Probing small x parton densities in ultraperipheral AA and pA collisions at the LHC

Mark Strikman
Pennsylvania State University, University Park, PA 16802, USA

Ramona Vogt
Department of Physics, University of California, Davis, CA 95616, USA
and Nuclear Science Division LBNL, Berkeley, CA 94720, USA

Sebastian White
Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA

(Dated: March 26, 2022)

We calculate production rates for several hard processes in ultraperipheral proton-nucleus and nucleus-nucleus collisions at the LHC. The resulting high rates demonstrate that some key directions in small x research proposed for HERA will be accessible at the LHC through these ultraperipheral processes. Indeed, these measurements can extend the HERA x range by roughly a factor of 10 for similar virtualities. Nonlinear effects on the parton densities will thus be significantly more important in these collisions than at HERA.

PACS numbers:

Studies of small x deep inelastic scattering at HERA substantially improved our understanding of strong interactions at high energies. Among the key findings of HERA were the direct observation of the rapid growth of the small x structure functions over a wide range of virtualities, Q^2, and the observation of a significant probability for hard diffraction consistent with approximate scaling and a logarithmic Q^2 dependence ("leading twist" dominance). HERA also established a new class of hard exclusive processes – high Q^2 vector meson production – described by the QCD factorization theorem and related to generalized parton distributions in nucleons.

The importance of nonlinear QCD dynamics at small x is one of the focal points of theoretical activity (see e.g. Ref. [1]). Analyses suggest that the strength of the interactions, especially when a hard probe directly couples to gluons, approaches the maximum possible strength – the black disk limit – for $Q^2 \leq 4$ GeV2. These values are relatively small, with an even smaller Q^2 for coupling to quarks, $Q^2 \sim 1$ GeV2, making it difficult to separate perturbative and nonperturbative effects at small x and Q^2. Possible new directions for further experimental investigation of this regime include higher energies, nuclear beams and studies of the longitudinal virtual photon cross section, σ_L. The latter two options were discussed for HERA [2, 3]. Unfortunately, it now seems that HERA will stop operating in two years with no further measurements along these lines except perhaps of σ_L. One might therefore expect that experimental investigations in this direction would end during the next decade.

The purpose of this letter is to demonstrate that several of the crucial directions of HERA research can be continued and extended by studies of ultraperipheral heavy ion collisions (UPCs) at the LHC. UPCs are interactions of two heavy nuclei (or a proton and a nucleus) in which a nucleus emits a quasi-real photon that interacts with the other nucleus (or proton). These collisions have the distinct feature that the photon-emitting nucleus either does not break up or only emits a few neutrons through Coulomb excitation, leaving a substantial rapidity gap in the same direction. These kinematics can be readily identified by the hermetic LHC detectors, ATLAS and CMS. In this paper we consider the feasibility of studies in two of the directions pioneered at HERA: parton densities and hard diffraction. The third, quarkonium production, was discussed previously [4, 5, 6]. It was shown that pA and AA scattering can extend the energy range of HERA, characterized by $\sqrt{s_{\gamma N}}$, by about a factor of 10 and, in particular, investigate the onset of color opacity for quarkonium photoproduction.

Though we can only study reactions initiated by a quasi-real photon, this is not a disadvantage in the study of new phenomena relative to HERA. Indeed, nonlinear effects should set in earlier in the gluon sector, more easily accessed through photon-gluon interactions than inclusive electron-hadron scattering. In the following discussion, we assume that DGLAP evolution of the parton densities holds in the region we explore. For definiteness, we discuss measurements of the nucleus (proton) inclusive parton distribution functions (PDFs) and diffractive PDFs, even though it appears that part of the accessible kinematics is within the domain where the DGLAP approximation is likely to break down. In principle, the nuclear (proton) PDFs...
scattering and using a quasi-eikonal approximation to the leading twist description of hard diffraction in clear diffractive PDFs currently available [9], based on section. In our numerical studies, we used the only nu-
cocohent diffraction would be 50% of the total cross
rate is intimately related to the phenomenon of nuclear where hadrons are produced, as is the case for direct
two jet production near the edge of the rapidity interval
characterized by gaps in the directions of both nuclei and
HERA.

as a function of gluon
the

is expected to be less than factor of two for gluons in
while nuclear shadowing is theoretically important, it
nucleon PDFs [8] to estimate the counting rates since,
formance as discussed below. We use the MRST LO
We also assume the ATLAS detector coverage and per-
formance as discussed below. We use the MRST LO

FIG. 1: Diagram of dijet production by photon-gluon fusion where the photon carries momentum fraction \(x_1\) while the gluon carries momentum fraction \(x_2\).

