MODEL-INDEPENDENT ANALYSIS OF FORWARD-BACKWARD ASYMMETRY OF TOP QUARK PRODUCTION AT THE TEVATRON

DONG-WON JUNG
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300

P. KO
School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea

JAE SIK LEE
Physics Division, National Center for Theoretical Sciences, Hsinchu, Taiwan 300

SOO-HYEON NAM
Korea Institute of Science and Technology Information, Daejeon 305-806, Korea

We perform a model independent analysis on $q\bar{q}\to t\bar{t}$ using an effective lagrangian with dim-6 four-quark operators, and derive necessary conditions on new physics that are consistent with the $t\bar{t}$ production cross section and the forward-backward (FB) asymmetry (A_{FB}) measured at the Tevatron. We also propose a new FB spin-spin correlation that is strongly correlated with the A_{FB}, and discuss possible new physics scenarios that could generate such dim-6 operators.

1 Introduction

The A_{FB} of the top quark is one of the interesting observables related with top quark. Within the Standard Model (SM), this asymmetry vanishes at leading order in QCD because of C symmetry. At next-to-leading order [$O(\alpha_s^3)$], a nonzero A_{FB} can develop from the interference between the Born amplitude and two-gluon intermediate state, as well as the gluon bremsstrahlung and gluon-(anti)quark scattering into $t\bar{t}$, with the prediction $A_{FB} \sim 0.078^{1}$. The measured asymmetry has been off the SM prediction by 2σ for the last few years, albeit a large experimental uncertainties. The measurement in the $t\bar{t}$ rest frame before this meeting was $A_{FB} = \frac{N_t(\cos \theta \geq 0) - N_{\bar{t}}(\cos \theta \geq 0)}{N_{t}(\cos \theta \geq 0) + N_{\bar{t}}(\cos \theta \geq 0)} = (0.24 \pm 0.13 \pm 0.04)$ (1)

with θ being the polar angle of the top quark with respect to the incoming proton in the $t\bar{t}$ rest frame. This $\sim 2\sigma$ deviation stimulated some speculations on new physics scenarios 3,4,5,6. On the other hand, search for a new resonance decaying into $t\bar{t}$ pair has been carried out at the Tevatron. As of now, there is no clear signal for such a new resonance 2. Therefore, in this talk, I assume that a new physics scale relevant to A_{FB} is large enough so that production of a new particle is beyond the reach of the Tevatron 7, which makes a key difference between our
Figure 1: (a) The region in \((C_1, C_2)\) plane that is consistent with the Tevatron data at the 1σ level:
\[\sigma_{\tilde{t}\tilde{t}} = (7.50 \pm 0.48) \text{ pb} \text{ and } A_{FB} = (0.24 \pm 0.13 \pm 0.04). \]
(b) the spin-spin correlations \(C\) and \(C_{FB}\).

work and other literatures on this subject. Then it is adequate to integrate out the heavy fields, and use the resulting effective lagrangian approach in order to study new physics effects on \(\sigma_{t\bar{t}}\) and \(A_{FB}\). At the Tevatron, the \(t\bar{t}\) production is dominated by \(q\bar{q} \rightarrow t\bar{t}\), and it would be sufficient to consider dimension-6 four-quark operators (the so-called contact interaction terms) to describe the new physics effects on the \(t\bar{t}\) production at the Tevatron. A similar approach was adopted for the dijet production to constrain the composite scale of light quarks, and we are proposing the same analysis for the \(t\bar{t}\) system.

