Abstract. Ovarian cancer (OvCa) is the most common gynecological malignancy type in the United States in 2014. Functions of long non-coding RNAs (lncRNAs) in OvCa have attracted increasing attention from researchers. The present study aimed to identify an lncRNA-based signature for survival prediction in patients with OvCa. On the basis of lncRNA expression profiles from The Cancer Genome Atlas data portal, differentially expressed lncRNAs (DELs) were selected from patients with good prognosis and poor prognosis in the training set, from which the prognostic lncRNAs were identified using univariate and multivariate Cox regression analyses and used to construct a risk scoring system. The prognostic power of this lncRNA signature was tested in the training set and validated in validation dataset and entire dataset. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the genes significantly associated with ≥1 prognostic lncRNA, and a total of 112 DELs were identified. LncRNAs KB-1836B5, LINC00566 and FAM27L were determined to be prognostic lncRNAs. A three-lncRNAs signature-based risk scoring system was developed, which classified the patients from the training set into high-risk and low-risk groups with significantly different overall survival time. Risk stratification capability of the three-lncRNAs signature was validated in the validation and entire set. Multivariate Cox regression and data stratification analyses determined that the three-lncRNAs signature was independent of other clinical variables. GO and KEGG pathway enrichment analyses determined that the three prognostic lncRNAs may be involved in a number of metabolic processes and signaling pathways, including the mechanistic target of rapamycin signaling pathway, ubiquitin-mediated proteolysis, and complement and coagulation cascades pathways. In conclusion, the results of the present study demonstrated that the three-lncRNAs signature may be an independent biomarker for predicting prognosis in patients with OvCa.

Introduction

Ovarian cancer (OvCa) has the highest incidence of mortality of any gynecological cancer type in the United States, and is the primary cause of female cancer-associated mortality in the United States in 2014 (1). Owing to the mild or absent signs and symptoms during early stage OvCa, and the lack of a reliable early detection test, OvCa has a disproportionately poor prognosis, with a 5-year survival rate of 44% between 1995-2007 in the United States (2), therefore further understanding of its regulatory mechanisms at the molecular level is vital, in order to identify reliable prognostic biomarkers for the prediction of survival times of patients with OvCa.

Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs with ≥200 nucleotides (3). An increasing number of studies have demonstrated that lncRNAs are implicated in cancer development, and their dysregulated expression confers on the cancer cell capability for tumor initiation and development (4,5). Previous evidence indicated the functions of the lncRNAs H19 (H19, imprinted maternally expressed transcript), long stress-induced non-coding transcript 5 and X-inactive-specific transcript in the tumorigenesis and progression of OvCa (6). Cheng et al (7), demonstrated that upregulated lncRNA AB073614 predicts a poor prognosis; however, it has been indicated that lncRNA homeobox A11
antisense enhances cell proliferation and invasion in serous OvCa, and is associated with prognosis (8). Chen et al (9) determined the function of IncRNA nuclear paraspeckle assembly transcript 1 as a clinical prognostic biomarker for OvCa. Although previous studies have made notable progress, the prognostic functions of IncRNAs in OvCa and the underlying mechanisms remain poorly characterized.

In the present study, an in-depth analysis of IncRNA and mRNA expression profiles, and corresponding clinical characteristics of patients with OvCa from The Cancer Genome Atlas (TCGA) data portal was conducted. In contrast with the study by Zhou et al (10), which identifies a 10-IncRNA signature for predicting survival using the competing endogenous RNAs-network driven method, the present study searched for prognostic IncRNAs based on univariate and multivariate Cox regression analyses in a training set, and then validated their prognostic power in a validation set. Furthermore, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed to determine the possible biological functions of identified prognostic IncRNAs. The results of the present study improved the understanding of the molecular mechanisms of OvCa.

Materials and methods

Data resource. IncRNA and mRNA expression data of OvCa samples, together with corresponding clinical information were downloaded from TCGA data portal (gdc-portal.nci.nih.gov). Each sample was annotated according to its barcode ID. Consequently, a total of 419 samples with IncRNA and mRNA data, based on the Illumina HiSeq 2000 RNA Sequencing platform, were collected. Out of these samples, the samples at early and middle stages according to American Joint Committee on Cancer standard (11) with available clinical information (n=353) were selected for the present study, and randomly and the validation set were combined and defined as the entire set. Clinical characteristics of these datasets are listed in Table I.

