PERMUTATIONAL BEHAVIOR OF REVERSED DICKSON POLYNOMIALS OVER FINITE FIELDS

KAIMIN CHENG
DEPARTMENT OF MATHEMATICS, SICHUAN UNIVERSITY JINJIANG COLLEGE,
PENGSHAN 620860, P.R. CHINA

Abstract. In this paper, we use the method developed previously by Hong, Qin and Zhao to obtain several results on the permutational behavior of the reversed Dickson polynomial $D_{n,k}(1, x)$ of the $(k + 1)$-th kind over the finite field \mathbb{F}_q. Particularly, we present the explicit evaluation of the first moment $\sum_{a \in \mathbb{F}_q} D_{n,k}(1, a)$. Our results extend the known results from the case $0 \leq k \leq 3$ to the general $k \geq 0$ case.

1. Introduction

Let \mathbb{F}_q be the finite field of characteristic p with q elements. Associated to any integer $n \geq 0$ and a parameter $a \in \mathbb{F}_q$, the n-th Dickson polynomials of the first kind and of the second kind, denoted by $D_n(x, a)$ and $E_n(x, a)$, are defined for $n \geq 1$ by

$$D_n(x, a) := \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n-2i}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i}$$

and

$$E_n(x, a) := \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n-i}{i} (-a)^i x^{n-2i},$$

respectively, and $D_0(x, a) := 2, E_0(x, a) := 1$, where $\left\lfloor \frac{n}{2} \right\rfloor$ means the largest integer no more than $\frac{n}{2}$. In 2012, Wang and Yucas [7] further defined the n-th Dickson polynomial of the $(k + 1)$-th kind $D_{n,k}(x, a) \in \mathbb{F}_q[x]$ for $n \geq 1$ by

$$D_{n,k}(x, a) := \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n-2ik}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i}$$

and $D_{0,k}(x, a) := 2 - k$.

Hou, Mullen, Sellers and Yucas [5] introduced the definition of the reversed Dickson polynomial of the first kind, denoted by $D_n(a, x)$, as follows

$$D_n(a, x) := \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n-2i}{n-i} \binom{n-i}{i} (-x)^i a^{n-2i}$$

Date: March 14, 2018.

2000 Mathematics Subject Classification. Primary 11T06, 11T55, 11C08.

Key words and phrases. Permutation polynomial, Reversed Dickson polynomial of the fourth kind, Finite field, Generating function.

The research was supported partially by the General Project of Department of Education of Sichuan Province # 15ZB0434.

Email: ckm20@126.com.
if \(n \geq 1 \) and \(D_0(a,x) = 2 \). To extend the definition of reversed Dickson polynomials, Wang and Yucas \cite{7} defined the \(n \)-th reversed Dickson polynomial of \((k + 1)\)-th kind \(D_{n,k}(a,x) \in \mathbb{F}_q[x] \), which is defined for \(n \geq 1 \) by

\[
D_{n,k}(a,x) := \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n-k i}{n-i} (-x)^i a^{n-2i} \tag{1.1}
\]

and \(D_{0,k}(a,x) = 2 - k \).

It is well known that \(D_n(x,0) \) is a permutation polynomial of \(\mathbb{F}_q \) if and only if \(\gcd(n,q-1) = 1 \), and if \(a \neq 0 \), then \(D_n(x,a) \) induces a permutation of \(\mathbb{F}_q \) if and only if \(\gcd(n,q^2-1) = 1 \). Besides, there are lots of published results on permutational properties of Dickson polynomial \(E_n(x,a) \) of the second kind (see, for example, \cite{2}). In \cite{4}, Hou and Ly found several necessary conditions for the reversed Dickson Polynomials \(D_n(1,x) \) of the first kind to be a permutation polynomial. Recently, Hong, Qin and Zhao \cite{3} studied the reversed Dickson polynomial \(E_n(a,x) \) of the second kind that is defined for \(n \geq 1 \) by

\[
E_n(a,x) := \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n-i}{i} (-x)^i a^{n-2i} \tag{1.2}
\]

and \(E_0(a,x) = 1 \). In fact, they gave some necessary conditions for the reversed Dickson polynomial \(E_n(1,x) \) of the second kind to be a permutation polynomial of \(\mathbb{F}_q \). Regarding the reversed Dickson polynomial \(D_{n,2}(a,x) \in \mathbb{F}_q[x] \) of the third kind, from its definition one can derive that

\[
D_{n,2}(a,x) = E_{n-1}(a,x) \tag{1.3}
\]

for each \(x \in \mathbb{F}_q \). Using (1.2), one can deduce immediately from (3) the similar results on the permutational behavior of the reversed Dickson polynomial \(D_{n,2}(a,x) \) of the third kind. On the other hand, by using the method presented by Hong, Qin and Zhao in \cite{3}, Cheng, Hong and Qin \cite{1} obtained the results on the permutational behavior of the reversed Dickson polynomial \(D_{n,3}(a,x) \) of the fourth kind.

In this paper, our main goal is to continue to use the method developed by Hong, Qin and Zhao in \cite{3} to investigate the reversed Dickson polynomial \(D_{n,k}(a,x) \) of the \((k+1)\)-th kind which is defined by (1.1) if \(n \geq 1 \) and \(D_{0,k}(a,x) := 2 - k \). For \(a \neq 0 \), we write \(x = y(a-y) \) with an indeterminate \(y \neq \frac{a}{2} \). Then one can rewrite \(D_{n,k}(a,x) \) as

\[
D_{n,k}(a,x) = \frac{((k-1)a-(k-2)y)g^n - (a+(k-2)y)(a-y)^n}{2y-a}. \tag{1.3}
\]

We have

\[
D_{n,k}\left(a, \frac{a^2}{4}\right) = \frac{(kn-k+2)a^n}{2^n}. \tag{1.4}
\]

In fact, (1.3) and (1.4) follow from Theorem 2.2 (i) and Theorem 2.4 (i) below. It is easy to see that if \(\text{char}(\mathbb{F}_q) = 2 \), then \(D_{n,k}(a,x) = E_n(a,x) \) if \(k \) is odd and \(D_{n,k}(a,x) = D_n(a,x) \)
if k is even. We also find that $D_{n,k}(a, x) = D_{n,k+p}(a, x)$, so we can restrict $p > k$. Thus we always assume $p = \text{char}(\mathbb{F}_q) > 3$ in what follows.

