Acceptability of bedding plants by the leatherleaf slug,
Leidyula floridana (Mollusca: Gastropoda: Veronicellidae)

John L. Capinera

Abstract

Leidyula floridana (Leidy) (Gastropoda: Veronicellidae) has long been known to be a plant pest in the Caribbean region and southern Florida, though its range has expanded to include northern Florida, other Gulf Coast states, and Mexico. It is nocturnal, and often overlooked as a source of plant damage. Although polyphagous, it does not feed on all plants, and it is desirable to know what bedding plants will likely be damaged by this common herbivorous slug. To identify readily accepted bedding plants, I conducted a series of comparative trials of 7 d duration to assess the acceptance of 30 commonly grown bedding plants relative to French marigold, a plant that is commonly fed upon by slugs and snails. Several commonly grown bedding plants were shown to be very susceptible to feeding injury. In a second set of 7-d trials, I compared 14 plants from among those that were not readily accepted in the first set of trials to determine if they would remain poorly accepted when not provided with favored food. In the second set of trials, the levels of herbivory shown in the first trials were maintained, demonstrating that some bedding plants are not acceptable to *L. floridana* even when the slugs do not have access to acceptable food. Thus, a list of readily available bedding plants that resist herbivory by this slug has been determined, providing gardeners with slug-resistant choices. The most unacceptable species (damage rating = 1.00) were: lantana (*Lantana camara* L.; Verbenaceae), tickseed (*Coreopsis* spp.; Asteraceae), torenia (*Torenia fournieri* Lind. ex E. Fourn.; Linderiaceae), angelonia (*Angelonia angustifolia* Benth.; Plantaginaceae), and *Stokesia laevis* (Antirrhinum majus L.; Plantaginaceae). Additional plant species that were not very acceptable (damage rating of between 1.00 and 1.50) were blue daze (*Evolutionus glomeratus* Choisy; Convolvulaceae), dusty miller (*Centaurea cineraria* ([L.] Jacq. ex Nym.; Asteraceae), viola (*Viola hybrid*; Violaceae), celosia (*Celosia argentea* L.; Amaranthaceae), and geranium (*Geranium* spp.; Geraniaceae). In contrast, plant species that seem to be at considerable risk of damage (damage rating 3 to 5) by *L. floridana* were: French marigold (*Tagetes patula* L.; Asteraceae), Madagascar periwinkle (*Catharanthus roseus* ([L.] G. Don; Apocynaceae), coleus (*Plectranthus scutellarioides* L.; Laminaceae), petchoa (*Petunia × Calibrachoa*; Solanaceae), zinnia (*Zinnia elegans* Jacq.; Asteraceae), polka dot plant (*Hypoestes phyllostachya* Baker; Acanthaceae), chrysanthemum (*Chrysanthemum morifolium* Ramat; Solanaceae), petunia (*Petunia* spp.; Solanaceae), Stokes’ aster (*Stokesia laevis* [Hill] Greene; Asteraceae), scarlet sage (*Salvia splendens* Sellow ex Nees; Lamiaeaceae), butter daisy (*Melampodium paludosum* Kunth; Asteraceae) and verbena (*Verbena* spp.; Geraniaceae). A few species were intermediate in susceptibility, namely: impatients (*Impatiens hawkeri* W. Bull; Balsamaceae), wax begonia (*Begonia × Semperflorens × Cultorum*; Begoniaceae), sweet potato vine (*Ipomoea* spp.; Convolvulaceae), firecracker flower (*Crossandra infundibuliformis* ([L.] Nees; Acantaceae), sweet William (*Dianthus barbatus* L.; Caryophyllaceae), pansy (*Viola × Wittrochinana*; Violaceae), purlslane (*Portulaca oleracea* L.; Portulacaceae), and Alyssum (*Lobularia maritima* ([L.] Desv.; Brassicaceae).

