Helicobacter pylori infection and respiratory diseases: a review

Anastasios Roussos, Nikiforos Philippou, Konstantinos I Gourgoulianis

Abstract

In the past few years, a variety of extradigestive disorders, including cardiovascular, skin, rheumatic and liver diseases, have been associated with Helicobacter pylori (H. pylori) infection. The activation of inflammatory mediators by H. pylori seems to be the pathogenetic mechanism underlying the observed associations. The present review summarizes the current literature, including our own studies, concerning the association between H. pylori infection and respiratory diseases. A small number of epidemiological and serological, case-control studies suggest that H. pylori infection may be associated with the development of chronic bronchitis. A frequent coexistence of pulmonary tuberculosis and H. pylori infection has also been found. Moreover, recent studies have shown an increased H. pylori seroprevalence in patients with bronchiectasis and in those with lung cancer. On the other hand, bronchial asthma seems not to be related with H. pylori infection.

All associations between H. pylori infection and respiratory diseases are primarily based on case-control studies, concerning relatively small numbers of patients. Moreover, there is a lack of studies focused on the pathogenetic link between respiratory diseases and H. pylori infection. Therefore, we believe that larger studies should be undertaken to confirm the observed results and to clarify the underlying pathogenetic mechanisms.

Roussos A, Philippou N, Gourgoulianis KI. Helicobacter pylori infection and respiratory diseases: a review. World J Gastroenterol 2003; 9(1): 5-8

http://www.wjgnet.com/1007-9327/9/5.htm

INTRODUCTION

Helicobacter pylori (H. pylori) is a slow-growing, microaerophilic, gram-negative bacterium, whose most striking biochemical characteristic is the abundant production of urease. This bacterium colonizes gastric mucosa and elicits both inflammatory and immune responses, with release of various bacterial and host-dependent cytotoxic substances[1]. Pathological studies and extensive clinical trials, carried out in the past few years, have proved the causative role of H. pylori in the development of chronic gastritis[2] and peptic ulcer disease[3]. It seems that this bacterium is also causally related to low-grade B-cell lymphoma of gastric mucosa-associated-lymphoid-tissue (MALT-lymphoma)[4,5]. Moreover, H. pylori infection has been established as a risk factor for the development of both diffuse and intestinal types of gastric cancer[6].

Recent studies suggest an epidemiological association between H. pylori infection and several extragastrointestinalal pathologies, including cardiovascular, skin, rheumatic and liver diseases (Table 1)[6,7]. Unfortunately, such epidemiological studies are influenced by a wide variety of confounding factors, i.e. socioeconomic status, time of acquisition of the infection, presence of different bacterial strains and previous antibiotic therapy. However, according to many authors, the observed associations might be true and explained by a role of H. pylori infection in the pathogenesis of certain extradigestive disorders. It is well known that H. pylori colonization of the gastric mucosa stimulates the release of various proinflammatory substances, such as cytokines, eicosanoids and proteins of the acute phase[8]. Moreover, a cross mimicry between bacterial and host antigens exists in H. pylori infected patients[9]. Therefore, a pathogenetic link between H. pylori infection and diseases characterized by activation of inflammatory mediators and/or induction of autoimmunity might exist.

Table 1 Extradigestive diseases associated with H. pylori infection

Vascular diseases	Ischaemic heart disease	Primary Raynaud’s phenomenon	Primary headache
Skin diseases	Idiopathic chronic urticaria	Rosacea	Alpoedia areata
Autoimmune diseases	Sogren’s syndrome	Autoimmune thyroiditis	Autoimmune thrombocytopenia
Other diseases	Liver cirrhosis	Growth retardation	Chronic idiopathic sideropenia
	Sudden infant death	Diabetes mellitus	

Table 2 Respiratory diseases studied for a relationship with H. pylori infection

Chronic bronchitis	Pulmonary tuberculosis	Bronchiectasis	Lung cancer
	Bronchial asthma		
HELICOBACTER PYLORI INFECTION AND CHRONIC BRONCHITIS

Chronic bronchitis is a pulmonary disease characterized by, primarily irreversible, airflow obstruction due to the chronic inflammation of the small airways. The presence of airflow obstruction that is not fully reversible is confirmed by spirometry (postbronchodilator FEV1<80 % of the predicted value, in combination with an FEV1/FVC<70 %). Although its true prevalence remains unknown, it is estimated that approximately 12.5 million persons in the United States suffer from chronic bronchitis[10].

