A Model for Coronavirus Pandemic

Pirooz Mohazzabi*, Gabrielle Richardson and Gwendolyn Richardson

Department of Mathematics and Physics, University of Wisconsin-Parkside, Kenosha, USA

Abstract
A simple model is developed for spread of a pandemic disease. The model is based on simple, uninhibited population growth except that the rate of infection is assumed to be proportional to the existing infected population. The model is in agreement with the CDC data on COVID-19 for the United States in 2020.

Keywords
Coronavirus, Pandemic, Model, COVID-19

Introduction
Ever since humans have walked on the face of Earth, they have been afflicted by various diseases, some of which have wiped out large fractions of their population. Infectious diseases such as malaria and tuberculosis affected the population of Egypt thousands of years ago. In the early Medieval Period, the Plague of Justinian killed nearly a quarter of the world’s 200 million population. During 1918-1919, the Spanish flu (H1N1 virus) infected about one-third of the world’s population and killed 20-50 million people. In the period of 1956-1958, the Asian flu (H2N2 virus) pandemic caused about 2 million deaths worldwide, 69800 of which was in the United States alone. The flu pandemic of 1968 (H3N2 virus) caused approximately 1 million deaths. The 2009 H1N1 pandemic (H1N1pdm09 virus) started in the Unites States and spread around the world. The flu caused 12470 deaths in the Unites States. Finally, the longest lasting pandemic HIV/AIDS, with its peak during 2005-2012, has killed more than 36 million people worldwide since 1981 [1,2].

Today the world is facing yet another pandemic, the coronavirus disease of 2019 (COVID-19) which as of December 2020 has infected nearly 79 million people worldwide and killed over 1.73 million [3]. This has generated a great number of investigations trying to understand the dynamics of the spread of the disease and to predict its future evolution [4-8].

The purpose of this article is not to suggest any preventive measures for COVID-19, but to propose a different yet simple model for the dynamics of the spread of the disease. The goal is to test an ab initio assumption that results in the spread of not just COVID-19 but any pandemic.

The Model
Let us first consider the problem of normal uninhibited population growth. At any time \(t \), the rate of population growth is proportional to the existing population,

\[
\frac{dN}{dt} = kN
\]

(1)

Where the growth constant \(k \) is a positive number, which is the probability per unit time of a member of the population to double. This equation integrates to

\[
N = N_0 e^{kt}
\]

(2)

where \(N_0 \) is the initial population. We may also include the death rate in this problem by using \(k = k_i - k_d \), where \(k_i \) and \(k_d \) are, respectively, the birth and death constants.

In the population growth model, the parameter \(k \) is constant. In the spread of a pandemic disease, on the other hand, the growth parameter is not a constant. In fact, in a given population, the probability with which a contagious disease spreads increases with the fraction of the infected population. If we assume that this
probability is proportional to the fraction of the infected population,
\[p = k \frac{n}{N} \]
(3)
where \(k \) is a constant, \(n \) is the infected population, and \(N \) is the total population, then we have
\[\frac{dn}{dt} = p \left(N - n \right) = k \left(\frac{n}{N} \right) \left(N - n \right) \]
(4)
in which \(N - n \) is the remaining healthy population at time \(t \). Dividing both sides of this equation by \(N \) and denoting \(n/N \) by \(x \) (the fraction of the infected population), we get
\[\frac{dx}{dt} = k x \left(1 - x \right) \]
(5)
integration of which gives
\[\frac{x}{1-x} = Ae^{kt} \]
(6)
Where \(A \) is related to the integration constant. Using the initial condition \(x(0) = x_0 \), we get
\[A = \frac{x_0}{1-x_0} \]
(7)
and therefore,
\[x(t) = \frac{1}{1 + \frac{1-x_0}{x_0} e^{-kt}} \]
(8)
which gives the fraction of the infected population as a function of time. However, since in a real pandemic outbreak normally \(x_0 \ll 1 \), this equation reduces to
\[x(t) = \frac{x_0}{x_0 + e^{-kt}} \]
(9)
Also, since \(x = n/N \) and \(x_0 = n_0/N \), we can also write
\[n(t) = \frac{n_0N}{n_0 + Ne^{-kt}} \]
(10)
where \(n_0 \) is the initial infected population. Note that the functional form of Eq. (10) is quite different from that of simple exponential population growth Eq. (2). In fact, the graph of Eq. (10), shown in Figure 1, is generally known as the logistic growth curve [9].

Comparison with COVID-19 Data

To check the validity of our model, we have compared it to the COVID-19 data provided by CDC (Centers for Diseases Control and Prevention) for the United States in the period of January 22, 2020 to January 25, 2021 [10], shown in Table 1. We have used the data in 5-day steps. Thus, in Table 1, Day 0 corresponds to January 22, 2020 and Day 370 corresponds to January 25, 2021.

