Results are presented from a search for heavy, right-handed muon neutrinos, $N_\mu$, and right-handed WR bosons, which arise in the left-right symmetric extensions of the standard model. The analysis is based on a 5.0 fb$^{-1}$ sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS detector at the Large Hadron Collider. No evidence is observed for an excess of events over the standard model expectation. For models with exact left-right symmetry, heavy right-handed neutrinos are excluded at 95% confidence level for a range of neutrino masses below the WR mass, dependent on the value of $M_{WR}$. The excluded region in the two-dimensional ($M_{WR}, M_{N_\mu}$) mass plane extends to $M_{WR}=2.5$ TeV.
Search for Heavy Neutrinos and $W_R$ Bosons with Right-Handed Couplings in a Left-Right Symmetric Model in $pp$ Collisions at $\sqrt{s} = 7$ TeV

S. Chatrchyan et al.\textsuperscript{*}

(CMS Collaboration)

(Received 8 October 2012; published 27 December 2012)

Results are presented from a search for heavy, right-handed muon neutrinos, $N_\mu$, and right-handed $W_R$ bosons, which arise in the left-right symmetric extensions of the standard model. The analysis is based on a 5.0 fb\(^{-1}\) sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS detector at the Large Hadron Collider. No evidence is observed for an excess of events over the standard model expectation. For models with exact left-right symmetry, heavy right-handed neutrinos are excluded at 95% confidence level for a range of neutrino masses below the $W_R$ mass, dependent on the value of $M_{N_\mu}$. The excluded region in the two-dimensional $(M_{W_R}, M_{N_\mu})$ mass plane extends to $M_{W_R} = 2.5$ TeV.

DOI: 10.1103/PhysRevLett.109.261802

PACS numbers: 13.85.Rm, 12.60.Cn, 14.60.St

The maximal violation of parity conservation is a prominent feature of neutrino interactions that is included in the standard model (SM) in terms of purely left-handed couplings to the W boson. In addition, the observation of neutrino oscillations (see e.g. [1]), together with direct limits on neutrino masses [2], has demonstrated that neutrinos have tiny but nonvanishing masses, suggesting a distinct origin from the masses of the quarks and leptons.

The left-right (LR) symmetric extension of the standard model [3–6] provides a possible explanation for neutrino mass through the seesaw mechanism [7]. The LR symmetry is spontaneously broken at a multi-TeV mass scale, leading to parity violation in weak interactions as described by the SM. By introducing a right-handed SU(2) symmetry group, the LR model incorporates heavy right-handed Majorana neutrinos ($N_\ell$, $\ell = e, \mu, \tau$) as well as additional charged ($W^{\pm}_R$) and neutral ($Z_R$) gauge bosons.

We search for the production of $W_R$ bosons from proton-proton collisions at the Large Hadron Collider (LHC). The $W_R$ boson is assumed to decay to a muon and to a right-handed neutrino $N_\mu$, which subsequently decays to produce a second muon together with a virtual $W^+_R$. If the $N_\mu$ is a Majorana particle as predicted in the LR model, the two final state muons may have the same sign. The virtual $W^+_R$ decays to a pair of quarks which hadronize into jets ($j$), resulting in a final state with two muons and two jets:

$$W_R \rightarrow \mu_1 N_\mu \rightarrow \mu_1 \mu_2 W^+_R \rightarrow \mu_1 \mu_2 q q' \rightarrow \mu_1 \mu_2 j_1 j_2.$$  

The search presented in this Letter is characterized by the $W_R$ and $N_\mu$ masses, $M_{W_R}$ and $M_{N_\mu}$, which are allowed to vary independently. Although $M_{N_\mu} > M_{W_R}$ is allowed, it is not considered in this analysis. The branching fraction for $W_R \rightarrow \mu N_\mu$ depends on the number of heavy neutrino flavors that are accessible at LHC energies. To simplify the interpretation of the results, $N_\mu$ is assumed to be the only heavy neutrino flavor light enough to contribute significantly to the $W_R$ decay width. CMS recently performed a search for heavy Majorana neutrinos in the final state containing two jets and two same-sign electrons or muons and set limits on the coupling between such a neutrino and the left-handed $W$ of the SM as a function of $M_{N_\mu}$ [8], while this analysis considers on-shell production of a right-handed $W_R$ boson. No charge requirements are imposed on the final state muons in this analysis.

