The immune response during acute HIV-1 infection: clues for vaccine development

Andrew J. McMichael*, Persephone Borrow†, Georgia D. Tomaras§, Nilu Goonetilleke* and Barton F. Haynes§

Abstract | The early immune response to HIV-1 infection is likely to be an important factor in determining the clinical course of disease. Recent data indicate that the HIV-1 quasispecies that arise following a mucosal infection are usually derived from a single transmitted virus. Moreover, the finding that the first effective immune responses drive the selection of virus escape mutations provides insight into the earliest immune responses against the transmitted virus and their contributions to the control of acute viraemia. Strong innate and adaptive immune responses occur subsequently but they are too late to eliminate the infection. In this Review, we discuss recent studies on the kinetics and quality of early immune responses to HIV-1 and their implications for developing a successful preventive HIV-1 vaccine.

Recent advances that enable the identification of patients within the first few weeks of HIV-1 infection have provided researchers access to samples from acutely infected patients earlier and in higher numbers than previously available. This has advanced our understanding of the nature of the transmitted virus and the first immune responses in the period before establishment of stable viraemia (the viral set point), which occurs 3–6 months after infection. The first weeks following HIV-1 transmission are extremely dynamic: they are associated with rapid damage to generative immune cell microenvironments, caused by direct viral cytopathicity and bystander effects, and with immune responses that partially control the virus.

In this Review, we focus our discussion on the early host or viral factors that are crucial for determining the outcome of HIV-1 infection. These include the nature of the transmitted virus, or founder virus, suppression of the initial infection by genetically influenced immune responses, and the rate of virus mutation and viral fitness of selected mutants. In addition, we review what is known about the nature of innate and adaptive immune responses during this early phase of infection, drawn from studies of humans and macaques infected with HIV-1 and simian immunodeficiency virus (SIV), respectively. Finally, we discuss how our knowledge of the events of early HIV-1 infection can improve the design of a preventive vaccine (BOX 1).

The biology of early HIV-1 infection

Transmission. Most HIV-1 infections occur by sexual exposure through the genital tract or rectal mucosa. Although it is not possible to study the very first events following HIV-1 transmission in humans in vivo, we have gained some understanding from studies in which mucosal tissue explants were infected in vitro. Further understanding of the first stages of infection in vivo has been obtained from studies in which macaques were inoculated intrarectally or intravaginally with SIV. It is still uncertain whether HIV-1 is transmitted as a free or a cell-bound virus, but SIV can be transmitted in either form.

In addition, the mechanism by which HIV-1 crosses the genital mucosal epithelium is unclear. Diffusion of HIV-1 across the vaginal mucosa is slowed by cervico-vaginal mucus. It is possible that virus that reaches the mucosal epithelium crosses this barrier by transcytosis or by making direct contact with dendrites of intraepithelial dendritic cells (DCs). Preliminary unpublished findings suggest that virions may also move through intercellular spaces in the epithelium to make initial cell contact with underlying mucosal Langerhans cells and CD4+ T cells (T. Hope and S. McCoombe, personal communication). Given that multiple sexual exposures are usually needed for infection to occur, crossing of the epithelial cell barrier by the virus is probably a rare event, although it is more common if the genital mucosa is damaged by physical trauma or co-existing genital infections.
Box 1 | Problems facing the development of an HIV vaccine

All attempts to make a vaccine against HIV-1 have failed. Three vaccine approaches have been tested in clinical trials for efficacy. The AIDSVAX glycoprotein (gp120) vaccine stimulated the production of non-neutralizing antibody to the virus envelope proteins and failed to protect vaccinated individuals from infection\(^{113,115}\). The STEP vaccine, comprised of three recombinant attenuated adenovirus serotype 5 viruses expressing HIV-1 Gag, Pol and Nef, stimulated CD8\(^+\) T cell responses to the viral proteins but again showed no protective effect\(^{154,155}\). Similar virus-vector-based vaccines have been shown to stimulate simian immunodeficiency virus (SIV)-specific CD8\(^+\) T cell responses in rhesus macaques, and an adenovirus serotype 5 vector expressing Gag protected against challenge with a chimeric SIV-HIV (SHIV89.6p) virus but was not protective against challenge with the more natural SIVmac239 \(^{156}\). More recent data show that recombinant vaccines that stimulate much broader and stronger CD8\(^+\) T cell responses can partially protect against SIVmac239 and SIVmac251 virus challenge, resulting in more attenuated infection with low virus load and prolonged survival of rhesus macaques\(^{112,113}\).

A third efficacy trial, in Thailand using a canary pox virus vector expressing gp120, Gag and Pol to prime immune responses followed by the AIDSVAX gp120 vaccine to boost the immune response, has been reported recently\(^{116}\). This showed for the first time a small protective effect, with 30% fewer vaccine recipients becoming infected with HIV-1 than controls; the result was statistically significant in one of the three analyses made. The volunteer cohort was low risk (annual incidence of infection ~0.3%) and this may be relevant as it may be easier to protect such people than those at high risk. It is not clear whether protection was mediated by antibody, T cells, innate cells or some combination of the three, but those who did become infected did not have reduced virus levels, which is usually seen for protection mediated by T cells in SIV models\(^{113,114}\).

There is a general consensus in the field that future vaccine approaches should be less empirical and that a deeper understanding of the earliest immune responses to HIV-1 and SIV infection is needed. It will also be important to understand why broad-specificity, neutralizing antibodies are not routinely induced and to determine ways to safely induce them, and to identify what immune responses lead to a better outcome — as in the rare individuals, known as ‘elite controllers’, who successfully control HIV-1 infection for decades without needing antiretroviral drug therapy\(^{117,118}\).

Founder virus

A transmitted virus or a virus that gives rise to all virus quasispecies in an infected individual.

Viral fitness

The ability of a virus to replicate in a given environment. By definition in *in vitro* studies, a drug-resistant virus has greater ability to replicate than wild-type virus when measured in the presence of a drug, similarly a T cell escape mutant will replicate better than wild-type virus when co-cultured with specific T cells. The T cell-resistant or drug-resistant virus may replicate less well than the wild type when the selective force is withdrawn.

Langerhans cell

A type of dendritic cell that is resident in the epithelial layer of the skin and mucosa.

Single-genome amplification

A method of DNA sequencing that uses high-fidelity polymerase and minimizes PCR amplification, thereby excluding sequence errors and recombination events that may be introduced during amplification.

Clade

HIV is subdivided, based on degree of sequence divergence, into three major groups, M, N and O; group M is subdivided into 10 subtypes or clades, of which clade C is the predominant subtype worldwide (prevalent in Sub-Saharan Africa and India) and clade B is the most studied subtype (prevalent in North America and Eastern Europe).

Quasispecies

A distribution of non-identical but closely related viral genomes. The entire distribution forms an organized cooperative structure, which acts like (quasi) a single unit (species).

