LINDELÖF HYPOTHESIS AND THE ORDER OF THE MEAN-VALUE OF $|\zeta(s)|^{2k-1}$ IN THE CRITICAL STRIP

JAN MOSER

Abstract. The main subject of this paper is the mean-value of the function $|\zeta(s)|^{2k-1}$ in the critical strip. On Lindelöf hypothesis we give a solution to this question for some class of disconnected sets. This paper is English version of our paper [5].

1. Introduction
1.1. E.C. Titchmarsh had began with the study of the mean-value of the function $|\zeta(\sigma+it)|^{\omega}$, $1/2 < \sigma \leq 1$, $0 < \omega$,
where ω is non-integer number. [6] (comp. [2], p. 278). Next, Ingham and Davenport have obtained the following result (see [1], [2], comp. [7], pp. 132, 133)

$$\frac{1}{T} \int_{1}^{T} |\zeta(\sigma+it)|^{2\omega} dt = \sum_{n=1}^{\infty} \frac{d_{\omega}(n)}{n^{\sigma}} + O(1), \omega \in (0,2], T \to \infty.$$ (1.1)

Let us remind that:
(a) for $\omega \in \mathbb{N}$ the symbol $d_{\omega}(n)$ denotes the number of decompositions of n into ω-factors ,
(b) in the case ω is not an integer, we define $d_{\omega}(n)$ as the coefficient of $n^{-\omega}$ in the Dirichlet series for the function $\zeta^{\omega}(s)$ converging for all $\sigma > 1$.

1.2. Next, for

$$\omega = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}$$

it follows from (1.1) that the orders of mean-values

$$\frac{1}{T} \int_{1}^{T} |\zeta(\sigma+it)| dt, \frac{1}{T} \int_{1}^{T} |\zeta(\sigma+it)|^{3} dt$$

are determined. But a question about the order of mean-value of

$$|\zeta(\sigma+it)|^{2l+1}, l = 2, 3, \ldots, \frac{1}{2} < \sigma < 1$$

remains open.

In this paper we give a solution to this open question on the assumption of truth of the Lindelöf hypothesis for some infinite class of disconnected sets. In a

Key words and phrases. Riemann zeta-function.
particular case we obtain the following result: on Lindelöf hypothesis we have

\[
1 - |o(1)| < \frac{1}{H} \int_T^{T+H} |\zeta(\sigma + it)|^{2k-1} dt < \\
< \sqrt{F(\sigma, 2k-1) + |o(1)|}, \quad H = T^\epsilon, \quad k = 1, 2, \ldots, 0 < \epsilon,
\]

where

\[
F(\sigma, \omega) = \sum_{n=1}^{\infty} \frac{d^2(n)}{n^{2\sigma}},
\]

and \(\epsilon\) is an arbitrarily small number.

The proof of our main result is based on our method (see [4]) for the proof of new mean-value theorem for the Riemann zeta-function

\[
Z(t) = e^{i\theta(t)} \zeta \left(\frac{1}{2} + it \right)
\]

with respect of two infinite classes of disconnected sets.

2. Main formulas

We use the following formula: on Lindelöf hypothesis

\[
\zeta^k(s) = \sum_{n \leq t^\delta} \frac{d_k(n)}{n^s} + \mathcal{O}(t^{-\lambda}), \quad \lambda = \lambda(k, \delta, \sigma) > 0,
\]

\[
s = \sigma + it, \quad \frac{1}{2} < \sigma < 1, \quad t > 0
\]

(see [7], p. 277) for every natural number \(k\), where \(\delta\) is any given positive number less than 1. Let us remind that

\[
d_k(n) = \mathcal{O}(n^\eta),
\]

where \(0 < \eta\) is an arbitrarily small number. Of course, (see (2.1), (2.2))

\[
\zeta^k(s) = \mathcal{O} \left(\sum_{n \leq t^\delta} d_k(n)n^{-\sigma} \right) = \mathcal{O} \left(t^{\delta \eta + \delta(1-\sigma)} \right) = \\
= \mathcal{O} \left(t^{(n+1/2)\delta} \right).
\]

