MYCN-amplified neuroblastoma maintains an aggressive and undifferentiated phenotype by deregulation of estrogen and NGF signaling

Johanna Dzieran*, Aida Rodríguez García*, Ulrica Kristina Westermark, Aine Brigette Henley, Elena Eyre Sánchez, Catarina Träger, Henrik Johan Johansson, Janne Lehtiö, and Marie Arsenian-Henriksson

*Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; †Department of Oncology-Pathology, Karolinska Institutet, SE-171 21 Solna, Sweden; and ‡Clinical Proteomics Mass Spectrometry, Science for Life Laboratory, SE-171 77 Stockholm, Sweden

Neuroblastoma (NB) is a remarkably heterogeneous childhood tumor of the sympathetic nervous system with clinical behavior ranging from spontaneous regression to poorly differentiated tumors and metastasis. MYCN is amplified in 20% of cases and correlates with an undifferentiated, aggressive phenotype and poor prognosis. Estrogen receptor alpha (ERα) and the nerve growth factor (NGF) receptors TrkA and p75 are involved in neuronal differentiation and survival. We have previously shown that MYCN, via miR-18a, targets ERα in NB cells. Here, we demonstrate that interference with miR-18a or overexpression of ERα is sufficient to induce NGF signaling and to modulate both basal and NGF-induced neuronal differentiation in MYCN-amplified NB cells. Proteomic analysis confirmed an increase of neuronal features and showed that processes linked to tumor initiation and progression were inhibited upon ERα overexpression. Indeed, ectopic ERα expression was sufficient to inhibit metabolic activity and tumorigenic processes, including glycolysis, oxidative phosphorylation, cell viability, migration, and anchorage independent growth. Importantly, ERα overexpression reduced tumor burden in NB mouse models and high ERα levels were linked to improved survival in patients. In addition to ERα, several other nuclear hormone receptors (NHRs), including the glucocorticoid and the retinoic acid receptors, correlated with clinical markers for favorable and low-stage NB disease. Our data suggest that MYCN targets ERα and thereby NGF signaling to maintain an undifferentiated and aggressive phenotype. Notably, we identified the estrogen–NGF cross-talk, as well as a set of other NHRs, as potential prognostic markers and targets for therapeutic strategies against NB.

N euroblastoma (NB), the most common solid malignant extracranial childhood tumor, develops from sympathetic precursor cells of neural crest origin. The etiology is unknown and the disease has a very heterogeneous clinical pattern ranging from spontaneous regression or maturation to widespread aggressive incurable disease. Neuroblastoma accounts for about 8–10% of all cases of childhood cancer and is the cause of 12–15% of cancer-related childhood mortality (1–3). About half of the affected children have a localized low-risk disease while the other half is diagnosed with a metastatic high-risk NB (3–5). Interestingly, there is a special group, 4S, of metastatic NB in some children below the age of 12 mo, which is characterized by an increased incidence of spontaneous regression and high survival (1, 2). However, even today, metastatic high-risk NB is difficult to cure despite multimodal therapy, resulting in a 5-y survival rate of around 50% (1, 2). Genomic amplification of MYCN is the genetic aberration most consistently associated with poor outcome and is detected in ~20% of all NB cases (1, 2). This strongly correlates to an undifferentiated phenotype as well as to high-risk disease and poor prognosis (7, 8). MYCN is a member of the MYC family of transcription factors, which are key regulators of a broad range of fundamental cellular processes, including survival, proliferation, and differentiation, many of which are linked to tumor initiation and progression (9, 10). During normal development, high MYCN expression is restricted to embryogenesis and to the forebrain, hindbrain, and kidneys in newborn mice. In contrast, its expression levels are generally very low in tissues of adult mice except in developing B cells (11). In high-risk NB without MYCN amplification, expression of MYC or MYC target genes is frequently enhanced (12), underlining the important role of MYC family signaling during NB tumorigenesis.

A relatively high number of low-risk NBs show a notable ability to spontaneously differentiate or regress (9, 13). Because of this, a considerable research effort has been made to find differentiation-inducing agents for NB cells. Retinoic acid is currently used as a maintenance therapy to treat minimal residual disease for high-risk patients resulting in significantly improved event-free survival (EFS) (14, 15). Importantly, interference with MYCN signaling results in the inhibition of proliferation and in the induction of terminal differentiation of neuronal cells (16, 17). In line with this, retinoic acid-induced differentiation is preceded by the down-regulation of MYCN and induction of nerve growth factor (NGF) receptors (17). NGF is a well-known and powerful mediator of neuronal differentiation and is up-regulated during maturation of neurons (18).

Significance

High-risk neuroblastoma (NB), a cancer of the sympathetic nervous system, is challenging to treat. MYCN is frequently amplified in high-risk NB and is linked to an undifferentiated phenotype and poor prognosis. Estrogen and nerve growth factor (NGF) are inducers of neural differentiation, a process associated with a favorable disease. We show that MYCN suppresses estrogen receptor alpha (ERα) and thereby NGF signaling and neural differentiation. ERα overexpression is sufficient to interfere with different tumorigenic processes and tumor growth. In patients with NB, ERα expression correlates with several clinical markers for good prognosis. Importantly, not only ERα but also the majority of other nuclear hormone receptors are linked to favorable NB, suggesting a potential prognostic and therapeutic value for these proteins.

Author contributions: J.D., U.K.W., and M.A.H. designed research; J.D., A.R.G., U.K.W., A.B.H., and H.J.J. performed research; J.L. contributed new reagents/analytic tools; J.D., U.K.W., A.B.H., E.E.S., C.T., and M.A.H. analyzed data; and J.D. and M.A.H. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1Present address: Department of Translational Science, Swedish Orphan Biovitrum AB, SE-112 76 Stockholm, Sweden.

