Statistical Comparison among Brain Networks with Popular Network Measurement Algorithms

Rakib Hassan Pran (rakibhassanpra@gmail.com)
National Research University Higher School of Economics https://orcid.org/0000-0002-6736-3741

Research Article

Keywords: Network Analysis, Brain Networks, Network degree distributions, Network Visualizations, Network Measurement algorithms, Human brain Networks

Posted Date: March 29th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2720047/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Additional Declarations:
Competing interests: The authors declare no competing interests.
Statistical Comparison among Brain Networks with Popular Network Measurement Algorithms

Rakib Hassan Pran
M.Sc. in Applied Statistics with Network Analysis
International Laboratory for Applied Network Research
Research Departments of NRU HSE
National Research University Higher School of Economics
Moscow, Russia
Email: rakibhassanpra@gmail.com

Abstract—In this research, a number of popular network measurement algorithms have been applied to several brain networks (based on applicability of algorithms) for finding out statistical correlation among these popular network measurements and their applicability to brain networks. By analyzing the results of correlations among these network measurement algorithms, statistical comparison among selected brain networks has also been summarized. Besides that, to understand each brain network, the visualization of each brain network and each brain network’s degree distribution histogram have been extrapolated. Six network measurement algorithms have been chosen to apply time to time on sixteen brain networks based on applicability of these network measurement algorithms and the results of these network measurements are put into a correlation method to show the relationship among these six network measurement algorithms for each brain network. At the end, the results of the correlations have been summarized to show the statistical comparison among these sixteen brain networks.

Keywords— Network Analysis, Brain Networks, Network degree distributions, Network Visualizations, Network Measurement algorithms, Human brain Networks

I. INTRODUCTION

Networks are ubiquitous. From biology to technology, networks exist in every discipline of study [1]. To understand networks in any discipline, network analysis is fundamental while network analysis techniques are being developed rapidly day by day [2][3].

Besides applying network analysis techniques separately to understand a network for each technique, it is also necessary to understand the relationships among these techniques. Network measurement algorithms are pivotal parts of network analysis techniques [2]. Previously, few researches [4][5] have been done to find out relationships among network measurement algorithms.

In this research, the relationships among network measurement algorithms have been introduced for brain networks [6][7]. Besides discovering the relationships among these network measurement algorithms for each brain network, it is also shown how this study of relationships helps to understand brain networks combinedly by comparing the summary of statistical observations for each brain network through analyzing relationships among network measurement algorithms.

Sixteen several types of brain networks have been selected where six brain networks are human brain networks which have been collected as components from large human brain networks [6][7]. These Sixteen brain networks are addressed as

1. bn-cat-mixed-species-brain-1
2. bn-fly-drosophila_medulla_1
3. component1-network-of-human-BNU-1-0025864-session-1-bg
4. component-2-network-of-human-BNU-1-0025864-session-1-bg,
5. component-3-network-of-human-BNU-1-0025864-session-1-bg
6. component-1-network-of-bn-human-BNU_1_0025864_session_2-bg
7. component-2-network-of-bn-human-BNU_1_0025864_session_2-bg
8. component-3-network-of-bn-human-BNU_1_0025864_session_2-bg
9. bn-macaque-rhesus_brain_1
10. bn-macaque-rhesus_brain_2
11. macaque-rhesus-cerebral-cortex-1
12. macaque-rhesus-interareal-cortical-network-2
13. bn-mouse-kasthuri_graph_v4
14. bn-mouse_brain_1
15. bn-mouse_visual-cortex_1,
16. bn-mouse_visual-cortex_2

II. METHODOLOGY

Six network measurement algorithms which are Degree centrality[4], PageRank Centrality[9], Betweenness Centrality[10], Closeness Centrality[11], Eigenvector...
Centrality[12], Information Centrality[8][13][14] have been selected to apply on previous sixteen brain networks and the results of these sixteen brain networks after applying six network measurement algorithms are put into correlation method named Pearson Correlation Coefficient [15].

Network Measurement Algorithms

Let, G is a Graph with V vertices and E edges where $G = (V, E)$, $V = \{m_1, m_2, m_3,\ldots, m_n\}$ and $E = \{e_1, e_2, e_3,\ldots, e_1\}$.

