An overview of the host spectrum and distribution of *Calodium hepaticum* (syn. *Capillaria hepatica*): part 1—Muroidea

Hans-Peter Fuehrer

Abstract *Calodium hepaticum* (syn. *Capillaria hepatica*) is a worldwide-distributed species of zoonotic nematodes with a high affinity to the liver. Several rodent species of the superfamily Muroidea serve as main hosts for this pathogen. *C. hepaticum* has been found in Muroidean hosts in more than 60 countries in Europe; North, Central, and South America; Asia; Africa; and Oceania. *C. hepaticum* was documented in more than 90 Muroidean rodent species (Murinae, Deomyinae, Arvicolinae, Neotominae, Sigmodontinae, Gerbillinae, and Cricetomyinae). Globally, the Norway rat (*Rattus norvegicus*) seems to be the main host species for this nematode. However, locally high prevalences (above 50 %) have also been observed in several other synanthropic (commensal and non-commensal) Muroidea species (e.g., *Rattus tanezumi*, *Ondatra zibethicus*, *Apodemus sylvaticus*). This review gives an overview of the distribution and host spectrum of *C. hepaticum* in Muroidea host species.

Introduction

Calodium hepaticum (syn. *Capillaria hepatica*) is a zoonotic nematode parasite distributed worldwide. Adults of this nematode parasitize the liver of mammals and lay their eggs into the liver parenchyma causing hepatic capillariasis. The eggs are only released into the environment with the death of the host. The main hosts of this parasite are rodents of the superfamily Muroidea (Schmidt 2001). Furthermore, this parasite has been documented in numerous other mammalian species including more than 70 human cases (reviewed in Fuehrer et al. 2011; Fuehrer 2013). Hepatic capillariasis is diagnosed through necroscopy or biopsy only, because with hepatic infections eggs are not shed into the environment with the feces.

This review focuses on the Muroidea host spectrum and its geographic distribution in those hosts only. Information about the pathogenesis, ecology, and host spectrum in humans and other mammals is given elsewhere (e.g., Fuehrer et al. 2011; Fuehrer 2013; Schmidt 2001).

For data evaluation, the systematic search was based on electronic databases (Scopus, PubMed, Google Scholar) and previous summaries (e.g., Schmidt 2001). The search terms *Capillaria hepatica*, *Calodium hepaticum*, *Hepaticola hepatica*, *Trichocephalus hepaticus*, and hepatic capillariasis were used. An attempt was made to include only those studies where the scientific names of the host and parasite were given clearly. Furthermore, spurious infections (= pseudoparasitism) were differentiated as far as possible from hepatic capillariasis. A short overview of spurious *C. hepaticum* infections in animals is given in Fuehrer (2013).

Taxonomy

C. hepaticum is a nematode out of the family Capillaridae (order Trichocephalida). Moravec (1982) categorized *C. hepaticum* in the genus *Calodium*. However, the name *C. hepaticum* is rarely used, and most researchers use the term *Capillaria hepatica*. Further synonyms are *Trichocephalus hepaticus* (Bancroft, 1893) and *Hepaticola hepatica* (Hall 1916) (Fuehrer et al. 2011).

The taxonomy of the family Capillaridae is disputed and pending. In the past, most species were included in the genus *Capillaria*. Recently, a molecular phylogenetic study revealed that Capillaridae can be clearly separated from Trichuridae (Guardone et al. 2013). However, the former genus *Capillaria* consists of a complex group of parasites including several
parasites of carnivores and rodents of the genera *Calodium*, *Eucoleus*, *Capillaria*, *Paracapillaria*, *Pearsonema*, and *Aonchotheca* (Guardone et al. 2013). Three species are of zoonotic importance, namely *Paracapillaria philippinensis* (syn. *Capillaria philippinensis*), *Eucoleus aerophila* (syn. *Capillaria aerophila*), and *C. hepaticum* (syn. *C. hepatica*).

Life cycle

The life cycle of *C. hepaticum* is a direct one with a high affinity to the liver. After the ingestion of embryonated eggs, larvae hatch in the area of the caecum and invade the liver via the portal vein system. Adult worms.parasitize in the liver of its mammalian hosts where the females lay eggs into the liver parenchyma after mating. The life span of adult worms is short (18–60 days post infection in mice) (Juncker-Voss et al. 2000; Schmidt 2001). The eggs develop in the host's liver to the eight-cell stage only. Unembryonated eggs are only released into the environment with the death of the host only (decay of host; excretion in feces of carnivores and omnivores or after cannibalism). Depending on the environmental conditions (e.g., humidity, temperature), eggs embryonate within 5–8 weeks. Laboratory studies revealed that embryonated eggs are viable for 25 months (reviewed in Juncker-Voss et al. 2000). The life cycle is closed when embryonated eggs are ingested from a mammalian host. The ingestion of non-embryonated eggs leads to pseudoparasitosis (= spurious infections) where the non-embryonated eggs are re-released with the feces and lead to mild symptoms only (reviewed in Fuehrer et al. 2011).

Muroidea host spectrum

The mammalian superfamily Muroidea consists of rodents with a worldwide distribution (with the exception of Antarctica) including animals like rats, true mice, gerbils, and hamsters. Recent molecular phylogenetic studies classified the superfamily into 6 families, 19 subfamilies, around 280 genera, and over 1,300 species (e.g., Steppan et al. 2004).

The host spectrum of *C. hepaticum* in Muroidea hosts (and in other mammals) indicates very low host specificity. More than 90 species of at least 44 genera of the superfamily Muroidea (Murinae, Arvicolinae, Neotominae, Cricetinae, Sigmodontinae, Gerbillinae, and Cricetomyinae) are known as hosts of this parasite (Table 1). Of these, more than 55 species are rodents of the subfamily Murinae including the Norway rat (*Rattus norvegicus*), Black rat (*Rattus rattus*), and house mouse (*Mus musculus*). Prevalences above 50 % are regularly documented in Norway rats (*R. norvegicus*) and Tanezumi rats (*R. tanezumi*), and rarely in house mice (*M. musculus*), long-tailed field mice (*Apodemus sylvaticus*), muskrats (*Ondatra zibethicus*), and bank voles (*Myodes glareolus*). All of these species are known as (commensal or non-commensal) synanthropic species. Human hepatic capillariasis cases are associated with poor hygienic conditions and the presence of rodents (e.g., rats) (Fuehrer et al. 2011). Davis (1951) reported that *C. hepaticum* is significantly less prevalent in decreasing rat populations than in stationary or increasing populations. A study conducted in Michigan (USA) with deer mice revealed that parasite prevalences are correlated negatively with heterozygosity when the effects of population density were held constant (Meagher 1998). Meagher further hypothesizes that inbred populations are more susceptible to parasite infestations. Differences in the prevalences of *C. hepaticum* in different rodent host species are thought to be associated with different living and nutritional habits (Schmidt et al. 1998). Several authors report that *C. hepaticum* occurs in localized foci of the examined study areas (e.g., Reperant and Deplazes 2005; Stojčević et al. 2002). Furthermore, cannibalism may be an important egg-releasing mechanism and is an important source of infection in burrows. On the other hand, predation seems to be responsible for scattered foci of infection (Farhang-Azad 1977a, b; Stojčević et al. 2002). Decomposition is thought to be a less important egg-releasing mechanism. Environmental conditions (humidity and temperature) are also associated with the distribution of these pathogens (e.g., Resendes et al. 2009). The pathogenicity of *C. hepaticum* in Muroidea hosts is considered low, although experimental infections of rats and mice have been demonstrated to lead to hepatic failure and the death of the host (the host survival rate is reduced by 5–10 %) (Singleton and Chambers 1996). However, individual variations of the host's inflammatory reaction to the parasite have been reported. Furthermore, hypersensitivity is associated with repeated infections (Borucinska and Nielsen 1993).

