Small generating sets for the Torelli group

Andrew Putman

Proving a conjecture of Dennis Johnson, we show that the Torelli subgroup \(\mathcal{I}_g \) of the genus \(g \) mapping class group has a finite generating set whose size grows cubically with respect to \(g \). Our main tool is a new space called the handle graph on which \(\mathcal{I}_g \) acts cocompactly.

1 Introduction

Let \(\Sigma_{g,n} \) be a compact connected oriented genus \(g \) surface with \(n \) boundary components. The mapping class group of \(\Sigma_{g,n} \), denoted \(\text{Mod}_{g,n} \), is the group of orientation-preserving homeomorphisms of \(\Sigma_{g,n} \) that fix the boundary pointwise modulo isotopies that fix the boundary pointwise. We will often omit the \(n \) if it vanishes. For \(n \leq 1 \), the Torelli group, denoted \(\mathcal{I}_{g,n} \), is the kernel of the action of \(\text{Mod}_{g,n} \) on \(H_1(\Sigma_{g,n}; \mathbb{Z}) \).

The Torelli group has been the object of intensive study ever since the seminal work of Dennis Johnson in the early ’80’s. See [10] for a survey of Johnson’s work.

Finite generation of Torelli One of Johnson’s most celebrated theorems says that \(\mathcal{I}_{g,n} \) is finitely generated for \(g \geq 3 \) and \(n \leq 1 \) (see [9]). This is a surprising result – though \(\text{Mod}_{g,n} \) is finitely presentable, \(\mathcal{I}_{g,n} \) is an infinite-index normal subgroup of \(\text{Mod}_{g,n} \), so there is no reason to hope that \(\mathcal{I}_{g,n} \) has any finiteness properties. Moreover, McCullough and Miller [13] proved that \(\mathcal{I}_{2,n} \) is not finitely generated for \(n \leq 1 \), and later Mess [14] proved that \(\mathcal{I}_2 \) is an infinite rank free group.

Johnson’s generating set Johnson’s generating set for \(\mathcal{I}_{g,n} \) when \(g \geq 3 \) and \(n \leq 1 \) is enormous. Indeed, for \(\mathcal{I}_g \) (resp. \(\mathcal{I}_{g,1} \)), it contains \(9 \cdot 2^{2g-3} - 4g^2 + 2g - 6 \) (resp. \(9 \cdot 2^{2g-3} - 4g^2 + 4g - 5 \)) elements. In [11], Johnson proved that the abelianization of \(\mathcal{I}_g \) (resp. \(\mathcal{I}_{g,1} \)) has rank \(\frac{1}{3}(4g^3 + 5g + 3) \) (resp. \(\frac{1}{3}(4g^3 - g) \)). These give large lower bounds on the size of generating sets for \(\mathcal{I}_{g,n} \); however, there is a huge gap between this cubic lower bound and Johnson’s exponentially growing generating set. At the end of [9] and in [10, page 168], Johnson conjectures that there should be a generating set for \(\mathcal{I}_{g,n} \) whose size grows cubically with respect to the genus. Later, in

Published: 2 January 2012 DOI: 10.2140/gt.2012.16.111
Farb asked whether there at least exists a generating set whose size grows polynomially.

Main theorem In this paper, we prove Johnson’s conjecture. Our main theorem is as follows.

Theorem A For $g \geq 3$, the group I_g has a generating set of size at most $57\binom{g}{3}$ and the group $I_{g,1}$ has a generating set of size at most $57\binom{g}{3} + 2g + 1$.

The generating set we construct was conjectured to generate $I_{g,n}$ by Brendle and Farb [2]. To describe it, we must introduce some notation. As in Figure 1(a), let R'_1, \ldots, R'_g be g subsurfaces of Σ_g each homeomorphic to $\Sigma_{1,1}$ such that the following hold. Interpret all indices modulo g.

- If $1 \leq i < j \leq g$ satisfy $i \not\in \{j-1, j+1\}$, then $R'_i \cap R'_j = \emptyset$.
- For all $1 \leq i \leq g$, the intersection $R'_i \cap R'_{i+1}$ is homeomorphic to an interval.

For $1 \leq i < j < k \leq g$, define a subsurface R_{ijk} of Σ_g by $R_{ijk} = \Sigma_g \setminus \bigcup_{l \neq i,j,k} R'_l$. Thus R_{ijk} is a genus 3 surface with at most 3 boundary components such that $R'_i, R'_j, R'_k \subset R_{i,j,k}$ (see Figure 1(b)).

If S is a subsurface of Σ_g, define $\text{Mod}(\Sigma_g, S)$ to be the subgroup of Mod_g consisting of mapping classes that can be realized by homeomorphisms supported on S and $\mathcal{I}(\Sigma_g, S)$ to equal $\mathcal{I}_g \cap \text{Mod}(\Sigma_g, S)$. The key result for the proof of Theorem A is the following theorem.

Geometry & Topology, Volume 16 (2012)
Theorem B For $g \geq 3$, the group \mathcal{I}_g is generated by the set

$$\bigcup_{1 \leq i < j < k \leq g} \mathcal{I}(\Sigma_g, R_{ijk}).$$

Using Johnson’s work, it is easy to see that $\mathcal{I}(\Sigma_g, R_{ijk})$ is finitely generated by a generating set with at most 57 generators (see Lemma 2.2). Also, standard techniques (see Lemma 2.1) show that if \mathcal{I}_g has a generating set with k elements, then $\mathcal{I}_g,1$ has a generating set with $k + 2g + 1$ elements. Since there are $\binom{g}{3}$ subsurfaces R_{ijk}, Theorem A follows from Theorem B.

Remark To illustrate the relative sizes of our generating sets, Johnson’s generating set for \mathcal{I}_{20} contains more than one trillion elements while our generating set for \mathcal{I}_{20} has 64980 elements.

New proof of Johnson’s theorem Our deduction of Theorem A from Theorem B depends on Johnson’s theorem that \mathcal{I}_3 is finitely generated. However, Hain [6] has recently announced a direct conceptual proof that \mathcal{I}_3 is finitely generated. Hain’s proof uses special properties of the moduli space of genus 3 Riemann surfaces and cannot be easily generalized to $g > 3$. Combining this with our paper, we obtain a new proof that $\mathcal{I}_{g,n}$ is finitely generated for $g \geq 3$ and $n \leq 1$.

