Abstract. The set consisting of all rotations of the Euclidean plane is equipped with a quandle structure. We show that a knot is colorable by this quandle if and only if its Alexander polynomial has a root on the unit circle in \mathbb{C}. Further we enumerate all non-trivial colorings of a torus knot diagram by the quandle using PL trochoids. As an application of these results, we have the complete factorization of the Alexander polynomial of the torus knot.

1. Introduction

A quandle, introduced by Joyce [4] in 1982\(^1\), is an algebraic system which is characterized by certain three axioms. These three axioms are closely related to the three local moves of knot diagrams, known as the Reidemeister moves, respectively. Therefore a quandle is considered as a minimal algebra for knots [6]. Indeed, it is known by Joyce [4] and Matveev [5] independently that quandles derived from knots are isomorphic if and only if the knots are equivalent.

On the other hand, a special quandle called a kei (\(\pm\)) was studied by Takasaki [7] in 1943. The notion of a kei abstracts the behavior of symmetric transformations. Takasaki said in his paper that, to investigate geometric symmetry, using a kei is more suitable than using a group. A quandle also describes primitive symmetry well. For example, each subset of a group closed under conjugations is equipped with a quandle structure, while it is no longer not equipped with a group structure in general. This quandle still describes symmetry that the subset does as a part of the group.

How those two aspects of a quandle are related to each other? In this paper, we focus on the quandle RotE^2 consisting of all rotations of the Euclidean plane, and investigate colorability of knots by RotE^2. Of course, RotE^2 describes rotational symmetry of the Euclidean plane. Colorability of knots is related to the first aspect. We show in Section 3 that a knot is RotE^2-colorable if and only if its Alexander polynomial has a root on the unit circle in \mathbb{C} (Theorem 3.4). Furthermore, in Section 4, we enumerate all RotE^2-colorings of a torus knot diagram using PL trochoids (Theorem 4.1). As an application of these results, we have the complete factorization of the Alexander polynomial of the torus knot (Corollary 4.2).

2010 Mathematics Subject Classification. Primary 57M25; Secondary 51M04.

Key words and phrases. quandle, coloring, Alexander polynomial, torus knot, PL trochoid, Euclidean geometry.

\(^1\)The same notion was also introduced by Matveev [5] in 1982, under the name of a distributive groupoid.

\(^2\)It is a Chinese character which is invariant under reflection about the centerline and invariant under swapping top and bottom.
2. Preliminaries

In this section, we review the definitions of a quandle and colorability of a knot by a quandle briefly. We refer the reader to [2, 4, 6] for more details. We further define the quandle consisting of all rotations of the Euclidean plane in which we are mainly interested in this paper.

A quandle is a non-empty set X equipped with a binary operation $\ast : X \times X \to X$ satisfying the following three axioms:

(Q1) For each $x \in X$, $x \ast x = x$.
(Q2) For each $x \in X$, a map $\ast x : X \to X$ ($w \mapsto w \ast x$) is bijective.
(Q3) For each $x, y, z \in X$, $(x \ast y) \ast z = (x \ast z) \ast (y \ast z)$.

A quandle is said to be a kei (\ast) if each bijection $\ast x$ is involutive. A typical example of a quandle is a subset X of a group, which is closed under conjugations, with $x \ast y = y^{-1}xy$ for each $x, y \in X$. We call it a conjugation quandle.

