The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: recent advances and controversies

Dennis G McGonagle,1,2 Iain B Mclnnes,3 Bruce W Kirkham,4 Jonathan Sherlock,5,6 Robert Moots7,8

INTRODUCTION

The spondyloarthritides (SpA) comprise related but phenotypically distinct inflammatory diseases including psoriatic arthritis (PsA), non-radiographic axial spondyloarthritis (nr-axSpA) and radiographic axSpA (ankylosing spondylitis (AS)), arthritis associated with inflammatory bowel disease (IBD), reactive arthritis, juvenile idiopathic arthritis and acute anterior uveitis.1–3 The SpA diseases share common immunological and inflammatory components and present with overlapping clinical phenotypes.4–7 Indeed, multiple genetic polymorphisms within the interleukin (IL)-23/17 axis have been implicated across SpA.8–11 Intriguingly, despite the clinical and genetic similarities, these disorders are showing emergent and unexpected heterogeneity with respect to IL-23/17 axis therapeutic manipulation, a topic addressed later in this article.

IL-17A, a member of the IL-17 superfamily of cytokines, is known to play an important role in SpA manifestations related to the skin, joints and entheses, as reflected by the suppression of disease activity seen with IL-17A inhibitors in psoriasis, PsA and AS.12–19 However, in other settings where IL-17 family members have been found at sites of disease, such as gut inflammation and uveitis, IL-17A inhibition is not beneficial.20–22 These discrepant responses illustrate the need for clearer understanding of the aetiology of these inflammatory diseases, particularly the role of the IL-17 family in the context of the tissue(s) affected. IL-17 research has accelerated rapidly, with nearly 10 000 articles published on this topic in the last 5 years alone. In this article we highlight the latest breakthroughs that expand understanding of the role of IL-17A in both homoeostasis and in disease in axSpA and PsA.

IL-17A PRODUCTION AND SIGNALLING

The IL-17 superfamily consists of six ligands (IL-17A to IL-17F), which can bind to five receptor subtypes (IL-17RA to IL-17RE). The basic biology of most of the IL-17 superfamily has been reviewed extensively elsewhere.23 24 IL-17A, the prototypical ligand, is by far the best characterised member of the IL-17 family and can exist as a homodimer or in a heterodimer with IL-17A in the pathophysiology of spondyloarthritis in man, including its cellular origin, its precise role in discrete disease processes such as enthesitis, bone erosion, and bone formation, and the reasons for the discrepant responses to IL-17A inhibition observed in certain other spondyloarthritides manifestations. In this review, we focus on the latest data from studies investigating the role of IL-17A in ankylosing spondylitis (AS) and PsA that build on existing and emerging scientific knowledge in the field. Key remaining research questions are also highlighted to guide future research.

WELL-DEFINED ROLE OF IL-17A IN HOST DEFENCE

In healthy individuals, IL-17A, as well as other members of the IL-17 family, functions in host defence against a range of bacterial and fungal pathogens at epithelial and mucosal barriers in the skin, colon and airways.25–27 Although the exact interplay between the various IL-17 family members is poorly understood, epithelial cell-derived (especially IL-17C) and haematopoietic cell-derived IL-17s (IL-17A and F) may have complementary functions in response to pathogens, with the former predominantly enhancing barrier function and the latter propagating the inflammatory response.28 The IL-23/17 axis co-ordinates barrier function in the skin and the gut, both of which are sites of either physical or chemical stress and are also sites of complex microbiota interactions. What might the common denominator be between the IL-23/17 axis and inflammation at the sterile skeletal locations afflicted by SpA-associated pathology? We agree with the assertion that the IL-23/17 axis might be adapted to facilitate homoeostasis at these highly mechanically stressed enthesal sites that are prone to microinjury.29

An array of genetic defects in the IL-17 pathway, identified through human translational immunology, collectively point towards a role in anti-fungal immunity (table 1). Chronic mucocutaneous candidiasis (CMC) is a hallmark of individuals with genetic defects affecting IL-17 immunity, manifesting as recurrent or persistent infections of the skin, nails and mucosae with Candida albicans, with or without other clinical signs.30 As can be

© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

To cite: McGonagle DG, Mclnnes IB, Kirkham BW, et al. Ann Rheum Dis 2019;78:1167–1178.
Preclinical and ex vivo studies also implicate IL-17A in immunity against a range of other pathogens including bacteria such as Escherichia coli, fungi such as Cryptococcus neoformans, parasites such as Trypanosoma cruzi, and viruses such as influenza (reviewed in Matsuzaki and Umemura). Although as with all drugs that modulate immune response there is the potential for an increased infection risk with IL-17A inhibitors, clinical data show no risk from specific pathogens, with the exception of candidiasis.

Reassuringly, no association between myco-bacterial disease and blockade of IL-17A biological activity has been observed in man. Reassuringly, no association between mycobacterial disease and blockade of IL-17A biological activity has been observed in man.34

**ROLE OF IL-17A IN SPA**

Although IL-17A cytokine expression has been detected in a multitude of autoimmune and autoinflammatory diseases, a key role in psoriasis, PsA and axSpA is evident.

### Table 1

| Disease | Genes/proteins involved | Common infections | Effect on IL-23/IL-17 signalling | References |
|---------|-------------------------|-------------------|---------------------------------|------------|
| MSMD    | IL-12R1, IL-12B1, IFN-γR1, STAT1 | Mycobacterium tuberculosis, salmonella, candida albicans | Increased Th17 cell count, IL-17A production | 1168 181 183–187 189 |
| CMCD    | STAT1, CARD9, IL-17RA, IL-17RC, IL-17F, ACT1 | Candida albicans, mycobacterium | Reduced production of IL-17A, IL-17F, IL-22 | 182 183 191 193 202 |
| APECED  | AIRE | Candida albicans, staphylococcus, aspergillus | Increased autoantibodies to IL-17A, IL-17F, IL-22 | 194 197 |
| HIES    | STAT3, DOCK8, TYK2 | Candida albicans, staphylococcus, aspergillus | Increased serum IgE | 49 198 201 203 |

The genes and proteins involved and the resultant effects on IL-17 signalling that lead to increased susceptibility to certain infections are listed. IL-12 and IL-23 share cytokine and receptor subunits and the association with mycobacterial disease is thought to represent an effect on dysregulated IFN gamma production in the IL-12 pathway. Therefore IL-17 blockers or IL-23 p19 subunit blockers are not expected to have a link with mendelian susceptibility to mycobacterial disease.

