Local algorithms for the prime factorization of strong product graphs

Marc Hellmuth, Wilfried Imrich, Werner Klöckl and Peter F. Stadler

Abstract. The practical application of graph prime factorization algorithms is limited in practice by unavoidable noise in the data. A first step towards error-tolerant “approximate” prime factorization, is the development of local approaches that cover the graph by factorizable patches and then use this information to derive global factors. We present here a local, quasi-linear algorithm for the prime factorization of “locally unrefined” graphs with respect to the strong product. To this end we introduce the backbone $B(G)$ for a given graph G and show that the neighborhoods of the backbone vertices provide enough information to determine the global prime factors.

Mathematics Subject Classification (2000). Primary 99Z99; Secondary 00A00.

Keywords. strong product graphs, local covering, backbone, S1-condition.

1. Introduction

Network structures derived from real-life data are notoriously incomplete and/or plagued by measurement errors. As a consequence, the structures need to be analyzed in a way that is robust against inaccuracies, noise, and perturbations in the data. Most of the classical graph invariants, however, are very fragile in this respect. The property of factorizability w.r.t. to each of the associative graph products [5] is no exception. In fact, very small perturbations already can destroy the product structure completely, modifying a graph with many factors to a prime one [2, 9]. The recognition of product structures, even if disguised by noise, is a problem of practical interest e.g. in theoretical biology [8] and in mathematical engineering [7]. A first systematic investigation into “approximate graph products” showed, that a practically viable approach can be based on local factorization algorithms, because these recognize product structures in small subgraphs and attempt to stepwisely extend regions with product structures. This idea has been fruitful in particular for the strong product of graphs, where one benefits from the
fact that the local product structure of neighborhoods is a refinement of the global factors [4].

In [4] we have introduced the class of thin-neighborhood intersection coverable (NICE) graphs, and devised an efficient quasi-linear-time local factorization algorithm w.r.t. the strong product. Here we extend this previous work to the much larger class of thin graphs which are whose local factorization is not finer than the global one. Will call this property \textit{locally unrefined}.

Fig. 4 gives an example of a thin but locally refined graph. It is prime but the closed neighborhoods of all vertices have two prime factors. We can regard this graph as an approximate product, arising from a product of paths that are then connected in a twisted way that destroys factorizability at the global level but leaves the local product structure intact. A local approach like the one proposed here, will recognize the regional product structure and only at a later stage report global inconsistencies. A detailed discussion of this point is, however, beyond the scope of this contribution. Here, we shall focus only on the recognition of globally factorizable graphs by means of a novel, strictly local approach. It is based on the concept of the \textit{backbone} $B(G)$ of a thin graph, defined on the cardinality of equivalence classes of a particular relation S. As it turns out $B(G)$ is the set of vertices with strictly maximal closed neighborhoods. We will show how to determine the prime factors of a given locally unrefined graph G by covering it by neighborhoods of the backbone vertices only. Moreover, we will derive polynomial-time local algorithms for computing the product coloring and the Cartesian skeleton of G, and for recognizing whether G is locally unrefined.

2. Background and Results

2.1. Definitions

Basic Notation. We only consider finite, simple, connected and undirected graphs $G = (V, E)$ with vertex set V and edge set E. A graph is nontrivial if it has at least two vertices. The neighborhood $N(v)$ of a vertex $v \in V$ is the set of all vertices that are adjacent to v. Throughout this contribution, we will mostly be concerned with closed neighborhoods $N[v] := N(v) \cup \{v\}$. We define the n-neighborhood of vertex v as the set $N_n[v] = \{x \in V(G) \mid d(v, x) \leq n\}$, where $d(x, y)$ denotes the canonical distance in G, i.e., the length of a shortest path connecting the vertices x and y. Notice that $N_1[v] = N[v]$. Unless there is a risk of confusion, we call a 1-neighborhood just neighborhood. The degree $\deg(v)$ of a vertex v is the number adjacent vertices, or, equivalently, the number of incident edges. The maximum degree in a given graph is denoted by Δ. The subgraph of a graph G that is induced by a vertex set $W \subseteq V(G)$ is denoted by $\langle W \rangle$.

Product Graphs. The vertex set of the strong product $G_1 \boxdot G_2$ of two graphs G_1 and G_2 is defined as $\{(v_1, v_2) \mid v_1 \in V(G_1), v_2 \in V(G_2)\}$, the Cartesian product of the vertex sets of the factors. Two vertices $(x_1, x_2), (y_1, y_2)$ are adjacent in $G_1 \boxdot G_2$ if one of the following conditions is satisfied:
Local covering algorithms

(i) \([x_1, y_1] \in E(G_1)\) and \([x_2, y_2] \in E(G_2)\),
(ii) \([x_1, y_1] \in E(G_1)\) and \(x_2 = y_2\),
(iii) \([x_2, y_2] \in E(G_2)\) and \(x_1 = y_1\).

The Cartesian product \(G_1 \boxtimes G_2\) has the same vertex set as \(G_1 \boxtimes G_2\), but vertices are only adjacent if they satisfy (ii) or (iii). Consequently, edges that satisfy (ii) or (iii) in a strong product are called Cartesian, the other edges non-Cartesian. In products of more factors, the edges that join vertices differing in exactly one coordinate are called Cartesian.

It is well known that the strong product is associative. Thus a vertex of \(\boxtimes G_i\) is properly “coordinatized” by the vector \((x_1, \ldots, x_n)\) whose entries are the vertices \(x_i\) of its factor graphs \(G_i\). The coordinatization of a product is equivalent to a (partial) edge coloring of \(G\) in which edges \((xy)\) share the same color \(c\) if the two points \(x\) and \(y\) differ only in the value of a single coordinate \(k\), i.e., if \(x_i = y_i\), \(i \neq k\) and \(x_k \neq y_k\). This colors the Cartesian edges of \(G\) (with respect to the given product representation). It follows that for each color \(c\) the set \(E_c = \{e \in E \mid c(e) = c\}\) of edges with color \(c\) spans \(G\). The connected components of \(\langle E_c \rangle\), usually called the layers or fibers of \(G\), are isomorphic subgraphs of \(G\).

For later reference we note that the distance of two vertices and product graph is determined by distances within the factors:

Lemma 2.1 ([5], p.149). Let \(G = G_1 \boxtimes \cdots \boxtimes G_k\) be the strong product of connected graphs. Then

\[
d_G(u, v) = \max_{1 \leq i \leq k} d_{G_i}(u_i, v_i).
\]

A subproduct of a product \(G \boxtimes H\) is defined as the product of subgraphs of \(G\) and \(H\) respectively. In particular, neighborhoods are subproducts:

Lemma 2.2 ([4]). For any two graphs \(G\) and \(H\) holds \(\langle N_n^{G \boxtimes H}((x, y)) \rangle = \langle N_n^G[x] \rangle \boxtimes \langle N_n^H[y] \rangle\).

Let \(G = \boxtimes_{i=1}^n G_i\) be a strong product graph and denote the coordinates of \(x \in V(G)\) by \((x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n)\). The mapping \(p_i(x) = x_i\) is called projection of \(x\) onto the \(i\)-th factor, \(G_i^x\) denotes the subgraph that is induced by the vertices of the set \(\{(x_1, \ldots, x_{i-1}, v, x_{i+1}, \ldots, x_n) \in V(G) \mid v \in V(G_i)\}\). We call this subgraph \(G_i^x\) a \(G_i\)-fiber or \(G_i\)-layer through vertex \(x\). With a horizontal fiber we mean the subgraph of \(G\) induced by vertices of one and the same fiber, i.e. we mean a particular \(G_i^x\)-fiber without mention this particularly, if there is no risk of confusion. With parallel \(G_i\)-fibers we mean all fibers with respect to a given factor \(G_i\). Edges of (not necessarily) different \(G_i\)-fibers are said to be edges of one and the same factor \(G_i\). If a subgraph \(H\) of \(G = G_1 \boxtimes G_2\) has a representation \(H = H_1 \boxtimes H_2\) that is compatible with the strong product \(G\) in the sense that \(H_i\)-fibers and the \(G_i\)-fibers induce the same partition of the vertex sets \(V(H) = V(G)\), we call the subgraph \(H\) Cartesian skeleton, see [5].

A graph \(G\) is prime with respect to the strong product if it is not isomorphic to the strong product of two nontrivial graphs. It is clear that every finite graph
is isomorphic to a strong product of prime graphs. This product representation usually is called prime factor decomposition (PFD).

For finite connected graphs, the prime factorization with respect to the strong product is unique up to isomorphism and the order of the factors [1]. There are, however, disconnected graphs with a non-unique PFD, see e.g. [5].

Thinness. An important issue in the context of graph products is whether or not two vertices can be distinguished by their neighborhoods. This is captured by the relation S, see [1]: Two vertices $x, y \in V(G)$ are in the relation S if they have the same closed neighborhoods, $N[x] = N[y]$. Note that $x S y$ implies that x and y are adjacent since, by definition, $x \in N[x]$ and $y \in N[y]$. Clearly, S is an equivalence relation. The S-class of x is denoted by $S(x) = \{v \in V \mid N[v] = N[x]\}$.

The graph G/S is the usual quotient graph. More precisely, its vertex set is $V(G/S) = \{S_i \mid S_i$ is an equivalence class of $S\}$ and $(S_i, S_j) \in E(G/S)$ whenever $(x, y) \in E(G)$ for some $x \in S_i$ and $y \in S_j$. Note that $S_{G/S}$ is trivial, that is, its equivalence classes are single vertices [5]. We call a graph S-thin, or thin for short, if it has trivial S, i.e. if no two vertices are in relation S. Thus G/S is thin. The importance of thinness lies in the following uniqueness result:

Theorem 2.3 ([1, 5]). A finite, undirected, simple, connected graph G has a unique PFD with respect to the strong product. If G is S-thin, then the coordinatization is unique.

As a consequence, the Cartesian edges are uniquely determined in S-thin graphs. Note that the set of all Cartesian edges in a thin strong product G are the edges of the Cartesian skeleton H of G. An example of a non S-thin graph and with different possible coordinatizations is shown in Figure 1.

$$
\begin{align*}
&\hspace{1cm}a = x_1y_1 \hspace{2cm}b = x_1y_2 \hspace{2cm}a = x_1y_1 \hspace{2cm}b = x_2y_2 \\
&\hspace{1cm}c = x_2y_1 \hspace{2cm}d = x_2y_2 \hspace{2cm}c = x_1y_2 \hspace{2cm}d = x_2y_1
\end{align*}
$$

Figure 1. The edge (a, b) is Cartesian in the left and non-Cartesian in the right coordinatization.

