THE CHERN-RICCI FLOW ON SMOOTH MINIMAL MODELS OF GENERAL TYPE

MATTHEW GILL

Abstract. We show that on a smooth Hermitian minimal model of general type the Chern-Ricci flow converges to a closed positive current on M. Moreover, the flow converges smoothly to a Kähler-Einstein metric on compact sets away from the null locus of K_M. This generalizes work of Tsuji and Tian-Zhang to Hermitian manifolds, providing further evidence that the Chern-Ricci flow is a natural generalization of the Kähler-Ricci flow.

1. Introduction

Let (M, g_0) be a complex manifold of dimension n with a Hermitian metric g_0. We define a real $(1,1)$ form $\omega_0 = \sqrt{-1}(g_0)_{i\bar{j}} dz^i \wedge d\bar{z}^j$ on M. The normalized Chern-Ricci flow is

(1.1) \[
\frac{\partial}{\partial t} \omega = -\text{Ric}(\omega) - \omega, \quad \omega|_{t=0} = \omega_0
\]

where $\text{Ric}(\omega) := -\sqrt{-1}\partial\bar{\partial}\log \det g$ is the Chern-Ricci form of ω. When the initial metric ω_0 is Kähler ($d\omega_0 = 0$), then (1.1) is the normalized Kähler-Ricci flow. Another flow of Hermitian metrics, the pluriclosed flow, has been considered by Streets-Tian [36, 37, 38] (see also Liu-Yang [25]). The unnormalized Chern-Ricci flow was introduced in [14]. The overall hope is that the Chern-Ricci flow will be useful in the classification of complex surfaces much like the Ricci flow in real dimension three [17, 18, 19, 26, 27, 28].

Recently, the Chern-Ricci flow has been shown to have many properties in common with the Kähler-Ricci flow, especially in the case of complex surfaces. When the first Bott-Chern class is zero, the flow was shown to exist for all time and converge smoothly to a Chern-Ricci flat metric [14] using estimates for the elliptic Monge-Ampère equation [5, 16, 41]. This generalized the Kähler case considered by Cao [4], whose proof made use of the estimates of Yau [48]. The work of Tosatti-Weinkove [42, 43] contains several explicit examples of the Chern-Ricci flow and many results generalizing those of the Kähler-Ricci flow. In particular, that the flow exists on some maximal time interval that depends on the Bott-Chern class of the initial metric. If the first Chern class of the manifold is negative, then the

Supported by NSF RTG grant DMS-0838703.
flow starting with any Hermitian metric converges smoothly to a Kähler-Einstein metric. On complex surfaces with an initial Gauduchon metric, the flow exists either for all time or until the volume or a curve of negative self-intersection tends to zero. Starting with an elliptic bundle over a Riemann surface of genus greater than one, the Chern-Ricci flow converges exponentially fast to a Kähler-Einstein metric on the base [44]. Local Calabi and curvature estimates are also known for the flow [31]. Analogous results for the Kähler-Ricci flow can be found in [4, 9, 10, 15, 30, 32, 33, 34, 35, 40].

If the first Bott-Chern class of the canonical bundle K_M is nef, we say that M is a minimal model. When M is a minimal model, the normalized Chern-Ricci flow has a smooth solution for all time [44]. Additionally, if K_M is a big line bundle, we say that M is of general type. The null locus of K_M, $\text{Null}(K_M)$, is the union over all positive dimensional irreducible analytic subvarieties $V \subset M$ of dimension k where

$$\int_V (c_1(K_M))^k = 0.$$

We assume that M is a Hermitian smooth minimal model of general type and prove the following theorem:

Theorem 1.1. Let (M, ω_0) be a smooth Hermitian minimal model of general type of dimension n with Hermitian metric ω_0. Then the normalized Chern-Ricci flow (1.1) has a smooth solution for all time and there exists a closed positive current ω_{KE} on M such that $\omega(t)$ converges ω_{KE} as currents as $t \to \infty$.

Moreover, letting $E = \text{Null}(K_M)$, $\omega(t)$ converges in $C^{\infty}_{\text{loc}}(M \setminus E)$ to a Kähler-Einstein metric ω_{KE} away from E satisfying

$$\text{Ric}(\omega_{KE}) = -\omega_{KE}.$$

The null locus of K_M is the smallest possible choice for E.

As an immediate corollary, we see that every smooth Hermitian minimal model of general type has a closed positive current which is a Kähler-Einstein metric away from the null locus of K_M. Additionally, ω_{KE} is unique in a sense that will be defined at the end of the introduction. The statement that the null locus of K_M is the smallest choice for E follows from the recent work of Collins-Tosatti [6].

