eSNPO: An eQTL-based SNP Ontology and SNP functional enrichment analysis platform

Jin Li1,2,3,*, Limei Wang4,5,*, Tao Jiang1, Jizhe Wang1, Xue Li3, Xiaoyan Liu2, Chunyu Wang2, Zhixia Teng3, Ruijie Zhang3, Hongchao Lv3 & Maozu Guo2

Genome-wide association studies (GWASs) have mined many common genetic variants associated with human complex traits like diseases. After that, the functional annotation and enrichment analysis of significant SNPs are important tasks. Classic methods are always based on physical positions of SNPs and genes. Expression quantitative trait loci (eQTLs) are genomic loci that contribute to variation in gene expression levels and have been proven efficient to connect SNPs and genes. In this work, we integrated the eQTL data and Gene Ontology (GO), constructed associations between SNPs and GO terms, then performed functional enrichment analysis. Finally, we constructed an eQTL-based SNP Ontology and SNP functional enrichment analysis platform. Taking Parkinson Disease (PD) as an example, the proposed platform and method are efficient. We believe eSNPO will be a useful resource for SNP functional annotation and enrichment analysis after we have got significant disease related SNPs.

1College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China. 2School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China. 3School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China. 4School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China. 5College of automation, Harbin Engineering University, Harbin, Heilongjiang, China. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to R.Z. (email: zhangruijie_2015@163.com) or M.G. (email: maozuguo@hit.edu.cn)
In this study, taking eQTL as medium between SNPs and their functions, we integrated eQTL and GO information and constructed a human SNP Ontology database and SNP functional enrichment analysis platform. It will be an efficient tool after GWAS analysis for a complex trait.

Material and Methods

eQTL data. The eQTL data were collected from several open databases and literatures. The gene expression patterns are specific among tissue types, and so do the eQTL patterns. Therefore, a classification by tissue types is necessary. We classified them into 12 tissues (Table 1). We combined the data from different studies of same tissue type. For each data, we set a significant threshold of \(FDR < 0.05 \). We retained only the SNPs with reference names and genes with gene symbols. In each tissue type, the numbers of samples, SNPs and genes are all after the screening.

Brain data. As Parkinson Disease (PD) is a disorder of the central nervous system, we selected eQTL data in brain for a case study from Gibbs et al.\(^{21}\) and Myers et al.\(^{22}\). In Gibbs et al.’s study, four frozen tissue samples of the cerebellum (CRBLM), frontal cortex (FCTX), caudal pons (PONS) and temporal cortex (TCTX) were obtained from 150 neurologically normal Caucasian subjects resulting in 600 tissue samples. SNP genotyping was performed using Infinium HumanHap 550 beadchips (Illumina) for 561,466 SNPs. Profiling of 22,184 mRNA transcripts was performed using HumanRef-8 Expression BeadChips (Illumina). For each of the four brain regions, a regression analysis was performed using Plink\(^{23}\). After eQTL analysis in each brain regions, we integrated the results. In Myers et al.’s study, whole-genome genotyping for 366,140 SNPs and expression analysis of 14,078 genes were carried out on a series of 193 neurologically normal human brain samples using the Affymetrix GeneChip Human Mapping 500 K Array Set and Illumina HumanRefseq-8 Expression BeadChip platforms. A one-degree-of-freedom allelic test of association analysis was performed using Plink\(^{23}\). We integrated the results from these 2 studies. Finally, we got 51,131 significant correlations between 22,740 SNPs and 7,161 genes with the threshold of \(FDR < 0.05 \).

Gene annotation data. The gene annotation data was downloaded from the Gene Ontology (GO) database (www.geneontology.org/page/download-annotations)\(^{7,8}\).

ESNPO construction. We defined associations between SNPs and GO terms via combining the associations between SNPs and genes from eQTL and the associations between genes and GO terms from GO annotation database. A SNP and GO term with at least one common gene will be connected for an association. It was illustrated in Fig. 1.

SNP functional enrichment analysis. We performed Fisher exact test to estimate the significance of associations between SNPs and GO terms. The Fisher exact test is equal to Hypergeometric test. Suppose there are \(N \) SNPs and \(M \) disease-related SNPs in eSNPO. For a given GO term, there are \(n \) SNPs and \(m \) disease-related SNPs.

\[
p = 1 - \sum_{i=1}^{m-1} \frac{C_i C_{N-i}^{M}}{C_N^{M}}
\]

