BACKGROUND: Serious lapses in patient care result from failure to follow-up test results.

OBJECTIVE: To systematically review evidence quantifying the extent of failure to follow-up test results and the impact for ambulatory patients.

DATA SOURCES: Medline, CINAHL, Embase, Inspec and the Cochrane Database were searched for English-language literature from 1995 to 2010.

STUDY SELECTION: Studies which provided documented quantitative evidence of the number of tests not followed up for patients attending ambulatory settings including: outpatient clinics, academic medical or community health centres, or primary care practices.

DATA EXTRACTION: Four reviewers independently screened 768 articles.

RESULTS: Nineteen studies met the inclusion criteria and reported wide variation in the extent of tests not followed-up: 6.8% (79/1163) to 62% (125/202) for laboratory tests; 1.0% (4/395) to 35.7% (45/126) for radiology. The impact on patient outcomes included missed cancer diagnoses. Test management practices varied between settings with many individuals involved in the process. There were few guidelines regarding responsibility for patient notification and follow-up. Quantitative evidence of the effectiveness of electronic test management systems was limited although there was a general trend towards improved test follow-up when electronic systems were used.

LIMITATIONS: Most studies used medical record reviews; hence evidence of follow-up action relied upon documentation in the medical record. All studies were conducted in the US so care should be taken in generalising findings to other countries.

CONCLUSIONS: Failure to follow-up test results is an important safety concern which requires urgent attention. Solutions should be multifaceted and include: policies relating to responsibility, timing and process of notification; integrated information and communication technologies facilitating communication; and consideration of the multidisciplinary nature of the process and the role of the patient. It is essential that evaluations of interventions are undertaken and solutions integrated into the work and context of ambulatory care delivery.

KEY WORDS: patient safety; test result follow-up; medical errors; primary care; quality improvement.

INTRODUCTION

Failure to follow up test results is a critical safety issue which has been identified as a major problem in ambulatory settings. The practices and processes currently used are varied and unsystematic and physicians and patients acknowledge that this needs to improve. The testing process in ambulatory settings is complex and can be divided into three broad phases, pre-analytic, analytic and post-analytic (Fig. 1), each involving multiple steps and multiple personnel including clinicians, patients, office and laboratory staff.

Most primary care practices are not using electronic health records, and most are communicating with multiple laboratories often not electronically connected. Increased volumes of tests and the time consuming nature of test follow-up places further pressures on physicians. Failure to follow-up can lead to missed or delayed diagnoses which impact on patient care and can also have medico-legal implications for health services and health professionals.

Without knowledge of the size of the problem, many clinicians may underestimate its extent and therefore fail to take any action to improve the process. Feedback on medical errors is essential to negate overconfidence in decision making in relation to diagnostic accuracy.

Ambulatory settings pose specific challenges for effective test management in addition to many of those present in acute care settings. There have been no systematic reviews in this setting, and therefore the aim of this paper was to review evidence which quantifies the size and impact on patient outcomes of failure to follow-up test results for ambulatory patients.
METHODS

Data Sources and Searches

Medline, CINAHL, Embase, Inspec and the Cochrane Database were systematically searched for English language articles published between 1995 and November 2010 which quantified diagnostic tests not followed-up (Fig. 2). Search terms were identified from keyword lists of core articles related to the topic. Reference lists of articles which met the inclusion criteria were hand searched. A web search using the Google Scholar search engine was completed to locate un-indexed publications.

Study Selection

Included were studies which quantified failure to follow-up laboratory and radiology tests for patients attending ambulatory settings including: outpatients, patients treated at academic medical and community health centres and attending primary care practices. Failure to follow-up a test result was defined as the ordering physician or another provider neglecting to document follow-up action(s) relating to a test result. Excluded were studies reporting physicians’ or patients’ perceived rates of failure, time from placement of test order to treatment, analysis and reporting of test follow-up for inpatients and outpatients combined\(^2\),\(^27,\)\(^28\) and studies on individual patients.

Data Extraction

Four reviewers (JC, AG, JL, JW) each independently reviewed all articles for inclusion. Discrepancies among reviewers were resolved by discussion until a consensus was reached. Data extracted included: test type, indication of failure to follow-up, systems used, extent and patient outcomes.

RESULTS

The literature search yielded 768 references (including four from hand searching) from which 19 articles were eligible (Table 1).

Study Characteristics

All studies were conducted in the United States. The majority of study designs used retrospective medical record reviews (n=16)\(^2,\)\(^29 - 43\) to provide documentary evidence of test follow-up. Other methods were: retrospective linkage of databases (n=1),\(^44\) retrospective review of malpractice claims for missed or delayed diagnoses (n=1),\(^45\) and a prospective longitudinal medical record review (n=1).\(^46\) Most studies focused on lack of follow-up of abnormal laboratory tests only (n=11).\(^29,\)\(^32,\)\(^35 - 38,\)\(^41 - 45\) Four studies investigated lack of abnormal radiology follow-up only\(^31,\)\(^39,\)\(^40,\)\(^46\) and another four studies included lack of follow-up for both laboratory and radiology test results.\(^2,\)\(^20,\)\(^33,\)\(^34\)

Extent of Failure to Follow-up

There was wide variation in the rates of missed abnormal laboratory results ranging from 6.8% (79/1163)\(^41\) of alerts displayed through a computerised provider order entry system which were not followed-up within 30 days to 62% (125/202) of abnormal glucose tests not followed-up.\(^32\) Similarly, for abnormal radiology, lack of follow-up ranged from 1.0% (4/395)\(^31\) of patients with suspected malignancy to 11% (131/1196) of critical imaging alerts.\(^40\) The two studies on mammograms reported 11% (9/82)\(^30\) and 35.7% (45/126)\(^46\) with no evidence of patient follow-up. Even studies which focused on the same diagnostic tests showed a broad range in the extent of lack of follow-up: glucose testing\(^32,\)\(^35,\)\(^44\); abnormal FOBT,\(^29,\)\(^43\) and TSH.\(^41,\)\(^45\)

Impact on Patient Outcomes

The impact of missed test results on patient outcomes were reported in seven of the 19 studies.\(^29,\)\(^31,\)\(^32,\)\(^38,\)\(^40,\)\(^42,\)\(^45\) Missed cancer diagnoses were reported in four.\(^29,\)\(^31,\)\(^40,\)\(^45\) Other reported outcomes were increased visits to hospital as a result of hyperkalaemia related to missed abnormal serum potassium levels\(^38\) and adverse drug events related to insufficient supplementation with levothyroxine due to missed follow-up of abnormal TSH results.\(^42\) Patients
Figure 2. Search flow for failure to follow-up test results for ambulatory patients, including keywords and MeSH terms used in search process.
who received appropriate follow-up of diabetes screening were more likely to have been scheduled for follow-up appointments than those who were not (92% versus 66%, \(P=0.001\)) and were also more likely to have kept the appointments (90% versus 58%, \(P=0.001\)).

