Finite State Markov Modeling of Fading Channels
Towards Decoding of LDPC Codes

A dissertation submitted in the partial fulfillment of the requirements for the degree of

Master of Technology

in

Communication Engineering

Submitted By
Mohit Kumar
(2008EEE3223)

Under the Guidance of
Prof. S. D. Joshi

Department of Electrical Engineering
Indian Institute of Technology, Delhi
May, 2010
Certificate

This is to certify that the work contained in the dissertation titled “Finite State Markov Modeling of Fading Channels Towards Decoding of LDPC Codes” by Mohit Kumar (2008EEE3223) in partial fulfillment of the course work requirement of M.Tech program in the Department of Electrical Engineering has been carried out under my supervision. This work has not been submitted anywhere else for award of any degree or diploma.

Prof. S.D. Joshi

Date: __________________________
Place: IIT Delhi
Abstract

Here we have proposed two decoding strategies of low-density parity check (LDPC) codes over Markov noise channels with bit flipping noise. The sum-product algorithm used for decoding LDPC codes over memoryless channels is extended to include channel estimation and how much gain we obtain by doing so is simulated and verified. LDPC codes have been studied for years over memoryless channels and are known to have excellent performance. However, these codes over channels with memory is the topic of current research. Here, channels with memory are characterized by Markov modeling which is a useful busty channel model. With sufficient no. of states, they are able to model sufficient noise characteristics. We have gone for a two state system as it shows a good compromise between complexity and performance.
I would like to express my deep sense of gratitude to my project supervisor, Prof. S. D. Joshi for his invaluable guidance, suggestions and constant encouragement without which this project would have been a dream unconquered. His experience and vast knowledge has always proved to be a great asset in the thesis work. He has always showed immense patience in solving my doubts and has channelized me in right direction. I really appreciate his dedication for imparting knowledge. I would also like to thank him for the special lectures he offered during the evening session. He worked on our fundamentals and these discussions always bring up new ideas and give good understanding of the various untouched topics.

I would also like to whole-heartedly thank my family and friends for always being very supportive and cooperative.

Mohit Kumar
Contents

Certificate ii

Abstract iii

Acknowledgement iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Motivation . 3
1.2 Thesis Organisation . 3

2 An Introduction to Factor Graphs and Sum-Product Algorithm 5

2.1 Marginal Functions and factor graphs 6
2.2 Computing Marginal functions . 6
2.3 Probabilistic Modeling . 7
2.4 Codes On Graphs . 8

3 A New Decoding Algorithm Utilizing the turbo principle 10

3.1 Markov Noise Channel . 11
3.2 Turbo Algorithm for computing helper Log-Likelihood Ratios . . . 12
3.3 Message Passing Schedules . 16
3.3.1 Standard Message passing schedules and Local neighborhoods 16
3.4 Channel Parameter estimation by using Baum-Welch Algorithm . . 17
3.5 Designing good LDPC codes . 20

4 Gallager’s Decoding Algorithm Revisited 21

4.1 Probabilistic Decoding . 22
4.2 Decoding Procedure . 26
4.3 Convergence of decoding error probability of a symbol towards zero for
 given channel parameters . 26
5 An Error Predicting Scheme utilizing the channel memory 29

6 Simulation Results 31
 6.1 Creating a Parity Check Matrix 31
 6.2 Encoding Message Blocks 32
 6.3 Description of figures ... 33

7 Conclusion And Future Work 40

References 42
List of Tables
List of Figures

Figure	Description	Page
1.1	GEC Model for a flat fading channel	2
2.1	Factor graph for the joint APP distribution of codeword symbols	9
3.1	Idea of the proposed decoding algorithm	11
3.2	Two-state hidden Markov noise channel	12
3.3	Factor graph of a combined LDPC code and Markov modeled noise channel	17
4.1	Parity Check Set tree	22
4.2	Trellis Diagram	24
6.1	Comparison between sum-product decoder and helper block.	
N=2000, R=1/2, 50 iterations	35	
6.2	Comparison between sum-product decoder and helper block.	
N=4000, R=1/2, 50 iterations	35	
6.3	Convergence of transition probabilities using Baum-Welch algorithm	36
6.4	Convergence of error probabilities using Baum-Welch algorithm	36
6.5	Convergence of error probabilities in the two states using Baum-Welch algorithm	37
6.6	Convergence of transition probabilities in the two states using Baum-Welch algorithm	37
6.7	Comparison of bit error rates for the three decoding algorithms for various values of transition probabilities from the good to the bad state.	
N=2000, R=1/2	38	
6.8	Comparison of bit error rates for the three decoding algorithms for various values of average error probability of the MM channel.	
N=2000, R=1/2	38	
6.9	Plot for a (2,4) regular rate 1/2 code showing the region of successful decoding	39
6.10	Plot for a (4,6) regular rate 1/3 code showing the region of successful decoding	39
Chapter 1

Introduction

Burst noise modeling and decoding at the receiver incorporating Finite State Markov Modeling (FSMC) and Gilbert-Elliott channel (GEC) are widespread for a variety of applications now a days. Also recent research in error correcting codes have led us to Low Density Parity Check codes (LDPC) with reasonable decoding complexity able to achieve reliable transmission close to the Shannon limit. Gallager [1] first presented these codes and demonstrated its performance for a memoryless Binary Symmetric Channel (BSC). This thesis extends the development of FSMC models and how these models can aid in the development of efficient algorithms at the receiver end giving a great performance advantage.

The study of finite-state communication channels with memory dates back to the work by Shannon in 1957. In 1960, Gilbert introduced a new type of finite-state channel (FSC) model to determine the information capacity of wireline telephone circuits with burst-noise. Gilbert model was the first attempt to incorporate channel memory into the system with different states, which are unknown to the receiver. Soon after the work of Gilbert, Elliott started to compare performances of various error correcting codes using this model. This finally came to be known as GEC, as shown in figure 1.1.

It is a two state model with states labeled as good G and the bad B state. The transition probabilities are given by \(P(B|G) = Pr(G \rightarrow B) \) which gives the transition
probability from Good to Bad state and $P(G|B) = Pr(B \rightarrow G)$ which gives the transition probability from Bad to Good state. When the channel is in good state G, the input and the output are related by a discrete memoryless channel (DMC) characterized by error probability $Pr(error \mid state = G)$. Similarly for the bad state, the error probability is given by $Pr(error \mid state = B)$.

The credit of inventing Low Density Parity check codes (LDPC) codes goes to Gallager [1]. He performed the detailed performance analysis of these codes. An LDPC code is a linear block code specified by a very sparse parity check matrix (H). An LDPC code is represented by a bipartite graph with N symbol nodes, M check nodes and edges connecting these symbol nodes to check nodes, if the H matrix of the LDPC codes has N rows and M columns. There is an edge connecting the two nodes if there is a 1 existing in the corresponding entry in the H matrix.

We can categorize LDPC codes into regular and irregular LDPC codes. Regular codes have all nodes of the same degree. A (n, j, k) regular LDPC code has a bipartite graph in which all symbol nodes have degree j and check nodes of degree k, of length n. For irregular LDPC codes, the symbol nodes (correspondingly the check nodes) can have varying degrees. MacKay has presented extensive simulation results of long LDPC
codes with the sum-product algorithm.

1.1 Motivation

Errors encountered in digital transmission over most real communication channels are not independent but appears in clusters. Such channels are said to exhibit memory and thus cannot be adequately represented by classical memoryless models. The existence of memory means additional capacity. To exploit this efficiently motivates us to effectively model the channel characteristics and use in Low Density Parity Check codes. A detailed study of channels with memory can be obtained in [9].

