Meta-learning Causal Discovery

Xinyue Wang
Department of Bioengineering
University of Pennsylvania
wsinyue@seas.upenn.edu

Konrad Kording
Department of Bioengineering
University of Pennsylvania
koerding@gmail.com

Abstract

Causal discovery (CD) from time-varying data is important in neuroscience, medicine, and machine learning. Techniques for CD include randomized experiments which are generally unbiased but expensive. It also includes algorithms like regression, matching, and Granger causality, which are only correct under strong assumptions made by human designers. However, as we found in other areas of machine learning, humans are usually not quite right and are usually outperformed by data-driven approaches. Here we test if we can improve causal discovery in a data-driven way. We take a system with a large number of causal components (transistors), the MOS 6502 processor, and meta-learn the causal discovery procedure represented as a neural network. We find that this procedure far outperforms human-designed causal discovery procedures, such as Mutual Information and Granger Causality. We argue that the causality field should consider, where possible, a supervised approach, where CD procedures are learned from large datasets with known causal relations instead of being designed by a human specialist. Our findings promise a new approach toward CD in neural and medical data and for the broader machine learning community.

1 Introduction

Decision relevant insights are usually about causation not correlation. However, the latter is much easier to estimate than the former. In public health, practitioners want to decide policy interventions based on causal relations (Glass et al., 2013). In sociological research, scientists want to use causal language to answer which effect a specific behavior can have (Sobel, 1995). In biomedical science, researchers ask what causal mechanism a new medicine has (Imbens & Rubin, 2015). In neuroscience, we may ask about the causal role of a neuron’s activation or a lesion of a brain region (Marinescu et al., 2018). Causal insights are at the heart of science, engineering and medicine.

To uncover the causal relationships inside a complex system, researchers often start by estimating the causal influence from one element to another. As a classical method of estimating cause-effect, Randomized Controlled Trial (RCT), has been shown to be effective in clinical and societal problems (Zheng et al., 2020; Sherman et al., 2002). However, conducting an RCT is expensive even without strict standards of comparable group settings, and faces many ethical restrictions. For example, it is unethical to make mothers to ask how that affects birth weights. RCTs are a clean way of establishing causality but are often unethical or not feasible.

Revealing causal relationships from observational data is thus an active field causality research. Some causal discovery methods, constraint-based methods, use a conditional independence relationships. Classical constraint-based causal discovery algorithms include PC (Spirtes et al., 2000), FCI (Spirtes et al., 2000). While these algorithms show us possibility of inferring causality from all kinds of purely observational data, they are only valid when the Faithfulness assumption, justified by human experts, holds. Such methods are also somewhat limited in terms of power and only provide an equivalence class of possible causal models,
they find Markov Equivalence Class. Other causal discovery methods are based on Functional Causal Model (FCM), depicting the directional influence among the elements in a system by a set of equations. Methods such as LiNGAM (Shimizu et al., 2006), ANM (Hoyer et al., 2008), PNL (Zhang & Hyvärinen, 2010) try to recognize the role of cause by looking for noise-caused asymmetric effects between cause and effect. These methods derive from assumptions about noise terms, again justified by human experts. Another causal discovery methods use scores like Bayesian Information Criterion (BIC) and Generalized Score (Chickering, 2002; Huang et al., 2018; Zheng et al., 2018; Zhu & Chen, 2019; Goudet et al., 2017). Yet another causal discovery method uses temporal prediction ideas and the assumption that cause always precedes effect, e.g. from Granger Causality (Granger, 1969). Causal discovery is now a popular field within machine learning and statistics (Pearl, 2010).

Nonetheless, all these methods departs from strong human assumptions about causality (see Figure 1). The causal discovery methods implement human intuition in a different form to discover causality from the dataset at hand. If these assumptions are correct, then we can use domain knowledge to construct good inference algorithms. If they are not, we have to construct algorithms of which we expect to be a good approximation. However, human intuition of what constitutes a good approximation may be limited. And, if the history of the machine learning field is any indication, humans are just not so good at having the right intuitions (Sutton, 2019). It is important to ask if the same lesson that learning is better than human ingenuity can be replicated in the causality domain.

