Chemical doping-induced gap opening and spin polarization in graphene

I. Zanella¹, S. Guerini², S. B. Fagan³, J. Mendes Filho¹, A. G. Souza Filho¹*

¹Departamento de Física, Universidade Federal do Ceará,
CP 6030, CEP 60455-900, Fortaleza, CE, Brazil
²Departamento de Física, Universidade Federal
do Maranhão, 65080-040, São Luis, MA, Brazil
³Área de Ciências Naturais e Tecnológicas,
Centro Universitário Franciscano, CEP 97010-032, Santa Maria, RS, Brazil

(Dated: February 2, 2008)

Abstract

By using first principles calculations we report a chemical doping induced gap in graphene. The structural and electronic properties of CrO₃ interacting with graphene layer are calculated using ab initio methods based on the density functional theory. The CrO₃ acts as an electron acceptor modifying the original electronic and magnetic properties of the graphene surface through a chemical adsorption. The changes induced in the electronic properties are strongly dependent of the CrO₃ adsorption site and for some sites it is possible to open a gap in the electronic band structure. Spin polarization effects are also predicted for some adsorption configurations.

PACS numbers: 73.22.-f, 73.20.Hb, 73.61.Wp

* Corresponding author - E-mail: agsf@fisica.ufc.br
Nanostructured carbon-based materials exhibit remarkable electronic properties making them promising materials to be used in a wide range of technological applications, including a possible carbon-based electronics in a near future \cite{1, 2}. Graphene, a single atom thick layer, is considered the mother structure of all \textit{sp}² nanostructured carbon (such as fullerenes, carbon nanotubes and ribbons) and its electronic structure has been theoretically investigated since 1947 \cite{3}. A breakthrough in carbon science was the recent observation of graphene single layer that was obtained by micromechanical cleavage of graphite \cite{4, 5}. The linear electronic band structure at the corner of the Brillouin zone where there is a band crossing between the conduction and valence bands cross is responsible for striking physical properties not observed in any other material such as ballistic transport \cite{5}, and quantum Hall effect at room temperature \cite{6, 7} and typical relativistic phenomena such as Berry’s phase and Klein paradox as a consequence of massless Dirac Fermions. The chemical stability, scalability and the complete compatibility of graphene with current semiconductor technology pave the way for the next generation of devices operating with a carbon based electronic.

The possibility of tailoring the electronic properties (type and number of carriers) of graphene is important not only for basic studies but also for further optimization of their applications mainly as nanoscale based-sensors or spin filter devices \cite{8, 9, 10, 11, 12}. The electronic properties can be tuning either by carrying out donor/acceptor doping experiments or by applying a gate bias voltage \cite{10, 13}. The electric field polarization and the electronegativity of the doping species modify the carrier type (electron or hole) and carrier concentration at the Dirac point affecting the electronic structure and consequently the transport properties of graphene to a large extent. In this regard, a recent experimental work by Schedin et al. \cite{10} fabricated and operated a single molecule based sensor. The authors show, through measurements of quantum Hall effect, that NO\textsubscript{2}, H\textsubscript{2}O and iodine acts as electron acceptors whereas NH\textsubscript{3}, CO and ethanol present electron donor behavior on the graphene surface. This results were recently confirmed through theoretical calculations \cite{14}. Therefore, by studying the doping species in a controlled way, it is possible to access how specific chemical species perturb the graphene electronic band structure and how this impact their physical properties such as magneto-optical and transport behavior \cite{10, 12}. In addition, the minimum conductivity problem in graphene is a typical phenomenon of zero band gap electronic structure, and this has introduced drawbacks for developing a
graphene-based electronics. Carbon ribbons have been proposed as one of the solution for
the minimum conductivity problem because in general its band structure exhibits a gap [15].
The gap engineering can be also achieved through doping (covalent functionalization) the
graphene layer with chemical species [17] since the doping can induce a gap opening because
of the breaking of translational symmetry. Therefore, the gap engineering in graphene is a
hot topic and this has been exploited either by changing the geometry of ribbons or by inter-
action with substrate. [15, 16] The possibility of induce a gap in graphene through chemical
doping has not yet been exploited.