APOBEC cytidine deaminases

A family of host antiviral proteins that introduce multiple mutations, including stop codons, in retroviruses by deaminating cytosine residues in nascent retroviral cDNA. **Eclipse phase.** Following transmission of the virus, there is a period of ~10 days, known as the eclipse phase, before viral RNA becomes detectable in the plasma (FIG. 1). Single-genome amplification and sequencing of the first detectable virus has shown that ~80% of mucosally transmitted HIV-1 clade B and C infections are initiated by a single virus\(^{1,2,14}\). Infectious molecular clones derived from these primary founder viruses could infect CD4\(^+\) T cells with greater efficiency than they could infect monocytes and macrophages\(^{14}\), which differs from the virus quasispecies that arise later in the infection and can infect lymphoid and myeloid cell types with equal efficiency. Studies in rhesus macaques inoculated intrarectally with a complex SIV quasispecies also showed that productive infection arises from a single infecting virus\(^{15}\), which supports the use of SIV infection of rhesus macaques as a model for HIV-1 transmission and vaccine studies. In other studies\(^{1,6}\) in which macaques were experimentally infected, the first cells to be infected in the vaginal mucosa were found in foci of resident memory T cells that expressed the virus receptors CD4 and CC-chemokine receptor 5 (CCR5), which is consistent with the cell tropism of cloned HIV-1 founder viruses\(^{16}\).

Homogeneity of the founder virus indicates that the established infection probably arises from a single focus of infected mucosal CD4\(^+\) T cells. Virus replication at this focus might in fact be supported by early innate immune responses that lead to the recruitment of additional susceptible T cells to the site\(^{16}\). The failure of most infected foci to become established may be explained by the high error rate in reverse transcription that occurs during HIV-1 replication and the effects of the host antiviral apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases APOBEC3G and APOBEC3F, which cause many viruses produced in infected CD4\(^+\) T cells to be defective\(^{17}\).

Peak viraemia. At the end of the eclipse phase, virus and/or virus-infected cells reach the draining lymph node, where they meet activated CD4\(^+\)CCR5\(^+\) T cells, which are targets for further infection. This process is augmented by DCs that bind and internalize virus through DC-specific ICAM3-grabbing non-integrin (DC-SIGN; also known as CD209) and carry the virus to activated T cells\(^{16}\). B cells may also be involved in the early spread of infection by binding the virus through the complement receptor CD21 (also known as CR2)\(^{19}\). The virus then replicates rapidly and spreads throughout the body to other lymphoid tissues, particularly gut-associated lymphoid tissue (GALT), where activated CD4\(^+\)CCR5\(^+\) memory T cells are present in high numbers\(^{20,21}\). Approximately 20% of CD4\(^+\) T cells in the GALT are infected in both humans with acute HIV-1 infection and SIV-infected macaques. Up to 60% of uninfected CD4\(^+\) T cells at this site become activated and die by apoptosis, resulting in the release of apoptotic microparticles that can suppress immune function\(^{19}\). Therefore, ~80% of CD4\(^+\) T cells in the GALT can be depleted in the first 3 weeks of HIV-1 infection\(^{20,24,25}\). While HIV-1 is replicating in the GALT and other lymphoid tissues, the plasma viraemia increases exponentially to reach a peak, usually more than a million RNA copies per ml of blood, at 14–21 days after SIV infection in macaques and at 21–28 days after HIV-1 infection in humans (FIG. 1). CD4\(^+\) T cell numbers are low at the time of peak viraemia but later return to near normal levels in the blood but not in the GALT\(^{20,24,25}\).

Although B cells are not depleted during early HIV-1 infection, B cell responses are impaired owing to the destruction of other cell types that are important for the development of germinal centres. Up to 50% of germinal centres in the gut are lost within the first 80 days of infection\(^{26}\).
Germinal centre
A highly specialized and dynamic microenvironment located in peripheral lymphoid tissues (for example, the spleen or lymph nodes). It is the main site of B cell maturation, leading to the generation of memory B cells and plasma cells that produce high-affinity antibody.

Figure 1 | Definition of acute HIV-1 infection. a | Recent analysis of samples from individuals early after infection with HIV-1 has revealed that the first weeks following infection can be divided into clinical stages that are defined by a stepwise gain in positivity for the detection of HIV-1 antigens and HIV-1-specific antibodies in diagnostic assays (in brackets)\(^2\). The time between infection and the first detection of viral RNA in the plasma is referred to as the eclipse phase. Plasma virus levels then increase exponentially, peaking at 21–28 days after infection, and this is followed by a slower decrease in plasma viral RNA levels. Patients can be categorized into Fiebig stages I–VI, which are based on a sequential gain in positive HIV-1 specific antibodies detected by ELISA and HIV-1 viral RNA measured by PCR, p24 and p31 viral antigens measured by enzyme-linked immunosorbent assay (ELISA), HIV-1-specific antibody detected by ELISA and HIV-1-specific antibodies detected by western blot). Patients progress from acute infection through to the Early chronic stage of infection at the end of Fiebig stage V, approximately 100 days following infection, as the plasma viral load begins to plateau. b | Fundamental events in acute HIV-1 infection. Following HIV-1 infection, the virus first replicates locally in the mucosa and is then transported to draining lymph nodes, where further amplification occurs. This initial phase of infection, until systemic viral dissemination begins, constitutes the eclipse phase. The time when virus is first detected in the blood is referred to as T\(_e\), after this there is an exponential increase in plasma viraemia to a peak 21–28 days after infection. By this time, significant depletion of mucosal CD4\(^+\) T cells has already occurred. Around the time of peak viraemia, patients may become symptomatic and reservoirs of latent virus are established in cells that have a slower rate of decay than CD4\(^+\) T cells. The ‘window of opportunity’ between transmission and peak viraemia, prior to massive CD4\(^+\) T cell destruction and the establishment of viral reservoirs, is the narrow but crucial period in which an HIV-1 vaccine must control viral replication, prevent extensive CD4\(^+\) T cell depletion and curb generalized immune activation. Part a is modified, with permission, from REF. 12 © (2008) National Academy of Sciences, USA. Part b is modified from REF. 160.
Establishing viral set point. At the point of peak viraemia the immune response has not affected the amino acid sequence of the virus, despite the extensive activation of innate immune cells (see below). Thereafter, the viral load decreases over 12–20 weeks to reach a more stable level, known as the viral set point23–29 (FIG. 1). Virus diversification occurs during this decrease in viral load, and multiple escape mutants are selected under the pressure of adaptive immune responses that are first detectable just before peak viraemia30–33. In the absence of antiretroviral drug therapy (ART), the set point is maintained by a balance between virus turnover and the immune responses.

The death rate of infected cells has been calculated from decay curves of viraemia after ART initiation34. For most infected memory T cells, the half-life is less than a day35. However, other cell populations have slower rates of decay35, and cell populations other than CD4+ T cells maintain latent pools of HIV-1 [REF. 36]. Cells are probably latently infected within days of HIV-1 transmission and are unlikely to be removed by natural or vaccine-stimulated anti-HIV-1 immune responses, given that they cannot be eliminated by ART37.

Immune activation. Activation of innate cells and B and T cells is a striking feature of acute HIV-1 infection of humans and SIV infection of rhesus macaques, and it persists to a varying degree into chronic infection. The dysregulation of immune cells is not limited to cells that are infected by, or are specific for, HIV-1 [REF. 38]. Chronic immune activation is not observed in naturally SIV-infected sooty mangabeys, in which the infections rarely progress to AIDS. This is despite high levels of virus replication and acute CD4+ T cell depletion39, suggesting a role for immune activation in AIDS development. Indeed, there is a positive correlation between markers of CD8+ T cell activation and HIV disease progression40–42.

