Glycated haemoglobin (HbA1c) use and glycaemic control in patients living with diabetes mellitus attending public healthcare facilities in KwaZulu-Natal Province, South Africa

S Pillay,1 PhD, FCP (SA), MMed (Int Med), MB ChB; D Pillay,2 1st-year medical student; R Pillay,3 Grade 10 scholar

1 King Edward VIII Hospital, and Department of Internal Medicine, Nelson R Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
2 Clifton College, Durban, South Africa
3 Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa

Corresponding author: S Pillay (drspillay@iafrica.com)

Background. Ideal control of diabetes mellitus (DM) remains a global goal, which has not yet been reached. As part of an integrated public healthcare strategy, data with subsequent analysis of diabetes control achieved in patients living with DM (PLWD) need to be available. Diabetes control data from KwaZulu-Natal (KZN) Province, South Africa, are scarce. Smaller studies conducted in public and private healthcare sectors of KZN have shown suboptimal DM control.

Objectives. To identify the percentage of glycated haemoglobin (HbA1c) tests done in KZN public healthcare facilities, and to provide a glimpse into diabetes control being achieved in each KZN district municipality.

Methods. Data regarding the number of HbA1c tests performed, number of patients with an HbA1c ≤7% and number of diabetes visits were accessed from the KZN Department of Health Information Systems and analysed.

Results. The majority of HbA1c tests were performed in the metro municipality of eThekwini (p<0.001). Approximately two-thirds (64.5%) of PLWD in whom HbA1c tests had been performed, were suboptimally controlled. In 5 of the 11 KZN district municipalities more than two-thirds of PLWD had an HbA1c >7%. Most of the patients in 9 of the 11 district municipalities showed suboptimal control of their DM. The total number of HbA1c tests performed in KZN represents approximately one-tenth of the total number of diabetes treatment visits. This trend was prevalent in all 11 district municipalities, where the incidence of DM was on an upward trajectory.

Conclusions. Our study demonstrated that the majority of PLWD visiting public healthcare facilities in KZN have suboptimal glycaemic control. They are at increased risk of developing diabetes-related complications, further burdening the healthcare fiscus of low- to middle-income countries. We also showed that the number of HbA1c tests being performed, in the presence of suboptimal control, was well below par. This finding serves to emphasise the need for strategies to be implemented to increase awareness of HbA1c testing for the monitoring of glycaemic control, and for making point-of-care HbA1c testing readily available in these healthcare facilities.

Ideal control of diabetes mellitus (DM) remains a global goal, which has not yet been achieved in developed and developing countries.2,4 As part of an integrated public healthcare strategy, data need to be available on current diabetes control achieved in patients living with DM (PLWD). Data on diabetes control in KwaZulu-Natal (KZN) Province, South Africa (SA), are scarce. Smaller studies conducted in both public and private healthcare sectors of KZN have shown that control of DM remains suboptimal.3–5

Glycated haemoglobin (HbA1c) testing is used for the diagnosis and monitoring of DM. This test provides an average of the patient’s blood sugar levels over the preceding 3 months. The current diabetes guidelines of the Society for Endocrinology, Metabolism and Diabetes of South Africa (SEMDSA) suggest that HbA1c testing should be performed at a minimum of 6 - 12-monthly intervals, depending on diabetes control achieved in PLWD. The 2017 SEMDSA guidelines also mention the use of HbA1c testing for the diagnosis of DM, making particular reference to the need for two HbA1c tests to be performed at least 3 months apart. SA, and other countries globally, define an HbA1c value for optimal diabetes control as <7%, except in specific circumstances, such as in the elderly, where the target HbA1c might range between 7% and 8%.6 Poor diabetes control has been shown to increase the risk of developing diabetes-related complications.7,8 Currently, a formal venous blood sample is drawn and sent to the laboratory for HbA1c testing. The HbA1c result is often reviewed months later in a busy healthcare facility. This system is far from optimal if our goal is to improve diabetes control and thereby decrease the development of complications of the disease.

