Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation

Grigoris Georgolopoulos1,2,5✉, Nikoletta Psatha1,5, Mineo Iwata1, Andrew Nishida1, Tannishtha Som1, Minas Yiangou2, John A. Stamatoyannopoulos1,3,4 & Jeff Vierstra1

Lineage commitment and differentiation is driven by the concerted action of master transcriptional regulators at their target chromatin sites. Multiple efforts have characterized the key transcription factors (TFs) that determine the various hematopoietic lineages. However, the temporal interactions between individual TFs and their chromatin targets during differentiation and how these interactions dictate lineage commitment remains poorly understood. Here we perform dense, daily, temporal profiling of chromatin accessibility (DNase I-seq) and gene expression changes (total RNA-seq) along ex vivo human erythropoiesis to comprehensively define developmentally regulated DNase I hypersensitive sites (DHSs) and transcripts. We link both distal DHSs to their target gene promoters and individual TFs to their target DHSs, revealing that the regulatory landscape is organized in distinct sequential regulatory modules that regulate lineage restriction and maturation. Finally, direct comparison of transcriptional dynamics (bulk and single-cell) and lineage potential between erythropoiesis and megakaryopoiesis uncovers differential fate commitment dynamics between the two lineages as they exit the stem and progenitor stage. Collectively, these data provide insights into the temporally regulated synergy of the cis- and the trans-regulatory components underlying hematopoietic lineage commitment and differentiation.
The temporal activation of stage-specific regulatory DNA instructs lineage specific gene expression programs that underpin cellular fate and potential. The establishment and maintenance of regulatory DNA is mediated by the combinatorial engagement of sequence-specific transcription factors (TFs) that bind in the place of a canonical nucleosome. Over the course of cellular differentiation programmed shifts in the global transcription factor milieu drive extensive re-organization of chromatin, where silencing of regulatory DNA associated with alternate lineage and the de novo activation of lineage-restricted elements result in the narrowing of the epigenetic and functional landscape. However, it is unclear how and when regulatory DNA is dynamically activated and silenced during cell state transitions to establish restricted gene expression programs and how these epigenetic changes relate to developmental potential.

Hematopoiesis is a prototypical system to study how genetically and epigenetically encoded programs are established during cellular differentiation. Conventionally, hematopoiesis is depicted as a discrete hierarchical process where a multipotent hematopoietic stem and progenitor cell (HSPC) traverses a sequence of bifurcating decisions, mediated by the expression of lineage-specific TFs, with each decision resulting in an increasingly restricted fate potential. Historically, the characterization of the gene regulatory programs involved in the transition from HSPCs to terminal fates has relied on the identification of differential transcriptional programs from isolated discrete populations using defined cell surface markers. While this approach has led to the identification of master regulatory transcription factors that define many of the major hematopoietic cell lineages and has enabled a systematic mapping of their steady-state regulatory landscapes, interrogation of discretely defined populations cannot elucidate the dynamic regulatory events that mark cell-state transitions.

Recently, single-cell chromatin and transcriptional profiling assays have attempted to resolve the spatio-temporal cis- and trans- dynamics in different stages of hematopoiesis. These studies have largely relied on the analysis of either bulk or immunophenotypically isolated populations of steady-state peripheral blood or bone marrow derived cells, whereby hierarchical relationships and developmental trajectories between cell states are predicted computationally. While such experimental approaches have aided in defining major subpopulations of hematopoietic cells and their respective epigenetic and transcriptional landscapes, definition of developmental trajectories within individual lineages from population snapshots is challenging due to the limited sensitivity and the resulting technical and analytical artifacts associated with single-cell genomic assays.

Additionally, because developmental trajectories are predicted in silico, direct association of functional changes (i.e., lineage potential) to intermediate cellular states is not possible.

In order to investigate the dynamics of regulatory and functional events during differentiation, we use erythropoiesis as a proxy for hematopoietic development. The transition from HSPCs to terminally differentiated enucleated red blood cells involves a series of morphologically, functionally, and phenotypically distinguishable states. Multiple efforts relying on the isolation of these states have exhaustively characterized key transcriptional regulators and chromatin elements implicated in erythropoiesis. However, a general understanding of the temporal interplay between individual cis- and trans- elements and how these establish stage-specific transcriptional programs and lineage commitment during hematopoiesis remains rudimentary. Furthermore, because erythrocytes share their developmental origins with other myeloid lineages (granulocytic/monocytic and megakaryocytic), erythropoiesis represents an ideal system to study how lineage choice is genetically and epigenetically encoded.

Here, we capitalize on the ex vivo human differentiation scheme where dense unbiased sampling of the populations captures the dynamics of chromatin accessibility and gene expression during differentiation with a completely defined developmental trajectory. DNase I-seq and gene expression profiling (bulk and single cell) time-course during erythropoiesis coupled with lineage potential assays and morphological characterization, enabled the assignment of distal elements (alone or in combination) to target genes and individual TFs to their target DHSs which collectively comprise discrete regulatory modules associated with lineage potential. Comparing the activity patterns of the TF regulatory modules in the erythroid lineage to the closely related megakaryocytic lineage, provides insights into how these modules instruct lineage commitment. Collectively, our findings provide key insights into the organization of the functional epigenetic landscape during hematopoietic differentiation and its relation to lineage-potential.

Results

A temporal atlas of chromatin and transcriptional dynamics. Human erythropoiesis was induced ex vivo for 12 days using an established differentiation protocol that faithfully recapitulates the major features of in vivo erythropoiesis. Starting from human adult-derived mobilized peripheral blood CD34+ enriched HSPCs from 3 healthy donors we cultured the cells in defined media for 12 days (Fig. 1a and Methods). Characteristic features of developing erythroblast cells were confirmed by immunophenotyping using canonical cell-surface markers of early (CD117, C-Kit) and late (CD235a, Glycoprotein A) erythropoiesis as well as morphologically by hematoxylin-eosin staining of cell smears (Supplementary Fig. 1).

To densely map both chromatin accessibility and transcriptional dynamics during the transition from HSPCs to committed erythroblasts, we subsampled a single continuous culture each day (12 days) and performed DNase I-seq analysis and total RNA-seq (Fig. 1a). Biological replicates from CD34+ HSPCs from 3 donors were highly reproducible for both chromatin accessibility and gene expression profiles where the majority of the observed variability was accounted for by developmental trajectory (i.e., sampling days) (Fig. 1b, c and Supplementary Fig. 2a), as biological replicates were highly correlated (Supplementary Fig. 2b, c). For many individual DHSs and genes, we observed quantitative changes in chromatin accessibility and expression over the course of differentiation highlighted by quantitative trajectories of opening or closing (Fig. 1d, e). Notably, accessibility changes were mostly confined to compact regions of the genome (~200 bp average DHS width). In many cases, we observed both opening and closing events within close proximity (Fig. 1d), indicating focal regulation of chromatin structure in contrast to previous reports that chromatin changes during differentiation occur over large domains.