Key Words: flowers; annuals; slug-resistant plants

Resumen

Leidyula floridana (Leidy) (Gastropoda: Veronicellidae) ha sido por mucho tiempo conocida como una plaga de plantas en la región del Caribe y el sur de la Florida, aunque su área de distribución se ha expandido para incluir el norte de Florida, y otros Estados de la costa del Golfo y México. Es una plaga nocturna y a menudo, se pasa por alto como fuente de daño a las plantas. Aunque es polífaga, no se alimenta de todas las plantas, y es deseable saber qué plantas de lecho probablemente se dañarán por esta babosa herbívora común. Para identificar las plantas de lecho fácilmente aceptadas, se realizaron una serie de ensayos comparativos de 7 días de duración para evaluar la aceptación de 30 plantas de lecho comúnmente cultivadas en relación con la maravilla francesa, una planta sobre la cual las babosas y los caracoles comúnmente se alimenta. Se demostró que varias plantas de lecho comúnmente cultivadas son muy susceptibles a las lesiones por alimentación. En un segundo conjunto de ensayos de 7 días, se comparó 14 plantas entre las que no fueron aceptadas fácilmente en el primer conjunto de ensayos para determinar si seguirían siendo poco aceptadas cuando no se les proporcionaba la comida preferida. En el segundo conjunto de ensayos, se mantuvieron los niveles de herbivoría mostrados en los primeros ensayos, lo que demuestra que algunas plantas de lecho no son aceptables para *L. floridana*, incluso cuando las babosas no tienen acceso a alimentos aceptables. Por lo tanto, se ha determinado una lista de plantas de lecho disponibles que resisten la herbivoria por esta babosa, proporcionando a los jardíneros opciones resistentes a la babosa. Las especies más inaceptables (Indice de daño = 1.00) fueron: lantana (*Lantana camara* L.; Verbenaceae), coreopsis (*Coreopsis* spp.; Asteraceae), torenia (*Torenia fournieri* Lind. ex E. Fourn.; Linderiaceae), angelonia (*Angelonia angustifolia* Benth.; Plantaginaceae) y boca de dragón (*Antirrhinum majus* L.; Plantaginaceae). Otras especies de plantas que no fueron muy aceptables (clasificación de daño entre 1.00 y 1.50) fueron hierba de sabana (*Evolutionus glomeratus* Choisy; Convolvulaceae), cineraria (*Centaurea cineraria* ([L.] Jacq. ex Nym.; Asteraceae), viola (híbrido *Viola*; Violaceae), celosia (*Celosia argentea* L.; Amaranthaceae), y geranio (*Geranium* spp.; Geraniaceae). En contraste, las especies de plantas que parecen estar en riesgo considerable de daño (clasificación de daño 3 a 5) por *L. floridana* fueron: calendula francesa (*Tagetes patula* L.; Asteraceae), bigaro de Madagascar (*Catharanthus roseus* ([L.] G. Don; Apocynaceae), coleus (*Plectranthus scutellarioides* ([L.] R. Br.; Laminaceae), petchoa (*Petunia × Calibrachoa*; Solanaceae), zinnia (*Zinnia elegans* Jacq.; Asteraceae), hoja de sangre (*Hypoestes phyllostachya* Baker; Acanthaceae), crisantemo (*Chrysanthemum morifolium* Ramat.; Solanaceae), petunia (*Petunia* spp.; Solanaceae), áster de Stokes (*Stokesia laevis* [Hill] Greene; Asteraceae), salvia escarlata (*Salvia splendens* Sellow ex Nees; Lamiaeaceae), margarita de mantequilla (*Melampodium paludosum* Kunus;
Leidyula floridana (Leidy) (Gastropoda: Veronicellidae), also known as Florida leatherleaf slug, was first described from southern Florida, but occurs widely in the Caribbean region, including Cuba, Haiti, Puerto Rico, Dominica, Bahamas, and Jamaica (Baker 1925; Maceira 2003; Rosenberg & Muratov 2006). Pilsbry (1948) concluded that its origin was Cuba, which is logical given its widespread distribution on that island and the tropical nature of the Veronicellidae. The range of L. floridana is expanding, and it is now found in northern Florida, Gulf Coast states (Louisiana and Texas), and northeastern Mexico (Hubricht et al. 2007).

Though the dietary habits of this slug are poorly known, L. floridana is polyphagous, feeding on plants of several families. Capinera and Guedes Rodrigues (2015) reported that this slug consumed measurable quantities of about 80% of the plant species provided, but clearly consumed more of some than others; only about 50% of the plants allowed significant slug growth to occur. Leidyula floridana is a large slug, often attaining >10 g in weight and >5 cm in length, so it is capable of a considerable amount of foliage consumption, perhaps 20 cm² per d (Capinera & Guedes Rodrigues 2015). It also is the most commonly observed slug in Florida, probably because it is so large. Nevertheless, slugs are predominantly nocturnal, so often are not observed. Slime trails found on sidewalks and vegetation are sometimes the only clues to indicate the cause of plant damage.

