FOXO3 mutation predicting gefitinib-induced hepatotoxicity in NSCLC patients through regulation of autophagy

Shaoxing Guan, Xi Chen, Youhao Chen, Guohui Wan, Qibiao Su, Heng Liang, Yunpeng Yang, Wenfeng Fang, Yan Huang, Hongyun Zhao, Wei Zhuang, Shu Liu, Fei Wang, Wei Feng, Xiaoxu Zhang, Min Huang, Xueding Wang, Li Zhang

KEY WORDS
Gefitinib; Hepatotoxicity; Pharmacometabolomic; Pharmacokinetics; Pharmacogenomics; FOXO3; Autophagy

Abstract Hepatotoxicity is a common side effect for patients treated with gefitinib, but the related pathogenesis is unclear and lacks effective predictor and management strategies. A multi-omics approach integrating pharmacometabolomics, pharmacokinetics and pharmacogenomics was employed in non-small cell lung cancer patients to identify the effective predictor for gefitinib-induced hepatotoxicity and explore optional therapy substitution. Here, we found that patients with rs4946935 AA, located in Forkhead Box O3 (FOXO3) which is a well-known autophagic regulator, had a higher risk of hepatotoxicity than those with the GA or GG variant (OR = 18.020, 95%CI = 2.473 to 459.1784, P = 0.018) in a gefitinib-concentration dependent pattern. Furthermore, functional experiments identified that rs4946935_A impaired the expression of FOXO3 by inhibiting the promoter activity, increasing the
1. Introduction

The progression-free survival of non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR)-
activating mutation has been significantly prolonged due to the
application of tyrosine kinase inhibitors (TKIs)1,2, such as gefitinib. Gefitinib is widely used in NSCLC patients in China and other
developing regions due to its definite efficacy, good availability
and affordability. However, hepatotoxicity is a common side effect
of gefitinib with a more than 50% occurrence in clinical reports 1-12.
According to the WJTOG3405 study 2, 27.6% patients suffering
severe hepatotoxicity (grade ≥3) from gefitinib that necessitated
cessation of treatment 3. Meanwhile, the serum transaminase levels
of patients with gefitinib-induced hepatotoxicity elevated again
after gefitinib resumption 4, which may lead to dose reduction,
treatment interruption and even treatment failure.

Hepatotoxicity is a major safety concern in gefitinib treatment; howev-
er, the mechanism of gefitinib-induced hepatotoxicity remains a relatively under-investigated area 5-12. Usually, two aspects
are involved in drug-induced hepatotoxicity: one is the direct
cytotoxicity induced by xenobiotics or their reactive metabolites;
the other is associated with indirect toxicity via secondary im-
munoreactions 7. Several non-clinical experiments have been
conducted to investigate the possible mechanism of gefitinib-
induced hepatotoxicity. It was found that gefitinib concentrations
in liver was 10-fold higher than that in the circulation, which may
cause direct cytotoxicity 8,9. Meanwhile, reactive metabolites for-
ation was also observed in the liver cells and microsomes 10,11.
However, there remains a paucity of exploration in the role of
gefitinib concentration in hepatotoxicity and no metabolite
profiling has been depicted in NSCLC patients 12-14. Since several
reports have demonstrated the association between single nucle-
otide polymorphisms (SNPs) in cytochrome P450 (CYP) and
transporters and the susceptibility to gefitinib-induced hepato-
toxicity 15,16, the exposure of gefitinib or its metabolites may
contribute to gefitinib-induced hepatotoxicity. Therefore, quanti-
fication of gefitinib and its metabolites and analyzing the influence
of them on the incidence and severity of hepatotoxicity is of great
value in the investigation of predictors and mechanisms of
gefitinib-related hepatotoxicity.

Meanwhile, around half of patients were suffered liver injury
during treatment of gefitinib at recommended dosage and the time
period of development of liver injury induced by gefitinib was
1-23 months 6,17, indicated that host factors play a vital role in
gefitinib-induced liver injury. With the development of pharma-
cogenomics, it is known that genetic structure affects patients’
predisposition to drug-induced toxicities. Therefore, genes
directly or potentially involved in gefitinib-induced hepatotoxicity,
such as enzymes and transporters involved in gefitinib metabolism
and transportation, chemokines and factors in immune-mediated
reaction, pathways and regulators leading to liver cell death via
regulating autophagy, apoptosis and necrosis, are worth genoty-
ing. Mutations in these genes may play pivotal role in the vari-
ability of hepatotoxicity.

Therefore, we comprehensively explored the main plasma
metabolites of gefitinib in NSCLC patients using a targeted
metabolomics approach and investigated their effects on the liver
injury in this study. Meanwhile, in order to identify mechanistic
genetic biomarkers for gefitinib-induced hepatotoxicity, 194
genetic variants involving transporters, metabolic enzymes, immu-
nological and autophagy factors were analyzed in 180 NSCLC
patients to speculate into the mechanisms under gefitinib-induced
hepatotoxicity and provide more strategies to prevent or treat this
adverse effect.

