First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral

Malik S. Naumann1,2,* Covadonga Orejas3,4, Christian Wild2 and Christine Ferrier-Pagès1

1Centre Scientifique de Monaco, Avenue Saint Martin, 98000 Monaco, Principality of Monaco, 2Leibniz Center for Tropical Marine Ecology (ZMT), Coral Reef Ecology (CORE), Fahrenheitstrasse 6, 28359 Bremen, Germany, 3Instituto de Ciencias del Mar (CSIC), Pg Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain and 4Instituto Español de Oceanografía, Centro Oceanográfico de Santander, Promontorio de San Martín s/n, 39004 Santander, Spain

*Author for correspondence (mnaumann@uni-bremen.de)

Accepted 25 July 2011

SUMMARY

Scleractinian cold-water corals (CWC) represent key taxa controlling deep-sea reef ecosystem functioning by providing structurally complex habitats to a high associated biodiversity, and by fuelling biogeochemical cycles via the release of organic matter. Nevertheless, our current knowledge on basic CWC properties, such as feeding ecology and key physiological processes (i.e. respiration, calcification and organic matter release), is still very limited. Here, we show evidence for the trophic significance of zooplankton, essentially sustaining levels of the investigated key physiological processes in the cosmopolitan CWC Desmophyllum dianthus (Esper 1794). Our results from laboratory studies reveal that withdrawal (for up to 3 weeks) of zooplankton food (i.e. Artemia salina) caused a significant decline in respiration (51%) and calcification (69%) rates compared with zooplankton-fed specimens. Likewise, organic matter release, in terms of total organic carbon (TOC), decreased significantly and eventually indicated TOC net uptake after prolonged zooplankton exclusion. In fed corals, zooplankton provided 1.6 times the daily metabolic C demand, while TOC release represented 7% of zooplankton-derived organic C. These findings highlight zooplankton as a nutritional source for D. dianthus, importantly sustaining respiratory metabolism, growth and organic matter release, with further implications for the role of CWC as deep-sea reef ecosystem engineers.

Key words: deep sea, cold-water coral, feeding ecology, respiration, calcification, organic matter release, carbon budget, Desmophyllum dianthus, Mediterranean.

INTRODUCTION

Coral reef ecosystems in the deep ocean are principally engineered by a few scleractinian cold-water coral (CWC) species that construct complex 3D reef framework habitats for a high associated biodiversity, and fuel reef biogeochemical cycles via suspension feeding and the continuous release of readily degradable particulate organic matter (POM) and dissolved organic matter (DOM) (Wild et al., 2008; Roberts et al., 2009; van Oevelen et al., 2009). Despite their accepted ecological significance to reef-associated fauna, our current understanding of CWC ecophysiology, particularly feeding ecology, is still in its infancy. This knowledge gap mainly results from the difficulty in accessing remote deep-ocean habitats, thus limiting the scope of non-invasive in situ studies, for instance on species-specific feeding behaviour. In addition, laboratory investigations on CWC physiology are rare because of the cost of acquisition at sea and the highly demanding maintenance in aquarium facilities (Olariaga et al., 2009). As a result, there is a significant lack of information regarding major food and energy sources fuelling basic but essential physiological processes, such as respiration, calcification and organic matter release, of these paramount deep-sea reef ecosystem engineers.

Unlike most of their tropical and temperate counterparts from shallow coastal waters, CWC are not associated with symbiotic dinoflagellates (i.e. zooxanthellae), which can provide substantial shares of coral metabolic demand by photosynthesis (Muscatine et al., 1981), but are believed to thrive exclusively from heterotrophic suspension feeding on POM (e.g. zooplankton) efficiently captured from surrounding waters (Purser et al., 2010; Tsounis et al., 2010). There is consensus based on studies employing lipid biomarkers, stable isotopes and in situ video surveys that zooplankton represents a potential dietary component for the dominant cosmopolitan CWC species (Kiriakoulakis et al., 2005; Dodds et al., 2009; van Oevelen et al., 2009; Purser et al., 2010; Tsounis et al., 2010). However, none of these studies have investigated physiological processes of live CWC specimens with respect to the availability of zooplankton food sources, and thus there is no direct evidence for the trophic significance of zooplankton feeding by CWC available to date.

