Clinicopathological and prognostic significance of programmed cell death ligand 1 expression in patients diagnosed with breast cancer: meta-analysis

M. G. Davey1,2,*, É. J. Ryan2,3, M. S. Davey2,3, A. J. Lowery1,2, N. Miller1,2 and M. J. Kerin1,2

1Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
2Department of Surgery, Galway University Hospitals, Galway, Ireland
3Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland

*Correspondence to: Department of Surgery, Galway University Hospitals, Galway, H91YR71, Ireland (e-mail: m.davey7@nuigalway.ie)

Abstract

Background: Uncertainty exists regarding the clinical relevance of programmed cell death ligand 1 (PD-L1) expression in breast cancer.

Methods: A systematic review was performed in accordance with PRISMA guidelines. Observational studies that compared high versus low expression of PD-L1 on breast cancer cells were identified. Log hazard ratios (HRs) for disease-free and overall survival and their standard errors were calculated from Kaplan–Meier curves or Cox regression analyses, and pooled using the inverse-variance method. Dichotomous variables were pooled as odds ratios (ORs) using the Mantel–Haenszel method.

Results: Sixty-five studies with 19,870 patients were included; 14,404 patients were classified as having low and 4,975 high PD-L1 expression. High PD-L1 was associated with achieving a pathological complete response following neoadjuvant chemotherapy (OR 3.30, 95% confidence interval 1.19 to 9.16; P = 0.02; I² = 85%). Low PD-L1 expression was associated with human epidermal growth factor receptor 2 (OR 3.98, 95% confidence interval 1.81 to 8.75; P < 0.01; I² = 96%). Low PD-L1 expression was associated with luminal (OR 14.93, 95% confidence interval 6.46 to 34.51; P < 0.001; I² = 99%) and luminal (OR 14.93, 95% confidence interval 6.46 to 34.51; P < 0.001; I² = 99%) breast cancer subtypes. Those with low PD-L1 had favourable overall survival rates (HR 1.30, 95% confidence interval 1.05 to 1.61; P = 0.02; I² = 85%).

Conclusion: Breast cancers with high PD-L1 expression are associated with aggressive clinicopathological and immunohistochemical characteristics and are more likely to achieve a pathological complete response following neoadjuvant chemotherapy. These breast cancers are, however, associated with worse overall survival outcomes.

Introduction

Breast cancer is the most commonly diagnosed cancer and leading cause of cancer death in women worldwide. There has been an increasing incidence of breast cancer in recent decades, but breast cancer-associated mortality is decreasing.1 This emerging trend is likely due to an increased understanding of breast cancer biology, as well as excellent progress in the development of breast cancer diagnostics and treatments.2-3 Breast cancer treatment has evolved in the molecular area such that each subtype is managed in a manner complementary to its underlying biological drivers. Breast cancer management currently involves various combinations of surgical, chemical, radiation, hormonal and targeted therapies, although novel therapeutic avenues including immune oncology are currently being explored.4

Programmed cell death 1 (PD-1) plays a critical role in cancer immunotherapy; PD-1 is a receptor expressed on the surfaces of various immune cells such as T, B, and natural killer cells, which are responsible for regulation of cell death and apoptosis. Programmed cell death ligand 1 (PD-L1) (also referred to as B7-H1 or CD274) is a complementary ligand of PD-1 which is expressed on the exterior surface of cancer cells and recruited immune cells, such as macrophages and dendritic cells. PD-L1 suppresses the immunological cascade attacking the cancer cells by inducing apoptosis of local T cells, and propagating tumour proliferation as a consequence.5,6 Manipulation of the PD-1/PD-L1 pathway by monoclonal antibodies in cancers has provided promising therapeutic approaches. Various reports7-10 have implied a strong correlation between PD-L1 expression and poor prognosis, particularly in malignant melanoma, and non-small cell lung, colorectal, and bladder carcinomas.

The advent of immune oncology, including immunomodulatory therapies such as immune checkpoint inhibitors (ICI), appears to hold particular promise for future clinical oncological practice, although the current role of PD-L1 assessment in breast cancer remains unclear. Traditionally, breast cancer was not considered an especially immunogenic tumour. However, recent developments have shown that some aggressive triple negative breast cancers (TNBC) are immunogenic, exhibit chemo-resistance and have a poor prognosis.11,12 These cancers have been...
shown to express molecules identified as targets for immunotherapy. Previous meta-analyses provided conflicting evidence concerning the prognostic value of PD-L1 expression for those diagnosed with invasive breast cancer, and its role as a predictive marker in neoadjuvant chemotherapy (NACT) and immunotherapy has yet to be fully elucidated. Consequently, the relevance and overall role of PD-L1 assessment in breast cancer management remains unclear.

The main aim of the present study was to perform an updated systematic review and meta-analysis evaluating the relationship between PD-L1 expression and routine clinicopathological and immunohistochemical characteristics in patients diagnosed with breast cancer, irrespective of molecular subtype. Other aims were to determine the prognostic value of PD-L1 status regarding oncological and survival outcomes, and its value as a predictor of response to current multimodal management of breast cancer.

Methods

Search strategy

A systematic review was undertaken in accordance with the PRISMA checklist. Local institutional ethical approval was not required. An electronic search was performed of the PubMed MEDLINE, Embase, and Scopus databases on 13 June 2020 for relevant studies that would be suitable for inclusion. The search was performed for the following headings: (PD-L1 OR B7-H1 OR CD274 OR ‘programmed cell death 1 ligand 1’ OR ‘PD-L1 costimulatory protein’ OR ‘B7 homolog 1’ OR ‘B7-H1 antigen’ OR ‘CD274 antigen’) AND (‘breast cancer’ OR ‘breast neoplasms’ OR ‘breast tumour’ OR ‘breast carcinoma’ OR ‘cancer of breast’ OR ‘human mammary neoplasm’ OR ‘human mammary carcinoma’). Only manuscripts published in the English language were included. Inclusion was not restricted based on year of publication. All titles were initially screened, and studies deemed appropriate had abstracts and full texts reviewed.

