Efficacy of probiotic adjuvant therapy for irritable bowel syndrome in children: A systematic review and meta-analysis

Hua-Lan Xu1, Li-Li Zou2, Mao-bing Chen3, Hua Wang1*, Wen-Ming Shen3, Qi-Han Zheng3, Wei-Yan Cui1

1 Department of ICU, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China, 2 Department of Nursing, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China, 3 Department of Emergency, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China

☯ These authors contributed equally to this work.
* wanghua2249@163.com

Abstract

Objective

Irritable bowel syndrome (IBS) affects children’s quality of life and learning. The purpose of this research was to systematically evaluate the efficacy of probiotic adjuvant therapy for IBS in children.

Methods

The Web of Science, PubMed, Cochrane Library, EMBASE and Clinical Trials databases were electronically searched for randomized controlled trials (RCTs) published prior to January 2021 exploring the use of probiotic adjuvant therapy for IBS in children. Strict screening and quality evaluations of the eligible articles were performed independently by 2 researchers. Outcome indexes were extracted, and a meta-analysis of the data was performed using RevMan 5.4.1 and STATA 16 software. Finally, the risk of bias in the included studies was assessed with the RCT bias risk assessment tool recommended in the Cochrane Handbook for Systematic Reviews of Interventions (5.1.0).

Results

A total of nine RCTs were included. In children, probiotics significantly reduced the abdominal pain score ($I^2 = 95\%$, SMD = -1.15, 95% (-2.05, -0.24), $P = 0.01$) and Subject’s Global Assessment of Relief (SGARC) score ($I^2 = 95\%$, MD = -3.84, 95% (-6.49, -1.20), $P = 0.004$), increased the rate of abdominal pain treatment success ($I^2 = 0\%$, RR = 3.44, 95% (1.73, 6.87), $P = 0.0005$) and abdominal pain relief ($I^2 = 40\%$, RR = 1.48, 95% (0.96, 2.28), $P = 0.08$), and reduced the frequency of abdominal pain ($I^2 = 2\%$, MD = -0.82, 95% (-1.57, -0.07), $P = 0.03$). However, we found that it might not be possible to relieve abdominal pain by increasing the daily intake of probiotics.
Conclusions
Probiotics are effective at treating abdominal pain caused by IBS in children, however, there was no significant correlation between abdominal pain and the amount of probiotics ingested. More attention should be given to IBS in children, and a standardized evaluation should be adopted.

Introduction
Irritable bowel syndrome (IBS) is a type of functional gastrointestinal disorder (FGID) and is the most commonly diagnosed gastrointestinal disorder in the USA [1]. In the United States, the prevalence of IBS is approximately 16% (male: 10.5%, female: 19.2%) [2]. The symptoms of IBS are frequent and unexplained and mainly include abdominal pain, bloating and changes in bowel movements [3]. The incidence of IBS is higher in individuals under 45 years of age. The incidence of IBS is high and may affect 20% of school-age children worldwide [4]. This disease could significantly affect the quality of life and the progress of learning in childhood [5]. There are several treatment options for IBS, including diet control, medication, psychological intervention, and other adjuvant treatments; however, most of these treatments have not been tested in high-quality studies [6,7]. Moreover, diagnosis and prognosis remain very challenging.

The pathogenesis of IBS might be related to dysbiosis of the gut microbiota in the intestine [8], and supplementation with probiotics is one of the methods of treating IBS. A healthy gut microbiota plays an important role in the intestinal tract [8,9]. There are two main methods of improving the gut microbiota, namely, fecal microbiota transplantation (FMT) and supplementation with probiotics. FMT might be an effective treatment for some intestinal diseases, including *Clostridium difficile infection* [10,11], *colitis* [12], *constipation* [13], and *IBS* [14], but the method of administration is often not feasible for children. Supplementation with probiotics is another method of improving the gut microbiota. In trials with adults, probiotics have been shown to have efficacy for the treatment of IBS, and this efficacy was found to be positively correlated with the dose [15]. However, there is still no systematic review on the efficacy of probiotics in children.

In the pre-experiment of our study, we found that in trials on children, their intervention methods were similar, but their outcome indicators were not uniform. This made it difficult to perform a meta-analysis. This study tried to overcome these difficulties and systematically evaluated the efficacy of probiotics in children with IBS.

Materials and methods
Design and registration
This protocol has been registered on the international prospective register of systematic reviews (PROSPERO), registration number: CRD42021229816. No ethical approval was required since this study used data that were already in the public domain [16]. (URL: https://www.crd.york.ac.uk/PROSPERO).

Study selection

 Study type. All the trials included in this study were randomized controlled trials (RCTs).
Study object. Patients aged between 4 and 18 years with IBS met the diagnostic criteria (Rome II~IV), and those with other acute or chronic diseases were excluded. The inclusion criteria varied across studies according to the study objectives.

Intervention. Patients with a clear diagnosis were randomly divided into two groups: the intervention group (probiotics group) and the control group (placebo group). The children were required to take probiotics or a placebo regularly and record the time they were taken.