Chronic bronchitis had been associated with gastroduodenal ulcer many years before the identification of *H. pylori* infection as a cause of peptic ulcer disease. Three epidemiological studies, carried out between 1968 and 1986, showed that the prevalence of chronic bronchitis in peptic ulcer patients was increased two- to threefold compared with that in ulcer-free controls[1,14,17]. Moreover, a follow-up study demonstrated that chronic bronchitis was a major cause of death among patients with peptic ulcer disease[18].

The reported association between these two diseases was originally attributed to the known role of cigarette smoking as an independent factor in both ulcerogenesis and development of chronic bronchitis. However, in 1998, Gaseli and colleagues carried out a prospective pilot study in a sample of 60 Italian patients with chronic bronchitis and found an increased seroprevalence of *H. pylori* infection compared to that detected in 69 healthy controls (81.6 % versus 57.9 % respectively, \(P=0.008 \)). In this study, the odds ratio for chronic bronchitis in the presence of *H. pylori* infection, calculated after adjustment for age and social status, was 3.4\(^{[19]}\). These results suggested, for the first time, that *H. pylori* infection per se might be related to an increased risk of developing chronic bronchitis. Two years later, a large epidemiological study in 3608 Danish adults showed that chronic bronchitis might be more prevalent in *H. pylori* IgG seropositive women than in uninfected ones (odds ratio 1.6, with a 95 % confidence interval of 1.1-2.5)[20]. In order to further investigate the reported association between *H. pylori* infection and chronic bronchitis, we recently performed a case-control study in a cohort of 144 Greek patients with chronic bronchitis and 120 control subjects. Our results were in accordance with those of Gaselli and associates, as we also found that *H. pylori* seropositivity in patients was significantly higher than that in controls (83.5 % vs 60 %, \(P=0.007 \))[21].

The mechanisms underlying the suggested association between *H. pylori* infection and chronic bronchitis remain unclear. This association might reflect either susceptibility induced by common factors or a kind of causal relationship between these two conditions. It is well known that age, sex and socioeconomic status are related with both *H. pylori* infection\(^{[1]}\) and risk of developing chronic bronchitis\(^{[15]}\). However, in all mentioned studies above patients with chronic bronchitis were well matched with control subjects for these parameters. Tobacco use could be another confounding factor. Cigarette smoking is the major cause of chronic bronchitis\(^{[10]}\). On the other hand, data on the relation between *H. pylori* infection and smoking habits are controversial. The prevalence of *H. pylori* infection in smokers has been variously reported as low\(^{[22]}\), normal\(^{[23]}\), and high\(^{24} \). As the relation between smoking and *H. pylori* infection has not been clarified yet, the possible impact of cigarette smoking on both chronic bronchitis and *H. pylori* infection should be regarded as a potential limitation of the reviewed studies.

Unfortunately, there are no studies in the literature focused on the potential aetio-pathogenetic role of *H. pylori* infection in chronic bronchitis. Some authors hypothesized that the chronic activation of inflammatory mediators induced by *H. pylori* infection might lead to the development of a non-specific inflammatory process, such as chronic bronchitis[19,21]. It is well known that *H. pylori* and particularly those strains bearing the cytotoxin associated gene-A (cagA positive strains), stimulates the release of a variety of proinflammatory cytokines, including interleukin-1 (IL-1), IL-8 and tumour necrosis factor-alpha\(^{[25,26]}\). The eradication of *H. pylori* leads to normalization of serum cytokines levels\(^{[27]}\). Recent studies showed that the same cytokines might be released during the course and exacerbations of chronic bronchitis\(^{[10,11,28]}\). The underlying mechanisms, which induce and control this inflammatory process in chronic bronchitis, are still unclear. Therefore, we could hypothesize that *H. pylori* infection might play a proinflammatory role and co-trigger chronic bronchitis with other more specific environmental, genetic and unknown yet factors.