Immune activation is associated with early and extensive apoptosis of B and T cells, leading to the release of apoptotic microparticles into the blood (FIG. 2), and increased expression of tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL; also known as TNFSF10) and FAS ligand (also known as CD95L), which kill bystander cells and are immunosuppressive31. The causes of HIV-associated immune activation established in early HIV-1 infection are not clearly defined43,44. Multiple related events (reviewed in REF 44) probably contribute to such activation, including direct viral infection of immune cells, pro-inflammatory cytokine production by innate cells (which drives both direct and bystander activation of other immune cells), translocation of microbial products into the blood through damaged intestinal epithelium31,45, loss of virally infected regulatory T (T_{reg}) cells and chronic mycobacterial and viral co-infections.

Genetic control of HIV-1 set point

In contrast to other pathogens that have infected and selected humans for millennia, HIV-1 is a new pathogen to humans45–47. Therefore, the influence of the host’s genetics on the immune response to HIV-1 infection may be more evident. The most dramatic finding in this
regard is that homozygosity for a 32 base pair deletion in CCR5, which abrogates its expression, protects almost completely from HIV-1 infection.44 Furthermore, the HLA alleles HLA-A*5701, HLA-B*5703, HLA-B*5801, HLA-B27 and HLA-B51 are all associated with good control of the virus and a slower progression to AIDS49, partly because the epitopes recognized by the T cells in these individuals are focused on conserved regions of the viral Gag protein (see below). A genome-wide association study49 found a strong protective influence for a single nucleotide polymorphism (SNP) located 35 kilobases upstream of the HLA-C locus and confirmed the association of HLA-B51 with a low viral set point. This HLA-C-linked SNP may be associated with low-level expression of HLA-Cx, which might in turn affect T cell or natural killer (NK) cell function during HIV-1 infection. By contrast, some subtypes of HLA-B35 are associated with rapid disease progression, especially if homozygous50, although the mechanism is not understood.

It has been shown that the expression of the killer immunoglobulin-like receptors KIR3DS1 and KIR3DL1 — which deliver activating and inhibitory signals to NK cells, respectively — delays progression to AIDS in individuals with HLA class I allotypes containing the 80lle variant of the Bw4 motif51, which are thought to be ligands for these receptors51–54. Expansion of NK cells that express KIR3DS1 and/or KIR3DL1 during acute HIV-1 infection has been observed but only if the HLA-B Bw4 80lle motif is present55, which is supported by in vitro data demonstrating that NK cells expressing KIR3DS1 control HIV-1 replication efficiently in HLA-B Bw4 80lle-expressing target cells56. It is possible that KIR3DS1 mediates specific recognition of HIV-infected cells by NK cells, although the exact nature of the ligand is elusive. These observations probably reflect an influence of interactions between KIR3DS1 and/or KIR3DL1 and HLA-B Bw4 80lle on the development and/or functions of NK cells, and possibly CD8+ T cells, which may help to control viral set point.

Early innate immune responses to HIV-1

Acute-phase proteins and cytokines. Insight into the earliest systemic immune responses to HIV-1 infection has been gained by studying plasma donors who acquired HIV-1 infection. Frequent samples were taken before infection, through peak viraemia and seroconversion57,58. Samples from different donors were aligned relative to the time that viral RNA was first detectable (100 copies per ml) (T0). The first detectable innate immune response, occurring sometimes just before T0, was an increase in the levels of some acute-phase proteins, such as serum amyloid A (H. Kramer and B. Kessler, personal communication). A further wave of acute-phase protein production coincided with a cytokine response (described below) and a rapid increase in plasma viraemia. The production of acute-phase proteins can be triggered by pro-inflammatory cytokines (such as interleukin-1 (IL-1)) and also by extrinsic factors such as lipopolysaccharide (LPS). LPS is detectable in the plasma during chronic infection with HIV-1 or SIV and may be derived from commensal bacteria that translocate from the gut lumen following depletion of HIV-1-infected intestinal CCR5+ T helper 17 cells59–62. Immunostaining of GALT biopsies collected from acutely infected patients showed higher levels of pro-inflammatory cytokines than healthy tissues60.

As viraemia increases, so do the levels of cytokines and chemokines in the plasma (Fig. 3). Levels of IL-15, type I interferons (IFNs) and CXC-chemokine ligand 10 (CXCL10) increase rapidly but transiently. IL-18, TNF, IFNγ and IL-22 also increase rapidly but are sustained at high levels, whereas the increase in IL-10 is slightly delayed63 (Fig. 3). Some of these cytokines have antiviral activity; for example, type I IFNs inhibit HIV replication in severe combined immunodeficient mice reconstituted with human lymphocytes64. Also, type I IFNs, IL-15 and IL-18 enhance innate and adaptive immune responses. However, the intense cytokine response during acute HIV infection may also promote viral replication and mediate immunopathology (discussed below).

The cellular sources of the acute-phase cytokines and chemokines during early HIV-1 infection have not been definitively identified, but probably include infected CD4+CCR5+ T cells, activated DCs65, monocytes, macrophages66, NK cells, NKT cells and, subsequently, HIV-specific T cells. The cytokine storm observed during early HIV-1 infection is much greater than that observed in acute hepatitis B and hepatitis C virus infections67, indicating that a systemic cytokine response of this magnitude is not a pre-requisite for viral clearance. The intense cytokine response in acute HIV infection may instead fuel viral replication and mediate immunopathology (discussed below). High-level systemic cytokine responses during acute infections with avian influenza virus and severe acute respiratory syndrome-associated coronavirus are likewise associated with immunopathological consequences68,69.
DCs. DCs are markedly reduced in number during acute HIV-1 infection44 (N. Bhardwaj and P.B., unpublished observations). This rapid decline in circulating DCs, particularly plasmacytoid DCs (pDCs), may be due to activation-induced cell death or to the migration of activated DCs into lymph nodes, where an increase in DC numbers is observed45,46. In vitro, pDCs become activated by the binding of viral envelope proteins to CD4 expressed by the pDCs followed by virion endocytosis and by the triggering of Toll-like receptor 7 by viral RNA47. However, HIV-exposed conventional DCs do not become fully activated and show defective IL-12 production48, which is consistent with the low levels of IL-12 observed during acute HIV infection49. In addition, HIV-exposed pDCs produce IFNα, which enhances adaptive immune responses. However, HIV-exposed pDCs also produce indoleamine 2,3-dioxygenase (IDO), which induces the differentiation of CD4+ T cells into Treg cells that might suppress HIV-specific immune responses50,51,52. Conventional DCs can prime virus-specific CD4+ and CD8+ T cell responses following in vitro exposure to HIV45.

NK and NKT cells. As with most viral infections, NK cells and NKT cells become activated during acute HIV infection45,46,47,48. Prior to the peak in viraemia, blood NK cells proliferate and show enhanced activity when tested ex vivo49. The NK cell population expressing KIR3DS1 and/or KIR3DL1 expands during acute infection in individuals that also express HLA-B Bw4 80ile50. NK and NKT cells can control HIV replication through cytolysis of virally infected cells and the production of antiviral cytokines and chemokines. In addition, they can interact with DCs and thereby influence T cell responses. HIV-1 has evolved a strategy to reduce the expression of ligands for NK cell receptors by infected cells51. This finding, and the clear role of KIR3D molecules in determining the viral set point52, support the involvement of NK cells in the control of HIV-1. However, the timing of NK cell antiviral effects remains uncertain. NK cells do not contribute to the selection of virus escape mutants before peak viraemia, although it is possible, but not proved, that they account for some of the unexplained mutations that appear together with those that are selected by early T cell responses as viraemia decreases to reach the set point53. Alternatively, the antiviral effects of NK (and/or NKT) cells might have a greater influence at later time points.

