On the Wiener complexity and the Wiener index of fullerene graphs

Andrey A. Dobrynin1,2, Andrei Yu. Vesnin1,2,3

1Novosibirsk State University, Novosibirsk, 630090, Russia
2Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
3Tomsk State University, Tomsk, 634050, Russia
dobr@math.nsc.ru, vesnin@math.nsc.ru

Abstract

Fullerenes are molecules in the form of cage-like polyhedra, consisting solely of carbon atoms. Fullerene graphs are mathematical models of fullerene molecules. The transmission of a vertex v of a graph is the sum of distances from v to all the other vertices. The number of different vertex transmissions is called the Wiener complexity of a graph. Some calculation results on the Wiener complexity and the Wiener index of fullerene graphs of order $n \leq 216$ are presented. Structure of graphs with the maximal Wiener complexity or the maximal Wiener index is discussed and formulas for the Wiener index of several families of graphs are obtained.

1 Introduction

A fullerene is a spherically shaped molecule consists of carbon atoms in which every carbon ring is either a pentagon or a hexagon and every atom has bonds with exactly three other atoms. The molecule may be a hollow sphere, ellipsoid, tube, or many other shapes and sizes. Fullerenes have been the subject of intense research, both for their chemistry and for their technological applications, especially in nanotechnology and materials science \cite{7,11}.

Molecular graphs of fullerenes are called fullerene graphs. A fullerene graph is a 3-connected 3-regular planar graph with only pentagonal and hexagonal faces. By Euler’s polyhedral formula, the number of pentagonal faces is always 12. It is known that fullerene graphs with n vertices exist for all even $n \geq 24$ and for $n = 20$. The number of all non-isomorphic fullerene graphs can be found in \cite{8,20,26}. The set of fullerene graphs with n vertices will be denoted as F_n. The number of faces of graphs in F_n is $f = n/2 + 2$ and,
therefore, the number of hexagonal faces is \(n/2 - 10 \). Despite the fact that the number of pentagonal faces is negligible compared to the number of hexagonal faces, their location is crucial to the shape and properties of fullerene molecules. Fullerenes where no two pentagons are adjacent, \(\text{i.e.} \), each pentagon is surrounded by five hexagons, satisfy the isolated pentagon rule and called \textit{IPR fullerene}. The number of all non-isomorphic IPR fullerenes was reported, for example, in \[25,26\]. They are considered as thermodynamic stable fullerene compounds. Description of mathematical properties of fullerene graphs can be found in \[4,7,11,19,20,36\].

The vertex set of a graph \(G \) is denoted by \(V(G) \). The number of vertices of \(G \) is called its \textit{order}. By distance \(d(u, v) \) between vertices \(u, v \in V(G) \) we mean the standard distance of a simple graph \(G \), \(\text{i.e.} \), the number of edges on a shortest path connecting these vertices in \(G \). The maximal distances between vertices of a graph \(G \) is called the \textit{diameter} \(D(G) \) of \(G \). Vertices are \textit{diametrical} if the distance between them is equal to the diameter of a graph. The \textit{transmission} of vertex \(v \in V(G) \) is defined as the sum of distances from \(v \) to all the other vertices of \(G \), \(tr(v) = \sum_{u \in V(G)} d(v, u) \). Transmissions of vertices are used for design of many distance-based topological indices \[37\]. Usually, a topological index is a graph invariant that maps a set of graphs to a set of numbers such that invariant values coincide for isomorphic graphs. A half of the sum of vertex transmissions gives the \textit{Wiener index} that has found important applications in chemistry (see selected books and reviews \[12,17,18,28,30,35,38,39\]),

\[
W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u, v) = \frac{1}{2} \sum_{v \in V(G)} tr(v).
\]

The Wiener index was introduced as structural descriptor for acyclic organic molecules by Harold Wiener \[40\]. The definition of the Wiener index in terms of distances between vertices of a graph was first given by Haruo Hosoya \[31\].

