HOW FAR ARE P-ADIC LIE GROUPS FROM ALGEBRAIC GROUPS?

YVES BENOIST AND JEAN-FRANÇOIS QUINT

Abstract. We show that, in a weakly regular p-adic Lie group G, the subgroup G_u spanned by the one-parameter subgroups of G admits a Levi decomposition. As a consequence, there exists a regular open subgroup of G which contains G_u.

Contents

1. Introduction
 1.1. Motivations
 1.2. Main results
 1.3. Plan

2. Preliminary results
 2.1. One-parameter subgroups
 2.2. Weakly regular and regular p-adic Lie groups

3. Algebraic unipotent p-adic Lie group
 3.1. Definition and closedness
 3.2. Lifting one-parameter morphisms
 3.3. Unipotent subgroups tangent to a nilpotent Lie algebra
 3.4. Largest normal algebraic unipotent subgroup

4. Derivatives of one-parameter morphisms
 4.1. Construction of one-parameter subgroups
 4.2. The group G_{nc} and its Lie algebra g_{nc}
 4.3. Derivatives and Levi subalgebras

5. Groups spanned by unipotent subgroups
 5.1. Semisimple regular p-adic Lie groups
 5.2. The Levi decomposition of G_u
 5.3. Regular semiconnected component
 5.4. Non weakly regular p-adic Lie groups

References

2020 Math. subject class. 22E20 ; Secondary 19C09
Key words p-adic Lie group, algebraic group, unipotent subgroup, Levi decomposition, central extension
1. Introduction

1.1. Motivations. When studying the dynamics of the subgroups of a p-adic Lie group G on its homogeneous spaces, various assumptions can be made on G. For instance, one can ask G to be algebraic as in [10] i.e. to be a subgroup of a linear group defined by polynomial equations.

Another possible assumption on G is regularity. One asks G to satisfy properties that are well-known to hold for Zariski connected algebraic p-adic Lie groups: a uniform bound on the cardinality of the finite subgroups and a characterization of the center as the kernel of the adjoint representation (see Definition 2.5). Ratner’s theorems in [13] are written under this regularity assumption.

A more natural and weaker assumption on G in this context is the weak regularity of G i.e. the fact that the one-parameter morphisms of G are uniquely determined by their derivative (see Definition 2.3). Our paper [1] is written under this weak-regularity assumption.

The aim of this text is to clarify the relationships between these three assumptions.

A key ingredient in the proof is Proposition 5.1. It claims
\[\text{the finiteness of the center of the universal topological central extension of non-discrete simple } p \text{-adic Lie groups}. \]
This is a fact which is due to Prasad and Raghunathan in [12].

1.2. Main results. We will first prove (Proposition 5.5):

\[\text{In a weakly regular } p \text{-adic Lie group } G, \text{ the subgroup } G_u \text{ spanned by the one-parameter subgroups of } G \text{ is closed and admits a Levi decomposition, } \]
i.e. G_u is a semidirect product $G_u = S_u \ltimes R_u$ of a group S_u by a normal subgroup R_u where S_u is a finite cover of a finite index subgroup of an algebraic semisimple Lie group and where R_u is algebraic unipotent.

As a consequence, we will prove (Theorem 5.12):

\[\text{In a weakly regular } p \text{-adic Lie group } G \text{ there always exists an open subgroup } G_\Omega \text{ which is regular and contains } G_u. \]
This Theorem 5.12 is useful since it extends the level of generality of Ratner’s theorems in [13] (see [1, Th 5.15]). More precisely, Ratner’s theorems for products of real and p-adic Lie groups in [13] are proven under the assumption that these p-adic Lie groups are regular. Ratner’s theorems can be extended under the weaker assumption that these p-adic Lie groups are weakly regular thanks to our Theorem 5.12.
This Theorem 5.12 has been announced in [1, Prop. 5.8] and has been used in the same paper.

The strategy consists in proving first various statements for weakly regular p-adic Lie groups which were proven in [13] under the regularity assumption. To clarify the discussion we will reprove also the results from [13] that we need. But we will take for granted classical results on the structure of simple p-adic algebraic groups that can be found in [3], [6], [7] or [11].

1.3. Plan. In the preliminary Chapter 2 we recall a few definitions and examples.

Our main task in Chapters 3 and 4 is to describe, for a weakly regular p-adic Lie group G, the subset $\mathfrak{g}_G \subset \mathfrak{g}$ of derivatives of one-parameter morphisms of G.

In Chapter 3 the results are mainly due to Ratner. We first study the nilpotent p-adic Lie subgroups N of G spanned by one-parameter subgroups. We will see that they satisfy $n \subset \mathfrak{g}_G$ (Proposition 3.7). Those p-adic Lie groups N are called algebraic unipotent. We will simultaneously compare this set \mathfrak{g}_G with the analogous set $\mathfrak{g}_{G'}$ for a quotient group $G' = G/N$ of G when N is a normal algebraic unipotent subgroup (Lemma 3.8). This will allow us to prove that G contains a largest normal algebraic unipotent subgroup (Proposition 3.8).

In Chapter 4 we will then be able to describe precisely the set \mathfrak{g}_G using a Levi decomposition of \mathfrak{g} (Proposition 4.4). A key ingredient is a technic, borrowed from [1], for constructing one-parameter subgroups in a p-adic Lie group G (Lemma 4.1).

In the last Chapter 5, we will prove the main results we have just stated: Proposition 5.5 and Theorem 5.12 using Prasad–Raghunathan finiteness theorem in [12] (see Proposition 5.1). We will end this text by an example showing that, when a p-adic Lie group G with $G = G_u$ is not assumed to be weakly regular, it does not always contain a regular open subgroup H for which $H = H_u$ (Example 5.14).

2. Preliminary results

We recall here a few definitions and results from [13].

Let p be a prime number and \mathbb{Q}_p be the field of p-adic numbers. When G is a p-adic Lie group (see [5]), we will always denote by \mathfrak{g} the Lie algebra of G. It is a \mathbb{Q}_p-vector space. We will denote by $\text{Ad}_\mathfrak{g}$ or Ad the adjoint action of G on \mathfrak{g} and by $\text{ad}_\mathfrak{g}$ or ad the adjoint action of \mathfrak{g} on \mathfrak{g}. Any closed subgroup H of G is a p-adic Lie subgroup and its Lie algebra \mathfrak{h} is a \mathbb{Q}_p-vector subspace of \mathfrak{g} (see [13] Prop. 1.5).

We choose a ultrametric norm $\| \cdot \|$ on \mathfrak{g} with values in $p\mathbb{Z}$.
2.1. One-parameter subgroups.

Definition 2.1. A one-parameter morphism \(\varphi \) of a \(p \)-adic Lie group \(G \) is a continuous morphism \(\varphi : \mathbb{Q}_p \to G; t \mapsto \varphi(t) \). A one-parameter subgroup is the image \(\varphi(\mathbb{Q}_p) \) of an injective one-parameter morphism.

The derivative of a one-parameter morphism is an element \(X \) of \(\mathfrak{g} \) for which \(\text{ad} X \) is nilpotent. This follows from the following Lemma from [13, Corollary 1.2].

Lemma 2.2. Let \(\varphi : \mathbb{Q}_p \to \text{GL}(d, \mathbb{Q}_p) \) be a one-parameter morphism. Then there exists a nilpotent matrix \(X \) in \(\mathfrak{gl}(d, \mathbb{Q}_p) \) such that \(\varphi(t) = \exp(tX) \) for all \(t \) in \(\mathbb{Q}_p \).

Proof. First, we claim that, if \(K \) is a finite extension of \(\mathbb{Q}_p \), any continuous one-parameter morphism \(\psi : \mathbb{Q}_p \to K^* \) is constant. Indeed, since the modulus of \(\psi \) is a continuous morphism form \(\mathbb{Q}_p \) to a discrete multiplicative subgroup of \((0, \infty) \), the kernel of \(|\psi| \) contains \(p^k\mathbb{Z}_p \), for some integer \(k \). Since \(\mathbb{Q}_p/p^k\mathbb{Z}_p \) is a torsion group and \((0, \infty) \) has no torsion, \(\psi \) has constant modulus, that is, \(\psi \) takes values in \(\mathcal{O}^* \), where \(\mathcal{O} \) is the integer ring of \(K \). Now, on one hand, \(\mathcal{O}^* \) is a profinite group, that is, it is a compact totally discontinuous group and hence it admits a basis of neighborhoods of the identity which are finite index subgroups (namely, for example, the subgroups \(1 + p^k\mathcal{O}, k \geq 0 \)). On the other hand, every closed subgroup of \(\mathbb{Q}_p \) is of the form \(p^k\mathbb{Z}_p \), for some integer \(k \), and hence, has infinite index in \(\mathbb{Q}_p \) and therefore any continuous morphism from \(\mathbb{Q}_p \) to a finite group is trivial. Thus, \(\psi \) is constant, which should be proved.