Much of our work is based on the intuition that it should be feasible to construct the Cartesian skeleton of G by considering only PFDs of suitable neighborhoods, more precisely, it should be sufficient to work with the Cartesian edges.
of these neighborhoods. The main problem with this idea is that it requires that G can be covered by thin neighborhoods $\langle N[v] \rangle$, a condition that is not always met.

The main obstacle is the realization that even though G is thin, this is not necessarily true for subgraphs, and in particular neighborhoods, Fig. 2. In order to investigate this issue in some more detail, we also consider S-classes w.r.t. subgraphs of a given graph G.

Definition 2.4. Let $H \subseteq G$ be an arbitrary subgraph of a given graph G. Then $S_H(x)$ is defined as the set $S_H(x) = \{v \in V(H) \mid N[v] \cap V(H) = N[x] \cap V(H)\}$

For the sake of convenience we set $S_y(x) := S_{\langle N[y] \rangle}(x) = \{v \in N[y] \mid N[v] \cap N[y] = N[x] \cap N[y]\}$. In other words, $S_y(x)$ is the S-class that contains x in the subgraph $\langle N[y] \rangle$. Notice that $N[x] \subseteq N[v]$ holds for all $v \in S_y(x)$. If G is additionally thin, then $N[x] \subseteq N[v]$.

Lemma 2.5 ([5], p.155). For any two graphs G_1 and G_2 holds $(G_1 \boxtimes G_2)/S \simeq G_1/S \boxtimes G_2/S$. Furthermore, for every $x = (x_1, x_2) \in V(G)$, $S_G(x) = S_{G_1}(x_1) \times S_{G_2}(x_2)$.

Corollary 2.6. Let G be a strong product $G = G_1 \boxtimes G_2$. Consider a vertex $x \in V(G)$ with coordinates (x_1, x_2). Then for every $z \in S_G(x)$ holds $z_i \in S_{G_i}(x_i)$, i.e. the i-th coordinate of z is contained in the S-class of the i-th coordinate of x.

Moreover, G and G/S have the same number of nontrivial prime factors if and only if none of the prime factors of G is isomorphic to a complete graph.

The $S1$-condition. Since the Cartesian edges are globally uniquely defined in a thin graph, the challenge is to find a way to determine enough Cartesian edges from local information, even if $\langle N[v] \rangle$ is not thin. The following property will play a crucial role for this purpose:

Definition 2.7. Let $G = (V, E)$ be a thin graph. An edge $(x, y) \in E$ satisfies the $S1$-condition if there is vertex $z \in V$ s.t.

1. $x, y \in N[z]$ and

![Figure 2. A thin graph whereby $\langle N[v] \rangle$ is not thin. The S-classes in $\langle N[v] \rangle$ are $S_v(v) = \{v\}$, $S_v(z) = \{z\}$ and $S_v(x) = S_v(y) = \{x, y\}$.](image)
2. $|S_z(x)| = 1$ or $|S_z(y)| = 1$.

From Lemma 2.5 we can directly infer that the cardinality of an S-class in a product graph G is the product of the cardinalities of the corresponding S-classes in the factors. Applying this fact together with Lemma 2.2 to the subgraph of G induced by a closed neighborhood $N[v]$ immediately implies Corollary 2.8.

Corollary 2.8. Consider a strong product $G = G_1 \boxtimes G_2$ and two vertices $v, x \in V(G)$ with coordinates (v_1, v_2) and (x_1, x_2), s.t. $v_i, x_i \in V(G_i)$ and $v_i \in N[x_i]$ for $i = 1, 2$. Then $S_v(x) = S_{v_1}(x_1) \times S_{v_2}(x_2)$ and therefore $|S_v(x)| = |S_{v_1}(x_1)| \cdot |S_{v_2}(x_2)|$.

Lemma 2.9. Let G be a strong product graph containing two S-classes $S_G(x), S_G(y)$ that satisfy

(i) $(S_G(x), S_G(y))$ is a Cartesian edge in G/S and

(ii) $|S_G(x)| = 1$ or $|S_G(y)| = 1$.

Then all edges in G induced by vertices of $S_G(x)$ and $S_G(y)$ are Cartesian and copies of one and the same factor.

Proof. For simplicity, we write $S(\cdot)$ for $S_G(\cdot)$. Suppose the PFD of G consists of n factors. Furthermore, we may assume w.l.o.g. that $|S(x)| = 1$. Lemma 2.5 implies that for every prime factor G_i of G, $1 \leq i \leq n$, holds

$$|S_{G_i}(x_i)| = 1$$

In the following, $S(v)_m$ denotes the m-th coordinate of vertex $S(v)$ in G/S. Being a Cartesian edge means that $S(x)$ and $S(y)$ coincide in every, but one, say the j-th coordinate w.r.t. the PFD of G/S, i.e. $\forall i \neq j$ holds $S(x)_i = S(y)_i$. By Lemma 2.5 this is $S_{G_i}(x_i) = S_{G_i}(y_i)$.

Corollary 2.6 implies that the i-th coordinate ($i \neq j$) of every vertex in $S(x) \cup S(y)$ is in $S_{G_i}(x_i) \cup S_{G_i}(y_i) = S_{G_i}(x_i)$, which is a set of cardinality 1. Hence, all vertices in $S(x) \cup S(y)$ have the same i-th coordinate. This is equivalent to the claim of the lemma. \hfill \square

Remark 2.10. Whenever we find a Cartesian edge (x, y) in a neighborhood $(N[z])$ so that one endpoint of (x, y) is contained in a S-class of cardinality 1 in $(N[z])/S$, i.e., such that $S_z(x) = \{x\}$ or $S_z(y) = \{y\}$, we can therefore conclude that all edges in $(N[z])$ induced by vertices of $S_z(x)$ and $S_z(y)$ are also Cartesian and are copies of one and the same factor.

The Backbone of G. This observation naturally gives rise to two questions:

- Which Cartesian edges have these properties?
- What is the global structure of a Cartesian skeleton that can be determined in this way?

We first consider a subset of $V(G)$ that will play a special role in our approach.
Definition 2.11. The backbone of a thin graph G is the vertex set
\[B(G) = \{ v \in V(G) \mid |S_v(v)| = 1 \}. \]

Notice that Corollary 2.6 implies that the number of prime factors of $\langle N[v] \rangle$ coincides with the number of prime factors of $\langle N[v]/S \rangle$ for all $v \in B(G)$, otherwise we would have $|S_v(v)| > 1$.

Definition 2.12. Let $G = (V, E)$ be a graph. A subset D of V is a dominating set for G, if for all vertices in $V \setminus D$ there is at least one adjacent vertex from D. We call D connected dominating set, if D is a dominating set and the subgraph induced by D is connected.

2.2. Main Results

In this subsection we give preview of our main results. The proofs will then be given in the next sections.

Theorem 2.13. Let G be a thin graph. Then the backbone $B(G)$ is a connected dominating set for G.

For all $v \in V(G)$, there exists a vertex $w \in N[v]$ s.t. $w \in B(G)$. In other words, the entire graph can be covered by closed neighborhoods of the backbone vertices. The following result highlights the importance of $B(G)$ for the identification of Cartesian edges.

Theorem 2.14. All Cartesian edges that satisfy the S1-condition in an arbitrary induced neighborhood also satisfy the S1-condition in the induced neighborhood of
Figure 4. A prime graph where each local factorization leads to two factors. This graph is often also called a twisted product.

A vertex of the backbone $\mathcal{B}(G)$.

If at least one edge of G_i^x in $G = \bigotimes_{j=1}^n G_j$ satisfies the S1-condition then all vertices of G_i^x are contained in edges of G_i^x that satisfy the S1-condition.

This result implies that it makes sense to give the following definition:

Definition 2.15. An entire G_i^x-fiber satisfies the S1-condition, whenever one of its edges does.

Taken together, these two theorems allow us to identify all Cartesian edges of G_i^x-fiber that satisfies the S1-condition, using exclusively information about the neighborhoods of the backbone vertices.

The identification of the Cartesian edges is only the first step in constructing a PFD, however. We also need to be able to determine which Cartesian edges belong to copies of the same factor G_i. This task is explained in the next sections. As we shall see, the PFD can be computed with particular efficiency for graphs in which the local PDF is not finer than the global one.

Definition 2.16. Let G be a given graph and $H \subseteq G$ be an arbitrary subgraph. $|PF(G)|$ and $|PF(H)|$ denote the number of the prime factors of G and H, respectively.

The graph class Υ of locally unrefined graphs consists of all S-thin graphs with the property that $|PF(G)| = |PF(\langle N[v] \rangle)|$ for all $v \in \mathcal{B}(G)$.

The graph class Υ_n is the set of all graphs $G \in \Upsilon$ with $|PF(G)| = n$.

Not all graphs have this property. A counter-example is shown in Figure 4.
The following theorems state the time complexity of our developed algorithms working on a local level and concerning the PFD and the determination of the Cartesian skeleton of graph $G \in \mathcal{T}$ and the recognition if $G \in \mathcal{T}$.

Theorem 2.17 (PFD of $G \in \mathcal{T}$). Let $G = (V, E) = \mathbb{B}_{i=1}^\infty G_j \in \mathcal{T}$ with bounded maximum degree Δ. Then the prime factors of G can be determined in $O(|V| \cdot \log_2(\Delta) \cdot \Delta^6)$ time.

Theorem 2.18. Let $G = (V, E) \in \mathcal{T}$ with bounded maximum degree Δ. Then the Cartesian skeleton of G can be determined and colored w.r.t. to the prime factors in $O(|V|^2 \cdot \Delta^{10})$ time.

Theorem 2.19. Let $G = (V, E)$ be a thin graph with bounded maximum degree Δ. Determining whether $G \in \mathcal{T}$ can be done in $O(|V|^2 \cdot \Delta^{10})$ time.

3. Backbone

We start exploring properties of the backbone $B(G)$ of thin graphs. Our immediate goal is to establish that every vertex of G is in $B(G)$ or has an adjacent vertex contained in $B(G)$. This is equivalent to the statement that $B(G)$ is a domination set for G. We will then show that $B(G)$ is connected.