In this work, the electronic properties of a single graphene layer interacting with CrO$_3$
molecules are analyzed through ab initio based calculations and we predict that is possible
to get both gap opening and spin polarization by this functionalization process. A single
graphene layer is a unique system regarding the surface to volume ratio because it is solely
surface and this opens up the possibility of using CrO$_3$ intercalated graphene systems for
the oxidation of primary alcohols. Our calculations shown that CrO$_3$ molecule (a model
for strongly oxidizing molecules) chemically binds to graphene surface and the electronic
properties of the original graphene are modified by charge transfer from graphene to this
molecule leading the CrO$_3$ molecule act as an electron acceptor with a similar behavior
observed and predicted for CrO$_3$ interacting with single-wall carbon nanotubes (SWNT)
[18]. The effect of curvature on the adsorption of this molecule on carbon hexagonal lattice
is also discussed.

First principles density functional theory has been employed to investigate electronic and
structural properties of graphene interacting with CrO$_3$ molecule [19]. The SIESTA code
is used [20, 21], which performs fully self-consistent calculations solving the spin polarized
Kohn-Sham equations [22]. For the exchange and correlations terms, generalized gradient
approximation with the parameterization of Perdew et al. is used [23]. The interaction
between ionic cores and valence electrons is described by norm conserving pseudopotentials
[24] in the Kleinman-Bylander form [25]. The Kohn-Sham orbitals are represented with a
linear combination of pseudoatomic orbitals with a double zeta basis set plus polarization
function [21]. A cutoff of 200 Ry for the grid integration is used to represent the charge
density. A 5x5x1 Monkhorst-Pack grid is employed for the Brillouin zone integration, which
was shown to represent correctly their properties for the present system [26].

The periodic boundary conditions and a supercell approximation are used. The supercell
FIG. 1: Top and side view of the most stable configurations for the CrO$_3$ interacting with graphene layer.

has 32 carbon atoms for a single graphene surface in a hexagonal lattice. The structural optimizations were performed using a conjugated gradient procedure and atomic positions of the structure are relaxed until all the force components are smaller than 0.05 eV/Å.

Different configurations of CrO$_3$ approaching to the graphene layer were considered in our calculations and the most stable arrangements are shown (top and side view) in Fig. 1(a)-(e). The configuration showed in Fig.1 (a) was predicted to be the most stable, with a Cr-C distance of about 2.32 Å, while in the configuration showed in Fig.1 (e) O-C bond length is about 2.95 Å. In Table 1 we list the closest distances Cr-C and O-C for the different configurations showed in the Figure 1.

The binding energies (E_B) for the studied systems are calculated using the basis set superposition error (BSSE) \[27\]. This correction is done through the counterpoise method using ”ghost” atoms, as the following equation

$$E_B = - [E_T(\text{graphene} + CrO_3) - E_T(\text{graphene}_{\text{ghost}} + CrO_3) - E_T(\text{graphene} + (CrO_3)_{\text{ghost}})],$$

(1)

where $E_T(\text{graphene} + CrO_3)$ is the total energy of the system. The “ghost” molecule/graphene corresponds to additional basis wave functions centered at the position of the CrO$_3$ molecule or the single layer graphene, but without any atomic potential.

The binding energies obtained for the different adsorption sites of CrO$_3$ on the graphene surface are listed in Table I. These results pointed out to a physical or chemical interaction
TABLE I: Binding energies (E_B), minimal distances and charge transfer calculated for different adsorption sites of CrO$_3$ on graphene layer as shown in Figure 1. The minus sign in the charge transfer indicates that the CrO$_3$ molecule receive electronic charge.

