Overview of occupational cancer in painters in Korea

Jun-Pyo Myong¹², Younmo Cho¹, Min Choi¹ and Hyoung-Ryoul Kim¹²*

Abstract

Comprehensive consideration is necessary for setting guidelines to evaluate evidence of occupational cancer in painters due to work-related exposure to carcinogens in paint (a phenomenon termed herein as "work-relatedness"). The aim of the present research is to perform a comprehensive review and to suggest criteria for the provision of compensation for occupational neoplasm among painters in Korea. In order to perform a comprehensive review, this study assessed and evaluated scientific reports of carcinogenicitics from the International Agency for Research on Cancer (IARC) and the Industrial Injuries Advisory Council (IIAC), as well as reviewed the existing literature about occupational exposure among painters in Korea and the epidemiologic investigations of claimed cases of cancer among painters in Korea. The IARC declares that occupational exposures in commercial painting are classified as Group 1 carcinogens for lung cancer and bladder cancer among painters. The epidemiologic studies show consistent causal relationships between occupational exposure in painters and cancers such as lung cancer [meta relative risk: 1.34 (95% confidence intervals (CIs): 1.23-1.41)] and bladder cancer [meta relative risk: 1.24 (95% CIs: 1.16-1.33)]. In reviewing occupational cancer risks for commercial painters, the Industrial Injuries Advisory Council (IIAC) confirms occupational cancer risks for lung and bladder cancer among commercial painters. According to the IIAC, however, the elevated cancer risks reported in existing literature are not doubled in either lung or bladder cancer in commercial painters relative to the risks of these cancers in the general population. Based on our review of existing Korean articles on the topic, painters are exposed to potential carcinogens including polycyclic aromatic hydrocarbons (PAHs), benzene, hexavalent chrome, crystalized silica, asbestos, and other agents, and relative levels are estimated within commercial painting processes. However, the cancer risks of occupational exposure to Group 1 carcinogens for lung and bladder cancer in painters per se are not fully assessed in existing Korean articles. Total work duration, potential carcinogens in paint, mixed exposure to paints across various industries such as construction and shipbuilding, exposure periods, latent periods, and other factors should be considered on an individual basis in investigating the work-relatedness of certain types of cancer in commercial painters.

Keywords: Painter, Occupation, Cancer, Work-relatedness

Background

In 1989, the International Agency for Research on Cancer (IARC) classified commercial painting as a cause of occupational exposure in painters to Group 1 carcinogens for lung and bladder cancer [¹]. The IARC reaffirmed the increased risk of lung and bladder cancer among painters after verifying the conspiracy on potential carcinogens and work processes in commercial painting in 2010 [²]. In Korea, spray paint was included on a list of potential carcinogens in 2013. The Korea Occupational Safety and Health Agency (KOSHA) and Occupational Lung Diseases Institute have performed several epidemiologic investigations on lung cancer and hematologic malignancy among painters. The investigating teams have suggested that seven cases out of ten investigated cases demonstrate a positive relationship between painting processes and lung cancer. Comprehensive consideration is necessary to establish guidelines for criteria to evaluate the work-relatedness of cancer risks in painters in Korea. These guidelines should be based on the most reasonable information presently available, taking into account epidemiologic research on the assessment of potential carcinogen exposure among
painters in Korea and other countries, and compensation data in Korea. Until now, this type of comprehensive evaluation has not been performed in Korea. Therefore, the aim of the present research is to perform a comprehensive review and to suggest criteria for the provision of compensation for occupational neoplasm among painters in Korea.

Review

General characteristics of painting

Painting is the application of specific synthetic materials to the surfaces of products or buildings to protect the objects from corrosion and dirt or to generate cosmetic appeal [1, 2]. The general purposes of painting are protection and plastering. Electrical conduction, semi-conduction, contamination control, fire-retardation, temperature sensing, and magnetic painting are further classified as specific purposes of painting [1, 2].

Paint is comprised of various components with varying purposes. The components of paint are pigments and extenders (fillers), binders (resins), solvents, and additives. Pigments affect the color, viscosity, durability, and chemical properties of paint. Extenders are able to fill in gaps and improve the physical properties of coatings. The main roles of binders are to facilitate the hardening or adhesion of coatings. Solvents are used to mix the components of paint by dissolving binders. If painting is intended to meet specific purposes of construction, such as the application of biocides or ultraviolet stabilization, then additives are adapted. The typical components of paint are summarized in Table 1 [3].

