Hydroxychloroquine in rheumatic autoimmune disorders and beyond

Ellise Laura Nirk, Fulvio Reggiori & Mario Mauthe

Abstract

Initially used as antimalarial drugs, hydroxychloroquine (HCQ) and, to a lesser extent, chloroquine (CQ) are currently being used to treat several diseases. Due to its cost-effectiveness, safety and efficacy, HCQ is especially used in rheumatic autoimmune disorders (RADs), such as systemic lupus erythematosus, primary Sjögren’s syndrome and rheumatoid arthritis. Despite this widespread use in the clinic, HCQ molecular modes of action are still not completely understood. By influencing several cellular pathways through different mechanisms, CQ and HCQ inhibit multiple endolysosomal functions, including autophagy, as well as endosomal Toll-like receptor activation and calcium signalling. These effects alter several aspects of the immune system with the synergistic consequence of reducing pro-inflammatory cytokine production and release, one of the most marked symptoms of RADs. Here, we review the current knowledge on the molecular modes of action of these drugs and the circumstances under which they trigger side effects. This is of particular importance as the therapeutic use of HCQ is expanding beyond the treatment of malaria and RADs.

Keywords: calcium; chloroquine; cytokines; lysosome; toll-like receptors
Subject Categories: Immunology, Pharmacology & Drug Discovery
DOI: 10.15252/emmm.202012476 | Received 8 April 2020 | Revised 2 July 2020 | Accepted 3 July 2020 | Published online 26 July 2020
EMBO Mol Med (2020) 12: e12476

Introduction

Antimalarial drugs have a long history, starting around 400 years ago when quinine, a substance in the bark of the cinchona tree, was first used to fight Plasmodium falciparum infections (Woodward & Doering, 1945; Haladýj et al., 2018). CQ was the first potent and mass-producible drug against malaria and was synthesized as an analogue of quinine (Shanks, 2016). Despite its remarkable antimalarial efficiency, CQ was deemed too toxic due to its side effects such as gastrointestinal and skin complications, retinopathy, cardiotoxicity or myopathy (Kalai & Dutz, 2007; Haladýj et al., 2018). The discovery of HCQ mitigated this issue, and HCQ is now regularly used in clinics under the brand name Plaquenil (Furst, 1996; Aviña-Zubieta et al., 1998; Al-Bari, 2014; Haladýj et al., 2018). Already during the Second World War, the positive effects of these two antimalarial drugs on RADs were observed. Soldiers taking CQ and HCQ as prophylaxis reported improvement of rashes and inflammatory arthritis. Today, CQ and particularly HCQ are commonly used to treat rheumatic and dermatological diseases, and are further being tested in clinical trials as potential drug candidates for COVID-19, several types of cancer, diabetes type I and II, multiple sclerosis, recurrent miscarriages and myocardial infarction (Al-Bari, 2014; clinicaltrials.gov).

RADs, such as systemic lupus erythematosus (SLE) (Ruiz-Irastorza et al., 2010; Willis et al., 2012; Wu et al., 2017), rheumatoid arthritis (RA) (Khraishi & Singh, 1996) and primary Sjögren’s syndrome (pSS) (Oxholm et al., 1998; Rihl et al., 2009; Kumar & Clark, 2012; Demarchi et al., 2017), are caused by a malfunctioning immune system that targets healthy tissues (Smith & Germolec, 1999) such as joints (Kumar & Clark, 2012). CQs and HCQs therapeutic role in RADs is linked to its anti-inflammatory and immunomodulatory effects (Plantone & Koudriavtseva, 2018). These effects are achieved through the modulation of the autoimmune response by (i) impairing functions of the endolysosomal system through its lysosomotropic effects (Ziegler & Unanue, 1982; Kaufmann & Krise, 2007; Yoon et al., 2010), (ii) decreasing the levels of circulating pro-inflammatory cytokines (Sperber et al., 1993; Van Den Borne et al., 1997), (iii) inhibiting T-cell proliferation (Landewe et al., 1995; Costedoat-Chalumeau et al., 2014), (iv) blocking Toll-like receptors (TLRs) (Kyburz et al., 2006) and (v) autophagy inhibition (An et al., 2017c). However, numerous questions remain regarding both the mechanism of action of CQ and HCQ in RADs and the side effects caused by this compound.

In this review, we report on HCQ and CQ modes of action at the molecular and cellular levels in the context of RADs. Additionally, we discuss the relevance of these drugs in the treatment of cancer and infectious diseases. Finally, we summarize the side effects reported in patients taking HCQ for RADs and discuss how some of those can be explained by the current knowledge on CQ and HCQ.

CQ and HCQ: modes of action

So far, CQ and HCQ have been reported to inhibit four sets of cellular functions: (i) endolysosomal activities, including autophagy; (ii) cytokine signalling, including endosomal Toll-like receptor (TLRs); (iii) NADPH oxidase (NOX) signalling; and (iv) calcium (Ca2+)...
mobilization from the endoplasmic reticulum (ER). They might further modulate other cellular and organismal processes, e.g. Golgi trafficking (Mauthe et al., 2018), but the underlying mechanisms remain to be identified.

Inhibition of lysosomal activity and autophagy

CQ and HCQ are weak bases that easily cross cell membranes and accumulate in acidic subcellular compartments such as lysosomes and endosomes, where they remain trapped in a protonated state (Ohkuma & Poole, 1978). This leads to a pH increase in lysosomes from 4 to 6, causing inhibition of acidic proteases and other enzymes within the endolysosomal compartments (Fig 1A) (Ohkuma & Poole, 1978; Poole & Ohkuma, 1981; Ziegler & Unanue, 1982; Haladyi et al., 2018). As a result, antigen processing and subsequent presentation by MHC-II complex on the cell surface of both macrophages and lymphoid dendritic cells are impaired (Guedos et al., 1984; Chesnut & Grey, 1985; Fox, 1993), dampening the adaptive immune response (Fig 2) (Fox, 1993). CQ and HCQ also increase pH levels within the Golgi stacks. This causes functional alterations of this organelle that possibly contribute to the cellular effects of these two drugs, e.g. by impairing transforming growth factor beta (TGF-β) activity (Perkett et al., 2006; Rivinoja et al., 2009; Mauthe et al., 2018).

The ability to block lysosomal degradation also makes CQ and HCQ potent macroautophagy inhibitors (Fig 1A). Macroautophagy, hereafter called autophagy, is a conserved intracellular degradation pathway that is required to maintain cellular homeostasis by recycling damaged or unwanted cytoplasmic proteins, complexes and organelles (Eskelinen & Saftig, 2009). Autophagy plays a role in many physiological processes, and its misregulation is linked to pathologies such as cancer, neurodegeneration and inflammatory diseases (Mizushima et al., 2008; Levine et al., 2011; Dikic & Elazar, 2018; Levine & Kroemer, 2019). During autophagy, cytoplasmic cargoes are sequestered by double-membrane vesicles called autophagosomes, which fuse with lysosomes to generate autolysosomes (Eskelinen & Saftig, 2009). Fusion with lysosomes and activity of the lysosomal enzymes are required to break down the autophagosomal cargoes and recycle the resulting metabolites. Impairment of both autophagosome–lysosome fusion and lysosomal degradative activity blocks autophagy (Klionsky et al., 2016). Although CQ and HCQ decrease the acidity of lysosomes (Seglen et al., 1979; Poole & Ohkuma, 1981; Mizushima et al., 2010), the

Glossary

Antigen-presenting cells (APC)
Cells that process proteins derived from pathogens or from dying/dead cells, into peptides that get presented on their surface, thereby activating T cells and initiating an immune response.

Autophagy
An intracellular process that delivers unwanted cytoplasmic material into lysosome for degradation.

B cells
A type of lymphocytes (white blood cells) that plays a crucial role in the adaptive immune response by producing antigen-specific antibodies.

Calcium (Ca²⁺)
Is the most abundant mineral in the human body and is vital for a multitude of cellular and physiological function. It is also an important second messenger in numerous signal transduction pathways.

Chloroquine (CQ)/hydroxychloroquine (HCQ)
Originally developed to fight malaria, these drugs are used to treat rheumatic autoimmune diseases and are currently tested in clinical trials as therapies for other conditions.

Cytokines
Small secreted proteins that mediate communication and modulate interactions between cells, including immune cells.

Endosomes
Intracellular organelles that mainly function as a sorting and recycling hub for endocytosed and biosynthetic components, on their route to lysosomes.

Immune system
A network consisting of a variety of different cell types that defend the body against infections and other potentially harmful anomalies, and which, when misregulated, contributes to or causes the development of an inflammatory disease.

Lysosome
Intracellular organelles containing a large battery of digestive enzymes that degrade extracellular and cytoplasmic material delivered to their interior by endocytosis and autophagy, respectively.

NADPH oxidase
A membrane-bound multi-subunit enzymatic complex at either the plasma or endosomal membrane, which participates in a variety of cellular functions, ranging from cellular signalling and gene expression to host defence mechanisms.

Primary Sjögren’s syndrome
An autoimmune disease that belongs to the group of rheumatic autoimmune diseases, which affect saliva-producing glands leading to symptoms such as dry mouth and dry eyes.

Retinopathy
Condition characterized by a damaged retina, which causes vision impairment, and is a documented adverse effect that can occur when taking HCQ and CQ.

Rheumatic autoimmune diseases
A group of conditions characterized by a dysregulated immune system, which primarily affect the muscles, joints, connective tissue and bones.

Systemic lupus erythematosus
An autoimmune disease that belongs to the group of rheumatic autoimmune diseases, which is the most common form of lupus and is associated with symptoms such as severe fatigue, joint pain and joint swelling.

T cells
A type of lymphocytes (white blood cells) that is a key component of the adaptive immune system and that orchestrates other cell types in response to antigens.

Toll-like receptors (TLR)
Transmembrane proteins that recognize specific molecules at either the plasma membrane or endosomes, and subsequently initiate signalling pathways that are crucial for the innate immune response.
primary inhibitory effect of these drugs on autophagy is blocking the fusion of autophagosomes and lysosomes, which is at least in part mediated by the dysregulation of the recruitment of specific SNARE proteins onto autophagosomes (Mauthe et al., 2018). This block results in an accumulation of autophagosomes in the cytoplasm (Mauthe et al., 2018), which can contribute to an enhanced autophagosome-mediated signalling output (Martinez-Lopez et al., 2013; Barrow-McGee et al., 2016) and even compromise tumour cell viability (Button et al., 2017). Although HCQ and CQ have been extensively described as autophagy inhibitors, there is emerging evidence that these drugs induce a non-canonical form of endocytosis (Florey et al., 2015; Jacquin et al., 2017).

