A New Comprehensive Data Set of Solar Filaments of 100 yr Interval. I.

GangHua Lin1, GaoFei Zhu1,2,3, Xiao Yang4 , YongLiang Song4, Mei Zhang1,2, Suo Liu1,2, XiaoFan Wang1, JiangTao Su1,2, Sheng Zheng4, JiaFeng Zhang3,4, DongYi Tao4, ShuGuang Zeng4, HaiMin Wang5, Chang Liu5, and Yan Xu5

1 CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China; lgh@nao.cas.cn
2 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
3 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
4 College of Science, China Three Gorges University, Yichang 443002, People’s Republic of China
5 Institute for Space Weather Sciences, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA

Received 2020 February 25; revised 2020 May 11; accepted 2020 May 11; published 2020 July 7

Abstract

Filaments are very common physical phenomena on the Sun and are often taken as important proxies of solar magnetic activities. The study of filaments has become a hot topic in the space weather research. For a more comprehensive understanding of filaments, especially for an understanding of solar activities of multiple solar cycles, it is necessary to perform a combined multifaceted analysis by constructing a data set of multiple solar cycle data. To achieve this goal, we constructed a centennial data set that covers the Hα data from five observatories around the world. During the data set construction, we encountered varieties of problems, such as data fusion, accurate determination of the solar edge, classifying data by quality, dynamic threshold, and so on, which arose mainly due to multiple sources and a large time span of data. But fortunately, these problems were well solved. The data set includes seven types of data products and eight types of feature parameters with which we can implement the functions of data searching and statistical analyses. It has the characteristics of better continuity and highly complementary to space observation data, especially in the wavelengths not covered by space observations, and covers many solar cycles (including more than 60 yr of high-cadence data). We expect that this new comprehensive data set as well as the tools will help researchers to significantly speed up their search for features or events of interest, for either statistical or case study purposes, and possibly help them get a better and more comprehensive understanding of solar filament mechanisms.

Unified Astronomy Thesaurus concepts: Solar filaments (1495); Solar chromosphere (1479); Astronomy data analysis (1858); Astronomy databases (83); Astronomy data visualization (1968)

1. Introduction

Solar filaments, observed in the Hα line of the solar chromosphere, are one of the basic indices of solar activity (d’Azambuja 1923). They are often observed to be associated with flares and coronal mass ejections (CMEs; Golub & Pasachoff 1997; Galsgaard & Longbottom 1999), which are the major driving sources of hazardous space weather. Increasing observational evidences have suggested that filament eruptions, flares, and CMEs are different manifestations of one physical process at different evolutionary stages (Gilbert et al. 2000; Gopalswamy et al. 2003). While on one hand, in order to gain a better understanding of CMEs and advance our forecast capabilities, it is essential to identify early manifestations of CMEs such as filament eruptions and flares (Jing et al. 2004), on the other hand, multiple cycles or long-term filament data can actually give us more information than just for CME studies. For example, the long-term variation of the statistical properties of filaments carries important information about the magnetic signature of the solar cycle, the polar crown filament demonstrates the interface between new and old solar cycle, and the possible changes of efficiency in the dynamo may also be probed by the study of filaments.

Specifically, the above problems can be understood through the changes of the features or parameters of solar filaments. The solar filament is a dark strip projected onto the surface of the Sun. It is the dividing line of the local magnetic field with opposite polarity and reflects the complex structure of the solar magnetic field to some extent. The main structure of the filament is spine and foots. Bar is a branch of the filament. The spine and foots of filament are dynamic (Martin et al. 2008). There are certain rules for the generation, development and disappearance of filaments, but they may suddenly become active in a very short period of time, or even disappear suddenly, and its disappearance is divided into different types. The length of filament is typically many thousands kilometers. It can be longer than the radius of the Sun or just a few mega meters. A filament rapidly forms over a period of a day but then typically persists for several weeks and, in some cases, several months. These complex structures and dynamic characteristics of filaments are closely related to the magnetic field on the Sun. The process of evolution and formation involves the reconnection and transformation of the magnetic field on the Sun into a filament magnetic field under certain conditions. However, it is not clear how the magnetic field on the Sun is converted to a filament magnetic field nor is the detailed magnetic field structure of the filament. The study of the formation of the filament not only helps us to understand the process of reconnection of magnetic fields on the Sun into a filament magnetic field but it also helps us to understand the support of filament and the detailed structure of its magnetic field.

