The Density Ratio of Generalized Binomial versus Poisson Distributions

Lutz Dümbgen (University of Bern)∗
and
Jon A. Wellner (University of Washington, Seattle)†

October 9, 2019

Abstract

Let $b(x)$ be the probability that a sum of independent Bernoulli random variables with parameters $p_1, p_2, p_3, \ldots \in [0, 1]$ equals x, where $\lambda := p_1 + p_2 + p_3 + \cdots$ is finite. We prove two inequalities for the maximal ratio $b(x)/\pi_\lambda(x)$, where π_λ is the weight function of the Poisson distribution with parameter λ.

Key words: Poisson approximation, relative errors, total variation distance.

1 Introduction

We consider independent Bernoulli random variables $Z_1, Z_2, Z_3, \ldots \in \{0, 1\}$ with parameters $\mathbb{P}(Z_i = 1) = \mathbb{E}(Z_i) = p_i \in [0, 1)$ and their random sum $X = \sum_{i \geq 1} Z_i$. By the first and second Borel–Cantelli lemmas, X is almost surely finite if and only if the sequence $p = (p_i)_{i \geq 1}$ satisfies

$$\lambda := \sum_{k=1}^{\infty} p_k < \infty,$$

and we exclude the trivial case $\lambda = 0$. Under this assumption, the distribution Q of X is given by

$$\mathbb{P}(X = x) =: b(x) = \sum_{J : \# J = x} \prod_{i \in J} p_i \prod_{k \in J^c} (1 - p_k)$$

for $x \in \mathbb{N}_0$, where J denotes a generic subset of \mathbb{N} and $J^c := \mathbb{N} \setminus J$. It is well-known that the distribution Q may be approximated by the Poisson distribution $\text{Pois}(\lambda)$ with weights

$$\pi(x) = e^{-\lambda} \lambda^x / x!,$$
provided that the quantity
\[\Delta := \lambda^{-1} \sum_{i \geq 1} p_i^2 \]
is small. Indeed, a suitable version of Stein’s method, developed by [Chen (1975)], leads to the remarkable bound
\[d_{TV}(Q, \text{Poiss}(\lambda)) \leq (1 - e^{-\lambda}) \Delta \leq \sum_{i \geq 1} p_i^2 / \max(1, \lambda), \]
where \(d_{TV}(\cdot, \cdot) \) stands for total variation distance; see Theorem 2.3 in [Barbour et al. (1992)]. Note also that
\[\text{Var}(X) = \sum_{i \geq 1} p_i (1 - p_i) = \lambda (1 - \Delta). \]

Conjecture and main results. Motivated by [Dümbgen et al. (2019)], we are aiming at upper bounds for the maximal density ratio
\[\rho(Q, \text{Poiss}(\lambda)) := \sup_{x \geq 0} r(x) \]
with
\[r(x) := \frac{b(x)}{\pi(x)}. \]
Note that for arbitrary sets \(A \subset \mathbb{N}_0 \), the probability \(Q(A) = \mathbb{P}(X \in A) \) is never larger than the corresponding Poisson probability times \(\rho(Q, \text{Poiss}(\lambda)) \), no matter how small the Poisson probability is. Moreover, \(d_{TV}(Q, \text{Poiss}(\lambda)) \leq 1 - \rho(Q, \text{Poiss}(\lambda))^{-1} \). Hence, \(\rho(Q, \text{Poiss}(\lambda)) \) is a strong measure of error when \(Q \) is approximated by \(\text{Poiss}(\lambda) \). We conjecture that
\[\rho(Q, \text{Poiss}(\lambda)) \leq (1 - \Delta)^{-1}. \] (2)
In this note we prove that
\[\rho(Q, \text{Poiss}(\lambda)) \leq (1 - p_\ast)^{-1} \] (3)
for arbitrary values of \(\lambda \), where
\[p_\ast := \max_{i \geq 1} p_i \geq \Delta. \]
In addition, we prove that in case of \(\lambda \leq 1 \), a stronger version of (2) is true:
\[\rho(Q, \text{Poiss}(\lambda)) \leq e^{\Delta} \quad \text{if} \quad \lambda \leq 1. \] (4)
Note that \(e^{-\Delta} > 1 - \Delta \), whence \(e^{\Delta} < (1 - \Delta)^{-1} \).