Lemma 3.1. Let G be a thin, connected simple graph and $v \in V(G)$ with $|S_v(v)| > 1$. Then there exists a vertex $y \in S_v(v)$ s.t. $|S_y(y)| = 1$.

Proof. Let $|S_v(v)| > 1$. Since G is finite we can choose a vertex $y \in S_v(v)$ that has a maximal closed neighborhood in G among all vertices in $S_v(v)$. Moreover $N[y]$ is maximal in G among all vertices of $V(G)$. Assume not. Then there is a vertex z s.t. $N[y] \subseteq N[z]$, but then $z \in S_v(v)$, a contradiction to the maximality of $N[y]$ among all vertices in $S_v(v)$. Since G is thin $N[y]$ is strictly maximal.

Furthermore $|S_y(y)| = 1$, otherwise there is a $z \in S_y(y), z \neq y$ s.t. $N[z] \cap N[y] = N[y]$. Since G is thin, there is a $x \in N[z]$ with $x \notin N[y]$ and thus $N[y] \subseteq N[z]$, but this is a contradiction to the fact that $N[y]$ is strictly maximal. \(\square\)

Lemma 3.2. Let G be a thin graph and v an arbitrary vertex of G. Then $v \in B(G)$ if and only if $N[v]$ is a strictly maximal neighborhood in G.

Proof. If $N[v]$ is a strictly maximal neighborhood in G then $|S_v(v)| = 1$ which is shown analogously to the last part of the last proof.

Let now $v \in B(G)$. Assume $N[v]$ is not strictly maximal. Then there is a vertex $z \in V(G)$ different from v such that $N[v] \subseteq N[z]$. Thus, $N[v] \cap N[z] = N[v]$, $z \in S_v(v)$ and $|S_v(v)| > 1$, contradicting that $v \in B(G)$. \(\square\)

Lemma 3.3. Let G be a thin connected simple graph. Then the backbone $B(G)$ is a dominating set for G.

Proof. We have to show that for all $v \in V(G)$ there exists a vertex $w \in N[v]$ s.t. $|S_w(w)| = 1$. If $|N[v]|$ is thin or $|S_w(v)| = 1$, there is nothing to show. If $|S_w(v)| > 1$, then the statement follows from Lemma 3.1. \(\square\)
Lemma 3.4. Let G be a thin connected simple graph. Then the set of adjacent vertices v and w with $|S_w(w)| = 1$ or $|S_v(v)| = 1$ induces one connected subgraph H of G.

Proof. Assume H consists of at least two components and let C denote the set of these components. Since G is connected we can choose components $C, C' \in C$ s.t. there are vertices $x \in C$, $y \in C'$ that are adjacent in G. Since G is finite and $x, y \in N[x]$ there is a maximal closed neighborhood $N[z]$ in G containing x and y. The thinness of G implies that $N[z]$ is strictly maximal. This implies, analogously as in the proof of Lemma 3.1, that $|S_z(z)| = 1$ contradicting that x and y are in different components of H. □

Lemma 3.5. Let G be a thin connected graph. Then the set of adjacent vertices v and w with $|S_w(w)| = 1$ and $|S_v(v)| = 1$ induces one connected subgraph H of G, i.e. the backbone $B(G)$ induces a connected subgraph H of G.

Proof. Assume H consists of at least two connected component. Let C be any such connected component. From Lemma 3.4 we can conclude that the subgraph M of G induced by all vertices of edges (v, w) with $|S_w(w)| = 1$ or $|S_v(v)| = 1$ is connected. Hence, in M there is path $P = \{x = x_0, x_1, x_2, ..., x_{n-1}, x_n = y\}$ from $x \in C$ to $y \in C'$, where C' is any other connected component.

W.l.o.g., we may assume that $P \cap V(C) = \{x\}$. (Otherwise we replace P by $\{x_m, x_{m+1}, ..., x_n = y\}$, where $m = \max\{i \mid x_i \in P \cap V(C)\}$.) This implies that x_1 is not in $B(G)$. But then x_2 must be in a component $C'' \neq C$ from $B(G)$, since every edge in M contains at least one vertex which is in $B(G)$.

Notice that neither x nor x_2 are in $S_{x_1}(x_1)$, otherwise $(x, x_2) \in E(G)$ and C and C'' would be connected. By Lemma 3.1 we can choose a $z \in S_{x_1}(x_1), z \neq x, x_2$ with $|S_z(z)| = 1$. Thus C and C'' are connected. Contradiction. □

From Lemma 3.3 and Lemma 3.5 we can directly infer Theorem 2.13. Notice that if G is thin and $|B(G)| > 1$, then every vertex has an adjacent vertex that is
in the backbone. Clearly this is not true whenever $|\mathbb{B}(G)| = 1$, as the example in Figure 6 shows.

Lemma 3.6. Let G be a thin graph with a backbone consisting of a single vertex $\mathbb{B}(G) = \{v\}$. Then $|S_v(w)| = 1$ for all $w \in V(G)$.

Proof. Theorem 2.13 implies that $\langle N[v]\rangle \simeq G$ and thus $S_v(w) = S_G(w)$ for all $w \in V(G)$. Since G is thin every S class in G is trivial and therefore also in $\langle N[v]\rangle$. □

The backbone vertices play a special role in our approach. First we observe that all Cartesian edges (x, y) that have a vertex which is contained in the backbone satisfy the $S1$-condition. Furthermore, we will show next that it suffices to consider only induced neighborhoods of backbone vertices to find all Cartesian edges that satisfy the $S1$-condition.

Lemma 3.7. Let G be a thin graph and (x, y) an arbitrary edge in $E(G)$. If there exists a vertex $z' \in N[x] \cap N[y]$ with $|S_{z'}(x)| = 1$ then there exists even a vertex $z \in N[x] \cap N[y]$ with the following properties:

$z \in \mathbb{B}(G)$ and $|S_z(x)| = 1$.

Proof. If $z' \notin \mathbb{B}(G)$ there is nothing to show.

Now suppose $|S_{z'}(z')| > 1$. By Lemma 3.1 we can choose a vertex $z \in S_{z'}(z')$ with $|S_z(z)| = 1$. Since $z \in S_{z'}(z')$, we can conclude that $N[z'] \subset N[z]$ and thus $x, y \in N[z]$ and therefore $z \in N[x] \cap N[y]$. It remains to show that $|S_z(x)| = 1$. Assume $|S_z(x)| > 1$ then there is a vertex $w \in S_z(x)$ different from x. The definition of $S_z(x)$ implies $N[w] \cap N[z] = N[z] \cap N[z']$, which implies that $w \in N[z']$, since $z' \in N[x] \cap N[z]$. Moreover we can conclude

$$N[w] \cap N[z] \cap N[z'] = N[x] \cap N[z] \cap N[z']. \quad (3.1)$$
Since $N[z'] \subset N[z]$, we can cancel the intersection with $N[z]$ in equation 3.1 to obtain

$$N[w] \cap N[z'] = N[x] \cap N[z']. $$

But then $w \in S_{z'}(x)$ and thus $|S_{z'}(x)| > 1$, contradicting $|S_{z'}(x)| = 1$. Hence $|S_z(x)| = 1$.

Lemma 3.8. Let $(x, y) \in E(G)$ be an arbitrary edge in a thin graph G such that $|S_z(x)| > 1$. Then there exists a vertex $z \in B(G)$ s.t. $z \in N[x] \cap N[y]$.

Proof. Since $|S_z(x)| > 1$ and by applying Lemma 3.1 we can choose a vertex $z \in S_z(x)$ with $z \in B(G)$. Since $z \in S_z(x)$ it holds $N[x] \subset N[z]$ and hence $y \in N[z]$, and the claim follows. □

Corollary 3.9. Let G be a thin graph and (x, y) an arbitrary edge in $E(G)$ that does not satisfy the S1-condition. Then there exists a vertex $z \in B(G)$ s.t. $z \in N[x] \cap N[y]$, i.e. the edges (z, x) and (z, y) satisfy the S1-condition.

4. Determining the prime factors of $G \in \Upsilon$ in quasi-linear time

In this section we will first show that it is possible to determine all (Cartesian) edges of a G^r_i-fiber, whenever one edge of this G^r_i-fiber satisfies the S1-condition. Then we will explain how we can color such fibers in a way that all edges of a particular G^r_i-fiber receive the same color, restricted to the fact that $x \in B(G)$. The general case will be treated in Section 5. Moreover we will give an algorithm that determines the prime factors of a given graph $G \in \Upsilon$ in quasi-linear time in the number of vertices of G.

4.1. Determining Cartesian edges

First we will prove the following. If at least one edge of a fiber G^r_i satisfies the S1-condition in G, then all vertices contained in G^r_i have an endpoint in an edge $e \in E(G^r_i)$ that satisfies the S1-condition. In practice, this means that we can mark all edges of the subgraph G^r_i as Cartesian if at least one edge of G^r_i satisfies the S1-condition provided that the corresponding product graph G is thin.

Lemma 4.1. Let $G = \mathcal{S}^n_{j=1}G_j$ be the strong product of thin graphs and $(x, y) \in E(G)$ be a Cartesian edge, where x and y differ in coordinate i. Moreover let (x, y) satisfy the S1-condition. Then for all edges $(a, b) \in E(G^r_i)$ at least one of the following statements is true:

1. (a, b) satisfies the S1-condition.
2. There are edges $(\tilde{z}, a), (\tilde{z}, b) \in E(G^r_i)$ that satisfy the S1-condition.

In this case, knowing that $(\tilde{z}, a), (\tilde{z}, b)$ belong to G^r_i implies that (a, b) is necessarily also an edge of G^r_i.

Furthermore, the vertices incident with edges of G^r_i that satisfy the S1-condition induce a single connected subgraph $H \subseteq G^r_i$.
Proof. By associativity and commutativity of the strong product it suffices to show this for the product $G = G_1 \boxtimes G_2$ of two thin (not necessarily prime) graphs. Notice that $G_i^x = G_i^y$, since x and y differ only in coordinate i. Furthermore let (x_1, x_2) denote the coordinates of x. The notion of the coordinates of a, b, and y is analogous. W.l.o.g. assume $i = 2$ and $|S_2(x)| = 1$ with $z = (z_1, z_2) \in N[x] \cap N[y]$. Corollary 2.8 implies $|S_{z_1}(x_1)| = 1$ and $|S_{z_2}(x_2)| = 1$. The idea of the rest of the proof is to shift properties of (a_2, b_2), the projection of (a, b) into the factor G_2, to (a, b).