Let

\[
t \in [T, T + H], \quad H = T^\epsilon, \quad 2\delta n + 2\delta < \epsilon.
\]

Since

\[
\sum_{T^\delta \leq n \leq (T+H)^\delta} 1 = \mathcal{O}(T^{\delta+\epsilon-1})
\]

then

\[
\sum_{T^\delta \leq n \leq t^\delta} \frac{d_k(n)}{n^s} = \mathcal{O} \left(T^{\delta \eta + \delta \sigma} \cdot \sum_{T^\delta \leq n \leq (T+H)^\delta} 1 \right) = \\
= \mathcal{O}(T^{\delta \lambda_1 - \delta \sigma + \delta + \epsilon - 1}) = \mathcal{O}(T^{-\lambda_1}),
\]

where

\[
\lambda_1 = 1 - \delta - \epsilon + \delta \sigma - \delta \eta > 0,
\]
(of course, for sufficiently small ϵ the inequality (2.6) holds true). Next, for
\begin{equation}
\lambda_2 = \lambda_2(k, \delta, \sigma, \epsilon, \eta) = \min\{\lambda, \lambda_1\} > 0
\end{equation}
the following formula (see (2.1), (2.5) – (2.7))
\begin{equation}
\zeta^k(s) = \sum_{n<T^\delta} \frac{d_k(n)}{n^s} + \mathcal{O}(T^{-\lambda_2}), \quad t \in [T, T + H]
\end{equation}
holds true. Since
\begin{equation}
\zeta^k(s) = U_k(\sigma, t) + iV_k(\sigma, t)
\end{equation}
then - on Lindelöf hypothesis - we obtain from (2.8) the following main formula
\begin{equation}
U_k(\sigma, t) = 1 + \sum_{2 \leq n < T^\delta} \frac{d_k(n)}{n^\sigma} \cos(t \ln n) + \mathcal{O}(T^{-\lambda_2}),
\end{equation}
\begin{equation}
V_k(\sigma, t) = -\sum_{2 \leq n < T^\delta} \frac{d_k(n)}{n^\sigma} \sin(t \ln n) + \mathcal{O}(T^{-\lambda_2}),
\end{equation}
$t \in [T, T + H]$.

3. The first class of lemmas

Let us denote by
\[\{t_\nu(\tau)\}\]
an infinite set of sequences that we defined (see [4], (1)) by the condition
\begin{equation}
\vartheta[t_\nu(\tau)] = \pi \nu + \tau, \quad \nu = 1, \ldots, \tau \in [-\pi, \pi],
\end{equation}
of course,
\[t_\nu(0) = t_\nu,
\]
where (see [7], pp. 220, 329)
\begin{equation}
\vartheta(t) = -\frac{t}{2} \ln \pi + \text{Im} \ln \Gamma \left(\frac{1}{2} + \frac{t}{2}\right),
\end{equation}
\begin{equation}
\vartheta'(t) = \frac{1}{2} \ln t + \mathcal{O}\left(\frac{1}{t}\right),
\end{equation}
\begin{equation}
\vartheta''(t) \sim \frac{1}{2t}.
\end{equation}

3.1. The following lemma holds true.

Lemma 1. If
\[2 \leq m, n < T^\delta
\]
then
\begin{equation}
\sum_{T \leq t_\nu \leq T + H} \cos\{t_\nu(\tau) \ln n\} = \mathcal{O}\left(\frac{\ln T}{\ln n}\right),
\end{equation}
\begin{equation}
\sum_{T \leq t_\nu \leq T + H} \cos\{t_\nu(\tau) \ln(mn)\} = \mathcal{O}\left(\frac{\ln T}{\ln(mn)}\right),
\end{equation}
\begin{equation}
\sum_{T \leq t_\nu \leq T + H} \cos\left\{t_\nu(\tau) \ln \frac{m}{n}\right\} = \mathcal{O}\left(\frac{\ln T}{\ln \frac{m}{n}}\right), \quad m > n,
\end{equation}
and
where the \(\mathcal{O} \)-estimates are valid uniformly for \(\tau \in [-\pi, \pi] \).