In Section 2 we provide some basic formulae for the weights \(b(x) \) and the ratios \(r(x) \). These lead to a preliminary bound for the maximizer(s) of \(r = b/\pi \) and a first bound for \(\rho(Q, \text{Poiss}(\lambda)) \). Then in Section 3 we derive the upper bound (3). In Section 4 we discuss the case \(0 < \lambda \leq 1 \) and provide lower and upper bounds for \(\rho(Q, \text{Poiss}(\lambda)) \).
2 Preparations

Discrete scores. With $n := \# \{ i \geq 1 : p_i > 0 \} \in \mathbb{N} \cup \{ \infty \}$, note that $b(x) > 0$ if and only if $x \leq n$. For any $x \geq 0$,

$$\frac{\pi(x+1)}{\pi(x)} = \frac{\lambda}{x+1},$$

so the “scores” $r(x+1)/r(x)$ are given by

$$\frac{r(x+1)}{r(x)} = \frac{(x+1)b(x+1)}{\lambda b(x)}$$

for $x \geq 0$ with $b(x) > 0$. If x is a maximizer of $r(\cdot)$, then

$$\frac{(x+1)b(x+1)}{b(x)} \leq \lambda \leq \frac{xb(x)}{b(x-1)} \quad (5)$$

with $b(-1) := 0$.

Representing the weight function of Q. The weight function b may be written as

$$b(x) = \sum_{J: \#J = x} w(J) \quad \text{with} \quad w(J) := \prod_{i \in J} p_i \prod_{k \in J^c} (1 - p_k).$$

In particular,

$$b(0) = \prod_{k \geq 1} (1 - p_k) = \exp\left(\sum_{k \geq 1} \log(1 - p_k)\right) < \exp(-\lambda) = \pi(0),$$

because $\log(1 + y) < y$ for $-1 < y \neq 0$. Since

$$w(J) = \prod_{i \in J} \frac{p_i}{1 - p_i} \prod_{k \geq 1} (1 - p_k) = b(0) \prod_{i \in J} \frac{p_i}{1 - p_i},$$

we can also write $w(J) = b(0) W(J)$ and

$$b(x) = b(0) \sum_{J: \#J = x} W(J) \quad \text{with} \quad W(J) := \prod_{i \in J} q_i,$$

where

$$q_i := \frac{p_i}{1 - p_i} \in [0, \infty), \quad p_i = \frac{q_i}{1 + q_i}.$$

Ratios of consecutive binomial weights. There are various ways to represent the ratios $b(x+1)/b(x)$. In the subsequent versions, the following notation will be useful: For any set $J \subset \mathbb{N}$, we define

$$s(J) := \sum_{i \in J} p_i \quad \text{and} \quad S(J) := \sum_{i \in J} q_i.$$
In case of \(\#J < \infty \) we set
\[
\bar{s}(J) := s(J)/\#J, \\
\bar{S}(J) := S(J)/\#J, \\
\bar{W}(J) := W(J)/\sum_{L : \#L = \#J} W(L) = w(J)/\sum_{L : \#L = \#J} w(L)
\]
with the convention \(0/0 := 0 \). Then for any integer \(x \geq 0 \) with \(b(x) > 0 \),
\[
\frac{b(x + 1)}{b(0)} = \sum_{L : \#L = x + 1} W(L) = \sum_{L : \#L = x + 1} \frac{1}{x + 1} \sum_{k \in L} W(L \setminus \{k\}) q_k \\
= \frac{1}{x + 1} \sum_{J : \#J = x} W(J) \sum_{k \in J^c} q_k \\
= \frac{1}{x + 1} \sum_{J : \#J = x} W(J) S(J^c).
\]
Consequently,
\[
\frac{(x + 1)b(x + 1)}{b(x)} = \sum_{J : \#J = x} W(J) S(J^c). \tag{6}
\]
Alternatively, if \(b(x + 1) > 0 \), then
\[
\frac{b(x)}{b(0)} = \sum_{J : \#J = x} W(J) = \sum_{J : \#J = x} W(J) \sum_{k \in J^c} \frac{q_k}{s(J^c)} \\
= \sum_{J : \#J = x} \sum_{k \in J^c} \frac{W(J \cup \{k\})}{q_k + S((J \cup \{k\})^c)} \\
= \sum_{L : \#L = x + 1} \frac{W(L)}{\sum_{k \in L} q_k + S(L^c)}.
\]
Consequently,
\[
\frac{b(x)}{(x + 1)b(x + 1)} = \sum_{L : \#L = x + 1} \bar{W}(L) \frac{1}{x + 1} \sum_{k \in L} \frac{1}{q_k + S(L^c)}. \tag{7}
\]
One can repeat the previous arguments with the sums \(\sum_{k \in J^c} p_j/s(J^c) = 1 \) in place of \(\sum_{k \in J^c} q_k/s(J^c) = 1 \). This leads to
\[
\frac{b(x)}{b(0)} = \sum_{J : \#J = x} \sum_{k \in J^c} \frac{W(J)p_k}{p_k + s((J \cup \{k\})^c)} \\
= \sum_{L : \#L = x + 1} W(L) \sum_{k \in L} \frac{1 - p_k}{p_k + s(L^c)},
\]
because \(W(J)p_k = W(J \cup \{k\})(1 - p_k) \) for \(k \in J^c \). Consequently,
\[
\frac{b(x)}{(x + 1)b(x + 1)} = \sum_{L : \#L = x + 1} \bar{W}(L) \frac{1}{x + 1} \sum_{k \in L} \frac{1 - p_k}{p_k + s(L^c)}. \tag{8}
\]
Analyzing equation (8) will lead to a first result about the location of maximizers of \(r(\cdot) \) plus a preliminary bound for \(\rho(Q, \text{Poiss}(\lambda)) \).
Proposition 1. Any maximizer \(x \in \mathbb{N}_0 \) of \(r(x) \) satisfies the inequalities
\[
1 \leq x \leq \lceil \lambda \rceil.
\]