This study investigated the influence of zooplankton feeding on key physiological processes in the cosmopolitan CWC Desmophyllum dianthus (Esper 1794) by laboratory experiments, principally aiming to (1) quantify rates of coral respiration, calcification and organic matter release with respect to zooplankton availability, and (2) evaluate the trophic significance of zooplankton as an organic C and energy source for scleractinian CWC. Our findings reveal the general trophic utilisation of zooplankton-derived organic compounds by CWC, and provide the first evidence for the principal trophic significance of zooplankton feeding in fuelling and sustaining levels of key physiological processes in these paramount deep-sea reef ecosystem engineers. This physiological evidence provides fundamental information for further research on
CWC habitats at the ecosystem level, as ecophysiological knowledge of engineering species is still scarce but ultimately essential to promote our understanding and sustainable management of deep-sea reef ecosystems.

MATERIALS AND METHODS

Coral collection and maintenance

Specimens of *D. dianthus*, known in the Mediterranean as *D. cristagalli* (Milne Edwards and Haime 1848), were collected alive within the South Malta Coral Province (35°30.506’N 14°06.230’E to 35°31.228’N 14°05.698’E, 467–632 m depth; and 35°30.720’N 14°06.561’E to 35°30.803’N 14°06.511’E; 452–585 m depth) using an epibenthic sledge on board the RV Urania during the cruise MARCOS (April 2007). This cosmopolitan species occurs at a depth of between 7 and 4000 m (Roberts et al., 2009), forms solitary polyps of 5–10 cm in height (diameter 1.5–3.0 cm) and has been documented as ‘pseudocolonial’ and a primary reef framework-constructor in the Pacific (Squires, 1965). Corals were transported to the laboratory and maintained in four identically equipped and darkened 100 l flow-through aquarium systems (Fig. 1A) located at the Monaco Scientific Centre (Monaco). Mediterranean subsurface seawater freshly pumped from 50 m depth was supplied at a flow-through rate of approximately 11 mm⁻¹, while water current speed created by aquarium pumps inside the systems (range 2–10 cm s⁻¹) was adjusted to optimum conditions reported for CWC zooplankton capture (Purser et al., 2010). Temperature close to in situ conditions (Freiwald et al., 2009) was established by cooling systems (Teco SeaChill TR 20, Ravenna, Italy) and 300 W heaters (Visi-Therm, Aquarium Systems Newa, Sarrebourg, France) connected to independent temperature controllers (West 6100, Kassel, Germany) regulating temperature at 12.0±0.2°C. Corals were fed 5 times per week (once per day) with frozen zooplankton (i.e. adult *Artemia salina*), and acclimatised under the above controlled conditions for 34 months prior to the experiments described herein.

Experimental design

One month before initial physiological measurements, 35 *D. dianthus* polyps of similar skeletal dry mass (±8% difference) were selected and transferred from the maintenance tanks into a 301 darkened flow-through aquarium system. Selection by similar skeletal mass served to ensure comparability of CWC calcification rates with respect to age variability, assuming a close correlation of *D. dianthus* skeletal mass and age (Maier et al., 2009). Culture conditions were identical to those of the maintenance systems, except that the seawater supply was pre-filtered (pore size 50 μm). Pre-filteration prevented the introduction of additional zooplankton organisms from ambient seawater, which had previously been identified as the predominant POM-derived CWC dietary component in deep-sea reef habitats (Carlier et al., 2009). Supplementary zooplankton feeding was modified to a controlled daily supply of 4 *A. salina* adults (hereafter called zooplankton) per coral; a conservative measure considering solitary *D. dianthus* polyps are able to capture 8.48±2.97 *A. salina* per hour (Tsounis et al., 2010). *Artemia salina* adults served as close substitutes for locally occurring zooplankton taxa because of their similar composition and stimulatory effect on key coral physiological processes (Treignier et al., 2008; Tolosa et al., 2011). Zooplankton was pipetted onto protruded polyps, and subsequent capture and ingestion were closely monitored to ensure food intake. To determine daily organic C supply by zooplankton, the particulate organic C (POC) content of acidified (100 μl of 2 mol l⁻¹ hydrochloric acid) and subsequently dried (40°C, 48 h) adult *A. salina* (N=12) was analysed. POC analysis was carried out using a Perkin Elmer 2400 Series II CHNS/O elemental analyser (Perkin Elmer, Waltham, MA, USA). Mean daily zooplankton-derived POC intake (i.e. 128±13 μmol POC day⁻¹) was calculated using certified glycine standards (K-factor, 32.00% C), and normalised to skeletal dry mass (46±5 μmol POC g⁻¹ day⁻¹, mean ± s.d.). Feeding was suspended 24 h before physiological measurements of corals under fed conditions to rule out excretion of undigested particulate food items and any specific dynamic action effect during the period of incubation. Following initial measurements of corals under fed conditions, zooplankton feeding was suspended for a maximum of 3 weeks and measurements were repeated in a weekly time series (after 1, 2 and 3 weeks) to investigate the effects of zooplankton exclusion on coral respiration, calcification and organic matter release. To increase resolution at the beginning of this exclusion period, zooplankton-fed and unfed corals (1 week) were incubated in two incubation runs including five individual polyps each (results of respective runs were pooled). For 2 and 3 week unfed corals, one incubation experiment each including five individual polyps was carried out.