Hepatic capillariasis—geographic distribution in Muroidea hosts

C. hepaticum has been found in Muroidean hosts in more than 60 countries in Europe; North, Central, and South America; Asia; Africa; and Oceania. *R. norvegicus* is the rodent species with the highest prevalences worldwide. In Europe, North America, South America, and Asia, several studies reported prevalences above 50 % in Norway rats (e.g., Easterbrook et al. 2007). Also other murid host species can present high prevalences in certain regions. In Asia, the nematode was found in prevalences above 50 % in the common species *R. tanezumi* and the white bellied rat (*Niviventer fuloscens*) (e.g., Yuan et al. 2000; Zhou et al. 1998). Furthermore, the muskrat (*O. zibethicus*) seems to be an important host of *C. hepaticum* in North America (Borucinska and Nielsen 1993). In the UK, high prevalences of this parasite were observed in long-tailed...
Classification	Species	Prevalence (%)	Country/region	References
Muridae				
Murinae	Norway rat (Rattus norvegicus)	82 % (of 86)	USA (Connecticut)	Childs et al. (1988); Shorb (1931); Wantland et al. (1956)
		75 % (of 845)	USA (Maryland—Baltimore area and zoo)	Farhang-Azad (1977a)
		75 % (of 845)	USA (Maryland—Baltimore Zoo)	Farhang-Azad (1977b)
		87.9 % (176/201)	USA (Maryland, Baltimore)	Easterbrook et al. (2007)
		85.6 %	USA (New York)	Herman (1939)
		94.1 % (of 1,460)	USA (North Carolina)	Luttermoser (1936)
			USA (District of Columbia)	Davis (1951)
			USA (Pennsylvania and Rhode Island)	Harkema (1936)
			USA (California)	Hill (1916)
		Spurious infection 6 % (of 150)	Canada (Quebec)	Firlotte (1948)
			Puerto Rico	Leon de (1964)
			Venezuela	Vogelsang and Espin (1949)
		20.1 % (51/254)	Colombia	Duque et al. (2012)
			Brazil (Bahia)	Araújo (1967); Galvão (1981); Chieffi et al. (1981); Ferreira and Andrade (1993)
		54.1 % (13/24)	Brazil (Belém)	Moreira et al. (2013)
		30 %	Argentina (Buenos Aires)	Hancke (2011)
		33.3 % (5/15)	Chile	Torres and González (1972); Rojas et al. (1971)
		1 case	England	Simmons and Walkey (1971)
		1 case	England (zoo)	Redrobe and Patterson-Kane (2005)
		A: 90.4 % (38/42)	England	Owen (1976)
		B + C: none of 38	England	Webster and MacDonald (1995)
		23 % (n =44)	England	Redrobe and Patterson-Kane (2005)
		60 % (of 29)	Portugal (Azores)	Roque (1989)
		20 % (of 20)	Portugal (Azores)	Cruz (2006)
		62.5 % (of 73)	Portugal	Roque et al. (1984)
		42 % (21/50)	Portugal Lisbon Zoo	Crespo (2012)
		20 %	Spain	}
Classification	Species	Prevalence (%)	Country/region	References
----------------	---------	----------------	----------------	------------
				Mascato et al. (1993); Feliu et al. (1985); Castro (1944); Gillego Berenguer (1959)
				Duvoust et al. (1997)
				Perugia (1893)
		80 % (of 28)	Italy	Davoust et al. (1997)
		30 % (of 100)	Italy (Pisa)	Vanni (1938); Vanni (1947)
		30 % (of 50)	Italy	Ghelardoni (1966)
		36 % (17/49)	Italy (Milano)	Casarosa and Ghelardoni (1965)
		54.55 % (of 143)	Italy (Sicily)	Ceruti et al. (2001)
		74.6 %	Austria	Milazzo et al. (2010b)
		1 case	奥地利	Rydlo (1966)
		16.4 % (of 864)	Belgium	Frank (1977)
		100 % (26/26)	Former CSSR	Hörning (1966)
		1.95 % (6/307)	Croatia	Cotteleer et al. (1982)
		10.9 % (of 147)	Serbia (Belgrad)	Mészáros and Kemenes (1973)
			Turkey	Stojčević et al. (2002)
			Kazakhstan	Kataranovski et al. (2010)
			Japan	Merdivenci (1970)
				Pleščev and Kozlov (1978)
		52.7 % (1,272/2,222)	Japan (Osaka)	Shimatani (1961); Sato and Shimatani (1960); Iwaki et al. (1993); Ito et al. (1996); Yagisawa (1978)
		90 %	Philippines	Momma (1930)
		60/138 (42 %)	Thailand	Tubangui (1931)
		12.5 % (of 16)	Thailand	Chaiyabutr (1979)
			Malaysia	Namue and Wongswad (1997)
			China	Liat et al. (1977); Sinniah et al. (1979)
		30.4 %	China (Soochow)	Lagrange (1924)
		7.1 %	China (Canton)	Wu (1930)
		61.9 %	China (Hubei Province)	Chen (1933)
		66.7 %	China (Yunnan Province)	Zhou et al. (1991)
		1 case	China (Yunnan Province)	Zhou et al. (1998)
		77 %	China (Yunnan Province)	Xiong et al. (1999)
		66.7 %	China (Fujian Province)	Shen et al. (2003)
				Yuan et al. (2000)
Classification	Species	Prevalence (%)	Country/region	References
----------------	---------	----------------	----------------	------------
			China (Fujian Province)	Xue et al. (1998)
			China (Fujian Province)	Zhang et al. (2003)
			China (Henan Province)	Lin et al. (2007)
			China (Henan)	Wang et al. (2013)
			Taiwan	Yang and Lu (2000)
			Taiwan	Tung et al. (2009)
			Taiwan	Tung et al. (2013)
			South Korea (Seoul)	Nakamura and Kobashi (1935)
			South Korea (Seoul)	Seo et al. (1964)
			South Korea (Seoul)	Min (1979)
			South Korea (Seoul)	Yi et al. (2010)
			South Korea (Chunchon)	Seong et al. (1995)
			Iran	Pakdel et al. (2013)
			Australia (Queensland)	Singleton et al. (1991)
			Egypt	El-Nassery et al. (1991)
			Tunisia	Mishra and Gonzalez (1975)
			New Zealand	Roberts (1990)
			Australia (Queensland)	Singleton et al. (1991)
			Federated States of Micronesia (Pohnpei)	Størmer (1962)
			Bangladesh	Bhuian et al. (1995)
			India	Malsawmthluangi and Tandon (2009)
			India	Shama et al. (2012)
			India	Patel et al. (2004)
			Pakistan	Ahmad et al. (2011)
			Iran	Pakdel et al. (2013)
			Thailand	Chaiyabutr (1979)
			Thailand	Namue and Wongsawad (1997)
			Taiwan	Tung et al. (2009)
			Taiwan	Tung et al. (2013)
			Japan	Sato and Shimatani (1960); Shimatani (1961)
Classification	Species	Prevalence (%)	Country/region	References
----------------	---------	----------------	----------------	------------
Turkey	-	3.1 % (2/65)	Israel	Merdivenci (1970)
			Spain	Wilamowski et al. (2002)
			Portugal (Azores)	Feliu et al. (1985); Castro (1944); Gallego Berenguer (1959)
			France	Casanova et al. (1996); Roque (1989)
		34.2 % (of 37)	Italy (Sicily)	Milazzo et al. (2010a)
			Switzerland	Höming (1966)
			USA	Layne (1970)
			Brazil (Bahia)	Chieffi et al. 1981
			Brazil (São Paulo)	Almeida-Silva et al. (2011)
			Brazil (Belém)	Moreira et al. (2013)
			Egypt	El-Nassery et al. (1991)
			Ethiopia	Farhang-Azad and Schlitter (1978)
		69.8 % (30/43)	Democratic Republic of the Congo	Dubois (1933)
		38.4 % (10/26)	Philippines	Onyenwe et al. (2009)
		6.2 % (19/308)	Japan (Southern Anami Islands)	Claveira et al. (2005)
	Rattus spp. (R. norvegicus and/or R. rattus)	100 % (of 12)	Philippines	Kamiya et al. (1968)
	Rattus spp. (Rattus rattus diardii, R. norvegicus, and R. exulans)	34 %	Japan (Southern Anami Islands)	Davoust et al. (1997)
	Rattus sp.	21.6 %	Malaysia	Paramasvaran et al. (2009)
		11.9 %	France—Lyon Zoo	Apéry (2012)
		13 %	France—Vincennes Zoo	Apéry (2012)
	Rattus rattus sladerni	38.8 %	China (Yunnan Province)	Shan et al. (2003)
		33 % (1/3)	China (Yunnan Province)	Xiong et al. (1999)
	Polynesian rat (Rattus exulans)	37.5 %	New Zealand	Roberts (1990)
			Indonesia	Brown et al. (1975b)
			Malaysia	Liat et al. (1977); Sinniah et al. (1979)
	Sikkim rat (Rattus andamanensis)	8.3 % (1/12)	Bangladesh	Fuehrer et al. (2012)
	Rice-field rat (Rattus argentiventer)	5.4 %	Taiwan	Yang and Lu (2000)
	Lesser rice-field rat (Rattus kosea)	38.9 %	China (Fujian Province)	Yuan et al. (2000)
Classification	Species	Prevalence (%)	Country/region	References
---------------------------------	----------------------------------	----------------	----------------------	---
