Explicit Central Elements of $U_q(\mathfrak{gl}(N+1))$

Jeffrey Kuan* Keke Zhang†

Abstract

Using Drinfeld’s central element construction and Jimbo’s fusion of R–matrices, we construct central elements of the quantum group $U_q(\mathfrak{gl}(N+1))$. These elements are explicitly written in terms of the generators.

1 Introduction

Several recent works (e.g. [CGRS, CGRS16, Kuab, Kuaa, Kua16]), motivated by mathematical physics, have used explicit central elements of various quantum groups. For the applications in those paper, the central elements need to be explicitly written in terms of the generators of the quantum group.

Previous work of [ZGB91b] applies Drinfeld’s central element construction [Dri90] to universal R–matrices in order to construct central elements of quantum groups and to determine their eigenvalues on irreducible highest weight modules. In particular, by using Jimbo’s [Jim86] explicit formula for the R–matrix of $U_q(\mathfrak{gl}(N+1))$, further work by the same authors [GZB91] explicitly writes a quantum Casimir element of $U_q(\mathfrak{gl}(N+1))$ with a formula for its eigenvalues. Using an explicit formula for the universal R–matrix in [KR90], the authors [ZGB91a] write an explicit (but somewhat complicated) expression for general Casimir elements in quantum groups.

In this paper, we apply Drinfeld’s central element construction to the fused R–matrices of $U_q(\mathfrak{gl}(N+1))$ in [Jim86], rather than the universal R–matrices of [KR90]. The resulting central elements appear to be slightly simpler than the previous expressions. The proof requires some new ingredients, notably relations between the root vectors [Xi94] and some elementary knowledge of coset representatives of symmetric groups.

We also note the work in [Li10], which shows that the Casimir elements (and a trivial central element) generate the entire center of $U_q(\mathfrak{gl}(N+1))$. Additionally, the paper [LXZ18] explicitly writes two algebraically independent central elements in $U_q(\mathfrak{gl}(N+1))$. In principle, it should be possible to match those central elements to the ones here, but we do not pursue this direction here.

Acknowledgements: Jeffrey Kuan was supported by the Minerva Foundation and NSF grant DMS-1502665. Both authors were supported by the 2017 Columbia Mathematics REU program, which was funded by Columbia University. We thank Yi Sun for helpful discussions.

* Columbia University, Department of Mathematics.
† Columbia University, Undergraduate.
2 Notations and Backgrounds

2.1 Symmetric Groups

Define the usual action of the symmetric group S_m on \mathbb{N}^m by $\sigma(x_1, \ldots, x_m) = (x_{\sigma(1)}, \ldots, x_{\sigma(m)})$. For any $A \in \mathbb{N}^m$, define $H_A \leq S_m$ to be the subgroup $\{ \sigma \in S_m : \sigma(A) = A \}$. Let $D_A \subset S_m$ be the set of (left) coset representatives of H_A with the fewest inversions: in other words, $\sigma \in D_A$ if and only if $\text{inv}(\sigma) \leq \text{inv}(\tau)$ for every $\tau \in \sigma H_A$.

Example 1. Take $A = (3,3,2,2,1)$. Then $H_A = S_3 \times S_2 \times S_1 \leq S_6$. We have $(34) \in D_A$ with $(34) \cdot A = (3,3,2,3,2,1)$, and $(35) \in D_A$ with $(35) \cdot A = (3,3,2,2,3,1)$. However, $(134) \cdot A = (34) \cdot A$ and $\text{inv}((134)) > \text{inv}((34))$, so $(134) \notin D_A$.

We recall (see e.g. [Car85]) that each coset of H_A has a unique representative $\sigma \in D_A$, and that $\text{inv}(\sigma \tau) = \text{inv}(\sigma) + \text{inv}(\tau)$ for every $\tau \in H_A$.

Lemma 1. Suppose that $\tau, \tau' \in D_A$. Then there exist a sequence of elements $\tau_0, \ldots, \tau_l \in D_A$ such that $\tau_0 = \tau'$, $\tau_l = \tau$ and every $\tau_{j+1}\tau_j^{-1}$ is a transposition for $j = 0, \ldots, l-1$.

Proof. It suffices to prove this statement when either τ or τ' is the identity permutation e, because the two sequences can be concatenated. So suppose that τ is an arbitrary element of D_A and $\tau' = e$. Let $s_k \cdots s_1$ be a minimal word representation of τ and set $\tau_j = s_j \cdots s_1$. Then $\tau_{j+1}\tau_j^{-1} = s_j s_{j+1}$, which is a transposition. So it remains to show that $\tau_j \in D_A$. If it were not, then there would exist a transposition $s \in H_A$ such that $\text{inv}(\tau_j s) = \text{inv}(\tau_j) - 1$. But then $\text{inv}(\tau s) = \text{inv}(\tau) - 1$, contradicting the assumption that $\tau \in D_A$.

Now suppose that $\tau = e$ and τ' is an arbitrary element of D_A. By the previous paragraph, there exist a sequence of elements $\tilde{\tau}_0 = e, \tilde{\tau}_1, \ldots, \tilde{\tau}_l = \tau'$ in D_A such that every $\tilde{\tau}_{j+1}\tilde{\tau}_j^{-1}$ is a transposition. Setting $\tau_j = \tilde{\tau}_{l-j}$, we have that $\tau_0 = \tau', \ldots, \tau_l = e$ is a sequence of elements in D_A and $\tau_{l-j-1}\tilde{\tau}_{l-j-1}^{-1}$ is a transposition for every j. The latter equality is equivalent to the condition that for every k, $\tau_k = s\tau_{k+1}$ for some transposition s. Since this is also equivalent to the condition that $\tau_{k+1}\tau_k^{-1}$ is a transposition for every k, this finishes the proof. \qed

Let $B_m^{(N)}$ denote the set of sequences $\mu = (\mu_0, \ldots, \mu_N)$ of non-negative integers such that $\mu_0 + \cdots + \mu_N = m$. For any $\mu \in B_m^{(N)}$, let $H^\mu \leq S_m$ denote the subgroup $S_{\mu_0} \times \cdots \times S_{\mu_N}$, and likewise let D^μ denote the set of left coset representatives with the fewest inversions. Define B_m to be the union $\bigcup_{N \geq 1} B_m^{(N)}$.

