Identification and Characterization of New Resistance-Conferring SGI1s (Salmonella Genomic Island 1) in Proteus mirabilis

Luyao Bie¹, Meng Fang¹, Zhiqiang Li², Mingyu Wang* and Hai Xu*

¹ State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China,
² Advanced Research Center for Optics, Shandong University, Qingdao, China

Salmonella genomic island 1 (SGI1) is a resistance-conferring chromosomal genomic island that contains an antibiotic resistance gene cluster. The international spread of SGI1-containing strains drew attention to the role of genomic islands in the dissemination of antibiotic resistance genes in Salmonella and other Gram-negative bacteria. In this study, five SGI1 variants conferring multidrug and heavy metal resistance were identified and characterized in Proteus mirabilis strains: SGI1-PmCAU, SGI1-PmABB, SGI1-PmJN16, SGI1-PmJN40, and SGI1-PmJN48. The genetic structures of SGI1-PmCAU and SGI1-PmABB were identical to previously reported SGI1s, while structural analysis showed that SGI1-PmJN16, SGI1-PmJN40, and SGI1-PmJN48 are new SGI1 variants. SGI1-PmJN16 is derived from SGI1-Z with the MDR region containing a new gene cassette array dfrA12-orfF-aadA2-qacE△1-sul1-chrA-orf1. SGI1-PmJN40 has an unprecedented structure that contains two right direct repeat sequences separated by a transcriptional regulator-rich DNA fragment, and is predicted to form two different extrachromosomal mobilizable DNA circles for dissemination. SGI1-PmJN48 lacks a common ORF S044, and its right junction region exhibits a unique genetic organization due to the reverse integration of a P. mirabilis chromosomal gene cluster and the insertion of part of a P. mirabilis plasmid, making it the largest known SGI1 to date (189.1 kb). Further mobility functional analysis suggested that these SGIs can be excised from the chromosome for transfer between bacteria, which promotes the horizontal transfer of antibiotic and heavy metal resistance genes. The identification and characterization of the new SGI1 variants in this work suggested the diversity of SGI1 structures and their significant roles in the evolution of bacteria.

Keywords: Proteus mirabilis, Salmonella genomic island 1, antibiotic resistance, heavy metal resistance, horizontal gene transfer, mobile genetic element

INTRODUCTION

Salmonella genomic island 1 (SGI1) is a genomic island containing an antibiotic resistance gene cluster initially identified in Salmonella enterica serovar Typhimurium phage type DT104 strain (Boyd et al., 2001). The multidrug resistance (MDR) region in SGI1 is a complex In4-type class 1 integron, which contains five antibiotic resistance genes conferring resistance to ampicillin...
In recent years, three SGI1-related elements, SGI2, *Proteus* genomic island (PGI1/PGI2) and *Acinetobacter* genomic island 1 (AGI1), were reported in *S. enterica*, *P. mirabilis* and *Acinetobacter baumannii*, respectively (Levings et al., 2008; Siebor et al., 2014; Hamidian et al., 2015; Bi et al., 2018). All these four genomic islands integrate into the 3′-end of chromosomal *trmE* gene and carry diverse antibiotic resistance genes in their MDR regions (Hall, 2010; Hamidian et al., 2015; Lei et al., 2018). Of particular interest, SGI1-V with extended-spectrum β-lactamase (ESBL) gene (*bla*_{TEM-1}) and PGI1-*Pm*PEL carrying carbapenemase gene (*bla*_{NDM-1}) in MDR region were detected in clinical *P. mirabilis* strains (Siebor and Neuwirth, 2011; Girlich et al., 2015). The emergence of these strains carrying SGI1/PGI1 with ESBL gene and/or carbapenemase gene is of great concern to public health, as β-lactams and carbapenems remain the most widely used antibiotics for the treatment of bacterial infection.

It has been reported that the transcriptional activator complex AcaCD, whose coding genes are carried by IncA/C type plasmids, triggers the excision and conjugative transfer of SGI1/PGI1 (Kiss et al., 2015). SGI1/PGI1 could further be mobilized and transferred into a broad range of Enterobacteriaceae with the help of conjugative IncA/C plasmids (Siebor et al., 2016), suggesting that SGI1s/PGI1s could act as mobilizable elements for the dissemination of resistance genes. The transfer of these MDR genomic islands (GIs) increased the level of antimicrobial resistance among Enterobacteriaceae, and the GI-facilitated horizontal gene transfer contributed to the diversification and adaptation of microorganisms, therefore having an impact on the genome plasticity and evolution of bacteria (Juhas et al., 2009).