However, so far, a database of continuous and long-term filament observations is not in place. Therefore, data containing long (multiple solar cycles) and continuous filament observations need to be collected, and a data set of them needs to be constructed and the filament parameters that involve the formation, disappearance, dynamic process, structure, and shape need to be extracted. In order to achieve this goal, the
Comprehensive Data set of One-Hundred-Year Solar Filament (CDOHFS, http://sun.bao.ac.cn/solarfilament/) has been developed for the international scientific community.

In Section 2, we describe the sources of the data that we collected. In Section 3, the processing flow to these original data is introduced. In Section 4, the products and a query tool are introduced with examples. In the last section, conclusion and future work are presented.

2. Data Sources

There are already a few filament catalogs or databases exist in the community. Here we give a brief list of some of them.

1. http://www.bbso.njit.edu/Research/FDHA/ is an online FTP filament archive, provided by the Big Bear Solar Observatory (BBSO), USA. The data list is from 1982 to today.

2. http://ftp.kso.ac.at is an online FTP filament archive of the Kanzelhoehe Solar Observatory (KSO), Austria. The data list is from 1997. On the FTP site, there are some information about the catalog structure of the online data files, FITS header keywords, and so on.

3. https://kso.iiap.res.in/data is an online filament data archive of the KSO, India. There is an interactive data visualization tool that tells you how many observational images are there for each year on the webpage. Their chromospheric data is from 1907.

4. http://sun.bao.ac.cn/hsoc_data/full_disk/h-alpha/ is an online filament data archive of the Huairou Solar Observing Station (HSOS), China. The data list is from 2000.

5. https://en.solarstation.ru/archive is from the Kislovodsk Mountain Station, Russia. There are lots of tables that contain characteristics of solar filaments from 1959 to today.

6. https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/prominences(filaments)/filaments/ is a site of the National Centers for Environmental Information (NOAA), USA. There are tables on the site address. These tables contain information on the coordinates, time, Carrington number, minimum and maximum lengths of the filament during the solar disk passage, radial velocity, importance, characteristics of filament (stable, unstable, end, broad, clear, diffuse, and discontinuous), and so on. Their filaments cover two time intervals (1919–1956 and 1957–2000), with data from several observatories. The features are obtained from synoptic maps. There are tables of the limb feature from 2000 to 2009 and tables of filament disappearances from 1964 to 1980 on the website (Wright & McNamara 1983; Mouradian & Soru-Escart 1994; Golub & Pasachoff 1997; Galsgaard & Longbottom 1999; Low et al. 2003).

7. So far, http://aia.cfa.harvard.edu/filament/is the only site that provides interactive visualization tool. It is based on the Atmospheric Imaging Assembly (AIA) satellite observation data (20100518–20140920) used to obtain the basic information and a large number of observational characters of filament eruption events—for example, the start time of a filament, duration time of eruption, position (X′, Y′), rating, type, flare association, grade of associated flare, and so on. Through buttons, one can watch animations and download the catalog, etc. A collection of the highest rated events is also available as a YouTube playlist.

Among the Ho data of the six observatories we surveyed, the data of the Kislovodsk Mountain Astronomical Station is still in the process of being digitized. Therefore, we collected the original data from five observatories around the world. They are listed in Table 1. They are: the BBSO, National Solar Observatory of the USA (NSO), KSO, Kodai Kanal Observatory of India (KODA), and HSOS. Data of earlier years were digitized from films. Part of the data were provided by Prof. Haimin Wang’s team (data from BBSO, NSO, and KSO, ~37.2 TB in total after compression), part are from our Huairou Solar Observing Station (HSOS, ~8.1 TB), and a fraction of them are downloaded through the web (KODA, ~680 GB). The complete and up-to-date list of integrated data source can be found via http://sun.bao.ac.cn/solarfilament/. The time span of the data can be seen from Figure 1.

