Calbindin D28k-Immunoreactivity in Human Enteric Neurons

Institut für Anatomie und Zellbiologie

Der Medizinischen Fakultät
der Friedrich-Alexander-Universität
Erlangen-Nürnberg
zur
Erlangung des Doktorgrades Dr. med.
vorgelegt von
Katharina Zetzmann aus Hildburghausen
Als Dissertation genehmigt
von der Medizinischen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg
Tag der mündlichen Prüfung: 29.06.2021

Vorsitzender des Promotionsorgans: Prof. Dr. med. Markus F. Neurath

Gutachter/in: Prof. Dr. Axel Brehmer
Pro. Dr. Stefanie Kürten
„Für meine Oma Elfi und meine Eltern“
Table of content

1 Deutsche Zusammenfassung .. 1
 1.1 Hintergrund und Ziele ... 1
 1.2 Methoden .. 1
 1.3 Ergebnisse und Beobachtungen ... 2
 1.4 Schlussfolgerungen ... 2
2 Einordnung in den fachwissenschaftlichen Kontext ... 3
3 Original paper ... 13
 3.1 References ... 14
4 Attachement .. 17
 4.1 List of figures ... 17
 4.2 List of tables .. 18
5 List of publications .. 18
6 Acknowledgement .. 19
7 Curriculum vitae .. 19
1 Deutsche Zusammenfassung

1.1 Hintergrund und Ziele

Calbindin (CALB) ist ein calcium-bindendes Protein, das als immunhistochemischer Marker für intrinsische primär-afferente Neuronen (IPANs) im Meerschweinchendarm etabliert ist [5]. Studien im menschlichen Enterischen Nervensystem zeigten, dass IPANs hier anders als im Meerschweinchendarm chemisch kodiert sind [10], ein spezifisches Vorkommen in anderen Neuronentypen konnte bislang nicht erbracht werden.

Ziel dieser Studie war eine quantitative Analyse calbindin-positiver Neuronen im menschlichen Dünn- und Dickdarm sowie die Beantwortung der Frage, ob Calbindin einer bestimmten Neuronenpopulation zugeordnet werden kann. Dabei wurden mögliche Co-Lokalisationen mit weiteren Antikörpern gegen Calretinin (CALR), Somatostatin (SOM) und Vasoaktives Intestinales Peptid (VIP) berücksichtigt.

1.2 Methoden

Es wurden 26 Dick – und Dünndarmsegmente von Tumorpatient/innen verwendet, die Zustimmung der Ethikkommission der Friedrich-Alexander-Universität lag hierfür vor. Die Segmente wurden zu Präparaten des Plexus myentericus und des Plexus submucosus verarbeitet („Häutchenpräparation“) und vierfach immunhistochemisch gefärbt. Hierbei wurde ein „panneuronaler“ Marker antiHU C/D (HU) verwendet, um den Anteil von Teilpopulationen bestimmen zu können. Markierte Ganglien in den Präparaten wurden mit einem Konfokalen Fluoreszenzmikroskop digitalisiert, die quantitative Auswertung erfolgte mithilfe der Software „Volocity“.
1.3 Ergebnisse und Beobachtungen

CALB-positive Neuronen machten im Dünndarm 31% und im Dickdarm 25% aller myenterischen Neuronen aus. In der Submukosa waren dies ca. 80% aller Nervenzellen. Während hier CALB-positive Neuronen mehrheitlich (ca. 75%) Co-Reaktivität mit VIP und CALR zeigten, war eine solche mit SOM nur ausnahmsweise zu finden. Im Gegensatz dazu zeigten die myenterischen CALB-positiven Neuronen keine Co-Reaktivität für die untersuchten Marker (HU ausgenommen).

Co-Färbungen mit dem Strukturmarker Neurofilament (NF) zeigten, dass CALB-Neuronen im Dünndarm oft eine Typ III-Morphologie zeigten: Neuronen dieses Typs sind langdendritische uniaxonale Nervenzellen. Spezifisch ist dieser Marker für Typ III-Zellen allerdings nicht, da das Protein auch in Nicht-Typ III-Zellen gefunden wurde.

1.4 Schlussfolgerungen

CALB konnte immunhistochemisch in allen ganglionären Nervengeflechten des menschlichen Dünn- und Dickdarms nachgewiesen werden. Ein besonders hohes Vorkommen zeigte sich in den submukösen Plexus, was in Kontrast zu früheren Studien steht [8].

Anders als im klassischen Modelltier des ENS, dem Meerschweinchen, ist CALB im menschlichen Darm nicht als spezifischer Marker für „sensorische“ IPANs geeignet. Stattdessen kommt es in mehreren (sowohl myenterischen als auch submukösen) Neuronenpopulationen vor, u.a. in den morphologisch auffälligen Typ III-Neuronen des Dünndarms.
2 Einordnung in den fachwissenschaftlichen Kontext

Zum Autonomen (Vegetativen, Viszeralen) Nervensystem des Menschen gehört neben dem „Sympathikus“ und dem „Parasympathikus“ das Enterische Nervensystem (ENS). Im Vergleich zum Somatischen Nervensystem funktioniert das Vegetative Nervensystem weitgehend unwillkürlich (z.B. die Innervation der glatten Muskulatur oder der endo – und exokrinen Drüsen) und relativ autonom, jedoch nicht unabhängig vom Zentralen Nervensystem [45].

Das ENS stellt in diesem Zusammenhang eine Besonderheit dar. Schon der Physiologe Langley beschrieb 1900 eine Aufteilung der autonomen Nerven in sympathische, parasympathische und Eingeweidenerven [45]. Erst viel später, manifestiert durch die erste (und vergleichsweise sehr späte) Monographie zum ENS (Furness, Costa 1987), wurde diese Sicht bestätigt und das ENS als ein System von Nervenzellen und Glia beschrieben, welches in den Wänden des gastrointestinatraltraktes und der Gallenblase sowie in der Bauchspeicheldrüse lokalisiert ist und in teils erheblichem Ausmaß autonom funktioniert [41]. Bemerkenswert sind z.B. die große Anzahl von enterischen Nervenzellen (ein Mehrfaches der Neuronenzahl des Rückenmarks), deren funktionelle Heterogenität sowie die Eigenschaften der enterischen Glia, die mehr der Glia des Zentralen als der des restlichen Peripheren Nervensystem ähnelt [42].

Die Neuronen des ENS sind in intramuralen Nervengeflechten („Plexus“) lokalisiert, dies sind mehretagige Nervennetze in den Wänden von Ösophagus-, Magen- sowie Dünn- und Dickdarmwand. Ganglionäre Plexus enthalten die in Gruppen („Ganglien“) beisammen liegenden Nervenzellkörper, welche durch Bündel von langen Nervenzellfortsätzen („Axonen“) zu einem Geflecht verbunden sind. Aganglionäre Plexus bestehen hauptsächlich aus Axonen ohne regulär eingelagerte Nervenzellkörper, während enterische Gliazellen überall das enterische Nervengewebe komplettieren. Beide Plexuskategorien durchsetzen alle Schichten des Rumpfdarms (vom oberen Ösophagussphinkter bis zum inneren Analsphinkter).
Diese auch „ganglionäre Plexus“ genannten Strukturen sind die in der Submukosa lokalisierten Plexus submucosus internus (Meissner) und externus (Schabadasch) sowie der zwischen Längs- und Ringmuskulatur gelegene Plexus myentericus (Auerbach).

Die erste Beschreibung des Plexus submucosus erfolgte durch Meissner (1857). Er bezeichnete die Submukosa als „eine nervenreiche Schicht, die die Muskelhaut des Darms an die Schleimhaut heftet“ [46]. Zuerst unterteilt wurde der Plexus submucosus durch Schabadasch (1930), der beim Affen eine Unterscheidung in zwei topografisch und strukturell unterschiedliche Geflechte beschrieb [47]. Stach definierte den Plexus submucosus internus (Meissner) und den Plexus submucosus externus (Schabadasch) [49] im Schweinedünndarm. In dieser Spezies beherbergen beide submuköse Geflechte qualitativ verschiedene Populationen von Nervenzellen, also morphologisch, immunhistochemisch und auch elektrophysiologisch unterscheidbare Nervenzellen. Obwohl auch in der menschlichen Submukosa von Dünn- und Dickdarm eine topografische Trennung in ein internes (Meissner-) und ein externes (Schabadasch-) Teilgeflecht bestätigt wurde, sind hier (mit nur quantitativen Differenzen in der neuronalen Zusammensetzung) wahrscheinlich beide für die Regulation von Schleimhautprozessen zuständig, der äußere enthält womöglich zusätzlich auch Nervenzellen für die Ringmuskulatur [12-15].

Der Plexus myentericus wurde erstmalig durch Auerbach (1862) beschrieben. Dieser liegt zwischen Ring- und Längsmuskelschicht und ist v.a. für die Peristaltik zuständig [32].

Aganglionäre Plexus sind regulär frei von Nervenzellkörpern und finden sich in verschiedenen Gewebsschichten. Von luminal beginnend finden sich der besonders nervenfasерreiche Plexus mucosus, weiter der Plexus muscularis mucosae, der Plexus submucosus extremus (als äußerster submuköser Plexus), die Plexus der Ring- und der Längsmuskulatur, die in der jeweiligen Muskelfaserverlaufsrichtung angelegt sind, sowie der Plexus subserosus unterhalb der Serosa [34].
Die erheblich autonome Funktionsweise des Magen-Darm-Traktes beschrieben bereits Bayliss und Starling (1899). Sie wiesen einen intrinsischen Reflexmechanismus nach, der Darminhalt durch „Peristaltik“ von oral nach anal transportieren kann: Darminhalt löst lokal eine Kontraktion der glatten Muskulatur unmittelbar oral des Bolus aus sowie unmittelbar aboral (=anal) davon Dilatation. Sympathikus und Parasympathikus können bremsend oder (die Muskeltätigkeit) anregend einwirken, sind für den Grundreflex in Dünn- und Dickdarm jedoch nicht zuständig [33]. Aufgrund seines komplexen Reflexgeschehens, das auch die Steuerung muköser Funktionen einschließt, wird das ENS auch als „Kleines Gehirn“ oder „Bauchgehirn“ bezeichnet [59]. Verschiedene Teilpopulationen enterischer Neuronen sind die Hauptbestandteile dieses Reflexgeschehens.