**GENETICS**

Although a detailed examination of the genetic basis of SpA is outside the scope of this article (reviewed in detail in Taams et al and Brown et al), the strongest association with genetic susceptibility to axSpA and PsA lies within the MHC class I region and in particular the HLA-B27 region. Multiple immunological functions can be altered by these genetic associations, including several relevant to IL-17A signalling through activation of CD8+ T cells and CD4+ T cells. Several single nucleotide polymorphisms in genes directly involved in IL-17 signalling have also been linked to AS and PsA (figure 1), including variants in the IL-12 p40 subunit, the IL-23 p19 subunit, the IL-23 receptor, IL-17A and IL-17RA. Additional susceptibility variants have been identified in genes encoding IL-17-related signalling molecules including TYK2, TRAF3IP2 and STAT3.

**IL-17A production**

There has been significant interest in identifying the sources of IL-17A in SpA and a number of innate and adaptive immune system cell types have been implicated (reviewed in Taams et al) (figure 2). Increased levels of type 3 innate lymphoid cells (ILC3) have been identified in blood and synovia of patients...
Figure 1  Single nucleotide polymorphisms identified in the IL-17 signalling pathway that have been linked to axial spondyloarthritis and psoriatic arthritis. *Significant association shown in European but not Asian populations [67]; ¨No risk associated with this SNP shown in certain studies [204–206]; SNP can be associated with risk or protection depending on the specific mutation. AS, ankylosing spondylitis; IL-1R2, interleukin 1 receptor; IL-6R, interleukin 6 receptor; IL17R, interleukin receptors; PsA, psoriatic arthritis; SNP, single nucleotide polymorphism.

Table 1  Key sources of IL-17A in spondyloarthritis. AS, ankylosing spondylitis; ILC3, type 3 innate lymphoid cell; iNKT, innate natural killer T cell; MAIT, mucosal-associated invariant T cell; PsA, psoriatic arthritis; SpA, spondyloarthritis; Th17, T helper 17 cell; T_Rm, resident memory T cell.

| Panel | Reference(s) |
|-------|--------------|
| PsA   | rs2275913, rs763780 |
| AS    | rs2275913, rs763780, rs4819554, rs1004819, rs12141578, rs10889677, rs1495965, rs6977188, rs220181, rs2201841, rs11805303, rs11578389, rs924080, rs11209032, rs1735018, rs78418798 |

References

1. McGonagle DG, et al. Ann Rheum Dis 2019;78:1167–1178. doi:10.1136/annrheumdis-2019-215356
in synovial fluid samples, as determined by both advanced cyto-
metric methodologies and intracellular cytokine IL-17 staining.60
In vivo evidence for enrichment of pathogenic subsets in the
joints was recently shown in mannan-induced arthritis in SKG
mice, an IL-23/17 axis dependent disease.61
Tissue-resident memory T cells (T RM) represent approximately
50%–70% of the pool of resident T cells in healthy skin, and can
produce a variety of cytokines, including IL-17A.62–64 In patients
with psoriasis, IL-17-producing CD8+T RM cells have been iden-
tified in non-involved skin and may be involved in recurrence
of psoriasis at sites of prior resolution.62–64 Efforts are ongoing
to investigate the role of T RM cells in tissues affected by SpA.
A study in patients with PsA has shown the presence of IL-17
expressing CD4- (CD8+) T cells in the synovium.63 However,
no studies have been reported in axial disease to date.

Adaptive immune cells are key drivers of chronicity in SpA
and as such, are also a major source of IL-17A. The presence of
T helper 17 (Th17) cells in SpA is relatively well established.65
Increased levels of both Th17 cells and IL-17A are found in
skin lesions and the blood of patients with psoriasis as well as
the blood and synovial fluid of patients with AS and PsA.66–73
IL-17A initiates several feedback-loop mechanisms in SpA
leading to increased expansion of Th17 cells and thereby further
production of IL-17A.66 Evidence suggests that there are distinct
subtypes of Th17 cells whose differentiation is dependent on
specific combinations of cytokines.74 Furthermore, there is likely
to be considerable plasticity between Th17 cells and FOXP3+/
regulatory T cells.75 Identification of the subtype(s) of Th17
cells and their regulation and relevance to axSpA and PsA is an
important topic of ongoing research.

Although not found in rheumatoid arthritis synovial fluid,
IL-17A-producing conventional CD8+T cells are present in
synovial fluid of inflamed joints in patients with AS and PsA where
their levels correlate with disease activity.71 72 79 IL-17-producing
mucosal-associated invariant T (MAIT) cells have been identi-
fied in skin and blood from patients with psoriasis80 and are also
increased in the synovial fluid and blood of patients with AS,
where they produce IL-17A in an IL-7-dependent fashion.81 82

It has been suggested that neutrophils contribute to the ampli-
fication of the inflammatory response in SpA by producing
further IL-17A and although IL-17A-positive neutrophils have been
reported in psoriatic skin, the synovium of patients with PsA, and in AS facet joints,83–88 the emerging consensus is that
neutrophils do not produce IL-17A mRNA or protein, even after
strong stimulation with various cytokine combinations.87 Similarly,
although IL-17A-positive mast cells have been found in
synovial tissue from patients with SpA,89 the concept is of exog-
enuous IL-17A capture and release, as opposed to synthesis.87 A recent study indicated that levels of IL-17A were higher in
joint-resident mast cells following IL-17A inhibition, which
supports the concept of storage of this cytokine under normal
tissue homeostasis and mast cell release during inflammation.88

A key research question for the future will be identifying all
IL-17A-producing populations, especially at the enthesis in SpA.
It is noteworthy that measurement of serum levels of IL-17A is
likely to be of minimal relevance due to the local tissue responses
seen in SpA via IL-17A-producing resident cells.

Enthesitis
Considerable recent developments have occurred in experi-
mental enthesitis research where high mechanical stress at
entheses is associated with local immune system activation.59 93 94
Non-SpA-related enthesitis can result from repeated mechanical
strain in healthy individuals (eg, tennis elbow) and usually
resolves spontaneously, whereas inflammation in SpA shows
chronicity.59 The underlying mechanisms behind this patho-
logically exaggerated immune response, which is driven by a
combination of genetic factors and disturbed epithelial barrier
function, are starting to be unravelled.59 95–97

Enthesitis is triggered predominantly by an innate immune
response. Prostaglandin E2 (PGE2) and IL-23 may be important
early mediators, activating resident immune cells to produce
IL-17A and other inflammatory cytokines. Indeed, peri-
entheseal bone involvement and the often excellent responses
observed with NSAIDs incriminate PGE2 in axial disease.59 In
mice, hepatic expression of IL-23 induces spondylarthritis
by acting on ROR-γ+CD3+CD4-CD8- entheseal resident T
cells to produce inflammatory mediators including IL-17A.98
γδ T cells have been shown to constitute the large majority
of murine IL-17A producing cells, proliferating at the site of injury,
and enhancing bone regeneration.99 100 However, although
enthesitis appears to be a cardinal lesion in several IL-23/17 axis
murine models of inflammatory arthritis,101–107 other models
have indicated that disease can arise in a T-cell independent
manner including that mediated by TNF production from enthese-
al myeloid and stromal cells.94 108–110

