Nitrogen fixation and denitrification activity differ between coral- and algae-dominated Red Sea reefs

Yusuf C. El-Khaled1, Florian Roth2,3,4, Nils Rädecker2,5,6, Arjen Tilstra1, Denis B. Karcher1,7, Benjamin Kürten2,8, Burton H. Jones2, Christian R. Voolstra2,5 & Christian Wild1

Coral reefs experience phase shifts from coral- to algae-dominated benthic communities, which could affect the interplay between processes introducing and removing bioavailable nitrogen. However, the magnitude of such processes, i.e., dinitrogen (N2) fixation and denitrification levels, and their responses to phase shifts remain unknown in coral reefs. We assessed both processes for the dominant species of six benthic categories (hard corals, soft corals, turf algae, coral rubble, biogenic rock, and reef sands) accounting for >98% of the benthic cover of a central Red Sea coral reef. Rates were extrapolated to the relative benthic cover of the studied organisms in co-occurring coral- and algae-dominated areas of the same reef. In general, benthic categories with high N2 fixation exhibited low denitrification activity. Extrapolated to the respective reef area, turf algae and coral rubble accounted for >90% of overall N2 fixation, whereas corals contributed to more than half of reef denitrification. Total N2 fixation was twice as high in algae- compared to coral-dominated areas, whereas denitrification levels were similar. We conclude that algae-dominated reefs promote new nitrogen input through enhanced N2 fixation and comparatively low denitrification. The subsequent increased nitrogen availability could support net productivity, resulting in a positive feedback loop that increases the competitive advantage of algae over corals in reefs that experienced a phase shift.

Nitrogen (N) is vital for all living organisms and is required for primary production and the production of biomass. Among the key elements required for life (i.e., N, carbon, phosphorus [P], oxygen and sulphur), N in the form of dinitrogen (N2) gas has the greatest total abundance in the environment. Ironically, however, N2 gas is the least accessible for flora and fauna. In oligotrophic marine ecosystems such as coral reefs, primary production is limited by low amounts of bioavailable N forms such as ammonium (NH4+) or nitrate (NO3−). Yet, coral reefs belong to the most productive ecosystems on earth and are regarded as oases in an oceanic desert. In this context, microbial N cycling plays a key role by introducing, recycling and removing N from coral reefs. Particularly, biological N2 fixation, i.e., the conversion of atmospheric N2 into bioavailable NH4+ by prokaryotic microbes (diazotrophs), can alleviate N limitation for coral reef primary producers. In addition, the recycling of de novo bioavailable N via nitrification may serve as a mechanism to prevent the loss of N12. In contrast, denitrification (i.e., the conversion of nitrate to atmospheric N2 by microbes) may remove bioavailable N in times of high environmental N availability. Likewise, fixed N can be transformed into atmospheric N2 via anaerobic ammonium oxidation (ANAMMOX), a pathway functioning as an additional N removing mechanism in coral reef sponges, and hypothetically in other coral reef associated organisms. Whereas N influxes to coral reefs via N2 fixation are comparably well-studied, knowledge about N efflux via denitrification is limited to some coral reef substrates (such as reef sediments), and is just starting to be generated for other coral

1Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany. 2Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23995, Saudi Arabia. 3Baltic Sea Centre, Stockholm University, 10691 Stockholm, Sweden. 4Faculty of Biological and Environmental Sciences, Tvärminne Zoological Station, University of Helsinki, 00014 Helsinki, Finland. 5Department of Biology, University of Konstanz, 78457 Konstanz, Germany. 6Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. 7Australian National Centre for the Public Awareness of Science, Australian National University, ACT, Canberra 2601, Australia. 8Project Management Jülich, Jülich Research Centre GmbH, 18069 Rostock, Germany. *email: yek2012@uni-bremen.de
Hypothetically, an altered reef community structure associated with phase-shifts could lead to different total N2 fixation and denitrification budgets in coral- and algae-dominated coral reef environments. For example, nitrification, i.e., the oxidation of NH4+ to nitrite (NO2-) and NO3-, has been measured in coral reef environments and may function as an internal recycling mechanism with nitrate serving as a substrate for coupled denitrification.

Coral reefs not only belong to one of the most productive but also to the most threatened ecosystems on the planet. Global and local change associated stressors such as ocean warming and acidification, eutrophication, and overfishing undermine the health of coral reefs and can eventually lead to coral mass mortality. The remaining coral skeletons offer substrates for fast-growing, highly competitive algae assemblages, which may lead to a transition from coral-dominated to algae-dominated reef states. Due to the stability of these novel communities, these transitions have been interpreted as phase-shifts and have been confirmed visually by Principle Coordinate Analysis (PCO, Fig. 1B) and ANOSIM (R = 0.605, p < 0.001) have received some attention, Williams and Graham emphasise our yet rudimentary understanding of alterations in coral reef functional ecology. Although we already observe different ecosystem states (e.g., coral-dominated or alternative states on coral reefs), our knowledge about their functioning is still in its infancy. Additionally, functioning likely differs between coral- and algae-dominated communities.

N cycling is critical for the stability of coral reef ecosystems; however, it has not been investigated yet how gain (via N2 fixation) and loss (via denitrification) terms of bioavailable N differ quantitatively between coral- and algae-dominated reef states. For this study, we hypothesised differences between coral- and algae-dominated reef states in the amount of total fixed and denitrified N, based on differences in N2 fixation and denitrification activities of different benthic categories. Hypothetically, an altered reef community structure associated with phase-shifts could lead to different total N2 fixation and denitrification budgets in coral- and algae-dominated reef areas. Further, we hypothesised that N cycling processes may have the potential to amplify and catalyse phase-shifts through the proliferation of turf algae as prominent N2 fixers. The role of denitrification in reef communities is mostly unknown, as well as the interplay of both N2 fixation and denitrification in coral- and algae-dominated reefs. Understanding N cycling patterns in baseline scenarios (i.e., coral-dominated) and alternative reef states (i.e., algae-dominated) is, hence, of paramount interest to gain a holistic understanding of these dynamic systems, which then can be used as a basis to address, elaborate, and expand future management strategies.

In the present study, we carried out acetylene-based incubations (i) to identify the key players that import and/or remove nitrogenous compounds into/from the reef system; and (ii) to provide a relative budget for two counteracting N cycling processes (i.e., N2 fixation and denitrification) in a comparative framework that covers the main species of six key benthic categories that together account for > 98% of the benthic cover on a central Red Sea coral reef with two distinct reef areas.

Results

Benthic community composition. Two distinct reef community states characterised by contrasting relative cover of benthic categories were identified (Fig. 1A, Fig. S1) and pre-defined as “algae-” and “coral-dominated reef areas” (according to Roth and others). A detailed overview of the benthic communities can be found in Table S1. Briefly, algae-dominated areas displayed approximately twice as much turf algae-cover compared to coral-dominated areas (Mann–Whitney U p = 0.007), whereas hard coral cover was threefold lower (Mann–Whitney U p < 0.001). Pre-defined differentiation between algae- and coral-dominated reef areas were confirmed visually by Principle Coordinate Analysis (PCO, Fig. 1B) and ANOSIM (R = 0.605, p = 0.001). Hard
corals and turf algae were the major drivers of separation and explained 64.2% of the dissimilarities between reef areas (DistLM).

Nitrogen fluxes of individual benthic categories. Turf algae and coral rubble showed highest N_2 fixation rates per substrate surface area, being approximately 5 to 6-fold higher than those of biogenic rock, 10 to 12-fold higher than reef sands, 32 to 39-fold higher than soft coral, and approximately two orders of magnitude higher than hard corals (Fig. 2A, Table 1 and S2).

Table 1. Results of permutational analysis of variance (PERMANOVA) and subsequent pair-wise tests for N_2 fixation (highlighted in salmon) and denitrification (highlighted in blue) in all benthic categories. Significant p-values in bold. Top: t-values; bottom: p-values.

	Turf algae	Coral rubble	Soft coral	Biogenic rock	Reef sands	Hard corals
Turf algae	0.882	0.416		0.001	0.001	0.001
Coral rubble	3.044	0.015	6.913	0.001	0.004	0.001
Soft coral	4.395	0.005	2.608	4.637	3.299	2.374
Biogenic rock	3.551	0.004	0.474	2.623	2.550	5.501
Reef sands	1.344	0.211	0.661	2.643	1.056	4.651
Hard corals	0.944	0.360	2.601	3.585	2.434	1.643
Due to NO₃ addition during incubations, we present denitrification as potentials instead of rates (see Method section). The soft coral displayed the highest denitrification activity, being 3- to 4-fold higher than that of reef sands, biogenic rock and coral rubble, and 6-fold higher than denitrification potentials of hard corals and turf algae (Fig. 2B, Table 1 and S2). Among hard corals (i.e., data above comprised the average potentials across P. verrucosa, A. hemprichii, and S. pistillata), A. hemprichii showed the highest denitrification potential that was 5-fold higher than that of P. verrucosa (pair-wise PERMANOVA t = 3.407, p = 0.01) and 26-fold higher than S. pistillata (pair-wise PERMANOVA t = 5.696, p < 0.001).