Inclusion and exclusion criteria

Studies meeting the following criteria were included: studies on patients with histologically confirmed primary breast cancer; studies that evaluated tumour expression of PD-L1 in breast cancer tissue; and studies investigating the correlation between PD-L1 and clinicopathological parameters, treatment characteristics, pathological complete response (pCR) rates in breast tissue following NACT, disease-free survival (DFS) or overall survival (OS). Exclusion criteria were: studies only describing PD-L1 levels on tumour-infiltrating lymphocytes (TILs); studies in which patients were treated with PD-1/PD-L1-targeting therapies; review articles; studies including fewer than five patients or case reports; editorial articles; and conference abstracts.

Data extraction and quality assessment

The literature search was undertaken by two independent reviewers using the predesigned search strategy. Duplicate studies were removed manually. Each reviewer read the retrieved manuscripts to ensure that all inclusion criteria were met, before extracting the following data: first author name, year of publication, study design, country, level of evidence, study title, number of patients, patient PD-L1 status, clinicopathological characteristics, treatment characteristics, and survival data. Data specific to patient outcomes and survival (expressed as hazard ratios (HRs), with 95 per cent c.i. and P values) were extracted directly from tables and study text. Risk-of-bias and methodological quality assessment was performed in accordance with the Newcastle-Ottawa scale. In the event of discrepancies in opinion between the reviewers, a third reviewer was asked to arbitrate.

Statistical analysis

PD-L1 expression and clinicopathological and treatment characteristics were presented as proportions using descriptive statistics. DFS and OS were expressed as HRs, and were considered the primary analytical endpoints. HRs and corresponding confidence intervals were retrieved directly for use in this meta-analysis. Either fixed- or random-effects models were applied on the basis of whether significant heterogeneity (I² over 50 per cent) existed between studies included in each analysis. Symmetry of funnel plots was used to assess publication bias. Statistical heterogeneity was determined using I² statistics. P < 0.050 was considered statistically significant. Statistical analysis was done using Review Manager (RevMan) version 5.4 (Nordic Cochrane Centre, Copenhagen, Denmark).

Results

Literature search

The initial electronic search resulted in a total of 2946 studies. After removal of 249 duplicates, the remaining 2697 titles were screened for relevance, and the abstracts and full text of 243 of these were assessed for eligibility. Overall, 65 clinical studies were included in the systematic review, and 63 in the meta-analyses (Fig. 1). Individual studies included in the analysis are outlined in Table S1.

Study characteristics

There were 19 870 patients included, of these, 14 404 patients had low PD-L1 expression on breast cancer cells, and 4975 had high PD-L1 expression. The median age at diagnosis was 52 years and studies had a median follow-up of 75.0 months. Molecular subtype was reported for 17 684 patients (89.0 per cent); 8532 had oestrogen receptor (ER)-positive disease (luminal type) (48.3 per cent).

Lay summary

This is a pooled analysis assessing the relevance of a biological marker known as programmed cell death ligand 1 (PD-L1) from almost 20 000 patients diagnosed with breast cancer. The main results from this analysis suggest that high levels of PD-L1 are associated with worse survival but better response to chemotherapy for patients diagnosed with breast cancer. This may be used prospectively to enhance outcomes for patients with breast cancer.
cent), 6548 had TNBC (37.0 per cent), and 2604 human epidermal growth factor receptor 2 (HER2)-positive (HER2+) breast cancer (14.7 per cent).

Clinicopathological and immunohistochemical data

Increased tumour grade ($P < 0.001$), increased tumour stage ($P < 0.001$), ER negativity ($P < 0.001$), progesterone receptor (PgR) negativity ($P < 0.001$), HER2 positivity ($P = 0.001$), and Ki-67 proliferation index exceeding 14 per cent ($P < 0.001$) were all independently associated with PD-L1 status (all Fisher’s exact test) (Tables S2–S4).

High PD-L1 expression on breast tumour cells was associated with grade 3 tumours (odds ratio (OR) 2.16, 95 per cent c.i. 1.64 to 2.83; $P < 0.01$; $I^2 = 82$ per cent), ER negativity (OR 2.29, 1.54 to 3.41; $P < 0.001$; $I^2 = 89$ per cent), PgR negativity (OR 2.44, 1.69 to 3.51; $P < 0.001$; $I^2 = 83$ per cent), and Ki-67 index greater than 14 per cent (OR 2.12, 1.23 to 3.65; $P = 0.007$; $I^2 = 89$ per cent) (Fig. S1). Fig. S2 provides details for all clinicopathological and immunohistochemical variables that failed to reach statistical significance in meta-analyses.

Breast cancer molecular subtypes

Low PD-L1 expression was associated with the HER2 (OR 3.98, 95 per cent c.i. 1.81 to 8.75; $P < 0.001$; $I^2 = 96$ per cent) and luminal (OR 14.93, 6.46 to 34.51; $P < 0.001$; $I^2 = 99$ per cent) molecular subtypes (Figs 2 and 3). PD-L1 expression was not associated with TNBC (OR 0.98, 0.74 to 1.30; $P = 0.90$; $I^2 = 97$ per cent), and failed to inform patient prognosis in terms of DFS or OS for patients with TNBC (Fig. S2d,g,h). Performing subgroup survival analyses for the luminal and HER2 molecular subgroups was not feasible owing to lack of available data.

Treatment characteristics

Thirteen studies reported on breast cancer management using treatment with NACT and PD-L1 expression. Eleven studies reported patients achieving a pCR in the breast following NACT, eight of which were suitable for meta-analysis. Patients with high PD-L1 expression were more likely to achieve a pCR after NACT (OR 3.30, 1.19 to 9.16; $P < 0.01$; $I^2 = 85$ per cent) (Fig. 4).

