Identifying Pediatric Cancer Clusters in Florida Using Log-Linear Models and Generalized Lasso Penalties

Hao Wang and Abel Rodríguez

We discuss the identification of pediatric cancer clusters in Florida between 2000 and 2010 using a penalized generalized linear model. More specifically, we introduce a Poisson model for the observed number of cases on each of Florida’s ZIP Code Tabulation Areas (ZCTA) and regularize the associated disease rate estimates using a generalized Lasso penalty. Our analysis suggests the presence of a number of pediatric cancer clusters during the period over study, with the largest ones being located around the cities of Jacksonville, Miami, Cape Coral/Fort Meyers, and Palm Beach.

KEY WORDS: Bregman Algorithm; Fused Lasso; Disease clustering; Generalized Lasso; Log-linear models; Pediatric cancer; Poisson regression.

1. INTRODUCTION

A recent analysis of pediatric cancer records collected in Florida between 2000 and 2007 described by Amin et al. (2010) identified two possible cancer clusters (one in south Florida and one in northeastern Florida) using the SaTScan™ software. This article analyzes an updated version of this dataset covering the years between 2000 and 2010 using a penalized generalized linear model (pGLM), reaching similar conclusions.

The National Cancer Institute defines a disease cluster as “the occurrence of a greater than expected number of cases of a particular disease within a group of people, a geographic area, or a period of time.” This definition makes it clear that disease clusters are a purely statistical construct, but provides little guidance about how to identify them. Accordingly, a number of approaches with somewhat distinct goals have been proposed in the literature. Some methods attempt to identify whether the phenomenon of clustering is present in a dataset, but without trying to determine where the clusters are located (see, e.g., Whittemore et al. 1987; Diggle and Chetwynd 1991). Alternatively, some methods are concerned with identifying spatial (and/or temporal) clusters in a dataset in which their presence is not known. Methods based on scan statistics (e.g., Weinstock 1981; Kulldorff 1997; Tango and Takahashi 2005) are examples of such de novo cluster identification. Finally, methods for confirmatory cluster analysis (which Besag and Newell 1991 call focused tests) are concerned with determining whether the rate of disease in a prespecified area (which might contain some putative health hazard) is higher than expected (see, e.g., Stone 1988; Tango 1995; Morton-Jones, Diggle, and Elliott 1999).

Methods for disease clustering can also be classified according to whether they are designed to work with point-referenced or spatially aggregated (aerial) data. In the case of point-referenced data, it is common to distinguish between distance-based methods (Whittemore et al. 1987; Besag and Newell 1991; Tango 1995, among others), which derive tests based on the distribution of the time/distance between locations on which events occurred, and quadrat-based methods (e.g., Openshaw et al. 1987; Kulldorff and Nagarwalla 1995), which study the variability of case counts in certain subsets of the region of interest (called quadrats). In the case of aerial data, frequency tests similar to those used in quadrat-based methods are frequently used (see, e.g., Potthoff and Whittinghill 1966a, 1966b). Bayesian methods for disease clustering in spatially aggregated data have been proposed by Knorr-Held and Raßer (2000), Green and Richardson (2002), Wakefield and Kim (2013), and Anderson, Lee, and Dean (2013). Other recent contributions to the field include the work of Moraga and Montes (2011), who used local indicators of spatial association (LISA) functions, Charras-Garcia et al. (2012), who used a latent discrete Markov random field estimated using an expectation-maximization algorithm, and Heinzl and Tutz (2014), who proposed a clustering approach that uses fused-lasso penalties to estimate the number of clusters. Kulldorff, Tango, and Park (2003), Waller, Hill, and Rudd (2006), and Goujon-Bellec et al. (2011) presented detailed comparisons of various methods for disease clustering.

It is worth noting that the main goals of disease clustering methods are similar but distinct from those of diseases mapping. Typically, diseases mapping applications deal with the estimation of smooth covariate-adjusted risk measures, but do not aim at identifying discontinuities in the risk function. On the other hand, the whole point of methods for de novo identification of cancer clusters is to pinpoint such discontinuities. Of course, these two objectives are not necessarily opposed (see, e.g., Knorr-Held and Raßer 2000; Green and Richardson 2002; Anderson, Lee, and Dean 2013), but they are certainly different.

The data we analyze in this article consist of 6558 cases of pediatric cancer occurring in Florida between January 2000 and December 2010. Covariates available for each of the patients include age, race, and sex. We treat age as a categorical variable with four levels (encompassing patients in the ranges of 0–4, 5–9, 10–14, and 15–19 years of age, respectively). On the other hand, race included in principle seven levels: White
(4768 patients), Black (1104 patients), Oriental (73 patients), Polynesian (8 patients), Native American (7 patients), More than One Race (20 patients), and Unknown (578 patients). However, since total population estimates are available only for the categories White, Black, and Other, our analysis combines the cases that fall into the Oriental, Polynesian, Native American, More than One Race, and Unknown categories into a single one (Other). Spatio-temporal information for the cases includes the ZIP Code Tabulation Areas (ZCTAs) of residence of the patient as well as the year of diagnosis. However, although the data are (at least in principle) spatio-temporal in nature, we aggregate the data on each ZCTA over time and ignore the temporal component. We take this approach because annual counts on individual ZCTAs tend to be very small and because environmental factors affecting cancer incidence rates are likely to operate over long time scales, making inter-annual fluctuations less important than geographic effects, which are regularized (or, alternatively, given a prior distribution) through a fused Lasso penalty (Tibshirani et al. 2005; Friedman et al. 2007; Rinaldo et al. 2009; Chen et al. 2012).

We start by discussing some notation. Let \(y_i \) and \(n_i \) be, respectively, the total observed number of pediatric cancer cases and the total pediatric population on ZCTA \(i \), where \(i = 1, \ldots, 979 \) (Florida has a total of 983 ZCTAs, but four of them had no pediatric population (and, of course, no cases) during the period we study. Hence, our analysis involves data from only 979 ZCTAs). The overall disease rate \(\bar{\theta} \) is then simply \(\bar{\theta} = \frac{\sum y_i}{\sum n_i} \).

We model the total observed number of cases \(y_i \) as a Poisson random variable with intensity \(\theta_i, y_i | \eta_i \sim \text{Poi} (\eta_i) \), where \(\log \eta_i = \log n_i + \log \bar{\theta} + \phi_i \), and \(\phi_i \) is a random effect (or, alternatively, a frailty term) that captures overdispersion in the data. The value of \(\theta_i = \exp(\phi_i) \) represents the excess risk in ZCTA \(i \), so that \(\theta_i > 1 \) (or, equivalently, \(\phi_i > 0 \)) suggest areas of increased risk. The log-likelihood associated with this model can be written as

\[
\ell(\phi; y) = \sum_{i=1}^{979} \left(y_i \left(\log n_i + \log \bar{\theta} + \phi_i \right) - n_i \bar{\theta} \exp(\phi_i) \right),
\]

where \(\phi = (\phi_1, \ldots, \phi_{979})^T \) and \(y = (y_1, \ldots, y_{979})^T \). Direct maximization of (1) leads to the trivial estimate \(\hat{\theta}_{\text{MLE}} = y_i / (n_i \bar{\theta}) \). Instead, we propose to maximize a penalized log-likelihood

\[
\ell_{\text{FL}}(\phi; y) = \ell(\phi; y) + J_{\lambda,\gamma}(\phi),
\]

