Fluoroquinolone-resistant Escherichia coli in intestinal flora of patients undergoing transrectal ultrasound-guided prostate biopsy – possible shift in biopsy prophylaxis

Przemysław Adamczyk¹, Kajetan Juszczak², Małgorzata Prondzinska³, Anna Kędzierska¹, Hanna Szwajkert-Sobiecka³, Tomasz Drewa¹,⁴

¹Department of General and Oncologic Urology, Nicolaus Copernicus Hospital, Toruń, Poland
²Department of Urology, Memorial Rydygier Hospital, Cracow, Poland
³Department of Microbiology, Nicolaus Copernicus Hospital, Toruń, Poland
⁴Department of General and Oncologic Urology, Nicolaus Copernicus University, Bydgoszcz, Poland

Introduction Infection of prostate gland following biopsy is common complication. Most common pathogen is E.coli. Since fluoroquinolones are commonly prescribed as prophylaxis, infection caused by E.coli leads to complicated infections, especially due to fluoroquinolone-resistant species. The aim of this study was to evaluate the incidence of fluoroquinolone-resistant E.coli species in rectal swabs of patients undergoing prostate biopsy and to define appropriate antimicrobial agent as prostate biopsy prophylaxis.

Material and methods Rectal swabs were collected in 159 patients undergoing prostate biopsy. The identification of E.coli was performed using the BBL Crystal E/NF identification (ID) System.

Results In the rectal swab of 112/159 patients E.coli was found. In 47/159 cases after incubation, the microbiological evaluation showed no E.coli in these swabs. Defining the specific resistance to microbiological agents, we obtained that E.coli resistant to ciprofloxacin was found in 40 out of 112 patients (50.9%). Resistance to I and II generation of cephalosporin were found in 7%, and 5%, respectively. In 40 out of 112 (35.7%) E.coli resistant to trimetoprim/sulfametoksazol was reported. E.coli resistant to amoxicillin with clavulonian acid and ampicillin was found in 16 out of 112 (14.28%), and in 67 out of 112 patients (59.8%), respectively.

Conclusions In all cases with fluoroquinolone-resistant E.coli species positive rectal swabs I generation of cephalosporin seems to be a best choice for prostate biopsy prophylaxis. Moreover, II generation of cephalosporin should be considered for treatment of the eventual subsequent infection. The evaluation of rectal swabs before prostate biopsy is crucial in determining targeted antimicrobial prophylaxis.

Key Words: prostate biopsy ☐ fluoroquinolone-resistant E.coli
asymptomatic bacteruria, urinary tract infection, acute prostatitis, bacteremia, and sepsis. The incidence of urinary tract infection after transrectal ultrasound-guided biopsy ranges between 2% and 6%, with even half of patients developing bacteremia, which can be followed with sepsis, with incidence of 0.1–2.2% [4]. Escherichia coli is one of the most common pathogen affecting urinary tract. The typical localization for this pathogen remains fecal, but usually affects urinary tract, accounting for approximately 75–90% pathogens of infectious complications [5, 6, 7]. In general urinary tract infections are often treated with quinolones (especially fluoroquinolones generation) in daily practice. Quinolones are known to be delivered in high concentrations into the prostate gland, therefore a concept of antibiotic prophylaxis with this drug emerged. Many studies demonstrated big benefit of antibiotic prophylaxis before transrectal ultrasound-guided prostate biopsy. Kappor et al. [8] demonstrated in a randomized, double-blind controlled study, that the use of ciprofloxacin lowers the incidence of urinary tract infection, and the number of unnecessary hospitalizations, compared with placebo group. Moreover, Aron et al. [9] reported that infectious complications rates decreased 3-fold when fluoroquinolones were used as prophylaxis, compared with placebo (8% vs. 25%). Therefore fluoroquinolones were included into prostate biopsy prophylaxis. Although, the choice of regimen, and type of antimicrobial agent is still debatable [10]. Additionally, in 1998, Sieber et al. [11] reported first two cases of urinary tract infections caused by Escherichia coli resistant to fluoroquinolones, in a series of 4439 transrectal ultrasound-guided prostate biopsy with fluoroquinolones prophylaxis. On the other hand, recent studies have shown that infections with fluoroquinolone-resistant Escherichia coli after prostate biopsy are increasingly being noted [12, 13, 14].