In this thesis, we have proposed an iterative decoding algorithms for Low Density Parity Check codes (LDPC) for markov noise channels. The markov noise channel is an additive noise channel whose noise statistics is modeled by a markov model. The conventional sum-product algorithm is unable to fully extract the burst error correcting capability of LDPC codes. The proposed algorithms effectively utilizes the error correlation and uses it effectively to correct errors far beyond the random error correcting capability of the code. Further, it has been discovered recently that the combination of long LDPC codes together with sum-product decoder can provide near capacity performance over binary symmetric channels. My work extends it to channels with memory. Excellent performances of these codes based on very sparse matrices has encouraged researchers to have a look into the channels with memory, apart from the memoryless case.

1.2 Thesis Organisation

In chap 2, we provide the fundamentals for understanding the bipartite graph over which our decoding strategies are based. The sum-product algorithm is also introduced there. Chap 3 describes a new iterative decoding technique using a sum-product decoder and a helper block using the state information to aid in the decoding task.
This chapter also gives a method for estimating the markov modeled channel parameters (error probabilities and transition probabilities). Chap 4 gives another algorithm for decoding LDPC codes on channels with memory and also gives a notion of decoding region where successful decoding can take place. Chap 5 gives an error predictor which can also aid the sum-product decoder. It is only introduced and not realized or verified through simulation. The next chap presents the various simulation results and the conditions assumed for carrying out such simulations. A brief description of various results is presented there. Finally we conclude our thesis with conclusion and future scope of work.
Chapter 2

An Introduction to Factor Graphs and Sum-Product Algorithm

Various iterative decoding techniques have become a good alternatives for decoding systems. Most of these decoding techniques for codes utilize factor graphs or Tanner graphs (as known previously). The main motto of factor graphs is to describe codes by means of equation systems, whose structure are the basis for decoding algorithms. The equation system defines a bipartite graph with vertices both for the variables and for the equations; an edge indicates that a particular variable is present in a particular equation. Factor graph is a way of realizing complicated global functions which render themselves to be factored as smaller factors comprising of a subset of variables of the global function. The sum product algorithm computes the various marginal functions associated with the global function. These factor graphs are generalizations of Tanner graphs which Tanner had proposed for analyzing LDPC codes of Gallager. In the work of Tanner, all the nodes were visible, whereas Wiberg came up with hidden nodes as well.
2.1 Marginal Functions and factor graphs

Let x_1, x_2, \ldots, x_n be a collection of variables, in which, for each x_i, takes on values in some domain A_i. Let $g(x_1, \ldots, x_n)$ be a function of these variables. Associated with every function $g(x_1, \ldots, x_n)$, are n marginal functions $g_i(x_i)$. For each $a \in A_i$, the value of $g_i(a)$ is obtained by summing the value of $g(x_1, \ldots, x_n)$ over all configurations of the variables that have $x_i = a$. This type of summation is so common here that we introduce a summary operator. Instead of indicating which variables are being summed over, we indicate the ones not being summed over. This notation is taken from [10]. If h is a function of three variables, x_1, x_2 and x_3, then the summary for x_2 can be denoted as

$$
\sum_{x_2} h(x_1, x_2, x_3) = \sum_{x_1 \in A_1} \sum_{x_3 \in A_3} h(x_1, x_2, x_3) \quad (2.1)
$$

Thus,

$$
g_i(x_i) = \sum_{x_i} g(x_1, \ldots, x_n) \quad (2.2)
$$

Suppose that $g(x_1, \ldots, x_n)$ factors into a product of several local functions, each having some subset of $\{x_1, \ldots, x_n\}$ as arguments, then a factor graph is a bipartite graph that expresses the structure of the factorization. A factor graph has a variable node for each variable x_i, a factor node for each local function f_j, and an edge-connecting variable node x_i to factor node f_j if and only if x_i is an argument of f_j.

2.2 Computing Marginal functions

What we are interested in computing $g_i(x_i)$ for more than one value of i or for all i’s. This can be achieved by an algorithm known as sum-product algorithm. It works by computing various sums and products at nodes.

The sum-product algorithm has the following simple rule: The message sent from a node v on an edge e is the product of the local function at v with all messages received
at v on edges other than e, summarized for the variable associated with e.

Let $\mu_{x\rightarrow f}(x)$ denote the message sent from x node to f node in the operation of the sum-product algorithm, let $\mu_{f\rightarrow x}(x)$ denote the message sent from node f to node x. Also, let $n(v)$ denote the set of neighbors of a given node v in a factor graph. Then the message computations may be expressed as follows:

Variable to local function:

$$\mu_{x\rightarrow f}(x) = \prod_{h \in n(x) \setminus \{f\}} \mu_{h\rightarrow x}(x)$$ \hspace{1cm} (2.3)

Local function to variable:

$$\mu_{f\rightarrow x}(x) = \sum_{\sim x} \left(f(X) \prod_{y \in n(f) \setminus \{x\}} \mu_{y\rightarrow f}(y) \right)$$ \hspace{1cm} (2.4)

where $X = n(f)$ is the set of arguments of the function f. These messages are computed and sent along the edges to corresponding nodes. Once a node receives all the messages along the edges it is connected to, the computations takes place and a new message is formed. This is known as **message passing schedule**.

Thus we can observe that variable nodes of degree two has to perform no computation. A message arriving on one (incoming) edge is simply transferred to the other (outgoing) edge.

2.3 Probabilistic Modeling

Here we consider the standard coding model where a codeword $x = \{x_1, ..., x_n\}$ is selected from a code C of length n and transmitted over a memoryless channel with corresponding output sequence $y = \{y_1, ..., y_n\}$. Thus for each observation y, the joint a posteriori probability (APP) distribution of x (i.e., $p(x|y)$) is proportional to the function $g(x) = p(y|x)p(x)$, where $p(x)$ is the a *priori* distribution for the
transmitted vectors, and \(p(y|x) \) is the conditional probability density function for \(y \) when \(x \) is transmitted.

Having assuming a priori distribution for the transmitted vectors to be uniform over codewords, we have \(p(x) = \chi_c(x)/|C| \), where \(\chi_c(x) \) is the characteristic function for \(C \) and \(|C| \) is the number of codewords in \(C \). If the channel is memoryless, then \(p(y|x) \) factors as

\[
p(y_1, ..., y_n|x_1, ..., x_n) = \prod_{i=1}^{n} p(y_i|x_i)
\]

Thus, we have,

\[
g(x_1, ..., x_n) = \frac{1}{|C|} \chi_c(x_1, ..., x_n) \prod_{i=1}^{n} p(y_i|x_i)
\]

If we are given a factor graph \(F \) for \(\chi_c(x) \), we obtain a factor graph for (a scaled version of) the APP distribution over \(x \) simply by augmenting \(F \) with factor nodes corresponding to the different factors \(p(y_i|x_i) \). The \(i^{th} \) such factor has only one argument, namely \(x_i \), since \(y_i \) is regarded as a parameter. Thus, the corresponding factor nodes appear as pendant vertices (dongles) in the factor graph.

For example, if \(C \) is a binary linear code with the check equation set as given below, we have,

\[
g(x_1, ..., x_6) = [x_1 \oplus x_2 \oplus x_5 := 0].[x_2 \oplus x_6 \oplus x_5 := 0].[x_1 \oplus x_3 \oplus x_4 := 0]. \prod_{i=1}^{6} p(y_i|x_i)
\]

whose factor graph is shown in figure 2.1

2.4 Codes On Graphs

The prime example of codes on graphs are LDPC codes. The development of the field is so interlinked with LDPC codes that it is difficult to distinguish between them.