Proof. We use the van der Corput’s method. Let (see (5.3))

\[
\varphi_1(\nu) = \frac{1}{2\pi} t_\nu(\tau) \ln n.
\]

Next, (see (2.4), (3.1), (3.2))

\[
\varphi_1'(\nu) = \ln n 2\varphi_1''(\nu) = -\frac{\pi \ln n}{2\{\varphi'[t_\nu(\tau)]\}^2} \varphi''\{t_\nu(\tau)\} < 0,
\]

\[
0 < A \ln n \leq \varphi_1'(\nu) = \frac{\ln n}{\ln \frac{T}{2\pi} + \mathcal{O}(\frac{1}{T})} = \frac{\ln n}{\ln \frac{T}{2\pi} + \mathcal{O}(\frac{H}{T})} < \frac{\ln n}{\ln \frac{T}{2\pi} + \mathcal{O}(\frac{H}{T})} < \frac{1}{4},
\]

\((A > 0, \text{ since } \delta \text{ may be sufficiently small}). \text{ Hence, (see [7], p. 65 and p. 61, Lemma 4.2)}

\[
\sum_{T \leq t_\nu \leq T + H} \cos\{t_\nu(\tau) \ln n\} =
\int_{T \leq t_\nu \leq T + H} \cos\{2\pi \varphi_1(x)\} dx + \mathcal{O}(1) = \mathcal{O} \left(\frac{\ln T}{\ln n} \right),
\]

i.e. the estimate (3.3) holds true. The estimates (3.4) and (3.5) follow by the similar way. \(\Box\)

3.2. The following lemma holds true.

Lemma 2. On Lindelöf hypothesis we have

\[
(3.6) \quad \sum_{T \leq t_\nu \leq T + H} U_k[\sigma, t_\nu(\tau)] = \frac{1}{2\pi} H \ln \frac{T}{2\pi} + \mathcal{O}(H).
\]

Proof. Let us remind that

\[
(3.7) \quad \sum_{T \leq t_\nu \leq T + H} 1 = \frac{1}{2\pi} H \ln \frac{T}{2\pi} + \mathcal{O}(1),
\]

(see [3], (23)). Next, (see (2.10), (3.4))

\[
\sum_{T \leq t_\nu \leq T + H} U_k[\sigma, t_\nu(\tau)] = \frac{1}{2\pi} H \ln \frac{T}{2\pi} + \mathcal{O}(1) + \mathcal{O}(T^{-\lambda_2} H \ln T) + \sum_{2 \leq n < T^\delta} \frac{d_k(n)}{n^\sigma} \sum_{T \leq t_\nu \leq T + H} \cos\{t_\nu(\tau) \ln n\} =
\]

\[
= \frac{1}{2\pi} H \ln T + \mathcal{O}(1) + \mathcal{O}(T^{-\lambda_2} H \ln T) + w_1.
\]
Since (see (2.2), (2.4), (3.3))

\[w_1 = \mathcal{O}\left(T^{\delta \eta} \ln T \sum_{2 \leq n \leq T^\delta} \frac{1}{\sqrt{n \ln n}} \right) = \]

\[= \mathcal{O}\left(T^{\delta \eta} \ln T \left(\sum_{2 \leq n < T^{\delta/2}} + \sum_{T^{\delta/2} \leq n < T^\delta} \right) \frac{1}{\sqrt{n \ln n}} \right) = \]

\[= \mathcal{O}(T^{\delta \eta + \delta/2}) = \mathcal{O}(H), \]

then from (3.8) the formula (3.6) follows. □

4. Theorem 1

4.1. Next, we define the following class of disconnected sets (comp. [4], (3)):

(4.1) \[G(x) = \bigcup_{T \leq t \leq T + H} \{ t : t\nu(-x) < t < t\nu(x) \}, \quad 0 < x \leq \frac{\pi}{2}. \]