(though not the diffractive PDFs) could be studied in \(pp\) and \(pA\) collisions. However, PDF studies in the \(p_T\) range we explore are impossible in hadronic interactions due to the large background from e.g. multiple jet production. Photon-nucleus interactions are thus much cleaner than proton-nucleus interactions. In addition, the LHC \(pA\) program is likely to begin several years after the start of the heavy ion program.

In our study, we calculate dijet production to leading order (LO) in nucleus-nucleus collisions, as in Ref. [7]. Based on HERA studies, we use a 5 GeV \(p_T\) cutoff for the applicability of perturbative QCD to jet production. We also assume the ATLAS detector coverage and performance as discussed below. We use the MRST LO nucleon PDFs [3] to estimate the counting rates since, while nuclear shadowing is theoretically important, it is expected to be less than factor of two for gluons in the \(p_T\) range we discuss. We calculate inclusive rates as a function of gluon \(x\) and jet \(p_T\) to compare with HERA.

The coherent diffractive processes we study are characterized by gaps in the directions of both nuclei and two jet production near the edge of the rapidity interval where hadrons are produced, as is the case for direct photon-nucleus/nucleon interactions. The diffractive rate is intimately related to the phenomenon of nuclear shadowing and the onset of the black disk limit where coherent diffraction would be 50% of the total cross section. In our numerical studies, we used the only nuclear diffractive PDFs currently available [3], based on the leading twist description of hard diffraction in \(ep\) scattering and using a quasi-eikonal approximation to model diffraction off more than 3 nucleons.

In our calculations, we focus on small \(x\) kinematics where a photon interacts predominantly with a gluon via photon-gluon fusion. Since the direct mechanism dominates in this kinematics, we ignore the partonic constituents of the photon. We define \(x_1\) as the momentum fraction carried by the photon while \(x_2\) is the momentum fraction carried by the gluon from the nucleus (both per nucleon) or proton (see Fig. 1). The average jet rapidity is \(y \sim -0.5 \ln(x_1/x_2)\). The photon \(x_1\) is related to the jet \(p_T\) by \(x_1 x_2 \sim 4p_T^2/s_{NN}\).

Event rates were calculated for bins of \(\pm 1\) GeV in \(p_T\) and \(\pm 0.25x_2\) in \(x_2\) for a nominal one month run of \(10^6\) seconds. The average luminosity is taken to be \(0.42 \times 10^{27} \text{cm}^{-2}\text{s}^{-1}\) for Pb+Pb collisions [10] and \(7.4 \times 10^{29} \text{cm}^{-2}\text{s}^{-1}\) for pPb collisions [11].

Ultraperipheral collision data can be recorded exploiting the full live time available as long as an acceptable trigger can be found. The PHENIX collaboration at RHIC found that a loose UPC trigger in Au+Au runs yielded a trigger rate of \(< 0.5\% \sigma_{\text{inel}}\) (\(10 - 20\) Hz at the LHC) [12]. The PHENIX UPC \(J/\psi\) trigger required a single high \(p_T\) electron, a rapidity gap and a leading neutron tag.

In our case, there is always a high \(p_T\) jet as well as the potential for a heavy flavor tag using soft leptons or a secondary vertex, well within the calorimeter and tracking acceptance of ATLAS, for example. Because the ATLAS calorimeter extends \(\pm 4.9\) units in \(\eta\), it should be possible to veto on activity with \(E_T \geq 2\) GeV within \(2.9 < |\eta| < 4.9\) along the direction of the ion emitting the exchanged photon. The top lead ion will always emit an evaporation neutron which can be tagged with the ATLAS Zero Degree Calorimeters.

