Respiratory issues in patients with multiple sclerosis as a risk factor during SARS-CoV-2 infection: a potential role for exercise

Omid Razi1 · Ana Maria Teixeira2 · Bakhtyar Tartibian3 · Nastaran Zamani4 · Beat Knechtle5,6

Received: 27 January 2022 / Accepted: 4 November 2022 / Published online: 21 November 2022
© The Author(s) 2022

Abstract
Coronavirus disease-2019 (COVID-19) is associated with cytokine storm and is characterized by acute respiratory distress syndrome (ARDS) and pneumonia problems. The respiratory system is a place of inappropriate activation of the immune system in people with multiple sclerosis (MS), and this may cause damage to the lung and worsen both MS and infections. The concerns for patients with multiple sclerosis are because of an enhance risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The MS patients pose challenges in this pandemic situation, because of the regulatory defect of autoreactivity of the immune system and neurological and respiratory tract symptoms. In this review, we first indicate respiratory issues associated with both diseases. Then, the main mechanisms inducing lung damages and also impairing the respiratory muscles in individuals with both diseases is discussed. At the end, the leading role of physical exercise on mitigating respiratory issues inducing mechanisms is meticulously evaluated.

Keywords Multiple sclerosis · COVID-19 · Exercise training · Renin–angiotensin system · Respiratory system · Immune system

Abbreviations

ACE2 Angiotensin-converting enzyme 2
Ang I Angiotensinogen I
Ang II Angiotensin II
ARDS Acute respiratory distress syndrome
AT1R Angiotensin type 1 receptor
Ca2+ Calcium
CNS Central nervous system
COVID-19 Coronavirus disease-2019
MasR Mas receptor
MS Multiple sclerosis

Omid Razi
omid.razi.physio@gmail.com

Ana Maria Teixeira
ateixeira@fcdef.uc.pt

Bakhtyar Tartibian
ba.tartibian@gmail.com

Nastaran Zamani
na_zamani2000@yahoo.com

Beat Knechtle
beat.knechtle@hispeed.ch

1 Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran

2 Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal

3 Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran

4 Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran

5 Institute of Primary Care, University of Zurich, Zurich, Switzerland

6 Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland
Introduction

The respiratory system, anatomically and functionally, is designed to provide and eliminate oxygen and carbon dioxide (CO₂), respectively, or simply viewed as a gas exchange system [1, 2]. To do so, the respiratory cycle consists of inspiration and expiration which are performed by the help of several muscles. All components of respiratory system, such as pleurae, airway, and vessels, are innervated by afferent and efferent of autonomic nervous system, sympathetic, and parasympathetic nerves especially the vagal nerve. Breath is an autonomic and rhythmic action that is produced by networks of neurons originating from the brainstem, known as pons and medulla oblongata. These neuronal networks enervate thoracic and abdominal muscles. Three main neuronal groups are involved in monitoring the breath rhythm and its duration: (1) inspiratory neurons in dorsomedial medulla, (2) inspiratory and expiratory neurons in ventrolateral medulla, and (3) inspiratory and expiratory discharging neurons in rostral pons. The important characteristic of this system is its ability to modulate breathing patterns in response to changing of external and internal environments [1, 3, 4].

The majority of components of the respiratory system are impaired in some neurological diseases, such as multiple sclerosis (MS) and Alzheimer disease (AD) [5, 6], and this condition may impose further endangering of these individuals during respiratory virus diseases, like the worldwide coronavirus disease-2019 (COVID-19) pandemic. In this context, physicians most often solicit the use of inhaled steroids and also antibiotic medications [7]. Respiratory pathogenesis of both COVID-19 and MS is extensively referred for improper activation of the immune system, renin–angiotensin system (RAS) dysfunction, the existence of some plaques in brain areas monitoring ventilation skeletal muscles [8–13]. Exercise training as a prophylactic or modifying intervention may impose further endangering of these individuals during respiratory virus diseases, like the worldwide coronavirus disease-2019 (COVID-19) pandemic. In this context, physicians most often solicit the use of inhaled steroids and also antibiotic medications [7]. Respiratory pathogenesis of both COVID-19 and MS is extensively referred for improper activation of the immune system, renin–angiotensin system (RAS) dysfunction, the existence of some plaques in brain areas monitoring ventilation skeletal muscles [8–13]. Exercise training as a non-pharmacological intervention by several mechanisms, such as improving the immune responses, converting negative RAS axis to positive one, alleviating the plaque progression, can largely mitigate respiratory issues [14]. Thus, the purposes of this narrative review are to meticulously investigate respiratory issues associated with COVID-19 and MS diseases and also better understand the cellular and molecular mechanisms by which neuro-inflammatory autoimmune disease influences lung immunity. Finally, shed light on the positive roles of regular exercise training as a prophylactic or modifying intervention in mitigating such problems is another outstanding aim of this study.

Respiratory dysfunctions common road between coronavirus and multiple sclerosis

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third coronavirus disease originated from animal and it belongs to beta-coronaviruses which induce a disease known as novel COVID-19 [15, 16]. As inferred naturally from the name of the virus, this disease is associated with respiratory infections [17]. In most cases, the disease is without any respiratory signs; however, all sufferers may later manifest different degrees of lung disorders due to damages in lung tissue [18].

Acute respiratory distress syndrome (ARDS) and pneumonia are the common clinical manifests in patients with severe COVID-19 [18–21]. ARDS is clinical disorder associated with systemic inflammation and failure in multiple organs with a high mortality rate related to lung damage [22, 23]. Hence, COVID-19 is associated with some disorders in lung tissue, including airways, lung parenchyma, lung vessels, and neuromuscular disruptions [24].

This virus can infect several systems, including digestive, genitourinary, central nervous system (CNS), and respiratory systems [16, 25, 26]. During COVID-19 disease, the infected individuals may encounter some respiratory problems occurring orderly through this phases: cellular invasion and viral replication in the nasal cavity, replication in lung and immune system activation, pneumonia, ARDS, cytokine storm, and multi-organ failure [27–29]. Many interactive factors contribute to lung tissue damage and impaired respiratory muscles in both COVID-19 and MS diseases included activated immune system and its pro-inflammatory cytokines such as IFN-γ, TNF-α, and IL-1β [8–10, 14, 30–35], central demyelinated lesions/plaques formed in areas monitoring respiratory rhythm, and muscles induced by the function of the activated immune system [36–46], local, and systemic (soluble) imbalance in the RAS axis [12, 13, 47, 48] (Fig. 1).

Respiratory epithelium, especially ciliary airway epithelium, is the critical point of SARS-CoV-2 entering into the host since it expresses the highest levels of SARS-CoV-2 receptors, namely the angiotensin-converting enzyme 2 (ACE2) [49–51]. Epithelium serves as a barrier against pathogens and particles, preventing tissue damage through secreting mucosa and also mucociliary clearance [24]. Upon cell–virus crosstalk and consequent entering into ciliary nasal cells, SARS-CoV-2 travels to lower respiratory tracts (LRTs) and then triggers the extreme production of inflammatory cytokines and chemokines, such as IL-1, IL-6, IL-8, TNF-α, and -β, and monocyte chemoattractant protein 1 (MCP-1). These inflammatory mediators recruit leukocytes to the infectious site [52–54]. Increased cytokine levels can devastate airways and alveolar epithelium by triggering the cells apoptotic process and formation of reactive oxygen species (ROS) exacerbating the pneumonia severity. Alveolar damage remarkably impairs gas exchange and leads to respiratory failure [24, 55, 56]. In more detail, for example, TNF-α has an important role in regulating neutrophils influx following lung damage [23, 57]. Neutrophils release toxic oxygen metabolites such as superoxide anion, hydroxyl...
radicals, and hydrogen peroxide which cause cellular oxidative damage in pulmonary endothelium, parenchymal cells, and inflammatory edema [58–60].

Infiltrated neutrophils, therefore, secrete neutrophil extracellular traps (NETs) to control lung infection, but their high production is associated with lung damage by turning the alveolar macrophages into the pro-inflammatory M1 phenotype [61]. The main mechanisms for such transformative phenotype ascribed to the NETs include activation of signaling pathways in pulmonary cells include extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38, and nuclear factor-kappa B (NF-κB) proteins [62]. Besides, the proteins and dsDNA components located in NETs may act as critical autoantigen sources to trigger local inflammatory cascades [63]. Of note, infectious and damaged epithelium attracting the pro-inflammatory cytokines is associated with reduced secretion of surfactant proteins of A and B [64], resulting in alveolar collapse. It is important to note that COVID-19 often initiates with symptoms akin to influenza [27]. Coronaviruses are the second reason for induced common cold [65]. As mentioned, SARS-CoV-2 can worsen the conditions of some patients with asthma, since it causes infection of the upper and lower respiratory tracts [65–67]. Epithelium of upper respiratory tract needs 3 weeks to return to the previous normal level [68].

Endothelial dysfunction is another lung pathophysiology of COVID-19 disease. In these patients, extended inflammatory cytokine levels will induce some changes or damages in smooth muscle cells of lung vessels including phenotypic switching from the quiescent contractile phenotype to a proliferative, migratory, and synthetic phenotype which is associated with vessel thickening and also reticular small vessels [69, 70]. It has been reportedly illustrated that endothelial cells suffer apoptosis [71]. Increased permeability of lung vessels is another problem that patients with COVID-19 encounter, which is corroborated by alveolar hemorrhage and fibrin deposition [24]. Thus, these disorders in lung microvessels can impair vascular perfusion [71, 72]. Additionally, regarding the expression of ACE2 on microvascular endothelial cells and vascular smooth muscles, SARS-CoV-2 disrupts the relationship between endothelium and smooth...
muscles which results in disordered vasodilation and vasoconstriction as well as disorders in gas exchange [73]. It has been documented that some central autoimmune diseases are susceptible to other diseases involving immune system [74, 75]. MS is a chronic central disease characterized by inflammatory demyelination. In both patients with MS and its animal model, experimental autoimmune encephalomyelitis (EAE) is initiated with reactivation of T cells crossing the blood–brain barrier (BBB) into the CNS [76]. Patients with MS have a reduction in clearing virus from their lungs that in part stem from lower efficiency of their anti-viral immune responses [74]. MS patients during contracting respiratory viral infection such as influenza and pneumonia experience higher morbidity and severity than individuals without MS disease [77–80]. Thus, MS disease can exacerbate the expansion of respiratory infection that may partly refer to the regulation of inflammatory characteristics of T cells in MS patient’s lungs [43]. Interestingly, it has also been revealed that lung is involved in myelin-reactive T cells becoming pathogenic [43]. As a natural procedure, the mobilization of innate (e.g., natural killer; NK) and acquired immune (CD8+ T cells) system is cardinal strategy to control the viral replacing and to clear efficiently the respiratory viruses through releasing an anti-viral pro-inflammatory cytokines, like interferon (IFN)-γ [81, 82]. A report documented that EAE animals with respiratory infection lowers the production of effector cells, both innate and acquired, and IFN-γ, suggesting a reduction in the immune response to infection in patients with MS [82]. MS and animal model of MS are also associated with mobilizing the extensive population of myeloid-derived suppressor cells (MDSCs), especially their CD11b+ subunit, from bone marrow, blood, spleen, and CNS into the lungs. These myeloid cells inhibit the proliferation of CD8+ T cells and consequently their IFN-γ production in lungs [74, 78, 83]. MDSCs use various mechanisms to mitigate the immune response including production of IL-10 and synthesis of nitric oxide (NO) through inducible nitric oxide synthase (iNOS) [83–85]. Therefore, MS patients infected with respiratory viruses present increased viral titers, lung pathology, and consequent increases in their mortality. If the patients with MS survived from respiratory infection, their hospitalization lasted 2 times more than individuals without MS and only infected with respiratory viruses, since patients with MS are exposed to extension of relapses after infection [86–89]. It is also reported that the susceptibility of MS patients to respiratory infections may be elevated during relapsing–remitting MS. It has been suggested that patients with MS during the remission phase show a reduction in their innate immune cells. Of these cells, granulocytes (neutrophil, eosinophil, basophil) are the most important to fight against viral infections [90–93]. As a part of immune response, granulocytes migrate to the infectious site, in this case the lungs, and consequently secret effector molecules, such as histamine, cytokines, chemokines, enzymes, and growth factors [94, 95]. It has been shown that the number of granulocytes, especially neutrophils, is lower during the remitting phase and that may lead to diminished IFN-γ production, a stimulating factor of neutrophils or granulocytes, by Th1 cells [90, 96]. The other pathway that may promote the susceptibility of patients with MS to infectious diseases is immunosenescence, which is associated with progressively diminished number of naïve T cells, originated from structurally and functionally thymic involution [97, 98]. The age range of 20 to 40 is a benchmark age range where the majority of individuals may be afflicted with MS disease and live with this disease for a long time even until death [99]. The events that take place in the immunosenescence process result in poorer immune responses in the old patients with MS [100]. Thymus is a lymphoid organ, where the T cells mature, and is a main source for circulating T cells. The thymic size is progressively elevated until puberty and then undergone involution with its parenchymal tissue replaced by fat [98, 101]. Respiratory viruses are leading causes of acute respiratory infections every year affecting mainly older patients with MS and the elderly. Up to date, several reports have described the association between respiratory viral infections with neurological symptoms [102]. Thus, in MS patients, respiratory viruses have placed themselves as relevant agents responsible for CNS pathologies. Aged MS patients who are in advanced phase of the disease do not have enough CD8+ T cells in their circulation and consequently in their lung tissue to fight against viral antigens and increased infectious risk [98] exacerbating the neurological signs of the patients [103–106]. Lungs are inflamed during respiratory infection, which is associated with increased upregulation of a chemokine, namely CCL20, to attract Th17 cells into the lungs. Through increased gene expression encoding chemokine receptors and integrin receptors on T cells, these immune cells which converted to the pathogenic phenotype are licensed to enter circulation [43, 107]. Circulating pathogenic T cells then increase BBB permeability and lesion load and volume in brain and spinal cord [108], which is equal to worsening the clinical signs of MS patients.

Reduced physical activity during lockdowns, and especially hospitalization, causes respiratory muscle wasting and impaired skeletal muscles that could lead to sarcopenia and cachexia [109–112]. Using mechanical ventilation for several weeks is another factor involved in structural and functional impairment of respiratory muscles [111, 113, 114]. Also, diaphragm, a key inspiratory muscle, during mechanical ventilation is put in an unloaded condition which can be accompanied with atrophy and consequently weakness. Brainstem centers monitoring respiratory rhythm have been documented to switch off sending efferent impulses to respiratory muscles amid long-term usage of mechanical
ventilation [115–117]. In support of this claim, reports disclosed that COVID-19 patients during their stay in intensive care unit (ICU) wards experienced diaphragm impairment and a decrease in its thickness [116, 118]. Also, an atrophy in diaphragm fibers and a reduction in its contractile function have also been reported [119, 120]. MS patients also experience such inactivity which is highly similar to those who are bedridden [121]. Inactivity-induced influence on respiratory muscles may also be ascribed to production of ROS by the pro-inflammatory cytokine storm and activated macrophages and monocytes. Reactive oxygen species and resultant oxidative stress increase the apoptosis and proteolytic processes through the expression of caspase-3 and the activation of the ubiquitin–proteasome system [119, 120, 122–127]. The ubiquitin–proteasome system is activated by hyperinflammation conditions as observed in both COVID-19 and MS diseases [128–130]. The ubiquitin system, which is dependent on ATP, is the main mechanism responsible for muscle atrophy [131, 132]. Pro-inflammatory cytokines induce muscle atrophy, particularly in respiratory muscles, through the following additional mechanisms: inhibited protein synthesis due to the changes in anabolic hormones such as insulin-like growth factor 1 (IGF-1), the mitigating function of satellite cells, attenuated expression of myoblast determining protein 1 (MyoD), downregulation of myosin heavy chain (MHC) of slow twitch fibers and increased degeneration and changes in fiber-type phenotype [133–138], increased activation of NF-κB which leads to the activation of the ubiquitin system [137, 139, 140], and hindered expression of the peroxisome proliferator-activated receptor (PPAR), which has a role in preventing inflammatory conditions, all contributing to a catabolic state along with muscle atrophy [141].

