Zero-sum constants related to the Jacobi symbol

Santanu Mondal, Krishnendu Paul, Shameek Paul *

Ramakrishna Mission Vivekananda Educational and Research Institute, Belur, Dist. Howrah, 711202, India

Abstract

For a weight-set $A \subseteq \mathbb{Z}_n$, the A-weighted Davenport constant $D_A(n)$ is defined to be the smallest natural number k such that any sequence of k elements in \mathbb{Z}_n has an A-weighted zero-sum subsequence and the constant $C_A(n)$ is defined to be the smallest natural number k such that any sequence of k elements in \mathbb{Z}_n has an A-weighted zero-sum subsequence of consecutive terms.

When n is odd, for $x \in \mathbb{Z}_n$ let $(\frac{x}{n})$ be the Jacobi symbol and $S(n) = \{ x \in U(n) : (\frac{x}{n}) = 1 \}$. We compute these constants for the weight-set $S(n)$. For a prime divisor p of n, we also compute these constants for the weight-set $L(n;p) = \{ x \in U(n) : (\frac{x}{n}) = (\frac{x}{p}) \}$. We show that even though these weight-sets may have half the size of $U(n)$, they can have the same constants as for $U(n)$.

Keywords: Davenport constant, Jacobi symbol, Zero-sum sequence

AMS Subject Classification: 11B50

1 Introduction

The following definition was given in [6].

Definition 1.1. For a weight-set $A \subseteq \mathbb{Z}_n$, the A-weighted Davenport constant $D_A(n)$ is defined to be the least positive integer k, such that any sequence in \mathbb{Z}_n of length k has an A-weighted zero-sum subsequence.

The following definition was given in [12].
Definition 1.2. For a weight-set $A \subseteq \mathbb{Z}_n$, the A-weighted constant $C_A(n)$ is defined to be the least positive integer k, such that any sequence in \mathbb{Z}_n of length k has an A-weighted zero-sum subsequence of consecutive terms.

Let $U(n)$ denote the multiplicative group of units in the ring \mathbb{Z}_n, and let $U(n)^2 = \{ x^2 : x \in U(n) \}$. For an odd prime p, let Q_p denote the set $U(p)^2$. For n squarefree, let $\Omega(n)$ denote the number of distinct prime divisors of n.

Let m be a divisor of n. We refer to the ring homomorphism $f_{n|m} : \mathbb{Z}_n \to \mathbb{Z}_m$ given by $a + n\mathbb{Z} \mapsto a + m\mathbb{Z}$ as the natural map. As this map sends units to units, we get a group homomorphism $U(n) \to U(m)$ which we also refer to as the natural map.

The Jacobi symbol is defined in Section 2 for odd n. It is denoted by $\left(\frac{a}{n} \right)$. The following are some of the results in this paper. Except for the first result, we assume that n is an odd, squarefree number whose every prime divisor is at least seven.

- Let $S(n) = \{ x \in U(n) : \left(\frac{x}{n} \right) = 1 \}$.
 - If n is prime, then $D_{S(n)}(n) = 3$, and $D_{S(n)}(n) = \Omega(n) + 1$ otherwise.
 - If n is prime, then $C_{S(n)}(n) = 3$, and $C_{S(n)}(n) = 2^{\Omega(n)}$ otherwise.

- Let $L(n;p) = \{ x \in U(n) : \left(\frac{x}{n} \right) = \left(\frac{x}{p} \right) \}$ where p is a prime divisor of n.
 - If $\Omega(n) = 2$, then $D_{L(n;p)}(n) = 4$, and $D_{L(n;p)}(n) = \Omega(n) + 1$ otherwise.
 - If $\Omega(n) = 2$, then $C_{L(n;p)}(n) = 6$, and $C_{L(n;p)}(n) = 2^{\Omega(n)}$ otherwise.

