Total Phenolic, Total Flavonoid and Phytochemical Screening by FTIR Spectroscopic of Standardized Extract of Mikania micrantha Leaf

Imam Bagus Sumantri1,*, Henny Sri Wahyuni2, Lolyta Fiti Mustanti3

1Department of Biology, Faculty of Pharmacy, University of Sumatera Utara, Medan, INDONESIA.
2Department of Chemistry, Faculty of Pharmacy, University of Sumatera Utara, Medan, INDONESIA.
3Faculty of Pharmacy, University of Sumatera Utara, Medan, INDONESIA.

ABSTRACT

Background: Mikania micrantha is a great plant that has been used as raw material for traditional medicines. Objective: This paper aims to evaluate total phenols, total flavonoids, and phytochemical screening by FTIR spectroscopy of standardized extract of Mikania micrantha leaf to confirm its medicinal values. Materials and Methods: The leaves were extracted by maceration method using ethanol 96% and evaporated by rotary evaporator. The determination of total phenolic and total flavonoid were performed by spectrophotometric method. The phytochemical constituent was screened through the bioactive group of the chemical by FTIR analysis. Results: The total phenolic of extract of Mikania micrantha leaf ranged from 13.19±0.74 to 34.24±1.24 mg gallic acid equivalent/g and total flavonoid ranged from 1.11±0.11 to 20.63±0.16 mg quercetin/g. FTIR analysis confirmed the presence of O=H, aliphatic CH, and C=O functional group. Conclusion: the result of this study confirm that Mikania micrantha possesses the potential of bioactive compounds which are responsible for the biological activities that are useful for raw material of traditional medicines.

Key words: Mikania micrantha, Total Flavonoid, Total Phenolic, FTIR.

INTRODUCTION

Medication using medicinal plants is believed safer because it has lower side effects than synthetic drugs1. Medicinal plants are known to have medicinal properties and have been used in traditional medicine for generations. Herbal medicines are used by 80% of the people worldwide due to its high efficiency, cheap cost, non-narcotic nature and fewer side effects2. So, the development of medicinal plants as raw materials for traditional medicines needs to be conducted. The use of raw materials or simplicia must be standardized for the sake of guaranteed sustainability. This is approved by identity substances and biochemical compositions with specifications related to monographs as quality requirements related to the Materia Medica3. It is necessary to extract standardized to ensure the quality and safety of the extract4.

Mikania micrantha is Astearacea family and can be found in plenty from its natural habits, which makes the plant readily available for traditional treatment. In Indonesia, this plant known as ‘Sembung Rambat’5 and widely distributed in North Sumatera, Indonesia. Mikania micrantha leaves are commonly used in the traditional medicine of insect bites or scorpion stings, skin diseases such as rashes and skin itches6, diabetes, stroke, hypercholesterolemia, hypertension7, analgetic, skin bleeding wound, healing sores, antimicrobial, skin infection and ulcers8.

Considering the broad medicinal effect consuming Mikania micrantha and the widespread this plants on different regions in North Sumatera, it is important to ensure the quality of standardized extracts based on physicochemical and phytochemical screening responsible for biological action. This study is an essential starting point for the standardization of traditional medicines because only good quality of simplicia produce a good quality of traditional medicines9. The specific and non-specific parameters were tested to determine the quality of the extract using methods described in Farmakope Herbal Indonesia. This study aims to evaluate total phenols, total flavonoids, and phytochemical screening by FTIR spectroscopy of standardized extract of Mikania micrantha leaf to confirm its medicinal values. This preliminary study helped for standardization of the crude extract as well as further processing of the sample with some indication regarding the nature of chemical compounds present in it.

MATERIAL AND METHODS

Plant materials

The Leaves of Mikania micrantha were obtained from three different regions in North Sumatra Province, that is Deli Serdang, Tapanuli Selatan and Langkat. The plant was authenticated by Herbarium Medanese, FMIPA, Universitas Sumatera Utara.

