β-Cell failure in diabetes: Common susceptibility and mechanisms shared between type 1 and type 2 diabetes

Hiroshi Ikegami* (1), Naru Babaya (1), Shinsuke Nosu (1)
Department of Endocrinology, Metabolism and Diabetes, Faculty of Medicine, Kindai University, Osaka-sayama, Osaka, Japan

Keywords
β-Cell failure, Endoplasmic reticulum stress, Oxidative stress

*Correspondence
Hiroshi Ikegami
Tel: +81-72-366-0221
Fax: +81-72-366-2095
E-mail address: ikegami@med.kindai.ac.jp

J Diabetes Investig 2021
doi: 10.1111/jdi.13576

ABSTRACT
Diabetes mellitus is etiologically classified into type 1, type 2 and other types of diabetes. Despite distinct etiologies and pathogenesis of these subtypes, many studies have suggested the presence of shared susceptibilities and underlying mechanisms in β-cell failure among different types of diabetes. Understanding these susceptibilities and mechanisms can help in the development of therapeutic strategies regardless of the diabetes subtype. In this review, we discuss recent evidence indicating the shared genetic susceptibilities and common molecular mechanisms between type 1, type 2 and other types of diabetes, and highlight the future prospects as well.

INTRODUCTION
Diabetes mellitus is etiologically classified into type 1, type 2 and other types of diabetes1,2. Type 1 diabetes is caused by the immune-mediated destruction of the pancreatic β-cells; whereas, type 2 diabetes is caused by decreased insulin action because of impaired insulin secretion and insulin resistance. Despite the differences in the etiologies and pathogenesis of type 1 and type 2 diabetes, they both share the same pathophysiology; that is, β-cell failure leading to the development and progression of the disease. In 2004, we proposed that type 1 and type 2 diabetes shared common susceptibilities and underlying mechanisms based on the clustering of both types of diabetes in families and animal models3. Since then, many studies have suggested that type 1 and type 2 diabetes share genetic susceptibilities and underlying mechanisms of β-cell failure4-6. Elucidating common susceptibilities and molecular mechanisms can help in providing fundamental information regarding β-cell failure and fragility in diabetes patients, thereby leading to the development of effective methods for the prevention and intervention of diabetes, regardless of the subtype. Thus, in this review, we discuss recent evidence indicating the shared genetic susceptibilities and molecular mechanisms between type 1, type 2 and other types of diabetes, and highlight the future prospects as well.

β-CELL FAILURE IN DIABETES: OFFENSE VERSUS DEFENSE
Overt diabetes develops when the β-cells cannot satisfy the demand of insulin that is required to maintain a normal glucose metabolism. At the onset of overt diabetes, functional β-cell mass, which is the sum of the number of β-cells and functional state of each β-cell, is markedly decreased to a level that is insufficient to sustain a normal glucose metabolism, and is referred to as ‘β-cell failure.’ In general, β-cell failure occurs when the balanced offense and defense mechanisms shift toward stronger offense and weaker defense (Figure 1). The stronger the attack and weaker the protection, more severe is the disease. An offensive attack is usually a result of external stress or insult to the system, whereas, a defensive mechanism is usually β-cell intrinsic. Both these mechanisms contribute to β-cell failure, ultimately leading to diabetes; however, the strength of an offensive attack differs between type 1 and type 2 diabetes. The offense mechanism in type 1 diabetes is the immune-mediated destruction of β-cells, and that in type 2 diabetes is an increased insulin demand due to insulin resistance. Notably, the offense mechanism is much stronger in type 1 diabetes than in type 2 diabetes. However, in both cases, the defense mechanism shares the same characteristics, and is not strong enough to protect against the offensive attack during diabetes development. Even under strong offensive attack, as in type 1 diabetes, if the defense is sufficiently strong enough to protect the β-cells, diabetes might not manifest (Figure 1b). Thus,
the relative strength or weakness of the offense and defense mechanisms determines β-cell failure and diabetes development.

β-CELL FAILURE IN TYPE 1 DIABETES PATIENTS

Immune-mediated attack against the β-cells is the primary offensive mechanism in type 1 diabetes. An offensive attack starts before the onset of overt diabetes, and is referred to as the ‘prediabetes stage.’ During this stage, the functional β-cell mass can maintain the normal glucose metabolism. However, progressive loss of the functional β-cell mass is detected during this stage, as evidenced by the progressive decrease in acute insulin response to intravenous glucose in autoantibody positive twins and relatives of a type 1 diabetes proband.

Overt type 1 diabetes develops when the functional mass reduces below the critical level required to maintain the normal glucose metabolism (Figure 2a).

At the onset of overt type 1 diabetes, the functional β-cell mass is decreased to the level of insulin-dependency, leading to acute onset of ketosis or ketoacidosis. Although the functional β-cell mass is remarkably decreased because of β-cell destruction, decrease in the quantity of β-cells is not the only reason for insulin-dependency, but the quality of the residual β-cells is also responsible. Toward the onset of diabetes, precipitating events, such as an antecedent infection and sick-day condition, are frequently observed, resulting in an increased insulin demand against the decreased number of β-cells, leading to β-cell failure and hyperglycemia. Drinking sugar-containing soft drinks in response to thirst further accelerates the hyperglycemia. Hyperglycemia itself accelerates β-cell failure through glucose toxicity. All these insults against the decreased number of β-cells contribute to β-cell failure, leading to insulin-dependency during onset of type 1 diabetes.

Although the number of β-cells are decreased because of immune-mediated destruction, in most cases, they are not completely abolished at the disease onset, as evidenced by measurable C-peptide levels and the presence of insulin-positive cells in pancreas histological examinations. Clinically, this has been recognized as the “honeymoon period” in a subset of patients, wherein after managing the sick-day conditions, administering sufficient exogenous insulin and normalizing hyperglycemia can decrease the insulin requirement, and in some cases, normoglycemia can be maintained with no or very small exogenous insulin administration (Figure 2b). This is interpreted as the recovery of residual β-cells whose function was impaired by external stresses at the onset of type 1 diabetes. However, the honeymoon period does not last long, because the immune-mediated destruction of β-cells does not subside and β-cell failure eventually manifests as permanent insulin-dependency (Figure 2b).