P value adjustment. In an analysis, multiple GO terms are tested for significance and the Type I error would increase. Therefore, a multiple test adjustment is needed after estimating \(p \) values. There are 7 \(p \) value adjustment methods adopted using p.adjust function in R. The Bonferroni correction (‘bonferroni’)\(^{24}\) in which the \(p \) values are multiplied by the number of comparisons. Less conservative corrections are also included by Holm (‘holm’)\(^{25}\), Hochberg (‘hochberg’)\(^{26}\), Hommel (‘hommel’)\(^{27}\), Benjamini & Hochberg (‘BH’ or its alias ‘fdr’)\(^{28}\), and Benjamini & Yekutieli (‘BY’)\(^{29}\), respectively. There is no golden standard to compare these methods, and the most popular method is False Discovery Rate method. The False Discovery Rate (FDR) is one way of

Tissue type	Samples	SNPs	Genes	Reference
Adipose Subcutaneous	111	14863	241	gtexportal\(^{52}\)
Artery Tibia	124	28332	372	gtexportal\(^{52}\)
Brain	765	22740	7161	eQTL Browser\(^{29}\), seeQTL\(^{34}\)
Heart	87	14086	186	gtexportal\(^{52}\)
Lung	124	31905	434	gtexportal\(^{52}\)
Muscle Skeletal	143	25383	301	gtexportal\(^{52}\)
Nerve Tibial	102	23253	327	gtexportal\(^{52}\)
Skin	114	20506	296	gtexportal\(^{52}\)
Blood	5479	406341	6780	Blood eQTL browser\(^{29}\), gtexportal\(^{52}\)
Liver	427	2305	3463	eQTL Browser\(^{33}\)
Lymphoblastoid	1220	208039	9168	eQTL Browser\(^{33}\), seeQTL\(^{34}\), Liming Liang\(^{56}\)
Thyroid	112	33939	481	gtexportal\(^{52}\)

Table 1. eQTL data in 12 tissues.
conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons. In this study, we used the “fdr” method.

Database

After all, we construct a SNP Ontology and SNP functional enrichment analysis platform (http://bioinfo.hrmbu.edu.cn/esnpo/ or http://nclab.hit.edu.cn/esnpo/). It mainly includes 2 functions, eQTL-based SNP functional annotation and SNP functional enrichment analysis. After removing redundancy, we got 699,445 associations between 21,123 SNPs and 11,714 GO terms. The detailed statistics for the 12 tissues were illustrated in Table 2. The GO terms are formed by 3 components, Biological Process (BP), Cellular Component (CC) and Molecular Function (MF).

Case study

PD SNPs data. PD is a degenerative disorder of the central nervous system mainly affecting the motor system. We used 2,034 unique PD-related SNPs in Guiyou Liu et al. These SNPs came from these following works: 41 SNPs were from the GWAS Catalog; 70 SNPs were from a large PD GWAS with over 3,400 cases and 29,000 controls conducted by Do et al.; 783 SNPs were from a meta-analysis of PD GWAS with 4,238 PD cases and 4,239 controls performed by Pankratz et al.; 1,292 SNPs were from a meta-analysis of PD GWAS using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls conducted by Nalls et al. The threshold of \(p \) values in these studies were set to be 5.00E−08. After removing redundancy, we selected 2034 unique SNPs with \(p < 5.00E−08 \).

PD enrichment analysis. In the eQTL-based SNP enrichment analysis, of the 2,034 SNPs, there are 846 SNPs annotated in 77 terms. After Fisher exact test, there are 67 (87.0%) significant terms under the threshold of \(\text{fdr} < 0.01 \).
In the position-based SNP enrichment analysis, of the 2,034 SNPs, there are 1,318 SNPs annotated in 807 terms. After Fisher exact test, there are 396 (49.1%) significant terms under the threshold of \(\text{fdr} < 0.01 \).

Compared between the significant results from eSNPO and position-based enrichment analysis, there are 43 terms in common, including 19 Biological Process (BP) terms, 14 Cellular Component (CC) terms and 10 Molecular Function (MF) terms.

From the results, though there are fewer annotated GO terms in eSNPO than position-based method, there are higher proportion of significant results in eQTL-based method.

To evaluate the method, we performed literature verification on these significant BP GO terms. Of these 19 BP terms in common between these 2 methods, there are 5 terms about axon or neurons; 5 terms about microtubule; 4 terms about apoptotic, cell death or autophagy; 1 term about pregnancy. The axon or neurons were verified by other studies. pregnancy were verified by other studies.

Furthermore, we further verified these significant GO terms only obtained in eQTL-based method (8 BP terms, 8 CC terms and 8 MF terms). Of these 8 BP terms, there are 2 terms about apoptotic signaling pathway, 1 term about cell proliferation, 1 term about cell adhesion, 2 term about JUN phosphorylation which have been verified by other studies.

Conclusion

In this work, we constructed an eQTL-based SNP Ontology and SNP functional enrichment analysis platform (http://bioinfo.hrbmu.edu.cn/esnpo/ or http://nclab.hit.edu.cn/esnpo/). We integrated the eQTL data and GO, constructed associations between SNPs and GO terms, then performed functional enrichment analysis. Taking PD as an example, this eQTL-based method is an efficient method as the position-based method. Therefore, we believe it is a useful SNP functional enrichment analysis resource after we selected significant disease related SNPs.