Table 1

Observatory	Year Span	Number of Files	Disk Size (Compressed)
HSOS	2000–2018	1.088,914	8.1 TB
BBSO	1988–1994,	454,923	2.1 TB
	2000–2017		
KSO	1973–2015	1.046,085	5.1 TB
NSO	1963–2003	7,299,490	30 TB
KODA	1912–1973	18,313	680 GB

3. Processing Procedures for the Original Data

A flow chart of the data processing procedures is shown in Figure 2. Each procedure will be introduced in the following subsections and sections, except that the procedure of “data gathering” has been introduced in the above section.

3.1. Data Fusion

We take the following steps to rearrange the raw data: we (1) copy data to uniformly named directories, (2) check original file names, (3) compress the files (gzip or pigz), (4) apply file name standardization, and (5) check level 0 file names. After these procedures, the total file (image) numbers and occupied disk sizes are listed in Table 1. As shown in Figure 1, the time spans of the data in HSOS, BBSO, KSO, NSO, and KODA are 2000–2018, 1988–1994 and 2000–2017, 1973–2015, 1963–2003, and 1912–1973, respectively. Altogether these data consist of a data set covering more than a hundred years or almost 10 solar cycles (SC15–SC24). A detailed data distribution for each observatory in years is available at http://sun.bao.ac.cn/solarfilament/GHA_data_stat.html, an example of which is shown in Figure 3.

To guarantee consistent and smooth processing in the following steps, data standardization has been done at the very beginning. The work of data reorganization and standardization is time consuming but beneficial for the subsequent batch processing and analysis. File names and directory structure are standardized in the rearrangement of the raw data of all five observatories. Then when producing level 1 data from those five observatories, part are from our Huairou Solar Observing Station (HSOS, ~8.1 TB), and a fraction of them are downloaded through the web (KODA, ~680 GB). The complete and up-to-date list of integrated data source can be found via http://sun.bao.ac.cn/solarfilament/. The time span of the data can be seen from Figure 1.
field removed, “f” is for dark frames, and “f” is for flat field frames. “yyyyymmdd” and “hhmmss” give the time information of the observation. This follows the file name convention used by BBSO and the Global Hα Network Data Archive. All the data are compressed through .gzip or .pigz to save storage space. And the directory tree is constructed as “/(data_root)/(obs)/(year)/*.fits.gz.”

From Figure 1, we can see that the data in the early years is less dense. The data collection of KODA is shown in Figure 4. Data of NSO covers 1965 to 2003, for nearly 40 yr, and the quality of the data is high. This plays an important role in forming good continuity of the whole observation data. However, the observation time information of the NSO data was recorded on the observation image in the form of a time stamp. There were no time information in either the file names or the header of the FITS files. This leaves us with a tough task of getting the time information out in order to use these data for our data set. We will introduce our effort in Section 3.2.

3.2. Extraction of Time Stamp Information

Extracting the time stamp information of NSO data is a huge project, because the number of the NSO images from 1963 to 2003 is almost 10 million. We have carried out the hard work of recognizing the time stamps in the scanned images and checking their correctness manually (Zhang et al. 2019). Then we rename all the NSO data accordingly, with the confirmed time recognized from the scanned time stamps.

The complex and changing style of the time stamps makes this task even more difficult. For example, there were different types of time stamps: black numbers with white background as shown in the left panel of Figure 5, and white numbers with black background as shown in the right panel of Figure 5. Sometimes the time digits can be blurred as the one shown in the right panel of Figure 5, making it almost impossible to extract the needed information of the year, month, hour, minute, and second. There were also situations where some numbers were broken in the middle, or were superimposed with others, and so on.

The flow chart of the main procedures to do time stamp extraction is shown in Figure 6. First, the whole image is cut with only the time stamp being retained; then the time stamp is positioned and enhanced, characters in the time stamp are extracted, and these characters are then recognized.