Inhibition of cytokine signalling

Activation of TLRs, especially in macrophages, monocytes and T helper cells, but also in neutrophils and endothelial cells, induces the production and secretion of pro-inflammatory cytokines, a hallmark of RADs (Beutler & Cerami, 1989; Feldmann & Maini, 2001;
Kim & Moudgil, 2017). Hence, inhibition of endosomal TLRs by HCQ or CQ is a powerful therapy approach for these diseases (Lafyatis et al., 2006). TLR9, activated by DNA in immune cells, can thus be inhibited by HCQ and CQ (Yi et al., 1998; Ahmad-Nejad et al., 2002). TLR7, activated by guanosine analogues, can also be inhibited by CQ, but to a lesser extent than TLR9 (Lee et al., 2003), indicating different inhibitory mechanisms. TLR3 is mainly activated by poly(I-C), but also by debris originating from necrotic synovial fluid cells in RA patients, and both modes of activation are hampered by HCQ and CQ (Brentano et al., 2005; Jolly et al., 2014; Imaizumi et al., 2017). In general, inhibition of TLR3, TLR7 and TLR9 by HCQ and CQ has been attributed to their ability to impair endosomal acidification (Macfarlane & Manzel, 1998; Lafyatis et al., 2006; Schrezenmeier & Dörner, 2020), as activation of endosomal TLRs and subsequent downstream signalling only takes place within acidified compartments (Fig 1B) (Blasius & Beutler, 2010).

Beside endosomal acidification, Kuznik and colleagues discovered a second mechanism by which CQ impairs TLR signalling. They showed that CQ could inhibit endosomal TLR signalling after stimulation with nucleic acids at concentration too low to influence the endosomal pH. Under those conditions, CQ blocks endosomal TLR activation by directly interacting with TLR ligands, such as nucleic acids, which changes the nucleic acid secondary structure and prevents their binding to endosomal TLRs (Macfarlane & Manzel, 1998; Kuznik et al., 2011). This notion is further supported by the observation that HCQ specifically blocks activation of dendritic cells and macrophages by DNA but not by LPS, although LPS also stimulates these cells via a signalling cascade emanating from endosomes (Häcker et al., 1998).

A third mechanism that interferes with inflammatory cytokine production is the ability to disrupt GMP-AMP synthase (cGAS) signalling (An et al., 2015, 2018). cGAS is a crucial component of the cGAS–stimulator of interferon gamma (IFN) genes (STING) signalling cascade that is required for the IFN type I response in immune cells (Sun et al., 2013), making it an important player in activation of pro-inflammatory response in autoimmune diseases (Gao et al., 2015; Kato et al., 2018). cGAS is also upregulated in a portion of SLE patients (An et al., 2017a,b), and interestingly, HCQ and CQ can inhibit cGAS binding to its ligands, e.g. DNA, in vitro and in a T-cell line (An et al., 2015). Importantly, inhibition of cGAS activation results in reduced IFNβ expression (An et al., 2015) (Fig 1C).

Inhibition of NADPH oxidase

NOX is a protein complex involved in numerous pro-inflammatory signalling cascades, such as tumour necrosis factor alpha (TNFα)- and interleukin (IL)-1β-induced cascades. Activation of endosomal NOX, which leads to the generation of reactive oxygen species (ROS), requires the endocytic internalization and delivery to endosomes of cell surface ligand–receptor complexes (Müller-Calleja...
et al., 2017). HCQ blocks the NOX-mediated signalling cascades triggered by TNFα and IL-1β in monocytes by blocking translocation of gp91phox, the catalytic subunit of NOX, from the cytosol onto endosomal membranes without changing the endosomal pH (Müller-Calleja et al., 2017). This inhibition prevents the correct assembly and activation of NOX, hindering the downstream cellular events and the production of the pro-inflammatory cytokines TNFα and IL-8. HCQ also prevents the redistribution of TLR8 from the ER to endosomes, which is necessary to mediate the inflammatory response (Müller-Calleja et al., 2017) (Fig 1B).

Inhibition of Ca²⁺ signalling

Ca²⁺ mobilization from both the ER and extracellular space into the cytoplasm and subsequent Ca²⁺-dependent signalling is an important mechanism to activate cells of the immune system, such as T and B cells (Feske, 2007). High cytoplasmic levels of Ca²⁺ act as a second messenger for the activation of signalling pathways and transcription factors that regulate the expression and secretion of cytokines and other immune regulatory factors (Izquierdo et al., 2014). Ca²⁺ release from the ER can be impaired by HCQ (Goldman et al., 2000; Xu et al., 2015; Wu et al., 2017), leading to the inhibition of intracellular signals. In particular, T-cell and B-cell receptor-mediated intracellular Ca²⁺ mobilization from both intracellular stores and the extracellular milieu is inhibited by HCQ in a dose-dependent manner (Goldman et al., 2000). This impairment of Ca²⁺ mobilization is at least partially caused by the reduction of the Ca²⁺ stored intracellularly and the inability to replenish these intracellular stores with extracellular Ca²⁺ (Goldman et al., 2000). This further enhances its negative impact on the Ca²⁺-dependent signalling pathways (Fig 1C) (Feske, 2007). The precise mechanism of HCQ-induced reduction of internal Ca²⁺ mobilization remains unknown. However, it has been shown that HCQ does not reduce the availability of inositol 1,4,5-trisphosphate, but rather the binding to its intracellular receptors that promotes Ca²⁺ release (Misra et al., 1997).

The impact of CQ and HCQ on the immune system in autoimmunity

Autoimmunity is characterized by an overreaction of the immune system (Smith & Germolec, 1999), which is linked to both innate and adaptive immunity (Mescher, 2016). The innate immune system is responsible for the initial recognition of pathogens, which is mostly carried out by antigen-presenting cells (APCs), e.g. dendritic cells, and eventually triggers the activation of the adaptive immune system (Mescher, 2016). In particular, when APCs get directly activated through exposure to pathogen-associated molecular patterns, they initiate both cell- and antibody-mediated immune responses, which are mediated by the T and B cells, respectively (Christmas, 2010). The cell-mediated response is executed by T cells that get activated by APCs through antigen presentation at their surface via MHC molecules. In contrast, B cells are activated through T helper (Th) cells and cytokines that are secreted by APCs (Mescher, 2016). Activated B cells produce and secrete additional pro-inflammatory cytokines and antibodies to further stimulate the immune reaction (Mescher, 2016). HCQ and CQ negatively regulate many aspects of these innate and adaptive immune responses by reducing inflammation, and ultimately the severity of autoimmune diseases (Fig 2).

Inhibition of pro-inflammatory cytokine secretion

Through the inhibition of endosomal TLR signalling, HCQ and CQ treatment decreases the levels of pro-inflammatory cytokines produced by peripheral mononuclear cells in the blood, including IFNγ (Van Den Borne et al., 1997), TNFα (Picot et al., 1991; Van Den Borne et al., 1997; Jang et al., 2006), IL-1 (Picot et al., 1991; Sperber et al., 1993; Jang et al., 2006), IL-6 (Sperber et al., 1993; Van Den Borne et al., 1997; Jang et al., 2006) and IL-2 (Landewe et al., 1995). The reduction of TLR signalling-mediated activation of immune cells by both drugs consequently decreases the aberrant immune response and diminishes inflammation symptoms observed in rheumatic patients (da Silva et al., 2013). In addition to directly inhibiting endosomal TLR signalling, CQ and HCQ can interfere with the intracellular signals that lead to both the release of phorbol ester-induced arachidonic acid and the block of pro-inflammatory cytokine secretion (e.g. TNFα and IL-1) in mouse macrophages (Bon­deson & Sundler, 1998). In particular, activation of phospholipase A2 by phorbol esters, but not by Ca²⁺, is inhibited by HCQ and CQ, which blocks the synthesis of arachidonic acid. Furthermore, these compounds negatively impact the generation of zymosan-induced formation of inositol phosphates, a product of phospholipase C activity (Matsuzawa & Hostetler, 1980), suggesting that they have an inhibitory effect on this enzyme as well (Bon­deson & Sundler, 1998). HCQ also inhibits Ca²⁺-activated K⁺ channels in macrophages, and consequently K⁺ efflux, which could result in impaired inflammasome activation and pro-inflammatory cytokine release (Eugenia Schroeder et al., 2017).

High levels of pro-inflammatory cytokines are a central characteristic of the RA pathogenesis (McInnes & Schett, 2007; Blasius & Beutler, 2010; Pollard et al., 2013; Schinnerling et al., 2017; Muskardin & Niewold, 2018). In particular, stimulatory cytokines (i.e. IL-1, IL-6, IL-12, IL-15, IL-17, IL-23 and type I and II IFN for T cells, and B-cell activating factor (BAFF) for B cells) activate T and B cells, which in turn produce pro-inflammatory cytokines and autoantibodies, respectively. Pro-inflammatory cytokines contribute to RA pathogenesis by promoting autoimmunity, maintaining chronic inflammatory synovitis and stimulating the destruction of joint tissues. They also play a role in the maturation and activation of osteoclasts, the cells responsible for breaking down bone tissue (McInnes & Schett, 2007).

Excessive production of BAFF, a cytokine essential for B-cell physiology, alters the immune tolerance by contributing to the maturation and survival of self-reactive B cells, the major source for autoantibodies contributing to joint inflammation (Mahdy et al., 2014). Reduction of the high BAFF levels in the serum from RA patients by HCQ (Mahdy et al., 2014) improves symptoms of RADS, both in animal models and in clinical trials (Sun et al., 2008).

Cytokines like BAFF, TNFα, IFNα and IFNγ are also major contributors to SLE severity, by promoting B-cell survival and autoantibody production, and contributing to organ inflammation (Rönnblom & Elkon, 2010). Thus, the modulation of their levels represents a potential therapeutic avenue (Rönnblom & Elkon, 2010). This is supported by a cohort study showing that treatment of SLE patients with HCQ results in a decrease of type I IFN levels and concomitant reduction of disease severity (Willis et al., 2012). HCQ can also directly affect the production of autoantibodies by B cells through TLR9 inhibition. Particularly, HCQ interferes with the differentiation of memory B cells into antibody-producing...
plasmablasts, a subset of B cells, by inhibiting TLR9 activation (Torigoe et al., 2018).

Although the pathogenesis of pSS is not fully understood yet, activation of exocrine gland epithelium cells is thought to lead to the release of pro-inflammatory cytokines such as IFNα and IFNβ (both type I IFN), IL-7 and BAFF, and chemokines (Retamozo et al., 2018). These factors stimulate further activation of APCs, but also of T and B cells, which promotes inflammation and autoimmunity (Retamozo et al., 2018). Only a few studies investigated HCQ administration in pSS patients. Nonetheless, pSS patients treated with HCQ have a significant lower BAFF levels in the serum, and an improvement in saliva production (Mumcu et al., 2013), indicating that this drug might be a promising therapy for pSS as well.

