Statistical modeling for adaptive trait evolution in randomly evolving environment

Dwueng-Chwuan Jhwueng

Department of Statistics, Feng-Chia University
No 100, Seatwen, Taichung Taiwan

Abstract
In past decades, Gaussian processes has been widely applied in studying trait evolution using phylogenetic comparative analysis. In particular, two members of Gaussian processes: Brownian motion and Ornstein-Uhlenbeck process, have been frequently used to describe continuous trait evolution. Under the assumption of adaptive evolution, several models have been created around Ornstein-Uhlenbeck process where the optimum θ of a single trait y_t is influenced with predictor x_t. Since in general the dynamics of rate of evolution τ of trait could adopt a pertinent process, in this work we extend models of adaptive evolution by considering the rate of evolution τ following the Cox-Ingersoll-Ross (CIR) process. We provide a heuristic Monte Carlo simulation scheme to simulate trait along the phylogeny as a structure of dependence among species. We add a framework to incorporate multiple regression with interaction between optimum of the trait and its potential predictors. Since the likelihood function for our models are intractable, we propose the use of Approximate Bayesian Computation (ABC) for parameter estimation and inference. Simulation as well as empirical study using the proposed models are also performed and carried out to validate our models and for practical applications.

Keywords: phylogenetic comparative analysis, Gaussian process, CIR process, trait evolution, approximate Bayesian computation

2010 MSC: 62P10, 62J05, 62C05

1. Introduction

In statistical phylogenetics, studying how species evolved helps people to understand evolution better. As many questions are arising from evolutionary biology and ecology, one interesting research question could be: how could traits of a group of related species behave to adapt the changing environment? For example, when studying marine species, a scientist may be interested in understanding the moving speed and moving style by comparing fin structures in various kind of swordfish. One useful tool to track down their evolutionary information is incorporating a phylogenetic tree into analysis. A phylogenetic tree T is a branching diagram that infers evolutionary relationships among a group of species. Given a tree T and traits (e.g. fin lengths or total lengths of fish in center-meter), we could use statistical approach to study ancestral status for species as well as how one trait could be related to the other.

URL: dcjhwueng@fcu.edu.tw (Dwueng-Chwuan Jhwueng)
trait. From mathematical perspective, changing of trait value or status during evolutionary history can be viewed as a stochastic random variable defined on time/status domain. In the case of continuous trait, let \(y_t \) be a trait of a species observed at time \(t \). The dynamic behavior of \(y_t \), when applied for studying trait evolution, can be assumed as a solution to the following stochastic differential equation (SDE)

\[
dy_t = \mu(y_t, \theta, t)dt + \tau(y_t, \theta, t)dW_t, \quad t > 0.
\]

In the left hand side of Eq. (1), \(dy_t \) represents the amount of change in an infinitesimal time \(dt \). In the right hand side of Eq. (1), the deterministic term \(\mu(y_t, \theta, t) \) is referred to a drift coefficient that measures the amount of change in an infinitesimal time \(dt \) while \(\tau(y_t, \theta, t) \) is called the diffusion coefficient that amplifies the trait change according to the random changing environment measured by \(dW_t \) where \(W_t \) is a Wiener process having continuous paths and independent Gaussian increments (i.e. \(dW_t \sim N(0, dt) \)) and \(\theta \) is the model parameters.

In literature, there have been statistical methods developed for traits evolution by applying continuous stochastic processes ranging from Gaussian process \([2, 3]\) or non-Gaussian processes \([4, 5]\). Currently one of the most popular continuous process for trait evolution can be credited to the Ornstein Uhlenbeck (OU) process \([6]\). An OU stochastic variable \(y_t \) solves the SDE in Eq. (1) with \(\mu(y_t, \theta, t) = \alpha(\theta - y_t) \) and \(\tau(y_t, \theta, t) = \tau \). The OU process provides a suitable interpretation in describing natural selection in evolution and ecology context. The constant parameter \(\theta \) is interpreted as the optimum status (evolutionary niche in ecology context) of \(y_t \). The parameter \(\alpha \) is called a constraining force that pulls trait \(y_t \) back to the optimum \(\theta \). The parameter \(\tau \) is called the rate of evolution and measures the speed of the random change.

Many works have been developed by expanding the OU model through considering more sophisticated and complex biological phenomenon. Those models used a generalized OU process to describe trait change along the tree. The generalized OU model for trait evolution is built by assuming pertinent processes for model parameters \(\alpha^y_t, \theta^y_t \) and \(\tau^y_t \). Therefore, the trait \(y_t \) solves the following SDE:

\[
dy_t = \alpha^y_t(\theta^y_t - y_t)dt + \tau^y_t dW^y_t, \quad t > 0.
\]

Currently several works have been focus on the conditions by assuming \(\alpha^y_t = \alpha_y \) as a constant, \(\theta^y_t \) or \(\tau^y_t \) as either a constant or with a stochastic dynamics during the evolutionary process (see \([7, 8, 9]\)). By assuming \(\theta^y_t \) following a pertinent process, \(\theta^y_t \) solves the following SDE:

\[
d\theta^y_t = \mu(\theta^y_t, t)dt + \sigma(\theta^y_t, t)dW^\theta_t, \quad t > 0.
\]

In particular, in the case of \(\mu(\theta^y_t, t) = 0 \) and \(\sigma(\theta^y_t, t) = \sigma_\theta \), \([10]\) created an OUBM model for optimal regression analysis built under the assumption that the optimum \(\theta^y_t \) has a linear relationship with predictors. \([11]\) expanded the OUBM model to OUOU model by allowing an Ornstein-Uhlenbeck process for the dynamic of \(\theta^y_t \) (i.e. \(\mu(\theta^y_t, t) = -\alpha_y(\theta^y_t - \bar{\theta}) \) and \(\sigma(\theta^y_t, t) = \sigma_\theta \)). Those models are applied to study the adaptive relationship of traits building upon
its optimum with $\theta^\nu_t = \beta_0 + \sum_{i=1}^k \beta_i x_{i,t}$ where $\{x_{i,t}\}_{i=1}^k$ is a set of predictors, β_i, $i = 0, 1, \ldots, k$ are regression parameters. See application sections in [10, 11, 12].

For the rate evolution τ^ν_t, in Eq. (2), instead of considering constant value or piecewise constant value [8], it is also reasonable to assume that the rate of evolution τ^ν_t follows another pertinent process. Under this assumption, τ^ν_t is a solution to another SDE: $d\tau^\nu_t = \mu(\tau^\nu_t, \theta, t)dt + \sigma(\tau^\nu_t, \theta, t)dW^\nu_t$. In literature, [12] considered the rate τ^ν_t to be a Brownian motion where $\mu(\tau^\nu_t, \theta, t) = 0$ and $\sigma(\tau^\nu_t, \theta, t) = \sigma_\tau$ is a constant.

In this work, observing that there are needs and possibilities to create models for more sophisticated and realistic biological applications, we expand previous existed models in two folds. First, as the rate τ^ν_t is regarded as non-negative for $t > 0$, we intend to incorporate a Cox-Ingersoll-Ross(CIR) process [13] for τ^ν_t. In this case, τ^ν_t solves the following SDE:

$$d\tau^\nu_t = \alpha_\tau(\hat{\tau} - \tau^\nu_t)dt + \sigma_\tau \sqrt{\tau^\nu_t} dW^\nu_t$$

(4)

where $\alpha_\tau > 0$ is a constant force, $\hat{\tau} > 0$ is the optimum of τ^ν_t and $\sigma_\tau > 0$ is the rate of change for τ^ν_t. In CIR process, the distribution of future values of τ^ν_t conditioned in current value τ^ν_t has a distribution of $c\chi^2(k, \lambda)$ where $c = \sigma_\tau^2(1 - e^{-\alpha_\tau t})/(4\alpha_\tau), k = 4\hat{\tau}\alpha_\tau/\sigma_\tau^2$ and $\lambda = 4\tau^\nu_t \alpha_\tau e^{-\alpha_\tau t}/(\sigma_\tau^2(1 - e^{-\alpha_\tau t}))$ and $\chi^2(k, \lambda)$ is a non central chi-squared distribution. Notice that in Eq. (4), the diffusion coefficient involves a term $\sqrt{\tau^\nu_t}$ which indicates that the Eq. (4) is neither a linear SDE nor τ^ν_t a normal distributed stochastic variable. Hence statistical inference on the parameter estimation under our new model will be different from the framework in [10, 11] using the multivariate normal distribution for jointly modeling trait evolution. Secondly, we assume that there exists an interaction relationship between the optimum θ^ν_t and predictors $x_{i,t}, i = 1, 2, \ldots, k$ as following

$$\theta^\nu_t = \beta_0 + \sum_{i=1}^k \beta_i x_{i,t} + \sum_{i,j=1}^k \beta_{ij} x_{i,t} x_{j,t}$$

(5)

where the term $x_{i,t} x_{j,t}$ is the interaction between the ith and the jth predictors with regression parameter β_{ij}. Note that this model is different from the phylogenetic ancova model in [14] where the optimum θ^ν_t is not considered with relationship to the predictors as shown in Eq. (5).

When jointly modeling adaptive trait evolution using Eqs. (2), (3), (4) and (5), the distribution for the trait y_t of a species is constrained by the dynamic assumption of the rate parameter τ_t via either a Brownian motion case [12] or the CIR process case in Eq. (4).