Moreover,
\[
\rho(Q, \text{Poiss}(\lambda)) \leq \left(1 + \Delta \frac{e^{p_*} - 1}{p_*}\right)^{\lceil \lambda \rceil} \leq e^{[\lambda]p_*}.
\]

Proof of Proposition 1. Since \(r(0) < 1 \), any maximizer \(x_o \) of \(r(\cdot) \) has to satisfy \(x_o \geq 1 \).

To verify the inequality \(x_o \leq \lceil \lambda \rceil \), it suffices to show that for any \(x \geq \lambda \) with \(b(x) > 0 \),
\[
\frac{r(x + 1)}{r(x)} \leq 1.
\]

This is equivalent to
\[
\frac{b(x)}{(x + 1)b(x + 1)} \geq \lambda^{-1}.
\] (9)

If \(b(x + 1) = 0 \), this inequality is trivial. Otherwise, according to (8), the left hand side of (9) equals
\[
\sum_{L: \#L = x + 1} \bar{W}(L) \frac{1}{x + 1} \sum_{k \in L} \frac{1 - p_k}{p_k + s(L^c)}.
\]

Since \((1 - y)/(y + s(L^c)) \) is a convex function of \(y \geq 0 \), Jensen’s inequality implies that
\[
\frac{1}{x + 1} \sum_{k \in L} \frac{1 - p_k}{p_k + s(L^c)} \geq \frac{1 - \bar{s}(L)}{\bar{s}(L) + s(L^c)} = \frac{1 - \bar{s}(L)}{\bar{s}(L) + \lambda - s(L)} = \frac{1 - \bar{s}(L)}{\lambda - x\bar{s}(L)}.
\]

But in case of \(x \geq \lambda \),
\[
\frac{1 - \bar{s}(L)}{\lambda - x\bar{s}(L)} \geq \frac{1 - \bar{s}(L)}{\lambda - \lambda \bar{s}(L)} = \lambda^{-1},
\]
whence (9) holds true.

Now we only need an upper bound for \(r(x) \) and apply it with \(x \leq \lceil \lambda \rceil \). First of all,
\[
r(x) = \lambda^{-x} x! e^\lambda \sum_{J: \#J = x} \prod_{i \in J} p_i \prod_{k \in J^e} (1 - p_k)
\]
\[
= \lambda^{-x} x! \sum_{J: \#J = x} \prod_{i \in J} p_i e^{p_i} \prod_{k \in J^e} \exp(p_k + \log(1 - p_k))
\]
\[
\leq \lambda^{-x} x! \sum_{J: \#J = x} \prod_{i \in J} p_i e^{p_i}
\]
\[
\leq \lambda^{-x} \sum_{k(1), \ldots, k(x) \geq 1} \prod_{s=1}^{x} p_{k(s)} e^{p_{k(s)}} = \left(\sum_{k \geq 1} \frac{p_k}{\lambda} e^{p_k} \right)^x.
\]

