An Efficient Homotopy Method for Solving the Post-Contingency Optimal Power Flow to Global Optimality

SANGWOO PARK\(^1\), ELIZABETH GLISTA\(^2\), (Graduate Student Member, IEEE), JAVAD LAVAEI\(^1\), (Senior Member, IEEE), AND SOMAYEH SOJOUDI\(^3\)

\(^1\)Department of Industrial Engineering and Operations Research, University of California Berkeley, Berkeley, CA 94710, USA
\(^2\)Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94710, USA
\(^3\)Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA 94710, USA

Corresponding author: Sangwoo Park (spark111@berkeley.edu)

This work was supported by the Grants from Army research office (ARO), Office of naval research (ONR), Air force office of scientific research (APOS), and NSF.

ABSTRACT Optimal power flow (OPF) is a fundamental problem in power systems analysis for determining the steady-state operating point of a power network that minimizes the generation cost. In anticipation of component failures, such as transmission line or generator outages, it is also important to find optimal corrective actions for the power flow distribution over the network. The problem of finding these post-contingency solutions to the OPF problem is challenging due to the nonconvexity of the power flow equations and the large number of contingency cases in practice. In this paper, we introduce a homotopy method to solve for the post-contingency actions, which involves a series of intermediate optimization problems that gradually transform the original OPF problem into each contingency-OPF problem. We show that given a global solution to the original OPF problem, a global solution to the contingency problem can be obtained using this homotopy method, under some conditions. With simulations on Polish and other European networks, we demonstrate that the effectiveness of the proposed homotopy method is dependent on the choice of the homotopy path and that homotopy yields an improved solution in many cases. For at least 5% of the test cases, bad local minima were identified, and the homotopy method yielded a solution that was significantly better than state-of-the-art interior point methods in terms of reducing the violation cost during a catastrophic contingency scenario.

INDEX TERMS Power systems, optimal power flow, nonconvex optimization, contingency analysis.

I. INTRODUCTION

Optimal power flow (OPF) is a fundamental tool for power system network analysis, where the goal is to find a low-cost production of the committed generating units while satisfying the technical constraints of the system [2]. The main challenges in solving the OPF arise from the fact that it is a nonconvex optimization problem on a large-scale network that must be solved every few minutes.

The common practice in the electric power industry is to use a linearized approach called the DC-OPF approximation [3], [4], as opposed to the original AC-OPF problem. Such a method simplifies important aspects of the power flow physics and cannot guarantee attaining any optimal solution of the original problem. Improvements in interior-point methods have provided an effective tool for solving the OPF problem, but they only guarantee convergence to a locally optimal solution [5], [6], [7]. Initiated by the work [8], conic optimization has been extensively studied in recent years and proven to be a powerful technique for solving OPF to global or near-global optimality. The paper [8] has indeed shown that a semidefinite programming (SDP) relaxation is able to find a global minimum of OPF for a large class of practical systems, and [9] has discovered that the success
of this method is related to the underlying physics of power systems. These ideas have been refined in many papers to improve the relaxations via penalization approaches, branch-and-cut approaches, conic hierarchies, and valid inequalities [10], [11], [12], [13], [14], [15], [16], [17]. The authors of [18] have also proposed strong second-order cone programming (SOCP) relaxations, which produce high-quality feasible solutions for the AC-OPF problem in a short amount of time. The reader is referred to the survey paper [19] for more details.

Recently, there has been elevated interest in studying the secure operations of power systems that can withstand element failures (contingencies) in the network. Power operators are required to solve the security-constrained OPF (SCOPF) instead of an idealistic OPF problem [20], [21]. SCOPF is formulated by adding extra constraints to the classic OPF discussed above. These constraints impose additional limits on line flows and nodal voltages for a predetermined set of post-contingency configurations. In other words, SCOPF can be regarded as a more conservative version of the classic OPF that leads to a higher level of system security. This means that SCOPF inherits the challenges of classic OPF and furthermore, invites new challenges. It has been shown in [13] that SDP relaxations are able to obtain high-quality solutions of SCOPF. However, since SCOPF is a gigantic problem with an enormous number of variables, conic relaxations and even simple local search methods may be ineffective for real-world systems [22]. There are two primary methods to address the huge size of the SCOPF problem. One approach is to reduce the number of contingencies to a subset of binding contingencies that will lead to the same solution as the full set of contingencies [23], [24], [25]. If the number of binding contingencies is not sufficiently small enough to satisfy computational requirements, then we must make use of the second method, which is to simplify the SCOPF formulation. There have been many proposed methods to simplify the model of post-contingency states in SCOPF, such as Benders decomposition, linearization of the power flow equations, Lagrangian relaxation, and network compression [26], [27], [28], [29]. These contingency selection, approximation, and decomposition techniques can be combined to generate heuristic solutions to large-scale SCOPF problems, as in [30] and [31]. Additionally, recent research has applied approaches from distributed control, stochastic programming, and machine learning to solve the SCOPF problem [32], [33], [34], [35].

A. LIMITATIONS OF CURRENT LITERATURE

The outputs of aforementioned methods include the optimal (or approximately optimal) values of the pre-contingency operating variables and possibly feasible values for the post-contingency variables for each contingency. The major drawback is that the post-contingency actions are not optimized with respect to each corresponding contingency configuration to minimize the violation of the constraints in case there is no feasible operating point. Currently, there is a rather limited literature that attempts to optimize the post-contingency settings. In the classic work [21], the optimal post-contingency actions were modeled as sub-problems and explicitly included in the SCOPF formulation. More recently, the work in [36] proposed an approach to determine an optimal combination of preventive and corrective actions taking into the account the system dynamics, while [37] introduced a hybrid computational strategy to solve the pre-contingency and post-contingency OPF problems. In [38], the authors perform optimization over the post-contingency recourse variables using an interior-point solver. None of the previous works have ventured into finding the global optimum of each of the post-contingency OPF problems (from here on called ‘contingency-OPF’), mainly because applying a computationally burdensome algorithm (such as SDP) to each of the contingency scenarios is unrealistic.

B. CONTRIBUTIONS

Nevertheless, it is important to find a globally optimal solution because local solutions can be much more costly. In this paper, we develop a computationally efficient homotopy method to improve the quality of the contingency-OPF solution. Constraint violations in the case of a contingency are very expensive to deal with, and under our formulation, a global solution corresponds to the minimum violation. Instead of solving for the solution to a contingency-OPF problem directly, we generate and solve (using local search algorithms) a series of intermediate optimization problems wherein we gradually remove a set of components of the power system. We show that the effectiveness of homotopy to find a global solution of the contingency-OPF problem is dependent on the homotopy path, and therefore, we characterize desirable homotopy paths. In doing so, we prove that the contingency-OPF generically has a unique global minimum. Furthermore, we prove that the complexity of implementing such homotopy scheme is on the order of solving $O(\log(1/\epsilon))$ convex quadratic optimization problems.

The remainder of the paper is organized as follows. In Section II, we provide a literature review on homotopy methods and explain how it relates to our approach. In Section III, we present the formulation of the two-stage Security-constrained Optimal Power Flow that can be decomposed into the base-OPF and contingency-OPF. Next, in Section IV, we introduce the homotopy method that connects contingency-OPF to base-OPF via parametrization. In Section V, we develop theoretical results to characterize cases when homotopy will lead to a global solution of the deformed problem. Finally, in Section VI we implement the homotopy method on actual test cases and verify its effectiveness. The proofs and additional simulation results appear in the Appendix.

C. NOTATIONS

The symbol \mathbb{R}^N denotes the space of N-dimensional real vectors and $(\cdot)^T$ denotes the transpose of a matrix. $\text{Re}\{\cdot\}$ and $\text{Im}\{\cdot\}$ denote the real and imaginary parts of a given scalar or matrix.
The symbol $| \cdot |$ is the absolute value operator if the argument is a scalar, vector, or matrix; otherwise, it is the cardinality of a measurable set. Given a function $f(x, \cdot)$, $\nabla f(x, \cdot)$ and $\nabla^2 f(x, \cdot)$ denote the Jacobian and Hessian of f with respect to x, respectively. The symbol \otimes denotes the elementwise multiplication between two vectors. Let 1_n and 0_n denote the n-dimensional vectors of ones and zeros, respectively. Furthermore, I^n_k denotes an n-dimensional vector of ones except for the k-th element that is zero. The imaginary unit is denoted by $j = \sqrt{-1}$. Let the power network be defined by a graph $G(V, E)$, where V is the node set and E is the edge set. For notational simplicity, we assume that there is one generator at each node, but this formulation is easily generalizable to the case when there are multiple generators at each node (the case with no generator at a bus can be modeled by setting the upper and lower bounds on generation to zero). Each node $i \in V$ has an associated complex voltage v_i, a fixed demand $P_{ij}^d + jQ_{ij}^d$, and an unknown generation $P_{ij}^g + jQ_{ij}^g$, and we assume that the nodal shunt admittance is zero. The complex voltage v_i can be expressed in polar form, $v_i = |v_i|e^{j\theta_i}$, where $|v_i|$ and θ_i denote the voltage magnitude and phase angle at bus i, respectively. With a slight abuse of notation, $|v|$ denotes the vector of all voltage magnitudes. In addition, we define $\theta_j = \theta_i - \theta_0$. The set of neighboring nodes of node i is denoted by $N(i)$. Each line connecting two nodes i and j is represented by a standard Π-model with a series admittance $y_{ij} = g_{ij} + jb_{ij}$ and a shunt admittance $y_{ij}^{sh} = g_{ij}^{sh} + jb_{ij}^{sh}$. Then, the nodal admittance matrix Y is defined as

$$
Y_{ij} = \begin{cases}
\sum_{k \in N(i)} y_{ik} + \frac{1}{2} y_{ik}^{sh} & \text{for } j = i \\
-y_{ij} & \text{for } j \in N(i) \\
0 & \text{otherwise}
\end{cases}
$$

whence (i, j) element is denoted as $Y_{ij} = G_{ij} + jB_{ij}$. Finally, p_{ij} and q_{ij} are the real and reactive power flows from bus i to j, respectively.