Remark 1.3. In [11] it was shown that if $A = \mathbb{Z}_n \setminus \{0\}$ and $B = \{1, 2, \ldots, \lfloor n/2 \rfloor\}$, we have $D_A(n) = D_B(n)$. We make a similar observation in this paper. In Proposition 2.2 we show that $S(n)$ is a subgroup of $U(n)$ having index two when n is not a square. From [8] and [12] we see that when n is odd, we have $D_{U(n)}(n) = \Omega(n) + 1$ and $C_{U(n)}(n) = 2^{\Omega(n)}$. So from Theorems 3.3 and 3.4 we see that if in addition n is not a prime, we have $D_{S(n)}(n) = D_{U(n)}(n)$ and $C_{S(n)}(n) = C_{U(n)}(n)$. Thus, even though these weight-sets may have different sizes, they can have the same constants. From Theorems 4.2 and 5.4 we see that when $\Omega(n) \neq 2$, we have $D_{L(n;p)}(n) = D_{U(n)}(n)$ and $C_{L(n;p)}(n) = C_{U(n)}(n)$.

If p is a prime divisor of n, we use the notation $v_p(n) = r$ to mean that $p^r \mid n$ and $p^{r+1} \nmid n$. Let p be a prime divisor of n and $v_p(n) = r$. We denote the image in $U(p^r)$ of $x \in U(n)$ under $f_{n|p^r}$ by $x^{(p)}$. For a sequence $S = (x_1, \ldots, x_l)$ in \mathbb{Z}_n, let $S^{(p)}$ denote the sequence $(x_1^{(p)}, \ldots, x_l^{(p)})$ in \mathbb{Z}_{p^r} which is the image of S under the $f_{n|p^r}$. The following statement is Observation 2.2 in [8].
Observation 1.4. Let S be a sequence in \mathbb{Z}_n. Suppose for every prime divisor p of n, the sequence $S^{(p)}$ in \mathbb{Z}_{p^r} is a $U(p^r)$-weighted zero-sum sequence where $r = v_p(n)$. Then S is a $U(n)$-weighted zero-sum sequence.

The next result follows from Theorem 1.2 of [14] along with Theorem 1 of [11], and from Corollary 4 of [12].

Theorem 1.5. Let n be odd. Then $D_{U(n)}(n) = \Omega(n) + 1$ and $C_{U(n)}(n) = 2^{\Omega(n)}$.

We get the next result from Theorem 2 of [6] and Theorem 4 of [12].

Theorem 1.6. Let p be an odd prime. Then $C_{Q_p}(p) = D_{Q_p}(p) = 3$.

The next result is Lemma 3 of [12] which will be used in Theorem 5.6.

Lemma 1.7. Let $n = mq$. Let A, B, C be subsets of $\mathbb{Z}_n, \mathbb{Z}_m, \mathbb{Z}_q$ respectively. Suppose $f_{n|m}(A) \subseteq B$ and $f_{n|q}(A) \subseteq C$. Then we have $C_{A}(n) \geq C_{B}(m) C_{C}(q)$.

We now prove a similar result for the weighted Davenport constant which we will use in Theorem 5.3. A generalization of this result was proved in Lemma 3.1 of [9] for abelian groups.

Lemma 1.8. Let $n = mq$. Let A, B, C be subsets of $\mathbb{Z}_n, \mathbb{Z}_m, \mathbb{Z}_q$ respectively. Suppose $f_{n|m}(A) \subseteq B$ and $f_{n|q}(A) \subseteq C$. Then $D_{A}(n) \geq D_{B}(m) + D_{C}(q) - 1$.

Proof. Let $D_{B}(m) = k$ and $D_{C}(q) = l$. Assume that $k, l \geq 2$. There exists a sequence $S_1' = (u_1, \ldots, u_{k-1})$ of length $k - 1$ in \mathbb{Z}_m which has no B-weighted zero-sum subsequence, and there exists a sequence $S_2' = (v_1, \ldots, v_{l-1})$ of length $l - 1$ in \mathbb{Z}_q which has no C-weighted zero-sum subsequence.

As $f_{n|m}$ is onto, for $1 \leq i \leq k - 1$ there exist $x_i \in \mathbb{Z}_n$ such that $f_{n|m}(x_i) = u_i$ and as $f_{n|q}$ is onto, for $1 \leq j \leq l - 1$ there exist $y_j \in \mathbb{Z}_n$ such that $f_{n|q}(y_j) = v_j$.

