Comparison of Fiber Quality Properties of Different Cotton (G. hirsutum L.) Varieties for Normal and Late Harvest Periods

Cevher İlhan Cevheri (icevheri@harran.edu.tr)
Harran university faculty of agriculture field crop department
https://orcid.org/0000-0002-7070-2652

Research Article

Keywords: Cotton, harvest periods, fiber quality, yarn quality

Posted Date: June 4th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-542351/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Comparison of Fiber Quality Properties of Different Cotton (G. hirsutum L.) Varieties for Normal and Late Harvest Periods

Cevher İlhan CEVHERİ*

*Harran University, Agricultural Faculty, Field Crops Department, Şanlıurfa, Turkey.

corresponding author e-mail: icevheri@harran.edu.tr

ORCID ID: 0000-0002-7070-2652

Abstract:

Cotton fibers are the most important raw material of the textile industry. Clean collection of cotton fibers increases the quality of textile products and the market prices. This study was conducted to investigate the effects of normal and late harvest period of different cotton varieties on cotton fiber and yarn properties. The quality properties of the fibers were determined with the HVI device, and the quality properties of the yarns obtained from the fibers were determined with the USTER TESTER device. The fiber quality properties such as fiber fineness (micronaire), fiber maturity, fiber length (UHML, mm), strength (g/tex), brightness/whiteness (Rd), and yarn quality properties such as yarn evenness (%), thin places, nep+200 (%) and hairiness were investigated in the study. The exposure of fibers to rain during the harvest period of 2018 caused a decrease in the quality properties. Inability of the plants to receive sufficient sunlight during the last physiological development period caused a decrease in photosynthesis rate. This negative situation negatively affected the physical quality properties of fiber and yarn. The results indicated that the physical quality properties of fibers and yarns obtained in 2019 were higher than those in 2018. The aim of this study was to determine the effect of late harvest period on fiber and yarn quality properties and thus on quality of textile products. In addition, the study was carried out to guide researchers who will conduct researchers on similar topics.

Keywords: Cotton, harvest periods, fiber quality, yarn quality.

Introduction:

Cotton fiber is the most important raw material of the textile industry, and harvest time and processing of fibers in the industry are important for fiber, yarn and fabric qualities and quality of final textile products. Several limiting factors may cause delay in the harvest time of cotton fibers. The factors for the late harvest maturity are genetic characteristics of the cotton variety used, environmental factors, disruptions caused by agricultural activities and climatic factors.

Ecology of a few countries is suitable for cotton agriculture in the world; therefore, almost 80% of the world production is carried out in these countries including Turkey. The International Cotton Advisory Committee (ICAC) reported that cotton cultivation area in 2018-2019 growing season was 32.986 million ha and total fiber cotton production was 25.69 million tons (Anonymous, 2020).
The reports of ICAC for 2018-2019 indicated that Turkey ranked the ninth country in the world cotton cultivation, fifth in cotton yield per unit area, eighth in cotton production; fourth in cotton consumption and fourth in cotton import (Anonymous, 2020).

Harvest time is one of the most important issues in cotton agriculture. The harvest time has a significant effect on the amount of fiber per unit area and on the fiber quality properties. Delay in harvest due to ecological and environmental factors or planning causes in quality losses. The ripening of bolls is one of the important factors that determine the harvest time.

The parameters related to the yield and quality characteristics of cotton vary depending on the genetic structure of the variety used, the maintenance carried out by the producers and the environmental conditions of the growing environment.

The quality properties of cotton fiber can be affected by environmental factors, in addition to the genetic characteristics of the variety used. Harvest and ginning methods and harvest time may affect the quality properties of cotton fiber (Meredith, 1984).

Micronaire (fiber fineness), which is a measure of fiber fineness and maturity, is the major fiber quality property of cotton. Micronaire is an important feature of cotton fiber quality that affects spinning and dyeing processes.

The increase in the monthly average rainfall, and the length of the average rainfall period in autumn negatively affect the fiber quality. Especially in the early autumn months, rainfalls coincide with the harvest period are a serious risk on fiber quality properties (Luo et al., 2016).

Quality cotton fiber is vital to produce quality yarn and therefore higher quality fabrics. HVI and AFIS fiber testing equipment, which are the state of the art of Uster are the devices used in testing cotton fiber properties. Understanding the properties of cotton fibers and their relationship to yarn and fabric quality are essential to produce quality textiles products. Cotton fiber quality is determined by various parameters such as maturity, fineness, length, strength and uniformity. Better yarns are produced by using higher quality fibers (Siddiqui et al., 2020).

Harvest time can have a significant impact on fiber yield. Late harvest negatively affects the fiber properties of cotton. Cotton producers have understood that timely harvesting can have a significant impact on cotton yield and quality. The results highlighted the importance of harvest time in cotton for higher yield and better quality fiber production (Kelly et al., 2011).

Harvest time directly or indirectly affects fiber yield, physical fiber quality properties, and chemical structure of fiber and textile product quality. Cotton harvest is carried out manually or using machine. Although the harvesting methods are different, the delay in the harvest time causes some problems in quality and yield. Exposure of unharvested cotton to rain and wind, due to late harvest, is an undesirable situation for cotton quality. In addition, the fiber formation and the thickness of the cell wall in the secondary wall are affected by the mitosis of the epidermis layer on cotton seeds and immature fibers on rainy days. Because, photosynthesis process required for the production of glucose which is the raw material of cellulose, slows down at low temperature and cloudy days.

