Through Thick and Thin: Kinematic and Chemical Components in the Solar Neighbourhood

Julio F. Navarro¹, Mario G. Abadi², Kim A. Venn¹, K. C. Freeman³, Borja Anguiano⁴

¹Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
²Observatorio Astronómico, Universidad Nacional de Córdoba, Córdoba, Argentina
³Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek ACT 2611, Australia
⁴Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany

ABSTRACT

We search for chemically-distinct stellar components in the solar neighbourhood using a compilation of published data. Extending earlier work, we show that when the abundances of Fe, α elements, and the r-process element Eu are considered together, stars separate neatly into two groups that delineate the traditional thin and thick disk components of the Milky Way. The group akin to the thin disk is traced by stars with [Fe/H] > −0.7 and [α/Fe] < 0.2. The thick disk-like group overlaps the thin disk in [Fe/H] but has higher abundances of α elements and Eu. Stars in the range −1.5 < [Fe/H] < −0.7 with low [α/Fe] ratios, however, seem to belong to a separate, dynamically-cold, non-rotating component that we associate with tidal debris. The kinematically-hot stellar halo dominates the sample for [Fe/H] < −1.5. These results suggest that it may be possible to define the main dynamical components of the solar neighbourhood using only their chemistry, an approach with a number of interesting consequences. With such definition, the kinematics of thin disk stars is found to be independent of metallicity: their average rotation speed remains roughly constant in the range −0.7 < [Fe/H] < +0.4, a result that argues against radial migration having played a substantial role in the evolution of the thin disk. The velocity dispersion of the thin disk is also independent of [Fe/H], implying that the familiar increase in velocity dispersion with decreasing metallicity is the result of the increasing prevalence of the thick disk at lower metallicities, rather than of the sustained operation of a dynamical heating mechanism. The substantial overlap in [Fe/H] and, likely, stellar age, of the various components might affect other reported trends in the properties of stars in the solar neighbourhood. A purely chemical characterization of these components would enable us to scrutinize these trends critically in order to understand which result from accretion events and which result from secular changes in the properties of the Galaxy.

Key words: Galaxy: abundances, Galaxy: kinematics and dynamics, Galaxy: formation, Galaxy: evolution, galaxies: structure, galaxies: formation

1 INTRODUCTION

The discovery that the vertical distribution of stars in the solar cylinder is best approximated by two exponential laws suggested the presence of two components of different scale-heights and ushered in the concept of the Galactic thick disk (Gilmore & Reid 1983). The concept of separate “thin” and “thick” disk components in the Milky Way, however, is useful insofar as they refer to different types of stars; i.e., distinct in ways other than kinematics or spatial distribution. Since there is no a priori reason why the vertical structure of galaxy disks cannot be more complex than a single exponential, confirming the identity of the thick disk as a component truly distinct from the thin disk requires additional evidence.

In that regard, the finding that thick disk stars are substantially older and more highly enriched in α elements than their thin disk counterparts supports the two-component nature of the Galactic disk (Gratton et al. 1996; Fuhrmann 1998; Prochaska et al. 2006; Bensby et al. 2003; Gilmore & Wyse 1983; Reddy et al. 2006; Bensby et al. 2007; Fuhrmann 2008). The thin and thick disks have metallicity distributions that overlap in [Fe/H] but that differ, at given [Fe/H], in their kinematics, age, and α content. This dichotomy in properties at fixed metallicity requires adjustments to traditional models of chemical evolution, which
have invoked violent accretion events, as well as episodic hiatus in star formation, to explain the data (see, e.g., Chiappini et al. [1997], Reddy et al. [2006]). Such events may reset selectively the heavy-element abundance of the ISM, disrupting the monotonic trends with $[\text{Fe/H}]$ expected in simple models of chemical evolution and enabling better fits to the data.

The price to pay is one of increased model complexity. Did accretion events supply mostly gas or stars to the disk? Were stars in the thick disk brought into the Galaxy during the event or is the thick disk the stirred-up remnant of an early thin disk? How many accretion events took place? What were the masses of the accreted dwarfs? When did these events take place? Accretion models provide only rudimentary answers to these key questions and, as a result, there is little consensus in the community regarding the origin of the thick disk.

