Role of the Cell Wall Integrity and Filamentous Growth
Mitogen-Activated Protein Kinase Pathways in Cell Wall Remodeling during Filamentous Growth\V\†

Barbara Birkaya, Abhiram Maddi, Jyoti Joshi, Stephen J. Free, and Paul J. Cullen*

Department of Biological Sciences, State University of New York at Buffalo, Amherst, New York 14260-1300

Received 5 January 2009/Accepted 26 May 2009

Many fungal species including pathogens exhibit filamentous growth (FG) as a means of foraging for nutrients. Genetic screens were performed to identify genes required for FG in the budding yeast Saccharomyces cerevisiae. Genes encoding proteins with established functions in transcriptional activation (MCM1, MATa2, PHD1, MSN2, SIR4, and HMS2), cell wall integrity (MPT5, WSC2, and MID2), and cell polarity (BUD5) were identified as potential regulators of FG. The transcription factors MCM1 and MATa2 induced invasive growth by promoting diploid-specific bipolar budding in haploid cells. Components of the cell wall integrity pathway including the cell surface proteins Sgl1p/Wsc1p, Wsc2p, Mid2p, and the mitogen-activated protein kinase (MAPK) Slt2p/Mpk1p contributed to multiple aspects of the FG response including cell elongation, cell-cell adherence, and agar invasion. Mid2p and Wsc2p stimulated the high FG MAPK pathway through the signaling mucin Msb2p and components of the MAPK cascade. The FG pathway contributed to cell wall integrity in parallel with the cell wall integrity pathway and in opposition with the high osmolarity glycerol response pathway. Mass spectrometry approaches identified components of the filamentous cell wall including the mucin-like proteins Msb2p, Flo11p, and subtelomeric (silenced) mucin Flo10p. Secretion of Msb2p, which occurs as part of the maturation of the protein, was inhibited by the ß-1,3-glucan layer of the cell wall, which highlights a new regulatory aspect to cell wall remodeling in this organism. Disruption of ß-1,3-glucan linkages induced mucin shedding and resulted in defects in cell-cell adhesion and invasion of cells into the agar matrix.

* Corresponding author. Mailing address: Department of Biological Sciences, 625 Cooke Hall, State University of New York at Buffalo, Buffalo, NY 14260-1300. Phone: (716) 645-2363, ext. 200. Fax: (716) 645-2975. E-mail: pjcullen@buffalo.edu.
† Supplemental material for this article may be found at http://ec.asm.org/.
\v\ Published ahead of print on 5 June 2009.
found that haploid and diploid cells exhibit different agar invasion patterns on different substrates, and genes that regulate cell type specification contribute to the invasive growth pattern. We also found that cell wall remodeling, which is controlled by the cell wall integrity pathway (82) and the FG pathway, occurs under nutrient-limiting conditions. We further show that the cell wall integrity pathway contributes to FG pathway regulation at the level of the cell surface proteins that comprise the two pathways. Mass spectrometry and directed genomics approaches were used to identify components of the filamentous cell wall, which led to the finding that shedding of Msh2p is regulated by the β-glucan layer. Our findings provide new insights into the combinatorial effects of signaling networks in mediating differentiation to the FG pattern. The critical role the cell wall plays in the filamentation response strengthens the prevailing idea that the cell wall is a logical structure to target in the control of fungal pathogenesis.

MATERIALS AND METHODS

Strains, plasmids, and microbiological techniques. Yeast strains are described in Table 1. Most strains are isogenic to the Σ178b parental strain HYL335 (PC313) (84). Plasmids are listed in Table 2. pRS316 and related plasmids have been described previously (143) using plasmids containing the three copies of the Myc and hemagglutinin (HA) epitopes. Integrations were confirmed by PCR analysis. Plasmids pMCM11–97 (plasmid expressing residues 1 to 97 of MCM1), pMCM1 1–276, pMCM11–286, and pGAL-STE4 were obtained from an ordered collection (166).

 Yeast and bacterial strains were manipulated by standard methods (138, 142). Yeast strains provided by John Pringle (Stanford University, Palo Alto, CA). Some disruptions were created by the use of antibiotic resistance markers on cassettes derived from the 252JHa background. Some disruptions were created by the use of antibiotic resistance markers on cassettes derived from the 252JHa background.
ysis were used to confirm plasmid inserts. For the λ YES screen, ~50,000 colonies transformed with the λ YES library (127) were examined by plate washing on synthetic medium supplemented with 2% galactose (Gal). Plasmid-dependent isolates were similarly identified. In a third screen, plasmids that induce FUS1-HIS3 expression in an ste4Δ strain (PC358) were identified by screening a YES overexpression library transformants for growth on SD-His medium supplemented with 3-amino-1,2,4-triazole. In a separate screen, the MPT5 gene was identified as a suppressor of a mutant (designated aa9) that exhibited elevated FUS1-HIS3 expression. YCp50 library transformants (137) were plated at a density of 200 colonies/plate on SD-Ura plates. Colonies were replica plated onto SD-Ura-His medium, and colonies that failed to grow were identified. MPT5 was a plasmid-dependent isolate identified in the screen that suppressed FUS1-HIS3 signaling in the aa9 mutant.

Analysis of Msb2p Secretion in cell wall mutants. To determine the effect of cell wall genes on Msb2p-HA secretion, haploid (MATa) ordered deletion collection isolates (166) were transformed with a plasmid carrying a functional epitope-tagged MSB2 gene (pMSB2-HA). Transformants were pinned to SD-Ura medium, and once grown, were transferred to a 96-well plate containing 100 μl of water and pinned to SD-Ura medium overlaid with a nitrocellulose disc filter (0.4-μm pore size; HAHY8550; Millipore) and incubated for 48 h at 30°C. Filters were rinsed in distilled water to remove cells and probed with antibodies to the HA epitope (12CA5; Roche Diagnostics, Indianapolis, IN) or a mouse monoclonal antibody directed against green fluorescent protein (Amersham Biosciences). Axiovision, version 4.4, software (Zeiss) was used for image acquisition and analysis.

Immunological techniques. Immunoblot analysis was performed as described by Vadeia et al. (157). Proteins were separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis on 10% precast gels (Bio-Rad, Hercules, CA) and electrophoretically transferred to nitrocellulose membranes (VWR International Inc., Bridgeport, NJ). The membranes were incubated in blocking buffer containing either a mouse monoclonal antibody directed against HA (12C5; Roche Diagnostics, Indianapolis, IN) or a mouse monoclonal immunoglobulin G antibody directed against green fluorescent protein (Roche Diagnostics, Indianapolis, IN). After the membranes were washed, incubated with alkaline phosphatase-conjugated secondary antibody, and washed free of unbound secondary antibody, ECL Plus immunoblotting reagents were used to detect HA- and green fluorescent protein-tagged proteins (Amersham Biosciences, Piscataway, NJ). Monoclonal antibodies specific for actin were obtained from Chemicon (MAB5101; Chemicon; Billerica, MA).

Cell wall purification and isolation of secreted proteins. To generate yeast and filamentous cell walls, wild-type cells (PC538) were grown for 8 h in YEPD medium, YEP-Gal medium (2% Gal), or YEPD medium supplemented with 10 μg/ml alpha factor. Cells were harvested by centrifugation, washed in phosphate-buffered saline (PBS) buffer (140 mM NaCl, 3 mM KCl, 4 mM Na2HPO4, 1 mM KH2PO4), and resuspended in PBS at a titer of 108 cells/ml. The cells were transferred to ice-cold Fast-Prep tubes and subjected to 36 cycles of shaking on a Fast-Prep machine (MP Biomedical, Solon, OH). Each cycle was for 20 s at a speed setting of 6 on the machine, and the samples were cooled on ice for 60 s between each cycle. Broken cell walls were collected by centrifugation (5,000 × g for 10 min) and washed twice with PBS. SDS was added to the resuspended cell wall preparation to a concentration of 1%, and the samples were then subjected to a 10-min boiling step to remove any proteins that might be nonspecifically associated with the wall. The SDS-boiled cell wall preparations were then washed twice in PBS and treated for 30 min at 37°C with 1% β-mercaptoethanol. The cell walls

