1. INTRODUCTION

According to the standard scenario cosmic structures form by the gravitational collapse of density fluctuations. This collapse is mainly determined by the dark matter (DM), which contributes 85% to the total matter density in the universe. Baryonic matter follows the DM and forms visible objects such as galaxies and clusters inside the DM halos.

Shape and angular momentum are two important characteristics of halos. The shape of DM halos has already been widely studied, mainly by means of N-body simulations (e.g., Allgood et al. 2006; Macciò et al. 2007; Bett et al. 2007 and references therein). Avila-Reese et al. (2005) discuss the dependence of the shape of galaxy-sized halos on environment. Bailin & Steinmetz (2005) studied the internal shape of DM halos. Clusters of galaxies are the most recently formed objects in the universe. Most of the gas has not had time to cool. Since gas contributes only 15% of the total mass, one would expect that the gas follows DM, and both distributions should be similar. In order to quantify this similarity, we have characterized the shape of both components in halos obtained from a large, nonradiative cosmological gasdynamical simulation. Furthermore, we have compared the baryon fraction in clusters with the cosmic baryon fraction.

The origin, evolution, and distribution of DM halo spins have been widely discussed in the past also (e.g., Vitvitska et al. 2002; Bullock et al. 2001; Macciò et al. 2007; Bett et al. 2007). In galactic-sized halos the angular momentum of the gas component is important to understand disk formation. Using gasdynamical simulations van den Bosch et al. (2002), Chen et al. (2003), and Sharma & Steinmetz (2005) have studied the spin of the gas component in galactic halos and found that at redshift $z = 0$ the gas component, on average, has a larger spin than DM. Here we discuss briefly the relation between the different definitions of the spin parameter and study the distribution of spin parameters of DM and gas components in our numerical clusters.

Most of the previous studies on shape and spin of halos used either collisionless DM simulations with a large number of particles and relatively large volumes or gasdynamical (dissipative and nondissipative) simulations in small volumes with a small number of objects. The advantage of our study is that we have both gas and DM components in the MareNostrum smoothed particle hydrodynamics (SPH) simulation and a large cluster sample (more than 10,000) to perform statistics, thanks to the large computational volume and the high number of particles of this simulation.

2. NUMERICAL SIMULATION

This simulation, dubbed The MareNostrum Universe, was performed with the entropy conserving GADGET2 code (Springel 2005) on the MareNostrum supercomputer at the Barcelona Supercomputer Center using the equivalent of about 29 years on a single CPU. It followed the nonlinear evolution of structures in gas and DM from $z = 40$ to the present epoch ($z = 0$) within a comoving cube of $500 h^{-1}$ Mpc edges. We assumed the spatially flat concordance cosmological model with the following parameters: the total matter density $\Omega_m = 0.3$, the baryon density $\Omega_b = 0.045$, the cosmological constant $\Omega_{\Lambda} = 0.7$, the Hubble parameter $h = 0.7$, the slope of the initial power spectrum $n = 1$, and the normalization $\sigma_8 = 0.9$. The power spectrum used to generate the initial conditions for the simulation was kindly provided by Wayne Hu in a tabulated form. It was obtained from a direct integration of the Boltzmann code for the parameters described above. We did numerical interpolation to compute the contribution of the different Fourier modes. Both components, the gas and the DM, were resolved by 1024^3 particles, which resulted in a mass of $8.3 \times 10^9 h^{-1} M_\odot$ for the DM particles and $1.5 \times 10^9 h^{-1} M_\odot$ for the gas particles, respectively.
GADGET2 uses the TreePM algorithm on a homogeneous Eulerian grid to compute large-scale forces by the particle-mesh algorithm. In this simulation we employed 10243 mesh points to compute the density field from particle positions and FFT (fast Fourier transform) to derive gravitational forces. Within GADGET2 the equations of gas dynamics are solved by means of the SPH method in its entropy conservation scheme. We did not include dissipative or radiative processes or star formation. The spatial force resolution was set to an equivalent Plummer gravitational softening of 15 h^{-1} comoving kiloparsecs. The SPH smoothing length was set to the distance to the 40th nearest neighbor of each SPH particle.

