Hoxa9 Transduction Induces Hematopoietic Stem and Progenitor Cell Activity through Direct Down-Regulation of Geminin Protein

Yoshinori Ohno1, Shin’ichiro Yasunaga1, Salima Janmohamed2, Motoaki Ohtsubo1,3, Keita Saeki1, Toshiaki Kurogi1, Keichiro Mihara4, Norman N. Iscove2, Yoshihiro Takihara1,4*

1 Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan, 2 Ontario Cancer Institute, McEwen Centre for Regenerative Medicine, Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada, 3 Department of Food and Fermentation Science, Faculty of Food Science and Nutrition, Beppu University, Beppu, Oita, Japan, 4 Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan

Abstract

Hoxb4, a 3′-located Hox gene, enhances hematopoietic stem cell (HSC) activity, while a subset of 5′-located Hox genes is involved in hematopoiesis and leukemogenesis, and some of them are common translocation partners for Nucleoporin 98 (Nup98) in patients with leukemia. Although these Hox gene derivatives are believed to act as transcription regulators, the molecular involvement of the Hox gene derivatives in hematopoiesis and leukemogenesis remains largely elusive. Since we previously showed that Hoxb4 forms a complex with a Roc1-Ddb1-Cul4a ubiquitin ligase core component and functions as an E3 ubiquitin ligase activator for Geminin, we here examined the E3 ubiquitin ligase activities of the 5′-located Hox genes, Hoxa9 and Hoxc13, and Nup98-Hoxa9. Hoxa9 formed a similar complex with the Roc1-Ddb1-Cul4a component to induce ubiquitination of Geminin, but the others did not. Retroviral transduction-mediated overexpression or siRNA-mediated knock-down of Hoxa9 respectively down-regulated or up-regulated Geminin in hematopoietic cells. And Hoxa9 transduction-induced repopulating and clonogenic activities were suppressed by Geminin supertransduction. These findings suggest that Hoxa9 and Hoxb4 differ from Hoxc13 and Nup98-Hoxa9 in their molecular role in hematopoiesis, and that Hoxa9 induces the activity of HSCs and hematopoietic progenitors at least in part through direct down-regulation of Geminin.

Citation: Ohno Y, Yasunaga S, Jammohamed S, Ohtsubo M, Saeki K, et al. (2013) Hoxa9 Transduction Induces Hematopoietic Stem and Progenitor Cell Activity through Direct Down-Regulation of Geminin Protein. PLoS ONE 8(1): e53161. doi:10.1371/journal.pone.0053161

Editor: Zhengqi Wang, Emory University, United States of America

Received: July 19, 2012; Accepted: November 26, 2012; Published: January 11, 2013

Copyright: © 2013 Ohno et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Japan Society for the Promotion of Science Summer program, the Ube Foundation, the Takeda Science Foundation, the Tsuchiya Medical Foundation, the Children’s Cancer Foundation of Japan, the Mitsubishi Pharma Research Foundation and the Daiwa Securities Health Foundation, Novartis Pharma Japan and Okinaka Memorial Institute for Medical Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: takihara@hiroshima-u.ac.jp

Introduction

Hox genes are clustered in four separate chromosomes (Hoxa-d), and are classified into 13 paralogous family members [1]. The Hox gene products determine the segment specificity during animal development and are also known to be involved in hematopoiesis and leukemogenesis, which are believed to be mediated by their transcription-regulatory activity [2],[3]. Hoxb4 and Hoxa9, the 3′- and 5′-located Hox gene respectively, enhance hematopoietic stem cell (HSC) activity [4],[5]. High levels of Hoxa9 expression are consistently seen in leukemic cells with the rearranged mixed lineage leukemia (MLL) gene [6], because Hoxa9 is a direct target gene for Mll fusion proteins [7]. Enhanced expression of Hoxa9 was shown to be essential for proliferative advantage and survival in leukemic cells [8]. Moreover, expression levels of Hoxa9 correlate well with poor prognosis for patients with acute myeloid leukemia [9]. Elevated Hoxa9 levels were also detected in the majority of patients with chronic myelogenous leukemia in the blast crisis phase [10]. In mice, Hoxa9 transduction was shown to enhance HSC activity and to suppress lymphoid differentiation [5]. Hoxa9 transduction was found to give rise to leukemic transformation, which, however, occurred 3 to 10 months after the transplantation, suggesting requirement of an additional genetic or epigenetic alteration for the leukemic transformation [5]. Some of the 5′-located Hox genes (e.g., Hoxa9, Hoxc13 and Hoxd13) are partner genes for the chromosome translocations with Nup98 and are involved in leukemogenesis [11]. Transduction of either Nup98-Hoxa9 or Nup98-Hoxd13 caused myelodysplastic syndrome which progressed to acute leukemia after long latency periods [12],[13]. Similar leukemic transformation was observed in transgenic mice carrying Nup98-Hoxd13 [14] and Nup98-Hoxa9 [15]. Although many attempts have been made to identify the down-stream target genes for Hox gene derivatives [16],[17],[18],[19], the molecular role of these derivatives in hematopoiesis and leukemogenesis remains largely unknown.

