Using Data Mining Algorithms to Discover Regular Sound Changes among Languages

Peter Z. Revesz1, a

1 Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA

Abstract. This paper presents a method of using association rule data mining algorithms to discover regular sound changes among languages. The method presented has a great potential to facilitate linguistic studies aimed at identifying distantly related cognate languages. As an experimental example, this paper presents the application of the data mining method to the discovery of regular sound changes between the Hungarian and the Sumerian languages, which separated at least five thousand years ago when the Proto-Sumerian reached Mesopotamia. The data mining method discovered an important regular sound change between Hungarian word initial /f/ and Sumerian word initial /b/ phonemes.

1 Introduction

Regular sound changes between two languages indicate that they are cognate, that is, derive from a common ancestor [11]. A set of languages with a common ancestry is called a language family. Linguists studying various language families, for example the Indo-European language family, already found many examples of regular sound changes without the use computers [11]. Table 1 shows some examples from Pellard et al. [14]. In particular, the words in Table 1 illustrate the regular sound change from /b/ to /g/ between Greek and Sanskrit and the regular sound change from /g/ to /k/ between Sanskrit and Tokharian B.

English	Greek	Sanskrit	Tokharian B
cow	boûs (bouç)	gav-	keu
come	bainû (bavvo)	gam-	kâm-
-	barûs (bêpuç)	guรุ-	krâ-mâr

Table 1. Examples of regular sound changes in Indo-European languages by Pellard et al. [14].

The abundance of cognate words, as exists for example between English and German, suggests a relatively recent separation of the two languages. In such cases, it is feasible to manually search for word pairs with regular sound changes. However, if two languages are only distantly related, then the search for regular sound changes becomes as difficult as looking for a needle in a haystack. Hence for more distantly related languages, the use of automated data mining techniques would become necessary to use.

In this paper we describe a data mining method for looking for cognate pairs of words in pairs of languages. We also apply the data mining method to the study of distant relationships between Hungarian and Sumerian languages. The Sumerian language is generally considered a language isolate, while Hungarian is classified to be a member of the Uralic language family. Nevertheless, Sumerian and Hungarian were already claimed to be cognate by Badiny [1], Baráth [2], Bobula [3], Csőke [4], Gosztony [6], Götz [7], Parpola [13], Tóth [24] and Zakar [27]. Sumerian and Tamil were also claimed to be cognate by Muttarayan [12]. However, Honti [9] pointed out that previous researchers did not find a satisfying set of regular sound changes between Hungarian and Sumerian. That situation contrasts greatly to the situation within the Uralic language family where many regular sound changes were already found [9].

Sumerian was spoken and written using a cuneiform script in Mesopotamia from around 3200 to 2000 BC. Although many historians trace the origin of Hungarians to the area north of the Caucasus Mountains, Hungarian is currently spoken mostly in present day Hungary and some neighboring countries in central Europe.

Therefore, there is a great temporal and geographic separation of Sumerian and Hungarian, which means that any possible relationship can only be a distant relationship. Therefore, the use of data mining algorithms could be very beneficial in this case.

The rest of this paper is organized as follows. Section 2 describes the data sources, including all the dictionaries used, and the representation of the input data. Section 3 presents the results of our data mining and a discussion of the results. Section 4 provides related works. Finally, Section 5 gives some conclusions and directions for future work.

2 Data sources

In this section, we first describe the dictionaries used in this study (Section 2.1), and then the representation of the input data (Section 2.2).
2.1 Sumerian and Hungarian dictionaries

Parpola’s *Etymological Dictionary of the Sumerian Language* [13] describes the Uralic etymologies for over three thousand Sumerian words. Table 2 from Revesz [21] shows some of the etymologies from Parpola’s dictionary.

In Table 2 the first column is the equivalent English word or a short description of the meaning in English, the second, third and fourth columns give the Hungarian, Uralic and Sumerian cognate words, respectively. The last column is the entry number of the Sumerian word from Parpola’s dictionary. The third column is a combination of Parpola and Zaicz [27]. The language in which a word occurs is indicated as a superscript but is omitted when it is obvious which language we discuss.

In Table 2 we highlighted in red the corresponding consonants. For example, in the first row the Hungarian consonant /ty/ corresponds to the geminate consonants /tt/ in Finnish and /dd/ in Sumerian. In addition to Parpola’s dictionary, we also considered the ePDS, the online version of the *Pennsylvania Dictionary of Sumerian* [22].

We found many possible cognate Sumerian and Hungarian word pairs using the ePDS and Zaicz [27].

2.2 Representation of the input data

After the data collection described in Section 2.1, we represented all pairs of Hungarian and Sumerian cognate words by an ARFF file as shown in Fig. 1. The ARFF file uses six attributes. The first three attributes are for the initial, medial and final consonants of the Hungarian words by an ARFF file as shown in Fig. 1. The ARFF file represented all pairs of Hungarian and Sumerian cognate words using six attributes. The first three attributes are for the initial, medial and final consonants of the Hungarian words, the second, third and fourth columns give the Hungarian, Uralic and Sumerian cognate words, respectively. The last column is the entry number of the Sumerian word from Parpola’s dictionary. The third column is a combination of Parpola and Zaicz [27]. The language in which a word occurs is indicated as a superscript but is omitted when it is obvious which language we discuss.