After a long duration of type 1 diabetes, the functional β-cell mass is heterogeneous with either a complete loss in some patients or retention of minimal residual β-cell function in others (Figure 2c). Evidence for the possibility of β-cell mass recovery and long-lasting remission is limited. TIDE-J (Japanese type 1 diabetes database), a prospective follow-up study, is an ongoing collaborative effort of the National Center for Global Medicine and Health and the Committee on Type 1 Diabetes, Japan Diabetes Society, to investigate longitudinal changes in clinical parameters, such as β-cell function from the onset of type 1 diabetes, for identifying genes and biomarkers to predict, prevent, and intervene in β-cell failure and diabetes progression.

β-CELL FAILURE IN TYPE 2 DIABETES PATIENTS

In type 2 diabetes patients, β-cell failure is relative, as insulin secretion is not sufficient to compensate for the increased insulin demand mostly due to insulin resistance. The functional β-cell mass, which reflects both the quality and quantity of the β-
Progressive failure in diabetes

β-Cell failure in diabetes

Critical low level, overt type 1 diabetes develops with acute-onset ketosis or ketoacidosis. (b) Partial recovery in the functional β-cell mass soon after diabetes onset (honeymoon period). The functional β-cell mass partially recovers after initial treatment of sick-day conditions and near normalization of hyperglycemia can be achieved by administering sufficient quantity of insulin. (c) The functional β-cell mass in the long term after the onset of diabetes. Changes in the functional β-cell mass after diabetes onset vary from patient to patient; for instance, the progressive decrease in β-cell mass results in complete depletion of endogenous insulin in some cases. In other cases, the functional β-cell mass is preserved, albeit a very small amount, even after a long duration. However, there might be cases with sustained remission, although not clearly evidenced, that keep the functional β-cell mass and insulin secretory function above the insulin-dependency level.

PROGRESSIVE β-CELL FAILURE AFTER DIABETES ONSET

Progressive failure of residual β-cells continues after the onset of the disease in both type 1 and type 2 diabetes patients. In case of type 1 diabetes, one driver of this failure is on the offensive side, which is the immune-mediated attack against the β-cells; however, contributes into the defensive side, which is the β-cell intrinsic mechanism, should not be dismissed. Under normal conditions, the β-cells can produce up to 1 million insulin molecules/minute, and this number further increases after meals or a glucose challenge. Once the β-cell mass is decreased by immune-mediated destruction, each β-cell is stressed and overworked because of an increased demand for insulin secretion; that is, production, processing, folding, packaging and excretion of the insulin molecules by each β-cell. Such a situation increases the generation of reactive oxygen species through several pathways, including the formation of three disulfide bonds in each insulin molecule, excessive glucose metabolism and increased mitochondrial oxidative phosphorylation, resulting in oxidative stress. Overwork in each β-cell also increases the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER), leading to ER stress. In conditions of oxidative stress and ER stress, unless properly resolved, can cause apoptotic cell death, leading to a progressive failure of the residual β-cells. Hyperglycemia itself accelerates β-cell failure by facilitating glucose toxicity, which is mediated by several mechanisms, including oxidative stress, the formation of advanced glycation end-products, activation of protein kinase C, glyceroldehyde auto-oxidation, increased polyol pathway...
activity and increased hexosamine metabolism. Of note, these contributors of β-cell failure are not only limited to type 1 diabetes, but are also shared by type 2 diabetes and other types of diabetes, such as partial pancreatectomy. Regardless of the etiology, once the β-cell mass decreases and hyperglycemia manifests, each β-cell is exposed to oxidative stress and ER stress, leading to progressive β-cell failure. Administering a sufficient quantity of insulin and normalizing glucose metabolism can help in avoiding or reducing these stresses, as shown by better preservation of β-cell function on using intensive insulin therapy in the Diabetes Control and Complications Trial (19). However, complete normalization of glucose cannot be easily achieved, and might result in almost a complete loss of β-cells with little or no endogenous insulin secretion in long-standing type 1 diabetes. As residual insulin secretion, albeit a small amount, is closely associated with stable glycemic control, and better prognosis and outcomes of chronic complications, preserving β-cells during the natural history of type 1 diabetes is crucial.

HETEROGENEITY AND ETHNIC DIFFERENCES ASSOCIATED WITH β-CELL FAILURE

In populations of European descent, β-cell failure in type 1 diabetes might not necessarily result in a complete loss of β-cells; in fact, residual insulin secretion and insulin-positive cells in the pancreas are observed in some patients even years after the onset of diabetes (Figure 3a). In contrast, complete loss of insulin secretion is frequently observed in the Japanese population during long-term follow up (Figure 3b), suggesting that β-cells are more vulnerable or fragile in the Japanese population than in the populations of European descent.

A similar trend has been observed for type 2 diabetes patients. Unlike the populations of European descent, Japanese and most East Asian populations develop type 2 diabetes with no or mild obesity. Furthermore, the insulin secretion capacity is much lower in the Japanese population than in the populations of European descent. Thus, β-cells in the Japanese population are easily decompensated against mild obesity, suggesting a weaker defense mechanism and more fragile β-cells in the Japanese population than in the populations of European descent.

Weak defense mechanism or fragile β-cells in Japanese individuals are also reflected by fulminant type 1 diabetes, which is characterized by an abrupt onset; that is, a complete loss of β-cells at the onset of diabetes. Fulminant type 1 diabetes is mostly observed in Japan and East Asian countries, but very rarely in Western countries. A recent genome-wide association study in Japanese patients with fulminant type 1 diabetes identified a novel susceptibility locus, CSAD/Inc-ITGB7-1, on chromosome 12. Top-hit single-nucleotide polymorphism is located in CSAD, which encodes for cysteine sulfenic decarboxylase, a key enzyme of taurine biosynthesis. Taurine exerts cytoprotective and anti-inflammatory effects by membrane stabilization, osmoregulation, and anti-oxidant and anti-apoptotic activities, suggesting its role in the defensive mechanisms of tissues and organs. CSAD is expressed in several organs, including the pancreas. Taurine reportedly protects the pancreatic islets from destruction in autoimmune type 1 diabetes and attenuates streptozotocin (STZ)-induced β-cell failure, suggesting that CSAD contributes to fulminant type 1 diabetes by increasing the fragility of the β-cells.