We previously proposed that Polycomb-group (PcG) complex 1 (also designated as Polycomb repressive complex 1) sustains HSC
activity through the E3 ubiquitin ligase activity for Geminin [20],[21],[22]. Interestingly, we found that retrovirus-mediated Hoxb4 transduction effectively restored the HSC defect caused by accumulated Geminin in mice deficient in Rae28 (also designated as Phc1), a member of PcG complex 1 [23]. We further provided evidence that Hoxb4 formed the RDCOXB4 complex with Roc1 (also known as Rbx1)-Deb1-Cul4a, a core component of E3 ubiquitin ligase, and that the RDCOXB4 complex acted as an E3 ubiquitin ligase for Geminin. Transduced Hoxb4 is presumed to down-regulate the accumulated Geminin via the ubiquitin-proteasome system (UPS) and to restore the impaired HSC activity in Rae28-deficient mice [23]. We therefore proposed that PcG complex 1 and Hoxb4 regulate the activity of HSCs through direct regulation of the Geminin protein [21],[23]. Geminin forms a Cdt1-Geminin complex to tune up the activity of Cdt1, which initiates DNA replication licensing by loading the MCM2-7 helicase onto chromatin [24]. Geminin acts as an inhibitor for Cdt1 and the ratio of Geminin versus Cdt1 controls “turning on and off” of DNA replication licensing [25]. DNA replication licensing occurs at late M and G1 phases and may also be involved in G4-to-G2 transition [24]. Geminin prevents reformation from S phase to early M phase, which ensures one-round DNA replication in a single cell cycle [24],[26]. Geminin also acts as an inhibitor for Brahma and Brg1, a catalytic subunit of chromatin remodeling complexes, to maintain an undifferentiated state [27],[28] and as a transcription repressor or co-repressor [29],[30],[31]. Geminin deficiency abrogated early mammalian development at the blastocyst stage [32]. Conditional knockout of Geminin in hematopoietic cells perturbed the pattern of blood cell production [33]. Geminin is unstable protein which is present from S phase to late M phase and is degraded at the metaphase/ anaphase transition by UPS in conjunction with the Anaphase Promoting Complex/Cyclosome (APC/C) in somatic cells [34]. Geminin is, on the other hand, known to be required for maintaining pluripotency at G1 phase in mouse embryonic stem and carcinoma cells [35]. Geminin expression is high in HSCs and is down-regulated in hematopoietic progenitors [21],[36]. Retrovirus-mediated Geminin transduction impaired clonogenic and replating activities of hematopoietic progenitors, while siRNA-mediated knock-down of Geminin promoted the progenitor activities [21],[23]. The dynamic expression of Geminin may thus at least provide HSCs with quiescence and hematopoietic progenitors with higher proliferation potential [21].

In the current study, we first conducted an in vitro examination by using recombinant molecules to determine whether the 5’-located Hox genes, Hoxa9 and Hoxc13, or Nup98-Hoxa9 generated the E3 ubiquitin ligase activity for Geminin, which is similar to the action by Hoxb4. We next examined the effect of the Hox derivatives on the Geminin protein and the cell cycle in a cell line derived from human kidney cells, HEK-293 cells and bone marrow cells (BM). We also assessed the involvement of down-regulated Geminin in hematopoietic stem and progenitor activities induced by Hoxa9 transduction. Based on our findings, we here argue for a novel molecular role of Hoxa9 in hematopoiesis and also discuss the possible involvement in leukemogenesis.

Materials and Methods

Real-time PCR

Total cellular RNA extracted from cells with the Mini RNA Isolation Kit (ZYMO Research, Orange, CA) was reverse transcribed by using TaqMan Reverse Transcription Reagents (Life Technologies, Carlsbad, CA). The resultant product was analyzed by means of real-time quantitative PCR analysis using TaqMan Gene Expression Assays and an Applied Biosystems 7500 Real-time PCR system (Life Technologies) and the specific transcripts were normalized to those of B-actin.

Transfection experiments

cDNAs were subcloned down-stream of the CMV promoter in pcDNA expression vector (Life Technologies). The plasmids were transfected with the calcium phosphate co-precipitation method into HEK-293 cells, which had been grown in Dulbecco’s modified Eagle’s medium (DMEM) (Life Technologies) supplemented with 10% FBS (ThermoFisher Scientific, Waltham, MA). The resultant transfectants were then further analyzed.

siRNA experiments

HEK-293 cells were transfected with the following four double-stranded (ds) RNAs (ThermoFisher Scientific) at 40 nM with the aid of Lipofectamine RNAiMAX (Life Technologies) to knock-down Cul4a: RNAs—GACAGAUAGUUCGGUACUC, GCAUGUACAAACGACACU, and GAACAGCAUUGAAUACUA, sPerfect Negative Control (Sigma-Aldrich, St. Louis, MO) was transfected at the same concentration as non-target negative control [23]. On the other hand, mouse BM were cultured in DMEM supplemented with 15% FBS, 100 ng/ml mouse SCF, 100 ng/ml human TPO and 100 ng/ml mouse Flt3 ligand (R&D systems, Minneapolis, MN) for 24 hrs. Cells (5 x 10^3) were harvested and resuspended in 1 ml Accell siRNA delivery media (ThermoFisher Scientific) supplemented with 100 ng/ml mouse SCF, 100 ng/ml human TPO and 100 ng/ml mouse Flt3 ligand, and cultured with 0.5 mM each of Accell SMART Pool of the following four double-stranded siRNA for mouse Hoxa9: CCGUUUGACACUGACACUU, UGACUAUGGUUGUUCUGU, CUGUGACCCUUCAGUCAC, and CGCCUAACUACUGGUCA, or the negative control: Accell Non-targeting Pool (ThermoFisher Scientific) for 72 hrs. Efficiency of the co-transfection was monitored by using green fluorescent dye-labeled siRNA (Accell Green Non-targeting siRNA; ThermoFisher Scientific) as an indicator. Cells were then subjected to further analysis.

Immunoprecipitation and immunoblot analysis

Cell extracts were prepared by resuspending cell pellets in RIPA buffer consisting of 10% glycerol, 0.5% Triton X-100, 20 mM Heps (pH 8.0), 150 mM NaCl, 1 mM EDTA, 1.5 mM MgCl2, and a protease inhibitor cocktail, Complete Mini (Roche Diagnostics GmbH, Mannheim, Germany), sonicated for 30 sec on ice and centrifuged for 15 min at 15,000 x g. The supernatant of the lysate was subjected to immunoprecipitation experiments with GammaBind G Sepharose (GE Healthcare, Milwaukee, WI). Proteins were separated by SDS-PAGE, transferred to Immobilon-P (Merck, Billerica, MA). immunoblotted with primary antibodies, and visualized with horseradish peroxidase-conjugated anti-rabbit or anti-mouse IgG and SuperSignal West Femto Maximum Sensitivity Substrate (ThermoFisher Scientific). The detected bands were scanned with the Image J program (NIH) and the intensity was statistically analyzed. To detect ubiquitinated molecules in vivo, cells were treated with MG132 (20 µM) (Peptide Institute, Osaka, Japan) for 6 hrs. For the pulse-chase labeling experiment, Geminin was labeled with 35S-methionine, immunoprecipitated and detected by means of autoradiography. The half-life was estimated with the least-squares method [37].
Retrovirus-mediated gene transduction