In addition to the immune system, intrinsic expression of ACE2 receptors in the skeletal muscle system may play an important role in SARS-CoV-2 entering into muscles and contribute to skeletal muscle morbidities [142]. Indeed, increased virus entrance into respiratory skeletal muscles is also associated with produced pro-inflammatory cytokines and as a consequence ROS formation. Reactive oxygen species induce muscle damage and atrophy that will finally lead to muscle fatigue [110, 143–147]. These species, further, reduce muscle force production by several mechanisms, including attenuating sensitivity of myofibrils to calcium (Ca^{2+}) [148, 149], oxidizing regulatory proteins of sarcoplasmic reticulum (SR) Ca^{2+} release channels [150, 151], opening ryanodine-sensitive Ca^{2+} release channel resulting in increased Ca^{2+} concentration [150, 152], inhibiting the function of sarcoplasmic reticulum calcium ATPase (SERCA) which is necessary for ATP hydrolysis [153], impacting on myofibril structure and function [154, 155], altering cross-bridge kinetics [149], oxidizing myosin heavy chain and also increased impairment of myosin function [154, 156], and modifying the function of troponin C [157]. Thus, increment in ROS can incur in Ca^{2+} dysregulation in cell cytosol (increased intracellular Ca^{2+} concentration) that in turn activates calpain [145, 158]. Calpain causes the releasing of sarcomere proteins via cleaving cytoskeletal proteins such as titin and nebulin which are anchored to the contractile components [159]. In this context, however, future studies should address whether the direct attack of SARS-CoV-2 on respiratory muscles has a role in their atrophy.

Severe active respiratory syndrome coronavirus 2 also associates with respiratory challenges after entering the body via respiratory or neuronal pathways. Coronavirus is categorized as a virus that after entering to CNS causes lesions in brainstem, a sensitive area for respiratory cycles [3, 160]. It may be concluded that produced lesions cause a neuromuscular impairment of respiratory muscles. Demyelinated lesions which are observed in patients with COVID-19 and MS diseases are actuated by cytokine storm [18, 33, 36, 37, 161, 162]. Upon entering into the body, SARS-CoV-2 identified as a foreign antigen by immune cells triggers serious immune and inflammatory responses which as a consequence cause extensive peripheral and central release of pro-inflammatory cytokines. There is a positive correlation between increased pro-inflammatory cytokines and disease progression [163, 164]. This process suggests the lack of immune regulation in response to respiratory infection.

That the respiratory system in MS patients can be impaired has been neglected by clinicians and scientists due to prominent other signs in these patients. Altered respiratory function and respiratory muscles strength are changes exacerbated with increasing MS disabilities [165–167], and it has even been disclosed that these respiratory issues account for roughly 47% of total deaths in MS patients [168]. There are acute and chronic respiratory failures in MS patients. Respiratory failure happens in the terminal stages of MS and is usually associated with significant bulbar or limb paralysis [169]. Respiratory failure may be acute, typically secondary to demyelinating lesions in the cervical cord or the medulla, or chronic, typically found in the terminal stages of the disease and related to weak respiratory muscles, and ineffective cough, leading to aspiration, atelectasis and pneumonia. Of the two kinds, only acute respiratory failure is potentially reversible with treatment [169–172]. Weakened respiratory muscles, especially expiratory ones, are a prevalent detriment in advanced phase of MS disease [167, 173, 174]. Paraplegic progression from distal to proximal in MS causes impairment in expiratory muscles prior to the diaphragm and intercostal muscles [175]. The regulation of respiratory muscle function is controlled in the regions of the brain stem and spinal cord, dorsal, and ventral respiratory centers. MS patients have centrally demyelinating plaques extended to these respiratory centers which associate with disrupted impulses and neural pathways related to
respiratory muscles [166, 167, 169, 172]. Additionally, the majority of MS patients experience autonomic dysfunction, including in the thermal system, which is originated from lesions in brain stem and medulla areas of the brain [176]. Hyperthermia induced by these lesions negatively influences impulse conduction throughout neurons present in respiratory centers that control respiratory muscles [177, 178]. The primary mechanism that can mechanistically explain such reduction in impulse conduction is attributed to the potassium channels expressed in these neurons. Hyperthermia activates two-pore domain K+ (K2P) channels on respiratory muscles controlling neurons and therefore culminates in neuronal hyperpolarization and reduced action potential propagation [179–181].

The above-mentioned pathways can diminish strength and endurance of respiratory muscles [167, 172–174], more predominant in expiratory respiratory ones [172, 174, 182]. The reduction in these muscle fitness components associate with changes in lung volume and capacity [172], including VC, maximal expiratory and inspiratory pressures, forced expiratory volume in the first second (FEV₁; the volume of air exhaled in the first second during forced exhalation after maximal inspiration), FVC, FEV₁/FVC ratio, peak expiratory flow (PEF: the highest forced expiratory flow), and total lung capacity [165, 172, 174]. Collectively, these pulmonary issues in patients with MS engender some abnormalities such as disruption in diffusion capacity of gas dispersed across alveolar membrane, ventilation to perfusion ratio, increased physiological dead space, and consequently diminished oxygenation, inefficient cough, reduced respiratory control, dyspnea, and exercise intolerance or reduced exercise capacity [171, 183–185]. All complications related to respiratory muscle impairment can put MS patients in a severe condition or even death upon infection with COVID-19.

Multiple sclerosis is always associated with some disabilities, including fatigue, strength, coordination, and cognitive signs loss, that progress over time and lead to physical and social inactivity [185]. Besides, several years ago, it has been recommended that MS patients should not participate in physical exercise, just because of increasing their internal load and internal pressures cause a change in respiratory pattern to the quick, shallow type (increased breath rate) [203]. Compromised lung volumes are secondary to the changes of respiratory pattern. The most detrimental alterations in lung volumes and capacities have been observed in expiratory reserve volume (ERV), FVC, forced residual capacity (FRC), total lung capacity (TLC), and tidal volume [204–210]. An impaired lung gas exchange, hypoventilation, and eventually hypoxia have been pinpointed in obese individuals that mostly resulted from regional ventilation–perfusion mismatching; on the other hand, the lower parts of their lungs are often under-ventilated and contrarily over-perfused [211, 212]. Adiposity is characterized by deposition of fat in adipocytes, followed by adipocyte hypertrophy and hyperplasia. The hypertrophied adipocyte are infiltrated by macrophages and they in turn release pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and adipocytokines from the TGF-β family, especially TGF-β1 [213–218]. Additionally, an imbalance between some other adipokines, including adiponectin and leptin, also occurs. The concentration of adiponectin, as an anti-inflammatory adipocytokine, and leptin, as a pro-inflammatory cytokine, respectively, decreased and increased in obese individuals [219, 220]. In a more general term, increased secretion of these adipokines into circulation can influence other organs throughout the body and produce some lung disorders, like asthma, COPD, and fibrosis [221, 222]. Increased compensatory lung perfusion in obese individuals can guide circulating TGF-β1 to lung tissue. In lungs, TGF-β1 recruits immune cells, such as eosinophils, neutrophils, macrophages, mast cells, and fibroblasts, as well as increases the production and expression of IL-8, cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in airway smooth muscle cells, leading to airway inflammation and finally asthma [223–227]. Independent of inflammatory responses in airways, TGF-β1 can cause airway remodeling or fibrosis [228]. TGF-β1 modulates the synthetic and secretory functions of epithelial, airway smooth and monocyte cells, and fibroblasts. Increased function of these cells are associated with synthesis and deposition of extracellular matrix (ECM) components. These ECM components include collagen I and IV, elastin, fibronectin, and biglycan [229–231]. Adiposity as a secondary outcome to changing lifestyle in MS patients with detrimental effects on
respiratory system can be a risk factor for infectious diseases such as COVID-19 [232] and therefore expose MS patients to higher mortality rate when infected to COVID-19 than non-obese ones. More importantly, accumulated adipose tissue extensively expresses ACE2 enzyme, the receptor for SARS-CoV-2 entering into cells; this tissue thus acting as a reservoir for virus [233, 234].

The infection of SARS-CoV-2 can be fatal and its severity is heterogeneous among individuals that have or do not have underlying diseases [235]. Such heterogeneity in disease severity may be attributed to the underlying diseases that already naturally promote respiratory problems or to differences in ACE2 expression and distribution [236]. Angiotensin-converting enzyme 2 presence in lung tissue can underline the promoted respiratory issues and their severity [237]. Angiotensin-converting enzyme 2 is a dipeptidyl carboxypeptidase expressed remarkably on numerous tissues and organs, including lungs, vascular endothelia, cardiovascular tissue, stomach, small intestine, colon, skin, Ranvier nodes, thymus, bone marrow, spleen, liver, kidneys, and brain [73, 162, 238, 239]. However, ACE belongs to RAS. RAS comprises two arms or axes in which one of them is detrimental/pathological and another is protective with opposing effects [240, 241]. The main pathological axes are angiotensin II (Ang II also known as Ang1-8)/ACE/angiotensin type 1 receptor (AT1R). Angiotensin-converting enzyme or ACE cleaves angiotensinogen I (Ang I) to form Ang II exerting its actions by binding to AT1R. The protective axis consists of angiotensin 1–7 (Ang1-7)/ACE2/Mas receptor (MasR), and sometimes angiotensin type 2 receptor (AT2R) is also taken into account in this axis. Angiotensin-converting enzyme 2 produces Ang1-7 via catalyzing Ang II [240, 242, 243]. The second axis has anti-inflammatory, anti-proliferative, anti-fibrotic, anti-apoptotic, and vasodilatory functions [244]. There are two RAS types, namely, systemic and local RAS [245]. Indeed, ACE2 is found in two forms, membrane associated and soluble which is catabolically activated [246, 247]. The upregulation of the detrimental axis of RAS has been observed in disease circumstances [248–250], and it has been found that the activity of soluble ACE2 decreases in disease conditions [250]. Soluble and membrane-associated ACE2 as protective axis of RAS were downregulated following infection with SARS-CoV-2 which may contribute to increased viral entering and lysing of ACE2-positive cells [12, 48, 251, 252]. On the other hand, attenuated ACE2 was associated with loss of protective effects of ACE2 and increased Ang II in both mRNA and protein levels [247]. The circulating and tissue levels of ACE2 in some diseases, such as cardiovascular and chronic kidney diseases, and also smokers with chronic obstructive pulmonary disease (COPD) are increased as a compensatory response and it may be an explanation for why some persons with underlying diseases are at higher risk of COVID-19-induced mortality [253, 254]. Increased plasma level of Ang II has been also reported in patients infected with SARS-CoV-2 which had positive correlation to viral load and lung damage. Therefore, it may be possible to inhibit the detrimental effects of COVID-19 through suppressing of Ang II [12, 252, 255, 256]. Angiotensin II or Ang II exerts its pro-inflammatory and pro-fibrotic action through binding AT1R on lung cells [247]. Contrarily, the protective role of the ACE2/Ang1-7/MasR axis has been identified in several models of lung damage including initial type of SARS [252]. Angiotensin-converting enzyme 2 suppresses the production of Ang II, the activity of ACE and AT1R activation in order to prevent severe lung failure by mediating the production of bioactive peptide of Ang1-7 which activates MasR and AT2R signaling [257–260]. Angiotensin 1–7 promotes its beneficial functions by inhibiting ERK1/2 and natural NF-κB pathways and also prevents bronchial responsiveness, which is a hallmark characteristic of chronic asthma [258, 259]. In MS patients associated with SARS-CoV-2, notable differences were observed in the numbers of lung NK cells, CD8+ T cells, inflammatory monocytes, and myeloid-derived suppressor cells (MDSCs). This leads to increased lung cell infiltration, suppressive monocytes in the bone marrow, blood, spleen, and CNS, and a decrease in anti-viral CD8+ T-cell function. It is worth noting that increased concentration of ACE, and dysregulation in ACE/ACE2 balance, has been observed in diseases associated with ARDS, like in patients with severe COVID-19. Produced imbalance favors the detrimental axis of RAS, which can impair lung function due to inflammation, fibrosis, and lung edema, the latter resulting from promoted permeability of lung blood vessels [252, 258, 261, 262].

Majority of the human studies have measured soluble ACE2 in blood, while membrane-associated ACE2 assessment needs more investigation in future. It has been acknowledged that using ACE2 blockers or antibodies disrupting viral entering into the cell during COVID-19 infection, may endanger patients, since these strategies abate the protective effects of ACE2 and its anti-inflammatory activity and as a consequence promote lung susceptibility to damage [263, 264]. Furthermore, utilizing analogue receptors or recombinant soluble ACE2 is another strategy to reduce viral binding in a competitive manner to membrane-associated ACE2 and finally through this procedure mitigate infection and viral load. In this context, soluble ACE2 acts as a decoy receptor and reduces the binding of SARS-CoV-2 to local/membrane-associated ACE2 and as a result reduces lung damages induced by COVID-19 disease [264, 265]. Of note, based on evidence, increased levels of soluble ACE2 point to the attenuation of membrane-associated ACE2 levels [266].

As mentioned above, COVID-19 patients have a lower protective axis compared with controls or rather, patients
with COVID-19 disease illustrated higher circulatory Ang II levels which were correlated to viral load [255, 267].

Angiotensin II receptor blockers (ARBs) improve ACE2/Ang1-7/MasR axis of RAS which is associated with assuaged ROS production, inhibiting lung fibrosis via mitigation of collagen deposition, reducing the disruption of alveolar walls through anti-inflammatory influences mediated by suppression of NF-κB pathway, and also by reducing the production of pro-inflammatory cytokines (IL-6, TNF-α) [268–271]. Collectively, RAS manipulation may abate SARS-induced tissue damages [12].

In any case, details about the expression and distribution of ACE2 receptors are scarce in MS patients and they should be identified in future research. SARS-CoV-2’s receptor availability can increase the virus entering into the lung cells and worsen the disease complications [236]. Both ACE2 and transmembrane serine protease 2 (TMPRSS2) are expressed on the apical membrane of alveolar cell type 2 (AT2). The virus binds to the ACE2 receptor through its spike glycoprotein (S) and then TMPRSS2 helps SARS-CoV-2 to fuse with the host cell membrane for the release of its genome [272]. Thus, other factors such as TMPRSS2 may be critical in regulating COVID-19 disease, although it remains to be clarified in future research. As above mentioned, RAS has been found peripherally in circulation and centrally in the CNS [273]. The main sources of RAS components in CNS are glial cells (especially astrocytes) and neurons [274]. Increased expression and activation of detrimental components of RAS have been reported in circulation, cerebrospinal fluid (CSF) and brain tissue (especially on lesions) of MS patients [13, 47, 275], while there was a reduction in the protective ACE2 component [13]. This observed status in MS patients is associated with exacerbating neurological signs [259, 276, 277]. Importantly, the detrimental axis is activated in the early stages of experimental autoimmune encephalomyelitis (EAE), as an animal model of MS, but the protective axis is activated during the end time point of this model [278]. The majority of studies have concentrated on the inflammatory role of the detrimental axis of RAS. Growing scientific literature, using the EAE model, has reported that ACE inhibitors and ARBs and improvement of the protective axis can attenuate the clinical scores and inflammation [243, 279–281]. Thus, RAS axes should be taken into account for therapeutic purposes in the treatment COVID-19.

A correlation has been detected between pulmonary damage and changes in its function [282]. Recovered patients from COVID-19 still experience impairments in pulmonary functional capacity for several months [283]. Such functional disorders or functional reduction have been proved in forced expiratory flow, forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC) [284]. Otherwise, ground-glass opacities are observed in the early and progressive phases of the disease [285]. Patients’ age, comorbidities, history of cigarette smoking, the duration of hospital admission, and also the type of medication administration are the critical determinants in the severity of pulmonary disorders [283, 286].

It has been shown that there is a mutual relationship between having chronic respiratory disease and increasing cerebral infarction; on the other hand, it is shown that there is a significant relationship between impaired respiratory function and both brain atrophy and volume of white matter lesions [5, 167, 171, 287].

