Final design and development status of the acquisition and guiding system for SOXS.

Anna Brucalassi*,a,b, Giuliano Pignataa,c, José Antonio Araiza-Duran,c,v, Sergio Campanad, Riccardo Claudie, Pietro Schipanif, Matteo Alvertid, Andrea Baruffoloe, Sagiben-Amig, Federico Bioudi, Giulio Capassoi, Mirko Colapietrof, Rosario Cosentinoi, Francesco D’ Alessioj, Paolo D’ Avanzod, Matteo Genonid, Ofir Hershkob, Hanindyo Kuncarayakitm,n, Marco Landonid, Matteo Munari3, Kalian Radhakrishnank, Michael Rappaportk, Davide Ricke, Adam Rubin6, Salvatore Scuderip, Fabrizio Vitalij, Ricardo Zanmar Sanchez2, David Younga, Jani Achrénf, Iair Arcavif, Rachel Bruchk, Enrico Cappellaroa, Massimo Della Vallef, Marco De Pascalee, Rosario Di Benedettoun, Sergio D’ Orsl, Avishay Gal-Yami5, Marcos Hernandez3, Jari Kotilainenl,m, Gianluca Li Causit, Seppo Mattila4, Marco Riva4, Bernardo Salasnichc, Stephen Smartt4, Maximilian Stritzingeru, and Hector Ventura1

aUniversidad Andres Bello, Avda. Republica 252, Santiago, Chile
bINAF – Osservatorio Astronomico di Arcetri, Largo Fermi 5, I-50125, Florence, Italy
cMillennium Institute of Astrophysics (MAS)
dINAF – Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807, Merate, Italy
eINAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padua, Italy
fINAF – Osservatorio Astronomico di Capodimonte, Sal. Moiariello 16, I-80131, Naples, Italy
gHarvard-Smithsonian Center for Astrophysics, Cambridge, USA
hMax-Planck-Institut für Extraterrestrische Physik, Giessenbachstr. 1, D-85748 Garching, Germany
iFGG-INAF, TNG, Rambla J.A. Fernández Pérez 7, E-38712 Breña Baja (TF), Spain
jINAF – Osservatorio Astronomico di Roma, Via Frascati 33, I-00078 M. Porzio Catone, Italy
kWeizmann Institute of Science, Herzl St 234, Rehovot, 7610001, Israel
lFinnish Centre for Astronomy with ESO (FINCA), FI-20014 University of Turku, Finland
mTuorla Observatory, Dept. of Physics and Astronomy, FI-20014 University of Turku, Finland
nINAF – Osservatorio Astrofisico di Catania, Via S. Sofia 78 30, I-95123 Catania, Italy
ouEuropean Southern Observatory, Karl Schwarzschild Str. 2, D-85748, Garching bei München
pINAF - Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Corti 12, I-20133 Milan, Italy
qQueen’s University Belfast, Belfast, County Antrim, BT7 1NN, UK
rTel Aviv University, Department of Astrophysics, 69978 Tel Aviv, Israel
sINAF - Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy
tAarhus University, Ny Munkegade 120, D-8000 Aarhus, Denmark
vCentro de Investigaciones en Optica A. C., Loma del Bosque 115, Lomas del Campestre, 37150 Leon Guanajuato, Mexico

ABSTRACT

SOXS (Son Of X-Shooter) will be the new medium resolution (R∼4500 for 1" slit), high-efficiency, wide band spectrograph for the ESO NTT at La Silla, optimized for classification and follow-up of transient events. SOXS

*Contact information: A.B: anna.brucalassi@gmail.com, Telephone: +39 055 2752 243
G.P: pignata@gmail.com, Telephone: +33 (0)1 98 76 54 32
The Son Of X-Shooter (SOXS), is the new instrument,1,2 actually under manufacturing and integration phase, for the European Southern Observatory (ESO) New Technologies Telescope (NTT) at the La Silla Observatory, Chile. It will be dedicated to the follow up of any kind of transient events ensuring fast response time, high efficiency and availability. SOXS will simultaneously cover the electromagnetic spectrum from 0.35 to 2.0 \(\mu m \) with a spectral resolution of \(R \sim 4500 \), using two arms (UV-VIS and NIR)3,4 and a pre-slit Common Path (CP) feeding system.5,6

SOXS is also equipped with a Calibration sub-unit and an Acquisition Camera system (CAM)7 attached directly to the CP. The CAM system is foreseen to work not only for target acquisition and (optional) secondary guiding, but it will be also equipped with a filter wheel and a scientific camera for providing photometric observations.