In equation (10), for the total population \(N \) we used the current population of the United States, 331 million. In this equation, \(k \) is an adjustable parameter that has to be fitted to the data. In addition, the initial data is highly uncertain as very few people were tested for the virus in the early stages of the pandemic. This is further evidenced by the fact that even the more recent CDC data are continuously revised up as more data come in. Therefore, we allowed the initial number of the infected population to be an adjustable parameter as well.

\[x(t) = \frac{x_0}{x_0 + e^{-kt}} \]
(9)

![Figure 1](image.png)
Figure 1: A graph of Eq. (10) with \(n_0 = 1 \) and \(N = 1000 \).
Discussion and Conclusion

Figure 2 shows that the model presented here agrees with the coronavirus data of 2020 in the United States. The model is quite simple and only assumes the probability of infection is proportional to the fraction of the infected population. The model involves only two adjustable parameters which are obtained by fitting the data. This is in contrast to other models which involve considerably more parameters.

Consequently, we performed a nonlinear least-squares analysis and fitted Eq. (10) with $N = 3.31 \times 10^8$ to the CDC data via the parameters n_0 and k. For the best fit, we obtained the following values for these parameters to three significant figures,

\[n_0 = 414000 \pm 22600 \quad \text{and} \quad k = 0.0114 \pm 0.0002 \text{day}^{-1} \]

Figure 2 shows the graph of Eq. (10) with these parameters as well as the CDC data for the COVID-19 pandemic in the United States.

Table 1: Total number of COVID-19 cases in the United States from January 22, 2020 to January 25, 2021. The values are as of January 27, 2021 as they are continuously revised up by CDC due to new data coming in.

Day	Cases								
0	1	75	330585	150	2216352	225	6105866	300	11246093
5	5	80	492805	155	2375306	230	6306952	305	12151079
10	7	85	631976	160	2582615	235	6489031	310	12962627
15	11	90	774873	165	2843699	240	6680459	315	13770080
20	11	95	928609	170	3109166	245	6899382	320	14797670
25	13	100	1061638	175	3419501	250	7117195	325	15897256
30	13	105	1192490	180	3765494	255	7334231	330	16949787
35	15	110	1323173	185	4105285	260	7554213	335	18018756
40	32	115	1432881	190	4413078	265	7815360	340	18957154
45	216	120	1549331	195	4707273	270	8112160	345	19943605
50	1239	125	1660993	200	4984574	275	8420355	350	21011876
55	4317	130	1760485	205	5240210	280	8789444	355	22322956
60	24697	135	1862029	210	5472979	285	9291022	360	23440774
65	85407	140	1973193	215	5696626	290	9836891	365	24323846
70	185764	145	2085589	220	5907193	295	10448188	370	25152433

Figure 2: Number of COVID-19 cases in the United States as a function of time from January 22 of 2020 to January 25 of 2021. The CDC data are represented by circles and the model developed in this work is shown by the solid line.
several adjustable parameters. For example, the model developed by Kaxiras and Neofotistos for the COVID-19 pandemic involves 5 adjustable parameters.

As can be seen from Figure 2, the pandemic data shows small variations in the slope at days number 50, 150, and 250. These are attributed to small changes in the parameters of the pandemic dynamics as a result of behavioral changes of the people such as wearing masks, social distancing, etc. However, the overall spread of the disease closely follows the logistic growth curve (10).

Based on Figure 2 and the agreement of Eq. 10 with the CDC data, we conclude that the assumption of probability of disease spread being proportional to fraction of the infected population is quite reasonable.

Acknowledgment

This work was supported in part by a URAP grant from the University of Wisconsin-Parkside.

References

1. MPH online. https://www.mphonline.org/worst-pandemics-in-history/
2. Centers for Disease Control and Prevention. https://www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html.
3. WHO Coronavirus Disease (COVID-19) Dashboard.
4. Leung K, Wu J, Liu D, Leung G (2020) First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: A modelling impact assessment. Lancet 395: 1382-1393.
5. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M (2020) Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 368: 860-868.
6. Haushofer J, Metcalf CJE (2020) Which interventions work best in a pandemic? Science 368: 1063-1065.
7. Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, et al. (2020) High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis 26: 1470-1477.
8. Kaxiras E, Neofotistos G (2020) Multiple epidemic wave model of the COVID-19 pandemic: Modeling study. J Med Internet Res 22: e20912.
9. Dym CL, Ivey ES (1980) Principles of Mathematical Modeling, Academic Press, New York, NY, USA, 178.
10. CDC COVID Data Tracker. https://covid.cdc.gov/covid-data-tracker.