Effect of Chloride Concentration on the Cytotoxicity, Bioavailability, and Bio-Reactivity of Copper and Silver in the Rainbow Trout Gut Cell Line (RTgutGC)

Md Ibrahim (✉ md.ibrahim@okstate.edu)
Oklahoma State University https://orcid.org/0000-0003-0463-2622

Matteo Minghetti
Oklahoma State University

Research Article

Keywords: Chloride, metal speciation, metal bioavailability, metal toxicity, RTgutGC cells, in-vitro.

Posted Date: November 30th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1084125/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Chloride (Cl\(^-\)) influences the bioavailability and toxicity of metals in fish, but the mechanisms by which it influences these processes is poorly understood. Here, we investigated the effect of chloride on the cytotoxicity, bioavailability (i.e., accumulation) and bio-reactivity (i.e., induction of mRNA levels of metal responsive genes) of copper (Cu) and silver (Ag) in the rainbow trout gut cell line (RTgutGC). Cells were exposed to metals in media with varying Cl\(^-\) concentrations (0, 1, 5 and 146 mM). Metal speciation in exposure medium was analyzed using Visual MINTEQ software. Cytotoxicity of AgNO\(_3\) and CuSO\(_4\) was measured based on two endpoints: metabolic activity and membrane integrity. Cells were exposed to 500 nM of AgNO\(_3\) and CuSO\(_4\) for 24 hours in respective media to determine metal bioavailability and bioreactivity. Ag speciation changes from free ionic (Ag\(^+\)) to neutral (AgCl), to negatively charged chloride complexes (AgCl\(_2^-\), AgCl\(_3^-\)) with increasing Cl\(^-\) concentration in exposure media whereas Cu speciation remains in two forms (Cu\(^{2+}\) and CuHPO\(_4\)) across all media. Chloride does not affect Ag bioavailability but decreases metal toxicity and bio-reactivity. Cells exposed to Ag expressed significantly higher metallothionein mRNA levels in low Cl\(^-\) media (0, 1, and 5 mM) than in high Cl\(^-\) medium (146 mM). This suggests that chloride complexation reduces silver bio-reactivity and toxicity. Conversely, Cu bioavailability and toxicity were higher in the high chloride medium (146 mM) than in the low Cl\(^-\) (0, 1, and 5 mM) media, supporting the hypothesis that Cu uptake may occur via a chloride dependent mechanism.

Introduction

Metals are present in the aquatic environment in different ionic phases such as free ions (Ag\(^+\), Cu\(^{2+}\) etc.), inorganic (e.g. Cl\(^-\), OH\(^-\), and CO\(_3^{2-}\)) or organic (e.g. organic molecules and organic matters) complexes, and solid or colloidal phases (Zhao et al. 2016). Several studies in freshwater organisms have shown that free ionic species of metals are much more bioavailable than metal complexes (Di Toro et al. 2001; Paquin et al. 2002). However, it was shown that metal complexes may also become bioavailable and elicit toxicity in aquatic biota (Zhao et al. 2016; Fortin and Campbell 2000; Erickson et al. 1998). For instance, in fish, metals can become more bioavailable and toxic at higher salinity (e.g. brackish and marine) (Matson et al. 2016; Grosell et al. 2007; Ferguson and Hogstrand 1998) where fish drink for osmoregulatory purposes (Scott et al. 2006). This highlights the role of the intestine as an important route for the uptake of metal complexes. However, the bioavailability of metal complexes at the fish intestine is poorly understood and requires further studies. To study the bioavailability of metal complexes, we need to know which metal species are formed in the exposure medium. Considering the tendency of metal species to reach an equilibrium very rapidly, metal speciation in the water or exposure medium can be done by various equilibrium models such as MINEQL+ (Schecher and McAvoy 1992) or Visual MINTEQ (Gustafsson 2013).

To further understand the toxicity and bioavailability of metal complexes in the fish intestine, we previously investigated how silver (Ag), copper (Cu), cadmium (Cd), and zinc (Zn) speciate in a synthetic medium that mimics the intestinal luminal buffer, and how the different metal species are related to...
intracellular effects (i.e., toxicity, bioavailability, and bio-reactivity) in the rainbow trout (*Oncorhynchus mykiss*) gut cell line (RTgutGC) (Ibrahim et al. 2020). This *in-vitro* system was found to be an effective toxicological model, especially to study effects of extracellular metal speciation on intracellular effects (Langan et al. 2017; Minghetti and Schirmer 2016; Ibrahim et al. 2020). RTgutGC cells were isolated from the intestine of a healthy female rainbow trout fish (*Oncorhynchus mykiss*) (Kawano et al. 2011) and were shown to express tight junction proteins between adjacent cells and the Na\(^+\)/K\(^+\)-ATPase at the basolateral side of the cell (Minghetti et al. 2017).

In this study, we chose an essential metal, Cu, and a non-essential metal, Ag to investigate the role of chloride concentration on their speciation in the exposure medium and the, toxicity, bioavailability, and bio-reactivity of different metal species in RTgutGC cells. Chloride is an environmentally and physiologically relevant inorganic ligand that affects metal speciation in aqueous solutions. Chloride is the major anion in the aquatic environment and is also involved in key physiological process such as acid-base balance, ion osmoregulation, and cell volume regulation (Jentsch et al. 2002). Moreover, it was proposed that chloride may be required for copper uptake through a chloride dependent symporter mechanism at the fish intestine (Handy et al. 2000).