Let S be the sequence $(x_1, \ldots, x_{k-1}, y_1, \ldots, y_{l-1})$ of length $k + l - 2$ in \mathbb{Z}_n.

Let $S_1 = (x_1, \ldots, x_{k-1})$ and $S_2 = (y_1, \ldots, y_{l-1})$. Suppose S has an A-weighted zero-sum subsequence T. If the sequence T contains some term of S_2, by taking the image of T under $f_{n|q}$ we get the contradiction that S_2' has a C-weighted zero-sum subsequence, as $f_{n|q}(x_i) = 0$ and as $f_{n|q}(A) \subseteq C$.

Thus, T does not contain any term of S_2 and so T is a subsequence of S_1. Let T' be the subsequence of S_1' such that u_i is a term of T' if and only if x_i is a term of T. As $f_{n|m}(A) \subseteq B$, by dividing the A-weighted zero-sum which is obtained from T by q and by taking the image under $f_{n|m}$ we get the contradiction that T' is a B-weighted zero-sum subsequence of S_1'.

Hence, we see that S does not have any A-weighted zero-sum subsequence. As S has length $k + l - 2$, it follows that $D_{A}(n) \geq k + l - 1$.

3
If \(k = l = 1 \), then we are done. Suppose exactly one of them is equal to one. We may assume that \(k > 1 \) and \(l = 1 \). Then we take \(S'_2 \) to be the empty sequence in the above proof and so \(S_1 = S \). \(\square \)

2 Some results about the weight-set \(S(n) \)

From this point onwards, we will always assume that \(n \) is odd.

Definition 2.1. For an odd prime \(p \) and for \(a \in U(p) \) the symbol \(\left(\frac{a}{p} \right) \) is the Legendre symbol which is defined as

\[
\left(\frac{a}{p} \right) = \begin{cases}
1 & \text{if } a \in Q_p \\
-1 & \text{if } a \notin Q_p.
\end{cases}
\]

For a prime divisor \(p \) of \(n \), we use the notation \(\left(\frac{a}{p} \right) \) to denote \(\left(\frac{f_{n/p}(a)}{p} \right) \)
where \(a \in U(n) \). Let \(n = p_1^{r_1} \cdots p_k^{r_k} \) where the \(p_i \)'s are distinct primes.

For \(a \in U(n) \), we define the Jacobi symbol \(\left(\frac{a}{n} \right) \) to be \(\left(\frac{a}{p_1} \right)^{r_1} \cdots \left(\frac{a}{p_k} \right)^{r_k} \).

Observe that we have \(\left(\frac{a}{n} \right) = \left(\frac{a^{(p_1)}}{p_1^{r_1}} \right) \cdots \left(\frac{a^{(p_k)}}{p_k^{r_k}} \right) \). Let \(S(n) \) denote the kernel of the homomorphism \(U(n) \to \{1, -1\} \) given by \(a \mapsto \left(\frac{a}{n} \right) \).

In Section 3 of \([3]\), the set \(S(n) \) was considered as a weight-set.

Proposition 2.2. \(S(n) \) is a subgroup having index two in \(U(n) \) when \(n \) is a non-square, and \(S(n) = U(n) \) when \(n \) is a square.

Proof. Let \(n = p_1^{r_1} \cdots p_k^{r_k} \) where the \(p_i \)'s are distinct primes. If \(n \) is a square, then all the \(r_i \) are even and so \(S(n) = U(n) \). If \(n \) is not a square, there exists \(j \) such that \(r_j \) is odd. As for any \(p, r \in \mathbb{N} \) the map \(f_{p^r} \) is onto, by the Chinese Remainder theorem we see that there is a unit \(b \in U(n) \) such that \(\left(\frac{b}{p_i} \right) = 1 \) when \(i \neq j \), and \(\left(\frac{b}{p_j} \right) = -1 \). It follows that \(\left(\frac{b}{n} \right) = -1 \) and so the homomorphism \(U(n) \to \{1, -1\} \) given by \(a \mapsto \left(\frac{a}{n} \right) \) is onto. Hence, we see that \(S(n) \) has index two in \(U(n) \). \(\square \)

Remark 2.3. In particular, if \(n \) is squarefree then \(S(n) \) has index two in \(U(n) \). It follows that when \(p \) is an odd prime we have \(S(p) = Q_p \).

