Hypertension as a predictor of advanced colorectal cancer outcome and cetuximab treatment response

S. Sud MD,* C. O’Callaghan DVM PhD,† C. Jonker,* C. Karapetis MMedSci,‡ T. Price,§ N. Tebbutt PhD,¶ J. Shapiro MD,* G. Van Hazel MBBS,** N. Pavlakis MD,†† P. Gibbs MD,‡‡ M. Jeffrey, §§ L. Siu MD,||| S. Gill MD,*** R. Wong MD,**** D. Jonker MD,† D. Tu PhD,† and R. Goodwin MD*

ABSTRACT

Background Adrenergic receptor stimulation is involved in the development of hypertension (HTN) and has been implicated in cancer progression and dissemination of metastases in various tumours, including colon cancer. Adrenergic antagonists such as beta-blockers (BBs) demonstrate inhibition of invasion and migration in colon cancer cell lines and have been associated with decreased mortality in colorectal cancer (CRC). We examined the association of baseline HTN and BB use with overall (OS) and progression-free survival (PFS) in patients with pretreated, chemotherapy refractory, metastatic CRC (mCRC). We also examined baseline HTN as a predictor of cetuximab efficacy.

Methods Using data from the Canadian Cancer Trials Group co.17 study [cetuximab vs. best supportive care (BSC)], we coded baseline HTN and use of anti-HTN medications, including BBs, for 572 patients. The chi-square test was used to assess the associations between those variables and baseline characteristics. Cox regression models were used for univariate and multivariate analyses of OS and PFS by HTN diagnosis and BB use.

Results Baseline HTN, BB use, and anti-HTN medication use were not found to be prognostic for improved OS. Baseline HTN and BB use were not significant predictors of cetuximab benefit.

Conclusions In chemorefractory mCRC, neither baseline HTN nor BB use is a significant prognostic factor. Baseline HTN and BB use are not predictive of cetuximab benefit. Further investigation to determine whether baseline HTN or BB use have a similarly insignificant impact on prognosis in patients receiving earlier lines of treatment remains warranted.

Key Words Colorectal cancer, hypertension

Curr Oncol. 2018 Dec;25(6):e516-e526 www.current-oncology.com

INTRODUCTION

Colorectal cancer (CRC) is the 3rd most commonly diagnosed malignancy in Canada and the 2nd leading cause of cancer death1. Despite treatment of localized disease with curative intent, nearly one third of patients experience disease relapse2, which often presents as incurable metastatic cancer. Although combination chemotherapy regimens and targeted agents have significantly improved survival for patients with metastatic disease, median overall survival (OS) still does not usually exceed 36 months3,4. There is thus a pressing need to understand the factors that affect the development, progression, and ultimate dissemination of CRC.

Sympathoadrenal activity plays a significant role in the development of hypertension (HTN), as evidenced by the increased catecholamine levels found in hypertensive patients, and the prevention of blood pressure elevation caused by sympatholytic agents5. Stimulation of adrenergic receptors has also been postulated to play a role in cancer progression and in dissemination of metastases in various tumour types, including colon and breast cancer. Epinephrine,
which acts as an agonist to many subtypes of alpha and beta adrenoreceptors, has been noted to stimulate colon cancer cell lines in a dose-dependent manner and to induce chemoresistance to 5-fluorouracil. In breast cancer, the expression of adrenoreceptor subtypes (for example, erbB2, epidermal growth factor receptor, progesterone receptor) varies according to tumour histology and molecular subtype and might be related to prognosis. In colon cancer, beta3 adrenoreceptor expression is demonstrably increased in tumours compared with the normal colonic mucosa. In pancreatic cancer cell lines, beta-adrenergic receptor activation leads to the phosphorylation of p38 (mitogen-activated protein kinase), which is associated with increased proliferation and cell migration. Gene signature evidence also suggests commonalities between the pathways involved with breast cancer (for example, matrix metalloproteinases, chemokines, interleukins) and the beta-adrenergic pathways.