Literature review of occupational exposure among painters in Korea

The Korean Journal of Occupational and Environmental Medicine (Annals of Occupational and Environmental Medicine), the Korean Journal of Preventive Medicine, the Korean Journal of Industrial Health, official reports from KOSHA, and existing epidemiologic investigation reports have been reviewed to estimate the previous exposure status of commercial painters to paint carcinogens in Korea. A total of 31 articles were reviewed and are summarized in Table 2.

The presence and relative levels of polycyclic aromatic hydrocarbons (PAHs), benzene, hexavalent chrome, crystallized silica, asbestos, and other carcinogenic agents have been examined and estimated in the context of commercial painting processes [3]. According to a 1995 report on the level of exposure to chrome in factories reporting patients with nasal septal perforation, the level of chrome exposure among the employed spray painters was below the permissible exposure limit (PEL) of

Table 1 The category and type of major components in paints
Category
Pigments & fillers
Organic Azo pigments (Benzidine Yellow, etc.)
Binder & resins
Synthetic resins Cellulosic, phenolic, alky, vinyl, acrylic and methacrylic, polyesters and polyurethane resins, phthalic resins, chlorinated rubber derivatives, styrene-butadiene, silicone oils, and etc.
Additives
Driers Metal salts of naphthenic acid (lead, calcium, cobalt, manganese, zirconium, zinc, cerium, lanthanum, and etc.), tall oil acid, 2-ethylhexanoic acid and neodecanoic acid, zirconium, calcium and cobalt-zirconium compounds
Rheological additives Gum arabic, gum tragacanth, starch, sodium alginate, methyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, ammonium caseinate, polyurethane derivatives, polyacrylates, maleic anhydride copolymers, mineral fillers, magnesium montmorillonite clays, pyrogenic silicic acid, polyacrylamides, polyacrylic acid salts, and etc.
Plasticizers Dibutyl-, diethyl-, diethylhexyl- and dioctylphthalates, low molecularweight esters of adipic and sebacic acid, tributyl phosphate, castor oil, and polyester resins
Biocides Formaldehyde, isothiazolinones and chloroacetamide
Antiskinning agent Phenol derivatives, methoxyphenol,ortho-aminophenol, and polyhydroxyphenol
Corrosion inhibitors Red lead, zinc, chromium(III), aluminium, calcium and magnesium phosphates
Nanoparticles Titanium dioxide, silver or silver compounds, aluminium oxide, fullerences
Light stabilizers 2-hydroxybenzophenones, 2-hydroxyphenylbenztriazoles, oxanilidiles, and 2-hydroxyphenyltriazines
Solvents Petroleum and coal-tar distillates, alcohols, esters, ketones, glycols, synthesized glycol ethers and esters (mainly ethylene), and propylene glycol derivates
Author et al.

Kim et al. [24]
Kim et al. [25]
Kim et al. [26]
Jeong et al. [27]
Lee et al. [28]
Kang et al. [29]
Kim et al. [30]
Roh et al. [31]
Lee et al. [32]
Author

Choi et al. [4] 1997
Hong et al. [33] 1997
Paik et al. [34] 1998
Shin et al. [5] 1999
Won et al. [35] 1999
Won et al. [36] 2000
Joo et al. [37] 2000
Author et al.

Koh et al. [38]
Kwon et al. [39]
Kim et al. [40]
Moon et al. [41]
Jeon et al. [21]
Park et al. [42]
Cho et al. [43]
Kim et al. [22]
Author Journal Published year

Controls: 201 office workers Coal tar paint used between 2001.05.29-2002.05.30
Lee et al. [23] 2005
Lee et al. [44] 2005
Kim et al. [45] 2006
Min et al. [46] 2009
Sim et al. [47] 2009
Cho et al. [48] 2009
Author

Lim et al. [20]

*work related case: 53 cases
Painter included (3 cases, 5.7%)
0.5 mg/m³ at recorded measurements of 0.246 mg/m³ in the morning and 0.318 mg/m³ in the afternoon [4]. Research on exposure levels to hazardous materials in paints at five domestic shipyards in 1999 shows that lead chromate and zinc potassium chromate were detected in 8% of paints [5]. The component analysis of that research also reveals that silicon dioxides were detected in 27 samples (8.8%) of painting materials, including extender pigments. In other findings, the geometric means of exposure ranges of asbestos were 1.6 fibers/cm³ and 2.45 fibers/cm³ in automobile repair and ship repair processes, respectively [6]. However, asbestos remains undetected in the products of automobile manufacturing companies after 1998 [7].