where the term \(J_{\lambda,\gamma}(\phi) \) is the so-called fused lasso penalty (Tibshirani et al. 2005; Friedman et al. 2007; Rinaldo et al. 2009)

\[
J_{\lambda,\gamma}(\phi) = -\lambda \gamma \sum_{i=1}^{979} |\phi_i| - \lambda \sum_{i' \neq i} |\phi_i - \phi_{i'}|,
\]

and \(\sum_{i' \neq i} \) denotes the sum over all pairs of Florida’s ZCTAs that share a common boundary with each other. Note that this penalty is the combination of two terms, \(-\lambda \sum_{i=1}^{979} |\phi_i| \) (which shrinks individual log risks toward zero) and \(-\lambda \sum_{i' \neq i} |\phi_i - \phi_{i'}| \) (which shrinks the log risk of a given region toward that of its neighbors, and therefore encourages smoothness in the risk surface). Hence, the parameters \(\lambda \) and \(\gamma \) control the level of similarity in the estimates for neighboring regions. In particular, \(\lambda = 0 \) implies that the frailty terms are independent a priori and the overdispersion in the counts does not follow any spatial pattern, while \(\lambda \rightarrow \infty \) leads to a model in which the level of overdispersion is the same in all ZCTAs. Similarly, \(\gamma = 0 \) implies that no shrinkage is applied, while \(\gamma \rightarrow \infty \) implies that the excess risk is zero for all ZCTAs.

From a Bayesian perspective, the fused lasso penalty can be motivated as corresponding to a prior of the form,

\[
p(\phi | \lambda, \gamma) = \frac{1}{C(\lambda, \gamma)} \exp \left\{ -\lambda \gamma \sum_{i=1}^{979} |\phi_i| - \lambda \sum_{i' \neq i} |\phi_i - \phi_{i'}| \right\},
\]

where \(C(\lambda, \gamma) = \int \left\{ -\lambda \gamma \sum_{i=1}^{979} |\phi_i| - \lambda \sum_{i' \neq i} |\phi_i - \phi_{i'}| \right\} d\phi < \infty \) is the normalizing constant. It is not difficult to show that \(C(\lambda, \gamma) < \infty \) as long as \(\gamma > 0 \) (see, e.g., Kyung et al. 2010). Hence, the fused lasso corresponds to a proper prior as long as \(\gamma > 0 \), but improper if \(\gamma = 0 \).

It is constructive to consider the similarities between the fused lasso penalty and conditionally autoregressive (CAR) models.
widely used to model spatial patterns in aerial data. In particular, intrinsic CAR priors are often defined in terms of the full conditional prior distributions,

\[\phi_i \mid \phi_{-i}, \tau^2 \sim N \left(\frac{\sum_{j=1,j \neq i}^{979} W_{i,j} \phi_j}{W_{i,i}}, \frac{\tau^2}{W_{i,i}} \right) , \]

where \(W_{i,j} \) are known weights, \(W_{i,i} = \sum_{j=1,j \neq i}^{979} W_{i,j} \), and \(\phi_{-i} = (\phi_1, \ldots, \phi_{i-1}, \phi_{i+1}, \ldots, \phi_{979}) \). A common choice is to let \(W_{i,j} = 1 \) if \(i \sim j \) and \(W_{i,j} = 0 \) otherwise, in which case the joint prior on \((\phi_1, \ldots, \phi_{979})\) can be written as

\[p(\phi \mid \tau^2) \propto \exp \left\{ -\frac{1}{2\tau^2} \sum_{i=1}^{979} (\phi_i - \bar{\phi})^2 \right\} . \tag{3} \]

(For a proof, see, e.g., Rue and Held 2005.) Note that the logarithm of the right-hand side of (3) resembles the form of the fused lasso with \(\gamma = 0 \) and \(1/\lambda = 2\tau^2 \), except that the absolute value of the differences between neighbors has been replaced by the squared value of such differences. Hence, we can think of the fused lasso with \(\gamma > 0 \) as a proper, heavy tailed alternative to the traditional CAR prior which, in addition to spatial smoothing, induces shrinkage in the disease rates. Furthermore, because double exponential kernels can be represented as scale mixtures of Gaussian kernels (Andrews and Mallows 1974), it can be easily shown that the fused lasso penalty corresponds to the marginal prior distribution induced by a hierarchical Gaussian CAR model.

Although there are substantial similarities between CAR and fused lasso priors, an important difference is that the penalty function \(J_{\lambda,\gamma}(\phi) \) is nondifferentiable at points for which \(\phi_i = 0 \) for any \(i \) or \(\phi_i = \phi_j \) for any pair \(i \sim i' \). Hence, the posterior mode associated with this model

\[\bar{\phi}(\lambda, \gamma) = (\bar{\phi}_1(\lambda, \gamma), \ldots, \bar{\phi}_{979}(\lambda, \gamma)) = \arg\max_{\phi} \ell_{\text{FL}}(\phi; y) \tag{4} \]

is such that the value for groups of adjacent coefficients can be identical to each other and/or be exactly zero, leading to both a segmentation of the state into groups of neighboring ZCTAs, and to a classification of those groups as having or not having a relative risk significantly different from one (and for those groups of ZCTA that have a relative risk significantly different from one, a shrunk estimate of the corresponding relative risk). We exploit this property to define the \(k \)th cancer cluster in the sample as a group of adjacent ZCTAs, with positive logrelative risk, that is, as a group of indexes \(i_1, \ldots, i_m \) such that for every \(j = 1, \ldots, m_k \) we have \(\bar{\phi}_j(\lambda, \gamma) > 0 \) and for some \(j' = 1, \ldots, m_k \) we have \(i_j \sim i_{j'} \). Hence, maximizing the penalized log-likelihood allows us to treat the problem of simultaneously testing multiple hypotheses as an estimation problem that can be efficiently solved (see Section 3).

The performance of the model depends critically on the value of the penalty parameters \(\lambda \) and \(\gamma \), which need to be estimated from the data. In this article, we select these two parameters by minimizing Akaike’s information criterion (AIC; Akaike 1974),

\[\text{AIC}(\lambda, \gamma) = -2 \ell(\hat{\phi}(\lambda, \gamma); y) + 2 \psi(\hat{\phi}(\lambda, \gamma)), \tag{5} \]

where \(\psi(\hat{\phi}(\lambda, \gamma)) \) represents the equivalent number of parameters associated with \(\lambda \) and \(\gamma \) (in this case, the number of nonzero blocks of coefficients that are obtained when the values of \(\lambda \) and \(\gamma \) are used to compute the penalized estimates in (4), see Zou et al. 2007; Tibshirani et al. 2012).

