INTRODUCTION

The term embolic stroke of undetermined source (ESUS) was introduced in 2014 (Hart et al., 2014); this condition accounts for 17% of all ischemic strokes and has a considerable rate of stroke recurrence of 4%-5%/year (Hart et al., 2017; Ntaios, 2020; Ntaios et al., 2015). Therefore, better antithrombotic strategies are urgently needed to decrease the recurrence rate. However, lower stroke recurrence...
rates were found from oral anticoagulation than from aspirin in ESUS patients by the two recently completed large trials: NAVIGATE ESUS and RE-SPECT ESUS (Diener et al., 2019; Hart et al., 2018), which might be explained by the overlap of potential embolic sources, including atrial cardiopathy, covert AF, left ventricular disease, aortic arch plaque, non-stenosing carotid plaques, patent foramen ovale, cardiac valvular disease, and cancer (Ntaios, 2020; Ntaios, Pearce, et al., 2019; Ntaios, Pearce, et al., 2020; Ntaios, Perlepe, Lambrou, et al., 2019; Ntaios, Weng, et al., 2021; Tao et al., 2021). Patients with ESUS caused by emboli from the heart or venous system may benefit from anticoagulation, while patients with ESUS caused by emboli from atherosclerotic plaques respond better to antiplatelet agents. Given this, further studies for appropriately selecting those who respond better to anticoagulation are warranted and urgently needed. In addition, another approach that is used in parallel is to look for patients who have higher likelihood of AF detection. Ntaios et al.’s study revealed that supraventricular extrasystoles on standard 12-lead electrocardiogram can predict new incident atrial fibrillation after ESUS (Ntaios, Perlepe, et al., 2020), and they have proposed a readily available tool, the AF-ESUS score, to assist the identification of ESUS patients who have probability of new incident AF, which could potentially support a more personalized strategy (Ntaios, Perlepe, et al., 2021).

Atrial cardiopathy is one of the most common potential sources of thromboembolism. Numerous reports have focused on biomarkers of atrial cardiopathy and their association with the risk of AF detection, the risk of incident ischemic stroke, and the recurrence of ESUS, including increased left atrial size (Benjamin et al., 1995; Jordan et al., 2019; Kamel, Okin, et al., 2019; Perlepe et al., 2020; Yaghi et al., 2015), increased p-wave terminal force in V1 (PTFV1) (Jalini et al., 2019; Kamel et al., 2019; Li et al., 2021), elevated N-terminal pro-B-type natriuretic peptide (NT-proBNP) (Bentsson et al., 2014; Folsom et al., 2013; Llombart et al., 2015) and so on. And secondary analysis of the NAVIGATE ESUS randomized clinical trial revealed that the risk of atrial fibrillation was lower among the rivaroxaban group compared with the aspirin group among the subgroup of patients with a left atrial diameter of more than 4.6 cm (Healey et al., 2019). However, studies on the incidence of elevated serum NT-proBNP as a biomarker of atrial cardiopathy in ESUS patients are lacking.

The purpose of this study was to investigate the incidence of atrial cardiopathy in patients with ESUS and compare it with that in patients with other stroke subtypes. In addition, we compared the clinical characteristics between ESUS patients with atrial cardiopathy (AC-ESUS) and patients with atrial fibrillation-induced cardioembolism (AF-CE) stroke.

2 METHODS

We reviewed the data of consecutive patients with acute ischemic stroke admitted to the stroke unit of Beijing Shijitan Hospital between January 2014 and November 2019. The inclusion criteria were as follows: subjects with acute ischemic stroke confirmed by diffusion-weighted imaging within 7 days after symptom onset, and subjects undergoing diagnostic workups, including vascular studies (carotid duplex imaging, transcranial Doppler sonography, computed tomography angiography, magnetic resonance angiography, or digital subtraction angiography), transthoracic echocardiogram, and 24 hr Holter monitoring. All cases of acute ischemic stroke that met the inclusion criteria were reviewed by two neurologists. Subjects were first classified by the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria (Adams et al., 1993). Among patients with stroke of undetermined etiology, ESUS consensus definition was subsequently applied (Hart et al., 2014). Criteria for diagnosis of ESUS (Hart et al., 2014): stroke detected by MRI that is not lacunar, absence of extracranial or intracranial atherosclerosis causing ≥50% luminal stenosis in arteries supplying the area of ischemia, no major risk cardioembolic source of embolism, and no other specific cause of stroke identified (e.g., arteritis, dissection, migraine/vasospasm, and drug misuse). Subjects with AF-CE stroke were extracted from cardioembolic stroke. The patients classified into ESUS, large artery atherosclerosis (LAA), small vessel disease (SVD), and AF-CE strokes were included in this study. The exclusion criteria: stroke of other determined etiology; stroke with two or more possible etiologies. The study was approved by the hospital ethics committee.