For given $W_R$ and $N_\mu$ masses, the signal cross section can be predicted from the assumed value of the coupling constant $g_R$, which denotes the strength of the gauge interactions of $W^+_R$ bosons. Strict left-right symmetry implies that $g_R$ is equal to the (left-handed) weak interaction coupling strength $g_W$ at $M_{W_R}$, which will be assumed throughout this Letter. Consequently, the $W_R$ production cross section can be calculated from the FEWZ program [9] using the left-handed $W$ model [10,11]. As an additional simplification, the left-right boson and lepton mixing angles are assumed to be small.

Estimates based on $K_L\rightarrow K_S$ mixing results imply a theoretical lower limit of $M_{W_R} \approx 2.5$ TeV [12,13]. Searches for $W_R \rightarrow t b$ decays at the Tevatron [14–16] and at the LHC [17,18] exclude $W_R$ masses below 1.85 TeV. An ATLAS search for $W_R \rightarrow t N_\mu$ using similar model assumptions as those in this Letter, but allowing $W_R$ decays to both $N_e$ and $N_\mu$, excluded a region in the two-dimensional parameter $(M_{W_R}, M_{N_\mu})$ space extending to nearly $M_{W_R} = 2.5$ TeV [19].

The analysis is based on a 5.0 fb\(^{-1}\) sample of proton-proton collision data at a center-of-mass energy of 7 TeV, collected by the Compact Muon Solenoid (CMS) detector [20] at the LHC. The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing a field of 3.8 T. Within the field volume are the
silicon pixel and strip trackers, the lead-tungstate crystal electromagnetic calorimeter, and the brass and scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel return yoke, with detection planes made of three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. The CMS trigger system, composed of custom hardware processors at the first level followed by a processor farm at the next level, selects $O(100 \text{ Hz})$ of the most interesting events. The events used in this analysis were collected with single-muon direction of the transverse momentum of tracks within a cone about the muon. The transverse momentum of tracks within a cone about the muon is defined as $p_T = \sqrt{p_T^2 - m_\mu^2}$, where $m_\mu$ is the muon mass.

The $W_R \rightarrow \mu N_\mu$ signal samples are generated using PYTHIA 6.4.24 [21], which includes the LR symmetric model with the standard assumptions mentioned previously, with CTEQ6L1 parton distribution functions [22]. We also study SM background processes using simulated samples: $t\bar{t}$ and single-top (both generated using POWHEG [23]), $W$ and Drell-Yan production in association with jets (SHERPA [24]), and diboson production (PYTHIA). Generated events pass through the full CMS detector simulation based on GEANT [25].

The muon identification strategy is based on both the muon detectors and the inner tracker, described in Ref. [26]. At least one of the two muons used to define the $W_R$ candidate is required to be matched to a muon candidate found by the trigger, and both muons are required to satisfy the tight identification criteria discussed in Ref. [27]. The muon identification requirements ensure good consistency between the measurements of the muon detector and the inner tracker, and suppress muons from decay-in-flight of hadrons as well as from shower punch-through. Nonisolated muon backgrounds are controlled by computing the sum of the transverse momentum of tracks within a cone about the muon direction of $\Delta R < 0.3$, with $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, given the azimuthal angle $\phi$ and $\eta = -\ln[\tan(\theta/2)]$, where $\theta$ is the polar angle with respect to the beam direction. The final $p_T$ sum must be less than 10% of the muon transverse momentum.

