Morphological biomarkers as the histopathological assessment and scanning electron microscopy can be used to establish a diagnosis of structural damage and intoxication of target cells by new biopesticide candidate. In this sense, cuticle damage caused by active substances in larvae exposed to biopesticides can help to elucidate the mode of action. Thus, insecticide activity analysis of essential oil of Curcuma longa leaves and its major compound α-phellandrene have proven to be a new biopesticide candidate against third instar larvae (L3) of the Australian blowfly Lucilia cuprina. In this way, groups of 20 L3 were placed on filter paper, impregnated with ranging concentrations (from 0.15 to 2.86 μL/cm²) of C. longa leaves EO and (0.29–1.47 μL/cm²) to
α-phellandrene. The extracts were solubilized in ethanol. Progressive darkening in the body of L3, marked reduction of movement, color changes in larval cuticle and dead were observed 6 and 24 h after contact with both extracts.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	Parasitology
More specific subject area	Entomology
Type of data	Videos
How data were acquired	Microscope stereoscopy
Data format	Raw data collection and analysis

Experimental factors	Fresh aerial parts of Curcuma longa (leaves) and its major compound α-phellandrene were assessed for insecticidal activity using biological assays on Lucilia cuprina performed as described by Chaaban et al., 2018 [1].
Experimental features	Essential oil extraction and chemical characterization.
	Establishment of Lucilia cuprina colonies; and biological assays on laboratory conditions (27 ± 2 °C and 70% relative humidity).
	Contact tests using filter paper impregnated with Curcuma longa leaves essential oil and its major compound α-phellandrene. Cuticular damage and larvae motility were reported.
Data source location	Araquari, Santa Catarina, Brazil; 26°23′ 33.6691″ S and 48° 44′ 18.3336″ W.
Data accessibility	Data are displayed within this article.
Related research article	This Data in Brief article is submitted as a companion paper to: Chaaban, A., Richardi, V.S., Carrer, Brum, J.S., Cipriano, R.R., Martins, C.E.N., Silva, M.A.N., Deschamps, C., Molento, M.B. (in press). Insecticide activity of Curcuma longa (leaves) essential oil and its major compound α-phellandrene against Lucilia cuprina larvae (Diptera: Calliphoridae): Histological and ultrastructural biomarkers assessment. Pesticide Biochemistry and Physiology [1]

Value of the data

- Potential use of Curcuma longa and α-phellandrene as bioinsecticide against Lucilia cuprina.
- Contact activity of C. longa leaves essential oil and its major compound α-phellandrene over L. cuprina larvae.
- Determination of time-dependent damage of L. cuprina larvae exposed to C. longa leaves essential oil and α-phellandrene.

1. Data

The results of this study involve the experimental data from the cuticle damage of L. cuprina third instar larvae, exposed to C. longa leaves essential oil and its major compound α-phellandrene [1]. The
larvae of the control group, using ethanol as solvent, showed no cuticle alterations after 6 and 24 h of contact (Video 1a, 1b; Video 2a, 2b). The insecticide effects of C. longa leaves EO and α-phellandrene can be observed ≤ 6 h after contact with the tested solutions (Video 1c; Video 2c). Moreover, progressive darkening in the body of L3, marked reduction of movement, color changes in larval cuticle and dead were observed in both extracts 24 h after exposure (Video 1d; Video 2d).

Supplementary material related to this data article can be found online at https://doi.org/10.1016/j.dib.2018.11.001.

2. Experimental design, materials and methods

2.1. Plant material, essential oil extraction and chemical characterization

C. longa leaves used in this work were grown in the Medical Plants Unit of the Catarinense Federal Institute (IFC), located at 26° 23.33.6691″ S and 48° 44.18.3336″ W at 10.6 m above the sea level in the city of Araquari, Santa Catarina State, South of Brazil. The plant cultivation, essential oil extraction and chemical characterization were carried as described in the companion paper [1]. The α-phellandrene (CAS: 99-83-2) studied was acquired commercially and certified as having purity of ≥ 99%, from Sigma-Aldrich Brazil Ltda (São Paulo, SP, Brazil).

2.2. Establishment of L. cuprina colonies and larval toxicity

Wild flies were collected manually at the IFC, using bait and insect nets. The establishment of stock colonies, insects’ identification, maintenance, mass reproduction and the protocol for the biological tests were performed as described by Chaaban et al. [2]. The toxicity of C. longa leaves EO and α-phellandrene to L. cuprina larvae was performed using groups of 20 L3, placed on filter paper, impregnated with a range of concentrations (0.15–2.86 μL/cm²) of C. longa leaves EO and (0.29–1.47 μL/cm²) to α-phellandrene. The L3 were put into glass vials containing a filter paper (12.56 cm²) impregnated with 0.2 mL of solutions with EO, that were solubilized in ethanol. The toxicity was evaluated by observing L3 mortality at 6, 24 and 48 h after contact [1,2]. Total larval mortality (LM) was calculated [1–3] as follows:

\[LM = \frac{\text{total died larvae} \times 100}{\text{total tested larvae}} \]

For reported of the cuticle damage through the videos, L3 exposed to 1.59 μL/cm² of C. longa leaves EO and 1.47 μL/cm² of α-phellandrene solubilized in ethanol were used as described in the companion paper [1].

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.11.001.

References

[1] A. Chaaban, V.S. Richardi, Carrer, J.S. Brum, R.R. Cipriano, C.E.N. Martins, M.A.N. Silva, C. Deschamps, M.B. Molento, Insecticide activity of Curcuma longa (leaves) essential oil and its major compound α-phellandrene against Lucilia cuprina larvae (Diptera: Calliphoridae): histological and ultrastructural biomarkers assessment, Pestic. Biochem. Physiol. (2018), https://doi.org/10.1016/j.pestbp.2018.10.002 (In press).

[2] A. Chaaban, V.M.C. Santos, E. Gomes, C.E.N. Martins, W. Amaral, C. Deschamps, M.B. Molento, Chemical composition of Piper gaudichaudianum essential oil and its bioactivity against Lucilia cuprina (Diptera: Calliphoridae), J. Essent. Oil Res. 30 (3) (2018) 159–166. https://doi.org/10.1080/10412905.2017.1423406.

[3] P. Kumar, S. Mishra, A. Malik, S. Satya, Biocontrol potential of essential oil monoterpenes against housefly, Musca domestica (Diptera: Muscidae), Ecotoxicol. Environ. Saf. 100 (2014) 1–6. https://doi.org/10.1016/j.ecoenv.2013.11.013.