Chromosome Cohesion Established by Rec8-Cohesin in Fetal Oocytes Is Maintained without Detectable Turnover in Oocytes Arrested for Months in Mice

Highlights

- Rec8-mediated chromosome cohesion is established in fetal oocytes
- Bivalent cohesion is maintained without detectable turnover in arrested oocytes
- Irreversible cohesin loss underlies age-related chromosome missegregation

In Brief

How chromosome cohesion is maintained in female germ cells arrested for months or decades is poorly understood. Burkhardt et al. show that cohesion is built in fetal oocytes and after birth is maintained without detectable renewal for months. This implies that the oocyte’s inability to renew cohesion contributes to maternal age-related trisomies.
Chromosome Cohesion Established by Rec8-Cohesin in Fetal Oocytes Is Maintained without Detectable Turnover in Oocytes Arrested for Months in Mice

Sabrina Burkhardt,1 Máté Borsos,1 Anna Szydlowska,1 Jonathan Godwin,2 Suzannah A. Williams,3 Paula E. Cohen,4 Takayuki Hirota,5,6 Mitinori Saitou,5,6 and Kikue Tachibana-Konwalski1,*

1Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus, Dr. Bohr-Gasse 3, Vienna 1030, Austria
2Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
3Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital, University of Oxford, Women’s Centre, Level 3, Oxford OX3 9DU, UK
4Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Tower Road, Ithaca, NY 14853, USA
5Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
6JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
*Correspondence: kikue.tachibana@imba.oeaw.ac.at
http://dx.doi.org/10.1016/j.cub.2015.12.073
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

SUMMARY

Sister chromatid cohesion mediated by the cohesin complex is essential for chromosome segregation in mitosis and meiosis [1]. Rec8-containing cohesin, bound to Smc3/Smc1α or Smc3/Smc1β, maintains bivalent cohesion in mammalian meiosis [2–6]. In females, meiotic DNA replication and recombination occur in fetal oocytes. After birth, oocytes arrest at the prolonged dictyate stage until recruited to grow into mature oocytes that divide at ovulation. How cohesion is maintained in arrested oocytes remains a pivotal question relevant to maternal age-related aneuploidy. Hypothetically, cohesin turnover regenerates cohesion in oocytes. Evidence for post-replicative cohesion establishment mechanism exists, in yeast and invertebrates [7, 8]. In mouse fetal oocytes, cohesin loading factor Nipbl/Scc2 localizes to chromosome axes during recombination [9, 10]. Alternatively, cohesion is maintained without turnover. Consistent with this, cohesion maintenance does not require Smc1β transcription, but unlike Rec8, Smc1β is not required for establishing bivalent cohesion [11, 12]. Rec8 maintains cohesion without turnover during weeks of oocyte growth [3]. Whether the same applies to months or decades of arrest is unknown. Here, we test whether Rec8 activated in arrested mouse oocytes builds cohesion revealed by TEV cleavage and live-cell imaging. Rec8 establishes cohesion when activated during DNA replication in fetal oocytes using tamoxifen-inducible Cre. In contrast, no new cohesion is detected when Rec8 is activated in arrested oocytes by tamoxifen despite cohesin synthesis. We conclude that cohesion established in fetal oocytes is maintained for months without detectable turnover in dictyate-arrested oocytes. This implies that women’s fertility depends on the longevity of cohesin proteins that established cohesion in utero.

RESULTS AND DISCUSSION

The frequency of clinically recognized trisomic pregnancies increases with maternal age [13]. Most aneuploid pregnancies arise as a consequence of chromosome segregation errors during the first meiotic division of female germ cells called oocytes, leading to aneuploid eggs [13–15]. On average, 20% of human eggs and 1%–2% of mouse eggs are aneuploid [14]. In aging human and mouse oocytes, cohesin levels decrease, centromeric cohesion weakens, and chromosome segregation errors increase [16–21]. To gain insights into age-related chromosome missegregation, we need a molecular understanding of cohesion establishment and maintenance in oocytes. A defining feature of mammalian oocytes is the prolonged arrest at the dictyate stage of prophase I that lasts for months in the mouse and decades in the human (Figure 1A). Crucially, it is not known whether bivalent cohesion is maintained without turnover during the arrest. If cohesion is maintained by cohesin turnover, then either the cohesion establishment mechanism deteriorates or the cohesin pool needed for replenishment diminishes in aging oocytes (Figure S1A). Alternatively, if cohesion is maintained without cohesin turnover, then cohesion loss from chromosomes is irreversible (Figure S1B). Either model is interesting and has the potential to explain what goes awry in aging oocytes, leading to the production of aneuploid fetuses.