Name in the present study	Alternate name	Function or description	Reference or source
PC2207	pRS316	CEN/URA3 control	147
PC188	YEplac24	Control plasmid	Sprague laboratory
PC207	YCp50	CEN/URA3 control	Sprague laboratory
PC369	YEp24 library pool	High-copy-number library	18
PC3105	α YES library pool	High-copy-number library	127
PC20a and -b	YCp50 library pool	CEN-based library	137
PC187	pSTE4	YCp50 plasmid	Sprague laboratory
PC1417	pFLO8	YEp1ac181-FLOS URA3	84
PC3085	pGAL-MATa1	MATa1 overexpression construct	Sprague laboratory
PC3133	pMSB2-lacZ	CEN/URA3 MSB2-lacZ translational fusion	121
PC1820	pMSB2-HA	CEN/URA3 expressing Msb2p-HA from its endogenous promoter	157
PC1043	pSVS1-lacZ	FG pathway reporter	132
PC1044	pYLR042C-lacZ	FG pathway reporter	132
PC1042	pPGU1-lacZ	FG pathway reporter	132
PC3080	pMCM11-91	MCM1 derivative	14
PC3081	pMCM11-156	MCM1 derivative	14
PC3079	pMCM11-187	MCM1 derivative	14
PC370	YEp24-MCM1	YEp24 library isolate	This study
PC371	YEp24-MATa1o2-BUD5	YEp24 library isolate	This study
PC206	pMPT5	YCp50 library isolate	This study
PC3083	YEp24-MATa1o2	YEp24 plasmid	This study
PC3082	pα YES	Vector control	This study
PC527	pPHD1	αYES library isolate	This study
PC528	pSIR4	αYES library isolate	This study
PC529	pMSN1	αYES library isolate	This study
PC530	pHMS2	αYES library isolate	This study
PC1236	pα YES-MID2	αYES library isolate	This study
PC1271	pα YES-WSC2	αYES library isolate	This study
PC3084	YCP50-MATa1o2-BUD5	αYES library isolate containing only the MATa1o2 BUD5 genes	This study
PC3086	YEp24-MATa1o2-BUD5Eag1 deletion	αYES library isolate containing only the MATa1o2 genes	This study
were then collected and washed twice with centrifugation with ice-cold water to give purified cell wall preparations, which were lyophilized.

Secreted proteins were isolated by growing wild-type (PC313) cells for 48 h in SD medium (2% glucose). The cells were removed by centrifugation, and the proteins were precipitated by polyethylene glycol (PEG 8000) or trichloroacetic acid (TCA). The PEG precipitation was based on established methodology (4). A 50% PEG solution was added in a dropwise manner to collected medium to give a final PEG concentration of 8%. MgCl2 was added to a final concentration of 10 mM. After incubation at 4°C for 30 min with stirring, the sample was centrifuged at 14,000 × g for 15 min, and the resultant pellet was lyophilized. For the TCA precipitation, acetone and TCA were added to the medium to give a final concentration of 50% acetone and 12.5% TCA, and the proteins were allowed to precipitate in a 24-h incubation at −20°C. The precipitated proteins were collected by centrifugation, washed twice with −20°C acetone, and lyophilized.

TFMS Digestion. Under controlled anhydrous conditions, trifluoromethane-sulfonic acid (TFMS) digests glycosidic linkages without cleavage of peptide bonds and can be used to digest cell wall glucans and release intact deglycosylated cell wall proteins (11). Cell walls and secreted protein samples were lyophilized to dryness. A 20-ng sample of the secreted protein or a 20-ng cell wall sample from each type of cell wall was placed in a 15-mL Corning tube and relyophilized, and 1.25 ml of a solution of 16% anisole in TFMS was added. The samples were allowed to digest by TFMS for 4°C for 6 h (Sigma Aldrich, St. Louis, MO). The TFMS solution was purged with N2 prior to adding it to the sample, and the tube was covered with parafilm and placed in a large chamber purged with N2 gas. The samples were periodically purged with N2 to maintain a water-free digestion. The digested samples were then subjected to the dropwise addition of 3.75 ml of a solution of pyridine-methanol-H2O (3:1:1). The samples were continually swirled in a dry ice-ethanol bath during the addition of the pyridine-methanol-H2O mixture and incubated on dry ice for an additional 20 min, followed by a 20-min incubation at −20°C. The samples were then allowed to thaw, and 1 ml of a 5% ammonium bicarbonate solution was added. The released cell wall proteins were collected by adding acetone and TCA (final concentrations of 50% acetone and 12.5% TCA) and allowing the proteins to precipitate during a 24-h incubation at −20°C. The proteins were collected by centrifugation at 5,000 × g for 10 min, washed three times with −20°C acetone, dried briefly, and resuspended in 1% SDS, and protein concentrations were determined using a Bio-Rad detergent-compatible protein assay kit (Bio-Rad, Hercules, CA). The deglycosylated proteins were then subjected to electrophoresis in SDS polyacrylamide gels. Following Coomassie blue staining, gel slices containing proteins were cut from the gels and sent for mass spectrometry analysis.

Protein identification by mass spectrometry analysis. Protein identification by liquid chromatography-tandem mass spectrometry (MS/MS) was carried out by Midwest Bio Services LLC (Overland Park, KS) from SDS-polyacrylamide gel electrophoresis (SDS-PAGE) gel slices that were subjected to trypsin digestion. The released peptides were concentrated on a peptide trap column. The peptides were separated by microcapillary C18 reverse-phase column chromatography. Individual peptide pools were then subjected to MS/MS analysis. Proteins were identified using the TURBOSEQUENT software, and the sequences of the parent peptides were inferred by matching the MS/MS spectra to the S. cerevisiae protein databases. Peptides identified as having a correlation coefficient (XC) value of ≥2.5 were considered to be significant matches. As an additional analysis, the data were screened for asparagines containing an attached GlcNac.

mRNA level determination using quantitative PCR. Total RNA was isolated from 25-ml cultures grown in YEP-Gal medium for 8 h using hot acid-phenol extraction. cDNA synthesis was carried out using 1 μg of RNA and an iScript cDNA Synthesis Kit (Bio-Rad; Hercules, CA) according to the manufacturer’s instructions. One-tenth of the synthesized cDNA was used as the template for real-time PCR. Real-time PCRs were performed using 25-μl reaction mixtures on a Bio-Rad iQ50 Cycler with iQ SYBR green Supermix (Bio-Rad). Reverse transcription-quantitative PCR was performed using the following amplification program: initial denaturation for 5 min at 95°C, followed by 35 cycles of denaturation for 15 s at 95°C and annealing for 1 min at 60°C. Melt curve data collection was enabled by decreasing the set point temperature with the final annealing step by 0.5°C. The specificity of amplicons was confirmed by generating the melt curve profile of all amplified products. ACT1 was used as the reference gene for normalization of mRNA levels. Gene expression was quantified as described previously (120). Primers were based on Vojnov et al. (162) and were as follows: FLO11, 5'-GTTCCACACCTCCAAGCGG (forward) and 5'-TATTTACCATGTTGTTGCTGAA (reverse); FLO10, 5'-CTTCTTGAATGTTGTTGCTGAA (forward) and 5'-GGCAATATTTCGATCCGAACTACACCC (reverse); and ACT1, 5'-GCGCTCTTCTGA

RESULTS

Genetic screens identify new regulators of FG. Genetic approaches were undertaken to identify genes that regulate FG. Agar invasion is a hallmark for FG, and mutants that perturb FG typically exhibit agar invasion phenotypes (133). In one approach, an overexpression library (λ YES [127]) and a high-copy-number library (YEp24 [18]) were screened for genes that induce invasive growth in a wild-type strain (PC538) of the filamentous (Σ1278b) background. Because haploid strains of the Σ1278b background exhibit poor agar invasion on SD medium, library transformants were screened for enhanced invasion on SD medium by the plate-washing assay (133). Seven genes were identified (Table 3). In most cases, multiple library isolates were not identified, which indicates that the screens were not saturating. Three of the genes have previously been established as regulators of FG, BUD5 (87), PHD1 (47, 115), and HMS2 (91) (Table 3), and two came out of a recent large-scale screen, SIR4 and MSN2 (62) (Table 3), which validates the identification of filamentation regulatory genes by this approach. Two genes not previously connected to FG were also identified (MCM1 and MATα2) (Table 3).

In a related approach, genes were identified in a screen for genes that when overexpressed influence the activity of a transcriptional reporter (FUS1-HIS3), which in Σ1278b strains lacking an intact mating pathway (ste4Δ) is dependent on FG pathway components for expression (29). Two genes were identified that induced reporter expression (WSC2 and MID2) (Table 3), and in a separate screen one gene was identified that dampened it, MPT5 (65) (Table 3). In total, 10 genes were identified, half of which represent potentially new ties to FG regulation (Table 3). A subset of the genes required the FG pathway to exert their invasive effects; others did not (Table 3). Likewise, a subset of genes required the glucose-regulatory protein kinase Snf1p to exert their effects (18, 56, 74, 75) (Table 3). Therefore, the screens identified genes that influence invasive growth through at least two different filamentation control pathways. Functional classification of the genes showed connections between FG and cell type specification, transcriptional regulation, cell polarity, and cell wall integrity (Table 3).

