Interaction of Wnt pathway related variants with type 2 diabetes in a Chinese Han population

Jian-Bo Zhou1, Jin-Kui Yang1,2, Bao-Hong Zhang3 and Jing Lu2

1 Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
2 Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
3 Hospital of Tsinghua University, Beijing, China

ABSTRACT

Aims. Epistasis from gene set based on the function-related genes may confer to the susceptibility of type 2 diabetes (T2D). The Wnt pathway has been reported to play an important role in the pathogenesis of T2D. Here we applied tag SNPs to explore the association between epistasis among genes from Wnt and T2D in the Han Chinese population.

Methods. Variants of fourteen genes selected from Wnt pathways were performed to analyze epistasis. Gene–gene interactions in case-control samples were identified by generalized multifactor dimensionality reduction (GMDR) method. We performed a case-controlled association analysis on a total of 1,026 individual with T2D and 1,157 controls via tag SNPs in Wnt pathway.

Results. In single-locus analysis, SNPs in four genes were significantly associated with T2D adjusted for multiple testing (rs7903146C in TCF7L2, \(p = 3.21 \times 10^{-3} \), OR = 1.39, 95% CI [1.31–1.47], rs12904944G in SMAD3, \(p = 2.51 \times 10^{-3} \), OR = 1.39, 95% CI [1.31–1.47], rs2273368C in WNT2B, \(p = 4.46 \times 10^{-3} \), OR = 1.23, 95% CI [1.11–1.32], rs6902123C in PPARD, \(p = 1.14 \times 10^{-2} \), OR = 1.40, 95% CI [1.32–1.48]). The haplotype TGC constructed by TCF7L2 (rs7903146), DKK1 (rs2241529) and BTRC (rs4436485) showed a significant association with T2D (OR = 0.750, 95% CI [0.579–0.972], \(p = 0.03 \)). For epistasis analysis, the optimized combination was the two locus model of WNT2B rs2273368 and TCF7L2 rs7903146, which had the maximum cross-validation consistency. This was 9 out of 10 for the sign test at 0.0107 level. The best combination increased the risk of T2D by 1.47 times (95% CI [1.13–1.91], \(p = 0.0039 \)).

Conclusions. Epistasis between TCF7L2 and WNT2B is associated with the susceptibility of T2D in a Han Chinese population. Our results were compatible with the idea of the complex nature of T2D that would have been missed using conventional tools.
INTRODUCTION

Genome-wide-association studies (GWAs) detect half a million to a million markers at once. According to comparative analysis of different GWAs on the same disease, genuine susceptible loci could rank at moderate levels of significance rather than high (Zeggini et al., 2008; Baum et al., 2008). And multiple testing corrections may neglect many modest association signals (Wang et al., 2011). To compensate for the shortcomings of GWAs, rather than focusing on individual SNPs, epistasis from gene sets based on the function-related genes, which jointly take into account multiple variants, have been developed (Zhou et al., 2012). Emerging reports suggest that epistasis is responsible for a proportion of complex human disease (McClellan & King, 2010).

Pathway-analysis of Type 2 Diabetes (T2D) based on the Welcome Trust Case Control Consortium (WTCCC) shows that Wnt pathway is associated with T2D (Zeggini et al., 2007). Wnt signaling pathway is initially recognized in colon cancer research (Peifer & Polakis, 2000). The heterodimerisation of free β-catenin with one of the four members of the TCF family, TCF7L2 (TCF3) being the major partner of β-catenin in the intestinal epithelia, form the bipartite transcription factor β-catenin/T cell factor (β-catenin/TCF), which is the major factor that effects the Wnt pathway(s) (Doble & Woodgett, 2003). In the absence of WNT, the free β-catenin is phosphorylated by one complex, then destroyed. Following the Wnt ligands binding, the destructive complex is disrupted, and then β-catenin enters the nucleus and formulates the β-catenin/TCF downstream target genes. Wnt pathway is involved in the secretion of the incretin hormone glucagon-like peptide-1 (GLP-1) by the intestinal endocrine L-cells (Yi, Brubaker & Jin, 2005). Thus, alteration in this pathway could reduce GLP-1 levels which, in turn, could affect insulin production. GLP-1, accompanied by insulin, plays a vital role in blood glucose homeostasis. It has been postulated that variants in this pathway may confer a predisposition of T2D by altering GLP-1 levels (Smith, 2007). The role of epistasis among genes from Wnt pathway to genetic susceptibility to T2D remains unclear.

