THEORETICAL APPROACH ON TARGETING PLANT FUNGAL PATHOGENIC PROTEINS AGAINST NATURALLY ISOLATED COMPOUNDS FROM CHITINIPHILUS SHINANONENSIS

KRITHIKA S¹, CHELLARAM C²,³*
¹Department of Biotechnology, Sathyabama University, Chennai, Tamil Nadu, India. ²Department of Biomedical, Vel Tech Multi Tech Engineering College, Chennai, Tamil Nadu, India. ³Department of Applied Biotechnology, Sur College of Applied Sciences, Sur 411, Oman. Email: chellaramc.sur@cas.edu.om

Received: 09 September 2019, Revised and Accepted: 25 October 2019

INTRODUCTION

The agriculture is the major backbone for all the countries from the ancient period to the contemporary century also; the country’s global economy is majorly deepened on farming. Hence, people are now turned up for organic farming to preserve the genetics of crops and human health. However, the enormous losses in the yield and quality of fruits, flowers crops, and plant edible substance are mainly caused by fungal plant pathogens [1]. To bolster the argument American State of Ohio done an investigation on plant pathogenic fungi for several years and revealed that 1000 plant diseases are caused by fungi, which brings the most rigorous loss for farmers [2]. They are some of the fungal species which predominately affect the plants are Magnaporthe oryzae, Botrytis cinerea, Fusarium oxysporum, Blumeria graminis, Colletotrichum spp., Ustilago maydis, and Puccinia spp. Mostly pathogenic fungi belong to the class of basidiomycetes and ascomycetes [3]. Besides, these fungi have different lifestyles and relation with host plants; some are biotrophic, necrotrophic, hemibiotrophic, and obligately biotrophic. Biotrophic plant fungal pathogen will have long-term relation on feeding without destroying the plant. Whereas, necrotrophic pathogens actively kill host tissue as they colonize and thrive on the contents of dead or dying cells [2-4].

In this current study, we are targeting four fungal pathogenic proteins that cause major economies deterioration. Colletotrichum lindemuthianum is a common and important genus of a fungal plant pathogen. It is the most susceptible species throughout the world; at least one or two species will affect every crop and causes major losses to the economy; commonly it will affect fruits such as bananas, and vegetable crops such as sorghum and cassava and ornamentals [5]. C. lindemuthianum is one of the most important seed-borne diseases of common bean (Phaseolus vulgaris L.) commonly it was known as bean anthracnose [6] in the world found extensively in tropical and subtropical regions. C. lindemuthianum, the fungal pathogen secretes an enzyme endo-chitin de-N-acetylase to modify exposed hyphal chitin during penetration and infection of plants [7-9]. Thus, chitin deacetylase was considered as an attractive target for diseases caused by this organism.

Second, F. oxysporum is a ubiquitous soil-borne pathogen; the symptom of this fungal disease includes stunting, defoliation, vascular browning, progressive wilting, leaf epinasty, and plant death [10,11]. This genus is turning worldwide attention because most of this species will affect more than 100 plants provoking rigorous losses in crops such as cotton, banana, tomato, and melon [11]. F. oxysporum secretes important virulence factor Avr2 in xylem and manipulates their hosts in the process of either suppress or counteract host defenses [12]. Tomato is a common host for F. oxysporum, which invades the plant through roots followed by epidermal and endodermal tissues to eventually colonize the xylem vessels and destroys the crop [13,14].

Finally, the other two fungal plant pathogens are M. oryzae and U. maydis. Rice blast disease is commonly caused by M. oryzae. It is the most devastating rice pathogen that will lead to major crop loss worldwide, and it is the topmost fungal pathogen based on economic calamity. M. oryzae hypersensitive protein 2 (MoHrp2) is an elicitor protein that induces resistance in rice leaves, so before farming seedling is treated with MoHrp2 will result in significant loss to the rice plants [15-18].

U. maydis is a major causative organism for maize smut, which produces cytokines, a hormone responsible for plant development overexpression of the hormones forms a tumor in plant tissue. Serine/threonine protein kinase are the enzyme involved in complex
The fungal pathogen organisms which play a crucial role in devastating plants were explored through a literature study followed by identifying drug target proteins of the specific fungal pathogen in structural biology and computer-aided drug design [22]. The objective of protein-ligand or protein-protein docking is to predict the predominant binding mode(s) of a ligand with a protein of known 3D structure. The docking methods search high dimensional spaces effectively and use a scoring function that correctly ranks candidate docking of different drug target proteins of various plant fungal pathogens are considered as receptors, and naturally isolated compounds are ligands using AutoDock 4.2.