The KZN Department of Health Information Systems (DHIS) has been collecting data from PLWD who attend public healthcare facilities that use data elements. These elements do not include the number of HbA1c tests being done and do not indicate the current state of diabetes control achieved in the KZN diabetes population. In 2020, two new data elements were added to the existing elements thereby decrease the development of complications of the disease.

The ideal scenario would entail uploading the individual HbA1c results and geographical location wirelessly for the Department of Health to assess the actual control being achieved by patients in each
district and metro municipality. Point-of-care HbA1c devices will aid this process, as these will provide results in 3 - 5 minutes and will also wirelessly upload the result and geographical location to the DHIS database for analysis.

This study assisted in identifying the percentage of HbA1c tests done in KZN public healthcare facilities and provides a glimpse into diabetes control achieved in each district municipality of KZN.

Methods
This was a quantitative, observational, descriptive retrospective study. KZN is the second most populated province of SA and comprises 10 districts and 1 metro municipality. The DHIS receives data from all healthcare facilities in KZN and aggregates these data per district municipality. In 2020, two new data elements were added for collection per facility:

- diabetes client with HbA1c ≤7%
- diabetes client with HbA1c test conducted.

Permission was requested from the DHIS to access these data. Approval was sought from the DHIS for diabetes-related data elements collected from 1 April 2020 to 31 March 2021. The data elements for each district municipality in KZN that were collected from the DHIS included:

- diabetes client with HbA1c ≤7%
- diabetes client with HbA1c test conducted
- diabetes treatment visits.

Once approval had been received from the University of KwaZulu-Natal Biomedical Research Ethics Committee (ref. no. BREC 2883/2021) and the Department of Health, these data were accessed and analysed to determine the number of:

- HbA1c tests being done in PLWD in each district municipality of KZN
- HbA1c results that were ≤7%
- HbA1c results that were >7%
- diabetes visits in each district municipality of KZN
- percentage of HbA1c tests done annually per district (total number of tests done/diabetic visits × 100).

Optimal glycaemic control was defined as an HbA1c ≤7% as per SA diabetes guidelines.[6]

Data collection and statistical analysis
Simple descriptive statistics were used to describe the sample groups. A p-value <0.05 was regarded as statistically significant.

Results
Table 1 demonstrates that the significant majority of HbA1c tests were performed in the metro municipality of eThekwini (p<0.001). Approximately two-thirds (64.5%) of PLWD in whom HbA1c tests had been performed were suboptimally controlled. In 5 of the 11 district municipalities more than two-thirds of PLWD had an HbA1c >7%, which included a metro municipality.

Fig. 1 shows that the majority of HbA1c tests performed in the district municipalities of KZN produced results reflecting suboptimal control.

Figs 2 and 3 demonstrate that the majority of patients in 9 of the 11 district municipalities showed suboptimal control of their DM.

The majority of PLWD in all district municipalities had suboptimal glycaemic control throughout the 12-month study period. Of note is that PLWD from the district of uThukela performed much better than those from other KZN districts with regard to glycaemic control (Fig. 4).

There were significant differences (p<0.05) in 5 of the 11 district municipalities in terms of the percentage of patients who had optimal vs. suboptimal control (Table 2).

The total number of HbA1c tests performed in KZN represented approximately one-tenth of the total number of diabetes treatment visits. This trend was prevalent in all 11 district municipalities (Table 3).

The incidence rate for diabetes in KZN showed an upward trajectory, which was true for all district municipalities (Fig. 5).

Discussion
Optimal diabetes control remains the epitome of global treatment goals in an attempt to decrease diabetes-related micro- and macrovascular complications.[9] HbA1c testing provides a method of monitoring long-term glycaemic control. The current SEMDSA guidelines advocate the use of HbA1c testing at 3 - 6-monthly intervals, depending on glycaemic control being achieved in PLWD.[10] The problem encountered in KZN, the second most populated province of SA, is that scarce data are collected via the DHIS on control achieved by PLWD and the number of HbA1c tests done in KZN public healthcare facilities and provides a glimpse into diabetes control achieved in each district municipality of KZN.