Physiological measurements

Integrated measurements of coral respiration, calcification and organic matter release rates were carried out by closed-cell incubation in temperature-controlled acrylic respiration chambers (N=6; volume 240 ml, water-jacketed), each equipped with an O₂ Clark electrode connected to a 6-channel recording system (Model...
Corals were transferred individually without aerial exposure onto a glass slide support inside a pre-rinsed (3 times with purified and deionised water plus 3 times with incubation medium) incubation chamber filled with 50μm pre-filtered seawater (one polyp per chamber). Pre-filtered seawater was used to prevent the introduction of zooplankton and subsequent feeding during incubations and to reduce the variability of measured total organic carbon (TOC) concentrations due to the sampling of scattered particles larger than 50μm. Incubations in darkened coral chambers (N=5) and one control chamber, filled only with pre-filtered seawater, lasted for 6 h and were carried out at a chamber temperature of 12.0±0.1°C (Fig. 1B).

Stirring inside the chambers was accomplished using glass-coated magnetic stir bars. Respiration rates were derived from depletion of dissolved O2 recorded over the period of closed-cell incubation. Rates of coral calcification (i.e. skeletal growth) were determined by the total alkalinity (TA) anomaly technique assuming a consumption of 2 moles of alkalinity for every mole of calcium carbonate produced (e.g. Langdon et al., 2010). Organic matter release was measured by concentration differences of TOC in the incubation medium, and expressed as TOC net flux between the incubated coral and its surrounding seawater.

Before and after incubations, seawater subsamples were drawn by syringe from each chamber to determine TA, NH4+ and TOC concentrations of the incubation medium. The time of each sampling was recorded so measured concentration changes could be related to the period of incubation. Samples for TA analysis (60ml) were sterile filtered through MQ pre-soaked (48h) polyethersulfone (PES) membrane filters (0.2μm pore size), treated with a saturated solution of the poison mercury chloride (20μl) and kept refrigerated (4°C) pending analysis (no later than 7 days). TA was determined in 3–5 replicate Gran titrations with 0.1 mol L–1 HCl using a Titrando 888 titrator (Metrohm, Filderstadt, Germany). TA values were corrected for changes in NH4+ concentration in treatment and control chambers (Jacques and Pilson, 1980). NH4+ subsamples (10ml) were sterile filtered (MQ pre-soaked PES filters, 0.2μm pore size), immediately frozen (–20°C) and analysed by spectrophotometry (no later than 3 days). Tested concentrations of other inorganic nutrients (i.e. nitrate, nitrite and phosphate) potentially affecting TA values was below detection limit by an autoanalyser (Axflow, Stockholm, Sweden). TOC subsamples (17ml, N=3 per chamber and sampling) were transferred into pre-combusted (450°C, 5h) glass vials, acidified with phosphoric acid (20%, 250μl) to pH<2 and kept frozen (–20°C) until analysis by high temperature catalytic oxidation using a Shimadzu TOC-VCPH analyser (Shimadzu Corporation, Kyoto, Japan; CV maximum ≤1.5%, i.e. ±1μmol C l–1, referenced by the CRM program of the Hansell Research Lab, USA; http://yyy.rsmas.miami.edu/groups/biogeochem/CRM.html).