A similar formulation can be used to account for the effect of the available covariates (age, race, sex). In particular, let \(y_{i,j,k,l} \) and \(n_{i,j,k,l} \) correspond to the number of pediatric cancer cases and the total pediatric population in ZCTA \(i = 1, \ldots, 979 \), age group \(j = 1, \ldots, 4 \), race \(k = 1, \ldots, 3 \), and sex \(l = 1, 2 \) and define the average incidence rate for each of these subpopulations as \(\hat{\theta}_{j,k,l} = \frac{\sum_{i=1}^{979} y_{i,j,k,l}}{\sum_{i=1}^{979} n_{i,j,k,l}} \). We model the counts \(y_{i,j,k,l} \) by assuming the excess risk in ZCTA \(i \) is the same for all subpopulations, that is, we let \(y_{i,j,k,l} \mid n_{i,j,k,l} \sim \text{Poi}(n_{i,j,k,l} \hat{\theta}_{j,k,l} + \phi) \). Under this formulation, covariate-adjusted estimates of the excess risk can be obtained by solving

\[\begin{align*}
\hat{\phi}(\lambda, \gamma, \ldots, \hat{\phi}_{979}(\lambda, \gamma)) &= \arg\max_{\phi} \ell_{\text{FL}}(\phi; y) \\
&= \arg\max_{\phi} \left\{ \sum_{i=1}^{979} \sum_{j=1}^{4} \sum_{k=1}^{3} \sum_{l=1}^{2} \left[\sum_{i=1}^{979} y_{i,j,k,l} \phi_{j,k,l} - n_{i,j,k,l} \phi_{j,k,l} \exp(\phi_{j,k,l}) \right] - \lambda \sum_{i=1}^{979} \sum_{j=1}^{4} \sum_{k=1}^{3} \sum_{l=1}^{2} |\phi_{j,k,l} - \phi_{j,k,l}| \right\}. \tag{6}
\end{align*} \]

3. Computational Implementation

We solve the maximization problems in (4) and (6) using a variation of the “split-Bregman” algorithm discussed in Goldstein and Osher (2009). The algorithm is iterative and relies on a second-order Taylor approximation to the Poisson likelihood and on the introduction of two auxiliary vectors \(\mathbf{u} \) and \(\mathbf{d} \) that allow us to break the optimization problem into coupled subproblems that are, individually, easy to solve. In the case of (4), the algorithm takes the following form.

1. Initialize \(\phi^{(0)} \) and pick a tuning parameter \(\xi \) that controls the rate of convergence of the algorithm.
2. Starting with \(k = 0 \) and until convergence, repeat:
 a. Update the parameters of the quadratic approximation to the likelihood function by setting
 \[\mathbf{H}^{(k)} = -\text{diag} \left\{ n_1 \hat{\theta} \exp \left(\hat{\phi}^{(k)}_1 \right), \ldots, n_{979} \hat{\theta} \exp \left(\hat{\phi}^{(k)}_{979} \right) \right\} \]
 the vector
 \[\mathbf{h}^{(k)} = \left(\begin{array}{c} y_1 - n_1 \hat{\theta} \exp \left(\hat{\phi}^{(k)}_1 \right) \\ \vdots \\ y_{979} - n_{979} \hat{\theta} \exp \left(\hat{\phi}^{(k)}_{979} \right) \end{array} \right) . \]
 b. Initialize \(\phi^{(k+1.0)} = \phi^{(k)} \), \(\mathbf{u}^{(k+1.0)} \), and \(\mathbf{d}^{(k+1.0)} \).
 c. Starting with \(\ell = 0 \) and until convergence, repeat:
 i. Update the matrix
 \[\mathbf{A}^{(k,\ell)} = \left(\begin{array}{c} A^{(k,\ell)}_{1,1} \ldots A^{(k,\ell)}_{1,979} \\ \vdots \\ A^{(k,\ell)}_{979,1} \ldots A^{(k,\ell)}_{979,979} \end{array} \right) . \]
by setting
\[A^{(k,i)} = \xi \lambda L^T L - H^{(k)}, \]
and the vector \(a^{(k,i)} = (a^{(k,i)}_1, \ldots, a^{(k,i)}_{979})^T \) by setting
\[a^{(k,i)} = \xi \lambda L^T (u^{(k,i)} - d^{(k,i)}) + h^{(i)} - H^{(k)} \tilde{\phi}^{(k)}. \]

In the previous expressions, \(L \) is an \(m \times 979 \) matrix (with \(m \) representing the number of pairs of ZCTA that are considered neighbors) such that the \(k \)th row of \(L \) has only two nonzero entries (that correspond to the \(k \)th pair of neighbors), which take the values +1 and -1.

ii. Initialize \(\phi^{(k+1,i,0)} = \tilde{\phi}^{(k+1,i)} \).

iii. Starting with \(s = 0 \) and until convergence, iterate the following step:
\[
\phi^{(k+1,i,s+1)} = \mathcal{S}
\begin{pmatrix}
\sum_{j=1}^{979} \gamma_j a^{(k,i)}_j \alpha_{(k+1,i),j}^{(k+1,i)} + \gamma_j a^{(k,i)}_j \alpha_{(k+1,i),j}^{(k+1,i+1)} \\
\gamma_j a^{(k,i)}_j \alpha_{(k+1,i),j}^{(k+1,i)} + \gamma_j a^{(k,i)}_j \alpha_{(k+1,i),j}^{(k+1,i+1)}
\end{pmatrix},
\]
where \(\mathcal{S}(x, \delta) = \text{sgn}(x) \max(0, |x| - \delta) \) is the soft thresholding operator.

iv. When the previous subiterations have converged, set \(\phi^{(k+1,i+1)} = \phi^{(k+1,i,\infty)} \).

v. Set \(u^{(k+1,i+1)} = S(d^{(k+1,i+1)} + \lambda L \phi^{(k+1,i+1)}), \)

vi. Set \(d^{(k+1,i+1)} = d^{(k+1,i)} + \lambda L \phi^{(k+1,i+1)} \).

d. Once this subiteration has converged, set \(\phi^{(k+1)} = \phi^{(k+1,i,\infty)} \).

3. Once these iterations have converged, report \(\phi^{(\infty)} \) as your point estimate for \(\phi \).

We present details of the derivation of this algorithm in Appendix A, and note that modifying it to maximize (6) is straightforward (the only difference being the structure of \(H \) and \(h \)). We implemented the iterative thresholding in Step (iii) above using the function crossProdLasso from the R package scout (Witten and Tibshirani 2011). All subiterations were considered to have converged when the relative \(L^2 \) error in the estimate of the vector \(\phi \) was less than \(10^{-4} \).

To select the hyperparameters \(\lambda \) and \(\gamma \), we evaluate AIC(\(\lambda \), \(\gamma \)) over a grid of values of \((\gamma, \lambda) \). In particular, we take \(\gamma \in \{0.5, 1, 2\} \), indicating the ratio of the strength of the pure lasso penalty over that of the fusion penalty is in the range of 50% and 200%. For \(\lambda \), we first run the path algorithm of Tibshirani et al. (2012) for solving the least-square generalized lasso approximation (A.2) at \(\phi = 0 \) and then use the output values of

Table 1. Raw incidence rates of pediatric cancer in different covariate-driven subgroups for the four largest clusters identified by our model when there is no adjustment for covariates

Age Group	Sex	Race									
	Female	Male	Black	White	Other						
	(per 100,000 children per year)										
North Florida	15.5	18.9	29.0	14.1	15.0	18.1	17.5	20.2	19.1	19.5	11.2
Miami	16.5	18.1	28.6	14.1	15.0	15.6	18.3	17.9	16.7	14.3	51.3
Palm Beach	15.3	18.2	28.7	14.6	15.8	14.2	15.8	20.3	20.2	17.7	17.6
Cape Coral	15.0	18.9	31.4	14.5	15.9	14.4	16.6	21.1	20.8	20.6	5.8
Florida	–	13.6	21.8	11.1	11.5	10.7	12.8	14.4	13.3	13.4	16.2
\(\lambda \), at which the solution path changes slope, as the grid for the Poisson generalized lasso.

