Abstract. In this article, we establish a Liouville type theorem for the anisotropic singular problem

\[\sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left(\left| \frac{\partial u}{\partial x_i} \right|^{p_i-2} \frac{\partial u}{\partial x_i} \right) = e^{\frac{1}{p}} \quad \text{in} \quad \mathbb{R}^N \]

concerning positive \(W^{1,p_i}(\mathbb{R}^N) \) stable solution, provided \(N \geq 1 \) and \(p_i > 2 \) for all \(i = 1, 2, \ldots, N \).

1. Introduction

The main purpose of this article is to establish a Liouville type theorem concerning positive stable solutions to the anisotropic singular equation

\[
\begin{cases}
-Lu := -\sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left(\left| \frac{\partial u}{\partial x_i} \right|^{p_i-2} \frac{\partial u}{\partial x_i} \right) = f(u) \quad \text{in} \quad \mathbb{R}^N, \\
u > 0 \quad \text{in} \quad \mathbb{R}^N,
\end{cases}
\]

where \(f(u) = -e^{\frac{1}{p}}, \) \(N \geq 1 \) and \(2 < p_1 \leq p_2 \leq \cdots \leq p_N \).

Observe that in case \(p_i = 2 \) for all \(i \), the operator \(L \) is the classical Laplacian and for \(p_i = p \),

\[Lu = \sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left(\left| \frac{\partial u}{\partial x_i} \right|^{p-2} \frac{\partial u}{\partial x_i} \right) \]

which is called the pseudo \(p \)-Laplacian, see [4, 16] for more details.

Anisotropic operator defined by \(L \) has become a topic of considerable attention in the recent years. It is a non-homogeneous operator which appears in many physical phenomena, for example it reflects anisotropic physical properties of some reinforced materials [19], image processing [23], to study the dynamics of fluids in anisotropic media when the conductivities of the media are different in each direction [1].

Throughout the paper we denote by \(\Omega = \mathbb{R}^N \) and \(\bar{p} \) to be the harmonic mean of \(p_1, p_2, \ldots, p_N \) i.e.

\[\frac{1}{\bar{p}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{p_i} \]

2010 Mathematics Subject Classification. 35A01, 35B53, 35J75.

Key words and phrases. Anisotropic \(p \)-Laplacian; Liouville Theorem; Stable solution.
We consider the solution space to be the anisotropic Sobolev space $W^{1,p_1}(\Omega)$ defined by

$$W^{1,p_1}(\Omega) = \{ v \in W^{1,p}(\Omega) : \frac{\partial v}{\partial x_i} \in L^{p_i}(\Omega) \}$$

For a general theory of anisotropic Sobolev space, see \[10\] \[11\] \[13\] \[21\] \[22\]. Let us firstly define the meaning of stable solution for the equation (1.1).

Definition 1.1. (Weak Solution:) A function $u \in W^{1,p_1}(\Omega)$ is said to be a weak solution of the equation (1.1), if $u > 0$ a.e. in Ω such that $f(u) \in L^1_{loc}(\Omega)$ and for all $\varphi \in C^1_c(\Omega)$, we have

$$\sum_{i=1}^N \int_\Omega \left| \frac{\partial u}{\partial x_i} \right|^{p_i-2} \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_i} \, dx - \int_\Omega f(u) \varphi \, dx = 0 \quad (1.2)$$

Definition 1.2. (Stable Solution:) A function $u \in W^{1,p_1}(\Omega)$ is said to be a stable solution of the equation (1.1), if u is a weak solution such that $f'(u) \in L^1_{loc}(\Omega)$ and for all $\varphi \in C^1_c(\Omega)$, we have

$$\int_\Omega f'(u)\varphi^2 \, dx \leq \sum_{i=1}^N (p_i - 1) \int_\Omega \left| \frac{\partial u}{\partial x_i} \right|^{p_i-2} \left| \frac{\partial \varphi}{\partial x_i} \right|^2 \, dx \quad (1.3)$$