The paper is organized as follows. First in section 2, we study the properties of the reversed Dickson polynomial $D_{n,k}(a, x)$ of the fourth kind. Subsequently, in Section 3, we prove a necessary condition for the reversed Dickson polynomial $D_{n,k}(1, x)$ of the $k+1$-th kind to be a permutation polynomial of \mathbb{F}_q and then introduce an auxiliary polynomial to present a characterization for $D_{n,k}(1, x)$ to be a permutation of \mathbb{F}_q. From the Hermite criterion [6] one knows that a function $f : \mathbb{F}_q \to \mathbb{F}_q$ is a permutation polynomial of \mathbb{F}_q if and only if $\sum_{i=0}^{q-1} f(a)^i$ is computable. We are able to treat with this sum when $i = 1$. The final section is devoted to the computation of the first moment $\sum_{a \in \mathbb{F}_q} D_{n,k}(1, a)$.

2. Reversed Dickson Polynomials of the $k+1$-th kind

In this section, we study the properties of the reversed Dickson polynomials $D_{n,k+1}(a, x)$ of the fourth kind. Clearly, if $a = 0$, then

$$D_{n,k+1}(0, x) = \begin{cases} 0, & \text{if } n \text{ is odd}, \\ (-1)\frac{q}{2+1}(k-2)x^{\frac{q}{2}}, & \text{if } n \text{ is even}. \end{cases}$$

Therefore, $D_{n,k+1}(0, x)$ is a PP (permutation polynomial) of \mathbb{F}_q if and only if n is an even integer with $\gcd\left(\frac{q}{2}, q-1\right) = 1$. In what follows, we always let $a \in \mathbb{F}_q^*$. First, we give a basic fact as follows.

Lemma 2.1. [6] Let $f(x) \in \mathbb{F}_q[x]$. Then $f(x)$ is a PP of \mathbb{F}_q if and only if $cf(dx)$ is a PP of \mathbb{F}_q for any given $c, d \in \mathbb{F}_q^*$.

Then we can deduce the following result.

Theorem 2.2. Let $a, b \in \mathbb{F}_q^*$. Then the following are true.

(i). One has $D_{n,k}(a, x) = \frac{a^n}{b^n} D_{n,k}(b, \frac{b^2}{a^2} x)$.

(ii). We have that $D_{n,k}(a, x)$ is a PP of \mathbb{F}_q if and only if $D_{n,k+1}(1, x)$ is a PP of \mathbb{F}_q.

Proof. (i). By the definition of $D_{n,k}(a, x)$, we have

$$\frac{a^n}{b^n} D_{n,k}\left(b, \frac{b^2}{a^2} x\right) = \frac{a^n}{b^n} \sum_{i=0}^{\frac{q}{2}} \frac{n - ki}{n - i} \binom{n - i}{i} (-1)^i b^{n-2i} \frac{b^{2i}}{a^{2i}} x^i = \sum_{i=0}^{\frac{q}{2}} \frac{n - ki}{n - i} \binom{n - i}{i} (-1)^i a^{n-2i} x^i = D_{n,k}(a, x)$$

as required. Part (i) is proved.

(ii). Taking $b = 1$ in part (i), we have

$$D_{n,k}(a, x) = a^n D_{n,k}\left(1, \frac{x}{a^2}\right).$$
Lemma 2.3. The following result is given in \cite{3} and \cite{5} without proof. For its proof, one can see \cite{1}.

and a PP of F_n of the reversed Dickson polynomial $D_n(x)$ of the fourth kind. The basic properties on the reversed Dickson polynomial $D_n(x)$ of the fourth kind. The following result is given in \cite{3} and \cite{5} without proof. For its proof, one can see \cite{1}.

Theorem 2.4. Each of the following is true.

(i). For any integer $n \geq 0$, we have

$$D_n(1, x(1-x)) = x^n + (1-x)^n$$

and

$$E_n(1, x(1-x)) = \frac{x^{n+1} - (1-x)^{n+1}}{2x - 1}$$

if $x \neq \frac{1}{2}$.

(ii). If n_1 and n_2 are positive integers such that $n_1 \equiv n_2 \pmod{q^2 - 1}$, then one has $D_{n_1,k}(1, x_0) = D_{n_2,k}(1, x_0)$ for any $x_0 \in \mathbb{F}_q \setminus \{\frac{1}{2}\}$.

Proof. (i). First of all, it is easy to see that $D_{0,k}(1, \frac{1}{4}) = 2 - k = \frac{kx^0-k+2}{2^n}$ and $D_{1,k}(1, \frac{1}{4}) = 1 = \frac{kx^1-k+2}{2^n}$, the first identity is true for the cases that $n = 0$ and 1.

Now let $n \geq 2$. Then one has

$$D_{n,k}(1, \frac{1}{4}) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n-k}{n-i} \binom{n-i}{i} \left(-\frac{1}{4}\right)^i$$

$$= \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n-(k-1)i}{n-i} \binom{n-i}{i} \left(-\frac{1}{4}\right)^i + \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{-i}{n-i} \binom{n-i}{i} \left(-\frac{1}{4}\right)^i$$

$$= D_{n,k-1}(1, \frac{1}{4}) + \frac{1}{4} \sum_{i=0}^{\lfloor \frac{n-2}{2} \rfloor} \binom{n-2-i}{i} \left(-\frac{1}{4}\right)^i$$

$$= D_{n,k-1}(1, \frac{1}{4}) + \frac{1}{4} E_{n-2}(1, \frac{1}{4})$$

which follows from Theorem 2.2 (1) in \cite{3} that

$$D_{n,k}(1, \frac{1}{4}) = D_{n,1}(1, \frac{1}{4}) + (k-1) \frac{1}{4} E_{n-2}(1, \frac{1}{4})$$

