Detection and characterisation of oscillating red giants: first results from the TESS satellite

Víctor Silva Aguirre, 1 Dennis Stello, 2, 3, 1 Amalie Stokholm, 1 Jakob R. Mosumgaard, 1 Warrick H. Ball, 4, 1 Sárbari Basu, 2 Diego Bossini, 6 Lisa Bugnet, 7, 8 Derek Buzasi, 9 Tiago L. Campante, 6, 10 Lindsey Carboneau, 9 William J. Chaplin, 4, 11 Enrico Corsaro, 11 Guy R. Davies, 4, 1 Yvonne Elsworth, 1, 4, 1 Raphael A. García, 7, 8 Patrick Gaulme, 12, 13 Oliver J. Hall, 14 Rasmus Handberg, 1, 4, 1 Marc Hon, 2 Thomas Kallinger, 14 Liu Kang, 15 Mikkel N. Lund, 1 Santa Mathur, 16, 17 Alexey Mints, 18 Benoit Mosser, 19 Zeynep Ceylak Orhan, 20 Thaíse S. Rodrigues, 21 Mathieu Vrard, 5, 22 Muñu T. Yildiz, 20 Joel C. Zinn, 2, 23, 22 Sibel Örtel, 20 Paul G. Beck, 24, 16, 17 Keaton J. Bell, 25, 26 Zhao Guo, 27 Chen Jiang, 28 James S. Kuszlewicz, 12 Charles A. Kurth, 29 Tanda Li, 3, 1, 4 Mia S. Lundkvist, 1 Marc Pinsonneault, 32 Jamie Tayar, 30, 31 Margarida S. Cunha, 6, 4, 1 Saskia Hekker, 1, 1 Daniel Huber, 30 Andrea Miglio, 4, 1 Mario J. P. F. G. Monteiro, 6, 10 Ditte Slumstrup, 32 Mark L. Winther, 1 George Angelou, 33 Otman Benomar, 34, 35 Attila Bódi, 36, 37 Bruno L. De Moura, 38 Sébastien Deheuvels, 1, 39 Aliz Derekas, 40, 41, 36 Maria Pia Di Mauro, 39 Marc-Antoine Dupret, 43 Antonio Jiménez, 16, 17 Yvaine Libretton, 14, 14 Jaymie Matthews, 45 Nicolas Nardetto, 46 Jose D. do Nascimento, Jr., 47, 48 Filipe Pereira, 6, 10 Lusia F. Rodríguez Díaz, 1 Alido M. Serenelli, 49, 50 Emanuele Spinoni, 51 Edita Stonkutė, 1, 52 Juan Carlos Suárez, 52, 53 Robert Szabo, 36, 37 Vincent Van Eylen, 54, 55 Rita Ventura, 1, 56 Kuldeep Verma, 1, 57 Achim Weiss, 33 T. Wu, 55, 56, 57 Thomas Barclay, 58, 59 Jørgen Christensen-Dalsgaard, 1, 60 Jon M. Jenkins, 60 Hans Kjeldsen, 1 George R. Ricker, 61 Sara Seager, 61, 62, 63 and Roland Vanderspek, 61

1 Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark

2 School of Physics, The University of New South Wales, Sydney NSW 2052, Australia

3 Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006, Australia

4 School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom

5 Department of Astronomy, Yale University, New Haven, CT 06520, USA

6 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal

7 IRFU, CEA, Université Paris-Saclay, F-91191 GIF-sur-Yvette, France

8 AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, F-91191 GIF-sur-Yvette, France

9 Dept. of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965 USA

10 Departamento de Física y Astronomía, Facultad de Ciencias de la Universidad del Porto, Rua do Campo Alegre, 4150-762 Porto, Portugal

