Associate Editors
Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India
Dr. Ulrike Streicher, Wildlife Veterinary, Eugene, Oregon, USA
Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India
Dr. M.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India

Editorial Board
Dr. Russel Mittermeier
Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA
Prof. D.J. Bhat, Retd. Professor, Goa University, Mapusa, Goa, India
Prof. M.K. Janarthanam, Retd. Joint Director, BSI, Coimbatore, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India
Dr. Shonil Bhagwat, Open University and Oxford University, UK
Prof. G. Bhat, Retd. Professor, Goa University, Goa, India
Dr. Ferdinando Boero, Università del Salento, Lecce, Italy
Dr. D. R. Caldecott, Royal Ontario Museum, Toronto, Ontario, Canada
Prof. D. R. Prasad Rao, Sri Krishnadevaraya University, Anantapur, India
Dr. K. Ravikumar, FRHT, Bengaluru, Karnataka, India
Dr. Aparna Wavle, Pune, Maharashtra, India
Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China
Dr. Noor Ashar Mohamed Shazli, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
Dr. M. K. Janarthanam, Goa University, Goa, India
Dr. K. Kargar, Botanical Survey of India, India
Dr. Errol Vela, University of Montpellier, Montpellier, France
Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India
Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA
Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India
Dr. Analinda Manila-Fajard, University of the Philippines Los Banos College Laguna, Philippines

Invertebrates
Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India
Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India
Dr. M. Krishnappa, Jnana Sahyadri, Kuvempu University, Shimoga, Karnataka, India
Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India
Dr. Gunjan Biswas, VidyaSagar University, Midnapore, West Bengal, India

Plants
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India
Dr. Shonil Bhagwat, Open University and Oxford University, UK
Prof. G. Bhat, Retd. Professor, Goa University, Goa, India
Dr. Ferdinando Boero, Università del Salento, Lecce, Italy
Dr. D. R. Caldecott, Royal Ontario Museum, Toronto, Ontario, Canada
Prof. D. R. Prasad Rao, Sri Krishnadevaraya University, Anantapur, India
Dr. K. Ravikumar, FRHT, Bengaluru, Karnataka, India
Dr. Aparna Wavle, Pune, Maharashtra, India
Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China
Dr. Noor Ashar Mohamed Shazli, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
Dr. M. K. Janarthanam, Goa University, Goa, India
Dr. K. Kargar, Botanical Survey of India, India
Dr. Errol Vela, University of Montpellier, Montpellier, France
Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India
Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA
Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India
Dr. Analinda Manila-Fajard, University of the Philippines Los Banos College Laguna, Philippines

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India
Dr. M. Krishnappa, Jnana Sahyadri, Kuvempu University, Shimoga, Karnataka, India
Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India
Dr. Gunjan Biswas, VidyaSagar University, Midnapore, West Bengal, India

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scope
For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions
For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Dorsal view of Mantis Shrimp Cladorina ichneuemon (Fabricius, 1798) & Gonodactyurus demanii (Henderson, 1893). © Fisheries Research Station, Junagadh Agricultural University, Sikka.
Plant species diversity in a tropical semi-evergreen forest in Mizoram (northeastern India): assessing the effectiveness of community conservation

S.T. Lalzarzovi & Lalnuntluanga

Department of Environmental Science, Mizoram University, Tanhril, Aizawl, Mizoram 796009, India.

Abstract: Community conservation of forest as a means of biodiversity conservation has gained broad acceptance in recent years. However, there are not many studies in India on how effective they really are for conservation of plants and how they compare to formal protected areas. This study was carried out in Reiek forest, a community conserved forest protected for more than a century, initially by the village Chiefs and after the abolishment of chieftainship, by the community of the nearby villages. An attempt was made to study the plant species diversity of this forest which falls under the Indo-Myanmar diversity hotspot and it was compared to two ecologically similar formal protected areas within Mizoram. A total of 265 species belonging to 213 genera and 89 families were recorded. Two vulnerable species Eleocarpus rogusus and Saraca asoca were identified. It was found that this community conserved forest contained more plant species than the two protected areas. But endemic and threatened species were found to decline in the community conserved forest.

Keywords: Biodiversity, community conservation, life forms, plant diversity, protected area.
INTRODUCTION

Tropical forest contains the most diverse plant communities on earth and are disappearing at an alarming rate due to wide-spread land use changes with detrimental consequences for biodiversity, climate, and other ecosystem services (Givnish 1999; Lambin & Geist 2006). This ongoing loss of biodiversity has led to many studies which explores how effective the various approaches are for preventing ecosystem degradation and species extinction while providing sustainable use of resources (Shahabuddin & Rao 2010). The most important and commonly used measure for conserving biodiversity and reducing deforestation is the use of formal protected areas (Millennium Ecosystem Assessment 2005; Bajracharya et al. 2005) which has proven to be effective by studies such as Naughton-Treves et al. (2005) and Oliveira et al. (2007). However, while previous research has estimated the effectiveness of formal protected areas in reducing deforestation rates to be 65%, more recent studies in Costa Rica suggest only a 10% reduction within the protected areas (Andam et al. 2008).

In the last few decades, community conservation of biodiversity rich area, whether partial or complete as an effective method to prevent species extinction has gained broader acceptance (Kothari 2006). Various studies have shown that within the same region, forests which are conserved and managed by local or indigenous communities can be as effective in reducing deforestation as compared to officially designated protected areas committed to sole protection without community involvement (Porter-Bolland et al. 2012; Bray et al. 2008; Nepstad et al. 2006). Hayes (2006) found that the state of a forest in formally protected areas and community conserved forest were similar and suggested that the forest was in a better state when the rules of management were set and enforced by locals as compared to those without such rules. However, the use of community-based conservation for tropical forests is disputed with many prominent conservationists advocating for authoritarian enforcement of protected areas (Brockington 2007; Wilshusen et al. 2002).

Mizoram, situated in the north eastern part of India is composed of steep, rugged hill ranges and interspersed valleys. It has rich flora and fauna and the highest percentage of forest cover (84.53%) in the country (FSI 2021). The forests of the state are under a three tier management viz. those owned and controlled by the state, district councils, and village councils. The extent of forest under community control is 20.53% (FSI 2019). Traditionally, forest management in Mizoram was carried out by the ‘Chieftain’, helped by his advisors, who had the absolute decision making authority. Under the Mizo District (Land and Revenue) Act of 1956, the Chief was made the Chairman of the Village Authority without any discretionary authority. Another important traditional institution is ‘Zawlbuk’, a bachelor dormitory run by an important official of village government called ‘Val Upa’ (youth commander). Val upa through Zawlbuk imparted discipline and training in the art of tribal warfare and defence to male youth of the village. Zawlbuk no longer exists, and this traditional institution is now represented by Young Mizo Association (YMA) which may be considered the modern form of Val Upa. With people still depending on resources of forests and common land, village level YMA plays an important role in managing common property resources. YMA with the support of village council take the responsibility for management of community forest. (Tiwari et al. 2013)