About five years ago, the field was reignited which was dormant from the time of Gallager [1] who propounded the idea of LDPC codes and iterative techniques. This was largely due to independent discovery of power and efficiency of LDPC codes by
Figure 2.1: Factor graph for the joint APP distribution of codeword symbols

several researchers and on the other was the pioneering thesis of Wiberg [2]. His most important contribution may have been to extend the Tanner graphs to include the state variables as well as symbol variables.

The LDPC decoding algorithms may be understood as instances of iterative sum-product decoding applied to factor graphs. For cycle-free factor graphs, the sum-product algorithm arises as a natural local message passing algorithm for computing function "summaries", analogous to marginal probabilities. For more on progress on graphs refer to [11].
Chapter 3

A New Decoding Algorithm
Utilizing the turbo principle

In this chapter, we develop the ideas of a new decoding method utilizing the state estimation data and even how to estimate the necessary parameters for the markov model developed for the state of the channel. Some of the ideas are based on the works of [3] and [5] and can be referred. The proposed decoding method has two blocks. One is the conventional sum-product algorithm part and the other is a helper part utilizing state data. The helper part evaluates the likelihood ratio conditional to the set of received symbols and the state information. The two parts work in cooperative manner in an iterative decoding process. The helper part outputs are used as the input to the sum-product algorithm. After performing the sum-product computation part, we obtain the first tentative word \hat{c}. From \hat{c}, the helper part updates the Log Likelihood Ratio (LLR). Then, the next round of the sum-product algorithm is started. In this new round, the updated LLRs are used as the input. The two processes (i.e., the helper part and the sum-product algorithm) are repeated alternately until the correct decision is reached or the max no of iterations are reached. Figure 3.1 illustrates the idea of the proposed decoding algorithm. More about the sequence of operations is discussed in section 3.3 which develops these ideas once the algorithm has been
3.1 Markov Noise Channel

A markov channel is defined by a set of states and transition probabilities between those states. Each state will have characteristic noise associated. In this work, we will assume bit flipping noise. Each bit transmitted will have a state associated with it and the channel state for the next transmission is determined by the state transition probability. Each state therefore has a typical run length in state sequence. Thus here we only treat the cases where the noise is binary in nature. The noise channel is additive noise channel. Hence the received vector is given by $y = x \oplus z$, where $x \in C$ and $z \in \{0, 1\}^N$; the statistics of the noise vector z is described by a Markov Model (MM). Thus the output of MM is a bit flipping noise. The two state markov noise channel is illustrated in figure 3.2. The state space of the MM is denoted by $S \triangleq \{0, 1, \ldots, s_{\text{max}}\}$. The state transition from state j to state i occurs with the probability $p(i|j)$ where $i, j \in (G, B)$. We are considering GEC model which is a two state MM with a good state G and a bad state B. Refer to introduction for
Figure 3.2: Two-state hidden Markov noise channel

more details. At the transition form state j to state i, the MM emits symbol 1 with the probability $q_{i\leftarrow j}$ and symbols 0 with the probability $1 - q_{i\leftarrow j}$. These are the parameters which characterize a MM. Later we will describe a method to estimate these parameters as well (see section 3.4).

3.2 Turbo Algorithm for computing helper Log-Likelihood Ratios

The logarithm of the likelihood ratio $\Lambda(d_k)$ associated with each of the bit d_k is given by

$$\Lambda(d_k) = \log \frac{Pr(d_k = 1|observation)}{Pr(d_k = 0|observation)}$$ \hspace{1cm} (3.1)

where $Pr(d_k = i|observation), i \in \{0, 1\}$ is the *aposteriori* probabilities (APP) associated with the bit d_k. Assuming that the bits d_k at the input takes value of 0 and 1 with equal frequency and O_1^N is the received vector (or O), then the APP of the data...
bit sent d_k can be computed by the joint probability function $\zeta(i, m)$ as

$$\zeta(i, m) := Pr(d_k = i, S_k = m | O)$$ \hspace{1cm} (3.2)$$

which is the probability of the transmitted bit being i and the markov channel state being m given the received vector. The APP will be subsequently given by the following simple summation rule:

$$Pr(d_k = i | O) = \sum_m \zeta(i, m)$$ \hspace{1cm} (3.3)$$

The summation of ζ over all the possible channel states (two in our case as we have assumed GEC model) gives the required probability. The helper LLR, in this case, is given by the ratio

$$H\Lambda(d_k) = \log \frac{\sum_m \zeta(i = 1, m)}{\sum_m \zeta(i = 0, m)}$$ \hspace{1cm} (3.4)$$

Let us introduce some new variables for the calculation of $\zeta(i, m)$. Let us define the following:

$$\alpha_k(i, m) := Pr(d_k = i, S_k = m | O^1_k) = \frac{Pr(d_k = i, S_k = m, O^k)}{Pr(O^1_k)}$$ \hspace{1cm} (3.5)$$

Here, the observations are taken only up to the instant k. Let us go further and introduce two new variables as

$$\beta_k(m) := \frac{Pr(O^N_{k+1} | S_k = m)}{Pr(O^N_{k+1} | O^1_k)}$$ \hspace{1cm} (3.6)$$

$$\gamma_i(O_k, m_1, m_2) := Pr(d_k = i, O_k, S_k = m_2 | S_{k-1} = m_1)$$ \hspace{1cm} (3.7)$$

where O_k is the observation at the instant k. Now we can write the joint probability $\zeta(i, m)$ in terms of $\alpha_k(i, m)$ and $\beta_k(m)$ as follows:
\[\zeta(i,m) = \frac{Pr(d_k = i, S_k = m, O_{k1}^k, O_{k+1}^N)}{Pr(O_{k1}^k, O_{k+1}^N)} = \frac{Pr(d_k = i, S_k = m, O_{k1}^k)}{Pr(O_{k1}^k)} \cdot \frac{Pr(O_{k+1}^N|d_k = i, S_k = m, O_{k1}^k)}{Pr(O_{k+1}^N|O_{k1}^k)} \quad (3.8) \]

The observations after the time \(k \) is not influenced either by \(d_k \) or by observations upto time \(k \) but only by \(S_k \), thus \(\zeta(i,m) \) may be written as

\[\zeta(i,m) = \alpha_k(i,m) \beta_k(m) \quad (3.9) \]

The probabilities \(\alpha_k(i,m) \) and \(\beta_k(m) \) can be recursively calculated using the following recursions which are proved in the appendix of [5]. It uses the \(\gamma_i(O_k, m_1, m_2) \) probability in the following way:

\[
\alpha_k(i,m) = \frac{\sum_{m_1} \sum_{j} \gamma_i(O_k, m_1, m_2) \alpha_{k-1}(j,m_1)}{\sum_{m_1} \sum_{m_2} \sum_{j} \gamma_i(O_k, m_1, m_2) \alpha_{k-1}(j,m_1)} \quad (3.10)
\]

and

\[
\beta_k(m) = \frac{\sum_{m_1} \sum_{j} \gamma_i(O_{k+1}, m_1, m_2) \beta_{k+1}(m_1)}{\sum_{m_1} \sum_{m_2} \sum_{j} \gamma_i(O_{k+1}, m_1, m_2) \alpha_{k}(j,m_1)} \quad (3.11)
\]

The probability \(\gamma_i(O_k, m_1, m_2) \) can be computed using the parameters of the noise channel model that we have proposed. Using the definition of \(\gamma_i(O_k, m_1, m_2) \) that we have given earlier, we can write

\[
\gamma_i(O_k, m_1, m_2) = Pr(O_k|d_k = i, S_k = m_2, S_{k-1} = m_1) \cdot Pr(d_k = i|S_k = m_2, S_{k-1} = m_1) \cdot Pr(S_k = m_2|S_{k-1} = m_1) \quad (3.12)
\]