Let now \(\varphi \) be as in the lemma and let \(X \in \mathfrak{gl}(d, \mathbb{Q}_p) \) be the derivative of \(\varphi \). After having simultaneously reduced the commutative family of matrices \(\varphi(t)_{t \in \mathbb{Q}_p} \), the joint eigenvalues give continuous morphisms \(\mathbb{Q}_p \to K^* \) where \(K \) is a finite extension of \(\mathbb{Q}_p \). By the remark above, these morphisms are constant, that is, there exists \(g \) in \(\text{GL}(d, \mathbb{Q}_p) \), such that, for any \(t \) in \(\mathbb{Q}_p \), the matrix \(g\varphi(t)g^{-1} \) is unipotent and upper triangular. We may assume \(g = 1 \). Then \(X \) is nilpotent and upper triangular and it remains to check that the map \(\theta : t \mapsto \varphi(t)\exp(-tX) \) is constant. Since \(\varphi(t) \) commutes with \(X \), this map \(\theta \) is a one-parameter morphism with zero derivative. Hence, the kernel of \(\psi \) is an open subgroup and the matrices \(\theta(t), t \in \mathbb{Q}_p \), have finite order. Since they are unipotent, they equal \(e \), which should be proved. \(\square \)

2.2. Weakly regular and regular \(p \)-adic Lie groups.
Definition 2.3 (Ratner, [13]). A p-adic Lie group G is said to be weakly regular if any two one-parameter morphisms $\mathbb{Q}_p \to G$ with the same derivative are equal.

Note that any closed subgroup of a weakly regular p-adic Lie group is also weakly regular.

Example 2.4 ([13, Cor. 1.3 and Prop. 1.5]). Every closed subgroup of $\text{GL}(d, \mathbb{Q}_p)$ is weakly regular.

Proof. This follows from Lemma 2.2.

Definition 2.5 (Ratner, [13]). A p-adic Lie group G is said to be Ad-regular if the kernel of the adjoint map $\ker(\text{Ad}_g)$ is equal to the center $Z(G)$ of G. It is said to be regular if it is Ad-regular and if the finite subgroups of G have uniformly bounded cardinality.

Note that any open subgroup of a regular p-adic Lie group is also regular.

This definition is motivated by the following example.

Example 2.6.

a) The finite subgroups of a compact p-adic Lie group K have uniformly bounded cardinality.

b) The finite subgroups of a p-adic linear group have uniformly bounded cardinality.

c) The Zariski connected linear algebraic p-adic Lie groups G are regular.

Proof of Example 2.6 (see [13])

a) Since K contains a torsion free open normal subgroup Ω, for every finite subgroup F of K, one has the bound $|F| \leq |K/\Omega|$.

b) We want to bound the cardinality $|F|$ of a finite subgroup of a group $G \subset \text{GL}(d, \mathbb{Q}_p)$. This follows from a) since F is included in a conjugate of the compact group $K = \text{GL}(d, \mathbb{Z}_p)$.

c) It remains to check that G is Ad-regular. Let g be an element in the kernel of the adjoint map Ad_g. This means that the centralizer Z_g of g in G is an open subgroup of G. This group Z_g is also Zariski closed. Hence it is Zariski open. Since G is Zariski connected, one deduces $Z_g = G$ and g belongs to the center of G.

We want to relate the two notions “weakly regular” and “regular”. We first recall the following implication in [13, Cor. 1.3].

Lemma 2.7. Any regular p-adic Lie group is weakly regular.

Proof. Let $\varphi_1 : \mathbb{Q}_p \to G$ and $\varphi_2 : \mathbb{Q}_p \to G$ be one-parameter morphisms of G with the same derivative. We want to prove that $\varphi_1 = \varphi_2$.

According to Lemma 2.2, the one-parameter morphisms $\text{Ad}_g \varphi_1$ and $\text{Ad}_g \varphi_2$ are equal. Since G is Ad-regular, this implies that, for all t in \mathbb{Q}_p, the element $\theta(t) := \varphi_1(t)^{-1}\varphi_2(t)$ is in the center of G. Hence θ is a one-parameter morphism of the center of G with zero derivative. Its image is either trivial or an infinite p-torsion group. This second case is excluded by the uniform bound on the finite subgroups of G. This proves the equality $\varphi_1 = \varphi_2$. □

The aim of this text is to prove Theorem 5.12 which is a kind of converse to Lemma 2.7.

3. ALGEBRAIC UNIPOTENT p-ADIC LIE GROUP

In this chapter, we study the algebraic unipotent subgroups of a weakly regular p-adic Lie group. The results in this chapter are mainly due to Ratner.

3.1. Definition and closedness.

We first focus on a special class of p-adic Lie groups.

We say that an element g of a p-adic Lie group G admits a logarithm if one has $g^{p^n} \longrightarrow e$: indeed, for such a g, the map $n \mapsto g^n$ extends as a continuous morphism $\mathbb{Z}_p \to G$ and one can define the logarithm $\log(g) \in \mathfrak{g}$ as being the derivative at 0 of this morphism.

Definition 3.1. A p-adic Lie group N is called algebraic unipotent if its Lie algebra is nilpotent, if every element g in N admits a logarithm $\log(g)$, and if the logarithm map $\log : N \to \mathfrak{n}$ is a bijection.

This implies that every non trivial element g of N belongs to a unique one-parameter subgroup of N. By definition these groups N are weakly regular. The inverse of the map \log is denoted by \exp. These maps \exp and \log are $\text{Aut}(N)$-equivariant.

The following lemma is in [13, Prop. 2.1].

Lemma 3.2. Let N be an algebraic unipotent p-adic Lie group. Then the map

$$\mathfrak{n} \times \mathfrak{n} \to \mathfrak{n}; (X,Y) \mapsto \log(\exp X \exp Y)$$

is polynomial and is given by the Baker-Campbell-Hausdorff formula. In other words, a p-adic Lie group N is algebraic unipotent if and only if it is isomorphic to the group of \mathbb{Q}_p-points of a unipotent algebraic group defined over \mathbb{Q}_p.

These groups have been studied in [13, Sect.2] (where they are called quasiconnected).

In particular, we have
Corollary 3.3. Let N be an algebraic unipotent p-adic Lie group. Then the exponential and logarithm maps of N are continuous.

Proof of Lemma 3.2. In this proof, we will say that a p-adic Lie group is strongly algebraic unipotent if it is isomorphic to the group of \mathbb{Q}_p-points of a unipotent algebraic group defined over \mathbb{Q}_p. Such a group is always algebraic unipotent.

The aim of this proof is to check the converse. Let N be an algebraic unipotent p-adic Lie group. We want to prove that N is strongly algebraic unipotent. Its Lie algebra \mathfrak{n} contains a flag $0 \subset \mathfrak{n}_1 \subset \cdots \subset \mathfrak{n}_r = \mathfrak{n}$ of ideals with $\dim \mathfrak{n}_i = i$. We will prove, by induction on $i \geq 1$, that the set $N_i := \exp(\mathfrak{n}_i)$ is a closed subgroup of N which is strongly algebraic unipotent.

By the induction assumption, the set N_{i-1} is a strongly algebraic unipotent closed subgroup. Since \mathfrak{n}_{i-1} is an ideal, this subgroup N_{i-1} is normal. Let X_i be an element of $\mathfrak{n}_i \setminus \mathfrak{n}_{i-1}$ and $N'_i = \mathbb{Q}_p \rtimes N_{i-1}$ where the action of $t \in \mathbb{Q}_p$ by conjugation on N_{i-1} is given by $t \exp(X) t^{-1} = \exp(e^{\text{ad}X}X)$, for all X in \mathfrak{n}_{i-1}. By construction this group N'_i is strongly algebraic unipotent and the map $\psi : N'_i \to N; (t, n) \mapsto \exp(tX_i)n$ is a group morphism. Since $N'_i = \exp(\mathfrak{n}'_i)$, the set $N_i = \exp(\mathfrak{n}_i)$ is equal to the image $\psi(N'_i)$. Hence, by Lemma 3.4 below, the set N_i is a closed subgroup which is isomorphic to N'_i and hence N_i is strongly algebraic unipotent. \[\square\]

The following lemma tells us that an algebraic unipotent Lie subgroup of a p-adic Lie group is always closed.

Lemma 3.4. Let G be a totally discontinuous locally compact topological group, N be an algebraic unipotent p-adic Lie group and $\varphi : N \to G$ be an injective morphism. Then φ is a proper map. In particular, $\varphi(N)$ is a closed subgroup of G and φ is an isomorphism of topological groups from N onto $\varphi(N)$.

