Supporting Information

Methoxy-Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of *Acinetobacter baumannii* by Inhibiting *ompA* Gene Expression

Dušan Ušjak, Miroslav Dinić, Katarina Novović, Branka Ivković, Nenad Filipović, Magdalena Stevanović, and Marina T. Milenković*

Supporting information for the article:
Ušjak, Dušan, Dinić, Miroslav, Novović, Katarina, Ivković, Branka, Filipović, Nenad, Stevanović, Magdalena, Milenković, Marina T., "Methoxy-Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of *Acinetobacter baumannii* by Inhibiting *ompA* Gene Expression" in Chemistry & Biodiversity, 18, no. 1 (2021):e2000786, https://doi.org/10.1002/cbdv.202000786
Methoxy-Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of *Acinetobacter baumannii* by Inhibiting *ompA* Gene Expression

Dušan Ušjak, a Miroslav Dionić, b Katarina Novović, b Branka Ivković, c Nenad Filipović, d Magdalena Stevanović, d and Marina T. Milenković*, a

a Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia

b Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, 11010 Belgrade, Serbia

c Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia

d Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35IV, 11000 Belgrade, Serbia

* E-mail address for correspondence: marinama@pharmacy.bg.ac.rs
Supplementary Figure S1. Biofilm production of two A. baumannii strains treated with compounds 1-4, each at 70 μg ml⁻¹, compared to control, expressed as OD values of the extracted safranin dye at 490 nm. Data are presented as mean values of three experiments (± SD). *P < 0.05, **P < 0.01, ***P < 0.001 compared to the control group.
Supplementary Figure S2. Effects of compound \(\text{1} \) on \(A. \baumannii \) cell growth at three different sub-MICs compared to control. Data are presented as mean values of three experiments (± SD).
Spectral data of previously published compounds:

\((E)-1\text{-}(2\text{-hydroxyphenyl})\text{-}3\text{-}(2\text{-methoxyphenyl})\text{-}prop\text{-}2\text{-en\text{-}1\text{-one}} (1)\)

Yellow crystals, Yield: 89.05%, m.p. 101.4 °C . IR (ATR): 1637.1, 1599.4, 1487.2, 1463.2, 1338.9, 1301.8, 1250.1, 1161.4, 1107.8, 1022.7, 865.5, 804.2, 726.7, 662.8. \(^1H\) NMR (400 MHz, CDCl\(_3\)): 12.93 (s, -OH, 1H); 8.25 (d, J=15.6, a, 1H); 7.94 (d, J=8, ArH-C(6'), 1H); 7.81 (d, J=15.6, b, 1H); 7.66 (d, J=8, ArH-C(6), 1H); 7.51 (t, J=8, ArH-C(4'), 1H); 7.43 (t, J=8, ArH-C(4), 1H); 7.03-6.92 (m, ArH-C(3), ArH-C(3'), ArH-C(3'), ArH-C(3'), 4H); 3.95 (s, -CH\text{3}, 3H). \(^{13}C\) NMR (100 MHz, CDCl\(_3\)): 194.33; 163.61; 159.07; 141.14; 136.13; 132.18; 129.71; 129.66; 123.71; 120.87; 120.83; 120.24; 118.74; 118.57; 111.35; 55.62. HRMS (ESI) m/z calcd for C\(_{16}\)H\(_{14}\)O\(_3\) [M]+ 254.281 found 254.900.
Supplementary Figure S3. 1H NMR spectrum of compound 1.
Supplementary Figure S4. 13C NMR spectrum of compound 1.
Supplementary Figure S5. 1H NMR spectrum of compound 2.
Supplementary Figure S6. 13C NMR spectrum of compound 2.
Supplementary Figure S7. 19F NMR spectrum of compound 2.
Supplementary Figure S8. 1H NMR spectrum of compound 3.
Supplementary Figure S9. 13C NMR spectrum of compound 3.
Supplementary Figure S10. 19F NMR spectrum of compound 3.
Supplementary Figure S11. 1H NMR spectrum of compound 4.
Supplementary Figure S12. 13C NMR spectrum of compound 4.
Supplementary Figure S13. ^{19}F NMR spectrum of compound 4.