Here, \(Pr(O_k|d_k = i, S_k = m_2, S_{k-1} = m_1) \) corresponds to the error probability if \(y \neq i \) in the given state of the channel and probability of correct reception if
\(y = i, i \in (0, 1) \). In terms of the channel parameters, it corresponds to \(q_{i\leftarrow j} \) or \(1 - q_{i\leftarrow j} \) depending upon whether the observed data at the \(k^{th} \) instant is complement of \(i \) or \(i \) itself. The next term \(Pr(d_k = i|S_k = m_2, S_{k-1} = m_1) \) is 0.5 as the probability of transmission of any \(i^{th} \) symbol is equal uniform for any given state. Since there are only two symbols, it comes out to be 1/2. The *apriori* probabilities does not depend upon the state. The third term \(Pr(S_k = m_2|S_{k-1} = m_1) \) is the state transition probability and is the probability of channel to transition to state \(m_2 \) given that the current state is \(m_1 \). In terms of the state parameters, this can be written as \(p(m_2|m_1) \) where \(m_1 \) and \(m_2 \in (G, B) \). Thus we can write the above equation in terms of channel parameters or parameters of MM as:

\[
\gamma_i(O_k, m_1, m_2) = \begin{cases}
0.5 \cdot (q_{i\leftarrow j} \cdot p(m_2|m_1)) & \text{if } O_k \neq i \\
0.5 \cdot (1 - q_{i\leftarrow j} \cdot p(m_2|m_1)) & \text{if } O_k = i
\end{cases}
\]

(3.13)

Here \((i, j, m_1, m_2) \in (G, B)\). Thus the various steps in the computations of APP for all \(d_k \) are given below:

- The probabilities \(\alpha_0(i, m) \) and \(\beta_k(m) \) are initialized in following way:

\[
\alpha_0(i, 0) = 1, \alpha_0(i, m) = 0 \text{ for all } m \neq 0
\]

(3.14)

This comes from the fact that we always start with the good state, otherwise initialize the one that you are starting with. In the similar manner,

\[
\beta_k(0) = 1, \beta_k(m) = 0 \text{ for all } m \neq 0
\]

(3.15)

- For each of the observations \(O_k \), we compute \(\alpha_k(i, m) \) and \(\gamma_i(O_k, m_1, m_2) \) in accordance with equations 3.10 and 3.12 respectively.

- After the full sequence has arrived, thus we have the full vector \(O \), then \(\beta_k(m) \)
can be calculated in accordance with the equation 3.11.

- Now both the $\alpha_k(i, m)$ and $\beta_k(m)$ can be multiplied together to obtain $\zeta(i, m)$ for each bit. Then APP for each bit can then be obtained.

3.3 Message Passing Schedules

A brute force method to minimizing the word or symbol error probability would certainly try to minimize the probability $Pr(x|y)$ for each of the codeword x. The complexity of the brute force method is proportional to the no. of codewords $\sim 2^k$. The algorithm derived here tries to obtain the APP of the information and channel digits leading to a soft decoder instead of a hard decoder.

3.3.1 Standard Message passing schedules and Local neighborhoods

Estimation decoding in GEC channel requires not only the sum-product calculations, but also a message passing schedule, which defines the order in which the calculations occur. What we have used here is a standard message passing schedule. Here, first perform the sum-product calculations at the symbol nodes and then at the check nodes, then the tentative word is passed to helper block which calculates the APP ratios for each bit. This acts as an extrinsic information at the symbol nodes and the sum-product calculation at the next iteration takes care of this extrinsic information. The decoding strategy considered here is equivalent to working on a factor graph with messages as shown in figure 3.3.

To analyze the messages passed under this decoding scheme, we will form a sub-graph of the overall graph of the factor graph containing all nodes and edges that participate in the calculation of a particular message along edge e at iteration no. l. This subgraph is called Local neighborhood of the edge e and written as $\mathcal{N}_e(l)$. There can be different message passing schedules which gives rise to different nodes
Figure 3.3: Factor graph of a combined LDPC code and markov modeled noise channel

and edges in the calculation and hence gives rise to different local neighborhood. The
operation that makes a complete iteration in the standard schedule can be divided
into:

- LDPC sub-iteration, which represents message passing operations at the parity
 check nodes and at the symbol variable nodes.

- Helper block sub-iteration, representing the message passing operations at the
 channel state and factor nodes.

3.4 Channel Parameter estimation by using Baum-Welch Algorithm

The knowledge of channel parameters of MM is necessary to use this proposed de-
coding algorithm. However, in a practical situation, the channel parameters may not
be available a priori. Thus an online estimation method has to be constructed based
on an algorithm for estimating the channel parameters. This can be done using an
expectation maximization technique called the Baum-Welch algorithm.

This is a method to adjust the model parameters to maximize the probability of ob-
ervation sequence given the model. We can choose \(\lambda \), as the model such that
\[
p(O|\lambda)
\]
is locally maximized with Baum-Welch algorithm. Let us start defining the procedure for estimation of MM parameters. For this, we need to define $v_t(m_1, m_2)$, the joint probability of being in state m_1 at time k and m_2 at time instant $k + 1$, given the model and the observation sequence. Thus, it can be written as:

$$v_k(m_1, m_2) := Pr(S_k = m_1, S_{k+1} = m_2|O, \lambda) \quad (3.16)$$

Now, we define forward and backward variables as follows: The forward variable $\alpha_t(m)$ is the joint probability of partial observation sequence O^k_i and state S_k at time k given the model λ.

$$\alpha_k(m) := Pr(O^k_i, S_k = m|\lambda) \quad (3.17)$$

In the similar manner, we may define the backward variable $\beta_k(m)$ as following:

$$\beta_k(m) := Pr(O^N_{k+1}|S_k = m, \lambda) \quad (3.18)$$

It is the probability of partial observation sequence from $k + 1$ till the end given state S_k at time k and model λ. Thus, from the definitions of the forward and the backward variables, we can write $v_k(m_1, m_2)$ in terms of the parameters of the model as below [4]. Here, $b_m(O_k)$ is the probability of observing a particular symbol $\in (0, 1)$ in state m.

$$v_k(m_1, m_2) := \frac{\alpha_k(m).p(m_1|m_2).b_{m_2}(O_{k+1}).\beta_{k+1}(m_2)}{Pr(O|\lambda)} \quad (3.19)$$

where $b_m(O_k)$ can be $q_{i\rightarrow j}$ or $(1-q_{i\rightarrow j})$ depending upon the received symbol at time k. Let us define $\eta_k(m)$ as the probability of being in state m at time k, given the observation sequence and the model λ, then we can relate $\eta_k(m)$ to $v_k(m_1, m_2)$ as

$$\eta_k(m_1) = \sum_{m_2} v_k(m_1, m_2) \quad (3.20)$$

If we sum $\eta_k(m_1)$ over the time index k we get the quantity which can be interpreted as the expected no. of times the state m_1 is visited. Similarly, the summation over k
of \(\nu_k(m_1, m_2) \) can be interpreted as the expected no. of transitions from state \(m_1 \) to \(m_2 \). Thus,

\[
\sum_k \eta_k(m_1) = \text{expected no. of transitions from state } m_1 \quad (3.21)
\]

\[
\sum_k \nu_k(m_1, m_2) = \text{expected no. of transitions from state } m_1 \text{ to state } m_2. \quad (3.22)
\]

Using these above formulas, we can give a method for estimation of parameters of MM. These formulas are stated below:

\[
p(i|j) = \frac{\text{expected no. of transitions from state } m_1 \text{ to state } m_2}{\text{expected no. of transitions from state } m_1}. \quad (3.23)
\]

