The connection of cytoskeletal network with plasma membrane and the cell wall

Zengyu Liu1, Staffan Persson1,2 and Yi Zhang1*

1Max-Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany, 2ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville 3010, Victoria, Australia.

Abstract The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field.

INTRODUCTION

Plant cells are surrounded by cell walls that typically are composed of polysaccharides, such as cellulose, hemicellulose and pectin, and proteins that may have structural or enzymatic functions (Somerville et al. 2004; Cosgrove 2005). The cytoskeleton, including microtubules and actin filaments, provides inner support for plant cells (Hussey et al. 2002; Wasteneys and Yang 2004; Hussey et al. 2006; Paradez et al. 2006). Plants treated with cytoskeleton inhibitors, or that have mutations in cytoskeleton components, display phenotypic similarities to plants with defects in cell wall synthesis, such as dwarfism, swollen epidermal cells and alterations in cell wall composition, suggesting an important role for the cytoskeleton in plant cell wall production (Sugimoto 2003; Erhardt and Shaw 2006; Buschmann and Lloyd 2008; Endler and Persson 2011). Indeed, the cytoskeleton can regulate cell wall deposition in several ways: first, the cytoskeleton is responsible for the trafficking of cell wall components that are synthesized in intracellular compartments, like the endoplasmic reticulum (ER) and the Golgi apparatus (Crowell et al. 2009; Sampathkumar et al. 2013; Bashline et al. 2014). The trafficking can also be polar, which induces polar cell wall growth, e.g. in pollen tubes and root hairs (Ketelaar 2013; Lazzaro et al. 2013; Rounds et al. 2014). Second, the cortical microtubules define insertion sites of cellulose synthase (CesA) complexes (CSC) and guide the direction of the CSCs during cellulose synthesis in growing plant cells (Paredes et al. 2006; Gutierrez et al. 2009). As cellulose is the main contributor to cell wall strength, the orientation of the microtubule array substantially contributes to the anisotropy of the cell walls. The cellulose, and thus microtubules, therefore allows cell growth perpendicular to their net orientation. Finally, the cytoskeletons also respond to cell wall signals, such as cell wall growth restrictions, mechanical stimuli and cell wall modifications (Takemoto and Hardham 2004; Uyttewaal et al. 2012; Jacques et al. 2013; Panteris et al. 2013; Sampathkumar et al. 2014a, 2014b). This response may alter the cytoskeletal organization, and thus cell wall deposition.

The close connection between the cytoskeleton and the cell wall imply a close association between on the one hand the cytoskeleton and the plasma membrane, and on the other between the plasma membrane and the cell walls. The plant cytoskeleton-plasma membrane-cell wall continuum has received considerable attention for quite some time (Baluška et al. 2003). However, proteins that link the three parts are still not well defined. In animals, integrins have been
shown to transduce the extracellular signals to the cytoskeleton (DeMali et al. 2003; Palazzo et al. 2004). The connection between the integrins and the extracellular matrix is based on an Arg-Gly-Asp (RGD) motif (Ruoslahti and Pierschbacher 1987). In plants, no obvious integrin homologs exist and the cytoskeleton and cell wall continuum is also less clear. However, plant cells can respond to RGD peptides (Schindler et al. 1989; Canut et al. 1998), suggesting that some forms of integrin-like signal transduction mechanism between the cytoskeleton and cell wall may exist in plants. Indeed, several distant integrin-like proteins have been identified in plants, such as NDR1 and Lec19. These proteins recognize the RGD peptide and lesions in the proteins cause cell wall-plasma membrane adhesion deficiencies during plasmolysis (Gouget et al. 2006; Knepper et al. 2011). Interestingly, mutations in another integrin-like protein, called At14A, resulted in aberrant organization of microtubules and actin filaments in Arabidopsis suspension cells (Lü et al. 2012). Nevertheless, the cell wall triggering components for these integrin-like proteins have not been identified, and it is not clear how integrin-like proteins regulate cytoskeleton functions in plants.

Considering that the cytoskeleton and cell wall biosynthesis and modification, e.g. trafficking and synthesis of cell wall components, polar cell wall deposition, cell wall and directional growth, and cell wall signaling responses have been intensely reviewed (Deinum and Mulder 2013; Ketelaar 2013; Lei et al. 2014; Thomas and Staiger 2014), we here focus on recent progress in understanding the interactions between the cytoskeleton, the plasma membrane and the cell wall in plant cells (Table 1).

PLANT MICROTUBULE-PLASMA MEMBRANE-CELL WALL CONNECTIONS

As alluded to above, cellulose is synthesized at the plasma membrane by CSCs that track along cortical microtubules (Paredez et al. 2006). The association between the CSC and the microtubules is mediated by the POM2/CSI1 protein (Bringmann et al. 2012; Li et al. 2012b) (Figure 1A). A lack of guidance, for example by impaired POM2/CSI function, leads to severe cell swelling and plant growth defects, caused by mis-aligned cellulose fibers (Bringmann et al. 2012; Li et al. 2012b; Landrein et al. 2013). These results indicate that the cortical microtubules have a crucial role in cell wall biosynthesis and plant morphology. Apart from the POM2/CSI interactions, the cortical microtubules may be tethered to the cytoplasmic side of the plasma membrane to maintain stable tracks for CSC movement. Indeed, contact sites between the cortical microtubules and the plasma membrane have been observed in different plant cells by electron microscopy (Murray 1983; Barton et al. 2008). These observations are supported by so-called plasma membrane ghost experiments, where plant protoplasts are attached to poly-L-lysine-coated glass slides followed by subsequent protoplast lysis. This results in release of cell material and only the membrane and membrane associated proteins remain on the slides (Marchant 1978). Microtubules are typically found together with the ghost membranes, suggesting a tight association of plant cortical microtubules and the plasma membrane (Marchant 1978; Akashi and Shibaoka 1991). The molecular mechanism for the association of cortical microtubules with plasma membrane is still largely unknown in plants, though both membrane-associated and -spanning proteins have been implicated in this process. The connection of the cellulose fiber-CSC-CSI1-microtubule forms a physical link between the cell wall, the plasma membrane and the microtubules. However, the lack of either CSI1, or of CSC subunits, did not result in detachment of microtubules from the plasma membrane, suggesting that this breach in connection is not severely affecting the microtubule tethering to the plasma membrane, and that other components therefore may contribute more substantially to this function.