A Functional Cohesion Rescue Assay in Meiosis I Oocytes

The entrapment of sister DNA molecules by cohesin complexes can be measured indirectly and directly using biochemical and
cell biological approaches [7, 22–24]. To determine whether cohesion is maintained with or without building additional cohesive structures after DNA replication, we used a functional cohesion assay that we had established previously (Figure 1B) [3]. Briefly, endogenous Rec8 contains engineered Tobacco Etch Virus (TEV) recognition sites rendering cohesin cleavable by TEV protease. TEV protease expression in Rec8^{TEV/TEV} oocytes converts 100% of bivalents to chromatids. To test whether new cohesion is built, Rec8-Myc that is not cleavable by TEV protease is induced in addition to endogenous Rec8^{TEV} that establishes cohesion during DNA replication (Figure 1B). If Rec8-Myc becomes incorporated into cohesin complexes that establish cohesion, then bivalents become resistant to destruction by TEV protease. If no new cohesion is established, then TEV cleavage of Rec8 converts bivalents to chromatids. We assume that over time slow cohesin decay takes place and contemporaneously occurring reloading of Rec8-Myc can be revealed by TEV cleavage to rapidly destroy endogenous Rec8. The genetic components are Rec8^{TEV/TEV} oocytes that also contain a conditional silent BAC transgene with a Stop cassette flanked by LoxP sites, (Tg<i>Stop/Rec8-Myc</i>. Cre recombinase deletes the Stop cassette and activates Rec8-Myc transgene expression. Deletion of the Stop cassette using (Tg<i>Sox2-Cre</i> in the early embryo, before primordial germ cell specification, rescues bivalent cohesion in mature oocytes [3, 25]. Therefore, Rec8-Myc is capable of establishing functional cohesion when activated before meiosis.

To visualize the cohesion status of chromosomes in meiosis I oocytes, we used a microinjection and live-cell imaging approach. Mature germinal vesicle (GV) stage oocytes isolated from sexually mature females are cultured in 3-isobutyl-1-methylxanthine (IBMX)-containing medium to inhibit germinal vesicle breakdown (GVBD). GV oocytes are microinjected with mRNA encoding H2B-mCherry, CepnB-EGFP, and TEV protease. Confocal time-lapse microscopy allows scoring of chromosome type at metaphase I (5 hr post-GVBD). TEV protease efficiently converts bivalents to chromatids, which are detected as at least 72 single molecules.

Figure 1. Probing Cohesion Maintenance during Mammalian Female Meiosis Using a Functional Cohesion Assay

(A) Mammalian female meiosis can be structured into four stages: (1) meiotic DNA replication in which sister chromatid cohesion is presumably established, (2) meiotic recombination in which reciprocal recombination of homologous chromosomes (black and gray) results in crossovers that manifest as chiasmata, (3) the prolonged resting state at the dictyate stage of prophase I after birth, and (4) the growing phase that starts when an oocyte is recruited from the resting pool and leads to formation of a mature oocyte. The duration of the dictyate arrest and growing phase correspond to mouse. Schematic is not drawn to scale.

(B) Schematic of cohesion rescue assay. TEV-cleavable Rec8 (yellow) establishes and maintains bivalent cohesion. Non-TEV-cleavable Rec8 (red) is activated after meiotic cohesion establishment. Cleavage by TEV protease reveals whether de novo expressed non-TEV-cleavable Rec8 is able to build functional cohesive structures: cleavage of bivalents into single chromatids indicates no functional loading, while resistance to TEV cleavage reveals functional cohesive structures entrapping sister DNA molecules.

(C) Rec8^{TEV/TEV} oocytes are microinjected with mRNA encoding H2B-mCherry, CepnB-EGFP, and TEV protease. Confocal time-lapse microscopy allows scoring of chromosome type at metaphase I (5 hr post-GVBD). TEV protease efficiently converts bivalents to chromatids, which are detected as at least 72 single chromatids and no bivalents (oocytes analyzed n = 40), while no cleavage of all 20 bivalents is observed using mutant TEV protease (TEV^{mut}; oocytes analyzed n = 16). Scale bar, 10 μm.