In dimension $n = 2$, M is projective. This is not true in general for $n > 2$. If M is Kähler and we start the flow with a Kähler metric this is the result of Tsuji [35] and Tian-Zhang [40]. The difference in the above theorem is that M need not be Kähler. If M is Kähler and the initial metric is not Kähler, the main theorem implies that the Chern-Ricci flow still tends to the same limit as in the work of Tsuji and Tian-Zhang. This suggests that the Chern-Ricci flow is a natural object of study.
We now provide a brief outline of the proof. As in the Kähler case, we reduce to a complex parabolic Monge-Ampère equation
\[
\frac{\partial}{\partial t} \phi = \log \left(\frac{\hat{\omega}_t + \sqrt{-1} \partial \bar{\partial} \phi}{\Omega} \right) - \phi, \quad \phi|_{t=0} = 0, \quad \hat{\omega}_t + \sqrt{-1} \partial \bar{\partial} \phi > 0,
\]
where \(\hat{\omega}_t \) is a reference metric and \(\Omega \) is a volume form. Following the Kähler case we have uniform upper bounds for \(\phi, \dot{\phi} \) and \(\omega^n \). Applying a trick from Collins-Tosatti [6], we find a closed positive current
\[
T = \hat{\omega}_\infty + \sqrt{-1} \partial \bar{\partial} \psi \in -c_{BC}^1(M)
\]
with \(T \geq c_0 \omega \) as currents on \(M \). Here \(\psi \) is an upper-semi continuous function in \(L^1(M) \) with \(\sup_M \psi = 0 \) and is smooth away from \(E = \text{Null}(K_M) \). We find uniform bounds for \(\phi, \dot{\phi} \) and \(\omega^n \) in terms of \(\psi \). Letting \(\tilde{\phi} = \phi - \psi \) and using the Phong-Sturm term [29]
\[
\frac{1}{\tilde{\phi} + C_0}
\]
we define the quantity
\[
Q = \log \text{tr}_{\omega_0} \omega - A \tilde{\phi} + \frac{1}{\tilde{\phi} + C_0}
\]
as in [42]. Using the maximum principle we obtain the estimate
\[
\text{tr}_{\omega_0} \omega \leq C' e^{C \psi}.
\]
Applying the higher order estimates from [14] and the bounds for \(\dot{\phi} \) on compact subsets of \(M \setminus E \), we prove smooth convergence. We also have the following uniqueness result which follows immediately:

Theorem 1.2. \(\omega_{KE} \) is the unique closed, positive current on \(M \) smooth on \(M \setminus E \) satisfying
\begin{enumerate}
 \item \(\omega_{KE} = -\text{Ric}(\omega_{KE}) \) on \(M \setminus E \) and
 \item \(\frac{1}{C_\varepsilon} e^{\varepsilon \psi} \Omega \leq \omega_{KE} \leq C \Omega \) for all \(\varepsilon \in (0, 1] \) on \(M \setminus E \).
\end{enumerate}
This is independent of choice of \(\Omega \).

2. Preliminaries

In this section we will review some of the notation used in the proof of the main theorem. For a more detailed discussion, we refer the reader to [42]. Every Hermitian metric \(g \) has an associated \((1,1) \) form
\[
\omega = \sqrt{-1} g_{i\bar{j}} dz^i \wedge d\bar{z}^j.
\]
The metric also has a Chern connection \(\nabla \) with Christoffel symbols
\[
\Gamma_{ij}^k = g^{k\ell} \partial_i g_{\ell j}.
\]
The torsion of the metric is the tensor
\[
T_{ij}^k = \Gamma_{ij}^k - \Gamma_{ji}^k.
\]
If g is a Kähler metric, then the torsion of g is zero. The Chern curvature of g is

$$R_{k\ell}^p = -\partial_l \tau_{ki}^p,$$

and it obeys the usual commutation identities for curvature. For example,

$$[\nabla_k, \nabla_l^p] X^i = R_{k\ell j}^i X^j.$$

The Chern-Ricci curvature of g is

$$R_{k\ell} = g^{ji} R_{k\ell j} = -\partial_k \partial_l \log \det g$$

with associated Chern-Ricci form

$$\text{Ric}(\omega) = \sqrt{-1} R_{k\ell} dz^k \wedge d\bar{z}^\ell.$$

3. Estimates

First, we need to choose an appropriate reference metric. Since $-c_1^{BC}(M)$ is nef and K_M is big, M is Moishezon, and we can apply [20] to find a non-negative $(1, 1)$ form $\hat{\omega}_\infty$ such that

$$[\hat{\omega}_\infty] = -c_1^{BC}(M).$$

Additionally, there exists a smooth volume form Ω such that

$$\sqrt{-1} \partial \bar{\partial} \log \Omega = \hat{\omega}_\infty, \quad \int_M \Omega = \int_M \omega^n_0.$$

Define a family of reference metrics

$$\hat{\omega}_t = e^{-t} \omega_0 + (1 - e^{-t}) \hat{\omega}_\infty.$$

If φ solves

$$\frac{\partial}{\partial t} \varphi = \log \left(\frac{\hat{\omega}_t + \sqrt{-1} \partial \bar{\partial} \varphi^n}{\Omega} \right) - \varphi, \quad \varphi|_{t=0} = 0, \quad \hat{\omega}_t + \sqrt{-1} \partial \bar{\partial} \varphi > 0$$

then $\omega = \hat{\omega}_t + \sqrt{-1} \partial \bar{\partial} \varphi$ solves the normalized Chern-Ricci flow (1.1).