2 Model independent analysis

2.1 Lagrangian

Our starting point is the effective lagrangian with dimension-6 operators relevant to the \(t\bar{t}\) production at the Tevatron:

\[
\mathcal{L}_6 = \frac{g_s^2}{\Lambda^2} \sum_{A,B} \left[C_{1q}^{AB} (\bar{q}_A \gamma_\mu q_A) (\bar{t}_B \gamma_\mu t_B) + C_{8q}^{AB} (\bar{q}_A T^a \gamma_\mu q_A) (\bar{t}_B T^a \gamma_\mu t_B) \right]
\]

where \(T^a = \lambda^a/2\), \(\{A, B\} = \{L, R\}\), and \(L, R \equiv (1 \mp \gamma_5)/2\) with \(q = (u, d)^T, (c, s)^T\). Using this effective lagrangian, we calculate the cross section up to \(O(1/\Lambda^2)\), keeping only the interference term between the SM and new physics contributions. The above effective lagrangian was also discussed in Ref. where the \(t\) quark was treated as \(SU(2)_L \times SU(2)_R\) singlet and top currents were decomposed into vector and axial vector currents, rather than chirality basis as in our case.

2.2 Origin of FB Asymmetry

It is straightforward to calculate the amplitude for \(q(p_1) + \bar{q}(p_2) \rightarrow t(p_3) + \bar{t}(p_4)\) using the above effective lagrangian and the SM. The squared amplitude summed (averaged) over the final (initial) spins and colors is given by

\[
|\mathcal{M}|^2 \approx \frac{4 g_s^4}{9 s_w^2} \left\{ 2m_t^2 s_\theta \left[1 + \frac{s_\theta}{2\Lambda^2} (C_1 + C_2) \right] s_\theta^2 + \frac{s_\theta^2}{2} \left[1 + \frac{s_\theta}{2\Lambda^2} (C_1 + C_2) \right] (1 + c_\theta^2) + \beta_t \left(\frac{s_\theta}{\Lambda^2} (C_1 - C_2) \right) c_\theta \right\}
\]
The negative sign of C.

Another interesting observable which is sensitive to the chiral structure of new physics affecting σT.

2.3 A New Spin-spin Correlation

A quantitative discussion requires to study the full amplitude without integrating out new heavy particles.

$$C = \frac{\sigma(t_1\bar{t}_L + t_2\bar{t}_R) - \sigma(t_1\bar{t}_L + t_2\bar{t}_R)}{\sigma(t_1\bar{t}_L + t_2\bar{t}_R) + \sigma(t_1\bar{t}_L + t_2\bar{t}_R)}$$

Since new physics must have chiral couplings, both to light quarks and top quark, the spin-spin correlation defined above will be affected. From Eq. (4), it is clear the spin-spin correlation Eq. (4) is sensitive to $(C_1 + C_2)$, since the linear term in $\cos \theta$ does not contribute to the correlation C after integration over $\cos \theta$. On the other hand, if one considers the forward and the backward regions separately, the spin-spin correlation would depend on $(C_1 - C_2)$ and will be closely correlated with A_{FB}. Therefore we propose a new spin-spin FB asymmetry C_{FB} defined as

$$C_{FB} \equiv C(\cos \theta \geq 0) - C(\cos \theta \leq 0),$$

where $C(\cos \theta \geq 0(\leq 0))$ implies the cross sections in the numerator of Eq. (4) are obtained for the forward (backward) region: $\cos \theta \geq 0(\leq 0)$. In Fig. (1) (b), we show the contour plots for the C and C_{FB} in the (C_1, C_2) plane along with the SM prediction at LO. There is a clear correlation between C_{FB} and A_{FB} in Fig. (1) which must be observed in the future measurements if the A_{FB} anomaly is real and a new particle is too heavy to be produced at the Tevatron.

3 Explicit Models

So far, we considered dim-6 four-quark operators that could affect the $t\bar{t}$ production at the Tevatron, and found the necessary conditions for accommodating A_{FB}. In Ref. [7] we also considered the explicit models with new particles with various spins and colors that could affect A_{FB}. In Table [1] we show the new particle exchanges under consideration and the signs of the couplings C_1, C_2 induced by them. We found that the four types of exchanges of $V_8, \tilde{V}_8, \tilde{S}_1$, and $S_{13}^{\alpha\beta}$ could give rise to the large positive A_{FB} at the 1-σ level. It would be interesting to search for new vector or scalar particles that satisfy the above conditions at LHC. For more quantitative discussions, we have to study the full amplitude without integrating out new heavy particles, the detailed study of which will be presented in the future work [10].