People and Policies

Test management involves information communication between many individuals across care settings including physicians, nurses, clerks, laboratory staff, and patients. Studies showed that test follow-up practices varied between individuals and practice settings. Individuals other than physicians were involved in the test follow-up phase, including nurses and practice managers.

Several studies reported an absence of guidelines regarding who has responsibility, and how and when to notify patients of results. Singh et al. in 2007 showed lower rates of missed abnormal imaging results than similar studies which they concluded was associated with having standardized processes and procedures for abnormal test result follow-up in combination with an electronic test result notification system.

Systems Used for the Test Management Process

Those studies which described the systems used to deliver test results to physicians and how follow-up was documented ranged from paper-based medical records with test results delivered in hard copy to electronic medical records (EMR) with results transmitted electronically, or a combination of paper-based medical records and electronic or part-electronic test management systems. Evidence of the effectiveness of electronic test management systems to reduce missed follow-up was limited to five studies.

Although these evaluations were not pre/post control studies they showed a general trend towards improved test follow-up in ambulatory settings which used electronic systems.

Three studies evaluated whether an automatic alert system for notification of abnormal results in radiology and laboratory tests. Even though these studies have some features which may limit generalisability, due to the unique characteristics of the Veterans Affairs (VA) population (predominantly male veterans), the home-grown EMR VA system, and the lack of pre EMR data for comparison, results showed that the rates of loss to follow-up appeared lower than those reported in sites that do not use information technology. However, even with the sophisticated electronic alert system in place a proportion of results were still missed: 4% (45/1017) of critical imaging results, 11% of alerts for abnormal imaging (acknowledged and unacknowledged), and 6.8% of specified abnormal laboratory tests. Interestingly, in the latter study Singh et al. found that 10.2% of alerts were unacknowledged by physicians (provider did not click on and open the message within two weeks of transmission) and timely follow-up was statistically not different for acknowledged and unacknowledged alerts (6.4% versus 10.1%; \(P=0.13\)).

Having test management processes supported by hybrid paper and electronic systems has also been shown to create problems with test follow-up. Casalino et al. reported that the use of a partial electronic medical record (paper based progress notes and electronic tests or vice versa) was associated with higher follow-up failure rates compared to relying entirely on paper-based systems (OR 1.92; \(P=0.03\)) or compared to having a complete electronic record that included both progress notes and test results (OR 2.37; \(P=0.007\)). Another study found that results managed in the EMR were significantly better documented than those with paper (40%, 33/82, compared to 64%, 57/88, \(p=0.001\)) and documentation of follow-up actions has been shown to impact positively on test management.

DISCUSSION

Extent and Impact on Patient Outcomes

Failure to follow-up test results occurs frequently in ambulatory settings and evidence of its impact demonstrates that it is an important patient safety issue which needs urgent attention. There was wide variability reported regarding the extent of the problem ranging from 6.8% to 62% for missed laboratory tests and 1.0% to 35.7% for radiology. This variability was also present in studies which examined follow-up of the same test types which highlights the heterogeneity of the studies and the complexity of the problem.

Similar results relating to extent and variability of test follow-up have previously been reported for inpatients (20.04% to 61.9%) and patients attending emergency departments (1% to 75%). Impact on ambulatory patient outcomes were considerable and included missed cancer diagnoses underlying the urgent nature of the problem and the need to evaluate solutions.

Given that all studies were conducted in the US care should be taken in generalising the findings to other...
countries although anecdotal evidence suggests that test management practices are similar worldwide. Eight of the 19 studies were based in three sites and undertaken by the same lead researcher in each site. 33,34,36–41 A limitation of 12 of 19 studies was that they were conducted in single sites. However the six studies which included multiple primary care practices with large samples showed consistently high rates of lack of follow-up. 2,30,32–34,46 Most studies used retrospective medical record reviews which may result in an overestimation of the problem as some results could have been followed-up even though the physician failed to document the action. It is possible that there may be some publication bias whereby papers which reported higher rates of missed follow-up of test results are more likely to be published than studies which found low rates.

Missed test results in ambulatory settings are attributable to multiple factors including: the paucity of governance principles related to test management; the lack of integrated information systems around test management; the multidisciplinary nature of test management processes, and the need to consider the role of the patient in test result follow-up.

Test Management Governance Principles

There are few standard policies or procedures for test result management in the literature or within ambulatory practice organisations. This contributes to the variability of responsibility and the diversity of work practices around each of the steps in the test management process. 2,29,33,34,39,40 Singh et al. 39 concluded that if policies and procedures were in place, combined with the use of an electronic alert notification of abnormal radiology, then follow-up of results would be improved. However they found that missed results were not eliminated altogether 39 indicating the complex nature of the problem and the need to consider a combination of interventions.

The lack of clear lines of responsibility for follow-up is further complicated by the number of people involved. Blurred lines of responsibility were evident in one study which evaluated the practice of dual-alert notification: this measure was adopted as a safeguard and entailed communicating the alert of an abnormal radiology result to two recipients, for example the hospital doctor who ordered the test and the primary care physician. 40 Results showed that dual-alert notification significantly increased the odds that the alert would not be read and receive timely follow-up action (OR, 1.99; 95% CI, 1.06–3.48). 40 This highlights the need for explicit guidelines regarding responsibility and timeframes for follow-up.

The Role of Information and Communication Technology in the Process

Although studies of evidence regarding the link between EHRs and ambulatory quality of care have shown mixed results, 47–51 a number have shown that information and communication technology (ICT) can play an important role in ensuring a safer and more systematic test management process. 1,52,53 The five evaluations of the impact of ICT on missed test results, included in the review, provided evidence of a favourable trend towards reduced missed results. 2,34,39–41 The use of ICT facilitates communication flow between individuals across care settings and has been shown to improve documentation 38,46 all of which are crucial for the test management process. Other studies have shown that ICT can support and enhance the test management process 14,54–57 with acknowledgement of receipt of results and documentation of follow-up action and patient notification recorded in an EMR which can be securely accessed by multiple health professionals.