In conclusion, the primary evidence for an association between *H. pylori* infection and chronic bronchitis rests on serologic, case-control studies. Studies estimating the relative risk of developing chronic bronchitis for *H. pylori* infected patients and the effect of *H. pylori* eradication on the natural history of chronic bronchitis should be undertaken. The pathogenetic mechanisms underlying this association need also further evaluation. Future studies concerning this aspect should be focused on the prevalence of cagA positive Helicobacter strains and their induced proinflammatory markers, in patients with chronic bronchitis.

HELICOBACTER PYLORI INFECTION AND PULMONARY TUBERCULOSIS

Tuberculosis (TB) is a chronic bacterial infection caused by Mycobacterium tuberculosis and characterized by the formation of granulomas in infected tissues and by cell-mediated hypersensitivity. The lungs are primarily infected. However, any other organ may be involved. Although there is a lack of epidemiological evidence concerning the worldwide prevalence of TB, it has been estimated that one third of the world population is infected with Mycobacterium tuberculosis and there are ten million new cases of active TB each year. The vast majority of them occur in the developing countries, where TB remains a common health problem[29].

In 1992, Mitchell et al carried out a large cross-sectional study concerning the *H. pylori* epidemiology in a southern China population. They found that a history of pulmonary TB might be associated with an increased prevalence of *H. pylori* infection[30]. More recently, Woeltje et al assessed the prevalence of tuberculin skin test (TST) positivity in a cohort of 346 newly hospitalized patients. A history of peptic ulcer disease was one of the identified risk factors for a positive TST test (odds ratio: 4.53, \(P=0.017 \))[31]. In order to further investigate the possible association between pulmonary TB and *H. pylori* infection, Sanaka et al performed, in 1998, a serologic case-control study in a hospitalized population. No difference in *H. pylori* seroprevalence among 40 inpatients on antituberculosis chemotherapy for less than three months, 43 TB patients on chemotherapy for more than three months and 60 control subjects was detected (73.3 %, 65 % and 69.8 % respectively, \(P>0.5 \) in all comparisons)[32]. However, in this study the eradication of *H. pylori* by antituberculosis drugs could not be excluded. Rifampicin and Streptomycin, two drugs commonly used in antituberculosis regimens, are effective against *H. pylori* and decrease in *H. pylori* seroprevalence during antituberculosis therapy has been reported[33,34]. Therefore, we recently carried out a case-control study focused on the seroprevalence of *H. pylori* in TB patients, before the initiation of antituberculosis treatment. A total of 80 TB patients and 70 control subjects, well matched for age, sex and social
status, were recruited into this study. We found that the *H. pylori* seropositivity in the TB group was significantly higher than that of controls (87.5 % vs 61.4 %, P=0.02). The mean serum concentration of IgG antibodies against *H. pylori* was also significantly higher in TB patients than in control subjects (39.0±25.2 U/ml vs 26.1±21.2 U/ml, P=0.001)\[35\].

Taken together, data in the literature on the relationship between *H. pylori* infection and pulmonary TB are still insufficient. The observed frequent coexistence of both infections must be confirmed in a larger number of patients. This coexistence might reflect susceptibility to both *H. pylori* and Mycobacterium tuberculosis induced by common host genetic factors. It has been suggested that HLA-DQ serotype may contribute to enhanced mycobacterial survival and replication\[36\]. Recent studies showed that the same serotype is also associated with increased susceptibility to *H. pylori* infection\[32,38\]. Poor socioeconomic and sanitary conditions during childhood could be another factor responsible for the association between the two infections, as it is well known that in developing countries acquisition of both *H. pylori* and Mycobacterium tuberculosis occurs early in life\[36,40\]. Therefore, we believe that studies focused on the common, either genetic or environmental, predisposition to both bacteria are needed.