Proof. If φ was not proper, there would exist a sequence Y_n in the Lie algebra \mathfrak{n} of N such that
\[
\lim_{n \to \infty} \varphi(\exp(Y_n)) = e \quad \text{and} \quad \lim_{n \to \infty} \|Y_n\| = \infty.
\]
We write $Y_n = p^{-k_n}X_n$ with integers k_n going to ∞ and $\|X_n\| = 1$. Since the group G admits a basis of compact open subgroups, one also has $\lim_{n \to \infty} \varphi(\exp(X_n)) = e$. Let X be a cluster point of the sequence X_n. One has simultaneously, $\varphi(\exp(X)) = e$ and $\|X\| = 1$. This contradicts the injectivity of φ. \[\square\]
3.2. Lifting one-parameter morphisms.

We now explain how to lift one-parameter morphisms.

Lemma 3.5. Let G be a p-adic Lie group, $N \subset G$ a normal algebraic unipotent closed subgroup, $G' := G/N$, and $\pi : G \to G'$ the projection. Then, for any one-parameter morphism φ' of G', there exists a one-parameter morphism φ of G which lifts φ', i.e. such that $\varphi' = \pi \circ \varphi$.

If φ' has zero derivative, one can choose φ to have zero derivative.

Proof. According to Lemma 3.4 the image $\varphi'(\mathbb{Q}_p)$ is a closed subgroup of G'. Hence we can assume that $\varphi'(\mathbb{Q}_p) = G'$.

First Case: N is central in G. For $k \geq 1$, we introduce the subgroup Q_k' of G' spanned by the element $g_k' := \varphi'(p^{-k})$. Since Q_k' is cyclic and N is central, the group $Q_k := \pi^{-1}(Q_k')$ is abelian. Since the increasing union of these groups Q_k is dense in G, the group G is also abelian.

Since N is infinitely p-divisible, one can construct, by induction on $k \geq 0$, a sequence $(g_k)_{k \geq 0}$ in G such that $\pi(g_k) = g_k'$ and $p g_k+1 = g_k$.

We claim that $g_0^{p^k} \to e$. Indeed, since $\pi(g_0)^{p^k} \to e$ and since every element h of a p-adic Lie group that is close enough to the identity element satisfies $h^{p^k} \to e$, one can find $\ell \geq 0$ and n in N such that $(g_0^{p^\ell} n^{-1})^{p^k} \to e$. As N is algebraic unipotent, we have $n^{p^k} \to e$, and the claim follows, since N is central.

Now, the formulae $\varphi(p^{-k}) = g_k$, for all $k \geq 0$, define a unique one-parameter morphism φ of G which lifts φ'.

Note that when φ' has zero derivative, one can assume, after a reparametrization of φ', that $\varphi'(\mathbb{Z}_p) = 0$ and choose the sequence g_k so that $g_0 = e$. Then the morphism φ has also zero derivative.

General Case: The composition of φ' with the action by conjugation on the abelianized group $N/[N,N] \simeq \mathbb{Q}_p^d$ is a one-parameter morphism $\psi : \mathbb{Q}_p \to \mathrm{GL}(d, \mathbb{Q}_p)$. According to Lemma 2.2 there exists a nilpotent matrix X such that $\psi(t) = \exp(tX)$ for all $t \in \mathbb{Q}_p$. The image of this matrix X corresponds to an algebraic unipotent subgroup N_1 with $[N,N] \subset N_1 \subseteq N$ which is normal in G and such that N/N_1 is a central subgroup of the group G/N_1. According to the first case, the morphism φ' can be lifted as a morphism φ'_1 of G/N_1. By an induction argument on the dimension of N, this morphism φ'_1 can be lifted as a morphism of G. \qed
Let G be a p-adic Lie group. We recall the notation

(3.1) $\mathfrak{g}_G := \{ X \in \mathfrak{g} \text{ derivative of a one-parameter morphism of } G \}$.

Note that this set \mathfrak{g}_G is invariant under the adjoint action of G.

The following lemma tells us various stability properties by extension when the normal subgroup is algebraic unipotent.

Lemma 3.6. Let G be a p-adic Lie group, N a normal algebraic unipotent subgroup of G, and $G' := G/N$.

a) One has the equivalence

G is algebraic unipotent \iff G' is algebraic unipotent.

b) Let X in \mathfrak{g} and X' its image in $\mathfrak{g}' = \mathfrak{g}/\mathfrak{n}$. One has the equivalence

$X \in \mathfrak{g}_G \iff X' \in \mathfrak{g}'_G$.

c) One has the equivalence

G is weakly regular \iff G' is weakly regular.

Later on in Corollary 5.7 we will be able to improve this Lemma.

Proof. We denote by $\pi : G \to G/N$ the natural projection.

a) The implication \Rightarrow is well-known. Conversely, we assume that N and G/N are algebraic unipotent and we want to prove that G is algebraic unipotent. Arguing by induction on $\dim G/N = 1$, i.e. that there exists an isomorphism $\varphi' : \mathbb{Q}_p \to G/N$. According to Lemma 3.5 one can find a one-parameter morphism φ of G that lifts φ'. By Lemma 3.4 the image $Q := \varphi(\mathbb{Q}_p)$ is closed and G is the semidirect product $G = Q \ltimes N$. By Lemma 2.2 the one-parameter morphism $t \mapsto \text{Ad}_n \varphi(t)$ is unipotent, and hence the group G is algebraic unipotent.

b) The implication \Rightarrow is easy. Conversely, we assume that X' is the derivative of a one-parameter morphism φ' of G'. When $X' = 0$, the element X belongs to \mathfrak{n} and, since N is algebraic unipotent, X is the derivative of a one-parameter morphism φ of N. We assume now that $X' \neq 0$ so that the group $Q' := \varphi'(\mathbb{Q}_p)$ is algebraic unipotent and isomorphic to \mathbb{Q}_p. According to point a), the group $H := \pi^{-1}(Q')$ is algebraic unipotent. Since the element X belongs to the Lie algebra \mathfrak{h} of H, it is the derivative of a one-parameter morphism φ' of H.

c) \Rightarrow We assume that G is weakly regular. Let φ'_1 and φ'_2 be one-parameter morphisms of G' with the same derivative $X' \in \mathfrak{g}'$. We want to prove that $\varphi'_1 = \varphi'_2$. If this derivative X' is zero, by Lemma 3.5 we can lift both φ'_1 and φ'_2 as one-parameter morphisms of G with zero derivative. Since G is weakly regular, both φ_1 and φ_2 are trivial and $\varphi'_1 = \varphi'_2$. We assume now that the derivative X' is non-zero. As above, for $i = 1, 2$, the groups $Q'_i := \varphi'_i(\mathbb{Q}_p)$ and $H_i := \pi^{-1}(Q'_i)$ are algebraic unipotent. Since G is weakly regular, and its algebraic
unipotent subgroups H_1 and H_2 have the same Lie algebra, one gets successively $H_1 = H_2$, $Q'_1 = Q'_2$, and $\varphi'_1 = \varphi'_2$.

\Leftarrow We assume that G/N is weakly regular. Let φ_1 and φ_2 be one-parameter morphisms of G with the same derivative $X \in \mathfrak{g}$. We want to prove that $\varphi_1 = \varphi_2$. Since G/N is weakly regular the one-parameter morphisms $\pi \circ \varphi_1$ and $\pi \circ \varphi_2$ are equal and their image Q' is a unipotent algebraic subgroup of G'. According to point a), the group $H := \pi^{-1}(Q')$ is algebraic unipotent. Since φ_1 and φ_2 take their values in H, one has $\varphi_1 = \varphi_2$. □

3.3. Unipotent subgroups tangent to a nilpotent Lie algebra.

Proposition 3.7 below describes the nilpotent Lie subgroups of a weakly regular p-adic Lie group G which are spanned by one-parameter morphisms.

The following proposition is due to Ratner in [13, Thm. 2.1].

Proposition 3.7. Let G be a weakly regular p-adic Lie group and $\mathfrak{n} \subset \mathfrak{g}$ be a nilpotent Lie subalgebra. Then the set $\mathfrak{n}_G := \mathfrak{n} \cap \mathfrak{g}_G$ is an ideal of \mathfrak{n} and there exists an algebraic unipotent subgroup N_G of G with Lie algebra \mathfrak{n}_G.

This group N_G is unique. It is a closed subgroup of G. By construction, it is the largest algebraic unipotent subgroup whose Lie algebra is included in \mathfrak{n}.

Proof. We argue by induction on $\dim \mathfrak{n}$. We can assume $\mathfrak{n}_G \neq 0$.