Note that human assumptions are never quite right. Machine Learning (ML) has shown rapid progress in recent decades and it has been successfully applied to many domains such as text generation, image classification, and decision making (Shinde & Shah, 2018). Different from causal discovery methods, ML nurtures algorithms in a data-driven way (see Figure 1), with only weak human assumptions. These techniques outperform human operation in many fields such as face recognition (Lu & Tang, 2013), Go (Silver et al., 2016). For causal discovery we are talking about meta-learning, a way of replacing hand-engineered learning algorithms in a data-driven way. It has been argued to enable learning to be more like human learning (Vanschoren, 2019). We should really expect meta-learned causal discovery to outperform human-designed causal discovery, even if these are usually designed by brilliant economists.

Here we thus use supervised learning on a big dataset of known causal relations to discover an algorithm that will correctly identify causality from unsupervised observations only. We take a deterministic complex system with many causal components, the microprocessor MOS 6502. We first conduct a perturbation analysis of all unique transistors to produce ground-truth causality relationships. The problem of causal discovery from time series boils down to deciding if one element causally influences the other based on time series data. It is a mapping from a two-by-time vector into a binary outcome, causal or not. To implement this mapping, we use the obvious sequence encoders like LSTM, TCN, and Transformer. We thus construct a system that can meta-learn the causal discovery procedure.

Our contribution can be concluded as follows:

- We use meta-learning to generate a new causal discovery procedure and show that it works better than algorithms based on human intuition.
- We examine our meta-learning way under different levels of noise and its internal invariance within different behaviors, showing its robust anti-noise ability and stable generalization on different behaviors executed by same system.
- We conduct an explanation study by Grad-CAM on the attention layer of our Transformer-based architecture and find that our procedure has helped the models learn causal features.

2 Methods

To be able to test algorithms of causal discovery, we need to have a database of known causal relations. We, therefore, use a simple system that contains many causal relations, the MOS 6502 Microprocessor. We can readily measure causal effects by perturbing transistors and seeing how this affects voltages a short period
Figure 1: **A.** In machine learning, algorithms (predictors) are generated from data and then used in inference on unseen data. **B.** In traditional causal discovery procedures, algorithms are not generated from data but from human knowledge. These algorithms infer causality in unseen data by fitting unseen data into human assumptions. **C.** Similar to machine learning, meta-learning causal discovery generates algorithms (predictors) from lots of observational data and known causality, expecting them to learn causality with weak human assumptions, in a data-driven way. Then trained algorithms (predictors) are used to infer causality in unseen data.

Of time later (one half-clock). And we can then ask how an algorithm that is trained on a subset of whole transistors can infer causal influences of another subset that is different from the training set.

To be able to know about causality, we need to start with perturbation experiments of the MOS 6502. We take a C++ optimized MOS 6502 simulator (Jonas & Kording, 2017) with three game recordings (Donkey Kong, Pitfall, Space Invaders) as the target system. We first acquire the causal relationship among transistors by single element perturbation analysis and define it as the ground truth of the causality inside the MOS 6502 system, which is utilized as a supervised signal and validation standard in our causal discovery procedure (we could have used the netlist but that one has no defined time). This way we know the ground truth causal influence of transistors upon one another, which we can use for meta-learning a strategy and for testing.
Figure 2: Methods for meta-learning causal discovery. **A.** Steps in the learning schematic: On the left is the causal discovery model structure, of which the sequence encoder could be a non-recurrent or recurrent sequence encoder. On the right is the perturbation workflow used to get causality relationships inside the microprocessor. **B.** Non-recurrent sequence encoders process all elements in the sequence at the same time, such as Transformer and TCN. **C.** Consisting of recurrent neural network units, non-recurrent sequence encoders process every element in the sequence order and transit state one by one, such as RNN, LSTM, and GRU.

2.1 Single Element Perturbation Analysis

As the smallest unit of a microprocessor, transistors are key nodes that underly various circuit components such as registers and calculators. The main characteristic that makes identifying causes hard is that 3510 transistors inside MOS 6502 are linked by 1904 connection elements, which allows a multi-input and multi-output to form between the transistors. To uncover the causal relationships among transistors, we conduct a single element perturbation experiment, an approach often used to infer causality in the brain network, cellular events, and genetics (Paus, 2005; Meinshausen et al., 2016; Welf & Danuser, 2014). The main idea here is that when the cause element is perturbed, its downstream targets will be affected. By analyzing the difference before and after perturbation, we can determine if a causal influence flows from cause to effect.