The aim of this study was to evaluate the incidence of fluoroquinolone-resistant Escherichia coli species in rectal swabs of patients undergoing transrectal ultrasound-guided prostate biopsy and to define appropriate antimicrobial agent as prostate biopsy prophylaxis.

**MATERIAL AND METHODS**

This prospective study was performed with 159 consecutive patients (mean age: 55–80 years) qualified to transrectal prostate biopsy due to prostate cancer suspicion on the basis of elevated PSA level (cut-off value was set at 4 ng/ml), changes found on digital rectal exam (DRE), and/or the presence of changes in the transrectal ultrasound (TRUS) image. Acentric acid and oral anticoagulants were discontinued 7 days before prostate biopsy. Biopsies were performed with a spring loaded biopsy gun and 18-gauge Tru-Cut needle. All patients had antibiotic prophylaxis with ciprofloxacin which was administrated orally (500 mg) after biopsy, and prescribed for 5 following days (500 mg twice a day).

Rectal swab and microbiological culture with antibioticogram were performed in all patients before transrectal prostate biopsy. Most commonly used antibiotics in urinary tract infections were analyzed: ampicillin, amoxicillin with clavulonan acid, cefalexin, cefuroxim, trimetoprim/sulfametoksazol, and ciprofloxacin. The identification of genus and species of bacteria strains was performed using a conventional method. The identification of Escherichia coli species was performed using the BBL Crystal E/NF identification (ID) System (Becton Dickinson). This system is a miniaturized identification method employing modified conventional and chromogenic substrates. It is intended for the identification of aerobic gram-negative bacteria that belong to the family Enterobacteriaceae, as well as some of the more frequently isolated glucose fermenting and nonfermenting gram-negative bacilli. Only Escherichia coli microorganisms were identified. Susceptibility to antimicrobial agents was tested by disk diffusion method according to the recommendations of the National Reference Centre for Antimicrobial Susceptibility Testing (KORLD). The quality control was used strain of Escherichia coli ATCC 25922. Interpretation of results was based on existing guidelines European Committee on Antibacterial Susceptibility Testing (EUCAST version 4.0.). The resistance-mechanism related to production of extended-spectrum β-lactamases (ESBLs) was not evaluated in current microbiological protocol.

**RESULTS**

In this prospective study 159 consecutive patients were included. In the rectal swab of 112 patients Escherichia coli was found, and in 47 after incubation this pathogen was not found. Escherichia coli resistant to ciprofloxacin was found in 57 out of 112 patients (50.9%). In 40 out of 112 (35.7%). Our results showed Escherichia coli strains susceptibility for ampicillin, trimetoprim/sulfametoksazol and ciprofloxacin, as follow: approximately 40%, 64%, and 48%, respectively. The bacterial strain susceptibility determines the borderline antimicrobial therapy efficacy (Table 1). Escherichia coli resistant to trimetoprim/sulfametoksazol was reported. Escherichia coli resistant to cefuroxim was obtained in 6 patients (6/112 – 5.35%).
In 8 out of 112 (7.14%) Escherichia coli resistant to ce-
furoxim was found. Escherichia coli resistant to amoxi-
cillin with clavulonian acid and ampicillin was found in
16 out of 112 (14.28%), and in 67 out of 112 patients
(59.8%), respectively. Other typical pathogens for uri-

nary tract infection (e.g. Klebsiella, Proteus species,
etc.) were not analyzed.

Follow up of 159 patients after transrectal ultra-

sound-guided prostate biopsy revealed that in only
two cases acute prostatitis was diagnosed which re-
quired admission to the hospital. In these two cases
blood culture was taken, and in both cases septice-

mia of Escherichia coli resistant to quinolones were
discovered. Additionally the rectal swabs were also
positive to Escherichia coli quinolones-resistant spe-
cies. Both patients were successfully treated with ce-
furoxim, with resolution of infection within 3 days.

DISCUSSION

Transrectal ultrasound-guided prostate biopsy is one of
most commonly performed urological pro-
cedure worldwide. Proper antimicrobial prophylaxis
in patients qualified to prostate biopsy significantly
reduces the fever, bacteruria, bacteriemia, urinary
tract infection, epidydimitis, prostatitis, etc. Addi-
tionally, the need for hospitalization is also reduced
[15]. Routine antimicrobial prophylaxis is strongly
recommended in all patients before prostate biopsy.
It is worth mentioning that the data from interna-
tional survey revealed that approximately 98.2%
of patient undergoing prostate biopsy received anti-

microbial agents. Both patients were successfully treated with cefuroxim, with resolution of infection within 3 days.