First case : \mathfrak{n} is abelian. Let X_1, \ldots, X_r be a maximal family of linearly independent elements of \mathfrak{n}_G and, for $i \leq r$, let φ_i be the one-parameter morphism with derivative X_i. Since G is weakly regular, the group spanned by the images $\varphi_i(Q_p)$ is commutative and the map

$$\psi : Q'_p \to G; (t_1, \ldots, t_r) \mapsto \varphi_1(t_1) \ldots \varphi_r(t_r)$$

is an injective morphism. Its image is a unipotent algebraic subgroup N_G of G whose Lie algebra is \mathfrak{n}_G.

Second case : \mathfrak{n} is not abelian. Let \mathfrak{z} be the center of \mathfrak{n} and \mathfrak{z}_2 the ideal of \mathfrak{n} such that $\mathfrak{z}_2/\mathfrak{z}$ is the center of $\mathfrak{n}/\mathfrak{z}$. If \mathfrak{n}_G is included in the centralizer \mathfrak{n}' of \mathfrak{z}_2, we can apply the induction hypothesis to \mathfrak{n}'. We assume now that \mathfrak{n}_G is not included in \mathfrak{n}', i.e. there exists

$$X \in \mathfrak{n}_G$$

and $Y \in \mathfrak{z}_2$ such that $[X, Y] \neq 0$.

This element $Z := [X, Y]$ belongs to the center \mathfrak{z}.
We first check that \(Z \) belongs also to \(\mathfrak{g}_G \). Indeed, let \(\mathfrak{m} \) be the 2-dimensional Lie subalgebra of \(\mathfrak{n} \) with basis \(X, Z \). This Lie algebra is normalized by \(Y \). For \(\varepsilon \in \mathbb{Q}_p \) small enough, there exists a group morphism \(\psi : \varepsilon \mathbb{Z}_p \to G \) whose derivative at 0 is \(Y \), and one has \(\text{Ad}(\psi(\varepsilon))Y = e^{e \text{ad}Y}X = X - \varepsilon Z \). Since \(X \) belongs to \(\mathfrak{g}_G \), the element \(X - \varepsilon Z \) also belongs to \(\mathfrak{g}_G \). By the first case applied to the abelian Lie subalgebra \(\mathfrak{m} \), the element \(Z \) belongs to \(\mathfrak{g}_G \).

This means that there exists a one-parameter subgroup \(U \) of \(G \) whose Lie algebra is \(\mathfrak{u} = \mathbb{Q}_p \mathbb{Z} \). Let \(C \) be the centralizer of \(U \) in \(G \). According to Lemma 3.6, the quotient group \(C/U \) is also weakly regular. We apply our induction hypothesis to this group \(C' := C/U \) and the nilpotent Lie algebra \(\mathfrak{n}/\mathfrak{u} \). There exists a largest algebraic unipotent subgroup \(N_C \) in \(C' \) whose Lie algebra is included in \(\mathfrak{n}' \). Hence, using again Lemma 3.6 there exists a largest algebraic unipotent subgroup \(N_C \) of \(C \) whose Lie algebra is included in \(\mathfrak{n} \). Since \(G \) is weakly regular, any one-parameter subgroup of \(G \) tangent to \(\mathfrak{n} \) is included in \(C \) and \(N_C \) is also the largest algebraic unipotent subgroup of \(G \) whose Lie algebra is included in \(\mathfrak{n} \).

3.4. Largest normal algebraic unipotent subgroup.

We prove in this section that a weakly regular \(p \)-adic Lie group contains a largest normal algebraic unipotent subgroup.

Let \(G \) be a \(p \)-adic Lie group. We denote by \(\overline{G}_u \) the closure of the subgroup \(G_u \) of \(G \) generated by all the one-parameter subgroups of \(G \). This group \(\overline{G}_u \) is normal in \(G \). We denote by \(\mathfrak{g}_u \) the Lie algebra of \(\overline{G}_u \). It is an ideal of \(\mathfrak{g} \).

We recall that the radical \(\mathfrak{r} \) of \(\mathfrak{g} \) is the largest solvable ideal of \(\mathfrak{g} \) and that the nilradical \(\mathfrak{n} \) of \(\mathfrak{g} \) is the largest nilpotent ideal of \(\mathfrak{g} \). The nilradical is the set of \(X \) in \(\mathfrak{r} \) such that \(\text{ad}X \) is nilpotent and one has \([\mathfrak{g}, \mathfrak{r}] \subset \mathfrak{n} \) (see \([5]\)).

When \(G \) is weakly regular, we denote by \(R_u \) the largest algebraic unipotent subgroup of \(G \) whose Lie algebra is included in \(\mathfrak{n} \). It exists by Proposition 3.7.

The following proposition is mainly in \([13\text{, Lem. 2.2}]\).

Proposition 3.8. Let \(G \) be a weakly regular \(p \)-adic Lie group.

a) The group \(R_u \) is the largest normal algebraic unipotent subgroup of \(G \).

b) Its Lie algebra \(\mathfrak{r}_u \) is equal to \(\mathfrak{r}_u = \mathfrak{n} \cap \mathfrak{g}_G = \mathfrak{r} \cap \mathfrak{g}_G \).

c) One has the inclusion \([\mathfrak{g}_u, \mathfrak{r}] \subset \mathfrak{r}_u \).

d) Let \(G' = G/R_u \). Let \(X \) be in \(\mathfrak{g} \) and \(X' \) be its image in \(\mathfrak{g}' = \mathfrak{g}/\mathfrak{r}_u \).
One has the equivalence

\[X \in g_G \iff X' \in g'_G. \]

Proof.

a) We have to prove that any normal algebraic unipotent subgroup \(U \) of \(G \) is included in \(R_u \). Indeed the Lie algebra \(u \) of \(U \) is a nilpotent ideal of \(g \), hence it is included in \(n \) and \(U \) is included in \(R_u \).

b) We already know the equality \(r_u = n \cap g_G \) from Proposition 3.7. It remains to check the inclusion \(r \cap g_G \subset n \). Indeed, let \(X \) be an element in \(r \cap g_G \). Since \(X \) is the derivative of a one-parameter morphism, by Lemma 2.2, the endomorphism \(\text{ad}X \) is nilpotent. Since \(X \) is also in the radical \(r \), \(X \) has to be in the nilradical \(n \).

c) We want to prove that the adjoint action of \(G_u \) on the quotient Lie algebra \(r/r_u \) is trivial. That is, we want to prove that, for all \(X \in g_G \) and \(Y \in r \), one has \([X,Y] \in r_u \).

By Lemma 2.2, the endomorphism \(\text{ad}X \) is nilpotent. Since \(Y \) is in \(r \), the bracket \([X,Y] \) belongs to \(n \) and the vector space \(m := \mathbb{Q}_p X \oplus n \) is a nilpotent Lie algebra normalized by \(Y \). Hence, by Proposition 3.7, the set \(m \cap g_G \) is a nilpotent Lie algebra. This set is normalized by \(Y \) since it is invariant by \(e^{\varepsilon \text{ad}Y} \) for \(\varepsilon \in \mathbb{Q}_p \) small enough. In particular the element \([X,Y] \) belongs to \(g_G \) and hence to \(r_u \).

d) This is a special case of Proposition 3.7. \(\square \)

4. Derivatives of one-parameter morphisms

In this chapter, we describe the set \(g_G \) of derivatives of one-parameter morphisms of a weakly regular \(p \)-adic Lie group \(G \).

4.1. Construction of one-parameter subgroups.

We explain first a construction of one-parameter morphisms of \(G \) borrowed from [1] and [2].

Lemma 4.1. Let \(G \) be a \(p \)-adic Lie group and \(g \in G \). Then the vector space \(g_g^+ := \{ v \in g \mid \lim_{n \to \infty} \text{Ad}g^{-n}v = 0 \} \) is included in \(g_G \).

Note that \(g_g^+ \) is a nilpotent Lie subalgebra of \(g \).

The proof relies on the existence of compact open subgroups of \(G \) for which the exponential map satisfies a nice equivariant property. We need some classical definition (see [8]). A \(p \)-adic Lie group \(\Omega \) is said to be a standard group if there exists a \(\mathbb{Q}_p \)-Lie algebra \(I \) and a compact open sub-\(\mathbb{Z}_p \)-algebra \(O \) of \(I \) such that the Baker-Campbell-Hausdorff series converges on \(O \) and \(\Omega \) is isomorphic to the \(p \)-adic Lie group \(O \) equipped with the group law defined by this formula.
In this case, I identifies canonically with the Lie algebra of \(\Omega \), every element of \(\Omega \) admits a logarithm and the logarithm map induces an isomorphism \(\Omega \rightarrow O \). If \(G \) is any \(p \)-adic Lie group, it admits a standard open subgroup (see [8, Theorem 8.29]). If \(\Omega \) is such a subgroup and if \(O \) is the associated compact open sub-\(\mathbb{Z}_p \)-algebra of \(g \), we denote by \(\exp_\Omega : O \rightarrow \Omega \) the inverse diffeomorphism of the logarithm map \(\Omega \rightarrow O \).