The following clinical covariates were studied: demographic characteristics, lipid profiles, fasting plasma glucose, HbA1c, homocysteine, serum creatinine, coronary artery disease, and vascular risk factors including hypertension (preexisting diagnosis of hypertension, on medication or blood pressure ≥ 140/90 mmHg), diabetes mellitus (preexisting diagnosis of type I or type II diabetes, on medication or an admitting fasting blood glucose level greater than 126 mg/dl and an HbA1c greater than 6.5% according to the National Glycohemoglobin Standardization Program), smoking (those who had smoked >100 cigarettes in their lifetime and had smoked in the 30 days preceding their stroke), and history of stroke. Initial stroke severity was assessed by the National Institutes of Health Stroke Scale (NIHSS). Short-term outcome at day 14 or at discharge if earlier was assessed by NIHSS and modified Rankin Scale (mRS). In-hospital complications were defined as any of the following: pneumonia, stress ulcer bleeding, or deep venous thrombosis (DVT).

The left atrial diameter and left ventricular end-diastolic dimension were measured by echocardiographic examination. A left atrial diameter ≥ 47 mm was diagnosed as severe left atrial enlargement (sLAE) based on standard criteria given by the American Society of Echocardiography (Lang et al., 2006). Left ventricular end-diastolic dimension ≥ 50 mm was diagnosed as left ventricular hypertrophy based on standard criteria given by the Chinese Society of Echocardiography (Li, 2016).

Serum NT-proBNP was measured in a clinical laboratory using a Cobas e411 analyzer (Roche Diagnostics). The analytic measurement range was 5–35,000 pg/ml. A threshold of 250 pg/ml was chosen to define atrial cardiopathy, as this threshold is associated with a twofold increased risk of recurrent stroke relative to patients with a normal NT-proBNP level in the Warfarin Aspirin
Recurrent Stroke Study (Longstreth et al., 2013), and is used in the ARCADIA randomized trial which is to test the hypothesis that apixaban is superior to aspirin for the prevention of recurrent stroke in subjects with cryptogenic ischemic stroke and atrial cardiopathy (Kamel et al., 2019).

All patients underwent MRI (Ingenia 1.5 or 3.0 T; Philips) within 7 days of admission. Diffusion-weighted images (DWI), T₁ and T₂ weighted images, fluid-attenuated inversion recovery images, and three-dimensional time-of-flight magnetic resonance angiography images were obtained. Imaging features were defined based on the involvement of infarcts on DWI. Multiple arterial-territory cerebral infarction (MACI) was defined as more than one acute ischemic lesion in at least two arterial cerebral territories, including the posterior basilar and two anterior carotid territories. Patients with MACI in whom the distribution of the infarcts was related to anatomic variations of the circle of Willis were considered to have a single arterial-territory cerebral infarction. Hemorrhagic transformation (HT) which involves basilar and two anterior carotid territories. Patients with MACI to whom the hemorrhage was confined to the infarct territory or parenchyma hemorrhage outside the infarct zone that was detected later on follow-up CT or MRI, but not on initial CT (Hacke et al., 1998), detected by routine CT or MRI was obtained, and asymptomatic and symptomatic HTs were both included. Symptomatic HT is defined as hemorrhage that is associated with any decline in neurologic status (National Institute of Neurological & Stroke rt, 1995).

2.1 Statistical analysis

Normally distributed continuous variables are presented as mean ± SD. Non-normally distributed continuous variables are presented as median and interquartile range (IQR). Categoric variables are expressed as percentages. For continuous variables, one-way analysis of variance was used to compare three groups if the group variances were homogeneous or Welch analysis of variance in the presence of heterogeneity; the independent sample t test was used to compare two groups for normally distributed variables or the Mann–Whitney U test for non-normally distributed variables. For categoric variables, the chi-square or Fisher exact test was performed to compare the groups.