Screening for differentially expressed IncRNAs (DELs). A total of 16 patients with prognosis of <6 months were excluded from the training set (remaining patients, n=160). No patients were excluded from the validation set. Good prognosis was defined as patients alive after >24 months, and poor prognosis was defined as patients who succumbed within 24 months. Patients with good prognosis and poor prognosis were selected from the training set, and defined as the good prognosis and poor prognosis groups, respectively. DELs between the groups were screened using two packages in R3.1.0 (https://www.r-project.org/), Differential Expression for Sequence Count Data (DESeq) (12) and edgeR (13). An IncRNA was considered a significant DEL when false discovery rate (FDR) <0.05 and |fold change|>1.3. The overlapping DELs between the two methods were incorporated into the subsequent analyses.

Identification of survival-associated IncRNAs. Univariate Cox proportional hazards regression model was employed to evaluate the associations between these significant DELs and the overall survival (OS) time of the patients with OvCa in the training set, followed by the log-rank test. The DELs with log-rank P<0.05 were defined as survival-associated IncRNAs, which were then subjected to multivariate Cox regression analysis with OS time as the dependent variable.

Construction of an IncRNA-based risk scoring system. On the basis of the linear combination of expression levels of the predictive IncRNAs selected by the multivariate Cox regression analysis with the regression coefficient, a risk scoring system was produced to calculate the risk score for each sample using the following equation (10,14): Risk score=β1 x Expr1 + β2 x Expr2 + ··· + βn x Exprn, where βn represents estimated regression coefficient of IncRNA, and Exprn represents IncRNA expression level.

All samples in the training and validation set were classified into a high-risk (>median risk score) and a low-risk group (≤median risk score), with the median risk score of the dataset as the cut-off value.

Prognosis correlation analysis. Univariate Cox regression analysis and Student’s t-test (unpaired) was used to characterize OS time of each risk group. The log-rank test was then used following univariate analysis to compare the difference between the two risk groups. The results were shown by Kaplan-Meier survival curve. With OS time as the dependent variable, and risk score and clinical variables as explanatory variables, multivariate Cox regression analysis and data stratification analysis were conducted to evaluate whether the risk score was independent of other clinical variables, from which hazard ratios and 95% confidence intervals (CI) were calculated. P<0.05 was considered to indicate a statistically significant difference. To appraise the prognostic power of the IncRNAs-based risk scoring system, the time-dependent receiver operating characteristic (ROC) curve analyses were carried out using the pROC package (15), followed by calculation of the area under the ROC curves (AUC). All analyses were conducted by R 3.0.1 software and Bioconductor 1.14.3. The data are presented as mean ± standard deviation.

GO function and KEGG pathway enrichment analyses. Spearman correlation coefficients were computed to assess the association between the prognostic IncRNAs and corresponding mRNAs, by analyzing expression profiles of the paired IncRNA and protein-coding genes in all OvCa samples. The protein-coding genes significantly correlated with at least one prognostic IncRNA with a Spearman correlation coefficient >0.4 were selected and underwent functional enrichment analyses using the Database for Annotation, Visualization and Integrated Discovery (16) tool limited to GO biological process terms (17) and KEGG pathway categories (18). GO terms or KEGG pathways with P<0.05 were considered to indicate a statistically significant difference.

Results

Identification of significant DELs. Following the deletion of IncRNAs with notably low expression, 2,035 IncRNAs were acquired from TCGA. According to the survival time information, 28 patients were included in the poor prognosis group and 41 patients were included in the good prognosis group.
As presented in Fig. 1, the edgeR method detected 145 DELs between the two groups, whereas the DESeq method identified 133 DELs. A total of 112 DELs were shared by the two methods and were selected for further analyses.

Three-lncRNAs signature for survival prediction. Out of the 112 overlapping DELs, 33 lncRNAs were determined to be significantly associated with survival (P<0.05; Table II), and were then included in the multivariate Cox regression analysis. Subsequently, the lncRNAs KB-1836B5, long intergenic non-protein coding RNA 566 (LINC00566) and FAM27L were selected following multivariate Cox regression analysis and used to construct a risk scoring system as follows: Risk score=[(-1.10205) x Exp KB-1836B5] + [(-0.58589) x Exp LINC00566] + [(-1.69273) x Exp FAM27L]. Exp was taken as the expression level of the lncRNA.

The 160 patients in the training set were classified into a high-risk (n=80) and low-risk group (n=80) by the three-lncRNAs panel-based risk scoring system, with the median risk score as the cut-off value. The Kaplan-Meier survival analysis demonstrated notable differences in OS time between the two risk groups.