Table 1. Percentage of Escherichia coli sensitive strains

| Antibiotic                        | Percentage of sensitive strains of Escherichia coli |
|-----------------------------------|-----------------------------------------------------|
| Ampicillin                        | 40%                                                 |
| Amoxicillin with clavulonian acid | 88%                                                 |
| I generation cephalosporin – Cephalexin | 93%                                           |
| II generation cephalosporin – Cefuroxim | 95%                                           |
| Trimetoprim/sulphametoxazole      | 64%                                                 |
| Ciprofloxacin                     | 48%                                                 |

In big challenge appropriate selection of prophylactic
and therapeutic antimicrobial agents [7]. Moreover,
positive predictor for prostate infection after biopsy
was defined, as occurrence of fluoroquinolone-resis-
tant microorganisms in rectal swabs [17]. Williamson
et al. [18] study revealed that Escherichia coli
resistant to fluoroquinolones was reported in 62%

bloodstream isolates after transrectal prostate bi-

opsy compared with 14% bloodstream isolates from
other males within the same population.

Possibility of fluoroquinolones resistance came prob-
ably from overuse of quinolones for every urinary
tract infection by general practitioners. Ciprofloxa-
cin demonstrates good ability to penetrate both uri-
nary system, as well as prostate gland, so it seems
to be the best solution for urologist to use. Recent-
ly, a shift in ciprofloxacin use has to be done, due
to increasing pathogen non-sensitivity. The resis-
tance to quinolones is presented by many papers,
but so high level was generally not seen in com-
unity based prospective study [19]. Generally,
susceptibility of less than 80% is considered as
a borderline of safe antibiotic use [20]. In case of pa-

tients involved into a study, such level was not meet
in case of ampicillin, trimetoprim/sulfometoksazol
and ciprofloxacin (drugs commonly used in treat-
ment of urinary tract infection). It is interesting
to note that adding clavulonian acid to amoxicillin,
raises level of susceptibility to 88%, what makes it
possible to use in clinical setting.

According to the results of our study, the first choice
treatment of febrile urinary tract infection follow-
ing prostate biopsy should be cephalosporins. Both
first and second generations harbors almost the
same susceptibility of 93% and 95%, respectively.
Therefore it seems, that those antimicrobial agents
can be used in clinical setting. It seems, that second
generation of cephalosporin (cefuroxim) should re-
main a drug of choice in patients hospitalized with
febrile urinary tract infection following prostate bi-
opsy. First generation cephalosporin, like cefasolin,
is affordable, and well penetrating to the prostate

tissue, and therefore can be used as prophylactic
agent in prostate biopsy as well.

It is worth noting that final concentrations of the an-
timicrobial agents differ significantly. The final fluid
concentration of cefazoline and tissue concentration
of cefuroxim can achieve 10 µg/ml and 7.6-29.2 µg/g
value, respectively. On the other hand final tissue
concentration of ciprofloxacin was recorded at 0.6-
4.18 µg/g level. Moreover, tissue level of levofloxacin
is greater than corresponding plasma level [21]. Sim-
ilarly, Steensels et al. [22] also recommend cepha-
losporins (especially third generation, e.g. ceftriaxone)
risk of faecal carriage of fluoroquinolone-resistant strains before biopsy and/or infectious complications. Treatment of bacterial prostatitis is demanding due to the lack of active antimicrobial agents transmembrane transport, as well as poor tissue and fluid penetration especially in inflammed organs. Thus, proper prophylaxis is recommended. As far as concerned antimicrobial prophylaxis after transrectal ultrasound-guided prostate biopsy, the prostate gland antimicrobial agent penetration should be considered. In general with increasing pH gradient across the membrane between plasma and prostatic tissue the higher concentration of antimicrobial agents is observed. In case of inflammation the pH of prostatic fluid increases up to 7–8.3 in chronic prostatitis, as compared with physiological pH values set on 6.5–6.7. Moreover, antimicrobial agents which are unionized easily diffuses through cellular membranes [23, 24]. Winningham et al. [25] experimental study showed that most drugs are unable to cross the electrically charged lipid membrane of the prostate epithelium to reach therapeutic levels within the prostatic acini. β-lactam drugs are characterized by poor lipid solubility and in consequence poorly penetrates into prostatic tissue and fluids. On the other hand some cephalosporins, which are weak acids with low lipid solubility, may achieve equal or even higher concentration, as compared with inhibitory concentration of antimicrobial agent. Fluoroquinolones present very good penetration into fluid and parenchyma of prostate gland [26]. In accordance with the results of Saade et al. [27] study the evaluation of the type of Escherichia coli strains in patients undergoing transrectal ultrasound-guided prostate biopsy seems to be very important to reduce the risk of complications development after prostate biopsy. It was concluded that patients after transrectal ultrasound-guided prostate biopsy, with co-existing risk factors for fluoroquinolones-resistant bacteruria are patients with higher risk for infection. Such factors are as follow: fluoroquinolone exposure (set at 27.5% of all cases), diabetes, prior hospitalization, and positive culture with Escherichia coli resistant to fluoroquinolones. Moreover, the authors reported a 5-fold increase in bacteruria and a 4-fold increase in bateriemia caused by Escherichia coli after prostate biopsy.