Nitrogen fluxes in different benthic categories referred to reef areas. We used individual rates/potentials of N₂ fixation and denitrification from all measured organisms and substrates (see Table S2) to calculate budgets for communities of the assessed reef areas dominated either by corals or turf algae. Cumulated fixed N was 2-fold higher in the algae-dominated compared to the coral-dominated area (Friedman's aligned rank test p = 0.24), whereas denitrification was similar (Friedman's aligned rank test p = 0.19; Fig. 3). Turf algae assemblages contributed most to N₂ fixation in both algae-dominated (70.2%) and coral-dominated areas (79.8%),
followed by coral rubble (28.4% in algae-dominated and 11.3% in coral-dominated area, respectively; Fig. 4). In contrast, hard and soft corals combined accounted for 75.5% and 52.4% of denitrification activity in coral- and algae-dominated areas, respectively (Fig. 4).

Discussion

Stable and low N availability is of central importance to the health and resilience of coral holobionts12,52, and consequently, of coral reef ecosystems in general22. Thus, processes that introduce or remove bioavailable N, such as N\textsubscript{2} fixation and denitrification, respectively, may play a key role in the functioning of coral reefs22. Our study is—to the best of our knowledge—the first to provide a comparative overview of denitrification activities of major coral reef related benthic categories. By investigating two N cycling process, we were able to extend previous work of Cardini and others10, who showed a link between reef-wide primary production and N\textsubscript{2} fixation. We related benthic category-specific N\textsubscript{2} fixation rates and denitrification potentials (per 2D substrate surface area, Table S2) to their relative contribution on a 3D level (Table S3), and likewise extrapolated metabolic processes to both coral- and algae-dominated reef communities (per 3D benthos surface area, Fig. 3, Table S1). This may be of particular importance, as algal dominance on coral reefs will likely increase as a consequence of frequently occurring mass coral bleaching events53,54 and reduced time available for recovery55 that diminish the return to coral-dominated reef states56.

N\textsubscript{2} fixation and denitrification by key benthic categories on coral reefs. Individual N\textsubscript{2} fixation rates of benthic categories are in line with10,20,48,49,57 or lower10,58,59 than rates reported in previous studies (see Table 2) from the Red Sea that were obtained with similar measurement techniques (i.e., acetylene-based assays) and sampling intervals (t\textsubscript{0} and t\textsubscript{24}). Slightly lower N\textsubscript{2} fixation rates in the present study may a) be due to an under-estimation caused by an initial lag phase associated with acetylene-based assays60,61 (see limitations), which was omitted from rate calculations of other studies59 but included here; or b) due to varying sampling times: benthic categories of the present study were incubated in March 2018, which is the winter season. It has been demonstrated that N\textsubscript{2} fixation activity in winter is generally lower than in summer10,49,62, which could explain lower N\textsubscript{2}

N\textsubscript{2} fixation	Location	Reference
Turf algae		
0.57 ± 0.05	Central Red Sea	Present study
0.44 ± 0.04*	Northern Red Sea	Rix and others48
2.31 ± 0.09**	Northern Red Sea	Shashar and others59
Coral rubble		
0.48 ± 0.09	Central Red Sea	Present study
1.80 ± 0.25	Great Barrier Reef, Australia	Davey and others75
0.58 ± 0.20*	Northern Red Sea	Cardini and others10
0.90 ± 0.00	Great Barrier Reef, Australia	Larkum59
0.74 ± 0.70	Great Barrier Reef, Australia	Larkum and other57
13.86 ± 4.11**	Northern Red Sea	Shashar and others59
Soft Coral \textit{(Xenia sp.)}		
0.014 ± 0.004	Central Red Sea	Present study
0.003 ± 0.000*	Northern Red Sea	Bednarz and others48
Biogenic Rock		
0.098 ± 0.016	Central Red Sea	Present study
0.112 ± 0.038*	Northern Red Sea	Rix and others48
0.13 ± 0.01**	Northern Red Sea	Shashar and others59
Reef Sands		
0.046 ± 0.006	Central Red Sea	Present study
0.296 ± 0.067*	Northern Red Sea	Bednarz and others48
4.88 ± 1.38**	Northern Red Sea	Shashar and others59
Hard Corals		
0.005 ± 0.002	Central Red Sea	Present study
0.000–0.003	Central Red Sea	Pogoreutz and others57
0.012 ± 0.003*	Northern Red Sea	Cardini and others10
0.016 ± 0.087	Central Red Sea	Tilstra and others20
0.988 ± 0.211**	Northern Red Sea	Shashar and others59

Table 2. N\textsubscript{2} fixation rates (nmol N\textsubscript{2} cm-2 h-1) of investigated benthic categories in comparison with values reported from other coral reef areas worldwide acquired via acetylene-based assays. All N\textsubscript{2} fixation rates were converted with a conservative conversion factor of 4:1 (C\textsubscript{2}H\textsubscript{4}:N\textsubscript{2}) according to Mulholland et al.157. Values are presented in mean ± SE. *Winter season; **Summer season.
Our results suggest a clear distinction between key benthic categories, in which the most active N\(_2\)-fixers showed lowest denitrification potentials and vice versa. Turf algae and coral rubble were identified as the largest N\(_2\)-fixers, confirming previous findings by Cardini and others\(^{10}\), however, they play a minor role in reducing N availability via denitrification. Reef sands, as active sites of microbial N transformations in coral reefs,\(^{14}\) played only a marginal role in both N\(_2\) fixation and denitrification in the present study, compared to the other benthic categories. Our comparatively low N\(_2\) fixation and denitrification rates in reef sands may have been a result of well-oxygenated top sediment layers\(^{65}\), which could inhibit these anaerobic processes\(^{64,66}\). Even though reef sand N cycling rates were likely underestimated in the studied reef areas (as top layers were sampled; see limitations section), reef sands solely cover a minor fraction of the benthic cover.

From an ecological perspective, turf algae are pioneers\(^{60}\) and opportunists\(^{64,67}\), which can form extensive mats even under oligotrophic conditions\(^{68,69}\). Furthermore, they can rapidly take over bare substrate due to high growth rates\(^{33,66,70,71}\). The high N demand needed to fuel metabolism and biomass production in filamentous turf algae can, to a large extent, be satisfied by high N\(_2\)-fixing activities\(^{30,49,72,73}\). A recent study showed that accumulated N in the form of turf algal biomass can be exported to the wider reef\(^{63}\). N\(_2\) fixation activities of coral rubble were similar to those of turf algae, which confirms findings of a recent study\(^{74}\). Coral rubble N\(_2\) fixation activity measured here is in the range of previous studies\(^{35,79}\) and may, thus, be driven by microbial communities inhabiting coral rubble surfaces, as suggested by Davey and others\(^{65}\), who observed significantly higher N\(_2\) fixation activity in coral rubble compared to living hard corals.

Among all benthic categories, corals (both hard and soft corals) showed lowest N\(_2\) fixation activities, being in a similar range\(^{66,68,72}\) or significantly lower\(^{33}\) than rates measured previously with acetylene reduction techniques. Lower N\(_2\) fixation rates for hard corals of the present study might be due to a lower fraction of N\(_2\) fixation,\(^{12,78,79}\), as the estimated N:P ratio of 83:1 in the incubation water (see Methods) ranged above the canonical Redfield ratio of 16:1\(^{80}\). Additionally, discrepancies could also result from differing surface area determination techniques used here and in other studies. Previous studies determined the surface area of investigated benthic categories, such as hard corals, using the aluminium foil method\(^{81}\) or advanced geometry\(^{49,58}\), but potentially lack accuracy\(^{65}\) and, hence, potentially underestimate the surface area of hard corals and, thus, overestimate N fluxes. The soft coral displayed highest denitrification activity. The interplay of N\(_2\) fixation and denitrification, favouring low internal N availability, may be vital for the stability between the coral host and the associated photosynthetic algal endosymbiont of the family Symbiodiniaceae (sensu Rädecker and others\(^{74}\)). Low N\(_2\) fixation and comparatively high denitrification activity may promote the host’s control over symbiotic algae\(^{63}\) by keeping N availability limited\(^{84}\). As such, seasonal fluctuations of environmental stressors, like eutrophication or ocean warming, may influence both processes\(^{45}\), leading to shifts from N to P or another micronutrient (e.g., iron) limitation\(^{86,88}\), which can result in a breakdown of the coral-Symbiodiniaceae symbiosis\(^{80}\). Furthermore, Tilstra and others\(^{30}\) hypothesised a negative correlation between heterotrophic capacity and denitrification activity in coral holobionts, as previously suggested for diazotrophs\(^{37}\). The hard coral species used in the present study are all on the autotrophic end of the mixotrophic spectrum\(^{81,92}\). As such, these coral species rely mostly on the Symbiodiniaceae for their energy. As denitrifying microbes are heterotrophic\(^{28,29}\), it is likely that photosynthates translocated from the Symbiodiniaceae are their main source of energy. Thus, a differing heterotrophic capacity of the coral could potentially influence denitrification potentials. This hypothesised link may also explain the high denitrification activity found in the investigated soft coral of the family Xenidiidae, which is a functional autotroph\(^{76}\).