Note that if \(\Omega \) and \(\Omega' \) are standard open subgroups of \(G \), the maps \(\exp_\Omega \) and \(\exp_{\Omega'} \) coincide in some neighborhood of 0 in \(g \).

Lemma 4.2. Let \(G \) be a \(p \)-adic Lie group, \(\Omega \subset G \) a standard open subgroup and \(\exp_\Omega : O \rightarrow \Omega \) the corresponding exponential map. For every compact subset \(K \subset G \), there exists an open subset \(O_K \subset g \) which is contained in \(O \) and in all the translates \(\text{Ad}^{-1}(O), g \in K \), and such that one has the equivariance property
\[
\exp_\Omega(\text{Ad}^{-1}(O)) = g \exp_\Omega(\text{Ad}^{-1}(O))g^{-1} \text{ for any } v \in O_K, g \in K.
\]

Proof. We may assume that \(K \) contains \(e \). The intersection \(\Omega_K := \bigcap_{g \in K} g^{-1}\Omega g \) is an open neighborhood of \(e \) in \(G \). We just choose \(O_K \) to be the open set \(O_K := \log(\Omega_K) \).

Proof of Lemma 4.1. This is [1, Lem. 5.4]. For the sake of completeness, we recall the proof. Fix \(g \in G \). Let \(\Omega \) be a standard open subgroup of \(G \) with exponential map \(\exp_\Omega : O \rightarrow \Omega \). By Lemma 4.2, there exists an open additive subgroup \(U \subset O \cap g^+ \) such that \(\text{Ad}^{-1}U \subset O \) and that
\[
\exp_\Omega(u) = g \exp_\Omega(\text{Ad}^{-1}(u))g^{-1} \text{ for any } u \in U.
\]

After eventually replacing \(U \) by \(\bigcap_{k \geq 0} \text{Ad}^{-1}(U) \), we can assume \(\text{Ad}^{-1}(U) \subset U \). Now, for \(k \geq 0 \), let \(U_k := \text{Ad}^{-k}(U) \) and define a continuous map \(\psi_k : U_k \rightarrow G \) by setting
\[
\psi_k(u) = g^k \exp_\Omega(\text{Ad}^{-k}(u))g^{-k} \text{ for any } u \in U_k.
\]

We claim that, for any \(k \), one has \(\psi_k = \psi_{k-1} \) on \(U_{k-1} = \text{Ad}^{-1}(U_k) \). Indeed, let \(u \) be in \(U_k \). As \(u_k := \text{Ad}^{-k}(u) \) belongs to \(U \), we have
\[
\psi_{k+1}(u) = g^k(\exp_\Omega(\text{Ad}^{-1}(u))g^{-1})g^{-k} = g^k \exp_\Omega(u_k)g^{-k} = \psi_k(u).
\]

Therefore, as \(g^+ = \bigcup_{k \geq 0} U_k \), one gets a map \(\psi : g^+ \rightarrow G \) whose restriction to any \(U_k, k \geq 0 \), is \(\psi_k \). For every \(v \) in \(g^+ \), the map \(t \mapsto \psi(tv) \) is a one-parameter morphism of \(G \) whose derivative is equal to \(v \). □
4.2. The group G_{nc} and its Lie algebra g_{nc}.

We introduce in this section a normal subgroup G_{nc} of G which contains G_u.

Let G be a p-adic Lie group and g_{nc} be the smallest ideal of the Lie algebra g such that the Lie algebra $s_c := g / g_{nc}$ is semisimple and such that the adjoint group $\text{Ad}_{s_c}(G)$ is bounded in the group $\text{Aut}(s_c)$ of automorphisms of s_c. Let G_{nc} be the kernel of the adjoint action in s_c, i.e.

$$G_{nc} := \{ g \in G \mid \text{for all } X \in g, \quad \text{Ad}_g(X) - X \in g_{nc} \}$$

By construction G_{nc} is a closed normal subgroup of G with Lie algebra g_{nc}.

Lemma 4.3. Let G be a p-adic Lie group. Any one-parameter morphism of G takes its values in G_{nc}.

In other words, the group G_u is included in G_{nc}.

Proof. Let φ be a one-parameter morphism of G. Then $\text{Ad}_{s_c} \circ \varphi$ is a one-parameter morphism of $\text{Aut}(s_c)$ whose image is relatively compact. By Lemma 2.2, this one-parameter morphism is trivial and φ takes its values in G_{nc}. \square

4.3. Derivatives and Levi subalgebras.

We can now describe precisely which elements of g are tangent to one-parameter subgroups of G.

We recall that an element X of a semisimple Lie algebra s is said to be nilpotent if the endomorphism $\text{ad}_s X$ is nilpotent. In this case, for any finite dimensional representation ρ of s, the endomorphism $\rho(X)$ is also nilpotent.

We recall that a Levi subalgebra s of a Lie algebra g is a maximal semisimple Lie subalgebra, and that one has the Levi decomposition $g = s \oplus r$.

The following proposition is proven in [13, Th. 2.2] under the additional assumption that G is Ad-regular.

Proposition 4.4. Let G be a weakly regular p-adic Lie group, r be the radical of g, s a Levi subalgebra of g and $s_u := s \cap g_{nc}$. One has the equality : $g_G = \{ X \in s_u \oplus r_u \mid \text{ad}X \text{ is nilpotent} \}$.

It will follow from Lemma 1.7 that the Lie algebra $s_u \oplus r_u$ does not depend on the choice of s.

The key ingredient in the proof of Proposition 4.4 will be Lemma 4.1. We will begin by three preliminary lemmas. The first two lemmas are classical.
Lemma 4.5. Let $V = \mathbb{Q}_p^d$ and G be a subgroup of $\text{GL}(V)$ such that V is an unbounded and irreducible representation of G. Then G contains an element g with at least one eigenvalue of modulus not one.

Proof. Let A be the associative subalgebra of $\text{End}(V)$ spanned by G. Since V is irreducible, the associative algebra A is semisimple and the bilinear form $(a,b) \mapsto \text{tr}(ab)$ is non-degenerate on A (see [9, Ch. 17]). If all the eigenvalues of all the elements of G have modulus 1, this bilinear form is bounded on $G \times G$. Since A admits a basis included in G, for any a in A, the linear forms $b \mapsto \text{tr}(ab)$ on A are bounded on the subset G. Hence G is a bounded subset of A. □

Lemma 4.6. Let \mathfrak{s}_0 be a simple Lie algebra over \mathbb{Q}_p and $S_0 := \text{Aut}(\mathfrak{s}_0)$. All open unbounded subgroups J of S_0 have finite index in S_0.

Proof. Since J is unbounded, by Lemma 4.5, it contains an element g_0 with at least one eigenvalue of modulus not one. Since J is open, the unipotent Lie subgroups $U^+ = \{ g \in S_0 \mid \lim_{n \to \infty} g^{-n} g_0^n = e \}$ and $U^- = \{ g \in S_0 \mid \lim_{n \to \infty} g_0^n g g^{-n} = e \}$ are included in J. By [4, 6.2, 6.13], J has finite index in S_0. □

The third lemma contains the key ingredient.

Lemma 4.7. Let G be a weakly regular p-adic Lie group, \mathfrak{r} the radical of \mathfrak{g}, \mathfrak{s} a Levi subalgebra of \mathfrak{g} and $\mathfrak{s}_u := \mathfrak{s} \cap g_{nc}$.

a) One has the inclusion $[\mathfrak{s}_u, \mathfrak{r}] \subset \mathfrak{r}_u$.

b) Every nilpotent element X in \mathfrak{s}_u belongs to \mathfrak{g}_G.

Note that Lemma 4.7a does not follow from Proposition 3.8c, since with the definitions of \mathfrak{g}_u and \mathfrak{s}_u that we have given, we do not know yet that $\mathfrak{s}_u = \mathfrak{s} \cap \mathfrak{g}_u$.

Proof. a) By Proposition 3.8 we can assume $\mathfrak{r}_u = 0$. We want to prove that $[\mathfrak{s}_u, \mathfrak{r}] = 0$. Let \mathfrak{s}_i, $i = 1, \ldots, \ell$ be the simple ideals of \mathfrak{s}_u. Replacing G by a finite index subgroup, we can also assume that the ideals $\mathfrak{s}_i \oplus \mathfrak{r}$ are G-invariant. Similarly, let \mathfrak{r}_j, $j = 1, \ldots, m$ be the simple subquotients of a Jordan-Hölder sequence of the G-module \mathfrak{r}.

On the one hand, by assumption, for all $i \leq \ell$, the group $\text{Ad}_{\mathfrak{s}_i \oplus \mathfrak{r}} (G)$ is unbounded. Hence, by Lemma 4.5 there exists an element g_i in G and X_i in $\mathfrak{g}_i^+ \cap (\mathfrak{s}_i \oplus \mathfrak{r})$ whose image in $\mathfrak{g}/\mathfrak{r}$ is non zero. By Lemma 4.1 there exists a one-parameter morphism φ_i of G whose derivative is X_i.