Hoffmann’s rat (Rattus hoffmanni)	Indonesia			Brown et al. (1975b)
Opossum rat (Rattus marmosaurus)	Indonesia			Brown et al. (1975b)
Tanezumi rat (Rattus tanezumi)	Indonesia			Brown et al. (1975b); Wiroreno (1978)
	Malaysia			Liat et al. (1977); Sinniah et al. (1979)
Rattus fuscipes (syn. for Rattus tanezumi)	12.9 % (20/155)	China (Henan)		Wang et al. (2013)
	China (Henan Province)	12.9 %		Lin et al. (2007)
	China (Hubei Province)	61.9 %		Zhou et al. (1991)
	China (Yunnan Province)	65.1 %		Zhou et al. (1998)
	China (Yunnan Province)	49.4 % (of 881)		Xiong et al. (1999)
	China (Yunnan Province)	77.5 %		Shen et al. (2003)
	China (Fujian Province)	44.3 %		Yuan et al. (2000)
	China (Fujian Province)	13.1 %		Xue et al. (1998)
	China (Fujian Province)	66.7 %		Zhang et al. (2003)
Malayan field rat (Rattus tiomanicus)	Malaysia			Mulkit and Cheong (1971); Liat et al. (1977); Sinniah et al. (1979)
Annandale’s rat (Rattus annandalei)	Malaysia	44.4 %		Syad-Amez and Mohd Zain (2006)
Himalayan field rat (Rattus nitidus)	India	40.1 %		Liat et al. (1977); Sinniah et al. (1979)
Bush rat (Rattus fuscipes)	Australia			Malasawmthluangi and Tandon (2009)
Müller’s giant Sunda rat (Sundamys muelleri)	Malaysia	33.3 %		Liat et al. (1977)
Greater bandicoot rat (Bandicota indica)	Malaysia	11.5 %		Syad-Amez and Mohd Zain (2006)
	Taiwan			Liat et al. (1977)
	Sri Lanka			Yang and Lu (2000)
	Bangladesh			Dissanaike and Panamanthan (1961)
Lesser bandicoot rat (Bandicota bengalensis)	Bangladesh	33.3 % (6/18)		Bhuian et al. (1995)
	India			Pasricha et al. (1941)
	India			Singhla et al. (2013)
Bower’s white-toothed rat (Berylmys bowersi)	Malaysia	16.6 %		Liat et al. (1977)
Kenneth’s white-toothed rat (Berylmys mackenziei)	India	31.8 %		Malasawmthluangi and Tandon (2009)
Gray tree rat (Lenothrix canus)	Malaysia			Malasawmthluangi and Tandon (2009)
White-bellied rat (Niviventer niviventer)	Indonesia			Liat et al. (1977)
Chestnut white-bellied rat (Niviventer fulvescens)	Malaysia	40 %		Malasawmthluangi and Tandon (2009)
	India			Liu et al. (1977)
	Malasawmthluangi and Tandon (2009)	55.6 %		Yuan et al. (2000)
Classification	Species	Prevalence (%)	Country/region	References
----------------	---------	----------------	----------------	------------
Dark-tailed tree rat *Niviventer cremoriventer*	Malaysia	Mulkit and Cheong (1971)		
Chinese white-bellied rat *Niviventer confucianus*	30 %	China (Fujian Province)	Yuan et al. (2000)	
Rattus niviventer (sug. syn. for *Niviventer* sp.)	6.12 % (3/49)	China (Henan)	Wang et al. (2013)	
Edwards's long-tailed giant rat *Leopoldamys edwardsi*	Malaysia	Brown et al. (1975b)		
Long-tailed giant rat *Leopoldamys sabanus*	Indonesia	Mulkit and Cheong (1971); Liat et al. (1977)		
Bartels's spiny rat *Maxomys bartelsii*	Indonesia	Brown et al. (1975b); Wiroreno (1978)		
Hellwald's spiny rat *Maxomys hellwaldii*	Indonesia	Brown et al. (1975b)		
Rajah spiny rat *Maxomys rajah*	Malaysia	Mulkit and Cheong (1971); Liat et al. (1977)		
Musschenbroek's spiny rat *Maxomys musschenbroekii*	Indonesia	Brown et al. (1975b)		
Whitehead's spiny rat *Maxomys whiteheadi*	Malaysia	Mulkit and Cheong (1971); Liat et al. (1977)		
Red spiny rat *Maxomys surifer*	Malaysia	25 %	Syed-Arne and Mohd Zain 2006	
Fawn-footed mosaic-tailed rat *Melomys cervinipes*	Malaysia	30.6 %	Syed-Arne and Mohd Zain 2006	
Giant white-tailed rat *Uromys caudimaculatus*	Australia	24 %	Singleton et al. (1991)	
Kaiser's rock rat *Aethomys kaiser*	Rwanda	Fain (1955)		
Hinde's rock rat *Aethomys hindei*	Democratic Republic of the Congo	Fain (1953)		
Peters's striped mouse *Hybomys univittatus*	Democratic Republic of the Congo	Schwetz (1956)		
African grass rat *Arvicanthis niloticus*	Democratic Republic of the Congo	Fain (1953)		
African marsh rat *Dasymys incomtus*	Democratic Republic of the Congo	Fain (1953); Schwetz (1956)		
House mouse *Mus musculus*	Spain	Mascato et al. (1993); Feliu et al. (1985); Castro (1944); Gallego Berenguer (1959)		
	Israel	Wilamowski et al. (2002)		
	Russia	Romašov (1983)		
	Russia	Romašov (1996)		
	Kazakhstan	Plesčev and Kozlov (1978)		
	Turkey	Mertvene (1970)		
	Austria	Juncker et al. (1998)		
Classification	Species	Prevalence (%)	Country/region	References
----------------	---------	----------------	----------------	------------
Long-tailed field mouse (*Apodemus sylvaticus*)	42.7 % (of 166)	Austria (Vienna—zoo)	Juncker-Voss et al. (2000)	
		Switzerland	Höming (1966)	
	80 % (of 5)	Italy	Vanni (1947)	
	5.5 % (of 37)	Italy (Sicily)	Milazzo et al. (2010a)	
	21.2 % (of 52)	Portugal (Azores)	Casanova et al. (1996)	
	19.6 % (10/51)	Portugal (Azores)	Resendes et al. (2009)	
	40.2 % (of 92)	Portugal (Azores)	Perera (2009)	
	22 % (11/50)	Portugal Lisbon Zoo	Crespo (2012)	
		USA	Childs et al. (1988)	
		USA (Maryland)	Luttermoser (1938)	
		USA (Pennsylvania)	Doran (1955)	
	0.9 % (of 110)	Iran	Pakdel et al. (2013)	
	4.6 % (of 410)	Pakistan	Ahmad et al. (2011)	
	2.1 % (1/47)	Bangladesh	Fuehrer et al. (2012)	
	19.1 %	China (Hubei Province)	Zhou et al. (1991)	
	21.1 %	China (Yunnan Province)	Zhou et al. (1998)	
	4.6 %	China (Fujian Province)	Xue et al. (1998)	
	10 %	China (Henan Province)	Lin et al. (2007)	
	10 % (13/130)	Australia (Queensland)	Singleton et al. (1991)	
		Australia release study	Singleton and Chambers (1996)	
	7 % (of 99)	Switzerland (Geneva Canton)	Reperant and Deplazes (2005)	
		Belgium	Bernard (1961)	
		Former UDSSR	Pavlov (1955)	
		Spain	Feliu et al. (1984, 1985, 1987); Mas-Coma and Feliu (1977); Prokopič and Tenora (1975)	
	75 % (of 58)	England	Baylis (1931)	
	100 %	St. Kilda, UK	Canning et al. (1973)	
	18 % (2/11)	UK Shetland Islands	Berry and Tricker (1969)	
		Wales	Wilson et al. (1998)	
		Slovakia	Lewis (1968)	
			Mituch (1966/1970)	
Classification	Species	Prevalence (%)	Country/region	References
----------------	---------	----------------	----------------	------------
Yellow-necked mouse (*Apodemus flavicol lis*)	5.93 % (of 135)	Russia		Romašov (1978, 1996)
	2 cases	Bulgaria		Genov (1984); Prokopič and Genov (1974)
	8.5 % (24/284)	Germany (Saxony-Anhalt)		Schmidt (2001)
	6 cases	Denmark		Tenora et al. (1991)
	1.5 % (of 96)	France (forested area near Dijon)		Scandola et al. (2013)
		Iran		Mbedi and Arfa (1971)
	3.37 % (of 297)	Russia		Romašov (1978)
	0.2 %	Russia (Southern West Siberia)		Chechulin et al. (2011)
	4.27 % (5/117)	Russia (Novosibirsk Region)		Kovačević and Bonina (1981)
		China (Henan)		Wang et al. (2013)
Small Japanese field mouse (*Apodemus argentineus*)		Japan		Chabaud et al. (1963); Ishimoto (1974); Iwaki et al. (1993)
Korean field mouse (*Apodemus peninsulae*)		Japan		Iwaki et al. (1993)
Large Japanese field mouse (*Apodemus speciosus*)		Japan		Iwaki et al. (1993)
Typical striped grass mouse (*Lemniscomys striatus*)		Democratic Republic of the Congo		Fain (1953)
Southern multimammate mouse (*Mastomys coucha*)		Democratic Republic of the Congo		Fain (1953); Schwetz (1956)
Natal multimammate mouse (*Mastomys natalensis*)		Ghana		Papeka et al. (1970)
Jackson's soft-furred mouse (*Praomys jacksoni*)		South Africa		Cochrane et al. (1957)
Tropical Vlei rat (*Otomys tropicalis*)		Democratic Republic of the Congo		Fain (1953)
Table 1 (continued)

