Peripheral tissue homing receptor control of naïve, effector, and memory CD8T cell localization in lymphoid and non-lymphoid tissues

C. Colin Brinkman, J. David Peske and Victor Henry Engelhard *

Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA

INTRODUCTION

T cells are capable of assuming an impressive array of functional phenotypes. Much of this variation can be traced to differences in the place, context, or time since antigen exposure. The best recognized example of effector cell heterogeneity is the subset specialization of CD4 T cells based on cytokine secretion profiles (Th1, Th2, Th17, and Treg) (1). However, another example of functional specialization is the programing of CD4 and CD8 T cells to express different selectins, integrins, and chemokine receptors, which enable homing to different sites in the body. The particular constellation of such “homing receptors” expressed by individual cells depends on antigen encounter, and on microenvironmental characteristics of the secondary lymphoid organs (SLO). Just as importantly, however, the ability of such T cells to enter any particular tissue is dependent on which homing receptor ligands are expressed on the associated vasculature. Here we review the range of trafficking programs expressed by naïve, effector, and memory CD8 T cells, and the extent to which they dictate T cell entry into SLO and peripheral tissues, particularly tumors.

T CELL HOMING RECEPTOR HETEROGENEITY DURING THE PRIMARY RESPONSE

T cell entry into tissues from the bloodstream is controlled by a multistep adhesion cascade involving interactions between homing receptors on the surface of T cells with their respective ligands on vasculature (2). Naïve T cells enter lymph nodes (LN) via L-selectin (CD62L) and chemokine receptor CCR7, which bind ligands on high endothelial venules (HEV) (3). Upon differentiation into effectors, CD62L and CCR7 are downregulated, and new homing receptors upregulated (Tables 1 and 2). Integrin α4β7 and CCR9 support homing to gut-associated tissue, the vasculature of which expresses the ligands MAdCAM-1 and CCL25 (4–7). In contrast, the ligands for E-selectin and P-selectin (ESL and PSL, respectively) enable homing to skin, where inflamed vasculature expresses these selectins (8–11). While CCR4 is reported to be necessary for CD4 T cell entry into inflamed skin (12), other work has shown that CD4 and CD8 T cell infiltration does not require CCR4 and instead may depend on CCR10 (13), or CXCR3 and CCR5 (14). Much less is known about which homing receptors enable T cell entry into other tissues. α4β1 integrin, which binds VCAM-1, has been implicated in T cell infiltration into the brain (15, 16), lung (17), and bronchus-associated lymphoid tissue (18, 19). While activated CD8 T cells express many different chemokine receptors (Table 2), there is remarkably little direct information about the expression of their ligands in different tissues, which is essential in understanding the role they might play.

Expression of some homing receptors on effector T cells is determined by their activation site. CD4 T cells activated in cutaneous LN upregulate PSL, while those activated in mucosal LN upregulate α4β7 (20). This is mirrored in vitro using dendritic cells (DC) to activate CD8 T cells. DC from skin-draining LN induce ESL and PSL, while DC from mesenteric LN or Peyers’ patches induce α4β7 and CCR9 (21–23) based in part on their synthesis and presentation of retinoic acid (24, 25). However, α4β7 can...
Table 1 | Adhesion molecules expressed by murine CD8 T cells.

Adhesion molecule	Expression	Primary ligand/bindng partner	Constitutive ligand expression	Inducible ligand expression	Ligand expression in tumor vasculature
α4β1	Low on naive, upregulated upon activation	VCAM-1	Bone marrow, low levels in HEV	Inflamed brain, lung (BALT), liver	Sometimes detected
α4β7	Reported low on naive, upregulated upon activation	MAdCAM-1	Mesenteric LN, Peyer's patch HEV, small intestine postcapillary venules	Increased by inflammation, including in some sites beyond gut mucosa	Not known
αEβ7 (CD103)	None or low on naive, upregulated on T cell subsets at epithelial surfaces	E-cadherin	Epithelia	N/A	Often downregulated during epithelial to mesenchymal transition
αLβ2 (LFA-1)	Present on naive and activated T cells	ICAM-1	Postcapillary venules	Increased by inflammation	Frequently detected
CD44	Low on naive T cells, upregulated upon activation	Hyaluronan	Connective, endothelial, neural tissue	Increased by tissue injury	Accumulates in many tumors
ESL	Absent on naive T cells, upregulated upon activation	E-selectin (CD62E)	Low levels in dermal postcapillary venules	Infammed dermal postcapillary venules, other inflamed postcapillary venules	Unclear, but blockade can reduce T cell infiltration
L-selectin (CD62L)	Naive T, memory subsets, downregulated upon activation	Peripheral node addressin (PNAd)	LN HEV endothelial cells	Infammed non-HEV blood endothelium	Subset of vessels in some tumors
PSL	Low on naive T cells, upregulated upon activation	P-selectin (CD62P)	Low levels in dermal postcapillary venules	Infammed dermal postcapillary venules, other inflamed postcapillary venules, activated platelets	Unclear, but blockade can reduce T cell infiltration

be also induced without RA (23, 24, 26). Similarly, induction of CCR10 on human T cells is promoted by DC processing of Vitamin D3 to 1,25(OH)2D3, but this effect is less pronounced for mouse T cells (27). IL-2 and IL-12 are potent inducers of PSL expression on T cells in vitro, but dispensable in vivo (28, 29). In vitro studies have shown that induction of CCR5 on activated mouse CD4 and CD8 T cells requires IL-12 (30), while CXCR3 induction requires IFN-γ (31). Even less is known about the factors that control the induction of other homing receptors.

