CLASSIFICATION OF SMOOTH SCHUBERT VARIETIES
IN THE SYMPLECTIC GRASSMANNIANS

JAEHYUN HONG

Abstract. A Schubert variety in a rational homogeneous variety G/P is
defined by the closure of an orbit of a Borel subgroup B of G. In general,
Schubert varieties are singular, and it is an old problem to determine
which Schubert varieties are smooth. In this paper, we classify all smooth
Schubert varieties in the symplectic Grassmannians.

1. Introduction

A rational homogeneous manifold $S = G/P$ is a projective manifold, where
a connected complex semisimple group G acts transitively. Under the action
of a Borel subgroup B of G, S has finitely many orbits. The closure of a B-
orbit in S is called a Schubert variety of S. In general, Schubert varieties are
singular, and it is an old problem to determine which Schubert varieties are
smooth. Lakshmibai-Weyman and Brion-Polo have studied the singular loci
of Schubert varieties of S, when S is a compact Hermitian symmetric space
([9] and [2]). In particular, they showed that in this case any smooth Schubert
variety in S is a homogeneous submanifold of S associated to a subdiagram
of the marked Dynkin diagram of S. For example, a Schubert variety of the
Grassmannian $Gr(k,V)$ of k-subspaces in a vector space V is smooth if and
only if it is a linearly embedded sub-Grassmannian.

More generally, when S is associated to a long simple root, we have:

Theorem 1.1 (Proposition 3.7 of Hong-Mok [4]). Let $S = G/P$ be a rational
homogeneous manifold associated to a long simple root. Then any smooth Schu-
bert variety in S is a homogeneous submanifold of S associated to a subdiagram
of the marked Dynkin diagram of S.

On the other hand, when S is associated to a short simple root, there is a
smooth Schubert variety that is not homogeneous. Let V be a vector space
with a symplectic form ω, i.e., a nondegenerate skew-symmetric bilinear form.
It follows from the nondegeneracy of the skew-symmetric form that V is even-dimensional. The variety $Gr_\omega(k; V)$ of isotropic k-subspaces in V is called a symplectic Grassmannian. It is a rational homogeneous manifold under the action of the symplectic group $Sp(V)$ associated to a short simple root. Similarly, for an odd-dimensional vector space W with a skew-symmetric form ψ of maximal rank, the variety $Gr_\psi(k; W)$ of isotropic k-subspaces in W is called an odd symplectic Grassmannian (Mihai [10]). It is smooth, but is no longer homogeneous. When S is the symplectic Grassmannian $Gr_\omega(k; V)$, take a hyperplane W of V such that the rank of ω when restricted to W is maximal. Then the odd symplectic Grassmannian $Gr_\omega(k; W)$ is a Schubert variety of S, which is smooth and is not homogeneous.

Another interesting smooth Schubert variety of the symplectic Grassmannian $Gr_\omega(k; V)$ is a linear space contained in $Gr_\omega(k; V)$. Here, we consider $Gr_\omega(k, V)$ as a subvariety of $\mathbb{P}(\bigwedge^k V)$. Take an isotropic $(k - 1)$-subspace F of V and a subspace F' of V. Then the variety $Gr_\omega(k; V; F, F')$ of isotropic k-subspaces of V containing F and contained in F' is a Schubert variety of $Gr_\omega(k, V)$, and is a linear space contained in $Gr_\omega(k, V)$, because any one-dimensional subspace of V is isotropic. However, $Gr_\omega(k; V; F, V)$ is not associated to a subdiagram of the marked diagram of $Gr_\omega(k, V)$, even though it is homogeneous under its automorphism group.

In this paper we will classify smooth Schubert varieties in the symplectic Grassmannian $Gr_\omega(k, V)$ and prove that these are all smooth Schubert varieties of $Gr_\omega(k, V)$.

Theorem 1.2. Let $S = G/P$ be the symplectic Grassmannian $Gr_\omega(k; V)$. Then a smooth Schubert variety of S is either a homogeneous submanifold associated to a subdiagram of the marked diagram of S, an odd symplectic Grassmannian, or a linear space.

There are many results on smoothness and singularities of Schubert varieties. For various smoothness criteria and applications, see Billey-Lakshmibai [1]. It could be possible to get classification of smooth Schubert varieties of the symplectic Grassmannian $Gr_\omega(k, V)$ by using their method. But, even in the case that it is possible to do, we still need some combinatorial work to interpret it geometrically and to derive results like Theorem 1.1 or Theorem 1.2.

In this paper, we will apply a more geometric method to classify smooth Schubert varieties: parallel transport of varieties of minimal rational tangents along minimal rational curves (Section 3.2 of Hong-Mok [3] and Proposition 3.2 of [4]). A new ingredient is the study on the closures of orbits of a Borel subgroup of L in a horospherical L-variety, which can be considered as a generalization of Schubert varieties in rational homogeneous manifolds.

In Section 2, we review basic definitions on Schubert varieties and the varieties of minimal rational tangents. In Section 3, we study Schubert varieties in the symplectic Grassmannian $Gr_\omega(k, V)$ (Proposition 3.1). In Section 4, we investigate the varieties of minimal rational tangents of smooth Schubert
varieties (Proposition 4.1), and classify candidates of the varieties of minimal rational tangents of smooth Schubert varieties in $Gr_\omega (k, V)$ (Proposition 4.2). From this we obtain the classification of smooth Schubert varieties in $Gr_\omega (k, V)$ (Proposition 4.7).

2. Preliminary

2.1. Schubert varieties

Let G be a connected complex simple group. Take a Borel subgroup B of G and a maximal torus T in B. Denote by Δ^+ the set of positive roots. Then $\Delta := \Delta^+ \cup - \Delta^+$ is the set of all roots. Let $S = \{\alpha_1, \ldots, \alpha_\ell\}$ be the set of simple roots. For a root $\beta = \sum_{i=1}^{\ell} n_i \alpha_i$, denote by $n_j(\beta)$ the coefficient in α_j of β, so that $\beta = \sum_{i=1}^{\ell} n_i(\beta) \alpha_i$.