Further significance of the adrenergic pathway on tumour progression is evidenced by the inhibitory action of adrenergic blockers. Adrenergic antagonists such as beta-blocking drugs demonstrate inhibition of invasion and migration in colon cancer cell lines and growth inhibition in other cancer cell lines. Exposure to beta-blockers (β-blockers) and angiotensin converting-enzyme inhibitors or angiotensin II receptor blockers, which are commonly used antihypertensives, is associated with decreased mortality in advanced colorectal cancer. Similarly, after adjusting for other variables, β-blockers use has been associated with improved relapse-free survival in breast cancer patients.

The prevalence of hypertension in Canada was 20% in 2008, and it increased to 22.6% in 2013, with an associated increase in use of antihypertensive drugs. Although the prevalence and awareness of hypertension in the elderly population have increased over time, the proportion of that population treated to achieve optimal blood pressure control remains lower than it does in younger patients. Given that the median age of diagnosis for CRC approximates 70 years, many CRC patients have hypertension. Patients with CRC are now also routinely exposed to inhibitors of the vascular endothelial growth factor (VEGF) pathway (bevacizumab, regorafenib) or steroids, which can exacerbate or precipitate hypertension. Whether the development of hypertension during chemotherapy or non-VEGF-inhibitor therapy affects cancer outcomes such as disease progression or mortality is unknown. Ultimately, the effect of baseline hypertension and β-blocker use on cancer outcomes in the setting of advanced CRC remains unknown.

OBJECTIVES

Using data from the Canadian Cancer Trials Group and Australasian Gastrointestinal Trials Group co.17 trial, our main objective was to examine the prognostic value of baseline hypertension (HTN) and β-blocker use with respect to survival in patients with chemotherapy-refractory metastatic CRC (mCRC). Furthermore, we examined the value of HTN as a predictor of cetuximab efficacy in patients with mCRC. Specifically, we examined the effect of HTN on OS and the effect of β-blocker use on OS. Other examined effects included OS in the context of the use of non-β-blocker antihypertensive medication (alpha-blockers, angiotensin converting-enzyme inhibitors, angiotensin receptor blockers, diuretics, calcium channel blockers), the effect of β-blocker or of the use of β-blocker or angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) on progression-free survival (PFS), and the predictive value of HTN for the effect of cetuximab treatment (OS, PFS) in patients with mCRC.

METHODS

Data Extraction

Previously captured data from co.17 were used for the analysis. In that study, 572 patients with chemotherapy-refractory mCRC were randomly assigned to cetuximab (400 mg/m² loading dose, followed by 250 mg/m² weekly) and best supportive care or placebo. Results from co.17 demonstrated improved OS, PFS, objective tumour response rate, and better preservation of health-related quality of life with cetuximab treatment. The data extracted included baseline hypertension and baseline use of antihypertensive medications, with the specific type of medication recorded:

- Beta-blockers: metoprolol, labetalol, atenolol, bisoprolol, nadolol, propranolol, carvedilol, acebutolol
- Alpha-blockers: clonidine, doxazosin, methyldopa, terazosin, prazosin
- Angiotensin converting-enzyme inhibitors: captopril, enalapril, fosinopril, lisinopril, perindopril quinapril, ramipril,trandolapril, benazepril, cilazapril
- Angiotensin receptor blocker: candesartan, eprosartan, irbesartan, losartan, olmesartan, valsartan
- Diuretics: hydrochlorothiazide, chlorothalidone, indapamide, metolazone, amiloride, triamterene
- Calcium-channel blockers: amlodipine, diltiazem, nicardipine, nifedipine, verapamil

Statistical Analysis

The chi-square test was used for univariate analyses of associations between the two patient groups (with and without hypertension) and their baseline characteristics. A logistic regression model was used for multivariate analyses to identify any independent characteristics associated with hypertension status. Cox regression models were used for univariate and multivariate analyses of OS and PFS by hypertension diagnosis, β-blocker use, and antihypertensive use. Multivariate models included only covariates that were significant at the 0.1 level in univariate analysis.

The predictive effect of hypertension for cetuximab treatment outcomes (OS, PFS) was analyzed by using a Cox model to test the interaction of hypertension and treatment. Analysis of the predictive effect of hypertension for cetuximab treatment outcomes by KRAS status (wild-type vs. mutated) was also undertaken.

