Expansion of the hepatocellular carcinoma Milan criteria in liver transplantation: Future directions

Mihai-Calin Pavel, Josep Fuster

Mihai-Calin Pavel, Josep Fuster, HepatoBilioPancreatic Surgery and Transplant Unit, Department of Surgery, Digestive and Metabolic Diseases Institute, Hospital Clinic, University of Barcelona, Barcelona, Catalonia 08036, Spain

Josep Fuster, Barcelona-Clínica Liver Cancer Group (BCLC), Liver Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Universitat de Barcelona, Barcelona, Catalonia 08036, Spain

ORCID number: Mihai-Calin Pavel (0000-0003-2370-6842); Josep Fuster (0000-0002-1713-4262).

Author contributions: Both authors contributed equally to this manuscript’s conception, design, analysis and writing.

Supported by the Association Llavaneres contra el Càncer, No. IP004500 (to Fuster J).

Conflict-of-interest statement: Both authors declare no potential conflict of interest.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Revised: June 24, 2018
Accepted: June 30, 2018
Article in press: June 30, 2018
Published online: August 28, 2018

Abstract

Milan criteria are currently the benchmark related to liver transplantation (LT) for hepatocellular carcinoma. However, several groups have proposed different expanded criteria with acceptable results. In this article, we review the current status of LT beyond the Milan criteria in three different scenarios-expanded criteria with cadaveric LT, downstaging to Milan criteria before LT, and expansion in the context of adult living donor LT. The review focuses on three main questions: what would the impact of the expansion beyond Milan criteria be on the patients on the waiting list; whether the dichotomous criteria (yes/no) currently used are appropriate for LT or continuous survival estimations, such as the one of “Metroticket” and whether it should enter into the clinical practice; and, whether the use of living donor LT in the context of expansion beyond Milan criteria is justified.

Key words: Hepatocellular carcinoma; Milan criteria; Liver transplantation; Living donor liver transplantation; Expanded criteria; Downstaging

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: After more than 20 years since their first description, the Milan criteria still represent the benchmark in liver transplantation for hepatocellular carcinoma. This review focuses on three unresolved issues, those being: the impact of expansion beyond Milan criteria for patients on the liver transplant waiting list; whether the dichotomous criteria (yes/no) currently used are appropriate for liver transplantation or continuous survival estimations, such as the one of ”Metroticket” and whether
it should enter into the clinical practice; and, whether the use of living donor liver transplantation in the context of expansion beyond Milan criteria is justified.

Pavel MC, Fuster J. Expansion of the hepatocellular carcinoma Milan criteria in liver transplantation: Future directions. World J Gastroenterol; 2018; 24(32): 3626-3636 Available from: URL: http://www.wjgnet.com/1007-9327/full/v24/i32/3626.htm DOI: 10.3748/wjg.v24.i32.3626

INTRODUCTION

Nowadays, hepatocellular carcinoma (HCC) represents the second cause of cancer-related death in the world. Liver transplantation (LT) is an attractive option for treatment of HCC, giving that it simultaneously addresses the HCC and the cirrhotic liver, which is at risk for development of new tumors.

Since the introduction of the so-called Milan criteria (MC; single lesion ≤ 5 cm or up to three separate lesions, none larger than 3 cm) into clinical use, survival rates after LT for HCC have improved significantly. Today, the 5-year overall survival (OS) of patients within the MC reaches similar rates as those of nontumoral patients that, until this moment, were deemed to not benefit from this treatment. The decision on whether to expand the criteria depends on what number would be considered as acceptable lowest survival after LT by each transplant community.

The objectives of this article are to review the current literature related to the expansion beyond MC in the three described scenarios and to evaluate the relevant data linked to the issues presented above. We believe that the transplant with deceased donor grafts and the LDLT are marked by different characteristics, therefore we will discuss each one separately.

LT with deceased donor grafts in patients with HCC beyond MC

In the last years, it has become evident that the conventional LT (with cadaveric donors) for HCC beyond MC is not necessarily associated with worse results. Several authors have described modest expansions of the MC with acceptable OS and recurrence rates (see Tables 1 and 2). Giving all these results, Mazzaferró suggests that the tumor size and number used as criteria for transplantation should be defined at a regional
Table 1 Expanded criteria used for liver transplantation

Criteria	Type of donor	Detailed criteria	
UCSF[23]	Cadaveric	Solitary tumor ≤ 6.5 cm or ≤ 3 tumors with the largest ≤ 4.5 cm	
Up-to-seven[24]	Cadaveric/LDLT	Seven: sum of tumor number and size of the largest tumor without microvascular invasion	
Clinicas Universidad de Navara (CUN)[12]	Cadaveric	1 tumor ≤ 6 cm or ≤ 3 tumors with the largest ≤ 5 cm	
Toso[20]	Cadaveric	Total tumor volume ≤ 115 cm³ and AFP ≤ 400 ng/mL	
Hangzhou University[21]	Cadaveric	One of the following: Total tumor diameter ≤ 8 cm	
			or 2-4 tumors, ≤ 5 cm
Tokyo (5-5 rule)[25]	LDLT	Maximum 5 tumors ≤ 5 cm	
		≤ 10 tumors, ≤ 5 cm,	
		DCP§ ≤ 400 mAU/mL	
Kyushu University[26]	LDLT	Any number of tumors with diameter ≤ 5 cm or DCP§ ≤ 100 mAU/mL	
Asan[27]	LDLT	≤ 6 tumors, diameter ≤ 5 cm	
Samsung[28]	LDLT/cadaveric	≤ 7 tumors, diameter ≤ 6 cm, AFP ≤ 1000 ng/mL	
BCLC[29]	LDLT	1 tumor, ≤ 7 cm	
		3 tumors, ≤ 5 cm	
		5 tumors, ≤ 3 cm	
		Maintained response within Milan criteria during 6 mo after downstaging	

AFP: Alpha-fetoprotein; BCLC: Barcelona-Clinic Liver Cancer; DCP: Des-gamma-carboxy prothrombin; LDLT: Living donor liver transplantation; LT: Liver transplantation.