Finally, denitrification is an anaerobic process. Potentially, observed denitrification potential differences among the hard coral species and Xenia sp. occurred due to their different capacity in releasing and producing mucus\(^{96,97}\), with thick mucus layers favouring high anaerobic potentials that might facilitate denitrification\(^{96}\). It has been demonstrated recently that soft coral mucus does not provide a favourable habitat for associated diazotrophs\(^{80}\), which in turn could explain observed comparatively low N\(_2\) fixation rates.

Implications for coral- and algae-dominated reefs. Extrapolated reef-wide fixed N via N\(_2\) fixation of both coral- and algae-dominated reef areas (350.01 ± 97.87 and 722.91 ± 241.26 µmol N m\(^{-2}\) d\(^{-1}\), respectively; Fig. 3) is in line with previously calculated reef-wide N\(_2\) fixation budgets of Larkum and others\(^{17}\) and Cardini and others\(^{10}\), who have reported an annual average N\(_2\) fixation activity of 156–1330 µmol N m\(^{-2}\) d\(^{-1}\) and 546 ± 69 µmol N m\(^{-2}\) d\(^{-1}\), respectively.

At the community level, the relative contribution of key benthic categories varied when compared to N fluxes related to substrate surface area. Together, turf algae and coral rubble represent 91% of overall N\(_2\) fixation in coral-dominated and 99% in algae-dominated reef areas. Hard and soft corals are key players in coral-dominated reef areas, in which both benthic categories together account for 52% of benthic cover (in the investigated Abo Shosha reef area) and contributed equally to the 78% of overall denitrification. This is surprising, as both benthic categories showed lowest (hard corals) or highest (soft coral) denitrification activity. While all investigated hard coral species showed similar N\(_2\) fixation patterns, findings regarding their denitrifying activity showed a large variability (Fig. 2). Based on our results, we hypothesise that reefs with a higher Acropora hemprichii cover (compared to Stylophora pistillata or Pocillopora verrucosa) display higher capacities to remove bioavailable N via denitrification and could, thus, be more resilient to higher N availability than those of S. pistillata or P. verrucosa dominance. However, we have considered only a small selection of hard corals with a branching morphology that are considered as autotrophs\(^{89–92}\). It remains speculative how other hard coral species, such as those of mounding and plating morphologies, or heterotrophic corals\(^{77,98}\) with different mass transfer characteristics\(^{99,100}\) contribute to potential reef resilience.
Besides being most abundant in coral-dominated areas, hard corals (especially branching hard corals, represented by the species selected in the present study) contribute most to the three-dimensional structure (i.e., spatial complexity or rugosity) of coral reef ecosystems, which increases the relative importance of hard corals for N\textsubscript{2} fixation and particularly denitrification in both reef areas in the present study. A reduction of hard coral cover and, thus, spatial complexity (i.e., a loss of cryptic 3D area) also leads to a reduced contribution to overall denitrification (Fig. 4), even though denitrification potentials for hard corals are similar to those of reef sands and turf algae when related to 2D substrate surface area (Fig. 2). Even in the algae-dominated reef area, both hard and soft corals still contributed to more than 50% of overall denitrification (Fig. 4), despite covering only ~ 22% of the seafloor. The mentioned reduction or loss of spatial complexity is commonly associated with coral-phase shifts. Whereas the importance of structural complexity and consequences of its loss in coral reefs has been recognized on multi-fold levels before, e.g., on fish communities, invertebrate diversity, and ecosystem services, results of the present study also suggest substantial consequences on N cycling dynamics. The most striking result was the difference in total N import via N\textsubscript{2} fixation in both reef states, as well as changes in the relative contribution of coral-associated denitrification in the respective reef areas. Turf algae were identified as key N\textsubscript{2}-fixers and their higher abundance in benthic coverage leads to a 100% increase of N\textsubscript{2} fixation in algae-dominated compared to coral-dominated areas (Fig. 3). At the same time, denitrification, a process that may alleviate coral reef environments from excess N, remained stable in the algae-dominated part of the reef. Future studies should determine the role of ANAMMox in coral reefs, as ANAMMox may play a vital role in removing bioavailable N from coral reef environments. However, key ANAMMox-performing players have not been identified in coral reefs yet, nor were they included in the present study (see limitations). Nevertheless, a higher N availability (i.e., higher fixed N inputs with stable denitrification activity) in algae-dominated reefs could have multiple consequences resulting in a positive feedback loop. Just as eutrophication promotes turf algae growth on coral reefs, higher N availability could relieve N limitation and cause algae to proliferate in nutrient-poor waters. This can result in high abundances of benthic algae that in turn deter herbivorous fish, which successively control algal proliferation by grazing. Jensen and Wild have described this feedback loop before, and here we append that higher N availability (via N\textsubscript{2} fixation) in algae-dominated reefs can be further utilized for algal growth or metabolism. Subsequently, increased N availability could facilitate the release of algal exudates such as dissolved organic nitrogen (DON) from benthic algae during active growth or decomposition. Ultimately, this feedback loop could turn a reef from a previously net sink of DON into a DON source, which similarly occurs during eutrophication events.

Implications for alternative reef states. In the present study, we evaluated two distinct reef communities and the implications of their varying benthic composition. Microbial communities associated with the benthic categories likely not only vary between coral- and algae-dominated reefs, but also between investigated benthic categories. Although the microbial community composition was not considered in this study (see limitations), varying microbial communities and their interactions might have implications for N\textsubscript{2} fixation and denitrification activities and should be investigated in future studies. Discontinuous shifts, shifts of varying intensity, or community shifts from reefs dominated by corals to assemblages other than benthic (turf) algae have been reported (reviewed in Norström and others). Aside from algae-dominated reefs, alternative reef states can be dominated by corallimorphia, sponges, ascidians, or soft corals. Particularly, soft coral dominance is common in the Red Sea and other regions such as Taiwan, East Pacific, where the soft coral genus *Xenia* attains as much as 80% of benthic cover after disturbance. Moreover, climate change associated stressors such as ocean acidification might induce community shifts from hard to soft coral dominance. Bednarz and others propose that soft corals may become an important player in N cycling (hemi)coralline growth on coral reefs. Higher benthic nutrient inputs from N\textsubscript{2} fixation could relieve N limitation and cause algae to proliferate in nutrient-poor waters. This can result in high abundances of benthic algae that in turn deter herbivorous fish, which successively control algal proliferation by grazing. Jensen and Wild have described this feedback loop before, and here we append that higher N availability (via N\textsubscript{2} fixation) in algae-dominated reefs can be further utilized for algal growth or metabolism. Subsequently, increased N availability could facilitate the release of algal exudates such as dissolved organic nitrogen (DON) from benthic algae during active growth or decomposition. Ultimately, this feedback loop could turn a reef from a previously net sink of DON into a DON source, which similarly occurs during eutrophication events.

Coral rubble-dominated areas, particularly reef flats, can be the result of fragmentation and erosion processes of nearby reef areas such as leeward slopes, resulting in mobile fragments that are unsuitable for coral colonisation. Findings of the present study confirm previous hypotheses, in which the potential of coral rubble as highly active N\textsubscript{2}-fixers can aggravate N influxes to a destroyed or vulnerable reef. At the same time, our findings indicate that the denitrifying capacity of rubble-dominated reefs is presumably lower than in intact coral-dominated areas (i.e., due to lower structural complexity and relatively lower denitrification activity compared to soft corals), which suggests that this reef state could compound N influxes, resulting in N accumulation at the ecosystem scale.