Let $\text{Rot} \mathbb{E}^2$ be the set consisting of all rotations of the Euclidean plane \mathbb{E}^2. Since it is a subset of the isometry group of \mathbb{E}^2 and is closed under conjugations, $\text{Rot} \mathbb{E}^2$ is equipped with a conjugation quandle structure. This conjugation quandle $\text{Rot} \mathbb{E}^2$ is the quandle consisting of all rotations of the Euclidean plane. We note that $\text{Rot} \mathbb{E}^2$ is isomorphic to a quandle $\mathbb{C} \times \text{U}(1)$ whose binary operation \ast is given by

$$(z, e^{\theta \sqrt{-1}}) \ast (w, e^{\eta \sqrt{-1}}) = ((z - w)e^{\eta \sqrt{-1}} + w, e^{\theta \sqrt{-1}}).$$

Under the identification of the complex plane \mathbb{C} with \mathbb{E}^2, an element $(z, e^{\theta \sqrt{-1}}) \in \mathbb{C} \times \text{U}(1)$ corresponds to a rotation about z by angle θ. In the remaining of this paper, we do not distinguish $\text{Rot} \mathbb{E}^2$ from $\mathbb{C} \times \text{U}(1)$.

The axioms of a quandle are closely related to the Reidemeister moves of knot diagrams as follows. A coloring of a knot diagram D by a quandle X is a map \{arcs of D\} $\to X$ satisfying the condition depicted in Figure 1 at each crossing. We call an element of a quandle assigned to an arc by a coloring a color of the arc. Suppose D' is a knot diagram obtained from D by a Reidemeister move. Then, for each coloring \mathcal{C} of D, we have a unique coloring of D' whose restriction to the arcs unrelated to the deformation coincides with the restriction of \mathcal{C}. Indeed, the axioms (Q1), (Q2) and (Q3) of a quandle guarantee that we can perform the Reidemeister moves RI, RII and RIII fixing ends’ colors respectively. See Figure 2. Thus, for a fixed quandle, the number of all colorings gives rise to a knot invariant.

A constant map from the set consisting of the arcs of a knot diagram to a quandle always satisfies the coloring condition. We thus call this constant map a trivial coloring. For a quandle X, a knot K is said to be X-colorable if there is a non-trivial coloring of a diagram of K by X. We note that no non-trivial colorings are obtained from a trivial coloring by Reidemeister moves.

![Figure 1](image1.png)

A constant map from the set consisting of the arcs of a knot diagram to a quandle always satisfies the coloring condition. We thus call this constant map a trivial coloring. For a quandle X, a knot K is said to be X-colorable if there is a non-trivial coloring of a diagram of K by X. We note that no non-trivial colorings are obtained from a trivial coloring by Reidemeister moves.

![Figure 2](image2.png)

A constant map from the set consisting of the arcs of a knot diagram to a quandle always satisfies the coloring condition. We thus call this constant map a trivial coloring. For a quandle X, a knot K is said to be X-colorable if there is a non-trivial coloring of a diagram of K by X. We note that no non-trivial colorings are obtained from a trivial coloring by Reidemeister moves.

![Figure 3](image3.png)

A constant map from the set consisting of the arcs of a knot diagram to a quandle always satisfies the coloring condition. We thus call this constant map a trivial coloring. For a quandle X, a knot K is said to be X-colorable if there is a non-trivial coloring of a diagram of K by X. We note that no non-trivial colorings are obtained from a trivial coloring by Reidemeister moves.
3. Necessary and sufficient condition

Suppose $\text{Rot}E^2$ is the quandle consisting of all rotations of the Euclidean plane, defined in the previous section. Which knots are $\text{Rot}E^2$-colorable?

Example 3.1 (trefoil). Consider a diagram of the right hand trefoil, depicted in the left-hand side of Figure 3, colored by $\text{Rot}E^2$. Here, $(z_1, e^{\theta_1\sqrt{-1}})$, $(z_2, e^{\theta_2\sqrt{-1}})$ and $(z_3, e^{\theta_3\sqrt{-1}})$ denote colors of the corresponding arcs. We then have the following equations

\[
(z_1, e^{\theta_1\sqrt{-1}}) = (z_3, e^{\theta_3\sqrt{-1}}) * (z_2, e^{\theta_2\sqrt{-1}}),
\]

\[
(z_2, e^{\theta_2\sqrt{-1}}) = (z_1, e^{\theta_1\sqrt{-1}}) * (z_3, e^{\theta_3\sqrt{-1}}),
\]

