A Meta-Analysis of Alterations in the Retina and Choroid in High Myopia Assessed by Optical Coherence Tomography Angiography

Xiao-qin Wanga, b Liu-zhi Zengb Ming Chenb Long-qian Liua

aDepartment of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; bDepartment of Ophthalmology, Chengdu Integrated TCM & Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China

Keywords
High myopia · Microvasculature · Optical coherence tomography angiography · Meta-analysis

Abstract

Background: High myopia (HM) is a risk factor for several pathological structural changes in retinal and choroidal thickness or vessel. To date, changes in retinal and choroidal microvasculature circulations in HM have yielded inconsistent results. Objectives: The objective of this article was to evaluate alterations in retinal and choroidal thickness, and capillary microvasculature using optical coherence tomography angiography (OCTA) in HM. Methods: PubMed, Embase, and the Cochrane Library databases were searched for relevant published studies. Primary outcomes were foveal avascular zone, vessel density, retinal nerve fiber layer (RNFL) thickness, foveal thickness, sub-foveal choroidal thickness, and chorio-capillary density. Alterations in outcomes were evaluated by standardized mean difference with a 95% confidence interval. Results: Eleven eligible articles were included for the meta-analysis. The whole superficial and deep vessel densities of macular and parapapillary superficial vessel density were lower in HM than in control eyes. The thickness of parafoveal RNFL, parapapillary RNFL, and sub-foveal choroid was significantly lower in HM eyes. Also, chorio-capillary density was shown to be lower in HM eyes. Conclusions: The retinal and choroidal vessel network change may be related to the axial elongation in the progression of myopia. Furthermore, OCTA is an effective and noninvasive technology for monitoring the progress of myopia eyes.

Introduction

High myopia (HM) is defined as a refractive error with a spherical equivalent (SE) of more than −6.0 diopters (D) and/or an axial length (AL) exceeding 26 mm. The prevalence of HM continues to rise across the world, particularly in younger populations [1, 2]. HM is always a risk factor for several pathological structural changes, including chorio-retinal atrophy, lacquer crack formation, myopic maculopathy, posterior scleral staphyloma, choroidal neovascularization, and other vision-threatening conditions. These changes are commonly associated with alterations in retinal and choroidal thickness or vascular alterations [3–5]. Benavente et al. [6] and Azemin et al. [7] reported that decreased retinal vessel density and choroidal blood flow in myopia are features that can be detected by fundus photography or color Doppler imaging. These changes lead to poor retinal or choroidal capillary perfu-
sion, ischemia and hypoxia, which may be possible indications for the development of refractive errors or AL.

Optical coherence tomography angiography (OCTA) is an advanced imaging technology that is used to noninvasively visualize the vasculature and can provide 3-dimensional detail of the retinal microvasculature but also the chorio-capillaries [8]. It can also be used to quantitatively assess retinal nerve fiber layer (RNFL) thickness, choroidal thickness, foveal avascular zone (FAZ), and vessel density. These measurements can provide new insights into the pathogenic mechanisms of retinal and choroidal diseases [9, 10]. Yang et al. [11] and Su et al. [12] demonstrated various changes in the retinal microcirculation chorio-capillaries of HM eyes. Li et al. [13] found that the superficial and deep vascular densities were decreased in HM eyes, while no statistically significant difference in the retinal microvessel blood flow velocity was reported. He et al. [14] reported reductions in the peripapillary capillary and deep parafoveal vessel density along with an enlarged size of the FAZ in HM, but did not find any change in superficial parafoveal vessel density.

To date, changes in retinal and choroidal microvasculature circulations in HM have yielded inconsistent results underlying the need for a comprehensive meta-analysis. The primary aim of this study was to perform a meta-analysis study to evaluate alterations in retinal and choroidal thickness and capillary microvasculature in HM.

