Sidharth, B. G.
Planck oscillators in the background dark energy. (English) Zbl 1203.83076
Int. J. Theor. Phys. 49, No. 10, 2476-2485 (2010).

Summary: We consider a model for an underpinning of the universe: there are oscillators at the Planck scale in the background dark energy. Starting from a coherent array of such oscillators it is possible to get a description from elementary particles to black holes including the usual Hawking-Bekenstein theory. There is also a description of gravitation in the above model which points to a unified description with electromagnetism.

MSC:
83F05 Relativistic cosmology
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83C50 Electromagnetic fields in general relativity and gravitational theory
83C57 Black holes
81T20 Quantum field theory on curved space or space-time backgrounds
80A10 Classical and relativistic thermodynamics

Keywords:
Planck; oscillators; dark; energy

Full Text: DOI arXiv

References:
[1] Kiefer, C.: Quantum Gravity. Clarendon, Oxford (2004)
[2] Regge, T., de Alfaro, V.: Potential Scattering. North Holland, Amsterdam (1965)
[3] Roman, P.: Advanced Quantum Theory, p. 31. Addison-Wesley, Reading (1965) · Zbl 0127.18603
[4] Bogdan, P., Rith, K.: Particles and Nuclei: An Introduction to the Physical Concepts. Springer, Berlin (1993) · Zbl 1331.81003
[5] Veneziano, G.: In: Huggett, S.A., et al. (eds.) The Geometric Universe. Oxford University Press, Oxford (1998) · Zbl 0919.53037
[6] Veneziano, G.: Phys. Rep. 9(4), 199–242 (1974) · doi:10.1016/0370-1573(74)90027-1
[7] Lee, T.D.: Particle Physics and Introduction to Field Theory. Harwood Academic, Reading (1981)
[8] Martin, B.R., Shaw, G.: Particle Physics. Wiley, New York (1992)
[9] Sidharth, B.G.: Fuzzy, non commutative spacetime: a new paradigm for a new century. In: Sidharth, B.G., Altaisky, M.V. (eds.) Proceedings of Fourth International Symposium on "Frontiers of Fundamental Physics, pp. 97–108. Kluwer Academic/Plenum, New York (2001)
[10] Fogleman, G.: Am. J. Phys. 55(4), 330–336 (1987) · doi:10.1119/1.15201
[11] Schwarz, J.: Physics Reports 89(227) (1982)
[12] Jacob, M. (ed.) Physics Reports. North-Holland, Amsterdam (1974) reprint volume
[13] Veneziano, G.: Quantum geometric origin of all forces in string theory. In: Huggett, S.A., et al. (eds.) The Geometric Universe, pp. 235–243. Oxford University Press, Oxford (1988) · Zbl 0919.53037
[14] Ramond, P.: Phys. Rev. D 3(10), 2415–2418 (1971) · doi:10.1103/PhysRevD.3.2415
[15] Kaluza, Th.: An Introduction to Kaluza-Klein Theories. Singapore, World Scientific (1984)
[16] Greene, B.: The Elegant Universe, p. 15. Vintage, London (1999)
[17] Madore, J.: An Introduction to Non-Commutative Differential Geometry. Cambridge University Press, Cambridge (1995) · Zbl 0842.58002
[18] Laughlin, R.B.: A Different Universe. Basic Books, New York (2005)
[19] Smolin, L.: The Trouble with Physics. Houghton Mifflin Company, New York (2006) · Zbl 1195.81003
[20] Sidharth, B.G.: When the Universe Took a U Turn. Singapore, World Scientific (2009)
[21] Susskind, L.: The Black Hole War. Back Bay Books, New York (2008)
[22] Sidharth, B.G.: Thermodynamic Universe. Singapore, World Scientific (2008) · Zbl 1179.81012
[23] Sidharth, B.G.: Chaotic Universe: From the Planck to the Hubble Scale. Nova Science, New York (2001) - Zbl 1017.81526
[24] Sidharth, B.G.: The Universe of Fluctuations. Springer, Netherlands (2005) - Zbl 1126.83012
[25] Sidharth, B.G.: Found. Phys. Lett. 17(5), 503–506 (2004) - Zbl 1063.83032 - doi:10.1023/B:FOPL.0000042701.61554.4c
[26] Sidharth, B.G.: Found. Phys. Lett. 15(6), 577–583 (2002) - doi:10.1023/A:1023989829997
[27] Goodstein, D.L.: States of Matter. Dover, New York (1975) - Zbl 0324.02031
[28] Jack Ng, Y., Van Dam, H.: Mod. Phys. Lett. A 9(4), 335–340 (1994) - doi:10.1142/S0217751X0000356
[29] Rosen, N.: Int. J. Theor. Phys. 32(8), 1435–1440 (1993) - doi:10.1007/BF00675204
[30] Sidharth, B.G.: Int. J. Mod. Phys. A 21(31), 6315 (2006) - Zbl 1113.81127 - doi:10.1142/S0217751X06034197
[31] Sidharth, B.G.: Int. J. Theor. Phys. 48(12), 3421 (2009) - Zbl 1186.83170 - doi:10.1007/s10773-009-0148-1
[32] Cercignani, C.: Found. Phys. Lett. 11(2), 189–199 (1998) - doi:10.1023/A:1022462532690
[33] Sakharov, A.D.: Sov. Phys. Dokl. 12(11), 1040–1041 (1968)
[34] Sidharth, B.G.: Int. J. Theor. Phys. 48(8), 2427–2431 (2009) - Zbl 1175.83046 - doi:10.1007/s10773-009-0032-z
[35] Ruffini, R., Zang, L.Z.: Basic Concepts in Relativistic Astrophysics. Singapore, World Scientific (1983)
[36] Baez, J.: Nature 421, 702–703 (2003) - doi:10.1038/421702a
[37] Sidharth, B.G.: In: Hartnett, J., et al. (eds.) Alternative Routes to Gravitation in Frontiers of Fundamental Physics. AIP, New York (2010) - Zbl 1214.81018
[38] Sidharth, B.G.: Energy and mass generation. arXiv:1003.2330 - Zbl 1176.83073

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.