First, we compared clinical characteristics across stroke subtypes. Second, sLAE in ESUS patients was higher than that in LAA, SVD, or the combined LAA/SVD group (5.3% vs. 1.6%, p = .014, 5.3% vs. 1.2%, p = .008, and 5.3% vs. 1.4%, p = .001, respectively). This was also true for the adjusted analysis as well (OR = 3.216, 95% CI = 1.102–9.392, p = .033, OR = 4.014, 95% CI = 1.091–14.747, p = .036, and OR = 3.411, 95% CI = 1.352–8.607, p = .009, respectively). The incidence of elevated serum NT-proBNP in ESUS patients was not statistically different from that in LAA or SVD group, while the LAA group had a higher incidence of elevated serum NT-proBNP than the SVD group (37.3% vs. 12.6%, p = .000), this was also true for the adjusted analysis as well (OR = 2.104, 95% CI = 1.045–4.237, p = .037). The incidence of atrial cardiopathy in ESUS patients was higher than that in SVD group (18.4% vs. 10.1%, OR = 2.008, 95% CI = 1.195–3.372, p = .008), but there was no statistically difference for the adjusted analysis. The incidence of atrial cardiopathy in ESUS patients was higher than that of the LAA or combined LAA/SVD group but without statistically significant difference (18.4% vs. 16.7%, p = .599, and 18.4% vs. 13.7%, p = .087, respectively) due to the corresponding percent-age of elevated serum NT-proBNP.

We compared the baseline characteristics, short-term outcome, and in-hospital complications between AC-ESUS and AF-CE stroke patients (Table 4). Our results showed that AC-ESUS patients had lower NIHSS.

RESULTS

A total of 936 patients were enrolled, with a mean age of 67.4 ± 12.2 years and 70.6% male. All the patients were classified into ESUS (n = 245, 26.2%), LAA (n = 312, 33.3%), SVD (n = 258, 27.6%), and AF-CE (n = 121, 12.9%) strokes. Serum NT-proBNP was obtained in 41.2% (n = 101) of ESUS, 42.9% (n = 134) of LAA, and 35.7% (n = 92) of SVD stroke patients.

The clinical characteristics of the ESUS, LAA, and SVD groups are presented in Table 1. The age of the ESUS patients was similar to that of the LAA group, but was higher than that of the SVD group (68.9 ± 12.4 vs. 65.8 ± 11.8, p = .005). The proportion of MACI among the ESUS patients was higher than that of the LAA group (odds ratio [OR] = 5.093, 95% confidence interval [CI] = 3.094–8.383, p = .000). The NIHSS score on admission (2.78 ± 3.92 vs. 3.71 ± 3.74, p = .000) and on day 14 (2.39 ± 3.24 vs. 3.68 ± 4.39, p = .000), and the mRS score on day 14 (1.84 ± 1.43 vs. 2.40 ± 1.82, p = .000) of the ESUS patients were lower than those of the LAA group, but were similar to those in the SVD group. The proportion of pneumonia of the ESUS patients was lower than those of the LAA group (OR = 0.229, 95% CI = 0.114–0.463, p = .000), but was similar to those in the SVD group. The proportions of hemorrhagic transformation, stress ulcer bleeding, and deep venous thrombosis among the ESUS patients were similar to those of LAA or SVD group. The distribution of sex, prior stroke, hypertension, diabetes mellitus, cigarette smoking, lipid profiles, fasting plasma glucose, HbA1c, homocysteine, creatinine, and left ventricular hypertrophy did not differ across the three groups.
score on admission and on day 14, 1 (0, 4) versus 4 (2, 9), p = .000, and 1 (0, 3) versus 2 (1, 4), p = .039, respectively. Hemorrhagic transformation was less frequent in AC-ESUS patients than in the AF-CE group (p = .012). Pneumonia and stress ulcer bleeding were less frequent in AC-ESUS patients than in the AF-CE group (OR = 0.136, 95% CI = 0.031–0.593, p = .002 and OR = 0.232, 95% CI = 0.052–1.036, p = .039, respectively). However, no statistical difference was found between the two groups in age of onset, risk factors, the proportion of elevated serum NT-proBNP, the proportion of sLAE and left ventricular hypertrophy, the proportion of MACI, the mRS score on day 14, and the rate of deep venous thrombosis.

4 | DISCUSSION

In our study, we observed that the incidence of sLAE was higher in ESUS patients than in patients with noncardioembolic strokes, while there was no difference in the proportion of elevated serum NT-proBNP between ESUS patients and patients with noncardioembolic strokes. AC-ESUS was a milder form when compared to AF-CE stroke, while they had many similarities.

