Moriyama, Takayuki; Nitta, Takashi

Some examples of global Poisson structures on S^4.

(English) [Zbl 1432.53119]

Kodai Math. J. 42, No. 2, 223-246 (2019).

The goal of this paper is to construct some concrete examples of global Poisson structures on the smooth manifold S^4, where a global Poisson structure is a bivector $w \in \Gamma(\wedge^2 TM)$ which vanishes under the Schouten bracket $[w, w] = 0$. This paper employs the twistor method to identify a subset of real Poisson structures on S^4 with the holomorphic Poisson structures on the complex manifold $\mathbb{C}P^3$. The holomorphic Poisson structures on $\mathbb{C}P^3$ has been completely classified [D. Cerveau and A. Lins Neto, Ann. Math. (2) 143, No. 3, 577–612 (1996, Zbl 0855.32015); F. Loray et al., Math. Nachr. 286, No. 8–9, 921–940 (2013, Zbl 1301.37032)], thus this allows for new Poisson structures on S^4 to be constructed.

The main technical result of this paper follows in two steps. First, the g-vectors on $\mathbb{C}P^3$ are characterized as pushforwards of g-vectors on $\mathbb{C}^4 \setminus \{0\}$ and the space of holomorphic Poisson structures are given an explicit description as a complex space with a real structure. In the second step, S^4 is identified with $\mathbb{H}P^1$ (where \mathbb{H} is Hamilton’s quaternions), and a subspace of real Poisson structure on $\mathbb{H}P^1$ is identified with the real part of the space of holomorphic Poisson structures on $\mathbb{C}P^3$.

In Section 5, these results are generalized to the higher-dimensional cases of $\mathbb{C}P^n$ and $\mathbb{H}P^m$. In Section 6, a Poisson structures on S^4 is induced by a foliation of codimension-1 of degree 2 on $\mathbb{C}P^3$ for each of the six disconnected components of the space of such foliations.

Reviewer: Benjamin MacAdam (Calgary)

MSC:

53D17 Poisson manifolds; Poisson groupoids and algebroids
37F35 Conformal densities and Hausdorff dimension for holomorphic dynamical systems

Keywords:

Poisson structure; twistor method; holomorphic foliation

Full Text: DOI arXiv Euclid