Thus,

\[
p(i|j) = \frac{\sum_k \nu_k(m_1, m_2)}{\sum_k \eta_k(m_1)} \quad (3.24)
\]

Here, \(m_1, m_2 \in (G, B) \) and \(i, j \in (0, 1) \)

Similarly,

\[
b_m(O_k) = \frac{\text{expected no. of times in state } m \text{ and observing symbol } O_k}{\text{expected no. of times in state } m} \quad (3.25)
\]

Hence,

\[
b_m(O_k) = \frac{\sum_{k \text{ s.t } O_k} \eta_k(m)}{\sum_k \eta_k(m)} \quad (3.26)
\]

If we define the current model as \(\lambda \) and use the above set of equations and define the re-estimated model as \(\overline{\lambda} \), then it has been proven by Baum and his colleagues [12] that

- Either the initial model \(\lambda \) defines the critical point of the likelihood function,

or,

- model \(\overline{\lambda} \) is more likely than the model \(\lambda \) in the sense that \(p(O|\overline{\lambda}) > p(O|\lambda) \), ie, we have found a new model \(\overline{\lambda} \) from which the observation sequence is likely to
have been produced.

Based on the above procedure, if we iteratively use Λ in place of λ, then we can improve the probability of O being observed from the model until some limiting point is reached. The final result is called a maximum likelihood estimate of MM.

3.5 Designing good LDPC codes

An LDPC code design problem can be posed as follows:

Given a particular Comm channel

Max. Code Rate

Subject to $P_{err} < \epsilon$,

where P_{err} is the probability of symbol error and ϵ is the max. acceptable probability of error [13]. LDPC codes maybe characterized by degree sequences, which expresses the probability of finding a given no. of ones in either a row or column of a parity check matrix. For a given degree sequence, the symbol wise error performance of the LDPC code for a markov channel in the limit of long block length requires a modified density evolution taking state estimation into consideration, which can be used to verify the probability of error criterion. This task is more elaborated in [13].
Chapter 4

Gallager’s Decoding Algorithm
Revisited

The best decoding strategy is to find the maximum likelihood function by using the minimum distance criterion between the received vector and the transmitted waveform. However, implementing such a receiver would be a big task as the code length increases. LDPC codes achieves good performances as the code length becomes larger and larger. So for such codes, implementing a maximum likelihood receiver is practically not feasible. Gallager has devised many decoding methods in his doctoral thesis [1]. Here what we are going to describe is the modification of probabilistic decoding method (proposed in his thesis way back in the 60’s and not used later) and how the state estimation (or state information) can dramatically improve the decoding performance of this scheme compared to the memoryless case. This scheme makes use of the parity check structure and the digits seeming to be unconnected with the digit being decoded in a very systematic way. It is an iterative technique which tries to correct some errors in the first iteration and based on the corrected digits in the first round, tries to correct some more in the next and so on.
Before going further into details, let us understand the basic tree structure required for our decoding purpose. This will also aid us in understanding how an arbitrary digit
d_k can be corrected even if its parity check sets contain more than one transmission error. Digit d_k is represented by the node at the base of the tree and each line rising from this node represents one of the parity check sets containing digit d_k. The other digits are represented by the nodes on the first tier of the tree. The lines rising from tier 1 to tier 2 of the tree represents the other parity checks containing the digits on tier 1 and the nodes in tier 2 represents the other digits in those parity check sets. Here we are considering decoding of (n, j, k) codes, where n is the length of the code, j denotes the no. of parity check sets of a digit and k denotes the no. of digits contained in each of the parity check set. Keeping these in mind, the tree structure just described for an $(n, 3, 4)$ code would look like the one shown in figure 4.1.

If we consider that several of the digits in the first tier are in error, then on the first decoding attempt, the error free digits in the second tier and their parity check equations will allow correction of errors in the first tier. This in turn will allow correction of the digit d_k in the second decoding attempt.

4.1 Probabilistic Decoding

Here we derive an iterative procedure will be evolved that on the l^{th} iteration computes the probability that the transmitted digit in the position d_k is a 1 conditional on the received symbols out to and including the l^{th} tier.
Consider an ensemble of events in which the transmitted digits in the positions of d_k and the first tier are independent equiprobable binary digits. Within this ensemble, we want to find out the probability that the transmitted digit is a 1 conditional on the set of received symbols y, the event S that the transmitted digits satisfy the j parity check equations on d_k and the start state and end state defined next. Let us have an event that at the given instant the channel transitions from a start state (StState) to an end state (EState) and gives out an error symbol with probability $q_{EState\leftarrow StState}$ where StState and EState $\in (G,B)$. This is in accordance with the definition that we have given earlier for MM noise channel. Here the channel model is

$$y = x \oplus n$$ \hspace{1cm} (4.1)

where the noise vector is being generated from the MM noisy channel. We have already estimated the channel parameters (for details refer to section 3.4 in last chapter). This event can also be represented in the form of trellis where there are nodes for the states and on the horizontal axis, we have the time. Hence we have two nodes corresponding to the good state and the bad state of GEC model (refer to introduction chap 1). A branch is said to connect a given start node to an end node if there exists a transition from that start state to end state. Each branch is associated with the error probability as illustrated in the figure 4.2. Thus we have the transitions starting at nodes $\in (G,B)$ and ending at nodes $\in (G,B)$ as the time progresses.

Hence, given the input, the channel gives an output and then transitions to the other state. This event is synonymous to traversing a branch of the trellis. Let the probability of traversing a branch be given by η. This probability can be obtained from the parameters of the MM as

$$\eta = P_\epsilon(\epsilon|StState).p(EState|StState)$$ \hspace{1cm} (4.2)
assuming independence between the giving out of the output and transition occurring thereafter. Here, $P_o(e|StState)$ gives the probability of producing an output given the state. It is same as $q_{EState\rightarrow StState}$. $p(EState|StState)$ is the transition probability from Start state to End State.

Using this ensemble, we want to find the APP of the digit as:

$$Pr(x_d = 1|y, S, StState, EState)$$ (4.3)

Let η_{dk} be the probability that the transmitted digit in position d_k is a 1 conditional to the branch being traversed in the trellis, and let η_{il} be the same probability for the l^{th} digit in the i^{th} parity check set of the first tier. Then,

$$Pr(x_d = 0|y, S, StState, EState) \over Pr(x_d = 1|y, S, StState, EState) = \frac{1 - \eta_{dk}}{\eta_{dk}} \cdot \frac{\prod_{i=1}^{j} \left(1 + \prod_{l=1}^{k-1} (1 - 2\eta_{il}) \right)}{\prod_{i=1}^{j} \left(1 - \prod_{l=1}^{k-1} (1 - 2\eta_{il}) \right)}$$

$$= \frac{1 - q_{EState\rightarrow StState}p(EState|StState)}{q_{EState\rightarrow StState}p(EState|StState)} \cdot \prod_{i=1}^{j} \left(1 + \frac{\prod_{l=1}^{k-1} (1 - 2q_{EState\rightarrow StState}p(EState|StState))}{\prod_{l=1}^{k-1} (1 - 2q_{EState\rightarrow StState}p(EState|StState))} \right).$$ (4.4)

Here, η_{dk} or η_{il} is replaced by η as given in equation 4.2. To prove the above, we need the following lemma:

Lemma: If we consider a set of m independent digits with the probability of occur-
rence of a 1 at location \(l\) being given by \(P_l\), then the probability of occurrence of an even no. of ones is given by:

\[
1 + \prod_{l=1}^{m} (1 - 2P_l) \over 2 \tag{4.5}
\]