Timely communication is vital and can be particularly challenging for ambulatory patients given the many individuals and settings involved. Information transfer about tests ordered and results received can have multiple points of communication breakdown: between inpatient and outpatient settings 16,36; between laboratories and physicians 58,59; between physicians and other members of their team 33,34, 47; and between physicians and patients. 9,60 Electronic systems are an essential component of any solutions, however, they need to be integrated into the context of ambulatory settings and the way health professionals work. 61,62 Financial issues are also considered to be a key barrier to primary care physicians’ use of EHRs and financial incentives will be a key lever for improving uptake. 41

Technological solutions are not the entire answer as studies show that even with the use of an EMR with computerised notification of abnormal results using an alert every time the provider logs-on, abnormal results can still be missed. 39–41 Even though physicians can electronically acknowledge that they have opened an alert message this does not necessarily indicate they have read and acted upon the abnormal result. 41 Appropriate follow-up requires the physician to review the result, communicate this to the patient, decide on an appropriate plan and discuss this with the patient and help them with that follow-up plan. 46
Electronic discharge summaries have been shown to improve quality and timeliness of information including test results.63 However, there can also be problems as electronic discharge summaries may not always reach the family doctor64 and may not include all the necessary clinical information required for the ongoing treatment of the patient.65,66 There can also be an overreliance on ICT. One study reported that staff who used an EHR believed that electronically reported results did not get lost and were unaware that several tasks still depended on individuals.33 Thus, even with an EHR there can still be weaknesses in test tracking.

Multidisciplinary Nature of Laboratory and Radiology Test Management Processes

Test result follow-up and patient notification in ambulatory settings are generally undertaken by the physician treating the patient, with involvement of other physicians, nurses, laboratories, and practice managers. A number of studies recommend the need to take account of the multidisciplinary nature of the test management process and include not just the physician who ordered the test but other ambulatory practice staff30,40 and also laboratory staff,67 in the design of solutions.

The involvement of nurses in the test notification process is evident in a number of studies29,31,33,34,37 and in busy ambulatory settings, where follow up of results is time consuming,13,14 this would seem to be a valuable approach. Nurses were reported as having a positive impact in one study where there was no significant difference between physicians and nurse practitioners in appropriate documentation of follow-up (p=0.61).31 Studies have shown that documentation was associated with the delivery of appropriate46 and with timely follow-up of test results.38 Clerical staff in ambulatory settings can also assist in the follow-up of test results particularly in relation to ensuring systems are in place to alert physicians to results returned from laboratories and in the patient notification stage of the process.33

An innovative work practice change is the suggestion that radiology staff should become more involved in the patient test notification process.67,68 The process of direct patient notification by the radiologist has been described by one Imaging Service in the US whereby patients’ are given a card on arrival asking if they would like to receive preliminary results of their examination.69 If the patient agrees the radiologist documents the preliminary results on the card which is given to the patient before they leave the Imaging Centre.69 Currently there are guidelines for direct communication of critical imaging findings by radiology staff to ordering physicians.70 However, problems arise in ensuring critical results are communicated to the appropriate person.16,31,71 Singh et al.40 found that verbal communication by radiology staff in addition to electronic communication of results strongly predicted timely response and follow-up, however this was probably because the radiologist called only for life threatening findings. Solutions which acknowledge the inter-dependence between physicians, nurses, and radiology/laboratory staff are important to ensure the safe communication of abnormal test results.72

The Role of the Patient in Test Result Follow-up

There have been suggestions that patients can play a role in detecting and preventing medical errors73 and could therefore have an enhanced role in the test result follow-up process.27-29 Direct notification of test results to patients could serve as a safety net for providers and empower patients to be partners in their care.8,9 It is possible for electronic systems, linked to test result databases, to generate automatic letters, email or telephone messages to notify patients directly of positive and negative test results9 or to allow patients’ direct access to results via a patient portal.74

The issue of direct patient notification however, is complex and many factors need to be considered. Physicians have expressed concerns including: whether an abnormal result will alarm a patient unnecessarily; receipt of an avalanche of contact from worried patients; practice variations in timing of patient notification; malpractice risks; and an increase in unreimbursed tasks.74 There are few published studies in this area, however, a feasibility study to introduce on-line laboratory results to patients in two primary care practices with 10 physicians reported that physicians had no increase in messages from their patients about inconsequential results showing that fears of unnecessary patient alarm may be unwarranted.74 If all patients are directly notified of their test results, they need to be able to read and understand the result and its implications.30 Patient understanding of test results could be enhanced by access to relevant online information sources with one study reporting 50% of patients who viewed results via a patient portal accessed reference information linked to the result.74

Whether patients hear their results verbally or receive them in hard copy can also impact on their understanding and the emotional state of patients receiving significant results may also impair their ability to digest information provided verbally.75,76 Poon et al.46 found that a significant proportion of women whose physician documented that they had discussed the test result with the patient did not recall the discussion, highlighting the need for patients to have a written record of their results. Direct access to results via patient portals where patients could print a copy of the result would ensure they had an accurate hard-copy of the result which could be used as a memory aid. It is now a US FDA requirement under the Mammography Quality Standards Act (MQSA 2004) that a summary of the written report in terms understandable by a layperson is sent directly to the patient within 30 days,77 however studies have shown that giving
patients their results is not in itself enough to ensure that patients follow-up on the result. Physicians need to have an active role in follow-up to ensure the plans are understood by patients. Further work needs to be undertaken in this area to test the feasibility and effectiveness of strategies which enable patients to receive their test results automatically.

CONCLUSION
There are significant safety issues in the management of laboratory and radiology test results for ambulatory patients. Studies show that factors associated with failure to follow-up test results in ambulatory settings are complex and often it is a combination of elements, systems, people, organisational factors and work practices interacting that leads to important results being missed. This concords with patient safety research which has progressed to acknowledge the multi-factorial nature of medical errors and the need to address people and system factors if improvements are to be realised.79–81 Solutions need to be multipronged and include: explicit policies, procedures and responsibilities for test follow-up; consideration of the role of others in the process including the patient and laboratory and radiology staff; evaluation of ICT solutions; and integration of solutions into the work practices of health professionals and into the context of health care delivery.

Acknowledgements: This study is part of an Australian Research Council Linkage Grant (LP0800144) funded project to investigate the use of information and communication technologies to support effective work practice innovation in the health sector. The authors have no relevant financial interest in this manuscript.

Conflicts of Interest: None disclosed.

Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Corresponding Author: Joanne L. Callen, PhD: Centre for Health Systems and Safety Research, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia (e-mail: j.callen@unsrsu.edu.au).

