the quartic distortion parameters scale approximately with appropriate powers of A − (B + C)/2, B + C, and B − C. This appears to apply also for some of the available sextic distortion parameters, but in many cases the relations are more complex.

6. Structural parameters of thioformaldehyde

The equilibrium structure is the best and easiest defined structure of a molecule. It requires to calculate equilibrium rotational parameter(s), for example, Bₓ from the ground state rotational parameter(s) B₀ as follows

\[
Bₓ = B₀ + \frac{1}{2} \sum_j a_j \gamma_j - \frac{1}{4} \sum_{jk} \gamma_j \gamma_k - \ldots
\]
where the $a^{\mu \nu}_i$ are first order vibrational corrections, the γ_{jk}^i are second order vibrational corrections, and so on. Equivalent formulations hold for A_i and C_i. In the case of a diatomic molecule, only information on one isotopic species is necessary, and only one rotational parameter and one vibrational correction of each order exist. Experimental data exist for a plethora of diatomic molecules, see, e.g., Huber & Herzberg (1979). B_i is usually much larger than α which in turn is much larger than $|\gamma|$; the situation involving higher order corrections may be more complex.

The general n-atomic asymmetric rotor molecule has three different rotational parameters A, B, and C, $3n-6$ first order vibrational corrections, $(3n-6)(3n-5)/2$ second order vibrational corrections, and so on. Specifically, the number of first and second order corrections are three and six, respectively, for a triatomic molecule, and six and 21 for a tetratomic molecule such as H$_2$CS. Experimental equilibrium structural parameters of polyatomic molecules with consideration of more than first order vibrational corrections are very rare, but more exist with consideration of first order vibrational corrections only. It is necessary to point out that B_0-B_1 is only to first order equal to $a^{\mu \nu}_i$.

Moreover, data for more than one isotopic species are needed to determine all independent structural parameters unless the molecule is a symmetric triatomic of the type AB$_2$, where atoms A and B do not need to be different.

An alternative, lately very common, approach is to calculate $\sum a^{\mu \nu}_i$ by quantum-chemical means to derive semi-empirical equilibrium rotational parameters $B_{i,\text{eff}}$ from the experimental ground state values (Stanton et al. 1998). Second and higher order vibrational contributions are neglected. Numerous quantum-chemical programs are available to carry out such calculations; examples have been mentioned in Sect. 3.

We have used B3LYP, MP2, and CCSD(T) calculations with an adequately large basis set of quadruple zeta quality to evaluate the first order vibrational corrections for isotoptops of thioformaldehyde which have been summarized in Table 6 together with ground state values, two additional corrections described in greater detail below, the final semi-empirical equilibrium values at the CCSD(T) level, and the corresponding equilibrium inertia defect $\Delta\nu$. The inertia defect is defined as $\Delta \nu = I_{cc} - I_{bb} - I_{aa}$. Among the three methods employed in the present study, CCSD(T) is considered to be by far the most accurate one under most circumstances whereas MP2 and B3LYP are usually less accurate by different degrees. Morgan et al. (2018) performed extensive calculations on the related formaldehyde molecule. The cc-CCSD(T) data obtained with a basis set of QZ quality are already quite close to experimental values, but larger basis sets or higher degrees of electron correlation modify the picture somewhat. All corrections together improve the agreement between quantum-chemical calculations and experimental results non-negligibly. Such calculations are, however, very demanding, and in many cases cc-CCSD(T) calculations with a basis set of QZ quality are a good compromise for small to moderately large molecules (Coriani et al. 2005).

The $\Delta B_{i,\text{eff}}$ determined for thioformaldehyde differ considerably among the three methods for each isotopolog and each i. We suspect that the second order vibrational corrections are smaller than the differences between the methods. If we assume that they decrease in magnitude in a similar way as the first order