However, there are still some shortages in this method. The first is there may not be enough suitable eQTL data we can use. And the second is that the scale of eSNPO is far less than the position-based method. These shortages will be solved along with more and more eQTL studies have been done.

References

1. Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. *Nature reviews. Genetics* **6**, 95–108, doi: 10.1038/nrg1521 (2005).
2. Haines, J. L. et al. Complement factor H variant increases the risk of age-related macular degeneration. *Science* **308**, 419–421, doi: 10.1126/science.1110359 (2005).
3. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. *Nucleic acids research* **42**, D1001–1006, doi: 10.1093/nar/gkt1229 (2014).
4. Beck, T., Hastings, R. K., Gollapudi, S., Free, R. C. & Brookes, A. J. GWAS Central: a comprehensive resource for the comparison and interrogation of genome-wide association studies. *European journal of human genetics: EJHG* **22**, 949–952, doi: 10.1038/ ejhg.2013.274 (2014).
5. Li, M. J. et al. GWASdb: a database for human genetic variants identified by genome-wide association studies. *Nucleic acids research* **40**, D1047–1054, doi: 10.1093/nar/gkt1182 (2012).
6. Li, M. J. et al. GWASdb v2: an update database for human genetic variants identified by genome-wide association studies. *Nucleic acids research* **44**, D869–876, doi: 10.1093/nar/gkv1317 (2016).
7. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nature genetics* **25**, 25–29, doi: 10.1038/75556 (2000).
8. Gene Ontology, C. Gene Ontology Consortium: going forward. *Nucleic acids research* **43**, D1049–1056, doi: 10.1093/nar/gku1179 (2015).
9. Wang, P. et al. SNP Function Portal: a web database for exploring the functional implication of SNP alleles. *Bioinformatics* **22**, e523–529, doi: 10.1093/bioinformatics/btl241 (2006).
10. Lee, P. H. & Shattay, H. F-SNP: computationally predicted functional SNPs for disease association studies. *Nucleic acids research* **36**, D820–824, doi: 10.1093/nar/gkm904 (2008).
11. Zhang, K., Chang, S., Guo, L. & Wang, J. I-GSEA4GWAS v2: a web server for functional analysis of SNPs in trait-associated pathways identified from genome-wide association study. *Protein & cell* **6**, 221–224, doi: 10.1007/s13238-014-0114-4 (2015).
12. Weng, L. et al. SNP-based pathway enrichment analysis for genome-wide association studies. *BMC bioinformatics* **12**, 99, doi: 10.1186/1471-2105-12-99 (2011).

Tissue	SNPs	GO terms	BP	CC	MF
Adipose Subcutaneous	6168	304	166	75	63
Artery Tibial	6742	478	286	92	100
Brain	21123	11714	7979	1168	2567
Heart Left Ventricle	3049	294	171	59	64
Lung	8315	530	327	90	113
Muscle Skeletal	8637	501	318	96	87
Nerve Tibial	7210	533	334	89	110
Skin	4240	358	213	87	58
Blood	35381	11153	7514	1136	2503
Liver	1976	7762	5257	859	1646
Lymphoblastoid	18497	12158	8238	1174	2746
Thyroid	8258	637	385	113	139

Table 2. Summary statistics of eSNPO.
53. Coordinators, N. R. Database resources of the National Center for Biotechnology Information. *Nucleic acids research* **44**, D7–D19, doi: 10.1093/nar/gkv1290 (2016).

54. Xia, K. *et al.* sesQTL: a searchable database for human eQTLs. *Bioinformatics* **28**, 451–452, doi: 10.1093/bioinformatics/btr678 (2012).

55. Westra, H. J. *et al.* Systematic identification of trans eQTLs as putative drivers of known disease associations. *Nature genetics* **45**, 1238–1243, doi: 10.1038/ng.2756 (2013).

56. Liang, L. *et al.* A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. *Genome research* **23**, 716–726, doi: 10.1101/gr.142521.112 (2013).

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (grant numbers: 61271346, 61300116, 61302139, 61571163, 61532014, 61402132 and 91335112) and Natural Science Foundation of Heilongjiang Province (grant number: QC2013C063).

Author Contributions

J.L., L.W. and M.G. conceived the study. J.L., L.W. and T.J. did most of the experiments. J.W., X.L., C.W. and Z.T. constructed the web platform. X.L., C.W., R.Z. and H.L. tested the web platform. All authors reviewed the manuscript.

Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Li, J. *et al.* eSNPO: An eQTL-based SNP Ontology and SNP functional enrichment analysis platform. *Sci. Rep.* **6**, 30595; doi: 10.1038/srep30595 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016