However, y_t given τ^ν_t as a CIR process is not a Gaussian random variable and has intractable model likelihood. Conceiving this, we propose an algorithm under the approximation Bayesian computation(ABC) framework for statistical inference. We describe our framework into the following sections. Section 2 illustrates the general construction of adaptive model under a various of assumption of pertinent processes for y_t, θ^ν_t, and τ^ν_t. We call our new models the OUBMCIR model for y_t following generalized OU process with θ^ν_t following a BM and τ^ν_t following a CIR process. And we called the OUOUCIR model for y_t following a generalized OU process with θ^ν_t following an OU process and τ^ν_t following a CIR process. Section 3 contains methods on simulating traits under each model. We
make an attempt to derive the solution y_t as explicitly as possible for the purpose of applying tree traversal algorithm \cite{15} to simulate trait status on the internal nodes and tips on the tree. We conduct statistical inference for parameter estimation under ABC in Section 4. Currently we mainly use the \texttt{R} package \texttt{abc} for inference after traits are simulated from Section 5. We provide empirical analysis on analyzing data from literature in Section 6. We conclude our study in Section 7. The scripts and their brief description developed in work project can be accessed at Github: \url{https://github.com/djhwueng/ououcir}

2. Model

2.1. Property of adaptive trait models

We start this section by first introducing some definitions of the SDE property. In Eq. \eqref{1}, the SDE is a linear SDE if $\mu(y_t,t) = a_1(t)y_t + a_2(t)$ and $\tau(y_t,t) = b_1(t)y_t + b_2(t)$ are linear function of y_t. That is, $dy_t = (a_1(t)y_t + a_2(t))dt + (b_1(t)y_t + b_2(t))dW_t$. A linear SDE is autonomous if all coefficients are constants, is homogeneous if $a_2(t) = 0$ and $b_2(t) = 0$ and is linear in the additive sense if $b_1(t) = 0$.

These properties could provide some information on the distribution of y_t. For instance, the SDE for y_t in OUBM model \cite{10} with $\mu(y_t,t) = \alpha(t-y_t)$ and $\tau_t = \tau$ is a linear additive non-autonomous SDE. In the OUBM model, since both θ_t and W_t are BMs, the solution for the SDE in Eq. \eqref{1} is represented as a linear combination of two BMs. As dynamics of each BM can be treated as a normal random variable, we can conclude that y_t is normal random variable in OUBM model. In this case, we can implement normal distribution to analyze data. We categorize the properties of SDE of y_t as well as θ_t and τ_t in Table 1.

parameters	Model	Linear	Autonomous	Additive	Normal	References
y_t, θ_t, τ_t	OUBM	(✓, ✓, -)	(✓, ✓, ✓)	(✓, ✓, ✓)	(✓, ✓, -)	\cite{10}
	OUOU	(✓, ✓, -)	(✓, ✓, ✓)	(✓, ✓, ✓)	(✓, ✓, -)	\cite{11}
	OUBMBM	(✓, ✓, ✓)	(✓, ✓, ✓)	(✓, ✓, ✓)	(n, ✓, ✓)	\cite{12}
	OUOUBM	(✓, ✓, ✓)	(✓, ✓, ✓)	(✓, ✓, ✓)	(✓, ✓, ✓)	\cite{12}
	OUBMCIR	(✓, ✓, n)	(✓, ✓, n)	(✓, ✓, n)	(n, ✓, ✓)	This work
	OUOCIR	(✓, ✓, n)	(✓, ✓, n)	(✓, ✓, n)	(n, ✓, ✓)	This work

Table 1: Property of adaptive trait models. The check symbol ✓ represents a yes for the property, and the letter n represents a no and the symbol - means not available. The term (✓, ✓, ✓) refers to the property of SDE for the triple parameters (y_t, θ_t, τ_t). For instance, in the OUBMBM model the triple parameters (y_t, θ_t, τ_t) with (✓, ✓, ✓) in linearity property (Linear) has a meaning that all of them are solution to a linear SDE. On the other hand, the SDE for y_t in OUOCIR model with (✓, ✓, n) is a linear non-autonomous, additive SDE where the solution y_t is not a normal distributed stochastic variable.

2.2. Solution of Model

In general, by adopting Eqs. \eqref{2}, \eqref{4}, \eqref{5} and \eqref{6}, we can present the dynamic of y_t, θ_t, τ_t into a system of SDE for the random vector $Z_t = (y_t, \theta_t, \tau_t)$ as $dZ_t = \mu_t dt + D_t dW_t$, where $\mu_t = (\mu(y_t,t), \mu(\theta_t,t), \mu(\tau_t,t))^T$ is the drift vector, $D_t = \text{diag} [\tau(y_t,t), \sigma(\theta_t,t), \sigma(\tau_t,t)]$ is the diffusion vector, and $W_t = (W_t^y, W_t^\theta, W_t^\tau)^T$ is the associated independent Brownian process random vector and v^T is a transpose of a vector v. By assuming that the
force parameters are time invariant ($\alpha_t = \alpha$), the model can be represented as

$$dZ_t = (AZ_t + b_t)dt + D_t dW_t.$$ \hspace{1cm} (6)

For homogeneous model assuming the rate of evolution τ_t^y as a time invariant constant (i.e. $b_t = 0$ and $\tau_t^y = \tau_y$ in OUBM model and in OUOU model), we have $\alpha = 0$ and $D_t = \text{diag}[\tau, \sigma, 0]$ is a constant diagonal matrix. In this case, given the initial condition $Z_0 = (y_0, \theta_0, \tau_y)^t$ at $t = 0$, the system of SDE described by Eq. (6) has a unique solution $Z_t = e^{-At}Z_0 + \int_0^t e^{-A(t-s)}D_s dW_s$. In this case, the expected value of Z_t can be calculated straightforwardly as $E[Z_t] = Z_0e^{-At}$ while the second moment of the random vector Z_t, denoted by $P_t = E[Z_tZ_t^T]$, can uniquely be determined by solving the system of an ordinary differential equation $\frac{d}{dt}P_t = AP_t + P_t A^T + E[C_t]$ where $E[C_t] = S_tS_t^T$. Once the first and second moment of Z_t are identified, because Z_t is a normal random vector, its first component y_t is a normal random variable. We can also work from Eq. (2) on the assumption that $\tau_t = \tau$ is a constant. The solution $y_t = y_0e^{-\alpha_y t} + \alpha_y e^{-\alpha_y t}\int_0^t e^{\alpha_y s} \theta_s ds + \tau \int_0^t e^{-\alpha_y (t-s)} dW_s^y$ is a linear combination of normal random variable which is again a normal random variable under the assumption of BM for θ_t [10] or OU for θ_t [11].

On the other hand, however, for OUBMB, OUOUBM, OUBMCIR, and OUOUCIR model, as the rate of evolution τ_t^y follows a certain pertinent process, the distribution of Z_t is not as straightforward to work through. We show that Z_t fails to be a normal distributed random vector. We first demonstrate this using the new proposed OUOUCIR model with

$$D_t = \begin{pmatrix} \tau_t^y & 0 & 0 \\ 0 & \sigma & 0 \\ 0 & 0 & \sigma \tau \sqrt{\tau_t} \end{pmatrix},$$

and

$$\mu_t = AZ_t + b_t = \begin{pmatrix} -\alpha_y & \alpha_y & 0 \\ 0 & -\alpha & 0 \\ 0 & 0 & -\alpha \tau \end{pmatrix} Z_t + \begin{pmatrix} 0 \\ 0 \\ \alpha \tau \sqrt{\tau_t} \end{pmatrix}.$$ \hspace{1cm} (7)

Due to assumption of using CIR process for the rate parameter τ_t^y and the stationary distribution of a CIR random variable is not a normal random variable, the solution to the system of equation in Eq. (6) is intractable and not likely to be normal distribution.

Moreover, even for τ_t following a Brownian motion, we claims that y_t fails to be a normal random variable. For the OUBMB model in [12], the solution y_t for the SDE in Eq. (2) under OUBMB model is

$$y_t = y_0 + e^{-\alpha_y t}\int_0^t e^{\alpha_y s} \theta_s ds + e^{\alpha_y t}\int_0^t \tau_s e^{\alpha_y s} dW_s^y = y_0 + 1 + 2$$

where $\theta_s = \sigma \theta W_s^\theta$ and $\tau_s = \sigma \tau W_s^\tau$ are standard Wiener processes.

By direct calculation on the stochastic integral, we have $1 = \sigma \theta \int_0^t [e^{\alpha_y s} - e^{\alpha_y t}]dW_s^\theta$ which is a normal random variable with mean 0 and variance (by Itô’s isometry) $\sigma^2 \theta (te^{2\alpha_y t} - 2[e^{2\alpha_y t} - e^{\alpha_y t}] + \frac{\alpha_y}{2}[e^{2\alpha_y t} - 1])$. However, the stochastic integral in 2 fails to be a normal random variable. To show this, for simplicity we assume that W_s^τ
and W_y are two identical and independent Wiener processes. Let $f(s, W) = e^{\alpha_s(s-t)} W^2$, by Itô’s lemma we have
\[
\begin{align*}
\sigma^2 &= \frac{1}{2} e^\alpha W_t^2 - \sigma \int_0^t e^\alpha W_s^2 \, ds + \sigma \int_0^t e^{\alpha_s-1} \, ds.
\end{align*}
\] Since neither W_t^2 nor $\int_0^t e^\alpha W_s^2 \, ds$ is a normal random variable, σ^2 fails to be a normal distributed. This indicates that to y_t in Eq. (7) can not a normal random variable.