II. HOMOTOPY FOR OPTIMIZATION

Homotopy methods have been used to improve the convergence of optimization problems. The benefit of homotopy methods compared to other iterative methods is that homotopy methods may yield global rather than local convergence. These methods are most useful for problems where convergence to a global solution is heavily dependent on a good initial point, which can be hard to obtain. More recently, probability-one homotopy methods have been applied to solving optimization problems, such as optimal control [39], [40] and statistical learning [41]. Typically, the homotopy methods in optimization focus on parametrizing the first-order optimality conditions [42], [43] or the objective function ([44], [45]). Homotopy methods have also been applied in the field of power systems, primarily to solve the power flow (PF) problem for cases that do not converge [46], [47], [48], [49], [50].

While convergence to a global minimum with probability one is guaranteed for a convex optimization problem [44], this is generally not true for nonconvex problems. In order to understand when homotopy can be effective in finding a global solution for nonconvex optimization, we explore a minimization problem of the form: $\min_x f(x)$ where $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is a nonconvex function of $x \in \mathbb{R}^n$. This problem is named (P^0). Note that the function $f(\cdot)$ can incorporate exact/inexact penalty functions to enforce constraints on x, implying that this formulation is general for both unconstrained and constrained optimization [51]. We refer to (P^0) as the “base-case” problem. A deformed version of the base-case, which is also a nonconvex minimization problem, is denoted by (P^1) and defined as $\min_x \tilde{f}(x)$. For our application, (P^0) corresponds to the base-OPF problem and (P^1) corresponds to the contingency-OPF problem (the definition of these two problems are provided in the next section).

We consider two possible methods for solving the deformed problem that are based on local search algorithms:

- **a) One-shot method**: Use the solution of P^0 as the initial point for any descent numerical algorithm to solve P^1.
- **b) Homotopy method**: Generate a (discretized) homotopy map from P^0 to P^1. Use the solution of P^0 as the initial point, but update it at each step of the homotopy by solving an intermediate problem using local search that is initialized at the solution of the previous step. A linear (non-discretized) homotopy map can be defined as:

$$
P(\lambda) = \min_x \left\{ \lambda \tilde{f}(x) + (1 - \lambda) f(x) \right\}, 0 \leq \lambda \leq 1,$$

with the property that $P(0) = P^0$ and $P(1) = P^1$.

Depending on $f(x)$ and $\tilde{f}(x)$, homotopy may or may not lead to better results than solving the deformed problem in one shot. In Figure 1, we see an example where homotopy is effective in finding the global minimum of a deformed problem and another example where it leads to a non-global local minimum. Knowing when homotopy will be effective is
highly dependent on understanding how the shape of the function changes from the base-case to the deformed problem. In the current literature, there is a lack of theoretical results to characterize the performance of homotopy in finding a global optimum. While [44] presents algorithms that make use of homotopy to solve nonconvex, unconstrained minimization problems, these algorithms are similar to other stochastic search methods in that they do not guarantee convergence to the global minimum.

III. FORMULATION OF TWO-STAGE SECURITY-CONSTRAINED OPTIMAL POWER FLOW

In this section, we present the mathematical formulation of the two-stage security-constrained OPF which is decomposed into the base-OPF and the contingency-OPF. The base-OPF resembles the conventional SCOPF that finds a base-case operational point which is robust against potential contingencies. The contingency-OPF focuses on a single contingency and attempts to find an adjusted operating point that minimizes constraint violations.

A. BASE-CASE OPTIMAL POWER FLOW

Recall that the classic optimal power flow problem (without security considerations) minimizes operating costs subject to technical limits, such as the power flow equations and explicit bounds on variables. The decision variables \(x = ([v], \theta, p^d, q^d) \in \mathbb{R}^{|V|} \) represent the vector of voltage magnitudes, voltage phase angles, real power generations and reactive power generations, corresponding to the pre-contingency base-case configuration of the network.

Now, suppose that there is a set of possible contingencies, namely \(K \), where each contingency corresponds to a line or generator outage. Each contingency \(k \in K \) introduces a new set of variables \(x^k \), and therefore, for a network with \(|V|\) buses and \(|K|\) contingencies, the SCOPF problem will involve optimizing over \(|V|(|K|+1) \) scalar variables. The contingencies also add operational constraints of their own. In addition, there are physical limitations on how the post-contingency network can adapt from the base-case, and these limits are added as constraints that are functions of the base-case variables.

Since this extremely high-dimensional problem is cumbersome to solve, in practice the contingency constraints are approximated via methods such as LODF and PTDF [52]. In essence, this approximates the contingency variable \(x^k \) as a function of the base-case variable \(x \). Therefore, post-contingency equality constraints for contingency \(k \) are approximated by a composite function of the form \(h_k(x) = h_k(a_k(x)) \), where \(a_k(x) \) represents the control actions that are taken in the event of a contingency. The same goes for post-contingency inequality constraints, represented by \(g_k(x) \).

Finally, another important consideration is how SCOPF performs when the problem is infeasible. Therefore, we model some operational limits using soft constraints with extra variables that capture the amount of violation.

The objective function that is minimized is the sum of real power generation costs in the base-case as well as a weighted sum of equality constraint violation penalties in the contingencies. The standard optimization form is presented below:

\[
\begin{align*}
\min_{x, [\{\sigma_k\}]_{k=1}^{\left| K \right|}} & \ f(x) + \sum_{k=1}^{\left| K \right|} \phi_k(\sigma_k) \\
\text{s.t.} & \ h(x) = 0, \ g(x) \leq 0 \\
& \ h_k(x) = \sigma_k, \ g_k(x) \leq 0, \ \forall k \in \{1, \ldots, |K|\}
\end{align*}
\]

where \(\phi_k(\cdot) \) represents the penalty functions for the violations. We denote this problem as the base-OPF.

B. POST-CONTINGENCY OPTIMAL POWER FLOW

The base-OPF solves for the base-case operating point by taking into account the possible failures in the network. In the process, it approximates the relationship between the contingency operation point \(x \) and the base-case operating point \(x^* \). Therefore, for each contingency we propose to solve a contingency-OPF problem to find the best operating point for the specific contingency scenario, given the base solution.

We model a contingency, such as a line or generator outage, by changing the system parameters from their base values. For example, a line outage physically means that power cannot flow over that connection, which can be modeled by setting the resistance of the line to infinity or its conductance to zero. In the event of a line outage, the power is re-routed through other paths and therefore the amount of loss in the system changes. However, the difference in loss is small enough such that there is often no need for additional participation from other generators, unlike in the scenario of a generator outage. Therefore, we fix the real power generation to be equal to the base-case values and solve for the remaining variables such that the violations for the bus balance equations are small and spread out as much as possible (note that the proposed method can handle generator participation, which is explained in Section IV.B.). This is because large concentrated violations in a few buses can result in serious issues for the power network, whereas small power mismatches can be taken care of by real-time feedback controllers. Taking these into consideration, each contingency-OPF under study is given as

\[
\begin{align*}
\min_{[\{\sigma_i\}, \{\sigma_i^q\}, [\{\sigma_i^p\}, [\{\sigma_i^q\}]} & \ \phi(\sigma_i^p, \sigma_i^q) \\
\text{s.t.} & \ p_i^p - \sum_{j=1}^{\left| V \right|} |v_i||v_j| (\tilde{G}_{ij} \cos \theta_{ij} + \tilde{B}_{ij} \sin \theta_{ij}) \\
& \ = P_i^d + \sigma_i^p, \ \forall i \in V \\
& \ q_i^p - \sum_{j=1}^{\left| V \right|} |v_i||v_j| (\tilde{G}_{ij} \sin \theta_{ij} - \tilde{B}_{ij} \cos \theta_{ij}) \\
& \ = Q_i^d + \sigma_i^q, \ \forall i \in V
\end{align*}
\]
\[|v_i| = |v_i|^{\text{base}}, \quad \forall i \in \mathcal{V} \setminus \mathcal{V}^f \]
\[Q_i^\min \leq q_i^g \leq Q_i^\max, \quad \forall i \in \mathcal{V} \]
\[V_i^\min \leq |v_i| \leq V_i^\max, \quad \forall i \in \mathcal{V}^f \]
\[|\theta_i - \theta_j| \leq \theta_{ij}^\max, \quad \forall (i, j) \in \mathcal{E} \]

Here, \(\mathcal{V}^f \) is the set of buses that hit their upper or lower reactive power generation bounds in the base-case, and \(|v_i|^{\text{base}} \) is the voltage magnitude of bus \(i \) in the base-case. The notations \(\tilde{G}_{ij} \) and \(\tilde{B}_{ij} \) reflect the potential change in the admittance matrix from the base-case values \(Y_{ij} = G_{ij} + jB_{ij} \). Note that real power generation is now a fixed parameter obtained from a solution of the base-OPF and therefore has been denoted by capital \(P^g \). In the above formulation, constraints on the power flow over transmission lines are modeled as constraints on the angle differences between buses, which is a common practice [12]. However, the proposed method is general and can accommodate other types of line flow constraints.

For generator outage contingencies, there is an additional aspect to consider. A generator outage corresponds to setting the real power generation at that generator to zero. However, in order to compensate for the lost generation, the system operator needs to increase the power generation at other generators that participate in the outage response. The above framework is general enough to incorporate this difference: simply set \(P^g \) and \(Y_{ij} = G_{ij} \) and \(B_{ij} \) for all \((i, j) \in \mathcal{E} \), where \(P^g \) is the new setpoint for the real power generation. Denoting \(x = [\theta, q^g, \sigma^p, \sigma^q] \) as the combined variable, contingency-OPF in a standard optimization form would be:

\[
\text{[contingency-OPF]} \quad \min_x f(x) \quad \text{s.t.} \quad h(x) = 0, \quad g(x) \leq 0
\]

Note that \(f(\cdot) \) is not the same objective function used for the base-OPF but merely a simplified notation for \(\phi(\sigma^p, \sigma^q) \). With no loss of generality, we focus on the case when \(\phi(\sigma^p, \sigma^q) = \sum (c_i^p \sigma_i^p)^2 + c_i^q (\sigma_i^q)^2 \), where \(c_i^p \) and \(c_i^q \) are cost coefficients. Similarly, \(h(\cdot) \) is the same as the constraint functions used for the base-OPF.