MCM1 and MATα2 induce constitutive invasion by promoting diploid-specific polarity in haploid cells. We focused on genes that represent potentially new connections to FG regulation. MCM1 encodes an essential transcription factor of the MADS box family (23, 39, 98) that is required for the expression of mating and stress-responsive genes (60). YEp24-MCM1 induced agar invasion (Fig. 1A). The N terminus of Mcm1p is sufficient for DNA binding and transcriptional activation (14). A transcription-defective allele, MCM11–286, did not induce agar invasion, whereas full-length MCM1 (MCM11–286) and transcription-competent alleles MCM11–156 and MCM11–156 induced invasive growth (data not shown). This result indicates that the effect of Mcm1p on FG requires its transcriptional activation function. Mcm1p functions at the same promoters as Ste12p for some genes although the proteins are thought to bind to different sites (110). Introduction of YEp24-MCM1 in the ste12Δ mutant
caused hyperinvasive growth (Table 3), which indicates that Mcm1p induces invasive growth independent of the FG pathway. The other YEp24 plasmid identified in the screen contained the \(BUD5\) and \(MAT/H9251^2\) genes. Restriction digest analysis showed that \(BUD5\) and \(MATa2\) independently induced invasive growth (Table 3). \(BUD5\) encodes the GTPase activating protein for Rsr1p and is required for bud site selection (25). Altering bud site selection has a potent effect on agar invasion.

TABLE 3. Genes identified in genetic screens that influence FG

Gene	Library	Screen	MAPK	Snf1	Reference or source for connection to FG	Process	Function
\(BUD5\)	YEp24	HIG	No	ND	87	Cell polarity	GTP/GDP exchange factor for Rsr1p (Bud1p) required for axial and bipolar budding patterns
\(MPT5\)	YEp50	SFR	Yes	ND	This study	Cell wall integrity	Member of the Puf family of RNA-binding proteins
\(W3c2\)	\(\alpha\)YES	HFR	Yes	ND	This study	Cell wall integrity	Sensor-transducer of the stress-activated PKC1-MPK1 pathway maintenance of cell wall integrity
\(MID2\)	\(\alpha\)YES	HFR	Yes	ND	This study	Cell wall integrity	Sensor-transducer of the stress-activated PKC1-MPK1 pathway maintenance of cell wall integrity
\(HMS2\)	\(\alpha\)YES	HIG	Partial	No	91	Transcription	Protein with similarity to heat shock transcription factors
\(PHD1\)	\(\alpha\)YES	HIG	Partial	No	48, 115	Transcription	Transcriptional activator that enhances pseudohyphal growth
\(MSN2\)	\(\alpha\)YES	HIG	No	No	62	Transcription	Transcriptional activator related to Msn4p; activated under stress conditions
\(MCM1\)	YEp24	HIG	No	ND	This study	Transcription; cell type	Cell-type- and pheromone-specific transcription factor MADS box family
\(MATa2\)	YEp24	HIG	No	ND	This study	Transcription; cell type	Cell-type- and pheromone-specific transcription factor homeobox family
\(SIR4\)	\(\alpha\)YES	HIG	Partial	Yes	62	Transcription; cell type	Silencing regulator involved in assembly of silent chromatin domains at silent mating-type loci

*The sources for the libraries are as follows: YCp50, Rose et al. (137); YEp24, Carlson and Botstein (18); and \(\alpha\)YES, Ramer et al. (127).

\(\alpha\)HIG, library isolates that induce hyperinvasive growth; \(\alpha\)HFR, elevated expression of the \(FUS1\)-\(HIS3\) reporter; \(\alpha\)SFR, suppression of the \(FUS1\)-\(HIS3\) reporter.

\(\alpha\)Determined by expression of FG pathway reporters and the \(FUS1\)-\(HIS3\) reporter and suppression of the invasion defect of the \(ste12\) mutant (Fig. 1 and 2C).

\(\alpha\)Determined by the ability to suppress the agar invasion defect of the \(snf1\) mutant. ND, not determined.

FIG. 1. High-copy-number \(MCM1\) and \(MATa2\) induce constitutive invasion by promoting diploid-like behaviors. (A) Constitutive agar invasion of cells harboring YEp24-Mcm1 (Mcm1) and YEp24-MATa2 (MATa2) compared to strains harboring control (Ctl) YEp24 plasmids. Equal concentrations of cells were spotted onto SD-Ura medium for 4 days. The plate was photographed (left panel), washed in a stream of water, and photographed again (right panel). (B) \(MATa2\) and \(HMLa2\) containing plasmids confer similar constitutive agar invasion phenotypes in wild-type cells (PC313) after a 24-h incubation on rich YEPD medium. (C) \(MATa2\) suppresses the growth defect of cells overexpressing \(STE4\) (PC2431), compared to a control plasmid (pRS316). Cells were patched onto SD-Ura and S-Gal-Ura medium for 2 days at 30°C and photographed. (D) Comparison of the invasive properties of haploid and diploid cells. \(MATa\) (PC312), \(MATa\) (PC313), and \(MATa/MATa\) (PC344) cells were spotted onto YEPD and SCD media. The plates were incubated for 2 days at 30°C, and the plates were photographed, washed, and photographed again.
and are not invasive (31). The cells after a 24-h incubation on YEPD medium (Fig. 1B) when (rather than hyperinvasive) as it was observed in mid-log-phase MAT Mutants that confer bipolar budding in haploid cells (e.g., FLO11 nies were smooth in appearance, likely due to lower levels of genes that promote diploid-type budding in the genetic screen. Both haploid and diploid cells exhibited similar inva-

sions, haploid cells bud in an axial pattern, whereas diploid cells bud in a bipolar pattern (27) that is similar to the distal-unipolar pattern of haploid cells undergoing invasive growth (32). Haploid cells containing pMATa2 exhibited bipolar budding (80% bipolar, 19% axial, and 1% random; n = 200 cells) compared to the axial pattern of cells containing a control plasmid (pRS316; 5% bipolar, 95% axial, and <1% random; n = 200 cells). Consistent with the idea that diploid-type budding leads to an invasive growth phenotype, diploid cells (MATa/MATA) exhibited constitutive agar invasion on synthetic medium and invaded better than haploid (MATa or MATA) cells (Fig. 1D). This phenotype explains the isolation of genes that promote diploid-type budding in the genetic screen. Both haploid and diploid cells exhibited similar invasive growth on rich medium (Fig. 1D) although diploid colonies were smooth in appearance, likely due to lower levels of FLO11 expression in diploid compared to haploid cells (86). Mutants that confer bipolar budding in haploid cells (e.g., bud3Δ, bud4Δ, and bud10Δ) also induce constitutive invasion (32). The invasive pattern induced by MATa2 was constitutive (rather than hyperinvasive) as it was observed in mid-log-phase cells after a 24-h incubation on YEPD medium (Fig. 1B) when wild-type haploid cells typically exhibit an axial budding pattern and are not invasive (31). The SIR4 gene was also identified in the screen (Table 3) and may similarly induce invasive growth by derepression of silent mating type loci (131). Mcm1p and MATa2p did show slight differences in invasive growth in that Mcm1p induced a “speckled” pattern (Fig. 1A). Mcm1p may also contribute to FG regulation through transcriptional induction of other filamentation target genes (see below).

The cell wall integrity pathway contributes to FG. The genetic screens identified a potential connection between the cell wall integrity pathway and FG (Table 3). The cell wall integrity pathway is a MAPK pathway that senses and responds to cell wall stress during vegetative growth and in response to a variety of challenges including pheromone-induced morphogenesis and heat shock (68, 82). Cell surface components of the pathway, Wsc2p and Mid2p (83, 111, 126, 159), which came out of the genetic screen (Table 3), and the MAPK Slt2p/Mpk1p (79) were tested for a role in invasive growth. The slt2Δ and wsc2Δ mutants and to a lesser degree the mid2Δ mutant showed defects in invasive growth by the plate-washing assay (Fig. 2A). A third cell surface component, Slg1p/Wsc1p (159), also showed an invasive growth defect when absent from cells (see below). The slt2Δ mutant showed defects in cell-cell adhesion and cell elongation based on microscopic examination of invaded cells (Fig. 2B) and a modest reduction in FLO11 expression (Fig. 2C) but not to the same degree as FG pathway mutants (Fig. 2C). Cells overexpressing MID2 and WSC2 were somewhat hyperinvasive (Fig. 2A) and were hyperfilamentous (Fig. 2B).

