Ultra-High Mass Resolving Power, Mass Accuracy, and Dynamic Range MALDI Mass Spectrometry Imaging by 21-T FT-ICR MS

Andrew P. Bowman, Greg T. Blakney, Christopher L. Hendrickson, Shane R. Ellis, Ron M. A. Heeren,* and Donald F. Smith*

ABSTRACT: Detailed characterization of complex biological surfaces by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) requires instrumentation that is capable of high mass resolving power, mass accuracy, and dynamic range. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers the highest mass spectral performance for MALDI MSI experiments, and often reveals molecular features that are unresolved on lower performance instrumentation. Higher magnetic field strength improves all performance characteristics of FT-ICR; mass resolving power improves linearly, while mass accuracy and dynamic range improve quadratically with magnetic field strength. Here, MALDI MSI at 21T is demonstrated for the first time: mass resolving power in excess of 1,600,000 (at m/z 400), root-mean-square mass measurement accuracy below 100 ppb, and dynamic range per pixel over 500:1 were obtained from the direct analysis of biological tissue sections. Molecular features with m/z differences as small as 1.79 mDa were resolved and identified with high mass accuracy. These features allow for the separation and identification of lipids to the underlying structures of tissues. The unique molecular detail, accuracy, sensitivity, and dynamic range combined in a 21T MALDI FT-ICR MSI experiment enable researchers to visualize molecular structures in complex tissues that have remained hidden until now. The instrument described allows for future innovative, such as high-end studies to unravel the complexity of biological, geological, and engineered organic material surfaces with an unsurpassed detail.
Higher magnetic field strengths (dynamic range, mass accuracy, and ion-number induced frequency fluctuations) are especially important in MSI, due to the changes in ion yield depending on tissue type, as well as a lack of control (e.g., via automatic gain control) over the number of ions entering the analyzer cell at each pixel. Further, the rich information available within the lipid range sees an enormous benefit from higher magnetic field strengths, in part from the biological dynamic range of lipids, but also from the number of nominally isobaric peaks possible in biological tissues. The advantage of increased mass resolution is obvious, but the improvement to mass accuracy and dynamic range can be crucial. High mass accuracy over long analysis times is important to generate highly accurate MSI images, as any drift in mass across an experiment would necessitate either pixel-to-pixel correction for this drift, or wider mass selection windows for image generation to encapsulate the ion as its apparent \(m/z \) shifts over time. High-field FT-ICR mass spectrometers offer external mass calibrations of less than 0.2 ppm (ppm), and internal calibration less than 0.1 ppm. High dynamic range is a key performance metric for MSI, given the wide dynamic range of lipid concentrations, and differences in the ionization efficiencies of these biomolecules. Increased dynamic range is important to distinguish low abundance species while still detecting highly abundant lipids without distortion in relative ion abundances. The higher the magnetic field of an FT-ICR, the less susceptible it is to ion-number induced frequency shifts, which can hinder identification of peaks and complicate calibration of data sets, as has been described previously.

Within the field of lipidomics, both shotgun and LC-MS based methodologies have achieved mass resolution in the lipid range greater than 100,000 along with sub-ppm mass accuracy, enabling assignment of 200–500 lipids in a single experiment. Due to the increased fluctuations in signal intensity inherent to MSI, progress toward such endeavors is slower, success has been shown in a variety of FT based instruments with numerous ionization techniques, including Liquid Extraction Surface Analysis, MALDI, DESI, and LAESI. LAESI was performed on a 21 T FT-ICR mass spectrometer which separated the isotopic fine structure of nominally overlapping metabolites of plant leaves, which improved identification by utilizing multiple peaks per metabolite in the identification process. Additionally, the experimental time frame for the 21 T is significantly reduced compared to other instruments with similar mass resolution, without sacrificing either signal magnitude or mass range, as has been attempted with lower-field instruments.