Recently, we examined homing receptor expression during CD8 T cell activation in different LN and spleen. Intravenous (IV) immunization with bone marrow derived DC activates T cells in mediastinal LN and spleen, most of which upregulate α4β1 integrin and PSL but not ESL or α4β7 (32–34). Intraperitoneal (IP) immunization activates T cells in mesenteric and mediastinal LN, which express α4β7 integrin and PSL (32, 33). Finally, subcutaneous (SC) immunization activates T cells in skin-draining LN, most of which express ESL and PSL, and some of which also express α4β1 (33). This work defines three major CD8 T cell effector populations that differentially express α4β7, α4β1, or ESL. Each of these molecules mediates the initial capture and tethering interaction of T cells with the vasculature (35–37), providing a basis for tissue selectivity, while α4β1 can also mediate firm adhesion (38). In contrast, expression of chemokine receptors shows little variation with activation site. Most activated CD8 T cells in all LN express CXCR3, and smaller subsets co-express CCR3, CCR4, CCR5, CCR6, and CCR9 (33). Only CCR9 expression varies significantly, with the largest fraction present on cells activated in mesenteric LN.

These results identify a previously unrecognized subset of effectors that uniformly expresses α4β1, but little ESL or α4β7, which is generated in the mediastinal LN and spleen by IV immunization. Other work has shown that IV immunization induces T cells that are incapable of mediating contact hypersensitivity (39), entering the gut (32), or controlling SC melanomas (40). Our work suggests that these observations reflect a homing receptor profile that does not enable T cell entry into skin or gut tissue. Conversely, as induction of α4β1 is weak after SC immunization, T cells generated by this route may only poorly infiltrate sites that require this integrin for entry. The layered coexpression of multiple chemokine receptors by CD8 T cells contrasts with a study that associated expression of CXCR3, CCR4, and CCR5 with functionally distinct CD4 T cell subsets (41), but is consistent with another study showing coordinate expression of CCR4, CCR6, and CCR10 by human CD4 T cells (42). Thus, individual CD8 T cells may be more multipotential in their homing specificity than CD4 T cells. In any
Table 2 | Chemokine receptors expressed by murine T cells.

Receptor	T cell receptor expression	Ligand	Constitutive ligand expression	Inducible ligand expression	Ligand expression in tumor vasculature
CXCR3	Activated Th1, activated CD8	CXCL11 (ITAC)	Induced by Th1 inflammation	Not known	
		CXCL10 (IP-10)			
		CXCL9 (MIG)			
CXCR4	Low to absent on naïve, upregulated after activation CD8 > CD4	CXCL12 (SDF-1)	Bone marrow endothelium, thymus, lung, lymphoid organs	Not known	
CXCR6	Th1 activated CD8 T cells	CXCL16	Induced by Th1 inflammation	Induced by radiation	
CCR1	Memory T cells	CCL3 (MIP-1A)	Induced by inflammation	Not known	
		CCL5 (RANTES)			
		CCL7 (MARC)			
		CCL16 (LCC-1)			
CCR2	Subsets of CD4 and CD8 T cells, activation dependence unclear	CCL2 (MCP-1)	Induced by inflammation	Not known	
		CCL7 (MARC)			
		CCL12 (MCP-5)			
CCR3	Th2 > Th1 activated CD8 T cells	CCL5 (RANTES)	Induced by inflammation	Not known	
		CCL7 (MARC)			
		CCL8 (MCP-2)			
CCR4	Th2 in vitro activated CD8 T cells	CCL17 (TARC)	Induced by inflammation, particularly in dermis	Not known	
		CCL22 (IMDC)			
CCR5	Th1 activated CD8 T cells	CCL5 (RANTES)	Induced by inflammation	Not known	
		CCL4 (MIP)			
		CCL3 (MIP)			
CCR6	Th17 activated CD8 T cells	CCL20 (MIP-3a)	Skin, intestinal villi	Upregulated in dermis after inflammation	
CCR7	Naïve CD4, CD8 T cells, memory T cell subsets	CCL19 (MIP-3b)	Lymphoid organs	Not known	
		CCL21 (SLC)			
		21-Leu periphery			
		21-Ser in LN			
CCR8	Subset of Th2 memory, negligible on CD8 T cells	CCL1 (TCA-3)	Induced by Th2 inflammation	Not known	
CCR9	Subsets of naïve and activated CD4 and CD8 T cells	CCL25 (ITECK)	Small intestine	Not known	
CCR10	Skin-homing activated CD4 and CD8 T cells CD4 > CD8	CCL27	Skin	Upregulated in epidermis after inflammation	

In case, infiltration is ultimately dependent on expression patterns of the chemokines themselves, which remains somewhat poorly characterized (43). The multipotential chemokine-sensing capability of CD8 T cells may also provide a failsafe mechanism to ensure the entry of these effector cells into peripheral sites occupied by pathogens or tumors.