Scientific evidence for carcinogenicities

The IARC classifies the occupational exposures of commercial painting as Group 1 carcinogens for lung cancer and bladder cancer [1–3]. Existing epidemiologic studies show consistent causal relationships between occupational exposure in painters and cancers including lung and bladder cancer [3]. A meta-analysis that includes 17 cohort and linkage studies and 29 case-control studies shows that the meta-relative risk (meta-RR) for lung cancer is 1.34 (95% confidence intervals (CIs): 1.23-1.41) [3]. The results of additional meta-analysis including 11 cohort and record-linked studies and 28 case-control studies show a meta-RR for bladder cancer of 1.24 (95% CI: 1.16-1.33) [3]. However, the IARC does not assert that specific components of paints (such as chromate, PAH, benzene, and other agents) significantly increase the incidence or mortality from lung cancer or bladder cancer. The IARC indicates that no data on cancer in experimental animals are available [2]. The working group that has established a special section for “occupational exposure for painters” declares that occupational exposure hazards for painters per se include Group 1 carcinogens for lung and bladder cancer. In addition, the official report contains evidence of other relevant data about specific chemicals in common components of paint (e.g., cadmium, PAH, aromatic azo dyes, and other components) [2].

The Industrial Injuries Advisory Council (IIAC) for occupational cancer risks in commercial painters (among other industrial groups) is the official advisory council for assisting the UK government on prescribed industrial diseases [8]. The IIAC report includes a comprehensive review of epidemiologic data indicating occupational cancer risks and evaluating whether the risks for certain occupational cancers are more than doubled in painters compared to the general population [8]. The council also considers the study design of British doctors Doll and Hill in terms of their criteria on causation [9, 10] in epidemiologic studies published since 1972. The IIAC review team considers occupational cancer risks for lung and bladder cancer in commercial painters in particular (as opposed to the risks of these occupational cancers in paint manufacturers, for example) in the overall cohort study [8]. In fact, according to the literature, the elevated risks in occupational lung and bladder cancer in painters are not doubled in cases of either lung [11–19] or bladder cancer [14–19] relative to these risks in the general population. Reports of the IIAC specify that crucial confounding factors, such as smoking, might be one reason for the elevated incidence of lung and bladder cancer among painters.

Epidemiologic investigation of claimed cases in Korea

Epidemiologic investigation for the work-relatedness of lung cancer in commercial painters in Korea has been performed in a total of 10 cases (Table 3). Seven painters were approved by investigation board in KOSHA. Significant exposure to potential carcinogens such as hexavalent chromate, asbestos, and crystallized silica has been provided as evidence of the work-relatedness of occupational cancers including lung and bladder cancer in commercial painters.

Discussion

Issues for considering the work-relatedness of cancer in painters

Means of occupational exposure mainly involve the inhalation of gases and vapors from paint components (solvents, additives, pigment dust, and binders), as well as dermal absorption or ingestion [3]. The term professional painters typically does not include paint-product manufacturers or bystanders, but refers only to workers that brush or spray paint onto objects. In interpreting the job of commercial painting, several tasks are involved that should be defined in addition to the painting itself, including clean up and preparation. Accordingly, each task should be evaluated for potential exposures. Although painters engage in the entire process, the act of painting is regarded as the main means of exposure to various hazardous materials [3]. Based on the documentation of the IARC, occupational cancer is restricted to lung cancer and bladder cancer in the present review [1–3]. The IARC declares that the epidemiological evidence on occupational exposure in painters does not specify potential carcinogenic agents in paint [2]. Occupational exposure for painters encompasses the potential carcinogenic risks for lung cancer and bladder cancer. This perspective should be discussed in estimating the relationship between occupational exposure among painters and occupational cancer in Korea on an individual basis. Potential carcinogens, such as hexavalent chromate [4], asbestos [20], crystallized silica [5], and PAH
from coal tar [21–23] are found in paint. In addition, exposures within specific industries (such as shipbuilding and construction) should be taken into account. Another consideration in evaluating exposure evidence is the period of exposure. Based on our literature review, coal tar, crystalized silica, and hexavalent chromate were used in workplace paints in Korea until late 1990 [4–6]. Up until the 2000s, the usage of coal tar paint was found in the metal industry [21–23]. Unfortunately, paint containing hexavalent chromate is still currently used in Korea.