2.3. Multiple optimal regression with interaction

In this section, we describe how to implement the interaction in Eq. (5) into our model. To start, we use an example of two predictors $x_{1,t}, x_{2,t}$ for illustration. The general case can be extended accordingly. Given that the linear relationship between the optimum θ^*_{ij} and predictors with interaction is $\theta^*_i = b_0 + b_1 x_{1,t} + b_2 x_{2,t} + b_{12} x_{1,t} x_{2,t}$, by differentiating on both side of the equation with respect to t, we have
\[
d\theta^*_i = b_1 dx_{1,t} + b_2 dx_{2,t} + b_{12} [x_{2,t} dx_{1,t} + x_{1,t} dx_{2,t} + dx_{1,t} dx_{2,t}]
\] where $x_{i,t}$ is a diffusion process satisfies the SDE as following
\[
dx_t = \mu(x_t, t) \, dt + \sigma(x_t, t) \, dW^x_t, \, t > 0.
\] By the SDE of θ^*_i in Eq. (3) and assumptions of stochastic calculus with $dt \, dt = 0, dtdW_t \approx 0, dW_t dW_t \approx dt$, we have $d\theta^*_i d\theta^*_j = \sigma^2(\theta^*_i, t) \, dt$. In the case of assuming θ^*_i either a BM or an OU process, we have $\sigma(\theta^*_i, t) = \sigma_0$, which implies $d\theta^*_i d\theta^*_j = \sigma^2_0 dt$. Similarly for x_t in Eq. (9) for either BM or OU process, we have $\sigma(x_t, t) = \sigma_x$ and $(dx_t)^2 = \sigma_x^2 \, dt$. The relationship between σ_x and σ_x given the predictor traits $x_{1,t}$ and $x_{2,t}$ can be derived with expanding $d\theta^*_i d\theta^*_j$ using Eq. (8) and represented as
\[
\sigma^2_0 = \sigma_{x_1}^2 (b_1^2 + 2b_1b_{12}x_{2,t} + b_{12}^2 x_{2,t}^2) + \sigma_{x_2}^2 (\kappa_2^2 + 2b_2b_{12}x_{1,t} + b_{12}^2 x_{1,t}^2).
\] The general case of optimum regression on the predictors with interaction can be extended from above with assumption with the form
\[
\theta^*_i = b_0 + \sum_{k=1}^n b_k x_{k,t} + \sum_{i \neq j} b_{ij} x_{i,t} x_{j,t}.
\] By applying the same technique from above, we have
\[
d\theta^*_i = \sum_{k=1}^n b_k \sigma_{x_k} dW^x_i + \sum_{i=1}^n \sum_{i \neq j} b_{ij} (x_{i,t} \sigma_{x_i} dW^x_i + x_{i,t} \sigma_{x_j} dW^x_j + \rho_{ij} \sigma_i \sigma_j x_{i,t} x_{j,t} \, dt)
\] where $-1 \leq \rho_{ij} \leq 1$ is the correlation between two Wiener processes (i.e. $dW^x_i, dW^x_j = \rho_{ij} \, dt$).

Then using the same technique on $d\theta^*_i d\theta^*_j$ and compare it with $dx_{i,t}, dx_{j,t}$, we have
\[
\sigma^2_0 = \sum_{i=1}^n b_i^2 \sigma_{x_i}^2 + \sum_{i=1}^n \sum_{j \neq i} b_{ij}^2 x_{j,t}^2 + 2 \sum_{i=1}^n b_i^2 \sigma_{x_i}^2 + \sum_{i \neq j} b_{ij} x_{i,t} x_{j,t}.
\] Eq. (12) suggests that σ^2_0 depends on the predictors $x_{i,t}$'s which are stochastic variable, in order to quantify σ^2_0, we
consider to use expected value of σ^2_y.

When x_i is a Brownian motion, since $E[x_i] = 0$ and $E[x_i^2] = \sigma^2 i$, we have

$$E[\sigma^2_x] = \sum_{i=1}^{n} b_i^2 \sigma^2_{x}, \sum_{i=1}^{n} \sigma^2_{x}, \sum_{j \neq i}^{n} b_{ij}^2 \sigma^2_{x}, t.$$ \hspace{1cm} (13)

When x_i is an OU process, we have

$$E[\sigma^2_x] = \sum_{i=1}^{n} b_i^2 \sigma^2_{x}, \sum_{i=1}^{n} \sigma^2_{x}, \sum_{j \neq i}^{n} b_{ij}^2 \sigma^2_{x}, \sum_{j \neq i}^{n} b_{ij} \sigma^2_{x} [x_j]$$ \hspace{1cm} (14)

where $E[x_i] = x_0 \exp(-\alpha_x t) + \mu_x (1 - \exp(-\alpha_x t))$ and $E[x_i^2] = \sigma^2 [1 - \exp(-2\alpha_x t)]/(2\alpha_x) + [x_0 \exp(-\alpha_x t) + \mu(1 - \exp(-\alpha_x t))]^2$.

3. Simulate trait along tree

Given a tree T with known topology and length, we simulate tip as well as ancestral states using tree traversal algorithm [15] under a specified model \mathcal{M}. In particular, when the distribution is known, for instance, under Brownian motion trait value of a species at time t conditioned on its ancestor y_a on T is a normal random variable $y_t|y_a$ with mean y_a and variance $\sigma^2 t$. (i.e. $y_t|y_a \sim \mathcal{N}(y_a, \sigma^2 t)$). Under OU process, $y_t|y_a$ is a normal random variable with mean $y_0e^{-\alpha t} + \theta(1 - e^{-\alpha t})$, and variance $\sigma^2 (1 - e^{-2\alpha t})/(2\alpha)$. Moreover, under either BM or OU process the tip can be simulated directly under the joint distribution (i.e. $Y \sim \mathcal{N}(\mu, \sigma^2 \Sigma_a)$ where $Y = (y_1, y_2, \ldots, y_n)^n$ is the trait vector at tip of the tree, μ is the mean vector, and Σ_a is the variance covariance structure for Y [16]).

Given the prior information on model parameters, our goal is to simulate ith response trait y_i, $i = 1, 2, \cdots, n$, and predictor traits $x_{i,m}$, $m = 1, 2, \cdots, m$ at the tip. We describe our method for simulating trait under each model using the given parameters values.

3.1. OUBM & OUOU model

For OUBM model, the model parameters are $\alpha_x, \sigma_x, \gamma_x$, and regression parameters are $b_i, b_{ij}, i, j = 1, 2, \cdots, n$. We first simulate predictor traits x_{i} on each node/tip of tree given σ_x. The optimal value θ_i can then be calculated via $\theta_i = \sum b_i x_i + \sum b_{ij} x_i x_j$ given b_i and b_{ij}. Then use α_y, σ_y to simulate $y_i|y_a \sim \mathcal{N}(E[y]|y_a), \text{Var}(y|y_a))$ (see [10] for the formula of $E[y|y_a]$ and $\text{Var}(y|y_a)$).

For OUOU model, model parameters are $\alpha_y, \sigma_y, \alpha_x, \theta_x, \gamma_x$, and σ_x, and regression parameters are $b_i s, b_{ij} s, i, j = 1, 2, \cdots, n$. We simulate predictor trait x_{i} on each node/tip of tree using $\alpha_x, \theta_x, \gamma_x$. The optimal value can be calculated via $\theta_i = \sum b_i x_i + \sum b_{ij} x_i x_j$ to obtain θ on each nodes. We use α_y, σ_y to simulate $y_i, y_i|y_a \sim \mathcal{N}(E[y]|y_a), \text{Var}(y|y_a))$ (see [11] for the formula of $E[y|y_a]$ and $\text{Var}(y|y_a)$).

Note that since the OUBM model and OUOU model are both of multivariate normal distributions, trait values at tips Y can be simulated directly given the specified mean vector $E[Y]$ and variance structure $\text{Var}[Y]$. [7]
3.2. OUBMBM model

In OUBMBM model, the model parameters are \(\alpha_y, \tau, \sigma_x, \) and regression parameters are \(b_i, b_{ij}, i, j = 1, 2, \ldots, n \). We first simulate predictor traits \(x_i \) on each node/tip of tree given \(\sigma_x \). The optimal value \(\theta_i \) can then be calculated via \(\theta_i = \sum b_i x_i + \sum b_{ij} x_{ij} \) given \(b_i \) and \(b_{ij} \). To simulate \(y_i \) at the nodes/tips, we first look at the solution in Eq. (1) for \(y_i \):

\[
y_t = y_0 + e^{-\alpha_y t} \int_0^t \alpha_y e^{\alpha_y s} \theta_s ds + e^{-\alpha_y t} \int_0^t \tau_s e^{\alpha_y s} dW_x^s = y_0 + (1) + (2). \tag{15}
\]

For (1), as we assume the optimum follows Brownian motion (i.e. \(\theta_s = \int_0^s \sigma_\theta dW_v^s = \sigma_\theta W_v^s \sim \mathcal{N}(0, \sigma_\theta^2 s) \)), the term \(\int_0^t \alpha_y e^{\alpha_y s} \theta_s ds \) is a stochastic integral of Brownian motion with respect to time and equals to \(\int_0^t \alpha_y e^{\alpha_y s} \theta_s ds = \int \theta_s e^{\alpha_y s} ds \).

Since \(d(\theta_s e^{\alpha_y s}) = e^{\alpha_y s} d\theta_s + \theta_s e^{\alpha y s} \), we have the integral \(\int \theta_s e^{\alpha y s} ds = \int_0^t d(\theta_s e^{\alpha y s}) - \int_0^t e^{\alpha y s} d\theta_s = \theta_t e^{\alpha y t} - \theta_0 \int_0^t e^{\alpha y s} d\theta_s \) which is a normal random variable with mean \(\theta_t e^{\alpha y t} - \theta_0 \) and variance \(\frac{\alpha_y}{2\sigma_y^2} \).

In (2), since the rate is assumed as BM (i.e. \(\tau_s = \int_0^s \sigma_\tau dW_v^s = \sigma_\tau W_v^s \sim \mathcal{N}(0, \sigma_\tau^2 s) \)), we have \(\tau_s e^{\alpha y s} dW_s^y = \int_0^t \sigma_\tau W_v^s e^{\alpha y (s-t)} dW_v^s \). Hence (2) is a stochastic integral that involves an integral of Brownian motion \(W_s^y \) with respect to another Brownian motion \(W_v^s \). Note (2) is not a normal distributed random variable (see section 2.1). In order to draw sample from (2), we use function `int.st` in R package `Sim.DiffProc` [17] to simulate the trajectory of this stochastic integral. We assume \(W_v^s \) and \(W_s^y \) are two independent and identical processes. We then use median of the trajectory as a sample for (2). Given the parameter values, we can apply tree traversal algorithm to simulate sample \(y_i \) on node/tip conditioned on its ancestor \(y_a \).