In this work, we evaluate for the first time the performance of MALDI MSI combined with 21 T FT-ICR MS for biological tissue imaging, as well as the use of automated annotation to begin exploring the highly complex information available from such experiments. In particular, we demonstrate (i) the combined higher mass resolving power and mass accuracy with the stability of these parameters across long MSI experiments; (ii) increased biochemical information obtained during MALDI MSI facilitated by the high mass resolving power and mass accuracy; (iii) single-pixel dynamic range exceeding 500:1, which enables imaging and identification of very low abundance ions; (iv) automated analytical tools to identify potentially hundreds of lipids utilizing thousands of peaks. Combined, this work demonstrates the high potential of MALDI MSI and 21 T FT-ICR for studying localized biomolecular processes within tissues and their disease-induced alterations.

METHODS

Materials. Methanol (LC-MS grade), ethanol (LC-MS grade), xylene (LC-MS grade), water (LC-MS grade), anhydrous chloroform (≥99.9% purity), and crystalline norharmane (9H-β-carboline) were purchased from Sigma.
Aldrich (Zwijndrecht, The Netherlands) and used without further purification. Indium tin oxide (ITO)-coated glass slides were purchased from Delta Technologies (Loveland, CO).

Biological Samples. Healthy rat brain was obtained from Maastricht University in accordance with protocols approved by the Animal Care and Use Committee under Animal Experiment Committee (DEC) number 2016−006 AVD107002016720. Four transverse rat brain segments (12 μm thick) were sectioned with a cryo-microtome at −20°C and thaw-mounted on ITO-coated glass slides. Some distortion of the tissue sections occurred during the mounting process.

Sample Preparation. Norharmane matrix (7 mg/mL) in CHCl₃:MeOH (2:1 v/v) was applied to the tissue with a TM-Sprayer (HTX Technologies, Chapel Hill, NC). Spray conditions were as follows: flow rate, 0.12 mL/min; N₂ pressure, 10 psi; N₂ temperature, 30 °C; spray-head velocity, 1200 mm/min; track spacing, 3 mm; number of layers, 15; drying time between layers, 30 s.

Instrumentation. All MSI experiments were performed on a hybrid linear ion trap 21 T FT-ICR mass spectrometer at the National High Magnetic Field Laboratory (NHMFL) at Florida State University (Tallahassee, FL). A Velos Pro linear ion trap (Thermo Scientific, San Jose, CA) was combined with NHMFL-designed external linear quadrupole ion trap, quadrupole ion transfer optics, and a novel dynamically harmonized ICR cell, which is operated at 7.5-V trapping potential. Briefly, the cell uses 120° cell segments for ion excitation and detection, for improved excitation electric field, detection sensitivity, and reduced third harmonic signals.

The commercial ion source and stacked ring ion guide were replaced with an elevated-pressure MALDI ion source incorporating a dual-ion funnel interface (Spectroglyph LLC, Kennewick, WA) as has been described previously. Voltages within the funnels were 625 kHz, 150 V peak-to-peak (first,
high-pressure ion funnel), and 1.2 MHz, 90 V peak-to-peak (second, low-pressure ion funnel). An electric field gradient of ∼10 V cm⁻¹ was maintained within the dual-funnel system, with a gradient of 100 V cm⁻¹ between the sample and the funnel inlet. The system was equipped with a Q-switched, frequency-tripled Nd:YLF laser emitting 349 nm light (Explorer One, Spectra Physics, Mountain View, CA). The laser was operated at a repetition rate of 1 kHz and pulse energy of ∼1.2 μJ. Pressure within the ion source was set to 10 mbar in the first ion funnel, and 2 mbar in the second ion funnel. MALDI stage motion was synchronized with ion accumulation using the Velos trigger signal indicating commencement of the ion trap injection event, as previously described. The mass spectrometer was operated with an ion injection time of 250 ms and automatic gain control (AGC) was turned off. A transient duration of 3.1 s was used for ultrahigh mass resolving power analyses, resulting in a total time of 4 s per pixel. Spectra were obtained in both positive and negative mode, at 100 μm spatial resolution. Total number of pixels per brain section were approximately 22,000, and 24 h of experimental time. A Predator data station was used for ion excitation and detection.