To systematically identify developmentally responsive cis-elements, we leveraged the observed continuity of DHS signal over adjacent days (Fig. 1d) and modeled DNase I cleavage density against differentiation time-points (Methods). We determined significance by comparing our full model to a reduced model (intercept-only; not accounting for developmental time) and performing a likelihood ratio test (Methods). Of the total 79,085 DHSs accessible in 2 or more samples/replicates, we conservatively identified 11,805 (14.9%) significantly changing DHSs (adjusted \(p < 10^{-5} \) and fold-change >2), nearly evenly grouped between activated and silenced (45% and 55%, respectively) (Supplementary Data 1). A similar analytical approach applied to the RNA expression data identified 5769 developmentally regulated genes (adjusted \(p < 10^{-5} \) and fold-change >2), of which 62% upregulated...
and 38% downregulated over the course of differentiation (Supplementary Data 2). Collectively, these data define a high-resolution and quantitative map of chromatin and gene expression dynamics during erythroid differentiation.

Stage-specific cis- and trans- regulatory compartments. PCA indicated that days 5–6 were associated with a critical developmental inflection point during ex vivo differentiation (Fig. 1b, c). We therefore sought to characterize the relationship between temporal chromatin and gene expression dynamics with regards to the observed immunophenotypic and morphological changes present in the population of differentiating cells. We performed unsupervised clustering (K-means; \(k = 5 \)) on dynamically changing DHSs and developmentally responsive transcripts (Fig. 2a, b). This analysis revealed a stark partitioning of activated and silenced genes and DHSs into non-overlapping sets that closely paralleled canonical developmental features of erythropoiesis. Particularly, DHSs rapidly silenced within the first days of differentiation (clusters E1 and E2) were found to preferentially harbor binding sequences utilized by the known HSPC regulators such as (HOXA9\(^{26}\), RUNX\(^{27}\), and ERG\(^{28}\)) (Supplementary Fig. 3). Similarly, immediately downregulated transcripts upon induction of differentiation (cluster G1) include these transcription factors as well as structural genes characteristic of CD34\(^{+}\) HSPCs (Fig. 2b). Consistent with PCA (Fig. 1b, c), a rapid and marked turnover of chromatin and gene expression landscape is observed between days 5–7 where an early erythroid signature appears in both activated DHSs and gene expression, marked by the upregulation of GATA1, KLF1, PPARA, and TFRC (cluster G4). Markers of mature erythropoiesis emerge later in the differentiation (after day 8; cluster G5) with the upregulation of hemoglobins, glycoporphin A (GYP A) and ALAS2 (Fig. 2b). Beyond the temporal partitioning of developmentally regulated DHS and transcripts we observed topological segregation of co-regulated elements. Mapping changing DHS and genes to TADs called from CD34\(^{+}\) HSPCs\(^{29}\) (Supplementary Data 3) and day 11 ex vivo differentiated erythroid progenitors\(^{30}\) (Supplementary Data 4) Hi-C data revealed enrichment of individual TADs for stage-specific elements (Supplementary Fig. 3). Additionally, this partitioning appears more contrasted in late erythroid TADs compared to CD34\(^{+}\), suggesting the establishment of a defined erythroid regulatory landscape.

In addition to canonical activation and downregulation patterns observed, we found a subset of genes exhibiting reproducible transient upregulation (clusters G2 and G3) occurring prior to establishment of the erythroid signature (Fig. 2b). Transiently upregulated genes are found enriched in transcripts representing myeloid lineages including several myeloid markers (e.g., MPO, KIT) as well as the myeloid-specific transcription factor CEBPA. Compatible with gene expression, late closing DHSs in cluster E2 and E3 were enriched in CEBPA recognition sequences (Supplementary Fig. 3, Supplementary Data 5). Moreover, the majority (~80%) of DHSs in
Fig. 2 Temporal compartmentalization of the cis- and trans- regulatory landscape during erythropoiesis. a K-means clustering of 11,805 changing DHS resulted in 5 clusters (E1-E5) with sequential activity profiles for each cluster. Values are z-score of per day average normalized DHS counts from 3 donors. b K-means clustering of 5792 developmentally regulated genes resulted in 5 clusters (G1-G5). Values are z-score of per day average normalized FPKM from 3 donors. A matrix showing the enrichment score (log2-ratio observed over expected) for any given DHS cluster, around each developmentally regulated DHS (±50 kb from TSS). Highlighted in red is cluster G3 which is enriched for both late downregulated DHS of cluster E3 and early upregulated from cluster E4. Asterisks denote X^2 test p-value < 0.05. c Correlation density plot between developmental genes and developmental DHS ±250 kb around a DR gene promoter. Gray shaded area highlights enrichment of correlations within ±50 kb around the gene promoter. d Enrichment of DR DHS ±50kb around a DR gene. e DNase I accessibility track of the CDH1 locus during erythroid differentiation, highlighting the accessibility of 3 nearby DHS correlated to CDH1 expression. f DNase I accessibility track of the CDH1 locus in HUDEP-2 cells depicting the genetic knockout of the CDH1 promoter and two upstream DHS (-12, and -5) (above) along with the resulted ablation in CDH1 protein expression as assessed by flow cytometry (below).

Cluster E2 and E3 were found overlapping with DHSs active in other myeloid cell types (macrophages and monocytes) (Supplementary Data 5), denoting a transient emergence of myeloid-related regulatory program prior to erythroid commitment.

Taken together these data describe the sequence of developmentally related changes in both the cis- and trans- environment as the regulatory landscape of the erythroid development traverses from a lineage-permissive program to a defined erythroid-specific signature. Expectedly, activated DHSs (clusters E4-E5) were found to preferentially harbor red blood cell-related GWAS variants (1.36-fold enrichment over all detected DHSs), highlighting their functional role in regulating erythropoiesis (Supplementary Fig. 6).

Connecting individual DHSs to genes. The overall dynamics of chromatin accessibility for individual DHSs closely mirrored that of the expression of nearby genes. To formulate this, we performed an enrichment test to investigate the DHS landscape around a gene promoter. Interestingly, we found that developmentally regulated genes are enriched for DHSs with a similar developmental profile (Fig. 2c). For example, early closing genes (cluster G1) are significantly enriched for cluster E1 DHSs. Noteworthy, transient genes of cluster G3 are harboring DHSs belonging to both late closing DHS cluster E3 and early activated erythroid DHS cluster E4, suggesting that the transient nature of these genes is a result of the combinatorial activity of a closing and an opening chromatin landscape.

Because of fine-resolution afforded by our dense sampling approach, we sought to quantify the extent of genome-wide coactivation patterns that could potentially comprise physical regulatory links between DHSs and their target genes. To this aim we correlated the temporal expression patterns of a gene to nearby (±1 Mb from TSS) developmentally regulated DHSs, given that the...
majority of transcriptional enhancers are located within this range from the target promoter\(^3\). This analysis identified 41,625 connections (absolute Pearson correlation coefficient \(r > 0.7\)), with the vast majority of gene-DHS links occurring within 50 kilobases of the transcription start site (Fig. 2d). Overall, we connected 80.4% (4640) of the developmentally regulated genes with \(\geq 1\) DHS and 86.8% (10,247) of changing DHSs were linked to \(\geq 1\) developmentally regulated gene (Supplementary Data 6). While on average 93.6 DHSs reside within \(\pm 1\) Mb of a given gene, only 9 DHSs (\(\pm 8\) SD) were found to be linked with a changing gene. This allowed us to identify cis-regulatory inputs at much higher resolution than typically afforded by standard chromatin conformation-based methods\(^23,24\). For example, using previously published Hi-C data derived from ex vivo cultured erythroid progenitors we were able to predict chromatin loops only down to 70 kb (Supplementary Fig. 7, Supplementary Data 7). In order to functionally validate these associations we performed genetic perturbation of gene-DHS links.

