CP violation in charm decays at Belle

Byeong Rok Ko

Korea University, SEOUL, Republic of Korea
E-mail: brko@hep.korea.ac.kr

Using the full data sample collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider, we present CP violation in charm decays. The $D^0 - \bar{D}^0$ mixing parameter γ_{CP} and indirect CP violation parameter A_Γ in $D^0 \rightarrow h^+h^-$ decays are reported, where h denotes K and π. The preliminary results are $\gamma_{CP} = (1.11 \pm 0.22 \pm 0.11)\%$ and $A_\Gamma = (-0.03 \pm 0.20 \pm 0.08)\%$. We also report searches for CP violation in $D^0 \rightarrow h^+h^-$ and $D^+ \rightarrow K_S^0 K^+$ decays. No evidence for CP violation in $D^0 \rightarrow h^+h^-$ is observed with $A_{CP}^{KK} = (-0.32 \pm 0.21 \pm 0.09)\%$ and $A_{CP}^{\pi\pi} = (+0.55 \pm 0.36 \pm 0.09)\%$. The CP asymmetry difference between $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays is measured with $\Delta A_{CP}^{hh} = (-0.87 \pm 0.41 \pm 0.06)\%$. The CP asymmetry in $D^+ \rightarrow K_S^0 K^+$ decay is measured to be $(-0.25 \pm 0.28 \pm 0.14)\%$. After subtracting CP violation due to $K^0-\bar{K}^0$ mixing, the CP asymmetry in $D^+ \rightarrow \bar{K}^0 K^+$ decay is found to be $(+0.08 \pm 0.28 \pm 0.14)\%$.

The European Physical Society Conference on High Energy Physics - EPS-HEP2013
18-24 July 2013
Stockholm, Sweden

*Speaker.
†on behalf of the Belle Collaboration.
1. Introduction

Violation of the combined Charge-conjugation and Parity symmetries (CP) in the standard model (SM) is produced by a non-vanishing phase in the Cabibbo-Kobayashi-Maskawa flavor-mixing matrix $\left[1\right]$ and that in charm decays is expected to be very small in the SM $\left[2, 3\right]$, thus it provides a unique probe to search for beyond the SM.

2. y_{CP} and A_{Γ} measurements with $D^0 \to h^+h^-$ and $D^0 \to K^-\pi^+$ decays

The neutral charmed meson mixing and indirect CP violation (CPV) parameters, y_{CP} and A_{Γ} are defined as

$$y_{CP} = \frac{\hat{\Gamma}(D^0 \to h^+h^-) - \hat{\Gamma}(\bar{D}^0 \to h^+h^-)}{2\Gamma} - 1, \quad (2.1)$$

$$A_{\Gamma} = \frac{\hat{\Gamma}(D^0 \to h^+h^-) + \hat{\Gamma}(\bar{D}^0 \to h^+h^-)}{2\Gamma}, \quad (2.2)$$

where Γ is the average decay width of the two mass eigenstates of the neutral charmed mesons and $\hat{\Gamma}$ is the effective decay width of $D^0 \to h^+h^-$ that can be described with a single exponential form $\left[4\right]$. Under CP conservation, y_{CP} is y that is $\Delta\Gamma/2\Gamma$ and characterizes the charm mixing where $\Delta\Gamma$ is the decay width difference between the two mass eigenstates of the neutral charm mesons. Therefore, any large deviation between y_{CP} and y strongly indicates CPV in charm decays.

The experimental observable for y_{CP} is the lifetime difference between $D^0 \to h^+h^-$ and $D^0 \to K^-\pi^+$ states, where the former is CP-even and the latter is an equal mixture of CP-even and CP-odd under CP conservation. The CPV parameter A_{Γ} can be measured from lifetime difference between the two CP conjugate decays. From Eq. (2.1), the lifetime of $D^0 \to h^+h^-$ can be expressed as $\tau(D^0 \to h^+h^-) = \tau/(1 + y_{CP})$ and from (2.2) that of $D^0 \to h^+h^-$ and $\bar{D}^0 \to h^+h^-$ can be described with $\tau(D^0 \to h^+h^-) = \tau(1 - A_{\Gamma})$ and $\tau(D^0 \to h^+h^-) = \tau(1 + A_{\Gamma})$, respectively, where τ is the lifetime of $D^0 \to K^-\pi^+$. Therefore, the lifetimes of $D^0 \to h^+h^-$ and $\bar{D}^0 \to h^+h^-$ can be parameterized in terms of y_{CP}, A_{Γ}, and τ as shown in Eq. (2.3).