Inhibition of B- and T-cell activation through Ca²⁺ signalling

Through T-cell receptors (TCRs) on their surface, T cells recognize antigens that are presented by APCs and get activated (Goldman et al., 2000). This results in both their proliferation and the release of various cytokines, including IL-6 and TNFα (Sperber et al., 1993). One important step in the signalling cascade downstream of TCRs is the increase of intracellular Ca²⁺ levels, which is released from internal Ca²⁺ storages such as the ER. As previously mentioned, HCQ can impair the release of Ca²⁺ from the ER, which consequently inhibits T-cell activation (Goldman et al., 2000; Xu et al., 2015; Schmidt et al., 2017). HCQ also negatively influences the expression and activity of CD154 on T cells, which is needed for B-cell activation (Wu et al., 2017; Dewitte et al., 2020). CD154 expression is controlled by the nuclear factor of activated T cells (NFAT), a transcription factor that relies on Ca²⁺ release from the ER (Wu et al., 2017). By impairing this event, HCQ inhibits NFAT nuclear translocation, resulting in decreased gene expression of CD154 (Wu et al., 2017). Altogether, these studies show that blocking Ca²⁺ release from the ER by HCQ leads to a multilevel inhibition of T- and B-cell activation, thereby hindering the immune response (Fig 2).

Modulation of Th17 and Treg populations

Alterations in autophagic activity play an important role in the pathophysiology of T- and B-cell-mediated autoimmunity (Weindel et al., 2015; van Loosdregt et al., 2016; Alessandri et al., 2017; Mocholi et al., 2018; Zhang et al., 2019). In this context, autophagy is required to maintain cellular homeostasis in T cells (An et al., 2017c) and autophagy deficiency impairs MHC class II presentation and contributes to the generation of autoreactive T cells by thymic epithelial cells (Levine et al., 2011). Moreover, plasma cells require autophagy to sustain immunoglobulin production and B-cell development (Wu & Adamopoulos, 2017). An imbalance within the T-cell populations, more specifically an increase in the number of Th17 cells and a decrease in that of Treg cells, has been linked to pathogenesis of autoimmune diseases (Yang et al., 2011a; Jadidi-Niaragh & Mirshafiey, 2012; Álvarez-Rodríguez et al., 2019), including SLE (An et al., 2017c; Álvarez-Rodríguez et al., 2019). This imbalance leads to an increased secretion of pro-inflammatory cytokines such as IL-17 and IL-6, and a reduction of the levels of circulating factors like TGF-β, which suppresses inflammation and autoimmunity (An et al., 2017c; Geng et al., 2020). This latter effect can be dampened with HCQ and CQ, as those drugs rebalance the Th17/Treg ratio (An et al., 2017c; Yang et al., 2018; Álvarez-Rodríguez et al., 2019; Park et al., 2019; Geng et al., 2020). Mechanistically, this could be caused by an alteration of autophagy, as an induction of this process is observed in SLE patients (An et al., 2017c). Thus, An and colleagues thought to suppress hyperactivated autophagy by administering HCQ to lupus MLR/pr mice, an animal model for SLE. In addition to lowering autophagic activity in this model, HCQ rebalanced Th17 and Treg cell numbers, which led to a decrease in pro-inflammatory cytokine levels (Fig 2) and a concomitant augmentation of anti-inflammatory cytokines, resulting in the suppression of the autoimmune response (An et al., 2017c). Moreover, CQ positively regulates Treg differentiation by stimulating transcriptional activity of NurR1 and FOXP3, while simultaneously suppressing Th17 differentiation and gene expression (Álvarez-Rodríguez et al., 2019; Park et al., 2019). More evidence that Th17 cells play a central role in RA and SLE pathogenesis comes from the detection of IL-6, IL-17 and IL-22 in synovial fluids from patients suffering from those diseases (Lubberts et al., 2005; da Silva et al., 2013). High levels of these cytokines correlate with synovial inflammation, T-cell activation and the osteoclast activity upregulation causing bone erosion (da Silva et al., 2013). Administration of HCQ reduces Th17 cell activation and consequently production of IL-6, IL-17 and IL-22 (da Silva et al., 2013; Yang et al., 2018).

Impact of NOX inhibition on the immune system

NOX inhibition by HCQ impairs the production of pro-inflammatory cytokines and the correct distribution of TLR8, thereby dampening the immune response (Müller-Calleja et al., 2017). This inhibition also positively affects nitric oxide (NO) bioavailability (Gómez-Guzmán et al., 2014). NO is involved in a multitude of physiologic functions, including the regulation of blood vessel tone and vasodilation, and is rapidly inactivated by ROS (Nagy et al., 2010). In SLE patients, NO bioavailability is severely lowered by high ROS levels, particularly O2⁻⁻, resulting in endothelial dysfunction (Griendling & Alexander, 1997; Landmesser & Harrison, 2001; Gómez-Guzmán et al., 2014). By blocking NOX, the major producer of O2⁻⁻ in the vascular wall, HCQ treatment reduces ROS levels and helps to prevent endothelial dysfunction in a mouse model for SLE (Gómez-Guzmán et al., 2014). In agreement with this concept, NOX inhibition by HCQ reduces thrombus formation, which is a well-known clinical manifestation in SLE, in a venous thrombus mouse model (Müller-Calleja et al., 2017; Miranda et al., 2019) (Fig 2).

Thus, at the cellular level, HCQ and CQ inhibit antigen presentation, NOX signalling, B- and T-cell activation, and rebalance Treg/Th17 cell ratio. These multifaceted effects on different immune cells synergistically result in a decreased production and release of pro-inflammatory cytokines, a common hallmark of RADs (Fig 2).

Clinical impact of HCQ on RADs

HCQ is administered orally in tablet form as hydroxychloroquine sulphate (Pastick et al., 2020). It is absorbed in the gastrointestinal tract (Melchlan et al., 1994) before being widely distributed throughout the body to muscles, liver, spleen, lungs, kidneys, pituitary and adrenal glands, and tissues that contain melanin (Haladyj et al., 2018). Daily dosage of HCQ ranges from 200 to 600 mg for RADs, from 200 to 400 mg for dermatological disorders (Ben-Zvi et al., 2012), from 200 to 1,200 mg in cancers (Chude & Amaravadi,
and from 200 to 800 mg for various infectious diseases. Its half-life in the body ranges between 40 and 50 days (Melachlan et al., 1994), and 30–40% of HCQ is protein-bound (Furst, 1996), resulting in 60–70% unbound, pharmacologically active drug (Rang et al., 2016). The majority of HCQ is excreted through the kidneys, while the rest is metabolized by the liver or excreted through faeces (Furst et al., 1999; Haladyj et al., 2018). Contraindications for taking HCQ are a history of retinopathy or visual field changes, hypersensitivity to 4-aminoquinoline compounds and long-term therapies in children (https://www.fda.gov/). HCQ is, however, considered safe during pregnancy (Kaplan et al., 2016; Haladyj et al., 2018).

HCQ ameliorates classical RAD symptoms, such as skin problems and joint pain, predominantly by decreasing the inflammation reaction in patients (Fig 3). In SLE, HCQ is given to patients as either a single or a combinatorial therapy together with steroids and immunosuppressive drugs, to improve patients’ life expectancy by reducing lupus flares and accrual of organ damage (Ponticelli & Moroni, 2017). Case studies have revealed that HCQ treatment reduces SLE symptoms and improves long-term survival of patients, while individuals not treated with HCQ have an increased risk of severe SLE exacerbations (James et al., 2007; Ruiz-Irastorza et al., 2010; Willis et al., 2012).

Similarly, HCQ treatment produces significant clinical improvement and functional capacity in RA patients (Smolen et al., 2014; Haladyj et al., 2018). In RA, prevention of cartilage degradation, which causes joint destruction, is an important aspect of the therapeutic approach (Kumar & Clark, 2012). Cartilage degradation is mostly caused by pro-inflammatory cytokines, such as IL-1, IL-17 and TNFα, and their production can be repressed by HCQ treatment (Picot et al., 1991; Sperber et al., 1993; Van Den Borne et al., 1997; Jang et al., 2006; McInnes & Schett, 2007; da Silva et al., 2013). In vitro experiments have also established that CQ inhibits proteoglycan turnover (Fulkerson et al., 1979; Ackerman et al., 1981; Schug & Kalbhen, 1995; Rainsford et al., 2015), and early autoradiographic studies following tritium-labelled HCQ have revealed that this drug accumulates in the cartilage of mice (Cecchi & Porzio, 1964). These findings and its water-soluble properties led to the proposition that HCQ accumulates in the cartilage by binding acidic proteoglycans and protecting them from degradation by proteolytic enzymes (Rainsford et al., 2015). Although an early study pointed out that CQ and HCQ can indeed inhibit cartilage breakdown, slowing down the disease progression and preventing further joint damage in RA patients (Julikun et al., 1976), more recent investigations could not confirm a positive effects on joint damage (Sanders, 2000; Smolen et al., 2014; Haladyj et al., 2018).

The therapeutic benefits of HCQ administration on pSS classical symptoms, e.g. sicca symptoms, remain controversial; some studies documented beneficial effects (Tishler et al., 1999; Rihl et al., 2009; Yavuz et al., 2011; Mumcu et al., 2013), while others reported none (Gottenberg et al., 2014; Yoon et al., 2016; Wang et al., 2017). HCQ treatment, however, ameliorates extraglandular symptoms (Fox et al., 1996; Demarchi et al., 2017), and according to the Sjögren’s Syndrome Foundation’s clinical practice guidelines (https://www.sjogrens.org/), disease-modifying anti-rheumatic drugs are recommended to treat musculoskeletal pain, with HCQ being the therapeutic approach of choice (Carsons et al., 2015). HCQ also reduces immunological alterations of pSS, such as decreased levels of immunoglobulins, erythrocyte sedimentation rate, serology and IL-6 production (Tishler et al., 1999; Yavuz et al., 2011; Mumcu et al., 2013). Furthermore, in a retrospective analysis, HCQ administration to pSS patients significantly improved saliva production (Rihl et al., 2009). This improvement was more pronounced in patients who were positive for autoantibodies against anti-ß2-fodrin, an intracellular filamentous cytoskeleton protein. While the cause for this difference remains unknown, a possible explanation is that HCQ could improve saliva production by decreasing elevated levels of cholinesterase, an enzyme that counteracts saliva production (Dawson et al., 2005).