Let $W_m \subset \mathbb{N}^m$ denote the subset of elements (i_1, \ldots, i_m) satisfying $i_1 \leq \cdots \leq i_m$. For $i \in W_m$, and assuming that $N \geq i_m$, let $\mu^{(N)}(i) \in B_m^{(N)}$ be defined by

$$\mu^{(N)}(i)_k = |\{l \in \{1, \ldots, m\} : i_l = k\}|.$$

For $i \in W_m$ satisfying $i_m \leq N$, we have a natural isomorphism between the subgroups H_i and $H_{\mu^{(N)}(i)}$. Thus there is also a natural bijection between D_i and $D^{\mu^{(N)}(i)}$.

Given $i \in W_m$, define the equivalence relation \sim_1 on S_m by

$$\tau \sim_1 \sigma \text{ if and only if } \sigma^{-1}\tau \in H_i.$$

In words, $\tau \sim_1 \sigma$ if and only if they are in the same left coset of H_i. For any $\tau \in S_m$, there is a unique $\sigma \in D_i$ such that $\tau \sim_1 \sigma$. Define $d_i(\tau) = \text{inv}(\sigma^{-1}\tau)$. In other words, if τ is written uniquely
as \(\tau = \sigma \xi \) for \(\sigma \in D_1 \) and \(\xi \in H_1 \), then \(d_i(\tau) = \text{inv}(\xi) \). We will also let \(\sigma_i(\tau) \) and \(\xi_i(\tau) \) denote the two permutations in the unique expression \(\tau = \sigma \xi \).

Finally, given \(\tau \in S_m \), let \(\bar{\tau} \) denote the reversed permutation \(\bar{\tau}(k) = \tau(m + 1 - k) \).

We conclude this section by noting the following identity.

Lemma 2. For \(i \in W_n \), set \(\mu = \mu^{(N)}(i) \). Then

\[
-N\mu_0 - (N - 2)\mu_1 + \cdots + N\mu_N = -Nm + 2(i_1 + \cdots + i_m).
\]

Proof. By definition,

\[
\mu_k = |l \in \{1, \ldots, m\} : i_l = k|.
\]

We thus re–write

\[
-N\mu_0 - (N - 2)\mu_1 + \cdots + N\mu_N = -N(\mu_0 + \cdots + \mu_N) + 2\mu_1 + 4\mu_2 + \cdots + 2N\mu_N
\]

and note that

\[
2(i_1 + \cdots + i_m) = 2 \sum_{k=1}^{N} k \cdot |l \in \{1, \ldots, m\} : i_l = k| = 2 \sum_{k=1}^{N} k \cdot \mu_k,
\]

which shows the identity. \(\square \)

2.2 Quantum Groups

We use the following notation modified from [Jim86]. Define \(U_q(\mathfrak{sl}(N + 1)) \) to be the associative algebra over \(\mathbb{C} \) generated by the symbols \(q^{\pm h_i/2}, \hat{e}_{\pm,i}, (1 \leq i \leq N) \) under the following relations:

\[
q^{h_i/2}q^{-h_i/2} = q^{-h_i/2}q^{h_i/2} = 1, q^{h_i/2}q^{h_{i'}/2} = q^{h_{i'}/2}q^{h_i/2},
\]

\[
q^{h_i/2}\hat{e}_{+,i} q^{-h_i/2} = q^{\pm a_{i,i'}/2}\hat{e}_{+,i'},
\]

\[
[\hat{e}_{+,i}, \hat{e}_{-,i'}] = \delta_{i,i'} q^{h_i} - q^{-h_i} / (q - q^{-1}) (1)
\]

\[
\hat{e}_{\pm,i} \hat{e}_{\pm,i'} = \hat{e}_{\pm,i'} \hat{e}_{\pm,i}, (|i - i'| \geq 2),
\]

\[
\hat{e}_{\pm,i}^2 \hat{e}_{\pm,i+1} - (q + q^{-1})\hat{e}_{\pm,i}\hat{e}_{\pm,i+1}\hat{e}_{\pm,i} + \hat{e}_{\pm,i+1}\hat{e}_{\pm,i}^2 = 0(1 \leq i, i \pm 1 \leq N)
\]

Here, \((a_{i,i'})_{1 \leq i,i' \leq N}\) denotes the Cartan matrix of type \(A_N \), i.e.,

\[
a_{i,i'} = \begin{cases} 2 & (i = i'); \\ -1 & (i = i' \pm 1); \\ 0 & \text{(otherwise)} \end{cases} (2)
\]

Then define \(U_q(\mathfrak{gl}(N + 1)) \) by adjoining to \(U_q(\mathfrak{sl}(N + 1)) \) the elements \(q^{\pm h_i/2}(0 \leq i \leq N) \) so that \(q^{h_i} = q^{\epsilon_{i-1} - \epsilon_i} \) and that \(q^{a_{i+1,i}} \) belongs to the center.

The \(m \)-fold co–product is the algebra homomorphism

\[
\Delta^{(m)} : U_q(\mathfrak{gl}(N + 1)) \to \bigotimes_{\mu=1}^{m} U_q(\mathfrak{gl}(N + 1))
\]
such that

\[\Delta^{(m)}(q^{\pm \epsilon_i/2}) = q^{\pm \epsilon_i/2} \otimes \cdots \otimes q^{\pm \epsilon_i/2} \]
\[\Delta^{(m)}(\hat{e}_{\pm, i}) = \sum_{v=1}^{m} \hat{e}_{\pm, i}^{(v)} \]

where

\[\hat{e}_{\pm, i}^{(v)} = q^{h_i/2} \otimes \cdots \otimes q^{h_i/2} \otimes \hat{e}_{\pm, i} \otimes q^{-h_i/2} \otimes \cdots \otimes q^{-h_i/2}. \]

We also have the reversed co–product

\[\bar{\Delta}^{(m)}(q^{\pm \epsilon_i/2}) = q^{\pm \epsilon_i/2} \otimes \cdots \otimes q^{\pm \epsilon_i/2} \]
\[\bar{\Delta}^{(m)}(\hat{e}_{\pm, i}) = \sum_{v=1}^{m} q^{-h_i/2} \otimes \cdots \otimes q^{-h_i/2} \otimes \hat{e}_{\pm, i} \otimes q^{h_i/2} \otimes \cdots \otimes q^{h_i/2} \]

We write \(\Delta, \bar{\Delta} \) for \(\Delta^{(2)}, \bar{\Delta}^{(2)} \). The map \(\Delta \) endows \(U_q(\mathfrak{gl}(N + 1)) \) with a structure of a bi–algebra. It is also a Hopf algebra, but we will not need the counit and antipode.

