Evidence for associated production of a single top quark and W boson in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

Evidence is presented for the associated production of a single top quark and W boson in pp collisions at $\sqrt{s} = 7$ TeV with the CMS experiment at the LHC. The analyzed data corresponds to an integrated luminosity of 4.9 fb^{-1}. The measurement is performed using events with two leptons and a jet originated from a b quark. A multivariate analysis based on kinematic properties is utilized to separate the $t\bar{t}$ background from the signal. The observed signal has a significance of 4.0σ and corresponds to a cross section of 16^{+5}_{-4} pb, in agreement with the standard model expectation of $15.6 \pm 0.4^{+1.0}_{-1.2} \text{ pb}$.

Submitted to Physical Review Letters
Electroweak production of single top quarks has been first observed by the D0 [1] and CDF [2] experiments at the Tevatron. Single-top-quark production proceeds via three processes: the \(t \)-channel exchange of a virtual W boson, the \(s \)-channel production and decay of a virtual W boson, and the associated production of a top quark and a W boson (\(tW \)). The latter channel, which has a negligible production cross section at the Tevatron, represents a significant contribution to single-top-quark production at the Large Hadron Collider (LHC). Associated \(tW \) production is a very interesting production mechanism because of its interference with top quark pair production [3–5], its sensitivity to new physics [6–8] and its role as a background to SUSY and Higgs searches. The ATLAS and Compact Muon Solenoid (CMS) experiments have measured the cross section for \(t \)-channel production [9, 10] while evidence for \(tW \) associated production has been presented by the ATLAS experiment [11]. This Letter presents the first study from the CMS experiment of \(tW \) production in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \).

![Figure 1: Leading order Feynman diagrams for single-top-quark production in the \(tW \) mode, the charge-conjugate modes are implicitly included.](image)

The production cross section for \(tW \) has been computed at approximate next-to-next-to-leading order (NNLO), the theoretical prediction of the cross section for \(tW \) in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \), assuming a top-quark mass \((m_t) \) of 172.5 GeV, is \(15.6 \pm 0.4^{+1.0}_{-1.2} \text{ pb} \) [12], the first uncertainty corresponds to scale variation and the second to parton distribution function (pdf) sets.

The leading order Feynman diagrams for \(tW \) production are shown in Fig. 1. The definition of \(tW \) production in perturbative QCD mixes with top quark pair production (\(t\bar{t} \)) at next-to-leading order (NLO) [4, 5]. Two schemes are proposed to describe the \(tW \) signal: “diagram removal” (DR) [3], where all NLO diagrams which are doubly resonant, such as those in Fig. 2, are excluded from the signal definition; and “diagram subtraction” (DS) [3, 13], in which the differential cross section is modified with a gauge-invariant subtraction term, that locally cancels the contribution of \(t\bar{t} \) diagrams. The DR scheme is used in this Letter, but it has been verified that the number of predicted events after full selection is consistent between the two approaches within the statistical uncertainties of the simulated samples. The differences are accounted for in the systematic uncertainties.

In the standard model, top quarks decay almost exclusively to a W boson and a b quark. The study presented here has been performed in the channels in which both W bosons decay leptonically into a muon or an electron and a neutrino, with a branching fraction \(B(W \rightarrow \ell \nu) = (10.80 \pm 0.09)\% \), where \(\ell = e \) or \(\mu \) [14]. The dilepton final states of the \(tW \) process are characterized by the presence of two isolated leptons with opposite charge, a jet from the fragmentation of a b quark, and a substantial amount of missing transverse energy (\(E_T^{miss} \)) due to the presence of the neutrinos. The primary source of background events arise from \(t\bar{t} \) production, followed by Z/\(\gamma^* \) +jets processes.

The analysis uses fits to a discriminant variable built from kinematic quantities combined with a multivariate technique. A second analysis, intended as a cross-check of the robustness of the
selection, is performed using event counting. In both cases, a sample collected at $\sqrt{s} = 7$ TeV by CMS, corresponding to an integrated luminosity of 4.9fb^{-1}, is used.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass/scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel return yoke. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. A more detailed description can be found in Ref. [15].

Single-top-quark events in all channels have been simulated with the POWHEG event generator version 301 [16], designed to describe the full NLO properties of these processes, while MADGRAPH 5.1.1 [17] is used for $t\bar{t}$ and for the inclusive single-boson production ($V+X$), where $V=W, Z$ and X can indicate light or heavy partons. The remaining background samples are simulated using PYTHIA version 6.4.24 [18], including diboson production and QCD multijet production enriched in events with electrons or muons produced in the decay of b and c quarks, and muons from the decay of long-lived hadrons. The CTEQ 6.6M pdf sets [19] are used for all simulated samples. All generated events undergo a full simulation of the detector response using GEANT4 [20, 21]. The value used for the top-quark mass is $m_t=172.5 \text{GeV}$.