REFERENCES
1. Hickner JM, Fernald DH, Harris DM, Poon EG, Elder NC, Mold JW. Issues and initiatives in the testing process in primary care physician offices. Jt Comm J Qual Patient Saf. 2005;31(2):81–9.
2. Bascom J, Dunham D, Chin MH, Biesi LA, Kistner EO, Harrison KG, et al. Frequency of failure to inform patients of clinically significant outpatient test results. Arch Intern Med. 2009;169(12):1123–9.
3. World Alliance for Patient Safety. World Health Organisation. Summary of the Evidence on Patient Safety: Implications for Research. Int J Health Serv. 2008;38(4):118.
4. Schiff GD. Getting Results—Reliably Communicating and Acting on Critical Test Results: Joint Commission Resources; 2006.
5. Elder NC, Graham D, Brandt E, Dovey S, Phillips P, Ledwith J, et al. The Testing Process in Family Medicine: Problems Solutions and Barriers as Seen by Physicians and Their Staff. A study of the American Academy of Family Physicians National Research Network. J Patient Saf. 2006;2(1):25–32.
6. Booher AE, Ward RE, Uman JE, McCarthy BD. Patient notification and follow-up of abnormal test results. A physician survey. Arch Intern Med. 1996;156(3):327–31.
7. Murff HJ, Gandhi TK, Karson AK, Mort EA, Poon EG, Wang SJ, et al. Primary care physician attitudes concerning follow-up of abnormal test results and ambulatory decision support systems. Int J Med Inform. 2003;71(2–3):137–49.
8. Meza R, Webster DS. Patient preferences for laboratory test results notification. Am J Manag Care. 2000;6(12):1297–300.
9. Keren R, Muret-Wagstaff S, Goldmann DA, Mandl KD. Notifying emergency department patients of negative test results: pitfalls of passive communication. Pediatr Emerg Care. 2003;19(4):226–30.
10. Hickner J, Graham DG, Elder NC, Brandt E, Emsermann CB, Dovey S, et al. Testing process errors and their harms and consequences reported from family medicine practices: a study of the American Academy of Family Physicians National Research Network. Qual Saf Health Care. 2008;17(3):194–200.
11. Bates DW. Physicians and their electronic laboratory health records. Health Aff (Millwood). 2005;24(5):1180–9.
12. Elder NC, Hickner J, Graham D. Quality and safety in outpatient laboratory testing. Clin Lab Med. 2008;28(2):295–303. vii.
13. Poon EG, Gandhi TK, Sequest TD, Murff HJ, Karson AS, Bates DW. “I wish I had seen this test result earlier”: Dissatisfaction with test result management systems in primary care. Arch Intern Med. 2004;164(20):2223–8.
14. Poon EG, Wang SJ, Gandhi TK, Bates DW, Kuperman GJ. Design and implementation of a comprehensive outpatient Results Manager. J Biomed Inform. 2003;36(1–2):80–91.
15. Wahls TL, Cram PM. The frequency of missed test results and associated treatment delays in a highly computerized health system. BMC Fam Pract. 2007;8:92.
16. Roy CL, Poon EG, Karson AS, Ladak-Merchant Z, Johnson RE, Maviglia SM, et al. Patient safety concerns arising from test results that return after hospital discharge. Ann Intern Med. 2005;143(2):121–8.
17. Gandhi TK. Fumbled handoffs: one dropped ball after another. Ann Intern Med. 2005;142(5):352–8.
18. Bird S. Missing test results and failure to diagnose. Aust Fam Physician. 2004;33(5):360–1.
19. Berlin L. Malpractice and radiologists. AJR Am J Roentgenol. 1980;135(3):587–91.
20. Berlin L. Malpractice issues in radiology: res ipsa loquitur. AJR Am J Roentgenol. 2009;193(6):1475–80.
21. Totchen EJ, Biesi MA, Sierra AE, Totchen MJ, Cram PM. mammography and malpractice. AJR Am J Roentgenol. 1991;156(3):475–80.
22. Graber M. Diagnostic errors in medicine: a case of neglect. Jt Comm J Qual Patient Saf. 2005;31(2):106–13.
23. Leape LL. Error in medicine. JAMA. 1994;272(23):1851–7.
24. Parker D, Lawton R. Psychological contribution to the understanding of adverse events in health care. Qual Saf Health Care. 2003;12(6):453–7.
25. Hodges B, Regehr G, Martin D. Differences in recognizing one’s own incompetence: novice physicians who are unskilled and unaware of it. Acad Med. 2001;76(10 Suppl):S87–9.
26. Callen J, Georgiou A, Li J, Westbrook JI. The safety implications of missed test results for hospitalised patients: a systematic review. BMJ Qual Saf. 2011;20(2):194–9.
27. Murray SM, Rosenthal GE, Ohsfeldt R, Wallace RB, Schlechte J, Schiff GD. Failure to recognize and act on abnormal test results: the case of screening bone densitometry. Jt Comm J Qual Patient Saf. 2005;31(2):90–7.
28. Schiff GD, Kim S, Krosnjar N, Wisniewski MF, Bult J, Fogelfeld L, et al. Missed hypothyroidism diagnosis unveiled by linking laboratory and radiology results and ambulatory decision support systems. Int J Healthc Qual. 2007;29(5):16.
29. Chen ET, Eder M, Elder NC, Hickner J. Cross-linking the finish line: follow-up of abnormal test results in a multisite community health center. J Natl Med Assoc. 2010;102(8):725–6.
30. Choksi VR, Marn CS, Bell V, Carlos R. Efficiency of a semiautomated coding and review process for notification of critical findings in diagnostic imaging. AJR Am J Roentgenol. 2006;186(4):933–6.
32. Elovaeve MG, Tabaei BP, Brindle M, Burke R, Herman WH. Opportunistic screening for diabetes in routine clinical practice. Diabetes Care. 2004;27(1):9–12.
33. Elder NC, McEwen TR, Flach JM, Gallimore JJ. Management of test results in family medicine offices. Ann Fam Med. 2009;7(4):343–51.
34. Elder NC, McEwen TR, Flach J, Gallimore J, Pallerla H. The management of test results in primary care: does an electronic medical record make a difference? Fam Med. 2010;42(5):327–33.
35. Kern LM, Callahan MA, Brillon DJ, Vargas M, Mushlin AI. Glucose testing and insufficient follow-up of abnormal results: a cohort study. BMC Health Serv Res. 2006;6:87.
36. Moore C, Wisnivesky J, Williams S, McGinn T. Medical errors related to discontinuity of care from an inpatient to an outpatient setting. J Gen Intern Med. 2003;18(8):646–51.
37. Moore CR, Lin JJ, O’Connor N, Halm EA. Follow-up of markedly elevated serum potassium results in the ambulatory setting: implications for patient safety. Am J Med Qual. 2006;21(2):115–24.
38. Moore C, Lin J, McGinn T, Halm E. Factors associated with time to follow-up of severe hyperkalemia in the ambulatory setting. Am J Med Qual. 2007;22(6):428–37.
39. Singh H, Arora HS, Vij MS, Rao R, Khan MM, Petersen LA. Communication outcomes of critical imaging results in a computerized notification system. J Am Med Inform Assoc. 2007;14(4):459–66.
40. Singh H, Thomas EJ, Mani S, Sittig D, Arora H, Espadas D, et al. Timely follow-up of abnormal diagnostic image test results in an outpatient setting: are electronic medical records achieving their potential? Arch Intern Med. 2009;169(17):1578–86.
41. Singh H, Thomas EJ, Sittig DF, Wilson L, Espadas D, Khan MM, et al. Notification of abnormal lab test results in an electronic medical record: do any safety concerns remain? Am J Med. 2010;123(3):238–44.
42. Stelfox HT, Ahmed SB, Fiskio J, Bates DW. An evaluation of the adequacy of outpatient monitoring of thyroid replacement therapy. J Eval Clin Pract. 2004;10(4):525–30.
43. Etzioni DA, Yano EM, Rubenstein LV, Lee ML, Ko CY, Brook RH, et al. Improving response to critical laboratory results with automated notification system to report late-arriving laboratory results in the emergency department. Pediatr Emerg Care. 2000;16(5):313–18.
44. Unruh KT, Pratt W. Creating a better discharge summary: Improvement in quality and timeliness using an electronic discharge summary. J Hosp Med. 2009;4(4):219–25.
45. Berlin L. Communicating results of all radiologic examinations directly to patients: has the time come? AJR Am J Roentgenol. 2007;189(6):1275–82.
46. Bolton P, Mira M, Kennedy P, Lahra MM. The quality of communication between hospitals and general practitioners: an assessment. J Qual Clin Pract. 1998;18(4):241–7.
47. Berlin L, Miroshnikova J, Jurek J. Accuracy of medication documentation in hospital discharge summaries: A retrospective analysis of medication transcription errors in manual and electronic discharge summaries. Int J Med Inform. 2010;79(1):58–64.
48. Berlin L. Communicating results of all outpatient radiologic examinations directly to patients: the time has come. AJR Am J Roentgenol. 2009;192(3):571–5.
49. Berlin L. Communicating results of all radiologic examinations directly to patients: has the time come? AJR Am J Roentgenol. 2007;188(6):1275–82.
50. Hammerman HJ. Communicating imaging results to patients: OnSite results. AJR Am J Roentgenol. 2009;192(4):852–3.
51. American College of Radiology. ACR Practice Guideline for Communication of Diagnostic Imaging Findings. 2010–1. Accessed 12 May 2011. http://www.acr.org/SecondaryMainMenuCategories/quality_safety/guidelines/dx/comm_dig_rad.aspx.
52. Kilpatrick ES. Use of computer terminals on wards to access emergency test results: a retrospective audit. Br Med J. 2001:323:2.
53. Graber M. The physician and the laboratory: partners in reducing diagnostic error related to laboratory testing. Am J Clin Pathol. 2006;126(Suppl 1):S44–7.
54. Berlin L, Miroshnikova J, Jurek J. Impact of electronic health record clinical decision support on diagnostic errors in hospitals. BMJ. 2000;320(7237):788.
55. Berlin L, Miroshnikova J, Jurek J. Impact of electronic health record clinical decision support for diagnostic errors in hospitals. JMAMRC. 2007;96(5):219–22.
56. Berlin L, Miroshnikova J, Jurek J. Impact of electronic health record clinical decision support for diagnostic errors in hospitals. JMAMRC. 2007;96(5):219–22.
57. Priyanath A, Feinglass J, Dolan NC, Havlicy C, Venta LA. Patient satisfaction with the communication of mammographic results before and after the Mammography Quality Standards Reauthorization Act of 1998. AJR Am J Roentgenol. 2002;178(2):451–6.
Table 1. Studies Showing the Extent of Failure to Follow-up Test Results for Ambulatory Patients and Impact on Patient Outcomes