2. Materials and methods

2.1. Patients and study design

This study was initiated in 2013 (NCT01994057). From
November 2013 to September 2018, a total of 180 NSCLC pa-
tients were enrolled in this study at Sun Yat-sen University Cancer
Center (Guangzhou, China). All patients enrolled were above 18
years with EGFR activating mutation. All patients received gefi-
tinib daily (250 mg) without any metabolism inhibitor or agonist.
Patients with abnormal liver function before the treatment of
gefitinib were excluded in this study. Two milliliters of peripheral
blood were collected immediately after one month of gefitinib
treatment. All samples were stored at −80 °C until analysis.
Hepatotoxicity was recorded and graded according to the Com-
mon Terminology Criteria for Adverse Events 4.0 19. The mea-
surements of alanine transaminase (ALT), aspartate
aminotransferase (AST), lactate dehydrogenase, total bilirubin,
and alkaline phosphatase were performed in laboratory. The study
was approved by the ethical committee of Sun Yat-sen University
Cancer Center (Guangzhou, China). The informed consents were
obtained from all patients enrolled in this study.

2.2. Cell line culture and reagents

LO2, a human fetal hepatocyte cell line 19, was widely used to
assay the hepatotoxicity in vitro 20,21. LO2 and SMCC7721 cell
lines were cultured in RPMI 1640 medium (GIBCO) containing
10% fetal bovine serum at 37 °C under a humidified atmosphere
with 5% CO2. M523595 (M1, Toronto Research Chemicals),
M537194 (G235, Toronto Research Chemicals), M387783 (G236,
Toronto Research Chemicals) and M605211 (M2, Nayuansu,
Shanghai, China), the main metabolites of gefitinib10, were ob-
tained from commercial companies. Gefitinib, erlotinib, hydrox-
ychloroquine (HCQ) and Baf-A1 were provided by Selleck

FOXO3 variant is a predictor for hepatotoxicity of gefitinib

3641

Agena MassARRAY System technique (Agena, CA, USA) was used to analyze the tag SNPs. HaploView 4.2 and analyzed by using a previously published method involving autophagy-related factors, were selected with significant associations and involved in transporters, metabolic enzymes, inflammatory, and immune responses. All 194 tag SNPs (Supporting Information Table S1), along with 10 controls, were genotyped using the Agena MassARRAY System technique (Agena, CA, USA).

2.4. DNA extraction and genotyping

DNA was extracted through TIANGEN Blood Genome Extraction Kit (TIANGEN, Beijing, China) based on the manufacturer’s instructions. All 194 tag SNPs (Supporting Information Table S1), involved in transporters, metabolic enzymes, inflammatory, immunological, and autophagy-related factors, were selected with significant associations. The DNA was extracted using the TIANGEN Blood Genome Extraction Kit (TIANGEN, Beijing, China) based on the manufacturer’s instructions.

2.5. Plasmid construction and cell transfection

Stable knock-out of Forkhead Box O3 (FOXO3) was accomplished by clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 systems with a small guide RNA (Supporting Information Table S2). FOXO3 (NM_201559) was constructed on pCDH1 plasmid. LO2 and SMCC7721 cells were transfected with Lipofectamine 3000 according to manufacturer’s instructions (Invitrogen, BSN, USA).

2.6. Cell survival assay

LO2 and SMCC7721 cells were used to assess direct cytotoxicity of gefitinib or erlotinib in vitro with Cell Counting Kit-8 (CCK-8; Invigentech, CA, USA) according to manufacturer’s instructions. Briefly, 5 × 10^4 cells/well were seeded into 96-well plates (Corning, NY, USA) and cultured overnight. The final concentrations of gefitinib were 3.125, 6.25, 12.5, 25, 50 and 100 μmol/L, respectively. The cell viability was assayed by CCK-8 based on manufacturer’s instructions after incubation for 72 h.

2.7. Western blot

Total protein was extracted from cells by using a RIPA Kit (Beyotime, China), separated on 10% SDS-PAGE gels and transferred to PVDF membrane (Millipore, Bedford, MA, USA) according to standard procedures. Anti-GAPDH (WB, 1:10000, ab181602) was purchased from Abcam (Cambridge, USA). Anti-FOXO3 (WB, 1:1000, 10849-1-AP) was obtained from Proteintech (Rosemont, USA). Anti-LC3B (WB, 1:1000, L7543) was purchased from Sigma–Aldrich (Missouri, USA).

2.8. Quantitative RT-PCR

Total RNA was isolated by using Trizol Reagent (Thermo Fisher, USA) from cells or patients’ samples according to the manufacturer’s instructions. The total RNA was reversely transcripted into cDNA with the PrimeScript RT Reagent Kit (RR036A, Takara, Japan) and followed quantitative RT-PCR by using SYBR Green Master Mix (RR820A, Takara, Japan) in 7500 apparatus (Applied Biosystems, USA). The primers for RT-PCR were listed in Table S4.

2.9. Luciferase reporter assay

We generated the reporter plasmids by inserting a 135-bp region into the GV272 promoter vector (GENCHEM, Shanghai, China) for FOXO3_rs4946935_G of the major allele and FOXO3_rs4946935_A of the minor allele (Table S1). The activity of luciferase was detected by the Dual Luciferase Reporter Assay System (Promega, WI, USA). The expression efficiency was analyzed by ratios of firefly luciferase activity value and Renilla luciferase activity value.

2.10. Transmission electron microscopy

For transmission electron microscopy, cells were fixed with 2.5% glutaraldehyde (pH 7.3) in 4 °C for 12 h. Cell suspension was centrifuged in 4 °C for 5 min and fixed with 1% glutaraldehyde. The cells were stained with plumbous nitrate and uranyl acetate before examined under a JEM-1230 Transmission Electron Microscope (JEOL, Tokyo, Japan).