Consider the following relations for \(R = R(\lambda, \mu) \):

\[R\Delta(u) = \bar{\Delta}(u)R \quad (\forall u \in U_q(\mathfrak{gl}(N + 1))) \]
\[R(\lambda, \mu)(\lambda \hat{e}_0 \otimes q^{-h_0/2} + q^{h_0/2} \otimes \mu \hat{e}_0) = (q^{-h_0/2} \otimes \lambda \hat{e}_0 + \mu \hat{e}_0 \otimes q^{h_0/2}R(\lambda, \mu)) \]

This admits a unique (up to a multiplicative constant) solution \(R \in \text{End}(V \otimes V) \), where \(V := \mathbb{C}^{N+1} \) is the defining representation of \(U_q(\mathfrak{gl}(N + 1)) \). From [5], it is clear that \(R(\lambda, \mu) \) only depends on \(\lambda \) and \(\mu \) through their ratio \(\lambda/\mu \), so we write \(R(\lambda/\mu) = R(\lambda, \mu) \).

Let us consider \[U_q(\mathfrak{gl}(N + 1)) \otimes \text{End}(\mathbb{C}^{N+1}) \]. Then the solution is given by (see [Jim86])

\[R(x) = \sum_{0 \leq i, j \leq N} \hat{E}_{ij}'(x) \otimes e_{ji}, \]

where

\[\hat{E}_{ij}'(x) = \begin{cases} (xq^{(\epsilon_i+\epsilon_j-1)/2})^{+1} E_{ij}' & (i \leq j) \\ (xq^{-\epsilon_i} - x^{-1}q^{-\epsilon_j})/(q - q^{-1}) & (i = j) \end{cases} \]

Here, \(E_{ij}' \) are the root vectors defined recursively by

\[E_{ij}' = E_{ik}'E_{kj}' - q^{\pm 1} E_{kj}'E_{ik}', \quad (i \leq k \leq j), \quad E_{i-1,i}' = \hat{e}_{+,i}, \quad E_{i,i-1}' = \hat{e}_{-,i} \]

and \(e_{ji} \) is the usual matrix which acts on the canonical basis \(\{I_0, \ldots, I_N\} \) of \(\mathbb{C}^{N+1} \) by

\[e_{ji}I_k = \delta_{ik}I_j. \]

In [GZB91], the authors define

\[\hat{E}_{ij} = \begin{cases} q^{(E_{ij} + E_{ij}^{-1})/2} E_{ij}, & i \neq j; \\ q^{E_{ii}/(q - q^{-1})}, & i = j; \end{cases} \]
where the modified root vectors are
\[E_{ij} = E_{ik}E_{kj} - q^{-1}E_{kj}E_{ik}, \quad (i \preceq k \preceq j), \quad E'_{i-1,i} = \hat{e}_{+,i}, \quad E'_{i,i-1} = \hat{e}_{-,i} \] (8)

Using Jimbo’s results, they show that

\[R = \sum_{N \geq 1} \hat{E}_{ij} \otimes e_{ji} \in U_q(\mathfrak{gl}(N + 1)) \otimes \text{End}(V) \]
\[R^T = \sum_{N \geq 1} \hat{E}_{ji} \otimes e_{ij} \in U_q(\mathfrak{gl}(N + 1)) \otimes \text{End}(V) \] (9)
satisfy

\[R \Delta(u) = \bar{\Delta}(u) R \]
\[R^T \bar{\Delta}(u) = \Delta(u) R^T \]

We can solve (5) even more generally. Consider the \(m \)-fold tensor of the defining representation \(V \otimes^m \), and let \(P_m V \otimes^m \) be the symmetric projection. Then the solution of (4) in \(U_q(\mathfrak{gl}(N + 1)) \otimes \text{End}(P_m V \otimes^m) \) is given by the fused \(R \)-matrix

\[R_{0,\{1,2,\ldots,m\}}(x) = R_{0m}(x)R_{0m-1}(xq) \cdots R_{01}(xq^{m-1})P_m \in U_q(\mathfrak{gl}(N + 1)) \otimes \text{End}(P_m V \otimes^m). \] (10)

Therefore, the fused \(R \)-matrices

\[R_{0,\{1,2,\ldots,m\}} = R_{0m}R_{0m-1} \cdots R_{01}P_m \in U_q(\mathfrak{gl}(N + 1)) \otimes \text{End}(P_m V \otimes^m) \]
\[R^T_{0,\{1,2,\ldots,m\}} = R^T_{0m}R^T_{0m-1} \cdots R^T_{01}P_m \in U_q(\mathfrak{gl}(N + 1)) \otimes \text{End}(P_m V \otimes^m) \]
satisfy

\[R_{0,\{1,2,\ldots,m\}} \Delta(u) = \bar{\Delta}(u) R_{0,\{1,2,\ldots,m\}} \] (11)
\[R^T_{0,\{1,2,\ldots,m\}} \bar{\Delta}(u) = \Delta(u) R^T_{0,\{1,2,\ldots,m\}} \] (12)
in \(U_q(\mathfrak{gl}(N + 1)) \otimes \text{End}(P_m V \otimes^m) \) for all \(u \in U_q(\mathfrak{gl}(N + 1)) \).