Methods

Extractions

Mikania micrantha leaves were dried at room temperature and smashed manually. Each sample was extracted by maceration method with ethanol 96% at room temperature for 5 x 24 h. The liquid extract obtained was then evaporated with a rotary
evaporator. Viscous extracts are packaged in dark bottles then stored in a refrigerator at 4°C and can be used for further analysis.

Phytochemical screening and physicochemical analysis

All extracts were subjected to phytochemical screening by identification using different spraying reagent for particular compounds, such as dragendorf for alkaloids, AlCl₃ for flavonoid, FeCl₃ for tannin, Lieberman Burchard for steroid and sulfuric acid for saponin/triterpenoid. The extracts were also analyzed for physicochemical properties, such as water and ethanol-soluble extract, water content, total ash content and acid-insoluble ash content according to Farmakope Herbal Indonesia.

Determination of total phenol

Total phenolic content was determined with the Folin–Ciocalteu reagent. A calibration curve was obtained by using gallic acid as standard. 5 mg gallic acid dissolved in 100 ml methanol as a standard solution. Then diluted to 62.5; 125; 500 μg/ml. 10 mg sample was diluted in 10 ml methanol on the test tube. Both of 0.1 ml of standards and samples were taken and mixed with 0.5 ml of Folin-Ciocalteau and 7.9 ml of distilled water, vortext for ± 1 minute, and added 1.5 mL of Na₂CO₃ 20%, then incubated for 90 minutes. The absorbance of all standards and samples were measured at 400 nm to 800 nm using Shimadzu 1800 UV-Vis spectrophotometer and the results expressed as milligrams of gallic acid equivalents (GAE) per gram of extract.

Determination of total flavonoid

Total flavonoid was analyzed using aluminum chloride colourimetric method. Quercetin was used to make the calibration curve. 10 mg of quercetin was dissolved in 100 ml ethanol 96% and diluted to 6, 10, 14.5, 19, and 23.5 μg/mL. 25 mg sample was diluted in 25 ml ethanol 96%. 2 ml of each concentration of standard solutions, as well as 1 ml of each sample solution, were mixed with 3 mL ethanol 96%, 0.2 mL of aluminium chloride, 0.2 mL potassium acetate 1 M and 5.6 mL of distilled water. The mixture was incubated at room temperature for 30 minutes. The absorbance was measured at 440 nm using Shimadzu 1800 UV-Vis spectrophotometer and the results expressed as weight of quercetin equivalent (QE) per gram of extract.

FT-IR extract analysis

Fourier transform infrared spectrophotometer (FTIR) is perhaps the most powerful tools for identifying the types of chemical bonds (functional groups) present in compounds. All of the different extracts of *Mikania micrantha* was used for FTIR analysis. The extract is mixed with powder which has been mashed, homogenized and put into the sample container, the powdered sample of each extract was loaded in FTIR Spectrophotometer (Shimadzu prestige 21).

RESULT AND DISCUSSION

Extraction

Mikania micrantha leaves processing is done as shown in Figure 1A-B. the leaves are processed into simplicia then extracted with ethanol.

In this present study, the extraction of *Mikania micrantha* leaf from Langkat has higher percentage yield compared to Deli Serdang and Tapanuli Selatan. The result of percentage yield extraction of *Mikania micrantha* leaf shown in Table 1.

Physicochemical properties and phytochemical screening

The physicochemical and phytochemical screening performed on *Mikania micrantha* leaf. The result of physicochemical analysis such as water and ethanol-soluble extract, water content, total ash content and acid-insoluble ash content shown in Table 2. Further phytochemical screening showed in Table 3.

Total phenolic and total flavonoid

The result of total phenolic showed that the extract *Mikania micrantha* from Langkat is higher than in other regions. Whereas the result of total flavonoid showed that the extract of *Mikania micrantha* from Deli Serdang is higher than other regions (Table 4). Determination of total phenolic and total flavonoid use gallic acid and quercetin as standards where the calibration curve equation obtained were $y = 0.001233x + 0.032114$ (R² = 0.996382) and $y=0.031619x – 0.00836$ (R² = 0.999029).