This state of affairs has been highlighted by a number of recent papers, which argue that the chemo-dynamical evidence for accretion events is weak and that all relevant data can be explained by reconsidering the importance of radial migration of both gas and stars during the evolution of the disk (Haywood 2008; Roskar et al. 2008; Schönrich & Binney 2009a). Inspiration for this work came from the realization by Sellwood & Binney (2002) that inhomogeneities in the disk do not just perturb disk stars diffusively, easing them gradually into more and more eccentric orbits, but can also transport, resonantly, stars across the disk without increasing their eccentricity. Stars on nearly circular orbits in the solar neighbourhood could therefore have formed at different radii in the Galactic disk. The properties of local thin disk stars may thus reflect large-scale gradients in the Galaxy rather than different conditions in the solar neighbourhood at the time of their formation. Using a simple but plausible model that includes radial migration, Schönrich & Binney (2009b) demonstrate that most available data for the thin and thick disks can be accommodated without invoking a violent accretion event at all.

Deciding between migration or accretion scenarios requires identifying patterns in stellar properties that point to the presence of truly distinct stellar component and assessing whether their properties are the result of secular evolution or accretion events. In general, secular evolution mechanisms such as radial migration should lead to increased mixing, blurring the boundaries between components and leaving dynamical and chemical imprints different from those predicted by accretion scenarios.

Take, as an example, the wide range in metallicity spanned by stars on nearly-circular orbits (the thin disk) in the solar neighbourhood. In migration-based scenarios the metal-poor tail of the thin disk is populated by stars that formed further out in the Galaxy, while the opposite holds for stars in the metal-rich tail. Stars at these two extremes were born with very different angular momenta, and this difference would be preserved in local samples even after their orbits have migrated to the solar neighbourhood (Schönrich & Binney 2009b). Therefore very metal-rich (poor) stars would be found in the solar neighbourhood at relatively low (high) rotation velocities. A relatively clean prediction of migration models is, then, the presence of a negative correlation between mean rotation speed and metallicity for stars in the thin disk.

Such correlations have been difficult to study because of the widespread practice of assigning stars to the thick or thin disk according to their kinematics. Although this may be an expeditious procedure, it imposes an obvious bias that precludes searching for correlations of the kind alluded to in the preceding paragraph. It would be much more useful to devise a purely chemical characterization of the various components in the Galaxy. After all, chemistry is a relatively stable property of a star that relates it to the conditions at the time/place of its birth, whereas its distance to the center, vertical height, or spatial velocity are far less durable features.

We explore these ideas here using a compilation of data for stars in the solar neighbourhood with good estimates of their spatial motions and reliable measurements of their heavy-element abundances. We focus on spectroscopic samples where the abundance of individual elements, such as Fe, Mg, Ti, and Ca, are also available. We use these data to apportion stars to separate components on the basis of chemistry alone, and use their kinematics to place constraints on their possible origins.

2 DATASET

We have used the compilation of Venn et al. (2004), which includes abundance data for solar neighbourhood stars with good spatial motions, supplemented by data in the more recent papers of Reddy et al. (2006), Bensby et al. (2003) and Nissen & Schuster (2010). This is a heterogeneous compilation of data from many different sources. We have gone carefully through this compilation in order to remove repeated stars and to bring all velocities to a consistent reference frame, taking into account the fact that some papers use either right- or left-handed UVW frames. The sample spans a wide range in metallicity ($-4 < [\text{Fe/H}] < +0.5$), and there are reliable abundance measurements of $[\text{Fe/H}]$ and of the α elements Mg, Ti, and Ca, for 743 stars. Abundance measurements of the r-process element Eu are also available for 306 of those stars. We shall use these two subsamples in what follows. As in Venn et al. (2004), the spatial velocities assume that the Sun moves in a Galactic reference frame with $(U,V,W) = (9,232,7)$ km/s and that the LSR has $V_{\text{LSR}} = 220$ km/s.