Proteus mirabilis has been recognized to be the causative agent of a variety of opportunistic nosocomial infections, and it is especially associated with urinary tract infections. It has become a potential public health concern in recent years (Cohn et al., 2003). Since the detection of a SGI1 variant in *P. mirabilis* in 2006, the number of reported SGI1 variants in *P. mirabilis* isolates from clinical, animal, or food in China and France has been increasing (such as SGI1-O, SGI1U-Z, SGI1-B2, SGI1-*Pm*BRI, SGI1-*Pm*CAU, and SGI1-*Pm*ABB) (Boyd et al., 2008; Bi et al., 2011; Siebor and Neuwirth, 2013; Lei et al., 2014, 2015; Girlich et al., 2015; Qin et al., 2015). These findings lead to a strong suggestion that *P. mirabilis* may serve as a host for mobilizable genetic elements and facilitates the dissemination of antimicrobial resistance.

In the current study, new SGI1 variants were characterized in multidrug resistant *P. mirabilis* strains and their genetic structures were mapped. These findings improve our understanding of the diversity of SGI1 structures and the prevalence of antibiotic resistant genomic island in *P. mirabilis*.

MATERIALS AND METHODS

Sampling and Bacterial Isolation

During the time period from June to September 2013, fifty-seven antibiotic-resistant *P. mirabilis* strains were isolated from a commercial broiler slaughter plant in Shandong Province, China. Sterile, moistened swabs were used to wipe 2 cm² areas from the surfaces and insides of 107 eviscerated broiler chicken carcasses by the method of Wu et al. (2015). Swabs were agitated in 10 mL of sterile saline (0.9% NaCl), and the suspensions were serially diluted. A 100 μL aliquot of each dilution was spread onto eosin methylene blue (EMB) plates (AOBOX, Beijing, China) that were supplemented with one of the following six antimicrobial agents. Antibiotics used for screening these strains included amoxicillin–clavulanic acid (32/16 mg/L), ciprofloxacin (4 mg/L), amikacin (32 mg/L), doxycycline (16 mg/L), sulbactam–cefoperazone (64/64 mg/L), and sulfamethoxazole–trimethoprim (4/76 mg/L). The isolated strains were resistant to at least one of the antibiotics used. Genomic DNA was extracted from the bacteria using bacteria genome extraction kit (GeneRay, Shanghai, China).

Plasmid

The IncA/C type pR55 plasmid capable of mediating conjugative transfer of SGI1s is a kind gift from Prof. Hongning Wang from Sichuan University (Douard et al., 2010; Doublet et al., 2012). The plasmid is harbored by an *Escherichia coli* C600 strain.

Antimicrobial Susceptibility Assay

The antimicrobial sensitivity phenotypes of *P. mirabilis* strains were determined by the disk diffusion method using Müller–Hinton agar plates following CLSI guidelines M100-S26 (CLSI, 2016). The following antimicrobial agents were used: ceftazidime (CAZ, 30 mg/L), ampicillin (AMP, 10 mg/L), cefotaxime (CTX, 30 mg/L), nalidixic acid (NAL, 30 mg/L), streptomycin (STR, 10 mg/L), kanamycin (KAN, 30 mg/L), tetracycline (TET, 30 mg/L), trimethoprim (TMP, 5 mg/L), chloramphenicol (CHL, 30 mg/L), sulfisoxazole (SFX, 250 mg/L), and sulfoxazole (SFX, 250 mg/L). The isolated strains were resistant to at least one of the antibiotics used. Genomic DNA was extracted from the bacteria using bacteria genome extraction kit (GeneRay, Shanghai, China).

Detection and Sequencing of SGI1s

Salmonella genomic island 1 and its chromosomal location were detected using primers targeting the left junction (primer pairs PmJ1/LJ-R1), right junction (primer pairs 104-RJ/PmRJ1), and ORF S026 (primer pairs S026-F/S026-R) in the chromosome. The structures of SGI1s were analyzed by PCR-mapping and
sequencing DNA fragments using the corresponding primers described in Supplementary Table S1.

The special right junction regions of SGI1-PmJN40 and SGI1-PmJN48 were further obtained by genome sequencing of SGI1-containing *P. mirabilis* strains using Illumina MiSeq (Illumina Inc., San Diego, CA, United States) sequencing platform with a 400-bp paired-end library, as well as SOAPdevono v2.04 and GapCloser v1.12 software to construct de novo assemblies (Luo et al., 2012). Gaps between scaffolds were closed by PCR followed by sequencing.

Bioinformatics

The complete nucleotide sequences of SGI1s were analyzed using the BLAST algorithm. The GenBank accession numbers for SGI1-PmCAU, SGI1-PmABB, SGI1-PmJN40, SGI1-PmJN16, and SGI1-PmJN48 are JX089581.1 (Siebor and Neuwirth, 2013), JX121638.1 (Siebor and Neuwirth, 2013), MF576128, MF576129, and MF576130, respectively.

