Context

Big Data: Images & Videos everywhere

- Obvious need to access, organize, search, or classify these data: **Visual Recognition**
- Huge number of applications: mobile visual search, robotics, autonomous driving, augmented reality, medical imaging *etc*
- Leading track in major CV conferences during the last decade
Outline

1. Visual Recognition
2. Deep Learning for Visual Recognition
3. Breakthroughs & Open Issues in Deep Learning
Visual Recognition: perceiving visual world

- Scene categorization
- Object localization
- Context & Attribute recognition
- Rough 3D layout, depth ordering
- Rich description of scene, language, e.g. sentences
Visual Recognition

Challenge: filling the semantic gap

What we perceive vs
What a computer sees

- Illumination variations
- View-point variations
- Deformable objects
- intra-class variance
- etc
Outline

1. Visual Recognition
2. Deep Learning for Visual Recognition
3. Breakthroughs & Open Issues in Deep Learning
Visual Recognition History: Trends and methods in the last four decades

- 80’s: training Convolutionnal Neural Networks (CNN) with back-propagation ⇒ postal code reading [LBD+ 89]

- 90’s: golden age of kernel methods, NN = black box

- 2000’s: BoW + SVM : state-of-the-art CV
Visual Recognition History: Trends and methods in the last four decades

- Deep learning revival: unsupervised learning (DBN) [HOT06]

![Timeline of Visual Recognition](image)

- 2012: CNN outstanding success in ImageNet [KSH12]

Rank	Name	Error Rate	Description
1	U. Toronto	0.15315	Deep learning
2	U. Tokyo	0.26172	Hand-crafted features and learning models. Bottleneck.
3	U. Oxford	0.26979	Hashtags and visual features
4	Xerox/INRIA	0.27058	Hashtags and visual features

- Huge number of labeled images (10^6 images)
- GPU implementation for training
Deep Learning since 2012

More & more data (Facebook 10^9 images / day), larger & larger networks

VGG, 16/19 layers, 2014

GoogleNet, 22 layers, 2014

ResNet, 152 layers, 2015
Deep Learning since 2012

Transferring Representations learned from ImageNet

- Extract layer ⇒ fixed-size vector: "Deep Features" (DF)
- Now state-of-the-art for any visual recognition task
Resource for the community: MatConvNet

MatConvNet: MatLab toolbox for CNN processing

- Developed by Oxford team (Vedaldi, Lenc), http://www.vlfeat.org/matconvnet/
- Using it for processing & training (chain) feedforward CNNs

Credits: Vedaldi, Zisserman
Resource for the community: MatConvNet

Forward run of a network

- Wide range of available pre-trained networks
- Fast execution: easy-to-use GPU implementation
- Easy-to-use forward function

```matlab
run matlab/vl_setupnn
% Load the (online available) CNN
net = load('imagenet-vgg-m.mat');
% Load and normalize image
im = single(imread('peppers.png'));
im = imresize(im, net.meta.normalization.imageSize(1:2));
im = im - net.meta.normalization.averageImage;
% Run the CNN
res = vl_simplenn(net, im);
% Scores for the 1,000 ImageNet classes
scores = squeeze(gather(res(end).x));
[bestScore, bestClass] = max(scores);
```
Resource for the community: **MatConvNet**

- **Transfer: CNN as a feature extractor**

% Load the (online available) CNN
% Load and normalize image, Run the CNN
res = vl_simplenn(net, im);

% Extract features
features = squeeze(gather(res(20).x)) ;
% Learn / test an SVM on these features

- **Design your own network: architecture**

% Convolution
net.layers{1} = struct('type', 'conv', ...
weights', {0.01*randn(5,5,1,20,'single'), zeros(1,20,'single')}, ...
'stride',1,'pad',0);
Resource for the community: MatConvNet

- Design your own block: custom layer functions
 - Custom layer: one Matlab file with forward/backward functions

```
function out = vl_negReLU(x,dzdy,opts)
    if nargin <= 1 || isempty(dzdy)
        out = x.*(x>0) + 0.2*x.*(x<0);
    else
        out = dzdy .* ((x>0) + 0.2.*(x<0));
    end
```

- Training a CNN model

Efficient implementation, Optimized for GPU
Use GPU = boolean option

```
opts.gpus = 1;
stats = cnn_train(net, imdb, @get_batch_function, opts);
```
Resource for the community: MatConvNet

MatConvNet: a use case [CTC+15]

- Context: fine-grained recognition on low-resolution images
 - Varying image size
 - 6667 training images
- Evaluated frameworks:
 - Pre-trained deep features + SVM
 - Custom network learned from scratch on small images