If the optimal objective value of the contingency-OPF is zero, it means that the system is capable of maintaining zero violations by adjusting the parameters from the base-case. However, the primary focus of this paper is on hard instances with a nonzero optimal cost, meaning that some of the constraints must be violated to accommodate the outage. In these cases, since taking corrective actions to deal with nodal power violations is expensive, it is essential to find a global solution.

IV. METHODS
In the following subsections, we present a homotopy method that parametrizes the contingency-OPF to model a gradual line or a generator outage.

A. HOMOTOPY METHOD FOR A LINE OUTAGE
In order to solve the contingency-OPF problem, we propose a homotopy method that gradually changes certain parameters of the problem from the base-OPF, rather than abruptly changing the structure of the network. For a line outage contingency, we introduce an aggregate homotopy parameter \(\lambda = [\gamma, \beta, \gamma^\text{sh}, \beta^\text{sh}] \) corresponding to the series admittance and the shunt admittance, where \(\gamma, \beta, \gamma^\text{sh}, \beta^\text{sh} \in \mathbb{R}^{|E|} \). To be more precise, we parametrize the admittance in the contingency-OPF as follows:

\[
\begin{align}
\gamma_{ij}(\lambda) &= g_{ij}^\text{sh} \gamma_{ij} + j \beta_{ij} \beta_{ij} \quad \forall (i, j) \in \mathcal{E} \\
\beta_{ij}(\lambda) &= g_{ij}^\text{sh} \gamma_{ij} + j \beta_{ij} \beta_{ij} \quad \forall (i, j) \in \mathcal{E}
\end{align}
\]

which creates a family of OPF problems, named \(H_\lambda \), written in the standard form of:

\[
\begin{align}
\text{[homotopy-OPF]} \quad \min_x f(x, \lambda) \quad \text{s.t.} \quad h(x, \lambda) = 0, \quad g(x, \lambda) \leq 0
\end{align}
\]

Now, let \(\ell \in \mathcal{E} \) be a line that connects buses \(i \) and \(j \), and consider a contingency scenario in which the line \(\ell \) is out. Notice that \(\lambda^\ell = [1, 1, 1, 1, 1, 1] \) corresponds to the original network before the line outage, and \(\lambda^f \) corresponds to the post-contingency network after the line outage. By varying \(\lambda \) from \(\lambda^\ell \) to \(\lambda^f \), the homotopy map allows us to create fictitious power networks that constitute a series of intermediate OPF problems. An example flowchart demonstrating the homotopy method for a line outage contingency is given in Figure 2.

B. HOMOTOPY METHOD FOR A GENERATOR OUTAGE
For a generator outage, our proposed homotopy map gradually decreases the real power generation at the generators that are out and gradually increases the real power generation at the generators participating in the contingency response. For the simplicity of presentation, consider contingencies associated with a single generator (generator \(k \)) outage. This is common practice in power systems and is referred to as the \(N - 1 \) criterion. Yet, note that the proposed method can easily be extended to multiple generator outages and is incorporated in Algorithm 2.

Let \(P^{g,0} \in \mathbb{R}^{|V|} \) be the real power generated at all generators in the base-case. Using the participation factors of generators that are still active in the contingency, we can compute \(P^{g,f} \in \mathbb{R}^{|V|} \), the real power generated at all generators after the contingency. Since generator \(k \) is down in this contingency scenario, \(P^{g,f}_k = 0 \). One possible method to choose the participation factors that determine \(P^{g,f} \) is provided in the Appendix. Similar to what we did for line outage contingencies, we introduce an aggregate homotopy parameter \(\lambda = [\gamma, \beta] \) with \(\gamma, \beta \in \mathbb{R}^{|V|} \) to create the following homotopy map:

\[
\begin{align}
P^{g}(\gamma) &= P^{g,0} \circ \gamma + P^{g,f} \circ (1 - |V| - \gamma) \quad (5a) \\
Q^{f}(\beta) &= Q^{f,0} \circ \beta + Q^{f,f} \circ (1 - |V| - \beta) \quad (5b)
\end{align}
\]

Focusing on the first equation where we parametrize the real power generation, notice that \(\lambda^\ell = [1, 1, 1, 1] \) corresponds to the original network before the generator outage, and \(\lambda^f = [0, 0, 0, 0] \) corresponds to the post-contingency
justification for this extra parametrization is not clear for the moment, we will explain later that the parametrization needs to be of high enough dimension in order for the homotopy method to be effective. The series of homotopy problems have the same form as those for the line outage, given by Equation (4).

C. IMPLEMENTATION OF HOMOTOPY-OPF

The global minimum of the base-OPF is also a global minimum of H_{x^*} because at $\lambda = \lambda^o$, the parameters of the homotopy-OPF corresponds to the pre-contingency network, for which the violations are zero. Starting with a solution to the base-OPF, we aim to iteratively solve a series of homotopy-OPF problems along a path of λ to eventually arrive at the contingency-OPF. Our implementation of solving a series of homotopy-OPF, as presented in the previous section, can be viewed as a one-parametric optimization problem by defining $\tilde{f}(x, t) = f(x, \lambda(t))$, $\tilde{h}(x, t) = h(x, \lambda(t))$ and $\tilde{g}(x, t) = g(x, \lambda(t))$, where $\lambda(t)$ is a continuous function in t such that $\lambda(0) = \lambda^o$ and $\lambda(1) = \lambda^f$. The trajectory of λ’s tracing from $\lambda(0)$ to $\lambda(1)$ is called the homotopy path. Then, the problem reduces to solving the following problem for a suitable discretized partition of t in the range $[0, 1]$, namely $0 = t^1 \leq t^2 \leq \cdots \leq t^T = 1$:

$$
\begin{align*}
\left[\text{homotopy-OPF} \right] & \min_{x, \lambda} \tilde{f}(x, t) \\
\text{s.t.} & \tilde{h}(x, t) = 0, \tilde{g}(x, t) \leq 0
\end{align*}
$$

We make the following assumptions for the development of the results of this section:

(A1) There exists a continuous function $x^*(t): [0, 1] \rightarrow \mathbb{R}^{|V|}$ such that $x^*(t)$ is a global minimizer for H_t. Moreover, $x^*(0)$ is unique and known.

(A2) There exists a neighborhood U of $(x^*(t), t) \subset \mathbb{R}^{|V|} \times [0, 1]$ such that for all $(x, t) \in U$, the functions \tilde{f} and \tilde{h} are twice continuously differentiable with respect to x.

(A3) Linear independence constraint qualification (LICQ) and strong second-order sufficient conditions (SSOC) are satisfied at $x^*(t)$ for every $t \in [0, 1]$. Note that the discretization of homotopy path can also be represented by the set $\Lambda := \{\Lambda^1, \ldots, \Lambda^T\}$, where $\Lambda^i = \lambda(t^i)$ for $i = 1, \ldots, T$, $\Lambda^1 = \lambda(t^1) = \lambda^o$ and $\Lambda^T = \lambda(t^T) = \lambda^f$. In other words, $H_{\Lambda^i} = H_{\Lambda^i}$.

The SSOC is similar to the second-order sufficient conditions for local optimality but with the addition of the strict complementary slackness condition and the linear independence of the active constraints [53]. Furthermore, Assumptions (A2) and (A3) together imply that the Lagrange multipliers associated with $x^*(t)$ are uniquely determined for every $t \in [0, 1]$. We will later discuss that these assumptions are mild.

To begin, the first homotopy-OPF problem H_{λ^1} is initialized as the solution to the base-OPF problem. The series of homotopy-OPF problems are then solved sequentially, where the solution to the previous homotopy-OPF problem H_{λ^i} is utilized as the initial point for a local search algorithm.
Algorithm 1 Homotopy-OPF for Line Outages

Given: Contingency set K with line outages $L_k \subset \mathcal{E}$ for each $k \in K$.
Initialize: Solve base-OPF problem to find a globally optimal solution $([v], \theta, p_k^b, q_k^b, \sigma_k^b)$.
Formulate the contingency-OPF problem:
1. Fix real power generation to base-case solution: $P_k^b := p_k^b$.
2. Find V^U based on q_k^b.
for $k \in K$ do
Set up homotopy-OPF family H_A for given line outages L_k.
Initialize ($[\tilde{v}], \tilde{\theta}, \tilde{q}, \tilde{\sigma}, \sigma^q$) as the solution of base-OPF.
for $i \in \{1, \ldots, T\}$ do
Solve H_A^i using initial point ($[\tilde{v}], \tilde{\theta}, \tilde{q}, \tilde{\sigma}, \sigma^q$), and obtain new solution $([v], \theta, q^b, \sigma^p, \sigma^q)$.
Update ($[\tilde{v}], \tilde{\theta}, \tilde{q}, \tilde{\sigma}, \sigma^q$) ← ($[v], \theta, q^b, \sigma^p, \sigma^q$).
end for
Return $([v], \theta, q^b, \sigma^p, \sigma^q)$ and violation cost $\phi(\sigma^p, \sigma^q)$.
end for

Algorithm 2 Homotopy-OPF for Generator Outages

Given: Contingency set K with generator outages $R_k \subset \mathcal{V}$ for each $k \in K$.
Initialize: Solve base-OPF problem to find a globally optimal solution $([v], \theta, p_k^b, q_k^b, \sigma_k^b)$.
for $k \in K$ do
Formulate the contingency-OPF problem:
Define P_k^g as the fixed real power generation at $r \in \mathcal{V}$.
Define ΔP_k^g as the total lost real power generation at k: $\Delta P_k^g := \sum_{r \in R_k} P_{kr}^g$.
1. Find V^U_k.
2. Remove real power generation for generators in R_k: $P_k^g \leftarrow 0 \; \forall r \in R_k$.
3. Compute participation factors α_k^r for $r \in \mathcal{V} \setminus R_k$ (see Algorithm 3 in the Appendix).
4. Add real power generation for participating generators:
 for $r \in \mathcal{V} \setminus R_k$ do
 if $\alpha_k^r > 0$ then
 $P_r^g \leftarrow \max\{\alpha_k^r \Delta P_k^g, P_{kr}^{\text{max}} - P_{kr}^g\}$
 end if
 end for
Set up homotopy-OPF family H_A for given generator outages R_k.
Let $P_k^{g, 0} := P_k^g$ and $P_k^{g, f} := P_k^g$.
Initialize ($[\tilde{v}], \tilde{\theta}, \tilde{q}, \tilde{\sigma}, \sigma^p, \sigma^q$) as the solution of base-OPF.
for $i \in \{1, \ldots, T\}$ do
Solve H_A^i using initial point ($[\tilde{v}], \tilde{\theta}, \tilde{q}, \tilde{\sigma}, \sigma^p, \sigma^q$) and obtain new solution $([v], \theta, q^b, \sigma^p, \sigma^q)$.
Update ($[\tilde{v}], \tilde{\theta}, \tilde{q}, \tilde{\sigma}, \sigma^q$) ← ($[v], \theta, q^b, \sigma^p, \sigma^q$).
end for
Return $([v], \theta, q^b, \sigma^p, \sigma^q)$ and violation cost $\phi(\sigma^p, \sigma^q)$.

solving $H_{ij + 1}$. Please refer to Algorithms 1 and 2 for complete details of the method.