Our new proof is more conceptual than Johnson’s original one. To illustrate this, we will sketch Johnson’s proof. He starts by writing down an enormous finite subset $S \subset \mathcal{I}_{g,n}$ which is known (from work of Powell [15]) to normally generate $\mathcal{I}_{g,n}$ as a subgroup of $\text{Mod}_{g,n}$. Letting T be a standard generating set for $\text{Mod}_{g,n}$, Johnson then proves via a laborious computation that for $t \in T$ and $s \in S$, the element $tst^{-1} \in \mathcal{I}_{g,n}$ can be written as a word in S. This implies that the subgroup Γ' of $\mathcal{I}_{g,n}$ generated by S is a normal subgroup of $\text{Mod}_{g,n}$, and thus that $\Gamma = \mathcal{I}_{g,n}$.

Remark Our proof of Theorem B appeals to a theorem of [17] whose proof depends on Johnson’s theorem. However, Hatcher and Margalit [12] have recently given a new proof of this result that is independent of Johnson’s work.

Nature of generators Some basic elements of $\mathcal{I}_{g,n}$ are as follows (see, eg [16]). If x is a simple closed curve on $\Sigma_{g,n}$, then denote by $T_x \in \text{Mod}_{g,n}$ the Dehn twist about x. If x is a separating simple closed curve, then $T_x \in \mathcal{I}_{g,n}$; these are called *separating twists*. If x and y are disjoint homologous nonseparating simple closed curves, then $T_x T_y^{-1} \in \mathcal{I}_{g,n}$; these are called *bounding pair maps*. Following work...
of Birman [1], Powell [15] proved that \(I_g, n \) is generated by bounding pair maps and separating twists for \(g \geq 1 \) and \(n \leq 1 \) (see [16] and [12] for alternate proofs). Johnson’s finite generating set for \(I_g, n \) for \(g \geq 3 \) and \(n \leq 1 \) consists entirely of bounding pair maps. It follows easily from our proofs of Lemma 2.1 and 2.2 that our generating set consists of bounding pair maps and separating twists; see the remark after Lemma 2.2.

The handle graph Our proof of Theorem B is topological. To prove that a group \(G \) is finitely generated, it is enough to find a connected simplicial complex upon which \(G \) acts cocompactly with finitely generated stabilizers. We use a variant on the curve complex. If \(\gamma \) is an oriented simple closed curve on \(\Sigma_g \), then denote by \([\gamma]\) its homology class. Also, if \(\gamma_1 \) and \(\gamma_2 \) are isotopy classes of simple closed curves on \(\Sigma_g \), then denote by \(i_g(\gamma_1, \gamma_2) \) their geometric intersection number, ie the minimal possible number of intersections between two curves in the isotopy classes of \(\gamma_1 \) and \(\gamma_2 \). Finally, denote by \(i_a(\cdot, \cdot) \) the algebraic intersection pairing on \(H_1(\Sigma_g; \mathbb{Z}) \).

Definition Let \(a, b \in H_1(\Sigma_g; \mathbb{Z}) \) satisfy \(i_a(a, b) = 1 \). The handle graph associated to \(a \) and \(b \), denoted \(\mathcal{H}_{a,b} \), is the graph whose vertices are isotopy classes of oriented simple closed curves on \(\Sigma_g \) that are homologous to either \(a \) or \(b \) and where two vertices \(\gamma_1 \) and \(\gamma_2 \) are joined by an edge exactly when \(i_g(\gamma_1, \gamma_2) = 1 \).

We will show that \(\mathcal{H}_{a,b}/I_g \) consists of a single edge (see Lemma 5.2) and that \(\mathcal{H}_{a,b} \) is connected for \(g \geq 3 \) (see Lemma 3.1).

A complication It would appear that we have all the ingredients in place to use the space \(\mathcal{H}_{a,b} \) to prove that \(I_g \) is finitely generated. However, there is one remaining complication. Namely, we do not know the answer to the following question.

Question 1.1 For some \(g \geq 4 \), let \(\gamma \) be the isotopy class of a nonseparating simple closed curve on \(\Sigma_g \). Is the stabilizer subgroup \((I_g)_\gamma \) of \(\gamma \) finitely generated?

In other words, we do not know if the vertex stabilizer subgroups of the action of \(I_g \) on \(\mathcal{H}_{a,b} \) are finitely generated. Nonetheless, in Section 4 we will prove a weaker statement that suffices to prove Theorem B. The proof of Theorem B is in Section 5.

Smaller generating sets A positive answer to Question 1.1 would likely lead to a smaller generating set for \(I_g \), though of course this depends on the nature of the finite generating sets for the stabilizer subgroups. Let us describe one way this could work. For \(g \geq 3 \), let \(\sigma_g \) be the smallest cardinality of a generating set for \(I_g \). Consider

Geometry & Topology, Volume 16 (2012)
Small generating sets for the Torelli group

$g \geq 4$, and fix an edge $\{\alpha, \beta\}$ of $\mathcal{H}_{a,b}$. The proof of Theorem B shows that \mathcal{I}_g is generated by $(\mathcal{I}_g)_\alpha \cup (\mathcal{I}_g)_\beta$. Let S be a subsurface of Σ_g such that $S \cong \Sigma_{g-1,1}$ and $\alpha \cup \beta \subset \Sigma_g \setminus S$. We have $\mathcal{I}(\Sigma_g, S) \cong \mathcal{I}_{g-1,1}$ (see Section 2) and $\mathcal{I}(\Sigma_g, S) \subset (\mathcal{I}_g)_\alpha$ and $\mathcal{I}(\Sigma_g, S) \subset (\mathcal{I}_g)_\beta$. Assume that there exists a finite set V_α (resp. V_β) such that \mathcal{I}_g/α (resp. \mathcal{I}_g/β) is generated by $I_{g-1,1}$ can be generated by $\sigma_{g-1} + 2g + 1$ elements. Moreover, it seems likely that there exists some relatively small K such that $|V_\alpha|, |V_\beta| \leq Kg^2$. This would imply that

$\sigma_g \leq \sigma_{g-1} + 2g + 1 + 2Kg^2$.

Iterating this, we would get that

$\sigma_g \leq \sigma_3 + \sum_{i=4}^{g} (2i + 1 + 2Ki^2)$

for $g \geq 4$. This bound is cubic in g (as it needs to be), but as long as K is not too large it is much smaller than $57\left(\frac{g}{3}\right)$.