11 INAF - Osservatorio Astrofisico di Catania, Via S. Sofia, 78, 95123 Catania, Italy

12 Max Planck Institute for Solar System Research, Justus-von-Liebig Weg 3, D-37077 Göttingen, Germany

13 Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001, USA

14 Institut für Astrophysik, Universität Wien, Türkenschanzstraße 17, 1180 Vienna, Austria

15 Department of Astronomy, Beijing Normal University, 100875 Beijing, PR China

16 Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain

17 Departamento de Astrofísica, Universidade de La Laguna, E-38206 La Laguna, Tenerife, Spain

18 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany

19 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 92195 Meudon, France

20 Department of Astronomy and Space Sciences, Science Faculty, Ege University, 35100, Bornova, İzmir, Turkey

21 Osservatorio Astronomico di Padova – INAF, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy

22 Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus OH 43210, USA

23 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

24 Institute of Physics, Karl-Franzens University of Graz, NAWI Graz, Universitätsplatz 5/II, 8010 Graz, Austria

25 DIRAC Institute, Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA

26 NSF Astronomy and Astrophysics Postdoctoral Fellow and DIRAC Fellow

27 Center for Exoplanets and Habitable Worlds, Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA16802, USA

28 School of Physics and Astronomy, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China

29 Department of Physics and Astronomy, University of Northern Colorado, Greeley, CO 80639, USA

30 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA

Corresponding author: Víctor Silva Aguirre

victor@phys.au.dk
ABSTRACT

Since the onset of the ‘space revolution’ of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archaeology investigations. The launch of the NASA TESS mission has enabled seismic-based inferences to go full sky – providing a clear advantage for large ensemble studies of the different Milky Way components. Here we demonstrate its potential for investigating the Galaxy by carrying out the first asteroseismic ensemble study of red giant stars observed by TESS. We use a sample of 25 stars for which we measure their global asteroseismic observables and estimate their fundamental stellar properties, such as radius, mass, and age. Significant improvements are seen in the uncertainties of our estimates when combining seismic observables from TESS with astrometric measurements from the Gaia mission compared to when the seismology and astrometry are applied separately. Specifically, when combined we show that stellar radii can be determined to a precision of a few percent, masses to 5-10% and ages to the 20% level. This is comparable to the precision typically obtained using end-of-mission Kepler data.

Keywords: asteroseismology — stars: fundamental parameters — techniques: photometric

1. INTRODUCTION

Asteroseismology of red giant stars has been one of the major successes of the CoRoT and Kepler missions.
The unambiguous detection of non-radial oscillations has fundamentally widened our understanding of the inner workings of red giants, including the conditions in their core (e.g., Bedding et al. 2011). The observed frequency spectra have allowed the determination of the physical properties of thousands of red giants to an unprecedented level of precision (e.g., Miglio et al. 2013), paving the way for the emergence of asteroseismology as a powerful tool for Milky Way studies and Galactic archaeology (e.g., Miglio et al. 2009; Casagrande et al. 2016; Anders et al. 2017; Silva Aguirre et al. 2018; Sharma et al. 2019). The Transiting Exoplanet Survey Satellite (TESS, Ricker et al. 2015) is on the path of continuing this legacy with its all-sky survey that is expected to increase the number of detected oscillating red giants by an order of magnitude compared to the tens of thousands reported by its predecessors CoRoT and Kepler.

In the nominal TESS mission, the ecliptic northern and southern hemispheres are each observed during thirteen 27-day-long sectors, and most (92%) of the surveyed sky will be monitored for just 1-2 sectors. Except for the 20,000 targets pre-selected in each sector for 2-min cadence observations, all stars are observed as part of the full frame images obtained in 30-min cadence, similar to the long cadence sampling of the Kepler satellite. The length of the observations sets the lower limit on the oscillation frequencies one can resolve, and the sampling sets the upper frequency limit. We know from previous Kepler observations that one month of 30-min cadence data should be well suited to detect oscillations in the low red-giant branch and sufficient to measure the global oscillation properties characterising the frequency spectrum, in particular, its frequency of maximum power, \(\nu_{\text{max}} \), and the frequency separation between overtone modes, \(\Delta \nu \) (Bedding et al. 2010). These in turn can be used in combination with complementary data such as the effective temperature, \(T_{\text{eff}} \), the relative iron abundance, [Fe/H], and parallax, to obtain precise stellar properties (including ages) when applying asteroseismic-based grid modelling approaches (see e.g., Rodrigues et al. 2017; Pinsonneault et al. 2018).

Due to the large sky coverage, approximately 97% of asteroseismic detections in red giants from the TESS nominal mission data are expected to come from stars observed for only one or two sectors\(^1\). Here we set out to explore the capability of TESS to detect the oscillations in giants ranging from the base of the red giant branch to the red clump, determine their stellar properties, and use that to assess the prospects for Galactic archaeology studies using one to two sectors of TESS data.