The number of different vertex transmissions in a graph \(G \) is known as the \textit{Wiener complexity} \[2\] (or the \textit{Wiener dimension} \[1\]), \(C_W(G) \). This graph invariant is a measure of transmission variety. A graph is called \textit{transmission irregular} if it has the largest possible Wiener complexity over all graphs of a given order, \(\text{i.e.} \), vertices of the graph have pairwise different transmissions. Various properties of transmission irregular graphs were studies in \[2,3,34\]. It was shown that almost all graphs are not transmission irregular. Infinite families of transmission irregular graphs were constructed for trees, 2-connected graphs and 3-connected cubic graphs in \[3,13,16\].

In this paper, we present some results of studies of the Wiener complexity and the Wiener index of fullerene graphs. In particular, we are interested in two questions: does there exist of a transmission irregular fullerene graph and can a graph with the maximal Wiener complexity has the maximal Wiener index?

2 Distribution of graphs with respect to their Wiener complexity

Distributions of fullerene graphs with respect to their Wiener complexity have been obtained for \(n \leq 216 \) vertices (\(f \leq 110 \) faces). As an illustration, we present data for graphs with 196 vertices (100 faces). The number of graphs of \(F_{196} \) is 177,175,687. Distribution of graphs of this family with respect to \(C_W \) is presented in Table 1. A graphical representation of these data is shown in Fig. 1.

![Figure 1. Distribution of fullerene graphs of \(F_{196} \) with respect to their Wiener complexity (\(N \) is the number of graphs).](image)

3 Wiener complexity of fullerene graphs

Denote by \(C_n \) the maximal Wiener complexity among all fullerene graphs with \(n \) vertices, i.e., \(C_n = \max\{C_W(G) \mid G \in F_n \} \). Fullerene graphs with maximal Wiener complexity have been examined for \(n \leq 216 \) vertices. Let \(g_n \) be a difference between order and the Wiener complexity, \(g_n = n - C_n \). Then a transmission irregular graph has \(g_n = 0 \). It is obvious that a transmission irregular graph has the identity automorphism group.

The behavior of \(g_n \) when the number of vertices \(n \) increases is shown in Fig. 2. The bottom and top lines correspond to all fullerene graphs and to IPR fullerene graphs, respectively. Explicit values of \(C_n \) and quantity \(g_n \) of the graphs are presented in Table 2. Since the minimal \(g_n \) is equal to 9, we can formulate the following statement.

Proposition 1. There do not exist transmission irregular fullerene graphs with \(n \leq 216 \) vertices.

Since the almost all fullerene graphs have no symmetries, we believe that transmission irregular graphs exist for large number of vertices.

Problem 1. Does there exist a transmission irregular fullerene graph (IPR fullerene graph)? If yes, then what is the smallest order of such graphs?
Table 1. Distribution of fullerene graphs of F_{196} with respect to the Wiener complexity C_W (N is the number of graphs).

C_W	N										
13	1	45	162	73	4635	101	289459	129	3966428	157	1787105
14	2	46	176	74	5426	102	333904	130	4148282	158	1534799
15	3	47	178	75	6367	103	380828	131	4323678	159	1296521
16	1	48	134	76	7143	104	437958	132	4482070	160	1008339
19	1	49	101	77	8442	105	498054	133	4630277	161	885355
21	1	50	86	78	9680	106	564113	134	4766726	162	713786
23	5	51	78	79	10834	107	637114	135	4889247	163	564259
24	3	52	90	80	12451	108	718248	136	4999494	164	438608
25	1	53	114	81	13990	109	804261	137	5082927	165	331636
26	4	54	100	82	16160	110	899361	138	5147054	166	246578
27	7	55	112	83	18120	111	1000698	139	5186406	167	178749
28	1	56	132	84	20406	112	1110963	140	5195292	168	126604
29	4	57	173	85	23226	113	1231994	141	5177020	169	87271
30	4	58	247	86	26153	114	1357031	142	5131736	170	58523
31	4	59	268	87	29857	115	1409391	143	5052595	171	38065
32	8	60	325	88	34232	116	1632573	144	4943731	172	23910
33	10	61	429	89	39558	117	1783764	145	4809637	173	14592
34	8	62	551	90	46466	118	1914157	146	4643527	174	8433
35	13	63	619	91	55187	119	2108524	147	4450101	175	4630
36	12	64	846	92	65082	120	2278437	148	4236185	176	2549
37	33	65	1039	93	77669	121	2459465	149	4065961	177	1318
38	27	66	1268	94	92372	122	2636351	150	3758030	178	653
39	48	67	1587	95	110504	123	2825077	151	3479586	179	306
40	60	68	1777	96	130842	124	3016435	152	3198568	180	130
41	78	69	2267	97	155105	125	3210085	153	2912936	181	71
42	121	70	2704	98	181583	126	3401907	154	2624386	182	26
43	132	71	3279	99	214088	127	3594118	155	2339326	183	8
44	153	72	4016	100	249142	128	3784693	156	2059994	184	5