CD8 T CELL REDISTRIBUTION AMONG LN

While some activated CD8 T cells leave SLO bound for inflamed peripheral tissues, others traffic to antigen-free LN (34, 44). These LN-redistributed cells resemble fully differentiated effectors by dividing extensively and secreting IFNγ (34). However, at least some were central memory precursors (34). LN redistribution depends in part upon residual expression of CD62L by some of these differentiated CD8 T cells (34). α4β7 integrin has long been known to enable activated T cell entry into mesenteric LN (34, 45). Recently, we found that activated CD8 T cells also redistribute into antigen-free LN using α4β1 and ESL (46); α4β1 enables entry into all LN, and ESL mediates selective entry into skin-draining LN. This results in differential accumulation of ESL⁺ and α4β1⁺ T cells in skin-draining vs. non-skin-draining LN after SC immunization or transfer of SC-primed effectors into naïve hosts. Others
have shown that CD62Lneg T cells can enter inflamed, but not resting, LN using CXCR3 (47) or PSL (48). Thus, homing receptors normally associated with trafficking to peripheral non-lymphoid tissues also control the distribution of activated T cells among different lymphoid tissues, even in the absence of inflammation.

HOMING RECEPTOR EXPRESSION AND REGIONAL LOCALIZATION OF T CELL MEMORY

Like effector cells, memory T cells are made up of distinct subsets. Central memory T cells (TCM) are defined as CD62L+CCR7+ and are found primarily in LN, while effector memory cells (TEM) are defined as CD62LnegCCR7neg and are found predominantly in peripheral tissue, spleen, and blood (49–52). Resident TEM (tTEM) (52, 53) are retained permanently at epithelial surfaces, likely through expression of the E-cadherin receptor αEβ7, which is detected using anti-CD103 specific for the αE subunit (54–56). Migratory TEM (mTEM) are CD103neg and recirculate (54, 57, 58). TEM can express homing receptors associated with entry into peripheral tissue (54, 59–62).

Expression of CD62L and CCR7 and LN residence have been used somewhat interchangeably to define central memory cells (TCM) (49,63). However, many memory cells in LN do not express one or both of these molecules (34, 64, 65). It has been proposed that mTEM cells exit peripheral tissue through the afferent lymphatics (66, 67), and utilization of this pathway by CD4 T cells has recently been directly demonstrated (68). Because the afferent lymphatics drain into LN, mTEM could be a component of what is generally thought of as TCM despite their lack of CD62L expression. We found that CD62Lneg memory CD8 T cells in LN continue to express ESL, PSL, and α4β1 in patterns that mirror those of primary effectors (46). The distribution of these memory cells also reflects that of LN-redistributing effectors, with ESL+ memory CD8 T cells tending to reside in skin-draining LN, and ESLneg α4β1+ T cells tending to reside in non-skin-draining LN and spleen. Importantly, SC immunization, which induces ESL+ memory T cells, results in enhanced memory T cell residence in skin-draining LN and augmented recall responses to skin immunization challenge (46). Thus, the CD8 T cells we have identified share properties of both TCM and TEM. They seem analogous to a recently described population of recirculating ESL+ memory CD4 T cells in skin and LN that do not express CD62L (68).

Interestingly, we found that these CD62Lneg LN-resident CD8 memory T cells can be reprogrammed to express new peripheral tissue homing receptors, with minimal loss of those previously expressed (46). Thus, we have defined cells with enhanced representation in skin-draining LN, which expand upon rechallenge in vivo, and are plastic enough to be reprogrammed to express new homing receptors. This is perhaps the best of both worlds in terms of host protection: enhanced regional memory as well as a systemic component that can be reprogrammed. Thus T cell memory is comprised not only of cells that permanently reside in non-lymphoid tissue, and cells that almost exclusively recirculate among SLO, but also cells that recirculate between tissue and LN. These latter cells may include both classically defined mTEM as well as cells that also have characteristics of TCM. CD103 is useful for distinguishing migratory and resident memory in peripheral tissues, and CD62L is useful for defining classical TCM. However, we lack phenotypic markers to distinguish LN-resident CD62Lneg subpopulations, and they currently must be studied by examining functional phenotype and migration. Vaccination strategies must consider the patterns of homing receptors induced by different immunization routes. These results also suggest that appropriate prime-boost regimens might be able to generate protective memory with multipotential homing capability.