The MareNostrum Universe is part of a series of simulations we have performed during the last few years. To this end, we had generated a realization of the ΛCDM power spectrum with 20483 particles and then decreased the mass resolution in the whole box to 2563, 5123, and 10243 particles, respectively. The lower resolution (2 \times 2563, 2 \times 5123) SPH simulations have been used to study properties of galaxy clusters (Yepes et al. 2004) and the shape-alignment relation of clusters (Faltenbacher et al. 2005; Basilakos et al. 2006). The MareNostrum Universe has been used recently to analyze the entropy profiles of the gas and DM in galaxy clusters (Faltenbacher et al. 2007). Due to computational limitations, we could not yet simulate the evolution of the full box with the maximal possible resolution of the initial conditions, 2 \times 20483 particles. However, using the multimass technique described in Klypin et al. (2001) selected individual clusters have already been resimulated at this resolution (Ascasibar et al. 2006).

It is a challenge to find within a distribution of 2 billion particles all structures and substructures and to determine their properties. Here we have used a newly developed parallel version of the hierarchical friends-of-friends (FOF) algorithm (Klypin et al. 1999). In a first step we construct the minimum spanning tree for the distribution of gas and DM particles. After topological sorting we get a cluster-ordered sequence from which we can easily extract FOF clusters by simply cutting the tree at the desired linking length. We use a basic linking length of 0.17 of the mean interparticle separation to extract the FOF clusters (Gottlöber et al. 2006a). We divide this linking length by 2n ($n = 1, 3$) to find substructures and in particular the centers (density peaks) of our objects. We were running the minimum spanning tree and the FOF analysis independently over DM and gas particles to find their distribution. Using a linking length of 0.17 at redshift $z = 0$ we have identified more than 2 million objects with more than 20 DM particles that closely follow a Sheth-Tormen mass function (Gottlöber et al. 2006b).

To determine the shape and spin of the clusters we have selected a subsample of more than 10,000 clusters and groups with masses larger than 5 \times 1013 $h^{-1} M_{\odot}$. The lower mass threshold corresponds to clusters’ respective massive groups with about 5000 gas particles and 5000 DM particles. As mentioned above the objects were identified independently from the gas and DM distributions. Due to the large number of particles in this simulation we can unambiguously match DM and gas halos with the same center of mass to one cluster. In the following we study these two components of the clusters in more detail.

3. SHAPES

Using the FOF method one extracts rather complex objects from the simulation that are characterized by an isodensity surface given by the linking length. In first approximation these objects can be characterized by three-axial ellipsoids. The shape and orientation of the ellipsoids can be directly calculated as eigenvectors of the inertia tensor of the given object. Then the shape is characterized by the ratios between the lengths of the axes $a_1 \geq a_2 \geq a_3$.

We ran the FOF algorithm independently over the DM and gas particles to determine the shape of the distribution of the two components. In Figure 1 we show the shape of the DM and gas distribution in clusters with total masses larger than 5 \times 1013 $h^{-1} M_{\odot}$. The ratios a_1/a_2 and a_2/a_3 of the clusters have been sampled into 25 bins of size 0.04. The plot shows a clear difference between the shapes of DM (left) and gas (right) distribution. DM halos are centered at ratios (0.7, 0.75), whereas for the gas halos the center is at (0.85, 0.9), (i.e., the gas halos are much more spherical). Both shapes tend to be more prolate, i.e., $a_3/a_2 > a_2/a_1$. This could be the result of merging along a

![Figure 1](image-url)
preferred direction, the large-scale filaments (Faltenbacher et al. 2005).

The exact position of the maximum in the left and right panels of Figure 1 depends on the low-mass cutoff in the cluster sample, but the qualitative behavior is independent of it. In Figure 2 we show how the ratio of the minor-to-major axis a_3/a_1 of DM (filled circles) and gas (filled triangles) halos depend on cluster mass. Note that the dispersion in the values of the ratios a_3/a_1 is large (within 1 bin the 1σ scatter is 0.14). This can be seen in Figure 1 for the ratios a_2/a_1 and a_3/a_2. However, due to the large number of objects per mass bin the standard deviation of the average within each bin shown in Figure 2 is small and sometimes smaller than the symbol size. The solid line is a linear fit in the semilogarithmic plot of $a_3/a_1 = b + c \ln (M)$, where the mass M is given in $h^{-1} M_\odot$ and b and c are (1.904, −0.0426) and (1.932, −0.0401) for DM and gas, respectively. A similar trend (but higher a_3/a_1) has been found by Kasun & Evrard (2005) in the Hubble volume N-body simulation.