Figure 2. Difference g_n between order and the maximal Wiener complexity of fullerene graphs.
4 Graphs with the maximal Wiener complexity

In this section, we study the following problem: can the Wiener index of a fullerene graph with the maximal Wiener complexity be maximal? Numerical data for the Wiener indices of fullerene graphs of order \(n \leq 216 \) are presented in Table 3. Here three columns \(C_n, W, \) and \(D \) are the maximal Wiener complexity, the Wiener index and the diameter of graphs with \(C_n \), respectively. Three columns \(W_m, C_W, \) and \(D \) contain the maximal Wiener index, the Wiener complexity and the diameter of graphs with \(W_m \).

Based on data of Tables 2 and 3, one can make the following observations.

- Several fullerene graphs of fixed \(n \) may have the maximal Wiener complexity \(C_n \) while the only one fullerene graph has the maximal Wiener index.

- Wiener indices of fullerene graphs with fixed \(C_n \) (\(| F_n | > 1 \)) are not maximal except graphs of order \(n = 28 \) with \(W = 1198 \) (\(| F_{28} | = 2 \)).

- Almost all fullerene graphs with fixed \(C_n \) have distinct Wiener indices. The only exception are graphs of order 46 with \(W = 4289 \) (the sequences of their vertex transmissions are distinct).
Table 3. Maximal Wiener complexity and Wiener indices of fullerene graphs.

n	C_n	W	D	W_m	C_W	D	t	W_m	C_W	D	t			
20	1	500	5	500	1	5	84	70	19939	13	21754	21	15	c1
24	2	804	5	804	2	5	86	73	21404	13	23467	8	16	b
28	3	1198	6	1198	5	6	86	73	21404	13	23467	8	16	b
30	4	1431	6	1435	3	6	86	73	21404	13	23467	8	16	b
32	5	1688	6	1696	3	7	88	73	22359	13	24714	21	16	c2
34	6	1973	7	1978	10	7	86	73	22359	13	24714	21	16	c2
36	7	2288	7	2298	8	7	90	79	23923	14	27155	9	17	a
38	8	2627	7	2651	4	8	92	80	25731	15	28256	8	17	b
40	9	3001	7	3035	4	8	92	80	25731	15	28256	8	17	b
42	10	3397	8	3415	19	8	92	80	25731	15	28256	8	17	b
44	11	3830	8	3888	4	9	90	79	23923	14	27155	9	17	a
46	12	4285	8	4322	19	9	92	80	25731	15	28256	8	17	b
48	13	4795	9	4858	12	9	98	86	30068	15	33651	9	18	b
50	14	5310	9	5455	5	9	100	89	31196	15	36580	10	19	a
52	15	5876	9	5994	13	10	102	89	32984	15	36206	47	18	d1
54	16	6475	9	6558	22	10	102	89	32984	15	36206	47	18	d1
56	17	7114	10	7352	5	11	96	84	28274	14	31418	24	17	c1
58	18	7782	10	7910	25	11	96	84	28274	14	31418	24	17	c1
60	19	8437	10	8880	6	11	96	84	28274	14	31418	24	17	c1
62	20	9202	10	9651	6	12	96	84	28274	14	31418	24	17	c1
64	21	9988	11	10410	15	12	102	99	40154	15	48005	11	21	a
66	22	10814	11	11126	30	12	106	93	36648	16	40278	47	19	d2
68	23	11714	11	12376	6	13	108	96	38033	15	43578	27	19	c1
70	24	12589	11	13505	7	13	118	106	47059	15	54310	50	21	d2
72	25	13407	11	14298	18	13	118	106	47059	15	54310	50	21	d2
74	26	14521	12	15563	7	14	118	106	47059	15	54310	50	21	d2
76	27	15867	13	16554	18	14	118	106	47059	15	54310	50	21	d2
78	28	16834	13	17398	37	14	122	109	51344	16	62011	11	22	b
80	29	17727	13	19530	8	15	122	109	51344	16	62011	11	22	b
82	30	19075	13	19918	38	15	122	109	51344	16	62011	11	22	b

