Isotopic tagging of oxidized and reduced cysteines (iTORC) for detecting and quantifying sulfenic acids, disulfides, and free thiols in cells

Matthew E. Albertolle¹, Sarah M. Glass¹, Elijah Trefts², and F. Peter Guengerich¹

From the ¹Department of Biochemistry and ²Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

Running title: iTORC detection of thiol redox status

Address correspondence to: Prof. F. Peter Guengerich, Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Building, 2200 Pierce Avenue, Nashville, Tennessee 37232-0146, Telephone: (615) 322-2261; FAX: (615) 343-0704; E-mail: f.guengerich@vanderbilt.edu

Keywords: thiol, disulfide, mass spectrometry, proteomics, oxidation-reduction (redox), oxidative stress, oxidative damage, sulfenic acid, isotopic tagging of oxidized and reduced cysteines (iTORC), cysteine

Abstract

Oxidative modifications of cysteine residues are an important component in signaling pathways, enzymatic regulation, and in redox homeostasis. Current direct and indirect methods detect specific modifications and a general binary population of “free” or “oxidized” cysteines, respectively. In an effort to combine both direct and indirect detection strategies, here we developed a method named here isotopic tagging of oxidized and reduced cysteines (iTORC). This method uses synthetic molecules for rapid isotopic coding of sulfenic acids, reduced cysteines, and disulfides in cells. Our approach utilizes isotopically distinct benzothiazine and halogenated benzothiazine probes to sequentially alkylate sulfenic acids, then free thiols, and finally, after a reduction step, cysteines oxidized to disulfides or other phosphine-reducible states. We ascertained that the iodinated benzothiazine probe has reduced cross-reactivity toward primary amines and is highly reactive with the cysteine of glutathione, with a calculated rate constant of $2 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$ (pH 8.0, 23 °C), i.e. 10–20 times faster than N-ethylmaleimide. We applied iTORC to a mouse hepatocyte lysate to identify known sulfenylated and disulfide-bonded proteins, including elongation factor 1-α1 and mouse serum albumin, and found that iTORC reliably detected their expected oxidation status. This method can be easily employed to study the effects of oxidants on recombinant proteins and cell and tissue extracts, and the efficiencies of the alkylating agents enables completion of all three labeling steps within two hours. In summary, we demonstrate here that halogenated benzothiazine-based alkylating agents can be utilized to rapidly measure the cellular thiol status in cells.

Cysteine residues are known targets of oxidation due to the nucleophilic and reactive nature of sulfur atoms. Reaction of the cysteine thiol with a variety of oxidants (e.g., H₂O₂) has proven to be an important cellular signaling event that can elicit a diverse number of responses, including transcriptional changes and enzymatic regulation (1). Previously studied redox sensitive proteins include peroxiredoxins, epidermal growth factor receptor, and protein tyrosine phosphatase 1B (2-5). Detecting and quantitating oxidatively modified cysteines is crucial to understanding their biological importance. One such oxidative modification is cysteine sulfonylation (Cys-SOH formation). Sulfenic acids can be reduced back to free thiol by reductants, and these protein modifications have short cellular half-lives (6). Additionally, sulfenic acids are involved in regulatory pathways and can directly function as enzymatic redox switches (7). This oxidative modification readily participates in a variety of reactions including disulfide bond formation with free thiols and further oxidation to sulfinic (Cys-SO₂⁻) and sulfonic (Cys-SO₃⁻) acids (8). Detection of sulfenic acids with 1,3-dicarbonyl moieties, particularly didehene, has been known for over 40 years (9).
Synthetic efforts have recently been made to improve the detection of sulfenic acids, with several successes (10-12). Specifically, benzothiazines are fast, selective alkylators of sulfenic acids and promising reagents for discovery of sites of sulfenylatation (1,13). We used a straightforward chemical procedure to synthesize three stable, distinct benzothiazine isotopomers, and two were further iodinated to react with reduced thiol moieties (Fig. 1). These iodinated reagents proved to be very efficient alkylators of cysteine thiols. Additionally, three structurally identical isotopically unique reagents provide a combination of two heavily used techniques to study thiol redox status (14,15). Our approach, Isotopic Tagging of Oxidized and Reduced Cysteines (iTORC), links the techniques of direct detection of sulfenic acids and the indirect detection of free and reducible thiols in a quantitative fashion (Fig. 1). iTORC uses sequential additions of these readily synthesized molecules, 1-[(2H7)-propyl]-1H-13C6-benzo[c][1,2]thiazin-4(3H)-one-4a,5,6,7,8a-2,2-dioxide (13C6-d7-pBTD), 3-iodo-1-(propyl-d7)-1H-benzo[c][1,2]thiazin-4(3H)-one 2,2-dioxide (d7-ipBTD), and then d0-ipBTD to alkylate sulfenic acids, free thiols, and reducible thiols, respectively (Fig. 1). Because of the reactivity and efficiency of these alkylating agents, all three labeling steps can be completed within two hours.

Results

Synthesis of benzothiazine probes

pBTD and ipBTD, with the appropriate isotopic substitutions, were readily synthesized in 32% and 20% overall yield, respectively, using the methods described. The synthesis of pBTD is a simple 3-step sequence (Supporting Information Scheme S1), and the 1-step iodination of pBTD yielded ipBTD in 70% yield.

