Research Article

On Submersion of CR-Submanifolds of l.c.q.K. Manifold

Majid Ali Choudhary, Mahmood Jaafari Matehkolaee, and Mohd. Jamali

Department of Mathematics, Jamia Millia Islamia, New Delhi 110025, India

Correspondence should be addressed to Majid Ali Choudhary, majid_alichoudhary@yahoo.co.in

Received 27 September 2012; Accepted 15 October 2012

Academic Editors: A. Ferrandez and T. Friedrich

Copyright © 2012 Majid Ali Choudhary et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study submersion of CR-submanifolds of an l.c.q.K. manifold. We have shown that if an almost Hermitian manifold B admits a Riemannian submersion $\pi : M \to B$ of a CR-submanifold M of a locally conformal quaternion Kaehler manifold \tilde{M}, then B is a locally conformal quaternion Kaehler manifold.

1. Introduction

The concept of locally conformal Kaehler manifolds was introduced by Vaisman in [1]. Since then many papers appeared on these manifolds and their submanifolds (see [2] for details). However, the geometry of locally conformal quaternion Kaehler manifolds has been studied in [2–4] and their QR-submanifolds have been studied in [5].

A locally conformal quaternion Kaehler manifold (shortly, l.c.q.K. manifold) is a quaternion Hermitian manifold whose metric is conformal to a quaternion Kaehler metric in some neighborhood of each point. The main difference between locally conformal Kaehler manifolds and l.c.q.K. manifolds is that the Lee form of a compact l.c.q.K. manifold can be chosen as parallel form without any restrictions [2].

The study of the Riemannian submersion $\pi : M \to B$ of a Riemannian manifold M onto a Riemannian manifold B was initiated by O'Neill [6]. A submersion naturally gives rise to two distributions on M called the horizontal and vertical distributions, respectively, of which the vertical distribution is always integrable giving rise to the fibers of the submersion which are closed submanifold of M. The notion of Cauchy-Riemann (CR) submanifold was introduced by Bejancu [7] as a natural generalization of complex submanifolds and totally real submanifolds. A CR-submanifolds M of a l.c.q.K. manifold \tilde{M} requires a differentiable...
holomorphic distribution D, that is, $J_xD_x = D_x$ for all $x \in M$, whose orthogonal complement D^\perp is totally real distribution on M, that is, $J_xD^\perp_x \subset TM^\perp$ for all $x \in M$. A CR-submanifold is called holomorphic submanifold if $\dim D^\perp_x = 0$, totally real if $\dim D_x = 0$ and proper if it is neither holomorphic nor totally real.

A CR-submanifold of a l.c.q.K. manifold \overline{M} is called a CR-product if it is Riemannian product of a holomorphic submanifold N^\perp and a totally real submanifold N^\perp of \overline{M}. Kobayashi [8] has proved that if an almost Hermitian manifold B admits a Riemannian submersion $\pi : M \to B$ of a CR-submanifold M of a Kaehler Manifold \overline{M}, then B is a Kaehler manifold. However, Deshmukh et al. [9] studied similar type of results for CR-submanifolds of manifolds in different classes of almost Hermitian manifolds, namely, Hermitian manifolds, quasi-Kaehler manifolds, and nearly Kaehler manifolds.

In the present paper, we investigate submersion of CR-submanifold of a l.c.q.K. manifold \overline{M} and prove that if an almost Hermitian manifold B admits a Riemannian submersion $\pi : M \to B$ of a CR-submanifold M of a l.c.q.K. manifold \overline{M}, then B is a l.c.q.K. manifold.

2. Preliminaries

Let (\overline{M}, g, H) be a quaternion Hermitian manifold, where H is a subbundle of end $(T\overline{M})$ of rank 3 which is spanned by almost complex structures J_1, J_2, and J_3. The quaternion Hermitian metric g is said to be a quaternion Kaehler metric if its Levi-Civita connection ∇ satisfies $\nabla H \subset H$.