CLASP

CLASP has been reported to link microtubule to plasma membrane in plants based on the observations that microtubule ends are frequently detached from plasma membrane in clasp-1 mutant (Ambrose and Wasteneys 2008) (Figure 1A). CLASP is a conserved protein belonging to ORBIT/MAST/CLASP family of microtubule associated proteins (MAPs). In animal cells, CLASP also provides for the association between microtubules and plasma membrane (Lansbergen et al. 2006). It directly binds to microtubules and anchors the microtubule plus ends to the plasma membrane through the interaction with L5β, which is a phosphatidylinositol-3,4,5-triphosphate (PIP3) binding protein (Lansbergen et al. 2006). However, plasma membrane binding partners of CLASP have not been identified in plants. Alternatively, CLASP was found to interact with retromer component sorting nexin 1, and to mediate the association of endosomes with microtubules (Ambrose et al. 2013). Therefore, it is possible that CLASP could form a transient association between the microtubules and the plasma membrane via retromer associated vesicles. Importantly, only short stretches of the microtubules displayed detachment from the plasma membrane in clasp-1, and the detached microtubules could also reattach to the cortex (Ambrose and Wasteneys 2008). This suggests that other components also partake in this process. It would be interesting to assess if the degree of microtubule detachment increases in a pom2/csi1 and clasp-1 double mutant, and also to investigate the behavior of the CSCs in clasp-1, in particular since clasp-1 display a dwarf phenotype and altered cell shape (Ambrose et al. 2007; Ambrose and Wasteneys 2008).

Phospholipase D and phosphatidic acid

Phospholipase D (PLD) has been, and is, a hot candidate for the microtubule-plasma membrane connection; however, this connection has also been contested. The plant PLDs are subdivided into five subgroups, i.e. PLDα, PLDβ, PLDγ, PLDδ and PLDε, based on their membrane association domains (Qin and Wang 2002). PLDs in Arabidopsis contain either PH/PX or C2 membrane association domains (Qin and Wang 2002), and transient expression of some PLDs shows plasma membrane localization (Andreeva et al. 2009; Zhang et al. 2012). Therefore, there is evidence for membrane association of the PLDs. A 90 kDa peptide (p90) in tobacco, sharing sequence similarity with Arabidopsis PLDδ, showed PLD activity and was associated with the plasma membrane and microtubules when transiently expressed in Bright Yellow2 (BY2) cells (Gardiner et al. 2001). Moreover, treatment with 1-
Table 1. Summary of proteins potentially involved in the connection of the cytoskeleton with the plasma membrane and the cell wall

Proteins	Subcellular localization	Connection with cytoskeleton, plasma membrane and cell wall	Reference	
POM2/CSI1	Colocalization with CSC at the plasma membrane	Linker between CSC and cortical microtubules; contain a C2 domain that may bind to lipid surfaces.	Bringmann et al. 2012; Li et al. 2012b; Landrein et al. 2013	
CLASP	Colocalization with microtubules	Forms a possible physical link between microtubules and the plasma membrane; microtubule-binding domain; mutants display microtubule-plasma membrane detachment phenotypes.	Ambrose et al. 2007; Ambrose and Wasteneys 2008; Ambrose et al. 2013	
PLD	Plasma membrane and microtubules	Plausible microtubules-plasma membrane linking proteins; Contain PH/PX or C2 membrane association domains; PLDα generates PA that can affect MAP65-1 function. Possible mediators of the interaction between actin filaments and the plasma membrane; NtPLDβ directly binds to both F-actin and G-actin; its product PA could directly bind to the actin associated capping protein (CP).	Gardiner et al. 2001; Qin and Wang 2002; Ho et al. 2009; Zhang et al. 2012	Huang et al. 2006; Pleskot et al. 2010; Li et al. 2012a
ROPs and their interactors	Plasma membrane and microtubules	Signaling components that may link microtubules and plasma membranes; ROP2 and ROP6 associate with the plasma membrane via lipid-based posttranslational modifications; their interactor RIC1 directly binds to microtubules. ROP11/MIDD1/Kinesin13A complex forms a signaling bridge between the cortical microtubules and plasma membrane during secondary cell wall biosynthesis; both MIDD1 and Kinesin13A are microtubule associated proteins.	Fu et al. 2005; Fu et al. 2009; Lin et al. 2013	Oda et al. 2010; Oda and Fukuda 2013a, 2013b
CrRLKs	Plasma membrane	CrRLKs may form a link between the cortical microtubules and the cell wall; CrRLKs are plasma membrane integrated proteins with extracellular domains that could bind cell wall structures; The CrRLKs may transduce signals to microtubules via ROPs.	Hématy et al. 2007; Duan et al. 2010; Lindner et al. 2012	
MDP25 (PCaP1)	Plasma membrane or cytosol depending on calcium concentration	Possible linkers between plasma membrane and microtubules; contains membrane association domains and microtubule binding domains; also binds to F-actin in vitro.	Nagasaki et al. 2008; Li et al. 2011; Qin et al. 2014	
COBRA	Plasma membrane and cell wall	Binds to glucan chains via an extracellular cellulose binding module; connects to plasma membrane via a GPI anchor; microtubule localization pattern via immune-localization methods.	Roudier et al. 2005; Dai et al. 2011; Cao et al. 2012; Liu et al. 2013; Sorek et al. 2014	
Class I Formin	Plasma membrane	Linkers between the plasma membrane, actin filaments, and possibly the cell wall; transmembrane domains; extracellular extension-like domains; microtubule and actin binding abilities.	Favery et al. 2004; Cheung et al. 2010; Martinière et al. 2011; Yang et al. 2011; Zhang et al. 2011; Wang et al. 2012	
butanol, an agent affecting PLD activity, induced microtubule detachment from the plasma membrane in BY2 cells (Dhonukshe et al. 2003). Additionally, tubulin subunits were detected in pull-down assays, using PLD6-GFP as bait, in transgenic Arabidopsis cell cultures (Ho et al. 2009). Based on these results, the PLDs were speculated to be linkers between microtubules and the plasma membrane. However, tubulin subunits are commonly detected in immunoprecipitation assays, and additional microtubule localizations of PLDs in plants have not been reported. Treatment with 1-butanol of Arabidopsis roots (Motes et al. 2005) and membrane ghosts (Hirase et al. 2006) displayed decreased microtubule signal, but the mechanisms behind this, either membrane detachment or effects on microtubules depolymerization, are unclear (Hirase et al. 2006). Hence, further investigations regarding the role of PLDs in microtubule-plasma membrane associations are necessary.