Reiek forest in Mizoram is one such community conserved forest which is managed by the Young Mizo Association (YMA) and the village council of the two villages falling within the forest area. Shifting cultivation, being the main mode of agriculture in Mizoram, has destroyed much of the virgin forest and led to formation of secondary communities in the disturbed sites. However, this forest has been protected and conserved by the descendants of Sailo Chiefs since the 1890’s. The Village Chief prohibited the killing of animals and plants in the forest and introduced a modern method of conservation with stringent protection. Shifting cultivation in this area was banned and as a result, while most of the area around this conserved area is degraded, this forest represents a forest ecosystem relatively less degraded by anthropogenic disturbances. There is an ongoing debate on what measures are the best for the forest and biodiversity conservation with some in favour of strict protection and others advocating for a more community driven form of conservation. The question remains on whether community conservation of forest is as effective as designating them as protected areas. With this in mind, the present study has been undertaken. The plant species diversity of a community conserved tropical semi-evergreen forest in Mizoram was determined and compared with the plant diversity of protected areas in the state and another community conserved forest outside the state.
MATERIALS AND METHODS

Study area
This research study was conducted in Reiek forest located between longitude 92.6039908 and latitude 23.6994866 in Mamit district of Mizoram, northeast India. This forest corresponds to Champion & Seth’s (1968) Cachar Tropical Semi-evergreen Forest (2B/C2) and covers an area of 10 km². The highest point of Reiek Mountain is at 1485 m asl. The annual temperature in Mamit district ranges between 8–22 °C in winter and 20–28 °C in summer. Average annual rainfall received during the study period from 2008–2012 was 2,585 mm which is mainly brought in by the southwest monsoon. Rainy season starts in early April, with interrupted showers, but incessant rain begins in June and continues until September, often stretching until October. The soil is composed of silt-loam in the upper portion and medium grain sandstone stone plates in the peak region and the rest of the area is mostly sandy-loam to black humus top-soils depending on thickness of the vegetation and nature of landscape.

Methods
Vegetation analysis was carried out using the methods outlined by Misra (1968) and Domboise & Ellenberg (1974) during the year 2008–2012. To study the woody species, 50 quadrats of 10 m² in area were laid randomly and diameter at breast height (dbh) of trees were measured and recorded. Within each quadrat, five smaller quadrats of 1 m² were laid down for herbs and shrubs, one in each corner and one in the centre. All the understory plants viz. herbs (non-woody small plants *1–1.5 m tall), shrubs (*1.5–3 m tall with thick stem and branching at ground level without a distinct trunk) and herbaceous climbers were enumerated. Species diversity was determined by computing the Shannon diversity index (Shannon and Weaver 1949). Species identification was carried out using regional flora publications (Kanjilal et al., 1940; Singh et al., 2002; Lalramnghinglova, 2003; Sawmliana, 2003) and counterchecked with the herbarium of the Botanical Survey of India, Eastern Circle, Shillong. The conservation status of the identified species were assessed using Red Data book of India (Nayar & Sastry 1987–1990) and Red List of Threatened Vascular Plant Species in India (Rao et al. 2003). The results were compared with the plant diversity of two protected areas in Mizoram which are...
ecologically similar- Phawngpui which was declared a National park in 1997 with an area of 50 km\(^2\) and Tawi Wildlife Sanctuary notified in 1999 with an area of 35.75 km\(^2\).

RESULTS

Family
A total of 89 families were recorded out of which 84 were native while 5 were non-native. Out of the native families, 76 were angiosperms, 2 families were gymnosperms and 6 families were pteridophytes while the non-native families were all angiosperms. Dicotyledons comprised of 69 families (65 native and 4 non-native) and monocotyledons comprised of 12 families (11 native and 1 non-native). Five families with the highest species diversity (dominant families), accounting only 5.43% of total families represented 28.27% of the total species, and 26% of genera. Family with the highest number of species was Orchidaceae (23 native species) followed by Poaceae (19 native and 2 non-native species), Arecaceae (11 native species and 3 non-native species) and Rubiaceae (11 native species and 1 non-native species) In contrast to the dominant families, 42 families (38 native and 4 non-native) were represented by only one species each.

Genera
A total of 213 genera were recorded (194 native and 19 non-native) out of which 31 genera are multi-species while the rest were represented by only one species. Among the multi species genera, the largest genus was *Dendrobium* with seven species and among trees, *Ficus* and *Elaeocarpus* had five species each. The ratio of genera to species was 1:1.24 for native species which means that almost any one of the species of this site belongs to a different genus.

Species
A total of 265 species were recorded out of which 241 were native species and 24 were non-native species Habitat-wise analysis of flora showed 103 species of trees (97 native species and 6 non-native species), 32 species of shrubs (28 native species and 4 non-native species), 48 species of herbs (45 native species and 3 non-native species), 25 species of climbers/lianas (19 native species and 6 non-native species), 15 species of canes and palms (12 native species and 3 non-native species), 17 species of grasses (15 native species and 2 non-native species) and 25 species of epiphytes (native species) (Table 1)

Out of the total native plant species identified in the study site, 96% were found to be angiosperms, 3.5% gymnosperms and the rest were pteridophytes. All the non-native species identified were angiosperms. Among the native angiosperms, dicotyledons represented 74.2% while monocots represented 25.8% while for the non-native angiosperms, dicotyledons represented 80% while monocots represented 20%. The ratio of monocotyledons to dicotyledons was 1:2.89 for native species.

Diversity of life-form
Life forms of plants in Reiek forest were determined based on the classification of Raunkiaer (1934). All species were classified by life forms (Misra 1968; Domoise & Ellenberg 1974). The existence of a variety of life forms reflects the typically tropical characteristics of the flora of Reiek forest. Phanerophytes were the most dominant life form with about 50% of total plant species in the area. Out of the phanerophytes, Megaphanerophytes, i.e., trees exceeding 30 m were absent. Mesophanerophytes accounted for 32.45% of the total life form (78 native species and 8 non-native species), microphenarophytes accounted for 13.96% (36 native species and 1 non-native species), nanophanerophytes accounted for 6.04%, (15 native species and 1 non-native species), Chamaephytes accounted for 9.81% (24 native species and 2 non-native species), Hemicryptophytes accounted for 4.15% (9 native species and 2 non-native species), Therophytes accounted for 5.66% (13 native species and 2 non-native species), Epiphytes accounted for 11.32 % (30 species) and lianas accounted for 8.68% (17 native species and 6 non-native species) of the total life form.

Species diversity index
The species diversity index (Shannon diversity H') for native species was highest among trees (3.9) followed by herb (3.45) and then shrubs (3.05)

Conservation status: Rare and threatened species
Out of the 265 species identified, only 15 have been assessed by the IUCN out of which two species have been identified as vulnerable which are *Elaeocarpus rogusus* and *Saraca asoca*. One species *Amomum dealbatum* is placed under Data Deficient.
DISCUSSION

Despite rampant deforestation for shifting cultivation in the state of Mizoram, the community conserved Reiek forest in Mamit district of Mizoram. It was found to have rich plant diversity comparable to protected areas under strict protection of the Forest Department, Government of Mizoram and to other community conserved sacred groves outside Mizoram. The climatic conditions of the area, its geographic proximity to the species-rich eastern Himalayas, Burma and the Malayan peninsula may be responsible for the formation of this rich biodiversity area but maintenance of this rich ecosystem may be attributed solely to its prolonged protection by the community.