The influence of the genetic background on β-cell failure is indicated not only by ethnic differences in humans, but also by animal models. Single gene mutations in leptin and its receptor in mice, Ob (Lept) and db (Lept), result in extreme obesity and insulin resistance. However, the development of
diabetes depends on the genetic background of the strain. For instance, despite the same degree of morbid obesity, C57BL/6 mice develop only mild and transient diabetes; whereas, C57BL/KsJ mice develop severe and life-shortening diabetes. The C57BL/6 mice are resistant to diabetes, because insulin resistance due to morbid obesity is compensated by hypersecretion of insulin associated with hypertrophy and hyperplasia of the islets. In contrast, the C57BL/KsJ mice develop severe diabetes associated with progressive failure and apoptosis of the β-cells, resulting in disorganized islet morphology and insulin depletion. These differences likely arise from the differences in the genetically-determined defensive strength of the β-cells against strong external stresses caused by ob and db mutations, wherein, strong β-cells in the C57BL/6 mice can compensate for the increased insulin demand, whereas fragile β-cells in the C57BL/KsJ mice deteriorate, leading to subsequent β-cell failure (Figure 1).

MOLECULAR MECHANISMS IN β-CELL FAILURE

Although immune-mediated mechanisms are the primary cause of type 1 diabetes, several mechanisms, such as oxidative stress, ER stress and apoptosis, are involved at the molecular level in the final stage of β-cell destruction. Free radicals and reactive oxygen species secreted from the immune cells and induced in β-cells by pro-inflammatory cytokines have been reported as effector molecules in β-cell destruction. Intervention of oxidative stress by anti-oxidants and scavengers reportedly preserves the endogenous insulin secretion and functional β-cell mass, suggesting the contribution of oxidative stress in the destruction of β-cells in type 1 diabetes. To directly investigate the protective effects of the anti-oxidative molecules in β-cell destruction, thioredoxin, a molecule with potent anti-oxidative and anti-apoptotic effects, was specifically overexpressed in the β-cells of the NOD mouse, an animal model of autoimmune type 1 diabetes. The development of type 1 diabetes was protected and insulin content was preserved in the NOD mice with transgenic expression of human thioredoxin gene (TRX) in the β-cells. When the pancreatic histology was examined, insulitis was not attenuated, indicating that thioredoxin protected the β-cells from destruction by infiltrating the immune cells, and not by attenuating the infiltration of the immune cells to the islets. These data suggested that β-cell failure in type 1 diabetes could be protected by increasing the defensive mechanism of the β-cells.

Oxidative stress has been implicated in β-cell failure in type 2 diabetes as well. We studied the protective effect of β-cell-specific overexpression of TRX on β-cell failure in type 2 diabetes in db/db mice. In the db/db mouse, TRX overexpression in the β-cells attenuated β-cell failure, preserved insulin content and islet morphology, and resulted in better glycemic profiles. Amelioration of β-cell failure and diabetes has been reported by β-cell-specific overexpression of glutathione peroxidase, another anti-oxidative molecule, in db/db mice, indicating the protective effect of anti-oxidative molecules in β-cell failure and oxidative stress as an effector-mediated mechanism in both type 1 and type 2 diabetes. Additionally, we studied the protective effect of β-cell-specific overexpression of TRX against a high dose of STZ, a well-known β-cell toxic reagent. TRX overexpression attenuated the development of diabetes and β-cell failure by STZ, indicating that TRX overexpression protected β-cell failure in type 1, type 2 and drug-induced diabetes. These data suggest that a common molecular mechanism acts in the final stage of β-cell failure in type 1, type 2 and other types of diabetes, providing a common molecular target for protection and intervention of β-cell failure, regardless of the diabetes subtype (Figure 4).

SHARED SUSCEPTIBILITY BETWEEN TYPE 1 AND TYPE 2 DIABETES

Epidemiological studies have shown an increase in the frequency of type 1 diabetes in siblings of a type 1 diabetes proband. In addition, clustering of type 1 and type 2 diabetes in the same families has been reported, suggesting the existence of a genetic link and shared susceptibility between type 1 and type 2 diabetes. In fact, a causative variant for type 1 diabetes, identified using genome-wide linkage analysis in multiplex families, has been associated with type 2 diabetes as well.

A genetic link between type 1 and type 2 diabetes has also been suggested in animal models of diabetes. The NOD mouse, an inbred strain of mice with spontaneous development of autoimmune type 1 diabetes, is established from a closed colony of Jcl:ICR mice. From the same closed colony, the NSY mouse, an inbred animal model of type 2 diabetes, has also been established, showing clustering of type 1 and type 2 diabetes in related strains of mice derived from the same closed colony. Additionally, clustering of type 1 and type 2 diabetes in sister strains has been observed in rats. The LETL rat and its high incidence line, the KDP rat, are inbred strains of rats that show a spontaneous development of autoimmune type 1 diabetes. The LETL rat is established from a closed colony of Long-Evans rats (Crl:LE), from which an inbred strain of rat with type 2 diabetes, the OLETF rat, has been established in the same animal facility, showing the clustering of type 1 and type 2 diabetes in sister strains of rats and mice. Based on these observations, in 2004, we proposed that there were common genetic susceptibilities and shared mechanisms between type 1 and type 2 diabetes (Figure 5). Since then, evidence supporting this has accumulated and underlying mechanisms have been identified.

Despite studies suggesting a genetic link between type 1 and type 2 diabetes, the actual genes that link the two subtypes are largely unknown. Genome scanning in animal models has identified many susceptibility loci for both type 1 and type 2 diabetes. Among these, chromosome 11 in mice is of particular interest (Figure 6). In our previous studies on genome scanning and congenic mapping for type 2 diabetes genes...
in the NSY mouse, susceptibility loci for type 2 diabetes were mapped on chromosome 11. To directly investigate the contribution of chromosome 11 to genetic susceptibility in type 2 diabetes, chromosome 11 of the control C3H/He mice was substituted with chromosome 11 from the NSY mice (C3H-Chr11NSY in Figure 6a). This introgression converted the diabetes-resistant C3H/He mice to diabetes-susceptible mice (Figure 6a), indicating that chromosome 11 harbored susceptibility genes for type 2 diabetes. The NSY mouse developed type 2 diabetes along with impaired insulin secretion and mild obesity. The impaired insulin secretion was accelerated under a high-sucrose environment, suggesting the contribution of β-cell vulnerability in the development of diabetes in this model. Susceptibility to high-sucrose induced diabetes is also mapped to chromosome 11 (Figure 6a) and genes for impaired β-cell function under a high-sucrose environment was localized to the central and distal segments of chromosome 11 (Figure 6b). In this region, a susceptibility locus for type 1 diabetes, Idd4, was mapped by genome scanning and congenic mapping in the NOD mice, suggesting the presence of a common susceptibility gene for both type 1 and type 2 diabetes in this region.

