Effect of Exposure to Paternal Smoking on Overweight and Obesity in Children: Findings from the Children Lifeway Cohort in Shenzhen, Southern China

Yingbin Youa Ruiguo Liub Hua Zhoua Rong Wub Rongqing Linb Boya Lib Hui Liua Yanxiang Qiaoa Pi Guob Zan Dinga Qingying Zhangb, c

aBaoan Central Hospital of Shenzhen, Shenzhen, PR China; bDepartment of Preventive Medicine, Shantou University Medical College, Shantou, PR China; cGuangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, PR China

Keywords
Smoking · Obesity · Overweight · Paternal smoking · Child health

Abstract
Introduction: Paternal smoking associated with childhood overweight and obesity has been a concern, but studies have not investigated smoking exposure and smoking details. We investigated the association of exposures from paternal smoking as well as smoking details on offspring overweight/obesity. Methods: A total of 4,513 children (aged 7–8 years) in Shenzhen were enrolled. Four different exposures from paternal smoking as well as smoking quantity, duration of smoking, and age of starting smoking details were the exposure variables and demographic characteristics, and circumstances of birth, dietary intake, lifestyle, and nonpaternal-smoking exposure were covariates in the logistic regression analysis to determine the effect of paternal smoking on childhood overweight/obesity, estimating odds ratios (ORs), and 95% confidence intervals (CIs). Results: Paternal smoking was positively associated with childhood overweight/obesity (p < 0.05). Moreover, only preconception exposure, and both pre- and postconception exposure were significantly associated with childhood overweight/obesity (OR 1.54 [95% CI: 1.14–2.08] and OR 1.73 [95% CI: 1.14–2.61], respectively), restricted to boys but not girls. Furthermore, for children with only preconception paternal-smoking exposure, the dose-response relation was positive between smoking quantity, duration of smoking, age at starting, and overweight/obesity for boy offspring (p trend <0.001). We did not find any significant association between only postnatal exposure to paternal smoking and childhood overweight/obesity (p > 0.05). Conclusions: Our findings suggest that paternal smoking is associated with boys’ overweight/obesity, and this association may be due to the paternal-smoking exposure before conception rather than the postnatal exposure to paternal smoking. Reducing paternal-smoking exposure before conception might help reduce overweight/obesity in boys.

Introduction
Overweight and obesity are among of the most serious global public health challenges of the 21st century and have reached epidemic proportions in many Asian countries including China [1–3]. These countries also face a grave burden of obesity-related disorders such as diabe-
affected by smoke exposure, which has a significant impact on the health of offspring. It is worth noting that paternal smoking is a concern, but the association of overweight and obesity among children of nonsmoking mothers with paternal smoking was associated with increased offspring BMI in children aged 7 and 11 years old [36]. However, intrauterine tobacco smoke exposure and postnatal SHS exposure could not be distinguished in the study. Moreover, the effect of preconception paternal-smoking exposure was not studied. A few studies have investigated paternal smoking in the period before conception. For example, in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort, paternal smoking before age 11 was suggested to contribute to obesity in adolescent male offspring, which first highlighted the importance of the developmental timing of the paternal-smoking exposure as well as sex differences in offspring outcomes [37]. However, in the Nord Trøndelag Health Study, the authors did not support a son-specific association of the magnitude reported in the ALSPAC study but could not rule out a weaker association, perhaps common to sons and daughters, which would be consistent with the ALSPAC study [38]. Another study-based screening program in Taiwan determined the effect of longer duration and earlier age of paternal-smoking onset before offspring birth on increased risk of metabolic syndrome in offspring. Unlike the ALSPAC study, the Taiwan study was unable to determine a transgenerational effect of prepubertal paternal smoking on BMI in male offspring [39]. Thus, different sample sources, sample size, and confounders may explain the inconsistent results. Nevertheless, the mechanism of paternal smoking may involve the biological effect of intrauterine tobacco smoke exposure and epigenetic modifications in the germ line before conception, but more evidence is needed.

Hence, we used the large population-representative Children Lifeway Cohort of Shenzhen to examine the association of overweight and obesity among children of nonsmoking mothers during different periods of paternal-smoking exposure preconception and postconception separately or overlapping. Moreover, we investigated details about smoking quantity, duration of smoking, and age of starting smoking to detect the dose-response association.

Materials and Methods

Data Collection

The Children Lifeway Cohort was developed to investigate metabolic disease in a prevention and treatment program of occupational groups and adolescents in the Baoan district of Shenzhen, in order to understand the lifestyle and related metabolic disease of children. This cohort recruited first-grade students from...
19 of the 134 local primary schools by using cluster sampling in September 2018. In the end, 18 schools were willing to participate. The study administered a questionnaire and physical examination to children. A total of 5,152 children received a paper questionnaire, and the response rate was 93.5% (4,829 children). During the data extraction and analyses, children without information on paternal smoking (n = 308) and whose mother smoked (n = 8) were excluded. Finally, 4,513 students were included in the analyses (Fig. 1). A paper questionnaire was administered to parents to collect information related to children or parents such as demographic characteristics (age, sex, percentage of food expenditure), circumstances of birth (cesarean section, birth weight status, breastfeeding), dietary intake (late-night dinner, vegetables, fruit, snacks, fried/baked food), and lifestyle (physical activity, watching TV, picky eater). The questionnaire showed good reliability and validity with high consistency among measurement items after evaluation (Cronbach’s α = 0.776). Data were collected on parents (weight, height, education, and smoking details). Anthropometric measurements of children included weight and height.

