Existence of Global Decaying Solutions to the Cauchy Problem for a Nonlinear Dissipative Wave Equation of Klein-Gordon Type with a Derivative Nonlinearity

By

Mitsuhiro Nakao
(Kyushu University, Japan)

Abstract. We prove the existence of global decaying solutions to the Cauchy problem for the wave equation of Klein-Gordon type with a nonlinear dissipation and a derivative nonlinearity. To derive required estimates of solutions we employ a delicate 'loan' method.

Key Words and Phrases. Global solutions, Energy decay, Wave equation, Nonlinear dissipation, Derivative nonlinearity.

2010 Mathematics Subject Classification Numbers. 35B35, 35B40, 35L70.

1. Introduction

Let us consider the Cauchy problem of a Klein Gordon type nonlinear wave equation of the form:

\begin{align}
 \frac{\partial^2 u}{\partial t^2} - \Delta u + \rho(u_t) + mu &= f(u, \nabla u, u_t) \quad \text{for } (x, t) \in \mathbb{R}^N \times \mathbb{R}^+ \\
 u(x, 0) &= u_0(x) \quad \text{and} \quad u_t(x, 0) = u_1(x) \quad \text{for } x \in \mathbb{R}^N
\end{align}

where \(m \) is a positive constant, \(\rho(v) \) is a function like \(\rho(v) \approx |v|^r v, \ 0 \leq r \leq \frac{2}{(N-2)^+} \), and \(f(u, \nabla u, u_t) \) is a nonlinear term including derivatives of \(u \). For simplicity of notation we assume \(m = 1 \) throughout the paper. We make the following assumption on the nonlinear term \(f(u, v) \).

Hyp.A. \(f(u, v) \) is a \(C^1 \) class function on \(\mathbb{R} \times \mathbb{R}^{N+1} \) and satisfies:

\begin{align}
 |f(u, v)| &\leq k_0(|u|^\alpha + |u|^\beta |v|), \\
 |f_u(u, v)| &\leq k_0(|u|^\alpha + |u|^\beta |v|)
\end{align}

with \(\alpha > 0, \beta \geq 0 \),

and
\[|f_t(u,v)| \leq k_0 |u|^\beta + 1 \]

where \(k_0 > 0 \).

A typical example is \(f = \nabla \cdot G(u) \), a nonlinear convection term. Artificial, but, another typical example is

\[f = |u|^\beta u(d_1|\nabla u|^2/\sqrt{1 + |\nabla u|^2} + d_2 |u_t|^2/\sqrt{1 + |u_t|^2}) \]

For the initial data \((u_0, u_1) \in H_2 \times H_1\) we can show by a standard argument that the problem (1.1)–(1.2) admits a unique local in time solution \(u(t) \in X_2(T) = L^\infty([0,T);H_2) \cap W^{1,\infty}([0,T);H_1) \cap W^{2,\infty}([0,T);L^2) \) for some \(T > 0 \) (cf. Lions and Strauss [2]). Further, if \(\text{supp } u_0 \cup \text{supp } u_1 \subset B(L) \equiv \{ x \in \mathbb{R}^N \mid |x| \leq L \} \) we can show the finite propagation property,

\[\text{supp } u(t) \subset B(L + t), \quad t > 0. \]

(See John [1].)

In this paper we show the global existence of solutions in \(X_2 \equiv X_2(\infty) \) for a small initial data \((u_0, u_1)\) with \(\text{supp } u_0 \cup \text{supp } u_1 \subset B(L) \equiv \{ x \in \mathbb{R}^N \mid |x| \leq L \}, L > 0. \)

When \(f \) is independent of \(\nabla u, u_t \) and the growth order in \(u \) satisfies \(\alpha \leq 2/(N-2)^+ \) we can apply the potential well method by Sattinger [12] to show the existence and uniqueness of global solution in \(C([0, \infty); H_1) \times C^1([0, \infty); L^2) \) for \((u_0, u_1) \in \mathscr{W}^\alpha\), potential well. The dissipative term \(\rho(u_t) \) plays no role in this case. However, if \(\alpha > 2/(N-2)^+ \) the potential well method can not be applied (as far as the existence is concerned the condition \(\alpha < 4/(N-2)^+ \) is sufficient). For such a case we can use the expected decay property of the energy \(E(t) \) by the effect of the term \(\rho(u_t) \). In fact, letting \(\rho(u_t) = |u_t|^\gamma u_t \), for the problem without \(f(u, \nabla, u_t) \) we know the decay estimate

\[E(t) \leq \left\{ E(0)^{-r/2} + m_0 \int_0^{(t-1)^+} (1 + t - s)^{-N \gamma/2} ds \right\}^{-2/r} \]

\[\leq C_0 (1 + t)^{-(2 - N \gamma)/r}, \quad m_0 > 0, \]

provided with \(0 < r < 2/N \), where we set

\[E(t) = \frac{1}{2} (\|u_t(t)\|^2 + \|\nabla u(t)\|^2 + \|u(t)\|^2). \]
Combining this estimate with a rather simple ‘loan’ method as in [6] we can define a ‘modified potential well’ and show the global solutions in X_2 if $\|u_0\|_{H_2} + \|u_1\|_{H_1}$ is small (see [10]). But, if f depends on Vu and/or u_t we can not apply the loan method used in [10]. The object of the present paper is to introduce a very delicate ‘loan’ method and show the existence of global decaying solutions in X_2 for the problem (1.1)–(1.2), $N = 1, 2, 3$, where f depends on Vu and/or u_t. We need to use the relation $H_2 \subset L^\infty$ and it is difficult to treat the higher dimensional case $N \geq 4$.

Quite recently in [9], we have considered the same problem (1.1)–(1.2) (with $m = 0$) in a bounded domain Ω and shown the existence of global decaying solutions by use of a difference inequality on $E(t)$ and a rather complicated ‘loan’ method. We use again similar ideas in [9], but, the derived difference inequality is much more delicate and we must introduce a more delicate loan method than that in [9].

For the interested reader we give some comments on future research. Let us consider the delicate case where the dissipative term $\rho(x, u_t)$ is space-dependent and localized near infinity. For such a case, when $f(u, Vu, u_t) = 0$, we know a similar decay estimate as (1.3) with C_0 replaced by $C_1 = C(\|u_0\|_{H_2} + \|u_1\|_{H_1})$ (cf. [7]). This is known even for the exterior problem with the Dirichlet boundary condition if we assume further that $\rho(x, u_t)$ is effective near a part of the boundary of the obstacle (cf. [8]). Therefore we can expect the existence of global decaying solutions to the initial boundary value problem in the exterior domains with such a nonlinear localized dissipation and a derivative nonlinearity $f(u, Vu, u_t)$. Indeed, we have also treated the equation with a localized dissipation in bounded domains in [9] and it is natural to consider the above problem. It is also an interesting problem whether we can treat the nonlinear wave equation (1.1)–(1.2) without the mass term mu. In this case the difficulty is how to control the L^2-norm of solutions, and when $\rho(u_t)$ is nonlinear like $\rho(u_t) = |u_t|^2 u_t$, we can expect only very weak decay estimates for $E(t)$, say, logarithmic or very weak algebraic type, (cf. Mochizuki-Motai [3] and Todorova-Yordanov [13]). Since the expected decay of $E(t)$ is so weak it seems impossible to treat such a massless equation with a derivative nonlinearity. In spite of such a disadvantage situation there is still some possibility to derive a global existence result if $\rho(u_t)$ is replaced by $\rho(x, u_t)$, space-dependent dissipation, and $\rho(x, v)$ is linear in v for large $|x|$, because we know a certain algebraic decay estimate of $E(t)$ for such a case of ‘half-linear’ dissipation, (cf. [11]). Another interesting problem is to consider the case where $m = m(x)$ depends on x. When $m(x)$ decays at a certain rate as $|x| \to \infty$ it is interesting to find a critical exponent of its decay rate which should assure the global existence of small amplitude solutions to the problem (1.1)–(1.3) as well as the decay estimate of $E(t)$.