See also Figure S1.
early as meiotic DNA replication. Indeed, Rec8-Myc is expressed in up to 50% of replicating germ cells, identified as BrdU- and Ddx4-positive cells, in oocytes from (Tg)Stop/Rec8-Myc (Tg)Gdf9-iCre females (Figures 2C and 2D). Gdf9-iCre activated Rec8-Myc before or during meiotic DNA replication in two out of three female embryos (Figure 2D). Overall Gdf9-iCre deletes with high efficiency (Table S1), but the deletion timing varies between mice and between oocytes within one mouse. In agreement with this, cohesion rescue experiments using oocytes from Rec8TEV/TEV (Tg)Stop/Rec8-Myc (Tg)Gdf9-iCre females resulted in variable rescue efficiencies (Figures S2A and S2B). It is not possible to know whether cohesion rescue in these cells is due to cohesion establishment during DNA replication or thereafter. On a technical note, while it cannot be excluded that mouse strain background and genetic locus might have some effect on the timing of Cre-mediated deletion, our analyses using two different target loci showing earlier deletion than previously thought raise concerns about the suitability of Gdf9-iCre for cell cycle phase-specific deletion studies.

A second approach to activate the Rec8-Myc transgene after meiotic DNA replication might rely on Cre recombinase controlled by a promoter driving expression of a protein required for recombination. The topoisomerase-like enzyme Spo11 generates DNA double-strand breaks that initiate recombination [36]. Therefore, we chose to test Spo11-Cre. If Spo11-Cre deletes after DNA replication and before or during recombination, then this system will test whether cohesion is built after DNA replication. It would not be possible to distinguish whether cohesion is generated during recombination or the dictyate-stage arrest.

To characterize the timing of Spo11-Cre, we used Rosa26-LacZ and (Tg)Stop/Rec8-Myc mice (Figures 2E–2G). Spo11-Cre also deletes during meiotic DNA replication in 46% of replicating oocytes (Figure 2G). In agreement with this, cohesion rescue is detected in some oocytes from Rec8TEV/TEV (Tg)Stop/Rec8-Myc Spo11-Cre females (Figures S2C and S2D). We conclude that neither Gdf9-iCre nor Spo11-Cre allow consistent activation of Rec8-Myc after meiotic DNA replication in fetal oocytes.

Timely Controlled Rec8 Activation in Fetal and Adult Arrested Oocytes

To demonstrate whether arrested oocytes maintain cohesion with or without turnover, it is important to activate Rec8-Myc transgene expression after meiotic DNA replication and homologous recombination. Since there are currently no mouse strains other than (Tg)
Gdf9-icre that are thought to delete in arrested oocytes before growth, we chose to directly control the timing of Cre-mediated deletion by injection of 4-hydroxytamoxifen (4-OHT). Specifically, the germ cell-specific Dppa3 promoter drives expression of Cre fused to mouse estrogen receptors (MERCreMER) and a PEST degradation motif in (Tg)Dppa3-MCM-P mice [37] (Table S1). MERCreMER is cytoplasmic, and 4-OHT binding to the receptors triggers translocation of the Cre-fusion to the nucleus, facilitating recombination; pink, dictyate stage.

The challenges with this approach are a risk of deletion without 4-OHT, inefficient deletion with 4-OHT, and effects of 4-OHT on fertility. Since background deletion could result in a false positive cohesion rescue, we first tested whether there is any deletion without 4-OHT. Reassuringly, vehicle injection into Rosa26-LacZ (Tg)Dppa3-MCM-P females resulted in no X-gal positive oocytes in ovaries sections, consistent with the negligible background reported by others (Figure S3). On the other hand, 4-OHT injection into Rosa26-LacZ (Tg)Dppa3-MCM-P females resulted in ~25% X-gal positive oocytes, indicating that Cre-mediated deletion had occurred (Figure S3). Since the deletion efficiency is low, oocytes with a deleted Stop cassette in Rec8-Myc will be identified by single-cell PCR genotyping after the cohesion rescue assay (Table S1). Lastly, 4-OHT-injected (Tg)Stop/Rec8-Myc (Tg)Dppa3-MCM-P females are fertile for up to 12 litters, and 28% of offspring inherited (Tg)Rec8-Myc (n = 3 females + 4-OHT; n = 3 females + vehicle). Therefore, 4-OHT and Cre-mediated deletion do not grossly affect oocyte maturation and female fertility.

