Virus-specific CD4+ T cells: ready for direct attack

Kevin N. Heller, Cagan Gurer, and Christian Münz

CD4+ T cells are classically thought to orchestrate adaptive immune responses. But recent studies demonstrate that they can also kill infected cells directly. A new paper shows that highly efficient processing of Epstein Barr virus (EBV) glycoproteins for presentation on MHC class II makes virus-transformed B cells susceptible to lysis by CD4+ T cells. Thus, antiviral vaccines should aim to stimulate both helper and cytolytic CD4+ T cells.

The immune system preserves the integrity of its host by recognizing and resisting invaders. Therefore, evolution has provided each species with the capacity to resist the pathogenic challenges in its ecological niche. The functions of different species’ immune systems, tailored to meet these challenges, are therefore best explored by investigating host resistance to pathogens threatening the survival of that species. Examples of such pathogens are γ-herpesviruses, which include viruses that infect the majority of the human population and threaten host survival by their oncogenic capacity. In this commentary, we discuss recent evidence from studies of γ-herpesviruses that CD4+ T cells not only orchestrate adaptive immune responses in mice and man, but also have mechanisms to target infected cells directly.

CD4+ T cells are essential in the control of herpesvirus infections

Studies of mouse γ-herpesvirus 68 (MHV-68) have shown that CD4+ T cells can control a herpesvirus infection and its malignant consequences in vivo, independent of CD8+ T cells and B cells. MHV-68 establishes asymptomatic chronic infection in mice after respiratory challenge due to an immune response that contains but does not eliminate the virus. Immune control of MHV-68 infection can be established in the absence of CD8+ T cells, but depletion of both CD4+ and CD8+ T cells leads to a fatal primary infection (1). Depletion of CD8+ T cells resulted in higher virus loads in lung and spleen, suggesting that CD4+ T cells were more efficient at controlling MHV-68 infection in the presence of CD8+ T cells.

In addition to causing chronic infections, MHV-68 is oncogenic (although more weakly so than several of the human γ-herpesviruses). Virus-specific CD4+ T cells, but not CD8+ T cells, have been shown to eliminate tumors that were induced by injection of a MHV-68-infected B cell lymphoma cell line into T cell–deficient (nu/nu) mice (2). After adoptive transfer of both CD4+ and CD8+ T cells, tumor-infiltrating lymphocytes were found to be primarily CD4 positive. More recently, CD4+ T cell–mediated immune control of MHV-68 has been shown to be independent of B cells (in addition to CD8+ T cells) (3).

There is also in vitro evidence that the human γ-herpesvirus Epstein Barr virus (EBV) and its malignant consequences are controlled by CD4+ T cells. EBV establishes persistent infection in more than 90% of the human adult population and is associated with tumors of epithelial and B cell origin, which fortunately develop in less than 10 per 100,000 individuals annually in most populations. Usually EBV-transformed B cells cannot grow out from peripheral blood mononuclear cells (PBMCs) of healthy EBV carriers unless the cultures are subject to immune suppression, for example, with cyclosporine A, which indicates that these individuals harbor immune cells that can target EBV-transformed B cells. Depletion of CD4+ T cells abolished this immune control (4), and addition of CD4+ T cells to T cell–depleted, EBV-infected PBMCs inhibited B cell transformation by EBV more efficiently than unsorted T cells. In agreement with this initial study, CD4+ T cell clones specific for nuclear antigen 1 or 2 of EBV (EBNA1 and EBNA2) were found to inhibit outgrowth of EBV-transformed B cells (5, 6). These studies suggest that memory CD4+ T cells specific for EBV antigens can control B cell transformation by EBV.

B cell transformation by EBV can also be inhibited by EBV-specific CD4+ T cells derived from the purified CD4+ T cells of EBV seronegative donors that were primed in vitro by dendritic cells (DCs) (7). Control over transformed latently infected B cells was evident in these cultures after 12 days, i.e., with the slow kinetics typical for primary immune responses.

Together these findings show that EBV infection in vitro can be controlled by virus-specific CD4+ T cells primed in vitro (i.e., a primary response) and by virus-specific CD4+ memory cells primed in vivo (i.e., a secondary response). It appears that this control can be exerted by CD4+ T cells directly, independent of CD8+ effector cells, which suggests that CD4+ T cells can mediate virus-specific immune control as effectors in their own right.

