NeRP: Implicit Neural Representation Learning With Prior Embedding for Sparsely Sampled Image Reconstruction

Liyue Shen, Student Member, IEEE, John Pauly, Senior Member, IEEE, and Lei Xing

Abstract—Image reconstruction is an inverse problem that solves for a computational image based on sampled sensor measurement. Sparsely sampled image reconstruction poses additional challenges due to limited measurements. In this work, we propose a methodology of implicit Neural Representation learning with Prior embedding (NeRP) to reconstruct a computational image from sparsely sampled measurements. The method differs fundamentally from previous deep learning-based image reconstruction approaches in that NeRP exploits the internal information in an image prior and the physics of the sparsely sampled measurements to produce a representation of the unknown subject. No large-scale data is required to train the NeRP except for a prior image and sparsely sampled measurements. In addition, we demonstrate that NeRP is a general methodology that generalizes to different imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). We also show that NeRP can robustly capture the subtle yet significant image changes required for assessing tumor progression.

Index Terms—Implicit neural representation, inverse problem, prior embedding, sparsely sampled image reconstruction.

I. INTRODUCTION

In medical imaging, the ill-posed nature of the sparse sampling problem poses a major challenge for algorithm development. Many approaches have been studied to solve this problem. One widely used approach is to exploit prior knowledge of the sparsity of the image in a transform domain, such as in compressed sensing, where total-variation, low-rank, and dictionary learning have been applied [1]–[7].

Clinically, the patients often need to be scanned serially over time. For example, in cancer treatment, the patients are scanned before and after therapy or even during the therapy, to plan the treatment, guide the interventions, and monitor the therapeutic response. In radiation therapy, for example, the treatment often involves multiple fractions (sometimes, the number of fractions can be more than 30). In each fraction, the patient is scanned before or even during treatment for patient setup and tumor target localization. Sparse sampled image reconstruction is imperative to speed up the imaging process for efficient clinical workflow and for nearly real-time tumor target localization in image-guided interventions. Additionally, sparse imaging also allows radiation dose reduction in CT imaging. These motivate us to search for an effective way to take advantage of previously scanned images.

Unprecedented advances in deep learning driven by learning from large-scale data have achieved impressive progress in many fields, including computational image reconstruction. Many researchers have introduced deep learning models for medical imaging modalities such as CT and MRI [8], [9]. The key to these deep learning approaches is training convolutional neural networks (CNNs) to learn the mapping from raw measurement data to the reconstructed image by exploiting the large-scale training data as shown in Fig. 1(a). The network exploits the hidden transformation information embedded in the data through the data-driven training procedure. More advanced methods have improved the conventional deep learning reconstruction by leveraging prior knowledge from other aspects, such as generative adversarial model [10], [11] and geometry-integrated deep learning frameworks [12]–[15]. Previous works have demonstrated the effectiveness of explicitly incorporating physics and geometry priors of imaging system with deep learning [12], [15].

Although these works show the advantage of deep learning for medical image reconstruction, they have also exposed some limitations. For example, the acquisition of large-scale training datasets can be a bottleneck, the reconstructions may not be robust when deployed to unseen subjects, the reconstructions can be unstable with subtle yet significant...
Fig. 1. Schematic illustration of different approaches for deep learning-based medical image reconstruction: (A) deep neural network is developed to learn the mapping from the sensor (measurements) domain (e.g., projection space and frequency space) to image domain (e.g., CT and MRI) and (B) deep neural network is developed to learn the implicit neural representation of the reconstructed image. The input to the network is the spatial coordinates for any points within the image field, while the output is the corresponding intensity values. Any image (e.g., CT and MRI) can be implicitly represented by a continuous function which is encoded into the neural network’s parameters. The proposed image reconstruction framework of implicit neural representation learning with prior embedding (NeRP) consists of three modules: (a) prior embedding: prior image is embedded into the neural network’s parameters by training with coordinate-intensity pairs; (b) network training: using the prior-embedded network as initialization, we train the reconstruction network constrained by the sparse samples in sensor (measurement) domain (i.e., projection domain for CT imaging and frequency domain for MRI imaging), and learn the implicit neural representation for the reconstructed image; and (c) image inference: the reconstructed image is obtained by inferring the trained network across all the spatial coordinates in the image grid.

Instead of searching for the best match in the image space, we reconstruct the image by searching for it in the space of networks’ weights. The network is trained to match the subsampled measurements in raw data space (e.g., projection space sampling for CT or frequency space sampling for MRI), by integrating the forward model of the corresponding imaging system. For sparse sampling, the measurements may not provide sufficient information to precisely reconstruct images of the unknown subject due to the ill-posed nature of the inverse problem. The proposed NeRP framework exploits prior knowledge from a longitudinal previous image of the same subject. This is particularly applicable to clinical protocols, where patients are scanned multiple times during disease management for the purpose of guiding the interventional procedure or monitoring the therapeutic response. In this situation, the previously scanned image provides valuable information of the patient anatomy and can be utilized as the prior knowledge for subsequent imaging of the patient.

The implicit neural representation first embeds the internal information of the prior image into the weights of MLP. This serves as the initialization for the search for the representation of the target image. Starting from this prior-embedded initialization, the network can be optimized to reach an optimal point in the function space given only sparsely sampled measurements. Finally, the learned MLP can generate the image reconstruction by traversing all the spatial coordinates in the image space. Note that NeRP requires no training...
data form external subjects except for the sparsely sampled measurements and a prior image of the subject.

The main contributions of this work are as follows.

1) We present a novel deep learning methodology for sparsely sampled medical image reconstruction by learning the implicit neural representation of image with prior embedding (NeRP). By reformulating the image reconstruction problem as an optimization of a continuous function, our method alleviates the need for a large amount of population-based training data from external subjects and can be easily generalized across different imaging modalities and contrasts, and different anatomical sites.

2) Based on the neural representation learning, we propose a succinct and effective way to incorporate the longitudinal prior knowledge into the deep learning by embedding the longitudinal prior image as the network parameters, which makes it possible to incorporate the longitudinal information into deep learning models for various applications.

3) We present extensive experiments for both 2-D and 3-D image reconstruction with various imaging modalities, including CT and MRI, and demonstrate the effectiveness and generalizability of the proposed NeRP method. In particular, we show that our method is robust for capturing subtle yet significant structural changes such as those due to tumor progression. Overall, the salient features of the proposed framework lay a solid foundation for the potential clinical applications.