To test whether 4-OHT induces sufficient levels of Rec8 to rescue bivalent cohesion in meiosis I oocytes, we embarked on a novel fetal-to-adult oocyte experiment. The idea is to activate Rec8 in fetal oocytes and perform the cohesion rescue assay on the same oocytes isolated from the adult female. Pregnant Rec8TEV/TEV (Tg)Stop/Rec8-Myc females mated to Rec8TEV/TEV (Tg)Stop/Rec8-Myc (Tg)Dppa3-MCM-P males were injected with 4-OHT on embryonic day E10.5 to activate Rec8-Myc in replicating oocytes of female embryos (F1 generation) (Figure 3A). Rec8TEV/TEV (Tg)Stop/Rec8-Myc (Tg)Dppa3-MCM-P F1 females were sacrificed at 2 months for oocyte isolation (Figure 3B). If Rec8-Myc activated by 4-OHT established cohesion in a replicating fetal oocyte, then the same oocyte isolated from the adult F1 female would be expected to express Rec8-Myc. Indeed, Rec8-Myc localized to bivalents on metaphase I chromosomes in oocytes from (C) wild-type and (D) F1 Rec8TEV/TEV (Tg)Stop/Rec8-Myc (Tg)Dppa3-MCM-P female; oocytes analyzed n = 9 and n = 7, respectively. Centromeres are marked by anti-centromere antibody (ACA). Scale bar, 20 μm. (E and F) Representative still images of oocytes isolated from F1 Rec8TEV/TEV (Tg)Stop/Rec8-Myc (Tg)Dppa3-MCM-P females microinjected with mRNA encoding H2B-mCherry, CenpB-EGFP, and TEV protease. (E) Bivalents are converted to chromatids in cells without Stop cassette deletion; n = 17 oocytes. (F) Bivalents are retained in oocytes with successful deletion of the Stop cassette; n = 5 oocytes. Genotype of single cells was confirmed after live-cell imaging. Oocytes were obtained from >3 females. Scale bar, 20 μm. See also Figure S3 and Table S1.
Before using the timely controlled activation of Rec8 in dictyate-arrested oocytes, it was necessary to test whether Rec8 is transcribed in arrested oocytes. Rec8 transcripts are detectable in adult ovaries [39] (Figures 4A and S4), but these could be stored mRNA that was synthesized in early meiosis. To test whether Rec8-Myc is de novo transcribed in post-recombination oocytes, we injected (Tg)Stop/Rec8-Myc (Tg)Dppa3-MCM-P adult females with vehicle or 4-OHT and performed RT-PCR on whole ovaries. (Tg)Rec8-Myc ovaries served as a positive control to identify Rec8-Myc mRNA; the presence of oocytes was confirmed using the germ cell-specific transcripts Nobox and Smc1β. Rec8-Myc was expressed
specifically in 4-OHT- and not in vehicle-injected (Tg)Stop/Rec8-Myc (Tg)Dppa3-MCM-P ovaries (Figures 4A and S4). Since Rec8-Myc is under control of the endogenous promoter in the BAC, de novo transcription of Rec8-Myc suggests that endogenous Rec8 is also transcribed in adult oocytes.

We next tested whether Rec8 protein is synthesized in adult oocytes. While no Rec8-Myc signal was detectable on chromosome spreads from control (Tg)Stop/Rec8-Myc oocytes, little but detectable Rec8-Myc localized to chromosomes from oocytes isolated from (Tg)Stop/Rec8-Myc (Tg)Dppa3-MCM-P females injected with 4-OHT (Figure 4B). We conclude that Rec8 protein is synthesized de novo and associates with chromosomes in adult oocytes.

In the key experiment, we asked whether cohesion is maintained with or without turnover in oocytes arrested for months at the dictyate stage of prophase I. Rec8TEV/TEV (Tg)Stop/Rec8-Myc (Tg)Dppa3-MCM-P adult females were injected with 4-OHT to activate Rec8-Myc in oocytes, and the cohesion rescue assay was performed 2 or 4 months after activation (Figure 4C). Following TEV protease injection and time-lapse imaging, single-cell PCR identified 46% of oocytes with activated Rec8-Myc (n = 71 oocytes, 8 females, Table S1). Importantly, 100% of oocytes with activated Rec8-Myc both after 2 or 4 months displayed chromatids in meiosis I (Figures 4D–4F; Movies S1 and S2). Therefore, cohesion is maintained without turnover using newly synthesized Rec8 in oocytes arrested for several months at the dictyate stage of prophase I. Current experiments do not allow us to exclude that Rec8-cohesin complexes assembled early in meiosis might turn over. In summary, we conclude that cohesive structures maintaining bivalent cohesion must have been built before (Tg)Dppa3-MCM-P activation, most likely during DNA replication. Since genetic tools like Spo11-Cre cannot distinguish temporally between meiotic DNA replication and homologous recombination (Figures 2F, 2G, and S2E), it remains an open question whether additional cohesive structures are built during meiotic recombination or whether cohesion is established exclusively during DNA replication.