$$= \frac{n+1}{2^n} + (k-1)n - (k-1) \frac{1}{2^n}$$

$$= \frac{kn-k+2}{2^n}$$

as desired. So the first identity is proved.
Now we turn our attention to the second identity. Let \(x \neq \frac{1}{4} \), then there exists \(y \in \mathbb{F}_{q^2} \setminus \{ \frac{1}{2} \} \) such that \(x = y(1 - y) \). So by the definition of the \(n \)-th reversed Dickson polynomial of the \(k \)-th kind, one has

\[
D_{n,k}(1, y(1 - y)) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n - ki}{n - i} \binom{n - i}{i} (-y(1 - y))^i
\]

\[
= \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{k(n - i) - 2n}{n - i} \binom{n - i}{i} (-y(1 - y))^i
\]

\[
= k \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n - i}{i} (-y(1 - y))^i - (k - 1) \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n}{n - i} \binom{n - i}{i} (-y(1 - y))^i
\]

\[
= kE_n(1, y(1 - y)) - (k - 1)D_n(1, y(1 - y)).
\] (2.1)

But Lemma 2.3 gives us that

\[
D_n(1, y(1 - y)) = y^n + (1 - y)^n
\] (2.2)

and

\[
E_n(1, y(1 - y)) = \sum_{i=0}^{n} y^{n-i}(1 - y)^i = \frac{x^{n+1} - (1 - x)^{n+1}}{2x - 1}.
\] (2.3)

Thus it follows from (2.1) to (2.3) that

\[
D_{n,k}(1, x) = D_{n,k}(1, y(1 - y))
\]

\[
= kE_n(1, y(1 - y)) - (k - 1)D_n(1, y(1 - y))
\]

\[
= \frac{ky^{n+1} - k(1 - y)^{n+1}}{2y - 1} - (k - 1)(y^n + (1 - y)^n)
\]

\[
= \frac{(k - 1 - (k - 2)y)y^n - (1 + (k - 2)y)(1 - y)^n}{2y - 1}
\] as required. So the second identity holds. Part (i) is proved.

(ii). For each \(x_0 \in \mathbb{F}_q \setminus \{ \frac{1}{2} \} \), one can choose an element \(y_0 \in \mathbb{F}_{q^2} \setminus \{ \frac{1}{2} \} \) such that \(x_0 = y_0(1 - y_0) \). Since \(n_1 \equiv n_2 \pmod{q^2 - 1} \), one has \(y_0^{n_1} = y_0^{n_2} \) and \((1 - y_0)^{n_1} = (1 - y_0)^{n_2} \). It then follows from part (i) that

\[
D_{n_1,k}(1, x_0) = \frac{(k - 1 - (k - 2)y_0)y_0^{n_1} - (1 + (k - 2)y_0)(1 - y_0)^{n_1}}{2y_0 - 1}
\]

\[
= \frac{(k - 1 - (k - 2)y_0)y_0^{n_2} - (1 + (k - 2)y_0)(1 - y_0)^{n_2}}{2y_0 - 1}
\]

\[
= D_{n_2,k}(1, x_0)
\] as desired. This ends the proof of Theorem 2.4.

Evidently, by Theorem 2.2 (i) and Theorem 2.4 (i) one can derive that (1.3) and (1.4) are true.

Proposition 2.5. Let \(n \geq 2 \) be an integer. Then the recursion

\[
D_{n,k}(1, x) = D_{n-1,k}(1, x) - xD_{n-2,k}(1, x)
\]

holds for any \(x \in \mathbb{F}_q \).
Proof. We consider the following two cases.

CASE 1. \(x \neq \frac{1}{4} \). For this case, one may let \(x = y(1-y) \) with \(y \in \mathbb{F}_{q^2} \setminus \{ \frac{1}{2} \} \). Then by Theorem 2.4 (i), we have

\[
D_{n-1,k}(1, x) - xD_{n-2,k}(1, x) = D_{n-1,k}(1, y(1-y)) - y(1-y)D_{n-2,k}(1, y(1-y)) = \frac{(k-1 -(k-2)y)y^{n-1} - (1 + (k-2)y)(1-y)^{n-1}}{2y-1} - y(1-y)\frac{(k-1 -(k-2)y)y^{n-2} -(1 + (k-2)y)(1-y)^{n-2}}{2y-1} = \frac{(k-1 -(k-2)y)y^n - (1 + (k-2)y)(1-y)^n}{2y-1} = D_{n,k}(1, x)
\]
as required.

CASE 2. \(x = \frac{1}{4} \). Then by Theorem 2.4 (i), we have

\[
D_{n-1,k}\left(1, \frac{1}{4}\right) - \frac{1}{4}D_{n-2,k}\left(1, \frac{1}{4}\right) = \frac{k(n-1) - k + 2}{2^{n-1}} - \frac{1}{4} \frac{k(n-2) - k + 2}{2^{n-2}} = \frac{kn - k + 2}{2^n} = D_{n,k}\left(1, \frac{1}{4}\right).
\]

This concludes the proof of Proposition 2.5.

By Proposition 2.5, we can obtain the generating function of the reversed Dickson polynomial \(D_{n,k}(1, x) \) of the \(k+1 \)-th kind as follows.

Proposition 2.6. The generating function of \(D_{n,k}(1, x) \) is given by

\[
\sum_{n=0}^{\infty} D_{n,k}(1, x)t^n = \frac{(k-1)t - k + 2}{1 - t + xt^2}.
\]

Proof. By the recursion presented in Proposition 2.5, we have

\[
(1 - t + xt^2) \sum_{n=0}^{\infty} D_{n,k}(1, x)t^n = \sum_{n=0}^{\infty} D_{n,k}(1, x)t^n - \sum_{n=0}^{\infty} D_{n,k}(1, x)t^{n+1} + x \sum_{n=0}^{\infty} D_{n,k}(1, x)t^{n+2} = (k-1)t - k + 2 + \sum_{n=0}^{\infty} (D_{n+2,k}(1, x) - D_{n+1,k}(1, x) + xD_{n,k}(1, x))t^{n+2} = (k-1)t - k + 2.
\]

Thus the desired result follows immediately.