The chemical structure of cotton fibers consists of approximately 94% cellulose, 2% hemicellulose, 2% pectin and 2% extracts (Saçak, 2002). Cellulose, the structural component of both primary and secondary cell walls, is a polysaccharide composed of linear β-1,4-glucan chains synthesized by the cellulose synthase complex (Bashline et al., 2014, McFarlane et al., 2014, Takenaka et al., 2018). Cotton fibers, the natural material widely used in the textile industry, are single cell trichomes that undergo mitosis of cells in the epidermis layer of seeds and sequentially undergo rapid elongation and secondary cell wall biosynthesis. Mature cotton fibers consist almost entirely (>95%) of cellulose (Applequist et al., 2001, Kim and Triplett, 2001, Lee et al., 2007, Mansoor and Paterson, 2012). Cellulose formation is associated with plant cell growth, dynamic processes of cell wall
biosynthesis, loosening and expansion (Cosgrove, 2005, Kang et al., 2019). Cell walls define the shape of plant cells, controlling the extent and direction of cell elongation and thus the growth of organs. The main carrier component of plant cell walls is cellulose, which is collected in the Golgi apparatus and then synthesized by cellulose synthase complexes (Polko, 2019). The fiber cells of cotton seeds on the epidermis layer are the most important agricultural textile product in the world. Four different stages of fiber development, consisting of initiation, elongation, secondary cell wall biosynthesis and maturation, which last approximately 2 months, are required to produce fully mature fibers (Kim, 2015).

Plant cell growth involves a complex interaction between cell wall expansion, biosynthesis, and specifically cell wall expansion. The tissues are developed with the secondary cell wall accumulation, however, the coordination of these processes remains unclear. Cotton fiber cells develop simultaneously, fairly elongated, and contain completely pure cellulose when mature (Cao et al., 2020).

The aim of this study was to determine the effects of the normal harvest (2019) and late harvest (2018) times on fiber and yarn quality properties of cotton varieties (Candia, Lima, ST-468 and Candia + ST-468) produced in the Southeastern Anatolia region of Turkey, and to determine the effects of harvest time on textile product quality.

Material and Method:

Material

In this study, the fiber and yarn quality characteristics of the fibers obtained from Candia, Lima, ST-468 and Blended cotton (Candia + ST-468) varieties, which are widely cultivated standard cotton varieties in Harran plain, located in the South Eastern region of Turkey, were determined in 2018 and 2019 cotton growing seasons. Climate and environmental factors differed in 2018 and 2019 growing seasons. Climate data for 2018 and 2019 growing seasons were given in Table 1.

Table 1. Monthly climate data for 2018 and 2019 cotton growing seasons (Anonymous, 2019)

Climate Parameters	Years	March	April	May	June	July	August	September	October	November
Min. Temperature (°C)	2018	0.3	6.7	11.9	14.7	17.6	17.4	11.9	3.6	2.9
	2019	0.1	5.5	8.4	16.7	17.8	17.3	8.6	7.7	-1.1
Max. Temperature (°C)	2018	25.4	31.8	36.4	41.3	41.0	39.7	39.9	33.3	28.8
	2019	21.9	26.5	39.4	43.3	40.1	43.3	37.3	36.1	27.8
Average Temperature (°C)	2018	12.7	19.0	23.2	27.8	29.3	28.5	25.3	19.8	12.3
	2019	10.7	14.5	24.2	29.4	29.3	29.6	24.8	21.0	13.1
Total Precipitation (mm= kg m^-2)	2018	20.4	59.3	10.9	0.0	0.0	0.6	20.2	133.2	20.4
	2019	67.0	3.9	1.1	0.0	0.0	12.3	5.4	67.0	
Average Relative Humidity (%)	2018	78.9	44.6	54.4	44.0	50.9	59.2	56.7	62.7	83.9
	2019	82.3	80.1	45.8	39.4	46.5	55.0	57.8	62.6	56.9
Monthly average temperature (°C) and average relative humidity (%) between March and November 2018, when cotton cultivation takes place, were similar to long term averages. However, the amount of rainfall was regular in late March and early April, when cotton was planted, and summer months, harvest could not be carried out in October and November due to excessive rainfall. Cotton harvest in 2018 was only completed in March 2019, due to heavy rainfall. Delay in harvest caused yield and quality losses, and the quality properties of cotton fibers were negatively affected.

The harvest in the second year (2019) was carried out on time as the weather conditions followed a normal course and there was no adverse impact. The reasons for the changes in cotton harvest times were summarized in Table 2.

Table 2. Seasonal changes in 2018 and 2019 cotton production periods

2018 (Late Harvest Period)	2019 (Normal Harvest Period)
Prolonged rainfall occurred during the harvest season.	The cotton harvest was carried out at the beginning of October, which is the usual harvest time, as the weather conditions during the harvest period was as expected in that season.
October and November, which are the cotton harvest months, were rainy.	
The harvest was carried out in March 2019.	

All necessary agricultural practices from sowing to the harvest were fully implemented. Conventional practices which have been used in the Harran plain were used in cotton cultivation. The cotton harvest was carried out by machine, and the cotton obtained at the harvest was processed with a 30 Ne (yarn number) combed tricot ring spinning machine.

Method:

The quality characteristics of 4 different fibers obtained from 4 different cotton varieties produced in 2018 (late harvest period) and 2019 (normal harvest period) were determined using the HVI device. Fiber physical quality properties determined by using the HVI device were fiber fineness (micronaire), fiber maturity, fiber length (UHML, mm), strength (g/tex), and brightness/whiteness degree (Rd). The unevenness, fine places, nep and hairiness properties of 30 Ne 100% cotton yarns obtained from four different cotton fibers were determined using the Uster Tester.

