Increased Drinking following Social Isolation Rearing: Implications for Polydipsia Associated with Schizophrenia

Emily R. Hawken¹,², Nicholas J. Delva²,³, Richard J. Beninger¹,²,⁴*

¹ Centre for Neuroscience Studies, Queen’s University, Kingston, Canada, ² Department of Psychiatry, Queen’s University, Kingston, Canada, ³ Department of Psychology, Dalhousie University, Halifax, Canada, ⁴ Department of Psychology, Queen’s University, Kingston, Canada

Abstract

Primary polydipsia, excessive drinking without known medical cause, is especially associated with a diagnosis of schizophrenia. We used animal models of schizophrenia-like symptoms to examine the effects on schedule-induced polydipsia: post-weaning social isolation rearing, subchronic MK-801 treatment (an NMDA-receptor antagonist) or the two combined. Male, Sprague-Dawley rats reared in groups or in isolation beginning at postnatal day 21 were further divided to receive subchronic MK-801 (0.5 mg/kg twice daily) or saline for 7 days beginning on postnatal day 62. Following a 4-day withdrawal period, all groups were trained on a schedule-induced polydipsia paradigm. Under food-restriction, animals reared in isolation and receiving food pellets at 1-min intervals developed significantly more drinking behavior than those reared with others. The addition of subchronic MK-801 treatment did not significantly augment the amount of water consumed. These findings suggest a predisposition to polydipsia is a schizophrenia-like behavioral effect of post-weaning social isolation.

Introduction

Primary polydipsia, the clinical term for ‘excessive water drinking’, is commonly associated with chronic psychiatric illness, reportedly occurring in a large subset of hospitalized patients with schizophrenia [1]. Characterized by a delayed onset, polydipsia often emerges several years following the first psychotic episode and is correlated with measures of increased cognitive dysfunction [2] and greater severity of psychotic illness [3]. As patients with polydipsia associated with schizophrenia have significantly increased rates of mortality [4], identifying and managing psychogenic polydipsia in the clinical setting is important. However, outside of restricting the patient’s daily fluid intake, few pharmacological treatments have shown reliable control of excessive water drinking in this population.

The development of novel therapeutics is often aided by understanding the neuropathology of a behavior or disease, yet little is known about the neuronal mechanisms associated with polydipsia in schizophrenia. Converging evidence implicates the hippocampus. Polydipsic-normotensive and polydipsic-hypotensive patients with schizophrenia show altered neuroendocrine regulation (vasopressin, adrenocorticotropin and oxytocin; [5,6,7]). Because the hippocampus plays a modulatory role in vasopressin regulation, some hypothalamic-pituitary-adrenal responses to stress, and glucocorticoid feedback [7,8,9], these findings may suggest a hippocampal deficit in this population. Reports of reduced anterior hippocampal volume [10] in patients with hyponatremia associated with polydipsia support this idea. Furthermore, dysfunction of hippocampal neurons is a signature pathological feature of schizophrenia [11,12] suggesting a role for the pathology of schizophrenia in the development of polydipsia. Whether or not hippocampal neuropathology is causative of polydipsia associated with schizophrenia has yet to be determined.

Current animal models that mimic some of the symptoms associated with schizophrenia (e.g., affect blunting, social withdrawal, impairment of memory and executive function) have potential to reveal an etiological link between polydipsia and schizophrenia (for review see [13]). Rats treated twice daily for 7 days (i.e., subchronically) with glutamate N-methyl-D-aspartate (NMDA) receptor antagonists (e.g., MK-801) show a number of schizophrenia-like symptoms including increased locomotor responses to amphetamine [14], decreased prefrontal cortical dopamine release [15] and decreased GABA interneurons in the hippocampus [16]. Paired with a paradigm that induces excessive water consumption (food-restricted rats intermittently fed small amounts, dubbed schedule-induced polydipsia or SIP [17]), subchronic MK-801 treated animals showed increased excessive drinking behavior [18].
Unlike subchronic MK-801, post-weaning social isolation rearing (IR) is a non-pharmacological animal model of schizophrenia-like symptoms. Socially isolating rats from weaning (postnatal day P21) through to sexual maturation leads to impaired sensorimotor gating, social withdrawal and impaired cognitive flexibility [19]. The effects of social isolation show a critical period, where isolation between P25 and P45 days followed by group housing reveals irreversible effects on some behaviors [20,21,22]. Furthermore, social isolation during development has an effect on neurochemistry [23], mimicking alterations seen in schizophrenia such as evidence for decreased GABA neurotransmission in the hippocampus and prefrontal cortex [24], suggesting that IR may like-wise augment the development of polydipsic behavior.