3 RESULTS

Fig. 1 shows, as a function of the iron content, $[\text{Fe/H}]$, an index measuring the average abundance of the α elements Mg, Ti, and Ca, plus the r-process element Eu for all stars in our sample. The index is constructed by simply averaging the Mg, Ti, Ca, and Eu abundances. As usual, all quantities are shown in \log_{10} units normalized to solar values. Like the α elements, Eu is thought to form mainly in massive stars, and it therefore may be combined with the α elements to define an index that gauges the importance of massive-star nucleosynthesis in a given stellar component.
3.1 A chemical definition of the thin disk

Fig. 1 suggests that stars with measured Fe, α and Eu abundances separate into two “families”, one with high [Fe/H] and low [(α+Eu)/Fe] (shown in red) and the other with lower [Fe/H] and high [(α+Eu)/Fe] (green). This separation is confirmed in the top panel of Fig. 2 which is identical to Fig. 1 but for the index normalized to Eu. The [(α+Eu)/Fe] histogram, which should be relatively free from selection biases, hints strongly at the presence of two distinct components. This separation highlights the well-known α enhancement of thick disk stars relative to the thin disk, accentuated by the addition of Eu to the α index. The data suggest that a plausible boundary between the two families may be drawn at [(α+Eu)/Fe]= 0.2, the value that roughly marks the “valley” in the histogram.

Guided by this, we have chosen arbitrary but plausible boundaries to define the two components in Fig. 1 and the top panel of Fig. 2 which we color in green and red, respectively. The simple criteria: (i) [Fe/H] > −0.7; and (ii) [(α+Eu)/Fe] < 0.2, distinguishes well one of the two families of stars. This family (coloured red) contains the Sun (which would be at the origin of the plot) and contains mostly stars associated with the thin disk as usually conceived. The minimum [Fe/H] boundary is suggested by the fact that the most metal-rich counterrotating star in the sample (certainly not a member of the thin disk) has [Fe/H] ~ −0.7.

The distinction between components blurs when including stars for which Eu abundances are not available (see bottom panel of Fig. 2), but the sample more than doubles. In order to take advantage of this larger sample, we define the thin disk by the same criteria as above, namely

- (i) [Fe/H] > −0.7; and
- (ii) [α/Fe] < 0.2.

We emphasize that the criteria above are purely chemical. This differs from the traditional practice of selecting thin disk stars by their kinematics and might therefore include stars not expected in kinematic definitions of the “thin disk”. We shall hereafter call them “thin disk stars”, but this caveat should be kept in mind when comparing our results with other work on the topic.

Both panels of Fig. 2 show the wide range in [Fe/H] spanned by thin disk stars, as well as the strong correlation between the abundance ratio and metallicity in this population; [α/Fe] and [(α+Eu)/Fe] decrease slightly but steadily with increasing [Fe/H].

This trend suggests two possible interpretations. In
standard chemical evolution models it is reminiscent of a self-enriched population whose star formation timescale is long compared with the lifetime of stars that end their lives as supernovae type Ia (SNIa). These supernovae return mostly Fe and little α to the ISM, and therefore the ratio [α/Fe] of successive generations of stars declines steadily as [Fe/H] increases.

In this interpretation, the formation of the metal-poor tail of the thin disk precedes that of the metal-rich one since [Fe/H] is assumed to march roughly monotonically with time. One difficulty with this interpretation is that the wide range in metallicity spanned by the thin disk with time. One difficulty with this interpretation is that since [Fe/H] is assumed to march roughly monotonically [Fe/H] increases.

The kinematic invariance of the thin disk with metallicity is a somewhat surprising result for either of the two scenarios advanced above. The absence of a (V)−[Fe/H] correlation disfavours the migration scenario; on the other hand, in-situ self-enrichment scenarios would predict the velocity dispersion to rise with decreasing [Fe/H] since metal-poor stars would be, on average, older, and therefore exposed for longer to gravitational heating by inhomogeneities in the Galactic potential. The data in Fig. 5 disfavours such gradual heating:
Figure 4. Top panel: The open histogram shows the distribution of the rotation velocity (V component) for all stars in the sample. (Units are number of stars per bin.) The shaded histogram corresponds to those in the thin disk, as defined in the bottom panel of Fig. 4. The remainder are shown by the open histogram. Bottom panel: V-distribution of stars in the metal-poor tail, i.e., [Fe/H] < −1.5. This illustrates the velocity distribution of the slowly-rotating, dynamically-hot stellar halo. The blue curve illustrates the best fitting gaussian, with \(\langle V \rangle = -60 \) km/s and \(\sigma_V = 144 \) km/s. Middle panel: V-distribution of stars with [Fe/H] > −1.5 but excluding the thin disk. The distribution is strongly non-gaussian, and shows two well-defined peaks: one at \(V \sim 0 \) km/s and another at \(V \sim 160 \) km/s. The latter is well traced by stars in the “thick disk” component identified in the top panel of Fig. 4 (with Eu; filled green histogram). Including stars without Eu measurements but of comparable \([\alpha/Fe]\) ratios (the “Thick” region in the bottom panel of Fig. 4) results in the shaded green histogram. Note that stars near the \(V \sim 0 \) peak are almost exclusively those in the debris (“D”) region of Fig. 4. They define a non-rotating, dynamically-cold component distinct from either the thick disk and the stellar halo. Both the debris and thick disk components are relatively cold dynamically; the V-distribution can be well approximated by the sum of two gaussians with similar velocity dispersion, of order \(\sim 40 \) km/s (see green and magenta solid curves).