We require some standard estimates for φ that follow as in the Kähler case [45, 40]. For a recent exposition of this result, see [35].

Lemma 3.1. There exists a uniform C such that on $M \times [0, \infty)$,

(i) $\varphi \leq C$

(ii) $\dot{\varphi} \leq C te^{-t}$ when $t \geq t_1$ for some $t_1 > 0$. In particular, $\dot{\varphi} \leq C$

(iii) $\omega^n \leq C \Omega$.

We need a version of Tsuji’s trick [45] that will apply in this non-Kähler setting. The new trick comes from the work of Collins–Tosatti [6] and a theorem of Demailly [7] and Demailly-Păun [8]:

Since K_M is big there exists a Kähler current

$$T = \hat{\omega}_\infty + \sqrt{-1} \partial \bar{\partial} \psi \geq c_0 \omega_0$$
for some \(c_0 > 0 \) as currents on \(M \) where \(\psi \) is an upper-semi continuous function in \(L^1(M) \). Moreover, \(\psi \) can be chosen to be smooth away from a closed analytic subvariety \(E = \{ \psi = -\infty \} \).

By adding a constant, we can assume that \(\sup_M \psi = 0 \). Since \(M \) is Moishezon, it is in Fujiki’s class \(C \) (\(M \) is bimeromorphic to a compact Kähler manifold) [11]. Using this fact, the main theorem of Collins-Tosatti implies that we can take

\[
E = \text{Null}(K_M)
\]

and that this is the smallest possible choice for \(E \) [6].

From the definition of \(T \) and \(\psi \) we have the following useful facts.

Lemma 3.2. There exists a uniform \(C > 0 \) such that

(i) \(\sqrt{-1} \partial \bar{\partial} \psi \geq -C \omega_0 \) as currents on \(M \) and

(ii) \(\hat{\omega}_\infty + \varepsilon \sqrt{-1} \partial \bar{\partial} \psi \geq \varepsilon c_0 \omega_0 \) as currents on \(M \) for all \(\varepsilon \in (0, 1] \).

We can find lower bounds for \(\varphi, \tilde{\varphi} \) and \(\omega^n \) in terms of \(\psi \) and \(\varepsilon \).

Lemma 3.3. There exists a uniform constant \(C_\varepsilon \) depending on \(\varepsilon \) such that on \(M \times [0, \infty) \),

(i) \(\varphi \geq \varepsilon \psi - C_\varepsilon \)

(ii) \(\tilde{\varphi} \geq \varepsilon \psi - C_\varepsilon \)

(iii) \(\omega^n \geq \frac{1}{C_\varepsilon} e^{\varepsilon \psi} \Omega \).

Proof. Define

\[
Q = \dot{\varphi} + \varphi - \varepsilon \psi = \log \frac{\omega^n}{e^{\varepsilon \psi} \Omega}.
\]

If we can find a uniform lower bound for \(Q \) we immediately prove (iii). (i) and (ii) then follow from Lemma 3.1. Computing the evolution equation for \(Q \),

\[
\left(\frac{\partial}{\partial t} - \Delta \right) \varphi = \dot{\varphi} - n + \text{tr} \omega \hat{\omega}_t
\]
\[
\left(\frac{\partial}{\partial t} - \Delta \right) \tilde{\varphi} = \text{tr} \omega \dot{\hat{\omega}}_\infty - \hat{\omega}_t - \dot{\tilde{\varphi}}.
\]

Adding these,

\[
\left(\frac{\partial}{\partial t} - \Delta \right) Q = \text{tr} \omega \dot{\omega}_\infty - n + \text{tr} \omega \varepsilon \sqrt{-1} \partial \bar{\partial} \psi
\]
\[
= \text{tr} \omega \left(\hat{\omega}_\infty + \varepsilon \sqrt{-1} \partial \bar{\partial} \psi \right) - n
\]
\[
\geq \varepsilon c_0 \text{tr} \omega \omega_0 - n.
\]