Let t be the Lie algebra of T. To each simple root α_k we associate a parabolic subgroup P of G, whose Lie algebra p is given by $p = t + \sum n_i(\alpha) \mathfrak{g}_\alpha$. The reductive part of p is given by $t + \sum_{n_i(\alpha) = 0} \mathfrak{g}_\alpha$, and the nilpotent part u_P of p is given by $\sum_{n_i(\alpha) > 0} \mathfrak{g}_\alpha$. The homogeneous manifold $S = G/P$ is called the rational homogeneous manifold associated to the simple root α_k. We will use the notation (G, α_k) for S, and G will be often given by its type.

Let W be the Weyl group of G with respect to the maximal torus T in B. For each $w \in W$, define $\Delta(w) = \{\beta \in \Delta^+ : w(\beta) \in - \Delta^+\}$. Define a subset $W^P \subset W$ by

$$W^P := \{w \in W : \Delta(w) \subset \Delta(u_P)\},$$

where $\Delta(u_P) = \{\alpha \in \Delta^+ : n_{\alpha_k}(\alpha) > 0\}$. Then we have the cell decomposition

$$S = \bigsqcup_{w \in W^P} B.e_w,$$

where $e_w = wP$, for $w \in W^P$, are T-fixed points in S. For each $w \in W^P$, the B-orbit $B.e_w$ is isomorphic to a cell $C^{\ell(w)}$ of dimension equal to the length $\ell(w)$ of w in W. The closure $S(w)$ of $B.e_w$ is called the Schubert variety of type w. We call the point e_w the base point of $S(w)$.

2.2. Rationally saturated subvarieties

Let (X, L) be a polarized uniruled projective manifold, where L is an ample line bundle on X. Fix a minimal rational component K and the variety of minimal rational tangents $C(X) \subset \mathbb{P}(TX)$.

For a projective manifold $X \subset \mathbb{P}(V)$ that is uniruled by lines contained in X, the variety K of lines lying on X is a minimal rational component, and the variety K_x of lines in X passing through $x \in X$ is isomorphic to the variety $C_x(X) \subset \mathbb{P}(T_x X)$ of tangent directions to lines in X passing through $x \in X$. The union $C(X) = \bigsqcup_{x \in X} C_x(X)$ is the variety of minimal rational tangents of X.

When we speak of the variety of minimal rational tangents of a rational homogeneous manifold S associated to a simple root, we will assume that S is equipped with the minimal rational component K, consisting of lines P^1 contained in S after we embed S into \mathbb{P}^N by the ample generator of the Picard group of S. For more details on the variety of minimal rational tangents and references, see Section 3.1 of [4].

An irreducible subvariety Z of X is said to be rationally saturated if

1. $\mathbb{P}(T_z Z) \cap \mathcal{C}_z(X) \neq \emptyset$ for a smooth point $z \in Z$, and
2. for a general smooth point $z \in Z$ and for a general minimal rational curve C on X passing through z, C must lie on Z whenever C is tangent to Z at z.

Then the family of minimal rational curves contained in Z can be considered as a minimal rational component of Z, with respect to which the variety $\mathcal{C}_z(Z)$ of minimal rational tangents of Z at $z \in Z$ is equal to $\mathbb{P}(T_z Z) \cap \mathcal{C}_z(X)$.

Proposition 2.1. Let $X \subset \mathbb{P}(V)$ be a projective submanifold uniruled by lines in $\mathbb{P}(V)$ contained in X, equipped with the minimal rational component of X consisting of lines lying on X. Let Z be an irreducible linear section of X. Assume that $\mathbb{P}(T_z Z) \cap \mathcal{C}_z(X) \neq \emptyset$ for a general smooth point z of Z. Then Z is rationally saturated.

Proof. If $Z = X \cap \mathbb{P}(W)$, then any line C through a smooth point of Z tangent to Z is tangent to $\mathbb{P}(W)$, and thus is contained in $\mathbb{P}(W)$. Therefore, C is contained in $Z = X \cap \mathbb{P}(W)$. □

Proposition 2.2. A Schubert variety S_0 of a rational homogeneous manifold S is rationally saturated.

Proof. Let S_0 be a Schubert variety of a rational homogeneous manifold S. Then S_0 is irreducible and is a linear section of S. Furthermore, a Schubert variety of dimension one, which is a line, is contained in S_0 and can be translated by an element in the Weyl group W to have a non-trivial intersection with the open B-orbit in S_0 (see the proof of Proposition 3.1 of [4]). Hence, there always exists a line passing through a general smooth point of S_0. By Proposition 2.1, S_0 is rationally saturated. □

Remark. When S_0 is not smooth, it may happen that a general line through e_w intersects the singular locus of S_0.

3. Schubert varieties of the symplectic Grassmannians

Let V be a complex vector space of dimension $2n$ equipped with a non-degenerate skew-symmetric bilinear form ω. Take a basis $\{e_1, \ldots, e_{2n}\}$ of V, such that $\omega(e_{n-i}, e_{n+i+1}) = -\omega(e_{n+i+1}, e_{n-i}) = 1$ for $1 \leq i \leq n$, and all other $\omega(e_i, e_j)$ are zero. Define $F_j \subset V$ by the subspace generated by e_1, \ldots, e_j for $1 \leq j \leq 2n$. Then, $F_{n-1}^+ = F_{n+1}^-$ for $1 \leq i \leq n$, and we obtain an isotropic flag $F^*_i : 0 \subset F_1 \subset \cdots \subset F_{2n} = V$. The subgroup of $G = Sp(V)$ consisting
of elements fixing this flag is a Borel subgroup B of G. Let P be the isotropy group of G at $[F_0]$. Then, $Gr_\omega(k, V) = G/P$, and B is contained in P. As a rational homogeneous manifold associated to a simple root, $Gr_\omega(k, V)$ has type (C_n, α_k).