Methods

Search Strategy and Selection Criteria

This meta-analysis was performed based on PRISMA guidelines (online suppl. material 1; for all online suppl. material, see www.karger.com/doi/10.1159/000517096) [15]. PubMed, Em-
base, and the Cochrane Library were searched up to June 2020 using the following key terms: “myopia,” “nearsightedness,” “OCTA,” “OCT angiography,” and “optical coherence tomography angiography.” All articles in English were considered eligible. Conflicts on the inclusion of data were resolved by consensus (between X.W. and L.Z.).

Inclusion criteria were as follows: (1) original research studies published in English; (2) cohort study or cross-sectional study; (3) HM defined as SE refractive error ≥ −6.0 D and/or AL ≥ 26.0 mm, and without pathological changes; control group was allowed as SE between +3.0 D and –3.0 D; (4) OCTA data were reported as mean ± standard deviation; (5) differences reported in OCTA data between HM and controls; (6) OCTA scan size of macular was a 3 × 3 mm² region; and (7) inclusion of at least 2 of the following outcomes – FAZ, whole superficial vessel density, whole deep vessel density, foveal superficial vessel density, parafoveal superficial vessel density, parapapillary superficial vessel density, parapapillary RNFL thickness, foveal RNFL thickness, parafoveal RNFL thickness, sub-foveal choroidal thickness (SFCT), and/or chorio-capillary density. Exclusion criteria were as follows: (1) case reports, conference abstracts, letters, reviews, and meta-analyses; (2) studies with insufficient data; (3) eyes with common diseases other than myopia; and (4) animal experimental and optics studies.

Terminology

Each set of scans was acquired over a 3 × 3 mm² macular region and a 4.5 × 4.5 mm² region of the optic disc. The FAZ was defined as the round capillary-free zone. The fovea was defined as the area within a central 1 mm circle on the macular. The parapapillary area was defined as an annulus surrounding the fovea with an inner diameter of 0.6 mm and an outer diameter of 2.5 mm. The parapapillary area was defined as a 700 or 750 μm elliptical annulus extending outward from the optic disk boundary. The OCTA software used and automated segmentation algorithm to identify the superficial retinal plexus extending from the inner limiting membrane to the inner plexiform layer and the deep retinal plexus extending from the inner nuclear layer to the outer plexiform layer. Choroidal thickness was defined as the distance between the hyper-scattering outer border of the retinal pigment epithelium and the inner border of the sclera. The chorio-capillaries were automatically segmented from 31 to 59 μm inferiorly to the retinal pigment epithelium [16].

Table 1. Characteristics of 11 studies included in the meta-analysis

Study	Area	Device	Eyes HM/control, n	Mean age, HM/control, years	AL, HM/control, mm	Refractive error, HM/control, D	NOS score
Ucak et al. [18]	Turkey	Nidek	92/70	35.19±14.29/36.22±11.42	26.97±0.79/23.09±0.78	−8.13±1.71/0.53±0.27	7
Leng et al. [19]	USA	Carl Zeiss	14/64	NA/NA	NA/NA	−6.0/1.0 to +1.0	7
Guo et al. [20]	South Korea	Optovue	45/21	23.64±3.82/21.93±2.93	27.11±1.02/23.58±1.17	−8.62±1.67/−0.76±0.33	8
Milani et al. [21]	Germany	Optovue	42/40	51.8±10.87/56.24±16.64	NA/NA	−10.26±3.83/−0.07±1.44	7
Sung et al. [22]	USA	Optovue	71/36	23.63±4.01/23.11±4.31	26.73±0.63/23.46±0.55	−7.44±1.70/−0.08±0.38	7
Al-Sheikh et al. [23]	USA	Optovue	50/34	57.00±17.93/56.05±19.27	NA/NA	−8.29±2.94/−0.04±1.06	8
Mo et al. [24]	China	Optovue	41/45	38.0±11.7/38.3±13.1	29.55±1.73/23.19±0.58	−6.90±1.23/0.07±0.35	7
Wang et al. [25]	China	Optovue	18/20	16.3±0.5/16.6±0.9	26.58±0.87/23.85±0.62	−8.0±0.83/−0.11±0.39	8
Fan et al. [26]	China	Optovue	30/28	36.33±14.73/34.14±15.79	29.01±2.65/23.28±0.48	−11.63±5.36/−0.68±0.68	8
Yang et al. [27]	China	Optovue	70/81	26.1±1.7/26.1±2.0	26.15±0.93/24.23±0.94	−7.14±0.94/−1.75±0.72	7
Min et al. [28]	South Korea	Optovue	52/52	45.7±15.0/46.5±16.6	27.5±1.1/24.0±1.1	−8.5±4.9/−2.0±3.0	7