Conclusion

Established guidelines according to exposure periods, types of industry, and periodical features of the risks of occupational exposure for painters are currently undefined for occupational lung cancer and bladder cancer among painters in Korea. In addition, no country has defined specific guidelines for occupational cancer among painters. Therefore, total work duration, potential carcinogens in paint, mixed exposure to paints across industries such as construction and shipbuilding, exposure periods, latent periods, and other factors should be considered on an individual basis in investigating the work-relatedness of certain types of cancer in commercial painters.

Acknowledgements

Not applicable

Funding

The authors received no specific funding for this work.

Availability of data and materials

Not applicable

Authors' contributions

KHR and JPM designed the research. YC, MC, KHR and JPM interpreted the data and drafted the manuscript. MJP devised and supervised the entire process. YC, MC, KHR and LJW critically reviewed the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

This manuscript is review article. So, it is not applicable.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 5 April 2016 Accepted: 29 January 2018
Published online: 06 February 2018

References

1. IARC. Some organic solvents, resin monomers and related compounds, pigments and occupational exposures in paint manufacture and painting. IARC Monogr Eval Carcinog Risks Hum. 1989:47:1–442.

2. IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Occupational exposure as a painter. In: International Agency for Research on Cancer, editor. Chemical agents and related occupations Volume 100F, A review of human carcinogens. Lyon: International Agency for Research on Cancer, 2012.

3. IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Occupational exposure as a painter. In: International Agency for Research on Cancer, editor. Painting, firefighting, and Shiftwork. Lyon: International Agency for Research on Cancer, 2010.

4. Choi BS, Lim HS, Cheong HK, Kim DH, Hwang-Bo K, Shin YC. Chromium induced nasal septal perforation among spray paint workers. DongGuk J Med. 1997:49–62.

5. Shin YC, Yi GY. Chemical composition of painting materials used in some Korean shipyards. J Korean Soc Occup Environ Hyg. 1999;9:73–86.

6. Choi JK, Paik DM, Paik NW. The production, the use, the number of workers and exposure level of asbestos in Korea. Korean Ind Hyg Assoc J. 1989:242–53.

7. Oh DS, Lee YH. Study on analysis for working environmental measurement results of automobile industries. J Korean Soc Occup Environ Hyg. 2004;14:233–42.

8. Sorohan T, Cross H, Sadhra S, Ayres J. Occupational cancer risks in painters. J Korean Soc Occup Environ Hyg. 1998;18:1–4.

9. Doll R. Occupational cancer: problems in interpreting human evidence. Ann Occup Hyg. 1984;28:291–305.

10. Hill AB. The environment and disease: association or causation? Proc R Soc. 1965;58:295–300.

11. Englund A. Cancer incidence among painters and some allied trades. J Toxicol Environ Health. 1980;5:1267–73.

12. Alexander BH, Checkoway H, Wechsler L, Heyer NJ, Muhm JM, O’Keefe TP. Lung cancer in chromate-exposed aerospace workers. J Occup Environ Med. 1996;38:1233–8.

13. Boice JD Jr, Marano DE, Fryeck JP, Sadler CJ, McLaughlin JK. Mortality among aircraft manufacturing workers. Occup Environ Med. 1999;56:581–97.

14. Chen R, Dick F, Seaton A. Health effects of solvent exposure among dockyard painters: mortality and neuropsychological symptoms. Occup Environ Med. 1999;56:383–7.

15. Brown LM, Moradi T, Gridley G, Plato N, Dosemeci M, Fraumeni JF Jr. Exposures and incidence of cancer among aircraft manufacturing workers. In: International Agency for Research on Cancer, editor. Chemical agents and related occupations Volume 100F, A study on component analysis of organic solvents and their health effect. Korean J Occup Environ Med. 1993;58:88–103.

16. Lee JT, Moon DW, Lee H, Kwak MS, Kim DH, Pai KT, et al. Environmental monitoring of occupational exposure to solvent mixtures by simultaneous determination using gas chromatography. Korean J Occup Environ Med. 1993;5:375–89.

17. Sim SH, Jeong CH, Lim JS, Lee HG, Kim YS. A study of working environment for automotive painting in auto repair shops and workers’ exposure to hazardous chemicals. J Env Hlth Sci. 2009;35:153–61.

18. Cho MH, Ryu HW, Kim EA. One case of parkinson’s syndrome in a shipyard painter exposed to mixed organic solvents. Korean J Occup Environ Med. 2005;21:192–200.