RESULTS

Patient Characteristics

Table 1 presents key baseline patient, disease, and treatment characteristics by baseline hypertension status. In the univariate analysis, patients of older age, higher body mass index, or higher serum creatinine or receiving bsc were more likely to have hypertension. Age, Eastern Cooperative Oncology Group
TABLE I Baseline patient, disease, and treatment characteristics for patients with and without baseline hypertension

Characteristic	Hypertension at baseline	p Value	Univariate^a	Multivariate^b
Patients (n)				
	Yes	No		
Age (years)				
Median	66.9	61.5	<0.001	0.0006
Range	42.9–88.1	28.6–85.9		
Age group [n (%)]				
<65 Years	65 (43.6)	270 (63.8)		
≥65 Years	84 (56.4)	153 (36.2)		
Sex [n (%)]				
Women	45 (30.2)	159 (37.6)	0.112	0.421
Men	104 (69.8)	264 (62.4)		
ECOG PS [n (%)]				
0	28 (18.8)	108 (25.5)	0.062	0.047
1	91 (61.1)	211 (49.9)		
2	30 (20.1)	104 (24.6)		
BMI (kg/m²)				
Median	27.1	25.3	<0.001	0.018
Range	16.4–42.5	15.6–45.0		
BMI group [n (%)]				
Low (<20)	6 (4.0)	52 (12.3)		
Normal (20–25)	44 (29.5)	142 (33.6)		
High (>25)	99 (66.4)	229 (54.1)		
Site of primary [n (%)]				
Colon only	87 (58.4)	245 (57.9)	0.561	0.576
Rectum only	38 (25.5)	95 (22.5)		
Colon and rectum	24 (16.1)	83 (19.6)		
Initial Dx to randomization (years)				
Median	2.4	2.2	0.071	0.702
Range	0.5–10.4	0–15.7		
Dx-to-randomization group [n (%)]				
≥2 Years	93 (62.4)	234 (55.3)		
<2 years	56 (37.6)	189 (44.7)		
Serum creatinine [n (%)]				
Grade 0^c	127 (85.2)	390 (92.2)	0.014	0.010
≥Grade 1^c	22 (14.8)	32 (7.6)		
Previous CTx drug classes [n (%)]				
≤2	9 (6.0)	19 (4.5)	0.508	0.740
>2	140 (94.0)	404 (95.5)		
KRAS status [n (%)]				
Wild type	66 (44.3)	164 (38.8)	0.201	0.215
Mutated	37 (24.8)	127 (30.0)		
Treatment [n (%)]				
BSC only	87 (58.4)	198 (46.8)	0.017	0.050
Cetuximab and BSC	62 (41.6)	225 (53.2)		

^a Wilcoxon test for continuous variables; Fisher exact test for categorical variables.

^b Logistic regression model.

^c According to the Common Terminology Criteria for Adverse Events.

ECOG PS = Eastern Cooperative Oncology Group performance status; BMI = body mass index; Dx = diagnosis; CTx = chemotherapy; BSC = best supportive care.
performance status, body mass index, and serum creatine level were identified as independent factors associated with \textit{htn} status in the multivariate analysis. Based on the univariate analysis of key baseline patient, disease, and treatment characteristics by \textit{bb} use at baseline, patients of older age, male sex, and higher body mass index were noted to be more likely to use a \textit{bb} at baseline. Age, Eastern Cooperative Oncology Group performance status, and serum creatinine level were identified as independent factors associated with use of a \textit{bb} in the multivariate analysis.

Prognostic Effects

Table II presents the results of the os analysis by \textit{bb} status for all patients. No significant association was found between \textit{bb} and improved os in either the univariate analysis [hazard ratio (patients without \textit{htn} compared with patients with \textit{htn}): 1.22; 95% confidence limits: 0.98, 1.51; \textit{p} = 0.72] or the multivariate analysis (hazard ratio: 1.05; 95% confidence limits: 0.80, 1.38; \textit{p} = 0.72). Figure 1 depicts os by \textit{htn} status. No significant association was found between baseline use of a \textit{bb} and improved os in either the univariate or the multivariate analysis.