Implications for vaccine design. Can the protective potential of innate immune responses be harnessed by vaccination? Because NK cells share some characteristics with memory cells after their initial activation54,55, it may be possible to prime their antiviral activity through vaccination. However, the activation of innate immunity should be attempted with caution, as innate immune responses can also be harmful. For example, induction of mucosal inflammatory responses by some microbicides has led to increased acquisition of HIV-1 infection (reviewed in REF 78). Furthermore, as discussed earlier, activated DCs can transmit virus to CD4+ T cells and, during the eclipse phase of infection, chemokines produced by pDCs can recruit susceptible CD4+ T cells to the foci of infection56,57. Immune activation induced by innate immune cells and the resulting production of pro-inflammatory cytokines and chemokines can promote HIV-1 replication. Type I IFNs and TNF also have pro-apoptotic effects and can thereby contribute to a loss of activated DCs and the bystander destruction of CD4+ T cells and B cells. The opposing effects of innate immune activation were highlighted in a study in which IL-15 was administered to treat acute SIV infection in rhesus macaques: NK cell and SIV-specific CD8+ T cell numbers were increased, resulting in fewer SIV-infected cells in lymph nodes, but the activation and proliferation of CD4+ T cells was enhanced and a higher viral load was established58. Therefore, vaccine-induced activation of innate immune responses will have to be thoroughly tested in the macaque SIV model and used with caution in humans.

Early T cell responses in HIV-1 infection CD8+ T cell responses. A few studies have measured HIV-1-specific CD8+ T cell responses during early HIV-1 infection, before the first antibodies are detectable59,60,61,62. Similar to SIV infection in macaques, the first T cell responses to HIV-1 infection arise as viraemia approaches its peak, and the T cell response peaks 1–2 weeks later, as viraemia declines. The homogeneity of the founder virus at the time of the peak of viraemia12,13 indicates that there is no immune-driven selection of escape mutants as viraemia increases. Following the peak in the CD8+ T cell response, the virus sequence starts to change dramatically. Rapid selection of mutations occurs at discrete sites in the virus genome as viraemia declines to the viral set point14,15 (FIG. 4). Detailed analysis of four patients during the very early stages of infection63 indicated that most of the amino acid changes in the virus were selected by CD8+ T cells that recognize epitopes expressed by the founder virus but not by the escape mutant virus. Mutations in the viral envelope protein that were selected by neutralizing antibodies appeared later, at ~12 weeks. A minority of virus escape mutants were not associated with demonstrable T cell responses: a few mutations were probably reversions from the sequence of the transmitted virus that was selected by T cells in the patient’s sexual partner; others may have been selected by antibody-dependent cell-mediated virus inhibition or by NK cells. Notably, T cell- and antibody-mediated selection of viral escape mutants rarely involved a single amino acid change in the epitope; most mutants involved multiple changes such that various mutants were ‘tested’ until the fittest were selected55. The first T cell-selected mutations could replace the original sequence of the founder virus within 10 days, and were then followed by sequential selection of escape mutations at different epitopes. This pattern continues throughout the course of HIV infection56. Changes in sequence could involve amino acids that are upstream of the T cell epitope and are probably important for antigen processing57,58.
The earliest T cell responses are often specific for Env and Nef\(^75,87\). Responses to other viral proteins, including the conserved Gag p24 and Pol proteins, tended to arise during later waves of T cell responses and may be more important for maintaining the viral load at the set point than for controlling early viraemia\(^75,87,88\). Often, the first T cell responses decline rapidly when the escape mutations are selected, or they may decline through exhaustion\(^75,87\). The loss of T cells after virus mutation implies complete loss of the epitope and no tendency for the virus to revert to the original sequence because of loss of fitness.

The finding that escape mutants appeared so rapidly raises questions regarding the effectiveness of the early T cell response. A mathematical model has provided some answers\(^75\). The rapid loss of the founder virus sequence and its replacement by escape mutant viruses implies complete CD8\(^+\) T cell-mediated inhibition of virus production by infected cells. From the rate of loss of founder virus sequence, the fraction of cells killed per day was calculated to be 0.15–0.35 for the earliest T cell responses\(^75\). As a virus-infected cell has a lifespan of 1 day in vivo, this means that 15–35% of infected cells must be killed prematurely by a single T cell response, which must reduce virus production. Therefore, CD8\(^+\) T cells curb viraemia in acute HIV-1 infection. However, selection of escape mutants would minimize this beneficial effect if the mutants were as fit as the founder virus and if the earliest responses were not immediately succeeded by new T cell responses to new (mutated) epitopes, which in turn may select further escape mutants\(^75\) (FIG. 4). Ultimately, responding T cells target epitopes that are more highly conserved and in which escape occurs at a cost to the fitness of the virus. Such immunodominant responses to more highly conserved epitopes are more likely to result in a lower level of viraemia at the set point\(^89\). When a virus that has undergone such escape mutations is transmitted, its set point is also lower in the new host\(^89\). The level of set point viraemia is therefore influenced by the nature of the transmitted virus and the specificity of early CD8\(^+\) T cell responses. Immunodominant T cell responses to the more conserved immunodominant virus epitopes are likely to result in a lower viral set point\(^89\).

CD8\(^+\) T cells are also important for the maintenance of viral set point. There have been many reports of virus escape mutations from around the time the set point is reached\(^90,92,94,95,91–99\). Using the same mathematical models as described earlier, CD8\(^+\) T cells are thought to make only a small contribution (killing 4–6% of virus-infected cells per day) to infected-cell death during chronic infection\(^100\), the rest being due to virus cytopathicity or infected-cell activation. However, this may be an underestimate of the T cell contribution because of the fitness of...
costs of the escape mutations on the virus, such that mutant viruses grow more slowly than the founder virus. Some of the epitopes that are recognized by the T cells during later stages of infection are so highly conserved that the virus must undergo compensating mutations at other sites for escape to occur \[^{75,94,97,98,101}\]. This slows the outgrowth of the mutant viruses. The calculation is further confounded by the difficulty of simultaneous virus escape from more than one T cell response \[^{13,85,91}\]. In contrast to the earliest stages of HIV-1 infection when the range of epitopes recognized by the T cell response is narrow, the later response is broad, often directed against more than 10 epitopes \[^{102}\]. Responses to conserved epitopes are probably important in the long-term control of viral load, because patients with HLA-B27, HLA-B*5701, HLA-B*5703 or HLA-B*5801 that do well clinically have CD8+ T cells that recognize less-variable regions of the virus, particularly in Gag. The HIV-1 quasispecies in these patients do escape slowly during long-term infection, but each escape mutant incurs a proved fitness cost to the virus \[^{103}\]. The time it takes for the first T cell responses to become targeted to conserved epitopes might be important in determining long-term control of viral infection \[^{30,98,99}\]. It is not clear what features determine which CD8+ T cell epitopes will become immunodominant; it is clear that HLA type is important, but the precursor frequency of naïve T cells that are specific for HIV proteins is also likely to be a factor that is probably influenced both by genetics and a history of previous (cross-reactive) antigen exposure. Vaccines could influence this.