On the other hand, since $\mathfrak{r}_u = 0$, by the same Lemma 4.1 for every g in G, all the eigenvalues of $\text{Ad}_\mathfrak{r}_u (g)$ have modulus 1. By Lemma 4.5 for all $j \leq m$, the image $\text{Ad}_\mathfrak{r}_u (G)$ of G in any simple subquotient
\(r_j \) is bounded. In particular, the one-parameter morphisms \(\text{Ad}_{r_j} \circ \varphi_i \) are bounded. Hence, by Lemma 2.2, one has \(\text{ad}_{r_j}(X_i) = 0 \). Since \(r_j \) is a simple \(g \)-module, the Lie algebra \(\text{ad}_{r_j}(g) \) is reductive and contains \(\text{ad}_{r_j}(s_i) \) as an ideal. Since \(s_i \) is a simple Lie algebra, this implies \(\text{ad}_{r_j}(s_i) = 0 \). Since the action of \(s_u \) on \(r \) is semisimple, this implies the equality \([s_u, r] = 0\).

b) As in a), we can assume that \(G \) preserves the ideals \(s_i \oplus r \) and that \(r_u = 0 \). According to this point a), the Lie algebras \(s_u \) and \(r \) commute and hence \(s_u \) is the unique Levi subalgebra of \(g_{nc} \) (see [5, §6]). In particular,

\[(4.1) \quad \text{for all } g \in G, \text{ one has } \text{Ad}g(s_u) = s_u.\]

Let \(X \) be a nilpotent element of \(s_u \). We want to prove that \(X \) is the derivative of a one parameter morphism of \(G \). By Jacobson-Morozov theorem, there exists an automorphism \(\psi \) of \(s_u \) such that \(\psi(X) = p^{-1}X \).

Since, for every simple ideal \(s_i \) of \(s_u \), the subgroup \(\text{Ad}_{s_i \oplus r}/G_{nc} \subset \text{Aut}(s_i) \) is unbounded and open, this subgroup has finite index. Hence, remembering also (4.1), there exists \(k \geq 1 \) and \(g \in G_{nc} \) such that \(\text{Ad}g(X) = p^{-k}X \). Then, by Lemma 4.1, \(X \) is the derivative of a one-parameter morphism of \(G \).

\[\square\]

Proof of Proposition 4.4. We just have to gather what we have proved so far. By Proposition 3.8, we can assume \(r_u = 0 \). Let \(X \in g \). We write \(X = X_g + X_r \) with \(X_g \in s \) and \(X_r \in r \).

Proof of the inclusion \(\subset \). Assume that \(X \) is the derivative of a one-parameter morphism \(\varphi \) of \(G \). By Lemma 4.3, \(X \) belongs to \(g_{nc} \) and hence \(X_g \) belongs to \(s_u \). By Lemma 2.2, the endomorphism \(\text{ad}X \) is nilpotent, and hence \(X_g \) is a nilpotent element of the semisimple Lie algebra \(s \). According to Lemma 4.7, \(X_g \) and \(X_r \) commute and \(X_g \) is the derivative of a one-parameter morphism \(\varphi_g \) of \(G \). Then \(X_r \) is also the derivative of a one-parameter morphism \(\varphi_r \) of \(G \), the one given by \(t \mapsto \varphi_g(t)^{-1}\varphi(t) \). Hence \(X_r \) belongs to \(r_u \).

Proof of the inclusion \(\supset \). Assume that \(X_g \) belongs to \(s_u \), \(X_r \) belongs to \(r_u \) and \(\text{ad}X \) is nilpotent. By Lemma 4.7, \(X_g \) and \(X_r \) commute and \(X_g \) is the derivative of a one-parameter morphism \(\varphi_g \) of \(G \). By assumption \(X_r \) is the derivative of a one-parameter morphism \(\varphi_r \) of \(G \). Hence \(X \) is also the derivative of a one-parameter morphism \(\varphi \) of \(G \), the one given by \(t \mapsto \varphi_g(t)\varphi_r(t) \). Hence \(X \) belongs to \(g_G \). \[\square\]
5. Groups spanned by unipotent subgroups

In this chapter, we prove the two main results Proposition 5.5 and Theorem 5.12 that we announced in the introduction.

5.1. Semisimple regular p-adic Lie groups.

We recall first a nice result due to Prasad-Raghunathan which is an output from the theory of congruence subgroups.

Let \mathfrak{s} be a semisimple Lie algebra over \mathbb{Q}_p, $\text{Aut}(\mathfrak{s})$ the group of automorphisms of \mathfrak{s} and $S_+ := \text{Aut}(\mathfrak{s})_u \subset \text{Aut}(\mathfrak{s})$ the subgroup spanned by the one-parameter subgroups of $\text{Aut}(\mathfrak{s})$. We will say that \mathfrak{s} is totally isotropic if \mathfrak{s} is spanned by nilpotent elements. In this case S_+ is an open finite index subgroup of $\text{Aut}(\mathfrak{s})$, see [4, 6.14]. Since $\mathfrak{s} = [\mathfrak{s}, \mathfrak{s}]$, the group S_+ is perfect i.e. $S_+ = [S_+, S_+]$. In particular this group admits a universal central topological extension \tilde{S}_+, i.e. a group which is universal among the central topological extension of S_+. In [12] Prasad-Raghunathan were able to describe this group \tilde{S}_+ (special cases were obtained before by Moore, Matsumoto and Deodhar). We will only need here the fact that this group is a finite extension of S_+.

Proposition 5.1. (Prasad–Raghunathan) Let \mathfrak{s} be a totally isotropic semisimple p-adic Lie algebra. Then the group S_+ admits a universal topological central extension

$$1 \longrightarrow Z_0 \longrightarrow \tilde{S}_+ \overset{\pi_0}{\longrightarrow} S_+ \longrightarrow 1$$

and its center Z_0 is a finite group.

The word universal means that for all topological central extension

$$1 \longrightarrow Z_E \longrightarrow E \overset{\pi}{\longrightarrow} S_+ \longrightarrow 1$$

where E is a locally compact group and Z_E is a closed central subgroup, there exists a unique continuous morphism $\psi : \tilde{S}_+ \to E$ such that $\pi_0 = \pi \circ \psi$.

Proof. See [12, Theorem 10.4].

Remark 5.2. This result does not hold for real Lie groups: indeed, the center Z_0 of the universal cover of $\text{SL}(2, \mathbb{R})$ is isomorphic to \mathbb{Z}.

Corollary 5.3. Let \mathfrak{s} be a totally isotropic semisimple p-adic Lie algebra. For every topological central extension

$$1 \longrightarrow Z_E \longrightarrow E \overset{\pi}{\longrightarrow} S_+ \longrightarrow 1$$

with $E = [E, E]$, the group Z_E is finite.
Proof of Corollary 5.3. Let $\psi : \tilde{S}_+ \to E$ be the morphism given by the universal property. Since, by Proposition 5.1, the group Z_0 is finite, the projection $\pi_0 = \pi \circ \psi$ is a proper map, hence ψ is also a proper map and the image $\psi(\tilde{S}_+)$ is a closed subgroup of E. Since $E = \psi(\tilde{S}_+)Z_E$, one has the inclusion $[E, E] \subset \psi(\tilde{S}_+)$, and the assumption $E = [E, E]$ implies that the morphism ψ is onto. Hence the group $Z_E = \psi(Z_0)$ is finite. □

Remark 5.4. For real Lie groups, the center Z_E might even be non-discrete. Such an example is given by the quotient E of the product $\mathbb{R} \times \tilde{SL}(2, \mathbb{R})$ by a discrete subgroup of $\mathbb{R} \times Z_0$ whose projection on \mathbb{R} is dense.

5.2. The Levi decomposition of G_u.

We prove in this section that in a weakly regular p-adic Lie group G, the subgroup G_u is closed and admits a Levi decomposition.

Let G be a weakly regular p-adic Lie group and \mathfrak{r} be the solvable radical of \mathfrak{g}. We recall that \mathfrak{g}_{nc} is the smallest ideal of \mathfrak{g} containing \mathfrak{r} such that the group $\text{Ad}_{\mathfrak{g}/\mathfrak{g}_{nc}}(G)$ is bounded. Let \mathfrak{s} be a Levi subalgebra of \mathfrak{g} and $\mathfrak{s}_u := \mathfrak{s} \cap \mathfrak{g}_{nc}$.