We focused on the cis-elements predicted to regulate the expression of CDH1. CDH1 is a cell surface marker with expression restricted to erythropoiesis among the hematopoietic populations\(^34\) and known to be implicated in erythroid development and maturation\(^35,36\). Specifically, we genetically disrupted two DHSs (HS1 and HS2) highly correlated with CDH1 expression (\(r = 0.939\) and 0.976, respectively), situated upstream (5 kb and 12 kb, respectively) of the promoter of CDH1 using TALE-nucleases\(^37,38\) (Fig. 2e and Supplementary Fig. 8). Homozygous deletion of these DHSs as well as the promoter in the human-derived erythroid progenitor cell line HUDEP-2 where these DHSs are also active, resulted in complete ablation of the CDH1 expression as determined by flow-cytometry (Fig. 2f). These results suggest that both elements predicted by the correlation analysis as transcriptional regulators of CDH1, indeed drive the expression of the gene and their deletion confers effects similar to the deletion of the gene promoter.

Overall, these findings suggest that the majority of changes in transcription during development are regulated by a limited number of cis-regulatory inputs, situated within close proximity to the genes they regulate.

Sequential regulatory modules encode differentiation stages. Clustering of dynamically changing DHSs revealed that chromatin activated at different stages of hematopoiesis display differential enrichment for transcription factor recognition sequences, indicating stage-specific regulation of cis-elements. This, however, does not resolve the temporal interactions between individual DHSs and individual trans-regulators and how this relationship shapes the developmental response of a DHS. Given the observed global correlated changes between the transcription factor expression levels and the accessibility of the DHSs containing their cognate recognition sequences (Fig. 3a) we sought to quantify the contribution of individual TFs to the dynamic changes in DNase I density at individual regulatory cis-elements. We capitalized on our dense sampling approach and applied a regression strategy where the activity of an individual regulatory element (i.e., DNase I cleavage density) is modeled as a function of the gene expression profiles of developmentally regulated TFs with a compatible recognition sequence harbored within each DHS (Fig. 3b and Methods). We controlled for weak and ambiguous association of TFs recognizing degenerate motifs using elastic-net regularization (Methods). We applied this approach to all of the 11,805 dynamically changing DHSs, identifying 11,734 (>99% of changing DHSs) with at least one explanatory TF regulator (Methods) and 88 developmentally regulated TFs associated with at least one DHS, where the regression coefficients broadly correspond to the strength of association of a TF with an individual DHS (Supplementary Fig. 9). Overall, 5 TFs on average were positively associated with each DHS, suggesting that a small subset of TFs regulate the developmental activity of individual cis-elements. We then evaluated whether the regression results hold any predictive capacity against the frequency of motifs for the same TFs. Using a naïve Bayes classification model (Methods) we tried to predict the cluster each DHS belongs to by supplying either the occurrences of individual TF motifs or the elastic-net regression coefficients for each TF. We found that elastic-net regression coefficients provide a 1.77-fold accuracy over TF motif counts (62% vs. 35% accuracy rate) in predicting the DHS cluster (Supplementary Fig. 10). This suggests that the developmental response of a DHS is shaped by co-regulated transcription factors that occupy the DHS rather than the absolute frequency of binding TFs as determined by the TF recognition sequences harbored in a DHS.

We next asked to what extent the activity of DHSs with similar temporal accessibility patterns are regulated by a coherent set of TF regulators. We selected 52 TFs positively associated with at least 200 DHSs and performed unsupervised hierarchical clustering based on their regression coefficients computed for each DHS (Fig. 3c and Methods). This analysis resolved the temporal associations between transcription factors and their target DHS into a sequence of five discrete and largely non-overlapping regulatory modules, reflective of developmental stages of erythropoiesis (Fig. 3d). Module 1 consists of known HSC transcriptional regulators (e.g., ERG\(^28\), MEIS1\(^39\), MYCN\(^40\)) which are positively associated with early closing DHSs in clusters E1 and E2. In modules 2 and 3, transcription factors associated with commitment of hematopoietic progenitors to the different myeloid lineages (e.g., CEBPA\(^41\), MYB\(^42\), FLI1\(^43\), RUNX1\(^44\)) interact with DHSs in clusters E2 and E3. Modules 4 and 5 define the erythroid-specific regulatory landscape as known erythroid regulators (e.g., GATA1\(^45\), KLF12\(^46\), RXRA\(^46\), and FOXO3A\(^47\)) positively interact with activated DHSs in clusters E4 and E5.

Plotting the fraction of DHSs in each cluster positively associated with each TF (Fig. 3d) highlights the major drivers of chromatin accessibility in each developmental stage. Particularly, ERG appears as a major regulator of the HPSC stage as it is positively associated with ~25% of DHSs in clusters E1 and E2. Although ERG has been long implicated in HSPC regulation, it is only recently its role as a critical regulator of HSPC survival has been appreciated\(^48\). Interestingly, KLF12 also appears to share a significant proportion of the early chromatin landscape, although its role in HSPC regulation is not fully elucidated. Overexpression of the critical HSC regulator Evi-1 in mice, resulted in maintenance of the quiescent phenotype of murine HSCs along with the more than 12-fold increase in Klf12 expression\(^49\). In another experiment, sustained expression of Hif1 in mice also resulted in enrichment of Klf12 in more primitive hematopoietic compartments\(^50\), thus implicating KLF12 in the HSPC regulation. Apart from the canonical erythroid transcription factors, we identified MXI1 among the top regulators of the erythroid chromatin landscape. Knockdown of Mxi1 in mice, blocks chromatin condensation and impairs enucleation of mouse erythroblasts, highlighting the role of MXI1 in erythroid maturation\(^51\). Additionally, we find CTCF to be positively associated with a large portion of the erythroid-specific chromatin (~25% of DHSs in clusters E4 and E5), while we find strong enrichment for DHS harboring CTCF motifs in predicted chromatin loops from Hi-C data generated from ex vivo cultured human erythroid progenitors (Supplementary Fig. 11). These findings are consistent with the evidence highlighting the role of CTCF in establishing the erythroid-specific chromatin landscape\(^52,53\).

Taken together, these findings illustrate the dynamic interaction of the cis- and the trans-regulatory landscape during erythropoiesis and their organization into well-defined and discrete regulatory modules.
Developmental responses of DHS accessibility and transcription factor expression levels were found to be correlated across the genome. returns a coefficient for each pair of DHS and binding TF which denotes how strongly (positively or negatively) the TF expression is associated with the accessibility of the particular DHS. The model returns a coefficient for each pair of DHS and binding TF which denotes how strongly (positively or negatively) the TF expression is associated with the accessibility of the particular DHS. The fraction of DHS per cluster positively associated with a TF identifies the major drivers of chromatin accessibility during erythropoiesis.

of associated DHSs with their cognate transcription factors, reflecting distinct stages of erythroid development.

Abrupt lineage restriction events mark erythropoiesis. The organization of chromatin and transcription factors into defined regulatory modules corresponding to distinct stages of erythropoiesis indicates a functional relationship between lineage potential and module activity. To gain insight into whether these modules underpin lineage decision events we determined the lineage potential of the erythroid cultures by daily sampling a population of cells and assaying their multipotent and unipotent capacity for different myeloid lineages (Fig. 4a and Supplementary Fig. 12a). Total number of colonies declined with the progress of differentiation resulting in an abrupt depletion of total progenitors on day 6 of differentiation (Supplementary Fig. 12b). After 4 days of exposure to erythroid media, the most primitive and multipotent colonies (CFU-GEMM; granulocytic, erythroid, monocytic, megakaryocytic) were no longer detected (Fig. 4b).

