Decomposing arrangements of hyperplanes: VC-dimension, combinatorial dimension, and point location.

Let H be a set of n hyperplanes in \mathbb{R}^d and let $A(H)$ denote the arrangement of H. The paper is devoted to the point-location problem in $A(H)$ which boils down to preprocess H into a data structure that support efficient point-location queries, each of which specifies a point $q \in \mathbb{R}^d$ and asks for the cell of $A(H)$ that contains q. One can represent the output cell C by its sign pattern with respect to hyperplanes H, where the sign of C with respect to a hyperplane $h \in H$ is 0 if h contains C, $+1$ if C is on the positive side of h, and -1 otherwise.

In the present paper, the authors provide a careful analysis of Meiser’s work which leads to improved bounds for point locations and to understand better the theory behind the mentioned work centered around the random sampling and the space decomposition. A standard approach to the point location problem is via random sampling in which one draws a random sample R of the set H of given hyperplanes, constructs a suitable decomposition of the arrangement $A(R)$ of R, and recurses within each cell τ of the decomposition with the so-called conflict list $K(\tau)$, which is the set of the hyperplanes of H that cross τ. The efficiency of the resulting algorithm requires that the size of each $K(\tau)$ should be much smaller than $|H|$. There are two main methodologies behind this problem, the first one the classical VC-dimension and its associated primal shatter dimension of a suitable defined range space, and another approach is based on the so-called combinatorial dimension – it is the maximal number of hyperplanes that are needed to define a cell that can arise in the decomposition of any sample of H.

The authors re-examine the mentioned parameters for the two main space decomposition techniques, namely the bottom-vertex triangulation and the vertical decomposition, including their explicit dependence on the dimension d. For the vertical decomposition, the combinatorial dimension is $2d$, the primal shatter dimension is at most $d(d+1)$, and the VC-dimension is at least $1 + d(d+1)/2$ and at most $O(d^2)$. For the bottom-vertex triangulation the combinatorial dimension is $d(d+3)/2$ whereas the primal shatter dimension is at most $d(d+1)$ and the VC-dimension is between $d(d+1)$ and $5d^2 \log d$ for $d \geq 3$.

The main application (and contribution) of the authors towards the point-location problem is that the query cost in Meiser’s algorithm can be improved if one uses the vertical decomposition instead of the bottom-vertex triangulation. The improved bounds rely on new bounds on the complexity of the vertical decomposition (i.e. the number of prisms there).

It is worth emphasizing that the paper is extremely well and rigorously written, which is a great asset of this item.

Reviewer: Piotr Pokora (Kraków)

MSC:

- 52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
- 52C45 Combinatorial complexity of geometric structures
- 68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
- 68W20 Randomized algorithms

Keywords:

- VC-dimension; random sampling; vertical decomposition; epsilon-cuttings; bottom-vertex triangulation; point-location

Software:

Hull
References:

[1] Agarwal, PK.; Matoušek, J.; Schwarzkopf, O., Computing many faces in arrangements of lines and segments, SIAM J. Comput., 27, 2, 491-505 (1998) - Zbl 0907.68088

[2] Agarwal, PK.; Sharir, M.; Saci, J.R.; Urrutia, J., Arrangements and their applications, Handbook of Computational Geometry, 49-119 (2000), Amsterdam: North-Holland, Amsterdam

[3] Basu, S.: Algorithms in real algebraic geometry: a survey. In: Monnier, J.-P. (ed.) Real Algebraic Geometry. Panoramas and Synthèses, vol. 51, pp. 107-153. Société Mathématique de France, Paris (2017). arXiv:1409.1534 · Zbl 1398.14062

[4] Basu, S.; Pollack, R.; Roy, M.-F. Algorithms in Real Algebra Geometry. Algorithms and Computation in Mathematics (2006), Berlin: Springer, Berlin

[5] Blumer, A.; Ehrenfeucht, A.; Haussler, D.; Warmuth, MK, Learnability and the Vapnik-Chervonenkis dimension, J. Assoc. Comput. Mach., 36, 4, 929-965 (1989) · Zbl 0697.68079

[6] Chazelle, B.; Mehta, DP; Sahni, S., Cuttings, Handbook of Data Structures and Applications (2005), Boca Raton: Chapman and Hall / CRC, Boca Raton

[7] Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: A singly-exponential stratification scheme for real semi-algebraic varieties and its applications, Theoret. Comput. Sci. 84, 77-105 (1991). Also in 10th Int. Colloq. on Automata, Languages and Programming, pp. 179-193 (1989) · Zbl 0702.68064

[8] Chazelle, B.; Friedman, J., A deterministic view of random sampling and its use in geometry, Combinatorica, 10, 3, 229-249 (1990) · Zbl 0715.68036

[9] Clarkson, KL, New applications of random sampling in computational geometry, Discrete Comput. Geom., 2, 2, 195-222 (1987) · Zbl 0615.68037

[10] Clarkson, KL, Randonized algorithm for closest-point queries, SIAM J. Comput., 17, 4, 830-847 (1988) · Zbl 0781.68121