In this paper, we assume that the base-OPF has a unique global minimum that is available (known). The availability of a global minimum is a reasonable assumption because a good initial point is usually provided for the base-OPF, and also because more time is allocated to solving it compared to a large number of contingency-OPF problems for different outages, allowing the use of various convex relaxation techniques for the base-OPF. If the optimal violation cost for H_{ij} is nonzero, the global minimum will be unique with overwhelming probability. Furthermore, even if the violation cost is zero, it will immediately become nonzero during the next homotopy iteration if removing a line or generator introduces infeasibilities that the network cannot accommodate. In fact, these near-infeasible problems where a contingency will make the system “stressed” are the cases where homotopy can be useful and are the focus of this paper. Later in the paper, we will present a rigorous result showing that the uniqueness of the global minimum is a generic property for H_{ij}.

V. ANALYSIS OF HOMOTOPY PATHS

In Section II, we offered two examples of nonconvex optimization: one in which the homotopy method resulted in the global minimum and another in which the homotopy method resulted in a non-global local minimum (see Figure 1). In this section, we describe a theoretical framework that describes when homotopy can be used to obtain a global minimum. We apply this framework to analyze the performance of homotopy-OPF in finding the global solution of the contingency-OPF. The results developed in this section have implications for homotopy methods in a broad range of optimization problems.

Theorem 1: Let $x(t^i, z)$ denote the stationary point of H_{ij} that a local search algorithm converges to when initialized at point z. Set $z^i := x^s(t^i) := x(t^i)(0)$ and consider the sequence of points $\{x(t^i)\}_{i=1}^T$ generated by the following update rule:

$$x(t^i) = x(t^i, z^i)$$ (7)

$$z^{i+1} = x(t^i)$$ (8)

Moreover, define $\Delta t := \sup_{i=1,\ldots,T-1}{(t^{i+1} - t^i)}$. Under Assumptions (A1), (A2) and (A3), a sufficiently small Δt will ensure that $x(t^i)$ is a global minimizer of H_{ij} for $i = 1, \ldots, T$.

Theorem 1 states that if we can solve each H_{ij} exactly, then a sufficiently small stepsize in the parameter t (or equivalently λ) can track the global minimizer from the base-OPF all the way to the contingency-OPF. However, an exact solution to each H_{ij} (or equivalently H_{ij}) is generally unattainable in practice. Furthermore, the interplay between the accuracy of solving each H_{ij} and the number of discretization contribute
to the overall complexity of solving homotopy-OPF. We will show that it suffices to find an approximate solution with not a necessarily high accuracy. This will significantly reduce the complexity of solving the parametric homotopy-OPF.

A. CONVERGENCE AND COMPLEXITY OF HOMOTOPY-OPF

In this subsection, we analyze the complexity of solving the contingency-OPF using the proposed homotopy method. The results here are based on a specific local search algorithm called Wilson’s method. However, there are many other methods, such as Robinson’s method, that can achieve the same results [54]. Let \(\mu \) and \(\zeta \) denote the Lagrange multipliers for the constraints \(h(x, t) = 0 \) and \(g(x, t) \leq 0 \), respectively.

For every instance of \(H_t \), we determine a local minimizer and its Lagrange multipliers, \(w(t) = (x(t), \mu(t), \zeta(t)) \) by using the following Wilson’s method: Start with an initial point \(w^0 \), and solve the optimization problem \(W(w^k, t) \) in order to find the next iterate \(w^{k+1} \) for \(k \in \{0, 1, 2, \ldots\} \), where the problem \(W(w^k, t) \) is defined in equations (9a)-(9c), as shown at the bottom of the page, where \(\mathcal{I} \) and \(J \) denote the set of indices for the equality constraints and inequality constraints, respectively, and \(J(w^k, t) = \bar{J}(x^k, t) + \sum_i \mu_i^k \bar{h}_i(x^k, t) + \sum_j \xi_j^k \bar{g}_j(x^k, t) \). Furthermore, let a global minimizer of \(H_t \) and its corresponding Lagrange multipliers be denoted by \(w^*(t) = (x^*(t), \mu^*(t), \zeta^*(t)) \).

In this problem, we solve for the optimization variable \(x \) and the Lagrange multipliers associated with (9b) and (9c) to be able to find a primal-dual solution. Let us define the function \(\hat{w}(w^k, t) \) as the exact solution to \(W(w^k, t) \). Then, \(w^{k+1} \) numerically approximates \(\hat{w}(w^k, t) \). The process is repeated for increasing values of \(k \) until a predefined criteria is met, and the final iterate of \(\{w^k\} \) is returned as an approximate solution to \(w(t) \).

Theorem 2: Suppose that Assumptions (A1), (A2) and (A3) hold. Consider the following algorithm for a constant number \(M \): Given \(w_0 = w^*(t^1) := (x^*(t^1), \mu^*(t^1), \zeta^*(t^1)) \), compute \(w_i \) as the solution to \(H_i \) using \(M \) Wilson’s iterations starting at \(w_{i-1} \) for \(i = 1, \ldots, T \). There exist positive constants \(\bar{r} \) and \(\Delta t \) such that for every sufficiently small \(\epsilon > 0 \), the algorithm generates points \(\{w_i^j\}_{i=1}^{T} \) with \(\|w_i^j - w^\lambda(t^i)\| < \epsilon \) whenever \(t^{i+1} - t^{i} \leq \Delta t \) for \(i = 1, 2, \ldots, T \), provided that \(M \) is chosen to be larger than \(\log(\bar{r}/\epsilon) \). In particular, the Wilson complexity (total number of Wilson steps) of finding an almost globally optimal solution with \(\epsilon \) error for \(H_T \) is \(O(\log(1/\epsilon)) \).

The above theorem implies that given a global minimizer for the initial problem \(H_1 \), we can simply solve a small number of convex quadratic programs for each \(H_1 \) and keep track of its global minimizers. In particular, the quadratic program (9) is convex because the SSOC holds at the global minimizers. Furthermore, the number of parameter discretizations needed is upper bounded by a constant for small values of \(\epsilon \). This result is aligned with the complexity analysis of interior-point methods [55]. More insight is provided in the proof.

Remark 1: Our assumptions imply that \(H_1 \) along \(\lambda(t) \) has a unique global solution satisfying SSOC. In the next subsection, we argue that this is a reasonable assumption to make. In addition, this assumption on the global solution can be replaced by the “connectivity” of the set of all global solutions (this allows having infinitely many possible solutions for post-contingency OPF with zero violation cost). In what follows, we show that the uniqueness of the global minimum is a generic property for \(H_t \).

B. GENERICITY OF UNIQUE GLOBAL MINIMIZER WITH SSOC

Recall that a set \(\mathbb{S} \subset \mathbb{R}^n \) has (Lebesgue) measure zero if for every \(\epsilon > 0 \), \(\mathbb{S} \) can be covered by a countable union of n-cubes, the sum of whose measures is less than \(\epsilon \). A property that holds except on a subset whose Lebesgue measure is zero is said to be satisfied generically or hold for almost all. In this subsection, we will show that the homotopy-OPF generically has a unique global minimizer that satisfies SSOC.

Consider the following family of problems, which adds a linear perturbation to the objective of the homotopy-OPF:

\[
\begin{align*}
\min_{x \in \Psi} & \quad f(x, \lambda) + \omega T x \\
\text{s.t.} & \quad h(x, \lambda) = 0 \\
& \quad w \in \mathbb{R}^{5|\mathcal{V}|} \\
& \quad \theta \in \mathbb{R}^{5|\mathcal{V}|} \\
& \quad q \in \mathbb{R}^{5|\mathcal{V}|} \\
& \quad \sigma \in \mathbb{R}^{5|\mathcal{V}|} \\
& \quad (|v|, \theta, q, \sigma, \bar{g}) \\
& \quad \text{s.t.} & \quad Q_{\min} \leq q_{i} ^{\min} \leq Q_{\max} & \forall i \in \mathcal{V} \\
& & \theta_{i} \leq \theta_{i} ^{\max} & \forall i \in \mathcal{V} \\
& & \bar{g}_{i} \leq \bar{g}_{i} ^{\max} & \forall (i,j) \in \mathcal{E} \\
& & |v| \leq |v| ^{\max} & \forall i \in \mathcal{V} \\
\end{align*}
\]

This formulation is possible by noticing that the inequality constraints of homotopy-OPF are independent of the parameter \(\lambda \). We call this problem the extended homotopy-OPF. Here, \(\ell \) represents the dimension of the parameter \(\lambda \), which can be equal to either 4 (for line contingencies) or 2 (for generator contingencies). Then, using the results from [53], we can easily derive the following lemma:

Lemma 1: Suppose that the following two conditions are satisfied:

1. The function \(\lambda \rightarrow h(x, \lambda) \) is of full rank 2 in \(\mathcal{V} \) for all \(x \in \Psi \) at every \(\lambda \).