In humans, IL-17A-producing enthesis-resident ILC3 and
γδ T cells have recently been described.63–68 Resident myeloid
cells that can locally produce IL-23 have also been described,111
and their numbers in man may be linked to mechanical load.108
IL-17A likely acts as an amplifier of enthesitis, inducing several
other cytokines by resident mesenchymal cells.89 112–113 Prolonged
entheseal inflammation leads to new bone formation and also, to
a much lesser extent, bone erosion, and is subject to considerable
research interest.59

Bone damage
Preclinical and clinical data suggest that bone erosion and new
bone formation in SpA may occur simultaneously at different
anatomical sites,114–117 with IL-17A playing a complex role in
these processes.

Bone erosion
Numerous preclinical studies have indicated that IL-17A
promotes bone resorption in experimental arthritis.118–121 Recent
efforts have focused on elucidating the mechanisms behind
these effects and indicate that IL-17A stimulates receptor activ-
ator of nuclear factor-kB ligand (RANKL) expression and inhibi-
tion of Wnt signalling, thereby inhibiting osteoblast activity
(figure 3).122–128
Clinical data in patients with PsA show a significant reduc-
tion in joint radiographic progression with IL-17A inhibitors
versus placebo in the short-term and low long-term rates of
radiographic progression.13 14 129 Furthermore, recent data from
the PSARTROS study showed no progression of catabolic and
anabolic bone changes in the joints of patients with PsA treated
with secukinumab for 24 weeks.130

New bone formation
The precise role of IL-17A in new bone formation in axial SpA
and PsA is currently unknown, with contradictory experimental
findings observed. Studies favouring a role in new bone forma-
tion include data from both animal models and human primary
cells (summarised in figure 3). IL-17A has been reported to boost
ostegenesis via enhancing osteoblast differentiation from local
mesenchymal stem cell populations.100 131–133 and the subsequent
activation of the osteoblasts via activation of the JAK2/STAT3 signalling pathway, which is associated with osteogenesis.\textsuperscript{131} IL-17A knockout models have been associated with impaired bone regeneration at both 14 and 21 days post a drill-hole fracture in the femur when compared with wild type mice.\textsuperscript{100} Furthermore, in the mycobacterium tuberculosis-induced diseased HLA-B27 transgenic rat model of SpA, IL-17A blockade significantly suppressed pathological new bone formation.\textsuperscript{134} In humans, IL-17A levels are elevated in the days following fracture, which in turn is associated with callus formation.\textsuperscript{135}

In contradistinction, cutaneous-restricted overexpression of IL-17A was associated with bone loss in murine models.\textsuperscript{136} Moreover, rat calvarial defects show impaired healing when exposed to IL-17A, combined with significant impairments in osteogenesis in the isolated cells when exposed to IL-17A.\textsuperscript{137} In vivo, IL-17A is associated with osteoclastogenic activation and systemic bone loss in rheumatoid arthritis.\textsuperscript{122, 124} Thus, determining the role of IL-17A in new bone formation remains an important avenue of future research.

Pain

The immune system plays a critical role in modulating acute and chronic pain in both the peripheral and central nervous systems.\textsuperscript{138, 139} Although pain in SpA is often assumed to be a surrogate marker for inflammation, evidence is emerging to suggest a more complex picture. In axSpA, pain does not always correlate with inflammation or radiographic measures of disease.\textsuperscript{140} Furthermore, neuropathic pain as well as inflammatory pain has been observed in patients with AS and PsA.\textsuperscript{141, 142}

IL-17A can modulate inflammatory pain by directly increasing nociceptor excitability and potentiating hyperalgesia through the induction of secondary factors.\textsuperscript{139, 143-146} Both IL-17RA and IL-17RC are expressed in murine neuronal tissue where they contribute to inflammatory responses.\textsuperscript{147, 148} Preclinical studies also suggest a role for IL-17A in neuropathic pain.\textsuperscript{149-152} Clinical data with inhibitors of IL-17A in AS and PsA show rapid and significant pain reduction,\textsuperscript{153, 154} but work to assess whether this represents a reduction in neuropathic as well as inflammatory pain is needed.

Gut inflammation in SpA

The role of IL-17A in IBD and its potential link to the pathogenesis of axSpA and PsA has been the subject of some controversy. Historically, preclinical data investigating the outcome of IL-17A inhibition in mouse IBD models have been inconsistent, with some studies showing disease protection and others showing exacerbation.\textsuperscript{155, 156} Clinically, IL-17A inhibition was ineffective in moderate-to-severe Crohn’s disease.\textsuperscript{20} Long-term clinical trial and postmarketing safety data in psoriasis, PsA and AS indicate that the overall incidence of IBD is low, within the expected range in these disorders, and not exacerbated by secukinumab treatment.\textsuperscript{157} This highlights one of the pitfalls of translating preclinical data to a clinical setting and has led researchers to reconsider the preclinical IBD models. Nevertheless, long-term data with IL-17A inhibitors in clinical practice are required to investigate this issue further.

The γδ T cell was the principal source of gut-derived IL-17A in a mouse model of colitis, where IL-17A-dependent regulation of the tight junction protein occludin during epithelial injury was shown to maintain barrier integrity.\textsuperscript{158} Mucosal tissues have also emerged as a key physiological site for the differentiation and regulation of Th17 cells.\textsuperscript{77, 159, 160} A role for ILC3 and innate-like T cells such as iNKT cells and MAIT cells in IBD is also postulated based on their high representation at barrier sites.\textsuperscript{161-163} Putative links have also been suggested between gut inflammation, migration and accumulation of IL-17A-producing ILC3 cells in the joints of patients with AS.\textsuperscript{164} A recent study also found that pathogenic bacteria can induce intestinal barrier defects and translocate to systemic organs, triggering autoimmune disease.\textsuperscript{165}

Uveitis

Like IBD, anterior uveitis in SpA shares common genetic risk factors and the involvement of certain pro-inflammatory
cytokines. Clinical trials have demonstrated the efficacy of anti-TNF monoclonal antibody therapy in panuveitis or posterior uveitis but clinical trials with inhibitors of IL-17A have failed to meet their primary endpoints for these forms of the disease that are pathophysiologically distinct from anterior uveitis. Clinical trials have demonstrated the efficacy of anti-TNF monoclonal antibody therapy in panuveitis or posterior uveitis but clinical trials with inhibitors of IL-17A have failed to meet their primary endpoints for these forms of the disease that are pathophysiologically distinct from anterior uveitis. Both IL-17A and IL-17F have been detected in anterior uveitis (reviewed in Weinstein and Pepple), but whether they play a critical role is unclear. In secukinumab-treated AS patients there was no evidence suggesting uveitis flares in patients with previous anterior uveitis. Further research is required to extend our understanding of the precise role of IL-17A in the pathogenesis of anterior uveitis.