The data obtained were subjected to analysis of variance (ANOVA) according to the splitted plots in randomized blocks experimental design using JUMP 13.1 statistical package program. Tukey multiple range test at 95% probability was used as post-hoc where ANOVA indicated significant differences.

RESULTS AND DISCUSSION:

Fiber Properties

Fiber Fineness (micronaire):

Fiber fineness (micronaire) was statistically different (p<0.01) between cotton varieties and harvest times. Similarly, the effects of variety x harvest time were significantly (p<0.01) important on fiber fineness (micronaire) (Table 3). The lowest fiber fineness (micronaire) value was recorded for Mixture cotton (3.76), while the highest fiber fineness value was for Candia variety (4.38). The fiber
fineness, which is one of the important fiber quality characteristics in the textile industry, is preferred
to be low, therefore, the fibers obtained from the mixture of Candia + ST-468 varieties with the
lowest fineness value are preferred.

The findings on fiber fineness are partially in agreement with the findings of Meredith (1986), who
reported that 59% of the variation in fiber fineness caused by environmental factors. The relationship
between fiber breaking elongation, fiber fineness and fiber breaking strength of the cotton varieties
examined was positive. Our findings are in line with the findings of Dever (1988), who stated that
fiber breaking elongation is associated with both fiber fineness and fiber breaking strength. Our
findings are also agreement with the findings of Silvertooth (1997), who indicated that fiber fineness
is a genotype-dependent character, yet maturity, environmental conditions and cultural processes
have significant impact on fiber fineness, and cultural processes that lead to earliness and uniform
boll survival are very important for fiber fineness. The results are also in line with the findings of
Davidonis et al. (2004), who reported that the fineness values of fibers obtained in early cotton
planting and early harvest were at optimum value.

The results showed that the fiber maturity was not fully realized in the early harvest, whereas the
seed cotton was affected by the adverse weather conditions such as rain and wind in the late harvest.
The findings that environmental factors are important in determining the fiber quality are in
accordance with the findings of Kechagia (1998), who stated that the effect of genotype and
environmental factors should not be ignored in determining fiber quality criteria. The findings of
Krieg (2017), who stated that genotypic and environmental factors affect cotton fiber quality and
that the genotypic effect on fiber fineness is more important, are partially consistent with our
findings. Marani and Amirav (1971) and Ramey (1986) obtained higher fiber fineness values from
the 1st and 2nd sub branches of cotton plants exposed to rainwater. Ayele (2017) reported that the use
of fine fibers in the yarn enables more fiber to be placed in the cross-section of a given yarn and
improves spinning efficiency and yarn evenness, however, yarns made of thicker fibers are less
uniform and weaker than yarn spun from a large number of fine fibers. The findings that fibers
exposed to rain and obtained in late harvest have more thick fibers and reduce textile product quality
are similar to the findings of Ayele (2017).

Pettigrew (2001) reported that the fiber value of cotton (Gossypium hirsutum L.) grown in low light
conditions is lower than cotton plants grown in sufficient sunlight. This response to low light
conditions has been associated with poor photosynthetic assimilation and decreased fiber quality.
Pettigrew (2001) stated that the starch rate in cotton fiber grown under the shade for 14 days
decreased by 29% and the sucrose level in the fiber obtained in the shade for 21 days decreased by
31%. The researcher noted that the carbohydrate reductions in the shade were parallel to 3%
reduction in fiber strength under low light. In addition, the researcher stated that sucrose levels
decrease during secondary cell wall deposition of fibers and shade affects the fineness of the fibers
produced, and these data provide convincing evidence that adequate carbon assimilation is required
to produce quality fiber. In this study, exposure of cotton fibers to excessive rain and decrease in the
photosynthesis rate due prolonged shadow conditions or insufficient light between October and
December 2018 resulted caused decrease in starch ratio which negatively affected the fiber fineness
values.
Table 3. Fiber Fineness (Micronaire) Obtained for Normal and Late Harvest of Different Cotton Varieties and the Coefficients of Variability (CV %) for the Groups Created by the Tukey Test

Parameters	Harvest Periods	Cotton Varieties	1. Candia	2. Lima	3. St-468	4. Mixture (Candia-St 468)	Mean
Fineness	2019 (Normal Harvest period)		4.03bc	3.81bc	3.97bc	3.93bc	3.93
	2018 (Late Harvest Period)		4.73a	4.16b	3.69c	3.60c	4.04
Mean			4.38a	3.98b	3.86b	3.76b	3.99
CV(%) tukey			4.50	0.20**	0.43**		

The difference between the mean in the same letter group are not statistically significant. ns: not significant. *: Important at 5% level of significance; **: Important at 1% level of significance.

Fiber Maturity (%):

Fiber maturity (%) values of cotton varieties were significantly different (p<0.01). The effects of harvest time on fiber maturity (%) was not statistically significant, while the effect of variety x harvest time interaction on fiber maturity (%) was statistically significant (p<0.05) (Table 4). The lowest fiber maturity value (0.840%) was recorded in ST-468 variety, while the highest fiber maturity (0.860%) was obtained in Candia variety. The lowest fiber maturity value in variety x harvest time interaction (0.836%) was obtained in ST-468 x late harvest period interaction, and the highest fiber maturity value was (0.864%) was in Candia x late harvest period interaction.