1. The rank of a differentiable mapping is the rank of its Jacobian.

\[
W(w^k, t) := \min_x \quad \nabla J(x^k, t)^T (x - x^k) + \frac{1}{2} (x - x^k)^T \nabla^2 J(x^k, t)(x - x^k) \\
\text{s.t.} \quad \hat{h}_i(x^k, t) + \nabla_i \hat{h}_i(x^k, t)^T (x - x^k) = 0, \quad \forall i \in \mathcal{I} \\
\quad \hat{g}_j(x^k, t) + \nabla_j \hat{g}_j(x^k, t)^T (x - x^k) \leq 0, \quad \forall j \in \mathcal{J}
\]
2) The set Ψ is a cyrtohedron and the set \mathcal{U} is an open set. Then, for almost all (λ, ω) except those in a set $\mathcal{U}' \subset \mathcal{U}$ of measure zero, $H_{\lambda,\omega}$ has a unique global minimizer satisfying SSOC. In fact, for every $(\lambda, \omega) \in \mathcal{U} \setminus \mathcal{U}'$, $H_{\lambda,\omega}$ cannot achieve the same objective value at any two distinct critical points. The concept of a cyrtohedra was first introduced in [56] and it captures a class of sets whose boundaries are a union of countably many smooth manifolds pieced together. A few main examples of cyrtohedra include polyhedral convex sets, submanifolds, submanifolds with boundaries, and manifolds with corners. In our case, the set Ψ is naturally a cyrtohedra and therefore we only have to verify the first condition. The next lemma proves that the condition can be easily verified for the line outage contingency.

Lemma 2: Define the matrix $J = \begin{bmatrix} J^1 & 0 \\ 0 & J^2 \end{bmatrix} \in \mathbb{R}^{2|\mathcal{E}| \times 2|\mathcal{V}|}$ as

\[
J^1_{(i,j),k} = \begin{cases} \frac{1}{2} s_{ij} |v_k|^2 & \text{for } k = i \text{ or } j, \quad j \in \mathcal{N}(i) \\ 0 & \text{otherwise} \end{cases}
\]

\[
J^2_{(i,j),k} = \begin{cases} \frac{1}{2} b_{ij} |v_k|^2 & \text{for } k = i \text{ or } j, \quad j \in \mathcal{N}(i) \\ 0 & \text{otherwise} \end{cases}
\]

where the column and row indices represent the lines and the nodes of the power system, respectively. If J has full column rank, then the function $\lambda \rightarrow h(x, \lambda)$ associated with the line outage homotopy method is of full rank $2|\mathcal{V}|$.

A similar result holds for generator outage contingencies, as shown below.

Lemma 3: Define the matrix $M = \begin{bmatrix} M^1 & 0 \\ 0 & M^2 \end{bmatrix} \in \mathbb{R}^{2|\mathcal{V}| \times 2|\mathcal{V}|}$ as

\[
M^1_{i,j} = \begin{cases} p_{i}^{\text{g},o} - p_{i}^{\text{g},f} & \text{for } j = i \\ 0 & \text{otherwise} \end{cases}
\]

\[
M^2_{i,j} = \begin{cases} q_{i}^{\text{q},o} - q_{i}^{\text{q},f} & \text{for } j = i \\ 0 & \text{otherwise} \end{cases}
\]

where both the column and row indices represent the nodes of the power system network. If M has full rank, then the function $\lambda \rightarrow h(x, \lambda)$ associated with the generator outage homotopy method is of full rank $2|\mathcal{V}|$.

The result implies that the first condition of Lemma 1 is satisfied if: (i) the pre-contingency real power generations and the post-contingency real power generations are different and (ii) the pre-contingency reactive power demands and the post-contingency reactive power demands are different. Note that this does not necessarily hold true because some real power generations are supposed to be fixed even after the contingency (same for reactive power demand). However, we can address this issue by allowing $P_{i}^{\text{g},f} (Q_{i}^{\text{q},f})$ to take on a value within a small interval around $P_{i}^{\text{g},o} (Q_{i}^{\text{q},o})$, but excluding the point itself, whenever we want the two values to be close to each other.

Note that the linear perturbation term in $H_{\lambda,\omega}$ is a mathematically necessary device that allows us to prove generic uniqueness on a family of nonlinear optimization problems. Ultimately, we will only consider very small perturbations so that $H_{\lambda,\omega}$ closely resembles H_{λ}. Using the lemmas above, we arrive at the following corollary:

Corollary 1: Let $\mathcal{U}(\delta) = \{ (\lambda, \omega) \mid \lambda \in \mathcal{S}, \omega = \delta(\lambda) \}$, where \mathcal{S} is an open set such that $[0, 1]^m \subset \mathcal{S}$ and $\delta(\lambda)$ is an open n-dimensional ball around the origin with radius δ. Suppose that J and M have full column rank. Then, for every $\delta > 0$, $H_{\lambda,\omega}$ has a unique global minimizer satisfying SSOC for all $(\lambda, \omega) \in \mathcal{U}(\delta) \setminus \mathcal{U}(\delta)$, where $\mathcal{U}'(\delta) \subset \mathcal{U}(\delta)$ is of measure zero.

In other words, the uniqueness of a global minimizer satisfying SSOC is a generic property of H_{λ}, and thus supporting the assumptions made in this paper (specifically Assumptions (A1) and (A3)).

C. GEOMETRY OF THE HOMOTOPY PATH: TWO-BUS EXAMPLE

In order to illustrate the previous ideas, we consider a simple homotopy-OPF example on a two-bus system. The line connecting the two buses has admittance $y = G_y - jB_y$, and there is a lower bound Q_{min}^q on the reactive power injections at both buses. In this two-bus example, we consider the objective function $(\sigma_{1}^p)^2 + c(\sigma_{2}^p)^2$. Furthermore, assume that:

1) $|v_1| = |v_2| = 1$

2) $-\Delta' \leq \theta_1 - \theta_2 \leq \Delta'$

3) $0 < Q_{\text{min}}^q < q(\Delta')$

where $\Delta' = \tan^{-1}(B_y / G_y)$ and $q(\cdot)$ denotes the reactive power injection as a function of solely the angle difference, which is due to the fact that voltage magnitudes are fixed. Note that the second constraint on the angle difference is reasonable for the secure operation of power systems and is also used in [11] in order to restrict the two-bus real power injection region to be the Pareto front of the original feasible region. Geometrically, the feasible set of the two-bus injection region is the Pareto front of an ellipse, which is partially removed due to the reactive power constraints (for details, see Figure 11). Let F_{i}^{β} denote the real power generation at bus i obtained from the base-OPF solution. The following lemma characterizes the set of homotopy parameters for which there are at least two global solutions.

Lemma 4: Denote $\alpha = \cos^{-1} \left(\frac{-Q_{\text{min}}^q + B_y}{|y|} \right)$, and define two polynomial functions of $\lambda = (\gamma, \beta)$ as follows:

\[
\Omega_1(\gamma, \beta) = \frac{2B_y}{|y|} (B_y \cdot \sin \alpha + \alpha \cdot G_y)
\]

\[
\Omega_2(\gamma, \beta) = 2G_y - 2G_y \left(-G_y \cdot \sin \alpha + \alpha \cdot B_y \right)
\]

Then, the set of parameters leading to multiple global minimizers, \mathcal{U}', can be characterized as:

\[
\mathcal{U}' = \{ \lambda \in \mathbb{R}^2 \mid (1 - c) \cdot \Omega_1(\gamma, \beta) \cdot \Omega_2(\gamma, \beta) - 2(\rho_{i}^{\beta})^2 \cdot \Omega_1(\gamma, \beta) + 2c(\rho_{i}^{\beta})^2 \}
\]

\[
\cdot \Omega_1(\gamma, \beta) = 0
\]

(14)
The set U' in Lemma 4 for a particular instance of the example is depicted in Figure 3. As we can observe, U' is a measure zero set in the two-dimensional parameter space, and it is possible to design an effective homotopy path. Note that the linear perturbation term in $H_{\lambda,\omega}$ is a mathematical device used to prove generic uniqueness of the global minimizer for a family of problems. The characterization of U' in Lemma 4 did not require the linear perturbation. However, this means that particular instances of the example may not lead to the result that we desire. For instance, if $c = 1$ and $P_g^{b,1} - P_d^{l} = P_g^{b,2} - P_d^{l}$ in the above example, U' is no longer a measure-zero set.

VI. SIMULATIONS

In this section, we illustrate the success of the homotopy method in finding the global solution of the contingency-OPF. In doing so, we present simulations of different line and generator outage scenarios on various networks. We also evaluate the performance using different homotopy paths and discretizations, and verify our earlier theoretical results. Note that these simulations are all run in MATLAB on a standard laptop (2.6 GHz 6-Core Intel Core i7 with 16 GB 2400MHz RAM). The contingency-OPF problems with and without homotopy all solve in less than two minutes and typically solve on the order of seconds. With the given machine configuration, we were able to solve six homotopy-OPF problems in parallel in less than five minutes. The applicability of our methodology will depend on how much parallel-computing resources are available to the user.

In these simulations, we consider $N - 1$ contingencies wherein there is one line or generator out as well as $N - 2$ and $N - 3$ contingencies wherein there are multiple outages. Although $N - 1$ contingencies occur more frequently in practice, $N - 2$ and $N - 3$ contingencies are catastrophic events that are worth considering as they are harder to correct. Extreme weather events, attacks, or component aging could cause these $N - k$ (where $k \geq 2$) contingency scenarios to occur [57]. Adding uncertain renewable energy sources such as wind energy to power networks increases the probability of correlated faults and thus the possibility of $N - 2$ and $N - 3$ contingencies [58]. Additionally, these multi-contingency scenarios can capture cascading failures that occur in a short window where corrective action is not possible between contingencies [58].

In order to implement the contingency-OPF within the MATPOWER format [59], we introduce virtual generators that model the violations of real and reactive power balance equations (σ^p and σ^q). Virtual generators are modeled so that they only generate or consume (virtual) power when...
there is a nonzero violation in the respective power balance equation. Therefore, by penalizing the virtual generation in the modified objective function, we fully implement the contingency-OPF as formulated in Section III.B. To solve each of the homotopy simulations, we use the MATPOWER Interior Point Solver (MIPS) [60].