Therefore

\[\Gamma_m := R^T_{0,\{1,2,\ldots,m\}} R_{0,\{1,2,\ldots,m\}} \in U_q(\mathfrak{gl}(N + 1)) \otimes \text{End}(P_m V \otimes^m) \] (13)

commutes with \(\Delta(u) \) for all \(u \in U_q(\mathfrak{gl}(N + 1)) \). By Drinfeld’s central element construction \[\text{[Dri90]} \], the element

\[C_m = \text{id} \otimes \text{tr}_q(\Gamma_m) \] (14)
is central in \(U_q(\mathfrak{gl}(N + 1)) \), where the quantum trace \(\text{tr}_q \) of an operator \(A \) is defined by

\[\text{tr}_q(A) = \text{tr}(q^{-2\hbar_0} A) := \text{tr}(q^{-N_{\ell_0} - (N-2)\ell_1 - \cdots - N_{\ell_N}} A) \] (15)

We also have the following relations between the root vectors.\(^1\) For \(i < l \) and \(j < k \),

\[E_{il}E_{jk} = \begin{cases} E_{jk}E_{il}, & i < j < k < l \text{ or } i < l < j < k, \\ q^{-1}E_{jk}E_{il}, & i = j < k < l \\ qE_{jk}E_{il}, & i < j < k = l \\ E_{jk}E_{il} + (q - q^{-1})E_{ji}E_{ik}, & i < j < l < k, \end{cases} \] (16)

\(^1\) Similar relations can be found in the paper \[X94 \], but there appear to be some typos. They can also be derived from \[\text{(11)} \] by applying \(\text{id} \otimes B \) to both sides, for suitable linear maps \(B \) on \(\text{End}(P_2 V \otimes^2) \). One can also check that the relations hold in the explicit representations in Remark 1 below.
\[E_{li}E_{kj} = \begin{cases}
E_{kj}E_{li}, & i < j < k < l \text{ or } i < l < j < k, \\
qE_{kj}E_{li}, & i = j < k < l \\
q^{-1}E_{kj}E_{li}, & i < j < k = l \\
E_{kj}E_{li} - (q^{-1})E_{ij}E_{ki}, & i < j < l < k;
\end{cases} \] (17)

By the first and fourth lines above,
\[\hat{E}_{ij}\hat{E}_{jk} + q^{-1}\hat{E}_{ik}\hat{E}_{jl} = \hat{E}_{jk}\hat{E}_{il} + q\hat{E}_{jl}\hat{E}_{ik}, \] (18)
\[\hat{E}_{li}\hat{E}_{kj} + q\hat{E}_{kl}\hat{E}_{ij} = \hat{E}_{kj}\hat{E}_{li} + q^{-1}\hat{E}_{ij}\hat{E}_{ki}. \] (19)

For any \(i \) and \(j \) in \(\mathbb{N}^m \), define
\[\hat{E}_{ij}^\pm := \begin{cases}
\hat{E}_{i1j1} \cdots \hat{E}_{imjm}, & \pm(i_1 - j_1), \ldots, \pm(i_m - j_m) \geq 0, \\
0, & \text{else.}
\end{cases} \]
and let \(e_{ij} := e_{j1i1} \otimes \cdots \otimes e_{jmim} \). For \(i, j \in \mathcal{W}_m \), define
\[\hat{E}_{ij}^\pm = \sum_{\zeta \in D_1} q^{\pm(\text{inv}(\tau) - \text{inv}(\zeta))} \hat{E}_{\zeta(i)\tau(j)}^\pm, \]
where \(\tau \) is an arbitrary element of \(D_A \). Note that the notation does not depend on \(\tau \), which is justified by the following lemma and the relation \(\text{inv}(\bar{\tau}) = (m - 1)m/2 - \text{inv}(\tau) \).

Lemma 3. 1. For every \(\tau, \tau' \in D_A \), the following identity holds:
\[\sum_{\sigma \in D_B} q^{\pm(\text{inv}(\sigma) - \text{inv}(\tau))} \hat{E}_{\tau(A)\sigma(B)}^\pm = \sum_{\sigma \in D_B} q^{\pm(\text{inv}(\sigma) - \text{inv}(\tau'))} \hat{E}_{\tau'(A)\sigma(B)}^\pm \] (20)

2. Likewise, for every \(\sigma, \sigma' \in D_B \),
\[\sum_{\tau \in D_A} q^{\pm(\text{inv}(\tau) - \text{inv}(\sigma))} \hat{E}_{\tau(A)\sigma(B)}^\pm = \sum_{\tau \in D_A} q^{\pm(\text{inv}(\tau) - \text{inv}(\sigma'))} \hat{E}_{\tau(A)\sigma'(B)}^\pm \] (21)

Proof. For \(m = 2 \), both cases are equivalent to the relations in (16) and (17).

Now suppose that \(m > 2 \). We only prove part 1, as part 2 is similar. By Lemma 11 it suffices to consider the case when \(\tau' = s\tau \) where \(s \) is a transposition, and assume without loss of generality that \(\text{inv}(\tau') = \text{inv}(\tau) + 1 \). Define the two sets \(D_B^{(1)} \) and \(D_B^{(2)} \) by
\[D_B^{(1)} = \{ \sigma \in D_B : s\sigma(B) = B \} \]
\[D_B^{(2)} = \{ \sigma \in D_B : s\sigma(B) \neq B \} \]

First, note that by the second and third lines of (16),
\[\sum_{\sigma \in D_B^{(1)}} q^{\text{inv}(\sigma) - \text{inv}(\tau)} \hat{E}_{\tau(A)\sigma(B)}^\pm = \sum_{\sigma \in D_B^{(1)}} q^{\text{inv}(\sigma) - \text{inv}(s\tau)} \hat{E}_{s\tau(A)\sigma(B)}^\pm. \]
Partition the set $D^{(2)}_B$ into two sets D_- and D_+ of equal cardinality, where $\sigma \in D_-$ if and only if $\text{inv}(\sigma) < \text{inv}(s\sigma)$. Then

$$\sum_{\sigma \in D^{(2)}_B} q^{\text{inv}(\sigma)-\text{inv}(\tau)} \tilde{E}_{\tau(A)\sigma(B)} = \sum_{\sigma \in D_-} \left(q^{\text{inv}(\sigma)-\text{inv}(\tau)} \tilde{E}_{\tau(A)\sigma(B)} + q^{\text{inv}(\sigma)+1-\text{inv}(\tau)} \tilde{E}_{\tau(A)s\sigma(B)} \right)$$

$$= \sum_{\sigma \in D_-} \left(q^{\text{inv}(\sigma)+1-\text{inv}(\tau')} \tilde{E}_{\tau'(A)\sigma(B)} + q^{\text{inv}(\sigma)-\text{inv}(\tau')} \tilde{E}_{\tau'(A)s\sigma(B)} \right)$$

as needed. The proof for E^+ is similar, where one uses (19) instead of (18).