sLAE, as a marker of atrial cardiopathy, occurred more frequently in ESUS than in noncardioembolic strokes, which implied that atrial cardiopathy was not the cause of ESUS.
stroke severity of ESUS patients who were
studies (Brambatti et al., 2014; Daoud et al., 2011). Ntaios et al.'s
implantable cardiac monitoring devices in the ASSERT and TRENDS
recent episodes of atrial tachycardia or AF, as shown in patients with
bolic events (stroke or systemic embolism) do not occur proximal to
relationship between embolic events and AF. The majority of em-
corder (Sanna et al., 2014). Studies have shown a lack of temporal
of continuous heart rhythm monitoring via an implantable loop re-
of cryptogenic stroke patients manifested any AF even after 3 years
fibrillation as an ESUS etiology appears to be less important than
paroxysmal atrial fibrillation (AF) is thought to be a leading cause of
hypothesis that ESUS pathogenesis is cardiac in origin; thus, covert
aropathy may be a possible risk factor for ESUS. Studies have
shown that the histologic clot composition in cryptogenic stroke pa-
tients is more similar to that in cardioembolic stroke patients (high
fibrin, low red blood cell content) than to that in stroke patients with
oncardioembolic etiologies (high erythrocyte content) (Boechk-
Behrens et al., 2016; Sporns et al., 2017), which supports the hy-
thesis that ESUS pathogenesis is cardiac in origin; thus, covert
paroxysmal atrial fibrillation (AF) is thought to be a leading cause of
stroke in ESUS. However, further studies indicated that covert atrial
arrhythmia appears to be less important than initially thought. A long-term follow-up study found that only 30% of
cryptogenic stroke patients manifested any AF even after 3 years
of continuous heart rhythm monitoring via an implantable loop re-
corder (Sanna et al., 2014). Studies have shown a lack of temporal
relationship between embolic events and AF. The majority of em-
boic events (stroke or systemic embolism) do not occur proximal to
recent episodes of atrial tachycardia or AF, as shown in patients with
implantable cardiac monitoring devices in the ASSERT and TRENDS
studies (Brambatti et al., 2014; Daoud et al., 2011). Ntaios et al.'s
study revealed that stroke severity of ESUS patients who were
diagnosed with AF during follow-up is similar to those who were not,
which also questions the causal relationship between ESUS and AF
detected during the follow-up (Ntaios et al., 2016). A meta-analysis
of eight randomized clinical trials found no evidence of any reduc-
tion in stroke risk with rhythm-control strategies versus rate-control
strategies (Martin et al., 2015). Our results, along with other studies,
suggest that thrombus formation in the left atrium may not be nec-
essarily a result of AF dysrhythmia but rather a result of pathologic
changes within the left atrium, which is called atrial cardiopathy. Most likely, the major value of the concept of atrial cardiopathy is
that it provides an opportunity for improved prevention of stroke. It
may be that patients with atrial cardiopathy can be optimally treated
with anticoagulants, just as is currently the standard practice for pa-

TABLE 2	Incidence of atrial cardiopathy in the ESUS versus LAA versus SVD stroke patients			
	ESUS (n = 245)	LAA (n = 312)	SVD (n = 258)	
sLAE, n (%)	13 (5.3)	5 (1.6)	3 (1.2)	
NT-proBNP ≥ 250 pg/ml, n (%)	33 (32.7)	50 (37.3)	23 (12.6)	
Atrial cardiopathy, n (%)	45 (18.4)	52 (16.7)	26 (10.1)	

Abbreviations: ESUS, embolic stroke of undetermined source; LAA, large artery atherosclerosis; OR (95%CI), odds ratio (95% confidence interval); sLAE, severe left atrial enlargement; SVD, small vessel disease.

*Logistic regression odds ratio: adjusted for age, sex, hypertension, diabetes, and creatinine.; **Logistic regression odds ratio: adjusted for age, sex, hypertension, diabetes, creatinine, coronary artery disease, and left ventricular hypertrophy.

TABLE 3	Incidence of atrial cardiopathy in the ESUS versus LAA/SVD stroke patients			
	ESUS (n = 245)	LAA/SVD (n = 570)		
sLAE, n (%)	13 (5.3)	8 (1.4)	3.411 (1.352, 8.607)	.009*
NT-proBNP ≥ 250 pg/ml, n (%)	33 (32.7)	73 (32.3)	0.725 (0.389, 1.351)	.311**
Atrial cardiopathy, n (%)	45 (18.4)	78 (13.7)	1.253 (0.805, 1.950)	.319*

Abbreviations: ESUS, embolic stroke of undetermined source; LAA, large artery atherosclerosis; OR (95%CI), odds ratio (95% confidence interval); sLAE, severe left atrial enlargement; SVD, small vessel disease.

*Serum NT-proBNP was done on 40.1% (327) of patients: 41.2% (101) of ESUS, 42.9% (134) of LAA, and 35.7% (92) of SVD.

Adjusted odds ratio.

*Logistic regression odds ratio: adjusted for age, sex, hypertension, diabetes, and creatinine.; **Logistic regression odds ratio: adjusted for age, sex, hypertension, diabetes, creatinine, coronary artery disease, and left ventricular hypertrophy.