\[
(z_3, e^{\theta_3\sqrt{-1}}) = (z_2, e^{\theta_2\sqrt{-1}}) * (z_1, e^{\theta_1\sqrt{-1}})
\]

associated with the crossings. The first equation requires that $\theta_1 = \theta_3$ and $|z_1 - z_2| = |z_3 - z_2|$. The other equations require $\theta_2 = \theta_1$, $|z_2 - z_3| = |z_1 - z_3|$, $\theta_3 = \theta_2$ and $|z_3 - z_1| = |z_2 - z_1|$. These requests are satisfied if we take points z_1, z_2, z_3 so that the triangle $\triangle z_1 z_2 z_3$ is regular and set each θ_i to be $\pi/3$. See the right-hand side of Figure 3. Therefore the right hand trefoil is $\text{Rot}E^2$-colorable.
In the above example, it is required that all θ_i are the same. The same request is obviously imposed for any knot diagram, because one can go around all arcs of a knot diagram passing under over arcs:

Lemma 3.2. For any knot diagram colored by $\text{Rot} \mathbb{E}^2$, the second components (i.e., rotation angles) of colors of the arcs are the same.

Example 3.3 (figure eight knot). We next consider a diagram of the figure eight knot, depicted in the left-hand side of Figure 4, colored by $\text{Rot} \mathbb{E}^2$. In this case, we have the following equations

\[
(z_2, e^{\theta \sqrt{-1}}) = (z_1, e^{\theta \sqrt{-1}}) \ast (z_4, e^{\theta \sqrt{-1}}), \quad (z_4, e^{\theta \sqrt{-1}}) = (z_3, e^{\theta \sqrt{-1}}) \ast (z_2, e^{\theta \sqrt{-1}}),
\]

\[
(z_2, e^{\theta \sqrt{-1}}) = (z_3, e^{\theta \sqrt{-1}}) \ast (z_4, e^{\theta \sqrt{-1}}), \quad (z_4, e^{\theta \sqrt{-1}}) = (z_1, e^{\theta \sqrt{-1}}) \ast (z_3, e^{\theta \sqrt{-1}})
\]

associated with the crossings. The first two equations require that $|z_1 - z_4| = |z_4 - z_2| = |z_2 - z_3|$ and $z_1 z_4 \parallel z_2 z_3$. Further the last two equations require that $|z_2 - z_1| = |z_1 - z_3| = |z_3 - z_4|$ and $z_2 z_1 \parallel z_3 z_4$. These requests are depicted in the right-hand side of Figure 4 respectively. There are no arrangements of points z_1, z_2, z_3, z_4 other than $z_1 = z_2 = z_3 = z_4$ which satisfy the requests simultaneously. Therefore the figure eight knot is not $\text{Rot} \mathbb{E}^2$-colorable.

![Figure 4](image_url)

We note that the Alexander polynomial of the trefoil ($\text{Rot} \mathbb{E}^2$-colorable) is

\[
\Delta_3(t) = t^2 - t + 1 = \left(t - \exp\left(\frac{\pi \sqrt{-1}}{3}\right) \right) \left(t - \exp\left(\frac{-\pi \sqrt{-1}}{3}\right) \right),
\]

and that of the figure eight knot (not $\text{Rot} \mathbb{E}^2$-colorable) is

\[
\Delta_4(t) = t^2 - 3t + 1 = \left(t - \frac{3 - \sqrt{5}}{2} \right) \left(t - \frac{3 + \sqrt{5}}{2} \right).
\]

Theorem 3.4. A knot K is $\text{Rot} \mathbb{E}^2$-colorable if and only if its Alexander polynomial $\Delta_K(t)$ has a root on the unit circle in \mathbb{C}. More precisely, there is a non-trivial coloring of a diagram of K by $\text{Rot} \mathbb{E}^2$, whose rotation angles are θ, if and only if $\Delta_K(e^{\theta \sqrt{-1}}) = 0$.