As aforementioned, the NOD mouse and the NSY mouse were derived from the same closed colony. In addition, both NOD and NSY mice are highly susceptible to STZ-induced diabetes, suggesting that these strains share β-cell vulnerability or fragility that is inherited from the original closed colony of Jcl:ICR mice. A susceptibility locus for STZ-induced diabetes has been mapped to chromosome 11 in NOD mice. To directly investigate the contribution of chromosome 11 to susceptibility to STZ-induced diabetes, susceptibility to STZ was studied in C3H-Chr11NSY mice in comparison with NSY and C3H mice (Figure 6a). Substitution of a single chromosome 11 of C3H mice with chromosome 11 from NSY mice (C3H-Chr11NSY) converted the STZ-resistant C3H mice to STZ-susceptible mice, indicating that chromosome 11 harbored susceptibility genes responsible for STZ-induced diabetes. A susceptibility locus mapped to chromosome 11 in spontaneous type 2 diabetes, high-sucrose accelerated diabetes, and STZ-induced diabetes is likely to determine the intrinsic vulnerability of the β-cells under external stress, which consequently leads to β-cell failure and diabetes. Altogether, these data

Figure 4 | External stresses and mechanisms in β-cell failure. (a) Different external stresses and similar final mechanisms of β-cell failure in different types of diabetes. Different external stresses: immune-mediated attack in type 1 diabetes, insulin resistance in type 2 diabetes and β-cell toxic effect (streptozotocin) in other types of diabetes. Different offensive stresses share the same mechanisms, such as oxidative stress, endoplasmic reticulum stress and apoptosis in the final stage of β-cell failure. (b) Progressive β-cell failure after diabetes onset. Once the β-cell mass is reduced, each β-cell faces increased stress, such as increased insulin demand (overload) and hyperglycemia, leading to the acceleration of β-cell failure because of oxidative stress and endoplasmic reticulum stress. (c) Sufficient protection against external stresses with a strong defensive mechanism, such as overexpression of thioredoxin, can preserve the functional β-cell mass in type 1 (NOD mice), type 2 (db/db mice) and other types of diabetes (single high dose of streptozotocin).
suggest that chromosome 11 harbors either a single or multiple genes for β-cell vulnerability in type 1, type 2 and STZ-induced diabetes (Figure 6b). Thus, identification of causative variants in this region can provide fundamental information on the genetic susceptibility and molecular mechanisms underlying β-cell failure shared by type 1, type 2 and other types of diabetes.

SHARED SUSCEPTIBILITY ACCORDING TO GENOME-WIDE ASSOCIATION STUDIES

Genome-wide association studies in humans have identified many susceptibility loci for both type 1 and type 2 diabetes31,85,86. Susceptibility loci mapped in type 1 diabetes often harbor genes associated with immunological pathways; however, genes associated with β-cell-related functions and expression have also been identified87, suggesting that the latter group of genes might be candidate genes for the common susceptibility shared by type 1 and type 2 diabetes. Although many loci have been identified using genome-wide association studies, loci identified in both types of diabetes are limited. Among the identified genes, *GLIS3* has been implicated in both type 1 and type 2 diabetes85,86,88. *GLIS3* encodes for a transcription factor, GLI-similar family zinc-finger protein 3. Recently, Dooley et al.2 identified a genetic variant of Glis3, a mouse homologue of human *GLIS3*, as a causative gene for type 1 diabetes in NOD mice by reducing Glis3 expression. Reduced Glis3 expression in NOD mice makes the β-cells susceptible to ER stress, thereby leading to β-cell apoptosis and failure. Reduced Glis3 expression has also been observed under a high-fat diet5, indicating the role of the Glis3 variant in β-cell failure in type 2 as well as type 1 diabetes89. These data showed that the same gene (*GLIS3*) and mechanism (vulnerability or fragility of the β-cells against ER stress) act in the development of β-cell failure and diabetes in both type 1 and type 2 subtypes89,90.

LESSONS FROM OTHER TYPES OF DIABETES

Diabetes mellitus due to other specific mechanisms or disorders might provide important insight into the common genetic susceptibility and underlying mechanisms shared by different types of diabetes. These include rare monogenic forms of diabetes that are caused by mutations in critical genes, and rare genetic syndromes associated with insulin-dependent diabetes1,91. Mutations with severe functional defects usually cause neonatal or early-onset diabetes with extreme phenotypes. Rare mutations of *GLIS3*, a gene shared by both type 1 and type 2 diabetes, can reportedly cause neonatal diabetes with insulin-dependency through β-cell failure due to increased ER stress92. Several mutations in the insulin gene (*INS*) reportedly cause neonatal diabetes with insulin-dependency93, and this is not autoimmune; rather, it is caused by ER stress because of accumulated unfolded or misfolded pre-proinsulin proteins within the ER lumen, leading to β-cell failure93. These findings were supported in studies in the Akita mouse, in which a mutation

Figure 5 | Shared genetic susceptibilities between type 1 and type 2 diabetes. Both type 1 and type 2 diabetes are multifactorial diseases caused by the interaction of genetic and environmental factors. Genetic factors consist of multiple susceptibility genes, and among them, some genes are specific to each subtype; for instance, type 1 diabetes-specific genes (*A* and *B*), such as autoimmune-related genes (e.g., *HLA*), and type 2 diabetes-specific genes (*E* and *F*) such as obesity- and insulin resistance-related genes (e.g., *FTO*). Additionally, there are some common genes shared between both diabetes types (*C* and *D*), such as genes related to β-cell fragility or vulnerability (e.g., *GLIS3*). Modified from Ikegami et al.3 with permission.