Reiek forest containing 241 native species was found to support more plant species diversity than two formal protected area viz Phawngpui National Park and Tawi Wildlife Sanctuary. Phawngpui National Park was reported to have 208 species belonging to 150 genera and 71 families (Malsawmsanga 2011) while Tawi Wildlife Sanctuary was reported to have 219 species belonging to 167 genera and 73 families (Lallawmkimi 2011). Outside Mizoram, Namdapha National Park, a protected area with tropical wet evergreen vegetation was reported to have 200 species (Nath et al. 2005) and a community conserved sacred groves of Jaintia Hills was reported to have 395 species (Jamir and Pandey 2003). This is not an unusual finding. For example, Garcia and Pascal (2005) in their comparison of sacred groves to formal protected area in the Western Ghats of Karnataka, India found that the number of woody plant species were higher in the sacred groves than the adjacent Brahmagiri wildlife sanctuary. Similar results were also reported by Shackleton (2000) in their comparison of plant diversity in protected and communal lands in South Africa.

The percentage of angiosperms, gymnosperms and pteridophytes present in Reiek forest were almost similar to those reported in the sacred grove of Jaintia hill (Jamir & Pandey 2003) which have been under traditional community conservation for centuries. In Tawi Wildlife Sanctuary, 86.7% were angiosperms, 1.2% were gymnosperms, and 12.05% were pteridophytes (Lallawmkimi 2011).

The ratio of genera to species for native species was 1:1.24 while a ratio of 1:1.3 have been reported by Lallawmkimi (2011) for Tawi Wildlife Sanctuary.

The life form spectrum of plant community of Reiek forest closely resembles that of Tawi Wildlife Sanctuary where Megaphanerophyte were also absent and mesophanerophytes with 28.27% was the dominant life form followed by microphanerophyte 20.25%, nanophanerophyte 11.39%, chamaephyte 10.97 %, geophytes 3.38%, therophytes 3.80%, epiphytes 10.97% and climbers 10.97% (Lallawmkimi 2011). The dominance of Phanerophytes is a feature of tropical humid forest life form spectra (Richard, 1996). The life form spectrum of plant community of Reiek forest reveals that Hemicryptophytes and Therophytes were lower than the normal spectrum of Raunkiaers. Hemicryptophytes are characteristics of cooler region and therophytes are characteristics of desert climate (Cain & Castro 1959; Shimwell 1971).

Criteria	Reiek Forest (Native)	Reiek Forest (Non- native)	Phawngpui National Park	Tawi Wildlife Sanctuary
Number of families	84	5	71	83
Number of genera	194	19	150	167
Number of species	241	24	208	219
Trees	97	6	84	83
Shrubs	28	4	31	31
Herbs	45	3	45	41
Climbers and epiphytes	44	6	33	52
Grasses	15	2	10	17
Canes and palms	12	3	5	10
Species Diversity (Shannon diversity index)				
Trees	3.9	3.68	3.86	
Shrubs	3.05	2.8	3.14	3.14
Herbs	3.45	2.96	3.26	
Table 2. List a plant species recorded in community conserved Reiek forest of Mamit district in Mizoram, India.