MID2 and WSC2 induced FUS1 expression when overexpressed (Fig. 2C). Because in this genetic context (ste4Δ) the FUS1 reporter shows dependency on Msb2p, Sho1p, and other FG pathway components (29), the cell wall integrity pathway may feed into FG pathway regulation. A connection between the FG (Ste11p-Ste7p-Kss1p) and cell wall integrity (Bck1p-Mkk1p/Mkk2p-Slt2p) pathways has not previously been established. However, activated MEK kinases Ste7p and Mkk1p exhibit cross talk between the cell wall integrity and mating pathways (167). In protein glycosylation mutants, the cell wall integrity pathway and a pathway that resembles the FG pathway (Msb2p-Sho1p-Mid2p-Ste7p-Kss1p-Ste12p) are both activated and are required for viability (29, 30). In this context, an activated allele of the cell wall integrity MAPK kinase kinase BCK1 stimulates cross talk to the Ste12p pathway (30). We found that overexpression of MID2 and WSC2 induced expression of FG pathway reporters SYSI, PGU1, and YLR404C (132) by approximately twofold (Fig. 2D) and the FUS1 reporter by a factor greater than threefold (Fig. 2E). The boost in FUS1 expression required Msb2p, Ste20p, and Ste12p (Fig. 2E). Sho1p was only partially required to mediate Wsc2p- and Mid2p-dependent FUS1 expression (Fig. 2E). Slt2p was not required to mediate the elevated FUS1 expression (Fig. 2E), which indicates that the cross talk between the pathways occurs upstream of Slt2p. These results connect cell surface components of the cell wall integrity and FG pathways and uncover a difference between Msb2p and Sho1p in signal transmission in the FG pathway. The HOG and FG pathways have opposing effects on cell wall integrity. The FG and high-osmolarity glycerol (HOG) MAPK pathways require overlapping components and are thought to function in mutually exclusive activation states (34, 109, 121, 164). The HOG MAPK pathway functions to promote osmotolerance (12) in part through cell wall remodeling (43, 61). Cells lacking an intact HOG pathway were resistant to CFW (>0.24 mg/ml CFW on YEPD medium), whereas cells lacking an intact FG pathway were sensitive to CFW (<0.03 mg/ml CFW on YEPD medium) (data not shown), which indicates that the two pathways may have opposing effects on cell wall integrity. In support of this possibility, overexpression of SHO1, which is required for the activation of both pathways (29, 94), induced CFW sensitivity that was dependent on Pbs2p and that was exacerbated in the ste12Δ mutant (Fig. 3A). The addition of sorbitol, which stimulates the HOG pathway (122, 123), suppressed CFW sensitivity of cells overexpressing SHO1 (Fig. 3A). The cell morphological phenotypes bore out this result. Overexpression of SHO1 induced cell polarization that was dependent on the FG pathway and was inhibited by the HOG pathway (Fig. 3B). In the presence of CFW, overexpression of Sho1p induced cell lysis that was suppressed by the addition of sorbitol (Fig. 3B). The HOG and FG pathways may have opposing effects on cell wall integrity through induction of different transcriptional targets. Indeed, expression profiling identifies nonoverlapping cell wall targets of the two pathways (42, 121).
Mass Spectrometry approaches identify components of the filamentous cell wall. To better understand how the FG pathway contributes to cell wall remodeling, we identified targets of the FG pathway by a proteomics approach. The yeast cell wall is composed of glucans, mannoproteins, and a small amount of chitin (68, 112, 150). Cell wall mannoproteins are incorporated into the wall by noncovalent attachment (17, 67), disulfide bridge formation (102, 113), and glycosylphosphatidylinositol (GPI) anchor modification (20, 54, 169), which leads to a covalent linkage to ß-1,3-glucan through ß-1,6-glucan (66, 69). Genomic approaches show that a complex regulatory network underlies the biosynthesis, maintenance, and reorganization of the cell wall (80, 81). For example, the expression of more than half of the cell wall proteins is cell cycle regulated (19, 152), and this regulation contributes to the localized incorporation of proteins into the cell wall (149).

Recent advances in mass spectrometry technology have enabled rapid and sensitive identification of cell wall glycoproteins (168). However, most cell wall proteins are modified by N- and O-linked glycosylation, which complicates their identification by their molecular masses. We used a novel approach to identify cell wall proteins, by treatment of purified cell wall proteins with TFMS to remove glycosidic linkages (11). As a result, we identified a number of components of the filamentous cell wall (Table 4), including Flo11p (86), Ccw12p (103, 124), Pir1p (155), Hsp150p (141), and Sed1p (52). Cell wall proteins were also identified in vegetative cells and cells treated with mating pheromone as a control (Table 4). In addition to cell wall proteins, glycolytic enzymes, secreted proteases, and other proteins were identified, in line with other proteomic analyses and directed approaches to characterize proteins in the yeast cell wall (40, 89, 116).

Several proteins were identified that were not entirely expected. Pry2p is a pathogen-related protein of unknown function that has not previously been connected to the cell wall. Flo10p is a presumptive cell wall protein that is not thought to

FIG. 2. The role of the cell wall integrity pathway in FG and FG pathway regulation. (A) Wild-type (WT; PC538), slt2Δ (PC367), GAL-MID2 (PC1310), and GAL-WSC2 (PC1312) strains were spotted onto YEPD or YEP-Gal medium for 4 days at 30°C. The plates were photographed, washed in a stream of water to reveal invaded cells, and photographed again. (B) Examples of wild-type (PC538), slt2Δ mutant (PC367), GAL-MID2 (PC1310), and GAL-WSC2 (PC1312) cells grown in YEP-Gal medium. Bar, 20 μm. (C) The level of FLO11 mRNA in wild-type (PC538), slt2Δ (PC367), msb2Δ (PC948), ste12Δ (PC539), and flo11Δ (PC1029) mutants. FLO11 mRNA levels were normalized to ACT1 mRNA levels, and normalized values are shown. RNA was prepared from cells grown for 8 h in YEP-Gal medium and examined by quantitative PCR analysis. (D) Expression of FG pathway reporters SVS1-lacZ, PGU1-lacZ, and YLR042C-lacZ in cells carrying plasmids overexpressing WSC2 and MID2 alongside a wild-type control (pRS316). (E) FUS1-lacZ expression in cells containing overexpression plasmids for WSC2 and MID2 alongside a wild-type control (pRS316) in wild-type (PC538), msb2Δ (PC948), sho1Δ (PC1531), ste20Δ (PC673), ste12Δ (PC2382), and slt2Δ (PC3394) strains. For experiments shown in panels D and E, cells were grown for 8 h in YEP-Gal medium. Assays were performed in duplicate, with error bars representing standard deviation between experiments.
be expressed in Σ1278b strains (51, 130). FLO10 is expressed to some degree as a result of rapid “switching” at the transcriptional level, presumably to introduce variation in the cell surface (53, 105). We confirmed that the FLO10 gene is expressed at low levels in comparison to the FLO11 (Fig. 4B). FLO10 expression, like FLO11 expression (Fig. 2C) (140), was regulated to some degree by the FG pathway (Fig. 4C). Indeed, FLO10 was identified as an FG pathway target by expression profiling (C. Chavel, H. M. Dionne, B. Birkaya, J. Joshi, and P. J. Cullen, unpublished data). An Flo10p-HA fusion protein was constructed and identified by immunoblot analysis (Fig. 4A) among a collection of epitope-tagged cell wall proteins. Our ability to detect the Flo10p protein by immunoblot analysis and mass spectrometry may indicate that the protein is relatively stable. As for other mucin-like proteins Msb2p (157), Hkr1p (121), and Flo11p (158), which may indicate that the protein is relatively stable. As for other mucin-like proteins Msb2p (157), Hkr1p (121), and Flo11p (158), members of the mucin family (21), is processed and that the extracellular domain of the protein is secreted from cells (157). Indeed, Msb2p was identified as a secreted protein by mass spectrometry analysis (Table 4). To determine whether Msb2p secretion is regulated by the cell wall, a collection of cell wall mutants was screened for altered shedding of Msb2p-HA by colony immunoblot analysis. Of ~100 mutants examined, 11 showed altered secretion of Msb2p-HA (Fig. 5B; see also Fig. S1 in the supplemental material). Several of the genes identified (SLG1, EXG1, KRE11, ECM15, and SMII) function in the biosynthesis and assembly of the β-glucan layer (13, 81, 158). SLG1 encodes the cell wall integrity sensor Slg1p/Wsc1p. Defects in most of the genes resulted in enhanced secretion of Msb2p (Fig. 5B), which suggests that the β-glucan layer contributes to mucin retention. Defects in the β-glucan layer would be expected to increase the porosity of the cell wall (118), which may explain the elevated levels of Msb2p secretion. KRE11 also functions in protein transport and may contribute to Msb2p secretion through delivery of the protein to the cell surface (144). In one mutant, altered shedding of Msb2p-HA correlated with altered expression of the MSB2 gene as determined by examining MSB2-lacZ expression in cell wall mutants (Fig. 5C, gas1Δ). In most mutants, however, MSB2-lacZ expression did not correlate with secretion of the protein (Fig. 5C). For example, the slg1Δ mutant showed reduced expression of MSB2-lacZ, which might result from an auto-feedback mechanism, given that the FG pathway controls MSB2 expression (29) and elevated shedding of the Msb2p-HA protein. We interpret this result to indicate that although there is less Msb2p in the cell, its ability to be retained in this mutant is compromised, resulting in elevated secretion from cells. Several cell wall genes including SLG1 were also found to be required for invasive growth (Fig. 5D and E).