A multi-index $I = (1 \leq i_1 < i_2 < \cdots < i_k \leq 2n)$ is said to be admissible if, for each $1 \leq i \leq n$, I contains at most one of i or $2n + 1 - i$. For an admissible I, define

$$C_I := \{ E \in Gr(k, V) : \dim(E \cap F_{i_\alpha}) = \alpha, \ i_\alpha \leq i < i_{\alpha+1}, \ 1 \leq \alpha \leq k \},$$

$$X_I := \{ E \in Gr(k, V) : \dim(E \cap F_{i_\alpha}) \geq \alpha, \ 1 \leq \alpha \leq k \},$$

where we put $i_{k+1} = 2n + 1$. Then, C_I is an orbit of the Borel subgroup B, and X_I is a Schubert variety of $Gr_\omega(k, V)$ (Section 2.5 of [10]). Let E_I be the subspace of V generated by e_{i_1}, \ldots, e_{i_k}. Then, $[E_I]$ is the base point of the Schubert variety X_I.

Proposition 3.1. For $0 \leq a < k < b \leq 2n - a$, define

$$Gr_\omega(k, V; F_a, F_b) := \{ E \in Gr_\omega(k, V) : F_a \subset E \subset F_b \}.$$

Then

1. $Gr_\omega(k, V; F_a, F_b)$ is a Schubert variety of $Gr_\omega(k, V)$ if $b - a \leq n - a$ or $(n - a) + (k - a) \leq b - a \leq 2n - 2a$.
2. $Gr_\omega(k, V; F_a, F_b)$ is a homogeneous submanifold associated to a subdiagram if $k < b \leq n$ or $b = 2n - a$, is an odd symplectic Grassmannian if $b = 2n - a - 1$, and is a linear space if $a = k - 1$.
3. $Gr_\omega(k, V; F_a, F_b)$ is singular if $a \leq k - 2$ and $n + k - a \leq b \leq 2n - a - 2$.

Proof. (1) Note that $Gr_\omega(k, V; F_a, F_b)$ is isomorphic to $Gr_\omega(k - a, \tilde{V}; 0, F_b/F_a)$, where $\tilde{V} = F_b^\perp/F_a$ is of dimension $2n - 2a$ and $\tilde{\omega}$ is the induced symplectic form on \tilde{V}. Thus, we may assume that $a = 0$.

If $b \leq n$ or $n + k \leq b$, then $Gr_\omega(k, V; 0, F_b)$ is equal to

$$\{ E \in Gr_\omega(k, V) : \dim(E \cap F_{b-k+1}) \geq 1, \ldots, \dim(E \cap F_b) \geq k \}.$$

Therefore, $Gr_\omega(k, V; 0, F_b)$ is a Schubert variety.

(2) It is easy to check.

(3) Put $S_1 := Gr_\omega(k, V; F_a, F_b)$. Assume that $a = 0$. The proof will be similar for $a \neq 0$. For $[E] \in S_1$,

$$T_{[E]}(S_1) = \{ \varphi \in E^* \otimes F_b/E : \omega(e, \varphi(e')) + \omega(\varphi(e), e') = 0, \forall e, e' \in E \}.$$

Now, set

$$D_{[E]}^1(S_1) := E^* \otimes (F_b \cap E^+)/E,$$

$$D_{[E]}^2(S_1) := \{ \varphi \in E^* \otimes (F_b/(F_b \cap E^+)) : \omega(e, \varphi(e')) + \omega(\varphi(e), e') = 0, \forall e, e' \in E \}.$$

Then

$$0 \to D_{[E]}^1(gS_1) \to T_{[E]}(gS_1) \to D_{[E]}^2(gS_1) \to 0.$$
For $E_0 = \langle e_{b-k+1}, \ldots, e_b \rangle$, $F_b \cap E_0^\perp$ has dimension $b-k$, and $F_b/(F_b \cap E_0^\perp) \simeq E_0^\perp$ via ω. Thus, $\dim T_{[E]}(S_1) = k(b-2k) + \frac{1}{2}k(k+1) = k(b-k) - \frac{1}{2}k(k-1)$. We will show that for $E = F_k = \langle e_1, \ldots, e_k \rangle$, $\dim T_{[E]}(S_1) > \dim T_{[E_0]}(S_1)$, which implies that S_1 is singular.

If $k \leq 2n-b$, then $E^\perp \supseteq F_b$. Therefore, $T_{[E]}(S_1) = E^* \otimes (F_b/E)$ has dimension $k(b-k) > \dim S_1$. If $k > 2n-b$, then $E^\perp \subsetneq F_b$. Thus, $D_{[E]}(S_1) = E^* \otimes (E^\perp/E)$ has dimension $k(2n-2k)$, and $D_{[E]}^2(S_1) \simeq S^2(F_b/E^\perp)$ has dimension $\frac{1}{2}(b-2n+k)(b-2n+k+1)$. Therefore,

$$\dim T_{[E]}(S_1) = k(2n-2k) + \frac{1}{2}(b-2n+k)(b-2n+k+1)$$

$$= k(b-k) - k(b-2n+k) + \frac{1}{2}(b-2n+k)(b-2n+k+1)$$

$$= k(b-k) + \frac{1}{2}(b-2n+k)(b-2n-k+1)$$

$$= k(b-k) - \frac{1}{2}k(k-1) + \frac{1}{2}(2n-b)(2n-b-1)$$

$$> \dim S_1 \text{ if } b < 2n-1. \qed$$

Remark. If $n-a < b-a < (n-a) + (k-a)$, then $Gr_w(k, V; F_a, F_b)$ is not irreducible, and thus is not a Schubert variety. For example, $Gr_w(3, \mathbb{C}^4; F_0, F_7)$ is the union $X_{(3,6,7)} \cup X_{(3,5,7)}$ of two Schubert varieties.

