NON-TORSION BRAUER GROUPS IN POSITIVE CHARACTERISTIC

LOUIS ESSER

ABSTRACT. Unlike the classical Brauer group of a field, the Brauer-Grothendieck group of a singular scheme need not be torsion. We show that there exist integral normal projective surfaces over a large field of positive characteristic with non-torsion Brauer group. In contrast, we demonstrate that such examples cannot exist over the algebraic closure of a finite field.

1. INTRODUCTION

One way of extending the notion of the classical Brauer group of a field to any scheme X is by defining the Brauer-Grothendieck group $\text{Br}(X) = H^2_{\text{ét}}(X, \mathbb{G}_m)$. Just as for fields, this group is torsion for any regular integral noetherian scheme [5, Corollaire 1.8]. However, this no longer holds for singular schemes. Chapter 8 of [3] lists several counterexamples. For instance, if R is the local ring of the vertex of a cone over a smooth curve of degree $d \geq 4$ in \mathbb{P}^2_k, then $\text{Br}(R)$ contains the additive group of \mathbb{C}. There are then affine Zariski open neighborhoods of the vertex with non-torsion Brauer group [3, Example 8.2.2]. However, the additive group of k is torsion when k has positive characteristic, so analogous constructions do not work there. There are also reducible varieties in arbitrary characteristic with non-torsion Brauer group [3, Section 8.1]. This leaves open the following question, communicated by Colliot-Thélène and Skorobogatov in an unpublished draft of [3]:

Question 1.1. If X is an integral normal quasi-projective variety over a field k of positive characteristic, is $\text{Br}(X)$ a torsion group?

To analyze this question, we use a result concerning the Brauer group of a normal variety X with only isolated singularities p_1, \ldots, p_n. Suppose X is defined over an algebraically closed field k of arbitrary characteristic. Let K be the function field of X, $R_i = \mathcal{O}_{X,p_i}$ be the local ring at each singularity, and R_i^{h} its henselization. Then, $\text{Br}(X)$ is given by the exact sequence (see [3, Section 8.2], elaborating on [5, §1, Remarque 11 (b)])

$$0 \to \text{Pic}(X) \to \text{Cl}(X) \to \bigoplus_{i=1}^n \text{Cl}(R_i^{\text{h}}) \to \text{Br}(X) \to \text{Br}(K).$$

This sequence indicates that one way for $\text{Br}(X)$ to be large is for a singularity to have a large henselian local class group with divisors that do not extend globally to X. This

2020 Mathematics Subject Classification. 14F22.

Key words and phrases. Brauer groups, étale cohomology.
idea is illustrated by a counterexample given by Burt Totaro, which shows that \(\text{Br}(X) \) is non-torsion for \(X \) a hypersurface of degree \(d \geq 3 \) in \(\mathbb{P}^4_k \) with a single node [3, Proposition 8.2.3]. Here \(k \) is any algebraically closed field with characteristic not 2.

We will show that counterexamples to Question 1.1 exist in dimension 2 if and only if \(k \) is not the algebraic closure of a finite field.

Acknowledgements. I thank Burt Totaro for suggesting this problem to me and for his advice. This work was partially supported by National Science Foundation grant DMS-1701237.

2. A Surface Counterexample

The following construction is taken from [7], Example 1.27. Take a smooth cubic curve \(D \) in the projective plane and a quartic curve \(Q \) that meets it tranversally. Let \(Y = \text{Bl}_{q_1,\ldots,q_{12}} \mathbb{P}^2 \), where \(q_1,\ldots,q_{12} \) are the points of intersection. On \(Y \), the proper transform \(C \) of \(D \) satisfies \(C^2 = -3 \). Unlike rational curves, not all negative self-intersection higher genus curves may be contracted to yield a projective surface. Rather, the contraction might only exist as an algebraic space. However, in this case, \(C \) is contractible.

Proposition 2.1. There exists a normal projective surface \(X \) and a proper birational morphism \(Y \to X \) whose exceptional locus is exactly \(C \).

Proof. The Picard group of \(Y \) is the free abelian group on \(H \), the pullback of a general line in \(\mathbb{P}^2 \), and the exceptional divisors \(E_1,\ldots,E_{12} \). Then, we claim that the line bundle \(L := \mathcal{O}_Y(4H - \sum_i E_i) = \mathcal{O}_Y(H + C) \) defines a basepoint-free linear system on \(Y \). Indeed, no point outside of the \(E_i \) can be a base point, and the proper transforms of both \(D \) and \(Q \) belong to the linear system. These don’t intersect on the exceptional locus by the transversality assumption. Therefore, the system defines a morphism from \(Y \) to projective space with image \(X' \). This morphism is birational because we have an injective map \(H^0(Y, \mathcal{O}_Y(H)) \hookrightarrow H^0(Y, L) \) and \(\mathcal{O}_Y(H) \) is the pullback of a very ample line bundle on \(\mathbb{P}^2 \).