Table I. Clinical characteristics of patients in the training set, the validation set and the entire set.

Characteristics	Training set (n=160)	Validation set (n=177)	Entire set (n=337)
Age at diagnosis (mean ± SD)	59.63±11.18	60.11±11.86	59.88±11.53
Clinical stage (I/II/III)	0/7/153	0/15/162	0/22/315
Neoplasm histological grade (G1/G2/G3/G4/-)	0/12/145/1/2	0/32/142/0/3	0/44/287/1/5
Lymphatic invasion (yes/no/-)	33/28/99	54/21/102	87/49/201
Tumor recurrence (yes/no)	96/64	101/76	197/140
Status (deceased/alive)	86/74	107/70	193/144
Overall survival time (mean ± SD, months)	38.18±27.14	34.58±26.99	36.29±27.08

SD, standard deviation.

Figure 1. DEL analysis. (A) DELs identified using the DESeq package. (B) DELs identified using the edgeR package. (C) Overlapping DELs. DESeq, Differential Expression for Sequence Count Data; FDR, false discovery rate; DEL, differentially expressed long non-coding RNA.
The entire set was stratified by neoplasm histological grade into a low-risk and a high-risk group, which had significantly different OS time (median, 41.73 vs. 28.98 months, respectively; log-rank \(P<0.001 \); Fig. 6A). Similarly, the elder dataset was stratified according to age, neoplasm histological grade, lymphatic invasion and tumor recurrence, individually (Table IV; Fig. 6). All patients in the entire set were stratified by age into a younger (≤60 years) and elder dataset (>60 years). The younger dataset was further divided according to the three-lncRNAs signature into a low-risk and a high-risk group, which had significantly different OS time (median, 42.57 vs. 29.29 months, respectively; log-rank \(P=0.013 \); 95% CI=1.241‑6.200) and the entire set (\(P<0.001; \) 95% CI=1.476-2.636; Table III). Furthermore, via multivariate Cox regression analyses, the three-lncRNAs risk score was determined to be an independent predictor of survival in the training set (\(P<0.001; \) 95% CI=2.487-7.549; Table III).

Data stratification analyses were carried out according to age, neoplasm histological grade, lymphatic invasion and tumor recurrence, individually (Table IV; Fig. 6). All patients in the entire set were stratified by age into a younger (≤60 years) and elder dataset (>60 years). The younger dataset was further divided according to the three-lncRNAs signature into a low-risk and a high-risk group, which had significantly different OS time (median, 42.57 vs. 29.29 months, respectively; log-rank \(P=0.013 \); 95% CI=1.241‑6.200) and the entire set (\(P<0.001; \) 95% CI=2.487-7.549; Table III).
respectively; log-rank $P<0.001$, for the grade 3+4 dataset; Fig. 6B). Similarly, all patients were stratified by lymphatic invasion into a non-lymphatic invasion and lymphatic invasion dataset. In the two datasets, differences in OS time between the low-risk and high-risk groups were significant (median, 39.97 vs. 23.30 months, respectively; log-rank $P=0.022$, for the non-lymphatic invasion dataset; median, 35.58 vs. 20.58 months, respectively; log-rank $P<0.001$, for the lymphatic invasion dataset; Fig. 6C). Subsequently, all patients were stratified by tumor recurrence into a no recurrence and a recurrence dataset. Significant differences between the low-risk and high-risk groups were observed in the two datasets (median 34.15 vs. 21.38 months, respectively; log-rank $P=0.005$, for the no recurrence dataset; median, 46.78 vs. 21.38 months, respectively; log-rank $P<0.001$, for the recurrence dataset; Fig. 6D). These data indicated that the prognostic value of the three-lncRNAs panel is independent from age, neoplasm histological grade, lymphatic invasion and tumor recurrence.

Potential functions of the three-lncRNAs signature in OvCa tumorigenesis. It has been demonstrated that lncRNAs affect

Figure 2. Three-lncRNAs signature for predicting survival in patients with OvCa. (A) The Kaplan-Meier curves for the high-risk and low-risk groups in the training, validation and entire dataset. (B) The receiver operating characteristic curves for survival prediction by the three-lncRNAs signature in the training dataset, the validation set and the entire set. AUC, area under the receiver operating characteristic curve; lncRNA, long non-coding RNA; OvCa, ovarian cancer.