Let us mention that in the pioneering work \[20\], Li.Ma and J.Wei studied the isotropic model

$$\Delta u = g(u) \text{ in } \Omega$$

with $g(u) = u^{-\delta}$, providing sufficient conditions on $\delta > 0$ for the non-existence of positive $C^1(\Omega)$ stable solutions. The exponential non-linearity case $g(u) = -e^u$ has been studied by Farina \[15\] and later extended by Phuong Le \[17\] to the p-Laplace operator. Very recently Chen et al. \[9\] considered the singular p-Laplace equation

$$\text{div}(|\nabla u|^{p-2} \nabla u) = f(x) u^{-\delta} \text{ in } \Omega$$

where sufficient conditions of f and $\delta > 0$ has been obtained for the non-existence of positive $C^1_{loc}(\Omega)$ stable solutions. In the isotropic case, a wide number of literature in this direction can be found in \[2\] \[3\] \[5\] \[7\] \[8\] \[12\] \[13\] \[18\] with various type of non-linearity. To the best of our knowledge, analogous results has not been intensively studied for the anisotropic operator. Our main motive in this paper is to provide a Liouville type theorem for positive $W^{1,p_1}(\Omega)$ stable solutions of the equation (1.1) in the framework of anisotropic operator L. Before stating our main result let us fix some notation as mentioned below.

Notation:

- $q = \sum_{i=1}^N \frac{p_i}{N}$
- $l_1 = \frac{2N}{2 + N}$ and $l_2 = \frac{2}{MN(q-1)} - \frac{q-1}{2}$
- $J = (0, \frac{4}{N(q-1)(pN-1)}) \cap (0, \frac{4}{N(q-1)(q-1)(N-1)})$
- $u_i = \frac{\partial u}{\partial x_i}$, for all $i = 1, 2, \ldots, N$

Moreover, we denote by C to be a constant whose values may vary from line to line or even in the same line. If C depends on r_1, r_2, \ldots, r_m we denote it by $C(r_1, r_2, \ldots, r_m)$. The main result of this paper is the following theorem:

Theorem 1.3. Let $u \in W^{1,p_1}(\Omega)$ be positive a.e. in Ω such that $||u||_\infty \leq M$, provided $M \in J$. Then u is not a stable solution to the equation (1.1).
Before proceeding to prove Theorem 1.3 we obtain a Caccioppoli type estimate on the positive stable solutions of the equation (1.1) stated below.

Lemma 1.4. (Caccioppoli type estimate:) Let \(u \in W^{1,p_1}(\Omega) \) be a bounded positive stable solution to the equation (1.1) such that \(\|u\|_\infty \leq M \) where \(M \in J \). Then for any \(\beta \in (l_1, l_2) \), there exists a positive constant \(C(\beta, p_1, p_2, \cdots, p_N, q, N) \) such that for every non-negative \(\psi \in C_0^1(\Omega) \), we have

\[
\int \left(\frac{\psi}{u} \right)^{2\beta + q} dx \leq C \sum_{i=1}^N \int \psi_i^{2\beta + q} dx
\]

Define for \(k \in \mathbb{N}, \alpha > 1 \) and \(t \geq 0 \), the following two functions:

\[
a_k(t) = \begin{cases} \frac{1-\alpha}{2k} (t + \frac{1+\alpha}{k(1-\alpha)}), & \text{if } 0 \leq t < \frac{1}{k}, \\ t^{1-\alpha}, & \text{if } t \geq \frac{1}{k} \end{cases}
\]

\[
b_k(t) = \begin{cases} \frac{-\alpha}{k} (t - \frac{1+\alpha}{k\alpha}), & \text{if } 0 \leq t < \frac{1}{k}, \\ t^{-\alpha}, & \text{if } t \geq \frac{1}{k} \end{cases}
\]

Then it can be easily verified that both \(a_k \) and \(b_k \) are positive \(C^1[0, \infty) \) decreasing functions. Moreover, \(a_k \) and \(b_k \) satisfies the following properties:

a. \(a_k(t)^2 \geq t b_k(t), \forall \ t \geq 0. \)

b. \(a_k(t)^{p_i} |a_k'(t)|^{2-p_i} + b_k(t)^{p_i} |b_k'(t)|^{1-p_i} \leq C |t|^{p_i-\alpha-1} \)

for some positive constant \(C \) depending on \(p_1, p_2, \cdots, p_N, \alpha \), provided \(\alpha > p_i - 1 \) for all \(i = 1, 2, \ldots, N. \)

c. \(a_k'(t)^2 = \frac{(\alpha - 1)^2}{4\alpha} |b_k'(t)|, \forall \ t \geq 0. \)

Proof of Lemma 1.4

Let \(u \in W^{1,p_1}(\Omega) \) be a bounded positive stable solution to the equation (1.1) such that \(\|u\|_\infty \leq M \) for some \(M \in J \). Then \(u \) satisfies both (1.2) and (1.3).