II. RELATED WORK

A. Deep Learning for Medical Image Reconstruction

Most previous work in deep learning-based medical image reconstruction trains the deep neural networks to learn the mapping from sampled measurements to reconstructed images [8]–[11]. Zhu et al. [8] introduced a CNN model for manifold learning and mapping between the sensor and image domain for accelerating the acquisition and reconstruction in MRI. Meanwhile, Shen et al. [9] proposed a deep network with a transformation module in high-dimensional feature space to learn the mapping from 2-D projection radiographs to 3-D anatomy for reconstructing volumetric CT images from sparse views. Later, adversarial learning was introduced to train the CNN model for obtaining better reconstruction image quality [10], [11]. Mardani et al. [10] used generative adversarial networks (GANs) to model the low-dimensional manifold of MR images. Ying et al. [11] adopted the adversarial loss in the network training objective for 2-D–3-D CT reconstruction. Although GAN-based methods can reconstruct more realistic images with higher image quality, the generated fine details and structures may not be reliable due to the synthetic nature of GAN models [11].

Recently, human prior knowledge has been considered to guide the construction of deep learning models [12]–[15]. For example, geometry-integrated deep learning methods were proposed for CT image reconstruction [12] and X-ray projection synthesis [15] by incorporating the physics and geometry priors of imaging model to build a unified deep learning framework. Lin et al. [13] presented a dual-domain network for metal artifact reduction in CT imaging with a differentiable Radon inversion layer connecting sinogram and image domains. Würfl et al. [14] mapped filtered back-projection (FBP) to neural networks and introduced a cone-beam back-projection layer. Despite the integration of physics and geometry priors, these methods still follow the same methodology of training the network to learn the mapping from measurements to image. In contrast, our method uses the network to learn a continuous implicit neural representation of entire image by mapping spatial coordinates to corresponding intensity values. This is fundamentally different from previous deep learning-based reconstruction approaches.

B. Implicit Neural Representation Learning

In recent years, the introduction of neural representations has completely changed representation and generation of images in deep learning [17]–[22]. First, Eslami et al. [17] introduced a generative query network to learn the scene representation from input images taken from different viewpoints and used this representation to predict the image from unobserved viewpoints. Then, Sitzmann et al. [18] proposed a scene representation network to represent scenes as continuous functions that map world coordinates to local feature representation and formulate the image formation as a differentiable ray-marching process. Mildenhall et al. [19] used the fully connected network to represent scenes and optimized neural radiance fields to synthesize novel views of scenes with complicated geometry and appearance. This year, researchers have further improved the algorithms of implicit neural representation and extended them to broader applications. In [20], it was shown that Fourier feature mapping enabled MLP to learn high-frequency functions when using MLP to represent complex objects or scenes, while Sitzmann et al. [21] demonstrated that periodic activation functions helped to represent complex signals and their derivatives with fine details. Moreover, Martin-Brualla et al. [22] extended neural radiance fields [19] to address real-world problems and enabled synthesis of novel views of complex scenes from unstructured internet photograph collections with variable illumination.

Although much attention has been attracted for neural representation in natural images or photographic images, few studies have been done in the medical domain. In [19], some early discussions of CT and MRI reconstruction were included in one of the validation experiments, but the reconstructed image qualities are far from satisfactory. A work by Sun et al. [23] on arXiv is relevant. However, it only focused on using MLP to represent the measurement field instead of image, and then relying on other existing reconstruction methods to obtain reconstructed images. Our method aims to learn and optimize the neural representation for the entire image and can directly reconstruct the target image by incorporating the forward model of imaging system.

C. Image Prior Embedding

Deep neural networks have shown excellent performance for image generation and reconstruction, due to their ability to
learn image priors from a large set of example images during training [9]. In addition, Ulyanov et al. [24] showed that the network structure itself can also capture low-level image statistics priors, where a randomly initialized neural network given noise inputs can be used as a handcrafted image prior for inverse problems. Moreover, Gandelsman et al. [25] used multiple deep image prior networks for image decomposition in various applications. In this work, we go beyond leveraging such image priors through optimization in the function space of network’s parameters. In particular, we also take the advantage of another image prior unique in medical domain. In medical imaging, it is common that one patient may have multiple imaging scans over time for the purpose of treatment assessment, or for image-guided interventions. Although the images are taken at different subject states, earlier scanned images can still provide useful prior knowledge of the patient anatomy. Our neural representation method proposes a simple yet effective way to embed this prior information and facilitate the reconstruction of the new images.

III. METHOD

Fig. 1(B) illustrates the basic concept of the proposed implicit neural representation learning with prior embedding (NeRP) for image reconstruction. NeRP contains three modules to obtain the final reconstruction images. First, a prior image from earlier scan of the same subject is embedded as the implicit neural representation by encoding the entire spatial image field into the network’s parameters. Specifically, the network is optimized to seek the continuous function that could precisely map the spatial coordinates to corresponding intensity values in the prior image. Next, using the prior-embedded network as the initialization, we aim to learn the neural representation of the target reconstruction image from the subsampled measurements of an unknown subject without any ground truth, as shown in Fig. 1(B). The differentiable forward model corresponding to the imaging system (e.g., Radon transform for CT imaging or Fourier transform for MRI imaging) is integrated to bridge between image space and sensor space. In this way, the network is optimized in the continuous function space of the network’s parameters, with the constraints of the subsampled measurements from the unknown subject. Finally, the reconstructed image can be obtained by inferring the trained network across all the spatial coordinates in the image field.

A. Problem Formulation

To formulate the inverse problem for computational image reconstruction, the forward process of imaging system can be modeled as

\[y = Ax + e \]

where \(x \) is the image of the unknown subject while \(y \) is the sampled sensor measurements. Matrix \(A \) represents the forward model of the imaging system, and \(e \) is the acquisition noise.