FTIR extract analysis

The FTIR spectrum of ethanol extract of *Mikania micrantha* leaf is presented in Table 5: Figures 2-4. The data on the peak values and the probable functional groups (obtained by FTIR analysis) present in the extract are represented in Table 5. The region of IR radiation helps to identify the functional groups of the active component present in extract based on the peaks values of the FTIR spectrum. When the extract was passed into the FTIR, the functional groups of the components separated based on the ratio of its peak. The results of FTIR...
Sumantri, et al.: Total Phenolic, Total Flavonoid and Phytochemical Screening by FTIR Spectroscopic of Standardized Extract of *Mikania micrantha* Leaf

Table 1: The percentage yield of extraction in each region.

No	Region	The percentage yield of extraction
1	Deli Serdang	11.67%
2	Tapanuli Selatan	12.76%
3	Langkat	13.86%

Table 2: Physiochemical analysis of *Mikania micrantha* leaf.

Parameters	Mikania micrantha leaf		
	Deli Serdang	Tapanuli Selatan	Langkat
Water content	8.33%	7.61%	6.67%
Total ash content	5.93%	7.88%	8.34%
Acid Insoluble ash content	4.44%	5.42%	5.89%
Water-soluble extract	27.82%	23.93%	23.66%
Ethanol soluble extract	18.57%	19.17%	16.39%

Table 3: Phytochemical screening of *Mikania micrantha* leaf.

Phytochemical constituent	Mikania micrantha leaf		
	Deli Serdang	Tapanuli Selatan	Langkat
Alkaloids	+	+	+
Flavonoids	+	+	+
Tannins	+	+	+
Saponins	+	+	+
Glikosides	+	+	+
Terpenoids/Steroids	+	+	+

Table 4: Total Phenolic and Total Flavonoid.

Region	Total Phenolics (mg/g) in GAE	Total Flavonoid (mg/g) in QE
Deli Serdang	13.19 ± 0.74	20.63 ± 0.16
Tapanuli Selatan	32.77 ± 1.21	4.26 ± 0.15
Langkat	34.24 ± 1.24	1.11 ± 0.11

Table 5: FTIR spectral wavenumber's values and functional groups obtained from an extract of *Mikania micrantha* leaf.

Peak Values	Functional Groups
3348.42 cm⁻¹	-OH group
2924.09 cm⁻¹	C-H stretching aliphatic
2858.51 cm⁻¹	C-H stretching aliphatic
1724.36 cm⁻¹	C=O carbonyl group
1056.99 cm⁻¹	C-O group
3344.57 cm⁻¹	-OH group
2927.94 cm⁻¹	C-H stretching aliphatic
2858.51 cm⁻¹	C-H stretching aliphatic
1450.47 cm⁻¹	C-H stretching aliphatic
1728.22 cm⁻¹	C=O carbonyl group
3340.71 cm⁻¹	-OH group
2927.94 cm⁻¹	C-H stretching aliphatic
2858.51 cm⁻¹	C-H stretching aliphatic
1624.06 cm⁻¹	C=O carbonyl group
Figure 2: FTIR spectrum of Extract of *Mikania micrantha* leaf from Deli Serdang.

Figure 3: FTIR spectrum of Extract of *Mikania micrantha* leaf from Tapanuli Selatan.

Figure 4: FTIR spectrum of Extract of *Mikania micrantha* leaf from Langkat.
analysis confirmed the presence of hydroxyl, aliphatic hydrocarbon and carbonyl group.

DISCUSSION

The plant is a very source of potentially useful as raw material for traditional medicines. The biological and pharmacological properties of many plants have active compounds that the potential pharmacologically. *Mikania micrantha* is a great plant that has been used as herbal medicines for diverse pharmacology activity.

The extraction of *Mikania micrantha* leaf from three different regions by maceration using ethanol 96% solvent did not show a significant difference in the yield. The result of extraction (Table 1) is not less than 11.67%.