Now we can use Theorem 2.4 to present an explicit formula for \(D_{n,k}(1, x) \) when \(n \) is a power of the characteristic \(p \). Then we show that \(D_{n,k}(1, x) \) is not a PP of \(\mathbb{F}_q \) in this case.
Proposition 2.7. Let $p = \text{char}(\mathbb{F}_q) > 3$ and s be a positive integer. Then

$$2^{p^s} D_{p^s,k}(1, x) + k - 2 = k(1 - 4x)^{\frac{p^s - 1}{p - 1}}.$$

Proof. We consider the following two cases.

CASE 1. $x \neq \frac{1}{4}$. For this case, putting $x = y(1 - y)$ in Theorem 2.4 (i) gives us that

$$D_{p^s,k}(1, x) = D_{p^s,k}(1, y(1 - y)) = \frac{(k - 1 - (k - 2)y)y^{p^s} - (1 + (k - 2)y)(1 - y)^{p^s}}{2y - 1} = \frac{k + (2 - k)u(u + 1)p^s}{u} - \frac{k + (k - 2)u(1 + 1)p^s}{u} = \frac{1}{2^{p^s+1}u}((k + (2 - k)u)(u + 1)p^s - (k + (k - 2)u)(1 - u)p^s) = \frac{1}{2^{p^s}(ku^{p^s - 1} - k + 2)},$$

where $u = 2y - 1$. So we obtain that

$$2^{p^s} D_{p^s,k}(1, x) = k(u^2)^{\frac{p^s - 1}{p - 1}} - k + 2 = k((2y - 1)^2)^{\frac{p^s - 1}{p - 1}} - k + 2,$$

which infers that

$$2^{p^s} D_{p^s,k}(1, x) + k - 2 = k(1 - 4x)^{\frac{p^s - 1}{p - 1}}$$

as desired.

CASE 2. $x = \frac{1}{4}$. By Theorem 2.4 (i), one has

$$2^{p^s} D_{p^s,k}(1, \frac{1}{4}) + k - 2 = 2^{p^s} \frac{kp^s - k + 2}{2^{p^s}} + k - 2 = 0 = k(1 - 4 \times \frac{1}{4})^{\frac{p^s - 1}{p - 1}}$$

as required. So Proposition 2.7 is proved.

It is well known that every linear polynomial over \mathbb{F}_q is a PP of \mathbb{F}_q and that the monomial x^n is a PP of \mathbb{F}_q if and only if $\gcd(n, q - 1) = 1$. Then by Proposition 2.7, we have the following result.

Corollary 2.8. Let $p > 3$ be a prime and $q = p^e$. Let e and s be positive integers with $s \leq e$. Then $D_{p^s,k}(1, x)$ is not a PP of \mathbb{F}_q.

Proof. By Proposition 2.7, we know that $D_{p^s,k}(1, x)$ is a PP of \mathbb{F}_q if and only if

$$(1 - 4x)^{\frac{p^s - 1}{p - 1}}$$

is a PP of \mathbb{F}_q which is equivalent to

$$\gcd\left(\frac{p^s - 1}{2}, q - 1\right) = 1.$$

The latter one is impossible since $\frac{p^s - 1}{2} | \gcd\left(\frac{p^s - 1}{2}, q - 1\right)$ implies that

$$\gcd\left(\frac{p^s - 1}{2}, q - 1\right) \geq \frac{p - 1}{2} > 1.$$

Thus $D_{p^s,k}(1, x)$ is not a PP of \mathbb{F}_q.

Proposition 2.9. Let \(p = \text{char}(\mathbb{F}_q) > 3 \) and \(s \) and \(l \) be integers such that \(0 < s < l \). Then
\[
D_{p^r+p^s, k}(1, x) = \frac{k}{4} \left((1 - 4x)^{p^r + p^s} + (1 - 4x)^{p^r + p^s} - \frac{k - 2}{4}(1 + (1 - 4x)^{p^r + p^s})\right).
\]

Proof. We consider the following two cases.

Case 1. \(x \neq \frac{1}{2} \). For this case, putting \(x = y(1 - y) \) in Theorem 2.4 (i) gives us that
\[
D_{p^r+p^s, k}(1, x) = D_{p^r+p^s, k}(1, y(1 - y)) \]
\[
= \frac{(k - 1 - (k - 2)y)y^{p^r + p^s} - (1 + (k - 2)y)(1 - y)^{p^r + p^s}}{2y - 1} \]
\[
= \frac{k}{4} \left((u^2)^{p^r + p^s} + (1 + u^{p^r + p^s}) - \frac{k - 2}{4}(1 + (u^2)^{p^r + p^s})\right),
\]
where \(u = 2y - 1 \) and \(u^2 = 1 - 4x \). So we obtain that
\[
D_{n,k}(1, x) = \frac{k}{4} \left((1 - 4x)^{p^r + p^s} + (1 - 4x)^{p^r + p^s} - \frac{k - 2}{4}(1 + (1 - 4x)^{p^r + p^s})\right)
\]
as desired.

Case 2. \(x = \frac{1}{2} \). By Theorem 2.4 (i), one has
\[
D_{p^r+p^s, k}(1, \frac{1}{2}) = \frac{k(p^r + p^s) - k + 2}{2p^r + p^s} = \frac{-k + 2}{4}.
\]

Besides,
\[
\frac{k}{4} \left((1 - 4x)^{p^r + p^s} + (1 - 4x) \frac{k}{4} \right) - \frac{k - 2}{4}(1 + (1 - 4x)^{p^r + p^s}) = \frac{-k + 2}{4}.
\]
Thus the required result follows. So Proposition 2.9 is proved. \(\square \)

Lemma 2.10. \(\mathbb{F}_2 \) Let \(x \in \mathbb{F}_q \). Then \(x(1 - x) \in \mathbb{F}_q \) if and only if \(x^q = x \) or \(x^q = 1 - x \).

Let \(V \) be defined by
\[
V := \{ x \in \mathbb{F}_q : x^q = 1 - x \}.
\]
Clearly, \(\mathbb{F}_q \cap V = \{ \frac{1}{2} \} \). Then we obtain a characterization for \(D_{n,k}(1, x) \) to be a PP of \(\mathbb{F}_q \) as follows.