Here we hypothesized that post-weaning IR will increase drinking in a SIP paradigm. Additionally we investigated the effects of a combined ‘double-hit’ animal model (IR plus subchronic MK-801 treatment) hypothesizing that it will yield a more robust effect on subsequent development of SIP behavior than either insult alone.

Experimental Methods

Subject Housing

Male Sprague-Dawley rats were obtained at weaning (P21; Charles River, QC). Upon arrival, rats were randomly assigned to housing either in groups of four (group reared, GR) or alone (IR; Table 1), in clear Plexiglas cages (45×23×20 cm deep for IR rats and 47×37×20 cm deep for GR rats). The floors were lined with bedding (Beta Chip, NEPCO, Warrensburg, NY) and the cages were located in a climate-controlled colony room (21±1°C; humidity 40–70%) on a reversed 12-hr light/dark schedule (lights on at 0700 hr). Animals had free access to food (LabDiet rodent feed #5001, PMI Nutrition International, Brentwood, MO) and water. Rats were treated in accordance with the Canadian Council on Animal Care regulations and the behavioral protocols and this study received approval from the Queen’s University Animal Care Committee.

Drug Treatment

At 62 days, rats were further assigned to MK-801 injected (Sigma, Oakville ON; dissolved in saline, 0.5 mg/kg, i.p.), saline injected (1.0 ml/kg) or no injection groups (Table 1). Injected rats received twice-daily injections (at 0900 hr and 2100 hr) for seven days. A four-day washout followed and food restriction (1 hr ad lib per day) began and continued for the study duration.

Table 1. Experimental design: number of rats assigned to each group for each experiment.

Housing+Treatment	Experimental Paradigm SIP	Control Paradigm Free Feed
Experiment 1:		
IR+no injection	7	n/a
GR+no injection	8	n/a
Experiment 2:		
IR+MK-801	8	8
IR+Saline	8	8
GR+MK-801	12	8
GR+Saline	12	8

Abbreviations: GR, group reared; IR, isolation reared; n/a, no animals in these groups; SIP, schedule-induced polydipsia.

Behavioral Testing

Animals completed two hours of daily testing for 21 days, in either schedule-induced polydipsia (SIP; experimental) or free feed (control) paradigms (Table 1). Weights were recorded before testing.

In the experimental paradigm, an apparatus was automatically dispensed every min (120 pellets/120 min) during 2-hr sessions. Each pellet consisted of a 45 mg dustless precision food pellet (Bio-serv, Frenchtown NJ). In the control paradigm, 120 pellets were instead freely available in a dish. Over each session, groups had free access to the drinking spout. Animals were tested in groups of 4 (one per chamber) counterbalanced across testing boxes and time of testing in daily morning and afternoon sessions. The volume of water consumed per session was calculated by measuring before and after weights of water bottles. Following testing, animals were returned to their home cages and fed for 1 hr.

Statistical Analysis

Analyses were performed using SPSS version 17.0 (Chicago, IL). Animals were deemed to have achieved SIP when they consumed at least 15 ml of water per 2-hr session for 3 consecutive days [18].