Tables III and IV present the results of analyses for pfs by \textit{bb} status and by use of \textit{bb}s for all patients. Figure 2 depicts pfs by \textit{bb} status. No significant association was found between \textit{bb} and improved pfs in either the univariate or the multivariate analysis. No significant association was observed between \textit{bb} use and improved pfs [adjusted hazard ratio (patients not using \textit{bb} compared with patients using \textit{bb}s): 1.38; 95% confidence limits: 0.97, 1.96; \textit{p} = 0.08].

With respect to the effect of antihypertensive medication use at baseline on os and pfs, no significant association was found in either the univariate or the multivariate analysis.

Predictive Effects

Tables V and VI present the results of the subgroup analysis of os and pfs, comparing cetuximab with \textit{bsc} in each of the subgroups defined by \textit{bb}. The treatment effect was not different in the groups defined by \textit{bb} status.

DISCUSSION

Hypertension has been shown to be a significant risk factor in developing cancer. A large prospective observational study in 2011 observed that patients with elevated blood pressure experienced an increased incidence of cancers, including the colorectal type22. The association between \textit{htn} and increased cancer incidence23 and mortality24,25 has also been described in multiple studies, although the causal correlation remains difficult to ascertain because of the possibility of competing risk factors—including lifestyle choices—that might not be taken directly into account. Whether baseline \textit{htn} is a secondary risk factor for disease recurrence or progression remains unclear.

Our analysis explores the effect that baseline \textit{htn} might have on prognosis in colon cancer patients. Our review suggests that neither \textit{bb} nor the use of antihypertensive medications (including \textit{bb}s) is significantly related to os or pfs. Being that \textit{htn} is a multifactorial comorbidity, a question arises about whether controlling for certain associated factors might have brought to light a more significant relationship between \textit{bb} and prognosis. Furthermore, given that our cohort included only patients with advanced-stage \textit{ccr} refractory to standard chemotherapy, the study results might not be generalizable to patients newly diagnosed with \textit{mcrc}. There is evidence that increased exposure to chemotherapy is associated with an increased risk of developing \textit{htn}26 and that \textit{vegf} inhibitors can lead to the development of \textit{htn} that can persist after cessation of therapy27. It is therefore possible that the inherent mechanism of \textit{bb} plays a differential role in respect to its effect on prognosis in cancer.

Available evidence both promotes and refutes the prognostic value of the use of antihypertensive medications on cancer outcomes28–32. In particular, beta-adrenergic blockade is thought to reduce cancer progression by reducing promotion of metastasis. Many studies have demonstrated that chronic activation of the stress response, oftentimes associated with catecholamine release, can lead to progression of metastases in \textit{in vivo} mouse models33–36. Furthermore, the release of catecholamines that target beta-adrenergic receptor signalling pathways (such as norepinephrine) is believed to be a possible pathway to increased dissemination of metastases37–39. Building on that knowledge, beta-adrenergic receptor blockers have been investigated both \textit{in vitro} and \textit{in vivo} for their potential to slow metastasis, with encouraging results in various tumour types40–42. However, our study did not reveal any significant link between survival and the baseline use of \textit{bb}s. That lack of an association might be attributable to the small number of patients in our cohort who were using \textit{bb}s at baseline or to an influence on survival of the comorbidity for which the patients were using the drug (ischemic heart disease or arrhythmia, for instance). Ultimately, the use of \textit{bb}s in patients with earlier-stage disease warrants further investigation.

In our investigation, \textit{bb} did not significantly predict benefit from cetuximab. However, a stronger cetuximab treatment effect was noted in patients with \textit{htn}. Cetuximab is a monoclonal antibody targeting the epidermal growth factor receptor43, which, among other effects, lowers the production of \textit{vegf}. It is possible that the stronger cetuximab treatment effect observed in patients with \textit{htn} might be a result of increased levels of circulating \textit{vegf}, which might itself be influenced by other comorbidities such as inflammatory conditions or renal insufficiency.

\textit{Kras} mutation status is a known predictive factor for cetuximab treatment effect, in that patients with \textit{ccr} having \textit{Kras} mutations in exon 2 (codons 12 and 13) achieve no appreciable benefit from cetuximab treatment in the chemotherapy-refractory metastatic setting44. Our analysis suggests that neither \textit{bb} nor the use of \textit{bb}s has a significant predictive effect for cetuximab treatment outcomes in the \textit{Kras} wild-type population.

