Evolution of a cis-acting SNP that controls Type VI Secretion in Vibrio cholerae

Siu Lung Ng¹,³,⁴, Sophia Kammann¹,³,⁴, Gabi Steinbach²,⁴, Tobias Hoffmann¹,³, Peter J Yunker²,⁴, Brian K. Hammer¹,³,⁴#

¹School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
²School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
³Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
⁴Center for Microbial Diseases and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA

#Corresponding author: brian.hammer@biology.gatech.edu

Running title: Evolution of the V. cholerae T6SS by a cis-acting SNP
Abstract

Mutations in regulatory mechanisms that control gene expression contribute to phenotypic diversity and thus facilitate the adaptation of microbes and other organisms to new niches. Comparative genomics can be used to infer rewiring of regulatory architecture based on large effect mutations like loss or acquisition of transcription factors but may be insufficient to identify small changes in non-coding, intergenic DNA sequence of regulatory elements that drive phenotypic divergence. In human-derived *Vibrio cholerae*, the response to distinct chemical cues triggers production of multiple transcription factors that can regulate the Type VI Secretion System (T6), a broadly distributed weapon for interbacterial competition. However, to date, the signaling network remains poorly understood because no regulatory element has been identified for the major T6 locus. Here we identify a conserved *cis*-acting single nucleotide polymorphism (SNP) controlling T6 transcription and activity. Sequence alignment of the T6 regulatory region from diverse *V. cholerae* strains revealed conservation of the SNP that we rewired to interconvert *V. cholerae* T6 activity between chitin-inducible and constitutive states. This study supports a model of pathogen evolution through a non-coding *cis*-regulatory mutation and preexisting, active transcription factors that confers a different fitness advantage to tightly regulated strains inside a human host and unfettered strains adapted to environmental niches.
Importance

Organisms sense external cues with regulatory circuits that trigger the production of transcription factors, which bind specific DNA sequences at promoters ("cis" regulatory elements) to activate target genes. Mutations of transcription factors or their regulatory elements create phenotypic diversity, allowing exploitation of new niches. Waterborne pathogen *Vibrio cholerae* encodes the Type VI Secretion System “nanoweapon" to kill competitor cells when activated. Despite identification of several transcription factors, no regulatory element has been identified in the promoter of the major Type VI locus, to date.

Combining phenotypic, genetic, and genomic analysis of diverse *V. cholerae* strains, we discovered a single nucleotide polymorphism in the Type VI promoter that switches its killing activity between a constitutive state beneficial outside hosts and an inducible state for constraint in a host. Our results support a role for non-coding DNA in adaptation of this pathogen.

Introduction

A central role in the dynamic, temporal control of gene expression is played by transcription factors (TFs), diffusible “trans” products that bind to molecular switches within DNA sequences termed “cis”-regulatory elements (CREs). In eukaryotes, which lack horizontal gene transfer (HGT), mutations in CREs that alter TF binding sites are major contributors to
phenotypic diversity (1-3). In bacteria, pervasive HGT of TFs can alter entire regulatory circuits that allow adaptation to new niches, as prominently demonstrated in *Vibrio fischeri*, where host range is altered by the presence or absence of RcsS, a TF of biofilm and colonization genes (4, 5). By contrast, specific mutations at CREs in non-coding DNA are more difficult to identify and receive less attention as drivers of phenotypic divergence and evolutionary adaptation (6). Thus, elucidation of how microbes adapt to new niches, a process of fundamental importance in bacterial pathogenesis, requires coupling of genome-wide computational methods with experimental approaches to map the *cis*- and *trans*-regulatory interactions across and within species.

To understand how mutations play a role in microbial adaptation, pathogenic viruses and bacteria with lifestyles that exploit niches within and outside a human host are of great interest. Following ingestion, pandemic strains of the bacterium *Vibrio cholerae* can colonize the human gastrointestinal tract and secrete the cholera toxin that leads to the often fatal diarrhea responsible for seven pandemics to date (7-9). Conversely, *V. cholerae* isolated from non-human niches lack the horizontally-acquired prophage that carries the cholera toxin, and cause mild illness (10). By contrast, all sequenced *V. cholerae* encode a Type VI Secretion System (T6), a broadly distributed “nano-harpoon” weapon that injects toxic effector proteins into neighboring bacterial cells, leading to cell envelope damage and cell lysis (11, 12). Due to
its broad distribution among bacteria including those of the human gut, there is intense
interest in understanding the T6 interactions between our microbiota and foreign pathogens,
and whether they can be manipulated to influence health (13).

V. cholerae obtained from humans carry a limited arsenal of effectors and a T6 believed to be
tailored for in vivo success (11, 14-19), while strains from non-human niches encode a more
diverse effector repertoire (11, 14, 20, 21). To date, however, adaptative evolution
mechanisms of T6 regulation in V. cholerae derived from non-human sources have largely
been overlooked. Studies of human-derived strains identify two primary TFs for T6 activation
(22-26). T6 control in pandemic strains (e.g. C6706 and A1552) requires QstR (Quorum-
Sensing and Chitin-Dependent Regulator), which integrates multiple external cues (27-30),
and contains a DNA binding domain postulated to interact with a presumptive CRE of the
major T6 gene cluster (23, 27). T6 regulation in non-pandemic strain V52, which causes mild
disease, requires TfoY, modulatable by intracellular signals, including cyclic di-GMP (25, 26).
How QstR and TfoY control T6 transcription remains elusive, with no T6 CRE yet described.
Elucidation of the differences in intraspecies T6 regulatory mechanisms between diverse V.
cholerae isolates will provide insights into how pathogens emerge from nonpathogenic
progenitors.
To understand the regulatory differences in *V. cholerae* strains, we examine here several environmental isolates that exhibit T6-mediated killing (31). Despite encoding functional signaling circuitry and TFs, we find that QstR is dispensable for killing and that TfoY plays only a minor role in the strains tested. Thus, existing regulatory models fail to explain the T6 control in *V. cholerae* from human and non-human sources. Genomic analysis identifies one conserved non-coding single-nucleotide polymorphism (SNP) that we show interconverts *V. cholerae* T6 activity between chitin-inducible and constitutive states, which are QstR-dependent and TfoY-independent, respectively. We demonstrate that non-coding SNPs can rewire cis-regulatory elements to aid in adaptation of bacteria to different niches, including the human host.

