Impedance and admittance characteristics of Bi$_2$S$_3$ nanowire arrays

J Katkevics1, G Kunakova1, A Viksna1, J D Holmes2, D Erts1.
1Institute of Chemical Physics, University of Latvia, Raina blv 19, Riga, LV-1586 Latvia
2Department of Chemistry, University College Cork, Dublin 2, Ireland
e-mail: juris.katkevics@lu.lv

Abstract. Current studies of the electrical impedance and admittance characteristics of the anodised aluminum oxide (AAO) nanoporous arrays and bismuth sulphide (Bi$_2$S$_3$) nanowire within AAO membranes are presented. The influence of potential and frequency scan rate effect produced on the real, imaginary and complex electrochemical impedance and double layer capacitance of the AAO nanopore and the Bi$_2$S$_3$ nanowire arrays were studied.

1. Introduction
Characterization of conductive properties of Bi$_2$S$_3$ nanowire within AAO membranes is important for perspective applications in nanoelectronics, photoelectrochemical solar cells and sensors [1]. Therefore it is important to determine the effects on electrical characteristics of Bi$_2$S$_3$ nanowire after repeated actions of current. It is shown that the resistance of Bi$_2$S$_3$ nanowire arrays is instable and varied between 1÷106 Ω cm [2, 3]. The resistance of nanowire arrays depends on method of preparation of nanowires, its size, and applied potential [2, 3].

Electrochemical impedance spectroscopy (EIS) is widely used for characterization of large area electrodes and the electrodes coated with porous layers [2, 5]. Recently EIS was applied for investigation of resistance and impedance of Bi$_2$S$_3$ nanowire arrays [4]. Here it is presented the studies of the electrical impedance and admittance characteristics of Bi$_2$S$_3$ nanowire arrays and AAO porous membranes. In particular it is addressed the influence of scan rate frequencies on the real, imaginary and complex electrical impedance and double layer capacitance of the AAO nanopores and the Bi$_2$S$_3$ nanowire arrays. The AAO membranes and Bi$_2$S$_3$ nanowire arrays were investigated applying two different modes of EIS - frequency scan at single potential and potential scan at single frequency.

2. Experimental
Bi$_2$S$_3$ nanowire arrays inside the pores of AAO membranes were fabricated by the thermolysis of the single source precursor bismuth bis(diethyldithiocarbamate) [Bi(S$_2$CNEt$_2$)$_3$] complex. This complex was prepared by the reaction of Bi$_2$O$_3$ with carbon disulphide and diethylamine in methanol and was thoroughly purified by repeated recrystallization as reported previously [6]. Scanning electron microscope Hitachi S4800 was used for visualization of samples (Figure 1 (a) and (b)). Samples containing Bi$_2$S$_3$ nanowires were polished mechanically on both sides to open the nanowires and remove reaction products from the surface. Then one side was coated by a 60 nm thick gold layer. For electrical characterization the specific measurement cell was designed in two electrode configuration (Figure 2 (a) and (b)). Deposited Au layer was used as a cathode and a Pt plate for AAO sample and drop of Hg for Bi$_2$S$_3$ nanowire arrays sample were used as an anode. Impedance spectra were obtained in potential range from: -0.4 to 0.4 V at scan rate of 10 ÷ 0.1 kHz, scanning number – 40, and measuring amplitude 0.01 V. The air humidity of laboratory was 75 % RH. All measurements were performed with potentiotstat “Autolab PGSTA 30”. Results were analyzed by the Frequency Response Analysis (FRA) program for
Windows version 4.9.007. In this report real \((Z_r)\) and imaginary \((-Z_j)\) component of impedance, real \((Y_r)\) and imaginary \((-Y_j)\) component of admittance is presented.

3. Results and Discussion

The real component of the impedance \((Z_r)\) value for AAO membrane was analyzed at applied current frequency at 10 kHz is insignificant \((2\div100 \text{ M}\Omega \text{ cm}^2)\) (Table 1, Figure 3a, 3e). When scanning rate of current frequency was increased from 10 kHz to 1 kHz then the real component of impedance AAO nanopore arrays increased from 2 to \(100 \text{ M}\Omega \text{ cm}^2\). The imaginary component of impedance \((-Z_j)\) value at this scanning frequencies increase very fast \((-Z_j = 2.3 \div 7.5 \text{ G}\Omega \text{ cm}^2\)). The real and imaginary

Parameters	AAO nanopore arrays, air connect	Bi\(_2\)S\(_3\) nanowire arrays, Hg connect, 1-10 kHz
\(Z_r, \text{ M}\Omega \text{ cm}^2\)	2-100	2-100
\(-Z_j, \text{ M}\Omega \text{ cm}^2\)	2300-4500	2300-4500
\(Y_r, \text{nS/cm}^2\)	0.001	0.001
\(-Y_j, \text{nS/cm}^2\)	0.0003	0.0004
\(Z_r, \text{ G}\Omega \text{ cm}^2\)	0.007	0.007-0.010
\(-Z_j, \text{ G}\Omega \text{ cm}^2\)	0.0026	0.00026
\(Y_r, \text{nS/cm}^2\)	0.001	0.0011
\(-Y_j, \text{nS/cm}^2\)	0.0001	0.00001

Parameter	\(Z_r, \text{ M}\Omega \text{ cm}^2\)	\(-Z_j, \text{ M}\Omega \text{ cm}^2\)	\(Y_r, \text{nS/cm}^2\)	\(-Y_j, \text{nS/cm}^2\)
Al\(_2\)O\(_3\) powder	5	40	200	25
Air layer of laboratory, 75% RH	9	32	200	25
Al\(_2\)O\(_3\) powder, 70-80% relative humidity RH	\(Z = 5\times 10^7 \div 2\times 10^8 \text{ \Omega cm}\)	Literature data [7]		
Air layer, absolute dry, 0% RH	Zeq = 1\times 10^{-17} \text{ \Omega cm}	Literature data [7]		
Figure 3 Complex impedance (a, c) and admittance (b, d) diagrams for AAO membrane (a, b) and for Bi$_2$S$_3$ nanowire arrays on the mercury droplet (c, d) for different applied potential: 1 -0.00 V; 2 -0.05 V; 3 -0.10 V; 4 -0.15V; 5 -0.20V