Outcome Assessment

Overweight/obesity was defined by using age- and sex-specific BMI cutoff points according to the growth standards of China “Screening for overweight and obesity among school-age children and adolescents (WS/T 586-2018)” [40].

Exposure

Trained interviewers asked parents to recall the smoking habits in their family. The questions were phrased as follows: Did the father or the mother smoke more than 100 cigarettes in his or her

Fig. 1. The flow chart of the study.
life? If the answer was yes, the father or mother was classified as paternal or maternal smoking [41], then the quantity (1–10, 11–20, >20 cigarettes/day), duration (1–10, 11–20, >20 years), and age of the father/mother when they started smoking (≤20, >20 years old) were asked. If the answer to the question was no, the father or mother were classified as nonpaternal or nonmaternal smoking.

The children were classified according to their exposure to paternal smoking at different periods in the following four categories: no paternal smoking, only preconception exposure (the father smoked only before pregnancy), only postconception exposure (the father smoked only after pregnancy), and both pre- and postconception exposure.

The study investigated whether, besides the mother or father smoking, anyone who lived in the household smoked and the number of smoking household members. It investigated whether, besides the father smoking, anyone else smoked in front of the mother at home or workplace during her pregnancy and whether the mother was exposed to SHS during the pregnancy. The exposure sources from household smoking other than father were analyzed as a covariable.

Other Covariables

The following variables were considered as covariables in the analysis. Parents were asked to report the child’s frequency of food intake, namely fried/baked food, late-night dinners, picky eater, and vegetables, fruits, and snacks consumption during the week before the survey. Additionally, the hours of children participated in physical exercise and watched TV per day was investigated.

Data were collected on children’s age, sex, birth weight (<2,500, 2,500–4,000, >4000 g), breastfeeding (bottle-feeding, breastfeed-ing, mixed), cesarean section (yes/no), percentage of income spent on food expenditure (>50%, 30–50%, <30%), and parents’ educational level (take the one with higher education).

Statistical Analyses

Multivariate logistic regression was adjusted for dietary and other covariables to evaluate the association between overweight/obesity and four different paternal-smoking exposure periods separately or overlapping, estimating OR and 95% CI. Two multivariable regression models were included in study. The dose-response association between smoking quantity, duration of smoking, age at starting smoking for the father, and risk of childhood overweight and obesity was tested with P for linear trend. Analyses were also stratified by child sex to assess any potential sex-specific effect of paternal smoking on childhood overweight/obesity. The level of significance was set at p < 0.05. All statistical analyses involved using SPSS 24.0 (IBM Corp., Armonk, NY, USA).

Results

Participant Characteristics

The mean (SD) age of the 4,513 children was 7.10 (0.34) years, and the proportion of boys was slightly more than girls (56.9% vs. 43.1%). A total of 2,127 (47.1%) fathers reported smoking. The proportion of children with overweight/obesity was 16.1% (n = 728). Characteristics of children are presented by healthy weight and overweight/obesity in Table 1. Boys were more frequently overweight/obese than girls. Frequency of overweight/obesity was higher for children with than without overweight/obese parents. The proportion of overweight/obesity was higher for children whose parents had higher than lower educational level. Overweight/obesity was more frequent for children with than without cesarean section birth and was more frequent for children with higher than lower birth weight. Frequency of overweight/obesity was lower for children with than without picky eating habits but was higher for children who habitually ate snacks than those who did not. Additionally, overweight/obesity was higher for children with than without fathers who smoked. As compared with children without paternal smoking, those with both pre- and postconception exposure were more frequently overweight/obese (p = 0.012) (Table 2).

Association of Different Paternal-Smoking Exposure Periods and Overweight/Obesity in Children

Association of Only Preconception Exposure and Overweight/Obesity

Table 3 shows two multivariable regression models for the effect of different paternal-smoking exposure periods on risk of overweight and obesity in children. In Model I (adjustment for only basic and birth characteristics), as compared with children without paternal smoking, for those with only preconception exposure, the risk of childhood overweight and obesity was increased (OR 1.41 [95% CI: 1.17–1.85]). In Model II, after further adjustment for lifestyle and dietary factors, this effect remained statistically significant (OR 1.54 [95% CI: 1.14–2.08]). When stratified by sex, the effect of only preconception exposure on childhood overweight and obesity was statistically significant for only boys (p < 0.05).

Association of Both Pre- and Postconception and Probability of Overweight/Obesity

Probability of overweight/obesity was increased with both pre- and postconception exposure from paternal smoking (Model I: OR 1.55 [95% CI: 1.02–2.61]; Model II: OR 1.73 [95% CI: 1.11–2.75]). On subgroup analysis by sex, the effect of both pre- and postconception exposure on overweight/obesity existed for only boys (p < 0.05). We found no association between only postconception exposure and childhood overweight and obesity (p > 0.05).
Table 1. Characteristics of all children and those with healthy weight and overweight/obesity (n = 4,513)