All above mentioned fact show that proper antimicrobial prophylaxis in patients undergoing transrectal ultrasound-guided prostate biopsy is crucial in prevention for infectious complications. In selected cases when the risk of fluoroquinolones-resistant Escherichia coli strains is at higher level, the shift in prostate biopsy prophylaxis (from fluoroquinolones to cephalosporins) should be considered.

CONCLUSIONS

In conclusion it can be stated that in all cases with fluoroquinolone-resistant Escherichia coli species positive rectal swabs first generation of cephalosporins seems to be a best choice for transrectal ultrasound-guided biopsy prophylaxis. Moreover, second generation of cephalosporins should be considered for treatment of the eventual subsequent infection. The evaluation of rectal swabs before prostate biopsy is crucial in determining targeted antimicrobial prophylaxis. However, further prospective studies are required evaluating the usefulness of cephalosporins in infections related to transrectal ultrasound-guided prostate biopsy.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

The manuscript was prepared according to scientific and ethical rules.

References

1. Adamczyk P, Wolski Z, Butkiewicz R, Nussbeutel J, Drewa T. Significance of atypical small acinar proliferation and extensive high-grade prostatic intraepithelial neoplasm in clinical practice. Cent European J Urol. 2014; 67: 136-141.
2. Adamczyk P, Wolski Z, Butkiewicz R, Nussbeutel J, Drewa T. Inflammatory changes in biopsy specimens from patients with suspected prostate cancer. Cent European J Urol. 2013; 66: 256-262.
3. Raaijmakers R, Kirkels WJ, Roobol MJ, Wildhagen MF, Schrder FH. Complication rates and risk factors of 5802 transrectal ultrasound-guided sextant biopsies of the prostate within a population-based screening program. Urology. 2002; 60: 826-830.
4. Otrock ZK, Oghlakian GO, Salamoun MM, Haddad M, Bizi AR. Incidence of urinary tract infection following transrectal ultrasound guided prostate biopsy at a tertiary-care medical center in Lebanon. Infect Control Hosp Epidemiol. 2004; 25: 873-877.
5. Hadway P, Barrett LK, Waghorn DJ, et al. Urosepsis and bacteremia caused by antibiotic-resistant organisms after transrectal ultrasonography-guided prostate biopsy. BJU Int 2009; 104: 1556-1558.
6. Young JL, Liss MA, Szabo RJ. Sepsis due to fluoroquinolone-resistant Escherichia coli after transrectal ultrasound-guided prostate needle biopsy. Urology. 2009; 74: 332-328.
7. Williamson DA, Barrett LK, Rogers BA, Freeman JT, Hadway P, Paterson DL. Infectious complications following transrectal ultrasound-guided prostate biopsy: new challenges in the era.
of multidrug-resistant Escherichia coli. Clin Infect Dis. 2013; 57: 267-274.

8. Kapoor DA, Klimberg IW, Malek GH et al. Single-dose oral ciprofloxacin versus placebo for prophylaxis during transrectal prostate biopsy. Urology. 1998; 52: 552-558.