Table 2 Results after liver transplantation with expanded criteria

Ref.	Type	Patients, n (type)	Criteria (findings)	Survival, time (%)	Recurrence, time (%)	Factors for survival	Factors for recurrence
Yao et al[30], 2001	R	14 (MO)	UCSF (Histol)	5 yr (84.6)	-	pT4, total tumor diameter	-
Yao et al[31], 2007	P	38 (MO)	UCSF (Radiol)	5 yr DFS (93.6)	-	UCSF Vascular invasion	AFP > 1000 ng/mL
Onaca et al[32], 2007	R	129 (MO)	Onaca	5 yr DFS (63.9)	-	AFP > 200 ng/mL	Tumor > 6 cm
Herrero et al[33], 2008	P	26 (MO)	CUN (Radiol)	5 yr DFS (68)	-	Vascular invasion	Tumor > 4
Zheng et al[34], 2008	R	99 (MI and MO), 26 (MO)	Hangzhou (Radiol)	5 yr DFS (62.4)	-	Macrovascular invasion	Tumor size > 8 cm
						AFP > 400 ng/mL	Histological grading (III)
Mazzaferraro et al[35], 2009	R	283 (MI and MO)	Up-to-seven (Histol)	5 yr DFS (71.2)	-	Microvascular invasion	Tumor grade
Toso et al[36], 2015	P	38 (MO)	Toso (Radiol)	4 yr DFS (68)	-	-	-
Togashi et al[37], 2016	R	14 (MO)	Tokyo	5 yr DFS (80)	-	Tokyo criteria	AFP > 400 ng/mL
						DCP > 200 mAU/mL	Histological grading (III)
Kaido et al[38], 2013	R	42 (MO)	Kyoto	5 yr DFS (80)	-	Kyoto criteria	Pretreatment of the HCC
Shirabe et al[39], 2011	R	48 (MI and MO)	Kyushu (Histol)	5 yr DFS (80)	-	Kyoto criteria	Kyushu criteria
Lee et al[40], 2008	R	174 (MI and MO)	Asan (Histol)	5 yr DFS (81.6)	-	Largest tumor > 5 cm	Number > 6
						Gross vascular invasion	Gross vascular invasion
Kim et al[41], 2014	R	180 (in the whole study, including Samsung-out)	Samsung (Histol)	5 yr DFS (89.6)	-	Largest tumor > 5 cm	Number > 6
						Diameter ≤ 6 cm	Diameters ≤ 6 cm
Llovet et al[42], 2018	P	22	BCLC (Radiol)	5 yr DFS (80.2)	-	MI after locoregional therapies	-

AFP: Alpha-fetoprotein; BCLC: Barcelona-Clinic Liver Cancer; DFS: Disease-free survival; Histol: Histology; I-to-T: Intention-to-treat; LT: Liver transplantation; MI: Milan-in; MO: Milan-out; P: Prospective; R: Retrospective; Radiol: Radiology; UCSF: University of California San Francisco.
level depending on the dynamics of the waiting list, the proportion of patients with and without HCC on the waiting list, the harm to the patients remaining on the waiting list, and the donor availability.

The San Francisco group published, in 2001, an expansion based on explant histological characteristics (solitary tumor ≤ 6.5 cm or up to three tumors ≤ 4.5 cm)\(^{[9]}\). The reported 5-year OS was 75.2% for all the patients meeting the University of California San Francisco (UCSF) criteria (including Milan-in) and was 84.6% for the 14 patients classified as Milan-out UCSF-in. However, it is expected that the pretransplantation radiological evaluation underestimates, with up to 25%-30% for the HCC stage, when it is compared to posttransplant histology findings\(^{[25,26]}\). For this reason, the same group published, 6 years later, the results of a prospective study using the same criteria applied to the pretransplant radiology exam. The 5-year disease-free survival (DFS) was of 91.1% for Milan-in patients vs 93.6% for Milan-out UCSF-in patients\(^{[27]}\). However, the application of these criteria was questioned by other authors. Decaens et al\(^{[20]}\) analyzed the results of the UCSF criteria according to the intention-to-treat principle in a group with a relatively reduced waiting list time, of only 4 mo. When the UCSF criteria were applied at the “time 0” of inclusion on the waiting list, the 5-year OS of the Milan-out UCSF-in patients was 45.6% and of the Milan-in patients was 60.1%.

In 2009, Mazzaferro et al\(^{[28]}\) published the results of a large, multicentric, retrospective study and identified a combination of tumor maximum size and number of nodules as a predictive factor for survival. The “up-to-seven” criteria (see Table 1) in patients without microvascular invasion was found to be associated with 5-year OS rate of 71.2%, which was comparable with that of the Milan-in patients. However, when the up-to-seven criteria was associated with microvascular invasion, the survival was significantly worse (48.1%). It is important to mention that the presence of microvascular invasion represents a variable not possible to identify before LT and that the presence of microvascular invasion represents significantly worse (48.1%). It is important to mention that the presence of microvascular invasion represents a variable not possible to identify before LT and that the presence of microvascular invasion represents significantly worse (48.1%). It is important to mention that the presence of microvascular invasion represents a variable not possible to identify before LT and that the presence of microvascular invasion represents significantly worse (48.1%). It is important to mention that the presence of microvascular invasion represents a variable not possible to identify before LT and that the presence of microvascular invasion represents significantly worse (48.1%).