The physicochemical analysis is responsible for ensuring the quality and purity of *Mikania micrantha*. The value of water content showed values less than 10 % that means sample will not allow for microbial growth. The water-soluble extractive matters are not less than 23.66%, and the ethanol extractive matters are not 16.39%. The total ash content is not more than 8.34%, and acid insoluble ash content is not more than 5.89% (Table 2). Determination of water-soluble concentration and ethanol was conducted to give an early study of the number of compounds that can be dissolved with water solvents and ethanol from a simplicia. Total ash was determined to describe the content of internal and external minerals derived from the initial process until the formation of the extract. It is an essential point for the standardization of traditional medicine because only good quality of simplicia produces a good quality of traditional medicine.

The phytochemicals are responsible for the therapeutic activities of the plants. The results showed that the extract contains alkaloids, flavonoids, tannins, saponins, steroids/terpenoids, and glycosides. Pharmacological properties of *Mikania micrantha* are used as antioxidant, antihypertensive, antimicrobial, antiprotozoal, anti-inflammatory, analgesic, anticancer and antiviral activities. In addition, Alkaloids can also be used as an anti-inflammatory, analgesic and anticancer. Alkaloids also can heal wounds by stimulating the formation of fibroblast phase, and steroids can help the wound healing process. Phenolic compounds or extracts and their functional group. Fingerprinting is a wide range of therapeutic activities such as antihypertensive, antioxidant, antimicrobial and anticancer properties. Phenol, Flavonoid, and phenols are acting as antimicrobial agents. Steroids/terpenoids can help the formation of new skin cells and wound healing process. Therefore, this plant can be used as a raw material for traditional medicine.

The extract of *Mikania micrantha* leaf was standardized for total phenolics and flavonoids content. The total phenolics content was in descending order from Langkat > Tapanuli Selatan > Deli Serdang (Table 4). The phenolic content of extract of *Mikania micrantha* leaf varied between 13.19 ± 0.74 to 34.24 ± 1.24 mg/g GAE. The phenolic compound is a class of antioxidant agents which as free radical terminators and their abilities to chelate metals, inhibit lipoperoxidation and scavenge free radicals.

The total flavonoids content was in descending order from Deli Serdang> Tapanuli Selatan > Langkat (Table 4). The total flavonoid content varied between 1.11 ± 0.11 to 20.63 ± 0.16. The extract of *Mikania micrantha* leaf showed the total phenolics and total flavonoids content present in these extracts. Flavonoid and phenolic compounds exhibited the most significant antioxidant activity thus can be explored to be a new drug. The antioxidant activity of a plant has an important role in indicating the possibility of other biological activities. Antioxidants have properties that can overcome metabolic disorders and pathological conditions such as cardiovascular, respiratory, infection, inflammation, carcinogenesis and the ageing process.

The FT-IR spectrum was used to identify the functional groups of the active components present in extract based on the peaks values in the region of IR radiation. The IR absorption bands spectrum of *Mikania micrantha* leaf extracts from Deli Serdang, Tapanuli Selatan and Langkat confirmed the presence of –OH, C-H stretching aliphatic, C=O carboxyl group (Table 5, Figures 1-3). Overall, the peaks contained in the three ethanolic extracts of *Mikania micrantha* leaf have almost the same functional groups but different absorbances. FTIR spectroscopy provides a spectral fingerprint that uniquely identifies chemical compounds or extracts and their functional group. Fingerprinting is superior to other analytical methods because no two compounds or extract have the same infrared spectrum.

CONCLUSION

The result of this study shows the total phenol, total flavonoid determination, phytochemical screening and analysis by FTIR confirmed that *Mikania micrantha* extract leaf possesses the potential of bioactive compounds which are responsible for the biological activities as a raw material of traditional medicines. Standardized extract of *Mikania micrantha* leaf from Deli Serdang, Tapanuli Selatan and Langkat contain alkaloids, flavonoids, tannins, saponins, glycosides, steroids/terpenoids. The total phenolic content of extract of *Mikania micrantha* leaf ranged from 13.19 ± 0.74 to 34.24 ± 1.24 mg gallic acid equivalent/g and total flavonoid ranged from 1.11 ± 0.11 to 20.63 ± 0.16 mg quercetin/g. FTIR analysis confirmed the presence of O-H, aliphatic CH, and C=O functional group.