Molecular docking
Molecular docking is an effective tool in theoretical structural biology and computer-aided drug design [22]. The objective of protein-ligand or protein-protein docking is to predict the predominant binding mode(s) of a ligand with a protein of known 3D structure. The docking methods search high dimensional spaces effectively and use a scoring function that correctly ranks candidate docking of different drug target proteins of various plant fungal pathogens are considered as receptors, and naturally isolated compounds are ligands using AutoDock 4.2. A concept of lock-key was employed in structure-based drug designing; docking was carried out with genetic algorithm with a population size of 150 and 2,500,000 maximum number of energy evaluations, 27,000 maximum number of generations with 10 runs before docking, AutoDock wants AutoGrid needs to get processed for atomic positions. Hence, the AutoGrid calculations are performed placing the box (XYZ) in 3D directions, the dimension of the grid will differ from one protein to other drug targets. Chitin deacetylase (2IW0) box is placed in 13.364 X, 12.584 Y, and 11.392 Z with 0.405 Å. Similarly, elicitor MoHrip2 (5FID) dimensions of box 6.688 X, 11.938 Y, and 66.96 Z with 0.425 Å. Similarly, elicitor MoHrip2 (5FID) dimensions of box 6.688 X, 11.941 Y, and 67.029 Z with 0.375 Å and Avr2 effector protein (5OD4) dimensions are 6.609 X, 11.938 Y, and 66.96 Z with 0.425 Å. Similarly, elicitor MoHrip2 (5FID) dimensions of box 6.688 X, 11.941 Y, and 67.029 Z with 0.375 Å. The best run in AutoDock with negative binding energy is considered the best results [23]. The interaction results are visualized using discovery studio 2017 visualizer.

RESULTS AND DISCUSSION
Receptor protein loop building
The drug target proteins taken in this study belong to various molecular functions and biological activity. GSK3 and chitin deacetylase fall into protein kinase activity and catalytic activity, respectively. While elicitor MoHrip2 is toxin protein, whereas the function of Avr2 effector protein is considered as putative. Protein structures have a lack of amino acid residues in loop regions that are identified through SEQRES data of PDB, and it was automatically processed using protein preparation tools. It was observed that there is no changes loop region for other three-drug target proteins except SOD4 structure loop regions amino acid is inserted form position of ARG90 to GLY93, built loops are minimized for structure stability. Finally, drug target proteins without any loop and side-chain flaws are taken for further proceedings [24] (Fig. 1).

Protein structure stability analysis
The energy of protein is important in theoretical biology any proteins are initial drawn using ChemSketch tool, followed by cleaning structure, and the chemical language format is converted into PDB format for the docking.

Preparation of receptor for docking
Structures of each receptor are prepared manually using Discovery Studio Visualizer 4.5 by removing alternative conformers of amino acids, bound HETATMS or ligands, unbound water molecules, and identical chains subsequently energy minimization was done with steepest descent algorithm 100 cycles in Swiss DeepView project to remove the bad steric clashes.

Table 1: Isolated natural compounds and its basic chemical properties

Structure	Number of atoms	Molecular composition	Molecular weight
Asiatic acid	83	C30H48O5	488.714
Triterpene	81	C30H50O	426.73

Table 2: Energy minimization of plant fungal pathogen proteins

Drug targets	Before energy minimization	After energy minimization
Chitin deacetylase	−6682.23	−11763.5
Avr2 effector protein	−3567.31	−5534.31
Elicitor Magnaporthe oryzae hypersensitive protein 2	−3072.02	−6371.3
Glycogen synthase kinase 3	−10624.3	−16501.1

Table 3: Free energy of binding of naturally isolated compounds

Plant fungal pathogen targets	Free energy of binding (local/mol)	Asiatic acid	Triterpene
Chitin deacetylase	1.13E+03	−0.12	
Avr2 effector protein	−5.32	−7.85	
Elicitor Magnaporthe oryzae hypersensitive protein 2	−1.91	−1	
Glycogen synthase kinase 3	−0.67	66.96	

cellular process in all living organisms including signaling pathway, differentiation and proliferation. Glycogen synthase kinase 3 (GSK3) belong to family of serine/threonine protein kinase present in plant fungal pathogen organism Ustilago maydis plays major role in diseases molecular pathogenesis in maize was chosen as attractive drug target enzyme [19-21]. Overall, study was mainly concerned towards targeting various plant fungal pathogen treatment using natural isolate compounds from microbe Chitiniphilus shinanonensis instead of synthetic chemicals.

