Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COMMENTARY

Addressing the need for a telehealth readiness assessment tool as a digital health strategy

Jennifer M. Bingham*, Marvin A. Rossi, Hoai-An Truong

A R T I C L E I N F O

Article history:
Received 13 January 2022
Accepted 20 April 2022

A B S T R A C T

Immediate public health interventions and solutions, including the virtual provision of patient care via telehealth, were exponentially employed in response to the coronavirus disease 2019 pandemic. As a result, the U.S. Department of Health and Human Services temporarily waived Medicare telehealth restrictions. Dramatic increases in the provision of care via telehealth were observed, beginning in March 2020. Yet, despite these changes, there was a deficit in relevant telehealth readiness assessment, resources, and training that incorporated critical elements brought forth by the pandemic. This article describes the need for and provides a telehealth readiness assessment tool as a digital health strategy for health professional students, clinicians, and organizations to be prepared for patient care engagement during and beyond the pandemic.

© 2022 Published by Elsevier Inc. on behalf of the American Pharmacists Association.

The coronavirus disease 2019 (COVID-19) pandemic greatly accelerated the provision and application of telehealth services that have been used in practice since the late 1950s. At the onset of the pandemic, the provision of health care using telecommunication technology was promised to expand access to care, reduce patient and staff exposure to contagions, and reduce patient demand on health care facilities. On March 6, 2020, Congress passed the Coronavirus Preparedness and Response Supplemental Appropriations Act. In response, exponential increases in the use of telehealth were observed and telehealth restrictions were waived by the U.S. Department of Health and Human Services (DHHS). Yet, at the time, telehealth services were still limited to established patients. The day before the World Health Organization declared the COVID-19 pandemic on March 11, 2020, the Centers for Medicare and Medicaid Services (CMS) waived copays for telehealth services for Medicare Advantage enrollees, while expanding Medicare Part B telehealth services to any area. Amid this shift in care delivery, health care organizations, personnel, and students were forced to adopt a new method of patient care without adequate assessment for readiness, curricular training, or implementation of telehealth services.

In March 2020, Congress, the DHHS, and CMS continued to take quick action to address health care delivery needs within the United States during an unprecedented pandemic. The CMS waivers, provided under Section 1135 of the Social Security Act, incentivized the use of telehealth and allowed qualified providers to use telephones with audio-visual, real-time interactive communication capability, as smartphones, tablets, and computers were deemed permissible with the Health Insurance Portability and Accountability Act enforcement waiver. The rapid switch to telehealth services contributed to positive and negative impacts regarding access for older adults, individuals with disabilities, and people living in underserved and rural areas. The pandemic further highlighted health disparities to health care access and suddenly required practitioners to develop strategies to overcome barriers, including technology and broadband Internet access.

By the last week of March 2020, the Centers for Disease Prevention and Control (CDC) reported a substantial increase in the use of telehealth modalities for that week compared with the previous year. As a result, the Telehealth Resource Centers announced their support of evidence-based projects as the nation shifted to telehealth and increased flexibilities in telehealth requirements continued to occur. Whereas telehealth readiness tools have been shown to identify areas for improvement and deficiencies for organizations before telehealth implementation, the urgency of the pandemic did not allow for advanced planning and resulted in a lack of

Disclosures: Jennifer M. Bingham has disclosed an outside interest in Tabula Rasa HealthCare Group. Conflicts of interest resulting from this interest were managed by The University of Arizona in accordance with its policies. Jennifer M. Bingham is a member of the American Pharmacists Association Telehealth Advisory Committee. The authors declare no other relevant conflicts of interest or financial relationships.

* Correspondence: Jennifer M. Bingham, PharmD, BCACP, FAzPA, FNAP, Tabula Rasa HealthCare, 100 N Stone Ave., Tucson, AZ 85701.
E-mail address: jbingham.pharmd@gmail.com (J.M. Bingham).
telehealth readiness or the extent to which a health care practitioners, students, and organizations could preemptively train and prepare to participate in telehealth.10

Lack of preparedness for the virtual provision of care

Before the pandemic, interprofessional care teams have demonstrated that telehealth has the potential to improve patient quality outcomes,11 medication-related problems,12 and hospital readmissions.13 Telehealth during the pandemic, as a modality of care, was reviewed in detail by the National Committee for Quality Assurance’s Taskforce on Telehealth Policy. Patient safety improved during the pandemic through telehealth as it reduced patient and practitioner exposure to contagions.2 Telehealth also reduced the rate of no-show visits, which further reduced the potential risk of disrupted patient–provider relationships associated with greater use of high levels of care and interrupted pharmacotherapy.14 Preliminary findings describe that telehealth contributed to better appointment attendance, improved chronic disease management, and better patient adherence to their care plan.2

Amid dramatic increases in the provision of care via telehealth,15 the pandemic suddenly required pharmacists, physicians, and advanced practice providers (APP) to develop strategies for organizing and managing an influx of telehealth-eligible patients previously challenged by long distances, language barriers, socioeconomic status, and comorbidities impeding access to adequate health care. Many clinicians found themselves unprepared for virtual provision of care. Although tools for organizations previously existed to assist with preparation and identify opportunities and potential deficiencies, for many, the urgency of the COVID-19 response precluded carefully planned readiness process execution.