Based on the pathway-analysis of T2D from WTCCC, our study aims at the exploration of the contribution of epistasis from variants among Wnt pathway to the susceptibility to T2D. Selected SNPs of 14 genes from Wnt pathway were explored in unrelated T2D patients and non-diabetic control subjects, then epistasis among these genes were examined. Here we present the results in Chinese Han individuals.

METHOD

Ethics statement

The study was conducted with the approval from the Ethics Committee of Beijing Tongren Hospital, Capital Medical University, approval number 2013.12.24. Written informed consent was obtained from each participant.

Study populations and genotype

The Beijing Diabetic Complications Survey is an ongoing database that was established for studying the genetic basis of T2D. The study subjects included 1,026 T2D cases and 1,157 controls from northern China, who were acquired from this database (Yang et al., 2010; Zhou et al., 2015).
Zhou et al., 2010b). Single nucleotide polymorphisms (SNPs) from the Wnt pathway were assessed. Cases were chosen based on the presence of type 2 diabetes. Control groups were individuals who had fasting plasma glucose <5.6 mmol/l, 2 h post-OGTT plasma glucose <7.8 mmol/l. Blood pressure, serum creatinine, and ages that were matched in all subjects of both groups. Genotyping was completed using a MassARRAY platform (Sequenom, San Diego, California, USA).

Gene and SNP selection

Individual level GWA data of T2D from the WTCCC were completed to perform pathway-analysis using the Gene Set Enrichment Algorithm (GSEA) (Zeggini et al., 2007; Wang, Li & Bucan, 2007). A total of 390,025 autosomal SNPs were genotyped across 1,924 case subjects and 2,938 population-based control subjects. All human KEGG pathways were used in the pathway-analysis (Elbers et al., 2009). A total of 139 genes of Wnt pathway are included from KEGG. The most strongly associated SNP from a gene ±200 kb of flanking sequence either side is used to represent each gene in the genome.

Final results showed that Wnt pathway was associated with T2D. Top SNPs of fourteen genes reaching \(p < 0.01 \) were included. If selected SNPs were scare or homomorphism based on HapMap CHB data, tags SNPs were included from the selected genes according to the following principles: (1) threshold of a minor allele frequency (MAF) >0.05. (2) linkage disequilibrium (LD) between SNPs with the threshold of \(r^2 > 0.4 \) and \(D > 0.7 \) according to Haploview (v.4.2) based on HapMap CHB data sets (v.3, release 2). Datum was excluded if the allele call rate was less than 95%, or \(p \) value of the Hardy-Weinberg equilibrium (HWE) was less than 0.001. (3) functional relevance and importance.

The included SNPs were rs1796390 in PRICKLE1, rs2273368 in WNT2B, rs33830 in FBXW11, rs7903146 in TCF7L2, rs6902123 in PPARD, rs2242445 in CSNK2A2, rs3860318 in CTNNBIP1, rs4436485 in BTRC, rs12904944 in SMAD3, rs1049612 in CCND2, rs2656272 in SOX17, rs3810765 in SFRP2, rs3741571 in FZD10 and rs2241529 in DKK1.

Statistic methods

SPSS version 19.0 for Windows (SPSS Inc., Chicago, Illinois, USA) was used to perform statistical analysis. Means ± SD were used to show the continuous data. The between-group data for categorical datum were analyzed by the \(\chi^2 \) test. Allele frequencies were calculated from the genotypes of the subjects. Chi-squared-test or Fisher’s exact test were performed to compare the differences in allele and genotype frequencies between cases and controls.