The same redox properties that make copper an important cofactor for several enzymes also make it extremely toxic when present unbound intracellularly. Thus, all organisms, including fish, have evolved mechanisms to maintain copper homeostasis using specific transporters and the metal chelators to scavenge its toxicity (Minghetti et al. 2010, 2008). In the intestine, Cu, can be transported into the cell by specific protein transporters such as copper transporter 1 (CTR 1), copper transporter 2 (CTR 2), and divalent metal transporter 1 (DMT 1) (Minghetti et al. 2008; Arredondo et al. 2003; Ohrvik and Thiele 2015). Bertinato et al. (2010) demonstrated the inhibition of Cu uptake by Ag and the role of human CTR1 in transporting both of these metal ions. Moreover, studies have suggested that Ag can be transported via CTR1 in fish as well as humans (Grosell and Wood 2002; Bury et al. 2003). For storage and detoxification of metals, two molecules, metallothionein and glutathione, play a significant role. Metallothioneines (MTs) are a superfamily of proteins enriched in cysteine which has a very high binding affinity for metals. Specifically, metals bind with the thiol group of the cysteine to form a metal cluster in the MT (Coyle et al. 2002). Glutathione (GSH), a major non-protein reservoir composed of tripeptides, works as a chelating agent for different metal cations (Polec-Pawlak et al. 2007). The glutathione reductase (GR) has an important role in maintaining a reservoir of reduced GSH and in defense against oxidative stress (Srikanth et al. 2013). Another protein, ATP7A (a P-type ATPase) plays a pivotal role in maintaining Cu homeostasis by transporting copper from the intestine to peripheral organs (Minghetti et al. 2010). To evaluate the bio-reactivity of copper and silver, we quantified the mRNA levels of metallothionein b (MTb), copper transporter 1 (CTR1), divalent metal transporter 1 (DMT1), ATP7A, and glutathione reductase (GR).

The overall goal of our study was to understand the role of chloride concentration in the exposure medium on the speciation of copper and silver and determine the toxicity, bioavailability, and bio-reactivity of different metal species in the rainbow trout gut cell line (RTgutGC). We hypothesized that along with free ionic metal species, metal-chloride complexes may also be bioavailable and toxic.
Materials And Methods

Cell culture

The rainbow trout gut cell line (RTgutGC) was routinely cultured using Leibovitz’s L-15 (L-15) medium (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 5% of fetal bovine serum (FBS, Sigma-Aldrich, MO, USA) and 1% of *Penicillin streptomycin* (Sigma-Aldrich, St. Louis, MO, USA). Cell were grown in 75 cm2 flasks (Greiner Bio One, Monroe, NC, USA) at 19 °C in a normal atmosphere incubator (B.O.D. Low Temperature Refrigerated Incubator, VWR, Radnor, PA, USA). Once cells reached approximately 90% confluence, they were sub-cultured or split into 3 flasks. To passage a confluent flask, culture medium (L-15/FBS) was removed and cells were washed twice with 1 mL of versene (Thermo Fisher Scientific, Waltham, MA, USA). Cells were then detached from the flask using 1 mL of 0.25% Trypsin (Thermo Fisher Scientific, Waltham, MA, USA) and counted using the Countess II™ Automated Cell Counter (Life Technologies Corporation, NYC, NY, USA) which simultaneously counts and determines cell viability using the trypan blue exclusion assay. Only cell suspensions with more than 90% viability were seeded on multi-well plates at 80,000 cells/cm2 in L-15/FBS. Cells were incubated for 48 hours to allow the formation of the confluent monolayers. After 48 hours, cells were exposed to AgNO$_3$ and CuSO$_4$ dissolved in different exposure media.

Preparation of exposure media along a chloride gradient

Synthetic exposure media with varying chloride concentration were prepared modifying the composition of L-15 (0 to 146 mM of chloride, L-15/ex$_{0-146}$Cl$^-$). Sugar and salt concentrations of L-15/ex$_{0-146}$Cl$^-$ media are identical to that of the commercial L-15 medium but they do not contain amino acids and vitamins (Schirmer et al. 1997) (Table S1). To maintain a similar ionic strength across all media, the chloride (Cl$^-$) concentration was adjusted using NO$_3$- (see table S1 for composition). The osmolality and the pH of each medium were measured using the Vapro® Vapor Pressure Osmometer (Model 5600, ELIttech group, South Logan, UT, USA) and SI Analytics pH meter (SI Analytics, College Station, TX, USA), respectively. The 10 mM stock solutions of AgNO$_3$ and CuSO$_4$.5H$_2$O (Sigma-Aldrich, St. Louis, MO, USA) were prepared in ultrapure water (16-18 mΩ, Barnstead GenPure Water, Thermo Fisher Scientific, Waltham, MA, USA). AgNO$_3$ concentrations ranging from 0.01 to 100 µM and CuSO$_4$ from 0.1 to 200 µM were used as exposure concentrations. Exposure solutions of AgNO$_3$ and CuSO$_4$ were prepared on the day of exposure by dissolving them in the respective media (L-15/ex$_{0}$Cl$^-$, L-15/ex$_{1}$Cl$^-$, L-15/ex$_{5}$Cl$^-$, and L-15/ex$_{146}$Cl$^-$). Exposure solutions were vortexed before exposing to cells. Stock concentrations and one exposure solution from each medium were measured by ICP-OES (iCAP 7400, Thermo Fisher Scientific, Waltham, MA, USA). The recovery rate of stock concentrations of both AgNO$_3$ and CuSO$_4$ were nearly 100% whereas it was between 85-90% for Ag exposure concentrations and nearly 95% for Cu solutions (see table S5). All concentrations reported in this paper are nominal.

Ag and Cu speciation in each exposure medium
Metal speciation, including formation of solids, and ionic strengths of Ag and Cu in each exposure medium were determined by Visual MINTEQ (Gustafsson 2013), a chemical equilibrium software. Ag and Cu speciation were calculated for concentrations ranging from 0.1 to 100 µM in all L-15/ex exposure media.

Cell viability assays

Cell viability assays were performed in each exposure medium 3-6 times using cells of different passages each time. The cell viability assay is based on two endpoints: cell metabolic activity and cell membrane integrity. The metabolic activity was measured by alamarBlue® (AB; Invitrogen, Eugene, OR, USA), and the cell membrane integrity by CFDA-AM (5-carboxylfluorescein diacetate acetoxyethyl ester) (Invitrogen, Eugene, OR, USA) (Schirmer et al. 1997). For both dyes, a decline in fluorescence means a decrease in cell viability.