Zur Identifizierung und Charakterisierung unterschiedlicher Neuronenpopulationen steht ein vielfältiges Methodenspektrum zur Verfügung, das sich auch gegenwärtig stetig erweitert. Entscheidend im hier behandelten Zusammenhang sind dafür zwei morphologische Kriterien, die jeweils unterschiedliche methodische Ansätze zu ihrer Analyse erfordern: die dendritische Architektur der Neuronen als deren Hauptrezeptorregion für eintreffende Signale [17;18;56] sowie die axonale Projektion, die man mittels Tracing-Techniken zur Klärung von Zielzellen und -geweben (als Empfänger der neuronalen Signale) bestimmen kann [43;58]. Die chemische Kodierung der Zellkörper (als Stoffwechselzentrum der Zelle auch zuständig für die Produktion neuroaktiver Substanzen) ist in methodischer Kombination mit jeweils einer der beiden vorgenannten Methoden und Kriterien das Bindeglied (s.u.) für die Gesamtbeurteilung eines Neuronentyps und der Zuordnung zu einer oder mehrerer Funktionen im Gesamtnetzwerk des ENS.

Die morphologische Beurteilung dendritischer Strukturen wurde durch den russischen Histologen Alexander S. Dogiel (1899) begründet. Die schon von ihm angewandte Häutchenpräparation ermöglicht durch Aufsicht auf die gefärbten Ganglien (v.a. aus dem Meerschweinchendarm) die Beurteilung von Länge und Form der Fortsätze unversehrter, nicht durch histologische Schnitte zerteilter Nervenzellen [34].
Dogiel's Typ I Neuronen haben kurze lamelläre Dendriten, im Gegensatz dazu weisen Typ II Neuronen mehrere lange, jedoch keine kurzen Fortsätze auf. Da Dogiel ein Anhänger der seinerzeit vielfach vertretenen Synzytiumtheorie des Nervensystems war, führte seine Unterteilung in „kurze und lange“ Fortsätze nicht zwangsläufig zur heutigen Vorstellung von „Dendriten und Axonen“ (siehe hierzu im Gegensatz die Neuronentheorie des Nervensystems, faktisch von Ramon y Cajal begründet [17]). Nur unklar wurden von Dogiel daher seine Typ III Neuronen mit langen, dünnen Dendriten von Typ II Neuronen unterschieden und deshalb für Jahrzehnte vergessen [17]. Heute scheint klar, dass Typ III-Neuronen in verschiedenen Spezies verschiedene Funktionen ausfüllen (s.u.).

Die Erweiterung der morphologischen (Dogiel'schen) Klassifikation erfolgte durch Stach in den 1980er Jahren durch Analyse von Neuronen in versilberten Häutchen-(Plexus-)Präparaten aus dem Dünnarm des Schweins. Er berücksichtigte dabei die Kombination zweier unabhängiger morphologischer Parameter, die sich in den versilberten Häutchenpräparaten durch eindeutige histologische Unterscheidung von Dendriten und Axonen der Nervenzellen bestimmen ließen: der Architektur der kurzen Fortsätze („Dendriten“) und der Projektiionsrichtung der langen Fortsätze („Axone“) der Neuronen.

Typ I Neuronen im Schweinedarm sind multidendritisch und uniaxonal [51]. Die Dendriten sind typisch lamellär endend, radiär angeordnet und kurz, die Axone verlaufen größtenteils oralwärts („aszendierend“). Funktionell wurden Typ I Neuronen dabei als Interneurone oder Motoneurone angesehen, sie sind cholinerg und enthalten meist Enkephalin [44].

Typ II Neuronen sind adendritisch und multiaxonal. Die Axone verlaufen dabei sowohl vertikal, also zwischen den Plexus myentericus und submucosus, als auch zirkulär in der Ebene des Plexus myentericus [52]. Im Schweinedünndarm enthalten sie Calcitonin Gene Related Peptide (CGRP) [38;48;57]. Aufgrund von funktionellen Untersuchungen konnten multiaxonaler Charakter und Projektiionsrichtung im Meerschweinchendünndarm bestätigt werden, außerdem werden sie (in allen bislang untersuchten Spezies) als IPANs angesehen [5]. Furness et al. (1990) konnten weiterhin im Meerschweinchendünndarm eine Immunreaktivität der myenterischen Typ II Neuronen mit CALB nachweisen [5].
Dieser Befund war ein grundlegender Ansatzpunkt zur Erstellung der vorliegenden Arbeit. Für uns hat sich die Frage gestellt, ob CALB im menschlichen Darm ebenfalls als Marker für einen bestimmten Neuronentyp nutzbar ist (s.u.).

Typ III Neuronen zeigten sich im Schweinedünndarm uniaxonal und multidendritisch [53]. Sie haben im Gegensatz zu Typ I-Neuronen lange, schlanke, verzweigte, spitz endende Dendriten und unterschieden sich auch in der Projektionsrichtung vom Typ I: im Gegensatz zu diesen projizierten Typ III Neuronen nach anal. Im Schweinedünndarm wurden Typ III Neuronen in allen Abschnitten in abnehmender Häufigkeit nach anal gefunden. Eine chemische Kodierung ließ sich als nitrerg und serotoninerg (Serotonin, 5-HT) charakterisieren [17].

Typ IV Neuronen des Schweinedünndarms zeigten einen exzentrisch gelegenen Zellkern, kurze, spitz zulaufende Dendriten und – zur Abgrenzung von den anderen Typen entscheidend - Axone, die ausnahmslos vertikal, über die Submukosa zur Schleimhaut projizieren [35;50;54]. Sie sind cholinerg und enthalten außerdem SOM [17].

Typ V Neurone zeigten sich ebenfalls multidendritisch und uniaxonal, sie treten als Einzelzellen und in Aggregaten mit spezifischen Dendritenbündeln auf. Sie sind immunhistochemisch durch die Co-Lokalisation von SOM und CGRP gekennzeichnet (Brehmer 2002b: im Gegensatz zu Typ II: nur CGRP und im Gegensatz zu Typ IV: nur SOM) und repräsentieren wahrscheinlich deszendierende (nach anal projizierende) Interneuronen [39;55].

Als morphologisches Kennzeichen der Typ VI Neurone gelten feine, spitze sog. „Axondendriten“, abgehend vom Axonursprung. Sie sind cholinerg, ihre Projektionsrichtung ist größtenteils analwärts gerichtet. Sie sind, im Gegensatz zu den anderen Typen, in hypertrophiertem Schweinedarm durch eine ausgeprägte Soma- und Dendritenhypertrophie aufgefallen, was eine prämotorische (interneuronale) oder motorische Funktion nahelegt [34;36;37]. Sie enthalten die periphere Variante der Cholin Acetyl-Transferase und gleichzeitig der Stickstoffmonoxid-Synthase (NOS) [40].
Stach et al. beschrieb 2000 einen weiteren speziellen Typ VII Neuronentyp, der sich vorwiegend im Duodenum und im proximalen Jejunum auffinden ließ. Diese Neuronentypen wurden im Hund- und Schweinedarm gefunden. Die Neuronen projizierten vorwiegend nach anal und zeigten chemische Kodierungen für VIP, CALB und CALR [19].

Die mit verschiedenen neurowissenschaftlichen Methoden gewonnenen Kenntnisse über Strukturen und Funktionen des Enterischen Nervensystems in verschiedenen Tiermodellen (v.a. Meerschweinchen, auch Schwein, Ratte Maus) können aufgrund von teils signifikanten Speziesdifferenzen nicht unmittelbar in der menschlichen Neurogastroenterologie genutzt werden. Für die morphologische Identifizierung und Charakterisierung enterischer Neuronenpopulationen im Menschen stehen zwei prinzipielle Methoden zur Verfügung. Die ältere (seit Dogiel 1899) färbt mit unterschiedlichen histologischen und neuerdings immunhistochemischen Techniken Zellkörper und Fortsätze an. Hinzu kommen die seit den 1980/90er Jahren etablierten Tracing-Techniken, die die axonalen Zielstrukturen identifizieren können. Da beide jeweils mit der immunhistochemischen Markierung des Zellkörpers kombiniert werden können, sind mit letzterer (der sog. chemischen Kodierung) Aussagen über somanahe Fortsatzmorphologie und Ziel der axonalen Projektion möglich.

Dabei zeigen sich grundsätzliche Übereinstimmungen mit den an Tiermodellen erzielten Ergebnissen (z.B. die in allen Spezies übereinstimmende Morphologie sog. intrinsischer primär-affenter Neuronen – IPANs, die von Dogiel 1899 erstbeschrieben und deren multiaxonale Fortsatzstruktur von Stach 1981 erstcharakterisiert wurde) genauso wie Unterschiede (z.B. in der chemischen Kodierung der o.g. IPANs).

Im menschlichen Plexus myentericus sind darüber hinaus zwei verschiedene, vormals für (Dogiel-) Typ I-Neuronen gehaltene Populationen zu unterscheiden:

„Spiny“ Typ I Neuronen haben kurze, spitze Dendriten. Sie projizieren zumeist nach anal und enthalten die neuronale-NOS und VIP [17] und sind deszendierende Motor-, teils auch Interneuronen.
„Stubby“ Typ I Neuronen haben kurze, aber plumpere Dendriten. Sie projizieren (im Dünndarm) nach oral, sind cholinerg und enthalten teils zusätzlich Enkephalin [31]. Sie sind wahrscheinlich aszendierende Inter- und/oder Motoneuronen [17].

Die sog. „Dogiel-Typ-II-Neuronen“ sind insofern schon morphologisch auffällig, als dass sie keine Dendriten, jedoch mehrere Axone besitzen (sog. adendritische, multiaxonale Neuronen). Der Anteil dieser Typ II-Neuronen, die beim Meerschweinchen als „sensorisch“ (IPANs) charakterisiert wurden und die diese Funktion sehr wahrscheinlich auch beim Menschen ausfüllen, konnte im menschlichen Dünndarm auf ca. 10% aller myenterischen Neuronen bestimmt werden [10, 11].

Zu Typ III-Neuronen konnten in vorliegender Studie neue Befunde erhoben werden (s.u.).

Menschliche Typ V Neuronen sind cholinerg und im Gegensatz zum Schweinedarm, wo sie eher im Ileum gehäuft auftreten, eher im oberen Dünndarm zu finden [17]. Über diese ebenfalls morphologisch auffälligen Nervenzellen ist bislang wenig bekannt.