Since \(Q \to \infty \) as \(x \to E \), \(Q \) achieves a spatial minimum for each fixed time \(t_0 \). If \(Q \) attains a minimum at the point \((x_0, t_0) \) in \(M \setminus E \) with \(t_0 > 0 \), at that point

\[
\text{tr} \omega(x_0, t_0) \omega_0(x_0, t_0) \leq \frac{n}{\varepsilon c_0}.
\]
Applying the geometric-arithmetic mean inequality,
\[
\left(\frac{\omega_0^n(x_0, t_0)}{\omega^n(x_0, t_0)} \right)^{1/n} \leq \frac{\text{tr}_{\omega(x_0, t_0)} \omega_0(x_0, t_0)}{n} \leq \frac{1}{\varepsilon c_0}.
\]
This gives a uniform lower bound for Q since
\[
Q(x_0, t_0) = \log \frac{\omega_0^n(x_0, t_0)}{e^{\varepsilon \psi(x_0, t_0) \Omega(x_0, t_0)}} \geq \log \frac{\varepsilon c_0 \omega_0^n(x_0, t_0)}{e^{\varepsilon \psi(x_0, t_0) \Omega(x_0, t_0)}} \geq -C_\varepsilon.
\]

We define a family of positive $(1, 1)$-currents which will be useful in bounding $\text{tr}_{\omega_0} \omega$. Let
\[
S_t = \hat{\omega}_t + \sqrt{-1} \partial \bar{\partial} \psi = e^{-t} \omega_0 + (1 - e^{-t}) \hat{\omega}_\infty + \sqrt{-1} \partial \bar{\partial} \psi.
\]

Lemma 3.4. There exists $T_0 > 0$ such that for all $t \geq T_0$
\[
S_t \geq \frac{c_0}{2} \omega_0
\]
as currents on M.

Proof. Choose T_0 sufficiently large so that for $t \geq T_0$
\[
e^{-t} (\omega_0 - \hat{\omega}_\infty) \geq -\frac{c_0}{2} \omega_0.
\]
Then
\[
S_t = \hat{\omega}_\infty + \sqrt{-1} \partial \bar{\partial} \psi + e^{-t} (\omega_0 - \hat{\omega}_\infty) \geq \frac{c_0}{2} \omega_0
\]
as currents on M. \hfill \qed

Now we can bound $\text{tr}_{\omega_0} \omega$ using a trick from Phong-Sturm [29].

Lemma 3.5. There exists uniform C and C' such that on $M \times [0, \infty)$,
\[
\text{tr}_{\omega_0} \omega \leq \frac{C'}{e^{C \psi}}.
\]
Moreover, there exists uniform C'' such that on $M \times [0, \infty)$,
\[
\frac{e^{C \psi}}{C''} \omega_0 \leq \omega \leq \frac{C''}{e^{C \psi}} \omega_0.
\]
Proof. We begin by calculating the evolution equation for $\log \text{tr}_{\omega} \omega$ following a method similar to [42].

$$
\left(\frac{\partial}{\partial t} - \Delta \right) \log \text{tr}_{\omega} \omega = \frac{1}{\text{tr}_{\omega} \omega} \left(- g^{ik}(g_0)^{jk}(\nabla_0)_{kij}(\nabla_0)_{1ji} \omega + g^{i\bar{j}}(g_0)^{jk}(\nabla_0)_{kij}(\nabla_0)_{1ji} \omega \right) + \frac{1}{\text{tr}_{\omega} \omega} g^{ik}(\nabla_0)_{k} (\text{tr}_{\omega} \omega) (\nabla_0)_{\omega}\omega \\
- 2 \text{Re} \left(g^{i\bar{j}}(g_0)^{jk}(T_0)^{pi}_{ki}(g_0)^{jp}_{q}(T_0)^{p}_{ik}(T_0)^{q}_{jl} \right) + \left[g^{i\bar{j}}(g_0)^{jk}(T_0)^{pi}_{ki}(g_0)^{jp}_{q} \omega \right] \\
- \left[g^{i\bar{j}}(g_0)^{jk} e^{-t} \left((\nabla_0)_{i} \left((T_0)^{p}_{jl}(g_0)^{jp}_{q} \right) + (\nabla_0)_{\omega} \left((T_0)^{p}_{ik}(g_0)^{jp}_{q} \omega \right) \right) \right) \\
- g^{i\bar{j}}(g_0)^{jk} e^{-t} (T_0)^{q}_{jl} (T_0)^{p}_{ik} (g_0)^{jp}_{q} \omega - \text{tr}_{\omega} \omega \right).$$

(3.7)

There are two differences between this equation and the one in [42]. The third term in square brackets has a factor of e^{-t} since

$$
\bar{\partial} \omega = \bar{\partial} \omega_t = e^{-t} \bar{\partial} \omega_0.
$$

Also, because we are considering the normalized Chern-Ricci flow we have the final $-\text{tr}_{\omega} \omega$ term.