Observation 2.4. Let \(n = p_1 \cdots p_k \) where the \(p_i \)'s are distinct prime numbers. For \(a \in U(n) \), let \(\mu(a) \) denote the cardinality of \(\{1 \leq j \leq k : f_{n/p_j}(a) \notin Q_{p_j} \} \). Then \(a \in S(n) \) if and only if \(\mu(a) \) is even.

Lemma 2.5. Let \(d \) be a proper divisor of \(n \) such that \(d \) is not a square. Suppose \(d \) is coprime with \(n' \) where \(n' = n/d \). Then \(U(n') \subseteq f_{n|n'}(S(n)) \).
Proof. Let \(a' \in U(n') \). By the Chinese remainder theorem, there is an isomorphism \(\psi : U(n) \rightarrow U(n') \times U(d) \). If \(a' \in S(n') \), let \(a \in U(n) \) such that \(\psi(a) = (a',1) \). If \(a' \notin S(n') \), let \(b \in U(d) \setminus S(d) \) and let \(a \in U(n) \) such that \(\psi(a) = (a',b) \). Such a \(b \) exists by Proposition 2.2 because \(d \) is not a square. Then \(a \in S(n) \) and \(f_{n|n'}(a) = a' \).

\[\square \]

Lemma 2.6. Let \(S \) be a sequence in \(\mathbb{Z}_n \) and let \(d \) be a proper divisor of \(n \) which divides every element of \(S \). Let \(n' = n/d \) and let \(d \) be coprime with \(n' \). Let \(S' \) be the sequence in \(\mathbb{Z}_{n'} \) which is the image of the sequence \(S \) under \(f_{n|n'} \). Let \(A \subseteq \mathbb{Z}_n \) and let \(A' \subseteq \mathbb{Z}_{n'} \) such that \(A' \subseteq f_{n|n'}(A) \). Suppose \(S' \) is an \(A' \)-weighted zero-sum sequence. Then \(S \) is an \(A \)-weighted zero-sum sequence.

Proof. Let \(S = (x_1, \ldots, x_k) \) be a sequence in \(\mathbb{Z}_n \) and let \(S' = (x'_1, \ldots, x'_k) \) where \(x'_i = f_{n|n'}(x_i) \) for \(1 \leq i \leq k \). Suppose \(S' \) is an \(A' \)-weighted zero-sum sequence. Then for any \(1 \leq i \leq k \), there exist \(a_i' \in A' \) such that \(a_i'x'_1 + \cdots + a_i'x'_k = 0 \). Since \(A' \subseteq f_{n|n'}(A) \), for \(1 \leq i \leq k \) there exist \(a_i \in A \) such that \(f_{n|n'}(a_i) = a_i' \). As \(a_i'x'_1 + \cdots + a_i'x'_k = 0 \) in \(\mathbb{Z}_{n'} \), it follows that \(f_{n|n'}(a_1x_1 + \cdots + a_kx_k) = 0 \). Let \(x = a_1x_1 + \cdots + a_kx_k \in \mathbb{Z}_n \). As \(f_{n|n'}(x) = 0 \), we see that \(n' \mid x \) and as every term of \(S \) is divisible by \(d \), we see that \(d \mid x \). Now as \(d \) is coprime with \(n' \), it follows that \(x \) is divisible by \(n = n'd \) and so \(x = 0 \). Thus, \(S \) is an \(A \)-weighted zero-sum sequence.

\[\square \]

The next result is Lemma 2.1 (ii) of [8], which we restate here using our terminology.

Lemma 2.7. Let \(p \) be an odd prime. If a sequence \(S \) in \(\mathbb{Z}_{p^r} \) has at least two terms coprime to \(p \), then \(S \) is a \(U(p^r) \)-weighted zero-sum sequence.

The next result is Lemma 1 in [7].