In our study, atrial cardiopathy was defined by the presence of sLAE or elevated serum NT-proBNP. Left atrial enlargement was associated with the risk of AF detection, the risk of incident ischemic stroke, and the recurrence of ESUS (Jordan et al., 2019; Kamel, Okin, et al., 2019; Perlepe et al., 2020; Yaghi et al., 2015). We found that the incidence of sLAE in ESUS patients was in accordance with other
published studies and higher than that in LAA or SVD group, even after adjusting for age, sex, hypertension, diabetes, and creatinine, which was consistent with Kamel et al.’s result (Yaghi et al., 2016). However, there was no difference in the frequency of sLAE between ESUS, LAA, and SVD groups in Shirin et al.’s study (Jalini et al., 2019), so prospective multicenter studies are needed to confirm our results.

Studies had shown an association between elevated serum NT-proBNP and ischemic stroke, particularly of embolic stroke subtype (Berntsson et al., 2014; Folsom et al., 2013; Llombart et al., 2015). A post hoc analysis of the WARSS trial showed a reduction in the risk of stroke or death among those assigned warfarin rather than aspirin among the 5% of patients with the highest levels of NT-proBNP (Longstreth et al., 2013). All of these findings imply that elevated serum NT-proBNP is associated with cardioembolism. However, the proportion of elevated serum NT-proBNP in ESUS patients did not differ from that in the LAA or SVD group in our study, possible explanations: brain natriuretic peptide are produced both in atria and in ventricles in response to increased transmural wall stress, which is critical to cardiorenal regulation, so the increase in serum NT-proBNP is affected by many factors, including age, sex, left ventricle dysfunction, renal failure, and so on (Daniels & Maisel, 2007; Redfield et al., 2002); serum NT-proBNP in our study was not tested in the same time period from stroke onset; serum NT-proBNP levels were measured in less than half of all patients, as part of routine practice and physician judgment in the real world. The fact that there

TABLE 4	Comparing baseline characteristics, short-term outcome, and in-hospital complications of the AC-ESUS and AF-CE stroke patients			
	AC-ESUS (n = 43)	AF-CE (n = 121)	t or Z or OR (95%CI)	p value
Baseline characteristics				
Age, median (IQR), y	81 (73,84)	79 (71,84)	−0.636	.525
Male, %	58.1	52.1	1.237 (0.612–2.499)	.493
Coronary artery disease, %	51.2	44.9	1.149 (0.538–2.455)	.409
Prior stroke, %	30.2	33.9	0.846 (0.399–1.793)	.664
Hypertension, %	79.1	78.5	1.034 (0.440–2.427)	.993
Diabetes mellitus, %	51.2	40.5	1.344 (0.669–2.700)	.225
Cigarettes smoking, %	14.0	9.9		
NIHSS on admission, median (IQR)	1 (0)	4 (2, 9)	−3.496	.000
Total cholesterol, median (IQR), mmol/L	4.31 (3.56, 5.15)	4.00 (3.49, 4.72)	−1.59	.112
HDL, median (IQR), mmol/L	1.10 (0.99, 1.26)	1.17 (1.02, 1.34)	−1.138	.255
LDL, median (IQR), mmol/L	2.61 (1.84, 3.07)	2.18 (1.75, 2.70)	−1.465	.143
Fasting plasma glucose, median (IQR), mmol/L	5.92 (4.93, 7.40)	6.00 (5.03, 7.55)	−0.247	.805
HbA1c, median (IQR), %	6.59 (5.60, 7.85)	6.08 (5.70, 6.98)	−0.676	.504
Creatinine, median (IQR), μmol/L	16.2 (12.1, 19.1)	14.3 (11.8, 17.8)	−1.133	.257
NT-proBNP† ≥ 250 pg/ml, %				
sLAE, %	84.2	88.4	0.702 (0.235–2.094)	.524
Left ventricular hypertrophy, %	279	24.0	1.228 (0.559–2.696)	.608
MACI, %				
Hemorrhagic transformation, %	0			
Short-term outcome‡				
NIHSS, median (IQR)	1 (0, 3)	2 (1, 4)	−2.069	.039
mRS, median (IQR)	2 (1, 3)	2 (1, 4)	−1.438	.138
In-hospital complications				
Pneumonia, %	4.7	26.4	0.136 (0.031–0.593)	.002
Stress ulcer bleeding, %	4.7	17.4	0.232 (0.052–1.036)	.039
Deep venous thrombosis, %	4.7	12.4	0.345 (0.075–1.574)	.152

Abbreviations: AC-ESUS, embolic stroke of undetermined source associated with atrial cardiopathy; AF-CE, atrial fibrillation-induced cardioembolism; HbA1c, glycosylated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MACI, multiple arterial-territory cerebral infarction; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; OR (95%CI), odds ratio (95% confidence interval).