Second-order rate constants for modifications

pBTD was reacted with the sulfenic acid-derivative of a dipeptide (N-carbobenzoxy-Cys-Val-OCH3) which is oxidized to a cyclic sulfenamide and ring-opens to form a sulfenic acid under aqueous conditions (Supporting Information Fig. S1) (11). The rate constant for the reaction of pBTD with the model sulfenic acid-containing dipeptide (Supporting Information Fig. S2B) was measured to be 1.7×10^3 M$^{-1}$ s$^{-1}$, which can be compared with the value estimated for dimesdone (12 M$^{-1}$ s$^{-1}$) and agrees with previously calculated rates reported for benzothiazine probes (11) (Supporting Information Fig. S2B, pH 8.0, 23 °C). The estimated rate constant for the reaction of ipBTD with the model peptide glutathione (GSH) was 2.0×10^5 M$^{-1}$ s$^{-1}$. In comparison to rate constants previously reported for N-ethylmaleimide (NEM) and 2-mercaptoethanol, ipBTD was found to alkylate cysteines 10 to 20-fold faster (Supporting Information Fig. S2C, pH 8.0, 23 °C) (16). To directly compare this rate with that of other alkylating agents in a pH-independent manner, ipBTD was reacted with 2-nitro-5-thiobenzoate, which has a pK_a of 4.4 (Supporting Information Fig. S2D, pH 7.4, 23 °C) (17). The rate constant was measured to be 2.8×10^5 M$^{-1}$ s$^{-1}$, compared with 2.2 M$^{-1}$ s$^{-1}$ reported for iodoacetamide (IAM) and 46 M$^{-1}$ s$^{-1}$ for NEM (17). Comparing ipBTD with IAM and NEM provides ~120,000- and 6,000-fold rate differences, respectively. A rate constant of only 17 M$^{-1}$ s$^{-1}$ was estimated for amine modification using the model N-α-acetyl-L-lysine, demonstrating a 104-fold selectivity for thiol over amine moieties for ipBTD (Supporting Information Fig. S2E, pH 8.0, 23 °C). Reaction of ipBTD with the sulfenic acid dipeptide mentioned earlier provided a rate constant of 4.3×10^3 M$^{-1}$ s$^{-1}$, indicating 100-fold selectivity toward free thiols (Supporting Information Fig. S2F, pH 8.0, 23 °C). Such cross-reactivity would produce a sulfoxide product (+16 Da), but using pBTD with an initial incubation time of one hour to alkylate sulfenic acids limits the cross-reactivity. Sulfoxide formation can also occur after the alkylation step, during sample handling, but proteins with all three labels (d_0, d_7, and 13C6-d7-pBTD-modified cysteines) should be oxidized at a similar rate under these conditions.

The high reactivity of ipBTD allows for fast and efficient labeling of reduced cysteines but comes with the drawback of instability. As with most α-haloketone alkylating agents, ipBTD is light sensitive. The reagent should be prepared fresh in acetonitrile in amber glass before each experiment. Adding 2 mM ipBTD in a reaction
provides an approximately 100-fold excess of ipBTD over cysteine. Under our reaction conditions (100 mM HEPPS, pH 8.0), a degradation rate of 0.0009 s⁻¹ was calculated, corresponding to a half-life of 13 minutes (Supporting Information Fig. S2G). In the course of a 15-minute alkylation procedure, 37% of the reagent would be remaining, still providing a high molar excess. From our time course experiment (Fig. 3), ~90% of cysteines were labeled within 2.5 minutes, suggesting that under these conditions enough of the probe remains active to complete alkylation in 15 minutes.

Validation of pBTD sulfenic acid and ipBTD thiol alkylation by LC-MS/MS

\(^{13}\)C₆-d₇-pBTD was reacted with the model sulfenic acid dipeptide (N-carbobenzoxy-Cys (SOH)-Val-OCH₃), and d₇⁻ and d₀⁻-ipBTD were reacted with the same dipeptide under reducing conditions (1 mM TCEP, to form the free thiol). The reaction mixtures were combined in equal parts and subjected to LC-MS/MS analysis (Fig. 2). Extracted ion chromatograms corresponding to the M+0, M+7, and M+13 for the modified dipeptide co-chromatographed, with the deuterated compounds being expectedly retarded (Fig. 2A, 2B, 2C, respectively). Smaller peaks with exactly the same mass (and UV spectra, not shown) eluted later and are likely diastereomers (due to the chiral center of carbon-3 of the reagent). Additionally, MS² spectra revealed mass shifts corresponding to M+0, M+7, and M+13 for the d₀⁻, d₇⁻, and \(^{13}\)C₆-d₇⁻-pBTD-modified dipeptide co-chromatographed, with the deuterated compounds being expectedly retarded (Fig. 2D, 2E, 2F, respectively). These results validate the ability of these reagents to selectively alkylate thiols or sulfenic acids and co-elute in HPLC. The use of the ratios of these three alkylating agents provides relative quantitation of reduced and oxidized thiols.

Time-course of alkylation by ipBTD and IAM

Either 20 mM IAM or 2 mM ipBTD was reacted with reduced Escherichia coli lysate for the indicated times; the proteins were digested with trypsin, and LC-MS/MS analysis was performed on the labeled peptides (Fig. 3). Even with the lower concentration of reagent (2 mM), ipBTD alkylation was ~90% complete within 2.5 minutes while iodoacetamide alkylation was not complete until 20 minutes, further demonstrating the high reactivity of ipBTD with free thiols.

Fluorescence visualization of ipBTD alkylation

Bovine serum albumin (BSA) was reduced and alkylated with ipBTD. The labeled BSA was separated via SDS-PAGE alone or with an unlabeled E. coli lysate background and excited using a UV transilluminator (commonly used for DNA agarose gels) (Fig. 4A). The emission of the labeled BSA was readily visible. The gel was then stained with Coomassie Brilliant Blue dye for comparison (Fig. 4B). ipBTD-labeled E. coli lysate was also separated via SDS-PAGE and excited using UV fluorescence (Fig. 4C) and then stained with Coomassie dye (Fig. 4D).

In order to address the possibility of amine reactivity of ipBTD, we performed another fluorescence experiment (Fig. 4E, 4F). BSA was reacted with ipBTD under nonreducing conditions and no alkylation (fluorescence) was observed (Fig. 4E). Under reducing conditions (1 mM TCEP), BSA was reacted with IAM (50 mM), the residual IAM was then quenched with DTT (25 mM), and ipBTD was added (Fig. 4E). No fluorescence was observed, suggesting that ipBTD is highly selective for reduced thiols under these conditions. Utilizing the fluorescent nature of these alkylating agents provides a facile method to ensure proper labeling and to identify proteins of interest for further analysis.

iTORC labeling of mouse hepatocytes

Freshly isolated hepatocytes from four mice were lysed, subjected to iTORC labeling, and submitted for LC-MS/MS peptide analysis. A total of 639 sulfenylated peptides (\(^{13}\)C₆-d₇⁻-pBTD-labeled) corresponding to 1,073 spectra were identified (Supporting Information Table S1). A total of 2,785 peptides were identified as d₇⁻-ipBTD-labeled, corresponding to 12,612 spectra, and 1,020 peptides were identified as d₀⁻-ipBTD-labeled, corresponding to 3,764 spectra (Supporting Information Table S1). Following analysis of several of the resulting peptides with Skyline, two proteins were selected to highlight the utility of iTORC (Fig. 4). Elongation factor 1-αl (Eef1a1) is known to oligomerize in a thiol-dependent fashion, with Cys-411 contributing in disulfide bond formation (presumably through sulfenic acid...
formation) and Cys-234 playing less of a role in this oligomerization (18). iTORC analysis showed a larger population of Cys-411 being oxidized, with some sulfonylation, and Cys-234 existing mostly as a free thiol (Fig. 4A), in agreement with the findings of Liu et al. (18). Eef1a1 plays a role in oxidative-stress induced apoptosis and measuring the redox status of its cysteines in cells using iTORC could help to further elucidate the mechanism. Additionally, three peptides from mouse serum albumin (a protein synthesized for secretion in hepatocytes) were found to be >95% oxidized, consistent with their known oxidation state, i.e. in disulfide bonds (Fig. 4B) (19).