Chromate Resistance Assays

Chromate resistance was measured by the comparison of growth rates in LB media. Overnight cultures were diluted 2000-fold into 50-mL flasks containing 25 mL of fresh medium supplemented with different chromate (K₂CrO₄) concentrations. The bacterial suspensions were incubated at 37°C with shaking at 170 rpm for 12 h, and the value of OD₆₀₀ was measured (Alvarez et al., 1999; Branco et al., 2008).

Stability Test for SGI1

Ten microliter cultures of all the five SGI1-positive *P. mirabilis* strains were serially transferred into 3 mL LB medium (300 × dilution per passage), grown at 37°C under vigorous shaking without antibiotic selection. A total of 24 passages over 192 h were performed for stability test. Cultures from the final passage were plated on LB agar plates without antibiotic selection, and one hundred clones were picked from each strain for the detection of presence/absence of SGI1 by PCR reactions.

Conjugative Transfer Test for SGI1

The pR55 helper plasmid harbored by *E. coli* C600 was transferred to SGI1-containing *P. mirabilis* via conjugation prior to testing the transferability of SGI1s identified in this work. Briefly, pR55-containing *E. coli* C600 was grown to late-log phase, and mixed together with the recipient SGI1-carrying *P. mirabilis* strains at a ratio of 4:1. The mixture was subsequently incubated...
at 37°C overnight without shaking, diluted 10-fold, and plated on selective MacConkey agar plates containing chloramphenicol (30 mg/L) and trimethoprim (30 mg/L).

To test whether SGI1s found in this work can be mobilized to another bacterium via conjugative transfer, we mixed pR55+SGI1-containing P. mirabilis donor strains with the sodium azide-resistant E. coli recipient strain J53 following procedures described above. Sodium azide (200 mg/L) and trimethoprim (30 mg/L)/streptomycin (30 mg/L) were used to select transconjugants. The SGI1 frequency of transfer was determined by dividing the number of E. coli SGI1 transconjugants by the number of P. mirabilis donor cells, as previously described (Douard et al., 2010).

The transconjugants were examined for the presence of SGI1-specific genes with PCR reactions, in order to confirm the conjugative transfer of SGI1s from respective P. mirabilis donor strains to the recipient E. coli J53 strain. The primers used for screening SGI1-positive transconjugants are listed in Supplementary Table S1.

RESULTS

Detection of SGI1s in Multidrug Resistant P. mirabilis

The general structure and mechanism of site-specific integration for SGI1 in P. mirabilis can be depicted in a model shown in Supplementary Figure S1. The left junction region of SGI1s as well as ORF S026 were detected in 5 out of 57 multidrug resistant P. mirabilis strains (JN16, JN29, JN40, JN47, and JN48) isolated from a commercial broiler slaughterhouse. Interestingly, P. mirabilis JN40 and JN48 were negative for the right junction with primers 104-RJ (S044 specific) and PmRJ1 (hipB specific) (Supplementary Figure S2). The right junction regions of these two SGI1s were then further analyzed by PCR with primer pairs 104-R/hipA-R1 (hipA specific) and 104-RJ/MP-R1 (specific for the membrane protein PMI3124-encoding gene) that respectively, target the two genes downstream of hipB on the chromosome of P. mirabilis HI4320 (Siebor and Neuwirth, 2013). However, the right junction regions were still undetected in P. mirabilis JN40 and JN48 strains using the above primers (Supplementary Figure S2). These results suggested a different right junction structure of SGI1s in P. mirabilis JN40 and JN48 in comparison with the conventional right junction region.

Sequencing of SGI1 Variants

The complete sequences of SGI1s in P. mirabilis JN16, JN29, and JN47 were obtained by PCR mapping and sequencing of the backbones and MDR regions using primers listed in Supplementary Table S1. For SGI1s containing unconventional right junction structures, whole genome sequencing of their host strains (P. mirabilis JN40 and JN48) was performed to obtain their full length sequences. Complete nucleotide sequences of SGI1s were analyzed using the BLAST algorithm. The genetic organization of SGI1 in P. mirabilis JN29 and JN47 was identical to the previously reported SGI1-PmCAU and SGI1-PmABB, respectively (Siebor and Neuwirth, 2013), while SGI1s identified in P. mirabilis JN16, JN40, and JN48 were not previously observed (Table 1). According to the nomenclature system of SGI1 (Mulvey et al., 2006), these three new SGI1s were subsequently denominated SGI1-PmJN16, SGI1-PmJN40, and SGI1-PmJN48.