\begin{table}[h]
\centering
\begin{tabular}{cccccccccc}
\hline
Species & B_i & $B_{i,\text{eff}}$ & $\Delta B_{i,\text{eff}}$ & $\Delta B_{i,\text{eff}}$ (MP2) & $\Delta B_{i,\text{eff}}$ (CCSD(T)) & $\Delta B_{i,\text{cont}}$ & $\Delta B_{i,\text{cont}}$ (CCSD(T)) & $\Delta\nu$ \\
\hline
H$_2$CS & A & 291613.34 & 1671.810 & 1900.593 & 1958.684 & 843.435 & -0.608 & 294414.850 \\
 & B & 17698.994 & 63.975 & 68.066 & 74.002 & 1.294 & -0.608 & 17773.682 \\
 & C & 1662.498 & 98.197 & 102.170 & 108.190 & 0.218 & 0.912 & 16761.817 \\
H$_2$C$_{33}$S & A & 291612.9 & 1672.606 & 1901.179 & 1959.382 & 843.435 & -0.598 & 294415.07 \\
 & B & 17538.843 & 63.279 & 67.354 & 73.212 & 1.282 & -0.598 & 17612.739 \\
 & C & 16510.639 & 96.945 & 100.900 & 106.845 & 0.216 & 0.897 & 16618.596 \\
H$_2$C$_{34}$S & A & 291612.9 & 1673.333 & 1901.704 & 1960.038 & 843.435 & -0.588 & 294414.91 \\
 & B & 17388.498 & 62.627 & 66.686 & 72.472 & 1.271 & -0.588 & 17461.653 \\
 & C & 16377.325 & 95.774 & 99.712 & 105.586 & 0.215 & 0.882 & 16484.009 \\
H$_2$C$_{36}$S & A & 291609.7 & 1674.700 & 1902.681 & 1961.244 & 843.435 & -0.571 & 294413.75 \\
 & B & 17111.828 & 61.430 & 65.458 & 71.122 & 1.251 & -0.571 & 17183.630 \\
 & C & 16131.646 & 93.630 & 97.537 & 103.282 & 0.211 & 0.857 & 16235.996 \\
H$_2$CS & A & 291628.8 & 1657.739 & 1884.781 & 1943.937 & 843.435 & -0.567 & 294415.62 \\
 & B & 16998.786 & 59.621 & 63.806 & 69.345 & 1.243 & -0.567 & 17068.807 \\
 & C & 16031.192 & 91.529 & 95.565 & 101.210 & 0.210 & 0.850 & 16133.462 \\
H$_2$C$_{34}$S & A & 291638. & 1658.041 & 1885.861 & 1944.755 & 843.435 & -0.548 & 294426. \\
 & B & 16685.867 & 57.814 & 61.982 & 67.761 & 1.220 & -0.548 & 16754.300 \\
 & C & 15752.571 & 89.600 & 93.602 & 98.981 & 0.206 & 0.822 & 15852.580 \\
HDCS & A & 202715.3 & 930.335 & 1041.110 & 1070.464 & 585.478 & -0.466 & 204370.79 \\
 & B & 16110.811 & 56.576 & 58.665 & 64.156 & 1.178 & -0.466 & 16175.679 \\
 & C & 14891.548 & 88.063 & 90.525 & 95.721 & 0.195 & 0.699 & 14988.163 \\
D$_2$CS & A & 146399.0 & 645.743 & 736.128 & 751.566 & 422.765 & -0.369 & 147572.97 \\
 & B & 14904.267 & 50.835 & 51.155 & 56.344 & 1.089 & -0.369 & 14961.330 \\
 & C & 13495.845 & 80.217 & 80.936 & 85.563 & 0.177 & 0.554 & 13582.139 \\
\hline
\end{tabular}
\caption{Ground state rotational parameters $B_{i,\text{eff}}$ of thioformaldehyde isotopic species, vibrational $\Delta B_{i,\text{eff}}$, electronic $\Delta B_{i,\text{eff}}$ and centrifugal corrections $\Delta B_{i,\text{cont}}$, coupled-cluster corrected semi-empirical equilibrium rotational parameters $B_{i,\text{eff}}$ (CCSD(T)), and resulting equilibrium inertia defect $\Delta\nu$.}
\end{table}
corrections are smaller than the ground state rotational parameters, then the second order corrections to Δ should be around 10 MHz, and those to B and C should be less than 1 MHz.