Image reconstruction aims to recover the computational image \(x \) of the unknown subject, given the measurements \(y \) from sensors. In the sparsely sampled image reconstruction problem, the measurements \(y \) are undersampled in sensor space for either accelerated acquisition, as in MRI, or reduction of radiation, as in CT. The inverse problem for sparse sampling is ill-posed and is typically formulated as an optimization problem with regularization

\[x^* = \arg\min_{x} E(Ax, y) + \rho(x) \]

where \(E(Ax, y) \) is the data term, which measures the errors between \(Ax \) and \(y \), so as to guarantee the data consistency with the sensor measurements. Function \(E \) can be different distance metrics such as \(L_1 \) or \(L_2 \) norm. \(\rho(x) \) is the regularizer term characterizing the generic image prior. The regularizer \(\rho(x) \) can be determined in many different ways to capture various image characteristics. For example, total variation of the image enforces smoothness, while sparsity in a transform domain is used in compressed sensing.

B. Neural Representation for Image

In implicit neural representation learning, the image is represented by a neural network as a continuous function. The network \(\mathcal{M}_{\theta} \) with parameters \(\theta \) can be defined as

\[\mathcal{M}_{\theta}: c \to v \text{ with } c \in [0, 1]^n, \quad v \in \mathbb{R} \]

where the input \(c \) is the normalized coordinate index in the image spatial field, and the output \(v \) is the corresponding intensity value in the image. The network function \(\mathcal{M}_{\theta} \) maps coordinates to the image intensities, which actually encodes the internal information of entire image into the network parameters. Thus, network structure \(\mathcal{M}_{\theta} \) with the parameters \(\theta \) is also regarded as the neural representation for the image. Note that, theoretically, a random image in any modality or in any dimension \(x \in \mathbb{R}^n \) can be parameterized by the network using this method. In the following, we introduce the specific network structure used in our method.

1) Fourier Feature Embedding: Since Fourier features are shown to be effective for networks to learn high-frequency functions [20], we use a Fourier feature mapping \(\gamma \) to encode the input coordinates \(c \) before applying them to the coordinate-based network. Thus, the encoded coordinates are

\[\gamma(c) = [\cos(2\pi Bc), \sin(2\pi Bc)]^T \]

where matrix \(B \) represents the coefficients for Fourier feature transformation. Following [20], entries of matrix \(B \) are sampled from Gaussian distribution \(\mathcal{N}(0, \sigma^2) \), where \(\sigma \) is a hyperparameter characterizing the standard deviation of the prior distribution. After the Fourier feature embedding, the input to the network \(\mathcal{M}_{\theta} \) is the encoded coordinates \(\gamma(c) \).

2) MLP Network: The network \(\mathcal{M}_{\theta} \) is implemented by a deep fully connected network or MLP. The coordinate-based MLP parameterizes the continuous function to represent the entire image. This function is defined by the network structure as well as the network parameters. In Section III-C, we will describe in detail how to obtain the network parameters through optimization. For the network structure, the model depth and width of MLP are hyper-parameters, characterizing the representative capability of the MLP model. Moreover, we use the periodic activation functions in our MLP model.
after each fully connected layer, which are demonstrated to effectively represent fine details in signals [21].

C. NeRP for Sparsely Sampled Image Reconstruction

Next, we introduce how the proposed implicit neural representation learning with prior embedding (NeRP) is used to solve image reconstruction problem. The goal is to recover the image \(x \) of the target subject, given corresponding sparsely sampled measurements \(y \) and a prior image \(x^p \). Note that \(x^p \) and \(x \) are different scans for the same subject, but at different time points. These capture the changing state of the subject such as the tumor progression for monitoring patient response to therapy.

1) Prior Embedding: In the first step, we embed the prior image \(x^p \) into the network. We use the coordinate-based MLP \(\mathcal{M}_\theta \) introduced in Section III-B to map the spatial coordinates to corresponding intensity values in prior image \(x^p \). That is, \(\mathcal{M}_\theta : c_i \rightarrow x^p_{ci} \), where \(i \) denotes the coordinate index in image spatial field. Given all the coordinate-intensity pairs in prior image \(\{c_i, x^p_{ci}\}_{i=1}^N \), with a total of \(N \) pixels in the image, the randomly initialized MLP is optimized based on the objective

\[
\phi^* = \frac{1}{N} \sum_{i=1}^{N} \left\| \mathcal{M}_\theta(c_i) - x^p_{ci} \right\|_2^2. \tag{5}
\]

After optimization, the internal information of prior image \(x^p \) is encoded into the MLP network \(\mathcal{M}_\theta \) with the corresponding network parameters \(\phi^* \). For clarity, we use \(\mathcal{M}^p \) to denote the prior-embedded MLP network, i.e., \(x^p = \mathcal{M}^p \).

2) Network Training: Given the prior-embedded MLP \(\mathcal{M}^p \) and measurements \(y \), we train the network to learn the neural representation of the target image. Based on the formulation in (2), the unknown target image \(x \) is parameterized by a coordinate-based MLP \(\mathcal{M}_\theta \) with parameters \(\theta \). Thus, the data term is defined as \(\epsilon(Ax, y) = \min_{\theta} \epsilon(A\mathcal{M}_\theta, y) \), where the optimization in image space is transformed to the optimization in the space of MLP’s parameters. Furthermore, we replace the explicit regularizer \(\rho(x) \) by the implicit priors from both the prior image and the neural network parametrization (i.e., the internal information from prior image embedded in \(\mathcal{M}^p \) as well as the low-level image statistics prior captured by neural network parametrization \(\mathcal{M}_\theta \)), similar to the setting in [24]. More specifically, in our proposed approach, the specific implicit regularization means that all the pairs of coordinate-intensity share the same underlying continuous function that is parameterized by the MLP network. Besides having an initializer by embedding prior image as network weights, the implicit regularization captured by the network parametrization (i.e., the same continuous function parametrization) also influences the entire optimization process, which is realized through the neural representation learning. Thus, the optimization objective in (2) can be formulated as follows:

\[
\theta^* = \arg\min_{\theta} \epsilon(A\mathcal{M}_\theta, y; \mathcal{M}^p), \quad x^* = \mathcal{M}_\theta. \tag{6}
\]

The network \(\mathcal{M}_\theta \) is trained by minimizing the L2-norm loss, which is initialized by the prior-embedded network \(\mathcal{M}^p \)

\[
\theta^* = \arg\min_{\theta} \left\| A\mathcal{M}_\theta - y \right\|_2^2, \quad x^* = \mathcal{M}_\theta. \tag{7}
\]

Note that forward model \(A \) is adapted to the corresponding imaging system, such as Radon transform for CT imaging and Fourier transform for MRI imaging. The operation \(A \) is differentiable, which enables training the network \(\mathcal{M}_\theta \) in an end-to-end fashion.