1 Based on a preliminary simulation of the full TESS sky (TESS GI Proposal No G011188).

Figure 1. ‘Asteroseismic HR diagram’ showing (predicted) \(\nu_{\text{max}} \) instead of luminosity. Red dots show the selected targets inside the black selection box. For reference, the Sun is shown as well as all Hipparcos stars brighter than 6th magnitude (grey dots). Solar metalicity MESA tracks from Stello et al. (2013) are shown to guide the eye with masses in solar units indicated (pre- and post- helium core-ignition phases are shown separately).

Our goal is to have a representative sample of giants including the types of stars in which we can expect to detect oscillations from one sector 30-min cadence TESS data. We selected red-giant candidates observed during sectors 1 and/or 2 that were deemed viable for asteroseismic detections according to their predicted properties based on the Hipparcos catalogue (Van Leeuwen 2007). We first estimated the stellar \(T_{\text{eff}} \) and luminosity using \(B - V \) color, \(V \)-band, and Hipparcos parallax, and the color-temperature and bolometric correction relations of Flower (1996). We then obtained a prediction of \(\nu_{\text{max}} \propto T_{\text{eff}}^{-0.6}M/L \); solar scaled, e.g. Yu et al. (2018) for each star assuming a mass of 1.2 M\(_{\odot}\), which is representative of a typical red giant as observed by Kepler (and unlikely to be more than a factor of two from the true value of each star, e.g. Yu et al. 2018). We note that one of our targets (TIC 129649472) is a known exoplanet host star recently analysed by Campante et al. (2019).

To ensure that the selected targets were amenable to asteroseismic detection from one sector of 30-min cadence data, we required that they would have an expected \(\nu_{\text{max}} \) in the range 30-220\(\mu \)Hz and \(T_{\text{eff}} \) in the typical range of red giants of 4500-5200 K. In addition, we applied a narrower \(T_{\text{eff}} \) range of 4500-4700 K for the stars with \(\nu_{\text{max}} \) between 30\(\mu \)Hz and 70\(\mu \)Hz, to avoid having red clump stars dominating our sample. The resulting
sample of stars span evolutionary phases from the base of the red giant branch to the red giant branch bump, as well as some clump stars.

From this sample, we selected the 25 brightest targets for light curve extraction and asteroseismic analysis. The faintest stars in our sample turned out to be ~6-7th magnitude in V band (see Table 1). Under the assumption that the photometric performance of TESS is similar to Kepler’s, apart from its smaller aperture, this magnitude limit is equivalent to 11-12th magnitude for Kepler. Because single-quarter observations from Kepler’s second life, K2, showed no oscillation detection bias for red giants brighter than around 12th magnitude (Stello et al. 2017) we would expect to detect oscillations in all 25 giants with TESS.

Figure 1 illustrates the location of the selected stars in the HR-diagram and the applied selection criteria. We confirmed that the stars were in sectors 1-2 using the Web TESS Viewing tool (WTV)2.

3. DATA PROCESSING AND ASTEROSEISMIC ANALYSIS

The stars selected were included in an early release of processed data from the TASOC pipeline3. The calibrated full frame images were produced by the TESS Science Processing Operations Center (SPOC) at NASA Ames Research Center (Jenkins et al. 2016), and processed by combining the methodology from the K2P2 pipeline (Lund et al. 2015) for extracting the flux from target pixel data with the KASOC filter for systematics correction (Handberg & Lund 2014). The resulting TASOC light curves were high-pass filtered using a filter width of 4 days, corresponding to a cut-off frequency of approximately 3μHz, and 4σ outliers were removed. Finally, we used linear interpolation to fill gaps that lasted up to three consecutive cadences and derived the Fourier transforms (power frequency spectra) of each light curve.