Name of species	Family	Native/ Non-native species
Tree species		
1. Acer laevigatum Wall.	Aceraceae	Native
2. Acronychia pendunculata (L.) Miq.	Rutaceae	Native
3. Alangium chinense (Lour.) Harms	Alangiaceae	Native
4. Alphonsea ventricosa (Roxb.) Hook. f. & Thomson	Annonaceae	Native
5. AlSeaophyne petaloloris (Meisn.) Hook. f.	Lauraceae	Native
6. Amoora chittagonga (Miq.) Hiern	Meliaceae	Native
7. Anogeissus acuminata (Roxb. ex DC.) Guillaumin et al.	Combretaceae	Native
8. Betula cylindrostachys Wall.	Betulaceae	Native
9. Bombax insigne Wall	Bombacaceae	Native
10. Bruniasia polyserma (C.B. Clarke) Steenis	Styracaceae	Native
11. Calliandra umbrosa (Wall.) Benth.	Mimosaceae	Native
12. Calophyllum polyanthum Wall. ex Choisy	Guittferae	Native
13. Camellia kissi Wallich	Theaceae	Native
14. Carallia brachiata (Lour.) Merr.	Rhizophoraceae	Native
15. Castanopsis echinocarpa Miq.	Fagaceae	Native
16. Castanopsis indica (Roxb. ex Lindl.) A.DC.	Fagaceae	Native
17. Castanopsis tribuloides (Sm.) A.DC.	Fagaceae	Native
18. Celtis timorensis Span.	Ulmaceae	Native
19. Cephalotaxus griffithii Hook. f.	Cephalotaxaceae	Native
20. Cinnamomum glanduliferum (Wall.) Meisler	Lauraceae	Native
21. Cinnamomum abutusfolium (Roxb.) Nees.	Lauraceae	Native
22. Cinnamomum verum J.Presl	Lauraceae	Non-native
23. Coffea khasiana (Korth.) Hook.f.	Rubiaceae	Native
24. Colona floribunda (Wall. ex Kurz) Craib	Tiliaceae	Native
25. Croton hookeri Veitch	Euphorbiaceae	Native
26. Cycas pectinata Buch.-Ham	Cycadaceae	Native
27. Debregeasia longifolia (Burm. f.) Wedd.	Urticaceae	Native
28. Diospyros lancifolia Wallich ex Hiern	Ebenaceae	Native
29. Drimycarpus racemosus (Roxb.) Hook.f.	Anacardiaceae	Native
30. Dyssoxylum gabora (Buch.-Ham.) Merr.	Meliaceae	Native
31. Elaeocarpus floribundus Blume	Tiliaceae	Native
32. Elaeocarpus lanceaefolius Roxb.	Tiliaceae	Native
33. Elaeocarpus rugosus Roxb.	Tiliaceae	Native
34. Elaeocarpus tectorius (Lour.) Poir.	Tiliaceae	Native
35. Embelia tijeri-am-cottam A.DC.	Myrsinaceae	Native
36. Engelhardita roxburghiana Wall.	Juglandaceae	Native
37. Engelhardita spicata Leschen, ex. Blume	Juglandaceae	Native
38. Eriobotrya bengalensis (Roxb.) Hook. f.	Rosaceae	Native
39. Eurya cerasifolia (D. Don) Kobuski	Pentaphylacaceae	Native
40. Eurya loquiana Dunn	Pentaphylacaceae	Non-native
41. Ficus benghalensis L.	Moraceae	Native
Name of species	Family	Native/ Non-native species
-------------------------	----------------	----------------------------
44 Ficus benjamina L.	Moraceae	Native
45 Ficus prostrata (Wall. ex Miq.) Miq.	Moraceae	Native
46 Ficus religiosa L.	Moraceae	Native
47 Ficus semicordata Buch.-Ham. ex Sm.	Moraceae	Non-native
48 Garcinia xanthochymus Hook. f. ex T. Anderson	Guttiferae	Native
49 Glochidion khassicum (Müll.Arg.) Hook. f.	Euphorbiaceae	Native
50 Grevillea robusta A. Cunn. ex R. Br.	Proteaceae	Non-native
51 Gymnocladia odorata R. Br.	Flacourtiaeae	Native
52 Helicia erratica Roxb.	Proteaceae	Native
53 Heteropanax fragrans (Roxb.) Seem	Araliaceae	Native
54 Holigarna longifolia Buch.-Ham. ex Roxb	Anacardiaceae	Native
55 Lithocarpus elegans (Blume) Hatus. ex Soepadmo	Fagaceae	Native
56 Lithocarpus pachyphyllus (Kurz) Rehder	Fagaceae	Native
57 Litsea lancifolia Roxb. ex Nees	Lauraceae	Native
58 Litsea monopetala (Roxb.) Pers.	Lauraceae	Native
59 Macaranga indica Wight	Euphorbiaceae	Native
60 Macropanax undulatus (Wall. ex G.Don) Seem.	Araliaceae	Native
61 Magnolia hodgsonii (Hook.f. & Thomson) H.Keng	Magnoliaceae	Native
62 Mallotus philippensis (Lam.) Müll.Arg.	Euphorbiaceae	Native
63 Mangifera sylvestrica Roxb.	Anacardiaceae	Native
64 Memecylon celastrinum Kurz	Melastomataceae	Native
65 Messua ferrea Linn.	Guttiferae	Native
66 Michelia champaca Linn.	Magnoliaceae	Native
67 Musa sylvestris LA Colla	Musaceae	Non-native
68 Neolomandra cadiamba (Roxb.) Bosser	Rubiaceae	Native
69 Olea dioica Roxb.	Oleaceae	Native
70 Olea salicifolia Wall. ex G.Don	Oleaceae	Native
71 Ostodes paniculata Blume	Euphorbiaceae	Native
72 Persea glaucescens Nees.	Lauraceae	Native
73 Persea villosa (Roxb.) Kosterm.	Lauraceae	Native
74 Phoebe lanceolata (Nees) Nees	Lauraceae	Native
75 Pithecellobium bigeminum (L.) Mart.	Mimosaceae	Native
76 Premna razemosi Wall. ex Schauer	Lamiaceae	Native
77 Prunus jenkinsii Hook. f. & Thomson	Rosaceae	Native
78 Pterospermum semisagittatum Buch.-Ham. ex Roxb.	Sterculiaceae	Native
79 Quercus glauca Thunb.in A.Murray	Fagaceae	Native
80 Quercus leiocnichophora A.Camus	Fagaceae	Native
81 Randia wallachii Hook.f.	Rubiaceae	Native
82 Rhus semialata Murray.	Anacardiaceae	Native
83 Rhus succedanea (L.) Kuntze	Anacardiaceae	Native
84 Sapium baccatum Roxb.	Euphorbiaceae	Native
85 Saraca asoca (Roxb.) Wild.	Fabaceae	Native
86 Schima wallichii (DC.) Korthals	Theaceae	Native
87 Securinega virosa (Roxb. ex Wild.) Baill.	Euphorbiaceae	Native
88 Stephkeyne diversifolia (Wall. ex G.Don) Brandis	Rubiaceae	Non-native
Plant species diversity in a tropical semi-evergreen forest in Mizoram

Lalzarzovi & Lalnuntluanga

Name of species	Family	Native/ Non-native species
89 Sterculia hamiltonii (Kuntze) Adelb.	Sterculiaceae	Native
90 Sterculia villosa Roxb.	Malvaceae	Native
91 Stereospermum coloasi Buch.-Ham. Ex Dillwyn	Bignoniaceae	Native
92 Styax serrulatum (Roxb.)	Styracaceae	Native
93 Syzygium claviflorum (Roxb.) Wall. ex A.M.Cowan & Cowan	Myrtaceae	Native
94 Syzygium cumini (L.) Skeels	Myrtaceae	Native
95 Syzygium fruticosum DC.	Myrtaceae	Native
96 Trema orientalis (L.) Blume	Ulmaceae	Native
97 Ulmus lanceifolia Roxb.	Ulmaceae	Native
98 Vernonia arborea Buch.-Ham	Asteraceae	Native
99 Vernonia volkameriifolia Bedd	Compositae	Native
100 Vitex quinata (Lour.) F. N. Williams	Verbenaceae	Native
101 Wendlandia grandis (Hook.f.) Cowan	Rubiaceae	Native
102 Wightia speciosissima (D. Don) Merr	Scrophulariaceae	Native
103 Ziziphus incurva Roxb.	Rhamnaceae	Native

Shrub species

Name of species	Family	Native/ Non-native species
1 Amomum dealbatum Roxb.	Zingiberaceae	Native
2 Antidesma diandrum (Roxb.) B.Heyne ex Roth	Euphorbiaceae	Native
3 Blumea lanceolaria (Roxb.) Druce	Asteraceae	Native
4 Callicarpa dichotoma (Lour.) K. Koch	Lamiaceae	Non-native
5 Chromolaena odorata (L.) R.M. King & H.Rob.	Compositae	Non-native
6 Clerodendrum viscosum Vent.	Verbenaceae	Native
7 Disporum cantoniense (Lour.) Merr.	Liliaceae	Native
8 Elaeagnus pyriformis Hook.f	Elaeagnaceae	Native
9 Ipomoea batatas (L.) Lam.	Convolvulaceae	Non-native
10 Lasianthus hookeri C. B. Clarke ex J. D. Hooker	Rubiaceae	Native
11 Leea indica (Burm.f.) Merr	Vitaceae	Native
12 Lepisanthes senegalensis (Juss. ex Poir.) Leenh.	Sapindaceae	Native
13 Moesa indica (Roxb.) A. DC.	Primulaceae	Native
14 Mallotus albus (Roxb. ex Jack) Müll.Arg	Euphorbiaceae	Native
15 Melastoma nepalensis Lodg.	Melastomataceae	Native
16 Muraya kaenigii (L.) Spreng.	Rutaceae	Native
17 Myceta longifolia (Wall.) Kuntze	Rubiaceae	Native
18 Osbeckia chinensis L.	Melastomataceae	Native
19 Osbeckia crinita Benth. ex Naudin	Melastomataceae	Native
20 Polygonum chinense L.	Polygonaceae	Native
21 Randia fasciculata (Roxb.) DC.	Rubiaceae	Native
22 Rauvolfia densiflora (Wall.) Benth. ex Hook. f.	Apocynaceae	Native
23 Rhamnus nepalensis M. Laws.	Rhamnaceae	Native
24 Rubus buergeri Miq	Rosaceae	Non-native
25 Strabilanthes cusia (Nees) Kuntze	Acanthaceae	Native
26 Strabilanthes discolor (Nees) T. Anderson	Acanthaceae	Native
27 Strabilanthes parryorum T. Anders.	Acanthaceae	Native
28 Symplacos lanceolata Siebold et Zucc.	Symphoricarpaceae	Native
29 Tabernaemontana divaricata (L.) R. Br. ex Roem. & Schult.	Apocynaceae	Native
Plant species diversity in a tropical semi-evergreen forest in Mizoram