Let \(\psi \in C_0^1(\Omega) \) be non-negative in \(\Omega \). We prove the lemma in the following two steps:

Step 1. Choosing \(\phi = b_k(u)^{\psi^q} \) as a test function in (1.2), we have

\[
\sum_{i=1}^N \int_{\Omega} |b_k(u)| u_i |p_i\psi^q| dx \leq q \sum_{i=1}^N \int_{\Omega} \psi^{q-1} b_k(u) |u_i|^{p_i-2} u_i \psi_i dx - \int_{\Omega} f(u) b_k(u)^{\psi^q} dx
\]

Using Young’s inequality with \(\epsilon \in (0, 1) \) we obtain

\[
q \sum_{i=1}^N \int_{\Omega} \psi^{q-1} b_k(u) |u_i|^{p_i-2} u_i \psi_i dx
\]
\begin{align*}
&\leq \epsilon \sum_{i=1}^{N} \int_{\Omega} |b_k'(u)||u|^{p_i} \psi^q \, dx + C \sum_{i=1}^{N} \int_{\Omega} |b_k(u)|^{p_i} |b_k'(u)|^{1-p_i} |\psi_i|^{p_i} \psi^{q-p_i} \, dx \\
&\text{for some positive constant depending on } \epsilon, p_1, p_2, \ldots, p_N, q.
\end{align*}

Therefore for } \epsilon \in (0, 1) \text{ we obtain

\begin{equation}
(1-\epsilon) \sum_{i=1}^{N} |b_k'(u)||u|^{p_i} \psi^q \, dx \leq C \sum_{i=1}^{N} \int_{\Omega} |b_k(u)|^{p_i} |b_k'(u)|^{1-p_i} |\psi_i|^{p_i} \psi^{q-p_i} \, dx - \int_{\Omega} f(u)b_k(u)\psi^q \, dx
\end{equation}

\text{Step 2. Choosing } \phi = a_k(u)\psi^q \text{ in the inequality (1.3) we obtain

\begin{equation}
\int_{\Omega} f'(u)a_k(u)^2 \psi^q \, dx \leq \sum_{i=1}^{N} (p_i - 1) \{ X_i + \frac{q^2}{4} Y_i + qZ_i \}
\end{equation}

\text{where

} X_i = \int_{\Omega} |a_k'(u)|^2 |u|^{p_i} \psi^q \, dx \quad Y_i = \int_{\Omega} \psi^{q-2} a_k(u)^2 |u|^{p_i-2} |\psi_i|^2 \, dx

\text{and

} Z_i = \int_{\Omega} |a_k'(u)| a_k(u) \psi^{q-1} |u|^{p_i-1} |\psi_i| \, dx

\text{Using (c.) noting that

} X_i = \frac{(\alpha - 1)^2}{4\alpha} \int_{\Omega} |b_k'(u)||u|^{p_i} \psi^q \, dx

\text{we obtain from (1.6)

} \sum_{i=1}^{N} X_i = \frac{(\alpha - 1)^2}{4|\alpha|} \sum_{i=1}^{N} \int_{\Omega} |b_k'(u)||u|^{p_i} \psi^q \, dx

\text{\leq } \frac{(\alpha - 1)^2}{4|\alpha|(1-\epsilon)} \{ C \sum_{i=1}^{N} \int_{\Omega} |b_k(u)|^{p_i} |b_k'(u)|^{1-p_i} |\psi_i|^{p_i} \psi^{q-p_i} \, dx - \int_{\Omega} f(u)b_k(u)\psi^q \, dx \}

\text{Moreover, using Young's inequality we have the estimates

} (p_i - 1)\frac{q^2}{4} Y_i = (p_i - 1)\frac{q^2}{4} \int_{\Omega} \psi^{q-2} a_k(u)^2 |u|^{p_i-2} |\psi_i|^2 \, dx

= (p_i - 1)\frac{q^2}{4} \int_{\Omega} (|u|^{p_i-2}|a_k'(u)|^{\frac{2(p_i-2)}{p_i}} |\psi|^{\frac{2(p_i-2)}{p_i}})(a_k(u)^2 |a_k'(u)|^{\frac{2(p_i-2)}{p_i}} |\psi_i|^2 |\psi|^{\frac{2(p_i-2)}{p_i}}) \, dx

\leq \frac{\epsilon}{2N} X_i + \frac{C(\epsilon, p_1, p_2, \ldots, p_N, q, N)}{2} \int_{\Omega} a_k(u)^{p_i} |a_k'(u)|^{2-p_i} |\psi_i|^p |\psi|^{q-p_i} \, dx