Discussion

In summary, halogenated benzothiazine-based alkylating agents were synthesized and utilized to measure cellular thiol status. ipBTD has high reactivity toward thiol moieties and has a considerably faster reaction rate than the most commonly used alkylating agents, IAM and NEM. pBTD-alkylated proteins can be excited with UV (360 nm) fluorescence, adding to the utility of these reagents.

Concerns can be raised about the multistep labeling procedure due to possible thiol oxidation during the initial labeling of sulfenic acids and the potential for thiol-disulfide exchange during the reaction with pBTD. We have considered these issues and do not believe that they are factors, for five reasons.

First, our lysis buffer, in which the sulfenic acid labeling is performed, contains 100 U/ml catalase, which should remove the vast majority of oxidizing (H₂O₂) species. This enzyme limits the possibility of artifactual sulfenic acid formation after lysis.

Second, other labeling strategies for sulfenic acids also employ multi-stage labeling, e.g. the procedure reported by Seo and Carroll (12) with dimedone and iododimedone, which we have employed ourselves in the past (20,21). Thus, the sulfenic acid-specific reagents (either dimedone or pBTD) should be added first. Reisz et al. (22) report a series of rates and rate constants for reactions with Cys-46 of the peroxiredoxin protein AhpC, utilizing the classic reagents IAM and dimedone. Both the thiol and sulfenic acid (forms of Cys-46) reacted with IAM with very similar rate constants (0.15 and 0.10 M⁻¹ s⁻¹, respectively). Very similar rate constants were observed for the reaction of the protein (or a mutant) with dimedone. Thus, the proposal to mix reagents is not realistic. We are of the opinion that using faster reacting reagents is very advantageous in competing with the rates of thiol-sulfenic acid reaction (i.e., disulfide formation) that occur during the labeling procedure.

Adding selective reagents for sulfenic acids and free thiols at the same time, in principle, would be most ideal for prevention of post-lysis oxidation and thiol-disulfide interchange. To this end, a thiol-selective reagent was recently reported and is a very exciting advancement in specific reagents (23). However, our goal in designing our method was to compare differences in thiol oxidation using a global proteomics approach. MS quantitation is much more reliable for labeled peptides or whole proteins with isotopomeric ions because these species co-chromatograph, fragment identically, and have the same ionization efficiency and therefore can be measured easily and confidently by mass difference using high resolution mass spectrometry (HRMS). Additionally, a time course experiment recommended by one of the reviewers was conducted and we saw very little change in oxidation between 20 and 60 minutes, suggesting that 20 minutes is a sufficient preincubation time in the future (Fig. S4).

Third, rates of reaction of sulfenic acids with thiols have been measured and reported. The most complete and relevant set of rate constants was done with human serum albumin containing a single cysteine sulfenic acid, which was reacted with a variety of thiols (at pH 7.4) (24,25). 2-Nitro-5-thiobenzoate had a rate constant of 10⁵ M⁻¹ s⁻¹, and the alkyl thiols (cysteine derivatives) yielded rate constants of 2.9 - 55 M⁻¹ s⁻¹. Dimedone reacted with a sulfenic acid in albumin with a rate constant of 0.027 M⁻¹ s⁻¹. Thus, labeling with dimedone has a deficiency of poor competition with thiols (which will generate disulfides). The main point we emphasize here is that the rapid reaction of pBTD removes the sulfenic acid rapidly (k = 1700 M⁻¹ s⁻¹) before it can react with a thiol. Moreover, the high concentration of pBTD used (2 – 5 mM) makes this reaction even more competitive with any thiols in the sample (e.g., with the 10-fold dilution, the GSH concentration would be ≤ 0.5 mM). Thus,
we are of the opinion that the iTORC method is more quantitative in trapping sulfenic acids than dimedone. Admittedly the rate of reaction of a sulfenic acid with a thiol within a peroxiredoxin or similar antioxidant enzyme is much faster due to approximation (2) and such labile intermediates would not be trapped with our method. However, these faster disulfide-forming reactions will be detected by quantifying differences between the \(d_7 \) and \(d_0 \)-ipBTD modified cysteines.

Additionally, comparisons were made between cysteines detected with iTORC and recent studies on sulfenylated proteins and reversibly oxidized cysteine sites utilizing other probes. Sulfenylated proteins (Supporting Information, Table S1, cited by gene name) detected with \(^{13}\text{C}_6-d_7 \)-modifications showed 5% and 3% overlap with the results of use of the \(^1\text{H}-\text{benzo}[c][1,2]\text{thiazine-4(3H)-one} \) 2,2-dioxide probes from Gupta et al. and 4-(pent-4-yn-1-yl)cyclohexane-1,3-dione (DYn-2) from Yang et al., respectively (26,27). Considering that these two data sets both utilized the human RKO adenocarcinoma cell line and had a 26% overlap in sulfenylated protein identifications between each other, the 3-5% overlap observed with mouse hepatocytes in this study is indicative of similarity between basally oxidized proteins across cells of diverse origins and species. A comparison of proteins with basal reversible redox modifications from mouse RAW 264.7 macrophages as reported in Guo et al. (28) showed a 12% overlap with proteins detected with \(d_0 \)-modifications (i.e. reversibly oxidized). Of those shared proteins, 38% of cysteine sites were detected to be reversibly oxidized by both methods. Overall, these results demonstrate that the modifications with iTORC are comparable with previously published datasets.