Limitations of our study include its inherent retrospective nature. Given the small number of patients using \textit{bb}s, no distinction was made between the beta1 and beta2 \textit{bb}s, which could have had some bearing on effect. In addition, given that blood pressure is a multifactorial and continuous variable, the threshold value for investigating an effect remains arbitrary. Although guidelines specify a particular
TABLE II Univariate and multivariate analysis of overall survival in patients with and without baseline hypertension (HTN)

Characteristic	Univariate				Multivariate		
	HR	95% CL	p Value	Adjusted	95% CL	p Value	
Current or past diagnosis of HTN	1.22	0.98, 1.51	<0.071	1.05	0.80, 1.38	<0.20	
Age group	0.596	Not in model		0.107	Not in model		
<65 Years	Reference			0.85	0.70, 1.04	<0.07	
≥65 Years	1.05	0.87, 1.27					
Sex	<0.0001						
Women	Reference						
Men	0.85	0.70, 1.04					
ECOG PS	<0.0001			0.127			
0	Reference			1.25	0.94, 1.67	0.501	
1	1.15	0.92, 1.45		0.86	0.54, 1.35	0.601	
2	2.51	1.93, 3.27		1.96	1.37, 2.80	<0.001	
BMI group (kg/m²)	<0.0001			0.123			
Low (<20)	Reference			0.70	0.45, 1.10	0.351	
Normal (20–25)	0.77	0.56, 1.05		0.86	0.54, 1.35	0.501	
High (>25)	0.54	0.40, 0.72		0.70	0.45, 1.10	0.123	
Site of primary	<0.0001			<0.001			
Colon only	Reference			Reference			
Rectum only	0.83	0.66, 1.05		0.85	0.62, 1.17	0.323	
Colon and rectum	0.82	0.64, 1.05		0.77	0.55, 1.06	0.113	
Dx-to-randomization group	<0.0001			<0.001			
>2 Years	Reference			Reference			
<2 Years	1.57	1.31, 1.90		1.66	1.30, 2.12	0.026	
Lactate dehydrogenase	<0.0001						
≤Upper limit of normal	Reference						
>Upper limit of normal	1.99	1.56, 2.53		1.42	1.04, 1.93	0.026	
Alkaline phosphatase	<0.0001			<0.001			
≤Upper limit of normal	Reference						
>Upper limit of normal	2.16	1.73, 2.70		1.81	1.34, 2.44	0.026	
Hemoglobin	<0.0001			<0.0001			
Grade 0c	Reference			Reference			
≥Grade 1c	2.02	1.64, 2.48		1.79	1.38, 2.33	0.001	
Serum creatinine	0.839			Not in model			
Grade 0c	Reference						
≥Grade 1c	1.03	0.75, 1.42					
Previous CTx drug classes	0.192			Not in model			
≤2	Reference						
>2	1.35	0.86, 2.11					
KRAS status	0.007			0.001			
Wild type	Reference			Reference			
Mutated	1.36	1.09, 1.70		1.51	1.18, 1.93	0.001	
Treatment	0.004			0.045			
BSC only	Reference			Reference			
Cetuximab and BSC	0.76	0.63, 0.92		0.78	0.62, 0.99	0.001	

a Log-rank test.

b Cox model using all factors reaching \(p \leq 0.1 \) in the univariate analysis.

c According to the Common Terminology Criteria for Adverse Events.

HR = hazard ratio; CL = confidence limits; ECOG PS = Eastern Cooperative Oncology Group performance status; BMI = body mass index; Dx = diagnosis; CTx = chemotherapy; BSC = best supportive care.
blood pressure value as representing \(\text{HTN} \) in the normal population, the blood pressure at which an end-stage cancer patient is deemed to be hypertensive might differ. Another limitation is the confounding factors associated with \(\text{HTN} \) and use of BBs that remain unaccounted for, such as concomitant comorbidities.

CONCLUSIONS

Ultimately, our study was unable to demonstrate a clear prognostic or predictive value for either \(\text{HTN} \) or use of BBs. Nevertheless, the effect of BB use in particular merits further investigation in earlier-stage disease.