For proof of this lemma, refer to [1]. Let us consider the following statements about conditional probabilities:

\[
\begin{align*}
Pr(x_{dk} = 0 | y, S, StState, EState) &= Pr(x_{dk} = 0, y, S, StState, EState) \\
&= \frac{Pr(x_{dk} = 0, S | x_{dk} = 0, y, S, StState, EState)}{Pr(x_{dk} = 0 | y, S, StState, EState)} \\
&= \frac{Pr(S_i | x_{dk} = 0, y, StState, EState)}{Pr(S_i | x_{dk} = 1, y, StState, EState)} \cdot \frac{Pr(x_{dk} = 0 | S_i, y, StState, EState)}{Pr(x_{dk} = 0 | y, StState, EState)} \\
&= \frac{Pr(S_i | x_{dk} = 0, y, StState, EState)}{Pr(S_i | x_{dk} = 1, y, StState, EState)} \cdot \frac{Pr(x_{dk} = 0 | S_i, y, StState, EState)}{Pr(x_{dk} = 1 | y, StState, EState)} \cdot \frac{Pr(x_{dk} = 1 | y, StState, EState)}{Pr(x_{dk} = 1 | y, StState, EState)}
\end{align*}
\]

(4.6)

Thus,

\[
Pr(x_{dk} = 0 | y, S, StState, EState) = \frac{1 - \eta_{dk}}{\eta_{dk}} \prod_i \frac{Pr(S_i | x_{dk} = 0, y, StState, EState)}{Pr(S_i | x_{dk} = 1, y, StState, EState)} \cdot \frac{Pr(x_{dk} = 0 | S_i, y, StState, EState)}{Pr(x_{dk} = 1 | y, StState, EState)} \tag{4.7}
\]

If it is given that \(x_{dk} = 0\), then the parity check on \(d_k\) is satisfied if the other \(k - 1\) digits contain an even no. of ones. Using the Lemma, this probability is equal to

\[
Pr(S | x_{dk} = 0, y, StState, EState) = \prod_{i=1}^{j} \frac{1 + \prod_{l=1}^{k-1} (1 - 2\eta_{il})}{2} \tag{4.8}
\]

Similarly,

\[
Pr(S | x_{dk} = 1, y, StState, EState) = \prod_{i=1}^{j} \frac{1 - \prod_{l=1}^{k-1} (1 - 2\eta_{il})}{2} \tag{4.9}
\]

Substituting the above equations into equation 4.7, we get the required result. This gives us the likelihood ratio for the digit \(d_k\). The decoding procedure for the entire
code can now be stated as follows:

4.2 Decoding Procedure

This remains the same as prescribed in [1]. It is restated here for clarity. For each digit and each combination of \(j - 1 \) parity check sets containing that digit, we use equation 4.4 to calculate the probability of a transmitted 1 conditional to the branch traversed in the trellis in the \(j - 1 \) parity check sets. Thus, there are \(j \) different probabilities associated with each digit. Next these probabilities are used in equation 4.4 to calculate a next set of probabilities. The probability to be associated with one digit in the calculation of another digit \(d \) is the probability found in the first iteration, omitting the parity check set containing \(d \). If the decoding is successful, then the decoding associated with each digit tends to 0 or 1 as the no. of iterations is increased. The calculations are valid as long as the independence assumption holds otherwise the tree would close upon itself.

The convergence issue being highlighted here is that of probability of decoding a digit \(d_k \rightarrow 0, 1 \) as no. of iteration increases has not been addressed here and can be a topic for future study. This has been simply stated in [1] and this has not been proved there as well.

4.3 Convergence of decoding error probability of a symbol towards zero for given channel parameters

Density evolution (DE) analysis provides performance thresholds for LDPC codes, establishing a region of channel parameters over which iterative decoding is successful in the limit of long block length or as the no. of iterations is increased. The DE algorithm establishes bound on the ultimate performance of LDPC codes allowing a
calculation of a threshold in memoryless channels. This is a fairly complicated algorithm utilizing many approximations (such as gaussian approximation for densities of messages at the nodes). This has been an area of active research to speed up the process of DE calculations as DE is utilized in various other tasks like designing good LDPC codes etc. Here we are proposing an approximation of DE algorithm to check whether given channel parameters can lead to successful decoding or not. This is fairly fast and simple strategy derived from the work of [1]. The DE algorithm implements a decision function, taking channel parameters as inputs, and determining whether or not the decoder achieves a very small probability of error for these parameter values. Our work focusses on a approximate DE based analysis of LDPC decoding over the GE channel.

The channel model is the same as introduced before in last chapter (refer to section 3.1). It is a binary input, binary output channel in which the channel output \(y \in \{0, 1\}^n \) in response to the channel input vector \(X \in \{0, 1\}^n \) is given by

\[
\mathbf{y} = \mathbf{x} \oplus \mathbf{z}
\]

(4.10)

where \(z \in \{0, 1\}^n \) is a noise sequence and \(\oplus \) denotes componentwise modulo 2 addition. The noise sequence arises from a two state MM channel. The transition probabilities are given by \(p(i|j) \) which tells us of the probability of transition from state \(j \) to state \(i \) where \(i \) and \(j \in \{G, B\} \). The inversion probabilities in these states is given by \(q_{E \text{St} \rightarrow S \text{St}} \) where StSt and ESt \(\in \{G, B\} \). The average inversion probability is given by:

\[
\overline{\eta} := Pr(z_i = 1) = \frac{p(B|G) \cdot q_{B \rightarrow G} + p(G|B) \cdot q_{G \rightarrow B}}{p(B|G) + p(G|B)}
\]

(4.11)

We assume an \((n, j, k)\) code with \(j = 3 \) parity check sets constraining each of the digit. Let the tree consist of \(l \) independent tiers with the uppermost tier be labeled as tier 0 and the bottom most one is tier \(m \). Here, let the decoding procedure be if
both the parity check fails for a digit, then change the digit (because of the strong indication of error of the digit as both parity checks have failed). Then using these changed digits in the first tier, we calculate the parity checks in the second tier and repeat the same procedure. We now try to determine the probability of decoding error for the digit in tier \(l \). If the digit is received in error (an event of probability \(\eta \)), then a parity check set will be satisfied if there is an even no. of errors in the remaining \(k - 1 \) digits. From the Lemma given earlier, this probability is equivalent to:

\[
\frac{1 + (1 - 2\eta)^{k-1}}{2}
\]

(4.12)

Following similar footsteps as in [1], we arrive at the following conclusion: If \(\eta_i \) is the probability of error after processing of a digit in the \(i^{th} \) tier, then

\[
\eta_{i+1} = \eta - \eta(\frac{1 + (1 - 2\eta_i)^{k-1}}{2})^2 + (1 - \eta)(\frac{1 - (1 - 2\eta_i)^{k-1}}{2})^2
\]

(4.13)

Here \(\eta \) is defined in equation 4.11. Using the approximate DE algorithm as given in equation 4.13, we try to locate points (which are two tuples \((q_{B\leftarrow G}, q_{G\leftarrow B}) \)) where the probability of error for a symbol → 0 as the no. of iterations are increased. Thus, we get a region within which the inversion (or error) probability converges to zero which we refer to as the decoding region. Within this region, choosing the channel parameters leads to successful decoding. This is a useful concept which conveys a priori whether our choice of channel parameters would lead to successful decoding or not. The simulation results are shown in the chapter 6.
Chapter 5