Fourth, if the reaction of the sulfenic acid with ipBTD occurs, we would expect to observe a product with an added oxygen \((\text{M}+16) \) in our labeling procedure (Supporting Information Scheme S2). However, we have reanalyzed our proteomic data with thiol modifications corresponding to the thioether sulfoxides of each of the three isotopic labels and detected only very low amounts of peptides with such modification (Supporting Information Table S2). If the \(d_7 \)-ipBTD reagent had reacted with any sulfenic acids, we would expect a significant amount of oxidized thiols identified (Cys plus additional mass of 260.1 Da) compared to the reduced alkylation product (Cys plus additional mass of 244.1 Da). We did see some identification with this modification (4.2%), but the level was similar (in percentage) to the oxidized modifications identified in the \(d_0 \) channel, suggesting that this oxidation likely happened during the subsequent SDS-PAGE and digestion procedure. Additionally, there was very little overlap of cysteines (1.3%, 31 sites) detected having \(d_7 \) (2367 total sites) and \(d_0+\text{[O]} \)- (89 total sites) modifications, further supporting the conclusion that oxidation occurs at cysteine sites reduced after TCEP incubation.

The fifth and final point, regarding concern about interchange of the thiols and disulfides, is addressed in our albumin results (Fig. 5B). Albumin (including mouse albumin) is well-known to have all of its thiols in disulfide form except for Cys-34 (numbering for human). In general, rates of nonspecific thiol interchanges are known to be low, e.g. 0.01 – 2 M\(^{-1}\) s\(^{-1}\), except for reported high rates due to their production in enzymatic reactions (29). If thiol-disulfide exchange (including low molecular weight thiols such as those formed from GSH) was prevalent during the one-hour incubation with pBTD, we would observe a much greater population of “free” thiols at sites that are known to be contributing in disulfide bonds. However, relative quantitation for three separate peptides showed >87% reversibly-oxidized thiol, suggesting that these thiols are contributing in disulfide bonds. To further address concerns about potential thiol-disulfide interchange, iTORC was employed in two time-course experiments in which lysis of mouse hepatocytes was performed with or without \(^{13}\text{C}_6-d_7 \)-pBTD and then \(d_7 \)-ipBTD was added at varying time points after lysis. The change in the proportion of spectra modified with each probe was ≤ 5% relative to the reported workflow timeline with \(d_7 \)-ipBTD added 60 minutes after lysis (Supporting Information Fig. S4). Furthermore, the variation was lower in the time course with all three reagents added, suggesting that labeling by \(^{13}\text{C}_6-d_7 \)-pBTD first may limit disulfide exchange by alkylating the reactive sulfenic acid species (Supporting Information Fig. S4A).
Sequentially alkylating hepatocyte lysates with 13C$_6$-d_7-pBTD, d_7-, and d_0-ipBTD is a novel method, termed iTORC, which combines approaches for detecting the redox status of proteins and produces a structurally identical modification with isotopic differences easily separated by mass spectrometry. This methodology is a powerful tool for determining the effect of redox perturbations on protein thiols in vitro and in cell or tissue extracts.

Experimental procedures

Mouse models

The Vanderbilt University Animal Care and Use Committee approved all procedures. Mice were maintained in a facility accredited by the Association for Assessment and Accreditation of Laboratory Animal Care. Control male C57BL/6J mice were provided free access to rodent chow (PicoLab™ Laboratory Rodent Diet 5L0D, Purina, Richmond, IN) and water. Mice were housed in a temperature- and humidity-controlled room on a 12:12 hour light/dark cycle.

Chemical Synthesis

**Ethyl-2-amino-$^{[13}$C$_6$]-benzoate—13C$_6$-Anthranilic acid (1.0 g, 7.0 mmol, Cambridge Isotope Laboratories, Cambridge, MA) was dissolved in 20 ml of C$_2$H$_5$OH and sparged with HCl gas until saturated. The reaction was heated under reflux (60 °C, 1 h) and then evaporated to dryness in vacuo. The solid was then neutralized with 100 mM aqueous NaOH (75 ml) and the product was extracted three times with 50 ml of ethyl acetate. The liquid was then dried over anhydrous MgSO$_4$, filtered, and evaporated to dryness.

1H-NMR (CDCl$_3$, 600 MHz): δ 7.90 (qq, 1H, $J = 26.5$ Hz), 7.28 (quiqui, 1H, $J = 21.1$ Hz), 6.67 (m, 1H, $J = 20.6$ Hz), 5.74 (bs, 1H), 4.36 (q, 2H, $J = 7.3$ Hz), 1.41 (t, 3H, $J = 7.2$ Hz); 13C-NMR (CDCl$_3$, 150 MHz): δ 168.2, 150.4, 134.0, 131.2, 116.4, 111.1, 60.3, 14.4.

1-Propyl-1H-benzo[c][1,2]thiazin-4(3H)-one 2,2-dioxide (pBTD)—pBTD synthesis was based on a previously described procedure (31). pBTD (2.5 mmol in 4 ml CH$_3$CN) was reacted with N-iodosuccinimide (3 mmol in 4 ml CH$_3$CN) for 30 min at 25 °C. The reaction was extracted with 50 ml of ethyl acetate and the product (in the upper organic layer) was washed three times with 50 ml of H$_2$O, followed by one 50 ml wash with brine. The ethyl acetate layer was dried over anhydrous MgSO$_4$, filtered, and evaporated to dryness in vacuo. The crude reaction was purified by silica gel column chromatography using 15% ethyl acetate/hexanes (v/v), in 70% yield. 1H-NMR (CDCl$_3$, 600 MHz): δ 8.31 (dd, 1H), 7.71 (dt, 1H), 7.29 (dt, 1H), 7.25 (d, 1H), 5.92 (bs, 1H), 4.06 (t, 2H), 2.07 (qt, 2H), 1.14 (t, 3H); 13C-NMR (CDCl$_3$, 150 MHz): δ 181.1, 142.4, 136.5, 132.0, 124.5, 117.8, 117.1, 53.4, 34.9, 23.9, 11.1.