Finite presentability Perhaps the most important open question about the combinatorial group theory of \mathcal{I}_g is whether or not it is finitely presentable for $g \geq 3$. One way of proving that a group G is finitely presentable is to construct a simply-connected simplicial complex X upon which G acts cocompactly with finitely presentable stabilizer subgroups (see, eg [3]). For example, Hatcher and Thurston use this technique in [7] to prove that the mapping class group is finitely presentable.

The handle graph $\mathcal{H}_{a,b}$ appears to be the first example of a useful space upon which \mathcal{I}_g acts cocompactly (of course, there are trivial non-useful examples of such spaces; for example, the Cayley graph of \mathcal{I}_g or a 1-point space). Unfortunately, while $\mathcal{H}_{a,b}$ is connected for $g \geq 3$, it is not simply connected. Indeed, it does not even have any 2–cells (and is not a tree). However, one could probably attach 2–cells to $\mathcal{H}_{a,b}$ to obtain a simply connected complex upon which \mathcal{I}_g acts cocompactly. This would not be enough, however – one would also have to prove that the simplex stabilizer subgroups were finitely presentable. In other words, this complex would provide the inductive step in a proof that \mathcal{I}_g was finitely presentable, but one would still need a base case.

A complex that does not work We close this introduction by discussing an approach to Theorem B that does not work. One might think of trying to prove Theorem B using the following complex. Let $a \in H_1(\Sigma_g; \mathbb{Z})$ be a primitive vector. Define C_a to be the graph whose vertices are isotopy classes of oriented simple closed curves γ on Σ_g such that $[\gamma] = a$ and where two vertices γ and γ' are joined by an edge if

Geometry & Topology, Volume 16 (2012)
It is known ([17, Theorem 1.9]; see [12] for an alternate proof) that C_g is connected for $g \geq 3$. Moreover, \mathcal{I}_g acts transitively on the vertices of C_g. However, it does not act cocompactly; indeed, there are infinitely many edge orbits. To see this, consider edges $e_1 = \{\gamma_1, \gamma'_1\}$ and $e_2 = \{\gamma_2, \gamma'_2\}$ of C_g. Assume that there exists some $f \in \mathcal{I}_g$ such that $f(e_1) = e_2$. Since γ_1 is homologous to γ'_1, the multicurve $\gamma_1 \cup \gamma'_1$ divides Σ_g into two subsurfaces S_1 and S'_1. Similarly, $\gamma_2 \cup \gamma'_2$ divides Σ_g into two subsurfaces S_2 and S'_2. Relabeling if necessary, we have $f(S_1)$ isotopic to S_2 and $f(S'_1)$ isotopic to S'_2. Since $f \in \mathcal{I}_g$, the images of $H_1(S_1; \mathbb{Z})$ and $H_1(S_2; \mathbb{Z})$ in $H_1(\Sigma_g; \mathbb{Z})$ must be the same, and similarly for $H_1(S'_1; \mathbb{Z})$ and $H_1(S'_2; \mathbb{Z})$. It is easy to see that infinitely many such images occur for different edges of C_g, so there must be infinitely many edges orbits. We remark that Johnson proved in [8, Corollary to Lemma 9 on page 250] that the images of $H_1(S_1; \mathbb{Z})$ and $H_1(S'_1; \mathbb{Z})$ in $H_1(\Sigma_g; \mathbb{Z})$ are a complete invariant for the edge orbits.

Acknowledgments I wish to thank Tara Brendle, Benson Farb, and Dan Margalit for their help. I also wish to thank an anonymous referee for a very helpful referee report.

The author is supported in part by NSF grant DMS-1005318.

2 The Torelli group on subsurfaces

We will need to understand how the Torelli group restricts to subsurfaces. For a general discussion of this, see [16]. In this section, we will extract from [16] results on two kinds of subsurfaces. In Section 2.1, we will show how to analyze subsurfaces like the subsurfaces R_{ijk} from Section 1. In Section 2.2, we will show how to analyze stabilizers of nonseparating simple closed curves (which are supported on the subsurface obtained by taking the complement of a regular neighborhood of the curve).

2.1 Analyzing the subsurfaces R_{ijk}

We begin by defining groups $\mathcal{I}_{g,n}$ for $n \geq 2$. There is a map $\text{Mod}_{g,n} \rightarrow \text{Mod}_g$ induced by gluing discs to the boundary components of $\Sigma_{g,n}$ and extending homeomorphisms by the identity. Define $\mathcal{I}_{g,n}$ to be the kernel of the resulting action of $\text{Mod}_{g,n}$ on $H_1(\Sigma_g; \mathbb{Z})$. For the case $n = 1$, the map $H_1(\Sigma_{g,1}; \mathbb{Z}) \rightarrow H_1(\Sigma_g; \mathbb{Z})$ is an isomorphism, so this agrees with our previous definition of $\mathcal{I}_{g,1}$.

Remark In [16], the different definitions of the Torelli group on a surface with boundary are parametrized by partitions of the boundary components. The above definition of $\mathcal{I}_{g,n}$ corresponds to the discrete partition $\{\beta_1, \ldots, \beta_n\}$ of the set $\{\beta_1, \ldots, \beta_n\}$ of boundary components of $\Sigma_{g,n}$.
In [16, Theorem 1.2], a version of the Birman exact sequence is proven for the Torelli group. For \(\mathcal{I}_{g,n} \) with \(g \geq 2 \), it takes the form

\[
1 \rightarrow \pi_1(U_{\Sigma_{g,n}}) \rightarrow \mathcal{I}_{g,n+1} \rightarrow \mathcal{I}_{g,n} \rightarrow 1.
\]

Here \(U_{\Sigma_{g,n}} \) is the unit tangent bundle of \(\Sigma_{g,n} \). The subgroup \(\pi_1(U_{\Sigma_{g,n}}) \) of \(\mathcal{I}_{g,n+1} \) is often called the “disc-pushing subgroup” – the mapping class associated to \(\gamma \in \pi_1(U_{\Sigma_{g,n}}) \) “pushes” a fixed boundary component around \(\gamma \) while allowing it to rotate.

The following is an immediate consequence of (1) and the fact that \(\pi_1(U_{\Sigma_{g,n}}) \) can be generated by \(2g + 1 \) elements.

Lemma 2.1 \(\mathcal{I}_{g,1} \) can be generated by \(k + 2g + 1 \) elements if \(\mathcal{I}_g \) can be generated by \(k \) elements.