$$\tau(D^0 \to h^+h^-) = \tau(1 - A_{\Gamma})/(1 + y_{CP}),$$

$$\tau(\bar{D}^0 \to h^+h^-) = \tau(1 + A_{\Gamma})/(1 + y_{CP}). \quad (2.3)$$

In order to extract y_{CP}, A_{Γ}, and τ, we perform simultaneous fit to the five proper decay time distributions from $D^0 \to K^+K^-$, $\bar{D}^0 \to K^+K^-$, $D^0 \to K^-\pi^+$ + c.c., $D^0 \to \pi^+\pi^-$, and $\bar{D}^0 \to \pi^+\pi^-$. Since the experimental data were taken with two different silicon vertex detector configurations $\left[5\right]$, we treat them separately with the two different proper decay time resolution functions. Figure 1 shows the simultaneous fits to the five proper decay time distributions. To reduce systematic effects due to the resolution function dependence on cos θ^*, where θ^* is the polar angle of the D^0 momentum at the center-of-mass system (c.m.s.), the simultaneous fits are actually performed in bins of cos θ^* to extract y_{CP}, A_{Γ} and τ. Figure 2 shows the results of the simultaneous fits, y_{CP}, A_{Γ}, and τ as a function of the cos θ^*. The averages of the fit results shown in Fig. 3 are $y_{CP} = (1.11 \pm 0.22 \pm 0.11)\%$, $A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.08)\%$, and $\tau = (408.56 \pm 0.54)$ fs, where the last is consistent with world average $\left[6\right]$.

To conclude, we observe y_{CP} with 4.5σ significance and find no indirect CPV in $D^0 \to h^+h^-$ decays.
Figure 1: Simultaneous fits to the proper decay time distributions that are integrated over the cos θ∗. Top (bottom) plots are obtained with 3-layer (4-layer) silicon vertex detector. The distributions of signal and sideband regions are shown as error bars and the hatched, respectively. The “(+)” and “(-)” denote the charge of the tagging soft pion.

3. Direct CPV measurements in $D^0 \rightarrow h^+ h^-$ and $D^+ \rightarrow K_s^0 K^+$ decays

The direct CP asymmetry of $D \rightarrow f$ decays is defined as

$$A_{CP}^{D \rightarrow f} = \frac{\Gamma(D \rightarrow f) - \Gamma(\bar{D} \rightarrow \bar{f})}{\Gamma(D \rightarrow f) + \Gamma(\bar{D} \rightarrow \bar{f})},$$

(3.1)

where Γ is the partial decay width. Experimental determination of $A_{CP}^{D \rightarrow f}$ can be done with the asymmetry in the signal yield

$$A_{rec}^{D \rightarrow f} = \frac{N_{rec}^{D \rightarrow f} - N_{rec}^{D \rightarrow \bar{f}}}{N_{rec}^{D \rightarrow f} + N_{rec}^{D \rightarrow \bar{f}}} = A_{CP}^{D \rightarrow f} + A_{others},$$

(3.2)

where N_{rec} is the number of reconstructed decays and A_{others} are asymmetries other than $A_{CP}^{D \rightarrow f}$, production and particle detection asymmetries. The methods developed in Refs. [7] and [8] are used to correct for charged kaon and soft pion detection asymmetries, respectively. To correct for asymmetry caused by neutral kaons, we rely on the method in Ref. [9]. Once we correct for asymmetries due to particle detection, then we extract $A_{CP}^{D \rightarrow f}$ using the antisymmetry of the production asymmetry which is the forward-backward asymmetry at Belle.

The $D^0 \rightarrow h^+ h^-$ final states are singly Cabibbo-suppressed (SCS) decays in which both direct and indirect CPV are expected in the SM [2, 3], while the CP asymmetry difference between the
two decays, \(\Delta A_{hh}^{CP} = A_{KK}^{CP} - A_{\pi\pi}^{CP} \) reveals approximately direct \(CPV \) with the universality of indirect \(CPV \) in charm decays [3]. Figure 3 shows reconstructed signal distributions showing 14.7M \(D_0^0 \to K^-\pi^+ \), 3.1M \(D^*_+ \) tagged \(D_0^0 \to K^-\pi^+ \), 282k \(D^*_+ \) tagged \(D_0^0 \to K^+K^- \), and 123k \(D^*_+ \) tagged \(D_0^0 \to \pi^+\pi^- \), respectively, and the measured \(A_{CP} \) in bins of \(|\cos \theta^*_{D^+}| \). From the bottom plots in Fig. 3, we obtain \(A_{KK}^{CP} = (-0.32 \pm 0.21 \pm 0.09)\% \) and \(A_{\pi\pi}^{CP} = (+0.55 \pm 0.36 \pm 0.09)\% \) where the former shows the best sensitivity to date. From the two measurements, we obtain \(\Delta A_{hh}^{CP} = (-0.87 \pm 0.41 \pm 0.06)\% \).