The exceptional locus of the morphism \(Y' \to X' \) is precisely the union of the irreducible curves in \(Y \) on which \(L \) has degree zero. If \(C' \), an irreducible curve with \(C' \cdot (H + C) = 0 \), clearly \(C' \) is not supported on the \(E_i \), or the intersection would be positive. Therefore, \(H \cdot C' > 0 \), meaning \(C \cdot C' < 0 \). This means \(C' = C \), so the exceptional locus is the curve \(C \), which is mapped to a point. Thus, \(X' \) is a surface birational to \(Y \) and \(Y \to X' \) is an isomorphism away from \(C \). Finally, passing to the normalization \(X \) of \(X' \), we may assume \(X \) is a normal projective surface; the normalization will also be an isomorphism away from \(C \), and the image of \(C \) will again be a point in \(X \). \(\square \)

The resulting singularity \(p \) of \(X \) has minimal resolution with exceptional set exactly \(C \), a smooth elliptic curve. Singularities satisfying this condition are called **simple elliptic singularities**. Over \(\mathbb{C} \), such singularities are completely classified. A simple elliptic singularity with \(C^2 = -3 \) is known as an \(\tilde{E}_6 \) singularity, and is complex analytically isomorphic to a cone over \(C \) \([8]\). Here, we present a computation of the henselian local class group \(\text{Cl}(R^h) \) of the singularity that works in any characteristic.
Consider the pullback of the desingularization $Y \to X$ to a “henselian neighborhood”:

$$
\begin{array}{ccc}
Y^h & \longrightarrow & Y \\
\downarrow & & \downarrow \\
\text{Spec}(R^h) & \longrightarrow & X.
\end{array}
$$

The scheme Y^h is regular and $Y^h \setminus C \cong \text{Spec}(R^h) \setminus \{m\}$, so we have an exact sequence $0 \to \mathbb{Z} \cdot [C] \to \text{Pic}(Y^h) \to \text{Cl}(R^h) \to 0$. Here, the first map is injective since $\mathcal{O}_{Y^h}(-C)$ has nonzero degree on C. It suffices, therefore, to compute $\text{Pic}(Y^h)$. To do so, we’ll first consider infinitesimal neighborhoods of C in Y.

The sequence of infinitesimal neighborhoods $C = C_1 \subset C_2 \subset \cdots$ is defined by powers of the ideal sheaf \mathcal{I}_C. Notably, these C_n are the same regardless of whether we consider them inside Y or inside the henselian neighborhood Y^h. The normal bundle to C in Y gives obstructions to extending line bundles to successive neighborhoods, but we’ll show that all line bundles extend uniquely. The group $\lim_{\leftarrow n} \text{Pic}(C_n)$ in the proposition below is also the Picard group of the formal neighborhood of C in Y.

Proposition 2.2. The restriction map $\lim_{\leftarrow n} \text{Pic}(C_n) \to \text{Pic}(C)$ is an isomorphism.

Proof. It’s enough to show that the maps $\text{Pic}(C_{n+1}) \to \text{Pic}(C_n)$ are all isomorphisms for $n \geq 1$. Each extension $C_n \subset C_{n+1}$ is a first-order thickening, since C_n is defined in C_{n+1} by the square-zero ideal sheaf $\mathcal{I}_C^n/\mathcal{I}_C^{n+1}$. Associated to such a thickening is a long exact sequence in cohomology [9, 0C6Q]

$$
\cdots \to H^1(C, \mathcal{I}_C^n/\mathcal{I}_C^{n+1}) \to \text{Pic}(C_{n+1}) \to \text{Pic}(C_n) \to H^2(C, \mathcal{I}_C^n/\mathcal{I}_C^{n+1}) \to \cdots.
$$

We may take the outer cohomology groups to be over C since the underlying topological spaces are the same. As sheaves of abelian groups on C, we have $\mathcal{I}_C^n/\mathcal{I}_C^{n+1} \cong \mathcal{O}_C(-nC)$, a multiple of the conormal bundle. But $C^2 = -3$ in Y so this last bundle has degree $3n > 0$. Since C is genus 1, the higher cohomology of $\mathcal{O}_C(-nC)$ vanishes and $\text{Pic}(C_{n+1}) \to \text{Pic}(C_n)$ is an isomorphism for all n.