The technologies available for slug management have changed in recent yr. After many yr of depending nearly exclusively on highly toxic chemicals for protection of plants from terrestrial molluscs (usually metaldehyde products), less toxic materials, such as iron phosphate-, metaldehyde-, and pyrethrin products, were developed. This was followed by the introduction of pyrrolidine dithiocarbamate (Prophlex) as a new chemical for protection of plants from terrestrial molluscs (usually metaldehyde products), less toxic materials, such as iron phosphate-,

Materials and Methods

The slugs used in these studies came from a laboratory colony that has been maintained for about 5 yr. They were cultured in plastic boxes (Gastropoda: Achatinidae) measuring 28 × 18 × 10 cm (L, W, H) that contained about 5 cm of moist potting soil (Robin Hood garden soil, Hood Landscaping, Adel, Georgia, USA). Each box contained 20 to 30 slugs, and was maintained at 25.5 °C and 14:10 h (L:D) photoperiod. The boxes were not vented so humidity exceeded 90% RH. They were fed only romaine lettuce prior to evaluation.

Plant choice ('common garden') tests were conducted in 60 × 60 × 60 cm cages with fine nylon mesh sides, containing about 10 cm of moist soil in the cage bottom. Each cage was planted with 7 different bedding plants, and each plant was photographed prior to exposure to slugs. Plants were selected to be about 15 cm high, and to provide approximately equivalent amounts of foliage. After planting and watering, 20 slugs weighing 4 to 6 g each were introduced to each cage and allowed to feed for 7 d. Environmental conditions were the same as described for slug culture except that the RH was unregulated, falling to about 70% during the d but >90% at night. After the 7 d period, the bedding plants were compared to their pre-treatment photographs and visual estimates of the levels of defoliation were categorized as 1 = 0 to 19%, 2 = 20 to 39%, 3 = 40 to 59%, 4 = 60 to 79%, and 5 = 80 to 100%. The plants were procured locally at a Lowe’s Home Center in Gainesville, Florida, USA, thus representing the plant condition that gardeners might encounter when planting new garden beds. The plants mostly consisted of flowering annuals, though some are perennials that often are grown as annuals under local weather conditions.

Two series of plant choice trials were conducted. Trials 1 to 5 each consisted of 1 marigold plant and 1 plant of 6 other species (n = 7 plants per cage; n = 31 species evaluated). Except for marigold, each plant species was tested only in 1 trial. Marigold is readily accepted as a food plant by molluscs (Raut & Ghose 1983; Dickens et al. 2017; Wilen & Flint 2018), and was included in each trial to gauge the overall hunger of the slugs, assuring that herbivory pressure was comparable across trials. Trials 6 and 7 were conducted in the same manner, but the plant species were selected from those that previously had been shown to be not readily accepted. One plant species in each of the latter 2 ‘unacceptable’ trials (sweet potato or purslane) was, in fact, selected because it displayed a modest level of acceptability. This was included for the same reason marigold was included in the first series, to gauge the willingness of the slugs to feed on acceptable food, though of course the expectations of ingestion were more limited.

Each trial (1–7) was conducted in 4 cages, but the trials were staggered over time so that each cage (replicate) contained plants that were of slightly different ages. The plant species and the distribution of plant choices are shown in Table 1. Plant damage ratings after 7 d were transformed to square root values and analyzed by 1-way analysis of variance (ANOVA) using GraphPad Prism (GraphPad Software, San Diego, California, USA). The mean values within each trial were compared using the Tukey-Kramer multiple comparison test.

The Lissachatina fulica (Bowditch) (Gastropoda: Achatinidae) growth study conducted by Dickens et al. (2017) overlapped, in part, with the choices displayed herein by L. floridana. The abilities of L. fulica and L. floridana to choose among some plants commonly grown in Florida was compared between these 2 studies using Spearman’s correlation coefficient through application of GraphPad Prism.