Either the murine stem cell virus (MSCV) vector with the enhanced yellow fluorescent protein (EYFP) gene as a selection marker (MEP) or MSCV with the resistance gene for puromycin (MPI) was co-transfected with gag, pol and vesicular stomatitis virus glycoprotein (SVS-G) envelope expression plasmids into HEK-293 cells with Lipofectamine 2000 (Life Technologies). The ecotropic packaging cell line, PlatE (kindly provided by Dr. Toshio Kitamura, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan) [30], was infected three to ten times with a virus, and the supernatants were concentrated by centrifugation at 6,000 x g for 16 hrs to produce a high-titer helper-free retrovirus. BM were cultured for 24 hrs in DMEM supplemented with 15% FBS, 100 ng/ml mouse SCF, 100 ng/ml human TPO and 100 ng/ml mouse Flt3 ligand. The cells were then cultured with retrovirus in retroenclin-coated dishes (Takara Bio, Otsu, Japan) for 72 hrs in the same medium with the addition of 5 µg/ml protamine sulfate (Sigma-Aldrich) [21], [23]. Then, the retrovirally transduced cells were subjected to further analysis.

Analysis of cell cycle, apoptosis, Geminin protein expression and hematopoiesis

Cells were pulse-labeled with BrdU at 10 µg/ml for 45 min, permeabilized and stained by using the APC BrdU Flow Kit (BD Pharmingen, San Jose, CA). Geminin protein expression in each phase of the cell cycle was detected by additional immuno-staining with a rabbit polyclonal antibody raised against glutathione S transferase (GST)-Geminin [21]. Cell sorting analysis was performed on the FACSCalibur flow cytometer and FACSAria II cell sorter (BD Biosciences Immunocytometry Systems, San Jose, CA). Cell sorting conditions were pre-determined by using wild-type BM preceding to each of the examinations. Flow cytometry data were analyzed by CellQuest (BD Bioscience Immunocytometry Systems) or FlowJo (Tree Star, Ashland, OR). The hematopoietic capability of BM was assessed by using the immunofluorescence method (ENZO Life Science, NY) or FlowJo (Tree Star, Ashland, OR). Cell sorting conditions were pre-determined by using wild-type BM preceding to each of the examinations. Flow cytometry data were analyzed by CellQuest (BD Bioscience Immunocytometry Systems) or FlowJo (Tree Star, Ashland, OR). The hematopoietic capability of BM was assessed by using the immunofluorescence method (ENZO Life Science, NY) or FlowJo (Tree Star, Ashland, OR).

Reconstitution of RDCOX complexes and the E3 ubiquitin ligase activity for Geminin

We previously provided evidence from in vivo experiments that Hoxb4 forms the RDCOX complex with the Roc1-Ddb1-Cul4a ubiquitin ligase core component to down-regulate Geminin through UPS [23]. In the current study, we examined whether the Hox derivatives, Hoxa9, Hoxc13 and Nup98-Hoxa9, feature E3 ubiquitin ligase activity for Geminin similar to that of Hoxb4. To this end, we reconstituted the recombinant protein complex with the Hox derivatives in Sf9. Sf9 were infected with high-titer viruses, and 72 hrs post-infection the cells were washed with cold PBS and suspended in homogenizing buffer (20 mM Tris [pH 7.9], 4 mM MgCl2, 500 mM NaCl, 0.4 mM EDTA, 2 mM DTT, 20% glycerol, 0.1% NP40, 1 mM ZnCl2, with Complete Mini). The suspension was homogenized and centrifuged at 15,000 x g for 10 min, after which the supernatant was subjected to Glutathione affinity chromatography (Glutathione Sepharose 4 Fast Flow; GE Healthcare). Recombinant myc-Geminin, which was tagged with His6 and myc at the N- and C-terminal portions respectively, was produced in Escherichia coli, BL21, and purified by means of cobalt affinity chromatography (Co-Agarose) (Wako Pure Chemical, Osaka, Japan). For the in vitro ubiquitination assay, the recombinant myc-Geminin was incubated in a 20 µl reaction mixture containing 50 mM Tris-HCl [pH 7.9], 5 mM MgCl2, 0.6 mM DTT, 2 mM ATP, 0.1 µg ubiquitin activating enzyme E1 (Wako Pure Chemical), 0.6 µg ubiquitin conjugating enzyme UbcH5c (Enzo Life Science, Plymouth Meeting, PA), and 1 µg biotin-tagged ubiquitin (biotin-ubiquitin) or 10 µg ubiquitin (Boston Biochem, Cambridge, MA) and the purified recombinant complex. In the reaction with biotin-ubiquitin, ubiquitin was also added to the reaction at the ratio of biotin-ubiquitin:ubiquitin, 3:1. After incubation at 37°C for 1 hr, the reaction product was subjected to immunoblot analysis [21],[23].

Antibodies

Primary and secondary antibodies listed in Table S1 were used in the study.

Statistical analysis

More than three independent experiments were performed and the data were statistically analyzed. The results are shown with SEMs. Statistical significance was determined with ANOVA tests.

Results

Reconstitution of RDCOX complexes and the E3 ubiquitin ligase activity for Geminin

We previously provided evidence from in vivo as well as in vitro experiments that Hoxb4 forms the RDCOX complex with the Roc1-Ddb1-Cul4a ubiquitin ligase core component to down-regulate Geminin through UPS [23]. In the current study, we examined whether the Hox derivatives, Hoxa9, Hoxc13 and Nup98-Hoxa9, feature E3 ubiquitin ligase activity for Geminin similar to that of Hoxb4. To this end, we reconstituted the recombinant protein complex with the Hox derivatives in Sf9. Sf9 were co-infected with baculoviruses encoding GST-Roc1, Ddb1, HA(derived from influenza hemagglutinin A)-tagged Cul4a (HA-Cul4a) and Flag-tagged Ddb1 derivatives. Cell extracts were prepared from Sf9, and expression of each of these components was detected by means of immunoblot analysis (Fig. 1A). We then purified (GST-Roc1)-Ddb1-(HA-Cul4a)-Flag-Hox derivatives [recombinant RDCOX complexes] by glutathione affinity column chromatography, and immunoblot analysis was used to examine the purified complexes for the presence of each of the components (Fig. 1A), resulting in the detection of GST-Roc1, Ddb1 and HA-Cul4a. Furthermore, Flag-Hoxa9 was detected in one of the purified complexes, which is similar to Flag-Hoxb4, while the...
Direct Regulation of Geminin Protein by Hoxa9