3) Image Inference: Finally, after the network is well-trained, the reconstruction image can be generated by inferring the trained network across all the spatial coordinates in the image field. That is, \(x^* : \{c_i, \mathcal{M}_\theta(c_i)\}_{i=1}^N \), where \(i \) denotes the coordinate index in image spatial field. This is denoted in short as \(x^* = \mathcal{M}_\theta \) in (6) and (7). Filling the intensity values at all the coordinates in image grid constitutes the final reconstruction image \(x^* \).

D. Technical Details of NeRP

In our implementation, we construct an eight-layer MLP network with a width of 256 neural nodes for CT reconstruction, where each fully connected layer is followed by the periodic activation function [21] except for the last layer. For MRI reconstruction, we increase the MLP width to 512 layers. We will discuss and analyze the influence of different network structures in the next section. The Fourier feature embedding [20] size is 256, where the hyper-parameter for the standard deviation of the coefficient’s Gaussian distribution is set as 3 for MRI reconstruction and 4 for CT reconstruction. For prior embedding, the training objective in (5) is optimized by the Adam optimizer with a learning rate of 0.0001. The total training iterations are 1000 for 2-D images and 2000 for 3-D images. Next, given the prior-embedded MLP as the initialization, the reconstruction network is trained by optimizing the objective in (7) using the Adam optimizer with a learning rate of 0.00001. Usually, we train 1000 iterations for 2-D images and 2000 iterations for 3-D images. We implemented our networks using PyTorch [26]. For the differentiable forward model \(A \), the Radon transform or forward projection operation for CT imaging is realized by using Operator Discretization Library (ODL) [27]. The nonuniform fast Fourier transform (NUFFT) for MRI imaging is implemented based on the torchkbnufft package [28].

IV. EXPERIMENTS AND RESULTS

To evaluate the proposed NeRP method, we conducted experiments for 2-D/3-D CT and MRI image reconstruction with sparsely sampling. For CT image reconstruction, we assume 20 projections equally distributed across a semi-circle. We compute parallel-beam projections for 2-D CT and cone-beam projections for 3-D CT. For MRI image reconstruction, 40 radial spokes are sampled in \(k \)-space with golden angle as the angular interval, as shown in Fig. 1(B). Beyond sparsely sampled measurements data, a prior image from an earlier scan is also given. Since the prior image and reconstruction image are of the same patient at different time points, the prior image can provide useful information about the patient’s anatomic structure while still allowing crucial structural and functional differences such as tumor or lesion changes, as shown in Fig. 1(B). We will show the experimental results applying NeRP for 2-D/3-D CT and...
MRI image reconstruction with various image contrasts and at various anatomical sites.

A. Datasets

1) **Pancreas 4-D CT Data:** For CT image reconstruction, we collected a pancreas 4-D CT data from a clinical patient. The 4-D CT data are a temporal scan with a sequential series of 3-D CT images over a respiratory cycle. Due to respiratory motion, there is continuous motion in the CT images at different time points. In the first row of Fig. 2, we show the cross-sectional images at the same location from the ten phases (time-points) of the CT images in the 4-D CT. The continuous structural changes can be observed over the ten temporal phases. In the experiments, we use phase 1 as the prior image to reconstruct the CT images at the subsequent phases.

2) **Head-and-Neck CT and Lung CT Data:** To further validate the generalization of the proposed NeRP algorithm, we collected two clinical patient cases including a head-and-neck CT case and a lung CT case. For each case, there are two longitudinal 3-D CT images scanned for the same patient at time points during treatment with radiation therapy. The goal is to follow tumor volume to assess response to therapy. In the data preprocessing, we first conduct rigid image registration to align the two CT images at the same position. Then, we use NeRP to reconstruct the latter 3-D CT image while using the earlier 3-D CT image as the prior image.

3) **Brain Tumor Progression MRI Data:** For MRI image reconstruction, we conducted experiments on a public dataset for brain tumor progression [29], [30]. This dataset includes MRI images from 20 subjects with primary newly diagnosed glioblastoma. The patients were treated with surgery and standard concomitant chemo-radiation therapy (CRT) followed by adjuvant chemotherapy [30]. For each patient, there are two MRI exams included, which were within 90 days following CRT completion and at tumor progression. Thus, the tumor changes can be clearly observed by comparing the two MRI exams of the same patient at different time points. In addition, each MRI exam contains multicontrast MRI images including T1-weighted, contrast-enhanced T1-weighted (T1c), T2-weighted, and FLAIR. In our experimental setting, we set the first MRI exam as the prior image and aim to reconstruct the MRI image in the second exam. This is tested for different MR image contrasts, respectively.

B. Experiments on 2-D CT Image Reconstruction

In Fig. 2, we show the 2-D CT reconstruction results for phase 2–phase 10 using the proposed NeRP algorithm by using phase 1 as prior image. Note that 2-D CT images are the cross-sectional slices at the same location extracted from the corresponding 3-D CT images at each phase. After preprocessing, 2-D CT images are all resized to 256 × 256. For comparison, we demonstrate reconstruction results for “NeRP w/o prior,” where no prior image is used and the network is randomly initialized for training in Fig. 1(B). From the results, we can see that NeRP can reconstruct high-quality images with clear anatomic structures, sharp organ boundary, and high-contrast soft tissue and bones. More importantly, the reconstructed images can precisely capture the continuous changes with fine detail over different phases although the same prior image is used and only sparse projections are sampled for reconstructing the target image in each phase. Note that neither the method of “NeRP w/o prior” nor “NeRP” requires a large amount of images from different patients for training the network since both methods are based on neural representation learning. The difference is in the prior embedding. By comparing to the results of “NeRP w/o prior,” we see prior image embedding benefits the reconstruction results in all phases with increased image sharpness and reduced noise. Therefore, we conclude that the prior embedding can provide useful prior knowledge that is critical to precisely reconstruct high-quality 2-D CT images with sparse sampling. Moreover, we see that the proposed NeRP algorithm can reconstruct reliable images that precisely capture the small structural changes in the patient’s anatomy.