Results

In the first series of evaluations, consisting of 5 trials to assess acceptance, L. floridana strongly discriminated among bedding plants (P < 0.001 in all cases), and most plants were readily categorized as acceptable or unacceptable (Table 1). The most unacceptable species (damage rating = 1.00) were: lantana (Lantana camara L.; Verbenaceae), tickseed (Coreopsis spp.; Asteraceae), torenia (Torenia fournieri Linden ex E. Fourn.; Lindericeae), angelonia (Angelonia angustifolia Benth.; Plantaginaceae), and snapdragon (Antirrhinum majus L.; Plantaginaceae). Additional plant species that were not very acceptable
Table 1. Damage ratings of bedding plants provided to *Leidyula floridana* for 7 d in multiple choice (‘common garden’) tests. Ratings with a value of 1 experienced 0 to 19% consumption, whereas 5 experienced 80 to 100% leaf consumption (see Materials and Methods for details). Seven separate trials, each consisting of 7 plants, were conducted. Trials 1 to 5 were designed to identify preferred plants, whereas trials 6 and 7 were designed to assess nonpreferred plants. ANOVA statistics are found beneath each trial. Mean damage ratings followed by the same lower-case letter are not significantly different (*P* > 0.05) using the Tukey-Kramer multiple comparison test.

Trial	Common name	Scientific name	Plant family	Damage rating (± SE)
1	French marigold	*Tagetes patula*	Asteraceae	5.00 ± 0.00 a
1	Madagascar periwinkle	*Cantharanthus roseus*	Apocynaceae	3.50 ± 0.28 ab
1	coleus	*Plectranthus scutellarioides*	Lamiaeae	3.25 ± 0.48 ab
1	impatiens	*Impatiens hawkeri*	Balsaminaceae	2.50 ± 0.28 bc
1	wax begonia	*Begonia × Semperflorens × Cultorum*	Begoniaceae	1.75 ± 0.25 cd
1	blue daze	*Evolvulus glomeratus*	Convolvolaceae	1.50 ± 0.29 cd
1	penta	*Pentas lanceolata*	Rubiaeae	1.25 ± 0.25 d

Trial 1 statistics: *F* = 20.69; *df* = 6, 21; *P* < 0.001

2	French marigold	*Tagetes patula*	Asteraceae	5.00 ± 0.00 a
2	petchoa	*Petunia × Calibrachoa*	Solanaceae	5.00 ± 0.00 a
2	zinnia	*Zinnia elegans*	Asteraceae	4.25 ± 0.25 a
2	polka dot plant	*Hypoestes phyllostachya*	Acanthaceae	4.25 ± 0.25 a
2	sweet potato vine	*Ipomoea sp.*	Convolvolaceae	2.00 ± 0.41 b
2	firecracker flower	*Crossandra infundibuliformis*	Acanthaceae	1.75 ± 0.25 bc
2	lantana	*Lantana camara*	Verbenaceae	1.00 ± 0.00 c

Trial 2 statistics: *F* = 55.88; *df* = 6, 21; *P* < 0.001

3	French marigold	*Tagetes patula*	Asteraceae	5.00 ± 0.00 a
3	chrysanthemum	*Chrysanthemum morifolium*	Asteraceae	4.75 ± 0.25 a
3	petunia	*Petunia sp.*	Solanaceae	4.25 ± 0.48 a
3	sweet William	*Dianthus barbatus*	Caryophyllaceae	1.75 ± 0.25 b
3	dusty miller	*Centaurea cineraria*	Asteraceae	1.50 ± 0.29 b
3	tickseed	*Coreopsis spp.*	Asteraceae	1.00 ± 0.00 b
3	torenia	*Torenia fournieri*	Linderniaceae	1.00 ± 0.00 b

Trial 3 statistics: *F* = 53.33; *df* = 6, 21; *P* < 0.001

4	French marigold	*Tagetes patula*	Asteraceae	5.00 ± 0.00 a
4	Stokes’ aster	*Stokesia laevis*	Asteraceae	3.25 ± 0.48 b
4	pansy	*Viola × Wittrockiana*	Violaceae	1.75 ± 0.25 c
4	purslane	*Portulaca oleracea*	Portulaceae	1.75 ± 0.25 c
4	viola	*Viola (hybrid)*	Violaceae	1.50 ± 0.29 c
4	angelonia	*Angelonia angustifolia*	Plantaginaceae	1.00 ± 0.00 c
4	snapdragon	*Antirrhinum majus*	Plantaginaceae	1.00 ± 0.00 c