6
Table 3. Maximal Wiener complexity and Wiener indices of fullerene graphs (continue).

n	C_m	W_D	W_m	C	D	t	n	C_m	W_D	W_m	C	D	t
126	115	57238	65286	57	22	d1	178	167	141743	174510	65	31	d2
128	117	60434	70976	11	23	b	180	168	139697	200780	18	35	a
130	118	63736	77655	13	25	a	182	171	144410	192971	16	32	b
							184	172	146581	197130	45	32	c2
132	121	62917	76538	33	23	c1	147	17545	172952	38574	10	47	a
134	123	64935	80763	12	24	b	153	17665	182816	42400	15	56	b
							154	17819	193440	50880	20	65	c1
136	124	69838	83274	33	24	c2	186	177	167300	198046	82	32	d1
138	127	72311	84398	62	24	d1	190	180	169849	235405	19	37	a
							192	181	163370	222778	48	33	c1
140	131	73644	96280	14	27	a	194	183	187947	231763	17	34	b
142	132	79852	91518	56	25	d2	191	1920	174774	236394	48	34	c2
144	132	77934	97914	36	25	c2	196	184	174774	236394	48	34	c2
146	134	86095	102947	13	26	b	178	17529	179284	31285	25	60	b
							179	187	177296	237198	87	34	d1
148	136	86432	105834	36	26	c2	186	177	154868	211776	16	33	b
							190	180	169849	235405	19	37	a
150	138	87886	117705	15	29	a	200	189	180683	273830	20	39	a
							192	181	163370	222778	48	33	c1
152	141	92988	115416	13	27	b	206	195	219009	275427	18	36	b
154	144	97359	115270	59	27	d2	221	195	219958	236394	48	34	c2
156	144	95579	122938	39	27	c2	222	197	220908	280554	51	36	c2
							208	198	201644	280554	51	36	c2
158	147	100055	128851	14	28	b	212	199	207617	299176	18	37	b
160	148	103952	142130	16	31	a	207	195	207975	299176	18	37	b
							210	199	238572	316255	21	41	a
162	151	104909	133206	72	28	d1	211	194	209707	236255	21	41	a
164	153	110088	143288	14	29	b	228	225	228507	316255	21	41	a
166	155	117531	142838	62	29	d2	228	225	228507	316255	21	41	a
							228	225	228507	316255	21	41	a
168	157	114316	151898	42	29	c1	214	202	226652	297030	74	37	d2
							216	204	220131	312854	54	37	c1
170	159	123193	169755	17	33	a	250	207	226928	236255	21	41	a
172	160	129708	162474	43	30	c2	226	225	226928	236255	21	41	a
174	164	131354	163478	77	30	d1	240	209	226928	236255	21	41	a
176	165	130105	175312	15	31	b	270	230	270770	236255	21	41	a
• The diameter of graphs with fixed C_n are not maximal for $n \geq 52$.

• Fullerene graphs with the maximal Wiener index have the maximal diameter. The values of the Wiener complexity C_W can vary greatly. This can be partially explained by the appearance of symmetries in graphs.

