Double-headed nucleotides in DNA-zipper structures; base-base interactions and UV-induced cross-coupling in the minor groove

Charlotte S. Madsen, Lise J. Nielsen, Nikolai S. Pedersen, Anne Lauritsen and Poul Nielsen*

Supporting information

Index

1. MALDI-data for oligonucleotides S2
2. Exact T_m-values S3-S4
3. HPLC chromatograms of the T-T dimer S5
4. Selected 1D and 2D NMR-spectra for the compounds 2-14 S6-S28
MALDI-data for oligonucleotides

Table S1. MALDI-MS of synthesized oligonucleotides containing monomer T\(^\circ\), T\(^\circ\), T\(^\prime\).

Sequence	MW calculated	MW found
5′-GCG AAT\(^\circ\)ATG CG	3528.4	3528.3
5′-GCG AAT AT\(^\circ\)G CG	3528.4	3527.4
5′-CGC ATA TT\(^\circ\)T GC	3439.3	3435.4
5′-CGC ATA T\(^\circ\)TC GC	3439.3	3441.5
5′-CGC AT\(^\circ\)A T\(^\circ\)TC GC	3586.4	3586.4
5′-GCG AAT\(^\prime\)AT\(^\prime\)G CG	3675.5	3675.2
5′-GCG AAT\(^\circ\)ATG CG	3504.3	3499.9
5′-GCG AAT AT\(^\circ\)G CG	3504.3	3509.1
5′-CGC ATA TT\(^\circ\)T GC	3504.3	3503.0
5′-CGC ATA T\(^\circ\)TC GC	3413.6	3418.1
5′-CGC AT\(^\circ\)A T\(^\prime\)TC GC	3413.6	3415.9
5′-GCG AAT\(^\prime\)AT\(^\prime\)G CG	3536.7	3538.9
5′-GCG AAT\(^\prime\)AT\(^\prime\)G CG	3491.7	3490.9
5′-GCG AAT AT\(^\prime\)G CG	3402.7	3401.5
5′-CGC ATA TT\(^\prime\)T GC	3402.7	3402.9
5′-CGC ATA T\(^\prime\)TC GC	3514.8	3515.7
5′-CGC AT\(^\prime\)A T\(^\prime\)TC GC	3491.7	3592.4
5′-GCG AAT\(^\prime\)AT\(^\prime\)G CG	3605.5	3604.7
Exact \(T_m \)-values

Entry	Zipper	ON	Duplex	\(\Delta T_m^a/°C \)	\(\Delta \Delta T_m^a/°C \)	
0	T1: T2	5′-d(CGC ATA TTC GC)	5′-d(GCG TAT AAG CG)	46.2	46.2	
1	T1: X1	5′-d(CGC ATA TTC GC)	5′-d(GCG XAT AAG CG)	42.0	39.3	45.2
2	T1: X2	5′-d(CGC ATA TTC GC)	5′-d(GCG TAC AAG CG)	40.6	39.3	45.7
3	T1: X3	5′-d(CGC ATA TTC GC)	3′-d(GCG XAC AAG CG)	35.8	30.7	44.7
4	X4: T2	5′-d(CGC ATA TXC GC)	3′-d(GCG TAT AAG CG)	43.0	39.2	44.7
5	X5: T2	5′-d(CGC ATA XTC GC)	3′-d(GCG TAT AAG CG)	41.2	39.6	44.2
6	X6: T2	5′-d(CGC AXA XTC GC)	3′-d(GCG TAT AAG CG)	35.2	30.2	43.0
7	X5: X2	5′-d(CGC ATA XTC GC)	3′-d(GCG TAT AAG CG)	36.8	33.1	43.2
8	X5: X1	5′-d(CGC ATA XTC GC)	3′-d(GCG TAT AAG CG)	37.7	35.7	44.3
9	X5: X1	5′-d(CGC ATA XTC GC)	3′-d(GCG TAT AAG CG)	38.9	37.3	42.2
10	X4: X1	5′-d(CGC ATA TXC GC)	3′-d(GCG XAT AAG CG)	37.8	30.6	43.1
11	X4: X3	5′-d(CGC ATA XTC GC)	3′-d(GCG XAC AAG CG)	32.0	25.1	43.0
12	X5: X3	5′-d(CGC ATA XTC GC)	3′-d(GCG XAC AAG CG)	34.2	29.3	42.1
13	X5: X1	5′-d(CGC AXA XTC GC)	3′-d(GCG XAT AAG CG)	31.9	29.3	41.1
14	X6: X2	5′-d(CGC AXA XTC GC)	3′-d(GCG TAT AAG CG)	27.6	26.2	43.2