Trial 4 statistics: *F* = 263.60; *df* = 6, 21; *P* < 0.001

5	scarlet sage	*Salvia splendens*	Lamiaceae	5.00 ± 0.00 a
5	French marigold	*Tagetes patula*	Asteraceae	4.75 ± 0.25 a
5	butter daisy	*Melampodium paludosum*	Asteraceae	4.75 ± 0.25 a
5	verbena	*Verbena sp.*	Verbenaceae	4.25 ± 0.48 a
5	alysum	*Lobularia maritima*	Brassicaceae	2.50 ± 0.29 b
5	celosia	*Celosia argentea*	Amaranthaceae	1.25 ± 0.25 c
5	geranium	*Geranium sp.*	Geraniaceae	1.25 ± 0.25 c

Trial 5 statistics: *F* = 35.95; *df* = 6, 21; *P* < 0.001

6	sweet potato vine	*Ipomoea sp.*	Convolvolaceae	2.75 ± 0.85 a
6	penta	*Pentas lanceolata*	Rubiaeae	1.00 ± 0.00 b
6	lantana	*Lantana camara*	Verbenaceae	1.00 ± 0.00 b
6	sweet William	*Dianthus barbatus*	Caryophyllaceae	1.00 ± 0.00 b
6	dusty miller	*Centaurea cineraria*	Asteraceae	1.00 ± 0.00 b
6	tickseed	*Coreopsis spp.*	Asteraceae	1.00 ± 0.00 b
6	torenia	*Torenia fournieri*	Linderniaceae	1.00 ± 0.00 b

Trial 6 statistics: *F* = 5.16; *df* = 6, 21; *P* = 0.002

7	purslane	*Portulaca oleracea*	Portulaceae	1.75 ± 0.48 a
7	celosia	*Celosia argentea*	Amaranthaceae	1.50 ± 0.28 a
7	angelonia	*Angelonia angustifolia*	Plantaginaceae	1.00 ± 0.00 a
7	torenia	*Torenia fournieri*	Linderniaceae	1.00 ± 0.00 a
7	wax begonia	*Begonia × Semperflorens × Cultorum*	Begoniaceae	1.00 ± 0.00 a
7	lantana	*Lantana camara*	Verbenaceae	1.00 ± 0.00 a
7	blue daze	*Evolvulus glomeratus*	Convolvolaceae	1.00 ± 0.00 a

Trial 7 statistics: *F* = 2.28; *df* = 6, 21; *P* = 0.074
Begonia (Impatiens hawkeri) were: impatiens (Verbena spp.; Convolvulaceae), penta (Pentas lanceolata [Forssk.] Deflers; Rubiaceae), dusty miller (Centaurea cineraria (L.) Jacq. ex Nym.; Asteraceae), viola (Viola spp.; Violaceae), celosia (Celosia argentea L.; Amaranthaceae), and geranium (Geranium spp.; Geraniaceae). Plant species that seem to be at considerable risk of damage (damage rating > 3) by L. floridana were: French marigold (Tagetes patula L.; Asteraceae), Madagascar periwinkle (Catharanthus roseus (L.) G. Don; Apocynaceae), coleus (Plectranthus scutellariaeoides (L.) R. Br.; Lamiaceae), petchoa (Petunia × Calibrachoa; Solanaceae), zinnia (Zinnia elegans Jacq.; Asteraceae), polka dot plant (Hypoestes phyllostachya Sellow ex Nees; Acanthaceae), chrysanthemum (Chrysanthemum morifolium Baker; Acanthaceae), sweet potato vine (Ipomoea spp.; Convolvulaceae), firecracker flower (Crosandra infundibuliformis (L.) Nees; Acanthaceae), sweet William (Dianthus barbatus L.; Caryophyllaceae), pansy (Viola × Wittrockiana; Violaceae), purslane (Portulaca oleracea L.; Portulacaceae), and alysium (Lobularia maritima (L.) Desv.; Brassicaceae).