Configuration	E_B (eV)	d(Cr-C) Å	d(O-C) Å	Charge Transfer to CrO$_3$ (e)
Fig. 1(a)	1.01	2.32	-	-0.17
Fig. 1(b)	0.91	2.33	-	-0.15
Fig. 1(c)	0.56	2.80	-	-0.11
Fig. 1(d)	0.49	2.82	-	-0.10
Fig. 1(e)	0.25	-	2.95	-0.20

between CrO$_3$ and graphene strongly dependent on the interaction site. The transition metal atom (Cr) is preferentially bonded to the carbon atom of the graphene layer promoting an sp^3-like hybridization of the carbon atom from the graphene surface. The Mülliken population was analyzed and used for all studied configurations to predict the electronic charge transfer from the graphene surface to the CrO$_3$ molecule. The graphene carbon atoms transfer 0.17e and 0.20e for the CrO$_3$ molecule on the (Fig.1 (a)) and (Fig.1 (e)) configurations, respectively. The charge transfer on these cases occurs due to the chemical or physical adsorption of the Cr or O atoms with the carbon atoms of the graphene layer as observed on the binding energies values. We should point out that the Mülliken population does not supply a trustworthy number to charge transfer, but it indicates the trend and correct order of the charge transfer process. Then, the CrO$_3$ molecule behaves as an electron acceptor when interacting with the graphene layer similar to what was observed for CrO$_3$ adsorption on SWNT surface [18].

The calculated electronic band structures are presented for the pristine single graphene layer (Fig. 2(a)) and for CrO$_3$ adsorbed on graphene (Fig.2 (b), (c), and (d)) in the most stable configurations showed in Figs.1 (a), (c) and (e)). It is clear that the CrO$_3$ adsorption sites and orientation of the molecules affects the electronic properties of graphene being more pronounced for the adsorption sites showed in (Fig.1 (a)). The binding of CrO$_3$ molecule lifts the degeneracy of the band crossing close to the Fermi level, thus inducing a gap opening.
FIG. 2: Electronic band structures for (a) pristine and for different configurations of CrO$_3$ adsorbed on graphene single layer (b), (c) and (d) that correspond to the configurations showed in Fig.1(a), (c), and (e), respectively. The (d) case has the filled and dotted lines corresponding, respectively, to the majority and minority spin levels. The horizontal dashed lines correspond to the Fermi energy. The (e), (f) and (g) show the plots for the charge isosurface for CrO$_3$ interacting with graphene in electronic configuration presented in (b), for levels located around 0.8, -1.2 and -1.8 eV, respectively.

of about 0.12 eV at the Dirac point, which connects the valence and conduction bands at the zone edge. This gap opening is due to the breaking of graphene mirror symmetry. For the configuration shown in the Fig.1(b) the electronic behavior is similar to the Fig.2(b). In contrast, for the other configurations (Fig.1 (c)), Fig.1(d) and (Fig.1 (e)) the band crossing is preserved leaving the system semimetal at 0 K. For the (Fig.1(c)) configuration the system remains metallic (see (Fig. 2c)), with dispersionless levels of the CrO$_3$ molecule on the valence and conduction bands. In the case (Fig.2 (d)) the majority (solid lines) and minority (dotted lines) carriers coming from 3d-Cr levels are non-degenerated and located on the valence and conduction band. Comparing the adsorption we observe that the most stable
adsorption site changes the electronic properties due to the high hybridization between the molecule and graphene levels. It is also interesting to observe the downshift of the Fermi level resulting from the charge transfer from the graphene to the CrO$_3$ molecule. This shift relative to the pristine graphene is approximately 0.69, 0.64 and 0.8 eV showed in (Fig. 2(b)), (Fig. 2(c)), and (Fig. 2(d)), respectively. From all the studied configurations only the site with the CrO$_3$ adsorbed on the graphene surface, as showed on the (Fig. 1(e)), presents spin polarization of 0.4 μ_B. This spin polarization can be understood in terms of redistribution of the electronic charge due to the interaction of the O atoms of the CrO$_3$ molecule and the graphene surface. In this case, a flat electronic level is located near the Fermi level (Fig. 2(d)) that is characteristic of the CrO$_3$ molecule.

In Fig. 2(e),(f) and (g) the plots for the localized density of states (LDOS) of CrO$_3$ adsorbed on the graphene surface for the most stable configuration (showed in Fig. 1(a)) are presented for the electronic levels located about 0.8, -1.2 and -1.8 eV, respectively. From these LDOS plots we observe the hybridization of the molecule levels with the carbon levels from the graphene layer. This hybridization state is reflected in both binding energies and charge transfers values.