Temporal precision is crucial for capturing causality in time-varying data. Low temporal precision might hide the temporal difference between cause and change at the same time point, making the cause and effect unidentifiable. Therefore, although the half-clock-wise recording rule of transistor state in the original version could highly reduce the number of samples and redundancy within the clock, it often regards the change of cause and effect happening at the same time point, leading to more confusion in discriminating between the cause and effect. Therefore, we adopt the step-wise recording rule rather than the original half-clock recording rule, which gives a much higher temporal resolution of the transistor state and a better view of how causality happens. To be more specific, we define the update iteration of a batch of the simultaneous nets as one step, whose update times vary in different clocks. We simulate the clock signal function in the digital circuits to make steps in different half-clocks the same length by padding the last collected step in each half-clock. Here we set the step limitation to be 2000, so for a 256 half-clock runtime, the total sequence length of a transistor would be 512000 steps.
High repeatability is a tricky but practical thing that happens in the ideal system. Because of multi-input and multi-output connections, it is common for some transistors to have almost the same state sequence. To reduce redundancy in the perturbation experiment and causal discovery procedure, we collected the first 256 half-clock state sequences of all transistors and only retained the transistors with unique sequences. The following perturbation experiment and discovery procedure are all based on this set of transistors, whose quantity somewhat varies across games, but generally is around 800. We thus only analyze transistors with unique behavior.

In a complex system, cause-effect may be continuously spread to more and more indirect targets as time goes forward. To simplify this kind of influence and focus on the relatively direct cause-effect relations, we limit the causal effect calculation only to the first half-clock that the perturbation of the cause transistor actually begins working, where the transistor state sequence under regular operation first changes.

Based on the above, we conduct a single element perturbation simulation on every unique transistor, where we impose a perturbation on a transistor and measure the causal effect it has on the other transistors, and repeat it for every transistor individually. A significant advantage of performing the perturbation is that it gives us the ability to reject all the confounding effects brought on by predecessors. To be more specific, we force the state of an individual transistor to be ON in the microprocessor runtime if this transistor is supposed to be OFF in normal operation, and vice versa. Since the step number in each half-clock is not consistent, we record the markers to label when a half-clock started and ended. We then use markers to do padding to reconstruct the equal interval sequence. In order to speed up simulation and save storage costs, we simulate the same length as regular operation but only recorded the perturbation result in the first clock that the cause transistor starts to change. We record the regular runtime for 256 half-clocks for all transistors and repeated this procedure for three games, respectively. Denote that $x_i \in \mathbb{R}^L$ is the transistor state sequence of perturbed transistor i and $x_j \in \mathbb{R}^L$ is the other transistor sequence of transistor j. We define that $x_{j, do(x_i=p)}$ is the runtime sequence of imposing perturbation on the i_{th} transistor. We force the transistor to be ON where it should be OFF, and vice versa. For a specific transistor i, its average causal effect on transistor j in one clock is defined by the expectation of the difference between the regular and the perturbation condition, as in the equation below for the Average Treatment Effect (ATE).

$$ATE_{i,j} = E[x_{j, do(x_i=p)} - x_j]$$ (1)

We then convert the average treatment effect to a binary adjacency matrix A to describe the relationship between any pair of transistors as the equation below. Here the transistor i is the cause of transistor j if the average treatment effect $ATE_{i,j}$ is not zero, while the reversal causal and unrelated relationships are not supposed to have causal influence flowing from transistor i to transistor j:

$$A_{i,j} = 1_{ATE_{i,j} > 0}$$ (2)

2.2 Meta-learning Procedure

In this subsection, we define the causal discovery procedure based on deep learning in two steps, data preprocessing and baseline setting. Here we focus on the causal discovery in the Donkey Kong and utilize its simulation data acquired from single element perturbation experiment, including the regular runtime state sequence x and the adjacency matrix A. Note that in the causal discovery procedure, we aim at exploring the potential of inferring pairwise causality from observational data without the direct view of any perturbation. Therefore, the adjacency matrix A is only adopted as the label to do supervised learning and algorithm validation. After preprocessing data, the sequences of transistor pairs are fed into our discovery architecture.