Prior to exposure, each well of the plate was washed twice with phosphate buffer saline (PBS; Thermo Fisher Scientific, Waltham, MA, USA). Cells were then exposed to 1 mL of exposure solutions incubated for 24 hours at 19°C. After 24 hour of exposure, exposure solutions were aspirated and washed twice with PBS. After washing, cells were incubated with AB (5% v/v) and CFDA-AM (4 µM) dye solutions in PBS for 30 minutes. The Cytation 5 Plate Reader (BioTek, Winooski, VT, USA) was used to measure fluorescence at excitation/emission wavelengths of 530/595 nm for AB and 485/530 nm for CFDA-AM.

Quantification of metal bioavailability

To investigate the effects of chloride concentration on Ag and Cu bioavailability cells were seeded in quadruplicate (control and exposure) in 6 well plates (Greiner Bio-One, Monroe, NC, USA) at 80,000 cells/cm² (768,000 cells/well in 2 mL of L-15/FBS) for 48 hours and incubated at 19 °C. In this study, the term bioavailability means intracellular accumulation. After 48 hours of incubation, confluent cell monolayers were washed twice with PBS. A single nominal concentration, 500 nM of AgNO₃ and CuSO₄ was selected for exposure. This concentration was selected keeping in consideration the detection and toxicity of intracellular metal. Exposure media of both metals were made by spiking the appropriate volume in the respective media from 10 mM stock. After washing, cells were exposed to 2 mL of exposure solutions for 24 hours. After 24 hours of exposure, each well was washed once with 1 mL of PBS and twice with a solution of 0.5 mM cysteine (Sigma-Aldrich, St. Louis, MO, USA) dissolved in PBS to ensure thorough removal of loosely bound metal. Next cells were lysed by applying 1 mL of 50 mM NaOH (Sigma-Aldrich, St. Louis, MO, USA) for 2 hours at room temperature on an orbital shaker. Cell lysates were then transferred to 1.5 mL Eppendorf tubes and 100 µL from each well was transferred into another tube for the quantification of total proteins using the Lowry Assay (Thermo Fisher Scientific, Waltham, MA, USA). For metal quantification, cell lysates were desiccated using a concentrator (concentrator plus, Eppendorf, Hauppauge, USA) and digested overnight by adding 0.8 mL of 69% HNO₃ (Sigma-Aldrich, St. Louis, MO, USA) and 0.2 mL H₂O₂ (Sigma-Aldrich, St. Louis, MO, USA). Finally, samples were diluted 10 times with ultra-pure water to dilute the nitric acid concentration to 5%. Diluted samples were kept at 4 °C
until measurement. Samples were measured using inductively coupled plasma mass spectrometry (ICP-MS; iCAP Qc, Thermo Fisher Scientific, Dreieich, Germany). Standard reference material (NIST SRM 1643f; National Institute of Standards and Technology, MD, USA) was analyzed with each set of samples for quality control. Ag and Cu bioavailability data were normalized by total protein concentrations in each well and presented as nmol metal/mg of protein (Ibrahim et al. 2020).

Determination of mRNA levels of metal responsive genes by quantitative PCR

In this study, the term bio-reactivity indicates the induction of a metal responsive gene expression (Ibrahim et al. 2020). To quantify mRNA levels of metal responsive genes (MTb, GR, CTR1, ATP7A, and DMT1) in RTgutGC cells, cells were seeded and exposed in an identical manner as for metal bioavailability. After 24 hours of exposure, the exposure solution was aspirated out and 900 µL of TRizol Reagent (Thermo Fisher Scientific, Waltham, MA, USA) was applied to the cell monolayer. Cells were lysed by pipetting the TRizol up and down several times. Total RNA was extracted following the manufacturer instructions and an average of 1.93 µg of RNA was collected from each well. To remove any trace of DNA from samples, total RNA was treated with the TURBO DNase kit (Thermo Fisher Scientific, Waltham, MA, USA). Quality and quantity of the isolated RNA were determined spectrophotometrically using the Cytation 5 Plate Reader (Bio-Tek, Winooski, VT, USA) and by electrophoresis using 1 µg of total RNA in a 1% agarose gel.

Complementary DNA synthesis was performed from 0.5 mg of total RNA using Maxima H Minus First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA) by following the manufacturer instructions. Quantitative PCR was performed in triplicate using the SYBR Premix Ex Taq II (Clontech, Mountain View, CA, USA) and the CFX Connect Real-Time PCR Detection System (BioRad, Hercules, CA, USA). Messenger RNA levels were measured using the absolute quantification method and are reported as fold change of the treated groups from the controls. Normalization of copy number of the target genes MTb, GR, CTR1, ATP7A, and DMT1 was conducted based on the geometric mean of reference genes (Elongation factor 1a and Ubiquitin) (Minghetti and Schirmer 2016). The PCR efficiency of all genes was above 93%. Primer sequences are reported in Table S6.

Data Analysis

All statistical analyses were done using GraphPad Prism Version 7.0 (GraphPad Software Inc., San Diego, CA). The cell viability data are shown as percentages by dividing the fluorescence units of each exposed sample by the fluorescence unit of respective controls. The effect concentrations leading to 50% reduction in viability (EC50) were determined by the nonlinear regression sigmoidal dose–response curve fitting module using the Hill slope equation. The effective concentration 30 and 50 values (EC30 and EC50) are presented as mean and standard error of the mean (N =3-6). All data were assessed for normality with the D'Agostino & Pearson normality test and where necessary, data were transformed to improve normality. Analysis of variance (ANOVA) followed by Tukey’s post hoc test were performed to determine the statistical significance among different experimental groups.
Results