Von den oben beschriebenen myenterischen Neuronentypen sowohl morphologisch als auch immunhistochemisch (und somit funktionell) zu unterscheiden sind die bislang beschriebenen submukösen Neuronentypen, die (nahezu) alle cholinerg sind. Submuköse adendritische Neuronen enthalten zusätzlich Somatostatin, während die submukösen dendritischen Neuronen mit Antikörpern gegen Vasoaktives Intestinales Peptid und (mehrheitlich) gegen Calretinin färbbare sind. Axone mit diesen jeweiligen spezifischen Kodierungen konnten ausschließlich in der Mukosa nachgewiesen werden, d.h., beide Populationen sind muköse Effektorneuronen. Im Plexus submucosus externus (Schabadasch) des Menschen konnte zusätzlich eine kleine, inkonstante Population nitrerger Neuronen identifiziert werden, die möglicherweise in die Ringmuskulatur projiziert [15]. Etwa 20% der menschlichen submukösen Neuronen sind bislang weder morphologisch noch immunhistochemisch charakterisiert.
Wichtige Unterschiede zwischen oben beschriebenen Neuronentypen des Menschen zeigten sich auch in pathologischer Hinsicht. Bei der v.a. in ländlichen lateinamerikanischen Regionen endemische Chagas-Krankheit bilden etwa 20% der chronisch Erkrankten ein „Chagas-Megakolon“ aus. Diese durch den Verlust jeglicher Motorik bedingte chronische Erweiterung des Kolons ist nach Untersuchungen der 1960er bis -70er Jahre durch weitgehenden Verlust (myenterischer) Nervenzellen bedingt. Erneute Analysen des Neuronenbesatzes betroffener Darmsegmente zeigten allerdings, dass (1) im Plexus myentericus v.a. nitrerge Neuronen – v.a. in den Übergangszenonen zum chronisch dilatierten Darmsegment – überleben und, mehr noch, dass (2) die VIP-positiven submukösen Neuronen gleichfalls überleben. Da für letztere v.a. eine auf den Erhalt der mukösen Barriere der Kolon-Schleimhaut gerichtete Funktion nachgewiesen werden konnte, ist erklärbar, warum Patienten mit (abschnittsweisen) myenterischem Neuronenverlust und kompletter Lähmung der Kolonmuskulatur Jahrzehnte überleben können – die (weitgehend) erhaltene Barrierefunktion der Kolon-Schleimhaut ermöglicht dies [3]. Es zeigte sich im Rahmen dieser Studien zum einen, dass mit den pathologischen Veränderungen des Enterischen Nervensystems (dem praktisch kompletten Verlust nicht-nitrerger und nicht-VIPerger Neuronen) allein das Chagas-Megakolon nicht erklärbar war, hierfür sind auch Schädigungen an der Muskulatur selbst und deren Schrittmacherzellen (Interstitielle Cajal-Zellen) zu berücksichtigen. Zum anderen ließ sich erklären, dass das „Chagas-Megakolon“ einer völlig anderen Pathogenese unterliegt als das hierzulande deutlich bekannte „Hirschsprung-Megakolon“ [3].

Nach ihrer Stellung im neuronalen Netzwerk des ENS unterscheidet man drei Gruppen von Neuronentypen: Die intrinsischen primär-afferenten Neuronen (IPANs), mehrere Populationen von Interneuronen sowie die verschiedene Zielzellen innervierenden Effektorneuronen.

IPANs nehmen Reize direkt oder indirekt, durch Zwischenschaltung anderer Zelltypen, Veränderungen der Umgebung wahr (z.B. Dehnung der Darmwand oder chemische Reize) und leiten Nervensignale an Inter- und direkt an Effektorneuronen weiter. IPANS entsprechen dem morphologischen Typ II, sie sind adendritisch und multiaxonal [5].
Interneuronen können sowohl erregend als auch hemmend auf Effektorneuronen wirken.

Letztere aktivieren oder hemmen wiederum nicht-nervale Zellen der glatten Muskulatur, der Epithelien und Drüsen, der Blutgefäße und des Immunsystems. Die Aktivierung bzw. Hemmung der effektorischen Neurone oder Motorneurone erfolgt über Transmitter, wie beispielsweise Acetylcholin oder Substanz P (SP), welche aktivierend auf muskarinerge Rezeptoren der glatten Muskelzellen wirken. Als hemmende Transmitter sind Stickstoffmonoxid (NO) und VIP beschrieben [34,59].

Das Ziel dieser Studie war zunächst die Darstellung der Verteilung der Neuronen, die sich in ihrer chemischen Codierung für CALB in allen Dünn – und Dickdarmabschnitten in Zusammenhang mit den drei Plexus des enterischen Nervensystem positiv zeigten. Dafür wurde der Anteil der CALB-positiven Neuronen in Relation zur gesamten Neuronenpopulation, welche durch den Antikörper anti-HU C/D (HU) markiert wurden, bestimmt. Zusätzlich wurden neuronale Co-Lokalisationen von CALB mit den Antikörpern für CALR, VIP und SOM in allen Darmabschnitten untersucht. Weiterhin sollte die Frage beantwortet werden, ob CALB als Marker für bestimmte Neuronentypen genutzt werden kann.

Auch bei unserer Häutchenpräparation verblieb der Plexus myentericus auf der Längsmuskulatur und der darunterliegenden Serosa haften. An diesen (ungeschnittenen) Präparaten erfolgte die immunhistochemische 4-fach-Inkubation mit den verschiedenen Antikörpern. Die Digitalisierung der gefärbten Ganglien am konfokalen Fluoreszenzmikroskop ging der Quantifizierung der Zellpopulationen (mithilfe des Programms „Volocity“) voraus.

Im Meerschweinchendünndarm wurde nachgewiesen, dass Typ II-Neuronen den „sensorischen“ IPANs entsprechen sowie durch CALB- Antikörper spezifisch anfärbbar sind. Im Schweinedünndarm konnten Typ II-Neuronen (mutmaßliche IPANs) spezifisch durch CGRP markiert werden. Menschliche myenterische Typ II-Neuronen dagegen zeigten sich immunreaktiv für CALR, SOM und Substanz P. Daraus leitete sich die Frage ab, ob CALB im
menschlichen ENS andere Neuronentypen anfärbt, wenn ja, ob womöglich spezifisch (s.u.)?

Brehmer et al. (2004) konnten den Nachweis einer Co-Lokalisation von Calretinin und Somatostatin im menschlichen, myenterischen Typ II Neuronen finden [10]. Kustermann et al. (2011) fanden dagegen, dass beide Substanzen in den submukösen Plexus morphologisch deutlich unterschiedliche Neuronentypen markierten [13]. Beyer et al. (2013) zeigten, dass fast alle submukösen Neuronen Acetylcholintransferase-positiv waren (anders als im Plexus myentericus) und, dass Somatostatin meist mit Substanz P kolokalisiert war [14]. Beuscher et al. (2014) wiesen außerdem eine häufige Co-Färbung CALR-positiver Neuronen mit vasoaktiven intestinalen Peptid (VIP) nach.

Aufgrund dieser Voruntersuchungen zur Charakterisierung morphologischer Eigenschaften und der daraus resultierenden Auswahl von Antikörpern zur immunhistochemischen Färbung der Neuronen galt unser Hauptaugenmerk dem Verteilungsmuster des kalziumbindenden Proteins Calbindin D28k.

Neben der Beschreibung und Markierung der Typ II Neuronen im Meerschweinchenmodell gibt es zahlreiche Befunde über das Vorkommen von Calbindin D28k im zentralen Nervensystem des Menschen und in anderen Spezies. Im Gegensatz dazu gab es bisher lediglich Hinweise zum Vorkommen von Calbindin im menschlichen ENS, jedoch nicht zum spezifischen Verteilungsmuster auf bestimmte Neuronenpopulationen. Somit untersuchten wir auch in Hinsicht auf sein Potenzial als Marker spezifischer Neuronentypen seine Lokalisation in allen Unterregionen und Geflechten der menschlichen Dünn- und Dickdarmsegmente.
3 Original paper
Calbindin D28k-Immunoreactivity in Human Enteric Neurons

Katharina Zetzmann 1, Johanna Strehl 2, Carol Geppert 2, Stefanie Kuerten 1, Samir Jabari 1 and Axel Brehmer 1,*

1 Institute of Anatomy and Cell Biology, University of Erlangen-Nuremberg, Krankenhausstraße 9, D-91054 Erlangen, Germany; katharina.zetzmann@gmx.de (K.Z.); stefanie.kuerten@fau.de (S.K.); samir.jabari@fau.de (S.J.)
2 Institute of Pathology, University of Erlangen-Nuremberg, Krankenhausstraße 8-10, D-91054 Erlangen, Germany; johanna.strehl@uk-erlangen.de (J.S.); carol.geppert@uk-erlangen.de (C.G.)
* Correspondence: axel.brehmer@fau.de; Tel.: +49-9131/852-2831

Received: 18 December 2017; Accepted: 4 January 2018; Published: 8 January 2018

Abstract: Calbindin (CALB) is well established as immunohistochemical marker for intrinsic primary afferent neurons in the guinea pig gut. Its expression by numerous human enteric neurons has been demonstrated but little is known about particular types of neurons immunoreactive for CALB. Here we investigated small and large intestinal wholemount sets of 26 tumor patients in order to evaluate (1) the proportion of CALB+ neurons in the total neuron population, (2) the colocalization of CALB with calretinin (CALR), somatostatin (SOM) and vasoactive intestinal peptide (VIP) and (3) the morphology of CALB+ neurons. CALB+ neurons represented a minority of myenteric neurons (small intestine: 31%; large intestine: 25%) and the majority of submucosal neurons (between 72 and 95%). In the submucosa, most CALB+ neurons co-stained for CALR and VIP (between 69 and 80%) or for SOM (between 20 and 3%). In the myenteric plexus, 85% of CALB+ neurons did not co-stain with the other markers investigated. An unequivocal correlation between CALB reactivity and neuronal morphology was found for myenteric type III neurons in the small intestine: uniaxonal neurons with long, slender and branched dendrites were generally positive for CALB. Since also other neurons displayed occasional CALB reactivity, this protein is not suited as an exclusive marker for type III neurons.

Keywords: calcium binding protein; calretinin; enteric nervous system; morphology; myenteric plexus; submucosal plexus

1. Introduction

The combined application of various neuroscientific methods has enabled the identification and characterization of different types of enteric neurons primarily in the guinea pig [1,2]. One of these methods was the immunohistochemical distinction between several enteric neuron types by different markers that deciphered their chemical codes. The value of these chemical codes consists of the relatively simple possibility of representing neuron types in gut tissue samples, e.g., under experimental or pathological conditions. This allows us to draw conclusions about possible selective changes in neuron populations, i.e., a neurohistopathological diagnosis, by discriminating between enteric neuron types [3].