To evaluate the interaction among a large number of loci in our research, we used the MDR (multifactor dimensionality reduction) method to identify high order gene–gene interactions in our samples. The MDR method was described in our paper (Zhou et al., 2012). All possible SNP interactions were tested using 10-fold cross-validation in an exhaustive search. The MDR method was described in detail elsewhere (Dong et al., 2003). Briefly, in an analysis of \(n \)-way interactions, the \(n \)-dimensional space formed by all possible combinations of values (classes) of a given set of \(n \) variables (in this case, SNPs) was reduced to a single dimension by reclassifying each class as either high risk
or low risk according to the relative proportion of cases to controls in that class. This statistical method included a 10-fold cross-validation and permutation-testing procedure to minimize false positive results by multiple examinations of the data. With 10-fold cross-validation, the data were divided into 10 equal parts, and the model was developed on 9/10 of the data (training set) and then tested on 1/10 of the remaining data (testing set). This was repeated for each possible 9/10 and 1/10 of the data, and the resulting 10 prediction errors were averaged. The combination with the lowest prediction error was reported. Finally, hypothesis testing for this selected model could then be performed by evaluating the consistency of the model across cross-validation data sets. Under the null hypothesis that no association was derived from 1,000 permutations, the average cross-validation consistency from the observed data was compared to the distribution of average consistencies. The null hypothesis was rejected when the P-value derived from the permutations was ≤0.05.

Generalized multifactor dimensionality reduction (GMDR) was based on the score of a generalized linear model, of which the original MDR method was a special case (Lou et al., 2007). Then logistic regression models were employed to confirm the best combination of loci identified in the GMDR. Armitage’s test for trend calculated power analysis of case-control samples (alpha has been set at 0.05) (Slager & Schaid, 2001).

RESULTS

Population characteristics

The characteristics of the population were provided. Table 1 illustrated the detailed clinical features of the validation cohorts. Age, blood pressure, and BMI were comparable between the two groups. Significance was noted for total cholesterol, low-density lipoprotein, high-density lipoprotein and triglyceride (p < 0.01). No deviation from the Hardy–Weinberg Equilibrium was observed for all studied polymorphisms in controls (p > 0.05).
Gene	SNP	Chr.	Position	Location	Risk/non–risk allele	Control risk frequency	T2D risk frequency	P
PRICKLE1	rs1796390	12	42878604	intron	T/C	0.294	0.311	0.08342
WNT2B	rs2273368	1	112521149	intron	C/T	0.453	0.492	0.00446
FBXW11	rs33830	5	171721166	intron	A/T	0.30	0.323	0.05348
TCF7L2	rs7903146	10	112998590	intron	C/T	0.047	0.090	0.003209
PPARD	rs6902123	6	35362644	intron	C/T	0.06	0.893	0.01141
CSNK2A2	rs2242445	16	58165299	intron	G/T	0.144	0.168	0.0582
CTNNB1P1	rs3860318	1	9864887	intron	A/T	0.188	0.199	0.1372
BTRC	rs4436485	10	101485604	intron	G/C	0.118	0.135	0.09461
SMAD3	rs12904944	15	67069436	intron	G/A	0.42	0.473	0.002511
CCND2	rs1049612	12	4303596	3′ region	A/G	0.10	0.129	0.04518
SOX17	rs2656272	8	54349340	intron	A/G	0.38	0.398	0.08346
SFRP2	rs3810765	4	153788328	intron	G/A	0.45	0.476	0.05414
FZD10	rs3741571	12	130152232	transcript variant	T/C	0.05	0.062	0.1568
DKK1	rs2241529	10	52314997	exon	A/G	0.332	0.358	0.04561

Single locus analysis

The results of the single-locus analyses for the case-control population indicated that three SNPs were significantly associated with T2D (Table 2, \(p < 0.01 \)). After adjusting of significance threshold for multiple testing (\(p < 0.01/14 = 0.00357 \)), two SNPs were still significantly associated with T2D (rs7903146 in TCF7L2, \(p = 3.21 \times 10^{-3} \), OR = 1.39, 95% CI [1.31–1.47], rs12904944 in SMAD3, \(p = 2.51 \times 10^{-3} \), OR = 1.39, 95% CI [1.31–1.47]).