A quaternion Hermitian manifold with metric g is called a locally conformal quaternion Kaehler (l.c.q.K.) manifold if over neighborhoods $\{U_i\}$ covering \overline{M}, $g|_{U_i} = e^{f_i}g_i$, where g_i is a quaternion Kaehler metric on U_i. In this case, the Lee form ω is locally defined by $\omega|_{U_i} = df_i$ and satisfies [3]

$$d\theta = \omega \wedge \theta, \quad dw = 0. \quad (2.1)$$

Let \overline{M} be l.c.q.K. manifold and ∇ denotes the Levi-Civita connection of \overline{M}. Let B be the Lee vector field given by

$$g(X, B) = w(X). \quad (2.2)$$

Then for l.c.q.K. manifold, we have [3]

$$(\nabla_X J_a)Y = \frac{1}{2} \left[\theta(Y)X - w(Y)J_aX - g(X, Y)A - \Omega(X, Y)B \right]$$

$$+ Q_{ab}(X)J_bY + Q_{ac}(X)J_cY \quad (2.3)$$

for any $X, Y \in T\overline{M}$, where Q_{ab} is skew-symmetric matrix of local forms $\theta = w \circ J_a$ and $A = -J_aB$.

We also have
\[\theta(X) = g(J_a X, B), \quad \Omega(X, Y) = g(X, J_a Y). \tag{2.4} \]

Let \(M \) be a Riemannian manifold isometrically immersed in \(\overline{M} \). Let \(T(M) \) be the Lie algebra of vector fields in \(M \) and \(TM^\perp \), the set of all vector fields normal to \(M \). Denote by \(\nabla \) the Levi connection of \(M \). Then the Gauss and Weingarten formulas are given by
\[
\nabla_X Y = \nabla_X Y + h(X, Y), \quad \nabla_X N = -\overline{A}_N X + \nabla^\perp_X N \tag{2.5, 2.6}
\]
for any \(X, Y \in T(M) \), and \(N \in TM^\perp \), where \(\nabla^\perp \) is the connection in the normal bundle \(TM^\perp \), \(h \) is the second fundamental form, and \(\overline{A}_N \) is the Weingarten endomorphism associated with \(N \). The second fundamental form and shape operator are related by
\[g(\overline{A}_N X, Y) = g(h(X, Y), N). \tag{2.7} \]

The curvature tensor \(R \) of the submanifold \(M \) is related to the curvature tensor \(\overline{R} \) of \(\overline{M} \) by the following Gauss formula:
\[
\overline{R}(X, Y; Z, W) = R(X, Y; Z, W) + g(h(X, Z), h(Y, W)) - g(h(X, W), h(Y, Z)), \tag{2.8}
\]
for any \(X, Y, Z, W \in T(M) \).

For submersion of a l.c.q.K. manifold onto an almost Hermitian manifold, we have the following.

Definition 2.1. Let \(M \) be a CR-submanifold of a locally conformal quaternion Kaehler manifold \(\overline{M} \). By a submersion \(\pi : M \to B \) of \(M \) onto an almost Hermitian manifold \(B \), we mean a Riemannian submersion \(\pi : M \to B \) together with the following conditions:

(i) \(D^\perp \) is the kernel of \(\pi_* \), that is, \(\pi_* D^\perp = \{0\} \),

(ii) \(\pi_* : D_p \to D^*_{\pi(p)} \) is a complex isometry of the subspace \(D_p \) onto \(D^*_{\pi(p)} \) for every \(p \in M \), where \(D^*_{\pi(p)} \) denotes the tangent space of \(B \) at \(\pi(p) \),

(iii) \(J \) interchanges \(D^\perp \) and \(\nu \), that is, \(JD^\perp = TM^\perp \).

For a vector field \(X \) on \(M \), we set \[X = HX + VX, \tag{2.9} \]
where \(H \) and \(V \) denoted the horizontal and vertical part of \(X \).
We recall that a vector field X on M for submersion $\pi: M \to B$ is said to be a basic vector field if $X \in D$ and X is π related to a vector field on B, that is, there is a vector field X_* on B such that

$$\left(\pi_*X\right)_p = (X_*)_p$$ for each $p \in M. \quad (2.10)$$

If J and J' are the almost complex structures on \overline{M} and B, respectively, then from Definition 2.1(ii) we have $\pi_* \circ J = J' \circ \pi_*$ on D.

We have the following lemma for basic vector fields [6].

Lemma 2.2. Let X and Y be basic vector fields on M. Then

(i) $g(X,Y) = g_*(X_*,Y_*) \circ \pi$, g is the metric on M, and g_* is the Riemannian metric on B;

(ii) the horizontal part $H[X,Y]$ of $[X,Y]$ is a basic vector field and corresponds to $[X_*,Y_*]$, that is,

$$\pi_*H[X,Y] = [X_*,Y_*] \circ \pi; \quad (2.11)$$

(iii) $H(\nabla_X Y)$ is a basic vector field corresponding to $\nabla^*_X Y_*$, where ∇^* is a Riemannian connection on B;

(iv) $[X,W] \in D^\perp$ for $W \in D^\perp$.