Characterization of the SGI1 Backbones

The structures of the SGI1 backbones are displayed in Figure 1. Sequence analysis of SGI1-PmCAU, SGI1-PmABB, SGI1-PmJN16, and SGI1-PmJN40 showed that their left direct repeat (DR-L) was nearly identical to the right direct repeat (DR-R). As shown in Figure 1A, SGI1-PmCAU and SGI1-PmJN16 contain the conventional backbone regions (S001–S027 and S044) as previously reported (Lei et al., 2015). In SGI1-PmABB, the region spanning from ORF S005 to ORF S009 was deleted (2780 bp), and replaced by an insertion of IS1359 of the IS3 family initially described in Vibrio cholera (GenBank accession number EU664602) (Doublet et al., 2009). SGI1-PmCAU, SGI1-PmABB and SGI1-PmJN16 integrated between the chromosomal genes trmE and hipB/hipA, but not for SGI1-PmJN40 and SGI1-PmJN48.

SGI1-PmJN40 found in P. mirabilis JN40 displays a unique and unprecedented backbone structure that contain one DR-L and two identical DR-Rs (Figure 1B). Present between the

Strain	Antimicrobial resistance profile	Containing SGI1	SGI1 size (kb)	Integron gene cassette(s)	Other resistance gene(s)
JN16	SFX, AMP, CTX, NAL, STR, KAN,	SGI1-PmJN16	34.8	dfrA12-orfF-aad2 chrA	sul1
	TET, TMP, CHL				
JN29	SFX, AMP, CTX, NAL, STR, KAN,	SGI1-PmCAU	33.2	dfrA1-orfC	sul1
	TET, TMP, CHL				
JN40	SFX, CAZ, AMP, CTX, NAL, STR,	SGI1-PmJN40	56.7	aadA2	sul1
	KAN, TET, TMP, CHL				
JN47	SFX, AMP, CTX, NAL, STR, KAN,	SGI1-PmABB	32.0	aacA5-aadA7	sul1
	TET, TMP, CHL				
JN48	SFX, AMP, CTX, NAL, STR, KAN,	SGI1-PmJN48	189.1	bliaPSE-1-dfrA17-aadA5	mphA-mrx-mpR, ar3-car3-
	TET, TMP, CHL			chrA	bl2-ctm-1, sul1

CAZ, cefazidime; AMP, ampicillin; CTX, cefotaxime; NAL, nalidixic acid; STR, streptomycin; KAN, kanamycin; TET, tetracycline; TMP, trimethoprim; CHL, chloramphenicol; SFX, sulfisoxazole; ERY, erythromycin; RIF, rifampin. The resistance phenotypes corresponding to drug resistance genes on SGI1 were indicated in bold font.
two DR-Rs is a 23.7 kb fragment (from \(orf1\) to \(orf17\)) that is a combination of \(V.\) paraaemolyticus (GenBank accession number CP026041.1), Shewanella bicestria (GenBank accession number CP022358.1), and Photobacterium damselae (GenBank accession number CP021151.1) genomic DNA (Figure 1B). This DNA fragment contains genes encoding transcriptional regulators (\(orf4\) and \(orf12\)), DNA binding proteins (\(orf2\) and \(orf7\)) and toxin-antitoxin (\(orf5\) and \(orf8\)). The transcriptional regulators encoded by \(orf4\) and \(orf12\) belong to AlpA family phage regulatory protein and XRE family transcriptional regulator, respectively. It has been reported that AlpA-type regulators are positive regulatory factors of integrase in the P4-like prophage (Kirby et al., 1994). In addition, The XRE-type regulators were shown to function as a repressor of conjugative transfer and participate in regulation of excision and transfer of genomic island (López-Fuentes et al., 2015). The two DNA binding proteins encoded by SGI1-\(Pm\)N40 may function in binding to promoter regions for transcriptional regulation, although they cannot be immediately classified as transcriptional regulators. Furthermore, TA systems contribute to the maintenance of genetic elements by reducing growth, inhibiting growth or killing a subpopulation of cells (Hernández-Arriaga et al., 2014; Marsan et al., 2017). Therefore, it can be inferred that these functional genes may play a potential regulatory role. The presence of two identical DR-Rs in SGI1-\(Pm\)N40 suggests its potential to form two different mobilizable DNA species in the form of free circles, respectively, denominated SGI1-\(Pm\)N40-S (from \(int\) to \(S044\)) and SGI1-\(Pm\)N40-L (from \(int\) to \(orf17\)). Considering the potential regulatory role of the genes between two DR-Rs (from \(orf1\) to \(orf17\)), the larger circle (SGI1-\(Pm\)N40-L) may have a regulatory function.