Outcome indicators. The following outcomes were assessed and compared with the effects of the placebo:

1. Abdominal pain score
2. Subject’s Global Assessment of Relief (SGARC) score
3. Abdominal pain treatment success
4. Abdominal pain relief
5. Frequency of abdominal pain
6. Rate of bloating after treatment
7. Standard abdominal pain and daily intake of probiotics

First, there are several methods to score abdominal pain, and this study did not limit the scoring methods. For the included studies, the larger the score, the more severe the pain; otherwise, we used the full score minus the score to be included in the analysis.

SGARC is the weighted sum of the scores of 5 subitems. SGARC is a more systematic method to assess the severity of children’s IBS.

Finally, abdominal pain treatment success was defined as the absence of pain. After excluding abdominal pain treatment success, we defined other improvements as abdominal pain relief.

To observe the relationship between daily intake of probiotics and abdominal pain, we defined standard abdominal pain (SAP) as (the mean difference of abdominal pain score) ÷ (total score of abdominal pain). We used this method to standardize abdominal pain. Additionally, we analyzed the relationship between the daily intake of probiotics and SAP.

Exclusion criteria. Studies whose data could not be extracted or utilized; studies on animal experiments; literature reviews, reports with duplicate data, studies with defects in research design or of poor quality, studies with incomplete data or unclear outcome effects, studies that did not undergo peer review, etc. were excluded.

Data sources and searches
We searched for articles published in English prior to Jan 2021 in the following databases: Web of Science, PubMed, the Cochrane Library, Embase, and Clinical Trials. The search terms included "probiotics", "irritable bowel syndrome" and "child". Here, we use the PubMed database as an example (Fig 1).

Study screening, data extraction and assessment of bias
Data were collected independently by two researchers. Studies that did not meet the inclusion or exclusion criteria were eliminated, and eligible studies were screened by reading the title, keywords, abstract and full text. Then, the research data were extracted and checked, and disagreements were discussed or a decision was made by the author. The studies were selected by Endnote X9 software. The extracted data included the following:
1. Basic information of the study, including title, author and year of publication;
2. Characteristics of the included study, consisting of study duration, sample size of test group and control group, and intervention measures;
3. Outcome indicators and data included;
4. Collection of risk of bias assessments. The risk of bias in the included studies was assessed by using the RCT bias risk assessment tool recommended in the Cochrane Handbook for Systematic Reviews of Interventions (5.1.0) [17].

Statistical analysis
RevMan 5.4.1 and STATA 16 software were used for the meta-analysis. The dichotomous variables are expressed as relative risk (RR) as an effect indicator, the continuous variables are expressed as standard mean difference (SMD) and mean difference (MD) as effect indicators, and the estimated value and 95% confidence interval (CI) were included as effect analysis statistics. Since there are many types of probiotics, there might be differences between different probiotics. Therefore, regardless of whether I^2 was higher than 50%, we adopted a random effects model. The significance level was set at $\alpha = 0.05$.

Results
Retrieved results
A total of 440 studies were initially selected, and nine studies were finally included after screening. All of the included studies were written in English. The literature screening process and results are shown in Fig 2.

Basic information of studies
The basic characteristics of the included studies and the risk of bias evaluation are shown in Table 1.

Meta-analysis results
Nine RCTs [18–26] were included in this study, and a total of 651 individuals were included. Among them, there were 328 people in the probiotics group and 323 people in the placebo group.
Abdominal pain score. Seven RCTs reported differences in abdominal pain scores between the probiotics group and the placebo group. A random effect model was adopted. Compared with placebo, probiotics could significantly reduce the abdominal pain score ($I^2 = 95\%$, SMD $= -1.15$, 95% (-2.05, -0.24), $P = 0.01$) (Fig 3).

SGARC score. Two RCTs reported differences in SGARC scores between the probiotic group and the placebo group. A random effect model was adopted. Compared with placebo, probiotics could significantly reduce the SGARC score ($I^2 = 95\%$, MD $= -3.84$, 95% (-6.49, -1.20), $P = 0.004$) (Fig 3).