Lalzarzovi & Lalnuntluanga

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 May 2022 | 14(5): 21055–21067

Name of species	Family	Native/ Non-native species
30 Toddalia asiatica L.	Rutaceae	Native
31 Viburnum fortium Wall	Caprifoliaceae	Native
32 Woodfordia fruticosa (L.) Kurz	Lythraceae	Native

Herb species

No.	Name of species	Family	Native/ Non-native species
1	Adiantum caudatum Linn	Adiantaceae	Native
2	Arisaema album N.E.Br.	Araceae	Native
3	Arisaema speciosum (Wall.) Mart.	Araceae	Native
4	Asparagus racemosus Willd.	Asparagusaceae	Native
5	Begonia dioica Buch.-Ham. ex D.Don	Begoniaceae	Native
6	Blumea alata (D.Don) DC	Asteraceae	Native
7	Boenninghausenia albiflora Reichb.	Rutaceae	Native
8	Centellia asiatica L.	Umbelliferae	Native
9	Cheilocostus lacerus (Gagnep.) C.D. Specht	Zingiberaceae	Native
10	Chlorophytum khasianum Hook.f	Liliaceae	Native
11	Commelina benghalensis Linn.	Commelinaeae	Native
12	Conyza stricta Willd.	Asteraceae	Native
13	Costus speciosus (J.König) Sm.	Zingiberaceae	Native
14	Curculigo crassifolia (Baker) Hook. f.	Hypoxidaceae	Native
15	Curcuma caesia 'Ailaidum'	Zingiberaceae	Native
16	Dichrocephalum integrifolia (L.f.) Kunze	Asteraceae	Native
17	Diplazium dilatatum Blume	Polypodiaceae	Native
18	Diplazium maximum (D.Don) Chatt ‘Cha-kawk’	Polypodiaceae	Native
19	Elatostema dissectum Wedd.	Urticaceae	Native
20	Elatostema sesquifolium (Reinw. ex Blume) Hassk.	Urticaceae	Native
21	Gleichenia linearis (Burm.f.) C.B.Clarke 'Arthladawn'	Gleicheniaceae	Native
22	Gnaphalium lutetianum Linn	Asteraceae	Native
23	Hedychium coccineum Buch.-Ham. ex Sm.	Zingiberaceae	Native
24	Hedychium villosum Wall.	Zingiberaceae	Native
25	Houttuynia cordata Thunb.	Saururaceae	Native
26	Impatiens laevigata Wall. ex Hook. f. & Thomson	Balsaminaceae	Native
27	Kalanchoe integrata (Medik.) Kunze. ‘Kangdamdawi’	Crassulaceae	Native
28	Leucas mollissima Wall	Lamiaceae	Native
29	Lindernia rueilioides (Colsm.) Pennell ‘Thasuh’	Linderniaceae	Native
30	Lycopodium cernuum Linn	Lycopodiaceae	Native
31	Lycopodium flexuosum (Linn.) Swartz	Lycopodiaceae	Native
32	Microlepia rhomboidea (Wall.ex Kunze) Prantl, Arb.	Dennstaedtiaceae	Native
33	Mimosa pudica L. ‘Hiansu’	Mimosaceae	Non-native
34	Ophiopogon mungos L.	Rubiaceae	Native
35	Ophiopogon oppositiflora Hook.f.	Rubiaceae	Native
36	Persicaria hydropiper (L.) Opiz	Polygonaceae	Native
37	Phaius mishmensis (Lindl. & Paxton) Rchb.f.	Orchidaceae	Native
38	Plantago major Linn	Plantaginaceae	Non-native
39	Plectranthus coetse Buch.-Ham. Ex D. Don	Lamiaceae	Native
40	Polygonatum oppositifolium (Wall.) Royle	Liliaceae	Native
41	Polygonum barbatum L. ‘Dawngria’	Polygonaceae	Native
42	Pouzolzia bennettiana Wight	Urticaceae	Native
Plant Species Diversity in a Tropical Semi-Evergreen Forest in Mizoram

Lalzarzovi & Lalnuntluanga

#### Name of Species	Family	Native / Non-native Species
43. *Pronephrium lakhimpurense* (Rosenst.) Holtt. | Thelypteridaceae | Native
44. *Pteridium aquilinum* (Linn.) Kuhn. | Polypodiaceae | Non-native
45. *Rhaphidophora decursiva* (Roxb.) Schott | Araceae | Native
46. *Scleria terrestris* (L.) Fass | Cyperaceae | Native
47. *Torenia violacea* (Azaola ex Blanco) Pennell | Linderniaceae | Native
48. *Urena lobata* Linn | Malvaceae | Native

Climbers and Lianas

Name of Species	Family	Native / Non-native Species
1. *Acacia oxyphylla* Benth. | Fabaceae | Native |
2. *Aganope thrysiflora* (Benth.) Polhill | Fabaceae | Native |
3. *Bauhinia scandens* L. | Fabaceae | Native |
4. *Caesalpinia cucullata* Roxb. | Fabaceae | Native |
5. *Cissampelos pareira* L. | Menispermaceae | Native |
6. *Cissus javana* DC | Vitaceae | Native |
7. *Clematis siamensis* Drumm. et Craib | Ranunculaceae | Native |
8. *Dioscorea glabra* Roxb. | Dioscoreaceae | Native |
9. *Entada rheedei* Spreng. Subsp. Rheedei | Mimosaceae | Native |
10. *Ipomoea hederifolia* L. | Convolvulaceae | Native |
11. *Marsdenia formosana* Masam. | Apocynaceae | Non-native |
12. *Mimica micrantha* Kunth | Asteraceae | Non-native |
13. *Milletia pachycoma* Benth. | Papilionaceae | Native |
14. *Mucuna gigantea* (Wild.) DC. | Fabaceae | Native |
15. *Passiflora edulis* Sims | Passifloraceae | Native |
16. *Passiflora nepalensis* Wallich | Passifloraceae | Native |
17. *Poederia foetida* L. | Rubiaceae | Native |
18. *Piper betle* L. | Piperaceae | Non-native |
19. *Shuteria vestita* var. *glabrata* (Wight & Arn.) Baker | Fabaceae | Native |
20. *Smilax glabra* Roxb. | Liliaceae | Native |
21. *Smilax lancefolia* Roxb. | Liliaceae | Native |
22. *Tetrapogon dubium* (M. A. Lawson) Planch. | Vitaceae | Native |
23. *Tetrapogon leucostaphylum* (Dennst.) N.P. Balakr. | Vitaceae | Native |
24. *Trichosanthes quinquangulata* A. Gray | Cucurbitaceae | Non-native |
25. *Uncaria sessilifructus* Roxb. | Rubiaceae | Native |