HM, high myopia; NOS, Newcastle-Ottawa Scale; NA, not available; AL, axial length; D, diopters.
A Meta-Analysis of High Myopia Assessed by OCTA

Data Extraction and Quality Assessment
Two authors independently retrieved and obtained the following information from the included articles. The extraction data were customized to record the first author, year of publication, study area, number of eyes, age, AL, refractive error, OCTA device, and outcomes. Any discrepancies in the inclusion of data were addressed by consensus. The quality of each study was assessed by the Newcastle-Ottawa Scale (NOS) [17] and the total scores ranging from 0 to 9 points applied to the evaluation. Studies with NOS scores >7 were defined as high quality and considered in the final analysis.

Statistical Analysis
Statistical analysis was performed using Review Manager 5.3. For continuous variables, outcomes were reported as the mean ± standard deviation and the mean difference (MD) with a 95% confidence interval. To obtain reliable results, heterogeneity was evaluated using the I^2 test. If the homogeneity test showed p ≥ 0.1 and I^2 ≤ 50%, which indicated a low homogeneity between the included studies, a fixed-effects model was used for the analysis. If the value of I^2 was >50% or p value <0.1, which suggested a high heterogeneity, then a random-effects model was applied to the data.

Results
A total of 440 potentially relevant reports were initially obtained in our literature search, of which 196 studies were removed due to duplication. After applying the inclusion and exclusion criteria, 11 eligible articles including 525 HM eyes and 491 normal control eyes with sufficient data were eventually selected for the meta-analysis [18–28] (Fig. 1). The demographic and clinical characteristics of the included articles are summarized in Table 1. Seven studies had high-quality scores of 7, and 4 studies had scores of 8. All studies met the quality requirement. In addition, sensitivity analysis was conducted on the included articles for each outcome which showed that no

Study or subgroup	Mean (high myopic)	Mean (control)	Weight	Mean difference (IV, random, 95% CI)
Al-Sheikh, 2017	28.2 ± 4.3	32.5 ± 2.8	14.9	-4.50 [-6.02, -3.02]
Fan, 2017	19.6 ± 3.7	25.6 ± 3.7	13.9	-6.00 [-7.96, -4.04]
Leng, 2018	26.5 ± 5.3	29.4 ± 5.2	11.5	-3.30 [-5.89, -0.71]
Milani, 2018	46.4 ± 4.9	51.6 ± 3.6	14.1	-5.21 [-7.07, -3.35]
Mo, 2017	51.9 ± 3.3	53.9 ± 1.7	15.7	-2.00 [-3.15, -0.85]
Ucak, 2020	34.8 ± 3.5	36.5 ± 4.2	15.6	-1.70 [-2.92, -0.48]
Yang, 2017	63.8 ± 5.5	62.3 ± 5.7	14.3	1.50 [-0.29, 3.29]

Total (95% CI) 339 362 100.0 -2.95 [-4.70, -1.20]

Heterogeneity: \tau^2 = 4.75, \chi^2 = 48.44, df = 6 (p < 0.00001); I^2 = 88%
Test for overall effect: Z = 3.30 (p = 0.0010)

Funnel plot was employed to assess publication bias. A p value <0.05 was regarded as statistically significant.
articles had a high influence which indicated the results of this study were stable.