Figure 3. Comparison of expression levels of KB-1836B5, LINC00566 and FAM27L between the high-risk and low risk-groups in the (A) training, (B) validation and (C) entire dataset. **P<0.005. Student’s t-test was used for comparison. LINC00566, long intergenic non-protein coding RNA 566; lncRNA, long non-coding RNA.
The protein-coding genes associated with ≥1 of the three prognostic lncRNAs with a Spearman correlation coefficient >0.4 were selected. Subsequently, GO function and KEGG pathway enrichment analyses were performed for these genes. As presented in Fig. 7A, these genes were significantly associated with 13 GO terms (P<0.05), which were categorized into four functional clusters, ATP metabolic process, transport, electron transport chain and cellular metabolic process. Furthermore, 10 pathways were significantly associated with these genes (P<0.05), consisting of oxidative phosphorylation, prion diseases, RNA polymerase, apoptosis, ubiquitin-mediated proteolysis, complement and coagulation cascades, pyrimidine metabolism, systemic lupus erythematosus, mechanistic target of rapamycin (mTOR) signaling pathway and amyotrophic lateral sclerosis pathways (Fig. 7B).

Discussion

OvCa has the highest malignancy incidence of all gynecological malignancy types globally in 2013 (20). LncRNAs may serve as independent biomarkers for survival prediction, due to lncRNAs not coding proteins (21). To investigate an lncRNA-based signature for predicting the prognosis of patients with OvCa, the present study initially selected 112 DELs between patients with good prognosis and poor prognosis using DESeq and edgeR methods. On the basis of the results of univariate and multivariate Cox regression analyses with three-lncRNAs risk score and other clinical variables, the three-lncRNAs signature (lncRNA KB-1836B5, LINC00566 and FAM27L) for survival prediction was determined and used to construct a risk scoring system. The various cellular processes such as organ or tissue development, cellular transport or metabolic processes via regulating protein-coding genes (19). For the purpose of determining the potential functions of the three prognostic lncRNAs in OvCa, the protein-coding genes associated with ≥1 of the three prognostic lncRNAs with a Spearman correlation coefficient >0.4 were selected. Subsequently, GO function and KEGG pathway enrichment analyses were performed for these genes. As presented in Fig. 7A, these genes were significantly associated with 13 GO terms (P<0.05), which were categorized into four functional clusters, ATP metabolic process, transport, electron transport chain and cellular metabolic process. Furthermore, 10 pathways were significantly associated with these genes (P<0.05), consisting of oxidative phosphorylation, prion diseases, RNA polymerase, apoptosis, ubiquitin-mediated proteolysis, complement and coagulation cascades, pyrimidine metabolism, systemic lupus erythematosus, mechanistic target of rapamycin (mTOR) signaling pathway and amyotrophic lateral sclerosis pathways (Fig. 7B).
three-lncRNAs signature-based risk scoring system classified the patients in the training set into a high-risk and low-risk group, indicating significantly different OS time. The risk stratification capability of the three-lncRNAs signature was confirmed in the validation and entire set. Furthermore, the results of the multivariate Cox regression analysis and data...
Figure 6. Kaplan-Meier survival analyses of all patients with OvCa stratified by age, neoplasm histological grade, lymphatic invasion and tumor recurrence with the three-long non-coding RNAs signature. (A) Kaplan-Meier curves for the younger (age, ≤60 years; n=173) and elder dataset (age, >60 years; n=164). (B) Kaplan-Meier curves for the neoplasm histological grade 1+2 dataset (n=44) and the neoplasm histological grade 3+4 dataset (n=208). (C) Kaplan-Meier curves for the non-lymphatic invasion (n=49) and lymphatic invasion dataset (n=87). (D) Kaplan-Meier curves for the no recurrence (n=140) and recurrence (n=197) dataset. OvCa, ovarian cancer.
stratification analysis demonstrated that the prognostic value of the three-lncRNAs signature was independent of age, neoplasm histological grade, lymphatic invasion and tumor recurrence. It is notable that histology was not a significant predictor of survival, and established risk factors for the patient’s outcome, including tumor stage and residual tumor, were not included in the multivariate model. Although tumor stage is an important prognostic factor in OvCa (20), only early-stage samples were selected for analysis in the present study, with the majority of samples being stage II and III; therefore, the samples were considered to be at a ‘fixed’ stage, and were not used in the analysis. Furthermore, there are numerous clinical features that are associated with the prognosis of patients with OvCa (22,23), but clinical information for these features were not available for all patients in the datasets downloaded from TCGA. Furthermore, the aim of the multivariate Cox regression analyses was to investigate whether the three-lncRNAs signature was a significant variable, and whether it was independent of other clinical variables; thus, only available clinical features were analyzed in the present study. The results of the present study demonstrated that the three-lncRNAs panel may be a promising independent biomarker to predict the OS time of patients with OvCa.