Classification	Species	Prevalence (%)	Country/region	References
Creek groov-toothed swamp rat (*Pelomys fallax*)	Democratic Republic of the Congo	Schwetz (1956)		
Bell groov-toothed swamp rat (*Pelomys campanae*)	Guinea	Joyeux et al. (1928)		
Target rat (*Stochomys longicaudatus*)	Democratic Republic of the Congo	Schwetz (1956)		
Ethiopian white-footed mouse (*Stenocephalemys albipes*)	Ethiopia	Farhang-Azad and Schlitter (1978)		
Deomyinae				
Yellow-spo tted brush-furred rat (*Lophuromys flavopunctatus*)	Democratic Republic of the Congo	Schwetz (1956)		
Southern African spiny mouse (*Acomys spinosissimus*)	Zimbabwe	Sandground (1933)		
Cricetidae	Bank vole (*Myodes glareolus*)	Russia	Romašov (1978, 1996)	
		Russia	Romašov (1983)	
		Russia (Southern West Siberia)	Chechulin et al. (2011)	
		Former UDSSR	Pavlov (1955)	
		England	Canning et al. (1973)	
		France (forested area near Dijon)	Scandola et al. (2013)	
		Germany (Saxony-Anhalt)	Schmidt et al. (1998); Schmidt (2001)	
		Switzerland (Geneva Canton)	Reperant and Deplazes (2005)	
		Slovakia	Mituch (1960)	
		Czech Republic	Rupeš (1964)	
		Former UDSSR	Pavlov (1955)	
		Russia (Southern West Siberia)	Chechulin et al. (2011)	
		USA	Fisher (1963)	
		USA	Solomon and Handle (1971)	
		Canada (Alonquin Park)	Freeman and Wright (1960)	
		Japan	Chabaud et al. (1963); Ishimoto (1974); Iwaki et al. (1993)	
		Northern mole vole (*Ellobius talpinus*)	Former UDSSR	Pavlov (1955)
		Zaisan mole vole (*Ellobius tancrei*)	USA	Mentioned in Tinnin et al. (2011)
		Siberian brown lemming (*Lemmus sibiricus*)	Former UDSSR	Morozow (1956)
		USA	Rausch (1961)	
		Southern bog lemming (*Synaptomys cooperi*)	Canada (Alonquin Park)	Freeman and Wright (1960)
			Canada (Alonquin Park)	Freeman and Wright (1960)
			Canada (Ontario)	Price (1931)
		USA	Borucinska et al. (1997)	
		Laboratory infection studies	USA (Pennsylvania and Connecticut)	Borucinska et al. (1993)
Classification	Species	Prevalence (%)	Country/region	References
-------------------------	--------------------------------------	----------------	---------------------------------	-----------------------------
			USA (Louisiana)	Penn (1952)
		17 % (of 104)	USA (Maine)	Meyers and Reilly (1950)
			USA (Michigan)	Ameel (1942)
			Russia	Ramašov (1995, 1996)
			Former CSSR	Tenora and Zavadil (1967)
		4.21 % (of 1,140)	Belgium	Cotteleer et al. (1982)
		1 case (of 440)	Great Britain	Warwick (1937)
Field vole (*M. agrestis*)		3 cases (of 5)	Austria	Frank (1977)
		16.67 % (of 6)	Russia	Ramašov (1983)
		4.5 %	Russia	Ramašov (1978, 1996)
		0.9 % (3/318)	Russia	Chechulin et al. (2011)
Common vole (*M. arvalis*)		4 cases (of 4)	Austria	Fuehrer et al. (2010)
		20.69 % (of 29)	Russia	Ramašov (1983)
Rock vole (*M. chrotorrhinus*)			USA	Fisher (1963)
			Canada	Freeman and Wright (1960); Lubinsky et al. (1971)
Meadow vole (*M. pennsylvanicus*)		9.4 % (of 769)	Canada	Lubinsky et al. (1971)
Tundra vole (*M. oeconomus*)		3.4 %	Russia	Chechulin et al. (2011)
Narrow-headed vole (*M. gregalis*)		1 case	England (zoo)	Redrobe and Patterson-Kane (2005)
Günther's vole (*M. guentheri*)		1.1 % (1/98)	Austria	Fuehrer et al. (2010)
Water vole (*A. terrestris*)		10.4 %	Russia	Chechulin et al. (1989); Ramašov (1978, 1996)
European snow vole (*C. nivalis*)		28.57 % (of 42)	Russia	Ramašov (1983)
		0.2 % (of 466)	Switzerland	Reperant and Deplazes (2005)
		2 cases	England (zoo)	Redrobe and Patterson-Kane (2005)
Brandt's vole (*L. brandti*)			China (Inner Mongolia)	Wan et al. (2007a)
Neotominae	Eastern wood rat (*N. floridana*)	47.1 % (16/34)	USA	Solomon and Handley (1971)
Classification	Species	Prevalence (%)	Country/region	References
----------------	-------------------------------------	----------------	----------------	------------
	Bushy-tailed woodrat (*Neotoma cinerea*)		USA	Rausch (1961)
	Cotton mouse (*Peromyscus gossypinus*)		USA	Layne (1968, 1970); Layne and Winegamer (1971)
	White-footed mouse (*Peromyscus leucopus*)	2.9 % (7/239)	USA	Solomon and Handley (1971)
	Deer mouse (*Peromyscus maniculatus*)	10.2 % (73/713)	USA (lab experiments)	Meagher (1998)
	Florida mouse (*Podomys floridanus*)	12.7 % (21/723)	USA (Florida)	Layne and Griff Jr (1961)
	Reithrodontomyss sp.		USA	King and Stanton (1974)
Cricetinae	Gray dwarf hamster (*Cricetulus migratorius*)		Former UDSSR	Pavlov (1955)
	European hamster (*Cricetus cricetus*)		Austria	Frank (1977)
	Greater long-tailed hamster (*Tscherskia triton*)		China (Henan)	Wang et al. (2013)
	Campbell's dwarf hamster (*Phodopus campbelli*)		China (Inner Mongolia)	Wan et al. (2007a, b)
Sigmodontinae	Northern grass mouse (*Necromys urichi*)		Venezuela	Vogelsang and Espin (1949)
	Hispid cotton rat (*Sigmodon hispidus*)	Freshwater marshes: 30 % (43/142); salt water marshes 12 % (4/34); upland habitats 5 % (1/22)	USA (Texas)	Read (1949); Kinsella (1974)
Gerbillinae	Savanna gerbil (*Gerbilliscus validus*)		Democratic Republic of the Congo	Fain (1953)
	Emir's pouched rat (*Cricetomys emini*)	17.7 %	Democratic Republic of the Congo	Malekani (1990), 1994
	Persian jird (*Meriones persicus*)	6.9 % (11/160)	Armenia	Kirakosjan et al. (1963)
Cricetomyinae	Emin's pouched rat (*Cricetomys emini*)	17.7 %	Democratic Republic of the Congo	Malekani (1990), 1994
	Gambian pouched rat (*Cricetomys gambianus*)	30.8 %	Democratic Republic of the Congo	Chine ne and Ibrahim (1984)
field mice (*A. sylvaticus*) and the bank vole (*M. glareolus*) (Canning et al. 1973).

