Lung cysts in chronic paracoccidioidomycosis*

Cistos pulmonares na paracoccidioidomicose crônica

André Nathan Costa, Edson Marchiori, Gil Benard, Mariana Sponholz Araújo, Bruno Guedes Baldi, Ronaldo Adib Kairalla, Carlos Roberto Ribeiro Carvalho

Abstract

On HRCT scans, lung cysts are characterized by rounded areas of low attenuation in the lung parenchyma and a well-defined interface with the normal adjacent lung. The most common cystic lung diseases are lymphangioleiomyomatosis, Langerhans cell histiocytosis, and lymphocytic interstitial pneumonia. In a retrospective analysis of the HRCT findings in 50 patients diagnosed with chronic paracoccidioidomycosis, we found lung cysts in 5 cases (10%), indicating that patients with paracoccidioidomycosis can present with lung cysts on HRCT scans. Therefore, paracoccidioidomycosis should be included in the differential diagnosis of cystic lung diseases.

Keywords: Paracoccidioidomycosis; Cysts; Multidetector computed tomography.

Resumo

Os cistos pulmonares na TCAR são caracterizados por áreas arredondadas de baixo coeficiente de atenuação no parênquima pulmonar com uma interface bem definida com o pulmão adjacente normal. As doenças pulmonares císticas mais comuns são linfangioleiomiomatose, histiocitose de células de Langerhans e pneumonia intersticial linfocítica. Em uma análise retrospectiva de achados de TCAR em 50 pacientes com diagnóstico de paracoccidioidomicose crônica residual, observou-se a presença de cistos pulmonares em 5 casos (10%), mostrando que pacientes com paracoccidioidomicose podem apresentar cistos pulmonares na TCAR. Portanto, essa infecção deve entrar no diagnóstico diferencial das doenças císticas pulmonares.

Descritores: Paracoccidioidomicose; Cistos; Tomografia computadorizada multidetectores.

Lung cysts are rounded, well-circumscribed spaces surrounded by an epithelial or fibrous wall. On HRCT scans, lung cysts are characterized by rounded areas of low attenuation (air content) in the lung parenchyma and a well-defined interface with the normal adjacent lung. The most common cystic lung diseases are lymphangioleiomyomatosis, Langerhans cell histiocytosis, and lymphocytic interstitial pneumonia. Paracoccidioidomycosis, however, does not currently feature on the list of differential diagnoses of cystic parenchymal lung diseases.

Paracoccidioidomycosis primarily affects the lung and is the most common systemic mycosis in Brazil. Caused by the dimorphic fungus Paracoccidioides brasiliensis, chronic paracoccidioidomycosis affects mainly males in their economically productive years (30-60 years of age). Similarly to tuberculosis and histoplasmosis, paracoccidioidomycosis is acquired by inhalation of viable propagules that undergo reactivation in adults, causing the chronic form of the disease, the primary target of which is the respiratory system. In infected tissues of immunocompetent individuals, innate immunity induces a granulomatous inflammatory reaction in an attempt to inhibit the proliferation of the fungus and prevent its dissemination to other organs. Tuder et al. described, in addition to the presence of granulomas, dense fibrosis and reticulin fiber proliferation even in areas where there were no granulomas in chronically injured lungs. The chronic form of lung involvement is progressive and typically manifests as a bilateral, diffuse reticulomicronodular interstitial infiltrate on X-rays, correlating with the pathophysiology.
Lung cysts in chronic paracoccidioidomycosis

J Bras Pneumol. 2013;39(3):368-372

with P. brasiliensis. Souza et al. evaluated 77 untreated patients and found ground-glass opacities (in 58.4%), centrilobular nodules (in 45.5%), nodules (in 41.6%), parenchymal bands (in 33.8%), cicatricial emphysema (in 33.8%), interlobular septal thickening (in 31.2%), and architectural distortion (in 29.9%). The findings were distributed predominantly in the peripheral region (in 53%) and in posterior regions (in 88%), involving all lung zones. Extrapulmonary findings in the thorax are uncommon and include tracheal, pleural, lymph node, and osseous involvement.

Our study, conducted in the outpatient clinics of the departments of pulmonology and infectious diseases of the University of São Paulo School of Medicine Hospital das Clínicas, showed that lung cysts are another possible CT pattern related to paracoccidioidomycosis.