2Present address: Sprint Bioscience AB, SE-14157 Huddinge, Sweden.

3To whom correspondence should be addressed. Email: Marie.Arsenian.Henriksson@ki.se.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710901115/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1710901115

PNAS | Published online January 26, 2018 | E1229–E1238
Additionally, expression of the NGF receptors, TrkA and p75NTR, is linked to a good prognosis as well as to spontaneous differentia
tion and regression in NB and negatively correlates with MYCN amplification (19–21). Despite the fact that estrogen and/or its receptors have the ability to promote tumorigenesis in several other cancer types, including breast carcinoma (22–26), we have previously shown that estrogen receptor alpha (ERα) gene expression is associated with improved survival in patients with NB (27). ERα is one of 48 members of the human nuclear hormone receptor (NHR) family of transcription factors, which are activated by a broad range of different lipophilic ligands, e.g., steroids and thyroid hormones (28, 29). Once ERα is activated by its ligand estradiol, it shuttles to the nucleus to regulate gene expression by binding to specific estrogen response elements (EREs). In addition to regulating gene expression, ERs are able to directly modulate the activity of several signaling pathways by modifying proteins involved in, e.g., AKT (30) or β-catenin (31) signaling.

Our group has previously demonstrated that MYCN-amplified (MNA) NB cells in part maintain their undifferentiated phenotype by the up-regulation of microRNAs (miRNAs) of the miR17–92 cluster (27). We further showed that miR-18a and/or other members of this miRNA family interfere with the expression of ERα as well as with additional NHRs. Interestingly, we found that knockdown of miR-18a resulted in an up-regulation of the ERα or glucocorticoid receptor (GR) is sufficient to induce neuronal differentiation in MNA NB cells (27, 32). In line with this, ERα is known to act as a neuroprotective factor and an inducer of differentia
tion in neuronal cells (17). We therefore hypothesized that ERα is important for the induction of a neuronal-like phenotype in NB cells and that this increased differentiation promotes a phenotype closer to low-risk NB. This study aimed to elucidate the effect of ectopic ERα expression on functional processes typically involved in progression and maintenance of MNA NB.

Results

MiR-18a Interference or Ectopic Expression of ERα Enhances NGF-Mediated Neuronal Differentiation by Up-Regulation of p75NTR and TrkA. We have previously shown that knockdown of miR-18a is sufficient to increase expression of ERα and to induce profound neuronal differentiation in the MNA NB cell line SK-N-BE(2) when cultured in medium containing phenol red and 10% normal FBS. In addition, we observed similar effects after ectopic expression of the miR-18a target ERα (27). Normal FBS contains several cytokines and growth factors, including the ERα ligand 17β-estradiol (E2), and phenol red has structural simi
larity to estradiol. Thus, we hypothesized that ERα is important for the induction of neuronal differentiation in SK-N-BE(2) cells and that this increased differentiation promotes a phenotype closer to low-risk NB. This study aimed to elucidate the effect of ectopic ERα expression on functional processes typically involved in progression and maintenance of MNA NB.

Processes Linked to Tumorigenesis Are Down-Regulated in ERα Overexpressing Cells as Shown by Quantitative Mass Spectrometry-Based Proteomics. Our in vitro data indicated that overexpression of ERα is sufficient to induce a more differentiated phenotype in MNA SK-N-BE(2) NB cells. Well-differentiated tumor cells are usually linked to a less aggressive phenotype in cancer. We therefore performed a high-resolution quantitative proteomics analysis (SI Appendix, Fig. S3A) to obtain a more detailed molecular view of the observed differences between the BE(2) EV and BE(2) ESRI #1 cells and to identify promising candidates for targeted therapeutic intervention. In total, 9,711 proteins were identified and quan
tified (Dataset S1), of which 1,395 were significantly up-regulated (>1.2-fold change; P < 0.05) and 1,542 were significantly down-regulated (<0.833-fold change; P < 0.05) in BE(2) ESRI #1 cells compared with the EV control (SI Appendix, Fig. S3A and Dataset S2). The proteomic data were validated using Western blot analysis for ERα and six other proteins, all of which showed a similar regul
tion as found in the proteomic data (SI Appendix, Fig. S3A and B). The gene ontology (GO) term enrichment analysis revealed several relevant GO terms for up-regulated (Fig. 2 and SI Appendix, Fig. S4A) as well as down-regulated (SI Appendix, Fig. S4B and C) proteins in BE(2) ESRI #1 cells, as highlighted. Among the up-regulated hits were the GO terms “axon guidance,” “asymmetric synapse,” and “neuron projection” as well as several processes which suggest reduced metabolic activity and an interference with tumorigenic processes, such as proliferation and cell motility. These findings supported our observation that overexpression of ERα is sufficient to induce neuronal differentiation in SK-N-BE(2) cells. The induction of neuronal differentiation by ectopic expression of ERα was confirmed in a second ERα-overexpressing clone, BE(2) ESRI #2 (SI Appendix, Fig. S3B), and similar to BE(2) ESRI #1, the experiment showed significant up-regulation of p75NTR (SI Appendix, Fig. S5B). Furthermore, the levels of the six different proteins analyzed for the validation of the proteomics were similar in both BE(2) ESRI1 clones (SI Appendix, Fig. S3B). A variety of NB cell lines, including SK-N-BE(2), consist of different subtypes,
substrate (S), neuronal (N), and intermediate (I) type (which has characteristics of both subtypes). N-type and I-type cells can transdifferentiate into the other subtypes (37, 38). We observed that in comparison with the BE(2) ESR1 #1 and #2 cells, the BE(2) EV control cells were flatter and more tightly attached (Fig. 1A and SI Appendix, Fig. S5A), indicating that they have a larger population of substrate adherent (S type) cells, which are also described as glial or Schwann cell-like cell types. This observed morphological shift from S to N type in BE(2) ESR1 cells was confirmed by real-time PCR analysis, showing increased gene expression of the neural differentiation markers neuropeptide Y (NPY) and tyrosine hydroxylase (TH) (Fig. 3A) and decreased levels of the glial cell markers S100 calcium binding protein B (S100B) and vimentin (VIM) (Fig. 3B). Furthermore, using immunofluorescence, we observed an increased percentage of cells positive for the neural differentiation marker TH and a reduction in the number of cells positive for the glial differentiation markers VIM and S100A6 (Fig. 3C), which was reflected in similar regulations in the proteomic data (SI Appendix, Fig. S5C).