CD8 T CELL HOMING TO TUMORS

While we have a good understanding of control of CD8 T cell infiltration into LN, skin, and gut, the requirements for entry into other tissues are poorly defined. Of particular interest is infiltration into tumors. Several studies have demonstrated that the presence of a CD8 T cell infiltrate in tumors is associated with a positive prognosis in human cancer patients (69–72). A panoply of homing receptors have been implicated in T cell infiltration in various tumor models, including LFA-1, α4β1, CD44, ESL/PSL, CXCR3,CCR2,CCR5 (73–79), our unpublished observations). However, seemingly conflicting roles have been reported for LFA-1 ligand ICAM-1 (73,74). In addition, chemokine CCL5 has been correlated with both positive and poor prognosis (80,81). This may reflect differences in ligand expression in different tumor types, locations, or differential recruitment of additional cell populations. An important factor limiting T cell entry is the minimal expression of homing receptor ligands, including ICAM-1, E-selectin, and CXCR3 ligands on tumor vasculature (82–84). Endothelin B receptor, CD73, and vascular endothelial growth factor (VEGF) have been shown to limit ligand expression (73,85,86). This is consistent with the overall poor infiltration of adoptively transferred effector T cells in murine and clinical studies (87–90). Conversely, inflammatory stimuli and radiation have been shown to enhance CD8 T cell entry through upregulation of homing receptor ligands (79,83,91). Thus, one approach to improve cancer immunotherapy is to identify and manipulate the expression of homing receptors and vascular ligands to enhance infiltration of CD8 effectors into tumors.

Although naïve T cells are generally excluded from peripheral tissues, we have found that they infiltrate and are activated in tumors of multiple tissue origins growing in the lungs, SC space, or peritoneal cavity (92). Naïve T cells infiltrate tumors by interacting with tumor associated vasculature that resembles that of LN HEV by expressing PNA and CCL21, the ligands for CD62L and CCR7, respectively (Peske et al., manuscript submitted). While PNA+ vessels are normally found only in LN, chronic inflammation induces their development in many peripheral organs, often in the context of accumulations of hematopoietic and stromal cells that organize into structures termed tertiary lymphoid organs (TLO) (93–95). PNA+ vessels have also recently been identified in several human tumors, although it was not shown whether they were associated with TLO (96). Other studies have identified TLO in human tumors associated with CCL21 expression (97–99). PNA expression on HEVs in LN and TLO is primarily controlled by signals through the lymphotixin-beta receptor (LTβR) (94,100–105). In contrast, we found that PNA expression in tumors does not require LTβR signaling (Peske et al.,manuscript submitted). Instead, effector lymphocytes induced the development of LN-like vasculature in part via secretion of IFNγ, which
enhanced CCL21 expression. Thus, novel pathways control the development of HEV-like tumor vasculature. Importantly, HEV density or presence of TLO in human tumors correlates with positive prognosis (96, 97). The work of our lab and others suggests this is due to the recruitment of naïve T cells and subsequent generation of anti-tumor immune responses directly in the tumor (92, 106). Therefore, inducing HEV development in tumors may be a valuable therapeutic intervention.

CONCLUSION
T cell homing to inflamed peripheral tissues is controlled by expression of homing receptors induced by activation that vary according to the route of immunization. Our and others’ work has built upon this understanding by illuminating surprising new roles for homing receptors expressed by naïve, effector, and memory CD8 T cells in controlling their entry into both lymphoid tissues and tumors. It remains to be seen whether additional homing receptors are involved in trafficking to regional LN, peripheral tissues other than skin and gut, and tumors in different body locations. A critical and still poorly described aspect is which homing receptor ligands are expressed by different tissues and tumors, and how this is positively and negatively regulated. It also is not clear how tissue-resident, lymphoid-resident, and migratory memory T cells interact to confer protection, or how to achieve an optimal mixture by vaccination. Finally, the notion of enhancing T cell immunity against localized pathogen infection or metastatic tumors growing in different locations by regional immunization to induce expression of appropriate homing receptors has yet to be incorporated into vaccine strategies. Nonetheless it is clear that T cell trafficking patterns are a source of both great specificity and flexibility waiting to be fully exploited for therapeutic benefit.