Three studies reported adjuvant chemotherapy prescription with respect to PD-L1. Adjuvant chemotherapy was prescribed for 759 of 952 patients (79.7%) with low PD-L1 expression and 333 of 543 (61.3%) with high PD-L1 expression ($P < 0.001$). Details regarding adjuvant radiotherapy and PD-L1 expression was recorded in three studies; 90 of 952 patients with low PD-L1 expression and 88 of 543 with high PD-L1 expression received radiotherapy ($P < 0.001$). Only AlErken and colleagues reported results regarding PD-L1 status and surgical management; all 70 patients with PD-L1-positive disease underwent mastectomy, whereas 136 of 145 (93.8 per cent) with PD-L1-negative disease underwent mastectomy ($P = 0.027$). Treatment characteristics and associations between PD-L1 and responses to NACT are outlined in Tables S5 and S6.

Survival outcomes

Patients with cancers expressing high levels of PD-L1 on breast tumour cells had worse OS rates than those with low PD-L1
expression (HR 1.30, 95 per cent c.i. 1.05 to 1.61; P = 0.02). There was significant heterogeneity between the 35 included independent patient cohorts (I² = 85 per cent; P < 0.001) (Fig. 5).

There was no increased risk of breast cancer recurrence for patients with high PD-L1 expression versus those with low PD-L1 expression on breast cancer cells (HR 1.11, 0.86 to 1.44; P = 0.41). Significant heterogeneity was present between the 26 patient cohorts analysed for DFS (I² = 88 per cent; P < 0.001) (Fig. S2e). Furthermore, there was no increased risk of disease recurrence after 5 years for those with high PD-L1 expression (HR 0.86, 0.64 to 1.17; P = 0.34; I² = 73 per cent, P < 0.001) (Fig. S2f).

Discussion

The present analysis of 19 870 patients with breast cancer investigated the prognostic value of PD-L1 expression on breast cancer cells. The most important clinical findings are the increased likelihood of achieving a pCR in tumours expressing high levels of PD-L1 on cancer cells, as well as the favourable OS outcomes for patients with breast cancers expressing low PD-L1 levels. Breast oncology has evolved in concordance with the molecular era, such that biomarkers, genetic testing, and genomic assays are used to personalize treatment regimens and provide valuable prognostic information; immunomodulatory strategies are a promising approach to enhance outcomes even further. This study provides clarity pertaining to the clinical role of PD-L1 immunohistochemical testing; incorporation of this biomarker into routine histopathological evaluation of diagnostic tissue biopsies may aid clinical and therapeutic decision-making in the neoadjuvant setting, and further reduce prognostic uncertainty of a breast cancer diagnosis.

Evidence from this meta-analysis suggests that increased PD-L1 expression by cancer cells indicates that patients are likely to achieve a pCR on NACT. A pCR has been recognized as an excellent indicator of prognosis and survival in breast cancer in a number of prospective studies, with patients attaining a pCR typically outperforming their counterparts in terms of survival. These results support the clinical importance of clarifying PD-L1 status on core tissue biopsy in the neoadjuvant setting in those being considered for preoperative systemic chemotherapy. Furthermore, recent prospective studies such as the IMPASSION 130 and Keynote 522 trials have outlined the role of confirming PD-L1 status on tissue biopsy in both early-stage and metastatic settings, when gauging whether immunotherapeutic agents, such as anti-PD-L1 drugs, will be indicated. These novel immunotherapies currently rely on clarification of PD-L1 status, and their potential for enhancing oncological and survival outcomes for even the most aggressive of TNBCs has been described. This data, reported in tandem with these large prospective studies, support routine PD-L1 detection in breast cancer immunohistochemical tissue analysis, given the robust prognostic value PD-L1 offers within the breast
A Mantel–Haenszel random-effects model was used for meta-analysis. Odds ratios are shown with 95 per cent confidence intervals. PD-L1, programmed cell death ligand 1.

Fig. 3 Association between programmed cell death ligand 1 expression and luminal molecular subtype type of breast cancer

A Mantel–Haenszel random-effects model was used for meta-analysis. Odds ratios are shown with 95 per cent confidence intervals. PD-L1, programmed cell death ligand 1.

Fig. 4 Association between programmed death ligand 1 expression and likelihood of achieving a pathological complete response after neoadjuvant chemotherapy

A Mantel–Haenszel random-effects model was used for meta-analysis. Odds ratios are shown with 95 per cent confidence intervals. pCR, pathological complete response; PD-L1, programmed cell death ligand 1.

Oncological paradigm, as well as its potential role as a prospective therapeutic target.

In contrast, the results shown here from a pooled analysis of 33 independent patient cohorts highlight a significant survival benefit associated with breast cancer diagnoses harbouring low PD-L1 expression on cancer cells. These observations are consistent with previous meta-analyses, both of which suggested that high PD-L1 expression is correlated with poor prognosis. These results imply that PD-L1 could perhaps be considered as a reliable predictor of OS in breast cancer, even though this is incongruent with observations associating PD-L1 expression to pCR, a recognised surrogate for survival. While this inconsistency creates ambiguity over the interpretation of PD-L1 expression and its supplementary value in breast oncology, perhaps increased PD-L1 expression provides a novel avenue of investigation to establish the rationale surrounding the cohort of patients who paradoxically successfully achieve a pCR, yet fail to derive...
cell subtypes, as well as the spatial proximity of these cell types and differential enrichments across patients, tumour and immune microenvironment, and the immune system. Moreover, simple measures of PD-L1 expression does not capture the rationale for worse OS. In the absence of disease recurrence, however, the present data fail to support this. Data surrounding a systemic role of PD-L1 suggest that host immunological factors and other complex factors may contribute, as upregulation of PD-L1 suppresses T lymphocyte function overall, increasing patient susceptibility to infection and inflammation. Moreover, simple measures of PD-L1 expression does not capture differential enrichments across patients, tumour and immune cell subtypes, as well as the spatial proximity of these cell types in tissues. These relational features may be critical to further evaluating the complex stimulatory and inhibitory processes that depends on the interplay between individual cells in the tumour microenvironment, and the immune system. In the interim, prognostic information provided by PD-L1 assessment concerning pCR and mortality is explicit, and supports its potential value as a breast cancer biomarker.