The light curves for the seven stars observed in both sectors were merged. To follow the approach anticipated for the millions of light curves from the TESS full frame images in the future, we first applied the neural network-based detection algorithm by Hon et al. (2018) resulting in detection of oscillations in the power spectra of all stars except one. The non-detection (TIC 204314449) is listed as an A2 dwarf and a ‘Visual Double’ in the University of Michigan Catalogue of two-dimensional spectral types for the HD stars (Houk 1994), and hence possibly too hot to show solar-like oscillations, or potentially contaminated. For the current test case, the number of stars was small enough that we visually checked the results, which confirmed all detections and the non-

2 https://heasarc.gsfc.nasa.gov/cgi-bin/tess/webtess/wtv.py

3 T’DA Data Release Notes - Data Release 3 for TESS Sectors 1+2 (https://doi.org/10.5281/zenodo.2510028)
Oscillating red giants with TESS

4. DERIVED STELLAR PROPERTIES

We have determined stellar properties for a subsample of 17 stars that had spectroscopic measurements of effective temperature and chemical composition available in the literature. Since one of our goals is to follow the same analysis procedure expected for large ensembles of stars, we assumed fixed uncertainties in T_{eff} and [Fe/H] of 80 K and 0.08 dex, which are at the level of those provided by current large-scale spectroscopic surveys. To extract the physical properties of our sample, the atmospheric information was complemented with the asteroseismic scaling relations:

\[
\left(\frac{\Delta \nu}{\nu_{\odot}} \right)^2 \approx \frac{\rho}{\rho_{\odot}},
\]

where we adopted $\Delta \nu_{\odot} = 135.5$ (μHz) and $\nu_{\text{max,}\odot} = 3140$ (μHz) as obtained by our reference pipeline from the analysis of solar data.

Seventeen teams independently applied grid-based modelling pipelines based on stellar evolution models or isochrones to determine the main physical properties of the targets (see Basu et al. 2012; Silva Aguirre et al. 2015; Rodrigues et al. 2017; Mints & Hekker 2018; Yıldız et al. 2019, and references therein). When matching the models to the atmospheric properties and the global asteroseismic parameters $\Delta \nu$ and ν_{max}, the pipelines yielded median uncertainties of $\sim 6\%$ in radius, $\sim 14\%$ in mass, and $\sim 50\%$ in age. These statistical uncertainties are of the same magnitude to those obtained with the K2 mission (Sharma et al. 2019), as expected from the similar resulting errors in the global seismic parameters described in Section 3, and about a factor of two larger than what can be achieved with the full duration of the Kepler observations (Pinsonneault et al. 2018).

In addition to the asteroseismic information, five of the pipelines can include parallaxes from Gaia DR2 (Gaia Collaboration et al. 2018) coupled with Tycho-2 (Hog et al. 2000) observed V-magnitudes in their fitting algorithm to further constrain the stellar properties. As a consequence of having the additional constraint on stellar radius from the astrometry, the resulting uncertainties decrease to a level of $\sim 3\%$ in radius, $\sim 6\%$ in mass, and $\sim 20\%$ in age. This level of precision resembles that obtained with the use of the full length of asteroseismic observations from the nominal Kepler mission, and emphasizes the potential of TESS for Galactic studies using red giants given its larger sky coverage, simple and reproducible selection function, and one order of magnitude higher expected yield of asteroseismic detections than any other previous mission.

To illustrate the differences in the obtained stellar properties arising from the selection of fitted observables, Fig. 3 shows the stellar radius obtained with one of the pipelines (BASTA, Silva Aguirre et al. 2015) when fitting different combinations of input parameters. The figure uses as the reference value the case when, in addition to the atmospheric properties, only the Gaia DR2
parallax and observed V-band magnitude are included in the fit. For the majority of the targets the results are consistent across the three sets within their formal statistical uncertainties. A summary of the measured and derived stellar properties for our targets can be found in Table 1, where we have listed the central values and statistical uncertainties obtained with the BASTA pipeline, and determined the systematic contribution as the standard deviation across the results reported by all pipelines.

Two targets (TIC 141280255 and TIC 149347992) present a larger disagreement between the radii obtained with parallax and the seismic set ($\Delta\nu$, ν_{max}). We investigated if these discrepancies were due to the quality of the astrometric data by computing the re-normalised unit weight error (RUWE4) for our sample of stars. In the case of TIC 141280255 we obtained a RUWE=1.98, which is above the value recommended by the Gaia team as a criterion for a good astrometric solution (RUWE\leq 1.4). Therefore, we adopt for this star the stellar properties obtained from fitting the asteroseismic input only ($\Delta\nu$, ν_{max}).

