Construction of Higher-Order Smooth Positons and Breather Positons via Hirota's Bilinear Method

Zhao Zhang
South China Normal University

Biao Li
Ningbo University

Junchao Chen
Lishui University

QI GUO (guoq@scnu.edu.cn)
South China Normal University

Research Article

Keywords: Hirota's bilinear method, Smooth positons, Breather positons.

Posted Date: June 18th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-578849/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Nonlinear Dynamics on August 3rd, 2021. See the published version at https://doi.org/10.1007/s11071-021-06751-2.
Construction of higher-order smooth positons and breather positons via Hirota’s bilinear method

Zhao Zhanga, Biao Lib, Junchao Chenc, Qi Guoa,*

aGuangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, P. R. China
bSchool of Mathematics and Statistics, Ningbo University, Ningbo 315211, P. R. China
cDepartment of Mathematics and Institute of Nonlinear Analysis, Lishui University, Lishui 323000, P. R. China

Abstract

Based on the Hirota’s bilinear method, a more classic limit technique is perfected to obtain second-order smooth positons. Immediately afterwards, we propose an extremely ingenious limit approach in which higher-order smooth positons and breather positons can be quickly derived from \(N\)-soliton solution. Under this ingenious technique, the smooth positons and breather positons of the modified Korteweg-de Vries system are quickly and easily derived. Compared with the generalized Darboux transformation, the approach mentioned in this paper has the following advantages and disadvantages: the advantage is that it is simple and fast; the disadvantage is that this method cannot get a concise general mathematical expression of \(n\)th-order smooth positons.

Key words: Hirota’s bilinear method; Smooth positons; Breather positons.

1. Introduction

It is well known that there are almost all kinds of nonlinear integrable partial differential equations in many subjects such as optics, plasma physics and fluid mechanics [1–3]. Then, a very important and meaningful link is how to obtain exact solutions of these integrable systems. Initially, many experts are interested in the \(N\)-soliton solution in order to explain the solitary wave phenomena in shallow water systems [3, 4]. With the observation of more and more natural phenomena, such as rogue waves and lump waves, scholars gradually pay more and more attention to degenerate solutions of integrable systems [5–8].

Degenerate solutions include rogue wave solutions, lump solutions, higher-order rational solutions, positon solutions, and so on [5–10]. Because this study focuses on a wide variety of positon solutions, so other solutions except positon solutions will not be described in detail. In the beginning, Matveev used the Korteweg-de Vries equation as an example to derive singular positon solutions on the basis of the Wronskian determinant of \(N\)-soliton solution [11, 12]. Later, He’s team expanded the concept of positon solutions and proposed smooth positon solutions [13, 14] and breather positon solutions [15].
A \(n \)-th order smooth positon solution is actually one of the cases in \(n \)-pole solutions \([9, 16, 17]\). The discovery of breather positons is a very significant thing, which is actually the transition state from higher-order breather waves to rogue waves \([15]\).

However, most of the current studies on smooth positons and breather positons are based on the Wronskian representation of \(N \)-soliton solutions \([9, 11–15, 18, 19]\). How to derive higher-order smooth positons and breather positons from the general \(N \)-soliton solution simply and quickly is a problem that is worthy of attention.

Next, this research uses the modified Korteweg-de Vries equation (mKdV equation for short),

\[
u_t + 6u^2u_x + u_{xxx} = 0, \tag{1}\]

as an example to illustrate our findings. Since the mKdV equation was proposed, the research on the exact solution of this equation has not been interrupted \([20–25]\). Hirota obtains the \(N \)-soliton solution of mKdV equation by bilinear method \([20]\). The \(N \) pole solution and \(N \)th smooth positons of Eq. (1) have also been derived by inverse scattering method, Darboux transformation, and Wronskian representation of the \(N \)-soliton solution \([9, 14, 16, 23, 24]\). Interestingly, Chen et al uses Jacobian elliptic functions as seed solutions to obtain rogue periodic waves by Darboux transformation \([25]\).