Experiment 1: Two-way repeated measures analysis of variance (ANOVA; housing × day) evaluated main effects and interactions. Experiment 2: Four-way repeated measures ANOVA (housing×treatment×day×paradigm) examined main effects and interactions. Three-way repeated measures ANOVAs examined significant interactions (housing×treatment×day). A 2-way repeated measures ANOVA examined possible effects of handling for injections by comparing rats in the experimental treatment groups that were saline treated (GR and IR) to groups in...
were there any effects of injection handling (Fig. 1 and Fig. 2A; 2-way ANOVA, housing [GR×IR] × injection [Saline×no injection]; F[1,31] = 1.07, p = 0.31) that would confound the effect of IR on SIP behavior.

Discussion

This study examined polydipsia in the context of animal models of schizophrenia-like symptoms. Animals exposed to an excessive drinking (SIP) paradigm following post-weaning social isolation, subchronic MK-801 or the two together (‘double-hit’) revealed that rearing animals in isolation significantly augmented drinking behavior. Isolating adult animals that have been group reared does not produce significant amounts of SIP behavior [18]. Unlike our previous findings [18], blocking NMDA receptors with subchronic MK-801 treatment alone did not significantly increase drinking behavior nor add or synergize with the effects of isolation rearing on SIP. These findings suggest that post-weaning social isolation, a putative animal model of schizophrenia-like symptoms, may lead to polydipsia.

Exaggerated drinking patterns were apparent in experimental groups compared to control groups that were not exposed to the intermittent food delivery schedule, as observed by others previously [17,25]. SIP, in which animals have been observed to drink more in a single 2-hr session than the amount they consume daily [25], is considered an adjunctive behavior [26] that is non-regulatory in nature [27]. In humans, primary polydipsia has been observed to be ‘excessive’, ‘persistent’, ‘non-regulatory’, and ‘without physiologic cause’ [1] and in this way is similar to SIP. This face-validity makes SIP potentially useful as a model of various neuropsychiatric disorders related to the impulsive-compulsive spectrum disorders [28]. Accordingly, SIP has been proposed as a model for obsessive compulsive disorder (OCD; [29,30,31]). Repetitive, obsessive-compulsive behaviors show significant co-morbidity in schizophrenia patients [32,33,34,35] and there is growing evidence to suggest a complex interaction between OCD and schizophrenia-spectrum disorders [36,37]. However, while OCD treatments (e.g., selective serotonin reuptake inhibitors) have been shown to successful diminish SIP (for review see Monero and Flores [31]), they have not been reported to improve polydipsia in schizophrenia. Regardless, the SIP paradigm studied in the context of a schizophrenia framework shows promise as a valid animal model of polydipsia observed in schizophrenia.

The mechanisms by which social isolation exacerbates SIP behavior is unclear. SIP is consistently reduced by acute treatments with dopamine (DA) receptor agonists or antagonists [38,39,40,41]. Furthermore, D2-like receptor binding was increased in the nucleus accumbens (NAC), medial prefrontal cortex, amygdala and ventral tegmental areas in animals that were high drinkers in the SIP paradigm and D1-like receptors were decreased in the same areas [42]. This suggests that an imbalance of DA receptor activation may facilitate abnormal drinking. Post-weaning social isolation also increased DA activity in the NAc, of DA receptor activation may facilitate abnormal drinking. Post-weaning social isolation also increased DA activity in the NAc.

This study examined polydipsia in the context of animal models of schizophrenia-like symptoms. Animals exposed to an excessive drinking (SIP) paradigm following post-weaning social isolation, subchronic MK-801 or the two together (‘double-hit’) revealed that rearing animals in isolation significantly augmented drinking behavior. Isolating adult animals that have been group reared does not produce significant amounts of SIP behavior [18]. Unlike our previous findings [18], blocking NMDA receptors with subchronic MK-801 treatment alone did not significantly increase drinking behavior nor add or synergize with the effects of isolation rearing on SIP. These findings suggest that post-weaning social isolation, a putative animal model of schizophrenia-like symptoms, may lead to polydipsia.