2.2.1 Data Preprocessing

After acquiring clean sequence data and binary labels, we first divide all unique transistors into three sets: training, validation, and testing in the ratio 6 : 2 : 2. We divide in such a way, that no transistor shows up
in two of the three sets to minimize the risk of leakage. We then construct transistor pairs inside each set independently, regarding each pairwise relationship as a data sample, constructing 653672 samples in total with 9844 positive samples. For instance, even though transistor i and transistor j, and transistor j and transistor i are the same sequences, they were different data samples. We repeat this splitting 5 times with different seeds to guarantee the fairness of our results. Compared to non-causal relationships, causal pairs are in the minority, leading to a severe bias towards the non-causal side. In order to mitigate the negative effect of the sample imbalance, positive samples are randomly over-sampled to reach the same quantity as negative samples in the training set. Causal relationships are always sparse compared to non-causal relationships, which become more severe when more elements are involved in a system. Therefore, we kept the validation and testing sets unchanged to reveal what happened in reality and better evaluate the discovery quality of our procedure.

2.2.2 Architecture

Here we illustrate the architecture of meta-learn causal discovery. Note that the estimation of the causal link will generally require using the whole time series. For instance, if we take a zoom-in view of our microprocessor system, we will see that there are a lot of constant states and relatively fewer turning points, which will still exist even when noise is added in. Therefore, we need the model to discriminate and capture the informative periods where cause-effect relations may be visible. The system must also be able to accommodate long input vectors. Inspired by Dosovitskiy et al. (2020), we converted the pairwise input $X \in \mathbb{R}^{L \times 2}$ into a sequence of window embeddings $X_w \in \mathbb{R}^{N \times C}$. We adopted a 1D convolutional layer as the window embedding layer, since such works like Word-CNN (Kim, 2014), TCN (Lea et al., 2016) had proved that convolutional kernels were effective in extracting sequence information. Benefiting from the sharing parameters of convolutional kernels, we encode windows in a computation-efficient way. We use the window embedding layer to capture the causal features inside an individual window, such as the temporal lag of effect. We also add a [class] token as the first window embedding and encode position information for each window. In order to capture the information across windows and aggregate the window features together, the window embeddings are then fed into a sequence encoder, which could be a non-recurrent sequence model like Transformer (Vaswani et al., 2017) and TCN (Lea et al., 2016), or recurrent sequence model like LSTM (Hochreiter & Schmidhuber, 1997), GRU (Cho et al., 2014). The output of the sequence encoder is globally average pooled and transformed to the probability of binary classification by a linear layer. We thus use a relatively standard architecture from the time series or natural language field.

2.2.3 Baseline Setting

- Input: We set sequence length L to be 51200 by resampling with a fixed 10 time steps as the interval from the original 256 half-clock sequences. The window embedding sequence length N is 101, consisting of one [class] token and 100 window embeddings when set window size to be 512. The number of window embedding channels C is 128.
- Encoder: We use Bi-directional LSTM, TCN, and Transformer as sequence encoders. For LSTM and TCN, we use layer depth 2 with 128 as the hidden size. For Transformer, we use layer depth 4 with hidden size 128 and 8 multi-attention heads.
- Optimization: Pooler output is regarded as $P(Causal|X)$ and compared with the adjacency matrix to acquire cross-entropy loss. All models are optimized with AdamW with a learning rate 0.001 and batch size 256 for 50 epochs. Weight decay 0.05 and early stopping with patience 5 epochs are used to prevent over-fitting. The learning rate is warmed up for 5 epochs and adjusted by the Cosine Annealing scheduler in the rest process.

3 Empirical Study

Intending to uncover the causal effect inside the MOS 6502 and the robustness of our meta-learned causal discovery procedure, we carry out multiple empirical studies, including a causal effect analysis, regular evaluation, noise tests, and internal invariance assessment.
3.1 Causal Influence

It is both an interesting and difficult question to determine how much causal influence there is and what role it plays in a complex system. Lasting 512 half clocks, perturbation simulation on each transistor in Donkey Kong provides us with the causal effect of every individual transistor. The Figure 3 shows the average treatment effect of three individual transistors, 1, 990 and 3507.