Conclusions

C. hepaticum is a worldwide-distributed parasite with rodents of the superfamily Muroidea as main hosts. *C. hepaticum* has been described in more than 90 rodent species. Murinae and Arvicolinae are the hosts with the highest prevalences of this parasite. The Norway rat seems to be the most important host species with reported prevalences above 50% on several continents. However, a high percentage of the studies dealt with Norway rats only, and not with less common murid rodents. Especially synanthropic (commensal and non-commensal) Murinae and Arvicolinae seem to be the most affected hosts.

However, the diagnosis of this pathogen is limited to liver biopsies and necropsy and so the true prevalence in Muroidea and other mammals remains unclear. At spurious infections, care should be taken to exclude mix-ups with other Trichuridae and Capillaridae shedding eggs of almost similar morphology (e.g., Bork-Mimm and Rinder 2011; Di Cesare et al. 2011; Stuart et al. 2013; Traversa et al. 2011). Novel (molecular) diagnostic tools for proper (molecular) species classification are of urgent need.

Acknowledgments I wish to thank all authors who provided personal copies of their manuscripts.

Conflict of interest The author declares that he has no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Ahmad MS, Maqbool A, Mahmood-ul-Hassan M, Mushtaq-ul-Hassan M, Anjum AA (2011) *Capillaria hepatica* (Nematode) in rodents of the Lahore Metropolis Corporation—Pakistan. J Anim Plant Sci 21(4):787–793

de Almeida-Silva MJF, del Fava C, Potenza M, Reis F, de Carvalho Campos AE (2011) Diagnosis of *Capillaria hepatica* in *Rattus rattus* by histopathology. Proceedings of the Seventh International Conference on Urban Pests. Instituto Biologico, São Paulo, SP, Brazil

Ameel D (1942) Two larval cestodes from the muskrat. Trans. Amer. Microsc. Soc. 69: 267–271. In: Lubinsky G (1956) On the probable presence of parasitic liver cirrhoses in Canada. Can J Exp Med Vet Sci. 20, 457–465

Apéry S (2012) La capillariose hépatique dans quatre parcs zoologiques en France. Thèse. Doctorat Vétérinaire. La Faculté de Médecine de Créteil. École Nationale Vétérinaire D’Alfort. pp. 104

Araújo P (1967) Helmints de *Rattus norvegicus* (Berkenhout, 1769) da cidade de São Paulo. Rev. Fac. Farm. Bioquim. Universidade de São Paulo 51:141–159.

Baylis HA (1931) On the structure and relationships of the nematode *Capillaria (Hepaticola) hepatica* (BANCROFT). Parasitology 23, 533–543. In: Schmidt S (2001) Untersuchungen zum Vorkommen von *Capillaria hepatica* und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Bernard J (1961) Liste de nematodes parasites des micromammifères de la fauna Belge. Ann. Parasitol. Hum. Comp. 36: 775–784. In: Asakawa M, Tenora F (1996) A checklist of nematode parasites of the genus *Apodemus* (Murinae: Rodentia) throughout the world excluding Japan. J Rakuno Gakuen Univ 20 (2): 181–213

Berry RJ, Tricker BJK (1969) Competition and extinction. The mice of Faula, with notes on those of Fair Isle and St Kilda. J Zool. 158: 247–265. In: Lloyd S, Elwood CM, Smith KC (2002) *Capillaria hepatica* (*Calodium hepaticum*) infection in a British dog. Vet Rec. 151(14):419–20

Bhattacharya D, Sikdar A, Sarma U, Ghosh AK, Biswas G (1998) Concurrent infection of *Capillaria hepatica* and *Cysticercus fasicularis* in rat (*Rattus rattus*)—a preliminary note. Indian Vet J 75(5):486

Bhuiyan AI, Ahmed TA, Khanum H (1995) Endoparasitic helminths of rats and mice from Tangail area. Bangladesh J Sci Res 13(1):75–80

Borucinska JD, Nielsen SW (1993) Hepatic capillariasis in muskrats (*Ondatra zibethicus*). J Wildl Dis 29(3):518–20

Bork-Mimm S, Rinder H (2011) High prevalence of *Capillaria hepatica* in rats and mice from the Kiel area. J Wildl Dis 47:140–6

Brown RJ, Carney WP, van Peenen PFD, Cross JH, Saroso JS (1975) *Capillaria hepatica (Nematode)* in rodents of the Caribbean. J Wildl Dis 11:793

Canning EU, Cox FEG, Croll NA, Lyons KM (1973) The natural history of Slapton Ley Nature Reserve: VI studies on the parasites. Field Studies 3, 681–718. In: Schmidt S (2001) Untersuchungen zum Vorkommen von *Capillaria hepatica* und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Casarosa L, Ghelardoni E (1965) Prime ricerche sulla diffusione della *Capillaria hepatica* in *Rattus norvegicus* (Berkenhout, 1769) da cidades da região do Planalto dos Pireneus. Boll. Zool. 32, 259. In: Crespo APMAM (2012) Controlo de pragas no concelho da cidade de São Paulo. Rev. Fac. Farm. Bioquim. Universidade de São Paulo 51:141–159.

Casanova JC, Miquel J, Fons R, Molina X, Feliu C, Mathias ML, Torres J, Libois R, Santos-Reis M, Collares-Pereira M, Marchand B (1996) On the helminthofauna of wild mammals (Rodentia, Insectivora and Lagomorpha) in Azores Archipelago (Portugal). Vie et Milieu 46(3/4): 253–259. In: Crespo APMAM (2012) Controle de pragas no jardim zoológico de Lisboa particular relevância para o controlo de roedores e sua infecção parasitária. Dissertação de Mestrado em Segurança Alimentar. Faculdade de Medicina Veterinária. Universidade Técnica de Lisboa. pp. 174

Casuosa L, Ghelardoni E (1965) Prime ricerche sulla diffusione della *Capillaria hepatica* (BANCROFT 1893) nei ratti delle chiaviche (*Rattus norvegicus*) della provincia di Pisa. Annali della Facolta di Medicina Veterinaria di Torino 15, 203–205. In: Schmidt S (2001) Untersuchungen zum Vorkommen von *Capillaria hepatica* und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland.
PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig: 145pp.

Castro JG (1944) Contribucin al estudio del parasitismo por helmintos o sus fases larvarias de diversos muridos capturados en Granada. Revista ibérica de parasitología 4, 38–60. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig: 145pp.

Ceruti R, Sonzogni O, Origgio F, Vezzoli F, Cammarata S, Giusti AM, Scanziani E (2001) Capillaria hepatica infection in wild brown rats (Rattus norvegicus) from the urban area of Milan, Italy. J Vet Med B Infect Dis Vet Public Health 48(3):235–40.

Chabaud AG, Rausch RL, Desset MC (1963) Nematodes parasites de rongeurs et insectivores Japonais. B Soc Zool Fr. 88, 489–512. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Chahota R, Asrani RK, Katouch RC, Jithendran KP (1997) Hepatic infection in man; a syndrome of extreme eosinophilia, hepatomegaly and the appearance of Ancylostoma duodenale in the feces in India. Indian J Med Res 105:133–41.

Crespo APMAM (2012) Control de pragas no jardim zoológico de Lisboa particular relevância para o controlo de roedores e sua infecção parasitária. Dissertação de Mestrado em Segurança Alimentar. Faculdade de Medicina Veterinária. Universidade Técnica de Lisboa. pp. 174.

Davis DE (1951) The relation between the level of population and the prevalence of Leptospira, Salmonella and Capillaria in Norway rats. Ecology 32(3):465–468.

Davis DE (1951) The relation between the level of population and the prevalence of Leptospira, Salmonella and Capillaria in Norway rats. Ecology 32(3):465–468.

Davoust B, Boni M, Branquet D, Ducos de Lahitte J, Martet G (1997) Recherche de trois infestations parasitaires chez des rats capturés à Marseille: évaluation du risque zoosnoque. B Acad Nat Med Paris 181: 887–897. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Di Cesare A, Castagna G, Meloni S, Milillo P, Latrofa S, Otranto D, Traversa D (2011) Canine and feline infections by cardiopulmonary nematodes in central and southern Italy. Parasitol Res 109(Suppl 1): S87–96. doi:10.1007/s00436-011-2405-5.

Dissanaike AS, Parananathan DC (1961) On Capillaria hepatica infection in the Ceylon bandicoot (Bandicota malabarica). The Ceylon Veterinary journal 9: 9–11. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Duque BA, Aranzazu D, Agudelo-Flórez P, Londoño AF, Quiroz VH, Davies DJ, Kaplan JB, Vanasco NB, Reeves WK, Purcell RH, Davis DE (2004) The epizootiology of Capillaria hepatica and Taenia taeniaeformis in a grocery trade center of Medellin, Colombia. Biomedical. 32(4):510–8. doi:10.1590/S0120-41572012000400006. Spanish.

Easterbrook JD, Kaplan JB, Vanasco NB, Reeves WK, Purcell RH, Davis DE (2004) The epizootiology of Capillaria hepatica and Taenia taeniaeformis in a grocery trade center of Medellin, Colombia. Biomedical. 32(4):510–8. doi:10.1590/S0120-41572012000400006. Spanish.