Figure 1. Purification of the recombinant RDCOXA9 complex from Sf9, and E3 ubiquitin ligase activity for Geminin. (A) Left panel: Crude extracts. Each member of the complex was detected in the crude extract by means of immunoblot analysis. Hox derivatives were detected with an anti-Flag antibody, GST-Roc1 with an anti-Roc1 antibody, Ddb1 with an anti-Ddb1 antibody and HA-Cul4a with an anti-HA antibody. Right panel: the affinity-purified. The complex with GST-Roc1 was pulled down with a glutathione affinity column chromatography. Each member was detected by means of immunoblot analysis in the pulled-down complex. Schematic representation of the complex is shown in the lower panel. The samples include GST-Roc1, Ddb1, HA-Cul4a and either of Flag-Hoxb4, Flag-Hoxa9, Flag-Hoxc13 or Flag-Nup98-Hoxa9. (B) E3 ubiquitin ligase activity for Geminin. The affinity-purified recombinant complex was subjected to in vitro ubiquitination reaction (myc-Geminin+E1+E2+ubiquitin), and the reaction product was analyzed by immunoblot analysis with an anti-myc antibody. The amount of GST-Roc1 in the RDCOXA9 complex was adjusted to that of the RDCOXB4 complex (1 μg). Ub1-Geminin, mono-ubiquitinated Geminin; Ubn-Geminin, poly-ubiquitinated Geminin. The mono-ubiquitinated Geminin bands were detected in this in vitro assay system even in the absence of E3 ubiquitin ligase (second lane). (C) In vitro ubiquitination reaction with biotin-tagged ubiquitin. myc-Geminin was immunoprecipitated with an anti-myc antibody after the reaction, and ubiquitinated Geminin was detected through biotin-avidin interaction. *, unspecified bands. **biotin-ubiquitin was detected with avidin vectastain.

doi:10.1371/journal.pone.0053161.g001
other Hox derivatives, Nup98-Hoxa9 and Hoxc13, were not, indicating that recombinant Hoxa9 formed an RDCOXA9 complex in Sf9 but that the other Hox derivatives did not. The affinity-purified recombinant RDCOXA9 was then subjected to an in vitro ubiquitination assay with purified bacterially produced recombinant myc-Geminin as a substrate [21],[23] and the reaction product was examined by means of immunoblot analysis with an anti-myc monoclonal antibody (Fig. 1B). Mobility-shifted Geminin bands were detected in the reaction products with the RDCOXA9 complex in the form of an E3 ubiquitin ligase similar to that of the reaction products with the RDCOXB4 complex. Next, an in vitro ubiquitination assay with biotin-ubiquitin was performed to determine whether the shifted bands were associated with ubiquitinated Geminin. Immunoprecipitation of myc-Geminin with an anti-myc polyclonal antibody after the reaction resulted in the detection of the mobility-shifted bands in the immunoprecipitate through the biotin-avidin interaction. These bands were quite similar to those detected by means of immunoblot analysis with an anti-myc monoclonal antibody (Fig. 1C), confirming that the mobility-shifted bands represented ubiquitinated Geminin. The shifted bands with high mobility, however, tended to be more sensitively detected in the immunoprecipitate as a result of the biotin-avidin interaction, probably due to polymerization of biotin-ubiquitin molecules. The detected mobility-shifted bands were quite similar to those detected in the reaction products with RDCOXB4, as previously reported by us [23], where the lower two shifted bands corresponded to mono-ubiquitinated Geminin and the other shifted bands corresponded to poly-ubiquitinated Geminin. These in vitro findings clearly showed that recombinant Hoxa9 forms a RDCOXA9 complex that acts as E3 ubiquitin ligase for Geminin.

Effect of Hoxa9 on Geminin protein in HEK-293 cells

We next examined the effects of the Hox derivatives Hoxb4, Hoxa9, Hoxc13 and Nup98-Hoxa9 on endogenous Geminin expression in HEK-293 cells. These derivatives were transiently...
Flag-Hoxa9, by itself, was also ubiquitinated and poly-ubiquitination of Geminin induced by Hoxa9 down-regulates preferentially degraded by proteasome. These findings suggest that the ubiquitinated Geminin with longer ubiquitin chains is more efficiently degraded. In addition to the biochemical findings described above, these findings also suggest that down-regulation of Geminin protein by Hoxa9 is mediated by the Roc1-Ddb1-Cul4a core component, as detailed below, although we could not detect any significant difference in E3 ubiquitin ligase activity for Geminin in vitro nor in Geminin stability in the transfectants as described below. Down-regulation of Geminin was, on the other hand, not observed in HEK-293 cells transfected with either Flag-Hoxc13 or Flag-Nup98-Hoxa9. The down-regulation of Geminin observed in HEK-293 cells transfected with either Flag-Hoxc13 or Flag-Nup98-Hoxa9 was completely suppressed by treatment with MG132, an inhibitor of proteasome (Fig. 2C, D). Flag-Hoxa9 transfection appeared to down-regulate Geminin protein more effectively than did Flag-Hoxb4 transfection, similar to what was observed in BM cells as detailed below, although we could not detect any significant difference in E3 ubiquitin ligase activity for Geminin in vitro nor in Geminin stability in the transfectants as described below. Down-regulation of Geminin was, on the other hand, not observed in HEK-293 cells transfected with either Flag-Hoxc13 or Flag-Nup98-Hoxa9. The down-regulation of Geminin observed in HEK-293 cells transfected with either Flag-Hoxc13 or Flag-Nup98-Hoxa9 was completely suppressed by treatment with MG132, an inhibitor of proteasome (Fig. 2C, D), suggesting that down-regulation of Geminin protein by Hoxa9 is mediated by UPS. Although mobility-shifted Geminin bands were detectable in HEK-293 cells co-transfected with Geminin and HA-tagged ubiquitin (HA-Ub), they appeared to be increased by the additional transfection of Hoxa9 (Fig. 2E), while treatment with MG132 produced a further increase in the mobility-shifted bands with higher molecular weights. In addition to the in vitro biochemical findings described above, these findings also suggest that mobility-shifted bands correspond to ubiquitinated Geminin and that the ubiquitinated Geminin with longer ubiquitin chains is preferentially degraded by proteasome. These findings suggest that poly-ubiquitination of Geminin induced by Hoxa9 down-regulates the protein level. Flag-Hoxa9, by itself, was also ubiquitinated and that the ubiquitinated Geminin with longer ubiquitin chains is more efficiently degraded.