The group of Pamplona, Spain reported the results of LT with the Clinic of Universidad of Navarra (CUN) criteria\(^{[12,28]}\). The 5-year OS was 68% when the analysis was performed from an intention-to-treat point of view, being statistically comparable to that for the patients with Milan-in tumors. Although none of the patients with Milan-out CUN-in HCC developed tumor recurrence in the posttransplant follow-up period, 12 of the patients recruited for that study progressed beyond the CUN criteria on the waiting list and were deemed to not benefit from LT\(^{[28]}\).

Toso et al\(^{[29]}\) published the results of a prospective study with criteria which included total tumor volume and alpha-fetoprotein (AFP). Survival and recurrence rates of the Milan-out patients meeting the criteria were acceptable, even though the “intention-to-treat analysis” showed statistically inferior results due to the waiting list drop-out rates. The criteria of the University of Hangzhou, China also took AFP levels into account\(^{[13]}\). Two conclusions could be drawn from that study: first, the application of this criteria did not yield worse results when compared with MC; second, even the patients exceeding the MC but fulfilling the Hangzhou criteria presented improved prognosis when compared with the Hangzhou-out patients. It has to be mentioned that, currently, the AFP level is included in the selection criteria in France and Canada, where patients with values ≥ 1000 ng/dL are excluded for LT\(^{[20,21]}\).

Onaca et al\(^{[22]}\) analyzed the results of the International Registry of Hepatic Tumors in Liver Transplantation and concluded, similarly, that a modest expansion beyond MC could still offer favorable results (see Table 1). When patients presented in the explant analysis with one tumor of ≤ 6 cm or 2-4 tumors of ≤ 5 cm, the 5-year DFS was 64%.

Downstaging to Milan-In HCC before LT

In the context of HCC, there is a clear difference between the “bridge treatments” (referring to patients already on the waiting list for LT and submitted to locoregional therapies in order to diminish the drop-out rates) and the “downstaging” (defined as the treatment applied to patients initially outside of the established criteria). The latter is mainly used as a selection tool for the patients with better prognosis that could benefit from LT\(^{[23]}\).

The strategy of downstaging to MC before LT by using locoregional therapies has been the subject of debate. In this review we will only be referring to the prospective studies related to the subject.

Roayaie et al\(^{[24]}\) describes the results of the protocol of Mount Sinai Medical Center, which consisted of arterial chemoembolization with mitomycin C, doxorubicin and cisplatin at the time of diagnosis, LT with single systemic intraoperative dose of doxorubicin before revascularization of the new liver, and systemic doxorubicin for a total of six cycles, beginning on the sixth postoperative week. This protocol was applied to patients with unresectable HCC larger than 5 cm. The 5-year DFS of a subgroup of patients with tumors of 5-7 cm was considered acceptable (55%).

Yao et al\(^{[24]}\) published, in 2015, an intention-to-treat study for a group of patients transplanted after downstaging and compared their results with the ones of Milan-in patients from an intention-to-treat point of view. Even though the cumulative risk for drop-out was higher in the downstage group (34.2% vs 25.6% at 2 years), the 5-year OS and the 5-year intention-to-treat OS were not statistically different between the groups. The factors related to the probability of drop-out were AFP > 1000 ng/mL and cirrhosis of Child B grade.

The group of Bologna also compared the results of downstaging and LT in 48 patients with those of 129 Milan-in patients, and concluded that the rates of transplantation, DFS and intention-to-treat OS were...
Effect of expanding beyond the MC on the LT waiting list

The main problem facing LT remains the difference between the availability of organs and the number of patients on the waiting list. The last Organ Procurement and Transplantation Network (commonly known as OPTN) report[39], from 2012, describes an increase of the median pretransplant waiting time from 12.9 mo in 2009 to 18.5 mo in 2011. Similar data have been published by the European LT Registry[40]. It seems clear that by expanding the HCC transplant criteria, the number of possible candidates on the waiting list will rise. The two main questions related to expanding beyond the MC are: what is the minimal acceptable OS after LT for HCC patients; and, whether the expansion beyond MC would have a positive or a negative effect on the posttransplant survival of all the patients on the waiting list.

Initial reports suggested 50% as the minimal acceptable survival after LT for HCC patients[41], but the International Consensus Conference Report for LT for HCC from Zurich 2012 reported that the expansion beyond MC has to take into account the effect of delaying the LT for all potential liver recipients on the waiting list, including the ones with non-tumoral indications[42]. Therefore, this report recommends to reserve LT for patients who have an expected survival comparable to that of non-HCC patients.

Using a theoretical Markov model, the group from Michigan, United States compared the survival benefit of transplanting a patient with an HCC beyond the MC and the harm caused to the other patients on the waiting list[43]. The results of that study showed that the adoption of more liberal criteria would lead to an increase in risk of death (of 44%) among all patients on the waiting list. The adverse effect caused by expanding the criteria would outweigh its benefits when the expected 5-year OS of the transplanted Milan-out patients would be of
less than 61%. However, this result was very sensitive to the characteristics of donation and waiting list times of each geographical region, offering values between 25% and 72%.

Ten years after that publication, the analysis could be very different. Graft characteristics will have changed, with increased use of expanded criteria donors, such as aged donors, steatotic livers or donation after cardiac death (DCD) grafts[42]. On the other hand, factors related with the recipient’s prognosis, like administration of direct-acting antiviral (DAV) treatment with 90% rates of hepatitis C virus (HCV) negativization, could change the characteristics of the waiting list[40]. In the last reports of the United States’ transplant registry, the HCV was no longer the principal indication for LT, being overcome by HCC and alcohol intake[41]. Furthermore, recent published data have shown continuous improvement of the post-transplantation survival rates[40,42].