[11] Clarkson, KL; Mehlhorn, K.; Seidel, R., Four results on randomized incremental constructions, Comput. Geom., 3, 4, 185-212 (1993) · Zbl 0781.68112

[12] Clarkson, KL; Shor, PW, Applications of random sampling in computational geometry II, Discrete Comput. Geom., 4, 5, 387-421 (1989) · Zbl 0681.68060

[13] de Berg, M.; Cheong, O.; van Kreveld, M.; Overmars, M., Computational Geometry: Algorithms and Applications (2008), Berlin: Springer, Berlin · Zbl 1140.68069

[14] de Berg, M.; Schwarzkopf, O., Cuttings and applications, Int. J. Comput. Geom. Appl., 5, 4, 343-355 (1995) · Zbl 0837.68122

[15] Ezra, E.; Sharir, M., A nearly quadratic bound for point-location in hyperplane arrangements, in the linear decision tree model, Discrete Comput. Geom., 61, 4, 735-755 (2019) · Zbl 1415.52017

[16] Gärtner, B., Welzl, E.: Linear programming: randomization and abstract frameworks. In: Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer Science. Springer Lecture Notes in Computer Science, vol. 1046, pp. 669-687. Springer, Berlin (1996) · Zbl 1380.90184

[17] Guibas, L.J.; Halperin, D.; Matoušek, J.; Sharir, M., Vertical decomposition of arrangements of hyperplanes in four dimensions, Discrete Comput. Geom., 14, 2, 113-122 (1995) · Zbl 0832.68076

[18] Har-Peled, S., Constructing planar cuttings in theory and practice, SIAM J. Comput., 29, 6, 2016-2039 (2000) · Zbl 0981.68056

[19] Har-Peled, S., Geometric Approximation Algorithms. Mathematical Surveys and Monographs (2011), Providence: American Mathematical Society, Providence · Zbl 1230.68215

[20] Har-Peled, S., Shortest path in a polygon using sublinear space, J. Comput. Geom., 7, 2, 19-45 (2016) · Zbl 1405.68420

[21] Haussler, D.; Welzl, E., \((\varepsilon \text{-nets}) \)-Nets and simplex range queries, Discrete Comput. Geom., 2, 2, 127-151 (1987) · Zbl 0619.68056

[22] Kane, D.M., Lovett, S., Moran, S.: Generalized comparison trees for point-location problems. In: Chatzigiannakis, C. et al. (eds.) Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (ICALP). LIPIcs. Leibniz International Proceedings in Informatics, vol. 107, pp. 82:1-82:13. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2018)

[23] Kane, D.M., Lovett, S., Moran, S.: Near-optimal linear decision trees for k-SUM and related problems. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, (STOC), pp. 554-563. ACM, New York (2018) · Zbl 1428.68129

[24] Kane, D.M., Lovett, S., Moran, S., Zhang, J.: Active classification with comparison queries. In: Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science, (FOCS), pp. 355-366. IEEE Computer Society, Los Alamitos (2017)

[25] Kolton, V., Sharp bounds for vertical decompositions of linear arrangements in four dimensions, Discrete Comput. Geom., 31, 3, 435-460 (2004) · Zbl 1065.52019

[26] Komlós, J.; Pach, J.; Woeginger, G., Almost tight bounds for \((\varepsilon \text{-nets}) \)-nets, Discrete Comput. Geom., 7, 2, 163-173 (1992) · Zbl 0765.68066

[27] Liu, D., A note on point location in arrangements of hyperplanes, Inf. Process. Lett., 90, 2, 93-95 (2004) · Zbl 1177.68241

[28] Matoušek, J., Lectures on Discrete Geometry. Graduate Texts in Mathematics (2002), New York: Springer, New York · Zbl 0999.52006

[29] Meiser, S., Point location in arrangements of hyperplanes, Inf. Comput., 106, 2, 286-303 (1993) · Zbl 0781.68121
[30] Meyer auf der Heide, F., A polynomial linear search algorithm for the \((n\text{-})\)-dimensional knapsack problem, J. Assoc. Comput. Mach., 31, 3, 668-676 (1984) · Zbl 0631.68037

[31] Pach, J.; Agarwal, PK, Combinatorial Geometry (1995), New York: Wiley, New York

[32] Sharir, M.; Agarwal, PK, Davenport-Schinzel Sequences and Their Geometric Applications (1995), New York: Cambridge University Press, New York · Zbl 0834.68113

[33] Spanier, EH, Algebraic Topology (1966), New York: Springer, New York

[34] Vapnik, V.N., Chervonenkis, A.Ya.: On the uniform convergence of the frequencies of occurrence of events to their probabilities. In: Empirical Inference, pp. 7-12. Springer, Berlin (2013) · Zbl 1325.60006

[35] Vapnik, V.N., Chervonenkis, A.Ya.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, 264-280 (1971) · Zbl 0247.60005

[36] Warren, HE, Lower bound for approximation by nonlinear manifolds, Trans. Am. Math. Soc., 133, 1, 167-178 (1968) · Zbl 0174.35403

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.