TARGETING IL-17A IN SPA

The key role played by IL-17A in the pathogenesis of AS and PsA is highlighted by the efficacy shown by inhibitors of IL-17A in clinical trials. Secukinumab, a fully human anti-IL-17A monoclonal antibody, is approved for the treatment of psoriasis, PsA, and AS based on the results of several large randomised controlled trials. 

Izekizumab, a humanised anti-IL-17A antibody, is approved for the treatment of psoriasis and PsA and has shown significant efficacy in two large phase III trials in AS. The efficacy of IL-17A inhibitors across all manifestations of disease in AS and PsA, including skin, nails, peripheral arthritis, axial disease, dactylitis, and enthesitis, highlights the utility of drugs targeting this pathway (figure 4). Inhibitors of IL-17A have also been shown to have an overall favourable long-term safety profile in clinical trials, including low rates of serious infections, Candida infections and malignancy, with no evidence of increased suicidality or IBD exacerbation above expected background levels.

Nevertheless, the long-term safety of IL-17A inhibitors will need to be monitored in a real-world setting.

WHAT IS THE BASIS FOR DIVERGENT IL-17A AND IL-23 RESPONSES IN AXIAL DISEASE?

IL-23 plays a key role in amplifying and maintaining IL-17A production in many cells, so it was expected that IL-23 inhibitor therapy would have similar results to IL-17A inhibition in axSpA. Interestingly, clinical studies with ustekinumab, an IL-12/-23 inhibitor, in axial SpA were terminated due to lack of efficacy and the IL-23 p19 inhibitor risankizumab also failed to show efficacy in AS in a phase II proof of concept study. Conversely, the efficacy of IL-17A inhibition in AS suggests that IL-17A and not IL-23 is the major cytokine mediating disease pathogenesis in axSpA and in this context, IL-17A is likely to be produced in a largely IL-23-independent manner. Understanding the reasons for these divergent roles of IL-23 and IL-17A in the pathophysiology of axSpA is one of the hottest topics in current IL-17A research. Emerging evidence suggests there may be anatomical and immunological differences between axial and peripheral enthesitis and subsequent downstream disease manifestations (figure 5). For instance, there is generally more enthesal soft tissue inflammation or synovio-entheseal complex disease in peripheral enthesitis in PsA and more peri-enthesal osteitis in the spine in AS, with this bone prolocity being linked to carriage...
A. Anatomic differences between spinal and peripheral entheses

Emergent scheme to explain IL-23/–17 axis pathway divergence in PsA and AS. IL-23 pathway blockade is highly effective in psoriasis but not in AS, which is unexpected given the IL-23 SNPs and related gene SNPs associated with AS. Anatomical differences between entheses in the spine versus peripheral joints could play a role (A). The peripheral skeleton has numerous synovio-entheseal complexes, which contain abundant myeloid cells, while these cells are rare in the spine. Spinal enthesitis is also associated with peri-entheseal bone disease and osteitis. The role of inflammatory cytokines, namely IL-23, IL-17A, and TNFα, also differs across the spondyloarthritides (B). Emerging evidence supports the cellular basis for IL-17 production that is independent of IL-23. Animal models also show that IL-23 has a redundant role once adaptive immunity is primed. Where ++, strong involvement; +, involvement; –, no involvement. AS, ankylosing spondylitis; γδT, gamma delta T cells; HLA-B27, human leucocyte antigen B27; IL-23, interleukin 23; ILC3, Type three innate lymphoid cells; iNKT, innate natural killer T cell; MAIT, mucosal associated invariant T cell; MSCs, mesenchymal stem cells; PsA, psoriatic arthritis; PsO, psoriasis; Tc17, CD8+T cells; Th17, T helper 17 cells; TNF, tumour necrosis factor α.

B. Differential cytokine effects in AS, PsA and PsO

|       | AS | PsA | PsO |
|-------|----|-----|-----|
| IL-23 | –  | +   | ++  |
| IL-17A| ++ | ++  | ++  |
| TNF   | +  | +   | +   |

C. IL-17A production in spinal entheses

Figure 5  Emergent scheme to explain IL-23/–17 axis pathway divergence in PsA and AS. IL-23 pathway blockade is highly effective in psoriasis but not in AS, which is unexpected given the IL-23 SNPs and related gene SNPs associated with AS. Anatomical differences between entheses in the spine versus peripheral joints could play a role (A). The peripheral skeleton has numerous synovio-entheseal complexes, which contain abundant myeloid cells, while these cells are rare in the spine. Spinal enthesitis is also associated with peri-entheseal bone disease and osteitis. The role of inflammatory cytokines, namely IL-23, IL-17A, and TNFα, also differs across the spondyloarthritides (B). Emerging evidence supports the cellular basis for IL-17 production that is independent of IL-23. Animal models also show that IL-23 has a redundant role once adaptive immunity is primed. Where ++, strong involvement; +, involvement; –, no involvement. AS, ankylosing spondylitis; γδT, gamma delta T cells; HLA-B27, human leucocyte antigen B27; IL-23, interleukin 23; ILC3, Type three innate lymphoid cells; iNKT, innate natural killer T cell; MAIT, mucosal associated invariant T cell; MSCs, mesenchymal stem cells; PsA, psoriatic arthritis; PsO, psoriasis; Tc17, CD8+T cells; Th17, T helper 17 cells; TNF, tumour necrosis factor α.
of the HLA-B27 gene for axial disease.\textsuperscript{14} In terms of control of IL-17 production, IL-23 receptor positive and negative subpopulations of γδ T cells have been identified in human spinoous processes enthesis, pointing to a role for IL-23-independent IL-17A production,\textsuperscript{57} and enthesis-resident myeloid cells are capable of IL-23 production locally.\textsuperscript{111} Further research is required to investigate the drivers of this process in the future although data in mice indicate that the initiation, but not the persistence, of experimental SpA is dependent on IL-23.\textsuperscript{175}

**CONCLUSION**

The IL-17A inhibitors show efficacy in treating multiple facets of SpA, including psoriasis, enthesitis, synovitis, bone erosion, new bone formation and pain, which illustrates the importance of IL-17A in disease pathophysiology. Future research will investigate key remaining gaps, such as the role of human enthesis-resident innate and adaptive T cells in SpA and our understanding of IL-23-independent IL-17A production. The ongoing assessment of IL-17A inhibitors in a real-world setting will also be important as these agents become more widely prescribed in clinical practice. Ongoing research efforts will attempt to answer these and other open questions and shed further light on the role of IL-17A in SpA in the hope of furthering our understanding and improving treatment of these diseases.