We demonstrated that N influxes via N\textsubscript{2} fixation could lead to an aggregation of N in algae-dominated communities, while differences regarding the bioavailable N removal via denitrification were not observed between coral- and algae-dominated reef areas. Potentially, N\textsubscript{2} fixation rates as well as denitrification potentials experience seasonal fluctuations that might cause feedback responses in the extrapolated fixed or removed N. The range of these feedback responses remains to be determined.

N cycling processes in coral reefs, including anaerobic ammonium oxidation (ANAMMox, transformation of fixed NH\textsubscript{4}+ and NO\textsubscript{3}- to elemental N\textsubscript{2}), that potentially removed fixed N from the system and coral-reef sponges. The extent to which ANAMMox can serve as a N removal process in shifting reefs remains to be determined. Further, cryptic habitats in coral reefs harbouring...
high abundances of sponges may reduce bioavailable N via ANAMOX and should be prioritised in future studies, as they were not considered in the present study (see limitations). The biogeochemical significance of stressor-induced phase shifts and the resulting loss of structural complexity (i.e., cryptic habitats) in reef N cycling remain unknown and should be the subject of future studies.

Material and methods

Study site and benthic community composition. The Abu Shosha reef in the Jeddah Region (22° 18′ 15″ N, 39° 02′ 56″ E) on the west coast of Saudi Arabia in the central Red Sea was chosen due to the co-occurrence of both coral- (i.e., > 40% hard coral cover) and algae- (< 15% hard coral cover, > 40% turf algae cover) dominated areas within the same reef (Fig. S1). Both areas are approx. 50 m² in size, were located at the same water depth (~ 5 m) and were solely used as a base for relating the respective N cycling rates to the reef area. Specimens were sampled from the total reef area (see next paragraph). The selected reef displays a small-scale heterogeneity of communities and varying degrees of community composition with both target reef areas being less than 30 m apart from each other.

Benthic community composition of the Abu Shosha reef was determined for an earlier study by photo quadrats, providing a two-dimensional (2D) planar reef coverage of each benthic category. Briefly, a PVC quadrat (50 x 50 cm, 0.25 m²) was randomly placed on the reef surface (12 x in coral-dominated area, 10 x in the algae-dominated area), and a photograph was taken from approx. 1 m distance to the substrate. The images were then analysed with the software Coral Point Count with Excel extension (CPCe) 4.1. The with the help of the software, 48 randomly located points were overlaid on the photographs, resulting in 576 and 480, respectively, data points per study area. The underlying benthos for each data point was determined to the lowest possible taxon. The major benthic categories of the investigated reef were (Fig. 1A): filamentous turf algal assemblages (hereafter termed turf algae), coral rubble, soft coral (i.e., *Xenia* sp.), biogenic coral rock (hereafter termed biogenic rock), carbonate reef sands (hereafter termed reef sands), hard corals, macroalgae, and the giant clams (*Tridacna* sp.). Hard corals were identified to the genus level. Turf communities consisted of a heterogeneous assemblage of different filamentous algae and cyanobacteria. Examples from the Northern Red Sea have shown that turf algae, as defined for the present study, account for the highest fraction (up to 90%) of benthic algal cover. Areas of bare coral rock, that were not covered with any of the other benthic categories but associated with endolithic algae and crustose coralline algae were defined as biogenic coral rock (hereafter termed biogenic rock). Coral rubble was defined as dislodged parts of framework builders with its associated microbial community according to Rasser and Riegl.

Sample collection and maintenance. All benthic categories, i.e. hard corals *Pocillopora verrucosa* (n = 5), *Acropora hemprichii* (n = 4), *Stylophora pistillata* (n = 4), soft coral of the *Xenia* genus (n = 5), biogenic rock (n = 5), coral rubble (n = 4), reef sands (n = 5) and turf algae (n = 5), were collected randomly from the overall reef area (i.e., regardless whether from coral- or algae-dominated areas; Fig. 5—Step 1) and immediately incubated after sampling in March 2018. Due to feasibility, the three most abundant hard coral species were chosen as they represent the most abundant species of the Abu Shosha reef. To increase readability and comprehensiveness, we refer to “hard corals” from here on. The aforementioned benthic categories were selected as they comprised more than 98% of the benthic cover in both coral- and algae-dominated parts of the reef. Where necessary, fragments were collected with hammer and chisel. *P. verrucosa*, *A. hemprichii*, *S. pistillata* and turf algae fragments (limestone covered with turf-algae) were approx. 10 cm long. Hard coral fragments were sampled from different coral colonies (> 10 m distance between each other) to account for genetic diversity. Individual coral colonies of *Xenia* sp. were collected with a small piece of anchoring rock (< 0.5 cm diameter) to prevent tissue damage. Reef sands were sampled using a Petri dish (polystyrene, 5.5 cm diameter, 1.4 cm depth) which was pushed carefully into the sand. Reef sands were then fixed to the dish from underneath so that upper sand “cores” with a max. sediment depth of 14 mm were sampled, covering a similar depth as reported previously. All fragments and Petri dishes containing reef sand samples were immediately transferred to recirculation aquaria on the boat after sampling, each filled with ambient seawater. Fragments of *P. verrucosa*, *Xenia* sp., turf algae, coral rubble, biogenic rock as well as sediment samples were kept at ambient water temperature and light conditions until the experimental incubations started within 3 h after sampling. For *P. verrucosa*, it has been demonstrated successfully that freshly collected fragments can be utilised for physiological quantifications. Fragments of *A. hemprichii* and *S. pistillata* were sampled two weeks prior all other specimens. After being transferred to the wet lab facilities of the Coastal and Marine Resources (CMOR) Core Lab at KAUST, fragments were distributed randomly into four independent replicate 150 L flow-through tanks (flow-through rate 300 L h⁻¹) for two weeks to allow for acclimation and healing of tissue damage. Each aquarium was constantly supplied with ambient, sediment-filtered reef water from inshore reefs located 1.5 km off KAUST, and ambient light conditions, i.e., a photon flux of ~ 200 µM quanta m⁻² s⁻¹, representing the daytime average photon flux of the studied reef and water depth during this period of the year.