METHODS
Drug target protein retrieval from protein data bank (PDB)
The fungal pathogen organisms which play a crucial role in devastating plants were explored through a literature study followed by identifying drug target proteins of the specific fungal pathogen in structural databases. The three-dimensional (3D) structure of the drug target proteins was retrieved from PDB (http://www.rcsb.org); this database contains more than 30,000 proteins structure in nuclear magnetic resonance and X-ray. In this study, the 3D structure of chitin deacetylase from the fungal pathogen C. lindemuthianum (2IW0), Avr2 effector protein from F. oxysporum (5OD4), elicitor MoHrip2 from M. oryzae (5FID), and GSK3 from U. maydis (4E7W) were retrieved from protein databank was probed for insilico binding interaction.
Table 4: Receptor-ligand interaction of Asiatic acid – Avr2 effector complex

Active site amino acid and compound (atom-atom bonding)	Distance in Å	Category	Type of bond
A:THR54:H1-Asiatic acid:O1	1.71288	Hydrogen Bond	CHB*
Asiatic acid:H78-A:SER55:O	2.81559	Hydrogen Bond	CHB*
Asiatic acid:C30-A:GLU74:OE1	3.26396	Hydrogen Bond	CAHB*
APR071-Asiatic acid	5.4319	Hydrophobic	Alkyl
APR072-Asiatic acid	5.39586	Hydrophobic	Alkyl
A:LE85-Asiatic acid	5.36522	Hydrophobic	Alkyl
A:LE85-Asiatic acid	5.15608	Hydrophobic	Alkyl
Asiatic acid:C26-A:ARG84	4.85148	Hydrophobic	Alkyl
Asiatic acid:C26-A:LE85	5.20335	Hydrophobic	Alkyl
Asiatic acid:C35-A:ARG65	4.35983	Hydrophobic	Alkyl

*CHB: Conventional hydrogen bond, CAHB: Carbon hydrogen bond

Table 5: Receptor-ligand interaction of triterpene – Avr2 effector complex

Active site amino acid and compound (atom-atom bonding)	Distance in Å	Category	Type of bond
A:HIS83:HE2:Triterpene:O29	1.82383	Hydrogen bond	CHB*
Triterpene:C27-A:PH56	3.96694	Hydrophobic	Pi-Sigma
APR072:Triterpene	4.59219	Hydrophobic	Alkyl
A:ARG84:Triterpene	5.28147	Hydrophobic	Alkyl
A:LE85:Triterpene	4.65686	Hydrophobic	Alkyl
Triterpene:C12-A:LE85	3.84799	Hydrophobic	Alkyl
Triterpene:C30-APR071	4.59704	Hydrophobic	Alkyl
Triterpene:C30-A:ARG84	4.06396	Hydrophobic	Alkyl
Triterpene:C31-A:LE85	4.66029	Hydrophobic	Alkyl
Triterpene:C20-APR071	4.59086	Hydrophobic	Alkyl
Triterpene:C20-APR071	4.13047	Hydrophobic	Alkyl
Triterpene:C27-A:LE85	3.92151	Hydrophobic	Alkyl
A:PH56:Triterpene:C12	5.04537	Hydrophobic	Pi-Alkyl
A:PH56:Triterpene:C28	5.02283	Hydrophobic	Pi-Alkyl
A:HIS83:Triterpene:C31	3.67345	Hydrophobic	Pi-Alkyl
A:TYR86:Triterpene:C30	5.43767	Hydrophobic	Pi-Alkyl

*CHB: Conventional hydrogen bond

Fig. 1

(a) Chitin deacetylase, (b) Avr2 effector protein, (c) Elicitor *Magnaporthe oryzae* hypersensitive protein 2, (d) glycogen synthase kinase 3, prepared plant fungal pathogen proteins for docking studies
Comparative analysis of compounds with different plant fungal pathogens

Asiatic acid and triterpene compounds docked with four different fungal pathogens show a difference in binding energy value. Overall, only two positive binding energies were observed for Asiatic acid bound to chitin deacetylase (1.13E+03) and GSK3 with triterpene (66.96). However, both compounds show the least stable binding energy and strong bonding interaction with Avr2 effector protein followed by negative binding energy for drug target elicitor MoHrip2 (Table 3).