In enteric neuroscience, calbindin (CALB) is a “famous” immunomarker since antibodies against this calcium binding protein selectively label most morphological type II neurons, the intrinsic primary afferent neurons in the guinea-pig small intestine (IPANs) [4–7].

Although CALB is also expressed by a substantial number of human enteric neurons (counted in the duodenum [8]), immunohistochemical staining of CALB succeeded only in a few myenteric type II
neurons [9]. We have shown that human myenteric type II neurons, the putative myenteric IPANs, are immunohistochemically characterized by the colocalization of calretinin (CALR) with somatostatin (SOM) [10,11].

The human enteric nervous system consists of three ganglionated (see below) and several non-ganglionated plexus (e.g., in the muscle layers, the mucosa, etc. [12]). The ganglionated myenteric plexus lies between the circular and longitudinal muscle layers. Human submucosal neurons are located within two ganglionated subplexus [12]. The external (or outer) submucosal plexus (ESP) is located under the inner border of the circular muscle layer and is mostly monolayered. The internal (or inner) submucosal plexus (ISP) occupies the inner half of the submucosa and is frequently two- or even three-layered [3,12]. As to the distribution patterns of neuron types within both plexus there are, as far as we know, only quantitative differences between them. Two larger submucosal neuronal populations are known to date [13]. One is non-dendritic, (pseudo-) uniaxonal and immunoreactive for SOM and, partly, substance P [14]. The other one displays a multidendritic appearance and is immunoreactive for vasoactive intestinal peptide (VIP) and, partly, CALR [15]. Both submucosal neuron types are cholinergic and project into the mucosa. Additionally, there are some submucosal nitrergic neurons, which are, however, occasionally absent [15].

Thus, immunohistochemistry for the calcium binding protein CALR has been proven to be useful for the identification of particular human enteric neuron types: in the myenteric plexus (MP), in colocalization with SOM, it labels morphological type II neurons, the putative IPANs; in the submucosal plexus it is frequently colocalized with VIP and a marker for multidendritic neurons, which are putative mucosal effector neurons (see above). Colocalization of CALR and VIP in these neurons was almost complete in the colon but not in the small intestine [15].

The aim of this study was to address the question whether another calcium binding protein, namely CALB, may also be a useful immunohistochemical marker for identifying a particular human enteric neuron type. To this end, we quantified the proportion of CALB⁺ neurons in relation to the putative total enteric neuronal population throughout all small intestinal and colonic subregions, which was stained by the pan-neuronal marker HU C/D (HU) [16]. Furthermore, we estimated the colocalization rates of CALB⁺ neurons with CALR, VIP and SOM: in the human MP colocalization of CALR and SOM label the putative IPANs [10,11]; in the human submucosal plexus VIP and SOM label the two larger different neuron populations known so far [14,15]. Finally, we analyzed the morphology of CALB⁺ neurons by co-staining with neurofilament (NF) in the myenteric plexus [7,17] and by peripherin (PERI) in the two submucosal plexus [12,13].

2. Results

2.1. Wholemounts Stained for HU C/D (HU) and Calbindin (CALB)

This staining combination allows for an estimation of the proportion of CALB⁺ neurons in relation to the whole enteric neuron population (Figure 1, Table 1).

Overall, in both the small intestine and the colon, CALB⁺ neurons represented a minority in the MP and the majority in the two submucosal plexus. The intensity of fluorescence labeling varied considerably, some neuronal cell bodies were intensely fluorescent but others displayed weak labeling.

In the MP of the small intestine, the proportions varied between 25.1 and 36.7% (total 31.1%). In the colon, the values ranged between 21.1 and 30.5% (total 25.2%).

In the ESP and ISP of the small intestine, the proportions ranged between 56.8 and 86.3% (total ESP: 81%; ISP: 72.3%). In the colon, all values were higher than 90%, 93.1% in the ESP and 95% in the ISP.
Table 1. Mean values ± standard deviations of neuron numbers and proportions of means in 15 ganglia per wholemount (i.e., per subject) that were immunolabeled for the pan-neuronal marker HU alone as well as for both HU and CALB.

Segment	Plexus	HU	HU CALB	% CALB
Duodenum	MP	539.0 ± 23.9	165.0 ± 11.8	30.6
	ESP	164.3 ± 20.1	119.3 ± 14.8	72.6
	ISP	199.0 ± 35.4	164.3 ± 16.6	82.6
Jejunum	MP	367.7 ± 36.1	92.3 ± 11.3	25.1
	ESP	138.3 ± 22.8	119.3 ± 16.8	86.3
	ISP	182.7 ± 31.2	151.7 ± 20.3	83
Ileum	MP	435.3 ± 36.5	139.7 ± 15.6	36.7
	ESP	128.0 ± 29.5	72.7 ± 13.0	56.8
	ISP	185.7 ± 22.0	143.7 ± 18.7	77.4
Σ Small intestine	MP	447.3 ± 39.9	139.0 ± 17.2	31.1
	ESP	143.5 ± 30.7	103.8 ± 18.1	72.3
	ISP	189.1 ± 36.9	153.2 ± 22.8	81
Ascending colon	MP	413.4 ± 38.9	101.4 ± 10.6	24.5
	ESP	120.2 ± 20.6	112.2 ± 16.1	93.3
	ISP	220.0 ± 31.3	212.6 ± 19.7	96.6
Transverse colon	MP	514.0 ± 36.6	156.7 ± 14.0	30.5
	ESP	202.5 ± 16.0	188.5 ± 16.9	93.1
	ISP	203.7 ± 27.4	197.7 ± 19.7	97
Descending colon	MP	430.3 ± 36.6	91.0 ± 21.0	21.1
	ESP	181.3 ± 29.9	164.3 ± 20.1	90.6
	ISP	217.7 ± 16.4	201.3 ± 18.8	92.5
Sigmoid colon	MP	418.8 ± 22.2	96.4 ± 16.9	23
	ESP	173.4 ± 19.6	163.8 ± 14.2	94.5
	ISP	271.2 ± 24.4	253.8 ± 18.0	93.6
Σ Large intestine	MP	441.6 ± 40.0	111.1 ± 24.2	25.2
	ESP	166.0 ± 33.5	154.5 ± 22.9	93.1
	ISP	230.8 ± 30.7	219.2 ± 20.6	95

MP = myenteric plexus; ESP = external submucosal plexus; ISP = internal submucosal plexus.
2.2. Wholemount Quadruple Staining for Calbindin (CALB), Calretinin (CALR), Somatostatin (SOM) and Vasoactive Intestinal Peptide (VIP)

Here, colocalizations of CALB with CALR, VIP, and/or SOM immunoreactivities in both myenteric and submucosal neurons were studied (Figure 2, Table 2).

Most myenteric CALB-positive neurons did not co-stain for the other markers that were investigated. In the small intestine (total 86%), the proportions of these neurons varied between 96.9% (duodenum) and 79.9% (ileum). In the large intestine (total 71.8%), we found proportions between 61% (descending colon) and 84.3% (sigmoid colon). Of the remaining minority of CALB+ neurons, most were co-reactive for VIP or CALR or both (total: 10.8% in the small intestine; 27.5% in the colon).

Myenteric neurons co-reactive for all four markers were only found exceptionally (altogether seven neurons: five in the small intestine; two in the ascending colon). Furthermore, only one myenteric neuron co-reactive for CALB, SOM and VIP was observed throughout all specimens namely, in a jejunal wholemount. These rare exceptions were not listed in Table 2.

![Figure 2](image-url). Human enteric ganglia quadruple immunostaining for calbindin (CALB: a,b,c), calretinin (CALR: a’,b’,c’), somatostatin (SOM: a”,”b”,”c”) and vasoactive intestinal peptide (VIP: a’’,”b’’,”c’’”). (a) Myenteric ganglion. Arrows point at three representative neurons displaying different combinations of immunolabeling. Horizontal arrows indicate a neuron positive for CALB and VIP but negative for CALR and SOM; vertical arrows show a neuron positive for CALB only; oblique arrows point at a neuron positive for CALR and SOM but negative for CALB and VIP. (b) External submucosal ganglion. Arrowheads point at two neurons positive for both VIP and CALR but negative for SOM, one neuron is positive for CALB (horizontal, filled arrowhead in (b), the other negative (vertical, empty arrowhead) in (b). (c) Internal submucosal ganglion. Arrows point at two neurons positive for SOM but negative for VIP and CALR, one neuron is positive for CALB (horizontal, filled arrow in (c), the other one negative (vertical, empty arrow) in (c). Patients data: (a) 69 years, ascending colon, female; (b,c) 76 years, duodenum, male.
Table 2. Numbers (means ± standard deviations) of neurons stained for CALB in 15 ganglia per wholemount (i.e., per subject) and proportions of CALB neurons without co-staining or displaying colocalization with other markers, respectively.