Abdominal pain treatment success. Three RCTs reported differences in abdominal pain treatment success between the probiotics group and the placebo group. A random effect
| Author | Year | Country | Registration Number | Intervening measure(I) | Control measure (C) | Daily intake of colonies (10^9 CFU/day) | Sample size | Treatment duration | Diagnostic criteria | Outcome included | Random sequence generation | Allocation concealment | Blinding of participants and personnel | Blinding of outcome assessment | Incomplete outcome data | Selective reporting | Other bias | Literature-quality score |
|-----------------------|------|---------|---------------------|--|-----------------------|--|-------------|-------------------|---------------------|--------------------------|---------------------------|-------------------------|---------------------------------|---------------------------|-------------------------|-------------------|-----------------------|
| BaşTürk, A. | 2016 | Turkey | - | Synbiotic (Bifidobacterium lactis B94 with inulin) | Prebiotic (inulin) | 10 | 21 | 24 | 4 week | Rome III | Low | Low | Low | Low | Low | Low | Low | Unclear |
| Bauserman, M. | 2005 | US | - | Lactobacillus GG | Placebo | 20 | 25 | 25 | 6 week | Rome II,①②⑥ | Abdominal pain severity score | Low | Low | Low | Low | Low | Low | Unclear |
| Francavilla, R. | 2010 | Italy | NCT00858921 | Lactobacillus GG | Placebo | 6 | 42 | 30 | 8 week | Rome II,①②⑥ | Visual analog scale and the Faces Pain Scale (FPS) | Low | Low | Low | Low | Low | Low | Unclear |
| Gawronska, A. | 2007 | Poland | - | Lactobacillus GG | Placebo | 6 | 18 | 19 | 4 week | Rome II,①②⑥ | Facial responses were transformed into a score that ranged from 0 (a relaxed face) to 6 (intense pain) | Low | Low | Low | Low | Low | Low | Unclear |
| Giannetti, E. | 2017 | Italy | NCT02566876 | A probiotic mixture of Bifidobacterium infantis M 63, breve M-16V and longum BBO3 | Placebo | 5 | 48 | 48 | 6 week | Rome III,①② | Low | Low | Low | Low | Low | Low | Low | Unclear |
| Guaralini, S. | 2015 | Italy | - | VSL#3 | Placebo | 225 | 59 | 59 | 6 week | Rome III,①② | Subject’s global relief of symptoms (SGARC) | Unclear | Low | Low | Low | Unclear | Low | Unclear |
| Kianifine, Hamidareaa | 2015 | Iran | IBCT201203182N1 | Lactobacillus GG | Placebo | 20 | 26 | 26 | 4 week | Rome III,① | A five-point Likert scale | Unclear | Low | Low | Low | Unclear | Low | Unclear |
| Rahmani, P. | 2020 | Iran | - | Probiotic chewable tablets (containing 10^8 colony forming units L. reuteri) | Placebo | 13 | 15 | 15 | 4 week | Rome III,①② | Wang-Baker FACES Pain Rating Scale (WBFPRS)2 | Low | Low | Low | Low | Low | Low | Unclear |
| Sudha, M. Ratna | 2018 | India | CTRI/2017/02/007810 | Bacillus coagulans Unique IS2 | Placebo | 2 | 72 | 69 | 8 week | Rome III,①② | 0–10 Likert scale | Low | Low | Low | Low | Low | Low | Unclear |

Outcomes: (1) Abdominal pain score, (2) Subject’s Global Assessment of Relief (SGARC) score, (3) Abdominal pain treatment success, (4) Abdominal pain relief, (5) Frequency of abdominal pain, (6) Rate of bloating after treatment.

https://doi.org/10.1371/journal.pone.0255160.1001
2.1. Abdominal pain score

Study or Subgroup	Probiotics	Placebo	Std. Mean Difference	Std. Mean Difference	
Bausserman, M 2005	-1.7 0.8	25 12	1.3 0.3	25 14.3%	-0.01 [-0.01, 0.00]
Francavilla, R 2010	-1.9 1.8	42 24	2.6 0.9	30 14.6%	-0.40 [-0.45, 0.00]
Gao, W 2007	-1.5 1.8	18 9	-1.3 0.9	19 14.1%	-0.31 [-0.36, 0.04]
Guandalini, S 2015	-1.9 0.9	25 12	-0.5 0.9	9 14.8%	-0.55 [-0.60, 0.10]
Khandel, A 2015	-1.9 0.9	26 12	-1.2 0.8	18 14.4%	-0.56 [-0.61, 0.02]
Rahmani, P 2020	-2.1 2.1	15 10	-0.4 0.9	10 15.5%	-1.50 [-2.35, -0.65]
Sudha, S 2018	-4.3 1	72 36	-0.6 0.8	36 14.3%	-3.08 [-4.24, -1.92]

Total (95% CI) 257 251 100.0% 1.51 [2.65, 0.24]

Heterogeneity: $\tau^2 = 4.41, \chi^2 = 120.00, df = 6 (P = 0.0000), I^2 = 95%$

Test for overall effect: $Z = 2.48 (P = 0.01)$

2.2. Subject's Global Assessment of Relief (SGAR) score

Study or Subgroup	Probiotics	Placebo	Mean Difference	Mean Difference	
Guandalini, S 2015	-6 2.1	59 35	-3.5 2.1	59 50.3%	-2.50 [-3.26, -1.74]
Sudha, S 2018	-9.7 3.6	72 46	-4.5 2.6	69 49.7%	-5.20 [-6.06, -4.34]

Total (95% CI) 131 123 100.0% 3.84 [4.69, 3.28]