![Diagram of dijet production by photon-gluon fusion](image-url)

FIG. 2: The expected dijet photoproduction rate for a one month LHC Pb+Pb run at \(0.42 \times 10^{27} \text{cm}^{-2}\text{s}^{-1}\). Rates are in counts per bin of \(\pm 0.25x_2\) and \(\pm 1\) GeV in \(p_T\).
except in the case of coherent diffractive photoproduction. Furthermore, the neutron multiplicity is correlated with centrality in photon-nucleus collisions and hence can be used to select central collisions where high gluon density effects are maximized.

In Fig. 2 we present the counting rate per \(x_2 \) and \(p_T \) bin accumulated in a one month LHC Pb+Pb run. In addition to the rates, we show contours of constant photon energy. Photon energies of a few GeV up to \(\sim 100 \) GeV dominate the rates. Under normal conditions, these photons will collide with nuclei at energies of 2.75 TeV/nucleon. Contours of constant average jet rapidity are also shown in Fig. 2. It is significant that jet production is predominantly in the region \(|y_{jet}| \leq 3\) and therefore well matched to the calorimeter coverages of ATLAS and CMS at the LHC. The rapidity gap distinguishes these photoproduced jets from those produced in the more abundant nuclear collisions.

The ATLAS experiment was designed to study jet production at \(p_T > 10 \) GeV. It is not yet clear what lower \(p_T \) limit will apply to photoproduction where neither the "underlying event" nor multiple event pileup are present to degrade the measurement. The counting rate per bin, 100–1000 for \(p_T \geq 10 - 20 \) GeV, should be high enough for meaningful statistics.

Figure 3 shows the \(b \)-jet photoproduction counting rate. These heavy flavor jets are also photoproduced copiously at the LHC. They can be detected via a detached vertex using the ATLAS pixel tracker or via a soft lepton tag. We also calculated gamma-jet production but, since the rates are reduced by several orders of magnitude relative to the dijet rates, they are not shown.

We have also calculated diffractive photoproduction of dijets and \(b \) jets employing the leading twist analysis of the diffractive PDFs in Ref. 9. This analysis suggests that even at \(p_T \sim 5 - 10 \) GeV, diffractive nuclear interactions at \(x_2 \leq 10^{-3} \) will be rather close to the black disk limit where more than 20% of events are diffractive. Accordingly, the diffractive rates are large over most of the \(x_2 \) range.

However, measurements of diffractive jet production present a triggering challenge for ATLAS since essentially the only activity in the event is a pair of soft jets at midrapidity. The target nucleus does not break up as in the non-diffractive case. Therefore, we have also calculated photoproduction cross sections including the exchange of low energy photons. These low energy photons are plentiful since the strength parameter, \(Z^2 \alpha \), is of order unity in heavy ion collisions. The calculation proceeds as in Ref. 13. As seen in Fig. 3 the fraction of events with additional photon exchanges which break up both beam nuclei is strictly a function of primary photon energy and is \(\sim 20 - 40\% \) over most of our kinematic range.

The LHC can also run with asymmetric species so that \(pPb \) collisions are likely to be a part of the heavy ion program. Under these conditions, the LHC will extend to higher energy, albeit with small \(Q^2 \), the proton structure measurements carried out at HERA. Figure 4 shows the \(b \)-jet photoproduction rates for collisions of photons emitted by the lead nucleus with gluons from the proton beam. The \(b \)-jet photoproduction rate is considerably higher than in Pb+Pb, primarily.
due to the increased energy of the proton beam relative to the lead beam. The charm jet rate is at least a factor of four larger. Heavy quark production is optimal in pA since the strong interaction contribution due to screened Pomeron exchange becomes important in dijet production [14]. The diffractive rates should also be a significant fraction of the total rate, $\geq 10\%$, allowing study of the diffractive proton PDFs at smaller x than at HERA. If the 420 m tagging proton stations [15] are implemented in the LHC, it will also be possible to considerably extend the HERA t-dependence measurements of the diffractive nucleon PDFs.