For both line and generator outages, we solve the corresponding contingency-OPF problems via both homotopy and the one-shot method. The one-shot method uses the solution for the base-OPF as the initial point for directly solving the contingency-OPF. We compare various homotopy discretization schemes to the one-shot method. Note that the one-shot method is equivalent to solving the contingency-OPF problem via interior point methods and thus represents the current state-of-the-art.

For the line outages, we consider three different homotopy paths. If we take the line connecting buses \(i \) and \(j \) to be out, then the three homotopy paths are given by:

- **Scheme 1**: Uniformly decrease \((\gamma_{ij}, \beta_{ij}) \) from \((1, 1)\) to \((0, 0)\)
- **Scheme 2**: Decrease \(\gamma_{ij} \) from \(1 \rightarrow 0 \), then \(\beta_{ij} \) from \(1 \rightarrow 0 \)
- **Scheme 3**: Decrease \(\beta_{ij} \) from \(1 \rightarrow 0 \), then \(\gamma_{ij} \) from \(1 \rightarrow 0 \)

These schemes can be applied to multiple line outages by simultaneously modifying \(\gamma_{ij} \) and \(\beta_{ij} \) for each line \((i, j) \in E\) that is out. For line outage scenarios on the 3375-bus and 3120-bus Polish networks, Figures 4 and 5 show the evolution of the violation cost over these homotopy schemes (with a 10-iteration discretization) compared to the violation cost of the one-shot method [59]. Next, we consider changing the discretization of homotopy scheme 1 in a line outage scenario. Figure 6 shows line outage scenarios on the 3375-bus and 3120-bus Polish networks using homotopy scheme 1 with a varying number of iterations [59].

For generator outages, we implement a homotopy path that decreases \(\lambda \) from \([1|V|, 1|V|]\) to \([0|V|, 0|V|]\) uniformly
Throughout the iterations. For this homotopy path, we also consider varying the discretization of the path. Figure 7 shows generator outage scenarios on the 89-bus and 1354-bus PEGASE networks [61], [62]. From these figures, we can see that the final violation cost obtained using the given homotopy paths can vary significantly depending on the number of iterations (i.e. $\Delta \lambda$) of homotopy-OPF.

In some of the examples from Figures 4, 6, and 8, we can see that solving the contingency-OPF problems with our homotopy method results in a lower violation cost than solving the same problems via the one-shot method. We also considered how far the bus voltages in the contingency-OPF problem were from the base-case voltages when we solved the problem with homotopy versus one-shot methods, as shown in Figure 9 and 10. To quantify the severity of the contingency, we also show the voltage variations when using a simple powerflow solver after a contingency. The results show that with homotopy we can obtain a solution that is relatively close to that of the base-case, while the solution obtained without homotopy can be unnecessarily far away from that of the base-case.

In other cases from Figures 5, 6, and 7, solving the contingency-OPF problems via the one-shot method results in non-convergence while the homotopy method can find a convergent solution.

In order to formally compare the performance of homotopy versus the one-shot method, we say that homotopy "outperforms" the one-shot method if either of the following are true:

1) If the homotopy scheme converges and the one-shot method does not converge.
2) If the homotopy scheme converges to a value that is better than that of the one-shot method by at least 0.01% of the optimal base-OPF cost.
Since a small penalty price is applied to minor violations and an extremely severe penalty for high violations, having even a single contingency scenario with a high violation is problematic for the entire SCOPF problem. Therefore, even if a methodology can improve the current industry solution for 1 out of 10 contingency scenarios, it is extremely beneficial for the security of the entire system. For the cases where the proposed homotopy method does not outperform the one-shot method, the homotopy method typically is at least as good as the one-shot method.

VII. CONCLUSION
This paper studies the contingency-OPF problem, which is used to find an optimal operating point in the case of a line or generator outage. Unlike the base-OPF problem that is a single optimization problem, there are many contingency-OPF problems that should all be solved in a short period of time. Recognizing that the contingency-OPF problem is a challenging variant of the classical OPF problem, we introduce a new homotopy method to find the best solution of the contingency-OPF problem. This method involves solving a series of intermediate homotopy-OPF problems using simple local search methods, and we study conditions that guarantee convergence to a global solution of the contingency-OPF. We perform simulations on real-world networks and show that the proposed homotopy method can result in a lower value of the objective. In the majority of considered cases, the proposed homotopy method resulted in the same solution as that obtained by current state-of-the-art methods. However, in other critical cases, homotopy significantly outperformed state-of-the-art interior point methods as measured by both violation cost reduction and solver convergence. Since power operators always intend to secure the grid against low-probability events with catastrophic effects, our work improves the security of the grid for those critical scenarios.
B. PROOF OF THEOREM 2
We begin by defining the radius of convergence for Wilson’s method for solving \(H_i \) in a neighborhood of a local minimizer \(w(t) \).

Definition 1:
\[
r(t, w(t)) = \sup \{ r \mid \text{for all } w^0 \text{ satisfying } \| w^0 - w(t) \| \leq r, \]
\[
\text{starting Wilson’s method with } w^0 \]
\[
\text{providing a sequence } \{ w^i \}
\]
\[
\text{converging to } w(t) \}.
\]
(15)

The following lemma is a natural corollary of Theorem 3.2.1 in [54]. We do not state the proof of this lemma here but the derivation uses properties of the Wilson’s method.

Lemma 5: Suppose that Assumptions (A1), (A2) and (A3) hold. Then, there exists a real number \(\hat{r} > 0 \) such that
\[
r(t, w(t)) \geq \hat{r} \text{ for all } w(t), t \in [0, 1]
\]
(16)

Let us consider the sequence \(\{ w^i \}_{i=1}^T \) such that
\[
\| w^i_1 - w^*(t^1) \| < \epsilon,
\]
\[
\| w^i_{i+1} - w^*(t^i+1) \| < \epsilon^i, \quad i = 2, \ldots, T,
\]
where \(0 < \epsilon' < \epsilon \) and \(\hat{w}^i(w^i, t) \) denotes the true (or exact) KKT point after applying \(M \) Wilson’s steps starting from \(w^i_1 \). The choice of \(w^i_1 \) satisfying (17) is possible because of the known initial global minimizer assumption in (A1). From the proof of Theorem 3.2.1 in [54], we also know that there is a constant \(\hat{r} > 0 \) such that \(\| \hat{w}(w, t) - w^*(t) \| \leq \frac{1}{2} \| w - w^*(t) \| \) whenever \(\| w - w^*(t) \| \leq \hat{r} \). Now, we choose \(\epsilon > 0 \) and \(\eta > 0 \) such that the following condition is satisfied:
\[
\epsilon + \eta < \hat{r}
\]
(19)

Due to the assumption on the continuity of the global minimizers (A1), there is a \(\Delta t > 0 \) such that
\[
\| w^*(\tilde{t}) - w^*(t) \| < \eta, \quad \text{for all } \tilde{t}, t \in [0, 1] \text{ with } |\tilde{t} - t| \leq \Delta t
\]
(20)

Given \(t^k \) and \(w^i_k \) with \(\| w^i_k - w^*(t^k) \| < \epsilon \) for some \(k \in \{1, \ldots, T-1\} \), we obtain
\[
\| w^i_k - w^*(t^i+1) \| \leq \| w^i_k - w^*(t^i) \| + \| w^*(t^i) - w^*(t^i+1) \| < \epsilon + \eta < \hat{r}
\]
(21)

Hence, the point \(w^i_k \) is in the region of convergence and therefore,
\[
\| \hat{w}^M(w^i_k, t) - w^*(t^i+1) \| \leq \left(\frac{1}{2} \right)^M (\epsilon + \eta)
\]
(22)

Furthermore, we obtain
\[
\| w^i_{k+1} - w^*(t^{k+1}) \| \leq \| w^i_{k+1} - \hat{w}^M(w^i_k, t) \| + \| \hat{w}^M(w^i_k, t) - w^*(t^{k+1}) \| \leq \epsilon' + \left(\frac{1}{2} \right)^M (\epsilon + \eta)
\]
(23)

To find \(M \), we need to ensure that the equation (23) can be upper bounded by \(\epsilon' \):
\[
\epsilon' + \left(\frac{1}{2} \right)^M (\epsilon + \eta) \leq \epsilon
\]
(24)

Solving for \(M \), we obtain the condition
\[
M \geq \log_2 \frac{\epsilon + \eta}{\epsilon - \epsilon'}
\]
(25)

Noting that \(\hat{r} > \epsilon + \eta \) from equation (19) and \(\epsilon' < \epsilon \), we observe that \(M \) satisfies the condition (25) if \(M \geq \log_2 \frac{\hat{r}}{\epsilon} \).

We can continue this logic until \(k = T - 1 \) and arrive at the conclusion that the number of Wilson’s method that will enable the algorithm to keep track of the global minimizers is on the order of \(O(\log(\hat{r}/\epsilon)) \). Finally, we claim that \(1/\Delta t \) is upper bounded by a constant for sufficiently small \(\epsilon \). This is because \(\Delta t \) only needs to be small enough so that \(\eta \) satisfies equation (19). Therefore, if we have a constant \(\Delta t \) corresponding to some value \(\tilde{\eta} \) satisfying the condition for a given \(\epsilon \), the same \(\Delta t \) (and equivalently \(\eta \)) will satisfy the condition for any \(\epsilon \) smaller than \(\hat{\epsilon} \). This concludes that the overall complexity of solving homotopy-OPF is \(O(\log(\hat{r}/\epsilon)) \), which is equivalent to \(O(\log(1/\epsilon)) \).

C. PROOF OF LEMMA 3
By Proposition 4 of [53], the family of optimization problems
\[
\min_{x \in \Psi} f(x, \lambda, \omega)
\]
\[
s.t. \quad h(x, \lambda) = 0
\]
has a unique global minimizer satisfying SSOC for all parameters \((\lambda, \omega) \in \Upsilon \) except on a set of measure zero if (i) for all \(x_1 \neq x_2 \), and for all \(\omega \), the function \(f(\lambda, \omega) = f(x_1, \lambda, \omega) - f(x_2, \lambda, \omega) \) is of rank one at all \(\lambda \), (ii) the function \(h(\lambda) = h(x, \lambda) \) is of full rank \(2|\Psi| \) for all \(x \) at every \(\omega \), and (iii) the fixed set \(\Psi \) is a convex set and \(\Upsilon \) is an open set. It is straightforward to check that if \(f(x, \lambda, \omega) = f(x, \lambda) + \omega^T x \), condition (i) is satisfied. Conditions (ii) and (iii) are given as assumptions, which completes the proof.