2.11. Statistical analysis

All statistical analyses were performed in R 3.6.0 software and GraphPad 7.0 (CA, USA) with appropriate statistical methods. The association between gefitinib/metabolites and hepatotoxicity/clinical confounders was analyzed in ggpur 0.4.0 and visualized with ggplot2 3.3.3. The association between SNPs and hepatotoxicity was analyzed by SNPassoc 2.0.2. The multivariable logistic regression, 95% confidence intervals (CIs) and odds ratios (ORs) were conducted with packages glmnet 3.0.2. All reported P values are two-sided, and no adjustment has been made for multiple comparisons.

3. Results

3.1. Patients’ characteristics

A total of 180 patients were enrolled between November 2013 and September 2018 in Sun Yat-sen University Cancer Center. The characteristics of enrolled patients at baseline were shown in Table 1. The 180 subjects had a median age of 57 years old, including 111 (61.7%) females and 69 (38.3%) males. Multiple subjects developed gefitinib-induced hepatotoxicity. Cumulatively, 87 patients (48%) suffered from at least grade 1 hepatotoxicity and 45 patients (25%) developed grade 2 hepatotoxicity (Fig. 1A). No statistical significance was found between gefitinib-induced hepatotoxicity and clinical confounders (Supporting Information Table S3).

3.2. Association between hepatotoxicity and concentrations of gefitinib/metabolites

The concentrations of gefitinib and its four metabolites were all available for 180 patients (Table 1). As is shown in Fig. 1B–F, no analyte was associated with gefitinib-induced hepatotoxicity,
indicating that in the general subjects, concentration monitoring cannot predict hepatotoxicity induced by gefitinib.

3.3. FOXO3 variant (G>A rs4946935) was an independent risk factor for gefitinib-induced hepatotoxicity in a gefitinib concentration dependent pattern

Among 194 SNPs, only G>A rs4711998 in IL17, C>T rs4795896 in CCL11, G>A rs4946935 in FOXO3 and G>A rs12722604 in IL2RA were associated with gefitinib-induced hepatotoxicity by SNPassoc 2.0.2 with WGassociation analysis (Fig. 2A). For G>A rs4711998 (Fig. 2B), patients with GG genotype (76.2%) had a higher risk of gefitinib-induced hepatotoxicity than those with GA (43.1%) and AA (46.9%) genotypes (P = 0.024). For C>T rs4795896 (Fig. 2C), the hepatotoxicity in CC carriers (65.3%) was significantly higher than those in TC (42.1%) and CC carriers (41.7%) (P = 0.017). The percentage of gefitinib-induced hepatotoxicity were 51.6%, 38.7% and 90% for rs4946935 GG, GA and AA carriers (P = 0.0038), respectively (Fig. 2D). For G>A rs12722604 (Fig. 2E), patients with AG genotype (58.5%) had a higher risk of gefitinib-induced hepatotoxicity than those with GG (44.4%) and AA (45.5%) genotypes (P = 0.042).

To identify the risk factor for gefitinib-induced hepatotoxicity, multivariate logistic regression analysis was accomplished with clinical confounders, including sex, BSA, stages, EGFR mutation types and smoking status. As is shown in Fig. 2F, only G>A rs4946935 was significantly associated with gefitinib-induced liver injury. The AA carriers were more prone to develop hepatotoxicity than GG carriers, with the OR of 18.020 (95% CI = 3.3642 Shaoxing Guan et al.

3.4. rs4946935_A impaired the expression of FOXO3

G>A rs4946935 was one of the tagSNPs (Fig. 3A) selected by HaploView 4.2 and located in intron 3 of FOXO3 on chromosome 6 (Fig. 3B). To study whether rs4946935 affected the mRNA expressions of FOXO3, the associations were analyzed between the expression of FOXO3 and rs4946935 by expression quantitative trait loci according to Genotype Tissue Expression (GTEx) database. We found that rs4946935_A significantly impaired FOXO3 mRNA expression in human spleen and brain caudate (Fig. 3C). To further address the relationship between rs4946935 and FOXO3 mRNA levels in NSCLC, we have tested whether the variant have an impact on the levels of FOXO3 mRNA in patients. The results showed that FOXO3 levels in rs4946935 AA carriers were significantly lower than those in GA and GG carriers (Fig. 3D), suggesting that rs4946935 might be characterized as a functional variant. Since rs4946935 was located in the third intron of FOXO3, we hypothesized that the variant impaired expression of FOXO3 via suppressing the promotor activity. To investigate whether rs4946935_A has an impact on the promoter activity of FOXO3 in an allele-specific manner, relative luciferase activities of the rs4946935_A and rs4946935_G of FOXO3 were detected in LO2 cells. A significant reduction of luciferase activity was observed for rs4946935_A of FOXO3 compared to that for rs4946935_G (Fig. 3E, P = 0.0012), indicating that rs4946935_A impaired the expression of FOXO3 by inhibiting the promotor activity of FOXO3.