Virus-specific CD4+ T cells have cytolytic functions

Although it is widely accepted that CD4+ T cells provide helper functions for antigen-presenting cells and can restrict viral replication by secreting cytokines (1), there is also data that virus-specific CD4+ T cells can directly kill infected cells. EBV-specific cells were among the first CD4+ cytolytic T lymphocytes (CTLs) to be isolated, using EBV-transformed B cells, such as

K.N.H., C.G., and C.M. are at Laboratory of Viral Immunobiology and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10021.

CORRESPONDENCE
CM.: munzc@rockefeller.edu
CD4+ T cells have now been reported in vitro and in vivo.

Antigen processing pathways that lead to CD4+ T cell recognition of virus-infected cells

The new concept of direct immune control by CD4+ CTL raises questions on the pathways that lead to presentation of viral antigens on MHC class II molecules by target cells. Classically, MHC class II molecules display peptides processed from extracellular antigens after endocytosis. However, for CD4+ T cell recognition of virus-infected cells, both exogenous and endogenous pathways for peptide loading of MHC class II molecules have been described. (Fig. 1). Uptake of viral particles or fragments of infected cells has been found to mediate CD4+ T cell recognition of EBV-associated tumor cell lines. The early lytic EBV antigen BHRF1 elicited CD4+ T cell-mediated cytolysis of EBV-transformed B cells (16). MHC class II presentation of BHRF1 was most likely due to uptake of antigen-containing fragments (Fig. 1, pathway 1) from the few LCLs where EBV spontaneously entered lytic replication (typically less than 5%). However, the cytolysis was only moderately effective (40–80% of LCLs were killed), and 21 days were required for antigen transfer. CD4+-mediated lysis that is much more efficient with respect to processing kinetics and required antigen amount is reported by Adhikari et al. in this issue (p. 995), who examined targeting of the late lytic EBV antigens and envelope proteins BLLF1 and BALF4 (13). Transfer of less than 1 EBV virion per target cell was sufficient to trigger IFNγ secretion by BLLF1- and BALF4-specific CD4+ T cells as early as 12 hours after infection. EBV virion uptake for this MHC class II presentation was mediated by the interaction of BLLF1 with the B cell surface receptor CD21 (Fig. 1, pathway 4). Presentation of transferred BLLF1 and BALF4 even led to lysis of Burkitt’s lymphoma cell lines, an EBV-associated malignancy that can support higher levels of lytic replication than LCLs in vitro and might, therefore, be especially well targeted via this pathway.

In addition to these exogenous pathways for MHC class II presentation of viral antigens from infected cells, efficient sensitization of virally infected cells for CD4+ T cell recognition and killing has also been demonstrated after intracellular transport of viral antigens. Endogenous pathways for presentation of viral antigens include co-migration of viral membrane proteins with MHC class II molecules to MHC class II loading compartments (MIICs) via the secretory pathway (Fig. 1, pathway 2). Two prominent examples of viral proteins following the secretory pathway to intersect with MIICs are the HCMV envelope protein gB (17) and the influenza envelope protein hemagglutinin (HA) (18). Glial, epithelial, and endothelial cells were shown to present low levels of HCMV gB to cytolytic CD4+ T cells (17). Similarly, mutated influenza HA, which was retained in the Golgi apparatus, sensitized human lymphoblastoid cells to killing by CD4+ T cells after processing of HA through the secretory pathway (18). Later, it was proposed that association of HA with MHC class II molecules directs HA from the Golgi apparatus to the MHC for efficient MHC class II loading. However, it remains unclear how efficient this pathway is since most cells block MHC class II loading in the endoplasmic reticulum by the invariant chain (19).

The second endogenous MHC class II antigen processing pathway that has been shown to elicit CD4+ T cell recognition of virus-infected cells involves macroautophagy. During this degradation pathway, the cell engulfs its own cytoplast by forming autophagosomes, which are then transported to lysosomes. The nuclear EBV antigen EBNA1 was found to accumulate in autophagosomes after inhibition of lysosomal degradation, and EBNA1-specific CD4+ T cell recognition of EBV-transformed B cells could be down-regulated by pharmacological or siRNA-mediated inhibition of macroautophagy (20).

Together, these experiments show that cytosolic, nuclear, and membrane-bound viral antigens can sensitize cells...
for CD4+ T cell–mediated cytolysis in vitro. Whether these endogenous and exogenous antigen presentation pathways contribute to the immune control of infections and tumors in vivo remains to be established.