Nitrogen cycle fluxes. Incubations were performed using a COMbined Blockage/Reduction Acetylene assay (hereafter COBRA; Fig. 5—Step 2) modified after El-Khaled and others. Briefly, COBRA incubations were performed in gastight 1 L glass chambers (800 mL seawater + 200 mL headspace). As acetylene inhibits the production of NO₃⁻ via nitrification, seawater (ambient NO₃⁻ concentrations ranged between 0.09 and 0.34 µM) was supplemented with nitrate to a final concentration of 5 µM as a substrate for the denitrification pathway to counteract substrate limitation (see supplementary material SM 5). Incubations with nitrate amended seawater have been performed successfully in previous studies. Potentially, the addition of nitrate suppresses *N₂* fixation, particularly as nitrate uptake has been reported for various benthic categories. The addition of nitrate suppressed *N₂* fixation, particularly as nitrate uptake has been reported for various benthic categories.
Theoretically, this could alter microbial functioning of benthic categories, as the acquisition of N via uptake is less cost-intensive. Additionally, this results in an estimated NO₃⁻:P ratio ranging between 5.09:0.06 and 5.34:0.07 in the incubation water, which is well above the canonical Redfield ratio of 16:1 (DIN:DIP). However, persistent N₂ fixation rates in the presence of nitrate of up to 30 µM have been reported. Furthermore, El-Khaled and others conclude that the technique provides sufficient information about the relative importance of different benthic categories by accounting for relative changes in N cycling rates (both N₂ fixation and denitrification). COBRA provides denitrification “potentials” as artificially provided nitrate during the incubations drives denitrification above natural levels. Acetylene was added to both incubation water and headspace at a concentration of 10%. This saturated acetylene concentration in the gastight incubation chambers leads to the preferential reduction of acetylene to ethylene (C₂H₄) instead of N₂ to NH₄⁺ by the key enzyme nitrogenase. Moreover, acetylene blocks the nitrous oxide (N₂O) reductase activity in the denitrification pathway leading to an accumulation of N₂O. Replicate samples were incubated and two additional chambers without specimens served as controls to correct for planktonic background activity. All incubations lasted for 24 h with a 12:12 h dark/light cycle and a photon flux of ~ 200 µM quanta m⁻² s⁻¹, representing the daytime average photon flux of the studied reef and water depth during this period of the year. Incubation chambers were submerged in a temperature-controlled water bath at 27 °C (resembling the ambient seawater temperature measured at the reef in 5 m depth during sampling) and constantly stirred (500 rpm) to ensure sufficient exchange between the water body and headspace. Gas samples were taken at the start (t₀) and the end (t₂₄) of each incubation, and analysed targeting C₂H₄ (as a proxy for N₂ fixation) and N₂O (as a proxy for denitrification) by gas chromatography and helium pulsed discharge detector (Agilent 7890B GC system with HP-Plot/Q column, lower detection limits for both target gases were 0.3 ppm). A detailed description of N₂ fixation and denitrification rate/potential calculation can be found in the supplementary (SM 6). Briefly, results were normalised to incubation time, corrected for the seawater control signal, related to incubation volume, and normalised to the surface area of the organisms/substrates. Surface areas of incubated organisms/substrates were determined photometrically using cloud-based 3D models. Replicate samples were incubated and two additional chambers without specimens served as controls to correct for planktonic background activity. All incubations lasted for 24 h with a 12:12 h dark/light cycle and a photon flux of ~ 200 µM quanta m⁻² s⁻¹, representing the daytime average photon flux of the studied reef and water depth during this period of the year. Incubation chambers were submerged in a temperature-controlled water bath at 27 °C (resembling the ambient seawater temperature measured at the reef in 5 m depth during sampling) and constantly stirred (500 rpm) to ensure sufficient exchange between the water body and headspace. Gas samples were taken at the start (t₀) and the end (t₂₄) of each incubation, and analysed targeting C₂H₄ (as a proxy for N₂ fixation) and N₂O (as a proxy for denitrification) by gas chromatography and helium pulsed discharge detector (Agilent 7890B GC system with HP-Plot/Q column, lower detection limits for both target gases were 0.3 ppm). A detailed description of N₂ fixation and denitrification rate/potential calculation can be found in the supplementary (SM 6). Briefly, results were normalised to incubation time, corrected for the seawater control signal, related to incubation volume, and normalised to the surface area of the organisms/substrates. Surface areas of incubated organisms/substrates were determined photometrically using cloud-based 3D models (Autodesk Remake v19.1.1.2) of P. verrucosa, A. hemprichii, S. pistillata, Xenia sp., biogenic rock, coral rubble and turf algae fragments. Reef sand surface areas were calculated using dimensions of Petri dishes.
that were utilised for sand core sampling (surface area = π * radius²). Notably, sediment depth and, hence, oxygenation status as well as pore-water movement through the sediment matrix affect the biogeochemical cycling, with potentially higher N cycling activity due to anaerobic milieus provided in deeper sand layers60. Oxygen fluxes were quantified parallel with identical benthic categories to validate that neither hypoxia nor hyperoxia (conditions that, e.g., are detrimental to organisms evoking alteration of physiological responses) conditions occurred during N cycling incubations56. We refer to supplementary material SM 7 for further information.

Data treatment of nitrogen fluxes. Production rates of C₂H₂ and N₂O were converted to N fluxes using conservative molar ratios of N₂O:N₂ = 1 and C₂H₂:N₂ = 4157. Extrapolations for total fixed or removed N (via N₂ fixation and denitrification, respectively) were performed according to formulas in supplementary material SM 8. Briefly, rates were extrapolated by multiplication according to reef benthos 3D area considering the respective 2D to 3D conversion factor (Table S4, according to Cardini and others10). Then, these benthic category-specific rates were used to account for the relative cover (i.e., 2D planar coverage obtained from cover assessments described previously) of each benthic category in the respective reef area (i.e., coral- and algae-dominated, resp.), which provides cumulative N fluxes related to 3D reef area (Fig. 4; expressed as fixed or denitrified µmol N m⁻² benthos 3D area d⁻¹, resp.).

Statistical analysis. Statistical analyses were performed using Primer-E v6158 with the PERMANOVA + extension158. Differences in the N cycling processes among benthic categories were tested for significance using permutational analysis of variance (PERMANOVA) on a Bray–Curtis similarity matrix of square-root transformed data. In case significant differences occurred, pairwise t-tests with parallel Monte Carlo tests were performed. Type III (partial) sum of squares was used with an unrestricted permutation of raw data (999 permutations). Unless mentioned otherwise, hard coral data consists of pooled replicates of the three investigated hard coral species (i.e., *P. verrucosa*, *A. hemprichii*, *S. pistillata*) of which mean rates and standard error of means were calculated.

Normality (Shapiro–Wilk test) and differences between benthic category coverage in both reef areas (e.g., hard coral cover in coral-dominated versus hard coral cover in algae-dominated areas) were tested using SigmaPlot (Version 12.0). Two-tailed t-tests were used if data were distributed normally whereas Mann–Whitney-Rank-sum tests were used if data were not normally distributed. Differences in the benthic composition among reef areas (i.e., coral vs. algae-dominated) were visualised using a principal coordinate analysis (PCO). Total fixed and removed N in both reef areas were calculated based on the sum of means of extrapolated rates/potentials of individual benthic categories and the respective standard propagated error, with Friedman’s aligned rank test checking for significant differences among respective reef areas (using R v4.0.4160 with the interface Rstudio v1.0.153163). A one-way analysis of similarities (ANOSIM; 999 permutations) was used to describe the dissimilarities between both reef areas. Furthermore, a distance-based linear model (DistLM; 999 permutations) using a step-wise selection procedure with AICc as a selection criterion was used to calculate which benthic category(ies) coverage explained visualised dissimilarities best158,159.

Limitations. Typical budget uncertainties include i) deviations from theoretical molar ratios (i.e., N₂O:N₂ and C₂H₂:N₂) in different benthic categories (Wilson and others (2012) and references therein162), ii) methodological underestimation of N cycle processes163,164, iii) environmental alterations by benthic categories as an effect of benthic primary productivity119, iv) underestimations of N cycling rates for benthic categories that could not be assessed in their entirety such as reef sands, and v) reef-wide underestimations/omission of metabolic processes in cryptic habitats, such as cracks and crevices within the natural reef matrix, that harbour specific organisms (e.g., sponges, bryozoan, and tunicates). These organisms are generally not included in ex situ budget derivations. Nevertheless, the results of the present study are comparable to reefs of similar character and structural complexity. However, N cycling activity may vary substantially in reefs of differing structure, with more/fewer cracks and crevices in the reef matrix with inhabiting species that can remarkably contribute to metabolic processes in coral reefs165,166.

Furthermore, all specimens were sampled randomly from the overall reef area, thus, disregarding potential differences in the microbial communities of benthic categories between reef areas. These differences are likely to occur between coral- or algae-dominated reef areas119, and may influence N cycling processes. Potential effects of these differences, however, are rather insignificant as they would not allow for identification of differences in N cycling activities between benthic categories. Hence, we assume that shifts in the community composition are likely more relevant for the overall N fluxes than changes of N cycling activities within single benthic categories.