The β-glucan layer influences mucin secretion, cell-cell adhesion, and FG. We previously showed that Msb2p, like other members of the mucin family (21), is processed and that the extracellular domain of the protein is secreted from cells (157). Indeed, Msb2p was identified as a secreted protein by mass spectrometry analysis (Table 4). To determine whether Msb2p secretion is regulated by the cell wall, a collection of cell wall mutants was screened for altered shedding of Msb2p-HA by colony immunoblot analysis. Of ~100 mutants examined, 11 showed altered secretion of Msb2p-HA (Fig. 5B; see also Fig. S1 in the supplemental material). Several of the genes identified (SLG1, EXG1, KRE11, ECM15, and SMII) function in the biosynthesis and assembly of the β-glucan layer (13, 81, 158). SLG1 encodes the cell wall integrity sensor Slg1p/Wsc1p. Defects in most of the genes resulted in enhanced secretion of Msb2p (Fig. 5B), which suggests that the β-glucan layer contributes to mucin retention. Defects in the β-glucan layer would be expected to increase the porosity of the cell wall (118), which may explain the elevated levels of Msb2p secretion. KRE11 also functions in protein transport and may contribute to Msb2p secretion through delivery of the protein to the cell surface (144). In one mutant, altered shedding of Msb2p-HA correlated with altered expression of the MSB2 gene as determined by examining MSB2-lacZ expression in cell wall mutants (Fig. 5C, gas1Δ). In most mutants, however, MSB2-lacZ expression did not correlate with secretion of the protein (Fig. 5C). For example, the slg1Δ mutant showed reduced expression of MSB2-lacZ, which might result from an auto-feedback mechanism, given that the FG pathway controls MSB2 expression (29) and elevated shedding of the Msb2p-HA protein. We interpret this result to indicate that although there is less Msb2p in the cell, its ability to be retained in this mutant is compromised, resulting in elevated secretion from cells. Several cell wall genes including SLG1 were also found to be required for invasive growth (Fig. 5D and E).

The fact that relatively few cell wall genes were identified might reflect buffering of cell wall functions (81). This possibility is supported by the fact that combinations of cell wall

FIG. 3. Overexpression of SHO1 exerts opposing effects on cell wall integrity through the FG and HOG pathways. (A) Wild-type (PC538), GAL-SHO1 (PC622), GAL-SHO1 pbs2Δ (PC670), and GAL-SHO1 ste12Δ (PC624) strains were spotted onto YEPD medium containing CFW and/or sorbitol (Sorb) at the indicated concentrations. (B) The cell morphologies of cells in panel A. More than 200 cells were examined for this experiment, and representative cells are shown. Bar, 5 μm. WT, wild type.
TABLE 4. Components of the filamentous cell wall and related proteins identified by MS analysis

Protein	Culture preparation(s)	No. of peptides	Regulatory element(s)	Process	Function
Msb2	TCA	2	Ste12, Dig1, Tec1, Swi4/Swi6	Cell wall organization/signaling transduction	Mucin family member involved in the filamentous growth pathway
Flo11	Y, Gal, α	1	Ste12, Tec1, Flo8, Dig1	Cell wall organization	GPI-anchored cell surface flocculin; pseudohyphal formation
Flo10	Gal	1	Cell wall organization	Lectin-like protein with similarity to Flo1p; involved in flocculation	
Hsp150	Y, Gal, α, PEG, TCA	1	Mcm1, Rlm1	Cell wall organization	O-mannosylated heat shock protein attached to the cell wall
Scw4	PEG, TCA	3	Ste12, Swi4/Swi6, Dig1, Mbp1	Cell wall organization	Cell wall protein with similarity to glucanases
Sed1	Y, Gal, α, PEG	3	Sok2, Hap2, Nrg1, Mot3, Adr1, Rlm1	Cell wall organization	Major stress-induced structural GPI cell wall glycoprotein
Scw4	PEG, TCA	1	Swi6, Skn7	Cell wall organization	Cell wall protein with similarity to glucanases
Tos1	TCA	2	Gcn4, Swi4, Fkh1	Cell wall organization	Covalently-bound cell wall protein of unknown function
Ecm33	TCA	2	Abf1, Mbp1, Swi6, Skn7, Fkh1, Fkh2	Cell wall organization/cell polarity	GPI-anchored protein; possible role in apical bud growth
Exg2	α	1	Cell wall organization	Exo-1,3-beta-glucanase, involved in cell wall beta-glucan assembly	
BglI	TCA	3	Cell wall organization	Endo-beta-1,3-glucanase; major protein of the cell wall	
Exg1	TCA	2	Fkh2, Mbp1	Cell wall organization	Major exo-1,3-beta-glucanase of the cell wall; beta-glucan assembly
Pir3	PEG	2	Rlm1	Cell wall organization	O-glycosylated cell wall protein; cell wall stability
Ppy2	TCA	1	Cell wall organization	Unknown	
PstI	TCA	1	Chbf1, Ume6, Rlm1	Cell wall protein that contains a putative GPI attachment site	
Ccw12	Y, Gal, α	3	al1-α2β	Cell wall organization	Cell wall mannoprotein
Pir1	Y, Gal	1	Cell wall organization	O-glycosylated protein required for cell wall stability	
Cis3	α, TCA	1	Rlm1	Cell wall organization	Mannose-containing glycoprotein of the cell wall; PIR family
Cdc19	PEG	2	Ste12	Glycolysis	Pyruvate kinase
Tpi1	TCA	1	Ino4	Glycolysis	Triose phosphate isomerase, abundant glycolytic enzyme
Eno1	PEG, TCA	3	Ino2	Glycolysis/glucogenogenesis	Enolase I, a phosphoerythrate hydratase
Pck1	PEG	1	Mcm1, Sip4, Adr1, Cat8	Glycolysis/glucogenogenesis	Phosphoenolpyruvate carboxykinase, a key enzyme in glucogenogenesis
Pglk1	PEG, TCA	1	Tye7, Rlm1	Glycolysis/glucogenogenesis	3-Phosphoglycerate kinase
Tdh3	PEG, TCA	1	Hsf1, Msn4, Gcr1, Cin5	Glycolysis/glucogenogenesis	Glyceraldehyde-3-phosphate dehydrase
Hxt6	PEG	1	Adr1	Hexose transport	High-affinity glucose transporter of the major facilitator superfamily
Spa2	PEG	1	Cell polarity	Component of the polarisome	
Bar1	TCA	2	Ste12, Dig1	Protein processing	Aspartyl protease
Ahp1	PEG, TCA	1	Thioredoxin	Thiol-specific peroxidinex	
Pma1	Gal, α	1	Ste12, Mcm1	Ion transport	Plasma membrane H+-ATPase
Ste6	α	1	Protein export	ATP-binding cassette transporter export of α-factor	
Tef2	Y, Gal, α	1	Flh1, Hsf1	Translation	Translational elongation factor EF-1 alpha; also encoded by TEF1
Tsa1	PEG	1	Hap1, Yap1	Thioredoxin	Thioredoxin peroxidase
Mpp6	TCA	1	Translation	Nuclear RNA binding protein that associates with the exosome	

* Proteins were identified from cells grown in YEPD (Y), YEP-Gal (Gal), or YEPD medium supplemented with 1 μg/ml α-factor (α) or from cells grown in conditioned medium precipitated with TCA or PEG.
* As identified by mass spectrometry.
* Transcription factors that bind to consensus sequences found in the promoters of genes encoding proteins identified in the analysis. Proteins shown in boldface are identified by mass spectrometry.
* Process and function were determined by information gathered at the Saccharomyces Genome Database (http://www.yeastgenome.org/).
* Reported in reference 41.
* Data analysis of the mass spectrometry data for asparagine residues with an attached GlcNac. N-linked GlcNac is not removed by TFMS digestion. The following N-linked modified peptides were identified: for Ecm33, K.VQTGGGAIEVTGNFSTLDLSK.S; for PstI, K.SPVETVSDLSQPSFNGQTK.I and K.SPVETVSDLSQPSFNGQTK.I; and for Ccw12, K.NGTSTAAPVTSSTEAPK.N (the modified asparagines are underlined and in boldface; trypsin cleavage sites are indicated by the periods).
mutants exacerbate Msb2p shedding (N. Vadaie and P. J. Cullen, unpublished observations). To address this possibility, the effect of overexpression of cell wall genes on Msb2p-HA secretion was examined. Of 80 genes examined, 24 perturbed Msb2p-HA secretion when overexpressed (Fig. 5F; see also Fig. S1 in the supplemental material). Overexpression of cell wall genes typically caused elevated Msb2p-HA retention (Fig. 6A). EXG1, which encodes the major exo-1,3-ß-glucanase of the cell wall (158), showed phenotypes with respect to Msb2p-HA secretion when it was disrupted or overexpressed (Fig. 5). Overexpression of several of the cell wall proteins also induced hyperpolarized growth (Fig. 5F).