Results and Discussion

Constitutive, *in vitro* T6 activity requires neither QstR nor TfoY.

In pandemic C6706, high cell density conditions (HCD) and chitin are required for induction of qstR which leads to activation of T6 genes. In the absence of chitin, C6706 with qstR expressed from a heterologous promoter (defined here as qstR*) reduces survival of *Escherichia coli* “target” cells in co-culture by over 4-orders of magnitude (~10,000), compared to wildtype (WT) C6706, a T6- strain with a mutation in an essential structural gene (ΔvasK), and a strain with a ΔqstR mutation (Fig. 1A) (29). Deletion of tfoY does not reduce the killing activity of the
T6+ qstR* strain, but eliminates the robust killing in the non-pandemic strain V52 (serogroup O37), which requires TfoY but not QstR (Fig. 1B) (26).

To determine whether QstR or TfoY participates in control of the T6 in non-human strains, we examined 3223-74, a genetically- amenable, T6-proficient environmental strain (31). Like V52, 3223-74 does not require QstR to efficiently kill E. coli in conditions without chitin, but surprisingly, also does not require TfoY. Isogenic strains carrying the ΔtfoY and ΔqstR ΔtfoY mutations retain >99.99% killing activity, with only modest E. coli survival (Fig. 1C). Gene fusions of the 5′ intergenic region (IGR) of the major T6 cluster of each strain fused to green fluorescent protein (gfp) confirm that transcriptional differences account for the killing observed, with maximal gfp expression mirroring activity (i.e. low E. coli survival with high gfp expression, and vice versa) (Fig. 1D-F). Confocal microscopy reinforces the negligible role of TfoY on killing by 3223-74, with a ΔtfoY mutation having little effect on killing WT (Fig. 1G).

Transcription of plasmid-borne reporters is significantly higher in V. cholerae than in E. coli (Fig. S1), supporting a hypothesis that an additional V. cholerae-specific regulator of the T6 may remain to be identified (Fig. S1).
Figure 1. *Vibrio cholerae* 3223-74 T6 activity is QstR- and TfoY-independent. (A-C) *V. cholerae* strains with the indicated genotypes were co-cultured with chloramphenicol resistant (Cm') *E. coli* followed by determination of *E. coli* survival by counting of colony forming units (CFUs) on LB agar with Cm. (D-F) Fluorescence levels are from reporters with *gfp* fused to the intergenic
region 5’ of vipA derived from the three strains shown. The mean value ± S.E. of three independent co-cultures (A-C) and monocultures (D-F) are shown from one experiment, with similar results obtained in at least two other independent experiments. A one-way ANOVA with Dunnett post-hoc test was conducted to determine the significance: ns denotes not significant, ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05. (G) E. coli cells expressing constitutive gfp were competed against 3223-74, with the same frame imaged at 0 h and 3 h by confocal microscopy. In the images, gfp signal from the E. coli is overlaid on top of bright-light images of the co-culture. Scale bar = 50 µm.

To probe each strain’s T6-related regulatory circuitry, we measured canonical behaviors under control of HapR, QstR and TfoY; quorum sensing (QS) controlled bioluminescence, natural transformation, and motility, respectively (32-34). As expected, each TF is intact in C6706; but like several V. cholerae strains, V52 lacks a functional hapR gene that prevents QS and natural transformation (35, 36). Nonetheless, V52 encodes a functional tfoY that controls motility (Fig. 2A-B) (37). Interestingly, the regulatory circuitry of V. cholerae 3223-74 is intact, like C6706, confirming that it encodes functional TFs (Fig. 2C), which are nonetheless expendable for T6-mediated killing. Because transposon mutagenesis failed to identify a novel T6 activator (not shown), we suspect regulation may be complex, perhaps involving more than one TF specific to V. cholerae. Nucleoid Associated Proteins (NAPs) that bind DNA both specifically and non-
specifically (38) may also contribute, since they are present in both species, likely regulated differently (39), and participate in regulation of many promoters in numerous bacteria including Vibrios (40).

Figure 2. *Vibrio cholerae* 3223-74 encodes functional HapR, QstR, and TfoY. (A) *V. cholerae* strains were grown in liquid LB with relative luminescence units per OD$_{600}$ measured at HCD (OD$_{600}$ = 0.6-0.8). Statistical analyses were conducted with one-way ANOVA with Tukey post-hoc test (C6706 and 3223-74) and one-tailed student’s t-test (V52). LCD – Low Cell Density. (B) *V. cholerae* strains with the indicated genotypes were grown in ASW with crab shell and exogenous Spec-marked genomic DNA. Transformation frequency = Spec’ CFU ml$^{-1}$ / total CFU ml$^{-1}$. Statistical analyses were conducted with one-way ANOVA with Tukey post-hoc test. Significance is denoted by letters. (C) *V. cholerae* strains were inoculated on 0.3% LB agar and grew overnight. Statistical analyses were conducted with one-tailed student’s t-test. Colony diameters were physically measured from the furthest edges. All data shown are the mean ±
S.E. from one experiment, with similar results were obtained in at least two other independent experiments. ns: not significant, ****p ≤ 0.0001, **p ≤ 0.01.

A SNP in the T6 intergenic region confers QstR-dependency.