Let (I) denote the first term in square brackets in (3.7), (II) the second, and (III) the third, all including the $\frac{1}{\text{tr}_{\omega} \omega}$ out front. Using the estimates from [42] Proposition 3.1,

$$
(I) \leq \frac{2e^{-t}}{\text{tr}_{\omega} \omega^2} \text{Re} \left(g^{ik}(T_0)^{pi}_{kp} \partial_t \text{tr}_{\omega} \omega \right)
$$

(3.9)

and

$$
(II) \leq C \text{tr}_{\omega} \omega_0,
$$

(3.10)

and

$$
(III) \leq C e^{-t} \text{tr}_{\omega} \omega_0 \leq C \text{tr}_{\omega} \omega_0.
$$

(3.11)

Combining (3.9), (3.10) and (3.11) with (3.7),

$$
\left(\frac{\partial}{\partial t} - \Delta \right) \log \text{tr}_{\omega} \omega \leq \frac{2}{\text{tr}_{\omega} \omega^2} \text{Re} \left(g^{ik}(T_0)^{pi}_{kp} \partial_t \text{tr}_{\omega} \omega \right) + C \text{tr}_{\omega} \omega_0.
$$

(3.12)

Let

$$
\tilde{\varphi} = \varphi - \psi.
$$
Using the trick from Phong-Sturm [29], we consider the quantity

\begin{equation}
Q = \log \text{tr}_{\omega_0} \omega - A\tilde{\varphi} + \frac{1}{\tilde{\varphi} + C_0}.
\end{equation}

Here \(A\) is a large constant to be determined later and \(C_0\) is large enough so that \(\tilde{\varphi} + C_0 \geq 1\) which exists by Lemma 3.3. This choice is made so that

\[0 < \frac{1}{\tilde{\varphi} + C_0} \leq 1.\]

Fix a time \(T' > T_0\) where \(T_0\) is as in Lemma 3.3. Since \(Q \to -\infty\) as \(x \to E\), \(Q\) achieves a maximum at some point \((x_0, t_0) \in (M \setminus E) \times [0, T']\). If \(0 \leq t_0 \leq T_0\), then \(Q\) clearly has a uniform upper bound on \(M \times [0, T']\). It remains to show that \(Q\) is uniformly bounded above if \(t_0 > T_0\).

We compute the parts of the evolution equation for \(Q\) separately.

\begin{equation}
\left(\frac{\partial}{\partial t} - \Delta\right) \tilde{\varphi} = \tilde{\varphi} - \text{tr}_\omega \left(\sqrt{-1} \partial \tilde{\varphi} \partial \bar{\varphi} - \sqrt{-1} \partial \bar{\varphi} \partial \tilde{\varphi}\right)
= \tilde{\varphi} - \text{tr}_\omega \left(\omega - \omega_t - \sqrt{-1} \partial \bar{\varphi}\right)
= \tilde{\varphi} - n + \text{tr}_\omega S_t.
\end{equation}

Using the previous calculation that showed \(\Delta \tilde{\varphi} = n - \text{tr}_\omega S_t\),

\begin{equation}
\left(\frac{\partial}{\partial t} - \Delta\right) Q = \left(\frac{\partial}{\partial t} - \Delta\right) \log \text{tr}_{\omega_0} \omega - \left(A + \frac{1}{(\tilde{\varphi} + C_0)^2}\right) \tilde{\varphi} + \left(A + \frac{1}{(\tilde{\varphi} + C_0)^2}\right) (n - \text{tr}_\omega S_t) - \frac{2|\partial \tilde{\varphi}|_g^2}{(\tilde{\varphi} + C_0)^3}.
\end{equation}

Combining (3.13), (3.14) and (3.15),

\begin{equation}
0 = \frac{\partial}{\partial t} Q = \frac{1}{\text{tr}_{\omega_0} \omega} \partial_t \text{tr}_{\omega_0} \omega - A \partial_t \tilde{\varphi} - \frac{\partial \tilde{\varphi}}{(\tilde{\varphi} + C_0)^2}.
\end{equation}

At the maximum of \(Q\), \((x_0, t_0)\),

\begin{equation}
\frac{2}{(\text{tr}_{\omega_0} \omega)^2} \text{Re} \left(g^k (T_0)^p_{kp} \partial_t \text{tr}_{\omega_0} \omega \right)
= \left| \frac{2}{(\text{tr}_{\omega_0} \omega)^2} \text{Re} \left(g^k (T_0)^p_{kp} \left(A + \frac{1}{(\tilde{\varphi} + C_0)^2}\right) \partial_t \tilde{\varphi} \right) \right|
\leq \frac{|\partial \tilde{\varphi}|_g^2}{(\tilde{\varphi} + C_0)^3} + CA^2 (\tilde{\varphi} + C_0)^3 \frac{\text{tr}_{\omega_0} \omega_0}{(\text{tr}_{\omega_0} \omega)^2}.
\end{equation}
Now we break this in to two cases. If \((\text{tr}_\omega \omega) \leq A^2(\tilde{\phi} + C_0)^3\) at \((x_0, t_0)\), then
\[
Q \leq \log A + \frac{3}{2} \log(\tilde{\phi} + C_0) - A\tilde{\phi} + \frac{1}{\tilde{\phi} + C_0} \leq C
\]
where \(C\) is some constant depending on \(A\) since \(\tilde{\phi}\) is bounded below and the function \(x \mapsto \frac{3}{2} \log(x + C_0) - Ax\) is bounded above.