Characteristic	All children, n (%)	Healthy weight (N = 3,785)	Overweight/obesity (N = 728)	p value
Age	7.10±0.34	7.10±0.34	7.10±0.32	0.975
Sex				
Girls	1,946 (43.1)	1,715 (88.1)	231 (11.9)	<0.001
Boys	2,567 (56.9)	2,070 (80.6)	497 (19.4)	
Percentage of food expenditure according to income				
>50%	995 (22.0)	775 (83.2)	156 (16.8)	0.950
30–50%	2,451 (56.3)	1,996 (82.8)	415 (17.2)	
<30%	977 (21.6)	757 (82.8)	157 (17.2)	
Father overweight/obese				
No	2,428 (58.7)	1,445 (87.3)	211 (12.7)	<0.001
Yes	1,706 (41.3)	898 (75.4)	293 (24.6)	
Mother overweight/obese				
No	2,491 (86.3)	2,047 (83.8)	396 (16.2)	<0.001
Yes	395 (13.7)	278 (72.0)	108 (28.0)	
Parents’ educational level				0.046
Junior middle and below	838 (18.6)	660 (82.5)	140 (17.5)	
Junior high/junior college	2,588 (57.3)	2,048 (84.2)	390 (16.0)	
Bachelor degree or above	1,087 (24.1)	820 (80.6)	198 (19.4)	
Breastfeeding				
Bottle-feeding	479 (11.5)	394 (82.4)	84 (17.6)	0.598
Breastfeeding	3,097 (74.5)	2,527 (83.0)	516 (17.0)	
Mixed	579 (13.9)	466 (81.3)	107 (18.7)	
Cesarean section				<0.001
No	2,434 (59.8)	2,021 (84.5)	372 (15.5)	
Yes	1,637 (40.2)	1,294 (82.9)	325 (17.1)	
Birth weight, g	1,090 (26.4)	897 (83.9)	172 (16.1)	0.539
<2,500	1,726 (41.8)	1,402 (82.3)	302 (17.7)	
2,500–4,000	1,311 (31.8)	1,072 (82.9)	221 (17.1)	
>4,000	109 (26.4)	97 (83.9)	17 (16.1)	
Physical exercise, hr/day	2,385 (61.6)	1,948 (82.8)	406 (17.2)	0.838
<1	1,065 (27.5)	875 (83.5)	173 (16.5)	
1–2	424 (10.9)	343 (82.5)	73 (17.5)	
>2	1,257 (32.3)	1,010 (81.3)	243 (18.7)	
Watching TV, hr/day	3051 (73.5)	50 (82.0)	11 (18.0)	0.629
<1	1,040 (25.0)	858 (83.4)	171 (16.6)	
1–3	61 (1.5)	2482 (82.7)	521 (17.3)	
>3	1,344 (32.3)	1,100 (83.4)	219 (16.6)	
Fruit, times/week				0.623
<3	1,286 (30.9)	1,057 (83.0)	217 (17.0)	
4–6	1,528 (36.7)	1,234 (82.0)	270 (18.0)	
≥7	2,340 (56.2)	1,906 (82.8)	397 (17.2)	
Vegetable, times/week				0.989
<3	1,125 (27.0)	917 (82.6)	193 (17.4)	
4–6	698 (16.8)	571 (82.9)	118 (17.1)	
≥7	2,340 (56.2)	1,906 (82.8)	397 (17.2)	
Association of Smoking Quantity, Duration of Smoking, Age of Starting Smoking, and Probability of Overweight/Obesity

We found a dose-dependent association of age of starting smoking and probability of childhood overweight and obesity for children with only preconception exposure, from a 1.27-fold increased probability for starting over age 20 years to a 1.64-fold increased probability for starting under age 20 years, with no paternal-smoking exposure as the reference (p_trend = 0.047) (Table 4). Moreover, a longer duration of parental smoking before conception was associated with increased probability of childhood overweight and obesity. For fathers smoking 1–10 years, 11–20 years, or >20 years, the probability of overweight and obesity in offspring with pre-fatherhood exposure was increased (OR 1.30, OR 1.43, and OR 1.57, respectively) as compared with offspring with no exposure (p_trend = 0.020) (Table 4). In addition, we found a dose-response effect of cigarette number smoked by fathers, increasing from 1.55-fold to 1.39-fold–1.85-fold with fathers consuming 1–10, 10–20, and >20 cigarettes per day (p_trend = 0.001). Furthermore, after stratification by sex, those relationships were found for only boys (p_trend <0.001).

Table 2. Univariate analysis of effect of different paternal-smoking exposure periods on overweight and obesity in children (n = 4,513)

Exposure from paternal smoking	All children, n (%)	Healthy weight (N = 3,785)	Overweight/obesity (N = 728)	p value
No paternal smoking (ref)	2,386 (57.6)	2,028 (85.0)	358 (15.0)	
Only preconception exposure	1,037 (24.5)	863 (83.2)	174 (16.8)	0.188
Only postconception exposure	181 (4.3)	153 (84.5)	28 (15.5)	0.866
Both pre- and postconception exposure	576 (13.6)	465 (80.7)	111 (19.3)	0.012

Data are n (%) or mean (SD). SHS, second-hand smoke. a Children with sex–age-specific BMI ≥85 percentile and BMI ≥95 percentile were classified as overweight and obese; all other children were classified as healthy weight.

Discussion

Our present study clarified the association between four different periods of exposure to paternal smoking and risk of overweight/obesity among school-aged children in Shenzhen. The results showed a significant paternal-smoking effect on the child’s overweight/obesity status, from only preconception exposure and both pre- and postconception exposure. The effects related to child-sex differences restricted to boys but not girls. Moreover, we
found a positive dose-response association between smoking quantity and duration, age of starting smoking, and overweight/obesity among boys with only preconception exposure.