†Serum NT-proBNP was done on 75% (123) of patients: 88.4% (38) of AC-ESUS, and 71.1% (86) of AF-CE.
‡NIHSS and mRS on day 14 or on discharge if earlier.
was no difference in the proportion of elevated serum NT-proBNP across the three groups in our study does not mean that elevated serum NT-proBNP cannot be used as a biomarker of atrial cardiopathy. In practice, when we meet ESUS patients with elevated serum NT-proBNP, a more individualized approach to patients should be adopted to determine whether it is indicative of atrial cardiopathy. The frequency of elevated serum NT-proBNP in ESUS patients in our study is somewhat lower than that previously reported. We identified elevated serum NT-proBNP in 32.7% of our ESUS patients, while others reported elevated serum NT-proBNP levels in up to 49% of cryptogenic stroke (Yaghi et al., 2016). However, comparisons with previous studies are difficult since inclusion criteria vary.

There was a higher prevalence of MACI among ESUS than among LAA patients. A prior study found that 39% of ESUS patients had multiple infarcts on diffusion-weighted imaging, and multiple infarcts were more frequent among patients with recurrent vascular events (Ueno et al., 2016). However, there are few data on the prevalence of MACI among ESUS patients compared with other stroke subtypes. The higher prevalence of MACI among ESUS patients may be related to the underlying pathophysiologies, including cardioembolism, artery to artery embolism from the aortic arch atheroma, paradoxical embolism from the venous system, and hypercoagulability caused by occult cancer or autoimmune disease. So cardiac evaluation will be beneficial to the prevention of stroke and stroke recurrence.

AC-ESUS was a milder form of stroke when compared to AF-CE stroke. For AC-ESUS patients, it is possible that this condition represents a milder form of atrial dysfunction, which, as it advances, produces the dysrhythmia of AF. In this milder form, stroke may be caused by a smaller clot, thus resulting in a smaller infarct volume, a lower risk of reperfusion injury and, consequently, less hemorrhagic transformation (Jalini et al., 2019). However, AC-ESUS and AF-CE stroke patients had many similarities as mentioned above. The differences and similarities of these two groups support the ideas that atrial cardiopathy can cause cardioembolic stroke without AF and AF is one manifestation of atrial cardiopathy.

Our study had several limitations. First, it was a retrospective, single-center study. Second, our ESUS patients generally did not undergo more than 24 hr of heart rhythm monitoring, which may underestimate the incidence of AF, since continuous ECG monitoring for at least 72 hr with an increased proportion of AF detection was recommended for patients with ischemic stroke or TIA (Schnabel et al., 2019). Third, the left atrial diameter was used as a measure of sLAE, while investigations have shown left atrial volume index to be a better marker of atrial cardiopathy (Tan et al., 2020). This information was not available in our study. Fourth, the serum NT-proBNP levels were measured in less than half of all patients and were only measured on admission, not serially measurements. We are uncertain if the NT-proBNP levels may have risen acutely during an acute ischemic stroke event, and hence may not be a true reflection of atrial cardiopathy. Fifth, other markers of atrial cardiopathy including Electrocardiographic P-wave markers were not explored in this study. Investigations have shown the increased P-terminal force in the precordial lead V1 (PTFV1) was associated with AF detection and had higher prevalence in ESUS than LAA, SVD, or combined LAA/SVD patients (Jalini et al., 2019; Li et al., 2021). Sixth, supracardiac atherosclerosis including the atherosclerotic plaque in the carotid, vertebralbasilar, and intracranial arteries, or the aortic arch, which is another important embolic source in ESUS (Ameriso et al., 2020; Kamel et al., 2020; Ntaios, Pearce, et al., 2019; Ntaios, Perlepe, Sirimaro, et al., 2019; Ntaios, Sagris, et al., 2021; Ntaios, Swaminathan, et al., 2019; Ntaios et al., 2020), was not investigated in our study. Nearly half of ESUS patients have ≥2 diseases which could be considered as the cause of stroke (Ntaios, Perlepe, Lambrou, et al., 2019), so no available data on supracardiac atherosclerosis in ESUS patients may influence our results.