pBTD and ipBTD reaction with cyclic sulfoxamid dipeptide

13C$_6$-d_7-pBTD (100 µM, from a 1 mM stock in DMSO) was reacted with a 100 µM solution of a previously described cyclic sulfoxamide derivative of the dipeptide (N-carbobenzyox-Cys-Val-OCH$_3$ (Supporting Information Fig. S1), prepared as described (11)) for 15 minutes. The cyclic sulfoxamide dipeptide (100 µM, reduced with 100 µM TCEP) was reacted with either 100 µM d_7-ipBTD or d_0-ipBTD (1 mM stock in CH$_3$CN) for 15 min. The three samples were then mixed in equal parts and subjected to LC-MS/MS analysis. The mixed sample (10 µl) was loaded onto an Agilent Poroshell 120 SB-C18 column (2.1 mm x 100 mm, 2.7 µm) and separated...
using an Acquity UPLC (Waters) at a flow rate of 0.4 ml min⁻¹ with the following linear gradient: 5% solvent B (CH₃CN, 0.1% HCO₂H (v/v)), 95% solvent A (H₂O, 0.1% HCO₂H (v/v)) to 100% B over 8 minutes. The UPLC was interfaced with a Thermo Orbitrap mass spectrometer via an electrospray ionization source, in the negative ion mode. MS¹ was collected at a resolution of 30,000. Three MS² fragmentation scans were acquired in the linear ion trap throughout the gradient corresponding to the m/z for the ¹³C₆-d₇-pBTD, or d₀-pBTD alkylated dipeptide (617.2, 611.2, and 604.2, respectively).

ipBTD and IAM reactions with E. coli lysate

E. coli (DH5α) was grown overnight in 100 ml Terrific Broth media (Difco). Cells were pelleted by centrifugation (8,000 × g, 10 minutes), resuspended in 5 ml of lysis buffer (100 mM HEPES, 100 mM NaCl, pH 7.4), and probe sonicated (50% amplitude) for three 10-s bursts. Protein concentration was determined by a bicinchoninic acid assay (BioRad). The lysate (100 µg in 100 µl) was reacted with either 20 mM IAM (100 mM stock, H₂O) or 2 mM ipBTD (10 mM stock, CH₃CN) for the indicated times. Samples were quenched by the addition of 30 mM dithiothreitol (DTT) (1 M stock, H₂O) and then counter-alkylated with 125 µl of 200 mM NEM for 30 minutes. Samples were then loaded onto an SDS-PAGE gel (10% Bis-Tris, NuPAGE, Invitrogen), separated at 200 V, and stained with SimplyBlue SafeStain (Invitrogen). These samples were excised and subjected to in-gel trypsin digestion and LC-MS/MS analysis (32).

UV fluorescence visualization of SDS-PAGE gels

BSA (2 mg/ml, Pierce) was reduced with 1 mM TCEP for 30 min at 55 °C, and thiols were subsequently alkylated with 2 mM ipBTD (10 mM stock, CH₃CN) for 10 minutes. The reaction was quenched with 100 mM DTT (1 M stock, H₂O). BSA (5 µg) alone (or added to 15 µg of unlabeled *E. coli* lysate) was separated via SDS-PAGE and visualized with a UV transilluminator (360 nm) (Bio-Rad). The fluorophore pBTD was initially determined to have an excitation of 380 nm and an emission of 420 nm.

In a separate experiment, BSA was reacted with ipBTD (2 mM) under nonreducing conditions, as above. Under reducing conditions (1 mM TCEP), BSA was reacted with IAM (50 mM) for 30 min, the IAM was then quenched with DTT (25 mM) for 15 min, and ipBTD (2 mM) was added for 15 min. The different BSA samples (5 µg) were separated via SDS-PAGE and visualized with a UV transilluminator as above.

iTORC labeling of mouse hepatocytes

Hepatocytes from male C57BL/6J mice were isolated as previously described (33). Cells from each mouse (3 × 10⁶, n = 4) were pelleted via centrifugation (50 × g) and resuspended in 1.2 ml of lysis buffer (50 mM sodium HEPES (pH 7.6) containing 150 mM NaCl, 1% (v/v) IGEPAL, CA-630 (formerly Nonidet NP-40), and 100 U/ml catalase) with 5 mM ¹³C₆-d₇-pBTD (50 mM stock, DMSO) at 37 °C for 1 h to alkylate sulfenic acids. d₇-ipBTD (2 mM, from 10 mM stock, CH₃CN) was then added and reacted at 25 °C in the dark for 15 min to alkylate free thiols. The reaction was quenched by the addition of 50 mM DTT (1 M stock, H₂O) and precipitated with the addition of two volumes of CH₃CN. Proteins were precipitated via centrifugation (3,000 × g, 5 min). The pellet was washed with CH₃OH:H₂O (1:1, v/v) and briefly resuspended with one 10-s burst of probe sonication. After centrifugation (3,000 × g, 5 min), the pellet was resuspended in 500 µl of 100 mM HEPES buffer (pH 8.0) containing 5% SDS (w/v) and 1 mM TCEP, probe-sonicated for one 10-s bursts, and allowed to react for 30 min at 55 °C. d₀-ipBTD (2 mM, from 10 mM stock, in CH₃CN) was then added to alkylate the initially oxidized thiols. This reaction was again quenched with 50 mM DTT (1 M stock, in H₂O). SDS-PAGE sample loading buffer was added, and 100 µg of each sample was loaded onto an SDS-PAGE gel (10% Bis-Tris, NuPAGE, Invitrogen). Proteins were separated at 200 V and stained with SimplyBlue SafeStain (Invitrogen). These samples were excised and subjected to in-gel trypsin digestion prior to LC-MS/MS analysis (11).