Metal speciation in exposure media

Varying the concentration of AgNO$_3$ and CuSO$_4$ from 0.01 µM to 100 µM contributed a negligible change in Ag and Cu speciation determined by Visual MINTEQ. Data presented in Fig.1 were done using 1 µM of AgNO$_3$ and CuSO$_4$. Silver species distribution varied significantly among the 4 media. Ag speciation changes from free ionic form to complexed forms as the chloride concentration increases. Free ionic Ag$^+$ (~93%) is the dominant species in the chloride free medium (L-15/ex0Cl$^-$) whereas AgCl$_2^-$ (~77%) and AgCl$_3^-$ (~17%) are the two dominant species in the highest chloride containing medium (L-15/ex146Cl$^-$). Ag$^+$ (~44%) and AgCl(aq) (~48%) are the two major species formed in L-15/ex1Cl$^-$ whereas in L-15/ex5Cl$^-$, the dominant species is AgCl(aq) (~61%) followed by AgCl$_2^-$ (~26%) (Fig.1). Copper speciation remained stable across the chloride concentration gradients, mainly complexing to hydrogen phosphate, CuHPO$_4$ (~42%) or remained in ionic form, Cu$^{2+}$ (~43%) (Fig.1). The formation of metal precipitates in each medium is reported in Figs.1, 2 and Table S2-4. Precipitation analyses showed that copper precipitates as Cu$_3$(PO$_4$)$_2$ and that 1% of total Cu started forming in L-15/ex0Cl$^-$, L-15/ex1Cl$^-$ and L-15/ex5Cl$^-$ at 3.1 µM of CuSO$_4$ and fifty % percent occurred in these media at 7.4 µM of CuSO$_4$. In L-15/ex146Cl$^-$ medium, 1% and 50% precipitation of total Cu occurred at 3 µM and 7.1 µM of CuSO$_4$, respectively (Fig.1 and Table S2-4). Silver precipitated as cerargyrite (AgCl). There was no precipitation of Ag (up to 500 µM) in the chloride free medium L-15/ex0Cl$^-$. Precipitation started (1% of total) in L-15/ex1Cl$^-$, L-15/ex5Cl$^-$, and L-15/ex146Cl$^-$ at 0.73 µM, 0.57 µM, and 5.8 µM of AgNO$_3$ respectively. Fifty % of precipitation occurred in these three media (same order) at 1.45 µM, 1.14 µM, and 11.5 µM of AgNO$_3$, respectively (Fig.1 and Table S2-4).

Cell viability after 24-hour exposure to metals in media of different chloride concentration

When metabolic activity was used as an indicator of cell viability, EC50 calculations showed significantly lower toxicity (EC50: 1.41 µM) of Ag in the highest chloride containing medium (L-15/ex146Cl$^-$) in comparison to the other 3 media (L-15/ex0Cl$^-$, L-15/ex1Cl$^-$, and L-15/ex5Cl$^-$) (Fig.2 and Table 1). Same trend was found when membrane integrity was used as the indicator of cell viability. There was no variation in the toxicity among L-15/ex0Cl$^-$, L-15/ex1Cl$^-$, and L-15/ex5Cl$^-$ for both cell metabolic activity and cell membrane integrity (Fig.2 and Table 1).

Conversely, copper toxicity increased with the increase of chloride concentration in the media for both cell metabolic activity and cell membrane integrity. In terms of metabolic activity, cells exposed to Cu in L-15/ex0Cl$^-$ (EC50: 6.93 µM) had significantly higher viability when compared with cells in L-15/ex1Cl$^-$ (EC50: 4.73 µM), L-15/ex5Cl$^-$ (EC50: 4.67 µM) and L-15/ex146Cl$^-$ (EC50: 3.01 µM) (Fig.2 and Table 1). A similar trend was found when cell membrane integrity was used as an indicator of cell viability having highest EC50 value 11.26 µM in L-15/ex0Cl$^-$ and lowest 6.15 µM in L-15/ex146Cl$^-$ (Fig.2 and Table 1).
To see if EC30 values are more statistically sensitive than EC50 values, we calculated and compared EC30 values found among 4 different exposure media. Overall, EC50 values were more statistically sensitive among different groups than EC30 values. However, one difference that can be noted from EC30 comparison is the significantly higher Ag toxicity (cell membrane integrity) found in L-15/ex^0_{Cl^-} (EC30: 0.93 µM) and L-15/ex^1_{Cl^-} (EC30: 1µM) in comparison to the L-15/ex^{146}_{Cl^-} (EC50: 1.67 µM) (Table 1).

Bioavailability of Ag and Cu in RTgutGC cells exposed for 24-hours in media of different chloride concentrations

Copper and silver bioavailability in RTgutGC cells exposed in medium of different chloride concentration is shown in Table 2. The average silver concentrations, in pmol/mg of proteins, were 285.1, 249.1, and 202.6 respectively for L-15/ex^0_{Cl^-}, L-15/ex^1_{Cl^-}, and L-15/ex^5_{Cl^-}. Ag bioavailability was not significantly different among different exposure media, although there is a decreasing trend of Ag bioavailability as the chloride concentration increases from 0 mM Cl^- to 5 mM Cl^- in exposure media. However, in the medium with the highest chloride concentration, L-15/ex^{146}_{Cl^-}, bioavailability of Ag (291.1 pmol/mg of proteins) went back to the level of Ag bioavailability in L-15/ex^0_{Cl^-}.

The highest bioavailability of Cu (309.4 pmol/mg of proteins) was found in the medium containing the highest amount of chloride, L-15/ex^{146}_{Cl^-}, and it was significantly higher than the chloride-free medium, L-15/ex^0_{Cl^-}. In L-15/ex^1_{Cl^-}, and L-15/ex^5_{Cl^-} bioavailability of Cu was not significantly different from L-15/ex^{146}_{Cl^-} and L-15/ex^0_{Cl^-}. As Cu is an essential element, thus it was found in cells exposed to control medium (Table 2) and excluding the exposure in L-15/ex^1_{Cl^-}, it accumulated significantly in the copper exposed cells.

Metal bio-reactivity in RTgutGC cells exposed to 500 nM of AgNO_3 or CuSO_4 for 24 hours

The mRNA levels of 5 metal responsive genes, MTb, GR, CTR1, ATP7A, and DMT1, are shown in Fig.3. The mRNA levels of MTb were significantly higher than control in RTgutGC cells exposed to 500 nM AgNO_3 dissolved in L-15/ex^0_{Cl^-}, L-15/ex^1_{Cl^-}, and L-15/ex^5_{Cl^-} but not in L-15/ex^{146}_{Cl^-}. The mRNA levels of other genes (GR, CTR 1, ATP 7A, and DMT 1) were not significantly different than controls in RTgutGC cells exposed to AgNO_3. In cells exposed to 500 nM of CuSO_4 in L-15/ex^1_{Cl^-}, mRNA levels of GR were significantly higher than respective control cells. Although not significant, mRNA levels of CTR1 and ATP7A showed an increasing trend in RTgutGC cells exposed to CuSO_4 dissolved in L-15/ex^0_{Cl^-}. The direct comparison of normalized copy number of control and respective exposed groups are shown in Fig.S1.