Example 2. Consider $m = 2$ and $N = 3$. Set $j = (0, 1)$ and $i = (2, 3)$. Then

$$\tilde{E}_{ji} = \hat{E}_{13} \hat{E}_{02} + q \hat{E}_{03} \hat{E}_{12} = q^{-1}(\hat{E}_{12} \hat{E}_{03} + q \hat{E}_{02} \hat{E}_{13}),$$

with the equality following from (18). Additionally,

$$\tilde{E}_{ij} = \hat{E}_{31} \hat{E}_{20} + q^{-1} \hat{E}_{21} \hat{E}_{30} = q \left(\hat{E}_{30} \hat{E}_{21} + q^{-1} \hat{E}_{20} \hat{E}_{31} \right),$$

with the equality following from (19).

3 Statements and proofs

The main theorem is the following expression for central elements of $U_q(\mathfrak{gl}(N+1))$.

Theorem 1. The element given by

$$C_m = \sum_{i,j \in \mathcal{W}_m} q^{2i_1+\cdots+2i_m-Nm} \tilde{E}_{ji} \tilde{E}_{ij}$$

is central in $U_q(\mathfrak{gl}(N+1)).$

Example 3. Consider $m = 1$. Then

$$C_1 = (q - q^{-1})^{-2} \sum_{i=0}^{N} q^{2i-N} q^{2i} + \sum_{0 \leq j < i \leq N} q^{2i-N-1} q^{2i_j+2i_j} E_{ji} E_{ij},$$

which is (up to a constant) the central element C from [GZB91].
Example 4. Consider \(m = 2 \) and \(N = 3 \). Then

\[
C_2 = \sum_{0 \leq j, i \leq 3} q^{-6} H^2_{ji} E_{ij}^2 + \sum_{0 \leq j < i \leq 3} q^{-6+2i+2i} E_{ji1} E_{j,i2} (E_{i2j} E_{i1j} + q^{-1} E_{i2j} E_{i1j}) + \sum_{0 \leq j_1 < j_2 \leq 3} q^{-6+2i+12} E_{j1i} E_{j2j} E_{i2j} E_{i1j} + \sum_{0 \leq j < i \leq 3} q^{-6+2i+2i} (E_{ji1} E_{j2j} + q^{-1} E_{j1i} E_{j2j}) (E_{i2j} E_{i1j} + q^{-1} E_{i2j} E_{i1j})
\]

The central element \(C_2 \) has 50 terms, consisting of 10 terms from \(0 \leq j \leq i \leq 3 \), 20 terms from \(0 \leq j_1 < j_2 \leq i \leq 3 \) and \(0 \leq j \leq i_1 < i_2 \leq 3 \), 15 terms coming from \(0 \leq j_1 \leq i_1 < i_2 \leq 3 \) and 5 terms coming from \(0 \leq j_1 < j_2 \leq i_1 < i_2 \leq 3 \). One can also verify that 50 is the correct number of terms, from the fact that \(|\mathcal{W}_2| = 10 \) and the set \(\{\{i,j\} : i,j \in \mathcal{W}_2\} \) has 55 = 10(10 + 1)/2 elements, but the term \(\hat{E}_{ji} \) is zero when \(\{i,j\} \) is one of the 5 sets \(\{(0,2),(1,1)\},\{(0,3),(2,2)\},\{(0,3),(1,1)\},\{(1,3),(2,2)\},\{(1,2),(0,3)\} \).

The representation \(P_2 \mathbb{C}^3 \) of \(U_q(\mathfrak{g}(N+1)) \) is 10–dimensional, which can be explicitly written using Example 2 below. By multiplying \(10 \times 10 \) matrices, one can check that \(C_2 \) acts as \(\text{const} \cdot \text{Id}_{10} \), where the constant is \((q + q^{-1})^{-4} q^{-6}(1 + q^2 + 2q^4 + q^6 + q^8 + q^{10} + q^{12} + q^{14} + q^{20}) \).

Remark 1. In [ZGB91a], the central element \(C^{\Lambda_0} \) is defined, where \(\Lambda_0 \) is the highest weight of a finite–dimensional irreducible module \(V(\Lambda_0) \). The construction there is similar to the one here, with the major difference being the use of explicit universal \(R \)–matrices in place of fused \(R \)–matrices. Although it is not necessarily simple to check directly that \(C_m \) equals (up to a constant) \(C^{\Lambda_0} \) for \(V(\Lambda_0) = P_m V \otimes m \), it is straightforward to check that their eigenvalues are the same.

If \(V(\Lambda_0) \) has distinct weights \(\lambda_1, \ldots, \lambda_r \) with multiplicities \(d_1, \ldots, d_r \), then the eigenvalue of \(C^{\Lambda_0} \) on an irreducible module with highest weight \(\Lambda \) is given by

\[
\sum_{k=1}^r d_k q^{2(\Lambda + \rho, \lambda_k)}.
\]

Here, \(\rho \) is half the sum of the positive roots, and \((\cdot, \cdot) \) is the usual invariant bilinear form on \(\mathfrak{h}^* \).

Now take \(\Lambda_0 \) to be the highest weight of \(P_m V \otimes m \); then the distinct weights are elements of \(\mathcal{B}^{(N)}_m \) with multiplicity 1. Therefore the eigenvalue is

\[
\sum_{\mu \in \mathcal{B}^{(N)}_m} q^{2(2\rho, \mu)} q^{2(\Lambda, \mu)}
\]

If \(C_m \) acts on the same module \(V(\Lambda) \), then its eigenvalue can be found by evaluating on the lowest weight vector, because then only the diagonal terms \((i = j) \) have a nonzero contribution. So the eigenvalue is

\[
(q - q^{-1})^{-2m} q^{-Nm} \sum_{i \in \mathcal{W}_m} q^{2i_1 + \ldots + 2im} q^{2(\mu^{(N)}(i), \Lambda)}.
\]

By Lemma 2 this is \((q - q^{-1})^{-2m} q^{-Nm} \) times the eigenvalue of \(C^{\Lambda_0} \).
Before proving Theorem 1 we will write a basis for the symmetric projection $P_m V^\otimes m$.