In this meta-analysis, increased PD-L1 expression correlated with aggressive clinicopathological and immunohistochemical tumour features, such as grade 3 tumours, ER and PgR negativity, as well as Ki-67 proliferation greater than 14 per cent. Uncontrolled proliferation is a hallmark of oncogenesis, and consequently, routine Ki-67 proliferation staining is performed to appraise the proportion of tumour cells actively proliferating at a molecular level. Ki-67 indices, as well as the mitotic component of Nottingham histopathological grading systems, are of crucial clinical relevance in modern histopathological reporting. Moreover, ER and PgR negativity both significantly correlated with PD-L1 expression in this analysis, indicating that PD-L1 status provides data somewhat compatible with routine prognostic molecular variables. This complements the findings concerning OS, particularly when historical data connect ER and PgR negativity, increased histological grade, and Ki-67 proliferation to worse

Reference	Log (hazard ratio)	Weight (%)	Hazard ratio	Hazard ratio
Adams et al.	2.3344 (0.5375)	2.4	10.32 (3.60, 29.60)	
AliErken et al.	–1.2 (0.44)	2.9	0.30 (0.13, 0.71)	
Arias-Pulido et al.	–0.67 (0.35)	3.6	0.51 (0.26, 1.02)	
Bae et al.	–1.5756 (1.0782)	0.9	0.21 (0.03, 1.71)	
Baptist et al.	–1.2349 (0.5985)	2.1	0.29 (0.09, 0.94)	
Beckers et al.	0.1769 (0.5269)	2.4	1.19 (0.42, 3.35)	
Bertucci et al.	–0.46 (0.1)	5.4	0.63 (0.52, 0.77)	
Botti et al.	0.3365 (0.2792)	4.1	1.40 (0.81, 2.42)	
Chen et al.	0.9494 (0.2803)	4.1	2.58 (1.49, 4.48)	
Erol et al.	0.46 (0.39)	3.3	1.58 (0.74, 3.40)	
He et al.	0.64 (0.31)	3.9	1.90 (1.03, 3.48)	
Kim et al.	–0.4318 (0.3577)	3.5	0.65 (0.32, 1.31)	
Kitani et al.	0.0128 (0.3411)	3.6	1.01 (0.52, 1.98)	
Li et al.	–0.3711 (1.0392)	0.9	0.69 (0.09, 5.29)	
Li et al.	0.6283 (0.3114)	3.9	1.87 (1.02, 3.45)	
Miriti et al.	0.78 (1.08)	0.9	2.18 (0.26, 18.12)	
Mori et al.	–0.5108 (0.3537)	3.5	0.60 (0.30, 1.20)	
Muenst et al.	1.1193 (0.1422)	5.1	3.06 (2.32, 4.05)	
Okabe et al.	0.9746 (0.6578)	1.8	2.65 (0.73, 0.62)	
Park et al.	0.7333 (0.4511)	2.9	2.08 (0.86, 5.04)	
Pelekanou et al.	0.55 (1.18)	0.7	1.73 (0.17, 17.51)	
Polonia et al.	1.9629 (0.8298)	1.3	7.12 (1.40, 36.21)	
Qin et al.	0.5809 (0.2059)	4.7	1.78 (1.19, 2.67)	
Sabatier et al.	–0.284 (0.704)	5.5	0.75 (0.66, 0.86)	
Sun et al.	–0.2291 (0.0255)	5.6	0.80 (0.76, 0.84)	
Tsang et al.	0.4166 (0.1989)	4.7	1.52 (1.03, 2.24)	
Tymaszuk et al.	0.472 (0.3298)	3.7	1.60 (0.84, 3.06)	
Tymaszuk et al.	0.27 (0.5566)	2.3	1.31 (0.44, 3.90)	
Uhercik et al.	1.09 (0.4)	3.2	2.97 (1.36, 5.51)	
Wang et al.	0.1601 (0.2564)	4.3	1.17 (0.71, 1.94)	
Wei et al.	–0.53 (2.08)	0.3	0.59 (0.01, 34.70)	
Xirin et al.	1.15 (1.93)	0.3	3.16 (0.07, 138.76)	
Zeng et al.	1.12 (2.79)	0.1	3.06 (0.00, 5157.79)	
Zhang et al.	–0.26 (4.02)	0.1	0.77 (0.00, 2036.64)	
Zhou et al.	1.37 (0.63)	2.0	3.94 (1.14, 13.53)	

Total: 100.0 | 1.30 (1.05, 1.61) |

Heterogeneity: \(\chi^2 = 5.35; \chi^2 = 2587.39, 30 \text{ d.f.}, \ P < 0.001 \); \(I^2 = 99\% \)

Test for overall effect: \(Z = 6.32, \ P < 0.001 \)

Fig. 5 Association between programmed death ligand 1 expression and overall survival in breast cancer

An inverse-variance random-effects model was used for meta-analysis. Hazard ratios are shown with 95 per cent confidence intervals.
clinical outcomes in breast cancer. Linking increased PD-L1 expression with aggressive microscopic tumour characteristics and immunohistochemical features encourages hypotheses that assessment of PD-L1 would be best reserved for those with triple-negative and ER-positive/PgR-negative disease, whose responses to systemic treatments fall short of their ER-positive/PgR-positive and HER2-positive counterparts. Perhaps ICI have the potential to bridge the current gap in clinical outcomes between these molecular subtypes, and the authors await the results of the IMPASSION 130 and Keynote 522 trials with great anticipation.