© 2021 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd
Figure 6 | Chromosome 11 harbors genes for different types of diabetes. (a) Chromosome 11 of the NSY mouse possesses susceptibility genes for spontaneous type 2 diabetes, high-sucrose induced diabetes and streptozotocin (STZ)-induced diabetes. Control C3H mice are resistant to diabetes; whereas, NSY mice are susceptible to type 2 and STZ-induced diabetes. Substitution of a single chromosome 11 of C3H mice with chromosome 11 from NSY mice (C3H-Chr11NSY) converted the diabetes-resistant C3H mice to diabetes-susceptible mice, indicating that chromosome 11 harbored susceptibility genes for spontaneous type 2 diabetes\(^73\), high-sucrose induced diabetes\(^75\) and STZ-induced diabetes\(^82\). (b) Location of the susceptible loci for type 1 (Idd4 in NOD mice), type 2 (Nidd1n in NSY mice) and STZ-induced diabetes on chromosome 11. #1 The support interval of quantitative trait loci for glucose intolerance\(^72\). #2 Regions of impaired insulin secretion by congenic mapping under a high-sucrose environment\(^75\). #3 The support interval of STZ sensitivity locus in NOD mice was not clearly defined because of a limited number of markers\(^83\). The centromeric and telomeric ends of the interval are therefore shown in the graduation. #4 Idd4 is now divided into several sub-loci (Idd4.1, Idd4.2, and Idd4.3); however, each sub-locus was mapped by multiple research groups using different strain combinations. Therefore, the interval including all these loci is shown in the closed bar. The interval of each sub-locus is shown in the open bar.
in Ins2, a mouse insulin gene, results in insulin-deficient diabetes due to misfolded and accumulated mutant insulin molecules in the ER. Wolfram syndrome is caused by WFS1 mutations, and insulin-dependent diabetes is an important phenotype associated with it; it is also caused by ER stress-mediated β-cell apoptosis due to mutations in WFS1, encoding a negative regulator of ER stress. Loss of ER-resistant protein, MANF, has been recently reported to cause childhood-onset syndromic diabetes because of increased ER stress. Defective upregulation of MANF, a mouse homologue of human MANF, has also been reported in the genetic background of the NOD mice.

All these are examples of β-cell failure caused by β-cell intrinsic defects against ER stress. Reported mutations in the abovementioned genes markedly increase the ER stress and/or impair unfolded protein response in β-cells, leading to β-cell failure and insulin dependency by themselves. In contrast, variants in these genes, which result in mild functional alterations, possibly increase the vulnerability and fragility of β-cells under excess stress, thereby leading to increased susceptibility to type 1 diabetes under an autoimmune attack or type 2 diabetes under increased insulin demand due to obesity and insulin resistance. In fact, common polymorphisms in GLIS3 and WFS1 are associated with both type 1 and type 2 diabetes, suggesting β-cell vulnerability or fragility as the common underlying mechanism of β-cell failure in different types of diabetes.

Partial pancreatectomy is another example of β-cell fragility as the underlying mechanism of β-cell failure in diabetes. In partial pancreatectomy, approximately half of the pancreas is typically resected, leading to a marked reduction in β-cell mass, and increase in insulin demand and stress against the remaining β-cells. In our prospective studies on β-cell function and glucose tolerance after pancreatectomy, even though the same volume and portion of the pancreas were resected, we noticed considerable interindividual variation in glucose tolerance and in whether diabetes eventually developed. Similar observations have been reported in diabetes development after hemi-pancreatectomy in living donors of pancreas transplantation. The aforementioned studies and those on pancreatectomy in rodents suggest the contribution of β-cell vulnerability and failure in response to increased insulin demand due to a physical reduction in the β-cell mass in diabetes development after pancreatectomy.

FUTURE PROSPECTS FOR THE PROTECTION, INTERVENTION AND CURE OF DIABETES

Given the contribution of oxidative stress and ER stress in β-cell failure in both type 1 and type 2 diabetes, molecules and regulatory mechanisms involved in these pathways are potential therapeutic targets for the protection and intervention against β-cell failure in diabetes. For example, pharmacological activators of Nrf2, a master regulator of cellular response to oxidative stress, are being tested for preserving β-cell mass and treating diabetes. The peroxiredoxin/thioredoxin anti-oxidant system, a pathway regulated by Nrf2, is a primary defense mechanism of the β-cells against oxidative stress, which is consistent with our previous observation that overexpression of thioredoxin has a protective role in β-cell failure in type 1, type 2 and STZ-induced diabetes.

ER stress, oxidative stress and mitochondrial function are closely interrelated. A mitochondrial DNA mutation, A3243G, causes diabetes as a part of maternally inherited diabetes and deafness, and myopathy, encephalopathy, lactic acidosis and stroke-like episodes. Recent studies have shown that A3243G causes defects in taurine modification of mitochondrial transfer ribonucleic acid, leading to the aggregation of mitochondrial proteins in the cytosol, induction of cytotoxic unfolded protein response and cell death, which is also a possible cause for β-cell failure in type 1 and type 2 diabetes. Taurine supplementation can ameliorate stroke-like episodes in myopathy, encephalopathy, lactic acidosis and stroke-like episodes, suggesting the role of taurine in restoring defective mitochondrial functions. These data, along with the association of the taurine biosynthesis pathway in fulminant type 1 diabetes, suggest the possible application of taurine in β-cell failure and diabetes due to maternally inherited diabetes and deafness, and type 1 and type 2 diabetes.

Cytotoxic unfolded protein response is another target for diabetes intervention. A taurine-conjugated bile acid, taurosodeoxycholic acid, suppresses these pathways and restores mitochondrial function. Given the contribution of ER stress and cytotoxic unfolded protein responses in both mitochondrial diseases and β-cell failure in type 1 and type 2 diabetes, chemical chaperones for protein folding, such as taurosodeoxycholic acid, might be potential therapeutic targets for the prevention and intervention in β-cell failure.

While excess ER stress and oxidative stress result in β-cell failure and death, stresses at a moderate or appropriate level can promote the functional adaptation of ER capacity and β-cell proliferation, suggesting that the degree of stress and appropriate response should be considered for the prevention and intervention in β-cell failure.