Remarkable brain and brainstem demyelination influence motor pathways, especially those that innervate limbs, which lead to mobility weakness or impairment. Multiple sclerosis is a neuro-inflammatory and demyelinated disease associated with lesions throughout the CNS, which depending on the involved brain area incurs in some disabilities [288, 289]. Pulmonary dysfunction manifested in MS primarily include impaired respiratory muscles that result in pulmonary weakness and cough. Expiratory muscles are probably more at risk to suffer impairment. It must be mentioned that there is a close correlation between disease severity and higher reductions in respiratory muscles force. In this context, after pulmonary function tests (PFTs) it has been indicated that MS patients have a low vital capacity (14%) in the supine position. Thus, respiratory dysfunction in MS patients may partly reflect the demyelinated lesions in the monitoring area of respiratory centers in the brainstem and cervical spinal cord and as a result, they can weaken the expiratory respiratory muscles. As a whole, impaired expiratory respiratory muscles may be accompanied by a higher risk of respiratory infections like pneumonia. Respiratory infection-induced mortality of MS patients is twice times higher than the general population [172, 173, 287, 290–293]. It is worth noting that the side effects of some MS-modifying drugs such as Fingolimod, Tranquilizes, muscle relaxants, and opioids may be the main factor in the reduction of some lung function values and slowdown the ventilation action.

It has also been shown that pneumonia is the common consequence in all coronavirus and MS patients. Respiratory problems in MS patients initiate by disease progression. The systemic pro-inflammatory milieu in MS patients alone contributes to skeletal muscle weakness and these complications may increase with COVID-19 infection. In this context, it is necessary to identify the direct attack of SARS-CoV-2 on skeletal muscles in future research.

Additionally, both diseases share the same initial mechanisms and symptoms; thus, individuals with MS may experience and be placed in the intolerable condition after coronavirus infection, just like resurfing the chronic relapses increasing the clinical symptoms that may lead to their death [294, 295].
Pleiotropic roles of physical exercise

Physical exercise is a challenge on approximately the whole-body system. The movement demands, the control of skeletal muscles, the cardiovascular, and particularly the pulmonary system helps to maintain the intensity of a given exercise for longer times. Persistent contributions of regular exercise, specialty endurance mode causes adaptations in all of these physiological systems [296, 297]. The majority of respiratory muscles including expiratory and inspiratory muscles are skeletal muscles [298]. In admitted COVID-19 patients with a severe condition of mechanical ventilation, it is necessary to strengthen pulmonary muscles during the recovery period [24]. Furthermore, individuals with changes in the motor system and generally with disabilities, most probably experience functionally respiratory disorders [299]. Endurance training might be one recovery strategy to improve the function of pulmonary muscles (Fig. 2). It has been revealed that endurance training primarily increases the number and size of mitochondria and capillaries in skeletal muscles and as a consequence converts the fibers phenotype to the more oxidative type [296, 297, 300–302]. Increased myoglobin and glycogen content and the increase use of fat as a fuel source are other adaptations that occur in skeletal muscles [303, 304]. The main functional alterations in the respiratory system induced by endurance training are as following: (1) increased tidal volume and breath rate which collectively promote maximal pulmonary ventilation and (2) improved pulmonary perfusion as a result of increased pulmonary blood flow in the higher area of the lungs [305]. These adaptations in pulmonary muscles and in respiratory function are partly amenable to increased VO$_{2max}$ and lactate thresholds. A study conducted on severe acute respiratory syndrome (SARS) survivals showed that 6 weeks of combined training (endurance and resistance) improved cardiopulmonary and muscle (upper and lower limbs) fitness and performance.

![Fig. 2](image_url)

Fig. 2 The schematic diagram of protective or modifying role of physical activity. The positive effects of regular physical exercise on four body systems is indicated by dashed rectangles and also the positive marks. The effects of positive changes in MS patients are, then, identified by the solid rectangle and also dashed arrows for every item. FEV forced expiratory volume; URTI upper respiratory tract infection; COVID-19 coronavirus disease-19; QOL quality of life; Ach, acetylcholine; TLR, toll-like receptor; HPA, hypothalamus–pituitary–adrenal axis; RAS renin–angiotensin system; Treg T regulatory cells; OPCs oligodendrocyte precursor cells; MBP myelin basic protein; PLP myelin proteolipid protein; ROS reactive oxygen species.
increased predicted VO$_{2\text{max}}$- and elevated health-related quality of life (QOL) [306]. Increased VO$_{2\text{max}}$/VO$_{2\text{peak}}$ induced by exercise training mainly comes from improving and reducing blood circulation and pressure, respectively, as well as refining cardiovascular function [307]. Additionally, a reduction in breathlessness and an improvement in muscle endurance and strength can increase contribution to physical exercise and independency in doing personal duties, all promoting QOL [308–310]. Thus, MS patients with the contribution of progressive endurance training following SARS-CoV-2 can expedite their recovery and also improve their quality of life through independence from others in daily tasks [305].

Nowadays, the training of respiratory muscles is the newest training trend to rehabilitate individuals who have a problem with their respiratory muscles or even to enhance performance in persons whose professions benefit from improving the strength of respiratory muscles [311, 312]. This training model is implemented in guise of trained expiratory and inspiratory respiratory muscles, and a combination of them [313]. It has been proved that this type of rehabilitating training in MS patients is involving positive adaptations and improvements in respiratory muscle strength, spirometer parameters, cough efficiency, fatigue, and dyspnea [290, 314–317]. Besides, respiratory training improves the strength and endurance components of respiratory muscles and as a result promote lung functional capacity and performance [318]. Due to enhancement of components related to respiration, such as slowdown breathing rate and assuaged carbon dioxide production, dyspnea is diminished secondary to the respiratory training [317, 319]. Inspiratory muscle training has affirmative effects on cardiac function by involving in autonomic nervous system; for example, increasing parasympathetic activity [320, 321]. Elevated exercise-mediated intrathoracic pressure triggers baroreflex activity leading to promoted venous return which in turn mitigates heart sympathetic activation during resting condition [175]. Despite potential influences on respiratory muscles, exercise training defies the cardiac problems incurred in MS and COVID-19 diseases and therefore prevents exacerbating ventilation process. There are several training models escalating respiratory muscle strength and endurance [322–324]. One of these models is swim training [299].

Swim training increases respiratory work; hence, this training type promotes pulmonary volumes by strengthening the respiratory muscles, especially the diaphragm [325].

Other functional changes in the form of adaptations that occurred in the pulmonary system induced by exercise training include (1) reduced fatigability, (2) increased expiratory lung volume, (3) elevated vital capacity, (4) increased diaphragm thickness, (5) enhanced function of inspiratory muscles [326, 327], (6) increased TLC, (7) promoted FRC [299], (8) increased FEV1 [299], (9) promoted FVC, (10) increased PEF [299, 328, 329], and (11) increased strength and endurance of respiratory muscles [330].

Maintenance of diaphragm activity under mechanical ventilation may prevent its atrophy [331]. Otherwise, it has been identified that increased concentration of metabolites in respiratory muscles may partly explain the fatigue of exercising organs; in such a way, metabolites trigger the firing rate of afferent nerves to the autonomous nervous system.

Increased strength of outflow of sympathetic nerve, by corollary, causes vasoconstriction and as result fatigue in exercising organs [332, 333]. Inspiratory and expiratory muscle training inflict a load on the diaphragm and as a result, increases cross-sectional area and strength and endurance of the diaphragm and also improves fatigue tolerance [334–336].

Single exercise sessions, or acute exercise, impact on the immune system by recruiting leukocytes from other organs to circulation, acquiring active phenotype of both innate and adaptive cells including NK cells, active T and B lymphocytes [337, 338], and increased release of immune modulatory peptides, such as anti-inflammatory cytokines [339]. Thus, acute exercise causes the immune activation and this may influence defense mechanisms against pathogens. Although the increased immune function may be efficacious in healthy persons, this condition can aggravate the circumstance of MS individuals particularly those who suffer from COVID-19. It is documented that regular physical exercise can attenuate respiratory issues through effectuating positive responses of the immune system or reducing pro-inflammatory cytokines as causative agents of respiratory issues in COVID-19 and MS patients (Fig. 2) [29, 340, 341]. IL-6 may be one of the outstanding mechanisms by which exercise induces a mitigated inflammatory environment. Exercise training increases the production of IL-6 from adipocytes, macrophages, monocytes, brain, liver, and skeletal muscles [340, 342, 343]. The increased circulatory concentration of IL-6 is associated with attenuated production of pro-inflammatory cytokines (TNF-α, IL-1β) from inflammatory cells [340, 342] as well as promoted anti-inflammatory cytokines, such as IL-1 receptor antagonist (IL-1ra), IL-4, and IL-10 [342, 344]. Furthermore, blockade of IL-1β receptors, which inhibits its signal transduction, maybe another anti-inflammatory function induced by IL-6 [345]. Produced anti-inflammatory cytokines reduce antigen presentation by antigen-presenting cells (APCs) which are necessary to maintain inflammatory responses [346]. The upregulation of IL-6 in lung tissue after exercise training has also been shown in lung injury in animal models [347]. IL-6 dampens pulmonary inflammation through increasing superoxide dismutase (SOD) and also restricts the disruption of alveolar barrier induced by neutrophils [348, 349]. A negative correlation between IL-6 and IL-10 has been shown with neutrophils density in lung tissue. Increased
concentration of IL-6 and also activation of the hypothalamus–pituitary–axis (HPA) induced by physical exercise increase the release of cortisol, a circulatory anti-inflammatory factor. Initially increased exercise-induced cortisol reduces pro-inflammatory production by acting on its own receptors on immune cells [340, 344]. It has also been shown that IL-6 can activate HPA per se [348, 350, 351]. The previous evidence corroborates this claim since an increase in IL-6 receptors and an enlargement have been observed in adrenal glands [350]. Exercise directly mitigates pulmonary inflammation by increasing glucocorticoid receptors on inflammatory lung cells. It also dampens the levels of pro-inflammatory cytokines in inflammatory lung tissue induced by endotoxin in animal models [347, 348]. Reduced pro-inflammation plays a critical role in abating the permeability of microvascular endothelium [352] and accordingly reduces ROS and lung edema [62]. Importantly, it has been revealed that enhanced pulmonary antioxidants, particularly SOD, induced by regular exercise can attenuate ARDS produced through viral infection. Enzymatic antioxidants degrade free radicals culminating in the reduction of lung damages [62, 353–355].

Exercise training has an extensive effect on the vague tone of the parasympathetic nerve. The increased efferent reflex of a sympathetic nerve is associated with releasing acetylcholine (Ach) from its terminals. Ach binds to nicotinic receptors on immune cells attenuating the production of pro-inflammatory cytokines as well as acts on macrophages by converting their phenotype from M1 (pro-inflammatory phenotype) to M2 (anti-inflammatory phenotype) [356, 357]. Reduced toll-like receptors (TLRs), especially TLR4, on circulatory monocytes may be another way through which exercise impacts the changes of immune status. Activated intracellular signals of these receptors trigger the production of pro-inflammatory cytokines [358, 359]. Therefore, regular exercise revolves negative immune response to a positive one. Another change in immune function resulting from exercise training is increased circulatory number of T regulatory (Treg) cells [360]. These cells secret anti-inflammatory cytokines like IL-10 and transforming growth factor-beta (TGF-β) and also increase the proportion of Th2 to Th1 which is related to promoting anti-inflammatory cytokines [361]. There is cross-reactivity between pro-inflammatory cytokines and microglial cells; in such a way, reduced pro-inflammatory cytokines induced by exercise training, mitigates reactivated microglia (microgliosis) and consequently decreased microgliosis associated with assuaging the produced pro-inflammatory cytokines released by reactive microglia [362, 363]. The changes of detrimental immune responses to reparative/positive responses may be efficacious to mitigate pulmonary damages resulting from COVID-19 disease and to improve the strength and endurance of the respiratory muscles in MS patients infected with COVID-19. Importantly, attenuated pro-inflammatory cytokines provided by physical exercise can also be beneficial for reducing neuronal loss and for reducing the demyelination induced by MS/COVID-19 in brain areas monitoring respiratory muscles and ventilation cycle [32, 364, 365]. Thus, exercise training establishes an appropriate balance in lung infection, tissue homeostasis, and immune response.

It has been found that exercise inhibits alveolar macrophages polarization to pro-inflammatory M1 phenotype by reducing NETs production and suppressing ERK1/2 and NF-κB pathways in lung cells and macrophages. This action can culminate in the mitigation of lung damages [366]. Besides, exercise enhances sputum clearance throughout the pulmonary system, which can be attributed to increased activity of nasal epithelial sodium channels (ENaC), promoted ventilation, shear force, and body movements [367]. Damped neutrophilic inflammation has been reported in individuals with pulmonary problems after participation in regular exercise programs and is associated with the diminishment of complement receptors [368]. Thus, exercise could reduce lung inflammation induced by infection, particularly in patients with MS.

Increased remyelination, or rather, ceased demyelination mediated by regular physical exercise could be attributed to the following: (1) increased central expression of neurotrophic factors and their receptors expressed in brain areas, particularly on oligodendrocyte precursor cells (OPCs), which can elevate the proliferation and differentiation of OPCs to adult (myelinating) oligodendrocytes enveloping neural axon [369, 370], (2) increased number of mitochondria, which is associated with mitigating the production of pro-inflammatory cytokines, reduces myelin damage induced by oxidative stress [371], (3) increased antioxidant enzymes [372], (4) upregulation of some myelin protein expression, such as myelin main protein (MBP) and proteolipid protein (PLP) [373], which are expressed on myelin sheath and also essential for myelin formation and thickness [374, 375], and (5) phenotypic conversion of microglia from M1 (pro-inflammatory) to M2 (anti-inflammatory) type and maintain them in inactivation or resting state as well as increasing their phagocytic function for expediting clearance of debris [376, 377]. Collectively, contribution in regular physical exercise can preclude plaque/lesion extension to the areas of the brain more related to respiratory centers and even restore nerve impulses through remyelinating processes. The relationship between immune and pulmonary systems in MS individuals with COVID-19 disease is per se complex and there is no information related to exercise training and respiratory system in MS patients who have been infected with COVID-19.

It has been postulated that low-to-moderate-intensity exercise in contrast to high-intensity exercise, causes a decrement in upper respiratory tract infections (URTI)
and symptoms [378]. Besides, the individuals with moderate exercise levels also experience lower URTI incidence compared to their sedentary counterparts [379]. The main mechanisms related to reducing URTI induced by moderate regular exercise training have been attributed to the following (Fig. 2): first, increased salivary immunoglobulin A (s-IgA) which is the first line of the body defense against foreign pathogens, like respiratory viruses. This factor binds to respiratory viruses and eliminates them through opsonization [380, 381]. Second, immune phenotype changes from T helper 1 (Th1) to Th2 (improving Th1/Th2 balance). Th1 cells produce pro-inflammatory chemokines when exposed to pathogens, but their excessive responses can incur in tissue damages in the lungs [382]. In this context, moderate exercise training attenuates immune cells infiltration to lungs and lymph nodes drainage and release of pro-inflammatory cytokines by Th1 are reduced [383]. Third, increased IL-2 levels in lung tissue enhance differentiation and maturation of Treg cells. Increased number of Treg is congruent with establishing an anti-inflammatory milieu in lungs [382]. Anti-inflammatory cytokines such as IL-4 exert another role in reducing detrimental pro-inflammatory conditions. Interleukin-4 facilitates the differentiation of naïve Th to Th2 phenotype which has an anti-inflammatory function as well as co-stimulates B cells to secrete virus-neutralizing antibodies. Viral antibodies reduce the virus load through inhibiting the infection of cells and opsonizing the infected cells [383]. Fourth, increased soluble TNF-α receptor which is capable to bind to circulatory TNF-α through which mitigates membrane-binding propensity and consequently reduces activation of NF-κB signal pathways. Fifth, an increment in eosinophil chemoattractants causes extravasation of eosinophils into the infected lung tissue where their ribonucleases can degrade virus’s single-stranded RNA and suppresses virus replication [383]. Initial increases in cortisol induced by chronic exercise may act as an assuaging factor of pro-inflammatory condition produced by infection and as a consequence reduces lung susceptibility to infection [383, 384]. In this matter, professionals should be aware that prescribing a proper exercise protocol in MS patients with SARS-CoV-2 infection is essential, since higher core body temperature (hyperthermia) in individuals with MS may act as an endogenous stress factor that causes a higher CNS recruitment and higher exertion. In this case, higher exertion will lead to increased concentration of stress hormones and result in impairment of the host immune system which it may endanger MS patients with compromised immune system [385, 386]. Sixth, exercise increases the circulation of IL-6 derived from exercising skeletal muscles and, it, in turn, upregulates anti-inflammatory cytokines, including IL-1ra and IL-10. These anti-inflammatory cytokines mitigate the extended inflammation originated from respiratory virus infection [383, 387]. Besides, increased recruitment of NK and cytotoxic T cells also occurs following regular exercise training, improving immune defense against foreign pathogens [388, 389]. Exercise-mediated increases in immunosurveillance and attenuated inflammation have been observed in some parts of the body, including the upper respiratory tract (URT), lung, blood, and skeletal muscles, among others [389, 390]. Thus, regarding a reverse relationship between mediated exercise training and URTI incidence and duration [391, 392] and also fatality and pneumonia rates [393–395], either individuals with a clinical condition or healthy are encouraged to regularly practice physical exercise. It is worth noting that highly fitted persons have lower basic levels of inflammatory biomarkers compared with unfit ones [396].