REFERENCES
1. O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science (2010) 327:1098–102. doi:10.1126/science.1178334
2. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol (2007) 7:678–89. doi:10.1038/nri21156
3. Girard J-P, Mousson C, Förster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol (2012) 12:762–73. doi:10.1038/nri3298
4. Hamann A, Andrew DP, Jablonski-Westrick D, Holzmann B, Butcher EC. Role of alpha 4-integrins in lymphocyte homing to mucosal tissues in vivo. J Immunol (1994) 152:3282–93.
5. Stenstad H, Ericsson A, Johansson-Lindboorn B, Svensson M, Marsal J, Mack M, et al. Gut-associated lymphoid tissue–primed CD4+ T cell displays CCR9-dependent and -independent homing to the small intestine. Blood (2006) 107:3457–54. doi:10.1182/blood-2005-07-0280
6. Johansson-Lindboorn B, Svensson M, Wurbel MA, Malissen B, Marquez G, Agace W. Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J Exp Med (2003) 198:963–9. doi:10.1084/jem.20031244
7. Kunkel EL, Campbell JJ, Haraldsen G, Pan J, Boisvert J, Roberts AT, et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J Exp Med (2000) 192:761–8. doi:10.1084/jem.192.5.761
8. Berg EL, Yoshino T, Rott LS, Robinson MK, Warnock RA, Kishimoto TK, et al. The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lecin endothelial cell-leukocyte adhesion molecule 1. J Exp Med (1991) 174:461–6. doi:10.1084/jem.174.4.1641
9. Vachino G, Chang Xi, Veldman GM, Kumar R, Sako D, Fouser LA, et al. P-selectin glycoprotein ligand-1 is the major counter-receptor for P-selectin on stimulated T cells and is widely distributed in non-functional form on many lymphocytic cells. J Biol Chem (1995) 270:21966–74. doi:10.1074/jbc.270.37.21966
10. Erdmann I, Scheidegger EP, Koch FK, Heinzerling L, Odermatt B, Burg G, et al. Fucosyltransferase VII-deficient mice with defective E- and P-selectin ligands show impaired CD4+ and CD8+ T cell migration into the skin, but normal extravasation into visceral organs. J Immunol (2002) 168:2139–46.
11. Hirata T, Furie BC, Furie B. P-, E-, and L-selectin mediate migration of activated CD8+ T lymphocytes into inflamed skin. J Immunol (2002) 169:4307–13.
12. Campbell JJ, O’Connell DJ, Wurbel M-A, Cutting edge: the cutaneous lymphocyte homing receptor (CTACK) in lymphocyte trafficking. J Immunol (2001) 167:1541–7. doi:10.1084/jimmunol.20011502
13. Rott LS, Briskin MJ, Andrew DP, Berg EL, Butcher EC. A fundamental subdivision of circulating lymphocytes defined by adhesion to mucosal address cell adhesion molecule-1. Comparison with vascular cell adhesion molecule-1 and correlation with beta 7 integrins and memory differentiation. J Immunol (1996) 156:3727–36.
14. Calzascia T, Mason F, Di Berardino-Besson W, Contassot E, Wilmotte R, Urrand-Lions M, et al. Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs. Immunity (2005) 22:175–84. doi:10.1016/j.immuni.2004.12.026
15. Kenyon NJ, Liu R, O’Roark EM, Huang W, Peng L, Lam KS. An alpha4beta1 integrin antagonist decreases airway inflammation in ovalbumin-exposed mice. Eur J Pharmacol (2009) 603:138–46. doi:10.1016/j.ejphar.2008.11.063
16. Kawamata N, Xu B, Nishijima H, Fujisawa J, Noguchi N, Aoyama K, Kusumoto M, Takeuchi A, et al. Expression of endothelial and lymphocyte adhesion molecules in bronchus-associated lymphoid tissue (BALT) in adult human lung. Respir Res (2009) 10:97. doi:10.1186/1465-9921-10-97
17. Kenyon NJ, Liu R, O’Roark EM, Huang W, Peng L, Lam KS. An alpha4beta1 integrin antagonist decreases airway inflammation in ovalbumin-exposed mice. Eur J Pharmacol (2009) 603:138–46. doi:10.1016/j.ejphar.2008.11.063
18. Kawamata N, Xu B, Nishijima H, Fujisawa J, Noguchi N, Aoyama K, Kusumoto M, Takeuchi A, et al. Expression of endothelial and lymphocyte adhesion molecules in bronchus-associated lymphoid tissue (BALT) in adult human lung. Respir Res (2009) 10:97. doi:10.1186/1465-9921-10-97
19. Xu B, Wagner N, Pham LN, Magno V, Shan Z, Butcher EC, et al. Lymphocyte homing to bronchus-associated lymphoid tissue (BALT) is mediated by L-selectin/PNA, alpha4beta1 integrin/VCAM-1, and LFA-1 adhesion pathways. J Exp Med (2003) 197:1255–67. doi:10.1083/jem.200310685
20. Campbell DJ, Butcher EC. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med (2002) 195:135–41. doi:10.1084/jem.20011502
21. Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosseblatt M, et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature (2003) 424:88–93. doi:10.1038/nature01726
22. Mora JR, Cheng G, Picarella D, Briskin M, Buchanan N, von Andrian UH. Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J Exp Med (2005) 201:503–16. doi:10.1083/jem.20041645
23. Dudda JC, Lembo A, Bachtiania E, Huehn J, Stewert C, Hamann A, et al. Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: important roles for soluble factors and tissue microenvironments. Eur J Immunol (2005) 35:1056–65. doi:10.1002/eji.200425817
24. Iwata M, Hirakiyama A, Edhama Y, Kagachiha K, Kato C, Song SY. Retinoic acid imprint gut-homing specificity on T cells. Immunity (2004) 21:527–38. doi:10.1016/j.immuni.2004.08.011
25. Yokota A, Takeuchi H, Maeda N, Oboka Y, Kato C, Song S-Y, et al. GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity. Int Immunol (2009) 21:361–77. doi:10.1093/intimm/dxp003