Theorem 2.11. Let \(q = p^e \) with \(p > 3 \) being a prime and \(e \) being a positive integer. Let
\[
f : y \mapsto \frac{k(1 - (k - 2)y)y^n - (1 + (k - 2)y)(1 - y)^n}{2y - 1}
\]
be a mapping on \((\mathbb{F}_q \cup V) \setminus \{ \frac{1}{2} \} \). Then \(D_{n,k}(1, x) \) is a PP of \(\mathbb{F}_q \) if and only if \(f \) is 2-to-1 and \(f(y) \neq \frac{k_n - k + 2}{2} \) for any \(y \in (\mathbb{F}_q \cup V) \setminus \{ \frac{1}{2} \} \).

Proof. First, we show the sufficiency part. Let \(f \) be 2-to-1 and \(f(y) \neq \frac{k_n - k + 2}{2} \) for any \(y \in (\mathbb{F}_q \cup V) \setminus \{ \frac{1}{2} \} \). Let \(D_{n,k}(1, x_1) = D_{n,k}(1, x_2) \) for \(x_1, x_2 \in \mathbb{F}_q \). To show that \(D_{n,k}(1, x) \) is a PP of \(\mathbb{F}_q \), it suffices to show that \(x_1 = x_2 \) that will be done in what follows.

First of all, one can find \(y_1, y_2 \in \mathbb{F}_q \) satisfying \(x_1 = y_1(1 - y_1) \) and \(x_2 = y_2(1 - y_2) \). By Lemma 2.10, we know that \(y_1, y_2 \in \mathbb{F}_q \cup V \). We divide the proof into the following two cases.
Case 1. At least one of x_1 and x_2 is equal to $\frac{1}{2}$. Without loss of any generality, we may let $x_1 = \frac{1}{2}$. So by Theorem 2.4 (i), one derives that

$$D_{n,k}(1, x_2) = D_{n,k}(1, x_1) = D_{n,k}(1, x_1) = \frac{kn - k + 2}{2^n}. \quad (2.4)$$

We claim that $x_2 = \frac{1}{2}$. Assume that $x_2 \neq \frac{1}{2}$. Then $y_2 \neq \frac{1}{2}$. Since $f(y) \neq \frac{kn - k + 2}{2^n}$ for any $y \in (\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$, by Theorem 2.4 (i), we get that

$$D_{n,k}(1, x_2) = \frac{(k - 1 - (k - 2)y_2)y_2^n - (1 + (k - 2)y_2)(1 - y_2)^n}{2y_2 - 1} = f(y_2) \neq \frac{kn - k + 2}{2^n},$$

which contradicts to (2.4). Hence the claim is true, and so we have $x_1 = x_2$ as required.

Case 2. Both of x_1 and x_2 are not equal to $\frac{1}{2}$. Then $y_1 \neq \frac{1}{2}$ and $y_2 \neq \frac{1}{2}$. Since $D_{n,k}(1, x_1) = D_{n,k}(1, x_2)$, by Theorem 2.4 (i), one has

$$\frac{(k - 1 - (k - 2)y_1)y_1^n - (1 + (k - 2)y_1)(1 - y_1)^n}{2y_1 - 1} = \frac{(k - 1 - (k - 2)y_2)y_2^n - (1 + (k - 2)y_2)(1 - y_2)^n}{2y_2 - 1},$$

which is equivalent to $f(y_1) = f(y_2)$. However, f is a 2-to-1 mapping on $(\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$, and $f(y_2) = f(1 - y_2)$ by the definition of f. It then follows that $y_1 = y_2$ or $y_1 = 1 - y_2$.

Thus $x_1 = x_2$ as desired. Hence the sufficiency part is proved.

Now we prove the necessity part. Let $D_{n,k}(1, x)$ be a PP of \mathbb{F}_q. Choose two elements $y_1, y_2 \in (\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$ such that $f(y_1) = f(y_2)$, that is,

$$\frac{(k - 1 - (k - 2)y_1)y_1^n - (1 + (k - 2)y_1)(1 - y_1)^n}{2y_1 - 1} = \frac{(k - 1 - (k - 2)y_2)y_2^n - (1 + (k - 2)y_2)(1 - y_2)^n}{2y_2 - 1}. \quad (2.5)$$

Since $y_1, y_2 \in (\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$, it follows from Lemma 2.10 that $y_1(1 - y_1) \in \mathbb{F}_q$ and $y_2(1 - y_2) \in \mathbb{F}_q$. So by Theorem 2.4 (i), (2.5) implies that

$$D_{n,k}(1, y_1(1 - y_1)) = D_{n,k}(1, y_2(1 - y_2)).$$

Thus $y_1(1 - y_1) = y_2(1 - y_2)$ since $D_{n,k}(1, x)$ is a PP of \mathbb{F}_q, which infers that $y_1 = y_2$ or $y_1 = 1 - y_2$. Since $y_2 \neq \frac{1}{2}$, one has $y_2 \neq 1 - y_2$. Therefore f is a 2-to-1 mapping on $(\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$.

Now take $y' \in (\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\}$. Then from Lemma 2.10 it follows that $y'(1 - y') \in \mathbb{F}_q$ and

$$y'(1 - y') \neq \frac{1}{2}(1 - \frac{1}{2}).$$

Notice that $D_{n,k}(1, x)$ is a PP of \mathbb{F}_q. Hence one has

$$D_{n,k}(1, y'(1 - y')) \neq D_{n,k}\left(1, \frac{1}{2}(1 - \frac{1}{2})\right).$$

But Theorem 2.4 (i) tells us that

$$D_{n,k}\left(1, \frac{1}{2}(1 - \frac{1}{2})\right) = \frac{kn - k - 2}{2^n}.$$

Then by Theorem 2.4 (i) and noting that $y' \neq \frac{1}{2}$, we have

$$\frac{(k - 1 - (k - 2)y')y'^n - (1 + (k - 2)y')(1 - y')^n}{2y' - 1}.$$
which infers that \(f(y') \neq \frac{k_n-k-2}{2^n} \) for any \(y' \in (\mathbb{F}_q \cup V) \setminus \{\frac{1}{2}\} \). So the necessity part is proved.