As mentioned, host susceptibility to SARS-CoV-2 is dependent on binding between host ACE2 and spike (S) glycoprotein of the virus which is known as the S1 subunit [397]. Although there are not enough reports regarding exercise training on ACE, especially ACE2 as local or lung tissue receptor, the changes of other subunits in other organ systems like kidneys, heart, brain, skeletal muscles, and circulation mediated by exercise are available [398, 399]. The most beneficial and prophylactic effects of exercise maybe induced through changes in RAS (Fig. 2) [400, 401]. Based on a literature review and recently original reports, regular exercise downregulates systemic and local ACE/AngII/AT1R axis and also upregulates all components of ACE2/Ang1-7/MasR axis, as well as transfers the axis balance to the protective axis [400, 402, 403]. Upregulated protective axis of RAS increases the bioavailability of prostaglandins (PGs) and bradykinin as well as enhances anti-inflammatory environment, augments anti-fibrotic and antioxidant defenses, and normalizes oxidative stress and anti-apoptotic environment [404–406]. These responses in RAS can improve lung blood flow and consequently lead to reduced oxygen deficiency in MS patients infected with COVID-19 [407, 408]. Besides, it has been claimed that exercise training reduces lung lesions and fibrosis through the normalization of RAS axes and reducing collagen deposition [271, 399, 409]. By affecting this system, exercise training can attenuate the susceptibility of individuals to detrimental functions of COVID-19 infection or mitigate the severity of disease by the following additional strategies: (1) mitigated severity of comorbidities [247] and as a result reduced COVID-19-induced mortality rates [410, 411] and (2) warded off the diminishing effects of COVID-19 on ACE2 via increasing ACE2 activity and its concentration [412], although the positive or negative effects of increasing ACE2 should be investigated. Thus, RAS manipulation and its normalization may be a potential treatment for health optimization against the COVID-19 pandemic.

Since adipose tissue can play a role as the viral reservoir [233] and in the sense that obesity causes many structural
and functional issues in respiratory system, weight loss via lifestyle changes may reverse such respiratory problems [413]. Physical exercise has profound effects on body composition by increasing fat oxidation and improving muscle mass, which has a leading role on fat oxidation and consequent weight loss. By the same token, exercise should have enough intensity to influence lipid oxidation and metabolic factors [414]. There are several pathways by which exercise causes weight loss, including increased aerobic capacity measured by maximal oxygen consumption (VO2 max) and altered body composition resulting in part from elevating muscle mass [415–417]. Promoted muscle mass is associated with more consumption of glucose and lipid as fuels and as a result dampens insulin resistance [418, 419]. In addition, increasing activation of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC)-α is another mechanism through which exercise facilitates lipid and glucose oxidation [420, 421]. PGC-α increases aerobic capacity of muscle tissue by impacting on mitochondrial biogenesis [422, 423]. Besides, changes in some genes involving in lipogenesis and lipolysis are another adaptation that occurs during and after exercise. In this context, it has been disclosed that lipolysis [peroxisome proliferator-activated receptor (PPAR)-α, cytochrome c oxidase (COX) IV] and lipogenesis [fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] genes are upregulated and downregulated, respectively [424]. The initiation of exercise elevates catecholamine hormones, including adrenaline and noradrenaline. Upon release, these hormones bind to their β-adrenergic receptors expressed on adipose tissue yielding intracellular signal and consequent phosphorylation of hormone-sensitive lipase to promote lipolysis in this tissue [425]. It is worth noting that exercise reverses increased adiponectin induced by obesity. Elevated anti-inflammatory adipokine increases the expression of farnesoid X receptor (FXR) as a regulator of multiple metabolic pathways. FXR then activates adaptor phosphotyrosine protein interacting with the PH domain and leucine zipper 1 (APPL1) to increase lipolysis [426, 427]. Additionally, physical exercise establishes a balance among some adipokines, such as myostatin (MST), TGF-β1, and activin A, as members of the transforming growth factor-β superfamily (TGF-β) and follistatin (FST). These adipo-myokines, particularly TGF-β members, are upregulated in adiposity and inflammatory condition, while FST inhibits their function through binding to them. Generally, FST increases muscle mass and consequently reduces body fat [428–432]. Therefore, physical exercise is a dynamic lifestyle that mitigates weight gain or obesity, as a risk factor for severe COVID-19, in MS patients and as a result, reverses the changes in lung mechanics and function. It has been suggested that weight loss associates with improving in peak expiratory flow and some spirometer indices [433–435] markedly increases in lung volumes (TLC, FRC, ERV) [436–438], diminishing airway hyper-responsiveness in asthmatic and non-asthmatic obese individuals [434, 439, 440].

As mentioned in the previous section, increased core body temperature in MS patients can influence the respiratory center and nerves in the brain monitoring respiratory muscles and ventilation rhythm. Thus, improving heat strain engendered in MS patients during coronavirus infection, as a febrile virus, would help MS patients to reduce the detrimental effects of hyperthermia on respiratory muscles, especially their fatigability [441]. Although physical exercise is notorious as a heat stressor, long-term exposure to physical exercise is associated with some adaptations in thermal regulation to diminish its compromised effects [442]. Exercise training causes adaptive changes in the cardiovascular system and hemodynamic and hematological factors, including increased contractile strength of cardiac muscle, increased plasma volume, and reduced vasoconstriction at the subcutaneous level [443–445]. These adaptations are associated with supplying deep or core organs with higher cardiac output and followed by transferring the core temperature to the body surface [446, 447]. Exercise increases antioxidant enzymes and therefore reduces and elevates reactive oxygen species (ROS) production and nitric oxide (NO) bioavailability, respectively [448–451]. Besides, increased plasma ATP concentration in response to exercise-induced hypoxia and shear stress, interacts with P2Y receptors to elevate the vasodilation factors, such as NO and prostaglandin E2 (PGE2). These exercise-induced alterations attenuate vascular damages and promote microvessel dilation [452–460]. Some other adaptive mechanisms yielded by exercise amenable to dampening core body temperature are increased sweat rate through elevating cholinergic sensitivity, higher efficiency of eccrine sweat gland in sweat production per each gland, increased number and sensitivity of muscarinic receptors responsible for sweating [442, 461]. Therefore, exercise abates the threshold for commencing subcutaneous blood flow and sweat production in response to promoting core body temperature. Generally speaking, maintaining core body temperature in a narrative range mediated by exercise can preserve the normal impulses along neurons enervating respiratory muscles, followed by the attenuation of clinical signs and premature whole and respiratory fatigue in MS patients.

Conclusion

Our review investigated molecular mechanisms of respiratory impairments and lung damage in MS patients with COVID-19. We found that regular exercise training changes the responses of the immune system and also increases some aspects of innate and adaptive immunity against...
SARS-CoV-2 virus to cope with lung damages. Generally speaking, physical exercise training can mitigate the negative effects of COVID-19 disease on lung tissue and respiratory muscles in MS patients and expedites their recovery following COVID-19 infection.

Acknowledgements Not applicable.

Author contributions OR, BT, and NZ conceptualized and wrote the first draft. AMT, BK, and OR developed the study concept. BT, AMT, and BK reviewed and edited the final version of manuscript. All authors contributed to the article and approved the submitted version.

Funding Open access funding provided by University of Zurich. The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Data availability Data sharing not applicable to this article as no data-sets were generated or analyzed during the current study.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval No applicable.

Consent to participate No applicable.

Consent to publication Authors consent for the publication of the manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Person A, Mintz ML (2006) Anatomy and physiology of the respiratory tract. Springer, Disorders of the respiratory tract, pp 11–15
2. Ward JP, Ward J, Leach RM (2010) The respiratory system at a glance. John Wiley & Sons
3. Waugh A, Grant A (2014) Ross & Wilson anatomy and physiology in health and illness E-book. Elsevier health sciences, Amsterdam
4. Credland N (2016) Respiratory anatomy and physiology. Routledge, Respiratory care, pp 15–28
5. Buysse B, Demedts M, Meekers J, Vandegaer L, Rochette F, Kerkhofs L (1997) Respiratory dysfunction in multiple sclerosis: a prospective analysis of 60 patients. Eur Respir J 10:139–145
6. Smeltzer SC, Utell MJ, Rudick RA, Herndon RM (1988) Pulmonary function and dysfunction in multiple sclerosis. Arch Neurol 45:1245–1249
7. Ronsen O (2005) Prevention and management of respiratory tract infections in athletes. New Stud Athl 20:49
8. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395:1033–1034
9. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H (2020) Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 130:2620–2629
10. Link H (1998) The cytokine storm in multiple sclerosis. Mult Scler J 4:12–15
11. Killestein J, Rep MH, Barkhof F, Roos MT, Adèr HJ, van Lier RA, Polman CH (2001) Active MRI lesion appearance in MS patients is preceded by fluctuations in circulating T-helper 1 and 2 cells. J Neuroimmunol 118:286–294
12. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11:875–879
13. Kawajiri M, Mogi M, Higaki N, Matsuoka T, Ohyagi Y, Tsukuda K, Kohara K, Horiiuchi M, Miki T, Kira J (2009) Angiotensin-converting enzyme (ACE) and ACE2 levels in the cerebrospinal fluid of patients with multiple sclerosis. Mult Scler J 15:262–265
14. Pedersen BK, Saltin B (2006) Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports 16:3–63
15. Chen Y, Liu Q, Guo D (2020) Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 92:418–423
16. Maleki BH, Tartibian B (2021) COVID-19 and male reproductive function: a prospective, longitudinal cohort study. Reproduction 161:319–331
17. Rahimi B, Vesal A, Edalatifard M (2020) Coronavirus and Its effect on the respiratory system: is there any association between pneumonia and immune cells. J Fam Med Prim Care 9:4729
18. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395:497–506
19. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395:507–513
20. Wu C, Chen X, Cai Y et al (2020) Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China: JAMA intern med. J Emerg Med 58:713
21. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY (2020) A new coronavirus associated with human respiratory disease in China. Nature 579:265–269
22. Zilberberg MD, Epstein SK (1998) Acute lung injury in the medical ICU: comorbid conditions, age, etiology, and hospital outcome. Am J Respir Crit Care Med 157:1159–1164
23. Krishnasadan B, Naidu BV, Byrne K, Fraga C, Verrier ED, Mulligan MS (2003) The role of proinflammatory cytokines in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 125:261–272
24. Brosnanah SB, Jonkman AH, Kagler MC, Munger JS, Kaufman DA (2020) COVID-19 and respiratory system disorders: current knowledge, future clinical and translational research questions. Arterioscler Thromb Vasc Biol 40:2586–2597
25. Zou X, Chen K, Zou J, Han P, Hao J, Han Z (2020) Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable
to 2019-nCoV infection. Front med. doi.org/10.1007/s11684-020-0754-0

26. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W (2020) Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 323:1843–1844

27. Biscardi A (2020) Coronavirus impacts on respiratory system and its phases. In: Biscardi A (ed) Medical reports and case studies. Bologna, Italy

28. Yufang S, Ying W, Changsun S (2020) COVID-19 infection: the perspective on immune response. Cell Death Differ. doi.org/10.1038/s41418-020-0530-3

29. Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A (2020) Immune response in COVID-19: a review. J Infect Public Health. doi.org/10.1016/j.jiph.2020.07.001

30. Chen C, Zhang X, Ju Z, He W (2020) Research progress on the mechanism of cytokine storm induced by new coronavirus pneumonia and related immunotherapy [J/OL]. Chinese J Burns 36:EO05

31. QinC Z (2020) Dysregulation of immune response in patients with COVID-19 in Wuhan China. Clin Infect Dis 71(15):762–768. doi.org/10.1093/cid/ciaa248

32. Li Y, Li H, Fan R, Wen B, Zhang J, Cao X, Wang C, Song Z, Li S, Li X (2016) Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology 59:163–169

33. Sorenson M, Furst J, Mathews H, Jason LA (2017) Dysregulation of cytokine pathways in chronic fatigue syndrome and multiple sclerosis. In: Sorenson M (ed) Fatigue: biomedical health & behavior

34. Killestein J, Den Drijver B, Van der Graaff W, Uitdehaag BM, Wygrecka M, Jablonska E, Guenther A, Preissner KT, Markart (2004) Cytokine mRNA expression in patients with COVID-19 in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis 71:2428–2446

35. Lim YX, Ng YL, Lam CWK (2005) Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin Chem 51:2333–2340

36. Smith KJ, McDonald W (1999) The pathophysiology of multiple sclerosis: the mechanisms underlying the production of symptoms and the natural history of the disease. Philosophical transactions of the royal society of London. Series B 354:1649–1673

37. Flachenecker P, Bihler I, Weber F, Gottschalk M, Toyka KV, Rickemann P (2004) Cytokine mRNA expression in patients with multiple sclerosis and fatigue. Mult Scler J 10:165–169

38. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S (2008) Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 82:7264–7275

39. Gu J, Korteweg C (2007) Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol 170:1136–1147

40. Mao X-Y, Jin W-L (2020) The COVID-19 pandemic: consideration for brain infection. Neuroscience 437:130

41. Li YC, Bai WZ, Hashikawa T (2020) Response to commentary on “the neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID19 patients.” J Med Virol 92(7):707–709

42. Desorges M, Le Coupiane A, Dubau P, Bourgoin A, Lajoie L, Duhé, M, Talbot PJ (2020) Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses 12:14

43. Odoardi F, Sic C, Streyl K, Ulaganathan VK, Schläger C, Lodgyin D, Hecksmiller K, Nietfeld W, Ellwart J, Klinkert WE (2012) T cells become licensed in the lung to enter the central nervous system. Nature 488:675–679

44. Steelman AJ (2015) Infection as an environmental trigger of multiple sclerosis disease exacerbation. Front Immunol 6:520

45. Baig AM, Khaleeq A, Ali U, Syeda H (2020) Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 11:995–998

46. Li Y, Bai W, Hashikawa T (2020) The neuroinvasive potential of SARS-CoV2 may be at least partially responsible for the respiratory failure of patients with COVID-19. J Med Virol 92(6):552–555

47. Mogi M, Horiuchi M (2013) Effect of angiotensin II type 2 receptor on stroke, cognitive impairment and neurodegenerative diseases. Geriatr Gerontol Int 13:13–18

48. Imai Y, Kuba K, Penninger JM (2008) The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 93:543–548

49. Astuti I (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr 14:407–412

50. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R (2020) COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res 24:91–98

51. Sungnak W, Huang N, Bécair C, Berg M, Queen R, Litvinouva M, Talavera-López C, Maatz H, Reichart D, Sampaziotis F (2020) SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 26:681–687

52. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X (2020) Coronavirus infections and immune responses. J Med Virol 92:424–432

53. Mason RJ (2020) Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. doi.org/10.1183/13993003.00607-2020

54. Tang NLS, Chan PKS, Wong CK, To KF, Wu AKL, Sung YM, Hui DSC, Sun JY, Lam CWK (2005) Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin Chem 51:2333–2340

55. Chan JYW, Zhang AJ, Yuan S, Pooven KM, Chan CCS, Lee ACY, Chan WM, Fan Z, Tsou HW, Wen L (2020) Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis 71:2428–2446

56. Lim YX, Ng YL, Tam JP, Liu DX (2016) Human coronaviruses: a review of virus–host interactions. Diseases 4:26

57. Naidu BV, Woolley SM, Farivar AS, Thomas R, Fraga CH, Mulligan MS (2004) Early tumor necrosis factor-α release from the pulmonary macrophage in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 127:1502–1508

58. Splettstoesser WD, Schuff-Werner P (2002) Oxidative stress in vascular endothelial cells: role of p47phox phosphorylation and necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells. J Biol Chem 276:42728–42736