\text{and

} (p_i - 1)qZ_i = (p_i - 1)q \int_{\Omega} |a_k'(u)| a_k(u) \psi^{q-1} |u|^{p_i-1} |\psi_i| \, dx

= (p_i - 1)q \int_{\Omega} (|u|^{p_i-1}|a_k'(u)|^{\frac{2}{p_i}} |\psi_i|^{\frac{2}{p_i}})(a_k(u)^2 |a_k'(u)|^{\frac{2}{p_i}} |\psi|^{p_i} |\psi|^{q-p_i}) \, dx

\leq \frac{\epsilon}{2N} X_i + \frac{C(\epsilon, p_1, p_2, \ldots, p_N, q, N)}{2} \int_{\Omega} a_k(u)^{p_i} |a_k'(u)|^{2-p_i} |\psi_i|^p |\psi|^{q-p_i} \, dx

\text{Using the above estimates in (1.6) together with (a.) and (b.) we obtain

\begin{align*}
&\text{for some positive constant depending on } \epsilon, p_1, p_2, \ldots, p_N, q.
\end{align*}
\[
\begin{align*}
\int_{\Omega} u f'(u) b_k(u) \psi^q \, dx &\leq \int_{\Omega} f'(u) a_k(u) \psi^q \, dx \\
&\leq \sum_{i=1}^{N} (p_i - 1 + \frac{\epsilon}{N}) X_i + C(\epsilon, p_1, \ldots, p_N, q, N) \sum_{i=1}^{N} \int_{\Omega} a_k(u)^{p_i} |a_k'(u)|^{2-p_i} |\psi|^{p_i} \psi^{q-p_i} \, dx \\
&\leq (p_1 - 1 + \frac{\epsilon}{N}) \sum_{i=1}^{N} X_i + (p_2 - 1 + \frac{\epsilon}{N}) \sum_{i=1}^{N} X_i + \ldots + (p_N - 1 + \frac{\epsilon}{N}) \sum_{i=1}^{N} X_i \\
&\quad + C(\epsilon, p_1, \ldots, p_N, q, N) \sum_{i=1}^{N} \int_{\Omega} a_k(u)^{p_i} |a_k'(u)|^{2-p_i} |\psi|^{p_i} \psi^{q-p_i} \, dx \\
&= (N(q-1) + \epsilon) X_i + C(\epsilon, p_1, \ldots, p_N, q, N) \sum_{i=1}^{N} \int_{\Omega} a_k(u)^{p_i} |a_k'(u)|^{2-p_i} |\psi|^{p_i} \psi^{q-p_i} \, dx \\
&\quad - \int_{\Omega} f(u) b_k(u) \psi^q \, dx + C(\epsilon, p_1, \ldots, p_N, q, N) \sum_{i=1}^{N} \int_{\Omega} a_k(u)^{p_i} |a_k'(u)|^{2-p_i} |\psi|^{p_i} \psi^{q-p_i} \, dx \\
&\leq C(\epsilon, p_1, \ldots, p_N, q, N, \alpha) \sum_{i=1}^{N} \int_{\Omega} \left\{ b_k(u)^{p_i} |a_k'(u)|^{1-p_i} + a_k(u)^{p_i} |a_k'(u)|^{2-p_i} \right\} |\psi|^{p_i} \psi^{q-p_i} \, dx \\
&\quad - \frac{(\alpha - 1)^2 (N(q-1) + \epsilon)}{4\alpha(1 - \epsilon)} \int_{\Omega} f(u) b_k(u) \psi^q \, dx \\
&\leq C(\epsilon, p_1, \ldots, p_N, q, N, \alpha) \sum_{i=1}^{N} \int_{\Omega} \left| u \right|^{p_i - \alpha - 1} |\psi|^{p_i} \psi^{q-p_i} \, dx \\
&\quad - \frac{(\alpha - 1)^2 (N(q-1) + \epsilon)}{4\alpha(1 - \epsilon)} \int_{\Omega} f(u) b_k(u) \psi^q \, dx
\end{align*}
\]

Putting \(f(u) = -e^{\frac{u}{\beta}} \) and using the assumption \(\|u\|_\infty \leq M \), we obtain

\[
\alpha \epsilon \int_{\Omega} e^{\frac{u}{\beta}} b_k(u) \psi^q \, dx \leq C(\epsilon, p_1, \ldots, p_N, q, N, \alpha) \sum_{i=1}^{N} \int_{\Omega} \left| u \right|^{p_i - \alpha - 1} |\psi|^{p_i} \psi^{q-p_i} \, dx
\]

where \(\alpha_\epsilon = \frac{1}{M} - \frac{(\alpha - 1)^2 (N(q-1) + \epsilon)}{4\alpha(1 - \epsilon)} \).