Approximate NNLO theoretical predictions are used to normalize $t\bar{t}$ production ($\sigma_{t\bar{t}}=163^{+11}_{-10} \text{pb}$) [22], W+jets and Z/$\gamma^*$+jets processes are normalized to complete NNLO calculations for the inclusive cross sections, and NLO cross sections are used for diboson processes [23]. Unless otherwise stated, the theoretical values of the cross section have been used in this Letter to normalize the simulation in figures and tables.

Leptons, jets and $E_{\text{T}}^{\text{miss}}$ are reconstructed by the CMS particle flow (PF) algorithm [24], which performs a global event reconstruction and provides the full list of particles identified as electrons, muons, photons, and charged and neutral hadrons.

Events are collected using dilepton triggers with electrons or muons. The lepton transverse energy thresholds are symmetric, the highest used in these triggers is 17 GeV while the lowest is 8 GeV. The two selected leptons must originate from the same primary vertex and have opposite charge. The primary vertex used is defined as the reconstructed vertex with the highest p_T of associated tracks and is required to have at least four tracks, with longitudinal (radial) distance of less than 24 (2) cm from the center of the detector. Muon (electron) candidates are required to have a transverse momentum $p_T > 20 \text{GeV}$ and pseudorapidity $|\eta| < 2.4 \ (2.5)$; events with additional leptons passing looser quality criteria are vetoed.

To remove low invariant mass Drell–Yan (Z/γ^*) events, the invariant mass of the lepton pair ($m_{\ell\ell}$) is required to be greater than 20 GeV. In the ee and $\mu\mu$ final states, events are also re-
jected if \(m_{\ell\ell} \) is between 81 and 101 GeV, compatible with the Z boson mass; this veto removes background from \(Z/\gamma^* + \text{jets} \), as well as from ZZ and WZ processes. In the ee and \(\mu\mu \) decay channels, a requirement is applied on the \(E_T^{\text{miss}} \) as well to further reduce the contribution from events without genuine \(E_T^{\text{miss}} \) (mostly \(Z/\gamma^* + \text{jets} \) and QCD multijet production). Since the \(E_T^{\text{miss}} \) resolution is degraded in events with high pileup, an additional quantity is used (tracker-\(E_T^{\text{miss}} \)), calculated using only the charged particles associated with the primary vertex. Events are selected if both \(E_T^{\text{miss}} \) and tracker-\(E_T^{\text{miss}} \) are larger than 30 GeV.

Jets are defined according to the anti-\(k_T \) algorithm \cite{25} with a distance parameter of 0.5. Jets within \(|\eta| < 2.4 \) and with \(p_T > 30 \) GeV are considered in the analysis.

Exactly one jet is required to be present in the event, and it must be identified as coming from a b quark. The identification of b jets is done according to an algorithm that reconstructs the secondary vertex of the decay of the b quark \cite{26,27}, resulting in a discriminating variable sensitive to the lifetime of b hadrons. The selection on this discriminant yields a b-tagging efficiency of 62% with a mistag rate of 1.4% for jets with \(p_T \) between 50 and 80 GeV. Events with additional b-tagged jets with \(p_T > 20 \) GeV are removed. After this selection, the sample is dominated by \(t\bar{t} \) events and \(tW \) signal.

Additionally, events with exactly two jets, in which either one or both jets have been b tagged, are used in the fit. Three regions are defined per dilepton final state: one region with one jet that is b tagged (1j1t) where the \(tW \) signal is substantial, and two regions with two jets, where the \(t\bar{t} \) background is dominant, and exactly one or two b tags are required (2j1t and 2j2t, respectively).

A smaller background comes from \(Z/\gamma^* \) events. It is found that in high-pileup scenarios the \(E_T^{\text{miss}} \) distribution for \(Z/\gamma^* \) events is not properly modeled by the simulation, leading to disagreement between data and simulation. To solve this problem, the \(Z/\gamma^* \) simulation is corrected to match the missing transverse energy distribution observed in the data using events from the Z resonance.

The contributions of other backgrounds, i.e., diboson production (WW, WZ, ZZ), QCD, W+jets, and other single-top-quark processes, are small, less than 1% of the selected events, and estimated from simulation.

Table 1: Event yields in the different regions. The simulation is quoted with statistical (first) and systematic uncertainties (second). When only one uncertainty is quoted, it is the total one.

	1j1t	2j1t	2j2t
tW	336±5±16	180±3±16	45±1±6
\(t\bar{t} \)	1263±19±138	2775±28±205	1488±21±222
\(Z/\gamma^* + \text{jets} \)	128±12±28	113±10±22	8.5±1.8±1.8
Other	19±3	8.8±0.7±0.2	4±3
Total estimated	1746±23±141	3077±30±207	1546±21±222
Total data	1699	2878	1507

The number of events in the signal and two control regions is presented for data and simulation in Table 1. The approximate composition of the sample at this level is 70% \(t\bar{t} \) events with 20% \(tW \) events in the signal region. In the 2j1t region the \(t\bar{t} \) content represents 90% of the events, while \(tW \) events are less than 6%. In the 2j2t region, more than 95% of the events are \(t\bar{t} \) events.