When doing time character recognition, we first used a method of automatic identification (a convolutional neural network (CNN)) to read all the 8,699,681 time stamps; details of the identification method are described in Zhang et al.

http://bbso.njit.edu/Archive/filenames.html
(2019). Then more than 70 people spent 4.5 months doing manual verification for all these 8,699,681 time stamps. Among these time stamps, 7,760,911 images can be successfully identified by human eyes. These 7,760,911 time stamps are manually checked and corrected (if needed). Realizing that human checking may also make mistakes, we did a second round of manual checks to get an accuracy estimate. For each person, 1000 images they checked were randomly selected and rechecked by a second person. The result gives an average accuracy of $\sim 96\%$ of all people.

Our effort revives the statistical usage of the historical NSO data. Now we can give statistical quantities of the NSO data whose time stamps have been successfully recognized as shown in Figure 7.

3.3. The Physics Parameters Extraction

3.3.1. Preprocessing

Since the collected Hα images come from different periods and stations, some preprocessing steps need to be performed on these data.

First, we use the cascading Hough circle detector (Yuan et al. 2011) and the least squares circle fitting method to obtain the center and radius of the solar disk. In light of the existence of various noises in the historical data images, the Hough transform is a good way to crop the solar disk in the image because it is not sensitive to the noise. However, the calculation of the Hough transform is huge, so our approach is to apply the Hough transform to the resolution reduced image and get a rough center coordinate and the radius of the solar disk first. Then we use the more noise-sensitive but more computation-
economical least squares circle fitting method to get the information about the image disk center and radius. The main steps, after roughly cropping the solar disk by using the Hough transform, are as follows:

(1) We increase the contrast between the disk and the background. For each image, we first multiply the image by an integer. The integer is obtained by first dividing 65,535 by the maximum value of the image and then rounding the number up to an integer. Then we set all the values less than 32,768 to be zero. This modified image is then to be used in the next step (Figure 8).

(2) We use the OTSU algorithm (Otsu 1979) to segment out the solar disk from the image obtained in the previous step.

(3) Edge detection is carried out on the previous segmentation result, and dilation operation and morphological thinning operation are carried out to get the edge detection result.

(4) Based on the edge detection result, the number of pixels in all connected regions is counted, the largest connected region is reserved, and other regions are deleted to get the solar disk edge.

(5) Based on the edge of the solar disk, the circularity “m” of it can be calculated using \(m = \frac{4\pi a}{p^2} \). If “m” is greater than the threshold value 0.9, the discrete points of the edge of the solar disk are fitted with the least square method, and the center and radius of the disk are calculated.

Second, in the full disk H\(\alpha\) image, the solar disk has decreasing brightness from the center to the limb, which is called limb darkening (Ozhogina 2009). Limb darkening removal is necessary. Finally, after limb darkening removal, the background intensity of the solar disk is still nonuniform. We removed the uneven background intensity using the polynomial surface fitting method (Bernasconi et al. 2005).

3.3.2. Filament Recognition

After the above preprocessing, we find that the intensity distribution on the solar disk is normal when we focus only on the inside of the solar disk (excluding the outside). In other words, when we count the number of each intensity value on the solar disk, the curve is in accordance with a normal distribution as shown in Figure 9. We use a single Gaussian function to fit the profile and get the values of the mean and standard deviation.

Since solar filaments present as dark features on the disk (the intensity value is small), the intensity threshold we want to get should be in the left portion of the normal distribution curve. According to the 3\(\sigma\) principle of normal distribution, we can get the corresponding intensity threshold. Its expression is

\[
f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\left(\frac{x-\mu}{\sigma}\right)^2},
\]

where \(\mu\) and \(\sigma\) are obtained by fitting the Gaussian function. Then we use the following expression

\[
x = \mu - 3\sigma
\]
to get the intensity threshold, and we apply it to the original binary image.