ERα Interferes with Cell Viability but Potentiates Prosurvival Stimuli by NGF. We have previously shown that ectopic expression of ERα interferes with basal proliferation of SK-N-BE(2) cells (27). In line with these findings, the enrichment analysis of the proteomic data presented in this study revealed a significant probability for up-regulated proteins belonging to the GO terms "positive regulation of programmed cell death" and "negative regulation of cell proliferation." We thus analyzed the effect of ERα overexpression on the cell viability of MNA NB cells. BE(2) ESR1 #1 exhibited noticeably slower growth dynamics than their BE(2) EV counterpart (SI Appendix, Fig. S6A), resulting in a more than fourfold significant decrease in cell number after 7 d in culture. Inhibition of ERα with fulvestrant led to significantly increased cell viability in both BE(2) ESR1 clones compared to EV controls (Fig. 2).
with the EV control cells (Fig. 4A). In accordance with the cell counting experiment (SI Appendix, Fig. S6A), overexpression of ERα resulted in a significantly reduced cell viability of BE(2) ESR1 #1 and #2 cells compared with BE(2) EV cells as analyzed by WST-1 assay. Treatment with NGF alone or in combination with E2 significantly increased cell viability of BE(2) ESR1 #1 cells, whereas the EV control and BE(2) ESR1 #2 cells only showed a minor response to the treatments (Fig. 4B and SI Appendix, Fig. S6B). EdU incorporation and a cell death ELISA showed that proliferation and cell death rates of BE(2) EV and ESR1 #1 cells approached similar levels when treated with E2 and/or NGF (SI Appendix, Fig. S6C and D). This was due to a weak but significant increase in proliferation and a concomitant decrease in cell death of BE(2) ESR1 #1 cells. Together, our results demonstrate that ectopic ERα expression is sufficient to markedly reduce cell viability, which in part can be rescued by treatment with NGF and E2.

Overexpression of ERα Inhibits Functional Features Typically Involved in Tumorigenesis and Malignant Transformation. A differentiated cell morphology is usually linked to a less aggressive phenotype and an improved prognosis in several cancer types. This, together with our findings from the proteomic analysis, led us to ask whether ectopic expression of ERα and its crosstalk with NGF signaling interferes with cellular processes, which contribute to malignant transformation and tumor aggressiveness. We indeed found that ERα strongly interfered with the ability of SK-N-BE(2) cells to grow anchorage independently, which was echoed by a robust decrease in both colony number and size of BE(2) ESR1 cells (Fig. 5A and SI Appendix, Fig. S7A–C) in comparison with the control BE(2) EV cells. Treatment with NGF and/or E2 did not alter the colony formation capacity of the BE(2) EV cells significantly. In contrast, BE(2) ESR1 cells showed increased colony numbers (SI Appendix, Fig. S7A and C) and, in the case of clone 1, also formed larger colonies (SI Appendix, Fig. S7D and E).

Fig. 3. Enhanced estrogen signaling induces a shift toward neuronal like cells. SK-N-BE(2) cells overexpressing ERα [BE(2) ESR1 #1] or transduced with an empty vector as control [BE(2) EV] were treated with EtOH, E2, NGF, or E2 and NGF. (A) Neuronal differentiation (NPY and TH) and (B) glial cell (S100B and VIM) markers were assessed after 9 d in culture using real-time PCR analysis with B2M as reference gene. (C) Immunofluorescence analysis was used to stain the neuronal differentiation marker TH (green) and the glial cell markers vimentin (green) and S100A6 (red) after a 3-d incubation. The nuclei were visualized using DAPI (blue). Real-time PCR results are shown as mean ± SEM of three independent experiments and significances were determined using a Student’s t test. Significances are highlighted with *P < 0.05, **P < 0.01, or ***P < 0.001. Microscopy pictures are representatives from three independent experiments.

Fig. 2. Quantitative mass spectrometry-based proteomics indicate a deregulation of processes linked to tumorigenesis in NB cells overexpressing ERα. Cells were seeded and incubated for 48 h before harvesting and preparation of proteins for proteomic analysis. Gene ontology (GO) enrichment analysis (www.geneontology.org/page/go-enrichment-analysis) was used to identify GO biological processes and for up-regulated (>1.2, P < 0.05) proteins in BE(2) ESR1 #1 cells compared with BE(2) EV cells. Fold enrichment of GO terms compared with all genes identified in the proteomic analysis is shown as bars, adjusted P values as black dots. The dark colored bars highlight processes, which were subsequently analyzed in more detail. Enrichment of other up-regulated and down-regulated GO terms in BE(2) ESR1 #1 cells are shown in SI Appendix, Fig. S4.
when treated with NGF and/or E2 compared with control treatment, albeit not reaching the levels of the BE(2) EV cells (SI Appendix, Fig. S7A).