26. Johansson-Lind bohm B, A gace WW. Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol Rev (2007) 215:226–32. doi:10.1111/j.1600-065X.2006.00482.x
27. Sigmundsdottir H, Fan J, Debes GF, Ali C, Habtezion A, So ler D, et al. DCs metabolize sunlight-induced vitamin D3 to “pro-gram” T cell attraction to the epi-derm al dermal chemokine CCL27. Nat Immunol (2007) 8:285–93. doi:10.1038/ni1433
28. Lim YC, Xie H, Come CE, Alexander SI, Grusby MJ, Licht- man AH, et al. IL-12, STAT4-dependent up-regulation of CD4(+) T cell core 2 beta-1,6-n-acytelylgalactosaminyltransferase, an enzyme essential for biosynthesis of P-selectin ligands. J Immunol (2001) 150(7):4476–84.
29. Carlow DA, Williams MJ, Zilhener H. Inducing P-selectin ligand for-mation in CD8 T cells: IL-2 and CD8(+) T cells. J Immunol (2001) 167(5):235–60.
30. Iwasaki M, Mukai T, Gao P, Park WR, Nakajima C, Tomura M, Ohoka Y, Kato C, Song S-Y, et al. Generation of gut-homing T cells and early pathogen intercep-tion. Immunol (2009) 180:1057–63. doi:10.1038/ni.1767
31. Olson TS, Ley K. Chemokines and chemokine receptors in leuko-cyte trafficking. Am J Physiol Regul Integ Physiol (2002) 283:87–28.
32. Liu L, Fulbright RC, Karikian K, Tian T, Kupper TS. Dynamic pro-gramming of CD8+ T cell traf-fick ing after live viral immunization. Immunity (2006) 25:51–20. doi:10.1016/j.immuni.2006.06.019
33. Wagner N, Lohler J, Tedder TF, Rajesky K, Muller W, Steeber DA. L-selectin and beta1 integrin syn-ergistically mediate lymphocyte migration to mesenteric lymph nodes. Eur J Immunol (1998) 28:3332–9. doi:10.1002/(SICI)1521-4191(19981128):31<3382::AID-IMMU383>3.0.CO;2-J
34. Brinkman CC, Sheasley-O’Neill SL, Ferguson AR, Engelhard VH. Activated CD8 T cells redistribute to antigen-free lymph nodes and exhibit effector and memory characteristics. J Immunol (2008) 181:1814–24.
35. Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Haslen SR, et al. 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell (1995) 80:413–22. doi:10.1016/0092-8675(95)00491-3
36. Butler EC, Picker LJ. Lymphocyte homing and homeostasis. Science (1996) 272:60–6. doi:10.1126/science.272.5258.60
37. Milstone DS, Fukumura D, Padgett RC, O’Donnell PE, Davis VM, Benavier OJ, et al. Mice lacking E-selectin show normal numbers of rolling leukocytes but reduced leukocyte stable arrest on cytokine-activated microvas-cular endothelium. Microcirculation (1998) 5:153–71. doi:10.1111/j.1549-8719.1998.tb0065x.x
38. Siegelman MH, Stanescu D, Estrada P. The CD44-initiated pathway of T-cell extravasation uses VLA-4 but not LFA-1 for firm adhesion. J Clin Invest (2000) 105:683–91. doi:10.1172/JCI6982
39. Dudda JC, Simon JC, Martin SF, Huang AX, Polley R, Martin Fontecha A, et al. L-selectin-negative CCR7-effector and mem-ory CD8+ T cells enter reactive lymph nodes and affect the anatomical distribution of mem-ory cells. J Immunol (2013). doi:10.4049/jimmunol.1300651
40. Guarda G, Hom M, Sotirao SF, Huang AX, Polley R, Martin Fontecha A, et al. L-selectin-negative CCR7-effector and mem-ory CD8+ T cells enter reactive lymph nodes and kill dendritic cells. Nat Immunol (2007) 8:743–5. doi:10.1038/ndi.2007.84
41. Martin-Fontecha A, Baumjohann D, Guarda G, Rebold A, Hons M, Lanzavecchia A, et al. CD40L+ CD4+ memory T cells migrate in a CD62P-dependent fashion into reactive lymph nodes and license dendritic cells for T cell priming. J Exp Med (2008) 205:2561–74. doi:10.1084/jem.20081212
42. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature (1999) 401:708–12. doi:10.1038/44385
43. Masopust D, Yezys V, Marzo AL, Blair DA, Lefrancois L. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity (2004) 20:551–62. doi:10.1016/S1074-7613(04)00103-7
44. Masopust D, Yezys V, Ushowerd EL, Zhong W, Roberts AA, Dutton RW, Harm-sen AG, et al. Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections. J Immunol (2001) 166:1813–22.
45. Klonowski KD, Williams KJ, Marzo AL, Blair DA, Lingenheld EG, Lefrancois L. Dynamics of memory CD8 T cell migration in vivo. Immunity (2004) 20:551–62. doi:10.1016/S1074-7613(04)00103-7
46. Hogg RN, Usherwood EL, Zhong W, Roberts AA, Dutton RW, Harm-sen AG, et al. Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections. J Immunol (2001) 166:1813–22.
47. Klonowski KD, Williams KJ, Marzo AL, Blair DA, Lingenheld EG, Lefrancois L. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity (2004) 20:551–62. doi:10.1016/S1074-7613(04)00103-7
48. Masopust D, Yezys V, Ushowerd EL, Cauley LS, Olson S, Marzo AL, et al. Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J Immunol (2004) 172:4875–82.
49. Campbell JJ, Murphy KE, Kinkel EL, Brightling CE, Soler D, Shen Z, et al. CCR7 expression and mem-ory T cell diversity in humans. J Immunol (2001) 166:877–84.
50. Jenneich S, Ratsch BA, Hamann A, Syrbe U. Long-term commitment to inflammation-seeking homing in CD4+ effector T cells. J Immunol (2007) 178:8073–80.
51. Williams MB, Butler EC. Hom-ing of naive and memory T lymphocyte subsets to Peyer’s patches in lymph nodes, and spleen. J Immunol (1997) 159:1746–52.
52. Clark RA, Chong B, Mirchan-dani N, Brinster NK, Yamana ka K, Dowigert RK, et al. The vast major-ity of CLA+ T cells are resident