D. PROOF OF LEMMA 4
The rank of the function \(\lambda \rightarrow h(x, \lambda) \) is the rank of its Jacobian (w.r.t. \(\lambda \)). Therefore, we analyze the Jacobian of \(h(x, \lambda) = h(x, [\gamma, \beta, \gamma^\text{sh}, \beta^\text{sh}]) \) with respect to \([\gamma, \beta, \gamma^\text{sh}, \beta^\text{sh}] \). From Section III-B and IV-A, we know that \(h \) consists of two types of functions, \(h^1 \) and \(h^2 \) (corresponding to the real power flow equations and the reactive power flow equations, respectively), whose \(i \)-th elements are defined by:
\[
h^1_i(x, [\gamma, \beta, \gamma^\text{sh}, \beta^\text{sh}]) = P^s_i - P^d_i - \sigma^i - \sum_{j \in N(i)} g_{ij} y_{ij} [|v_j|^2
\]
\[
- \sum_{j \in N(i)} g_{ij} y_{ij} (|v_j|^2 - |v_j||v_i| \cos \theta_{ij} - b_{ij} b_{ij} |v_j||v_i| \sin \theta_{ij})
\]
Therefore, if J has full column rank, so will the Jacobian of the function $\lambda \mapsto h(x, \lambda)$, which completes the proof. ■

E. PROOF OF LEMMA 5

Similar to the proof of Lemma 2, we analyze the Jacobian of $h(x, \lambda) = h(x, [\gamma, \beta])$ with respect to $[\gamma, \beta]$. From Section III-B and IV-A, we know that h consists of two types of functions, h^1 and h^2 (corresponding to the real power flow equations and the reactive power flow equations, respectively), whose i-th elements are defined by:

$$h_i^1(x, [\gamma, \beta]) = q_i^g - Q_i^f \beta_i + Q_i^d - \gamma_i - \sum_{j \in N(i)} b_{ij} \beta_j (|v_i| - |v_j|) \cos \theta_{ij}$$

$$h_i^2(x, [\gamma, \beta]) = q_i^q - Q_i^d \beta_i - Q_i^d (1 - \beta_i) - \sigma_i^q$$

First, we notice that the Jacobian of h^1 with respect to β and the Jacobian of h^2 with respect to γ are equal to zero. Therefore, M can be expressed as a 2×2 block matrix of the form $M = \begin{bmatrix} M_1^1 & 0 \\ 0 & M_2^2 \end{bmatrix} \in \mathbb{R}^{2|V| \times 2|V|}$ where M_1^1 corresponds to the Jacobian of h^1 with respect to γ and M_2^2 corresponds to the Jacobian of h^2 with respect to β.

For generator outage contingencies, γ and β are parameters indexed by the bus number (because we assume each bus has exactly one generator). Hereby, let $M_{1,ij}$ refer to the element of M_1^1 that is located at the (i,j)-th row and the k-th column (the row index representing the line and the column index representing the bus number). For example, $J_{1,(i,j),k}$ denotes the partial derivative of the real power flow equation at bus k with respect to the shunt susceptance parameter at line (i,j). The same goes for J_2^2.

Then, directly from basic calculus, we can derive the following form for the matrix J:

$$J_{1,(i,j),k}^1 = \begin{cases} -\frac{1}{2} b_{ij} |v_j|^2 & \text{for } k = i \text{ or } j, \ i \in N(i) \\ 0 & \text{otherwise} \end{cases}$$

$$J_{1,(i,j),k}^2 = \begin{cases} \frac{1}{2} b_{ij} |v_k|^2 & \text{for } k = i \text{ or } j, \ j \in N(i) \\ 0 & \text{otherwise} \end{cases}$$

Therefore, if J has full column rank, so the Jacobian of the function $\lambda \mapsto h(x, \lambda)$, which completes the proof. ■

F. PROOF OF COROLLARY 6

The first statement on $H_{x,\omega}$ having a unique global minimizer satisfying SSOC follows directly from applying Lemma 1. The functions $\lambda \mapsto h(x, \lambda)$ is of full rank $2|V|$ due to Lemmas 2 and 3, and this in turn satisfies the first condition of Lemma 1. As discussed in Section V, the set Ψ is a cythohedron, and the set \mathbb{U} is defined to be an open set for any $\epsilon > 0$ by the assumptions of this theorem. In other words, the second condition of Lemma 1 is also satisfied. Therefore, we can conclude that for any value of $\epsilon > 0$, $H_{x,\omega}$ has a unique global minimizer satisfying SSOC for every $(\lambda, \omega) \in \mathbb{U} \setminus \mathbb{U}'$ where $\mathbb{U}' \subset \mathbb{U}$ is of measure zero.

G. PROOF OF LEMMA 7

Let us start with the equation for the reactive power injections. Let θ_1 and θ_2 denote the voltage phasor angles at buses 1 and 2, respectively. Let the real and reactive power injections at bus i be denoted by P_{ij}^{inj} and Q_{ij}^{inj}, respectively. In this two-bus example, we consider the objective function: $(\sigma_i^q)^2 + c(\sigma_i^q)^2$. Then after denoting $\theta = \theta_1 - \theta_2$, we have the following:

$$Q_{ij}^{inj} = B \beta - G \gamma \cdot \sin \theta - B \beta \cdot \cos \theta,$$

$$Q_{i2}^{inj} = B \beta + G \gamma \cdot \sin \theta - B \beta \cdot \cos \theta$$
A lower bound of Q_{min}^1 on q_{1}^{inj} results in the following:

$$Q_{\text{min}}^1 \leq B\beta - G\gamma \cdot \sin \theta - B\beta \cdot \cos \theta$$

Then, after rearranging and using trigonometry, we arrive at

$$-Q_{\text{min}}^1 + B\beta \geq G\gamma \cdot \sin \theta + B\beta \cdot \cos \theta$$

$$= \sqrt{(G\gamma)^2 + (B\beta)^2} \cdot \cos (\theta - \Delta)$$

(26)

where $\Delta = \tan^{-1}\left(\frac{G\gamma}{B\beta}\right)$. After dividing both sides by $\sqrt{(G\gamma)^2 + (B\beta)^2}$, we have

$$\cos (\theta - \Delta) \leq \frac{-Q_{\text{min}}^1 + B\beta}{\sqrt{(G\gamma)^2 + (B\beta)^2}}$$

which implies

$$\theta \geq \cos^{-1}\left(\frac{-Q_{\text{min}}^1 + B\beta}{\sqrt{(G\gamma)^2 + (B\beta)^2}}\right) + \Delta \quad \text{or}$$

$$\theta \leq -\cos^{-1}\left(\frac{-Q_{\text{min}}^1 + B\beta}{\sqrt{(G\gamma)^2 + (B\beta)^2}}\right) + \Delta.$$

(27)

From the lower bound on q_{2}^{inj}, we can perform a similar derivation and arrive at

$$\theta \geq \cos^{-1}\left(\frac{-Q_{\text{min}}^1 + B\beta}{\sqrt{(G\gamma)^2 + (B\beta)^2}}\right) - \Delta \quad \text{or}$$

$$\theta \leq -\cos^{-1}\left(\frac{-Q_{\text{min}}^1 + B\beta}{\sqrt{(G\gamma)^2 + (B\beta)^2}}\right) - \Delta.$$

(28)

Therefore, combining inequalities (27) and (28) leads to

$$\theta \geq \cos^{-1}\left(\frac{-Q_{\text{min}}^1 + B\beta}{\sqrt{(G\gamma)^2 + (B\beta)^2}}\right) + \Delta \quad \text{or}$$

$$\theta \leq -\cos^{-1}\left(\frac{-Q_{\text{min}}^1 + B\beta}{\sqrt{(G\gamma)^2 + (B\beta)^2}}\right) - \Delta.$$

(29)

Furthermore, we assume that

$$-\tan^{-1}\left(\frac{B\beta}{G\gamma}\right) \leq \theta \leq \tan^{-1}\left(\frac{B\beta}{G\gamma}\right)$$

which is equivalent to

$$-\left(\frac{\pi}{2} - \Delta\right) \leq \theta \leq \left(\frac{\pi}{2} - \Delta\right)$$

(30)

Combining (29) and (30) and using the definition of α yields the final constraint on θ:

$$\alpha + \Delta \leq \theta \leq \left(\frac{\pi}{2} - \Delta\right) \quad \text{or}$$

$$-\left(\frac{\pi}{2} - \Delta\right) \leq \theta \leq -\alpha - \Delta.$$

(31)

This feasible region of θ is reflected in the feasible region of the real power injections, as shown in the bolded part of the ellipse in Figure 11. As illustrated in the figure, the two red points are real power injections, corresponding to $\theta = \alpha + \Delta$ and $\theta = -\alpha - \Delta$. Let the first red point, $(\bar{p}_1, \bar{p}_2^{\text{inj}})$, be generated by $\theta = \alpha + \Delta$. Then, one can write:

$$\bar{p}_1^{\text{inj}} = G\gamma + B\beta \cdot \sin \theta - G\gamma \cdot \cos \theta$$

$$= G\gamma + B\beta \cdot \sin (\alpha + \Delta) - G\gamma \cdot \cos (\alpha + \Delta)$$

$$= G\gamma + B\beta \cdot \sin (\alpha \cdot \cos \Delta + \alpha \cdot \sin \Delta)$$

$$-G\gamma \cdot (\alpha \cdot \cos \Delta - \sin \alpha \cdot \sin \Delta)$$

$$= G\gamma + B\beta \cdot \sin \alpha + \alpha \cdot G\gamma$$

$$-\frac{G\gamma}{|y|} (\alpha \cdot B\beta - G\gamma \cdot \sin \alpha)$$

Similarly, if we let the second red point $(\bar{p}_1^{\text{inj}}, \bar{p}_2^{\text{inj}})$, be generated by $\theta = -\alpha - \Delta$, we have

$$\bar{p}_1^{\text{inj}} = G\gamma - \frac{B\beta}{|y|} (B\beta \cdot \sin \alpha + \alpha \cdot G\gamma)$$

$$-\frac{G\gamma}{|y|} (\alpha \cdot B\beta - G\gamma \cdot \sin \alpha)$$

Moreover, note that due to symmetry, $\bar{p}_1^{\text{inj}} = \bar{p}_1^{\text{inj}}$ and $\bar{p}_2^{\text{inj}} = \bar{p}_1^{\text{inj}}$. Define the following two functions:

$$\Omega_1(\gamma, \beta) \equiv \bar{p}_1^{\text{inj}} - \bar{p}_1^{\text{inj}} = \frac{2B\beta}{|y|} (B\beta \cdot \sin \alpha + \alpha \cdot G\gamma),$$

$$\Omega_2(\gamma, \beta) \equiv \bar{p}_2^{\text{inj}} + \bar{p}_2^{\text{inj}} = 2G\gamma - \frac{2G\gamma}{|y|} (\bar{p}_1^{\text{inj}} - \bar{p}_1^{\text{inj}}, \bar{p}_2^{\text{inj}} - \bar{p}_2^{\text{inj}}).$$