Cell migration and invasion are crucial processes during metastasis and strongly contribute to the malignant transformation of a tumor cell. The first step during these processes is the detachment of the tumor cell from the cell network. Interactions with components from the extracellular matrix provide anchorage for cell motility and invasion (39). A transwell migration assay revealed that the BE(2) EV control cells showed a significantly higher ability to migrate compared with the ERα-overexpressing cells (Fig. 5B and SI Appendix, Fig. S7G). Treatment with E2 resulted in a minor inhibition of cell migration in both control as well as in BE(2) ESR1 #1 cells (Fig. 5B). Furthermore, invasion was decreased in cells overexpressing ERα compared with control cells (Fig. 5C); however, when calculated as percentage of migration, it was similar in both cell lines (SI Appendix, Fig. S7F).

The Glycolytic Rate and Oxidative Phosphorylation Are Reduced in MNA Neuroblastoma Cells Overexpressing ERα. Metabolic processes are frequently altered in cancer to provide sufficient energy and building blocks for rapidly dividing tumor cells (9). The data analysis of our quantitative mass spectrometry-based proteomics (SI Appendix, Fig. S4B) indicated that several metabolic processes as well as mitochondrial organization were deregulated in BE(2) ESR #1 cells. In addition, we have previously demonstrated that neural differentiation and metabolic changes are linked in NB (40). Therefore, we next analyzed the two main...
energy-producing cellular processes, glycolysis and oxidative phosphorylation (OXPHOS), using the Seahorse XF96 extracellular flux analyzer. Several glycolytic parameters can be identified through the reintroduction of glucose following a starving period before treatment with two specific inhibitors, oligomycin (an ATP synthase inhibitor, therefore inhibiting OXPHOS) and 2-deoxyglucose (2-DG), a glycolysis inhibitor. Interestingly, glycolysis, maximal glycolytic capacity, and the glycolytic reserve were all significantly reduced in cells overexpressing ERα and treatment with E2 and NGF had no additional effect on any of these parameters (Fig. 6A and SI Appendix, Fig. S8A). To study OXPHOS functionality, oligomycin, FCCP (which uncouples the respiratory chain from the ATP synthase), and the respiratory chain complex I and III inhibitors rotenone and antimycin A, respectively, were used. We found that independent of treatment, all respiratory parameters were reduced in both BE(2) ESR1 clones compared with control cells (Fig. 6B and SI Appendix, Fig. S8B). Considering the clear effect in the functional assays, we refined the analysis of our proteomic data to identify significantly (P < 0.05) up- or down-regulated proteins in these processes (Dataset S3). We focused on glycolysis, the citric acid cycle (SI Appendix, Fig. S9A), an important process to deliver energy equivalents to the electron transport chain (ECT), and the respiratory chain composed of the ECT and OXPHOS (SI Appendix, Fig. S9B). Importantly, the majority of affected proteins were down-regulated in all three processes. In addition, the enzymes in the first steps of fatty acid degradation were also down-regulated in BE(2) ESR1 #1 cells (SI Appendix, Fig. S9C). This process provides acetyl-CoA for the citric acid cycle and therefore serves as an important energy source. In accordance with our proteomic data (SI Appendix, Fig. S9C) and with our previous observations in NB cells differentiated by, e.g., interference with MYCN (40), we observed an accumulation of lipid droplets in BE(2) ESR1 cells (SI Appendix, Fig. S9D), suggesting a reduced utilization of fatty acids.

Our in vitro data demonstrated that overexpression of ERα is sufficient to induce neuronal differentiation and to interfere with tumorigenic processes in MYCN-amplified NB cells in vitro. To further validate these results, we performed key experiments in a second MYCN-amplified NB cell line, IMR32, transduced with a vector expressing the ERα cDNA (IMR32 ESR1) or with an empty control vector (IMR32 EV). Similar to our data shown above, IMR32 cells with ectopic ERα expression were characterized by induction of differentiation, which was further enhanced by activation of estrogen signaling (SI Appendix, Fig. S10A). Importantly, as in BE(2) ESR1 cells, E2 treatment resulted in ERα dependent up-regulation of p75NTR in IMR32 ESR1 but not in the control IMR32 EV cells (SI Appendix, Fig. S10B). Finally, ERα expression significantly reduced cell viability in both untreated and especially in E2-treated cells and this effect could be inhibited by the addition of the ERα inhibitor fulvestrant (SI Appendix, Fig. S10C). Notably, cell migration was also significantly inhibited by E2 (SI Appendix, Fig. S10D).

ERα Reduces Tumor Burden in Vivo. To investigate whether our in vitro results were transferrable to in vivo conditions, we inoculated BE(2) EV and BE(2) ESR1 #2 cells into the groin fat pad of nude

Fig. 6. Important energy producing metabolic processes are down-regulated in SK-N-BE(2) cells overexpressing ERα. BE(2) EV and BE(2) ESR1 #1 and #2 cells were left untreated or incubated with E2 and NGF (E+N) for 24 h. (A) The extracellular acidification rate (ECAR) was analyzed to assess the glycolytic activity using different glycolytic parameters. (B) The oxygen consumption rate (OCR) is used as readout for respiration as analyzed with different respiratory parameters. The results are shown as average ± SEM of three independent experiments and significances were calculated using a two-way ANOVA and are highlighted with *P < 0.05, **P < 0.01, or ***P < 0.001.