The CD4+ T cell response. HIV-1 infects and significantly depletes memory CD4+ T cells \[^{25,79}\], and HIV-1-specific CD4+ T cells are particularly susceptible to HIV-1 infection \[^{101}\]. CD4+ T cell responses to HIV proteins have always been difficult to show, and there is a disparity between the measurements of CD4+ T cell responses to antigen when observing cytokine production versus proliferation \[^{94}\]. Nevertheless, several epitopes for CD4+ T cells have been identified, particularly in Gag \[^{105}\]. Expansion of HIV-specific CD4+ T cell responses occurs in acute HIV-1 infection, but such responses decline rapidly \[^{96,107}\]; although, very early administration of ART, to control viremia and prevent the killing of CD4+ T cells, can rescue strong HIV-1 CD4+ T cell responses \[^{108,109}\]. However, even with the probably suboptimal help from the weakened CD4+ T cell repertoire, the first CD8+ T cell responses are strong, although their progression into long-term memory cells could be impaired. The rapid decline of CD8+ T cell responses observed after the founder epitope is eliminated from the virus in the plasma, owing to escape mutations \[^{95}\], is consistent with the impaired long-term CD8+ T cell memory that has been observed in a model in which mice were depleted of CD4+ T cells \[^{106}\].

Implications for vaccine development. The findings described above suggest a role for CD8+ T cells in the earliest immune control of acute HIV-1 infection. CD8+ T cells develop abnormally \[^{111}\] and become dysfunctional as HIV-1 infection progresses (reviewed in REF. 112), but the early HIV-1-specific CD8+ T cell response seems to be functionally normal \[^{99}\] (G. Ferrari, personal communication). Although not all the factors that contribute to a low virus set point and good long-term prognosis (without ART) are known, it is clear that CD8+ T cells are important components. If a vaccine cannot completely prevent infection, there should be a benefit from stimulating appropriate CD8+ T cell responses, as shown recently in the macaque SIV model \[^{113}\]. An effective vaccine would need to stimulate CD8+ T cell responses to multiple epitopes, especially to those that are highly conserved. It would also be favourable to stimulate a broad T cell response that recognizes common variants of the founder virus epitope sequence, which would limit escape options \[^{114,115}\].

Antibody responses during acute HIV-1 infection

Early neutralizing and non-neutralizing antibody responses. Antibodies that neutralize autologous virus develop slowly, arising ~12 weeks or longer after HIV-1 transmission \[^{96,114}\]. Antibodies that show some degree of neutralization of heterologous virus eventually arise in ~20% of patients years after infection \[^{107,109,120}\]. To determine the specificity and kinetics of antibody production after HIV-1 transmission and to understand why broadly reactive neutralizing antibodies are not made during acute HIV infection, it is important to study the earliest B cell responses to the transmitted virus \[^{115,118}\]. Env-specific antibody responses to autologous, consensus Env epitopes were determined in the same plasma donor cohort as described earlier for innate immunity \[^{17}\]. The first detectable B cell response was found to occur 8 days after T_e, in the form of immune complexes, whereas the first free antibody in the plasma was specific for Env glycoprotein (gp)41 and appeared 13 days after T_e. By contrast, the appearance of Env gp120-specific antibodies was delayed an additional 14 days, as was the production of other non-neutralizing Env-specific antibodies \[^{57,118,121-123}\] (FIG. 5, TABLE 1). The first HIV-1-specific IgA responses in mucosal secretions, which were detected within the first 3 weeks after T_e, also recognized gp41 during acute HIV infection (N. L. Yates and G.D.T., unpublished observations). A study that applied mathematical modelling to early viral dynamics indicated that the initial gp41-specific IgG and IgM responses did not significantly affect the early dynamics of plasma viral load \[^{124}\]. These acute gp41- and gp120-specific antibodies did not select escape mutations, indicating that these early arising antibodies are ineffective against HIV-1. Similar analyses of the effect of the initial immune complexes and gp41-specific IgA responses on viral dynamics are needed to understand the interplay between the initial host antibody responses and virus replication. It is not known why the initial antibody response to Env is non-neutralizing; it may relate to the immunodominance of denatured or non-functional Env forms \[^{124,125}\]. The first antibodies to induce escape mutants are autologous-virus-neutralizing antibodies that develop ~12 or more weeks after transmission (TABLE 1). Fc receptor
Acute HIV-1 infection profoundly affects blood and tissue B cells123. HIV-1 induces early class switching in polyclonal B cells and is associated with marked increases in the number of blood and tissue memory B cells and plasma cells, as well as a decrease in the number of naïve B cells123. In the mucosal B cell
If neutralizing antibodies cannot be generated in sufficient quantity, affinity and breadth, other immune mechanisms could abort the infection by attacking the founder virus and/or the first infected cells. CD8+ T cell-mediated killing, antibody-mediated mechanisms dependent on FcRs (including antibody-dependent cell-mediated cytotoxicity (ADCC)), NK cell-mediated lysis and β−chemokine release all have the potential to prevent early infection. However, to prevent infection these effector mechanisms would have to be ready primed, as there is not time to activate and expand central memory CD8+ T cells, for example, before chronic infection is established.

Harnessing NK cells and NKT cells might be an effective strategy to control the increase of virally infected cells during the eclipse phase or during the increase in viraemia of early HIV-1 infection. Although it may be hazardous to induce chronic hyperactivation of these cells as a means to inhibit virus infection, it may be possible to immunize subjects with HIV-1 antigens such as peptides that specifically expand potentially protective NK and NKT cell subpopulations, thereby altering the cell repertoire to contain a higher proportion of protective NK cells.

The modest protection offered by the vaccines used in the recent RV144 clinical trial carried out in Thailand with volunteers at low risk of HIV-1 infection may be an example of weak immune responses combining to raise the threshold for infection — a rare event.

Once infection starts to spread, enhancing the natural containment processes might be the only immunological option to benefit infected individuals. CD8+ T cell responses, which are clearly effective in reducing the peak viraemia during acute infection, could be enhanced through vaccination by increasing their breadth of epitope recognition so that, rather than mediating sequential responses to single epitopes, there would be a simultaneous multi-epitope-specific CD8+ T cell response to the virus. Focusing this response on conserved epitopes, for which escape incurs a fitness cost, would be desirable. Strategies for enhancing or preserving CD4+ T cell help would also be of benefit for supporting the CD8+ T cells. However, it is important to recognize that CD8+ T cells are highly sensitive to single amino acid variation in epitope peptides, so even minor mismatches between vaccine-encoded epitopes and viral epitopes could be a serious problem and could diminish the effectiveness of any vaccine-stimulated T cell response.

If a vaccine can induce greater breadth in early T and B cell responses to HIV-1 than occurs naturally during acute infection, then the use of a combination of protective epitopes in a preventative vaccine may control the early dissemination of HIV-1, resulting in a lower viral set point and better long-term immune control. Preliminary unpublished results with experimental vaccines that include multiple common variants of HIV-1 proteins such as Gag (mosaic vaccines) have been shown to enhance the breadth and magnitude of T cell responses in animal studies. This approach and other novel strategies for expanding the breadth of induced Env-specific B cell responses are also central to improving the prospects of vaccine success.

Implications for vaccine design. The finding that the generation of potentially protective antibodies is delayed until after initial control of viraemia ~12 weeks after transmission and then focused on only a few epitopes implies that it will be important to develop a vaccine that primes a very early and broad antibody response that targets multiple neutralizing epitopes for effective control of early viral expansion; the natural process is too little, too late. The early perturbations to B cells by the virus similarly indicate the need for a vaccine that either has high levels of durable protective antibody responses or primes in order to induce a rapid secondary response. The rarity of broad-specificity, neutralizing antibody responses to conserved epitopes in Env emphasizes the need to search for and find those small B cell subsets that can make broad-specificity, neutralizing antibodies: immunogens and adjuvants are needed that target those specific B cells.