Table 1. HbA1c tests performed and control achieved per district municipality

| District municipalities | HbA1c tests performed on known PLWD, n (%) | HbA1c ≤7%, n (%) | HbA1c >7%, n (%) | PLWD controlled, % | PLWD suboptimally controlled, % |
|------------------------|------------------------------------------|-----------------|-----------------|-------------------|-------------------------------|
| Amajuba                | 2 244 (3.36)                             | 1 136 (4.79)    | 1 108 (2.57)    | 50.62             | 49.38                         |
| eThekwini              | 26 389 (39.51)                           | 7 701 (32.47)   | 18 688 (43.38)  | 29.18             | 70.82                         |
| Harry Gwala            | 2 239 (3.35)                             | 454 (1.91)      | 1 785 (4.14)    | 20.28             | 79.72                         |
| Lembede                | 5 492 (8.22)                             | 1 911 (8.06)    | 3 581 (8.31)    | 34.80             | 65.20                         |
| King Cetshwayo         | 4 579 (6.86)                             | 2 003 (8.45)    | 2 576 (5.98)    | 43.74             | 56.26                         |
| Ūgu                    | 4 939 (7.39)                             | 1 605 (6.77)    | 3 334 (7.74)    | 32.50             | 67.50                         |
| uMgungundlovu          | 8 119 (12.15)                            | 3 340 (14.08)   | 4 779 (11.09)   | 41.14             | 58.86                         |
| uMkhanyakude           | 2 583 (3.87)                             | 1 273 (5.37)    | 1 310 (3.04)    | 49.28             | 50.72                         |
| uMzinyathi             | 2 633 (3.94)                             | 1 102 (4.65)    | 1 533 (3.56)    | 41.83             | 58.18                         |
| uThukela               | 2 145 (3.21)                             | 1 278 (5.39)    | 867 (2.01)      | 59.58             | 40.42                         |
| Zululand               | 5 433 (8.13)                             | 1 912 (8.06)    | 3 521 (8.17)    | 35.19             | 64.81                         |
| Total                  | 66 797                                  | 23 715          | 43 082          | 35.51             | 64.50                         |

HbA1c = glycated haemoglobin; PLWD = patients living with diabetes mellitus.
being performed. Smaller studies, however, completed in both the public and private sectors in KZN, have demonstrated suboptimal diabetes control.\textsuperscript{[3-5]}

Our study revealed that the bulk of HbA1c testing was being performed in eThekwini and uMgungundlovu – KZN district municipalities that have the highest recorded populations and that are the most urbanised. We postulate that HbA1c tests are being performed with greater frequency in urban areas, as these samples are more easily transported to on- and off-site laboratories for testing, with shortened turnaround times for reporting of results. In contrast, more remotely situated and rural-based healthcare facilities often have to send samples to an off-site facility, resulting in a delay

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig1.png}
\caption{HbA1c tests (n) performed v. suboptimal control. (HbA1c = glycated haemoglobin; PLWD = patients living with diabetes mellitus.)}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig2.png}
\caption{Optimal v. suboptimal glycaemic control.}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
District municipalities & PLWD controlled, % & PLWD suboptimally controlled, % & \textit{p}-value \\
\hline
Amajuba & 50.62 & 49.38 & 0.9 \\
eThekwini & 29.18 & 70.82 & <0.01 \\
Harry Gwala & 20.28 & 79.72 & <0.01 \\
iLembe & 34.8 & 65.20 & 0.002 \\
King Cetshwayo & 43.74 & 56.26 & 0.21 \\
Ugu & 32.5 & 67.50 & <0.01 \\
uMgungundlovu & 41.14 & 58.86 & 0.08 \\
uMkhanyakude & 49.28 & 50.72 & 0.89 \\
uMzinyathi & 41.82 & 58.18 & 0.10 \\
uThukela & 59.58 & 40.42 & 0.06 \\
Zululand & 35.19 & 64.81 & <0.01 \\
Average & - & 60.17 & - \\
\hline
\end{tabular}
\caption{Optimal v. suboptimal control per KZN district municipality}
\end{table}