3.3. OUOUBM model

In OUOUBM model, model parameters are \(\alpha_y, \alpha_x, \theta_x, \sigma_x, \tau, \) and regression parameters \(b_i, b_{ij}, i, j = 1, 2, \ldots, n \). We first simulate predictor traits \(x_i \) on each node/tip of tree using \(\alpha_x, \theta_x, \sigma_x \). The optimum on each node and tip can be calculated as \(\theta_i = \sum b_i x_i + \sum b_{ij} x_{ij} \). To simulate \(y_i \), since the solution in Eq. (2) under OUOUBM model is

\[
y_t = y_0 + e^{-\alpha_y t} \int_0^t \alpha_y e^{\alpha_y s} \theta_s ds + e^{-\alpha_y t} \int_0^t \sigma_x e^{\alpha_y s} dW_s^y = y_0 + (1) + (2). \tag{16}
\]

For (1), because \(\theta_s \) is an OU process with \(\theta_s = e^{-\alpha_y s} \theta_0 + \theta_1 (1 - e^{-\alpha_y s}) + \sigma_\theta \int_0^s e^{\alpha_y (v-s)} dW_v^\theta \) where \(\theta_1 \) is optimum of \(\theta_s \) and \(\theta_0 \) is the initial condition. The integral \(\int_0^t \alpha_y e^{\alpha_y s} \theta_s ds \) becomes

\[
\int_0^t \alpha_y \int_0^s e^{\alpha_y (v-s)} ds + \int_0^t \alpha_y \int_0^s \theta_1 e^{\alpha_y s} (1 - e^{-\alpha_y s}) ds + \int_0^t \sigma_\theta \int_0^s e^{\alpha_y v} dW_v^\theta \left(\int e^{\alpha_y v} dW_v^\theta \right) ds = (3) + (5) + (7). \tag{17}
\]

Note that (3) and (7) are both definite integrals with (3) = \(\frac{\alpha_y \theta_0}{\sigma_y} (e^{(\alpha_y - \alpha_y)t} - 1) \) and (7) = \(\theta_1 (e^{\alpha_y s} - 1) - \frac{\alpha_y \theta_1}{\sigma_y} (e^{(\alpha_y - \alpha_y)s} - 1) \). In (5), the term \(\int_0^s e^{\alpha_y v} dW_v^\theta \) is a normal random variable with mean 0 and variance \(\frac{\alpha_y}{2\sigma_y^2} \). The integrand in (5) defined as \(f_v = \sigma_\theta \alpha_y \int e^{(\alpha_y - \alpha_y)s} \left(\int e^{\alpha_y v} dW_v^\theta \right) \) is a normal random variable with mean 0 and variance (by Itô Isometry) \(v(s) = \frac{\alpha_y^2}{2\sigma_y^2} \). So (5) = \(\int_0^t f_v ds \) is again a normal random variable. Because \(v(s) \) is not an invertible function, it is not likely to identify the distribution of \(\int_0^t f_v ds \) directly using change of variable. We alter-
natively use linear approximation for \(v(s) \) with \(v(s) = a + bs \) at \(s = 0 \) where \(a = q(0) = 0 \) and \(b = q'(0) = \sigma_b^2 \alpha_y^2 s \) to obtain an candidate of distribution of \(\int_0^t f_v(s)ds \approx \int_0^t f_{\sigma_b^2 \alpha_y^2 s}ds \) which is a normal random variable with mean 0 and variance \((\sigma_b^2 \alpha_y^2)^2 / (3\sigma_b^2 \alpha_y^2) \).

For (2), as the rate is a BM, we can simulate samples use the method for the (2) described in the OUBMBM model.

3.4. OUBMCIR model

In OUBMCIR model, the model parameters are \(\alpha_y, \sigma_x, \alpha_t, \hat{\tau}, \sigma_\tau \), and regression parameters are \(b_i, s, i, j = 1, 2, \cdots, n \). We first use \(\sigma_x \) to simulate predictor trait \(x_i \)s and then use \(\theta_i = \sum b_i x_i + \sum b_{ij} x_i x_j \) to obtain \(\theta_i \) on each node/tip. To simulate \(y_i \)s, since the solution in Eq. (2) is

\[
y_t = y_0 + e^{-\alpha \tau t} \int_0^t \alpha_y e^{\alpha s} \theta_s ds + e^{-\alpha \tau t} \int_0^t \tau x \alpha e^{\alpha_s} dW_s^y = y_0 + \hat{1} + \hat{2}.
\]

For (1), since the optimum is a BM (i.e \(\theta_s \sim N(0, \sigma_\tau^2) \)), we can draw using the expected value and variance as shown in the (1) in the OUBMBM model.

For (2), it is a stochastic integral of a CIR random variable \(\tau_s \) with respect to Brownian motion \(W_s^y \). Note that \(\tau_s | \tau_0 \) follows a scaled non-central chi-squared distribution \(c \chi^2(k, \lambda) \) where \(c = \sigma^2 \alpha (1 - e^{-\alpha \tau}) / (4\alpha), k = 4\tau \alpha / \sigma^2, \lambda = 4\tau_0 \alpha e^{-\alpha \tau} / (\sigma^2 (1 - e^{-\alpha \tau})) \) and \(\chi^2(k, \lambda) \) is a non-central chi-squared distribution with degree of freedom \(k \) and non-centrality parameter \(\lambda \) [5].

The distribution of the random variable \(\int_0^t \tau_s e^{\alpha s} dW_s^y \) conditioned on \(\tau_0 \) can be seen as the sum of three independent random variables (see prop. 4 Eq. 2.10 in [18]). Moreover, [19] and [18] showed that the exact distribution of \(\int_0^t \tau_s ds \), conditional on \(\tau_0 \) and \(\sigma_0 \) can be represented by infinite sums and mixtures of gamma random variables (see prop 4. in [18]). For our case, to simulate sample in (2), we first simulate \(\tau_s \) on each node along the tree using tree traversal as in [3]. We next simulate sample for the random variable \(\int_0^t \tau_s e^{\alpha s} dW_s^y \). Since the solution to the CIR SDE in Eq. (4) is given by

\[
\tau_s = \hat{\tau} + (\tau_0 - \hat{\tau}) e^{-\alpha \tau} + \sigma_\tau e^{-\alpha \tau} \int_0^s e^{\alpha u} \sqrt{\tau_u} dW_u.
\]

The integral \(\int_0^t \tau_s e^{\alpha s} dW_s^y \) can be separated into three parts: \(\hat{4} + \hat{5} + \hat{6} \). For \(\hat{4} = \int_0^t \tau e^{\alpha u} dW_u^y \), it is a normal random variables with mean 0 and variance \(\hat{\tau}^2 e^{2\alpha u - 1} / 2\alpha u \). For \(\hat{5} = (\tau_0 - \hat{\tau}) \int_0^t e^{(\alpha u - \alpha)u} dW_u^y \), it is another normal random variable with mean 0 and variance \((\tau_0 - \hat{\tau})^2 (e^{2(\alpha u - \alpha)u - 1}) / (2(\alpha u - \alpha)) \). For \(\hat{6} = \sigma_\tau \int_0^t e^{(\alpha u - \alpha)u} (\int_0^u e^{\alpha v} \sqrt{\tau_v} dW_v^u) dW_u^y \), unfortunately, it has no analytical distribution. We instead try to use numerical approach to draw sample. To illustrate this, let \(x_s = \int_0^s e^{\alpha u} \sqrt{\tau_u} dW_u^y \). Use st. int. function in [17] to calculate this stochastic integral on the interval \([0, s]\) where \(\sigma_u \) on the subintervals \((s_i, s_{i+1})\) is a noncentral chi-square random variable. Then we simulate samples \(\tau_{ui} \) on the subinterval \([s_i, s_{i+1})\) and draw sample \(W_i \) from normal distribution with mean 0, and variance \(s_{i+1} - s_i \). Then \(x_{s, j} \) is sampled by the sum \(\sum_{i=0}^n j e^{\alpha s_i} \sqrt{\tau_{ui}} W_i \). Eventually we obtain a sample for \(\hat{6} \) using the sum \(\sum_{j=1}^m e^{-\alpha s_j} x_{s, j} v_j \) where \(v_j \) is a normal random variable with mean 0 and variance \(t_{i+1} - t_i \).
3.5. **OUOUICIR model**

In OUOUICIR model, the model parameters are $\alpha_y, \alpha_x, \theta_x, \sigma_x, \alpha_t, \tilde{\tau}, \sigma_\tau$, and regression parameters $b_i, b_{ij}, i, j = 1, 2, \cdots, n$. We first use $\alpha_x, \theta_x, \sigma_x$ to simulate predictor trait $x_i s$ and then use $\theta_i = \sum b_i x_i + \sum b_{ij} x_i x_j, i, j = 1, 2, \cdots, n$ to obtain θ_i on each node/tip. To simulate $y_i s$, since the solution for y_t in Eq. (2) for OUOUICIR model is

$$y_t = y_0 + e^{-\alpha t} \int_0^t \alpha e^{\alpha s} \theta_s ds + e^{-\alpha t} \int_0^t \tau_s e^{\alpha s} dW_y = y_0 + 1 + 2. \tag{20}$$

We can use the same method for the 1 described in OUOUBM model to simulate the sample for 1 and use the same method for the 2 described in OUBMCIR model to simulate sample for 2.

Note that [20] developed a two-pass algorithm to perform ancestral reconstruction and applied to multivariate trait evolution, non-Brownian models, missing data and phylogenetic regression. In the near future, we could develop possible more efficient algorithm for drawing samples.