LC-MS/MS analysis
Extracted *E. coli* lysate peptides were analyzed on a nanoLC Ultra system (Eksigent Technologies, Dublin, CA) interfaced with an LTQ Orbitrap XL mass spectrometer (Thermo Scientific, San Jose, CA). Approximately 5 µg of digested *E. coli* lysate was reconstituted in 0.1% HCO₂H (v/v) and pressure-loaded (1.5 µl min⁻¹) onto a 360 µm outer diameter (O. D.) × 100 µm inner diameter (I. D.) microcapillary analytical column packed with Jupiter octadecylsilane (C₁₈) (3 µm, 300 Å, Phenomenex) and equipped with an integrated electrospray emitter tip. Peptides were then separated with a linear gradient formed with 0.1% HCO₂H in H₂O (solvent A) and 0.1% HCO₂H in CH₃CN (solvent B) (v/v) by increasing from 2 to 45% B (v/v) over a period of 0 to 80 min at a flow rate of 500 nl min⁻¹. The spray voltage was set to 2.0 kV and the heated capillary temperature at 200 °C. Collision-induced dissociation (CID) MS/MS spectra were recorded in the data-dependent mode using a Top 7 method. MS¹ spectra were measured with a resolution of 70,000, an AGC target of 1e6, and a mass range from m/z 300 to 1,500. CID MS/MS spectra were acquired with a normalized collision energy of 30. Peptide m/z values that triggered MS/MS scans were dynamically excluded from further MS/MS scans for 20 s, with a repeat count of 1. For samples produced with mouse hepatocytes, an analytical column was packed with 20 cm of octadecylsilane (C₁₈) reversed-phase material (Jupiter, 3 µm beads, 300 Å, Phenomenex) directly into a laser-pulled emitter tip. Peptides (500 ng) were loaded on the capillary reversed phase analytical column (360 µm O.D., 100 µm I.D.) using a Dionex Ultimate 3000 nanoLC and autosampler. The mobile phase solvents consisted of 0.1% HCO₂H, 99.9% H₂O (solvent A) and 0.1% HCO₂H, 99.9% CH₃CN (solvent B) (v/v). Peptides were eluted at a flow rate of 400 nl min⁻¹. The 90 min gradient consisted of the following steps: 1-3 min, 2% B (sample loading from autosampler); 3-70 min, 2-40% B; 70-78 min, 40-95% B; 78-79 min, 95% B; 79-80 min, 95-2% B; 80-90 min (column re-equilibration), 2% B (all v/v). A Q-Exactive mass spectrometer (Thermo Scientific), equipped with a nanoelectrospray ionization source, was used to analyze the eluting peptides. The instrument method consisted of MS1 using an MS AGC target value of 1e6, followed by up to 20 MS/MS scans of the most abundant ions detected in the preceding MS scan. A maximum MS/MS ion time of 100 ms was used with an MS2 AGC target of 1e5 and an intensity threshold of 5e4. Dynamic exclusion was set to 15 seconds, HCD collision energy was set to 27 NCE, and peptide match and isotope exclusion were enabled.

Peptide data analysis

Raw data files were analyzed using MyriMatch software (Version 2.2.140) (34) against a decoy protein database consisting of a forward and reversed murine Uniprot/Swissprot database, with only reviewed proteins included, was used (Version 20150825–16,718 entries) or an *E. coli* database (4325 entries). Trypsin with fully specific digestion was used as the enzyme search parameter. The number of missed cleavages permitted was two. Precursor ion mass tolerance was set at 10 ppm, and the fragmentation tolerance was 20 ppm for the database search. Methionine oxidation (15.9949 Da, dynamic) and cysteine modifications by 13C₆-d₇-pBTD, d₇-ipBTD, or d₀-ipBTD (250.11003, 244.08990, and 237.04596 Da, respectively, dynamic) were included as variable search modifications. For the *E. coli* assays, an additional low-resolution search was performed with the same databases, where precursor ion mass tolerance was set at 10 ppm, and the fragmentation tolerance was 20 ppm for the database search. Methionine oxidation (15.9949 Da, dynamic) and cysteine modifications by 13C₆-d₇-pBTD, d₇-ipBTD, or d₀-ipBTD (250.11003, 244.08990, and 237.04596 Da, respectively, dynamic) were included as variable search modifications. For the *E. coli* assays, an additional low-resolution search was performed with the same databases, where precursor ion mass tolerance was set at 10 ppm, and the fragmentation tolerance was 20 ppm for the database search. Methionine oxidation (15.9949 Da, dynamic) and cysteine modifications by 13C₆-d₇-pBTD, d₇-ipBTD, or d₀-ipBTD (250.11003, 244.08990, and 237.04596 Da, respectively, dynamic) were included as variable search modifications. For the *E. coli* assays, an additional low-resolution search was performed with the same databases, where precursor ion mass tolerance was set at 10 ppm, and the fragmentation tolerance was 20 ppm for the database search. Methionine oxidation (15.9949 Da, dynamic) and cysteine modifications by 13C₆-d₇-pBTD, d₇-ipBTD, or d₀-ipBTD (250.11003, 244.08990, and 237.04596 Da, respectively, dynamic) were included as variable search modifications. For the *E. coli* assays, an additional low-resolution search was performed with the same databases, where precursor ion mass tolerance was set at 10 ppm, and the fragmentation tolerance was 20 ppm for the database search. Methionine oxidation (15.9949 Da, dynamic) and cysteine modifications by 13C₆-d₇-pBTD, d₇-ipBTD, or d₀-ipBTD (250.11003, 244.08990, and 237.04596 Da, respectively, dynamic) were included as variable search modifications. For the *E. coli* assays, an additional low-resolution search was performed with the same databases, where precursor ion mass tolerance was set at 10 ppm, and the fragmentation tolerance was 20 ppm for the database search. Methionine oxidation (15.9949 Da, dynamic) and cysteine modifications by 13C₆-d₇-pBTD, d₇-ipBTD, or d₀-ipBTD (250.11003, 244.08990, and 237.04596 Da, respectively, dynamic) were included as variable search modifications. For the *E. coli* assays, an additional low-resolution search was performed with the same databases, where precursor ion mass tolerance was set at 10 ppm, and the fragmentation tolerance was 20 ppm for the database search. Methionine oxidation (15.9949 Da, dynamic) and cysteine modifications by 13C₆-d₇-pBTD, d₇-ipBTD, or d₀-ipBTD (250.11003, 244.08990, and 237.04596 Da, respectively, dynamic) were included as variable search modifications.

Acknowledgments: We thank Prof. Ambra Pozzi (Vanderbilt University) for help in optimizing the method. Mass spectrometry was performed at the Vanderbilt Mass Spectrometry Resource Core (MSRC) and at the MSRC Proteomics Core Facility. We also thank K. Trisler for assistance in the preparation of the manuscript.