The study was a reanalysis of 50 CT scans from patients who had previously been evaluated from the radiological and functional standpoint. In this reevaluation, the presence of lung cysts, a CT change that had not been described previously, was of note. We studied patients diagnosed with chronic paracoccidioidomycosis and treated for more than six months in whom the skin lesions resolved, microbiological test results were negative, and anti-P. brasiliensis antibody titers, as determined by counterimmunoelectrophoresis, were low (< 1:4 or a drop of at least 4 dilutions). Patients with lung cancer or respiratory coinfections (tuberculosis or other chronic infections) were excluded. Of the 50 patients studied, 47 were male and 3 were female. Ages ranged from 33 to 73 years (mean, 56.9 ± 9.7 years). In all patients, the diagnosis was confirmed by microbiological analysis (direct visualization or culture of the lesions) or by histopathology. The study and the content of the consent form were approved by the Ethics Committee for the Analysis of Research Projects of the Clinical Board of the University of São Paulo School of Medicine Hospital das Clínicas (Protocol no. 870/06). All study participants gave written informed consent.

The HRCT scans were obtained with a Philips Brilliance CT 40 multislice scanner (Philips Medical Systems, Cleveland, OH, USA) by using the following parameters: collimation, 8 × 3; increment, 1.6 mm; rotation time, 0.75; voltage, 120 Kv; amperage, 150 mAs/image; and a 7.5-mm reconstruction interval with 7.5-mm increments. Fifty-seven 7.5-mm CT slices and two hundred and ten
3.3-mm slices were obtained. Image slices at maximum inhalation and maximum exhalation were obtained for all patients. The changes were classified in accordance with the latest Brazilian Thoracic Association guidelines. All analyses were independently performed by a radiologist specializing in chest CT and by a pulmonologist specializing in interstitial diseases, both of whom were blinded to the clinical data of the patients. In cases of disagreement, the final results were obtained by consensus.

Lung cysts were found in 5 cases (10% of the patients): in 1 of the cases, there was a single cyst in the right lower lobe; and in the other 4, there were two or more parenchymal cysts with no preferential location (Figure 1).

The clinical and demographic characteristics, as well as the number of lung cysts, of the 5 patients are shown in Table 1.

The present study is, to our knowledge, the first to describe the presence of parenchymal cysts in patients with chronic paracoccidioidomycosis.

Multiple mechanisms can explain the formation of cysts in various lung diseases. These mechanisms would include vascular occlusion followed by ischemia and necrosis, bronchial dilatation, smooth muscle cell proliferation, and even a check-valve mechanism in small airways, which, because of inflammatory cell infiltration and subsequent centrilobular fibrosis, would lead to bronchial obstruction and dilatation downstream of the lesion. It can be speculated that, in paracoccidioidomycosis, centrilobular fibrosis, with involvement of the small airways and small vessels, would cause bronchial obstruction and distal airway dilatation, similarly to the check-valve mechanism identified in bronchiolitis. Another possible explanation would be the presence of peri-bronchial nodules or granulomas associated with mycosis, promoting dilatation of a small airway, with the consequent formation of lung cysts, similarly to what is observed in Langerhans cell histiocytosis. Another plausible explanation would be that the cysts or pneumatoceles would result from an inflammatory process leading to central necrosis and elastic recoil of the adjacent lung tissue, with localized air expansion, whether in the airways or in the lung interstitium, as occurs in other infectious diseases, such as staphylococcal pneumonia.

Finally, we must consider the high level of smoking in the study population, which would

![Figure 1](image-url) - HRCT scans. In A, HRCT scan slice at the level of the aortic arch showing a thin-walled cyst in the right lung of a 41-year-old female patient (arrows). Also note faint reticular and nodular opacities in the lung, which are probably residual in nature. In B, HRCT scan slice at the level of the lower lobes showing a thin-walled cyst in the left lung of a 68-year-old male patient (arrows). Note the presence of faint reticular opacities predominantly in the posterior regions.