We, thus, consider the major results of the present study as solid and reliable, especially as the investigated benthic categories of investigated species cover > 98% in both reef areas. Nevertheless, we consider discussed and presented data as conservative estimates. Furthermore, aforementioned underestimation of N fluxes result from initial lag phases in the evolution of C₂H₂60,74, and from potential incomplete blockages of the denitrification pathway163. Due to potential underestimations of both N₂ fixation and denitrification, we, thus, refrained from directly comparing both pathways.
1. Galloway, J. N. et al. The nitrogen cascade. BioScience 53, 341–356 (2003).
2. Mackenzie, F. T. Our Changing Planet: An Introduction to Earth System Science and Global Environmental Change (1998). https://downloads.globalchange.gov/ocsp/ocsp1998/ocsp1998.pdf
3. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: How can it occur?. Biogeochemistry 13, 87–115 (1991).
4. Webb, K. L., DuPaul, W. D., Wiebe, W., Suttle, W. & Johannes, R. E. Enewetak (Eniwetok) Atoll: aspects of the nitrogen cycle on a coral reef. Limnol. Oceanogr. 20, 198–210 (1975).
5. Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastrea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).
6. Hoegh-Guldberg, O. Environmental and economic importance of the world's coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
7. Bell, P. F. F. Eutrophication and coral reefs-some examples in the Great Barrier Reef lagoon. Water Res. 26, 553–568 (1992).
8. Porat, Y. I. Microbiological Aspects of the Productivity of Coral Reefs. In Biology and Geology of Coral Reefs (eds. Jones, O. A. & Endean, R.) 17–46 Academic press, Inc., (1973).
9. O’Neil, J. M. & Capone, D. G. Nitrogen Cycling in Coral Reef Environments. In Nitrogen in the Marine Environment 949–989 (2008). https://doi.org/10.1016/B978-0-12-37522-6.00021-9
10. Cardini, U. et al. Budget of primary production and dinitrogen fixation in a highly seasonal red sea coral reef. Ecosystems 19, 771–785 (2016).
11. Scheffer, S. R., Nieuwland, G., Bak, R. P. M. & Van Duyl, F. C. Removal of bacteria and nutrient dynamics within the coral reef framework of Curaçao (Netherlands Antilles). Coral Reefs 23, 413–422 (2004).
12. Radecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning?. Trends Microbiol. 23, 490–497 (2015).
13. Koop, K. et al. ENCORE: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar. Pollut. Bull. 42, 91–120 (2001).
14. Capone, D. G., Dunham, S. E., Horrigan, S. G. & Duguay, L. E. Microbial nitrogen transformations in unconsolidated coral reef sediments. Mar. Ecol. Prog. Ser. 80, 75–88 (1992).
15. Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2238–2243 (2009).
16. Wiebe, W., Webb, K. L., Johannes, R. E. & Webb, K. L. Nitrogen fixation in a coral reef community. Science 188, 257–259 (1975).
17. Larkum, A. W. D., Kennedy, I. R. & Muller, W. J. Nitrogen fixation on a coral reef. Mar. Biol. 98, 143–155 (1988).
18. Kimes, N. E., Van Nostrand, J. D., Weil, E., Zhou, J. & Morris, P. J. Microbial functional structure of Montastrea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environ. Microbiol. 12, 541–556 (2010).
19. Yang, S., Sun, W., Zhang, F. & Li, Z. Phylodiversity generally diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastrea coccinea. Mar. Biotechnol. 15, 540–553 (2013).
20. Tlstá, A. et al. Denitrification aligns with N2 fixation in red sea corals. Sci. Rep. 9, 19460 (2019).
21. El-Khaled, Y. et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar. Ecol. Prog. Ser. 645, 55–66 (2020).
22. O’Neil, J. M. & Capone, D. G. Nitrogen cycling in coral reef environments. Nitrog. Mar. Environ. https://doi.org/10.1016/B978-0-12-372522-6.00021-9 (2008).
23. Muscatine, L. & Porter, J. W. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27, 454–460 (1977).
24. Wafar, M., Wafar, S. & David, J. J. Nitrification in reef corals. Limnol. Oceanogr. 35, 725–730 (1990).
25. Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science (80-) 333, 418–422 (2011).
26. Hughes, T. P. et al. Coral reefs in the anthropocene. Nature 546, 82–90 (2017).
27. Fabricius, K. E. Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model. In Coral Reefs: An Ecosystem in Transition (eds. Dubinsky, Z. & Stambler, N.) 493–505 (2011). https://doi.org/10.1097/978-94-007-0114-4_28.
28. Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).
29. Lapointe, B. E., Brevront, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Marine Biology 166, (Springer, 2019).
30. Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).
31. Williams, I. D., Polunin, N. V. C. & Hendrick, V. J. Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Mar. Ecol. Prog. Ser. 222, 187–196 (2001).
32. Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).
33. Roth, F. et al. High rates of carbon and dinitrogen fixation suggest a critical role of benthic pioneer communities in the energy and nutrient dynamics of coral reefs. Funct. Ecol. https://doi.org/10.1111/1365-2435.13625 (2020).
34. Done, T. J. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247, 121–132 (1992).
35. Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science (80-) 265, 1547–1551 (1994).
36. McManus, J. W. & Polenberg, J. F. Coral-algal phase shifts on coral reefs: ecological and environmental aspects. Prog. Oceanogr. 60, 263–279 (2004).
37. Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
38. White, A. T., Vogt, H. P. & Arin, T. Philippine coral reefs under threat: the economic losses caused by reef destruction. Mar. Pollut. Bull. 40, 598–605 (2000).
39. McClanahan, T. R., Polunin, N. & Dore, T. Ecological states and the resilience of coral reefs. Conserv. Ecol. 6 (2), 18, (2002).
40. Mondy, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Chang. Biol. 10, 1642–1647 (2004).
41. Williams, G. J. & Graham, N. A. J. Rethinking coral reef functional futures. Funct. Ecol. 33, 942–947 (2019).
42. Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 293–306 (2009).
43. Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).