Lemma 2.8. Let \(A = U(n)^2 \) where \(n = p^r \) and \(p \geq 7 \) is a prime. Let \(x_1, x_2, x_3 \in U(n) \). Then \(Ax_1 + Ax_2 + Ax_3 = \mathbb{Z}_n \).

For the theorem in the next section, we need the following lemma which is similar to Lemma 2.8. We observe that when \(n = p^r \) where \(p \) is an odd prime and \(r \in \mathbb{N} \), then \(U(n) \) is a cyclic group (see [10]) and so \(-1\) is the unique element in \(U(n) \) of order 2. Thus, the map \(U(n) \rightarrow U(n) \) given by \(x \mapsto x^2 \) has kernel \(\{1, -1\} \) and so \(U(n)^2 \) is a subgroup of \(U(n) \) having index 2. Hence, \(|A_1| = |A_2| \) in the next lemma and so its proof is similar to the proof of Lemma 1 of [7].

Lemma 2.9. Let \(A_1 = U(n)^2 \) and \(A_2 = U(n) \setminus U(n)^2 \), where \(n = p^r \) and \(p \geq 7 \) is a prime. Let \(x_1, x_2, x_3 \in U(n) \) and let \(f : \{1, 2, 3\} \rightarrow \{1, 2\} \) be any function. Then \(A_{f(1)}x_1 + A_{f(2)}x_2 + A_{f(3)}x_3 = \mathbb{Z}_n \).
Corollary 2.10. Let \(n = p^r \) and \(p \geq 7 \) be a prime. Let \(S \) be a sequence in \(\mathbb{Z}_n \) such that at least three terms of \(S \) are in \(U(n) \). Then \(S \) is a \(U(n)^2 \)-weighted zero-sum sequence.

Proof. Let \(S = (x_1, x_2, \ldots, x_k) \) be a sequence in \(\mathbb{Z}_n \) as in the statement of the corollary and \(A = U(n)^2 \). Without loss of generality, we may assume that \(x_1, x_2, x_3 \in U(n) \). If \(k = 3 \), let \(y = 0 \). If \(k \geq 4 \), let \(y = x_4 + \cdots + x_k \). By Lemma 2.8 we get \(-y \in Ax_1 + Ax_2 + Ax_3 \). So there exists \(a_1, a_2, a_3 \in A \) such that \(a_1x_1 + a_2x_2 + a_3x_3 + y = 0 \). Thus, \(S \) is an \(A \)-weighted zero-sum sequence. \(\square \)

Remark 2.11. The conclusion of Corollary 2.10 may not hold when \(p < 7 \). One can check that the sequence \((1, 1, 1)\) in \(\mathbb{Z}_n \) is not a \(U(n)^2 \)-weighted zero-sum sequence, when \(n = 2 \) or \(5 \) and the sequence \((1, 2, 1)\) in \(\mathbb{Z}_3 \) is not a \(U(3)^2 \)-weighted zero-sum sequence.

3 The constants \(D_{S(n)}(n) \) and \(C_{S(n)}(n) \)

Lemma 3.1. Let \(n \) be squarefree and \(S = (x_1, \ldots, x_l) \) be a sequence in \(\mathbb{Z}_n \). Suppose given any prime divisor \(p \) of \(n \), at least two terms of \(S \) are coprime to \(p \). If at most one term of \(S \) is a unit, then \(S \) is an \(S(n) \)-weighted zero-sum sequence.

Proof. As we have assumed that \(n \) is odd and as for every prime divisor \(p \) of \(n \) at least two terms of \(S \) are coprime to \(p \), by Lemma 2.7 for every prime divisor \(p \) of \(n \) the sequence \(S(p) = (x_1^{(p)}, \ldots, x_l^{(p)}) \) is a \(U(p) \)-weighted zero-sum sequence. Let \(n = p_1 \cdots p_k \) where the \(p_i \)'s are distinct primes. For \(1 \leq i \leq k \) there exist \(c_{i, 1}, \ldots, c_{i, l} \in U(p_i) \) such that \(c_{i, 1}x_1^{(p_i)} + \cdots + c_{i, l}x_l^{(p_i)} = 0 \).