The cluster shape can be further characterized by the triaxiality parameter $Z = (a_1 - a_2)/(a_1 - a_3)$ introduced by Binney (1985); $Z = 1$ corresponds to prolate ellipsoids of revolution (prolate spheroids), while $Z = 0$ corresponds to oblate ones. In Figure 2 the triaxiality parameter Z is shown for the DM (open circles) and gas halos (open triangles). The dotted line is a fit $Z = d + f \ln (M)$ with $(d, f) = (−0.61, 0.039)$ for DM and $(−0.43, 0.034)$ for gas halos. Contrary to the ratio a_3/a_1 there is only little difference between the triaxiality parameter Z of the DM and gas halos. The younger the halos are (i.e., more massive) the more prolate they look.

4. SPIN

In N-body numerical simulations the identified clusters can be characterized by their mass velocity and angular momentum or spin. Originally the spin parameter λ was introduced by Peebles (1971) as the “convenient dimensionless number,”

$$\lambda = \frac{J |E|^{1/2}}{GM^{5/2}},$$

where J is the total angular momentum of the object, E is its total energy, and M is its mass. Following Padmanabhan (1993) one can interpret λ as the ratio of the angular velocity ω of the system to the angular velocity ω_{sup} of the system that would provide rotational support. Characterizing the system by its angular momentum $J \approx \omega MR^2$ and rotational support by $\omega_{\text{sup}}^2 R^2 \approx GM/R$ one finds

$$\lambda = \frac{J}{GM^{3/2}},$$

which is up to a factor of $\sqrt{2}$ Bullock’s λ' (Bullock et al. 2001), if one replaces GM/R by the circular velocity V_circ. Contrary to equation (1), both Bullock’s definition and equation (2) contain only quantities that can be easily calculated in numerical simulations for spherical halos. If we assume that the total energy of the system is characterized by $E \approx −GM^2/R$, one comes back to Peebles’ original definition.

The halos in the numerical simulation are assumed to be virialized and thus characterized by $2T + U = 0$, where T and U are the kinetic and potential energies of the object. Bett et al. (2006) show in their Figure 5 how real halos scatter around this assumption. Replacing the potential energy in equation (1) by $−2T$ we end up with a third definition of the spin parameter:

$$\lambda = \frac{JT^{1/2}}{GM^{3/2}},$$

As with the previous definition this λ can be calculated easily numerically. The advantage of this spin parameter is that it can be calculated easily for any shape of the halo. Therefore, this definition is especially suited for the calculation of the spin parameter of halos found with the FOF analysis.

The halos identified in the MareNostrum Universe consist of two components: DM and gas. Then for each component the spin parameter is the ratio of the angular velocity ω of that component to ω_{sup} of the system. Therefore, we have

$$\lambda_{\text{gas (DM)}} = \frac{J_{\text{gas (DM)}}}{M_{\text{gas (DM)}} [2G(M_{\text{gas}} + M_{\text{DM}})R_{\text{vir}}]^{1/2}};$$

where $M_{\text{gas (DM)}}$ denotes the gas (DM) mass inside the virial sphere of radius R_{vir}, and $J_{\text{gas (DM)}}$ is the angular momentum of the corresponding component. Note that we have introduced in equation (4) an additional quotient of $\sqrt{2}$ to be consistent with the definition of Bullock et al. (2001).

Van den Bosch et al. (2002) and Sharma & Steinmetz (2005) discussed in detail the angular momentum distributions of the gas and DM components of halos found in SPH cosmological simulations. To this end they decomposed the particle velocities into a streaming and a random component. The velocities of the SPH gas particles are streaming velocities to which one could add microscopic random motions. The velocities of the DM particles contain random motions that could be eliminated by smoothing over a certain interpolation kernel. Nevertheless, as long as the number of particles in the halo is very large compared to the number of smoothing neighbors, the effects of the smoothing on the spin parameter can be neglected (S. Sharma 2006, private communication). Following Sharma & Steinmetz (2005) we use the total velocities of the DM and gas particles as provided by the simulation to calculate the spin parameters of both components.