Author contributions: MEA designed and conducted the experiments and analyzed the results. SMG...
conducted some of the experiments and analyzed the results. ET prepared the hepatocytes. FPG and MEA conceived the studies, evaluated the results, and wrote the paper.
References

1. Parvez, S., Long, M. J. C., Poganik, J. R., and Aye, Y. (2018) Redox signaling by reactive electrophiles and oxidants. Chem. Rev. 118, 8798-8888

2. Portillo-Ledesma, S., Randall, L. M., Parsonage, D., Dalla Rizza, J., Karplus, P. A., Poole, L. B., Denicola, A., and Ferrer-Sueta, G. (2018) Differential kinetics of two-cysteine peroxiredoxin disulfide formation reveal a novel model for peroxide sensing. Biochemistry 57, 3416-3424

3. Tavender, T. J., Springate, J. J., and Bulleid, N. J. (2010) Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum. EMBO J. 29, 4185-4197

4. Truong, T. H., Ung, P. M., Palde, P. B., Paulsen, C. E., Schlessinger, A., and Carroll, K. S. (2016) Molecular basis for redox activation of epidermal growth factor receptor kinase. Cell Chem. Biol. 23, 837-848

5. Zhou, H., Singh, H., Parsons, Z. D., Lewis, S. M., Bhattacharya, S., Seiner, D. R., LaButti, J. N., Reilly, T. J., Tanner, J. J., and Gates, K. S. (2011) The biological buffer bicarbonate/CO₂ potentiates H₂O₂-mediated inactivation of protein tyrosine phosphatases. J. Am. Chem. Soc. 133, 15803-15805

6. Gupta, V., and Carroll, K. S. (2014) Sulfenic acid chemistry, detection and cellular lifetime. Biochim. Biophys. Acta 1840, 847-875

7. Devarie-Baez, N. O., Silva Lopez, E. I., and Furdui, C. M. (2016) Biological chemistry and functionality of protein sulfenic acids and related thiol modifications. Free Radic. Res. 50, 172-194

8. Albertolle, M. E., and Guengerich, F. P. (2018) The relationships between cytochromes P450 and H₂O₂: Production, reaction, and inhibition. J. Inorg. Biochem. 186, 228-234

9. Benitez, L. V., and Allison, W. S. (1974) The inactivation of the acyl phosphatase activity catalyzed by the sulfenic acid form of glyceraldehyde 3-phosphate dehydrogenase by dimedone and olefins. J. Biol. Chem. 249, 6234-6243

10. Carroll, K. S., and Gupta, V. (2018) Targeted covalent probes and inhibitors of proteins containing redox-sensitive cysteines. U.S. Patent 9,977,024

11. Gupta, V., and Carroll, K. S. (2016) Profiling the reactivity of cyclic C-nucleophiles towards electrophilic sulfur in cysteine sulfenic acid. Chem. Sci. 7, 400-415

12. Seo, Y. H., and Carroll, K. S. (2011) Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone. Angew. Chem. Int. Ed. Engl. 50, 1342-1345

13. Fu, L., Liu, K., Ferreira, R. B., Carroll, K. S., and Yang, J. (2018) Proteome-wide analysis of cysteine S-sulfenylation using a benzothiazine-based probe. Curr. Protoc. Protein. Sci. e76

14. Alcock, L. J., Perkins, M. V., and Chalker, J. M. (2018) Chemical methods for mapping cysteine oxidation. Chem. Soc. Rev. 47, 231-268

15. Prakash, A. S., Kabli, A. M. F., Bulleid, N. J., and Burchmore, R. (2018) Mix-and-match proteomics: Using advanced iodoTMT multiplexing to investigate cysteine oxidation changes with respect to protein expression. Anal. Chem. 90, 24, 14173-14180

16. Bednar, R. A. (1990) Reactivity and pH dependence of thiol conjugation to N-ethylmaleimide: detection of a conformational change in chalcone isomerase. Biochemistry 29, 3684-3690

17. Hansen, R. E., and Winther, J. R. (2009) An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations. Anal. Biochem. 394, 147-158

18. Liu, T., Yang, Y., Wang, D., Xiao, Y., Du, G., Wu, L., Ding, M., Li, L., and Wu, C. (2015) Human eukaryotic elongation factor 1A forms oligomers through specific cysteine residues. Acta. Biochim. Biophys. Sin. (Shanghai) 47, 1011-1017

19. Sigrist, C. J., De Castro, E., Langendijk-Genevaux, P. S., Le Saux, V., Bairoch, A., and Hulo, N. (2005) ProRule: a new database containing functional and structural information on PROSITE profiles. Bioinformatics 21, 4060-4066
20. Albertolle, M., Phan, T. T. N., Pozzi, A., and Guengerich, F. P. (2018) Sulfenylation of human liver and kidney microsomal cytochromes P450 and other drug metabolizing enzymes as a response to redox alteration. *Mol. Cell. Proteomics* 17, 889-900

21. Albertolle, M. E., Kim, D., Nagy, L. D., Yun, C. H., Pozzi, A., Savas, Ü., Johnson, E. F., and Guengerich, F. P. (2017) Heme-thiolate sulfenylation of human cytochrome P450 4A11 functions as a redox switch for catalytic inhibition. *J. Biol. Chem.* 292, 11230-11242

22. Reisz, J. A., Bechtold, E., King, S. B., Poole, L. B., and Furdui, C. M. (2013) Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. *FEBS J.* 280, 6150-6161

23. Chen, X., Wu, H., Park, C. M., Poole, T. H., Keceli, G., Devarie-Baez, N. O., Tsang, A. W., Lowther, W. T., Poole, L. B., King, S. B., Xian, M., and Furdui, C. M. (2017) Discovery of heteroaromatic sulfones a s a new class of biologically compatible thiol-selective reagents. *ACS Chem. Biol.* 12, 2201-2208

24. Alvarez, B., Carballal, S., Turell, L., and Radi, R. (2010) Formation and reactions of sulfenic acid in human serum albumin. *Methods Enzymol.* 473, 117-136

25. Turell, L., Botti, H., Carballal, S., Ferrer-Sueta, G., Souza, J. M., Duran, R., Freeman, B. A., Radi, R., and Alvarez, B. (2008) Reactivity of sulfenic acid in human serum albumin. *Biochemistry* 47, 358-367

26. Gupta, V., Yang, J., Liebler, D. C., and Carroll, K. S. (2017) Diverse redoxome reactivity profiles of carbon nucleophiles. *J. Am. Chem. Soc.* 139, 5588-5595

27. Yang, J., Gupta, V., Carroll, K. S., and Liebler, D. C. (2014) Site-specific mapping and quantification of protein S-sulphenylation in cells. *Nat. Commun.* 5, 4776

28. Guo, J., Gaffrey, M. J., Su, D., Liu, T., Camp, D. G., 2nd, Smith, R. D., and Qian, W. J. (2014) Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. *Nat. Protoc.* 9, 64-75