For a covariant differentiation operator ∇^*, we define a corresponding operator $\tilde{\nabla}^*$ for basic vector fields of M by

$$\tilde{\nabla}^*_X Y = H(\nabla_X Y), \quad X,Y \in D, \quad (2.12)$$

then $\tilde{\nabla}^*_X Y$ is a basic vector field, and from the above lemma we have

$$\pi_* \left(\tilde{\nabla}^*_X Y\right) = \nabla^*_X Y_* \circ \pi. \quad (2.13)$$

Now, we define a tensor field C on M by setting

$$\nabla_X Y = H(\nabla_X Y) + C(X,Y), \quad X,Y \in D, \quad (2.14)$$

that is, $C(X,Y)$ is the vertical component of $\nabla_X Y$.

In particular, if X and Y are basic vector fields, then we have

$$\nabla_X Y = \tilde{\nabla}^*_X Y + C(X,Y). \quad (2.15)$$

The tensor field C is skew-symmetric and it satisfies

$$C(X,Y) = \frac{1}{2} V[X,Y], \quad X,Y \in D. \quad (2.16)$$
For $X \in D$ and $V \in D^\perp$ define an operator A on M by setting $\nabla_X V = \nu(\nabla_X V) + A_X V$, that is, $A_X V$ is the horizontal component of $\nabla_X V$. Using (iv) of Lemma 2.2 we have

$$H(\nabla_X V) = H(\nabla_V X) = A_X V.$$ \hspace{1cm} (2.17)

The operator C and A are related by

$$g(A_X V, Y) = -g(V, C(X, Y)), \quad X, Y \in D, \quad V \in D^\perp. \hspace{1cm} (2.18)$$

For a CR-submanifold M in a locally conformal quaternion Kaehler manifold \overline{M}, we denote by ν the orthogonal complement of JD^\perp in TM^\perp. Hence, we have the following orthogonal decomposition of the normal bundle:

$$TM^\perp = JD^\perp \oplus \nu, \quad JD^\perp \perp \nu. \hspace{1cm} (2.19)$$

Set

$$PX = \tan(JX), \quad FX = \text{nor}(JX), \quad \text{for } X \in TM,$$

$$tN = \tan(JN), \quad fN = \text{nor}(JN), \quad \text{for } N \in TM^\perp. \hspace{1cm} (2.20)$$

Here, \tan_x and nor_x are the natural projections associated with the orthogonal direct sum decomposition

$$T_x\overline{M} = T_x M \oplus TM^\perp_x \quad \text{for any } x \in M. \hspace{1cm} (2.21)$$

Then the following identities hold:

$$P^2 = -I - tF, \quad FP + tF = 0, \quad Pt + tf = 0, \quad f^2 = -I - Ft, \hspace{1cm} (2.22)$$

where I is the identity transformation.

We have following results.

Lemma 2.3. Let M be a CR-submanifold in a l.c.q.K. manifold \overline{M}. Then

(i) holomorphic distribution D is integrable iff

$$h(X, J_a Y) - h(J_a X, Y) + \Omega(X, Y) \text{ nor } (B) = 0, \quad \forall X, Y \in D \hspace{1cm} (2.23)$$

or equivalently,

$$\tilde{g}(h(X, J_a Y) - h(J_a X, Y) + \Omega(X, Y)B, J_a Z) = 0, \quad \forall X, Y \in D, \quad Z \in D^\perp; \hspace{1cm} (2.24)$$
(ii) anti-invariant distribution D^\perp of M is integrable iff

$$A_{J_aW} T = A_{J_aT} W, \quad \forall W, T \in D^\perp. \quad (2.25)$$

Proof. (i) Using (2.3), we have

$$\nabla_X J_a Y = P_a \nabla_X Y + t_a h(X, Y) + \frac{1}{2} \{ \theta(Y) X - \omega(Y) J_a X - g(X, Y) \tan(A) - \Omega(X, Y) \tan(B) \}$$

$$+ Q_{ab}(X) J_b Y + Q_{ac}(X) J_c Y,$$

$$h(X, J_a Y) = F_a \nabla_X Y + f_a h(X, Y) - \frac{1}{2} \{ g(X, Y) \text{nor}(A) + \Omega(X, Y) \text{nor}(B) \}. \quad (2.26)$$