Our calculations have assumed that the linear DGLAP approximation is valid. However, at the lowest values of x_2 and p_T we study, DGLAP evolution may break down. The validity of the DGLAP approximation at a given x and Q^2 can be characterized by the ratio of the first nonlinear evolution term to the DGLAP linear term, $C\alpha_s(Q^2)xg(x,Q^2)/Q^2 R_T^2$, where R_T is the radius of the target. The coefficient C is a factor of 9/4 larger for processes dominated by direct coupling to gluons relative to quark couplings. The lowest x and Q^2 bin for $F_2(x,Q^2)$ measurements at HERA is at $x = 10^{-4}$ and $Q^2 = 4$ GeV2. On the other hand, UPC measurements at the LHC can reach $x \sim 5 \times 10^{-5}$ for our minimum p_T of 5 GeV. To quantify how much further UPCs are into the nonlinear regime than are ep collisions at HERA, we form the double ratio [2].

$$
\frac{(9/4)0.7 A^{1/3}\alpha_s(p_T^2)xg(x \sim 5 \times 10^{-5}, p_T^2)/p_T^2}{\alpha_s(Q^2)xg(x \sim 10^{-4}, Q^2)/Q^2} \sim 3.
$$

(1)

The factor of 0.7 is the ratio $(r_N/R_A)^2$ multiplied by a factor of 1.5 for photons going through the center of the nucleus. To calculate Eq. (1), we used recent leading-order parton density fits and neglected leading-twist nuclear shadowing, a small correction for $p_T \geq 5$ GeV. Note that by comparing the ratios at the same values of x and Q^2, Eq. (1) becomes $(9/4)0.7 A^{1/3} \sim 9$ for lead beams. We can form a similar ratio of UPCs at the LHC to ep collisions at the proposed eRHIC collider where the lowest x is $\sim 10^{-3}$ for $Q^2 \sim 4$ GeV2, finding a relative ratio of ~ 1.5. The increase in the importance of the nonlinear regime for UPCs at the LHC relative to ep and eA collisions are due to the direct gluon coupling and a much larger x range as well as the use of nuclear beams (relative to ep collisions).

We thus demonstrate that UPCs probe the nuclear PDFs at $p_T \geq 5$ GeV over an x range a factor of ten greater than at HERA as well as determine the nuclear diffractive PDFs in much of the same x range. An LHC pA run will also extend the HERA x range of the inclusive and diffractive gluon PDFs in the proton a factor of ten.

Acknowledgments: We would like to thank V. Guzey for helpful discussions. This work was supported in part by the US Department of Energy, Contract Numbers DE-AC02-05CH11231 (R. Vogt); DE-FG02-93ER40771 (M. Strikman); and DE-AC02-98CH10886 (S.N. White).

FIG. 5: The expected b-jet photoproduction rate in a one month LHC pPb run at 7.4×10^{29} cm$^{-2}$s$^{-1}$.

* Electronic address: strikman@phys.psu.edu
† Electronic address: vogt@lbl.gov
‡ Electronic address: white@bnl.gov
[1] A.H. Mueller, arXiv:hep-ph/0510102
[2] M. Arneodo, A. Biasas, M. W. Krasny, T. Sloan and M. Strikman, arXiv:hep-ph/0510423
[3] T. Alexopoulos et al. [H1 Collaboration], DESY-03-194
[4] E. Lippmaa et al. [FELIX Collaboration], SLAC-R-638 and A. Ageev et al., J.Phys. G 28, R117 (2002).
[5] C. A. Bertulani, S. R. Klein and J. Nystrand, arXiv:nucl-ex/0502005
[6] M. Strikman and M. Zhalov, in preparation.
[7] R. Vogt, arXiv:hep-ph/0407298
[8] A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Eur. Phys. J. C 28, 455 (2003) [arXiv:hep-ph/0211080]
[15] M.G. Albrow et al., CERN-LHCC-2005-025.