The above results suggest that loss of ß-1,3-linkages results in shedding of Msb2p and may therefore also influence FG. To directly test this possibility, cells were treated with sublethal concentrations of ß-glucanase and assessed for agar invasion. ß-Glucanase treatment resulted in a complete loss of agar invasion (Fig. 6A). ß-Glucanase treatment inhibited the ruffled colony morphology (Fig. 6A), indicative of cell-cell adhesion (133). Flo11p-dependent cell-cell adhesion was also reduced by ß-glucanase treatment (Fig. 6B). Treatment of cells with ß-glucanase caused greater than 90% of cell-associated Msb2p-HA and Flo11p-HA to be released from cells (data not shown). The defect in cell-cell adhesion was more severe than observed in the flo11Δ mutant (Fig. 6B), in line with the idea that cell adhesion is mediated by Flo11p-dependent and Flo11p-independent mechanisms (96). A subpopulation of cells exposed to ß-glucanase showed morphological abnormalities (Fig. 6A, right panels), which might be expected based on the fact that the cell wall is required to maintain cell shape, cellular asymmetry, and the polarized localization of cytoskeletal proteins (128). Part of the invasive growth defect might also result from failure of filamentous cells to polarize correctly. Therefore, the ß-1,3-glucan layer is essential for FG.

DISCUSSION

We report the results of independent genetic screens to identify new regulators of FG in yeast. The 10 genes identified in this study reflect connections between FG and cell polarity, cell type specification, and cell integrity. This collection adds to a growing body of knowledge in which several hundred genes have been identified that contribute to FG (62, 90, 99, 114). One feature of the high-copy-number plasmid library screening approach is that it has the potential to identify essential genes (MCM1), genes buffered by genetic redundancy, and genes that when tagged perturb their function (e.g., WSC2 and MPT5). Because FG is a complex response, multiple independent approaches continue to improve on our understanding of the response.

Cell type and invasive growth. The genetic analysis uncovered distinct invasion patterns between haploid and diploid cells under different conditions. Diploid cells exhibit constitutive invasive growth on synthetic medium and invade the agar better that haploid cells. This property explains the identification of cell-type-regulatory transcription factors Mcm1p and MAT2p as invasion-promoting factors. Haploid cells bud in an axial pattern (26, 27), and starvation triggers the switch to distal-unipolar budding that induces invasive growth (32). The axial budding pattern of haploid cells has been postulated to promote rapid mating and diploid formation of adjoining cells in germinating asci (48). Haploid and diploid cells also show different sensitivities to osmotic stress (41) and in their cell wall composition (36). The different budding patterns between haploid and diploid cells may reflect fundamental behavioral differences between the two cell types. Our results confirm the central role that the reorganization of cell polarity (budding pattern) plays in contributing to invasive growth.
FIG. 5. The contribution of cell wall proteins in Msb2p-HA shedding, MSB2-lacZ expression, and invasive growth. (A) The key refers to open reading frame deletions in the MATa collection (S288c background; [166]) that lack cell wall proteins. WT pRS316, wild-type strain PC986 transformed with pRS316; WT pFL08, wild-type strain PC986 transformed with pFL08; CONT, contaminant. (B) Msb2p-HA secretion in cell wall mutants. Deletion strains were transformed with pMSB2-HA (PC1820), and transformants were grown for 48 h on nitrocellulose filters atop SD-Ura medium. Cells were washed off the filters, which were probed by immunoblot analysis using anti-HA antibodies. Red, elevated secretion; green, reduced secretion; gray, equivalent secretion relative to neighboring colonies and wild type; black, not tested. (C) MSB2-lacZ expression in cell wall mutants. Cell wall mutants were transformed with pMSB2-lacZ (PC3133), and transformants were incubated for 8 h at 30°C in S-Gal-Ura medium to induce MSB2 expression. Red, elevated expression; green, reduced expression; gray, no change; black, not determined. (D) Cell wall mutants were transformed with pFL08 (PC1417), and transformants were spotted onto YEPD medium and examined for agar invasion after 2 days by washing in a stream of water. (E) Washed YEPD plate. (F) The effect of overexpression (O/E) of cell wall genes on Msb2p-HA secretion. The color scheme is equivalent to that used in panel B. (G) Two examples where overexpression of cell wall genes induces hyperinvasive growth. Cells were grown for 16 h in S-Gal-Ura medium and examined by microscopy at a magnification of ×100. Bar, 20 μm. The complete list of secretion of Msb2p-HA in deletion mutants and overexpression plasmids as well as lacZ data is presented in Fig. S1 and Table S1 in the supplemental material.
A role for cell wall remodeling in FG. The major finding from this study is that the cell wall integrity pathway contributes to FG. The inclusion of a new MAPK pathway in the repertoire of regulatory pathways that influence FG is an important contribution to the overall understanding of the FG response. By comparison, the pheromone response pathway does not play a major role in FG (84, 133), and the HOG pathway has an inhibitory role (34, 121, 164). It remains unclear whether the remaining MAPK pathway (sporulation/Smk1p pathway) (71) contributes to FG.

The cell wall integrity pathway functions in enumerable cellular contexts (82) and may contribute to FG by a variety of mechanisms. The cell wall integrity pathway is regulated by the TOR nutrient-sensing pathway (70) and is activated upon entry into stationary phase when nutrients become limiting (156). FG is also induced by nutrient limitation (31, 49), and although this pathway may play a role in FG, it is not required for maintaining the hyphal growth rate (136).

One way the cell wall integrity pathway appears to regulate FG is by modulating the activity of the FG pathway. Wsc2p and Mid2p have different roles in FG in that Wsc2p loss/overexpression has more striking phenotypes with respect to agar invasion and the induction of FG pathway reporters. Both proteins promote FG pathway activity by a mechanism that requires the signaling mucin Msb2p. This connection might result from direct interactions between the cell surface proteins or indirectly, for example, by regulating genes that influence MSB2 expression. In Candida glabrata, the Ste20p homolog has been shown to activate the cell wall integrity pathway (16) although in this species Ste20p does not appear to mediate nitrogen limitation-induced FG. Although Mid2p, Wsc2p, Slg1p, and Slt2p/Mpk1p contribute to FG pathway activity, the phenotypes that result from their deletion/overexpression are relatively moderate, distinguishing them from core components of the FG pathway.

Communication between MAPK pathways in fungi occurs in complex environmental settings and when cells undergo differentiation. For example, the cell wall integrity pathway is activated during pheromone response to promote efficient mating (15, 24, 170). The HOG and cell wall integrity pathways act sequentially in response to global cell wall damage (9, 42, 44, 55, 146). In C. albicans, the adaptor protein Sho1p (135) is thought to regulate both the Cek1p and Hog1p MAP kinase pathways in cell wall biogenesis and chlamydospore formation (38). In Neurospora crassa, combinatorial effects of filamentation and cell integrity kinase pathways oppose the osmosensing OS2 pathway (95). In some situations, the cell wall integrity, FG, and HOG pathways act in parallel, such as in response to a protein glycosylation defect (30) and to produce the multicellular cell types associated with sexual development in N. crassa (95).

The FG pathway itself contributes to cell wall functions by inducing expression of cell wall proteins, namely the mucin-like glycoprotein Msb2p (29), the flocculins Flo11p (51, 140) and Flo10p (51), and other proteins. These mucin-like proteins might themselves play a role in cell wall integrity. For example, the adhesin glycoprotein Fig2p promotes cell wall integrity during mating (171). We show that retention/shedding of Msb2p is influenced by the β-glucan layer of the cell wall. This finding has important implications with respect to cell wall regulation in that cell wall remodeling may be part of a cycle in which core remodeling influences the retention of cell wall mucins, which themselves regulate cell wall properties such as cell-cell adhesion and cellular signaling. By parallel activation of the FG and cell wall integrity pathways, mucin expression and retention at the cell surface are maximized.
Our results support the overall notion that targeting the fungal cell wall is an effective strategy in the design of drugs to inhibit the virulence of fungal pathogens (35, 107, 151). Damage to the β-glucan layer of the cell wall potently inhibits invasive growth (Fig. 6). Although some effective fungicides exist, like capsofungin, which irreversibly inhibits 1,3-ß-glucan synthase (57), lead compounds are needed to attenuate invasion of immunocompromised patients (73), and other potential cell wall targets remain largely unexplored (77). Further characterization of filamentation-dependent cell wall remodelling in budding yeast is likely to provide useful insights into the regulatory inputs of cell wall regulation that may pertain to fungal pathogenesis.

ACKNOWLEDGMENTS

We thank J. Pringle, G. Fink, C. Boone, G. Sprague, and B. Errede for providing strains and plasmids. This work was supported from grants to the NIH (1R03DE 018425-01 to P.J.C. and R01 GM078589 to S.J.F.) and the American Cancer Society (TBE-11403 to P.J.C.).