Jets are reconstructed by forming clusters of charged and neutral hadrons, photons, and leptons that are first reconstructed based on the CMS particle-flow technique [28], using the anti-$k_T$ clustering algorithm [29] with a radius parameter $R = 0.5$. Energy deposits in the calorimeter with characteristics that match those of noise or beam halo tracks are identified, and events are rejected if either of the two highest-$p_T$ jet candidates was produced by such energy deposits. To suppress backgrounds from heavy-flavor-quark decays, any muon is rejected if found near a jet, with $\Delta R(\mu, j) < 0.5$.

In approximately 95% of simulated signal event samples, the $W_R$ final state decay products are the highest $p_T$ muons and jets in the event. $W_R \rightarrow \mu N_\mu$ candidates are thus formed from the two highest-$p_T$ muons and the two highest-$p_T$ jets in the event. As the initial two-body decay $W_R \rightarrow \mu N_\mu$ tends to produce a high-momentum muon, events are selected in which the leading muon has $p_T > 60 \text{ GeV}$ and the subleading muon has $p_T > 30 \text{ GeV}$. A minimum transverse momentum requirement of 40 GeV is imposed on the jet candidates after correcting for the effects of the extra $pp$ collisions in the event and the jet energy response of the detector. Backgrounds are suppressed by requiring the invariant mass of the dimuon system $M_{\mu\mu} > 200 \text{ GeV}$ and the four-object mass $M_{\mu\mu jj} > 600 \text{ GeV}$.

The signal acceptance is found to be typically near 80% at $M_{N_\mu} \sim M_{W_R}/2$ and decreases rapidly for $M_{N_\mu} \leq 0.10M_{W_R}$. At low neutrino mass, the $N_\mu \rightarrow \mu jj$ decay products tend to overlap due to the boost from $W_R$ decay, and the two jets may not be distinguishable or the muon from $N_\mu$ decay may be too close to a jet. For $W_R$ signal events which meet the kinematic acceptance requirements, the efficiency to reconstruct the four high-$p_T$ objects using the CMS detector ranges between 75% and 80% as a function of $W_R$ and $N_\mu$ mass.

After the muon requirements are applied, the SM backgrounds for $W_R \rightarrow \mu N_\mu$ consist primarily of events from processes with two isolated high-$p_T$ muons, namely $t\bar{t} \rightarrow bW + \bar{b}W^*$ and $Z +$ jets processes. The impact of the selection criteria on background processes is shown in Table I.

The $t\bar{t}$ background contribution is estimated using a control sample of $e\mu jj$ events reconstructed in data and simulation. This sample is dominated by $t\bar{t}$ events, with small contributions from other SM processes estimated using simulation. The simulated $t\bar{t}$ background

| Selection stage | Data | Signal | Total bkgd | $t\bar{t}$ | $Z +$ jets | Other |
|-----------------|------|--------|------------|-----------|-----------|-------|
| Two muons, two jets | 21 769 | 50 | 21 061 | 1603 | 19 136 | 322 |
| $\mu_t p_T > 60 \text{ GeV}$ | 13 328 | 50 | 12 862 | 1106 | 11 531 | 225 |
| $M_{\mu\mu} > 200 \text{ GeV}$ | 365 | 48 | 341 | 211 | 116 | 14 |
| $M_{\mu\mu jj} > 600 \text{ GeV}$ | 164 | 48 $\pm$ 13 | 152 $\pm$ 22 | 81 $\pm$ 18 | 65 $\pm$ 9 | 6 $\pm$ 3 |
The uncertainties associated with muon reconstruction and identification are determined from $Z \rightarrow \mu^+\mu^-$ events reconstructed in both data and simulation. The size of this uncertainty is about 15% for signal and 5% for background processes.

The shape of each SM background $M_{\mu\mu jj}$ distribution is modeled by an exponential ($e^{a+bM_{\mu\mu}}$) line shape, and the background contributions as a function of mass are determined from the result of fits applied to each background type: $t\bar{t}$, $Z$ + jets, and other SM backgrounds. The background uncertainty is dominated by the uncertainty in the background modeling and is computed as a function of $M_{\mu\mu jj}$ mass.