ACKNOWLEDGEMENT

This study is supported by US Grant (Kontrak Penelitian Talenta USU Tahun Anggaran 2018 No. 2590/UN5.1.R.PP/2018 tanggal 16 Maret 2018).

REFERENCE

1. Hermi, N. Pengembangan Bioformula sebagai Obat Herbal untuk Kesehatan. Buletin Teknologi Pascapanen Pertanian. 2011;7(1):1-9.
2. Ahmad I. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J. Ethnopharmacology. 2001;74(2):113-23.
3. Pekpes RI. Materia Medika. Jilid VI. Jakarta: Direktorat Jenderal Pengawasan Obat dan Makanan. 1989.
4. Pekpes RI. Materia Medika. Jilid VI. Jakarta: Direktorat Jenderal Pengawasan Obat dan Makanan. 1995.
5. Haisya NBS, Latifah AR, Surotan RP. Sadjad S, Arief U. Sembung gambat (Mikania micrantha H. B. K.) as natural alternative antioxidant and its study against bacterial common as causative agent in cattle mastitis in Indonesia. Cosak. 2013;CGP/73:7-9.
6. Li Y, Li J, Li Y, Wang XX. Cao AC. Antimicrobial constituents of the leaves of Mikania micrantha H. B. K. PloS ONE. 2013;8(10):1-10.
7. Chetta J, Upadhyaya S, Bora DK. Screening of phytochemicals, antioxidant and antimicrobial activity of some tea garden weeds of Tinsukia, Assam. International Journal of Pharmaceutical Sciences Review and Research. 2014;26(33):193-6.
8. Facey PC, Peat PC, Porter RRB. The antioxidant activities of mikanolide and its derivatives. West Indian Medical Journal. 2010;59(3):249-52.
9. Ladeska V, Dewanti E, Sari DI. Pharmacognostical Studies and Determination of Total Flavonoids of Paitan (Trithonia diversifolia (Hemsl). A. Gray. Pharmacogn J. 2019;11(6):1256-61.
10. Sulastri E, Zubair MS, Anas NI, Abidin S, Hardani R, Yulianti R. et al. Total Phenolic, Total Flavonoid, Quercetin Content and Antioxidant Activity of Standardized Extract of Moringa oleifera Leaf from Regions with Different Elevation. Pharmacogn J. 2018;10(1):104-08.
11. Departemen Kesehatan Republik Indonesia. Farmakope Herbal Indonesia. Edisi I. Jakarta: Direktorat General of Drug and Food Control. Jakarta. 2008;169-71.
12. Haziyah AI, Husna NS, Norhaizan ME, Hasnah B. Nutriotional, Phytochemical and Pharmacological Properties of Mikania micrantha Kunth. Pertanika Journal of Scholarly Research Reviews PJSRR. 2016;2(3):123-32.
13. Awoyinka AO, Balogun IO, Oggunowo AA. Phytochemical screening and in vitro bioactivity of Cnidoscolus aconitifolius (Euphorbiaceae). J. Med Pla Res. 2007;1(3):63-8.
14. Monika J, Anil B, Aakanksha B, Priyanka P. Isolation, Characterization and in vitro Antioxidant activity of Cercepin Alkaloid from Cercepin bulbosa var. lusii leaves. Int J Drug Dev Res. 2012;4(4):154-60.
15. Gillivray SC, Ashcroft GD. Sex Steroid and Cutaneous Wound Healing: The Contrasting Influences of Estrogens and Androgens. Climacteric Journal. 2007;10:276-88.
16. Del-Rio A, Oduhilo BG, Castillo J, Marin RR and Ortuno A. Uses and properties of citrus flavonoids. J Agric Food Chem. 1977;45:4505-15.
17. Veerachari U, Bopaiah AK. Preliminary phytochemical evaluation of the leaf extract of five Cassia species. J Chem Pharm Res. 2011;3(5):574-83.
18. Ebrahimzadeh MA, Poumorad F and Bekhradnia AR. Iron chelating activity screening, phenol and flavonoid content of some medicinal plants from Iran. Afr J Biotech. 2008;7(18):3188-92.
19. Fernandes A, Maharan R, Sunarta S, Rayan. Chemical Characteristics and Potential of Akar Bulu (Mikania micrantha Kunth) Leaves as Traditional Wound Healing. Jurnal Penelitian Eksosistem Dipterokarpa. 2018;4(2):109-16.
20. Karamian R, Ghassami F. Screening of Total Phenol and Flavonoid content, Antioxidant and Antibacterial Activities of The Methanolic Extracts of Three Silene Species from Iran. International Journal of Agriculture and Crop Science IJACS. 2013;5(3):305-12.
21. Wulandari, D. Antioxidant Screening Activity of Several Indonesian Medicinal Plants Using 2,2-Diphenyl-1-Picyrylhydarzil (DPPH). Majalah Obat Tradisional. 2011;16(1):22-5.
22. Ashokkumar R, Ramaswany. Phytochemical Screening by FTIR Spectroscopic Analysis of Leaf Extract of Selected Indian Medicinal Plants. International Journal of Current Microbiology and Applied Science IJCMAS. 2014;3(1):395-406.
Sumantri, et al.: Total Phenolic, Total Flavonoid and Phytochemical Screening by FTIR Spectroscopic of Standardized Extract of Mikania micrantha Leaf