Now assume that \(S \cong \Sigma_{h,n} \) is an embedded subsurface of \(\Sigma_g \) and that all the boundary components of \(S \) are non-nullhomotopic separating curves in \(\Sigma_g \). For example, \(S \) could be one of the surfaces \(R_{ijk} \) from Section 1. Letting \(\text{Mod}(S) \) be the mapping class group of \(S \), the induced map \(\mathcal{I}(S) \rightarrow \text{Mod}_g \) is an injection. This gives a natural identification of \(\text{Mod}(S) \) with \(\text{Mod}(\Sigma_{g,S}) \). The group \(\mathcal{I}(\Sigma_{g,S}) \) is thus naturally a subgroup of \(\text{Mod}(S) \cong \text{Mod}_{h,n} \), and in [16, Theorem 1.1] it is proven that \(\mathcal{I}(\Sigma_{g,S}) = \mathcal{I}_{h,n} \). Johnson [9] proved that \(\mathcal{I}_3 \) can be generated by 35 elements. Applying (1) repeatedly, we see that \(\mathcal{I}_{3,1} \) can be generated by 42 elements, \(\mathcal{I}_{3,2} \) by 49 elements, and \(\mathcal{I}_{3,3} \) by 57 elements. Since \(R_{ijk} \cong \Sigma_{3,k} \) with \(k \leq 3 \), we obtain the following.

Lemma 2.2 For all \(1 \leq i < j < k \leq g \), the group \(\mathcal{I}(\Sigma_g, R_{ijk}) \) can be generated by 57 elements.

Remark It is well-known (see, eg [16, Section 2.1]) that the mapping classes corresponding to the generators of \(\pi_1(U_{\Sigma_{g,n}}) \) used to prove Lemmas 2.1 and 2.2 can be chosen to be bounding pair maps and separating twists. Additionally, Johnson’s minimal-size generating set for \(\mathcal{I}_3 \) consists entirely of bounding pair maps, so the generating set for \(\mathcal{I}(\Sigma_g, R_{ijk}) \) in Lemma 2.2 can be taken to consist of bounding pair maps and separating twists.

2.2 Stabilizers of nonseparating simple closed curves

Let \(\gamma \) be a nonseparating simple closed curve on \(\Sigma_g \). Define \(\Sigma_{g,\gamma} \) to be the result of cutting \(\Sigma_g \) along \(\gamma \), so \(\Sigma_{g,\gamma} \cong \Sigma_{g-1,2} \). Letting \(\text{Mod}_{g,\gamma} \) be the mapping class group of \(\Sigma_{g,\gamma} \), the natural map \(\Sigma_{g,\gamma} \rightarrow \Sigma_g \) induces a map \(i: \text{Mod}_{g,\gamma} \rightarrow \text{Mod}_g \). Define \(\mathcal{I}_{g,\gamma} = i^{-1}(\mathcal{I}_g) \). The map \(i \) restricts to a surjection \(\mathcal{I}_{g,\gamma} \rightarrow (\mathcal{I}_g)_\gamma \), where \((\mathcal{I}_g)_\gamma \) is the stabilizer subgroup of \(\gamma \).
Remark In the notation of [16], the group $\mathcal{I}_{g,\gamma}$ corresponds to the Torelli group of $\Sigma_{g-1,2}$ with respect to the “indiscrete partition” $\{\beta, \beta'\}$ of the boundary components β and β' of $\Sigma_{g,\gamma}$. Also, the kernel of the map $\mathcal{I}_{g,\gamma} \to (\mathcal{I}_g)_{\gamma}$ is isomorphic to \mathbb{Z} and is generated by $T_\beta T_{\beta'}^{-1}$, where T_β and $T_{\beta'}$ are the Dehn twists about β and β', respectively.

In [16, Theorem 1.2], it is proven that for $g \geq 2$ there is a short exact sequence

$$1 \longrightarrow K_{g,\gamma} \longrightarrow \mathcal{I}_{g,\gamma} \longrightarrow \mathcal{I}_{g-1,1} \longrightarrow 1.$$

Here $K_{g,\gamma} \cong [\pi_1(\Sigma_{g-1,1}), \pi_1(\Sigma_{g-1,1})]$. This exact sequence splits via the inclusion $\mathcal{I}_{g-1,1} \hookrightarrow \mathcal{I}_{g,\gamma}$ induced by the inclusion $\Sigma_{g-1,1} \hookrightarrow \Sigma_{g,\gamma}$ indicated in Figure 2(a). In other words, the following holds.

Lemma 2.3 $\mathcal{I}_{g,\gamma} = K_{g,\gamma} \times \mathcal{I}_{g-1,1}$ for $g \geq 3$ and γ a simple closed nonseparating curve on Σ_g.

The group $\mathcal{I}_{g-1,1}$ acts on $K_{g,\gamma} < \pi_1(\Sigma_{g-1,1})$ as follows. As is clear from [16, Theorem 1.2], the basepoint for $\pi_1(\Sigma_{g-1,1})$ is as indicated in Figure 2(b). As shown in Figure 2(c), the surface $\Sigma_{g-1,1}$ deformation retracts onto the surface $\Sigma_{g-1,1}$ on which $\mathcal{I}_{g-1,1}$ is supported. After this deformation retract, the basepoint ends up on $\partial \Sigma_{g-1,1}$. Summing up, $\mathcal{I}_{g-1,1}$ acts on $K_{g,\gamma} < \pi_1(\Sigma_{g-1,1})$ via the action of $\text{Mod}_{g-1,1}$ on $\pi_1(\Sigma_{g-1,1})$, where the basepoint for $\pi_1(\Sigma_{g-1,1})$ is on $\partial \Sigma_{g-1,1}$.

3 The handle graph is connected

In this section, we prove the following.

Lemma 3.1 Fix $g \geq 3$. Let $a, b \in H_1(\Sigma_g; \mathbb{Z})$ satisfy $i_a(a, b) = 1$. Then $\mathcal{H}_{a,b}$ is connected.
We will need two lemmas. In the first, if ϵ is an oriented arc in a surface, then ϵ^{-1} denotes the arc obtained by reversing the orientation of ϵ.

Lemma 3.2 Let the boundary components of $\Sigma_{g,2}$ be δ_0 and δ_1. Choose points $v_i \in \delta_i$ for $i = 0, 1$ and let ϵ be an oriented properly embedded arc in $\Sigma_{g,2}$ whose initial point is v_0 and whose terminal point is v_1. Then for any $h \in H_1(\Sigma_{g,2}; \mathbb{Z})$, there exists an oriented properly embedded arc ϵ' in $\Sigma_{g,2}$ whose initial point is v_0 and whose terminal point is v_1 such that the homology class of the loop $\epsilon' \cdot \epsilon^{-1}$ is h.