By Observation 1.24 for \(1 \leq j \leq l \) there exist \(a_j \in U(n) \) such that \(a_1x_1 + \cdots + a_lx_l = 0 \) and such that for \(1 \leq i \leq k \) we have \((a_1^{(p_i)}}, \ldots, a_l^{(p_i)}) = (c_{i, 1}, \ldots, c_{i, l}) \). Let \(X \) denote the \(k \times l \) matrix whose \(i \)-th row is \((x_1^{(p_i)}, \ldots, x_l^{(p_i)}) \) and let \(C \) denote the \(k \times l \) matrix whose \(j \)-th row is \((c_{i, 1}, \ldots, c_{i, l}) \). We want to modify the entries of the matrix \(C \) so that for \(1 \leq j \leq l \) the corresponding \(a_j \in U(n) \) which we get by the Chinese remainder theorem are in \(S(n) \).

Suppose the \(j \)-th column of \(X \) has a zero. Then there exists \(1 \leq i \leq k \) such that \(x_i^{(p_i)} = 0 \). By making a suitable choice for \(c_{i, j} \) we can ensure that the corresponding \(a_j \in U(n) \) is in \(S(n) \) as \(\left(\frac{a_j}{n} \right) = \left(\frac{c_{1, j}}{p_1} \right) \cdots \left(\frac{c_{k, j}}{p_k} \right) \). Thus, we can modify the \(j \)-th column of \(C \) so that the corresponding \(a_j \in U(n) \) is in \(S(n) \).

We observe that a term \(x_j \) of \(S \) is a unit if and only if the \(j \)-th column of \(X \) does not have a zero. Hence, if no term of \(S \) is a unit then each column of \(X \)
has a zero. So in this case S is an $S(n)$-weighted zero-sum sequence.

Suppose exactly one term of S is a unit, say x_{j_0}. Then the j_0^{th} column of X does not have a zero and there is a zero in all the other columns of X. By multiplying the 1st row of C by a suitable element of $U(p_1)$, we can modify c_{1,j_0} so that $a_{j_0} \in S(n)$. As the other columns of X have a zero, we can modify those columns of C suitably so that $a_j \in S(n)$ for $j \neq j_0$. Thus, S is an $S(n)$-weighted zero-sum sequence. □

Lemma 3.2. Let n be squarefree, every prime divisor of n be at least seven and $S = (x_1, \ldots, x_l)$ be a sequence in \mathbb{Z}_n such that for every prime divisor of n, at least two terms of S are coprime to it. Suppose there is a prime divisor p of n such that at least three terms of S are coprime to p. Then S is an $S(n)$-weighted zero-sum sequence.

Proof. If $\Omega(n) = 1$, then n is a prime say p. As at least three terms of S are coprime to p, so by Corollary 2.10 we have S is a Q_p-weighted zero-sum sequence.

Let $\Omega(n) \geq 2$. As there are at least three units in the sequence $S^{(p)}$, by Lemma 2.7 it is a $U(p)$-weighted zero-sum sequence. So for $1 \leq i \leq l$ there exist $b_i \in U(p)$ such that $b_1x_1^{(p)} + \cdots + b_lx_l^{(p)} = 0$. Let us assume that $x_1^{(p)}, x_2^{(p)}$ and $x_3^{(p)}$ are units. A similar argument will work in the general case. We want to choose the b_i’s so that the corresponding $U(n)$-weighted zero-sum for S (which we get using Observation 2.4 as in Lemma 3.1) is an $S(n)$-weighted zero-sum.

Using Observation 2.4 we choose the units $\{b_i : 4 \leq i \leq l\}$ so that for $4 \leq i \leq l$ we have $a_i \in S(n)$. Let us denote the negative of $b_4x_4^{(p)} + \cdots + b_lx_l^{(p)}$ by y. By Lemma 2.9 and using Observation 2.4 we can choose $b_1, b_2, b_3 \in U(p)$ so that $a_1, a_2, a_3 \in S(n)$ and $b_1x_1^{(p)} + b_2x_2^{(p)} + b_3x_3^{(p)} = y$. Thus, S is an $S(n)$-weighted zero-sum sequence. □

Theorem 3.3. Let n be squarefree. If n is prime, we have $D_{S(n)}(n) = 3$. If n is not a prime and every prime divisor of n is at least seven, we have $D_{S(n)}(n) = \Omega(n) + 1$.