SGI1-\(Pm\)N48 is a new SGI variant with a special genetic organization in its right junction region. ORF S044 was absent in SGI1-\(Pm\)N48 and replaced by the insertion of a large gene fragment containing \(P.\) mirabilis chromosomal DNA (PMI3010-PMI3122), followed by a gene cluster identical to part of a \(P.\) mirabilis plasmid pPM14C18 (GenBank accession number KU605240) (Figure 1B). Considering the existence of an imperfect direct repeat (ATTGGTAAAGTAA) in the downstream of the insertion (Figure 1B), we propose that the \(int\) gene is expected to confer chromate resistance by encoding a chromate transport protein (Alvarez et al., 1999). In order to confirm this resistance, we tested the chromate resistance of SGI1-\(Pm\)N16-positive \(P.\) mirabilis N16 using the \(chrA\)-negative \(P.\) mirabilis N49 as the negative control (Supplementary Figure S3). The N16 strain showed significantly higher chromate tolerance than that in the N49 strain. This result indicated that \(chrA\) can indeed encode for chromate resistance.

SGI1\(Pm\)N48 carries two MDR clusters in its conventional MDR region, including \(bla_{\text{SE}-1}\)-\(qacEA1\)-\(sul1\) and \(mphA\)-\(mrx\)-\(mphR\) (Figure 2). The \(bla_{\text{SE}-1}\)-\(qacEA1\)-\(sul1\) gene cassette is part of SGI1-B, while the macrolide inactivation gene cluster \(mphA\)-\(mrx\)-\(mphR\) conferring resistance to erythromycin has been identified in SGI1-B2 (Hall, 2010; Lei et al., 2015). Therefore, the MDR region of SGI1-\(Pm\)N48 might derive from the recombination and rearrangement of SGI1-B and SGI1-B2. In addition to these two MDR clusters, other resistance gene clusters were found in SGI1-\(Pm\)N48 that were originally part of the plasmid pPM14C18 (GenBank accession number KU605240): \(arr3\)-\(cat3\)-\(bla\text{OXA}_{\text{1}}\)-\(aac\), \(bla\text{CTX}-\text{M}\) and part of a class 1 integron (\(int\text{II}-\text{draA17-aadA5-qacEA1-sul1-\(chrA\)}\) (Figure 1B). These genes could confer resistance to rifampin,

Characterization of the MDR Regions

The complex genetic structures of MDR regions in five SGI1s were determined. All the MDR regions include a class 1 integron belonging to the \(In4\) family as previously reported (Boyd et al., 2001; Ahmed et al., 2006). InSGI1-\(Pm\)CAU, InSGI1-\(Pm\)ABB and InSGI1-\(Pm\)N40 contain the \(dfr\text{A1-\(orfC\), \(aac\text{CA5-aadA7\), and \(aadA2\) gene cassettes in their variable regions, respectively (Figure 2). The resistance phenotypes mediated by these drug resistance genes of the SGI1-containing bacteria are shown in Table 1.

InSGI1-\(Pm\)N16 has a unique MDR structure that has not been observed previously in \(P.\) mirabilis. It contains a \(dra\text{A12-orfF-aadA2-qacE_1-sul1-\(chrA-orf1\) gene cassette. The gene cassette array \(dra\text{A12-orfF-aadA2-qacE_1-sul1\) was similar with the MDR region of SGI1-Z identified in \(P.\) mirabilis (Qin et al., 2015). However, the \(sul1\) gene in InSGI1-\(Pm\)N16 was followed by the \(chrA\)-\(orf1\) gene cassette developing a new structure of SGI1 MDR. It is noteworthy that the \(chrA\) gene is expected to confer chromate resistance by encoding a chromate transport protein. In order to confirm this resistance, we tested the chromate resistance of SGI1-\(Pm\)N16-positive \(P.\) mirabilis N16 using the \(chrA\)-negative \(P.\) mirabilis N49 as the negative control (Supplementary Figure S3). The N16 strain showed significantly higher chromate tolerance than that in the N49 strain. This result indicated that \(chrA\) can indeed encode for chromate resistance.

TABLE 2 | Conjugal transfer frequency of \(P.\) mirabilis SGI1s.