The results of the present study lead to a congruent message: evaluating PD-L1 status appears advantageous in reducing prognostic uncertainty for patients diagnosed with breast cancer. Reduced PD-L1 in the luminal and HER2+ molecular subtypes corresponds with their more favourable prognoses; however, the challenge remains in establishing the scientific reasoning for such results. Within the tumour microenvironment, interplay between PD-1 expressed on TILs and its complementary ligand (expressed on both cancer and immune cells) appears to suppress and dampen the cytotoxic anticancer effect of local inflammatory cells. Consequently, cancer development may be unopposed by the host immune system, even in more immunogenic breast cancer subtypes such as TNBC, leading to development of more aggressive tumour biology. This provides a rationale for the strong associations between high PD-L1 expression and aggressive clinicopathological characteristics, and moreover, the worse survival outcomes in the long term. On the contrary, the paradigm is evolving such that positive PD-L1 expression may provide the potential for novel therapeutic avenues for patients in both early and metastatic settings, which perhaps suggests PD-L1 positivity may develop into a favourable parameter in certain circumstances. In the interim, the results of this meta-analysis demonstrate high PD-L1 expression is an adverse prognostic marker in its current unmanipulated state, as well as having indispensable value in predicting those likely to achieve a pCR during NACT.

Despite efforts to ascertain accurate and comprehensive information with clinical relevance, several limitations should be considered when interpreting the results of this analysis. The study was based solely on studies published in the English language, and the vast majority of included studies were conducted retrospectively, providing low-to-moderate levels of evidence. The included studies provided inconsistent definitions and cut-offs defining PD-L1 status, and there was considerable variation in determining PD-L1 expression, such as in detection antibodies used and preparation of tissues, and human error in reporting. Perhaps expert consensus, such as those proposed annually by the St Gallen panel or the recent standardised methodology to assess TILs in breast cancer, may shed light on the most appropriate means of evaluating PD-L1 expression. Survival analysis was not available for 58 per cent of included studies (38 of 65), limiting the conclusions that can be drawn from these analyses. The paucity of studies reporting on HER2+ or luminal molecular subtypes in isolation limited independent molecular subtype analyses of PD-L1 status and survival outcomes. This review focused solely on PD-L1 expression by cancer cells, and provides no prognostic information regarding the role of PD-L1 status on tumour microenvironmental immune cells; debate about which is more critical in predicting clinical outcomes and response to ICI is ongoing. Moreover, as previously mentioned simple measures of PD-L1 expression does not capture the complexity of the relational features within the tumour microenvironment that may be critical to further evaluating the complex and dynamic dual tumour stimulatory and inhibitory processes of the immune system on breast cancer tumourogenesis and establishing the basis for novel individualised cancer immunotherapies, including ICIs.

Disclosure. The authors have no conflicts of interest to declare.

Supplementary material
Supplementary material is available at BJS online.

References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69: 7–34
2. Meisel JL, Venur VA, Grant M, Carey L. Evolution of targeted therapy in breast cancer: where precision medicine began. Am Soc Clin Oncol Educ Book 2018; 38: 78–86
3. Baldassarre G, Belletti B. Molecular biology of breast tumours and prognosis. F1000Res 2016; 5: 711
4. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA 2019; 321: 288–300
5. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 2016; 8: 328rv4
6. Schütz F, Stefanovic S, Mayer L, von Au A, Domschke C, Sohn C et al. PD-1/PD-L1 pathway in breast cancer. Oncol Res Treat 2017; 40: 294–297
7. Ma J, Chi D, Wang Y, Yan Y, Zhao S, Liu H et al. Prognostic value of PD-L1 expression in resected lung adenocarcinoma and potential molecular mechanisms. J Cancer 2018; 9: 3489–3499
8. Li Y, He M, Zhou Y, Yang C, Wei S, Bian X et al. The prognostic and clinicopathological roles of PD-L1 expression in colorectal cancer: a systematic review and meta-analysis. Front Pharmacol 2019; 10: 139–139
9. Zhu L, Sun J, Wang L, Li Z, Wang L, Li Z et al. Prognostic and clinicopathological significance of PD-L1 in patients with bladder cancer: a meta-analysis. Front Pharmacol 2019; 10: 962–962
10. Yun S, Park Y, Moon S, Ahn S, Lee K, Park HJ et al. Clinicopathological and prognostic significance of programmed death ligand 1 expression in Korean melanoma patients. J Cancer 2019; 10: 3070–3078
11. Adams S, Gatti-Mays ME, Kalinsky K, Korde LA, Sharon E, Amiri-Kordestani L et al. Current Landscape of Immunotherapy in Breast Cancer. JAMA Oncol 2019; 5: 1205–1214
12. Teng MWL, Ngiof SF, Ribas A, Smyth MJ. Classifying Cancers Based on T-cell Infiltration and PD-L1. Cancer Res 2019; 79: 2139–2145
13. Mittendorff EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S et al. PD-L1 Expression in Triple-Negative Breast Cancer. Cancer Immunol Res 2014; 2: 361–370
14. Huang W, Ran R, Shao B, Li H. Prognostic and clinicopathological value of PD-L1 expression in primary breast cancer: a meta-analysis. Breast Cancer Res Treat 2019; 178: 17–33
15. Matikas A, Zerdes I, Lövrot J, Richard F, Sotiriou C, Bergh J et al. Prognostic implications of PD-L1 expression in breast cancer: systematic review and meta-analysis of immunohistochemistry and pooled analysis of transcriptomic data. Clin Cancer Res 2019; 25: 5717–5726
16. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009; 339 b2535
17. Ga Wells BS, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcombe-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed 1 July 2020)

18. Adams TA, Vail PJ, Ruiz A, Mollaei M, McCue PA, Knudsen ES et al. Composite analysis of immunological and metabolic markers defines novel subtypes of triple negative breast cancer. Mod Pathol 2018;31:288–298