Let I_0, \ldots, I_N be the canonical basis of V, and define the action on V by
\begin{align}
\hat{e}_{+,i}I_j &= \delta_{ij}I_{j-1} \\
\hat{e}_{-,i}I_{j-1} &= \delta_{ij}I_j \\
q^{\pm e_i/2}I_j &= q^{\pm \delta_{ij}/2}I_j.
\end{align}

For $\mu \in \mathcal{B}_m^{(N)}$, define the vector
\[v(\mu) = I_0^{\otimes \mu_0} \otimes \cdots \otimes I_N^{\otimes \mu_N} \]
by (26). Define
\[M(\mu) = \sum_{\sigma \in D^\mu} q^{-\text{inv}(\sigma)} \sigma(v(\mu)). \]

Here, as before, S_m acts on $V^\otimes m$ by permuting the order. By an abuse of notation, for $i \in \mathcal{W}_m$ we define
\[v(i) = v(\mu^{(N)}(i)), \quad M(i) = M(\mu^{(N)}(i)), \]
where $N \geq i_m$. Note that these definitions do not depend on the value of N. We briefly note the identity
\[e^\sigma_{\pm,i}(\sigma(v(\mu))) = \sigma(e^\sigma_{\pm,i}(v(\mu))) \]
for all $\sigma \in S_m$. (28)

We now show that the set $\{M(\mu)\}_{\mu \in \mathcal{B}_m^{(N)}}$ gives a basis for $P_m V^\otimes m$. A more general statement appeared in [Kuab] with a more complicated proof, but the expression here is more convenient for calculations.

Theorem 2. The set $\{M(\mu)\}_{\mu \in \mathcal{B}_m^{(N)}}$ gives a basis for $P_m V^\otimes m$.

Proof. Note that $|\mathcal{B}_m^{(N)}| = \dim P_m V^\otimes m$ and $\{M(\mu)\}_{\mu \in \mathcal{B}_m^{(N)}}$ is a linearly independent set, so it suffices to show that $M(\mu) \in P_m V^\otimes m$ for all $\mu \in \mathcal{B}_m^{(N)}$. To show that every $M(\mu)$ is in $P_m V^\otimes m$, it suffices to show that
\[\Delta^{(m)}(\hat{e}_{-,i})(M(\mu)) = q^{\frac{1}{2}(\mu_{i-1}+\mu_{i-1}-1)}(1 + q^{-2} + q^{-4} + \cdots + q^{-2\mu_i}). \]

where $\hat{i} = (0, \ldots, 0, 1, -1, 0, \ldots, 0)$ with the -1 occuring in the ith position. By (3) and (24), $\Delta^{(m)}(\hat{e}_{-, i})(M(\mu))$ is in the span of $\{\tau(v(\mu - \hat{i}))\}_{\tau \in S_m}$. Let $A(\tau)$ be the coefficients in the expansion
\[\Delta^{(m)}(\hat{e}_{-,i})(M(\mu)) = \sum_{\tau \in D^{\mu - \hat{i}}} A(\tau)\tau(v(\mu - \hat{i})). \]

It suffices to show that $A(\tau) = q^{\frac{1}{2}(\mu_{i-1}+\mu_{i-1}-1)}(1 + q^{-2} + q^{-4} + \cdots + q^{-2\mu_i})q^{-\text{inv}(\tau)}$ for all $\tau \in D^{\mu - \hat{i}}$. In fact, we show something stronger: for all $\tau \in D^{\mu - \hat{i}}$, there exist elements $\sigma^{(0)}, \ldots, \sigma^{(\mu_i)} \in D^\mu$ such that for $0 \leq j \leq \mu_i$,
\[e^\sigma_{\pm,i}\left(q^{-\text{inv}(\sigma)}\sigma^j(v(\mu))\right) = q^{\frac{1}{2}(\mu_{i-1}+\mu_{i-1}-1)}q^{2j}q^{-\text{inv}(\tau)}\tau(v(\mu - \hat{i})). \]
We will proceed by induction on the value of $\text{inv}(\tau)$, using Lemma \[\text{II}\] The base case is when τ is the identity permutation. Then it is straightforward to check that

$$\sigma^{(j)} = (\mu_{[0,i-1]} \quad \mu_{[0,i-1]} + 1 \quad \cdots \quad \mu_{[0,i-1]} + j),$$

where $\mu_{[0,i-1]} = \mu_0 + \cdots + \mu_{i-1}$, satisfies the necessary conditions.

Now fix $\tau \in D^{\mu-i}$, and suppose that the induction hypothesis holds for τ. Suppose that $\tilde{\tau} \in D^{\mu-i}$ satisfies $\tilde{\tau} = s\tau$ for some transposition s, and assume without loss of generality that $\text{inv}(\tilde{\tau}) = \text{inv}(\tau) + 1$. Define

$$\tilde{\sigma}^{(j)} = \begin{cases} s\sigma^{(j)}, & \text{if } s\sigma^{(j)} \in D^\mu; \\ \sigma^{(j)}, & \text{else}. \end{cases}$$

We now aim to prove that

$$\hat{e}^{(s(a_j))}_{-\tilde{i}}(q^{-\text{inv}(\tilde{\sigma}^{(j)})}\tilde{\sigma}^{(j)}(v(\mu))) = q^{\tilde{i}_2(\mu_{i-1}+\mu_{i-1})}q^{-2j}q^{-\text{inv}(\tilde{\tau})}(v(\mu-\tilde{i})). \tag{30}$$

If $\tilde{\sigma}^{(j)} = s\sigma^{(j)}$, then (30) follows from (28) and the induction hypothesis. Now assume that $\tilde{\sigma}^{(j)} = \sigma^{(j)}$. Then $s = (a_j - 1 \quad a_j)$ and

$$\tilde{\sigma}^{(j)}(v(\mu)) = I_{a_j-2} \otimes I_s \otimes I_{i-1} \otimes I_{i-1} \otimes I_s \otimes \cdots \otimes I_s.$$

Using that

$$P\left((\hat{e}_{i-} \otimes q^{-h_i/2})(I_{i-1} \otimes I_{i-1})\right) = q^{-1}(q^{h_i/2} \otimes \hat{e}_{i-})(I_{i-1} \otimes I_{i-1}),$$

where $P(x \otimes y) = y \otimes x$ is the permutation operator, we have that

$$\hat{e}^{(s(a_j))}_{-\tilde{i}}(q^{-\text{inv}(\tilde{\sigma}^{(j)})}\tilde{\sigma}^{(j)}(v(\mu))) = q^{-1}\hat{e}^{(a_j)}_{-i}(q^{-\text{inv}(\sigma^{(j)})}\sigma^{(j)}(v(\mu))).$$