Apart from the plausible physical link of PLD between microtubules and plasma membrane, a function of PLDs via their product phosphatidic acid (PA) on microtubule activity is possible (Figure 1A). In vivo, PLDs hydrolyze plasma membrane phospholipids, such as phosphatidylcholine, to produce PA and free choline. When primary alcohols, such as 1-butanol, are exogenously applied, the phosphatidyl group is transferred to the alcohol and the PA production is inhibited. Therefore, the 1-butanol effects seen on microtubule detachment in BY2 cells could be due to decreased PA production (Dhonukshe et al. 2003; Gardiner et al. 2003; Motes et al. 2005). Interestingly, although PA cannot bind to tubulin directly it can interact with MAP65-1 (Zhang et al. 2012). This interaction promotes the association of MAP65-1 with the microtubules, and induces microtubule bundling (Smertenko et al. 2004). Therefore, decreased PA levels in a pldΔ1 mutant resulted in microtubule depolymerization and salt sensitivity (Zhang et al. 2012). Based on these results, the authors proposed that the PLD generated PA forms a transient association between microtubules and plasma membrane via MAP65-1. Notably, cells lacking MAP65-1 only displayed microtubule depolymerization under salt stress without causing lateral movement of microtubules (Lucas et al. 2011).

Rho-GTPase in plants and their microtubule-related binding partners
Rho-GTPases in plants (ROPs) are Rho-like GTPases that act as signaling switches in plants (Zheng and Yang 2000; Craddock et al. 2012). Based on protein structures and on C-terminal hypervariable domains, ROPs are typically subdivided into two main types (Type I and Type II). ROPs are targeted to the plasma membrane by lipid-based posttranslational modifications, i.e. the addition of a lipid group to certain amino acids (Zheng and Yang 2000; Yang 2002). This addition promotes protein-membrane associations and protein-protein interactions, which influence plant growth and development (Running 2014). Three types of lipid modifications are known: prenylation, S-acylation and N-myristoylation. The first two modify cysteines that usually occur at the C-terminus of the proteins. Type I ROPs that contain a CaaX motif typically undergo prenylation (Sorek et al. 2007; Sorek et al. 2011). Type II ROPs that contain GC-CG boxes are S-acylated, and the polybasic region proximal to the box helps for a stable plasma membrane localization to occur (Lavy and Yalovsky 2006).

Among the ROPs, ROP2 and ROP6 together with their interactors, ROP-interactive CRIB motif-containing protein1 (RIC1), mediate microtubule-plasma membrane association in a dynamic manner (Wu et al. 2001) (Figure 1B). Although RIC1 only displayed weak microtubule affinity in vitro, it showed clear microtubule localization in pavement cells, indicating additional protein modifications or interactions of RIC1 in vivo (Fu et al. 2005). The association of RIC1 with microtubules causes microtubule bundling, which decreases cellulose crystallinity and therefore also affects cell wall characteristics (Fujita et al. 2011). Recent work from Lin et al. 2013 revealed that RIC1 also interacted with KTN1, the katanin p60 catalytic

Proteins	Subcellular localization	Connection with cytoskeleton, plasma membrane and cell wall	Reference
Class II Formin	Plasma membrane and microtubules	Linkers between the plasma membrane and actin filaments; membrane associated PTEN domains; microtubule and actin binding domains.	Zheng et al. 2012; van Gisbergen and Bezanilla 2013; Wang et al. 2013
NET1A	Plasma membrane and the plasmodesmata	Mediates actin and membrane interactions; directly binds to F-actin via NET actin-binding (NAB) domains.	Li et al. 2010; van Gisbergen et al. 2012; Wang et al. 2013
NET3C	ER-plasma membrane-associated puncta	Mediates the link between the plasma membrane and ER; forms a complex with VAP27, the actin and microtubule networks.	Deeks et al. 2012
			Wang et al. 2014

Table 1. (Continued)
Figure 1. Components that potentially impact on the link between the cytoskeletons, plasma membrane and cell wall
(A) The cortical microtubules are tethered to the cytosolic side of the plasma membrane and form guiding tracks for the cellulose synthase complex (CSC); a process that is mediated by the cellulose synthase interactor 1 (CSII). The active CSCs move along the cortical microtubule and synthesize cellulose chains that form para-crystalline microfibrils. The crystallization is potentially aided by the plasma membrane anchored protein COBRA. The microtubule plus end binding protein CLASP can anchor the microtubule end to the cell cortex, perhaps together with currently unknown interaction partners. The phospholipase Dα (PLDα) associates with the plasma membrane and hydrolyzes plasma membrane phospholipids, such as phosphatidylincholine, to produce phosphatidic acid (PA). The microtubule associating protein 65-1 (MAP65-1) binds to PA in the plasma membrane, and bundles antiparallel cortical microtubules, which make them less sensitive to salt stress. (B) The microtubule-plasma membrane-cytoskeleton connection can be mediated by the Rho-GTPase in plants (ROPs) and their binding partner CRIB motif-containing protein 1 (RIC1). ROP2 and ROP6 are prenylated to associate with the plasma membrane. The interaction of ROP6 with RIC1 can recruit the katanin subunit p60 (KTN1) to microtubule branching sites. The recruited KTN1 severs branched microtubules, and consequently form parallel cortical microtubules. ROP2 competes against ROP6 for the interaction with RIC1 and depletes RIC1 from the microtubules. This might be induced by the plasma membrane Catharanthus roseus receptor-like kinases (CrRLKs) which can interact with ROP2 and contains the predicted extracellular polysaccharide binding domain. During the secondary cell wall formation, the microtubule depletion domain 1 (MIDD1) is recruited by ROP11 and binds to microtubule ends. This plasma membrane-microtubule connection further recruits Kinesin13A, which depolymerizes microtubules, and determines the patterning of secondary cell wall pits. (C) Actin based interactions with the plasma membrane, cell wall and microtubules. The Class I formins contain a transmembrane domain and the extracellular part is predicted to bind to cell wall polysaccharides. The Class II formins associate with plasma membrane via their phosphatase and tensin (PTEN) domains. Formins could also bind to both actin filaments and microtubules. The networked (NET) superfamily of proteins can facilitate actin-plasma membrane interactions. PLDs can also influence the actin filaments, for example PLDδ can directly bind to both actin filaments and monomeric G-actin. The G-actin interaction inhibits the PLDδ activity, while filamentous actin binding promotes the activity of PLDb, which produces PA. PA then regulates the actin filament end dynamics by depleting the actin capping proteins (CPs). Please note that the relative sizes of the components are not drawn to scale.
localization is depleted when Ca2+ obscures. One possibility is that the MDP25 plasma membrane-microtubule connecting function of MDP25 is still microtubule simultaneously. Therefore, the plasma membrane MDP25 could not bind to the plasma membrane and sites directed mutagenesis revealed that the amino acids were located in the same region of MDP25 (Nagasaki et al. 2008; Li et al. 2011). These data were interpreted as that the CrRLKs might recognize certain carbohydrates in the cell wall and perhaps sense the status of the cell wall in this way. Interestingly, another CrRLK protein FERONIA (FER) was co-immunoprecipitated with ROP, in a guanine nucleotide-regulated manner (Duan et al. 2010). The active ROPs can activate NADPH-oxidoases that produce reactive oxygen species (ROS), which controls root hair development and pollen tube growth by altering the cell wall architecture and intracellular signaling (Duan et al. 2010; Boisson-Dernier et al. 2013). Therefore, the CrRLKs may form an excellent linker between the cortical microtubules and the cell wall via ROPs and their putative interactors.