1. **Degree Centrality**[4]
 \[
 \text{Deg. Cen.} (m_k) = \frac{\deg(m_k)}{N-1}, \; m_k \in V
 \]

2. **PageRank Centrality**[9]
 \[
 \text{Pag. Cen.} (m_k) = \sum_{\deg(m_k)} \frac{\text{Pag. Cen.} (m_i)}{\deg(m_i)}, \; m_k \in V
 \]

3. **Betweenness Centrality**[10]
 \[
 \text{Bet. Cen.} (m_k) = \frac{2 \sum_{i=1}^{N} \sum_{j=1}^{i} \sum_{t=1}^{N} \text{num of Sd}(m_{i,j})}{N^2 - 3N + 2}, \; i \neq j \neq k \text{ and } t
 \]

4. **Closeness Centrality**[11]
 \[
 \text{Clo. Cen.} (m_k) = \frac{1}{N-1} \sum_{t=1}^{N} \text{Connection}_{kj} \times \text{Eig. Cen.}
 \]

5. **Eigenvector Centrality**[12]
 \[
 \text{Eig. Cen.} (m_k) = \frac{1}{N} \sum_{j=1}^{N} \text{Connection}_{kj} \times \text{Eig. Cen.}
 \]

6. **Information Centrality**[8][13][14]
 \[
 \text{Info. Cen.} (m_s) = \frac{1}{N} \sum_{t=1}^{N} \text{Throughput of } m_i - \text{Throughput of } m_s
 \]

For experiment, Several Python libraries which are networkx[20] version 2.6.3, pandas[21] version 1.3.5, numpy[22] version 1.21.6, google.colab[23] version 0.0.1a2, matplotlib.pyplot[24], collections, io, tqdm[25] version 4.64.1 have been used in Google Colab platform[23]. Documentations done in Google Docs[26].

In this experiment, each brain network has been constructed from edges connection list. For the human brain networks, an algorithm similar to Breadth First Search (BFS) [16] is used to construct component networks from a large human brain network. For betweenness and eigenvector centrality algorithms, networks which have multigraphs have been considered into non-multigraphs and for information centrality, network with several components have been constructed into network with only one component by adding each node of small components into previous node of large component if and only if the number of nodes in large component in network $>>$ the summation of number of all nodes in other components in network. After proper construction in several cases, all six algorithms have been applied to all sixteen brain networks. The result of each brain network after applying six network measurement algorithms can be represented into matrix which dimension is $6 \times \text{total number of nodes in network}$. By taking values of correspondent rows of considered two algorithms from each brain network’s result that achieved previously, pearson correlation coefficients has been calculated only for those two algorithms applied into that specific brain network. At the end, correlation coefficient matrix with 6×6 dimension has been achieved for each brain network. In result section, only correlation coefficient matrix with 6×6 dimension has been shown.

IV. Results

In Tables, short forms have been used where:
- deg cen \leftarrow degree centrality
- pag cen \leftarrow pagerank centrality
- bet cen \leftarrow betweenness centrality
- clo cen \leftarrow closeness centrality
- eig cen \leftarrow eigenvector centrality
- inf cen \leftarrow information centrality
- info cen \leftarrow information centrality

Result of network 1:

- Number of nodes = 65
- Execution time needed for correlation matrix: 00 minute 04 seconds

Correlation matrix for bn-cat-mixed-species-brain-1:
Table 1: Correlation matrix for cat-mixed-species-brain-1

	deg cen	pag cen	bet cen	clo cen	eig cen	inf cen
deg cen	1.0	1.0	0.8	0.96	0.96	0.95
pag cen	1.0	1.0	0.83	0.95	0.94	0.94
bet cen	0.8	0.83	1.0	0.82	0.72	0.64
clo cen	0.96	0.95	0.82	1.0	0.96	0.93
eig cen	0.96	0.94	0.72	0.96	1.0	0.94
inf cen	0.95	0.94	0.64	0.93	0.94	1.0

Figure 1: Network visualization of bn-cat-mixed-species-brain-1

Figure 2: Degree Distribution Histogram of bn-cat-mixed-species-brain-1

Result of network 2:

Number of nodes= 1781

Network type: multi graph

Execution time needed for correlation matrix while considering 50 nodes: 19 minutes 25 seconds

Correlation matrix for bn-fly-drosophila_medulla_1 with 50 nodes:

	deg cen	pag cen	bet cen	clo cen	eig cen	inf cen
deg cen	1.0	0.99	0.79	0.24	0.81	0.47
pag cen	0.99	1.0	0.86	0.26	0.83	0.48
bet cen	0.79	0.86	1.0	0.31	0.81	0.42
clo cen	0.24	0.26	0.31	1.0	0.54	0.62
eig cen	0.81	0.83	0.81	0.54	1.0	0.49
inf cen	0.47	0.48	0.42	0.62	0.49	1.0