HCQ and CQ in non-rheumatologic diseases

Anti-viral effects

The anti-viral function of HCQ and CQ has mainly been linked to their ability to increase the pH of the endosomal system and the trans-Golgi network (TGN) (Savarino et al., 2003). Thus, these drugs are able to inhibit cell entry of numerous viruses, as a low endosomal pH is required for the fusion of endocytosed virions with the limiting membrane of endosomes. In this context, CQ and HCQ decrease replication of viruses such as dengue virus (DENV2), chikungunya virus, hepatitis A and C virus, influenza A virus, Zika virus, severe acute respiratory syndrome coronavirus (SARS-CoV) and Borde disease virus in cellular models (Bishop, 1998; Gonzalez-Dunia et al., 1998; Keyaerts et al., 2004; Vincent et al., 2005; Blanchard et al., 2006; De Clercq, 2006; Eng et al., 2006; Di Trani et al., 2007; Soursieau et al., 2007; Khan et al., 2010; Ashfaq et al., 2011; Boonyasuppayakorn et al., 2014; Farias et al., 2015; Delvecchio et al., 2016; Shiryaev et al., 2017). For some viral structural proteins, a maturation step involving post-translational modification and/or processing in the TGN is crucial for their function and ultimately for the assembly of infectious viral particles, e.g. glycosylation of HIV gp120 (Tsai et al., 1990; Savarino et al., 2004) or cleavage of the DENV2 prM protein (Randolph et al., 1990). Glycosylation in the TGN is also required for the correct assembly of ACE2, the entry receptor for SARS-CoV (Vincent et al., 2005). Thus, HCQ and CQ contribute to inhibit viral infections by neutralizing the pH of intracellular organelles, interfering with important processes required for viral life cycle.

Although HCQ and CQ have shown beneficial therapeutic effects in animal models for DENV2, hepatitis C virus, avian influenza A virus, Zika virus and SARS-CoV infections, clinical trials have so far failed to conclusively prove their anti-viral potential in humans (Rodrigo et al., 2020; Fragkou et al., 2020; McKee et al., 2020). This might be due to the fact that drug concentrations required to de-acidify intracellular compartments cannot easily be reached in humans (Al-Bari, 2017). Therefore, neither HCQ nor CQ is currently recommended as anti-viral drugs (Rodrigo et al., 2020). During the SARS-CoV-2 pandemic in 2020, the need to find an effective medication has brought major attention to HCQ and CQ due to their ability to both inhibit viral infections and dampen the massive cytokine response that is observed in SARS-CoV-2-infected patients (Badgujar et al., 2020; Ibáñez et al., 2020; Moore & June, 2020). The effectiveness of HCQ and CQ against SARS-CoV-2, however, has so far not been proven in humans, and the results at the time that this review was completed were still controversial (Boulware et al., 2020; Fragkou et al., 2020).
Anti-cancer therapy

CQ and HCQ are being increasingly used in clinical trials to treat cancer (https://clinicaltrials.gov/). Because high doses are required to achieve anti-tumoural effects in monotherapies, they are often used in combination with radiotherapy and/or other chemotherapeutic drugs (Plantone & Koudriavtseva, 2018). We briefly discuss here possible mechanisms of action for HCQ and CQ in cancer. For a more detailed discussion on this topic, more specific reviews are available (Manic et al, 2014; Pascolo, 2016; Levy et al, 2017; Shi et al, 2017; Verbaanderd et al, 2017).

Elevated autophagic activity is crucial for tumour cell survival and growth as it supplies the high demand of nutrients within a developed tumour (Amaravadi et al, 2016). This is especially relevant for autophagy-dependent cancers that rely on this pathway when faced with metabolic stress. Consequently, HCQ or CQ treatment has been successful in regressing the growth of some of those cancers in preclinical studies (e.g. with RAS pathway mutations (Guo et al, 2011; Lock et al, 2011), such as specific pancreatic cancers (Mancias & Kimmelman, 2011; Yang et al, 2011b; Sousa et al, 2016), or BRAF-driven tumours (Levy et al, 2014; Strohecker et al, 2013; Xie et al, 2015). The effectiveness of HCQ and CQ in cancer therapy is, however, controversial. In animal models, HCQ dosages are often 50 mg/kg/day or higher, which is too high to be administered in humans (Pascolo, 2016), and with lower dosages, autophagy is not sufficiently inhibited to achieve tumour regression (Pascolo, 2016). Moreover, some cancer cells (e.g. derived from breast tumours or melanomas or KRAS-driven cancer cell lines) have shown CQ-mediated cell growth inhibition that was independent of autophagy (Maycotte et al, 2012; Maes et al, 2014; Eng et al, 2016).

Various cancer cells express high levels of TLR9, e.g. breast and prostate cancer cells (Merrell et al, 2006; Verbaanderd et al, 2017), which is linked to cancer invasiveness in vitro and associated with poor prognosis (Väisänen et al, 2013; Verbaanderd et al, 2017). TLR9-mediated NF-κB signalling is required for cancer cell migration and proliferation in gastric cancer cell models, which is inhibited by CQ (Zhang et al, 2015). The exact molecular mechanism of TLR9 signalling inhibition in cancer cells remains unknown.

Another mechanism by which HCQ affects cancer growth is by modulating the immune system. Tumour-associated macrophages (TAMs), which are phenotypically described as M2 macrophages, play a role in promoting tumour growth and immune escape, angiogenesis and metastasis (Mantovani et al, 2017; Li et al, 2018). In contrast, tumour killing macrophages (M1 macrophages) have an opposite effect and are activated by cytokines such as IFNγ, which are released from T cells (De Palma & Lewis, 2013; Ostuni et al, 2015). Interestingly, in a melanoma-bearing mouse model, intraperitoneal injection of 75 mg/kg CQ effectively inhibited melanoma growth in a T-cell-dependent manner, and prolonged animal survival (Chen et al, 2018). Mechanistically, CQ can switch TAMs into M1 macrophages by raising lysosomal pH, and thereby mobilizing lysosomal Ca2+ through upregulation of the lysosomal Ca2+ channel MUCOLIPIN1. The release of lysosomal Ca2+ then activates the p38 and NF-κB signalling pathways, but also the transcription factor EB, resulting in an enhanced anti-tumour T-cell response (Chen et al, 2018). By stimulating the T-cell-mediated immune response and simultaneously decreasing immune inhibitory cells, including TAMs and Tregs, and cytokines such as TGF-β and IL-10, CQ treatment reduced breast cancer growth and prolonged mice survival in a breast xenograft model (Zhang et al, 2017). Another important aspect of anti-cancer immunity is the activation of immune cells by sensing danger signals (e.g. HMGB1). Danger signals are subsequently recognized by receptors, such as TLR4 on dendritic cells (Apetoh et al, 2007). One function of TLR4 is to preserve engulfed tumour antigens from enhanced degradation, and thereby favour antigen presentation. The loss of
antigen presentation capacity in TLR4-deficient dendritic cells can be restored by CQ, possibly by raising lysosomal pH, which contributed to tumour size reduction in a thi4™™ thymoma mouse model (Apetoh et al., 2007). Along these lines, CQ reduced breast cancer growth in mice after irradiation by enhancing apoptotic and immunogenic tumour cell death (Ratikan et al., 2013). The enhanced immune response was attributed to a decreased degradation of tumour antigens in dendritic cells, resulting in an increased antigen presentation (Ratikan et al., 2013).

HCQ and CQ can also inhibit CXCL12/CXCR4 signalling, which is involved in chemotaxis and adhesion of tumour cells and of growth factors secretion that are key for cancer progression (Sun et al., 2010; Kim et al., 2012; Verbaanderd et al., 2017). Moreover, HCQ and CQ interfere with the activation of growth-promoting pathways in cancer stem cells, thereby suppressing the regrowth of tumours (Li et al., 2008; Balic et al., 2014; Choi et al., 2014).

Multiple reports further describe the mechanisms by which CQ triggers cell death in tumour cells. CQ induces apoptosis of cancer cells by either stimulating the mitochondrial apoptotic pathway (Du Jiang et al., 2010) or activating the p53-dependent transcription of pro-apoptotic genes (Zhou et al., 2002; Loehberg et al., 2007, 2012; Maclean et al., 2008; Kim et al., 2010; Bieging et al., 2014). Additionally, several studies have suggested that CQ intercalates into DNA and disturbs chromatin topology (O’Brien et al., 1966; Sternglanz et al., 1969; Field et al., 1978; Yin et al., 2003), which could lead to an impairment in DNA repair mechanisms, and in turn cause DNA damage and enhance cell death (Michael & Williams, 1974; Liang et al., 2016; Weyerhäuser et al., 2018).

Besides directly targeting tumour cells, CQ also affects tumour angiogenesis by altering endothelial cell functionality. CQ administration leads to NOTCH1 accumulation in endothelial cell endosomes, stimulating the downstream signalling that leads to tumour vessel normalization, and resulting in reduced tumour invasion and metastasis (Maes et al., 2014). Therefore, CQ also improves the delivery and efficacy of other chemotherapeutics (Maes et al., 2014).

HCQ and CQ thus show potential in inhibiting tumour growth and modulating tumour immune response through various mechanisms. It is, however, important to reiterate that the doses used to achieve relevant effects in cancer therapies are often substantially higher than the doses used to treat RADs. Moreover, when treating cancer or viral infections, one has to keep in mind that HCQ and CQ also have immune suppressive functions that could negatively influence its beneficial effect for the patients.

Side effects of HCQ in RADs

Side effects of HCQ treatment are rare, but nonetheless exist, and can be very serious, especially during prolonged administration (Haladý et al., 2018). In Table EV1, we provide a comprehensive overview of the known side effects caused by HCQ in RADs and their prevalence. Overall, the most common side effects in RAD patients taking HCQ or CQ are gastrointestinal disturbances, skin discolorations, cutaneous eruptions and elevated muscle enzymes. Although rare, retinopathy, neuromuscular and cardiac toxicities (Fig 3) are the most serious and life-threatening side effects potentially triggered by HCQ (Plantone & Kouidriavtseva, 2018).

Retinopathy

Prolonged administration of HCQ or CQ can cause retinopathy and loss of retinal function that, when ignored, can result in permanent vision loss (Jorge et al., 2018). The primary site of toxicity in the retina is the photoreceptor layer, with secondary degeneration occurring later in retinal pigment epithelium (RPE) cells (De Sisternes et al., 2015; Yusuf et al., 2017). Some studies offer a potential explanation for this severe side effect.