Data analysis

For calculation of respiration, calcification and TOC net flux rates, differences in O2, TA and TOC concentrations measured from the control chamber were subtracted from those measured in the coral chambers and the results were normalised as described below. Prior to normalisation, O2 consumption rates were converted to C equivalents, as C respired (μmol)=O2 consumed (μmol) × RQ, where RQ is a coral-specific respiratory quotient (i.e. 0.8) previously applied in studies on zooxanthellate as well as azooxanthellate tropical and temperate anthozoans (Muscatine et al., 1981; Widdig and Schlöter, 2001; Ribes et al., 2003). As corals were entirely covered by living tissue, all physiological parameters could be normalised to the very similar polyp-specific skeletal surface area and/or by polyp skeletal dry mass. Skeletal surface area (21.3±2.6 cm2, mean ± s.d.) was quantified by advanced geometric techniques involving individual measurements of particular morphological sections of the coral polyps and subsequent computation using specific approximation factors. These factors were derived from comparison with techniques employing 3D reconstruction by computer tomography (Naumann et al., 2009). Skeletal dry mass (1.8±0.1 g, mean ± s.d.) was derived from calculation of the respective buoyant mass measured by precision balance (AT261, accuracy 0.1 mg; Mettler Toledo, Giessen, Germany) with a weight-below hook. After each incubation, polyps were weighed in a temperature-controlled (12±0.1°C) glass beaker filled with ambient seawater. Temperature and salinity were recorded to calculate seawater density, and skeletal aragonite density (mean 2.835 g cm–3) was derived from individual skeletal micro-density measurements of eight dead D. dianthus polyps (Davies, 1989). Skeletal dry mass was corrected for the contribution of organic tissue biomass (5.8±2.3%, mean ± s.d.) derived from the relationship of ash-free dry mass (AFDM) to bulk dry weight examined for 10 additional zooplankton-fed corals. The percentage contribution of organic tissue biomass to bulk dry mass also allowed estimation of organic C flux into tissue growth by successive buoyant mass measurement of fed corals and computation assuming a comparable tissue AFDM organic C content, as previously reported for tropical Scleractinia and marine benthic macrofauna (41% and 40%, respectively) (Kang, 1999; Schutter et al., 2010).

Physiological process rates obtained from zooplankton-fed and unfed corals were analysed statistically using SPSS® software packages (v. 14.0, build 2005, IBM, New York, NY, USA). After confirming equal variances (Levene test) and normal distribution (Kolmogorov–Smirnov test), all results were analysed by one-way ANOVA and subsequent post hoc analysis appropriate for each specific parameter (respiration: Gabriel; calcification and TOC net flux: Games-Howell).

RESULTS

Respiration

O2 consumption attributable to coral respiration was detected throughout all incubation experiments (3–17μmol 1–1 h–1) and clearly distinguishable from background seawater microbial O2 consumption measured in control chambers (0.2–1.0μmol 1–1 h–1). Initial respiration rates of zooplankton-fed corals amounted to 3.0±0.8μmol C cm–2 24h–1 (Fig. 2A) equivalent to 28±6μmol C g–1 skeletal dry mass 24h–1 (both mean ± s.d.). Analysis of D. dianthus respiration rates revealed a significantly negative effect of zooplankton exclusion (one-way ANOVA, F2,25=5.33, P<0.01). Respiration rates showed a remarkable negative trend (mean values 20% lower) after just 1 week. This trend continued after 2 and 3 weeks of exclusion, reaching 62% and 49% of that of zooplankton-fed corals, respectively (Fig. 2A). However, this decline became statistically significant only after 3 weeks of zooplankton exclusion (P=0.003).

Calcification

Changes in TA concentration were measurable after 6 h in coral incubation chambers (12–172μmol kg–1), while differences in seawater control chambers (1–5μmol kg–1) ranged within the limits of analytical precision (Langdon et al., 2010). NH4+ release by D. dianthus, used to correct of TA values, ranged from 1.7 to 14.4μmol 1–1 (control corrected), equivalent to release rates of 0.5±0.1 and 0.3±0.1μmol NH4+ cm–2 24h–1 (mean ± s.d.) for zooplankton-fed and 3 week unfed corals,
Zooplankton sustains CWC physiology

TOC concentration differences in coral incubation media were detectable throughout all experiments ranging from 2.1 to 16.3 \(\mu \text{mol} \ \text{TOC} \text{cm}^{-2} \text{day}^{-1} \) after 6h, while changes measured from control chambers (0.1–0.9 \(\mu \text{mol} \ \text{TOC} \text{cm}^{-2} \text{day}^{-1} \)) stayed below analytical precision levels. TOC net flux between zooplankton-fed corals and the incubation medium was positive for all measured corals (range 0.21–0.59 \(\mu \text{mol} \ \text{TOC} \text{cm}^{-2} \text{day}^{-1} \), mean ± s.d. 3±1 \(\mu \text{mol} \ \text{TOC} \text{cm}^{-2} \text{day}^{-1} \)), indicating net release of particulate and/or dissolved organic compounds (Fig. 2C). This TOC net release was significantly affected by the exclusion of zooplankton (one-way ANOVA, \(F_{3,26}=44.85, P<0.01 \)), decreasing substantially (by 38%) after 1 week \((P=0.001) \), while continuing its significant decline after 2 weeks \((P=0.024) \). Finally, measurements after prolonged zooplankton exclusion (3 weeks) provided evidence for significant TOC net uptake by \(D. \ dianthus \) \((P<0.001; \text{Fig.} \ 2C) \).