We recall that G_u is the subgroup of G spanned by all the one-parameter subgroups of G, that R_u is the subgroup of G spanned by all the one-parameter subgroups of G tangent to \mathfrak{r}, and we define S_u as the subgroup of G spanned by all the one-parameter subgroups of G tangent to \mathfrak{s}. Note that we don’t know yet, but we will see it in the next proposition, that S_u is indeed a closed subgroup with Lie algebra equal to \mathfrak{s}_u.

Proposition 5.5. Let G be a weakly regular p-adic Lie group.

a) The group R_u is closed. It is the largest normal algebraic unipotent subgroup of G.

b) The group S_u is closed. Its Lie algebra is \mathfrak{s}_u, and the morphism $\text{Ad}_{\mathfrak{g}_{nc}} : S_u \to (\text{Aut} \mathfrak{s}_u)_u$ is onto and has finite kernel.

c) The group G_u is closed. One has $G_u = S_uR_u$ and $S_u \cap R_u = \{e\}$.

Remark 5.6. In a real Lie group, the group tangent to a Levi subalgebra is not necessary closed, as for example, if $G = (S \times \mathbb{T})/Z$ where S is the universal cover of $\text{SL}(2, \mathbb{R})$, $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ and Z is the cyclic subgroup spanned by (z_0, α_0) with z_0 a generator of the center of S and α_0 an irrational element of \mathbb{T}.

Proof of Proposition 5.5. a) This follows from Proposition 3.8.
b) Let $E := \overline{S_u}$ be the closure of S_u and $S_+ := (\text{Aut } s_u)_u$. Note that this group E normalizes s_u. We want to apply Corollary 5.3 to the morphism

$$E \xrightarrow{\pi} S_+$$

where π is the adjoint action $\pi := \text{Ad}_{s_u}$.

We first check that the assumptions of Corollary 5.3 are satisfied. Since E is weakly regular the kernel Z_E of this morphism π commutes with all the one-parameter subgroups tangent to s_u. Hence Z_E is equal to the center of E. Since S_+ is spanned by one-parameter subgroups, and since by Proposition 4.4 any nilpotent element X of s_u is tangent to a one parameter subgroup φ of E, this morphism π is surjective.

Now, by Jacobson Morozov Theorem, for any nilpotent element X of s_u, there exists an element H in s_u such that $[H, X] = X$. Let $\varphi : \mathbb{Q}_p \to G$ be the one-parameter subgroup tangent to X, which exists by Proposition 4.4. Since G is weakly regular, one has, for t in \mathbb{Q}_p and $g_\varepsilon := \exp(\varepsilon H)$ with ε small,

$$g_\varepsilon \varphi(t)g_\varepsilon^{-1}\varphi(t)^{-1} = \varphi(e^\varepsilon t)\varphi(-t) = \varphi((e^\varepsilon - 1)t).$$

This proves that $\varphi(\mathbb{Q}_p)$ is included in the derived subgroup $[E, E]$. In particular one has $E = [E, E]$.

According to Corollary 5.3 the kernel Z_E is finite. In particular, one has $\dim E = \dim s_u$. Since s_u is totally isotropic, one can find a basis of s_u all of whose elements are nilpotent. By Lemma 1.7 all these elements are in \mathfrak{g}_G. Hence, by the implicit function theorem, the group S_u is open in E. Therefore, S_u is also closed and $S_u = E$.

c) Since the adjoint action of R_u on $\mathfrak{g}_{nc}/\mathfrak{c}$ is trivial, the intersection $S_u \cap R_u$ is included in the kernel Z_E of the adjoint map Ad_{s_u}. Since, by b), this kernel is finite, and since the algebraic unipotent group R_u does not contain finite subgroups, one gets $S_u \cap R_u = \{e\}$.

It remains to check that $S_u R_u$ is closed and that $G_u = S_u R_u$. Thanks to Propositions 3.8 and 4.4 we can assume that $R_u = \{e\}$. In this case, we know from point b) that S_u is closed and from Proposition 4.4 that $G_u = S_u$.

Here are a few corollaries. The first corollary is an improvement of Lemma 3.6.

Corollary 5.7. Let G be a p-adic Lie group, H a normal weakly regular closed subgroup of G such that $H = H_u$, and $G' := G/H$.

a) One has the equality $G'_u = G_u/H$.

b) Let X in \mathfrak{g} and X' its image in $\mathfrak{g}' = \mathfrak{g}/\mathfrak{h}$. One has the equivalence

$$X \in \mathfrak{g}_G \iff X' \in \mathfrak{g}'_{G'}.$$
c) One has the equivalence
\[G \text{ is weakly regular} \iff G' \text{ is weakly regular}. \]

Remark 5.8. The assumption that \(H = H_u \) is important. For instance the group \(G = \mathbb{Q}_p \) and its normal subgroup \(H = \mathbb{Z}_p \) are weakly regular while the quotient \(G/H \) is not weakly regular.

Proof. We prove these three statements simultaneously. Since \(H = H_u \), according to Proposition 5.5, the group \(H \) admits a Levi decomposition \(H = S R \) where \(R \) is a normal algebraic unipotent Lie subgroup and \(S \) is a Lie subgroup with finite center \(Z \) whose Lie algebra is semisimple, totally isotropic, and such that the adjoint map \(\text{Ad}_{\mathfrak{s}} : S \to \text{Aut}(\mathfrak{s})_u \) is surjective. Note that \(R \) is also a normal subgroup of \(G \).

Let \(C \) be the centralizer of \(H = S \) in \(G \). Since \(H \) is normal in \(G \) and \(H = H_u \), \(H \) is weakly regular, \(C \) is also the kernel of the adjoint action of \(G \) on \(h = \mathfrak{s} u \). Therefore, by Proposition 5.5, the image of the group morphism \(H \times C \to G; (h, c) \mapsto hc \) has finite index in \(G \). Its kernel is isomorphic to \(H \cap C = Z \) and hence is finite. When this morphism \(H \times C \to G \) is an isomorphism, our three statements are clear. The general case reduces to this one thanks to Lemma 5.9 below. \(\square \)

Lemma 5.9. Let \(G \) be a locally compact topological group, \(Z \) be a finite central subgroup of \(G \) and \(\varphi : \mathbb{Q}_p \to G/Z \) be a continuous morphism. Then \(\varphi \) may be lifted as a continuous morphism \(\tilde{\varphi} : \mathbb{Q}_p \to G \).

Proof. Let \(H \) be the inverse image of \(\varphi(\mathbb{Z}_p) \) in \(G \). Then \(H \) is totally discontinuous. In particular it contains an open compact subgroup \(U \) such that \(U \cap Z = \{e\} \), so that \(U \) maps injectively in \(G/Z \). Let \(\ell \) be an integer such that \(\varphi(p^\ell \mathbb{Z}_p) \subset U Z/Z \). After rescaling, we can assume that \(\ell = 0 \). We let \(g_0 \) be the unique element of \(U \) such that \(\varphi(1) = g_0 Z \).

Since \(U \) maps injectively in \(G/Z \), we have \(g_0^{p^k} \xrightarrow{k \to \infty} e \).

Let \(X \) be the group of elements of \(p \)-torsion in \(Z \) and \(Y \) be the group of elements whose torsion is prime to \(p \). For any \(k \geq 0 \) pick some \(g_k \) in \(G \) such that \(\varphi(p^{\ell-k} \mathbb{Z}_p) = g_k Z \) and let \(x_k \) and \(y_k \) be the elements of \(X \) and \(Y \) such that \(g_k^{p^k} = g_0 x_k y_k \). We let \(z_k \) be the unique element of \(Y \) such that \(z_k^{p^k} = y_k \). Replacing \(y_k \) by \(g_k z_k^{-1} \), we can assume that \(z_k = e \).

Since \(x_k \) only takes finitely many values, we can find a \(x \) in \(X \) and an increasing sequence \((k_n) \) such that, for any \(n, x_{k_n} = x \). Now, since \(x \) is a central \(p \)-torsion element, one has \((g_0 x)^{p^k} \xrightarrow{k \to \infty} e \). Since, for any \(n \),
\(g_{k_n}^n = g_0 x\), there exists a unique morphism \(\tilde{\varphi} : \mathbb{Q}_p \to G\) such that, for any \(n\), \(\tilde{\varphi}(p^{-k_n}) = g_{k_n}\) and \(\tilde{\varphi}\) clearly lifts \(\varphi\). □

The second corollary is an improvement of Proposition 4.4.

Corollary 5.10. Let \(G\) be a weakly regular \(p\)-adic Lie group. One has the equality: \(\mathfrak{g}_G = \{X \in \mathfrak{g}_u \mid \text{ad}X \text{ is nilpotent}\}\), where \(\mathfrak{g}_u\) is the Lie algebra of \(G_u\).

Proof. This follows from Proposition 4.4 since, by Proposition 5.5, one has the equality \(\mathfrak{g}_u = \mathfrak{s}_u \oplus \mathfrak{r}_u\). □

The last corollary tells us that a weakly regular \(p\)-adic Lie group \(G\) with \(G = G_u\) is “almost” an algebraic Lie group.