Fig. 7. ERα reduces tumor burden in vivo. BE(2) EV or BE(2) ESR1 were injected together with NIH3T3 fibroblasts into the groin fat pad of male Naval Medical Research Institute (NMRRI)-Foxn1nu nude mice. (A) Tumor volume is shown for days 4–14 after inoculation. (B) Tumor weight and (C) pictures of the tumors at final day 14. (D) Expression of Erα and the neuronal differentiation (NPY) and TH or glial cell (ST008 and VIM) markers were assessed using real-time PCR analysis with 18S as reference gene. The results in the graphs are shown as average ± SEM of five BE(2) EV and four BE(2) ESR1 #2 tumors, respectively. Significances were calculated using a (A) two-way ANOVA or (B and D) Student’s t test and are shown as *P < 0.05, **P < 0.01, or ***P < 0.001.
mice. Here, we demonstrate that overexpression of ERα indeed robustly inhibited tumor growth of MYCN-amplified NB cells in vivo (Fig. 7A), which was reflected in significantly reduced tumor weight and size (Fig. 7B and C). Further, ERα overexpression was confirmed (Fig. 7D) and in line with our in vitro data (Fig. 3), the neuronal differentiation markers NPY and TH were up-regulated, while the glial cell markers VIM and S100B were suppressed in ERα-overexpressing tumors (Fig. 7D).

To validate that ERα inhibits neuroblastoma growth in vivo, we performed a second xenograft experiment using SK-N-BE(2) cells containing a Tet-inducible ERα expression system (SI Appendix, Fig. S11). Under cell culture conditions, doxycycline induced overexpression of ERα, whereas no expression was observed in BE(2) TetEV cells (SI Appendix, Fig. S11A). However, when analyzing the resulting tumors from the xenograft experiment, we noticed that the Tet-inducible system was leaky in vivo, as similar ERα expression levels were seen in mice with BE(2) TetESR1 cells whether untreated or induced with doxycycline. Mouse Ers levels were consistently low in all four groups (SI Appendix, Fig. S11A). Since human ERα levels were similar in doxycycline-treated versus untreated tumors, we pooled the two groups of mice bearing TetESR1 or TetEV tumors, respectively. Our results show that ERα also reduced tumor growth in this model (SI Appendix, Fig. S11B), albeit less efficiently than in the BE(2) ESR1 model (Fig. 7).

Expression of ERα and Other NR1s Correlates with Favorable Prognosis in Patients with NB. Our in vitro and in vivo data demonstrated that overexpression of ERα was sufficient to induce neuronal differentiation and to interfere with tumorigenesis. In our previous study, we showed that ERα mRNA expression correlates with improved EFS in patients with NB and that ERα is down-regulated by MYCN in MNA NB cells in vitro (27). MYCN-amplified NBs are classified as high-risk tumors. Here we extended our analysis and found an inverse correlation between MYCN expression quartiles (SI Appendix, Fig. S12A) and ERα mRNA levels, being lowest in MNA NB in a cohort of 498 patients with NB (Fig. S4). Moreover, ERα levels were significantly reduced in tumors of the international NB staging system (INSS) stages 3 and 4 compared with the favorable stages 1 and 2, as well as 4S (Fig. S8B). Additionally, overall survival (OS) and EFS of patients with NB significantly decreased with reduced ERα expression (SI Appendix, Fig. S12B and C), and low-risk patients with NB exhibited higher ERα mRNA levels than high-risk patients (Fig. 8C). Furthermore, ERα expression was reduced in children with NB above the age of 18 mo (Fig. S8D), age being another independent prognostic factor (1, 2). We next compared ERα expression levels in MNA versus non-MNA tumor samples with regard to survival (Fig. 8E and SI Appendix, Fig. S12D). ERα levels were generally lower in MNA patients but there was no difference between surviving versus diseased patients. Interestingly, ERα mRNA expression was significantly lower in patients who died of non-MNA NB compared with those still alive. This decreased expression was similar to the levels found in MNA tumor samples. These data suggest that MYCN suppresses ERα expression to a level at which it cannot exert its antitumorigenic effects. Finally, based on our observation that ERα can induce p75TR expression in vitro (Fig. 1B–E and SI Appendix, Fig. S10B), we analyzed expression of the genes encoding these proteins in the NB patient dataset. Notably, we observed a strong positive Spearman correlation between p75TR and ERα mRNA gene expression (SI Appendix, Fig. S12E), and p75TR was further linked to a favorable INSS stage (SI Appendix, Fig. S12F).

Taken together, our in vitro, in vivo, and patient data analyses suggest that ERα exerts antitumorigenic effects in NB, which are suppressed by MYCN. We recently demonstrated that MYCN apart from ERα, directly targets an additional five members of the NHR family and that high mRNA expression of these genes was linked to a favorable overall survival (32). Importantly, we showed that, similar to ERα (Figs. 1 and 3 and SI Appendix, Figs. 8B–D, 9B, and 11B).
Nine NRs in group 1 (Fig. 9), NCOA1 was linked to favorable disease according to INSS (SI Appendix, Fig. S13D), age, and risk status (Dataset S5). The latter two criteria also correlated to NCOA2, while NCOA3 did not show any relation to these prognostic groups (Datasets S4 and S5). Collectively, our patient data analysis clearly links high expression of ERα and a large set of the other NRs to low-stage NB with favorable outcome.

Discussion

Neuroblastoma is a highly heterogeneous childhood tumor with limited treatment strategies and low survival rates for high-risk patients (5). MYCN amplification (7, 8) but also hyperactive MYC signaling (12) correlates to an undifferentiated and more aggressive tumor type and to decreased survival. Here, we extend our previous findings showing that MYCN-amplified NBs, via the miR-17–92 cluster, maintain an undifferentiated phenotype by interference with the expression of ERα (27) (Fig. 1 and SI Appendix, Figs. S1 and S5).