Other possible microtubule-plasma membrane linking components

Additionally, two Arabidopsis proteins, microtubule destabilizing protein25 (MDP25) and its homolog microtubule association protein18 (MAP18), which are also named as plasma membrane-associated cation binding protein1 (PCaP1) and PCaP2, respectively, bind to the plasma membrane (Wang et al. 2007; Nagasaki et al. 2008; Kato et al. 2010; Li et al. 2011). Further, biochemical analysis revealed that both proteins could bind to microtubules and inhibit tubulin assembly in vitro (Wang et al. 2007; Li et al. 2011). Protein truncations and site directed mutagenesis revealed that the amino acids responsible for both membrane and microtubule interactions were located in the same region of MDP25 (Nagasaki et al. 2008; Li et al. 2011). These data were interpreted as that MDP25 could not bind to the plasma membrane and microtubule simultaneously. Therefore, the plasma membrane-microtubule connecting function of MDP25 is still obscure. One possibility is that the MDP25 plasma membrane localization is depleted when Ca2+ is released into the cytosol, and that it then can bind to and depolymerize microtubules.

The glycosylphosphatidylinositol (GPI) anchored protein COBRA might be another candidate connector for the cell wall-plasma membrane-microtubule continuum. Mutations in COBRA cause severe cell wall defects with swollen cells and decreased cellulose biosynthesis in different plant species (Roudier et al. 2005; Dai et al. 2011; Cao et al. 2012). Studies from both Arabidopsis and rice showed that COBRA can bind to cellulose via an extracellular cellulose binding module (Figure 1) (Liu et al. 2013; Sorek et al. 2014). This was proposed to aid the cellulose crystallization process, consistent with a decreased amount of crystalline cellulose in cobra mutants and in plants with reduced COBRA expression (Roudier et al. 2005; Liu et al. 2013; Sorek et al. 2014). Both live cell imaging and immune-labeling experiments showed that COBRA is located at the plasma membrane, possibly due to its GPI anchor (Liu et al. 2013; Sorek et al. 2014). COBRA was found to be secreted to the apoplast via a typical GPI-anchored protein path, and the secretion was disrupted by mutations in the putative GPI cleavage site or by truncation of the anchor region (Roudier et al. 2005; Liu et al. 2013). Interestingly, immunolocalization analysis in Arabidopsis elongating root cells revealed a microtubule-like pattern of COBRA, which was disrupted by treatment of the microtubule disrupting agent oryzalin (Roudier et al. 2005). This indicates a connection of COBRA to the microtubules, probably in an indirect manner through the plasma membrane. However, the COBRA only partially overlapped with the microtubule signal (Roudier et al. 2005), and it is therefore unclear how the COBRA may connect to the microtubules.

Additionally, posttranslational modification of tubulin subunits may also influence the plasma membrane-microtubule interaction. Tubulin proteins contain palmitoylation (one type of S-acylation) sites and palmitoylated tubulin has been found in human and yeast (Wolff 2009). Palmitoylated α tubulin has also been reported in Arabidopsis (Hemsley et al. 2008). This could explain why microtubules are found in membrane fractions even after high salt treatment and after non-ionic treatment that normally remove membrane associated proteins, and abolish protein-protein interactions (Laporte et al. 1993; Sonesson et al. 1997). However, how, where and when plant tubulins are S-acylated and its effects on plant microtubules are unknown. An alternative way for the microtubules to attach to the plasma membrane would be via other membrane compartments, such as clathrin coated vesicles or the endoplasmic reticulum (Peña and Heinlein 2013). The insertion process of CSCs into the plasma membrane could generate one such possibility (Gutierrez et al. 2009).

PLANT ACTIN-PLASMA MEMBRANE-CELL WALL CONNECTIONS

The actin cytoskeleton plays a crucial role in the secretion of cell wall material in many cell types, including tip-growing cells, such as root hairs and pollen tubes (Mendrilla and Persson 2015). For example, in lily (Lilium formosanum) pollen tubes, disruption of filamentous actin by latrunculin B (LatB), an inhibitor that blocks actin polymerization by sequestering globular actin (Morton et al. 2000), resulted in aberrant pectin deposition (Rounds et al. 2014). The actin organization has also been shown to affect the distribution of CSCs at the plasma membrane in Arabidopsis interphase cells (Sampathkumar et al. 2013). Furthermore, mutations in subunits of the SCAR complex, a plasma membrane localized activator of the actin nucleator ARP2/3 complex, result in reduced cortical actin filaments and abnormal structure and composition of cell wall at intercellular junctions where SCAR complex are enriched in the adjacent plasma membrane (Dyachok et al. 2008). Taken together, membrane-actin contact sites are important for cell wall formation, and several proteins are proposed to mediate this connection.

Formin

A prominent candidate protein group for the associations of the plasma membrane and the actin cytoskeleton is the formins, an important actin nucleator protein family. Formins are defined by the formin homology 2 (FH2) domain, which
can bind to actin and generally are sufficient for actin nucleation (Cvrčková et al. 2004). As in other eukaryotes, in vitro biochemical analysis have shown that plant formins can regulate various aspects of actin dynamics, including actin nucleation/elongation, bundling, side binding and severing (Yang et al. 2015; Zhang et al. 2011; Wang et al. 2012; Zheng et al. 2012; Wang et al. 2013; van Gisbergen and Bezanilla 2013). Plant formins can be grouped into three clades (Class I–III). Class I and II members are found in angiosperms while members of the third clade (Class III) are only found in mosses and lycophytes (Cvrčková et al. 2004; Grunt et al. 2008; van Gisbergen and Bezanilla 2013).