It has been demonstrated that lncRNAs serve a function in a number of biological processes by functioning as important regulators of gene regulation at transcriptional, posttranscriptional and epigenetic levels (24,25); therefore, the present study investigated the protein-coding genes regulated by the three prognostic lncRNAs, in order to determine their possible biological function in the molecular mechanisms of OvCa. In the present study, the protein-coding genes associated with ≥1 of the three prognostic lncRNAs (Spearman correlation coefficient >0.4) were selected. Results of GO function enrichment analysis demonstrated that these genes were significantly associated with ATP metabolic process, transport, electron transport chain and cellular metabolic process. Furthermore, these genes were significantly enriched in a number of KEGG signaling pathways, including the mTOR signaling pathway, ubiquitin-mediated proteolysis, and complement and coagulation cascade pathways. mTOR, a member of phosphoinositide
3-kinase-associated kinase family of protein kinases, is a serine/threonine protein kinase (26). The mTOR signaling pathway serves a central function in a number of major cellular processes, including cell growth, cell proliferation and cell survival, and is being identified to be involved in an increasing number of diseases, including cancer, obesity and type 2 diabetes (27,28). Previous studies have demonstrated that mTOR pathway activation is frequently observed in OvCa and is involved in tumorigenesis and progression, indicating this pathway as a potential therapeutic target for OvCa (29-31). Ubiquitin-mediated proteolysis serves a pivotal function in protein turnover, thereby exerting a regulatory effect on carcinogenesis-associated cellular processes, including cell cycle, apoptosis and gene transcription (32). Furthermore, proteasome inhibitors have attracted considerable interest as a treatment option for solid tumor types (33). Complement is a central part of innate immunity, and is also involved in the adaptive immune response, inflammation and other biological processes (34). Emerging studies have demonstrated that complement activation exerts a tumor-promoting effect by strengthening tumor growth and metastasis (35,36). Results of the present study indicated that the IncRNAs KB-1836B5, LINC00566 and FAM27L may exert an effect on mTOR signaling pathway, ubiquitin-mediated proteolysis, and complement and coagulation cascade pathways via gene regulation, thus influencing OvCa cancerogenesis and progression. Currently, the investigation of IncRNAs is in the early stages. According to the literature surveyed, there are few studies involving IncRNAs KB-1836B5, LINC00566 and FAM27L. To the best of our knowledge, their involvement in OvCa has not been reported previously. The present study determined and validated a three-IncRNAs predictive signature via comprehensive analysis, based on IncRNA expression files downloaded from TCGA.

However, two limitations of the present study should be mentioned. First, the number of patients in the training set (n=160) and validation set (n=177) is limited, which may affect the prediction accuracy of this three-IncRNAs prognostic signature; therefore, further work is required to verify the results of the present study in a larger cohort of patients prior to applications of these data in the clinic. Secondly, the present results were all derived from bioinformatics analysis of clinical data, and no direct in vitro experimental validations were performed. Although bioinformatics has been a reliable method to select the genetic factors implicated in the cellular progress, molecular function, and even tumorigenesis and its prognosis, and provides a possible method to screen the majority of potential factors from a huge information pool, it is considered that the present study will be more reliable following validation with cell or animal experiments; therefore, determining the potential factors is the first step to accelerate the study of tumor mechanisms, and further in vitro analyses required to validate the present results.

In conclusion, the present study identified and validated a three-IncRNAs signature for survival prediction in OvCa. The prognostic capability of this signature was independent of other clinical variables and may be recommended as a promising prognostic biomarker for OvCa. The three prognostic IncRNAs are associated with several cellular processes and signaling pathways, including the mTOR signaling pathway, ubiquitin-mediated proteolysis, and complement and coagulation cascades pathways. The present study provides an insight into the involvement of IncRNAs into the molecular mechanisms of OvCa.

Acknowledgements

Not applicable.