A multivariate analysis based on boosted decision trees (“BDT” analysis) \cite{28,29} is used, testing the overall compatibility of the signal event candidates with the event topology of the \(tW \) associated production. Four variables are chosen to train the BDT based on their ability to...
Figure 3: Distributions of H_T and the p_T of the system composed of the leptons, E_T^{miss} and the jet, in data and simulation after jet selection in the signal region (1j1t).

separate the tW signal from the dominant tt background. These variables are H_T, defined as the scalar sum of the transverse momenta of the leptons, jet, and E_T^{miss}, the p_T of the system composed of the leptons, E_T^{miss} and jet; the p_T of the jet with the highest energy; and the difference in angular separation, ϕ, between the direction associated to the E_T^{miss} and the closest of the two selected leptons. The distributions of H_T and the p_T of the system composed of the leptons, E_T^{miss} and the jet, are presented, in the signal region (1j1t), in Fig. 3. The presence of the tW signal over the background is visible in all the distributions. The distributions of the other two variables are available in Appendix A.

Figure 4: Distribution of the BDT discriminant in the signal region (1j1t) in data and simulation.

The output of the BDT is a single discriminant value for every event ranging from -1 (background-like) to $+1$ (signal-like). The distribution of the BDT discriminant is shown for the 1j1t signal region in Fig. 4. Even if the tW signal does not peak strongly at $+1$, its distribution discrim-
inates it with respect to \(t\bar{t} \) and other backgrounds. Maximum signal sensitivity is achieved through a simultaneous fit to 9 categories: the three BDT discriminant shapes (1j1t, 2j1t, and 2j2t) in the three final states (ee, \(e\mu \), and \(\mu\mu \)). The two \(t\bar{t} \) enriched regions are included to control the rate of this background in the signal region.

The impact of each individual source of uncertainty on the analysis has been estimated in every region and final state. The dominant systematic uncertainty that affects the rate of the \(tW \) signal is associated with the b-tagging efficiency, with values between 3% and 6% for the different final states. The b-tagging efficiency uncertainty is also important for the \(t\bar{t} \) background yield, with values between 1.5% and 4.0%. The main systematic uncertainty for the \(t\bar{t} \) background is due to the factorization/renormalization scale used in the simulation, up to 11%, with values around 2% for \(tW \) signal. Also for \(t\bar{t} \), the uncertainties due to jet energy scale (7%) and the threshold used to match the matrix element generator to the parton shower model in simulation (3%) are important. The statistical uncertainty is the largest contribution to the uncertainty of the measured cross section, with a 20% effect. The complete information about the systematic uncertainties is available in tabulated form in Appendix A.

A binned likelihood fit is performed on the distributions of the BDT discriminant. Template shapes for the signal and backgrounds are taken from simulation. Distributions are included separately in the fit for each of the three dilepton channels (ee, \(e\mu \), and \(\mu\mu \)) in the signal region (1j1t) and control regions (2j1t and 2j2t). Signal and background rates are allowed to vary in the fit, using the systematic uncertainties on the background rates as constraint terms in the likelihood function. The signal rate and 68% confidence level (CL) interval is determined using the profile likelihood method. The sources of theoretical uncertainty that affect the template shape are then considered. For each uncertainty, \(\pm 1 \sigma \) systematic shifts are applied to the simulated samples to obtain revised templates. Differences in signal rate found using the revised templates are taken as systematic uncertainties and are added in quadrature to the 1 \(\sigma \) interval from the fit using the baseline templates. The expected significance is evaluated using the median and central 68% of the values obtained from pseudo-experiments generated using the theoretical prediction of the standard model \(tW \) cross section.

An excess of events over the expected background is observed with a significance of 4.0 \(\sigma \), compatible with the expected significance of the \(tW \) signal, 3.6\(^{+0.8} _{-0.9} \) \(\sigma \). The measured cross section, including both statistical and systematic uncertainties, is 16\(^{+5} _{-4} \) pb, in agreement with the standard model prediction.

The measurement can be used to determine the absolute value of the Cabibbo-Kobayashi-Maskawa matrix element |\(V_{tb} \)|, following the same technique as in [10], assuming that |\(V_{td} \)| and |\(V_{ts} \)| are much smaller than |\(V_{tb} \)|:

\[
|V_{tb}| = \sqrt{\frac{\sigma_{tW}}{\sigma_{WB}}} = 1.01^{+0.16}_{-0.13}(\text{exp.)}^{+0.03}_{-0.04}(\text{th.)})
\]

(1)

where \(\sigma_{tW} \) is the standard model prediction computed assuming |\(V_{tb} \)| = 1. Using the standard model assumption of \(0 \leq |V_{tb}|^2 \leq 1 \), a value of |\(V_{tb} \)| = 1.00 is inferred, with a 90% confidence level interval of [0.79, 1.00]. This is based on profile likelihood intervals, the same method used for the cross section measurement and intervals. Studies with pseudo-experiments were performed, showing the validity of the profile likelihood method in presence of the boundary |\(V_{tb} \)| ≤ 1.0.