Proof. Let D be a diagram of K, a_1, a_2, \ldots, a_n the arcs of D, c_i the crossing of D from which a_i starts, and ε_i the sign of c_i. Suppose a_{ℓ_i} and a_{i} denote the under arc other than a_i and the over arc related to c_i respectively. See figure 5.

For a fixed $\theta \in \mathbb{R}$, consider an $n \times n$ matrix X_θ whose (k_i, i) entry is $\exp(\varepsilon_i \theta \sqrt{-1})$, (l_i, i) entry is $1 - \exp(\varepsilon_i \theta \sqrt{-1})$, (i, i) entry is -1, and otherwise is 0. Then a map...
a_i \mapsto (z_i, \theta) is a RotE^2-coloring of D if and only if \((z_1, z_2, \ldots, z_n)X_\theta\) is equal to \((0, 0, \ldots, 0)\). Since we always have trivial colorings, the rank of \(X_\theta\) is at most \(n - 1\). There is a non-trivial RotE^2-coloring, whose rotation angles are \(\theta\), if and only if the rank of \(X_\theta\) is less than \(n - 1\).

On the other hand, let \(A_D\) be the Alexander matrix for \(K\) derived from the Wirtinger presentation of the knot group related to \(D\) with Fox’s free differential calculus and the abelization of the knot group. See [1, Theorem 9.10], for example. Actually, \(A_D\) is an \(n \times n\) matrix whose \((k_i, i)\) entry is \(t^{\epsilon_i}\), \((l_i, i)\) entry is \(1 - t^{\epsilon_i}\), \((i, i)\) entry is \(-1\), and otherwise is 0. Since \(X_\theta = A_D|_{t = \exp(\theta \sqrt{-1})}\) and \(\Delta_K(t)\) is the greatest common divisor of all \((n - 1) \times (n - 1)\) minors of \(A_D\), the rank of \(X_\theta\) is less than \(n - 1\) if and only if \(e^{\theta \sqrt{-1}}\) is a root of \(\Delta_K(t)\).

\[\text{Remark 3.5.}\] For each \(i \ (0 \leq i \leq n - 2)\), the greatest common divisor of all \((n - i - 1) \times (n - i - 1)\) minors of \(A_D\) is called the \(i\)-th Alexander polynomial of \(K\) and is denoted by \(\Delta^{(i)}_K(t)\). We further let \(\Delta^{(n-1)}_K(t) = 1\). Since the elementary divisors of \(A_D\) are 0 and \(e^{(i)}_K(t) = \Delta^{(i)}_K(t)/\Delta^{(i+1)}_K(t)\) \((0 \leq i \leq n - 2)\), we have the following equation:

\[
\text{rank } X_\theta = n - 1 - |\{i \mid e^{(i)}_K(e^{\theta \sqrt{-1}}) = 0 \ (0 \leq i \leq n - 2)\}|.
\]

\[\text{Remark 3.6.}\] Assume that the rank of \(X_\theta\) is \(n - 2\). Let \(a_i \mapsto (z_i, \theta)\) be a non-trivial RotE^2-coloring of \(D\). Then, by the assumption, any non-trivial RotE^2-coloring, whose rotation angles are \(\theta\), is given by \(a_i \mapsto (\alpha z_i + \beta, \theta)\) with some \(\alpha \in \mathbb{C} \setminus \{0\}\) and \(\beta \in \mathbb{C}\). We note that corrections of points \(\{\alpha z_1 + \beta, \alpha z_2 + \beta, \ldots, \alpha z_n + \beta\}\) are related to each other by orientation preserving similarities. Therefore a non-trivial RotE^2-coloring, whose rotation angles are \(\theta\), is unique up to orientation preserving similarities in this case.