C. Experiments on 3-D CT Image Reconstruction

To evaluate the effectiveness of NeRP in a higher-dimensional reconstruction task, we conducted experiments

Fig. 2. Results of 2-D CT image reconstruction for pancreas 4-D CT data using 20 projections. The first row shows the ground truth cross-sectional 2-D slices at the same location over ten phases in the pancreas 4-D CT, where each column demonstrates one phase, respectively. The final row shows the reconstruction images at different phases, respectively, by using the proposed NeRP method, where the phase-1 image is used as the prior image for reconstructing the images in phases 2–10. For comparison, the second row shows the reconstruction results without using the prior embedding.
Fig. 3. Results of 3-D CT image reconstruction for pancreas 4-D CT data using 20 projections. The first and second rows show the prior 3-D CT (phase 1) and the ground truth of target 3-D CT (phase 6) image, where each column demonstrates cross-sectional slices of the 3-D volume. The final row shows the reconstructed 3-D CT images by using the proposed NeRP method. For comparison, the second–fourth rows show the reconstruction results of FBP method, GRFF method [20], and NeRP without using prior embedding. The zoomed-in view red boxes highlight the difference in anatomic structure for comparison.

For comparison, we also conducted experiments to show the results of other reconstruction methods. First, we show the reconstruction results for “NeRP w/o prior” as an ablative study by removing the prior embedding. Comparing the image quality, we can see that the prior embedding effectively contributes to reconstructing high-quality images with sparse sampling. Moreover, we compare with the analytic reconstruction algorithm using FBP. The back-projected operation adjoint to the cone-beam projection in the forward model can reconstruct the 3-D image from the given 2-D projections with filter correction. As shown in Fig. 3, FBP introduces severe streaking artifacts due to the sparsely sampling measurements. Usually, the FBP algorithm requires hundreds of sampled projections to satisfy the Shannon–Nyquist theorem in order to obtain artifact-free images. However, with the implicit image priors captured from deep network and prior embedding, the proposed NeRP can overcome this limit and achieve artifact-free high-quality images with only sparsely sampled projections. In addition, we also compare with a relevant previous work [20], which also attempts to represent medical images by network-based continuous functions. We compare with the best method reported in [20] using Gaussian random Fourier feature (GRFF) and implement the method according to the technical details in [20]. Compared with GRFF, our proposed NeRP uses a different network architecture, and more importantly, introduces the prior embedding for learning implicit neural representations. As shown in Fig. 3, in the same 3-D CT image reconstruction task, our method obtains reconstructions with better image quality than GRFF.

Going beyond 4-D CT data, we also evaluated the clinical radiation therapy patient data with both head-and-neck CT and lung CT. The quantitative results for 3-D CT reconstruction evaluated by peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) metrics are reported in Table I on different anatomic sites including pancreas CT, head-and-neck CT, and lung CT with all comparison methods. To evaluate the effectiveness under different settings, we also compare the
reconstruction results with different numbers of projections. Our proposed NeRP method achieves the best performance in either metric for all the 3-D CT image cases with 10/20/30 projections, respectively, outperforming all the other methods that do not use prior image embedding. Reconstructed images for the head-and-neck CT case are shown in Fig. 4. The prior image (former scan) and the ground truth target image (latter scan) are shown in the first two rows. The reconstructed 3-D CT image using our NeRP method is demonstrated in the last row, which successfully captures the accurate anatomic structure and fine details different from prior image as pointed out by the red boxes. In addition, comparing with other methods including FBP, GRFF, and NeRP w/o prior, our method can reconstruct higher-quality images with sharper organ boundaries, higher-contrast bone regions, and reduced noise and artifacts. More importantly, we show that NeRP is a general reconstruction methodology that can be applied to different body sites across different patients, as shown in these two cases for head-and-neck and lung. This demonstrates the potential capability of NeRP for practical clinical application.

D. Experiments on 2-D MRI Image Reconstruction

We conducted experiments to evaluate the proposed method for MRI image reconstruction. We aimed to reconstruct 2-D MRI images with sparsely sampled frequency space (k-space) data by using a radial sampling pattern for data acquisition, which is widely used in clinical MRI. The 2-D NUFFT for radial sampling is used as the forward model to compute and sample k-space data, as shown in Fig. 1(B). In addition to subsampled k-space measurements, we also assume that a prior image from a previous scan is available. In the brain tumor
regression dataset, we use the first MRI exam as the prior image to reconstruct the MRI image in the second exam. After preprocessing, 2-D MRI images are all resized to 256 × 256.

Fig. 5 demonstrates 2-D MRI reconstruction results for multicontrast MR images. The first and second rows show the prior image (the first exam) and the ground truth target image (the second exam) for one randomly selected patient with four image contrasts (T1, T1c, T2, and FLAIR). For each contrast, there are two cross-sectional 2-D MRI images as two separate reconstruction cases. Comparing the prior images and target images, we can clearly see the tumor progression with the changed shape and size in these two exams. The reconstruction results for NeRP and NeRP w/o prior are shown in the third and fourth rows, respectively. For better visualization and comparison, we zoom in and crop the subimage of the corresponding tumor regions of the ground truth and reconstruction images. From the comparison, it is seen that the reconstructed images from sparsely subsampled k-space data can accurately capture the fine detailed structures especially in the tumor region, which differs from that in the prior image. It is clear that the prior embedding can help to reconstruct high-quality images from sparsely sampled k-space data in the second exam by efficiently exploiting prior knowledge for the same patient. More importantly, the proposed reconstruction algorithm can be easily generalized to different MR image contrasts, which indicates the potential for other practical applications.

E. Experiments on 3-D MRI Image Reconstruction

Using the same dataset with brain tumor regression, we further evaluated the 3-D MRI image reconstruction. In this case, the entire 3-D MRI volume in the first exam is used as the prior image in order to reconstruct the 3-D MRI image in the second exam for the same patient. The forward model is the 3-D NUFFT to compute and sample 3-D k-space data. The whole learning framework of NeRP is similar to that of 2-D MRI reconstruction except for using a 3-D coordinate index. In preprocessing, all the 3-D MRI images are cropped and resized to 128 × 128 × 24.