The findings regarding the positive effect of harvest time x cultivar interaction on fiber maturity are consistent with the findings of Davidonis et al. (2004), who reported that harvesting at normal harvest time period increases fiber maturity. Similarly, our results are in agreement with the findings of Silvertooth et al. (1998), who stated that the highest yield potentials were usually achieved at early and optimum harvest time. Marani and Amirav (1971) and Ramey (1986) reported that the immature fiber fractions in cotton bolls were affected by rain and did not reach the expected maturity during prolonged rain. The rain and adverse weather conditions slow down the photosynthesis rate and decrease the glucose production of plants, therefore, maturation of fibers and cellulose accumulation are negatively affected. In addition, the fibers inside the cotton bolls that develop with the fertilization of the flowers that bloom especially in the upper parts of the plant during the rainy period cannot reach enough physiological maturity. The researchers reported that celluloses accumulate in the secondary wall during fiber maturation and thicken significantly as a polymerized photosynthesis product, therefore, due to the physiological maturation of the fiber, cellulose synthesis is also modulated and cotton fiber wall is thickened (Bradow et al 1996; Murray 1996; Murray and Brown 1996, 1997). Fibers that mature with various physiological activities are affected by environmental factors. In our study, although the effects of harvest time on fiber maturity was not statistically significant, the maturity level of the fibers obtained in the normal harvest period was higher. The high level of maturity can be associated with the fibers reaching a higher photosynthesis rate in this long period of time, producing more glucose and thus, the thickening the cell walls of fibers in the primary and secondary layers and filling with cellulose. Therefore, the light on which the photosynthesis rate depends is important in the cellulose formation of fibers. The aforementioned findings of the researchers were similar to our findings on fiber maturity.
Table 4. Fiber Maturity (%) Obtained for Normal and Late Harvests of Different Cotton Varieties and the Coefficients of Variability (CV %) for the Groups Created by the Tukey Test

Parameters	Harvest Periods	Cotton Variety	1. Candia	2. Lima	3. St-468	4. Mixture (Candia-St-468)	Mean (%)
Maturity (%)	2019 (Normal Harvest period)	0.856ab	0.840cd	0.843bcd	0.846bcd	0.846	
	2018 (Late Harvest Period)	0.864a	0.853abc	0.836d	0.836d	0.847	
Mean CV(%), tukey		0.860a	0.846b	0.840b	0.841b	0.846	

The difference between the mean in the same letter group are not statistically significant. ns: not significant. *: Important at 5% level of significance; **: Important at 1% level of significance.

Fiber Length (UHML, mm):

Cotton variety and cultivar x harvest time interaction had a statistically significant effect on fiber length (UHML, mm). However, the fiber lengths (UHML, mm) obtained at different harvest times (Table 5) were not statistically different. The lowest fiber length (28.56 mm) was obtained in Candia+ST-468 mixture, while the highest fiber length 29.39 was measured in Candia variety. The lowest fiber length in variety x harvest time interaction was recorded in Candia x late harvest period (28.37 mm) and the highest fiber length was obtained in Candia x normal harvest period (30.41 mm) treatment. The results showed that normal harvest period when the fibers achieve their maximum development is the ideal period for the harvest. The delay of harvest and the exposure of fibers in cotton bolls to rain causes a decrease in the fiber length. Our results are consistent with the findings of Davidonis et al. (2004), who reported that early sowing initiates the vegetation period earlier, and the fiber lengths of cotton increases.

Table 5. Fiber Length (UHML) Obtained for Normal and Late Harvests of Different Cotton Varieties and the Coefficients of Variability (CV %) for the Groups Created by the Tukey Test

Parameters	Harvest Periods	Cotton Variety	1. Candia	2. Lima	3. St-468	4. Mixture (Candia-St-468)	Mean
Length	2019 (Normal Harvest period)	30.41a	28.57b	28.50b	28.52b	29.00	
	2018 (Late Harvest Period)	28.37b	29.05b	28.88b	28.60b	28.72	
Mean CV(%), tukey		29.39a	28.81ab	28.69b	28.56b	28.86	

The difference between the mean in the same letter group are not statistically significant. ns: not significant. *: Important at 5% level of significance; **: Important at 1% level of significance.

Fiber Strength (g/tex):

The effects of cotton variety and harvest time on fiber strength were not statistically significant. However, fiber strength values in the interaction of variety x harvest time treatment were significantly different (p<0.01) (Table 6). The lowest fiber strength was in variety x harvest time interaction was obtained in Candia x late harvest (27.90 g/tex), while the highest fiber strength was recorded in Candia x normal harvest time (33.13 g/tex) interaction. The delay in cotton harvest caused a decrease in fiber strength. Our findings are not compatible with the findings of Meredith (1986) that more than 80% of the variation in fiber breaking strength is due to the difference is genotype. However, the findings of Silvertough (1998), who stated that long-term excessive rainfall...
decreases the yield, fiber and seed quality and may cause a decrease in fiber strength values, are in agreement with our findings.

Table 6. Fiber Strength (g/tex) Obtained for Normal and Late Harvest of Different Cotton Varieties and the Coefficients of Variability (CV %) for the Groups Created by the Tukey Test

Parameters	Harvest Periods	Cotton Variety				
	1. Candia	2. Lima	3. St-468	4. Mixture	Mean	
Strength	2019 (Normal Harvest period)	33.13a	29.70ab	27.96a	28.23b	29.75
	2018 (Late Harvest Period)	27.90b	30.46ab	29.76ab	30.06ab	29.55
Mean	CV(%) , tukey	CV (%) : 3.97	tukey (variety): n.s.	tukey(harvest period): n.s.	tukey (variety x harvest): 3.79**	

The difference between the mean in the same letter group are not statistically significant. ns: not significant. *: Important at 5% level of significance; **: Important at 1% level of significance.