Interaction among genes in Wnt pathway

The contribution of combinations of the variants to the etiology of T2D was assessed by GMDR, which showed that WNT2B rs2273368 and TCF7L2 rs7903146 was the best combination. The optimum had the highest level of testing balance accuracy (0.5620), and the maximum cross-validation consistency, this was 9 out of 10 for the sign test at 0.0107 level (see Table 3). The two-locus genotype combinations were classified into high- or low-risk groups. In the chi-squared test, the OR of high-risk combination of the two-locus model increased the risk of T2D by 1.47 times (95% CI [1.13–1.91], \(p = 0.0039 \)). To further elucidate the contribution of interactions on the predisposition of T2D, the logistic analysis was performed on the basis of two variants identified by GMDR. No significant multiplicative deviation of gene–gene interaction was shown in the logistic regression model.

Since GMDR was based on MDR, analysis from MDR was also performed. The accuracy of the two-locus model without co-variable adjustment was similar to that with adjustment (see Table 4).
Table 3 GMDR results of multi-locus interaction with T2D.

No. of loci with T2D	Best model	Training balance accuracy	Testing balance accuracy	Cross-validation consistency	Sign test (p)
1	TCF7L2	0.5464	0.5430	6	7 (0.1719)
2	WNT2B, TCF7L2	**0.5619**	0.5620	10	9 (0.0107)
3	WNT2B, TCF7L2, PPARD	0.5350	0.5429	8	5 (0.6230)
4	PRICKLE1, WNT2B, TCF7L2, PPARD	0.5276	0.5429	8	6 (0.3770)
5	PRICKLE1, WNT2B, TCF7L2, PPARD, CSNK2A2	0.5295	0.5444	7	6 (0.3770)
6	PRICKLE1, WNT2B, TCF7L2, PPARD, CSNK2A2, DKK1	0.5307	0.5460	7	5 (0.6230)

Notes.
* Adjusted by age and sex.

Table 4 Comparison of best models from MDR and GMDR for prediction of T2D.

	Training balance accuracy	Testing balance accuracy	Cross-validation consistency	Sign test (p)
MDR	0.5619	0.5620	10	0.0107
GMDR	0.5619	0.5619	10	0.0107

DISCUSSION

The potential for gene–gene interaction has been proposed to be one of the possible reasons for the so-called “missing heritability” of T2D ([Yang et al., 2010](#)). Contribution of epistasis among variants from gene sets based on the function-related genes still remains unclear. Epistasis from gene sets that were evaluated may provide a cumulative contribution and new insights into the biology of T2D. Our results evidenced the interaction among Wnt pathway related genes and the correlation of susceptibility to T2D.