5 CONCLUSIONS

In our study, the incidence of sLAE is higher in ESUS patients than in patients with noncardioembolic strokes, which is a reliable biomarker of atrial cardiopathy. However, the elevated serum NT-proBNP, as a biomarker of atrial cardiopathy, should be used individually. AC-ESUS was a milder form when compared to AF-CE stroke, while they had many similarities. Our results support the concept that atrial cardiopathy is an important embolic source of ESUS. Therefore, for ESUS patients with atrial cardiopathy, anticoagulation may be a better choice for preventing stroke recurrence. The ongoing ARCADIA research trial, which is testing the hypothesis that the direct oral anticoagulant apixaban is superior to aspirin for the prevention of recurrent stroke in ESUS patients with atrial cardiopathy, appears promising (Kamel et al., 2019).

ACKNOWLEDGMENTS

We gratefully acknowledge Wei Cui for statistical consultation.

CONFLICT OF INTEREST

None declared.

AUTHOR CONTRIBUTIONS

All authors contributed to the study conception or design and to the interpretation of the results. All authors read and revised the manuscript and approved the final manuscript to be submitted.

PEER REVIEW

The peer review history for this article is available at https://publines.com/publons/10.1002/brb3.2160.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
REFERENCES

Adams, H., Bendixen, B., Kappelle, L., Biller, J., Love, B., Gordon, D., & Marsh, E. J. S. (1993). Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke, 24(1), 35–41. https://doi.org/10.1161/01.str.24.1.35

Ameriso, S. F., Amarenco, P., Pearce, L. A., Perera, K. S., Ntafos, G., Lang, W., Bereczi, D., Uchiyama, S., Kasner, S. E., Yoon, B.-W., Lavados, P., Firstenfeld, A., Mikulik, R., Povedano, G. P., Ferrari, J., Mundi, H., Berkowitz, S. D., Connolly, S. J., & Hart, R. G. (2020). Intracranial and systemic atherosclerosis in the NAVIGATE ESUS trial: Recurrent stroke risk and response to antithrombotic therapy. Journal of Stroke and Cerebrovascular Diseases: the Official Journal of National Stroke Association and Cerebrovascular Diseases: the Official Journal of National Stroke Association, 29(8), 104936. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104936

Benjamin, E. J., D’Agostino, R. B., Belanger, A. J., Wolf, P. A., & Levy, D. (1995). Left atrial size and the risk of stroke and death. The framingham heart study. Circulation, 92(4), 835–841. https://doi.org/10.1001/0000399100400020352

Berntsson, J., Zia, E., Borne, Y., Melander, O., Hedblad, B., & Engstrom, G. (2014). Plasma natriuretic peptides and incidence of subtypes of ischemic cerebrovascular disease. Stroke, 45(6), 444–450. https://doi.org/10.1161/01.STR.0000432279

Boeckh-Behrens, T., Kleine, J. F., Zimmer, C., Neff, F., Scheipl, F., Pelisek, J., Schirmer, L., Nguyen, K., Karatas, D., & Poppert, H. (2016). Thrombus histology suggests cardioembolic cause in cryptogenic stroke with rivaroxaban compared with aspirin according to predictors of atrial fibrillation: Secondary analysis of the NAVIGATE ESUS randomized clinical trial. JAMA Neurology, 76(7), 764–773. https://doi.org/10.1001/jamaneurol.2019.0617

Jalini, S., Rajalingam, R., Nisenbaum, R., Javier, A. D., Woo, A., & Pikula, A. (2019). Atrial cardiopathy in patients with embolic strokes of unknown source and other stroke etiologies. Neurology, 92(4), e00288–e00294. https://doi.org/10.1212/WNL.0000000000007648

Jordan, K., Yaghi, S., Poppas, A., Chang, A. D., Mac Gory, B., Cutting, S., Burton, T., Jayaraman, M., Tsivgoulis, G., Sabeh, M. K., Merkler, A. E., Kamel, H., Elkind, M. S. V., Furie, K., & Song, C. (2019). Left atrial volume index is associated with cardioembolic stroke and atrial fibrillation detection after embolic stroke of undetermined source. Stroke, 50(8), 1997–2001. https://doi.org/10.1160/STROKEAHA.119.025384

Kamel, H., Longstreth, W. T., Tirschwell, D. L., Kronmal, R. A., Broderick, J. P., Palesch, Y. Y., Meiner, C., Dillon, C., Ewing, I., Spilker, J. A., Di Tullio, M. R., Hod, E. A., Soliman, E. Z., Chaturvedi, S., Moyer, C. S., Janis, S., & Elkind, M. S. V. (2019). The ARial cardiopathy and anti-thrombotic drugs in prevention after cryptogenic stroke randomized trial: Rationale and methods. International Journal of Stroke, 14(2), 207–214. https://doi.org/10.1177/1747493018799981