3.5. Overexpression of FOXO3 protected hepatocytes from cytotoxicity of gefitinib

To investigate the role of FOXO3 in gefitinib-induced hepatotoxicity, we conduct cell survival assay in FOXO3 knock out (KO) and -overexpression (OE) LO2 and SMCC7721 cells treated with gefitinib. The results showed that overexpression of FOXO3 in LO2 cells significantly increased the half maximal inhibitory concentration (IC50) of gefitinib (103.9 ± 0.884) versus 94.4 ± 0.884 mol/L, P < 0.0001; Fig. 3F–H), which was consistent with those in SMCC7721 cells (Supporting Information Fig. S2). Collectively, higher expression level of FOXO3 could be protective in hepatotoxicity under gefitinib culture.

3.6. Gefitinib-induced hepatotoxicity was facilitated by FOXO3 mutation via autophagy inhibition

To interrogate the downstream effects induced by FOXO3 in cells, the associations were analyzed between the expression of FOXO3 and autophagy-related genes in 226 liver samples according to GTEx database. As shown in Fig. 4A, FOXO3 was significantly correlated to the expressions of ATG3, ATG4A, ATG5, ATG7, ATG10, ATG12, ATG16L1 and MAPLC3B, implying that FOXO3 played a pivotal role on regulating autophagy in liver.

We further compared the expression of autophagy-related genes between FOXO3-KO and -OE in LO2 cells treated with

Table 1	Characteristic information of patients.
Variables	No. of patients (%)
Gefitinib (n = 180)	
Median age (range), year	57 (28–88)
Median height (range), cm	162.5 (150.0–181.0)
Median weight (range), kg	60.7 (38–94)
Median BSA (range), m²	1.68 (1.33–2.21)
Sex	
Male	69 (38.3)
Female	111 (61.7)
Smoking	
Never	150 (83.3)
Ever	30 (16.7)
Stages	
IIB	10 (5.6)
IV	170 (94.4)
EGFR mutation types	
19 del	102 (56.7)
21 L858R	72 (40.0)
Other	6 (3.3)
Gefitinib, mean ± SD, ng/mL	
M1*, mean ± SD, ng/mL	246.286 ± 141.988
M2*, mean ± SD, ng/mL	150.431 ± 122.246
G235*, mean ± SD, ng/mL	12.323 ± 7.341
G236*, mean ± SD, ng/mL	6.510 ± 4.765
G236*, mean ± SD, ng/mL	3.162 ± 0.884

*The metabolites of gefitinib.
gefitinib. As expected, the expressions of autophagy-related genes were up-regulated in cells with FOXO3 overexpression, while opposite expression pattern was observed in FOXO3 knockout cells \((P < 0.05, \text{Fig. 4B})\). Meanwhile, LC3-II/I expression in FOXO3-KO and -OE cells were measured as well. Our results showed that LC3-II/I expression level in FOXO3-KO was lower than that in -OE and -WT cells treated with gefitinib (Fig. 4C). In addition, overexpression of FOXO3 increased activity of autophagy and decreased the threshold of autophagy initiation as indicated by LC3-II/I expression level (Fig. 4C). Furthermore, transmission electron microscopy analysis revealed that the drop of autophagic activity in FOXO3-KO cells was underlined by a reduction of the number of autophagosomes after incubation with gefitinib (Fig. 4D).

To study whether inhibition of autophagy affected the cytotoxicity of gefitinib in FOXO3-OE cells, we co-incubated HCQ or Baf-A1 and gefitinib in FOXO3-OE cells. By CCK8 assays, we found that inhibition of autophagy significantly suppressed proliferation of FOXO3-OE hepatocytes under incubation of gefitinib (Fig. 4E), and increased the cytotoxicity of gefitinib (Fig. 4F). Collectively, rs4946935_A impaired the expression of FOXO3, thus contributing to gefitinib-induced hepatotoxicity through autophagy inhibition.

3.7. G>A rs4946935 correlated with the expression of autophagy-related genes

To investigate whether G>A rs4946935 is correlated with the expression of autophagy-related genes in an allele specific manner, we carried out a correlation analysis between G>A rs4946935 and the autophagy-related genes mentioned above using data derived from GTEx database. Accordingly, results showed that the expression of autophagy-related genes in rs4946935_A carriers, except for ATG5 and ATG7, were lower compared to those in rs4946935_G carriers in human liver tissue (Supporting Information Fig. S3), indicating that G>A rs4946935 correlated with the expression of autophagy-related genes in liver. Taken together, these results implied that rs4946935_A induced down-regulation of autophagic activity by impairing expression of FOXO3.

3.8. G>A rs4946935 was disassociated with erlotinib-induced hepatotoxicity

As mentioned above, patients with gefitinib-induced hepatotoxicity may lead to treatment interruption or even treatment failure. Even though erlotinib itself have the potential to cause liver injury,
previous case reports and clinical practice revealed that erlotinib is a suitable treatment substitution for patients who are intolerant to gefitinib-induced liver injury, indicating that gefitinib and erlotinib do not share the same mechanism of liver injury. Therefore, we sought to explore whether G>A rs4946935 was associated with erlotinib-induced liver injury. Under appropriate inclusion and exclusion criteria presented in Supporting Information, 22 NSCLC patients treated with erlotinib were enrolled. Among them, 6 patients (27.3%) suffered at least grade 1 hepatotoxicity. And accordingly, G>A rs4946935 was not associated with erlotinib-induced hepatotoxicity. And the mechanism of erlotinib-induced liver injury might be different from that of gefitinib. To further investigate the role of FOXO3 in erlotinib-induced hepatotoxicity, we detected the effect of erlotinib on autophagy in LO2 cells with or without FOXO3 expression.