4. RESULTS

4.1 Relative Risks Without Adjusting for Covariates

Figure 1 shows the raw and estimated overall log relative risks for each of Florida’s ZCTAs before adjusting for race, gender, or ethnicity. These point estimates were generated using the optimal values of \(\hat{\gamma} = 1 \) and \(\hat{\lambda} = 0.718 \) obtained using AIC. By comparing these two maps, we note that our algorithm has the expected effect of smoothing out the raw observations, leading to estimates that involve a large number of ZCTAs with \(\hat{\phi}_i = 0 \), that is, no increased or reduced relative risks. Our approach also identified 26 possible clusters with elevated overall relative risk involving 274 ZCTAs; some of these clusters had raw risks that were up to four times higher than Florida’s average. Many of these clusters (19 out of the 26) correspond to either isolated ZCTAs or small clusters with only two or three ZCTAs in them. However, the largest clusters (with 91, 73, 32, and 24 ZCTAs and an average at-risk pediatric population of 341,755, 579,902, 120,241 and 162,272 individuals each year) are located in north Florida (the Jacksonville metro area and counties to the West), the Miami metro area, the Cape Coral-Fort Myers metro area and counties to the East, and the county of Palm Beach. The clusters we identify mostly fall within the boundaries of the clusters identified in Figure 1 of Amin et al. (2010); in particular, we seem to find the same small cluster in central Florida that the aforementioned authors identified in their original dataset. However, our clusters tend to be much smaller, suggesting that our methodology allows for more precise identification.

Table 1 presents the raw incidence rates of pediatric cancer in different covariate-driven subgroups for these four large clusters, and compares them against the average incidence rate in Florida for the same groups. Note that raw incidence rates in these clusters are between 33% and 39% higher than for Florida as a whole, which is substantial. Also, although the specific patterns vary in the different clusters, disease rates are elevated in almost every subgroup. The main (and somewhat surprising) exception is the racial group “Other” in the Cape Coral-Fort Myers region, which has a very low incidence rate compared to the Florida average for this same group.

4.2 Relative Covariate-Adjusted Risks

Figure 2 presents estimates of the relative risks computed under the covariate-adjusted model in (6). In this case, the optimal values for the hyperparameters are \(\hat{\gamma} = 1 \) and \(\hat{\lambda} = 0.717 \), essentially identical to those in Section 4.1. Furthermore, note that this map is very similar to the one presented in the right panel of Figure 1. We now detect 24 possible clusters involving a total of 276 ZCTAs. Table 2 and Appendix A.1 present a more detailed comparison of the four major clusters under each of the models. Again, there is substantial agreement between both models, with the cluster under one model being almost completely a subset of the respective cluster under the other.

Similarly to Table 1, Table 3 shows the raw incidence rates of pediatric cancer in different covariate-driven subgroups for the four largest clusters identified by our second model, and compares them against the average incidence rate in Florida for the same groups. As would be expected the results are very similar to those in Section 4.1, with the Miami cluster still exhibiting a particularly large incidence rate among members of the “Other” racial group, and Cape Coral showing a particularly small incidence rate for the same group.

4.3 Validation

4.3.1 Robustness of the Computational Algorithm. To explore the effect of initial values, we initialize the Poisson generalized lasso algorithm at two different and meaningful values. The first is \(\phi^{(0)} = 0 \), corresponding to zero log relative risks for all regions, and the second is \(\phi^{(0)} = \{\log(y_i/n_i) - \log(\bar{\theta})\} \),

\[
\begin{array}{c|c|c|c|c|c|c|}
\hline
 & \text{Number of} & \text{Total pediatric} & \text{Number of} & \text{Total pediatric} & \text{Number of ZCTAs} \\
\hline
& \text{ZCTAs} & \text{population} & \text{ZCTAs} & \text{population} & \text{in common} \\
\hline
\text{North Florida} & 91 & 341,755 & 98 & 351,093 & 90 \\
\text{Miami} & 73 & 579,902 & 70 & 558,939 & 70 \\
\text{Cape Coral} & 32 & 120,241 & 26 & 101,065 & 26 \\
\text{Palm Beach} & 24 & 162,272 & 25 & 166,257 & 24 \\
\hline
\end{array}
\]
Table 3. Raw incidence rates of pediatric cancer in different covariate-driven subgroups for the four largest clusters identified by our model after adjusting for covariates

Incidence (per 100,000 children per year)	Fitted overall	Raw overall	Age group	Sex	Race						
	0–4	5–9	10–14	15–19	Female	Male	Black	White	Other		
North Florida	15.6	18.9	28.9	14.1	15.1	17.7	17.4	20.2	18.5	19.55	11.5
Miami	16.5	18.0	28.4	13.9	14.9	15.6	18.3	17.7	16.8	14.2	51.2
Palm Beach	15.0	18.0	28.2	14.5	16.2	13.8	15.8	20.1	20.1	17.4	18.0
Cape Coral	15.7	19.1	31.3	14.5	16.2	13.8	16.7	21.3	23.2	20.0	6.2
Florida	–	13.6	21.8	11.1	11.5	10.7	12.8	14.4	13.3	13.4	16.2

corresponding to the observed log relative risks. Because some regions have zero incidents, implying a value of $-\infty$ for the observed log relative risk, we set the initial log relative risk in these regions equal to the smallest finite value in the sample. The algorithm seems to be robust to the choice of initial values, as the results agree for up to the four decimal place. For the tuning parameter ξ, we explored values between 4 and 40 and found that the performance of the algorithm was quite robust to this choice for both models.

4.3.2 Model Assessment and Goodness of Fit. We assess model fit by inspecting the deviance residuals. The deviance residual for the ith observation is defined as

$$D_i = \text{sign}(y_i - \hat{y}_i)[2y_i \log(y_i/\hat{y}_i)I_{\{y_i \neq 0\}} - 2(y_i - \hat{y}_i)]^{1/2},$$

where y_i and \hat{y}_i are the observed and fitted counts in the region i, and $I_{\{\cdot\}}$ is the indicator function. Similarly to linear models, these deviance residuals can be plotted against the logarithm of the fitted values and/or against the quantiles of a half-normal distribution to assess goodness of fit (Neter et al. 1996). Furthermore, we assess the independence in the deviance residuals (and therefore, whether the fused lasso priors capture the spatial structure in the data) by applying Moran's I test (see, e.g., Banerjee, Gelfand, and Carlin 2004) to the deviance residuals using the `moran.test` function from the R package `spdep` (Bivand, Altman, and Anselin 2014).

As an illustration, panel (a) in Figure 3 plots the deviance residuals against the log predicted values $\log(\hat{y}_i)$ for the analysis in Section 4.1. This plot suggests no major problems as most residuals are within 2 in absolute value and there is no obvious relation between the residuals and the predicted values. In the same spirit, panel (b) in Figure 3 shows the half-normal QQ plot of the absolute values the residuals D_i. It shows a couple of points with large residuals, but overall the fit of the model seems appropriate. Finally, the deviance residuals from the pGLM have a Moran I statistic of 0.75 with a p-value of 0.23. In contrast, the D_i's from the fixed effect intercept-only model have a Moran’s I statistic of 6.36 with a p-value of about 10^{-10}. This suggests that our pGLM accurately captures the spatial pattern in the data that is missed in the fixed effect model.