if present, the heating mechanism must operate promptly and saturate quickly, as has been suggested in the past (Strömgren 1957; Freeman 1991; Quillen & Garnett 2000; Soubiran et al. 2008). Inefficient heating would actually be more to explain the rapid increase in velocity dispersion with age inferred from earlier observations (see, e.g., Wielen 1977; Lacey 1984). If our interpretation is correct, then the increase in velocity dispersion with decreasing metallicity for stars in the vicinity of the Sun must result from the increased prevalence of the thick disk at low metallicity. Indeed, as mentioned in Sec. 3.1 it is generally agreed that the thick disk is metal-poor; lags the thin disk in rotation speed; and has a higher velocity dispersion. This is shown in the top panel of Fig. 4 where we compare the distribution of the rotation speed (V component) of all stars in our sample with that of the thin disk.

The V distribution of stars not in the thin disk is complex, and hints at the presence of distinct dynamical components. It shows two well defined peaks, one at \(V \sim 160 \) km/s and another at \(V \sim 0 \) km/s, as well as a tail of fast counterrotating stars at highly-negative values of V. The first peak corresponds to a rotationally-supported structure: the traditional thick disk. Stars belonging to this rotating component seem to disappear from our sample when only metal-poor stars with \([Fe/H] < -1.5\) are considered (bottom panel of Fig. 4). The latter trace the classical, kinematically-hot, metal-poor stellar halo: the V distribution is consistent with a gaussian with velocity dispersion \(\sigma_V \sim 144 \) km/s (shown in the bottom panel with a blue curve).

Interestingly, the V distribution of non-thin-disk stars with \([Fe/H] > -1.5\) (middle panel of Fig. 4) shows even more clearly the double-peak structure noted above. The peak at \(V \sim 160 \) km/s is well traced by the stars identified with the thick disk in the α+Eu panel of Fig. 4 shown by the solid-shaded histogram in the middle panel of Fig. 4.

Indeed, the peak is traced almost exclusively by stars with high values of \([\alpha/Fe]\). This is shown by the shaded green histogram, which corresponds to all stars in the region labelled “Thick” in the bottom panel of Fig. 4. The V distribution of these stars is well approximated by a gaussian with \(\langle V \rangle = 145 \) km/s and \(\sigma_V = 40 \) km/s that accounts for nearly all stars with \(V > 100 \) km/s.

The association between the thick disk and “high-α” stars is reinforced by inspecting the location of counterrotating stars in Fig. 2 (shown in cyan). These stars, which clearly do not belong to a rotationally-supported structure like the thick (or thin) disk, are evenly distributed among stars with \([Fe/H] < -1.5\) but shun the “high-α” region in the range \(-1.5 < [Fe/H] < -0.7\). Of the 38 counterrotating stars in our sample with \(-1.5 < [Fe/H] < -0.7\), only 3 lie above the dotted line that delineates the “Thick” region in the bottom panel of Fig. 2.

It is tempting therefore to adopt a purely chemical definition of the thick disk in terms of [Fe/H] and [α/Fe]:

\[
\begin{align*}
(i) \ [Fe/H] & > -1.5; \\
(ii) \ [\alpha/Fe] & > 0.2 - ([Fe/H] + 0.7)/4 \text{ for } -1.5 < [Fe/H] < -0.7; \\
(iii) \ [\alpha/Fe] & > 0.2 \text{ for } [Fe/H] > -0.7.
\end{align*}
\]

If our analysis is correct, then the thick disk emerges as a chemically and kinematically coherent component that spans a wide range in metallicity \((-1.5 < [Fe/H] < -0.3)\) and contains mainly stars highly enriched in α elements. Stars in this component have \((U,V,W) = (10, 133, -2)\) km/s, and \((\sigma_U, \sigma_V, \sigma_W) = (95, 61, 61)\) km/s.