Generally speaking, the causes of overweight and obesity in children are multifactorial [42]. For example, lifestyle is closely related to overweight/obesity [6]. Lindsay et al. [6] conducted a systematic review of the evidence on the associations between parental feeding practices, child eating behaviors, and risk of overweight and obesity in Southeast Asian children 2–12 years old. The authors found nonresponsive parental feeding practices and unhealthy child eating behaviors associated with risk of child overweight and obesity in several Southeast Asian countries including Thailand, Vietnam, Singapore, the Philippines, and Malaysia [6]. Taveras et al. [43] found high consumption of fried food associated with high BMI among children. A study from China reported the likelihood of overweight/obese as 1.5-fold increased for children who had permission to purchase snacks with pocket money [22]. Our study showed that children with overweight/obesity ate more snacks and were less frequently picky eaters than those with healthy weight. Rapid economic developments in Asia have caused transitions in nutrition and physical activity behavior, which has contributed to a quick spread of the obesity epidemic over the past decades [3, 44]. Besides the effect of dietary and lifestyle factors, overweight and obesity of children were also linked to circumstances of birth in several studies, such as a cesarean section birth and high birth weight. Our study also showed the strong association between weight status of the father or mother and their children, which suggests an underlying genetic predisposition, so parental BMI might confound this association due to its influence on fetal development and thus birth weight. Overweight and obesity have also been found prevalent in populations belonging to different economic classes in several Western studies [45]. For Brazilian students belonging to families from the highest economic class, the risk of overweight was 2-fold increased and the risk of obesity 3-fold increased as compared with classmates belonging to families from the lowest economic class [46]. However, the Hong Kong 1997 cohort [36] as well as our study showed a less clearly socially patterned prevalence of Chinese childhood overweight and obesity.

Our studies focused on the relation between paternal smoking and obesity. In considering the numerous confounding factors mentioned above, we built Model I by adjusting for confounders such as sex, actual age, overweight of father and mother, percentage of food expenditure, educational level of parents, cesarean section birth, weight, breastfeeding, other household smoking, and mother exposed to SHS during pregnancy. Model II is model I plus picky eaters, TV watching time, physical exercise, frequency of food expenditure, educational level of parents, cesarean section birth, weight, breastfeeding, other household smoking, and mother exposed to SHS during pregnancy. Model III is model II plus pre- and postconception exposure to SHS, second-hand smoke. Model IV is model III plus preconception and postconception exposure to SHS. Model V is model IV plus other household smoking.
Table 4. Dose-response relationships between the smoking quantities, duration of smoking, age to start smoking, and childhood overweight/obesity among children with only preconception exposure from paternal smoking (n = 1,037)

	Total	Model I^a	Model II^b	p value															
Age for father starting smoking (years old)																			
0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.120	0.047	0.012	0.002	0.368	0.463		
≤20	1.52 (1.11–2.08)	0.009	1.64 (1.16–2.31)	0.005	1.88 (1.27–2.77)	0.002	2.26 (1.45–3.53)	<0.001	1.03 (0.60–1.77)	0.920	1.07 (0.59–1.93)	0.834							
>20	1.14 (0.76–1.72)	0.524	1.27 (0.82–1.99)	0.282	1.48 (0.91–2.43)	0.118	1.79 (1.03–3.11)	0.039	0.63 (0.29–1.40)	0.258	0.65 (2.76–1.53)	0.324							
p for trend	0.120	0.047	0.012	0.002	0.368	0.463													
Duration of paternal smoking (years)																			
0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00								
1–10	1.30 (0.76–2.21)	0.347	1.19 (0.64–2.21)	0.587	1.43 (0.74–2.74)	0.288	1.53 (0.71–3.29)	0.283	1.13 (0.43–2.93)	0.808	0.81 (2.62–2.51)	0.715							
11–20	1.43 (1.02–2.01)	0.039	1.69 (1.17–2.44)	0.005	1.84 (1.22–2.79)	0.004	2.33 (1.47–3.70)	<0.001	0.81 (0.42–1.54)	0.519	0.93 (0.47–1.81)	0.820							
>20	1.57 (0.79–3.10)	0.199	1.39 (0.66–2.94)	0.390	2.35 (1.04–5.31)	0.041	1.95 (0.79–4.86)	0.150	0.65 (0.14–3.01)	0.578	0.80 (0.17–3.89)	0.787							
p for trend	0.020	0.008	0.001	<0.001	0.442	0.726													
Cigarettes (numbers)																			
0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00								
1–10	1.39 (0.97–2.01)	0.073	1.55 (1.04–2.31)	0.032	1.77 (1.14–2.75)	0.012	2.11 (1.27–3.51)	0.004	0.89 (0.46–1.73)	0.739	1.05 (0.52–2.14)	0.889							
11–20	1.34 (0.92–1.95)	0.123	1.39 (0.92–2.10)	0.123	1.55 (0.97–2.48)	0.067	1.73 (1.01–2.94)	0.045	1.04 (0.55–1.96)	0.901	0.98 (0.48–1.98)	0.952							
>20	1.57 (0.89–2.75)	0.118	1.85 (1.03–3.34)	0.041	2.17 (1.11–4.23)	0.023	3.05 (1.49–6.24)	0.002	0.62 (0.18–2.17)	0.450	0.65 (0.18–2.33)	0.505							
p for trend	0.026	0.010	0.003	<0.001	0.670	0.671													