DISCUSSION

Effect of zooplankton feeding on key physiological processes

This study provides the first information on key physiological process rates of CWC derived from interconnected laboratory measurements of respiration, calcification and organic matter release. This information is also unique in representing the only physiological data obtained from living specimens of the cosmopolitan CWC \(D. \ dianthus \) maintained under zooplankton-fed and unfed conditions. Our findings demonstrate that a substantial decrease in CWC calcification and organic matter release rates as a result of zooplankton exclusion is evident after a relatively short time period of 1 week. After prolonged (3 weeks) exclusion, respiration rates measured in \(D. \ dianthus \) also show a significant decline. This not only indicates the general trophic utilisation of zooplankton-derived organic compounds by \(D. \ dianthus \) but also provides evidence for the principal trophic significance of zooplankton feeding in fuelling and sustaining levels of CWC key physiological processes.

Our respiration rates for \(D. \ dianthus \) represent one of the very few data sets available for CWC to date (Dodds et al., 2007; van Oevelen et al., 2009) and provide the only information on respiratory metabolism for CWC in the Mediterranean sea, a temperate region where CWC are believed to thrive at their upper thermal threshold (12–14°C) (Freiwald et al., 2009). Respiration rates of zooplankton-fed \(D. \ dianthus \) averaged 3.0±0.8 \(\mu \text{mol} \ \text{O}_2 \text{ g}^{-1} \text{ day}^{-1} \), but showed a continuous negative trend after short-term zooplankton exclusion. This negative trend became a significant decline (by 51%) after prolonged (3 weeks) zooplankton exclusion, thus clearly demonstrating the trophic significance of zooplankton in supporting CWC respiratory metabolism. This is confirmed by lowered \(\text{NH}_4^+ \) excretion rates found in unfed corals as a result of declining coral respiration (see Results). When recalculated to \(\text{O}_2 \) consumption and normalised by skeletal dry mass, respiration rates of fed \(D. \ dianthus \) (36.3±9.7 \(\mu \text{mol} \ \text{O}_2 \text{ g}^{-1} \text{ day}^{-1} \)) were substantially higher (5 times) than previous results (~7.2 \(\mu \text{mol} \ \text{O}_2 \text{ g}^{-1} \text{ day}^{-1} \)) from laboratory studies carried out on Atlantic specimens of the CWC \(Lophelia pertusa \) at elevated temperature (11°C) (Dodds et al., 2007). However, our recent studies on respiration of \(L. \ pertusa \) originating from the Mediterranean (M.S.N., unpublished) indicate that this difference probably reflects species-specific metabolism, possibly accompanied by an increase due to the higher experimental temperature within the present study (12°C) (Dodds et al., 2007). Desmophyllum D. dianthus was estimated to average 5±1 \(\mu \text{mol} \ \text{C} \text{ g}^{-1} \text{ day}^{-1} \).

Organic matter release

While remaining constant at this level after 2 weeks, calcification reached a minimum (31% of fed conditions) after 3 weeks in unfed corals (Fig. 2B). Integrated in bulk coral growth, the gain in tissue biomass of zooplankton-fed \(D. \ dianthus \) was estimated to average 38±14 \(\mu \text{mol} \ \text{CaCO}_3 \text{ g}^{-1} \text{ day}^{-1} \) (Fig. 2B). As for coral respiration, exclusion of zooplankton had a significantly negative effect on coral calcification rates (one-way ANOVA, \(F_{3,26}=11.22, P<0.01 \)). Calcification declined rapidly in unfed corals, showing a significant decrease (~53%) after 1 week \((P=0.007) \). While remaining constant at this level after 2 weeks, calcification reached a minimum (31% of fed conditions) after 3 weeks in unfed corals (Fig. 2B). Integrated in bulk coral growth, the gain in tissue biomass of zooplankton-fed \(D. \ dianthus \) was estimated to average 5±1 \(\mu \text{mol} \ \text{C} \text{ g}^{-1} \text{ day}^{-1} \).