Figure 4 Impedance (e, g) and admittance (f, h) diagrams for AAO nanopore membrane (e, f), and for Bi$_2$S$_3$ nanowire arrays on the mercury drop (g, h) in applied potential range from -0.4 V to 0.4 V: 1 – real component of impedance (Z_r) and admittance (Y_r); 2 – imaginary component of impedance (-Z_j) and admittance (-Y_j); 3 – modulus of impedance (/Z/) and admittance (/Y/).
components of admittance (Table 1, Figure 3b, 4f,) are small – 1.0 nS/cm². It is easy to understand, because AAO (that is Al₂O₃) and air is characterized with high electrical resistance (Table 2.) The analysis of impedance spectrum using equivalent electrical circuit show that AAO characterized with one resistance elements (R) and capacitance component is very small, only some pF (Cs = 80 pF/cm²).

The experiments shows that Bi₃S₃ nanowire arrays real component of impedance (Zr) and real component of admittance (Yr) using applied potentials from 0.0 to -0.2 V is rather constant from 7.0 to 10.0 kΩ·cm² and from 95 to 120 μS/cm², respectively (Table 1, Figure 3c, 3d, 4g, 4h). The both, imaginary component of impedance (-Zj) and imaginary component of admittance (-Yj) are very small at scanning rate of current frequencies below 1 kHz. But applying scan rate at larger frequencies (1.0 - 10 kHz) these components are from 2 to 3.4 kΩ·cm² and from 45 to 180 μS/cm² respectively. These facts denote that characteristics of Bi₃S₃ nanowire arrays applied at higher frequencies are different than characteristics of Bi₃S₃ nanowire applied at low frequencies.

The equivalent circuit for Bi₃S₃ nanowire arrays is denoted as R1(R3C1), where R1 is 7.2 kΩ·cm², R3 = 3.0 kΩ·cm² and C1 = 2 nF/cm². AAO membrane and Bi₃S₃ nanowire arrays are characterized of two and three parallel positioned impedance elements: ZAl₂O₃, Zair and ZAl₂O₃, ZBi₃S₃,bulk, ZCs for AAO membrane and Bi₃S₃ nanowires arrays respectively. For the calculation of impedance components AAO membrane and Bi₃S₃ nanowire arrays formulas a) and b) are used, respectively. Formula c) is used for the calculation of capacitance component of impedance. Coefficient 0.8 in formula a) and b) is a fraction of surface area covered by nanopore wall cross section but coefficient 0.2 is relative air double cavity or Bi₃S₃ nanowire area. Z is impedance and Cs is capacitance.

\[
\begin{align*}
\text{a) } Z_{\text{AAO}} &= \frac{1}{Z_{\text{Al}_2\text{O}_3}} \times 0.8 + \frac{1}{Z_{\text{air}}} \times 0.2; \\
\text{b) } Z_{\text{Bi}_3\text{S}_3}\text{bulk} &= \frac{1}{Z_{\text{Al}_2\text{O}_3}} \times 0.8 + \frac{1}{Z_{\text{Bi}_3\text{S}_3}\text{bulk}} \times 0.2 + \frac{1}{Z_{\text{C}s}}; \\
\text{c) } C_s &= \frac{1}{2\pi f Z_{\text{C}s}};
\end{align*}
\]

The pure real calculated component of impedance (ZBi₃S₃,bulk) for Bi₃S₃ nanowire arrays is 50 Ω·cm², but imaginary component (-Zj) is 2 Ω·cm², that is smaller than previously calculated [4].

4. Conclusion

It is experimentally defined that for AAO nanopore membrane the imaginary component of impedance (-Zj) is one order of magnitude higher than the real component of impedance (Zr), but for Bi₃S₃ nanowire arrays the real component of impedance (Zr) is order higher than the imaginary component of impedance (-Zj). It is determined that for Bi₃S₃ nanowire array real component of impedance is smaller than it was calculated previously.

Acknowledgements

Work was granted by ERAF Project Nr. 2010/0251/2DP/2.1.1.1.0/10/APIA/VIAA/096

References

[1] A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller, A. D. Hunter. Chem. Mater., 22: 5984-5092 (2010).
[2] K. A. Z. Syed Abuthahir, R. Jagannathan. Materials Chemistry and Physics, 121, 184-192 (2010).
[3] P. Birjukovs, N. Petkov, J. Svirksts, J. J. Boland, J. D. Holmes, D. Erts. J. Phys. Chem. C., 112: 19680-19695 (2008).
[4] J. Katkevics, A. Viksna, G. Kunakova, A. Pastare, J. D. Holms, D. Erts. International conference "Functional materials and nanotechnologies 2011", Institute of Solid state physics University of Latvia , April 5 – 8, Riga, p. 186, (2011)
[5] M. E. Orazem, B. Tribollet. ECS-The Electrochemical Society, 159; 533 (2008)
[6] J. Xu, N. Petkov, X. Wu, D. Iacopino, A. J. Quinn, G. Redmond, T. Bein, M. A. Morris, J. D. Holmes. Chem. Phys. Chem., 8, 235-240 (2007)
[7] F. Faver, F. Villieras, Y. Duval, E. McRae, C. J. Rapin. Colloid Interface Sci., Jun 15; 286 (2):615-620 (2005).