(see [5].)
2. Preliminaries and statement of result

We use only familiar function spaces and omit the definition of them. But we note that \(\| \cdot \|_p \), \(1 \leq p \), denotes \(L^p(\mathbb{R}^N) \) norm. We write \(\| \cdot \| \) for \(\| \cdot \|_2 \). For the term \(\rho(v) \) we make the following assumption.

Hyp.B. \(\rho(v) \) is differentiable and monotone increasing in \(v \in \mathbb{R} \) and satisfies:

\[
(1) \quad k_1 |v|^{r+2} \leq \rho(v)v \leq k_2(|v|^{r+2} + |v|^2) \quad \text{if } |v| \leq 1
\]

with \(k_1, k_2 > 0 \), \(0 \leq r < \infty \).

\[
(2) \quad k_1 |v|^{p+2} \leq \rho(v)v \leq k_2|v|^{p+2} \quad \text{if } |v| \geq 1
\]

with some \(k_1, k_2 > 0 \) and \(0 \leq p \leq 2/(N-2)^+ \).

Theorem 2.1. Let \(N = 3 \) and assume Hyp.A and Hyp.B with \(\alpha, \beta \) and \(r \) such that

\[
0 < Nr < 2, \quad \beta + 1 > 4r/(2-Nr) \quad \text{and} \quad 2\alpha - (\alpha-2)^+ > 4r/(2-Nr).
\]

Let \((u_0, u_1) \in H_2 \times H_1 \) with

\[
\text{supp } u_0 \cup \text{supp } u_1 \subseteq B(L), \quad L > 0,
\]

and take \(\tilde{K}_2 > 0 \) such that

\[
\|u_0\|_{H_2} + \|u_1\|_{H_1} < \tilde{K}_2.
\]

Then there exists \(\delta = \delta(\tilde{K}_2, L) > 0 \) such that if \(E(0) < \delta \), the problem (1.1)–(1.2) admits a unique solution \(u(\cdot) \in X_2 \), satisfying

\[
E(t) \leq C_0(1+t)^{-(2-Nr)/r}
\]

and

\[
\|u_2(t)\| + \|\nabla u(t)\| + \|\Delta u(t)\| \leq C(E(0), \tilde{K}_2) < \infty, \quad 0 \leq t < \infty.
\]

Corollary 2.1. When \(N = 1, 2 \), the conclusion of Theorem 2.1 holds under the assumption that \(\beta + 1 > 2r/(2-Nr) \) and \(\alpha > 2r/(2-Nr) \). In particular, if \(N = 1 \), under the assumption that \((u_0, u_1) \in H_1 \times L^2 \) and \(\|\nabla u_0\| + \|u_1\| \) is small, the problem (1.1)–(1.2) admits a unique solution \(u(\cdot) \in C([0, \infty); H_1 \cap C^1([0, \infty); L^2) \cap W^{1,p+2}_{loc}([0, \infty); L_p^{p+2}) \), satisfying

\[
E(t) \leq C_0(1+t)^{-(2-r)/r}.
\]

Remark 2.1. When \(r = 0 \) above results hold with the decay estimate replaced by the usual exponential decay \(E(t) \leq C_0 e^{-\lambda t} \), \(\lambda > 0 \). In this case the compactness of \(\text{supp } u_0 \cup \text{supp } u_1 \) is unnecessary.
Remark 2.2. Let V be a compact set in \mathbb{R}^N and Ω be the exterior domain $\Omega = \mathbb{R}^N \setminus V$. We can consider the problem (1.1)–(1.2) in Ω under the boundary condition $u(t)|_{\partial \Omega} = 0$. Then, replacing $H_1(\mathbb{R}^N)$ and $H_2(\mathbb{R}^N)$ by $H_1^0(\Omega)$ and $H_2^0(\Omega) \cap H_1^0(\Omega)$, respectively, the assertion of Theorem holds without any changes.

To derive the decay estimate of $E(t)$ we use the following.

Lemma 2.1 ([4]). Let $\phi(t)$ be a nonnegative function on $[0, T]$, $T > 1$, such that $\phi(t + 1) \leq \phi(t)$ and
$$
\sup_{t \leq s \leq t + 1} \phi(s)^{1+\gamma} \leq C_0 (1 + t)^{\theta} (\phi(t) - \phi(t + 1)), \quad 0 \leq t \leq T - 1
$$
with $C_0 > 0$, $\gamma > 0$ and $0 \leq \theta \leq 1$. Then
$$
\phi(t) \leq \left(\sup_{0 \leq s \leq 1} \phi(s)^{-\gamma} + \frac{\gamma}{C_0} \int_0^{(t-1)^+} (1 + t - s)^{-\theta} ds \right)^{-\frac{1}{\gamma}}, \quad 0 \leq t \leq T.
$$
(When $\gamma = \theta = 0$ we have a usual exponential decay of $\phi(t)$.)

(For a proof see [4].)

3. A loan method

The existence of a local in time solution is standard. Indeed, if $(u_0, u_1) \in H_2 \times H_1$ with $\text{supp } u_0 \cup \text{supp } u_1 \subset B(L)$, then the problem (1.1)–(1.2) admits a unique solution $u(\cdot) \in X_2(T) \equiv L^\infty([0, T); H_2) \cap W^{1, \infty}([0, T); H_1^0) \cap W^{2, \infty}([0, T); L^2)$ for some $T > 0$ and further,
$$
\text{supp } u(t) \subset B(L + t).
$$
If it holds that
$$
\text{ess. sup}_{0 \leq t < T}\left(||u_t(t)|| + ||u_{tt}(t)||_{H_1} + ||u(t)||_{H_2} \right) < \infty,
$$
the solution exists beyond $t = T$. Thus, to prove the global existence it suffices to derive a priori estimates for the first and second order derivatives of u. For this we employ a ‘loan’ method.