| Table 1 | Clinical and demographic characteristics, as well as number of lung cysts, of the patients studied.* |
|---------|-------------------------------------------------------------------------------------------------|
| Variable | Result                                                                                         |
| Age, years | 55.0 ± 9.2                                                                                   |
| Body mass index, kg/m² | 23.9 ± 3.6                                                                                   |
| Current or former smoking | 5 (100)                                                                                       |
| Active smokers | 3 (60)                                                                                       |
| Smoking history, pack-years | 46.6 ± 30.9                                                                                  |
| Treatment duration, months | 16.7 ± 8.5                                                                                    |
| CIE, titration | 1:2 (0-1:4)                                                                                  |
| Lung cysts, n |                                                                                               |
| Patient 1 | 2                                                                                             |
| Patient 2 | 3                                                                                             |
| Patient 3 | 1                                                                                             |
| Patient 4 | multiple                                                                                      |
| Patient 5 | multiple                                                                                      |

CIE: serology with counterimmunoelectrophoresis. *Values expressed as mean ± SD, except where otherwise indicated. †Values expressed as n (%). *Value expressed as median (interquartile range).
make it possible to attribute the formation of the cysts to a smoking-related disease, such as Langerhans cell histiocytosis and desquamative interstitial pneumonia. However, no other characteristics related to the cysts and suggesting those diagnoses were found on the HRCT scans. Therefore, paracoccidioidomycosis should be included in the differential diagnosis of cystic lung lesions.

Acknowledgments

We would like to thank Dr. Carmem Lucia Fujita for her assistance in the CT analysis.