This method can recognize and segment filaments of all full disk Hα images, obtained from different stations and in different time periods. Figure 10 gives an example of the recognition result. Furthermore, the dynamic threshold we generate can be obtained from every Hα image, and it is obtained one time without the need to do looping. Figure 11
shows a comparative example. The data come from three different stations at the same date—namely BBSO, HSOS, and KSO—and they all use charge-coupled devices (CCDs) to acquire images during that period. From the figure, we can see that the proposed method can effectively perform filament recognition to the images from different stations at the same date. Figure 12 shows an example of using a digitalized image (originally recorded in photographic plates/films). The proposed method can also perform filament recognition effectively. This algorithm largely reduces the processing time needed. Detailed analyses and demonstration of the algorithm will be presented in a future paper.

After these steps, the filaments can be successfully segmented from the Hα image. However, there are still a certain number of small noise points in the resulting segmentation images, which is an unavoidable disadvantage of using a traditional image processing method. We set a threshold to remove the smaller connected domain. At the same time, we also removed the sunspots by calculating the circularity and the area of each connected region in the binary map. In addition, we also need to calculate the average value of the region in the original image, and those with lower values (dark black) will be removed.

3.3.3. Parameters of the Filament Feature

After the above processing and recognition operations, we calculate the various characteristic parameters of filaments, such as the area, perimeter, latitude, longitude, tilt angle, length of filament skeleton, average width of filament, angle between barb and filament skeleton, distance from the starting point to the end point of the filament, and parameters that we believe are useful for a good understanding of the filaments through multi-cycle statistical studies.
4. Data Products and Query Tool

4.1. Products

The root site of our Hα archive is at http://sun.bao.ac.cn/solarfilament/. In this data archive, we supply the level 0 and level 1 data, binary images, enhanced images, and some of the data products such as animations, synoptic charts, and filament parameter information.

4.1.1. FITS Data and Intermediate Images

Level 0 and level 1 FITS data have been described in Section 3. During the process of filament recognition, we obtain intermediate images, i.e., enhanced images, and filament parameter information.

4.1.2. Animations

Enhanced images make the feature recognition much easier, and binary images show the recognition results.

4.1.3. Synoptic Hα Maps

Unlike the space-born solar telescopes, ground-based telescopes cannot observe the Sun all the time, which is often affected by local weather and circumstance. So the Hα data from the ground-based observatories are often not continued in time and it is usually difficult to keep a fixed time interval when constructing a Hα synoptic map. For a better construction, for each Carrington rotation (CR), we first find out the hour in which the Sun has been observed for most days (see Figure 13). Then we chose the best image in each day that is during or closest to that hour.

Before we make the synoptic maps, all the Hα data from different observatories have been standardized by correcting the P angle, centering the Sun image, removing the limb darkening, and resizing to 2000 × 2000 pixels. However, we found that many historical Hα data did not deduct the flat field. For example, in Figure 14(a), we can see a five claw-like bright structure in this BBSO Hα image, which is probably produced by the instrument. Then, as a first step, we obtain the background variation by applying a 50 × 50 pixel window median filter (Zharkova et al. 2005; Bertello et al. 2010; Chatterjee et al. 2016) on each Hα image (Figure 14(b)). Then we get a clean Hα image (Figure 14(c)) after subtracting the blurred background image.

Following the method introduced by Harvey & Worden (1998) and Ulrich & Boyden (2006), we construct the Hα Carrington map or synoptic map (Figure 14(d)), with a longitude range of 60° (−30°–30°) in each daily image.
We find that the background intensities for different parts in the Carrington map are slightly different, such as the regions marked by green and red dashed boxes in Figure 14(d), though we have already normalized the intensity in each image. Figures 15(a) and (b) show the histograms of the normalized intensities in these two regions, which present two different Gaussian shapes: one is wide and short and the another is narrow and tall. This may be caused by the drift of observational lines or variation of seeing in different times.

As the second step, we adjust the distributions of the intensity values of different images to a similar level. We calculated the σ value of each normalized Hα image. Different images usually have different values of σ. We make the first normalized image by dividing by σ, and then we see the distributions of the intensity values in different images are similar (Figures 15(c) and (d)). Using the new normalized images, we reconstruct the Carrington map (Figure 15(e)), which seems much better. The background intensities in the new Carrington map are distributed uniformly. We also apply this method to construct synoptic maps using the Hα images from other ground-based solar observatories (Figure 16). We can see that they all look reasonably good.