Discussion

In this study, we show that chloride concentration in the exposure medium has opposing effects on copper and silver bioavailability and toxicity in a model of the fish intestinal epithelium based on the cell
line, RTgutGC. Although silver and copper have been shown to enter mammalian (Bertinato et al. 2010) and possibly fish (Bury et al. 1999) cells using the same transporter mechanism (i.e., CTR1), their oxidation state in aqueous solution is different, copper is divalent and silver is monovalent. Interestingly, to allow copper transport into cells, \(\text{Cu}^{2+} \) needs to be reduced to \(\text{Cu}^{1+} \) by specific membrane reductases (Ohgami et al. 2006) or it is reduced directly at CTR1 amino domain (Shenberger et al. 2018). Thus, CTR1 transports specifically monovalent elements which explains its affinity and ability to transport \(\text{Ag}^+ \) (Bertinato et al. 2010). On the other hand, in the exposure solution, copper and silver react differently with chloride. While the monovalent metal silver possesses a high affinity for the chloride anion, the divalent metal copper does not. Indeed, in the exposure media used in this study, copper was preferentially bound to phosphate or remained as free ion (\(\text{Cu}^{2+} \)) as its affinity for chloride is relatively low (Fig. 1). Although the behaviors of silver and copper in aqueous solutions are well known (Bury and Hogstrand 2002; Wood et al. 2004; Blanchard and Grosell 2006), the implications of the interactions occurring in the extracellular environment on metal uptake are less well understood.

In RTgutGC cells, reduction of chloride concentration in the exposure medium resulted in a reduction of copper bioavailability whereas silver bioavailability was not affected by the chloride concentration. We hypothesize that the mechanistic role of chloride on the uptake mechanism of copper and silver is different. Previous studies showed that Cu can be transported via a chloride dependent Cu/anion symporter mechanism at the intestine of African catfish (Handy et al. 2000). Moreover, it was proposed that a chloride dependent anionic transport mechanism is involved in the uptake of copper at the apical surface of human intestinal (Zimnicka et al. 2010) and red blood cells (Alda and Garay 1990). These studies support the hypothesis that in RTgutGC cells, chloride is necessary for copper uptake. Furthermore, the increase in copper bioavailability explains the increase in copper toxicity that we see in RTgutGC exposed in the medium with the highest chloride concentration (Table 1). For silver, the increase in chloride concentration in the exposure solution results in the progressive formation of neutral and negatively charged silver chloride species. Our data shows that at the intestinal epithelium the free ion (i.e. \(\text{Ag}^+ \)) possesses equal bioavailability to the negative AgCl complexes (i.e. \(\text{AgCl}^- \) and \(\text{AgCl}_2^{2-} \)). This is in contrast to studies focusing on silver uptake at the gill epithelium where the bioavailability of negative AgCl complexes is negligible (Bury and Hogstrand 2002). Environmental concentration of chloride has a protective effect against Ag toxicity in rainbow trout (Bury and Hogstrand 2002) in low osmolarity medium, such as fresh water, where fish do not drink. However, in brackish or seawater, where fish drink for osmoregulatory purposes and the intestinal route becomes important for metal uptake, chloride does not protect against metal toxicity (Ferguson and Hogstrand 1998; Matson et al. 2016; Bielmyer et al. 2008). While the exact mechanism of uptake of silver chloride complexes at the fish intestinal epithelium is not clear, these \textit{in vivo} data (Ferguson and Hogstrand 1998; Matson et al. 2016; Bielmyer et al. 2008) and additional \textit{in vitro} data in RTgutGC cells (Minghetti and Schirmer 2016) suggest that silver chloride complexes are bioavailable at the fish intestinal epithelium. One possible explanation of the discrepancy between the uptake of copper and silver at the gill and intestinal epithelium could be that while at the gill copper and silver seem to enter mainly via the sodium channel (Bury and Wood 1999; Grosell and Wood 2002), at the intestine, copper seems to enter via a sodium independent mechanism, likely CTR1 (Burke
and Handy 2005). Thus, at the fish gill, it is possible that only silver ions (Ag+) can compete with sodium ions (Na+), whereas negatively charged AgCl ions do not bind to the biotic ligand (i.e. Na channel). At the intestinal epithelium, Ag+ is likely entering via CTR1 (Bertinato et al. 2010, Burke and Handy 2005). The mechanism of uptake of AgCl negatively charged complexes is not clear and requires further studies. On the other hand, while negative silver chloride complexes are as bioavailable as free silver ions, they are less toxic. The reduced toxicity of the silver chloride complexes could be explained by the gene expression data. Indeed, silver chloride complexes are less bioreactive as they do not induce an increase in MTb mRNA levels. Conversely, cells exposed at lower chloride concentrations, where the silver free ion is present, show increased MTb mRNA levels. Metallothionein forms complexes with metals, including silver, and decrease the metal toxicity (Coyle et al. 2002). Overall, this data set suggests that silver chloride species might enter the cell in a less bioreactive form. Importantly, the uptake of copper via CTR1 was shown to involve endocytosis (Clifford et al. 2016). Thus, considering that Ag is also transported via CTR1 (Bertinato et al. 2010), we could speculate that endocytosis might internalize both silver complexes and silver ions, but the free silver ion could be transported into the cytoplasm more efficiently than silver chloride.

Conversely, the exposure to non-toxic doses of copper did not result in any induction of MTb or copper transporters. It was previously shown that copper homeostasis is mainly regulated at the post-translational level (i.e., ATP7A protein trafficking) and not at the transcriptional level (Minghetti and Schirmer 2019). However, copper induced a moderate induction of GR only in cells exposed in L-15/ex1Cl indicative of oxidative stress (Minghetti et al. 2008).