\[\text{Remark 3.7.}\] Let \(G\) be the group consisting of all orientation preserving similarities of \(\mathbb{C}\). Burde and Zieschang showed that there is a non-trivial representation of the knot group to \(G\) mapping a positive meridian to a rotation if and only if the Alexander polynomial of the knot has a root on the unit circle in \(\mathbb{C}\) (Proposition 14.5 in [1]). Since RotE^2 is also a subset of \(G\) closed under conjugations, in the light of Lemmas 3.3 and 3.5 in [3], there is a one-to-one correspondence between a RotE^2-coloring and a representation mapping a positive meridian to a rotation. Therefore Theorem 3.4 is essentially no different from Proposition 14.5 in [1].
4. Torus knot and PL trochoïd

The purpose of this section is to enumerate all non-trivial $\text{Rot}\mathbb{E}^2$-colorings of a torus knot diagram. Since the Alexander polynomial of the (p, q)-torus knot is
\[
\Delta_{T(p,q)}(t) = \frac{(tpq-1)(t-1)}{(tp-1)(tq-1)},
\]
in the light of Theorem 3.4, the (p, q)-torus knot is $\text{Rot}\mathbb{E}^2$-colorable. Indeed, each root of $\Delta_{T(p,q)}(t)$ is obviously a root of unity.

In order to achieve our goal, we need the following notations. Let $\Pi(m)$ be a convex regular m-gon in \mathbb{C} ($m \geq 2$) and $v_0^m, v_1^m, \ldots, v_{m-1}^m$ the vertices of $\Pi(m)$ in counterclockwise order. For each k and i ($1 \leq k \leq m - 1$, $0 \leq i \leq m - 1$), we suppose that $v_{[ik]}^m$ denotes the vertex $v_{[r]}^m$, where $[r]$ denotes the integer satisfying $0 \leq [r] \leq m - 1$ and $[r] \equiv r \pmod{m}$ for each $r \in \mathbb{Z}$. Let $\Pi(m, k)$ be the regular polygon in \mathbb{C} obtained by joining vertices $v_{[i]}^m$ and $v_{[i+1]}^m$ for each i. We note that some vertices and edges of $\Pi(m, k)$ are overlapped if m and k are not coprime. Further $\Pi(m, m - k)$ is the mirror image of $\Pi(m, k)$. Various $\Pi(5, \bullet)$ and $\Pi(6, \bullet)$ are depicted in Figure 6, for example. It is easy to see that
\[
\angle v_{[i]}^m v_{[i+1]}^m v_{[i+2]}^m = \left| \frac{(m - 2k)\pi}{m} \right|
\]
for each i.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure6.png}
\caption{\textbf{Figure 6}}
\end{figure}

Suppose m, n, k and l are integers with $m, n \geq 2$, $1 \leq k \leq m-1$ and $1 \leq l \leq n-1$. We define a real number $\theta(m, k; n, l)$ by
\[
\theta(m, k; n, l) = \left(\frac{m - 2k}{m} - \frac{n - 2l}{n} \right) \pi.
\]
Consider two regular polygons $\Pi(m, k)$ and $\Pi(n, l)$ whose side lengths are the same. We arrange $\Pi(m, k)$ and $\Pi(n, l)$ so that $v_{[0]}^m = v_{[0]}^n$ and $v_{[1]}^m = v_{[1]}^n$. Fixing the position of $\Pi(n, l)$, we first rotate $\Pi(m, k)$ about $v_{[1]}^m = v_{[1]}^n$ by angle $\theta(m, k; n, l)$.
Then $v_{2}^{m,k}$ meets with $v_{2}^{n,l}$. Thus we next rotate $\Pi(m,k)$ about $v_{2}^{m,k}$ instead of $v_{1}^{m,k} = v_{1}^{n,l}$ by angle $\theta(m,k; n,l)$, which produces that $v_{3}^{m,k} = v_{3}^{n,l}$. We continue this process in the same manner. The i-th step is the rotation of $\Pi(m,k)$ about $v_{i+1}^{m,k}$ by angle $\theta(m,k; n,l)$. We call this motion of $\Pi(m,k)$ related to $\Pi(n,l)$ the $(m,k; n,l)$-trochoid. Figure 7 illustrates the $(4, 1; 3, 1)$-trochoid, for example.