4. Classification

4.1. Varieties of minimal rational tangents of smooth Schubert varieties

Let $S = G/P$ be a rational homogeneous manifold associated to a simple root. Then, the Fano variety $F_1(S)$ of lines on S has at most two G-orbits, or equivalently, the variety $\mathcal{C}_x(S)$ of minimal rational tangents of S at x has at most two orbits under the action of the isotropy group P_x of G at x (see the proof of Proposition 4.1(3)). We call a line corresponding to a point in the open G-orbit in $F_1(S)$ a *general* line. Let $\mathcal{C}_x(S)^{\text{gen}}$ denote the subvariety of $\mathcal{C}_x(S)$ consisting of the tangent directions of general lines in S.

Let S_1 be a Schubert variety of S. Then the stabilizer $\text{Stab}_G(S_1)$ of S_1 in G is a parabolic subgroup of G. We define a *general* point in S_1 as a point x in the open orbit of $\text{Stab}_G(S_1)$ in S_1. In particular, the base point of S_1 is a general point. We define a *general* point of $\mathcal{C}_x(S_1)$ as a point in $\mathcal{C}_x(S_1) \cap \mathcal{C}_x(S)^{\text{gen}}$.

The following necessary conditions for the smoothness of a Schubert variety will be used to classify smooth Schubert varieties in the symplectic Grassmannian.

Proposition 4.1. Let $S = G/P$ be a rational homogeneous manifold associated to a simple root, and let S_1 be a smooth Schubert variety. In addition, let x be
a general point of S_1, and L_x be the reductive part of the isotropy group of G at x. Then:

(0) S_1 is uniruled by lines of S lying on S_1 and is of Picard number one.
(1) The variety $C_x(S_1)$ of minimal rational tangents of S_1 at x is a smooth linear section $C_x(S) \cap \mathbb{P}(T_xS_1)$.
(2) The variety $C_x(S)$ of minimal rational tangents of S at x has an open dense orbit under the action of L_x, and has finitely many orbits under the action of a Borel subgroup of L_x.
(3) $C_x(S_1)$ is the closure of an orbit of a Borel subgroup of L_x in $C_x(S)$.

The properties (0), (1), and (3) from Proposition 4.1 for the variety $C_x(S_1)$ of minimal rational tangents of a smooth Schubert variety S_1 are used to classify smooth Schubert varieties in a rational homogeneous manifold associated to a long simple root (see the proof of Proposition 3.7 of [4]). We will prove that $C_x(S_1)$ has the same properties when S is associated to a short simple root.

Proof. Let $S = G/P$ be a rational homogeneous manifold associated to a simple root, and let S_1 be a smooth Schubert variety. Let x be a general point of S_1, and L_x be the reductive part of the isotropy group of G at x.

(0) follows from Proposition 3.1 of [4].
(1) follows from Proposition 3.1 of [4].
(2) If S is associated to a long simple root, then $C_x(S)$ is again a rational homogeneous manifold under the action of L_x (see the description of $C_x(S)$ on p. 342 of [4]). If S is associated to a short simple root, then $C_x(S)$ is not a rational homogeneous manifold under the action of L_x. We recall the description of the variety of minimal rational tangents of S when S is associated to a short simple root (Hwang-Mok [7], [8]):

(a) If S is of type (C_n, α_k), then L_x is $SL(E^*) \times Sp(Q)$, and $C_x(S)$ is the projectivization of the cone

$$\{ u \otimes q + cu^2 : u \in E^*, q \in Q, c \in \mathbb{C} \} \setminus \{0\}$$

in $(E^* \otimes Q) \oplus S^2E^*$, where E^* is a vector space of dimension k and Q is a vector space of dimension $2m = 2(n - k)$ with a symplectic form.
(b) If S is of type (F_4, α_3), then L_x is $SL(W) \times SL(E)$, and $C_x(S)$ is the projectivization of the cone

$$\{ v^* \otimes e + w \otimes e^2 : \langle v^*, w \rangle = 0, v^* \in W^*, v \in W, e \in E \} \setminus \{0\}$$

in $(W^* \otimes E) \oplus (W \otimes S^2E)$, where W is a complex vector space of dimension 3 and E is a complex vector space of dimension 2.
(c) If S is of type (F_4, α_4), then L_x is $B_3(= Spin(7))$, and $C_x(S)$ is the projectivization of the closure of the B_3-orbit of $v_3 + v_1$ in $V_{B_3}(\omega_3) \oplus V_{B_3}(\omega_1)$, where v_3 is a highest weight vector of the spinor representation $V_{B_3}(\omega_3)$ of B_3 (of dimension 8), and v_1 is a highest weight vector of the standard representation $V_{B_3}(\omega_1)$ of B_3 (of dimension 7).
Moreover, \(C_x(S) \) has an open dense orbit \(\Omega \) under the action of \(L_x \), which is defined as follows:

(a) If \(S \) is of type \((C_n, \alpha_k)\), then \(\Omega \) is the projectivization of the cone

\[
\{ u \otimes q + cu^2 : u \neq 0 \in E^*, q \neq 0 \in Q, c \neq 0 \in \mathbb{C} \}
\]

in \((E^* \otimes Q) \oplus S^2E^*\).

(b) If \(S \) is of type \((F_4, \alpha_3)\), then \(\Omega \) is the projectivization of the cone

\[
\{ v^* \otimes e + w \otimes e^2 : (v^*, w) = 0, v^* \neq 0 \in W^*, w \neq 0 \in W, e \neq 0 \in E \}
\]

in \((W^* \otimes E) \oplus (W \otimes S^2E)\).

(c) If \(S \) is of type \((F_4, \alpha_4)\), then \(\Omega \) is the complement in \(C_x(S) \) of the union of the \(B_3 \)-orbit of \([v_3] \) in \(\mathbb{P}(V_{B_3}(\omega_3)) \) and the \(B_3 \)-orbit of \([v_1] \) in \(\mathbb{P}(V_{B_3}(\omega_1)) \).