The proof of Theorem 2.11 is complete. \(\square \)

3. A NECESSARY CONDITION FOR \(D_{n,k}(1,x) \) TO BE PERMUTATIONAL AND AN AUXILIARY POLYNOMIAL

In this section, we study a necessary condition on \(n \) for \(D_{n,k}(1,x) \) to be a PP of \(\mathbb{F}_q \).

In particular, if \(k = 3 \), then it is easy to check that

\[
D_{0,k}(1,0) = 2 - k, D_{n,k}(1,0) = 1
\]

for any \(n \geq 1 \) and

\[
D_{0,k}(1,1) = 2 - k, D_{1,k}(1,1) = 1, D_{n+2,k}(1,1) = D_{n+1,k}(1,1) - D_{n,k}(1,1)
\]

for \(n \geq 0 \), then one can easily show that the sequences \(\{D_{n,k}(1,1)|n \in \mathbb{N}\} \) are periodic with the smallest positive periods 6. In fact, one has

\[
D_{n,k}(1,1) = \begin{cases}
2 - k, & \text{if } n \equiv 0 \pmod{6}, \\
1, & \text{if } n \equiv 1 \pmod{6}, \\
k - 1, & \text{if } n \equiv 2 \pmod{6}, \\
k - 2, & \text{if } n \equiv 3 \pmod{6}, \\
-1, & \text{if } n \equiv 4 \pmod{6}, \\
1 - k, & \text{if } n \equiv 5 \pmod{6}
\end{cases}
\]

Theorem 3.1. Assume that \(D_{n,k}(1,x) \) is a PP of \(\mathbb{F}_q \) with \(q = p^e \) and \(p > 3 \). Then \(n \neq 1 \pmod{6} \).

Proof. Let \(D_{n,k}(1,x) \) be a PP of \(\mathbb{F}_q \). Then \(D_{n,k}(1,0) \) and \(D_{n,k}(1,1) \) are distinct. Then by the above results, the desired result \(n \neq 1 \pmod{6} \) follows immediately. \(\square \)

Let \(n, k \) be nonnegative integers. We define the following auxiliary polynomial \(p_{n,k}(x) \in \mathbb{Z}[x] \) by

\[
p_{n,k}(x) := k \sum_{j \geq 0} \left(\frac{n}{2j+1} \right) x^j - (k - 2) \sum_{j \geq 0} \left(\frac{n}{2j} \right) x^j
\]

for \(n \geq 1 \) and \(p_{0,k}(x) := 2^n(2 - k) \). Then we have the following relation between \(D_{n,k}(1,x) \) and \(p_{n,k}(x) \).

Theorem 3.2. Let \(p > 3 \) be a prime and \(n \geq 0 \) be an even integer. Then

(i). One has

\[
D_{n,k}(1,x) = \frac{1}{2^n} f_n(1 - 4x).
\]

(ii). We have that \(D_{n,k}(1,x) \) is a PP of \(\mathbb{F}_q \) if and only if \(p_{n,k}(x) \) is a PP of \(\mathbb{F}_q \).

Proof. (i). Clearly, (3.1) follows from the definitions of \(p_{0,k}(x) \) and \(D_{0,k}(1,x) \) if \(n = 0 \). Then we assume that \(n \geq 1 \) in what follows.
First, let \(x \in \mathbb{F}_q \setminus \{ \frac{1}{4} \} \). Then there exists \(y \in \mathbb{F}_{q^2} \setminus \{ \frac{1}{2} \} \) such that \(x = y(1 - y) \). Let \(u = 2y - 1 \). It then follows from Theorem 2.4 (i) that

\[
D_{n,k}(1, x) = D_{n,k}(1, y(1 - y)) = \frac{(k - 1 - (k - 2)y)y^n - (1 + (k - 2)y)(1 - y)^n}{2y - 1} = \frac{-(k-2)u+k}{u} \frac{(u+1)^n}{2} \frac{-(k-2)u+1}{2} \frac{(1-u)^n}{u} = \frac{1}{2^{n+1}u} \left(k((u+1)^n - (1-u)^n) - (k-2)u((u+1)^n + (1-u)^n) \right) = \frac{1}{2^n} \left(k \sum_{j \geq 0} \binom{n}{2j+1} x^j - (k-2) \sum_{j \geq 0} \binom{n}{2j} u^{2j} \right) = \frac{1}{2^n} p_{n,k}(u^2) = \frac{1}{2^n} p_{n,k}(1 - (4y(1-y))) = \frac{1}{2^n} p_{n,k}(1 - 4x)
\]

as desired. So (3.1) holds in this case.

Consequently, we let \(x = \frac{1}{4} \). Then by Theorem 2.4 (i), we have

\[
D_{n,k} \left(1, \frac{1}{4} \right) = \frac{kn - k + 2}{2^n}.
\]

On the other hand, we can easily check that \(p_{n,k}(0) = kn - k + 2 \). Therefore

\[
D_{n,k} \left(1, \frac{1}{4} \right) = \frac{1}{2^n} p_{n,k}(0) = \frac{1}{2^n} p_{n,k}(0) \left(1 - 4 \times \frac{1}{4} \right)
\]

as one desires. So (3.1) is proved.

(ii). Notice that \(\frac{1}{4} \in \mathbb{F}_{q^2}^* \) and \(1 - 4x \) is linear. So \(D_{n,k}(1, x) \) is a PP of \(\mathbb{F}_q \) if and only if \(p_{n,k}(x) \) is a PP of \(\mathbb{F}_q \). This ends the proof of Theorem 3.2. \(\square \)
4. The first moment $\sum_{n=1}^{\infty} D_{n,k}(1,x)$