4. **Inference**

4.1. **Approximate Bayesian Computation for adaptive trait model**

As mentioned in section [21], we cannot specify the distribution of y_t for OUBMBM, OUOUBM, OUBMCIR and OUOUICIR models. To do statistical inference on the parameters of interest, we propose to use Approximate Bayesian Computation (ABC) approach. Our goal is to compute the posterior probability distribution for the model parameters, say, Θ. To start ABC approach, a parameter vector Θ_i is drawn under its joint prior distribution. We first simulate replicates of trait $Y_i, i = 1, 2, \cdots, m$ under model M. Then a set of summary statistics $S(Y_i)$ are computed from the simulated data and compared with the summary statistics of the raw data $S(Y)$ using a distance measure d. In general, d is the Euclidean distance between two summary statistics. Note that before computing the distance, [21] suggests to scaled each summary statistics by a robust estimate of the standard deviation (the median absolute deviation). If the distance between $S(Y_i)$ and $S(Y_0)$ is less than a given threshold δ (i.e. $d(S(Y_i), S(Y)) < \delta$), then the drawed parameter vector Θ_i is accepted.

In fact, we need to establish a procedure for choosing good summary statistics for ABC. ABC fails to be accurate when using too many summary statistics as the distance increases with the number of summary statistics. The inference could be more accurate with high efficiency if we use the summary statistics that utilizes the all data info. To attain this goal, we would focus on choosing summary statistic on a pragmatic basis by making use of tree T and trait Y so that the statistics could capture the important model’s behavior. In phylogenetic comparative analysis, we might want to capture the overall amount of evolution, the over-dispersion of trait values, and the phylogenetic structuring of the trait values. [22] used the mean and the variance of the differences between each species and its closet neighbor in trait space for BM and OU model as the summary statistics. As our model falls out of the exponential family of distributions, it is theoretical impossible to quantify all finite dimensional sufficient statistics. However, it still possible to implement non-sufficient statistics when inference is under the ABC framework.
Currently, we consider to use the mean and the variance of the differences between each species suggested in [22]. We will continue to look for more possible sufficient summary statistic so our inference will be more efficient with reduced error. After choosing appropriate summary statistics, a tolerance rate defined as the percentage of accepted simulation is provided for the aids to set up the threshold value. Then the posterior distribution of the parameters can be approximated using the accepted Θ_is. Furthermore, [23] implemented a regression adjustment to improve the estimation of posterior distribution via weaken the effect of the discrepancy between the observed summary statistics and the accepted ones. The aims for this additional step is to rectify the match between the accepted summary statistics $S(Y_i)$ and observed summary statistics $S(Y)$. The regression equation for the adjustment can be written as $\theta_i = m(S(Y_i)) + \epsilon_i$ where m is a regression function, and ϵ_is are centered random variables with a common variance. Once the regression is performed, a weighted sample from the posterior distribution is obtained by correcting the θ_is via $\theta_i^* = \hat{m}(S(Y)) + \hat{\epsilon}_i$, where $\hat{m}(\cdot)$ is the estimated conditional mean and the $\hat{\epsilon}_i$s are the empirical residuals of the regression [24]. Additionally, a correction for heteroscedasticity is applied $\theta_i^* = \hat{m}(S(Y)) + (\hat{\sigma}(S(Y))/\hat{\sigma}(S(Y_i)))\hat{\epsilon}_i$ where $\hat{\sigma}(\cdot)$ is the estimated conditional standard deviation [23]. We provide a more detail description of our modeling procedure using ABC algorithm in Algorithm 1.

Algorithm 1 Approximate Bayesian Computation rejection method for OUBMBM, OUOUBM, OUBMCIR and OUOUCIR models.

Input: Tree T with branch length and topology, initial state θ_0, trait data Y, X_1, X_2, prior distribution $\pi(\theta)$, a tolerance ϵ.

Output: Posterior sample $\theta_i, i = 1, 2, \ldots, k$ from posterior distribution.

1: for $i = 1, \ldots, k$ do
2: simulate sample θ_i from $\pi(\theta_0)$.
3: simulate trait Y_i, X_{1i}, X_{2i} form θ_i.
4: compute the distance d_i between two summary statistics $S(Y_i)$ and $S(Y)$
5: if $d_i < \epsilon$ then
6: accept θ_i;
7: else
8: reject θ_i,
9: end if
10: end for
11: return $\theta_i, i = 1, 2, \ldots, k$.

4.2. Model selection under ABC

Currently, for the posterior samples under rejection method, we use the function `postpr` in `abc` package [25] to computes the posterior model probabilities where the posterior probability of a given model is approximated by the proportion of accepted simulations given this model. This approximation holds when the different models are a prior equally likely, and the same number of simulations is performed for each model. We then compute the Bayes
factors (BF) to compare a pair of models in the model sets. From conventional statistics on the definition of the Bayes factor which is a ratio of the likelihood probability of two competing hypotheses, usually a null and an alternative. The posterior probability \(\Pr(\mathcal{M}|\mathcal{D}) \) of a model \(\mathcal{M} \) given data \(\mathcal{D} \) is given by Bayes’ theorem:

\[
\Pr(\mathcal{M}|\mathcal{D}) = \frac{\Pr(\mathcal{D}|\mathcal{M})\Pr(\mathcal{M})}{\Pr(\mathcal{D})}.
\]

Given a model selection we have to choose between two models on the basis of observed data \(\mathcal{D} \), the plausibility of the two different models \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \), parametrised by model parameter vectors \(\theta_1 \) and \(\theta_2 \) is assessed by the Bayes factor \(K \) given by

\[
K = \frac{\Pr(\mathcal{D}|\mathcal{M}_1)}{\Pr(\mathcal{D}|\mathcal{M}_2)} = \frac{\int \Pr(\theta_1|\mathcal{M}_1)\Pr(\mathcal{D}|\theta_1, \mathcal{M}_1)d\theta_1}{\int \Pr(\theta_2|\mathcal{M}_2)\Pr(\mathcal{D}|\theta_2, \mathcal{M}_2)d\theta_2} = \frac{\Pr(\mathcal{M}_1|\mathcal{D})\Pr(\mathcal{M}_1)}{\Pr(\mathcal{M}_2|\mathcal{D})\Pr(\mathcal{M}_2)}.
\]

A value of \(K > 1 \) means that \(\mathcal{M}_1 \) is more strongly supported by the data than \(\mathcal{M}_2 \). For models where an explicit version of likelihood is not available or too costly to evaluate numerically, approximate Bayesian computation can be used for model selection in a Bayesian framework, with the caveat that approximate-Bayesian estimates of Bayes factors are often biased. Here as we use ABC and we do not have likelihood function. We read the R script postpr function [25] which interprets the algorithm to compute the Bayes factor like a version for model selection. For our works, we have 4 models where each model contains 50,000 replicates data. We first compute the Euclidean distance for each replicate with respect to the realization (true data). By setting the acceptance rate, we decide the cutoff of the distance calculated by the scaled summary statistics. We then grasp and count the frequency of each model that has the distance smaller than this cutoff. Eventually, the Bayes factor between two models is computed as the ratio using the frequencies of two models.

For instance, with the acceptance rate of 10 percent. We will expect 5000 replicates among the 50000*4=200000 replicated for all model. We sort the 200000 distance and determine the cutoff at the 5000th position. We then count the frequency of each model that has the distance smaller than this cutoff. Eventually, the Bayes factor between two models is computed as the ratio using the frequencies of two models.

5. Simulation

We consider using different informative prior for simulation, and different sampling approach. We have four models (OUBMBM, OUOUBM, OUBMCIR, and OUOUCIR) where every model has different parameters for itself. For simulation, we set the true parameters for the four model as following \(\alpha_y = 0.15, \alpha_x = 0.1, \theta_x = 0, \sigma_x = 1, \alpha_\tau = 0.2, \theta_\tau = 30, \tau = 0.35, \sigma_\tau = 0.5, b_0 = 0, b_1 = 0.5, b_2 = 0.5 \). We set the prior distribution parameters are \(\alpha_y \sim U(0,0.3), \alpha_x \sim U(0,0.2), \theta_x \sim U(-1,1), \sigma_x \sim U(0,2), \alpha_\tau \sim U(0,0.4), \theta_\tau \sim U(0,60), \sigma_\tau \sim U(0,1), \tau \sim \)
We run fifty thousand replicates in the simulation that have four models and four taxa size (10, 20, 50 and 100) and generate four different model tables containing bias of parameters estimates, standard deviation, and 90% confidence interval. Next, the previous assumptions of prior distribution are the uniform distribution, then we will try to set the different informative prior distribution for simulation. We set the prior distribution to $\alpha_y \sim \exp(0.15), \sigma_x \sim \exp(1), \tau \sim \exp(1), \theta_x \sim N(0, 1), \alpha \sim \exp(1), \tau \sim \chi^2_{30}, \sigma \sim \exp(1)$,

$b_0 \sim U(-1, 1), b_1 \sim U(0, 1), b_2 \sim U(0, 1)$. We run fifty thousand replicates in this simulation and output our results in our tables. Finally, we change the sampling approach, so consider the Approximate Bayesian Computation using Markov chain Monte Carlo (ABC-MCMC), assume the prior distribution and true parameters are the same as ABC rejection method. We run fifty thousand replicates in the simulation, set the threshold δ is 100 and burn-in time is 5000, because the first steps of the algorithm may be biased by the initial value, and are therefore usually discarded for the analysis.

5.1. OUBMBM Model

Table 2: OUBMBM model: Bias, Standard deviation and 90% interval for parameters $\alpha_y, \sigma_x, \tau, b_0, b_1, b_2$ with uniform prior use rejection approach.