By using the bilinear method \([20, 21]\), the \(N \)-soliton solution of mKdV equation is represented as

\[
u(x,t) = i \left[\ln \frac{g}{f} \right]_x, \tag{2}\]

where

\[
g = \sum_{\mu=0,1} \exp \left(\sum_{j<s}^N \mu_j A_{js} + \sum_{j=1}^N \mu_j \left(\eta_j - i \frac{\pi}{2} \right) \right), \quad f = \sum_{\mu=0,1} \exp \left(\sum_{j<s}^N \mu_j A_{js} + \sum_{j=1}^N \mu_j \left(\eta_j + i \frac{\pi}{2} \right) \right),
\]

with

\[
\exp \left(A_{js} \right) = \left(\frac{k_j - k_s}{k_j + k_s} \right)^2, \quad \eta_j = -k_j^2 t + k_j x + \eta_j^{(0)}.
\]

However, the researchers \([21, 22]\) only obtain multiple double pole solutions on the basis of Eq. (2). According to the academic terminology of this study, they actually get the interaction between multiple second-order smooth positons.

Therefore, this paper mainly does two things: one is to improve the method mentioned in Refs. \([21, 22, 26]\) to obtain second-order smooth positons; the other is that we propose an extremely ingenious limit method to derive higher-order smooth positons and breather positons from Eq. (2). In addition, we have carefully compared the results obtained by the bilinear method with those \([14, 23]\) generated by the Darboux transformation to illustrate the advantages and disadvantages of the method proposed in this paper.
2. Higher-order smooth positons

In this section, we first summarize and refine the idea of deriving second-order smooth positons in Refs. [21, 22, 26]. On the basis of obtaining second-order smooth positons, third-order smooth positons are further skillfully constructed. By mathematical induction, we have found a very skillful limit method for deriving higher-order smooth positons from Eq. (2).

Although the ideas in Refs. [21, 22, 26] are clear, these processes are somewhat complex. These ideas can be condensed into the following proposition.

Proposition 2.1: If some of the parameters in Eq. (2) are assigned as follows:

$$N = 2, k_2 = k_1 + \epsilon, \eta_1^{(0)} = \xi_1^{(0)} + \ln \left(-\frac{\beta}{\epsilon} \right), \eta_2^{(0)} = \xi_2^{(0)} + \ln \left(\frac{\beta}{\epsilon} \right),$$

then a second-order smooth positon $u_{2-\text{sp}}$ will be obtained from the 2-soliton solution when $\epsilon \to 0$, and its mathematical expression is

$$u_{2-\text{sp}} = i \left[\ln \frac{g}{f} \right]_z,$$

where

$$g = 1 + \beta \partial_k e^{\xi_1 + \epsilon \xi_1^0} - B_1 \beta^2 e^{2\xi_1^0 - i\tau}, \quad f = 1 + \beta \partial_k e^{\xi_1 + \epsilon \xi_1^0} - B_1 \beta^2 e^{2\xi_1^0 + i\tau},$$

with

$$\xi_j = -k_j^3 t + k_j x + \xi_j^{(0)}, B_{js} = \left\{ \begin{array}{ll} \frac{1}{4\epsilon^2}, & j = s \\ \left(\frac{k_j - k_s}{\xi_j^{(0)}} \right)^2, & j \neq s \end{array} \right. .$$

Here $k_j, \xi_j^{(0)}$ and β are all real parameters.

Proof. According to Eq. (3), g in Eq. (1) can be expressed as

$$g = 1 - \frac{\beta}{\epsilon}e^{-k_j^3 t + k_j x + \epsilon \xi_1^0 + i\tau} + \frac{\beta}{\epsilon}e^{-(k_j + \epsilon \xi_1) t + (k_j + \epsilon \xi_1) x + \epsilon \xi_1^0 + i\tau} - \frac{\beta^2}{4k_j^4}e^{-k_j^3 t + k_j x + \epsilon \xi_1^0 + i\tau},$$

which yields the following semi-rational expression when $\epsilon \to 0$:

$$g = 1 + \partial_k e^{-k_j^3 t + k_j x + \epsilon \xi_1^0 + i\tau} - \frac{\beta^2}{4k_j^4}e^{-2k_j^3 t + 2k_j x + 2\epsilon \xi_1^0 + i\tau}.$$