Funding

The present study was supported by the National Science Fund for Outstanding Young Scholars (grant no. 81322039); the National Natural Science Foundation (grant no. 81602884); and the National Nature Science Foundation of China (grant nos. 81472442 and 81272871).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

HJL performed data analyses and wrote the manuscript. MG, MZ and XRW contributed significantly to the data analyses and provided important suggestions. WJC and YKX conceived and designed the study. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Siegel R, Ma J, Zou Z and Jemal A: Cancer statistics, 2014. Ca A Cancer J Clin 65: 5-29, 2014.
2. Baldwin LA, Huang B, Miller RW, Tucker T, Goodrich ST, Podzielinski I, DeSimone CP, Ueland FR, van Nagell JR and Seamon LG: Ten-year relative survival for epithelial ovarian cancer. Obstet Gynecol 120: 612-618, 2012.
3. Dey BK, Mueller AC and Dutta A: Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription 5: e944014, 2014.
4. Yang G, Lu X and Yuan L: LncRNA: A link between RNA and cancer. Biochem Biophys Acta (BBA)-Gene Regul Mech 1839: 1097-1109, 2014.
5. Huang M: The emerging role of IncRNAs in cancer. Nat Med 21: 1253, 2015.
6. Ren C, Li X, Wang T, Zhao C, Liang T, Zhu Y, Li M, Yang C, Zhao Y and Zhang GM: Functions and mechanisms of long noncoding RNAs in ovarian cancer. Int J Gynecol Cancer 25: 566-569, 2015.
7. Cheng Z, Guo J, Chen L, Luo N, Yang W and Qu X: A long noncoding RNA AB073614 promotes tumorigenesis and predicts poor prognosis in ovarian cancer. Oncotarget 6: 25381-25389, 2015.
8. Yim GW, Kim HJ, Kim LK, Kim SW, Kim S, Nam EJ and Kim YT: Long non-coding RNA HOXA11 antisense promotes cell proliferation and invasion and predicts patient prognosis in serous ovarian cancer. Cancer Res Treat 49: 656-668, 2016.
9. Chen ZJ, Zhang Z, Xie BB and Zhang HY: Clinical significance of up-regulated IncRNA NEAT1 in prognosis of ovarian cancer. Cancer Res Treatment 49: 656-668, 2016.
10. Zhou M, Wang X, Shi H, Cheng L, Wang Z, Zhao H, Yang L and Sun J: Characterization of long non-coding RNA-associated ceRNA network to reveal potential prognostic IncRNA biomarkers in human ovarian cancer. Oncotarget 7: 12598-12611, 2016.
11. Bristow RE, Palis BE, Chi DS and Cliby WA: The national cancer database report on advanced-stage epithelial ovarian cancer: Impact of hospital surgical case volume on overall survival and surgical treatment paradigm. Gynecol Oncol 118: 262-267, 2010.
12. Robinson MD, McCarthy DJ and Smyth GK: edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140, 2010.
13. Wang P, Wang Y, Bo H, Zou X and Mao JH: A novel gene expression-based prognostic scoring system to predict survival in gastric cancer. Oncotarget 7: 13070-13083, 2016.
14. Hanley JA: The robustness of the 'binormal' assumptions used in fitting ROC curves. Med Decis Making 8: 197-203, 1988.
15. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC and Lempicki RA: DAVID bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35: 169-175, 2007.
16. Consortium GO: Gene ontology consortium: Going forward. Nucleic Acids Res 43: 1049-1056, 2015.
17. Minour K, Yoko S, Masayuki K, Miho F and Mao T: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44: 457-462, 2016.
18. Qi L, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G, Luo H, Bu D, Zhao H, et al: Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res 39: 3864-3878, 2011.
19. Jayson GC, Kohn EC, Kitchener HC and Ledermann JA: Ovarian cancer. Lancet 384: 1376-1388, 2014.
20. Nien H and Damjan G: Long non-coding RNA in cancer. Int J Mol Sci 14: 4655-4669, 2013.
21. Mabuchi S, Kuroda H, Takahashi R and Sasano T: The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol Oncol 137: 173-179, 2015.
22. Li H, Zeng J and Shen K: PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch Gynecol Obstet 290: 1067-1078, 2014.
23. Johnson DE: The ubiquitin-proteasome system: Opportunities for therapeutic intervention in solid tumors. Endocr Relat Cancer 22: 1-17, 2015.
24. Afshar-Kharghan V: The role of the complement system in cancer. J Clin Invest 127: 780-789, 2017.
25. Pio R, Corrales L and Lambris JD: The role of complement in tumor growth. Tumor Microenvironment Cell Stress 229-262, 2013.