Let us assume for a moment,
$$
E(t) \leq K_0 E(0),
$$
$$
E(t) \leq \left(K_1^{-r/2} + m_0 \int_0^{(t-1)^+} (1 + t - s)^{-N_r/2} ds \right)^{-2/r}
$$
and
$$
||u_t(t)|| + ||u_{tt}(t)|| \leq K_2, \quad ||u(t)|| \leq K_2
$$
for $0 \leq t \leq \bar{T} (\leq T)$, where K_0, K_1, K_2 and m_0 are positive constants specified later. By (3.2) we know $E(t) \leq K_1$ on $[0, \bar{T}]$. We note that these estimates are certainly valid for some $\bar{T} > 0$ if

$$K_0 > 1 \quad \text{and} \quad E(0) < K_1$$

and

$$\|u_{tt}(0)\| + \|\nabla u_t(0)\| < K_2, \quad \|\Delta u(0)\| < K_2$$

where

$$u_{tt}(0) = \Delta u_0 - \rho(u_1) + f(u_0, \nabla u_0, u_1) \in L^2.$$

(See the next section.)

We begin with taking such K_0, K_1 and K_2.

By use of the above temporarily assumed estimates (loan!) we shall derive the estimates like

$$E(t) < K_0 E(0) \quad \text{(if } E(0) \neq 0),$$

$$E(t) < \left(K_1^{-(r/2)} + m_0 \int_0^{(t-t_1)^+} (1 + t-s)^{-N/2} ds\right)^{-2/r},$$

$$\|u_{tt}(t)\| + \|\nabla u_t(t)\| \leq Q_2(E(0), K_1, K_2)$$

and

$$\|\Delta u(t)\| \leq Q_2(E(0), K_1, K_2)$$

for $0 \leq t \leq \bar{T} (\leq T)$. If we can show that for some K_1, K_2,

$$Q_2(E(0), K_1, K_2) < K_2,$$

then all of the estimates (3.4)–(3.6)' are strictly better than the assumed estimates (3.1)–(3.3) and we can conclude that the solutions exist globally on $[0, \infty)$ and all of the gained estimates (3.4), (3.5), (3.6) and (3.6)' hold actually on $[0, \infty)$. In fact the required condition (3.7) will be verified if $E(0)$ is sufficiently small.

4. Estimates on $[0, 1]$

Let $K_0 > 1$ and K_1, K_2 be the constants satisfying (3.1), (3.2) and (3.3) on $[0, \bar{T}]$. In this section we shall derive the estimates for $E(t)$ and the second order derivatives of $u(t)$ on $0 \leq t \leq \min\{\bar{T}, 1\}$. These estimates will show that we can take $T > 1$. The arguments are almost the same as in [9] and we sometimes omit the details. We begin with $E(t)$.

Proposition 4.1. When \(N = 3 \) we take \(K_0 > 1 \) such that
\[
1 + CK_0(K_1^{2x-(x-2)/4}K_2^{(x-2)/2} + K_1^{(\beta+1)/4}K_2^{(\beta+1)/2}) < K_0,
\]
where \(C \) is a constant independent of \(u(t) \). Then, if \(E(0) \neq 0 \),
\[
E(t) < K_0 E(0) \quad \text{for} \quad 0 \leq t \leq \min\{1, \hat{T}\}.
\]
When \(N = 1, 2 \) we take \(K_0 \), in stead of (4.1), such that
\[
1 + CK_0(K_1^{x} + K_1^{(\beta-1-\delta)/2}K_2^{\delta}) < K_0
\]
where \(\varepsilon = 0 \) if \(N = 1 \) and \(0 < \varepsilon \ll 1 \) if \(N = 2 \). Then (4.2) holds.

Proof. Assume that
\[
E(t) \leq K_0 E(0) \quad \text{on} \quad [0, \hat{T}]
\]
for some \(\hat{T} \leq \min\{\hat{T}, 1\} \). Such a choice of \(\hat{T} \) is possible since \(K_0 > 1 \). Note that if \(N = 3 \), by use of the Gagliardo-Nirenberg inequality \(\|u\|_\infty \leq C\|u\|_6^{1/2}\|\nabla u\|^{1/2} \leq C\|\nabla u\|^{1/2} \| \Delta u \|^{1/2} \) for \(u \in H_2 \) we see
\[
\|u\|_{2(x+1)}^{x+1} \leq C\|u\|_{\infty}^{x-2}\|\nabla u\|^{3} \leq C\|\nabla u\|^{3+(x-2)/2}\|\Delta u\|^{(x-2)/2} \quad \text{if} \quad x > 2
\]
and also,
\[
\|u\|_{2(x+1)}^{x+1} \leq C\|u\|^{(2-x)/2}\|\nabla u\|^{3x/2} \leq CE(t)^{(x+1)/2} \quad \text{if} \quad 0 < x \leq 2.
\]
Then,
\[
E(t) \leq E(0) + \int_0^t \int_{\mathbb{R}^N} |f(u, \nabla u, u_t)| dx ds
\]
\[
\leq E(0) + C \int_0^t (\|u\|_{2(x+1)}^{x+1}\|u_t\| + \|u\|_\infty^\beta E(s)) ds
\]
\[
\leq (1 + CK_0K_1^{(2x-(x-2)/4)}K_2^{(x-2)/2} + CK_0K_1^{(\beta+1)/4}K_2^{(\beta+1)/2})E(0), \quad 0 \leq t \leq \hat{T}.
\]
This estimate means that under the assumption (4.1), we can take \(\hat{T} = \min\{\hat{T}, 1\} \) and \(E(t) < K_0 E(0) \) for \(0 \leq t \leq \min\{\hat{T}, 1\} \) if \(E(0) \neq 0 \).

When \(N = 1, 2 \) we modify the above estimation by use of the inequalities
\[
\|u(t)\|_\infty \leq C(\|u(t)\| + \|\nabla u(t)\|)^{-1-\varepsilon}\|\Delta u(t)\|^{-\varepsilon}
\]
with \(\varepsilon = 0 \) if \(N = 1 \) and \(0 < \varepsilon \ll 1 \), arbitrarily small, if \(N = 2 \), and
\[
\|u(t)\|_{2(x+1)} \leq C(\|u(t)\| + \|\nabla u(t)\|).
\]
For estimation of the second order derivatives we prepare:

Proposition 4.2. Let $N = 3$. For $0 \leq t < \bar{T}$ we have, under the assumptions (4.1) and (4.2), that

\[
(4.3) \quad \frac{d}{dt} E_1(t) \leq C(K_2^{(\beta+3)/2} E(t)^{(\beta+1)/4} + CK_0 E(t)^{(2\sigma-(\alpha-2)^+)/4} K_2^{(\alpha-2)^+}/2) \sqrt{E_1(t)}
\]

where we set

\[
E_1(t) = \frac{1}{2} (\|u_{tt}(t)\|^2 + \|\nabla u_{t}(t)\|^2 + |u_t(t)|^2).
\]

When $N = 1, 2$ we have

\[
(4.3)' \quad \frac{d}{dt} E_1(t) \leq C(K_2^{N/2+\varepsilon} E(t)^{(\beta(1-\varepsilon)/2+(4-N)/4)}
\]

\[
+ K_2^{1+(\beta+1)\varepsilon} E(t)^{(\beta+1)(1-\varepsilon)/2} + K_2^{2\varepsilon} E(t)^{(1-\varepsilon)\alpha)/2+1/2}) \sqrt{E_1(t)}
\]

where $\varepsilon = 0$ if $N = 1$ and $0 < \varepsilon \ll 1$ if $N = 2$.