Now, we need only compare $\lim_{\leftarrow n} \text{Pic}(C_n)$ to $\text{Pic}(Y_h)$. Using the Artin approximation theorem [1, Theorem 3.5], the map $\text{Pic}(Y^h) \to \lim_{\leftarrow n} \text{Pic}(C_n)$ is injective with dense image. However, the topology of the latter group is discrete in this setting because each group of the inverse limit is $\text{Pic}(C)$. Therefore, the map is surjective also and $\text{Pic}(Y^h) \cong \text{Pic}(C)$.

Theorem 2.3. Let k be an algebraically closed field that is not the algebraic closure of a finite field and X be the surface defined in the proof of Proposition 2.1. Then, $\text{Br}(X)$ is non-torsion.

Proof. From the above, we have the identification $\text{Cl}(R^h) \cong \text{Pic}(Y^h)/\mathbb{Z} \cdot \mathcal{O}_{Y^h}(C)
\cong \text{Pic}(C)/\mathbb{Z} \cdot \mathcal{O}_C(C)$. Since $\deg_C \mathcal{O}_C(C) = 3$, the class group is then an extension of $\mathbb{Z}/3$ by $\text{Pic}^0(C) \cong C(k)$, where $C(k)$ is the group of k-rational points of the elliptic curve C with a chosen identity point. Since $k \neq \overline{\mathbb{F}}_p$, $C(k)$ has infinite rank [4, Theorem 10.1]. Note that
in contrast, \(C(k) \) is torsion for an elliptic curve \(C \) over \(\mathbb{F}_p \), because every point is defined over \(\mathbb{F}_{p^m} \) for some \(m \).

However, the global class group of \(X \) is quite small: \(\text{Cl}(Y) = \text{Pic}(Y) \cong \mathbb{Z}^{13} \) since \(Y \) is the blow up of \(\mathbb{P}^2 \) in 12 points and \(\text{Cl}(X) \cong \text{Cl}(Y) / \mathbb{Z} \cdot [C] \). Therefore, the cokernel of the restriction map \(\text{Cl}(X) \rightarrow \text{Cl}(R^h) \) in (1) contains non-torsion elements, so \(\text{Br}(X) \) does too.

To complement the above result, we also prove:

Theorem 2.4. Suppose that \(X \) is an integral normal surface over the algebraic closure \(k = \overline{\mathbb{F}}_p \) of a finite field. Then \(\text{Br}(X) \) is torsion.

Proof. The strategy is similar to the previous theorem. Here, the crucial fact is that all possible “building blocks” of the henselian local class group - abelian varieties over \(k \), the additive group of \(k \), and the multiplicative group of \(k \) - are torsion.

Since the singularities of a normal surface are isolated, we may apply the exact sequence (1). The group \(\text{Br}(K) \) is always torsion, so if we can prove \(\oplus_{i=1}^n \text{Cl}(R^h_i) \) is as well, the result follows. Let \(Y \rightarrow X \) be a desingularization. We focus on the base change \(\pi : Y^h \rightarrow \text{Spec}(R^h) \) to the henselian local ring at just one singular point \(p \). Let \(E = \pi^{-1}(p) \) be the scheme-theoretic fiber. We may choose \(Y \) such that \(E_{\text{red}} \) is a union of irreducible curves \(F_j \), which are smooth and meet pairwise transversely, with no three containing a common point.

The following argument is due to Artin [2]. Suppose \(G \) is the free abelian group of divisors supported on \(E \), and consider the map \(\alpha : \text{Pic}(Y^h) \rightarrow \text{Hom}(G, \mathbb{Z}) \) given by \(L \mapsto (D \mapsto D \cdot L) \). This restricts to a map \(\alpha|_G : G \rightarrow \text{Hom}(G, \mathbb{Z}) \) that is injective because the intersection matrix of the curves \(F_j \) is negative definite. Since \(G \) and \(\text{Hom}(G, \mathbb{Z}) \) are free abelian groups of equal rank, \(G \rightarrow \text{Hom}(G, \mathbb{Z}) \) also has finite cokernel. This allows us to find an effective Cartier divisor \(Z = \sum_j r_j F_j \) with all \(r_j > 0 \) such that \(\alpha(Z) = \alpha(-H) \) for an ample line bundle \(H \) on \(Y^h \) [2, p. 491]. If we restrict this Cartier divisor to the scheme associated to \(Z \), the resulting line bundle \(\mathcal{O}_Z(-Z) \) has positive degree on every irreducible component of \(Z \), so it is ample. We’ll examine infinitesimal neighborhoods of the closed subscheme \(Z \) in \(Y^h \).