It is of interest how the pentagons are distributed among hexagons for fullerene graphs with the maximal Wiener complexity (see Tables 2 and 3). Does there exist any regularity in the distribution of pentagons? Table 4 gives some information on the occurrence of pentagonal parts of a particular size. Here N is the number of graphs in which pentagons form N_p isolated connected parts.

Table 4. The number of graphs with N_p isolated pentagonal parts.

N_p	1	2	3	4	5	6	7	8
N	9	8	27	61	42	40	7	1

Table 5 shows how many fullerene graphs with the maximal Wiener complexity have isolated pentagons (an isolated pentagon forms a part). Here N is the number of graphs having N_5 isolated pentagons. Does there exist an IPR fullerene graph with maximal Wiener complexity C_n (lines of Fig. 2 will have intersection)?

Table 5. The number graphs of with N_5 isolated pentagons.

N_5	0	1	2	3	4	5
N	23	56	44	44	24	4

5 Graphs with the maximal Wiener index

Wiener index of fullerene graphs are studied in [1, 5, 6, 19, 21, 24, 27, 32, 33]. There is a class of fullerene graphs of tubular shapes, called nanotubical fullerene graphs. They are cylindrical in shape, with the two ends capped by a subgraph containing six pentagons and possibly some hexagons called caps (see an illustration in Fig. 3).

Figure 3. Construction of a nanotubical fullerene graph with two caps.
Consider fullerene graphs with the maximal Wiener indices (see Table 3). Five graphs of $F_{20} - F_{28}$ and F_{34} contain one pentagonal part and other 93 graphs possess two pentagonal parts. Two pentagonal parts of every fullerene graph are the same and contain diametrical vertices. Therefore such graphs are nanotubical fullerene graphs with caps containing identical pentagonal parts. All types of such parts are depicted in Fig. 4. The number of fullerene graphs having a given part is shown near diagrams. A type of a cap is determined by the type of its pentagonal part. Types of caps of fullerene graphs are presented by the corresponding notation in column t of Table 3. Constructive approaches for enumeration of various caps were proposed in [9,10]. Consider every kind of cap types.

1. **Type a.** Caps of type a define so-called $(5,0)$-nanotubical fullerene graphs. The structure of graphs of this infinite family T_n is clear from an example in Fig. 5a. Diameter and the Wiener index of such fullerene graphs were studied in [1]. To indicate the order of graph G, we will use notation G_n.

Proposition 2. [1] Let G_n be a nanotubical fullerene graph with caps of type a. It has $n = 10k$ vertices, $k \geq 2$. Then $C_W(G_n) = k$, $D(G_n) = 2k - 1$, and $W(G_{20}) = 500$, $W(G_{30}) = 1435$, $W(G_{40}) = 3035$, and for $n \geq 50$,

$$W(G_n) = \frac{1}{30} (n^3 + 1175n - 20100).$$

Based on numerical data of Table 3, the similar results have been obtained for fullerene graphs of order $n \leq 216$ with caps of the other three types.

Figure 4. Caps for nanotubical fullerene graphs with the maximal Wiener index.

Figure 5. Structure of fullerene graphs with caps of types a and $b.$
2. Type b. The structure of graphs of the corresponding family T_b is clear from examples of Fig. 5b. Vertices marked by v should be identified in every graph. Table 3 contains 26 such graphs.

Proposition 3. Let G_n be a nanotubical fullerene graph with caps of type b. It has $n = 6k - 4$ vertices, $k \geq 5$. Then $C_W(G_n) = \lceil k/2 \rceil$, $D(G_n) = k + 1$, and for $n \geq 26$,

$$W(G_n) = \frac{1}{36} \left(n^3 + 27n^2 + 156n - 4352\right).$$

Two caps of type b have adjacent pentagonal rings only for $k = 5$. If fullerenes with caps of types a and b have the same number of faces ($n = 10k$), then the graph with caps of type a has the maximal Wiener index.

3. Type c. Fullerene graphs with caps of type c will be split into disjoint families, $T_c = T_{c1} \cup T_{c2}$. The corresponding graphs are marked in column t of Table 3 by $c1$ (13 graphs) and $c2$ (12 graphs). The numbers of vertices of graphs are given in Table 6. The orders of graphs of T_c do not coincide with the orders of graphs from the set $T_a \cup T_b$.