Moreover,
\[
e^{p_k} \leq 1 + (p_k/p_*) (e^{p_*} - 1) \leq e^{p_*}
\]
by convexity and monotonicity of the exponential function, whence
\[
\sum_{k \geq 1} \frac{p_k}{\lambda} e^{p_k} \leq 1 + \Delta \frac{e^{p_*} - 1}{p_*} \leq e^{p_*}.
\]

\[\square\]
3 Bounds in terms of p_*

3.1 A general strategy to verify upper bounds

In what follows, the dependency of objects such as $Q, b, r, w(J), \ldots$ on the sequence p is indicated by a subscript p if necessary, leading to $Q_p, b_p, r_p, w_p(J), \ldots$, and we write $\pi = \pi_{\lambda}$. Let $A = A(p) \in [0, 1)$ stand for a positively homogeneous functional of p, i.e.

$$A(tp) = tA(p) \quad \text{for } t \in (0, 1].$$

Two examples for such a functional are $A = \Delta$ and $A = p_*

Suppose we want to prove that

$$\log \rho(Q, \text{Pois}(\lambda)) \leq g(A)$$

for a given differentiable function $g : [0, 1) \to [0, \infty)$ with $g(0) = 0$ and $g'(0) \geq 1$. An explicit example is given by $g(s) := -\log(1 - s)$. To verify this conjecture, we analyze the function $f : (0, 1] \to \mathbb{R}$ given by

$$f(t) := \log \rho(Q_{tp}, \text{Pois}(t\lambda)) - g(tA),$$

so the assertion is equivalent to $f(1) \leq 0$. Hence, it suffices to show that $f(0+) = 0$ and that f is nonincreasing.

Note that replacing p with tp amounts to replacing λ and Δ with $t\lambda$ and $t\Delta$, respectively. By Proposition 1 we know that

$$\rho(Q_{tp}, \text{Pois}(t\lambda)) = \max_{1 \leq x \leq \lceil t\lambda \rceil} r_{tp}(x)$$

and

$$f(t) \leq [t\lambda]tp_* - g(tA).$$

This implies already that $f(0+) = 0$. If we can show that for any fixed $x \in \{1, \ldots, \lceil \lambda \rceil\}$, the log-density ratio $L_x(t) := \log r_{tp}(x)$ is a continuously differentiable function of $t \in (0, 1]$, then f is continuous on $(0, 1]$ with limit $f(0+) = 0$, and for $t < 1$,

$$f'(t+) = \max_{x \in N(t)} L'_x(t) - \tilde{g}(tA)/t,$$

where

$$N(t) := \arg \max_{1 \leq x \leq \lceil t\lambda \rceil} r_{tp}(x)$$

and

$$\tilde{g}(s) := sg'(s).$$

6
Then a sufficient condition for $f(1) \leq 0$ is that $f'(t+) \leq 0$ for all $t \in (0, 1)$, and this can be rewritten as follows: For $t \in (0, 1)$ and $1 \leq x \leq \lceil t \lambda \rceil$,

$$L'_x(t) \leq \tilde{g}(tA)/t$$

if $x \in N(t)$.

In view of (7), a sufficient condition for that is

$$L'_x(t) \leq \tilde{g}(tA)/t$$

if $rac{xb_{tp}(x)}{b_{tp}(x-1)} \geq t\lambda$. \hspace{1cm} \text{(11)}

Now it is high time to analyze the functions $L_x(\cdot)$ for $1 \leq x \leq \lceil \lambda \rceil$. The inequality $x \leq \lceil \lambda \rceil$ implies that $b(x) > 0$, because otherwise, λ would be a sum of $x - 1$ weights $p_i \in [0, 1)$, and this would lead to the contradiction $\lceil \lambda \rceil \leq x - 1$. For a set $J \subset \mathbb{N}$ with $\# J = x$,

$$\frac{\partial}{\partial t} w_{tp}(J) = \frac{\partial}{\partial t} \prod_{i \in J} \prod_{k \in J^c} (1 - tp_k)$$

$$= xt^{-1} \prod_{i \in J} \prod_{k \in J^c} (1 - tp_k) - \sum_{\ell \in J^c} t^x \prod_{i \in J} \prod_{k \in J \setminus \{\ell\}} (1 - tp_k)$$

$$= xt^{-1} \prod_{i \in J} \prod_{k \in J^c} (1 - tp_k) - \sum_{\ell \in J^c} t^x \prod_{i \in J \cup \{\ell\}} \prod_{k \in (J \cup \{\ell\})^c} (1 - tp_k)$$

$$= \frac{x}{t} w_{tp}(J) - \frac{1}{t} \sum_{\ell \in J^c} w_{tp}(J \cup \{\ell\}).$$