Human and environmental isolates of *V. cholerae* we have characterized prior ([31]) share ≥97% average nucleotide identity with many chromosomal differences ([11]), but inspection of the T6 IGRs of C6706, V52 and 3223-74 revealed only 17 SNPs and 3 multinucleotide polymorphisms (Fig. 3A), which we hypothesized could contribute to the differences in T6 transcription and killing activity observed. To address this, we replaced the T6 IGR of C6706 on the chromosome with that from V52 and 3223-74 and measured killing activity. While C6706 carrying the qstR* allele, but not WT, adeptly kills *E. coli*, both IGR replacements increase the killing efficiency of WT C6706 by 5- to 6-orders of magnitude (Fig. 3B), mimicking the robust killing observed by WT V52 and 3223-74 (Fig. 1B-C). Deletion of tfoY in C6706 with V52’s IGR increases *E. coli* survival (~ 2-logs), as observed with V52, but does not alter *E. coli* survival with 3223-74’s IGR (Fig. 3B). Chromosomal transcriptional *gfp* reporters with identical mutations were elevated relative to WT C6706 in each IGR replacement strain (Fig. 3C), consistent with the enhanced killing detected. These results support a hypothesis that a novel CRE lies within the IGR 5’ of the T6 locus, despite a lack of any known direct TF-DNA interactions at this locus identified to date.
Figure 3. G-388T mutation abolishes QstR dependence in C6706 and T-388G confers QstR dependence to 3223-74. (A) Alignment of the IGR upstream of vipA was conducted using MUSCLE. SNPs and MNPs are highlighted in red, one gap indicated with a “−”, the putative promoter and the transcriptional start site (TSS; +1) in bold, and the start codon of vipA in grey. (B) the C6706 5' IGR of vipA was replaced with the IGR from either V52 or 3223-74. (D)
A T-68G mutation in the 5' IGR of vipA was introduced into 3223-74 with different qstR alleles.

Competition assays were conducted by co-culturing V. cholerae killers and Cm' E. coli target followed by determination of E. coli survival by counting of colony forming units (CFUs) on LB agar with Cm. (C, E) Shown are fluorescence levels of transcriptional reporters with gfp fused to corresponding IGRs of vipA expressed in either C6706 (C) or 3223-74 (E). The mean value ± S.E. of three independent co-cultures (B and D) and monocultures (C and E) are shown from one experiment, with similar results were obtained in at least two other independent experiments. A one-way ANOVA with Dunnett post-hoc test was conducted to determine the significance - ns: not significant, ****p ≤ 0.0001, **p ≤ 0.01, *p ≤ 0.05.

To begin mapping the T6 IGR region and SNP locations, we experimentally determined the transcriptional start site (+1) by 5' Rapid Amplification of cDNA Ends (Methods). The +1 of transcription resides 320 nucleotides (nt) 5' of the ATG of the first T6 gene (vipA), and adjacent to a putative promoter with 8/12 identical nts compared to the consensus sigma70-dependent promoter (Fig. 3A). The +1 is consistent with paired-end RNAseq results we have reported prior (29). Because the majority of 5' untranslated regions (UTRs) in V. cholerae are 20-40 nt, with few exceeding 300 nt (41), we speculate that the 320 nt 5’ UTR of the major T6 gene cluster may be post-transcriptionally regulated, beyond the sRNA interactions already described near the ribosome binding site (RBS) (42). Alignment of the IGRs of C6706 and V52
reveals a single SNP at -68, with a guanine (G) in C6706 at that position and a thymine (T) in V52 (Fig. 3A).

The replacement of the C6706 IGR with V52 was effectively a G-68T mutation (Fig. 3B-C), thus we further tested whether G was necessary for QstR activation by replacing the T with a G at position -68 (T-68G) in the 3223-74 WT, qstR*, and ΔqstR backgrounds. The T-68G mutation significantly increases E. coli survival and decreases T6 transcription in WT 3223-74 and the ΔqstR derivative, with killing restored in the strain with the qstR* allele (Fig. 3D-E). Thus, a G at position -68 confers inducible, QstR-control, while a T results in constitutive killing in vitro, consistent with results recently reported (43). Based on these results we predicted this SNP is a result of adaptive evolution to control T6 activity in different environments.

The SNP at -68 is evolutionarily conserved.

To determine whether the SNP at -68 is prevalence in V. cholerae, we aligned the T6 IGR sequences of diverse strains that we have characterized prior for T6 killing activity (Fig. 4A) (31). Consistent with prior studies (11, 14, 16, 18), our phylogenetic analysis (Methods) of the T6 IGRs places human strains in a distinct clade, with the exception of two O1 strains isolated nearly a century ago (NCTC8457 and MAK757), and two non-O1 strains (MZO-2 O14 and V52 O37; Fig. S2). All 23 environmental isolates carry the T-68 SNP and displays constitutive T6
activity, with one exception that is chitin-inducible (1496-86) (Fig. 4A, S4). By contrast, the 18 human isolates tested carry either G or T at the -68 position (Fig. 4A, S5). The 13 chitin-inducible human isolates carry a G; five show constitutive activity and carry a T like environmental strains, with one exception that is constitutive yet carries the G (2010EL-1749) (Fig. 4A, S5). Neither C nor A are observed at -68 in any stains tested, although both pyrimidine nucleotides (T and C) confer constitutive killing at -68, and both purines (G and A) behave similarly (Fig. S3). The focal SNP location is distal from the promoter, but inconsistent with AT-rich “UP elements” that reside immediately upstream of the promoter at -38 to -59 and interact directly with the alpha subunit of RNAP (44). We propose the SNP is more likely a component of a CRE for a TF to be determined. Indeed, transversion mutations have greater effects of TF binding than transitions, as noted here (Fig. S3) likely due to changes in shape of the DNA backbone or DNA-amino acid contacts (45, 46).