The schedule for the development of the CAM system has been seriously affected by the ongoing COVID19 pandemic, interrupting some providers activities and resulting in a delay of about some months. In the following we summarize the final opto-mechanical design for the AC System and we describe its development status.

![Figure 1. Overview of the Acquisition Camera System: it consists of a collimator lens (CO), folding mirror (FM), filter wheel (FW), focal reducer optics (CL) and CCD camera. All the elements are included in a structure made of 6061-T6 Aluminum.](image)

2. OVERVIEW

Figure 1 shows an overview of the Acquisition Camera System. It is based on a collimator lens (CO), a folding mirror (FM), a filter wheel (FW) with a broad-band filter set (ugrizY and V-Johnson), a focal reducer optics (CL) and CCD camera. All the system is included in a structure made of 6061-T6 Aluminum. The detector is a 1k x 1k Andor iKon-M 934 camera* and is already in house. The driver to run the camera under the SOXS control software has been developed and validated.8,9

*https://andor.oxinst.com
A system named as *CAM selector* and placed in the CP at the level of the Nasmyth focal plane will redirect the F/11 beam from the telescope toward the Acquisition and Camera system.

![Image of selector mirror](image1.png)

Figure 2. Left panel: view of the selector mirror. Central panel: Wavefront Map of the selector mirror: PV = 0.161 fr, rms = 0.014 wave. Right panel: zoomed view of the metallic plate for the *Artificial Star Mode*.

The CAM selector system consists of a linear stage that carries a pellicle beam-splitter and a single mirror with three positions for different functions (Acquisition and Imaging, Artificial Star and Spectroscopy). The mirror and the pellicle beam-splitter are tilted at 45° and direct light from sky or from the slits, respectively, to the CAM optics. The pellicle beam-splitter allows us to use the CAM system as slit viewing camera (with the calibration lamp on). In *Acquisition and Imaging Mode*, the selector mirror redirects the full field towards the CCD and the CAM system can be operated for photometric observations. With the selector mirror in *Artificial Star Mode* a 0.5 arcsec reference pinhole acts as an artificial star on the focal plane by switching on the calibration lamp. Finally, in *Spectroscopy Mode*, the selector mirror passes an unvignetted field of 15 arcsec to the spectrograph slits, whereas the peripheral field is simultaneously imaged on the camera. Thus, off-axis secondary guiding is possible using peripheral sources. We refer to 7, 10 for a more detailed description of the CAM selector system and its functionalities.

The selector mirror has been already manufactured and is based on a rectangular Fused Silica mirror (91.0x70.0x10.0mm) with two holes that allow the optical beam to pass. On the reflective surface two specific engravings ensure two corresponding metallic plates to be fixed by glue. On the center of the metallic plates a 0.5 arcsec reference pinhole and a rectangular slit-hole for a 15 arcsec unvignetted beam have been created by laser cut. Figure 2 shows a view of the selector mirror (left panel), its Wavefront Map (central panel) and a zoomed picture of the metallic plate for the *Artificial Star Mode* (right panel).

3. FINAL OPTICAL DESIGN

After the Final Design Review, the CAM optical design needed some modifications due to the unfeasible waiting time for the procurement of some glasses. However, the general architecture and concept of the design has been preserved. The new optical design is illustrated in Figure 3 and in Table 1.

The first element after the CAM selector mirror is a collimator lens of 65mm diameter that reimages the pupil onto a compact camera. A folding mirror and a filter wheel, illustrated in Figure 3 by a single plane glass, follow in the optical path. The subsequent camera lens, relays the Nasmyth focus on the detector, with an $F_\#=3.6$, through 2 doublets and two singlets of max diameter 30.0 mm. A Field of View of 3.5x3.5 arcmin (linear) can be reached in imaging mode, resulting in a pixel scale of ~0.2 arcsec. The total length from focus to focus is 430.46 mm.