In Table 2 we highlighted in red the corresponding consonants. For example, in the first row the Hungarian consonant /ty/ corresponds to the geminate consonants /tt/ in Finnish and /dd/ in Sumerian. In addition to Parpola’s dictionary, we also considered the ePDS, the online version of the *Pennsylvania Dictionary of Sumerian* [22].
For example, for the cognate word pair of Hungarian *atya* and Sumerian *adda*, which we saw in the first row of Table 2, the initial and the final consonants are missing while the medial consonants are /ty/ and /dd/, respectively. Hence the first line of data, that is, "(empty, ty, empty, empty, d, empty)" as shown in Fig. 1 represents the consonants in this pair of words. There were a total of 177 records in our data.
3 Experimental results

3.1 Association rules found

We used an association rule data mining [15] algorithm that was implemented within the Weka system. The association rule data mining learns association rules given as input data a number of itemsets. In typical applications, the itemsets are the set of items that are purchased together by customers. If they are purchased together by a large number of customers, then their association has a large support. The main motivation for association rule data mining was that if a customer purchased some items, then other items that are frequently associated with the purchased items could be suggested to the customer.

Our application of association data mining moves well beyond the original intended application, but it is still very intuitive. If a strong association is found between two different Hungarian and Sumerian consonants in the same (initial, medial or final) position, then it indicates a regular sound change between those two consonants.

We had to experiment with different parameters for the association rule data mining. We used minimum metric (or confidence) = 0.7 and minimum support = 0.05, which required nine instances supporting the rule found. With these parameters, the Weka association rule data miner found the ten best rules shown in Fig. 2. The non-trivial rules, where there was an actual sound change, were rules 2, 7, 9, and 10. However, these four rules are just minor variations of the following main rule:

\[\text{init-cons} = f \Rightarrow \text{init-cons} = b \quad (I) \]

The above rule means that if the Hungarian initial consonant is /f/, then the Sumerian initial consonant is /b/. We can find the following examples of Rule (I) in the input database:

Hungarian	~	Sumerian
fa	~	pa
fejsze	~	pa-a-su
fészke	~	pisag
fog	~	pag
fon	~	pan

Clearly, the above set of instances cannot be all ignored. What broader context is that the Hungarian word initial /f/ corresponds to the Sumerian word initial /b/ if the Sumerian medial consonant is a liquid /l or /r/ but it corresponds to the word initial /p/ otherwise. That can be summarized by the following association rules:

\[\text{init-cons} = f, \text{medial-cons} = l \Rightarrow \text{medial-cons} = b \quad (II) \]
\[\text{init-cons} = f, \text{medial-cons} = r \Rightarrow \text{medial-cons} = b \quad (III) \]
\[\text{init-cons} = f, \text{medial-cons} \neq l, \text{medial-cons} \neq r \Rightarrow \text{medial-cons} = p \quad (IV) \]

4 Related works

Revesz [21], an earlier, manual attempt to find regular sound changes between Hungarian and Sumerian, already described sound change rules (II), (III) and (IV). The regular sound change rules show that Hungarian and Sumerian are cognate languages. In addition, Revesz [21] classified the *Éuphratic* language, which is a proto-Sumerian language or substrate according to Whittaker [25], into the *West-Ugric* branch of the Uralic language family, which is within the Ugric branch together with the *Ob-Ugric* branch [9] that contains the Khanty and Mansi languages now spoken in Northwestern Siberia.

According to the recent translations of the Minoan Linear A script [20], the Cretan Hieroglyphic script [18, 19], and the Phaistos Disk [17], the Minoan language can be also classified as West-Ugric. Moreover, the Minoan scripts show some similarities to the Old Hungarian script [16], which is also called rovásírás in Hungarian and also written sometimes as Rovas in English language publications.

However, similarity of scripts is not a proof of similarity of language because some scripts could be widely adopted and used to write languages that belong to different language families. Indeed, members of the Cretan Script Family [16], which includes Cretan Hieroglyphs, Linear A, Old Hungarian, as well as Linear B, the Carian alphabet, and Tifinagh, all adopted the same ancient script.

![Figure 2. The ten rules found by the Weka association rule data miner.](https://doi.org/10.1051/matecconf/201929203018)
5 Conclusions and future work

We presented a method of using association rule data mining algorithms for the automatic discovery of regular sound changes between a pair of languages. In the future we plan to expand this work to consider more than two languages. For example, in Table 1 compares four languages. Since there are only three rows none of the discovered associations would have more than three itemsets as support. That may be considered too low between a pair of languages. However, when four languages exhibit a complex regular sound change as shown in Table 1, then the association found can be considered to be a strong evidence. The reason is that each row of Table 1 is equivalent to six different pairs of languages. Hence it makes sense to apply data mining simultaneously to all languages within a language family.