Exaggerated drinking patterns were apparent in experimental groups compared to control groups that were not exposed to the intermittent food delivery schedule, as observed by others previously [17,25]. SIP, in which animals have been observed to drink more in a single 2-hr session than the amount they consume daily [25], is considered an adjunctive behavior [26] that is non-regulatory in nature [27]. In humans, primary polydipsia has been observed to be ‘excessive’, ‘persistent’, ‘non-regulatory’, and ‘without physiologic cause’ [1] and in this way is similar to SIP. This face-validity makes SIP potentially useful as a model of various neuropsychiatric disorders related to the impulsive-compulsive spectrum disorders [28]. Accordingly, SIP has been proposed as a model for obsessive compulsive disorder (OCD; [29,30,31]). Repetitive, obsessive-compulsive behaviors show significant co-morbidity in schizophrenia patients [32,33,34,35] and there is growing evidence to suggest a complex interaction between OCD and schizophrenia-spectrum disorders [36,37]. However, while OCD treatments (e.g., selective serotonin reuptake inhibitors) have been shown to successful diminish SIP (for review see Monero and Flores [31]), they have not been reported to improve polydipsia in schizophrenia. Regardless, the SIP paradigm studied in the context of a schizophrenia framework shows promise as a valid animal model of polydipsia observed in schizophrenia.

The mechanisms by which social isolation exacerbates SIP behavior is unclear. SIP is consistently reduced by acute treatments with dopamine (DA) receptor agonists or antagonists [38,39,40,41]. Furthermore, D2-like receptor binding was increased in the nucleus accumbens (NAC), medial prefrontal cortex, amygdala and ventral tegmental areas in animals that were high drinkers in the SIP paradigm and D1-like receptors were decreased in the same areas [42]. This suggests that an imbalance of DA receptor activation may facilitate abnormal drinking. Post-weaning social isolation also increased DA activity in the NAc.

This study examined polydipsia in the context of animal models of schizophrenia-like symptoms. Animals exposed to an excessive drinking (SIP) paradigm following post-weaning social isolation, subchronic MK-801 or the two together (‘double-hit’) revealed that rearing animals in isolation significantly augmented drinking behavior. Isolating adult animals that have been group reared does not produce significant amounts of SIP behavior [18]. Unlike our previous findings [18], blocking NMDA receptors with subchronic MK-801 treatment alone did not significantly increase drinking behavior nor add or synergize with the effects of isolation rearing on SIP. These findings suggest that post-weaning social isolation, a putative animal model of schizophrenia-like symptoms, may lead to polydipsia.
and deficits in adulthood of both parvalbumin- (PV+) and calbindin–positive immunoreactive GABA interneurons in the hippocampus [35,46] thought to regulate glutamatergic pyramidal cell activity. Normal GABAergic function is critical for activity-dependent modeling of the glutamate system during neural development [47,48]. Suppression of GABA-mediated inhibitory synaptic transmission [24] in IR animals has been suggested by Hickey et al. [24] who found increased GABA transporter 1 (GAT-1) activity in the frontal cortex and hippocampus and GABA(A) receptor expression only in the former. Like social
isolation, pharmacologically reducing NMDA function before sexual maturation prevents normal development of GABA inhibitory circuits resulting in reduced parvalbumin levels and excessive cortical excitability [48]. Hickey et al. [24] demonstrated that MK-801 only increased GABA(A) receptor expression in the hippocampus. A loss of GABA interneurons specific to the hippocampus has also been reported following MK-801 treatment [16]. While PV+ interneuron dysregulation has been implicated in the development of schizophrenia, the exact cause and time course of interneuron dysfunction and loss due to post-weaning isolation and MK-801 treatment is unknown.

The above findings might suggest that a ‘double-hit’ model could have more robust effects on behavior than either insult alone. Supporting this hypothesis, Lapiz et al. [49], Simpson et al. [50] and Hickey et al. [24] found enhanced locomotor hyperactivity to a novel environment in IR animals following subchronic phencyclidine or and MK-801 treatment. However, our ‘double hit’ model did not yield more pronounced aberrant drinking behavior. Similarly, when challenged acutely with amphetamine, Simpson et al. [50], Ashby et al. [51] and Hickey et al. [24] failed to observe a ‘double hit’ effect on locomotor activity. Taken together, these results provide little support for the ‘double-hit’ as a more robust model of schizophrenia-like symptoms.