HELCOBACTER PYLORI INFECTION AND BRONCHIECTASIS

Bronchiectasis is an abnormal and permanent dilation of bronchi, due to inflammation and destruction of the structural components of the bronchial wall. Persistent or recurrent cough, purulent sputum production and/or hemoptysis are symptoms presented during the clinical course of this disorder. A wide variety of respiratory infections, toxic substances and rare congenital syndromes are associated with the development of bronchiectasis. However, a great percentage of cases are of unknown cause\[41\].

In 1998, Tsang et al found that the *H. pylori* seroprevalence in 100 patients with bronchiectasis (76 %) was higher than that in the controls (54.3 %, P=0.001). Further analysis in studied patients revealed an association between *H. pylori* seropositivity and 24-hours sputum volume (P=0.03)\[42\]. As far as we know, the study of Tsang et al is the only report in the literature concerning the association between *H. pylori* infection and bronchiectasis. The authors hypothesized that the spilling or inhalation of *H. pylori* into the respiratory tract might lead to a chronic bronchial inflammatory disorder such as bronchiectasis. However, although *H. pylori* has been identified in the tracheobronchial aspirates in mechanically ventilated patients\[43\], neither identification in human bronchial tissue nor isolation from bronchoalveolar lavage (BAL) fluid have been achieved yet\[11\]. On the other hand, recent studies have shown that inflammation in bronchiectasis is primarily cytokine-mediated\[12,44\]. Therefore, the activation of systemic inflammatory mediators by chronic *H. pylori* infection could represent a possible pathogenic link between these two diseases.

In conclusion, the possible association between *H. pylori* and bronchiectasis seems intriguing and might have a pathogenetic basis. However, studies in larger series are needed to confirm this association and to clarify the underlying mechanisms. As pulmonary TB is a common cause of bronchiectasis, we believe that the increased prevalence of *H. pylori* infection in TB patients should be taken into account in the design of these future studies.

HELCOBACTER PYLORI INFECTION AND OTHER RESPIRATORY DISEASES

Lung cancer

A recent study showed a higher *H. pylori* seroprevalence (89.5 %) among 50 patients with lung cancer than that in control subjects (64 %, P<0.05). The CagA strain seropositivity was about thrice as high as in controls. (63 % vs 21.5 % respectively, P<0.05). Lung cancer patients were characterized by a significant increase of gastrin concentration in both serum and bronchoalveolar lavage (BAL). An enhanced m-RNA expression for gastrin and its receptor, as well as for cyclooxygenase (COX)-2, in the tumor tissue was also detected. Therefore, the authors hypothesized that *H. pylori* might contribute to lung carcinogenesis, via enhancement of gastrin synthesis. Gastrin might induce increased mucosal cell proliferation of bronchial epithelium and lead to atrophy and induction of COX-2, as it happens in gastric cancer. Finally, the authors proposed that *H. pylori* should be eradicated in lung cancer patients, in order to reduce the *H. pylori* provoked hypergastrinemia and COX-2 expression\[45\].

Chronic bronchitis, which is associated with both lung cancer and *H. pylori* infection, might be a confounding factor in this study. Moreover, although some authors have also showed an increased gastrin concentration in serum and BAL fluid in lung cancer patients\[46,47\], others did not confirm this finding\[48\]. Therefore, we believe that before adapting the *H. pylori* eradication in lung cancer patients, further studies are needed to examine whether the reported epidemiological association between these two diseases has a pathogenetic basis. **Bronchial asthma**

In 2000, Tsang et al estimated the prevalence of *H. pylori* infection in a cohort of 90 patients with bronchial asthma. *Helicobacter pylori* seroprevalence did not differ significantly between asthmatic and control subjects (47.3 % vs 38.1 %, P>0.05), while serum concentration of IgG antibodies against *H. pylori* did not correlate with spirometric values and duration of asthma. The authors concluded that bronchial asthma might not be associated with *H. pylori* infection\[49\]. Moreover, as far as we know there is a lack of a theoretical hypothesis that might explain a possible association between these two diseases. Therefore, we believe that our knowledge on the association between *H. pylori* infection and respiratory diseases is unlikely to be advanced by more studies concerning the prevalence of *H. pylori* infection in patients with bronchial asthma.