We examined regulation of three additional genetically manipulatable environmental strains (VC22, 2479-89, and 2512-86) that exhibit T6 killing (31). Like 3223-74, QstR is expendable in each strain (Fig. 4B-E) while TfoY contributes to some extent in activating T6, with varying E. coli recovery observed in each derivative carrying the ΔtfoY mutation (Fig. 4B-E). Taken together, our findings reveal that the constitutive T6 killing activity of environmental V. cholerae is driven by a T at position -68, which obviates the QstR requirement, and permits
modest TfoY regulation.

Figure 4. Environmental *V. cholerae* isolates encode a T at position -68 while human, chitin-induced isolates encode a G. (A) A SNP at position -68 in the IGR of the major T6 cluster controls killing activity. Conserved nts are in dark grey and the SNP of interest is highlighted in white/grey. T6 control was categorized as described (31). (B-E) Survival of *E. coli* following competition assays with WT *V. cholerae* strains and mutants was determined by CFU counts. Data shown are the mean ± S.E. of three independent experiments. A one-way ANOVA with
Tukey post-hoc test was conducted to determine the significance - ns: not significant, ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05.

Bacterial adaptation to unexploited niches can be the result of horizontal gene transfer events (5) as well as mutations in protein coding and promoter regions (47, 48). Here we describe an intergenic non-coding SNP that coordinates adaptation by altering T6 control between two states – one that in inducible and the other that displays constitutive activity. While the first Type VI Secretion System was first described in V. cholerae in 2006, the knowledge of its regulation remains largely restricted to human isolates and incomplete, with the identity of a TF that directly controls the major T6 cluster elusive to this date (22, 24). We speculate that the focal SNP we identified at position -68 is a component of a CRE that contributes to pathoadaptation (Fig. 3A), a result of adaptive evolution, which allows V. cholerae to carefully control the T6SS expression in specific environments. Our results are consistent with the hypothesis that constitutive T6SS is beneficial in aquatic environments outside a human host (49), with varying degrees of TfOY contribution, which may act directly or indirectly at the transcriptional or posttranscriptional level (Fig. 3A and Fig. 4B-E, S4, S5). During human infection where selection promotes dampened T6SS, V. cholerae with a T-to-G mutation (inducible T6) are favored. In fact, T6-deficient human isolates (e.g. O395) have been reported to have less competitive fitness in human intestinal colonization and infection (19, 50).
Although low level, basal expression of T6 contributes to pathogenesis of C6706 (51), overexpression of T6SS may be deleterious in vivo. Indeed, we have reported prior that V. cholerae with constitutive T6SS induces violent peristaltic contractions in a fish host (52), which may disrupt the interaction between V. cholerae and the gut microflora.

There remains a pressing public health need to understand the emergence of pathogens from environmental reservoirs (53). Efforts such as Microbial Genome Wide Association Studies (54) to identify genetic variants in genomes that are associated with phenotypes like virulence and antibiotic sensitivity, will be bolstered by knowledge of the ecological and evolutionary processes that promote pathogen-host association. Defining the plasticity of the regulatory circuitry controlling the T6 weapon will provide insights into the role of polymorphisms in the evolution of this and other pathogens.

Materials and Methods

Bacterial growth conditions and plasmid constructions

All V. cholerae and E. coli (Table S1) strains were grown aerobically at 37 °C overnight in Lysogeny Broth (LB) with constant shaking or statically on LB agar. Ampicillin (100 µg/ml), kanamycin (50 µg/ml), chloramphenicol (10 µg/ml), spectinomycin (100 µg/ml), streptomycin (5 mg/ml), sucrose (20% w/v) and diaminopimelic acid (50 µg/ml) were supplemented where
Plasmids (Table S2) used were constructed with DNA restriction nucleases (Promega – WI, USA), Gibson Assembly mix (New England Biolabs – MA, USA), and PCR amplification (Qiagen - Hilden, Germany) by PCR with Q5 polymerase (New England Biolabs – MA, USA), and primers (Table S3) generated by Eton Bioscience Inc (NC, USA) or Eurofins Genomics (KY, USA). All reagents were used according to the manufacturer’s instructions. Plasmids were confirmed by PCR and Sanger sequencing by Eton Bioscience Inc (NC, USA).

V. cholerae mutant construction

All genetically engineered strains of *V. cholerae* were constructed with established allelic exchange methods using vector pKAS32 ([55](#)) and pRE118 (Addgene - Plasmid #43830). All insertions, deletions, and mutations were confirmed by PCR and Sanger sequencing conducted by Eton Bioscience Inc (NC, USA). Primers used are in Table S3.

Fluorescence microscopy

V. cholerae 3223-74 strains and chromosomal-labeled GFP *E. coli* were separately back-diluted 1:100 and incubated at 37 °C for 3 h. *V. cholerae* and *E. coli* were normalized to OD$_{600}$ = 1 and mixed in a 1:5 ratio. A 2 μL aliquot of a mixed culture was inoculated on LB agar and allowed
to dry. Cells were imaged before and after a 3 h incubation at 37 °C and 96-100% humidity using an Eclipse Ti-E Nikon (NY, USA) inverted microscope with a Perfect Focus System and camera previously described (11). The images were processed with ImageJ (34).

Motility assay

Overnight cultures of V. cholerae were diluted to OD\textsubscript{600} = 0.1, and 1 μL inoculated onto pre-dried LB plates with 0.3 % agar. Cells were incubated at 37 °C statically overnight, with motility determined by measuring the swarming diameter.

Transformation assay

Chitin-induced transformation frequency was measured as described with defined artificial sea water (450 mM NaCl, 10 mM KCl, 9 mM CaCl\textsubscript{2}, 30 mM MgCl\textsubscript{2}-6H\textsubscript{2}O, and 16 mM MgSO\textsubscript{4}-7H\textsubscript{2}O; pH 7.8) (56). Bacteria were incubated with extracellular DNA in triplicate wells containing crab shell tabs, and transformation frequency calculated as Spectinomycin resistant (Specr) CFU ml-1 / total CFU ml-1.