Table 2.

MK-801	SALINE	
Isolation reared	6/8 (75%)	6/8 (75%) *
Group reared	4/12 (33%)	2/12 (17%)

*Significantly more isolation-reared animals (collapsed across treatment) achieved schedule-induced polydipsia than group-reared animals, Chi-square test, p<0.01.

doi:10.1371/journal.pone.0056105.t002

Figure 2. The effects of social isolation and MK-801 treatment on schedule induced polydipsia (SIP). (A) Isolation rearing (IR) significantly increased drinking in schedule induced polydipsia paradigm across days. Daily mean water drinking during the 2-hr testing session for MK-801 and Saline treated IR (A) and group reared (B; GR) animals in the experimental and control paradigms are shown. (C) IR and (D) GR treated groups receiving one pellet a minute (experimental paradigm) showed the postprandial drinking characteristic of SIP, as evidenced by the total duration of time spent at the drinking spout. Note the difference in the scale on the y-axis in (C) and (D) as the GR animals drank less. Spout time for experimental groups increased immediately after pellet delivery, increased to a maximum at 15-s and then declined toward the end of the 60-s interval. Animals in the control paradigm did not show this pattern. IR rats showed a longer duration at the spout throughout the inter-pellet interval consistent with increased drinking behavior. *Analysis of variance revealed a significant main effect for housing (F[1,36] = 5.50, p = 0.025).

doi:10.1371/journal.pone.0056105.g002

Figure 2. The effects of social isolation and MK-801 treatment on schedule induced polydipsia (SIP). (A) Isolation rearing (IR) significantly increased drinking in schedule induced polydipsia paradigm across days. Daily mean water drinking during the 2-hr testing session for MK-801 and Saline treated IR (A) and group reared (B; GR) animals in the experimental and control paradigms are shown. (C) IR and (D) GR treated groups receiving one pellet a minute (experimental paradigm) showed the postprandial drinking characteristic of SIP, as evidenced by the total duration of time spent at the drinking spout. Note the difference in the scale on the y-axis in (C) and (D) as the GR animals drank less. Spout time for experimental groups increased immediately after pellet delivery, increased to a maximum at 15-s and then declined toward the end of the 60-s interval. Animals in the control paradigm did not show this pattern. IR rats showed a longer duration at the spout throughout the inter-pellet interval consistent with increased drinking behavior. *Analysis of variance revealed a significant main effect for housing (F[1,36] = 5.50, p = 0.025).

doi:10.1371/journal.pone.0056105.g002
NMDA receptor-antagonist pretreatment in this study produced a small but non-significant increase in SIP (Fig. 2A). Blunted SIP may have been due to the possible neuroprotective effects of group housing in the present study. Animals in the Hawken et al. [18] study were individually housed upon arrival (P46–52) and throughout the study; in the present study, animals arrived at P21 and remained group housed. Alternately, failure to demonstrate a significant effect of MK-801 in this study may have also been due to other inconsistencies either in or during injection procedures between the two studies, for example, age of animals or colonization of vivarium during the studies. Finally, failure to significantly replicate the MK-801 effect in this study may simply be due to a lack of power.

The development of SIP is highly variable across animals [41,52] which may in part result from neurochemical differences between individuals [42]. Jones et al. [53] reported decreased SIP in female rats following a social isolation protocol. Social isolation has been reported to induce sex-specific behavioral responses, increasing activity in female rats compared to males [54]. Jones et al. [53] reported that female rats showed significant hyperactivity during the SIP paradigm. Increased locomotor activity in the operant chamber could account for the observed decrease in SIP acquisition. As primary polydipsia is significantly associated with being male [1,55], employing male rats to model the illness may be preferable.