4 Conclusions

In this talk, I presented a model independent study of $t\bar{t}$ production cross section and A_{FB} at the Tevatron using dimension-6 contact interactions. We derived conditions for the couplings of four-quark operators that could generate the FB asymmetry observed at the Tevatron [Fig. (1)].
Table 1: New particle exchanges and the signs of induced couplings C_1 and C_2

New particles	couplings	C_1	C_2	1 σ favor
V_8 (spin-1 FC octet)	$g_{8q,8t}^{L,R}$	indef.	indef.	\checkmark
\tilde{V}_1 (spin-1 FV singlet)	$g_{1q}^{L,R}$	-0	0	\times
\tilde{V}_8 (spin-1 FV octet)	$g_{8q}^{L,R}$	$+0$	0	\checkmark
\tilde{S}_1 (spin-0 FV singlet)	$\eta_{1q}^{L,R}$	0	-0	\checkmark
\tilde{S}_8 (spin-0 FV octet)	$\eta_{8q}^{L,R}$	0	$+0$	\times
S_2^a (spin-0 FV triplet)	η_3	-0	0	\times
$S_{13}^{a/b}$ (spin-0 FV sextet)	η_6	$+0$	0	\checkmark

Then we considered the $s-$, $t-$ and $u-$channel exchanges of spin-0 and spin-1 particles whose color quantum number is either singlet, octet, triplet or sextet. Our results in Fig. 1 and Table 1 encode the necessary conditions for the underlying new physics in a compact and an effective way, when those new particles are too heavy to be produced at the Tevatron but still affect A_{FB}. If these new particles could be produced directly at the Tevatron or at the LHC, we cannot use the effective lagrangian any more. We have to study specific models case by case, and anticipate rich phenomenology at colliders as well as at low energy. Detailed study of these issues will be discussed in the future publications.\footnote{Work in preparation.}

Acknowledgments

This work was supported in part by Korea Neutrino Research Center (KNRC) through National Research Foundation of Korea Grant.

References

1. J. H. Kuhn and G. Rodrigo, *Phys. Rev. Lett.* **81**, 49 (1998); J. H. Kuhn and G. Rodrigo, *Phys. Rev. D* **59**, 054017 (1999); O. Antunano, J. H. Kuhn and G. Rodrigo, *Phys. Rev. D* **77**, 014003 (2008).
2. http://www-cdf.fnal.gov/physics/new/top/top.html
3. D. Choudhury, R. M. Godbole, R. K. Singh and K. Wagh, *Phys. Lett. B* **657**, 69 (2007).
4. A. Djouadi, G. Moreau, F. Richard and R. K. Singh, [arXiv:0906.0604](http://arxiv.org/abs/0906.0604) [hep-ph].
5. P. Ferrario and G. Rodrigo, *Phys. Rev. D* **80**, 051701 (2009).
6. S. Jung, H. Murayama, A. Pierce and J. D. Wells, [arXiv:0907.4112](http://arxiv.org/abs/0907.4112) [hep-ph]; K. Cheung, W. Y. Keung and T. C. Yuan, *Phys. Lett. B* **682**, 287 (2009); P. H. Frampton, J. Shu and K. Wang, *Phys. Lett. B* **683**, 294 (2010); J. Shu, T. M. P. Tait and K. Wang, *Phys. Rev. D* **81**, 034012 (2010); A. Arhrib, R. Benbrik and C. H. Chen, *Phys. Rev. D* **82**, 034034 (2010); I. Dorsner, S. Fajfer, J. F. Kamenik and N. Kosnik, *Phys. Rev. D* **81**, 055009 (2010).
7. D.-W. Jung, P. Ko, J.S. Lee and S.-h. Nam, *Phys. Lett. B* **691**, 238 (2010).
8. C. T. Hill and S. J. Parke, *Phys. Rev. D* **49**, 4454 (1994).
9. Work in preparation.
10. T. Stelzer and S. Willenbrock, *Phys. Lett. B* **374**, 169 (1996); W. Bernreuther, A. Brandenburg, Z.G. Si and P. Uwer, NPB **690**, 81 (2004).