QS-dependent Luciferase assay

Overnight cultures of the bacterial strains were diluted to OD\textsubscript{600} = 0.001 in liquid LB in microtiter plates and incubated at 37 °C with shaking. The OD\textsubscript{600} and luminescence were
measured each h with a BioTek (VT, USA) Synergy H1 microplate reader to calculate Relative Luminescence Units (RLU) as Luminescence/OD₆₀₀. Data were collected when OD₆₀₀ = 0.6-0.8. LB medium was used as the blank for the OD₆₀₀ and luminescence.

GFP transcriptional reporter quantification

Overnight cultures of *V. cholerae* or *E. coli* were diluted 1:100 and incubated at 37 °C for 3 h. To enhance the translation of *gfp*, the sequence of the native RBS (12 nt sequence) was replaced with the T7 RBS (12 nt sequence) in the primers used to make the fusions. Cm was added to maintain the plasmid-borne versions of reporters that were cloned into plasmid pSLS3. 300 μL aliquots were transferred to black microtiter plates to read the OD₆₀₀ and GFP fluorescence (Excitation: 485, Emission: 528) with a BioTek Synergy H1 microplate reader (VT, USA) to calculate Relative Luminescence Units (RLU) as Luminescence/OD₆₀₀. LB medium was used as the blank for the OD₆₀₀. Strain lacking reporters served as blanks for GFP fluorescence. RFU was calculated by blanked GFP fluorescence / blanked OD₆₀₀.

T6-mediated killing assay

Overnight cultures of *V. cholerae* or *E. coli* were back-diluted 1:100 and incubated at 37 °C for 3 h. *V. cholerae* strains and the Cm' *E. coli* target were normalized to OD₆₀₀ = 1 and then mixed at a ratio of either 10:1 or 1:5. A 50 μL mixed culture was spotted onto LB agar and dried. After
a 3 h incubation at 37°C, cells were resuspended in 5 ml of LB, and serial dilutions were conducted. Finally, the resuspension was inoculated on a LB agar containing Cm to select for the surviving E. coli, which was incubated overnight at 37 °C and the E. coli colonies were counted and shown as CFU mL⁻¹.

RNA extraction and determination of the +1 of transcription by 5'-RACE

Overnight cultures of V. cholerae were back-diluted 1:100 and incubated at 37 °C for 3 h before lysing. Three independent cultures of T6-active V. cholerae C6706 qstR* and 3223-74 WT were harvested by centrifugation at room temperature. RNA isolation, genomic DNA removal, and RNA clean-up were performed as previously described (57). Genomic DNA contamination was confirmed by conducting PCR with primer pair specific for 16S rRNA loci (rrsA) as previously described (Table S3) (58). RNA purity was confirmed by NanoDrop (260 / 280 ≈ 2.0).

5'-RACE (Invitrogen™ - MA, USA) was conducted according to the manufacturer’s protocol with slight modifications. Specifically, SuperScript™ IV reverse transcriptase (Invitrogen™ - MA, USA) was used to complete the first strand cDNA synthesis. Two vipA-specific primers (GT3056 and GT3060) were used to identify the +1 of transcription for the major T6 gene cluster (Table S3). PCR products were purified with QIAquick PCR purification kit (Qiagen - Hilden, Germany) or Zymoclean gel DNA recovery kit (Zymo Research - CA, USA). Sanger
sequencing was conducted by Eton Bioscience Inc. (NC, USA) with the corresponding nesting primer (Table S3).

Genomic and phylogenetic analysis

Genome sequences of *V. cholerae* strains were collected from NCBI Genome database (Table S4) (59). The IGR upstream of major T6 cluster was extracted, aligned, and presented using BLAST+ v2.2.18 (60), MUSCLE v3.8 (https://www.ebi.ac.uk/Tools/msa/muscle/) (61, 62), and ESPript 3.0 (https://espirpt.ibcp.fr/) (37). The DNA sequence of the IGR was used for phylogenetic analysis, and the phylogenetic tree was constructed by the Maximum likelihood method using MEGA11 (63, 64).

For 2012V-1001, 2011EL-1939, 2011EL-1938, and 2011EL-1141 that do not have genome sequence available, colony PCR was conducted to amplify the 5’ IGR of the major T6 cluster using OneTaq DNA Polymerase (New England Biolabs – MA, USA). PCR products were confirmed with gel electrophoresis and Sanger sequencing by Eton Bioscience Inc. (NC, USA) with the identical primer pair (Table S3).

Acknowledgements
We would like to thank Dr. Jyl S. Matson for assistance with RNA isolation and Dr. Marvin Whiteley and current and past members of the Hammer Lab for critiques and discussion, specifically, Dr. Samit Watve and Rakin Choudhury for bioinformatic advice and assistance.

Competing interests

The authors have no competing interests.
1. Wray GA. The evolutionary significance of cis-regulatory mutations. Nature reviews Genetics. 2007;8(3):206-16. Epub 2007/02/17. doi: 10.1038/nrg2063. PubMed PMID: 17304246.

2. Stern DL, Orgogozo V. THE LOCI OF EVOLUTION: HOW PREDICTABLE IS GENETIC EVOLUTION? Evolution. 2008;62(9):2155-77. doi: https://doi.org/10.1111/j.1558-5646.2008.00450.x.

3. Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nature reviews Genetics. 2011;13(1):59-69. Epub 2011/12/07. doi: 10.1038/nrg3095. PubMed PMID: 22143240.

4. Norsworthy AN, Visick KL. Signaling between two interacting sensor kinases promotes biofilms and colonization by a bacterial symbiont. Mol Microbiol. 2015;96(2):233-48. Epub 2015/01/15. doi: 10.1111/mmi.12932. PubMed PMID: 25586643; PMCID: PMC4465548.