A. Average treatment effect of lesioning transistor 1

B. Average treatment effect of lesioning transistor 990

C. Average treatment effect of lesioning transistor 3057

Figure 3: Causal effect of lesions inside MOS 6502 when executing different games (the blue point is the lesion transistor). A. Average treatment effect (ATE, measured during one half-clock, 2000 time steps) when stimulating transistor 1; B. ATE for transistor 990; C. ATE for transistor 3057.

The first subplot shows an interesting phenomenon that the perturbation of transistor 1 does not cause differences to any other transistors. It indicates that even though the connected netlist guarantees that its
perturbation output is transferred to other elements, the following transistors can not be affected. This demonstrates that physical connection information is not enough to provide complete information about causal relationships.

In the second and third subplots, the transistor 990 and 3057 exhibit different average treatment effects on the other transistors, which suggests variation in the causal relationship between the target transistor and other transistors. As the clock transistor is connected to cclk wire, transistor 3057 has a stronger cause effect on the other transistors than transistor 990 in all games, indicating its more crucial role in the MOS 6502 system. In addition, we see that the effects of transistor 990 vary in different games, which violates the stability of causal relationships in different environments. We assume that this is induced by the variation of indirect effects since the causal effect here is defined by the lesioning effect. We see that the causal effect in the MOS 6502 system is nontrivial and strongly associated with different functional areas. To be more specific, the distribution of causal effect strength is associated with their location, which indicates different circuit units that conduct different functions, such as clock registers and arithmetic-logic units. For instance, in controlling the chronological signal of various circuit units, the transistors consisting of a clock register have the largest total causal effect on the system. More importantly, most of the distribution of causal effects is similar in the other two games, Pitfall and Space Invaders, indicating that for a large complex system, even if the behaviors they are executing are different, the system structure behind them might be highly similar. We regard this as a high-level function generalization in different environments, which demonstrates the robust stability of causality. Having defined causality in the microprocessor thus sets us up to check how well we can do causal discovery from time series.

3.2 Evaluation of classical and meta-learned causal discovery processes

Many aspects of time series may be indicative of causality. The left part of Figure 4 shows some examples of causal and non-causal pairs, uncovered by perturbation analysis. Taking a zoom-in view of transistors 990 and 1 shows that the causal feature here is the time lag between cause and effect in the turning point of cause. Even though it is the easiest sample of these three positive samples, the sparsity of the causal information is difficult for human-assumption methods to exact. In addition, the time lag is not consistent in the other samples, which violates the need for the fixed time lag in human-assumption methods such as Granger Causality (Granger, 1969) and Vector Autoregression models (Moneta et al., 2011). Even if cropping windows and multiple time lags are attempted to compensate for those limitations, various difficult scenarios like the other two positive samples are beyond human observation and assumptions, which might have potential specialized causal features in a specific kind of complex system. Many features may be usable to infer causality from the time series.

Figure 4: Transistor pair examples of different relationships. **A.** Causal pairs of transistors: 990 -> 1, 524 -> 1400 and 968 -> 2099. **B.** Non-causal pairs of transistors: 990 - 0, 990 - 1207, and 321 - 64

Here we evaluate how well meta-learning discovery procedures do and compare them with traditional bivariate relativity metrics: Spearman Correlation, Mutual Information, and Granger Causality. Considering
the huge sample imbalance in the testing set, we use AUROC to evaluate how these methods work. We test all methods on pairs of time series, just like when training our models. For the Granger Causality, we use $1 - p$ from the SSR-based F test and selected the best one from time lag 0 to 5 as the prediction probability of positive class. We can thus compare the meta-learned and classical techniques.

We use all the methods using data from the game Donkey Kong and will only use other games for testing procedures (see Figure 5). The meta-learning approaches based on LSTM, TCN and Transformer each achieve above 90% AUC, while the traditional methods only achieve up to 68%. Using LSTM as the sequence encoder gives us the best performance 94%, and our procedure shows stable high inference quality even when changing the core encoder. As a semantically similar concept to causality and a common tool to explore connectivity, correlation here achieves less than 50% AUC. Clearly, meta-learning far outperforms the methods based on human intuitions.