59. Li J-M, Fan LM, Christie MR, Shah AM (2005) Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol Cell Biol 25:2320–2330

60. Tomar B, Anders H-J, Desai J, Mulay SR (2020) Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19. Cells 9:1383

61. Musi R, Camargo E, Ferreira T, De Moraes C, Delbin M, Toro I, Brancher S, Landucci E, Zanesco A, Antunes E (2008) Exercise training reduces pulmonary ischaemia–reperfusion-induced inflammatory responses. Eur Respir J 31:645–649

 Springer
63. De Perrot M, Liu M, Waddell TK, Keshavjee S (2003) Ischemia–reperfusion–induced lung injury. Am J Respir Crit Care Med 167:490–511
64. Wang J, Nikrad MP, Phang T, Gao B, Alford T, Ito Y, Edeen K, Travanty EA, Kosmider B, Hartshorn K (2011) Innate immune response to influenza A virus in differentiated human alveolar type II cells. Am J Respir Cell Mol Biol 45:582–591
65. Chilvers M, McKean M, Rutman A, Myint B, Silverman M, O’Callaghan C (2001) The effects of coronavirus on human nasal ciliated respiratory epithelium. Eur Respir J 18:965–970
66. Johnston SL, Pattemore PK, Sanderson G, Smith S, Lampe F, Hamming I, Timens W, Bulthuis M, Lely A, Gv N, van Goor O’Callaghan C (2001) The effects of coronavirus on human nasal mucociliary transport, number of ciliated cells, and beating pattern in naturally acquired common colds. Eur J Respir Dis Suppl 128:355–365
67. Rautiainen M, Kuukaanniemi H, Nuutinen J, Collan Y (1992) Ultrastructural changes in human nasal cilia caused by the common cold and recovery of ciliated epithelium. Ann Otolar Rhinol Laryngol 101:982–987
68. Bai HX, Wang R, Xiong Z, Hsieh B, Chang K, Halsey K, Tran TML, Choi JW, Wang D-C, Shi L-B (2020) Artifical intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT. Radiology 296:E156–E165
69. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, Baxter-Stoltzfus A, Laurence J (2020) Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res 220:1–13
70. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H (2020) Endothelial cell infection and endotheliitis in COVID-19. Lancet 395:1417–1418
71. Flammer AJ, Anderson T, Celermai D, Creager MA, Deanfield J, Ganz P, Hamburg NM, Lüscher TF, Shechter M, Taddei S (2012) The assessment of endothelial function: from research into clinical practice. Circulation 126:753–767
72. Hamming I, Timens W, Bulthuis M, Lely A, Gv N, van Goor H (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203:631–637
73. Glenn JD, Smith MD, Xue P, Chan-Li Y, Collins S, Calabresi PA, Horton MR, Whartenby KA (2017) CNS-targeted autoimmunity leads to increased influenza mortality in mice. J Exp Med 214:297–307
74. Razi O, Tellitarian B, Laher I, Govindasamy K, Zamani N, Rocha-Rodrigues S, Suzuki K, Zouhal H (2022) Multimodal benefits of exercise in patients with multiple sclerosis and COVID-19. Front Physiol. https://doi.org/10.3389/fphys.2022.783251
75. Razi O, Parnow A, Rashid I, Pakravan N, Nedaee SE, Motl RW (2022) Aerobic training improves blood-brain barrier and neuronal apoptosis in experimental autoimmune encephalomyelitis. Iran J Basic Med Sci 25:245
76. Jick S, Li L, Falcone G, Vassilev Z, Wallander M-A (2014) Mortality of patients with multiple sclerosis: a cohort study in UK primary care. J Neurol 261:1508–1517
77. Lalmohamed A, Bazelier M, Van Staa T, Utdehaag B, Leufkens H, De Boer A, De Vries F (2012) Causes of death in patients with multiple sclerosis and matched referent subjects: a population-based cohort study. Eur J Neurol 19:1007–1014
98. Ibáñez AO, Laviñeta JC, Blanco TA (2022) Immunosenescence: lessons from the study of thymectomized individuals. Aging (Albany NY) 2:78

101. Appay V, Sauce D, Prelog M (2010) The role of the thymus in immunosenescence: the role of age in multiple sclerosis. In: Ostolaza Ibáñez A (ed) Neurología (English edition). Navarra, Spain

102. Edwards S, Zvartau M, Clarke H, Irving W, Blumhardt L (2000) Prospective seroepidemiological study. J Neurol 240:417–422

103. Andersen O, Lyngner P-E, Bergström T, Andersson M, Vahlne A (1993) Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study. J Neurol 240:417–422

104. Narod S, Johnson-Lussenburg C, Zheng Q, Nelson R, Alperovitch A, Berr C, Sibley W (1985) Clinical viral infections and multiple sclerosis. Lancet (London, England) 326:165

105. Morley JE, Kalantar-Zadeh K, Anker SD (2020) COVID-19: a major cause of cachexia and sarcopenia? J Cachexia Sarcopenia Musc 11:863–865

106. Goligher EC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, Vorona S, Sklar MC, Rittayamai N, Lanys A (2018) Mechanical ventilation–induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med 197:204–213

107. Jonkman A, Jansen D, Heunks LM (2017) Novel insights in ICU-acquired respiratory muscle dysfunction: implications for clinical care. Ann Update Intensive Care Emerg Med 2017:291–301

108. Souberbielle BE, Szawlowski PW, Russell WC (1995) Is there a case for a virus aetiology in multiple sclerosis? Scott Med J 64:736–741

109. Hooijman PE, Beishuizen A, Witt CC, de Waard MC, Girbes AR, White LJ, Castellano V (2008) Exercise and brain health—implications for multiple sclerosis. Sports Med 38:91–100

110. Hooijman PE, Beishuizen A, Witt CC, de Waard MC, Girbes AR, White LJ, Castellano V (2008) Exercise and brain health—implications for multiple sclerosis. Sports Med 38:91–100

111. Levy S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR (2008) Rapid diuretic atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335

112. Bodine SC, Latres E, Baumbuehr S, Lai VK-M, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Kritas S (2020) Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents 34:1

113. Hooijman PE, Beishuizen A, Witt CC, de Waard MC, Girbes AR, White LJ, Castellano V (2008) Exercise and brain health—implications for multiple sclerosis. Sports Med 38:91–100

114. Jaber S, Petrof BJ, Jung B, Chanes Q, Berthet J-P, Rabuel C, Berrut G, Koechlin-Ramonatxo C, Sebbane M (2011) Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 183:364–371

115. Herrmans G, Van den Bergh G (2015) Clinical review: intensive care unit acquired weakness. Crit Care 19:1–9

116. Herrmans G, Van den Bergh G (2015) Clinical review: intensive care unit acquired weakness. Crit Care 19:1–9

117. Ferrante LE, Pisani MA, Murphy TE, Gabhauer EA, Leo-Summers LS, Gill TM (2018) The association of frailty with post-ICU disability, nursing home admission, and mortality: a longitudinal study. Chest 153:1378–1386

118. Ferrante LE, Pisani MA, Murphy TE, Gabhauer EA, Leo-Summers LS, Gill TM (2018) The association of frailty with post-ICU disability, nursing home admission, and mortality: a longitudinal study. Chest 153:1378–1386

119. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395:1054–1062

120. Ferrante LE, Pisani MA, Murphy TE, Gabhauer EA, Leo-Summers LS, Gill TM (2018) The association of frailty with post-ICU disability, nursing home admission, and mortality: a longitudinal study. Chest 153:1378–1386

121. Dres M, Demoule A (2018) Diaphragm dysfunction during weaning from mechanical ventilation: an underestimated phenomenon with clinical implications. Crit Care 22:1–8

122. Dres M, Jung B, Molinari N, Manna F, Dubé B-P, Chanes Q, Similowski T, Jaber S, Demoule A (2019) Respective contribution of intensive care unit-acquired limb muscle and severe diaphragm weakness on weaning outcome and mortality: a post hoc analysis of two cohorts. Crit Care 23:1–9

123. Dres M, Jung B, Molinari N, Manna F, Dubé B-P, Chanes Q, Similowski T, Jaber S, Demoule A (2019) Respective contribution of intensive care unit-acquired limb muscle and severe diaphragm weakness on weaning outcome and mortality: a post hoc analysis of two cohorts. Crit Care 23:1–9

124. Conti P, Ronconi G, Caraffa A, Gallenga C, Ross R, Frydas I, Kritas S (2020) Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents 34:1

125. Jaber S, Petrof BJ, Jung B, Chanes Q, Berthet J-P, Rabuel C, Berrut G, Koechlin-Ramonatxo C, Sebbane M (2011) Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 183:364–371

126. Powers SK, Kavazis AN, DeRuisseau KC (2005) Mechanisms of diastolic muscle atrophy: role of oxidative stress. Am J Physiol-Regulatory, Integr Comparative Physiol 288:R337–R344

127. Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and muscle atrophy. J Appl Physiol 104:2389–2397

128. McClung JM, Kavazis AN, DeRuisseau KC, Falk DJ, Deering MA, Lee Y, Sugiuira T, Powers SK (2007) Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation–induced atrophy. Am J Respir Crit Care Med 175:150–159

129. Costamagna D, Costelli P, Sampaiole M, Penna F (2010) The association of frailty with post-ICU disability, nursing home admission, and mortality: a longitudinal study. Chest 153:1378–1386

130. Costamagna D, Costelli P, Sampaiole M, Penna F (2010) The association of frailty with post-ICU disability, nursing home admission, and mortality: a longitudinal study. Chest 153:1378–1386

131. Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6:25–39

132. Bodine SC, Latres E, Baumbuehr S, Lai VK-M, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

133. Reid MB, Li Y-P (2001) Tumor necrosis factor-α and muscle wasting: a cellular perspective. Respir Res 2:1–4

134. Reid MB, Li Y-P (2001) Tumor necrosis factor-α and muscle wasting: a cellular perspective. Respir Res 2:1–4

135. Herrmans G, Van den Bergh G (2015) Clinical review: intensive care unit acquired weakness. Crit Care 19:1–9
insulin-like growth factor-I stimulated protein synthesis. Endocrinology 138:4153–4159

135. Goodman MN (1991) Tumor necrosis factor induces skeletal muscle protein breakdown in rats. American J Physiol-Endocrinol Metab 260:E727–E730

136. Broussard SR, MCCusker RH, Novakofski JE, Strle K, Hong Shen W, Johnson RW, Freund GG, Dantzer R, Kelley KW (2003) Cytokine-hormone interactions: tumor necrosis factor α impairs biologic activity and downstream activation signals of the insulin-like growth factor I receptor in myoblasts. Endocrinology 144:2988–2996

137. Li YP, Schwartz RJ, Waddell JD, Holloway BR, Reid MB (1998) Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-κB activation in response to tumor necrosis factor. FASEB J 12:871–880

138. Phillips T, Leeswenburgh C (2005) Muscle fiber-specific apoptosis and TNF-α signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J 19:1–33

139. Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh B-C, Lidov HG, Hasselgren P-O, Frontera WR, Lee J, Glass DJ (2004) IKKβ/NF-κB activation causes severe muscle wasting in mice. Cell 119:285–298

140. Jackman RW, Cornwell EW, Wu CL, Kandarian SC (2013) Nuclear factor-κB signalling and transcriptional regulation in skeletal muscle atrophy. Exp Physiol 98:19–24

141. Betters JL, Criswell DS, Shanely RA, Van Gammeren D, Falk D, DeRuisseau KC, Deering M, Yimlamai T, Powers SK (2004) Trolox attenuates mechanical ventilation–induced diaphragmatic dysfunction and proteolysis. Am J Respir Crit Care Med 170:1179–1184

142. Kondo H, Miura M, Itokawa Y (1991) Oxidative stress in skeletal muscle atrophy. J Appl Physiol 129:872–872

143. Bahat G (2020) Covid-19 and the renin angiotensin system: implications for the older adults. J Nutr Health Aging 24:699–704

144. Betters JL, Criswell DS, Shanely RA, Van Gammeren D, Falk D, DeRuisseau KC, Deering M, Yimlamai T, Powers SK (2004) Trolox attenuates mechanical ventilation–induced diaphragmatic dysfunction and proteolysis. Am J Respir Crit Care Med 170:1179–1184

145. Kondo H, Miura M, Itokawa Y (1991) Oxidative stress in skeletal muscle atrophy by immobilization. Acta Physiol Scand 142:527–528

146. Kondo H, Miura M, Kodama J, Ahmed SM, Itokawa Y (1992) Role of iron in oxidative stress in skeletal muscle atrophy by immobilization. Pflugers Arch 421:295–297

147. Reid MB, Khawli F, Moody MR (1993) Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle. J Appl Physiol 75:1081–1087

148. Smith MA, Reid MB (2006) Redox modulation of contractile function in respiratory and limb skeletal muscle. Respir Physiol Neurobiol 151:229–241

149. Andrade FH, Reid MB, Westerblad H (2001) Contractile response to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox-modulation of skeletal muscle function. FASEB J 15:309–311

150. Anzai K, Ogawa K, Ozawa T, Yamamoto H (2000) Oxidative modification of ion channel activity of ryanodine receptor. Antioxid Redox Signal 2:35–40

151. Abramson JJ, Salama G (1989) Critical sulphydryls regulate calcium release from sarcoplasmic reticulum. J Bioenerg Biomembr 21:283–294

152. Fabisiak JP, Ritov VB, Kagan VE (2000) Reversible thiol-dependent activation of ryanodine-sensitive Ca2+ release channel by etoposide (VP-16) phenoxyl radical. Antioxid Redox Signal 2:73–82

153. Daiho T, Kanazawa T (1994) Reduction of disulfide bonds in sarcoplasmic reticulum Ca (2+)-ATPase by dithiothreitol causes inhibition of phosphoenzyme isomerization in catalytic cycle. This reduction requires binding of both purine nucleotide and Ca2+ to enzyme. J Biol Chem 269:11060–11064

154. Yamada T, Shimisha T, Sakamoto M, Sugiyama M, Matsunaga S, Wada M (2006) Oxidation of myosin heavy chain and reduction in force production in hyperthyroid rat soleus. J Appl Physiol 100:1520–1526

155. Haycock JW, Jones P, Harris JB, Mantle D (1996) Differential susceptibility of human skeletal muscle proteins to free radical induced oxidative damage: a histochemical, immunocytochemical and electron microscopical study in vitro. Acta Neuropathol 92:331–340

156. Coirault C, Guelluch A, Barbry T, Samuel JL, Riou B, Lecarpentier Y (2007) Oxidative stress of myosin contributes to skeletal muscle dysfunction in rats with chronic heart failure. Am J Physiol-Heart Circulatory Physiol 292:H1009–H1017

157. Plant DR, Lynch GS, Williams DA (2000) Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast-and slow-twitch skeletal muscles of rats. J Muscle Res Cell Motil 21:747–752

158. Shanely RA, Zergeroglu MA, Lennon SL, Sugitani T, Yilmali T, Enns D, Belcastro A, Powers SK (2002) Mechanical ventilation–induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med 166:1369–1374

159. Koh TJ, Tidball JG (2000) Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells. Am J Physiol Cell Physiol 279:C806–C812

160. Román GC, Spencer PS, Reis J, Buguet A, Faris MEA, Katrak SM, Láinez M, Medina MT, Meshram C, Mizusawa H (2020) The neurology of COVID-19 revisited: a proposal from the environmental neurology specialty group of the world federation of neurology to implement international neurological registries. J Neurol Sci 414:116884

161. Wang S, Yi Q, Fan S, Lv J, Zhang X, Guo L, Lang C, Xiao Q, Xiao K, Yi Z (2020) Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). MedRxiv. https://doi.org/10.1101/2020.02.10.20021832

162. Zhang Y, Geng X, Tan Y, Li Q, Xu C, Xu J, Hao L, Zeng Z, Luo X, Liu F (2020) New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed Pharmacother 127:110195

163. Li C, Yang P, Zhang Y, Sun Y, Wang W, Zou Z, Xing L, Chen Z, Tang C, Guo F (2012) Corticosteroid treatment ameliorates acute lung injury induced by 2009 swine origin influenza A (H1N1) virus in mice. PLoS ONE. https://doi.org/10.1371/journal.pone.0044110