Table 2: Correlation matrix of bn-fly-drosophila_medulla_1 for 50 nodes

Execution time needed for correlation matrix while considering 100 nodes: 38 minutes 42 seconds
Correlation matrix of bn-fly-drosophila_medulla_1 with 100 nodes:

	deg cen	pag cen	bet cen	clo cen	eig cen	inf cen
deg cen	1.0	1.0	0.88	0.4	0.87	0.47
pag cen	1.0	1.0	0.91	0.41	0.88	0.49
bet cen	0.88	0.91	1.0	0.42	0.83	0.44
clo cen	0.4	0.41	0.42	1.0	0.62	0.78
eig cen	0.87	0.88	0.83	0.62	1.0	0.58
inf cen	0.47	0.49	0.44	0.78	0.58	1.0

Table 3: Correlation matrix of bn-fly-drosophila_medulla_1 for 100 nodes

Execution time needed for correlation matrix while considering 500 nodes:
4 hours 39 minutes 17 seconds

Correlation matrix for bn-fly-drosophila_medulla_1 with 500 nodes:

	deg cen	pag cen	bet cen	clo cen	eig cen	inf cen
deg cen	1.0	0.99	0.81	0.32	0.81	0.44
pag cen	0.99	1.0	0.86	0.33	0.82	0.46
bet cen	0.81	0.86	1.0	0.35	0.79	0.44
clo cen	0.32	0.33	0.35	1.0	0.58	0.81
eig cen	0.81	0.82	0.79	0.58	1.0	0.63
inf cen	0.44	0.46	0.44	0.81	0.63	1.0

Table 4: Correlation matrix for bn-fly-drosophila_medulla_1 with 500 nodes

Result of network 3:

Component 1 network of human-BNU-1-0025864-session-1-bg:
number of nodes: 58
execution time needed for correlation matrix: 00 minute 05 seconds

Correlation matrix for component 1 in human-BNU-1-0025864-session-1-bg:

	deg cen	pag cen	bet cen	clo cen	eig cen	inf cen
deg cen	1.0	0.96	0.84	0.72	0.79	0.85
Component 2 network of human-BNU-1-0025864-session-1-bg:

- Number of nodes: 359
- Execution time needed for correlation matrix: 15 minutes 59 seconds

Correlation matrix for component 2 in human-BNU-1-0025864-session-1-bg:

	deg cen	pag cen	bet cen	clo cen	eig cen	inf cen
deg cen	1.0	0.89	0.49	0.47	0.69	0.67
pag cen	0.89	1.0	0.54	0.23	0.42	0.47
bet cen	0.49	0.54	1.0	0.23	0.2	0.24
clo cen	0.47	0.23	0.23	1.0	0.54	0.85
eig cen	0.69	0.42	0.2	0.54	1.0	0.55
inf cen	0.67	0.47	0.24	0.85	0.55	1.0

Table 6: Correlation matrix for component 2 in human-BNU-1-0025864-session-1-bg

Figure 5: component 1 network visualization of human-BNU-1-0025864-session-1-bg

Figure 6: Degree Distribution Histogram of component 1 network in human-BNU-1-0025864-session-1-bg

Result of network 4:
Figure 8: Degree Distribution Histogram of component 2 network in human-BNU-1-0025864-session-1-bg

Result of network 5:
Component 3 network of human-BNU-1-0025864-session-1-bg:

number of nodes: 269
execution time needed for correlation matrix: 07 minutes 57 seconds

Correlation matrix of component 3 in human-BNU-1-0025864-session-1-bg:

	deg	cen	pag	cen	bet	cen	clo	cen	eig	cen	inf	cen
deg	1.0		0.83		0.34		0.63		0.7		0.82	
pag	0.83	1.0		0.5	0.41	0.33		0.58				
bet	0.34	0.5	1.0	0.4	0.04	0.26						
clo	0.63	0.41	0.4	1.0	0.38	0.86						
eig	0.7	0.33	0.04	0.38	1.0						0.54	
inf	0.82	0.58	0.26	0.86	0.54	1.0						

Table 7: Correlation matrix for component 3 in human-BNU-1-0025864-session-1-bg

Figure 9: component 3 network visualization of human-BNU-1-0025864-session-1-bg

Figure 10: Degree Distribution Histogram of component 3 network in human-BNU-1-0025864-session-1-bg

Result of network 6:
Number of nodes: 242
Network type: undirected graph
Execution time needed for correlation matrix: 03 minutes 11 seconds