29. Shaked, Z., Szajewski, R. P., and Whitesides, G. M. (1980) Rates of thiol-disulfide interchange reactions involving proteins and kinetic measurements of thiol pKₐ values. *Biochemistry* 19, 4156-4166

30. Volovenko, Y., Volovnenko, T., and Popov, K. (2007) N-alkyl-4-chloro-1H-benzo [c][1, 2]thiazine-3-carbaldehyde-2, 2-dioxides—New functional benzothiazine derivatives. *J. Heterocycl. Chem.* 44, 1413-1419

31. Sreedhar, B., Reddy, P. S., and Madhavi, M. (2007) Rapid and catalyst-free α-halogenation of ketones using N-halosuccinamides in DMSO. *Synthetic Commun.* 37, 4149-4156

32. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., and Mann, M. (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. *Nat. Protoc.* 1, 2856-2860

33. Foretz, M., Hebrard, S., Leclere, J., Zarrinpashneh, E., Soty, M., Mathieu, G., Sakamoto, K., Andreelli, F., and Viollet, B. (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. *J. Clin. Invest.* 120, 2355-2369

34. Tabb, D. L., Fernando, C. G., and Chambers, M. C. (2007) MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. *J. Proteome Res.* 6, 654-661

35. Holman, J. D., Ma, Z. Q., and Tabb, D. L. (2012) Identifying proteomic LC-MS/MS data sets with Bumbershoot and IDPicker. *Curr. Protoc. Bioinformatics* Chapter 13, Unit13.17
Footnotes

The abbreviations used are: BSA, bovine serum albumin; CID, collision-induced dissociation; DTT, dithiothreitol; Eef1a1, elongation factor 1-α1; GSH, glutathione; HRMS, high resolution mass spectrometry; IAM, 2-iodoacetamide; ipBTD, 3-iodo-1-propyl-1H-benzo[c][1,2]thiazin-4(3H)-one 2,2-dioxide; iTORC, isotopic tagging of oxidized and reduced cysteines; NEM, N-ethylmaleimide; pBTD, 1-propyl-1H-benzo[c][1,2]thiazin-4(3H)-one 2,2-dioxide; TCEP, tris(2-carboxyethyl)phosphine.

This work was supported, in whole or in part, by National Institutes of Health Grants R01 GM118122 (to F. P. G), F31 HL136133 (M.E.A.), T32 ES007028 (F.P.G., S.M.G.), F31 DK112553 (E.T.), R37 DK050277 (E.T.), and R01 DK054902 (E.T.) and American Heart Association Predoctoral Fellowship PRE33410007 (M.E.A.) The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors declare that they have no conflicts of interest with the contents of this article.
Figure 1. iTORC methodology. When proteins are exposed to an oxidant, e.g. H$_2$O$_2$, sulfinic acids can be formed, and these sulfinylated cysteines react with thiols to form disulfides or other oxidized moieties. 13C$_6$-d_7-pBTD reacts with these proteins to alkylate sulfinic acids. d_7-ipBTD is then added to the protein to alkylate free thiols. The sample is then reduced and d_0-ipBTD is added to alkylate the oxidized cysteines (-SSR and other TCEP-reducible thiol species) after their reduction. Digestion with trypsin and subsequent LC-MS/MS analysis identifies cysteine-containing peptides labeled with 13C$_6$-d_7, d_7, and d_0-pBTD moieties, and relative quantitation can be performed. *pr*: propyl. The mass of pBTD is 239, so the addition of this entity adds 237 a. m. u. to a thiol group and thus 237, 244, or 250 a. m. u., depending on the isotopic substitution.
Figure 2. Alkylation of dipeptide with $^{13}\text{C}_6$-d_7-pBTD and d_7- and d_0-ipBTD. A synthetic sulfenic acid dipeptide (11) was reacted with $^{13}\text{C}_6$-d_7-pBTD and with d_7- or d_0-ipBTD in the presence of TCEP. The three separate reactions were combined and LC-MS/MS was performed. Extracted ion chromatograms: A, d_0-; B, d_7-; C, $^{13}\text{C}_6$-d_7-pBTD. The corresponding fragmentation patterns are shown: D, MS/MS of 604.2 m/z d_0-; E, MS/MS of 611.2 m/z d_7-; F, MS/MS of 617.2 m/z $^{13}\text{C}_6$-d_7-pBTD.
Figure 3. Comparison of rates of reactions of alkylation agents and fluorescence visualization of pBTD-labeled proteins. *E. coli* lysate was reacted with either IAM (20 mM) or ipBTD (2 mM) for the indicated times and the number of labeled cysteine-containing peptide spectrum matches (PSMs) were reported. The average total number of PSMs was 4223 and 4513 for IAM and ipBTD, respectively.
Figure 4. Fluorescence visualization of pBTD-labeled proteins. A, BSA was alkylated with ipBTD and separated via SDS-PAGE alone (left lane) or in the presence of unlabeled *E. coli* lysate (right lane) and visualized with a UV transilluminator. B, the gel was then stained with Coomassie Brilliant Blue for comparison. C, ipBTD-alkylated *E. coli* lysate was separated via SDS-PAGE and visualized with a UV transilluminator. D, the same gel was then stained with Coomassie Brilliant Blue for comparison. E, BSA was reacted with ipBTD under nonreducing conditions: lane 1, no ipBTD added; lane 2, BSA reacted with ipBTD. Under reducing conditions (1 mM TCEP), BSA was reacted with IAM (50 mM) for 30 min, the IAM was then quenched with DTT (25 mM), and after 15 min ipBTD was added for 15 min: lane 3, BSA reduced but no ipBTD added; lane 4, BSA reduced and incubated with IAM before adding ipBTD; lane 5, BSA reduced and treated with ipBTD. F, the same gel (for part E) was then stained with Coomassie Brilliant Blue for comparison.
Figure 5. iTORC labeling of isolated mouse hepatocytes. iTORC labeling: A, elongation factor 1A1; B, albumin. Results are presented as means ± SD (range) of duplicate assays.
Isotopic tagging of oxidized and reduced cysteines (iTORC) for detecting and quantifying sulfenic acids, disulfides, and free thiols in cells
Matthew E. Albertolle, Sarah M. Glass, Elijah Trefts and F. Peter Guengerich

J. Biol. Chem. published online March 8, 2019

Access the most updated version of this article at doi: 10.1074/jbc.AC118.007225

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts