RISK and SAFE Signaling Pathway Involvement in Apolipoprotein A-I-Induced Cardioprotection

Submitted by Sophie Tamareille on Wed, 12/17/2014 - 14:55

Title	RISK and SAFE Signaling Pathway Involvement in Apolipoprotein A-I-Induced Cardioprotection
Type de publication	Article de revue
Auteur	Kalakech, Hussein [1], Hibert, Pierre [2], Mirebeau-Prunier, Delphine [3], Tamareille, Sophie [4], Letournel, Franck [5], Macchi, Laurent [6], Pinet, Florence [7], Furber, Alain [8], Prunier, Fabrice [9]
Editeur scientifique	Rouet, Philippe [10]
Editeur	Public Library of Science
Type	Article scientifique dans une revue à comité de lecture
Année	2014
Date	Jul-09-2015
Numéro	9
Volume	9
Titre de la revue	PLoS ONE

Recent findings indicate that apolipoprotein A-I (ApoA-I) may be a protective humoral mediator involved in remote ischemic preconditioning (RIPC). This study sought to determine if ApoA-I mediates its protective effects via the RISK and SAFE signaling pathways implicated in RIPC. Wistar rats were allocated to one of the following groups. Control: rats were subjected to myocardial ischemia/reperfusion (I/R) without any further intervention; RIPC: four cycles of limb I/R were applied prior to myocardial ischemia; ApoA-I: 10 mg/Kg of ApoA-I were intravenously injected prior to myocardial ischemia; ApoA-I + inhibitor: pharmacological inhibitors of RISK/SAFE pro-survival kinase (Akt, ERK1/2 and STAT-3) were administered prior to ApoA-I injection. Infarct size was significantly reduced in the RIPC group compared to Control. Similarly, ApoA-I injection efficiently protected the heart, recapitulating RIPC-induced cardioprotection. The ApoA-I protective effect was associated with Akt and GSK-3β phosphorylation and substantially inhibited by pretreatment with Akt and ERK1/2 inhibitors. Pretreatment with ApoA-I in a rat model of I/R recapitulates RIPC-induced cardioprotection and shares some similar molecular mechanisms with those of RIPC-involved protection of the heart.

URL de la notice http://okina.univ-angers.fr/publications/ua6540 [11]

DOI 10.1371/journal.pone.0107950 [12]

Lien vers le document http://dx.doi.org/10.1371/journal.pone.0107950 [12]

Titre abrégé PLoS ONE

Liens
[1] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=10345
[2] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=918
[3] http://okina.univ-angers.fr/delphine.prunier/publications
[4] http://okina.univ-angers.fr/sophie.tamareille/publications
[5] http://okina.univ-angers.fr/franck.letournel/publications
[6] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=5633
[7] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=1138
[8] http://okina.univ-angers.fr/al.furber/publications
[9] http://okina.univ-angers.fr/f.prunier/publications
[10] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=481
[11] http://okina.univ-angers.fr/publications/ua6540
[12] http://dx.doi.org/10.1371/journal.pone.0107950

Publié sur Okina (http://okina.univ-angers.fr)