We demonstrate that ERα–induced differentiation (Figs. 1 and 2) is reflected in a shift from a glial- (S type) to a neuronal-like (N type) phenotype (Fig. 3) and in increased expression of TrkA and p75NTR (Fig. 1). The NGF receptors p75NTR and TrkA are neuronal differentiation markers with the latter being a powerful indicator for a good prognosis (17) and believed to be a major factor during spontaneous regression in patients with NB (13). We further demonstrate that ERα interfered with the undifferentiated phenotype of the MNA NB cell line SK-N-BE(2) by promoting NGF-induced neuronal differentiation (Fig. 1). We hypothesize that this observation is TrkA dependent, since this effect is also prominent in BE(2) ESR1 cells treated with NGF alone. Our results are in line with other studies, which suggest that estrogens are able to modulate the synthesis and regulation of TrkA and p75NTR and their ligand NGF in sensory neurons (45–49). Furthermore, the effects of estrogen in inducing differentiation as well as neurotrophic and neuroprotective effects in various different neuronal cells (50–54) and in two NB cell lines (55–57) are documented. Activated estrogen signaling has also been shown to increase NGF-induced neuronal outgrowth in PC12 pheochromocytoma cells (58, 59).

However, until the present study, little was known about possible collaborative effects of estrogen and NGF signaling in NB. MYC family members regulate various normal cellular processes, and when activated, are involved in different hallmark cancers (60). We addressed whether the observed differentiation induction in ERα-overexpressing SK-N-BE(2) cells resulted in a less malignant phenotype. Indeed, our proteomic data demonstrated that ERα overexpression interfered with processes linked to tumor growth and malignancy (Fig. 2 and SI Appendix, Fig. S4). Resistance to apoptotic stimuli (survival) and induction of continuous proliferation are important and early steps of carcinogenesis (60). Functional assays confirmed increased basal cell death rates as well as inhibition of proliferation (Fig. 4 and SI Appendix, Fig. S6) in BE(2) ESR1 cells. NGF exerts neuroprotective functions (17, 18) and, as expected, increased cell viability in BE(2) ESR1 cells. The less neuronal-like BE(2) EV control cells, on the other hand, did not respond to NGF treatment. Together, the MNA NB cells overexpressing ERα seem to mimic low-stage NBs, which show enhanced cell viability and induction of terminal differentiation upon treatment with NGF (61).

We next investigated whether the reduced cell viability and the enhanced basal and NGF-induced differentiation in BE(2) ESR1 cells had any effect on cellular processes involved in tumor progression. The ability to grow anchorage independently is a good indicator for the tumorigenic and metastatic potential (62) and we therefore performed in vitro migration and anchorage-independent growth assays. Ectopic expression of ERα was sufficient to interfere with both colony formation as well as motility (Fig. 5 and SI Appendix, Fig. S7), supporting our hypothesis that up-regulation of ERα interferes with a more malignant phenotype. However, treatment with NGF resulted not only in antitumorigenic effects such as induction of differentiation, but also in weak potentially protumorigenic effects, as observed in slightly increased cell viability and anchorage-independent growth. Both NGF and ERα are
known to promote neuronal differentiation and to exert neuroprotective as well as neurotrophic functions, thereby enhancing survival and proliferation of neuronal cells (see discussion above). We hypothesize that the observed increase in survival in NGF-treated BE(2) ESR1 cells is due to a more neuronal like phenotype and thus potentially less aggressive NB cells.

Recently, increasing evidence has suggested that tumors can have different bioenergetic phenotypes with OXPHOS moving into the spotlight of cancer metabolism. While some tumors mainly rely on aerobic glycolysis or OXPHOS, others have been shown to be able to adjust their metabolic program according to their corresponding needs (63). The observed changes in the morphological and functional phenotype of Sk-N-BE(2) cells with overexpression of ERα were accompanied by a reduced activity and decreased overall levels of proteins involved in the two main energy-generating cellular processes, glycolysis and OXPHOS (Fig. 6 and SI Appendix, Fig. S8). While this could be a consequence of a reduced demand of energy and metabolic building blocks, BE(2) ESR1 cells seemed to be closer to their maximal capacity in general, as reflected by low glycolytic and, especially, respiratory reserves. This is in agreement with our previous findings that inhibition of MYCN results in impaired glycolysis, TCA cycle, respiratory chain as well as fatty acid β-oxidation, which in turn can be directly linked to an accumulation of lipid droplets in the cytoplasm (40).

Altogether, our in vitro data demonstrate that ERα overexpression is sufficient to interfere with classical processes linked to tumorigenesis. Our key findings in BE(2) ESR1 cells were confirmed in a second MNA NB cell line, IMR32, in which ERα also exerted anti-tumorigenic effects (SI Appendix, Fig. S10). Importantly, we emphasized the biological importance of our in vitro findings in two different in vivo NB xenograft models (Fig. 7 and SI Appendix, Fig. S11).