CONCLUSIONS-FUTURE CHALLENGES

At present, the primary evidence for a link between *H. pylori* infection and respiratory diseases rests on case-control studies, concerning relatively small numbers of patients. Future studies should be large enough for moderate-sized effects to be assessed or registered reliably. The activation of inflammatory mediators by *H. pylori* infection might be the pathogenetic mechanism underlying the observed associations. Therefore, the role of genetic predisposition of the infected host, the presence of strain-specific virulence factors and the serum concentration of proinflammatory markers in *H. pylori* infected patients with respiratory diseases needs further evaluation. Finally, randomized control studies should be undertaken, in order to clarify the effect of the *H. pylori* eradication on the prevention, development and natural history of these disorders.

REFERENCES

1. Peterson WL, Graham DY. *Helicobacter pylori*. In: Feldman M, Scharschmidt BF, Sleisenger MH editors. *Gastrointestinal and liver Disease*. Pathophysiology, diagnosis, management. 6th ed. Philadelphia: WB Saunders 1998: p: 604–619
2. Cave DR. Chronic gastritis and *Helicobacter pylori*. Semin Gastrointest Dis 2003; 12: 196–202
3. Cohen H. Peptic ulcer and *Helicobacter pylori*. Gastroenterol Clin North Am 2000; 29: 775–789
4. Parsonnet J, Hansen S, Rodríguez L, Gelb AB, Warnke RA, Jellum E, Orentreich N, Vogelman JH, Friedman GD. *Helicobacter pylori* and gastric lymphoma. N Engl J Med 1994; 330: 1267–1271
5 Xue FB, Xu YY, Wan Y, Pan BR, Ren J, Fan DM. Association of H. pylori infection with gastric carcinoma. A meta analysis. World J Gastroenterol 2001; 7: 801-804
6 Realdi G, Dore MP, Fastame L. Extraglandular manifestations of Helicobacter pylori infection. Fact and fiction. Dig Dis Sci 1999; 44:229-236
7 Gasbarrini A, Franceschi F, Armuza A, Oietti V, Candeli M, Sanz Torre E, Lorenzo AD, Anti M, Pretolani S, Gasbarrini G. Extraglandular manifestations of Helicobacter pylori gastritis. Infect Gutt 1999; 45(Suppl 1): 9-12
8 Crabtree JE. Role of cytokines in pathogenesis of Helicobacter pylori induced mucosal damage. Dig Dis Sci 1998; 43(Suppl 9): 46-55
9 Negroni R, Savio A, Poiesi C, Appelmelk BJ, Buffoli F, Paterlini A, Cesari P, Grafteo M, Vaira D, Franzin G. Antigenic mimicry between H. pylori and gastric mucosa in the pathogenesis of body atrophic gastritis. Gastroenterology 1996; 111: 655-665
10 Huang SL, Su CH, Chang SC. Tumor necrosis factor-a gene polymorphism in chronic bronchitis. Am J Respir Crit Care Med 1997; 156: 1436-1439
11 Nelson S, Summer WR, Mason CM. The role of the inflammatory response in chronic bronchitis: therapeutic implications. Smin Respir Infect 2000; 15: 24-31
12 Silva JR, Jones JA, Cole P, Poulter L. The immunological component of the cellular inflammatory infiltrate in bronchiectasis. Thorax 1989; 44: 668-673
13 Langman MJ, Cooke AR. Gastric and duodenal ulcer and their associated diseases. Lancet 1976; 1: 680-683
14 Kellow JE, Tao Z, Piper DW. Ventilatory function in chronic peptic ulcer. Gastroenterology 1966; 51: 590-595