Proof Gluing (δ_0, v_0) to (δ_1, v_1), we obtain a surface $S \cong \Sigma_{g+1}$. Let α and $*\alpha$ be the images of δ_0 and v_0 in S, respectively. The image of ϵ in S is an oriented simple closed curve β with $i_g(\alpha, \beta) = 1$. There is a natural isomorphism $H_1(\Sigma_{g,2}; \mathbb{Z}) \cong [\alpha]_{\perp}$, where the orthogonal complement is taken with respect to $i_a(\cdot, \cdot)$. Under this identification, we can apply [16, Lemma A.3] to find an oriented simple closed curve β' on S such that $[\beta'] = [\beta] + h$ and such that $\alpha \cap \beta' = \{*\}$. Cutting S open along α, the curve β' becomes the desired arc ϵ'.

Lemma 3.3 Let $a, b \in H_1(\Sigma_g; \mathbb{Z})$ satisfy $i_4(a, b) = 1$. Let α_1 and α_2 be disjoint oriented simple closed curves on Σ_g such that $[\alpha_i] = a$ for $i = 1, 2$. There then exists some oriented simple closed curve β on Σ_g such that $[\beta] = b$ and $i_g(\alpha_i, \beta) = 1$ for $i = 1, 2$.

Proof Let β' be any simple closed curve on Σ_g such that $i(\alpha_i, \beta') = 1$ for $i = 1, 2$. Orient β' so that its intersections with α_1 and α_2 are positive. Let X_1 and X_2 be the two subsurfaces of Σ_g that result from cutting Σ_g along $\alpha_1 \cup \alpha_2$. For $i = 1, 2$, the surface X_i has 2 boundary components and the intersection of β' with X_i is an oriented properly embedded arc ϵ_i running between these boundary components. Also, the induced map $H_1(X_i; \mathbb{Z}) \to H_1(\Sigma_g; \mathbb{Z})$ is an injection, and we will identify $H_1(X_i; \mathbb{Z})$ with its image in $H_1(\Sigma_g; \mathbb{Z})$. The orthogonal complement to a with respect to the algebraic intersection pairing is spanned by $H_1(X_1; \mathbb{Z}) \cup H_1(X_2; \mathbb{Z})$. Since $i(a, b) = i(a, [\beta'])$, the homology class $b - [\beta']$ is orthogonal to a. There thus exist $h_i \in H_1(X_i; \mathbb{Z})$ for $i = 1, 2$ such that $b = [\beta'] + h_1 + h_2$. Lemma 3.2 says that for $i = 1, 2$ there exists an oriented properly embedded arc ϵ_i' in X_i with the same endpoints as ϵ_i such that the homology class of the loop $\epsilon_i' \cdot \epsilon_i^{-1}$ equals h_i. Letting β be the loop $\epsilon_1' \cdot \epsilon_2'$, it follows that $[\beta] = [\beta'] + h_1 + h_2 = b$, as desired.

Proof of Lemma 3.1 Let δ and δ' be vertices of $\mathcal{H}_{a,b}$. We will construct a path in $\mathcal{H}_{a,b}$ from δ to δ'. Without loss of generality, $[\delta] = [\delta'] = 0$. By [17, Theorem 1.9] (see [12] for an alternate proof), we can find a sequence

$$\delta = \alpha_1, \alpha_2, \ldots, \alpha_n = \delta'.$$
of isotopy classes of oriented simple closed curves on Σ_g such that $[\alpha_i] = a$ for $1 \leq i \leq n$ and $i_g(\alpha_i, \alpha_{i+1}) = 0$ for $1 \leq i < n$ (this is where we use the condition $g \geq 3$). Lemma 3.3 implies that there exist isotopy classes $\beta_1, \ldots, \beta_{n-1}$ of oriented simple closed curves on Σ_g such that $[\beta_i] = b$ and $i_g(\alpha_i, \beta_i) = i_g(\alpha_{i+1}, \beta_i) = 1$ for $1 \leq i < n$. Since β_i is adjacent to both α_i and α_{i+1} in $\mathcal{H}_{a,b}$, the desired path from δ to δ' is thus

$$\delta = \alpha_1, \beta_1, \alpha_2, \beta_2, \ldots, \beta_{n-1}, \alpha_n = \delta'.$$

\[\square\]

4 Generating the stabilizer of a nonseparating simple closed curve

Let the subsurfaces R'_i of Σ_g be as in the introduction. Define $S_i = \overline{\Sigma_g \setminus R'_i}$. The goal of this section is to prove the following lemma.

Lemma 4.1 Assume that $g \geq 4$. Let γ be the isotopy class of a simple closed nonseparating curve on Σ_g that is contained in R'_1. Then the subgroup $(\mathcal{I}_g)_\gamma$ of \mathcal{I}_g stabilizing γ is contained in the subgroup of \mathcal{I}_g generated by $\bigcup_{i=1}^{g} \mathcal{I}(\Sigma_g, S_i)$.

Before proving this, we need a technical lemma. Set $\pi = \pi_1(\Sigma_g, 1, \ast)$, where $\ast \in \partial \Sigma_g, 1$. Let T'_1, \ldots, T'_g be disjoint subsurfaces of $\Sigma_g, 1$ such that $T'_i \cong \Sigma_1, 1$ and $T'_i \cap \partial \Sigma_g, 1 = \emptyset$ for $1 \leq i \leq g$ (see Figure 3(a)). Define $T_i = \overline{\Sigma_g, 1 \setminus T'_i}$. We have $T_i \cong \Sigma_{g-1, 2}$ and $\ast \in T_i$ for $1 \leq i \leq g$. The maps $\pi_1(T_i, \ast) \to \pi_1(\Sigma_g, 1, \ast)$ and $H_1(T'_i; \mathbb{Z}) \to H_1(\Sigma_g, 1; \mathbb{Z})$ are injective; we will identify $\pi_1(T_i, \ast)$ and $H_1(T'_i; \mathbb{Z})$ with their images in $\pi_1(\Sigma_g, 1, \ast)$ and $H_1(\Sigma_g; \mathbb{Z})$, respectively. Define $K_i = [\pi, \pi] \cap \pi_1(T_i, \ast)$. We then have the following.