Proposition 4. a) Let G_n be a nanotubical fullerene graph of family T_{c1}. Then for $n \geq 36$,

$$W(G_n) = \frac{1}{36} \left(n^3 + 24n^2 + 336n - 7128\right).$$

The Wiener complexity and the diameter of G_n are shown in Table 6. One value should be corrected for $k = 0$ (see a cell of Table 6 with mark *): $C_W(G_{36}) = 8$ instead of 9.

b) Let G_n be a nanotubical fullerene graph of family T_{c2}. Then for $n \geq 52$,

$$W(G_n) = \frac{1}{36} \left(n^3 + 24n^2 + 336n - 7192\right).$$

The Wiener complexity and the diameter of G_n are shown in Table 6. One value should be corrected for $k = 0$: $C_W(G_{52}) = 13$ instead of 12.

4. Type d. Fullerene graphs with caps of type d will be also split into two disjoint families, $T_d = T_{d1} \cup T_{d2}$. The both families have 12 members (see graphs with marks $d1$ and $d2$ in column t of Table 3). The numbers of vertices of graphs of T_d are shown in Table 6. The orders of graphs of T_d do not coincide with the orders of graphs from the set $T_a \cup T_b \cup T_c$.

Proposition 5. a) Let G_n be a nanotubical fullerene graph of family T_{d1}. Then $W(G_{42}) = 3415$ and for $n \geq 54$,

$$W(G_n) = \frac{1}{36} \left(n^3 + 15n^2 + 1068n - 22788\right).$$

The Wiener complexity and the diameter of G_n are shown in Table 6. Two values should be corrected for $k = 0$ (see cells of Table 6 with mark *): $C_W(G_{66}) = 30$ instead of 32 and $C_W(G_{54}) = 22$ instead of 27.
Table 6. Parameters of fullerene graphs with \(n \leq 216 \) vertices and caps of types \(c \) and \(d \). Here \(k \geq 0 \) for all expressions.

Family	\(n \)	\(C_W \)	\(D \)	Family	\(n \)	\(C_W \)	\(D \)
\(T_{c1} \)	60k + 36	\(15k + 9^* \)	\(10k + 7 \)	\(T_{c2} \)	60k + 76	\(15k + 18 \)	\(10k + 14 \)
	60k + 48	\(15k + 12 \)	\(10k + 9 \)		60k + 88	\(15k + 21 \)	\(10k + 16 \)
	60k + 72	\(15k + 18 \)	\(10k + 13 \)		60k + 52	\(15k + 12^* \)	\(10k + 10 \)
	60k + 84	\(15k + 21 \)	\(10k + 15 \)		60k + 64	\(15k + 15 \)	\(10k + 12 \)
Family	\(n \)	\(C_W \)	\(D \)	Family	\(n \)	\(C_W \)	\(D \)
\(T_{d1} \)	60k + 66	\(25k + 32^* \)	\(10k + 2 \)		60k + 106	\(15k + 47 \)	\(10k + 19 \)
	60k + 78	\(25k + 37 \)	\(10k + 4 \)		60k + 58	\(15k + 35^* \)	\(10k + 11 \)
	60k + 102	\(25k + 47 \)	\(10k + 8 \)		60k + 82	\(15k + 41^* \)	\(10k + 15 \)
	60k + 54	\(25k + 27^* \)	\(10k \)		60k + 94	\(15k + 44 \)	\(10k + 17 \)

b) Let \(G_n \) be a nanotubical fullerene graph of family \(T_{d2} \). Then \(W(G_{46}) = 4322 \) and for \(n \geq 58 \),

\[
W(G_n) = \frac{1}{36} \left(n^3 + 15n^2 + 1068n - 22756 \right).
\]

The Wiener complexity and the diameter of \(G_n \) are shown in Table 6. Two values should be corrected for \(k = 0 \): \(C_W(G_{58}) = 25 \) instead of 35 and \(C_W(G_{82}) = 38 \) instead of 41.