Similarly, f in Eq. (2) can be converted to

$$f = 1 + \partial_k e^{-k_j^3 t + k_j x + \epsilon \xi_1^0 + i\tau} - \frac{\beta^2}{4k_j^4}e^{-2k_j^3 t + 2k_j x + 2\epsilon \xi_1^0 - i\tau}.$$

Thus, Eq. (4) is easily verified. \qed

Eq. (4) contains two cases: when $\beta > 0$, a bright second-order smooth positon which has a maximum point will be obtained; when $\beta < 0$, a dark second-order smooth positon with a minimum point will be derived. Using the degenerate Darboux transformation, Refs. [14, 23] only find bright smooth positons as shown in Fig. 1(a), but do not find a dark degenerate solution like Fig. 1(b).
then a third-order smooth positon will achieve the minimum value \(|k_1| \) at the origin. In addition, Eq. (4) with parameters \(\xi_1^{(0)} = 0 \) and \(\beta = \pm 2k_1 \) has the following dynamic properties when \(|t| \to \infty \):

\[
[u_{2-sp}] \approx |k_1| \text{sech} \left(k_1 x - k_1^3 t + \frac{\ln(16k_1^6t^2)}{2} \right) + |k_1| \text{sech} \left(k_1 x - k_1^3 t - \frac{\ln(16k_1^6t^2)}{2} \right),
\]

which means that along the trajectories \(x = k_1^2 t \pm \frac{\ln(16t^2)}{2k_1} \), the crest and trough values \(\pm |k_1| \) of Eq. (4) can be obtained.

Based on Proposition 2.1, a more ingenious limit technique is proposed to derive higher-order smooth positons quickly and conveniently.

Proposition 2.2: If some of the parameters in Eq. (2) are assigned as follows:

\[
N = 3, k_2 = k_1 + \epsilon, k_3 = k_1 + 2\epsilon, \eta_1^{(0)} = \xi_1^{(0)} + \ln \left(\frac{\beta}{\epsilon^2} \right), \eta_2^{(0)} = \xi_1^{(0)} + \ln \left(\frac{-2\beta}{\epsilon^2} \right), \eta_3^{(0)} = \xi_1^{(0)} + \ln \left(\frac{\beta}{\epsilon^2} \right),
\]

then a third-order smooth positon \(u_{3-sp} \) will be obtained from the 3-soliton solution when \(\epsilon \to 0 \), and its mathematical expression is

\[
u_{3-sp} = i \left[\ln \frac{g}{f} \right]_t,
\]

where

\[
g = 1 + \beta_1^2 e^{\xi_1^{(1)}} - \frac{\beta_1^2}{2} \left(4B_{11}(\partial_{\xi_1}\xi_1)^2 - 4B_{11}\partial_{\xi_1}^2 \xi_1 + 4 (\partial_{\xi_1} B_{11}) (\partial_{\xi_1} \xi_1) + \partial_{\xi_1}^2 B_{11} \right) e^{2\xi_1 - i \pi} - 8\beta_1^3 B_{11} e^{3\xi_1 - i \frac{\pi}{2}},
\]

\[
f = 1 + \beta_1^2 e^{\xi_1^{(1)}} - \frac{\beta_1^2}{2} \left(4B_{11}(\partial_{\xi_1}\xi_1)^2 - 4B_{11}\partial_{\xi_1}^2 \xi_1 + 4 (\partial_{\xi_1} B_{11}) (\partial_{\xi_1} \xi_1) + \partial_{\xi_1}^2 B_{11} \right) e^{2\xi_1 + i \pi} - 8\beta_1^3 B_{11} e^{3\xi_1 + i \frac{\pi}{2}}.
\]

Here \(\xi_j \) and \(B_{jk} \) have been given in Proposition 2.1. In addition, the proof of Proposition 2.2 is roughly the same as that of Proposition 2.1, except that the calculation of Proposition 2.2 is more complicated.
Therefore, we do not give a specific proof process here.