Lemma 4.2 For $g \geq 3$, the group $[\pi, \pi]$ is generated by the $\mathcal{I}_{g, 1}$-orbits of the set $\bigcup_{i=1}^{g} K_i$.

The proof of this will have two ingredients. The first is the following theorem of Tomaszewski. As notation, if G is a group and $a, b \in G$, then $[a, b] := a^{-1}b^{-1}ab$ and $a^b := b^{-1}ab$.

Theorem 4.3 (Tomaszewski, [20]) Let F_n be the free group on $\{x_1, \ldots, x_n\}$. Then the set

$$\{[x_i, x_j]^{k_i} x_{i+1}^{k_{i+1}} \cdots x_{n}^{k_n} \mid 1 \leq i < j \leq n \text{ and } k_m \in \mathbb{Z} \text{ for all } i \leq m \leq n\}$$

is a free basis for $[F_n, F_n]$.

Geometry & Topology, Volume 16 (2012)
Small generating sets for the Torelli group

The second is the following lemma about the action of $\mathcal{I}_{g,1}$ on π. Choose a standard basis $\{\alpha_1, \beta_1, \ldots, \alpha_g, \beta_g\}$ for π (as in Figure 3(b)) such that α_i and β_i are freely homotopic into T_i' for $1 \leq i \leq g$. Our proof of Lemma 4.2 would be much simpler if the image of $\text{Mod}_{g,1}$ in $\text{Aut}(\pi)$ contained the inner automorphisms – since inner automorphisms act trivially on homology, this would imply that the \mathcal{I}_{g}–orbits of $\{[x, y] \mid x, y \in \{\alpha_1, \beta_1, \ldots, \alpha_g, \beta_g\}\}$ generate $[\pi, \pi]$. However, the image of $\text{Mod}_{g,1}$ in $\text{Aut}(\pi)$ does not contain the inner automorphisms since $\text{Mod}_{g,1}$ fixes the loop $\delta = [\alpha_1, \beta_1] \cdots [\alpha_g, \beta_g]$ depicted in Figure 3(b). The following lemma is a weak replacement for this.

Lemma 4.4 Let i be either 1 or g. Consider $h \in H_1(T_i'; \mathbb{Z})$. There then exists some $w \in \langle \alpha_i, \beta_i, \delta \rangle$ and $f \in \mathcal{I}_{g,1}$ such that $[w] = h$ and such that $f(a_j) = a_j^w$ and $f(b_j) = b_j^w$ for $1 \leq j \leq g$ with $j \neq i$.

Proof Let X be a regular neighborhood of the curves $\alpha_i \cup \beta_i \cup \partial \Sigma_{g,1}$ depicted in Figure 3(b). Thus $X \cong \Sigma_{1,2}$, the surface T_i' is homotopic into X, and the image of $\pi_1(X, \ast)$ in π is $\langle \alpha_i, \beta_i, \delta \rangle$. Let $Y = \Sigma_{g,1} \setminus \overline{X}$, so $Y \cong \Sigma_{g-1,1}$ and $X \cap Y \cong S^1$. The key property of X is as follows (this is where we use the assumption that i is either 1 or g). There exists some $\ast' \in X \cap Y$, a properly embedded arc η in X from \ast to \ast', and elements

$$\{\alpha_j', \beta_j' \mid 1 \leq j \leq g, j \neq i\} \subset \pi_1(Y, \ast')$$

such that $\alpha_j = \eta \cdot \alpha_j' \cdot \eta^{-1}$ and $\beta_j = \eta \cdot \beta_j' \cdot \eta^{-1}$ for $1 \leq j \leq g$ with $j \neq i$. See Figure 3(c) for the case $i = 1$ and Figure 3(d) for the case $i = g$.

Figure 3: (a) The subsurfaces T_i' (b) The standard basis for π (c) The surface X when $i = 1$ (d) The surface X when $i = g$
By Lemma 3.2, there exists an oriented properly embedded arc \(\eta' \) in \(X \) whose endpoints are the same as those of \(\eta \) such that the homology class of \(w := \eta \cdot (\eta')^{-1} \in \pi \) in \(H_1(\Sigma_g; \mathbb{Z}) \) is \(h \). Observe that \(w \in \langle \alpha_i, \beta_i, \delta \rangle \). Also,
\[
\eta' \cdot \alpha_j \cdot (\eta')^{-1} = w^{-1} \cdot \eta \cdot \alpha_j \cdot \eta^{-1} \cdot w = \alpha_j^w
\]
for \(j \neq i \), and similarly for \(\beta_j \). It is thus enough find some \(f \in \mathcal{I}(\Sigma_g, X) \) such that \(f(\eta) = \eta' \).

The “change of coordinates principle” from [5, Section 1.3] implies that there exists some \(f' \in \text{Mod}(\Sigma_g, X) \) such that \(f'(\eta) = \eta' \). Briefly, an Euler characteristic calculation shows that cutting \(X \) open along either \(\eta \) or \(\eta' \) results in a surface homeomorphic to \(\Sigma_{1,1} \). Choosing an orientation-preserving homeomorphism between these two cut-open surfaces and gluing the boundary components back together in an appropriate way, we obtain some \(f' \in \text{Mod}(\Sigma_g, X) \) such that \(f'(\eta) = \eta' \). See [5, Section 1.3] for more details and many other examples of arguments of this form.

The mapping class \(f' \) need not lie in Torelli; however, it satisfies \(f'([\alpha_j]) = [\alpha_j] \) and \(f'([\beta_j]) = [\beta_j] \) for \(j \neq i \) and \(f'(H_1(T_i'; \mathbb{Z})) = H_1(T_i'; \mathbb{Z}) \). Since the image of \(\text{Mod}(T_i') \) in \(\text{Aut}(H_1(T_i'; \mathbb{Z})) = \text{Aut}(\mathbb{Z}^2) \) is \(\text{SL}_2(\mathbb{Z}) \), we can choose some \(f'' \in \text{Mod}(\Sigma_g, T_i') \) such that \(f'([\alpha_i]) = f''([\alpha_i]) \) and \(f'([\beta_i]) = f''([\beta_i]) \). It follows that \(f := f' \cdot (f'')^{-1} \) lies in \(\mathcal{I}(\Sigma_g, X) \) and satisfies \(f(\eta) = \eta' \), as desired.