respectively. Calcification of zooplankton-fed \(D. \ dianthus \) was found to accrete 38±14 \(\mu \text{mol} \ \text{CaCO}_3 \text{ g}^{-1} \text{ day}^{-1} \) skeletal dry mass day\(^{-1}\) (Fig. 2B). As for coral respiration, exclusion of zooplankton had a significantly negative effect on coral calcification rates (one-way ANOVA, \(F_{3,26}=11.22, P<0.01 \)). Calcification declined rapidly in unfed corals, showing a significant decrease (~53%) after 1 week \((P=0.007) \). While remaining constant at this level after 2 weeks, calcification reached a minimum (31% of fed conditions) after 3 weeks in unfed corals (Fig. 2B). Integrated in bulk coral growth, the gain in tissue biomass of zooplankton-fed \(D. \ dianthus \) was estimated to average 5±1 \(\mu \text{mol} \ \text{C} \text{ g}^{-1} \text{ day}^{-1} \).
Respiration, calcification and organic matter release represent key physiological processes in scleractinian CWC, whose functioning

Ecological implications

Respiration, calcification and organic matter release represent key physiological processes in scleractinian CWC, whose functioning

Budget of zooplankton-derived organic C in D. dianthus

Ingestion of zooplankton by fed D. dianthus polyps (46±5 μmol POC g⁻¹ day⁻¹, see Materials and methods) represents ~1.6-fold of the corals’ daily C demand in terms of respiration, which implies that zooplankton feeding can fully sustain respiratory metabolism. Respiratory organic C consumption thus constitutes a major fraction (48–73%; mean 61%) of daily zooplankton POC intake, while growth estimates of coral tissue biomass range from 10% to 14% (mean 12%). Continuous organic C release by D. dianthus into surrounding waters represents an additional C sink of 5–9% (mean 7%), thus adding up to ~80% (range 63–94%) explained fate for daily zooplankton-derived organic C intake. An additional ~20% fraction remains to be balanced by potential excretion of non-digested particulate zooplankton components, or more likely may reflect an underestimation of the actual organic C content of D. dianthus tissue. Coral respiration, as the potential major sink for zooplankton-derived organic C and thus a significant source of dissolved inorganic C (DIC) in the form of respiratory CO₂, may further importantly sustain the calcification process in this CWC. The chemical origin of DIC components predominantly responsible in calcium carbonate accretion is still under discussion for CWC (Adkins et al., 2003; Blamart et al., 2005), as for coral calcification in general (Allemand et al., 2011). However, if we assume a 70% contribution of respiratory CO₂ to calcium carbonate deposited by D. dianthus calcification (i.e. 27±10 μmol C g⁻¹ day⁻¹), as previously reported for tropical Scleractinia (Furla et al., 2000), this rate nearly balances respiratory CO₂ production in zooplankton-fed corals (i.e. 28±6 μmol C g⁻¹ day⁻¹), which strongly suggests respiration as a predominant DIC source for calcification in the CWC D. dianthus. This underlines the trophic significance of zooplankton-derived organic C by highlighting its secondary influence on physiological functioning in this CWC species.
Zooplankton sustains CWC physiology

Influence of CWC Key Physiological Processes, such as Calcification

The authors wish to thank the following for invaluable logistical and technical support: S. Allemand, C. Rottier, S. Sikorski, S. Reynaud, E. Elia and C. Godinot (CSM Monaco); A. Sugu and P. Gilles (Musée Océanographique de Monaco); M. Taviani (ISMAR-CNR Bologna) and the crew of RV URANIA; J. M. Gill, G. Tisonis, B. Vendrell-Simon, A. Gori and A. Oliahi (ICM-CSIC Barcelona); M. D. Pizay, N. Leblond and C. Maier (Laboratoire d’Océanographie de Villefranche-sur-Mer); and P. Rolland (Direction de l’Environnement, Monaco).

FUNDING

This research was supported by the government of the Principality of Monaco and by the European Project HERMIONE [grant agreement number 226354].