Par.	n	10	20	50	100	Par.	n	10	20	50	100
bias		0.000	0.003	0.003	0.005	bias		0.055	0.011	0.058	0.007
sd		0.088	0.086	0.087	0.086	sd		0.579	0.575	0.579	0.576
α_y		0.015	0.017	0.015	0.014	b_0		-0.895	-0.905	-0.889	-0.890
5%		0.286	0.285	0.285	0.283	95%		0.910	0.898	0.910	0.901
95%		0.286	0.285	0.285	0.283	95%		0.910	0.898	0.910	0.901
σ_x		0.108	0.134	0.044	0.177	b_1		0.012	0.110	0.081	0.027
sd		0.347	0.286	0.235	0.229	sd		0.584	0.272	0.281	0.271
5%		0.423	0.509	0.624	0.521	5%		0.053	0.034	0.068	0.053
95%		1.566	1.441	1.382	1.265	95%		0.941	0.908	0.958	0.926
τ		0.000	0.012	0.003	0.000	b_2		0.058	0.071	0.083	0.011
sd		0.204	0.203	0.204	0.203	sd		0.281	0.276	0.278	0.275
5%		0.036	0.028	0.032	0.036	5%		0.067	0.040	0.070	0.050
95%		0.666	0.663	0.659	0.671	95%		0.955	0.918	0.960	0.931

In table 2 we have six parameters in the OUBMBM model, the true parameters values $(\alpha_y, \sigma_x, \tau, b_0, b_1, b_2) = (0.15, 1, 0.35, 0, 0.5, 0.5)$. The model is so complicated, so we can not estimate easily, bias doesn’t keep getting smaller when the size becomes larger. But the standard deviation is kept getting smaller and the 90% confidence interval is also narrower as the size becomes larger and larger.
Table 3: OUBMBM model: Bias, Standard deviation and 90% interval for parameters $\alpha_y, \sigma_x, \tau, b_0, b_1, b_2$ with non-information prior and use rejection approach.

Par.	n	10	20	50	100
bias	α_y	0.048	0.043	0.056	0.058
sd	α_y	0.145	0.151	0.143	0.136
5%	α_y	0.006	0.008	0.008	0.008
95%	α_y	0.428	0.473	0.429	0.419
bias	σ_x	0.017	0.148	0.299	0.256
sd	σ_x	0.398	0.301	0.226	0.256
5%	σ_x	0.512	0.483	0.401	0.396
95%	σ_x	1.828	1.448	1.136	1.244
bias	τ	0.342	0.369	0.334	0.373
sd	τ	1.019	0.971	1.029	1.037
5%	τ	0.054	0.052	0.044	0.054
95%	τ	3.107	2.995	2.987	3.081
bias	b_0	0.028	0.029	0.012	0.007
sd	b_0	0.572	0.575	0.572	0.577
5%	b_0	-0.902	-0.881	-0.883	-0.891
95%	b_0	0.884	0.881	0.909	0.904
bias	b_1	0.015	0.067	0.008	0.030
sd	b_1	0.282	0.277	0.284	0.286
5%	b_1	0.059	0.039	0.051	0.053
95%	b_1	0.944	0.909	0.937	0.946
bias	b_2	0.012	0.022	0.005	0.077
sd	b_2	0.285	0.281	0.286	0.279
5%	b_2	0.055	0.045	0.054	0.070
95%	b_2	0.947	0.936	0.950	0.961

The table shows the parameters, bias, standard deviation (sd) and 90% confidence interval. Only the bias value of b_0 keeps getting smaller when the size gets larger.
Table 4: OUOUBM model: Bias, Standard deviation and 90% interval for parameters α_y, α_x, θ_x, σ_x, τ, b_0, b_1, b_2 with uniform prior use rejection approach.

Par.	n	10	20	50	100	n	10	20	50	100	
α_y	bias	0.013	0.044	0.010	0.006	bias	0.004	0.007	0.002	0.006	
	sd	0.073	0.063	0.068	0.067	τ	sd	0.200	0.202	0.204	0.199
	5%	0.038	0.084	0.059	0.054		5%	0.035	0.031	0.040	0.040
	95%	0.269	0.287	0.279	0.274		95%	0.663	0.667	0.665	0.666
α_x	bias	0.004	0.002	0.002	0.004	bias	0.035	0.083	0.022	0.001	
	sd	0.057	0.058	0.057	0.057	b_0	sd	0.576	0.578	0.579	0.581
	5%	0.013	0.010	0.010	0.012		5%	-0.912	-0.895	-0.896	-0.901
	95%	0.190	0.191	0.190	0.191		95%	0.892	0.909	0.900	0.904
θ_x	bias	0.028	0.004	0.036	0.044	bias	0.055	0.074	0.000	0.024	
	sd	0.569	0.574	0.580	0.575	b_1	sd	0.278	0.273	0.281	0.276
	5%	-0.896	-0.898	-0.891	-0.906		5%	0.048	0.082	0.047	0.051
	95%	0.888	0.898	0.912	0.887		95%	0.927	0.954	0.950	0.939
σ_x	bias	0.008	0.128	0.066	0.112	bias	0.030	0.001	0.030	0.037	
	sd	0.397	0.420	0.317	0.316	b_2	sd	0.281	0.280	0.280	0.277
	5%	0.473	0.347	0.519	0.462		5%	0.053	0.057	0.042	0.051
	95%	1.789	1.733	1.550	1.493		95%	0.944	0.949	0.940	0.935

For table 4, the true parameter values (α_y, α_x, θ_x, σ_x, τ, b_0, b_1, b_2) = (0.15, 0.1, 0, 1, 0.35, 0, 0.5, 0.5). In this table, the α_y and b_0 bias is smaller than other sizes when size is 100, this is we expect the result.
Table 5: OUOUBM model: Bias, Standard deviation and 90% interval for parameters α_y, α_x, θ_x, σ_x, τ, b_0, b_1, b_2 with information prior and use rejection approach.

	Par.				
	n	10	20	50	100
	Par.				
α_y	bias	0.002	0.076	0.031	0.037
	sd	0.109	0.070	0.080	0.117
	5%	0.050	0.012	0.041	0.072
	95%	0.372	0.222	0.292	0.438
α_x	bias	0.032	0.031	0.027	0.032
	sd	0.095	0.099	0.105	0.098
	5%	0.005	0.005	0.005	0.005
	95%	0.291	0.305	0.315	0.289
θ_x	bias	0.021	0.028	0.022	0.023
	sd	1.008	0.988	0.967	0.978
	5%	-1.633	-1.664	-1.585	-1.608
	95%	1.693	1.607	1.618	1.650
σ_x	bias	0.302	0.178	0.299	0.252
	sd	0.454	0.444	0.328	0.601
	5%	0.256	0.369	0.333	0.163
	95%	1.658	1.766	1.366	2.075

The true parameter values (α_y, α_x, θ_x, σ_x, τ, b_0, b_1, b_2) = (0.15, 0.1, 0, 1, 0.35, 0, 0.5, 0.5). The results of table 5 are not good, because we expect the bias value and interval range keep getting smaller when the size gets larger. Therefore, there is no significant difference to change the prior distribution information for the OUOUBM model.
5.3. **OUBMCIR Model**

Table 6: OUBMCIR model: Bias, Standard deviation and 90% interval for parameters $\alpha_y, \sigma_x, \alpha_x, \theta_r, \sigma_r, b_0, b_1, b_2$ with uniform prior use rejection approach.

Par.	n	10	20	50	100
α_y	bias	0.001	0.006	0.001	0.001
	sd	0.085	0.086	0.086	0.087
	5%	0.015	0.017	0.018	0.015
	95%	0.282	0.285	0.286	0.284
σ_x	bias	0.128	0.169	0.080	0.182
	sd	0.359	0.348	0.289	0.255
	5%	0.583	0.629	0.513	0.445
	95%	1.777	1.768	1.450	1.276
α_r	bias	0.007	0.009	0.013	0.014
	sd	0.116	0.115	0.116	0.114
	5%	0.021	0.021	0.021	0.026
	95%	0.384	0.383	0.384	0.383
θ_r	bias	11.087	6.625	6.489	2.499
	sd	14.244	15.051	11.641	12.102
	5%	2.024	2.795	6.427	10.472
	95%	48.393	51.861	45.130	49.624

In table 6 the α_y, θ_r, b_0 of bias result are smaller than other sizes when size is 100. And θ_r of the OUBMCIR model is the best estimate compared to other parameters, when the size gets bigger and bigger it bias value is keep getting smaller and the 90% confidence interval is getting narrower, too.
Table 7: OUBMCIR model: Bias, Standard deviation and 90% interval for parameters $\alpha_y, \sigma_x, \alpha_\tau, \theta_\tau, \sigma_\tau, b_0, b_1, b_2$ with non-information prior and use rejection approach.

Par.	n	10	20	50	100	Par.	n	10	20	50	100
α_y bias	0.041	0.048	0.049	0.048	bias	0.148	0.157	0.155	0.158		
sd	0.151	0.150	0.153	0.157	sd	0.507	0.486	0.493	0.440		
5%	0.009	0.007	0.007	0.007	σ_τ 5%	0.028	0.025	0.028	0.029		
95%	0.445	0.455	0.448	0.456	95%	1.545	1.484	1.484	1.383		
σ_x bias	0.006	0.129	0.308	0.259	bias	0.003	0.009	0.028	0.023		
sd	0.400	0.362	0.291	0.312	sd	0.564	0.573	0.578	0.569		
5%	0.511	0.419	0.352	0.338	b_0 5%	-0.884	-0.904	-0.899	-0.896		
95%	1.797	1.577	1.293	1.356	95%	0.901	0.893	0.900	0.890		
α_τ bias	0.053	0.071	0.057	0.056	bias	0.008	0.006	0.014	0.012		
sd	0.212	0.195	0.198	0.198	sd	0.291	0.287	0.289	0.289		
5%	0.011	0.011	0.012	0.010	b_1 5%	0.044	0.050	0.046	0.051		
95%	0.662	0.568	0.578	0.585	95%	0.951	0.947	0.951	0.945		
θ_τ bias	1.585	0.095	1.006	1.597	bias	0.002	0.003	0.002	0.020		
sd	6.614	6.531	5.089	5.191	sd	0.289	0.287	0.288	0.292		
5%	18.773	20.347	21.582	20.490	b_2 5%	0.054	0.050	0.050	0.045		
95%	40.291	41.735	38.094	37.479	95%	0.944	0.952	0.947	0.946		

In table 7, we mainly attention to parameters $\alpha_y, \sigma_x, \alpha_\tau, \theta_\tau, \sigma_\tau$, because the prior distribution information of these parameters is changed. But the OUBMCIR model is complex, so we cannot estimate these parameters easily. The trend of the 90% confidence interval of θ_τ in this table is the same as θ_τ in table 6, but the deviation is not as good as that.
5.4. OUOUCIR Model

Table 8: OUOUCIR model: Bias, Standard deviation and 90% interval for parameters $\alpha_y, \alpha_x, \theta_x, \sigma_x, \alpha_\tau, \sigma_\tau, b_0, b_1, b_2$ with uniform prior use rejection approach.