![Methods Comparison on DonkeyKong](image)

Figure 5: Causal discovery method comparison in the ideal context. The pairwise transistor relationship classification task of the game Donkey Kong is evaluated by AUROC in the testing set.

3.3 Evaluation under Noise

In contrast to ideal microprocessor simulation, real-world causal discovery often happens in domains where there are all kinds of noise. Intending to explore the potential effectiveness of our methods in other real-world scenarios, we simulate the observation noise by simply adding Gaussian noise of different scales in both training and testing. Figure 6 shows the augmented result of transistor 990. Here we repeat the same steps we have done in Section 3.2. Our method still achieves above 90% AUC and outperforms traditional methods (see Figure 7). Our meta-learning procedure is robust and only lightly affected by noise, while the performance of the conceptual methods significantly degrades below 50%, especially Granger Causality. This benefits from the introduced supervised signal, which, arguably, makes our model regard noise as data augmentation while methods based on human intuition failed to extract effective features.

![Figure 6: Transistor 990 under Gaussian noise.](image)
3.4 Internal Invariance

Linking cause and effect, causality should be stable in different environments wherever the data distribution of the environment changes or not, empowering its more robust transferability and generalization on internal than correlation. We thus take the other two games, Pitfall and Space Invaders as different behaviors from Donkey Kong but executed by the same complex system, to evaluate if our causal discovery approach is invariant to domain shifts. We are slightly concerned that our algorithm may work by memorizing aspects of the time series. Therefore, to reduce such data leakage, we only use the unique transistors in the other two games to construct test sets. We directly use the model trained on Donkey Kong to infer the causal relationships in Pitfall and Space Invaders and calculate their AUROC (see Figure 8). We find very strong a generalization across games. The learning of causal discovery leads to the causal discovery that is robust across games, which could be the result of our model having learned the causal dynamics among transistors.

3.5 Explanation Study

We see that our meta-learning procedure has shown good performance in causality discovery, but what if it is exploiting some shortcut that we humans do not understand and that is specific to the MOS 6502? To find out what our models have learned from the supervised signal, we use the model with the transformer to conduct an explanation study. We first use Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2016) to try to understand what models were learned. Then we try to inspect what happens when we violate the temporal order of cause-result by adding a small time shift to the cause transistor.

Suggested by Selvaraju et al. (2016), their Grad-CAM is a robust tool making Convolutional Neural Network more transparent by helping localize saliency in the feature map. We adopt Grad-CAM mainly on the output of the attention block in the last layer and interpolate the feature map back to the same length of the input sequence. We see that in the first row of Figure 9, the model trained on regular recording shows high saliency
Figure 8: Methods comparison on three games. Our models (LSTM, TCN, Transformer) are only trained on DonkeyKong and tested on three games. Classical methods are directly tested on three games.

Figure 9: Grad-CAM mappings of causal pairs. A. The gradient saliency mapping of three causal transistor pairs in the ideal context. B. The gradient saliency mapping of the same causal transistor pairs at a noise scale of 0.5.

at the windows where cause and effect have interactions. The high saliency here indicates that the model captures highly relevant features to recognize a causal relationship in the system used to supervise, such as the time lag of cause-effect. In the second row, we show the feature map of the model trained at a scale of 0.5. Similar to the model in the ideal context, the feature map in the noise model exhibits special attention at the windows cause-effect happens - as such the behavior of the model does make sense.
The precedence of cause is a core rule used to discriminate between cause and effect. Inspired by the time lag between cause and effect, we expect our model to give a different answer when it receives a modified input that violates the precedence of cause. Therefore, we move the cause transistor forward 200 time steps and infer the relationship between this new pair. As shown in Figure 10 when the effect precedes the cause, the model rejects the previously recognized causal relationship. We suggest that our model understands the basic rule between cause and effect and has adopted it to do causal discovery since the rejection decision is consistent with the broken causal chain.