To depict a better representation of the graph, positive free-energy binding values are not considered during plotting (Fig. 2). Biological significantly these two compounds show good potency on targeting Avr2 effector protein. This protein will be secreted in tomato plants during infection caused by *F. oxysporum*.

This fungus predominately infects a wide variety of plant species by results; it forms wilt or root. Moreover, this fungus colonizes in the region xylem tissue of tomato plant, an important part of the plants where the mechanism of transporting nutrients, water from the roots to the leaves will take place [12]. Thus, treating the Asiatic acid and triterpene will inhibit the xylem colonization and improves biological transport. However, *in vivo* and *in vitro* studies are recommended to study the same mechanism based on theoretical docking.

Interaction analysis

Analyzing the protein-ligand complex was done only for compounds with high estimated free binding energy. Among all drug targets, Avr2 effector protein binding site favors more complementary for both compounds Asiatic acid and triterpene. Hence, only this interaction is elaborately discussed. The biological or physiological process is regulated by protein-protein and protein/receptor-ligand interactions, this mechanism was observed in all living cells on,
compound binding to the active site will exchange atoms to make the bond stronger [22,25].

Receptor-ligand complex with more hydrogen and hydrophobic bonds will have good stability as compared electrostatic and Van der Waals bonding. Asatic acid – Avr2 effector complex shows maximum count of interaction with amino acids such as Thr, Ser, Glu, Pro, Arg, and Ile forms alkyl, pi-alkyl, pi-sigma, and conventional hydrogen bond with Ki value of 1.76 µM (Table 5). Hence, these compounds can be the lead candidate for treating Avr2 effector protein of F. oxysporum.

CONCLUSION

Receptor-ligand docking through computational biology study is a powerful tool to screen compounds based on energy and interaction. This will save time and energy in research also; it assists one to investigate atom-level interaction between two molecules. To improve compounds efficacy, structure-activity relationship studies and fragment-based drug designing are recommended. Hence, among four different fungal pathogens, isolated compounds are more favorable for treating Avr2 effector protein of F. oxysporum. Unlike, synthetic compounds which causes resistance and affect the plant genetic diversity the natural isolated compound from Chitinophilus shinanonensis treating plant fungal pathogen are free from lethal effects. Furthermore, molecular interaction bolsters the study, but further investigation in in vivo and in vitro is necessary to prove the same.

ACKNOWLEDGMENT

We would like to thank Dr. M. Menaga, Director, Bioneemtec India private limited, Women’s Biotech Park, Chennai, for conducting this study.

AUTHORS’ CONTRIBUTIONS

Both authors are equally contributed to this work.

CONFLICTS OF INTEREST

The authors have no conflicts of interest.