Frontiers in Immunology | Immunological Memory August 2013 | Volume 4 | Article 241 | 6

Brinkman et al. Control of T cell homing
in normal skin. J Immunol (2006) 176:4431–9.

63. Wherry EJ, Teichgraber V, Becker TG, Masopust D, Kaech SM, Antia R, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol (2003) #2325–34. doi: 10.1038/nm889

64. Marzo AL, Klionowski KD, Le BA, Borrow P, Tough DF, Lefrancois L. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat Immunol (2005) 6:793–9. doi:10.1038/ni1227

65. Unsoeld H, Pircher H. Complement memory T-cell phenotypes revealed by coexpression of CCR7 and CCR4. J Immunol (2005) 175:3138–44.

66. Vescely M, Kershaw M, Schreiber AD. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat Immunol (2005) 6:889–94. doi:10.1038/ni1238

67. Bromley SK, Thomas SY, Luster AD. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into different lymphatics. Nat Immunol (2005) 6:895–901. doi:10.1038/ni1240

68. Bromley SK, Yan S, Tomura M, Kanagawa O, Luster AD. Recruiting memory T cells are a unique subset of CD4+ T cells with a distinct phenotype and migratory pattern. J Immunol (2013) 190:970–6. doi:10.4049/jimmunol.1202805

69. Vesely M, Kershaw M, Schreiber R, Smyth M. Natural innate lymphocytes in human colorectal cancer. Annu Rev Immunol (2011) 29:235–71. doi:10.1146/annurev-immunol-031210-101324

70. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer (2012) 12:298–306. doi:10.1038/nrc3245

71. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science (2006) 313:1960–4. doi:10.1126/science.113299

72. Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shaer SM, Dengel LT, et al. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Clin Cancer Res (2012) 18:1070–80. doi:10.1158/1078-0432.CAN-11-3218

73. Buckanovich RJ, Facciabene A, Kim S, Benencia F, Sasadoli D, Balint K, et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med (2008) 14:28–36. doi:10.1038/nm1699

74. Blank C, Brown I, Kacha AK, Markiewicz MA, Gajewski TF. ICAM-1 contributes to but is not essential for tumor antigen cross-priming and CD8+ T cell-mediated tumor rejection in vivo. J Immunol (2005) 175:3416–20.

75. Hensbergen PJ, Wijnands PG, Schreurs MW, Schepers RJ, Willemze R, Tensen CP. The CXCR3 targeting chemokine CXCL11 has potent antitumor activity in vivo involving attraction of CD8+ T lymphocytes but not inhibition of angiogenesis. J Immunother (1999) 20:343–51. doi:10.1097/00015635.26795.27

76. Kunz M, Toksoy A, Goebeler M, Misek DE, et al. RANTES expression is a predictor of survival in melanoma. J Clin Oncol (2006) 24:3099–107.