References
47. Roth, F. et al. High summer temperatures amplify functional differences between coral- and algae-dominated reef communities. Ecology https://doi.org/10.1002/ecy.3226 (2020).
48. Bednarz, V. N., Cardini, U., Van Hoytema, N., Al-Rshaidat, M. M. D. & Wild, C. Seasonal variation in dinitrogen fixation and oxygen fluxes associated with two dominant zooxanthellate soft corals from the northern Red Sea. Mar. Ecol. Prog. Ser. 519, 141–152 (2015).
49. Rix, L. et al. Seaweed nitrogen fixation and primary productivity from coastal seaweeds. J. Phycol. 53, 41–51 (2017).
50. den Haan, J. et al. Nitrogen fixation rates in algal turf communities of a degraded versus less degraded coral reef. Coral Reefs 33, 1003–1015 (2014).
51. Roth, F. et al. Coral reef degradation affects the potential for reef recovery after disturbance. Mar. Environ. Res. 142, 48–58 (2018).
52. Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus reequilibration potential in coral reefs. Nature 518, 94–97 (2015).
53. Pogoreutz, C. et al. Sugar enrichment provides evidence for a role in nitrogen fixation during coral bleaching. Glob. Chang. Biol. 23, 3838–3848 (2017).
54. Bednarz, V. N. et al. Dinitrogen fixation and primary productivity by carbonate and silicate reef sand communities of the northern Red Sea. Mar. Ecol. Prog. Ser. 527, 47–57 (2015).
55. Shashar, N., Feldstein, T., Cohen, Y. & Loya, Y. Nitrogen fixation (acetylene reduction) on a coral reef. Coral Reefs 13, 171–174 (1994).
56. Patriquin, D. G. & McClung, C. R. Nitrogen fixation and the nature and possible significance of N2 fixation (acetylene reduction) in a Nova Scottian Spartina alterniflora Stand. Mar. Biol. 47, 227–242 (1978).
57. Shieh, W. Y. & Lin, Y. M. Nitrogen fixation (acetylene reduction) associated with the zoanthid Palythoa tuberculosa. Exp. J. Exp. Mar. Biol. Ecol. 163, 31–41 (1992).
58. Bednarz, V. N. et al. Contrasting seasonal responses in dinitrogen fixation between shallow and deep-water colonies of the model coral Stylophora pistillata in the northern Red Sea. PLoS ONE 13, 1–13 (2018).
59. Schöttner, S. et al. Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the Red Sea. Mar. Environ. Microb. 13, 1815–1826 (2011).
60. Zmefi, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997).
61. Komarov, I. & Stall, L. J. Effect of temperature on the sensitivity of nitorgenase to oxygen in two heterocycts cyanobacteria. J. Phycol. 46, 1172–1179 (2010).
62. Littler, M. & Littler, D. The nature of turf and boring algae and their interactions on reefs. Smithson. Contrib. to Mar. Sci. 213–217 (2013).
63. Rosenber, G. & Ramus, J. Uptake of inorganic nitrogen and seaweed surface area: volume ratios. Aquat. Bot. 19, 65–72 (1984).
64. Fong, P., Rudnicki, R. & Zelder, J. B. Algal community response to nitrogen and phosphorus loading in experimental mesocosms: Management recommendations for southern California lagoons. (1987).
65. Fong, C. R., Gaynus, C. J. & Carpenter, R. C. Complex interactions among stressors evolve over time to drive shifts from short turfs to macroalgae on tropical reefs. Ecosphere 11(5), e03130 (2020).
66. Roth, F., Stuhldreier, I., Sánchez-Noguera, C., Morales-Ramírez, T. & Wild, C. Effects of simulated overfishing on the succession of benthic algae and invertebrates in an upwelling-influenced coral reef of Pacific Costa Rica. J. Exp. Mar. Biol. Ecol. 468, 55–66 (2015).
67. Stuhldreier, I., Bastian, P., Schönig, E. & Wild, C. Effects of simulated eutrophication and overfishing on algae and invertebrate settlement in a coral reef of Koh Phangan, Gulf of Thailand. Mar. Pollut. Bull. 92, 35–44 (2015).
68. Yamamuro, M., Kayanoe, H. & Minagawa, M. Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems. Limnol. Oceanogr. 40, 617–621 (1995).
69. Tilstra, A. et al. Seasonality affects dinitrogen fixation associated with two common macroalgae from a coral reef in the northern Red Sea. Mar. Ecol. Prog. Ser. 575, 69–80 (2017).
70. El-Khaled, Y. C., Fong, C. R., Gaynus, C. J. & Carpenter, R. C. Complex interactions among stressors evolve over time to drive shifts from short turfs to macroalgae on tropical reefs. Ecosphere 11(5), e03130 (2020).
71. Roth, F., Stuhldreier, I., Sánchez-Noguera, C., Morales-Ramírez, T. & Wild, C. Effects of simulated overfishing on the succession of benthic algae and invertebrates in an upwelling-influenced coral reef of Pacific Costa Rica. J. Exp. Mar. Biol. Ecol. 468, 55–66 (2015).
72. Stuhldreier, I., Bastian, P., Schönig, E. & Wild, C. Effects of simulated eutrophication and overfishing on algae and invertebrate settlement in a coral reef of Koh Phangan, Gulf of Thailand. Mar. Pollut. Bull. 92, 35–44 (2015).
73. Yamamuro, M., Kayanoe, H. & Minagawa, M. Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems. Limnol. Oceanogr. 40, 617–621 (1995).
74. Tilstra, A. et al. Seasonality affects dinitrogen fixation associated with two common macroalgae from a coral reef in the northern Red Sea. Mar. Ecol. Prog. Ser. 575, 69–80 (2017).
75. El-Halal, V. C. et al. Simultaneous measurements of dinitrogen fixation and denitrification associated with coral reef substrates: advantages and limitations of a combined acetylene assay. Front. Mar. Sci. 7, 411 (2020).
76. Davey, M., Graham, N. & Johnstone, R. High rates of nitrogen fixation (acetylene reduction) on coral reefs following bleaching mortality. Coral Reefs 27, 227–236 (2008).
77. Larkum, A. W. D. High rates of nitrogen fixation on coral skeletons after bleaching. J. Exp. Mar. Biol. Ecol. 130, 606–611 (1993).
78. Arrigo, K. K. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2004).
79. Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Geider, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).
80. Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958).
81. Porter, J. W., Muscatine, L., Dubinsky, Z. & Falkowski, P. G. Primary production and photoadaptation in light- and shade-adapted colonies of the symbiotic coral, stylophora pistillata. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 222, 161–180 (1984).
82. Veal, C. J., D’ Angelo, C., Wiedenmann, J. & Grover, R. Phosphorus metabolism of reef organisms with algal symbionts. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 222, 292–294 (2004).
83. Eyre, B. D., Glud, R. N. & Patten, N. Mass coral spawning: a natural large-scale nutrient addition experiment. Limnol. Oceanogr. 53, 997–1001 (2008).
84. Tilstra et al. Relative abundance of dinitrogen cycling microbes in coral holobionts reflects environmental nitrate availability, Royal Society Open Science, https://doi.org/10.1098/rsos.201835 (2021).
85. D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reef communities: new perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).
86. Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2013).
87. Ferrier-Pagés, C., Godinot, C., D’ Angelo, C., Wiedenmann, J. & Grover, R. Phosphorus metabolism of reef organisms with algal symbionts. Ecol. Monogr. 66, 262–277 (1996).
88. Muscatine, L., Falkowski, P. G., Porter, J. W. & Dubinsky, Z. Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. B Biol. Sci. 222, 181–202 (1984).
90. Conti-Jerpe, I. E. et al. Trophic strategy and bleaching resistance in reef-building corals. Sci. Adv. 6(15), eaaaz5443 (2020).
91. Houbréque, F. & Ferrier-Pages, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).
92. Muscatine, L., Porter, J. W. & Kaplan, I. R. Resource partitioning by reef corals as determined from stable isotope composition. Proc. Sci. 48, 304–312 (1994).
93. Her, J.-I. & Huang, J.-S. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour. Technol. 54, 45–51 (1995).
94. Chen, S. et al. Organic carbon availability limiting microbial denitrification in the deep vadose zone. Environ. Microbiol. 20, 980–992 (2018).
95. Schlüchtern, D., Svoboda, A. & Kremer, B. P. Functional autotrophy of Heteroxia fusescens (Anthozoa: Alcyonaria): carbon assimilation and translocation of photosynthates from symbionts to host. Mar. Biol. 78, 29–38 (1983).
96. Babbin, A. R. et al. Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical stony corals. DMM J. https://doi.org/10.1038/s41396-020-00845-2 (2020).
97. Pupier, C. A. et al. Divergent capacity of scleractinian and soft corals to assimilate and transfer diazotrophically derived nitrogen to the reef environment. Front. Microbiol. 10, 1860 (2019).
98. Muscatine, L. The role of symbiotic algae in carbon and energy flux in coral reefs. In Coral Reefs (ed. Dubinsky, Z.) 75–87 (1990).
99. van Vossius, R., Irikawa, A., Anzai, R. & Nakamura, T. Effects of coral colony morphologies on mass transfer and susceptibility to thermal stress. Coral Reefs 31, 633–639 (2012).
100. Patterson, M. R. & Sebens, K. P. Forced convection modulates gas exchange in cnidarians. Proc. Natl. Acad. Sci. U. S. A. 86, 8833–8836 (1989).
101. Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).
102. Huang, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).
103. Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).
104. Huang, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl. Acad. Sci. U. S. A. 103, 8425–8429 (2006).
105. Sano, M., Shimizu, M. & Nose, Y. Long-term effects of destruction of hermatypic corals by Acanthaster plana infestation on reef fish communities at Iriomote Island, Japan. Mar. Ecol. Prog. Ser. 37, 191–199 (1987).
106. Lindahl, U., Öhman, M. C. & Schelten, C. K. The 1997/1998 mass mortality of corals: effects on fish communities on a Tanzanian coral reef. Mar. Pollut. Bull. 42, 127–131 (2001).
107. Jones, G. P., McCormick, M. L., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl. Acad. Sci. U. S. A. 101, 8251–8253 (2004).
108. Ijdadi, J. A. & Edmunds, P. J. Scleractinian corals as facilitators for other invertebrates on a Caribbean reef. Mar. Ecol. Prog. Ser. 319, 117–127 (2006).
109. Bracxwell, S. A., Clark, G. F. & Johnston, E. L. Habitat complexity effects on diversity and abundance differ with latitude: an experimental study over 20 degrees. Ecology 99, 1964–1974 (2018).
110. Cinner, J. E. et al. Linking social and ecological systems to sustain coral reef fisheries. Curr. Biol. 19, 206–212 (2009).
111. Sheppard, C., Dixon, D. J., Gourlay, M., Sheppard, A. & Payet, R. Coral mortality increases wave energy reaching shores protected by reef flats: examples from the Seychelles. Estuar. Coast. Shelf Sci. 64, 223–234 (2005).
112. Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 8, e8737 (2020).
113. Adey, W. H. & Goerttemiller, T. Coral reef algal turfs: master producers in nutrient poor seas. Coral Reefs 19, 374–386 (1987).
114. Fong, P. & Paul, V. J. Coral reef algal turf. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 241–272 (Springer, 2011). https://doi.org/10.1007/978-0-07-9114-4_17.
115. Hoey, A. S. & Bellwood, D. R. Suppression of herbivory by macroalgal density: a critical feedback on coral reefs?. Ecol. Lett. 14, 267–273 (2011).
116. Jessen, C. & Wild, C. Herbivory changes in benthic algal composition and growth on a coral reef flat in the Egyptian Red Sea. Mar. Ecol. Prog. Ser. 476, 9–21 (2013).
117. Haas, A. F. & Wild, C. Composition analysis of organic matter released by cosmopolitan coral reef-associated green algae. Aquat. Biol. 10, 131–138 (2010).
118. Rother et al. Nutrient pollution enhances productivity and framework dissolution in algae- but not in coral-dominated reef communities. Marine Pollution Bulletin. 168, 112444 (2021).
119. Haas, A. F. et al. Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 2013, 1–28 (2013).
120. Roach, T. N. F. et al. A multiomic analysis of in situ coral-turf algal interactions. Proc. Natl. Acad. Sci. U. S. A. 117, 13588–13595 (2020).
121. van Oppen, M. I. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).
122. Liang, J. et al. Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress. Front. Microbiol. 8, 1–10 (2017).
123. Feng, T., Seymour, R. M. & Johnson, C. R. Alternative stable states and phase shifts in coral reefs under anthropogenic stress. Ecology 92, 967–982 (2011).
124. Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. W. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90, 1478–1484 (2009).
125. Tailor, V., Leuck, W., Ormond, R. F. G., Ashworth, J. A. & Mabrouk, A. Monitoring of South Sinai coral reefs: influence of natural and anthropogenic factors. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.942 (2008).
126. Riegel, R. & Piller, W. E. Coral frameworks revisited-reefs and coral carpets in the northern Red Sea. Coral Reefs 18, 241–253 (1999).
127. Benayahu, Y., Jeng, M. S., Perkol-Finkel, S. & Dai, C. F. Soft corals (Octocorallia: Alcyonacea) from Southern Taiwan. II. Species diversity and distributional patterns. Zool. Stud. 43, 548–560 (2004).
128. Ninio, R., Meekan, M., Done, T. & Sweatman, H. Temporal patterns in coral assemblages on the Great Barrier Reef from local to large spatial scales. Mar. Ecol. Prog. Ser. 194, 65–74 (2000).
129. Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, K. L. Recovery in rubble fields: long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).
130. Imoue, S., Kayanne, H., Yamamoto, S. & Kurihara, H. Spatial community shift from hard to soft corals in acidified water. Nat. Clim. Chang. 3, 683–687 (2013).
131. Rasser, M. W. & Riegel, B. Holocenecom reef rubble and its binding agents. Coral Reefs 21, 57–72 (2002).
132. Dalsgaard, T., Thamdrup, B. & Canfield, D. E. Anaerobic ammonium oxidation (anammox) in the marine environment. Res. Microbiol. 156, 457–464 (2005).
133. Brunner, B. et al. Nitrogen isotope effects induced by anammox bacteria. Proc. Natl. Acad. Sci. 110, 18994–18999 (2013).
134. Zhang, Y. et al. The functional gene composition and metabolic potential of coral-associated microbial communities. Sci. Rep. 5, 1–11 (2015).
135. Richter, C., Wunsch, M., Rasheed, M., Kötté, I. & Badran, M. I. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413, 726–730 (2001).
136. Hill, J. & Wilkinson, C. Methods for ecological monitoring of coral reefs. *Aust. Inst. Mar. Sci. Townsv.* [https://doi.org/10.1017/CBO9781107413524.004] (2004).