The average V lags below the ~160 km/s peak because the chemical definition allows in a few stars with discrepant velocities (some with negative V) more closely associated with the V ~ 0 peak than with a rotationally supported structure like a thick disk. This suggests that the chemical

3.2 A chemical definition of the thick disk

If our interpretation is correct, then the increase in velocity dispersion with decreasing metallicity for stars in the vicinity of the Sun must result from the increased prevalence of the thick disk at low metallicity. Indeed, as mentioned in Sec. 3.1 it is generally agreed that the thick disk is metal-poor; lags the thin disk in rotation speed; and has a higher velocity dispersion. This is shown in the top panel of Fig. 4 where we compare the distribution of the rotation speed (V component) of all stars in our sample with that of the thin disk.

The V distribution of stars not in the thin disk is complex, and hints at the presence of distinct dynamical components. It shows two well defined peaks, one at \(V \sim 160 \) km/s and another at \(V \sim 0 \) km/s, as well as a tail of fast counterrotating stars at highly-negative values of V. The first peak corresponds to a rotationally-supported structure: the traditional thick disk. Stars belonging to this rotating component seem to disappear from our sample when only metal-poor stars with \([Fe/H] < -1.5\) are considered (bottom panel of Fig. 4). The latter trace the classical, kinematically-hot, metal-poor stellar halo: the V distribution is consistent with a gaussian with velocity dispersion \(\sigma_V \sim 144 \) km/s (shown in the bottom panel with a blue curve).

Interestingly, the V distribution of non-thin-disk stars with \([Fe/H] > -1.5\) (middle panel of Fig. 4) shows even more clearly the double-peak structure noted above. The peak at \(V \sim 160 \) km/s is well traced by the stars identified with the thick disk in the α+Eu panel of Fig. 4 shown by the solid-shaded histogram in the middle panel of Fig. 4.

Indeed, the peak is traced almost exclusively by stars with high values of \([\alpha/Fe]\). This is shown by the shaded green histogram, which corresponds to all stars in the region labelled “Thick” in the bottom panel of Fig. 4. The V distribution of these stars is well approximated by a gaussian with \(\langle V \rangle = 145 \) km/s and \(\sigma_V = 40 \) km/s that accounts for nearly all stars with \(V > 100 \) km/s.

The association between the thick disk and “high-α” stars is reinforced by inspecting the location of counterrotating stars in Fig. 2 (shown in cyan). These stars, which clearly do not belong to a rotationally-supported structure like the thick (or thin) disk, are evenly distributed among stars with \([Fe/H] < -1.5\) but shun the “high-α” region in the range \(-1.5 < [Fe/H] < -0.7\). Of the 38 counterrotating stars in our sample with \(-1.5 < [Fe/H] < -0.7\), only 3 lie above the dotted line that delineates the “Thick” region in the bottom panel of Fig. 2.

It is tempting therefore to adopt a purely chemical definition of the thick disk in terms of [Fe/H] and [α/Fe]:

\[
\begin{align*}
(i) \ [Fe/H] & > -1.5; \\
(ii) \ [\alpha/Fe] & > 0.2 - ([Fe/H] + 0.7)/4 \text{ for } -1.5 < [Fe/H] < -0.7; \\
(iii) \ [\alpha/Fe] & > 0.2 \text{ for } [Fe/H] > -0.7.
\end{align*}
\]

If our analysis is correct, then the thick disk emerges as a chemically and kinematically coherent component that spans a wide range in metallicity \((-1.5 < [Fe/H] < -0.3)\) and contains mainly stars highly enriched in α elements. Stars in this component have \((U,V,W) = (10, 133, -2)\) km/s, and \((\sigma_U, \sigma_V, \sigma_W) = (95, 61, 61)\) km/s.

The average V lags below the ~160 km/s peak because the chemical definition allows in a few stars with discrepant velocities (some with negative V) more closely associated with the V ~ 0 peak than with a rotationally supported structure like a thick disk. This suggests that the chemical
definition of the thick disk proposed above is not perfect, and that it includes spurious stars belonging to a different, non-rotating component. We turn our attention to that component next.