Source	Study design & population	Test type and indication of failure to follow-up	System used to follow-up results	Extent of failure to follow-up	Patient outcomes
Casalino et al.	Retrospective medical record review and physician notification form (PNF) (survey).	Test type: 11 blood tests and 3 screening tests (mammography, Papanicolaou smear, fecal occult blood) commonly performed in the OP setting with clinically significant results (values defined by physician consultation).	Varied systems across practices: 14 with no EMR (paper based progress notes and test results), 5 with EMR (for outpatient progress notes and test results), 4 with partial EMR (electronic progress notes or test results but not both).	Rate of apparent failures to inform or document was 7.3% (135 failures divided by 1889 abnormal results) (Range 0-26.2%)	Patient outcomes not examined
Population: 5,434 randomly selected patients aged 50-69 years who had been seen 90-360 days prior to the date of the review (between June 2005 and February 2006) in 19 community-based and 4 academic medical centre primary care practices (n=23).					

| Appropriate follow-up failure defined as negative results for which the reviewer could not find evidence within the medical record that the patient had been informed within the defined time interval (usually 90 days). The PNF was mailed to confirm failure to inform. Failure to inform defined as apparent failure to inform for which the physician stated in the PNF that the patient had been informed but this had not been documented. Failure to document defined as apparent failures to inform for which the physician did not return the PNF or stated on the form that the patient had not been informed. |

| Chen et al. | Retrospective medical record review | Test type: positive fecal occult blood test (FOBT) | Centralised nurse based notification system. A designated nurse reviewed all electronic medical records of positive FOBT cases from each preceding month. The nurse then provided a monthly spreadsheet to notify appropriate clinic managers of cases with no indication of follow-up. The clinic managers then notified the patients’ physician. | 15% (63/423) of positive FOBT cases notified by the nurse lacked a documented follow-up plan within 4 weeks of the positive result. | In seventeen of the 30 cases which had follow-up plans delayed beyond 4 weeks, 2 had colorectal cancers found 215 and 233 days after the initial positive FOBT (1 included T3N0M0 rectal cancer and 1 included T4N0M0 transverse colon cancer) |
| Population: 423 positive FOBT were identified for a 10 month period (December 1 2003 to September 30 2004) by the laboratory service of the medical centre of a 347 bed tertiary care facility of the Department of Veteran Affairs |