A second analysis (“count-based” analysis), used as a cross-check, is performed using event counts. After the jet selection step, instead of building the BDT discriminant, events are re-
Figure 5: Event yields in data and simulation in the signal region (1j1t) and the two t\bar{t}-enriched control regions for the count-based analysis. Simulation yields are scaled to the outcome of the fit.

Required in addition to have \(H_T > 60 \text{ GeV} \) in the \(e\mu \) channel, where no invariant mass and \(E^{\text{miss}}_T \) requirements are applied. The analysis uses a statistical model of Poisson event counts in the three dilepton final states in the signal region (1j1t) and control regions (2j1t and 2j2t). The event yield for each process in every region is affected by different sources of systematic uncertainties, equivalent to the ones calculated for the BDT analysis. These are included in the model as nuisance parameters. The same methods for the cross section measurement and the significance calculation as in the BDT analysis have been used. Figure 5 shows the event yields selected by the count-based analysis for each region, in data and simulation, in which the simulation yields have been normalized to the outcome of the maximum likelihood fit. The observed significance of the tW signal obtained with the count-based analysis is 3.5 \(\sigma \), with an expected significance of 3.2 \(\pm 0.9 \) \(\sigma \). The count-based analysis measures a cross section of 15 \(\pm 5 \) pb. These results are consistent with those obtained with the BDT analysis.

In summary, using 4.9 fb\(^{-1}\) of data collected with the CMS experiment at the LHC, evidence has been found for the associated production of a single top quark and W boson in pp collisions at \(\sqrt{s} = 7 \) TeV with a significance of 4.0 \(\sigma \) and a measured cross section of 16\(^{+5}_{-4}\) pb.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).
References

[1] D0 Collaboration, “Observation of Single Top-Quark Production”, *Phys. Rev. Lett.* **103** (2009) 092001, doi:10.1103/PhysRevLett.103.092001, arXiv:0903.0850.

[2] CDF Collaboration, “Observation of Electroweak Single Top Quark Production”, *Phys. Rev. Lett.* **103** (2009) 092002, doi:10.1103/PhysRevLett.103.092002, arXiv:0903.0885.

[3] S. Frixione et al., “Single-top hadroproduction in association with a W boson”, *JHEP* **07** (2008) 029, doi:10.1088/1126-6708/2008/07/029, arXiv:0805.3067.

[4] A. S. Belyaev, E. E. Boos, and L. V. Dudko, “Single top quark at future hadron colliders: Complete signal and background study”, *Phys. Rev. D* **59** (1999) 075001, doi:10.1103/PhysRevD.59.075001, arXiv:hep-ph/9806332.

[5] C. D. White et al., “Isolating Wt production at the LHC”, *JHEP* **11** (2009) 074, doi:10.1088/1126-6708/2009/11/074, arXiv:0908.0631.

[6] T. M. P. Tait and C.-P. Yuan, “Single top quark production as a window to physics beyond the standard model”, *Phys. Rev. D* **63** (Dec, 2000) 014018, doi:10.1103/PhysRevD.63.014018.

[7] Q.-H. Cao, J. Wudka, and C.-P. Yuan, “Search for new physics via single-top production at the LHC”, *Phys. Lett. B* **658** (2007) 50, doi:10.1016/j.physletb.2007.10.057.

[8] V. Barger, M. McCaskey, and G. Shaughnessy, “Single top and Higgs associated production at the LHC”, *Phys. Rev. D* **81** (2010) 034020, doi:10.1103/PhysRevD.81.034020.

[9] ATLAS Collaboration, “Measurement of the t-channel single top-quark production cross section in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector”, *Phys. Lett. B* **717** (2012) 330, doi:10.1016/j.physletb.2012.09.031, arXiv:1205.3130.

[10] CMS Collaboration, “Measurement of the t-channel single top quark production cross section in pp collisions at $\sqrt{s} = 7$ TeV”, *Phys. Rev. Lett.* **107** (2011) 091802, doi:10.1103/PhysRevLett.107.091802, arXiv:1106.3052.

[11] ATLAS Collaboration, “Evidence for the associated production of a W boson and a top quark in ATLAS at $\sqrt{s} = 7$ TeV”, *Phys. Lett. B* **716** (2012) 142, doi:10.1016/j.physletb.2012.08.011, arXiv:1205.5764.

[12] N. Kidonakis, “Two-loop soft anomalous dimensions for single top quark associated production with a W- or H-”, *Phys. Rev. D* **82** (2010) 054018, doi:10.1103/PhysRevD.82.054018, arXiv:1005.4451.