3.3 Tidal debris in the stellar halo

The last feature of note in the top and middle panels of Fig. 4 is the peak centered at V ∼ 0. These are stars with no net sense of rotation around the Galaxy and with a surprisingly low velocity dispersion. (The gaussian fit to the low-V tail shown in magenta in the middle panel of Fig. 4 has a dispersion of just 40 km/s.) Their vertical (W) velocity distribution (computed for stars with V < 50 km/s) to better isolate the peak is also indistinguishable from that of the thick disk component discussed above, with ⟨W⟩ ∼ 0 km/s and σ_W ∼ 72 km/s. On the other hand, their U velocity dispersion is large (∼ 180 km/s). Further, the U distribution (not shown) is rather flat, with hints of two, symmetric peaks, one at U ∼ −250 km/s and another at U ∼ +250 km/s.

As discussed by Navarro et al. (2003), this is the kinematic structure expected for a tidal stream originating in a dwarf galaxy whose orbital plane at the time of disruption was coincident with the plane of the Galaxy. The low V and W velocity dispersions are easily explained in this scenario, since such stream would be, locally, kinematically cold and confined to the orbital plane. The double-peaked U distribution also arises naturally in this scenario if stream stars have apocentric radii outside the solar circle and pericentric radii inside the solar circle. Stream stars in the solar neighbourhood are therefore either going to their apocenter with large, positive U or coming from their apocenter, with symmetric −U.

This suggests that most non-thin-disk stars with [Fe/H] > −1.5 and low, but still enhanced relative to solar, [α/Fe] (previously thought to belong to the classical halo) belong to this new component. Guided by Nissen & Schuster (2010), we inspect the Na and Ni content of such stars for supporting evidence of this conclusion. This is shown in Fig. 4 where we show [Na/Fe] vs [Ni/Fe] for all stars in our sample with [Fe/H] < −0.7. Blue squares correspond to the very metal poor stars in our sample ([Fe/H] < −1.5); green open circles are stars in the α-rich “Thick” region of Fig. 2 and magenta filled circles denote stars in the α-poor “debris” (“D”) region of Fig. 2. The three groups separate clearly in the Na-Ni plane, supporting our claim that the “debris” component is truly distinct from the thick disk and from the metal-poor “classical” halo.

Using the same [Fe/H] and [α/Fe] parameters as above, we can characterize “debris” stars in the [α/Fe] vs [Fe/H] plane (region labelled “D” in Fig. 2) by

- (i) −1.5 < [Fe/H] < −0.7; and
- (ii) [α/Fe] < 0.2 − ([Fe/H] + 0.7)/4.

Our conclusion agrees with that of Nissen & Schuster (2010), who studied a large spectroscopic sample of “halo” stars and argued, in agreement with our analysis, that most metal-rich “α-poor” halo stars are indeed tidal debris from disrupted dwarfs. Our debris population is reminiscent of the population identified by Morrison et al. (2009).

4 SUMMARY AND DISCUSSION

The preceding analysis suggests that apportioning the various components of the Galaxy according to purely chemical criteria is both possible and fruitful. The definition of the thin disk in the [(α+Eu)/Fe] vs [Fe/H] plane is particularly straightforward, and suggests that the kinematics of the thin disk is invariant with metallicity. This is an intriguing result unexpected in migration-based scenarios for the chemo-dynamical evolution of the thin disk. It implies that the familiar increase in velocity dispersion with decreasing metallicity (Strömgren 1957) is the result of the increased prevalence of the thick disk at lower metallicities, rather than of the sustained operation of a dynamical heating mechanism. If confirmed, the kinematic invariance of the thin disk with metallicity will place strong constraints on the formation of the Galactic disk and on the role of accretion events, in situ formation, and/or migration.

The “thick disk” can also be charted in the [α/Fe] vs [Fe/H] plane. As reported in earlier work, it seems to contain mainly stars highly enriched in α elements. It shows as a separate dynamical component in rotation speed, with the bulk of its stars rotating at V ∼ 160 km/s. A simple criterion in α content isolates most of these stars, although a few
outliers with nearly zero, or negative, V velocities are also included. The latter might very well be contaminants from a different population that a crude boundary in the α-Fe plane is unable to weed out.