| Indicator: Outcomes of positive FOBT cases which had no documented follow-up plan and no explanation for this (such as ‘patient declined’ or ‘patient opted to go elsewhere’). | Full electronic medical record system with access to patient medical data from all VA medical centers and clinics. | 15/63 (24%) had no appropriate follow-up plans; 30/63 (48%) had follow-up plans delayed beyond 4 weeks; 13/63 (21%) had plans within 4 weeks which were not documented; 5/63 (8%) had colonoscopy not indicated (example patient with known active Crohn’s disease with colonoscopy 105 days prior). | | |
Source	Study design & population	Test type and indication of failure to follow-up	System used to follow-up results	Extent of failure to follow-up	Patient outcomes
Chen et al. 30	Retrospective medical record review	Test type: Abnormal results from 4 tests: pap smears; mammograms; international normalized ration (INR); prostate-specific antigen (PSA) (called high risk abnormal results)	Paper logs of abnormal test results are maintained by staff at each community health clinic as an internal record of tracking patients with abnormal results.	34% (116/344) of abnormal results did not have documentation that that appropriate follow-up had occurred: 11% (9/82) for mammography; 26% (16/61) for INR; 45% (47/105) for Pap smears; 46% (44/96) for PSA.	Not examined
	Population: 344 abnormal results from 11 clinics (non random selection) within a large urban multisite federally qualified community health center. Abnormal results were identified in two ways: patients with abnormal results from 2004 to 2007 using administrative databases and, secondly manual review of paper logs of abnormal results maintained at family health centres from January 2007 to August 2008.	Indicator: No documentation that the result was: filed in the medical record, the provider signed and responded to the result, the patient was notified of the result, and the appropriate follow-up occurred in a timely manner (or patient refusal for follow-up). Timely follow-up for each test type clearly defined in study (example, pap smear – colposcopy performed within 3 months; mammogram – diagnostic procedure performed within 3 months).	Manual medical records used in each community health clinic.	% reported per test The last step of the results management process, ensuring appropriate follow-up, accounted for most of the errors in follow-up. For patients receiving follow-up care 49% of the time the follow-up did not occur in a timely manner. Provider unaware of imaging finding in 4/395 (1.0%) of primary medicine clinic patients with suspected malignancy 5 of the 8 patients (IP or OP) where the provider was unaware of the findings had a final diagnosis of cancer.	The last step of the results management process, ensuring appropriate follow-up, accounted for most of the errors in follow-up. For patients receiving follow-up care 49% of the time the follow-up did not occur in a timely manner. Provider unaware of imaging finding in 4/395 (1.0%) of primary medicine clinic patients with suspected malignancy 5 of the 8 patients (IP or OP) where the provider was unaware of the findings had a final diagnosis of cancer.
Choksi et al. 31	Retrospective electronic medical record audit	Test type: Suspected malignancy in radiology examinations (including conventional radiology, sonography, CT, MRI, barium exams, excretory urography, myelography, angiography and excluding mammography). Indicator: No documentation of follow-up in electronic medical record.	A semi-automated process involving electronic, paper and telephone reporting was employed for the coding and review of potentially malignant findings. If a malignancy was found the radiologist contacted the referring clinician or appropriate member of the clinical team by telephone or rarely by secure email. The radiologist documented the contact in the report. Radiologist also assigned a code 8 to the report to signify possible malignancy and documented this in the electronic record. On a weekly basis the cancer registrar (a nurse practitioner) retrieved a list of all suspected malignancy patients from the database of all oncology patients at the hospital. The registrar monitored the electronic clinical record (patient notes, patient appointments, additional radiology or pathology visits scheduled) for documentation of appropriate follow-up. The registrar notified the hospital’s tumour board and/or ordering provider. Then the responsibility for tracking additional patient evaluation was delegated to the nurse practitioner in charge of active cancer cases.	% reported per patient (each patient had only one test) with analysis separated based on referring service. In all referring services (IPs and OPs) provider unaware of imaging findings in 8/395 (2.0%) cases. The type of imaging test did not predict appropriate follow-up (p=0.18). In the primary medicine service, no difference was seen between physicians and nurse practitioners in appropriate documentation of follow-up (p=0.61).	The last step of the results management process, ensuring appropriate follow-up, accounted for most of the errors in follow-up. For patients receiving follow-up care 49% of the time the follow-up did not occur in a timely manner. Provider unaware of imaging finding in 4/395 (1.0%) of primary medicine clinic patients with suspected malignancy 5 of the 8 patients (IP or OP) where the provider was unaware of the findings had a final diagnosis of cancer.
Study	Test Type	Indicator	Patient Outcomes		
------------------------------	---	---	--		
Ealovega et al. 32	Abnormal fasting plasma glucose levels or oral glucose tolerance tests (OGGTs) (Diabetes screening)	No documentation of recognition of the abnormal screening in the medical record, including a comment about the result being abnormal, that is, a diagnosis of impaired fasting glucose, impaired glucose tolerance or diabetes referral to a dietician and/or performance of a definitive diagnostic test (fasting glucose, OGTT or HbA1c) within 6 months of screening.	125/202 (62%) of abnormal results received no appropriate follow-up. Those who received appropriate follow-up were more likely to have been scheduled for follow-up appointments than those who did not (92% versus 66%, P=0.001) and were more likely to have kept the scheduled follow-up appointment (90% versus 58%, P=0.001).		
Edelman 44	Abnormal glycemic testing	Laboratory tests used were plasma glucose tests and haemoglobin A1c (HbA1c) measurements. Abnormal defined by any one of three criteria: HbA1c 7.0% or higher, plasma glucose 200 mg/dL or higher, or plasma glucose 126 mg/dL or higher if the laboratory value was denoted as fasting in the database.	At least 9% (when restricted to findings that are most suggestive of diabetes (high HbA1c or 2 high plasma glucose tests) and as many as 18% who have a positive lab test suggesting diabetes have no evidence in the billing data or medical record that the condition was recognised. 1426 patients had laboratory tests suggestive of diabetes.	1122/1426 (79%) had ICD-9 codes for diabetes in the database. 36/304 without ICD-9 codes had mention of diabetes on medical record review.	
Table 1. (continued)