Figure 2 G>A rs4946935 was associated with gefitinib-induced hepatotoxicity. (A) Among 194 SNPs, only G>A rs4711998 in IL17, C>T rs4795896 in CCL11, G>A rs4946935 in FOXO3 and G>A rs12722604 in IL2RA were associated with gefitinib-induced hepatotoxicity; (B) G>A rs4711998, located in IL17A, was associated with gefitinib-induced hepatotoxicity; (C) C>T rs4795896, located in CCL11, was associated with gefitinib-induced hepatotoxicity; (D) G>A rs4946935, located in FOXO3, was correlated with gefitinib-induced hepatotoxicity; (E) G>A rs12722604, located in IL2RA, was correlated with gefitinib-induced hepatotoxicity; (F) G>A rs4946935, located in FOXO3, was significantly associated with gefitinib-induced hepatotoxicity by multivariate logistic regression; (G) Plasma AST/ALT level was significantly correlated with the concentration of gefitinib in FOXO3 AA carriers. *P < 0.05; **P < 0.01.
without FOXO3-KO or -OE. We found that the effects of erlotinib and gefitinib on autophagy were similar in LO2 cells (Fig. S4C), suggesting that the role of autophagy in TKIs-induced liver injury was difference. Collectively, our results are consistent with the previous clinical reports and erlotinib could be an appropriately and well-tolerated treatment option for patients for whom carrying rs4946935 AA.

4. Discussion

Gefitinib-induced hepatotoxicity sometimes leads to treatment failure and unnecessary medical costs in NSCLC patients with EGFR sensitive mutations. Up to date, the mechanisms behind gefitinib-induced hepatotoxicity is still unclear. Here, we performed pharmacometabolomic and pharmacogenomic
investigations to explore the possible clue and found that the mutation (rs4946935, G>A) in FOXO3, an autophagic regulator, was significantly correlated with gefitinib-induced hepatotoxicity. This variant significantly impaired the expression of FOXO3 and facilitated gefitinib-induced hepatotoxicity via autophagy inhibition which was verified in vitro. Meanwhile, in FOXO3 rs4946935 AA carriers, the plasma level of AST/ALT displayed a gefitinib-concentration dependent pattern, indicating that a reduced dosage of gefitinib may result in safe and successful control in rs4946935 AA carriers. Furthermore, consistent with clinical practice, rs4946935 was not a common predictor in gefitinib- and erlotinib-induced hepatotoxicity validated in another 22 NSCLC patients.

Whether the hepatic toxicity is gefitinib/its metabolites concentration-dependent is still unclear. Although several pre-clinical studies found that gefitinib-induced hepatotoxicity is direct hepatocyte cytotoxicity and reactive metabolites formation in the liver cells and microsomes have been found, the relationship between concentration and effect was inconsistent with those in clinical investigations. Additionally, several studies found that common SNPs in CYP3A4, CYP2D6, ABCB1 and ABCG2 did not affect hepatotoxicity, implying that exposure of gefitinib/its metabolites did not influence the toxicity. In this study, no correlation between the concentrations of gefitinib and its metabolites and hepatotoxicity were found in general sample, but in patients carrying FOXO3 rs4946935 AA, the plasma levels of AST and ALT were gefitinib-concentration dependent. In contrast, reduced dosing of gefitinib resulted in safe and successful control in a patient who once developed hepatotoxicity. All these data indicated that reduced dosing of gefitinib might result a safe and successful control in rs4946935 AA carriers.
Autophagy is a cell defense process against xenobiotics and universally participates in drug-induced hepatotoxicity29-32. Autophagy protects hepatocytes from cytotoxicity through clearing reactive metabolites protein adducts43, eliminating the damaged mitochondria33 and maintaining the turnover of endoplasmic reticulum in liver cells34. FOXO3, an autophagic regulator serving as a surveillance mechanism, detects and corrects self-defense process in skeletal muscles35 and bones36, especially in liver37-39. Ni et al.40 found that FOXO3 mediated liver cell self-defense by up-regulating autophagy-related genes expression, including ATG5 and ATG6 (Bclinc 1), protecting hepatocytes from alcohol-induced steatosis and liver injury in mice. In our study, the protective effect of FOXO3 was verified in FOXO3-OE LO2 and SMCC7721 cells treated with gefitinib. Knockout of FOXO3 decreased autophagic activity and the number of autophagosomes and facilitated cytotoxicity while overexpression of FOXO3 strongly upregulated the expression of autophagy-related genes, including ATG3, ATG4A, ATG5, ATG7, ATG10, ATG12, ATG14, ATG16L1 and MAPLC3B. In mammalian cells, ATG7 and ATG10 were activated once autophagy was upregulated, which initiated the formation of the ATG16L1-ATG5-ATG12 elongation complex41. ATG7, ATG4 and ATG3 participated in the cleavage and lipidation of LC3 to generate the LC3-I and then LC3-II42, which facilitated the forming phagophore. In this study, we found that FOXO3 rs4946935AA was correlated with lower expression of some ATG factors, such as ATG10, which is a reflective of a relatively lower autophagic activity level compared to GG carriers. Since cells with deficient autophagy, are primed to undergo apoptosis43, FOXO3 rs4946935 AA could facilitate gefitinib-induced hepatocyte cell death via autophagy inhibition and apoptosis. Notably, among the patients enrolled, a considerable amount of rs4946935 GA and GG carriers suffered hepatotoxicity from gefitinib as well, suggesting other factors involved in gefitinib-induced liver injury besides FOXO3 rs4946935 AA. Collectively, rs4946935_A was a risk factor of gefitinib-induced hepatotoxicity through inhibiting FOXO3-dependent autophagy.