We will prove this again for later use in the case when \(S \) is of type \((C_n, \alpha_k)\), i.e., when \(S \) is the symplectic Grassmannian. The proof will be similar for other cases.

Consider the projection map

\[
\pi : \Omega \longrightarrow \mathbb{P}((E^* \otimes Q) \oplus S^2E^*)
\]

defined by \([u \otimes q + cu^2] \in \Omega \longmapsto [(u \otimes q) \otimes (cu^2)] = [(u \otimes q) \otimes (u^2)] \in \mathbb{P}((E^* \otimes Q) \oplus S^2E^*)\), where \(u \neq 0 \in E^*, q \neq 0 \in Q, c \neq 0 \in \mathbb{C} \). Then, the image \(\pi(\Omega) \) is \(\mathbb{P}(E^*) \times \mathbb{P}(Q) \), which is a rational homogeneous manifold under the action of \(L_x \) embedded into \(\mathbb{P}((E^* \otimes Q) \oplus S^2E^*) \) (the Segre embedding of the product of \(\mathbb{P}(E^*) \subset \mathbb{P}(S^2E^*) \) and \(\mathbb{P}(Q) \)). Furthermore, the isotropy group \(H_1 \) at a point \([u \otimes q + cu^2] \) is contained in the isotropy group \(H_2 \) at \([u \otimes q] \otimes (u^2)]\), and the quotient \(H_2/H_1 \simeq \mathbb{C}^\times := \mathbb{C}\setminus\{0\} \) acts transitively on the fiber over \([u \otimes q] \otimes (u^2)]\). Therefore, \(\Omega \) is homogeneous under the action of \(L_x \).

Let \(w \) be the element in \(W^P \) corresponding to \(S_1 \) (See Section 2.1). Let \(L \) be the reductive part of \(P \). We may take \(e_w \) as a general point \(x \) in \(S_1 \), and it follows that the isotropy group \(L_x \) at \(x \) is \(w(L) \). Therefore, \(w(B \cap L) \) is a Borel subgroup of \(L_x \). Since \(\pi(\Omega) = \mathbb{P}(E^*) \times \mathbb{P}(Q) \) has finitely many orbits under the action of \(w(L \cap B) \), so does \(\Omega \).

(3) follows from (1) and (2) (see the proof of Proposition 3.7 of [4]). We will repeat the arguments for convenience.

Let \(w \) be the element in \(W^P \) corresponding to \(S_1 \), as in the proof of (2). Since \(w \in W^P \), we have that \(\Delta(w) \subset \Delta(u_P) \) and so \(w(B \cap L) \) is contained in \(B \cap w(L) \). Therefore, \(w(B \cap L) \) is a Borel subgroup of \(L_x \), and is contained in \(B \cap L_x \).

Since \(B \) acts on \(S_1 \) invariantly, \(B \cap L_x \) acts on \(C_x(S_1) \) invariantly. Hence, the Borel subgroup \(w(B \cap L) \) of \(L_x \) acts on \(C_x(S_1) \) invariantly. By (2), \(C_x(S) \) has only finitely many orbits under the action of \(w(B \cap L) \), and it follows from (1) that \(C_x(S_1) \) is smooth and thus is irreducible. Hence, \(C_x(S_1) \) has a unique open orbit under the action of the Borel subgroup \(w(B \cap L) \) of \(L_x \). Consequently, \(C_x(S_1) \) is the closure of the Borel subgroup \(w(B \cap L) \) of \(L_x \). \(\square \)
Remark. If S is a rational homogeneous manifold associated to a long simple root, and S_1 is a smooth Schubert variety of S, then $C_x(S)$ is a product of rational homogeneous manifolds associated to long simple roots, and $C_x(S_1)$ is a smooth Schubert variety of $C_x(S)$. Therefore, we may use induction to classify smooth Schubert varieties in S (see the proof of Proposition 3.7 in [4]).

If S is associated to a short simple root, then $C_x(S)$ is no longer a rational homogeneous manifold under the action of L_x. However, it has an open orbit isomorphic to a \mathbb{C}^\times-bundle over a rational homogeneous manifold, which still has finitely many orbits under the action of a Borel subgroup of L_x (Proposition 4.1(2)).

In general, for a reductive group L, a normal L-variety that has only finitely many orbits under the action of a Borel subgroup of L is said to be spherical. As in the case of rational homogeneous manifolds, a spherical L-variety also has a cell-decomposition by the orbits of a Borel subgroup of L. It is not easy to determine the smoothness of their closures in general. We will compute these closures in $C_x(S)$ when S is the symplectic Grassmannian.

4.2. Characterization of smooth Schubert varieties

Recall that $\{F_\ast\} = \{F_0 = 0 \subset F_1 \subset \cdots \subset F_{2n} = V\}$ is an isotropic flag of (V, ω), and B is the Borel subgroup of $G = Sp(V)$ fixing the flag $\{F_\ast\}$. Let P be the isotropy group of G at the base point $[E] := [F_\ast]$, and let L be the reductive part of the isotropy group P. Then the flag $\{F_\ast\}$ of V induces a flag of E^\ast and of E^\perp/E:

$$
\{0 \subset (E/(F_{k-1} \cap E))^\ast \subset \cdots \subset (E/(F_1 \cap E))^\ast \subset E^\ast\},
\{0 \subset (F_{k+1} \cap E^\perp)/E \subset \cdots \subset (F_{2n-k} \cap E^\perp)/E \subset E^\perp/E\}.
$$

Let $X_{1,a}$ be the Schubert variety $\mathbb{P}((E/(F_a \cap E))^\ast)$ of $\mathbb{P}(E^\ast)$, where $0 \leq a \leq k-1$, and let $X_{2,b}$ be the Schubert variety $\mathbb{P}((F_b \cap E^\perp)/E)$ of $\mathbb{P}(E^\perp/E)$, where $k+1 \leq b \leq 2n-k$. Then $X_{1,a} \times X_{2,b}$ are Schubert varieties of $\mathbb{P}(E^\ast) \times \mathbb{P}(E^\perp/E)$. Let $X_{1,a}^\circ (X_{2,b}^\circ)$ denote the open cell of $X_{1,a}$ ($X_{2,b}$, respectively). Then, $\pi^{-1}(X_{1,a}^\circ \times X_{2,b}^\circ)$ is an $(L \cap B)$-orbit in the open L-orbit $\Omega \subset C_{[E]}(S)$, where $\pi : \Omega \to \mathbb{P}(E^\ast) \times \mathbb{P}(E^\perp/E)$ is the projection map in Proposition 4.1(2). Let $Z_{a,b}$ be the closure of $\pi^{-1}(X_{1,a}^\circ \times X_{2,b}^\circ)$ in $C_{[E]}(S)$. Then, by Proposition 4.1(2), we get the following.