El-Nassery SF, El-Gebali WM, Oweis NY (1991) Capillaria hepatica: an experimental study of infection in white mice. J Egypt Soc Parasitol 21:467–478.
Erhardová B (1956) Parasitičtý červí nasich mysovyticích hladovec II. Českolov. Parasitol. 3: 49–66. In: Asakawa M, Tenora F (1996) A checklist of nematode parasites of the genus Apodemus (Murinae: Rodentia) throughout the world excluding Japan. J. Rakuno Gakuen Univ 20 (2): 181–213

Erhardová B, Ryšavý B (1955) Přispěvek k poznání cizopasných červů naších myší a hraních. Zoologicke a entomologicke listy 4: 71–90. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Fain A (1953) Observations sur Hepaticola hepatica (BANCROFT, 1893) Hall 1916 au Congo, Belge. Ann Soc Belg Med Tr 33:107–117

Fain A (1955) Deux nouveaux hôtes pour Hepaticola hepatica (BANCROFT) au Ruanda-Urundi. Rev Zool Bot Afr 51:11–12

Farhang-Azad A (1977a) Ecology of Capillaria hepatica (BANCROFT, 1893) (Nematoda). I. Dynamics of infection among Norway rat populations of the Baltimore Zoo, Baltimore, Maryland. J Parasitol 63:117–122

Farhang-Azad A (1977b) Ecology of Capillaria hepatica (BANCROFT, 1893) (Nematoda). II. Egg-Releasing mechanisms and transmission. J Parasitol 63:701–706

Farhang-Azad A, Schlitter DA (1978) Capillaria hepatica in small mammals collected from Shoa Province, Ethiopia. J Wildl Dis 14: 358–361

Felic J, Mas-Coma S, Gallego Berenguer J, Gallego J, Mas-Coma S (1984) Contribution al coneixement de la Helminto fauna de micromamiferos iberics. VIII. Nuevos datos sobre parasites de Apodemus sylvaticus LINNAEUS, 1758 (Rodentia: Muridae). Revista Iberica de Parasitologia 44, 109–128. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Felic J, Mas-Coma S, Gallego J (1985) Conexements actuels sobre l'helminthe fauna parasita dels mirids (Rodentia) a Catalunya. Butlleti de la Institutio Catalan d'Historia Natural, Filial de l'Institut d'Estudis Catalans 50: 255–261. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Felic J, Gracenea M, Torregrosa M, (1987) Ecological evaluation of the helminth parasites of Apodemus sylvaticus (Rodentia: Muridae) in the Spanish Eastern Pyrenees. In: Asakawa M, Tenora F (1996) A checklist of nematode parasites of the genus Apodemus (Murinae: Rodentia) throughout the world excluding Japan. J. Rakuno Gakuen Univ 20 (2): 181–213

Ferreira LA, Andrade ZA (1993) Capillaria hepatica: a cause of septal fibrosis of the liver. Mem I Oswaldo Cruz 88: 441–447

Firloate WA (1948) A survey of the parasites of the brown Norway rat. Cand J Comp Med 12:187–191

Fisher RL (1963) Capillaria hepatica from the rock vole in New York. Journal of parasitology 49, 450. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Frank C (1977) Kleinsäugerhelminten im Neusiedlerseegebiet. Angewandte Parasitologie 18:206–216

Freeman RS (1958) On the epizootiology of Capillaria hepatica (BANCROFT, 1893) in Algonquin Park, Ontario. J Parasitol 44: 33. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Fuehrer HP, Schneider R, Walochnik J, Auer H (2010) Extraintestinal helminths of the common vole (Microtus arvalis) and the water vole (Arvicola terrestris) in Western Austria (Vorarlberg). Parasitol Res 106(4):1001–4. doi:10.1007/s00436-010-1753-x

Fuehrer HP, Igel P, Auer H (2011) Capillaria hepatica in man—an overview of hepatic capillariosis and spurious infections. Parasitol Res 109(4):969–79. doi:10.1007/s00436-011-2494-1

Fuehrer HP, Baumann TA, Riedl J, Treiber M, Igel P, Swoboda P, Joachim A, Noedl H (2012) Endoparasites of rodents from the Chittagong Hill Tracts in Southeastern Bangladesh. Wien Klin Wochenschr 124(Suppl 3):27–30. doi:10.1007/s00508-012-0237-7

Fuehrer HP (2013) An overview on the host spectrum and distribution of Calodium hepaticum (syn. Capillaria hepatica): part 2—Mammalia (excluding Muroidea). Parasitol Res (accepted)

Galgleo Berenguier J (1959) Parasitismo vermidiano de los müridos españoles. Revista de sanidad e higiene publica 33, 169–208. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Galvão VA (1981) Estudos sobre Capillaria hepatica: uma avaliação do seu papel patogênico para o homem. Mem Inst Oswaldo Cruz 76(4): 415–433

Genov T (1984) Helminths of insectivores and rodents in Bulgaria. Publishing House of the Bulgarian Academy of Sciences, Sofia, Bulgaria: pp 348. In: Asakawa M, Tenora F (1996) A checklist of nematode parasites of the genus Apodemus (Murinae: Rodentia) throughout the world excluding Japan. J. Rakuno Gakuen Univ 20 (2): 181–213

Ghelardoni E (1966) Infestazione da Capillaria hepatica (BANCROFT, 1893) nei muri del della provincia di Pisa. Ann Fac Medic Veterina Parma 18: 91–100. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Guardone L, Deplazes P, Macchioni F, Magi M, Mathis A (2013) Ribosomal and mitochondrial DNA analysis of Trichuridae nematodes of carnivores and small mammals. Vet Parasitol. doi:10.1016/j.vetpar.2013.06.022

Hall MC (1916) Nematode parasites of the orders Rodentia, Lagomorpha and Hyracoidea. Proc US Natl Mus 50: 1–258

Hancke D (2011) Endoparasitos de Rattus norvegicus en un ambiente urbano marginal de la ciudad de Buenos Aires. Mastozool Neotrop 18(1):147–148

Harkema R (1936) The parasites of some North Carolina rodents. Ecol Monogr. 6: 153–232. In: Lubinsky G (1956) On the probable presence of parasitic liver cirrhoses in Canada. Can J Comp Med Vet Sci. 20: 457–465

Herman CM (1939) A parasitological survey of wild rats in New York Zoological Park. Zoologica 24: 305–308. In: Lubinsky G (1956) On the probable presence of parasitic liver cirrhoses in Canada. Can J Comp Med Vet Sci. 20: 457–465