We want to compare the spin parameters of a given structure calculated by the different above-mentioned definitions. The
objects found by the FOF algorithm have arbitrary shapes, and the spin parameter as defined in equation (3), \(\lambda_3 \), is calculated with respect to the center of mass of each object. On the other hand, we have also calculated the spin parameter for spherical halos at virial overdensity \((334 \times \text{mean density at redshift } z = 0) \). In this case, we first identify for each of the FOF objects the highest density peak. To this end, we decrease the linking length by a factor of 8, ending up with substructures of about 170,000 \(\times \) mean density. For each FOF object we take the center of mass of the most massive substructure as the center of a sphere and determine the virial radius and mass within this sphere. Then we use equation (4) to calculate the virial overdensity (334 \(\times \) mean density at redshift \(z = 0 \)).

In Figure 3 we compare the DM spin parameters \(\lambda_3 \) and \(\lambda_4 \). Having in mind the completely different treatments of the spin parameter, they agree surprisingly well. More than 63% of our halos are within 20% scatter around the \(\lambda_3 = \lambda_4 \) relation. The reason for the larger deviations shown in this plot is due to the fact that halos defined from the spherical overdensity criterion and those defined from the FOF algorithm look completely different if substructures are present. In such cases, the spin of the FOF objects is calculated with respect to the center of mass, whereas for the spherical halos it is calculated with respect to the position of the highest density peak. These positions, and the corresponding spins, may differ substantially. For those halos in which this effect is not important, the spin parameters defined by both methods have very similar values. However, there is also another source of scatter, although much smaller than the previous one, due to the assumption of virial equilibrium \(2T + U = 0 \), which is not exactly fulfilled in our halos. Thus, even for spherical objects the spins \(\lambda_3 \) and \(\lambda_4 \) will not be identical. In fact, Shapiro et al. (2004) pointed out that the presence of infalling matter acts as a surface pressure even for collisionless DM. The surface term leads to \(2T + U > 0 \). The spin parameter calculated from the kinetic energy, \(\lambda_3 \), tends to be slightly larger than the spin parameter, \(\lambda_4 \), probably because the total kinetic energy of DM particles is larger than that assumed by virial equilibrium. Hetznecker \\& Burkert (2006) have studied the distribution of the virial coefficient \(\eta = 2T/|U| \) for a sample of DM halos from \(\Lambda CDM \) N-body simulations and showed that the mean value of \(\eta \) approaches unity at redshift \(z = 0 \).

In § 3 we found different shapes (and therefore volumes) for the DM and gas components of the halos. Therefore, to compare the spin parameter of both components we used \(\lambda \) defined by equation (4). We put a sphere at the position of the most massive substructure as described above and determined the virial radius and mass of the halo as well as the gas and DM masses (see § 5) and the corresponding angular momenta.

The resulting distribution of the spin parameter of the gas and DM components is shown in Figure 4. The distribution of the spin parameter \(\lambda \) can be described by a lognormal distribution,

\[
P(\lambda) = \frac{1}{\sqrt{2\pi} \sigma_\lambda} \exp\left[-\frac{\ln^2(\lambda/\lambda_0)}{2\sigma^2_\lambda} \right].
\]

The best-fit parameters are, for the DM distribution, \(\lambda_0 = 0.0351 \pm 0.0016, \sigma_\lambda = 0.6470 \pm 0.0067 \) and, for the gas distribution, \(\lambda_0 = 0.0462 \pm 0.0012, \sigma_\lambda = 0.6086 \pm 0.0030; P(\lambda) \) has a maximum at \(\lambda_{\text{max}} = 0.0231, 0.0319 \) for the DM resp. gas distribution. Recently, Bett et al. (2007) have proposed another distribution function that fits their data better. Since the scatter of \(\lambda_0 \) with a varying total number of halos depending on the lower mass cutoff is in our case of the same order as the error in the determination of \(\lambda_0 \), we believe that the lognormal function is a general description of the distribution of the spin parameter.
sufficient fit to describe the behavior of the spin parameter. The differences of λ_0 using different definitions of λ are at least of the same order.

Since DM dominates the total mass the total distribution of the spin parameter of DM and gas practically coincides with that of the DM only. Moreover, it is in agreement with the distribution of the spin parameter calculated by Gottlöber et al. (2006b) using equation (3) for the nonspherical FOF halos.