19. AiErken N, Shi HJ, Zhou Y, Shao N, Zhang J, Shi Y et al. High PD-L1 expression is closely associated with tumor-infiltrating lymphocytes and leads to good clinical outcomes in Chinese triple negative breast cancer patients. Int J Biol Sci 2017;13:1172–1179

20. Allan M, Kidwell KM, Pelekanou V, Carvajal-Hausdorf DE, Schalper KA, Toki M et al. Association of B7-H4, PD-L1, and tumor infiltrating lymphocytes with outcomes in breast cancer. NPJ Breast Cancer 2018;4:40

21. Arias-Pulido H, Cimino-Mathews A, Chaher N, Qualls C, Joste N, Colpaert C et al. The combined presence of CD20+ B cells and PD-L1+ tumor-infiltrating lymphocytes in inflammatory breast cancer is prognostic of improved patient outcome. Breast Cancer Res Treat 2018;171:273–282

22. Asano Y, Kashiwagi S, Goto W, Takada K, Takahashi K, Morisaki et al. Prediction of treatment responses to neoadjuvant chemotherapy in triple-negative breast cancer by analysis of immune checkpoint protein expression. J Transl Med 2018;16:87

23. Bae SB, Cho HD, Oh MH, Lee JH, Jang SH, Hong SA et al. Expression of programmed death receptor ligand 1 with high tumor-infiltrating lymphocytes is associated with better prognosis in breast cancer. J Breast Cancer 2016;19:242–251

24. Baptista MZ, Sarian LO, Derchain SFM, Pinto GA, Vassallo J. Prognostic significance of PD-L1 and PD-L2 in breast cancer. Mod Pathol 2018;31:25–34

25. Beckers RK, Selinger CJ, Vilain R, Madore J, Wilmott JS, Harvey K et al. Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology 2016;69:25–34

26. Bertucci F, Finetti P, Colpaert C, Marmessier E, Parizel M, Dirix L et al. PD-L1 expression in inflammatory breast cancer is frequent and predicts for the pathological response to chemotherapy. Oncotarget 2015;6:13506–13519

27. Botti G, Collina F, Scognamiglio G, Rao F, Peluso V, De Cecio R et al. Programmed death ligand 1 (PD-L1) tumor expression is associated with a better prognosis and diabetic disease in triple negative breast cancer patients. Int J Mol Sci 2017;18:459

28. Dill EA, Dillon PM, Bullock TN, Mills AM. IDO expression in breast cancer: an assessment of 281 primary and metastatic cases with comparison to PD-L1. Mod Pathol 2018;31:1513–1522

29. Doğukan R, Uçak R, Doğukan FM, Tanik C, Çiğez B, Kabukcuoğlu F et al. Correlation between the expression of PD-L1 and clinicopathological parameters in triple negative breast cancer patients. Eur J Breast Health 2019;15:235–241

30. Erol T, İmamoğlu NE, Aydin B, Taşkıran ZE, Esençağlı G, Kösemehmetoğlu K et al. Primary tumor resection for initially staged IV breast cancer: an emphasis on programmed death-ligand 1 expression, promoter methylation status, and survival. Medicine (Baltimore) 2019;98:e16773–e16773

31. Evangelou Z, Papoudou-Bai A, Karpathiou G, Kourea H, Kamina S, Goussia A et al. PD-L1 expression and tumor-infiltrating lymphocytes in breast cancer: clinicopathological analysis in women younger than 40 years old. In Vivo 2020;34:639–647

32. Ghebeh H, Tulbah A, Mohammed S, ElKun M, Amer SMB, Al-Tweigeri T et al. Expression of B7-H1 in breast cancer patients is strongly associated with high proliferative Ki-67-expressing tumor cells. Int J Cancer 2007;121:751–758

33. Guan H, Lan Y, Wan Y, Wang Q, Wang C, Xu L et al. PD-L1 mediated the differentiation of tumor-infiltrating CD19+ B lymphocytes and T cells in invasive breast cancer. Oncoimmunology 2016;5:e1075112–e1075112

34. Guo L, Li W, Zhu X, Ling Y, Qiu T, Dong L et al. PD-L1 expression and CD274 gene alteration in triple-negative breast cancer: implication for prognostic biomarker. SpringerPlus 2016;5:805

35. He J, Huo L, Ma J, Zhao J, Bassett RL, Sun X et al. Expression of programmed death ligand 1 (PD-L1) in posttreatment primary inflammatory breast cancers and clinical implications. Am J Clin Pathol 2018;149:253–261

36. Catecchio I, Silvestris N, Scarpi E, Schirosi L, Scattone A, Mangia A et al. Intratumoral, rather than stromal, CD8+ T cells could be a potential negative prognostic marker in invasive breast cancer patients. Trans Oncol 2019;12:585–595

37. Cerbelli B, Pernazza A, Botticelli A, Fortunato L, Monti M, Scialtiella P et al. PD-L1 expression in TNBC: a predictive biomarker of response to neoadjuvant chemotherapy? BioMed Res Int 2017;2017:1–7

38. Chen S, Wang RX, Liu Y, Yang WT, Shao ZM. PD-L1 expression of the residual tumor serves as a prognostic marker in local advanced breast cancer after neoadjuvant chemotherapy. Int J Cancer 2017;140:1384–1395

39. Cimino-Mathews A, Thompson E, Taube JM, Ye X, Lu Y, Meeker A et al. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum Pathol 2016;47:52–63

40. Hirakata T, Fujii T, Kurozumi S, Katayama A, Honda C, Yanai K et al. PDG-FBD uptake reflects breast cancer immunological features: the PD-L1 expression and degree of TILs in primary breast cancer. Breast Cancer Res Treat 2020;181:331–338

41. Hou Y, Nitta H, Parwani AV, Li Z. PD-L1 and CD8 are associated with deficient mismatch repair status in triple-negative and HER2-positive breast cancers. Hum Pathol 2019;86:108–114