Related to the use of expanded criteria donors in LT for HCC, a theoretical model study from the University of Chicago, United States, from 2012, compared the effectiveness of DCD vs brain-dead donor LT in terms of costs, quality of life and beyond 1-year survival[40]. In the context of HCC, the use of DCD livers for LT, when compared with the alternative of waiting for a brain-dead donor liver, resulted in a survival benefit for patients without model for end-stage liver disease (commonly known as MELD) prioritization points. However, that study only referred to Milan-in patients. The inclusion of patients beyond the MC onto the waiting list could change the results of this analysis.

As described above, modest expansion of the HCC LT indications may offer results comparable to those of Milan-in patients and of non-HCC recipients. Since several expansion studies reported 5-year survival rates of more than 70%, it seems that LT can be an option for carefully selected patients beyond MC.

A different approach to separate the patients with good or bad prognosis after LT, including those beyond MC, would be the use of combined scores which take into account tumor characteristics (total tumor volume, rather than size and number) and AFP cut-off values (see above)[29,40,47]. In this way, both large HCC and small ones with potentially aggressive behavior as well as poor post-LT outcomes could be identified.

Regarding the effect of expanding criteria for the waiting list, the analysis is more complex, taking into account not only the recipient prognosis but also characteristics that depend on each geographic region that performs LT, like the number of patients on the waiting list, available donors, and their quality. Thus, the decision on whether to expand the HCC transplantation criteria should probably be made at a regional level after analyzing the impact of all these items.

Dichotomous vs continuous selection criteria

Despite the success of the MC in LT for HCC, one of the questions that has arisen is whether a dichotomous yes/no criteria is the best strategy to decide which patients should benefit from the transplant. Even inside the MC, there is a 10%-15% risk of recurrence after LT[40] and, as discussed above, several expanded criteria of LT are associated with OS and recurrence rates comparable to those of MC[10,27,28,32]. So, it is clear that not all the patients accepted for LT have a good prognosis and not all the patients discarded for LT based on MC have a dismal one.

In 2009, Mazzaferro et al[43] proposed a prognostic model, based on posttransplantation survival probabilities related to the histological stage. This model, known as the "Metroticket", was recently validated by Raj et al[40]. In that retrospective analysis of a group of patients with a known 5-year OS of 74%, the model estimated a survival of 70%, statistically not different from the real one. By offering individualized survival predictions, the Metroticket could play a role in the regional organ allocation process. As described, if the expected survival of an individual is similar to that offered to transplanted Milan-in patients, then the LT could be justified depending on the characteristics of each individual region.

However, there are authors who have criticized that both dichotomous and continuous selection models only predict the posttransplant outcome, without taking into account the patient’s survival perspectives without transplantation, geographical differences in terms of donation or waiting list times, or the proportion of patients with and without HCC on the waiting list[50,51].

LDLT for expansion beyond MC

The strategy of LDLT in the context of HCC is different from the LT with deceased donor grafts because of, at least, two reasons. First of all, LDLT does not affect the conventional waiting list, therefore an expansion of the MC could be planned in this context without the fear of affecting other patients waiting for an organ. Second of all, LDLT is a complex procedure that involves not only the recipient, but also a living donor who is a healthy person submitted to a major surgery without a direct benefit. For this reason, the benefit of the recipient should always be evaluated in the context of the risk to the donor; a concept known as "double equipoise"[52].

The majority of LDLT studies regarding CHC expansion criteria have come from Asia, where, for cultural and religious reasons, the cadaveric donation is infrequent (see Tables 1 and 2). The University of Tokyo published the "5-5 rule criteria" (see Table 1). Using these criteria, 5-year DFS was found to be 94%, while in the patients beyond Tokyo it was only 50%[53]. Two years ago, that same group published the results of their series after a large follow-up. The 5-year recurrence rates were 8% for Milan-out Tokyo-in patients and 6% for Milan-in patients. The OS and DFS rates were comparable between the two groups[54].

The group from Kyoto included dex-gamma-
carboxi prothrobine (DCP) in the criteria for LT (see Table 1)[55]. Applying these criteria, the 5-year OS and recurrence rates were 80% and 7%, respectively, when all the patients (Milan-out Kyoto-in and Milan-in) were considered[56]. The criteria of the University of Kyushu also took into account the DCP, but did not impose a limit on tumor number[57]. By using the Kyushu criteria, the 3- and 5-year DFS was 80%. In a multivariate analysis that considered UCSF, up-to-seven, Tokyo and Kyoto criteria, the Kyushu criteria was the only one statistically related to the DFS.

Another LDLT expanded criteria is the one of Asan Medical Center. The survival and recurrence rates of patients within these criteria were comparable with MC and UCSF survival rates, with the advantage that the Asan criteria can select more patients that can benefit from the transplant[58].

Kim et al.[59] defined a set of expanded criteria based on reviewing the explant histology of 180 patients, the major portion of this population being submitted to LDLT. The results showed a DFS benefit when the number of tumors was lower than 7, the maximum diameter was smaller than 6 cm, and the AFP was less than or equal to 1000 ng/mL.

Our group also published, this year, the results of a prospective study of 22 patients with BCLC expanded criteria who had submitted to LDLT[60]. The criteria were related to the size and number of the tumors but also to the successful downstaging after locoregional therapies. The results were remarkable, with a 5-year OS of more than 80%. One of the factors that influenced the OS was a "Milan-in" status before the transplant and after performing locoregional therapies as downstaging or bridging therapy (see Table 1). As remarked by other authors, the results of this study seem to favor downstaging over expansion in the context of LDLT, even though the sample size is small[60].

All these studies demonstrate that the expansion of the MC in the context of LDLT does not necessarily associate with worse results. However, the majority of these articles are retrospective analyses of patients selected by the means of explant histological characteristics. Furthermore, some of them analyzed the survival and recurrence rates in Milan-in patients and with expanded criteria all together, which could have biased the results.

The report from the Vancouver Forum on the Care of the Living Donor from 2005 established that LDLT should be performed only if it offers an advantage to the recipient when compared to the alternative of waiting for a deceased donor graft and if the risk of the donor is justified by the expectation of an acceptable outcome of the recipient[61].