Proof of Lemma 4.2 The generating set for \([F_n, F_n] \) in Theorem 4.3 depends on an ordering of the generators for \(F_n \). It seems hard to prove the lemma using the generating set corresponding to the standard ordering
\[
(x_1, x_2, \ldots, x_{2g}) = (\alpha_1, \beta_1, \ldots, \alpha_g, \beta_g)
\]
of the generators for \(\pi \cong F_{2g} \). However, consider the following nonstandard ordering on the generators for \(\pi \):
\[
(x_1, x_2, \ldots, x_{2g}) = (\alpha_2, \beta_2, \alpha_1, \beta_1, \ldots, \alpha_g, \beta_g).
\]
Let \(S \) be the generating set for \([\pi, \pi] \) given by Theorem 4.3 using this ordering of the generators. All the elements of \(S \) lie in \(K_2 \) except for
\[
[\alpha_2, \xi]^{n_2}_2 \beta_2^{m_2} \alpha_1^{m_1} \beta_1^{n_1} \alpha_3^{n_3} \beta_3^{m_3} \ldots \beta_g^{m_g} \quad \text{and} \quad [\beta_2, \xi']^{m_2}_2 \alpha_1^{m_1} \beta_1^{n_1} \alpha_3^{n_3} \beta_3^{m_3} \ldots \beta_g^{m_g};
\]
here \(\xi \in \{\beta_2, \alpha_1, \beta_1, \ldots, \beta_g\} \) and \(\xi' \in \{\alpha_1, \beta_1, \alpha_3, \ldots, \beta_g\} \) and \(n_i, m_i \in \mathbb{Z} \). Letting \(T \subset S \) be the elements in (3), we must show that every \(t \in T \) can be expressed as a product of elements in the \(\mathcal{I}_{g,1} \)-orbit of the set \(\bigcup_{i=1}^g K_i \). Consider \(t \in T \), so either \(t = [\alpha_2, \xi]^{n_2}_2 \beta_2^{m_2} \alpha_1^{m_1} \beta_1^{n_1} \alpha_3^{n_3} \beta_3^{m_3} \ldots \beta_g^{m_g} \) or \(t = [\beta_2, \xi']^{m_2}_2 \alpha_1^{m_1} \beta_1^{n_1} \alpha_3^{n_3} \beta_3^{m_3} \ldots \beta_g^{m_g} \). There are two cases.

Geometry & Topology, Volume 16 (2012)
Case 1 \(\zeta \notin \{\alpha_1, \beta_1\} \).

We will do the case where \(t = [\alpha_2, \zeta]^{n_2 \beta_2 m_2} \alpha_1^{n_1} \beta_1^{m_1} \alpha_3^{n_3} \beta_3^{m_3} \); the other case is treated in a similar way. Set \(t' = [\alpha_2, \zeta]^{n_2 \beta_2 m_2} \alpha_3^{n_3} \beta_3^{m_3} \), so \(t' \in K_1 \). By Lemma 4.4, there exists some \(w \in \{\alpha_1, \beta_1, \delta\} \) and \(f \in \mathcal{I}_{g,1} \) such that \([w] = [\alpha_1^{n_1} \beta_1^{m_1}]\) and such that \(f(a_j) = a_j^w \) and \(f(b_j) = b_j^w \) for \(j > 1 \). This implies that \(f(t') = [\alpha_2, \zeta]^{n_2 \beta_2 m_2} \alpha_3^{n_3} \beta_3^{m_3} w \). Now, \(\alpha_3^{n_3} \beta_3^{m_3} \) and \(\alpha_1^{n_1} \beta_1^{m_1} \alpha_3^{n_3} \beta_3^{m_3} \) are homologous, so there exists some \(\theta \in [\pi, \pi] \) such that \(\alpha_3^{n_3} \beta_3^{m_3} w \theta = \alpha_1^{n_1} \beta_1^{m_1} \alpha_3^{n_3} \beta_3^{m_3} \). Moreover, since \(w \in \{a_1, b_1, \delta\} \) we have \(\theta \in K_2 \). Observe now that

\[
\theta^{-1} \cdot f(t') \cdot \theta = [\alpha_2, \zeta]^{n_2 \beta_2 m_2} \alpha_3^{n_3} \beta_3^{m_3} \theta = [\alpha_2, \zeta]^{n_2 \beta_2 m_2} \alpha_1^{n_1} \beta_1^{m_1} \alpha_3^{n_3} \beta_3^{m_3} = t.
\]

We have thus found the desired expression for \(t \).

Case 2 \(\zeta' \in \{\alpha_1, \beta_1\} \).

This case is similar to Case 1. The only difference is that the \(\alpha_1^{n_1} \beta_1^{m_1} \) term of \(t \) is deleted to form \(t' \) instead of the \(\alpha_1^{n_1} \beta_1^{m_1} \) term.

Proof of Lemma 4.1

Let \(I \) be the subgroup of \(\mathcal{I}_g \) generated by \(\bigcup_{i=1}^g \mathcal{I}(\Sigma_g, S_i) \).

Using the notation of Section 2, there is a surjection \(\rho: \mathcal{I}_{g,\gamma} \to (\mathcal{I}_g)_{\gamma} \) induced by a continuous map \(\phi: \Sigma_{g,\gamma} \to \Sigma_g \). Define \(X = \phi^{-1}(S_1) \), so \(X \cong \Sigma_{g-1,1} \). Letting \(\mathcal{I}(X) \) be the Torelli group of \(X \), Lemma 2.3 gives a decomposition \(\mathcal{I}_{g,\gamma} = K_{g,\gamma} \rtimes \mathcal{I}(X) \). Clearly \(\rho(\mathcal{I}(X)) = \mathcal{I}(\Sigma_g, S_1) \subseteq I \). Also, Lemma 4.2 implies that \(K_{g,\gamma} \) is generated by the \(\mathcal{I}(X) \)–conjugates of a set \(S \subseteq K_{g,\gamma} \) such that \(\rho(S) \subseteq I \). We conclude that \(\rho(\mathcal{I}_{g,\gamma}) \subseteq I \), as desired.

5 Proof of main theorem

We finally prove our main theorem. The key is the following standard lemma, whose proof is similar to that given in [19, (1) of Appendix to Section 3] and is thus omitted.

Lemma 5.1 Consider a group \(G \) acting without inversions on a connected graph \(X \). Assume that \(X/G \) consists of a single edge \(\mathcal{e} \). Let \(e \) be a lift of \(\mathcal{e} \) to \(X \) and let \(v \) and \(v' \) be the endpoints of \(e \). Then \(G \) is generated by \(G_v \cup G_{v'} \).

To apply this, we will need the following lemma.