From the second of these equations, we have

$$h(X, J_a Y) - h(Y, J_a X) + \Omega(X, Y) \text{nor}(B) = F_a [X, Y], \quad \forall X, Y \in D. \quad (2.27)$$

If we need D to be integrable, we have

$$h(X, J_a Y) - h(Y, J_a X) + \Omega(X, Y) \text{nor}(B) = 0 \quad (2.28)$$

or

$$g(h(X, J_a Y) - h(Y, J_a X) + \Omega(X, Y) (B), J_a Z) = 0, \quad \forall Z \in D^\perp. \quad (2.29)$$

v-part of $h(X, J_a Y) - h(J_a X, Y) + \Omega(X, Y) B$ vanishes for all $X, Y \in D$.

(ii) We have

$$\nabla_X J_a Y = J_a \nabla_X Y + \frac{1}{2} \{ \theta(Y) X - \omega(Y) J_a X - \Omega(X, Y) B + g(X, Y) J_a B \}$$

$$+ Q_{ab}(X) J_b Y + Q_{ac}(X) J_c Y. \quad (2.30)$$

Then for any $T, W \in D^\perp$, and $X \in D$, we have

$$g(\nabla_T J_a W, X) = g(J_a \nabla_T W, X) + \frac{1}{2} \theta(W) g(T, X) - \frac{1}{2} \omega(W) g(J_a T, X)$$

$$- \frac{1}{2} \Omega(T, W) g(B, X) + \frac{1}{2} g(T, W) g(J_a B, X)$$

$$+ Q_{ab}(T) g(J_b W, X) + Q_{ac}(T) g(J_c W, X)$$

$$\implies -A_{J_a W} T, X = - \langle \nabla_T, J_a X \rangle - \frac{1}{2} g(T, W) g(B, J_a X). \quad (2.32)$$
So, we have

\[\langle A_{j,T}W, X \rangle = \langle \bar{\nabla}_T W, J_a X \rangle + \frac{1}{2} \bar{g}(W, J_a X), \]

(2.33)

\[\langle A_{j,T}W, X \rangle = \langle \bar{\nabla}_W T, J_a X \rangle + \frac{1}{2} g(W, T) g(B, J_a X). \]

From these two equations, we have

\[\langle A_{j,W}T - A_{j,T}W, X \rangle = \langle \bar{\nabla}_T W - \bar{\nabla}_W T, J_a X \rangle \]

(2.34)

\[\implies \langle A_{j,W}T - A_{j,T}W, X \rangle = \langle [W, T], J_a X \rangle. \]

So, we conclude that if \(A_{j,W}T = A_{j,T}W \) then \(D^\perp \) is integrable. Converse is obvious. \(\square \)

Lemma 2.4. Let \(M \) be a CR-submanifold of l.c.q.K. manifold. Then

\[\nabla_X J_a Y = \nabla_Y J_a X \]

(2.35)

iff Lee vector field \(B \) is orthogonal to anti-invariant distribution \(D^\perp \).

Proof. Since \(\bar{\nabla} \) is metric connection, for \(X, Y \in D \), and \(Z \in D^\perp \), using (2.3), we have

\[
\begin{aligned}
\langle \bar{\nabla}_X J_a Y, Z \rangle &= \langle J_a \bar{\nabla}_X Y, Z \rangle + \frac{1}{2} \theta(Y)(X, Z) - \frac{1}{2} \Omega(X, Y) g(B, Z) \\
&\quad - \frac{1}{2} \omega(Y) g(J_a X, Z) + \frac{1}{2} g(X, Y) g(J_a B, Z) \\
&\quad + Q_{ab}(X) g(J_b Y, Z) + Q_{ac}(X) g(J_c Y, Z) \\
&= -\langle \bar{\nabla}_X Y, J_a Z \rangle - \frac{1}{2} \Omega(X, Y) \omega(Z) - \frac{1}{2} g(X, Y) g(B, J_a Z) \\
&= \langle Y, \bar{\nabla}_X J_a Z \rangle - \frac{1}{2} \Omega(X, Y) \omega(Z) - \frac{1}{2} g(X, Y) g(B, J_a Z)
\end{aligned}
\]

or

\[
\begin{aligned}
\langle \nabla_X J_a Y + h(X, J_a Y) Z \rangle &= \langle Y, -A_{J_a Z} X + \bar{\nabla}_X J_a Z \rangle - \frac{1}{2} \Omega(X, Y) \omega(Z) \\
&\quad - \frac{1}{2} g(X, Y) g(B, J_a Z).
\end{aligned}
\]