KZN = KwaZulu-Natal; PLWD = patients living with diabetes mellitus.
of result reporting. This creates a scenario where HbA1c tests are only performed if and when PLWD present with complications or are hospitalised. Another possibility for these findings rests in access to continuing professional development (CPD) for clinicians who order the HbA1c tests and manage diabetes control. Urban clinicians have easier access to CPD activities, allowing them to keep abreast of medical guidelines, including those for DM. During the COVID-19 pandemic, information dissemination has become more encompassing and many, if not all, CPD activities are presented via internet-based media. These circumstances serve to broaden the reach of these activities. Internet connectivity is a drawback in low-to-middle-income countries (LMIC), such as SA, which might hamper the process. More information needs to be disseminated to clinicians working in all districts of KZN, covering all aspects of diabetes care, especially on the use of HbA1c testing in managing and improving diabetes control. Point-of-care HbA1c testing might provide a solution for rural healthcare facilities, as it provides results in 3–5 minutes, allowing clinicians to make therapeutic and lifestyle decisions at the index clinic visit.

Of the PLWD who underwent HbA1c tests, ~two-thirds had HbA1c values >7%, indicating suboptimal control. In 5 of the 11 district municipalities (45.45%), more than two-thirds of PLWD had suboptimal glycaemic control. Overall, in 9 of the 11 district municipalities, there were >50% of PLWD with suboptimal glycaemic control. Pillay et al.\(^3\) used diabetes-related amputations in KZN as a surrogate marker of glycaemic control, alluding to the poor control achieved by PLWD residing in KZN. Our study provides concrete evidence that there is widespread poor glycaemic control in KZN. PLWD from the eThekwini and uMgungundlovu district municipalities had the greatest number of suboptimal HbA1c results. These results concur with those of studies showing that urbanised populations have poorer glycaemic control than rural populations.\(^8\)

The total number of HbA1c tests performed during this 1-year study represented only

| District municipalities | HbA1c tests performed on PLWD, n | Diabetes treatment visits, N (%) |
|------------------------|---------------------------------|-------------------------------|
| Amajuba                | 2 244                           | 33 203 (6.76)                |
| eThekwini              | 26 389                          | 297 166 (8.89)               |
| Harry Gwala            | 2 239                           | 38 888 (5.76)                |
| uLembe                 | 5 492                           | 46 482 (11.82)               |
| King Cetshwayo         | 4 579                           | 82 461 (5.55)                |
| Ugu                    | 4 939                           | 70 370 (7.02)                |
| uMgungundlovu          | 8 119                           | 96 646 (8.40)                |
| uMkhanyakude           | 2 583                           | 40 626 (6.36)                |
| uMzinyathi             | 2 635                           | 39 712 (6.64)                |
| uThukela               | 2 145                           | 57 091 (3.76)                |
| Zululand               | 5 433                           | 58 630 (9.27)                |
| Total                  | 66 797                          | 861 275 (7.76)               |

HbA1c = glycated haemoglobin; PLWD = patients living with diabetes mellitus.