Corollary 5.11. Let \(G\) be a weakly regular \(p\)-adic Lie group such that \(G = G_u\). Then there exists a Lie group morphism \(\psi : G \to H\) with finite kernel and cokernel where \(H\) is the group of \(\mathbb{Q}_p\)-points of a linear algebraic group defined over \(\mathbb{Q}_p\).

Proof. According to Proposition 4.4, \(G = G_u\) is a semidirect product \(G_u = S_u \ltimes R_u\). We choose \(H\) to be the semi direct product \(H := S' \ltimes R_u\) where \(S'\) is the Zariski closure of the group \(\text{Ad}(S_u)\) in \(\text{Aut}(\mathfrak{g}_u)\). Note that, since \(G\) is weakly regular, any automorphism of \(\mathfrak{g}_u\) induces an automorphism of \(R_u\). We define the morphism \(\psi : G_u \to H\) by \(\psi(g) = (\text{Ad}(s), r)\) for \(g = sr\) with \(s \in S_u, r \in R_u\). Proposition 4.4 tells us also that this morphism \(\psi\) has finite kernel and cokernel. □

5.3. Regular semiconnected component.

We are now ready to prove the following theorem which was the main motivation of our paper.

Theorem 5.12. Let \(G\) be a weakly regular \(p\)-adic Lie group. Then, there exists an open regular subgroup \(G_\Omega\) of \(G\) which contains all the one-parameter subgroups of \(G\).

Remark 5.13. Let \(\Omega\) be a standard open subgroup of \(G\). We define the \(\Omega\)-semiconnected component of \(G\) as its open subgroup \(G_\Omega := \Omega G_u\) (see [13]). In this language, Theorem 5.12 states that, the \(\Omega\)-semiconnected component of a weakly regular \(p\)-adic Lie group is regular, if the standard subgroup \(\Omega\) is small enough.

Proof of Theorem 5.12. We will need some notations. Let \(\mathfrak{s}\) be a Levi subalgebra of \(\mathfrak{g}\), \(\mathfrak{s}_u := \mathfrak{s} \cap \mathfrak{g}_{nc}\), \(\mathfrak{s}'\) the centralizer of \(\mathfrak{s}_u\) in \(\mathfrak{s}\), \(\mathfrak{r}\) the radical of \(\mathfrak{g}\), and \(\mathfrak{r}'\) the centralizer of \(\mathfrak{s}_u\) in \(\mathfrak{r}\).

We can choose a standard subgroup \(\Omega'_S\) of \(G\) with Lie algebra \(\mathfrak{s}'\), and a standard subgroup \(\Omega'_R\) of \(G\) with Lie algebra \(\mathfrak{r}'\) such that \(\Omega'_S\)
normalizes Ω_R' and the semidirect product $\Omega' := \Omega'_S \Omega'_R$ is a standard subgroup of G with Lie algebra $\mathfrak{s}' \oplus \mathfrak{r}'$. Since G is weakly regular, by shrinking Ω', we can assume that it commutes with S_u and normalizes R_u.

We claim that, if Ω' is small enough, the group $$G_\Omega := \Omega' G_u$$ is an open regular subgroup of G.

First step: Openness. One has the equalities $\mathfrak{s} = \mathfrak{s}' \oplus \mathfrak{s}_u$ and, according to Proposition 3.8, $\mathfrak{r} = \mathfrak{r}' + \mathfrak{r}_u$. Hence G_Ω is open in G.

Second step: Ad-regularity. Let $J \subset G_\Omega$ be the kernel of $\text{Ad}\, g$. We want to prove that J is the center of G_Ω. Since J acts trivially on the quotient $\mathfrak{g}/\mathfrak{r} \simeq \mathfrak{s}' \oplus \mathfrak{s}_u$, by Proposition 5.5 one has the inclusion $J \subset J' := Z_E \Omega'_R R_u$ where Z_E is a finite subgroup of S_u. One has $J_u = J \cap R_u$ and this group is algebraic unipotent. Hence, by Lemma 3.6 the quotient R_u/J_u is also algebraic unipotent. By Lemma 3.4, the group R_u/J_u is closed in the group J'/J. This means that $R_u J$ is closed in J', hence that J/J_u is closed in the compact group J'/R_u. In particular, J/J_u is compact. Therefore, there exists a compact set $K \subset J$ such that

$$J = K J_u.$$

We can now prove that if Ω' is small enough the group J commutes with G_Ω. This is a consequence of the following three facts.

(i) Since J is the kernel of $\text{Ad}\, g$ and G is weakly regular, J commutes with G_u.

(ii) Since J_u is a subgroup of R_u whose Lie algebra \mathfrak{j}_u is included in the center of \mathfrak{g}, if we choose Ω' small enough, one has $\text{Ad}_{J_u}(\Omega') = \{e\}$, and the group J_u commutes with Ω'.

(iii) Since K is compact and $\text{Ad}_{\mathfrak{g}}(K) = \{e\}$, by Lemma 4.2 if we choose Ω' small enough, the group K commutes with Ω'.

Third step: Size of finite subgroups. We want a uniform upper bound on the cardinality of the finite subgroups of G_Ω. This follows from the inclusions $R_u \subset G_u \subset G_\Omega$ of normal subgroups and from the following three facts.

(i) Since the group R_u is algebraic unipotent, it does not contain finite groups.

(ii) Since, by Proposition 5.3 the group G_u/R_u is a finite extension of a linear group, by Example 2.6, its finite subgroups have bounded cardinality.
(iii) Since the group G_{Ω}/G_u is a compact p-adic Lie group, by Example 2.6, its finite subgroups have bounded cardinality. \square

5.4. **Non weakly regular p-adic Lie groups.**

Not every p-adic Lie group is weakly regular. Here is a surprising example.

Example 5.14. There exists a p-adic Lie group G with $G = G_u$ which does not contain any open weakly regular subgroup H with $H = H_u$.

We will give the construction of such a group G with Lie algebra $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{Q}_p)$, but we will leave the verifications to the reader.

We recall that the group $G_0 := \text{SL}(2, \mathbb{Q}_p)$ is an amalgamated product $G_0 = K \ast I_0 K$ where $K := \text{SL}(2, \mathbb{Z}_p)$ and $I_0 := \{k \in K \mid k_{21} \equiv 0 \text{ mod } p\}$ is an Iwahori subgroup of K. We define G as the amalgamated product $G = K \ast I K$ where $I \subset I_0$ is an open subgroup such that $I \neq I_0$.

The morphism $G \to G_0$ is a non central extension. Using the construction in Lemma 4.1 one can check that G is spanned by one-parameter subgroups. However, one can check that the universal central extension $\tilde{G}_0 \to G_0$ can not be lifted as a morphism $\tilde{G}_0 \to G$.
References

[1] Y. Benoist, J.-F. Quint, Stationary measures and invariant subsets of homogeneous spaces (II), *Jour. Am. Math. Soc.* 26 (2013) 659-734.

[2] Y. Benoist, J.-F. Quint, Lattices in S-adic Lie groups, *Journal of Lie Theory* 24 (2014) 179-197.

[3] A. Borel, J. Tits, Groupes réductifs, *Publ. Math. IHES* 27 (1965) 55-150.

[4] A. Borel, J. Tits, Homomorphismes “abstraits” de groupes algébriques simples, *Ann. of Math.* 97 (1973) 499-571.

[5] N. Bourbaki, Groupes et Algèbres de Lie, chapitre 1, *CCLS* (1971).

[6] F. Bruhat, J. Tits *Groupes réductifs sur un corps local I*, Publ. IHES 41 (1972) p.5-252.

[7] F. Bruhat, J. Tits *Groupes réductifs sur un corps local II*, Publ. IHES 60 (1984) p.5-184.

[8] J. Dixon, M. duSautoy, A. Mann, D. Segal, *Analytic Pro-p Groups*, CUP (1991).

[9] S. Lang, *Algebra*, Addison-Wesley (1964).

[10] G. Margulis, G. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, *Invent. Math.* 116 (1994) 347-392.

[11] V. Platonov, A. Rapinchuk, *Algebraic groups and number theory*. Academic Press (1994).

[12] G. Prasad, M. Raghunathan, Topological central extensions of semi-simple groups over local fields, *Ann. of Math.* 119 (1984) 143-268.

[13] M. Ratner, Raghunathan’s conjectures for cartesian products of real and p-adic Lie groups, *Duke Math. J.* 72 (1995) 275-382.

[14] J.P. Serre, *Arbres, amalgames, SL2*, *Asterisque* 46 (1972).

[15] J. Tits, Reductive groups over local fields, *Pr. Sym. P. Math.* 33 (1979) 22-69.