References

1. Silva CI, Marchiori E, Souza Júnior AS, Müller NL; Comissão de Imagem da Sociedade Brasileira de Pneumologia e Tisiologia. Illustrated Brazilian consensus of terms and fundamental patterns in chest CT scans. J Bras Pneumol. 2010;36(1):99–123. http://dx.doi.org/10.1590/S1806-37132010000100016 PMid:20209314
2. Seaman DM, Meyer CA, Gilman MD, McCormack FX. Diffuse cystic lung disease at high-resolution CT. AJR Am J Roentgenol. 1999;173(1):59-64. http://dx.doi.org/10.2214/AJR.173.1.10397100 PMid:10397100
3. Londero AT. Paracoccidioidomicose: I. Patogenia, formas clínicas, manifestações pulmonares e diagnóstico. J Pneumol. 1986;12(1):41-57.
4. Bethlem EP, Capone D, Maranhão B, Carvalho CR, Dolhnikoff M, et al. Scattered lung cysts as clinical-epidemiological evaluation. Rev Soc Bras Med Trop. 1999;32(3):297-310. PMid:16906260
5. Funari M, kavakama J, Shikanai-Yasuda MA, Castro LG, Bernard G, Rocha MS, et al. Chronic pulmonary paracoccidioidomycosis (South American blastomycosis): high-resolution CT findings in 41 patients. AJR Am J Roentgenol. 1999;173(1):59-64. http://dx.doi.org/10.2214/ajr.173.1.10397100 PMid:10397100
6. Londero AT. Paracoccidiomycose: I. Patogenia, formas clínicas, manifestações pulmonares e diagnóstico. J Pneumol. 1986;12(1):41-57.
7. Funari M, kavakama J, Shikanai-Yasuda MA, Castro LG, Bernard G, Rocha MS, et al. Chronic pulmonary paracoccidioidomycosis (South American blastomycosis): high-resolution CT findings in 41 patients. AJR Am J Roentgenol. 1999;173(1):59-64. http://dx.doi.org/10.2214/ajr.173.1.10397100 PMid:10397100
8. Benard G. An overview of the immunopathology of human paracoccidioidomycosis. Mycopathologia. 2008;165(4-5):209-21. http://dx.doi.org/10.1007/s11046-007-9065-0 PMid:18776330
9. Tuder RM, el Ibrahim R, Godoy CE, De Brito T. Pathology of the human pulmonary paracoccidioidomycosis. Mycopathologia. 1985;92(3):179-88. http://dx.doi.org/10.1007/BF00437631 PMid:4082891
10. Tobón AM, Agudelo CA, Osorio ML, Alvarez DL, Arango M, Cano LE, et al. Residual pulmonary abnormalities in adult patients with chronic paracoccidioidomycosis: prolonged follow-up after itraconazole therapy. Clin Infect Dis. 2003;37(7):898-904. http://dx.doi.org/10.1086/377538 PMid:13130400
11. Restrepo S, Tobon A, Trujillo J, Restrepo A. Development of pulmonary fibrosis in mice during infection with Paracoccidioides brasiliensis conidia. J Med Vet Mycol. 1992;30(3):173-84. http://dx.doi.org/10.1080/02681219280000241 PMid:1517956
12. Trad HS, Trad CS, Elias Junior JE, Muglia VF. Revisão radiológica de 173 casos consecutivos de paracoccidioidomico. Radiol Bras. 2006;39(3):175-9. http://dx.doi.org/10.1590/S0100-34942006000000005
13. do Valle AC, Guimarães RR, Lopes DJ, Capone D. Thoracic radiologic aspects in paracoccidioidomycosis. Rev Inst Med Trop Sao Paulo. 1992;34(2):107-15. http://dx.doi.org/10.1590/S0036-466519920000200005 PMid:1304023
14. Barreto MM, Marchiori E, Amorim VB, Zanetti G, Takayasu TC, Escuisasto DL, et al. Thoracic paracoccidioidomycosis: radiographic and CT findings. Radiographics. 2012;32(4):71-84. Erratum in: Radiographics. 2012;32(4):1258. http://dx.doi.org/10.1148/rg.321115052 PMid:22326894
15. Souza AS Jr, Gasparetto EL, Davaus T, Marchiori E, High-resolution CT findings of 77 patients with untreated pulmonary paracoccidioidomycosis. AJR Am J Roentgenol. 2006;187(5):1248-52. http://dx.doi.org/10.2214/AJR.05.1065 PMid:17056912
16. Marchiori E, Valiante PM, Mano CM, Zanetti G, Escusasto DL, Souza AS Jr, et al. Paracoccidioidomycosis: high-resolution computed tomography-pathologic correlation. Eur J Radiol. 2011;77(1):80-4. http://dx.doi.org/10.1016/j.ejrad.2009.06.017 PMid:19608361
17. Gasparetto EL, Escusasto DL, Davaus T, de Cerqueira EM, Souza AS Jr, Marchiori E, et al. Reversed halo sign in pulmonary paracoccidioidomycosis. AJR Am J Roentgenol. 2005;184(6):1932-4. http://dx.doi.org/10.2214/ajr.184.6.01841932 PMid:15908556
18. Freitas RM, Prado R, Prado FL, Paula IB, Figueiredo MT, Ferreira CS, et al. Pulmonary paracoccidioidomycosis: clinical and epidemiological evaluation. Rev Soc Bras Med Trop. 2010;43(6):651-6. http://dx.doi.org/10.1590/S0036-862X2010000600010 PMid:21811017
19. Costa AN, Benard G, Albuquerque AL, Fujita CL, Magri AS, Salge JM, et al. The lung in paracoccidioidomycosis: new insights into old problems. Clinics (Sao Paulo). 2013;68(4):441-8. http://dx.doi.org/10.6061/clinics/2013(04)02
20. Silva CL, Flint JD, Levy RD, Müller NL. Diffuse lung cysts in lymphoid interstitial pneumonia: high-resolution CT and pathologic findings. J Thorac Imaging. 2006;21(3):241-4. http://dx.doi.org/10.1097/01.rti.0000213554.61752.73 PMid:16915074
21. Kawano-Dourado L, Baldi BG, Dias OM, Bernardi FD, Carvalho CR, Dolhnikoff M, et al. Scattered lung cysts as the main radiographic finding of constrictive bronchiolitis. Am J Respir Crit Care Med. 2012;186(3):294-5. http://dx.doi.org/10.1164/ajrccm.186.3.294 PMid:22855547

J Bras Pneumol. 2013;39(3):368-372
About the authors

André Nathan Costa
Attending Physician. Department of Pulmonology, Heart Institute, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil.

Edson Marchiori
Associate Professor of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

Gil Benard
Physician in Charge of the Laboratory for Medical Research 61 (Medical Mycology), University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil.

Mariana Sponholz Araújo
Resident Physician. Department of Pulmonology, Heart Institute, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil.

Bruno Guedes Baldi
Attending Physician. Department of Pulmonology, Heart Institute, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil.

Ronaldo Adib Kairalla
Assistant Professor. Department of Pulmonology, Heart Institute, University of São Paulo School of Medicine Hospital das Clínicas, São Paulo, Brazil.

Carlos Roberto Ribeiro Carvalho
Full Professor of Pulmonology. University of São Paulo School of Medicine, São Paulo, Brazil.