Figure 2: (Color online) Two types of third-order smooth positons: (a) A bright third-order smooth positon described by Eq. (7) with parameters \(\{ k_1 = 1, \beta = 2, \xi_1^{(0)} = 0 \} \); (b) A dark third-order smooth positon described by Eq. (7) with parameters \(\{ k_1 = 1, \beta = -2, \xi_1^{(0)} = 0 \} \).

When \(\beta > 0 \), a bright third-order smooth positon composed of two bright parts and one dark part will be derived, as shown in Fig. 2 (a); Otherwise, we can get a dark smooth positon consisting of a bright part and two dark parts like Fig. 2 (b).

Eq. (7) with parameters \(\xi_1^{(0)} = 0 \) and \(\beta = \pm 2k_1^2 \) has the following dynamic properties when \(|t| \to \infty \):

\[
|u_{3-\text{sp}}| \approx |k_1| \left(k_1 x - k_1^3 t + \frac{\ln(64k_1^2 r^2)}{2} \right) + |k_1| \left(k_1 x - k_1^3 t - \frac{\ln(64k_1^2 r^2)}{2} \right),
\]

which means that along the trajectories \(\{ x = k_1^2 t \pm \frac{\ln(64k_1^2 r^2)}{2N}, x = k_1^3 t \} \), the crest and trough values \(\pm |k_1| \) of a third-order smooth positon can be derived.

Summarizing Proposition 2.1 and Proposition 2.2, we have the following conjecture through mathematical induction:

Inference 2.3: If some of the parameters in Eq. (2) are assigned as follows:

\[
\eta_1^{(0)} = \xi_1^{(0)} + \frac{(-1)^N C_1^{(0)}}{\varepsilon^{N-1}}, \eta_2^{(0)} = \xi_1^{(0)} + \frac{(-1)^{N+1} C_1^{(0)}}{\varepsilon^{N-1}}, \eta_3^{(0)} = \xi_1^{(0)} + \frac{(-1)^{N+2} C_2^{(0)}}{\varepsilon^{N-1}}, \ldots, \eta_N^{(0)} = \xi_1^{(0)} + \frac{(-1)^{2N} C_{N-1}^{(0)}}{\varepsilon^{N-1}},
\]

then a \(N \)-th order smooth positon \(u_{N-\text{sp}} \) will be obtained from the \(N \)-soliton solution when \(\varepsilon \to 0 \).

If \(N \) in Inference 2.3 is equal to 4, we will get a fourth-order smooth positon \(u_{4-\text{sp}} \):

\[
u_{4-\text{sp}} = \left[-i \ln \left[\frac{g}{f} \right] \right],
\]

where

\[
g = 1 + \partial^4_{\xi_1^2} e^{i \xi_1^2} + w_1 e^{i \xi_1^2} + w_2 e^{i \xi_1^2} + w_3 e^{i \xi_1^2} + 1296 \beta^4 B_{11}^4 e^{i \xi_1^2 - 2i \pi},
\]
where will be derived when the spectral parameters a zero background from Eq. (11). For generating breather positons with a zero background using module resonance conditions, degenerate Darboux transformation with a zero seed solution, Ref. [3].

Higher-order breather positons with a zero background

It is very concise and clear to obtain the degenerate solution according to Inference 2.3, which is the advantage of this method compared with the Darboux transformation. Because the Darboux transformation requires higher mathematical foundations than the bilinear method. The disadvantage is that we cannot get the general mathematical expression of a nth-order positon, but the Darboux transformation can do this [13–15, 23]. It is possible to obtain general mathematical expressions by doing some normalized treatment of Eq. (9). We have done our best at this point.