Case (a) (a_2, b_2) satisfies the $S1$-condition in G_2. Then we may assume w.l.o.g. that there is a $v_2 \in G_2$ with $|S_{v_2}(a_2)| = 1$ and $a_2, b_2 \in N[v_2]$. Since $x_1 = a_1$, Corollary 2.8 implies $|S_{x_1}(v_2)| = 1$. Lemma 2.1 shows that $a, b \in N[(z_1, v_2)]$. This means (a, b) satisfies the $S1$-condition.

Case (b) (a_2, b_2) does not satisfy the $S1$-condition in G_2. Then Corollary 3.9 implies the existence of a vertex $v_2 \in G_2$ such that both (v_2, a_2) and (v_2, b_2) satisfy the $S1$-condition in G_2. Case (a) shows that $((a_1, v_2), a)$ and $((a_1, v_2), b)$ satisfy the $S1$-condition.

Since $B(G_2)$ is a connected dominating set for G_2, the subgraph of G_2 induced by all vertices of edges that satisfy the $S1$-condition in G_2 is connected. Since we can shift every edge that satisfies the $S1$-condition in G_2 to an edge that satisfies the $S1$-condition in G_i^x, H is connected.

From Lemma 3.7 and 4.1 we can directly conclude that Theorem 2.14 holds.

Clearly, we can identify at least one edge of each prime factor that belongs to the backbone of G, even if the local decomposition is finer than the global one. In the case of locally unrefined graphs $G \in T$, however, we can do much more: Once we have found an edge (x, y) of a G_i^x-fiber that satisfies the $S1$-condition we can identify all edges of that G_i^x-fiber as Cartesian.

It remains to show how we can identify edges not only as Cartesian but also as belonging to a fiber of a particular factor G_i. In the next subsection we will explain how this works.

4.2. Identify colors of G_i^x-fibers with $x \in B(G)$

In this subsection we will show how to color a G_i^x-fiber of a given product graph $G \in T$ with $x \in B(G)$ in a way that all edges of the G_i^x-fiber receive the same color. For this we will need several definitions that are quite similar to those ones in [4]. Here, we will restrict the constructions to individual G_i^x-fibers, however.

Definition 4.2. A product coloring of a graph $G = \boxtimes_{i=1}^n G_i$ is a mapping F_G from a subset E' of the set of Cartesian edges of G into a set $C = \{1, \ldots, n\}$ of colors, such that all edges in a G_i-fibers receive the same color.

Let G_i^x be a fiber of an arbitrary factor G_i of G. An (x, j)-partial product coloring (x, j)-PPC of a graph $G = \boxtimes_{i=1}^n G_i$ is a mapping F_G from a subset E' of the set of Cartesian edges of G into a set C of colors, such that all edges in this particular G_i^x-fiber receive the same color.
Definition 4.3. Let $H_1, H_2 \subset G$ and F_{H_2} be a (x, j)-PPC of H_1. Then F_{H_2} is a
(x, j)-color continuation of F_{H_1} if there is a color c in the image of F_{H_2} such that
there is an edge of the G_j^*-fiber that satisfies the $S1$-condition in H_2 with color c
that is also in the domain of F_{H_1} and satisfies the $S1$-condition in H_1. More formally:
\[\exists \text{ edge } e \in \text{Dom}(F_{H_1}) \cap \text{Dom}(F_{H_2}) \cap E(G_j^*)\]
that satisfies the $S1$-condition in both H_1 and H_2.
The combined (x, j)-PPC on $H_1 \cup H_2$ uses the color of F_{H_1} on H_1 and colors all
edges f of H_2 with $F_{H_2}(f) = c$ with the color $F_{H_1}(c)$.

Definition 4.4. A finite sequence $\sigma(x, j) = (v_i)_{i=0}^k$ of vertices of G is a (x, j)-covering
sequence if
1. for all $v \in V(G_j^*)$ there exists a vertex $w \in \sigma(x, j)$ with $v \in N[w]$ and
2. for all $i > 0$ every PPC of $\langle N[v_{i+1}] \rangle$ is a (x, j)-color continuation of the
combined (x, j)-coloring of $\bigcup_{i=1}^k E(\langle N[v_i] \rangle)$ defined by the (x, j)-PPC of each
$\langle N[v_i] \rangle$.

We call a (x, j)-covering sequence simply covering sequence if there is no risk of confusion.

In order to construct a proper covering sequence we introduce an ordering of the vertices $V = \{w_0, \ldots, w_{n-1}\}$ of G by means of breadth-first search: Select an arbitrary vertex $v \in V$ and create a sorted list $BFS(v)$ of vertices beginning with v; append all neighbors $v_1, \ldots, v_d(v)$ of v; then append all neighbors of v_1 that are
not already in this list; continue recursively with v_2, v_3, \ldots until all vertices of V
are processed. In this way we build levels where each v in level i is adjacent to some vertex w in level $i - 1$ and vertices u in level $i + 1$. We then call the vertex w the parent of v, denoted by $\text{parent}(v)$, and vertex v a child of w.

In our approach we will use this search algorithm in a slightly modified way. Let $v \in B(G)$ be the starting vertex. We then decompose the neighborhood of v w.r.t. to its strong prime factor decomposition. Then we fix one color c of one
fiber, say G_i^*, and append only those neighbors v_j of v to the current list $BFS(v)$ if
1. they are not already in this list and
2. $v_j \in B(G)$ and
3. the edge (v, v_j) has the color c of the corresponding G_i^*-fiber.
This will be done recursively for the remaining vertices w fixing the color in each
neighborhood $\langle N[w] \rangle$ of the underlying G_i^*-fiber. Therefore, $BFS(v)$ is a sorted
BFS-list on the vertex set $B(G) \cap V(G_i^*)$.

First we show that in a prime graph $G \in \Upsilon$ such a $BFS(x)$ ordering on the
vertices of $B(G)$ leads to a $(x, 1)$-covering sequence of G.

Lemma 4.5. Let $G \in \Upsilon$ be prime and let x be an arbitrary vertex of the backbone
$B(G) = \{w_1, \ldots, w_m\}$. Then $BFS(x)$ on the vertices of $B(G)$ is a $(x, 1)$-covering
sequence.
Proof. By Theorem 2.13 holds that for all \(v \in V(G) \) there is a vertex \(w \in BFS(x) \) such that \(v \in N[w] \). Thus item (1) of Definition 4.4 is fulfilled.

Notice that \(|PF(N[v])| = 1 \) for all \(v \in BFS(x) \) since \(G \in \Upsilon \). Thus all edges in such \(\langle N[v] \rangle \) are Cartesian and get exactly one color.

Now, take two arbitrary consecutive vertices \(v_i, v_{i+1} \) from \(BFS(x) \). If \(v_i \) and \(v_{i+1} \) are adjacent then \(v_{i+1} \) is a child of \(v_i \), and the edge \((v_i, v_{i+1})\) satisfies the \(S_1 \)-condition in \(\langle N[v_i] \rangle \) as well as in \(\langle N[v_{i+1}] \rangle \), since \(v_i, v_{i+1} \in \mathbb{B}(G) \). Therefore the edge \((v_i, v_{i+1})\) is colored in the neighborhoods of both adjacent vertices and we get a proper \((x, 1)\)-color continuation from \(\langle N[x] \rangle \cup \bigcup_{i=1}^{\infty} \langle N[v_i] \rangle \) to \(\langle N[v_{i+1}] \rangle \).

If \(v_i \) and \(v_{i+1} \) are not adjacent (thus \(v_i \neq x \)) then there must be parents \(u, w \in BFS(x) \) of \(v_i \) and \(v_{i+1} \), resp. and we can apply the latter argument. Therefore \(BFS(x) \) is a proper \((x, 1)\)-covering sequence.

We will now directly transfer that knowledge to (non prime) product graphs. For this we will introduce in Algorithm 1 how to get a proper coloring on all \(G_i^x \)-fiber with \(x \in \mathbb{B}(G) \). The correctness is proved in the following lemma. Remind that \(\Upsilon_n \subset \Upsilon \) denotes the set of graphs \(G \in \Upsilon \) with \(|PF(G)| = n \).

Lemma 4.6. Let \(G \in \Upsilon_n \) and \(x \) be an arbitrary vertex of \(\mathbb{B}(G) \). Then Algorithm 1 properly colors all edges of each \(G_i^x \)-fiber for \(i = 1, \ldots, n \).

Proof. We show in the sequel that the \(BFS \) covering of vertices of \(\mathbb{B}(G) \cap V(G_i^x) \), i.e of vertices along Cartesian edges \((a, b)\) of \(G_i^x \) with \(a, b \in \mathbb{B}(G) \), leads to a proper \((x, i)\)-covering sequence.

First notice that for each \(x \in \mathbb{B}(G) \) holds \(|PF(N[x])| = |PF(G)| = n \), since \(G \in \Upsilon_n \). Moreover, all Cartesian edges \((v, w)\) with \(v, w \in \mathbb{B}(G) \cap V(G_i^x) \) satisfy the \(S_1 \)-condition and therefore can be determined as Cartesian, by applying Lemma 2.2 and Lemma 2.9. Hence, any such edge \((v, w)\) was properly colored both in \(\langle N[w] \rangle \) and in \(\langle N[v] \rangle \). Applying Theorem 2.3 leads to the requested PPC.

We show next that for all vertices \(y \in G_i^x \) there is a vertex \(w \in N[y] \) with \(w \in BFS(x) \), implying that item (1) of Definition 4.4 is fulfilled. Since \(\mathbb{B}(G_i) \) is a connected dominating set for factor \(G_i \) we can conclude that for all vertices \(y_i \in V(G_i) \) there is a vertex \(w_i \in N[y_i] \) such that \(w_i \in \mathbb{B}(G_i) \). Suppose that the coordinates for the chosen vertices \(x \) are \((x_1, \ldots, x_n)\). Then, \(w \in N[y] \) has coordinates \((x_1, \ldots, x_{i-1}, w_i, x_{i+1}, \ldots, x_n)\). Corollary 2.8 implies \(|S_{x_j}(x_j)| = 1 \) for \(j = 1, \ldots, n \). Furthermore, we have \(S_{x_j}(w) = \prod_{j=1}^{i-1} |S_{x_j}(x_j)| \cdot |S_{x_i}(w_i)| \cdot \prod_{j=i+1}^{n} |S_{x_j}(x_j)| = 1 \).