The inclusion of additional heavy elements in the defining criteria might enable a cleaner characterization of the thick disk. If that were possible, questions such as whether the thick disk shows evidence of self-enrichment, or whether correlations between metal content and velocity dispersion are present, could be addressed. This would allow us to distinguish between migration and accretion models and, among the latter, between those where the bulk of thick disk stars were either accreted or simply stirred.

A substantial fraction of stars in the range $-1.5 < [\text{Fe/H}] < -0.7$ seem to belong to a dynamically-cold, non-rotating component with properties consistent with those of a tidal stream. These are mainly stars of low-ω content, comparable in that regard to individual stars in many of the satellite companions of the Milky Way (see, e.g., Wylie-de Boer et al. 2010, for some progress included. The latter might very well be contaminants from debris” seems to peak at slightly negative V ($\sim -10 \text{ km/s}$). This implies that most stars in the stream have angular momenta similar to that of the globular cluster ω Cen (Dinescu et al. 1999). It is therefore tempting to associate these stars with the parent galaxy of this massive cluster, long suspected to be the survivor of the disruption of a dwarf galaxy in the Galactic potential (Freeman 1993).

Supporting evidence comes from ω Cen’s low vertical velocity, as well as from the overlap in metallicity between ω Cen and stars in the putative stream (see Meza et al. 2005; Nissen & Schuster 2010, for a full discussion).

Although the orbital parameters of the stream might suggest a link with the globular cluster ω Cen, we caution that evidence of a true relation between those stars and ω Cen is circumstantial at best. For example, the metallicity distribution in ω Cen peaks at [Fe/H] = −1.7 (Smith 2004) and have distinct elemental abundances (Norris & Da Costa 1991; Johnson & Pilachowski 2010), so it might be useful to seek evidence for a stream in stars of similar metallicity and peculiar abundance ratios when larger samples become available (see, e.g., Wylie-de Boer et al. 2010, for some progress in this direction).

One corollary of this finding is that very few stars with $[\text{Fe/H}] > -1.5$ in our sample seem to belong to the classical, dynamically-hot stellar halo. Recent work has suggested that halo stars in this “metal-rich” tail might actually belong to a distinct “inner halo” component (see, e.g., Carollo et al. 2007, and references therein). The connection between this and the stream we advocate above is, however, unclear, not least because the “inner halo” component is reported to corotate with the Sun, whereas our putative stream counter-rotates slowly around the Galaxy.

The “inner halo” identification typically relies mainly on estimates of [Fe/H] and lacks information on the abundance of individual elements. On the other hand, our sample is relatively small in comparison and has potentially a number of selection biases. Thus the possibility that our stream constitutes a small subset of the inner halo remains.

It might be possible to test these ideas by examining other abundance ratios, such as the neutron-capture elements [Ba/Y] or [Ba/Eu]. This is because these elements are contributed in different amounts by AGB stars that undergo slow neutron capture nucleosynthesis during the thermal pulsing stages and by massive stars that undergo rapid neutron capture nucleosynthesis during supernova explosion. Indeed, variations in those ratios have already been seen in individual stars of dwarf galaxies (see Figure 14 in Tolstoy et al. 2009).

Overall, our success in dividing and assigning stars of the solar neighbourhood to families of distinct chemistry and kinematics seems to favour models where accretion events have played a significant role in the formation of the Galaxy rather than models, such as those based on migration, where secular evolutionary mechanisms rule. We hasten to add, however, that the criteria to separate components proposed here are imperfect, and that our conclusions are based on small and heterogeneous samples. These samples likely conceal a number of biases which can only be revealed and lifted by a concerted effort to survey a large, volume-limited, kinematically-unbiased sample of stars with the high-resolution spectra needed to measure the abundance of individual heavy elements. The planned HERMES survey should be a major first step in this regard. This undoubtedly ambitious endeavour would allow us to dissect chemically and kinematically the solar neighbourhood and to learn the true provenance of the many stellar families that today call this small place of the Galaxy home.

ACKNOWLEDGEMENTS

This paper has been typeset from a TeX/LaTeX file prepared by the author.