164. Younan P, Iampietro M, Nishida A, Ramanathan P, Santos RI, Dutta M, Lubaki NM, Koup RA, Katze MG, Bukreyev A (2017) Ebola virus binding to Tim-1 on T lymphocytes induces a cytokine storm. MBio 8:e00845-e917

165. Boşnak Güçlü M, Güçlü Gündüz A, Nazliel B, Irkec C (2012) Respiratory disorders in neurologic disorders with different disability levels and healthy controls. J Rehabil Med 44(1):80–86

166. Aboussouan LS (2005) Respiratory disorders in neurologic disorders. Clin Med 166:1369–1374

167. Mutluay F, Gürses H, Saip S (2005) Effects of multiple sclerosis on respiratory functions. Clin Rehabil 19:426–432
168. Hirst C, Swinney R, Compston D, Ben-Shlomo Y, Robertson NP (2008) Survival and cause of death in multiple sclerosis: a prospective population-based study. J Neurol Neurosurg Psychiatry 79:1016–1021
169. McCool FD, Tzelepis GE (2012) Dysfunction of the diaphragm. N Engl J Med 366:932–942
170. Howard R, Wiley C, Hirsch N, Loh L, Spencer G, Newsom-Davis J (1992) Respiratory involvement in multiple sclerosis. Brain 115:479–494
171. Tzelepis GE, McCool FD (2015) Respiratory dysfunction in multiple sclerosis. Respir Med 109:671–679
172. Smeltzer SC, Skurnick JH, Troiano R, Cook SD, Duran W, Lavietes MH (1992) Respiratory function in multiple sclerosis: utility of clinical assessment of respiratory muscle function. Chest 101:479–484
173. Farhat MR, Loring SH, Riskind P, Weinhouse G (2013) Disturbance of respiratory muscle control in a patient with early-stage multiple sclerosis. Eur Respir J 41:1454–1456
174. Westerdahl E, Gunnarsson M, Withrin A, Nilssagard Y (2021) Pulmonary function and respiratory muscle strength in patients with multiple sclerosis. Multiple Sclerosis Intern. https://doi.org/10.1155/2021/5532776
175. Dereli M, Kahraman BO, Kahraman T (2022) A narrative review of respiratory impairment, assessment, and rehabilitation in multiple sclerosis. Dubai Medical J. https://doi.org/10.1155/2021/5532776
176. Razi O, Tartibian B, Teixeira AM, Zamani N, Govindasamy K, Suzuki K, Laher I, Zouhal H (2022) Thermal dysregulation in patients with multiple sclerosis during SARS-CoV-2 infection. The potential therapeutic role of exercise. Multiple Scler Relat Disord 59:103557
177. Linker R, Mohr A, Cepek L, Gold R, Prange H (2006) Core temperature and metabolic dysfunction in patients with multiple sclerosis. Acta Neurol Scand 114:281–286
178. White K, Scoones D, Newman P (1996) Hypothermia in multiple sclerosis. Disabil Rehabil 35:353–361
179. Linker R, Mehr A, Cepek L, Gold R, Prange H (2006) Core temperature and metabolic dysfunction in patients with multiple sclerosis. Acta Neurol Scand 114:261–267
180. Wens I, Eijnde BO, Hansen D (2016) Muscular, cardiac, ventilatory and metabolic dysfunction in patients with multiple sclerosis: Implications for screening, clinical care and endurance and resistance exercise therapy, a scoping review. J Neurol Sci 367:107–121
181. Asano M, Duquette P, Andersen R, Lapierre Y, Mayo NE (2013) Exercise barriers and preferences among women and men with multiple sclerosis. Disabil Rehabil 35:353–361
182. Guthrie TC, Nelson DA (1995) Influence of temperature changes on multiple sclerosis: critical review of mechanisms and research potential. J Neurol Sci 129:1–8
183. White A, Wilson T, Davis S, Petajan J (2000) Effect of precooing on physical performance in multiple sclerosis. Mult Scler J 6:176–180
184. Motl RW, McAuley E, Snook EM (2005) Physical activity and multiple sclerosis: a meta-analysis. Mult Scler J 11:459–463
185. Stroud N, Minahan C, Sabapathy S (2009) The perceived benefits and barriers to exercise participation in persons with multiple sclerosis. Disabil Rehabil 31:2216–2222
186. Turner AP, Kivlahan DR, Haselkorn JK (2009) Exercise and quality of life among people with multiple sclerosis: looking beyond physical functioning to mental health and participation in life. Arch Phys Med Rehabil 90:420–428
187. Koseoglu B, Gokkaya N, Ergun U, Inan L, Yesiltepe E (2006) Measures of respiratory impairment, assessment, and rehabilitation in multiple sclerosis. J Neurol Neurosurg Psychiatry 61:369–375
188. White A, Wilson T, Davis S, Petajan J (2000) Effect of precooing on physical performance in multiple sclerosis. Mult Scler J 6:176–180
189. Motl RW, McAuley E, Snook EM (2005) Physical activity and multiple sclerosis: a meta-analysis. Mult Scler J 11:459–463
190. Stroud N, Minahan C, Sabapathy S (2009) The perceived benefits and barriers to exercise participation in persons with multiple sclerosis. Disabil Rehabil 31:2216–2222
191. Turner AP, Kivlahan DR, Haselkorn JK (2009) Exercise and quality of life among people with multiple sclerosis: looking beyond physical functioning to mental health and participation in life. Arch Phys Med Rehabil 90:420–428
192. Koseoglu B, Gokkaya N, Ergun U, Inan L, Yesiltepe E (2006) Measures of respiratory impairment, assessment, and rehabilitation in multiple sclerosis. J Neurol Neurosurg Psychiatry 61:369–375
209. Sin DD, Jones RL, Man SP (2002) Obesity is a risk factor for dyspnea but not for airflow obstruction. Arch Intern Med 162:1477–1481
210. Zerah F, Harf A, Perlemuter L, Lorino H, Lorino A-M, Atlan G (1993) Effects of obesity on respiratory resistance. Chest 103:1470–1476
211. Zavorsky G, Hoffman S (2008) Pulmonary gas exchange in the morbidly obese. Obes Rev 9:326–339
212. Holley H, Milic-Emili J, Becklake M, Bates D (1967) Regional distribution of pulmonary ventilation and perfusion in obesity. J Clin Invest 46:475–481
213. Martinez-Santibañez G, Nien-Kai Lumeng C (2014) Macrophages and the regulation of adipose tissue remodeling. Ann Rev Nutr 34:57–76
214. Alessi M-C, Bastelica D, Morange P, Berthet B, Leduc I, Verdier P, Di Gregorio GB, Yao-Borengasser A, Rasouli N, Varma V, Lu C-H, Chung KF, Kuo H-P (2006) Neutrophil-derived elastase induces TGF-β1 secretion in human airway smooth muscle via the NF-κB pathway. Am J Respir Cell Mol Biol 35:407–414
215. Martinez-Santibañez G, Nien-Kai Lumeng C (2014) Macrophages and the regulation of adipose tissue remodeling. Ann Rev Nutr 34:57–76
216. De Boer WI, van Schadewijk A, Sont JK, Sharma HS, Stolk J, Dejucq-Riviere S, Avettand-Fènoël V, Huot N, Magdy Beshbishy A, Hetta HF, Saati AA, Uba C, Rivero-Perez N, Zaragoza-Bastida A, Shah MA, Behl T, Batisha PE (2017) The omniad triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Investig 127:74–82
217. Hsu P-S, Wu C-S, Chang J-F, Lin W-N (2015) Leptin promotes angiogenesis in bronchial smooth muscle cell proliferation, matrix expression, and contraction in vitro: differential sensitivity to cysteinyl leukotriene receptor antagonists. Am J Respir Cell Mol Biol 19:453–461
218. Guo J, Huang Z, Lin L, Lv J (2020) Coronavirus disease 2019 (COVID-19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of acute respiratory syndrome coronavirus 2 infection. J Am Heart Assoc 9:e016219
219. Turner AJ (2015) ACE2 cell biology, regulation, and physiological functions. Prot Arm Ren Angiotensin Syst (RAS). https://doi.org/10.20944/preprints202002.0315.v1
220. Ortiz ME, Thurman A, Pezzulo AA, Leidinger MR, Klesney-Tait JA, Karp PH, Tan P, Wohlford-Lenane C, McCray PB Jr, Meyerholz DK (2020) Heterogeneous expression of the SARS-CoV-2 receptor ACE2 in the human respiratory tract. EBioMedicine 60:102976
221. Grande JP, Melder DC, Zinsmeister AR (1997) Modulation of collagen gene expression by cytokines: stimulatory effect of transforming growth factor-β1, with divergent effects of epidermal growth factor and tumor necrosis factor-α on collagen type I and collagen type IV. J Lab Clin Med 130:476–486
222. Martinez-Santibañez G, Nien-Kai Lumeng C (2014) Macrophages and the regulation of adipose tissue remodeling. Ann Rev Nutr 34:57–76
223. Lee K-Y, Ho S-C, Lin H-C, Lin S-M, Liu C-Y, Huang C-D, Wang Y, Zhou Y (2020) Prevalence of comorbidities and mortality of obese and overweight COVID-19 patients. Biology 9:280
224. Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) TGF-β1 stimulates IL-8 release, COX-2 expression, and PGE2 release in human airway smooth muscle cell cultures. J Appl Physiol (Bethesda) 97:1951–1957
225. Jia X, Yin C, Lu S, Chen Y, Liu Q, Bai J and Lu Y (2020) Two things about COVID-19 might need attention. 2020020315. https://doi.org/10.20944/preprints202002.0315.v1
226. Damouche A, Lazure T, Avettand-Fènoël V, Huot N, Dejuçq-Rainsford N, Satie A-P, Méiard A, David L, Gommet C, Ghosn J (2015) Adipose tissue is a neglected viral reservoir and an inflammatory site during chronic HIV and SIV infection. PLoS Pathog 11:e1005153
227. Grande JP, Melder DC, Zinsmeister AR (1997) Modulation of collagen gene expression by cytokines: stimulatory effect of transforming growth factor-β1, with divergent effects of epidermal growth factor and tumor necrosis factor-α on collagen type I and collagen type IV. J Lab Clin Med 130:476–486
228. Wang Y, Zhou Y (2020) Prevalence of comorbidities and mortality of obese and overweight COVID-19 patients. Biology 9:280
229. Damouche A, Lazure T, Avettand-Fènoël V, Huot N, Dejuçq-Rainsford N, Satie A-P, Méiard A, David L, Gommet C, Ghosn J (2015) Adipose tissue is a neglected viral reservoir and an inflammatory site during chronic HIV and SIV infection. PLoS Pathog 11:e1005153
230. Sumners C, Horiuchi M, Widdop RE, McCarthy C, Unger T, Razazian N, Almasi V, Afshari D, Bostani A, Moradian N, Farah- kan H, Muller DN, Gaupp S, Rump LC, Gold R (2009) Role of things about COVID-19 might need attention. 2020020315. https://doi.org/10.20944/preprints202002.0315.v1
231. Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) TGF-β1 stimulates IL-8 release, COX-2 expression, and PGE2 release in human airway smooth muscle cell cultures. J Appl Physiol (Bethesda) 97:1951–1957
232. Jia X, Yin C, Lu S, Chen Y, Liu Q, Bai J and Lu Y (2020) Two things about COVID-19 might need attention. 2020020315. https://doi.org/10.20944/preprints202002.0315.v1
233. Damouche A, Lazure T, Avettand-Fènoël V, Huot N, Dejuçq-Rainsford N, Satie A-P, Méiard A, David L, Gommet C, Ghosn J (2015) Adipose tissue is a neglected viral reservoir and an inflammatory site during chronic HIV and SIV infection. PLoS Pathog 11:e1005153
234. Jia X, Yin C, Lu S, Chen Y, Liu Q, Bai J and Lu Y (2020) Two things about COVID-19 might need attention. 2020020315. https://doi.org/10.20944/preprints202002.0315.v1
235. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y (2020) Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis 94:91–95
236. Ortiz ME, Thurman A, Pezzulo AA, Leidinger MR, Klesney-Tait JA, Karp PH, Tan P, Wohlford-Lenane C, McCray PB Jr, Meyerholz DK (2020) Heterogeneous expression of the SARS-CoV-2 receptor ACE2 in the human respiratory tract. EBioMedicine 60:102976
237. Guo J, Huang Z, Lin L, Lv J (2020) Coronavirus disease 2019 (COVID-19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection. J Am Heart Assoc 9:e016219
238. Turner AJ (2015) ACE2 cell biology, regulation, and physiological functions. Prot Arm Ren Angiotensin Syst (RAS). https://doi.org/10.1016/B978-0-12-801364-9.00025-0
239. Harmer D, Gilbert M, Borman R, Clark KL (2002) Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 532:107–110
240. Razazian N, Almarsi A, Afshari D, Bostani A, Moradian N, Farah- kan H, Muller DN, Gaupp S, Rump LC, Gold R (2009) Role of things about COVID-19 might need attention. 2020020315. https://doi.org/10.20944/preprints202002.0315.v1
241. Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) TGF-β1 stimulates IL-8 release, COX-2 expression, and PGE2 release in human airway smooth muscle cells. Am J Physiol-Lung Cell Mol Physiol 279:L201–L207
242. Kelley J, Kovacs EJ, Nicholson K, Fabisiak JP (1991) Transforming growth factor-β1 recruitment of macrophages and mast cells in airways in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 143:1515–1521
243. de Boer WI, van Schadewijk A, Sont JK, Sharma HS, Stolk J, Hiemstra PS, van Krieken JH (1998) Transforming growth factor-β1 and recruitment of macrophages and mast cells in airways in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 158:1051–1057
the renin-angiotensin system in autoimmune inflammation of the central nervous system. Proc Natl Acad Sci 106:14942–14947

244. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ (2017) The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev. https://doi.org/10.1152/physrev.00023.2016

245. Kalra J, Prakash A, Kumar P, Majeed ABA (2015) Cerebro-protective effects of RAS inhibitors: beyond their cardio-renal actions. J Ren-Angiotensin-Aldosterone Syst. https://doi.org/10.1177/1470320315583582

246. Tikellis C, Thomas M (2012) Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. https://doi.org/10.1155/2012/256294

247. Issa H, Eid AH, Berry B, Takviji V, Khosravi A, Mantash S, Nehme R, Hallal R, Karaki H, Dhayki N (2021) Combination of angiotensin (1–7) agonists and convalescent plasma as a new strategy to overcome angiotensin converting enzyme 2 (ACE2) inhibition for the treatment of COVID-19. Front Med 8:278

248. Dimitrijevic I, Edvinsson M-L, Chen Q, Kimblad M, Chen Q, Rossoni LV, de Oliveira EM (2014) Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats. PLoS ONE 9:e89012

249. Wang K, Ghebawi M, Oudit GY (2020) Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clin Sci 134:543–545

250. Rodrigues Machado MGd, Motta-Santos D, Campagnole-Santos MJ, Santos RS (2020) Activation of Ang-(1–7)/Mas receptor is a possible strategy to treat coronavirus (SARS-CoV-2) infection. Front Physiol 11:730

251. Danser AJ, Epstein M, Batlle D (2020) Renin-angiotensin system blockers and the COVID-19 pandemic: at present there is no evidence to abandon renin-angiotensin system blockers. Hypertension 75:1382–1385

252. Garcia GS, Rodrigues-Machado MG, Motta-Santos D, Campagnole-Santos MJ, Santos RS (2020) The anti-inflammatory potential of ACE2/angiotensin-(1–7)/mas receptor axis: evidence from basic and clinical research. Curr Drug Targets 18:1301–1313

253. Wüstera-van Asperen RM, Lutter R, Specht PA, Moll GN, van Woensel JB, van der Loos CM, van Goor H, Kamilić J, Florquin S, Bos AP (2011) Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1–7) or an angiotensin II receptor antagonist. J Pathol 225:618–627

254. Chen Q, Yang Y, Huang Y, Pan C, Liu L, Qiu H (2013) Angiotensin-(1–7) attenuates lung fibrosis by way of mas receptor in acute lung injury. J Surg Res 185(2):740–747

255. Seys LI, Widiagdo W, Verhamme FM, Kleijnjan A, Janssens W, Joos GF, Bracke KR, Haegmans BL, Brussels GG (2018) DPP4, the middle east respiratory syndrome coronavirus receptor, is upregulated in smokers and chronic obstructive pulmonary disease patients. Clin Infect Dis 66:45–53