ACKNOWLEDGEMENTS

The authors wish to thank the following for invaluable logistical and technical support: S. Allemand, C. Rottier, S. Sikorski, S. Reynaud, E. Elia and C. Godinot (CSM Monaco); A. Sugu and P. Gilles (Musée Océanographique de Monaco); M. Taviani (ISMAR-CNR Bologna) and the crew of RV URANIA; J. M. Gill, G. Tisonis, B. Vendrell-Simon, A. Gori and A. Oliahi (ICM-CSIC Barcelona); M. D. Pizay, N. Leblond and C. Maier (Laboratoire d’Océanographie de Villefranche-sur-Mer); and P. Rolland (Direction de l’Environnement, Monaco).

REFERENCES

Adkins, J. F., Boyle, E. A., Curry, W. B. and Luterbringer, A. (2003). Stable isotopes in deep-sea corals and a new mechanism for ‘vital effects’ Geochim. Cosmochim. Acta 67, 1129-1143.

Allemand, D., Tambutté, É., Zoccola, D. and Tambutté, S. (2011). Coral calcification, cells to reefs. In Coral Reefs: An Ecosystem in Transition (ed. Z. Dubinsky and N. Stambler), pp. 119-150. Heidelberg: Springer.

Anthony, K. R. N., Connolly, S. R. and Willis, B. L. (2002). Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol. Oceanogr. 47, 1417-1429.

Barnes, D. J. and Lough, J. M. (1993). On the nature and causes of density banding in massive coral skeletons. J. Exp. Mar. Biol. Ecol. 167, 91-108.

Blamart, D., Rollion-Bard, C., Cull, J. P., Juillet-Leclerc, A., Luterbringer, A., van Weering, T. C. E. and Henriques, G. (2002). C and O isotopes in a deep-sea coral (Lophelia pertusa) related to skeletal microstructure. In Cold Water Corals and Ecosystems (ed. A. Freiwald and J. M. Roberts), pp. 1005-1020. Berlin: Springer.

Carlier, A., Le Guilloux, E., Olu, K., Sarrazin, J., Mastrototo, F., Taviani, M. and Clavier, A. (2009). Triglyceride relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea). Mar. Ecol. Prog. Ser. 397, 125-137.

Colombo-Pallotta, M. F., Rodríguez-Roman, A. and Iglesias-Prieto, R. (2010). Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29, 899-907.

Davies, P. B. (1986). Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar. Biol. 101, 389-395.

Dodds, L. A., Roberts, J. M., Taylor, A. C. and Marubini, F. (2007). Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J. Exp. Mar. Biol. Ecol. 349, 205-214.

Dodds, L. A., Blasch, K. D., Orr, H. and Roberts, J. M. (2009). Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Mar. Ecol. Prog. Ser. 397, 113-124.

Edmunds, P. J. (2005). Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29, 899-907.

Fabry, V. J., Seibel, B. A., Feely, R. A. and Orr, J. C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414-432.

Ferrier-Pages, C., Wittling, J., Tambutté, E. and Sebens, K. P. (2003). Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22, 229-240.

Ferrier-Pages, C., Hogenboom, M. and Houbrechts, F. (2011). The role of plankton in coral trophodynamics. In Coral Reefs: An Ecosystem in Transition (ed. Z. Dubinsky and N. Stambler), pp. 215-229. Heidelberg: Springer.

Freiwald, A. and Wilson, J. B. (1998). Taphonomy of modern deep, cold-temperate coral reefs. J. Exp. Mar. Biol. Ecol. 221, 205-214.

Freiwald, A., Beuck, L., Rüggeberg, A., Taviani, M. and Hebbeln, D. (2009). The white coral community in the central Mediterranean sea revealed by ROV surveys. Oceanography 22, 58-74.

Furla, P., Galgani, I., Durand, I. and Allemand, D. (2000). Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 203, 3445-3457.
M. S. Naumann and others

Grover, R., Maguer, J. F., Allemand, D. and Ferrier-Pagès, C. (2008). Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. J. Exp. Biol. 211, 860-866.

Guidi-Guilvard, L., Thistle, D., Khripounoff, A. and Gasparini, S. (2009). Dynamics of benthic copepods and other meiofauna in the benthic boundary layer of the deep NW Mediterranean sea. Mar. Ecol. Prog. Ser. 396, 181-195.

Guinotte, J. M. and Fabry, V. J. (2008). Ocean acidification and its potential effects on marine ecosystems. Annu. N. Y. Acad. Sci. 1134, 320-342.

Guinotte, J. M., Orr, J., Cairns, S., Freiwald, A., Morgan, L. and George, R. (2006). Will human-induced changes in seawater chemistry alter the distribution patterns of deep-sea scleractinian corals? Front. Ecol. Environ. 4, 141-146.