\(P.\) mirabilis donor strain	SGI1 variant	Conjugative plasmid	SGI1 transfer frequency
JN29	SGI1-\(Pm\)CAU	IncA\(c\) pR55	2.5 \(\times\) 10\(^{-6}\)
JN40	SGI1-\(Pm\)N40-L	IncA\(c\) pR55	4.4 \(\times\) 10\(^{-6}\)
JN47	SGI1-\(Pm\)ABB	IncA\(c\) pR55	1.3 \(\times\) 10\(^{-5}\)
JN48	SGI1-\(Pm\)N48	IncA\(c\) pR55	2.3 \(\times\) 10\(^{-6}\)
FIGURE 3 | The four-step pathway for the generation of SGI1-PmJN48. SGI1-PmJN48 backbone was shown with different colored arrows: conserved SGI1 backbone (gray), chromosomal DNA of *P. mirabilis* (black), tnpA-tnp fragment of plasmid pPm14C18 (blue). The direct repeats of SGI1 (DR-L/DR-R) and the position of the MDR regions are indicated by thick vertical bars and thin arrows, respectively. Truncated genes are shown by swallowtail arrows.

chloramphenicol, β-lactams, aminoglycosides, sulfonamides, quaternary ammonium compound, and chromate, respectively (Alvarez et al., 1999; Partridge et al., 2009). The chromate resistance phenotype of *P. mirabilis* JN48 that harbors SGI1PmJN48 was described in Supplementary Figure S3, confirming the functionality of the *chrA* gene.

Mobility and Stability of SGI1

Salmonella genomic island 1s can excise from the chromosome, forming a free circle that could be transferred with the help of IncA/C plasmid (Doublet et al., 2005; Douard et al., 2010). The free circular form of SGI1 has been previously identified in *S. enterica* and *P. mirabilis*. The formation of free circle implied the correct excision of SGI1 and the capacity of SGI1 to be transferred by the helper plasmid (Kiss et al., 2015; Lei et al., 2015). In this study, the circular extrachromosomal forms (attP) of SGI1-PmCAU, SGI1-PmJN40-S, SGI1-PmABB and SGI1-PmJN16 were detected by PCR using the circ1/circ2 primers (Supplementary Figures S1, S2), suggesting the mobility of SGI1s.

In order to further confirm the mobility of SGI1s, we performed conjugative transfer tests for SGI1-containing *P. mirabilis* strains that contain the IncA/C-type pR55 helper plasmid. Primers were designed to detect SGI1s in transconjugants (targeted genes: *xis* and S044 for all SGI1s; orf4, orf16, and orf17 for SGI1-PmJN40; PMI3015, PMI3046, and *chrA* for SGI1-PmJN48). We were able to detect the conjugative transfer of SGI1-PmCAU, SGI1-PmJN40-L (large circular form of SGI1-PmJN40), SGI1-PmABB and SGI1-PmJN48 from the donor strains to recipient *E. coli* J53 strain at frequencies between 10^{-5} and 10^{-6}, suggesting that these SGI1s are functional and can be transferred between bacterial cells with the help of IncA/C plasmids (Table 2 and Supplementary Figure S4). Unfortunately, we were unable to transfer pR55 to *P. mirabilis* JN16 that harbors SGI1-PmJN16, therefore weren’t able to further characterize the conjugal transferability of SGI1-PmJN16. Nevertheless, the capability of SGI1-PmJN16 to form circular forms suggests its potential to be transferred to another cell.

The stability of SGI1 in the chromosome of *S. enterica* and *P. mirabilis* has been previously described (Kiss et al., 2012; Lei et al., 2015). In order to test the stability of SGI1s found in this study, all five SGI1-containing strains were propagated, lasting for 24 passages and 192 h in the absence of antimicrobial pressure. No SGI1-negative clone was detected from the 500 clones picked (100 clones were picked from each strain) after the final passage, suggesting that SGI1s found in this work are stable in *P. mirabilis*.

The mobility and stability tests performed on the five SGI1s found in this work suggest that they are stable, that they can excise from the chromosome, and that they can transfer between cells. During the transfer of SGI1s, they can serve as vectors of resistance genes and play a significant role in the dissemination of antibiotic and heavy metal resistance.

DISCUSSION

Five SGI1s were identified and characterized in multidrug resistant *P. mirabilis* strains, and different antibiotic and heavy metal resistant gene clusters were identified in their MDR regions, suggesting their roles in the conferment and dissemination of resistance. Among the five SGI1s, two SGI1s
Therefore, we propose that SGI1-PmJN16 is a new type SGI1 that can potentially form two circular species for dissemination; SGI1-PmJN48 contains a very long DNA insert that can potentially form a MDR disseminator with the size of over 150 kb. These new structures are drastically different from previously identified SGI1s, and encourage us to expand our search for more unconventional mobile genetic elements.

AUTHOR CONTRIBUTIONS

LB and MF performed the experiments. LB, ZL, MW, and HX analyzed the data. LB, MW, and HX wrote the manuscript. ZL critically revised the manuscript. MW and HX conceived of the study. LB, MF, ZL, MW, and HX approved the final manuscript.