[13] T. M. P. Tait, “The tW- mode of single top production”, *Phys. Rev. D* **61** (1999) 034001, doi:10.1103/PhysRevD.61.034001, arXiv:hep-ph/9909352.

[14] Particle Data Group Collaboration, “Review of particle physics”, *Phys. Rev. D.* **86** (2012) 010001, doi:10.1103/PhysRevD.86.010001.

[15] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
[16] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, *JHEP* 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070.

[17] J. Alwall et al., “MadGraph 5: Going Beyond”, *JHEP* 06 (2011) 128, doi:10.1007/JHEP06(2011)128, arXiv:1106.0522.

[18] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 physics and manual”, *JHEP* 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026.

[19] J. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis”, *JHEP* 07 (2002) 012, doi:10.1088/1126-6708/2002/07/012.

[20] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[21] J. Allison et al., “Geant4 developments and applications”, *IEEE Transactions on Nuclear Science* 53 (2006) 270, doi:10.1109/TNS.2006.869826.

[22] N. Kidonakis, “Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution”, *Phys. Rev. D* 82 (2010) 114030, doi:10.1103/PhysRevD.82.114030, arXiv:1009.4935.

[23] R. Gavin et al., “FEWZ 2.0: A code for hadronic Z production at next-to- next-to-leading order”, *Comput. Phys. Commun.* 182 (2011) 2388, doi:10.1016/j.cpc.2011.06.008, arXiv:1011.3540.

[24] CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_T^{miss}”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, (2009).

[25] M. Cacciari, G. P. Salam, and G. Soyez, “The Anti-k(t) jet clustering algorithm”, *JHEP* 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[26] CMS Collaboration, “Commissioning of b-jet identification with pp collisions at $\sqrt{s} = 7$ TeV”, CMS Physics Analysis Summary CMS-PAS-BTV-10-001, (2010).

[27] CMS Collaboration, “Performance of b-jet identification in CMS”, CMS Physics Analysis Summary CMS-PAS-BTV-11-001, (2011).

[28] L. Breiman et al., “Classification and Regression Trees”. Chapman and Hall, 1984.

[29] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting”, *J. of Computer and System Sciences* 55 (1997) 119, doi:10.1006/jcss.1997.1504.
A Supplemental Information

This document presents additional material to the publication. Figure 6 shows the distributions of the two variables of the BDT not presented before, and Tables 2 and 3 contain information related to the systematic uncertainties that affect the analysis.

The distributions of the \(p_T \) of the jet with the highest energy and the difference in angular separation, \(\phi \), between the direction associated to the \(E_T^{\text{miss}} \) and the closest of the two selected leptons, in data and simulation, are presented in the signal region (1j1t) in Fig. 6.

Table 2 presents the impact of each individual source of systematic uncertainty on the rate of the different processes in the signal region for each final state. When two numbers are listed for a single uncertainty, the upper number is the effect on the rate when the systematic uncertainty source is scaled up and the lower is for when it is scaled down. Entries marked with a “-” either do not apply for that particular final state/process, or have a negligible effect. Other processes refers to \(Z/\gamma^* \) and the rest of backgrounds, that have almost negligible contributions.

Table 3 presents the contribution to the uncertainty of the measured cross section of the different sources of uncertainty considered in the analysis. This is estimated by fixing each source one at a time and measuring the effect in the cross section uncertainty.
Table 2: Impact of each individual source of systematic uncertainty on the rate of the different processes in the signal region for each final state. Other processes refers to Z/γ* and the rest of backgrounds, that have almost negligible contributions.

Systematic Uncertainty (ee/eμ/μμ)	tW	tt	Other processes
Luminosity	2.2/2.2/2.2	2.2/2.2/2.2	2.2/2.2/2.2
Pileup modeling	2.1/0.6/0.2	1.0/0.5/0.3	4.9/1.6/3.7
Electron Trigger Efficiency	1.5/1.1/-	1.5/1.1/-	1.5/1.1/-
Muon Trigger Efficiency	-/1.1/1.5	-/1.1/1.5	-/1.1/1.5
Electron Identification	2/2/-	2/2/-	2/2/-
Muon Identification	-/1/1	-/1/1	-/1/1
b-tagging	+2.6/+4.1/+4.1	+3.2/+2.5/+2.6	+3.9/+3.4/+3.2
Jet Energy Scale	-1.1/-0.6/-1.8	-0.3/-0.7/-0.3	-7.0/-3.6/-3.5
Jet Energy Resolution	+0.4/+0.1/+0.2	+0.3/+0.3/+0.3	+17.0/-0.1/+10.7
Emiss modeling	+1.0/+1.0	+0.2/+0.2	+2.4/-0.1/+13.5
Factorization and Normalization scale Q^2	+3.1/+3.3/+3.3	+10.0/+1.0/+1.0	-5.3/+7.7/-11.9
ME/PS Matching Thresholds	-/-/-	-/-/-	-/-/-
tW DR/DS scheme	-0.5/-0.5/-0.5	-0.5/-0.5/-0.5	-3.5/-3.5/-3.5
PDF uncertainties	2.2/2.0/2.0	-/-/-	-/-/-
tt cross-section	-/-/-	+6.2/+6.2/+6.2	-/-/-
Z/γ* modeling	-/-/-	-3.5/-3.5/-3.5	30.5/12.0/23.5
Simulation Statistics	3.8/1.8/2.7	4.5/2.0/2.9	18.0/12.0/12.4