Given that excess stress and overload promote β-cell failure, β-cell rest is another approach for the prevention and intervention of β-cell failure. Currently, β-cell rest can only be achieved by supplying a sufficient amount of exogenous insulin and reducing insulin resistance by lifestyle modifications and pharmacological treatments. Recent studies, however, suggest that β-cell rest by optimizing glucose metabolism in β-cells can be another target for preventing β-cell failure. Activating mutations of glucokinase, which cause congenital hyperinsulinism, result in long-term toxicity in β-cells, leading to β-cell failure through increased oxidative stress and DNA damage. In contrast, glucokinase inactivation can ameliorate β-cell failure and diabetes by reducing the metabolic stress in β-cells, suggesting that optimizing glucose metabolism and reducing β-cell overload can be a target for preventing β-cell failure. In
addition to metabolic overload, β-cell stress is also associated with alterations in messenger ribonucleic acid splicing, protein translation and protein modification, leading to the production of stress-related modifications in β-cell proteins. These altered proteins act as neo-epitopes in immune-mediated destruction of β-cells in type 1 diabetes. Therefore, β-cell stress might be beneficial in preventing β-cell failure by not only increasing the defensive power, but also decreasing the offensive attack.

Common susceptibilities and mechanisms between different types of diabetes indicate that studies on molecular mechanisms and pathways to determine β-cell vulnerability and fragility can provide fundamental information on the prevention and intervention of β-cell failure in all types of diabetes by increasing the defense mechanism of the β-cells against external stresses. In addition to the similarities between type 1 and type 2 diabetes, some differences in ER signaling pathways between type 1 and type 2 diabetes have been suggested. Further studies on the similarities and differences in β-cell failure between different types of diabetes will clarify the whole landscape of β-cell failure and increase our understanding of genes and molecules shared by different types of diabetes, leading to more effective methods for the prevention and intervention of β-cell failure in diabetes.

ACKNOWLEDGMENTS
This research was supported by Grants-in Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science: 18K08530 and 21K08589 awarded to HI.

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. The Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Invest 2010; 1: 212–228.
2. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37(suppl 1): S81–S90.
3. Ikekami H, Fujisawa T, Ogihara T. Mouse models of type 1 and type 2 diabetes derived from the same closed colony: genetic susceptibility shared between two types of diabetes. ILAR J 2004; 45: 268–277.
4. Boitard C, Efendic S, Ferrannini E, et al. A tale of two cousins: type 1 and type 2 diabetes. Diabetes 2005; 54 (Suppl2): S1–S5.
5. Dooley J, Tian L, Schonefeldt S, et al. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nat Genet 2016; 48: 519–527.
6. Redondo MJ, Hagopian WA, Oram R, et al. The clinical consequences of heterogeneity within and between different diabetes types. Diabetologia 2020; 63: 2040–2048.
7. Srikanta S, Ganda OP, Gleason RE, et al. Pre-type I diabetes. Linear loss of beta cell response to intravenous glucose. Diabetes 1984; 33: 717–720.
8. Imagawa A, Hanafusa T, Tamura S, et al. Pancreatic biopsy as a procedure for detecting in situ autoimmune phenomena in type 1 diabetes: close correlation between serological markers and histological evidence of cellular autoimmunity. Diabetes 2001; 50: 1269–1273.
9. Greenbaum CJ, Anderson AM, Dolan LM, et al. Preservation of beta-cell function in autoantibody-positive youth with diabetes. Diabetes Care 2009; 32: 1839–1844.
10. Rodriguez-Calvo T, Richardson SJ, Pugliese A. Pancreas pathology during the natural history of type 1 diabetes. Curr Diab Rep 2018; 18: 124.
11. Fukuda M, Tanaka A, Tahara Y, et al. Correlation between minimal secretory capacity of pancreatic beta-cells and stability of diabetic control. Diabetes 1988; 37: 81–88.
12. Oram RA, Sims EK, Evans-Molina C. Beta cells in type 1 diabetes: mass and function; sleeping or dead? Diabetologia 2019; 62: 567–577.
13. Yoneda H, Ikekami H, Yamamoto Y, et al. Analysis of early-phase insulin responses in nonobese subjects with mild glucose intolerance. Diabetes Care 1992; 15: 1517–1521.
14. Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit, and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52: 102–110.
15. Matveyenko AV, Butler PC. Relationship between beta-cell mass and diabetes onset. Diabetes Obes Metab 2008; 10 (Suppl 4): 23–31.
16. Sakuraba H, Mizukami H, Yagihashi N, et al. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 2002; 45: 85–96.
17. Meyerovich K, Ortiz F, Allagnat F, et al. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. J Mol Endocrinol 2016; 57: R1–R17.
18. Baumel-Alterzon S, Katz LS, Brill G, et al. Nrf2: the master and captain of beta cell fate. Trends Endocrinol Metab 2021; 32: 7–19.
19. The Diabetes Control and Complications Trial Research Group. Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. Ann Intern Med 1998; 128: 517–523.
20. Shibasaki S, Imagawa A, Terasaki J, et al. Endogenous insulin secretion even at a very low level contributes to the stability of blood glucose control in fulminant type 1 diabetes. J Diabetes Invest 2010; 1: 283–285.
21. Gibb FW, McKnight JA, Clarke C, et al. Preserved C-peptide secretion is associated with fewer low-glucose events and lower glucose variability on flash glucose monitoring in adults with type 1 diabetes. Diabetologia 2020; 63: 906–914.
22. Babaya N, Nos S, Hiromine Y, et al. Relationship of continuous glucose monitoring-related metrics with HbA1c and residual β-cell function in Japanese patients with type 1 diabetes. Sci Rep 2021; 11: 4006.

23. Lachin JM, McGee P, Palmer JP, et al. Impact of C-peptide preservation on metabolic and clinical outcomes in the diabetes control and complications trial. Diabetes 2014; 63: 739–748.

24. Keenan HA, Sun JK, Levine J, et al. Residual insulin production and pancreatic β-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes 2010; 59: 2846–2853.

25. Oram RA, Jones AG, Besser REJ, et al. The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells. Diabetologia 2014; 57: 187–191.

26. Uno S, Imagawa A, Kozawa J, et al. Complete loss of insulin secretion capacity in type 1A diabetes patients during long-term follow up. J Diabetes Investig 2018; 9: 806–812.

27. Sugihara S, Kikuchi T, Urakami T, et al. Residual endogenous insulin secretion in Japanese children with type 1A diabetes. Clin Pediatr Endocrinol 2021; 30: 27–33.

28. Kodama K, Tojjar D, Yamada S, et al. Ethnic differences in the relationship between insulin sensitivity and insulin response: a systematic review and meta-analysis. Diabetes Care 2013; 36: 1789–1796.