This study investigated the impact of two animal models of schizophrenia-like symptoms (isolation rearing and subchronic MK-801 pretreatment) on drinking behavior in a SIP paradigm. The findings that post-weaning social isolation rearing significantly increased SIP suggests that a putative schizophrenic-like neuropsychology resulting from isolation rearing sets the stage for the development of disordered water drinking. The deficits, neuroanatomical correlates, and mechanisms that contribute to the development of SIP from both social isolation and schizophrenia, however, require further investigation.

Author Contributions
Conceived and designed the experiments: ERH NJD RJB. Performed the experiments: ERH. Analyzed the data: ERH RJB. Contributed reagents/materials/analysis tools: RJB. Wrote the paper: ERH NJD RJB.

References
1. de Leon J, Vergheese G, Tracy J, Josiassen R, Simpson GM (1994) Polydipsia and water intoxication in psychiatric patients: A review of the neuropsychological literature. Biol Psychiatry 35: 408–19.
2. Torres JJ, Keedy S, Marlow-O’Connor M, Beeken B, Goldman MB (2009). Neuropsychological impairment in patients with schizophrenia and evidence of hyponatremia and polydipsia. Neuropsychology 23: 307–14.
3. Poirier S, Leguin G, Tremblay P, Michea R, Viao-Guay L, et al. (2010). Schizophrenia patients with polydipsia and water intoxication are characterized by greater severity of psychotic illness and more frequent history of alcohol abuse. Schizophr Res 118: 203–9.
4. Hawken ER, Crookall JM, Reddick D, Millson RC, Milev R, et al. (2009). Mortality over a 20-year period in patients with primary polydipsia associated with schizophrenia: a retrospective study. Schizophr Res 107: 120–33.
5. Umbreit D (1994). Polydipsia and hippocampal pathology. Biol Psychiatry 36: 708–10.
6. Goldman MB, Torres JJ, Keedy S, Marlow-O’Connor M, Beeken B, et al. (2007). Reduced anterior hippocampal formation volume in hyponatremic schizophrenic patients. Hippocampus 17: 354–62.
7. Goldman MB, Wood G, Goldman MB, Gavin M, Paul S, et al. (2007). Diminished glucocorticoid negative feedback in polydipsic hyponatremic schizophrenic patients. J Clin Endocrinol Metab 92: 698–704.
8. Nettles KW, Peedel C, Goldman MB (2000). Influences of the ventral hippocampal formation on plasma vasopressin, hypothalamic-pituitary-adrenal axis, and behavioral responses to novel acoustic stress. Brain Res 858: 181–90.
9. Herman JP, Ostrander MM, Mueller NK, Figueroedo H (2003). Limbic system mechanisms of stress regulation: hypothalamic-pituitary-adrenocortical axis. Prog Neuro-psychopharmacol Biol Psychiatry 27: 1201–13.
10. Goldman MB, Wang L, Wachi C, Daudi S, Csornay J, et al. (2011). Structural pathology underlying neuroendocrine dysfunction in schizophrenia. Behav Brain Res 218: 106–13.
11. Goldman MB, Mitchell CP (2004). What is the functional significance of hippocampal pathology in schizophrenia? Schizophr Bull 30: 367–92.
12. Patterson PJ (2004). The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychiatry Research (Berl) 174: 151–62.
13. Dave GS, Hwang EH, Tan CH (2009). Pathophysiology and animal models of schizophrenia. Ann Acad Med Singapore 38: 425–26.
14. Beninger RJ, Forsyth JR, Adel MV, Reynolds JN, Boegman RJ, et al. (2009). Subchronic MK-801 deficits in rats: Partial reversal by the novel nitrate GT-1061. Pharmacol Biochem Behav 91: 495–502.
15. Jentsch JD, Roth RH (1999). The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20: 201–25.
16. Braus I, Genius J, Grunze H, Brender A, Moller HJ, et al. (2007). Alterations of hippocampal and prefrontal GABAergic interneurons in an animal model of NMDA receptor hypofunction. Schizophr Res 97: 254–63.