Grasses

Name of Species	Family	Native / Non-native Species
1. *Bambusa khasiana* Munro | Poaceae | Native |
2. *Bambusa tulda* Roxb | Poaceae | Native |
3. *Cephlochrysum latifolium* Munro | Poaceae | Native |
4. *Dendrocalamus hamiltonii* Nees & Arn. ex Munro | Poaceae | Native |
5. *Dendrocalamus longispathus* (Kurz) Kurz | Poaceae | Native |
6. *Dendrocalamus sikkimensis* Gamble ex Oliv. | Poaceae | Native |
7. *Dinachloa compactiflora* Kurz. Mc Clure | Poaceae | Native |
8. *Drepanostachyum intermedium* (Munro) Keng f. | Poaceae | Native |
9. *Erianthus longisepalous* Anderss. ex Benth | Poaceae | Native |
10. *Eulalia trispicata* (Schult.) Henrard | Poaceae | Native |
11. *Imperata cylindrica* (L.) Raeusch | Poaceae | Non-native |
12. *Melocanna baccifera* (Roxb.) Kurz | Poaceae | Native |
13. *Pseudostachyum polymorphum* Munro | Poaceae | Native |
Plant species diversity in a tropical semi-evergreen forest in Mizoram

Lalzarzovi & Lalnuntluanga

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 May 2022 | 14(5): 21055–21067

Epiphytes

No.	Name of species	Family	Native/ Non-native species
1	Aerides odorata Lour.	Orchidaceae	Native
2	Aeschynanthus maculatus Lindl.	Gesneriaceae	Native
3	Bulbophyllum elatum (Hook.f.) Sm	Orchidaceae	Native
4	Bulbophyllum khasianum Griff.	Orchidaceae	Native
5	Bulbophyllum umbellatum Lindl.	Orchidaceae	Native
6	Cleisostoma filiforme (Lindl.) Garay	Orchidaceae	Native
7	Cleisostoma racemiferum (Lindl.) Garay	Orchidaceae	Native
8	Coelogyne prolifera Lindl.	Orchidaceae	Native
9	Dendrobium chrysanthum Lindl.	Orchidaceae	Native
10	Dendrobium chrysotakum Lindl.	Orchidaceae	Native
11	Dendrobium densiflorum Lindl.	Orchidaceae	Native
12	Dendrobium formosum Lindl.	Orchidaceae	Native
13	Dendrobium ochreatum Lindl.	Orchidaceae	Native
14	Dendrobium parishii Reichb.f.	Orchidaceae	Native
15	Dendrobium transparens Wall. ex Lindl.	Orchidaceae	Native
16	Drynaria coronans (Wall. ex Mett.) J. Sm. ex T	Poly podiaceae	Native
17	Eria paniculata Lindl.	Orchidaceae	Native
18	Eria pannea Lindl.	Orchidaceae	Native
19	Mycaranthes stricta Lindl.	Orchidaceae	Native
20	Oberonia indifolia (Roxb.) Lindl.	Orchidaceae	Native
21	Papilionanthe vandarum (Rchb.f.)Garay	Orchidaceae	Native
22	Pholidota imbricata Hook	Orchidaceae	Native
23	Premna coriacea C.B.Clarke	Verbenaceae	Native
24	Rhynchostylis retusa (Lindl.) Bl.	Orchidaceae	Native
25	Vanda coerulea Griff. ex Lindl.	Orchidaceae	Native

Canes and Palms

No.	Name of species	Family	Native/ Non-native species
1	Arenga pinnata (Wurmb) Merr.	Are caceae	Native
2	Borassus madagascariensis Bojer ex Jum. & H.Perrier	Are caceae	Non-native
3	Calamus inermis Griff.	Are caceae	Native
4	Calamus khasianus Kurz	Are caceae	Native
5	Calamus erectus Roxb.	Are caceae	Native
6	Calamus flagellum Griff. ex Mart	Are caceae	Native
7	Calamus guruba Buch.-Ham. ex Mart.	Are caceae	Native
8	Calamus acanthophathus Roxb.	Are caceae	Native
9	Caryota mitis Lour. ‘Mei-hle’	Are caceae	Native
10	Caryota urens L.	Are caceae	Non-native
11	Livistona chinensis (Jacq.) R.Br. ex Mart	Are caceae	Non-native
12	Pandanus odorifer (Forssk.) Kuntze	Pandanaeae	Native
13	Pinanga gracilis Blume	Are caceae	Native
14	Wallichia nana Griff.	Are caceae	Native
15	Zalacca secunda Griff.	Are caceae	Native
Phanerophytes, Cryptophytes, and Epiphytes were higher than normal spectrum while Chamaephytes came the closest to normal spectrum. The abundance of epiphytes is indicative of tropical humid forest as epiphytes are so tightly associated with wet tropics, as definitions of tropical rain forests frequently include the presence of this growth form (Richards 1952, 1996; Webb 1959). Lianas are most abundant in tropical forests where wide array of dimensions, shapes and morphological characters of the trees provides support for them (Clark & Clark 1990). They form an important structural and functional component of tropical rain forests (Hegarty & Caballe 1991). The percentage of lianas was quite high which according to Whitmore (1990) it is another characteristic feature of tropical moist and humid forest.

The species diversity index (Shannon diversity H') in the study site were comparable to that of Tawi Wildlife Sanctuary and Phawngpui National Park. In Tawi wildlife sanctuary, Lallawmkimi (2011) reported species diversity index of 3.86 for trees, 3.26 for herbs and 3.14 for shrubs and in Phawngpui National Park, Malsawmsanga (2011) reported species diversity index to 3.68 for trees, 2.96 for herbs and 2.8 for reported for lower elevations (1500–1700 m) (Table 1) There may be several reasons for species richness in community conserved forests. Bajracharya et al (2005) studied the effectiveness of community based approach for conservation of biodiversity in Annapurna Conservation Area (ACA), Nepal which is an experimental model considered to be a pioneer in promoting the concepts of protected area using an integrated, community based conservation and development approach. They found that the forest basal area and tree species diversity were significantly higher inside ACA than in neighbouring areas outside which they have attributed to increased conservation awareness among the local people leading to a change in their behaviour and use of resource. Comparison of deforestation rates by various research have also shown no significance difference in community conserved areas and strictly protected areas (Nepstad et al. 2006; Bray et al. 2008) which suggests that community conservation is just as effective as state-controlled protected areas in reducing deforestation rates.