Proof. Differentiating the equation, we have

\[
u_{ttt} - \Delta u_t + u_t + \rho_v(u_t)u_{tt} = f_uu_t + f_t \cdot (\nabla u_t, u_{tt}).
\]

Multiplying the equation by u_{tt} and integrating, we have

\[
\frac{d}{dt} E_1(t) \leq C \int_{R^n} |u|^2 |u_t| |u_{tt}| dx + C \int_{R^n} |u|^\beta (|\nabla u| + |u_t|)|u_t||u_{tt}| dx
\]

\[
+ C \int_{R^n} |u|^\beta + 1 (|\nabla u_t| + |u_{tt}|)|u_{tt}| dx
\]

\[
\equiv I_1 + I_2 + I_3.
\]

Let $N = 3$. By Gagliardo-Nirenberg inequality,

\[
I_1 = C \|u(t)\|^2_{L^\infty} \sqrt{E(t)} \sqrt{E_1(t)} \leq CK_2^{3/2} E(t)^{(x+2)/4} \sqrt{E_1(t)}.
\]

Similarly,

\[
I_2 \leq C \|u(t)\|^\beta_{L^\infty} (\|\nabla u(t)\|^2_4 + \|u_t\|^2_4) \sqrt{E_1(t)}
\]

\[
\leq CK_2^{(\beta+3)/2} E(t)^{(\beta+1)/4} \sqrt{E_1(t)}
\]

and

\[
I_3 \leq C \|u(t)\|^{\beta+1}_{L^\infty} \sqrt{E_1(t)} \leq CK_2^{(\beta+3)/2} E(t)^{(\beta+1)/4} \sqrt{E_1(t)}.
\]
Thus we obtain (4.3). When $N = 1, 2$ we have only to modify the arguments as in the proof of Proposition 4.1.

Note that by Proposition 4.1, we know $E(t) < K_0 E(0)$ for $0 \leq t \leq \min\{1, \hat{T}\}$. From this and (4.3) or (4.3)' we immediately get the following:

Proposition 4.3. If $N = 3$ we have for $0 \leq t \leq \min\{1, \hat{T}\}$,

$$(4.5) \quad \sqrt{E_1(t)} \leq \sqrt{E_1(0)} + C(K_2^{(\beta+3)/2}(K_0 E(0))^{(\beta+1)/4} + K_2^{x/2}(K_0 E(0))^{(x+2)/4})$$

$$\equiv \tilde{Q}_2(K_0 E(0), E_1(0), K_2).$$

When $N = 1, 2$ the above holds with \tilde{Q}_2 replaced by

$$\tilde{Q}_2 \equiv \sqrt{E_1(0)} + C(K_2^{2\varepsilon}(E(0))^{(1-\varepsilon)x/2+1/2} + K_2^{N/2+\beta}(K_0 E(0))^{(\beta(1-\varepsilon)/2) + (4-N)/4}$$

$$+ K_2^{1+(\beta+1)\varepsilon}(E(0))^{(\beta+1)(1-\varepsilon)/2})$$

with $\varepsilon = 0$ if $N = 1$ and $0 < \varepsilon \ll 1$ if $N = 2$.

Further, we obtain the following.

Proposition 4.4. Assume that the estimates (4.1)–(4.2) holds. If $N = 3$ we have for $0 < t \leq \hat{T}$,

$$(4.6) \quad \|Au(t)\| \leq \sqrt{2E_1(t)} + C\sqrt{E(t)}$$

$$+ C(K_2^{3p/2}E(t)^{(2-p)/4} + K_2^{(\beta+1)/2}E(t)^{(\beta+3)/4})$$

$$+ K_2^{(x-2)^+/2}E(t)^{(2x+1)-(x-2)^+/4}).$$

When $N = 1, 2$ we have

$$(4.6)' \quad \|Au(t)\| \leq \sqrt{2E_1(t)} + C\sqrt{E(t)}$$

$$+ C(K_2^{Np/2}E(t)^{((2-N)p+2)/4}$$

$$+ K_2^{2(\beta+1)\varepsilon}E(t)^{(\beta+1)(1-\varepsilon)+1/2} + CE(t)^{(x+1)/2}).$$

In particular, for t, $0 \leq t \leq \min\{\hat{T}, 1\}$, we have

$$(4.7) \quad \|Au(t)\| \leq \sqrt{2\tilde{Q}_2} + C\sqrt{K_0 E(0)}$$

$$+ C(K_2^{3p/2}(K_0 E(0))^{(2-p)/4} + K_2^{(\beta+1)/2}(K_0 E(0))^{(\beta+3)/4})$$

$$+ K_2^{(x-2)^+/2}(K_0 E(0))^{(x+1)/2-(x-2)^+/4})$$

$$\equiv Q_2(K_0 E(0), E_1(0), K_2), \quad N = 3.$$
When $N = 1, 2$ we have instead of (4.7),

$$(4.7') \quad \|\Delta u(t)\| \leq \sqrt{2}Q_2 + C\sqrt{K_0}E(0)$$

$$+ C(K_2^{Np/2}(K_0E(0))^{((2-N)p+2)/4} + K_2^{2(\beta+1)\varepsilon}(K_0E(0))^{(\beta+1)(1-\varepsilon)+1/2}$$

$$+ C(K_0E(0))^{(x+1)/2} \equiv Q_2(K_0E(0), E_1(0), K_2).$$

with $\varepsilon = 0 \ (N = 1)$ or $0 < \varepsilon \ll 1 \ (N = 2)$.

Proof. By the equation (4.4) and Hyp.B we have

$$(4.8) \quad \|\Delta u(t)\| \leq \|u_{tt}(t)\| + C\left(\int_{R^N}|u_t|^2 + |u_t|^{2(p+1)}dx\right)^{1/2}$$

$$+ C\left(\int_{R^N}|u_t|^{2(x+1)} + |u_t|^{2(\beta+1)}(|u_t|^2 + |\nabla u|^2)dx\right)^{1/2}.$$

Applying Gagliardo-Nirenberg inequality we easily obtain (4.6) and (4.6)'. (4.7) and (4.7)' follow from (4.5), (4.6) and (4.6)' respectively.

It follows from Proposition 4.3 and 4.4 that for $0 \leq t \leq \min\{\hat{T}, 1\},$

$$(4.9) \quad \|u_{tt}(t)\| + \|\nabla u_t(t)\| \leq \sqrt{2}Q_2 \leq Q_2(K_0E(0), E_1(0), K_2),$$

$$\|\Delta u(t)\| \leq Q_2(K_0E(0), E_1(0), K_2).$$

Now we make the assumptions:

$$(4.10) \quad K_0E(0) < K_1 \quad \text{and} \quad Q_2(K_0E(0), E_1(0), K_2) < K_2.$$

We fix $K_0 > 1$ and take K_2 so large that $E_1(0) < K_2$. (Note that the choice of K_2 depends only on K_2 appearing in Theorem 2.1.) Then these inequalities are certainly valid if we assume that $E(0)$ is sufficiently small. The earlier required conditions (4.1) and (4.1)' are also satisfied if K_1 is sufficiently small, that is, $E(0)$ is sufficiently small. Thus we conclude that if $E(0)$ is sufficiently small, then we can take $\hat{T} > 1$ and the estimates (4.2) and (4.9) are in fact valid for $0 \leq t \leq \hat{T}$ (Note that the estimate (3.2) also holds on $[0, \hat{T}]$ with some $\hat{T} > 1$ if $K_0E(0) < K_1$.)