Theorem 4.1. Let p and q be non-zero coprime integers and $D(p,q)$ a diagram of the (p,q)-torus knot depicted in Figure 8. Then, for each k and l ($1 \leq k \leq |p| - 1$, $1 \leq l \leq |q| - 1$), there is a non-trivial RotE^2-coloring of $D(p,q)$ derived from the $(|p|, k; |q|, l)$-trochoid. Rotation angles of the non-trivial coloring are $\theta(|p|, k; |q|, l)$.

Proof. First, we let a_{ij} denote the arcs of $D(p,q)$ as depicted in Figure 8, although a_{i0} and $a_{i+1,|p|-1}$ (resp. $a_{|q|i}$ and a_{0j}) mark the same arc.

For each i and j ($0 \leq i \leq |q|$, $0 \leq j \leq |p| - 1)$, let $z_{ij} \in \mathbb{C}$ be the coordinate of the vertex $v_{i+1}^{p,k}$ of $D(p,q)$ after the i-th step of the $(|p|, k; |q|, l)$-trochoid. Here, the 0-th step means the arrangement of $\Pi(|p|, k)$ and $\Pi(|q|, l)$ into the initial position. These z_{ij} for the $(4, 1; 3, 1)$-trochoid are depicted in Figure 9, for example.

By definition, z_{i0} is equal to $z_{i+1,|p|-1}$ for each i ($0 \leq i \leq |q| - 1$). Further the rotation about z_{i0} by angle $\theta(|p|, k; |q|, l)$ sends z_{ij} to $z_{i+1,j}$ for each i and j ($0 \leq i \leq |q| - 1$, $1 \leq j \leq |p| - 1$). Since $\Pi(|p|, k)$ returns to the initial position but is
if $pq > 0$

rotated by angle $(|p| - |q|) \cdot (2\pi/|p|)$ after the $|q|$-th step, we have that $v_{|p|}^{[p],[k]} = v_{|q|}^{[q],[l]}$ and $v_{|q|+1}^{[p],[k]} = v_{|q|}^{[q],[l]}$. Therefore $z_{|q|}$ is equal to z_{q} for each j ($0 \leq j \leq |p| - 1$). By the above argument, we have a non-trivial Rot\mathbb{E}^2-coloring $a_{ij} \mapsto (z_{ij}, \theta(|p|, k; |q|, l))$ of $D(p, q)$.

We note that $(|p| - 1)(|q| - 1)$ complex numbers $e^{\theta(|p|, k; |q|, l)} \sqrt{-1}$ ($1 \leq k \leq |p| - 1$, $1 \leq l \leq |q| - 1$) are mutually distinct if p and q are coprime. Further the span of the Alexander polynomial $\Delta_{T(p,q)}(t)$ of the (p, q)-torus knot is $(|p| - 1)(|q| - 1)$.

Therefore, in the light of Theorems 3.4 and 4.1, we have the following corollary:
Corollary 4.2. The Alexander polynomial of the \((p, q)\)-torus knot is factorized with a certain \(r \in \mathbb{Z}\) as follows:

\[
\Delta_{T(p,q)}(t) = t^r \prod_{k=1}^{\|p\| - 1} \prod_{l=1}^{\|q\| - 1} (t - e^{\theta([p], k; [q], l)} \sqrt{-1}).
\]

Suppose \(X_\theta\) is the \(n \times n\) matrix, defined in the proof of Theorem 3.4, derived from \(D(p, q)\) \((n = \|q\|([p] - 1))\). In the light of Corollary 4.2 and Remark 3.5, the rank of \(X_\theta\) is \(n - 2\) if \(\theta = \theta([p], k; [q], l)\) with some \(k\) and \(l\), and is \(n - 1\) otherwise. Therefore, in the light of Remark 3.6, all non-trivial \(\text{Rot}_2\)-colorings of the \((p, q)\)-torus knot diagram \(D(p, q)\) are essentially enumerated by Theorem 4.1.