Day 6 marked a second event of restriction of the fate potential as all unilineage colonies were no longer detected in the cultures. Specifically, frequency of erythroid progenitors (BFU-E) rapidly declined from day 5 to day 6 (Fig. 4c). Similarly, granulocytic/monocytic progenitors (CFU-GM) were depleted by day 6 of erythroid differentiation (Supplementary Fig. 12c). Notably, none of the changes in clonogenic capacity were associated with any changes in the growth rate of the parental erythroid cultures, which remained constant throughout the differentiation (Supplementary Fig. 12d), suggestive of an independent mechanism regulating this shift in progenitor population.

In addition to the above lineages, we specifically tested whether cells during erythroid development maintain the capacity to differentiate towards the megakaryocytes by transferring cells, on a daily basis, from the primary erythroid culture to megakaryopoiesis-inducing suspension cultures and tested for their ability to give rise to CD41+ megakaryocytic populations (Supplementary Fig. 13a and Methods). Consistent with the overall lineage restriction observed during colony-forming assays, erythroid cultures completely lose megakaryocytic potential on day 6 of the differentiation (Fig. 4c and Supplementary Fig. 13b).

The rapid changes observed in clonogenic capacity correspond to the transitions between regulatory modules (Fig. 4d). Early depletion of primitive multipotent CFU-GEMM progenitors is concomitant with the transition from the HSPC-related modules (modules 1 and 2), while the decline of unipotent progenitors of all detectable myeloid lineages (granulocytic/monocytic, erythroid, megakaryocytic) coincides with the transition from a program with a broader myeloid signature to erythroid specific cis- and trans- landscape. Furthermore, because these rapid lineage restriction events are not associated with other abrupt changes in morphology or cell growth (Supplementary Fig. 13d), these data suggest that the mechanism responsible for the exit from the progenitor stage is decoupled from maturation progress.

A shared transcriptional program facilitates HSPC exit. The silencing of the HPSC regulatory modules prior to lineage commitment suggested that exit from the progenitor state is necessary for erythroid commitment to proceed. We therefore asked whether this represents a canonical feature of hematopoietic
development to any lineage. To investigate this, we focused on megakaryocytic differentiation, a process that shares both common developmental origins and key TF regulators with erythropoiesis.

We induced ex vivo megakaryocytic differentiation and performed dense sampling of gene expression during development (Fig. 5a and Methods). Developmentally regulated genes during megakaryopoiesis exhibit largely bipartite profiles similar to those observed during erythropoiesis (Supplementary Fig. 14, Supplementary Data 8). To determine whether the transcriptional changes associated with exit from HSPC state during erythropoiesis are shared with megakaryopoiesis we examined the expression profiles of erythroid developmentally regulated genes during megakaryocytic differentiation. We observed highly correlated global expression profiles for early silenced transcripts (erythroid clusters G1 and G2) between the two lineages (median Spearman’s $\rho = 0.76$ and 0.62, respectively) (Fig. 5b), with the exception of key regulators and canonical markers of megakaryopoiesis (MEIS1, FLI1, PBX1, ITGA2B, etc.) (Fig. 5c). In contrast, correlation for erythroid clusters G3–G5 was low (median Spearman’s $\rho \leq 0.13$).

Similar to erythropoiesis, we found that early downregulation of HSPC-related gene signature is associated with abrupt restriction of alternate lineage potential during megakaryopoiesis. Specifically, we found that cells sampled beyond day 3 of differentiation exhibit a reduction in both multipotent and unipotent progenitors of the erythroid and granulocytic/monocytic lineage (Fig. 5c and Supplementary Fig. 15). This observation is in line with the fact that megakaryopoiesis does not exhibit transient activation of myeloid gene program as exit from HSPC is rapidly succeeded by a megakaryocyte-specific gene signature, compatible with the recently revised hematopoietic tree according to which megakaryocytes directly emerge from the primitive HSPC compartments bypassing the common myeloid progenitor.

Conclusively, these results indicate the existence of a shared mechanism between erythropoiesis and megakaryopoiesis driven by a common set of TFs which mediates the exit from HSPC state signaling differential lineage potential response for erythropoiesis and megakaryopoiesis.
kinetics and the differentiation trajectories of erythropoiesis and megakaryopoiesis by jointly analyzing transcriptional dynamics in single cells along the two lineages. To this end, we analyzed transcriptional changes from more than 50,000 single cells sampled from frequent intervals along both the ex vivo erythroid and megakaryocytic differentiation (Fig. 6a). Overall, we found that single-cell gene expression profiles to be highly concordant with total RNAseq data as aggregated gene expression from single-cell RNA-seq correlated very well with RNA-seq performed in bulk cells (Supplementary Fig. 16).

Principal component analysis (PCA) using the top 2000 variable genes readily resolved the two primary axes of differentiation. Trajectories from HSPC to terminally committed lineages are resolved along PC2 while PC1 distinguishes the erythroid and megakaryocytic terminal fates (Fig. 6b). Furthermore, PCA highlights the lineage commitment timepoint as cells sampled on day 4 and thereon, from either culture, already exhibit distinct topologies on the PCA projection. In order to infer rate of transcription and derive the direction of differentiation, we capitalized on splicing kinetics (RNA velocity) to derive latent pseudotime (Fig. 6c). Overall, pseudotime correlated well with actual sampling time (Pearson’s $r = 0.725$).

Cells were clustered using Leiden community detection algorithm39 and based on their between affinities cell clusters were collapsed to 7 distinct populations corresponding to discrete developmental stages. Developmental pseudotime and transitions between populations were inferred based on RNA velocity (Fig. 6d and Supplemental Fig. 18a–c). Overall, we found the populations to be highly homogeneous in terms of ex vivo culture sample composition. Not unexpectedly, we observed higher sample

Fig. 5 A shared transcriptional program drives the exit from HSPC state early in erythropoiesis and megakaryopoiesis. **a** Dense RNA-seq time course during ex vivo megakaryopoiesis induced from CD34$^+$ HSPCs. **b** Boxplot depicting the distribution of pairwise Pearson’s r correlation values of gene expression profiles between erythropoiesis and megakaryopoiesis across the erythroid gene clusters G1–G5. Boxplot lower and upper bounds correspond to 25th and 75th percentile, respectively. Centre corresponds to median. Boxplot whiskers correspond to 1.5 x inter-quartile range excluding outliers. (G1 $n = 1086$, G2 $n = 1544$, G3 $n = 919$, G4 $n = 1203$, G5 $n = 1017$ genes tested). **c** Expression profiles during megakaryocytic development, ordered by their correlation score to their erythroid counterparts from erythroid clusters G1 and G2. **d** Changes in clonogenic capacity observed during megakaryocytic differentiation as determined by frequency of CFU-GEMM, CFU-GM, and BFU-E progenitors. Data are presented as mean values ±1 SEM of $n = 4$ experiments. CFU-GEMM Colony Forming Unit - Granulocytic, Erythroid, Macrophage, Megakaryocyte. CFU-GM Colony Forming Unit – Granulocyte-Macrophage. BFU-E Burst Forming Unit-Erythroid.
admixture in populations corresponding to early time-points, consistent with the notion that cells at this stage had yet to establish lineage fate (Supplementary Fig. 18d).