Van den Bosch et al. (2002) found agreement between the spin distribution of the gas and DM components of 378 halos identified in a small box of $10 h^{-1}$ Mpc at redshift $z = 3$. We see a substantial shift of the lognormal distribution of the gas spin toward higher spin in comparison to the DM. Our λ_0 are slightly larger than the values (0.0287, 0.0412) reported by Sharma & Steinmetz (2005) for a sample of 41 halos in a box of $32.5 h^{-1}$ Mpc at redshift $z = 0$. We find a mean $\lambda_{\text{gas}}/\lambda_{\text{DM}}$ of 1.39 (see Fig. 5) with a tendency to decrease with halo mass. The standard deviation is 0.57. Only the 159 most massive halos ($M_{\text{gas}} > 5 \times 10^{14} h^{-1} M_\odot$) show a substantially smaller $\lambda_{\text{gas}}/\lambda_{\text{DM}} = 1.23$ with a standard deviation of 0.45.

At $z = 1$ we found a similar behavior of the spins of the DM and gas components. Both spins follow lognormal distributions that can be described by $\lambda_0 = 0.0467$ and 0.0541, respectively; i.e., the mean spin of the gas component is 1.16 times larger than the spin of the DM component. During further evolution this ratio increases until 1.39. The spins themselves are slightly larger at redshift $z = 1$.

5. BARYON FRACTION

The observed cluster baryon fraction is an important tool for the determination of cosmological parameters. Typically the gas fraction in clusters is measured by X-ray observations at overdensities 500 or larger, i.e., well inside the virial radius. A certain fraction of the baryons reside in stars. Using a nonradiative simulation to determine the baryon fraction is definitely a simplification, but since we are interested in the baryon fraction at virial radius we expect not to be affected very much by neglecting cooling and star formation processes (see the discussion below).

During the last decade baryon fractions in clusters $Y_b = f_{\text{cluster}}/f_{\text{cosmic}} = f_{\text{cluster}}/(\Omega_b/\Omega_{\text{matter}})$ have been studied in non-radiative simulations by several authors. Eke et al. (1998) found within the virial radius a baryon fraction of 0.85–0.9. Within the Santa Barbara cluster comparison project (Frenk et al. 1999) the baryon fraction at virial radius averaged over all cores was $Y_b = 0.92$. They found a substantial scatter between codes and a systematic offset between SPH and grid codes that led to higher baryon fractions. Recently, Kravtsov et al. (2005) found that at large radii the baryon fraction in the ART (Adaptive Refinement Tree) simulations is about 3%–5% higher than in GADGET simulations of the same clusters. Within our nonradiative simulation we have explored the baryon fraction at the virial radius in objects with virial masses larger than $5 \times 10^{13} h^{-1} M_\odot$. The assumed virial overdensity at redshift $z = 0$ is 334; at redshift $z = 1$ it is 201. At redshifts $z = 0$ we found more than 10,000 objects and about 2500 at redshift $z = 1$. The scatter in the measured baryon fraction of our cluster was found to be quite large. At redshift $z = 0$ it ranges between 0.85 and 1.0 with a mean of 0.92 (Gottlöber et al. 2006b).

In Figure 6 we show the ratio Y_b as a function of the virial mass of clusters. Due to the large number of objects the standard deviation of the mean value of Y_b for different mass bins is small, and we could fit a linear relation in the semilogarithmic plot, $Y_b = \alpha \ln (M_\odot) + \beta$, with the slope $\alpha = -0.005 \pm 0.001$ at redshift $z = 0$ and $\alpha = -0.006 \pm 0.001$ at redshift $z = 1$. There is a 2% decrease of the baryon fraction between redshifts 1 and zero. Ettori et al. (2006) found a 5% decrease of the baryon fraction in this time interval. Within our model the decrease can be naturally expected. Since the gas works against its pressure during the formation of the cluster the total DM mass grows slightly faster than the gas mass. Therefore, the relative gas fraction decreases with time, as can be seen in Figure 6. For illustration we have selected 1200 clusters with masses larger than $2 \times 10^{14} h^{-1} M_\odot$ and 2900 clusters with masses smaller than $2 \times 10^{14} h^{-1} M_\odot$, and compared the mass growth of their DM and baryonic components between $z = 0$ and $z = 1$: $D_{\text{DM, gas}} = m_{\text{DM, gas}}(z = 0)/m_{\text{DM, gas}}(z = 1)$. The averaged relative growth $D_{\text{DM, gas}}$ is 1.03 for $M > 2 \times 10^{14} h^{-1} M_\odot$ and 1.02 for $M < 2 \times 10^{14} h^{-1} M_\odot$; i.e., clusters accrete DM faster than gas, and the mean baryonic fraction decreases with time. Originally the
baryon fraction was homogenous. During the collapse of the whole cluster region the baryonic fraction decreases slowly. Most massive clusters are situated in the positions of the highest density peaks in the originally almost homogenous medium. These peaks start to grow first. This could be the reason for the small but statistically significant slope α that we found. Note, however, that recently Crain et al. (2007) have found the opposite, a slightly increasing baryon fraction with mass, from a set of clusters extracted from a nonradiative SPH resimulation of the Millennium Run, but with 2 times fewer particles than ours. Also, the relative baryon fraction of their clusters (at overdensity 200) falls below 0.9.