Vaccines should induce both helper and cytolytic virus–specific CD4+ T cells

The discovery of a cytolytic effector function of virus–specific CD4+ T cells indicates that CD4+ T cells can do more than simply help other lymphocytes. Cytolytic CD4+ T cells have been targeted in recent approaches to rational vaccine design, a good example being the development of vaccines specific for EBV. Earlier immunization attempts focused on inducing CD8+ CTLs against the viral antigens present in EBV–associated malignancies, for example LMP2, which is expressed in nasopharyngeal carcinomas (NPCs). DCs pulsed with CD8+ T cell epitopes of LMP2 were injected into inguinal lymph nodes of NPC patients, where they induced detectable but transient LMP2–specific CD8+ CTLs. Unfortunately, as with other antitumor vaccines that have focused solely on the induction of CD8+ T cells, the epitope–specific responses were either too weak to attract a direct attack on infected cells or too transient to achieve clinical responses (21). Since CD4+ T cells are necessary to maintain protective CD8+ T cell immunity and can target infected cells directly, more recent vaccine attempts against EBV–associated tumors have focused on inducing both CD4+ and CD8+ T cells. NPC cells also express EBNA1, which is a strong immunogen for CD4+ T cells in healthy EBV carriers. To achieve simultaneous stimulation of CD4+ and CD8+ T cells against NPC, a modified vaccinia virus vector encoding a fusion between the CD4+ T cell epitope–rich C–terminal domain of EBNA1 and the full-length LMP2 protein was constructed. DCs infected with this vector were able to reactivate both LMP2–specific CD8+ and EBNA1–specific CD4+ T cell responses from blood of healthy virus carriers in vitro (22). Furthermore, in order to directly target viral epitopes to the MIIC, a polyepitope protein incorporating multiple class II–restricted viral epitopes of EBV, including EBNA1 peptides, was fused to the lysosomal–targeting sequence of the lysosome–associated membrane protein, LAMP1. When the gene encoding this fusion protein was delivered to PBMCs with recombinant vaccinia viruses, activation of virus–specific CD4+ memory CTLs was observed (23). Stimulation of CD4+ CTLs against EBV–infected tumors is crucial especially for Burkitt’s lymphoma, where EBNA1 is the only viral protein expressed and MHC class I antigen presentation for CD8+ T cell recognition is severely impaired. However, the work presented by Adhikary et al. (13) shows that vaccines against Burkitt’s lymphoma and other EBV–associated malignancies should stimulate not only EBNA1–specific CD4+ CTLs, but also BLLF1– and BALF4–glycoprotein–specific CD4+ CTLs. Indeed, vaccination with BLLF1 encoding recombinant vaccinia viruses protected cottontop tamarins from lethal EBV challenge, and part of this protection might have been due to BLLF1–specific CD4+ CTL (24).

Whether any of the therapeutic immunization approaches that have stimulated CD4+ CTLs in vitro will work in vivo remains to be seen. One caveat of the current vaccine approaches is that, although many of them use DCs to stimulate T cells in vitro, they do not target DCs in vivo. Novel immunization approaches (25) that target antigens directly to endocytic receptors of DCs in vivo promise to achieve a more robust stimulation of CD4+ CTLs, which in turn might lead to a direct attack on infected cells as well as efficient establishment of T cell memory.

We thank Ralph Steinman for critically reading the manuscript.

We thank the National Cancer Institute (R01CA108609), the Arnold and Mabel Beckman
3. Sparks-Thissen, R.L., D.C. Braaten, S. Robertson, K.A., E.J. Usherwood, and A.A. Christensen, J.P., R.D. Cardin, K.C. Rockefeller University Hospital. is supported by the Clinical Scholar Program of the Global Health, for supporting our research. K.N. Heller sheimer Foundation, and the Foundation for the Alexandrine and Alexander Sin-

REFERENCES

1. Christensen, J.P., R.D. Cardin, K.C. Rockefeller University Hospital. is supported by the Clinical Scholar Program of the Global Health, for supporting our research. K.N. Heller sheimer Foundation, and the Foundation for the Alexandrine and Alexander Sin-

2. Robertson, K.A., E.J. Usherwood, and A.A. Christensen, J.P., R.D. Cardin, K.C. Rockefeller University Hospital. is supported by the Clinical Scholar Program of the Global Health, for supporting our research. K.N. Heller sheimer Foundation, and the Foundation for the Alexandrine and Alexander Sin-

3. Sparks-Thissen, R.L., D.C. Braaten, S. Robertson, K.A., E.J. Usherwood, and A.A. Christensen, J.P., R.D. Cardin, K.C. Rockefeller University Hospital. is supported by the Clinical Scholar Program of the Global Health, for supporting our research. K.N. Heller sheimer Foundation, and the Foundation for the Alexandrine and Alexander Sin-

4. Nikiforow, S., K. Bottomly, and G. Miller. 2001. CD4+ T-cell effector functions and Epstein-Barr virus-induced B-cell proliferation. J. Virol. 75:3740–3752.