Proposition 4.2. Let S be the symplectic Grassmannian $Gr_u(k, V)$. Let P be the isotropy group of $G = Sp(V)$ at the base point $[E]$, and let L be the reductive part of L. Then the closures of $L \cap B$-orbits in $C_{[E]}(S)$ are the following:

$$X_{1,a} \times X_{2,b}, Z_{a,b}, X_{1,a},$$

where $0 \leq a \leq k-1, k+1 \leq b \leq 2n-k$.

Here, we consider $X_{1,a} \times X_{2,b}$ as a subvariety of $\mathbb{P}(E^\ast \otimes (E^\perp/E)) \cap C_{[E]}(S) = \mathbb{P}(E^\ast) \times \mathbb{P}(E^\perp/E)$ and $X_{1,a}$ as a subvariety of $\mathbb{P}(S^2(E^\ast)) \cap C_{[E]}(S) = \mathbb{P}(E^\ast)$. Then, $Z_{a,b}$ intersects $\mathbb{P}(E^\ast \otimes (E^\perp/E))$ in $X_{1,a} \times X_{2,b}$, and intersects $\mathbb{P}(S^2(E^\ast))$ in
Proposition 4.3. Let S be the symplectic Grassmannian $Gr_\omega(k,V)$, and let $[E]$ be the base point of S. For $0 \leq a < k$ and $(k-a) < b-a \leq n-a$, or $(n-a)+(k-a) \leq b-a \leq 2n-2a$, set $S_{a,b} := Gr_\omega(k,V; F_a, F_b)$ and let $[E_{a,b}]$ be the base point of $S_{a,b}$. Then the following properties hold.

Let $X_{1,a}$ be a point in the complement $Z_{a,b} \setminus X_2, X_1$, where X_2 is the Schubert variety of the form X_1.

Then the following properties hold.

Then, the following properties hold.

Then, the following properties hold.

Proposition 4.4. Let S be the symplectic Grassmannian $Gr_\omega(k,V)$. Let $[E]$ be the base point of S and let P be the isotropy group at $[E]$. Assume that $0 \leq a < k$ and $(n-a) \leq b-a \leq 2n-2a$. Then, at a general point α of $Z_{a,b}$ and for any $h \in P$ sufficiently close to the identity element $e \in P$ satisfying $T_\alpha(hZ_{a,b}) = T_\alpha(Z_{a,b})$, we have $hZ_{a,b} = Z_{a,b}$.

Proof. The proof is similar to the proof of Proposition 4.3 in [4]. We may assume that $a = 0$. Let $n + k = 2n$. Then, $F_{a,b}/(F_b \cap E^\perp)$ is isomorphic to E^*, via the symplectic form ω. For a general $\alpha = e^* \otimes v$ in $Z_{a,b}$, we have $hZ_{a,b} = Z_{a,b}$.

Proposition 4.5. Let S be the symplectic Grassmannian $Gr_\omega(k,V)$ and let $S_{a,b}$ be the Schubert variety of the form $Gr_\omega(k,V; F_a, F_b)$, where $0 \leq a \leq k-2$ and $(n-a)+(k-a) \leq b-a \leq 2n-2a$. Let x be the base point $[E_{a,b}]$ of $S_{a,b}$.

Then the following properties hold:

(1) Let Z be a smooth Schubert variety (with respect to a Borel subgroup \tilde{B} of G which may not be equal to B). If Z contains x as a general point with $C_x(Z) = C_x(S_{a,b})$, then Z is equal to $S_{a,b}$.

(2) There does not exist such a Z as in (1) if $0 \leq a \leq k-2$ and $(n-a)+ (k-a) \leq b-a \leq 2n-2a-2$.

Before giving the proof, let us roughly outline how it works. We will use similar arguments as those in the proofs of Proposition 3.2 and Proposition 3.7 in [4]. There, we assumed the following two properties for the variety $Z = C_x(S_0)$ of minimal rational tangent of the ‘model’ Schubert variety S_0:

(1) At a general point $\alpha \in Z$, for any $h \in P_x$ sufficiently close to the identity element $e \in P_x$ and satisfying $T_\alpha(hZ) = T_\alpha(Z)$, we must have $hZ = Z$.
(II) Any local deformation of Z in $C_x(S)$ is induced by the action of P_x.

The same argument works for $S_0 = S_{a,b}$ when $0 \leq a \leq k - 2$ and $2n - 2a - 1 \leq b - a \leq 2n - 2a$. However, it does not work for $S_0 = S_{a,b}$ when $0 \leq a \leq k - 2$ and $(n - a) + (k - a) \leq b - a \leq 2n - 2a - 2$. There are two differences. One is that the property (II) no longer holds. The other is that our ‘model’ Schubert variety $S_{a,b}$ is not smooth (Proposition 3.1(3)). We will overcome these difficulties by assuming that Z is not just a smooth subvariety of S uniruled by lines, but also is a Schubert variety. Then we will use the property that $S_{a,b}$ has a line not intersecting the singular locus of $S_{a,b}$.