Source	Study design & population	Test type and indication of failure to follow-up	System used to follow-up results	Extent of failure to follow-up	Patient outcomes	
Elder et al. 33	Retrospective medical record review.	Test type: Abnormal laboratory and imaging	Detailed description of different ways each step of the results management process was undertaken in each of the four family medicine offices, 1 of which had an EHR. Most processes were manual (phone, fax, written response) involving physicians and other staff. One practice had no physician acknowledgement or response to result nor patient notification nor documentation nor follow-up process.	42/160 (26%) abnormal laboratory or radiology tests had no documentation in the chart of the clinicians response to the abnormal result	Not examined	
	Used qualitative methods to explore test management practices in each of the 4 family medicine offices.	Indicators:	Examples of patient notification of results included:	17/160 (10%) of abnormal radiology or laboratory results had no clinician signature; 56/102 (57%) had no documentation that advice, recommendations or information were given to the patient about the abnormal result.		
	Population: 4 family medicine offices in the Ohio region. 25 random charts from each office (n=100) that contained laboratory or imaging results in a 12 month period. 160 test results reviewed.	a) no documentation of clinician signature on result; or	b) no documentation in the chart of clinicians' response to the result.			
		% reported by test type				
	Elder et al. 34	Retrospective medical record review	Test type: Clinically significant abnormal laboratory and imaging	4 paper based and 4 EMR systems. A total of 274 results were managed by an EMR. Results managed with an EMR were more often in the right place in the chart (100% versus 98%), had more clinician signatures (100% versus 96%), interpretations (73% versus 64%) and patient notifications (80% versus 66%) documented.	EMR systems: 36% (21/88) of abnormal results had no follow-up plan documented in an EMR.	Not examined
	Population: 8 purposefully chosen Family Medicine Offices to provide variation around geographic location (rural, suburban, urban), practice size, patient insurance status, technology level (EMR, no EMR), and residency program (program, no program).	Indicator: No documentation in chart of follow-up plans.	Four offices had written protocols and/or adhered to office-wide practices in two or three test result management steps (patient notification, clinician signature and test tracking). The other four offices had only one or no steps with written protocols or results management practices that were well followed. No offices had standardized processes for documenting interpretation of test results or follow-up for abnormal results.	Paper based systems: 60% (49/82) of abnormal results had no follow-up plan documented in the manual system		
	25 charts at each office (n=200) that contained laboratory or imaging results in a 12 month period. Total of 461 test results reviewed in the 200 charts in the 8 offices.	% reported by test type (commonly grouped tests (complete blood counts, metabolic profile etc) were considered a single test	For the subset of abnormal results (n=170) 64% of results managed with an EMR had a follow-up plan documented, compared to 40% for paper managed results.			
Table 1. (continued)						

Source	**Study design & population**	**Test type and indication of failure to follow-up**	**Not examined**			
Eizion et al.	Retrospective medical record review after data linkage of patients who received colorectal cancer screening in the VA quality improvement program linked with the VA Electronic Outpatient Clinic File. Population: All patients aged over 52 years sampled from a QI review for colorectal cancer screening attending a primary clinic in a VA hospital between 1st October 2001 to 30th September 2002.	Test type: Positive fecal occult blood test (FOBT) Not stated in the paper however, VA have a quality improvement program which monitors rates of preventive care across a broad range of clinical domains, including colorectal cancer screening and VA has had electronic medical record system since 1985.	Of those patients with positive fecal occult blood tests (n=313) 41% (128/313) did not receive follow-up testing.			
Gandhi et al.	Retrospective review of malpractice claims Population: 181 closed malpractice claims involving diagnostic errors in the ambulatory setting which resulted in patient harm between 1984 and 2004. 4 malpractice insurance companies (north eastern, south western, western United States) insuring approximately 21,000 physicians, 46 acute care hospitals and 390 outpatient facilities: including a variety of primary care and outpatient specialty practices.	Test type: abnormal diagnostic or laboratory test result Not stated in paper 23/181 (13%) cases of missed diagnoses were due to 'responsible provider did not receive diagnostic or laboratory test results'. In 22/181 (12%) of cases, the diagnostic or laboratory test results were not transmitted to the patient	Of the 23 cases where the responsible provider did not receive the test result, 17 cases were for missed cancer diagnoses. Of the 22 cases where the test result was not transmitted to the patient, 15 were for missed cancer diagnoses.			
Kern et al.	Retrospective medical record review Population: 301 randomly selected patients over 20 years of age with no known diabetes who received care at the study site over a one year period with a minimum of 2 further visits in the next 3 years. Study site was a large outpatient general internal medicine practice affiliated with an academic health centre (New York USA) (Cornell Univ.)	Test type: abnormal value for glucose test for diabetes The practice has an EMR which includes appointments, test orders, laboratory results and progress notes. At the time of the study there was no systematic screening program for diabetes and the EMR did not have specific flags for episodes of diabetes screening. 466 glucose tests performed and 65466 were abnormal. The proportion of abnormal values depended on the cut-off: 65 (14%) ≥101 mg/dl; 26 (6%) ≥110 mg/dl; and 15 (3%) ≥126 mg/dl For glucose values: 101-109 mg/dl, 100% (24/24) had no follow-up; 110-125 mg/dl, 57% (15/26) had no follow-up; ≥126 mg/dl, 46% (7/15) had no follow-up. 7/86 (8%) reported per patient	Not examined			
Moore et al.	Retrospective medical record review Population: 86 patients hospitalised in one medicine service who were subsequently seen by their primary care physicians in the affiliated outpatient practice within 2 months of discharge. Participants selected by retrospective record review of 366 randomly selected patients chosen from 2139 discharged from 950 bed urban teaching hospital (Mount Sinai School of Medicine, New York, USA) between July 2000 and June 2001.	Test type: Laboratory tests pending at discharge (for example pleural fluid cytology, thyroid function tests, stool culture, HIV test) Indicator: Laboratory test was pending at discharge and was not acknowledged (ie documented) in the outpatient chart by the outpatient primary care physician % reported per patient Not stated in paper but use of separate manual inpatient and outpatient medical records and outpatient IPCs had no access to the patients' discharge summaries. Not stated in paper however, VA have a quality improvement program which monitors rates of preventive care across a broad range of clinical domains, including colorectal cancer screening and VA has had electronic medical record system since 1985.	Not examined			

Indicator: Patients had no follow-up if one of two criteria were not met: 1) documentation of colonoscopy or barium enema that was dated after the positive FOBT or 2) if the patient was referred for colonoscopy.

Indicator: Evidence of missed diagnosis resulting from provider not receiving abnormal diagnostic or laboratory test results abstracted from documentation in claim file from each insurer and background information from relevant medical record.

Indicator: No documented follow-up for abnormal value of glucose test for diabetes, or no indication in record of subsequent action in response to abnormal result.