And now (30) follows from the induction hypothesis.

\[\square\]

Remark 2. For all $\mu \in B_m^{(N)}$, let $\tilde{M}(\mu) = c(\mu)M(\mu)$ where $c(\mu)$ is defined inductively by

$$c(m, 0, \cdots, 0) = 1$$

$$\frac{c(\mu - \tilde{i})}{c(\mu)} = \frac{q^{\mu_{i-1}+\mu_{i-1}}}{q^{\mu_{i-1}} - q^{-\mu_{i-1}}}, \tag{31}$$

then equation (29) is equivalent to

$$\Delta^{(m)}(\hat{e}_{-\tilde{i}})\tilde{M}(\mu) = \frac{q^{\mu_{i-1}+1} - q^{-\mu_{i-1}-1}}{q - q^{-1}}\tilde{M}(\mu - \tilde{i}). \tag{32}$$

In fact, one can show that

$$\Delta^{(m)}(\hat{e}_{+\tilde{i}})\tilde{M}(\mu) = \frac{q^{\mu_{i-1}+1} - q^{-\mu_{i-1}-1}}{q - q^{-1}}\tilde{M}(\mu + \tilde{i}) \tag{33}$$

$$\Delta^{(m)}(\hat{e}_{-\tilde{i}})\tilde{M}(\mu) = \frac{q^{\mu_{i-1}} - q^{-\mu_{i-1}-1}}{q - q^{-1}}\tilde{M}(\mu - \tilde{i}) \tag{34}$$

$$\Delta^{(m)}(q^{\pm h_i/2})\tilde{M}(\mu) = q^{\pm \tilde{i}(\mu_{i-1} - \mu_{i})}\tilde{M}(\mu) \tag{35}$$

defines a representation on $P_mV^\otimes m$. This is equivalent to the representation in equation (3) of [KMMO16] and Lemma 3.1 of [Kuab].

10
Corollary 1. Let $i, j \in \mathcal{W}_m$. For any $\tau, \sigma \in D_i$ and any $\zeta \in D_j$,

$$
(q^{\text{inv}} e_{\zeta\tau(i)} - q^{\text{inv}} e_{\zeta\sigma(i)}) \Big|_{F^{+}_m V \otimes m} = 0.
$$

Furthermore,

$$
\left(\sum_{\tau \in D_j} q^{-d_i(\tau)} e_{\tau(j)\tau(i)} \right) M(i) = M(j).
$$

Proof. For any $\mu \in B^{(N)}_m$ not equal to $\mu(i)$, it is straightforward that

$$
(q^{\text{inv}} e_{\zeta(\tau)(i)} - q^{\text{inv}} e_{\zeta(\sigma)(i)}) M(\mu) = 0 - 0 = 0.
$$

On the other hand,

$$
(q^{\text{inv}} e_{\zeta(\tau)(i)} - q^{\text{inv}} e_{\zeta(\sigma)(i)}) M(\mu(i))
= q^{\text{inv}} e_{\zeta(\tau)(i)}(q^{-d_i(\tau)}(v(\mu(i)))) - q^{\text{inv}} e_{\zeta(\sigma)(i)}(q^{-d_i(\tau)}(v(\sigma(i))))
= \zeta(v(\mu(j))) - \zeta(v(\mu(j))) = 0.
$$

For the second statement, we use that

$$
e_{\tau(j)\tau(i)}\sigma(v(i)) = \begin{cases}
\tau(v(j)), & \tau \sim_1 \sigma, \\
0, & \text{else}.
\end{cases}
$$

in order to show

$$
\left(\sum_{\tau \in D_j} q^{-d_i(\tau)} e_{\tau(j)\tau(i)} \right) \sum_{\sigma \in D_i} q^{-\text{inv}(\sigma)} \sigma(v(i)) = \sum_{\tau \in D_j, \sigma \in D_i} q^{-d_i(\tau) + \text{inv}(\sigma)} e_{\tau(j)\tau(i)}\sigma(v(i))
= \sum_{\tau \in D_j} q^{-\text{inv}(\tau)} \tau(v(j)).
$$

Example 5. Some examples are

$$
(e_{21} \otimes e_{31} + q^{-1} e_{31} \otimes e_{21}) M(1, 1) = M(2, 3),
(e_{31} \otimes e_{32}) M(1, 2) = M(3, 3),
(e_{31} \otimes e_{42} + e_{42} \otimes e_{31}) M(1, 2) = M(3, 4).
$$

With Corollary 1 as motivation, define for any $i, j \in \mathcal{W}_m$,

$$
\tilde{e}_{ji} = \sum_{\tau \in D_j} q^{-d_i(\tau)} e_{\tau(j)\tau(i)}.
$$
3.2 Proof of Theorem 1

We will now prove Theorem 1. Begin by re-writing $R_{0,\{1,\ldots,m\}} = R_{0m} R_{0m-1} \cdots R_{01}$

$$
= \left(\sum_{i_m \geq j_m} \hat{E}_{i_m,j_m} \otimes \text{id}^{\otimes m-1} \otimes e_{j_m,i_m} \right) \cdots \left(\sum_{i_1 \geq j_1} \hat{E}_{i_1,j_1} \otimes \text{id} \otimes \text{id}^{\otimes m-1} \right)
$$

$$
= \sum_{i_m \geq j_m} \cdots \sum_{i_1 \geq j_1} \hat{E}_{i_m,j_m} \cdots \hat{E}_{i_1,j_1} \otimes e_{j_1,i_1} \cdots \otimes e_{j_m,i_m}
$$

$$
= \sum_{i,j \in W_m} \sum_{\zeta \in D_i, \tau \in D_j} \hat{E}_{j(i)}^+ \otimes e_{\tau(j)} \zeta(i).
$$

From here, the goal is to write this expression as an element of $U_q(\mathfrak{gl}(N+1)) \otimes \text{End}(P_m(V^{\otimes m}))$.