Recall that $P_i^{b, \text{inj}}$ denotes the real power generation at bus i obtained from the base-OPF solution. If the two points $(\bar{p}_1^{\text{inj}}, \bar{p}_2^{\text{inj}})$ and $(\bar{p}_1^{\text{inj}}, \bar{p}_2^{\text{inj}})$ are both globally optimal, their objective values must be equal. In other words,

$$(\bar{p}_1^{\text{inj}} - (P_i^{b, \text{inj}} - P_i^{d, \text{inj}}))^2 + c(\bar{p}_2^{\text{inj}} - (P_i^{b, \text{inj}} - P_i^{d, \text{inj}}))^2$$

$$= (\bar{p}_1^{\text{inj}} - (P_i^{b, \text{inj}} - P_i^{d, \text{inj}}))^2 + c(\bar{p}_2^{\text{inj}} - (P_i^{b, \text{inj}} - P_i^{d, \text{inj}}))^2.$$

(32)
Algorithm 3 Calculation of Participation Factors for Power Redistribution at Contingency k

Given:
(i) solution to base-OPF problem ($|v|, \theta, p^g, q^g, \{\sigma_j\}$)
(ii) generators out in contingency k: $R_k \subset \mathcal{V}$

Compute real power flow for all $(i,j) \in \mathcal{E}$ in the base-case:

$$p_{ij} = G_{ij}|v|^2 - G_{ij}|v||v_j|\cos(\theta_{ij}) + B_{ij}|v||v_j|\sin(\theta_{ij})$$

Generate a directed graph $\mathcal{D}(\mathcal{V}, \mathcal{A})$ based on direction of power flow: $(i,j) \in \mathcal{A}$ if $p_{ij} \geq 0$

Use shortest path algorithm to compute the domain of each generator

Group the buses supplied by the same set of generators into commons \mathcal{C} (see [64])

Use algorithm in [64] to determine the contribution C_{rijk} of each generator r to common j

Remove contribution of generators that are out:

$$C_{rijk} \leftarrow 0 \quad \forall r \in R_k, \quad \forall j \in \mathcal{C}$$

Distribute lost generation over generations that supply the same common:

for $j \in \mathcal{C}$ do

 Define $C_j = \sum_r C_{rijk}$

 if $C_j \neq 0$ then

 for $r \in \mathcal{V}$ do

 $C_{rijk} \leftarrow C_{rijk}/C_j$

 end if

end for

Initialize participation factors: $\alpha^g = 0$ for all $r \in \mathcal{V}$

Define participation factors based on contribution to common:

for $r \in R_k$ do

 for $j \in \mathcal{C}$ do

 $\alpha^g \leftarrow \alpha^g + C_{rijk}$ for all generators i in common j

 end for

end for

Normalize the participation factors α^g so that

$$\sum_{r \in \mathcal{V}} \alpha^g_r = 1$$

Rearranging the terms leads to

$$(1 - c)(P^g_1 - P^g_1^{\text{inj}})^2 - 2(P^g_1 - P^g_1^{\text{inj}})(P^g_1^{\text{inj}} - P^g_1) + 2c(P^g_2 - P^g_2^{\text{inj}})(P^g_2^{\text{inj}} - P^g_2) = 0$$

Finally, substituting the definition of Ω_1 and Ω_2, we arrive at

$$(1 - c) \cdot \Omega_1(\gamma, \beta) \cdot \Omega_2(\gamma, \beta) - 2(P^g_1 - P^g_1^{\text{inj}}) \cdot \Omega_1(\gamma, \beta) + 2c(P^g_2 - P^g_2^{\text{inj}}) \cdot \Omega_2(\gamma, \beta) = 0$$

This completes the proof.

H. COMPUTATION OF PARTICIPATION FACTORS FOR GENERATOR OUTAGE

During the outage of one or more generators, a collection of other generators will increase their power generation in order to respond to the outage and meet power demand. The “participation factor” of a generator determines the portion of the generation response that is assigned to that generator. There are a variety of ways to compute participation factors, including scaling the participation factors based on the remaining power capacity. In Algorithm 3, we present one method for computing participation factors which is based on the topology of the network, i.e. it redirects generation from the outed generators to generators that supply the same set of buses as the outed generators in the base-OPF. This method is based on the work [64]. In our simulations of generator outages, we use this method for computing participation factors with Algorithm 2.

ACKNOWLEDGMENT

An earlier version of this paper was presented at American Control Conference, 2020 [DOI: 10.23919/ACC45564.2020.9147711].

REFERENCES

[1] S. Park, E. Glista, J. Lavaei, and S. Sojoudi, “Homotopy method for finding the global solution of post-contingency optimal power flow,” in Proc. Amer. Control Conf. (ACC), Jul. 2020, pp. 3126–3133.

[2] J. Carpentier, “Contribution to the economic dispatch problem,” Bull. de la Societe Francoise des Electriciens, vol. 3, no. 8, pp. 431–447, 1962.

[3] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, Power Generation, Operation and Control, Hoboken, NJ, USA: Wiley, 2014.

[4] A. J. Conejo and J. A. Aguado, “Multi-area coordinated decentralized DC optimal power flow,” IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1272–1278, Nov. 1998.

[5] G. L. Torres and V. H. Quintana, “An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates,” IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1211–1218, Nov. 1998.

[6] R. A. Jabr, “A primal-dual interior-point method to solve the optimal power flow dispatching problem,” Optim. Eng., vol. 4, no. 4, pp. 309–336, Dec. 2003.

[7] E. J. Oliveira, L. W. Oliveira, J. L. R. Pereira, L. M. Honório, I. C. Silva, and A. L. M. Marcato, “An optimal power flow based on safety barrier interior point method,” Int. J. Electr. Power Energy Syst., vol. 64, pp. 977–985, Jan. 2015.

[8] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow problem,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 92–107, Feb. 2012.

[9] S. Sojoudi and J. Lavaei, “Physics of power networks makes hard optimization problems easy to solve,” in Power Energy Soc. Gen. Meeting, 2012, pp. 1–8.

[10] M. Farivar and S. H. Low, “Branch flow model: Relaxations and convexification—Part I,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2554–2564, Aug. 2013.

[11] J. Lavaei, D. Tse, and B. Zhang, “Geometry of power flows and optimization in distribution networks,” IEEE Trans. Power Syst., vol. 29, no. 2, pp. 572–583, Mar. 2014.

[12] R. Madani, S. Sojoudi, and J. Lavaei, “Convex relaxation for optimal power flow problem: Mesh networks,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 199–211, Jan. 2015.

[13] R. Madani, M. Ashraphijuo, and J. Lavaei, “Promises of conic relaxation for contingency-constrained optimal power flow problem,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1297–1307, Mar. 2016.

[14] C. Chen, A. Atamtürk, and S. S. Oren, “A spatial branch-and-cut method for nonconvex QCQP with bounded complex variables,” Math. Program., vol. 165, no. 2, pp. 549–577, Oct. 2017.

[15] C. Josz, J. Maeght, P. Panciatici, and J. C. Gilbert, “Application of the moment-SOS approach to global optimization of the OPP problem,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 463–470, Jan. 2015.

[16] D. K. Molzahn and I. A. Hiskens, “Sparsity-exploiting moment-based relaxations of the optimal power flow problem,” IEEE Trans. Power Syst., vol. 30, no. 6, pp. 3168–3180, Nov. 2015.
SANGWOON PARK received the B.S. degree in environmental engineering from Johns Hopkins University, Baltimore, MD, USA, in 2016, and the M.S. and Ph.D. degrees in industrial engineering and operations research from the University of California, Berkeley, Berkeley, CA, USA, in 2017 and 2022, respectively. He is currently an Assistant Professor in mechanical and industrial engineering with the New Jersey Institute of Technology, Newark, NJ, USA. He was a recipient of the Best Student Paper Award of 2020 American Control Conference.

ELIZABETH GLISTA (Graduate Student Member, IEEE) received the B.S. degree in mechanical engineering from the Massachusetts Institute of Technology, Cambridge, MA, USA, in 2017, and the M.S. degree in mechanical engineering from the University of California, Berkeley, Berkeley, CA, USA, in 2019, where she is currently pursuing the Ph.D. degree with the Department of Mechanical Engineering. She was a recipient of the Best Student Paper Award of 2020 American Control Conference.

SOMAYEH SOJOUDI received the Ph.D. degree in control and dynamical systems from the California Institute of Technology, in 2013. She is currently an Assistant Professor with the Departments of Electrical Engineering and Computer Sciences and Mechanical Engineering, University of California, Berkeley. She has received the 2015 INFORMS Optimization Society Prize for Young Researchers and the 2016 INFORMS Energy Best Publication Award.

JAVAD LAVAEI (Senior Member, IEEE) received the Ph.D. degree in control and dynamical systems from the California Institute of Technology, Pasadena, CA, USA, in 2011. He is currently an Associate Professor with the Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, CA, USA. He received multiple awards, including the NSF CAREER Award, the Office of Naval Research Young Investigator Award, and the Donald P. Eckman Award.