By inhibiting the lysosomal degradation capacity and possibly endocytosis in RPE cells, HCQ and CQ are preventing the degradation of old and spent outer segments of photoreceptors in the RPE, a process that is required to maintain its function and preserve vision (Kevany & Palczewski, 2010; Yusuf et al., 2017). Furthermore, HCQ entrapment in the RPE might lead to an accumulation of lipofuscin, which is associated with photoreceptor function impairment and consequent vision loss (Kevany & Palczewski, 2010; Yusuf et al., 2017). It has been speculated that, due to this entrapment, retinopathy still continues in some cases after cessation of HCQ treatment (Michaelides et al., 2011). Accumulation of CQ in the pigmented ocular tissue, which comprises RPE cells, the iris, the choroid and the ciliary body, and eventually in the retina, was also observed in rhesus monkeys when CQ was administered for 52 months (Rosenthal et al., 1978). This caused an initial damage to the photoreceptors and the ganglion cells, followed by a disruption of both the RPE and choroid, which ultimately led to visual impairments and retinopathy (Rosenthal et al., 1978).

High levels of HCQ inhibit the function of the organic anion transporting polypeptide 1A2 (OATP1A2), a plasma membrane importer expressed in many tissues, including RPE cells (Xu et al., 2016). In particular, OATP1A2 transports all-trans-retinol (atROL), a retinol precursor essential for the classic visual cycle (Chan et al., 2015), into RPE cells. By blocking this transporter, HCQ causes an extracellular accumulation of atROL and disrupts the classic visual cycle (Xu et al., 2016).

Cardiac side effects and myotoxicity

HCQ can cause acute and chronic cardiac adverse effects (Chatre et al., 2018). Acute adverse effects are linked to a very high dose of HCQ, which provokes a block of Na+ and Ca2+ channels. This inhibition can lead to membrane-stabilization effects in cardiac muscle cells, which in turn causes conduction disturbances with atrioventricular block and QRS interval widening (White, 2007). Chronic adverse effects are connected to long-term treatment with a high cumulative dose of HCQ (Chatre et al., 2018). As described above, HCQ treatment impairs the degradative activity of lysosomes, which leads to an accumulation of material such as glycogen and phospholipids in their interior (Chatre et al., 2018). In myocytes, this causes a vascularization of the cytoplasm and myofibrillar disorganization, which contributes to the development of cardiac myopathy and myocardial fibrosis (Yogasundaram et al., 2014). This phenomenon can also be seen in the Fabry and Danon lysosomal storage diseases, which have similar phenotypes (Roos et al., 2002; D’soouza et al., 2014; Chatre et al., 2018). Moreover, HCQ-mediated accumulation of autophagosomes in muscles and peripheral nerves can lead to myotoxicity or myotoxicity combined with peripheral nerve dysfunction (Shukla et al., 2019). Notably, HCQ and CQ also have proarrhythmic activity (Landmesser & Harrison, 2001; Khobragade et al., 2013; Chansky & Werth, 2017; Naksuk et al., 2020), which is
EMBO Molecular Medicine

Elise Laura Nirk et al

Pending issues

(i) Investigate whether all HCQ modes of action described with in vitro experiments are relevant in patients, and whether one of these mechanisms is predominantly causing the observed side effects.

(ii) Determine whether HCQ has other molecular effects than the ones described, which could help to better understand HCQ treatment outcomes in patients.

(iii) Chemically improve HCQ to make it more effective and less toxic, and thereby render it more suitable for the treatment of other diseases (e.g. specific cancers).

(iv) Understand how the anti-inflammatory role of HCQ influences the anti-viral and anti-tumorigenic action of this drug in patients, and whether this could explain the observed discrepancies between the in vitro and in vivo results.

Conclusions

HCQ is nowadays widely used for the treatment of RADs and has shown great success in improving the quality of life of many patients. Over the years, research on the molecular and cellular mode of action of HCQ (and CQ) revealed that this compound modulates molecular processes and cellular responses in multiple ways. At least four mechanisms of action that, directly or indirectly, influence the immune system by synergistically dampening pro-inflammatory responses, have been described. Although lysosomal inhibition and autophagy impairment are the most studied, HCQ also influences other important immune regulatory pathways by inhibiting specific steps, such as activation of endosomal TLR-, cGAS and NOX signalling and Ca2+ mobilization for the ER. The beneficial therapeutic effect of HCQ in RADs probably lies in its multifaceted properties, which also makes it a promising candidate in other medical fields, such as oncology (Onorati et al, 2018) and microbiology (Savarino et al, 2003; Cortegiani et al, 2020; Yao et al, 2020).

Generally, HCQ is considered a safe drug with low prevalence of side effects. These side effects nevertheless exist and can impact the life of a patient tremendously. Among them, the most severe, i.e. retinopathy and cardiomyopathy, is linked to the induced lysosomal activity inhibition. This suggests that the unwanted negative effects of HCQ could be due to its lysosomotropic properties. In this context, it has been reported that the effect of HCQ on endosomal and lysosomal pH at therapeutic concentrations is negligible (Kužnik et al, 2011) and that the pH changes observed in vitro might not reflect the in vivo reality. Therefore, a higher dose of HCQ (or a higher cumulative dose) could lead to a pH increase in the compartments of the endolysosomal system and thus cause more side effects (Latasiewicz et al, 2017; Jorge et al, 2018). The well-documented list of side effects caused by HCQ during the treatment of RADs should be considered when using HCQ to treat other pathologies such as cancer (Onorati et al, 2018), neurodegenerative disorders (Hedy et al, 2019), metabolic diseases (Pasquier, 2016) and microbial infections (Savarino et al, 2003), especially since treatment of some pathologies requires high HCQ doses (Leung et al, 2015).

While the search for a unifying mechanism of action for HCQ is tempting, current knowledge shows that this small molecule has more than a single target. As a result, future research should aim at identifying potential additional cellular and organismal pathways specifically modulated by HCQ. The mechanisms by which HCQ causes side effects could also provide important information. Increasing our understanding of HCQ mode of action would improve patient outcome by promoting therapeutic benefits while reducing side effects.

For more information

(i) https://www.rheumatology.org/
(ii) https://www.sjogrens.org/
(iii) https://www.arthritis.org/
(iv) https://www.lupus.org/
(v) https://clinicaltrials.gov
(vi) https://www.fda.gov/

Expanded View for this article is available online.

Acknowledgements

M.M. is supported by ZonMW TOP (91217002) grant. F.R. is supported by ALW Open Programme (ALWOP.310), Marie Skłodowska-Curie Cofund (713660) and Marie Skłodowska Curie ETN (765912) and ZonMW TOP (91217002) grants. We thank Zarina Rorije and Asaad Amasha for helping assembling information about the reported side effects of HCQ. We thank Muriel Mari, Ruben Gomez Sanchez, Adriana Tami and Pauline Verhac for the critical reading of the manuscript. The authors apologize in advance to those authors whose contributions have been omitted due to lack of space and felt that their work was one of the highlights.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Ackerman NR, Jubb SN, Marlowe SL (1981) Effects of various anti-inflammatory and anti-rheumatic agents on the synthesis, secretion, and activity of a cartilage proteoglycan-degrading enzyme and other macropage enzymes. Biochem Pharmacol 30: 2147 – 2155

Ahmad-Nejad P, Häcker H, Rutz M, Bauer S, Vabulas RM, Wagner H (2002) Bacterial CpG-DNA and 1p-diolpolysaccharides activate toll-like receptors at distinct cellular compartments. Eur J Immunol 32: 1958 – 1968

Al-Bari AA (2014) Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother 70: 1608 – 1621

Al-Bari MAA (2017) Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect 5: e00293

Alessandri C, Ciccio F, Priori R, Astorri E, Guggino G, Alessandro R, Rizzo A, Conti F, Minniti A, Baratti C et al (2017) CD4 T lymphocyte autophagy is upregulated in the salivary glands of primary Sjögren’s syndrome patients and correlates with focus score and disease activity. Arthritis Res Ther 19: 178

Álvarez-Rodríguez L, Martínez-Taboada V, Calvo-Alén J, Beares I, Villa I, López-Hoyos M (2019) Altered Th17/Treg ratio in peripheral blood of
systemic lupus erythematosus but not primary antiphospholipid syndrome. *Front Immunol* 10: 391

Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. *Genes Deu* 30: 1913–1930

An J, Woodward JJ, Sasaki T, Minie M, Elkon KB (2015) Cutting edge: antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase–DNA interaction. *J Immunol* 194: 4089–4093

An J, Durcan L, Karr RM, Briggs TA, Rice GI, Teal TH, Woodward JJ, Elkon KB (2017a) Expression of cyclic GMP-AMP synthase in patients with systemic lupus erythematosus. *Arthritis Rheumatol* 69: 800–807

An J, Minie M, Sasaki T, Woodward JJ, Elkon KB (2017b) Antimalarial drugs as immune modulators: new mechanisms for old drugs. *Annu Rev Med* 68: 317–330

An N, Chen Y, Wang C, Yang C, Wu ZH, Xue J, Ye L, Wang S, Liu HF, Pan Q (2017c) Chloroquine autophagic inhibition relapses Th17/Treg-mediated immunity and ameliorates systemic lupus erythematosus. *Cell Physiol Biochem* 44: 412–422

An J, Woodward JJ, Lai W, Minie M, Sun X, Tanaka L, Snyder JM, Sasaki T, Elkon KB (2018) Inhibition of cyclic GMP-AMP synthase using a novel antimalarial drug derivative in *Tryp*1-deficient mice. *Arthritis Rheumatol* 70: 1807–1819

Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, An N, Chen Y, Wang C, Yang C, Wu ZH, Xue J, Ye L, Wang S, Liu HF, Pan Q (2017b) Antimalarial drugs as immune modulators: new mechanisms for old drugs. *Annu Rev Med* 68: 317–330

Ashfaq UA, Javed T, Rehman S, Nawaz Z, Riazuddin S (2016) Recent insights into the function of autophagy in cancer. *Genes Deu* 30: 1913–1930

Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. *Genes Deu* 30: 1913–1930
Delvecchio R, Higa LM, Pezzuto P, Valadão AL, Garcez PP, Monteiro FL, Loiola EC, Dias AA, Silva FJM, Aliotta MT et al (2016) Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses 8: 322

Demarchi J, Papasidero S, Medina MA, Klajn D, Chaparro del Moral R, Rillo O, Martiré V, Crespo G, Secco A, Catalan Pellet A et al (2017) Primary Sjögren’s syndrome: extraglandular manifestations and hydroxychloroquine therapy. Clin Rheumatol 36: 2455–2460

Dewitte A, Villeneuve J, Lepreux S, Bouchecareilh M, Gauthereau X, Rigothier E, Schroeder M, Russo S, Costa C, Hori J, Tiscornia I, Bollati-Fogolín M, Field RC, Gibson BR, Holbrook DJ, McCall BM (2020) Hydroxychloroquine inhibits Ca++ channels in activated T cells: a new mechanism to explain its immunomodulatory properties. Blood 95: 3460–3466

Donatelli I, Cassone A, Feldmann M, Maini RN, Feske S (2015) Different pH requirements are associated with divergent inhibitory effects of chloroquine on human and avian influenza A viruses. Virol J 4: 39