Oka & Morino (1961) showed that the rotational Hamiltonian of a semirigid rotor contains two terms which cause the inertia defect Δ to be non-zero when the ground state rotational parameters B, C, D were corrected for the vibrational corrections $\Delta B, \Delta C, \Delta D,$ namely an electronic contribution $\Delta B_{e},$ and a centrifugal distortion contribution $\Delta B_{cd}.$ The electronic contribution is calculated as $\Delta B_e = -B_e g_0 m_e/m_p,$ where the g_i are components of the rotational g-tensor and m_e and m_p are the masses of the electron and the proton, respectively (Oka & Morino 1961). We took the g_i values of thioformaldehyde from the very accurate Zeeman measurements of Rock & Flygare (1972). The centrifugal distortion contribution is evaluated as $\Delta B_{cd} = \Delta B_{cent} = \hbar^2 \tau_{abab} / 2$ and $\Delta C_{cent} = -3h^2 \tau_{abab} / 4$ (Oka & Morino 1961). $h^2 \tau_{abab} = \tau_{abab} ;$ is a distortion parameter which was evaluated here from an empirical force field calculated using the program NCA (Christen 1978).

The inertia defect Δ may be used an indication of the quality of the vibrational correction. The ground state value Δ_0 of the main isotopolog is 0.06139 amu $\AA^2,$ quite small and positive as can be expected for a small and rigid molecule. The equilibrium value should ideally be zero. However, the first order vibrational corrections lead usually to negative values which are much smaller in magnitude than the ground state values. In the case of our B3LYP, MP2, and CCSD(T) calculations, the values are $-0.00381, -0.00305,$ and -0.00406 amu $\AA^2,$ respectively. Taking the electronic corrections into account, we obtain 0.00281, 0.00356, and 0.00255 amu $\AA^2,$ respectively, and finally, after applying the centrifugal distortion correction, 0.00020, 0.00093, and -0.000064 amu $\AA^2,$ respectively.

The equilibrium inertia defects in Table 6 show very small scatter very close to zero among five isotopic species, and slightly larger scatter for three others. Even though that larger scatter is still fairly small, it is worthwhile to look into potential sources for that finding. The smaller list of experimental lines could be an explanation for H_2CS and for $D_2CS,$ but not likely for $HDCS$. The Δ_v value of $H^{13}CS^{34}S$ would be essentially zero if A_v were increased by 121 MHz. This can be ruled out safely because ideally A_v should not change upon substitution of one (or both) of the heavy atoms, and the $H_2^{13}CS^{34}S$ value is only about 11 MHz larger than that of the main isotopolog albeit with an uncertainty of 16 MHz. A decrease of C_v by 0.35 MHz would also lead to $\Delta_v \approx 0,$ but a corresponding change in the experimentally determined value of C_0 appears rather unlikely. We suspect that shortcomings in the CCDS(T) first order vibrational correction or the neglect of second order vibrational correction are mainly responsible for the somewhat larger scatter observed for three of the thioformaldehyde isotopologs, even more so, as the differences between the equilibrium inertia defects of H_2CS and $H_2^{13}CS^{34}S$ are about twice as large as the CCDS(T) vibrational corrections are replaced by the B3LYP or MP2 corrections.

We employed the RU111J program (Rudolph 1995) to derive semi-empirical equilibrium structural parameters r_i^{SE} as well as r_i^{SE} parameters. The latter model was proposed by Rudolph (1991). The difference between ground state and equilibrium moments of inertia can be expressed as $I_{0,i} = I_{h,e} + \epsilon_i,$ with $i = a, b, c,$ assuming that the ϵ_i are equal among the different

Method	r(CS)	r(CH)	\angle(HCS)
B3LYP/TZ	160.614	108.786	122.202
B3LYP/QZ	160.516	108.711	122.208
B3LYP/awQZ	160.306	108.716	122.198
MP2/TZ	160.991	108.627	121.881
MP2/QZ	160.670	108.533	121.825
MP2/awQZ	160.622	108.550	121.794
ae-MP2/awQZ	160.188	108.390	121.767
CCSD(T)/TZ	161.826	108.766	121.928
CCSD(T)/QZ	161.415	108.683	121.841
ae-CCSD(T)/wCQZ	160.890	108.531	121.855
ae-CCSD(T)/wSZ	160.797	108.512	121.815
CCSD(T)/QZ*	160.90	108.53	121.77
dito, refined	160.895	108.685	121.75
r_{Δ_e}	161.08	109.25	121.57
r_{Δ_e}	161.077	109.692	121.74
r_{Δ_e}	161.38	109.62	121.87
r_{Δ_e}	161.57	109.92	121.33
r_{Δ_e}	161.10	108.56	121.31
r_{Δ_e}	161.025	109.246	121.562
r_{Δ_e}(B3LYP)	160.975	108.526	121.706
r_{Δ_e}(MP2)	160.934	108.556	121.759
r_{Δ_e}(CCSD(T))	160.909	108.531	121.758