4.3.3 Small-Sample Properties. Since the small-sample properties of the fused lasso as a model selection mechanism are not well understood, we validate our results by undertaking four small simulation studies to assess the probability of a Type I error (i.e., detecting at least one cancer cluster when none is present), Type II error (i.e., not detecting any cluster when at least one is present), as well as the specificity, sensitivity, and Matthews correlation coefficient (or MCC, see Matthews 1975)

![Figure 3](image-url)
under different data-generation mechanisms. To provide some context for these results, we also used these simulated scenarios to compare the performance of our model against the two test-based procedures. One is the distance-based method proposed in Besag and Newell (1991) (called BN in the sequel) computed for two different values of its tuning parameter K, which is the number of observed cases for which the number of neighboring regions needed to reach is calculated. We choose K = 20 and K = 200. The other is the quadrat-based likelihood ratio test proposed in Kulldorff and Nagarwalla (1995) (called KN in the sequel) computed for two different values of its tuning parameter R, which is the maximum fraction of the total population used when creating the ball of the cluster. We consider R = 0.02 and R = 0.2. Both BN and KN tests are performed using the opgam function in the R package DCluster (Gómez-Rubio, Ferrándiz-Ferragud, and Lopez-Quílez 2005).

Our first simulation study is carried out under a model in which there are no cancer clusters in Florida. More specifically, we generate 100 datasets \(y_1^*, \ldots, y_{100}^* \), so that the number of cases in ZCTA \(i = 1, \ldots, 979 \) for dataset \(m = 1, \ldots, 100 \) is given by \(y_{m,i}^* \sim \text{Poi}(n_i \tilde{\theta}) \), where \(\tilde{\theta} = \sum_{j=1}^{979} y_j^*/n_j^* = 0.000136 \) is the average overall pediatric cancer risk observed in Florida between 2000 and 2010. For each of these samples, we computed the number of clusters identified by the model as well as the proportion of regions identified as being part of a cluster by each of the three procedures discussed above (see Table 4 and Figure 4).

Our second simulation study involves 100 datasets \(y_1^*, \ldots, y_{100}^* \), where \(y_{m,i}^* \sim \text{Poi}(n_i \tilde{\theta}^*_i) \), where \(\tilde{\theta}^*_1, \ldots, \tilde{\theta}^*_979 \) correspond to the overall relative risks for the different ZCTAs reported in Section 4.1. Table 5 presents values for the probability of not identifying any cluster in the data, as well as the sensitivity, specificity, and Matthews correlation coefficient associated with each of the three methods for this second scenario.

As suggested by one of the referees, our third and fourth scenarios deviate from the pGLM model assumption, which assumes that some neighboring regions have exactly the same relative risks. The alternative data generating model is the CAR model. More specifically, let \(W \) be a symmetric matrix such that \(W_{i,j} = 1 \) if \(i \sim j \) and \(W_{i,j} = 0 \) otherwise for \(i, j = 1, \ldots, 979 \), and let \(W_{i,+} = \sum_{j=1}^{979} W_{i,j} \) and \(D_W = \text{diag}(W_{1,+}, \ldots, W_{979,+}) \) and \(E = (D_W - \rho W)/\tau^2 \). We simulate the log relative risks \(\tilde{\phi}^*_1, \ldots, \tilde{\phi}^*_979 \) from a multivariate normal distribution with zero mean and precision matrix \(E \), where the spatial correlation is set to \(\rho = 0.99 \). For our third scenario, we use a relatively small value of \(\tau = 0.02 \), which implies that 95% of the standard deviations of the log relative risks \(\tilde{\phi}^*_1, \ldots, \tilde{\phi}^*_979 \), as can be computed from the diagonal elements of \(E^{-1} \), are within [0.010, 0.025]. Thus, the simulated log relative risks are largely concentrated around zero and this scenario is close to the null hypothesis where no region has higher than average incidence rates. For our fourth simulation study, we use a moderate value of \(\tau = 0.2 \), implying that 95% of the standard deviations of the \(\tilde{\phi}^*_i \)s are within [0.10, 0.25]. The implication is that the simulated log relative risks can be substantially positive and so some

Table 4. Performance of three different algorithms under our first simulation scenario. Standard errors are in parentheses

Method	Proportion of simulations in which clusters were identified	Average proportion of regions identified as part of a cluster
pGLM	0.79	0.045 (0.056)
BN (K = 20)	0.97	0.005 (0.003)
BN (K = 200)	0.98	0.020 (0.016)
KN (R = 0.02)	1.00	0.039 (0.014)
KN (R = 0.2)	1.00	0.04 (0.033)

Table 5. Performance of three different algorithms under our second simulation scenario. Standard errors are in parentheses

Method	Proportion of simulations in which no clusters were identified	Average sensitivity	Average specificity coefficient	Matthews correlation
pGLM	0	0.62 (0.10)	0.85 (0.06)	0.44 (0.06)
BN (K = 20)	0	0.01 (0.01)	0.99 (0.01)	0.05 (0.04)
BN (K = 200)	0	0.34 (0.08)	0.89 (0.02)	0.24 (0.07)
KN (R = 0.02)	0	0.33 (0.06)	0.91 (0.01)	0.26 (0.05)
KN (R = 0.2)	0	0.69 (0.05)	0.65 (0.05)	0.26 (0.05)
neighboring ZCTAs can have high, albeit unequal, log relative risks.

The results presented above suggest that the pGLM has the best overall performance. From Table 4, we see that it has the lowest probability of detecting a false cluster (although that probability is moderately high, suggesting that the model has a moderately large chance of detecting a spurious cluster). On the other hand, Tables 5–7 show that the fussed lasso prior has a moderately large chance of detecting a spurious cluster. On the other hand, Tables 5–7 show that the fussed lasso prior has the highest MCC coefficient. Furthermore, note that in our third scenario the pGLM detects no clusters (regions with positive log relative risks) about 22% of the time but BN and KN almost always detect some clusters. This is probably because the real signal is weak in this case and pGLM aggressively shrinks these weak log relative risks toward zero, but BN and KN impose no shrinkage. On the other hand, in our fourth scenario all models perform poorly, as they tend to identify many small clusters.

5. DISCUSSION

Our analysis of the Florida data suggests the presence of a number of pediatric cancer clusters, with the largest ones being roughly located around the cities of Jacksonville, Miami, Cape Coral/Fort Meyers, and Palm Beach and covering about a quarter of the total pediatric population in the state. We estimate that the risk of pediatric cancers in these regions is at least 30% higher than the state-wide average risk. Importantly, these results seemed to be robust to the inclusion of demographic information. However, our validation using a simulation study suggests that these results must be taken with a grain of salt. Indeed, although our approach has higher sensitivity and specificity and lower Type I error rate than the algorithms we compared it against, it still tends to incorrectly identify at least one cluster in datasets that have been generated under a Poisson model with a constant rate in at least 79% of the cases. In spite of this somewhat negative result, we believe that at least some of the biggest clusters are indeed real because of the high MCC index in our method and the fact that the number of ZCTAs with elevated relative risks in the Florida data is much larger than the numbers we observed when applying our method to data simulated under the null model.