If instead \((\text{tr}_\omega \omega) \geq A^2(\tilde{\phi} + C_0)^3\) at \((x_0, t_0)\), substituting (3.18) into (3.16),
\[
\left(\frac{\partial}{\partial t} - \Delta\right) Q \leq |\partial \tilde{\phi}|^2 \frac{\partial \Omega}{\Omega} + C\text{tr}_\omega \omega_0 - \left(A + \frac{1}{(\tilde{\phi} + C_0)^2}\right) \phi
\]
\[
\leq C\text{tr}_\omega \omega_0 + (A + 1) |\tilde{\phi}| + (A + 1) (n - \text{tr}_\omega S_t).
\]

Using Lemma 3.3, we can choose \(A\) large enough so that \((A + 1) S_t \geq (C + 1) \omega_0\). At \((x_0, t_0)\),
\[
0 \leq \left(\frac{\partial}{\partial t} - \Delta\right) Q \leq -\text{tr}_\omega \omega_0 + C \left|\log \frac{\Omega}{\omega^n}\right| + C.
\]

At the maximum of \(Q\),
\[
\text{tr}_\omega \omega_0 \leq \frac{1}{(n - 1)!} (\text{tr}_\omega \omega_0)^{n-1} \omega^n_0 \leq C \frac{\omega^n}{\Omega} \left|\log \frac{\Omega}{\omega^n}\right|^{n-1} + C \leq C
\]
and since \(\omega^n \leq C\Omega\) and the function \(x \mapsto x |\log x|^{n-1}\) is bounded for small \(x > 0\) we obtain a uniform upper bound for \(Q\). In either of the cases, \(Q\) is uniformly bounded above, so using Lemma 3.1,
\[
\log \text{tr}_\omega \omega_0 \leq C + C\tilde{\phi} \leq C - C\psi.
\]
Exponentiating gives (3.5) and (3.6) follows. \(\square\)

Using these lower order estimates with the higher order estimates in [14] on compact subsets of \(M \setminus E\) we obtain uniform \(C_{10c}(M \setminus E)\) estimates for \(\varphi\).

4. CONVERGENCE AND UNIQUENESS

We now complete the proof of Theorem 1.1 by showing that \(\omega\) converges to a Kähler-Einstein metric on \(M \setminus E\) in \(C_{10c}(M \setminus E)\).

Proof. The quantity
\[
Q = \varphi + Cte^{-t}
\]
where \(C\) is the constant in Lemma 3.1 is uniformly bounded below on compact subsets of \(M \setminus E\) by Lemma 3.3. By Lemma 3.1 (ii),
\[
\partial_t Q = \tilde{\phi} - Cte^{-t} \leq 0
\]
so \(\varphi \) converges pointwise to a function \(\varphi_\infty \) at \(t \to \infty \) on \(M \setminus E \). Using the estimates from the previous section, we have convergence in \(C^\infty_{loc}(M \setminus E) \).

Since \(\varphi \) converges as \(t \to \infty \), \(\dot{\varphi} \to 0 \) similarly in \(C^\infty_{loc}(M \setminus E) \).

The above convergence for \(\varphi \) and \(\dot{\varphi} \) implies that

\[
\omega \to \omega_\infty := \hat{\omega}_\infty + \sqrt{-1} \partial \bar{\partial} \varphi_\infty
\]

and \(\frac{\partial}{\partial t} \omega \to 0 \) as \(t \to \infty \) in \(C^\infty_{loc}(M \setminus E) \). Taking \(t \to \infty \) in the normalized Chern-Ricci flow \((1.1) \),

\[
\text{Ric}(\omega_\infty) = -\omega_\infty
\]
on \(M \setminus E \). Since \(\text{Ric}(\omega_\infty) \) is closed, \(\omega_\infty \) is a Kähler-Einstein metric on \(M \setminus E \).

Moreover, applying weak compactness of currents we can extend \(\omega_\infty \) to a closed, positive current on \(X \) and then \(\omega \to \omega_\infty \) as currents on \(X \). \(\square \)

We now show that \(\omega_\infty \) is unique in the sense of Theorem 1.2.