5. Related topics

We close this paper with a discussion of some related topics.

Let \(\text{Rot}_n\) be the set consisting of all rotations of the \(n\)-dimensional Euclidean space \((n \geq 3)\). Obviously, \(\text{Rot}_n\) is equipped with a conjugation quandle structure. Although it is not \(\text{Rot}_2\)-colorable as we have seen in Example 3.3, the figure eight knot is \(\text{Rot}_3\)-colorable. Indeed, it is known that the figure eight knot is colorable by the *tetrahedral quandle* which is a subquandle of \(\text{Rot}_3\). See [2], for example. Thus it seems to be natural that we have the following questions:

Question 5.1. For a non-trivial knot \(K\) whose Alexander polynomial \(\Delta_K(t)\) has no roots on the unit circle in \(\mathbb{C}\), which \(n\) is the minimum number so that \(K\) is \(\text{Rot}_n\)-colorable?

Question 5.2. Is there a non-trivial knot which is not \(\text{Rot}_n\)-colorable for any \(n\)?

Question 5.3. For \(n \geq 3\), what is meaning of \(\text{Rot}_n\)-colorability? For example, are there relationships between \(\text{Rot}_n\)-colorability and other knot invariants?

The set consisting of all reflections of the Euclidean space is obviously equipped with a conjugation quandle structure. Further the sets consisting of all rotations or reflections of spherical or hyperbolic spaces are also equipped with conjugation quandle structures.

Question 5.4. Which knots are colorable by these “geometric” quandles?

Question 5.5. What is meaning of colorability by the quandles?
A coloring of a (multi-component) link diagram by a quandle is defined in a similar way for a knot diagram. A map from the arcs of a link diagram to $\operatorname{Rot} \mathbb{E}^2$ sending the arcs of the i-th component to a fixed $(w, e^{\theta_i \sqrt{-1}})$ satisfies the coloring condition, although $\theta_i \neq \theta_j$ for some $i \neq j$. Thus a link is said to be $\operatorname{Rot} \mathbb{E}^2$-colorable if there is a $\operatorname{Rot} \mathbb{E}^2$-coloring of its diagram other than all the above.

Question 5.6. Which links are $\operatorname{Rot} \mathbb{E}^2$-colorable? Further, which links are colorable by the other quandles?

Question 5.7. What is meaning of colorability of links by $\operatorname{Rot} \mathbb{E}^2$ and the others?

References

1. G. Burde and H. Zieschang, *Knots. Second edition*, de Gruyter Studies in Mathematics 5, Walter de Gruyter & Co., Berlin, 2003.
2. J. S. Carter, *Classical knot theory*, Symmetry 4 (2012), no. 1, 225–250.
3. A. Inoue, *Knot quandles and infinite cyclic covering spaces*, Kodai Math. J. 33 (2010), no. 1, 116–122.
4. D. Joyce, *A classifying invariant of knots, the knot quandle*, J. Pure Appl. Algebra 23 (1982), no. 1, 37–65.
5. S. V. Matveev, *Distributive groupoids in knot theory*, (in Russian), Mat. Sb. (N.S.) 119 (161) (1982), 78–88 (English translation: Math. USSR-Sb. 47 (1984), 73–83).
6. S. Nelson, *The combinatorial revolution in knot theory*, Notices Amer. Math. Soc. 58 (2011), no. 11, 1553–1561.
7. M. Takasaki, *Abstraction of symmetric transformations*, (in Japanese), Tohoku Math. J. 49 (1943), 145–207.

Department of Mathematics Education, Aichi University of Education, Kariya, Aichi 448-8542, Japan

E-mail address: ainoue@auecc.aichi-edu.ac.jp