Proposition 3.1: If some of the parameters in Eq. (2) are assigned as follows:

\[
\begin{align*}
k_2 &= k_1 + \epsilon, \eta_1^{(0)} = \xi_1^{(0)} + \ln \left(\frac{\beta}{\epsilon} \right), \eta_2^{(0)} = \xi_1^{(0)} + \ln \left(\frac{\beta}{\epsilon} \right), \\
k_4 &= k_3 + \epsilon, \eta_3^{(0)} = \xi_3^{(0)} + \ln \left(\frac{\beta}{\epsilon} \right), \eta_4^{(0)} = \xi_3^{(0)} + \ln \left(\frac{\beta}{\epsilon} \right), \\
N &= 4, k_1 &= k_3^{\pm 1}, \xi_1^{(0)} = \xi_3^{(0)},
\end{align*}
\]

then a second-order breather positon \(u_{2-bp} \) will be obtained from the 4-soliton solution when \(\epsilon \to 0 \), and its mathematical expression is

\[
u_{2-bp} = \int \left[\ln \frac{g}{\partial} \right] , \quad (11)
\]

where

\[
f = 1 + \partial_{\xi_k} e^{\xi_k} + w_1 e^{\xi_k} + w_2 e^{\xi_k} + 1296 \beta^2 B_{12}^2 e^{2 \xi_k + 2 \epsilon} ,
\]

with

\[
w_1 = 3 \beta^2 \left[- B_{11} (\partial_{\xi_k} \xi_1)^4 - 3 B_{11} (\partial_{\xi_k} \xi_1)^2 + 2 B_{11} (\partial_{\xi_k} \xi_1) (\partial_{\xi_k} \xi_1) - 2 (\partial_{\xi_k} B_{11}) (\partial_{\xi_k} \xi_1)^3 - \frac{3}{2} (\partial_{\xi_k} B_{11}) (\partial_{\xi_k} \xi_1)^2 - \frac{1}{2} (\partial_{\xi_k} B_{11}) (\partial_{\xi_k} \xi_1) (\partial_{\xi_k} B_{11}) - \frac{1}{16} (\partial_{\xi_k} B_{11}) \right],
\]

\[
w_2 = -18 B_{11} \beta^2 \left[2 B_{11} \partial_{\xi_k} \xi_1 - 6 B_{11} (\partial_{\xi_k} \xi_1) (\partial_{\xi_k} \xi_1) + 6 B_{11} (\partial_{\xi_k} B_{11}) (\partial_{\xi_k} \xi_1)^2 + 2 B_{11} (\partial_{\xi_k} B_{11}) \right]
\]

\[- 6 B_{11} (\partial_{\xi_k} B_{11}) (\partial_{\xi_k} \xi_1) - 6 B_{11} (\partial_{\xi_k} B_{11}) (\partial_{\xi_k} \xi_1) - B_{11} \partial_{\xi_k} B_{11} + 3 (\partial_{\xi_k} B_{11}) (\partial_{\xi_k} B_{11}) \right].
\]
\[f = 1 + \beta \partial_0 e^{\xi_1 + i\beta} + \beta \partial_0 e^{\xi_3 + i\beta} - \beta^2 B_{11} e^{2\xi_1 + i\pi} - \beta^2 B_{33} e^{2\xi_3 + i\pi} + \beta^2 \partial_0 \partial_0 B_{13} e^{\xi_1 + i\pi} + w_1 e^{2\xi_1 + i\frac{\pi}{2}} + w_2 e^{2\xi_3 + i\frac{\pi}{2}} + \beta^4 B_{11} B_{33} e^{2\xi_1 + i\pi}, \]

with

\[w_1 = -\beta^3 B_{13} B_{11} (B_{13} \partial_0 \xi_3 + 2 \partial_0 B_{13}), \quad w_2 = -\beta^3 B_{13} B_{33} (B_{13} \partial_0 \xi_1 + 2 \partial_0 B_{13}). \]

Here \(k_j, \xi_j^{(0)} \) and \(\xi_j^{(0)} \) are all complex parameters. \(\xi_j \) and \(B_{js} \) have been given in Proposition 2.1. Note that the proof of Proposition 3.1 is similar to that of Proposition 2.1, so it will not be repeated here.

If \(\{ k_1 = k_2 = a + ib, n_1^{(0)} = 0, n_2^{(0)} = 0, N = 2 \} \), a breather solution will be easily derived from Eq. (2).