An Error Predicting Scheme utilizing the channel memory

This scheme operates on the received channel symbols y and previously decoded data \hat{x} to estimate the probability that the next channel symbol is in error, conditioned on the previous channel errors. The noise MM is defined in earlier chapters. The error process has memory in the sense that it depends on the underlying state process. When conditioned on the state process, the error process is memoryless, i.e.,

$$Pr(z_l|s_l) = \prod_{i=1}^{l} Pr(z_i|s_i) \quad (5.1)$$

The state process is a stationary first order Markov process:

$$Pr(s_l|s_{l-1}) = Pr(s_l|s_{l-1}) \quad (5.2)$$

Preposition: The following recursions hold:

$$Pr(z_{l+1} = 1|z_l, s_0) = \xi(z_l, Pr(z_l = 1|z_{l-1}, s_0)) \quad (5.3)$$
and

\[Pr(z_{l+1} = 1|z_l) = \xi(z_l, Pr(z_l = 1|z_{l-1})) \] \hspace{1cm} (5.4)

where the function \(\xi \) is defined by:

\[\xi(0, q) \triangleq q_{G\leftarrow B} + p(B|G)(q_{B\leftarrow G} - q_{G\leftarrow B}) + \mu(q - q_{G\leftarrow B}) \frac{1 - q_{B\leftarrow G}}{1 - q} \] \hspace{1cm} (5.5)

and

\[\xi(1, q) \triangleq q_{G\leftarrow B} + p(B|G)(q_{B\leftarrow G} - q_{G\leftarrow B}) + \mu(q - q_{G\leftarrow B}) \frac{q_{B\leftarrow G}}{q} \] \hspace{1cm} (5.6)

Here, \(\mu \) is defined to be the channel memory

\[\mu = 1 - p(G|B) - p(B|G) \] \hspace{1cm} (5.7)

For proof of the above proposition, refer to appendix of [7].

The error prediction block helps the sum-product algorithm in a similar manner as the helper block of figure 3.1. The error prediction calculates the error probability keeping in mind the channel parameters. These error prediction forms the log-likelihood ratio which aids the sum-product decoder and is simpler to implement than the forward-backward recursions of chap. 2. The log-likelihood ratio can be computed as follows:

\[\lambda = \log \frac{Pr(z_l = 1)}{1 - Pr(z_l = 1)} \] \hspace{1cm} (5.8)

for \(y = 0 \)

and

\[\lambda = \log \frac{1 - Pr(z_l = 1)}{Pr(z_l = 1)} \] \hspace{1cm} (5.9)

for \(y = 1 \)

The decisions are based on these likelihood ratios. The bit wise decisions are computed in this way.
Chapter 6

Simulation Results

6.1 Creating a Parity Check Matrix

The set of valid codewords for a linear code can be specified by giving a parity check matrix, H, with M rows and N columns. The valid codewords are the vectors, \mathbf{x}, of length N, for which $H \mathbf{x} = 0$, where all arithmetic is done modulo-2. Each row of H represents a parity check on a subset of the bits in \mathbf{x}; all these parity checks must be satisfied for \mathbf{x} to be a codeword. LDPC codes can be constructed by various methods, which generally involve some random selection of where to put 1s in a parity check matrix. Any such method for constructing LDPC codes will have the property that it produces parity check matrices in which the number of 1s in a column is approximately the same (perhaps on average) for any size parity check matrix. The creation of the parity check matrix involves some precautions which are listed below:

- Add 1s to the parity check matrix in order to avoid rows that have no 1s in them, and hence are redundant, or which have only one 1 in them, in which case the corresponding codeword bits will always be zero. The places within such a row to add these 1s are selected randomly.

- If the preliminary parity check matrix constructed in step (1) had an even number of 1s in each column, add further 1s to avoid the problem that this will
cause the rows to add to zero, and hence at least one check will be redundant. Up to two 1s are added (since it is also undesirable for the sum of the rows to have only one 1 in it), at positions selected randomly from the entire matrix.

- We also try to eliminate situations where a pair of columns both have 1s in a particular pair of rows, which correspond to cycles of length four in the factor graph of the parity check matrix. When such a situation is detected, one of the 1s involved is moved randomly within its column.

6.2 Encoding Message Blocks

Given a codeword u and an $M \times N$ parity check matrix H, we have $u.H^t = 0$. Assume that the message bits s occupy the end of the codeword and the check bits c occupy beginning of the codeword ie, $u = [c|s]$.

Let $H = [A|B]$ where A is $M \times M$ matrix and B is $M \times (M - N)$ matrix. The first part of H is an identity matrix . Thus we have

$$Ac + Bs = 0 \text{ or } c = A^{-1}Bs. \quad (6.1)$$

This can be used to compute check bits as long as A is non-singular.

After the messages have been encoded, a bit flipping markov model for the noise is simulated with two states \{G,B\} with the error probability in the good state being less than the error probability in the bad state. In our simulations, we have fixed the error probability of the bad state to be equal to 0.5. The error probability in the good state is varied to vary the average inversion probability. We have also fixed the error probabilities in the two states and varied the transition probabilities so as the average inversion probability gets altered. The output of the channel is the received vector y and is fed as input to the decoding algorithms. Comparisons are shown in the figures below between three algorithms:

- Sum Product algorithm.
6.3 Description of figures

1. Figure 6.1 shows comparison of bit error rates for sum-product decoder and sum-product decoder with helper block. This is a rate 1/2 code with $N = 2000$. The two algorithms are compared for various transition probabilities. This figure illustrates that the sum-product decoder with helper block shown in red outperforms the sum-product decoder in blue. The sum-product decoder performance is nearly same for all transition probabilities as the average error rate is above the threshold for this algorithm. Both the algorithms are run for 50 iterations.

2. Figure 6.2 shows the comparison between same two algorithms as in figure 6.1 but with $N=4000$. These codes are designed to show excellent performances as the code length becomes large.

3. Figure 6.3 and figure 6.6 shows the convergence of the parameters of the markov model by Baum-Welch algorithm. The two figures start with different initial values for transition probabilities.

4. Figure 6.4 and figure 6.5 shows the convergence of the parameters of the markov model by Baum-Welch algorithm. The two figures start with different initial values for error probabilities in the two states.

5. Figure 6.7 illustrates the comparison of bit error rates for the three algorithm. The line in magenta shows the performance of Gallager’s modified algorithm which scores above the other two in terms of error rate v/s the transition probability from good to bad state. This is a rate 1/2 code with blocklength = 2000.
6. Figure 6.8 illustrates the comparison of bit error rates for the three algorithm. The line in magenta shows the performance of Gallager’s modified algorithm which scores above the other two in terms of error rate v/s the average inversion probability of the MM channel. This is a rate 1/2 code with blocklength = 2000.

7. Figure 6.9 displays a plot for a (2,4) regular rate 1/2 code. The stars mark the region where successful decoding can take place for the given error parameters for a two state markov model. This result also indicates that for a constant \(\bar{\eta} \), increasing the difference between \(\eta_B \) and \(\eta_G \) leads to decrease in error probability at the decoder. Thus a larger contrast between \(\eta_B \) and \(\eta_G \) is better than a smaller contrast, because the states are easier to distinguish. This has been shown in [8] using technique called state scrambling.