(2.37)
This gives
\begin{align}
\langle \nabla_{X}J_{a}Y, Z \rangle &= -\langle Y, A_{l,z}X \rangle - \frac{1}{2} \Omega(X, Y) \omega(Z) - \frac{1}{2} g(X, Y) g(B, J_{a}Z), \\
\langle \nabla_{Y}J_{a}X, Z \rangle &= -\langle X, A_{l,z}Y \rangle - \frac{1}{2} \Omega(Y, X) \omega(Z) - \frac{1}{2} g(Y, X) g(B, J_{a}Z).
\end{align}
(2.38)

The above two equations give
\begin{align}
\langle \nabla_{X}J_{a}Y - \nabla_{Y}J_{a}X, Z \rangle \\
&= -\langle A_{l,z}X, Y \rangle + \langle X, A_{l,z}Y \rangle - \frac{1}{2} \Omega(X, Y) \omega(Z) + \frac{1}{2} \Omega(Y, X) \omega(Z) \\
&= \Omega(Y, X) \omega(Z)
\end{align}
(2.39)

or
\begin{align}
\langle \nabla_{X}J_{a}Y - \nabla_{Y}J_{a}X, Z \rangle &= \Omega(Y, X) g(B, Z).
\end{align}
(2.40)

This gives $\nabla_{X}J_{a}Y = \nabla_{Y}J_{a}X$ iff $\omega(Z) = 0$.\qed

3. Submersions of CR-Submanifolds

On a Riemannian manifold M, a distribution S is said to be parallel if $\nabla_{X}Y \in S$, $X, Y \in S$, where ∇ is a Riemannian connection on M. It is proved earlier that horizontal distribution D is integrable. If, in addition, D^{\perp} is parallel, then we prove the following.

Proposition 3.1. Let $\pi : M \rightarrow B$ be a submersion of a CR-submanifold M of a locally conformal quaternion Kaehler manifold \bar{M} onto an almost Hermitian manifold B. If (horizontal distribution) D is integrable and (vertical distribution) D^{\perp} is parallel, then M is a CR-product (Riemannian product $M_{1} \times M_{2}$, where M_{1} is an invariant submanifold and M_{2} is a totally real submanifold of \bar{M}).

Proof. Since the horizontal distribution D is integrable for $X, Y \in D$, we have $[X, Y] \in D$. Therefore, $V[X, Y] = 0$. Then from (2.16), we have
\begin{align}
C(X, Y) = 0, \quad \forall X, Y \in D.
\end{align}
(3.1)

Thus, from the definition of C, we have
\begin{align}
\nabla_{X}Y = \tilde{\nabla}_{X}^{\ast}Y \in D, \quad \text{that is, } D \text{ is parallel.}
\end{align}
(3.2)

Since D and D^{\perp} are both parallel, using de Rham’s theorem, it follows that M is the product $M_{1} \times M_{2}$, where M_{1} is invariant submanifold of \bar{M} and M_{2} is totally real submanifold of \bar{M}. Hence, M is a CR-product.\qed
In [10], Simons defined a connection and an invariant inner product on $H(T, V) = \text{Hom}(T(M), V(M))$, where $V(M)$ is vector bundle over M and $T(M)$ be tangent bundle of M. In fact, if $r, s \in H(T, V)_m$, we set

$$\langle r, s \rangle = \sum_{i=1}^{p} \langle r(e_i), s(e_i) \rangle, \quad \text{where } \{e_i\} \text{ is a frame in } T(M)_m.$$

(3.3)

Define $Q_{ab}(X) = \langle \overline{D} J_a, J_b \rangle$, which implies $Q_{ab}(X) J_a Y = \langle \overline{D} J_a, J_b \rangle J_a Y$.

Let D be $4n$ dimensional distribution whose basis is given by $\{e_1, \ldots, e_n, e_a, \ldots, e_{da}, e_{b_1}, \ldots, e_{b_2}, e_{c_1}, \ldots, e_{ea}\}$ where $e_{a_i} = J_a(e_i)$, $e_{b_i} = J_b(e_i)$, $e_{c_i} = J_c(e_i)$ and $J_a \circ J_b = J_c$, $J_b \circ J_c = J_a$, $J_c \circ J_a = J_b$.