Degree of Brightness/Whiteness (Rd):

The effects of variety (p<0.01), harvest time (p<0.05) and cultivar x harvest time interaction (p<0.01) on brightness (Rd) values were statistically significant (Table 7). The lowest brightness values were measured in Candia variety (70.59), while the highest brightness value was recorded in Lima variety (74.70). The lowest brightness value of fibers between harvest times was in late harvest (72.57), and the brightness in normal harvest time was higher (73.73). The fiber brightness value is high, when the fibers reach harvest maturity and are harvested without exposure to rain. The findings of Riley (1961) who reported that late harvest will cause staining on cotton, are similar to our findings. The findings of Silvertooth (1998) that the fiber will become spotted due to contact with the leaves at late harvest, is also consistent with our findings. Our findings are in agreement with the findings of Silvertooth (2001) who stated that fibers fall to the ground in long-term excessive rain and wind, and if the open bolls are exposed to long-term or heavy rain, the cotton will be spotted and the graying and yellowness values will increase. Krieger (2002) reported that weather conditions during harvest have a direct impact on color and foreign matter content. The delay in cotton harvest causes exposing of blooming bolls to adverse weather conditions such as rain and storm, and weather conditions may have a detrimental effect primarily on the fiber foreign matter content and color.

Shurley et al. (2004) also reported that the harvest time will affect the fiber color degree, in addition, high relative humidity during harvest will directly affect the moisture content of seed cotton, and high humidity will decrease the harvest efficiency and fiber brightness. Similar to our results, Özbek (2011) determined a direct relationship between fiber brightness and harvest time, and reported that fiber brightness decreases due to rainfall and other environmental factors as the harvest time is delayed. Our results also in agreement with the findings of Dadgar (2020), who reported that the most important parameters determining the cotton quality, such as the yellowness density and fiber color are harvest time, harvest method and storage conditions. Our findings on cotton color change are consistent with the findings of Meredith (1986), who stated that 79% of the variation in fiber color change is caused by environmental factors. The findings of Ayele (2017) stating that cotton is stained with soil contact due to rain or that the leaves of cotton plant will affect the color of cotton fibers are similar to our findings.
Table 7. Degree of Brightness/Whiteness (Rd%) Obtained for Normal and Late Harvest of Different Cotton Varieties and the Coefficients of Variability (CV %) for the Groups Created by the Tukey Test

Parameters	Harvest Periods	Cotton Varieties	Mean			
		1. Candia	2. Lima	3. St-468	4. Mixture (Candia-St-468)	
Degree of Brightness/Whiteness	2019 (Normal Harvest period)	71.50bc	73.10b	76.13a	74.10ab	73.73a
	2018 (Late Harvest Period)	69.69c	76.26a	72.50bc	71.80bc	72.57b
Mean	CV(%), tukey	70.59b	74.70a	74.33a	72.98ab	73.15

The difference between the mean in the same letter group are not statistically significant. ns: not significant. *: Important at 5% level of significance; **: Important at 1% level of significance.

Yarn Properties

Yarn Unevenness (%):

The effects of cotton variety and the interaction of variety x harvest time on yarn unevenness were not statistically significant. However, the unevenness of yarns obtained from different cotton varieties at different harvest times was significantly different ($p<0.01$) (Table 8). The lowest yarn unevenness value was recorded in normal harvest time (9.06%), while the highest yarn unevenness value was measured in late harvest time (9.24%). Ayele (2017) stated that fiber fineness affects yarn irregularity. Similarly, Kelly et al. (2015) reported that longer, stronger and thinner fibers provide higher spinning. The researchers indicated that the spinning will be excellent when the smoothness of the yarns is high as the speeds in the drafting section will be well controlled, however, the yarn irregularity increases when the short fiber content is high. Higher smoothness of yarns with the transformation of long fibers into yarn confirms our results. The results of this study showed that delay of harvest and exposure of fibers to rain for a long time negatively affected fiber length, strength and fineness properties and increased hairiness.

Table 8. Yarn Unevenness (%) Obtained by Conversion of Fibers to Yarn for Normal and Late Harvest of Different Cotton Varieties, and the Coefficients of Variability (CV %) for the Groups Created by the Tukey Test

Parameters	Harvest Periods	Cotton Varieties	Mean			
		1. Candia	2. Lima	3. St-468	4. Mixture (Candia-St-468)	
Yarn Unevenness	2019 (Normal Harvest period)	9.10	9.09	9.05	9.02	9.06b
	2018 (Late Harvest Period)	9.32	9.22	9.19	9.22	9.24a
Mean	CV(%), tukey	9.21	9.16	9.12	9.12	9.15

The difference between the mean in the same letter group are not statistically significant. ns: not significant. *: Important at 5% level of significance; **: Important at 1% level of significance.

Thin Places (-40%):

The thin places (-40%) in different cotton varieties were not significantly different from each other. Similarly, the effect of variety x harvest time on thin places was also not significant. However, the
thin places determined in different harvest time were significantly (p<0.01) different from each other (Table 9). The lowest thin places (-40%) value was recorded in normal harvest period (14.51). The highest thin place value was recorded in late harvest period (17.51). The fibers are exposed to rain when harvest time is delayed; thus, irregularities and fluctuations are observed in yarns obtained from the late harvested fibers. Thin and thick places occur in some parts of the thread strip. This is an undesirable situation in the production of yarn and fabric, which is a textile raw material, and negatively affects the quality of final textile products. Thin places in a yarn significantly affect the appearance of woven and knitted fabric. More twisting occurs in thin places. Because, the less fiber in the cross-section causes a decrease in the resistance to spinning. Öktem et al. (1999 and 2001) reported that fiber walls of immature fibers are thinner and more flexible since their secondary cell walls have not yet been completed. The researchers stated that immature cotton has a softer touch and shiny appearance, yet they contain more neps, their strength is low and other yarn quality properties are negatively affected. The findings of Öktem et al. (1999 and 2001) are in accordance with our findings. The findings of Bar (2018) who indicated that thick and thin places affect yarn strength, also support our findings. Kelly et al. (2019) reported that thin and thick places significantly differed between genotypes. Although there was no significant difference between genotypes used in this study, the difference in thin places between harvest times was statistically significant. In contrast to our findings, Uyanık (2019) reported no relationship between thin places and yarn quality characteristics. However, the findings of Mathangadeera et al. (2020) that yarns obtained from low-elongation samples have thin places, which are a type of yarn defect, are similar to our findings. Similar to our results, Long et al. (2021) obtained stronger and more uniform yarns with the finer fibers produced in the first season, whereas weaker and less evenly spun fibers were produced in the second season due to the adverse environmental conditions. Özkan et al. (2021) showed that cotton yarn and other yarns were significantly differed in terms of thin places and reported that the blending ratio had a statistically significant (p<0.05) effect on both irregularity and thin place data. The findings of Özkan et al. (2021) on the differences between years were similar to our results.