17. Falk JI, (1986). Schedule-induced polydipsia as a function of fixed interval length. J Exp Anal Behav 9: 37–9.
18. Hawken ER, Delva NJ, Reynolds JN, Beninger RJ (2011) Increased schedule-induced polydipsia in the rat following subchronic treatment with MK-801. Schizophr Res 125: 93–8.
19. Powell CM, Miyakawa T (2006). Schizophrenia-relevant behavioral testing in rodents: a uniquely human disorder? Biol Psychiatry 59: 1198–207.
20. Einon D, Morgan MJ (1977) A critical period for social isolation in the rat. Dev Psychol 10: 127–132.
21. Einon D, Morgan MJ (1978) Early isolation produces enduring hyperactivity in the rat, but no effects on spontaneous alternation. Q J Exp Psychol 30: 151–156.
22. Wilkinson LS, Killcross SS, Humby T, Half FS, Geyer MA, et al. (1994). Social isolation in the rat produces developmentally specific deficits in prepulse inhibition of the acoustic startle response without disrupting latent inhibition. Neuropsychopharmacology 10: 63–72.
23. Fone KC, Porkess MV (2000). Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32: 1087–102.
24. Hickey AJ, Reynolds JN, Beninger RJ (2012) Post-weaning social isolation and subchronic NMDA glutamate receptor blockade: effects on locomotor activity and GABA signaling in the rat suggest independent mechanisms. Pharmacol Biochem Behav 101: 231–8.
25. Flory RK (1971) The control of schedule induced polydipsia: frequency and magnitude of reinforcement. Learn Motve 2: 213–227.
26. Falk JI (1971). The nature and determinants of addictive behavior. Physiol Behav 6: 577–88.
27. Wallace M, Singer G (1976) Schedule induced behavior: a review of its generality, determinants and pharmacological data. Pharmacol Biochem Behav 5: 483–90.
28. van den Heave OA, van der Werf YD, Verhoef KM, de Wit S, Berendse HW, et al. (2010). Frontal-striatal abnormalities underlying behaviours in the compulsive-impulsive spectrum. J Neurol Sci 298: 55–9.
29. Woods A, Smith C, Searle M, Newberry J, Corfoidl M, et al. (1995). Selective serotonin reuptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology (Berl) 112: 195–9.
30. Plant B, Beyer CE, Schrechter LE, Roesnizeg-Lipson S (2008) Schedule-induced polydipsia: a rat model of obsessive-compulsive disorder. Curr Protoc Neurosci 5: 483–90.
31. Jentsch JD, Roth RH (1999). The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20: 201–25.
32. Braus I, Genius J, Grunze H, Brender A, Moller HJ, et al. (2007). Alterations of hippocampal and prefrontal GABAergic interneurons in an animal model of NMDA receptor hypofunction. Schizophr Res 97: 254–63.
33. Falk JI, (1986). Schedule-induced polydipsia as a function of fixed interval length. J Exp Anal Behav 9: 37–9.
34. Hawken ER, Delva NJ, Reynolds JN, Beninger RJ (2011) Increased schedule-induced polydipsia in the rat following subchronic treatment with MK-801. Schizophr Res 125: 93–8.
35. Luchins DJ, Goldman MB, Lieb M, Hanrahan P (1992). Repetitive behaviors in the rat, but no effects on spontaneous alternation. Q J Exp Psychol 30: 151–156.
36. Cassano GB, Pini S, Saettoni M, Rucci P, Dell’Osso L (1998) Occurrence and clinical correlates of obsessive-compulsive symptomatology and severity in psychosis in schizophrenia: a systematic review and meta-analysis. J Clin Psychiatry 59: 70–82.
37. Lysaker PH, Whitney KA (2009). Obsessive-compulsive symptoms in schizophrenia: prevalence, correlates and treatment. Expert Rev Neurother 9: 99–107.
38. Cassano GB, Pini S, Saettoni M, Rucci P, Dell’Osso L (1998). Occurrence and clinical correlates of psychiatric comorbidity in patients with psychotic disorders. J Clin Psychiatry 59: 60–8.