One of the main issues in LDLT is the safety of the donor. Clavien’s group[62] analyzed the results of several important transplant centers throughout the world and published benchmark values related to acceptable complication rates for donors. That study described acceptable complication rates at discharge values below 26.9% for any complication and 6% for major complications (≥ IIIA of Clavien-Dindo classification)[63]. Today, the reported donor mortality after LDLT is 0.15%-0.20%[52]. In the particular scenario of LDLT for HCC beyond MC, the concept of double-equipose should be taken into account, it being unacceptable that a donor should take any risk if the benefit to the recipient is expected to be very low[52]. However, the living donor studies presented above report survival rates comparable to those of LT for MC and lead to optimism regarding the possibility of using LDLT for expanding HCC criteria.

The other important issue related to LDLT for HCC involves the reports of higher rates of recurrence than are related to the conventional LT[23,64]. One possible explanation of these results could be related to the reduced waiting time before LDLT compared with the usual waiting list time for conventional LT. It is possible that this reduced time did not permit drop-out of patients with aggressive HCC[64]. Theoretically, this concept could also apply to the expansion beyond MC. However, a meta-analysis published in 2012 by the group from Guangzhou, China showed no statistical differences between living and cadaveric LT in terms of 5-year OS or recurrence[65]. Of note, in our experience with the application of BCLC expanded criteria for LDLT, the 5-year recurrence rate was approximately 20%, but the OS rate was comparable to that published for Milan-in patients with cadaveric donors[3,4,14].

We believe that as long as the results in terms of survival of selected HCC patients beyond MC (i.e. up-to-seven, UCSF, extended criteria BCLC) submitted to LDLT are comparable to those obtained after conventional LT for HCC Milan-in, the utilization of LDLT in this context could be justified.

FUTURE DIRECTIONS

DAA treatment for HCV is one of the most important medical breakthroughs of the last decade. Its impact is already apparent on the United States’ liver waiting list, where HCV is no longer the first indication for LT[64]. The liver grafts that are no longer needed for HCV patients could be used to explore the expansion beyond MC. On the other hand, since the association between HCV and HCC is well documented, the DAA treatment is expected to have an impact on the incidence of HCC as well[51]. However, further information is needed in order to explore these scenarios.

Some of the most intriguing future directions of research of HCC treatment are the molecular and genetic analyses and investigations into the relationship of tumor biology and recurrence (see Table 4). It is known today that complex genetic and epigenetic alterations, chromosomal mutations and changes in molecular pathways lead to HCC development[66-71]. Even though these insights have shown much promise in improving HCC treatments, one of their main issues is the retrospective character of the results themselves. In fact, the vast majority of the related studies analyzed.
the molecular and genetic characteristics in tumor samples of explanted tissues, which makes any kind of pretransplant selection of these patients based on the tumor biology virtually impossible. However, identification and measurement of genetic markers in serum before LT, like of microRNAs, could be a future direction of investigation. However, more studies are necessary in order to confirm these results.

CONCLUSION
The current medical literature seems to support that modest expansions of HCC LT criteria beyond Milan offer results comparable to those of MC. However, these proposals require further prospective validation using radiological findings collected before LT as a selection tool. As summary, the three important questions cited at the beginning of this article will be addressed in the concluding remarks.

First of all, the effect of possible MC expansion on the waiting list is a variable depending not only on the stage of the HCC patients but also on regional characteristics of the waiting list itself and donors. Thus, we believe that the expansion of MC is a decision that will have to be analyzed carefully in each transplant region and according to the principle of survival benefit for all of the patients on the waiting list.

Second of all, in the Metroticket era, the use of a threshold of acceptable survival, rather than strict dichotomous yes/no criteria, could offer a flexibility to the HCC criteria and may help to expand LT indications beyond the MC in regions where the waiting list pressure permits.

Finally, in the real-life context of cadaveric donor shortage, the use of LDLT is generally accepted. As long as the expansion beyond MC in the context of LDLT offers survival rates comparable to those of accepted indications for LT, its use seems justified.