Dékics I, Elazar Z (2018) Mechanism and medical implications of mammalian macrophage autophagy. Nat Rev Mol Cell Biol 19: 349–364

D’Souza RS, Levandowski C, Slavov D, Graw SL, Allen LA, Adler E, Mestroni L, Taylor MRG (2014) Danon disease clinical features, evaluation, and management. Circ Heart Fail 7: 843–849

Du Jiang P, Zhao YL, Deng XQ, Liu S, Deng XQ, Mao YQ, Shi W, Tang QQ, Li ZG, Zheng YZ, Yang SY, Wei YQ (2010) Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer. Biomed Pharmacother 64: 609–614

Eng EO, Chew JSW, Jin PL, Chua RCS (2006) In vitro inhibition of human influenza A virus replication by chloroquine. Virol J 3: 39

Eng CH, Wang Z, Tkach D, Toral-Barza L, Ugwonalii S, Liu S, Fitzgerald SL, George E, Frias E, Cochran N et al (2016) Macrophtathroph is dispensable for growth of KRAS mutant tumors and chloroquine efficacy. Proc Natl Acad Sci USA 113: 182–187

Eskenlin EL, Saftig P (2009) Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta Mol Cell Res 1793: 664–673

Eugenio Schroeder M, Russo S, Costa C, Hori J, Tiscornia I, Bollati-Fogolín M, Zamboni DS, Ferreira G, Cairoli E, Hill M (2017) Pro-inflammatory Ca++-activated K+ channels are inhibited by hydroxychloroquine. Sci Rep 7: 1–7

Farias KJS, Machado PRL, Muniz JPC, Imbelen AA, Da Fonseca BAL (2015) Antiviral activity of chloroquine against dengue virus type 2 replication in aotus monkeys. Viral Immunol 28: 161–169

Feldmann M, Maini RN (2001) Anti-TNFα therapy of rheumatoid arthritis: what have we learned? Ann Rheum Dis 199: 163–196

Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7: 690–702

Field RC, Gilson BR, Holbrook DJ, McCall BM (1978) Inhibition of precursor incorporation into nucleic acids of mammalian tissues by antimalarial aminoquinolines. Br J Pharmacol 62: 159–164

Florey O, Gammoh N, Kim SE, Jiang X, Overholtzer M (2015) V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation. Autophagy 11: 88–99

Fox RI (1999) Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum 28: 82–91

Fox RI, Dixon R, Guarasi V, Krubel S (1996) Treatment of primary Sjögren’s syndrome with hydroxychloroquine: a retrospective, open-label study. Lupus 5: 31–36

Fragkou PC, Belhadi D, Peiffer-Smadja N, Moschopoulos CD, Lescure X, Janocha H, Karofylakis E, Yazdanpanah Y, Mentré F, Skevaki C et al (2020) Review of trials currently testing treatment and prevention of COVID-19. Clin Microbiol Infect https://doi.org/10.1016/j.cmi.2020.05.019

Fulkerson JP, Ladenbauer-Bellis IM, Chrisman OD (1979) In vitro hexosamine depletion of intact articular cartilage by E-prostaglandins: prevention by chloroquine. Arthritis Rheum 22: 1117–1121

Furst DE (1996) Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus 5: S11–S15

Furst DE, Lindsay H, Baethge B, Botstein CR, Caldwell J, Dieltrei L, Dietz F, Ettlinger R, Golden HE, McLaughlin GE, Moreland LW et al (1999) Dose-loading with hydroxychloroquine improves the rate of response in early, active rheumatoid arthritis: a randomized, double-blind six-week trial with eighteen-week extension. Arthritis Rheum 42: 357–365

Gao D, Li T, Li XD, Chen X, Li QZ, Wight-Carter M, Chen ZJ (2015) Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci USA 112: E5699–E5705

Geng L, Tang X, Wang S, Sun Y, Wang D, Tsao BP, Feng X, Sun L (2020) Reduced let-7f in Bone marrow-derived mesenchymal stem cells triggers Treg/Th17 imbalance in patients with systemic lupus erythematosus. Front Immunol 11: 233

Goldman FD, Gilman AL, Hollenback C, Kato RM, Premack BA, Rawlings DJ (2000) Hydroxychloroquine inhibits calcium signals in T cells: a new mechanism to explain its immunomodulatory properties. Blood 95: 3460–3466

Gómez-Guzmán M, Jiménez R, Romero M, Sánchez M, Zarzuelo MJ, Gómez-Morales M, O’Valle F, López-Farré AJ, Aligier F, Gálvez J et al (2014) Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus. Hypertension 64: 330–337

Gonzalez-Dunia D, Cubitt B, de la Torre JC (1998) Mechanism of borna disease virus entry into cells. J Virol 72: 783–788

Gottenberg JE, Ravaud P, Puéchal X, Le Guern V, Sibilia J, Goeb V, Larroche C, Dubost JJ, Rist S, Saura A et al (2014) Effects of hydroxychloroquine on symptomatic improvement in primary Sjögren syndrome: the JOQUER randomized clinical trial. J Am Med Assoc 312: 249–258

Griendling KK, Alexander RW (1997) Oxidative stress and cardiovascular disease. Circulation 96: 3264–3265

Guidos C, Wong M, Lee KC (1984) A comparison of the stimulatory activities of lymphoid dendritic cells and macrophages in T proliferative responses to various antigens. J Immunol 133: 1179–1184

Gui JO, Chen HY, Mathew R, Fan J, Strohecker AM, Karśli-Uzunbas C, Kamphorst JJ, Chen G, Lemons JM, Karantza V et al (2011) Activated Rasa requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25: 460–470

Häcker H, Mischak H, Metheke T, Liptay GB, Wagner H (1998) 4 CPg-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 17: 6230–6240

Haladý J, Sikora M, Felis-Giemza A, Oleinska M (2018) Antimalarials - are they effective and safe in rheumatic diseases? Reumatologia 56: 164–173

Hedya SA, Safar MM, Bahgat AK, Kamphorst JJ, Chen G, Lemons JM, Karantza V et al (2011) Activated Rasa requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25: 460–470

Häcker H, Mischak H, Metheke T, Liptay GB, Wagner H (1998) CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 17: 6230–6240

Haladý J, Sikora M, Felis-Giemza A, Oleinska M (2018) Antimalarials - are they effective and safe in rheumatic diseases? Reumatologia 56: 164–173

Hedya SA, Safar MM, Bahgat AK, Kamphorst JJ, Chen G, Lemons JM, Karantza V et al (2011) Activated Rasa requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25: 460–470

Ibarra B, Martínez O, Valenzuela F, Silva F, Valenzuela O (2020) Hydroxychloroquine and chloroquine in COVID-19: should they be used as standard therapy? Perspect Rheumatol 39: 2461–2465

Imai-Imaizumi T, Hayakari R, Matsumiya T, Yoshida H, Tsuruga K, Watanabe S, Kawaguchi S, Tanaka H (2017) Chloroquine attenuates TLR3/IFN-β signaling in cultured normal human mesangial cells: a possible protective effect against renal damage in lupus nephritis. Mod Rheumatol 27: 1004–1009
Izquierdo J-H, Bonilla-Abadía F, Cañas CA, Tobdén GJ (2014) Calcium, channels, intracellular signaling and autoimmunity. *Reumafar Clinica* 10: 43–47

Jacquin E, Leclerc-Mercier S, Judon C, Blanchard E, Fratigl S, Florey O (2017) Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving uncontrolled LC3 lipidation. *Autophagy* 13: 854–867

Jadidi-Niaragh F, Mirshafiey A (2012) The deviated balance between regulatory T cell and Th17 in autoimmune. *immunopharmacol Immunotoxicol* 34: 727–739

James JA, Kim-Howard XR, Bruner BF, Jonsson MK, McClain MT, Ar buckle MR, Walker C, Dennis GJ, Merrill JT, Harley JB (2007) Hydroxychloroquine sulfate treatment is associated with later onset of systemic lupus erythematosus. Lupus 16: 401–409

Jang CH, Choi JH, Byun MS, Jue DM (2006) Chloroquine inhibits production of TNF-α, IL-1β and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. *Rheumatology* 45: 703–710

Jolly L, Stavrou A, VanderStoken G, Meliopoulos VA, Habgood A, Tatler AL, Porte J, Knox A, Weirnpe P, Violette S et al., et al. (2014) Influenza promotes collagen deposition via αvβ6 integrin-mediated transforming growth factor β activation. *J Biol Chem* 289: 35246–35263

Jorge A, Ung C, Young LH, Melles RB, Choi HK (2018) Hydroxychloroquine retinopathy — implications of research advances for rheumatology care. *Nat Rev Rheumatol* 14: 693–703

Julkunen H, Rokkanen P, Laine H (1976) Chloroquine treatment and bone changes in rheumatoid arthritis. *Scand J Rheumatol* 5: 36–38

Kalis A, Dutz JP (2007) New concepts in antimalarial use and mode of action in dermatology. *Dermatol Ther* 20: 160–174

Kaplan YC, Ozsarfatj I, Nickel C, Koren G (2016) Reproductive outcomes following hydroxychloroquine use for autoimmune diseases: a systematic review and meta-analysis. *Br J Clin Pharmacol* 81: 835–848

Kato Y, Park J, Takamatsu H, Aoki W, Aburaya S, Ueda M, Nishide M, Koyama S, Hayama Y et al. (2018) Apoptosis-derived membrane vesicles drive the CGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus. *Ann Rheum Dis* 77: 1507–1515

Kaufmann AM, Krise JP (2004) The gate on toll-like receptors? *J Biol Chem* 279: 40997–41004

Kawai T, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J (2004) Chloroquine treatment and bone changes in rheumatoid arthritis. *J Med Virol* 82: 817–824

Khoragade SB, Gupta P, Gurav P, Chaudhari G, Ghatne MM, Shingatgeri VM (2013) Assessment of proarhythmic activity of chloroquine in in vivo and ex vivo rabbit models. *J Pharmcol Pharmacother* 4: 116–124

Kharissi MM, Singh G (1996) The role of anti-malarials in rheumatoid arthritis - The American experience. Lupus S: 541–543

Kim EY, Moudgil KD (2017) Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines. Cytokine 98: 87–96

Kim Y, Cao F, Li M, Li P, Yu Y, Xiang L, Xu T, Lei J, Lei W, Lu J, Liang D, Neumann J-H, Bonilla-Abadía F, Cañas CA, Tobdén GJ (2012) Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCR4 in pancreatic cancer cells. *PLoS ONE* 7: e31004

Kim Y, Cao F, Li M, Li P, Yu Y, Xiang L, Xu T, Lei J, Lei W, Lu J, Liang D, Neumann J-H, Bonilla-Abadía F, Cañas CA, Tobdén GJ (2012) Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCR4 in pancreatic cancer cells. *PLoS ONE* 7: e31004