It should be noted that some Carrington maps still contain defects, like small jumps in intensity or discontinuity in chromospheric structures. They may be caused by clouds, bad seeing, and the observations of far off the line center or resulted from the evolution of an active filament or a flare eruption. In the future, we may remove the off line center images and select some more high-quality images in each day to construct a Carrington map.

4.1.4. Filament Parameters

Based on the recognized filaments (Section 3.3.2), some of the filament parameters can be calculated. These filament parameters are the longitude and latitude of the filament center, area, perimeter, length and tilt angle of the filament bone, average width, Euclidean distance from head to tail points, average intensity after limb darkening removed, etc. In addition to the date, time, and solar radius at the specific observing moment, a filament information database is constructed, and we also numbered all the filaments subtracted from the full disk images. A text version of the filament information lists can be found in the directory of “filInfo.”
Figure 12. An NSO example at 14:40:04 on 1967 January 1. Its data were originally recorded in photographic plates/films and scanned into a digital image. (a) The plate/film image and its statistical histogram; the same is shown for the panels (a)–(d). (b) The digitalized image with a P-angle correction. (c) The image with limb darkening being further removed. (d) The image with an uneven background being removed as well and its histogram showing a normal distribution, in which the curve mean is 3.1642e+04 and the standard deviation is 2.3192e+03. (e) Left panel: the recognition result; right panel: the recognition result with the noisy points being removed.
4.2. Query Tool

For a more convenient and efficient use of these feature parameters, a parameter query tool is developed. It provides functions to do parameters searching, visualization, and statistics as well as downloading. The queryable parameters include all features extracted.

Figure 17 gives an example of a query statistical result, e.g., the statistical result of our query tool on filament area at different latitudes in solar cycle 22 is compared with the statistical result from Hao (2015) and Hao et al. (2015). We can see that the two are consistent with each other.

5. Solar Physics Research Based on the Data Set: An Example

Our data set can be used to attack many scientific problems. Here we just give an example.

The study of polar crown filaments (PCFs) is very important for understanding the variations of the solar cycles (e.g., Brajša et al. 1990), such as the prolonged cycle 23 and the nearly ending “abnormal” cycle 24. Xu et al. (2018) statistically investigated the properties of PCFs from 1973 to 2018, such as their move trends at the beginning of each solar cycle, the variations of polar field strength when the PCFs approach to the maximum latitude, and the migration rates for different Carrington rotations in different solar cycles. Further studies
are still needed if we want to obtain a deep understanding of the solar cycles.

6. Summary and Planned Future Work

We collected the original Hα data from five observatories around the world and merged them into a single data set to provide the international scientific community with a comprehensive Hα data set covering data over 100 yr. To construct this data set, we have carried out and finished following tasks. All data have been standardized. P angles, possibly aroused in the process of digitalization, are corrected. Time stamp information of the historical 40 yr NSO data has been extracted. Methods of automatically pinpointing the Sun’s edge and classifying data by quality have been proposed and applied to all data. A method of an automatic dynamic threshold has been proposed and applied to multiple observatory data. Our data set has following characters that make it stand out from others: it is more continuous in time sequence; higher in time frequency, especially for the recent 60 yr; and provides eight physical parameters of solar filaments and seven data products, including Hα movies since 1912 and synoptic Hα maps of all the Carrington rotations since 1912. Meanwhile, a query tool with a visualization function is also provided for querying our filament parameters.

In the future, we plan to further increase the density and the continuity of the data set. This will help the study of filament

![Figure 15. Processing step II. Panels (a) and (b) are the histograms of the normalized intensities in the green and red dashed boxes in Figures 14(d). Panels (c) and (d) are the histograms of the normalized intensities in panels (a) and (b) that are divided by σ of the corresponding normalized Hα intensity image. Panel (e) is the synoptic map CR 2032 (Figure 14(d)) after processing step II.](image)
dynamics, such as the formation and disappearance of filaments. We also plan to fuse the Hα data of the Kislovodsk Mountain Astronomical Station into our data set, after their digitization work is finished. Further classification of filaments is also planned, such as classifying the filaments according to their position scheme of Engvold (2015)—for example, intermediate (IP), active region (AR), quiescent (QS)—which may help the study of the global magnetic topology structure.