\(\Delta T_m \) values are obtained from the maxima of the first derivatives of the melting curves (\(A_{260} vs. \) temperature) recorded in a medium salt buffer (Na\(_2 \)HPO\(_4 \) (2.5 mM), NaH\(_2 \)PO\(_4 \) (5 mM), NaCl (100 mM), EDTA (0.1 mM), pH 7.0) using 1.0 \(\mu \)M concentrations of each strand. Differences in melting temperatures as compared to singly modified duplexes; \(\Delta \Delta T_m = \Delta T_m(x/y) - (\Delta T_m(x/z) + \Delta T_m(y/z)) \).
Table S3. Mixed (−3) zipper motifs (corresponding to Table 2).

XY	T_mp	T_Ph	T_T	T_c	T_a	T_m	T_p
T	46.2	ref	41.2	39.6	44.2	ref	
	-5.0	-5.6	-2.0				
T'	ref	ref	41.7	38.3	39.1		
	-4.5 [+5.8]	-6.9 [+4.3]	-7.0 [+0.2]				
Tc	42.0	40.3	38.9	34.9	40.2	42.7	
	-4.2	-5.9 [+3.7]	-7.3 [+1.9]	-10.3 [-0.2]	-5.9 [+0.2]	-3.5 [+5.2]	
T'	39.3	37.6	35.2	37.3	37.0	38.7	
	-5.9	-7.6 [+3.7]	-10.0 [+0.6]	-7.9 [+3.6]	-9.1 [-1.2]	-6.5 [+3.9]	
Tm	45.2	40.1	40.3	38.1	42.2	40.5	
	-1.0	-6.1 [+0.3]	-5.8 [-1.7]	-8.1 [-1.2]	-4.0 [-1.0]	-5.6 [-0.2]	
Tp	ref	ref	43.8	41.2	40.7		
	-2.4 [+5.8]	-4.0 [+4.8]	-5.4 [-0.3]				

ΔT_m/°C [\(\Delta \Delta T_m\)]/°C

a,b See Table S2. “ref” corresponds to data taken from ref. 8.
HPLC chromatograms of T-T dimer

Figure S1. IC-HPLC profiles (60°C) of the (−3) T₃/T₃ zipper duplex before (left) and after (right) irradiation (254 nm, 15 min.).

Table S4. Tₘ measurements before and after UV irradiation (254 nm).

Sequence	Tₘ(before)	Tₘ(after)	ΔTₘ	ΔTₘ a
5′-d(CGC ATA TTC GC) 3′-d(GCG TAT AAG CG)	45.8	45.5	−0.3	
5′-d(CGC ATA T₃T₃ GC) 3′-d(GCG T₃T₃ AT AAG CG)	42.1	39.5	−2.6	

Melting temperatures (Tₘ values/°C) was obtained from the maxima of the first derivatives of the melting curves (A₂₆₀ vs. temperature) recorded in a medium salt buffer (Na₂HPO₄ (7.5 mM), NaCl (100 mM), EDTA (0.1 mM), pH 7.0) using 1.0 µM concentrations of each strand. ΔTₘ = Tₘ(after) − Tₘ(before).