5. Mandel MJ, Wollenberg MS, Stabb EV, Visick KL, Ruby EG. A single regulatory gene is sufficient to alter bacterial host range. Nature. 2009;458(7235):215-8. Epub 2009/02/03. doi: 10.1038/nature07660. PubMed PMID: 19182778; PMCID: PMC2713604.

6. Perez JC, Groisman EA. Evolution of transcriptional regulatory circuits in bacteria. Cell. 2009;138(2):233-44. Epub 2009/07/28. doi: 10.1016/j.cell.2009.07.002. PubMed PMID: 19632175; PMCID: PMC2726713.
7. Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ. Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(3):1556-61. Epub 2002/01/31. doi: 10.1073/pnas.042667999. PubMed PMID: 11818571; PMCID: PMC122229.

8. Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, Genetics, and Ecology of Toxigenic Vibrio cholerae. Microbiology and Molecular Biology Reviews. 1998;62(4):1301-14. doi: 10.1128/MMBR.62.4.1301-1314.1998.

9. Karaolis DKR, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proceedings of the National Academy of Sciences. 1998;95(6):3134-9. doi: 10.1073/pnas.95.6.3134.

10. Pruzzo C, Vezzulli L, Colwell RR. Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol. 2008;10(6):1400-10. Epub 2008/03/04. doi: 10.1111/j.1462-2920.2007.01559.x. PubMed PMID: 18312392.

11. Crisan CV, Chande AT, Williams K, Raghuram V, Rishishwar L, Steinbach G, Wavte SS, Yunker P, Jordan IK, Hammer BK. Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters. Genome Biol. 2019;20(1):163. Epub 2019/08/14. doi: 10.1186/s13059-019-1765-5. PubMed PMID: 31405375; PMCID: PMC6691524.
12. MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(45):19520-4. Epub 2010/10/27. doi: 10.1073/pnas.1012931107. PubMed PMID: 20974937; PMCID: PMC2984155.

13. Gallegos-Monterrosa R, Coulthurst SJ. The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system. FEMS Microbiol Rev. 2021;45(6). Epub 2021/06/23. doi: 10.1093/femsre/fuab033. PubMed PMID: 34156081; PMCID: PMC8632748.

14. Hussain NAS, Kirchberger PC, Case RJ, Boucher YF. Modular Molecular Weaponry Plays a Key Role in Competition Within an Environmental Vibrio cholerae Population. Frontiers in Microbiology. 2021;12(979). doi: 10.3389/fmicb.2021.671092.

15. Ishikawa T, Sabharwal D, Bröms J, Milton DL, Sjöstedt A, Uhlin BE, Wai SN, Camilli A. Pathoadaptive Conditional Regulation of the Type VI Secretion System in Vibrio cholerae O1 Strains. Infection and Immunity. 2012;80(2):575-84. doi: doi:10.1128/IAI.05510-11.

16. Kirchberger PC, Unterweger D, Provenzano D, Pukatzki S, Boucher Y. Sequential displacement of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Scientific Reports. 2017;7(1):45133. doi: 10.1038/srep45133.

17. Santoriello FJ, Pukatzki S. When the pandemic opts for the lockdown: Secretion system evolution in the cholera bacterium. Microb Cell. 2021;8(3):69-72. Epub 2021/03/09. doi:
18. Unterweger D, Miyata ST, Bachmann V, Brooks TM, Mullins T, Kostiuk B, Provenzano D, Pukatzki S. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nature Communications. 2014;5(1):3549. doi: 10.1038/ncomms4549.

19. Kostiuk B, Santoriello FJ, Diaz-Satizabal L, Bisaro F, Lee K-J, Dhody AN, Provenzano D, Unterweger D, Pukatzki S. Type VI secretion system mutations reduced competitive fitness of classical Vibrio cholerae biotype. Nature Communications. 2021;12(1):6457. doi: 10.1038/s41467-021-26847-y.

20. Crisan CV, Chandrashekar H, Everly C, Steinbach G, Hill SE, Yunker PJ, Lieberman RR, Hammer BK, Ellermeier CD. A New Contact Killing Toxin Permeabilizes Cells and Belongs to a Broadly Distributed Protein Family. mSphere. 2021;6(4):e00318-21. doi:10.1128/mSphere.00318-21.

21. Drebes Dörr NC, Blokesch M. Interbacterial competition and anti-predatory behaviour of environmental Vibrio cholerae strains. Environmental Microbiology. 2020;22(10):4485-504. doi: https://doi.org/10.1111/1462-2920.15224.

22. Crisan CV, Hammer BK. The Vibrio cholerae type VI secretion system: toxins, regulators and consequences. Environ Microbiol. 2020;22(10):4112-22. Epub 2020/03/07. doi:10.1111/1462-2920.14976. PubMed PMID: 32133757.
23. Jaskolska M, Stutzmann S, Stoudmann C, Blokesch M. QstR-dependent regulation of natural competence and type VI secretion in Vibrio cholerae. Nucleic Acids Res. 2018;46(20):10619-34. Epub 2018/08/14. doi: 10.1093/nar/gky717. PubMed PMID: 30102403; PMCID: PMC6237807.

24. Joshi A, Kostiuk B, Rogers A, Teschler J, Pukatzki S, Yildiz FH. Rules of Engagement: The Type VI Secretion System in Vibrio cholerae. Trends Microbiol. 2017;25(4):267-79. Epub 2016/12/29. doi: 10.1016/j.tim.2016.12.003. PubMed PMID: 28027803; PMCID: PMC5365375.

25. Joshi A, Mahmoud SA, Kim SK, Ogdahl JL, Lee VT, Chien P, Yildiz FH. c-di-GMP inhibits LonA-dependent proteolysis of TfoY in Vibrio cholerae. PLoS Genet. 2020;16(6):e1008897. Epub 2020/06/27. doi: 10.1371/journal.pgen.1008897. PubMed PMID: 32589664; PMCID: PMC7371385.