One potential shortcoming of our approach is that overdispersion is captured only by spatial random effects. Although this type of assumption is common in the literature on disease mapping, it can potentially lead to the detection of clusters even if the overdispersion does not follow a well-defined spatial pattern (e.g., if the data arise as independent and identically distributed from a negative binomial distribution). Although the literature on cancer cluster identification is ambivalent about whether all sorts of overdispersion should suggest the presence of clusters or not, we believe that some sort of spatial coherence in the structure of the clusters is desirable. That is the reason why in our discussion of the results we have focused on the four largest clusters identified by our algorithm. A more conservative approach that would deal with this issue would include independent random effects to account for nonspatial structure in the overdispersion in addition to the spatial random effects (see, e.g., Banerjee, Gelfand, and Carlin 2004).

It is worth emphasizing that we did not carry out a full Bayesian analysis of the data and instead focused on providing point estimators based on the posterior mode. We took this approach for two reasons. First, it is important to note that the estimates of the differences in rates are exactly zero only in the posterior mode, neither the posterior mean nor the posterior median are exactly zero under this prior. Since these exact zeros is what allows us to identify disease clusters, and identifying

Table 6. Performance of three different algorithms under our third simulation scenario. Standard errors are in parentheses. MCC is unavailable for pGLM and BN ($k = 20$) because they detect no clusters at all in some simulated datasets, as this scenario is close to the null scenario of the constant risk.

Method	Proportion of simulations in which no clusters were identified	Average sensitivity	Average specificity coefficient	Matthews correlation
pGLM	0.22	0.02 (0.03)	0.98 (0.02)	–
BN ($k = 20$)	0.02	0.006 (0.005)	1.00 (0.004)	–
BN ($k = 200$)	0	0.03 (0.02)	0.97 (0.02)	0.03 (0.05)
KN ($R = 0.02$)	0	0.05 (0.02)	0.97 (0.01)	0.04 (0.05)
KN ($R = 0.2$)	0	0.05 (0.04)	0.96 (0.03)	0.04 (0.05)

Table 7. Performance of three different algorithms under our fourth simulation scenarios. Standard errors are in parentheses.

Method	Proportion of simulations in which no clusters were identified	Average sensitivity	Average specificity coefficient	Matthews correlation
pGLM	0	0.33 (0.04)	0.90 (0.03)	0.27 (0.06)
BN ($k = 20$)	0	0.02 (0.01)	1.00 (0.003)	0.06 (0.04)
BN ($k = 200$)	0	0.15 (0.07)	0.97 (0.02)	0.21 (0.07)
KN ($R = 0.02$)	0	0.19 (0.06)	0.97 (0.01)	0.24 (0.06)
KN ($R = 0.2$)	0	0.33 (0.12)	0.87 (0.06)	0.26 (0.08)
clusters is the main goal of our analysis (rather than creating smooth estimates of the incidence map), fully Bayesian inference is not needed (except as a way to obtain credible intervals for the ZCTA-specific risks, but that is just a secondary goal of our analysis). Second, a fully Bayesian implementation of this model is not quite straightforward. A Gibbs sampler can be constructed using a combination of slice sampling (to deal with the fact that we have a Poisson likelihood, see, e.g., Damien, Wakefield, and Walker 1999) and a data augmentation approach that writes the double exponential prior as a scale mixture of Gaussians (see, e.g., Kyung et al. 2010). However, a sampler of this type mixes poorly. There are ways to improve mixing (e.g., by working directly with the double exponential prior without the data augmentation), but developing the associated theory seemed beyond the scope of an applied article that was meant to be part of a collection focusing on different approaches to analyze a particular dataset. This line of research will be pursued elsewhere.

APPENDIX A: DERIVATION OF THE COMPUTATIONAL ALGORITHM

We derive our algorithm for solving (4) for a slightly more general model where the log relative risk in region $i = 1, \ldots, I$, is modeled as a linear function of a set of predictors $\mathbf{x}_i \in \mathbb{R}^p$ and we assume a generalized lasso penalty. In this case, the log-likelihood function takes the form

$$\ell(\beta; y) = \sum_{i=1}^{I} y_i (\log n_i + \log \tilde{\beta} + \mathbf{x}_i^T \beta) - \tilde{\beta} \sum_{i=1}^{I} n_i \exp \{ \mathbf{x}_i^T \beta \}, \quad (A.1)$$

and the fused lasso penalty (2) can also be written in a general way as

$$J_{\lambda, \gamma}(\beta) = -\lambda \mathbf{1}'|\beta||\beta|_1 - \gamma \lambda ||\beta||_1 + ||\mathbf{u}||_1,$$

where $||\mathbf{u}||_1 = \sum |u_i|$ denotes the L^1 norm of the vector \mathbf{u}, and \mathbf{L} is a pre-specified $m \times p$ penalty matrix. The random effect model in (1)–(2) corresponds to the special case of $\mathbf{x}_i = \mathbf{e}_i$, where \mathbf{e}_i has all entries 0 except that the ith entry equals 1. $\beta = (\phi_1, \ldots, \phi_p)^T$, and \mathbf{L} is a (very sparse) pairwise difference matrix whose rows correspond to pairs of ZCTAs that share a common boundary. Similarly, (6) can be written in a similar form by extending the sum over ZCTAs in (A.1) to also include sums over all demographic groups.

Recall that the (unpenalized) log-likelihood (A.1) can be optimized using iteratively reweighted least squares (IRLS), that is, by iteratively computing

$$\hat{\beta}^{(k+1)} = \arg\max_{\beta} Q(\beta | \hat{\beta}^{(k)}) ,$$

where $Q(\beta | \hat{\beta}^{(k)})$ is obtained by a second-order expansion of (A.1) around the previous iterate $\hat{\beta}^{(k)}$.

$$Q(\beta | \hat{\beta}^{(k)}) = \left(\beta - \hat{\beta}^{(k)} \right)^T h(\hat{\beta}^{(k)}) + \frac{1}{2} \left(\beta - \hat{\beta}^{(k)} \right)^T H(\hat{\beta}^{(k)}) \left(\beta - \hat{\beta}^{(k)} \right),$$

with

$$h(\hat{\beta}^{(k)}) = \frac{\partial}{\partial \beta} \log \ell(\beta; y)|_{\beta = \hat{\beta}^{(k)}} = \sum_{i=1}^{I} \mathbf{x}_i (y_i - \hat{\theta}_n \exp \{ \mathbf{x}_i^T \hat{\beta}^{(k)} \}),$$

and

$$H(\hat{\beta}^{(k)}) = \frac{\partial^2}{\partial \beta^2} \log \ell(\beta; y)|_{\beta = \hat{\beta}^{(k)}} = -\sum_{i=1}^{I} \mathbf{x}_i \mathbf{x}_i^T \hat{\theta}_n \exp \{ \mathbf{x}_i^T \hat{\beta}^{(k)} \}. $$

Similarly, we propose to optimize (4) by iteratively solving (see, e.g., Krishnapuram et al. 2005; Friedman, Hastie, and Tibshirani 2010)

$$\hat{\beta}^{(k+1)} = \arg\min_{\mathbf{u}} \left\{ -Q(\beta | \hat{\beta}^{(k)}) + \gamma \lambda ||\beta||_1 + \lambda ||\mathbf{L}\beta||_1 \right\}, \quad (A.2)$$

where each optimization problem in the sequence is accomplished using a variation of the “split-Bregman” algorithm (Goldstein and Osher 2009) described in the next section.