Herman TB (1981) Capillaria hepatica (Nematoda) in insular populations of deer mouse Peromyscus maniculatus: Cannibalism or competition for carcasses? Can J Zool. 59: 776–784. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Hörning B (1966) Die Helminthenfauna der Nagetiere (Rodentia, Simplicidentia) der Päläarktis, unter Berücksichtigung ihrer Faunistik und ihrer Übertragungsmöglichkeiten auf den Menschen.
Lubinsky G (1956) On the probable presence of parasitic liver cirrhoses in Canada. Can J Comp Med Vet Sci 20:457–465
Lubinsky G (1957) List of helminths from Alberta rodents. Can J Zool. 35: 623–627. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.
Lubinsky G, Jacobsen BR, Baron RW (1971) Wildlife foci of Capillaria hepatica infections in Manitoba. Can J Zool. 49: 1201–1202. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Luttermoser GW (1936) A helminthological survey of Baltimore house rats (Rattus norvegicus). Amer. J. Hyg. 27:321–340. In: Seo BS, Rim HJ, Lee CW, Yoon JS (1964) Studies on the parasitic helminths of Korea. Il. Parasites of the rat, Rattus norvegicus Erxl. In Seoul, with the description of Capillaria hepatica (Bancroft, 1893) Travassos, (1915). Kisaengchungah Chapchi. 2(1):55–62
Luttermoser GW (1937) Resistance of rats and mice to infection with Capillaria hepatica. (American Society of Parasitologists, Program and abstracts of the thirteenth annual meeting). J. Parasitol. 23: 547–574. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.
Luttermoser GW (1938) An experimental study of Capillaria hepatica in the rat and the mouse. The Am J Hyg 27:321–340. In: Malekani M (1990) Studies on hepatic capillaritis and on the genus Meggittina (Cestoda) of Cricetomys spp.;—some of the edible rodents in Zaire. Antwerp: Prince Leopold Institute of Tropical Medicine (M.Sc. Thesis): pp136.
Malekani M, Kumar V, Pandey VS (1994) Hepatic capillaritis in edible Cricetomys spp. (Rodentia: Cricetidae) in Zaire and its possible public health implication. Ann Trop Med Parasit 88:569–572
Malsawmthuang C, Tandon V (2009) Helminth parasite spectrum in rodent hosts from bamboo growing areas of Mizoram, North-East India. J Parasit Dis 33(1–2):28–35. doi:10.1007/s12639-009-0004-5
Mascato FA, Rey J, Bos J, Peris D, Paniagua E, Blanco P (1993) Parasitos Capillariae (Nematoda) de algunas especie de micromamiferos gallegos. NACC-Bioloxia 4:111–120
Mas-Coma S, Feliu C (1977) Contribucion al conocimiento de la helmintofauna de micromamiferos Ibericos. IV . Parasitos de rodent hosts from bamboo growing areas of Mizoram, North-East India. J Parasit Dis 33(1–2):28–35. doi:10.1007/s12639-009-0004-5
Meagher S (1998) (Berkhenhut, 1769) in the city of Palermo, Italy. Helminthologia 47(4):238–240
Min HK (1979) Prevalence of Capillaria hepatica among house rat in Seoul. Korean J Parasitol 17(2):93–97
Mishra GS, Gonzalez JP (1975) Bilan d’une étude sur les endoparasites du rat, Rattus norvegicus Berkhouten, 1769, à Tunis. Archs Inst. Pasteur Tunis, 52: 71–87. In: Justine JL (1989) Liste des Capillaria (Nematoda, Capillariinae) parasites de Mammiferes africains. Bull. Mus. Natn. Hist. Nat. Paris, 11(4): 755–762
Mituch J (1960) Zur Verbreitung der Helminthen bei der Nordischen Ratte (Rattus norvegicus ERXL.) in der Slowakei.Helminthologia 2: 114–132. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Mituch J (1966/1970) Helmontofoana drobných cizcovic v mäsožračov TANAP. In Report of Helminthological Institute Slovak Academy of Sciences, Košice: 85–117. In: Asakawa M, Tenora F (1996) A checklist of nematode parasites of the genus Apodenus (Muriniae: Rodentia) throughout the world excluding Japan. J. Rakuno Gakuen Univ 20 (2): 181–213
Mobedi H, Arfaa F (1971) Probable role of ground beetles in the transmission of Capillaria hepatica. J. Parasitol. 57: 1144–1145. In: Asakawa M, Tenora F (1996) A checklist of nematode parasites of the genus Apodenus (Muriniae: Rodentia) throughout the world excluding Japan. J. Rakuno Gakuen Univ 20 (2): 181–213
Momma K (1930) Notes on modes of rat infestation with Hepaticola hepatica. Ann. Trop. Med. and Parasitol. 24(1): 109–113. In: Seo BS, Rim HJ, Lee CW, Yoon JS (1964) Studies on the parasitic helminths of Korea. II. Parasites of the rat, Rattus norvegicus Erxl. In Seoul, with the description of Capillaria hepatica (Bancroft, 1893) Travassos, (1915). Kisaengchungah Chapchi. 2(1):55–62
Moravec F (1982) Proposal of a new systematic arrangement of nematodes of the family Capillariidae. Folia Parasitol (Praha) 29(2):119–32
Moreira VLC, Giese EG, da Silva DCB, de Vasconcelos Melo FT, Furtago AP, Maldonado A Jr, dos Santos JN (2013) Calodium hepaticum (Nematoda: Capillariidae) in synanthropic rodents (Rattus norvegicus and Rattus rattus) in Eastern Amazonia. Rev Bras Parasitol Vet Jaboticabal 22(2):265–269
Moroizow JUF (1956) K poznaniyu gel'mintofany gryzinov i nasekomojadnych SSR i opyt ee ekoologo-geografeskogo analiza. Diss. biol. Wiss. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.
Mulkit S, Cheong CH (1971) On a collection of nematode parasites from Malayans rats. Southeast Asian J Trop Med Public Health 2: 516–522. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.
Nakamura K, Kobashi S (1935) Die Arten der Ratten in Chosen – insbesondere in Keijo und Jinsen) und die bei ihnen gefundenen Ekto- sowie Entoparasiten. Jour. Chosen Med. Assoc. 25(5): 183–184. In: Seo BS, Rim HJ, Lee CW, Yoon JS (1964) Studies on the parasitic helminths of Korea: II. Parasites of the rat, Rattus norvegicus Erxl. In Seoul, With the description of Capillaria hepatica (Bancroft, 1893) Travassos, (1915). Kisaengchungah Chapchi. 2(1):55–62
Namue C, Wongsawad C (1997) A survey of helminth infection in rats (Rattus norvegicus) in Nsukka, Eastern Nigeria. Animal Research International 6(3):1040–1044

© Springer
Owen D (1976) Some parasites and other organisms of wild rodents in the vicinity of an SPF unit. Lab Anim 10(3):271–8

Pakdel N, Naem S, Rezaei F, Chalehchaleh AA (2013) A survey of helminth infection in mice (Mus musculus) and rats (Rattus norvegicus and Rattus rattus) in Kermanshah, Iran. Vet Res Forum 4(2):105–109

Paperna I, Furman DP, Rothstein N (1970) The parasite fauna of rodents from urban and suburban areas of Accra-Tema, South Ghana. Revue Zool. Bot. Afr. 81: 330–336. In: Justine JL (1989) Liste des Capillaria (Nematoda, Capillarinae) parasites de Mammiferes africains. Bull. Mus. Natn. Hist. Nat, Paris, 11(4): 755–762

Paramasvaran S, Sani RA, Hassan L, Hanjeet K, Krishnasamy M, John J, Santhana R, Sumam MG, Lim KH (2009) Endo-parasitic fauna of rodents caught in five wet markets in Kuala Lumpur and its potential zoonotic implications. Trop Biomed 26(1):67–72

Paraschica CL, Panja G, Bhaduri D, Chattopadhyay UK, Bera AK, Sikdar A (2009) Estudo da helmintofauna de Rattus norvegicus – helminth infection in mice (Mus musculus) and rats (Rattus norvegicus and Rattus rattus) in Kermanshah, Iran. Vet Res Forum 4(2):105–109

Patel AK, Bhattachaiya D, Chattopadhyay UK, Bera AK, Sikdar A (2004) Capillariasis in rats: prevalence and pathological evaluation. J. Vet. Parasitol. 111: 89–90. In: Goswami R (2012) Studies on North American helminths of the genus Capillaria (syn. Capillaria hepatica) in captive rodents in a zoological garden. J Comp Pathol 133(1):73–6

Pereira VMM (2009) Estudo da helmintofauna de Rattus norvegicus – helminth infection in mice (Mus musculus) and rats (Rattus norvegicus and Rattus rattus) in Kermanshah, Iran. Vet Res Forum 4(2):105–109

Pavlov AV (1955) Biologia nematody Hepaticola hepatica i osobennosti epizootologii vyyzyvаемого eju zbolebanja pu,nych zverej. Moskau, Avtoref. dis. kand. biol, nauk. 27. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Patel AK, Bhattachaiya D, Chattopadhyay UK, Bera AK, Sikdar A (2004) Capillariasis in rats: prevalence and pathological evaluation. J. Vet. Parasitol. 111: 89–90. In: Goswami R (2012) Studies on North American helminths of the genus Capillaria (syn. Capillaria hepatica) in captive rodents in a zoological garden. J Comp Pathol 133(1):73–6

Reperant LA, Deplazes P (2005) Cluster of Capillaria hepatica infections in non-commensal rodents from the canton of Geneva, Switzerland. Parasitol Res 96(5):340–3.

Rausch R (1961) Notes on the occurrence of Capillaria hepatica (BANCROFT, 1893). P Helm Soc Wash. 28: 17–18. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Read CP (1949) Studies on North American helminths of the genus Capillaria ZEDER, 1800 (Nematoda): I. Capillarids from mammals. J Parasitol 35:223–230

Redrove SP, Patterson-Kane JC (2005) Calodium hepaticum (syn. Capillaria hepatica) in house mice (Mus musculus) in the Azores archipelago. Vet Parasitol 160(3–4): 340–4. doi:10.1016/j.vetpar.2008.11.001

Roberts M (1990) The ecological parasitology of the Polynesian rat (Rattus exulans) on Tiritiri Matangi Island. Unpublished Ph.D. thesis. University of Auckland, Auckland, New Zealand. In: Mckenna PB (1997) Checklist of helmint parasites of terrestrial mammals in New Zealand. New Zeal J Zool. 24:277–90.

Rojas A, Villarroel F, Diaz F, Rubio P, Schenone H (1971) Investigación de la helminthofauna de Rattus norvegicus – helminth infection in mice (Mus musculus) and rats (Rattus norvegicus and Rattus rattus) in Kermanshah, Iran. Vet Res Forum 4(2):105–109

Paperna I, Furman DP, Rothstein N (1970) The parasite fauna of rodents from urban and suburban areas of Accra-Tema, South Ghana. Revue Zool. Bot. Afr. 81: 330–336. In: Justine JL (1989) Liste des Capillaria (Nematoda, Capillarinae) parasites de Mammiferes africains. Bull. Mus. Natn. Hist. Nat, Paris, 11(4): 755–762

Rausch R (1961) Notes on the occurrence of Capillaria hepatica (BANCROFT, 1893). P Helm Soc Wash. 28: 17–18. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Read CP (1949) Studies on North American helminths of the genus Capillaria ZEDER, 1800 (Nematoda): I. Capillarids from mammals. J Parasitol 35:223–230

Rausch R (1961) Notes on the occurrence of Capillaria hepatica (BANCROFT, 1893). P Helm Soc Wash. 28: 17–18. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Read CP (1949) Studies on North American helminths of the genus Capillaria ZEDER, 1800 (Nematoda): I. Capillarids from mammals. J Parasitol 35:223–230

Reperant LA, Deplazes P (2005) Cluster of Capillaria hepatica infections in non-commensal rodents from the canton of Geneva, Switzerland. Parasitol Res 96(5):340–3.