42. Hou Y, Nitta H, Wei L, Banks PM, Lustberg M, Wesołowski R et al. PD-L1 expression and CD8-positive T cells are associated with favorable survival in HER2-positive invasive breast cancer. Breast J 2018;24:911–919

43. Hou Y, Nitta H, Wei L, Banks PM, Parwani AV, Li Z et al. Evaluation of immune reaction and PD-L1 expression using multiplex immunohistochemistry in HER2-positive breast cancer: the association with response to anti-HER2 neoadjuvant therapy. Clin Breast Cancer 2018;18:e237–e244

44. Kim HS, Do SI, Kim DH, Apple S. Clinicopathological and prognostic significance of programmed death ligand 1 expression in Korean patients with triple-negative breast carcinoma. Anticancer Res 2020;40:1487–1494

45. Kitano A, Ono M, Yoshida M, Noguchi E, Shimomura A, Shimo T et al. Tumour-infiltrating lymphocytes are correlated with higher expression levels of PD-1 and PD-L1 in early breast cancer. ESCMO Open 2017;2:e000150

46. Kurozumi S, Inoue K, Matsumoto H, Fujii T, Horiguchi J, Oyama T et al. The combined presence of CD20+ B cells and PD-L1 expression in inflammatory breast cancers and clinical implications. J Transl Med 2018;16:76

47. Lee DW, Ryu HS, Jin MS, Lee KH, Suh KJ, Youk J et al. Immune recurrency score using 7 immunoregulatory protein expressions can predict recurrency in stage I–III breast cancer patients. Br J Cancer 2019;121:230–236
48. Lee J, Kim DM, Lee A. Prognostic role and clinical association of tumor-infiltrating lymphocyte, programmed death ligand-1 expression with neutrophil–lymphocyte ratio in locally advanced triple-negative breast cancer. Cancer Res Treat 2019; 51: 649–663
49. Li M, Li A, Zhou S, Xu Y, Xiao Y, Bi R et al. Heterogeneity of PD-L1 expression in primary tumors and paired lymph node metastases of triple negative breast cancer. BMC Cancer 2018; 18: 4
50. Li X, Wetherill CS, Krishnamurti U, Yang J, Ma Y, Styblo TM et al. Stromal PD-L1 expression is associated with better disease-free survival in triple-negative breast cancer. Am J Clin Pathol 2016; 146: 496–502
51. Lou J, Zhou Y, Huang J, Qian X. Relationship between PD-L1 expression and clinical characteristics in patients with breast invasive ductal carcinoma. Open Medicine (Wars) 2017; 12: 288–292
52. Mori H, Kubo M, Yamaguchi N, Gishime R, Osako T, Arima N et al. The combination of PD-L1 expression and decreased tumor-infiltrating lymphocytes is associated with a poor prognosis in triple-negative breast cancer. Oncotarget 2017; 8: 15854–1592
53. Muenst S, Schaerli AR, Gao F, Däster S, Trella E, Droeser RA et al. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 2014; 146: 15–24
54. Okabe M, Toh U, Iwakuma N, Saku S, Akashi M, Kimitsu Y et al. Predictive factors of the tumor immunological microenvironment for long-term follow-up in early stage breast cancer. Cancer Sci 2017; 108: 81–90
55. Mirlil C, Paydas S, Kilic EB, Seydaoğlu G, Oguç A, Gökçay S et al. Prognostic significance of EGFR, MUC1 and PD-L1 expression in cases with triple negative breast cancer. J BUON 2020; 25: 159–167
56. Park H, Hong SY, Ro JY, Kwon Y, Kang JH, Mo HJ et al. Prognostic implications of tumor-infiltrating lymphocytes in association with programmed death ligand 1 expression in early-stage breast cancer. Clin Breast Cancer 2016; 16: 51–58
57. Pelekanou V, Barlow WE, Nahleh ZA, Wasserman B, Lo YC, von Wahlde MK et al. Tumor-infiltrating lymphocytes and PD-L1 expression in pre- and posttreatment breast cancers in the SWOG S0800 phase II neoadjuvant chemotherapy trial. Mol Cancer Ther 2018; 17: 1324–1331
58. Pelekanou V, Carvajal-Hausdorf DE, Altan M, Wasserman B, Carvajal-Hausdorf C, Wimmerly H et al. Effect of neoadjuvant chemotherapy on tumor-infiltrating lymphocytes and PD-L1 expression in breast cancer and its clinical significance. Breast Cancer Res Treat 2017; 19: 91
59. Polónia A, Pinto R, Cameselle-Teijeiro JF, Schmitt FC, Paredes J. Prognostic value of stromal tumour infiltrating lymphocytes and programmed cell death-ligand 1 expression in breast cancer. J Clin Pathol 2017; 70: 860–867
60. Qin T, Zeng YD, Qin G, Xu F, Lu JB, Fang WF et al. High PD-L1 expression was associated with poor prognosis in 870 Chinese patients with breast cancer. Oncotarget 2015; 6: 33972–33981
61. Ren X, Wu H, Lu J, Zhang Y, Luo Y, Xu Q et al. PD1 protein expression in tumor infiltrated lymphocytes rather than PD-L1 in tumor cells predicts survival in triple-negative breast cancer. Cancer Biol Ther 2018; 19: 373–380
62. Sabatier R, Finetti P, Mameessier E, Adelaide J, Chaffanet M, Ali HR et al. Prognostic and predictive value of PD-L1 expression in breast cancer. Oncotarget 2015; 6: 5449–5464
63. Sobral-Leite M, Van de Vijver K, Michaut M, van der Linden R, Hooijer GJK, Horlings HM et al. Assessment of PD-L1 expression across breast cancer molecular subtypes, in relation to mutation rate, BRCA1-like status, tumor-infiltrating immune cells and survival. Oncoimmunology 2018; 7: e1509820–e1509820
64. Spitalie A, Mazzola P, Soldini D, Mazzuccelli L, Bordoni A. Breast cancer classification according to immunohistochemical markers: clinicopathologic features and short-term survival analysis in a population-based study from the South of Switzerland. Ann Oncol 2009; 20: 628–635
65. Sun WY, Lee YK, Koo JS. Expression of PD-L1 in triple-negative breast cancer based on different immunohistochemical antibodies. J Transl Med 2016; 14: 173
66. Tawfik O, Kimler BF, Karnik T, Shehata P. Clinicopathological correlation of PD-L1 expression in primary and metastatic breast cancer and infiltrating immune cells. Hum Pathol 2018; 80: 170–178
67. Thompson ED, Taube JM, Asch-Kendrick RJ, Ogurtsova A, Xu H, Sharma R et al. PD-L1 expression and the immune microenvironment in primary invasive lobular carcinomas of the breast. Mod Pathol 2017; 30: 1551–1560
68. Tsang JYS, Au WL, Lo KY, Ni YB, Hlaing T, Hu J et al. PD-L1 expression and tumor infiltrating PD-1+ lymphocytes associated with outcome in HER2+ breast cancer patients. Breast Cancer Res Treat 2017; 162: 19–30
69. Tung N, Garber JE, Hacker MR, Torous V, Freeman GJ, Poles E et al. Prevalence and predictors of androgen receptor and programmed death-ligand 1 in BRCA1-associated and sporadic triple-negative breast cancer. NPJ Breast Cancer 2016; 2: 16002
70. Tymoszuk P, Charoentong P, Hackl H, Spilka R, Müller-Holzner E, Trajanoski Z et al. High STAT1 mRNA levels but not its tyrosine phosphorylation are associated with macrophage infiltration and bad prognosis in breast cancer. BMC Cancer 2014; 14: 257
71. Schalper KA, Velcheti V, Carvajal D, Wimberly H, Brown J, Pusztaiz L et al. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res 2014; 20: 2772–2782
72. Van Berckelaer C, Rypens C, van Dam P, Pouillon L, Parizel M, Schats KA et al. Infiltrating stromal immune cells in inflammatory breast cancer are associated with an improved outcome and increased PD-L1 expression. Breast Cancer Res 2019; 21: 28
73. Wang X, Liu Y. PD-L1 expression in tumor infiltrated lymphocytes predicts survival in triple-negative breast cancer. Pathol Res Pract 2020; 216: 152802
74. Wang ZQ, Milne K, Derocher H, Webb JR, Nelson BH, Watson PH et al. PD-L1 and intratumoral immune response in breast cancer. Oncotarget 2017; 8: 51641–51651
75. Wei L, Wu N, Wei F, Li F, Zhang Y, Liu J et al. Prognosis significance of indoleamine 2,3-dioxygenase, programmed death ligand-1 and tumor-infiltrating immune cells in microenvironment of breast cancer. Int Immunopharmacol 2020; 84: 106506
76. Zeng Y, Wang CL, Xiong J, Ye Q, Qin X, Tan YY et al. Positive correlation between programmed death ligand-1 and p53 in triple-negative breast cancer. Onco Targets Ther 2019; 12: 7193–7201
77. Zhang L, Wang XI, Ding J, Sun Q, Zhang S. The predictive and prognostic value of Foxp3+/CD25+ regulatory T cells and PD-L1 expression in triple negative breast cancer. Ann Diagn Pathol 2019; 40: 143–151
78. Zhou T, Xu D, Tang B, Ren Y, Han Y, Liang G et al. Expression of programmed death ligand-1 and programmed death-1 in samples of invasive ductal carcinoma of the breast and its correlation with prognosis. Anticancer Drugs 2018; 29: 904–910
Programmed death 1 ligand 1 expression in breast cancer. Cancer Biol Ther 2019;20:1105–1112