77. Dengel LT, Norrod AG, Gregory BL, Clancy-Thompson E, Burdick MD, Strierer RM, et al. Interferons induce CXCR3 cognate chemokine production by human metastatic melanoma. J Immunother (2005) 28:965–74. doi:10.1097/CJI.0b013e1818b045d

78. Wang L, Fan J, Thompson LF, Zhang Y, Shin T, Curie TJ, et al. CD73 has distinct roles in non-hematopoietic and hematopoietic cells to promote tumor growth in mice. J Clin Invest (2011) 121:2371–82. doi:10.1172/JCI45559

79. Dirxk AEM, Oude Egbrink MG, Vries S, et al. Human solid tumors contain high endothe- lial venules: association with lymphatic E-selectin and recruitment of regulatory T cells. J Exp Med (2008) 205:2221–34. doi:10.1084/jem.20071190

80. Griffith KD, Read EJ, Carrasquillo JA, Carter CS, Yang IC, Fisher B, et al. In vivo distribution of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes and peripheral blood lymphocytes in patients with metastatic melanoma. J Natl Cancer Inst (1989) 81:1709–17. doi:10.1093/jnci/81.22.1709

81. Fisher B, Packard BS, Read EI, Carrasquillo JA, Carter CS, Topalan SE, et al. Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol (1989) 7:250–61.

82. Economou JS, Beldegrun AS, Glaspery J, Toloza EM, Filgrin R, Hobbs J, et al. In vivo trafficking of adoptively transferred interleukin-2 expanded tumor-infiltrating lymphocytes and peripheral blood lymphocytes. Results of a double gene marking trial. J Clin Invest (1996) 97:515–21. doi:10.1172/JCI118443

83. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res (2006) 12:6106–15. doi:10.1158/1078-0432.CCR-06-1183

84. Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, et al. Radiation-induced CCLX16 release by breast cancer cells attracts effector T cells. J Immunol (2008) 181:3099–107.

85. Thompson ED, Enriquez HL, Fu YX,Engelhard VH. Tumor masses support naive T cell infiltration, activation, and differentiation into effectors. J Exp Med (2010) 207:1791–804. doi:10.1084/jem.20092454

86. Rosen SD. Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol (2004) 22:129–96. doi:10.1146/annurev.immunol.21.090501.080131

87. Gräbner R, Lötzter K, Dopping S, Hildner M, Radke D, Beer M, et al. Lymphotixin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J Exp Med (2009) 206:233–48. doi:10.1084/jem.20080752

88. Drayton DL, Liao S, Mouzner RH, Ruddle NH. Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol (2006) 7:344–53. doi:10.1038/ni3330

89. Martinet L, Garrido I, Fillieron T, Le Guellec S, Bellard E, Fournier J-J, et al. Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res (2011) 71:5678–87. doi:10.1158/0008-5472.CAN-11-0431

90. Messina JL, Fenstermacher DA, Bergeron JC, Mazzolai B, Raveh R, Srinivasan S, et al. Lymphatic gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep (2012) 2:765. doi:10.1038/srep00765

Brinkman et al. Control of T cell homing

www.frontiersin.org
August 2013 Volume 4 Article 241 7
Coppola D, Nebozhyn M, Khalil F, Dai H, Yeatman T, Loboda A, et al. Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am J Pathol (2011) 179:37–45. doi:10.1016/j.ajpath.2011.03.007

Bergomas F, Grizzi F, Doni A, Pesce S, Laghi L, Allavena P, et al. Tertiary intratumor lymphoid tissue in colo-rectal cancer. Cancers (2011) 4:1–10. doi:10.3390/cancers4010001

Browning JL, Allaire N, Ngam-Ek A, Notidis E, Hunt J, Perrin S, et al. Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity (2005) 23:539–50. doi:10.1016/j.immuni.2005.10.002

Gatumu MK, Skarstein K, Papandile A, Browning JL, Fava RA, Bolstad A. Blockade of lymphotoxin-beta receptor signaling reduces aspects of Sjögren syndrome in salivary glands of non-obese diabetic mice. Arthritis Res Ther (2009) 11:R24. doi:10.1186/ar2617

Molallehadeh R, Rehakova S, Conlon TM, Win TS, Callaghan CJ, Goddard M, et al. Blocking lymphotoxin signaling abrogates the development of ectopic lymphoid tissue within cardiac allografts and inhibits effector antibody responses. FASEB J (2012) 26:51–62. doi:10.1096/fj.11-186973

Kratz A, Campos-Neto A, Hanson MS, Ruddle NH. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J Exp Med (1996) 183:1461–72. doi:10.1084/jem.183.4.1461

Cuff CA, Sacca R, Ruddle NH. Differential induction of adhesion molecule and chemokine expression by LTα3 and LTββ in inflammation elucidates potential mechanisms of mesenteric and peripheral lymph node development. J Immunol (1999) 162:5965–72.

Drayton DL, Ying X, Lee J, Lesslauer W, Ruddle NH. Ectopic LTββ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J Exp Med (2003) 197:1153–63. doi:10.1084/jem.20021761

Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, et al. Priming of naïve T cells inside tumors leads to eradication of established tumors. Nat Immunol (2004) 5:141–9. doi:10.1038/ni1029

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.