Rausch R (1961) Notes on the occurrence of Capillaria hepatica (BANCROFT, 1893). P Helm Soc Wash. 28: 17–18. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Rausch R (1961) Notes on the occurrence of Capillaria hepatica (BANCROFT, 1893). P Helm Soc Wash. 28: 17–18. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Rausch R (1961) Notes on the occurrence of Capillaria hepatica (BANCROFT, 1893). P Helm Soc Wash. 28: 17–18. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Rausch R (1961) Notes on the occurrence of Capillaria hepatica (BANCROFT, 1893). P Helm Soc Wash. 28: 17–18. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.
Romašov BV (1996) Ecological connections in life cycle Capillaria hepatica (BANCROFT, 1893) (Nematoda: Trichocephalida). Abstracts VII European Multicoloquium of Parasitology (EMOP VII) 1996. Parasitologia 38, 20. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität, Veterinärmedizinische Fakultät, Leipzig: 145pp.

Roque MM, Mendonça MM, Marcos MV, Lopes FJ (1984) Endoparasitas encontrados no rato cinzento (Rattus norvegicus Berg.) da zona de Lisboa. Revista Portuguesa de Doenças Infecciosas 7(2): 101–109. In: Crespo APAM (2012) Controlo de pragas no jardim zoológico de Lisboa particular relevância para o controlo de roedores e sua infecção parasitária. Dissertação de Mestrado em Segurança Alimentar. Faculdade de Medicina Veterinária. Universidade Técnica de Lisboa. pp. 174

Roque MM (1989) Fauna helminthológica de vertebrados terrestres da Ilha de S. Miguel (Açores). Dissertação de Doutoramento em Biologia. Universidade dos Açores. In: Crespo APAM (2012) Controlo de pragas no jardim zoológico de Lisboa particular relevância para o controlo de roedores e sua infecção parasitária. Dissertação de Mestrado em Segurança Alimentar. Faculdade de Medicina Veterinária. Universidade Técnica de Lisboa. pp. 174

Rupeš V (1964) Parasititiči červi u Apodemus flavicolis a Clethrionomyss glareolus z okoli Prhá. Československa parasitologie 11: 335–338. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Rydlo M (1966): Beitrag zur Kenntnis der Parasitenfauna der Wanderratte Rattus norvegicus (BERKENHOUT, 1769).- Wien, Univ., Philosoph. Fak., Diss.

Sandground JH (1933) Parasitic nematodes from East Africa and Southern Rhodesia. Bull Mus Comp Zool Harvard Univ. 75: 263–293. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Sato A, Shimatani T (1960) Studies on Capillaria hepatica (BANCROFT, 1893) in Malaysia. J Helminthol 53:147–152.

Scandola P, de Biasi C, Davoust B, Marié JL (2013) Prevalence of Sandground JH (1933) Parasitic nematodes from East Africa and

Sharma D, Joshi S, Vatsya S, Yadav CL (2012) Prevalence of gastrointestinal helmint infections in rodents of Tarai region of Uttarakhand. J Parasit Dis.: 1–4.

Shimataki T (1961) Studies on the ecology of Capillaria hepatica eggs. Journal of Kyoto Prefectural Medical University 69: 1063–1083. Japanese. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig: 145pp.

Shorb DA (1931) Experimental infestation of white rats with Hepaticola hepatica. J Parasitol. 17: 151–154. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig: 145pp.

Simmons DJC, Walkey M (1971) Capillaria and Hymenolepis in a wild rat: hazards to barrier-maintained laboratory animals. Lab Anim 5:49–55

Singleton N, Singla LD, Gupta K, Sood NK (2013) Pathological alterations in natural cases of Capillaria hepatica infection alone and in concurrence with Cysticercus fasciolaris in Bandicota bengalensis. J Parasit Dis 37(1):16–20

Singleton GR, Spratt DM, Barker SC, Dodgson PF (1991) The geographic distribution and host range of Capillaria hepatica (BANCROFT) (Nematoda) in Australia. Int J Parasitol 21:945–957

Singleton GR, Chambers LK (1996) A manipulative field experiment to examine the effect of Capillaria hepatica (Nematoda) on wild mouse populations in southern Australia. Int J Parasitol 26:383–398

Sinniah B, Singh M, Anuar K (1979) Preliminary survey of Capillaria hepatica (BANCROFT, 1893) in Malaysia. J Helminthol 53:147–152

Solomon GB, Handley CO (1971) Capillaria hepatica (Bancroft, 1893) in Appalachian mammals. J Parasitol 57(5):1142–4

Sommanshi R, Bhattacharya D, Laha R, Rangarao GSC (1995) Spontaneous Capillaria hepatica infestation in wild rats (Rattus rattus). Indian J Vet Pathol. 19, 44–45. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig: 145pp.

Spratt DM, Singleton GR (1986) Studies on the life cycle, infectivity and clinical effects of Capillaria hepatica (BANCROFT) (Nematoda) in mice, Mus musculus. Aust J Zool. 34: 663–675. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig: 145pp.

Spratt DM, Singleton GR (1986) Studies on the life cycle, infectivity and clinical effects of Capillaria hepatica (BANCROFT) (Nematoda) in mice, Mus musculus. Aust J Zool. 34: 663–675. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig: 145pp.

Steppan S, Adams R, Anderson J (2004) Phylogeny and divergence-date estimates of rapid radiations in muruid rodents based on multiple nuclear genes. Syst Biol 53(4):533–53

Stojcević D, Marinčulić A, Mihaljević Ž (2002) Prevalence of Capillaria hepatica in Norway rats (Rattus norvegicus) in Croatia. Vet archiv 72(3):141–149

Storer TJ (1962) Pacific island rat ecology. Bernice P. Bishop Museum, Honolulu Bull. 225, 274pp. In: Farhang-Azad A, Schlitter DA (1978) Capillaria hepatica in small mammals collected from Shoa Province, Ethiopia. J Wildl Dis.14: 358–361
Yagisawa M (1978) Studies on zoonotic helminths from mammals in Northern Honshu, Japan. Hirosaki Medical Journal 2(30): 239–284

Yang ZH, Lu KH (2000) Survey of Angiostrongylus cantonensis and Capillaria hepatica in field rodents in Taiwan. Taiwan J Vet Med Anim Husb 70:51–57

Yi JY, Kim YH, Kim HC, Hahn TW, Jeong H, Choi CU, Woo GH, Kim YB, Han JH, Yoon BI (2010) Prevalence of hepatic parasites in Korean wild rats (Rattus norvegicus) and their association with pulmonary arteriolar medial hypertrophy. Vet Pathol 47(2):292–7. doi:10.1177/0300985809359306

Yuan GL, Li XY, Chen WJ (2000) Investigation on Rattus losea infected with Capillaria hepatica in Ningde. Zhongguo Meijie Shengwuxue Ji Kongzhi Zazhi 11: 301–302. In: Li CD, Yang HL, Wang Y (2010) Capillaria hepatica in China. World J Gastroenterol. 16(6):698–702

Zhang LY, Huang JY, Yang FZ (2003) Investigate on rats infected with Capillaria hepatica in Jiangle. Zhongguo Jishengchoubing Fangzhi Zazhi 16: 19–20. In: Li CD, Yang HL, Wang Y (2010) Capillaria hepatica in China. World J Gastroenterol. 16(6):698–702

Zhou XM, Zhang GF, Li C, Li FH, Yin ZH, Yang JL, Su P (1998) Investigation on rats infected with Capillaria hepatica in Kunming. Zhongguo Renshou Gonghuaping Zazhi 14: 33. In: Li CD, Yang HL, Wang Y (2010) Capillaria hepatica in China. World J Gastroenterol. 16(6):698–702

Zhou ZL, Wu HY, Mao XP, Fang ZM (1991) Investigate the infection rate of Capillaria hepatica on rats. Zhongguo Bingyuan Shengwuxue Zazhi 4: 225. In: Li CD, Yang HL, Wang Y (2010) Capillaria hepatica in China. World J Gastroenterol. 16(6):698–702