137. Kohler, K. E. & Gill, S. M. Coral Point Count with Excel extensions (CPCe): a Visual Basic program for the determination of coral and substrate coverage using random point count methodology. *Comput. Geosci.* 32, 1259–1269 (2006).

138. Haas, A., El-Zibdah, M. & Wild, C. Seasonal monitoring of coral-algae interactions in fringing reefs of the Gulf of Aqaba, Northern Red Sea. *Coral Reefs* 29, 93–103 (2010).

139. Baharatan, K. et al. Macroalgae in the coral reefs of Eilat (Gulf of Aqaba, Red Sea) as a possible indicator of reef degradation. *Mar. Pollut. Bull.* 60, 759–764 (2010).

140. Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. *Glob. Chang. Biol.* 26, 4328–4343 (2020).

141. Hynes, R. K. & Knowles, R. Inhibition by acetylene of ammonia oxidation in *Nitrosomonas europaea*. *FEMS Microbiol. Lett.* 4, 319–321 (1978).

142. Orenland, R. S. & Capone, D. G. Use of ‘specific’ inhibitors in biogeochemistry and microbial ecology. *Adv. Microb. Ecol.* [https://doi.org/10.1007/978-1-4684-5409-3_8] (1988).

143. Haines, J. R., Atlas, R. M., Griffiths, R. P. & Morita, R. Y. Denitrification and nitrogen fixation in Alaskan continental shelf sediments. *Appl. Environ. Microbiol.* 41, 412–421 (1981).

144. Joye, S. B. & Paerl, H. W. Contemporary nitrogen fixation and denitrification in intertidal microbial mats: rapid response to runoff events. *Mar. Ecol. Prog. Ser.* 94, 267–274 (1993).

145. Miyajima, T., Suzumura, M., Umezawa, Y. & Koike, I. Microbiological nitrogen transformation in carbonate sediments of a coral-reef lagoon and associated seagrass beds. *Mar. Ecol. Prog. Ser.* 217, 273–286 (2001).

146. Falkowski, P. G. *Microbial Enzymology of Nitrogen Assimilation. Nitrogen in the Marine Environment* (Academic Press, 1983). [https://doi.org/10.1016/b978-0-12-160280-2.50031-6].

147. Yu, K., Seo, D. C. & Delaune, R. D. Incomplete acetylene inhibition of nitrous oxide reduction in potential denitrification assay by *Trichodesmium IMS101*. *Aquat. Microb. Ecol.* 78, 6516–6523 (2012).

148. Grover, R., Maguer, J. F., Allemand, D. & Ferrier-Pagès, C. Nitrate uptake in the scleractinian coral *Stylophora pistillata*. *Limnol. Oceanogr.* 38, 136–148 (1993).

149. Groffman, P. M. *Soils: Nutrient Fluxes Through Sponges. Biology, Budgets, and Ecological Implications*. *Advances in Marine Biology* Vol. 62 (Elsevier Ltd., 2012).

150. Hynes, R. K. & Knowles, R. Inhibition by acetylene of ammonia oxidation in *Nitrosomonas europaea*. *FEMS Microbiol. Lett.* 4, 319–321 (1978).

151. Hynes, R. K. & Knowles, R. Inhibition by acetylene of ammonia oxidation in *Nitrosomonas europaea*. *FEMS Microbiol. Lett.* 4, 319–321 (1978).

152. Balderston, W. L., Sherr, B. & Payne, W. J. Blockage by acetylene of nitrous-oxide reduction in pseudomonas-perfectolmarinus. *Appl. Environ. Microbiol.* 31, 504–508 (1976).

153. Yoshinari, T. & Knowles, R. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. *Biochem. Biophys. Res. Commun.* 69, 705–710 (1976).

154. Lucy, A. et al. A quick, easy and non-intrusive method for underwater volume and surface area evaluation of benthic organisms by 3D computer modelling. *Methods Ecol. Evol.* 6, 521–531 (2015).

155. Gutierrez-Heredia, L., Benzoni, F., Murphy, E. & Reynaud, E. G. End to end digitisation and analysis of three-dimensional coral models, from communities to coralites. *PLOS ONE* 11, e0149641 (2016).

156. Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. *Nat. Clim. Chang.* 10, 296–307 (2020).

157. Mulholland, M. R., Bronk, D. A. & Capone, D. G. Dinitrogen fixation and release of ammonia and dissolved organic nitrogen by *Trichodesmium IMS101*. *Aquat. Microb. Ecol.* 37, 85–94 (2004).

158. Clarke, K. R. & Gorley, R. N. *PRIMER v6: Use manual/Tutorial. PRIMER-E: Plymouth* (2006).

159. Anderson, M., Gorley, R. & Clarke, K. *PERMANOVA+ for PRIMER. Guide to software and statistical methods.* (2008).

160. R Core Team. R: A language and environment for statistical computing. (2017).

161. RStudio Team. RStudio: Integrated Development for R. (2020).

162. Wilson, S. T., Böttjer, D., Church, M. J. & Karl, D. M. Comparative assessment of nitrogen fixation methodologies, conducted in the oligotrophic north pacific ocean. *Appl. Environ. Microbiol.* 78, 6516–6523 (2012).

163. Yu, K., Seo, D. C. & Delaune, R. D. Incomplete acetylene inhibition of nitrous oxide reduction in potential denitrification assay as revealed by using 15N-Nitrate tracer. *Commun. Soil Sci. Plant Anal.* 41, 2201–2210 (2010).

164. Groffman, P. M. et al. Methods for measuring denitrification: diverse approaches to a difficult problem. *Ecol. Appl.* 16, 2091–2122 (2006).

165. Maldonado, M., Ribes, M. & van Duyl, F. C. *Nutrient Fluxes Through Sponges. Biology, Budgets, and Ecological Implications*. *Advances in Marine Biology* Vol. 62 (Elsevier Ltd., 2012).

166. Roth, F. et al. An in situ approach for measuring biogeochemical fluxes in structurally complex benthic communities. *Methods Ecol. Evol.* [https://doi.org/10.1111/2041-210X.13151] (2019).

Acknowledgements

We are grateful to Rodrigo Villalobos and João Cúrdia for their support during fieldwork. Many thanks also to Carolina Kitir, Sophía Toblier and Jan Krause for their support in developing the figures, as well as to Najeh Kharbati for technical support with GC. We thank the anonymous reviewers for their helpful comments and suggestions. This work was funded by the German Research Association (DFG Projects: Wi 2677/9-1 and Wi 2677/16-1) to CW and King Abdullah University of Science and Technology (KAUST) baseline funding to BHJ and CRV.

Author contributions

Y.E.K., C.W., C.R.V., and F.R. planned the research. Y.E.K., F.R., and D.B.K. participated in the collection of data. Y.E.K., N.R., and C.W. led data analysis. Y.E.K. wrote the manuscript with significant contributions of all authors. All authors read and approved the final manuscript.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Competing interests

The authors declare no competing interests.