Education as a strategy to enhance telehealth readiness

Consequently, as COVID-19 response and recovery efforts continue, it is important to revisit the value of advanced planning and telehealth readiness to supplement the professional student learning experience as health professional curricula present critical opportunities for telehealth training as a digital health strategy. For example, before 2020, telehealth in neurology, with the exception of telementoring, was not widely available and was considered a nascent technique for delivering health care.16 In the academic year 2017-2018, 85 of 147 medical schools in the United States offered telehealth education, either through required or elective courses.17 Waseh and Dicker16 showed that only 40% of 17 sampled medical schools across the United States have incorporated telehealth competencies with some form of interprofessional training. Moreover, just over half of the sampled schools combined nonstandardized telehealth competencies incorporating rural medicine in some form.18 A dearth of training was also observed in pharmacy curricula, and didactic education on verbal and nonverbal communication modalities via telehealth is not an accreditation requirement.19

Telehealth exposure during undergraduate medical clerkships and graduate education across specialties is essential for practitioners. Experiential training provides opportunities to incorporate pertinent virtual clinical examination skills, mobile health devices, and remote patient monitoring (e.g., blood pressure cuffs, stethoscopes, blood glucose meters). Given the deficit in graduate medical education on telehealth training, a longitudinal curriculum has been proposed to address this need.20 In addition, more programs must adopt preclinical curricula to include virtual health integration as there is a critical need for digital and telehealth in professional health care training.21

The COVID-19 pandemic further demonstrates the need for telehealth readiness assessment tools and training as our health care ecosystem continues to evolve and the majority of pharmacist initiatives are now related to patient education, medication delivery, and virtual consultations.7 The International Pharmaceutical Federation has reported a deficit of formalized training within digital health. As telehealth is only one aspect within the larger digital health universe, education and preparedness will be key for students to successfully adopt and promote new technologies as they enter practice.

Telehealth readiness assessment tools: A solution for virtual care

Looking beyond the pandemic, practitioner telehealth readiness assessment and training can be applied in health professional curricula to better prepare students to succeed when in-person care is not possible. Expanding on the application of the telehealth readiness model, a self-assessment checklist that is reflective of the current health care ecosystem could be utilized by health professional
Table 1
Telehealth readiness self-assessment checklist

Readiness Factors	Yes	Not Yet
I. Personnel Education and Qualifications		
1. I have adequate didactic (classroom) education to provide telehealth.	☐☐	☐☐
2. I have adequate experiential education to provide telehealth.	☐☐	☐☐
3. I have adequate continuing professional education to provide telehealth.	☐☐	☐☐
4. I have direct experience with providing telehealth.	☐☐	☐☐
5. I have adequate coaching or mentoring support and continuing professional development opportunities to provide telehealth.	☐☐	☐☐
II. Attitudes and Skills		
6. I can identify resources and opportunities for continuing professional development to provide telehealth.	☐☐	☐☐
7. I have stakeholder support to provide telehealth at my organization or site.	☐☐	☐☐
8. I recognize the value of interprofessional telehealth services to provide patient-centered care.	☐☐	☐☐
9. I believe that the patient is an important member of the telehealth care team.	☐☐	☐☐
III. Technology Security and Compliance		
10. I have access to appropriate telehealth platforms for the provision of patient care services.	☐☐	☐☐
11. I have access to a Health Insurance Portability and Accountability Act (HIPAA) compliant platform to provide telehealth.	☐☐	☐☐
12. I have information technology support to provide telehealth.	☐☐	☐☐
13. I have access to a secure server to provide telehealth.	☐☐	☐☐
IV. Workflow Operation/Implementation/Evaluation		
14. I can document and measure the impact of the patient centric goals of telehealth services.	☐☐	☐☐
15. I can fulfill my role as a contributing member of the telehealth interprofessional care team.	☐☐	☐☐
16. I can execute my responsibilities to provide telehealth services.	☐☐	☐☐
17. I realize the importance of measuring the benefits of telehealth.	☐☐	☐☐
18. I can address the barriers and limitations of telehealth services.	☐☐	☐☐
V. Regulatory and Scope of Practice		
19. I recognize the regulations and scope of which services can be provided via telehealth.	☐☐	☐☐
20. I have adequate resources (i.e., electronic health record) to document my telehealth encounters.	☐☐	☐☐
21. I am recognized as a qualified healthcare provider for telehealth services.	☐☐	☐☐
22. I can differentiate between telehealth, telemedicine, and telepharmacy, telemental health, etc.	☐☐	☐☐
VI. Funding and Reimbursement		
23. I have adequate funding resources (e.g., allocated budget, etc.) to provide telehealth.	☐☐	☐☐
24. I am able to receive reimbursement for my telehealth services.	☐☐	☐☐
25. I can overcome or navigate the barriers to billing for telehealth.	☐☐	☐☐