Thus \(w \in V(G_i^x) \cap \mathbb{B}(G) \) and therefore \(w \in BFS(x) \).

Moreover, since all those edges \((w, y)\) with \(y \notin \mathbb{B}(G) \) satisfy the \(S_1 \)-condition and the fact that \(G \in \Upsilon_n \), we can conclude that these edges are properly colored in the neighborhood \(\langle N[w] \rangle \). Therefore \(BFS(x) \) along vertices of \(\mathbb{B}(G) \cap V(G_i^x) \) constitutes a proper \((x, i)\)-covering sequence \(\sigma_{x,i} \).

Finally, consider Line 17 - 22 of the algorithm. Theorem 2.13 and Lemma 4.1 imply that the remaining edges \((y, y')\) of \(G_i^x \) that do not satisfy the \(S_1 \)-condition are induced by vertices of Cartesian edges \((z, y)\) and \((z, y')\) that do satisfy the \(S_1 \)-condition. As shown above, all those edges \((z, y)\) and \((z, y')\) are already colored.
Algorithm 1 Color G^*_j-fiber

1: **INPUT:** a thin graph $G \in \mathcal{T}_n$ and a vertex $x \in \mathcal{B}(G)$
2: factor $\langle N[x]/S \rangle$ and properly color the Cartesian edges in $\langle N[x] \rangle$ that satisfy the $S1$-condition with colors c_1, \ldots, c_n;
3: $L_i \leftarrow \emptyset$, $i = 1, \ldots, n$;
4: for $i = 1, \ldots, n$ do
5: mark x;
6: add all neighbors $v \in \mathcal{B}(G)$ of x with color c_i in list L_i in the order of their covering;
7: while $L_i \neq \emptyset$ do
8: take first vertex v from the front of L_i;
9: delete v from L_i;
10: if v is not marked then
11: mark v;
12: factor $\langle N[v]/S \rangle$ and properly color the Cartesian edges in $\langle N[v] \rangle$ that satisfy the $S1$-condition;
13: combine the colors on edge (parent(v), v);
14: add all neighbors $w \in \mathcal{B}(G)$ of v with color c_i to the end of list L_i in the order of their covering;
15: end if
16: end while
17: for all edges (v, w) that do not satisfy the $S1$-condition do
18: if there are edges (z, v) and (z, w) that have color c_i then
19: mark (v, w) as Cartesian and assign color c_i to (v, w);
20: \{Notice that these edges (z, v) and (z, w) satisfy the $S1$-condition\}
21: end if
22: end for
23: end for
24: **OUTPUT:** G with colored G^*_j-fiber, $j = 1, \ldots, n$;
25: \{Notice that every G^*_j-fiber is isomorphic to one prime factor of G\}

with the same color in some $\langle N[w] \rangle$ with $w \in V(G^*_j) \cap \mathcal{B}(G)$. It follows that we obtain a complete coloring in G^*_j.

This procedure is repeated independently for all colors c_i in $\langle N[x] \rangle$, $i = 1, \ldots, n$. This completes the proof. \qed

Lemma 4.7. Algorithm 1 determines the prime factors of a given graph $G = (V, E) \in \mathcal{T}$ with bounded maximum degree Δ in time complexity $O(|V| \cdot \log_2(\Delta) \cdot (\Delta)^6)$.

Proof. The time complexity of Algorithm 1 is determined by the complexity of the BFS search and the decomposition of each neighborhood in each step. Notice that the number of vertices of every neighborhood $N[v]$ is at most $\Delta + 1$.

Marc Hellmuth, Wilfried Imrich, Werner Klöckl and Peter F. Stadler
With the algorithm of Feigenbaum and Schäffer [3] it can be factored in \(O((\Delta + 1)^5)\) time. The number of colors is bounded by the number of factors in each neighborhood, which is at most \(\log_2(\Delta + 1)\). The BFS search takes at most \(O(|V| + |E|)\) time for each color. Since the number of edges in \(G\) is bounded by \(|V| \cdot \Delta\) we can conclude the the time complexity of the BFS search is \(O(|V| + |V| \cdot \Delta) = O(|V| \cdot \Delta)\). Thus we end in an overall time complexity of \(O((|V| \cdot \Delta) \cdot \log_2(\Delta + 1) \cdot (\Delta + 1)^3)\) which is \(O(|V| \cdot \log_2(\Delta) \cdot (\Delta)^9)\).

If \(G \in \Upsilon\), it is sufficient to use Algorithm 1 to identify a single \(G_i\text{-fiber}\) through exactly one vertex \(x \in \mathcal{B}(G)\) in order to determine the corresponding prime factor of \(G\). For \(G \in \Upsilon\) we would therefore be ready at this point. Finding a vertex that is in the backbone can be efficiently done and thus its cost can be ignored in the estimation of the complexity in Theorem 2.17 (see the proof of Lemma 5.8). Hence together with Lemma 4.6 and Lemma 4.7 we can directly conclude Theorem 2.17.

There is, however, no known sufficient condition to establish that \(G \in \Upsilon\), except of course by computing the PFD of \(G\). Moreover, as discussed in [4], it will be very helpful to determine as many identifiable fibers as possible for applications to approximate graph products. However, this task will be treated in Section 5.

5. Detection and product coloring of the Cartesian skeleton

As shown in the last section we can identify and even color \(G_i^{\sigma}\text{-fiber}\) that satisfy the \(S1\text{-condition}\) in a way that all edges of this fiber receive the same color, whenever \(x \in \mathcal{B}(G)\). We will generalize this result for all fibers that satisfy the \(S1\text{-condition}\) in Lemma 5.1. This provides that we get a big part of the Cartesian skeleton colored such that all edges of identified \(G_i^{\sigma}\text{-fibers}\) received the same color. Moreover we will show how to identify colors of different colored \(G_i\text{-fibers}\). Furthermore we introduce a “brute-force” method to determine Cartesian edges of fibers that do not satisfy the \(S1\text{-condition}\).

5.1. Identify colors of all \(G_i^{\sigma}\text{-fibers}\) that satisfy the \(S1\text{-condition}\)

Lemma 5.1. Let \(G \in \Upsilon_n\) and \(G_i^y\) with \(y \notin \mathcal{B}(G)\) be an arbitrary fiber that satisfies the \(S1\text{-condition}\). Let \(z \in \mathcal{B}(G)\) such that \(|S_z(a)| = 1\) or \(|S_z(b)| = 1\) for some edge \((a, b) \in G_i^y\). Then the \((z, i)\text{-covering sequence} \sigma_{z,i}\) is also a \((y, i)\text{-covering sequence}\).

Proof. The existence of such a vertex \(z\) follows directly from Lemma 3.7. W.l.o.g. let \(|S_z(a)| = 1\), otherwise switch the labels of vertices \(a\) and \(b\). If \(G_i^y = G_i^z\) then the assumption follows directly from Lemma 4.6. Thus we can assume that \(G_i^y \neq G_i^z\).

W.l.o.g. let vertex \(z\) have coordinates \((z_1, \ldots, z_i, \ldots, z_n)\) and vertex \(a\) have coordinates \((a_1, \ldots, a_i, \ldots, a_n)\). In the following \(\hat{z}\) will denote the vertex in \(G_i^y\) with coordinates \(\hat{z}_j = a_j\) for \(j \neq i\) and \(\hat{z}_i = z_i\), in short with coordinates \((a_1, \ldots, z_i, \ldots, a_n)\). Thus we can infer that \(G_i^z = G_i^y\). For the sake of convenience we will denote all vertices with coordinates \((z_1, w_i, \ldots, z_n)\) and
Figure 7. The Backbone is depicted as dashed line. Starting with some vertex $x \in \mathcal{B}(G)$ we go along backbone vertices of G with fixed color, i.e. we apply the BFS algorithm only on vertices $\mathcal{B}(G) \cap G^x_i$ for all i. Applying Lemma 4.6, 5.1 and 5.2 we can color all G_i-fibers that satisfy the $S1$-condition.

$(a_1, \ldots, w_i, \ldots, a_n)$ with w and \hat{w}, respectively. Remark that w and \hat{w} are adjacent, by choice of their coordinates and by definition of the strong product.

Moreover, since $a \in N[z]$ and because of the coordinates of the vertices $\hat{u}, \hat{w} \in G^z_i$ we can infer that $\hat{u} \in N[w]$ holds for all vertices $\hat{u} \in N[\hat{w}]$ by definition of the strong product. More formally, $N[\hat{w}] \cap V(G^z_i) \subseteq N[w]$, see Figure 8.

Figure 8. $N[\hat{w}] \cap V(G^z_i) \subseteq N[w]$
Thus for all such vertices \(\hat{w} \) holds
\[
|S_w(\hat{w})| = \prod_{j=1}^{i-1} |S_{z_i}(a_j)| \cdot |S_{w_i}(w_i)| \cdot \prod_{j=i+1}^n |S_{z_i}(a_j)| = 1,
\]
by applying Corollary 2.8 again. Hence all edges \((\hat{u}, \hat{w}) \in E((N[\hat{w}]) \cap E(G_i^y))\) satisfy the \textit{S1-condition} in the closed induced neighborhood of the vertex \(w \), since \(N[\hat{w}] \cap V(G_i^y) \subseteq N[w] \). Moreover since \(\mathcal{B}(G_i) \) is a connected dominating set we can infer that item (1) of Definition 4.4 is fulfilled.

It remains to show that we also get a proper color continuation. The main challenge now is to show that for all vertices \((\text{parent}(v), v)\) contained in \(BFS(z)\) there is an edge \((a, b) \in G_i^y\) that satisfies the \textit{S1-condition} in both \((N[\text{parent}(v)])\) and \((N[v])\). This implies that we can continue the color of the \(G_i^y\)-fiber on that edge \((a, b)\).