Proof. The proof of this result is similar to the Kähler case [45, 40] (see also [35]), but we provide the proof for the sake of completeness. Let \(\omega_\infty \) and \(\tilde{\omega}_\infty \) be two closed positive currents satisfying (i) and (ii). Define

\[
\theta = \log \frac{\omega_\infty^n}{\hat{\Omega}}, \quad \tilde{\theta} = \log \frac{\tilde{\omega}_\infty^n}{\tilde{\Omega}}.
\]

Taking \(\sqrt{-1} \partial \bar{\partial} \),

\[
\sqrt{-1} \partial \bar{\partial} \theta = -\text{Ric}(\omega_\infty) - \dot{\omega}_\infty
\]

and so

\[
\omega_\infty = \dot{\omega}_\infty + \sqrt{-1} \partial \bar{\partial} \theta.
\]

Similarly

\[
\tilde{\omega}_\infty = \tilde{\dot{\omega}}_\infty + \sqrt{-1} \partial \bar{\partial} \tilde{\theta}.
\]

Define the quantity

\[
Q = \theta - (1 - \delta)\tilde{\theta} - \delta \varepsilon \psi
\]

for some \(0 < \delta < 1 \). \(Q \) is bounded below and \(Q \to \infty \) as \(x \to E \) so \(Q \) attains a minimum at a point \(x_0 \) in \(M \setminus E \). At \(x_0 \),

\[
\theta - \tilde{\theta} = \log \frac{\omega_\infty^n}{\tilde{\omega}_\infty^n}
\]

\[
= \log \left(\dot{\omega}_\infty + (1 - \delta)\sqrt{-1} \partial \bar{\partial} \theta + \delta \varepsilon \sqrt{-1} \partial \bar{\partial} \psi + \sqrt{-1} \partial \bar{\partial} Q \right)^n
\]

\[
= \log \left((1 - \delta)\tilde{\dot{\omega}}_\infty + \delta \varepsilon \sqrt{-1} \partial \bar{\partial} \tilde{\psi} + \sqrt{-1} \partial \bar{\partial} Q \right)^n
\]

\[
\geq \log \frac{(1 - \delta)n\tilde{\omega}_\infty^n}{\tilde{\omega}_\infty^n} = n \log(1 - \delta).
\]

By Lemma 3.3, \(\delta \tilde{\theta}(x_0) - \delta \varepsilon \psi(x_0) \geq \delta C \varepsilon \). Then

\[
Q(x_0) = \theta(x_0) - \tilde{\theta}(x_0) + \delta \tilde{\theta}(x_0) - \delta \varepsilon \psi(x_0) \geq n \log(1 - \delta) - \delta C \varepsilon.
\]
Choosing δ sufficiently small so that $n \log(1 - \delta) > -\varepsilon/2$ and $\delta C_\varepsilon < \varepsilon/2$,
\[
Q(x_0) \geq -\varepsilon.
\]
Since Q achieves its minimum at x_0,
\[
\theta \geq (1 - \delta)\tilde{\theta} + \delta \varepsilon \psi - \varepsilon.
\]
Taking $\delta \to 0$ and $\varepsilon \to 0$,
\[
\theta \geq \tilde{\theta}.
\]
Similarly, $\theta \leq \tilde{\theta}$.

5. ACKNOWLEDGMENTS

The author would like to thank Ben Weinkove and Valentino Tosatti for several helpful discussions and suggestions.