Data Processing and analysis. Absorption mode mass spectra were generated by phase correction of the time domain transients and peaks with a signal magnitude greater than 6 times the standard deviation of the baseline root-mean-square (RMS) noise were exported to peak lists. Mass calibration was performed on known lipid species, with a wide range of mass differences in the averaged spectra, shown in 0.5 mDa bins (d). Similarly, negative mode spectra have 1.79 mDa mass differences (e). These 1.79 mDa differences are resolved to better than full-width half-maximum, differentiated well enough to distinguish them in brain tissue (f and g). The of 1.79 mDa mass difference is relatively uncommon in negative mode, but mass differences of 10 mDa or less occur approximately 500 times in the averaged spectra, shown in 0.25 mDa bins (h).

Figure 2. Representative images of close mass differences in negative and positive mode, from a single, scan. Images are total ion current normalized. Positive mode lipid spectra have a significant number of mass differences of 2.4 mDa (a), representing the difference between 12C and 23NaH. 2.4 mDa differences are baseline resolved, and show significantly different distributions within brain tissue (b and c). There are nearly 200 such differences in the averaged spectra, shown in 0.5 mDa bins (d). Similarly, negative mode spectra have 1.79 mDa mass differences (e). These 1.79 mDa differences are resolved to better than full-width half-maximum, differentiated well enough to distinguish them in brain tissue (f and g).
Figure 3. Single on-tissue mass spectrum illustrates high dynamic range per pixel. Peaks were picked at a threshold of six standard deviations above the baseline noise. Dynamic range in a single average pixel of at 536:1 is demonstrated here at pixel number 10 000, (a). Mass scale expanded segment around most abundant peak [PC 34:1 + K]+ (b). Further, peak at 798.5410 generates a bright image (b). One of the lowest S/N peaks, the 13C2 isotope of [PE 46:5 + H]+ (c) while less clear, still yields informative molecular images, being highlighted especially in the ventricles (images are TIC normalized).

■ RESULTS AND DISCUSSION

High Mass Resolving Power. To assess the benefits of performing 21 T MALDI MSI in terms of mass resolving power, we analyzed rat brain sections in both positive and negative ion mode using different transient acquisition times. Figure 1 shows the achieved mass resolving power in the positive-ion mode using 0.76, 1.55, and 3.1 s transients within the m/z range 785.52–785.6. Increasing mass resolution shows increasing spectral complexity, as five peaks are resolved from what first appears to be only two, with two additional peaks within 100 mDa which were sufficiently distinct to be identified at all transient lengths. We annotated the seven peaks within this region as belonging to six different species of lipids: [PE(36:1)+K]+, [PC-O(34:1)+K]+, [PC(34:1)+Na]+, [PC(36:4)+H]+, [PC(34:0)+Na]+, and [PC(36:3)+H]+. Of these, four are the 13C1 isotope: [PE(36:1)+13C+K]+, [PC-O(34:1)+13C+K]+, [PC(34:1)+13C+Na]+, and [PC(36:3)+13C+H]+. The other two are the 13C2 isotope: [PC(34:1)+13C2+Na]+ and [PC(36:4)+13C2+H]+, and the final peak is the 13C18O isotope ([PC(34:1)+13C18O+Na]+). These peaks show mass accuracy errors between −50 and 3 parts-per-billion (ppb). Additionally, isotope ratios in the summed average spectra deviate <15% from theoretical in these seven peaks (SI Figure 1), offering additional certainty that correct sum-composition identification has been made, as well that there are no convoluted peaks being presented as a single peak. Deviation from the expected 2-fold improvement in mass resolving power upon doubling of the transient duration is due to known collisional damping during the detection event.44 Current work focuses on a solution to limit transmission of the neutral buffer gas in the external accumulation multipole to the ultrahigh vacuum region. Recently, a mass resolving power of ~600 000 (at m/z 760) for MALDI MSI on a 15 T FT-ICR MS (the highest commercially magnetic field available for FT-ICR) was reported. This value also deviates from the theoretical mass resolving power for a 5.2 s transient (magnitude mode), which is ~788 000.13