Table 9. Thin Places (-40%) Obtained by Conversion of Fibers to Yarn for Normal and Late Harvests of Different Cotton Varieties, and the Coefficients of Variability (CV %) for the Groups Created by the Tukey Test

Parameters	Harvest Periods	Cotton Varieties	Mean			
		1. Candia	2. Lima	3. St-468	4. Mixture (Candia-St-468)	
Thin Places	2019 (Normal Harvest period)	16.53	14.40	11.93	15.20	14.51b
(-40 %)	2018 (Late Harvest Period)	16.86	20.26	14.93	18.00	17.51a
Mean CV(%)	tukey	16.70	17.33	13.43	16.60	16.01

The difference between the mean in the same letter group are not statistically significant. ns: not significant. *: Important at 5% level of significance; **: Important at 1% level of significance.

Neps+200(%):

The Neps+200 (%) value of yarns obtained from different cotton varieties in different harvest times was significantly different (p<0.01) (Table 10). The lowest neps+200 value was obtained in normal harvest period (34.83%), while the highest neps+200 value was recorded in late harvest period (42.40%). High neps+200 value of yarn is not desired for yarn quality. The delay in harvest time causes matured cotton exposing to various environmental factors such as rain, dust, wind and so on. These factors lead to a decrease in the fiber quality properties of cotton and an increase in the neps+200 ratio. The increase in neps ratio of cotton and yarn causes a decrease in many quality parameters. Full maturation does not occur, when cotton fibers are exposed to rain in late harvest. Therefore, the uniformity index and length decrease in immature fibers and the neps ratio increases.
Mangialardi et al. (1987) reported that less defective yarn and fabric in terms of neps will be produced from cotton obtained at the beginning of the harvest season compared to cotton obtained at the end of the harvest season in the same field. The neps not only affect the appearance of cotton yarns and fabric, but also often lead to lower yarn strength, spinning ends down and low uniform yarn production (Van der Sluij and Hunter 2016).

Table 10. Neps+200(%) Obtained by Conversion of Fibers to Yarn for Normal and Late Harvest of Different Cotton Varieties, and the Coefficients of Variability (CV %) for the Groups Created by the Tukey Test

Parameters	Harvest Periods	Cotton varieties				
		1. Candia	2. Lima	3.St-468	4.Mixture (Candia-St-468)	Mean
Neps+200 (%)	2019 (Normal Harvest period)	36.33	36.93	32.86	33.20	34.83b
	2018 (Late Harvest Period)	45.13	42.86	41.60	40.00	42.40a
	Mean CV(%)	40.73	39.90	37.23	36.60	38.61
Hairiness (Uster H):		CV(%) :7.01 tukey(variety):n.s. tukey (harvest period): 2.53**. Tukey (variety*harvest): ns				

The difference between the mean in the same letter group are not statistically significant. ns: not significant. *: Important at 5% level of significance; **: Important at 1% level of significance.

Table 11. Yarn Hairiness (%) Obtained by Conversion of Fibers to Yarn for Normal and Late Harvest of Different Cotton Varieties, and the Coefficients of Variability (CV %) for the Groups Created by the Tukey Test

Parameters	Harvest Periods	Cotton Varieties				
		1. Candia	2. Lima	3.St-468	4.Mixture (Candia-St-468)	Mean
Hairiness (%)	2019 (Normal Harvest period)	1.55	1.44	1.57	1.66	1.50b
	2018 (Late Harvest Period)	1.42	1.58	1.83	1.43	1.62a
	Mean CV(%), tukey	1.48b	1.51b	1.70a	1.55ab	1.56
		CV(%) :6.6 tukey(variety):0.17* tukey (harvest period): 0.09*, tukey(variety*harvest): ns				

The difference between the mean in the same letter group are not statistically significant. ns: not significant. *: Important at 5% level of significance; **: Important at 1% level of significance.
Conclusion:
In this study, the fiber and yarn properties of different cotton varieties harvested in normal and late harvest periods were determined. The results revealed that the best fiber fineness for all cotton varieties was recorded in the normal harvest period. The results showed that harvest period has a statistically significant effect on fiber properties.

The most important issue in the textile industry is the quality properties of fibers. Because the quality of the final textile products depends on the raw material having the desired qualities. The desired fiber quality properties depend on environmental factors as well as genetic factors. In this study, fiber fineness (3.93), fiber length (29.0 mm), fiber strength (29.75 g/tex) and the brightness (73.73) values were lower in fibers obtained in normal harvest period, while fiber maturity was higher in fibers obtained in late harvest period (0.847). Yarn evenness (9.06%), thin places (14.51%) and hairiness (1.50%) values were lower in fibers obtained in normal harvest period, while the neps value was lower in fibers obtained in normal period (34.83). The results revealed that the quality values of fibers and yarns obtained in the normal harvest period were higher, in contrast the quality properties of fibers obtained in the late harvest period were lower due to adverse weather conditions.

Acknowledgments: The author thanks to Rubenis Yarn Factory Incorporated Company Located in Şanlıurfa Organized Industrial Zone for their support in Fiber and yarn laboratories.

Declaration:

Funding It was supported by the Harran University Scientific Research Projects Coordination Unit Coordinator.

Conflicts of interest/Competing interests The author declares no conflict of interest.

Availability of data and material Data are transparent.

Code availability Not applicable.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.
References:

Anonymous, (2019) Turkish State Meteorological Service. https://mgm.gov.tr/
Anonymous, (2020) https://www.ramazanzengin.net/?Bid=1388589.
Applequist WL, Cronn R, Wendel JF (2001) Comparative development of fiber in wild and
cultivated cotton. Evolution & development, 3(I), 3-17. https://doi.org/10.1046/j.1525-
142x.2001.00079.x
Ayele AG (2017) Impacts of within-plant variability on fiber quality, fiber density and ring spun
yarn quality of upland cotton cultivars (Doctoral dissertation).
Backe EE (1996). The importance of cotton fiber elongation on yarn quality and weaving
performance. In Proceedings of the 9th annual Engineered Fiber Selection System Conference.
Cotton Incorporated, Raleigh, NC.
Bar G. Reasons of Low Loom Efficiency and Measures taken to increase running efficiency of 60L
X 60L, 100% linen yarn dyed fabric on Picanol Rapier loom.
Bashline L, Li S, Gu Y. (2014). The trafficking of the cellulose synthase complex in higher
plants. Annals of botany 114(6), 1059-1067. https://doi.org/10.1093/aob/mcu040
Bradow JM, Davidonis GHO, Hinojosa LH, Wartelle KJ, Pratt K, Pusateri PJ, Bauer B, Fisher GF,
Sassenrath-Cole PH, Dastoor JA, Landivar D, Locke D et al (1996) Environmentally induced
variations in cotton fiber maturity and related yarn and dyed knit defects. p. 1279–1284. In Proc.
Beltwide Cotton Conf., Nashville, TN. 9–12 Jan. 1996. Natl.Cotton Counc. Am., Memphis, TN.
Cao JF, Zhao B, Huang CC, Chen ZW, Zhao T, Liu HR et al (2020) The miR319-targeted GhTCP4
promotes the transition from cell elongation to wall thickening in cotton fiber. Molecular
Plant 13(7), 1063-1077. https://doi.org/10.1016/j.molp.2020.05.006
Cosgrove DJ, (2005) Growth of the plant cell wall. Nature reviews molecular cell biology 6(11),
850.
Dadgar M (2020) The Harvesting and Ginning of Cotton. In Cotton Science and Processing
Technology (pp. 61-78). Springer, Singapore.
Davidonis GH, Johnson AS, Landivar JA, Fernandez CJ (2004) Cotton fiber quality is related to
boll location and planting date. Agronomy Journal 96(1), 42-47.
https://doi.org/10.1016/j.smp.2004.04.200
Dever JK, Gannaway JR, Baker RV (1988) Influence of cotton fiber strength and fineness on fiber
damage during lint cleaning. Textile Research Journal 58(8), 433-438.
https://doi.org/10.1177%2F004051758805800801
El Mogahzy Y E, Chewning Jr CH (2001) Cotton fiber to yarn manufacturing technology. Cotton
Incorporated, Cary, NC.
Kang X, Kirui A, Widanage MCD, Mentink-Vigier F, Cosgrove DJ, Wang T (2019) Lignin-
polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nature
communications 10(1), 1-9. https://doi.org/10.1038/s41467-018-08252-0
Kechagia UE, Harig H (1998) New perspectives in improving cotton fiber quality and processing
efficiency. In Proc World Cotton Research Conference (Vol. 2).
Kelly M, Keeling W, Wanjura JD, Baughman T (2011) 2012 High Plains and Northern Rolling
Plains Cotton harvest aid-guide.
Kelly B, Abidi N, Ethridge D, Hequet EF (2015) Fiber to Fabric. In: Cotton, 2nd ed., Agron.
Monogr. 57. ASA, CSSA, and SSSA, Madison, WI. p. 665-744. doi:10.2134/agronmonogr57.2013.0031.
Kelly CM, Osorio-Marin J, Kothari N, Hague S, Dever JK (2019) Genetic improvement in cotton
fiber elongation can impact yarn quality. Industrial Crops and Products 129, 1-9.
https://doi.org/10.1016/j.indcrop.2018.11.066
Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell
elongation and cell wall biogenesis. Plant physiology 127(4), 1361-1366.
Kim HJ (2015) Fiber biology. Cotton 57, 97-127.
https://doi.org/10.2134/agronmonogr57.2013.0022
Krieg DR (2017) Fiber quality genetic and environmental affectors. Texas Tech University Lubbock, Texas, USA.

Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Annals of botany 100(7), 1391-1401. https://doi.org/10.1093/aob/mcm232

Long RL, Delhom CD, Bange MP (2021) Effects of cotton genotype, defoliation timing and season on fiber cross-sectional properties and yarn performance. Textile Research Journal. https://doi.org/10.1177/2F0040517521992769

Luo Q, Bange M, Johnston D (2016) Environment and cotton fibre quality. Climatic Change 138(1-2), 207-221. DOI 10.1007/s10584-016-1715-0

Long RL, Delhom CD, Bange MP (2021) Effects of cotton genotype, defoliation timing and season on fiber cross-sectional properties and yarn performance. Textile Research Journal. https://doi.org/10.1177%2F2F0040517521992769

Mansoor S, Paterson AH (2012) Genomes for jeans: cotton genomics for engineering superior fiber. Trends in biotechnology 30(10), 521-527. https://doi.org/10.1016/j.tibtech.2012.06.003

Mansoor S, Paterson AH (2012) Genomes for jeans: cotton genomics for engineering superior fiber. Trends in biotechnology 30(10), 521-527. https://doi.org/10.1016/j.tibtech.2012.06.003

Mangialardi Jr GJ, Lalor WF, Bassett DM, Miravalle RJ (1987) Influence of growth period on neps in cotton. Textile Research Journal 57(7), 421-427. https://doi.org/10.1177%2F004051758705700708

Marani A, Amirav A (1971) Effects of soil moisture stress on two varieties of upland cotton in Israel I. The coastal plain region. Experimental Agriculture 7(3), 213-224. https://doi.org/10.1017/S0014479700003022

Murray AK (1996) The use of glycoconjugate analysis to monitor growth and environmental stress in developing cotton fibers. In Beltwide Cotton Conferences (USA).

Murray AK, Brown J (1996) Glycoconjugate analysis of developing cotton fibers from several varieties grown on the same site. In Beltwide Cotton Conferences (USA).

Murray AK, Brown J (1997) Glycoconjugate profiles of developing fibers from different fruiting branches on the same plant. In Beltwide Cotton Conferences (USA).

Meredith Jr WR (1984) Quantitative genetics. Cotton 24, 131-150. https://doi.org/10.2134/agronmonogr24.c5

Meredith Jr WR (1986) Fiber quality variation among USA cotton growing regions. In Proceedings Beltwide Cotton Production Research Conferences.

Murray AK (1996) The use of glycoconjugate analysis to monitor growth and environmental stress in developing cotton fibers. In Beltwide Cotton Conferences (USA).

Murray AK, Brown J (1996) Glycoconjugate analysis of developing cotton fibers from several varieties grown on the same site. In Beltwide Cotton Conferences (USA).

Murray AK, Brown J (1997) Glycoconjugate profiles of developing fibers from different fruiting branches on the same plant. In Beltwide Cotton Conferences (USA).

Silvertooth JC, Norton ER, Brown PW (1998) Evaluation of planting date effects on crop growth and yield. For Upland and Pima cotton, 1997. .cals.arizona.edu/pubs/crops/az1123/az11231d.pdf.

Norton ER, Silvertooth JC (1999) Evaluation of Planting Date Effects on Crop Growth and Yield for Upland Cotton, 1998.

Pettigrew WT (2001) Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Science 41(4), 1108-1113. https://doi.org/10.2135/cropsci2001.4141108x

Polko JK, Kieber JJ (2019). The regulation of cellulose biosynthesis in plants. The Plant Cell 1J(2), 282-296. DOI: https://doi.org/10.1105/tpc.18.00760

Ramey Jr HH (1986) Stress influences on fiber development. Cotton physiology (1), 351-359.

Riley JA (1961) Moisture and cotton at harvest time in the Mississippi Delta. Mon Weather Rev 89, 341-353. https://doi.org/10.1175/1520-0493(1961)089%3C0341:MACAHT%3E2.0.CO;2

Öktem T, Özdoğan E, Öncü S, Sokat Y (1999) Some errors observed in cotton fibers. Turkey Cotton, Textile and Apparel Symposium. Agricultural Economics Research Institute 18-19. (In Turkish).

Özbek, N. (2011). Pamukta (Gossypium hirsutum L.) lif ve tohum özellikleri arasındaki ilişkilerin saptanması. http://194.27.38.21/web/catalog/info.php?id=53950714&idt=1

Özkan M, Duru Baykal P, Özkan İ (2021) Investigation on the performance properties of polytrimethylene terephthalate (PTT) based staple fibers and cotton blended OE-rotor yarns. The Journal of The Textile Institute, 1-11. https://doi.org/10.1080/00405000.2021.1884355

Saçak M (2002) Fiber and fiber chemistry. Gazi Bookstore. (In Turkish).
Shurley D, Bednarz C, Anthony S, Brown SM (2004) Increasing cotton yield, fiber quality, and profit through improved defoliation and harvest timeliness. University of Georgia Cooperative Extension Service Bulletin J252.

Siddiqui MQ, Wang H, Memon H (2020) Cotton Fiber Testing. In Cotton Science and Processing Technology (pp. 99-119). Springer, Singapore.

Silvertooth JC, Norton ER, Brown PW (1997) Evaluation of planting date effects on crop growth and yield for Upland and Pima cotton 1996.

Silvertooth JC (2001) Crop management for optimum fiber quality and yield. The University of Arizona. Cooperative Extension. extension.arizona.edu/pubs/az1219-2015.pdf

Takenaka Y, Watanabe Y, Schuetz M, Unda F, Hill JL, Phookaew P et al (2018) Patterned deposition of xylan and lignin is independent from that of the secondary wall cellulose of Arabidopsis xylem vessels. The Plant Cell 30(11), 2663-2676. https://doi.org/10.1105/tpc.18.00292

Uyanik S (2019) A study on the suitability of which yarn number to use for recycle polyester fiber. The Journal of the Textile Institute 110(7), 1012-1031. https://doi.org/10.1080/00405000.2018.1550889

van der Sluijs MJ, Hunter L (2016) A review on the formation, causes, measurement, implications and reduction of neps during cotton processing. Textile Progress 48(4), 221-323. https://doi.org/10.1080/00405167.2016.1233656