Uhercik M, Sanders AJ, Owen S, Davies EL, Sharma AK, Jiang WG et al. Clinical significance of PD1 and PD-L1 in human breast cancer. Anticancer Res 2017;37:4249–4254

McLemore LE, Janakiram M, Albanese J, Shapiro N, Lo Y, Zang X et al. An Immunoscore using PD-L1, CD68, and tumor-infiltrating lymphocytes (TILs) to predict response to neoadjuvant chemotherapy in invasive breast cancer. Appl Immunohistochem Mol Morphol 2018;26:611–619

Li F, Ren Y, Wang Z. Programmed death 1 ligand 1 expression in breast cancer and its association with patients’ clinical parameters. J Cancer Res Ther 2018;14:150–154

Hamdan D, Nguyen TT, Lebeuf C, Meles S, Janin A, Bousquet G et al. Genomics applied to the treatment of breast cancer. Oncotarget 2019;10:4786–4801

McVeigh TP, Kerin MJ. Clinical use of the Oncotype DX genomic test to guide treatment decisions for patients with invasive breast cancer. Breast Cancer (Dove Med Press) 2017;9:393–400

Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 2014;384:164–172

Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018;379:2108–2121

Schmid P, Cortes J, Pusztai L, McArthur H, Kümmerl S, Bergh J et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med 2020;382:810–821

Cyprian FS, Akhtar S, Gatalica Z, Vranic S. Targeted immunotherapy with a checkpoint inhibitor in combination with chemotherapy: a new clinical paradigm in the treatment of triple-negative breast cancer. Bosn J Basic Med Sci 2019;19:227–233

Li S, Chen L, Jiang J. Role of programmed cell death ligand-1 expression on prognostic and overall survival of breast cancer: a systematic review and meta-analysis. Medicine (Baltimore) 2019;98:e15201

Huang R, Cui Y, Guo Y. Programmed cell death protein-1 predicts the recurrence of breast cancer in patients subjected to radiotherapy after breast-preserving surgery. Technol Cancer Res Treat 2018;17:1533033818793425