Par.	n	10	20	50	100	n	10	20	50	100		
bias		0.005	0.002	0.002	0.003	bias	11.402	8.777	2.588	3.484		
sd		0.008	0.006	0.007	0.006	sd	12.649	12.101	11.678	14.117		
α_y		5%	0.019	0.016	0.013	0.018	θ_{τ}	5%	3.037	3.961	10.545	5.747
95%		0.286	0.285	0.284	0.284	95%	44.453	44.068	49.130	52.252		
bias		0.003	0.002	0.004	0.000	bias	0.006	0.002	0.016	0.009		
sd		0.057	0.057	0.058	0.058	sd	0.289	0.287	0.285	0.290		
α_x		5%	0.010	0.013	0.010	0.010	σ_{τ}	5%	0.053	0.052	0.063	0.055
95%		0.189	0.189	0.189	0.191	95%	0.951	0.950	0.948	0.956		
bias		0.014	0.003	0.059	0.001	bias	0.003	0.002	0.017	0.022		
sd		0.575	0.576	0.581	0.580	sd	0.575	0.584	0.585	0.571		
θ_x		5%	-0.912	-0.906	-0.922	-0.895	b_0	5%	-0.897	-0.900	-0.916	-0.893
95%		0.896	0.890	0.902	0.920	95%	0.898	0.906	0.907	0.891		
bias		0.105	0.274	0.048	0.044	bias	0.008	0.002	0.007	0.015		
sd		0.390	0.356	0.327	0.359	sd	0.289	0.286	0.289	0.290		
σ_x		5%	0.556	0.730	0.602	0.472	b_1	5%	0.055	0.055	0.052	0.042
95%		1.840	1.875	1.673	1.642	95%	0.948	0.951	0.954	0.953		
bias		0.016	0.016	0.010	0.002	bias	0.007	0.008	0.001	0.003		
sd		0.117	0.113	0.116	0.117	sd	0.288	0.288	0.287	0.286		
α_{τ}		5%	0.024	0.024	0.021	0.018	b_2	5%	0.055	0.045	0.049	0.051
95%		0.384	0.383	0.380	0.380	95%	0.951	0.947	0.950	0.947		

In table 8, the OUOUCIR model is more complex than the other three models, so the estimated results are not very well. Only the α_τ estimate much better in all parameters, because we want to our bias value and sd, will be smaller when size is bigger.
Table 9: OUOCIR model: Bias, Standard deviation and 90% interval for parameters $\alpha_y, \alpha_x, \alpha_T, \theta_x, \sigma_x, \sigma_T, b_0, b_1, b_2$ with non-information prior and use rejection approach.

Par.	n	10	20	50	100	Par.	n	10	20	50	100
α_y	bias	0.042	0.047	0.047	0.046	bias	0.450	0.699	1.698	0.924	
	sd	0.146	0.153	0.152	0.153	sd	6.100	5.999	5.075	4.951	
	5%	0.007	0.008	0.008	0.008	θ_T	5%	21.029	21.455	20.773	21.617
	95%	0.451	0.455	0.458	0.450	95%	40.819	39.582	37.457	37.738	
α_x	bias	0.031	0.032	0.033	0.027	bias	0.147	0.178	0.137	0.178	
	sd	0.101	0.103	0.099	0.100	sd	0.497	0.442	0.482	0.477	
	5%	0.005	0.004	0.005	0.004	σ_T	5%	0.026	0.026	0.032	0.022
	95%	0.296	0.304	0.301	0.297	95%	1.443	1.304	1.465	1.407	
θ_x	bias	0.016	0.025	0.029	0.004	bias	0.026	0.014	0.006	0.016	
	sd	1.001	0.999	1.015	1.023	b_0	sd	0.572	0.579	0.576	0.576
	5%	-1.607	-1.601	-1.641	-1.706	b_0	5%	-0.905	-0.908	-0.910	-0.890
	95%	1.653	1.674	1.714	1.666	95%	0.902	0.900	0.899	0.904	
σ_x	bias	0.615	0.384	0.285	0.307	bias	0.015	0.002	0.010	0.002	
	sd	0.296	0.299	0.333	0.334	b_1	sd	0.287	0.287	0.290	0.288
	5%	0.109	0.284	0.318	0.305	b_1	5%	0.054	0.045	0.052	0.045
	95%	1.035	1.221	1.416	1.400	95%	0.950	0.947	0.954	0.946	
α_T	bias	0.063	0.061	0.050	0.063	bias	0.002	0.001	0.004	0.023	
	sd	0.196	0.195	0.201	0.190	b_2	sd	0.290	0.283	0.286	0.286
	5%	0.011	0.011	0.013	0.010	b_2	5%	0.050	0.054	0.053	0.049
	95%	0.596	0.585	0.613	0.565	95%	0.949	0.941	0.947	0.951	

In table 9, although the deviation is not what we expected that keep getting smaller when the size gets larger, the range of the confidence interval is with our expectation.

6. Empirical Data Analysis

Currently, we collect and analyze bat, fish, lizard, coral, foram and fig data from the literature. We then fit our models into those data set and compare the fit of models. We set prior parameters values $\alpha_y, \alpha_x, \alpha_T \sim \exp(5)$, $\theta_x \sim \mathcal{N}(0,1)$, $\tau \sim \exp(3)$, $\sigma_x, \sigma_T \sim \exp(2)$, $\theta_T \sim \chi^2_{30}$ and b_0, b_1, b_2 determine the uniform distribution range through the ordinary least squares (OLS) estimated value from the empirical data. Under the ABC rejection approach, we run fifty thousand replicates and we set the tolerance rate 5% for each model.

The overall result is shown in table 10, the first column shows the trait we analyze while the last column shows the reference we use. The second, third, fourth and fifth column is the ranking of the models. We collect data from the
literature. In the table [10], the OUBMCIR, and OUOUCIR models are the best models or the second best model in our collect data.

| Table 10: The model selection by Bayes factor in Empirical Data |
|------------------|----------------|------------------|------------------|------------------|
| Data | 1st | 2nd | 3rd | 4th |
| bat | oumbcir | oumbbm | ououcir | ououbm |
| lizard | oumbcir | ououcir | oumbbm | ououbm |
| fish | oumbbm | oumbcir | ououcir | ououbm |
| lizard | oumbcir | oumbbm | ououcir | ououbm |
| lizard | oumbcir | oumbbm | ououcir | ououbm |
| fish | oumbbm | oumbcir | ououcir | ououbm |
| lizard | oumbcir | oumbbm | ououcir | ououbm |
| coral | oumbcir | oumbbm | ououcir | ououbm |
| foram | ououbm | ououcir | oumbcir | oumbbm |
| fig | ououbm | ououcir | oumbcir | oumbbm |

For foram data in [33], the best model is OUBMMB, the second best model is OUOUCIR, the third model is OUBMMB and the last model is OUBMCIR. Their Bayes factors is shown in Table [11]. From this table, we have the best model is OUOUBM because its Bayes factors are greater than one when comparing to other models. Actually, the Bayes factor is 23.417 comparing to OUBMMB, is 20.960 comparing to OUBMCIR, and is 2.617 comparing to OUOUCIR. The second best model is OUOUCIR because it has a Bayes factor of a value smaller than the best model (0.382 actually when comparing to OUOUBM) and has two Bayes factors greater than one (8.948 when comparing to OUBMMB and 8.009 when comparing to OUBMCIR). Similarly, we observed that the OUBMMB as the third model and the last model is OUBMCIR.

| Table 11: Bayes factor table for foram dataset in [33] |
|------------------|------------------|------------------|------------------|------------------|
| OUBMMB | OUBMCIR | OUOUBM | OUOUCIR |
| OUBMMB | 1.000 | 0.895 | 0.043 | 0.112 |
| OUBMCIR | 1.117 | 1.000 | 0.048 | 0.125 |
| OUOUBM | 23.417 | 20.960 | 1.000 | 2.617 |
| OUOUCIR | 8.948 | 8.009 | 0.382 | 1.000 |

We use the range of K values proposed by [26] to compare the support between models for foram data in [33]. We see the third row in Table [11] the values are 23.417, 20.960 and 2.617 that mean is the best model OUOUBM have stronger support than the OUBMMB, OUBMCIR, and OUOUCIR models. When we see the second best model OUOUCIR that is to see the fourth row in Table [11] it K smaller than the best model the OUOUCIR is not better when comparing to OUOUBM, then K is 8.948, when comparing to OUBMMB model, K between 1 and 3, K could not worth more than a bare mention for OUOUCIR by [26]. Last, we compare OUOUCIR with OUBMCIR, the Bayes factor value, K, is 8.009, it explains the OUOUCIR have strong support than OUBMCIR in this data.
Table 12: Bayes factor table for lizard dataset in [28]

Model	OUBMBM	OUBMCIR	OUOUBM	OUOUCIR
OUBMBM	1.000	0.891	1.085	0.914
OUBMCIR	1.122	1.000	1.218	1.026
OUOUBM	0.921	0.821	1.000	0.842
OUOUCIR	1.094	0.975	1.187	1.000

For fish data in [28], the best model is OUBMCIR model, the second best model is OUOUCIR model, the third model is OUBMBM and the last model is OUOUBM model. The Bayes factor is shown in Table 12. From this table, we have the best model is OUBMCIR because its Bayes factors are greater than one when compared with other models. In fact, the Bayes factor is 1.122 compared with OUBMBM, is 1.218 compared with OUOUBM and is 1.026 comparing to OUOUCIR. The second best model is OUOUCIR because it has a Bayes factor of the value smaller than the best model, is 0.975 when comparing to OUBMCIR, and has greater than other models, is 1.094 comparing to OUBMBM and is 1.187 comparing to OUOUBM. In this data, every model is not significant for each other because their Bayes factor of value, \(K \), is between 1 and 3 that explain not worth more than a bare mention. But the OUBMCIR and OUOUCIR models are the best top two in the lizard dataset in [28]. This is what we want to see a good result because we hope our new model is the best model for four models in the special data. Although the best model can be selected from the Table 11 and Table 12, it is not significant in the lizard data in [28]. Therefore, we analyzed the foram data in [33] because it has a clear difference for each model. That is, between two models have a model get more support in this data.