REFERENCES
1 World Health Organization IA for R on C. GLOBCAN 2012. Liver Cancer. Estimated Incidence, Mortality and Prevalence Worldwide in 2012 [Internet]. [cited 2015-04-05] Accessed April 20, 2018 Available from: URL: www.globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
2 Mazzaferrro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozetti F, Montalto F, Amnatuma M, Morabito A, Gennari L. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 1996; 334: 693-699 [PMID: 8594428 DOI: 10.1056/NEJM199603143341104]
3 Liver chapter, 2012 SRTR OPTN Annual Data Report [Internet]. [cited 2015-04-05] Accessed April 20, 2018 Available from: URL: http://srtr.transplant.hrsa.gov/annual_reports/2012/flash/03_liver_13/v2index.html
4 Results - European Liver Transplant Registry - ELTR [Internet]. [cited 2015-04-05] Accessed April 20, 2018 Available from: URL: http://www.eltr.org/Results.html
5 Bruis J, Sherman M, Practice Guidelines Committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology 2005; 42: 1208-1236 [PMID: 16250051 DOI: 10.1002/hep.20033]
6 Llovet JM, Di Bisceglie AM, Bruix J, Kramer BS, Lencioni R, Zhu AX, Sherman M, Schwartz M, Lotze M, Talwalkar J, Gores GJ. Panel of Experts in HCC-Design Clinical Trials. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 2008; 100: 699-711 [PMID: 18477802 DOI: 10.1093/jnci/djn134]
7 Bruis J, Sherman M, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53: 1020-1022 [PMID: 21374666 DOI: 10.1002/hep.24199]
8 European Association For The Study Of The Liver. European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012; 56: 908-943 [PMID: 22424438 DOI: 10.1016/j.jhep.2011.12.001]
9 Yao FY, Ferrell L, Bass NM, Watson JJ, Bacchetti P, Venook A, Ascher NL, Roberts JP. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. Hepatology 2001; 33: 1394-1403 [PMID: 11391528 DOI: 10.1053/jhep.2001.24563]
10 Mazzaferrro V, Llovet JM, Miceli R, Bhoori S, Schianto M, Mariani L, Camerini T, Roayaie S, Schwartz ME, Grazi GL, Adam R, Neuhap S, Salizzoni M, Bruix J, Formor A, De Carli L, Cillo U, Burroughs AK, Troisi R, Rossi M, Gerunda GE, Lerut J, Belghiti J, Boin I, Gugenheim J, Rochling F, Van Hoek B, Majno P; Metroticket Investigator Study Group. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol 2009; 10: 35-43 [PMID: 19058754 DOI: 10.1016/S1470-2045(08)70284-5]
11 Roayaie S, Frischer JS, Emre SH, Fishbein TM, Sheiner PA, Sung M, Miller CM, Schwartz ME. Long-term results with multimodal adjuvant therapy and liver transplantation for the treatment of hepatocellular carcinomas larger than 5 centimeters. Ann Surg 2002; 235: 533-539 [PMID: 11923610 DOI: 10.1097/00000658-200204000-00012]
12 Herrera JI, Sangro B, Quiroga J, Pardo F, Herraiz M, Cienfuegos JA, Prieto J. Influence of tumor characteristics on the outcome of liver transplantation among patients with liver cirrhosis and
hepatocellular carcinoma. *Liver Transpl* 2001; 7: 631-636 [PMID: 11466231 DOI: 10.1013/jts.2001.25458]

Zheng SS, Xu X, Wu J, Chen J, Wang WL, Zhang M, Liang TB, Wu LM. Liver transplantation for hepatocellular carcinoma: Hangzhou experience. *Transplantation* 2008; 85: 1726-1732 [PMID: 18580463 DOI: 10.1097/TP.0b013e3181667674]

Llovet JM, Pavel M, Rimola J, Diaz MA, Colmenero J, Saavedra-Perez D, Fondevila C, Ayuso C, Fuster J, Ginés P, Bruix J, García-Valdecasas JC. Pilot study of living donor liver transplantation for patients with hepatocellular carcinoma exceeding Milan Criteria (Barcelona Clinic Liver Cancer extended criteria). *Liver Transpl* 2018; 24: 369-379 [PMID: 29140601 DOI: 10.1002/lt.24977]

Duffy JP, Vardanian A, Benjamin E, Watson M, Farmer DG, Ghobrial RM, Lipshutz G, Yersi H, Lu DS, Lassman C, Tong MJ, Hiatt JR, Busuttil RW. Liver transplantation criteria for hepatocellular carcinoma should be expanded: a 22-year experience with 467 patients at UCLA. *Ann Surg* 2007; 246: 502-9; discussion 509-11 [PMID: 17717454 DOI: 10.1097/SLA.0b013e318134a476]

Ecker BL, Hotiek MA, Forde KA, Hsu CC, Reddy KR, Furth EE, Siegelman ES, Habibollahi F, Ben-Josef E, Porrett PM, Abt PL, Shaked A, Oltffh KM, Levine MH. Patterns of Discordance Between Pretransplant Imaging Stage of Hepatocellular Carcinoma and Posttransplant Pathologic Stage: A Contemporary Appraisal of the Milan Criteria. *Transplantation* 2018; 102: 648-655 [PMID: 29319629 DOI: 10.1097/TP.0000000000002056]

Llovet JM, Burroughs A, Bruix J. Hepatocellular Carcinoma. *Lancet* 2003; 362: 1907-1917 [PMID: 14667750 DOI: 10.1016/S0140-6736(03)14964-1]

Llovet JM, Bruix J, Fuster J, Castells A, Garcia-Valdecasas JC, Grande L, Frana A, Brà C, Navasa M, Ayuso MC, Solé M, Real ML, Vilana R, Rimola A, Visa J, Rodó J. Liver transplantation for small hepatocellular carcinoma: the tumor-node-metastasis classification does not have prognostic power. *Hepatology* 1998; 27: 1572-1577 [PMID: 9620320 DOI: 10.1002/hep.10270616]

Clavien PA, Lesurtel M, Bossuyt PM, Gores GJ, Langer B, Perrier A; OLT for HCC Consensus Group. Recommendations for liver transplantation for hepatocellular carcinoma: an international consensus conference report. *Lancet Oncol* 2012; 13: e11-e22 [PMID: 22047762 DOI: 10.1016/S1470-2045(11)70175-9]

Decaens T, Roudot-Thoraval F, Fadepsa T, Pessone F, Badran H, Piardi T, Franez C, Compagnon F, Vanlennens C, Dumortier J, Dharrancy S, Gugenheim J, Bernard PH, Adam R, Radenne S, Muscari F, Conti F, Hardwisen J, Pageaux GP, Chazouilleres O, Salame E, Hileret MN, Lebray P, Abergel A, Debette-Gratien M, Kluger MD, Mallat A, Azoulay D, Cherqui D; Liver Transplantation French Study Group. Liver transplantation for hepatocellular carcinoma: a model including a-fetoprotein improves the performance of Milan criteria. *Gastroenterology* 2012; 143: 986-94.e3; quiz e14-5 [PMID: 22752020 DOI: 10.1053/j.gastro.2012.05.052]

Sapisochin G, Golderacencna N, Laurence JM, Bib M, Barbadas A, Ghanekar A, Cleary SP, Lilly L, Cattal MS, Marquez M, Selzner M, Renner E, Selzner N, McGilvray ID, Greig PD, Grant DR. The extended Toronto criteria for liver transplantation in patients with hepatocellular carcinoma: A prospective validation study. *Hepatology* 2016; 64: 2077-2088 [PMID: 27178646 DOI: 10.1002/hep.28846]