In the case of TIC 149347992 the discrepancy is the result of predicted evolutionary phases: while the parallax-only solution suggests that the star in the clump phase, the asteroseismic fit favours a star in the red-giant branch. The combined fit therefore presents a bimodal distribution that encompasses these two families of solutions. A similar situation occurs in the fit of TIC 175375523, which shows agreement in the radius determined from different sets of input but has a fractional age uncertainty above unity when only ($\Delta\nu$, ν_{max}) are included in the fit. Its resulting age distribution is bimodal in this set as both red-giant branch and clump models can reproduce the observations, but the inclusion of parallax information favours the red giant branch solution and accounts for the \sim 17% statistical uncertainty reported in Table 1. The availability of evolutionary classifications from deep neural networks trained on short Kepler data (Hon et al. 2018) would further decrease the obtained uncertainties by clearly disentangling these two scenarios.

In Fig. 4 we plot the distribution of fractional age uncertainties obtained with BASTA for the three considered cases of input, showing the clear improvement in precision when asteroseismic information and parallax are simultaneously included in the fit. For visualization purposes we have excluded the target TIC 175375523 from the figure. Our stellar ages at the 20% level are significantly more precise than what is obtained by data-driven and neural-network methods trained using asteroseismic ages from Kepler (above the 30% level, see e.g., Mackereth et al. 2019). As a final remark, we note that asteroseismically derived properties of red giants are accurate to at least a similar level than our statistical uncertainties (below \sim 5% and \sim 10% for radii and masses, respectively. See discussion in e.g., Pinsonneault et al. 2018, and references therein). We have made emphasis on our achieved precision instead of accuracy as our results could still be affected by a systematic component arising from uncertainties in evolutionary calculations, although recent investigations quantifying these effects.

4 see Gaia technical note GAIA-C3-TN-LU-LL-124-01 (https://www.cosmos.esa.int/web/gaia/dr2-known-issues)
at solar metallicity suggest that they are smaller than our statistical uncertainties (Silva Aguirre et al. 2019).

5. CONCLUSIONS

We presented the first ensemble analysis of red giants stars observed with the TESS mission. We selected a sample of 25 stars where we expected to detect oscillations based on their magnitude and parallax value, and analysed the extracted light curves in search for asteroseismic signatures in the power spectra. Our main findings can be summarized as follows:

- We detected oscillations in all the stars (except one that was likely incorrectly listed as a red giant). Despite the modest number of stars in our sample, our detection yield supports that the TESS photometric performance is similar to that of Kepler and K2 except shifted by about 5 magnitudes towards brighter stars due to its smaller aperture.

- Individual pipelines retrieve the global asteroseismic parameters with uncertainties at the $\sim 2\%$ level in $\Delta \nu$ and $\sim 2.5\%$ in ν_{max}, which respectively increase to $\sim 4\%$ and $\sim 3.5\%$ when we take into account the scatter across results. We consider these uncertainties to be representative for the forthcoming ensemble analysis of TESS targets observed in 1-2 sectors, as individual validation of the results will not be feasible due to the large number of targets observed.

- Grid-based modelling techniques applying asteroseismic scaling relations were used to retrieve stellar properties for the 17 targets with spectroscopic information. Radii, masses, and ages were obtained with uncertainties at the 6%, 14%, and 50% level, and decrease to 3%, 6%, and 20% when parallax information from Gaia DR2 is included.

The expected number of red giants with detected oscillations by TESS ($\sim 500,000^5$) greatly surpasses the final yield of Kepler ($\sim 20,000$). In this respect, the combination of TESS observations, Gaia astrometry, and large scale spectroscopic surveys holds a great potential for studies of Galactic structure where precise stellar properties (particularly ages) are of key importance. We note that the recently approved extended TESS mission will change the 30-min cadence to 10 minutes, making it possible to detect oscillations of stars of smaller radii using the full frame images. This will enable more rigorous investigations of the asteroseismic mass scale for giants when anchored to empirical mass determinations (e.g., from eclipsing binaries) of turn-off and subgiant stars.