Notes. $^{(a)}$ All values from this work unless indicated otherwise. Numbers in parentheses are one standard deviation in units of the least significant figures. $^{(b)}$ Quantum-chemical and experimental bond lengths (pm) and bond angle (deg) of thioformaldehyde. $^{(c)}$ Calculated rotational energies from Yachmenev et al. (2011). $^{(d)}$ Quantum-chemical calculations as detailed in Sect. 3. $^{(e)}$ CCSD(T) calculation with basis sets up to QZ quality with extrapolation to infinite basis set size and with several corrections (Yachmenev et al. 2011). $^{(f)}$ Substitution structure r_{i} for H_2CS isotopolog from Johnson et al. (1971). $^{(g)}$ Substitution structure r_{i} and ground state average structure r_{i} for H_2CS isotopolog from Cox et al. (1982). $^{(h)}$ Ground state average structure r_{i} for H_2CS isotopolog and estimate of equilibrium bond lengths from r_{i} (Turner et al. 1981).
 isotopologs of a given molecule. According to Rudolph (1991), the r_{1s} parameters are equivalent with r_{s1} parameters (isotopic differences are fit to determine structural parameters) and with substitution parameters r_s (isotopic differences between one reference isotopolog and one isotopolog in which one atom has been substituted are used to locate that atom). The advantage of considering the ϵ_i explicitly in the calculations is predictions of rotational parameters of isotopic species to be studied, see for example Eppl e & Rudolph (1992) and Müller & Gerry (1994). The resulting structural parameters are given in Table 7 together with earlier r_s parameters, ground state average (r_z) parameters and an approximation of the equilibrium structure derived from r_z parameters. The harmonic contributions to the ground state moments of inertia, obtained from a harmonic force field calculation, are subtracted off in the ground state average structure. The approximation of the equilibrium structure derived from r_z parameters assumes that anharmonic contributions to a given bond in a molecule can be approximated from the anharmonicity of the respective diatomic molecule, and differences in r_e and r_z bond angles are neglected (Turner et al. 1981). Table 7 also contains structural parameters of thioformaldehyde from several present and selected earlier quantum-chemical calculations.

The semi-empirical structures r_{SE} determined with first order vibrational corrections obtained with three different methods are quite similar, albeit with some of the differences outside the combined uncertainties. The semi-empirical structure obtained with the CASSCF corrections is very close to the purely quantum-mechanically derived a_e-CCSD(T) structure, and is probably closest to a purely chemically derived ae-CCSD(T) structure (Coriani et al. 2005), and is probably closest to a purely quantum-mechanically derived ae-CCSD(T) structure, and is probably closest to a purely chemically derived ae-CCSD(T) structure. The CCSD(T) corrections is very close to the purely quantum-mechanically derived a_e-CCSD(T) structure, and is probably closest to a purely chemically derived ae-CCSD(T) structure. The semi-empirical structure obtained with earlier calculations, are subtracted off that atom. The advantage of considering the ϵ_i explicitly in the calculations is predictions of rotational parameters of isotopic species to be studied, see for example Eppl e & Rudolph (1992) and Müller & Gerry (1994). The resulting structural parameters are given in Table 7 together with earlier r_s parameters, ground state average (r_z) parameters and an approximation of the equilibrium structure derived from r_z parameters. The harmonic contributions to the ground state moments of inertia, obtained from a harmonic force field calculation, are subtracted off in the ground state average structure. The approximation of the equilibrium structure derived from r_z parameters assumes that anharmonic contributions to a given bond in a molecule can be approximated from the anharmonicity of the respective diatomic molecule, and differences in r_e and r_z bond angles are neglected (Turner et al. 1981). Table 7 also contains structural parameters of thioformaldehyde from several present and selected earlier quantum-chemical calculations.

The semi-empirical structures r_{SE} determined with first order vibrational corrections obtained with three different methods are quite similar, albeit with some of the differences outside the combined uncertainties. The semi-empirical structure obtained with the CASSCF corrections is very close to the purely quantum-mechanically derived a_e-CCSD(T)/wCQZ structure, as is very often the case (Coriani et al. 2005), and is probably closest to a purely experimental equilibrium structure. The CS bond lengths derived from B3LYP or MP2 calculations with basis sets of QZ quality are all too short, especially the ae-MP2 value. The CH bond lengths are all slightly too long, and the HCS bond angles all too large. The corresponding MP2 quantities are closer to our semi-empirical values.