By Comparing the adsorption of the CrO$_3$ molecule on graphene with adsorption on (8,0) SWNT surfaces [18], it is observed that the curvature effect is a crucial point to increase the adsorption of CrO$_3$ on the carbon hexagonal lattice. The binding energy increase by 0.4 eV for the molecule adsorbed on the inner or outer surface of the nanotube (1.4 eV for both configurations) compared with the most stable configuration on the graphene surface (1.01 eV). This effect is relevant when is considered the real curved configuration (ripples) of the graphene layers [8], which will increase the efficiency of the molecule adsorption on the hexagonal carbon structures depending of the local curvature parameters.

In summary, the electronic properties of the CrO$_3$ molecule adsorbed on the graphene single layer were analyzed through first principles calculations. It is observed that the electronic properties and the charge transfer process are very sensitive to the CrO$_3$ adsorption site and also to the orientation of the molecule. This behavior is different from what was predicted Leenaerts et al. [14] for other molecules, where the interaction is not very sensitive to the adsorption site being only dependent on the molecule orientation with respect to the graphene surface. The CrO$_3$ molecule interacts through a chemisorption or physisorption regime on the graphene surface depending on the adsorption site, indicating possible routes.
for the use doped graphene layer as platform for carbon-based electronics since it is possible to engineer the gap and overcome the minimum conductivity problem. Furthermore, the sensitivity of electronic structure towards doping makes the graphene a potential material for chemical sensors owing to their exceptionally high surface to volume ratio.

The authors thanks A. H. Castro Neto and B. Uchoa for the valuable discussions. The authors also acknowledge CENAPAD-SP for computer time and financial support from Brazilian agencies CNPq, FAPERGS (Grants 0511570/05 and 05/2096.2) and FUNCAP (Grant 350220/2006-9). S.B.Fagan acknowledges the Brazilian Woman in Science/2006 grant from Loreal/Paris.

[1] M. S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes, Springer, Berlin, 2001.
[2] M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002).
[3] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[4] K. S. Novoselov et al., PNAS 102, 10451 (2005).
[5] K. S. Novoselov et al., Science 306, 666 (2004).
[6] K. S. Novoselov et al., Nature 438, 197 (2005).
[7] Y. Zhang, et al., Nature 438, 201 (2005).
[8] A. K. Geim and K. S. Novoselov, Nature Mat. 6, 183 (2007).
[9] E. W. Hill et al.,IEEE Trans. Magn. 42 2694 (2006).
[10] F. Schedin et al., Nature Materials 6, 652 (2007).
[11] N. M. R. Peres, F. Guinea and A. H. Castro Neto, Phys. Rev. B 73, 125411 (2006).
[12] B. Uchoa and A. H. Castro Neto, Phys. Rev. Lett. 98, 146801 (2007).
[13] S. V. Morozov et al., cond-mat/cond-mat 0703390.
[14] O. Leenaerts, B. Partoens, F. M. Peeters, cond-mat/cond-mat 07101757.
[15] J. Nilsson et al., Phys. Rev. B 76, 165416 (2007).
[16] S. Y. Zhou et al., Nature Materials 6, 770 (2007).
[17] T. Ohta et al., Science 313, 951 (2006).
[18] S. B. Fagan et al., Chem. Phys. Lett. 406, 54 (2005).
[19] P. Hohenberg and W. Kohn, Phys. Rev. 136, 864B (1964).
[20] P. Ordejón and J.M. Soler, Phys. Rev. B 53, 10441 (1996).
[21] E. Artacho et al., Phys. Status Solidi B 215, 809 (1999).
[22] W. Kohn and L.J. Sham, Phys. Rev. 140, 1133A (1965).
[23] J. P. Perdew, E. Burke and M. Ernzenhof, Phys. Rev. Lett. 77, 3865 (1996).
[24] N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).
[25] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).
[26] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[27] S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).