Consequently,

$$\frac{\partial}{\partial t} b_{tp}(x) = \sum_{J: \# J = x} \frac{\partial}{\partial t} w_{tp}(J)$$

$$= \frac{x}{t} \sum_{J: \# J = x} w_{tp}(J) - \frac{1}{t} \sum_{J: \# J = x} \sum_{\ell \in J^c} w_{tp}(J \cup \{\ell\})$$

$$= \frac{x}{t} \sum_{J: \# J = x} w_{tp}(J) - \frac{1}{t} \sum_{L: \# L = x+1} \sum_{\ell \in L} w_{tp}(L)$$

$$= \frac{x}{t} w_{tp}(J) - \frac{x + 1}{t} \sum_{L: \# L = x+1} w_{tp}(L)$$

$$= \frac{x}{t} b_{tp}(x) - \frac{x + 1}{t} b_{tp}(x + 1).$$

This gives us the identity

$$\frac{\partial}{\partial t} \log b_{tp}(x) = \frac{x}{t} - \frac{x + 1}{t} \frac{b_{tp}(x + 1)}{b_{tp}(x)}.$$

An elementary calculation yields

$$\frac{\partial}{\partial t} \log \pi_{t\lambda}(x) = \frac{x}{t} - \lambda.$$
so
\[L'_x(t) = \frac{\partial}{\partial t} \log r_{tp}(x) = \lambda - \frac{x + 1}{t} \frac{b_{tp}(x + 1)}{b_{tp}(x)}. \]

Consequently, (11) may be rewritten as follows: For each \(t \in (0, 1) \) and \(1 \leq x \leq \lfloor t\lambda \rfloor \),
\[
\frac{(x + 1)b_{tp}(x + 1)}{b_{tp}(x)} \geq t\lambda - \tilde{g}(tA) \quad \text{if} \quad \frac{xb_{tp}(x)}{b_{tp}(x - 1)} \geq t\lambda.
\]

Since we could replace \(p \) with \(t p \), it even suffices to show that for \(1 \leq x \leq \lceil \lambda \rceil \),
\[
\frac{(x + 1)b(x + 1)}{b(x)} \geq \lambda - \tilde{g}(A) \quad \text{if} \quad \frac{xb(x)}{b(x - 1)} \geq \lambda. \tag{12}
\]

Note that \(b(1)/b(0) = \sum_{i \geq 1} q_i > \sum_{i \geq 1} p_i = \lambda \), so (12) implies that
\[
\frac{2b(2)}{b(1)} \geq \lambda - \tilde{g}(A).
\]

3.2 The main result

In case of \(A = p^* \) and \(g(s) = -\log(1 - s) \), the strategy just outlined works nicely, leading to our first main result. Note that \(\tilde{g}(s) = s/(1 - s) \).

Theorem 1. For any sequence \(p \) of probabilities \(p_i \in [0, 1) \) with \(\lambda = \sum_{i \geq 1} p_i < \infty \),
\[
\rho(Q, \text{Pois} (\lambda)) \leq (1 - p^*)^{-1}.
\]

Proof of Theorem 1. For \(1 \leq x \leq \lceil \lambda \rceil \), the representation (7) with \(x - 1 \) in place of \(x \) reads
\[
\frac{b(x - 1)}{xb(x)} = \sum_{J : \# J = x} \tilde{W}(J) \frac{1}{x} \sum_{i \in J} \frac{1}{q_i + S(J^c)}.
\]

By Jensen’s inequality,
\[
\frac{1}{x} \sum_{i \in J} \frac{1}{q_i + S(J^c)} \geq \left(\frac{1}{x} \sum_{i \in J} (q_i + S(J^c)) \right)^{-1} = (\tilde{S}(J) + S(J^c))^{-1},
\]
so
\[
\frac{b(x - 1)}{xb(x)} \geq \sum_{J : \# J = x} \tilde{W}(J) (\tilde{S}(J) + S(J^c))^{-1}.
\]

A second application of Jensen’s inequality yields that
\[
\frac{b(x - 1)}{xb(x)} \geq \left(\sum_{J : \# J = x} \tilde{W}(J) (\tilde{S}(J) + S(J^c)) \right)^{-1}.
\]