Quantitative results of 3-D MRI image reconstruction evaluated by PSNR and SSIM metrics are reported in Table II for different image contrasts including T1, T1c, T2, and FLAIR.
SHEN et al.: NeRP: IMPLICIT NEURAL REPRESENTATION LEARNING WITH PRIOR EMBEDDING

Fig. 6. Results of 3-D MRI image reconstruction for FLAIR contrast using 40 radial spokes. The first and second rows show the prior 3-D MRI (first exam) and ground truth of target 3-D MRI (second exam) image, where each column demonstrates cross-sectional slices of the 3-D volume. The final row shows the reconstructed 3-D MRI image by using the proposed NeRP method. For comparison, the second–fourth rows show the reconstruction results of adjoint NUFFT method, GRFF method [20], and NeRP without using prior embedding as ablative study. The zoomed-in view red boxes highlight the difference in brain tumor region for comparison.

TABLE II

RESULTS OF 3-D MRI IMAGE RECONSTRUCTION USING 30/40/50 RADIAL SPOKES FOR DIFFERENT IMAGE CONTRASTS

Methods	T1	T1c	T2	FLAIR				
Spokes = 30								
Adjoint NUFFT	20.91	0.63	21.68	0.63	19.55	0.57	19.77	0.58
GRFF [20]	27.98	0.90	27.67	0.88	25.66	0.85	25.98	0.86
NeRP w/o prior	27.49	0.85	27.82	0.87	25.91	0.85	26.87	0.88
NeRP (ours)	28.43	0.90	29.06	0.92	26.86	0.90	27.52	0.90
Spokes = 40								
Adjoint NUFFT	21.30	0.66	22.05	0.67	20.17	0.62	20.23	0.61
GRFF [20]	28.18	0.90	28.11	0.89	25.67	0.85	25.99	0.86
NeRP w/o prior	29.70	0.92	29.29	0.91	27.59	0.91	27.54	0.90
NeRP (ours)	31.75	0.96	30.53	0.94	28.73	0.93	29.07	0.93
Spokes = 50								
Adjoint NUFFT	21.40	0.68	22.26	0.69	20.42	0.64	20.49	0.64
GRFF [20]	28.50	0.91	27.59	0.88	25.23	0.85	25.90	0.87
NeRP w/o prior	30.65	0.94	29.26	0.91	28.40	0.92	27.68	0.90
NeRP (ours)	32.55	0.96	31.37	0.95	30.13	0.95	30.02	0.94

Evaluation metric: PSNR / SSIM values are reported.
PSNR (dB), peak signal noise ratio; SSIM, structural similarity.

We compare the results of different reconstruction methods with 30/40/50 sampled radial spokes, respectively. From Table II, our NeRP method achieves better performance than other methods without using prior image for all the image contrasts. Reconstructed 3-D MRI images for FLAIR contrast are demonstrated in Fig. 6. We first show the prior 3-D MRI image (first exam) and the ground truth 3-D MRI image (second exam), where each column demonstrates cross-sectional slices of the 3-D volume. The final row shows the reconstructed 3-D MRI images from the proposed NeRP algorithm. The reconstruction results indicate that our method can reconstruct the precise changes in brain tumor region (pointed out by the red boxes) even with sparsely sampled k-space data, which is crucial for clinical diagnosis and cancer treatment. Moreover, for comparison, we also use an analytic reconstruction method with the adjoint NUFFT operator to recover the data in image space with density compensation. We can see that the reconstructed images using adjoint NUFFT have severe streaking artifacts due to the sparse downsampling of k-space data. In addition, we also compare with GRFF method [20] and NeRP w/o prior as ablative study. The comparison shows that our method can not only reconstruct more accurate tumor structures as pointed out by the red boxes, but also achieves better image quality such as sharper anatomic boundaries and higher soft tissue contrast. All of these results demonstrate the effectiveness and superiority of the proposed NeRP algorithm for 3-D MRI image reconstruction.

F. Analysis of Network Structure
For the proposed NeRP algorithm, one important issue is to set a proper network structure for the MLP backbone.
TABLE III
ANALYSIS OF NETWORK STRUCTURE FOR 3-D CT/MRI IMAGE RECONSTRUCTION

Network Structure	Pancreas CT	T1 MRI
Width=512		
4 Layers	38.04 / 0.981	29.93 / 0.933
6 Layers	38.83 / 0.984	31.23 / 0.950
8 Layers	37.44 / 0.977	31.75 / 0.956
Width=256		
8 Layers	39.06 / 0.986	31.10 / 0.948
16 Layers	34.04 / 0.953	30.98 / 0.945
20 Layers	34.04 / 0.955	30.23 / 0.937

Evaluation metric: PSNR / SSIM values are reported. PSNR (dB), peak signal noise ratio; SSIM, structural similarity.

The MLP network parameters serve as the variables to expand the function space for network optimization and seeking the optimal reconstructed images. The number of network parameters is related to the depth and width of the MLP, i.e., the number of layers and the number of neurons in each layer. To analyze the influence of network structures, we conducted an ablation study to obtain the reconstruction results with changed MLP depth and width, as shown in Table III. Here, the 3-D pancreas CT image is reconstructed from 20 projections while the 3-D T1 MRI image is reconstructed from 40 radial spokes. From Table III, we see that the reconstruction results are not very sensitive to the change of network depth or width, which indicates that the proposed NeRP algorithm is robust to the specific choice of network structure. In experiments, we also observe that training the MLP model could be more difficult with more layers, where the insufficient optimization may cause worse reconstruction results.

G. Analysis of Sparse Sampling Ratio

To better analyze the influence of the sparse sampling ratio, we use NeRP to reconstruct 3-D CT and MRI images with different number of sampled projections or radial spokes. Figs. 7 and 8 show the PSNR and SSIM of reconstructed CT and MRI images with increasing sampling, respectively. The curves show that more samples in the measurements field can always reconstruct more precise structures with better image quality. For CT images, sampling around 20 projections reaches the plateau when using NeRP reconstruction algorithm, while around 40 sampled radial spokes are required for MRI image reconstruction to achieve the best image quality. The analysis provides guidance for designing sensor acquisition methods for imaging system when using NeRP algorithm for image reconstruction.