8. Figure 6.10 displays a plot for a (4,6) regular rate 1/3 code. The stars mark the region where successful decoding can take place for the given error parameters for a two state markov model. Also it has been shown in [8] that increasing the length of the channel memory decreases the error probability at the decoder. This has been proved there using technique of segmentation.
Figure 6.1: Comparison between sum-product decoder and sum-product decoder with helper block. \(N=2000, R=1/2, 50 \) iterations

Figure 6.2: Comparison between sum-product decoder and sum-product decoder with helper block. \(N=4000, R=1/2, 50 \) iterations
Figure 6.3: Convergence of transition probabilities using Baum-Welch algorithm

Figure 6.4: Convergence of error probabilities using Baum-Welch algorithm
Figure 6.5: Convergence of error probabilities in the two states using Baum-Welch algorithm

Figure 6.6: Convergence of transition probabilities in the two states using Baum-Welch algorithm
Figure 6.7: Comparison of bit error rates for the three decoding algorithms for various values of transition probabilities from the good to the bad state. N=2000, R=1/2

Figure 6.8: Comparison of bit error rates for the three decoding algorithms for various values of average error probability of the MM channel. N=2000, R=1/2
Figure 6.9: Plot for a (2,4) regular rate 1/2 code showing the region of successful decoding

Figure 6.10: Plot for a (4,6) regular rate 1/3 code showing the region of successful decoding
Chapter 7

Conclusion And Future Work

In this thesis, we have discussed two new algorithms for decoding LDPC codes over channels modeled using markov modeling techniques. For some channel parameters, these algorithms seem to correct errors far beyond the random error capability of these codes with reasonable decoding complexity. Furthermore, the proposed decoding algorithms has high flexibility to adapt channel variations because we only need to update the channel model used in the algorithms adaptively for such variations. Performance improvements are particularly noted when the contrast between the error probabilities of the two states is large. This is understandable since it is under these circumstances that the GE factor graph has the best ability to observe a state for a long period of time and differentiate between two states. Below the decoding threshold, the decoding performance improves everywhere as iterations are increased. Here we have not discussed the code design problem. The performance of an error correcting code depends greatly on the distance structure of the coded sequences. It appears interesting research topic to construct a class of LDPC codes matched to Markov noise channels. This direction should be investigated in future. Many iterative techniques can be used on bipartite graphs. It would be worth investigating other schemes and comparing their expected computational complexities. Recently, researchers are finding different alternatives to the sum-product algorithm to overcome the complexity issue. One of the technique that has attracted consider-
able attention is that based on neural networks. More hints of using this technique can be found in [14] and can be tailored for our purpose.

For obtaining better codes with good distance properties, differential evolution can be used as a tool for global optimization over continuous spaces. Refer [15] and [16] for the usage of this technique.
References

[1] R. G. Gallager, “Low Density Parity Check Codes”, Cambridge, MA: MIT Press, 1963.

[2] N. Wiberg, “Codes and Decoding on General Graphs”, Ph.D. dissertation, Linkoping Univ., Linkoping, Sweden, 1996.

[3] Tadashi Wadayama, “An Iterative Decoding Algorithm of Low Density Parity Check Codes for Hidden Markov Noise Channels”, in Proceeding of International Symposium On Information Theory and its Application (ISITA 2000), Hawai, Nov 2000.

[4] Lawrence R. Rabiner, “A Tutorial on Hidden Markov Models and selected applications in speech recognition”, Proceedings of the IEEE, vol 77, No.2, Feb 1989.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes”, in Proc. IEEE Int. Conf. Commun., Geneva, Switzerland, May 1993.

[6] Javier Garcia-Frias, “Decoding of Low-Density Parity Check Codes over Finite-State Binary Markov Channels”, IEEE Transactions On Communications, Vol 52, No.11, Nov 2004.

[7] Mordechei Mushkin and Israel Bar-David, “Capacity and Coding for Gilbert-Elliot Channels”, IEEE Transaction On Information Theory, Vol 35, No. 6, Nov 1989.
A. W. Eckford, F. R. Kschischang, and S. Pasupathy, “Analysis of low-density parity-check codes for the Gilbert-Elliott channel”, IEEE Trans. Inf. Theory, vol. 51, no. 11, pp. 3872-3889, Nov. 2005.

Laveen N Kanal and A. R. K. Shastry, “Models for Channels with Memory and Their Applications to Error Control”, Proceedings Of The IEEE, Vol. 66, No. 7, July 1978.

Frank R. Kschischang, Brendan J. Frey and Hans-Andrea Loeliger, “Factor Graphs and the Sum-Product Algorithm”, Transactions On Information Theory, Vol. 47, No. 2, Feb 2001.

G. David Forney, “Codes on graphs: recent progress”, pp 113, Physica A vol 302, 2001.

Leonard E Baum, “A maximization technique occuring in statistical analysis of probabilistic functions of markov chains”, Annals of Mathematical Statistics, Vol 41, No.1, 1970.

Andrew W. Eckford, Frank R. Kschischang and Subbarayan Pasupathy, “On Designing Good LDPC Codes for Markov Channels”, IEEE Transactions On Information Theory, Vol. 53, No. 1, Jan 2007.

Johnny W. H. Kao, Stevan M. Berber, and Abbas Bigdeli, “A General Rate K/N Convolutional Decoder Based on Neural Networks with Stopping Criterion”, Hindawi Publishing Corporation, Advances in Artificial Intelligence, Volume 2009, Article ID 356120, 11 pages.

Rainer Storn and Kenneth Price, “Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces”, Technical Report TR 95-012, ICSI, March 1995.

Jilei Hou, Paul H. Siegel and Laurence B. Milstein, “Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Chan-
nels”, IEEE Journal On Selected Areas In Communications, Vol. 19, No. 5, May 2001.

[17] Parastoo Sadeghi, Rodney A. Kennedy, Predrag B. Rapajic, and Ramtin Shams, “Finite-State Markov Modeling of Fading Channels”, IEEE Signal Processing Magazine, Sept 2008.
Chapter 1

Introduction

Since the early 1990s, Gilbert-Elliott Channel (GEC) and Finite-State Markov channel (FSMC) models are being used for burst noise modelling and decoding at the receiver side and a variety of other applications. This thesis gives a brief outline of the development of FSMC models and how these models can aid in the development of efficient algorithms at the receiver end giving a great performance advantage.

The study of finite-state communication channels with memory dates back to the work by Shannon in 1957. In 1960, Gilbert introduced a new type of finite-state channel (FSC) model to determine the information capacity of wireline telephone circuits with burst-noise. Gilbert model was the first attempt to incorporate channel memory into the system with different states, which are unknown to the receiver. Soon after the work of Gilbert, Elliott started to compare performances of various error correcting codes using this model. This finally came to be known as GEC, as shown in figure 1.1.

It is a two state model with states labeled as good G and the bad B state. The transition probabilities are given by $b = Pr(G \rightarrow B)$ and $g = Pr(B \rightarrow G)$. When the channel is in good state G, the input and the output are related by a discrete memoryless channel (DMC) characterized by error probability $P_g = Pr(error \mid state = G)$. Similarly for the bad state, the error probability is given by $P_b = Pr(error \mid state = B)$.

The credit of inventing Low Density Parity check codes (LDPC) goes to Gallager. He performed the detailed performance analysis of these codes. MacKay has presented extensive simulation results of long LDPC codes with the sum-product algorithm.

1.1 Motivation

In the thesis, I have proposed an iterative decoding algorithms for Low Density Parity Check codes (LDPC) for markov noise channels. The markov noise channel is an additive noise channel whose noise statistics is modeled by a markov model. The conventional sum-product algorithm is unable to fully extract the burst error correcting capability of LDPC codes. The proposed algorithms effectively utilizes the error correlation and uses it effectively to correct errors far beyond the random error correcting capability of the code. Further, it has been discovered recently that the combination of long LDPC codes together with sum-product decoder can provide near capacity performance over binary symmetric channels. My work extends it to channels with memory. Excellent performances of these codes based on very sparse matrices has encouraged researchers to have a look into the channels with memory,
apart from the memoryless case.

A Markov noise channel is suitable for modeling a wide variety of practical channels. Moreover, there are efficient algorithms which deal with maximum likelihood estimation and the MAP estimation problems such as the Viterbi algorithm and the forward-backward algorithm. These algorithms make Markov modeling more fascinating.

1.2 Thesis Organisation