Seven studies reported whole superficial vessel density, and the meta-analysis of these data indicated that it was lower in HM than in control eyes (Fig. 2). For whole deep vessel density, 6 studies were included in the analysis between the HM eyes and control eyes, which showed that whole deep vessel density was also reduced in HM (Fig. 2). Assessment of foveal and parafoveal superficial vessel density showed no significant changes in HM compared to control eyes (Fig. 3). However, the MD in para-

Meta-analysis of Vessel Density

Foveal Superficial Vessel Density

Study or subgroup	High myopic mean SD	Control mean SD	Total weight, %	Mean difference IV, fixed, 95% CI	Mean difference IV, fixed, 95% CI
Guo, 2018	31.63 5.08 45	30.6 3.54 21	37.9	1.03 [−1.09, 3.15]	
Milani, 2018	29.9 5.44 42	30.83 5.92 40	20.1	−0.93 [−3.39, 1.53]	
Mo, 2017	28.94 6.15 41	29.07 4.14 45	34.0	−0.13 [−2.37, 2.11]	
Total (95% CI)	**128**	**106**	**100.0**	**0.09 [−1.22, 1.39]**	

Heterogeneity: $\chi^2 = 1.45, df = 2 (p = 0.48); I^2 = 0%$
Test for overall effect: $Z = 0.13 (p = 0.90)$

Parafoveal Superficial Vessel Density

Study or subgroup	High myopic mean SD	Control mean SD	Total weight, %	Mean difference IV, random, 95% CI	Mean difference IV, random, 95% CI
Guo, 2018	56.6 3.06 45	56.34 2.07 21	26.5	0.26 [−1.26, 1.78]	
Mo, 2017	54.93 3.43 41	55.68 1.89 45	30.7	−0.75 [−1.94, 0.44]	
Wang, 2016	28.2 3.7 18	26.6 6.1 20	12.1	1.60 [−1.57, 4.77]	
Yang, 2017	52.7 4.2 70	54.8 3 81	30.8	−2.10 [−3.28, −0.92]	
Total (95% CI)	**174**	**167**	**100.0**	**−0.61 [−1.93, 0.70]**	

Heterogeneity: $\tau^2 = 1.10, \chi^2 = 8.65, df = 3 (p = 0.03); I^2 = 65%$
Test for overall effect: $Z = 0.92 (p = 0.36)$

Parapapillary Superficial Vessel Density

Study or subgroup	High myopic mean SD	Control mean SD	Total weight, %	Mean difference IV, random, 95% CI	Mean difference IV, random, 95% CI
Guo, 2018	60.8 3.81 45	64.28 2.95 21	37.5	−3.48 [−5.16, −1.80]	
Sung, 2018	62.13 3.16 71	63.96 2.67 26	41.6	−1.83 [−3.09, −0.57]	
Wang, 2016	82.3 5.8 18	89 5.4 20	20.9	−6.70 [−10.27, −3.13]	
Total (95% CI)	**134**	**67**	**100.0**	**−3.47 [−5.63, −1.30]**	

Heterogeneity: $\tau^2 = 2.52, \chi^2 = 7.45, df = 2 (p = 0.02); I^2 = 73%$
Test for overall effect: $Z = 3.14 (p = 0.002)$

Fig. 3.

Meta-analysis of foveal, parafoveal, and parapapillary superficial vessel density between HM and control eyes. HM, high myopia.
slightly lower in HM eyes than in control eyes (Fig. 5). Furthermore, SFCT in HM eyes was significantly lower than that of controls (Fig. 6). Choriocapillaris density between the 2 groups was shown that no significant changes were observed in HM (Fig. 6).

From the funnel plot analysis, there was no correlation between study size and effect size or any other evidence of publication bias (Fig. 7). Sensitivity analysis showed that none of the studies had an excessive impact on the results of the meta-analysis, indicating that the results of the remaining studies are stable and reliable.