Solving the Fused Lasso Problem Using the “Split-Bregman” Algorithm

To derive the “split-Bregman” algorithm, introduce a new variable $\mathbf{u} = \lambda \mathbf{L}\beta$, so that the solution to (A.2) is equivalent to the solution of the following constrained minimization problem,

$$(\hat{\beta}^{(k+1)}, \mathbf{u}^{(k+1)}) = \arg\min_{\mathbf{u}} \left\{ -Q(\beta | \hat{\beta}^{(k)}) + \gamma \lambda ||\beta||_1 + ||\mathbf{u}||_1 \right\} \quad \text{subject to} \quad \mathbf{u} = \lambda \mathbf{L}\beta. $$

This problem can be solved using an iterative procedure called the Bregman iteration (Bregman 1967; Osher et al. 2005).

$$(\hat{\beta}^{(k+1)}, \mathbf{u}^{(k+1)}) = \arg\min_{\mathbf{u}} \left\{ -Q(\beta | \hat{\beta}^{(k)}) + \gamma \lambda ||\beta||_1 + ||\mathbf{u}||_1 \right\} \quad \text{subject to} \quad \mathbf{u} = \lambda \mathbf{L}\beta. $$

$$d^{(k+1)} = d^{(k)}, \quad (A.3)$$

where the added L^2 norm, $|| \cdot ||_2$, of the vector $\mathbf{u} - \lambda \mathbf{L}\beta - d^{(k+1)}$ is used to enforce the constraint $\mathbf{u} = \lambda \mathbf{L}\beta$ and ξ is a tuning parameter that controls how fast the constraint is enforced. The final algorithm is obtained by splitting (A.3) into two separate optimization steps,

$$\hat{\beta}^{(k+1)} = \arg\min_{\beta} \left\{ -Q(\beta | \hat{\beta}^{(k)}) + \gamma \lambda ||\beta||_1 + \xi ||\mathbf{u}^{(k+1)}||_2 \right\} \quad \text{subject to} \quad \mathbf{u} = \lambda \mathbf{L}\beta. $$

$$\mathbf{u}^{(k+1)} = \arg\min_{\mathbf{u}} \left\{ ||\mathbf{u}||_1 + \xi ||\mathbf{u} - \lambda \mathbf{L}\beta - d^{(k+1)}||_2 \right\}, \quad (A.5)$$

$$d^{(k+1)} = d^{(k)} - \lambda \mathbf{L}\beta^{(k+1)} - \mathbf{u}^{(k+1)}, \quad (A.7)$$

Note that the solution to (A.6) can be obtained directly using the soft thresholding operator $S(x, \delta) = \text{sgn}(x) \max(0, |x| - \delta)$, while the solution to (A.5) can be obtained by applying a coordinate descent algorithm, which reduces to iteratively applying the soft thresholding operator for each component of β until convergence.

APPENDIX B: LIST OF ZCTAS IN CANCER CLUSTERS

We list only the ZCTAs in the four main clusters discussed in Sections 4.1 and 4.2. To facilitate comparisons, we separately list the ZCTAs that appear as part of each cluster under both models, and then separately list those that appear under only one of them.
B.2. Palm Beach

ZCTAs that appear under both models	Appear only without covariate adjustment	Appear only with covariate adjustment
33063, 33407, 33413, 33436, 33463	33067, 33408, 33426, 33437, 33467	33071, 33410, 33428, 33444, 33484
		33403, 33411, 33434, 33445, 33496
		33404, 33412, 33435, 33462, 33498

B.3. Cape Coral

ZCTAs that appear under both models	Appear only without covariate adjustment	Appear only with covariate adjustment
33901, 33908, 33917, 33935, 33957	33903, 33909, 33919, 33936, 33971	33904, 33912, 33920, 33950, 33972
		33905, 33914, 33922, 33955, 33990
		33907, 33916, 33924, 33956, 33991
		33913, 34134

B.4. Miami

ZCTAs that appear under both models	Appear only without covariate adjustment	Appear only with covariate adjustment
33004, 33016, 33025, 33055, 33128	33012, 33018, 33026, 33056	33013, 33020, 33027, 33109
		33014, 33021, 33028, 33125
		33015, 33023, 33029, 33126
		33132, 33133, 33134, 33137
		33135, 33136, 33139
		33142
		33143, 33144, 33145, 33146
		33149, 33149
		33155, 33156, 33157, 33158
		33165, 33166, 33170, 33172
		33173, 33173, 33174
		33175, 33176, 33183, 33184, 33190
		33193, 33194, 33196
		33196
		3322, 3323, 3324, 3325
		3326, 3327

B.5. North Florida

ZCTAs that appear under both models	Appear only without covariate adjustment	Appear only with covariate adjustment
32008, 32066, 32083, 32132, 32218	32009, 32068, 32091, 32122	32011, 32071, 32092, 32123
		32024, 32072, 32094, 32124
		32025, 32073, 32097, 32125
		32073, 32099, 32126
		3217, 3218
		3219, 3220
		3221, 3222
		3223, 3224
		3225, 3226
		3227, 3228
		3229, 3230
		3231, 3232
		3233, 3234
		3235, 3236
		3237, 3238
		3239, 3240
		3241, 3242
		3243, 3244
		3245, 3246
		3247, 3248
		3249, 3250
		3251, 3252
		3253, 3254
		3255, 3256
		3257, 3258
		3259, 3260
		3261, 3262
		3263, 3264
		3265, 3266
		3267, 3268
		3269, 3270
		3271, 3272

B.2. Palm Beach

ZCTAs that appear under both models	Appear only without covariate adjustment	Appear only with covariate adjustment
33063, 33407, 33413, 33436, 33463	33067, 33408, 33426, 33437, 33467	33071, 33410, 33428, 33444, 33484
		33403, 33411, 33434, 33445, 33496
		33404, 33412, 33435, 33462, 33498
REFERENCES

Akaike, H. (1974), “A New Look at the Statistical Model Identification,” *IEEE Transactions on Automatic Control*, 19, 716–723. [88]

Amin, R., Bohnert, A., Holmes, L., Rajasekaran, A., and Assanasen, C. (2010), “Epidemiologic Mapping of Florida Childhood Cancer Clusters,” *Pediatric Blood & Cancer*, 54, 511–518. [86,90]

Anderson, C., Lee, D., and Dean, M. (2013), “Identifying Clusters in Bayesian Disease Mapping,” technical report, arXiv:1311.0660. Available at http://arxiv.org/abs/1311.0660v1 [86]

Andrews, D. F., and Mallows, C. L. (1974), “Scale Mixtures of Normal Distributions,” *Journal of the Royal Statistical Society*, Series B, 36, 99–102. [88]

Banerjee, S., Gelfand, A. E., and Carlin, B. P. (2004), *Hierarchical Modeling and Analysis For Spatial Data*, Boca Raton, FL: CRC Press. [91,93]

Besag, J., and Newell, J. (1991), “The Detection of Clusters in Rare Diseases,” *Journal of the Royal Statistical Society*, Series A, 154, 143–155. [86,92]

Bivand, R., Altman, M., and Anselin, L. (2014). *spdep: Spatial Dependence: Weighting Schemes, Statistics and Models*, R package version 0.5-7. Available at http://cran.r-project.org/web/packages/spdep/index.html [91]

Bregman, L. (1967), “The Relaxation Method of Finding the Common Points of Convex Sets and Its Application to the Solution of Problems in Convex Optimization,” *USSR Computational Mathematics and Mathematical Physics*, 7, 200–217. [94]