15 Lundegardh G, Helmck C, Zack M, Adam H. Mortality among patients with partial gastrectomy for benign ulcer disease. Dig Dis Sci 1994; 39: 340-346
16 Gomez FP, Rodriguez-Roisin R. Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines for chronic obstructive pulmonary disease. Curr Opin Pulm Med 2002; 8: 81-86
17 Arora OP, Kapoor CP, Sobti P. Study of gastroduodenal abnormalities in chronic bronchitis and emphysema. Am J Gastroenterol 1968; 50: 289-296
18 Bonnevie O. Causes of death in duodenal and gastric ulcer. Gas troenterology 1977; 73: 1000-1004
19 Gaselli M, Zaffoni E, Ruina M, Sartori S, Trevissani L, Ciaccia A, Alvisi V, Fabbri L, Papi A. Helicobacter pylori and chronic bronchitis. Sand J Gastroenterol 1999; 34: 828-830
20 Rosenthal SJ, Jorgensen T, Andersen LP, Bonnevie O. Association of Helicobacter pylori infection with lifestyle, chronic disease, body indices and age at menarche in Danish adults. Sand J Pub lic Health 2000; 28: 32-40
21 Roussos A, Tsimboukeas F, Anastasakou E, Leopoulou D, Paizis I, Philippidis G. Helicobacter pylori infection in patients with chronic bronchitis. J Gastroenterol 2002; 37: 332-335
22 Oghara A, Kikuchi S, Hasegawa A, Kurosawa M, Miki K, Kaneko E, Mizukoshi H. Relationship between Helicobacter pylori infection and smoking and drinking habits. J Gastroenterol Hepatol 2000; 15: 271-276
23 Brenner H, Rothenbacher D, Bode G, Adler G. Relation of smoking and alcohol and coffee consumption to active Helicobacter pylori infection. Gastroenterology 2000; 119: 1313-1318
24 Parasher G, Eastwood GL. Smoking and peptic ulcer in the Helicobacter pylori era. Eur J Gastroenterol Hepatol 2000; 12: 843-853
25 Perri F, Clemente R, Festa V, De Ambrosio CC, Quittadamo M, Fusillo M, Grossi E, Andriulli A. Serum tumour necrosis factor-alpha is increased in patients with Helicobacter pylori infection and CagA antibodies. Ital J Gastroenterol Hepatol 1999; 31: 290-294
26 Russo F, Jirillo E, Clemente C, Messa C, Chiloiro M, Riezzo G, Amati L, Cardonada L, De Leo A. Circulating cytokines and gas troin testin in asymptomatic subjects infected by Helicobacter pylori (H. pylori). Immunopharmacol Immunotoxicol 2001; 23: 13-24
27 Kountouras J, Boura P, Lydigakis D, Ntemupeziko and regulation of cytokine profiles in Helicobacter pylori-infected patients with duodenal ulcer disease. H patogastroenterol 2000; 47: 1301-1304
28 Keatings VM, Collins PD, Scott DM, Barnes PJ. Differences in interleukin-8 and tumour necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 1996; 153: 530-534
29 Daniel TM. Tuberculosis In Harrison’s Principles of internal medicine 14th edition. N Y: Jor; 1998; p. 710-718
30 Mitchell HM, Li YY, Hu PJ, Liu Q, Chen M, Du GG, Wang ZL, Lee A, Hazeli SL. Epidemiology of H. pylori infection in southern China: identification of early childhood as the critical period for acquisition. J Infect Dis 1992; 166: 149-153
31 Woetje KF, Kilo CM, Johnson K, Primack J, Frases VJ. Tubercu- lin skin test of hospitalized patients. Infect Control Hosp Epidemiol 1997; 18: 561-565