Hoogenboom, M., Rodolfo-Metalpa, R. and Ferrier-Pagès, C. (2010). Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J. Exp. Biol. 213, 2399-2409.

Hopkins, T. L., Lancraft, T. M., Torres, J. J. and Donnelly, J. (1992). Community structure and trophic ecology of zooplankton in the Scotia sea marginal ice zone in winter. Deep Sea Res. Part A 40, 81-105.

Houbréché, F., Tambutté, E. and Ferrier-Pagès, C. (2003). Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. J. Exp. Mar. Biol. Ecol. 296, 145-166.

Houbréché, F., Tambutté, E., Richard, C. and Ferrier-Pagès, C. (2004). Importance of a micro-diet for scleractinian corals. Mar. Ecol. Prog. Ser. 282, 151-160.

Jacques, T. G. and Pilsø, M. E. Q. (1980). Experimental ecology of the temperate scleractinian coral Astrangia danæ. I. Partition of respiration, photosynthesis and calcification between host and symbionts. Mar. Biol. 60, 167-178.

Jacques, T. G., Marshall, N. and Pilsø, M. E. Q. (1983). Experimental ecology of the temperate scleractinian coral Astrangia danæ. II. Effect of temperature, light intensity and symbiosis with zoanthellae on metabolic rate and calcification. Mar. Biol. 76, 135-148.

Koppelman, R. and Haq, A. (2001). Phytoplankton: a significant trophic source for cold-water coral species maintained in aquaria. Mar. Ecol. Prog. Ser. 208, 141-150.

Kokelj, S. V., Gori, A. and Gili, J. M. (2003). Natural feeding of the temperate asymbiotic octocoral-gorgonian Leptogorgia sarmentosa (Cnidaria: Octocorallia). Mar. Ecol. Prog. Ser. 254, 141-150.

Maier, C., Hegeman, J., Weinbauer, M. G. and Gattuso, J. P. (2009). Calcification of mesozooplankton at a deep-sea site in the Levantine Sea (eastern Mediterranean) in April 1999. J. Geophys. Res. 108 (C9), 8118, 1-11, doi:10.1029/2002JC001351.

Langdon, C., Gattuso, J. P. and Andersson, A. (2010). Measurement of calcification and dissolution of benthic organisms and communities. In Guide to Best Practices for Ocean Acidification Research and Data Reporting (ed. U. Riebesell, V. J. Fabry, L. Hansson and J. P. Gattuso), pp. 213-232. Luxembourg: Publications office of the European Union.

Mailé, C., Hegeman, J., Weinbauer, M. G. and Gattuso, J. P. (2009). Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6, 1875-1891.

Muscatine, L., McCluskey, L. R. and Marian, R. E. (1981). Estimating the daily contribution of carbon from zoanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601-611.

Naumann, M. S., Niggl, W., Laforsch, C., Giller, C. and Wild, C. (2009). Coral surface area quantification - evaluation of established methods by comparison with computer tomography. Coral Reefs 28, 109-117.

Naumann, M. S., Haas, A., Struck, U., Mayr, C., el-Zibdah, M. and Wild, C. (2010). Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29, 649-660.

Olariaga, A., Gori, A., Orejas, C. and Gilli, J. M. (2009). Development of an autonomous aquatic system for maintaining deep corals. Oceanography 22, 44-45.

Orejas, C., Gili, J. M. and Arntz, W. E. (2003). Role of small-plankton communities in the diet of two Antarctic octocorals (Primnoois antarctica and Primnooa sp.). Mar. Ecol. Prog. Ser. 250, 105-116.

Orejas, C., Gori, A. and Gili, J. M. (2008). Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27, 255.

Orejas, C., Ferrier-Pagés, C., Reynaud, S., Tsounis, G., Allemand, D. and Gili, J. M. (2011a). Experimental comparison of growth rates in a cold water coral and three tropical scleractinian corals. J. Exp. Mar. Ecol. 405, 1-5.

Orejas, C., Ferrier-Pagés, C., Reynaud, S., Gori, A., Beraud, E., Tsounis, G., Allemand, D. and Gili, J. M. (2011b). Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar. Ecol. Prog. Ser. 429, 57-65.

Ribes, M., Coma, R. and Rossi, S. (2003). Natural feeding of the temperate asymbiotic octocoral-gorgonian Leptogorgia sarmentosa (Cnidaria: Octocorallia). Mar. Ecol. Prog. Ser. 254, 141-150.