Now, component of $Q_{ab}(X)$ is defined as follows:

$$Q_{ab}(X) = \langle \overline{D} X J_a, J_b \rangle = \sum_{i=1}^{n} \langle \overline{D} X J_a(e_i), J_b(e_i) \rangle + \sum_{i=1}^{n} \langle \overline{D} X J_a(e_{a_i}), J_b(e_{b_i}) \rangle + \sum_{i=1}^{n} \langle \overline{D} X J_a(e_{c_i}), J_b(e_{c_i}) \rangle$$

(3.4)

$$+ \sum_{j=1}^{q} \langle \overline{D} X J_a(e_j), J_b(e_j) \rangle.$$

So, we have

$$Q_{ab}(X) = \sum_{i=1}^{n} \langle \overline{D} X J_a(e_i), J_b(e_i) \rangle + \sum_{i=1}^{n} \langle \overline{D} X J_a(e_{a_i}), J_b(e_{b_i}) \rangle + \sum_{i=1}^{n} \langle \overline{D} X J_a(e_{c_i}), J_b(e_{c_i}) \rangle + \sum_{j=1}^{q} \langle \overline{D} X J_a(e_j), J_b(e_j) \rangle$$

(3.5)

$$= \sum_{i=1}^{n} \langle \overline{D} X J_a(e_i), J_b(e_i) \rangle + \sum_{i=1}^{n} \langle \overline{D} X J_a(e_{a_i}), J_b(e_{b_i}) \rangle + \sum_{i=1}^{n} \langle \overline{D} X J_a(e_{c_i}), J_b(e_{c_i}) \rangle - \sum_{i=1}^{n} \langle \overline{D} X J_a(e_i), e_i \rangle - \sum_{i=1}^{n} \langle \overline{D} X J_a(e_i), J_a(e_i) \rangle - \sum_{i=1}^{n} \langle \overline{D} X J_a(e_i), J_a(e_i) \rangle$$

$$+ \sum_{i=1}^{n} \langle \overline{D} X J_a(e_i), J_b(e_i) \rangle + \sum_{i=1}^{q} \langle \overline{D} X J_a(e_j), J_b(e_j) \rangle.$$
or

\[
Q_{ab}(X)J_bY = \sum_{i=1}^{n} \left< D_X J_a(e_i), J_b(e_i) \right> J_bY + \sum_{i=1}^{n} \left< D_X e_i, J_c(e_i) \right> J_bY
+ \sum_{i=1}^{n} \left< D_X J_a(e_i), J_b(e_i) \right> J_bY
- \sum_{i=1}^{n} \left< D_X J_b(e_i), J_a(e_i) \right> J_bY
\]

(3.6)

\[
\sum_{i=1}^{n} \left< D_X J_a(e_i), J_b(e_i) \right> J_bY + \sum_{i=1}^{n} \left< D_X J_a(e_i), J_b(e_i) \right> J_bY
- \sum_{i=1}^{n} \left< D_X J_b(e_i), J_a(e_i) \right> J_bY
- \sum_{i=1}^{n} \left< D_X J_a(e_i), J_b(e_i) \right> J_bY
\]

Applying \(\pi^* \) and using Lemma 2.2, we get

\[
\pi^* Q_{ab}(X)J_bY = \sum_{i=1}^{n} \left< D_X J'_a e_i^*, J'_b e_i^* \right> J'_b Y_* + \sum_{i=1}^{n} \left< D_X e_i^*, J'_c e_i^* \right> J'_b Y_*
+ \sum_{i=1}^{n} \left< D_X J'_a e_i^*, J'_b e_i^* \right> J'_b Y_*
- \sum_{i=1}^{n} \left< D_X J'_b e_i^*, e_i^* \right> J'_b Y_*
- \sum_{i=1}^{n} \left< D_X J'_a e_i^*, J'_b e_i^* \right> J'_b Y_*
+ \sum_{i=1}^{n} \left< D_X J'_b e_i^*, J'_a e_i^* \right> J'_b Y_*
= \sum_{i=1}^{n} \left< D_X J'_a J'_b e_i^*, J'_b Y_* \right> J'_b Y_*
\]

(3.7)

or

\[
\pi^* Q_{ab}(X)J_bY = Q^*_{ab}(X)J'_b Y_*.
\]

(3.8)

Now, we prove the main result of this paper.