Single locus analysis indicated significant association with T2D in our research ([rs7903146](#) in TCF7L2, [rs12904944](#) in SMAD3). The first GWAS on T2D showed strong signal for TCF7L2 ([Sladek et al., 2007](#)). TCF7L2 harbors common genetic variants and a strong effect on T2D ([Zhou et al., 2014](#)). Our study substantiated the association between variant of TCF7L2 and T2D which was validated in another study with Chinese Han patients ([Wang et al., 2013](#)). The SNP [rs7903146](#) (TCF7L2) has been associated with early-onset T2D in some populations ([Iwata et al., 2012](#)). Since the absence of age at diagnosis, we could not analyze association between early-onset T2D and susceptible genes. There is a novel association between SMAD3—[rs12904944](#) and T2D in our study. As an important metabolic regulator, SMAD3 is linked to the pathogenesis of T2D ([Tan et al., 2011](#)). MAF of [rs12904944](#) in our research is similar to that of CHB population in HapMap, while higher than that of Europeans population in HapMap (MAF: 0.42 vs. 0.40 vs. 0.33). The underlying mechanisms responsible for the association between these variants and T2D remain to be found.
In recent years, more and more studies have focused on gene–gene interactions (Moore & Williams, 2009; Jiang, Barnada & Visweswaran, 2010), which are partly due to the appearance of new statistical theory. GMDR is proved to be a useful statistical tool to detect gene–gene interactions while avoiding “the dimension curse” (Ritchie et al., 2001). In our study, GMDR suggested that the combination between \(\text{WNT2B} \, rs2273368 \) and \(\text{TCF7L2} \, rs7903146 \) was the best model. However, the interaction was not validated by the logistic regression analysis. The possible reason for these inconsistent results is that GMDR did not detect the interaction defined by “deviation from the multiplicative” in the logistic regression model. The significant results from GMDR only show that the combination of different loci may increase the risk of T2D and the interaction among the loci may refer to either multiplicative, deviation from the multiplicative or departure from additivity (Zhou et al., 2012). WNT2b, which activates the canonical Wnt pathway, is highly unregulated in T2D (Lee et al., 2008). The association between \(\text{WNT2B} \) and T2D was novel in our research, this significance disappeared after multiple adjusting. The mechanism of epistasis between \(\text{TCF7L2} \) and \(\text{WNT2B} \) need to be further explored.

Variants conferring modest disease risk may not reveal themselves in multiple underpowered GWA studies, but can be readily identified by epistasis from gene sets based on function-related genes in a single study. Our results validated this strategy. Analysis of epistasis from one gene set can provide complementary information to conventional single-marker analysis (Wang, Li & Hakonarson, 2010). Therefore, genes that interact with others in one gene set can serve as candidates for further replication and functional studies (Zhou et al., 2010a).

In conclusion, our study supports epistasis association with the predisposition of T2D between \(\text{TCF7L2} \) and \(\text{WNT2B} \). We believe these findings will guide further investigations in gene detection, and hopefully lead to a better understanding of T2D pathogenesis.

ACKNOWLEDGEMENTS

The authors thank all the participants and staff in this study.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the National Science Foundation Council (No. 81270918, 81300650, 81370972). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

National Science Foundation Council: 81270918, 81300650, 81370972.

Competing Interests

The authors declare there are no competing interests.
Author Contributions

- Jian-Bo Zhou and Jin-Kui Yang performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.
- Jin-Kui Yang conceived the experiments.
- Bao-Hong Zhang and Jing Lu performed the experiments, contributed reagents/materials/analysis tools, prepared figures and/or tables.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body and any reference numbers):

The study was conducted with the approval from the Ethics Committee of Beijing Tongren Hospital, Capital Medical University. Written informed consent was obtained from each participant. The approval number was 2013.12.24.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.1304#supplemental-information.

REFERENCES
Baum AE, Hamshere M, Green E, Cichon S, Rietschel M, Nothen MM, Craddock N, McMahon FJ. 2008. Meta-analysis of two genome-wide association studies of bipolar disorder reveals important points of agreement. Molecular Psychiatry 13:466–467 DOI 10.1038/mp.2008.16.

Doble BW, Woodgett JR. 2003. GSK-3: tricks of the trade for a multi-tasking kinase. Journal of Cell Science 116:1175–1186 DOI 10.1242/jcs.00384.

Dong C, Wang S, Li WD, Li D, Zhao H, Price RA. 2003. Interacting genetic loci on chromosomes 20 and 10 influence extreme human obesity. American Journal of Human Genetics 72:115–124 DOI 10.1086/345648.

Elbers CC, Van Eijk KR, Franke L, Mulder F, Van der Schouw YT, Wijmenga C, Onland-Moret NC. 2009. Using genome-wide pathway analysis to unravel the etiology of complex diseases. Genetic Epidemiology 33:419–431 DOI 10.1002/gepi.20395.