CONFLICT OF INTEREST DISCLOSURES

We have read and understood *Current Oncology*’s policy on disclosing conflicts of interest, and we declare the following interests: TP has acted in a consulting or advisory role for Amgen, Merck Serono, and Roche; NT has acted in a consulting or advisory role for, or has received research funding from, Amgen and Roche;

TABLE III Univariate and multivariate analysis for progression-free survival in patients with and without baseline hypertension (HTN)

Characteristic	Univariate	Multivariate	
	HR 95% CL	\(p \) Value	Adjusted HR 95% CL \(p \) Value
Current or past diagnosis of HTN			
Yes	0.784	0.387	
No	1.03 0.85, 1.25	1.11 0.87, 1.42	
Age group			
<65 Years	Reference	0.669	Not in model
≥65 Years	0.96 0.81, 1.14		
Sex			
Women	Reference	0.105	Not in model
Men	0.86 0.72, 1.03		
ECOG PS		0.019	
0	Reference	1.12 0.91, 1.38	1.17 0.89, 1.53 0.257
1	1.35 1.05, 1.72	1.24 0.90, 1.72 0.185	
2		0.452	Not in model
BMI (kg/m²)			
Low (<20)	Reference	1.14 0.84, 1.54	
Normal (20–25)	0.99 0.74, 1.32		
High (>25)		0.008	
Site of primary			
Colon only	Reference	0.97 0.79, 1.19	0.98 0.74, 1.29 0.866
Rectum only	0.72 0.57, 0.90	0.65 0.49, 0.88 0.006	
Colon and rectum			
Dx-to-randomization group		<0.0001	<0.0001
>2 Years	Reference	1.46 1.23, 1.74	1.55 1.24, 1.93
<2 Years			
Lactate dehydrogenase		0.010	0.189
≤Upper limit of normal	Reference	1.3 1.07, 1.60	1.19 0.92, 1.53
>Upper limit of normal			
Alkaline phosphatase		0.020	0.706
≤Upper limit of normal	Reference	1.25 1.04, 1.51	1.05 0.82, 1.34
>Upper limit of normal			

FIGURE 1 Kaplan–Meier curves for overall survival in patients with and without baseline hypertension (HTN). Log-rank \(p = 0.07 \).
Characteristic	Univariate	Multivariate	Univariate	Multivariate
Hemoglobin				
Grade 0c				
≥ Grade 1c	1.17	0.97, 1.40	1.07	0.85, 1.35
Serum creatinine				
Grade 0c				
≥ Grade 1c	0.98	0.74, 1.30		
Previous CTx drug classes				
≤ 2	1.07	0.73, 1.58		
≥ 2				
KRAS status		<0.0001	<0.0001	
Wildtype				
Mutated	1.67	1.36, 2.05	1.58	1.27, 1.97
Treatment		<0.0001	<0.0001	
BSC only				
Cetuximab and BSC	0.68	0.57, 0.80	0.66	0.53, 0.82

a Log-rank test.
b Cox model using all factors reaching p≤0.1 in the univariate analysis.
c According to the Common Terminology Criteria for Adverse Events.

HR = hazard ratio; CL = confidence limits; ECOG PS = Eastern Cooperative Oncology Group performance status; BMI = body mass index; Dx = diagnosis; CTx = chemotherapy; BSC = best supportive care.

TABLE IV Univariate and multivariate analysis for progression-free survival by beta-blocker status, all patients

Characteristic	Univariate	Multivariate	Univariate	Multivariate	
Use of beta-blocker	0.288	0.077	0.288	0.077	
Age group					
<65 Years					
≥65 Years	0.96	0.81, 1.14			
Sex					
Women					
Men	0.86	0.72, 1.03			
ECOG PS		0.019			
0					
1	1.12	0.91, 1.38	1.14	0.88, 1.49	0.318
2	1.35	1.05, 1.72	1.20	0.87, 1.66	0.264
BMI (kg/m²)		0.452			
Low (<20)					
Normal (20–25)	1.14	0.84, 1.54			
High (>25)	0.99	0.74, 1.32			
Site of primary		0.008			
Colon only					
Rectum only	0.97	0.79, 1.19	0.96	0.73, 1.26	0.774
Colon and rectum	0.72	0.57, 0.90	0.66	0.49, 0.88	0.006
Dx-to-randomization group		0.019			
>2 Years					
<2 Years	1.46	1.23, 1.74	1.57	1.26, 1.97	
TABLE IV Continued