Conclusion

In this study, we show that RTgutGC cells can be used to simultaneously evaluate the toxicity, bioavailability, and bio-reactivity of Ag and Cu across a gradient of chloride concentrations. We show that chloride assumes a different role in mediating the bioavailability and toxicity of copper and silver. This study adds to our understanding of the mechanism of uptake and toxicity of metal and metal complexes at the intestine which is important to improve computer-based metal toxicity prediction models for environmental risk assessment. Future studies should investigate uptake mechanisms of metal complexes, including complexations with various anions (e.g., amino acids, carbonate), which are currently poorly understood.

Declarations

Acknowledgements

The authors thank the Interdisciplinary Toxicology Program at Oklahoma State University and the U.S. National Science Foundation (NSF; award no. CBET-1706093 to M. M.) for funding this research. We cordially thank Professor Kristin Schirmer (Eawag, CH) for providing the cell line RTgutGC used in this study.
Funding

This research was funded by the Interdisciplinary Toxicology Program at Oklahoma State University through a fellowship awarded to M.I. and by the U.S. National Science Foundation (NSF) through award no. CBET-1706093 to M.M.

Competing Interest

The authors have no known conflict of interest that could have influenced the reporting of data in this article.

Authors Contribution

Both authors contributed to conceptualization, data curation, formal analyses, investigation, methodology, software, validation, and visualization. Matteo Minghetti supervised this work and provided necessary resources to Md Ibrahim to conduct this research. Md Ibrahim wrote the first draft which was further edited and reviewed by Matteo Minghetti. Both authors approved the final manuscript.

Animal Research (Ethics)

This study did not use any vertebrate animal. All data was acquired using the cell line RTgutGC. RTgutGC cells were kindly gifted to M.M. by Professor Kristin Schirmer (Eawag, CH).

Consent to Participate (Ethics)

No human subject was used in this study.

Consent to Publish (Ethics)

Since no human subject was used in this study, this is not applicable here.

Clinical Trials Registration

This study did not require clinical trial registration.

Data availability

No data was acquired from human individuals. Authors can provide the raw data on request.

Plant Reproducibility

Not applicable.

References
1. Alda JO, Garay R (1990) Chloride (or bicarbonate)-dependent copper uptake through the anion exchanger in human red blood cells. Am. J. Physiol. Cell Physiol. 259:C570-C576. https://doi.org/10.1152/ajpcell.1990.259.4.C570

2. Arredondo M, Muñoz P, Mura CV, Núñez MT (2003) DMT1, a physiologically relevant apical Cu\(^{1+}\) transporter of intestinal cells. Am. J. Physiol. Cell Physiol. 284:C1525-C1530. https://doi.org/10.1152/ajpcell.00480.2002

3. Bertinato J, Cheung L, Hoque R, Plouffe LJ (2010) Ctr1 transports silver into mammalian cells. J. Trace Elem. Med. Biol. 24:178–184. https://doi.org/10.1016/j.jtemb.2010.01.009

4. Bielmyer GK, Brix KV, Grosell M (2008) Is Cl\(-\) protection against silver toxicity due to chemical speciation? Aquat. Toxicol. 87:81–87. https://doi.org/10.1016/j.aquatox.2008.01.004

5. Blanchard J, Grosell M (2006) Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: is copper an ionoregulatory toxicant in high salinities? Aquat. Toxicol. 80:131-139. https://doi.org/10.1016/j.aquatox.2006.08.001

6. Burke J, Handy RD (2005) Sodium-sensitive and -insensitive copper accumulation by isolated intestinal cells of rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 208:391-407. https://doi.org/10.1242/jeb.01379

7. Bury NR, Walker PA, Glover CN (2003) Nutritive metal uptake in teleost fish. J. Exp. Biol. 206:11-23. https://doi.org/10.1242/jeb.00068

8. Bury NR, Hogstrand C (2002) Influence of chloride and metals on silver bioavailability to Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) yolk-sac fry. Environ. Sci. Technol. 36:2884-2888. https://doi.org/10.1021/es010302g

9. Bury NR, Wood CM (1999) Mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na\(^{+}\) channel. Am. J. Physiol. Regul. Integr. Comp. Physiol. 277:R1385-R1391. https://doi.org/10.1152/ajpregu.1999.277.5.r1385

10. Bury NR, Grosell M, Grover AK, Wood CM (1999) ATP-dependent silver transport across the basolateral membrane of rainbow trout gills. Toxicol. Appl. Pharmacol.159:1-8. https://doi.org/10.1006/taap.1999.8706

11. Clifford RJ, Maryon EB, Kaplan JH (2016) Dynamic internalization and recycling of a metal ion transporter: Cu homeostasis and CTR1, the human Cu\(^{2+}\) uptake system. J Cell Sci.129:1711-21. https://doi.org/10.1242/jcs.173351

12. Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: The multipurpose protein. Cell. Mol. Life Sci. 59:627–647. https://doi.org/10.1007/s00018-002-8454-2

13. Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol. Chem. 20:2383–2396. https://doi.org/10.1897/1551-5028(2001)020<2383:blmota>2.0.co;2

14. Erickson RJ, Brooke LT, Kahl MD, Venter FV, Harting SL, Markee TP, Spehar RL (1998) Effects of laboratory test conditions on the toxicity of silver to aquatic organisms. Environ. Toxicol. Chem. 17:572-578. https://doi.org/10.1002/etc.5620170407
15. Ferguson EA, Hogstrand C (1998) Acute silver toxicity to seawater-acclimated rainbow trout: Influence of salinity on toxicity and silver speciation. Environ. Toxicol. Chem. 17:589-593. https://doi.org/10.1002/etc.5620170409

16. Fortin C, Campbell PG (2000) Silver uptake by the green alga Chlamydomonas reinhardtii in relation to chemical speciation: influence of chloride. Environ. Toxicol. Chem. 19: 2769-2778. https://doi.org/10.1002/etc.5620191123

17. Grosell M, Blanchard J, Brix KV, Gerdes R (2007) Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates, Aquat. Toxicol. 84:162–172. https://doi.org/10.1016/j.aquatox.2007.03.026.