Our r_{1s} parameters agree within combined uncertainties with the r_s parameters of Johnson et al. (1971), as is expected (Rudolph 1991), but less so with the r_s values of Cox et al. (1982). However, these latter r_s values are quite close to our r_{SE} values. The two sets of ground state average (r_s) parameters differ somewhat, but in both cases both bond lengths are longer than the equilibrium values, as is usually the case. The equilibrium bond lengths derived from one of the r_s structures is in fairly good agreement with our r_{SE} values.

We recommend employment of first-order vibrational corrections obtained with the CASSCF method for semi-empirical structure determinations if high accuracy is desired. Less expensive methods may, however, be sufficient if accuracy requirements are less stringent.

7. Conclusion and outlook

We have obtained extensive sets of accurate transition frequencies for seven isotopic species of thioformaldehyde. They extend to beyond 900 GHz for $H_2C^{33}S$, for $H_2C^{34}S$, and for HDCS and even reach almost 1400 GHz in the cases of H_2CS, $H_2C^{13}S$, and $H^{13}CS$. The line list of the very rare $H_2^{13}CS$ extends to about 360 GHz. The resulting accurate spectroscopic parameters not only permit prediction of the strong R-branch transitions in the respective frequency range and up to K_e slightly beyond those covered in the line lists, but also permit reliable to reasonable extrapolation up to about twice the upper experimental frequencies and probably up to K_e covered in the line lists. Thus, accurate rest frequencies covering the entire present frequency range of ALMA are available for most thioformaldehyde isotopologs; in the case of $H_2^{13}CS$, they cover all bands up to band 9. In addition, the ^{33}S hyperfine structure of $H_2C^{33}S$ has been reevaluated based on previous and present data.

We carried out quantum-chemical calculations to evaluate first order vibrational corrections to the ground state rotational parameters in order to approximate equilibrium rotational parameters which lead to semi-empirical structural parameters. Quantum-chemical calculations were also carried out to obtain structural parameters directly.

Additional observed rest frequencies, for example, data for excited vibrational states of H_2CS and $H_2C^{35}S$. We intend to report on these findings in a separate manuscript elsewhere in the near future.

Acknowledgements. We acknowledge support by the Deutsche Forschungsgemeinschaft via the collaborative research centers SFB 494 (project E2) and SFB 956 (project B3) as well as the Gerätezentrum SCHL 341/15-1 (“Cologne Center for Terahertz Spectroscopy”). We are grateful to NASA for its support of the OSU program in laboratory astrophysics and the ARO for its support of the study of large molecules. HSFM thanks C. P. Endres and M. Koerber for support during some of the measurements in Köln. Our research benefited from NASA’s Astrophysics Data System (ADS).

Note added in proof. Links in footnote 2, 3 and 4 are temporarily unavailable. They should be redirected in the near future.

References

Agúndez, M., Fonfría, J. P., Carnicharo, J., Pardo, J. R., & Guélin, M. 2008, A&A, 479, 493

Bailleux, S., Bogey, M., Demuynck, C., Destombes, J.-L., & Walters, A. 1994, J. Chem. Phys., 101, 2729

Becke, A. D. 1993, J. Chem. Phys., 98, 5648

Beers, Y., Klein, G. P., Kirchhoff, W. H., & Johnson, D. R. 1972, J. Mol. Spectrosc., 44, 553

Belov, S. P., Lewen, F., Klaus, T., & Winnewisser, G. 1995, J. Mol. Spectrosc., 174, 606

Berglund, M., & Wieser, M. E. 2011, Pure Appl. Chem., 83, 397

Brown, R. D., Godfrey, P. D., McNaughton, D., & Yamanouchi, K. 1987, Mol. Phys., 62, 1429

Christen, D. 1978, J. Mol. Struct., 48, 101

Cloutier, D. J., Huang, G., Adam, A. G., & Merer, A. J. 1994, J. Chem. Phys., 101, 7200