Characteristic	Univariate				Multivariate		
	HR	95% CL	p Value	Adjusted HR	95% CL	p Value	
Lactate dehydrogenase ≤Upper limit of normal	Reference				Reference		
	>Upper limit of normal	1.30	1.07, 1.60	1.21	0.94, 1.57		
Alkaline phosphatase ≤Upper limit of normal	Reference				Reference		
	>Upper limit of normal	1.25	1.04, 1.51	1.01	0.79, 1.30		
Hemoglobin Grade 0 c	Reference				Reference		
	≥Grade 1 c	1.17	0.97, 1.40	1.06	0.84, 1.34		
Serum creatinine Grade 0 c	Reference				Reference		
	≥Grade 1 c	0.98	0.74, 1.30				
Previous CTx drug classes ≤2	Reference				Reference		
	>2	1.07	0.73, 1.58				
KRAS status Wild type	Reference				Reference		
	Mutated	1.67	1.36, 2.05	1.63	1.31, 2.03		
Treatment BSC only	Reference				Reference		
	Cetuximab and BSC	0.68	0.57, 0.80	0.65	0.53, 0.81		

a Log-rank test.
b Cox model using all factors reaching p≤0.1 in the univariate analysis.
c According to the Common Terminology Criteria for Adverse Events.
HR = hazard ratio; CL = confidence limits; ECOG PS = Eastern Cooperative Oncology Group performance status; BMI = body mass index; Dx = diagnosis; CTx = chemotherapy; BSC = best supportive care.

FIGURE 2 Kaplan–Meier curves for progression-free survival in patients with and without baseline hypertension (HTN). Log-rank p = 0.78.

NP has received honoraria from Amgen, Merck Serono, and Roche; LS has acted in a consulting or advisory role for Boehringer Ingelheim, Daiichi Sankyo, Merck, Novartis (institutional), and Oncoethix and has received research funding from Abaxis BioScience, AstraZeneca, Boehringer Ingelheim, Bristol–Myers Squibb, Celgene, Genentech/Roche, GlaxoSmithKline, Karyopharm Therapeutics, MedImmune, Merck, Novartis, Pfizer, and Regeneron; SG has received honoraria from Celgene and Eli Lilly, has acted in a consulting or advisory role for Celgene, Eli Lilly, Shire, and Taiho Pharmaceutical, and has received research funding from Celgene; the remaining authors have no conflicts to disclose.

AUTHOR AFFILIATIONS

*Division of Medical Oncology, Department of Medicine, The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, and NCIC Clinical Trials Group, Queen’s University, Kingston, ON; †Flinders University and Flinders Medical Centre, Flinders Centre for Innovation in Cancer, Bedford Park, SA; ‡The Queen Elizabeth and University of Adelaide, Adelaide, SA; §Aust Health, Melbourne, VIC; ¤Department of Medical Oncology, Monash University, Melbourne, VIC; **University of Western Australia, Perth, WA; ††Royal North Shore Hospital, Northern Clinical School, University of Sydney, St. Leonards, NSW, and †‡Royal Melbourne Hospital, Melbourne, VIC, Australia; §§Oncology Service, Christchurch Hospital, Christchurch, N.Z.; §§Princess Margaret Cancer Centre, University of Toronto, Toronto, ON; §§University of British Columbia, BC Cancer, Vancouver, BC; ***CancerCare Manitoba, Winnipeg, MB.
TABLE V Predictive effects of baseline hypertension for overall survival

Factor	Survival with best supportive care	HRa	p Valueb	Interaction (95% CL)	p Valuec	
	And cetuximab (Pts (n), Median months (95% CL))	And no cetuximab (Pts (n), Median months (95% CL))				
All patients						
Hypertension						
Yes	62 (1.9, 5.7)	87 (1.8, 4.5)	0.67	0.038	1.20	0.418
No	225 (4.9, 6.5)	198 (4.0, 4.8)	0.77	0.015		
Patients with wild-type KRAS						
Hypertension						
Yes	25 (7.3, 10.6)	41 (3.6, 6.2)	0.37	0.002	1.54	0.238
No	92 (7.0, 9.9)	72 (4.0, 5.5)	0.59	0.003		

a For cetuximab and best supportive care compared with best supportive care only.
b Log-rank test for cetuximab and best supportive care compared with best supportive care only.

c From Cox proportional hazards model with factor, treatment, and their interaction as covariates.