Proof. From Theorem 1.5 we have $D_{U(n)}(n) = \Omega(n) + 1$. As $S(n) \subseteq U(n)$ it follows that $D_{S(n)}(n) \geq D_{U(n)}(n)$ and so $D_{S(n)}(n) \geq \Omega(n) + 1$. If $\Omega(n) = 1$ then $n = p$ where p is a prime and $S(n) = Q_p$. So by Theorem 1.6 we have $D_{S(n)}(n) = 3$.

Let n be squarefree and let $\Omega(n) \geq 2$. We claim that $D_{S(n)}(n) \leq \Omega(n) + 1$. Let $S = (x_1, \ldots, x_l)$ be a sequence in \mathbb{Z}_n of length $l = k + 1$ where $k = \Omega(n)$. We have to show that S has an $S(n)$-weighted zero-sum subsequence. If any term
of S is zero, then that term will give us an $S(n)$-weighted zero-sum subsequence of length 1.

Case 3.3.1. There is a prime divisor p of n such that at most one term of S is coprime to p.

Let us assume without loss of generality that x_i is divisible by p for $2 \leq i \leq l$ and let T denote the subsequence (x_2, \ldots, x_l) of S. Let $n' = n/p$ and let T' be the sequence in $\mathbb{Z}_{n'}$ which is the image of T under $f_{n|n'}$. From Theorem 1.3 we see that $D_{U(n')}(n') = \Omega(n') + 1$. As T' has length $l - 1 = \Omega(n) = \Omega(n') + 1$, it follows that T' has a $U(n')$-weighted zero-sum subsequence. As n is squarefree, p is coprime to n'. Thus, by Lemmas 2.3 and 2.6 we see that S has an $S(n)$-weighted zero-sum subsequence.

Case 3.3.2. For each prime divisor p of n, exactly two terms of S are coprime to p.

Suppose S has at most one unit. By Lemma 3.1 we see that S is an $S(n)$-weighted zero-sum sequence. So we can assume that S has at least two units. By the assumption in this subcase, we see that S will have exactly two units and the other terms of S will be zero. As S has length $k + 1$ and as $k \geq 2$, some term of S is zero.

Case 3.3.3. For every prime divisor p of n at least two terms of S are coprime to p, and there is a prime divisor p' of n such that at least three terms of S are coprime to p'.

In this case, we are done by Lemma 3.2.

Theorem 3.4. Let n be squarefree. If n is a prime, we have $C_{S(n)}(n) = 3$. If n is not a prime and every prime divisor of n is at least seven, we have $C_{S(n)}(n) = 2^{\Omega(n)}$.

Proof. If $n = p$ where p is a prime then $S(n) = Q_p$. As p is odd, from Theorem 1.4 we get that $C_{S(n)}(n) = 3$. Let $n = p_1 \ldots p_k$ where $k \geq 2$. As $S(n) \subseteq U(n)$, it follows that $C_{S(n)}(n) \geq C_{U(n)}(n)$. As n is odd, from Theorem 1.3 we have $C_{S(n)}(n) \geq 2^k$.

Let $S = (x_1, \ldots, x_l)$ be a sequence in \mathbb{Z}_n of length $l = 2^k$. If we show that S has an $S(n)$-weighted zero-sum subsequence of consecutive terms, it will follow that $C_{S(n)}(n) \leq 2^k$. If any term of S is zero, we get an $S(n)$-weighted zero-sum subsequence of S of length 1.