Recently Kravtsov et al. (2005) studied the effects of cooling and star formation on the baryon fractions in clusters. They showed that the cooling of the gas and the associated star formation increases the baryon fraction even at radii as large as the virial radius. The averaged baryon fraction at virial radius differs by 5% between the simulations with cooling and star formation ($Y_b = 1.02$) and the nonradiative simulations ($Y_b = 0.97$), which is already \sim5% larger than the value we obtained from the MareNostrum Universe SPH simulation. Ettori et al. (2006) have also studied a set of clusters obtained in both nonradiative SPH simulations as well as in simulations including cooling and star formation. For the nonradiative simulations they found an averaged baryon fraction of 0.89, which is slightly lower than the value we found. In agreement with Kravtsov et al. (2005) they also found in their simulations with cooling and star formation that the baryon fraction at virial radius increases with respect to the nonradiative case by about 3%.

6. CONCLUSIONS

We have selected a statistically significant sample of more than 10,000 clusters from the MareNostrum Universe simulation. With this database we have determined the shape and the spin of the DM and gas components of the clusters independently. We found that both the gas and dark matter (DM) components tend to be prolate, although the gas is much more spherically distributed. The mean ratio of the minor-to-major axis decreases with increasing halo mass; i.e., younger objects tend to be less spherical, in agreement with the results of Kasun & Evrard (2005) obtained from the Hubble volume DM only simulation. On the other hand, the triaxiality parameters of the gas and DM component differ by a few percent only, and both of them increase with halo mass.

The spin parameters of the DM and gas components are well represented by lognormal distribution functions with $\lambda_0 = 0.0351$ (DM) and $\lambda_0 = 0.0462$ (gas). These values are slightly larger than the values found for a sample of 41 halos with masses from dwarf to bright galaxies (Sharma & Steinmetz 2005). On average, the spin of the gas component is a factor of 1.39 larger than the spin of the DM component. This ratio is smaller for very massive halos, 1.23 for halos with $M_{\text{vir}}>5\times10^{14} h^{-1} M_\odot$. It decreases slightly with redshift being 1.16 at $z = 1$.

On average, the baryon fraction in the cluster sample is $Y_b = 0.92$. The baryon fraction increases with redshift, being 0.94 at $z = 1$. At both redshifts the baryon fraction decreases slightly with increasing virial mass of the clusters. The radiative processes of cooling and star formation are expected to change the baryon content found for halos in nonradiative simulations. There is a discrepancy between the predicted baryon fraction in SPH and AMR (adaptive mesh refinement) codes. Both effects are of the same order as the time and mass dependence found here. Thus, at present observational projects to estimate cosmological parameter such as the total matter density in the universe and the equation of state of the dark energy can still safely assume a rather universal, unevolving baryon fraction for clusters of galaxies.

The MareNostrum Universe has been created at the Barcelona Supercomputer Center and analyzed at NIC Jülich. We thank the Acciones Integradas Hispano-Alemanas and DFG for financial support. G. Y. would also like to thank MCIYT for financial support under project numbers AYA2003-07468 and BFM2003-01266. We appreciate very much the fruitful discussions with S. Sharma, M. Hoeft, M. Steinmetz, and A. Knebe. We would also like to thank the anonymous referee for her/his valuable comments on the first version of the paper.