The uncertainty in the exponential fit is taken as the uncertainty due to background modeling. Each background distribution is also fit with an alternative suite of exponential functions to allow for deviations from the assumed shape at high mass. For a given $M_{\mu\mu jj}$ range, we take the maximum of the deviation, relative to the nominal exponential fit, from any alternative fit result as the uncertainty due to background modeling if this deviation exceeds the nominal fit uncertainty.

Uncertainties in the jet energy scale and resolution impact the shape of the signal and background $M_{\mu\mu jj}$ distributions, contributing less than 10% to the signal and background uncertainties. The normalization of the various background samples contributes 5% to the total uncertainty.Muon resolution and trigger efficiency uncertainties, and additional factorization and scale theoretical uncertainties, contribute to the total uncertainty to a lesser extent. The uncertainties in the total number of background events are derived taking into account the relative contribution of all background events after the full event selection, and the correlation of each effect between all background processes.

The total uncertainty for signal and background is summarized in Table I. The $M_{\mu\mu jj}$ distribution for events with $M_{\mu\mu} > 200$ GeV is presented in Fig. 1, which also summarizes the background uncertainty as a function of $M_{\mu\mu jj}$ and demonstrates the dominant background model uncertainty relative to the total background uncertainty.

As no evidence for $W_R \rightarrow N_\mu$ decay is found, limits on $W_R$ production are estimated using a multibin technique based on the ROOSTATS package [34]. The bin width of 200 GeV, comparable to the mass resolution for a reconstructed $W_R$ boson with mass below 2.5 TeV, is chosen for the $M_{\mu\mu jj}$ distributions used to compute the limits. The background inputs to the limit calculation use the results of the exponential fit, while the signal input is taken directly from the $M_{\mu\mu jj}$ distribution for each signal $W_R$ mass assumption. Uncertainties are included as nuisance parameters in the limit calculations. A CL-s limit setting technique [35,36] is used to estimate the 95% confidence level (CL) excluded region as a function of the $W_R$ cross section multiplied by the $W_R \rightarrow \mu\mu jj$ branching fraction.

The reconstructed four-object mass in data and simulation is used to estimate limits on $W_R$ production. The $M_{\mu\mu jj}$ distribution for $W_R \rightarrow \mu\mu jj$ signal events, for each $W_R$ mass assumption, is included together with the SM background distributions to search for evidence of $W_R$ production.

The dominant uncertainty related to $W_R \rightarrow \mu N_\mu$ production arises from the variation in the predicted signal production cross section as a result of the uncertainties in the parton distribution functions (PDFs) of the proton. This uncertainty varies between 4% and 22%, depending on the $W_R$ mass hypothesis, following the PDF4LHC prescriptions [31] for the CT10 [32] and MSTW2008 [33] PDF sets.
and $W_R$ mass. The observed and expected limits are found to be in agreement. These results (available in tabular form in the Supplemental Material [37]) can be used for the evaluation of models other than those considered in this Letter.

Limits as a function of $W_R$ mass for a right-handed neutrino with $M_{N/\ell} = \frac{1}{2} M_{W_R}$ are presented in Fig. 2. The theoretical expectation in Fig. 2 assumes that only $N/\ell$ contributes to the $W_R$ decay width, as mentioned previously. Assuming degenerate $N_\ell$ ($\ell = e, \mu, \tau$) masses allows $W_R \rightarrow eN_e$ and $W_R \rightarrow \tau N_\tau$ decays in addition to $W_R \rightarrow q\bar{q}$ and $W_R \rightarrow \mu N_\mu$ and effectively decreases the expected $W_R \rightarrow \mu \mu jj$ production rate by approximately 15%.

For the model considered in this Letter, Fig. 3 indicates the range of excluded $N_\mu$ masses as a function of $W_R$ mass by comparing the observed (expected) upper limit and the predicted cross section for each mass point. These limits extend to $M_{W_R} = 2.5$ TeV, and exclude a wide range of heavy neutrino masses for $W_R$ mass assumptions below this maximal value.