Onaca N, Davis GL, Goldstein RM, Jennings LW, Klintmalm GB. Extended criteria for liver transplantation in patients with hepatocellular carcinoma: a report from the International Registry of Hepatic Tumors in Liver Transplantation. *Liver Transpl* 2007; 13: 391-399 [PMID: 17318865 DOI: 10.1002/lt.21095]

Toso C, Mentha G, Kneteman NM, Majno P. The place of downstaging for hepatocellular carcinoma. *J Hepatol* 2010; 52: 930-936 [PMID: 20384238 DOI: 10.1016/j.jhep.2009.12.032]

Yao FY, Forde KA, Bass NM, Kerlan R, Ascher NL, Roberts JP. Liver transplantation for hepatocellular carcinoma: validation of the UCSF-expanded criteria based on preoperative imaging. *Am J Transplant* 2007; 7: 2587-2596 [PMID: 17868066 DOI: 10.1111/j.1601-6643.2007.01965.x]

Herrero JI, Sangro B, Parado F, Quiroga J, Iharraraiaregui M, Rotellar F, Montiel C, Alegre F, Prieto J. Liver transplantation in patients with hepatocellular carcinoma across Milan criteria. *Liver Transpl* 2008; 14: 272-278 [PMID: 18306228 DOI: 10.1002/lt.21368]

Toso C, Meeberg G, Hernandez-Alejandro R, Dufour JF, Marotta P, Majno P, Kneteman NM. Total tumor volume and alpha-fetoprotein for selection of transplant candidates with hepatocellular carcinoma: A prospective validation. *Hepatology* 2015; 62: 158-165 [PMID: 25777590 DOI: 10.1002/hep.27787]

Duvoux C, Roudot-Thoraval F, Decaens T, Pessone F, Badran H, Piardi T, Franez C, Compagnon F, Vanlennens C, Dumortier J, Dharrancy S, Gugenheim J, Bernard PH, Adam R, Radenne S, Muscari F, Conti F, Hardwisen J, Pageaux GP, Chazouilleres O, Salame E, Hileret MN, Lebray P, Abergel A, Debette-Gratien M, Kluger MD, Mallat A, Azoulay D, Cherqui D; Liver Transplantation French Study Group. Liver transplantation for hepatocellular carcinoma: a model including a-fetoprotein improves the performance of Milan criteria. *Gastroenterology* 2012; 143: 986-94.e3; quiz e14-5 [PMID: 22752020 DOI: 10.1053/j.gastro.2012.05.052]

Ravaioli M, Grazi GL, Pisaglia F, Trevianni F, Cescon M, Ercolani G, Vivarelli M, Goffrini R, D’Errico Grigioni A, Panzini I, Morelli C, Bernardi M, Bolondi L, Pinna AD. Liver transplantation for hepatocellular carcinoma: results of down-staging in patients initially outside the Milan selection criteria. *Am J Transplant* 2008; 8: 2547-2557 [PMID: 19032232 DOI: 10.1111/j.1601-6643.2008.02409.x]

Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, Christensen E, Pagliaro L, Colombo M, Rodès J; EASL Panel of Experts on HCC. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. *J Hepatol* 2001; 35: 421-430 [PMID: 11592607 DOI: 10.1016/S0168-8278(01)00130-1]

Grazialeti IV, Sandmueller P, Waldenberger P, Koenigsrainer A, Nachbaur K, Jaschke W, Margreiter R, Vogel W. Chemoembolization followed by liver transplantation for hepatocellular carcinoma impedes tumor progression while on the waiting list and leads to excellent outcome. *Liver Transpl* 2003; 9: 557-563 [PMID: 12783395 DOI: 10.1053/jlts.2003.30106]

Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassissi MM, Roberts LR, Zhu AX, Murad MH, Marendre JA. AASLD guidelines
Liver transplantation beyond Milan criteria

Sugawara Y, Tamura S, Makucchi M. Living donor liver transplantation for hepatocellular carcinoma: Tokyo University series. Dig Dis 2007; 25: 310-312 [PMID: 17960065 DOI: 10.1159/000106901]

Togashi J, Akamastu N, Kokudo N. Living donor liver transplantation for hepatocellular carcinoma at the University of Tokyo Hospital. Hepatobiliary Surg Nutr 2016; 5: 399-407 [PMID: 27826554 DOI: 10.21037/hbns.2016.08.05]

Takahata Y, Ito T, Ueda M, Sakanoto S, Haga H, Maetani Y, Ogawa K, Ogura Y, Oike F, Egawa H, Uemoto S. Living donor liver transplantation for patients with HCC exceeding the Milan criteria: a proposal of expanded criteria. Dig Dis 2007; 25: 299-302 [PMID: 17960063 DOI: 10.1159/000106908]

Kaido T, Ogawa K, Mori A, Fujimoto Y, Ito T, Tomiyama K, Takada Y, Uemoto S. Usefulness of the Kyoto criteria as expanded selection criteria for liver transplantation for hepatocellular carcinoma. Surgery 2013; 154: 1053-1060 [PMID: 24074704 DOI: 10.1016/j.jgsurg.2013.04.056]

Shirabe K, Taketomi A, Morita K, Soejima Y, Uchiyama H, Taketomi A, Morita K, Soejima Y, Uchiyama H, Taketomi A, Morita K, Soejima Y, Uchiyama H. Hepatocellular carcinoma. Practice Guidelines: Management of hepatocellular carcinoma. Gut 2010; 59: 1662-1760 [PMID: 20074804 DOI: 10.1136/gut.2009.184413]