Therefore, let \(\hat{v} \) and \(\hat{w} \) be any two adjacent vertices of \(G_i^y \) with coordinates as mentioned above such that \(v_i, w_i \in \mathcal{B}(G_i) \). Thus by choice of the coordinates \(v \) and \(w \) are adjacent vertices such that \(|S_v(v)| = |S_v(w)| = 1 \) and hence \(v, w \in BFS(z) \). As shown above \(|S_v(\hat{v})| = 1 \) and \(|S_v(\hat{w})| = 1 \). Therefore the edge \((\hat{v}, \hat{w})\) satisfies the \textit{S1-condition} in both \((N[v])\) and \((N[w])\), since \(N[\hat{v}] \cap V(G_i^y) \subseteq N[v] \) and \(N[\hat{w}] \cap V(G_i^y) \subseteq N[w] \). The connectedness of \(\mathcal{B}(G_i) \) and \(G \in \Upsilon_n \) implies that any such edge is properly colored with \(c \) by means of the color continuation. Since \(\mathcal{B}(G_i) \) is also a dominating set it holds that all vertices \(\hat{u} \) with \(|S_v(\hat{u})| > 1 \) have an adjacent vertex \(\hat{w} \) with \(|S_v(\hat{w})| = 1 \). Since \(N[\hat{w}] \cap V(G_i^y) \subseteq N[w] \), we can infer that \(\hat{u} \in N[w] \) and therefore all these edges satisfy the \textit{S1-condition} and are colored with \(c \). Hence, property (2) of Definition 4.4 is satisfied.

\[\Box\]

Lemma 5.2. Let \(G \in \Upsilon_n \) and \(G_i^y \) with \(y \notin \mathcal{B}(G) \) be an arbitrary fiber that satisfies the \textit{S1-condition}. Furthermore let \(z \in \mathcal{B}(G) \) with \(|S_z(a)| = 1 \) or \(|S_z(b)| = 1 \) for some edge \((a, b) \in G_i^y\). Then Algorithm 1 properly colors all edges of each such \(G_i^y\)-fiber with vertex \(z \) as an input vertex.

Proof. Lemma 3.7 implies that there is a \(z \in \mathcal{B}(G) \) such that \(|S_z(a)| = 1 \) or \(|S_z(b)| = 1 \) for some edge \((a, b) \in G_i^y\). As shown in Lemma 5.1 each such \(G_i^y\)-fiber that satisfies the \textit{S1-condition} with \(y \notin \mathcal{B}(G) \) can be covered and colored via the corresponding \((z, i)\)-covering sequence \(\sigma_{z,i} \). By the way since \(G \in \Upsilon_n \) and Theorem 2.3 we can directly color all edges of \(G_i^y \) with the same color \(c \) as the \(G_i^y\)-fiber. Furthermore applying Lemma 4.1 all remaining edges of \((a, b) \in E(G_i^y)\) are induced by vertices of Cartesian edges \((a, \hat{z}), (b, \hat{z}) \in E(G_i^y)\) which are satisfying the \textit{S1-condition} and thus already colored with color \(c \). Thus all these edges \((a, b)\) must be Cartesian edges of \(G_i^y \) (by definition of the strong product) and thus also obtain color \(c \).

\[\Box\]

5.2. Identification of parallel fibers

As shown in the last subsection we are able to identify all edges of a \(G_i^y\)-fiber that satisfies the \textit{S1-condition} as Cartesian in such a way that all these edges in \(G_i^y \) get
same color. An example of the colored Cartesian edges of a product graph after coloring all horizontal fibers that satisfy the \textit{S1-condition} is shown in Figure 9.

![Figure 9. Cartesian skeleton of the strong product graph, which has factors induced by one thick and one dashed colored component. Application of Algorithm 1 identifies Cartesian edges in three distinct color classes indicated by thick lines and the two types of dashed lines. The edges drawn as thin lines are not identified as Cartesian because they do not satisfy the \textit{S1-condition}. The backbone of \(G \) consists of the vertices \(x \) and \(y \).](image)

It remains to show how we can identify colors of different colored \(G_i \)-fibers. For this the next lemma is crucial.

Lemma 5.3 (Square Lemma [6]). Let \(G \) be a Cartesian product. If \(e \) and \(f \) are incident edges of different fibers, then there exists exactly one square without diagonals that contains \(e \) and \(f \).

Furthermore any two opposite edges of a diagonal-free square are edges from copies of one and the same factor.

In the following, we investigate how we can find the necessary squares and under which conditions we can identify colors of differently colored fibers that belong to one and the same factor.

Before stating the next lemma, we explain its practical relevance. Let \(G = \bigboxtimes_{i=1}^{n} G_i \in \mathcal{Y} \) be a strong product graph. In this case, different fibers for the same factor may be colored differently, see Figure 9 for an example. We will show that in this case there is a square of Cartesian edges containing one Cartesian edge of each of the fibers \(G^a_i \) and \(G^x_i \), if these fibers are connected by an arbitrary Cartesian edge of some \(G_j \)-fiber. The other two Cartesian edges then belong to two distinct \(G_j \)-fibers \(G^A_j \) and \(G^B_j \), both of which satisfy the \textit{S1-condition}. The existence of such a square implies that \(G^a_i \) and \(G^x_i \) are copies of the same factor. Thus we can identify the fibers that belong to the same factor after computing a
proper horizontal fiber coloring as explained in previous subsection. Moreover we will show in Lemma 5.5 that all parallel fibers that satisfy the S1-condition are connected by path of Cartesian edges. This provides that we can color all G_i-fibers with the same color applying Lemma 5.3 and 5.4.

Lemma 5.4. Let \(G = \bigotimes_{i=1}^n G_i \) be the strong product of thin graphs. Let there be two different fiber \(G_i^a \) and \(G_i^b \) that satisfy the S1-condition. Furthermore let there exist an index \(j \in \{1, \ldots, n\} \) s.t. \((p_j(a), p_j(x)) \in E(G_j) \) and \(p_k(a) = p_k(x) \) for all \(k \neq i, j \). Then there is a square \(A\bar{A}BB \) in G with

1. \((A, \bar{A}) \in E(G_i^a) \) and \((B, \bar{B}) \in E(G_i^b) \) and
2. \((A, B) \in E(G_j^a) \) and \((\bar{A}, \bar{B}) \in E(G_j^b) \), whereby \(G_j^a \neq G_j^b \) and at least one edge of \(G_j^a \) and at least one edge of \(G_j^b \) satisfies the S1-condition.

Proof. Since the strong product is commutative and associative it suffices to show this for the product \(G = G_1 \boxtimes G_2 \boxtimes G_3 \) of thin (not necessarily prime) graphs. W.l.o.g. choose \(i = 1, j = 2 \) and \(k = 3 \). W.l.o.g., let \(x \) have coordinates \((x_1, x_2, x_3) \) and \(a \) have coordinates \((a_1, a_2, x_3) \). Now we have to distinguish the following cases for the three different graphs.

Before we proceed we fix a particular notation for the coordinates of certain vertices and edges, which we will maintain throughout the rest of the proof.

- For \(G_1 \):
 1. \(|\mathcal{B}(G_1)| > 1 \), i.e. there is an edge \((v_1, \hat{v}_1) \in E(G_1) \) with \(v_1, \hat{v}_1 \in \mathcal{B}(G) \) and
 2. not (1): \(|\mathcal{B}(G_1)| = |\{v_1\}| = 1 \).

- For \(G_2 \):
 A. the edge \((a_2, x_2)\) satisfies the S1-condition in \(G_2 \)
 B. not (A).

Notice that in case (A) there is by definition a vertex \(z_2 \in N[a_2] \cap N[x_2] \) with \(|S_{z_2}(a_2)| = 1| \) or \(|S_{z_2}(x_2)| = 1\). In the following we will assume w.l.o.g. that in this case \(|S_{z_2}(x_2)| = 1\).

Case (B) implies that \(|S_{z_2}(x_2)| > 1\). By Theorem 2.13 we can conclude that there is a vertex \(\hat{x}_2 \in N[x_2] \) with \(|S_{\hat{x}_2}(z_2)| = 1\), which implies that the edge \((x_2, \hat{x}_2)\) satisfies the S1-condition in \(G_2 \).

- For \(G_3 \):
 i. \(x_3 \in \mathcal{B}(G_3) \)
 ii. not (i): \(x_3 \notin \mathcal{B}(G_3) \).

For the sake of convenience define \(\hat{p}_3 = x_3 \) if we have case (i). In case (ii) let \(\hat{p}_3 = z_3 \) with \(z_3 \in N[x_3] \) s.t. \(|S_{z_3}(x_3)| = 1\). Notice that such a vertex \(z_3 \) has to exist in \(G_3 \), since otherwise \(|S_{z_3}(x_3)| > 1\) for all \(z_3 \in N[x_3] \). But then for all \(z, x \in V(G) \) with \(z \in N[x] \) with coordinates \(z = (\ldots, z_3) \) and \(x = (\ldots, x_3) \), resp., holds \(|S_z(x)| = \prod_{i=1}^n |S_{z_i}(x_i)| > 1\). Hence none of the edges of \(G^n_3 \) and \(G^3_i \) satisfies the S1-condition, contradicting the assumption. However, notice that \(\hat{p}_3 \) is chosen such that \(|S_{\hat{p}_3}(x_3)| = 1\).
In all cases we will choose the coordinates of the vertices of the square $A\hat{A}\hat{B}B$ as follows: $A = (v_1, x_2, x_3)$, $B = (v_1, a_2, x_3)$ with $v_1 \in B(G_1)$ and $\hat{A} = (\hat{v}_1, x_2, x_3)$, $\hat{B} = (\hat{v}_1, a_2, x_3)$, $v_1 \neq \hat{v}_1$. By choice holds $(A, \hat{A}) \in G^a_1$, $(B, \hat{B}) \in E(G^a_1)$, $(A, B) \in G^A_2$ and $(\hat{A}, \hat{B}) \in E(G^A_2)$ whereby $G^A_2 \neq G^b_2$, see Figure 10.

\[G^A_1 \quad G^a_1 \]
\[G^A_2 \quad G^a_2 \]
\[A = (v_1, x_2, x_3) \quad B = (v_1, a_2, x_3) \]
\[\hat{A} = (\hat{v}_1, x_2, x_3) \quad \hat{B} = (\hat{v}_1, a_2, x_3) \]

Figure 10. General notation of the chosen square $A\hat{A}\hat{B}B$.

It remains to show that at least one edge of both fibers G^A_2 and G^a_2 satisfies the $S1$-condition. This part of the proof will become very technical. In Figure 11 and 12 the ideas of the proofs are depicted.