In summary, we have presented a search for the right-handed heavy muon neutrinos ($N/\mu$) and bosons ($W_R$) of the left-right symmetric extension of the standard model. We find that our data sample is in agreement with expectations from standard model processes and therefore set a limit on the $W_R$ and $N/\mu$ masses. For models with exact left-right symmetry (the same coupling to the right-handed and left-handed sectors), we exclude heavy right-handed neutrinos for a range of $M_{N/\mu} < M_{W_R}$, dependent on the value of $M_{W_R}$. For these models, the excluded region in the two-dimensional parameter space ($M_{W_R}, M_{N/\mu}$) extends to $M_{W_R} = 2.5$ TeV.

FIG. 1 (color online). Distribution of the invariant mass $M_{\mu\mu jj}$ for events in data (points with error bars) with $M_{\mu\mu} > 200$ GeV and for simulated background contributions (hatched stacked histograms). The signal mass point $M_{W_R} = 1800$ GeV, $M_{N/\mu} = 1000$ GeV, is included for comparison (open red histogram). The number of events from each background process (and the expected number of signal events) is included in parentheses in the legend. The data are compared to SM expectations in the lower portion of the figure. The total background uncertainty (outer band) and the background uncertainty after neglecting the uncertainty due to background modeling (inner band) are included as a function of $M_{\mu\mu jj}$ for $M_{\mu\mu jj} > 600$ GeV.

FIG. 2 (color online). The 95% confidence level exclusion limit on the $W_R$ production cross section times branching fraction for $W_R \rightarrow \mu \mu jj$ as a function of $M_{W_R}$ for $M_{N/\mu} = \frac{1}{2} M_{W_R}$. This limit is compared to expectations given the theoretical model described in the text.

FIG. 3 (color online). The 95% confidence level exclusion region in the $(M_{W_R}, M_{N/\mu})$ plane, assuming the model described in the text. The Tevatron exclusion region for $W_R$ production [16] is included in the figure.
These results represent the most sensitive limits to date on $W_R$ production assuming a single heavy neutrino flavor contributes significantly to the $W_R$ decay width.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RAS, RFBR, and SSF (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and Hun KTH (Hungary); DAE and DST (India); IPM (Iran); SFI, INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); and DOE and NSF (USA).

[1] C. Giunti and M. Laveder, arXiv:hep-ph/0310238v2.
[2] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[3] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974).
[4] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558 (1975).
[5] G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975).
[6] W.-Y. Keung and G. Senjanovic, Phys. Rev. Lett. 50, 1427 (1983).
[7] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).
[8] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 717, 109 (2012).
[9] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, Comput. Phys. Commun. 182, 2388 (2011).
[10] R. Hamburg, W. van Neerven, and T. Matsuura, Nucl. Phys. B359, 343 (1991).
[11] R. Hamburg, W. van Neerven, and T. Matsuura, Nucl. Phys. B644, 403 (2002).
[12] G. Beall, M. Bander, and A. Soni, Phys. Rev. Lett. 48, 848 (1982).
[13] A. Maiezza, M. Nemevsek, F. Nesti, and G. Senjanovic, Phys. Rev. D 82, 055022 (2010).
[14] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 100, 211803 (2008).
[15] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 041801 (2009).
[16] V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B 699, 145 (2011).
[17] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 109, 081801 (2012).
[18] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 109, 081801 (2012).
[19] J. Hrubec, M. Jeitler, W. Kiesenhofer, V. Knuˇ nz, M. Krammer, I. Kra¨ tschmer, D. Liko, I. Mikulec, M. Pernicka, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, et al.
[20] J. Beringer