REFERENCES

[1] Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A. Compact complex surfaces, Springer-Verlag, Berlin, 2004.
[2] Bogomolov, F.A. Surfaces of class III_0 and affine geometry, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 4, 710–761.
[3] Brunella, M. Locally conformally Kähler metrics on Kato surfaces, Nagoya Math. J. 202 (2011), 77–81.
[4] Cao, H.-D. Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), 359–372.
[5] Cherrier, P. Équations de Monge-Ampère sur les variétés Hermitiennes compactes, Bull. Sc. Math. (2) 111 (1987), 343–385.
[6] Collins, T.C., Tosatti, V. Kähler currents and null loci, preprint, arXiv: 1304.5216.
[7] Demailly, J.-P. Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992), no. 3, 361–409.
[8] Demailly, J.-P., Paun, M. Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math., 159 (2004), no. 3, 1247–1274.
[9] Feldman, M., Ilmanen, T., Knopf, D. Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons, J. Differential Geom. 65 (2003), no. 2, 169–209.
[10] Fong, F., Zhang, Z. The collapsing rate of the Kähler–Ricci flow with regular infinite time singularity, preprint, arXiv: 1202.3199.
[11] Fujiki, A. Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci. 14 (1978/79), no. 1, 1–52.
[12] Fujiki, A., Pontecorvo, M. Anti-self dual biholomorphic structures on Inoue surfaces, J. Differential Geom. 85 (2010), no. 1, 15–71.
[13] Gauduchon, P., Ornea, L. Locally conformally Kähler metrics on Hopf surfaces, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 4, 1107–1127.
[14] Gill, M., Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds, Comm. Anal. Geom. 19 (2011), no. 2, 277–303.
[15] Gill, M. Collapsing of products along the Kähler-Ricci flow, preprint, arXiv: 1203.3781.
[16] Guan, B., Li, Q. Complex Monge-Ampère equations and totally real submanifolds, Adv. Math. 225 (2010), no. 3, 1185–1223.
[17] Hamilton, R. S. Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255–306.
[18] Hamilton, R. S. Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), no. 2, 153–179.
[19] Hamilton, R.S. The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), 7-136, Int. Press, Cambridge, MA, 1995.
[20] Kawamata, Y., Matsuda, K., Matsuki, K. Introduction to the minimal model program, Algebraic Geometry, Sendai (1985), Advanced Studies in Pure Mathematics, 10 (1987), 283–360.
[21] Kodaira, K. On the structure of compact complex analytic surfaces, II, Amer. J. Math. 88 (1966), no. 3, 682–721.
[22] Inoue, M. On surfaces of Class VII0, Invent. Math. 24 (1974), 269–310.
[23] LeBrun, C. Anti-self-dual Hermitian metrics on blown-up Hopf surfaces, Math. Ann. 289 (1991), no. 3, 383–392.
[24] Li, J., Yau, S.-T., Zheng, F. On projectively flat Hermitian manifolds, Comm. Anal. Geom. 2 (1994), 103–109.
[25] Liu, K., Yang, X. Geometry of Hermitian manifolds, arXiv:10110207.
[26] Perelman, G. The entropy formula for the Ricci flow and its geometric applications, preprint, arXiv:0211159.
[27] Perelman, G. Ricci flow with surgery on three-manifolds, preprint, arXiv:0303109.
[28] Perelman, G. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint, arXiv:0307245.
[29] Phong, D.H., Sturm, J. The Dirichlet problem for degenerate complex Monge-Ampère equations, Comm. Anal. Geom. 18 (2010), no. 1, 145–170.
[30] Sherman, M. and Weinkove, B. Interior derivative estimates for the Kähler-Ricci flow, to appear in Pacific J. Math., arXiv:1107.1853.
[31] Sherman, M., Weinkove, B. Local Calabi and curvature estimates for the Chern-Ricci flow, arXiv:1301.1622.
[32] Song, J., Tian G. The Kähler-Ricci flow on minimal surfaces of positive Kodaira dimension Invent. Math. 170 (2007), no. 3, 609–653.
[33] Song, J., Tian G. Canonical measures and Kähler-Ricci flow, J. Amer. Math. Soc. 25 (2012), no. 2, 303–353.
[34] Song, J., Weinkove, B. Contracting exceptional divisors by the Kähler-Ricci flow, Duke Math. J. 162 (2013), no. 2, 367–415.
[35] Song, J., Weinkove, B. Lecture notes on the Kähler-Ricci flow.
[36] Streets, J., Tian, G. A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. IMRN 2010, no. 16, 3101–3133.
[37] Streets, J., Tian, G. Hermitian curvature flow, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 3, 601–634.
[38] Streets, J., Tian, G. Regularity results for pluriclosed flow, arXiv:1008:2794.
[39] Teleman, A. Projectively flat surfaces and Bogomolov theorem on class VII0-surfaces, Int. J. Math. 5 (1994), 253–264.
[40] Tian, G., Zhang, Z. On the Kähler-Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179–192.
[41] Tosatti, V., Weinkove, B. The complex Monge-Ampère equation on compact Hermitian manifolds, J. Amer. Math. Soc. 23 (2010), no. 4, 1187–1195.
[42] Tosatti, V., Weinkove, B. On the evolution of a Hermitian metric by its Chern-Ricci form, arXiv:1201.0312.
[43] Tosatti, V., Weinkove, B. The Chern-Ricci flow on complex surfaces, arXiv:1209.2662.
[44] Tosatti, V., Weinkove, B., Yang, X. Collapsing of the Chern-Ricci flow on elliptic surfaces, arXiv:1302.8545.
[45] Tsuji, H. Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281 (1988), no. 1, 123–133.
[46] Vaisman, I. Non-Kähler metrics on geometric complex surfaces, Rend. Sem. Mat. Univ. Politec. Torino 45 (1987), no. 3, 117–123.
[47] Wall, C.T.C. Geometric structures on compact complex analytic surfaces, Topology 25 (1986), no. 2, 119–153.
[48] Yau, S.-T. *On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I*, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411.

Department of Mathematics, University of California, Berkeley, 970 Evans Hall #3840, Berkeley, CA 94720-3840 USA