REFERENCES

Aumer M., Binney J. J., 2009, MNRAS, 397, 1286
Bensby T., Feltzing S., Lundström I., 2003, A&A, 410, 527
Bensby T., Feltzing S., Lundström I., Ilyin I., 2005, A&A, 433, 185
Bensby T., Zenn A. R., Oey M. S., Feltzing S., 2007, ApJ, 663, L13
Carollo D., Beers T. C., Lee Y. S., Chiba M., Norris J. E., Wilhelm R., Sivarani T., Marsteller B., Munn J. A., Bailer-Jones C. A. L., Fiorentin P. R., York D. G., 2007, Nature, 450, 1020
Chiappini C., Mattucci F., Gratton R., 1997, ApJ, 477, 765
Dinescu D. I., van Altena W. F., Girard T. M., López C. E., 1999, AJ, 117, 277
Freeman K. C., 1991, in B. Sundelius ed., Dynamics of Disc Galaxies Observational Properties of Disks. pp 15--
Freeman K. C., 1993, in G. H. Smith & J. P. Brodie ed., The Globular Cluster-Galaxy Connection Vol. 48 of Astronomical Society of the Pacific Conference Series, The Halo Globular Cluster System. pp 27--

\[\text{vww.aao.gov.au/AO/HERMES} \]
Navarro et al

Fuhrmann K., 1998, A&A, 338, 161
Fuhrmann K., 2008, MNRAS, 384, 173
Gilmore G., Reid N., 1983, MNRAS, 202, 1025
Gilmore G., Wyse R. F. G., 1985, AJ, 90, 2015
Gratton R., Carretta E., Matteucci F., Sneden C., 1996, in H. L. Morrison & A. Sarajedini ed., Formation of the Galactic Halo...Inside and Out Vol. 92 of Astronomical Society of the Pacific Conference Series, The [Fe/O] Ratio in Field Stars and the History of Star Formation of the Solar Neighbourhood. pp 307—+
Haywood M., 2008, MNRAS, 388, 1175
Jenkins A., Binney J., 1990, MNRAS, 245, 305
Johnson C. I., Pilachowski C. A., 2010, ArXiv e-prints
Lacey C. G., 1984, MNRAS, 208, 687
Maciel W. J., Queireza C., Costa R. D. D., 2007, A&A, 463, L13
Meléndez J., Asplund M., Alves-Brito A., Cunha K., Barbey B., Bessell M. S., Chiappini C., Freeman K. C., Ramírez I., Smith V. V., Yong D., 2008, A&A, 484, L21
Meza A., Navarro J. F., Abadi M. G., Steinmetz M., 2005, MNRAS, 359, 93
Morrison H. L., Helmi A., Sun J., Liu P., Gu R., Norris J. E., Harding P., Kinman T. D., Kepley A. A., Freeman K. C., Williams M., Van Duyne J., 2009, ApJ, 694, 130
Nissen P. E., Schuster W. J., 2010, A&A, 511, L10+
Norris J. E., Da Costa G. S., 1995, ApJ, 441, L81
Prochaska J. X., Naumov S. O., Carney B. W., McWilliam A., Wolfe A. M., 2000, AJ, 120, 2513
Quillen A. C., Garnett D. R., 2000, ArXiv Astrophysics e-prints
Reddy B. E., Lambert D. L., Allende Prieto C., 2006, MNRAS, 367, 1329
Roškar R., Debattista V. P., Stinson G. S., Quinn T. R., Kaufmann T., Wadsley J., 2008, ApJ, 675, L65
Schönrich R., Binney J., 2009a, MNRAS, 396, 203
Schönrich R., Binney J., 2009b, MNRAS, 399, 1145
Sellwood J. A., Binney J. J., 2002, MNRAS, 336, 785
Smith V. V., 2004, Origin and Evolution of the Elements, pp 186—+
Soubran C., Bienaymé O., Mishenina T. V., Koptyukh V. V., 2008, A&A, 480, 91
Strömgren B., 1987, in The Galaxy An investigation of the relations between age, chemical composition and parameters of velocity distribution based on uvbyβ photometry of F stars within 100 parsec.. pp 229–246
Tolstoy E., Hill V., Tosi M., 2009, ARA&A, 47, 371
Venn K. A., Irwin M., Shetrone M. D., Tout C. A., Hill V., Tolstoy E., 2004, AJ, 128, 1177
Wielen R., 1977, A&A, 60, 263
Wylie-de Boer E., Freeman K., Williams M., 2010, AJ, 139, 636