Let us remind that (see [4], (7))

\[t\nu(x) - t\nu(-x) = \frac{4x}{\ln \frac{2}{\pi}} + \mathcal{O}\left(\frac{xH}{T \ln^2 T} \right), \]

\[t\nu(-x), t\nu(x) \in [T, T + H]. \]

Of course,

(4.3) \[m\{G(x)\} = \frac{2x}{\pi} H + \mathcal{O}(x), \]

(see (3.7), (4.2)), where \(m\{G(x)\} \) stands for the measure of \(G(x) \).

4.2. The following theorem holds true.

Theorem 1. On Lindel"of hypothesis

(4.4) \[\int_{G(x)} U_k(\sigma, t) dt = \frac{2x}{\pi} H + o\left(\frac{xH}{\ln T} \right). \]

First of all, we obtain from (4.4) by (4.3) the following

Corollary 1. On Lindel"of hypothesis

(4.5) \[\frac{1}{m(G(x))} \int_{G(x)} U_k(\sigma, t) dt = 1 + o\left(\frac{1}{\ln T} \right). \]

Next, we obtain from (4.4) the following

Corollary 2. On Lindel"of hypothesis

(4.6) \[\int_{G(x)} |U_k(\sigma, t)| dt \geq \frac{2xH}{\pi} \{1 - o(1)\}. \]

Since (see (2.3))

\[|\zeta(s)|^{2k-1} = \sqrt{U_{2k-1}^2 + V_{2k-1}^2} \geq |U_{2k-1}| \]

then we obtain from (4.6), \(k \to 2k - 1 \), the following
Corollary 3. On Lindelöf hypothesis

\begin{equation}
\int_{G(x)} |\zeta(\sigma + it)|^{2k-1} dt \geq \frac{2xH}{\pi}(1 - |\sigma(1)|).
\end{equation}

4.3. In this part we shall give the proof of the Theorem 1. Since (see (3.1), (3.2))

\begin{equation}
\int_{-\pi}^{\pi} U_k[\sigma, t \nu(\tau)]d\tau = \int_{-\pi}^{\pi} U_k[\sigma, t \nu(\tau)] \left(\frac{dt \nu(\tau)}{d\tau} \right)^{-1} \frac{dt \nu(\tau)}{d\tau} d\tau =
\end{equation}

\begin{equation}
= \ln P_0 \int_{-\pi}^{\pi} U_k[\sigma, t \nu(\tau)] \left(\frac{dt \nu(\tau)}{d\tau} \right) d\tau +
\end{equation}

\begin{equation}
+ O \left(x \max \{|\zeta_k|\} \frac{H}{T} \max \left\{ \left(\frac{dt \nu(\tau)}{d\tau} \right) \right\} \right) =
\end{equation}

\begin{equation}
= \ln P_0 \int_{t \nu(-x)}^{t \nu(x)} U_k[\sigma, t]dt + O \left(x \frac{T^{\delta \gamma + \delta/2 + 2\epsilon - 1}}{\ln T} \right),
\end{equation}

where the max is taken with respect to the segment \([T, T + H]\). Consequently, (see (2.3), (3.7), (4.1) and (4.2))

\begin{equation}
\sum_{T \leq t \nu \leq T + H} \int_{-\pi}^{\pi} U_k[\sigma, t \nu(\tau)]d\tau =
\end{equation}