However, comparison of community conserved forest and formal protected areas reveal a change in species composition in areas that are ecologically comparable and endemic and threatened species tend to decline in community conserved forest (Shahabuddin & Rao 2010). This trend has been observed in this study which reveals only two vulnerable species in the community conserved Reiek forest while Lallawmkimi (2011) reported 3 endemic species which are critically endangered from Tawi wildlife sanctuary and Malsawmsanga (2011) reported 7 rare, endemic and endangered species and 3 critically endangered species from Phawngpui National Park.

The whole study area although protected jointly by the village councils of Reiek and Ailawng village and a non-governmental organisation viz Young Mizo Association of the two villages, is still not free from encroachment which is the main threat to the rich biodiversity of the area. Although a formal conservation action is desired from the Government, this study has shown that the community has carried out conservation that is locally effective in terms of species diversity.

REFERENCES

Andam, K.S., P.J. Ferraro, A. Pfaff, G.A. Sanchez-Azofeifa & J.A. Robalino (2008). Measuring the effectiveness of protected area networks in reducing deforestation. Proceedings of the National Academy of Sciences of the United States of America 105(42): 16089–16094. https://doi.org/10.1073/pnas.0800437105

Bajracharya, S., P. Furley & A. Newton (2005). Effectiveness of community involvement in delivering conservation benefits to the Annapurna Conservation Area, Nepal: Environmental Conservation 32: 239–247. https://doi.org/10.1017/S0376892905002298

Bray, D.B., E. Duran, V.H. Romas, J.F. Mas, A. Velazquez, R. McNab, B.D.Barry & J. Radachowsky (2008). Tropical deforestation, community forests, and protected areas in the Maya Forest. Ecology and Society 13(2): 56. https://doi.org/10.5751/ES-02593-130256

Brockington, D. (2007). Forests, Community Conservation, and Local Government Performance: The Village Forest Reserves of Tanzania. Society & Natural Resources 20(9): 835–848. https://doi.org/10.1080/08941920701460366

Cain, S.A. & G.M. Castro (1959). Manual of Vegetation Analysis. Harper and Brothers, New York. 325pp

Clark, D.B. & D.A. Clark (1990). Distribution and effects on tree growth of lianas and woody hemiepiphytes in a Costa Rican tropical wet forest. Journal of Tropical Ecology 4: 321–333.

Domboise, D.M. & H. Ellenberg (1974). Aims and Methods of Vegetation Ecology. John Wiley & Sons Inc, Canada, 547pp.

FSI (2019). India State of the Forest Report. Forest Survey of India, Dehradun, 185pp

FSI (2021). India State of the Forest Report. Forest Survey of India, Dehradun, 586pp.

Garcia, C.A. & J.P. Pascal (2005). Sacred forests of Kodagu: ecological value and social role, pp. 199–232. In: Cederlof, G. & K. Sivaramakrishnan (eds.). Ecological Nationalisms: Nature, Livelihoods and Identities in South Asia. University of Washington Press, Seattle.

Givnish, T.J. (1999). On the causes of gradients in tropical tree diversity. Journal of Ecology 87: 193–210.

Hayes, T.M. (2006). Parks, People, and Forest Protection: An Institutional Assessment of the effectiveness of Protected Areas. World Development 34: 2064–2075 https://doi.org/10.1016/j.worlddev.2006.03.002

Hegarty, E.E. & G. Caballe (1991) Distribution and abundance of vines in forest communities. In: Putz F.E. & H.A. Mooney (eds.). The Biology of Vines. Cambridge University Press, New York.

IUCN (2009). Numbers of threatened species by major groups
Plant species diversity in a tropical semi-evergreen forest in Mizoram

Lalzarzovi & Lalnuntluonga

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 May 2022 | 14(5): 21055–21067

Jamir, S.A. & H.N. Pandey (2003). Vascular plant diversity in the sacred groves of Jaintia Hills in northeast India. Biodiversity and Conservation 12: 1497–1510. https://doi.org/10.1023/A:1023682285459

Kanjilal, U.N., P.C. Kanjilal, A. Das, C. Purkayastha, R. N. De & N.L. Bor (eds.) (1940). Flora of Assam. Vols. 1–5. Prabasi Press, Calcutta. pp.259, pp.207, pp.415, pp.593, pp.395 & pp.486

Kothari, A. (2006). Community conserved areas: towards ecological and livelihood security. Parks 16: 3–13.

Lallawmkimi (2011). Studies on floristic diversity in Tawi wildlife sanctuary in Aizawl district of Mizoram. PhD Thesis. Department of Environmental Science, Mizoram University, 244 pp. http://hdl.handle.net/10603/120358

Lalramninghinglova (2003). Ethno-Medicinal Plants of Mizoram. Bishen Singh Mahendra Pal Singh, Dehra Dun, 332pp.

Lambin, E.F., H. Geist & R.R. Rindfuss (2006). Introduction: Local Processes with Global Impacts. In: Lambin E.F. & H. Geist (eds.). Land-Use and Land-Cover Change. Global Change - The IGBP Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32202-7_1

Malsawmsanga, A. (2011). Studies on floristic diversity in Phawngui national park in Lawngtlai District of Mizoram. PhD Thesis. Department of Environmental Science, Mizoram University, 221 pp. http://hdl.handle.net/10603/234321

Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-Being: Policy Responses. Island Press, Washington, DC, 621pp.

Misra, R. (1968). Ecology Work Book. Oxford Publishing Company, Calcutta, 242pp.

Naidu, M.T., O.A. Kumar & M. Venkaiah (2015). Plants Vol. 1–3. Botanical Survey of India, Calcutta, India.

Nepstad, D., S. Schwartzman, B. Bamberger, M. Santilli, D. Ray, P. Schlesinger, P. Lefebvre, A. Alencar, E. Prinz, G. Fiske & A. Rolla (2000). Inhibition of Amazon deforestation and fire by parks and indigenous lands. Conservation Biology 20(1): 65–73. https://doi.org/10.1111/j.1523-1739.2006.00351.x

Oliveira, P.J., G.P. Asner, D.E. Knapp, A. Almeida, R. Galván-Gildemeister, S. Keene, R.F. Raybin & R.C. Smith (2007). Land-use allocation protects the Peruvian Amazon. Science 317(5842): 1233–1236. https://doi.org/10.1126/science.1146324

Porter-Bolland, L., E.A. Ellis, M.R. Guariguata, I. Ruiz-Mallén, S. Negrete-Yanelek维奇 & V. Reyes-Garcia (2012). Community managed forests and forest protected areas: An assessment of their conservation effectiveness across the tropics. Forest Ecology and Management 268: 6–17. https://doi.org/10.1016/j.foreco.2011.05.034

Rao, K.C., B.L. Geetha, & S. Geetha (2003). Red List of Threatened Vascular Plant Species in India. Botanical Survey of India, Howrah, 43pp.

Raunkiær, C. (1934). The Life Forms of Plants and Statistical Plant Geography. Clarendon Press, Oxford, England, 632 pp.

Richards, P.W. (1952). The tropical rain forest. Cambridge University Press, Cambridge, 450 pp.