5. **A difference inequality**

By refining the argument in [5] we derive a difference inequality for $E(t)$ which will be useful to derive the boundedness and decay of $E(t)$ on $[0, \infty)$. We make the assumptions in (4.10) and hence, $u(\cdot) \in X_2(\hat{T}), \hat{T} > \hat{T} > 1.$
Multiplying the equation by u_t and integrating, we have

(5.1) \[\int_t^{t+1} \int_{\mathbb{R}^N} \rho(u_t) u_t \, dx \, ds = E(t) - E(t + 1) + \int_t^{t+1} \int_{\mathbb{R}^N} F(x, s) u_t \, dx \, ds \]
\[\equiv D(t)^2, \quad 0 < t \leq T - 1, \]

where $F(x, t) = f(u, \nabla u, u_t)$.

By the assumption on ρ, we see

(5.2) \[\int_t^{t+1} \left(\int_{\Omega_1(t)} |u_t(s)|^{r+2} \, dx + \int_{\Omega_2(t)} |u_t(s)|^{p+2} \, dx \right) \, ds \leq CD(t)^2, \]

where we set

\[\Omega_1(t) = \{ x \in \mathbb{R}^N \mid |u(x, t)| \leq 1 \} \quad \text{and} \quad \Omega_2(t) = \{ x \in \mathbb{R}^N \mid |u(x, t)| \geq 1 \}. \]

It follows from (5.2) that

(5.3) \[\int_t^{t+1} \|u_t(s)\|^2 \, ds \leq \left(\int_t^{t+1} \int_{\Omega_1(t)} |u_t(s)|^{r+2} \, dx \, ds \right)^{2/(r+2)} \left(\int_{B(L+t)} \frac{1}{4} \, dx \right)^{r/(r+2)} + \int_t^{t+1} \int_{\Omega_2(t)} |u_t(s)|^{p+2} \, dx \, ds \]
\[\leq C(C(L)(1 + t)^{N/(r+2)} D(t)^{2/(r+2)} + D(t)^2) \]

and there exist $t_1 \in [t, t + 1/4]$, $t_2 \in [t + 3/4, t + 1]$ such that

\[\|u_t(t_i)\|^2 \leq C(C(L)(1 + t)^{N/(r+2)} D(t)^{2/(r+2)} + D(t)^2), \quad i = 1, 2. \]

Next, multiplying the equation by $u(t)$ and integrating on $[t_1, t_2] \times \Omega$ we have (note that $\|u(t)\| \leq \sqrt{E(t)}$)

(5.4) \[\int_{t_1}^{t_2} (\|u(s)\|^2 + \|\nabla u(s)\|^2) \, ds \]
\[= (u_t(t_1), u(t_1)) - (u_t(t_2), u(t_2)) \]
\[+ \int_{t_1}^{t_2} \|u_t(s)\|^2 \, ds + \int_{t_1}^{t_2} (fu + \rho(x, u_t)u) \, dx \, ds \]
\[\leq C(C(L)(1 + t)^{N/(2(r+2))} D(t)^{2/(r+2)} + D(t)) \sup_{t \leq s \leq t+1} \sqrt{E(s)} \]
It follows from (5.3) and (5.4) that
\[
\int_{t_1}^{t_2} E(s) ds \leq CA(t)^2
\]
and hence, there exists \(t^* \in [t_1, t_2] \) such that
\[E(t^*) \leq CA(t)^2. \]
(Note that the constants \(C \) may change from line to line.) Thus we have
\[
\sup_{t \leq s \leq t+1} E(s) \leq E(t^*) + \int_t^{t+1} \int_{\Omega} \rho(u_t(s)) u_t(s) dx ds + \int_t^{t+1} \int_{\Omega} |F(x, s)| |u_t| dx ds.
\]
Applying Young inequality to (5.5) and absorbing \(\sup_{t \leq s \leq t+1} \sqrt{E(s)} \) on the right-hand side into the left-hand side we arrive at the following difference inequality:

Proposition 5.1. For \(0 \leq t < T - 1 \), we have
\[
\sup_{t \leq s \leq t+1} E(s) \leq C(L)(1 + t)^{N/(r+2)} D(t)^{4/(r+2)} + D(t)^2
\]
\[
+ C \left(\int_t^{t+1} \int_{\Omega} |u_t|^2 dx ds \right)^{1/2} \sup_{t \leq s \leq t+1} E(s)
\]
\[
+ \left(\int_t^{t+1} \int_{\Omega} |u_t|^{p+2} dx ds \right)^{(p+2)/(p+1)} \left(\int_t^{t+1} \int_{\Omega} |u_t|^2 dx ds \right)^{1/(p+2)}
\]
\[
+ \left(\int_t^{t+1} \|F(s)\|^2 ds \right)^{1/2} \sup_{t \leq s \leq t+1} \sqrt{E(s)}
\]
\[
\leq C(L) \left((1 + t)^{N/2(r+2)} D(t)^{2/(r+2)} + D(t)
\right.
\]
\[
\left. + D(t)^{2(p+2)/(p+1)} + \left(\int_t^{t+1} \|F(s)\|^2 ds \right)^{1/2} \right) \sup_{t \leq s \leq t+1} E(s)
\]
\[
\equiv A(t)^2.
\]
where we recall
\[
D(t)^2 = \int_t^{t+1} \int_\Omega \rho(u_t) u_t \, dx \, dt = E(t) - E(t + 1) + \int_t^{t+1} \int_\Omega F_t \, dx \, ds
\]
and
\[
F(x, t) = f(u, \nabla u, u_t).
\]

6. Boundedness and decay of \(E(t) \) on \([0, \bar{T}]\)

From the difference inequality (5.6) we first derive the boundedness of \(E(t) \), \(0 \leq t \leq \bar{T} \). Assume that \(E(t) \leq E(t + 1) \) for some \(t, 0 \leq t \leq \bar{T} - 1 \). Then, the inequality (5.6) implies

\[
\begin{align*}
\sup_{t \leq s \leq t+1} E(s) \leq C(1 + t)^{N \gamma/(r + 2)} & \left(\int_t^{t+1} \int_{R^N} |F_t|^2 \, dx \, ds \right)^{2/(r+2)} \\
& + C \left(\int_t^{t+1} \int_{R^N} |F_t|^2 \, dx \, ds \right)^{(p+1)/(p+2)} + C \int_t^{t+1} \int_{R^N} |F|^2 \, dx \, ds.
\end{align*}
\]