26. Metzger LC, Stutzmann S, Scrignari T, Van der Henst C, Matthey N, Blokesch M. Independent Regulation of Type VI Secretion in Vibrio cholerae by TfoX and TfoY. Cell Rep. 2016;15(5):951-8. Epub 2016/04/28. doi: 10.1016/j.celrep.2016.03.092. PubMed PMID: 27117415; PMCID: PMC4858559.

27. Lo Scrudato M, Blokesch M. A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res. 2013;41(6):3644-58. Epub 2013/02/06. doi: 10.1093/nar/gkt041. PubMed PMID: 23382174;
28. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK. Chitin induces natural competence in Vibrio cholerae. Science. 2005;310(5755):1824-7. Epub 2005/12/17. doi: 10.1126/science.1120096. PubMed PMID: 16357262.

29. Watve SS, Thomas J, Hammer BK. CytR Is a Global Positive Regulator of Competence, Type VI Secretion, and Chitinases in Vibrio cholerae. PLoS One. 2015;10(9):e0138834. Epub 2015/09/25. doi: 10.1371/journal.pone.0138834. PubMed PMID: 26401962; PMCID: PMC4581735.

30. Tsou AM, Cai T, Liu Z, Zhu J, Kulkarni RV. Regulatory targets of quorum sensing in Vibrio cholerae: evidence for two distinct HapR-binding motifs. Nucleic Acids Res. 2009;37(8):2747-56. Epub 2009/03/12. doi: 10.1093/nar/gkp121. PubMed PMID: 19276207; PMCID: PMC2677876.

31. Bernardy EE, Turnsek MA, Wilson SK, Tarr CL, Hammer BK, Liu S-J. Diversity of Clinical and Environmental Isolates of Vibrio cholerae in Natural Transformation and Contact-Dependent Bacterial Killing Indicative of Type VI Secretion System Activity. Applied and Environmental Microbiology. 2016;82(9):2833-42. doi: doi:10.1128/AEM.00351-16.

32. Jobling MG, Holmes RK. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Molecular Microbiology. 1997;26(5):1023-34. doi:
33. Pursley BR, Maiden MM, Hsieh ML, Fernandez NL, Severin GB, Waters CM. Cyclic di-GMP Regulates TfoY in Vibrio cholerae To Control Motility by both Transcriptional and Posttranscriptional Mechanisms. J Bacteriol. 2018;200(7). Epub 2018/01/10. doi: 10.1128/JB.00578-17. PubMed PMID: 29311281; PMCID: PMC5847662.

34. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-5. Epub 2012/08/30. doi: 10.1038/nmeth.2089. PubMed PMID: 22930834; PMCID: PMC5554542.

35. Zheng J, Shin OS, Cameron DE, Mekalanos JJ. Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proceedings of the National Academy of Sciences. 2010;107(49):21128-33. doi: 10.1073/pnas.1014998107.

36. Joelsson A, Liu Z, Zhu J. Genetic and phenotypic diversity of quorum-sensing systems in clinical and environmental isolates of Vibrio cholerae. Infect Immun. 2006;74(2):1141-7. Epub 2006/01/24. doi: 10.1128/IAI.74.2.1141-1147.2006. PubMed PMID: 16428762; PMCID: PMC1360356.

37. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42(Web Server issue):W320-4. Epub 2014/04/23. doi: 10.1093/nar/gku316. PubMed PMID: 24753421; PMCID: PMC4086106.
38. Holowka J, Zakrzewska-Czerwinska J. Nucleoid Associated Proteins: The Small Organizers That Help to Cope With Stress. Front Microbiol. 2020;11:590. Epub 2020/05/07. doi: 10.3389/fmicb.2020.00590. PubMed PMID: 32373086; PMCID: PMC7177045.

39. Ayala JC, Silva AJ, Benitez JA. H-NS: an overarching regulator of the Vibrio cholerae life cycle. Res Microbiol. 2017;168(1):16-25. Epub 2016/08/06. doi: 10.1016/j.resmic.2016.07.007. PubMed PMID: 27492955; PMCID: PMC5241179.

40. Chaparian RR, Olney SG, Hustmyer CM, Rowe-Magnus DA, van Kessel JC. Integration host factor and LuxR synergistically bind DNA to coactivate quorum-sensing genes in Vibrio harveyi. Mol Microbiol. 2016;101(5):823-40. Epub 2016/05/19. doi: 10.1111/mmi.13425. PubMed PMID: 27191515.

41. Papenfort K, Forstner KU, Cong JP, Sharma CM, Bassler BL. Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(7):E766-75. Epub 2015/02/04. doi: 10.1073/pnas.1500203112. PubMed PMID: 25646441; PMCID: PMC4343088.

42. Shao Y, Bassler BL. Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae. Mol Microbiol. 2014;92(5):921-30. Epub 2014/04/05. doi: 10.1111/mmi.12599. PubMed PMID: 24698180; PMCID: PMC4038675.

43. Drebes Dörr NC, Proutièrè A, Jaskólska M, Stutzmann S, Bader L, Blokesch M. A single
nucleotide polymorphism determines constitutive versus inducible type VI secretion in Vibrio cholerae. bioRxiv. 2022:2022.01.28.478222. doi: 10.1101/2022.01.28.478222.

44. Gourse RL, Ross W, Gaal T. UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol Microbiol. 2000;37(4):687-95. Epub 2000/09/06. doi: 10.1046/j.1365-2958.2000.01972.x. PubMed PMID: 10972792.

45. Guo C, McDowell IC, Nodzenski M, Scholtens DM, Allen AS, Lowe WL, Reddy TE. Transversions have larger regulatory effects than transitions. BMC Genomics. 2017;18(1):394. doi: 10.1186/s12864-017-3785-4.

46. Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordân R, Rohs R. Absence of a simple code: how transcription factors read the genome. Trends in Biochemical Sciences. 2014;39(9):381-99. doi: 10.1016/j.tibs.2014.07.002.