OR, odds ratio; 95% CI, 95% confidence interval; SHS, second-hand smoke. ^aModel I: adjusting for sex, actual age, father overweight, mother overweight, percentage of food expenditure, educational level of parents, caesarean section birth, birth weight, breastfeeding, other household smoking, and mother exposed to SHS during pregnancy. ^bModel II: model I plus picky eaters, TV watching time, physical exercise, frequency of eating fried/baked food, late-night dinners, and vegetables, fruit, and snacks consumption.
Association between Paternal Smoking and Childhood Overweight and Obesity

The most important finding of this study was that paternal smoking at preconception was significantly associated with childhood overweight/obesity. We divided paternal smoking into four different exposure periods and found a significant relation with only preconception exposure, and both pre- and postconception exposure, which robustly suggested that preconception exposure is a key exposure. Moreover, we found dose-dependent associations of greater probability of childhood overweight/obesity with younger age of father starting smoking, longer duration of smoking, and more cigarettes smoked by fathers. This finding was consistent with several other studies. One study from Taiwan suggested that the effect of paternal smoking on the offspring’s risk of metabolic syndrome was significant with exposure starting before but not after the proband offspring’s birth (OR 1.27 [95% CI: 1.11–1.45] versus OR 0.9 [95% CI: 0.78–1.14]) [38]. The Hong Kong 1997 cohort study also showed greater BMI at age 7 and 11 years in children with than without smoking fathers [36].

In addition, we found a positive dose-response association between smoking quantity, duration of smoking, and age of starting smoking with boys’ overweight/obesity, which suggests a potential sex-specific relevance. Similar results were found in several other studies. For example, Mejia et al. [49] showed that the association between paternal smoking and offspring overweight/obesity was most marked for boys ($p = 0.032$). In another earlier study [48], using the ALSPAC data, only sons showed intergenerational associations with paternal mid-childhood smoking onset, which indicates a sex-specific transgenerational response system in humans. In this study, the authors hypothesized that the son-specific segregation fits with transmission of information via the sex chromosomes, particularly the Y chromosome. Several experimental and human studies showed a positive association between the Y chromosome and obesity. An animal experiment showed that a second sex chromosome, either Y or X, causes similar increases in body weight, adiposity, and lean mass of mice, relative to mice with a single X chromosome. Under some conditions, the effect of the second sex chromosome to increase body weight is greater if that chromosome is Y rather than X [50]. In a case-control study including 180 males, Y chromosome microdeletions were more common in obese than normal-weight men [51]. These studies, including ours, support the hypothesis that tobacco-related chemical exposure of the father before conception may cause potential damage or modifications on father male-germ cells, which might be expressed over generations [52, 53]. The mechanism of this phenomenon may explain the new field of epigenomic paternal transmission, which suggests that paternal exposure to environmental challenges plays a critical role in the offspring’s future health and the transmission of acquired traits through generations [54]. Several studies showed that smoking alters DNA methylation patterns and gene transcription levels in human spermatozoa [55, 56]. Paternal exposure to cigarette smoke leads to increased global methylation of sperm DNA and alterations to the differentially methylated regions of the DLK1 gene in offspring, which in turn leads to elevated liver fat accumulation and may perturb long-term metabolic function in offspring [57, 58]. In addition, Barbara Hammer et al. [59] found that paternal cigarette smoke exposure at conception regulated spermatozoal miRNAs and possibly influences the body weight of offspring in early life.

Our results did not confirm the association between childhood overweight/obesity and postconception exposure, which includes intrauterine SHS exposure and postnatal SHS exposure. Previous studies had assessed the association between intrauterine SHS exposure and childhood overweight status, but the results were inconsistent. Dior et al. [60] showed that exposure to paternal smoking during pregnancy was positively and independently associated with BMI at age 17 years. However, Braun et al. [61] reported that the associations between self-reported prenatal SHS exposure and BMI were close to the null value. Oken et al. [62] did not find increased BMI among 3-year-old children born to women with SHS exposure during pregnancy. The inconsistency in results may be due to the differences in the definition of intrauterine SHS expo-
sure, the duration of exposure, or the age at follow-up. Most of the studies focused on the postnatal period, yielding different results on SHS exposure from mothers or fathers. Oliver et al. [63] confirmed no significant association between child postnatal SHS exposure (not just from the father) and weight status up to age 4 years. Oller et al. [64] took advantage of the large sample size in a Danish birth cohort study to stratify children by SHS exposure prenatally only, postnatally only, or both periods, with results indicating that SHS exposure postnatally only was not statistically significant with childhood overweight at age 7 years. In contrast, some studies assessed the effect of postnatal SHS exposure and found a positive association with child BMI. In a longitudinal cohort study, McConnell et al. [65] estimated the effect of SHS exposure on children BMI at age 10 years: SHS exposure was positively associated with BMI growth. The reason for this discrepancy may be that the association between postnatal exposure and children overweight/obesity may only become apparent at later ages. Many studies have reported stronger effects of postnatal SHS exposure as children become older [66].

Strengths and Limitations

The strengths of the study include the large population-based sample for separating the effect of each exposure period and classifying children into the four different categories. Moreover, details about smoking quantity, duration of smoking, and age of starting smoking were collected to detect the dose-response association. In addition, we administered a relatively comprehensive questionnaire, which took into account a wide range of potential confounders, such as dietary factors. Furthermore because of the small number of female or maternal smokers, we were able to isolate the confounder (maternal active smoking) when we discussed the association between paternal smoking and overweight/obesity among children.