Cases 1.A.i and 1.A.ii:
Let $v_1, \hat{v}_1 \in B(G_1)$ with $(v_1, \hat{v}_1) \in E(G_1)$. Let $z_2 \in N[x_2]$ with $|S_{z_2}(x_2)| = 1$ in G_2. Choose $z \in V(G)$ with coordinates (v_1, z_2, \tilde{p}_3).

By definition of the strong product the edges (z, A) and (z, B) do exist in G and therefore $z \in N[A] \cap N[B]$. Moreover Corollary 2.8 implies that $|S_z(A)| = 1$. Therefore the edge (A, B) is satisfying the $S1$-condition in G in both cases (i) and (ii).

The same argument holds for the edge (\hat{A}, \hat{B}) by choosing $z \in V(G)$ with coordinates $(\hat{v}_1, z_2, \tilde{p}_3)$.

Case 1.B.i and 1.B.ii:
Let $v_1, \hat{v}_1 \in B(G_1)$ with $(v_1, \hat{v}_1) \in E(G_1)$ and let $\tilde{x}_2 \in N[x_2]$ with $|S_{\tilde{x}_2}(\tilde{x}_2)| = 1$. Choose $z \in V(G)$ with coordinates $(v_1, \tilde{x}_2, \tilde{p}_3)$. By definition of the strong product holds that $(z, A) \in E(G)$.

In case (i) we can conclude from Corollary 2.8 that $|S_z(z)| = 1$. Moreover in case (i) holds by definition of the strong product that $(z, A) \in G^A_2$ and we are ready.
Otherwise in case (ii) choose the vertex C with coordinates \((v_1, \tilde{x}_2, x_3)\). Then \(z \in N[A] \cap N[C] \) and \(|S_z(C)| = 1\). Since \((A, C) \in G_2^A\) the assumption for \(G_2^A\) follows.

The same arguments hold for \(G_2^A\) by choosing \(z \in V(G)\) with coordinates \((\hat{v}_1, \tilde{x}_2, \tilde{p}_3)\) and \(C\) with coordinates \((\hat{v}_1, \tilde{x}_2, x_3)\).

Cases 2.A.i and 2.A.ii:

Figure 11. Left: Case 1.A.i. and ii. Right: Case 1.B.i. and ii.

Figure 12. Left: Case 2.A.i. and ii.. Right: Case 2.B.i. and ii.
Let \(v_1 \in B(G_1) \) and \(\hat{v}_1 \in N[v_1] \). Let \(z_2 \in N[x_2] \cap N[a_2] \) with \(|S_{z_2}(x_2)| = 1 \) in \(G_2 \).

Choose \(z \in V(G) \) with coordinates \((v_1, z_2, p_3)\).

In order to show that the conditions are fulfilled for \(G^4_2 \) we proceed as in cases in (1.A.i) and (1.A.ii):

By definition of the strong product there are non-Cartesian edges \((z, \hat{A})\) and \((z, \hat{B})\) and thus \(z \in N[\hat{A}] \cap N[\hat{B}] \). Now, Lemma 3.6 implies that \(|S_{v_1}(\hat{v}_1)| = 1 \) and therefore by applying Corollary 2.8 we can conclude that \(|S_z(\hat{A})| = 1 \), and the assumption follows for \(G^4_2 \).

Case 2.B.i and 2.B.ii:

Let \(v_1 \in B(G_1) \) and \(\hat{v}_1 \in N[v_1] \). Let \(\tilde{x}_2 \in N[x_2] \) with \(|S_{\tilde{x}_2}(\tilde{x}_2)| = 1 \) Choose \(z \in V(G) \) with coordinates \((v_1, \tilde{x}_2, p_3)\).

That the conditions are fulfilled for \(G^4_2 \) is shown analogously, as in cases in (1.B.i) and (1.B.ii).

To show that the conditions are also fulfilled in case (2.B.i) and (2.B.ii) for \(G^4_2 \) choose \(z \in V(G) \) with coordinates \((v_1, \tilde{x}_2, p_3)\) and a vertex \(C \) with coordinates \((\tilde{v}_1, \tilde{x}_2, p_3)\). Clearly \((\hat{A}, \widehat{C}) \in E(G^4_2)\). Furthermore, by definition of the strong product, \(z \in N[\hat{A}] \) and \(z \in N[\widehat{C}] \), and thus \(z \in N[\hat{A}] \cap N[\widehat{C}] \). By applying Corollary 2.8 we now conclude that \(|S_{v_1}(\hat{v}_1)| = 1 \), using that Lemma 3.6 implies \(|S_{v_1}(\hat{v}_1)| = 1 \).

Thus the edge \((\hat{A}, \widehat{C})\) satisfies the S1-condition, and the assumption follows for \(G^4_2 \).

It is important to notice that the square \(\hat{A}\hat{A}BB \) in the construction of Lemma 5.3 is composed exclusively of Cartesian edges. The lemma can therefore be applied to determine whether two fibers \(G^7_i \) and \(G^7_j \), which have been colored differently in the initial steps, are copies of the same factor, and hence, whether their colors need to be identified. As we shall see below, this approach is in fact sufficient to identify all fibers belonging to a common factor.

Lemma 5.5. Let \(G = \boxtimes_{j=1}^{n} G_j \) be the strong product of thin graphs. Furthermore let \(G^7_i^0, \ldots, G^7_i^{m} \) be all \(G_i \)-fibers in \(G \) satisfying the S1-condition. Then there is a connected path \(\mathcal{P} \) in \(G \) consisting only of vertices of \(X = \{x_1, \ldots, x_m\} \) with \(x_j \in V(G^7_i^k) \) s.t. each edge \((x_k, x_l) \in \mathcal{P} \) is Cartesian.

Proof. Since the strong product is commutative and associative it suffices to show this for the product \(G = G_1 \boxtimes G_2 \) of two thin (not necessarily prime) graphs. W.l.o.g. let \(i = 1 \). Moreover, we can choose w.l.o.g. the vertices \(x_1, \ldots, x_m \) such that \(p_1(x_k) = x \) for \(k = 1, \ldots, m \). Moreover by applying Theorem 2.13 we can choose \(x \) such that \(x \in B(G_1) \).

Consider first all vertices \(v \) with coordinates \((x, v_2)\) such that \(v_2 \in B(G_2) \). From Theorem 2.13 follows that \(B(G_2) \) is connected. Thus there is connected path \(\mathcal{P}_2 \) consisting only of such vertices \(v \). Moreover each edge \((a, b) \in V(\mathcal{P}_2) \) and thus with coordinates \((x, a_2)\) and \((x, b_2)\), resp., is Cartesian. Furthermore all corresponding \(G_i^7 \)-fibers are satisfying the S1-condition, since for each edge \((v, w) \) holds \(|S_{v_i}(v)| = 1 \), by applying Corollary 2.8. Therefore all vertices \(v \) with
coordinates \((x, v_2)\) with \(v_2 \in B(G_2)\) are also contained in \(X\). Hence all those \(G_i^v\)-fibers are connected by such a path \(P_2\) with \(V(P_2) \subset X\).

Let now \(\tilde{v}\) be any vertex in \(X \setminus V(P_2)\). Hence \(p_2(\tilde{v}) \notin B(G_2)\). Theorem 2.13 implies that for all those vertices \(p_2(\tilde{v}) \notin B(G_2)\) there is an adjacent vertex \(p_2(v)\) in \(G_2\) s.t. \(p_2(v) \in B(G_2)\). Thus we can conclude that for all vertices \(\tilde{v} \in X \setminus V(P_2)\) with coordinates \((x, p_2(\tilde{v}))\) there is an adjacent vertex \(v \in V(P_2)\) with coordinates \((x, p_2(v))\), from what the assumption follows. \(\square\)

5.3. Detection of unidentified Cartesian edges

One question still remains open: How can we identify a Cartesian \((x, y)\) edge that does not satisfy the \(S_1\)-condition, i.e., if for all \(z \in N[x] \cap N[y]\), we have both \(|S_z(x)| > 1\) and \(|S_z(y)| > 1\)? Figures 13 and 14 show examples of product graphs, in which not all fibers were determined by the approach outline in the previous two sections.

![Figure 13. Cartesian Skeleton of the strong product \(G\) of two prime factors induced by the dashed and bold lined fibers. Application of Algorithm 1 to all fibers determines a part of the Cartesian Skeleton \(H\) that consists only of the edges drawn as dashed or bold lines. While the bold and dashed fibers identify the true factors, we miss the copies shown by thin lines. None of these edges satisfies the \(S1\)-condition in an induced 1-neighborhood. The backbone \(B(G)\) consists of the vertices 0, 1, 2 and 3.](image)

Unfortunately, we do not see an efficient possibility to resolve the missing cases by utilizing only the information contained in the fibers that already have been identified so far and the structure of 1-neighborhoods. We therefore resort to
a “brute-force” method which relies on the identification of Cartesian edges within 2-neighborhoods.

Of course, it would be desirable if smaller structure were sufficient. Natural candidates would be to exploit the $S1$-condition in unions of adjacent neighborhoods of the form $\langle N[x] \cup N[x'] \rangle$, where (x, x') is a Cartesian edge. Such subgraphs are also sub-products, see [5]. However, the example in Figure 14 shows that the information contained in these subproducts is still insufficient.

![Figure 14. Cartesian skeleton of a thin strong product graph whose factors are induced by one thick and dashed component. The fiber whose edges are drawn as thin lines does not satisfy the $S1$-condition. Moreover, even in the subgraph induced by the neighborhoods of x and x', which is the product of a path and a K_3, the $S1$-condition is violated for the Cartesian edge.](image)

In the following we will show that every Cartesian (x, y) edge that does not satisfy the $S1$-condition can be determined as Cartesian in the 2-neighborhood $N_2[x]$.

Lemma 5.6. Let $G = \boxtimes_{j=1}^{n} G_j$ be the strong product of thin graphs. Let (x, x') be any Cartesian edge of G. Then $|S_{\langle N_2[x] \rangle}(x)| = 1$, i.e., the edge (x, x') satisfies the $S1$-condition in $\langle N_2[x] \rangle$.

Proof. Assume $|S_{\langle N_2[x] \rangle}(x)| > 1$. Then there is a vertex $v \neq x$ with $N[v] \cap N_2[x] = N[x] \cap N_2[x]$. This would mean that $N[v] = N[x]$ in G, since $N[v] \cap N_2[x] = N[v]$ and $N[x] \cap N_2[x] = N[x]$, contradicting that G is thin. □

We will show in the next lemma that the PFD of an arbitrary 2-neighborhood N_2 is not finer than the PFD of a given graph $G \in T_n$. This implies that each Cartesian edge in G that is contained in N_2 and satisfies the $S1$-condition in N_2 can be determined as Cartesian in N_2.