3.1 Image Quality and Thermal Analysis

Figure 4 shows the spot diagrams and the geometric encircled energy for the new optical configuration. The design has been done considering 10°C and 0.76 atm. Plotted field positions correspond to the center of the field, sides of the detector in x and y at 3.5 arcmin and the position along the diagonal corresponding to a 3.75
Figure 3. Optical Layout of the CAM System. From right to the left: the Selector Mirror (SM), the Collimator lens (CO), the Folding Mirror (FM), the Filter Wheel (FW), the Camera Lens (CL) with two doublets (D1, D2), the two singlets (S1, S2), the detector window and the focal plane.

arcmin diameter, for which the quality is still good. Clearly, the spot is contained in a box of 2x2 pixels (26.0 µm) for all the analyzed views.

Figure 4. Left panel: CAM Spot diagrams for field positions correspond to on-axis, 3.5 arcmin (side of the detector) in x and y direction and along the diagonal corresponding to a 3.75 arcmin diameter (corner of the detector). Right panel: Geometric encircled energy.

Figure 5 instead presents the spot diagrams of the new optical configuration considering temperatures of 0°C (left panel) and 20°C (right panel). A change of ±10°C causes a deterioration of the image, however, always with a geometrical dimension of about 2 pixels (26.0 µm). In addition, the optical quality can be completely recovered re-focusing with the collimator lens.

4. DEVELOPMENT STATUS

At the time of writing, all the optical parts together with their opto-mechanical mounts are in production phase. The external structure that will host the CAM system will be made by Aluminum 6061-T6 with a T-Shape as
Description	Radius (mm)	Distance (mm)	Material	Diameter (mm)
Telescope Focus	-	155.81	-	-
Collimator	132.10	12.24	N-FK58	65.00
	-158.48	61.84	-	65.00
Folding Mirror	-	-67.37	-	65.00
Filter	-	-5.00	N-BK7	22.00
		-7.38	-	22.00
D1	-44.91	-10.74	N-FK58	25.00
	16.01	-5.09	K10	25.00
	-15.97	-10.27	-	21.00
D2	-40.98	-9.11	K10	30.00
	-20.54	-15.02	N-FK58	30.00
	23.98	-24.00	-	30.00
S1	-62.09	-12.00	LLF1	30.00
	48.73	-9.19	-	30.00
S2	21.25	-2.97	PBL6Y	21.00
		-4.93	-	25.00
Shutter	-	-11.85	-	-
Detector Window	-	-1.50	SILICA	25.40
		-4.15	-	25.40
Focal Plane	-			

shown in Figure 1. All the walls are structural with thickness of ∼15 mm, while the cover is not structural and is made of a 3 mm thick Aluminum plate.

The detector will be mounted on a support directly connected to the external structure. The centering of the CCD will be done shimming the 3 holes and 3 dowel pins used to place the CCD together with the support system.

4.1 Collimator Lens
The 65 mm diameter collimator lens is the first element after the CAM selector mirror along the optical path. It will be placed on a linear stage with 15 mm stroke (PI M-111.1DG1) and it will act as a re-focuser. The linear stage is in house and already controlled. The lens is glued to an Aluminum mount by 3 3M 2216 glue spots (see Figure 6, left panel).

4.2 Folding Mirror
Figure 7 shows the fused silica folding mirror with its opto-mechanical mount (left side), that is at the moment under manufacturing. The mirror mount will be screwed on the front surface of the external CAM structure. The mirror will be kept in position inside the mount frame by a styrodur ring and a support. The beam is redirected through the folding mirror along an axis parallel to the main telescope axis.

4.3 Filter Wheel
In front of the camera lens there is a filter wheel made by a rotary stage (PI M-116.DG) and a custom filter support, which can host up to 8 elements. A broad-band filter set ($ugrizY$ and V-Johnson) from Asahi Spectra
Figure 5. Spot diagrams considering temperatures of 0°C (left panel) and 20°C (right panel). The geometrical dimension of the spot are still about 2 pixels (26.0 µm).