To further assess the utility of the 21 T, we analyzed the data set for peaks with close neighbors (here defined as <10 mDa). We extracted the 3.1 s transient from a single pixel (number 10 000) as a representative spectrum from each data set. In positive-ion mode, a difference of 0.0024 Da (2.4 mDa) at m/z 810 was present (Figure 2a), representing the difference between NaH versus C2 (the addition of two carbon atoms and three double bonds to the lipid fatty acid chains) which requires a mass resolving power (m/Δm) of 337 000 at m/z 810 to resolve. These two ions were well resolved, and lipid identities were assigned [PC(36:1)+Na]+ and [PC(38:4+H)]+ with high confidence (100 ppb, see discussion below). Each species had very different spatial distributions, with the former ([PC(36:1)+Na]+) being relatively evenly distributed (Figure 2b), while the latter ([PC(38:4+H)]+) had higher abundance in the lateral ventricle (Figure 2c). The higher abundance of [PC(38:4)+Na]+ in the ventricles matches with its role as a pro-inflammatory cytokine.54 Interestingly, such a small mass difference was not uncommon, with a mass difference of 2.4 mDa observed over 190 times in any single pixel spectrum, and more than 1 000 000 times over a single MSI experiment (Figure 2d). Without sufficient mass resolving power, any one of the images of these ~190 pairs of closely spaced ions could yield incorrect assignments and yield a summed spatial distribution reflective of neither individual species. A variety
of other recurrent mass differences can be detected in the single spectra, ranging from 1 to 10 mDa, including isotopic patterns (e.g., 13C$_2$ vs H$_2$ is a difference of 8.94 mDa). The change in 13C$_2$ vs H$_2$ is an important one, as this denotes the possible overlap for species that differ by a single double bond (i.e., as PC(34:1) to PC(34:0)). Single unsaturation changes have been shown to be important in various types of disease states, including cancers35,36 and multiple sclerosis,37 and so the ability to resolve such fine mass differences opens the door to studying the precise roles of the subtle changes in lipid structure throughout tissues.

Using the same experimental design in the negative-ion mode, additional small mass differences could be resolved. For example, a mass difference of 0.00179 Da (1.79 mDa) at m/z 757.52 was observed at 31 different masses. This corresponds the mass difference of C$_2$N$_1^{13}$C$_1$ versus H$_2$O$_3$ (Figure 2e). While less common than the NaH vs C$_2$ mass difference in positive mode, ether-linked phosphatidylethanolamine (PE) and PC lipids can have this difference from the phosphatidylglycerol (PG) class. These peaks were thus identified as phosphatidylethanolamine [PE(O-38:7)+13 C$^-$H$^+$] and [PG(34:1)-H$^-$]. This is the smallest mass difference observed in any MSI data set to date. The PE is a 13C-containing nuclide of the monoisotopic PE lipid at m/z 746.51300. PE and PG lipids are synthesized by different biological pathways and have different physiological function. PE lipids are ~20% of all phospholipids, and are especially abundant in white matter of the cerebellum (Figure 2f).38 By contrast, PG lipids are associated with ATP-Binding Cassette 3, though what transport function is utilized is unknown.39 The 1.79 mDa mass difference occurred over 100 000 times in our MSI experiment, with 33 unique pairs detected in the total mass spectrum. As in the positive mode, the 13C$_2$ vs H$_2$ difference occurs regularly, and has many of the same ramifications as discussed above.