Membrane anchoring properties have recently been proposed to be a common feature of plant formins, although the mechanisms for each clade appear different (Cvrčková 2013) (Figure 1C). Class I formins have a putative trans-membrane domain, suggesting that they are integral membrane proteins (Cvrčková et al. 2004). Consistently, several Class I plant formins, including Arabidopsis FORMIN 1 (AtFH1), AtFH5 and AtFH6, are localized to the plasma membrane in Arabidopsis (Favery et al. 2004; Cheung et al. 2010; Martinière et al. 2011). Moreover, AtFH1 has an extracellular cell-wall extensin-like domain, which may link to the cell wall (Martinière et al. 2011). The AtFH1’s ability to interact with both cell wall components and with the actin cytoskeleton is important for regulating the actin organization at the cell cortex, and consequently influences cytosolic trafficking (Martinière et al. 2011). Both formin inhibitors and mutations in AtFH1 induced actin bundling and hence a less dynamic actin cytoskeleton, which in turn caused reduced cell elongation (Rosero et al. 2013). A membrane association is also suggested for class II formins, albeit through a peripheral attachment. Class II formins often have an N-terminal domain with high sequence similarity to a phosphatase and tensin (PTEN) homolog thought to mediate lipid binding (Cvrčková et al. 2004; Grunt et al. 2008) (Figure 1C). For example, in moss, the PTEN domain of a Class II formin, ForzA, can bind to P(3,5)P3, which is essential for formin function (van Gisbergen et al. 2012). Lastly, lower plant Class III and non-plant formins usually contain domains predicted to bind RHO GTPases that are membrane-associated (Cvrčková 2013).

Net protein family

A new family of actin-binding proteins, referred to as the networked (NET) superfamily, has been recently identified in plants (Deeks et al. 2012) (Figure 1C). In a screen of an Arabidopsis cDNA green fluorescent protein (GFP)-fusion expression library in tobacco leaves, the N terminus of NET1A, the founding member of this superfamily, was found to label actin filaments (Deeks et al. 2012). F-actin binding assays revealed that NET1A directly binds to F-actin in vitro via a novel actin-binding domain unique to plants, called the NET actin-binding (NAB) domain. Interestingly, the full length NET1A protein was associated with the plasma membrane and the plasmodesmata. A wider search, based on primary sequence homology, identified 13 NET proteins in Arabidopsis that could be grouped into four clades (Deeks et al. 2012). Proteins from each group decorated actin filaments in plant cells and labeled various membranes, such as the vacuole and nuclear membrane and pollen tube plasma membrane. Among them, NET3C localized to the ER plasma membrane-associated puncta and formed a complex with VAP27, actin and microtubule networks to link the plasma membrane and ER (Wang et al. 2014). These observations emphasize a potential role of NET superfamily members in mediating actin-membrane interactions. How the NET proteins may do so is, however, still obscure.

PLDs

Besides influencing microtubules as discussed above, PLDs and their product PA are also important regulators of the membrane-actin interface in plant cells (Figure 1C). Alterations in PLD activity and cellular PA levels can markedly change the actin organization in plant cells (Lee et al. 2003; Motes et al. 2005; Hu et al. 2006; Pleskot et al. 2010; Pleskot et al. 2012). Inhibition of PLD activity using 1-butanol led to disruption of actin filaments in multiple plant cells and organs (Motes et al. 2005; Pleskot et al. 2010), while elevation of PA levels, e.g. by exogenous application of PA, increased the density of cortical actin filaments (Huang et al. 2006; Pleskot et al. 2010; Li et al. 2012a). PLD and PA can regulate the actin cytoskeleton in at least two ways. On the one hand, recombinant plant PLDβ isoforms bind directly to both F-actin and G-actin, providing a potential link between the plasma membrane and the actin cytoskeleton (Pleskot et al. 2010). On the other hand, PA regulates actin organization via the capping protein (CP) (Huang et al. 2006; Li et al. 2012a). Here, PA can directly bind to CP and prevent its binding to the barbed end of actin filaments, resulting in an uncapping of actin filament ends, and therefore to the promotion of actin polymerization. Consistent with these observations, treatment of wild-type cell with exogenous PA phenocopied the actin filament end behavior in cp mutant cells, such as elevated free actin filament ends indicated by higher annealing frequency (Li et al. 2012a). Moreover, the activity of PLDβ is in turn modulated by actin binding in a polymerization-dependent manner, i.e., filamentous actin activates PLDβ, while monomeric actin inhibits its activity (Pleskot et al. 2010). This positive feedback mechanism could facilitate signal amplification and provide an important mechanism to locally increase membrane-F-actin dynamics at the cortex of plant cells (Pleskot et al. 2010).

CONCLUSION AND PERSPECTIVES

Recent studies have revealed that cell wall production relies on a close interaction between the plasma membrane and the underlying cytoskeleton in plants. The cell wall, plasma membrane and cytoskeleton nexus could be mediated by a single bridging protein or through several proteins that form a scaffolding structure or that may participate in signaling pathways. However, the roles of the already identified candidate proteins are not clarified and further studies in this field are needed. It may be anticipated that high-end proteomics will aid in the identification of additional proteins that link the cytoskeleton and the plasma membrane and that in vitro and in vivo work using high-end cell biology techniques will reveal their functions. These data should significantly advance our understanding for how the cytoskeleton is tethered to the plasma membrane and will likely reveal insights into differences in cytoskeletal arrangements compared to yeast and animal cells.
ACKNOWLEDGEMENTS

Yi Zhang and Staffan Persson are financially supported by the Max-Planck Gesellschaft, and Zengyu Liu by the Chinese National Natural Science Foundation.