FUNDING

This work was supported by the National Key Research and Development Program of China (2017YFD0400301), the National Natural Science Foundation of China (18117042 and 31770043), Shandong Province Natural Science Foundation (ZR2015EM052), Shandong Province Key Research and Development Program (2016GSF121040 and 2018GSF118008), the Fundamental Research Funds of Shandong University (2017JC028, 2018JC013, and 2018JC027), the State Key Laboratory of Microbial Technology Open Project Funds, Shandong University (M2017-07 and M2018-07), and Jinan Cultural Industry Development Fund.

ACKNOWLEDGMENTS

The authors wish to thank Novogene Technology Co., Ltd., Beijing, China, for high throughput sequencing. The authors also wish to thank Professor Hongning Wang from Sichuan University for generously donating pR55-containing E. coli C600 strain.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2018.03172/full#supplementary-material

REFERENCES

Ahmed, A. M., Hussein, A. I. A., and Shimamoto, T. (2006). *Proteus mirabilis* clinical isolate harbouring a new variant of *Salmonella* genomic island 1 containing the multiple antibiotic resistance region. *J. Antimicrob. Chemother.* 59, 184–190. doi: 10.1093/jac/dkl471

Alvarez, A. H., Moreno-Sánchez, R., and Cervantes, C. (1999). Chromate efflux by means of the ChrA chromate resistance protein from *Pseudomonas aeruginosa*. *J. Bacteriol.* 181, 7398–7400.

Bi, S., Yan, H., Chen, M., Zhang, Z., Shi, L., and Wang, H. (2011). New variant *Salmonella* genomic island 1-U in *Proteus mirabilis* clinical and food isolates from South China. *J. Antimicrob. Chemother.* 66, 1178–1179. doi: 10.1093/jac/dkr030
Boyd, D. A., Cloeckaert, A., Chaslus-Dancla, E., and Mulvey, M. R. (2002). Characterization of variant Salmonella genomic island 1 multidrug resistance regions from serovars typhimurium DT104 and Agona. Antimicrob. Agents Chemother. 46, 1714–1722. doi: 10.1128/AAC.46.6.1714-1722.2002

Boyd, D. A., Peters, G. A., Cloeckaert, A., Bounmedine, K. S., Chaslus-Dancla, E., Imberechts, H., et al. (2001). Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT102 and serovar Agona. J. Bacteriol. 183, 5725–5732. doi: 10.1128/JB.183.19.5725-5732.2001

Boyd, D. A., Shi, X., Hu, Q., Ng, L. K., Doublet, B., Cloeckaert, A., et al. (2008). Salmonella Genomic Island 1 (SGI1), variant SGI1-I, and new variant SGI1-O in Proteus mirabilis clinical and food isolates from China. Antimicrob. Agents Chemother. 52, 340–344. doi: 10.1128/AAC.00902-07

Branco, R., Chung, A. P., Johnston, T., Gurel, V., Morais, P., and Zhikovich, A. (2008). The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium (VI) and superoxide. J. Bacteriol. 190, 6969–7003. doi: 10.1128/JB.00289-08

Chu, C., Doublet, B., Lee, Y. L., Cloeckaert, A., Chiu, C. S., Chen, S. W., et al. (2012). Salmonella genomic island 1-J variants associated with change in the antibiotic resistance gene cluster in multidrug-resistant Salmonella enterica serovar Vchrow isolated from humans, Taiwan, 2004-2006. Clin. Microbiol. Infect. 18, 47–53. doi: 10.1111/j.1469-0691.2011.03464.x

CLSI (2016). Performance Standards for Antimicrobial Susceptibility Testing,” in CLSI Supplement M100, 26th Edn. Wayne, PA: Clinical and Laboratory Standards Institute.

Cohn, L. A., Gary, A. T., Fales, W. H., and Madsen, R. W. (2003). Trends in Performance Standards for Antimicrobial Susceptibility Testing, “. Antimicrob. Agents Chemother. 15, 338–343. doi: 10.1177/104063870301500406

Dancla, E., Imberechts, H., et al. (2001). Complete nucleotide sequence of Salmonella enterica serovar Kentucky sequence type 198 from Southeast Asia harbor Salmonella genomic Island 1-J variants with a novel insertion sequence. Antimicrob. Agents Chemother. 56, 5096–5102. doi: 10.1128/AAC.00732-12

Lei, C., Chen, Y., Gong, L., Zeng, J., Wang, Y., Zhang, A., et al. (2018). PGII, a novel SGI1-relative multidrug-resistant genomic island characterized in Proteus mirabilis. Antimicrob. Agents Chemother. 62:e0019-18. doi: 10.1128/ AAC.00019-18