Using lineage trajectories inferred from transcriptional transitions between populations, we identified two major pathways starting from a cluster with HSPC signature (HSPC cluster) leading to terminal megakaryocytic and erythroid fates (Fig. 6c). Transitions from HSPC cluster to lineage specific clusters involves two clusters with progenitor gene signature (MPP1, and MPP2) each of them stemming from the HSPC cluster. MPP1 consists primarily of cells sampled from megakaryocytic cultures while ~25% of the cells in the population are derived from day 2 of the erythroid differentiation. MPP1 maintains a broader early progenitor signature (Fig. 6e and Supplementary Fig. 18e, f) and transitions to a population with early Mk signature (Mk1) which eventually gives rise to mature megakaryocytic population (Mk2). MPP2 is composed almost exclusively of early (day 2 and day 4) erythroid cells and appears as a nodal cluster with affinities to both the early erythroid cluster as well as the Mk primed MPP1. Importantly, MPP2 exhibits gene expression signature characteristic of various myeloid subtypes (Fig. 6e and Supplemental Fig. 18e, f) expressing critical myeloid regulators alongside megakaryocytic and erythroid ones (Supplementary Data 9). Stage-specific TF network reconstruction using TF-DHS and DHS-gene assignments (Fig. 7a, b), reveals that the myeloid signature is orchestrated by a core network of critical myeloid regulators (SPI1/PU.1, CEBPA, and FLI1), specific to MPP2 (Fig. 7c). This is compatible to single cell TF protein dynamics during ex vivo erythropoiesis, demonstrating that multiple TFs of alternate hematopoietic lineages are

Fig. 6 Single-cell gene expression dynamics demonstrate distinct cell states during erythroid and megakaryocytic differentiation. a Schematic diagram of the single-cell gene expression timecourse experiment along ex vivo erythropoiesis and megakaryopoiesis. b PCA using the top 2000 variable genes. Cells are colored by sampling day. Terminal erythroid (Ery) and megakaryocytic (Mk) states, as well as initial HSPC state are annotated. Red line denotes where 90% of the cells sampled prior to day 4 are located (above line). c RNA velocity-based pseudotime or gene expression density on Force-Atlas graph of all cells based on RNA velocity estimates of top 2000 variable genes. d Cell populations from collapsed Leiden clusters on FA graph. Sample composition of each population is represented as a pie chart. Arrows denote RNA velocity derived transitions between populations. Dashed lines represent PAGA connectivities. e Average expression intensity of gene sets representative of HSPC, Myeloid, Erythroid, and Megakaryocytic states on identified cell populations.
active in early progenitors prior to emergence of CFU-e populations,60. Furthermore, early erythroid progenitors display affinities with myeloid and basophilic lineages transiently emerging in the culture. Here, in an attempt to identify the origin of this myeloid population present in our experiments, we performed FACS timecourse for the myeloid marker CD33 during both erythropoiesis and megakaryopoiesis. We find that the CD33+ population is a subset of CD34+ HSPCs as >80\% of uncultured CD34+ are also positive for CD33. During erythroid differentiation, we find that cells transiently undergo a state of CD33+/−CD117+, whereby day 6 the majority (~70\%) has transitioned to CD33−/CD117+ (Supplementary Fig. 19). In order to compare our findings to steady-state hematopoiesis, we integrated the two datasets through a k-nearest neighbor analysis (Supplementary Fig. 21). While HSPC and erythroid states exhibited extensive overlap between the two datasets, the ex vivo megakaryocytic populations displayed an ill-defined pattern given the limited representation of Mks in the bone marrow dataset. Interestingly, the MPP2 population exhibited strong affinity with the basophil population (Louvain cluster 12) as well as cells early along the erythroid and myeloid trajectories, confirming the myeloid origin of this population. In order to compare gene expression profiles along the erythroid trajectory inferred from either ex vivo differentiated erythroid cells or BM fractionated populations we correlated gene expression profiles from 1000 top highly expressed genes in both datasets. This revealed that ex vivo erythropoiesis recapitulates exceptionally well the gene expression dynamics from native erythroid populations with median Spearman’s $r = 0.81$ (Supplementary Fig. 22). These results further support our population-level findings about the transient emergence of a population during erythroid development that maintains myeloid capacity. The
affinity between the basophilic lineage and the erythroid has been previously described61,62 and it has been suggested that basophils derive from erythro-myeloid progenitors63.

Discussion

Here, we systematically link individual transcription factors and their target cis-elements along ex vivo human erythropoiesis, resolving how these elements organize temporally, encoding lineage commitment and differentiation during hematopoiesis. More recently, multiple efforts have extensively studied the individual (cis- and trans-) regulatory components involved in erythropoiesis22, as well as other diverse hematopoietic lineages$^{64–67}$. The bulk of these efforts however base their findings either on immunophenotypically defined hematopoietic populations, or single-cell dissection of steady state heterogeneous sources, where developmental relationships between cells are inferred13,15,61,68. In this work, we overcome the limitations associated with immunophenotypic isolation of hematopoietic lineages$^{64–67}$. The bulk of these efforts however base their findings either on immunophenotypically defined hematopoietic populations, or single-cell dissection of steady state heterogeneous sources, where developmental relationships between cells can only be inferred13,15,61,68. In this work, we overcome the limitations associated with immunophenotypic isolation of hematopoietic populations$^{64–67}$, which often fail to capture transient or rare populations, while enrichment for specific populations is entirely dependent on the immunophenotypic panel used for fractionation70. By capitalizing on the continuity of the differentiating populations during ex vivo erythropoiesis, we finely map chromatin accessibility and gene expression dynamics enabling the direct and repeated measurement of the dynamic epigenetic landscape along a defined lineage trajectory. In addition, a dense sampling approach enables the unbiased detection of transient events occurring over short intervals that would otherwise be missed by sparse sampling methodologies.

Through integrative analysis of chromatin accessibility and gene expression during erythropoiesis we draw thousands of links between individual distal regulatory elements and their target genes at much higher resolution than that afforded by other methods. This approach revealed a sequence of discrete, non-overlapping regulatory modules comprising of interacting transcription factors and individual cis-regulatory elements, corresponding to distinct stages of erythroid development. Strikingly, the transition between the activity of these modules coincides with a sequence of experimentally validated rapid lineage restriction events. We found that the exit from the program associated with the HSPC state occurred independently of lineage outcome, as it was also identified during ex vivo megakaryopoiesis. Moreover, comparison of developmental transcriptionists of single cells along erythropoiesis and megakaryopoiesis reveals that exit from HSPC occurs over the same developmental interval for both lineages, indicative of a mechanism independent of the cytokine environment. This finding adds to previous reports that activation of murine bone marrow HSCs with different lineage cytokines induces a common repression mechanism of HSC signature while activates genes implicated in differentiation in a cytokine independent fashion71.