Theorem 3.2. Let \(\overline{M} \) be an l.c.q.K. manifold and \(M \) be a CR-submanifold of \(\overline{M} \). Let \(B \) be an almost Hermitian manifold and \(\pi : M \rightarrow B \) be a submersion. Then \(B \) is an l.c.q.K. manifold.

Proof. Let \(X, Y \in D \) be basic vector fields. Then from (2.5) and (2.15), we have

\[
\nabla_X Y = \tilde{\nabla}_X Y + C(X, Y) + h(X, Y).
\]

(3.9)

Replacing \(Y \) by \(J_a Y \) in (3.9), we have

\[
\nabla_X J_a Y = \tilde{\nabla}_X J_a Y + C(X, J_a Y) + h(X, J_a Y).
\]

(3.10)
Using (2.3), we get

\[\nabla^*_X j_a Y + C(X, j_a Y) + h(X, j_a Y) \]
\[= j_a \nabla^*_X Y + \frac{1}{2} \left\{ \theta(Y) X - \omega(Y) j_a X - \Omega(X, Y) B + g(X, Y) j_a B \right\} \]
\[+ Q_{ab}(X) j_b Y + Q_{ac}(X) j_c Y \]

or

\[\nabla^*_X j_a Y + C(X, j_a Y) + h(X, j_a Y) = j_a \nabla^*_X Y + j_a C(X, Y) + j_a h(X, Y) \]
\[+ \frac{1}{2} \left\{ \theta(Y) X - \omega(Y) j_a X - \Omega(X, Y) B + g(X, Y) j_a B \right\} \]
\[+ Q_{ab}(X) j_b Y + Q_{ac}(X) j_c Y. \]

Thus, we have

\[\left(\nabla^*_X j_a \right) Y + C(X, j_a Y) + h(X, j_a Y) - j_a C(X, Y) - j_a h(X, Y) \]
\[- \frac{1}{2} \left\{ \theta(Y) X - \omega(Y) j_a X - \Omega(X, Y) B + g(X, Y) j_a B \right\} \]
\[- Q_{ab}(X) j_b Y - Q_{ac}(X) j_c Y = 0. \]

Comparing horizontal, vertical, and normal components in the above equation to get

\[\left(\nabla^*_X j_a \right) Y - \frac{1}{2} \left\{ \theta(Y) X - \omega(Y) j_a X - \Omega(X, Y) B + g(X, Y) j_a B \right\} \]
\[- Q_{ab}(X) j_b Y - Q_{ac}(X) j_c Y = 0, \]
\[C(X, j_a Y) = j_a h(X, Y), \]
\[h(X, j_a Y) = j_a C(X, Y). \]

from (3.14), we have

\[\nabla^*_X j_a Y - j_a \nabla^*_X Y - \frac{1}{2} \left[g(j_a Y, B) X - g(B, Y) j_a X - g(X, j_a Y) B + g(X, Y) j_a B \right] \]
\[- Q_{ab}(X) j_a Y - Q_{ac}(X) j_c Y = 0. \]
Then for any \(X_*, Y_* \in \chi(B) \), and \(J' \) being almost complex structure on \(B \), we have after operating \(\pi^* \) on the above equation

\[
\nabla^*_X J'_a Y_* - J'_a \nabla^*_X Y_* - \frac{1}{2} \left\{ g_*(J'_a Y_*, B_*) X_* - g_*(B_*, Y_*) J'_a Y_* - g_*(X_*, J'_a Y_*) B_* + g_*(X_*, Y_*) J'_a B_* \right\} \\
- Q^*_{ab}(X_*) J'_a(Y_*) - Q^*_{ac}(X_*) J'_c(Y_*) = 0.
\]

(3.18)

This gives

\[
(\nabla^*_X J'_a) Y_* - \frac{1}{2} \left\{ \theta'(Y_*) X_* - \omega'(Y_*) J'_a X_* - \Omega(X_*, Y_*) B_* + g_*(X_*, Y_*) J'_a B_* \right\} \\
- Q^*_{ab}(X_*) J'_a Y_* - Q^*_{ac}(X_*) J'_c Y_* = 0.
\]

(3.19)

This shows that \(B \) is l.c.q.K. manifold.

Now, using (2.17) and (2.18), we obtain a relation between curvature tensor \(R \) on \(M \) and curvature tensor \(R^* \) of \(B \) as follows:

\[
R(X, Y, Z, W) = R^*(X_*, Y_*, Z_*, W_*) - g(C(Y, Z), C(X, W)) \\
+ g(C(X, Z), C(Y, W)) + 2g(C(X, Y), C(Z, W)),
\]

(3.20)

where \(\pi_* X = X_* \), \(\pi_* Y = Y_* \), \(\pi_* Z = Z_* \), and \(\pi_* W = W_* \in B \).