Correlation matrix for bn-macaque-rhesus_brain_1:

	deg	cen	pag	cen	bet	cen	clo	cen	eig	cen	info	cen
deg	1.0		1.0		0.85		0.88		0.94		0.83	
Result of network 7:

number of nodes: 91
network type: undirected graph
execution time needed for correlation matrix: 00 minute 09 seconds

Correlation matrix for bn-macaque-rhesus_brain_2:

deg	pag	bet	clo	eig	info
deg	1.0	0.89	0.99	0.96	0.81
pag	1.0	0.92	0.99	0.95	0.79
bet	0.89	1.0	0.94	0.78	0.58
clo	0.99	0.99	1.0	0.93	0.78
eig	0.96	0.95	0.78	0.93	1.0
info	0.81	0.79	0.58	0.78	0.94

Table 9: Correlation matrix for bn-macaque-rhesus_brain_2

Figure 11: network visualization of bn-macaque-rhesus_brain_1

Figure 12: Degree Distribution Histogram of network bn-macaque-rhesus_brain_1

Figure 13: network visualization of bn-macaque-rhesus_brain_2
Result of network 8:

Number of nodes: 91
Network type: undirected Multigraph
Execution time needed for correlation matrix: 00 minute 18 seconds

Correlation matrix for macaque-rhesus-cerebral-cortex-1:

	deg cen	pag cen	bet cen	clo cen	eig cen	info cen
deg cen	1.0	1.0	0.77	0.82	0.81	0.88
pag cen	1.0	1.0	0.78	0.83	0.81	0.87
bet cen	0.77	0.78	1.0	0.97	0.89	0.77
clo cen	0.82	0.83	0.97	1.0	0.97	0.88
eig cen	0.81	0.81	0.89	0.97	1.0	0.94
info cen	0.88	0.87	0.77	0.88	0.94	1.0

Table 10: Correlation matrix for macaque-rhesus-cerebral-cortex-1

Result of network 9:

Number of nodes: 93
Network type: undirected Multigraph
Execution time needed for correlation matrix: 00 minute 26 seconds

Correlation matrix for macaque-rhesus-interareal-cortical-network-2:

	deg cen	pag cen	bet cen	clo cen	eig cen	info cen
deg cen	1.0	1.0	1.0	1.0	1.0	1.0
pag cen	1.0	1.0	1.0	1.0	1.0	1.0
Result of network 10:

- number of nodes: 1029
- network type: undirected Multigraph
- execution time needed for correlation matrix: 02 hours 00 minutes 47 seconds

Correlation matrix for bn-mouse-kasthuri_graph_v4:

	deg cen	pag cen	bet cen	clo cen	eig cen	info cen
deg cen	1.0	0.99	0.97	0.27	0.68	0.47
pag cen	0.99	1.0	0.96	0.2	0.63	0.43
bet cen	0.97	0.96	1.0	0.26	0.74	0.4
clo cen	0.27	0.2	0.26	1.0	0.46	0.7
eig cen	0.68	0.63	0.74	0.46	1.0	0.43
info cen	0.47	0.43	0.4	0.7	0.43	1.0

Table 12: Correlation matrix of bn-mouse-kasthuri_graph_v4

Figure 17: network visualization of macaque-rhesus-interareal-cortical-network-2

Figure 18: Degree Distribution Histogram of network macaque-rhesus-interareal-cortical-network-2

Figure 19: network visualization for bn-mouse-kasthuri_graph_v4 multigraph with 20 components
Figure 20: network visualization for bn-mouse-kasthuri_graph_v4 ordinary graph with 20 components (needed for betweenness centrality and eigenvector centrality)

Figure 21: network visualization of constructed bn-mouse-kasthuri_graph_v4 multigraph with the largest component (needed for information centrality)

Figure 22: Degree Distribution Histogram of network bn-mouse-kasthuri_graph_v4 multigraph with 20 components

Figure 23: Degree Distribution Histogram of network bn-mouse-kasthuri_graph_v4 ordinary graph with 20 components
Figure 24: Degree Distribution Histogram of constructed network bn-mouse-kasthuri_graph_v4 multigraph with the largest component.