Outlook

A clear picture of the earliest immune responses to HIV-1 (Fig. 5) has major implications for HIV-1 prevention in general and for vaccine design. After transmission, there is probably only a 5–10 day window during the eclipse phase in which the virus-infected cells could be eradicated, before the virus spreads widely and integrates to generate long-lasting and non-eradicable reservoirs of latent virus. True sterilizing immunity can be attained only if the virus is prevented from infecting any host cells. This could be achieved only through broad-specificity neutralizing antibodies that are already present in the plasma and at mucosal sites before virus transmission. In support of this hypothesis, it has been shown that local application, or intravenous injection, of neutralizing monoclonal antibodies against SIV in macaques is protective against subsequent challenge with the virus.

Table 1 | **Env-specific antibody responses in acute HIV-1 infection**

Antibody specificity	Time of onset after transmission (days)
gp141	23
gp120	38
Non-neutralizing to CD4-binding site, MPER and CD4-inducible epitopes	40–70
Autologous virus-neutralizing antibodies	Earliest ~84
Broad-specificity and neutralizing to CD4-binding site, carbohydrate and MPER	Not usually made, but when they are they arise ~30 months after transmission in chronic infection

gp, glycoprotein; MPER, membrane-proximal external region.

Peyer’s patches

Specialized lymphoid follicles localized in the submucosa of the small intestine and appendix.

Antibody-dependent cell-mediated cytotoxicity (ADCC). A cytotoxic mechanism by which an antibody-coated target cell is directly killed by a leukocyte that expresses FcRs, such as an NK cell, macrophage or neutrophil.
It can be thought to be good news that most HIV-1 transmissions that result in productive infection are mediated by only one virion, indicating a vulnerability of the virus to immune attack during the eclipse phase. This suggests that a well-designed vaccine strategy might have a chance of achieving good (if not perfect) control around the time of acute peak viraemia, preventing the onset of damaging chronic immune activation and damage to generative immune cell environments. However, vaccine strategies must be developed that potentiate what is clearly a qualitatively and quantitatively insufficient immune response in the first few weeks of HIV-1 infection. It is hoped that both the innate and adaptive arms of the immune system can be harnessed to develop an HIV-1 vaccine that ensures that adequate immune protection is in place before transmission, enabling earlier, broader and more effective secondary responses for preventing or controlling acute HIV-1 infection.

21. Brenchley, J. M. & Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Med. 12, 1565–1571 (2006).
22. Brenchley, J. M. et al. Differential Th1 CD4+ T cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood. 109, 2826–2835 (2007).
23. Casper-Gasperi, S. et al. Induction of plaques (TRAIL), TNFR2, Fas ligand, and plasma microparticles after human immunodeficiency virus type 1 (HIV-1) transmission: implications for a vaccine design. J. Virol. 83, 7700–7710 (2008).
24. Veazey, R. S. et al. Gastrointestinal tract as a major site of CD4+ T cell viral replication in SIV infection. Science 280, 427–431 (1998).
25. The first demonstration that activated CD4+ T cells are depleted in the intestine within days of intravenous SIV infection of macaques, showing that the gastrointestinal tract is the major site of SIV replication.
26. Mattapallil, J. J. et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 424, 1059–1072 (2003).
27. Levesque, M. et al. Cell differentiation and loss of gastrointestinal tract germinal centers in the earliest stages of HIV-1 infection. PLoS Med. 6, e1000107 (2009).
28. This study used flow cytometry, histology and quantitative imaging techniques to show polyclonal B cell activation and destruction of germinal centres in acute HIV-1 infection.
29. Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 125–126 (1995).
30. Schacker, T. W., Hughes, J. P., Shea, T., Coombs, R. W. & Corey, L. Biological and virological characteristics of primary HIV infection. Ann. Intern. Med. 128, 613–620 (1998).
31. Rodriguez, B. et al. Predictive value of plasma HIV RNA level on early or late untreated HIV infection. JAMA 296, 1498–1506 (2006).
32. Borro, P., Lewicki, H., Hahn, B. H., Shaw, G. M. & Oldstone, M. B. Virus-specific CD8+ T-cell cytotoxic T lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 68, 6103–6110 (1994).
33. Koup, R. A. et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68, 6650–6655 (1994).
34. Price, D. A. et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc. Natl. Acad. Sci. USA 94, 1890–1895 (1997).
35. Wilson, J. D. et al. Direct visualization of HIV-1 specific cytotoxic T lymphocytes during primary infection. AIDS 14, 1275–1282 (2000).
36. Markowitz, M. et al. A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T cell decay in vivo. J. Virol. 77, 5037–5038 (2003).
37. Sedaghat, A. R., Siliciano, J. D., Brennan, T. P., Wilkie, C. E. & Oldstone, M. B. F. Limits on improvement of the resting CD4+ T cell reservoir for HIV in patients on HAART. PLoS Pathog. 3, e12 (2007).
38. Brennan, T. P. et al. Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD+ T cells reveals a novel source of residual viremia in patients on antiretroviral therapy. J. Virol. 83, 8470–8481 (2009).
39. Dinoso, J. B. et al. Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 106, 9418–9423 (2009).
40. The stable reservoirs of latent HIV-1 infection were first identified in this study.
41. Finkel, T. H. et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV-1 and SIV-infected lymph nodes. Nature Med. 1, 129–134 (1995).
42. Silvestri, G. et al. Infection of nonpathogenic SIV sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunol. Rev. 181, 441–452 (2002).
43. This study shows that SIV infected sooty mangabeys have high viral load but low immune activation with no loss of blood CD4+ T cells, suggesting chronic immune activation might be responsible for some of the problems in HIV-1 infection.
44. Liu, Z. et al. Elevated CD58 antigen expression on CD4+ T cells is a strong marker for the risk of chronic HIV disease progression to AIDS and death in the Multicenter AIDS Cohort Study than CD4+ cell count, soluble immune activation markers, or combinations of HLA-DR and CD58 expression. J. Acquir. Immunol. Defic. Syndr. Hum. Retrovirol. 16, 85–92 (2000).
45. Gazzard, B. G. et al. Predictive value of immunologic and virologic markers after long or short duration of HIV-1 infection. J. Acquir. Immunol. Defic. Syndr. Hum. Retrovirol. 29, 546–552 (2002).
46. Deeks, S. G. et al. Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood 104, 942–947 (2004).
47. This paper shows that the level of immune activation is a better predictor of CD4+ T cell decline than viral load.
48. Li, Q. et al. Microarray analysis of lymphatic tissue reveals stage-specific, gene expression signatures in HIV-infected individuals. J. Virol. 75, 1975–1982 (2001).
49. Sodora, D. L. & Silvestri, G. Immune activation and SIV pathogenesis. AIDS 22, 439–446 (2008).
50. Gao, F. et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397, 436–441 (1999).
51. Korber, B. et al. Timing the ancestor of the HIV-1 pandemic strains. Science 288, 1789–1796 (2000).
52. Keele, B. F. et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 315, 523–526 (2007).
53. Liu, R. et al. Homozygous defect in HIV-1 co-receptor accounts for resistance of some multiple-exposed individuals to HIV-1 infection. Cell 66, 567–577 (1996).
54. Carrington, M. & O’Brien, S. J. The influence of HLA genotype on AIDS. Annu. Rev. Med. 54, 535–551 (2003).
55. A seminal review that describes the association between HLA-A, HLA-B and HLA-C alleles and the rate of disease progression.
56. Felley, J. et al. A whole-genome association study of major determinants for host control of HIV-1 infection. Science 317, 944–947 (2007).
57. Gao, X. et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N. Engl. J. Med. 344, 1668–1675 (2001).
58. Qiu, Y. et al. HIV-1/HTLAa plays a role in virus protection against both HIV and opportunistic infections. PLoS Pathog. 2, e79 (2006).
59. Martin, M. P. et al. Epistatic interaction between KIRDS1 and HLA-B delays the progression to AIDS. Nature Genet. 31, 429–434 (2002).
60. The first report showing that NK cell receptors affect the progression to AIDS.
In this article, the cytokine storm that follows HIV-1 infection was shown in a plasma donor cohort in which samples were available before and during the earliest stages of infection.