4 University of Antwerpen, Antwerpen, Belgium
5 Vrije Universiteit Brussel, Brussel, Belgium
6 Université Libre de Bruxelles, Bruxelles, Belgium
7 Ghent University, Ghent, Belgium
8 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9 Université de Mons, Mons, Belgium
10 Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
11 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12 Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
13 Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14 University of Sofia, Sofia, Bulgaria
15 Institute of High Energy Physics, Beijing, China
16 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17 Universidad de Los Andes, Bogotá, Colombia
18 Technical University of Split, Split, Croatia
19 University of Split, Split, Croatia
20 Institute Rudjer Boskovic, Zagreb, Croatia
21 University of Cyprus, Nicosia, Cyprus
22 Charles University, Prague, Czech Republic
23 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25 Department of Physics, University of Helsinki, Helsinki, Finland
26 Helsinki Institute of Physics, Helsinki, Finland
27 Lappeenranta University of Technology, Lappeenranta, Finland
28 DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
29 Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30 Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
32 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33 Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
34 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
35 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
36 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
37 Deutsches Elektronen-Synchrotron, Hamburg, Germany
38 University of Hamburg, Hamburg, Germany
39 Institut für Experimentelle Kernphysik, Karlsruhe, Germany
40 Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece
41 University of Athens, Athens, Greece
42 University of Ioannina, Ioannina, Greece
43 KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
44 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
45 University of Debrecen, Debrecen, Hungary
46 Panjab University, Chandigarh, India
47 University of Delhi, Delhi, India
48 Saha Institute of Nuclear Physics, Kolkata, India
49 Bhabha Atomic Research Centre, Mumbai, India
50 Tata Institute of Fundamental Research-EHEP, Mumbai, India
51 Tata Institute of Fundamental Research-HECR, Mumbai, India
52 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
53a INFN Sezione di Bari, Bari, Italy
53b Università di Bari, Bari, Italy
53c Politecnico di Bari, Bari, Italy
54a INFN Sezione di Bologna, Bologna, Italy
54b Università di Bologna, Bologna, Italy
55a INFN Sezione di Catania, Catania, Italy
55b Università di Catania, Catania, Italy
56a INFN Sezione di Firenze, Firenze, Italy

261802-12
PRL 109, 261802 (2012) PHYSICAL REVIEW LETTERS

60. Università di Firenze, Firenze, Italy
57. INFN Laboratori Nazionali di Frascati, Frascati, Italy
58a. INFN Sezione di Genova, Genova, Italy
58b. Università di Genova, Genova, Italy
59a. INFN Sezione di Milano-Bicocca, Milano, Italy
59b. Università di Milano-Bicocca, Milano, Italy
60a. INFN Sezione di Napoli, Napoli, Italy
60b. Università di Napoli “Federico II”, Napoli, Italy
61a. INFN Sezione di Padova, Padova, Italy
61b. Università di Padova, Padova, Italy
61c. Università di Trento (Trento), Padova, Italy
62a. INFN Sezione di Pavia, Pavia, Italy
62b. Università di Pavia, Pavia, Italy
63a. INFN Sezione di Perugia, Perugia, Italy
63b. Università di Perugia, Perugia, Italy
64a. INFN Sezione di Pisa, Pisa, Italy
64b. Università di Pisa, Pisa, Italy
64c. Scuola Normale Superiore di Pisa, Pisa, Italy
65a. INFN Sezione di Roma, Roma, Italy
65b. Università di Roma “La Sapienza”, Roma, Italy
66a. INFN Sezione di Torino, Torino, Italy
66b. Università di Torino, Torino, Italy
66c. Università del Piemonte Orientale (Novara), Torino, Italy
67a. INFN Sezione di Trieste, Trieste, Italy
67b. Università di Trieste, Trieste, Italy
68. Kangwon National University, Chunchon, Korea
69. Kyungpook National University, Daegu, Korea
70. Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
71. Korea University, Seoul, Korea
72. University of Seoul, Seoul, Korea
73. Sungkyunkwan University, Suwon, Korea
74. Vilnius University, Vilnius, Lithuania
75. Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
76. Universidad Iberoamericana, Mexico City, Mexico
77. Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
78. Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
79. University of Auckland, Auckland, New Zealand
80. University of Canterbury, Christchurch, New Zealand
81. National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
82. National Centre for Nuclear Research, Swierk, Poland
83. Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
84. Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
85. Joint Institute for Nuclear Research, Dubna, Russia
86. Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
87. Institute for Nuclear Research, Moscow, Russia
88. Institute for Theoretical and Experimental Physics, Moscow, Russia
89. Moscow State University, Moscow, Russia
90. P.N. Lebedev Physical Institute, Moscow, Russia
91. State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
92. University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
93. Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
94. Universidad Autónoma de Madrid, Madrid, Spain
95. Universidad de Oviedo, Oviedo, Spain
96. Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
97. CERN, European Organization for Nuclear Research, Geneva, Switzerland
98. Paul Scherrer Institut, Villigen, Switzerland
99. Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
100. Universität Zürich, Zurich, Switzerland
101. National Central University, Chung-Li, Taiwan
102. National Taiwan University (NTU), Taipei, Taiwan
103. Chulalongkorn University, Bangkok, Thailand