Discussion

To the best of our knowledge, this is the first study to provide a comprehensive meta-analysis comparing alterations of the retinal and choroidal vascular and thickness measured by OCTA in HM and normal controls. In the current study, we analyzed the mean whole vessel density of study participants along with several other parameters. Specifically, these included parapapillary superficial vessel density, chorio-capillary vessel densities, FAZ, foveal thicknesses, SFCT, and parafoveal and parapapillary RNFL thickness.

Based on the presented data, whole vessel density at both the superficial and deep macular layers was significantly lower in HM eyes which strongly supports the findings from Yang et al. [11], Fan et al. [26], and Yang et al. [29] studies. However, Yang et al. [27] reported contrary findings showing no significant differences across various levels of myopic severity. When the foveal and parafoveal superficial vessel densities were analyzed, no changes occurred in HM compared to control eyes. When we evaluated the FAZ measured by OCTA, our findings showed the FAZ remained unchanged in HM eyes compared to control eyes, which is in agreement with data from Li et al. [13] study. However, the outcome of other articles indicated the diameter of the FAZ was enlarged in HM eyes [30–32]. While discrepancies among these stud-
ies limit definitive conclusions, the reported changes may be related to numerous factors such as AL, age, sex, and segmentation method impacting FAZ measurements [16].

Furthermore, small increases in foveal thickness and SFCT were simultaneously observed in HM compared to control eyes. A thinning of SFCT in HM eyes is consistent with findings reported in Ohsugi et al. [33] and Gupta et al. [34] studies. In this meta-analysis, the data suggest that parafoveal RNFL thickness showed that no change in thickness occurred in HM compared to control eyes. Our results show that parapapillary superficial vessel density and chorio-capillary density were reduced in HM, suggesting that vessel density decreases with progression of HM [35].

The RNFL thickness in the peripapillary region was significantly thinner in HM than in control eyes, which was again in line with Leung et al. [36] and Hoh et al. [37] studies. Parapapillary RNFL thinning leads to a diminished requirement of retinal blood supply and decreased metabolic demand ultimately reducing parapapillary vessel density. We hypothesize that the reduced thickness of the retina and choroid, and reduced capillary density reduction may be due to excessive axial elongation of the eyeball in HM eyes causing biomechanical stretching of the retina, choroid, and sclera [38, 39].

The current study is the first synthesis that detected alterations of retinal and choroidal microvasculature in HM through a comprehensive search strategy with strict criteria of inclusion. A previous study found that there was no difference between emmetropia and low-to-moderate myopia groups in retinal vessel density except for the deep parafoveal vessel density [31]. So according to Yang et al. [11], Su et al. [12], and Cheng et al. [31] studies, we selected SE between +3.0 D and −3.0 D as control group. However, some unavoidable factors could have potentially contributed to the heterogeneity of the data. First, potentially confounding factors such as a different refractive error, age, and baseline state may be related to the significant heterogeneity. Moreover, data were com-

Study or subgroup	High myopic mean	SD	total	Control mean	SD	total	Total weight, %	Mean difference IV, fixed, 95% CI
Guo, 2018	315.58	15.39	45	319.48	14.31	21	31.7	−3.90 [−11.49, 3.69]
Milani, 2018	316.4	10.94	42	320.12	23.99	40	27.6	−3.72 [−11.86, 4.42]
Min, 2020	312.4	15.3	52	320	19.3	52	40.8	−7.60 [−14.29, −0.91]
Total (95% CI)	139			113		100	−5.36	[−9.63, −1.08]

Heterogeneity: $\chi^2 = 0.73$, df = 2 ($p = 0.69$); $I^2 = 0$
Test for overall effect: $Z = 2.46$ ($p = 0.01$)