Table 3: Contribution to the uncertainty of the measured cross section of the different sources of uncertainty considered in the BDT analysis.

Systematic Uncertainty	Δσ (pb)	Δσ /σ
Luminosity	0.69	0.04
Pileup modeling	0.24	0.02
Electron trigger eff.	0.35	0.02
Muon trigger eff.	0.38	0.02
Electron ident.	0.70	0.04
Muon ident.	0.45	0.03
b-tagging	0.30	0.02
Jet Energy Scale	2.42	0.15
Jet Energy Resolution	0.58	0.04
Emiss modeling	0.40	0.05
tW Q^2	0.34	0.02
tt Q^2	0.29	0.02
ME/PS Matching Thresholds	1.62	0.10
tW DR/DS scheme	0.94	0.06
PDF uncertainties	0.34	0.02
tt cross section	0.96	0.06
Z/γ* modeling	0.67	0.04
Statistical	3.33	0.21
Total	4.95	0.31
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, E. Aguilo, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, J. Hammer, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, V. Knünz, M. Krammer, I. Krätschmer, D. Liko, I. Mikulec, M. Pernicka, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, A. Mohammadi, T. Reis, L. Thomas, G. Vander Marcken, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, P. Verwilligen, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, R. Castello, L. Ceard, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco, J. Holler, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubeie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, L. Soares Jorge, A. Sznajder

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
T.S. Anjos, C.A. Bernardes, F.A. Dias, T.R. Fernandez Perez Tomei, E.M. Gregores, C. Lagana, F. Marinho, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev, P. Iaydjiev, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, J.P. Gomez, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal, A. Ellithi Kamel, S. Khalil, M.A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Muntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Harkonen, A. Heikkinen, V. Karimaki, R. Kinnunen, M.J. Kortelainen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, I. Shreyber, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj, C. Broutin, P. Busson, C. Charlot, N. Daci, T. Dahms, M. Dalchenko, L. Dobrzynski, R. Granier de Cassagnac, M. Hagenauer, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi
Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, J. Berger, C. Böser, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Guthoff, C. Hackstein, F. Hartmann, T. Hauth, M. Heinrich, H. Held, K.H. Hoffmann, U. Husemann, I. Katkov, J.R. Komaragiri, P. Lobelle Pardo, D. Martschei, S. Mueller, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, A. Oehler, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, S. Röcker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, M. Zeise

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece
G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharyya, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, P. Mehta, A.K. Mohanty, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, S. Ganguly, M. Guhain, M. Maity, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, M. Hashemi, H. Hesari, A. Jafari, M. Khakzad, M.Mohammadi Najafabadi, S. Pakinat Mehdiabadi, B. Safarzadeh, M. Zeinali

INFN Sezione di Bari d, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbrescia, L. Barbone, C. Calabria, S.S. Chhibra, A. Colaleo, D. Creanza, N. De
Filippisa,c,5, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia, B. Marangellia,b, S. Mya,c, S. Nuzzoa,b, N. Pacificoa,b, A. Pompilia,b, G. Pugliesea,c, G. Selvaggia,b, L. Silvestrisa, G. Singha,b, R. Vendittia,b, G. Zitoa

INFN Sezione di Bologna, Università di Bologna b, Bologna, Italy
G. Abbiendia, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, M. Cuffiania,b, G.M. Dallavallea, F. Fabbrìb, A. Fanfania,b, D. Fasanellaa,b,5, P. Giacomellia, C. Grandia, L. Guiduccib,a, S. Marcellinia, G. Masettia, M. Meneghella,b,5, A. Montanaria, F.L. Navarriaa,b, F. Odoricia, A. Perrottaa, F. Primaveraa,b, A.M. Rossiia,b, T. Rovellia,b, G.P. Sirolia,b, R. Travaglinia,b

INFN Sezione di Catania, Università di Catania a, Catania, Italy
S. Albergoa,b, G. Cappelloa,b, M. Chiorbolia,b, S. Costaa,b, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglia, V. Ciullia,b, C. Cinivinia, R. D’Alessandroa,b, E. Focardia,b, S. Frosalia,b, E. Galloa, S. Gonzib,a, M. Meschinia, S. Paolottia, G. Sguazzonia, A. Tropianoa,b