9. Aron M, Rajeev TP, Gupta NP. Antibiotic prophylaxis for transrectal needle biopsy of the prostate: a randomized controlled study. BJU Int. 2000; 85: 682-685.

10. Grabe M, Bartoletti R, Bjerklund Johansen TE, Çek M, Köves B, Naber KG, Pickard RS, Tenke P, Wagenlehner F, Wull B. Guidelines on Urological Infections. EAU, 2015.

11. Sieber P, Rommel F, Agusta V, Breslin J, Huffnagle H, Harpster LE. Antibiotic prophylaxis in ultrasound guided transrectal prostate biopsy. J Urol. 1997; 157: 2199-2200.

12. Otrock ZK, Oghlakian GO, Salamoun MM, Haddad M, Bliz AR. Incidence of urinary tract infection following transrectal ultrasound guided prostate biopsy at a tertiary-care medical center in Lebanon. Infect Control Hosp Epidemiol. 2004; 25: 873-877.

13. Nam R, Sasaki R, Lee Y et al. Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. J Urol. 2010; 183: 963-969.

14. Young J, Liss MA, Szabo R. Sepsis due to fluoroquinolone-resistant Escherichia coli after transrectal ultrasound-guided prostate needle biopsy. Urology. 2009; 74: 332-338.

15. American Urological Association. Best practice policy statement on urologic surgery antimicrobial prophylaxis. American Urological Association Web site. https://www.auanet.org/common/pdf/education/clinical-guidance/Antimicrobial-Prophylaxis.pdf. Accessed February 22, 2013.

16. Wagenlehner FM, van Oostrum E, Tenke P, et al. Infective complications after prostate biopsy: outcome of the Global Prevalence Study of Infections in Urology (GPIU) 2010 and 2011, a prospective multinational multicentre prostate biopsy study. Eur Urol. 2013; 63: 521-527.

17. Williamson DA, Masters J, Freeman J, Roberts S. Travel-associated extended-spectrum beta-lactamase-producing Escherichia coli bloodstream infection following transrectal ultrasound-guided prostate biopsy. BJU Int. 2012; 109: E21-22.

18. Williamson DA, Roberts SA, Paterson DL et al. Escherichia coli bloodstream infection after transrectal ultrasound-guided prostate biopsy: implications of fluoroquinolone-resistant sequence type 131 as a major causative pathogen. Clin Infect Dis. 2012; 54: 1406-1412.

19. Rogers BR, Batura D, Gopal Rao G. Escherichia coli bloodstream infection after transrectal ultrasound-guided prostate biopsy: our experience in North-West London. Clin Infect Dis. 2013; 56: 465-466.

20. Zaytoun OM, Vargo EH, Rajan R, Berglund R, Gordon S, Jones JS. Emergence of fluoroquinolone-resistant Escherichia coli as cause of post prostate biopsy infection: implications for prophylaxis and treatment. Urology. 2011; 77: 1035-1042.

21. Lipsky BA, Byren I, Hoey CT. Treatment of Bacterial Prostatitis. Clin Infect Dis. 2010; 50: 1641-1652.

22. Steensels D, Slabbaert K, De Wever L, Vermeersch P, Van Poppel H, Verhaegen J. Fluoroquinolone-resistant E. coli in intestinal flora of patients undergoing transrectal ultrasound-guided prostate biopsy—should we reassess our practices for antibiotic prophylaxis? Clin Microbiol Infect. 2012; 18: 575-581.

23. Pfau A, Perlberg S, Shapira A. The pH of the prostatic fluid in health and disease: Implications of treatment in chronic bacterial prostatitis. J Urol. 1978; 119: 384-387.

24. Stamey TA, Meares ES, Winningham DG. Chronic bacterial prostatitis and the diffusion of drugs into prostatic fluid. J Urol. 1970; 103: 187-194.

25. Winningham DC, Nemoy NJ, Stamey TA. Diffusion of antibiotics from plasma into prostatic tissue. Nature. 1968; 219: 139-143.

26. Charalabopoulos K. Penetration of antimicrobial agents into the prostate. Chemotherapy 2003; 49: 269-279.

27. Saade EA, Suwantarat N, Zarbaryk TF, Wilson B, Donskey CJ. Fluoroquinolone-Resistant Escherichia coli Infections After Transrectal Biopsy of the Prostate in the Veterans Affairs Healthcare System. Pathog Immun. 2016; 1: 243-257.