REFERENCES

Allgood, B., Flores, R. A., Primack, J. R., Kravtsov, A. V., Wechsler, R. H., Faltenbacher, A., & Bullock, J. S. 2006, MNRAS, 367, 1781

Ascasibar, Y., Sevilla, R., Yepes, G., Müller, V., & Gottlöber, S. 2006, MNRAS, 371, 193

Avila-Reese, V., Colin, P., Gottlöber, S., Firmani, C., & Maucleretsch, C. 2005, ApJ, 634, 51

Bailin, J., & Steinmetz, M. 2005, ApJ, 627, 647

Basilakos, S., Plionis, M., Yepes, G., Gottlöber, S., & Turchaninov, V. 2006, MNRAS, 365, 539

Bett, P., Eke, V., Frenk, C. S., Jenkins, A., Helly, J., & Navarro, J. 2007, MNRAS, 376, 215

Binney, J. 1985, MNRAS, 212, 767

Bullock, J. S., Dekel, A., Kolatt, T. S., Kravtsov, A. V., Klypin, A. A., Porciani, C., & Primack, J. R. 2001, ApJ, 550, 240

Chen, D. N., Jing, Y. P., & Yoshikawa, K. 2003, ApJ, 597, 35

Crain, R. A., Eke, V. R., Frenk, C. S., Jenkins, A., McCarthy, I. G., Navarro, J. F., & Peacock, R. F. 2007, MNRAS, 377, 41

Eke, V. R., Navarro, J. F., & Frenk, C. S. 1998, ApJ, 503, 569

Ettori, S., Dolag, K., Borgani, S., & Murante, G. 2006, MNRAS, 365, 1021

Faltenbacher, A., Allgood, B., Gottlöber, S., Yepes, G., & Hoffman, Y. 2005, MNRAS, 362, 1099

Faltenbacher, A., Hoffman, Y., Gottlöber, S., & Yepes, G. 2007, MNRAS, 376, 1327

Frenk, C. S., et al. 1999, ApJ, 525, 554

Gottlöber, S., Yepes, G., Khlatayan, A., Sevilla, R., & Turchaninov, V. 2006a, in AIP Conf. Proc. 878, The Dark Side of the Universe (New York: AIP), 3

Gottlöber, S., Yepes, G., Wagner, C., & Sevilla, R. 2006b, in From Dark Halos to Light, ed. L. Tresse, S. Maurogordato, & J. Tran Than Van, submitted (astro-ph/0608289)

Hetznecker, H., & Burkert, A. 2006, MNRAS, 370, 1905

Kasun, S. F., & Evrard, A. E. 2005, ApJ, 629, 781

Klypin, A., Gottlöber, S., Kravtsov, A. V., & Khokhlov, A. M. 1999, ApJ, 516, 530

Klypin, A., Kravtsov, A. V., Bullock, J. S., & Primack, J. R. 2001, ApJ, 554, 903

Kravtsov, A. V., Nagai, D., & Vikhlinin, A. A. 2005, ApJ, 625, 588

Macaca, A., Dutton, A., van den Bosch, F., Moore, B., Potter, D., & Stadel, J. 2007, MNRAS, 378, 55

Padmanabhan, T. 1993, Structure Formation in the Universe (Cambridge: Cambridge Univ. Press)

Peebles, P. J. E. 1971, A&A, 11, 377

Shapiro, P. R., Iliev, I. T., Martel, H., Ahn, K., & Alvarez, M. A. 2004, preprint (astro-ph/0409173)

Sharma, S., & Steinmetz, M. 2005, ApJ, 628, 21

Springel, V. 2005, MNRAS, 364, 1105

van den Bosch, F. C., Abel, T., Croft, R. A. C., Hernquist, L., & White, S. D. M. 2002, ApJ, 576, 21

Völtcska, M., Klypin, A. A., Kravtsov, A. V., Wechsler, R. H., Primack, J. R., & Bullock, J. S. 2002, ApJ, 581, 799

Yepes, G., Ascasibar, Y., Sevilla, R., Gottlöber, S., & Mühle, V. 2004, in IAU Colloq. 195, Outskirts of Galaxy Clusters, ed. A. Diaferio (Cambridge: Cambridge Univ. Press), 274