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, S. Colafranceschi25, F. Fabbrì, D. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
P. Fabbricatorea, R. Musenicha, S. Tosia,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benagliaa,b, F. De Guioa,b, L. Di Matteoa,b,5, S. Fiorendia,b, S. Gennaia,5, A. Ghezzia,b, S. Malvezzia, R.A. Manzonia,b, A. Martellia,b, A. Massironia,b,5, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, N. Redaellia, S. Salaa, T. Tabarelli de Fatisa,b

INFN Sezione di Napoli a, Università di Napoli "Federico II" b, Napoli, Italy
S. Buontempoa, C.A. Carrillo Montoyaa, N. Cavalloa,26, A. De Casaa,b,5, O. Doganguna,b, F. Fabozzia,26, A.O.M. Iorioa,b, L. Listaa, S. Meolaa,27, M. Merolaa, P. Paoluccia,5

INFN Sezione di Padova a, Università di Padova b, Università di Trento (Trento) c, Padova, Italy
P. Azzia, N. Bacchettaa,5, D. Biselloa,b, A. Brancaa,5, R. Carlina,b, P. Checchiaa, T. Dorigoa, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa, K. Kanishcheva,c, S. Lacapraraa, I. Lazzizzaa,c, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, S. Vaninia,b, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Torrea,b, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
M. Biasinia,b, G.M. Bileia, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, A. Nappia,b, F. Romeoa,b, A. Sahaa, A. Santocchia,b, A. Spieziaa,b, S. Taronia,b

INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
P. Azzurria,c, G. Bagliesia, T. Boccalia,b, G. Broccoloa,c, R. Castaldia, R.T. D’Agnoloa,c,5, R. Dell’Orsoa, F. Fioria,b,5, L. Foàa,c, A. Giassia, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martiniia,28, A. Messineoa,b, F. Pallaa, A. Rizziia,b, A.T. Serbana,29, P. Spagnoloa, P. Squillaciotia,5, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia

INFN Sezione di Roma a, Università di Roma "La Sapienza" b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, C. Fanelli, M. Grassia,b,5, E. Longoa,b
P. Meridiania,5, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, M. Sigamania, L. Soffia,b

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, M. Costaa,b, N. Demariaa, C. Mariottia,5, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,5, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,5, D. Montaninoa,b,5, A. Penzoa, A. Schizzia,b

Kangwon National University, Chunchon, Korea
S.G. Heo, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea
S. Chang, D.H. Kim, G.N. Kim, D.J. Kong, H. Park, S.R. Ro, D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, J. Martínez-Ortega, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarra

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, M.H. Ansari, M.I. Asghar, J. Butt, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, B. Boimska, T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krokikowski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Seixas, J. Varella, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
I. Belotelov, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
S. Evtustyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gnilenkov, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Tolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin⁴, L. Dudko, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhut, A. Markina, S. Obraztsov, M. Perilov, S. Petrushanko, A. Popov, L. Sarycheva¹, V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin⁵, V. Kachanov, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic²⁰, M. Djordjevic, M. Ekmedzic, D. Krpic²⁰, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez
Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. García-Abia, O. González López, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folguerias, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero CIFuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini31, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, C. Jorda, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodriguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, J.F. Benitez, C. Bernet6, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coaraș Perez, D. ’Enterría, A. Dabrowski, A. De Roeck, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Girone, M. Giunta, F. Glege, R. Gomez-Reino Garrido, P. Govoni, S. Gowdy, R. Guida, M. Hansen, P. Harris, C. Hartl, J. Harvey, B. Hegner, A. Hinzmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, K. Kousouris, P. Lecoq, Y.-J. Lee, P. Lenzi, C. Lourenço, N. Magini, T. Máki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, P. Musella, E. Nesvold, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, C. Pierini, M. Pimm, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi32, C. Rogelli33, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwik, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas34, D. Spiga, A. Tsyrun, G.I. Veres35, J.R. Vlimant, H.K. Wöhri, S.D. Worm35, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kottlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
L. Bäni, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, J. Eugster, K. Freudenreich, C. Grab, D. Hits, P. Lecomte, W. Lüstermann, A.C. Marini, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nächeli36, P. Nef, F. Nessi-Tedaldi, F. Paudelli, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov37, B. Stieger, M. Takahashi, L. Tauscher6, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber, L. Wehrli

Universität Zürich, Zurich, Switzerland
Amsler38, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoeck, S. Tuppuri, M. Verzetti

National Central University, Chung-Li, Taiwan
Y.H. Chang, K.H. Chen, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, A.P. Singh, R. Volpe, S.S. Yu
National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, X. Wan, M. Wang

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, T. Karaman, G. Karapinar, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, K. Sogut, D. Sunar Cerci, B. Tali, H. Topakli, L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey
K. Cankocak