18. Grosell M, Wood CM (2002) Copper uptake across rainbow trout gills: mechanisms of apical entry. J. Exp. Biol. 205:1179-1188. https://doi.org/10.1242/jeb.205.8.1179

19. Gustafsson JP (2013) Visual MINTEQ 3.1, https://vminteq.lwr.kth.se/ Accessed 4 October 2021.

20. Handy RD, Musonda MM, Phillips C, Falla SJ (2000) Mechanisms of gastrointestinal copper absorption in the African walking catfish: copper dose-effects and a novel anion-dependent pathway in the intestine. J. Exp. Biol. 203:2365–2377. https://doi.org/10.1242/jeb.203.15.2365

21. Ibrahim M, Oldham D, Minghetti M (2020) Role of metal speciation in the exposure medium on the toxicity, bioavailability and bio-reactivity of copper, silver, cadmium and zinc in the rainbow trout gut cell line (RTgutGC). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 236:108816. https://doi.org/10.1016/j.cbpc.2020.108816

22. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol. Rev. 82:503-568.

23. Kawano A, Haiduk C, Schirmer K, Hanner R, Lee LEJ, Dixon B, Bols NC (2011) Development of a rainbow trout intestinal epithelial cell line and its response to lipopolysaccharide. Aquac. Nutr. 17:241-252. https://doi.org/10.1111/j.1365-2095.2010.00757.x

24. Langan LM, Harper GM, Owen SF, Purcell WM, Jackson SK, Jha AN (2017) Application of the rainbow trout derived intestinal cell line (RTgutGC) for ecotoxicological studies: molecular and cellular responses following exposure to copper. Ecotoxicol. 26:1117-1133.

25. Matson CWW, Bone AJJ, Auffan M, Lindberg TTT, Arnold MCC, Hsu-Kim H, Wiesner MRR, Di Giulio RTT (2016) Silver toxicity across salinity gradients: the role of dissolved silver chloride species ($AgCl_x$) in Atlantic killifish (Fundulus heteroclitus) and medaka (Oryzias latipes) early life-stage toxicity. Ecotoxicol. 25:1105–1118. https://doi.org/10.1007/s10646-016-1665-3

26. Minghetti M, Schirmer K (2019) Interference of silver nanoparticles with essential metal homeostasis in a novel enterohepatic fish in vitro system. Environ. Sci. Nano, 6:1777-1790.

27. Minghetti M, Drieschner C, Bramaz N, Schug H, Schirmer K (2017) A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biol. Toxicol. 33:539-555. https://doi.org/10.1007/s10565-017-9385-x

28. Minghetti M, Schirmer K (2016) Effect of media composition on bioavailability and toxicity of silver and silver nanoparticles in fish intestinal cells (RTgutGC). Nanotoxicology.10:1526–1534.
29. Minghetti M, Leaver MJ, George SG (2010) Multiple Cu-ATPase genes are differentially expressed and transcriptionally regulated by Cu exposure in sea bream, *Sparus aurata*. Aquat. Toxicol. 97:23–33. https://doi.org/10.1016/j.aquatox.2009.11.017

30. Minghetti M, Leaver MJ, Carpenè E, George SG (2008) Copper transporter 1, metallothionein and glutathione reductase genes are differentially expressed in tissues of sea bream (*Sparus aurata*) after exposure to dietary or waterborne copper. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 147:450–459. https://doi.org/10.1016/j.cbpc.2008.01.014

31. Ohgami RS, Campagna DR, McDonald A, Fleming MD (2006) The Steap proteins are metalloreductases. Blood. 108:1388-1394. https://doi.org/10.1182/blood-2006-02-003681

32. Ohrvik H, Thiele DJ (2015) The role of Ctr1 and Ctr2 in mammalian copper homeostasis and platinum-based chemotherapy. J. Trace Elem. Med. Biol. 31:178–182. https://doi.org/10.1016/j.jtemb.2014.03.006

33. Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PGC, Delos CG, Di Toro DM, Dwyer RL, Galvez F, Gensemer RW, Goss GG, Hogstrand C, Janssen CR, McGeer JC, Naddy RB, Playle RC, Santore RC, Schneider U, Stubblefield WA, Wood CM, Wu KB (2002) The biotic ligand model: A historical overview. Comp. Biochem. Physiol. - C Toxicol. Pharmacol. 133:3–35. https://doi.org/10.1016/S1532-0456(02)00112-6

34. Polęc-Pawlak K, Ruzik R, Lipiec E (2007) Investigation of Cd (II), Pb (II) and Cu (I) complexation by glutathione and its component amino acids by ESI-MS and size exclusion chromatography coupled to ICP-MS and ESI-MS. Talanta, 72:1564-1572. https://doi.org/10.1016/j.talanta.2007.02.008

35. Schecher WD, McAvoy DC (1992) MINEQL+: A software environment for chemical equilibrium modeling. Comput. Environ. Urban Syst. 16:65–76. https://doi.org/10.1016/0198-9715(92)90053-T

36. Schirmer K, Chan AGJ, Greenberg BM, Dixon DG, Bols NC (1997) Methodology for demonstrating and measuring the photocytotoxicity of fluoranthene to fish cells in culture. Toxicol. In Vitro. 11:107–119. https://doi.org/10.1016/S0887-2333(97)00002-7

37. Scott GR, Schulte PM, Wood CM (2006) Plasticity of osmoregulatory function in the killfish intestine: drinking rates, salt and water transport, and gene expression after freshwater transfer. J. Exp. Biol. 209:4040-4050. https://doi.org/10.1242/jeb.02462

38. Shenberger Y, Marciano O, Gottlieb HE, Ruthstein S (2018) Insights into the N-terminal Cu (II) and Cu (I) binding sites of the human copper transporter CTR1. J. Coord. Chem. 71:1985-2002. https://doi.org/10.1080/00958972.2018.1492717

39. Srikanth K, Pereira E, Duarte AC, Ahmad I (2013) Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish—a review. Environ. Sci. Pollut. Res. 20:2133-2149. https://doi.org/10.1007/s11356-012-1459-y

40. Wood CM, McDonald MD, Walker P, Grosell M, Barimo JF, Playle RC, Walsh PJ (2004) Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the
gulf toadfish (*Opsanus beta*). Aquat. Toxicol. 70:137-157.
https://doi.org/10.1016/j.aquatox.2004.08.002

41. Zhao CM, Campbell PGC, Wilkinson KJ (2016) When are metal complexes bioavailable? Environ. Chem. 13:425–433. https://doi.org/10.1071/EN15205

42. Zimnicka AM, Ivy K, Kaplan JH (2011) Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake. Am. J. Physiol. Cell Physiol. 300:C588-99.
https://doi.org/10.1152/ajpcell.00054.2010

Tables

Table 1 EC50 and EC30 concentrations (µM) of Ag and Cu using alamarBlue and CFDA-AM dyes as indicators of cellular metabolic activity and cell membrane integrity respectively. EC concentrations were determined using non-linear regression sigmoidal dose-response curve following the Hill slope equation on GraphPad Prism software (CA, USA). Data are presented as mean ± SD, n=3-6. Different letters indicate statistical significance among different groups (One-way ANOVA, Tukey test, P<0.05).