Several limitations should be considered. First, because of the observational nature of this study, we could not determine the causal relationship between paternal smoking and children’s overweight/obesity. Second, we assessed childhood adiposity with the proxy measure of BMI, which cannot specify whether the obesity is central, peripheral, or in the organ at risk. Third, the classification of smoking exposure status of children may not be precise enough because of parental self-reporting rather than detecting a biological marker of smoking exposure such as cotinine, etc.

Conclusions

In this cross-sectional study based on data from a large sample survey among students in primary school in Shenzhen, we observed a high association between paternal smoking before conception and childhood overweight/obesity, with child sex-related differences restricted to boys. Furthermore, we found positive dose-response associations between the father’s smoking quantity, duration of smoking, and age of starting smoking and overweight/obesity for boys. The present study supports that tobacco exposure of the father before conception may play a critical role in the offspring’s future health and the transmission of acquired traits through generations. However, a large longitudinal cohort study and more evidence of the biological mechanism are needed to confirm these results. Even so, these findings suggest the need to promote smoking cessation or no smoking among young boys to help reduce the risk of obesity among potential offspring.

Acknowledgments

We are grateful to all the doctors and nurses in the department of laboratory medicine, Baoan Central Hospital of Shenzhen. We also thank all the school doctors and teachers in Baoan District who participated in the survey.

Statement of Ethics

The study was approved by the Ethics Committee of Baoan Central Hospital of Shenzhen (protocol code IRB-PJ-2018-002, 2018-09) and was performed according to the Declaration of Helsinki. Participation was voluntary and written informed consent was obtained from all parents of the participants prior to enrolment.

Conflict of Interest Statement

The authors have no conflict of interests to declare.

Funding Sources

This research received no external funding.

Author Contributors

Each author substantially contributed to conduction of this research and drafting of this paper. Yingbin You, Hui Liu, and Yanxiang Qiao were in charge of conducting the survey and physical
examination for children. Rong Wu, Boya Li, and Rongqing Lin were involved in questionnaire design and participated in the survey. Zan Ding completed information collection and preprocessed data. Ruiguo Liu conducted the literature search, cleaned data, performed statistical analyses, and drafted the manuscript. Hua Zhou, Pi Guo, and Qingying Zhang conceived the study, were involved in questionnaire design, and provided significant guidance for drafting and editing the manuscript. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Data Availability Statement

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy restrictions.