Consequently, if \(xb(x)/b(x - 1) \geq \lambda \), then
\[
\sum_{J : \# J = x} \tilde{W}(J) (\tilde{S}(J) + S(J^c)) \geq \lambda.
\]
On the other hand, (6) yields
\[
\frac{(x + 1)b(x + 1)}{b(x)} = \sum_{J, \# J = x} W(J)S(J^c)
\]
\[
= \sum_{J, \# J = x} W(J)(\bar{S}(J) + S(J^c)) - \sum_{J, \# J = x} W(J)\bar{S}(J)
\]
\[
\geq \lambda - \sum_{J, \# J = x} W(J)\bar{S}(J)
\]
\[
\geq \lambda - \frac{p_*}{1 - p_*} = \lambda - \bar{g}(p_*),
\]
because for any set \(J\) with \(x\) elements,
\[
\bar{S}(J) = \frac{1}{x} \sum_{i \in J} q_i \leq \frac{p_*}{1 - p_*}.
\]
Consequently, (12) is satisfied with \(A = p_*\), and this yields the assertion.

\[\]

4 Bounds in terms of \(\Delta\)

At the moment we do not know whether our general strategy works for \(A = \Delta\). Instead we derive some bounds via direct arguments. We start with an elementary result about the log-density ratio \(L_1(t) = \log r_p(1)\).

Proposition 2. The function \(L_1 : [0, 1] \rightarrow \mathbb{R}\) is twice differentiable with \(L_1(0) = 0\), \(L'_1(0) = \Delta\) and \(L''_1 \leq 0\) with equality if and only if \(#\{i \geq 1 : p_i > 0\} = 1\).

Proof of Proposition 2. Note first that for \(t \in (0, 1]\),
\[
L_1(t) = t\lambda + \log \left((t\lambda)^{-1} \sum_{i \geq 1} (tp_i) \prod_{k \neq i} (1 - tp_k) \right)
\]
\[
= t\lambda + \log \left(\lambda^{-1} \sum_{i \geq 1} p_i \prod_{k \neq i} (1 - tp_k) \right)
\]
\[
= \sum_{i \geq 1} (tp_i + \log(1 - tp_i)) + \log \left(\lambda^{-1} \sum_{i \geq 1} \frac{p_i}{1 - tp_i} \right).
\]
The right hand side is a smooth function of \(t \in [0, 1]\) with \(L_1(0) = 0\). Moreover,
\[
L'_1(t) = \sum_{i \geq 1} \left(p_i - \frac{p_i}{1 - tp_i} \right) + \sum_{i \geq 1} \frac{p_i^2}{(1 - tp_i)^2} / \sum_{i \geq 1} \frac{p_i}{1 - tp_i}
\]
\[
= -t \sum_{i \geq 1} p_i^2 / (1 - tp_i) + \sum_{i \geq 1} \frac{p_i^2}{(1 - tp_i)^2} / \sum_{i \geq 1} \frac{p_i}{1 - tp_i},
\]
\[
L'_1(0) = \sum_{i \geq 1} p_i^2 / \sum_{i \geq 1} p_i = \Delta.
\]
Finally, with $a_i(t) := p_i/(1 - tp_i)$ and $S(t) := \sum_{i \geq 1} a_i(t)$,

\[
L''_1(t) = - \sum_{i \geq 1} \frac{p_i^2}{(1 - tp_i)^2} + 2 \sum_{i \geq 1} \frac{p_i^3}{(1 - tp_i)^3} / \sum_{i \geq 1} \frac{p_i}{1 - tp_i} \\
- \left(\sum_{i \geq 1} \frac{p_i^2}{(1 - tp_i)^2} / \sum_{i \geq 1} \frac{p_i}{1 - tp_i} \right)^2 \\
= - \sum_{i \geq 1} a_i(t)^2 + 2 \sum_{i \geq 1} a_i(t)^3 / S(t) - \sum_{i, j \geq 1} a_i(t)^2 a_j(t)^2 / S(t)^2 \\
\leq - \sum_{i \geq 1} (a_i(t)^2 - 2a_i(t)^3 / S(t) + a_i(t)^4 / S(t)^2) \\
= - \sum_{i \geq 1} a_i(t)^2 (1 - a_i(t) / S(t))^2 \\
\leq 0.
\]

The second last inequality is strict, unless $\#\{i \geq 1 : p_i > 0\} = 1$, and in that case both preceding inequalities are equalities.