In this section, we compute the first moment $\sum_{n=1}^{\infty} D_{n,k}(1,x)$. By Proposition 2.6, one has

$$\sum_{n=0}^{\infty} D_{n,k}(1,x)t^n = \frac{(k-1)t-k+2}{1-t+xt^2} = \frac{(k-1)t-k+2}{1-t} \frac{1}{1-\ell^2 x}$$

$$= \frac{(k-1)t-k+2}{1-t} \left(1 + \sum_{m=1}^{\infty} \sum_{\ell=0}^{\infty} \left(\frac{t^2}{t-1} \right)^m x^m \right) (\mod x^q - x)$$

$$= \frac{(k-1)t-k+2}{1-t} \left(1 + \sum_{m=1}^{\infty} \frac{\left(\frac{t^2}{t-1} \right)^m}{1-\ell^2 x} x^m \right)$$

$$= \frac{(k-1)t-k+2}{1-t} \left(1 + \sum_{m=1}^{\infty} \frac{(t-1)^{q-1-k}2^m}{(t-1)^{q-1} - \ell^2(q-1)^{-1} x^m} \right). \quad (4.1)$$

Moreover, by Theorem 2.4 (ii), it follows that for any $x \in \mathbb{F}_q \setminus \{1\}$, one has

$$D_{n_1,k}(1,x) = D_{n_2,k}(1,x)$$

when $n_1 \equiv n_2 \pmod{q^2-1}$. Thus if $x \neq \frac{1}{q}$, one has

$$\sum_{n=0}^{\infty} D_{n,k}(1,x)t^n = 1 + \sum_{n=1}^{\infty} \sum_{\ell=0}^{q^2-1} D_{n+\ell(q^2-1),k}(1,x)t^{n+\ell(q^2-1)}$$

$$= 1 + \sum_{n=1}^{q^2-1} D_{n,k}(1,x) \sum_{\ell=0}^{\infty} t^{n+\ell(q^2-1)}$$

$$= 1 + \frac{1}{1-t^{q^2-1}} \sum_{n=1}^{q^2-1} D_{n,k}(1,x)t^n. \quad (4.2)$$

Then (4.1) together with (4.2) gives that for any $x \neq \frac{1}{q}$, we have

$$\sum_{n=1}^{q^2-1} D_{n,k}(1,x)t^n$$

$$= (\sum_{n=0}^{\infty} D_{n,k}(1,x)t^n - 1) \left(1 - t^{q^2-1} \right)$$

$$= \left(\frac{(k-1)t-k+2}{1-t} - 1 \right) \left(1 - t^{q^2-1} \right)$$

$$+ \frac{(1-t^{q^2-1})(k-1)t-k+2}{1-t} \sum_{m=1}^{q^2-1} \frac{(t-1)^{q-1-m}2^m}{(t-1)^{q-1} - \ell^2(q-1)^{-1} x^m} (\mod x^q - x)$$

$$= \frac{(kt+1-k)(1-t^{q^2-1})}{1-t} + h(t) \sum_{m=1}^{q^2-1} \frac{(t-1)^{q-1-m}2^m x^m}, \quad (4.3)$$

where
\[h(t) := \frac{(t^{q^2-1} - 1)(k - 1)t - k + 2}{(t - 1)^q - (t - 1)t^{2(q-1)}}. \]

Lemma 4.1. Let \(u_0, u_1, \ldots, u_{q-1} \) be the list of the all elements of \(\mathbb{F}_q \). Then
\[
\sum_{i=0}^{q-1} u_i^k = \begin{cases}
0, & \text{if } 0 \leq k \leq q-2, \\
-1, & \text{if } k = q-1.
\end{cases}
\]

Now by Theorem 2.4 (i), Lemma 4.1 and (4.3), we derive that
\[
\sum_{n=1}^{q^2-1} \sum_{a \in \mathbb{F}_q} D_{n,k}(1,a) t^n
= \sum_{n=1}^{q^2-1} D_{n,k}(1,\frac{1}{4}) t^n + \sum_{n=1}^{q^2-1} \sum_{a \in \mathbb{F}_q \setminus \{\frac{1}{4}\}} D_{n,k}(1,a) t^n
= \sum_{n=1}^{q^2-1} \frac{kn - k + 2}{2^n} t^n + \sum_{a \in \mathbb{F}_q \setminus \{\frac{1}{4}\}} (kt + 1 - k)(1 - t^{q^2-1}) + h(t) \sum_{m=1}^{q-1} (t - 1)^{q - 1 - m} t^{2m} a^m
= \sum_{n=1}^{q^2-1} \frac{kn - k + 2}{2^n} t^n + (q-1)(kt + 1 - k)(1 - t^{q^2-1}) + h(t) \sum_{m=1}^{q-1} (t - 1)^{q - 1 - m} t^{2m} a^m
- h(t) \sum_{m=1}^{q-1} (t - 1)^{q - 1 - m} t^{2m} \left(\frac{1}{4}\right)^m
= \sum_{n=1}^{q^2-1} \frac{kn - k + 2}{2^n} t^n - \frac{(kt + 1 - k)(1 - t^{q^2-1})}{1 - t} - h(t)t^{2(q-1)} - h(t) \sum_{m=1}^{q-1} (t - 1)^{q - 1 - m} t^{2m} \left(\frac{1}{4}\right)^m.
\]

(4.4)

Since \((t - 1)^q = t^q - 1 \) and \(q \) is odd, one has
\[
\begin{align*}
\frac{q^2 - q}{t^q - t^{q-1}} &:= -1 - (t - t^q)^{q-1}.
\end{align*}
\]
Then by the binomial theorem applied to \((t - t^q)^{q-1}\), we can derive the following expression for the coefficient \(b_i\).