This paper includes data collected by the TESS mission, which are publicly available from the Mikulski Archive for Space Telescopes (MAST). Funding for the TESS mission is provided by NASAs Science Mission directorate. Funding for the TESS Asteroseismic Science Operations Centre is provided by the Danish National Research Foundation (Grant agreement no.: DNRF106), ESA PRODEX (PEA 4000119301) and Stellar Astrophysics Centre (SAC) at Aarhus University. VSA acknowledges support from the Independent Research Fund Denmark (Research grant 7027-00096B). DB is supported in the form of work contract FCT/MCTES through national funds and by FEDER through COMPETE2020 in connection to these grants: UID/FIS/04434/2019; PTDC/FIS-AST/30389/2017 & POCI-01-0145-FEDER-030389. LB, RAG and BM acknowledge the support from the CNES/PLATO grant. DB acknowledges NASA grant NNX16AB76G. TLC acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 792848 (PULSATION). This work was supported by FCT/MCTES through national funds (UID/FIS/04434/2019). EC is funded by the European Unions Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 664931. RH and MNL acknowledge the support of the ESA PRODEX programme. T.S.R acknowledges financial support for Premiale 2015 MITiC (PI B. Garilli). KJB is supported by the National Science Foundation under Award AST-1903828. MSL is supported by the Carlsberg Foundation (Grant agreement no.: CF17-0760). MC is funded by FCT//MCTES through national funds and by FEDER through COMPETE2020 through these grants: UID/FIS/04434/2019, PTDC/FIS-AST/30389/2017 & POCI-01-0145-FEDER-030389, CEESCIND/02619/2017. The research leading to the presented results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no 338251 (StellarAges). AM acknowledges support from the European Research Council Consolidator Grant funding scheme (project ASTEROCHRONOMETRY, G.A. n. 772293, http://www. asterochronometry.eu). AMS is partially supported by MINECO grant ESP2017-82674-R. JCS acknowledges funding support from Spanish public funds for research under projects ESP2017-87676-2-2, and from project RYC-2012-09913 under the Ramón y Cajal program of the Spanish Ministry of Science and Education. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced

5 Based on a preliminary simulation of the full TESS sky (TESS GI Proposal No G011188).
REFERENCES

Alves, S., Benamati, L., Santos, N. C., et al. 2015, Monthly Notices of the Royal Astronomical Society, 448, 2749

Anders, F., Chiappini, C., Rodrigues, T. S., et al. 2017, A&A, 597, A30, doi: 10.1051/0004-6361/201527204

Basu, S., Verner, G. A., Chaplin, W. J., & Elsworth, Y. 2012, ApJ, 746, 76

Bedding, T. R., Huber, D., Stello, D., et al. 2010, ApJL, 713, L176

Bedding, T. R., Mosser, B., Huber, D., et al. 2011, Nature, 471, 608

Campante, T. L., Veras, D., North, T. S. H., et al. 2017, Monthly Notices of the Royal Astronomical Society, 469, 1360

Campante, T. L., Corsaro, E., Lund, M. N., et al. 2019, arXiv e-prints, arXiv:1909.05961. https://arxiv.org/abs/1909.05961

Casagrande, L., Silva Aguirre, V., Schlesinger, K. J., et al. 2016, Monthly Notices of the Royal Astronomical Society, 455, 987

Corsaro, E., & De Ridder, J. 2014, Astronomy and Astrophysics, 571, A71

da Silva, R., Milone, A. d. C., & Rocha-Pinto, H. J. 2015, Astronomy and Astrophysics, 580, A24

Davies, G. R., Silva Aguirre, V., Bedding, T. R., et al. 2016, Monthly Notices of the Royal Astronomical Society, 456, 2183

Flower, P. J. 1996, ApJ, 469, 355

Gaia Collaboration, Katz, D., Antoja, T., et al. 2018, Astronomy and Astrophysics, 616, A11

Gaulme, P., Appourchaux, T., & Boumier, P. 2009, Astronomy and Astrophysics, 506, 7

Handberg, R., & Lund, M. N. 2014, Monthly Notices of the Royal Astronomical Society, 445, 2698

Hekker, S., Broomhall, A.-M., Chaplin, W. J., et al. 2010, MNRAS, 402, 2049

Hekker, S., Elsworth, Y., Mosser, B., et al. 2012, A&A, 544, A90

Hog, E., Fabricius, C., Makarov, V. V., et al. 2000, Astronomy and Astrophysics, 355, L27

Hon, M., Stello, D., & Yu, J. 2018, Monthly Notices of the Royal Astronomical Society, 476, 3233

Houk, N. 1994, The MK process at 50 years. A powerful tool for astrophysical insight Astronomical Society of the Pacific Conference Series, 60, 285