REFERENCES

Akashi T, Shibakoa H (1991) Involvement of transmembrane proteins in the association of cortical microtubules with the plasma membrane in tobacco BY-2 cells. J Cell Sci 98: 169–174
Ambrose C, Ruan Y, Gardiner J, Tambliny Laura M, Catching A, Kirik V, Marc J, Overall R, Wasteneys Geoffrey O (2013) CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev Cell 24: 649–659
Ambrose JC, Shoji T, Kotzer AM, Pighin JA, Wasteneys GO (2007) The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19: 2763–2775
Ambrose JC, Wasteneys GO (2008) CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell 19: 4730–4737
Andreeva Z, Ho AYY, Barthem MM, Potocky M, Bezvoda R, Zársky V, Marc J (2009) Phospholipase D family interactions with the cytoskeleton: Isoform d promotes plasma membrane anchoring of cortical microtubules. Funct Plant Biol 36: 600–612
Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133: 482–491
Barton DA, Vantard M, Overall RL (2008) Analysis of cortical arrays from Tradescantia virginiana at high resolution reveals discrete microtubule subpopulations and demonstrates that confocal images of arrays can be misleading. Plant Cell 20: 982–994
Bashline L, Li S, Gu Y (2014) The trafficking of the cellulose synthase complex in higher plants. Ann Bot 114: 1059–1067
Boisson-Dernier A, Lituev DS, Nestorova A, Franck CM, Thirunagarajah S, Grossniklaus U (2013) ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biol 11: e1001719
Bringmann M, Li E, Sampathkumar A, Kocabek T, Hauser MT, Persson S (2012) POM-POM2/cellulose synthase interacting is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell 24: 163–177
Buschmann H, Lloyd CW (2008) Arabidopsis mutants and the network of microtubule-associated functions. Mol Plant 1: 888–898
Canut H, Carrasco A, Galaud JP, Cassan C, Bouyssou H, Vita N, Ferrara P, Pont-Lezica R (1998) High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall. Plant J 16: 63–71
Cao Y, Tang X, Giovannoni J, Xiao F, Liu Y (2012) Functional characterization of a tomato COBRA-like gene functioning in fruit development and ripening. BMC Plant Biol 12: 211
Cheung AY, Niroomand S, Zou Y, Wu HM (2010) A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc Natl Acad Sci USA 107: 16390–16395
Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6: 850–861
Craddock C, Lavaghi L, Yang Z (2012) New insights into Rho signaling from plant ROP/Rac GTPases. Trends Cell Biol 22: 492–501
Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD, Schumacher K, Gonneau M, Hoeve H, Vernnettes S (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21: 1141–1154
Čvrčková F (2013) Formins and membranes: Anchoring cortical actin to the cell wall and beyond. Front Plant Sci 4: 436
Čvrčková F, Novotný M, Picková D, Zársky V (2004) Formin homology 2 domains occur in multiple contexts in angiosperms. BMC Genomics 5: 44
Dai X, You C, Chen G, Li X, Zhang Q, Wu C (2011) OsBCL4 encodes a COBRA-like protein that affects cellulose synthesis in rice. Plant Mol Biol 75: 333–345
Deeks MJ, Cuttler JR, Ingle EK, Hawkins TJ, Chapman S, Richardson AC, Mentlik DA, Dixon MR, Cartwright F, Smertenko AP, Oparka K, Hussey PJ (2012) A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr Biol 22: 1595–1600
Deinum EE, Mulder BM (2015) Modelling the role of microtubules in plant cell morphology. Curr Opin Plant Biol 16: 688–692
DeMali KA, Wennenberg K, Burridge K (2003) Integrin signaling to the actin cytoskeleton. Curr Opin Cell Biol 15: 572–582
Dhouniske P, Laxalt AM, Goedhart J, Gadella TW, Munnik T (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15: 2666–2679
Duan Q, kita D, Li C, Cheung AY, Wu HM (2010) FERONIA receptor-like kinase regulates RHG GTPase signaling of root hair development. Proc Natl Acad Sci USA 107: 17821–17826
Dyachok J, Shao MR, Vaughn K, Bowling A, Facette M, Djakovic S, Clark L, Smith L (2008) Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. Mol Plant 1: 990–1006
Ehrhardt D, Shaw SL (2006) Microtubule dynamics and organization in the plant cortical array. Annu Rev Plant Biol 57: 859–875
Endler A, Persson S (2011) Cellulose synthases and synthesis in Arabidopsis. Mol Plant 4: 199–211
Favery B, Chelysheva LA, Lebris M, Jammes F, Marmagne A, De Almeida-Engler J, Lecomte P, Vaury C, Arkowitz RA, Abad P (2004) Arabidopsis formin AtFH6 is a plasma membrane-associated protein upregulated in giant cells induced by parasitic nematodes. Plant Cell 16: 2529–2540
Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120: 678–700
Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 19: 1827–1832
Fujikura U, Elseasser L, Breuninger H, Sanchez-Rodriguez C, Ivanov A, Laux T, Findlay K, Persson S, Lenhard M (2014) Atkinosin-13A modulates cell-wall synthesis and cell expansion in Arabidopsis thaliana via the THESEUS1 pathway. PLoS Genet 10: e1004627
Fujita M, Himmelspach R, Hocart CH, Williamson RE, Mansfield SD, Wasteneys GO (2011) Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in Arabidopsis. Plant J 66: 915–928
Gardiner J, Collings DA, Harper JD, Marc J (2003) The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol 44: 687–696
Gardiner JC, Harper JD, Weerakoon ND, Collings DA, Ritchie S, Gilroy S, Cry RJ, Marc J (2001) A 90-kD phospholipase D from tobacco.
binds to microtubules and the plasma membrane. Plant Cell 13: 2143–2158.

Gouget A, Senchou V, Govers F, Sanson A, Barre A, Rouge P, Pont-Lezica R, Canut H (2006) Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis. Plant Physiol 140: 81–806.

Grunt M, Zársky V, Cvrčková F (2008) Roots of angiosperm forms: The evolutionary history of plant FH2 domain-containing proteins. BMC Evol Biol 8: 115.

Gutierrez R, Lindeboom JJ, Paredez AM, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11: 792–806.

Hématy K, Sado PE, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou JP, Hofte H (2007) A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 17: 922–931.

Hemphrey PA, Taylor L, Grierson CS (2008) Assaying protein palmitoylation in plants. Plant Methods 4: 2.

Hirase A, Hamada T, Itoh TJ, Shimmen T, Sonobe S (2006) n-Butanol induces depolymerization of microtubules in vivo and in vitro. Plant Cell Physiol 47: 1004–1009.

Ho AY, Day DA, Brown MH, Marc J (2009) Arabidopsis phospholipase Dα as an initiator of cytoskeleton-mediated signalling to fundamental cellular processes. Funct Plant Biol 36: 190–198.

Huang S, Gao L, Blanchon L, Staiger CJ (2006) Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell 17: 1946–1958.

Hussey P, Hawkins TJ, Igarashi H, Kalaridit S, Smertenko A (2002) The plant cytoskeleton: Recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP2P1-like protein, M OR1. Plant Mol Biol 50: 915–924.

Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol 57: 109–125.

Jacques E, Verbel en JP, Vissenberg K (2013) Mechanical stress in Arabidopsis leaves orients microtubules in a ‘continuous’ supra-cellular pattern. BMC Plant Biol 13: 163.