Dynamic Range. One of the most problematic complications in MSI is the low relative ionization efficiency from the surface, which combined with the wide range of analyte concentrations, places significant demands on the single scan dynamic range achievable in an MSI experiment. High sensitivity and dynamic range are thus necessary to detect low abundance and/or poorly ionized species without distorting the peak abundances obtained from high intensity signals. Figure 3a shows a single pixel mass spectrum of the lipid m/z range from the positive-ion mode data set (scan no. 10 000), which has a dynamic range of 536:1 (expanded mass range spectrum shown in SI Figure 2). The dynamic range was calculated by dividing the signal magnitude of the base peak by the peak detection threshold of six standard deviations (6σ) above the baseline noise. As typically observed from brain tissue, the [M+K]$^+$ ion of PC(34:1) generated the highest signal magnitude, with a signal-to-noise = 2370:1 (Figure 3b; side lobe artifacts are a result of the absorption mode processing, and current work is focused on their removal). By contrast, rat brain tissue sections prepared from the same original organ and under the same conditions showed a signal-to-noise = 336:1 on a Thermo Orbitrap Elite set at 240 000 resolving power (@ m/z 400) at the Maastricht MultiModal Molecular Imaging Institute (data not shown). Using a peak detection threshold of 6σ above the baseline noise, the lowest intensity signal was observed with a signal-to-noise = 6 and corresponded to the (PE(46:5)+13C$_2$+H)$^+$ (Figure 3c). SI Figure 3 shows the isotopic distribution for PE 46:5, where the 13C$_2$ containing nuclide can be identified at M+2. In addition, SI Figure 4 shows ppm error distributions for the monoisotopic peak, M+1 (13C$_1$), and M+2 (13C$_2$) which show good mass accuracy, despite the low S/N of the M+2 peak. Per pixel, the average dynamic range in positive ion mode was 438:1, with a maximum dynamic range of 2090:1 and a minimum of 60:1 (SI Figure 5). Negative-ion mode spectra had lower signal magnitude than positive mode, limiting the average dynamic range to 214:1, with a maximum of 849:1 and minimum of 30:1 (SI Figure 6).

High Mass Accuracy. FT-ICR MSI at 21 T showed a root-mean-square (rms) mass measurement accuracy of 62.12 ppb (Figure 4a), over 2-fold lower rms mass accuracy achieved on a 9 T instrument, which was limited to an rms of 158 ppb.60 The center of the distribution is centered near zero, and the low standard deviation indicates low m/z fluctuation during the imaging experiment. SI Figure 7 shows the measured m/z variation for [PC(36:1)+H]$^+$ (m/z = 788.6138), dotted red line indicates the exact m/z over the imaging experiment, where the maximum m/z deviation is 0.00018, with a standard deviation of 0.00078. Internal calibration was performed using seven tentatively identified lipid masses ([PC(34:1)+K]$^+$, [SM(34:1)+2+H]$^+$, [PC(36:4)+13C+H]$^+$, [PC(32:0)+Na]$^+$, [PC(34:1)+H]$^+$, [PC(38:4)+Na]$^+$, and [PC(38:4)+K]$^+$). After this internal calibration, all scans were summed (in the mass domain), which generated an initial peak list of 2,643 above the 6σ noise limit. This list was then submitted to ALEX123 for identification. We tentatively identify 702 monoisotopic lipid peaks in positive-ion mode, which all have mass accuracy values of ±150 ppb (Figure 4b). These 702 lipid peaks correspond to 388 unique lipid IDs, after accounting for
three possible cations types, which accounts for 26.9% of the initial peak list. SI Table 1 contains a full list of these lipids. An additional 1400 spectral peaks are as isotopologues (typically 13C and 13C$_2$) of the 702 lipids, which accounts for ~80% of all peaks. Negative ion mode yielded similar results, where 662 potential monoisotopic lipid peaks (34%) were identified out of an initial peak list of 1927. Due to the lower S/N of the negative mode spectra, only 738 further peaks were identified as isotopes, for a total of ~72.6% of all peaks identified.