And we can easily know some of its dynamic properties: the position of the wave crest is \(t = \frac{1}{4ab(a^2 + b^2)} \left(4\pi a n + \pi a + b \ln \left(\frac{a^2}{b^2} \right) \right), \quad x = -\frac{6a^2 b + 2b^3 - 3a}{2b} \)

the maximum value is \(2|a| \); the minimum value is \(-2|a|\); the distance between two adjacent crests is \(\frac{\pi \sqrt{a^2 - 2a^2 b + 3b^2 + 1}}{|b(a^2 + b^2)|} \).

Combined with the relation between breather solutions and breather positons [15, 18], it is easy to know that the crest and trough values are \(2|\Re(k_1)| \) and \(-2|\Re(k_1)| \) respectively when \(|t| \to \infty \). Because the absolute values of the maximum and minimum values are equal, breather positons will not be classified as bright or dark. If the period of a breather positon shown in Fig.3 (a) tends to infinity, there will be two situations: A second-order breather positon will slowly convert to a second-order smooth positon when \(\Im(k_1) \to 0; u_2 \to 0 \) tends to 0 when \(\{ \Im(k_1) \to 0, \Re(k_1) \to 0 \} \).

Similar to Proposition 3.1, the following inference gives a simple and effective way to quickly derive breather positons sitting on a zero background like Fig.3 (b) from Eq.(2).
Inference 3.2: If some of the parameters in Eq.(2) are assigned as follows:

\[
\begin{align*}
k_2 &= k_1 + \epsilon, k_3 = k_1 + 2\epsilon, \ldots, k_n = k_1 + (n - 1)\epsilon, \\
k_{n+2} &= k_{n+1} + \epsilon, k_{n+3} = k_{n+1} + 2\epsilon, \ldots, k_{2n} = k_{n+1} + (n - 1)\epsilon, \\
\eta_{1}^{(0)} &= \xi_{1}^{(0)} + \ln \left(\frac{(-1)^{1}c_{0}^{1}}{\epsilon^{n-1}} \right), \eta_{2}^{(0)} = \xi_{1}^{(0)} + \ln \left(\frac{(-1)^{2}c_{1}^{1}}{\epsilon^{n-1}} \right), \ldots, \eta_{n}^{(0)} &= \xi_{1}^{(0)} + \ln \left(\frac{(-1)^{n}c_{n-1}^{1}}{\epsilon^{n-1}} \right), \quad (12) \\
N &= 2n, k_1 = k_{n+1}^{*}, \xi_{1}^{(0)} = \xi_{n+1}^{(0)}.
\end{align*}
\]

then an nth-order breather position \(u_{n-bp}\) will be obtained from the 2n-soliton solution when \(\epsilon \to 0\).

4. Conclusion

Based on the Hirota’s bilinear method, a unique and novel limit method is proposed to quickly derive smooth positons and breather positons from the \(N\)-soliton solution. Inference 2.3 and inference 3.2 are the refinements and summaries of this approach. With this technique, we also find that smooth positons can be divided into two types: dark and bright. As far as we know, studies using the Darboux transformation as a tool have not found this phenomenon shown in Fig.1 and Fig.2. Inferences 2.3 and 3.2 have further significance: \(N\) triple-pole solutions can be derived via the limit technique mentioned in this research. Of course, this method can also be extended to other (1+1)-dimensional integrable systems.

Compared with the degenerate Darboux transformation method, simplicity and speed are the advantages of this method. But this method cannot get the general mathematical expression of nth smooth positons like the Darboux transformation method. We have also gone through a lot of attempts: either the result does not have a general law according to Inference 2.3, or it is difficult to find the general formula due to our insufficient professionalism. We hope that relevant experts can solve this problem and make the limit method proposed in this study a complete system.

Acknowledgment

This research is supported by the Natural Science Foundation of Guangdong Province of China (No. 2021A1515012214), the Science and Technology Program of Guangzhou (No. 2019050001), National Natural Science Foundation of China (Nos. 11775121), and K.C.Wong Magna Fund in Ningbo University. The authors would like to express their sincere thanks to Prof. Dajun Zhang for his guidance and encouragement.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interests.