Upon exit from the HSPC state we found the two lineages to exhibit differential commitment kinetics. Erythroid differentiation maintains a broader myeloid lineage capacity (Ery, G/M, Mk) prior to erythroid commitment as a result of a transient upregulation of a regulatory program involving canonical myeloid transcription factors (FLI1, SPI1, C/EBPα, GATA2, etc.). Network analysis in the progenitor stage prior to erythroid commitment, demonstrates that FLI1 is a central TF with extensive affinities to other transcriptional regulators, ultimately gatekeeping the fate choice between the megakaryocytic and erythroid lineage. There are several lines of evidence from single-cell assays in both mouse and human hematopoiesis suggesting that erythroid, megakaryocytic and basophilic lineages emerge from a shared population13,16,60,64,72,73, while mass cytometry dynamics of lineage-specific transcription factors ascribe FLI1 the role of “gatekeeper” between the erythroid and the megakaryocytic fate60. The findings presented here, however, demonstrate that this lineage-permissive transcriptional program is restricted only to erythropoiesis. This is compatible with previous experimental evidence demonstrating the affinity of basophilic lineage to the erythroid branch61, specifically. Additionally, results from transgenic mice lacking a set of the C/EBP family of myeloid regulators that exhibit decreased erythroid output74. In contrast, transcriptional, functional and phenotypic evidence from ex vivo megakaryopoiesis presented here, suggest rapid megakaryocytic commitment upon HSPC exit. These results align well with the growing evidence suggesting that megakaryocytic commitment is occurring earlier compared to erythroid fate52 and that megakaryocytic lineage75 arises directly from the primitive hematopoietic compartments$^{52,76–78}$.

In order to reconcile our findings on lineage commitment from bulk populations with transcriptional dynamics from individual cells we compiled one of the most comprehensive analyses of single-cell gene expression along a closely monitored developmental system, so far. Furthermore, this dataset represents the first, to our knowledge, single-cell description of gene expression dynamics along the ex vivo megakaryocytic development from purified HSPCs. Although different approaches have been suggested to enrich for megakaryocyte and platelet biased progenitors and dissection of the bipotential MEPs$^{79–81}$ there is no consensus purification scheme to isolate cells at different stages of megakaryocytic development with the resolution available for erythroid development12,82. This is primarily due to the rarity of Mk cells in the bone marrow84,85 and the fragility of the mature large endomitotic megakaryocytes. Here, however, we present an unbiased global view of gene expression and lineage commitment dynamics of megakaryocytic development based on equiproporional sampling of populations along megakaryopoiesis.

Overlaying the information of sampling timepoint of each population allowed us to match shifts in TF expression in single-cells to the regulatory programs identified from our population-level experiments. Strikingly, our single-cell based observations recapitulate both our ex vivo population-based findings as well as single-cell transcriptional dynamics from bone marrow fractionated populations with remarkable fidelity. This suggests that highly synchronized rapid shifts in gene expression levels of lineage regulators across individual cells, occurring over short intervals of developmental time, underpin the changes observed in bulk populations. This contrasts the current sentiment hinging on observations from single-cell analyses where variability in the chromatin and transcriptional landscapes among steady-state populations are interpreted as gradients of continuous regulatory states13,14,68,86.

Here we present insights into the developmental regulatory dynamics during hematopoiesis illuminating mechanisms of lineage commitment, previously obscured by sampling biases and limitations. Although we draw parallels with steady-state in vivo derived data, we appreciate that the artificial nature of the ex vivo culture systems can be a confounding factor. Nevertheless, we highlight the utility of ex vivo development systems in studying rare or otherwise inaccessible populations in vivo and provide a generalizable framework of how interactions between the trans-environment and the chromatin instruct fate choice and lineage commitment during development. Additionally, the dense sampling and the systematic linkage between distal elements and target promoters results in high-resolution charts of the stage-specific activity of regulatory elements. Beyond the standpoint of gene regulatory mechanisms, such elements can prove particularly useful in transgene-based therapies where the efficacy of
these methods relies on the precise modulation of gene expression in a developmental and lineage-specific manner.

Methods

Ex vivo erythropoiesis. For the ex vivo induction of erythroid and megakaryocytic differentiation, human CD34+ enriched PBMC (> 90% purity) from 3 different GCSF-mobilized healthy adult donors (Fred Hutchinson Cancer Research Center—Cooperative Centers of Excellence in Hematology Core B) were used. Cells were isolated under the protocol approved by the Fred Hutch Institutional Review Board (protocol no. 985.03) and in accordance with the Declaration of Helsinki. Prior to culture, cells were thawed rapidly in a 37 °C water bath and cultured overnight in recovery media containing IMDM, supplemented with StemSpan™ CC110 (StemCell Technologies). For erythropoietin differentiation an established 3-step differentiation scheme was used. Briefly, CD34+ cells were cultured for 7 days in IMDM media containing 0.1 µg/ml rhSCF (PeproTech), 0.005 µg/ml rhIL-3 (PeproTech), 3 U/ml rhEPO (PeproTech), 5% human AB plasma, 2 U/ml heparin, 0.1% B27, 0.33 mg/ml maintained in Stem-lipore-Sigma), 1 µM hydrocortisone (Millipore-Sigma), 1x Penicillin/Streptomycin (ThermoFisher Scientific), followed by culturing in the same media for 4 more days without IL-3 and hydrocortisone for 4 days.

Ex vivo megakaryopoiesis. CD34+ HSPCs were differentiated to the megakaryocyte lineage by culturing for 11 days in IMDM based media containing 30 ng/ml rhTPO (PeproTech), 1 ng/ml rhSCF (PeproTech), 7.5 ng/ml rhIL-6 (PeproTech), 13.5 ng/ml rhIL-9 (PeproTech), 20% BIT supplement (StemCell Technologies), 40 µg/ml LDL (Millipore-Sigma), 0.05 mM beta mercaptoethanol (Millipore-Sigma), and 1x Penicillin/Streptomycin (ThermoFisher Scientific).

HUEP-2 expansion. HUEP-2 cells were kindly provided Ryo Kurita and Yukio Nakamura, Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan. HUEP-2 cell culture HUEP-2 cells were maintained in StemSpan H3000 medium (Stem Cell Technologies) supplemented with 100 ng/ml hSCF (PeproTech), 3 IU/ml erythropoietin (PeproTech), 10-6 M dexamethasone (Sigma), 0.25% B27, 0.1% B27 and 0.005 µg/ml rhTPO (PeproTech). After first washing twice with cold Buffer A and equal volume of lysis buffer (0.04% of IGEPA) 5x-60 (D) Mixed Bed Resin, cat.1436425 Bio-Rad, in Buffer A) was added and cells were incubated at 4 °C for 10 min. Nuclei were then moved to 37 °C and 5% of each sample were incubated with a gradient of DNP1 (D4527, Sigma-Aldrich) solution (ranging from 40 IU to 100 IU of DNP1 of equal volume and the reaction was allowed to proceed for 3 min at 37 °C. DNP1 digestion was monitored by adding a volume of 5X Stop buffer (50 mM Tris-HCl pH 8, 100 mM NaCl, 0.1% SDS, 100 mM EDTA pH 8.0) equal to the volume of cell suspension (100 µl final reaction volume) and the reactions were incubated at 37 °C for 60 min. After incubation, 1 µl of Proteinase K (Sigma) was added to each reaction followed by incubation at 50 °C for 60 min. Digested genomic DNA was visualized by agarose gel and the fragment size profile was generated using the Fragment Analyzer (Advanced Analytical). Prior to genomic library generation, fragments were subjected to size fractionation. Large DNA fragments were removed the mixing DNP1 digested sample with a Polyethylene-Glycol (PEG 8000, Sigma) solution containing 8.3 mg of carboxylate-modified magnetic particles (Sera-mag beads, Thermo) to a final PEG concentration of 6% w/v. Sample was incubated at room temperature with constant mixing. Bead-bound fragments were removed by magnetic separation and a PEG solution (39.5 w/v % final) containing 7.15 mg magnetic beads was added to the supernatant. After >90 min incubation at room temperature with constant mixing supernatant is removed by magnetic separation and discarded while bound DNA fragments are eluted from the beads. The elute is then subjected to a second binding by mixing with a PEG solution (38.5 w/v % final) containing 7.15 mg of magnetic beads. The solution is incubated at room temperature for >90 min with constant mixing. The supernatant is removed by magnetic separation and concentration of the fractionated sample was measured with Fragment Analyzer (Advanced Analytical). Illumina compatible, double-stranded DNA library libraries from the size fractionated samples were constructed using the ThruPLEX DNA-seq Kit (Takara Bio) according to manufacturer’s instructions. DNP1-Seq libraries were sequenced on NextSeq 500 (Illumina) with a 2x76bp read length. Adapter trimmed FASTQ files were aligned against GRCh38 using the BWA aligner. All downstream DNP1-Seq analyses were performed on DNase I hotspots (genomic regions with statistically significant enrichment in DNase I cleavage) and Hotspots were detected using hotspot2 program (https://github.com/Altius/hotspot2).