REFERENCES
1. Alberts, A. S., N. Bouquin, L. H. Johnston, and R. Treisman. 1998. Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7. J. Biol. Chem. 273:6161–6162.
2. Amberg, D. C. 2000. Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
3. Andrews, B. J., and I. Herskovitz. 1989. The yeast SWI4 protein contains a motif present in developmental regulators and is part of a complex involved in cell-cycle-dependent transcription. Nature 342:830–833.
4. Atta, D. C., and Ingham, K. C. 1981. Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. J. Biol. Chem. 256:1208–1217.
5. Baetz, K., J. Moffat, J. Haynes, M. Chang, and B. Andrews. 2001. Transcriptional coregulation by the cell integrity mitogen-activated protein kinase Slt2 and the cell cycle regulator Swi4. Mol. Cell. Biol. 21:6515–6529.
6. Bardwell, L. M. 2006. Mechanisms of MAPK signaling specificity. Biochem. Soc. Trans. 34:579–581.
7. Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and C. Bermejo, C., E. Rodriguez, R. Garcia, J. M. Rodriguez-Pena, M. L. Ro-
8. Bean, J. M., E. D. Siggia, and F. R. Cross. 2004. The N-terminal 96 residues of MCM1, a regulator of cell type-specific genes in Saccha-
9. Bautin, A. M., E. Bignell, T. R. Rogers, M. Canedo, F. A. Muhlschlegel, and K. Haynes. 2004. Candida glabrata Ste20 is involved in maintaining cell wall integrity and adaptation to hypertonic stress, and is required for wild-type levels of virulence. Yeast 21:557–568.
10. Cappello, V., C. N. Mursa, and W. Tanner. 1998. New potential cell wall glucanases of Schizosaccharomyces cerevisiae and their involvement in mating. J. Bacteriol. 180:5030–5037.
11. Carlson, M., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted with intracellular forms of yeast invertase. Cell 28:145–154.
12. Caro, L. H., G. J. Smits, P. van Egmond, J. W. Chapman, and F. M. Kils. 1998. Transcription of multiple cell wall protein-encoding genes in Saccha-
13. Caro, L. H., H. Tettelin, J. H. Vossen, A. F. Ram, H. van den Ende, and F. M. Kils. 1997. In silico identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489.
14. Carraway, K. L., V. P. Ramsauer, B. Haq, and C. A. Carothers Carraway, 2003. Cell signaling through membrane mucins. Bioessays 25:666–71.
15. Chaffin, W. L. 2008. Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev. 72:495–549.
16. Chang, V. K., M. J. Fitch, J. J. Donato, T. W. Christensen, A. M. Merchant, and B. K. Tye. 2003. Mcm1 binds replication origins. J. Biol. Chem. 278: 6093–6100.
17. Changwei, Z., X. Mingyong, and W. Ranran, 2007. Af1p has a role in regulating the localization of Mpk1p at the shmoo tip in Saccharomyces cerevisiae. FEMs Lett. 581:2670–2674.
18. Chant, J., K. Corrado, J. R. Pringle, and I. Herskovitz. 1991. Yeast BUD5, encoding a putative GDP-GTP exchange factor, is necessary for bud site selection and interaction with formation gene MCM1. Cell 65:1213–1219.
19. Chant, J., and I. Herskovitz. 1991. Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell 65:1203–1212.
20. Chant, J., and J. R. Pringle. 1995. Patterns of bud-site selection in the yeast Saccharomyces cerevisiae. J. Cell Biol. 129:751–765.
21. Cherry, J. M., C. Adler, C. Ball, S. A. Cheroveva, S. S. Dwight, E. T. Hester, Y. Jia, G. Juvik, T. Roe, M. Schroeder, S. Weng, and D. Botstein. 1998. SGD: Saccharomyces genome database. Nucleic Acids Res. 26:73–79.
22. Cullen, P. J., W. S. Wally, Jr., E. Graham, M. M. H. E. Van Olden, C. Neal, J. Delrow, L. Bardwell, and G. F. Sprague, Jr. 2004. A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Genes Dev. 18:1695–1708.
23. Cullen, P. J., J. Schultz, J. Horecka, B. J. Stevenson, J. G. Jigami, and G. F. Sprague, Jr. 2000. Glucose depletion causes haploid invasive growth in yeast. Proc. Natl. Acad. Sci. USA 97:13619–13624.
24. Cullen, P. J., and G. F. Sprague, Jr. 2002. Roles of bud-site-selection proteins during haploid invasive growth in yeast. Mol. Biol. Cell 13:2990–3004.
25. Cutting, N. S., X. Pan, J. Heitman, and M. E. Cardenas. 2001. The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol. Biol. Cell 12:4103–4113.
26. Davenport, K. D., K. E. Williams, B. D. Ullmann, and M. C. Gustin, 1999. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants. Genetics 153:1091–1103.
27. Day, B., and T. Graham. 2007. The plant host pathogen interface: cell wall and membrane dynamics of pathogen-induced responses. Ann. N. Y. Acad. Sci. 1113:123–134.
28. de Godoy, L. M., V. J. Olsen, J. Cox, M. L. Nielsen, N. C. Hubner, F. Frohlich, T. C. Walther, and M. Mann. 2008. Comprehensive mass-spectrometry-based protein quantification of haploid versus diploid yeast. Nature 455:1251–1254.
29. de Nobel, J. G., F. M. Kils, J. Priem, T. Munnik, and H. van den Ende. 1990. The glucanase-soluble mannoproteins limit cell wall porosity in Saccharo-
30. Eismann, B., R. Alonso-Monge, E. Roman, D. Arana, C. Nombela, and J. Pla. 2006. The Cck1 and Hog1 mitogen-activated protein kinases play comple-
31. Gagnon-Arsenault, I., L. Parise, J. Tremblay, and Y. Bourbonnais. 2004. Activation mechanism, functional role and shedding of glycosylphosphati-
32. El Bakkoury, M. E. Dubois, and F. Messenguy. 2000. Recruitment of the yeast MAD5-box proteins, ArgR1 and Mcm1 by the pleiotropic factor ArgR1 is required for their stability. Mol. Microbiol. 35:15–31.
33. Gagnon-Arsenault, I., L. Parise, J. Tremblay, and Y. Bourbonnais. 2004. Activation mechanism, functional role and shedding of glycosylphosphati-
34. Galgoecz, D. J., A. C. A. Stone, M. Linsan, S. M. O’Rourke, I. Herskovitz, J. L. DeRisi, and A. D. Johnson. 2004. Genomic dissection of the cell-type specification circuit in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101:18069–18074.
42. Garcia, R. J., M. Rodriguez-Pena, C. Bermejo, C. Nombela, and J. Arroyo. 2009. The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolase-induced cell wall stress in Saccharomyces cerevisiae. J. Biol. Chem. 284:10901–10911.

43. Garcia-Rodriguez, L. J., A. Duran, and C. Roncero. 2000. Calcofluor anti-fungal action depends on chitin and a functional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under non-inducing conditions. J. Bacteriol. 182:2424–2437.

44. Garcia-Rodriguez, L. J., R. Valle, A. Duran, and C. Roncero. 2005. Cell integrity signaling activation in response to hyperosmotic shock in yeast. FEBS Lett. 579:616–6190.

45. Gelperin, D. M., A. C. White, M. L. Wilkinson, Y. Kon, L. A. Kung, J. W. K. N. Lopez-Hoyos, L. Jiang, S. Piccirillo, H. Yu, M. Gerstein, M. E. Dumont, E. M. Phizicky, M. Snyder, and E. J. Grayhack. 2005. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19:2816–2826.

46. Glaeser, G., A. M. Chu, L. Ni, C. Connelly, L. Riles, S. Veronneau, et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391.

47. Gimeno, C. J., and G. R. Fink. 1994. Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol. Cell. Biol. 14:2100–2112.

48. Gimeno, C. J., and G. R. Fink. 1992. The logic of cell division in the life cycle of yeast. Science 257:626–630.

49. Gimeno, C. J., P. O. Ljungdahl, C. A. Styles, and G. R. Fink. 1992. Unipolar cell divisions in the yeast Saccharomyces cerevisiae lead to filamentous growth: regulation by starvation and Ras. Cell 68:1077–1090.

50. Goldstein, A. L., and J. H. Mc cusker. 1999. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Nucleic Acids Res. 27:4240–4249.

51. Guo, B., C. A. Styles, Q. Feng, and G. R. Fink. 2000. A Saccharomyces cerevisiae gene family involved in invasive growth, cell-cell adhesion, and mating. Proc. Natl. Acad. Sci. USA 97:12158–12163.

52. Hagen, L., M. Ecker, A. Lagorce, J. M. Francoise, S. Sestak, R. Rachel, G. Grossmann, N. C. Hauser, J. D. Hoheisel, W. Tanner, and S. Strahl. 2004. Scdlp1 and Sdr1p are required to compensate for cell wall instability in Saccharomyces cerevisiae mutants defective in multiple GPI-anchored mannoproteins. Mol. Microbiol. 52:1413–1423.

53. Halme, A., S. Bumgarner, C. Styles, and G. R. Fink. 2004. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116:405–415.