261802-13
a Deceased.
b Also at Vienna University of Technology, Vienna, Austria.
c Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
d Also at Universidade Federal do ABC, Santo Andre, Brazil.
e Also at California Institute of Technology, Pasadena, California, USA.
f Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
g Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
h Also at Suez Canal University, Suez, Egypt.
i Also at Zewail City of Science and Technology, Zewail, Egypt.
j Also at Cairo University, Cairo, Egypt.
k Also at Fayoum University, El-Fayoum, Egypt.
l Also at British University, Cairo, Egypt.
m Now at Ain Shams University, Cairo, Egypt.

Also at National Centre for Nuclear Research, Swierk, Poland.

Also at Université de Haute-Alsace, Mulhouse, France.

Also at Joint Institute for Nuclear Research, Dubna, Russia.

Also at Moscow State University, Moscow, Russia.

Also at Brandenburg University of Technology, Cottbus, Germany.

Also at The University of Kansas, Lawrence, Kansas, USA.

Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

Also at Eötvös Loránd University, Budapest, Hungary.

Also at Tata Institute of Fundamental Research—HECR, Mumbai, India

Now at King Abdulaziz University, Jeddah, Saudi Arabia.

Also at University of Visva-Bharati, Santiniketan, India.

Also at Sharif University of Technology, Tehran, Iran.

Also at Isfahan University of Technology, Isfahan, Iran.

Also at Shiraz University, Shiraz, Iran.

Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Also at Facoltà Ingegneria Università di Roma, Roma, Italy.

Also at Università della Basilicata, Potenza, Italy.

Also at Università degli Studi Guglielmo Marconi, Roma, Italy.

Also at Università degli Studi di Siena, Siena, Italy.

Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania.

Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

Also at University of California, Los Angeles, Los Angeles, California, USA.

Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

Also at INFN Sezione di Roma, Università di Roma “La Sapienza”, Roma, Italy.

Also at University of Athens, Athens, Greece.

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at Paul Scherrer Institut, Villigen, Switzerland.

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.

Also at Gaziosmanpasa University, Tokat, Turkey.

Also at Adiyaman University, Adiyaman, Turkey.

Also at Izmir Institute of Technology, Izmir, Turkey.

Also at The University of Iowa, Iowa City, Iowa, USA.

Also at Mersin University, Mersin, Turkey.

Also at Ozyegin University, Istanbul, Turkey.

Also at Kafkas University, Kars, Turkey.

Also at Suleyman Demirel University, Isparta, Turkey.

Also at Ege University, Izmir, Turkey.

Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.

Also at University of Sydney, Sydney, Australia.

Also at Utah Valley University, Orem, Utah, USA.
Now at University of Edinburgh, Scotland, Edinburgh, United Kingdom.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Argonne National Laboratory, Argonne, Illinois, USA.
Also at Erzincan University, Erzincan, Turkey.
Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
Also at Kyungpook National University, Daeug, Korea.