Figure 6. Left panel: view of the opto-mechanical mount for the collimator lens. Right panel: image of the lens under manufacturing.

USA† are already in house. Figure 8 shows the filter transmission as function of wavelength as tested after the production. The filter selection has been optimized to match as best as possible the LSST filter passbands. A position of the filter wheel is left empty for the Spectroscopy mode.

4.4 Camera lens

The 2 doublets and 2 singlets of max diameter of 30 mm forming the camera lens are under construction. The camera lens will relay the Nasmyth focus on the detector, with a F# = 3.6. It is planned to include the 2 doublets and the 2 singlets in a tubular structure anchored to the CCD mounting. The optical components will be held inside the tube by specific spacers and creating 3 3M 2216 glued spots on the side of the element. This operation will be performed via small holes radially drilled inside the support.

5. CONCLUSIONS

The development of the CAM system has been seriously affected by the ongoing COVID19 pandemic, interrupting some providers activities and resulting in a delay of about some months. A new optical design has been development, keeping the general design concept, to mitigate the unfeasible waiting time for the procurement of some glasses. However, all the CAM parts are in an advanced phase of realization, very close to be completed.

†https://www.asahi-spectra.com/
The CAM system will be assembled in Italy (INAF-Padua) where also the preliminary integration and final test for the complete instrument SOXS will be done before the shipment to the NTT in La Silla. The instrument integration and test phase is planned in 2021.

REFERENCES

[1] Schipani, P., Campana, S., et al., “SOXS: a wide band spectrograph to follow up transients,” in [Ground-based and Airborne Instrumentation for Astronomy VII], Evans, C. J., Simard, L., and Takami, H., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 10702, 107020F (July 2018).

[2] Schipani, P., Claudi, R., et al., “The new SOXS instrument for the ESO NTT,” in [Ground-based and Airborne Instrumentation for Astronomy VI], Proc. SPIE 9908, 990841 (Aug. 2016).

[3] Rubin, A., Ben-Ami, S., et al., “MITS: the multi-imaging transient spectrograph for SOXS,” in [Ground-based and Airborne Instrumentation for Astronomy VII], Evans, C. J., Simard, L., and Takami, H., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 10702, 107022Z (July 2018).

[4] Zanmar Sanchez, R., Munari, M., et al., “Optical design of the SOXS spectrograph for ESO NTT,” in [Ground-based and Airborne Instrumentation for Astronomy VII], Evans, C. J., Simard, L., and Takami, H., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 10702, 1070227 (July 2018).

[5] Claudi, R., Aliverti, M., et al., “The common path of SOXS (Son of X-Shooter),” in [Ground-based and Airborne Instrumentation for Astronomy VII], Evans, C. J., Simard, L., and Takami, H., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 10702, 107023T (July 2018).
[6] Biondi, F., Claudi, R., et al., “The assembly integration and test activities for the new SOXS instrument at NTT,” in [Ground-based and Airborne Instrumentation for Astronomy VII], Evans, C. J., Simard, L., and Takami, H., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 10702, 107023D (July 2018).

[7] Brucalassi, A., Araiza-Durán, J. A., Pignata, G., et al., “The acquisition camera system for SOXS at NTT,” in [Ground-based and Airborne Instrumentation for Astronomy VII], Evans, C. J., Simard, L., and Takami, H., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 10702, 107022M (July 2018).

[8] Capasso, G., Colapietro, M., et al., “SOXS control electronics design,” in [Software and Cyberinfrastructure for Astronomy V], Guzman, J. C. and Ibsen, J., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 10707, 107072H (July 2018).

[9] Ricci, D., Baruffolo, A., et al., “Architecture of the SOXS instrument control software,” in [Software and Cyberinfrastructure for Astronomy V], Guzman, J. C. and Ibsen, J., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 10707, 107071G (July 2018).

[10] Aliverti, M., Hershko, O., et al., “The mechanical design of SOXS for the NTT,” in [Ground-based and Airborne Instrumentation for Astronomy VII], Evans, C. J., Simard, L., and Takami, H., eds., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 10702, 1070231 (July 2018).