By the argument in the proof of Proposition 4.1 we know, if \(N = 3 \),

\[
\begin{align*}
\int_t^{t+1} \int_{R^N} |F_t|^2 \, dx \, ds \\
\leq C \left(K_2^{(x-2)^+}/2 \sup_{t \leq s \leq t+1} E(s)^{(2x+4-(x-2)^+)/4} + K_2^{(1+\beta)/2} \sup_{t \leq s \leq t+1} E(s)^{(\beta+5)/4} \right) \\
\end{align*}
\]

and

\[
\begin{align*}
\int_t^{t+1} \int_{R^N} |F|^2 \, dx \, ds \\
\leq C \left(K_2^{(x-2)^+} \sup_{t \leq s \leq t+1} E(s)^{(x+1)-(x-2)^+/2} + K_2^{\beta+1} \sup_{t \leq s \leq t+1} E(s)^{(\beta+3)/2} \right).
\end{align*}
\]

Then, if \(N = 3 \), we have from (6.1),

\[
\begin{align*}
\sup_{t \leq s \leq t+1} E(s) \\
\leq C(1 + t)^{N \gamma/(r+2)} & \left(K_2^{(x-2)^+}/2 \sup_{t \leq s \leq t+1} E(s)^{(2x+4-(x-2)^+)/4} \\
& + K_2^{(\beta+1)/2} \sup_{t \leq s \leq t+1} E(s)^{(\beta+5)/4} \right)^{2/(r+2)}
\end{align*}
\]
\[+ C \left(K_2^{(x-2)/2} \sup_{t \leq s \leq t+1} E(s)^{(2x+4-(x-2))}/4 \right. \\
\left. + K_2^{(\beta+1)/2} \sup_{t \leq s \leq t+1} E(s)^{(\beta+5)/4}\right)^{2(p+1)/(p+2)} \\
+ C \left(K_2^{(x-2)^+} \sup_{t \leq s \leq t+1} E(s)^{x+1-(x-2)^+}/2 \right. \\
\left. + K_2^{\beta+1} \sup_{t \leq s \leq t+1} E(s)^{(\beta+3)/2}\right) \\
\equiv I_1 + I_2 + I_3. \]

By (3.2) we see \(E(t) \leq C(K_1 + m_0^{-2/r})(1 + t)^{-(2-Nr)/r} \). Using this assumption and \(E(t) \leq K_0 E(0), \ 0 \leq t \leq \hat{T}, \) we can treat the first term of the right-hand side as follows.

\[(6.3) \quad I_1 \leq CK_2^{(x-2)^+/(r+2)}(1 + t)^{Nr/(r+2)} \sup_{t \leq s \leq t+1} E(s)^{(2x+4-(x-2)^+)/(2(r+2)-(\mu_1+1))} \]
\[\times \sup_{t \leq s \leq t+1} E(s)^{\mu_1+1} \]
\[+ CK_2^{\beta+1/(r+2)} \sup_{t \leq s \leq t+1} E(s)^{(\beta+3)/(2(r+2) - (\mu_2+1))} \times (1 + t)^{Nr/(r+2) - (2x+4-(x-2)^+)(2-Nr)/(2r(r+2)+{(\mu_1+1)(2-Nr)})/r} \times (K_0 E(0))^\mu \sup_{t \leq s \leq t+1} E(s) \]
\[+ C(K_1, m_0)K_2^{\beta+1/(r+2)}(1 + t)^{Nr/(r+2) - (\beta+5)(2-Nr)/(2r(r+2)+{(\mu_2+1)(2-Nr)})/r} \times (K_0 E(0))^\mu \sup_{t \leq s \leq t+1} E(s) \]
\[\leq C(K_1, m_0)((K_0 E(0))^{\mu_1} + (K_0 E(0))^{\mu_2}) \sup_{t \leq s \leq t+1} E(s) \]

where we have set
\[\mu_1 = (2x - (x - 2)^+)/2(r + 2) - 2r/(r + 2)(2-Nr), \]
\[\mu_2 = (\beta + 1)/2(r + 2) - 2r/(r + 2)(2-Nr) \]
and assumed that $\mu_1, \mu_2 > 0$, that is,

$$2\alpha - (\alpha - 2)^+ > 4r/(2 - Nr) \quad \text{and} \quad \beta + 1 > 4r/(2 - Nr).$$

We easily see,

$$I_2 \leq (K_2^{(\alpha - 2)^+/(p+1)/(p+2)}(K_0E(0))^{(2\alpha - (\alpha - 2)^+)(p+1) - (p+2)/(p+2)}$$

$$+ K_2^{(p+1)/(\beta+1)/(p+2)}(K_0E(0))^{((\beta + 3)p+\beta+1)/2(p+2)} \sup_{t \leq s \leq t+1} E(s)$$

and

$$I_3 \leq (K_2^{(\alpha - 2)^+}(K_0E(0))^{(2\alpha - (\alpha - 2)^+ + 2} + K_2^{\beta+1}(K_0E(0))^{(\beta+1)/2}) \sup_{t \leq s \leq t+1} E(s).$$

Thus we obtain

$$(6.5) \quad \sup_{t \leq s \leq t+1} E(s) \leq Q_0(K_1, K_2, K_0E(0)) \sup_{t \leq s \leq t+1} E(s)$$

where

$$(6.6) \quad Q_0(K_1, K_2, K_0E(0))$$

$$\equiv C(K_1, m_0)(K_2^{(\alpha - 2)^+/(r+2)}(K_0E(0))^{\mu_1} + K_2^{(\beta+1)/(r+2)}(K_0E(0))^{\mu_2})$$

$$+ (K_2^{(\alpha - 2)^+/(p+1)/(p+2)}(K_0E(0))^{(2\alpha - (\alpha - 2)^+)(p+1) - (p+2)/(p+2)}$$

$$+ K_2^{(p+1)/(\beta+1)/(p+2)}(K_0E(0))^{((\beta + 3)p+\beta+1)/2(p+2)}$$

$$+ (K_2^{(\alpha - 2)^+}(K_0E(0))^{(2\alpha - (\alpha - 2)^+ + 2} + K_2^{\beta+1}(K_0E(0))^{(\beta+1)/2}).$$

