Bringing the Ca\(^{2+}\)-sensitivity of myristoylated recoverin into the physiological range

by Valerio Marino, Matteo Riva\(^1\), Davide Zamboni, Karl-Wilhelm Koch and Daniele Dell’Orco

Supplementary Material

Figure S1. A) Far UV CD spectra of 10 \(\mu\)M nmRec and 300 \(\mu\)M EGTA (black), after sequential additions of 1 mM free Ca\(^{2+}\) (red), 15 \(\mu\)M GRK1 peptide (blue) and 4.2 mM free EGTA (green). B) Far UV CD spectra of 10 \(\mu\)M nmRec and 300 \(\mu\)M EGTA (black), after sequential additions of 15 \(\mu\)M GRK1 peptide (red), 1 mM free Ca\(^{2+}\) (blue) and 4.2 mM free EGTA (green). C) Far UV CD spectra of 10 \(\mu\)M mRec and 300 \(\mu\)M EGTA (black), after sequential additions of 1 mM free Ca\(^{2+}\) (red), 15 \(\mu\)M GRK1 peptide (blue) and 4.2 mM free EGTA (green). D) Far UV CD spectra of 10 \(\mu\)M mRec and 300 \(\mu\)M EGTA (black), after sequential additions of 15 \(\mu\)M GRK1 peptide (red), 1 mM free Ca\(^{2+}\) (blue) and 4.2 mM free EGTA (green).
Figure S2. Hydrodynamic diameter estimation of 15 nM LP monitored by A) DLS and B) Nanoparticle Tracking Analysis.

Figure S3. Near UV CD spectra of 7 µM mRec in the presence of 5 nM LP and 300 µM EGTA (black) or 1 mM Ca²⁺ (red). B) Near UV CD spectra of 7 µM mRec in the presence of 5 nM LP, 10.5 µM GRK1 peptide and 300 µM EGTA (black) or 1 mM Ca²⁺.