We and Luo et al.20 back-to-back independently found autophagy was involved in gefitinib-induced hepatotoxicity. Luo et al. found that PLK1, an autophagic regulator, facilitated gefitinib-induced hepatotoxicity by increasing the autophagic activity. However, in their experiment, no alteration of FOXO3 level was found in LO2 cells after gefitinib incubation. Suspected reason behind this phenomenon is that, in Luo et al.’s study, samples were collected 24 h after incubation of gefitinib35, while FOXO3 expression change and regulation may happen within 24 h. Since when basal autophagy is inhibited, like patients carrying FOXO3 deficit mutation, FOXO3, at the center of a homeostatic feedback loop, poises cells for suppression of autophagy following cytokine deprivation12. In addition, our recent results showed that the variants in PLK1 were not associated with liver injury induced by gefitinib in NSCLC patients (Supporting Information Fig. S5). Certainly, our findings need more prospective clinical trials to verify.

Indeed, hepatotoxicity was the main reason of drug switching in EGFR–TKI treatments44. In previous clinical case reports, several case studies suggested that erlotinib was a well-tolerated and effective alternative treatment option for patients suffered from gefitinib-induced hepatotoxicity28,29, implied that the mechanisms of hepatotoxicity induced by gefitinib/erlotinib might be different. In the study, we identified G>A rs4946935 as a specific indicator only for gefitinib-induced but not for erlotinib-induced hepatotoxicity. And erlotinib-induced liver injury was independent on the levels of FOXO3 \textit{in vitro} as well, partially explaining the clinical puzzle that erlotinib can be served as a substitute for those who are intolerant to gefitinib even though both of them target EGFR. The differences of the chemical structure or the metabolic pathways of gefitinib and erlotinib may be the one of possible reasons of these differences between gefitinib- and erlotinib-induced hepatotoxicity. For example, erlotinib was identified as an inhibitor to CYP3A4 and CYP3A5 in a time- and concentration-dependent manner \textit{via} the glutathione-reactive metabolites45, while gefitinib inhibited BCRP and P-gp46. Although inhibition of \textit{EGFR} signaling induces autophagy in tumor cells47, erlotinib48 stimulated mitochondrial-dependent apoptosis and necrosis in liver cells, which was not observed in hepatocyte treated with gefitinib through transmission electron microscopy analysis. Collectively, because they do not share a common mechanism in drug-induced hepatotoxicity, erlotinib might be an appropriate option for patients with rs4946935 AA who discontinued gefitinib treatment due to hepatotoxicity.

5. Conclusions

This study is the largest clinical cohort to investigate the predictors and mechanisms of gefitinib-induced hepatotoxicity and to explore optional therapy substitution with a multi-omics approach. Our results indicate that the variation of FOXO3 is a potential and mechanistic biomarker for gefitinib-induced hepatotoxicity through its regulation of autophagy. Erlotinib rather than gefitinib might be a rational treatment option for patients carrying rs4946935 AA. Hopefully, through considering genotype profile of patients, personalized strategies could be adopted to prevent gefitinib-induced hepatotoxicity.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81973398, 81473283, 81730103, 81573507 and 82020108031), The National Key Research and Development Program (Grant Nos. 2017YFC0909300 and 2016YFC0905000, China), Guangdong Provincial Key Laboratory of Construction Foundation (Grant No. 2017B030314030, China), Science and Technology Program of Guangzhou (201607020031, China), National Engineering and Technology Research Center for New drug Druggability Evaluation (Seed Program of Guangdong Province (No. 2017B09093004, China), the 111 project (Grant: B16047, China), China Postdoctoral Science Foundation (Grant Nos. 2019M66324, 2020M683140 and 2020M683139). The authors are grateful to Kornel Tomczyk (Faculty of Foreign Language Education, Sun Yat-sen University, Guangzhou, China) and Keyue Wang (Faculty of Life science and medicine, King’s College of London, UK) for their help with the language review of this article. We would also like to thank the patients who gracefully donated their samples and time to this project.

Author contributions

Data curation, Yan Huang and Wei Feng; Formal analysis, Shu Liu and Wenfeng Fang; Funding acquisition, Min Huang and Li Zhang; Methodology, Shaoxing Guan and Xi Chen; Project administration, Min Huang and Li Zhang; Software, Wei Zhuang, Youhao Chen and Yunpeng Yang; Supervision, Xueding Wang; Validation, Shaoxing Guan and Heng Liang; Visualization,
Hongyun Zhao, Guohui Wan; Writing—original draft, Shaoxing Guan and Xi Chen; Writing—review & editing, Shaoxing guan, Xiaoxu Zhang, Fei wang, Qibiao Su, and Xueding Wang.

Conflicts of interest

The authors report no conflicts of interest, financial or otherwise.