Lemma 5.7. Let $G \in T_n$ and let x be an arbitrary vertex in $V(G)$. Then $|PF((N_2[x])))| = n$.
Proof. Notice that \(|PF(G)| = n| and \(|PF(N[x])| = n|, since G \in \Upsilon_n. Lemma 2.2 implies that the PFD of any neighborhood (2-neighborhoods included) in a graph G has at least \(|PF(G)| factors. Applying this fact two times we have

\[n = |PF(G)| \leq |PF(N_2[x])| \leq |PF(N[x])| = n, \]

and thus \(|PF(H)| = n. \]

From Lemma 5.6 and 5.7 we can conclude that any Cartesian edge \((x, y)\) of some fiber that does not satisfy the S1-condition can be determined as Cartesian in the 2-neighborhood \(\langle N_2[x] \rangle\). Thus we can identify all Cartesian edges of G.

The last step we have to consider is to identify such fibers as copy of the corresponding factor. This can be done in a simple way. Consider that we have now identified all Cartesian edges of G. Notice that for all new identified \(G^a_i\)-fibers holds \(a \notin B(G)\), otherwise each edge containing vertex \(a\) of this fiber would satisfy the S1-condition in \(\langle N[a] \rangle\) and we would have identified this fiber. But for each such vertex \(a\) there is a vertex \(x \in N[a]\) with \(x \in B(G)\) since \(B(G)\) is a connected dominating set. Thus the corresponding \(G^a_i\)-fiber satisfies the S1-condition and is therefore already identified and colored as \(G^a_i\)-fiber. Hence again we can apply the square property to determine such a new identified \(G^a_i\)-fiber belonging to a copy of the factor \(G_i\) by identifying the colors of the \(G^a_i\)-fiber with the color of the \(G^a_i\)-fiber.

5.4. Algorithm and Time Complexity

We will now summarize the algorithm for determining the colored Cartesian skeleton of a given graph \(G \in \Upsilon\) w.r.t. to its PFD and give the top level control structure, which are proved to be correct in the preceding subsections. Moreover we will determine the time complexity, which is stated in the following lemma.

Algorithm 2 Cartesian skeleton and Product Coloring of G

1. **INPUT:** Graph \(G \in \Upsilon\).
2. Compute the backbone \(B(G)\);
3. for all \(x\) in \(B(G)\) do
4. Color all \(G^a_i\)-fibers (and \(G^a_i\)-fibers that satisfy the S1-condition) with Algorithm 1;
5. end for
6. Determine unidentified Cartesian edges in \(N_2\) neighborhoods;
7. Compute all squares in the induced Cartesian skeleton of \(G\) and identify the colors of parallel fibers applying Lemma 5.3;
8. **OUTPUT:** Product coloring of \(G\) with respect to its PFD;

Lemma 5.8. Algorithm 2 determines the colored Cartesian skeleton with respect to its PFD of a given graph \(G = (V, E) \in \Upsilon\) with bounded maximum degree \(\Delta\) in \(O(|V|^2 \cdot \Delta^{10})\) time.
Proof. 1. Determining the backbone $\mathcal{B}(G)$: we have to check for a particular vertex $v \in V(G)$ whether there is a vertex $w \in N[v]$ with $N[w] \cap N[v] = N[v]$. This can be done in $O(\Delta^2)$ for a particular vertex w in $N[v]$. Since this must be done for all vertices in $N[v]$ we end in time-complexity $O(\Delta^3)$. This step must be repeated for all $|V|$ vertices. Hence the time complexity for determining $\mathcal{B}(G)$ is $O(|V| \cdot \Delta^3)$.

2. For-Loop. The time complexity of Algorithm 1 is $O(|V| \cdot \log_2(\Delta) \cdot (\Delta)^6)$. The for-loop is repeated for all backbone vertices. Hence we can conclude that the time complexity of the for-loop is $O(|V| \cdot |V| \cdot \log_2(\Delta) \cdot (\Delta)^6)$.

3. Determine unidentified Cartesian edges in N_2 neighborhoods. Notice that each N_2 neighborhood has at most $1 + \Delta \cdot (\Delta - 1)$ vertices. The decomposition of each N_2 with the algorithm of Feigenbaum and Schäffer [3] and hence the assignment to an edge of being Cartesian is bounded by $O((1 + \Delta(\Delta - 1))^5)$. Again this will be repeated for all vertices and thus the time complexity is $O(|V| \cdot (1 + \Delta(\Delta - 1))^5) = O(|V| \cdot \Delta^{10})$.

4. Compute all squares. Take an edge (x, y) and check whether there is an edge (x_i, y_j) for all neighbors $x_1, \ldots, x_t \neq y$ of x and $y_1, \ldots, y_k \neq x$ of y. Notice that $t, k \leq \Delta - 1$. This leads to all squares containing the edge (x, y) and requires at most $(\Delta - 1)^2$ comparisons. Since we need diagonal-free squares we also have to check that there is no (Cartesian) edge (x, y_j) and no edge (x_i, y). This will be done for all $|E|$ edges. Thus we end in time complexity $O(|E| \cdot (\Delta - 1)^4)$, which is $O(|V| \cdot \Delta^4)$, since the number of edges in G is bounded by $|V| \cdot \Delta$.

Considering all steps we end in an overall time complexity $O(|V|^2 \cdot \Delta^{10})$. □

6. Recognition of graphs $G \in \Upsilon$

In this section we will provide an algorithm that tests whether a given graph is element of Υ in polynomial time.

Lemma 6.1. Algorithm 3 recognizes if a given graph G is in class Υ.

Proof. Lemma 2.2 implies that the PFD of any neighborhood in a graph G has at least $|PF(G)|$ factors and hence $\text{MAX} \geq |PF(G)|$. Thus if $\text{MAX} = |PF(G)|$ then none of the decomposed neighborhoods was locally finer. If in addition the isomorphism test is true we can conclude that we have found the correct factors and that $G \in \Upsilon$. □

Lemma 6.2. Algorithm 3 recognizes if a given a given graph $G = (V, E)$ with bounded maximum degree Δ is in class Υ in $O(|V|^2 \cdot \Delta^{10})$ time.

Proof. Algorithmus 2 takes $O(|V|^2 \cdot \Delta^{10})$ time. Computing the maximum MAX of the number of prime factors of each decomposed neighborhood, extracting the possible factors and the isomorphism test for a fixed bijection can be done in linear time in the number of vertices. Thus we end in $O(|V|^2 \cdot \Delta^{10})$ time. □
Algorithm 3 Recognition if $G \in \Upsilon$

1: INPUT: thin Graph G.
2: compute the colored Cartesian skeleton of G with Algorithm 2 and remind the number of prime factors in each decomposed neighborhood;
3: $MAX \leftarrow$ maximal number of prime factors of decomposed neighborhoods;
4: compute the possible prime factors G_1, \ldots, G_m of G by taking one connected component of the Cartesian skeleton of each color 1, \ldots, m;
5: if $\bigotimes_{i=1}^{m} G_i \cong G$ and $MAX = m$ then
 6: $\text{IS_IN_Y} \leftarrow$ true;
 7: else
 8: $\text{IS_IN_Y} \leftarrow$ false;
9: end if
10: OUTPUT: IS_IN_Y;

References

[1] W. Dörfler and W. Imrich. Über das starke Produkt von endlichen Graphen. Oesterreich. Akad. Wiss., Mathem.-Natur. Kl., S.-B .II, 178:247–262, 1969.
[2] J. Feigenbaum. Product graphs: some algorithmic and combinatorial results. Technical Report STAN-CS-86-1121, Stanford University, Computer Science, 1986. PhD Thesis.
[3] J. Feigenbaum and A. A. Schäfer. Finding the prime factors of strong direct product graphs in polynomial time. Discrete Math., 109:77–102, 1992.
[4] Marc Hellmuth, Willfried Imrich, Werner Klöckl, and Peter F. Stadler. Approximate graph products. European Journal of Combinatorics, 30:1119 – 1133, 2009.
[5] W. Imrich and S Klavžar. Product graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.
[6] W. Imrich and I. Peterin. Recognizing cartesian products in linear time. Discrete Math., 307:472–482, 2007.
[7] Ali Kaveh and K. Koohestani. Graph products for configuration processing of space structures. Comput. Struct., 86:1219–1231, 2008.
[8] Günter Wagner and Peter F. Stadler. Quasi-independence, homology and the unity of type: A topological theory of characters. J. Theor. Biol., 220:505–527, 2003.
[9] Blaž Zmazek and Janez Žerovnik. Weak reconstruction of strong product graphs. Discrete Math., 307:641–649, 2007.

Acknowledgements

This work was supported by a collaborative grant of the Austrian FWF (Proj No. P18969-N15) and the German DFG (Proj No. STA850/5-1). We thank the anonymous reviewer for their constructive comments.
Marc Hellmuth
Bioinformatics Group,
Department of Computer Science; and Interdisciplinary Center for Bioinformatics,
University of Leipzig,
Härtelstrasse 16-18, D-04107 Leipzig, Germany
Max Planck Institute for Mathematics in the Sciences
Inselstrasse 22, D-04103 Leipzig, Germany
e-mail: marc@bioinf.uni-leipzig.de

Wilfried Imrich
Chair of Applied Mathematics
Montanuniversität, A-8700 Leoben, Austria
e-mail: imrich@unileoben.ac.at

Werner Klöckl
Chair of Applied Mathematics
Montanuniversität, A-8700 Leoben, Austria
e-mail: werner.kloeckl@mu-leoben.at

Peter F. Stadler
Bioinformatics Group,
Department of Computer Science; and Interdisciplinary Center for Bioinformatics, University of Leipzig,
Härtelstrasse 16-18, D-04107 Leipzig, Germany
Max Planck Institute for Mathematics in the Sciences
Inselstrasse 22, D-04103 Leipzig, Germany
RNomics Group, Fraunhofer Institut für Zelltherapie und Immunologie, Deutscher Platz 5e, D-04103 Leipzig, Germany
Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
e-mail: studla@bioinf.uni-leipzig.de