Kim JM, Kwon CH, Joh JW, Park JB, Lee JH, Kim GS, Kim SJ, Paik SW, Lee SK. Expanded criteria for liver transplantation in patients with hepatocellular carcinoma. Transplant Proc 2014; 46: 726-729 [PMID: 24767334 DOI: 10.1016/j.transproceed.2013.11.037]

Mehta N, Yao FY. Living donor liver transplantation for hepatocellular carcinoma: To expand (beyond Milan) or downstage (to Milan)? Liver Transpl 2018; 24: 327-329 [PMID: 29351366 DOI: 10.1002/lt.24507]

Barr ML, Belghiti J, Villamali FG, Pomfret EA, Sutherland DS, Gruessen RW, Langnas AN, Delmonico FL. A report of the Vancouver Forum on the care of the live organ donor: lung, liver, pancreas, and intestine data and medical guidelines. Transplant Proc 2006; 38: 1373-1385 [PMID: 16732172 DOI: 10.1016/j.transproceed.2006.01.026]

Rösler F, Sapisochin G, Song G, Lin VH, Simpson MA, Hasagawa K, Laurenzi A, Sánchez Cabus S, Nunzi M, Gatti A, Beltrame MC, Slankamenac K, Gregg PD, Lee SG, Chen CL, Grant DR, Pomfret EA, Kokudo N, Cherqui D, Othoff KM, Shaked A, Garcia-Valdecasas JC, Lerut J, Troisi RI, De Santibanes M, Petrowsky H, Puhani MA, Clavien PA. Defining Benchmarks for Major Liver Surgery: A multicenter analysis of 5022 Living Liver Donors. Ann Surg 2016; 264: 492-500 [PMID: 27433909 DOI: 10.1097/SLA.0000000000001649]

Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 240: 205-213 [PMID: 15273542 DOI: 10.1097/01.sla.0000133083.54934.4e]

Kulik L, Abecassis M. Living donor liver transplantation for hepatocellular carcinoma. Gastroenterology 2004; 127: S277-S282 [PMID: 15508805 DOI: 10.1053/j.gastro.2004.09.042]

Liang W, Wu L, Ling X, Schroder PM, Ju W, Wang D, Shang Y, Kong Y, Guo Z, He X. Living donor liver transplantation versus deceased donor liver transplantation for hepatocellular carcinoma: a meta-analysis. Liver Transpl 2012; 18: 1226-1236 [PMID: 22688095 DOI: 10.1002/lt.23490]

Miliadtos O, Sta D, Hoshida Y, Fiel M, Harrington AN, Thung SN, Tan PS, Dong H, Revill K, Chang CY, Roayaie S, Byrne TJ, Mazzaferrro V, Rakela J, Florman S, Schwartz M, Llovet JM. Progenitor cell markers predict outcome of patients with hepatocellular carcinoma beyond Milan criteria undergoing liver
transplantation. *J Hepatol* 2015; 63: 1368-1377 [PMID: 26220754 DOI: 10.1016/j.jhep.2015.07.025]

67 **Schwartz M**, Dvorchik I, Rouayie S, Fiel MI, Finkelstein S, Marsh JW, Martignetti JA, Llovet JM. Liver transplantation for hepatocellular carcinoma: extension of indications based on molecular markers. *J Hepatol* 2008; 49: 581-588 [PMID: 18602719 DOI: 10.1016/j.jhep.2008.03.032]

68 **Dvorchik I**, Schwartz M, Fiel MI, Finkelstein SD, Marsh JW. Fractional allelic imbalance could allow for the development of an equitable transplant selection policy for patients with hepatocellular carcinoma. *Liver Transpl* 2008; 14: 443-450 [PMID: 18266211 DOI: 10.1002/lt.21393]

69 **Sugimachi K**, Matsumura T, Hirata H, Uchi R, Ueda M, Ueo H, Shinden Y, Iguchi T, Eguchi H, Shirabe K, Ochiya T, Machara Y, Mimori K. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. *Br J Cancer* 2015; 112: 532-538 [PMID: 25584485 DOI: 10.1038/bjc.2014.621]

70 **Barry CT**, DSouza M, McCall M, Safadjou S, Ryan C, Kishyap R, Marroquin C, Orloff M, Almudevar A, Godfrey TE. Micro RNA expression profiles as adjunctive data to assess the risk of hepatocellular carcinoma recurrence after liver transplantation. *Am J Transplant* 2012; 12: 428-437 [PMID: 22008552 DOI: 10.1111/j.1600-6143.2011.03788.x]

71 **Liee J**, Peveling-Oberhag J, Doering C, Schnitzbauer AA, Hermann E, Zangos S, Hansmann ML, Moench C, Welker MW, Zeuzem S, Bechstein WO, Ulrich F. A possible role of microRNAs as predictive markers for the recurrence of hepatocellular carcinoma after liver transplantation. *Transpl Int* 2016; 29: 369-380 [PMID: 26697811 DOI: 10.1111/tri.12733]

72 **Yao FY**, Mehta N, Flemming J, Dodge J, Hameed B, Fix O, Hirose R, Fidelman N, Kerlan RK Jr, Roberts JP. Downstaging of hepatocellular cancer before liver transplant: long-term outcome compared to tumors within Milan criteria. *Hepatology* 2015; 61: 1968-1977 [PMID: 25689978 DOI: 10.1002/hep.27752]

73 **Millonig G**, Graziadei IW, Freund MC, Jaschke W, Stadlmann S, Ladurner R, Margreiter R, Vogel W. Response to preoperative chemoembolization correlates with outcome after liver transplantation in patients with hepatocellular carcinoma. *Liver Transpl* 2007; 13: 272-279 [PMID: 17256758 DOI: 10.1002/hep.21033]

P- Reviewer: Cerwenka H, Iwasaki Y, Kornberg A, Wang G
S- Editor: Gong ZM
L- Editor: A
E- Editor: Yin SY