4 Discussion

Here we have shown that causal discovery from observational time-varying data, can be phrased as a meta-learning problem. We use a causal system with many causal relations, the MOS 6502 for all of our experiments. We find that the meta-learned strategy far outperformed traditional human-designed methods, in particular in the high-noise domain. We find that learned causal discovery generalizes across different games. Lastly, we observe that the meta-learned strategy, as should be expected, focuses on times where state transitions unfold.

The right causal discovery strategy will, without a doubt, differ across domains. We test our methods on microprocessor causality. A method that works well on the microprocessor may not work well in medicine or neuroscience. Our focus on the microprocessor simply comes from a lack of data in other domains: neither medicine nor neuroscience have large datasets of observational data along with ground truth perturbation-based causality data. As these datasets become available, revisiting meta-learning approaches to causality becomes a crucial issue.

The right causal strategy will also depend on noise and data quality. Real-world data contains noise, and often observations are only partial. Observations are also often short. The evolving internal state of other systems also produces latent noise that will be hard to learn. How to make causal discovery strategies noise tolerant and work within the limit of relatively small datasets is an important issue for future data.

Here we use perturbation analysis to define ground-truth causality. However, these causal effects will still generally depend on the network state and we certainly do have not enough data to cover all relevant network states. Future developments should at short-term perturbations and develop perturbation analysis methods for more noisy real-world systems.

Our results are a lot better than the ones based on human assumptions (AUC .9 vs humans at .6). What’s more, it shows a certain generalization ability even in a worse observational perspective, and the potential for transferability in the homogenous system. As such, it seems clear that the advantage of meta-learning is large in our system. Meta-learning may thus make a big difference relative to the current state of the art in many fields like public policy or epidemiology.

Currently, algorithms for causal discovery from observational data are constructed using mathematical ideas. For example, Hyvarinen approach is based on sparseness (Shimizu et al., 2006), and Blei deconfounder is based on independent confounders (Wang & Blei, 2019). However, it is quite unclear how good these assumptions are. Our approach can in principle discover ideas like deconfounders or sparse noise, but,
importantly, it can use all of these ideas, those expressed by clever mathematicians and those that no one has yet discovered. Meta-learning promises to make the field more efficient.

The success of meta-learning for causal discovery which we present here may suggest that we should use such approaches across the sciences. We suggest that we need large projects to produce datasets of ground-truth causality in public policy and epidemiology. A lack of proper benchmarks has long been holding back these fields. Our paper adds an extra reason for why we should produce such datasets: it promises us to actually considerably improve the causal discovery procedures that power these fields.

Broader Impact Statement

Being able to efficiently do causal discovery, promises to make AI more useful to a larger group of scientists and engineers. Along with this, there may be shifts in the balance between humans and machines, potentially with negative consequences. That being said, it may take a while until these techniques are used in relevant fields.

Author Contributions

Both authors conceptualized the ideas together and wrote the text. XW wrote the code and performed the analyses.

Acknowledgments

We want to thank the CD community for inspiring this research by giving overly dense introductions to CD.

References

David Maxwell Chickering. Optimal structure identification with greedy search. *Journal of machine learning research*, 3(Nov):507–554, 2002.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural machine translation: Encoder-decoder approaches. *CoRR*, abs/1409.1259, 2014. URL http://arxiv.org/abs/1409.1259.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.

Thomas A Glass, Steven N Goodman, Miguel A Hernán, and Jonathan M Samet. Causal inference in public health. *Annual review of public health*, 34:61–75, 2013.

Olivier Goudet, Diviyan Kalainathan, Philippe Caillou, Isabelle Guyon, David Lopez-Paz, and Michèle Sebag. Causal generative neural networks. *arXiv preprint arXiv:1711.08936*, 2017.

Clive WJ Granger. Investigating causal relations by econometric models and cross-spectral methods. *Econometrica: journal of the Econometric Society*, pp. 424–438, 1969.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear causal discovery with additive noise models. *Advances in neural information processing systems*, 21, 2008.

Biwei Huang, Kun Zhang, Yizhu Lin, Bernhard Schölkopf, and Clark Glymour. Generalized score functions for causal discovery. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 1551–1560, 2018.