Overall, our data suggest that ectopic expression of ERα and its crosstalk to NGF signaling can push MNA NB cells from an aggressive phenotype to one resembling low-risk NB. Intriguingly, those findings can be related to NB patient data; firstly, we found an inverse correlation between ERα and MYCN and a positive correlation between ERα and p75NGFR mRNA expression in patients with NB (Fig. 8A and SI Appendix, Fig. S12A and E), which was in accordance with our in vitro data showing that MYCN via miR-18a down-regulates ERα, which in turn can induce p75NGFR expression. Secondly, we showed that ERα can be linked to a good prognosis, as established by higher ERα expression levels in low INSS stages, higher age, and low-risk NB (Fig. 8). The results of our study extend prior findings from our group, which identified ERα and GR and four other NHRs (27, 32) as direct targets of MYCN and as proteins associated with improved survival in NB. Intriguingly, both ERα and GR are linked to induction of differentiation and to decreased cell viability. Since the observed effects were only partial, we hypothesized that several NHRs act in concert to promote neuronal differentiation and thereby interfere with tumorigenesis. In support, we found that high expression levels of the majority of NHRs can be linked to low INSS NB stages and/or to the favorable 4S stage (Fig. 9, SI Appendix, Fig. S13A, and Dataset S4) and that high mRNA expression for most of the 21 NB members in group 1 (favorable INSS stage, Fig. 9) were linked to lower age and low-risk status (Dataset S5). Additionally, the high mRNA levels of the NHR coactivators NCOA1 and NCOA2 also correlated to a favorable NB disease (Datasets S4 and S5) potentially by increasing the activity of NHRs, which may contribute to neural differentiation. Importantly, several human NHRs (e.g., NR1D1 (64), NR2E1 (65), NR5A1 (66), as well as RAR and RXR (67)); Table S3) are implicated in neurogenesis, maintenance, and a functional neuronal system. The significance of NHRs is further highlighted by the fact that 7 of 18 NHRs are linked to neuronal remodeling in Drosophila melanogaster (68). This in turn indicates that at least some of their functions as promoters and modulators of the nervous system are evolutionarily conserved. Further studies are needed to fully understand the role of NHRs in NB, to evaluate whether a NHRs score can be used as prognostic marker, and if this information can help in developing novel differentiating strategies for NB treatment.

In summary, our data suggest a mechanism which contributes to an undifferentiated phenotype in MYCN-amplified NB cells: MYCN-induced miR-18a down-regulates ERα and thereby interferes with estradiol and NGF-stimulated neuronal differentiation. We discovered that ERα overexpression is partly sufficient to overcome the malignant phenotype associated with MYCN overexpression both in vitro and in vivo. In addition, ERα enhances the expression of the NGF receptors TrkA and, after activation, p75NGFR, which are both crucial for NGF-induced differentiation. Importantly, we found that not only ERα but also several other NHRs, including GR and RARA as well as the coactivators NCOA1 and NCOA2, are linked to a favorable NB disease.

Together, our data suggest that MYCN down-regulates several NHRs in concert to suppress their cumulative effect on neuronal differentiation. In support, we identified a large group of NHRs, including ERα, with potential prognostic relevance. Importantly, this study provides insights into the ERα-NGF cross-talk and suggests that activation of ERα and/or NGF receptors could be a strategy to treat certain subtypes of NB.

Materials and Methods

Cell Culture. BE(2) EV and BE(2) ESR1 cells were maintained in DMEM:Nutrient Mixture F-12 medium (with 1-glutamine, without phenol red) (Thermo Fisher Scientific) supplemented with 10 mM HEPES, 1% penicillin/streptomycin, 1% nonessential amino acids (all from HyClone), 0.5% GlutaMax, and 10% charcoal-stripped FBS (Thermo Fisher Scientific) in a humidified environment at 37 °C and 5% CO2.

Analysis of Patient Data. For survival and correlation analysis, an NB patient dataset with RNA sequencing expression data (Tumor Neuroblastoma - SEQC - 498 - RPM - seq0nb1) from 498 patients placed on the R2 platform (https://hgserver1.amc.nl/) was used. Clinical and expression data of the genes of interest were extracted from the database and analyzed using GraphPad Prism software.

In Vivo Xenograft Experiments. The experimental procedures, housing, treatments, and analysis of the mice were in accordance with the guidelines of Karolinska Institutet and the ethical permit approved by the Swedish ethical committee Stockholms Norra Djurförsöksäkta Nämnd (ethical permit N71/15).

Statistical Analysis. If not stated otherwise, data are presented as the mean ± SEM of at least three independent experiments. Statistically significant differences of in vitro data were identified with Student t tests, one-way or two-way ANOVA (with Bonferroni’s multiple comparisons test), as indicated in the figure legends. Patient data were analyzed as indicated in the figure legends. Significances are highlighted with *P < 0.05, **P < 0.01, ***P < 0.001 and, for patient data, ****P < 0.0001.

Further information regarding cell culture, extracellular flux assay, Western blot, immunofluorescence staining, quantitative real-time PCR, basal cell viability assay, WST-1 cell viability assay, anchorage-independent growth, neural differentiation assay, transwell migration assay, Oli Red O staining of lipids, quantitative mass spectrometry-based proteomics, in vivo xenograft experiments, and analysis of patient data are described in SI Appendix.

ACKNOWLEDGMENTS. We thank Dr. G. Oliynyk for generously sharing expertise in Seahorse and proteomic analyses; K. Andersson for expert animal handling; several rotation students, especially O. Vickes, S. Hergenhan, and M. Jüttrner for experimental assistance; Dr. G. Oliynyk, Prof. S. Lain, and Associate Prof. C. M. Anderson (Genuinova) for critical reading of the manuscript; all members of the Wilhelm and Arsenian Henriksson laboratories for helpful discussions; and the ViruTech Core Facility at Karolinska Institutet for generation of lentiviral particles. This work was conducted with grants from the Lars Hierta Memorial Foundation, the Mary Bées’ Foundation for Childhood Cancer Research, the Anna Brita and Bo Casteberg Memorial Foundation (to J.D.), and from the Swedish Childhood Cancer Research Foundation, the King Gustaf V Jubilee Fund, and Karolinska Institutet (to M.A.H.). J.D. and A.R.G. were supported by postdoctoral research positions and C.T. by clinical research months from the Swedish Childhood Cancer Foundation. M.A.H. acknowledges a Senior Investigator Award from the Swedish Cancer Society.