Figure 3. Immunoprecipitation analysis of Hox derivatives and effect of Cul4a knock-down on Hoxa9-mediated down-regulation of Geminin protein in HEK 293 cells. (A) Either of Flag-Hoxa9, Flag-Hoxc13 or Flag-Nup98-Hoxa9 was transfected in HEK 293 cells, and the complex formation with endogenous Cul4a, Ddb1 and Roc1 was examined by means of immunoprecipitation analysis using an anti-Flag antibody. (B) Cul4a siRNA was transfected, and the effect on Hoxa9-mediated down-regulation of Geminin protein was examined. Down-regulation of Cul4a by siRNA was confirmed by immunoblot analysis, and the level was restored by transfection of myc-tagged Cul4a. Endogenous Cul4a was also detected in myc-tagged Cul4a-transfected cells even if cells were pre-treated with siRNA for Cul4a probably because exogenously overexpressed mRNA for Cul4a prevented siRNA from affecting endogenous Cul4a.

Transfection into HEK-293 cells and their effects on the cell cycle and Geminin expression was examined 24 hrs after the transfection by means of cell sorting, real-time PCR and immunoblot analyses. None of the Flag-Hoxb4, Flag-Hoxa9, Flag-Hoxc13 or Flag-Nup98-Hoxa9 transfections exerted any significant effect on the cell cycle (Fig. 2A), while all of them produced a slight increase in mRNA for Geminin (Fig. 2B). Interestingly, transfection of Flag-Hoxb4 or Flag-Hoxa9 reduced Geminin in a dose-dependent manner at the protein level (Fig. 2C, D). Flag-Hoxa9 transfection appeared to down-regulate Geminin protein more effectively than did Flag-Hoxb4 transfection, similar to what was observed in BM cells as detailed below, although we could not detect any significant difference in E3 ubiquitin ligase activity for Geminin in vitro nor in Geminin stability in the transfectants as described below. Down-regulation of Geminin was, on the other hand, not observed in HEK-293 cells transfected with either Flag-Hoxc13 or Flag-Nup98-Hoxa9. The down-regulation of Geminin observed in HEK-293 cells transfected with either Flag-Hoxc13 or Flag-Nup98-Hoxa9 was completely suppressed by treatment with MG132, an inhibitor of proteasome (Fig. 2C, D), suggesting that down-regulation of Geminin protein by Hoxa9 is mediated by UPS. Although mobility-shifted Geminin bands were detectable in HEK-293 cells co-transfected with Geminin and HA-tagged ubiquitin (HA-Ub), they appeared to be increased by the additional transfection of Hoxa9 (Fig. 2E), while treatment with MG132 produced a further increase in the mobility-shifted bands with higher molecular weights. In addition to the in vitro biochemical findings described above, these findings also suggest that mobility-shifted bands correspond to ubiquitinated Geminin and that the ubiquitinated Geminin with longer ubiquitin chains is preferentially degraded by proteasome. These findings suggest that poly-ubiquitination of Geminin induced by Hoxa9 down-regulates the protein level. Flag-Hoxa9, by itself, was also ubiquitinated and that the ubiquitinated Geminin with longer ubiquitin chains is more efficiently degraded. The expression of an isoform for Cul4a, Cul4b, was not affected by the treatment with siRNA for Cul4a (data not shown). To further confirm that the elimination was mediated by specific knock-down of Cul4a with siRNA, we complemented knocked-down Cul4a by means of supertransfection of myc-Cul4a into the cells, which resulted in restoration of Geminin down-regulation by the transfection of Flag-Hoxa9 (Fig. 3B). We then examined effect of the Hox derivatives on the stability of Geminin protein. HEK-293 cells were pulse-chase labeled with [35S]methionine in vitro. The
time-course analysis clearly showed that the labeled Geminin was destabilized in Flag-Hoxa9-transfected cells similar to its destabilization in Flag-Hoxb4-transfected cells (Fig. 2F). The half-lives of Geminin were estimated by densitometric analysis at 1.2 hrs in Flag-Hoxb4- and 1.3 hrs in Flag-Hoxa9-transduced cells and 3.1 hrs in pcDNA-, 3.2 hrs in Flag-Hoxc13- and 3.2 hrs in Flag-Nup98-Hoxa9-transfected cells (Fig. 2F). Turnover of the labeled Geminin was thus accelerated by Flag-Hoxa9 transfection, which is similar to the acceleration by Flag-Hoxb4 transfection. These findings, including in vitro evidence obtained with the recombinant complexes described above, show good compatibility with the hypothesis that transfected Hoxa9 creates the RDCOXA9 complex and down-regulates Geminin protein through UPS.
We then examined whether the transduction of Hox derivatives exerted a similar effect on Geminin expression in BM. We transduced the Hox derivatives by using the MSCV vector, MEP, and examined the effect on Geminin expression [21]. Cell subpopulations in each phase of the cell cycle were fractionated by bromodeoxyuridine (BrdU) and 7-AAD, and Geminin protein expression levels were determined by means of flow cytometry (Fig. S1). Flag-Hoxb4, Flag-Hoxa9 and Flag-Nup98-Hoxa9 increased the S-phase subpopulation, while Flag-Hoxc13 reduced the S-phase subpopulation but increased the G0/G1 subpopulation (Fig. 4A). Although transduction of each of the Hox derivatives slightly increased mRNA for Geminin (Fig. 4B), protein expression levels of Geminin were reduced by the transduction of Flag-Hoxa9 in each phase of the cell cycle (p < 0.05), which was similar to that of Flag-Hoxb4 (p < 0.1)(Fig. 4C). Down-regulation of Geminin tended to be more effectively induced by transduction of Flag-Hoxa9 than that of Flag-Hoxb4. The oscillation pattern of Geminin expression in the cell cycle, mainly governed by APC/C [34], was not affected. The level of Geminin expression was, on the other hand, not significantly affected by Flag-Hoxc13 or Flag-Nup98-Hoxa9 throughout the cell cycle. We then examined effect of Hoxa9 knock-down on Geminin expression. Since much higher expression of mRNA for Hoxa9 was detected in FL than in BM (Fig. 5A), siRNA for Hoxa9 (Hoxa9siRNA) was co-transfected into FL with green fluorescent dye-labeled non-targeting siRNA as an indicator. Cells were confirmed to be efficiently co-transfected by detecting expression of the indicator (93.5%) (Fig. 5B), and effect of transfection of Hoxa9siRNA on Hoxa9, Hoxa10, Hoxb4 and Hoxd13 expression and further that on Geminin, Cdt1 and Cyclin A2 expression were examined. Transfection of Hoxa9siRNA gave rise to specific down-regulation of mRNA for Hoxa9 (Fig. 5C) and up-regulation of Geminin protein in every cell-cycle phase (Fig. 5D) without significantly affecting the expression level of Geminin mRNA (Fig. 5C). We further confirmed that transfection of
Hoxa9siRNA did not affect the cell cycle (Fig. 5E) and apoptosis (Fig. 5F).