Guido W Imbens and Donald B Rubin. *Causal inference in statistics, social, and biomedical sciences*. Cambridge University Press, 2015.
Eric Jonas and Konrad Paul Kording. Could a neuroscientist understand a microprocessor? *PLoS computational biology*, 13(1):e1005268, 2017.

Yoon Kim. Convolutional neural networks for sentence classification. *CoRR*, abs/1408.5882, 2014. URL: `http://arxiv.org/abs/1408.5882`

Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal convolutional networks: A unified approach to action segmentation. In *European conference on computer vision*, pp. 47–54. Springer, 2016.

Chaochao Lu and Xiaoou Tang. Surpassing human-level face verification performance onlfw with gaussian-face. In *Twenty-ninth AAAI conference on artificial intelligence*, 2015.

Ioana E Marinescu, Patrick N Lawlor, and Konrad P Kording. Quasi-experimental causality in neuroscience and behavioural research. *Nature human behavior*, 2(12):891–898, 2018.

Nicolai Meinshausen, Alain Hauser, Joris M Mooij, Jonas Peters, Philip Versteeg, and Peter Bühlmann. Methods for causal inference from gene perturbation experiments and validation. *Proceedings of the National Academy of Sciences*, 113(27):7361–7368, 2016.

Alessio Moneta, Nadine Chlaß, Doris Entner, and Patrik Hoyer. Causal search in structural vector autoregressive models. In *NIPS Mini-Symposium on Causality in Time Series*, pp. 95–114. PMLR, 2011.

Tomáš Paus. Inferring causality in brain images: a perturbation approach. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 360(1457):1109–1114, 2005.

Judea Pearl. Causal inference. *Causality: objectives and assessment*, pp. 39–58, 2010.

Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi Parikh, and Dhruv Batra. Grad-cam: Why did you say that? visual explanations from deep networks via gradient-based localization. *CoRR*, abs/1610.02391, 2016. URL: `http://arxiv.org/abs/1610.02391`

Lawrence W Sherman, Heather Strang, Caroline Angel, Daniel Woods, Geoffrey C Barnes, Sarah Bennett, and Nova Inkpen. Effects of face-to-face restorative justice on victims of crime in four randomized, controlled trials. *Journal of experimental criminology*, 1(3):367–395, 2005.

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A linear non-gaussian acyclic model for causal discovery. *Journal of Machine Learning Research*, 7(10), 2006.

Pramila P Shinde and Seema Shah. A review of machine learning and deep learning applications. In *2018 Fourth international conference on computing communication control and automation (ICCUBEA)*, pp. 1–6. IEEE, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.

Michael E Sobel. Causal inference in the social and behavioral sciences. In *Handbook of statistical modeling for the social and behavioral sciences*, pp. 1–38. Springer, 1995.

Pater Spirtes, Clark Glymour, Richard Scheines, Stuart Kauffman, Valerio Aimale, and Frank Wimberly. Constructing bayesian network models of gene expression networks from microarray data. 2000a.

Pater Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. *Causation, prediction, and search*. MIT press, 2000b.

Richard Sutton. The bitter lesson. *Incomplete Ideas (blog)*, 13:12, 2019.

Joaquin Vanschoren. Meta-learning. In *Automated Machine Learning*, pp. 35–61. Springer, Cham, 2019.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.

Yixin Wang and David M Blei. The blessings of multiple causes. *Journal of the American Statistical Association*, 114(528):1574–1596, 2019.

Erik S Welf and Gaudenz Danuser. Using fluctuation analysis to establish causal relations between cellular events without experimental perturbation. *Biophysical journal*, 107(11):2492–2498, 2014.

Kun Zhang and Aapo Hyvärinen. Distinguishing causes from effects using nonlinear acyclic causal models. In *Causality: Objectives and Assessment*, pp. 157–164. PMLR, 2010.

Cheng Zheng, Ran Dai, Robert Peter Gale, and Mei-Jie Zhang. Causal inference in randomized clinical trials. *Bone marrow transplantation*, 55(1):4–8, 2020.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous optimization for structure learning. *Advances in Neural Information Processing Systems*, 31, 2018.

Shengyu Zhu and Zhitang Chen. Causal discovery with reinforcement learning. *CoRR*, abs/1906.04477, 2019. URL http://arxiv.org/abs/1906.04477