Lemma 4.6. Let $S_{a,b}$ be the Schubert variety $Gr_{\alpha}(k,V;F_{x},F_{b})$, where $0 \leq a \leq k - 2$ and $(n - a) + (k - a) \leq b - a \leq 2n - 2a$. Then we have a sequence of locally closed submanifolds $\mathcal{V}^0 = \{x\} \subset \mathcal{V}^1 \subset \cdots \subset \mathcal{V}^{m}$ of $S_{a,b}$ such that $\dim \mathcal{V}^{m} = \dim S_{a,b}$, and any point in \mathcal{V}^{k} can be connected to a point in \mathcal{V}^{k-1} by a line.

Proof. This follows from the fact that $S_{a,b}$ is a smooth uniruled projective variety of Picard number one when $0 \leq a \leq k - 2$ and $2n - 2a - 1 \leq b - a \leq 2n - 2a$ (see Section 4.3 of [6]). The same arguments as in Section 4.3 of [6] work if there is a line in $S_{a,b}$ contained in the smooth locus of $S_{a,b}$.

We may assume that $a = 0$. Let $S'_{a,b} := \{E \in S_{a,b} : F_{2n-b} \cap E = 0\}$. Then, $S'_{a,b}$ is contained in the smooth locus of $S_{a,b}$, and the line $\{E \in S_{a,b} : \langle e_{n-k+1}, \ldots, e_{n-1} \rangle \subset E \subset \langle e_{n-k+1}, \ldots, e_{n}, e_{n+1} \rangle\}$ is contained in $S'_{a,b}$. \hfill \Box

Proof of Proposition 4.5. (1) Let Z be a smooth Schubert variety of S (with respect to a Borel subgroup B of G which may not be equal to B). Then, Z is uniruled by lines, and of Picard number one (Proposition 4.1(0)). Assume that Z contains x as a general point, with $C_x(Z) = C_x(S_{a,b})$. Then the locus of lines in $S_{a,b}$ passing through x is contained in Z.

Take a general line C through x contained in $S_{a,b}$. Let C' be the intersection of C with the orbit $S'_{a,b}^{\text{gen}}$ of x under the action of the stabilizer $\text{Stab}(S_{a,b})$ of $S_{a,b}$ in G. Since x is a general point of $S_{a,b}$, C' is a Zariski open subset of C. Similarly, let C'' be the intersection of C with the orbit Z^{gen} of x under the action of the stabilizer $\text{Stab}(Z)$ of Z in G. Then C'' is also a Zariski open subset of C.

Let $y \in C' \cap C''$. Then, since y is a general point of $S_{a,b}$, $C_y(S_{a,b}) \subset \mathbb{P}(T_y(S_{a,b}))$ is projectively equivalent to $C_y(S_{a,b}) \subset \mathbb{P}(T_y(S_{a,b}))$. Similarly, since y is a general point of Z, $C_y(Z) \subset \mathbb{P}(T_y(Z))$ is projectively equivalent to $C_y(Z) \subset \mathbb{P}(T_y(Z))$. Hence, $C_y(S_{a,b}) \subset \mathbb{P}(T_y(S_{a,b}))$ is projectively equivalent to $C_y(Z) \subset \mathbb{P}(T_y(Z))$. By Proposition 3.4 of [5], there exists $b \in P_y$ such that $hC_y(S_{a,b}) = C_y(Z)$. (In [5] we consider the case when $b = 2n - a$. The same arguments work in other cases, too.) By Lemma 2.8 of [3] we have that $T_y(hC_y(S_{a,b})) = T_y(C_y(Z))$, and by Proposition 4.4 we have that $C_y(S_{a,b}) = C_y(Z)$. Therefore,
Smooth Schubert varieties of the symplectic Grassmannian

Proposition 4.7. Smooth Schubert varieties of the symplectic Grassmannian $\text{Gr}_\omega(k,V)$ are of the form $\text{Gr}_\omega(k,V; F_a, F_b)$, where one of the following holds:

1. $0 \leq a < k$ and $(k < b \leq n$ or $b = 2n - a)$,
2. $0 \leq a < k$ and $b = 2n - a - 1$,
3. $a = k - 1$ and $n + 1 \leq b \leq 2n - 1$.

Recall that a line in $S = \text{Gr}_\omega(k,V)$ is general if it corresponds to a point in the open orbit of G in $F_1(S)$, that a point in $\mathcal{C}_S(E) \cap \mathbb{P}(E^* \otimes (E^*/E))$ corresponds to a non-generic line passing through $[E]$, and that a point in its complement corresponds to a generic line passing through $[E]$. We describe how they differ by comparing them with lines in the Grassmannian $Gr(k,V)$.

Let (E_{k-1}, E_{k+1}) be a pair of a $(k-1)$-subspace E_{k-1} of V and a $(k+1)$-subspace E_{k+1} of V, such that $E_{k-1} \subset E_{k+1}$. Then,

$$L_{E_{k-1}, E_{k+1}} := \{[E] : E_{k-1} \subset E \subset E_{k+1}\}$$

is a line in $\mathbb{P}(\wedge^k V)$ contained in $Gr(k,V)$, and any line in $Gr(k,V)$ is obtained in this way.

The line $L_{E_{k-1}, E_{k+1}}$ is contained in the symplectic Grassmannian $\text{Gr}_\omega(k,V)$ if E_{k-1} is isotropic and E_{k+1} is a subspace of E_{k-1}^\perp. Moreover, if E_{k+1} is isotropic (not isotropic, respectively), then $L_{E_{k-1}, E_{k+1}}$ is non-generic (generic, respectively).

Proof of Proposition 4.7. Let S_1 be a smooth Schubert variety of S. In addition, let w be the corresponding element $w \in W^P$ and let $[E]$ be the base point of S_1. By Proposition 4.1(1), $\mathcal{C}_{[E]}(S_1)$ is the linear section $\mathcal{C}_{[E]}(S) \cap \mathbb{P}(T_{[E]}S_1)$ of $\mathcal{C}_{[E]}(S)$. By Proposition 4.1(3) and its proof, $\mathcal{C}_{[E]}(S_1)$ is the closure of the Borel subgroup $w(L \cap B)$ of $L_{[E]}$.