Total RNA sequencing. For gene expression analysis, total RNA was collected using the TruVana RNA isolation kit (ThermoFisher Scientific) or RNeasy Mini Kit (Qiagen) from sorted (>20,000 cells) and bulk cultures (>1,000,000 cells). Illumina libraries were constructed using the TruSeq Stranded Total RNA with Ribo-Zero Globin (Illumina). Finally, libraries were qualified using Fragment Analyzer (Advanced Analytical). RNA-seq libraries were sequenced with HiSeq 4000 (Illumina) using a 2x76bp read length and alignment was performed using STAR Aligner against the GRCh38 reference genome. Gene counts were obtained using featureCounts and FPKM per gene were calculated using Cufflinks. Normalized values were used for quantile normalization.

Identification of developmentally regulated DHSSs and genes. To identify developmental responses in chromatin accessibility and gene expression, we employed a regression analysis strategy. A robust linear regression was performed on the quantile-normalized, mean-centered DHS density values or gene counts from 3 donors by fitting a cubic spline with 3 degrees of freedom using the LimR package from the robustbase R package and fitted values were recorded. Statistical significance was estimated by performing a likelihood ratio test against a null model where developmental time was removed as a term. Likelihood ratio test (LRT) p-values were adjusted for false discovery rate (FDR) using the Benjamini–Hochberg method. A refined list of the statistically significant changing DHS was obtained by setting the maximum normalized DHS density to >30 counts and log2-fold difference between the minimum and maximum daily average values to 1. Significantly changing genes were further filtered by excluding genes with log2-fold difference between the minimum and maximum daily average gene counts below 1.

Identification of TADs and interaction loops from Hi-C data. Capture Hi-C data from primary CD34+ hematopoietic progenitor cells were obtained from
Misbud et al.3. Ex vivo differentiated day 11 erythroid progenitors derived Hi-C data were obtained from Huang et al.20. Reads were processed with pairtools (https://github.com/open2c/pairtools) removing reads with MAPQ < 30. Contact matrices were generated with Coolergen. Topologically associated domains (TADs) were computed with HiCExplorer on KR balanced matrices at 10 kb resolution. Chromatin interaction loops were predicted using Mustache from the KR balanced matrices at 10 kb resolution.

Transcription factor recognition sequence enrichments. A list of transcription factor motif position weight matrices (PWM) was compiled from JASPAR 201898 and HT-SELEX derived human transcription factor binding specificity model99. Motifs were then scanned across the GRCh38 reference genome using FIMO100 and motifs with nominal p-value < 10^-4 were mapped to DHS using BEDOPS101. Over- or under-representation of transcription factor motif clusters in each of the K-means clusters was determined by performing a one-tailed hypergeometric enrichment test. P-values were adjusted using the Benjamini–Hochberg method102.

Elastic net regression and regulatory module identification. To identify the transcription factors that modulate the accessibility of DHS a two-step regression with elastic-net regularization was utilized. Specifically, the per-day averaged accessibility of each DHS over time was expressed as a function of the per-day averaged expression of the transcription factors with motifs found in the DHS. We considered 214 transcription factors which had maximum expression > 2 FPKM and for which there was available binding motif information. An elastic net support vector machine was initially trained on a subset of the data by omitting 4 time-points using the glmnet R package. Optimization for the mixing parameter α (0 < α ≤ 1) and the penalty stringency parameter λ was performed with a 100-fold cross-validation of each α (ranging from 0 to 1 with 0.01 increments) and λ (100 equilibrium values ranging from 10^-5 to 10^5) parameters using the cv.glmnet function. Mean squared error (MSE) and standard error (SE) for each parameter pair tested and each DHS were recorded. Given that each DHS cluster is characterized by specific features (i.e., DHS density correlated sequence context, and DHS overlap with other tissues) we sought to optimize elastic net parameters for each cluster, rather than overfitting each DHS individually. Therefore, for each cluster of DHS, the pair of α and λ parameters which minimized the total MSE and SE for that cluster was selected and subsequently supplied into a final elastic net regression which was applied to each DHS in a cluster (E1–E5) to capture capacity of elastic TF coefficients to accurately classify the DHS into their respective K-means cluster (E1–E5) against the TF motif counts was evaluated using a naive Bayes classifier using fastNaiveBayes ([https://github.com/mskog Holt/fastNaiveBayes](https://github.com/mskogHolt/fastNaiveBayes)). Discrete motif counts per DHS for TFs with at least one non-zero elastic-net coefficient were modeled with Gaussian fit and prediction accuracy was calculated as the percent of correct classifications. Transcription factors with >200 DHS positively associated (52 out of 214 TFs) were taken into consideration and a hierarchical clustering on the cosine distance of the coefficients was performed. Cutting the hierarchical tree at the highest order clades using the function “FindNeighbors” from the Seurat package with 20 neighbors returned (k = 20), after L2 normalization of the input data.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

All DNase I and RNA sequencing data have been deposited to GEO under the series accession GSE188216. All processed data files available herein and relevant metadata are available on Zenodo (https://doi.org/10.5281/zenodo.5291737). Adult erythroid Hi-C data was downloaded from GEO, series GSE102201. Adult CD43 + HSPC Hi-C data obtained from ENA, accession ERR436024. Human bone marrow single-cell data was downloaded from GEO using the following accessions: GSM3305359, GSM3305360, GSM3305361, GSM3305362, GSM3305363, GSM3305364, GSM3305365. Source data are provided with this paper.

Code availability

All scripts and code used to process and analyze data herein are available upon request.

Received: 7 April 2020; Accepted: 20 October 2021; Published online: 23 November 2021

References

1. Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).
2. Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).
3. Stergachis, A. B. et al. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 154, 888–903 (2013).
4. Antoniani, C., Romano, O. & Miccio, A. Concise review: epigenetic regulation of hematopoiesis: biological insights and therapeutic applications. STEM CELLS Transl. Med. 6, 2106–2114 (2017).
5. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).
6. Cullen, S. M., Mayle, A., Rossi, L. & Goodell, M. A. Hematopoietic stem cell differentiation: an epigenetic journey. Curr. Top. Dev. Biol. 107, 39–75 (2014).
7. Goode, D. K. et al. Dynamic gene regulatory networks drive hematopoietic specification and differentiation. Dev. Cell 36, 572–587 (2016).
8. González, A. I., Setty, M. & Leslie, C. S. Early enhancer establishment and regulatory locus complexity shape transcriptional programs in hematopoietic differentiation. Nat. Genet. 47, 1249–1259 (2015).
9. Lara-Astiaso, D. et al. Immuno-sequencing. Chromatin state dynamics during blood formation. Science 345, 943–949 (2014).
10. Iwasaki, H. et al. The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev. 20, 3010–3021 (2006).
11. Zhu, J. & Emerson, S. G. Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21, 3295–3313 (2002).