Similarly, when $N = 1, 2$ we have

$$(6.6)' \quad \sup_{t \leq s \leq t+1} E(s) \leq C(1 + t)^{Nr/(r+2)}\left(\sup_{t \leq s \leq t+1} E(s)^{(\beta+1)(1-\varepsilon)/2+1} \|\Delta u(s)\|^{(\beta+1)/2} \right)^{2/(r+2)}$$

$$+ \sup_{t \leq s \leq t+1} E(s)^{2/(r+2)}$$

$$+ C\left(\sup_{t \leq s \leq t+1} E(s)^{(\beta+1)(1-\varepsilon)/2+1} \|\Delta u(s)\|^{(\beta+1)/2} \right)^{2(p+1)/(p+2)}$$

$$+ \sup_{t \leq s \leq t+1} E(s)^{2(p+1)/(p+2)}.$$
\[+ C \sup_{t \leq s \leq t+1} E(s)^{(\beta+1)(1-c)/2+1} \|Au(s)\|^{2(\beta+1)c} \]
\[+ \sup_{t \leq s \leq t+1} E(s)^{x+1} \|Au(s)\|^{2(x+1)c} \]
\[\leq CQ_0(K_0E(0), K_1, K_2) \sup_{t \leq s \leq t+1} E(s), \quad 0 \leq t \leq \tilde{T} - 1. \]

where

\[Q_0(K_0E(0), K_1, K_2) \]
\[\equiv C(K_1, m_0)((K_0E(0))^\mu_1 + K_2^{2(\beta+1)c/(r+2)}(K_0E(0))^{\mu_2}) \]
\[+ C((K_0E(0))^{((p+1)(\beta+1)(1-c)+2p)/(p+2)}K_2^{2(\beta+1)c(p+1)/(p+2)}) \]
\[+ C((K_0E(0))^{(\beta+1)(1-c)}K_2^{(\beta+1)c} + (K_0E(0))^{2x}). \]

with \(c = 0 \) if \(N = 1 \) and \(0 < c < 1 \) if \(N = 2 \), where we have assumed

\[\mu_1 \equiv (\alpha(2-Nr) - 2r)/(2-Nr)(r+2) > 0, \]

and

\[\mu_2 \equiv ((\beta+1)(1-c)(2-Nr) - 2r)/(2-Nr)(r+2) > 0, \]

that is,

\[(6.4)' \quad \beta + 1 > 2r/(2-Nr) \quad \text{and} \quad \alpha > 2r/(2-Nr). \]

We assume (6.4) if \(N = 3 \) and (6.4)' if \(N = 1, 2 \). Then, for a sufficiently small \(E(0) \) we see

\[(6.7) \quad CQ_0(K_0E(0), K_1, K_2) < 1. \]

Under the assumption (6.7) we have \(\sup_{t \leq s \leq t+1} E(s) = 0 \). That is, if \(E(t) \leq E(t+1) \), then \(E(s) = 0 \), \(t \leq s \leq t+1 \). This implies that

\[(6.8) \quad E(t+1) \leq E(t) \quad \text{for all} \quad t, 0 \leq t \leq \tilde{T} - 1, \]

and hence from (4.2),

\[(6.9) \quad E(t) \leq \sup_{0 \leq s \leq 1} E(s) < K_0E(0), \quad 0 \leq t \leq \tilde{T}, \quad \text{if} \quad E(0) \neq 0. \]

Now we can show the decay estimate of \(E(t) \). Returning to the difference inequality (5.6), we have

\[(6.10) \quad \sup_{t \leq s \leq t+1} E(s) \leq CQ_0(K_0E(0), K_1, K_2) \sup_{t \leq s \leq t+1} E(s) \]
\[+ C\{(1+t)^{Nr/(r+2)}D_0(t)^{4/(r+2)} + D_0(t)^{4(p+1)/(p+2)} + D_0(t)^2\} \]
where
\[D_0(t)^2 = E(t) - E(t + 1) \geq 0. \]

Here, we make a little stronger assumption than (6.7),

\[(6.7)' \quad CQ_0(K_0E(0), K_1, K_2) \leq \frac{1}{2}. \]

Then, from (6.10),
\[
\sup_{t \leq s \leq t + 1} E(s)^{1+r/2} \leq \hat{C}_0(1 + t)^{Nr/2}(E(t) - E(t + 1))
\]
where \(\hat{C}_0 = C\{(K_0E(0))^r + (K_0E(0))^{(pr + p + r)/(p + 2)} + 1\} \). Since we may assume \(K_0E(0) < 1 \) we can replace \(\hat{C}_0 \) by \(\hat{C} \) which is independent of \(K_0 \) and \(E(0) \). We apply the lemma below to get the decay estimate

\[(6.11) \quad E(t) \leq \left(\sup_{0 \leq s \leq 1} E(s) \right)^{-r/2} + r(2\hat{C})^{-1} \int_0^{(t-1)^+} (t - s)^{-Nr/2} ds \]
\[0 \leq t \leq T. \]

We summarize the result in this section.

Proposition 6.1. We assume that \(0 < Nr < 2 \) and

\[\beta + 1 > 4r/(2 - Nr) \quad \text{and} \quad 2\alpha - (\alpha - 2)^+ > 4r/(2 - Nr) \quad \text{if} \quad N = 3 \]

or

\[\beta + 1 > 2r/(2 - Nr) \quad \text{and} \quad \alpha > 2r/(2 - Nr) \quad \text{if} \quad N = 1, 2. \]

Then, under the temporary assumptions (‘loan’) (3.1), (3.2) and (3.3) with \(K_0, K_1, K_2 \) satisfying (6.4) (or (6.4)') and (6.7)', we have (6.8) and (6.9). Further, the decay estimate (6.11) holds.

Now we take \(K_1 \) such that

\[(6.12) \quad \left(\sup_{0 \leq s \leq 1} E(s) \right) K_0E(0) < K_1. \]

Then, setting \(m_0 = r(2\hat{C})^{-1} \) we obtain the decay estimate

\[(6.13) \quad E(t) < \left(K_1^{-r/2} + m_0 \int_0^{(t-1)^+} (t - s)^{-Nr/2} ds \right)^{-2/r}, \quad 0 \leq t \leq T. \]

Note that the estimate (6.13) is strictly better than the temporarily made assumption (3.2).

Remark 6.1. Note that \(Q_0(K_0E(0), K_1, K_2) \) appearing in (6.4) does not include \(K_2 \) if \(N = 1 \). Also the condition (4.1)' is independent of \(K_2 \). So,
without any information on K_2 these conitions are satisfied if K_1 is small, that is, $E(0)$ is small. Thus we have proved the latter assertion of Corollary 2.1.

7. Completion of the proof of Theorem

Finally, we estimate the second order derivatives of $u(t)$ on $[0, \tilde{T}]$ which will in fact yield the boundedness of the second order derivatives on $[0, \infty)$ and complete the proof of Theorem 2.1.

We return to the differentiated equation,

$$u_{ttt} - \Delta u_t + \rho'(u_t)u_{tt} = f_u u_t + \nabla \cdot (\nabla u_t, u_{tt}).$$

We already know the estimates (4.3) and (4.3)'.