V. DISCUSSION

Although many existing methods have shown the advantages of deep learning models for medical image reconstruction [31], there are increasing concerns regarding the limitations of the current deep learning approaches. First, training deep neural networks is data-intensive and requires large-scale datasets. This may prevent many practical applications due to the difficulty of data collection. The limited availability of specific image modalities or images of rare diseases may make it difficult to acquire sufficient training data for deep learning modeling. In addition, there is a common concern about the robustness and reliability of deep reconstructed images. For example, Antun et al. [16] find that the small but significant structural changes in tumors or lesions may not be accurately captured in the deep reconstructed images. Finally, the generalization ability of deep networks is unclear. The trained deep networks may produce poor performance when generalized to data out of the training distribution, such as across different imaging modalities or contrasts, or across different anatomical sites. The model generalizability is related to not only the training data distribution but also the network structure. For example, it is a nontrivial task to directly transfer a deep network developed for MRI reconstruction to the task of CT reconstruction due to different sensor measurements fields. Because of these issues and limitations, new insights are needed in developing deep learning-based image reconstruction algorithms.

The proposed NeRP method provides a new perspective to the problems of image reconstruction in both problem formulation and training process, which promises to overcome the shortcomings of previous deep reconstruction approaches. First, previous deep approaches to learn the mappings from sampled measurements to reconstructed images require a large-scale paired dataset (measurements and image) collected from different patients to train the model, which presents a bottleneck for practical applications of deep learning-based image reconstruction. The proposed method based on neural representation learning trains a patient-specific network by learning the coordinate–intensity mapping, where each pair of (coordinates and intensity) is from the same data sample.
Thus, the proposed approach does not require humongous image datasets for model training and testing. In addition, from our experiments, the reconstructed images from NeRP are more robust and reliable, and can capture the small structural changes such as tumor or lesion progression. The implicit priors captured by network structure and the prior embedding can effectively incorporate the prior knowledge in the reconstruction process, which makes it possible for the network to capture and reconstruct the fine structural details in the resultant images. As a result of the previous two points, NeRP can be more easily generalized to different image modalities and contrasts, different anatomical sites, and different dimensionalities in the image reconstruction task. The relaxed requirements for training data make the method more transferrable and applicable across various applications. The proposed NeRP is a general methodology for medical image reconstruction with promising advantages over the existing deep reconstruction methods.

By embedding the image prior as network parameters, the proposed method is designed to exploit the anatomic information as the image prior. Given the overfitted nature of NeRP modeling, the similarity between the prior image and the image to be reconstructed is important to the ultimate success of the model. To a large extent, limiting the study to patient-specific NeRP image reconstruction is to ensure this similarity between the prior and the image to be reconstructed. It is interesting that in patient-specific reconstructions, the proposed NeRP can accurately capture the structural difference between the prior image and the target image, as shown in the results in Figs. 2–6. In other words, the proposed method is not simply copying the prior image as reconstruction results; the prior-embedded network is sufficiently optimized under the constraints of the sparsely sampled measurements from the target image scanning. Thus, the reconstructed image can accurately match the target image.

The proposed method is a general approach of prior-embedded neural representation learning, which can be used for both medical and natural images. However, unlike in many medical applications in which the longitudinal prior images of the same patient are readily available for the prior embedding, in natural image applications, the longitudinal prior image of the same imaging object may not exist and how to find the best prior for natural image applications is not very clear. This is an interesting research question and worthy of further investigations in the future.

Reliability is a significant issue in image reconstruction. Previous works provide different solutions to address the convergence and reliability issue in deep learning-based sparse image reconstruction [32]–[34]. The proposed NeRP method has a few salient features. First, there is no GAN-based training loss in the network optimization, which alleviates the enforcement for the reconstructed image to be realistic. Second, the network in the proposed approach is not trained from a population-based dataset collected from different patients, which mitigates the concern of model applicability when applied to a new patient. With prior image embedding from the same patient and implicit regularization captured by network structure, the network is optimized to learn a better representation of the patient to satisfy the constraints of given sparsely sampling with high fidelity. Therefore, the proposed reconstruction method is potentially more reliable for the specified applications.

Because of these unique characteristics as aforementioned, our method could be very valuable in medical clinical applications. In practical applications, for a new patient or subject, the model needs to be retrained. Since the proposed approach does not require abundant data for model training, retraining the model for a specific patient is computationally efficient and takes only minutes to complete in our experiments using a single Nvidia V100 GPU. This makes our method a good fit for real-world applications.

VI. CONCLUSION

In this work, we propose a new deep learning-based medical image reconstruction methodology by learning implicit neural representations with prior embedding (NeRP), which efficiently incorporates the prior knowledge and learns to reconstruct the target image through implicit neural representations. Through the experiments for 2-D/3-D MRI and CT image reconstruction, we show that the proposed NeRP algorithm can provide high-quality reconstruction images even with sparsely sampled measurements data. The NeRP approach possesses a number of unique advantages: 1) requires no training data from external subjects for developing networks; 2) accurate reconstruction of small and detailed changes such as anatomic structure or tumor progression; and 3) broad applicability to different body sites, different imaging modalities, and different patients. For medical images, it is common that a patient is scanned multiple times for clinical diagnosis or treatment follow-up, for the purpose of treatment planning or monitoring of the changes in tumor volume before and after therapy. In a longitudinal image series, previous scans can provide useful prior knowledge for NeRP image reconstruction. The effectiveness of NeRP and advantages of prior embedding have been demonstrated in the extensive experiments.

REFERENCES

[1] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med., vol. 58, no. 6, pp. 1182–1195, 2007.
[2] M. Lustig, L. D. Donoho, M. Juan Santos, and M. J. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag., vol. 25, pp. 72–82, 2008.
[3] H. Yu and G. Wang, “Compressed sensing based interior tomography,” Phys. Med. Biol., vol. 54, no. 9, pp. 2791–2805, May 2009.
[4] G.-H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys., vol. 35, no. 2, pp. 660–663, 2008.
[5] K. Choi, J. Wang, L. Zhu, T. Suh, S. Boyd, and L. Xing, “Compressed sensing based cone-beam computed tomography reconstruction with a first-order method,” Med. Phys., vol. 37, no. 9, pp. 5113–5125, Sep. 2010.
[6] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol., vol. 53, no. 17, pp. 4777–4807, 2008.
[7] S. Raviv, and J. M. Pauly, “MR image reconstruction from highly undersampled k-space data by dictionary learning,” IEEE Trans. Med. Imag., vol. 30, no. 5, pp. 1028–1041, May 2010.
[8] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image reconstruction by domain-transform manifold learning,” Nature, vol. 555, pp. 487–492, Mar. 2018.
L. Shen, W. Zhao, and L. Xing, “Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning,” Nature Biomed. Eng., vol. 3, no. 11, pp. 880–888, Nov. 2019.