Kato M, Nagasaki-Takeuchi N, Ide Y, Maeshima M (2010) An Arabidopsis hydrophilic Ca2+–binding protein with a PEVK-rich domain, PCaP2, is associated with the plasma membrane and interacts with calmodulin and phosphatidylinositol phosphates. Plant Cell Physiol 51: 366–379.

Ketelaar T (2013) The actin cytoskeleton in root hairs: All is fine at the tip. Curr Opin Plant Biol 16: 749–756.

Knepper C, Savory EA, Day B (2011) Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion. Plant Physiol 156: 286–300.

Lü B, Wang J, Zhang Y, Wang H, Liang J, Zhang J (2012) AT14A mediates the cell wall-plasma-membrane-cytoskeleton continuum in Arabidopsis thaliana cells. J Exp Bot 63: 4061–4069.

Landrein B, Lathe R, Bringmann M, Vouilloit C, Ivakov A, Boudaoud A, Persson S, Hamant O (2013) Impaired cellulose synthase guidance leads to stem torsion and twists phyllotactic patterns in Arabidopsis. Curr Biol 23: 895–900.

Lansbergen G, Grigoriev I, Mimori-Kiyosue Y, Ohtsuka T, Higa S, Kitajima I, Demmers J, Galjart N, Houtsmuller AB, Grosveld F, Akhmanova A (2006) CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5b. Dev Cell 11: 21–32.

Laporte K, Rossignol M, Traas JA (1993) Interaction of tubulin with the plasma membrane: Tubulin is present in purified plasmalemma and behaves as an integral membrane protein. Planta 191: 413–416.

Lavy M, Yalovsky S (2006) Association of Arabidopsis type-II ROPs with the plasma membrane requires a conserved C-terminal sequence motif and a proximal polybasic domain. Plant J 46: 934–947.

Lazzaro MD, Marom EY, Reddy AS (2013) Polared cell growth, organelle motility, and cytoskeletal organization in conifer pollen tube tips are regulated by KCBP, the calmodulin-binding kinase. Planta 238: 587–597.

Lee S, Park J, Lee Y (2003) Phosphatidic acid induces actin polymerization by activating protein kinases in soybean cells. Mol Cells 15: 313–319.

Lei L, Li S, Bashline L, Gu Y (2014) Dissecting the molecular mechanism underlying the intimate relationship between cellulose microfibrils and cortical microtubules. Front Plant Sci 5: 90.

Li J, Henty-Ridilla JL, Huang S, Wang X, Blanchon L, Staiger CJ (2012a) Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. Plant Cell 24: 3742–3754.

Li J, Wang X, Qin T, Zhang Y, Liu X, Sun J, Zhou Y, Zhu L, Zhang Y, Yuan M, Mao T (2011) MDP2s, a novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis. Plant Cell 23: 4411–4427.

Li S, Lei L, Somerville CR, Gu Y (2012b) Cellulose synthase interactive protein 1 (CIS1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci USA 109: 185–190.

Li Y, Shen Y, Cai Z, Zhong C, Zhu L, Yuan M, Ren H (2010) The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell 22: 2710–2726.

Lin D, Cao L, Zhou Z, Zhu L, Ehrhardt D, Yang Z, Fu Y (2013) Rho GTPase signaling activates microtubule severing to promote microtubule ordering in Arabidopsis. Curr Biol 23: 290–297.

Lindner H, Muller LM, Boisson-Dernier A, Grossniklaus U (2012) CRKL/CIK receptor-like kinases: Not just another brick in the wall. Curr Opin Plant Biol 15: 659–669.

Liu L, Shang-Guan K, Zhang B, Liu X, Yan M, Zhang L, Shi Y, Zhang M, Qian Q, Li J, Zhou Y (2015) Brittle Culmi, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS Genet 9: e1003704.

Lucas JR, Courtney S, Hassfurder M, Dhiragra S, Bryant A, Shaw SL (2011) Microtubule-associated proteins MAP 65–1 and MAP 65–2 positively regulate axial cell growth in etiolated Arabidopsis hypocotyls. Plant Cell 23: 1889–1903.

Marchant HJ (1978) Microtubules associated with the plasma membrane isolated from protoplasts of the green alga Mougeotia. Exp Cell Res 115: 25–30.

Martinière A, Gayral P, Hawes C, Runions J (2011) Building bridges: Formin of Arabidopsis forms a connection between the cell wall and the actin cytoskeleton. Plant J 66: 354–365.

Mendrinna A, Persson S (2015) Root hair growth: It’s a one way street. F1000Prime Rep 7: 23.

Morton WM, Ayscough KR, McLaughlin PJ (2000) Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat Cell Biol 2: 376–378.

Motes CM, Pechter P, Yao CM, Wang YS, Chapman KD, Blancaflor EB (2005) Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylthanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma 226: 109–123.

Murray JM (1983) Three-dimensional structure of a membrane-microtubule complex. J Cell Biol 97: 283–295.

Nagasaki N, Tomioka R, Maeshima M (2008) A hydrophilic cation-binding protein of Arabidopsis thaliana, AtPCaP1, is localized to plasma membrane via N-myristoylation and interacts with...
calmodulin and the phosphatidylinositol phosphates PtdIns-(3,4,5)P3 and PtdIns(3,5)P2. FEBS J 275: 2267–2282

Oda Y, Fukuda H (2012) Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science 337: 1333–1336

Oda Y, Fukuda H (2013a) The dynamic interplay of plasma membrane domains and cortical microtubules in secondary cell wall patterning. Front Plant Sci 4: 511

Oda Y, Fukuda H (2013b) Rho of plant GTPase signaling regulates the behavior of Arabidopsis kinesin-13A to establish secondary cell wall patterns. Plant Cell 25: 4439–4450

Oda Y, Iida Y, Kondo Y, Fukuda H (2010) Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein. Curr Biol 20: 1197–1202

Palazzo AF, Eng CH, Schlaepfer DD, Marcantonio EE, Gundersen GG, Panteris E, Adamakis I-DS, Daras G, Hatzopoulos P, Rigas S (2013) Toward a systems approach to understanding plant cell walls. Science 340: 836–839

Panteris E, Adamakis I-DS, Daras G, Hatzopoulos P, Rigas S (2013) Toward a systems approach to understanding plant cell walls. Science 340: 836–839

Pañeda A, Wright A, Ehrhardt DW (2006) Visualization of microtubule cortical array organization and plant cell morphogenesis. Curr Opin Plant Biol 9: 571–578

Paredes AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312: 1491–1495

Peña EJ, Heinlein M (2013) Cortical microtubule-associated ER sites: Organization centers of cell polarity and communication. Curr Opin Plant Biol 16: 764–773