**Table 3. HbA1c tests performed as a percentage of total number of PLWD visits**
7.76% of the total number of diabetes visits (range 3 - 12%). This trend was found in both metro and district municipalities. The SEMDSA guidelines suggest performing HbA1c tests every 3 - 6 months, depending on the level of glycaemic control.6,8,9 We demonstrated that in most of the district municipalities, there was a significant majority of PLWD with suboptimal control. Taking this poor glycaemic control into account, coupled with the current SEMDSA diabetes guidelines, there should have been many more HbA1c tests performed during the study period. Studies have shown that regular monitoring of HbA1c in PLWD leads to improved glycaemic control, which in turn translates into decreased diabetes complications.7,9 These findings must alert the Department of Health to implement strategies to increase HbA1c testing. One such approach is to improve the training of clinicians and nurses working in KZN regarding diabetes care and control. Larger audiences can now be attained with the escalated use of internet-based media for educational purposes. A working in KZN regarding diabetes care and control. Larger audiences can now be attained with the escalated use of internet-based media for educational purposes. A

Study limitations

The data were collected during the COVID-19 pandemic and lockdown period, which would have affected the number of diabetes clinic visits.

Conclusions

Improved glycaemic control has been shown to decrease diabetes-related complications. Our study has demonstrated that the majority of PLWD who visit public healthcare facilities in KZN have suboptimal glycaemic control, indicating that they are at increased risk of developing diabetes-related complications, further burdening the healthcare fiscus of LMIC. We have also shown that the number of HbA1c tests performed in the face of suboptimal control was well below par, and strategies need to be implemented to increase awareness around the use of HbA1c testing for monitoring PLWD, and to make point-of-care HbA1c testing more readily available in these healthcare facilities.

Funding. None.

Conflicts of interest. None.

Declaration. None.

Acknowledgements. None.

Author contributions. The principal author, SP, made substantial contributions to the conception and design of the work, writing of the article and final approval, and agrees to be accountable for all aspects of the research. The co-authors, DP and RP, made substantial contributions to the conception of the work, critically reviewing and editing the draft paper, gave final approval and agreed to be accountable for all aspects of the research.

1. International Diabetes Federation. About diabetes. https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html (accessed 24 May 2021).
2. International Diabetes Federation. IDF Africa Members. https://idf.org/our-network/regions-members/africa-members/25-south-africa.html (accessed 24 May 2021).
3. Pillay S, Pillay D, Singh D, Pillay R. Diabetes-related amputations in the public healthcare sector in KwaZulu-Natal: A five-year perspective. Are we winning? JEMDSA 2019;24(1):52-56. https://doi.org/10.1016/j.jemds.2019.06.004.
4. Amod A, Rikhotso D. Diabetes guidelines and clinical practice: Is there a gap? The South African cohort of the International Diabetes Management Practice Study. JEMDSA 2012;17(2):82-86. https://doi.org/10.1016/j.jemds.2012.10.005.
5. Pillay S, Alcon C, Mahomed S. Diabetic patients served at a regional level hospital: What is their clinical picture? JEMDSA 2015;20(1):60-66. https://doi.org/10.1016/j.jemds.2015.10.006.
6. Amod A. The 2017 SEMDSA guidelines for the management of type 2 diabetes. JEMDSA 2017;22(1):Supp1:S1-S196.
7. American Diabetes Association. Implications of the United Kingdom Prospective Diabetes Study. JEMDSA 2002;22(2):S15-S12. https://doi.org/10.2337/diacare.25.2007.S26.
8. Asztalos BF, Hat AS, Byerlee E, et al. Urban-rural differences in the prevalence of diabetes mellitus among 25 - 74 year-old adults of the Yangon Region, Myanmar: Two cross-sectional studies. BMJ Open 2013;3(8):e003208. https://doi.org/10.1136/bmjopen-2013-003208.
9. Shervani SI, Khan HA, Hlahla Y, Moodoo A, Sahlukh M. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. BMJ Insights 2016;11:95-104. https://doi.org/10.4137/INS.E159440.
10. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalised patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323(11):1061-1068. https://doi.org/10.1001/jama.2020.1585.
11. Xiaochun Li, Shuyun X, Ming Y, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Chin Immunol 2020;140(6):1101-1108. https://doi.org/10.1016/j.jaci.2020.04.006.
12. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.