**Correction notice** This article has been corrected since it published Online First. The last sentence in the second paragraph of the ‘Well-defined role of IL-17A in host defense’ section has been updated for clarity.

**Acknowledgements** The authors would like to acknowledge the following individuals for their help in the preparation of this work: Darren Asquith and Lindsey Hanson from Novartis UK.

**Contributors** All authors provided a substantial contribution to the conception, design and interpretation of the work, drafted the work or revised it critically for important intellectual content, and provided final approval of the submitted version of the manuscript.

**Funding** Medical writing support was provided by Ben Dreever from Seren Communications, an Ashfield Company, part of UDG Healthcare, the funding for which was provided by Novartis.

**Competing interests** RM reports grants and personal fees from Novartis, during the conduct of the study. DGM reports grant and personal fees from Novartis, outside the submitted work. IBM reports personal fees from AbbVie, grants and personal fees from BMS, personal fees from Celgene, grants and personal fees from Janssen, personal fees from Lilly, personal fees from Novartis, grants and personal fees from UCB, personal fees from Leo, grants from Astra Zeneca, grants from Roehminger Ingelheim, outside the submitted work; BWK reports grants and personal fees from AbbVie, grants and personal fees from Eli Lilly & Co, and personal fees from Novartis, personal fees from Roche, grants from UCB, personal fees from Janssen, personal fees from Pfizer, personal fees from Sandoz, outside the submitted work. JS reports personal fees from AbbVie, personal fees from BMS, personal fees from Celgene, personal fees from Janssen, personal fees from Novartis, personal fees from UCB, personal fees from Merck, outside the submitted work.

**Patient consent for publication** Not required.

**Provenance and peer review** Not commissioned; externally peer reviewed.

**Open access** This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

**REFERENCES**

1. Wright V. Seronegative polyarthritis: a unified concept. *Arthritis Rheum* 1978;21:619–23.
2. Rudwaleit M, Khan MA, Sieper J. The challenge of diagnosis and classification in early ankylosing spondylitis: do we need new criteria? *Arthritis Rheum* 2005;52:1000–8.
3. van der Heijde D, Ramiro S, Landewe R, et al. Update of the ASAS-EULAR management recommendations for axial spondyloarthritis. *Ann Rheum Dis* 2016;75:2017–91.
4. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. *PLoS Med* 2006;3:e297.
5. Lande R, Bont J, Janus C. The antimicrobial peptide LL37 is a T-cell autopoietin in spondyloarthritis. *Nat Commun* 2014;5.
6. Mease PJ, Armstrong AW. Managing patients with psoriatic disease: the diagnosis and pharmacologic treatment of psoriatic arthritis in patients with psoriasis. *Drugs* 2014;74:423–41.
7. Jadon DR, Sengupta R, Nightingale A, et al. Axial disease in psoriatic arthritis study: defining the clinical and radiographic phenotype of psoriatic spondyloarthritis. *Ann Rheum Dis* 2017;76:701–7.
8. Brewerton DA, Nicholls A, Caffrey M, et al. HLA-A 27 and arthropathies associated with ulcerative colitis and psoriasis. *The Lancet* 1974;303:956–8.
9. Brown MA, Pile KD, Kennedy LG, et al. HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. *Ann Rheum Dis* 1996;55:268–70.
10. Winchester R, Minevich G, Steanches V, et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. *Arthritis Rheum* 2012;64:1134–44.
11. Taams LS, Steel KJA, Srenathan U, et al. IL-17 in the immunopathogenesis of spondyloarthritis. *Nat Rev Rheumatol* 2018;14:453–66.
12. Langley RG, Elewski BE, Lebwohl M, et al. Secukinumab in plaque psoriasis—results of two phase 3 trials. *N Engl J Med* 2014;371:1236–38.
13. Mease P, van der Heijde D, Landewe R, et al. Secukinumab improves active psoriatic arthritis symptoms and inhibits radiographic progression: primary results from the randomised, double-blind, phase III future 5 study. *Ann Rheum Dis* 2018;77:890–7.
14. Mease PJ, McInnes IB, Kirkham B, et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. *N Engl J Med* 2015;373:1329–39.
15. McInnes IB, Mease PJ, Kirkham B, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (future 2): a randomised, double-blind, placebo-controlled, phase 3 trial. *The Lancet* 2015;386:1137–46.
16. Baeten D, Sieper J, Braun J, et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. *N Engl J Med* 2015;373:2534–48.
17. Gordon KB, Blauvelt A, Papp KA, et al. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. *N Engl J Med* 2016;375:345–56.
18. Nash P, Kirkham B, Okada M, et al. Ixekizumab for the treatment of patients with active psoriatic arthritis and an inadequate response to tumour necrosis factor inhibitors: results from the 24-week randomised, double-blind, placebo-controlled period of the SPIRIT-P2 phase 3 trial. *The Lancet* 2017;389:2317–27.
19. Mease PJ, van der Heijde D, Ritchlin CT, et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. *Ann Rheum Dis* 2017;76:79–87.
20. Huerbe W, Sands BE, Lewitzky S, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind, placebo-controlled trial. *Gut* 2012;61:1093–70.
21. Dick AD, Tugal-Tutkun I, Foster S, et al. Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. *Ophthalmology* 2013;120:777–87.
22. Sharma SM, Fu DJ, Xue K. A review of the landscape of targeted immunomodulatory therapies for non-infectious uveitis. *Ophthalmol Ther* 2018;7:1–17.
23. Gaffen SL. Structure and signalling in the IL-17 receptor family. *Nat Rev Immunol* 2009;9:556–67.
24. Amaty N, Garg AV, Gaffen SL. IL-17 signaling: the Yin and the Yang. *Trends Immunol* 2017;38:310–22.
25. Ishigame H, Kakuta S, Nagai T, et al. Differential roles of interleukin-17A and -17F in host defense against mucocutaneous bacterial infection and allergic responses. *Immunobiology* 2009;209:108–19.
26. Cho JS, Pietras EM, Garcia NC, et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. *J Clin Invest* 2010;120:1762–73.
27. Aujail SJ, Dubin PJ, Kolls JK. Th17 cells and mucosal host defense. *Semin Immunol* 2007;19:377–82.
28. Matsuizaki G, Unemura M. Interleukin-17 family cytokines in protective immunity against infections: role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17s. *Microbiology and Immunology* 2018;62:1–13.
29. Lories RJ, Haroon N. Evolving concepts of new bone formation in axial spondyloarthritis: insights from animal models and human studies. *Best Practice & Research Clinical Rheumatology* 2017;31:877–86.
30. Okada S, Puel A, Casanova JL, et al. Chronic mucocutaneous candidiasis disease associated with inborn errors of IL-17 immunity. *Clin Transl Immunology* 2016;5:e114.
31. Puel A, Cypowyj S, Mordi L, et al. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. *Curr Opin Allergy Clin Immunol* 2012;12:616–22.
characteristics consistent with a capacity for IL-17A production in response to IL-23. Rheumatology 2017;69.

Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis–insights into pathogenesis. Ann Rheum Dis 2016;75;128–91.

Bowen P, Ridley A, Shaw J, et al. T17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol 2011;186:2672–80.

Allen RL, O’Callaghan CA, McMichael AJ, et al. Cutting edge: HLA-B27 can form a novel beta-2-microglobulin-free heavy chain homodimer. J Immunol 1999;162:5045–8.

De Lay ML, Turner MJ, Klenk EL, et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheumatol 2009;60:2633–43.

Colbert RA, De Lay ML, Klenk EL, et al. From HLA-B27 to spondyloarthritis: a journey through the ER. Immunol Rev 2010;233:181–202.

Burton PR, Clayton DG, Cardon LR, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmune variants. Nat Genet 2007;39:1329–37.

Evans DM, Spencer CCA, Pointon JJ, et al. Interaction between ERAPI and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet 2011;47:767–71.

Tsui LC, Spain SL, Knight J, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet 2012;44:1341–8.

Cortes A, Hadler J, Pointon JP, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 2013;45:730–8.

Filer C, Ho P, Smith RI, et al. Investigation of association of the IL12RB1 and IL23R genes with psoriatic arthritis. Arthritis Rheum 2008;58:3705–9.

Bowes J, Orozco G, Flynn E, et al. Confirmation of the TNIPI and IL23A as susceptibility loci for psoriatic arthritis. Ann Rheum Dis 2011;70:1641–4.

Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012;491:119–24.

Coiffre M, Roumier M, Rybczynska M, et al. Combinatorial control of Th17 and Th1 cell functions by genetic variations in genes associated with the interleukin-23 signaling pathway in spondyloarthritis. Arthritis Rheum 2013;65:1510–21.

de Beaucoudrey L, Puel A, Filipe-Santos O, et al. Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis. Nat Commun 2017;8:1501.

Burk Ashi E, Chiba A, Tada K, et al. Analysis of IL-17(+) cells in facet joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol 2014;66:1272–81.

Jandus C, Bioley G, Rivals J-P, et al. Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondyloarthritis. Arthritis Rheum 2008;58:2207–17.

Shen H, Goodall JC, Hill JF. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Ann Rheum Dis 2009;68:1647–56.

Shen H, Goodall JC, Goodall JS, Frequency and phenotype of Th17 helper cells 17 cells in peripheral blood and synovial fluid of patients with reactive arthritis. J Rheumatol 2010;37:2096–9.

Al-Mossawi MH, Chen L, Fang F, et al. Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis. Nat Commun 2017;8.

Benedetti G, Mosser P. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur J Immunol 2014;44:339–47.

Burkett PR, Meyer zu Husse K, Guckroz VK. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J Clin Invest 2015;125:2211–9.

Lee YK, Mukasa R, Hatton RD, et al. Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol 2009;21:274–80.

Wang C, Liao Q, Hu Y, et al. T lymphocyte subset imbalances in patients contribute to ankylosing spondylitis. Exp Ther Med 2015;9:250–6.

Teunissen MM, Yeremening OG, Baeten DLP, et al. The IL-17A producing CD8+ T cell population in psoriatic lesional skin comprises mucosa-associated invasive T cells and conventional T cells. J Invest Dermatol 2014;134:2898–907.

Gracey E, Qaiyum Z, Almaghlouh L, et al. IL-7 primes IL-17 in mucosal-associated invasive T (MAIT) cells, which contribute to the Th17 axis in ankylosing spondylitis. Ann Rheum Dis 2016;75:2124–32.

Hayashi E, Chiba A, Tada K, et al. Involvement of mucosal-associated invasive T cells in ankylosing spondylitis. J Rheumatol 2016;43:1695–703.

Res POMC, Piskin G, de Boer OJ, et al. Overrepresentation of IL-17A and IL-22 producing CD8+ T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PloS One 2010;5:e14108.

Kim J, Krueger JG. The immunopathogenesis of psoriasis. Dermatol Clin 2015;33:13–23.

Krom T, Bettefi E, Oukka M, et al. IL-17 and Th17 Cells. Annu Rev Immunol 2009;27:485–517.

Keijers RRMC, Joosten L, van Erp PE, et al. Cellular sources of IL-17 in psoriasis: a paradigm shift? Exp Dermatol 2014;23:799–803.

Moran EM, Heydrich R, Ng CT, et al. IL-17A expression is localised to both mononuclear and polymorphonuclear synovial cell infiltrates. PloS One 2011;6:e24048.

Appel H, Maier R, Wu P, et al. Analysis of IL-17(+) cells in face joint samples of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther 2011;13.
89 Tamassia N, Arruda-Silva F, Calzetti F et al. Reappraisal of the Potential Ability of Human Neutrophils to Express and Produce IL-17 Family Members. In Vitro: Failure to Reproducibly Detect It. Front Immunol 2018;9.

90 Noordenbos T, Yeremenko N, Gofita I, et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondyloarthritis. Arthritis Rheumatol 2012;64:168–79.

91 Noordenbos T, Blijdorp J, Chen S, et al. Human mast cell capture, store, and release Bioactive, exogenous IL-17A. J Leukoc Biol 2010;100:453–62.

92 Chen S, Noordenbos T, Blijdorp J, et al. Histologic evidence that mast cells contribute to local tissue inflammation in peripheral spondyloarthritis by regulating interleukin-17A content. Rheumatology 2019;58:617–27.

93 McGonagle D, Gibbon W, Emery P. Classification of inflammatory arthritis by enthesisitis. The Lancet 1998;352:131–7.

94 Cambré I, Gaublomme D, Schryvers N, et al. Running promotes chronicity of arthritis by local modulation of complement activators and impairing T regulatory feedback loops. Ann Rheum Dis 2019;78:787–95.