M. Mardani et al., “Deep generative adversarial neural networks for compressive sensing MRI,” IEEE Trans. Med. Imag., vol. 38, no. 1, pp. 167–179, Jan. 2018.

X. Ying, H. Gao, K. Ma, J. Wu, Z. Weng, and Y. Zheng, “X2CT-GAN: Reconstructing CT from biplanar X-rays with generative adversarial networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10619–10628.

L. Shen, W. Zhao, D. Capaldi, J. Pauly, and L. Xing, “Geometry-informed deep learning framework for ultra-sparse computed tomography (CT) imaging,” in Proc. Neural Inf. Process. Syst. (NeurIPS) Deep Learn. Inverse Problems Workshop, 2020, pp. 1–15.

W.-A. Lin et al., “DuDoNet: Dual domain network for CT metal artifact reduction,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10512–10521.

T. Würfl et al., “Deep learning computed tomography: Learning projection-domain weights from image domain in limited angle problems,” IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1454–1463, Jun. 2018.

L. Shen, L. Yu, W. Zhao, J. Pauly, and L. Xing, “Novel-view X-ray projection synthesis through geometry-integrated deep learning,” Med. Image Anal., vol. 77, Apr. 2021, Art. no. 102372.

V. Antun, F. Renna, C. Poon, B. Adcock, and A. Hansen, “On instabilities of deep learning for image reconstruction and the potential costs of AI,” Proc. Nat. Acad. Sci. USA, vol. 117, no. 48, pp. 30088–30095, 2020.

S. A. Eslami et al., “Neural scene representation and rendering,” Science, vol. 360, no. 6394, pp. 1204–1210, 2018.

V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene representation networks: Continuous 3D-structure-aware neural scene representations,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 1121–1132.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “NeRF: Representing scenes as neural radiance fields for view synthesis,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 405–421.

M. Tancik et al., “Fourier features let networks learn high frequency functions in low dimensional domains,” in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 7537–7547.

V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, “Implicit neural representations with periodic activation functions,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 7462–7473.

R. Martin-Brualla, N. Radwan, M. S. M. Sajjadi, J. T. Barron, A. Dosovitskiy, and D. Duckworth, “NeRF in the wild: Neural radiance fields for unconstrained photo collections,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 7210–7219.

Y. Sun, J. Liu, M. Xie, B. Wohlberg, and U. S. Kamilov, “Coll.: Coordinate-based internal learning for imaging inverse problems,” 2021, arXiv:2102.05126.

V. Lempitsky, A. Vedaldi, and D. Ulyanov, “Deep image prior,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 9446–9454.

Y. Gandelsman, A. Shocher, and M. Irani, “Double-DIP: Unsupervised image decomposition via coupled deep-image-priors,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 11026–11035.

A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc. NIPS Autodiff Workshop, 2017, pp. 1–4.

J. Adler, H. Kohr, and O. Oktenc. (2017). Operator discretization library (ODL). [Online]. Available: https://github.com/odlgroup/odl 5

M. J. Muckley, R. Stern, T. Murrell, and F. Knoll, “TorchKbNufft: An accelerated, hardware-agnostic non-uniform fast Fourier transform,” in Proc. Workshop Data Sampling Image Reconstruction, 2020, p. 1.

K. M. Schmainda and M. Prabh. (2018). Data From Brain-Tumor-Progression. The Cancer Imaging Archive. [Online]. Available: http://doi.org/10.7937/K9/TCIA.2018.15szvnb

K. Clark et al., “The cancer imaging archive (TCIA): Maintaining and operating a public information repository,” J Digit. Imag., vol. 26, no. 6, pp. 1045–1057, 2013.

L. Xing, M. L. Giger, and J. K. Min, Artificial Intelligence in Medicine: Technical Basis and Clinical Applications. London, U.K.: Academic, 2020.

I. Y. Chun, Z. Huang, H. Lim, and J. Fessler, “Momentum-net: Fast and convergent iterative neural network for inverse problems,” IEEE Trans. Pattern Anal. Mach. Intell., early access, Jul. 29, 2020, doi: 10.1109/TPAMI.2020.3012955.

R. Liu, Y. Zhang, S. Cheng, Z. Luo, and X. Fan, “A deep framework assembling principled modules for CS-MRI: Unrolling perspective, convergence behaviors, and practical modeling,” IEEE Trans. Med. Imag., vol. 39, no. 12, pp. 4150–4163, Dec. 2020.

W. Huang et al., “Deep low-rank plus sparse network for dynamic MR imaging,” Med. Image Anal., vol. 73, Oct. 2021, Art. no. 102190.

Liyue Shen (Student Member, IEEE) received the B.Eng. degree from the Department of Electronic Engineering, Tsinghua University, Beijing, China, in 2016, and the Master of Science degree from the Department of Electrical Engineering, Stanford University, Stanford, CA, USA, in 2019, where she is currently pursuing the Ph.D. degree.

Her research focuses on medical artificial intelligence (AI), which spans the interdisciplinary research areas of AI/machine learning (ML), computer vision, biomedical imaging, and data science.

Ms. Shen was a recipient of the Stanford Bio-X Bowes Graduate Student Fellowship and was selected as Rising Star in EECS by MIT and Rising Star in Data Science by the University of Chicago.

Lei Xing received the Ph.D. degree from Johns Hopkins University, Baltimore, MD, USA, in 1992. He is currently the Jacob Haimson Professor of Medical Physics and the Director of the Magnetic Resonance Systems Research Laboratory (MRSRL), Stanford University. He has authored 162 refereed journal publications and holds 60 U.S. patents. His research focuses on medical imaging, image reconstruction algorithms, and the development of magnetic resonance (MR) imaging technology including RF pulse design and pulse sequence design.

Dr. Pauly is an Associate Editor of IEEE TRANSACTIONS ON MEDICAL IMAGING. He is a fellow of ISMRM and AIMBE.