Pleskot R, Pejchar P, Bevoda R, Lichtscheidt IK, Wolters-Arts M, Marc J, Zársky V, Potoky M (2012) Turnover of phosphatidic acid through distinct signaling pathways affects multiple aspects of pollen tube growth in tobacco. Front Plant Sci 3: 54

Pleskot R, Potoky M, Pejchar P, Link J, Bevoda R, Martinec J, Valentová O, Novotná Z, Zársky V (2010) Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J 62: 494–507

Qin C, Wang X (2002) The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylinositol-selective PLD1 with distinct regulatory domains. Plant Physiol 128: 1057–1068

Rosero A, Zársky V, Cvrcová F (2013) AtFH11 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana. J Exp Bot 64: 585–597

Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GH, Schindelman G, Song S, Baskin Ti, Dupree P, Wasteneys GO, Benfey PN (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17: 1749–1753

Rounds CM, Hepler PK, Winship LJ (2014) The apical actin fringe contributes to localized cell wall deposition and polarized growth in the lily pollen tube. Plant Physiol 166: 139–151

Running MP (2014) The role of lipid post-translational modification in plant developmental processes. Front Plant Sci 5: 50

Ruoslathi E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238: 491–497

Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lindeboom J, Errams AM, Samuel S, Ketelaar T, Ehrhardt DW, Persson S (2013) Patternning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162: 675–688

Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A, Hamant O, Jonsson H, Meyerowitz EM (2014a) Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife 3: e01967

Sampathkumar A, Yan A, Krupinski P, Meyerowitz EM (2014a) Physical forces regulate plant development and morphogenesis. Curr Biol 24: R475–R483

Schindler M, Meiners S, Chersi DA (1989) RGD-dependent linkage between plant cell wall and plasma membrane: Consequences for growth. J Cell Biol 108: 1955–1965

Smertenko AP, Chang HY, Wagner V, Kaloriiti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: Molecular analysis of its microtubule bundling activity. Plant Cell 16: 2035–2047

Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Pearediz A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306: 2206–2211

Sonesson A, Berglund M, Staxén I, Widell S (1997) The characterization of plasma membrane-bound tubulin of cauliflower using Triton X-114 fractionation. Plant Physiol 115: 1001–1007

Sorek N, Gutman O, Bar E, Abu-Abied M, Feng X, Running MP, Lewinsohn E, Ori N, Sadot E, Henis Yi, Yalovsky S (2011) Differential effects of prenylation and s-acetylation on type I and II ROPS membrane interaction and function. Plant Physiol 155: 706–720

Sorek N, Poraty L, Sternberg H, Bar E, Lewinsohn E, Yalovsky S (2007) Activation status-dependent transient S acetylation determines membrane partitioning of a plant Rho-related GTPase. Mol Cell Biol 27: 2144–2154

Sorek N, Sorek H, Kijac A, Szemenyei HJ, Bauer S, Hematy K, Wemmer DE, Somerville CR (2014) The Arabidopsis COBRA protein facilitates cellulose crystallization at the plasma membrane. J Biol Chem 107: M114.607192

Sugimoto K (2003) Mutation or drug-dependent microtubule disruption causes radial swelling without altering parallel cellulose microfibril deposition in Arabidopsis root cells. Plant Cell 15: 1414–1429

Takemoto D, Hardham AR (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136: 3864–3876

Thomas C, Staiger CJ (2014) A dynamic interplay between membranes and the cytoskeleton critical for cell development and signaling. Front Plant Sci 5: 335

Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykretna D, Dedieu A, Peaucelle A, Ludyna M, Traas J, Boudaoud A, Kwiatkowska D, Hamant O (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149: 439–451

van Gisbergen PA, Liang M, Wu SZ, Bezanilla M (2012) Class II formin, binds and bundles both microtubules and microfilaments and, preferentially binds to microtubules. Curr Opin Plant Biol 15: 227–233

van Gisbergen PA, Liang M, Wu SZ, Bezanilla M (2012) Class II formin targeting to the cell cortex by binding P(3,5)P(2) is essential for polarized growth. J Cell Biol 198: 235–250

Wang J, Xue X, Ren H (2012) New insights into the role of plant formins: regulating the organization of the actin and microtubule cytoskeleton. Protoplasma 249 (Suppl 2): S101–S107

Wang J, Zhang Y, Wu J, Meng L, Ren H (2013) AtFH16, an Arabidopsis type II formin, binds and bundles both microfilaments and microtubules, and preferentially binds to microtubules. J Integr Plant Biol 55: 1002–1015

Wang P, Hawkins TJ, Richardson C, Cummins I, Deeks MJ, Sparkes I, Hawes C, Hussey PJ (2014) The plant cytoskeleton, NET3C, and...
VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. *Curr Biol* 24: 1397–405

Wang X, Zhu L, Liu B, Wang C, Jin L, Zhao Q, Yuan M (2007) Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules. *Plant Cell* 19: 877–889

Wasteneys GO, Yang Z (2004) New views on the plant cytoskeleton. *Plant Physiol* 136: 3884–3891

Wolff J (2009) Plasma membrane tubulin. *Biochim Biophys Acta* 1788: 1415–1433

Wu G, Gu Y, Li S, Yang Z (2001) A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. *Plant Cell* 13: 2841–2856

Yang W, Ren S, Zhang X, Gao M, Ye S, Qi Y, Zheng Y, Wang J, Zeng L, Li Q, Huang S, He Z (2011) BENT UPPERMOST INTERNODE1 encodes the class II formin FH5, crucial for actin organization and rice development. *Plant Cell* 23: 661–680

Yang Z (2002) Small GTPases: Versatile signaling switches in plants. *Plant Cell* 14 (Suppl): S375–388

Zhang Q, Lin F, Mao T, Nie J, Yan M, Yuan M, Zhang W (2012) Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. *Plant Cell* 24: 4555–4576

Zhang Z, Zhang Y, Tan H, Wang Y, Li G, Liang W, Yuan Z, Hu J, Ren H, Zhang D (2011) RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. *Plant Cell* 23: 681–700

Zheng Y, Xin H, Lin J, Liu CM, Huang S (2012) An Arabidopsis class II formin, AtFH19, nucleates actin assembly, binds to the barbed end of actin filaments, and antagonizes the effect of AtFH1 on actin dynamics. *J Integr Plant Biol* 54: 800–813

Zheng ZL, Yang Z (2000) The Rop GTPase: An emerging signaling switch in plants. *Plant Mol Biol* 44: 1–9