Heterogeneity: $\tau^2 = 3.47, \chi^2 = 21.36, df = 1 (P = 0.0000), I^2 = 94%$

Test for overall effect: $Z = 2.65 (P = 0.004)$

2.3. Abdominal pain treatment success

Study or Subgroup	Probiotics	Placebo	Risk Ratio	
Gao, W 2007	20 40	7 48	82.1%	2.63 [1.34, 5.17]
Rahmani, P 2020	6 15	0 15	61.1%	1.00 [0.01, 10.00]

Total (95% CI) 81 82 100.0% 3.44 [1.73, 6.87]

Heterogeneity: $\tau^2 = 0.00, \chi^2 = 1.55, df = 2 (P = 0.46), I^2 = 0%$

Test for overall effect: $Z = 3.51 (P = 0.0005)$

2.4. Abdominal pain relief

Study or Subgroup	Probiotics	Placebo	Risk Ratio	
Bausserman, M 2005	10 26	11 25	28.4%	0.91 [0.47, 1.79]
Francavilla, R 2010	34 42	17 38	49.5%	1.91 [1.23, 2.66]
Gao, W 2007	10 18	6 19	22.2%	1.70 [0.81, 3.54]

Total (95% CI) 85 82 100.0% 1.48 [0.96, 2.28]

Heterogeneity: $\tau^2 = 0.06, \chi^2 = 3.32, df = 2 (P = 0.19), I^2 = 40%$

Test for overall effect: $Z = 1.78 (P = 0.08)$

2.5. Frequency of abdominal pain

Study or Subgroup	Probiotics	Placebo	Mean Difference		
Gao, W 2007	-1.8 2	42 20	-0.8 2	38 43.2%	-1.00 [2.13, 0.13]
Jannat, E 2017	-1.5 1.8	18 10	-1.3 1.3	18 53.4%	-0.50 [-1.52, 0.52]
Rahmani, P 2020	-5.3 5.4	15 10	-2.5 5.5	15 37.3%	-3.30 [7.20, 0.00]

Total (95% CI) 75 72 100.0% 0.82 [1.57, 0.07]

Heterogeneity: $\tau^2 = 0.01, \chi^2 = 2.03, df = 2 (P = 0.36), I^2 = 2%$

Test for overall effect: $Z = 2.14 (P = 0.03)$

2.6. Rate of bloating after treatment

Study or Subgroup	Probiotics	Placebo	Risk Ratio	
Bausserman, M 2005	7 23	12 24	88.4%	0.61 [0.29, 1.27]

Total (95% CI) 48 49 100.0% 0.37 [0.04, 2.56]

Heterogeneity: $\tau^2 = 1.52, \chi^2 = 2.37, df = 1 (P = 0.12), I^2 = 56%$

Test for overall effect: $Z = 1.08 (P = 0.28)$

Fig 3. Forest plot comparing the probiotic and placebo groups.

https://doi.org/10.1371/journal.pone.0255160.g003
Abdominal pain treatment success. Three RCTs reported differences in abdominal pain treatment success between the probiotic group and the placebo group. A random effect model was adopted. Compared with placebo, probiotics could significantly increase abdominal pain treatment success ($I^2 = 0\%$, $RR = 3.44$, 95% CI (1.73, 6.87), $P = 0.0005$) (Fig 3).

Abdominal pain relief. Three RCTs reported differences in abdominal pain relief between the probiotic group and the placebo group. A random effect model was adopted. Compared with the placebo, probiotics might have the potential to provide more abdominal pain relief, but the difference between groups was not statistically significant ($I^2 = 40\%$, $RR = 1.48$, 95% CI (0.96, 2.28), $P = 0.08$) (Fig 3).

Frequency of abdominal pain. Three RCTs reported differences in the frequency of abdominal pain between the probiotic group and the placebo group. A random effect model was adopted. Compared with placebo, probiotics could significantly decrease the frequency of abdominal pain ($I^2 = 2\%$, $MD = -0.82$, 95% CI (-1.57, -0.07), $P = 0.03$) (Fig 3).

Rate of bloating after treatment. Two RCTs reported differences in the rate of bloating after treatment between the probiotics group and the placebo group. A random effect model was adopted. In the comparison of bloating after treatment, the difference between probiotics and placebo was not statistically significant ($I^2 = 58\%$, $RR = 0.32$, 95% CI (0.04, 2.56), $P = 0.28$) (Fig 3).

Standard abdominal pain and daily intake of probiotics. Six RCTs reported differences in SAP between the probiotic group and the placebo group. A random effect model was adopted. Compared with placebo, probiotics could significantly reduce SAP ($I^2 = 94\%$, $MD = -0.15$, 95% CI (-0.27, -0.04), $P = 0.01$). Sensitivity analysis found that Sudha’s research was the main source of heterogeneity, but the inclusion or deletion of his research did not change the results of this meta-analysis, so the result was reliable (Fig 4). Moreover, we compared SAP and daily intake of probiotics and found that the daily intake of probiotics is not significantly related to SAP. It might not be possible to reduce abdominal pain by increasing the daily intake of probiotics (Fig 5).
Discussion

Since the outcomes of each RCT were different, the data synthesis of this meta-analysis was also scattered. There are many different measurement standards for the severity of abdominal pain (Table 1), so we used the SMD as the effect index, while other outcomes were mostly provided by only 2–3 RCTs. According to the results, probiotics have good efficacy in children with IBS with abdominal pain, and other outcomes tend to support this conclusion. However, increasing the daily intake of probiotics was not found to reduce abdominal pain to a greater extent. The evidence for the efficacy of probiotics in children with bloating is still insufficient.