5. Nikiforow, S., K. Bottomly, G. Miller, and C. Münz. 2003. Cytolytic CD4+ T-cell clones reactive to EBNA1 inhibit Epstein-Barr virus-induced B-cell proliferation. J. Virol. 77:12088–12104.

6. Omiya, R., C. Butaye, H. Kobayashi, C.V. Paya, and E. Celis. 2002. Inhibition of EBV-induced lymphoproliferation by CD4+ T cells specific for an MHC class II promiscuous epitope. J. Immunol. 169:2172–2179.

7. Bickham, K., K. Goodman, C. Paludan, S. Nikiforow, M.L. Tsang, R.M. Steinman, and C. Münz. 2003. Dendritic cells initiate immune control of Epstein-Barr virus transformation of B lymphocytes in vitro. J. Exp. Med. 198:1653–1663.

8. Misko, L.S., J.H. Pope, R. Hutter, T.D. Soszyński, and R.G. Kan. 1984. HLA-DR-antigen-associated restriction of EBV-specific cytotoxic T-cell colonies. Int. J. Cancer. 33:239–243.

9. Paludan, C., K. Bickham, S. Nikiforow, M.L. Tsang, K. Goodman, W.A. Hanekom, J.F. Fonteneau, S. Stevanovic, and C. Münz. 2002. EBNA1 specific CD4+ Th1 cells kill Burkitt’s lymphoma cells. J. Immunol. 169:1593–1603.

10. Long, H.M., T.A. Haigh, N.H. Gudgeon, A.M. Leen, C.W. Tsang, J. Brooks, E. Landais, E. Houssaint, S.P. Lee, A.B. Rickinson, and G.S. Taylor. 2005. CD4+ T-cell responses to Epstein-Barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines. J. Virol. 79:4896–4907.

11. Su, Z., M.V. Peluso, S.H. Raffegert, D.J. Schendel, and M.A. Roskov. 2001. The generation of LMP2a-specific cytotoxic T lymphocytes for the treatment of patients with Epstein-Barr virus-positive Hodgkin disease. Eur. J. Immunol. 31:947–958.

12. Landais, E., X. Saulquin, E. Scotet, L. Trautmann, M.A. Peyrat, J.L. Yates, W.W. Kwook, M. Bonneville, and E. Houssaint. 2004. Direct killing of Epstein-Barr virus (EBV)-infected B cells by CD4 T cells directed against the EBV lytic protein BHRF1. J. Biol. 33:239–243.

13. Adhikary, D., U. Behrends, A. Moosmann, K. Witter, G.W. Bornkamm, and J. Mautner. 2002. Control of Epstein-Barr virus-infected B cells in vitro by T helper cells specific for virion glycoproteins. J. Exp. Med. 203:995–1006.

14. Jellison, E.R., S.K. Kim, and R.M. Welsh. 2005. Cutting edge: MHC class II-restricted killing in vivo during viral infection. J. Immunol. 174:614–618.

15. Appay, V., J.J. Zaunders, L. Papagno, J. Sutton, A. Jaramillo, A. Waters, P. Easterbrook, P. Brimnes, B. Moltedo, T.M. Moran, and R.M. Jackson. 2005. Immunization with Epstein-Barr virus glycoprotein gp340 protects cottontop tamarins against EB virus infection. J. Virol. 79:10176–10189.

16. Landais, E., X. Saulquin, M. Bonneville, and E. Houssaint. 2005. Long-term MHC class II presentation of the EBV lytic protein BHRF1 by EBV-infected B cells. J. Immunol. 168:3954–3958.

17. Hegde, N.R., C. Dunn, D.M. Levinsohn, M.A. Jarvis, J.A. Nelson, and D.C. Johnson. 2005. Endogenous human cytomegalovirus gB is presented efficiently by MHC class II molecules to CD4+ CTLs ex vivo. J. Immunol. 175:7939–7946.

18. Kittlesen, D.J., L.R. Brown, V.L. Braciale, J.P. Thomson, S.A., S.R. Burrows, I.S. Misko, D.J. Moss, B.E. Coupar, and R. Khan. 1998. Targeting a polyepitope protein incorporating multiple class II-restricted viral epitopes to the secretory/endocytic pathway facilitates immune recognition by CD4+ cytotoxic T lymphocytes: a novel approach to vaccine design. J. Virol. 72:2246–2252.