Raffaletti, M. et al. Simian immunodeficiency virus-induced NOD-1 deficiency promotes Salmonella dissemination from the gut. *Nature Med.* 14, 421–428 (2008).

Nocori, M. et al. Cytokine activation in gut-associated and peripheral lymphoid tissue during acute HIV infection. *AIDS* 21, 565–574 (2007).

Lapenta, C. et al. Type I interferon is a powerful inhibitor of viral replication and preserves human CD4+ T cells from virus-induced depletion in SCID mice transplanted with human cells. *Nature* 426, 78–88 (1993).

de Jong, M. et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. *Nature Med.* 12, 1205–1207 (2006).

Cameron, M. J. et al. Interferon-mediated responses are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. *J. Virol.* 81, 8692–8706 (2007).

Kilian, M. et al. Similar changes in plasmacytoid dendritic cell and CD4+ T-cell counts during primary HIV-1 infection and treatment. *AIDS* 20, 1247–1252 (2006).

Mallaret, B. et al. Primary infection with simian immunodeficiency virus: plasmacytoid dendritic cell homing to immune interferon, and immune suppression. *Blood* 112, 4598–4608 (2008).

Lore, K. et al. Accumulation of DC-COLD+CD40+ dendritic cells with reduced CD80 and CD86 expression in acute HIV-1 infection. *AIDS* 16, 683–692 (2002).

Beignon, A. et al. Endocyte of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. *J. Clin. Invest.* 115, 3256–3275 (2005).

Granelli-Piperno, A., Colebunders, A., Trumpfeller, C., Singal, F. P. & Steinman, R. M. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but up-regulate TLR-10 production and T cell regulation. *Proc. Natl Acad. Sci. USA* 101, 7669–7674 (2004).

Boaso, A. et al. HIV inhibits CD4+ T-cell proliferation by inducing interleukin 2, 3-dioxgenase in plasmacytoid dendritic cells. *Blood* 103, 3531–3539 (2004).

Marchais, O. et al. HIV-activated human plasmacytoid DCs induce Tregs through an interleukin 2, 3-dioxgenase-dependent mechanism. *J. Clin. Invest.* 116, 531–541 (2006).

Sabadó, R. L. et al. In vitro priming recapitulates in vivo HIV-1 specific T cell responses, revealing rapid loss of virus-specific T cells and acute HIV-1 infection. *PLoS ONE* 4, e4256 (2009).

Borrow, P. & Bhadravat, N. Innate immune responses in primary HIV-1 infection. *Curr. Opin. HIV AIDS* 3, 34–44 (2008).

Clay, C. C. et al. Neuroinvasion of fluoroace-c-peptide monocytes in acute simian immunodeficiency virus infection. *J. Virol.* 81, 1205–1212 (2007).

Ward, J. et al. HIV modulates the expression of ligands important in triggering natural killer cell cytotoxic responses on infected primary T cell blasts. *Blood* 110, 1207–1214 (2007).

Goenetteke, N. et al. The first T cell response to transmembrane/HIV-1 envelope proteins is in the control of acute viremia in HIV-1 infected. *J. Exp. Med.* 180, 1253–1272 (1999).

This paper shows that the first HIV-1-specific CD8+ T cells make an important contribution to the control of viremia in acute HIV-1 infection.

Cooper, A. E. et al. Cytokine-induced immune natural killer killers. *Proc. Natl Acad. Sci.* USA 106, 1915–1919 (2009).

Sun, J. C. et al. Interferon-gamma and cytokine production by antigen-specific CD4+ T cells. *Nature* 457, 557–561 (2009).

Cummins, J. E. J. & Doncel, G. F. Biomarkers of cytotoxic T lymphocyte infiltration and the assessment of microbicide safety. *Sex. Transm. Dis.* 36, S84–S91 (2009).

Li, Q. et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. *Nature* 434, 1148–1152 (2005).

Mueller, Y. M. et al. IL-15 treatment during acute simian immunodeficiency virus (SIV) infection increases viral set point and accelerates disease progression despite the induction of stronger SIV-specific CD8+ T cell responses. *J. Immunol.* 180, 350–360 (2008).

Pantaleo, G. et al. Major expansion of D8+ T cells with a predetermined primary immune response to HIV. *Nature* 370, 465–467 (1994).

Fiebig, E. W. et al. Dynamics of HIV viremia and immune control of viremia in SIVMac157. *J. Exp. Med.* 193, 103–112 (2001).

Drummond, D. et al. Improved antigen selection for solid-state particle immune cell receptor. *J. Immunol.* 120, 1207–1212 (2003).

Borrow, P. et al. Selection of virus from long-term survivors is strongly associated with delayed disease progression. *Science* 278, 1447–1450 (1997).

Oxenius, A. et al. Variable fate of virus-specific CD8+ T cells during primary HIV-1 infection. *Nature Immunol.* 31, 518–525 (2001).

Gloster, S. E. et al. Association of strong virus-specific CD4 T cell responses with efficient natural control of primary HIV-1 infection. *AIDS* 18, 749–752 (2004).

Rosenberg, E. S. et al. Vigorous HIV-1 specific CD4+ T cell responses associated with control of viremia. *Science* 278, 1447–1450 (1997).

Oxenius, A. et al. Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD4+ and CD8+ T cells. *Proc. Natl Acad. Sci.* USA 97, 5382–5387 (2000).

Sun, J. C., Williams, M. A. & Bevan, M. J. CD4+ T cells are required for the maintenance, not programming, of memory CD4+ T cell function. *Nature Immunol.* 5, 927–933 (2004).

Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. *Nature* 410, 106–111 (2001).

Streeck, H. et al. Antiviral mechanism of CD8 T cells from long-term survivors of acute HIV-1 infection. *Proc. Natl Acad. Sci.* USA 101, 52–59 (2004).

Liu, J. et al. Immune control of a SIV challenge by a T-cell-based vaccine in rhesus monkeys. *Nature* 457, 87–91 (2009).

Dong, T. et al. HIV-specific cytotoxic T cells from long-term survivors select a unique T cell receptor. *J. Exp. Med.* 200, 1547–1557 (2004).

Turnbull, E. L. et al. HIV-1 epitope-specific CD8+ T cell responses strongly associated with delayed disease progression across recombination efficiently. *J. Immunol.* 176, 6130–6146 (2006).

Wei, X. et al. Antibody neutralization and escape by HIV-1. *Nature* 422, 203–208 (2003).

The timing of the first antibody-selected escape mutations of HIV-1 in acute infection highlights the role of the glycan shield.

Richman, D. D., Weintraub, D., Landau, S. J. & Petropoulos, C. J. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. *Proc. Natl Acad. Sci. USA* 100, 6141–6146 (2003).