The \(D^+ \) decaying to the final state \(K^0_S K^+ \) proceeds from \(D^+ \to \bar{K}^0 K^+ \) decay which is SCS, where direct \(CPV \) is predicted to occur [2, 3]. With a \(K^0_S \) in the final state, \(D^+ \to K^0_S K^+ \) decay is also expected to generate \(CPV \) due to \(K^0 - \bar{K}^0 \) mixing, referred to as \(A_{CP}^{K^0 - \bar{K}^0} \). The decay \(D^+ \to \bar{K}^0 K^+ \) shares the same decay diagrams with \(D^0 \to K^+K^- \) by exchanging the spectator quarks, \(d \leftrightarrow u \). Therefore, neglecting the helicity and color suppressed contributions in \(D^+ \to \bar{K}^0 K^+ \) and \(D^0 \to K^+K^- \) decays, the direct \(CPV \) in the two decays is expected to be effectively the same. Thus, as a complementary test of the \(\Delta A_{hh}^{CP} \) measurement\(^1\), the precise measurement of \(A_{CP} \) in \(D^+ \to \bar{K}^0 K^+ \) helps to pin down the origin of \(\Delta A_{hh}^{CP} \) [2]. Figure 4 shows invariant masses of \(D^\pm \to K^0_S K^\pm \) together with the fits that result in \(\sim 277k \) reconstructed decays and the measured \(A_{CP} \) in bins of \(|\cos \theta^*_{D^+}| \). From the right plot in Fig. 4, we obtain \(A_{CP}^{D^+ \to K^0_S K^+} = (-0.25 \pm 0.28 \pm 0.14)\% \). After

\(^1\) Now the tension is rather released [10], but was strong [11].
Belle preliminary using 976/fb

![Graphs showing reconstructed signal distributions and preliminary results of A_{CP} as a function of the polar angle of D^*+ momentum at the c.m.s.]

Figure 3: Top four plots show reconstructed signal distributions described in the text and bottom two plots show preliminary results of A_{CP} as a function of the polar angle of D^*^+ momentum at the c.m.s.

subtracting experiment dependent $A_{CP}^{K^0}$ [13], the CPV in charm decay, $A_{CP}^{D^+\rightarrow\bar{K}^0 K^+}$, is measured to be $(+0.08 \pm 0.28 \pm 0.14)\%$ [14].

4. Summary

In summary, using the full data sample collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider, we report the charm mixing parameter y_{CP} and indirect CPV parameter A_{Γ} using $D^0 \rightarrow h^+h^-$ and $D^0 \rightarrow K^-\pi^+$ decays. The preliminary results are:

$$y_{CP} = (1.11 \pm 0.22 \pm 0.11)\%,$$

$$A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.08)\%.$$
We also report searches for CP violation in D^0 \to h^+ h^- and D^+ \to K_S^0 K^+ decays. The preliminary results of A_{CP} in $D^0 \to h^+ h^-$ decays and the difference between the two A_{CP} results are:

$$A_{CP}^{K K} = (-0.32 \pm 0.21 \pm 0.09\%)$$,
$$A_{CP}^{\pi \pi} = (+0.55 \pm 0.36 \pm 0.09\%)$$,
$$\Delta A_{CP}^{hh} = (-0.87 \pm 0.41 \pm 0.06\%)$$,

and the results of A_{CP} in $D^+ \to K_S^0 K^+$ decays are:

$$A_{CP}^{D^+ \to K_S^0 K^+} = (-0.25 \pm 0.28 \pm 0.14\%)$$,
$$A_{CP}^{D^+ \to K^0 K^+} = (+0.08 \pm 0.28 \pm 0.14\%)$$.

References

[1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys., 49, 652 (1973).
[2] F. Buccella et al., Phys. Rev. D 51, 3478 (1995).
[3] Y. Grossman, A. L. Kagan, and Y. Nir, Phys. Rev. D 75, 036008 (2007).
[4] S. Bergmann et al., Phys. Lett. B 486, 418 (2000).
[5] Z. Natkaniec et al. (Belle SVD2 Group), Nucl. Instr. and Meth. A 560, 1 (2006); Y. Ushiroda (Belle SVD2 Group), Nucl. Instr. and Meth. A 511, 6 (2003).
[6] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[7] B. R. Ko et al. (Belle collaboration), Phys. Rev. Lett. 104, 181602 (2010).
[8] M. Starič et al. (Belle collaboration), Phys. Lett. B 670, 190 (2008).
[9] B. R. Ko, E. Won, B. Golob, and P. Pakhlov, Phys. Rev. D 84 111501 (2011).
[10] http://www.slac.stanford.edu/xorg/hfag/charm/March13/DCPV/direct_indirect_cpv.html.
[11] http://www.slac.stanford.edu/xorg/hfag/charm/ICHEP12/DCPV/direct_indirect_cpv.html.
[12] B. Bhattacharya, M. Gronau, and J. L. Rosner, Phys. Rev. D 85, 054104 (2012).
[13] Y. Grossman and Y. Nir, JHEP, 04 (2012) 002.
[14] B. R. Ko et al. (Belle Collaboration), JHEP. 02 (2013) 098.