Lemma 5.2 Let \(a, b \in H_1(\Sigma_g; \mathbb{Z}) \) satisfy \(i_a(a, b) = 1 \). Then \(\mathcal{H}_{a,b}/\mathcal{I}_g \) is isomorphic to a graph with a single edge.
The proof is similar to the proofs of [16, Lemma 6.2] and [18, Lemma 6.9], and is thus omitted.

Proof of Theorem B Let \(R'_1, \ldots, R'_g \) and \(R_{ijk} \) be the subsurfaces of \(\Sigma_g \) from the introduction. Let \(\Gamma \) be the subgroup of \(\mathcal{I}_g \) generated by \(\bigcup_{1 \leq i < j < k \leq g} \mathcal{I}(\Sigma_g, R_{ijk}) \). Our goal is to prove that \(\Gamma = \mathcal{I}_g \).

The proof will be by induction on \(g \). The base case \(g = 3 \) is trivial, so assume that \(g \geq 4 \) and that the theorem is true for all smaller \(g \) such that \(g \geq 3 \). Choose simple closed curves \(\alpha \) and \(\beta \) in \(R'_1 \) such that \(i_g(\alpha, \beta) = 1 \). Observe that \(R'_1 \) is a closed regular neighborhood of \(\alpha \cup \beta \). Set \(a = [\alpha] \) and \(b = [\beta] \). Clearly \(\mathcal{I}_g \) acts on \(\mathcal{H}_{a,b} \) without inversions. Lemmas 3.1 and 5.2 show that the action of \(\mathcal{I}_g \) on \(\mathcal{H}_{a,b} \) satisfies the other conditions of Lemma 5.1. We deduce that \(\mathcal{I}_g \) is generated by the union \((\mathcal{I}_g)_\alpha \cup (\mathcal{I}_g)_\beta \) of the stabilizer subgroups of \(\alpha \) and \(\beta \).

Recall that \(S_i = \Sigma_g \setminus R'_i \) for \(1 \leq i \leq g \). By Lemma 4.1, both \((\mathcal{I}_g)_\alpha \) and \((\mathcal{I}_g)_\beta \) are contained in the subgroup generated by \(\bigcup_{i=1}^g \mathcal{I}(\Sigma_g, S_i) \). We must prove that \(\mathcal{I}(\Sigma_g, S_i) \subset \Gamma \) for \(1 \leq i \leq g \). We will do the case \(i = g \); the other cases are similar.

We have a Birman exact sequence

\[
1 \longrightarrow \pi_1(U \Sigma_{g-1}) \longrightarrow \mathcal{I}(\Sigma_g, S_g) \longrightarrow \mathcal{I}_{g-1} \longrightarrow 1.
\]

By induction, the subset \(\bigcup_{1 \leq i < j < k < g-1} \mathcal{I}(\Sigma_g, R_{ijk}) \) of \(\mathcal{I}(\Sigma_g, S_g) \) projects to a generating set for \(\mathcal{I}_{g-1} \). Also, it is clear that the disc-pushing subgroup \(\pi_1(U \Sigma_{g-1}) \) of \(\mathcal{I}(\Sigma_g, S_g) \) is generated by elements that lie in \(\bigcup_{1 \leq i < j < k \leq g} \mathcal{I}(\Sigma_g, R_{ijk}) \). We conclude that \(\mathcal{I}(\Sigma_g, S_g) \subset \Gamma \), as desired.

\[\square\]

References

[1] **J S Birman**, *On Siegel’s modular group*, Math. Ann. 191 (1971) 59–68 MR0280606

[2] **T Brendle, B Farb**, personal communication

[3] **K S Brown**, *Presentations for groups acting on simply-connected complexes*, J. Pure Appl. Algebra 32 (1984) 1–10 MR739633

[4] **B Farb**, *Some problems on mapping class groups and moduli space*, from: “Problems on mapping class groups and related topics”, Proc. Sympos. Pure Math. 74, Amer. Math. Soc., Providence, RI (2006) 11–55 MR2264130

[5] **B Farb, D Margalit**, *A Primer on Mapping Class Groups*, to be published by Princeton University Press

[6] **R Hain**, *Fundamental groups of branched coverings and the Torelli group in genus 3*, in preparation

Geometry & Topology, Volume 16 (2012)
Small generating sets for the Torelli group

[7] A Hatcher, W Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980) 221–237 MR579573

[8] D Johnson, Conjugacy relations in subgroups of the mapping class group and a group-theoretic description of the Rochlin invariant, Math. Ann. 249 (1980) 243–263 MR579104

[9] D Johnson, The structure of the Torelli group. I. A finite set of generators for I, Ann. of Math. (2) 118 (1983) 423–442 MR727699

[10] D Johnson, A survey of the Torelli group, from: “Low-dimensional topology (San Francisco, Calif., 1981)”, Contemp. Math. 20, Amer. Math. Soc., Providence, RI (1983) 165–179 MR718141

[11] D Johnson, The structure of the Torelli group. III. The abelianization of T, Topology 24 (1985) 127–144 MR793179

[12] D Margalit, A Hatcher, Generating the Torelli group, in preparation

[13] D McCullough, A Miller, The genus 2 Torelli group is not finitely generated, Topology Appl. 22 (1986) 43–49 MR831180

[14] G Mess, The Torelli groups for genus 2 and 3 surfaces, Topology 31 (1992) 775–790 MR1191379

[15] J Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978) 347–350 MR0494115

[16] A Putman, Cutting and pasting in the Torelli group, Geom. Topol. 11 (2007) 829–865 MR2302503

[17] A Putman, A note on the connectivity of certain complexes associated to surfaces, Enseign. Math. (2) 54 (2008) 287–301 MR2478089

[18] A Putman, An infinite presentation of the Torelli group, Geom. Funct. Anal. 19 (2009) 591–643 MR2545251

[19] J-P Serre, Trees, Springer, Berlin (1980) MR607504 Translated from the French by John Stillwell

[20] W Tomaszewski, A basis of Bachmuth type in the commutator subgroup of a free group, Canad. Math. Bull. 46 (2003) 299–303 MR1981684

Department of Mathematics, Rice University, MS 136, 6100 Main St
Houston, TX 77005, USA
andyp@rice.edu
http://www.math.rice.edu/~andyp/

Proposed: Joan Birman Received: 24 June 2011
Seconded: Danny Calegari, Ronald Stern Revised: 11 August 2011

Geometry & Topology, Volume 16 (2012)