By Corollary 1,

$$
R_{0,\{1,\ldots,m\}} = \sum_{i,j \in W_m} \sum_{\zeta \in D_i, \tau \in D_j} q^{\text{inv}(\sigma_1(\tau)) - \text{inv}(\zeta)} \hat{E}_{j(i)}^+ \otimes e_{\tau(j)} \sigma_1(\tau)(i).
$$

By definition, $\tau = \sigma_1(\tau) \xi_i(\tau)$ and $d_1(\tau) = \text{inv}(\xi_i(\tau))$, so therefore

$$
R_{0,\{1,\ldots,m\}} = \sum_{i,j \in W_m} \sum_{\zeta \in D_i, \tau \in D_j} q^{\text{inv}(\tau) - d_1(\tau) - \text{inv}(\zeta)} \hat{E}_{j(i)}^+ \otimes e_{\tau(j)} \tau(i).
$$

By Lemma 3 and the identity $\text{inv}(\tau) = m(m-1)/2 - \text{inv}(\tau)$,

$$
\sum_{\zeta \in D_i} q^{\text{inv}(\tau) - \text{inv}(\zeta)} \hat{E}_{j(i)}^+ \otimes e_{\tau(j)} \tau(i)
$$

does not depend on τ. Therefore, the R-matrix factors as

$$
R_{0,\{1,\ldots,m\}} = \sum_{i,j \in W_m} \left(\sum_{\zeta \in D_i} q^{\text{inv}(\tau) - \text{inv}(\zeta)} \hat{E}_{j(i)}^+ \right) \otimes \left(\sum_{\tau \in D_j} q^{-d_1(\tau)} e_{\tau(j)} \tau(i) \right)
$$

$$
= \sum_{i,j \in W_m} \hat{E}_{ij}^+ \otimes e_{ji}
$$

A similar argument shows that

$$
R_{0,\{1,\ldots,m\}}^T = \sum_{i,j \in W_m} \hat{E}_{ji}^- \otimes e_{ij}
$$

Therefore,

$$
\Gamma_m = R_{0,\{1,\ldots,m\}}^T R_{0,\{1,\ldots,m\}} = \sum_{i,j \in W_m} \sum_{i',j' \in W_m} \hat{E}_{ji}^- \hat{E}_{i'j'}^+ \otimes e_{ij} e_{i'j'}
$$

By Corollary 1

$$
C_m = (\text{id} \otimes \text{tr}_q)(\Gamma_m) = \sum_{i,j \in W_m} \hat{E}_{ji}^- \hat{E}_{i'j'}^+ \otimes \text{tr}_q(e_{ij} e_{i'})
$$

It just remains to calculate the quantum trace. It is given by

$$
\text{tr}_q(e_{ij} e_{i'}) = \text{tr}_q (e_{ii}) = \text{tr} (q^{-NE_{ii} - (N-2)E_{11} + \cdots + NE_{NN}} e_{ii}) = q^{-N\mu_0 - (N-2)\mu_1 + \cdots + N\mu_N},
$$

where $\mu = \mu^{(N)}(i)$. Applying Lemma 2 finishes the proof.
References

[Car85] R. Carter. *Finite Groups of Lie Type: Conjugacy Classes and Complex Characters*. John Wiley and Sons, 1985.

[CGRS] Gioia Carinci, Christian Giardiná, Frank Redig, and Tomohiro Sasamoto. A generalized asymmetric exclusion process with $\mathcal{U}_q(\mathfrak{sl}_2)$ stochastic duality. *Probability Theory and Related Fields*.

[CGRS16] Gioia Carinci, Christian Giardiná, Frank Redig, and Tomohiro Sasamoto. Asymmetric stochastic transport models with $\mathcal{U}_q(\mathfrak{su}(1,1))$ symmetry. *Journal of Statistical Physics*, 163(2):239–279, 2016.

[Dri90] V.G. Drinfeld. Almost cocommutative Hopf algebras. *Leningrad Mathematical Journal*, 1(2):321–342, 1990.

[GZB91] Mark D. Gould, Rui Bin Zhang, and Anthony John Bracken. Generalized Gel’fand invariants and characteristic identities for quantum groups. *Journal of Mathematical Physics*, 32:2298–2303, 1991.

[Jim86] Michio Jimbo. A q-analogue of $U(gl(N+1))$, Hecke algebra, and the Yang-Baxter equation. *Letters in Mathematical Physics*, 11(3):247–252, Apr 1986.

[KMMO16] Atsuo Kuniba, Vladimir V. Mangazeev, Shouya Maruyama, and Masato Okado. Stochastic R matrix for $\mathcal{U}_q(A^{(1)}_n)$. *Nuclear Physics B*, 913:248–277, 2016.

[KR90] A. N. Kirillov and N. Reshetikhin. q-Weyl group and a multiplicative formula for universal R-matrices. *Comm. Math. Phys.*, 134(2):421–431, 1990.

[Kuaa] Jeffrey Kuan. A (2+1)-dimensional Gaussian field as fluctuations of quantum random walks on quantum groups.

[Kuab] Jeffrey Kuan. A multi-species ASEP(q,j) and q-TAZRP with stochastic duality. *International Mathematics Research Notices*.

[Kua16] Jeffrey Kuan. Stochastic duality of ASEP with two particle types via symmetry of quantum groups of rank two. *Journal of Physics A: Mathematical and Theoretical*, 49(11):29, 2016.

[Li10] Junbo Li. The quantum Casimir operators of $\mathcal{U}_q(\mathfrak{gl}_n)$ and their eigenvalues. *Journal of Physics A: Mathematical and Theoretical*, 43(34):345202, 2010.

[LXZ18] Libin Li, Limeng Xia, and Yinhuo Zhang. On the centers of quantum groups of A_n-type. *Science China Mathematics*, 61:287–294, 2018.

[Xi94] Nanhua Xi. Root vectors in quantum groups. *Commentarii Mathematici Helvetici*, 69(1):612–639, Dec 1994.

[ZGB91a] R B Zhang, M D Gould, and A J Bracken. Generalized Gelfand invariants of quantum groups. *Journal of Physics A: Mathematical and General*, 24(5):937, 1991.
[ZGB91b] R. B. Zhang, M. D. Gould, and A. J. Bracken. Quantum group invariants and link polynomials. *Comm. Math. Phys.*, 137(1):13–27, 1991.