The above considerations of fullerene graphs with \(n \leq 216 \) vertices lead to the following conjectures for all fullerene graphs.

Conjecture 1. If a fullerene graph of an arbitrary order has the maximal Wiener index, then it is a nanotubical fullerene graph with caps of types \(a-d \) and its Wiener index is given by Propositions 2–5.

Conjecture 2. The Wiener complexity and the diameter of fullerene graphs of an arbitrary order having the maximal Wiener index are given in Propositions 2–5.

Acknowledgements

This work was supported by the Laboratory of Topology and Dynamics, Novosibirsk State University (contract no. 14.Y26.31.0025 with the Ministry of Education and Science of the Russian Federation).

References

[1] Y. Alizadeh, V. Andova, S. Klavžar, R. Škrekovski, Wiener dimension: fundamental properties and (5,0)-nanotubical fullerenes, *MATCH Commun. Math. Comput. Chem.* **72** (2014) 279–294.
[2] Y. Alizadeh, S. Klavžar, Complexity of topological indices: the case of connective eccentric index, *MATCH Commun. Math. Comput. Chem.* **76** (2016) 659–667.

[3] Y. Alizadeh, S. Klavžar, On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs, *Appl. Math. Comput.* **328** (2018) 113–118.

[4] V. Andova, F. Kardoš, R. Škrekovski, Mathematical aspects of fullerenes, *Ars Mathematica Contemporanea* **11**(2) (2016) 353–379.

[5] V. Andova, D. Orlić, R. Škrekovski, Leapfrog fullerenes and Wiener index, *Appl. Math. Comput.* **309** (2017) 281–288.

[6] A. R. Ashrafi, Wiener index of nanotubes, toroidal fullerenes and nanostars, in: F. Cataldo, A. Graovac, O. Ori (Eds.), *The Mathematics and Topology of Fullerenes*, Carbon Materials: Chemistry and Physics Book 4, Springer, Berlin, 2011. pp. 21–38.

[7] A. R. Ashrafi, M. V. Diudea (Eds.), *Distance, Symmetry, and Topology in Carbon Nanomaterials*, Carbon Materials: Chemistry and Physics Book 9, Springer, Cham, 2016.

[8] G. Brinkmann, A. W. M. Dress, A constructive enumeration of fullerenes, *J. Algorithms* **23** (1997) 345–358.

[9] G. Brinkmann, U. Nathusius, A. H. R. Palser, A constructive enumeration of nanotube caps, *Discrete Appl. Math.* **116** (2002) 55–71.

[10] G. Brinkmann, P. W. Fowler, D. E. Manolopoulos, A. H. R. Palser, A census of nanotube caps, *Chem. Phys. Lett.* **315**(5–6) (1999) 335–347.

[11] F. Cataldo, A. Graovac, O. Ori (Eds.), *The Mathematics and Topology of Fullerenes*, Carbon Materials: Chemistry and Physics Book 4, Springer, Berlin, 2011.

[12] M. Dehmer, F. Emmert-Streib (Eds.), *Quantitative Graph Theory: Mathematical Foundations and Applications*, Discrete Mathematics and Its Applications, Chapman and Hall/CRC, 2014.

[13] A. A. Dobrynin, On 2-connected transmission irregular graphs, *J. Appl. Industrial Math.* **12**(4) (2018) 642–647.

[14] A. A. Dobrynin, Infinite family of 2-connected transmission irregular graphs, *Appl. Math. Comput.* **340**(1) (2019) 1–4.

[15] A. A. Dobrynin, Infinite family of transmission irregular trees of even order, *Discrete Math.* **342**(1) (2019) 74–77.

[16] A. A. Dobrynin, Infinite family of 3-connected cubic transmission irregular graphs, *Discrete Appl. Math.* **257** (2019) 151–157.

[17] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index for trees: theory and applications, *Acta Appl. Math.* **66**(3) (2001) 211–249.