Score Interpretation for Percentage of Yes Responses

- 0-25%: Practitioner has identified the need to be ready.
- 26-50%: Practitioner has developed telehealth readiness plans and completed steps (1) to (4) above
- 51-75%: Practitioner has partially achieved readiness and completed steps (5) to (9) above
- 76-100%: Practitioner has nearly achieved readiness, addressed sustainability, and completed steps (10) to (14) above

Next steps:

1. Incorporate telehealth readiness into strategic and business plan
2. Identify key stakeholders, including local and state organizations
3. Determine baseline healthcare disparities for the community
4. Evaluate strategic and business plan for telehealth implementation
5. Evaluate baseline relevance and urgency of the practitioner’s competence and contributions via telehealth
6. Collaborate with key stakeholders, including local and state organizations
7. Assess supply and access to telehealth platforms and equipment
8. Participate and complete continuing professional development specific to telehealth
9. Identify workflow protocols and policies for telehealth implementation
10. Implement telehealth workflow and protocols
11. Conduct business impact and continuity analyses for reimbursement sustainability
12. Develop appropriate contractual agreements between key partners and stakeholders, including organizations.
13. Conduct telehealth implementation pilot to test strategic and business plan
14. Develop Continuous Quality Improvement (CQI) and sustainability plans
15. Demonstrate proficiency in telehealth readiness
16. Develop strategic and business plans based on results of business impact and continuity analyses
17. Execute contracts with key partners and stakeholders, including organizations.
18. Evaluate effectiveness and efficiency of telehealth readiness plans
19. Update telehealth readiness plan
20. Provide Continuing Professional Development (CPD) for staff
21. Conduct Continuous Quality Improvement (CQI) and routinely update sustainability plans

Note: This assessment checklist is currently in pilot testing phase and may be amended based on results of the pilot test.

Telehealth readiness assessment tools exist for organizations aiming to implement services, yet, few have been developed with the knowledge gained after the pandemic to students, clinicians, and organizations to complement telehealth competency and development protocols provided by others.
ensure preparedness for the provision of patient care via telehealth. In alignment with other competency tools created for medical education, we have included domains in Table 1 that could further enable students, clinicians, and organizations to self-assess for the following considerations: (1) professional education and qualifications; (2) attitudes and skills; (3) technology, security, and compliance; (4) workflow operation, implementation, and evaluation; (5) regulatory and scope of practice; and (6) funding and reimbursement considerations. The tool includes assigned point-values for 25 items in several focus areas on a variety of levels of telehealth readiness for implementation and sustainability.

Conclusion and call to action

Despite the steep rising slope in the use of telehealth and expanded opportunities in the broader scope of digital health, there are limitations in readiness assessment and advanced training programs available to health professionals and organizations to prepare them for the virtual delivery of care. While there is some educational programming available for physicians, pharmacists, students, and APPs, standardization is lacking; there is a readiness assessment gap in professional instruction and a clear national need for cross-professional digital and telehealth competencies and training to address this opportunity, overcome barriers set forth by the pandemic, and enhance virtual patient care. Furthermore, as federal, state, and local legislators are incrementally addressing licensure requirements, liability challenges, and reimbursement strategies, it is imperative that medical, pharmacy, and health care educational programs develop and integrate digital and telehealth into the curricula for both didactic, experiential, and clinical education.

While it may be a challenge to add new curricular content, digital and telehealth should be incorporated as a standard of patient care. These programs can accelerate deployment of evolving telehealth practices and technologies by equipping future pharmacists, physicians, and APP with the sophistication necessary to practice and deliver health care for all populations in this rapidly changing health care landscape. Equally important, there should be continuing professional development opportunities, including continuing pharmacy education programs and training for pharmacists, physicians, and APPs to be fully equipped for patients during future disasters and emergencies. A telehealth readiness assessment tool can provide an identified baseline need for individuals and organizations to develop and implement appropriate and relevant telehealth training programs.

In summary, COVID-19 accelerated a digital transformation. This global crisis underscored the importance of overcoming the unequal digital divide to ensure timely access to health care. Thus, health care curricula and continuing professional development across all specialties must be developed and propagated, as the demand for virtual care will only increase in the foreseeable future beyond the pandemic.