IBS is a common functional gastrointestinal disorder. The etiology of IBS might be diverse. Possible causes of IBS include chronic or acute inflammation, chronic or acute infections, bile acid malabsorption, alterations in ion channels, disaccharidase deficiency, etc. These factors lead to the disorder of the normal gut microbiota and loss of the barrier function of the normal gut microbiota. Normal gut microbiota maintain the pH value of the intestine, nourish epithelial cells, and assist in digestion [27]. The absence of normal gut microbiota weakens the tight junctions of intestinal epithelial cells, facilitating the release of a series of inflammatory mediators that in turn results in abdominal pain and bloating [8,28].

Research by Bożena Cukrowska et al. suggested that the gut microbiota was the backbone of the integrity of the intestinal epithelial cells and immune homeostasis [29]. After studying animals lacking intestinal microbiota, it was concluded that the intestinal microbiota played an important role in the local mucosal gut-associated lymphoid tissue and the intestinal immune system [30,31]. For example, compared with conventionally cultured mice, the Peyer’s patches in mice lacking intestinal microbiota were underdeveloped, and the numbers of IgA-secreting plasma cells and lymphocytes were reduced. Animals lacking intestinal microbiota have increased levels of secretory immunoglobulin A due to colonizing intestinal microbes. Secretory immunoglobulin A is a natural antibody that in intestine that participates in the defense against a wide range of microorganisms and toxic molecules [32–34]. Similar study also showed that intestinal microbes could induce the recruitment and activation of intraepithelial lymphocytes, which could protect epithelial cells and strengthen their barrier

Fig 5. The relationship between daily intake of probiotics and SAP.

https://doi.org/10.1371/journal.pone.0255160.g005
function [35]. The study by Markus B Geuking suggested that the intestinal microbiota had an impact on the terminal differentiation of CD4+ Th cells [36].

According to the latest research by Daisuke Tokuhara [37], the intestinal microbiota is a key player in the development and regulation of the gut mucosal immune system. Dysbiosis of the intestinal microbiota promotes the development of non-alcoholic fatty liver disease, including disruption of the gut barrier, portal transport of bacterial endotoxin (lipopolysaccharide) to the liver, altered bile acid profiles, and decreased concentrations of short-chain fatty acids. Probiotics could improve intestinal microbiota. Probiotics enhance the barrier function of the gut, e.g., mucus layer, secretory IgA levels and tight junction tension, and improve the gut microbiota composition, bile acid homeostasis, and short-chain fatty acids production.

Probiotics are microorganisms that are beneficial to people [38,39]. Beneficial microorganisms in the human body include yeast, probiotic spores, Clostridium butyricum, and bacteria in the Lactobacillus, Bifidobacterium, and Actinomyces genera etc. These microorganisms could promote the digestion and absorption of nutrients, reduce serum cholesterol levels [40], improve immunity [39], maintain the balance of the gut microbiota, increase antioxidant levels [41], inhibit intestinal inflammation [42], and protect the intestinal mucosal barrier [43]. FrancescaAlgieri et al. showed that probiotics had intestinal anti-inflammatory effects, but those effects differed slightly with regard to the expression of miRNAs [44]. The study by Haiyan Xu showed that probiotics were not equally effective in all trial participant. Furthermore, the initial composition of the intestinal flora might affect the clinical efficacy of probiotic treatment, and the pretreatment analysis of the intestinal microbiota might support the personalization of the probiotic program to optimize the treatment effect [45].

This study indicated that simply increasing the daily intake of probiotics did not significantly improve abdominal pain in IBS patients. There is still no reliable evidence regarding whether the combination of different probiotics could improve abdominal pain. Different probiotics have different functions in humans. The effects of different combinations of probiotics might also be different [46]. Hundreds of probiotics and thousands of combinations exist and need further investigation.

With regard to studies on the efficacy of probiotics on IBS, most of the research subjects have been adults [47], and there have been few studies conducted with children. Whether there is a difference between the mechanism and the efficacy of probiotics in adults and children is still inconclusive. More high-quality trials are needed to verify the efficacy of probiotics in children with IBS.

Limitations of this meta-analysis

1. The outcome indicators were too scattered, which was not conducive to the synthesis of the effect size.
2. The diversity of probiotics affected the handling of heterogeneity.
3. There is a lack of uniform standards for the assessment of the severity of IBS in children.