Appendix A. Supporting information

Supporting data to this article can be found online at https://doi.org/10.1016/j.apsb.2022.02.006.

References

1. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isohe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010;362:2380–8.

2. Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 2010;11:121–8.

3. Takeda M, Okamoto I, Fukuoka M, Nakagawa K. Successful treatment with erlotinib after gefitinib-related severe hepatotoxicity. J Clin Oncol 2010;28:e273–4.

4. Ho C, Davis J, Anderson F, Bebb G, Murray N. Side effects related to cancer treatment: CASE 1. Hepatitis following treatment with gefitinib. J Clin Oncol 2005;23:8531–3.

5. Shi Q, Yang X, Ren L, Mattes WB. Recent advances in understanding the hepatotoxicity associated with protein kinase inhibitors. Expert Opin Drug Metab Toxicol 2020;16:217–26.

6. Lee KW, Chan SL. Hepatotoxicity of targeted therapy for cancer. Expert Opin Drug Metab Toxicol 2016;12:789–802.

7. Holt MP, Ju C. Mechanisms of drug-induced liver injury. AAPS J 2006;8:E48–54.

8. Li X, Kamenecka TM, Cameron MD. Bioactivation of the epidermal growth factor receptor inhibitor gefitinib: implications for pulmonary and hepatic toxicities. Chem Res Toxicol 2009;22:1736–42.

9. Zhang J, Ren L, Yang X, White M, Greenhaw J, Harris T, et al. Cytotoxicity of 54 FDA approved small molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett 2018;291:138–48.

10. McKillop D, McCormick AD, Miles G, Phillips PJ, Pickup KJ, Bashby N, et al. In vitro metabolism of gefitinib in human liver microsomes. Xenobiota 2004;34:983–1000.

11. Liu X, Lu Y, Guan X, Dong B, Chavan H, Wang J, et al. Metabolomics reveals the formation of aldehydes and iminium in gefitinib metabolism. Biochem Pharmacol 2015;97:111–21.

12. Kawamura T, Imamura CK, Kenuotsu H, Taira T, Omori S, Nakashima K, et al. Evaluation of gefitinib systemic exposure in EGFR-mutated non-small cell lung cancer patients with gefitinib-induced severe hepatotoxicity. Cancer Chemother Pharmacol 2020;85:605–14.

13. Xin S, Zhao Y, Wang X, Huang Y, Zhang J, Guo Y, et al. The dissociation of gefitinib trough concentration and clinical outcome in NSCLC patients with EGFR sensitive mutations. Sci Rep 2015;5:12675.

14. Kobayashi H, Sato K, Niioka T, Takeda M, Okuda Y, Asano M, et al. Effects of polymorphisms in CYP2D6 and ABC transporters and side effects induced by gefitinib on the pharmacokinetics of the gefitinib metabolite, O-desmethyl gefitinib. Med Oncol 2016;33:57.

15. Takimoto T, Kijima T, Otani Y, Nonen S, Namba Y, Mori M, et al. Polymorphisms of CYP2D6 gene and gefitinib-induced hepatotoxicity. Clin Lung Cancer 2013;14:502–7.

16. Sugiyama E, Unemura S, Nomura S, Kiriti K, Matsumoto S, Yoh K, et al. Impact of single nucleotide polymorphisms on severe hepatotoxicity induced by EGFR tyrosine kinase inhibitors in patients with non-small cell lung cancer harboring EGFR mutations. Lung Cancer 2015;90:307–13.

17. Wang J, Wu Y, Dong M, He X, Wang Z, Li J, et al. Observation of hepatotoxicity during long-term gefitinib administration in patients with non-small-cell lung cancer. Anticancer Drugs 2016;27:245–50.

18. U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE). Version 4.0. Ent Vocab Serv; 2009 May 28. Available from: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/Archive/CTCAE_4.0_2009-05-29QuickReference_8.5x11.pdf.

19. Hu X, Yang T, Li C, Zhang L, Li M, Huang W, et al. Human fetal hepatocyte line, L-02, exhibits good liver function in vitro and in an acute liver failure model. Transplant Proc 2013;45:695–700.

20. Luo P, Yan H, Du J, Chen X, Shao J, Zhang Y, et al. PLK1 (polo like kinase 1)-dependent autophagy facilitates gefitinib-induced hepatotoxicity by degrading COX6A1 (cytochrome c oxidase subunit 6A1). Autophagy 2021;17:3221–37.

21. Ahmed MM, Wang T, Luo Y, Ye S, Wu Q, Guo Z, et al. Aldo-keto reductase-7A protects liver cells and tissues from acetaminophen-induced oxidative stress and hepatotoxicity. Hepatology 2011;54:1322–32.

22. McKillop D, Hutchison M, Partridge EA, Bushby N, Cooper CM, Clarkson-Jones JA, et al. Metabolic disposition of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in rat, dog and man. Xenobiotica 2004;34:917–34.

23. Guan S, Chen X, Wang F, Xin S, Feng W, Zhu X, et al. Development and validation of a sensitive LC–MS/MS method for determination of gefitinib and its major metabolites in human plasma and its application in non-small cell lung cancer patients. J Pharm Biomed Anal 2019;172:364–71.