\begin{equation}
= \ln P_0 \int_{G(x)} U_k(\sigma, t)dt + O(xT^{\delta \gamma + \delta/2 + 2\epsilon - 1} +
\end{equation}

\begin{equation}
+ O \left(xT^{(\eta + 1/2)\delta} \right). \ln T
\end{equation}

Now, the integration (3.0) by \(\tau \in [-\pi, \pi]\)

gives the formula

\begin{equation}
\ln P_0 \int_{G(x)} U_k(\sigma, t)dt + O(xT^{\delta \gamma + \delta/2 + 2\epsilon - 1}) =
\end{equation}

\begin{equation}
= \frac{x}{\pi} H \ln \frac{T}{2\pi} + O(xT^{\delta \gamma + \delta/2})
\end{equation}

and from this by (2.3) the formula (4.4) follows immediately (here \(\epsilon\) is arbitrarily small number).
\(\square\)
5. The second class of lemmas

5.1. Let

\[S_1(t) = \sum_{2 \leq n \leq T^t} \frac{d_k(n)}{n^\sigma} \cos(t \ln n), \]

(5.1)

\[w_2(t) = \{S_1(t)\}^2. \]

The following lemma holds true.

Lemma 3.

\[\sum_{T \leq t \leq T + H} w_2[t_\nu(\tau)] = \]

(5.2)

\[= \{F(\sigma, k) - 1\} \cdot \frac{1}{4\pi} H \ln \frac{T}{2\pi} + o(H), \]

(on \(F(\sigma, k)\) see (1.3)).

Proof. First of all we have

\[w_2(t) = \sum_m \sum_n \frac{d_k(m)d_k(n)}{(mn)^\sigma} \cos(t \ln m) \cos(t \ln n) = \]

(5.3)

\[= \frac{1}{2} \sum_m \sum_n \frac{d_k(m)d_k(n)}{(mn)^\sigma} \cos\{t \ln(mn)\} + \]

\[+ \sum_{n < m} \frac{d_k(m)d_k(n)}{(mn)^\sigma} \cos\left(t \ln \frac{m}{n}\right) + \frac{1}{2} \sum_n \frac{d_k^2(n)}{n^{2\sigma}} = \]

\[= w_{21}(t) + w_{22}(t) + w_{23}(t). \]

Now we have:

by (2.2), (2.4) and (3.4)

(5.4)

\[\sum_{T \leq t \leq T + H} w_{21}[t_\nu(\tau)] = O\left(T^{\delta \eta} \ln T \cdot \sum_{2 \leq m, n < T^t} \frac{1}{\sqrt{mn \ln (mn)}} \right) = \]

\[= O(T^{2\delta \eta + \delta} \ln T) = o(H); \]

by (2.2), (2.4) and (5.5) and by \[7\], p. 116, Lemma, \((T \rightarrow T^\delta), \)

(5.5)

\[\sum_{T \leq t \leq T + H} w_{22}[t_\nu(\tau)] = O\left(T^{\delta \eta} \ln T \cdot \sum_{2 \leq n < m \leq T^t} \frac{1}{\sqrt{mn \ln \frac{m}{n}}} \right) = \]

\[= O(T^{2\delta \eta + \delta} \ln^2 T) = o(H); \]

by (1.3), \(\omega \rightarrow k\), and by (2.2)

\[2_{23} = \frac{1}{2} \sum_{n=2}^{\infty} \frac{d_k^2(n)}{n^{2\sigma}} - \frac{1}{2} \sum_{n \geq T^t} \frac{d_k^2(n)}{n^{2\sigma}} = \]

(5.6)

\[= \frac{1}{2} \{F(\sigma, k) - 1\} + O\left(\int_{T^t}^{\infty} x^{\eta - 2\sigma} dx \right) = \]

\[= \frac{1}{2} \{F(\sigma, k) - 1\} + O(T^{-\delta(2\sigma - 1 - \eta)}); \]
(of course, $2\sigma - 1 - \eta > 0$ since η is arbitrarily small). Finally, by (2.4), (3.7) and (5.6) we obtain

\begin{equation}
\sum_{T \leq t \leq T+H} w_{23} = \{F(\sigma, k) - 1\} \frac{1}{4\pi} H \ln \frac{T}{2\pi} + o(H).
\end{equation}

Hence, from (5.3) by (5.4) – (5.7) the formula (5.2) follows. □

Next, the following lemma holds true.