In the second series, consisting of 2 trials using plant species that had been shown to be relatively unacceptable, there were few differences in acceptance; nearly all were refused. Only sweet potato vine was consumed significantly more than other plant species, and the level of consumption was low to intermediate. Overall, plant species that were relatively unacceptable in the first series maintained their unacceptable status in the second series, despite the absence of plants on which to feed.

Discussion

Plant acceptance displayed by the slugs was quite consistent, so even though the number of replicates (4) is quite minimal, significant differences in feeding were readily apparent. Furthermore, plant species that were found to be unacceptable in the first series of trials maintained their lack of acceptability even when slugs (in the second series of trials) had very limited access to acceptable food. Thus, plant species that were evaluated and received a damage rating of ‘1’ in the series 1 trials should be considered most unacceptable to L. floridana. The most unacceptable species were: lantana, tickseed, torenia, alyssum, pansy, viola, celosia, and geranium. Thus, these plant species provide a dozen choices available to gardeners who maybe concerned about slug damage and wish to minimize the risk of plant injury. Plant species that seem to be at considerable risk of damage (damage rating > 3) by L. floridana were: French marigold, Madagascar periwinkle (often sold as ‘Vinca’), coleus, petchoa, zinnia, polka dot plant, chrysanthemum, petunia, Stokes’ aster (Stokesia laevis (Hill) Greene; Asteraceae), scarlet sage (Salvia splendens Sellow ex Nees; Lamiaceae), butter daisy (Melampodium paludosum Kunth; Asteraceae), and verbena (Verbena spp.; Geraniaceae).

Dickens et al. (2017) conducted tests of ornamental plant suitability to the invasive giant African land snail, L. fulica, using plants recommended for the Miami region of Florida. They measured growth and survival of these snails fed 1 of 21 ornamental plants, and showed that plant species varied greatly in suitability and that, as would be expected of a polyphagous animal, there was not a strong affinity by the snails for a particular plant taxon. There was a statistically significant association of high growth rates and high levels of survival with annual plants, however, relative to perennial plants.

There also was overlap between the Dickens et al. (2017) growth study and the study reported herein, each consisting of 8 plant species. The species found in both studies were: French marigold, scarlet sage, purslane, zinnia, dusty miller, coleus, lantana, and snapdragon. If the final size of the L. fulica snails from the growth study is correlated with the acceptance evaluation from the L. floridana study, the relationship is positive and statistically significant (Spearman’s $r = 0.7765; P = 0.028$). Thus, despite the use of different molluscs in the 2 studies, we might expect the slugs to thrive on the plants they most avidly accept. This is the most common outcome when acceptance and suitability are assessed among polyphagous herbivores. Herbivores typically select not only what ‘tastes good’ but actually what ‘is good’ for growth and reproduction; this is a fundamental aspect of plant-herbivore co-
evolution. Importantly, it suggests that different polyphagous molluscs may respond to the same or similar stimuli, and that if additional assessments with other molluscs are performed, a pattern may emerge that will allow us to predict what plants might be more susceptible to damage from molluscs, many of which are newly invasive.

References Cited

Baker HB. 1925. North American Veronicellidae. Proceedings of the Academy of Natural Sciences of Philadelphia 77: 157–184.

Capinera JL. 2018a. Evaluation of copper hydroxide as a repellent and feeding deterrent for Cuban brown snail (Mollusca: Gastropoda: Pleurodontidae). Florida Entomologist 101: 369–372.

Capinera JL. 2018b. Assessment of barrier materials to protect plants from Florida leatherleaf slug (Mollusca: Gastropoda: Veronicellidae). Florida Entomologist 101: 373–381.

Capinera JL, Dickens K. 2016. Some effects of copper-based fungicides on plant-feeding terrestrial molluscs: a role for repellents in mollusc management. Crop Protection 83: 76–82.

Capinera JL, Guedes Rodriguez C. 2015. Biology and control of the leatherleaf slug *Leidyula floridana* (Mollusca: Gastropoda: Veronicellidae). Florida Entomologist 98: 243–253.

Ciomperlik MQ, Robinson DG, Gibbs IH, Fields A, Stevens T, Taylor BM. 2013. Mortality to the giant African snail, *Lissachatina fulica* (Gastropoda: Achatinidae), and non-target snails using select molluscs. Florida Entomologist 96: 370–379.