Choose \(\alpha = 2\beta + q - 1 \). Note that \(\beta > l_1 \) implies \(\alpha > p_N - 1 \geq p_i - 1 \), \(\forall i = 1, 2, \ldots, N \). Now

\[
\lim_{\epsilon \to 0} \alpha_\epsilon = \frac{1}{M} - \frac{N(q-1)(\alpha - 1)^2}{4\alpha} > 0 \forall \beta \in (l_1, l_2)
\]

Hence we can fix \(\beta \in (l_1, l_2) \) and choose \(\epsilon \in (0, 1) \) such that \(\alpha_\epsilon > 0 \). Using \(e^x > x \) for \(x > 0 \) in the above estimate we obtain

\[
\int_{\Omega} \frac{1}{u} b_k(u) \psi^q \, dx \leq \int_{\Omega} e^{\frac{u}{\beta}} b_k(u) \psi^q \, dx \leq C \sum_{i=1}^{N} \int_{\Omega} \left| u \right|^{p_i - 2\beta - q} |\psi|^{p_i} \psi^{q-p_i} \, dx
\]
for some positive constant C depending on $\beta, p_1, \cdots, p_N, q, N$. By the monotone convergence theorem we obtain
\[
\int_{\Omega} u^{-2\beta - q}\psi^q \, dx \leq C \sum_{i=1}^{N} \int \psi_i^{p_i - 2\beta - q} |\psi_i|^{p_i} \psi^q \, dx
\]
Replacing ψ by $\psi^{2\beta + q}$ and using the Young’s inequality for $\epsilon \in (0, 1)$ with exponents
\[
\gamma_i = \frac{2\beta + q}{2\beta + q - p_i}, \quad \gamma_i' = \frac{2\beta + q}{p_i}
\]
in the above inequality we obtain
\[
\int_{\Omega} \left(\frac{\psi}{u} \right)^{2\beta + q} \, dx \leq C \sum_{i=1}^{N} \int_{\Omega} \left(\frac{\psi_i}{u} \right)^{2\beta + q - p_i} |\psi_i|^{p_i} \, dx \leq \epsilon \int_{\Omega} \left(\frac{\psi}{u} \right)^{2\beta + q} \, dx + C \sum_{i=1}^{N} \int_{\Omega} |\psi_i|^{2\beta + q} \, dx
\]
Hence we obtain
\[
\int_{\Omega} \left(\frac{\psi}{u} \right)^{2\beta + q} \, dx \leq C \sum_{i=1}^{N} \int_{\Omega} |\psi_i|^{2\beta + q} \, dx
\]
for some positive constant C depending on $\beta, p_1, \cdots, p_N, q, N$ which is the required inequality.

Proof of Theorem 1.3 Let $u \in W^{1,p_i}(\Omega)$ be a positive stable solution of the equation (1.1) such that $||u||_\infty \leq M$ for some $M \in J$. Then by the Lemma 1.4 we have
\[
\int_{\Omega} \left(\frac{\psi}{u} \right)^{2\beta + q} \, dx \leq C \sum_{i=1}^{N} \int_{\Omega} |\psi_i|^{2\beta + q} \, dx
\]
for some positive constant C depending on $\beta, p_1, \cdots, p_N, q, N$. Choosing $\psi \in C^1_c(\Omega)$ such that $0 \leq \psi \leq 1$ in Ω, $\psi \equiv 1$ in $B_R(0)$ and $\psi = 0$ in $\Omega \setminus B_{2R}(0)$ with $|\nabla \psi| \leq \frac{C}{R}$ for some constant $C > 0$ (independent of R) in the above inequality, we obtain
\[
\int_{B_R(0)} \left(\frac{1}{u} \right)^{2\beta + q} \, dx \leq C R^{N-2\beta - q} \tag{1.7}
\]
where C is a positive constant independent of R. Observe that, since $M \in J$ we have $0 < M < \frac{1}{N(N-1)(q-1)}$ which implies $N < 2l_2 + q$ and hence
\[
\lim_{\beta \to l_2} (N - 2\beta - q) = N - 2l_2 - q < 0.
\]
As a consequence, we can choose $\beta \in (l_1, l_2)$ such that $N - 2\beta - q < 0$.