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
L. Basso, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom
R. Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko, A. Papageorgiou, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, S. Rogerson, A. Rose, M.J. Ryan, C. Seez, P. Sharp, A. Sparrow, M. Stoye, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie

Brunel University, Uxbridge, United Kingdom
M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
K. Hatakeyama, H. Liu, T. Scarbrough

The University of Alabama, Tuscaloosa, USA
O. Charaf, C. Henderson, P. Rumerio
Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA
J. Alimena, S. Bhattacharya, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, R. Houtz, W. Ko, A. Kopecky, R. Lander, O. Mall, T. Miceli, D. Pellett, F. Ricci-tam, B. Rutherford, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra, R. Yohay

University of California, Los Angeles, Los Angeles, USA
V. Andreev, D. Cline, R. Cousins, J. Duris, S. Erhan, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein¹, P. Traczyk, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, M.E. Dinardo, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng⁵⁰, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, B. Mangano, S. Padhi, C. Palmer, G. Petrueciani, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech⁵¹, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi, S. Krutelyov, V. Kovarskyi, S. Lowne, N. Mccoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, Y. Chen, E. Di Marco, J. Duarte, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, M. Spiropulu, V. Timciuc, J. Veverka, R. Wilkinson, S. Xie, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
B. Akagun, V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn
Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chiehban, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, D. Green, O. Gutsche, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Kilminster, B. Klima, S. Kunori, S. Kwan, C. Leonidopoulos, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, M. Park, R. Remington, A. Rinkevicius, P. Sellers, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, F. Lacroix, M. Malek, C. O’Brien, C. Silkworth, D. Strom, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, F. Duru, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newson, E. Norbeck, Y. Onel, F. Ozok, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Grislan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, R. Stringer, G. Tinti, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA
A. Baden, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn,
T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, K. Krajczar, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephens, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, B. Wyslouch, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA
S.I. Cooper, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, M. Eads, J. Keller, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, D. Nash, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, A. Kubik, L. Lusito, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, A. Brinkerhoff, K.M. Chan, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, B. Safdi, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
E. Alagöz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng
Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA
A. Adair, C. Bouahlouache, K.M. Ecklund, F.J.M. Geurts, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas, M. Walker

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, C. Florez, S. Greene, A. Gurrola, W. Johns, P. Kurt, C. Maguire, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA
M. Anderson, D. Belknap, L. Borrello, D. Carlsmitr, M. Cepeda, S. Dasu, E. Friis, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo, F. Palmonari, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at Universidade Federal do ABC, Santo Andre, Brazil
4: Also at California Institute of Technology, Pasadena, USA
5: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
6: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
7: Also at Suez Canal University, Suez, Egypt
8: Also at Zewail City of Science and Technology, Zewail, Egypt
9: Also at Cairo University, Cairo, Egypt
10: Also at Fayoum University, El-Fayoum, Egypt
11: Also at British University, Cairo, Egypt
12: Now at Ain Shams University, Cairo, Egypt
13: Also at National Centre for Nuclear Research, Swierk, Poland
14: Also at Université de Haute-Alsace, Mulhouse, France
15: Also at Moscow State University, Moscow, Russia
16: Also at Brandenburg University of Technology, Cottbus, Germany
17: Also at The University of Kansas, Lawrence, USA
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
19: Also at Eötvös Loránd University, Budapest, Hungary
20: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
21: Also at University of Visva-Bharati, Santiniketan, India
22: Also at Sharif University of Technology, Tehran, Iran
23: Also at Isfahan University of Technology, Isfahan, Iran
24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
25: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
26: Also at Università della Basilicata, Potenza, Italy
27: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
28: Also at Università degli Studi di Siena, Siena, Italy
29: Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania
30: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
31: Also at University of California, Los Angeles, Los Angeles, USA
32: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
33: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
34: Also at University of Athens, Athens, Greece
35: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
36: Also at Paul Scherrer Institut, Villigen, Switzerland
37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
38: Also at Albert Einstein Center for Fundamental Physics, BERN, SWITZERLAND
39: Also at Gaziosmanpasa University, Tokat, Turkey
40: Also at Adiyaman University, Adiyaman, Turkey
41: Also at Izmir Institute of Technology, Izmir, Turkey
42: Also at The University of Iowa, Iowa City, USA
43: Also at Mersin University, Mersin, Turkey
44: Also at Ozyegin University, Istanbul, Turkey
45: Also at Kafkas University, Kars, Turkey
46: Also at Süleyman Demirel University, Isparta, Turkey
47: Also at Ege University, Izmir, Turkey
48: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
49: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
50: Also at University of Sydney, Sydney, Australia
51: Also at Utah Valley University, Orem, USA
52: Also at Institute for Nuclear Research, Moscow, Russia
53: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
54: Also at Argonne National Laboratory, Argonne, USA
55: Also at Erzincan University, Erzincan, Turkey
56: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
57: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
58: Also at Kyungpook National University, Daegu, Korea