Next, we analyze coral data because new model OUBMCIR has a good result in the different methods. Table 13 shows estimated values of various models under different methods. Table 14 shows estimation of \(b_0, b_1 \) and \(b_2 \) by OLS, ABC-rejection and ABC-MCMC approach under this data and shows that 95\% confidence interval. The estimated value of \(b_0, b_1 \) and \(b_2 \) are mean of every model posterior value, for different approach.
Table 14: The Beta estimator under coral data in [35]

Model	b_0	b_1	b_2
OLS $Y = X_1 + X_2$	-1.197	2.854	1.340
oumbmb	-1.182	3.227	1.920
	(-2.951, 0.550)	(0.275, 5.584)	(-3.666, 6.475)
ououbm	-0.711	3.398	2.156
	(-2.836, 0.603)	(0.298, 5.624)	(-3.788, 6.555)
ABC-Rej oumbcir	-1.197	2.917	1.441
	(-2.962, 0.537)	(0.161, 5.547)	(-3.717, 6.427)
ououcir	-1.177	2.829	1.387
	(-2.944, 0.568)	(0.163, 5.529)	(-3.768, 6.417)

7. Conclusion

In this paper, we expand two models for the adaptive trait evolution and called them the OUBMCIR model and OUOUCIR model, respectively. Due to the intractability of the likelihood function for the models, we make attempt to use Approximate Bayesian Computation to analyze data. We propose relevant algorithm and derive the solution as explicitly as possible to simulate trait along the tree for each model. Currently, our provide simulation to validate our model and analyze several empirical data sets with comparing the fit for the model using Bayes factors. Currently, our results show that we have strong evidence to demonstrate the superiority of new models. In table [10] we have nine datasets, the result seems to suggest that our new model could be a good and nice because as it provides a better fit than the existed models(OUBMBM and OUOUBM models) in empirical data.

And from the empirical data, we see the best model and second best model almost pointing to the new models OUBMCIR model and the OUOUCIR model. Actually, the result is well but the method proposed by [26] makes the Bayes factor not significant in these data. A part of future research that should be considered is using the others criterion of model selection, using the others prior distribution and collect the data to support our new models would be more useful.

References

[1] Y. Y. Watanabe, K. J. Goldman, J. E. Caselle, D. D. Chapman, Y. P. Papastamatiou, Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes, Proceedings of the National Academy of Sciences 112 (19) (2015) 6104–6109. doi:10.1073/pnas.1500316112

[2] J. Felsenstein, Phylogeny and the comparative method, America Naturalist 125 (1) (1985) 1–15.
[3] T. Hansen, E. Martins, Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data., Evolution 50 (1996) 1404–1417.
[4] S. P. Blomberg, Beyond brownian motion and the ornstein-uhlenbeck process: Stochastic diffusion models for the evolution of quantitative characters., bioRxiv doi:10.1101/067363.
[5] D.-C. Jhwueng, L. Ho, M. Suchard, Assessing trait evolution through bayesian modeling and cox-ingersall-ross process.
[6] T. F. Hansen, Stabilizing selection and the comparative analysis of adaptation, Evolution 51 (1997) 1341–1351.
[7] M. Butler, A. King, Phylogenetic comparative analysis: a modeling approach for adaptive evolution, The American Naturalist 164 (2004) 683–695.
[8] B. OMeara, C. Ané, M. Sanderson, P. Wainwright, Testing different rates of continuous trait evolution using likelihood, Evolution 60 (2006) 922–933.
[9] J. Beaulieu, D.-C. Jhwueng, C. Boettiger, B. O’Meara, Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution, Evolution 66 (8) (2012) 2369–2383.
[10] T. Hansen, J. Pienaar, S. Orzack, A comparative method for studying adaptation to a randomly evolving environment 62 (2008) 1965–77.
[11] D.-C. Jhwueng, V. Maroulas, Phylogenetic ornstein-uhlenbeck regression curves, Statisticas and Probability Letters 89 (2014) 110–117.
[12] D.-C. Jhwueng, V. Maroulas, Adaptive trait evolution in random environment, Journal of Applied Statistics 43 (12) (2016) 2310–2324.
[13] J. Cox, J. Ingersoll, S. Ross, A theory of the term structure of interest rates., Econometrica 53 (1985) 385–407.
[14] J. A. Fuentes-G., E. A. Housworth, A. Weber, E. P. Martins, Phylogenetic ancova: Estimating changes in evolutionary rates as well as relationships between traits, The American Naturalist 188 (6) (2016) 615–627, pMID: 27860504. doi:10.1086/688917.
[15] J. Felsenstein, Inferring Phylogenies, Sinauer, 2003.
[16] D.-C. Jhwueng, Assessing the goodness of fit of phylogenetic comparative methods: A meta-analysis and simulation study, PLOS ONE 8 (6) (2013) 1–12. doi:10.1371/journal.pone.0067001.
[17] A. C. Guidoum, K. Boukhetala, Sim.DiffProc: Simulation of Diffusion Processes., r package version 4.0 (2017).
[18] J. Chan, M. Joshi, Fast and accurate long stepping simulation of the heston stochastic volatility model 16.
[19] P. Glasserman, K.-K. Kim, Gamma expansion of the heston stochastic volatility model, Finance and Stochastics 15 (2) (2011) 267–296.
[20] E. W. Goolsby, Rapid maximum likelihood ancestral state reconstruction of continuous characters: A rerooting-free algorithm, Ecology and Evolution 7 (8) (2017) 2791–2797.

[21] M. G. B. Blum, Proceedings of COMPSTAT’2010: 19th International Conference on Computational Statistics-Paris France, August 22-27, 2010 Keynote, Invited and Contributed Papers, Physica-Verlag HD, Heidelberg, 2010, Ch. Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation, pp. 47–56.

[22] M. Clarke, G. Thomas, R. Freckleton, Trait evolution in adaptive radiations: Modeling and measuring interspecific competition on phylogenies, The American Naturalist 189 (2) (2017) 121–137, pMID: 28107052.
[23] M. G. B. Blum, O. François, Non-linear regression models for approximate bayesian computation, Statistics and Computing 20 (1) (2010) 63–73. doi:10.1007/s11222-009-9116-0

[24] M. A. Beaumont, W. Zhang, D. J. Balding, Approximate bayesian computation in population genetics, Genetics 162 (4) (2002) 2025–2035.

[25] K. Csilléry, O. François, M. G. Blum, abc: an r package for approximate bayesian computation (abc), Methods in ecology and evolution 3 (3) (2012) 475–479.

[26] R. Kass, A. Raftery, Bayes factors, Journal of American Statistical Association 90 (430) (1995) 773–795.

[27] L. F. Aguirre, A. Herrel, R. van Damme, E. Matthysen, Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community, Proceedings of the Royal Society of London B: Biological Sciences 269 (1497) (2002) 1271–1278. doi:10.1098/rspb.2002.2011

[28] K. Bonine, T. Gleeson, T. J. Garland, Muscle fiber-type variation in lizards (squamata) and phylogenetic reconstruction of hypothesized ancestral states, The Journal of Experimental Biology 298 (2005) 4529–4547.

[29] B. J. Crespi, R. Teo, Comparative phylogenetic analysis of the evolution of semelparity and life history in salmonid fishes, Evolution 56 (5) (2002) 1008–1020.

[30] M. Molina-Borja, M. Rodríguez-Domínguez, Evolution of biometric and life-history traits in lizards (gallotia) from the canary islands, Journal of Zoological Systematics and Evolutionary Research 42 (1) (2004) 44–53.

[31] P. Niewiarowski, M. J. Angilletta, A. Leache, Phylogenetic comparative analysis of life-history variation among populations of the lizard sceloporus undulates: an example and prognosis, Evolution 58 (2004) 619–633.

[32] J. Sanchez, H. Lasker, Patterns of morphological integration in marine modular organisms: supra-module organization in branching octocoral colonies., Proceedings: Biological Sciences 270 (1528) (2003) 2039–2044.

[33] A. J. Webster, A. Purvis, Testing the accuracy of methods for reconstructing ancestral states of continuous characters, Proceedings of the Royal Society of London B: Biological Sciences 269 (1487) (2002) 143–149.
[34] G. Weiblen, Correlated evolution in fig pollination., Syst. Biol. 53 (1) (2004) 128–139.

[35] J. Sanchez, H. Lasker, Patterns of morphological integration in marine modular organisms: supra-module organization in branching octocoral colonies, Evolution 270 (2003) 2039–2044.
This figure "treepath.jpeg" is available in "jpeg" format from:

http://arxiv.org/ps/1808.05878v1