47. MacKenzie KD, Wang Y, Musicha P, Hansen EG, Palmer MB, Herman DJ, Feasey NA, White AP. Parallel evolution leading to impaired biofilm formation in invasive Salmonella strains. PLoS Genet. 2019;15(6):e1008233. Epub 2019/06/25. doi: 10.1371 journal.pgen.1008233. PubMed PMID: 31233504; PMCID: PMC6611641.

48. Osborne SE, Walthers D, Tomljenovic AM, Mulder DT, Silphaduang U, Duong N, Lowden MJ, Wickham ME, Waller RF, Kenney LJ, Coombes BK. Pathogenic adaptation of intracellular
bacteria by rewiring a *cis*-regulatory input function. Proceedings of the National Academy of Sciences. 2009;106(10):3982-7. doi: 10.1073/pnas.0811669106.

49. Unterweger D, Kitaoka M, Miyata ST, Bachmann V, Brooks TM, Moloney J, Sosa O, Silva D, Duran-Gonzalez J, Provenzano D, Pukatzki S. Constitutive type VI secretion system expression gives *Vibrio cholerae* intra- and interspecific competitive advantages. *PLoS One.* 2012;7(10):e48320. Epub 2012/10/31. doi: 10.1371/journal.pone.0048320. PubMed PMID: 23110230; PMCID: PMC3482179.

50. Fu Y, Waldor MK, Mekalanos JJ. Tn-Seq analysis of *Vibrio cholerae* intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. *Cell Host Microbe.* 2013;14(6):652-63. Epub 2013/12/18. doi: 10.1016/j.chom.2013.11.001. PubMed PMID: 24331463; PMCID: PMC3951154.

51. Zhao W, Caro F, Robins W, Mekalanos JJ. Antagonism toward the intestinal microbiota and its effect on *Vibrio cholerae* virulence. *Science.* 2018;359(6372):210-3. Epub 2018/01/13. doi: 10.1126/science.aap8775. PubMed PMID: 29326272; PMCID: PMC8010019.

52. Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK, Parthasarathy R. The *Vibrio cholerae* type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proceedings of the National Academy of Sciences. 2018;115(16):E3779-E87. doi: 10.1073/pnas.1720133115.

53. Seal S, Dharmarajan G, Khan I. Evolution of pathogen tolerance and emerging infections:
581 A missing experimental paradigm. Elife. 2021;10. Epub 2021/09/22. doi: 10.7554/eLife.68874.

582 PubMed PMID: 34544548; PMCID: PMC8455132.

583 54. San JE, Baichoo S, Kanzi A, Moosa Y, Lessells R, Fonseca V, Mogaka J, Power R, de Oliveira T. Current Affairs of Microbial Genome-Wide Association Studies: Approaches, Bottlenecks and Analytical Pitfalls. Front Microbiol. 2019;10:3119. Epub 2020/02/23. doi: 10.3389/fmicb.2019.03119. PubMed PMID: 32082269; PMCID: PMC7002396.

584 55. Skorupski K, Taylor RK. Positive selection vectors for allelic exchange. Gene. 1996;169(1):47-52. Epub 1996/02/22. doi: 10.1016/0378-1119(95)00793-8. PubMed PMID: 8635748.

585 56. Watve SS, Bernardy EE, Hammer BK. Vibrio cholerae: Measuring Natural Transformation Frequency. Curr Protoc Microbiol. 2014;35:6A 4 1-12. Epub 2014/11/05. doi: 10.1002/9780471729259.mc06a04s35. PubMed PMID: 25367272.

586 57. Matson JS. Preparation of Vibrio cholerae Samples for RNA-seq Analysis. Methods Mol Biol. 2018;1839:29-38. Epub 2018/07/27. doi: 10.1007/978-1-4939-8685-9_3. PubMed PMID: 30047051.

587 58. Manera K, Caro F, Li H, Pei TT, Hersch SJ, Mekalanos JJ, Dong TG. Sensing of intracellular Hcp levels controls T6SS expression in Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America. 2021;118(25). Epub 2021/06/24. doi: 10.1073/pnas.2104813118. PubMed PMID: 34161288; PMCID: PMC8237632.
59. Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, Connor R, Fiorini N, Funk
K, Hefferon T, Holmes JB, Kim S, Kimchi A, Kitts PA, Lathrop S, Lu Z, Madden TL, Marchler-Bauer
A, Phan L, Schneider VA, Schoch CL, Pruitt KD, Ostell J. Database resources of the National
Center for Biotechnology Information. Nucleic Acids Res. 2019;47(D1):D23-D8. Epub
2018/11/06. doi: 10.1093/nar/gky1069. PubMed PMID: 30395293; PMCID: PMC6323993.

60. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+
architecture and applications. BMC Bioinformatics. 2009;10:421. Epub 2009/12/17. doi:
10.1186/1471-2105-10-421. PubMed PMID: 20003500; PMCID: PMC2803857.

61. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Res. 2004;32(5):1792-7. Epub 2004/03/23. doi: 10.1093/nar/gkh340. PubMed
PMID: 15034147; PMCID: PMC390337.

62. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN,
Potter SC, Finn RD, Lopez R. The EMBL-EBI search and sequence analysis tools APIs in 2019.
Nucleic Acids Res. 2019;47(W1):W636-W41. Epub 2019/04/13. doi: 10.1093/nar/gkz268.
PubMed PMID: 30976793; PMCID: PMC6602479.

63. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach.
J Mol Evol. 1981;17(6):368-76. Epub 1981/01/01. doi: 10.1007/BF01734359. PubMed PMID:
7288891.

64. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis
Version 11. Mol Biol Evol. 2021;38(7):3022-7. Epub 2021/04/24. doi: 10.1093/molbev/msab120. PubMed PMID: 33892491; PMCID: PMC8233496.