Conclusions

Overall our results show that sister chromatid cohesion mediated by Rec8-containing cohesin complexes is established in fetal oocytes and maintained without detectable turnover after birth, both during the prolonged dictyate-stage arrest and the weeks of oocyte growth [3]. To fully understand cohesin dynamics in female meiosis will require an integrated approach including other cohesin complexes and a variety of techniques. We have employed a functional cohesion rescue assay that overcomes some limitations of cohesin detection by indirect immunofluorescent staining of chromosomes, which could reflect any mode of association, e.g., binding to chromatids (non-cohesive) or holding sister chromatids together (cohesive). Our results are not mutually exclusive with the findings that the cohesin loading factor Nipbl/Scc2 localizes to chromosome axes during meiotic recombination since we have investigated post-recombination, dictyate-stage arrested oocytes [9, 10]. Moreover, it is conceivable that Nipbl/Scc2 loads different types of cohesin complexes, which may contain Rad21L rather than Rec8, onto chromosomes. Thus, it remains an open question whether cohesion is built during meiotic recombination.

The advantage of the TEV cleavage assay of cohesin combined with an inducible transgenic rescue construct is that cohesion of sister chromatids is revealed in live cells. At the same time, it is challenging to empirically determine the sensitivity of the assay toward newly built cohesion. Certainly 50% turnover is robustly detected as bivalents remain intact following TEV protease expression in Rec8TEV/TEV oocytes [3]. Given that as little as 13% of cohesin is sufficient for cohesion in yeast [40], it is likely that relatively few cohesin molecules mediating cohesion would be sufficient for rescue of bivalent chromosomes. It is therefore noteworthy that Rec8-Myc expression is controlled by the endogenous promoter on the BAC, and we have investigated the mechanism of cohesion maintenance relevant to the wild-type.

The discovery that bivalent cohesion is established predominantly, if not exclusively, in fetal oocytes has important implications for aging oocytes with increasing chromosome segregation errors [17–21]. Rather than invoking deterioration of cohesion establishment mechanisms or diminishing soluble cohesin proteins, our results suggest that age-related chromosome missegregation is due to the irreplaceable loss of cohesin complexes holding chromosomes together (Figure S1B). How cohesion is maintained at a mechanistic level for a long time and whether new cohesion is actively prevented by anti-establishment factors such as Wapl remain key questions for the future. Our work in mouse female meiosis supports the hypothesis that the inability of oocytes to build cohesion during the dictyate arrest that lasts for months or decades contributes to maternal age-related chromosome missegregation and production of aneuploid fetuses.

For material and methods, see Supplemental Information. The usage of mice followed the international guiding principles for biomedical research involving animals (the Council for International Organizations of Medical Sciences) and were in agreement with the authorizing committee.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, four figures, one table, and two movies and can be found with this article online at http://dx.doi.org/10.1016/j.cub.2015.12.073.

AUTHOR CONTRIBUTIONS

Conceptualization, K.T.-K., S.B., and M.B.; Methodology, K.T.-K., S.B., M.B., and S.A.W.; Formal Analysis, S.B. and M.B.; Investigation, K.T.-K., S.B., M.B., and A.S.; Resources, J.G., P.E.C., M.S., and T.H.; Writing – Original Draft, K.T.-K.; Writing – Review & Editing, K.T.-K., S.B., and M.B.; Visualization, S.B.; Supervision, K.T.-K.; Project Administration, K.T.-K.; Funding Acquisition, K.T.-K.