29. Yabe D, Seino Y, Fukushima M, et al. β-cell dysfunction versus insulin resistance in the pathogenesis of type 2 diabetes in East Asians. Curr Diab Rep 2015; 15: 36.

30. Hanafusa T, Imagawa A. Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Pract Endocrinol Metab 2007; 3: 36–45.

31. Kawabata Y, Nishida N, Awata T, et al. A genome-wide association study confirming a strong effect of HLA and identifying variants in association study confirming a strong effect of HLA and identifying variants in CSAD/lnc-ITGB7-1 on chromosome 12q13.13 associated with susceptibility to fulminant type 1 diabetes. Diabetes 2019; 68: 665–675.

32. Lambert IH, Kristensen DM, Holm JB, et al. Physiological role of taurine – from organism to organelle. Acta Physiol 2014; 213: 191–212.

33. Kerr TA, Matsumoto Y, Matsumoto H, et al. Cysteine sulfenic acid decarboxylase regulation: a role for farnesoid X receptor and small heterodimer partner in murine hepatic taurine metabolism. Hepatol Res 2014; 44: E218–E228.

34. Arany E, Strutt B, Romanus P, et al. Taurine supplement in early life altered islet morphology, decreased insulinis and delayed the onset of diabetes in non-obese diabetic mice. Diabetologia 2004; 47: 1831–1837.

35. Lin S, Yang J, Wu G, et al. Inhibitory effects of taurine on STZ-induced apoptosis of pancreatic islet cells. Adv Exp Med Biol 2013; 775: 287–297.

36. Nakatsuru Y, Murase-Mishiba Y, Bessho-Tachibana M, et al. Taurine improves glucose tolerance in STZ-induced insulin-deficient diabetic mice. Diabetes 2018; 9: 234–242.

37. Kawabata Y, Ikegami H. Genetics of fulminant type 1 diabetes. Diabetes Metab 2020; 11: 315–322.

38. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

39. Lee G-H, Proenca R, Montez JM, et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996; 379: 632–635.

40. Coleman DL. A historical perspective on leptin. Nat Med 2010; 16: 1097–1099.

41. Coleman DL, Hummel KP. The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia 1973; 9: 287–293.

42. Baetens D, Stefan Y, Ravazzola M, et al. Alteration of islet cell populations in spontaneously diabetic mice. Diabetes 1978; 27: 1–7.

43. Joost HG, Schürmann A. The genetic basis of obesity-associated type 2 diabetes (diabesity) in polygenic mouse models. Mamm Genome 2014; 25: 401–412.

44. Tersey SA, Nishiki Y, Tempelin AT, et al. Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 2012; 61: 818–827.

45. Marhfour I, Lopez XM, Lefkaditis D, et al. Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia 2012; 55: 2417–2420.

46. Roep BO, Thomaidou S, van Tienhoven R, et al. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol 2021; 17: 150–161.

47. Mandrup-Poulsen T, Helqvist S, Wogensen LD, et al. Cytokine and free radicals as effector molecules in the destruction of pancreatic beta cells. Curr Top Microbiol Immunol 1990; 164: 169–193.

48. Horio F, Fukuda M, Kato H, et al. Reactive oxygen intermediates in autoimmune islet cell destruction of the NOD mouse induced by peritoneal exudate cells (rich in macrophages) but not T cells. Diabetes 1994; 37: 22–31.

49. Fukuda M, Ikegami H, Kawaguchi Y, et al. Antioxidant, probucol, can inhibit the generation of hydrogen peroxide in islet cells induced by macrophages and prevent islet cell destruction in NOD mice. Biochem Biophys Res Commun 1995; 209: 953–958.

50. Hotta M, Tashiro F, Ikegami H, et al. Pancreatic beta-cell-specific expression of thioredoxin, an antioxidant and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. J Exp Med 1998; 188: 1445–1451.