39. Poyurovsky M, Fuhs G, Weizman A (1999). Obsessive-compulsive disorder in patients with first-episode schizophrenia. Am J Psychiatry 156: 1998–2000.
40. Mittelman G, Rosner AL, Schaumb CL (1994) Polydipsia and dopamine: behavioural effects of dopamine D1and D2 receptor agonists and antagonists. J Pharmacol Exp Ther 271: 638–30.
39. Escher T, Call SR, Blaha CD, Mitelman G (2006) Behavioral effects of aminoadamantane class NMDA receptor antagonists on schedule-induced alcohol and self-administration of water in mice. Psychopharmacology (Berl) 187: 424–34.
40. Flores P, Pellón R (1995) Rate-dependency hypothesis and the rate-decreasing effects of d-amphetamine on schedule-induced drinking. Behav Pharmacol 6: 16–23.
41. Lopez-Grancha M, Lopez-Crespo G, Sanchez-Amate MC, Flores P (2008) Individual differences in schedule-induced polydipsia and the role of gabaergic and dopaminergic systems. Psychopharmacology (Berl) 197: 487–98.
42. Pellón R, Ruiz A, Moreno M, Claro F, Ambrosio E, et al. (2011) Individual differences in schedule-induced polydipsia: Neurometabolic dopamine divergences. Behav Brain Res 217: 195–201.
43. Fabricius K, Helboe I, Fink-Jensen A, Wortwein G, Steiniger-Brach B, et al. (2010) Increased dopaminergic activity in socially isolated rats: an electrophysiological study. Neurosci Lett 482: 117–22.
44. Lodge DJ, Grace AA (2008) Hippocampal dysfunction and disruption of dopamine system regulation in an animal model of schizophrenia. Neurotox Res 14: 97–104.
45. Alquier G, Morales-Medina JC, Qurison R, Flores G (2000) Postweaning social isolation enhances morphological changes in the neonatal ventral hippocampal lesion rat model of psychosis. J Chem Neuroanat 35: 179–87.
46. Harte MK, Powell SB, Swerdlow NR, Geyer MA, Reynolds GP (2007) Delicins in parvalbumin and calbindin immunoreactive cells in the hippocampus of isolation reared rats. J Neural Transm 114: 803–8.
47. Huang ZJ (2009) Activity-dependent development of inhibitory synapses and innervation pattern: role of GABA signaling and beyond. J Physiol 587: 1881–8.
48. Belforte JE, Zairos V, Sklar ER, Jiang Z, Yu G, et al. (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13: 76–83.
49. Lapiz MD, Fullord A, Muchamapura S, Mason R, Parker T, et al. (2003) Influence of postweaning social isolation in the rat on brain development, conditioned behavior and neurotransmission. Neurosci Behav Physiol 33: 13–29.
50. Simpson SM, Menard JL, Reynolds JN, Beninger RJ (2010) Post-weaning social isolation increases activity in a novel environment but decreases defensive burying and subchronic MK-801 enhances the activity but not the burying effect in rats. Pharmacol Biochem Behav 95: 72–9.
51. Ashby DM, Habib D, Dringenberg HC, Reynolds JN, Beninger RJ (2010) Subchronic MK-801 treatment and post-weaning social isolation in rats: differential effects on locomotor activity and hippocampal long-term potentiation. Behav Brain Res 212: 64–70.
52. Hooks MS, Jones GH, Juncos JL, Neill DB, Justice JB (1994) Individual differences in schedule-induced and conditioned behaviours. Behav Brain Res 60: 199–209.
53. Jones GH, Robbins TW, Marsden CA (1989) Isolation-rearing retards the acquisition of schedule-induced polydipsia in rats. Physiol Behav 45: 71–7.
54. Hong S, Flashner B, Chiu M, ver Hoeve E, Luz S, et al. (2012) Social isolation in adolescence alters behaviours in the forced swim and sucrose preference tests in female but not in male rats. Physiol Behav 105: 269–75.
55. Mercier-Guixeres E, Loas G (2009) Polydipsia and water intoxication in 353 psychiatric inpatients: an epidemiological and psychopathological study. Eur Psychiatry 15: 306–11.