References

1 Ramachandran A, Snehalatha C. Rising burden of obesity in Asia. J Obes. 2010;2010:1–8.
2 Lee A, Ho MM, Keung VMW. Global epidemics of childhood obesity is hitting a “less industrialized” corner in Asia: a case study in Macao. Int J Pediatr Obes. 2011 Jun;6(2–2): e252–6.
3 Hills AP, Mohktar N, Brownie S, Byrne NM. Childhood obesity in Asia: the value of accurate body composition methodology. Asia Pac J Clin Nutr. 2014;23(3):339–43.
4 Jakovljevic M, Sharma T, Kumagai N, Ogura S. Editorial: NCDCs – core challenge of modern day health care establishments. Front Public Health. 2021;9:692926.
5 Li M, Dibley MJ. Child and adolescent obesity in Asia. In: Baur LA, Twigg SM, Magnussin RS, editors. A modern epidemic: expert perspectives on obesity and diabetes. Sydney: Sydney University Press; 2012. p. 171–88.
6 Lindsay AC, Sithisongsak S, Greaney ML, Wallington SF, Buendeg P. Non-responsive feeding practices, unhealthy eating behaviors, and risk of child overweight and obesity in Southeast Asia: a systematic review. Int J Environ Res Public Health. 2017 Apr;19(14): 436.
7 Jakovljevic M, Jakab M, Gerdhuma U, McDaid D, Ogura S, Varavikova E, et al. Comparative financing analysis and political economy of non-communistic diseases. J Med Econ. 2019 Aug;22(8):722–7.
8 Jakovljevic MB, Milovanovic O. Growing burden of non-communistic diseases in the emerging health markets: the case of BRICS. Front Public Health. 2015;3:65.
9 Uijtdewilligen L, Waters CN, Muller-Riemenschneider F, Lim YW. Preventing childhood obesity in Asia: an overview of intervention programmes. Obes Rev. 2016 Nov;17(11):1103–15.
10 Jakovljevic M, Sugahara T, Timofeyev Y, Rancic N. Predictors of (in) efficiencies of health-care expenditure among the leading Asian economies: comparison of OECD and non-OECD nations. Risk Manag Healthc Policy. 2020;13:2361–80.
11 Thi Thanh Dieu H, Dibley MJ, Sibbritt D, Thi Minh Hanh T. Prevalence of overweight and obesity in preschool children and associated socio-demographic factors in Ho Chi Minh City, Vietnam. Int J Pediatr Obes. 2007;2(1):40–50.
12 Zhao F, Wang H, Du S, He Y, Wang Z, Ge K, et al. Prospective study on nutrition transition in China. Nutr Rev. 2009 May;67(Suppl 1): S56–61.
13 Jakovljevic M, Matter-Walstra K, Sugahara T, Reshetnikov V, Merrick J, et al. Cost-effectiveness and resource allocation (CERA) 18 years of evolution: maturity of adulthood and promise beyond tomorrow. Cost Eff Resour Alloc. 2020;18(1):15.
14 Wu Y, Wang L, Zhu J, Gao L, Wang Y. Growing fast food consumption and obesity in Asia: challenges and implications. Soc Sci Med. 2021 Jan;269:113601.
15 Yan X, Xia H, Li H, Deng X, Yang L, Zhao S, et al. Diabetes in Shenzhen, China: epidemiological investigation and health care challenges. J Glob Health. 2017 Jun;7(1):011102.
16 Cheng YH, Liao Y, Chen DY, Wang Y, Wu Y. Prevalence of dental caries and its association with body mass index among school-age children in Shenzhen, China. BMC Oral Health. 2019 Dec 4;19(1):270.
17 Albataineh SR, Badran EF, Tayyem RF. Dietary factors and their association with childhood obesity in the Middle East: a systematic review. Nutr Health. 2019 Mar;25(1):53–60.
18 Silva APD, Felibelmann TCM, Silva DC, Pahares HMC, Scatena LM, de Resende EAMR, et al. Prevalence of overweight and obesity and associated factors in school children and adolescents in a medium-sized Brazilian city. Clinics. 2018 Nov 29;73:e438.
19 Hui LL, Nelson EAS, Yu LM, Li AM, Fok TF. Risk factors for childhood overweight in 6- to 7-y-old Hong Kong children. Int J Obes. 2003 Nov;27(11):1411–8.
20 Sandvik P, Ek A, Somaraki P, Hammar U, Eli K, Nowicka P. Picky eating in Swedish pre-schoolers of different weight status: applicability of two new screening cut-offs. Int J Behav Nutr Phys Act. 2018 Aug 9;15(1):74.
21 Gonzalez-Suarez CB, Lee-Pineda K, Caralpio ND, Grimmer-Somers K, Sibug EO, Velasco ZF. Is what Filipino children eat between meals associated with body mass index? Asia Pac J Public Health. 2015 Mar;27(2):NP650–61.
22 Li M, Dibley MJ, Sibbritt D, Yan H. Factors associated with adolescents’ overweight and obesity at community, school and household levels in Xi’an City, China: results of hierarchical analysis. Eur J Clin Nutr. 2008 May;62(5):635–43.
23 Tang-Peronard JL, Andersen HR, Jensen TK, Heitmann BL. Endocrine-disrupting chemicals and obesity development in humans: a review. Obes Rev. 2011 Aug;12(8):622–36.
24 Florath I, Kohler M, Weck MN, Brandt S, Rothenbacher D, Schottker B, et al. Association of pre- and post-natal parental smoking with offspring body mass index: an 8-year follow-up of a birth cohort. Pediatr Obes. 2014 Apr;9(2):121–34.
25 Raum E, Kupper-Nybelen J, Lamzer A, Hebebrand J, Herpetz-Dahlmann B, Brenner H. Tobacco smoke exposure before, during, and after pregnancy and risk of overweight at age 6. Obesity. 2011 Dec;19(12):2411–7.
26 Akinbufe AA, Slade GD, Divaris K, Poole C. Systematic review and meta-analysis of the association between exposure to environmental tobacco smoke and periodontitis endpoints among nonsmokers. Nicotine Tob Res. 2016 Nov;18(11):2047–56.
27 GBD 2015 Tobacco Collaborators. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet. 2017 May 13;389(10082):1885–906.
28 Bilano V, Gilmour S, Moffett T, d’Espaignet ET, Stevens GA, Commar A, et al. Global trends and projections for tobacco use, 1990–2025: an analysis of smoking indicators from the WHO Comprehensive Information System for Tobacco Control. Lancet. 2015 Mar 14;385(9972):966–76.
29 Magr translis EA, Farajian P, Panagiotakos DB, Risvas G, Zampelas A. Maternal smoking and risk of obesity in school children: investigating early life theory from the GRECO study. Prev Med Rep. 2017 Dec;8:177–82.
30 Rayfield S, Plugge E. Systematic review and meta-analysis of the association between maternal smoking in pregnancy and childhood overweight and obesity. J Epidemiol Community Health. 2017 Feb;71(2):162–73.
Koshy G, Delpisheh A, Brabin BJ. Dose response association of pregnancy cigarette smoke exposure, childhood stature, overweight and obesity. *Eur J Public Health.* 2011 Jun;21(3):286–91.

Chen YC, Chen PC, Hsieh WS, Portnov BA, Chen YA, Lee YL. Environmental factors associated with overweight and obesity in Taiwanese children. *Paediatr Perinat Epidemiol.* 2012 Nov;26(6):561–71.

Harris HR, Willett WC, Michels KB. Parental smoking during pregnancy and risk of overweight and obesity in the daughter. *Int J Obes.* 2013 Oct;37(10):1356–63.

Kwok MK, Schooling CM, Lam TH, Leung GM. Paternal smoking and childhood overweight: evidence from the Hong Kong “Children of 1997”. *Pediatrics.* 2010 Jul;126(1):e46–56.

Northstone K, Golden J, Davey Smith G, Miller LL, Pembrey M. Prepubertal start of father’s smoking and increased body fat in his sons: further characterisation of paternal transgenerational responses. *Eur J Hum Genet.* 2014 Dec;22(12):1382–6.