Segment	Plexus	CALB Number \(\Sigma\)	CALB Only	CALB VIP	CALB CALR	CALB CALR VIP	CALB SOM	CALB SOM CALR
Duodenum	MP 136.7 ± 19.0	96.90%	0.20%	1.20%	0.00%	0.20%	1.20%	
	ESP 68.0 ± 9.8	9.60%	3.80%	0.00%	53.80%	31.70%	0.90%	
	ISP 85.3 ± 14.6	0.60%	6.40%	12.20%	41.70%	39.10%	0.00%	
Jejunum	MP 166.3 ± 22.0	83.00%	6.00%	4.80%	4.20%	0.60%	1.00%	
	ESP 79.3 ± 13.1	1.40%	1.40%	3.60%	65.90%	21.00%	2.90%	
	ISP 86.0 ± 12.0	0.00%	0.60%	5.10%	67.10%	17.00%	9.50%	
Ileum	MP 159.0 ± 18.8	79.90%	6.50%	7.30%	0.60%	0.20%	1.20%	
	ESP 70.0 ± 12.4	1.40%	1.40%	7.10%	81.40%	9.50%	0.50%	
	ISP 95.3 ± 14.8	0.30%	0.60%	3.80%	85.00%	10.10%	0.00%	
Σ Small intestine	MP 154.0 ± 24.2	86.00%	4.50%	4.60%	1.70%	1.50%	1.10%	
	ESP 72.4 ± 14.8	3.30%	1.30%	4.40%	70.30%	18.10%	1.30%	
	ISP 88.9 ± 16.0	0.30%	2.20%	6.30%	69.00%	19.70%	2.50%	
Ascending colon	MP 152.8 ± 18.0	65.40%	12.80%	13.70%	7.10%	0.60%	0.00%	
	ESP 91.0 ± 16.8	1.30%	11.00%	5.90%	77.80%	3.70%	0.00%	
	ISP 160.4 ± 22.2	2.00%	14.50%	2.20%	72.10%	8.70%	0.20%	
Transverse colon	MP 189.0 ± 19.7	72.90%	14.30%	7.90%	4.60%	0.00%	0.30%	
	ESP 161.2 ± 17.9	1.80%	0.40%	8.90%	85.30%	3.20%	0.10%	
	ISP 184.0 ± 20.0	1.80%	0.30%	3.10%	87.50%	4.20%	2.40%	
Descending colon	MP 65.0 ± 12.0	61.00%	31.30%	4.10%	3.10%	0.00%	0.50%	
	ESP 76.3 ± 14.9	1.70%	2.20%	5.20%	90.40%	0.40%	0.00%	
	ISP 84.7 ± 14.0	10.60%	4.70%	3.50%	79.10%	2.00%	0.00%	
Sigmoid colon	MP 99.4 ± 8.6	84.30%	2.40%	10.90%	1.60%	0.40%	0.40%	
	ESP 101.8 ± 17.6	4.70%	15.70%	5.10%	72.30%	2.20%	0.00%	
	ISP 140.6 ± 18.1	0.80%	17.10%	2.30%	73.40%	6.10%	0.00%	
Σ Large intestine	MP 130.1 ± 22.0	71.80%	12.60%	10.30%	4.60%	0.30%	0.20%	
	ESP 108.6 ± 19.3	2.50%	7.50%	6.70%	80.50%	2.70%	0.00%	
	ISP 146.8 ± 24.3	2.50%	10.00%	2.70%	77.70%	6.00%	0.80%	

Neurons co-labeled for all four markers or for CALB, SOM and VIP were only exceptionally observed and are not included in the table but mentioned in the text. (MP = myenteric plexus; ESP = external submucosal plexus; ISP = internal submucosal plexus).

In contrast to the MP, only a minority of submucosal CALB+ neurons did not co-stain for other markers (total of ESP and ISP: 3.6% in the small intestine; 5% in the colon). The overwhelming majority of submucosal CALB+ neurons co-stained for VIP and/or CALR (total: ESP 76% and ISP 77.5% in the small intestine; ESP 94.7% and ISP 90.4% in the colon). A further, substantial population of CALB+ neurons co-stained for SOM (18.1% and 19.7% in the small intestine; 2.7% and 6% in the colon). As to CALB+ neurons co-reactive for both SOM and CALR, only in the jejunum (ESP 2.9%; ISP: 9.5%; these mainly occurred in a single submucosal wholemount) and in the ISP of the transverse colon (2.4%) a noteworthy proportion was found.

Altogether 14 submucosal neurons co-reactive for all four markers were detected (four in jejunal specimens; ten in colonic specimens) and one neuron (jejunum) was co-reactive for CALB, SOM and VIP. These rare exceptions were not listed in Table 2.

2.3. Wholemount Quadruple Staining for Morphological Analysis

Next, we focused on a morphological analysis of myenteric neurons co-reactive for both CALB and NF (Figure 3) and of submucosal neurons co-reactive for both CALB and PERI (Figure 4). Mainly smaller myenteric CALB neurons displayed only weak or no reactivity for NF and could not be evaluated morphologically.
Figure 3. Calbindin (CALB: a–e) immunoreactivities of morphologically defined, neurofilament (NF: a—e')-labeled human myenteric neuron types and their co-reactivities for somatostatin (SOM: a—e") and vasoactive intestinal peptide (VIP: a—e"). (ax = axons of marked neurons). (a,b) Two type III neurons with long, slender, branched dendrites (a',b': filled arrows) positive for CALB (a,b: filled arrows) but negative for SOM and VIP (a",b": empty arrows). (c) Four stubby type I neurons (c': filled arrowheads) negative for all three other markers (c,c",c": empty arrowheads). (d) A spiny (d': filled arrowhead) and a stubby (d': filled arrow) type I neuron. The spiny one is negative for both CALB and SOM (d,d": empty arrowheads) but positive for VIP (d"': filled arrowhead), the stubby one is positive for CALB (d: filled arrow) but negative for SOM and VIP (d",d": empty arrows). (e) A non-dendritic type II neuron displaying three axons (e': filled arrowhead). It is co-reactive for SOM (e": filled arrowhead) but negative for both CALB and VIP (e,e": empty arrowheads). (Patients data: (a–c) 59 years, ileum, male; (d) 57 years, ascending colon, male; (e) 42 years, sigmoid colon, female)
Figure 4. Calbindin (CALB)-immunoreactive human submucosal neurons: shapes as revealed by their peripherin (PERI)-immunoreactivities as well as co-immunolabeling for somatostatin (SOM) and vasoactive intestinal peptide (VIP). (ax = axons of marked neurons). (a,b) Three neurons (arrowheads) displaying a multidendritic/uniaxonal morphology (a’,b’: filled arrowheads) and co-reactivities for VIP and CALB (a’,a”,b’,b”: filled arrowheads) but not for SOM (a”,b”: empty arrowheads). (c,d) Two neurons (arrows) displaying a non-dendritic/uniaxonal morphology (c’,d’: filled arrows) and co-reactivities for SOM and CALB (c”,d”,d”: filled arrows) but not for VIP (c”,d”: empty arrows). (Patients data: (a–c) 57 years, ascending colon, male; (d) 70 years, duodenum, female).

In the MP, a distinct correlation between CALB reactivity and morphological features of NF-stained neurons could exclusively be detected for type III-neurons. These had one axon and long, branched, tapering dendrites arranged circumferentially around their soma (Figure 3a,b). They were found only in the small intestinal MP and were generally positive for CALB. Other morphologically defined neuron types were mostly negative for CALB, with a few exceptions each. Stubby type I-neurons (Figure 3c), spiny type I neurons (Figure 3d) or type II neurons (Figure 3e) were frequently negative for CALB. However, in rare cases, neurons of these types were found to be positive for CALB (e.g., a stubby type I neuron in Figure 3d).
In the ESP and ISP no distinct correlation between CALB reactivity and a particular submucosal neuron type could be found. Both multidendritic/VIP-reactive as well as nondendritic/uniaxonal/SOM-reactive neurons frequently displayed coreactivity for CALB (Figure 4) but CALB− neurons of both types were also commonly observed (Figure 2b,c).

2.4. Sections Stained for Calbindin (CALB) and Peripherin (PERI)

In these specimens we demonstrated the distribution pattern of CALB+ nerve fibers within the gut wall (Figure 5). In addition to the ganglionated plexus, CALB+ nerve fibers could be observed throughout all gut layers, including the longitudinal and circular sublayers of the muscular coat (Figure 5a) and the mucosa (Figure 5b). Casually, epithelial cells with a typical bottleneck shape (enteroendocrine cells) displayed CALB reactivity. Except from Figure 5c', we desisted from depicting the distribution patterns of SOM- and VIP-positive fibers (already published in [14,15]).

Figure 5. Section through the small intestinal wall, immunostained for calbindin (a,b,c: CALB; red), peripherin (a’,b’: PERI; green) and somatostatin (yellow; the latter is only depicted in c’). (a) CALB-immunoreactive nerve fibers in the longitudinal (upper arrowhead) and circular muscle layer (lower arrowhead). (b) CALB-reactive mucosal nerve fibers (arrowhead). The arrow points at an enteroendocrine cell lying in the base of a mucosal crypt and being positive for CALB. (c) The same enteroendocrine cell enlarged (filled arrow), not far from another endocrine cell reactive for somatostatin (empty arrow).
3. Discussion

Beyond the bare registration of numbers and proportions of CALB+ neurons, this study aimed to answer the question whether CALB may be a useful marker to label a particular human enteric neuron population, as has been shown for the guinea pig intestine [2].

3.1. General Distribution of CALB in the Human Enteric Plexus

Our study has extended earlier findings obtained from the human duodenum [8] by showing that CALB immunoreactivity is widely distributed throughout the myenteric and submucosal plexus of human small and large intestine. More specifically, our results obtained from analyzing the myenteric plexus of the duodenum were roughly consistent with the data of Walters et al. [8]. They found 38% of myenteric neurons to be CALB-reactive; we counted 30.6% CALB+ neurons. In striking contrast, they found only 13% of submucosal neurons to be CALB+, our proportions ranged between 72 and 82% in the two submucosal plexus of the duodenum.

An explanation for this discrepancy may be the different methodological approaches. Walters et al. [8] evaluated sections instead of wholemounts and used a light microscopic detection system (based on avidin and biotin), which may be less sensitive in contrast to our fluorescence-microscopic approach. Submucosal ganglia are composed of smaller, more tightly packed neurons displaying, in part, very weak labeling [12–15]. To detect weak CALB reactivity of these neurons, fluorescence-microscopy in wholemounts may be superior to light microscopy in sections.

As to the distribution pattern of CALB within the various gut layers, our results concur with those of Walters et al. [8] as immunoreactivity was found in all layers. Thus, the action of CALB+ neurons is not confined to special intestinal layers. This is in line with our finding that CALB is expressed in various different myenteric and submucosal neuron populations (see below). Hence, CALB immunoreactivity alone is not indicative for a particular neuron type. Similar to Walters et al. [8], we found occasional enteroendocrine cells in the epithelium, but this finding was not further evaluated.

3.2. CALB in Human Myenteric Neurons

Our NF-co-stained wholemounts revealed morphological type III neurons [18] to be, almost without exception, positive for CALB. In humans, these myenteric neurons were first described and demonstrated in silver-impregnated wholemounts [19]. They were shown to be non-nitrergic but further immunohistochemical characterization was not undertaken so far [20]. In our samples, we could only find them in wholemounts of the small intestine. Unfortunately, CALB is not suited as a selective marker for typ III neurons since it was casually found also in other, morpho-chemically different myenteric neurons. Among them there were few type II neurons [9] as well as scattered spiny and stubby type I neurons (as shown here) and small NF-negative neurons.