References

1. Nesbit TS, Katz-Bell J. History of telehealth. In: Rheuban K, Krupinski E.A., eds. Understanding Telehealth. New York, NY: McGraw Hill; 2018:1. Available at: https://accessmedicine.mhmedical.com/content.aspx?bookid=2217§ionid=187794434. Accessed February 18, 2022.

2. National Committee for Quality Assurance. Taskforce on Telehealth policy (TTP): findings and recommendations. Available at: https://www.ncqa.org/programs/data-and-information-technology/telehealth/taskforce-on-telehealth-policy/taskforce-on-telehealth-policy-ttp-findings-and-recommendations. Accessed October 26, 2021.

3. Congress.gov. Coronavirus Aid, Relief, and Economic Security Act H.R.748. CARES Act; 2020. Available at: https://www.congress.gov/bill/116th-congress/house-bill/748. Accessed February 18, 2022.

4. World Health Organization. Timeline: WHO’s COVID-19 response. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline. Accessed October 26, 2021.

5. Centers for Medicare and Medicaid Services. Waivers. Available at: https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/Survey-and-Eval/Medicare-Care-Quality-Assessment/Telemedicine-Waivers. Accessed October 26, 2021.

6. Ortega G, Rodriguez JA, Maurer LR, et al. Telemedicine, COVID-19, and disparities: policy implications. Health Policy Technol. 2020;9(3):368–371.

7. Graves JM, Abshire DA, Amiri S, Mannelprang JI. Disparities in technology and broadband internet access across rurality: implications for health and education. Fam. Community Health. 2021;44(4):257–265.

8. Koonin LM, Hoits B, Tsang CA, et al. Trends in the use of telehealth during the emergence of the COVID-19 pandemic - United States, January-March 2020 [published correction appears in MMWR Morb Mortal Wkly Rep. 2020 Nov 13;69(45):1711]. MMWR Morb Mortal Wkly Rep. 2020;69(43):1595–1599.

9. Jennett PA, Gagnon MP, Brandstahl HK. Preparing for success: readiness models for rural telehealth. J Postgrad Med. 2005;51(4):279–285.

10. Mustard S, Vigneault H, Loeven L. Integrating telehealth into aboriginal healthcare: the Canadian experience. Int J Circumpolar Health. 2004;63(4):401–414.

11. Tetu C, Axon DR, Bingham J, et al. Assessing the effect of a Telepharmacist’s recommendations during an integrated, interprofessional telehealth appointment and their alignment with quality measures. J Manag Care Spec Pharm. 2019;25(12):1334–1339.

12. Axon D, Vo D, Taylor A, Bingham J. Initial assessment of an interprofessional team-delivered telehealth program for patients with epilepsy. Epilepsy Res. 2019;158:106235.

13. Campbell P, Bingham J, Schussel K, Leal S. Evaluation of the discharge companion program: an interprofessional transitions of care program. Presented, in part, at the Academy of Managed Care Pharmacy Annual Meeting, Boston, MA. J Manag Care Spec Pharm. 2018;24(4–A Suppl): S1–116.

14. Morris NP. Virtual visits and the future of No-Shows. J Gen Intern Med. 2020;35(8):2449–2450.

15. Centers for Medicare and Medicaid Services. Medicare telemedicine health care provider fact sheet. Available at: https://www.cms.gov/newsroom/news-events/medicare-telemedicine-health-care-provider-fact-sheet. Accessed October 26, 2021.

16. Hatcher-Martín JM, Adams JL, Anderson ER, et al. Telemedicine in neurology: Telemedicine-Work Group of the American Academy of Neurology update. Neurology. 2020;94(1):30–38.

17. Barzansky B, Ettel SI. Medical Schools in the United States, 2017-2018. JAMA. 2018;320(10):1042–1050.

18. Waseh S, Dicker AP. Telemedicine training in undergraduate medical education: mixed-methods review. JIMR Med Educ. 2019;5(1):e12515.

19. Medina MS, Plaza CM, Stowe CD, et al. Center for the Advancement of Pharmacy Education 2013 educational outcomes. Am J Pharm Educ. 2013;77(8):162.

20. Jumreornvong O, Yang E, Race J, Appel J. Telemedicine and medical education: mixed-methods review. JAMA. 2005;293(4):279.

21. Unni EJ, Patel K, Beazer IR, Hung M. Telepharmacy during COVID-19: a companion program: an interprofessional transitions of care program. Fam. Community Health. 2021;44(4):257–265.

22. Protocolling Your Program: An Interprofessional Transitions of Care Program. Available from the Maryland Health Care Commission. Available at: https://mhcc.state.md.us/HIT/hit_telemedicine/documents/TLHT_TRA_Tool.pdf. Accessed March 2, 2022.