SUMMARY

- Standardized ethanol extract of M. Micrantha leaf from three different regions in North Sumatera i.e Deli Serdang, Tapanuli Selatan and Langkat with percentage yield is not less than 11.67%.

- Phytochemical screening showed that all of extract contain alkaloids, flavonoids, tannins, saponins, glycosides, triterpenoids/steroids. Physicochemical analysis showed that water content is no more than 8.33%; total ash content is not more than 8.34%; acid insoluble ash content is not more than 5.89%; water-soluble extractive are not less than 23.66%, and ethanol extractive matters are not less than 16.39%.

- Total phenolic of ethanol extract of M. Micrantha leaf from Deli Serdang, Tapanuli Selatan and Langkat are respectively 13.19 ± 0.74; 32.77 ± 1.21; 34.24 ± 1.24 mg/g in GAE.

- Total flavonoid of ethanol extract of M. Micrantha leaf from Deli Serdang, Tapanuli Selatan and Langkat are respectively 20.63 ± 0.16; 4.26 ± 0.15; 1.11 ± 0.11mg/g in QE.

- FTIR Analysis showed the spectrum of extract ethanol of M. Micrantha extracts from Deli Serdang, Tapanuli Selatan and Langkat confirmed the presence of –OH, C-H stretching aliphatic, C = O carbonyl group.

ABOUT AUTHORS

Imam Bagus Sumantri, is a lecturer and researcher at Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara. His current position is Head of Biology Pharmacy Laboratory, and his research fields focused on Biology Pharmacy such as Pharmacognosy, Traditional Medicine and Phytochemistry.

Henny Sri Wahyuni, is a lecturer and researcher at Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sumatera Utara. Her current position as Head of Drug Synthesis Laboratory, focused on medicinal chemistry and traditional medicine.

Lolyta Fitri Mustanti, is Graduated Student of Pharmacy Profession at Faculty of Pharmacy, Universitas Sumatera Utara. Her research focused on herbal pharmaceutical formulations.

Cite this article: Sumantri IB, Wahyuni HS, Mustanti LF. Total Phenolic, Total Flavonoid and Phytochemical Screening by FTIR Spectroscopic of Standardized Extract of Mikania micrantha Leaf. Pharmacogn J. 2020;12(6):1395-401.