ACKNOWLEDGMENTS

We thank Agnieszka T. Piszczeks and her team at IMBA for histological advice and expertise. We thank Kerstin Klien for taking care of our mice. We are grateful for the (Tg)Stop/Rec8-Myc mice provided by Nobuaki R. Kudo and Rosa26-LacZ mice provided by Elizabeth Robertson. We also thank Kim Nasmyth for fruitful discussions; the Gdf9-iCre experiments were initiated in his laboratory. This work was funded by the Austrian Academy of Sciences and by the European Research Council (ERC-StG-336460 ChromH eritage) to K.T.-K.
REFERENCES

1. Nasmyth, K., and Haering, C.H. (2009). Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558.
2. Watanabe, Y., and Nurse, P. (1999). Cohesin Rec8 is required for reductive chromosome segregation at meiosis. Nature 400, 461–464.
3. Tachibana-Konwalski, K., Godwin, J., van der Weyden, L., Champion, L., Kudo, N.R., Adams, D.J., and Nasmyth, K. (2010). Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev. 24, 2505–2516.
4. Lee, J., Iwai, T., Yokota, T., and Yamashita, M. (2003). Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J. Cell Sci. 116, 2781–2790.
5. Revenkova, E., Eijpe, M., Heyting, C., Gross, B., and Jessberger, R. (2001). Novel meiosis-specific isoform of mammalian SMC1. Mol. Cell. Biol. 21, 6984–6998.
6. Revenkova, E., Eijpe, M., Heyting, C., Hodges, C.A., Hunt, P.A., Liebe, B., Scherthan, H., and Jessberger, R. (2004). Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat. Cell Biol. 6, 555–562.
7. Ström, L., Karlsson, C., Lindroos, H.B., Wedahl, S., Katou, Y., Shirahige, K., and Sjögren, C. (2007). Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242–245.
8. Ual, E., Heidinger-Pauli, J.M., and Koshland, D. (2007). DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through EcolI (Cftf). Science 317, 245–248.
9. Kuleszewicz, K., Fu, X., and Kudo, N.R. (2013). Cohesin loading factor Nipbl localizes to chromosome axes during mammalian meiotic prophase. Cell Div. 8, 12.
10. Visnes, T., Giordano, F., Kuznetsova, A., Suja, J.A., Lander, A.D., Calof, A.L., and Ström, L. (2014). Localisation of the SMC loading complex Nipbl/Mau2 during mammalian meiotic prophase I. Chromosoma 123, 239–252.
11. Revenkova, E., Herrmann, K., Adelfalk, C., and Jessberger, R. (2010). Oocyte cohesion expression restricted to prediactyde stages provides full fertility and prevents aneuploidy. Curr. Biol. 20, 1529–1533.
12. Hodges, C.A., Revenkova, E., Jessberger, R., Hassold, T.J., and Hunt, P.A. (2005). SMC1beta-deficient female mice provide evidence that cohesion maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev. 24, 2505–2516.
13. Hassold, T., and Chiu, D. (1985). Maternal age-specific rates of numerical chromosome abnormalities with special reference to trisomy. Hum. Genet. 69, 117–11.
14. Hassold, T., and Hunt, P. (2001). To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291.
15. Ottolini, C.S., Newham, L.J., Capalbo, A., Natesan, S.A., Joshi, H.A., Cimadomo, D., Griffin, D.K., Sage, K., Summers, M.C., Thornhill, A.R., et al. (2015). Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 47, 727–735.
16. Koznetsova, A., Lister, L., Nordenskjöld, M., Herbert, M., and Höög, C. (2007). Bi-orientation of achiasmatic chromosomes in meiosis I oocytes contributes to aneuploidy in mice. Nat. Genet. 39, 966–968.
17. Nagaoa, S.I., Hassold, T.J., and Hunt, P.A. (2012). Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13, 493–504.
18. Tsutsumi, M., Fujiwara, R., Nishizawa, H., Ito, M., Kogo, H., Inagaki, H., Ohye, T., Kato, T., Fuji, T., and Kurahashi, H. (2014). Age-related decrease of meiotic cohesins in human oocytes. PLoS ONE 9, e96710.
19. Sakakibara, Y., Hashimoto, S., Nakaoka, Y., Kouznetsova, A., Höög, C., and Kitajima, T.S. (2015). Bivalent separation into univalents precedes age-related meiosis I errors in oocytes. Nat. Commun. 6, 7550, http://dx.doi.org/10.1038/ncomms8550.