Iwata M, Maeda S, Kamura Y, Takano A, Kato H, Murakami S, Higuchi K, Takahashi A, Fujita H, Hara K, Kadowaki T, Tobe K. 2012. Genetic risk score constructed using 14 susceptibility alleles for type 2 diabetes is associated with the early onset of diabetes and may predict the future requirement of insulin injections among Japanese individuals. Diabetes Care 35(8):1763–1770 DOI 10.2337/dc11-2006.

Jiang X, Barmada MM, Visweswaran S. 2010. Identifying genetic interactions in genome-wide data using Bayesian networks. Genetic Epidemiology 34:575–581 DOI 10.1002/gepi.20514.

Lee SH, Demeterco C, Geron I, Abrahamsson A, Levine F, Itkin-Ansari P. 2008. Islet specific Wnt activation in human type II diabetes. Experimental Diabetes Research 728–763 DOI 10.1155.

Lou XY, Chen GB, Yan L, Ma JZ, Zhu J, Elston RC, Li MD. 2007. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. American Journal of Human Genetics 80:1125–1137 DOI 10.1086/518312.
McClellan J, King MC. 2010. Genetic heterogeneity in human disease. Cell 141(2):210–217 DOI 10.1016/j.cell.2010.03.032.

Moore JH, Williams SM. 2009. Epistasis and its implications for personal genetics. American Journal of Human Genetics 85:309–320 DOI 10.1016/j.ajhg.2009.08.006.

Peifer M, Polakis P. 2000. Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287:1606–1609 DOI 10.1126/science.287.5458.1606.

Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. 2001. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American Journal of Human Genetics 69:138–147 DOI 10.1086/321276.

Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV, Prentki M, Posner BI, Chagnon YQ, Fournier A, Pichard A, Dumas A, Plionis M, Charron D, Fournier C, Halushka MK, Rachetti G, Tardivo L, Gramatay J, Hamet P, Cusimano C, GODIV RA, Krebs J, Cusimano MG, Bouchard C, Despres JP, Froguel P. 2007. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885 DOI 10.1038/nature05616.

Slager SL, Schaid DJ. 2001. Case-control studies of genetic markers: power and sample size approximations for Armitage's test for trend. Human Heredity 52(3):149–153 DOI 10.1159/000053370.

Smith U. 2007. TCF7L2 and type 2 diabetes-weWNT to know. Diabetologia 50:5–7 DOI 10.1007/s00125-006-0521-z.

Tan CK, Leuenberger N, Tan MJ, Ian YW, Chen Y, Kambadur R, Wahl W, Tan NS. 2011. Smad3 deficiency in mice protects against insulin resistance and obesity induced by a highfat diet. Diabetes 60:464–476 DOI 10.2337/db10-0801.

Wang L, Jia P, Wolfinger RD, Chen X, Zhao Z. 2011. Gene set analysis of genome-wide association studies: methodological issues and perspectives. Genomics 98:1–8 DOI 10.1016/j.ygeno.2011.04.006.

Wang K, Li M, Bucan M. 2007. Pathway-based approaches for analysis of genome wide association studies. American Journal of Human Genetics 81:1278–1283 DOI 10.1086/522374.

Wang K, Li M, Hakonarson H. 2010. Analysing biological pathways in genome-wide association studies. Nature Review Genetics (11):843–854 DOI 10.1038/nrg2884.

Wang J, Xu L, Zhang J, Xue J, Luo X, Yu D, Zhao J, Feng T, Pang C, Yin L, Hu F, Zhang J, Wang Y, Wang Q, Zhai Y, You H, Zhu T, Hu D. 2013. Association of rs7903146 and rs290487 polymorphisms in TCF7L2 with type 2 diabetes in 9,619 Han Chinese population. PLoS ONE 8(3):e59053 DOI 10.1371/journal.pone.0059053.

Yang JK, Zhou JB, Xin Z, Zhao L, Yu M, Feng JP, Yang H, Ma YH. 2010. Interactions among related genes of renin-angiotensin system associated with type 2 diabetes. Diabetes Care 33:2271–2273 DOI 10.2337/dc10-0349.

Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, De Bakker PIW, Abecasis GR, Almgren P, Andrews G, Ardlie K, Boström KB, Bergman RN, Bonnycastle LL, Borch-Johnsen K, Burtt NP, Chen H, Chines PS, Daly MJ, Deodhar P, Ding C-J, Doney ASF, Duren WL, Elliott KS, Erdos MR, Frayling TM, Freathy RM, Gianniny L, Grallert H, Grarup N, Groves C, Guiducci C, Hansen T, Herder C, Hitman GA, Hughes TE, Isomaa B, Jackson AU, Jorgensen T, Kong A, Kubalanza K, Kuruvilla FG, Kuusisto J, Langenberg C, Lango H, Lauritzen T, Li Y, Lindgren CM, Lyssenko V, Maric R, McCarthy MI, Nielsen TD, Peden J, Soranzo N, Stender S, Uitterlinden AG, Weir BS, Zhang J, Johnson JA, Tailleux C, Tracy R, Schaffner SF, Almgren P, Peters JH, Gudnason V, Lupien PJ, Timpone E, Zeggini E. 2011. Replication of genome-wide association signals in type 2 diabetes. Nature 472:238–242 DOI 10.1038/nature09889.
Meisinger C, Midthjell K, Mohlke KL, Morken MA, Morris AD, Narisu N, Nilsson P, Owen KR, Palmer CNA, Payne F, Perry JRB, Pettersen E, Platou C, Prokopenko I, Qi L, Qin L, Rayner NW, Rees M, Roix JJ, Sandbak A, Shields B, Sjögren M, Steinthorsdottir V, Stringham HM, Swift AJ, Thorleifsson G, Thorsteinsdottir U, Timpson NJ, Tuomi T, Tuomilehto J, Walker M, Watanabe RM, Weedon MN, Willer CJ, Illig T, Hveem K, Hu FB, Laako M, Stefansson K, Pedersen O, Wareham NJ, Barroso I, Hattersley AT, Collins FS, Groop L, McCarthy MI, Boehnke M, Altshuler D. 2008. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature Genetics 40:638–645 DOI 10.1038/ng.120.

Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, rayner NW, Freathy RM, Barrett JC, Shields B, Morris AP, Ellard S, Groves CJ, Harries LW, Marchini JL, Owen KR, Knight B, Cardon LR, Walker M, Hitman GA, Morris AD, Doney ASF, Burton PR, Clayton DG, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, Ouwehand WH, Samani NJ, Todd JA, Donnelly P, Davison D, Easton D, Evans D, Leung H-T, Spencer CCA, Tobin MD, Attwood AP, Boorman JP, Cant B, Everson U, Hussey JM, Jolley JD, Knight AS, Koch K, Meech E, Nutland S, Prowse CV, Stevens HE, Taylor NC, Walters GR, Walker NM, Watkins NA, Winzer T, Jones RW, McArdle WL, Ring SM, Strachan DP, Pembrey M, Breen G, St. Clair D, Caesar S, Gordon-Smith K, Jones L, Fraser C, Green KE, Grozeva D, Hamshere ML, Holmans PA, Jones IR, Kirov G, Moskvina V, Nikolov I, O’Donovan MC, Owen MJ, Collier DA, Elkin A, Farmer A, Williamson R, McGuffin P, Young AH, Ferrier IN, Ball SG, Balmforth AJ, Barrett JH, Bishop DT, Iles MM, Maqbool A, Yuldasheva N, Hall AS, Braund PS, Dixon RJ, Mangino M, Stevens S, Thompson JR, Bredin F, Tremelling M, Parkes M, Drummond H, Lees CW, Nimmo ER, Satsangi J, Fisher SA, Forbes A, Lewis CM, Onnie CM, Prescott NJ, Sanderson J, Mathew CG, Barbour J, Mohiuddin MK, Todhunter CE, Mansfield JC, Ahmad T, Cummings FR, Jewell DP, Webster J, Brown MJ, Lathrop GM, Connell J, Dominiczak A, Braga Marcano CA, Burke B, Dobson R, Gungadoo J, Lee KL, Munroe PB, Newhouse SJ, Onipinla A, Wallace C, Xue M, Caulfield M, Farrall M, Barton A, Bruce IN, Donovan H, Eyre S, Gilbert PD, Hider SL, Hinks AM, John SL, Potter C, Silman AJ, Symmons DPM, Thompson W, Worthington J, Dunger DB, Widmer B, Newport M, Sirugo G, Lyons E, Vannberg F, Hill AVS, Bradbury LA, Farrar C, Pointon JJ, Wordsworth P, Brown MA, Franklyn JA, Heward JM, Simmonds MJ, Gough SCL, Seal S, Stratton MR, Rahman N, Ban M, Goris A, Sawcer SJ, Compton A, Conway D, Jallow M, Rockett KA, Bumpstead SJ, Chaney A, Downes K, Ghori MJR, Gwilliam R, Hunt SE, Inouye M, Keniry A, King E, McGinnis R, Potter S, Ravindrarajah R, Whittaker P, Widden C, Withers D, Cardin NJ, Ferreira T, Pereira-Gale J,Howie BN, Su Z, Teo YY, Vukcevic D, Bentley D, Compton A, Ouwehand NJ, Samani MR, Isaacs JD, Morgan AW, Wilson GD, Ardern-Jones A, Berg J, Brydon A, Bradshaw N, Brewer C, Brice G, Bullman B, Campbell J, Castle B, Cetnarsryj R, Chapman C, Chu C, Coates N, Cole T, Davidson R, Donaldson A, Dorkins H, Douglas F, Eccles D, Eccles R, Elmslie F, Evans DG, Goff S, Goodman S, Goudie D, Gray J, Greenhaldh L, Gregory H, Hodgson SV, Homfray T, Howlston RS, Izatt L, Jackson L, Jeffers L, Johnson-Rokey V, Kavalier F, Kirk C, Laloo F, Langman C, Locke I, Longmuir M, Mackay J, Magee A, Mansour S, Miedzybrodzka Z, Miller J, Morrison P, Murday V, Paterson J, Pichert G, Porteous M, Rahman N, Rogers M, Rowe S, Shanley S, Saggar A, Scott G, Side I, Snadden L, Steel M, Thomas M, Thomas S, McCarthy MI, Hattersley AT. 2007. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007(316):1336–1341 DOI 10.1126/science.1142364.
Zhou JB, Liu C, Niu WY, Xin Z, Yu M, Feng JP, Yang JK. 2012. Contributions of renin-angiotensin system-related gene interactions to obesity in a Chinese population. *PLoS ONE* 7(8):e42881 DOI 10.1371/journal.pone.0042881.

Zhou Y, Park S-Y, Su J, Bailey K, Ottosson-Laakso E, Shcherbina L, Oskolkov N, Zhang E, Thevenin T, Fadista J, Bennet H, Vikman P, Wierup N, Fex M, Rung J, Wollheim C, Nobrega M, Renstrom E, Groop L, Hansson O. 2014. TCF7L2 is a master regulator of insulin production and processing. *Human Molecular Genetics* 23(24):6419–6431 DOI 10.1093/hmg/ddu359.

Zhou JB, Yang JK, Lu JK, An YH. 2010a. Angiotensin-converting enzyme gene polymorphism is associated with type 2 diabetes: a meta-analysis. *Molecular Biology Reports* 37:67–73 DOI 10.1007/s11033-009-9648-6.

Zhou JB, Yang JK, Zhao L, Xin Z. 2010b. Variants in KCNQ1, AP3S1, MAN2A1 and ALDH7A1 and the risk of type 2 diabetes in the Chinese Northern Han population: a case-control study and meta-analysis. *Medical Science Monitor* 16(6):BR179–BR183.