Proposition 4.2. For each integer \(i\) with \(0 \leq i \leq q^2 - q\), write \(i = \alpha + \beta q\) with \(\alpha\) and \(\beta\) being integers such that \(0 \leq \alpha, \beta \leq q - 1\). Then

\[
b_i = \begin{cases}
(1-\beta+1)^{(q-1)}_{\beta}, & \text{if } \alpha + \beta = q - 1, \\
-1, & \text{if } \alpha = \beta = 0, \\
0, & \text{otherwise}.
\end{cases}
\]

For convenience, let

\[
a_n := \sum_{a \in \mathbb{F}_q} D_{n,k}(1, a).
\]

Then by (4.4) and (4.5), we arrive at

\[
\sum_{n=1}^{q^2-1} (a_n - \frac{kn-k+2}{2^n}) t^n
\]

\[
= - \frac{(kt+1-k)(1 - t^{q-1})}{1 - t} \left(t^{2(q-1)} + \sum_{m=1}^{q-1} (t - 1)^{q-1-k} t^k \left(\frac{1}{4} \right)^m \right)
\]

which implies that

\[
(t^q - t^{q-1} - 1) \sum_{n=1}^{q^2-1} (a_n - \frac{kn-k+2}{2^n}) t^n
\]

\[
= - (t^q - t^{q-1} - 1)(kt+1-k) \sum_{i=0}^{q^2-2} t^i - (2t-1) \left(t^{2(q-1)} + \sum_{k=1}^{q-1} (t - 1)^{q-1-k} t^k \left(\frac{1}{4} \right)^{q-k} \right) \sum_{i=0}^{q^2-q} b_it^i.
\]

Let

\[
\sum_{i=1}^{q^2+q-1} c_i t^i
\]

denote the right-hand side of (4.8) and let

\[
d_n := a_n - \frac{kn-k+2}{2^n}
\]

for each integer \(n\) with \(1 \leq n \leq q^2 - 1\). Then (4.8) can be reduced to

\[
(t^q - t^{q-1} - 1) \sum_{n=1}^{q^2-1} d_n t^n = \sum_{i=1}^{q^2+q-1} c_i t^i.
\]

Then by comparing the coefficient of \(t^i\) with \(1 \leq i \leq q^2 + q - 1\) of the both sides in (4.9), we derive the following relations:

\[
\begin{align*}
 c_j &= -d_j, & \text{if } 1 \leq j \leq q - 1, \\
 c_q &= -d_1 - d_q, \\
 c_{q+j} &= d_j - d_{j+1} - d_q, & \text{if } 1 \leq j \leq q^2 - q - 1, \\
 c_{q^2+j} &= d_{q^2+q+j} - d_{q^2+q+j+1}, & \text{if } 0 \leq j \leq q - 2, \\
 c_{q^2+q-1} &= d_{q^2-1}.
\end{align*}
\]
from which we can deduce that

\[
\begin{aligned}
 d_j &= -c_j, & \text{if } 1 \leq j \leq q - 1, \\
 d_q &= c_1 - c_q, \\
 d_{\ell q + j} &= d_{(\ell - 1)q + j} - d_{(\ell - 1)q + j + 1} - c_{\ell q + j}, & \text{if } 1 \leq \ell \leq q - 2 \text{ and } 1 \leq j \leq q - 1, \\
 d_{\ell q} &= d_{(\ell - 1)q} - d_{(\ell - 1)q + 1} - c_{\ell q}, & \text{if } 2 \leq \ell \leq q - 2, \\
 d_{q^2 - q + j} &= \sum_{i=j}^{q-1} c_{q^2 + i}, & \text{if } 0 \leq j \leq q - 1.
\end{aligned}
\]

(4.10)

Finally, (4.10) together with the following identity

\[
\sum_{a \in \mathbb{F}_q} D_{n,k}(1,a) = d_n + \frac{kn - k + 2}{2^n}
\]

shows that the last main result of this paper is true:

Theorem 4.3. Let \(c_i \) be the coefficient of \(t^i \) in the right-hand side of (4.8) with \(i \) being an integer such that \(1 \leq i \leq q^2 + q - 1 \). Then we have

\[
\sum_{a \in \mathbb{F}_q} D_{j,k}(1,a) = -c_j + \frac{kj - k + 2}{2j} \text{ if } 1 \leq j \leq q - 1,
\]

\[
\sum_{a \in \mathbb{F}_q} D_{q,k}(1,a) = c_1 - c_q - \frac{k - 2}{2},
\]

\[
\sum_{a \in \mathbb{F}_q} D_{\ell q + j,k}(1,a) = \sum_{a \in \mathbb{F}_q} D_{(\ell - 1)q + j,k}(1,a) - \sum_{a \in \mathbb{F}_q} D_{(\ell - 1)q + j + 1,k}(1,a) - c_{\ell q + j} + \frac{k}{2\ell + 2}
\]

if \(1 \leq \ell \leq q - 2 \text{ and } 1 \leq j \leq q - 1,\)

\[
\sum_{a \in \mathbb{F}_q} D_{\ell q,k}(1,a) = \sum_{a \in \mathbb{F}_q} D_{(\ell - 1)q,k}(1,a) - \sum_{a \in \mathbb{F}_q} D_{(\ell - 1)q + 1,k}(1,a) - c_{\ell q} + \frac{k}{2\ell} \text{ if } 2 \leq \ell \leq q - 2
\]

and

\[
\sum_{a \in \mathbb{F}_q} D_{q^2 - q + j,k}(1,a) = \sum_{i=j}^{q-1} c_{q^2 + i} + \frac{kj - k + 2}{2j} \text{ if } 0 \leq j \leq q - 1.
\]

Acknowledgment

The author would like to thank Professor Shaofang Hong for pointing out to him in early April that the arguments for the second kind case and for the fourth kind case presented in [3] and [1], respectively, work also for the general \((k + 1)\)-th kind case.

References

[1] K. Cheng, S. Hong and X. Qin, Reversed Dickson polynomials of the fourth kind over finite fields, arXiv:1604.04557.

[2] S.D. Cohen, Dickson polynomials of the second kind that are permutations, Canad. J. Math. 46 (1994), 225-238.

[3] S. Hong, X. Qin and W. Zhao, Necessary conditions for reversed Dickson polynomials of the second kind to be permutational, Finite Fields Appl. 37 (2016), 54-71.

[4] X. Hou and T. Ly, Necessary conditions for reversed Dickson polynomials to be permutational, Finite Fields Appl. 16 (2010), 436-448.

[5] X. Hou, G.L. Mullen, J.A. Sellers and J.L. Yucas, Reversed Dickson polynomials over finite fields, Finite Fields Appl. 15 (2009), 748-773.

[6] R. Lidl and H. Niederreiter, Finite Fields, second ed., Encyclopedia of Mathematics and its Applications, vol.20, Cambridge University Press, Cambridge, 1997.
[7] Q. Wang and J.L. Yucas, Dickson polynomials over finite fields, Finite Fields Appl. 18 (2012), 814-831.