Lemma 4. On Lindelöf hypothesis

\begin{equation}
\sum_{T \leq t \leq T+H} U_k^2[\sigma, t_\nu(\tau)] = \{F(\sigma, k) - 1\} \frac{1}{2\pi} G \ln \frac{T}{2\pi} + o(H).
\end{equation}

Proof. Since (see (2.10), (5.1))

\begin{equation}
U_k^2(\sigma, t) = 1 + S_1 + O(T^{-\lambda_2}),
\end{equation}

then

\begin{equation}
U_k^2(\sigma, t) = 1 + w_2 + 2S_1 + O(|S_1|T^{-\lambda_2}) + O(T^{-2\lambda_2}).
\end{equation}

Now we have:

by (2.4)

\begin{equation}
\sum_{T \leq t \leq T+H} S_1[t_\nu(\tau)] = O(T^{\delta_\eta+\delta/2}) = o(H);
\end{equation}

by (2.4), (3.7) and (5.2)

\begin{equation}
\sum_{T \leq t \leq T+H} |S_1|T^{-\lambda_2} =
\end{equation}

\begin{equation}
= O \left\{ T^{-\lambda_2} \sqrt{H \ln T} \left(\sum_{T \leq t \leq T+H} w_2[t_\nu(\tau)] \right)^{1/2} \right\} =
\end{equation}

\begin{equation}
= O(T^{-\lambda_2} H \ln T) = o(H).
\end{equation}

Consequently, from (5.9) by (3.7) the formula (5.8) follows. □

5.2. Let

\begin{equation}
S_2(t) = \sum_{2 \leq n < T^s} \frac{d_k(n)}{n^{\sigma}} \sin(t \ln n),
\end{equation}

\begin{equation}
w_3(t) = \{S_2(t)\}^2.
\end{equation}

The following lemma holds true.

Lemma 5.

\begin{equation}
\sum_{T \leq t \leq T+H} w_3[t_\nu(\tau)] = \{F(\sigma, k) - 1\} \frac{1}{4\pi} H \ln \frac{T}{2\pi} + o(H).
\end{equation}
Proof. Since (comp. (5.3))
\[
\begin{align*}
 w_3(t) &= \sum_{m,n} d_k(m) d_k(n) \sin(t \ln m) \sin(t \ln n) = \\
 &= -\frac{1}{2} \sum_{m,n} d_k(m) d_k(n) \cos(t \ln(mn)) + \\
 &+ \sum_{n < m} d_k(m) d_k(n) \cos(t \ln m) + \\
 &+ \frac{1}{2} \sum_n d_k^2(n) = w_{31}(t) + w_{32}(t) + w_{33}(t),
\end{align*}
\]
then we obtain by the way (5.3) – (5.7) our formula (5.11).
\[
\square
\]

Next, the following lemma holds true

Lemma 6. On Lindelöf hypothesis
\[
\sum_{T \leq t \leq T + H} V_k^2[\sigma, t, \nu(\tau)] = \\
= \{F(\sigma, k) - 1\} \frac{1}{4\pi} H \ln \frac{T}{2\pi} + o(H).
\]

Proof. Since (see (5.11))
\[
V_k(\sigma, t) = -S_2 + O(T^{-\lambda_2}),
\]
then
\[
V_k^2(\sigma, t) = w_3 + O(T^{-\lambda_2} |S_2|) + O(T^{-2\lambda_2}).
\]
Consequently, the proof may be finished in the same way as it was done in the case of our Lemma 4 (comp. (5.12), (5.13)).
\[
\square
\]

Since (see (2.10))
\[
|\zeta(s)|^{2k} = U_k^2 + V_k^2,
\]
then by (5.8), (5.11) we obtain the following.