Study or subgroup	High myopic mean	SD	total	Control mean	SD	total	Total weight, %	Mean difference IV, fixed, 95% CI
Fan, 2017	97	10.28	30	111.24	9.34	28	19.0	−14.24 [−19.29, −9.19]
Guo, 2018	93.6	7.15	45	110.07	6.52	21	20.6	−16.47 [−9.95, −12.99]
Sung, 2018	105.74	9.12	71	106.38	8.33	26	20.2	−0.64 [−4.48, 3.20]
Ucak, 2020	94.17	12.12	92	107.67	12.67	70	20.2	−13.50 [−7.37, −9.63]
Wang, 2016	98.3	6.9	18	107.1	5.8	20	20.0	−8.80 [−12.88, −4.72]
Total (95% CI)	256			165		100	−10.71	[−16.49, −4.93]

Heterogeneity: $\tau^2 = 39.17$, $\chi^2 = 41.62$, df = 4 ($p < 0.00001$); $I^2 = 90$
Test for overall effect: $Z = 3.63$ ($p = 0.0003$)

Fig. 5. Meta-analysis of parafoveal and parapapillary RNFL thickness between HM and control eyes. HM, high myopia; RNFL, retinal nerve fiber layer.
A Meta-Analysis of High Myopia Assessed by OCTA

Piled data from 3 different OCTA brands (7 Optovue, 1 Carl Zeiss, and 1 Nidek) which may have contributed to heterogeneity of the meta-analysis.

Our study has a number of limitations that should be considered when interpreting the data. Firstly, we did not search for original data, unpublished articles, or papers written in other languages, which inevitably leads to some bias. Secondly, while patients with HM were including, patients with myopic maculopathy were omitted from the study, and so it was not possible to assess changes in these patients with more advanced disease. Furthermore, we evaluated the macular area selecting a 3 × 3 mm² scan pattern, whereas a 6 × 6 mm² scan pattern may provide more accurate and more reproducible data [40, 41]. Further studies in HM eyes should be conducted on a larger area to elucidate the changes in the macular microvasculature.

Fig. 6. Meta-analysis of choroidal thickness and choriocapillaris density between HM and control eyes. HM, high myopia; SFCT, sub-foveal choroidal thickness.

Fig. 7. A funnel plot study assessing the publication bias. SE, spherical equivalent; MD, mean difference.

Conclusions

In conclusion, the present meta-analysis demonstrated that OCTA is effective for the noninvasive and rapid evaluation of vascular changes in HM. We showed that macular and parapapillary retinal vessels were attenuated in HM eyes. Furthermore, we found that the FAZ, and
foveal and parafoveal superficial vessel density remained unchanged in HM. Finally, our findings suggested that thickness of parafoveal RNFL, parapapillary RNFL, and sub-foveal choroid in HM was decreased. Otherwise, the foveal thickness in HM has a small increase. These microvascular parameters of the retina and choroid may have significant value in the progression of myopia. Future studies will provide more comprehensive assessment of these changes in retina and choroid.

Statement of Ethics

All analyses were based on published studies; therefore, this study is exempt from ethical committee approval. Nonetheless, the study was conducted in accordance with the tenets of the Declaration of Helsinki.

References

1. Fricke TR, Jong M, Naidoo KS, Sankaridurg P, Naduvilath TJ, Ho SM, et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling. Br J Ophthalmol. 2018;102(7):855–62.

2. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42.

3. You QS, Peng XY, Xu L, Chen CX, Wang YX, Jonas JB. Myopic maculopathy imaged by optical coherence tomography: the Beijing eye study. Ophthalmology. 2014;121(1):220–4.

4. Cho BJ, Shin JY, Yu HG. Complications of pathologic myopia. Eye Contact Lns. 2016;4(1):9–15.

5. Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet. 2012;379(9827):1739–48.

6. Benavente-Perez A, Hosking SL, Logan NS, Broadway DC. Ocular blood flow measurements in healthy human myopic eyes. Graefes Arch Clin Exp Ophthalmol. 2010;248(11):1587–94.