Involvement for Geminin down-regulation in the effect of Hoxa9 transduction on clonogenic activity

We next examined effect of Hox derivatives on clonogenic activity in BM (Fig. 6A). Flag-Hoxa9 transduction more strongly increased the number and size of colonies than Flag-Hoxb4 transduction and also increased the relative proportion of GM colonies. Transduction of Flag-Nup98-Hoxa9 also induced clonogenic activities but less efficiently than Flag-Hoxa9. Flag-Hoxc13 transduction resulted in larger colonies, though the frequency of colonies did not change. To examine whether down-regulated Geminin is involved in the molecular mechanism underlying the Hoxa9 transduction-mediated clonogenic induction, we supertransduced Geminin into Flag-Hoxa9-transduced BM: BM were first transduced with MEP-Flag-Hoxa9, and then supertransduced with Geminin which was cloned into the MSCV vector, MPI [23]. The supertransduced cells were then subjected to clonogenic analysis (Fig. 6B). Transduction of Geminin caused the Geminin expression level in Flag-Hoxa9-transduced cells, which was reduced throughout the cell cycle as stated earlier, to revert to a level close to that in MEP-transduced cells (data not shown). The level of restored Geminin by Geminin supertransduction was similar to that for BM from the reconstituted mice as described below. The clonogenic assay clearly showed that Geminin supertransduction efficiently reduced the clonogenic activity enhanced by Hoxa9 transduction (Fig. 6B). The number of colonies was reduced as a result of Geminin transduction, and their size was also somewhat reduced in comparison with that of Flag-Hoxa9-transduced BM. Geminin supertransduction, however, did not alter the relative frequency of the colony type compared to that in Hoxa9-transduced BM. We further examined the replating activities. Enhanced replating activity by Hoxa9 transduction was partially reduced by Geminin supertransduction (Fig. 6C).

Effect of Geminin transduction on hematopoietic induction elicited by Hoxa9 transduction

Since Hoxa9 was shown to enhance HSC and progenitor cell activity [5], we investigated effect of Hoxa9 transduction-mediated down-regulation of Geminin on the reconstitution ability of BM. MEP-Flag-Hoxa9 was transduced into BM, and transduced cells were then injected into lethally irradiated congenic mice. One and
3 months post-injection, the peripheral blood was examined for EYFP + cells. As shown in Fig. 7A, the percentage of EYFP + cells in mice injected with Flag-Hoxa9-transduced BM markedly increased 1 month after the injection. Although the percentage of EYFP + cells had decreased 3 months after the injection, a clear increase in the percentage of EYFP + cells was detected in mice with Flag-Hoxa9-transduced BM compared to those with MEP+MPI-transduced BM. EYFP + cells consisted of multi-lineage hematopoietic cell subpopulations (data not shown). Hoxa9 transduction increased the S-phase subpopulation (Fig. 7B) and decreased Geminin expression levels in each cell cycle phase (Fig. 7C). To determine the effect of returning Geminin levels to a normal range, we injected mice with Flag-Hoxa9- and Geminin-supertransduced BM in parallel. It was confirmed that the diminished Geminin expression level in each of the cell cycle phase was partially restored in BM as a result of Geminin supertransduction (Fig. 7C). The enhanced number of EYFP + cells in the peripheral blood was reduced by Geminin supertransduction either 1 or 3 months after the injection (Fig. 7A). We also examined the effect of Geminin supertransduction on Hoxa9 transduction-mediated alterations in hematopoietic subpopulations by analyzing EYFP + phenotypic hematopoietic stem and progenitor cell subpopulations in reconstituted mice 5 months after the injection (Fig. 7D). CD34 + c-Kit + Sca1 + Lineage - (CD34 + KSL: the HSC subpopulation), CD34 + KSL, (the multipotential progenitor-cell subpopulation), c-Kit + Sca1 - Lineage - (the progenitor subpopulation) [42] or Lineage - (Lin -) subpopulations were increased by Flag-Hoxa9 transduction, which was strongly suppressed by Geminin supertransduction (Fig. 7E). These findings suggest that Geminin down-regulation induced by Hoxa9 transduction plays an important part in Hoxa9 transduction-mediated induction of HSCs and hematopoietic progenitors.

Discussion

In this study we demonstrated that transduction of Hoxa9 down-regulated expression of Geminin protein through UPS, in both *in vitro* and *in vivo* assays. Similar to Hoxb4, Hoxa9 was observed to generate a RDCOX complex that displayed E3 ubiquitin ligase activity for Geminin *in vitro*, while Hoxc13 and Nup98-Hoxa9 did not. The stability of the Hoxa9 protein by itself, on the other hand, was previously reported to be regulated by UPS.