20. Chiang, T., Duncan, F.E., Schindler, K., Schultz, R.M., and Lampson, M.A. (2010). Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr. Biol. 20, 1522–1528.
21. Lister, L.M., Kouznetsova, A., Hyslop, L.A., Kalleas, D., Pace, S.L., Barel, J.C., Nathan, A., Floros, V., Adelfalk, C., Watanabe, Y., et al. (2010). Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr. Biol. 20, 1511–1521.
22. Uihmann, F., Lottspeich, F., and Nasmyth, K. (1999). Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin sub-unit Scc1. Nature 400, 37–42.
23. Gerlich, D., Koch, B., Dupeux, F., Peters, J.M., and Ellenberg, J. (2006). Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication. Curr. Biol. 16, 1571–1578.
24. Ivanov, D., and Nasmyth, K. (2007). A physical assay for sister chromatid cohesion in vitro. Mol. Cell 27, 300–310.
25. Hayashi, S., Lewis, P., Pevny, L., and McMahon, A.P. (2002). Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech. Dev. 119 (Suppl 1), S97–S101.
26. Lari, Z.J., Xu, X., and Cooney, A.J. (2004). Differential oocyte-specific expression of Cre recombinase activity in GDF-9-Cre, Zp3cre, and Msx2Cre transgenic mice. Biol. Reprod. 71, 1469–1474.
27. Reddy, P., Liu, L., Adhikari, D., Jagarlamudi, K., Rajareddy, S., Shen, Y., Du, C., Tang, W., Hämäläinen, T., Peng, S.L., et al. (2008). Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319, 611–613.
28. Adhikari, D., Zheng, W., Shen, Y., Gorre, N., Hämäläinen, T., Cooney, A.J., Huhtaniemi, I., Lan, Z.J., and Liu, K. (2010). Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum. Mol. Genet. 19, 397–410.
29. Andreu-Vieyra, C.V., Chen, R., Agno, J.E., Glaser, S., Anastassiadis, K., Stewart, A.F., and Matzuk, M.M. (2010). ML2L2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol. 8, e1000453, http://dx.doi.org/10.1371/journal.pbl.1000453.
30. Sen, A., and Hamms, S.R. (2010). Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Mol. Endocrinol. 24, 1393–1403.
31. Li, X., Tripuranil, S.K., James, R., and Pangas, S.A. (2012). Minimal fertility defects in mice deficient in oocyte-expressed Smad4. Biol. Reprod. 86, 1–6.
32. Yu, C., Zhang, Y.L., Pan, W.W., Li, X.M., Wang, Z.W., Ge, Z.J., Zhou, J.L., Cang, Y., Tong, C., Sun, Q.Y., and Fan, H.Y. (2013). CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science 342, 1518–1521.
33. Jiang, Z.Z., Hu, M.W., Wang, Z.B., Huang, L., Lin, F., Qi, S.T., Ouyang, Y.C., Fan, H.Y., Schatten, H., Mak, T.W., and Sun, Q.Y. (2014). Survivin is essential for fertile egg production and female fertility in mice. Cell Death Dis. 5, e1154, http://dx.doi.org/10.1038/cddis.2014.126.
34. Nashun, B., Hill, P.W., Smallwood, S.A., Dharmalingam, G., Amouroux, R., Clark, S.J., Sharma, V., Nadjetche, E., Peicazar, P., Festenstein, R.J., et al. (2015). Continuous histone replacement by Hira is essential for normal transcriptional regulation and de novo DNA methylation during mouse oogenesis. Mol. Cell 60, 611–625, http://dx.doi.org/10.1016/j.molcel.2015.10.010.
35. Soriano, P. (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71.

36. Keeney, S., Giroux, C.N., and Kleckner, N. (1997). Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384.

37. Hirota, T., Ohta, H., Shigeta, M., Niwa, H., and Saitou, M. (2011). Drug-inducible gene recombination by the Dppa3-MER Cre MER transgene in the developmental cycle of the germ cell lineage in mice. Biol. Reprod. 85, 367–377.

38. Zhang, Y., Riesterer, C., Ayrall, A.M., Sablitzky, F., Littlewood, T.D., and Reth, M. (1998). Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24, 543–548.

39. Lee, J., Yokota, T., and Yamashita, M. (2002). Analyses of mRNA expression patterns of cohesin subunits Rad21 and Rec8 in mice: germ cell-specific expression of rec8 mRNA in both male and female mice. Zoolog. Sci. 19, 539–544.

40. Heidinger-Pauli, J.M., Mert, O., Davenport, C., Guacci, V., and Koshland, D. (2010). Systematic reduction of cohesin differentially affects chromosome segregation, condensation, and DNA repair. Curr. Biol. 20, 957–963.