12. Winter, D. R. & Prieto, I. The role of chromatin dynamics in immune cell development. Immunol. Rev. 261, 9–22 (2014).

13. Buenrostro, J. D. et al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173, 1535–1548.e16 (2018).

14. Gilmore, J. L. et al. Human hematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

15. Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).

16. Drissen, R. et al. Distinct myeloid progenitor–differentiation pathways identified through single-cell RNA sequencing. Nat. Immunol. 17, 666–676 (2016).

17. Weinreb, C., Wolock, S., Tusi, B. K., Socolovsky, M. & Klein, A. M. Fundamental limits on dynamic inference from single-cell snapshots. Proc. Natl Acad. Sci. U. S. A. 115, E2467–E2476 (2018).

18. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).

19. Jacobsen, S. E. W. & Nerlov, C. Haematopoiesis in the era of advanced single-cell technologies. Nat. Cell Biol. 21, 2–8 (2019).

20. Canter, A. B. & Orkin, S. H. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 21, 3368–3376 (2002).

21. Perry, C. & Soreq, H. Transcriptional regulation of erythropoiesis. Fine tuning underpins normal development inFli-1 gene-targeted mice. Nat. Immunol. 3, 810–819 (2002).

22. Lawrence, H. J. et al. Loss of expression of the Hoxa-9 homeobox gene impairs murine hematopoiesis. Stem Cells Dev. 23, 69–74 (2005).

23. Oudelaar, A. M. et al. Dynamics of the 4D genome during in vivo lineage specification and differentiation. Nat. Commun. 11, 2722 (2020).

24. Fraser, J. et al. Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. Mol. Syst. Biol. 11, 852 (2015).

25. Lawrence, H. J. et al. Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. Blood 106, 3988–3994 (2005).

26. Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. & Speck, N. A. Runx1 is required for the endothelial to haematopoietic cell transition but not for erythroid development; Subject heading. Nat. Cell Biol. 261, 1704–1713 (2017).

27. Pal, K., Forcato, M. & Ferrari, F. Hi-C analysis: from data generation to interpretation and application. Biol. Direct 14, 664–687 (2016).

28. Loughran, S. J. et al. The transcription factor Erg is essential for development of erythroid cells; Subject heading. Cell Stem Cell 14, 503–516 (2014).

29. Wernig, O. & Isvaran, M. A. Single-cell transcriptomic profiling technology for human disease. Cell Stem Cell 14, 331–341 (2014).

30. Armeanu, S., Bühring, H. J., Reuss-Borst, M., Müller, C. A. & Klein, G. Efficient TALEN construction and evaluation methods for human and animal applications. Genes Cells 18, 315–326 (2013).

31. Argiropoulos, B., Yung, E. & Humphries, R. K. Unraveling the crucial roles of Meis1 in leukaemogenesis and normal hematopoiesis. Dev. Biol. 21, 2845–2849 (2007).

32. Laurenzi, E. et al. Hematopoietic stem cell function and survival depend on c-Myc and Myeloid Cell Stem Cell 3, 611–624 (2008).

33. Friedman, A. D. C/EBPα in normal and malignant myelopoiesis. Int. J. Hematol. 101, 330–341 (2015).

34. Greig, K. T., Carotta, S. & Nutt, S. L. Critical roles for c-Myc in hematopoietic progenitor cells. Semin. Immunol. 20, 247–256 (2008).

35. Macaulay, I. C. et al. Defective megakaryopoiesis and abnormal erythroid development inFlt-1 gene-targeted mice. Int. J. Hematol. 73, 463–468 (2001).

36. Iwata, M., Psatha, N., Yiangou, M. & Vierstra, J. Unbiased kinetic analysis of E2a expression reveals a new mechanism for the temporal control of hematopoietic progenitors. Cell Stem Cell 10, 301–316 (2012).

37. Macaulay, I. C. et al. Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. Cell Rep. 14, 966–977 (2016).

38. Georganopoulos, G., Iwata, M., Psatha, N., Yiangou, M. & Vierstra, J. Unbiased phenotypic identification of functionally distinct hematopoietic progenitors. J. Biol. Res. 26, 6 (2019).

39. Prunk, C. J. H. et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloiderythroid progenitor cell hierarchy. Cell Stem Cell 1, 428–442 (2007).

40. Schlieker, M., Boettiger, A. N., Leake, J. A. & Orr-Weaver, T. L. Cell cycle regulation of erythropoiesis. J. Exp. Med. 213, 2815–2832 (2018).
73. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eab7721 (2020).
74. Mancini, E. et al. FOG-1 and GATA-1 act sequentially to specify definitive megakaryocyte and erythroid progenitors. EMBO J. 34, 351–365 (2015).
75. Heuston, E. F. et al. Establishment of regulatory elements during erythromegakaryopoiesis identifies hematopoietic lineage-commitment points. Epigenetics Chromatin. 11:22 (2018).
76. Kossinets, C. M. & Park, C. Y. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage. Blood 127, 1242–1248 (2016).
77. Sanjuan-Pla, A. et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502, 232–236 (2013).
78. Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native hematopoiesis. Nature 533, 212–216 (2016).
79. Miyawaki, K. et al. Identification of unipotent megakaryocyte progenitors in human hematopoiesis. Blood 129, 3332–3343 (2017).
80. Psaila, B. et al. Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biol. 17, 83 (2016).
81. Sanada, C. et al. Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction. Blood 128, 923–933 (2016).
82. Mori, Y., Chen, J. Y., Puvianage, J. V., Seita, J. & Weissman, I. L. Prospective isolation of human erythroid lineage-committed progenitors. Proc. Natl Acad. Sci. U. S. A. 112, 9638–9643 (2015).
83. Li, J. et al. Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. Blood 124, 3636–3645 (2014).
84. Messner, H. A., Jamal, N. & Iqwuire, C. The growth of large megakaryocyte colonies from human bone marrow. J. Cell. Physiol. Suppl. 1, 45–51 (1982).
85. Corash, L., Levin, J., Mok, Y., Baker, G. & McDowell, J. Measurement of megakaryocyte frequency and ploidy distribution in unfractinated murine bone marrow. Exp. Hematol. 17, 278–286 (1989).
86. Karamitros, D. et al. Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. Nat. Immunol. 19, 85–97 (2018).
87. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).
88. Psatha, N. et al. Disruption of the BCL11A erythroid enhancer reactivates fetal megakaryocytic and erythroid progenitors in the CD34+CD38mid fraction. Blood 128, 923–933 (2016).
89. Li, H. et al. Lower normalizing read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
90. John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43, 264–268 (2011).
91. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
92. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
93. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
94. Abdenur, N. & Miny, L. A. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36, 311–316 (2020).
95. Ramirez, F. et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189 (2018).
96. Roayaei Ardakany, A., Gezer, H. T., Lonardi, S. & Ay, F. Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation. Genome Biol. 21, 256 (2020).
97. Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D1284 (2018).
98. Jolma, A. et al. DNA-binding specificities of human transcription factors. Cell 152, 327–339 (2013).
99. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).