Richards, P.W. (1996). The Tropical Rain Forest – An Ecological Study. Cambridge University Press, Cambridge, UK, 600 pp.

Sawmilana, M. (2003). The Book of Mizoram Plants. Lois bet, Aizawl, Mizoram, 285 pp.

Shackleton, C. (2000). Comparison of plant diversity in protected and communal lands in the Bushbuckridge lowveld savanna, South Africa. Biological Conservation 94: 273–285. https://doi.org/10.1016/S0006-3207(00)00001-X

Shahabuddin, G. & M. Rao (2010). Do community-conserved areas effectively conserve biological diversity? Global insights and the Indian context. Biological Conservation 143: 2526–2536. https://doi.org/10.1016/j.biocon.2010.04.040

Shannon, C.E. & W. Weaver (1949). The Mathematical Theory of Communication. University of Illinois Press, Urbana, Illinois, 125 pp.

Shimwell, D.W. (1971). The Description and Classification of Vegetation. Sedgwick and Jackson, London, 322 pp.

Singh, D.K., G.P. Sinha, K.P. Singh (2002). Flora of Mizoram, Volume 1. Botanical Survey of India, Kolkata, 845 pp.

Tiwari, B.K., H. Tynsong, M.M. Lynrah, E. Lapasam, S. Deb & D. Sharma (2013). Institutional arrangement and typology of community forests of Meghalaya, Mizoram and Nagaland of North-East India. Journal of Forestry Research 24: 179–186.

Webb, L.J. (1959). A physiognomic classification of Australian rainforests. Journal of Ecology 47: 551–570.

Whitmore, T.C. (1990). An Introduction to Tropical Rain Forests. Oxford University Press, Oxford, 296 pp.

Wilshusen, P.R., S. Brechin, C.L. Fortwangler & P. West (2002). Reinventing a Square Wheel: Critique of a Resurgent “Protection Paradigm” in International Biodiversity Conservation. Society & Natural Resources 15: 17–40. https://doi.org/10.1080/089419202317174002
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

May 2022 | Vol. 14 | No. 5 | Pages: 20951–21126
Date of Publication: 26 May 2022 (Online & Print)
DOI: 10.11609/jott.2022.14.5.20951-21126

Communications

Drought may severely reduce the ability of wild Asian Elephants *Elephas maximus* (Mammalia: Proboscidea: Elephantidae) to resist opportunistic infections
— B.M. Chandranaik, Vardhaman Patil, D. Rathnamma, G.S. Mamatha, K.S. Umashankar, D.N. Nagaraju & S.M. Byregowda, Pp. 20951–20963

Cases of fatal electrocution of the endangered Javan Gibbons (Mammalia: Primates: Hylobatidae) by power lines
— Yoonjung Yi, Soojung Ham, Rahayu Oktaviani, Mia Clarissa Dewi, Muhammad Nur, Ani Mardiastuti & Jae. C. Choe, Pp. 20964–20969

Nesting habits of the Baya Weaver *Ploceus philippinus* (Linnaeus, 1766) in the agricultural landscape of Tindivanam, Tamil Nadu, India
— M. Pandian, Pp. 20970–20987

A checklist of avifauna from different habitats of semi-arid landscape in western parts (Mandsaur and Ratlam districts) of Madhya Pradesh, India
— Koushik Bhattacharjee & Shuvadip Adhikari, Pp. 20988–21001

Post-release growth of captive-reared Gharial *Gavialis gangeticus* (Gmelin, 1789) (Reptilia: Crocodylia: Gavialidae) in Chitwan National Park, Nepal
— Bed Bahadur Khadka, Ashish Bashyal & Phoebe Griffith, Pp. 21002–21009

Occurrence patterns of herpetofauna in different habitat types of western Terai Arc Landscape, India
— Gajendra Singh Mehra, Nakulandana Mohanty & Sushil Kumar Dutta, Pp. 21010–21018

Ichthyo-parasitological studies in northeastern India
— Arup Kumar Hazarika & Bobita Bordoloi, Pp. 21019–21024

Seroresearch of viral pathogens in free-ranging dog populations in the high altitude Trans-Himalayan region
— Chandrima Home, Ajay Bijoor, Yash Veer Bhatnagar & Abi Tamim Vanak, Pp. 21025–21031

Diversity and distribution of mantis shrimps (Arthropoda: Crustacea: Stomatopoda) in the Gulf of Kachchh, Gujarat, India
— Piyush Vadher, Hitesh Kardani & Imtiyaz Beleem, Pp. 21032–21042

Bionomics study of *Mansonia* (Diptera: Culicidae) in a filariasis-endemic area of Sedang Village, Banyuasin Regency, South Sumatra, Indonesia
— Rini Pratiwi, Chairil Anwar, Ahmad Ghiffari & Adri Huda, Pp. 21043–21054

Plant species diversity in a tropical semi-evergreen forest in Mizoram (northeastern India): assessing the effectiveness of community conservation
— S.T. Lalzarzovi & Lahnintluanga, Pp. 21055–21067

Floristic studies on mangrove vegetation of Kanika Island, Bhadrak District, Odisha, India
— P. Poornima, Pp. 21068–21075

Two new varieties of *Russula* Pers. (Basidiomycota: Russulaceae) from Sal forests of Shiwaliks, India
— Jitender Kumar & Narender Singh Atri, Pp. 21076–21083

New additions to the lichen biota of Assam from Dhubri district, northeastern India
— Suparna Biswas, Rebecca Daimari, Pungbili Islay, Sanjeeva Nayaka, Silijo Joseph, Dalip Kumar Upreti & Pranijt Kumar Sarma, Pp. 21084–21090

Genus *Gymnopilus* (Agaricales: Strophariaceae): additions to the agarics of India
— N.A. Wani, M. Kaur & N.A. Malik, Pp. 21091–21101

Review

Environmental DNA as a tool for biodiversity monitoring in aquatic ecosystems – a review
— Manisha Ray & Govindhaswamy Umapathy, Pp. 21102–21116

Short Communications

New record and update on the geographic distribution of the Egyptian Tomb Bat *Taphozous perforatus* (E. Geoffroy, 1818) in Cameroon
— Eric Moise Bakwo Fils, Kingha Zebaze Jasmine Flora, Manfothang Dongmo Ervis, Manga Mongombe Aaron & Jan Decher, Pp. 21117–21121

First definite record of Collared Pratincole *Glareola pratincola* (Aves: Charadriiformes: Glareolidae) from Goa, India
— Rupali Pandit, Mangirish Dharwadkar & Justino Rebello, Pp. 21122–21124

Notes

Nectar robbing by sunbirds on the flowers of *Morinda pubescens* J.E. Smith (Rubiaceae)
— A.J. Solomon Raju, S. Sravan Kumar, G. Nagaraju, C. Venkateswara Reddy, Tebesi Peter Raliengoane, L. Kala Grace, K. Punny, K. Prathyusha & P. Srikanth, Pp. 21125–21126

Publisher & Host
WILD