Conclusions

Probiotics are effective at treating abdominal pain caused by IBS in children; however, there was not a significant correlation between abdominal pain and the amount of probiotics ingested. Choosing the most suitable probiotics may be relatively more important. More attention should be given to IBS in children, and a unified evaluation standard should be adopted.
Supporting information

S1 Checklist. PRISMA 2009 checklist.

Author Contributions

Conceptualization: Hua-Lan Xu, Li-Li Zou, Wen-Ming Shen, Qi-Han Zheng.

Data curation: Hua-Lan Xu, Mao-bing Chen, Qi-Han Zheng, Wei-Yan Cui.

Methodology: Li-Li Zou, Mao-bing Chen, Hua Wang, Wen-Ming Shen.

Software: Hua-Lan Xu, Mao-bing Chen.

Supervision: Mao-bing Chen.

Visualization: Qi-Han Zheng.

Writing – original draft: Hua-Lan Xu, Li-Li Zou, Mao-bing Chen, Hua Wang, Wei-Yan Cui.

Writing – review & editing: Hua-Lan Xu, Li-Li Zou, Mao-bing Chen, Hua Wang, Wei-Yan Cui.

References

1. Drossman DA. Functional gastrointestinal disorders: history, pathophysiology, clinical features and Rome IV. Gastroenterology. 2016; S0016-5085(0016)00223-00227. https://doi.org/10.1053/j.gastro.2016.02.032 PMID: 2714617

2. Mearin F, Lacy BE, Chang L, Chey WD, Lembo AJ, Simren M, et al. Bowel Disorders. Gastroenterology. 2016. https://doi.org/10.1053/j.gastro.2016.02.031 PMID: 27144627

3. Chey WD, Kurlander J, Eswaran S. Irritable bowel syndrome: a clinical review. JAMA. 2015; 313: 949–958. https://doi.org/10.1001/jama.2015.0954 PMID: 25734736

4. Weidler EM, Self MM, Czyzewski DI, Shulman RJ, Chumpitazi BP. Stooling Characteristics in Children With Irritable Bowel Syndrome. Clin Gastroenterol Hepatol. 2017; 15: 140–141. https://doi.org/10.1016/j.cgh.2016.08.021 PMID: 27567692

5. Chiu E, Nurko S. Management of functional abdominal pain and irritable bowel syndrome in children and adolescents. Expert Rev Gastroenterol Hepatol. 2010; 4: 293–304. https://doi.org/10.1586/egh.10.28 PMID: 20528117

6. Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, et al. Effect of antidepressants and psychological therapies, including hypnotherapy, in irritable bowel syndrome: systematic review and meta-analysis. Am J Gastroenterol. 2014; 109: 1350–1365; quiz 1366. https://doi.org/10.1038/ajg.2014.148 PMID: 24935275

7. Khanna R, MacDonald JK, Levesque BG. Peppermint oil for the treatment of irritable bowel syndrome: a systematic review and meta-analysis. J Clin Gastroenterol. 2014; 48: 505–512. https://doi.org/10.1097/MCG.0b013e3182a83557 PMID: 24100754

8. Ford AC, Lacy BE, Talley NJ. Irritable bowel syndrome. N Engl J Med. 2017; 376: 2566–2578. https://doi.org/10.1056/NEJMra1607547 PMID: 28657875

9. Wang JM, Yang MX, Wu QF, Chen J, Deng SF, Chen L, et al. Improvement of intestinal flora: accompany with the antihypertensive effect of electroacupuncture on stage 1 hypertension. Chin Med. 2021; 16: 7. https://doi.org/10.1186/s13020-020-00417-8 PMID: 33413552

10. Shogbesan O, Poudel DR, Victor S, Jehangir A, Fadahunsi O, Shogbesan G, et al. A Systematic Review of the Efficacy and Safety of Fecal Microbiota Transplant for Clostridium difficile Infection in Immunocompromised Patients. Can J Gastroenterol Hepatol. 2018; 2018: 1394379. https://doi.org/10.1155/2018/1394379 PMID: 30246002

11. Guzman Herrador BR, Ronning K, Borgen K, Mannsaker T, Dahlé UR. Description of the largest cluster of tuberculosis notified in Norway 1997–2011: is the Norwegian tuberculosis control programme serving its purpose for high risk groups? BMC Public Health. 2015; 15: 367. https://doi.org/10.1186/s12889-015-1701-x PMID: 25878411
12. Ding X, Li Q, Li P, Zhang T, Cui B, Ji G, et al. Long-Term Safety and Efficacy of Fecal Microbiota Transplant in Active Ulcerative Colitis. Drug Saf. 2019; 42: 869–880. https://doi.org/10.1007/s40264-019-00809-2 PMID: 30972640

13. Weil AA, Hohmann EL. Fecal microbiota transplant: benefits and risks. Open Forum Infect Dis. 2015; 2: ofv005. https://doi.org/10.1093/ofid/ofv005 PMID: 26034756