Figure 7. Effect of Geminin supertransduction on Hoxa9 transduction-mediated hematopoietic induction in reconstituted BM. (A) Repopulating activities of retrovirally transduced BM. Repopulating activities in the reconstituted mice were examined 1 month (1M) and 3 months (3M) after the injection. Since the repopulating activity was low in MEP+MPI-transduced BM, mice injected with 5-fold higher numbers of retrovirally transduced cells were used in subsequent analyses as controls. The number of recipient mice is indicated above each bar. (B) Cell populations in each phase of the cell cycle were analyzed by cell sorting analysis. (C) Geminin protein expression in each phase of the cell cycle. (D) Cell sorting procedure for analyzing the primitive hematopoietic cells. BM were subjected to cell sorting analysis. Primitive hematopoietic cells in EYFP + cells were examined by the immunophenotype analysis. *, cells with a non-specific Sca1 signal due to the spectrum overlap. (E) Cell numbers of Lin-, progenitor, CD34 + KSL and CD34 + KSL subpopulations in BM from the reconstituted mice. The data from three independent mice were subjected to the statistical analysis. MEP and MPI, empty control vectors.

doi:10.1371/journal.pone.0053161.g007
Since in this study we demonstrated that Hoxa9 formed the RDCOXA9 complex and was ubiquitinated in HEK-293 cells co-transfected with Hoxa9 and ubiquitin and we also previously reported that each member of the RDCOXB4 complex including Hoxb4 was poly-ubiquitinated in the nu/nu ubiquitination system [25], Hoxa9 may be ubiquitinated in the RDCOXA9 complex in the course of the ubiquitination reaction to Geminin, which might also play a role in the regulation of the protein stability of Hoxa9 by itself. Nup98-Hoxa9, unlike Hoxa9, however, is reportedly not regulated by UPS [43], and this finding agrees well with ours that the complex formation of Nup98-Hoxa9 with the Roc1-Delb1-Cul4a core complex was not detectable. Although it has been reported that Nup98-Hoxa9 up-regulates Hoxa9 expression in human CD34+ cord blood cells [43], we could detect neither enhanced expression of Hoxa9 in Nup98-Hoxa9-transduced BM by means of immunoblot analysis (data not shown) nor down-regulation of Geminin, which suggests that Hoxa9-mediated Geminin down-regulation is not involved in Nup98-Hoxa9-mediated hematopoietic induction and leukemogenesis.

As we reported previously, Geminin expression is high in HSCs but is down-regulated in hematopoietic progenitors with higher proliferation potential [21]. Down-regulation of Geminin may thus be important for a molecular mechanism of how transduced Hoxa9 enhanced activities of HSCs and hematopoietic progenitors. This can be accounted for by the findings that Hoxa9 transduction-mediated enhanced repopulating, replating and clonogenic activities was suppressed by supertransduction of Geminin and that siRNA-mediated knock-down of Geminin promoted hematopoietic progenitor activity and constitutive overexpression of Geminin eliminated HSC activity as reported previously by us [21],[23]. Although we demonstrated that Hoxa9 plays a similar molecular role to that of Hoxb4, deficiency in Hoxb4 reportedly exerts a subtle effect on hematopoiesis [44], while that in Hoxa9 impairs the proliferation and repopulating ability of HSCs [45],[46]. Why was there an apparent difference in hematopoietic phenotype between mice deficient in Hoxb4 and those in Hoxa9? First, Hoxa9 is one of the most highly expressed Hox genes in primitive hematopoietic cells [47], and second, the transfection experiment involving HEK-293 cells suggested that Hoxa9 transfection tended to down-regulate Geminin more efficiently than Hoxb4, and Hoxa9 transduction more effectively down-regulated Geminin in BM. These might be the reasons why the stronger hematopoietic phenotypes appeared in Hoxa9-deficient mice and why deficiency of Hoxa9 cluster genes impaired hematopoiesis [47],[48] while that of Hoxb cluster genes did not [49]. On the other hand, since enhanced replying ability was only partially suppressed by Geminin supertransduction in Hoxa9-deficient BM but was almost completely in Hoxb4-transduced BM, this induced genome instability as well as the accelerated cellular proliferation might provide a cellular background for leukemic transformation. It reportedly takes 3 to 10 months for Hoxa9-transduced BM to give rise to leukemia after the transplantation [5], which appears to be compatible with the hypothesis that Hoxa9 transduction induces genomic instability to trigger the second hits as well as provides proliferation potential. On the other hand, neither Nup98-Hoxa9 nor Hoxc13 formed a complex with Roc1-Delb1-Cul4a according to the assay system in our study. Nup98-Hoxa9 was shown to induce transcription through direct interaction with p300/CBP [50]. Nup98-Hoxc13 is known to be involved in leukemogenesis, but transduction of Hoxc13 by itself neither formed the RDCOX complex displaying the E3 ubiquitin ligase for Geminin nor increased number of cells with clonogenic activity. Hoxc13 was previously shown to directly interact with P.1 to negatively regulate differentiation in murine erythroleukemia cells [51], and also to be a member of replication complexes [52]. Our findings suggest that Hoxa9 plays a role similar to that of Hoxb4 but not to that of other Hox gene derivatives, Hoxc13 and Nup90-Hoxc9, in the molecular mechanism for enhancing hematopoiesis. In addition to the transcriptional regulatory role the novel molecular function for Hoxa9 proposed in the current study may thus provide an important clue for deepening understanding of the role of Hoxa9 in hematopoiesis.

Supporting Information

Figure S1 Cell sorting procedure for determining Geminin protein expression level in each phase of the cell cycle. Retrovirally transduced BM were subjected to the cell cycle analysis. Geminin expression levels (Geomean) were examined in each phase of the cell cycle. (JPG)

Table S1 Antibodies used in the study. (DOCX)

Acknowledgments

We would like to thank the Analysis Center of Life Science and Radiation Research Facility at Graduate School of Engineering in Hiroshima University and Prof. M. Ohtaki for statistic analysis, Ms. M. Tsumura, Y. Kageyama, S. Mori, A. Kawashima, and Y. Nakashima, as well as Messrs. H. Tetsuguchi, and T. Furutani for technical assistance, and Ms. H. Shimamoto and N. Aritani for secretarial assistance.

Author Contributions

Conceived and designed the experiments: YT. Performed the experiments: YO SY SJ MO KS TK KM. Analyzed the data: YT NI. Contributed reagents/materials/analysis tools: YT. Wrote the paper: YT NI.