7. Azemin MZ, Daud NM, Ab Hamid F, Zahari I, Sapuan AH. Influence of refractive condition on retinal vasculature complexity in younger subjects. ScientificWorldJournal. 2014;2014:783525.

8. Spaida RF, Fujimoto JG, Waheed NK, Sadda SR, Staugeghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.

9. Borrelli E, Sarraf D, Freund KB, Sadda SR. OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res. 2018;67:30–55.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

This work is supported by the Sichuan Provincial Administration Traditional Chinese Medicine (No. 21ZDYF0150). The funder had a role in the data analysis and the manuscript revising.

Author Contributions

X.-Q.W. designed the study. X.-Q.W., L.-Z.Z., and L.-Q.L performed and processed the experimental data. X.-Q.W. wrote the manuscript. L.-Z.Z., M.C., and L.-Q.L revised the manuscript. All authors read and approved the final manuscript.
27 Yang S, Zhou M, Lu B, Zhang P, Zhao J, Kang M, et al. Quantification of macular vascular density using optical coherence tomography angiography and its relationship with retinal thickness in myopic eyes of young adults. J Ophthalmol. 2017;2017:1397179.

28 Min CH, Al-Qattan HM, Lee JY, Kim JG, Yoon YH, Kim YJ, et al. Macular microvasculature in high myopia without pathologic changes: an optical coherence tomography angiography study. Korean J Ophthalmol. 2020;34(2):106–12.

29 Yang D, Cao D, Zhang L, Yang C, Lan J, Zhang Y, et al. Macular and peripapillary vessel density in myopic eyes of young Chinese adults. Clin Exp Optom. 2020;103(6):830–7.

30 Golebiewska J, Biala-Gosek K, Czeszyk A, Hautz W. Optical coherence tomography angiography of superficial retinal vessel density and foveal avascular zone in myopic children. PLoS One. 2019;14(7):e0219785.

31 Cheng D, Chen Q, Wu Y, Yu X, Shen M, Zhuang X, et al. Deep perifoveal vessel density as an indicator of capillary loss in high myopia. Eye. 2019;33(12):1961–8.

32 Lee JY, Kim J, Kim YJ, Al-Qattan HM, Yoon YH. Macular microvasculature in high myopia without pathologic changes: an optical coherence tomography angiography study. Korean J Ophthalmol. 2020;34(2):106–12.

33 Ohsugi H, Ikuno Y, Oshima K, Tabuchi H. 3-D choroidal thickness maps from EDI-OCT in highly myopic eyes. Optom Vis Sci. 2013;90(6):599–606.

34 Gupta P, Saw SM, Cheung CY, Girard MJ, Mari JM, Bharagava M, et al. Choroidal thickness and high myopia: a case-control study of young Chinese men in Singapore. Acta Ophthalmol. 2015;93(7):e585–92.

35 Sayanagi K, Ikuno Y, Uematsu S, Nishida K. Features of the choriocapillaris in myopic maculopathy identified by optical coherence tomography angiography. Br J Ophthalmol. 2017;101(11):1524–9.

36 Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, Cheng DK, et al. Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study. Invest Ophthalmol Vis Sci. 2006;47(12):5171.

37 Hoh ST, Lim MC, Seah SK, Lim AT, Chew SJ, Foster PJ, et al. Peripapillary retinal nerve fiber layer thickness variations with myopia. Ophthalmology. 2006;113(5):773–7.

38 Wu PC, Chen YJ, Chen CH, Chen YH, Shin SJ, Yang HJ, et al. Assessment of macular retinal thickness and volume in normal eyes and highly myopic eyes with third-generation optical coherence tomography. Eye. 2008;22(4):551–5.

39 Lam DS, Leung KS, Mohamed S, Chan WM, Palanivelu MS, Cheung CY, et al. Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci. 2007;48(1):376–82.

40 Garrity ST, Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Quantitative analysis of three distinct retinal capillary plexuses in healthy eyes using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58(12):5548–55.

41 Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(13):5780–7.