Due to well-known species differences, simple transfer from the results obtained in animals is not possible. For instance, morphological type III neurons in the pig are, in contrast to human ones, nitrergic [17,21]. In the guinea pig, CALB is a marker for intrinsic primary afferent neurons [5,7,22], whereas CALB is differentially distributed in various enteric neurons of other laboratory animals [23–26]. Therefore, future studies should address the further, type-specific chemical coding of human type III neurons in order to allow conclusions as to their axonal projection pattern and, hence, their function in human small intestine. These studies will include both statistical analysis as to the proportions of type III neurons in the different small intestinal subregions and a more proper registration of the distribution pattern of their axons.

3.3. CALB in Human Submucosal Neurons

Most submucosal neurons belong to two cholinergic populations differing both in morphology and their other chemical coding [13]. There are non-dendritic, uniaxonal neurons displaying immunoreactivity mainly for SOM [14] and dendritic neurons reactive mainly for VIP and CALR,
although the colocalization rate of both latter peptides in these neurons was almost 100% in the colon but only one third in the small intestine [15]. In the present study, CALB reactivity was found both in some SOM+ and in some VIP+ neurons. Thus, CALB labeling in the two submucosal plexus is, similar to the MP, not neuron type-specific.

3.4. CALB and Microbiome?

Studies in the pig [27] and mouse [28] demonstrated a correlation between experimentally altered gut microbiota and the level of calbindin in particular enteric neuron types. Interestingly, in these two species, CALB was expressed in neuron populations differing both morphologically and functionally, namely pig (descending) interneurons [25] versus mouse intrinsic primary afferent neurons [26]. Thus, these alterations in proportional CALB expression were not related to the changed function of an equivalent neuron type in these different species. We cannot exclude that also in human there may be a correlation between the state of the microbiome (which may be changed after tumor or other diseases and their subsequent therapies [29]) and the level of CALB expression of enteric neurons and, consequently, enteric nerve fibers. Due to the general limitation in obtaining healthy human tissues for (basic) research, this must be taken into account when interpreting data obtained from (bowel) resection samples.

4. Materials and Methods

4.1. Tissue Handling

The use of human intestinal tissues for this study was approved by the Ethics Committee of the University of Erlangen-Nuremberg (reference number 2550, 19.02.2002). The small intestinal and colonic samples derived from 26 tumor patients. Only tissue obtained from the non-tumor infiltrated borders of the resected gut segments were used. This discrimination was based on both macroscopic examination (distance from the tumor at least 10 cm) as well as on histopathological evaluation (sections stained for hematoxylin/eosin). The median age of the patients (12 female, 14 male) was 65.5 years (range between 34 and 85 years).

Intestinal segments were transported in physiological saline (pH 7.3) on ice to the laboratory. Upon arrival (up to 6 h after surgical resection), specimens were rinsed in Krebs solution at room temperature and transferred to Dulbecco’s modified Eagle’s medium (DME/F12-Ham, Sigma Chemical Company, St. Louis, MO, USA) containing 10 mg/mL antibiotic-antimycotic (Sigma, St. Louis, MO, USA), 50 µg/mL gentamycin (Sigma, St. Louis, MO, USA), 2.5 µg/mL amphotericin B (Sigma, St. Louis, MO, USA), 10% fetal bovine serum (Sigma, St. Louis, MO, USA), 4 µM nicardipine and 2.1 mg/mL NaHCO₃, bubbled with 95% O₂ and 5% CO₂ at 37 °C for 1 to 2 h.

For fixation, samples were divided. The larger pieces (dedicated for wholemount preparation) were pinned onto a Sylgard-lined Petri dish and transferred to 4% formalin in 0.1 M phosphate buffered saline (PBS, pH 7.4) at room temperature for 2 to 4 h. The smaller pieces (dedicated for sections) were frozen at −70 °C in methylbutan after cryoprotection with 15% sucrose in 0.1 M PBS (2 days).

For the following immunohistochemical incubations, longitudinal muscle-myenteric plexus wholemounts and submucosal wholemounts (each about 1 × 1.5 cm) as well as cryostat sections with parallel orientation to the gut longitudinal axis were prepared.

4.2. Immunohistochemistry

Antibodies used for the following incubations are listed in Table 3. Three sets of wholemounts (myenteric and submucosal) were stained: the first was double stained for CALB and HU, the second set quadruple stained for CALB, CALR, SOM and VIP. The third set was dedicated for morphological analysis and similarly quadruple stained but, instead of CALR, for NF (myenteric wholemounts) or for PERI (submucosal wholemounts). This latter combination (CALB, PERI, SOM, VIP) was also applied for sections.
Incubations

Incubations included the following steps: preincubation of wholemounts for 2 h (sections 1 h) in 0.05 M Tris-buffered saline (TBS; pH 7.4) containing 1% bovine serum albumin (BSA), 0.05% thimerosal and 5% normal donkey serum. After rinsing in TBS for 10 min, the wholemounts were incubated in a solution containing BSA, Triton X-100, thimerosal (see above) and the primary antibodies for 72 h (4 °C; sections overnight). After an overnight rinse in TBS at 4 °C, wholemounts were incubated with secondary antibodies in the same solution as for the primary antibodies (4 h; room temperature; sections 1 h) followed by a rinse with TBS (overnight; 4 °C).

In all specimens, we applied a lipofuscin reduction protocol after immunohistochemical labeling: incubation in ammonium acetate buffer (pH 5.0) containing 1 mM CuSO_4_ for 120 min followed by a short rinse in distilled water [20,30]. As mentioned earlier, we investigated only material that did not display any kind of neuronal autofluorescence after application of this lipofuscin reduction protocol [13].

Thereafter, specimens were mounted with TBS-glycerol (1:1; pH 8.6). Submucosal wholemounts were first mounted mucosal side up. After evaluation of the ISP, wholemounts were reversed and mounted with the outer side up for analysis of the ESP.

With the exception of the CALB antibody (see below), negative controls for antibodies used here were carried out earlier [13,31]. Preabsorption tests for antibodies against CALR, PERI, SOM and VIP were described previously [13,15].

In this study, we tested the specificity of the CALB antibody (antigen: rat calbindin D-28k recombinant; Swant, Bellinzona, Switzerland). Preabsorption with 5-fold excess of CALB-antigen were performed overnight at 4 °C. The antigen–antibody mixtures were spun at 20,000 g for 20 min to sediment precipitating antigen–antibody complexes and avoid high background staining. The supernatants were then used in place of the primary antibodies. Incubation after 5-fold antigen excess resulted in no CALB staining.

4.3. Image Acquisition, Quantification

Wholemounts were evaluated using a confocal laser scanning microscope system (Nikon Eclipse E1000-M; Nikon Digital Eclipse C1; Tokyo, Japan) equipped with a quadruple laser configuration: a 488-nm and a 543-nm Solid-State-Laser (both from Coherent, Santa Clara, CA, USA: Sapphire 488LP, Sapphire 561-50), a 405-nm Diode-Laser (Coherent: CUBE 405-100C) and a 642-nm Diode-Laser (Melles Griot, Carlsbad, CA, USA). For reduction of unspecific background fluorescence, a BIO1-Filterset (DAPI/Cy5 for C1-Detector; AHF Analysentechnik, Tübingen, Germany) was additionally installed.

Table 3. Antisera.

Primary Antisera	Source
Calbindin D28k	CB-38; Swant; Switzerland
HUC/D	A21271; Thermo Fisher Scientific; Germany
NF 200	N014; Sigma, Germany
Peripherin	sc-7604; Santa Cruz; Germany
Calretinin	M7245; Dako, Germany
Somatostatin (YC7)	sc-47706; Santa Cruz, Germany
VIP	T-5030; Dianova, Germany

Fluorescence Tags for Secondary Antisera

Fluorescence Tags	Source
Alexa Fluor 555	A31572; Thermo Fisher Scientific, Germany
Alexa Fluor 488	A21202; Thermo Fisher Scientific, Germany
Dy-Light 647	712-605-153; Dianova, Germany
Dy-Light 405	706-475-148; Dianova, Germany

In this study, we tested the specificity of the CALB antibody (antigen: rat calbindin D-28k recombinant; Swant, Bellinzona, Switzerland). Preabsorption with 5-fold excess of CALB-antigen were performed overnight at 4 °C. The antigen–antibody mixtures were spun at 20,000 g for 20 min to sediment precipitating antigen–antibody complexes and avoid high background staining. The supernatants were then used in place of the primary antibodies. Incubation after 5-fold antigen excess resulted in no CALB staining.

4.3. Image Acquisition, Quantification

Wholemounts were evaluated using a confocal laser scanning microscope system (Nikon Eclipse E1000-M; Nikon Digital Eclipse C1; Tokyo, Japan) equipped with a quadruple laser configuration: a 488-nm and a 543-nm Solid-State-Laser (both from Coherent, Santa Clara, CA, USA: Sapphire 488LP, Sapphire 561-50), a 405-nm Diode-Laser (Coherent: CUBE 405-100C) and a 642-nm Diode-Laser (Melles Griot, Carlsbad, CA, USA). For reduction of unspecific background fluorescence, a BIO1-Filterset (DAPI/Cy5 for C1-Detector; AHF Analysentechnik, Tübingen, Germany) was additionally installed.
A dry objective lens (20 ×, numerical aperture 0.75) was used. Z-series dedicated to quantitative analysis used a zoom-factor of 2.0 (myenteric wholemounts) or 3.0 (submucosal wholemounts), z-steps were 2 µm. The figures were prepared using Volocity Demo 6.1.1 (PerkinElmer, Waltham, MA, USA), Adobe Photoshop CS6 (San Jose, CA, USA) and CorelDRAW X7 (Ottawa, ON, Canada).

In all myenteric and submucosal wholemounts, 15 ganglia or single neurons lying outside of ganglia in interganglionic nerve strands were selected randomly in a meander-like fashion, first from the inner, mucosal side of the wholemount preparation (for evaluation of the ISP), thereafter from the outer side of the wholemount (for the ESP). All counts were carried out on z-series of the ganglia, using Volocity Demo 6.1.1.

We tried to carefully discriminate neurons lying at the same x-, y- but at different z-positions to avoid double counting of neurons.

5. Conclusions

CALB immunoreactivity is widely distributed in the human enteric nervous system. It occurs throughout all morphological type III neurons, which we found only in the small intestinal MP. To a lesser extent, other myenteric as well as submucosal neuron types also displayed CALB reactivity. Thus, CALB alone is not an exclusive marker for human type III neurons as it is, e.g., for guinea pig type II neurons (IPANs). Beyond that, we cannot rule out a correlation between a possibly altered microbiome (after tumors or other diseases and their subsequent therapies) and the CALB expression of enteric neurons.