Kamel, H., Okin, P. M., Merkler, A. E., Navi, B. B., Campion, T. R., Devereux, R. B., Diaz, I., Weinsaft, J. W., & Kim, J. (2019). Relationship between left atrial volume and ischemic stroke subtype. Annals of Clinical and Translational Neurology, 6(8), 1480–1486. https://doi.org/10.1002/acn3.50841

Kamel, H., Pearce, L. A., Ntafos, G., Gladstone, D. J., Perera, K., Roline, R. O., Meseguer, E., Shoomaness, A., Berkowitz, S. D., Mundl, H., Sharma, M., Connolly, S. J., Hart, R. G., & Healey, J. S. (2020). Atrial cardiopathy and nonstenosing large artery plaque in patients with embolic stroke of undetermined source. Stroke, 51(3), 938–943. https://doi.org/10.1177/1059325520928154

Kamel, H., Soliman, E. Z., Heckbert, S. R., Kronmal, R. A., Longstreth, W. T. Jr, Nazarian, S., & Okin, P. M. (2014). P-wave morphology and the risk of incident ischemic stroke in the Multi-Ethnic study of atherosclerosis. Stroke, 45(9), 2786–2788. https://doi.org/10.1160/STROKEAHA.114.006364

Lang, R., Bierig, M., Devereux, R., Flachskampf, F., Foster, E., Pellikka, P., Picard, M., Roman, M., Seward, J., & Shewa, J. (2006). Recommendations for chamber quantification. European Journal
CHEN E et al.

D. J., Glotzer, T. V., Goto, S., Hankey, G. J., Harbison, J. A., ... Yan, B. (2019). Searching for atrial fibrillation poststroke: A white paper of the AF-SCREEN international collaboration. *Circulation*, 140(22), 1834–1850. https://doi.org/10.1161/CIRCULATIONAHA.119.040267

Sporns, P. B., Hanning, U., Schwindt, W., Velasco, A., Minnerup, J., Zoubi, T., Heindel, W., Jeibmann, A., & Niederstadt, T. U. (2017). Ischemic stroke: What does the histological composition tell us about the origin of the thrombus? *Stroke*, 48(8), 2206–2210. https://doi.org/10.1161/STROKEAHA.117.016590

Tan, B. Y. Q., Ho, J. S. Y., Sia, C.-H., Boi, Y., Foo, A. S. M., Dalakoti, M., Chan, M. Y., Ho, A. F. W., Leow, A. S., Chan, B. P. L., Teoh, H. L., Seow, S. C., Kojodojo, P., Seet, R. C. S., Sharma, V. K., & Yeo, L. L. L. (2020). Left atrial volume index predicts new-onset atrial fibrillation and stroke recurrence in patients with embolic stroke of undetermined source. *Cerebrovascular Disease*, 49(3), 285–291. https://doi.org/10.1159/000508211

Tao, L., Li, X., Hou, X., Yang, B., Xia, C., Ntaios, G., & Chen, H. (2021). Intracranial atherosclerotic plaque as a potential cause of embolic stroke of undetermined source. *Journal of the American College of Cardiology*, 77(6), 680–691. https://doi.org/10.1016/j.jacc.2020.12.015

Ueno, Y., Yamashiro, K., Tanaka, R., Kuroki, T., Hira, K., Kurita, N., Urabe, T., & Hattori, N. (2016). Emerging risk factors for recurrent vascular events in patients with embolic stroke of undetermined source. *Stroke*, 47(11), 2714–2721. https://doi.org/10.1161/STROKEAHA.116.013878

Yaghi, S., Boehme, A. K., Hazan, R., Hod, E. A., Canaan, A., Andrews, H. F., Kamel, H., Marshall, R. S., & Elkind, M. S. V. (2016). Atrial cardiopathy and cryptogenic stroke: A cross-sectional pilot study. *Journal of Stroke and Cerebrovascular Diseases*, 25(1), 110–114. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.09.001

Yaghi, S., Moon, Y. P., Mora-McLaughlin, C., Willey, J. Z., Cheung, K., Di Tullio, M. R., Homma, S., Kamel, H., Sacco, R. L., & Elkind, M. S. V. (2015). Left atrial enlargement and stroke recurrence: The Northern manhattan stroke study. *Stroke*, 46(6), 1488–1493. https://doi.org/10.1161/STROKEAHA.115.008711

How to cite this article: Chen J, Gao F, Liu W. Atrial cardiopathy in embolic stroke of undetermined source. *Brain Behav*. 2021;11:e02160. https://doi.org/10.1002/brb3.2160