Regular sound changes also need to be studied together with grammar with the aim of discovering novel similarities between the Hungarian [11] and the Sumerian grammars [5]. Finally, Rules (I-IV) can be expressed as constraint database rules [10], whose implications can be also studied using computer algorithms.

References

1. F. J. Badiny, New lines for a correct Sumerian phonetics to conform with the cuneiform scripts, Proc. 29th Int. Congress of Orientalists, (1973)
2. T. Baráth, A Magyar Népek Östörténete (The Prehistory of the Hungarian People), Vols. 1-5, (Somogyi Publ., Franklin Park, New York, USA, 1974)
3. I. Bobula, Sumerian affilations; A plea for reconsideration, manuscript, (Washington D.C., USA, 1951)
4. S. Csőke, Szumir-Magyar Egyeztető Szótár (Sumerian-Hungarian Correspondences Dictionary), (Türáni Akadémia Publishing, Buenos Aires, Argentina, 1974)
5. D. A. Foxvog, Introduction to Sumerian Grammar, manuscript, (University of California at Berkeley, 2012)
6. K. Gosztony, Dictionaire D'etymologie Sumerienne et Grammaire, (De Boccard, Paris, France, 1975)
7. L. Götz, Keleten Kél a Nap (The Sun Rises on the East), (Püski Publishing., Budapest, Hungary, 1989)
8. L. Honti, Characteristic features of Ugric languages (observations on the question of Ugric unity), Acta Linguistica Academiae Scientiarum Hungaricae, 29, 1/2, pp. 1-26, (1979)
9. L. Honti, ed., A Nyelvorkonsággról - Az török, Sumer és Egyéb Áltam Ellen Való Orvosság, (Tinta Publishing, Budapest, Hungary, 2010)
10. P.C. Kanelakis, G.M. Kuper, P.Z. Revesz, J. of Comp. and Sys. Sciences, 51, 1, pp. 26-52, (1995).
11. J. Kiss and F. Pusztaí, eds., A Magyar Nyelvtörténet Kézikönyve (Tinta Publ., Budapest, Hungary, 2018)
12. K. L. Muttarayan, Sumerian, Tamil of the First Cankam, J. of Tamil Studies, 8, pp. 40-61, (1975)
13. S. Parpola, Etymological Dictionary of the Sumerian Language, Vols. 1 and 2, (Foundations for Finnish Assyriological Research, Helsinki, Finland, 2016)
14. T. Pellard, L. Saquant, and G. Jacques, L'indo-européen n'est pas un mythe, Bulletin de la Société de Linguistique de Paris, Peeters Publishers, 113 (1), pp. 79–102, (2018)
15. P. Z. Revesz, Introduction to Databases: From Biological to Spatio-Temporal, (Springer, New York, 2010)
16. P.Z. Revesz, Bioinformatics evolutionary tree algorithms reveal the history of the Cretan script family, Int. Journal of Applied Mathematics and Informatics, 10, pp. 67-76, (2016)
17. P.Z. Revesz, A computer-aided translation of the Phaistos Disk, Int. Journal of Computers, 10, pp. 94-100, (2016)
18. P.Z. Revesz, A computer-aided translation of the Cretan Hieroglyph script, Int. Journal of Signal Processing, 1, pp. 127-133 (2016)
19. P.Z. Revesz, A translation of the Arkalochori Axe and the Malia Altar Stone, WSEAS Transactions on Information Science and Applications, 14, 1, pp. 124–133, (2017)
20. P.Z. Revesz, Establishing the West-Ugric language family with Minoan, Hattic and Hungarian by a decipherment of Linear A, WSEAS Transactions on Information Science and Applications, 14, 1, pp. 306–335, (2017)
21. P.Z. Revesz, Sumerian contains Dravidian and Uralic substrates associated with the Emegir and Emeš dialects, WSEAS Transactions on Information Science and Applications, 16, 1, pp. 8-30, (2019)
22. The Pennsylvania Sumerian Dictionary, Available: http://psd.museum.upenn.edu
23. M.-L. Thomsen, The Sumerian Language: An Introduction to its History and Grammatical Structure, (Akademisk Forlag, Copenhagen, Denmark, 1984)
24. A. Tóth, Hungarian, Sumerian and Egyptian. Hungarian, Sumerian and Hebrew: Two Addenda to the Etymological Dictionary of Hungarian, (Mikes International, Hague, Netherlands, 2007)
25. G. Whittaker, The case for Euphonic, Bulletin of the Georgian National Academy of Sciences, 2, 3, pp. 156-168, (2008)
26. G. Zaicz, chief editor, Etimológiai Szótár: Magyar Szavak és Toldalékok Eredete, (Tinta Publishing, Budapest, Hungary 2006).
27. A. Zakar, Sumerian-Ural-Altaic Affinities, Current Anthropology, 12, 2, pp. 215-216, (1971)