95 Revelle JD. Genetics of spondyloarthritis—beyond the MHC. Nat Rev Rheumatol 2012;8:296–304.

96 McGonagle D, Tan AL. The enthesis in psoriatic arthritis. Clin Exp Rheumatol 2015;33(Suppl 93):S36–9.

97 Xier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007;448:327–37.

98 Sherlock JP, Joyce-Shaul B, Turner SP, et al. IL-23 induces spondyloarthropathy by acting on ROR+γt+CD4+CD8− entheseal resident T cells. Nat Med 2012;18:1069–76.

99 Reinhardt A, Yева s T, Worsг T, et al. Interleukin-23-dependent γδ T cells produce interleukin-17 and accumulate in the Enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol 2016;68:2476–86.

100 Ono T, Okamoto K, Nakashima T, et al. IL-17-producing γδ T cells enhance bone regeneration. Nat Commun 2016;7.

101 Benham H, Rehaume LM, Hasnain Z, et al. Interleukin-17 mediates the intestinal response to microbial β-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol 2014;66:1755–67.

102 Rustu M, Thomas G, Steck R, et al. β-glucan triggers spondyloarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheumatol 2012;64:2211–22.

103 Braem K, Carter S, Lories RJ. Spontaneous arthritis and ankylosis in male DBA/1 mice: further evidence for a role of behavioral factors in “stress-induced arthritis”. Biol Prev Online 2012;14.

104 Eibhara S, Date F, Dong Y, et al. Interleukin-17 is a critical target for the treatment of rheumatoid arthritis and psoriasis arthritis-like dermatitis in mice. Autoimmunity 2015;48:259–66.

105 Rehaume LM, Mondot S, Aguirre de Cárcer D, et al. ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis Rheumatol 2014;66:2780–92.

106 Khalmaide I, Kęłka T, Gueuard S, et al. Mannan induces ROS-regulated, IL-17A-dependent psoriasis arthritis-like disease in mice. Proceedings of the National Academy of Sciences 2014;111:E3669–E3678.

107 Yamamoto M, Nakajima K, Takashi M, et al. Psoriatic inflammation facilitates the onset of arthritis in a mouse model. J Invest Dermatol 2015;135:445–52.

108 Cambré I, Gaublomme D, Bursenas A, et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat Commun 2018;9.

109 De Wilde K, Martens A, Lambrecht S, et al. A20 inhibition of STAT1 expression in inflamed bone promotes bone regeneration: a novel endogenous regulatory mechanism preventing development of ankylosing spondylitis. J Clin Invest. 2012;129:3291–301.

110 McElwee J, de Smet I, Baele P, et al. Knockdown of A20 inhibition of STAT1 expression in inflamed bone promotes bone regeneration: a novel endogenous regulatory mechanism preventing development of ankylosing spondylitis. J Clin Invest. 2012;129:3291–301.

111 Riyadh S, Fominykh S, Alatorre G, et al. Requirement of interleukin 17 receptor α expression for the development of psoriasis arthritis in mice. J Leukoc Biol 2012;91:1011–21.

112 Schipper DR, Sun D, Lind M, et al. Development of a transgenic mouse model of ankylosing spondylitis expressing the IL-17A receptor: a novel model to study arthritis. Arthritis Res Ther 2010;12:R241.

113 Takaishi M, Nakajima K, Takaishi M, et al. A20 inhibition of STAT1 expression in inflamed bone promotes bone regeneration: a novel endogenous regulatory mechanism preventing development of ankylosing spondylitis. J Clin Invest. 2012;129:3291–301.

114 Interleukin-23-Dependent γδ T Cells Promote Bone Erosion in a Murine Model of Psoriatic Arthritis. Arthritis Rheumatol 2018;70:855–67.

115 Wang Z, Xia Y, Du F, et al. IL-17A inhibits osteogenic differentiation of bone mesenchymal stem cells via Wnt signaling pathway. Med Sci Monit 2017;23:4095–101.

116 Zhang J-R, Pang D-D, Tong Q, et al. Different modulatory effects of IL-17, IL-22, and IL-23 on osteoblast differentiation. Mediators of Inflammation 2017;2017:1–11.

117 Mease PJ, Kavanaugh A, Reimold A, et al. Secukinumab in the treatment of psoriatic arthritis: efficacy and safety results through 3 years from the year 1 extension of the randomised phase II future 1 trial. RMD Open 2018;4:e000720.

118 Kampałka E, D’Oliveria L, Linz C, et al. Resolution of synovitis and arrest of catabolic and anabolic bone changes in patients with psoriatic arthritis by IL-17A blockade with secukinumab: results from the prospective PASARTOS study. Arthritis Res Ther 2018;20:20.

119 Jo S, Wang SE, Lee YL, et al. IL-17A induces osteoblast differentiation by activating Jak1/STAT3 in ankylosing spondylitis. Arthritis Res Ther 2018;20:20.

120 Jo S, Lee JK, Han J, et al. Identification and characterization of human bone-derived cells. Biochem Biophys Res Commun 2018;495:1257–63.

121 Croes M, Oner FC, van Neerven D, et al. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation. Bone 2016;64:262–70.

122 van Toek MH, van Duivenvoorde LM, Kramers H, et al. Interleukin-17A inhibition diminishes inflammation and new bone formation in experimental spondyloarthritis. Arthritis Rheumatol 2019;71:759–72.

123 Ono T, Takeyana Y. Osteoimmunology in bone fracture healing. Curr Osteoporos Rep 2017;15:367–75.

124 Ulucan Özgen, Jimenez M, Karbach S, et al. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts. Sci Transl Med 2016;8:330na37–37.

125 Kim YG, Park JW, Lee JM, et al. IL-17 inhibits osteoblast differentiation and bone regeneration in rat. Arch Oral Biol 2014;59:897–905.

126 Ji R-R, Chammessian A, Zhang Y-Q. Pain regulation by non-neuronal cells and inflammation. Science 2016;354:572–7.

127 Pinho-Ribeiro FA, Veri WA, Chiu IM, Nicopoeceptor sensory Neuron-immune interactions in pain and inflammation. Trends Immunol 2017;38:5–19.

128 Blachier M, Canou-Poilaine F, Douagoud M, et al. Factors associated with radiographic lesions in early axial spondyloarthritis. Results from the DESIR cohort. Rheumatology 2013;52:1686–93.

129 Wu Q, Irman RD, Davis KD. Neuropathic pain in ankylosing spondylitis: a psychophysics and brain imaging study. Arthritis & Rheumatism 2013;65:1494–503.

130 Kameeawon A, Choy E, Neuropathic-like pain is common in psoriatic arthritis. Rheumatol Open 2018;5:1054. doi:10.1097/ROP.0000000000000273.