Method	Accuracy
CNNM (1st fc)	32.7%
CNNM (2nd fc)	27.2%
Our LRCNN	44.8%
Outline

1 Visual Recognition

2 Deep Learning for Visual Recognition

3 Breakthroughs & Open Issues in Deep Learning
Deep Learning since 2012

Breakthroughs with CNNs

- Deep learning, DF: very powerful intermediate representations
 - Semantic relationship wrt various categories, e.g. 10^3 ImageNet
 - Open the way to unreachable applications: image captioning, visual question answering, image generation, etc
Breakthroughs with CNNs

Modern data & annotations

- Privileged information (PI) = additional example-specific information only available during training
- Goal: benefit from this additional data to improve the classifier

$x^*:\text{attributes}$
- black: yes
- white: yes
- brown: no
- patches: yes
- water: no
- slow: yes

$x^*:\text{bounding box}$

$x^*:\text{text}$
Sambal crab, cah kangkung and deep fried gourami fish in the Sundanese traditional restaurant
Breakthroughs with CNNs

Privileged information (PI)

- SVM+ [VV09] / Margin Transfer [SQL14]: (PI) ⇔ difficulty level
- Curriculum learning [BLCW09]: start easy / increase difficulty

⇒ Our deep+: end-to-end training of a deep CNN with (PI)
Open Issues in Deep Learning for Visual Recognition

- Deep CNNs: breakthrough, large scale data and Transfer \Rightarrow solved problem?
- Limited invariance (conv layers): OK for centered objects, KO for "natural" photos

- Weakly Supervised Learning of deep CNNs [DTC16, DTC15], region localization
Open Issues in Deep Learning for Visual Recognition

- Architecture, compression, learning formulation (unsupervised training)
- Formal understanding: model [BM13], optimization [HV15, DPG$^+$14], over-fitting

Thank you for your attention!

- Sorbonne Universités - LIP6, MLIA Team (P. Gallinari)
- Machine learning for vision: M. Cord, N. Thome, PhD Students:
 - M. Chevalier: Learning Using Privileged Information (LUPI)
 - T. Durand: Structured prediction and Weakly Supervised Learning
 - X. Wang: Visual Recognition with Eye-Tracker
 - M. Blot: Deep Architectures for Large-Scale Recognition
 - M. Carvalho: Deep Networks Compression

T. Durand, N. Thome, and M. Cord. Weakly Supervised Learning of Deep CNNs, CVPR 2016.
M. Chevalier et. al. LR-CNN For Fine-grained Classification with Varying Resolution, ICIP 2015.
T. Durand, N. Thome, and M. Cord. Minimum Maximum Latent Structural SVM for Image Classification and Ranking, ICCV 2015.
X. Wang, N. Thome and M. Cord. Gaze Latent Support Vector Machine for Image Classification, ICIP 2016.
M. Blot, N. Thome and M. Cord. MaxMin convolutional neural networks for image classification, ICIP 2016.
M. Carvalho, M. Cord, N. Thome, S. Avila and E. Valle. Deep Neural Networks Under Stress, ICIP 2016.
Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston, *Curriculum learning*, International Conference on Machine Learning (ICML) (2009).

Joan Bruna and Stephane Mallat, *Invariant scattering convolution networks*, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013), no. 8, 1872–1886.

Marion Chevalier, Nicolas Thome, Matthieu Cord, Jérôme Fournier, Gills Henaff, and Elodie Dusch, *Lr-cnn for fine-grained classification with varying resolution*, IEEE International Conference on Image Processing (ICIP) (2015).

Yann Dauphin, Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio, *Identifying and attacking the saddle point problem in high-dimensional non-convex optimization*, CoRR abs/1406.2572 (2014).

Thibaut Durand, Nicolas Thome, and Matthieu Cord, *MANTRA: Minimum Maximum Latent Structural SVM for Image Classification and Ranking*, International Conference on Computer Vision (ICCV), 2015.

Thibaut Durand, Nicolas Thome, and Matthieu Cord, *WELDON: Weakly Supervised Learning of Deep Convolutional Neural Networks*, Computer Vision and Pattern Recognition (CVPR), 2016.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh, *A fast learning algorithm for deep belief nets*, Neural Comput. 18 (2006), no. 7, 1527–1554.

Benjamin D. Haeffele and René Vidal, *Global optimality in tensor factorization, deep learning, and beyond*, CoRR abs/1506.07540 (2015).
References II

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, *Imagenet classification with deep convolutional neural networks*, Advances in neural information processing systems, 2012, pp. 1097–1105.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel, *Backpropagation applied to handwritten zip code recognition*, Neural computation 1 (1989), no. 4, 541–551.

Viktoriia Sharmanska, Novi Quadrianto, and Christoph H. Lampert, *Learning to transfer privileged information*.

Vladimir Vapnik and Akshay Vashist, *A new learning paradigm: Learning using privileged information*, Neural Networks (2009).