[18] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, *Acta Appl. Math.* **72**(3) (2002) 247–294.
[19] P. W. Fowler, G. Caporossi, P. Hansen, Distance matrices, Wiener indices, and related invariants of fullerenes, *J. Phys. Chem. A*. **105** (2001) 6232–6242.

[20] P. W. Fowler, D. E. Manolopoulos, *An Atlas of Fullerenes*, Clarendon Press, Oxford, 1995.

[21] M. Ghorbani, Computing Wiener index of C_{24n} fullerenes, *J. Comput. Theor. Nanosci.* **12** (2015) 1847–1851.

[22] M. Ghorbani, T. Ghorbani, Computing the Wiener index of an infinite class of fullerenes, *Studia Ubb Chemia* **LVIII**(1) (2013) 43–50.

[23] M. Ghorbani, M. Songhori, Computing Wiener index of C_{12n} fullerenes, *Ars Combinatoria* **CXXX** (2017) 175–180.

[24] T. Ghosh, S. Mondal, S. Mondal, B. Mandal, Distance numbers and Wiener indices of IPR fullerenes with formula $C_{10(n-2)}$ ($n \geq 8$) in analytical forms, *Chem. Phys. Lett.* **701** (2018) 72–80.

[25] J. Goedgebeur, B. D. McKay, Fullerenes with distant pentagons, *MATCH Commun. Math. Comput. Chem.* **74**(3) (2015) 659–672.

[26] J. Goedgebeur, B. D. McKay, Recursive generation of IPR fullerenes, *J. Math. Chem.* **53** (2015) 1702–1724.

[27] A. Graovac, O. Ori, M. Faghani, A. Ashrafi, Distance property of fullerenes, *Iranian J. Math. Chem.* **2**(1) (2011) 99–107.

[28] I. Gutman, B. Furtula (Eds.), *Distance in Molecular Graphs — Theory*. Mathematical Chemistry Monographs, 12, Univ. Kragujevac, Kragujevac, Serbia, 2012.

[29] I. Gutman, B. Furtula (Eds.) *Distance in Molecular Graphs — Applications*. Mathematical Chemistry Monographs, 13, Univ. Kragujevac, Kragujevac, Serbia, 2012.

[30] I. Gutman, O. E. Polansky, *Mathematical Concepts in Organic Chemistry*, Springer–Verlag, Berlin, 1986.

[31] H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, *Bull. Chem. Soc. Jpn.* **4** (1971) 2332–2339.

[32] H. Hua, M. Faghani, A. Ashrafi, The Wiener and Wiener polarity indices of a class of fullerenes with exactly $12n$ carbon atoms, *MATCH Commun. Math. Comput. Chem.* **71**(2) (2014) 361–372.

[33] A. Iranmanesh, Y. Alizadeh, S. Mirzaie, Computing Wiener polynomial, Wiener index and hyper Wiener index of C_{50} fullerene by GAP program, *Fullerenes, Nanotubes and Carbon Nanostructures* **17**(5) (2009) 560–566.

[34] S. Klavžar, D. A. Jemilet, I. Rajasingh, P. Manuel, N. Parthiban, General transmission lemma and Wiener complexity of triangular grids, *Appl. Math. Comput.* **338** (2018) 115–122.
[35] M. Knor, R. Škrekovski, A. Tepeh, Mathematical aspects of Wiener index, *Ars Mathematica Contemporanea* **11**(2) (2016) 327–352.

[36] P. Schwerdtfeger, L. N. Wirz, J. Avery, The topology of fullerenes, *WIREs Comput. Mol. Sci.* **5** (2015) 96–145.

[37] R. Sharafdini, T. Reti, On the transmission-based graph topological indices, *Kragujevac J. Math.* **44**(1) (2020) 41–63.

[38] R. Todeschini, V. Consonni, *Handbook of Molecular Descriptors*, Wiley–VCH, Weinheim, 2000.

[39] N. Trinajstić, *Chemical Graph Theory*, CRC Press, Boca Raton, 1983; 2nd ed. 1992.

[40] H. Wiener, Structural determination of paraffin boiling points, *J. Am. Chem. Soc.* **69** (1947) 17–20.