Kim Y, Cao F, Li M, Li P, Yu Y, Xiang L, Xu T, Lei J, Lei W, Lu J, Liang D, Neumann J-H, Bonilla-Abadía F, Cañas CA, Tobdén GJ (2012) Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCR4 in pancreatic cancer cells. *PLoS ONE* 7: e31004

Klauck Ch, Kaufmann AM, Krise JP (2004) The gate on toll-like receptors? *J Biol Chem* 279: 40997–41004

Kumar P, Clark ML (2012) *Kumar and clark’s clinical medicine*, 9th edn London: Elsevier Health Science

Kuznik A, Benčina M, Švajger U, Jers M, Rozman B, Jerala R (2011) Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoline quinolines. *J Immunol* 186: 4794–4804

Kyburz D, Brentano F, Gay S (2006) Mode of action of hydroxychloroquine in RA - Evidence of an inhibitory effect on toll-like receptor signaling. *Nat Clin Pract Rheumatol* 2: 458–459

Lafyatis R, York M, Marshall-Rothstein A (2006) Antimalarial agents: closing the gate on toll-like receptors? *Arthritis Rheum* 54: 3068–3070

Landewe RMB, Miltenburg AMM, Verdonk MJ, Verweij CL, Breedveld FC, Daha MR, Dijkmans BAC (1995) Chloroquine inhibits T cell proliferation by interfering with IL-2 production and responsiveness. *Clin Exp Immunol* 102: 144–151

Landmesser U, Harrison DG (2001) Oxidative stress and vascular damage in hypertension. *Coron Artery Dis* 12: 455–461

Latastevicz M, Gourier H, Yusuf IH, Luqmani R, Sharma SM, Downes SM (2017) Hydroxychloroquine retinopathy: an emerging problem. Eye 31: 972–976

Lazzerini PE, Boujetdir M, Cappecchi PL (2020) COVID-19, arrhythmic risk and inflammation: mind the gap. *Circulation* 142: 7–9

Lee J, Chuang TH, Redecke V, She L, Pitha PM, Carson DA, Raz E, Cottam HB (2003) Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of toll-like receptor 7. *Proc Natl Acad Sci USA* 100: 6646–6651

Leung LSB, Neal JW, Wakelee HA, Sequist LV, Marmor MF (2015) Rapid onset of retinal toxicity from high-dose hydroxychloroquine given for cancer therapy. *Am J Ophthalmol* 160: 799–805.1

Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. *Nature* 469: 323–335

Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. *Cell* 176: 11–42

Levy JMM, Thompson JC, Griesinger AM, Amani V, Donson AM, Birks DK, Morgan MJ, Mirsky DM, Handler MH, Foreman NK et al., et al. (2014) Autophagy inhibition improves chemosensitivity in BRAWF600E brain tumors. *Cancer Discov* 4: 773–780

Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. *Nat Rev Cancer* 17: 528–542

Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Channness GC et al. (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. *J Natl Cancer Inst* 100: 672–679

Li Y, Cao F, Li M, Li P, Yu Y, Xiang L, Xu T, Lei J, Tai YY, Zhu J et al. (2018) Hydroxychloroquine induced lung cancer suppression by enhancing chemo-sensitization and promoting the transition of M2-TAMs to M1-like macrophages. *J Exp Clin Cancer Res* 37: 259

Liang DH, Choi DS, Ensor JE, Kaipparattu BA, Bass BL, Chang JC (2016) The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. *Cancer Lett* 376: 249–258

Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. *Mol Biol Cell* 22: 165–178
Loehberg CR, Thompson T, Kastan MB, Maclean KH, Edwards DG, Kittrell FS, Medina D, Conneely OM, O’Malley BW (2007) Ataxia telangiectasia-mutated and p53 are potential mediators of chloroquine-induced resistance to mammaly carcinogenesis. Cancer Res 67: 12026–12033

Loehberg CR, Strissel PL, Dittrich R, Strick R, Dittmer J, Dittmer A, Fabry B, Kalender WA, Koch T, Wachter DL et al (2012) Akt and p53 are potential mediators of reduced mammaly tumor growth by Chloroquine and the mTOR inhibitor RAD001. Biochem Pharmacol 83: 480–488

van Loosdregt J, Rossetti M, Mosherf M, Olmer M, Williams GW, Kumar P, Copeland D, Pischel K, Lotz M et al (2016) Increased autophagy in CD4+ T cells of rheumatoid arthritis patients results in T-cell hyperactivation and apoptosis resistance. Eur J Immunol 46: 2862–2870

Lubberts E, Koenders M, van den Berg WB (2005) The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther 7: 29–37

Mackarlane DE, Manzel L (1998) Antagonism of immunostimulatory HpT oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol 160: 1122–1131

Maclean KH, Dorsey FC, Clevelend J, Kastan MB (2008) Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J Clin Invest 118: 79–88

Maes H, Kuchnio A, Peric A, Moens S, Nys K, DeBock K, Quaegebeur A, Schoors S, Georgiadou M, Wouters J et al (2014) Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26: 190–206

Mahdy AA, Raafat HA, El-Fishawy HS, Gheita TA (2014) Therapeutic potential of hydroxychloroquine on serum B-cell activating factor belonging to the tumor necrosis factor family (BAFF) in rheumatoid arthritis patients. Bull Fac Pharm Cairo Univ 52: 37–43

Mancias JD, Kimmelman AC (2011) Targeting autophagy addiction in cancer. Oncotarget 2: 1302–1306

Manic G, Obrist F, Kromer G, Vitale I, Galluzzi L (2014) Chloroquine and hydroxychloroquine for cancer therapy. Mol Cell Oncol 1: e29911

Mantovani A, Marchesi F, Malpici A, Laghi L, Allavena P (2017) Tumor-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14: 399–416

Martinez-Lopez N, Athonvarangkul D, Canisius A, Strand D, Lackner KJ (2017) Hydroxychloroquine inhibits proinflammatory signalling pathways by targeting endosomal NADPH oxidase. Ann Rheum Dis 76: 891–897

Mucmu G, Bıçakçıgil M, Yılmaz N, Ozay H, Karacaşılmıtım Cimili H, Yuvaz S (2013) Salivary and Serum B-cell activating factor (BAFF) levels after hydroxychloroquine treatment in primary Sjögren’s syndrome. Oral Heal Prev Dent 11: 229–234

Muskardin TLW, Niewold TB (2018) Type I interferon in rheumatic diseases. Nat Rev Rheumatol 14: 214–228

Nagy G, Koncz A, Teralico T, Fernandez D, Ersek B, Buzáš E, Perl A (2010) Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther 12: 210

Naksuk N, Lazar S, Peeraphatdit TB (2020) Cardiac safety of off-label COVID-19 drug therapy: a review and proposed monitoring protocol. Eur Heart J Acute Cardiovasc Care 9: 215–221

O’Brien RL, Olenick JC, Hahn FE (1966) Reactions of quinine, chloroquine, and quinacrine with DNA and their effects on the DNA and RNA polymerase reactions. Proc Natl Acad Sci USA 55: 1511–1517

Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 75: 3327–3331

Onorati AV, Dyczynski M, Ojha R, Amaravadi RK (2018) Targeting autophagy in cancer. Cancer 124: 3307–3318

Ostuni R, Kratochvill F, Murray PJ, Natoli G (2015) Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol 36: 229–239