These lipid IDs are supported both by the high mass accuracy (<150 ppb, most <100 ppb) and in the positive mode by the intensity of multiple cations for the same species, relative to one another (Figure 5a). As protonation, sodiation, and potassiation are all potentially available in brain MSI, we examined the potential to confirm our lipid identifications by comparing all three cations. For the most abundant lipid (PC 34:1), the [M+K] ion has an average ppb error of 16.7, [M + Na] −43.5, and [M + H] 2.2. While these mass errors are low enough individually to be highly confident in their assignment, having all three ions within 60 ppb of one another provides another layer of certainty. Additionally, we can examine the normalized peak intensities of all three ions to one another, in this case showing 100%, 47.9%, and 21.4%, simplified to a ratio of 4.7:2.2:1. While this insight is not

Figure 5. Relative abundance of identified lipids by cation and anion for selected classes. In the positive mode, the three major cations (proton, sodium, and potassium) are aligned next to one another, showing the same relative percentages between species, from the most abundant species (PC 34:1) and the other PCs above 3% (a), as well as for the lower abundant species down to the least abundant species with all three cations represented, PC 44:12 (b). The relative ionization rate between K+, H+, and Na+ hold strictly true down to 1.5%, and generally true down to 0.05%. While the dynamic range is lower for negative mode, we see many potential identifications for many lipid classes (c). We further observe a similar ability to identify potential lipids as low as 0.15% of the most abundant peak (PI 38:4), for a range of nearly three orders of magnitude from the summed spectra (d).
necessarily informative on its own, we can compare this ratio to other PCs, with all the PCs above 3% of the base peak showing the same ratio (Figure 5a). Further, PCs that vary in relative intensity down to 0.2% of the base peak have generally similar ratios to PC(34:1), although as the intensities begin to approach the 6σ limit, the ratios begin to deviate and be less similar (Figure 5b). One likely scenario for this discrepancy at low S/N is that as peaks for any given scan drop below the 6σ threshold, the least abundant ions are ignored, leading to sum signal magnitudes in the averaged spectrum that are slightly erroneous. However, as the relative ratios of the three cations are invariable across three orders of magnitude, it improves our certainty that each identification is correct for all lipids within that class. While we observe no alterations to this ratio in the abundant lipid classes, theoretically alterations to this standard ratio could indicate greater abundance of a given lipid within different brain structures (i.e., within the ventricle space rather than within gray or white matter). It is worthwhile to further explore the potentials here, and whether there are observable changes to this ratio between other brain tissues. Additionally, we observe that other lipid classes show similar, though slightly different ratios (SI Figure 8), potentially related to the changes in brain tissue. Negative ionization does not typically have multiple ions of the same species (with deprotonation being the only common method of generating lipid anions unless dopants are added[41,62]); however, between the most abundant phosphatidylserine (PS(40:6)) and the least abundant (PS(34:4)) there is only a change in ppb error of 17.3 despite a change in intensity of more than an order of magnitude (Figure 5c).

CONCLUSION

We have demonstrated the utility of combining MSI workflows with a 21 T FT-ICR mass spectrometer. The high magnetic field, combined with a state-of-the-art ICR cell design provides ultrahigh mass resolving power, ppb mass measurement accuracy, and high sensitivity for molecular imaging studies. This advanced instrumentation will pave the way for better understanding of the molecular structure of many tissue types, as well as clarifying current ambiguities in MSI. The unique capabilities of this instrument have not yet been fully utilized; online tandem mass spectrometry is possible via collision induced dissociation in the linear ion trap, or in the ICR cell via infrared multiphoton dissociation or ultraviolet photo dissociation. Further, the use of harmonic detection cells would further increase the speed of acquisition in these experiments or allow for even higher mass resolving power in a similar time frame. Combined with data-driven MSI acquisition techniques (such as Data-Dependent Acquisition), this instrument promises the most information per unit time of any MSI platform. The estimated number of charges sent to the ICR cell in these experiments is 4×10^5, based on the mass spectral calibration parameters. The 21T FT-ICR routinely operates with ion targets of $1-3 \times 10^6$, so additional improvement in dynamic range per pixel is expected. Further, we aim to leverage the unique capabilities of this instrument for other biomolecule imaging experiments, such as metabolites, tryptic peptides, and intact proteins. This instrument will provide valuable insight into the molecular complexity of tissues at an unprecedented mass spectral resolution, allowing for greater insight into the true distribution of all molecules, as well as accelerating the identification of subtle changes hidden within tissues.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.analchem.9b04768.