Charras-Garrido, M., Abrial, D., De Goër, J., Duchian, S., and Peyrard, N. (2012), “Classification Method for Disease Risk Mapping Based on Discrete Hidden Markov Random Fields,” *Biostatistics*, 13, 241–255. [86]

Chen, X., Lin, Q., Kim, S., Carbonell, J. G., Xing, E. P. (2012), “Smoothing Proximal Gradient Method for General Structured Sparse Regression,” *The Annals of Applied Statistics*, 6, 719–752. [87]

Damien, P., Wakefield, J., and Walker, S. G. (1999), “Gibbs Sampling for Bayesian Non-Conjugate and Hierarchical Models by Using Auxiliary Variables,” *Journal of the Royal Statistical Society*, Series B, 61, 331–344. [94]

Diggle, P. J., and Chetwynd, A. G. (1991), “Second-Order Analysis of Spatial Clustering for Inhomogeneous Populations,” *Biometrics*, 47, 1155–1163. [86]

Friedman, J., Hastie, T., H"ofling, H., Tibshirani, R. (2007), “Pathwise Coordinate Optimization,” *The Annals of Applied Statistics*, 1, 302–332. [87]

Friedman, J., Hastie, T., and Tibshirani, R. (2010), “Regularization Paths for Generalized Linear Models via Coordinate Descent,” *Journal of Statistical Software*, 33, 1–22. [94]

Goldstein, T., and Osher, S. (2009), “The Split Bregman Method for I1-Regularized Problems,” *SIAM Journal of Imaging Sciences*, 2, 323–343. [88,94]

Gómez-Rubio, V., Fernández-Fernagud, J., and López-Quílez, A. (2005), “Detecting Clusters of Disease With R,” *Journal of Geographical Systems*, 7, 189–206. [92]

Goujon-Bellec, S., Demoury, C., Guyot-Goubin, A., Hémon, D., and Clavel, J. (2011), “Detection of Clusters of a Rare Disease Over a Large Territory: Performance of Cluster Detection Methods,” *International Journal of Health Geographics*, 10, 53. [86]

Green, P. J., and Richardson, S. (2002), “Hidden Markov Models and Disease Mapping.” *Journal of the American Statistical Association*, 97, 1055–1070. [86]

Heinzl, F., and Tutz, G. (2014), “Clustering in Linear-Mixed Models With a Group Fused Lasso Penalty,” *Biometrical Journal*, 56, 44–68. [86]

Knoer-Held, L., and Rallier, G. (2000), “Bayesian Detection of Clusters and Discontinuities in Disease Maps,” *Biometrics*, 56, 13–21. [86]

Krishnapuram, B., Carin, L., Figueiredo, M. A., and Hartemink, A. J. (2005), “Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds,” *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27, 957–968. [94]

Kullendorf, D. (1997), “A Spatial Scan Statistic,” *Communications in Statistics—Theory and Methods*, 26, 1481–1496. [86]

Kullendorf, D., and Nagarwalla, N. (1995), “Spatial Disease Clusters: Detection and Inference,” *Statistics in Medicine*, 14, 799–810. [86,92]

Kullendorf, D., Tango, T., and Park, P. J. (2003), “Power Comparisons for Disease Clustering Tests,” *Computational Statistics and Data Analysis*, 42, 665–684. [86]

Kong, A., Gill, J., Ghosh, M., and Casella, G. (2010), “Penalized Regression, Standard Errors, and Bayesian Lassos,” *Bayesian Analysis*, 5, 369–411. [87,94]

Matthews, B. W. (1975), “Comparison of the Predicted and Observed Secondary Structure of t4 Phage Lysozyme,” *Biochimica et Biophysica Acta (BBA)-Protein Structure*, 405, 442–451. [91]

Moraga, C., and Montes, F. (2011), “Detection of Spatial Disease Clusters With Lisa Functions,” *Statistics in Medicine*, 30, 1057–1071. [86]

Morton-Jones, T., Diggle, P., and Elliott, P. (1999), “Investigation of Excess Environmental Risk Around Putative Sources: Stone’sTest With Covariate Adjustment,” *Statistics in Medicine*, 18, 189–197. [86]

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996). *Applied Linear Statistical Models* (Vol. 4), Chicago, IL: Irwin. [91]

Oden, C., Charlton, M., Wyrner, C., and Craft, A. (1987), “A Mark I Geographical Analysis Machine for the Automated Analysis of Point Data Sets,” *International Journal of Geographical Information System*, 1, 335–358. [86]

Osher, S., Burger, M., Goldfarb, D., Xu, J., and Yin, W. (2005), “An Iterative Regularization Method for Total Variation-Based Image Restoration,” *Multiscale Modeling and Simulation*, 4, 460–490. [84]

Potthoff, R. F., and Whittinghill, M. (1966a), “Testing for Homogeneity: I. The Binomial and Multinomial Distributions,” *Biometrika*, 53, 167–182. [86]

Rinaldo, A. (2009), “Properties and Refinements of the Fused Lasso,” *The Annals of Statistics*, 37, 2922–2952. [87]

Rue, H., and Held, L. (2005), *Gaussian Markov Random Fields: Theory and Applications*, Boca Raton, FL: CRC Press. [88]

Stone, R. A. (1988), “Investigations of Excess Environmental Risks Around Putative Sources: Statistical Problems and a Proposed Test,” *Statistics in Medicine*, 7, 649–660. [86]

Tango, T. (1995), “A Class of Tests for Detecting ‘General’ and ‘Focused’ Clustering of Rare Diseases,” *Statistics in Medicine*, 14, 2323–2334. [86]

Tango, T. and Takahashi, K. (2005), “A Flexibly Shaped Scan Statistic for Detecting Clusters,” *International Journal of Health Geographics*, 4, 11. [86]

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005), “Sparsity and Smoothness via the Fused Lasso,” *Journal of the Royal Statistical Society*, Series B, 67, 91–108. [87]

Tibshirani, R., and Wang, P. (2008), “Spatial Smoothing and Hot Spot Detection for CGH Data Using the Fused Lasso,” *Biostatistics*, 9, 18–29. [87]

Tibshirani, R. J., Taylor, J., et al. (2012), “Degrees of Freedom in Lasso Problems,” *The Annals of Statistics*, 40, 1198–1232. [88,89]

Wakefield, J., and Kim, A. (2013), “A Bayesian Model for Cluster Detection,” *Biostatistics*, 14, 752–765. [86]

Waller, L. A., Hill, E. G., and Rudd, R. A. (2006), “The Geography of Power: Statistical Performance of Tests of Clusters and Clustering in Heterogeneous Populations,” *Statistics in Medicine*, 25, 853–865. [86]

Weinstock, M. A. (1981), “A Generalised Scan Statistic Test for the Detection of Clusters,” *International Journal of Epidemiology*, 10, 289–293. [86]

Whitehead, A. S., Friend, N., Brown, B. W., and Holly, E. A. (1987), “A Test to Detect Clusters of Disease,” *Biometrika*, 74, 631–635. [86]

Witten, D. M., and Tibshirani, R. (2011), *scout: Implements the Scout Method for Covariance-Regularized Regression*, R package version 1.0.3. Available at http://cran.r-project.org/web/package/scout/index.html [89]

Zou, H., Hastie, T., Tibshirani, R. (2007), “On the ‘Degrees of Freedom’ of the Lasso,” *The Annals of Statistics*, 35, 2173–2192. [88]