32 Sanaka M, Kuyama Y, Iwasaki M, Hanaya Y, Tsuichya A, Haida T, Hirama S, Yamaoka S, Yamanaka M. No difference in seroprevalences of Helicobacter pylori infection between patients with pulmonary tuberculosis and those without. J Clin Gastroenterol 1998; 27: 331-334
33 Sanaka M, Kuyama Y, Yamaoka S, Iwasaki M. Decrease of serum concentrations of Helicobacter pylori IgA antibodies during anti tuberculosis therapy: the possible eradication by Rifampi- cin and Streptomycin. Am J Gastroenterol 1999; 94: 1936-1938
34 Heep M, Beck D, Bayerdorffer E, Luh N. Rifampin and rifabutin resistance mechanisms in Helicobacter pylori. Antimicrob Agents Chemother 1999; 43: 1497-1499
35 Filippou N, Roussos A, Tsimboukeas F, Tsimigiani A, Anastasakou E, Mavrea S. Helicobacter pylori seroprevalence in patients with pul monary tuberculosis. J Clin Gastroenterol 2002; 34: 189
36 Goldfeld AE, Delgado J, Thim S, Bozon MV, Ugilaloro AM, Turbay D, Cohen C, Yusin EJ. Association of an HLA-DQA allele with chronic tuberculosis. JAMA 1998; 29: 226-228
37 Azuma T, Komishj J, Tanaya Y, Hirai M, Ito S, Katoh Y, Koji T, Contribution of HLA-DQA gene to host’s response against Helicobacter pylori. Lancet 1994; 343: 542-543
38 Beales ILP, Davey NJ, Pussey CD, Lechler RI, Calam J. Long-term sequelae of Helicobacter pylori gastritis. Lancet 1995; 346: 381-382
39 Graham DY, Adam E, Reddy GT, A Garwal JP, A Garwal R, Evans DJ, Malaty HM, Evans DG. Seropositivity of Helicobacter pylori infection in India: Comparison of developing and developed countries. Dig Dis Sci 1991; 36: 1084-1088
40 Martin G, Lazarus A. Epidemiology and diagnosis of tuberculosis. Recognition of at-risk patients is key to prompt detection. Postgrad Med 2000; 108: 42-54
41 Cole PJ. Bronchiectasis In RL Brewis, B Corrin, DM Geddes, GJ Gibson, editors. Respiratory Medicine. Philadelphia: WB Saunders 1996: 1270-1272
42 Tsang KW, Lam SK, Lam WK, Karlberg J, Wong BC, Yew WW, Ip MS. High seroprevalence of Helicobacter pylori in active chronic bronchiectasis. Am J Med 1998; 104: 1047-1051
43 Mitz HS, Farber SS. Demonstration of Helicobacter pylori in tracheal secretions. J Am Osteopath Assoc 1993; 89: 87-91
44 Eller J, Lapa JR, Poulter RW, Lode H, Cole PJ. Cells and cytokines in chronic bronchial infection. Ann NY Acad Sci 1994; 725: 333-345
45 Gocyk W, Nikielski T, Olechnowicz H, Duda A, Bielanski W, Konturek P, Konturek S. Helicobacter pylori, gastrin and cyclooxygenase-2 in lung cancer. Med Sci Monit 2002; 8: 1085-1102
46 Zhou Q, Zhang Z, Zhang J, Tian Z, Zhan H. The diagnostic sig- nificance of gastrin measurement of bronchoalveolar lavage fluid for lung cancer. J Surg Oncol 1992; 50: 121-124
47 Zhou Q, Zhang H, Pang X, Yang J, Tain Z, Wu Z, Yang Z. Pre and postoperative sequential study on the serum gastrin level in patients with lung cancer. J Surg Oncol 1993; 51: 22-25
48 Dowlatabi A, Bury T, Corhay JL, Weber T, Lamproye A, Mendes P, Radermecker M. Gastrin levels in serum and bronchoalveolar lavage of patients with lung cancer: comparison with chronic obstructive pulmonary disease. Thorax 1996; 51: 1270-1272
49 Tsang KW, Lam WK, Chan KN, Hu W, Wu A, Kwok E, Zheng L, Wong BC, Lam SK. Helicobacter pylori seroprevalence in asthma. Respiratory medicine 2000; 94: 756-759

Edited by Zhu L