Eight additional figures as described in the text and table with a complete list of all tentatively identified lipid species (PDF)

AUTHOR INFORMATION

Corresponding Authors

Ron M. A. Heeren – Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht 6629ER, The Netherlands; orcid.org/0000-0002-6533-7179; Email: r.heeren@maastrichtuniversity.nl

Donald F. Smith – National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310-4005, United States; orcid.org/0000-0003-3331-0526; Email: donsmith@magnet.fsu.edu

Authors

Andrew P. Bowman – Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht 6629ER, The Netherlands

Greg T. Blakney – Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht 6629ER, The Netherlands; orcid.org/0000-0002-4205-9866

Christopher L. Hendrickson – National High Magnetic Field Laboratory and Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32310-4005, United States

Shane R. Ellis – Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht 6629ER, The Netherlands; orcid.org/0000-0002-3326-5991

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.analchem.9b04768

Author Contributions

R.M.A.H. and D.F.S. conceived and coordinated the experiments. A.P.B., C.L.H., S.R.E., R.M.A.H., and D.F.S. designed the experiments. A.P.B., S.R.E., R.M.A.H., and D.F.S. carried out the MSI experiments. A.P.B., G.T.B., S.R.E., and D.F.S., conducted data processing and analysis. G.T.B., C.L.H., and R.M.A.H. provided feedback and quality control of MSI data. A.P.B., S.R.E., and D.F.S. wrote the manuscript, which was edited by all coauthors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

A portion of this work was performed at the National High Magnetic Field Laboratory ICR User Facility, which is supported by the National Science Foundation Division of Chemistry through DMR-1644779 and the State of Florida. The 21T FT-ICR is available free of charge to all qualified users as part of the NSF High Field FT-ICR Mass Spectrometry User Facility. Part of this work was financially supported through the LINK program of the Dutch province.
of Limburg. Part of this work was financially supported through the EURLIPIDS program of Euregio.

REFERENCES

(1) Vayssse, P. M.; Heeren, R. M. A.; Porta, T.; Balluff, B. Analyst 2017, 142 (5), 2690–2712.

(3) Lazar, A. N.; Bich, C.; Panchal, M.; Desbenoit, N.; Petit, V. W.; Touboul, D.; Dauphinot, L.; Marquier, C.; Laprevote, O.; Brunelle, A.; Duyckaerts, C. Acta Neuropathol. 2012, 135 (1), 133–44.

(4) Chaurand, P.; Schwartz, S. A.; Capirol, R. M. J. Proteome Res. 2004, 3 (2), 245–252.

(5) Chen, Y.; Allegood, J.; Liu, Y.; Wang, E.; Cachon-Gonzalez, B.; Cox, T. M.; Merril, A. H., Jr.; Sullards, M. C. Anal. Chem. 2008, 80 (7), 2780–8.

(6) Scott, A. J.; Post, J. M.; Lerner, R.; Ellis, S. R.; Lieberman, J.; Shirey, K. A.; Heeren, R. M. A.; Bindila, L.; Ernst, R. K. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (47), 16883–16888.

(7) Hoefler, B. C.; Gorzelnik, K. V.; Yang, J. Y.; Hendricks, N.; Dorrstein, P. C.; Straight, P. D. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (32), 13082–7.

(8) Schulz, S.; Becker, M.; Groseclose, M. R.; Schadt, S.; Hofp, C. Curr. Opin. Biotechnol. 2019, 55, 51–59.

(9) Castellino, S.; Groseclose, M. R.; Wagner, D. Bioanalysis 2011, 3 (21), 2427–41.

(10) Ellis, S. R.; Bruinen, A. L.; Heeren, R. M. Anal. Bioanal. Chem. 2014, 406 (5), 1275–89.

(11) Taban, I. M.; Altelaar, A. F. M.; Van der Burg, Y. E. M.; McDonnell, L. A.; Heeren, R. M. A.; Fuchsjer, J.; Baykut, G. J. Am. Soc. Mass Spectrom. 2007, 18 (1), 145–151.