14. Allegretti JR, Mullish BH, Kelly C, Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet. 2019; 394: 420–431. https://doi.org/10.1016/S0140-6736(19)31266-8 PMID: 31379333

15. Li B, Liang L, Deng H, Guo J, Shu H, Zhang L. Efficacy and Safety of Probiotics in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Front Pharmacol. 2020; 11: 332. https://doi.org/10.3389/fphar.2020.00332 PMID: 32317962

16. Sideri S, Papageorgiou SN, Eliades T. Registration in the international prospective register of systematic reviews (PROSPERO) of systematic review protocols was associated with increased review quality. J Clin Epidemiol. 2018; 100: 103–110. https://doi.org/10.1016/j.jclinepi.2018.01.003 PMID: 29339215

17. Augusteijn HEM, van Aert RCM, van Assen M. The effect of publication bias on the Q test and assessment of heterogeneity. Psychol Methods. 2019; 24: 116–134. https://doi.org/10.1037/met0000197 PMID: 30489099

18. Basturk A, Artan R, Yilmaz A. Efficacy of symbiotic, probiotic, and prebiotic treatments for irritable bowel syndrome in children: A randomized controlled trial. Turkish Journal of Gastroenterology. 2016; 27: 439–443.

19. Bausserman M, Bausserman M, Michail S. The use of Lactobacillus GG in irritable bowel syndrome in children: a double-blind randomized control trial. Journal of Pediatrics. 2005; 147: 197–201. https://doi.org/10.1016/j.jpeds.2005.05.015 PMID: 16126049

20. Francavilla R, Miniello V, Magistà AM, De Canio A, Bucci N, Gagliardi F, et al. A randomized controlled trial of Lactobacillus GG in children with functional abdominal pain. Pediatrics. 2010; 126: e1445–1452. https://doi.org/10.1542/peds.2010-0467 PMID: 21078735

21. Gawronska A, Dziechcia rz P, Horvath A, Szajewska H. A randomized double-blind placebo-controlled trial of Lactobacillus GG for abdominal pain disorders in children. Alimentary Pharmacology & Therapeutics. 2007; 25: 177–184.

22. Giannetti E, Maglion e M, Alessand rella A, Strisciuglio C, De Giovanni D, Campanozzi A, et al. A Mixture of 3 Bifidobacteria Decreases Abdominal Pain and Improves the Quality of Life in Children With Irritable Bowel Syndrome A Multicenter, Randomized, Double-Blind, Placebo-Controlled, Crossover Trial. Journal of Clinical Gastroenterology. 2017; 51: E5–E10. https://doi.org/10.1097/MCG.0000000000002528 PMID: 27306945

23. Guandalini S, Magazzù G, Chiaro A, La Balestra V, Di Nardo G, Gopalan S, et al. VSL#3 improves symptoms in children with irritable bowel syndrome: a multicenter, randomized, placebo-controlled, double-blind, crossover study. Journal of pediatric gastroenterology and nutrition. 2010; 51: 24–30. https://doi.org/10.1016/jjpeds.2009.11.012 PMID: 20453678

24. Kianfar H, Jafari SA, Kiani M, Anchanich H, Ghasemi SV, Grover Z, et al. Probiotic for irritable bowel syndrome in pediatric patients: a randomized controlled clinical trial. Electron Physician. 2015; 7: 1255–1260. https://doi.org/10.3345/cep.2015.01613 PMID: 23718147

25. Rahmani P, Ghouran-Orimi A, Motamed F, Moradzadeh A. Evaluating the effects of probiotics in pediatric patients with recurrent abdominal pain. Clin Exp Pediatr. 2020; 63: 485–490. https://doi.org/10.3345/cep.2019.01613 PMID: 32718147

26. Sudha MR, Jayanthi N, Aasim M, Dhanashri RD, Anirudh T. Efficacy of Bacillus coagulans Unique IS2 in treatment of irritable bowel syndrome in children: a double blind, randomised placebo controlled study. Benef Microbes. 2018; 9: 563–572. https://doi.org/10.3920/BM2017.0129 PMID: 29695183

27. Gareau MG, Sherman PM, Walker WA. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol. 2010; 7: 503–514. https://doi.org/10.1038/nrgastro.2010.117 PMID: 20664519

28. Vivinus-Nebot M, Frin-Mathy G, Bzioueche H, Dainese R, Bernard G, Anty R, et al. Functional bowel symptoms in quiescent inflammatory bowel diseases: role of epithelial barrier disruption and low-grade inflammation. Gut. 2014; 63: 744–752. https://doi.org/10.1136/gutjnl-2012-304066 PMID: 23878165

29. Cukrowska B, Sowinska A, Bierla JB, Czarnowska E, Rybak A, Grzybowska-Chlebowczyk U. Intestinal epithelium, intraepithelial lymphocytes and the gut microbiota—Key players in the pathogenesis of celiac disease. World J Gastroenterol. 2017; 23: 7505–7518. https://doi.org/10.3748/wjg.v23.i42.7505 PMID: 29204051

30. Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of...
inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011; 8: 110–120. https://doi.org/10.1038/cmi.2010.67 PMID: 21278760

31. Cukrowska B, Kozakova H, Rehakova Z, Sinkora J, Tlaskalova-Hogenova H. Specific antibody and immunoglobulin responses after intestinal colonization of germ-free piglets with non-pathogenic Escherichia coli O86. Immunobiology. 2001; 204: 425–433. https://doi.org/10.1078/0171-2985-00052 PMID: 11776397

32. Laino J, Wangorsch A, Bianco F, Wolferheimer S, Krause M, Flaczky A, et al. Targeting of Immune Cells by Dual TLR2/7 Ligands Suppresses Features of Allergic Th2 Immune Responses in Mice. J Immunol Res. 2017; 2017: 7983217. https://doi.org/10.1155/2017/7983217 PMID: 29204451

33. Kozakova H, Schwarzer M, Tuckova L, Srutkova D, Czarowska E, Rosiak I, et al. Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell Mol Immunol. 2016; 13: 251–262. https://doi.org/10.1038/cmi.2015.09 PMID: 25942514

34. Pabst O. New concepts in the generation and functions of IgA. Nat Rev Immunol. 2012; 12: 821–832. https://doi.org/10.1038/nri3322 PMID: 23103985

35. Egan CE, Maurer KJ, Cohen SB, Mack M, Simpson KW, Denkers EY. Synergy between intraepithelial lymphocytes and lamina propria T cells drives intestinal inflammation during infection. Mucosal Immunol. 2011; 4: 658–670. https://doi.org/10.1038/mi.2011.31 PMID: 21796113

36. Geuking MB, McCoy KD, Macpherson AJ. Metabolites from intestinal microbes shape Treg. Cell Res. 2013; 23: 1339–1340. https://doi.org/10.1038/cr.2013.125 PMID: 24018374

37. Tokuhara D. Role of the Gut Microbiota in Regulating Non-alcoholic Fatty Liver Disease in Children and Adolescents. Frontiers in Nutrition. 2021; 8. https://doi.org/10.3389/fnut.2021.700058 PMID: 34250000

38. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014; 11: 506–514. https://doi.org/10.1038/nrgastro.2014.66 PMID: 24912386

39. Rijkers GT, de Vos WM, Brummer RJ, Morelli L, Corhier G, Marteau P. Health benefits and health claims of probiotics: bridging science and marketing. Br J Nutr. 2011; 106: 1291–1296. https://doi.org/10.1017/S000711451100287X PMID: 21861940

40. Agerholm-Larsen L, Bell ML, Grunwald GK, Astrup A. The effect of a probiotic milk product on plasma cholesterol: a meta-analysis of short-term intervention studies. Eur J Clin Nutr. 2000; 54: 856–860. https://doi.org/10.1038/sj.ejcn.1601104 PMID: 11114681

41. Vilela SF, Barbosa JO, Rossoni RD, Santos JD, Prata MC, Anbinder AL, et al. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence. 2015; 6: 29–39. https://doi.org/10.4161/viru.39448 PMID: 25654408

42. Martin R, Miquel S, Ulmer J, Kechau N, Langella P, Bermudez-Humaran LG. Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb Cell Fact. 2013; 12: 71. https://doi.org/10.1186/1475-2859-12-71 PMID: 23876056

43. Slashinski MJ, McCurdy SA, Achenbaum LS, Whitney SN, McGuire AL. “Snake-oil,” “quack medicine,” and “industrially cultured organisms”: biovalue and the commercialization of human microbiome research. BMC Med Ethics. 2012; 13: 28. https://doi.org/10.1186/1472-6939-13-28 PMID: 23110633

44. Algieri F, Garrido-Mesa J, Vezza T, Rodriguez-Sojo MJ, Rodriguez-Cabezás ME, Olivares M, et al. Intestinal anti-inflammatory effects of probiotics in DNBS-colitis via modulation of gut microbiota and microRNAs. Eur J Nutr. 2020. https://doi.org/10.1007/s00394-020-02441-8 PMID: 33216193

45. Xu H, Ma C, Zhao F, Chen P, Liu Y, Sun Z, et al. Adjunctive treatment with probiotics partially alleviates symptoms and reduces inflammation in patients with irritable bowel syndrome. Eur J Nutr. 2020. https://doi.org/10.1007/s00394-020-02437-4 PMID: 33225399

46. Vinderola G, Perez-Marc G. Fermented foods and probiotics for children. The importance of knowing their microbiological differences. Arch Argent Pediatr. 2021; 119: 56–61. https://doi.org/10.5546/aap.2021.45 PMID: 33458982

47. Liang D, Longgui N, Guoqiang X. Efficacy of different probiotic protocols in irritable bowel syndrome: A network meta-analysis. Medicine (Baltimore). 2019; 98: e16068. https://doi.org/10.1097/MD.0000000000016068 PMID: 31277101