Result of network 11:

- Number of nodes: 213
- Network type: Undirected Multigraph
- Execution time needed for correlation matrix: 09 minutes 03 seconds

Correlation matrix for bn-mouse_brain_1:

	deg cen	pag cen	bet cen	clo cen	eig cen	info cen
deg cen	1.0	1.0	0.95	0.97	0.99	0.99
pag cen	1.0	1.0	0.95	0.97	0.97	0.99
bet cen	0.95	0.95	1.0	0.98	0.95	0.92
clo cen	0.97	0.97	0.98	1.0	0.99	0.96
eig cen	0.97	0.97	0.95	0.99	1.0	0.97
info cen	0.99	0.99	0.92	0.96	0.97	1.0
Result of network 12:

- number of nodes: 29
- network type: undirected graph
- execution time needed for correlation matrix: <<00 minute 01 second

Correlation matrix for bn-mouse_visual-cortex_1:

deg	cen	pag	cen	bet	cen	clo	cen	eig	cen	info	cen
1.0	0.99	0.9	0.76	0.84	0.86	0.99	1.0	0.91	0.72	0.79	0.82
0.9	0.91	1.0	0.84	0.82	0.79	0.72	0.84	1.0	0.91	0.92	
0.76	0.72	0.84	1.0	0.91	0.92	0.79	0.82	0.91	1.0	0.88	
0.84	0.79	0.82	0.91	1.0	0.88	0.82	0.79	0.92	0.88	1.0	
0.86	0.82	0.79	0.92	0.88	1.0						

Figure 27: Degree Distribution Histogram of network bn-mouse_brain_1 multigraph

Figure 28: Degree Distribution Histogram of network bn-mouse_brain_1 graph

Figure 29: network visualization of bn-mouse_visual-cortex_1
Figure 30: Degree Distribution Histogram of network
bn-mouse_visual-cortex_1

Result of network 13:

number of nodes: 193
network type: undirected multigraph
execution time needed for correlation matrix: <<00 minutes 38 seconds

Correlation matrix for bn-mouse_visual-cortex_2:

	deg cen	pag cen	bet cen	clo cen	eig cen	info cen
deg cen	1.0	0.9	0.4	0.75	0.8	
pag cen	1.0	0.89	0.39	0.73	0.79	
bet cen	0.9	0.51	0.75	0.84	0.89	
clo cen	0.4	0.39	0.65	0.62	0.84	
eig cen	0.75	0.73	0.65	0.78	1.0	
info cen	0.8	0.79	0.62	0.78	1.0	

Table 15: Correlation matrix for bn-mouse_visual-cortex_2
Component 1 network of bn-human-BNU_1_0025864_session_2-bg:

Number of nodes: 30
Execution time needed for correlation matrix: 00 minute 01 second

Correlation matrix for component 1 network of bn-human-BNU_1_0025864_session_2-bg:

	deg cen	pag cen	bet cen	clo cen	eig cen	info cen
deg cen	1.0	0.99	0.84	0.93	0.94	0.89
pag cen	0.99	1.0	0.89	0.91	0.9	0.85
bet cen	0.84	0.89	1.0	0.72	0.67	0.57
clo cen	0.93	0.91	0.72	1.0	0.95	0.91
eig cen	0.94	0.9	0.67	0.95	1.0	0.95
info cen	0.89	0.85	0.57	0.91	0.95	1.0

Table 16: Correlation matrix for component 1 network of bn-human-BNU_1_0025864_session_2-bg

Result of network 14:

![Degree Distribution Histogram](image)

Figure 36: Degree Distribution Histogram of component 1 network in bn-human-BNU_1_0025864_session_2-bg

Result of network 15:

Component 2 network of bn-human-BNU_1_0025864_session_2-bg:

Number of nodes: 60
Execution time needed for correlation matrix: 00 minute 05 seconds

Correlation matrix for component 2 network of bn-human-BNU_1_0025864_session_2-bg:

	deg cen	pag cen	bet cen	clo cen	eig cen	info cen
deg cen	1.0	0.85	0.08	0.77	0.93	0.82
pag cen	0.85	1.0	0.33	0.5	0.68	0.5
bet cen	0.08	0.33	1.0	0.21	-0.06	0.01
clo cen	0.77	0.5	0.21	1.0	0.67	0.94
eig cen	0.93	0.68	-0.06	0.67	1.0	0.74
info cen	0.82	0.5	0.01	0.94	0.74	1.0

Table 17: Correlation matrix for component 2 network of bn-human-BNU_1_0025864_session_2-bg

Figure 35: network visualization of component 1 of bn-human-BNU_1_0025864_session_2-bg
Figure 37: network visualization of component 2 of bn-human-BNU_1_0025864_session_2-bg

Figure 38: Degree Distribution Histogram of component 2 network in bn-human-BNU_1_0025864_session_2-bg