References

1. McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68: 293–302.
2. McGinnis W, Levine MS, Hafin E, Kroviwa A, Gehring WJ (1984) A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308: 428–433.
3. Levine M, Hoey T (1988) Homeobox proteins as sequence-specific transcription factors. Cell 53: 337–346.
4. Sauvaugan G, Thorsteindottir U, Eaves CJ, Lawrence HJ, Largman C, et al. (1995) Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 9: 1753–1765.
5. Thorsteindottir U, Mamo A, Kroon E, Jerome L, Bijl J, et al. (2002) Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 99: 121–129.
6. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, et al. (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30: 41–47.
7. Milne TA, Martin ME, Brock HW, Slany RK, Hess J (2005) Leukemogenic MLL fusion proteins bind across a broad region of the Hox a8 locus, promoting transcription and multiple histone modifications. Cancer Res 65: 11367–11374.
8. Faber J, Krivtsov AV, Stuhls MC, Wright R, Davis TN, et al. (2009) HOX9A is required for survival in human MLL-rearranged acute leukemias. Blood 113: 2373–2383.
Del Bene F, Tessmar-Raible K, Wittbrodt J (2004) Direct interaction of geminin with the cell-cycle regulator Cdt1. Science 298: 2309–2312.

Luo L, YX, Takihara Y (2008) Role of Polycomb-group genes in normal and malignant stem and progenitor cells developing from embryonic stem cells. Blood 117: 142–150.

Takihara Y, Hara J (2000) Polycomb-group genes and hematopoiesis. Int J Hematol 72: 165–172.

Ohtsubo M, Yasunaga S, Ohno Y, Tsumura M, Okada S, et al. (2008) Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem and progenitor cells developing from embryonic stem cells. Blood 117: 142–150.

Blow JJ, Hodgson B (2002) Replication licensing-defining the proliferative state? Trends in Cell Biol 12: 72–76.

Kroll KL, Salek AN, Evans LM, Kirschner MW (1998) Geminin, a neural molecule that demarcates the future neural plate at the onset of gastrulation. Cell 93: 1043–1053.

Morita S, Kojima T, Kitamura T (2008) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 15: 6057–6067.

Oshima M, Endo TA, Toyoda T, Nakajima-Takagi Y, et al. (2011) Genome-wide analysis of target genes regulated by HoxB4 in hematopoietic stem and progenitor cells. Proc Natl Acad Sci U S A 108: 16952–16957.

Yang VS, Carter SA, Hylend SJ, Takihanna-Kontwalski K, Laskey RA, et al. (2011) Geminin escapes degradation in G1 of mouse pluripotent cells and mediates the expression of Oct4, Sox2, and Nanog. Curr Biol 21: 692–699.

Furutani-Seiki M, Kuroiwa A, Kuroiwa Y (2002) HOXB4's road map to stem cell expansion. Proc Natl Acad Sci U S A 104: 22057–22062.

Ohtsubo M, Okazaki H, Nishimoto T (1989) The RCC1 protein, a regulator of target genes in nonneuronal cells. Proc Natl Acad Sci U S A 103: 13074–13079.

Pineault N, Buske C, Feuring-Buske M, Abramovich C, Rosten P, et al. (2003) Homeotic protein HOXC13 is a member of human DNA replication complexes. Cell Cycle 8: 454–459.

Gobin TR, Slouin DK, Tanayo P, Huard G, Gaasenbeek M, et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531–537.

Ito T, Kosen HY, Zindahli B, Congdon KL, Blum J, et al. (2010) Regulation of myeloid leukemia by the cell-fate determinant Musashi. Nature 466: 765–768.

Moore MA (2005) Converging pathways in leukemiaogenesis and stem cell self-renewal. Exp Hematol 33: 719–737.

Kroen E, Theosesteinudottir U, Mayotte N, Nakamura T, Sauvageau G (2001) NUP98-HOXA9 expression in hematopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J 20: 350–361.

Pineau N, Buske C, Feuring-Buske M, Abramovich C, Rosten P, et al. (2003) Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98-HOXD13 in concert with Meis1. Blood 101: 4529–4538.

Lin YW, Slape C, Zhang Z, Aplan PD (2005) NUP98-HOXA9 transgenic mice develop a highly penetrant, severe myelodyplastic syndrome that progresses to acute leukemia. Blood 106: 287–295.

Seo S, Herr A, Lim JW, Richardson GA, Richardson H, et al. (2005) Geminin inhibits Hox function through direct and polycistron-mediated interactions. Nature 427: 749–753.

De Benedetto ME, Kresse F, Lim JW, Richardson GA, Richardson H, et al. (2005) Cell cycle-regulator geminin inhibits Hox function through direct and polycistron-mediated interactions. Nature 427: 749–753.

Iwasaki M, Knisely J, Yamazaki Y, Jenkins NA, Copeland NG (2005) Identification of cooperative genes for NUP98-HOXA9 in myeloid leukemogenesis using a mouse model. Blood 105: 784–793.

Lee H, Wang H, Yuan AH, Ruddle FH (2003) The identification of Hoxc8 target genes. Proc Natl Acad Sci U S A 100: 2420–2424.

Chen H, Rubin E, Zhang H, Chung S, Jie CC, et al. (2005) Identification of transcriptional targets of HOXA5. J Biol Chem 280: 19373–19380.

Schmoller B, Santos AC, Ribeiro A, Moncalt N, Lesinski D, et al. (2007) HOXB4’s road map to stem cell expansion. Proc Natl Acad Sci U S A 104: 16952–16957.

Oshima M, Endo M, Endo TA, Toyoda T, Nakajima-Takagi Y, et al. (2011) Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev 19: 764–776.

Ohtsubo M, Okazaki H, Nishimoto T (1989) The RCC1 protein, a regulator of target genes in nonneuronal cells. Proc Natl Acad Sci U S A 103: 13074–13079.

Yamada T, Shimizu T, Suzuki M, Kihara-Negishi F, Nanashima N, et al. (2008) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Cell 135: 1118–1129.

Pineau N, Buske C, Feuring-Buske M, Abramovich C, Rosten P, et al. (2003) Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98-HOXD13 in concert with Meis1. Blood 101: 4529–4538.

Lin YW, Slape C, Zhang Z, Aplan PD (2005) NUP98-HOXA9 transgenic mice develop a highly penetrant, severe myelodyplastic syndrome that progresses to acute leukemia. Blood 106: 287–295.

13079.