Acknowledgments: This study was supported by the Johannes und Frieda Marohn-Stiftung (Jab/2016). We acknowledge support by Deutsche Forschungsgemeinschaft and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) within the funding programme Open Access Publishing. The excellent technical assistance of Karin Löschner, Stefanie Link, Anita Hecht, Andrea Hilpert, and Hedwig Symowski is gratefully acknowledged. The present work was performed in fulfillment of the requirements of the Friedrich-Alexander-Universität Erlangen-Nürnberg for obtaining the degree “Dr. med.”

Author Contributions: Katharina Zetzmann and Axel Brehmer conceived and designed the experiments; Johanna Strehl, Carol Geppert, and Samir Jabari collected and evaluated the human tissue probes pathohistologically as to the borders between tumor and healthy zones; Katharina Zetzmann performed the experiments and analyzed the data, together with Axel Brehmer; Katharina Zetzmann, Axel Brehmer, Stefanie Kuerten, and Samir Jabari wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation	Description
CALB	Calbindin
CALR	Calretinin
ESP	External Submucosal Plexus
HU	Neuronal Protein HUC/D
IPAN	Intrinsic Primary Afferent Neuron
ISP	Internal Submucosal Plexus
MP	Myenteric Plexus
NF	Neurofilament
PERI	Peripherin
PBS	Phosphate Buffered Saline
SOM	Somatostatin
TBS	Tris-Buffered Saline
VIP	Vasoactive Intestinal Peptide

References

1. Costa, M.; Brookes, S.J.; Steele, P.A.; Gibbins, I.; Burcher, E.; Kandiah, C.J. Neurochemical classification of myenteric neurons in the guinea-pig ileum. *Neuroscience* 1996, 75, 949–967. [CrossRef]
2. Furness, J.B. *The Enteric Nervous System*; Blackwell: Oxford, UK, 2006; ISBN 13:978-1-4051-3376-0.
3. Jabari, S.; de Oliveira, E.C.; Brehmer, A.; da Silveira, A.B. Chagasic megacolon: Enteric neurons and related structures. *Histochem. Cell Biol.* 2014, 142, 235–244. [CrossRef] [PubMed]

4. Pompolo, S.; Furness, J.B. Ultrastructure and synaptic relationships of calbindin-reactive, Dogiel type II neurons, in myenteric ganglia of guinea-pig small intestine. *J. Neurocytol.* 1988, 17, 771–782. [CrossRef] [PubMed]

5. Furness, J.B.; Trussell, D.C.; Pompolo, S.; Bornstein, J.C.; Smith, T.K. Calbindin neurons of the guinea-pig small intestine: Quantitative analysis of their numbers and projections. *Cell Tissue Res.* 1990, 260, 261–272. [CrossRef] [PubMed]

6. Song, Z.M.; Brookes, S.J.; Costa, M. Identification of myenteric neurons which project to the mucosa of the guinea-pig small intestine. *Neurosci. Lett.* 1991, 129, 294–298. [CrossRef] [PubMed]

7. Song, Z.M.; Brookes, S.J.; Costa, M. All calbindin-immunoreactive myenteric neurons project to the mucosa of the guinea-pig small intestine. *Neurosci. Lett.* 1994, 180, 219–222. [CrossRef] [PubMed]

8. Walters, J.R.; Bishop, A.E.; Facer, P.; Lawson, E.M.; Rogers, J.H.; Polak, J.M. Calretinin and calbindin-D28k immunoreactivity in the human gastrointestinal tract. *Gastroenterology* 1993, 104, 1381–1389. [CrossRef]

9. Brehmer, A. The value of neurofilament-immunohistochemistry for identifying enteric neuron types—Special reference to intrinsic primary afferent (sensory) neurons. In *New Research on Neurofilament Proteins*; Arlen, R.K., Ed.; Nova Science Publishers: New York, NY, USA, 2007; pp. 99–114. ISBN 978 1-60021-396-0.

10. Brehmer, A.; Croner, R.; Dimmler, A.; Papadopoulos, T.; Schrödl, F.; Neuhuber, W. Immunohistochemical characterization of putative primary afferent (sensory) myenteric neurons in human small intestine. *Auton. Neurosci.* 2004, 112, 49–59. [CrossRef] [PubMed]

11. Weidmann, S.; Schrödl, F.; Neuhuber, W.; Brehmer, A. Quantitative estimation of putative primary afferent neurons in the myenteric plexus of human small intestine. *Histochem. Cell Biol.* 2007, 128, 399–407. [CrossRef] [PubMed]

12. Brehmer, A.; Rupprecht, H.; Neuhuber, W. Two submucosal nerve plexus in human intestines. *Histochem. Cell Biol.* 2010, 133, 149–161. [CrossRef] [PubMed]

13. Kustermann, A.; Neuhuber, W.; Brehmer, A. Calretinin and somatostatin immunoreactivities label different human submucosal neuron populations. *Anat. Rec.* 2011, 294, 858–869. [CrossRef] [PubMed]

14. Beyer, J.; Jabari, S.; Rau, T.T.; Neuhuber, W.; Brehmer, A. Substance P- and choline acetyltransferase immunoreactivities in somatostatin-containing, human submucosal neurons. *Histochem. Cell Biol.* 2013, 140, 157–167. [CrossRef] [PubMed]

15. Beuscher, N.; Jabari, S.; Strehl, J.; Neuhuber, W.; Brehmer, A. What neurons hide behind calretinin immunoreactivity in the human gut? *Histochem. Cell Biol.* 2014, 141, 393–405. [CrossRef] [PubMed]

16. Ganns, D.; Schrödl, F.; Neuhuber, W.; Brehmer, A. Investigation of general and cytoskeletal markers to estimate numbers and proportions of neurons in the human intestine. *Histol. Histopathol.* 2006, 21, 41–51. [PubMed]

17. Brehmer, A. Structure of enteric neurons. *Adv. Anat. Embryol. Cell Biol.* 2006, 186, 1–94. [PubMed]

18. Dogiel, A.S. Ueber den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Menschen und der Säugethiere. *Arch. Anat. Phys.* 1899, 130–158.

19. Stach, W.; Krammer, H.J.; Brehmer, A. Structural organization of enteric nerve cells in large mammals including man. In *Neurogastroenterology from the Basics to the Clinics*; Krammer, H.J., Singer, M.V., Eds.; Kluwer: Dordrecht, The Netherlands, 2000; pp. 3–20. ISBN 0-7923-8757-0.

20. Brehmer, A.; Blaser, B.; Seitz, G.; Schrödl, F.; Neuhuber, W. Pattern of lipofuscin pigmentation in nitrergic and non-nitrergic, neurofilament immunoreactive myenteric neuron types of human small intestine. *Histochem. Cell Biol.* 2004, 121, 13–20. [CrossRef] [PubMed]

21. Timmermans, J.P.; Barbiers, M.; Scheuermann, D.W.; Stach, W.; Adriaensen, D.; Mayer, B.; De Groodt-Lasseel, M.H. Distribution pattern, neurochemical features and projections of nitrergic neurons in the pig small intestine. *Ann. Anat.* 1994, 176, 515–525. [CrossRef]

22. Quinson, N.; Robbins, H.L.; Clark, M.J.; Furness, J.B. Calbindin immunoreactivity of enteric neurons in the guinea-pig ileum. *Cell Tissue Res.* 2001, 305, 3–9. [CrossRef] [PubMed]

23. Sang, Q.; Young, H.M. The identification and chemical coding of cholinergic neurons in the small and large intestine of the mouse. *Anat. Rec.* 1998, 251, 185–199. [CrossRef]
24. Sayegh, A.I.; Ritter, R.C. Morphology and distribution of nitric oxide synthase-, neurokinin-1 receptor-, calretinin-, calbindin-, and neurofilament-M-immunoreactive neurons in the myenteric and submucosal plexuses of the rat small intestine. *Anat. Rec. A Discov. Mol. Cell. Evol. Biol.* 2003, 271, 209–216. [CrossRef] [PubMed]

25. Brown, D.R.; Timmermans, J.P. Lessons from the porcine enteric nervous system. *Neurogastroenterol. Motil.* 2004, 16 (Suppl. 1), 50–54. [CrossRef] [PubMed]

26. Qu, Z.D.; Thacker, M.; Castelucci, P.; Bagyanszki, M.; Epstein, M.L.; Furness, J.B. Immunohistochemical analysis of neuron types in the mouse small intestine. *Cell Tissue Res.* 2008, 334, 147–161. [CrossRef] [PubMed]

27. Kamm, K.; Hoppe, S.; Breves, G.; Schroder, B.; Schemann, M. Effects of the probiotic yeast Saccharomyces boulardii on the neurochemistry of myenteric neurones in pig jejunum. *Neurogastroenterol. Motil.* 2004, 16, 53–60. [CrossRef] [PubMed]

28. McVey Neufeld, K.A.; Perez-Burgos, A.; Mao, Y.K.; Bienenstock, J.; Kunze, W.A. The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin. *Neurogastroenterol. Motil.* 2015, 27, 627–636. [CrossRef] [PubMed]

29. Karin, M.; Jobin, C.; Balkwill, F. Chemotherapy, immunity and microbiota—a new triumvirate? *Nat. Med.* 2014, 20, 126–127. [CrossRef] [PubMed]

30. Schnell, S.A.; Staines, W.A.; Wessendorf, M.W. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. *J. Histochem. Cytochem.* 1999, 47, 719–730. [CrossRef] [PubMed]

31. Brehmer, A.; Lindig, T.M.; Schrödl, F.; Neuhuber, W.; Ditterich, D.; Rexer, M.; Rupprecht, H. Morphology of enkephalin-immunoreactive myenteric neurons in the human gut. *Histochem. Cell Biol.* 2005, 123, 131–138. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
3.1 References

32. Auerbach L. Über einen Plexus myentericus, einen bisher unbekannten ganglionervösen Apparat im Darmkanal der Wirbelthiere. Morgenstern, Breslau, 1862, pp 1–13.

33. Bayliss W. M.; Starling E. H. The movements and innervation of the small intestine. J Physiol. 1899 May 11; 24(2): 99-143.

34. Brehmer, A. Morphologie von Neuronentypen im Enterischen Nervensystem, med. Habilitationsschrift, Universität Erlangen-Nürnberg, 1999.

35. Brehmer, A., Schrödl, F., Neuhuber W., Hens J., Timmermans J-P.: Comparison of enteric neuronal morphology as demonstrated by Dil-tracing under different tissue-handling conditions. Anat Embryol (1999) 199: 57-62.