Indicator: Laboratory test was pending at discharge and was not acknowledged (ie documented) in the outpatient chart by the outpatient primary care physician.
Source	Study design & population	Test type and indication of failure to follow-up	System used to follow-up results	Extent of failure to follow-up	Patient outcomes
Moore et al. 37	Retrospective medical record review	Test type: abnormal serum potassium	OP practice has a paper based chart system and laboratory test results are retrieved on a	No documented evidence of follow-up at all in 11/109 cases of hyperkalaemia (10.1%).	Not examined.
	Population: 86 patients with abnormal potassium levels (hyperkalaemia or hypo) seen at	Indicator: No documented response /action to	computerised information system via computers located in each patient care room. Paper copies	25% of patients repeat potassium levels were not performed until they were seen at routine	
	a large hospital based general internal medicine/primary care practice (Mount Sinai Medical	abnormal serum potassium result in the medical	of test results are placed in attending preceptors’ mailboxes within 1-7 days of the results	follow-up visits or when they visited the clinic for problems unrelated to	
	Centre, New York USA) Between September 2003 and August 2004.	second or computerised laboratory system	being available. All results are reviewed by attending preceptors who are expected to act on	hyperkalaemia such as medication refills.	
		% reported per test and per patient	abnormal test results. Critical lab results are communicated from the lab to a nurse in the		
Moore et al. 38	Retrospective medical record review	Test type: abnormal serum potassium	primary care practice. The nurse then communicates the		
	Population: 190 adults with elevated serum potassium levels over a 4-year period	Indicator: No documented attempt to contact	critical lab result to an attending physician.		
	(January 2002 to December 2005) seen at a large primary care practice at a 1100 bed	patient for follow-up of abnormal result, or no			
	general teaching hospital (Mount Sinai School of Medicine, New York USA)	documentation that subsequent patient visit			
	259 serum potassium tests that were non-haemolyzed and non-contaminated samples with	addresses the elevated serum potassium result,			
	values ≥ 6.0 mEq/L.	or no documented repeat serum potassium testing			
Poon et al. 45	Prospective longitudinal study involving medical record review and patient survey	Test type: “Marginally abnormal” mammograms			
	Population: 126 (out of 181 with abnormal mammogram requiring 6 month follow-up)	for which short term follow-up imaging is			
	English or Spanish speaking women with abnormal mammograms (between June 1996 and June	required in 3-6 months			
	1997) requiring short term (6 months) follow-up imaging from ten academically affiliated	Indicator: no documentation in their medical			
	ambulatory medical practices in the Boston metropolitan area. The practices were diverse	record that they had received a follow-up			
	in location, structure and degree of academic affiliation.	mammogram, a surgical consult or a breast biopsy			
	Retroactive medical record review plus telephone contact with providers	within 7 months of the index abnormal			
	Population: 1,017 electronically transmitted alerts for abnormal imaging results over an	mammogram.			
	83 day study period from patients attending multispecialty ambulatory clinics of a	Not stated in paper.			
	Veterans Affairs medical centre (Houston, Texas USA) between March 2, 2006 and May 28				
	2006.				
Singh et al. 39	Test type: Critical imaging results (abnormal radiographs, CT scans, MRI scans,	VA uses CPOE which relies on computerised			
	mammograms, ultrasonograms)	notification of abnormal test results (alerts)	With the exception of life threatening findings,	45/126 (36%) of women with abnormal mammogram requiring short-term follow-up did receive	
	Indicator: No documented evidence of response to abnormal imaging results in patient chart,	displayed prominently through a view alert	communicated via telephone, the radiologist alerts the provider electronically to the	appropriate follow-up tests (adjusted odds ratio 2.79; 95% CI, 1.11 to 6.98; P = 0.029)	
	and no provider awareness of abnormal imaging results upon telephone contact with	window displayed in the EMR every time the	presence of "significant unexpected findings" using codes specific to the institution. When	No adverse effects for those who did not receive appropriate follow-up (one who did receive	
	provider. Failure to acknowledge an alert was based entirely on the provider clicking on	provider logs on.	the provider clicks on the alert, this indicates that the provider received the imaging result	appropriate follow-up was diagnosed with breast cancer during the course of the study.	
	the alert in the electronic View Alert system in the EMR.	With the exception of life threatening findings,	and this is the only mechanism for the EMR to record the providers’ acknowledgement. However,		
		communicated via telephone, the radiologist	providers can ignore alerts and bypass them.		
		alerts the provider electronically to the presence			
		of "significant unexpected findings" using codes			
Table 1. (continued)

Source Study design & population	Test type and indication of failure	System used to follow-up results	Extent of failure to follow-up	Patient outcomes
Singh et al.40 Retrospective medical record review (primary care clinics, ambulatory clinics)	Abnormal imaging results (abnormal mammograms, ultrasounds)	Tracking software — alerts lack electronic acknowledgement	Of 123,638 imaging studies, 1,196 (0.9%) generated alerts which were then transmitted to the View Alert window.	24 patients (7%) experienced an adverse drug event (ADE) during the study period and 12 patients (3%) developed an ADE related to levothyroxine therapy over a 1-year period.
Population: Between May and December 2008, 78,158 tests (Hb A1c, Hep c, TSH, PSA) were performed of which 1163 (1.48%) were transmitted as alerts.				
	Staff radiologists electronically code abnormal imaging findings which generate alerts as alerts which are then transmitted to the View Alert window.			
Stelfox et al.42 Retrospective medical record review (internal medicine, general medicine, ambulatory clinics, VA clinical centres)	Abnormal laboratory tests which met these criteria: Haemoglobin A1C >=15; positive hep C antibody; prostate specific antigen >=15; thyroid stimulating hormone (TSH) >=15	Tracking software — alerts lack electronic acknowledgement	Of 21,710 alerts (11.3%) which were unacknowledged, 79/1163 (6.8%) (79 out of all alerts) and was statistically not different for acknowledged and unacknowledged alerts.	No appropriate surveillance or response within 2 months to high or low TSH results.
Population: Of 21,710 imaging studies, 1,196 (0.9%) generated alerts which were then transmitted to the View Alert window.				
	Alerts lacking timely follow-up: HCV Ab (Elisa) 13.2%; PSA 0.9%; TSH 6.3%; Haemoglobin A1C 6.9%.			
Callen et al.: Test Result Follow-Up: A Systematic Review	Abnormal imaging results (abnormal mammograms, ultrasounds)	Tracking software — alerts lack electronic acknowledgement	Of 123,638 imaging studies, 1,196 (0.9%) generated alerts which were then transmitted to the View Alert window.	24 patients (7%) experienced an adverse drug event (ADE) during the study period and 12 patients (3%) developed an ADE related to levothyroxine therapy over a 1-year period.
Population: Of 21,710 alerts (11.3%) which were unacknowledged, 79/1163 (6.8%) (79 out of all alerts) and was statistically not different for acknowledged and unacknowledged alerts.				
	Alerts lacking timely follow-up: HCV Ab (Elisa) 13.2%; PSA 0.9%; TSH 6.3%; Haemoglobin A1C 6.9%.			