Result of network 16:
Component 3 network of bn-human-BNU_1_0025864_session_2-bg:
Number of nodes: 253
Execution time needed for correlation matrix: 05 minutes 48 seconds

Correlation matrix for component 3 network of bn-human-BNU_1_0025864_session_2-bg:

	deg cen	pag cen	bet cen	clo cen	eig cen	info cen
deg cen	1.0	0.89	0.57	0.61	0.83	0.65

Table 18: Correlation matrix for component 3 network of bn-human-BNU_1_0025864_session_2-bg

	pag cen	bet cen	clo cen	eig cen	info cen
pag cen	1.0	0.62	0.36	0.53	0.45
bet cen	0.57	1.0	0.31	0.31	0.26
clo cen	0.61	0.36	1.0	0.72	0.91
eig cen	0.83	0.53	0.31	1.0	0.67
info cen	0.89	0.45	0.91	0.67	1.0

Figure 39: network visualization of component 3 of bn-human-BNU_1_0025864_session_2-bg
Statistical Comparison Chart among brain networks based on number of nodes, degree distributions, high correlation coefficients among applied network measurement algorithms and the summary of statistical observations by analyzing correlations among network measurement algorithms for each brain network:

Name of the brain Network	Number of Nodes	Degree Distribution	High Correlation Coefficients among network measurement algorithms	Number of High Correlation Coefficients among Network Measurement Algorithms	Summary of Statistical Observations by Analyzing Correlations among Network Measurement Algorithms
bn-cat-mixed-species-brain-1	65	Slightly Normal Distribution	deg cen vs pag cen, deg cen vs bet cen, deg cen vs clo cen, deg cen vs eig cen, deg cen vs inf cen, pag cen vs bet cen, pag cen vs clo cen, pag cen vs eig cen, pag cen vs inf cen, bet cen vs clo cen, bet cen vs eig cen, bet cen vs inf cen, clo cen vs eig cen, clo cen vs inf cen, eig cen vs inf cen	13	Nodes with high degree are mostly important nodes which are inclined to have less path difference from most of the nodes, having high tendency to be in the shortest path between any two nodes, having tendency to connect with important nodes and having more information in network
bn-fly-drosophila_medulla_1	1781	Power Law Distribution	deg cen vs pag cen, deg cen vs bet cen	7	Nodes with high degree are mostly