131 Richter F, Natura G, Ebbinghaus M, et al. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheumatol 2012;64:4125–34.

132 Pinto LG, Cunha TM, Vieira SM, et al. IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain 2010;148:247–56.

133 McNamee KE, Alazab S, Hughes JP, et al. IL-17 induces hyperalgesia via TNF-dependent neural inflammation. Pain 2011;152:1838–45.

134 Meng X, Zhang Y, Lao L, et al. Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model. Pain 2013;154:294–305.
Drennick A, Gazendam RP, Tool AT, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. *Blood* 2013;121:2385–92.

Engelhardt KR, McGhee S, Winkler S, et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. *J Allergy Clin Immunol* 2009;124:1289–302.

Lee YH, Song GG. Associations between interleukin-23R polymorphisms and ankylosing spondylitis: an updated meta-analysis. *J Rheumatol* 2019;46:272–80.

Yang B, Yu Y, Liu X, et al. IL-23R and IL-17A polymorphisms correlate with susceptibility of ankylosing spondylitis in a southwest Chinese population. *OncoTarget* 2017;8:70310–6.

Zhong L, Wang W, Song H. Complex role of IL-23R polymorphisms on ankylosing spondylitis: a meta-analysis. *Expert Rev Clin Immunol* 2018;14:635–43.

Chen C, Zhang X, Wang Y. ANTRX2 and IL-1R2 polymorphisms are not associated with ankylosing spondylitis in Chinese Han population. *Rheumatol Int* 2012;32:15–19.

Rodha Loures MA, Macedo LC, Reis DM, et al. Influence of TNF and IL17 Gene Polymorphisms on the Spondyloarthritides Immunopathogenesis, Regardless of HLA-B27, in a Brazilian Population. *Mediators Inflamm* 2018;2018:1–7.

Vidal-Castilleira ER, López-Vázquez A, Díaz-Peña R, et al. A single nucleotide polymorphism in the IL17a promoter is associated with functional severity of ankylosing spondylitis. *PloS One* 2016;11:e0158905.

Nossent JC, Sagen-Johansen S, Bakland G. IL-23R gene variants in relation to IL17A levels and clinical phenotype in patients with ankylosing spondylitis. *Rheumatol Pract* 2018;2.

Reveille JD, Sims A-M, Danoy P, et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. *J Rheumatol* 2012;39:596–610.

Kaur M, Sydes J, Guo L, et al. Invariant NKT cells produce IL-17 through IL-23- and TNFα-dependent pathways with potential modulation of Th17 response. *J Immunol* 2013;189:207–12.

Koizumi Y, Shen X, Ding C, et al. Pivotal role of dermal IL-17-producing γδ T cells in patients with psoriasis vulgaris. *J Invest Dermatol* 2013;133:973–9.

Steel KJ, S-Y W, Sreanath U, et al. Synovial IL-17+ CD8 + T cells are a pro-inflammatory tissue resident population enriched in spondyloarthritis (Abstract O016). *Ann Rheum Dis* 2018;77:AB–A8.

Di Meolo P, Villanova E, Navarini AA, et al. Targeting CD8+ T cells prevents psoriasis development. *J Allergy Clin Immunol* 2016;138:274–6.

Rahman MS, Akhtar N, Jamil HM, et al. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. *Bone Res* 2015;3.

ClinicalTrials.gov. Study of the efficacy and safety of Secukinumab in patients with active psoriatic arthritis with axial skeleton involvement (maximise). National Institute of Health US National Library of Medicine, 2018.

Bruun J, Baralakos A, Deodhar A, et al. Effect of secukinumab on clinical and radiographic outcomes in ankylosing spondylitis: 2-year results from the randomized phase III measure 1 study. *Ann Rheum Dis* 2017;76:1070–7.

ClinicalTrials.gov. NCT02696031: study of efficacy and safety of Secukinumab in patients with non-radiographic axial spondyloarthritis. National Institute of Health US National Library of Medicine, 2018.

Novartis. Cosentyx® EPAR - Product Information. 2017. Available: http://www.eMA.eu/ema/index.jsp?curl?uri=pages/medicine/human/medicines/037299/human_med_001832.jsp&md=WC0b01ad58001d124

ClinicalTrials.gov. NCT02753752: a study of ixekizumab (IL23R antagonist) in patients with Nonradiographic axial spondyloarthritis (COAST-X). 2018. National Institute of Health US National Library of Medicine. Available: https://clinicaltrials.gov/ct2/show/NCT02753752

Sipker I, Braun J, Douglas M, et al. Axial spondyloarthritis. *Nat Rev Dis Primers* 2015;15:.

Molmes JB, Kavanagh A, Gottlieb AB, et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMIT 1 trial. *Lancet* 2013;382:780–9.

Ritchlin C, Rahman P, Kavanagh A, et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMIT 2 trial. *Ann Rheum Dis* 2014;73:990–9.

Leonardi CL, Kimball AB, Papp KA, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (Phoenix 1). *The Lancet* 2008;371:1665–74.

Griffiths CEM, Strober BE, van de Kerkhof P, et al. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. *N Engl J Med* 2010;362:118–28.

Reich K, Armstrong AW, Foley P, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomised withdrawal and retreatment: results from the phase III, double-blind, placebo- and active comparator-controlled voyage 1 trial. *J Am Acad Dermatol* 2017;76:418–31.

Gordon KB, Strober B, Lebwohl M, et al. Efficacy and safety of risankizumab in moderate-to-severe plaque psoriasis (UltiMMa-1 and UltiMMa-2): results from two double-blind, randomised, placebo-controlled and ustekinumab-controlled phase 3 trials. *The Lancet* 2018;392:650–61.

Blauvelt A, Papp KA, Griffiths CEM, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the phase III, double-blind, placebo- and active comparator-controlled voyage 1 trial. *J Am Acad Dermatol* 2017;76:405–17.

van der Heijde D, Kivitz A, Schiff MH, et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. *Arthritis Rheum* 2006;54:2136–46.

Mease PJ, Gladman DD, Ritchlin CT, et al. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double-blind, randomized, placebo-controlled trial. *Arthritis Rheum* 2005;52:3279–89.

Menter A, Tying SK, Gordon K, et al. Adalimumab therapy for moderate to severe psoriasis: a randomized, controlled phase III trial. *J Am Acad Dermatol* 2008;58:106–15.

Yoshiga Y, Goto D, Segawa S, et al. Invariant NKT cells produce IL-17 through IL-23-dependent and -independent pathways with potential modulation of Th17 response in collagen-induced arthritis. *Int J Mol Med* 2008;22:369–74.