(12) Bowman, A. P.; Heeren, R. M. A.; Ellis, S. R.; Shevchenko, A. J. Mass Spectrometry. 2019, 120115197.

(13) Zhao, C.; Xie, P. S.; Yang, T.; Wang, H.-L.; Chung, A. C. K.; Cai, Z. W. Chin. Chem. Lett. 2018, 29 (8), 1281–1283.

(14) Sugiyama, E.; Yao, L.; Setou, M. Biochim. Biophys. Acta Mol. Cell. Biol. 2018, 1875 (2), 1094–1054.

(15) Taban, I. M.; Altelaar, A. F. M.; Van der Burg, Y. E. M.; McDonnell, L. A.; Heeren, R. M. A.; Fuchsjer, J.; Baykut, G. J. Am. Soc. Mass Spectrom. 2007, 18 (1), 145–151.

(16) Shaw, J. B.; Lin, T. Y.; Leach, F. E., 3rd; Tolmachev, A. V.; Sans, M.; Feider, C. L.; Eberlin, L. S. J. Am. Soc. Mass Spectrom. 2015, 26 (7), 1237–48.

(17) Kooijman, P. C.; Nagornov, K. O.; Kozhinov, A. N.; Koliq, D. P. A.; Tsybin, Y. O.; Heeren, R. M. A.; Ellis, S. R. Sci. Rep. 2019, 9 (1), 8.

(18) Smith, D. F.; Koliq, D. P.; Koninjuberg, M.; O’Connor, P. B.; Heeren, R. M. Anal. Chem. 2013, 85 (23), 111180–4.

(19) Zhong, Y.; Rowoff, M. F.; Li, H.; Meier, J. E.; Van Orden, S. L.; Thompson, C. J.; O’Connor, P. B. Anal. Chem. 2012, 84 (5), 2965–2994.

(20) Shaw, J. B.; Lin, T. Y.; Leach, F. E., 3rd; Tolmachev, A. V.; Tolic, N.; Robinson, E. W.; Koppenaal, D. W.; Pasa-Tolic, L. J. Am. Soc. Mass Spectrom. 2016, 27 (12), 1929–1936.

(21) Kooijman, P. C.; Nagornov, K. O.; Kozhinov, A. N.; Koliq, D. P. A.; Tsybin, Y. O.; Heeren, R. M. A.; Ellis, S. R. Sci. Rep. 2019, 9 (1), 8.

(22) Zhan, Y.; Vayssse, P. M.; Heeren, R. M. A.; Porta, T.; Balluff, B. Analyst 2017, 142 (5), 2690–2712.

(23) Lazar, A. N.; Bich, C.; Panchal, M.; Desbenoit, N.; Petit, V. W.; Touboul, D.; Dauphinot, L.; Marquier, C.; Laprevote, O.; Brunelle, A.; Duyckaerts, C. Acta Neuropathol. 2012, 135 (1), 133–44.

(24) Chaurand, P.; Schwartz, S. A.; Capirol, R. M. J. Proteome Res. 2004, 3 (2), 245–252.

(25) Chen, Y.; Allegood, J.; Liu, Y.; Wang, E.; Cachon-Gonzalez, B.; Cox, T. M.; Merril, A. H., Jr.; Sullards, M. C. Anal. Chem. 2008, 80 (7), 2780–8.

(26) Scott, A. J.; Post, J. M.; Lerner, R.; Ellis, S. R.; Lieberman, J.; Shirey, K. A.; Heeren, R. M. A.; Bindila, L.; Ernst, R. K. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (47), 16883–16888.

(27) Lazar, A. N.; Bich, C.; Panchal, M.; Desbenoit, N.; Petit, V. W.; Touboul, D.; Dauphinot, L.; Marquier, C.; Laprevote, O.; Brunelle, A.; Duyckaerts, C. Acta Neuropathol. 2012, 135 (1), 133–44.