Figure 40: Degree Distribution Histogram of component 3 network in bn-human-BNU_1_0025864_session_2-bg
| Component 1 network of human-BNU-1-0025864-session-1-bg | 58 | Slightly Normal Distribution, Slightly Power Law Distribution | deg cen vs pag cen, deg cen vs bet cen, deg cen vs eig cen, deg cen vs inf cen, pag cen vs bet cen, clo cen vs eig cen, clo cen vs inf cen, eig cen vs inf cen | Nodes with high degree are mostly important nodes, having high tendency to be in the shortest path between any two nodes, having a tendency to connect with important nodes, nodes which have less path differences from most other nodes are inclined to have more information. |
| Component 2 network of human-BNU-1-0025864-session-1-bg | 359 | Power Law Distribution | deg cen vs pag cen, clo cen vs info cen | Nodes with high degree are mostly important nodes, having high tendency to be in the shortest path between any two nodes, having tendency to connect with important nodes and having more information in network, nodes which have less path differences from most other nodes are inclined to have more information and having tendency to connect with important nodes. |
| Component 3 network of human-BNU-1-0025864-session-1-bg | 269 | Power Law Distribution | deg cen vs pag cen, deg cen vs info cen, clo cen vs info cen | Nodes with high degree are mostly important nodes, having more information, nodes
Study	Nodes	Distribution	Formula	Description
bn-macaque-rhesus_brain_1	242	Slightly Power Law Distribution	deg cen vs pag cen, deg cen vs bet cen, deg cen vs clo cen, deg cen vs eig cen, deg cen vs info cen, pag cen vs bet cen, pag cen vs clo cen, pag cen vs eig cen, pag cen vs info cen, clo cen vs eig cen, clo cen vs info cen, eig cen vs info cen	Nodes with high degree are mostly important nodes which are inclined to have less path difference from most other nodes, having high tendency to be in the shortest path between any two nodes, having tendency to connect with important nodes and having more information in network.
bn-macaque-rhesus_brain_2	91	Slightly Power Law Distribution	deg cen vs pag cen, deg cen vs bet cen, deg cen vs clo cen, deg cen vs eig cen, deg cen vs info cen, pag cen vs bet cen, pag cen vs clo cen, pag cen vs eig cen, pag cen vs info cen, clo cen vs eig cen, clo cen vs info cen, eig cen vs info cen	Nodes with high degree are mostly important nodes which are inclined to have less path difference from most of the nodes, having high tendency to be in the shortest path between any two nodes, having tendency to connect with important nodes and having more information in network.
macaque-rhesus-cerebral-cortex-1	91	Slightly Power Law Distribution	deg cen vs pag cen, deg cen vs clo cen, deg cen vs eig cen, deg cen vs info cen, pag cen vs clo cen, pag cen vs eig cen, pag cen vs info cen, bet cen vs eig cen, bet cen vs info cen, bet cen vs clo cen, clo cen vs eig cen, clo cen vs info cen, eig cen vs info cen	Nodes with high degree are mostly important nodes which are inclined to have less path difference from most of the nodes, having tendency to connect with important nodes and having more information in network.
Network Name	Nodes	Distribution Type	Assumptions	References
--	-------	-------------------	---	------------
macaque-rhesus-interareal-cortical-net work-2	93	Slightly Power Law Distribution	All correlation coefficients are high	Nodes with high degree are mostly important nodes which are inclined to have less path difference form most of the nodes, having high tendency to be in the shortest path between any two nodes, having tendency to connect with important nodes and having more information in network
bn-mouse-kasthuri_graph_v4	1029	Power Law Distribution	deg cen vs pag cen, deg cen vs bet cen, pag cen vs bet cen	Nodes with high degree are mostly important nodes and having high tendency to be in the shortest path between any two nodes
bn-mouse_brain_1	213	Normal Distribution	all correlation coefficients are high	Nodes with high degree are mostly important nodes which are inclined to have less path difference form most of the nodes, having high tendency to be in the shortest path between any two nodes, having tendency to connect with important nodes and having more information
bn-mouse_visual-cortex_1	29	Slightly Normal Distribution, Slightly Power Law Distribution	deg cen vs pag cen, deg cen vs bet cen, deg cen vs eig cen, deg cen vs info cen, pag cen vs bet cen, pag cen vs info cen, bet cen vs clo cen, bet cen vs eig cen	Nodes with high degree are mostly important nodes, having high tendency to be in the shortest path between any two nodes, having
Network Description	N	Distribution	Edge Metrics	Node Characteristics
---	-----	-----------------------------	---	---
bn-mouse_visual-cortex_2	193	Power Law Distribution	deg cen vs pag cen, deg cen vs bet cen, deg cen vs info cen, pag cen vs bet cen, bet cen vs info cen	nodes with high degree are mostly important nodes, having tendency to be in shortest path between any two nodes and having more information
Component 1 network of bn-human-BNU_1_0025864_session_2 -bg	30	Slightly Normal Distribution, Slightly Power Law Distribution	deg cen vs pag cen, deg cen vs bet cen, deg cen vs clo cen, deg cen vs eig cen, deg cen vs info cen, pag cen vs bet cen, pag cen vs clo cen, pag cen vs eig cen, pag cen vs info cen, clo cen vs eig cen, clo cen vs info cen, eig cen vs info cen	Nodes with high degree are mostly important nodes which are inclined to have less path difference form most of the nodes, having high tendency to be in the shortest path between any two nodes, having tendency to connect with important nodes and having more information in network
Component 2 network of bn-human-BNU_1_0025864_session_2 -bg	60	Slightly Power Law Distribution	deg cen vs pag cen, deg cen vs eig cen, deg cen vs info cen, clo cen vs info cen	nodes with high degree are mostly important nodes, having tendency to connect with important nodes, having more information, nodes having less path differences from most other nodes
Component 3 network of bn-human-BNU_1_0025864_session_2 -bg

253	Power Law Distribution	deg cen vs pag cen, deg cen vs eig cen, clo cen vs info cen	3

Table 19: Statistical Comparison Chart

V. Conclusion
Most of the brain network’s degree distributions are following power law degree distributions while few of them have tendency to follow normal degree distribution. Most of the brain network’s degree distributions have a tendency to follow more power law degree distributions as per the increasing number of nodes in the brain network. The Brain networks with large number of nodes have tendency to have less number of high correlation coefficients among these six selected network measurement algorithms. Human brain networks are following more power law degree distributions and having less number of high correlation coefficients among these six selected network measurement algorithms as per increasing number of nodes in components. In future research, instead of using correlation methods, supervised learning [17] like a regression model [18] or artificial neural network [19] model can be used to find out the accuracy among these relationships of network measurement algorithms for brain networks. Besides brain networks, the method that is used in this paper can be applicable to networks from any discipline.