As before, for every \(n \geq 1 \), there is an exact sequence

\[
\cdots \rightarrow H^1(Z, \mathcal{O}_Z(-nZ)) \rightarrow \text{Pic}(Z_{n+1}) \rightarrow \text{Pic}(Z_n) \rightarrow H^2(Z, \mathcal{O}_Z(-nZ)) \rightarrow \cdots.
\]

Because \(\dim(Z) = 1 \), the last group is always zero. Since \(\mathcal{O}_Z(-Z) \) is ample, the first group is zero for \(n \gg 0 \) by Serre vanishing, which holds on any projective scheme [6, Theorem II.5.2]. Therefore, the inverse limit \(\varprojlim_n \text{Pic}(Z_n) \) is constructed as a finite series of extensions of \(\text{Pic}(Z) \) by finite-dimensional \(k \)-vector spaces. Applying Artin approximation, we have that \(\text{Pic}(Y^h) \rightarrow \varprojlim_n \text{Pic}(E_n) \) is injective with dense image. However, for large \(n \), the scheme \(E_n \) is nested between two infinitesimal neighborhoods of \(Z \), where all restrictions of Picard groups are surjective (use a similar exact sequence to the above,
e.g. [9, 09NY]). It follows that \(\lim_{\leftarrow n} \text{Pic}(E_n) \cong \lim_{\leftarrow n} \text{Pic}(Z_n) \) and that both have the discrete topology, so \(\text{Pic}(Y^h) \cong \lim_{\leftarrow n} \text{Pic}(Z_n) \).

Next, let \(\bar{Z} \) be the disjoint union of the schemes \(r_j F_j \), where \(r_j F_j \) is the subscheme of \(Y^h \) cut out by the ideal sheaf of \(F_j \) to the power \(r_j \). Then \(f : \bar{Z} \to Z \) is a finite map that is an isomorphism away from the finite set of intersection points and such that \(\mathcal{O}_Z \subset f_* \mathcal{O}_{\bar{Z}} \). It follows (see [9, 0C1M, 0C1N]) that \(\text{Pic}(Z) \) is a finite sequence of extensions of \(\text{Pic}(\bar{Z}) \) by quotients of \((k,+) \) or \((k,*) \). Lastly, \(\text{Pic}(\bar{Z}) = \bigoplus_j \text{Pic}(r_j F_j) \), where each summand is built from finite-dimensional \(k \)-vector spaces and \(\text{Pic}(F_j) \cong \mathbb{Z} \oplus \text{Pic}^0(F_j) \). Since the \(\text{Pic}^0(F_j) \) are groups of \(k \)-points of abelian varieties over \(k \), they are all torsion.

Taken together, all of this implies that \(G \) and \(\text{Pic}(Y^h) \) have equal rank. Since \(G \to \text{Hom}(G,\mathbb{Z}) \) is injective, the first map in the excision sequence of class groups \(0 \to G \to \text{Pic}(Y^h) \to \text{Cl}(R^h) \to 0 \) is injective also. Therefore, the quotient \(\text{Cl}(R^h) \) is a torsion group, as desired. \(\square \)

References

[1] M. Artin, Algebraic approximation of structures over complete local rings. Publ. Math., Inst. Hautes Étud. Sci. 36 (1969), 23–58.
[2] M. Artin, Some numerical criteria for contractability of curves on algebraic surfaces. Am. J. Math., 84 (1962), 485-496.
[3] J.-L. Colliot-Thélène and A. Skorobogatov, The Brauer-Grothendieck group, volume 71 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer International Publishing, 2021.
[4] G. Frey and M. Jarden, Approximation theory and the rank of abelian varieties over large algebraic fields. Proc. London Math. Soc. 28 (1974), 112-128.
[5] A. Grothendieck, Le groupe de Brauer, II, Théorie cohomologique. Dix exposés sur la cohomologie des schémas, North-Holland (1968), 67-87.
[6] R. Hartshorne. Algebraic Geometry, Springer-Verlag, 1977.
[7] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties. Cambridge University Press, 1998.
[8] K. Saito, Einfach-elliptische Singularitaten. Invent. Math. 23 (1974), 289–325.
[9] The Stacks Project Authors, The Stacks Project. https://stacks.columbia.math.edu, 2022.