The authors appreciate the anonymous referee’s instructive comments and suggestions to improve the manuscript. We are grateful to the NSO of USA, BBSO of USA, KSO of Austria,
and KODA of India for providing the original data. We thank PhD students Quan Wang and Wei Wu for their help checking the P angle in the NSO and KODA data. The research is supported by the National Natural Science Foundation of China under grants U1531247, 11427901, 11803002, and 11973056; the special foundation work of the Ministry of Science and Technology of China under Grant 2014FY120300, the 13th Five-year Informatization Plan of Chinese Academy of Sciences under Grant XXH13505-04; and US NSF under grant AGS-1620875 and AGS-1928265.

ORCID iDs

Xiao Yang @ https://orcid.org/0000-0003-1675-1995
YongLiang Song @ https://orcid.org/0000-0002-9961-4357
Suo Liu @ https://orcid.org/0000-0002-1396-7603
HaiMin Wang @ https://orcid.org/0000-0002-5233-565X

References

Bernasconi, P. N., Rust, D. M., & Hakim, D. 2005, *SoPh*, 228, 97
Bertello, L., Ulrich, R. K., & Boyden, J. E. 2010, *SoPh*, 264, 31
Brajša, R., Vršnak, B., Rundjak, V., Schroll, A. 1990, *LNP*, 363, 293
Chatterjee, S., Banerjee, D., & Ravindra, B. 2016, *ApJ*, 827, 87
Chatterjee, S., Hegde, M., Banerjee, D., & Ravindra, B. 2017, *ApJ*, 849, 44
d’Azambuja, L. 1923, *CRASE*, 176, 950
Engvold, O. 2015, *ASSL*, 415, 31
Galsgaard, K., & Longbottom, A. W. 1999, *ApJ*, 510, 444
Gilbert, H. R., Holzer, T. E., Burkepile, J. T., & Hundhausen, A. J. 2000, *ApJ*, 537, 503
Golub, L., & Pasachoff, J. M. 1997, The Solar Corona (Cambridge: Cambridge Univ. Press)
Gopalswamy, N., Shimojo, M., Lu, W., et al. 2003, *ApJ*, 586, 562
Hao, Q. 2015, PhD thesis
Hao, Q., Fang, C., Cao, W., & Chen, P. F. 2015, *ApJS*, 221, 33
Harvey, J., & Worden, J. 1998, in ASP Conf. Ser. 140, 18th NSO/Sacramento Peak Summer Workshop, ed. K. S. Balasubramaniam, J. Harvey, & D. Rabin (San Francisco, CA: ASP), 155
Jing, J., Yurchyshyn, V. B., Yang, G., Xu, Y., & Wang, H. 2004, *ApJ*, 614, 1054
Low, B. C., Fong, B., & Fan, Y. 2003, *ApJ*, 594, 1060
Martin, S. F., Lin, Y., & Engvold, O. 2008, *SoPh*, 250, 31
Mouradian, Z., & Sou-escaut, I. 1994, *A&A*, 290, 279
Otsu, N. 1979, *ITSMC*, 9, 62
Ozhogina, O. A. 2009, *Ge&Ae*, 49, 879
Sheeley, N. R. J., Cooper, T. J., & Anderson, J. R. L. 2011, *ApJ*, 730, 51
Ulrich, R. K., & Boyden, J. E. 2000, *SoPh*, 235, 17
Wright, C. S., & McNamara, L. F. 1983, *SoPh*, 87, 401
Xu, Y., Potzci, W., Zhang, H., et al. 2018, *ApJL*, 862, L23
Yuan, Y., Shih, F. Y., Jing, J., Wang, H., & Chae, J. 2011, *SoPh*, 272, 101
Zhang, J., Lin, G., Zeng, S., et al. 2019, *AdAst*, 2019, 6565379
Zharkova, V., Ipson, S., Benkhalil, A., & Zharkov, S. 2005, *Artificial Intell. Rev.*, 23, 209