Carslake D, Pinger FR, Romundstad P, Davey Smith G. Early-onset paternal smoking and offspring adiposity: further investigation of a potential intergenerational effect using the HUNT study. *PLoS One.* 2016;11(12):e0166952.

Yen AMF, Boucher BJ, Chiu SYH, Fann JCY, Chen SLS, Huang KC, et al. Longer duration and earlier age of onset of paternal betel chewing and smoking increase metabolic syndrome risk in human offspring, independently, in a community-based screening program in taiwan. *Circulation.* 2016 Aug 2;134(5):392–404.

Lei YT, Ma J, Hu PJ, Dong B, Zhang B, Song Y. [The status of spermarche, menarche and corresponding relationships with nutritional status among students of 13 ethnic minorities in Southwest China in 2014]. Zhonghua Yu Xiue Za Zhi. 2019 May; 65(3):492–6.

Tseng CH, Tsuang BJ, Chiang CJ, Ku KC, Tseng JS, Yang TY, et al. The relationship between air pollution and lung cancer in non-smokers in taiwan. *J Thorac Oncol.* 2019 May; 14(5):784–92.

Ramachandran A, Chamukuttan S, Shetty SA, Arun N, Susairaj P. Obesity in Asia: is it different from rest of the world. *Diabetes Metab Res Rev.* 2012 Dec;28(Suppl 2):47–51.

Taveras EM, Berkey CS, Rifas-Shiman SL, Ludwig DS, Rockett HR, Field AE, et al. Association of consumption of fried food away from home with body mass index and diet quality in older children and adolescents. *Pediatrics.* 2005 Oct;116(4):e184–214.

Gupta N, Goel K, Shah P, Misra A. Childhood obesity in developing countries: epidemiology, determinants, and prevention. *Endocr Rev.* 2012 Feb;33(1):48–70.

Jakovljevic M, Timofeyev Y, Ranabhat CL, Fernandes PO, Teixeira JP, Rancic N, et al. Real GDP growth rates and healthcare spending: comparison between the G7 and the EM7 countries. *Glob Health.* 2020 Jul 16;16(1):64.

Guedes DP, Rocha GD, Silva AJRM, Carvalhal JM, Goelho EM. Effects of social and environmental determinants on overweight and obesity among Brazilian schoolchildren from a developing region. *Rev Panam Salud Publica.* 2011 Oct;30(4):295–302.

von Kries R, Bolte G, Baghi L, Teschke AM, Group GMES. Paternal smoking and childhood obesity: is maternal smoking in pregnancy the critical exposure? *Int J Epidemiol.* 2008 Feb;37(1):210–6.

Pembrey ME, Bygren LO, Kaati G, Edvinsson E et al. Effects of paternal smoking on sperm DNA methylation and long-term metabolic syndrome in offspring. *Reprod Biomed Online.* 2018 Nov;37(5):581–9.

Liu Y, Chen S, Pang D, Zhou J, Xu Y, Yang S, et al. Effects of paternal exposure to cigarette smoke on sperm DNA methylation and long-term metabolic syndrome in offspring. *Epidemiol Chromat.* 2022 Jan 21;15(1):3.

Jenkins TG, James ER, Alonso DF, Hoidal JR, Murphy PJ, Rotaling JM, et al. Cigarette smoking significantly alters sperm DNA methylation patterns. *Andrology.* 2017 Nov; 5(6):1089–99.

Hammer B, Kadalyal D, Boatsen E, Buschmann D, Rezwan FI, Wolf M, et al. Preconceptual smoking alters spermatozoal miRNAs of murine fathers and affects offspring’s body weight. *Int J Obes.* 2021 Jul;45(7):1623–7.

Dior UP, Lawrence GM, Stilani C, Enquobahrie D, Manor O, Siscovick DS, et al. Parental smoking during pregnancy and offspring cardio-metabolic risk factors at ages 17 and 32. *Atherosclerosis.* 2018 Apr;252(2):430–7.

Bruam JM, Daniels JL, Poole C, Olshan AF, Hornung R, Bernert JT, et al. Prenatal environmental tobacco smoke exposure and early childhood body mass index. *Paediatr Perinat Epidemiol.* 2010 Nov;24(6):524–34.

Oken E, Huh SY, Taveras EM, Rich-Edwards JW, Gillman MW. Associations of maternal prenatal smoking with child adiposity and blood pressure. *Obes Res.* 2005 Nov;13(11):2021–8.

Robinson O, Martinez D, Aurrekoetxea JJ, Estarlich M, Somoano AF, Iniguez C, et al. The association between passive and active tobacco smoke exposure and child weight status among Spanish children. *Obesity.* 2016 Aug; 4(8):1767–77.

Moller SE, Ajslev TA, Andersen CS, Dalgaard C, Sørensen TIA. Risk of childhood overweight after exposure to tobacco smoking in prenatal and early postnatal life. *PLoS One.* 2014;9(10):e109184.

McConnell R, Shen E, Gilliland FD, Jerritt M, Wolch J, Chang CC, et al. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: the Southern California Children’s Health Study. *Environ Health Perspect.* 2015 Apr;123(4):340–6.

Chen HJ, Li GL, Sun A, Peng DS, Zhang WX, Yan YE. Age differences in the relationship between secondhand smoke exposure and risk of metabolic syndrome: a meta-analysis. *Int J Environ Res Public Health.* 2019 Apr 19; 16(8):E1409.