24. Xin S, Zhao Y, Wang C, Huang Y, Zhuang W, Ma Y, et al. Polymorphisms of NF-κB pathway genes influence adverse drug reactions of gefitinib in NSCLC patients. Pharmacogenomics J 2020;20:285–93.

25. Kijima T, Shimizu T, Nonen S, Furukawa M, Otani Y, Minami T, et al. Safe and successful treatment with erlotinib after gefitinib-induced hepatotoxicity: difference in metabolism as a possible mechanism. J Clin Oncol 2011;29:e588–90.

26. Kobayashi H, Sato K, Niioka T, Miura H, Ito H, Miura M. Relationship among gefitinib exposure, polymorphisms of its metabolizing enzymes and transporters, and side effects in Japanese patients with non-small-cell lung cancer. Clin Lung Cancer 2015;16:274–81.

27. Ma Y, Xin S, Huang M, Yang Y, Zhu C, Zhao H, et al. Determinants of gefitinib toxicity in advanced non-small cell lung cancer (NSCLC): a pharmacogenomic study of metabolic enzymes and transporters. Pharmacogenomics J 2017;17:325–30.

28. Seki N, Uematsu K, Shibakuki R, Eguchi K. Promising new treatment schedule for gefitinib responders after severe hepatotoxicity with daily administration. J Clin Oncol 2006;24:3213–4.

29. Wandrer F, Frangez Z, Liebig S, John K, Vondran F, Wedemeyer H, et al. Autophagy alleviates amiodarone-induced hepatotoxicity. Arch Toxicol 2020;94:3527–39.

30. Wang L, Wei W, Xiao Q, Wang Y, Ci X. Farrerol ameliorates APAP-induced hepatotoxicity via activation of Nrf2 and autophagy. Int J Biol Sci 2019;15:786–99.

31. Zheng XY, Yang SM, Zhang R, Wang SM, Li GB, Zhou SW. Emodin activates Nrf2 and autophagy against cell apoptosis through the PI3K/AKT/mTOR pathway in primary rat and human hepatocytes. Drug Des Devel Ther 2019;13:3171–80.

32. Ni HM, Bockus A, Boggess N, Jaeschke H, Ding WX. Activation of autophagy protects against acetaminophen-induced hepatotoxicity. Hepatology 2012;55:222–32.

33. Ni HM, McGill MR, Chao X, Du K, Williams JA, Xie Y, et al. Removal of acetaminophen protein adducts by autophagy protects against acetaminophen-induced liver injury in mice. J Hepatol 2016;65:354–62.
34. Chen ZH, Wu YF, Wang PL, Wu YP, Li ZY, Zhao Y, et al. Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium. *Autophagy* 2016;12:297–311.
35. Shan S, Shen Z, Song F. Autophagy and acetaminophen-induced hepatotoxicity. *Arch Toxicol* 2018;92:2153–61.
36. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, et al. FoxO3 controls autophagy in skeletal muscle *in vivo*. *Cell Metab* 2007;6:458–71.
37. Pi H, Li M, Zou L, Yang M, Deng P, Fan T, et al. AKT inhibition-mediated dephosphorylation of TFE3 promotes overactive autophagy independent of MTORC1 in cadmium-exposed bone mesenchymal stem cells. *Autophagy* 2019;15:568–79.
38. Liu YM, Lv J, Zeng QL, Shen S, Xing JY, Zhang YY, et al. AMPK activation ameliorates *α*-GalN/LPS-induced acute liver failure by upregulating Foxo3A to induce autophagy. *Exp Cell Res* 2017;358:335–42.
39. Manley S, Ding W. Role of farnesoid X receptor and bile acids in alcoholic liver disease. *Acta Pharm Sin B* 2015;5:158–67.
40. Zhong C, Pu LY, Fang MM, Gu Z, Rao JH, Wang XH. Retinoic acid receptor α promotes autophagy to alleviate liver ischemia and reperfusion injury. *World J Gastroenterol* 2015;21:12381–91.
41. Ni HM, Du K, You M, Ding WX. Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity. *Am J Pathol* 2013;183:1815–25.
42. Tsapras P, Nezis IP. Caspase involvement in autophagy. *Cell Death Differ* 2017;24:1369–79.
43. Fitzwalter BE, Thorburn A. FOXO3 links autophagy to apoptosis. *Autophagy* 2018;14:1467–8.
44. Sakata Y, Kawanura K, Shingu N, Hiroshige S, Yasuda Y, Eguchi Y, et al. The effects of switching EGFR-TKI treatments for non-small cell lung cancer because of adverse events. *Asia Pac J Clin Oncol* 2020;16:e113–7.
45. Li X, Kamenecka TM, Cameron MD. Cytochrome P450-mediated bioactivation of the epidermal growth factor receptor inhibitor erlotinib to a reactive electrophile. *Drug Metab Dispos* 2010;38:1238–45.
46. Duckett DR, Cameron MD. Metabolism considerations for kinase inhibitors in cancer treatment. *Expert Opin Drug Metab Toxicol* 2010;6:1175–93.
47. Tan X, Thapa N, Sun Y, Anderson RA. A kinase-independent role for EGF receptor in autophagy initiation. *Cell* 2015;160:145–60.
48. Chen X, Yang S, Pan Y, Li X, Ma S. Mitochondrial pathway-mediated apoptosis is associated with erlotinib-induced cytotoxicity in hepatic cells. *Oncol Lett* 2018;15:783–8.