VI. References
1. Albert-László Barabási, Network Science, Cambridge University Press, 2016
2. Stanley Wasserman, Katherine Faust, Social Network Analysis: Methods and Applications, Cambridge University Press, 1994
3. John Scott, Social network analysis, SAGE Publications Ltd, 1991
4. Joshua D. Guzman, Richard F. Deckro, Matthew J. Robbins, James F. Morris, and Nicholas A. Ballester, “An Analytical Comparison of Social Network Measures”, IEEE Transactions on Computational Social Systems, Vol. 1, No. 1, March 2014
5. Rakib Hassan Pran, Correlation analysis among social networks measures for directed scale free network, East West University, 2017
6. Ryan A. Rossi and Nesreen K. Ahmed,"The Network Data Repository with Interactive Graph Analytics and Visualization", AAAI, 2015, https://networkrepository.com
7. Amunts, Katrin and Lepage, Claude and Borjeat, Louis and Mohlberg, Hartmut and Dickscheid, Timo and Rousseau, Marc-\'E\'tienne and Bludau, Sebastian and Bazin, Pierre-Louis and Lewis, Lindsay B. and Oros-Peusquens, Ana-Maria and Shah, Nadim J. and Lippert, Thomas and Zilles, Karl and Evans, Alan C."BigBrain: An Ultrahigh Resolution 3D Human Brain Model", pages:1472--1475, Volume: 340, AAAS, 2013
8. Aric Hagberg, Dan Schult, Pieter Swart, Networkx Reference, Release 3.0b1.dev0, July 11, 2022
9. Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd, The PageRank citation ranking: Bringing order to the web. Stanford InfoLab, 1999
10. Newman, Mark EJ. "A measure of betweenness centrality based on random walks." Social networks 27.1 (2005): 39-54.
11. Ahmet Erdem Sarıyüce , Kamer Kaya , Erik Saule , Ümit V. Çatalyürek, Incremental Algorithms for Closeness Centrality, IEEE International Conference on Big Data 2013
12. Amy N. Langville, Carl D. Meyer, A Survey of Eigenvector Methods for Web Information Retrieval, Society for Industrial and Applied Mathematics,2005
13. Ulrik Brandes and Daniel Fleischer, Centrality Measures Based on Current Flow. Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ’05). LNCS 3404, pp. 533-544.
14. Karen Stephenson and Marvin Zelen: Rethinking centrality: Methods and examples. Social Networks 11(1):1-37, 1989. https://doi.org/10.1016/0378-8733(89)90016-6

15. Pearson, Karl, "Notes on regression and inheritance in the case of two parents". Proceedings of the Royal Society of London. 58: 240–242, 20 June 1895

16. Cormen, Thomas H. "22.2 Breadth-first search". Introduction to algorithms. ISBN 978-81-203-4007-7. OCLC 1006880283

17. Aurélien Géron, Books on Google Play Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media, 2017

18. Douglas C. Montgomery, Jeffrey Vining, Elizabeth A. Peck, G. Geoffrey Vining, Douglas C. Vining, Introduction to Linear Regression Analysis, Wiley, 2001

19. Rakib Hassan Pran, Ljupco Todorovski, "Predicting Hidden Links and Missing Nodes in Scale-Free Networks with Artificial Neural Networks." arXiv preprint arXiv:2109.12331 (2021)

20. Hagberg, Aric, and Drew Conway. "Networkx: Network analysis with python." URL: https://networkx.github.io (2020).

21. McKinney, Wes. "pandas: a foundational Python library for data analysis and statistics." Python for high performance and scientific computing 14.9 (2011): 1-9.

22. McKinney, Wes. Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. " O'Reilly Media, Inc.", 2012.

23. Bisong, Ekaba, and Ekaba Bisong. "Google colaboratory." Building machine learning and deep learning models on google cloud platform: a comprehensive guide for beginners (2019): 59-64.

24. Ari, Niyazi, and Makhamadsulton Ustazhanov. "Matplotlib in python." 2014 11th International Conference on Electronics, Computer and Computation (ICECCO). IEEE, 2014.

25. da Costa-Luis, Casper, et al. "tqdm: A fast, Extensible Progress Bar for Python and CLI." Zenodo (2021).

26. Attebury, Ramirose, et al. "Google docs: a review." Against the Grain 20.2 (2008): 9.