54. Hamada, K., S. Fukuchi, M. Arisawa, M. Baba, and K. Kitada. 1998. Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall protein proteins in Saccharomyces cerevisiae. Mol. Gen. Genet. 258:53–59.

55. Hawle, P., D. Horst, P. J. Beelman, X. Y. Yang, S. M. van der Vies. 2007. Cdc53p is required for stress-induced high-osmolarity glycerol resistance cassettes for gene disruption in Saccharomyces cerevisiae. FEBS Lett. 579:512–516.

56. Hwang-Shum, J. J., D. C. Hagen, E. E. Jarvis, C. A. Westby, and G. F. Hedbacker, K., and M. Carlson. 2005. Relative contributions of MCM1 and STE12 to transcriptional activation of a- and alpha-specific genes from Saccharomyces cerevisiae. J. Bacteriol. 187:269–275.

57. Hwang-Shum, J. J., D. C. Hagen, E. E. Jarvis, C. A. Westby, and G. F. Hedbacker, K., and M. Carlson. 2005. Relative contributions of MCM1 and STE12 to transcriptional activation of a- and alpha-specific genes from Saccharomyces cerevisiae. J. Bacteriol. 187:269–275.

58. Hwang-Shum, J. J., D. C. Hagen, E. E. Jarvis, C. A. Westby, and G. F. Hedbacker, K., and M. Carlson. 2005. Relative contributions of MCM1 and STE12 to transcriptional activation of a- and alpha-specific genes from Saccharomyces cerevisiae. J. Bacteriol. 187:269–275.

59. Hwang-Shum, J. J., D. C. Hagen, E. E. Jarvis, C. A. Westby, and G. F. Hedbacker, K., and M. Carlson. 2005. Relative contributions of MCM1 and STE12 to transcriptional activation of a- and alpha-specific genes from Saccharomyces cerevisiae. J. Bacteriol. 187:269–275.

60. Hwang-Shum, J. J., D. C. Hagen, E. E. Jarvis, C. A. Westby, and G. F. Hedbacker, K., and M. Carlson. 2005. Relative contributions of MCM1 and STE12 to transcriptional activation of a- and alpha-specific genes from Saccharomyces cerevisiae. J. Bacteriol. 187:269–275.

61. Hwang-Shum, J. J., D. C. Hagen, E. E. Jarvis, C. A. Westby, and G. F. Hedbacker, K., and M. Carlson. 2005. Relative contributions of MCM1 and STE12 to transcriptional activation of a- and alpha-specific genes from Saccharomyces cerevisiae. J. Bacteriol. 187:269–275.
components in a Golgi-specific Ypt31/arb-GTPase signaling pathway. Mol. Biol. Cell 16:776–793.

145. Shimada, Y., P. Wiget, M. P. Gulli, E. Bi, and M. Peter. 2004. The nucleotide exchange factor Cdc24p may be regulated by auto-inhibition. EMBO J. 23:1051–1062.

146. Shimada, Y., P. Wiget, M. P. Gulli, E. Bi, and M. Peter. 2004. Evidence for antagonistic regulation of cell growth by the calcineurin and high osmolarity glycerol pathways in Saccharomyces cerevisiae. J. Biol. Chem. 279:3651–3661.

147. Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.

148. Singh, P. K., and M. A. Hollingsworth. 2006. Cell surface-associated mucins in signal transduction. Trends Cell Biol. 16:467–476.

149. Smits, G. J., L. R. Schenkman, S. Brul, J. R. Pringle, and F. M. Klis. 2006. Role of cell cycle-regulated expression in the localized incorporation of cell wall proteins in yeast. Mol. Biol. Cell 17:3267–3280.

150. Smits, G. J., H. van den Ende, and F. M. Klis. 2001. Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147:781–794.

151. Sohn, K., J. Schwenk, C. Urban, J. Lechner, M. Schweikert, and S. Rupp. 2005. Regulation of the cell integrity pathway by rapamycin-sensitive TOR function of the yeast MATalpha2/MCM1/DNA ternary complex: general mechanisms and principles for protein/DNA co-crystallization. J. Mol. Biol. 297:947–959.

152. Tatebayashi, K., K. Tanaka, H. Y. Yang, K. Yamamoto, Y. Matsuishi, T. Tomida, M. Imai, and H. Saijo. 2007. Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG2 pathway. EMBO J. 26:3521–3533.

153. Toh-e, A., S. Yasunaga, H. Nisogi, K. Tanaka, T. Oguchi, and Y. Matsu. 1993. Three yeast genes, PIR1, PIR2 and PIR3, containing internal tandem repeats, are related to each other, and PIR1 and PIR2 are required for tolerance to heat shock. Yeast 9:481–494.

154. Torres, J. C. J. Di Como, E. Herrero, and M. A. De La Torre-Ruiz. 2002. Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J. Biol. Chem. 277:43495–43504.

155. Vadaie, N., H. Dionne, D. S. Akajagbor, S. R. Nickerson, D. J. Krysan, and P. J. Cullen. 2008. Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. J. Cell Biol. 181:1073–1081.

156. Vazquez de Aldana, C. R., J. Correa, P. San Segundo, A. Bueno, A. R. Nebreda, E. Mendez, and F. del Rey. 1991. Nucleotide sequence of the exo-1,3-beta-glucanase-encoding gene, EXG1, of the yeast Saccharomyces cerevisiae. Gene 97:173–182.

157. Verna, J., A. Lodder, K. Lee, A. Vagts, and R. Ballester. 1997. A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94:13804–13809.

158. Verstrepen, K. J., and F. M. Klis. 2006. Flocculation, adhesion and biofilm formation in yeasts. Mol. Microbiol. 60:5–15.

159. Vinod, P. K., N. Sengupta, P. J. Bhat, and K. V. Venkatesh. 2008. Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11. PLoS ONE 3:e1663.

160. Voynov, V., K. J. Verstrepen, A. Janssen, V. M. Runner, S. Buratowski, and G. R. Fink. 2006. Genes with internal repeats require the THO complex for transcription. Proc. Natl. Acad. Sci. USA 103:14423–14428.

161. Wendland, J. 2001. Comparison of morphogenetic networks of filamentous fungi and yeast. Fungal Genet. Biol. 34:63–82.

162. Westfall, P. J., and J. Thorner. 2006. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele. Eurycarot. Cell 5:1215–1228.

163. Whiteway, M., and C. Bachewich. 2007. Morphogenesis in Candida albicans. Annu. Rev. Microbiol. 61:529–553.

164. Winzeler, E. A., D. D. Shoemaker, A. Astrumoff, H. Liang, K. Anderson, B. Andre, R. Bangham, R. Benito, J. D. Boeke, H. Bussey, A. M. Chu, C. Connelly, K. Davis, F. Dietrich, S. W. Dow, M. El Bakkoury, F. Foury, S. H. Friend, E. Genten, G. Giaever, J. H. Hegemann, T. Jones, M. Laub, H. Xiao, N. Liebundguth, D. J. Lockhart, A. Lucau-Danila, M. Lussier, N. M’Rabei, P. Menard, M. Mittman, C. Patel, C. Rehischung, J. L. Revuelta, L. Riles, C. J. Roberts, P. Ross-MacDonald, B. Scherens, M. Snyder, S. Sookhai-Mahadeo, R. K. Storms, S. Veronneau, M. Voet, G. Volkaerta, T. R. Ward, R. Wysocki, G. S. Yen, K. Yu, K. Zimmermann, P. Philippson, M. Johnston, and R. W. Davis. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906.

165. Yashar, B., K. Irie, J. A. Printen, B. J. Stevenson, G. F. Sprague, Jr., K. Matsuzumo, and B. Errede. 1995. Yeast MEK-dependent signal transduction: response thresholds and parameters affecting fidelity. Mol. Cell. Biol. 15:6545–6553.

166. Yin, Q. Y., P. W. de Groot, C. G. de Koster, and F. M. Klis. 2008. Mass spectrometry-based proteomics of fungal wall glycoproteins. Trends Microbiol. 16:20–26.

167. Yin, Q. Y., P. W. de Groot, H. L. Dekker, L. de Jong, F. M. Klis, and C. G. de Koster. 2005. Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J. Biol. Chem. 280:20894–20901.

168. Zarzov, P., C. Mazzoni, and C. Mann. 1996. The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO J. 15:883–891.

169. Zhang, M., D. Bennett, and S. E. Erdman. 2002. Maintenance of mating cell integrity requires the adhesin Fig2p. Eurycarot. Cell 1:811–822.

170. Zhao, X., R. Mehrabi, and J. R. Xu. 2007. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eurycarot. Cell 6:1701–1714.

171. Zlotnik, H., M. P. Fernandez, B. Bowers, and E. Cabib. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.

172. Zuo, J., Y. Huang, S. Veronneau, M. Voet, G. Volkaerta, T. R. Ward, R. Wysocki, G. S. Yen, K. Yu, K. Zimmermann, P. Philippson, M. Johnston, and R. W. Davis. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906.