This study shows that neutralizing antibodies account for the extensive variation in the HIV-1 Env proteins observed in the early months of primary infection.
118 Gray, E. S. et al. Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection. J. Virol. 81, 6187–6196 (2007).
119 Statmatoes, L., Morris, L., Burton, D. R. & Mascola, J. R. Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nature Med. 15, 866–870 (2009).
120 Gray, E. S. et al. Broad neutralization of human immunodeficiency virus type 1 mediated by plasma antibodies against the gp41 membrane proximal external region. J. Virol. 83, 11265–11274 (2009).
121 Derdeyn, C. A. et al. Envelope constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science 303, 2019–2022 (2004).
122 Alm, S. M. et al. The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J. Immunol. 178, 4425–4435 (2007).
123 Alm, S. M. et al. Human immunodeficiency virus type 1 gp41 antibodies that mask membrane proximal region epitopes: antibody binding kinetics, induction, and potential for regulation in acute infection. J. Virol. 82, 115–125 (2008).
124 Crooks, E. T. et al. A comparative immunogenicity study of HIV-1 virus-like particles bearing various forms of envelope proteins, particles bearing no envelope and soluble monomeric gp120. Virology 366, 245–262 (2007).
125 Tobin, G. J. D. et al. Deceptive imprinting and immune refocusing in vaccine design. Vaccine 26, 6189–6199 (2008).
126 Forthel, D. N., Landucci, G. & Dar, E. S. Antibody from patients with acute human immunodeficiency virus (HIV) infection inhibits primary strains of HIV type 1 in the presence of natural-killer effector cells. J. Virol. 75, 6955–6961 (2001).
127 Aasa-Chapman, M. M. et al. Detection of antibody-dependent complement-mediated inactivation of both autologous and heterologous viruses in primary human immunodeficiency virus type 1 infection. J. Virol. 79, 2825–2830 (2005).
128 Burres, R., Haessig-Einui, S., Aubertin, A. M. & Moog, C. Neutralizing as well as non-neutralizing polyclonal immunoglobulin (Ig)G from infected patients capture HIV-1 via antibodies directed against the principal immunodominant domain of gp41. Virology 333, 102–115 (2005).
129 Moore, P. L. et al. The C5-V region is a major target of autologous neutralizing antibodies in human immunodeficiency virus type 1 subtype C infection. J. Virol. 80, 12263–12274 (2006).
130 Calaresu, D. A. et al. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300, 2065–2071 (2003).
131 Keong, P. D. et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420, 678–682 (2002).

This report shows that conformational masking enables HIV-1 to maintain receptor binding and simultaneously resist antibody-mediated neutralization.

132 Otef, G. et al. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J. Virol. 78, 10724–10737 (2004).
133 Cardoso, R. M. et al. Structural basis of enhanced binding of extended and helically constrained peptide epitopes of the broadly neutralizing HIV-1 antibody 4E10. J. Mol. Biol. 365, 1533–1544 (2007).
134 Nelson, J. D. et al. An affinity-enhanced neutralizing antibody against the membrane-proximal external region of human immunodeficiency virus type 1 gp41 recognizes an epitope between those of 2F5 and 4E10. J. Virol. 81, 4055–4056 (2007).
135 Shen, X. et al. In vivo gp41 antibodies targeting the 2F5 monoclonal antibody epitope mediate human immunodeficiency virus type 1 neutralization breadth. J. Virol. 83, 5617–5625 (2009).
136 Haynes, B. F., Moody, M. A., Verkoczy, L., Kelsoe, G. & Altmann, S. M. Antibody polyspecificity and neutralization of HIV-1: a hypothesis. Hum. Antibodies 14, 69–77 (2005).
137 Fox, C. H. et al. Lymphoid germinal centers are a major reservoir for human immunodeficiency virus. Proc. Natl Acad. Sci. USA 98, 9838–9842 (1991).
138 Muro-Cacho, C. A., Pantaleo, G. & Fauci, A. S. Analysis of apoptosis in lymph nodes of HIV-infected persons. Internality of apoptosis correlates with the general state of activation of the lymphoid tissue and not with stage of disease or viral burden. J. Immunol. 154, 5555–5566 (1995).
139 Zhang, Z. Q. et al. Early depletion of proliferating B cells of germinal center in rapidly progressive simian immunodeficiency virus infection. Virology 361, 456–466 (2007).
140 Mascola, J. R. et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nature Med. 6, 207–210 (2000).

An important study that showed that neutralizing antibodies can protect against mucosal transmission, thus providing a rationale for vaccine strategies aimed at eliciting these antibodies.

141 Hessell, A. J. et al. Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449, 101–104 (2007).
142 Hessell, A. J. et al. Effective, low affinity antibody protection against low-dose repeated mucosal SIVSH challenge in macaques. Nature Med. 15, 951–954 (2009).

An elegant study addressing the level of antibody needed at mucosal sites for protection, which can inform experimental vaccine evaluation on the protocol needed for sufficient elicitation of antibodies.

143 Hessell, A. J. et al. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SIV challenge even at low serum neutralizing titers. PLoS Pathog. 5, e1000433 (2009).
144 Engram, J. C. et al. Polyspecific, simian immunodeficiency virus-specific CD8+ T cells reduce virus replicase but do not protect from simian immunodeficiency virus disease progression. J. Exp. Med. 185, 706–717 (2007).
145 Berks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. Nature Med. 15, 925–929 (2009).
146 Walker, B. D. & Burton, D. R. Toward an AIDS vaccine. Science 320, 760–764 (2008).
147 Baker, B. M., Block, B. L., Rothchild, A. C. & Walker, B. D. Elite control of HIV infection: implications for vaccine design. Expert Opin. Biol. Ther. 9, 55–69 (2009).
148 Wong, S. B. J. & Siliciano, R. F. in AIDS Vaccine Development: Challenges and Opportunities (eds Rolf, W. C., Kahn, P. & Gust, D. I.) 17–22 (Caster Academic, UK, 2007).

Acknowledgements
This work was supported by the Center for HIV/AIDS Vaccine Enterprise (CHAVI) grant AI0167854-03. Additional support came from the Medical Research Human Immunology Unit, the National Institute for Health Research, Oxford Biomedical Research Centre and grants 58643 and 57874 from the Bill and Melinda Gates Foundation. A.J.M. and P.B. are Jenner Investigators and P.B. is supported by a Jenner Fellowship. G.D.T. is supported by the US National Institutes of Health, grants RO1A0152779, U19AI067854, A0068618 and AI64518 and the Bill and Melinda Gates Foundation (grant 358619). We are grateful to members of the CHAVI Scientific Leadership Group, N. Letvin, M. Cohen, J. Sodroski, Goldstein and G. Shaw for scientific input and for reviewing this manuscript, and to the CHAVI Clinical Core Investigators and their patients for participation in the CHAVI studies cited in this review.

Competing interests statement.
The authors declare no competing financial interests.

DATABASES
UniProtKB: http://www.uniprot.org
APPOCBIF: http://apocif.bioc.cam.ac.uk
IMGT/DB: http://www.imgt.org/databases/IMGT/DB.html
VIRIDIS: http://www.viridis.dundee.ac.uk

FURTHER INFORMATION
Andrew J. McMichael’s homepage: http://www.imm.ox.ac.uk/wimw-research/mc-human-immunology-unit/andrew-mcmichael

ALL LINKS ARE ACTIVE IN THE ONLINE PDF