Cox, A. P., Hubbard, S. D., & Kato, H. 1982, J. Mol. Spectrosc., 93, 196

Crockett, N. R., Bergin, E. A., Neill, J. L., et al. 2014, ApJ, 787, 112

Cummins, S. E., Linke, R. A., & Thaddeus, P. 1986, ApJS, 60, 819

De Lucia, F. C. 2010, J. Mol. Spectrosc., 261, 1

Drozdovskaya, M. N., van Dishoeck, E. F., Jørgensen, J. K., et al. 2018, MNRAS, 476, 4499

Dubernet, M. L., Boudon, V., Culhane, J. L., et al. 2010, J. Quant. Spectrosc. Radiat. Transfer, 111, 2151

Dubernet, M. L., Antony, B. K., Ba, Y. A., et al. 2016, J. Phys. B, 49, 074003

Dunning, Jr., T. H. 1989, J. Chem. Phys., 90, 1007

Dunning, Jr., T. H., Peterson, K. A., & Wilson, A. K. 2001, J. Chem. Phys., 114, 9244

Endres, C. P., Schlemmer, S., Schilke, P., Stutzki, J., & Müller, H. S. P. 2016, J. Mol. Spectrosc., 327, 95

Eppl e, K. J., & Rudolph, H. D. 1992, J. Mol. Spectrosc., 152, 355

Fabricant, B., Krieger, D., & Muenter, J. S. 1977, J. Chem. Phys., 67, 1576

Frisch, M. J., Trucks, G. W., Schlegel, H. B., et al. 2013, Gaussian 09, Revision E.01 (Wallingford CT: Gaussian, Inc.)

Gardner, F. F., Hoglund, B., Shukre, C., Stark, A. A., & Wilson, T. L. 1985, J. Chem. Phys., 92, 476

Gris, B., Heikkilä, A., Johansson, L. E. B., & Olofsson, H. 1999, A&A, 344, 817

Heikkilä, A., Johansson, L. E. B., & Olofsson, H. 1999, A&A, 344, 817

Huber, K. P., & Herzberg, G. 1979, Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold)

Irvine, W. M., Friberg, P., Kaufl, N., et al. 1989, ApJ, 342, 871

Johnson, D. R., & Powell, F. X. 1970, Science, 169, 679
Table A.1. Assigned transitions for the H₂C²⁷S isotopic species as an example, observed transition frequencies (MHz), experimental uncertainties (MHz), residual O–C between observed frequencies and those calculated from the final set of spectroscopic parameters (MHz), weight for blended lines, and sources of lines.

J′	K′_a	K′_b	K″_a	K″_b	F′ + 0.5	Frequency	Unc.	O–C	Weight	Source
6	1	5	6	1	6	21230.15	0.05	-0.1256		Cox et al. (1982)
7	1	6	7	1	7	28304.63	0.05	0.01393		Cox et al. (1982)
1	0	0	0	0	0	33765.80	0.05	0.05051		Cox et al. (1982)
8	1	7	8	1	8	36388.01	0.05	-0.07933		Cox et al. (1982)
2	1	2	1	1	1	66517.88	0.10	-0.02248		Johnson et al. (1971)
0	2	2	0	1	0	67528.15	0.10	-0.11515		Johnson et al. (1971)
1	1	1	0	1	0	68539.94	0.16	-0.23319		Johnson et al. (1971)
5	2	0	5	0	0	121120.1500	0.100	-0.03361		OSU
1	4	4	1	3	3	133026.9097	0.050	-0.01021		OSU
3	2	3	3	3	3	135027.8171	0.050	0.01347	0.5000	OSU
3	1	3	3	0	3	135027.8171	0.050	0.01347	0.5000	OSU
4	0	0	4	0	0	135030.6546	0.050	-0.00998		OSU
41	6	36	40	6	35	1378757.4655	0.000	-0.00721	0.5000	Koeln
41	6	35	40	6	34	1378757.4655	0.000	-0.00721	0.5000	Koeln
41	4	38	40	4	37	1380675.2953	0.000	0.00481		Koeln
41	4	37	40	4	36	1380920.5593	0.000	0.00223		Koeln
41	3	39	40	3	38	1380944.1970	0.000	-0.00340		Koeln
42	1	42	41	1	41	1385516.6458	0.000	-0.02038		Koeln

Notes. This table as well as those of other isotopologs are available in their entirety at the CDS. A portion is shown here for guidance regarding its form and content. The F quantum numbers are redundant for all species except for H₂C³⁴S. "O" Negative uncertainties in the line list of the main isotopic species signal that units are cm⁻¹ instead of MHz.

Appendix A: Supplementary material