We take the exponent n such that $n > r/(2 - Nr)$. Then from the estimate (6.11) for $E(t)$, we have

$$(7.1) \quad \int_0^{\tilde{T}} E(t)^v dt$$

$$\leq \int_0^\infty \left(\left(\sup_{0 \leq t \leq 1} E(s) \right)^{-\nu/2} + r/(2C_0) \int_0^{(t-1)} (t + 1 - s)^{-\nu/2} ds \right)^{-2\nu/r} dt$$

$$\leq 2(K_0E(0))^v + \int_2^\infty \left((K_0E(0))^{-\nu/2} + 2/(2 - Nr)(t + 1)^{(2-Nr)/2} - 2^{(2-Nr)/2} \right)^{-2\nu/r} dt$$

$$\leq (K_0E(0))^v + \int_2^\infty \left((K_0E(0))^{-\nu/2} + 2m_1/2 - Nr(t - 1)^{(2-Nr)/2} \right)^{-2\nu/r} dt$$

$$\leq 2(K_0E(0))^v + \int_1^\infty \left\{ \left(2m_1/2 - Nr \right)^{-2\nu/r} \right\} dt$$

$$\leq 2(K_0E(0))^v + \int_1^\infty \left\{ \left(2m_1/2 - Nr \right)^{-2\nu/r} \right\} dt$$

$$= 2K_0E(0)^v + m_2(K_0E(0))^{-\nu/r(2-Nr)},$$
where \(m_1 = 3^{(2-Nr)/2} - 2^{(2-Nr)/2} \) and \(m_2 \) is a certain positive constant depending on \(m_1 \) and \(r \). It follows from (4.3) and (7.1) that if \(N = 3 \),

\[
(7.2) \quad \sqrt{E_1(t)} \leq \sqrt{E_1(0)} + C \{ K_2^{\beta/2} ((K_0 E(0))^{(x+2)/4} + (K_0 E(0))^{(x+2)/(4-r(2-Nr))}) \\
+ K_2^{(\beta+3)/2} ((K_0 E(0))^{(\beta+1)/4} \\
+ (K_0 E(0))^{(\beta+1)/(4-r(2-Nr))}) \}
\]

\[
\equiv \tilde{Q}_2(K_0 E(0), K_2)
\]

provided that \(\beta + 1 > 4r/(2-Nr) \) and \(x + 2 > 4r/(2-Nr) \), which are valid under (6.4).

When \(N = 1,2 \) we have instead of (7.2),

\[
(7.2)' \quad \sqrt{E_1(t)} \leq \sqrt{E_1(0)} + C \{ K_2^{N/2+\beta} ((K_0 E(0))^{\beta(1-\varepsilon)/2+(4-N)/4} \\
+ (K_0 E(0))^{\beta(1-\varepsilon)/2+(4-N)/4-r(2-Nr)}) \\
+ K_2^{1+(\beta+1)/2} ((K_0 E(0))^{(\beta+1)(1-\varepsilon)/2} + (K_0 E(0))^{(\beta+1)(1-\varepsilon)/2-r(2-Nr)}) \\
+ K_2^{\infty}((K_0 E(0))^{1-\varepsilon-x)/2+1/2} + (K_0 E(0))^{(1-\varepsilon-x)/2+1/2-r(2-Nr)}) \}
\]

\[
\equiv \tilde{Q}_2(K_0 E(0), K_2)
\]

provided that \(\beta + 1 > 2r/(2-Nr) \) and \(x + 1 > 2r/(2-Nr) \), which are valid under (6.4)'.

Thus we obtain

\[
(7.3) \quad \lVert u_t(t) \rVert + \lVert \nabla u(t) \rVert \leq 2 \tilde{Q}_2(K_0 E(0), K_2)
\]

Further, we see that the estimates (4.7) and (4.7)' holds for \(0 \leq t \leq \tilde{T} \). That is,

\[
(7.4) \quad \lVert \Delta u(t) \rVert \leq \sqrt{2} \tilde{Q}_2 + C \sqrt{K_0 E(0)} \\
+ C(K_2^{3p/2}(K_0 E(0))^{(2-p)/4} + K_2^{(\beta+1)/2}(K_0 E(0))^{(\beta+3)/4} \\
+ K_2^{(\infty-\varepsilon)/2}(K_0 E(0))^{(x+1)/2-(x-2)/4})
\]

\[
\equiv Q_2(K_0 E(0), K_2), \quad 0 \leq t \leq \tilde{T}.
\]

When \(N = 1,2 \) we have

\[
(7.4)' \quad \lVert \Delta u(t) \rVert \leq \sqrt{2} \tilde{Q}_2 + C \sqrt{K_0 E(0)} \\
+ C(K_2^{N/2}(K_0 E(0))^{(2-Np)/4} + K_2^{2(\beta+1)x}(K_0 E(0))^{(\beta+1)(1-\varepsilon)+1/2} \\
+ C(K_0 E(0))^{(x+1)/2} \equiv Q_2(K_0 E(0), K_2).
\]
Here, we make the additional assumption

\[(7.5) \quad 2\tilde{Q}_2(K_0 E(0), K_2) < K_2 \quad \text{and} \quad Q_2(K_0 E(0), K_2) < K_2.\]

Note that (7.5) is true if \(E(0)\) is sufficiently small. In conclusion we take \(K_0, K_1\) and \(K_2\) such that

\[K_0 > 1, \quad K_0 E(0) < K_1 \quad \text{and} \quad \|u(0)\| + \|\nabla u_1\| < K_2, \quad \|Au_0\| < K_2\]

and assume that \(E(0)\) is so small that (4.1) (or (4.1)'), (6.7)' and (7.5) may hold. Then the solution exists on \([0, \infty)\) and all of the estimates derived for \(E(t), \|u(t)\| + \|\nabla u(t)\|\) and \(\|Au(t)\|\) are valid for \(t, 0 \leq t < \infty\).

The proof of Theorem 2.1 is now complete.

Acknowledgement. The author would like to thank the referee for careful reading of the manuscript and some useful comments.

References

[1] John, F., Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235–268.

[2] Lions, J. L. and Strauss, W., Some non-linear evolution equations, Bull. Soc. Math. France, 93 (1965), 43–96.

[3] Mochizuki, K. and Motai, T., On energy decay-nondecay problems for wave equations with nonlinear dissipative term in \(\mathbb{R}^N\), J. Math. Soc. Japan, 47 (1995), 405–421.

[4] Nakao, M., A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978), 747–762.

[5] Nakao, M., Energy decay of the wave equation with a nonlinear dissipative term, Funkcial. Ekvac., 26 (1983), 237–250.

[6] Nakao, M., Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations, Math. Z., 206 (1991), 265–276.

[7] Nakao, M., Decay of solutions to the Cauchy problem for the Klein-Gordon equation with a localized nonlinear dissipation, Hokkaido Math. J., 27 (1998), 245–271.

[8] Nakao, M., Energy decay for a nonlinear generalized Klein-Gordon equation in exterior domains with a nonlinear localized dissipative term, J. Math. Soc. Japan, 64 (2012), 851–883.

[9] Nakao, M., Global existence and decay for nonlinear dissipative wave equations with a derivative nonlinearity, Nonlinear Anal., 75 (2012), 2236–2248.

[10] Nakao, M. and Ono, K., Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation, Funkcial. Ekvac., 38 (1995), 417–431.

[11] Nakao, M. and Jung, I. H., Energy decay for the wave equation in exterior domains with some half-linear dissipation, Differential Integral Equations, 16 (2003), 927–948.

[12] Sattinger, D. H., On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148–172.
[13] Todorova, G. and Yordanov, B., The energy decay problem for wave equations with nonlinear dissipative terms in \mathbb{R}^N, Indiana Univ. Math. J., 56 (2007), 389–416.

nuna adreso:
Faculty of Mathematics
Kyushu University
Moto-oka, Fukuoka 819-0395
Japan
E-mail: mnakao@math.kyushu-u.ac.jp

(Ricevita la 21-an de oktobro, 2011)
(Reviziita la 8-an de novembro, 2011)