Data availability statements All data generated or analyzed during this study are included in this article.
Reference

References

[1] Kadomtsev, B.B., Petviashvili V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539 (1970)

[2] Hirota, R.: Exact solution of the korteweg-de vries equation for multiple Collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971)

[3] Akhmediev, N.N., Ankiewicz, A.: Solitons, Nonlinear Pulses and beams. Chapman and Hall, London (1997)

[4] Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge, UK (2004)

[5] Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496 (1979)

[6] Guo, B.L., Ling, L.M., Liu, Q.P.: High order Solutions and Generalized Darboux transformation of Derivative Schrödinger Equations. Stud. Appl. Math. 130, 317 (2013)

[7] Bilman, D., Ling, L.M., Miller, P.D.: Extreme Superposition: Rogue Waves of Infinite Order and the Painlevé-III Hierarchy. Duke Math. J. 169, 671 (2020)

[8] Rao, J.G., Cheng, Y., Porsezian, K., et al.: PT-symmetric nonlocal Davey- Stewartson I equation: Soliton solutions with nonzero background. Physica D 401, 132180 (2020)

[9] Zhang, D.J., Zhao, S.L., Sun, Y.Y., et al.: Solutions to the modified Korteweg-de Vries equation. Rev. Math. Phys. 26, 1430006 (2014)

[10] Guo, L.J., He, J.S., Wang, L.H., et al.: Two-dimensional rogue waves on zero background in a Benney-Roskes model. Phys. Rev. Research 2, 033376 (2020)

[11] Matveev, V.B.: Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys. Lett. A 166, 205 (1992)

[12] Matveev, V.B.: Position-positon and soliton-positon collisions: KdV case. Phys. Lett. A 166, 209 (1992)

[13] Liu, W., Zhang, Y.S., He, J.S.: Dynamics of the smooth positons of the complex modified KdV equation. Wave Random Complex 28, 203 (2018)

[14] Xing, Q.X., Wu, Z.W., Mihalache, D., et al.: Smooth positon solutions of the focusing modified Korteweg-de Vries equation. Nonlinear Dyn. 89, 2299 (2017)

[15] Wang, L.H., He, J.S., Xu, H., et al.: Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber. Phys. Rev. E 95, 042217 (2017).

[16] Wadati, M., Okhuma, K.: Multiple-Pole Solutions of the Modified Korteweg-de Vries Equation. J. Phys. Soc. Jpn. 51, 2029 (1982)

[17] Wu, Q.L., Zhang, H.Q., Hang, C.: Breather, soliton-breather interaction and double-pole solutions of the fifth-order modified KdV equation. Appl. Math. Lett. 120, 107256 (2021)

[18] Zhang, Z., Yang, X.Y., Li, B.: Novel soliton molecules and breather-positon on zero background for the complex modified KdV equation. Nonlinear Dyn. 100, 1551 (2020)

[19] Zhang, Z., Yang, X.Y., Li, B.: Soliton molecules and novel smooth positons for the complex modified KdV equation. Appl. Math. Lett. 103, 106168 (2020)

[20] Hirota, R.: Exact Solution of the Modified Korteweg-de Vries Equation for Multiple Collisions of Solitons. J. Phys. Soc. Jpn. 33, 1456 (1972)

[21] Chen, D.Y., Zhang, D.J., Deng, S.F.: The Novel Multi-Soliton Solutions of the MKdV-Sine Gordon Equations. J. Phys. Soc. Jpn. 71, 658 (2002)

[22] Takahashi, M., Konno, K.: N Double Pole Solution for the Modified Korteweg-de Vries Equation by the Hirota’s Method. J. Phys. Soc. Jpn. 58, 3505 (1989)

[23] Xing, Q.X., Wang, L.H., Mihalache, D., et al.: Construction of rational solutions of the real modified Korteweg-de Vries equation from its periodic solutions. Chaos 27, 053102 (2017)

[24] Demontis, F.: EXACT SOLUTIONS OF THE MODIFIED KORTEWEG-DE VRIES EQUATION. Theor. Math. Phys. 168, 886 (2011)

[25] Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the modified KdV equation. Nonlinearity 31, 1955 (2018)
[26] Deng, S.F.: The novel multisoliton solutions for some soliton equations. D.Sc. thesis, Shanghai University (2004) (in Chinese).