Pts = patients; CL = confidence limits; HR = hazard ratio.

TABLE VI Predictive effects of baseline hypertension for progression-free survival

Factor	Survival with best supportive care	HRa	p Valueb	Interaction (95% CL)	p Valuec	
	And cetuximab (Pts (n), Median months (95% CL))	And no cetuximab (Pts (n), Median months (95% CL))				
All patients						
Hypertension						
Yes	62 (1.9, 3.9)	87 (1.8, 1.9)	0.49	<0.0001	1.43	0.074
No	225 (1.8, 1.9)	198 (1.8, 2.0)	0.75	0.005		
Patients with wild-type KRAS						
Hypertension						
Yes	25 (3.5, 5.7)	41 (1.8, 2.5)	0.44	0.002	0.71	0.284
No	92 (2.0, 5.1)	72 (1.7, 1.9)	0.35	<0.0001		

a For cetuximab and best supportive care compared with best supportive care only.
b Log-rank test for cetuximab and best supportive care compared with best supportive care only.
c From Cox proportional hazards model with factor, treatment, and their interaction as covariates.

Pts = patients; CL = confidence limits; HR = hazard ratio.

REFERENCES

1. Canadian Cancer Society’s Advisory Committee on Cancer Statistics. *Canadian Cancer Statistics 2014*. Toronto, ON: Canadian Cancer Society; 2014.
2. Andre T, Boni C, Navarro M, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. *J Clin Oncol* 2009;27:3109–16.
3. Venook A, Niedzwiecki D, Lenz HJ, et al. CALGB/SWOG 80405: Phase III trial of irinotecan/5-FU/leucovorin (FOLFI R) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type
HYPERTENSION AS A PREDICTOR OF OUTCOME AND CETUXIMAB RESPONSE IN CRC, Sud et al.

14. Engineer DR, Burney BO, Hayes TG, Garcia JM. Exposure to ACEI/ARB and beta-blockers is associated with improved survival and decreased tumor progression and hospitalizations in patients with advanced colon cancer. *Transl Oncol* 2013;6:539–45.

15. Melhem-Bertrandt A, Chavez-MacGregor M, Lei X, et al. Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. *J Clin Oncol* 2011;29:2645–52.

16. Robitaille C, Dai S, Waters C, et al. Diagnosed hypertension in Canada: incidence, prevalence and associated mortality. *CMAJ* 2012;184:E49–56.

17. Padwal RS, Bieneck A, McAlister FA, Campbell NR on behalf of the Outcomes Research Task Force of the Canadian Hypertension Education Program. Epidemiology of hypertension in Canada: an update. *Can J Cardiol* 2016;32:687–94.

18. Ostchega Y, Dillon CF, Hughes JP, Carroll M, Yoon S. Trends in hypertension prevalence, awareness, treatment, and control in older U.S. adults: data from the National Health and Nutrition Examination Survey 1988 to 2004. *J Am Geriatr Soc* 2007;55:1056–65.

19. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008. *JAMA* 2010;303:2043–50.

20. Jonker DJ, O’Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. *N Engl J Med* 2007;357:2040–8.
41. Zhang D, Ma QY, Hu HT, Zhang M. ß2-Adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFKB and AP-1. *Cancer Biol Ther* 2010;10:19–29.

42. Guo K, Ma Q, Wang L, *et al.* Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. *Oncol Rep* 2009;22:825–30.

43. Baselga J. The EGFR as a target for anticancer therapy—focus on cetuximab. *Eur J Cancer* 2001;37(suppl 4):S16–22.

44. Karapetis C, Khambata-Ford S, Jonker D, *et al.* K-ras mutations and benefit from cetuximab in advanced colorectal cancer. *N Engl J Med* 2008;359:1757–65.