Exposure Media	Ag EC50 in µM	Cu EC50 in µM		
	Metabolic Activity	Cell Membrane Integrity	Metabolic Activity	Cell Membrane Integrity
L-15/ex⁰ Cl⁻	1.05 ± 0.22^A	1.37 ± 0.05^A	6.93 ± 0.71^A	11.26 ± 1.14^A
L-15/ex¹ Cl⁻	0.89 ± 0.12^A	2.03 ± 0.76^A	4.73 ± 0.98^B	8.56 ± 1.57^{A,B}
L-15/ex⁵ Cl⁻	1.09 ± 0.07^A	2.05 ± 0.78^A	4.67 ± 0.25^{B,C}	6.59 ± 1.41^B
L-15/ex¹⁴⁶ Cl⁻	1.41 ± 0.16^B	2.64 ± 0.83^A	3.01 ± 0.46^D	6.15 ± 2.18^B

Exposure Media	Ag EC30 in µM	Cu EC30 in µM		
	Metabolic Activity	Cell Membrane Integrity	Metabolic Activity	Cell Membrane Integrity
L-15/ex⁰ Cl⁻	0.63 ± 0.11^A	0.93 ± 0.09^A	4.07 ± 0.49^A	7.22 ± 1.31^A
L-15/ex¹ Cl⁻	0.63 ± 0.16^A	1.00 ± 0.18^A	2.83 ± 0.66^{B,C}	5.04 ± 0.56^{A,B}
L-15/ex⁵ Cl⁻	0.77 ± 0.07^{A,B}	1.20 ± 0.18^{A,B}	2.97 ± 0.25^B	4.36 ± 0.96^B
L-15/ex¹⁴⁶ Cl⁻	1.07 ± 0.16^B	1.67 ± 0.39^B	1.95 ± 0.45^C	3.70 ± 1.11^B

Table 2 Quantification of Ag and Cu by ICP-MS in RTgutGC cells exposed to a fixed concentration (500 nM of each metal). Metal units are presented as pmol of metal/mg of proteins. Data are presented as
mean ± SD, n=3 or 4. Different letters indicate statistical significance among different groups of the same treatment (One-way ANOVA, Tukey test, P<0.05). Asterisks indicate significant increase from respective control groups (t test, P<0.05).

Exposure Media	Ag (pmol/mg of proteins)	Cu (pmol/mg of proteins)		
	Control	500 nM AgNO₃	Control	500 nM CuSO₄
L-15/ex⁰ Cl⁻	BDL	285.1 ± 44.1¹	194.8 ± 31.84ᵃ	245.1 ± 18.09*ᴬ
L-15/ex¹ Cl⁻	BDL	249.1 ± 31.09ᴬ	197.1 ± 38.71ᵃ	254.2 ± 33ᴬ,ᴮ
L-15/ex⁵ Cl⁻	BDL	202.6 ± 36.79ᴬ	150.8 ± 23.66ᵃ	255.6 ± 8.21*ᴬ,ᴮ
L-15/ex¹⁴⁶ Cl⁻	BDL	291.1 ± 75.6ᴬ	154.5 ± 30.3ᵃ	309.4 ± 46.68*ᴮ

Figures

![Graph showing dissolved Ag species](image1)

![Graph showing dissolved Cu species](image2)
Figure 1

Ag and Cu species distribution in different chloride (Cl-) containing media (L-15/ex0 Cl-, L-15/ex1 Cl-, L-15/ex5 Cl-, and L-15/ex146 Cl-) calculated using VISUAL MINTEQ 3.1. Species contributing less than 1% were excluded on the graphs. Exposure media are represented on the X axis by chloride concentration in the media. Left Y axis denotes total percentage of metal (Ag or Cu) in the media while right Y axis represents the concentrations at which metal precipitates. A complete table of metal precipitation is given in Table S 2-4.
Figure 2

Toxicity of AgNO₃ (top) and CuSO₄ (bottom) in RTgutGC cells exposed in 4 exposure media (L-15/ex0 Cl-, L-15/ex1 Cl-, L-15/ex5 Cl-, and L-15/ex146 Cl-). Cell viability assay endpoints: metabolic activity (alamar blue) and membrane integrity (CFDA-AM) were collected after 24 hours of exposure. Values shown are averages and dashed lines indicate confidence intervals (95%) of at least 3 experiments. EC50 concentrations were determined using non-linear regression sigmoidal dose-response curve following the Hill slope equation. Differences among curve fits within the same graph were tested using the F-test. All graphs and statistical analyses were performed using GraphPad Prism Software Ver. 7.0 (CA, USA). The red and green vertical dashed lines indicate the concentration at which 1% and 50% of the metal will be precipitated, respectively.
Metallothionein b (MTb), Glutathione reductase (GR), copper transporter 1 (CTR 1), copper ATPase (ATP 7A), a divalent metal transporter 1 (DMT 1) mRNA levels (normalized fold change) in RTgutGC cells exposed to 500 nM of AgNO3 and CuSO4. All values are expressed as ratio of the expression in those cells exposed to control media. Data are presented as mean ± SD, n= 3- 4. All values are expressed as
ratio of the expression in those cells exposed to control medium. Statistical difference from respective control, i.e. untreated cells, is indicated by an asterisk (Mann-Whitney t test, p<0.05).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [Supplementarymaterials.docx](#)