Dzieran et al.
1. Irwin MS, Park JR (2015) Neuroblastoma: Paradigm for precision medicine. Pediatr Clin North Am 62:525-26.
2. Matthay KK, et al. (2016) Neuroblastoma. Nat Rev Dis Primers 2:16078.
3. Park JR, et al. (2017) Revisions to the international neuroblastoma response criteria: A consensus statement from the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol 35:2580-2587.
4. Schwab M, Westermann F, Hero B, Berthold F (2003) Neuroblastoma: Biology and molecular and chromosomal pathology. Lancet Oncol 4:472-480.
5. Maris JM, Hogarty MD, Baggett R, Cohn SL (2007) Neuroblastoma. Lancet 369:1026-1036.
6. Nickerson JH, et al. (2000) Favorable biology and outcome of stage IV-S neuroblastoma with supportive care or minimal therapy: A Children’s Cancer Group study. J Clin Oncol 18:487-486.
7. Brodeur GM (2003) Neuroblastoma: Biological insights into a clinical enigma. Nat Rev Cancer 3:199-216.
8. Cohn SL, et al. (2009) The international neuroblastoma risk group (INRG) classification system: An INRG task force report. J Clin Oncol 27:289-297.
9. Ruiz-Pérez MV, Henley AB, Arsenian-Henriksson M (2017) The MYCN protein in health and disease. Genes (Basel) 8:613.
10. Huang M, Weiss WA (2013) Neuroblastoma and MYCN. Cold Spring Harb Perspect Med 3:a014415.
11. Zimmerman KA, et al. (1986) Differential expression of myc family genes during murine development. Nature 319:780-783.
12. Fredlund E, Ringnér M, Maris JM, Páhlman S (2008) High Myc pathway activity and low stage of neuronal differentiation associate with poor outcome in neuroblastoma. Proc Natl Acad Sci USA 105:14094-14099.
13. Brodeur GM, Baggett R (2014) Mechanisms of neuroblastoma progression. Nat Rev Clin Oncol 11:704-713.
14. Matthay KK, et al. (2009) Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: A Children’s oncology group study. J Clin Oncol 27:1007-1013.
15. Matthay KK, et al. (1998) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. N Engl J Med 341:1165-1173.
16. Elmers M, Eisenman RN (2008) Myc’s broad reach. Genes Dev 22:2755-2766.
17. Westmark UK, Wilhelm M, Frezoules C, Henriksson MA (2011) The MYCN oncogene and differentiation in neuroblastoma. Semin Cancer Biol 21:256-266.
18. Sofroniew MV, Howe CL, M bible WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217-1281.
19. Hoeppner JC, Olszewski B, Sandstedt B, Kaplan DR, Påhlman S (1995) Association of neurotrophin receptor expression and differentiation in human neuroblastoma. Am J Pathol 147:102-113.
20. Kogner P, et al. (1993) Coexpression of messenger RNA for TRK protooncogene and neurofilament protein in a large cohort of patients with endometrioid endometrial cancer. Gynecol Oncol 49:131-138.
21. Nakagawara A, Arima M, Azar CG, Scavarda NJ, Brodeur GM (1992) Inverse repression of MYCN causes neuroblastoma in transgenic mice.
22. Deroo BJ, Korach KS (2006) Estrogen receptors and human disease. J Clin Invest 116:561-570.
23. Burns KA, Korach KS (2012) Estrogen receptors and human disease: An update. Arch Toxicol 86:1461-1504.
24. Wang L, Di Li (2014) BRCA1 and estrogen/vitamin E receptor in breast cancer: Where they interact? J Biol Sci 10:566-575.
25. Munoz J, Wheeler J, Kurzrock R (2015) Expression of estrogen and progesterone receptors across human malignancies: New therapeutic opportunities. Cancer Metastasis Rev 34:567-581.
26. Jongen V, et al. (2009) Expression of estrogen receptor-alpha and -beta and progesterone receptor-A and -B in a large cohort of patients with endometrioid endometrial cancer. Gynecol Oncol 112:537-542.
27. Lovén J, et al. (2010) MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci USA 107:1553-1558.
28. Maglich JM, et al. (2001) Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol 2:RESEARCH0029.
29. Zhang Z, et al. (2004) Genomic analysis of the nuclear receptor family: New insights into structure, regulation, and evolution from the rat genome. Genome Res 14:580-590.
30. Varea O, Escoll M, Diez H, Garrido JJ, Wandosell F (2013) Oestriadiol signalling through the Akt-mTOR/1861:1052-1064. Biochim Biophys Acta 1823.
31. Varea O, et al. (2009) Estradiol activates beta-catenin dependent transcription in neurons. PLoS One 4:e5153.
32. Ribeiro D, et al. (2016) Regulation of nuclear hormone receptors by MYCN-driven microRNAs impacts neuronal differentiation and survival in neuroblastoma patients. Cell Reports 16:979-993.
33. Berthois Y, Katzenellenbogen BA, Katzenellenbogen BS (1986) Phenol red in tissue culture media is a weak estrogen: Implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci USA 83:2496-2500.
34. Wakingel AK, O’Hara M, Bowler J (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res 51:3867-3873.
35. Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM (1997) Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 16:2895-2895.