Therefore, letting $R \to \infty$ in (1.7), we obtain
\[
\int_{\Omega} \left(\frac{1}{u} \right)^{2\beta + q} \, dx = 0
\]
which is a contradiction. Hence the Theorem follows.

Acknowledgement

I would like to heartily thank Dr. Kaushik Bal for his continuous encouragement and support throughout my research work. The author is funded by NBHM Fellowship No: 2-39(2)-2014 (NBHM-RD-II-8020-June 26, 2014).
LIOUVILLE TYPE THEOREM FOR AN ANISOTROPIC SINGULAR MODEL

References

[1] S. N. Antontsev, J. I. Díaz, and S. Shmarev. Energy methods for free boundary problems, volume 48 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 2002. Applications to nonlinear PDEs and fluid mechanics.
[2] K. Bal and P. Garain. Non-existence of stable solutions for weighted p-Laplace equation. ArXiv e-prints, September 2017.
[3] K. Bal and P. Garain. Non-existence results for the weighted p-Laplace equation with singular nonlinearities. ArXiv e-prints, December 2017.
[4] Marino Belloni and Bernd Kawohl. The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p → ∞. ESAIM Control Optim. Calc. Var., 10(1):28–52, 2004.
[5] Xavier Cabré. Boundedness of stable solutions to semilinear elliptic equations: a survey. Adv. Nonlinear Stud., 17(2):355–368, 2017.
[6] Xavier Cabré and Antonio Capella. On the stability of radial solutions of semilinear elliptic equations in all of \(\mathbb{R}^n \). C. R. Math. Acad. Sci. Paris, 338(10):769–774, 2004.
[7] Xavier Cabré and S. Editor. Liouville type theorems for stable solutions of \(p \)-Laplace equation. ArXiv e-prints, September 2017.
[8] Xavier Cabré and Sagun Chanillo. Stable solutions of semilinear elliptic problems in convex domains. Selecta Math. (N.S.), 4(1):1–10, 1998.
[9] Caisheng Chen. Liouville type theorems for stable solutions of \(p \)-Laplace equation in \(\mathbb{R}^n \). Nonlinear Anal., 160:44–52, 2017.
[10] Agnese Di Castro. Elliptic problems for some anisotropic operators. PhD thesis.
[11] Agnese Di Castro. Existence and regularity results for anisotropic elliptic problems. Adv. Nonlinear Stud., 9(2):367–393, 2009.
[12] L. Dupaigne and A. Farina. Stable solutions of \(- \Delta u = f(u) \) in \(\mathbb{R}^n \). J. Eur. Math. Soc. (JEMS), 12(4):855–882, 2010.
[13] Louis Dupaigne. Stable solutions of elliptic partial differential equations, volume 143 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2011.
[14] Said El Manouni. Note on an anisotropic \(p \)-Laplacian equation in \(\mathbb{R}^n \). Electron. J. Qual. Theory Differ. Equ., pages No. 73, 9, 2010.
[15] Alberto Farina. Stable solutions of \(- \Delta u = e^u \) on \(\mathbb{R}^N \). C. R. Math. Acad. Sci. Paris, 345(2):63–66, 2007.
[16] Ilaria Fragalà, Filippo Gazzola, and Bernd Kawohl. Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 21(5):715–734, 2004.
[17] Phuong Le. Nonexistence of stable solutions to \(p \)-Laplace equations with exponential nonlinearities. Electron. J. Differential Equations, pages Paper No. 326, 5, 2016.
[18] Phuong Le, Huy Thao Nguyen, and Thi Yen Nguyen. On positive stable solutions to weighted quasilinear problems with negative exponent. Complex Variables and Elliptic Equations, pages 1–13, 2017.
[19] J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris, 1969.
[20] Li Ma and J. C. Wei. Properties of positive solutions to an elliptic equation with negative exponent. J. Funct. Anal., 254(4):1058–1087, 2008.
[21] L. N. Slobodeckii. Generalized Sobolev spaces and their application to boundary problems for partial differential equations. Leningrad. Gos. Ped. Inst. Ucen. Zap., 197:54–112, 1958.
[22] Neil S. Trudinger. An imbedding theorem for \(H_0(G, \Omega) \) spaces. Studia Math., 50:17–30, 1974.
[23] Joachim Weickert. Anisotropic diffusion in image processing. European Consortium for Mathematics in Industry. B. G. Teubner, Stuttgart, 1998.

Prashanta Garain
Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur
Uttar Pradesh-208016, India
E-mail address: pgarain@iitk.ac.in