Lei, C., Zhang, A., Liu, B., Wang, H., Guan, Z., Xu, C., et al. (2014). Molecular characteristics of Salmonella genomic Island 1 in Proteus mirabilis isolates from poultry farms in China. Antimicrob. Agents Chemother. 58, 7570–7572. doi: 10.1128/AAC.03992-14

Lei, C., Zhang, A., Liu, B., Wang, H., Yang, L., Guan, Z., et al. (2015). Two novel Salmonella genomic island 1 variants in Proteus mirabilis isolates from swine farms in China. Antimicrob. Agents Chemother. 59, 4336–4338. doi: 10.1128/AAC.0120-15

Levings, R. S., Djordjevic, S. P., and Hall, R. M. (2008). SGI2, a relative of Salmonella genomic island SGI1 with an independent origin. Antimicrob. Agents Chemother. 52, 2529–2537. doi: 10.1128/AAC.01189-08

Levings, R. S., Lightfoot, D., Partridge, S. R., Hall, R. M., and Djordjevic, S. P. (2005). The genomic island SGI1 containing the multiple antibiotic resistance region of Salmonella enterica serovar Typhimurium DT104 or variants of it, is widely distributed in other S. enterica serovars. J. Bacteriol. 187, 4401–4409. doi: 10.1128/JB.187.13.4401-4409

Levings, R. S., Partridge, S. R., Djordjevic, S. P., and Hall, R. M. (2007). SGI1-K, a variant of the SGI1 genomic island carrying a mercury resistance region, in Salmonella enterica serovar Kentucky. Antimicrob. Agents Chemother. 51, 317–323. doi: 10.1128/AAC.01229-06

Lepez-Fuentes, E., Torres-Tejerizo, G., Cervantes, L., and Brom, S. (2015). Genes encoding conserved hypothetical proteins localized in the conjugative transfer region of plasmid pRE42a from Rhizobium etli CNF42 participate in modulating transfer and affect conjugation from different donors. Front. Microbiol. 5:793. doi: 10.3389/fmicb.2014.00793

Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., et al. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:8. doi: 10.1186/2047-217X-1-18

Marsan, D., Place, A., Fucich, D., and Chen, F. (2017). Toxin-antitoxin systems in estuarine Synechococcus strain CB0101 and their transcriptomic responses to environmental stressors. Front. Microbiol. 8:1213. doi: 10.3389/fmicb.2017.01213

Mulvey, M. R., Boyd, D. A., Olson, A. B., Doublet, B., and Cloeckaert, A. (2006). The genetics of Salmonella genomic island 1. Microbes Infect. 8, 1915–1922. doi: 10.1056/jmi.2005.12.028

Partridge, S. R., Tsafnat, G., Cotiera, E., and Fredel, I. R. (2009). Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol. Rev. 33, 757–784. doi: 10.1111/j.1574-6967.2009.00175.x

Qin, S., Qi, H., Zhang, Q., Zhao, D., Liu, Z., Tian, H., et al. (2015). Emergence of extensively drug-resistant Proteus mirabilis harboring a conjugaive
NDM-1 plasmid and a novel *Salmonella* genomic island 1 variant, SGI1-Z. *Antimicrob. Agents Chemother.* 59, 6601–6604. doi: 10.1128/AAC.0292-15

Schultz, E., Barraud, O., Madec, J.-Y., Haenni, M., Cloeckaert, A., Ploy, M.-C., et al. (2017). Multidrug resistance *Salmonella* genomic island 1 in a *Morganella morgani* subsp. *morganii* human clinical isolate from France. *mSphere* 2:e00118-17. doi: 10.1128/mSphere.00118-17

Siebor, E., de Curraize, C., Amoureux, L., and Neuwirth, C. (2016). Mobilization of the *Salmonella* genomic island SGI1 and the proteus genomic island PGI1 by the A/C2 plasmid carrying blaTEM-24 harboured by various clinical species of *Enterobacteriaceae*. *J. Antimicrob. Chemother.* 71, 2167–2170. doi: 10.1093/jac/dkw151

Siebor, E., and Neuwirth, C. (2011). The new variant of *Salmonella* genomic island 1 (SGI1-V) from a *Proteus mirabilis* French clinical isolate harbours blaVEB-6 and qnrA1 in the multiple antibiotic resistance region. *J. Antimicrob. Chemother.* 66, 2513–2520. doi: 10.1093/jac/dkr335

Siebor, E., and Neuwirth, C. (2013). Emergence of *Salmonella* genomic island 1 (SGI1) among *Proteus mirabilis* clinical isolates in Dijon, France. *J. Antimicrob. Chemother.* 68, 1750–1756. doi: 10.1093/jac/dkt100

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Bie, Fang, Li, Wang and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.