51. Kawamori D, Kajimoto Y, Kaneto H, et al. Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic β-cells.
transcription factor PDX-1 through activation of c-Jun NH(2)-terminal kinase. Diabetes 2003; 52: 2896–2904.
52. Newsholme P, Cruzat VF, Keane KN, et al. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 2016; 473: 4527–4550.
53. Yamamoto M, Yamato E, Toyoda S, et al. Transgenic expression of antioxidant protein thioredoxin in pancreatic beta cells prevents progression of type 2 diabetes mellitus. Antioxid Redox Signal 2008; 10: 43–49.
54. Harmon JS, Bogdani M, Parazzoli SD, et al. Beta-Cell-specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db mice. Endocrinology 2009; 150: 4855–4862.
55. Rish N. Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet 1987; 40: 1–14.
56. Ikegami H, Oghara T. Genetics of insulin-dependent diabetes mellitus. Endocr J 1996; 43: 605–613.
57. Ikegami H, Noso S, Babaya N, et al. Genetic basis of type 1 diabetes: similarities and differences between East and West. Rev Diabet Stud 2008; 5: 64–72.
58. Fujisawa T, Ikegami H, Kawaguchi Y, et al. Common genetic basis between type 1 and type 2 diabetes mellitus indicated by interview-based assessment of family history. Diab Res Clin Pract 2004; 66S: S91–S95.
59. Allen C, Palta M, D’Alessio DJ. Risk of diabetes in siblings and other relatives of IDDM subjects. Diabetes 1991; 40: 831–836.
60. Dahlquist G, Blom L, Tuvemo T, et al. Beta-Cell-specific expression of antioxidant protein thioredoxin in pancreatic beta cells prevents progression of type 2 diabetes mellitus. Antioxid Redox Signal 2008; 10: 43–49.
61. Shibata M, Yasuda B. New experimental congenital diabetic mouse (N.S.Y. mice). Tohoku J Exp Med 1980; 130: 139–142.
82. Babaya N, Ikekami H, Fujisawa T, et al. Susceptibility to streptozotocin-induced diabetes is mapped to mouse chromosome 11. *Biochem Biophys Res Commun* 2005; 328: 158–164.
83. Gonzalez C, Cuvelier S, Hue-Beauvais C, et al. Genetic control of non obese diabetic mice susceptibility to high-dose streptozotocin-induced diabetes. *Diabetologia* 2003; 46: 1291–1295.
84. Maegawa T, Miyasaka Y, Kobayashi M, et al. Congenetic mapping and candidate gene analysis for streptozotocin-induced diabetes susceptibility locus on mouse chromosome 11. *Mamm Genome* 2018; 29: 273–280.
85. Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. *Nat Genet* 2009; 41: 703–707.
86. Cho YS, Chen C-H, Hu C, et al. Meta-analysis of genome-wide association studies identifies 8 new loci for type 2 diabetes in East Asians. *Nat Genet* 2012; 2012: 67–72.
87. Concannon P, Rich SS, Neporn GT. Genetics of type 1A diabetes. *N Engl J Med* 2009; 360: 1646–1654.
88. Awata T, Yamashita H, Kurihara S, et al. A low-frequency GLIS3 variant associated with resistance to Japanese type 1 diabetes. *Biochem Biophys Res Commun* 2013; 437: 521–525.
89. Todd JA. Intolerable secretion and diabetes in tolerant transgenic mice, revisited. *Nat Genet* 2016; 48: 476–477.
90. Liston A, Todd JA, Lagou V. Beta-cell fragility as a common underlying risk factor in type 1 and type 2 diabetes. *Trends Mol Med* 2017; 23: 181–194.
91. Yang Y, Chan L. Monogenic diabetes: what it teaches us on the common forms of type 1 and type 2 diabetes. *Endocr Rev* 2016; 37: 190–222.
92. Senéé V, Chelata L, Ducheatelet S, et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. *Nat Genet* 2006; 38: 682–687.
93. Stoy J, Edghill EL, Flanagan SE, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. *Proc Natl Acad Sci USA* 2007; 104: 15040–15044.
94. Wang J, Takeuchi T, Tanaka S, et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. *J Clin Invest* 1999; 103: 27–37.
95. Izumi T, Yokota-Hashimoto H, Zhao S, et al. Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. *Diabetes* 2003; 52: 409–416.
96. Inoue H, Tanizawa Y, Wasson J, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). *Nat Genet* 1998; 20: 143–148.
97. Abreu D, Urano F. Current landscape of treatments for Wolfram syndrome. *Trends Pharmacol Sci* 2019; 40: 711–714.
98. Montaser H, Patel KA, Balboa D, et al. Loss of MANF causes childhood-onset syndromic diabetes due to increased endoplasmic reticulum stress. *Diabetes* 2021; 70: 1006–1018.
99. Sandhu MS, Weedon MN, Fawcett KA, et al. Common variants in WFS1 confer risk of type 2 diabetes. *Nat Genet* 2007; 39: 951–953.
100. Awata T, Inoue K, Kurihara S, et al. Missense variations of the gene responsible for Wolfram syndrome (WFS1/wolframin) in Japanese: possible contribution of the Arg456His mutation to type 1 diabetes as a nonautoimmune genetic basis. *Biochem Biophys Res Commun* 2000; 268: 612–616.
101. Niwano F, Babaya N, Hiromine Y, et al. Glucose metabolism after pancreatectomy: opposite extremes between pancreatectoduodenectomy and distal pancreatectomy. *J Clin Endocrinol Metab* 2021; 106: e2203–e2204.
102. Kendall DM, Sutherland DER, Najarian JS, et al. Effects of hemipancreatectomy on insulin secretion and glucose tolerance in healthy humans. *N Engl J Med* 1990; 322: 898–903.
103. Kirchner VA, Finger EB, Bellin MD, et al. Long-term outcomes for living pancreas donors in the modern era. *Transplantation* 2016; 100: 1322–1328.
104. Ebrahimia AG, Hollister-Lock J, Sullivan BA, et al. Beta cell identity changes with mild hyperglycemia: Implications for function, growth, and vulnerability. *Mol Metab* 2020; 35: 100959.
105. Stancill JS, Broniowska KA, Oleson BJ, et al. Pancreatic β-cells detoxify H2O2 through the peroxiredoxin/thioredoxin antioxidant system. *J Biol Chem* 2019; 294: 4843–5485.
106. Benáková Š, Holendová B, Plecitá-Hlavatá L, Plecitá-Hlavatá L. Redox homeostasis in pancreatic β-cells: from development to failure. *Antioxidants (Basel)* 2021; 10: 526.
107. Fakruddin MD, Wei F-Y, Suzuki T, et al. Defective mitochondrial tRNA taurine modification activates global proteostress and leads to mitochondrial disease. *Cell Rep* 2018; 22: 482–494.
108. Ohswara Y, Hagiwara H, Nishimatsu S-I, et al. Taurine supplementation for prevention of stroke-like episodes in MELAS: a multicentre, open-label, 52-week phase III trial. *J Neurol Neurosurg Psychiatry* 2019; 90: 529–536.
109. Sharma RB, O’Donnell AC, Stamateris RE, et al. Insulin demand regulates β cell number via the unfolded protein response. *J Clin Invest* 2015; 125: 3831–3846.
110. Elksnis A, Martinell M, Eriksson O, et al. Heterogeneity of metabolic defects in type 2 diabetes and its relation to reactive oxygen species and alterations in beta-cell mass. *Front Physiol* 2019; 10: 107.
111. Tornovsky-Babeay S, Dadon D, Ziv O, et al. Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in β cells. *Cell Metab* 2014; 19: 109–121.
112. Tornovsky-Babeay S, Weinberg-Coren N, Ben-Haroush Schyr R, et al. Biphasic dynamics of beta cell mass in a...
mouse model of congenital hyperinsulinism: implications for type 2 diabetes. *Diabetologia* 2021; 64: 1133–1143.

113. Omori K, Nakamura A, Miyoshi H, *et al*. Glucokinase inactivation paradoxically ameliorates glucose intolerance by increasing β-Cell mass in db/db mice. *Diabetes* 2021; 70: 917–931.

114. Martin D, Bellanne-Chantelot C, Deschamps I, *et al*. Long-term follow-up of oral glucose tolerance test-derived glucose tolerance and insulin secretion and insulin sensitivity indexes in subjects with glucokinase mutations (MODY2). *Diabetes Care* 2008; 31: 1321–1323.

115. Piganelli JD, Mamula MJ, James EA. The role of β cell stress and neo-epitopes in the immunopathology of type 1 diabetes. *Front Endocrinol* 2021; 11: 624590.

116. Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. *Nat Rev Endocrinol* 2020; 16: 349–362.