Assume that S_1 does not contain a generic line. Then, $\mathcal{C}_{[E]}(S_1)$ is contained in $\mathbb{P}(E^* \otimes (E^*/E)) \cap \mathcal{C}_{[E]}(S)$. By Proposition 4.2, $\mathcal{C}_{[E]}(S_1)$ is $X_{1,a} \times X_{2,b}$ for some a, b. ADDED: If $\dim S_{a,b} < \dim Z$, then by the same arguments as in the proof of Proposition 3.7 of [4] we have an integrable distribution \mathcal{W} of Z with compact leaves $gS_{a,b}$, where g lies in some subvariety G' of G, such that for a general point $g \in G'$ and for a general point $z \in gS_{a,b}$, any line in Z passing through z lies in $gS_{a,b}$. By arguments from the same proof again, the existence of such a \mathcal{W} contradicts the fact that Z is a uniruled projective manifold of Picard number one. Therefore, we have $\dim S_{a,b} = \dim Z$, from which it follows that Z is equal to $S_{a,b}$.

(2) follows from (1) and Proposition 3.1(3). □

Now, we will show that there is no smooth Schubert variety of the form $\text{Gr}_\omega(k,V; F_a, F_b)$ other than those given in Proposition 3.1.
Consider S_1 as a subvariety of the Grassmannian $Gr(k, V)$. Then, by Proposition 3.5 of [4] and the fact that S_1 has Picard number one, S_1 is a subgrassmannian $Gr(k, V; F_a, F_b)$. However, $Gr(k, V; F_a, F_b)$ is not contained in $Gr_w(k, V)$ unless F_b is an isotropic subspace of V, i.e., $b \leq n$. Therefore, S_1 is of the form $Gr(k, V; F_a, F_b)$ for some $b \leq n$ and $\mathcal{C}[E](S_1)$ is of the form $\mathcal{A}_{1,a} \times \mathcal{A}_{2,b}$ for some $b \leq n$.

Assume that S_1 contains a generic line. Then, S_1 contains a non-generic line too, because S_1 is compact. By Proposition 4.2, $\mathcal{C}[E](S_1)$ is $Z_{a,b}$ for some a and b. Therefore, $Z_{a,b} = \mathcal{C}[E](S) \cap \mathbb{P}(T[E]S_1)$, and the linear span $\langle Z_{a,b} \rangle$ of $Z_{a,b}$ is contained in $\mathbb{P}(T[E]S_1)$. In fact, $\langle Z_{a,b} \rangle$ is equal to $\mathbb{P}(T[E]S_1)$, because $\mathcal{C}[E](S)$ is nondegenerate in $\mathbb{P}(T[E]S)$. The linear span $\langle Z_{a,b} \rangle$ of $Z_{a,b}$ is $\mathbb{P}(((E/F_a \cap E)^* \otimes (F_b \cap E^*)/E) \oplus (S^2(E/F_a \cap E)^*))$ when we identify $T[E]S$ with $(E^* \otimes (E^*/E) \oplus (S^2E^*)$. Thus, $\mathbb{P}(T[E]S_1) = \mathbb{P}(((E/F_a \cap E)^* \otimes ((F_b \cap E^*)/E) \oplus (S^2(E/F_a \cap E)^*))$.

Assume that $a = 0$ (the proof for the case when $a \geq 1$ will be similar). Consequently, we have $\mathbb{P}(T[E]S_1) = \mathbb{P}((E^* \otimes ((F_b \cap E^*)/E) \oplus (S^2E^*)$. We claim that if $k \neq 1$, it follows that $b \geq n + k$. One can prove this by exploiting the Schubert cells in $Gr_w(k, V)$, or by using the fact that $Gr_w(k, V; 0, F_b)$ is not a Schubert variety unless $b \geq n + k$. We leave the proof to the reader. Therefore, by Proposition 4.5(2), we have that $b = 2n - 1$ or $2n$.

Now, Theorem 1.2 follows from Proposition 3.1 and Proposition 4.7.

References

[1] S. Billey and V. Lakshmibai, Singular loci of Schubert varieties, Progress in Mathematics 182, Birkhäuser, 2000.
[2] M. Brion and P. Polo. Generic singularities of certain Schubert varieties, Math. Z. 231 (1999), no. 2, 301–324.
[3] J. Hong and N. Mok, Analytic continuation of holomorphic maps respecting varieties of minimal rational tangents and applications to rational homogeneous manifolds, J. Differential Geom. 86 (2010), no. 3, 539–567.
[4] ———, Characterization of smooth Schubert varieties in rational homogeneous manifolds of Picard number 1, J. Algebraic Geom. 22 (2013), no. 2, 333–362.
[5] J. Hong and K.-D. Park, Characterization of standard embeddings between rational homogeneous manifolds of Picard number 1, Int. Math. Res. Not. 2011 (2011), no. 10, 2351–2373.
[6] J.-M. Hwang and N. Mok, Rigidity of irreducible Hermitian symmetric spaces of the compact type under Kähler deformation, Invent. Math. 131 (1998), no. 2, 393–418.
[7] ———, Deformation rigidity of the 30-dimensional F_4-homogeneous space associated to a short root, In: Algebraic transformation groups and algebraic varieties, pp. 37–58, Encyclopedia Math. Sci., 132, Springer-Verlag, Berlin, 2004.
[8] ———, Prolongations of infinitesimal linear automorphisms of projective varieties and rigidity of rational homogeneous spaces of Picard number 1 under Kähler deformation, Invent. Math. 160 (2005), no. 3, 591–645.
[9] V. Lakshmibai and J. Weyman, Multiplicities of points on a Schubert variety in a minuscule G/P, Adv. Math. 84 (1990), no. 2, 179-208.
[10] I. A. Mihai, Odd symplectic manifolds, Transformation Groups 12 (2007), no. 3, 573–599.