REFERENCES

1. Jun Y, Tom H, Vijai B, Xiao-Lin C, Guotian Li. Plant Fungal Pathogenesis. BioMed Research International 2017;2017:1-2.
2. David M, Geoffrey DR, Anthony PJ, editors. Fungal Diseases and Loss of World Agricultural Production. 2nd ed. UK: Cambridge University Press; 2019.
3. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, et al. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 2012;13:414-30.
4. David M, Geoffrey DR, Anthony PJ. 21st century guidebook to fungi. In: David M, Geoffrey DR, Anthony PJ, editors. Neotrophic and Biotic Pathogens of Plants. 2nd ed. UK: Cambridge University Press; 2019.
5. Ulises CS, Horacio CC, Maria GV, Alicia LM, Everardo LR, Maria GZ. Protein homology modeling docking and phylogenetic analyses of an endo-1,4-β-xylanase GH11 of Colletotrichum lindemuthianum. Mycol Progress 2017;16:577-91.
6. Mohammed A. An overview of distribution biology and the management of common bean anthracnose. J Plant Pathol Microb 2013;4:193.
7. Bailey JA, O’Connell RJ, Nash C. Infection strategy of Colletotrichum lindemuthianum species. In: Bailey JA, Jeger MJ, editors. Colletotrichum: Biology Pathology and Control CAB International UK: Wallingford; 1992.
8. Ulises CS, Horacio CC, Maria GV, Alicia LM, Everardo LR, Maria GZ. Cloning and characterization of an endo-1,4-β-xylanase gene from Colletotrichum lindemuthianum and phylogenetic analysis of similar genes from phytopathogenic fungus. Afr J Microbiol Res 2016;10:1292-305.
9. Blair DE, Hekmat O, Schüttenkopf AW, Shrestha B, Tokuyasu K, Withers SG, et al. Structure and mechanism of chitin deacetylase from the fungal pathogen Colletotrichum lindemuthianum. Biochemistry 2006;45:9416-26.
10. Armstrong GM, Armstrong JK. Formae speciales and races of Fusarium oxysporum causing wilt diseases. In: Cook R, editor. Fusarium: Diseases, Biology and Taxonomy University Park. Pennsylvania: Penn State University Press; 1981. p. 391-9.
11. Marentes-Culma R, Orduz-Díaz LL, Coy-Barrera E. Targeted metabolite profiling-based identification of antifungal 5-α-alkylresorcinols occurring in different cereals against Fusarium oxysporum. Molecules 2019;24:E770.
12. Di X, Cao L, Hughes RK, Tintor N, Banfield MJ, Takken FL, et al. Structure-function analysis of the Fusarium oxysporum avr2 effector allows uncoupling of its immune-suppressing activity from recognition. New Phytol 2017;216:897-914.
13. Beckman CH, Mueller WC. Response of xylem parenchyma cells in tomato to vascular infection by Fusarium oxysporum E1p. Lycopersici. Phytopathology 1987;77:1692-3.
14. Houterman PM, MA L, van Oojjen G, de Vroomen MJ, Cornelissen BJ, Takken FL, et al. The effector protein avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. Plant J 2009;58:970-8.
15. Wang Z, Han Q, Zi Q, Lv S, Qiu D, Zeng H, et al. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaportha oryzae. PLoS One 2017;12:e0175734.
16. Templeton MD, Lamb CJ. Elicitors and defense gene activation. Plant Cell Environ 1988;11:395-401.
17. Liu M, Duan L, Wang M, Zeng H, Liu X, Qiu D, et al. Crystal structure analysis and the identification of distinctive functional regions of the protein elicitor mohrip2. Front Plant Sci 2016;7:1103.
18. Chen M, Zhang C, ZI Q, Qiu D, Liu W, Zeng H, et al. A novel elicitor identified from Magnaportha oryzae triggers defense responses in tobacco and rice. Plant Cell Rep 2014;33:1865-79.
19. Mendoza-Mendoza A, Berndt P, Djamai A, Weise C, Linne U, Marahiel M, et al. Physical-chemical plant-derived signals induce differentiation in Ustilago maydis. Mol Microbiol 2009;71:895-911.
20. Wahl R, Wippel K, Goos S, Kämper J, Sauer N. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol 2010;8:e1000303.
21. Steinberg G, Perez-Martin J. Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol 2008;18:61-7.
22. Usha T, Shannugarajan D, Goyal AK, Kumar CS, Mittika SK. Recent updates on computer-aided drug discovery: Time for a paradigm shift. Curr Top Med Chem 2017;17:3296-307.
23. Chandran D, Leena KP, Prathap M, Jinsha MJ, Jilsha G. In silico drug design and molecular docking studies of some novel benzothiazole derivatives as anti-cancer and anti-inflammatory agents. Int J Pharm Sci Pharm Sci 2014;6:203-8.
24. Ravi SP, Shishikes KT, Shikha S, Somenath G, Sunil KR, Priya S. Homology modelling and molecular docking study of organophosphates and pyrethroids in terms of potential toxicity. Int J Pharm Sci Pharm Sci 2014;9:9-11.
25. Dhivya S, Sureshkumar C, Vijayakumar B, Srivinasaan N. Pharmacophore based screening of epicatechin against colon cancer. Int J Pharm Sci Drug Res 2012;4:123-5.