256. McKinley MJ, Albiston AL, Allen AM, Mathai M, May C, McAllen RM, Oldfield BJ, Mendelsohn F, Chai SY (2003) The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol 35:901–918

257. de Kloet AD, Liu M, Rodriguez V, Krause EG, Summers C (2015) Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am J Physiol-Regulatory Integrative Comparative Physiol 309:R444–R458
275. Constantinescu CS, Goodman DB, Grossman RI, Mannon LJ, Cohen JA (1997) Serum angiotensin-converting enzyme in multiple sclerosis. Arch Neurol 54:1012–1015

276. Lund B, Stone R, Levy A, Lee S, Amundson E, Kashani N, Rodgers K, Kelland E (2019) Reduced disease severity following therapeutic treatment with angiotensin 1–7 in a mouse model of multiple sclerosis. Neurobiol Dis 127:87–100

277. Oliveira-Lima OC, Pinto MC, Duchene J, Qadri F, Souza LL, Alenina N, Bader M, Santos RA, Carvalho-Tavares J (2015) Mas receptor deficiency exacerbates lipopolysaccharide-induced cerebral and systemic inflammation in mice. Immunobiology 220:1311–1321

278. Stone RE, Liu S, Levy AM, Kashani N, Louie SG, Rodgers KE, Kelland EE, Lund BT (2019) Activation of the protective arm of the renin angiotensin system in demyelinating disease. J Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-019-09894-7

279. Platten M, Youssef S, Hur EM, Ho PP, Han MH, Lanz TV, Phillips LK, Goldstein MJ, Bhat R, Raine CS (2009) Blinding angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1–and TH17-mediated autoimmunity. Proc Natl Acad Sci 106:14948–14953

280. Hamer A, Yang G, Friedrich J, Kovacs A, Lee D-H, Grave K, Jörg S, Alenina N, Grosch J, Winkler J (2016) Role of the receptor mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci 113:14109–14114

281. Zhao Y, Qin Y, Liu T, Hao D (2015) Chronic nerve injury-induced Mas receptor expression in dorsal root ganglion neurons alleviates neuropathic pain. Exp Ther Med 10:2384–2388

282. Salehi S, Reddy S, Gholamrezaezhad A (2020) Long-term pulmonary consequences of coronavirus disease 2019 (COVID-19): what we know and what to expect. J Thorac Imaging 35:W87–W89

283. Xie L, Liu Y, Xiao Y, Tian Q, Fan B, Zhao H, Chen W (2005) Follow-up study on pulmonary function and lung radiographic changes in rehabilitating severe acute respiratory syndrome patients after discharge. Chest 127:2119–2124

284. Chen J, Wu J, Hao S, Yang M, Lu X, Chen X, Li L (2017) Long term outcomes in survivors of epidemic influenza A (H7N9) virus infection. Sci Rep 7:1–8

285. Salehi S, Abedi A, Balakrishnan S, Gholamrezaezhad A (2020) Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. Am J Roentgenol 215:87–93

286. Antonio GE, Wong K, Hui DS, Wu A, Lee N, Yuen EH, Leung C, Rainer TH, Cameron P, Chung SS (2003) Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: preliminary experience. Radiology 228:810–815

287. Rietberg MB, Veerbeek JM, Gosselink R, Kwakkelaar DE, van Wegen EE (2017) Respiratory muscle training for multiple sclerosis. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009424.pub2

288. Göçmen R (2018) The relevance of neuroimaging findings to physical disability in multiple sclerosis. Arch Neuropsychiatry 55:531

289. Lee K, Rincon F (2012) Pulmonary complications in patients with severe brain injury. Crit Care Res Pract. https://doi.org/10.1155/2012/207247

290. Gosselink R, Kovacs L, Ketelaar P, Carton H, Decramer M (2000) Respiratory muscle weakness and respiratory muscle training in severely disabled multiple sclerosis patients. Arch Phys Med Rehabil 81:747–751

291. Gosselink R, Kovacs L, Decramer M (1999) Respiratory muscle involvement in multiple sclerosis. Eur Respir J 13:449–454

292. Smeltzer SC, Levites MH, Cook SD (1996) Expiratory training in multiple sclerosis. Arch Phys Med Rehabil 77:909–912

293. Tantucci C, Massucci M, Piperno R, Betti L, Grassi V, Sorbini CA (1994) Control of breathing and respiratory muscle strength in patients with multiple sclerosis. Chest 105:1163–1170

294. Li J, He X, Yuan Y, Zhang W, Li X, Zhang Y, Li S, Guan C, Gao Z, Dong G (2021) Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. Am J Infect Control 49:82–89

295. Kasraei M, Zare M, Vafaei H, Asadi N, Faraji A, Bazrafshan K, Rooznezh S (2020) COVID-19 pneumonia and pregnancy; a systematic review and meta-analysis. J Maternal-Fetal Neonatal Med. https://doi.org/10.1080/14767058.2020.1763952

296. Marks BL (2002) Physiologic responses to exercise in older women. Topics Geriatric Rehabil 18:9–20

297. Fink JE, Schoenfeld BJ, Kikuchi N, Nakazato K (2017) Acute and long-term responses to different rest intervals in low-load resistance training. Int J Sports Med 38:118–124

298. Jacobsen K, Jain N, Retharekar S, Shampi A, Rairkar S, Sanchez P (2014) Effect of inspiratory muscle training (IMT) on aerobic performance in young healthy sedentary individuals. J Med Text 2:21–25

299. Ołczyńska M, Kurzaj M, Seidel W, Rzeżek-Piechura K (2019) Eight weeks of inspiratory muscle training improves pulmonary function in disabled swimmers—a randomized trial. Int J Environ Res Public Health 16:1747

300. Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ, Dyck DJ (2006) Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol-Endocrinol Metabol 291:E99–E107

301. Wilson JM, Loenneke JP, Jo E, Wilson GJ, Zourdos MC, Kim J-S (2012) The effects of endurance, strength, and power training on muscle fiber type shifting. J Strength Conditioning Res 26:1724–1729

302. Pette D, Staron RS (2001) Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 115:359–372

303. Holloszy JO (1976) Adaptations of muscular tissue to training. Prog Cardiovasc Dis 18:445–458

304. Fitts RH, Booth F, Winder W, Holloszy J (1975) Skeletal muscle respiratory capacity, endurance, and glycogen utilization. Am J Physiol-Leg Content 228:1029–1033

305. Brooks G, Fahey T, White T (1996) Physiologic responses and long-term adaptations to exercise. In: Brooks GA (ed) Exercise physiology: human bioenergetics and its applications, 2nd edn. Mayfield Publishing Company, Mountain View (CA), pp 61–77

306. Lau HMC, Ng GYF, Jones AYM, Lee EWC, Siu EHK, Hui DSC (2021) Effects of inspiratory muscle training (IMT) on aerobic performance in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. Am J Physiol-Endocrinol Metabol 291:E99–E107

307. Kasraei M, Zare M, Vafaei H, Asadi N, Faraji A, Bazrafshan K, Rooznezh S (2020) COVID-19 pneumonia and pregnancy; a systematic review and meta-analysis. J Maternal-Fetal Neonatal Med. https://doi.org/10.1080/14767058.2020.1763952

308. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glasgow I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092

309. Lancaster L (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092

310. Lau HMC, Ng GYF, Jones AYM, Lee EWC, Siu EHK, Hui DSC (2021) Effects of inspiratory muscle training (IMT) on aerobic performance in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. Am J Physiol-Endocrinol Metabol 291:E99–E107

311. Li X, Yu R, Wang P, Wang A, Huang H (2021) Effects of exercise training on cardiopulmonary function and quality of life in elderly patients with pulmonary fibrosis: a meta-analysis. Int J Environ Res Public Health 18:7664

312. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glas-glove I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092

313. Swigris J, Kuscher W, Jacobs S, Wilson S, Gould M (2005) Respiratory muscle weakness and respiratory muscle training in severely disabled multiple sclerosis patients. Arch Phys Med Rehabil 81:747–751

314. Swigris JJ, Brown KK, Make BJ, Wamboldt FS (2008) Pulmonary rehabilitation in idiopathic pulmonary fibrosis: a call for continued investigation. Respir Med 102:1675–1680

315. Hajianbari B, Yamabayashi C, Buna TR, Coelho JD, Freedman KD, Morton TA, Palmer SA, Toy MA, Walsh C, Sheel AW (2013) Effects of respiratory muscle training on performance
in athletes: a systematic review with meta-analyses. J Strength Conditioning Res 27:1643–1663
312. Illi SK, Held U, Frank I, Spengler CM (2012) Effect of respiratory muscle training on exercise performance in healthy individuals. Sports Med 42:707–724
313. Ray AD, Udhoji S, Mashtare TL, Fisher NM (2013) A combined inspiratory and expiratory muscle training program improves respiratory muscle strength and fatigue in multiple sclerosis. Arch Phys Med Rehabil 94:1964–1970
314. Chiara T, Martin AD, Davenport PW, Bolser DC (2006) Expiratory muscle strength training in persons with multiple sclerosis having mild to moderate disability: effect on maximal expiratory pressure, pulmonary function, and maximal voluntary cough. Arch Phys Med Rehabil 87:468–473
315. Huang MH, Fry D, Doyle L, Burnham A, Houston N, Shea K, Smith H, Wiske L, Goode J, Khitrink E (2020) Effects of inspiratory muscle training in advanced multiple sclerosis. Mult Scler Relat Disord 37:101492
316. Silverman EP, Miller S, Zhang Y, Hoffman-Ruddy B, Yeager J, Daly JJ (2017) Effects of expiratory muscle strength training on maximal respiratory pressure and swallow-related quality of life in individuals with multiple sclerosis. Mult Scler J-Exp Translational Clin 3:205217317710829
317. Martin-Sanchez C, Calvo-Arenillas JI, Barbero-Iglesias FJ, Fonseca E, Sanchez-Santos JM, Martin-Nogueras AM (2020) Effects of 12-week inspiratory muscle training with low resistance in patients with multiple sclerosis: a non-randomised, double-blind, controlled trial. Mult Scler Relat Disord 46:102574
318. Ferreira JB, Plentz RDM, Stein C, Casali KR, Arena R, Dal Lago P (2013) Inspiratory muscle training reduces blood pressure and sympathetic activity in hypertensive patients: a randomized controlled trial. Int J Cardiol 166:61–67
319. Parshall MB, Schwartzstein RM, Adams L, Banzett RB, Manning HL, Bourque J, Calverley PM, Gift AG, Harver A, Lareau SC (2012) An official American thoracic society statement: update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med 185:435–452
320. Caruso F, Arena R, Phillips S, Bonjorno J Jr, Mendes R, Arakelian V, Bassi D, Nogi C, Borghi-Silva A (2015) Resistance exercise training improves heart rate variability and muscle performance: a randomized controlled trial in coronary artery disease patients. Eur J Physi Rehabil Med 51:281–289
321. Murad K, Brubaker PH, Fitzgerald DM, Morgan TM, Goff DC Jr, Soliman EZ, Eggebeen JD, Kitzman DW (2012) Exercise training improves heart rate variability in older patients with heart failure: a randomized, controlled, single-blinded trial. Congest Heart Fail 18:192–197
322. Abasyanik Z, Ertekín Ö, Kahraman T, Yigit P, Özakbas S (2020) The effects of clinical pilates training on walking, balance, fall risk, respiratory, and cognitive functions in persons with multiple sclerosis: a randomized controlled trial. Explore 16:12–20
323. Salgado BC, Jones M, Igun S, McCord G, Loper-Powers M, van Houten P (2013) Effects of a 4-month anada yoga program on physical and mental health outcomes for persons with multiple sclerosis. Int J Yoga Ther 23:27–38
324. Abasyanik Z, Yigit P, Özdoğan AT, Kahraman T, Ertekín Ö, Özakbas S (2021) A comparative study of the effects of yoga and clinical Pilates training on walking, cognition, respiratory functions, and quality of life in persons with multiple sclerosis: a quasi-experimental study. Explore 17:424–429
325. Sable M, Vaidya S, Sable S (2012) Short communication comparative study of lung functions in swimmers and runners. Indian J Physiol Pharmacol 56(1):100–104
326. Vašíčková J, Neumannová K, Svozil Z (2017) The effect of respiratory muscle training on fin-swimmers’ performance. J Sports Sci Med 16:521
327. Enright S, Chatham K, Ionescu AA, Unnithan VB, Shale DJ (2004) Inspiratory muscle training improves lung function and exercise capacity in adults with cystic fibrosis. Chest 126:405–411
328. Kang S-W, Bach JR (2000) Maximum insufflation capacity: vital capacity and cough flows in neuromuscular disease. Am J Phys Med Rehabil 79:222–227
329. Mackala K, Kurzaj M, Okrzymowska P, Stodólka J, Coh M, Rożek-Piechura K (2020) The effect of respiratory muscle training on the pulmonary function, lung ventilation, and endurance performance of young soccer players. Int J Environ Res Public Health 17:234
330. Mickleborough TD, Stager JM, Chatham K, Lindley MR, Ionescu AA (2008) Pulmonary adaptations to swim and inspiratory muscle training. Eur J Appl Physiol 103:635–646
331. Marinji J, Gattinoni L (2020) Management of COVID-19 respiratory distress. JAMA 323:2329–2330
332. Sheel AW, Derchak PA, Morgan BJ, Peggelo DF, Jacques AJ, Dempsey JA (2001) Fatiguing inspiratory muscle work causes reflex reduction in resting leg blood flow in humans. J Physiol 537:277–289
333. Romer LM, Lovering AT, Haverkamp HC, Peggelo DF, Dempsey JA (2006) Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans. J Physiol 571:425–439
334. Enright SJ, Unnithan VB, Heward C, Withnall L, Davies DH (2006) Effect of high-intensity inspiratory muscle training on lung volumes, diaphragm thickness, and exercise capacity in subjects who are healthy. Phys Ther 86:345–354
335. Downey AE, Chenoweth LM, Townsend DK, Ranum JD, Ferguson CS, Harms CA (2007) Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia. Respir Physiol Neurobiol 156:137–146
336. Romer LM, McConnell AK, Jones DA (2002) Inspiratory muscle fatigue in trained cyclists: effects of inspiratory muscle training. Med Sci Sports Exerc 34:785–792
337. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop N, Fleshner M, Green C, Pedersen BK, Hoffman-Goete L (2011) Position statement part one: immune function and exercise. Exerc Immunol Rev 17:6–63
338. van de Weert-van PB, Arets HGM, van der Ent CK, Beekman JM (2013) Infection, inflammation and exercise in cystic fibrosis. Respir Physiol 159:1–10
339. Mathur N, Pedersen BK (2008) Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm. https://doi.org/10.1155/2008/109502
340. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastan SS, Nimmo MA (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11:607–615
341. Bradt C, Pedersen BK (2010) The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol. https://doi.org/10.1155/2010/520258
342. Pedersen BK, Steensberg A, Fischer C, Keller C, Ostrowski K, Schjerling P (2001) Exercise and cytokines with particular focus on muscle derived IL-6. Exerc Immunol Rev 7:18–31
343. Coelho Junior HJ, Gambassi BB, Diniz TA, Fernandes IMDc, Caperuto EC, Uchida MC, Lira FS, Rodrigues B (2016) Inflammatory mechanisms associated with skeletal muscle sequelae after stroke: role of physical exercise. Mediators Inflamm. https://doi.org/10.1155/2016/3957958
on salivary secretory immunoglobulin A in elderly individuals. Exerc Immunol Rev 13:55–66

382. Lowder T, Padgett DA, Woods JA (2006) Moderate exercise early after influenza virus infection reduces the Th1 inflammatory response in lungs of mice. Exerc Immunol Rev 12:97–111

383. Martin SA, Pence BD, Woods JA (2009) Exercise and respiratory tract viral infections. Exerc Sport Sci Rev 37:157

384. Nieman DC, Henson DA, Brown VA (2005) Immune response to a 30-minute walk. Med Sci Sports Exerc 37:57–62

385. Shepard RJ (1998) Immune changes induced by exercise in an adverse environment. Can J Physiol Pharmacol 76:539–546

386. Dhabhar FS (2014) Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res 58:193–210

387. Pedersen BK (2017) Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest 47:600–611

388. Bigley AB, Rezvani K, Chew C, Sekine T, Pistillo M, Crucian B, Bolland CM, Simpson RJ (2014) Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun 39:160–171