Huber, D., Stello, D., Bedding, T. R., et al. 2009, Communications in Asteroseismology, 160, 74

Jenkins, J. M., Twicken, J. D., McCauliff, S., et al. 2016, in Proc. SPIE, Vol. 9913, Software and Cyberinfrastructure for Astronomy IV, 99133E, doi: 10.1117/12.2233418

Jofré, E., Petrucci, R., Saffe, C., et al. 2015, Astronomy and Astrophysics, 574, A50

Jones, M. I., Jenkins, J. S., Rojo, P., & Melo, C. H. F. 2011, Astronomy and Astrophysics, 536, A71

Kallinger, T., Hekker, S., Mosser, B., et al. 2012, A&A, 541, 51

Luck, R. E. 2015, The Astronomical Journal, 150, 88

Lund, M. N., Handberg, R., Davies, G. R., Chaplin, W. J., & Jones, C. D. 2015, The Astrophysical Journal, 806, 30

Mackereth, J. T., Bovy, J., Leung, H. W., et al. 2019, Monthly Notices of the Royal Astronomical Society, 489, 176

Mathur, S., García, R. A., Régulo, C., et al. 2010, A&A, 511, 46

Meléndez, J., Asplund, M., Alves-Brito, A., et al. 2008, Astronomy and Astrophysics, 484, L21

Miglio, A., Montalbán, J., Baudin, F., et al. 2009, A&A, 503, L21, doi: 10.1051/0004-6361/200912822

Miglio, A., Chiappini, C., Morel, T., et al. 2013, Monthly Notices of the Royal Astronomical Society, 429, 423

Mints, A., & Hekker, S. 2018, Astronomy and Astrophysics, 618, A54

Mosser, B., Elsworth, Y., Hekker, S., et al. 2011, Astronomy and Astrophysics, 537, A30

Pinsonneault, M. H., Elsworth, Y. P., Tayar, J., et al. 2018, The Astrophysical Journal Supplement Series, 239, 32

Randich, S., Gratton, R., Pallavicini, R., Pasquini, L., & Carretta, E. 1999, Astronomy and Astrophysics, 348, 487

Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, Journal of Astronomical Telescopes, 1, 014003

Rodrigues, T. S., Bossini, D., Miglio, A., et al. 2017, Monthly Notices of the Royal Astronomical Society, 467, 1433

Sharma, S., Stello, D., Bland-Hawthorn, J., et al. 2019, arXiv e-prints, arXiv:1904.12444. https://arxiv.org/abs/1904.12444

Silva Aguirre, V., Davies, G. R., Basu, S., et al. 2015, Monthly Notices of the Royal Astronomical Society, 452, 2127

Silva Aguirre, V., Bojsen-Hansen, M., Slumstrup, D., et al. 2018, Monthly Notices of the Royal Astronomical Society, 475, 5487

Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products.
Silva Aguirre, V., Christensen-Dalsgaard, J., Cassisi, S., et al. 2019, arXiv e-prints, arXiv:1912.04909.
https://arxiv.org/abs/1912.04909
Stello, D., Meibom, S., Gilliland, R. L., et al. 2011, ApJ, 739, 13
Stello, D., Huber, D., Bedding, T. R., et al. 2013, ApJ, 765, L41
Stello, D., Zinn, J., Elsworth, Y., et al. 2017, The Astrophysical Journal, 835, 83

Van Leeuwen, F. 2007, A&A, 474, 653
Wittenmyer, R. A., Liu, F., Wang, L., et al. 2016, The Astronomical Journal, 152, 19
Yildiz, M., Çelik Orhan, Z., & Kayhan, C. 2019, Monthly Notices of the Royal Astronomical Society, 489, 1753
Yu, J., Huber, D., Bedding, T. R., et al. 2018, The Astrophysical Journal Supplement Series, 236, 42
Zinn, J. C., Stello, D., Huber, D., & Sharma, S. 2019, arXiv e-prints, arXiv:1909.11927.
https://arxiv.org/abs/1909.11927
Note—Last column gives the reference from which we retrieved the central values of \(T_{\text{eff}} \) and [Fe/H] used for the grid-based modelling. Their uncertainties have been homogenised to 80 K and 0.08 dex, respectively (see Section 4).