Lemma 7. On Lindelöf hypothesis
\[
\sum_{T \leq t \leq T + H} |\zeta[\nu(\tau)]|^{2k} = \frac{1}{2\pi} F(\sigma, k) H \ln \frac{T}{2\pi} + o(H).
\]

6. Theorem 2 and main Theorem

Now we obtain from (5.15) by the way very similar to than one used in the proof of the Theorem 1, the following.

Theorem 2. On Lindelöf hypothesis
\[
\int_{G(x)} |\zeta(\sigma + it)|^{2k} dt = \frac{2\pi}{\pi} F(\sigma, t) H + o \left(\frac{xH}{\ln T} \right).
\]
Further, from (6.1) we obtain
Corollary 4. On Lindelöf hypothesis

\[(6.2) \int_{G(x)} |\zeta(\sigma + it)|^{2k-1} dt < \frac{2xH}{\pi} \sqrt{F(\sigma, 2k-1)} \cdot \{1 + |o(1)|}\.
\]

Indeed, by (4.3), (6.1) we have

\[
\int_{G(x)} |\zeta(\sigma + it)|^{2k} dt < \\
< \sqrt{m\{G(x)\}} \left(\int_{G(x)} |\zeta(\sigma + it)|^{4k-2} dt \right)^{1/2} < \\
< \frac{2xH}{\pi} \sqrt{F(\sigma, 2k-1)} \cdot \{1 + |o(1)|}\.
\]

Finally, from (4.7), (6.2) we obtain our main result:

Theorem. On Lindelöf hypothesis

\[(6.3) \quad 1 - |o(1)| < \frac{1}{m\{G(x)\}} \int_{G(x)} |\zeta(\sigma + it)|^{2k-1} dt < \\
< \sqrt{F(\sigma, 2k-1) + |o(1)|}\.
\]

Remark 1. The question about the order of the mean-value of the function

\[|\zeta(\sigma + it)|^{2k-1}, \quad k = 1, 2, \ldots\]

defined on infinite class of disconnected sets \{G(x)\} is answered by the inequalities (6.3).

Remark 2. Inequalities (6.2) follows from (6.3) as a special case for \(x = \pi/2\), (see (2.3), (2.4), (4.3)).

I would like to thank Michal Demetrian for helping me with the electronic version of this work.

REFERENCES

[1] H. Davenport, ‘Note on mean-value theorems for the Riemann zeta-function’, J. London Math. Soc., 10 (1935), 136-138.
[2] A. E. Ingham, ‘Mean-value theorems in the Riemann zeta-function’, Quart. J. Math., 4, (1933), 278-290. (1995).
[3] J. Moser, ‘On the theorem of Hardy-Littlewood in the theory of the Riemann zeta-function’, Acta. Arith., 31, (1976), 45-51, (in Russian).
[4] J. Moser, ‘New consequences of the Riemann-Siegel formula and law of asymptotic equality of signum areas of the \(Z(t)\)-function’, Acta Arith., 42 (1982), 1-10, (in Russian); arXiv: 1312.4767.
[5] J. Moser, ‘Lindelöf hypothesis and the order of the mean-value of \(|\zeta(s)|^{2k-1}\) in the critical strip’, Acta Math. Univ. Comen., 48-49, (1986), 53-54, (in Russian).
[6] E. C. Titchmarsh, ‘Mean-value theorems in the theory of the Riemann zeta-function’, Messenger of Math., 58, (1929), 125-129.
[7] E. C. Titchmarsh, ‘The theory of the Riemann zeta-function’, Clarendon Press, Oxford, 1951.