389. Adams GR, Zaldivar FP, Nance DM, Kodesh E, Radom-Aizik S, Bigley AB, Rezvani K, Chew C, Sekine T, Pistillo M, Crucian B, Bolland CM, Simpson RJ (2014) Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun 39:160–171

390. Campbell JP, Turner JE (2018) Debunking the myth of exercise- and irisin levels at rest, after wingate and progressive tests, and response to a 30-minute walk. Med Sci Sports Exerc 37:57–62

391. Chubak J, MCIrneran A, Sorensen B, Wener MH, Yasui Y, Velasquez M, Wood B, Rajan KB, Wetmore CM, Potter JD (2006) Moderate-intensity exercise reduces the incidence of colds among postmenopausal women. Am J Med 119:937–942

392. Barrett B, Hayney MS, Muller D, Rakel D, Brown R, Zipser AE, Barlow S, Hayer S, Barnett JH, Torres ER (2018) Meditation or exercise for preventing acute respiratory infection (MEPARI-2): a randomized controlled trial. PLoS ONE 13:e0197778

393. Durigon TS, MacKenzie B, Oliveira-Junior MC, Santos-Dias A, De Angelis K, Malfitano C, Palma RK, Guerra JM, Damaceno-Rodrigues NR, Caldini EG (2018) Aerobic exercise protects from Pseudomonas aeruginosa-induced pneumonia in elderly mice. J Innate Immun 10:279–290

394. Olivo CR, Miyaji EN, Oliveira MLS, Almeida FM, Lourenço JD, Abreu RM, Arantes PM, Lopes FD, Martins MA (2014) Aerobic exercise attenuates pulmonary inflammation induced by Streptococcus pneumoniae. J Appl Physiol 117:998–1007

395. Williams PT (2014) Dose-response relationship between exercise and respiratory disease mortality. Med Sci Sports Exerc 46:711

396. Nieman DC, Wentz LM (2019) The compelling link between aerobic exercise and respiratory disease mortality. J Sport Human Perform 2:23–28

397. Prata LO, Rodrigues CR, Martins JM, Vasconcelos PC, Oliveira FMS, Ferreira AJ, Rodrigues-Machado MdG, Caliri MV (2017) ACE2 activator associated with physical exercise potentiates the reduction of pulmonary fibrosis. Exp Biol Med 242:8–21

398. Magalhães DM, Nunes-Silva A, Rocha GC, Vaz LN, de Faria MHS, Vieira ELM, Rocha NP, e Silva ACS (2020) Two protocols of aerobic exercise modulate the counter-regulatory axis of the renin-angiotensin system. Heliyon 6:e03208

399. Frantz EDC, Prodel E, Brait JD, Giori IG, Bargut TCL, Magliano DAC, Nobrega ACL (2018) Modulation of the renin-angiotensin system in white adipose tissue and skeletal muscle: focus on exercise training. Clin Sci 132:1487–1507

400. Nunes-Silva A, Rocha GC, Magalhaes DM, Vaz LN, de Salviano Faria MH, Simoes e Silva AC (2017) Physical exercise and ACE2-angiotensin-(1–7)-mas receptor axis of the renin angiotensin system. Protein Peptide Lett 24:809–816

401. Tyrankiewicz U, Olkowicz M, Berkowicz P, Jablonska M, Smolenki RT, Zoladz JA, Chlopicki S (2021) Physical activity and inhibition of ACE additively modulate ACE/AE-2 balance in heart failure in mice. Front Pharmacol 12:1207

402. Alves CR, Fernandes T, Lemos JR Jr, Magalhaes FdC, Trombetta IC, Alves GB, Mota GdFAd, Dias RG, Pereira AC, Krieger JE (2018) Aerobic exercise training differentially affects ACE C-and N-domain activities in humans: interactions with ACE I/D polymorphism and association with vascular reactivity. J Ren-Angiotensin-Aldosterone Syst. https://doi.org/10.1177/1470323170318761275

403. Santos R, Ferreira AJ, Verano-Braga T, Bader M (2013) Angiotensin-converting enzyme 2, angiotensin-(1–7) and Mas: new players of the renin-angiotensin system. J Endocrinol 216:R1–R17

404. Silva SD Jr, Jara ZP, Peres R, Lima LS, Scavone C, Montezano AC, Touyz RM, Carnazini DE, Michelin LC (2017) Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: role for local angiotensin II reduction. PLoS ONE 12:e0189535

405. PrasannaRong M, Santos FR, Henriksen EJ (2012) ANG-(1–7) reduces ANG II-induced insulin resistance by enhancing Akt phosphorylation via a Mas receptor-dependent mechanism in rat skeletal muscle. Biochem Biophys Res Commun 426:369–373

406. Muñoz MC, Gian JF, Burghi V, Mayer MA, Carranza A, Taíra CA, Dominici FP (2012) The Mas receptor mediates modulation of insulin signaling by angiotensin-(1–7), Regul Pept 177:1–11

407. Marshall RP, Gohle P, Chambers RC, Howell DC, Bottoms SE, Unger T, McAnalty RJ, Laurent GJ (2004) Angiotensin II and the fibroproliferative response to acute lung injury. Am J Physiol Lung Cell Mol Physiol 286:L156–L164

408. Evangelista FS (2020) Physical exercise and the renin angiotensin system: prospects in the COVID-19. Front Physiol 11:1282

409. Sandoval J, Del Valle-Mondragón L, Masso F, Zayas N, Pulido T, Teijeiro R, Gonzalez-Pacheco H, Olmedo-Ocampo R, Sisniega C, Paez-Arenas A (2020) Angiotensin converting enzyme 2 and angiotensin-(1–7) axis in pulmonary arterial hypertension. Eur Respir J. https://doi.org/10.1183/13993003.02416-2019

410. Heffernan KS, Jae SY (2020) Exercise as medicine for COVID-19: An ACE in the hole? Med Hypotheses 142:109835

411. Shoelsom SE, Herrero L, Naaz A (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132:2169–2180

412. Cho J, Lee I, Kim D, Koh Y, Kong J, Lee S, Kang H (2014) Effect of aerobic exercise training on non-alcoholic fatty liver disease induced by a high fat diet in C57BL/6 mice. J Exerc Nutr Biochem 18:339

413. Murawska-Cialowicz E, Wojna J, Zuwala-Jagiello J (2015) Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J Physiol Pharmacol 66:811–821

414. Barfield J, Anderson A (2014) Effect of crossfit™ on health-related physical fitness: a pilot study. J Sport Human Perform 2:23–28
417. Brisebois MF, Rigby BR, Nichols DL (2018) Physiological and fitness adaptations after eight weeks of high-intensity functional training in physically inactive adults. Sports 6:146
418. Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe AM, Barker TA, Tipton KD, Wagenmakers AJ (2013) Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J Physiol 591:641–656
419. Shepherd SO, Cocks M, Tipton K, Ranasinghe AM, Barker TA, Burniston JG, Wagenmakers AJ, Shaw CS (2013) Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol 591:657–675
420. Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield FM, Barron N, McCaffrey N, Moyna NM, Zierath JR, O’Gorman DJ (2010) Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol 588:1779–1790
421. Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B (2000) Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 528:221–226
422. Wende AR, Schaeffer PJ, Parker GJ, Zechner C, Han D-H, Chen MM, Hancock CR, Lehman J, Huss JM, McClain DA (2007) A role for the transcriptional coactivator PGC-1α in muscle refueling. J Biol Chem 282:36642–36651
423. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1α. Cell 98:115–124
424. Yoshimura S, Nakashima S, Tomiya Y, Kawakami S, Uehara Y, Hijagi Y (2018) Short-and-long-term effects of high-fat diet feeding and voluntary exercise on hepatic lipid metabolism in mice. Biochem Biophys Res Commun 507:291–296
425. Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A (2009) Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 50:3–21
426. Marinho R, Ropelle ER, Cintra DE, De Souza CT, Da Silva ASR, Bertoli FC, Colantonio E, D’Almeida V, Pauli JR (2012) Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss. J Cell Physiol 227:2917–2926
427. Watanabe M, Houten SM, Wang L, Moschetta A, Mangelldorf DJ, Heyman RA, Moore DD, Auwerx J (2004) Bile acids lower insulin signaling in the hepatic tissue of diet-induced obese mice, and independently of weight loss. J Cell Physiol 200:382–390
428. Motahari Rad M, Bijeh N, Attarzadeh Hosseini SR, Raouf Saeb A (2020) The effect of two concurrent exercise modalities on serum concentrations of FGF21, irisin, follistatin, and myostatin in men with type 2 diabetes mellitus. Arch Physiol Biochem. https://doi.org/10.1080/13813455.2020.1829649
429. Czarkowska-Paczek B, Zendzian-Piotrowska M, Bartlomiejczyk I, Przybylski J, Gorski J (2009) The effect of acute and prolonged endurance exercise on transforming growth factor-β signaling and adipose browning: Potential for therapeutic intervention in obesity related metabolic disorders. Front Endocrinol 12:653179
430. Hakala K, Stenius-Aarniala B, Sovija A (2000) Effects of weight loss on peak flow variability, airways obstruction, and lung volumes in obese patients with asthma. Chest 118:1315–1321
431. Aaron SD, Ferguson D, Rent D, Chen Y, Vandemheen KL, Dales RE (2004) Effect of weight reduction on respiratory function and airway reactivity in obese women. Chest 125:2046–2052
432. Chapman DG, Irvin CG, Kaminsky DA, Forgione PM, Bates JH, Dixon AE (2014) Influence of distinct asthma phenotypes on lung function following weight loss in the obese. Respirology 19:1170–1177
433. Pakhale S, Baron J, Dent R, Vandemheen K, Aaron SD (2015) Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol 588:1779–1790
434. Peters U, Hernandez P, Dechman G, Ellsmere J, Maksym G (2016) Early detection of changes in lung mechanics with oscillometry following bariatric surgery in severe obesity. Appl Physiol Nutr Metab 41:538–547
435. Thomas P, Cowen E, Hulands G, Middledge J (1989) Respiratory function in the morbidly obese before and after weight loss. Thorax 44:382–386
436. Takeda R, Okazaki K (2018) Body temperature regulation during exercise-heat acclimation. In: Rowell LB (ed) Comprehensive physiology. Wiley, pp 1439–1480
437. Chapman DG, Irvin CG, Kaminsky DA, Forgione PM, Bates JH, Dixon AE (2014) Influence of distinct asthma phenotypes on lung function following weight loss in the obese. Respirology 19:1170–1177
438. Roman MJ, Truesdale JS, Christman JR, Wenden HK, Towfighi K, Talley M, Rezvani B, Zouhal H (2022) Thermal dysregulation in patients with multiple sclerosis during SARS-CoV-2 infection. The potential therapeutic role of exercise. Mult scler relat disord. https://doi.org/10.1016/j.msard.2022.103557
439. Periad JD, Travers GJ, Racinais S, Sawka MN (2016) Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci 196:52–62
440. Razi O, Tartibian B, Teixeira AM, Zamani N, Govindasamy K, Suzuki K, Laher I, Zouhal H (2022) Thermal dysregulation in patients with multiple sclerosis during SARS-CoV-2 infection. The potential therapeutic role of exercise. Mult scler relat disord. https://doi.org/10.1016/j.msard.2022.103557
441. Adam A and follistatin in a nonalcoholic fatty liver disease model in rats. Braz J Med Biol Res 47:746–752
442. Pervin S, Reddy ST, Singh R (2021) Novel roles of follistatin/myostatin in transforming growth factor-β signaling and adipose browning: Potential for therapeutic intervention in obesity related metabolic disorders. Front Endocrinol 12:653179
443. Hakala K, Stenius-Aarniala B, Sovija A (2000) Effects of weight loss on peak flow variability, airways obstruction, and lung volumes in obese patients with asthma. Chest 118:1315–1321
444. Aaron SD, Ferguson D, Rent D, Chen Y, Vandemheen KL, Dales RE (2004) Effect of weight reduction on respiratory function and airway reactivity in obese women. Chest 125:2046–2052
445. Chapman DG, Irvin CG, Kaminsky DA, Forgione PM, Bates JH, Dixon AE (2014) Influence of distinct asthma phenotypes on lung function following weight loss in the obese. Respirology 19:1170–1177
446. Aaron SD, Putley RE, Forgione PM, Kaminsky DA, Whittaker-Leclair LA, Griffes LA, Garudathri J, Raymond D, Poynte ME, Bunn JY (2011) Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation. J Allergy Clin Immunol 128:508–515
447. Razi O, Tartibian B, Teixeira AM, Zamani N, Govindasamy K, Suzuki K, Laher I, Zouhal H (2022) Thermal dysregulation in patients with multiple sclerosis during SARS-CoV-2 infection. The potential therapeutic role of exercise. Mult scler relat disord. https://doi.org/10.1016/j.msard.2022.103557
448. Woodman CR, Thompson MA, Turk JR, Laughlin MH (2005) Temperature regulation during exercise and hyperthermia in diabetics. In: Ahmed RG (ed) Diabetes and its complications. London
449. Werner J (1993) Temperature regulation during exercise: an overview. Exercise, heat thermoregul. https://doi.org/10.1055/s-2007-971967
450. Geor R, McCutcheon L (1996) Influence of training on exercise-associated heat tolerance in thoroughbred horses. J Sports Sci 14:349–349
451. Rowell LB (2011) Cardiovascular adjustments to thermal stress. In: Rowell LB (ed) Comprehensive physiology. Wiley, pp 967–1023
452. Moien-Afshari F, Ghosh S, Khazaem M, Kieffer T, Brownsey R, Laher J (2008) Exercise restores endothelial function independently of weight loss or hyperglycaemic status in db/db mice. Diabetologia 51:1327–1337
453. Woodman CR, Thompson MA, Turk JR, Laughlin MH (2005) Endurance exercise training improves endothelium-dependent relaxation in brachial arteries from hypercholesterolemic male pigs. J Appl Physiol 99:1412–1421
450. Woodman CR, Turk JR, Rush JW, Laughlin MH (2004) Exercise attenuates the effects of hypercholesterolemia on endothelium-dependent relaxation in coronary arteries from adult female pigs. J Appl Physiol 96:1105–1113

451. Zhang Y, Li X, Pitzer AL, Chen Y, Wang L, Li P-L (2015) Coronary endothelial dysfunction induced by nucleotide oligomerization domain-like receptor protein with pyrin domain containing 3 inflammasome activation during hypercholesterolemia: beyond inflammation. Antioxid Redox Signal 22:1084–1096

452. Ellsworth ML, Sprague RS (2012) Regulation of blood flow distribution in skeletal muscle: role of erythrocyte-released ATP. J Physiol 590:4985–4991

453. Hellsten Y, Maclean D, Gr R, Saltin B, Bangsbo J (1998) Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle. Circulation 98:6–8

454. Singel DJ, Stamler JS (2005) Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol 67:99

455. Burnstock G, Arnett TR, Orriss IR (2013) Purinergic signalling in the musculoskeletal system. Purinergic Signal 9:541–572

456. Frandsen U, Bangsbo J, Langberg H, Saltin B, Hellisten Y (2000) Inhibition of nitric oxide synthesis by systemic NG-monomethyl-L-arginine administration in humans: effects on interstitial adenosine, prostacyclin and potassium concentrations in resting and contracting skeletal muscle. J Vase Res 37:297–302

457. Hellisten Y, Nyberg M, Jensen L, Mortensen S (2012) Vasodilator interactions in skeletal muscle blood flow regulation. J Physiol 590:6297–6305

458. Huang A, Sun D, Koller A (2000) Shear stress–induced release of prostaglandin H2 in arterioles of hypertensive rats. Hypertension 35:925–930

459. Mortensen SP, González-Alonso J, Bune LT, Saltin B, Pilegaard H, Hellisten Y (2009) ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine. Am J Physiol-Regulatory, Integr Comparative Physiol 296:R1140–R1148

460. Mortensen SP, Nyberg M, Thaning P, Saltin B, Hellisten Y (2009) Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation. Hypertension 53:993–999

461. Lorenzo S, Minson CT (2010) Heat acclimation improves cutaneous vascular function and sweating in trained cyclists. J Appl Physiol 109:1736–1743

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.