Oxholm P, Praise JU, Schiødte M (1998) Rational drug therapy recommendations for the treatment of patients with Sjögren’s syndrome. Drugs 56: 345–353
Park TY, Jang Y, Kim W, Shin J, Toh HT, Kim CH, Yoon HS, Leblanc P, Kim KS (2019) Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases. Sci Rep 9: 15559
Pascolo S (2016) Time to use a dose of Chloroquine as an adjuvant to anti-cancer chemotherapies. Eur J Pharmacol 771: 139–144
Pasquier B (2016) Autophagy inhibitors. Cell Mol Life Sci 73: 985 – 1001
Pastick KA, Okafor EC, Wang F, Lobgren SM, Skipper CP, Nicol MR, Pullen MF, Rajasingham R, McDonald EG, Lee TC et al (2020) Review: hydroxychloroquine and chloroquine for treatment of SARS-CoV-2 (COVID-19). Open Forum Infect Dis 7: ofaa130
Perkett EA, Ornatowski W, Poschet JF, Deretic V (2006) Chloroquine normalizes aberrant transforming growth factor beta activity in cystic fibrosis bronchial epithelial cells. Pediatr Pulmonol 41: 771 – 778
Picot S, Peyron F, Vuillez JP, Polack B, Ambroise-Thomas P (1991) Chloroquine inhibits tumor necrosis factor production by human macrophages in vitro. J Infect Dis 164: 830
Plante D, Koudriavtseva T (2018) Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin Drug Invest 38: 653 – 671
Pollard KM, Cauvi DM, Toomey CB, Morris KV, Kono DH (2013) Interferon-γ and systemic autoimmunity. Discov Med 16: 123 – 131
Ponticelli C, Moroni G (2017) Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opin Pharmacother 18: 411 – 419
Poole B, Ohkuma S (1981) Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol 90: 665 – 669
Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF (2015) Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology 23: 231 – 269
Randolph VB, Winkler G, Stollar V (1990) Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology 174: 450 – 458
Rang HP, Ritter JM, Flower RJ, Henderson G (2016) Rang and dale’s pharmacology, 8th edn. London: Elsevier
Ratikan JA, Sayre JW, Schaue D (2013) Chloroquine engages the immune system to eradicate irradiated breast tumors in mice. Int J Radiat Oncol Biol Phys 87: 761 – 768
Retamozo S, Flores-Chavez A, Consuegra-Fernandez M, Lozano F, Ramos-Casals M, Brito-Zeron P (2018) Cytokines as therapeutic targets in primary Sjögren syndrome. Pharmacol Ther 184: 81 – 97
Rihl M, Ulbricht K, Schmidt RE, Witte T (2009) Treatment of sicca symptoms with hydroxychloroquine in patients with Sjögren’s syndrome. Rheumatology 48: 796 – 799
Rivinoja A, Hassinen A, Kokkonen N, Kauppila A, Kellokumpu S (2009) Elevated golgi pH impairs terminal N-glycosylation by inducing mislocalization of golgi glycosyltransferases. J Cell Physiol 220: 144 – 154
Rodrigo C, Fernando SD, Rajapakse S (2020) Clinical evidence for repurposing chloroquine and hydroxychloroquine as antiviral agents: a systematic review. Curr Opin Infect Dis 139: 723 – 727
Rosenthal AR, Collin J, Bergsma D, Huxsoll D, Hopkins JL (1978) Chloroquine retinopathy in the rhesus monkey. Invest Ophthalmol Vis Sci 17: 1158 – 1175
Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA (2010) Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis 69: 20 – 28
Sanders M (2000) A review of controlled clinical trials examining the effects of antimalarial compounds and gold compounds on radiographic progression in rheumatoid arthritis. J Rheumatol 27: 523 – 529
Savarno A, Boelaert JR, Cassone A, Majone G, Cauda R (2003) Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis. 3: 722 – 727
Savarno A, Luca MB, Rastrelli E, Rutella S, Colotta C, Morra E, Tamburini E, Perno CF, Boelaert JR, Sperber K et al (2004) Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors. J Acquir Immune Defic Syndr 35: 223 – 232
Schinnerler K, Aguillón J, Catalán D, Soto L (2017) The role of interleukin-6 signalling and its therapeutic blockage in skewing the T cell balance in rheumatoid arthritis. Clin Exp Immunol 189: 12 – 20
Schmidt RJL, Jutz S, Goldhahn K, Witzeneder N, Gerner MC, Trapin D, Greiner G, Hoermann G, Steiner G, Pickl WF et al (2017) Chloroquine inhibits human CD4+ T-cell activation by AP-1 signaling modulation. Sci Rep 7: 42191
Schrezenmeier E, Dörner T (2020) Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 16: 155 – 166
Schug BS, Kaibenh DA (1995) Influence of chloroquine and other substances on the collagenolytic activity in human osteoarthritic cartilage in vitro. Arzneimittel-Forschung/Drug Res 45: 285 – 289
Seglen PO, Grinde B, Solheim AE (1979) Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur J Biochem 95: 215 – 225
Shanks GD (2016) Historical review: problematic malaria prophylaxis with quinine. Am J Trop Med Hyg 95: 269 – 272
Shi TT, Yu XX, Yan LJ, Xiao HT (2017) Research progress of hydroxychloroquine and antihypertrophying inhibitors on cancer. Cancer Chemother Pharmacol 79: 287 – 294
Shiryaev SA, Mesci P, Pinto A, Fernandes I, Sheets N, Shresta S, Farhy C, Huang CT, Strongy AY, Mustristi AR et al (2017) Repurposing of the anti-malarial drug chloroquine for Zika Virus treatment and prophylaxis. Sci Rep 7: 15771
Shukla S, Gultekin S, Saporta M (2019) Pearls & Oy-sters: hydroxychloroquine-induced toxic myopathy mimics Pompe disease: critical role of genetic test. Neurology 92: E742 – E745
da Silva JC, Mariz HA, da Rocha Junior LF, de Oliveira PSS, Dantas AT, Duarte ALBP, da Pitta IR, Galdino SL, da Pitta MGR (2013) Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics 68: 766 – 771
Smith DA, Germolec DR (1999) Introduction to immunology and autoimmunity. Environ health perspect 107: 661 – 665
Smolen JS, Landewe R, Breedveld FC, Buch M, Burmester G, Dougados M, Emery P, Gaujoux-Viala C, Gossec L, Nam J et al (2014) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying anti-rheumatic drugs: 2013 update. Ann Rheum Dis 73: 492 – 509
Soririsseau M, Schilt C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, Sol-Foulon L, Le Roux K, Prevost MC, Fishi H et al (2007) Characterization of reemerging chikungunya virus. PLoS Pathog 3: 804 – 818
Sousa CM, Biancari DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Wikiewicz AK, Ying H et al (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536: 479 – 483
Sperber K, Quraishi H, Kalb TH, Panja A, Stecher V, Mayer L (1993) Selective regulation of cytokine secretion by hydroxychloroquine: inhibition of
interleukin 1 alpha (IL-1α) and IL-6 in human monocytes and T cells. J Rheumatol 20: 803–808

Stemglanz H, Yielding KL, Pruitt KM (1969) Nuclear magnetic resonance studies of the interaction of chloroquine diphosphate with adenosine 5'-phosphate and other nucleotides. Mol Pharmacol 5: 376–381

Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, Mathew R, McMahon M, White E (2013) Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E -driven lung tumors. Cancer Discov 3: 1272–1285

Sun J, Lin Z, Feng J, Li Y, Shen B (2008) BAFF-targeting therapy, a promising strategy for treating autoimmune diseases. Eur J Pharmacol 597: 1–5

Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, Taichman RS, Pienta KJ, Wang J (2010) CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 29: 709–722

Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339: 786–791

Tishler M, Yaron I, Shirazi I, Yaron M (1999) Hydroxychloroquine treatment for primary Sjogren’s syndrome: its effect on salivary and serum inflammatory markers. Ann Rheum Dis 58: 253–256

Tongoe M, Sakata K, Ishii A, Iwata S, Nakayamada S, Tanaka Y (2018) Hydroxychloroquine efficiently suppresses inflammatory responses of human class-switched memory B cells via Toll-like receptor 9 inhibition. Clin Immunol 195: 1–7

Tsai WPO, Nara PL, Kung HFU, Oroszlan S (2011) BaFF-targeting therapy, a promising strategy for treating autoimmune diseases. Eur J Pharmacol 597: 1–5

Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Yoon CH, Lee HJ, Lee EY, Lee EB, Lee WW, Kim MK, Wee WR (2012) Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-α, interleukin 6, and interferon-γ production by peripheral blood mononuclear cells. J Rheumatol 24: 55–60

Verbaanderd C, Maes H, Schaab MB, Sukhatme VP, Pantziaraki P, Sukhatme V, Agostinis P, Bouché C (2017) Repurposing drugs in oncology (RedO) - Chloroquine and hydroxychloroquine as anti-cancer agents. Cancers 9(6): 117

Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology 335: 1–9

Wang SQ, Zhang LW, Wei P, Hua H (2017) Hydroxychloroquine is effective in treating primary Sjogren’s syndrome: a systematic review and meta-analysis. BMC Musculoskelet Disord 18: 186

Weindel CG, Richey LJ, Bolland S, Mehta AJ, Kearney JF, Huber BT (2015) B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy 11: 1010–1024

Weyerhäuser P, Kenthalder SR, Kim EL (2018) Re-purposing chloroquine for glioblastoma: potential merits and confounding variables. Front Oncol 8: 335

White NJ (2007) Cardiotoxicity of antimalarial drugs. Lancet Infect Dis 7: 549–558

Willis R, Seif AM, McGowan C, Martinez-Martinez LA, González EB, Dang N, Papalardo E, Liu J, Vilá LM, Reveille JD et al (2012) Effect of hydroxychloroquine treatment on pro-inflammatory cytokines and disease activity in SLE patients: data from LUMINA (LXV), a multiethnic US cohort. Lupus 21: 830–835

Woodward RB, Doering WE (1945) The total synthesis of quinine. J Am Chem Soc 67: 860–874

Wu DJ, Adamopoulos IE (2017) Autophagy and autoimmunity. Clin Immunol 176: 55–62

Wu SF, Bin Chang C, Hsu JM, Lu MC, Lai NS, Li C, Tung CH (2017) Hydroxychloroquine inhibits CD154 expression in CD4+ T lymphocytes of systemic lupus erythematosus through NFκB, but not STAT5, signaling. Arthritis Res Ther 19: 183

Xie X, Koy JY, Price S, White E, Mehnert JM (2015) Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov 5: 410–423

Xu J, Peng YB, Wei MY, Wu YF, Guo D, Qin G, Ji G, Shen J, Liu QH (2015) Chloroquine inhibits Ca signaling in murine CD4 + thymocytes. Cell Physiol Biochem 36: 133–140

Xu C, Zhu L, Chan T, Lu X, Shen W, Madigan MC, Gillies MC, Zhou F (2016) Chloroquine and hydroxychloroquine are novel inhibitors of human organic anion transporting polypeptide 1A2. J Pharm Sci 105: 884–890

Yang J, Yang X, Zou H, Chu Y, Li M (2011a) Recovery of the immune balance between Th1 and regulatory T cells as a treatment for systemic lupus erythematosus. Rheumatology 50: 1366–1372

Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stomme JM, Dell’Antonio G et al (2011b) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25: 717–729

Yang J, Yang X, Yang J, Li M (2018) Hydroxychloroquine inhibits the differentiation of Th17 cells in systemic lupus erythematosus. J Rheumatol 45: 818–826

Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C et al (2020) In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Dis Clin Infect 2020: 1–12

Yavanuz S, Asfuroglu E, Bicakciolgu M, Toker E (2011) Hydroxychloroquine improves dry eye symptoms of patients with primary Sjogren’s syndrome. Rheumatol Int 31: 1045–1049

Yi AK, Tuukenen R, Redford T, Waldschmidt M, Kirsch J, Krieg AM (1998) CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J Immunol 160: 4755–4761

Yin F, Guo M, Yao S (2003) Kinetics of DNA binding with chloroquine phosphate using capacitive sensing method. Biosens Bioelectron 19: 297–304

Yogasundaram H, Putko BN, Tien J, Paterson DI, Cujec B, Ringrose J, Oudit GY (2014) Hydroxychloroquine-induced cardiomyopathy: case report, pathophysiology, diagnosis, and treatment. Can J Cardiol 30: 1706–1715

Yoon YH, Cho KS, Hwang JJ, Lee SJ, Choi JA, Koh JY (2010) Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE-19 cells. Invest Ophthal Vis Sci 51: 6030–6037

Yoon CH, Lee HJ, Lee EE, Lee EB, Lee WW, Kim MK, Wee WR (2016) Effect of hydroxychloroquine treatment on dry eyes in subjects with primary Sjogren’s syndrome: a double-blind randomized control study. J Korean Med Sci 31: 1127–1135

Yusuf IH, Sharma S, Luqmani R, Downes SM (2017) Hydroxychloroquine retinopathy. Eye 31: 828–845

Zhang Y, Li Y, Li Y, Li R, Ma Y, Wang H, Wang Y (2015) Chloroquine inhibits MCGC803 gastric cancer cell migration via the Toll-like receptor 9/nuclear factor kappa B signaling pathway. Mol Med Rep 11: 1366–1371

Zhang Y, Cao Y, Sun X, Feng Y, Du Y, Liu F, Yu C, Jin F (2017) Chloroquine (CQ) exerts anti-breast cancer through modulating microenvironment and inducing apoptosis. Int Immunopharmacol 42: 100–107
Zhang J, Chen L, Xiong F, Zhang S, Huang K, Zhang Z, Wang CY (2019) Autophagy in regulatory T cells: a double-edged sword in disease settings. Mol Immunol 109: 43–50

Zhou Q, McCracken MA, Strobl JS (2002) Control of mammary tumor cell growth in vitro by novel cell differentiation and apoptosis agents. Breast Cancer Res Treat 75: 107–117

Ziegler HK, Unanue ER (1982) Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells. Proc Natl Acad Sci USA 79: 175–178

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.