Now, using the above equation together with (2.8) and using the fact that \(C \) is skew-symmetric, we obtain

\[
\nabla^*_X H(X) = \nabla^*_X \tilde{R}(X, J_a X, J_a X, X) \\
= H^*(X_*) + \|h(X, J_a X)\|^2 - g(h(J_a X, J_a X), h(X, X)) \\
- 3\|C(X, J_a X)\|^2,
\]

(3.21)

where \(\nabla^*_X H(X) \) and \(H^*(X_*) \) are the holomorphic sectional curvature tensors of \(\tilde{M} \) and \(B \), respectively.

If we assume that \(D \) is integrable then using Lemma 2.3(i), we have

\[
h(J_a X, J_a X) = -h(X, X).
\]

(3.22)

Also from (3.15), we have \(C(X, J_a X) = 0 \). Then, (3.21) reduces to

\[
\nabla^*_X H(X) = H^*(X_*) + \|h(X, J_a X)\|^2 + \|h(X, X)\|^2, \quad \forall X \in D.
\]

(3.23)

This gives \(\nabla^*_X H(X) \geq H^*(X_*) \).

Thus, we have the following result.
Theorem 3.3. Let M be a CR-submanifold of a l.c.q.K. manifold \overline{M} with integrable D. Let B be an almost Hermitian manifold and $\pi : \overline{M} \to B$ be a submersion. Then holomorphic sectional curvatures \overline{H} and H^* of \overline{M} and B, respectively, satisfy

$$\overline{H}(X) \geq H^*(X), \quad \text{for all unit vectors } X \in D. \quad (3.24)$$

Note. The above result was obtained in [9] by taking \overline{M} to be quasi-Kaehler manifold. Later, similar type of relation was derived in [11], considering \overline{M} to be l.c.K manifold.

Acknowledgments

The first author is thankful to the Department of Science and Technology, Government of India, for its financial assistance provided through INSPIRE fellowship no. DST/INSPIRE Fellowship/2009/[XXV] to carry out this research work.

References

[1] I. Vaisman, “On locally conformal almost kähler manifolds,” Israel Journal of Mathematics, vol. 24, no. 3-4, pp. 338–351, 1976.
[2] S. Dragomir and L. Ornea, Locally Conformal Kähler Geometry, vol. 155 of Progress in Mathematics, Birkhäuser, Boston, Mass, USA, 1998.
[3] L. Ornea and P. Piccinni, “Locally conformal kähler structures in quaternionic geometry,” Transactions of the American Mathematical Society, vol. 349, no. 2, pp. 641–655, 1997.
[4] L. Ornea, “Weyl structure on quaternioric manifolds, a state of the art,” http://arxiv.org/abs/math/0105041.
[5] B. Sahin and R. Gunes, “QR-submanifolds of a locally conformal quaternion kaehler manifold,” Publicationes Mathematicae Debrecen, vol. 63, no. 1-2, pp. 157–174, 2003.
[6] B. O’Neill, “The fundamental equations of a submersion,” The Michigan Mathematical Journal, vol. 13, pp. 459–469, 1966.
[7] A. Bejancu, “CR submanifolds of a kaehler manifold. I,” Proceedings of the American Mathematical Society, vol. 69, no. 1, pp. 135–142, 1978.
[8] S. Kobayashi, “Submersions of CR submanifolds,” The Tohoku Mathematical Journal, vol. 39, no. 1, pp. 95–100, 1987.
[9] S. Deshmukh, T. Ghazal, and H. Hashem, “Submersions of CR-submanifolds on an almost hermitian manifold,” Yokohama Mathematical Journal, vol. 40, no. 1, pp. 45–57, 1992.
[10] J. Simons, “Minimal varieties in riemannian manifolds,” Annals of Mathematics, vol. 88, no. 1, pp. 62–105, 1968.
[11] R. Al-Ghefari, M. H. Shahid, and F. R. Al-Solamy, “Submersion of CR-submanifolds of locally conformal kaehler manifold,” Contributions to Algebra and Geometry, vol. 47, no. 1, pp. 147–159, 2006.
Submit your manuscripts at http://www.hindawi.com