36. Brehmer A, Göbel D, Frieser M, Graf M, Radespiel-Tröger M, Neuhuber W: Experimental hypertrophy in the pig: a morphometric study. Neurogastroenterol Mot 12 (2000) 155-162.

37. Brehmer A, Frieser M, Graf M, Radespiel-Tröger M, Göbel D, Neuhuber W: dendritic hypertrophy of Stach type VI neurons within experimentally altered ileum of pigs. Auton Neurosci 89 (2001) 31-37.

38. Brehmer A, Schrödl F, Neuhuber W: Morphological phenotyping of enteric neurons using neurofilament immunohistochemistry renders chemical phenotyping more precise in porcine ileum. Histochem Cell Biol 117 (2002a) 257-263.

39. Brehmer A, Schrödl F, Neuhuber W: Correlated morphological and chemical phenotyping in myenteric type V neurons of porcine ileum. J Comp Neurol 453 (2002b) 1-9.
40. Brehmer A, Schrödl F, Neuhuber W, Tooyama I, Kimura H: Co-expression pattern of neuronal nitric oxide synthase and two variants of choline acetyltransferase in myenteric neurons of porcine ileum. J Chem Neuroanat 27 (2004) 33-41.

41. Furness J.B.; Costa M. The enteric nervous system. Churchill Livingstone, Edinburgh, 1987.

42. Gabella G. On the ultrastructure of the enteric nerve ganglia. In: Polak J.M., Bloom S.R., Wright N.A., Daly M.J. (eds) Basic science in Gastroenterology: Structure of the gut. Glaxo, Ware, 1982, pp 193–203.

43. Humenick A., Chen B.N., Wattchow D.A., Zagorodnyuk V.P., Dinning P.G., Spencer N.J., Costa M., Brookes S.JH.: Characterization of putative interneurons in the myenteric plexus of human colon. Neurogastroenterol Motil 2020.

44. Jungbauer C, Lindig TM, Schrödl F, Neuhuber W, Brehmer A: Chemical coding of myenteric neurons with different axonal projection patterns in the porcine ileum. J Anat 209 (2006) 733-743.

45. Langley J.N. The sympathetic and other related systems of nerves. In: Schäfer EA (ed) Text-Book of Physiology. Pentland, Edinburgh, 1900, pp 616–696.

46. Meissner G. Über die Nerven der Darmwand. Z Ration Med N F, 1857, 8:364–366.

47. Schabadasch A. Intramurale Nervengeflechte des Darmrohrs. Z Zellforsch Mikrosk Anat 1930, 10:320–385.

48. Scheuermann D.W., Stach W., De Groodt-Lasseel M.H.A., Timmermans J-P. Calcitonin gene-related peptide in morphologically well-defined type II neurons of the enteric nervous system in the porcine small intestine. Acta. Anat., 1987, 129:325–328.
49. Stach W. Der Plexus submucosus externus (Schabadasch) im Dünndarm des Schweins. I. Form, Struktur und Verbindungen der Ganglien und Nervenzellen. Z Mikrosk. Anat. Forsch. 1977, 91:737–755.

50. Stach W. Über morphologisch definierte vertikale Verbindungen innerhalb des Darmwandnervensystems im Schweinedünndarm. Verh. Anat. Ges., 1983, 77:577–578.

51. Stach W. Zur neuronalen Organisation des Plexus myentericus (Auerbach) im Schweinedünndarm. I. Typ I-Neurone. Z Mikrosk. Anat. Forsch., 1980, 94:833–849.

52. Stach W. Zur neuronalen Organisation des Plexus myentericus (Auerbach) im Schweinedünndarm. II. Typ II-Neurone. Z Mikrosk. Anat. Forsch., 1981, 95:161–182.

53. Stach W. Zur neuronalen Organisation des Plexus myentericus (Auerbach) im Schweinedünndarm. III. Typ III-Neurone. Z Mikrosk. Anat. Forsch., 1982a, 96:497–516.

54. Stach W. Zur neuronalen Organisation des Plexus myentericus (Auerbach) im Schweinedünndarm. IV. Typ IV-Neurone. Z Mikrosk. Anat. Forsch., 1982b, 96:972–994.

55. Stach W. Zur neuronalen Organisation des Plexus myentericus (Auerbach) im Schweinedünndarm. V. Typ V-Neurone. Z Mikrosk. Anat. Forsch., 1985, 99:562–582.

56. Stach W. (1989) A revised morphological classification of neurons in the enteric nervous system. In: Singer MV, Goebell H (eds) Nerves and the gastrointestinal tract. Kluwer, Lancaster, pp 29–45.

57. Timmermans J-P, Hens J, Adriaensen D: Outer submucous plexus: an intrinsic nerve network involved in both secretory and motility processes in the intestine of mammals and humans. Anat Rec 262 (2001) 71-78.
58. Wattchow D.A., Brookes S.J.H., Costa M.: The morphology and projections of retrogradely labeled myenteric neurons in the human intestine. Gastroenterology 109 (1995) 866-875.

59. Wood J.D., Alpers DH, Andrews PLR. Fundamentals of neurogastroenterology. Gut 45 (Suppl II), 1999; II6-II16.

4 ATTACHEMENT

4.1 List of figures

Figure 1: Human enteric ganglia double immunostaining for HU C/D (HU; grey) and calbindin (CALB; red).

Figure 2: Human enteric ganglia quadruple immunostaining for calbindin (CALB: a,b,c), calretinin (CALR: a’,b’,c’), somatostatin (SOM: a”,b”’,c”’) and vasoactive intestinal peptide (VIP: a””,b””,c””).

Figure 3: Calbindin (CALB: a–e) immunoreactivities of morphologically defined, neurofilament (NF: a’–e’)-labeled human myenteric neuron types and their co-reactivities for somatostatin (SOM: a”–e”’) and vasoactive intestinal peptide (VIP: a””–e””). (ax = axons of marked neurons).

Figure 4: Calbindin (CALB)-immunoreactive human submucosal neurons: shapes as revealed by their peripherin (PERI)-immunoreactivities as well as co-immunolabeling for somatostatin (SOM) and vasoactive intestinal peptide (VIP). (ax = axons of marked neurons).

Figure 5: Section through the small intestinal wall, immunostained for calbindin (a,b,c: CALB; red), peripherin (a’,b’: PERI; green) and somatostatin (yellow; the latter is only depicted in (c’).
4.2 List of tables

Table 1: Mean values ± standard deviations of neuron numbers and proportions of means in 15 ganglia per wholemount (i.e., per subject) that were immunolabeled for the pan-neuronal marker HU alone as well as for both HU and CALB.

Table 2: Numbers (means ± standard deviations) of neurons stained for CALB in 15 ganglia per wholemount (i.e., per subject) and proportions of CALB neurons without co-staining or displaying colocalization with other markers, respectively.

Table 3: Antisera.

5 List of publications

Horch RE, Ludolph I, Müller-Seubert W, Zetzmann K, Hauck T, Arkudas A, Geierlehner A. Topical negative-pressure wound therapy: emerging devices and techniques. Expert Rev Med Devices. 2020 Feb;17(2):139-148.

Polykandriotis E, Besrou F, Arkudas A, Ruppe F, Zetzmann K, Braeuer L, Horch RE. Flexor tendon repair with a polytetrafluoroethylene (PTFE) suture material. Arch Orthop Trauma Surg. 2019 Mar;139(3):429-434.
6 Acknowledgement

Ich danke ganz besonders Herrn Prof. Dr. med. Axel Brehmer für die Bereitstellung des Themas, seine Geduld und die Unterstützung bei der Erstellung des Manuskripts. Frau Prof. Dr. med. Stefanie Kürten danke ich ebenfalls für Ihre Unterstützung, sowie allen Institutsmitarbeitern, insbesondere den technischen Assistentinnen des Instituts.

7 Curriculum vitae

Katharina Zetzmann

Anschrift: Henkestraße 78a, 91052 Erlangen

E-Mail: katharina.zetzmann@gmx.de

Telefon: Mobil: 0151/25329314

Geboren am 14.02.1991 in Hildburghausen

Bildungsweg

- 05/20011 – 06/2017
 Studium der Medizin
 Friedrich-Alexander-Universität Erlangen-Nürnberg
 Abschnitt der Ärztlichen Prüfung: März 2013
 Abschnitt der Ärztlichen Prüfung: April 2016
 Abschnitt der Ärztlichen Prüfung: Juni 2017
Abschlussnote 2,33

- 10/2009-05/2011
 Hochschulstudium Medizintechnik an der Friedrich-Alexander-Universität Erlangen-Nürnberg

- 06/2001– 04/2009
 Hochschulreife
 Staatliches Gymnasium Georgianum Hildburghausen
 Abschlussnote: 1,5

Praktische Erfahrungen

16/09/2020 – dato

Assistenzärztin in Weiterbildung in der Klinik für Gefäßchirurgie der Universitätsklinik Erlangen

01/07/2017 – 30/06/2020

Assistenzärztin in Weiterbildung in der Klinik für Plastische – und Handchirurgie der Universitätsklinik Erlangen

2016 – 2017

Praktisches Jahr

- **3. Tertial**: Innere Medizin
 Universitätsklinikum Erlangen
 Prof. Dr. med. Markus F. Neurath und Prof. Dr. med. univ. Georg Schett

- **2. Tertial**: Chirurgie
 Sana Klinikum Hof
PD Dr. Dr. med. Elias Polykandriotis und Prof. Dr. med. Matthias Schürmann

- **1. Tertial: Plastische- und Handchirurgie**
 Universitätsklinikum Erlangen
 Prof. Dr. med. Dr. h. c. Raymund E. Horch

Nebenerwerbstätigkeiten

- 2013 – 2016 Studentischer Tutor im Präparationskurs des anatomischen Instituts der Friedrich-Alexander-Universität Erlangen-Nürnberg
- 2014 – 2016 Operative Assistenz für Dr. med. Rössner, Praxis am Fuchsgarten für Orthopädie, Erlangen
- 2012 – 2013 Studentischer Hilfstutor im Präparationskurs des anatomischen Instituts der Friedrich-Alexander-Universität Erlangen-Nürnberg

Weitere Kenntnisse

EDV

- Microsoft Office / Word / Excel / Powerpoint
- Windows, Linux, iOS
- Soarian / Lauris

Sprachen:

- Deutsch – Muttersprache
- Englisch
- Latinum

Erlangen, 13.12.2020

Katharina Zetzmann