Propositions 1 and 2 are the main ingredients for the following upper bound for $\log r(Q, \text{Poiss}(\lambda))$.

Theorem 2. For any sequence p of probabilities $p_i \in [0, 1)$ with $\lambda = \sum_{i \geq 1} p_i \leq 1$,

\[
\Delta \geq \log r(Q, \text{Poiss}(\lambda)) \geq \Delta \left(1 - \frac{\Delta}{2} - \frac{\lambda}{2(1 - p_\star)} \right).
\]

Since $\Delta \leq p_\star \leq \lambda$, this theorem shows that

\[
\frac{\log r(Q, \text{Poiss}(\lambda))}{\Delta} \rightarrow 1 \quad \text{as} \quad \lambda \rightarrow 0.
\]

Proof of Theorem 2. We know from Proposition 1 that in case of $\lambda \leq 1$,

\[
\log r(Q, \text{Poiss}(\lambda)) = \log r(1) = L_1(1).
\]

But Proposition 2 implies that for some $\xi \in (0, 1)$,

\[
L_1(1) = L_1(0) + L'_1(0) + 2^{-1} L''_1(\xi) = 0 + \Delta + 2^{-1} L''_1(\xi) \leq \Delta.
\]

As to the lower bound, recall that

\[
L_1(1) = \sum_{i \geq 1} (p_i + \log(1 - p_i)) + \log \left(\lambda^{-1} \sum_{i \geq 1} \frac{p_i}{1 - p_i} \right).
\]

On the one hand,

\[
p_i + \log(1 - p_i) = - \sum_{k \geq 2} \frac{p_i^k}{k} \geq - \frac{p_i^2}{2} \sum_{\ell \geq 0} p_\star^\ell = - \frac{p_i^2}{2(1 - p_\star)}.
\]
\[
\sum_{i \geq 1} (p_i + \log(1 - p_i)) \geq -\frac{1}{2(1 - p^*)} \sum_{i \geq 1} p_i^2 = -\frac{\lambda}{2(1 - p^*)} \Delta.
\]

Moreover,
\[
\log\left(\lambda^{-1} \sum_{i \geq 1} \frac{p_i}{1 - p_i}\right) \geq \log\left(\lambda^{-1} \sum_{i \geq 1} (p_i + p_i^2)\right) = \log(1 + \Delta) \geq \Delta - \Delta^2/2,
\]

and this implies the asserted lower bound for \(L_1(1)\).

Remark 3 (Total variation distance). Since \(b(0) \leq \pi(0)\), Theorem 2 implies that in case of \(\lambda \leq 1\),
\[
d_{TV}(Q, \text{Poiss}(\lambda)) = \sup_{A \subseteq \{1, 2, 3, \ldots\}} (Q(A) - \text{Poiss}(\lambda)(A))
\]
\[
\leq \sup_{A \subseteq \{1, 2, 3, \ldots\}} Q(A)(1 - \rho(Q, \text{Poiss}(\lambda))^{-1})
\]
\[
\leq (1 - b(0))(1 - e^{-\Delta})
\]
\[
\leq \lambda(1 - e^{-\Delta}) \leq \lambda \Delta = \sum_{i \geq 1} p_i^2.
\]

Here we used the elementary inequalities \(1 - b(0) = 1 - \prod_{i \geq 1} (1 - p_i) \leq \sum_{i \geq 1} p_i = \lambda\) and \(1 - e^{-\Delta} \leq \Delta\). Consequently, Theorem 2 implies a reasonable upper bound for \(d_{TV}(Q, \text{Poiss}(\lambda))\).

Acknowledgement. Part of this research was conducted at Mathematisches Forschungsinstitut Oberwolfach (MFO), Germany, in June and July 2019. We are grateful to the MFO for its generous hospitality and support.

References

Barbour, A. D., Holst, L. and Janson, S. (1992). *Poisson approximation*, vol. 2 of *Oxford Studies in Probability*. The Clarendon Press, Oxford University Press, New York. Oxford Science Publications.

Chen, L. H. Y. (1975). Poisson approximation for dependent trials. *Ann. Probability* 3 534–545.

Dümbgen, L., Samworth, R. J. and Wellner, J. A. (2019). Bounding distributional errors via density ratios. Tech. rep., University of Bern. (arXiv:1905.03009).