Case 3.4.1. There is a prime divisor p of n such that at most one term of S is coprime to p.
We will get a subsequence, say \(T \), of consecutive terms of \(S \) of length \(l/2 \) whose all terms are divisible by \(p \). Let \(n' = n/p \) and let \(T' \) be the image of \(T \) under \(f_{n|n'} \). From Theorem 1.5 we have \(C_{U(n')}(n') = 2^{\Omega(n')} \). As the length of \(T' \) is \(2^{\Omega(n')} \), it follows that \(T' \) has a \(U(n') \)-weighted zero-sum subsequence of consecutive terms. As \(n' \) is coprime with \(p \), by Lemmas 2.5 and 2.6 we get that \(T \) (and hence \(S \)) has an \(S(n) \)-weighted zero-sum subsequence of consecutive terms.

Case 3.4.2. For each prime divisor \(p \) of \(n \), exactly two terms of \(S \) are coprime to \(p \).

In this case, as \(\Omega(n) = k \) there are at most \(2^k \) non-zero terms in \(S \). Let \(k \geq 3 \). As \(S \) has length \(2^k \) and as \(2^k > 2^k \), some term of \(S \) is zero and we are done. If \(k = 2 \), then \(S \) has length 4. If \(S \) has at most one unit, by Lemma 3.1 this sequence is an \(S(n) \)-weighted zero-sum sequence. So we can assume that \(S \) has exactly two units and so the other two terms of \(S \) will be zero.

Case 3.4.3. For every prime divisor \(p \) of \(n \) at least two terms of \(S \) are coprime to \(p \), and there is a prime divisor \(p' \) of \(n \) such that at least three terms of \(S \) are coprime to \(p' \).

In this case, we are done by Lemma 3.2.

4 Some results about the weight-set \(L(n; p) \)

To determine the constant \(D_{S(n)}(n) \) for some non-squarefree \(n \), we consider the following subset of \(\mathbb{Z}_n \) as a weight-set.

Definition 4.1. Let \(p \) be a prime divisor of \(n \) where \(n \) is odd. We define

\[
L(n; p) = \left\{ a \in U(n) : \left(\frac{a}{n} \right) = \left(\frac{a}{p} \right) \right\}
\]

Consider the homomorphism \(\varphi : U(n) \to \{1, -1\} \) given by \(\varphi(a) = \left(\frac{a}{n} \right) \left(\frac{a}{p} \right) \).

Then the kernel of \(\varphi \) is \(L(n; p) \) and so it follows that \(L(n; p) \) is a subgroup having index at most two in \(U(n) \).

Proposition 4.2. Let \(p \) be a prime divisor of \(n \). Then \(L(n; p) \) has index two in \(U(n) \), unless \(p \) is the unique prime divisor of \(n \) such that \(v_p(n) \) is odd.

Proof. Let \(n = p^r m \) where \(m \) is coprime to \(p \). Let \(\psi : U(n) \to U(p^r) \times U(m) \) be the isomorphism which is given by the Chinese remainder theorem. If we show that \(-1\) is in the image of the homomorphism \(\varphi : U(n) \to \{1, -1\} \) which was defined above, then \(\ker \varphi \) will be a subgroup of index two in \(U(n) \).
Case 4.2.1. \(r \) is odd.

Suppose \(m \) is a square. For any \(a \in U(n) \), we have \(\varphi(a) = \left(\frac{a}{m} \right) \left(\frac{a}{p^r+1} \right) = 1 \).
Thus \(\varphi \) is the trivial map and so \(L(n;p) = U(n) \).

Suppose \(m \) is not a square. By Proposition 2.2 we see that \(S(m) \) has index two in \(U(m) \). For \(c \in U(m) \setminus S(m) \), there exists \(a \in U(n) \) such that \(\psi(a) = (1, c) \).
Thus \(\left(\frac{a}{p} \right) = \left(\frac{1}{p} \right) = 1 \) and so \(\varphi(a) = \left(\frac{a}{m} \right) = \left(\frac{a}{n} \right) = 1 \).

Case 4.2.2. \(r \) is even.

Let \(m = 1 \). Then \(\left(\frac{a}{n} \right) = \left(\frac{a}{p} \right)^r = 1 \) and so \(\varphi(a) = \left(\frac{a}{p} \right) \).
Let \(b \in U(p) \setminus Q_p \).
There exists \(a \in U(n) \) such that \(f_{n|p}(a) = b \). Thus \(\varphi(a) = \left(\frac{b}{p} \right) = -1 \).

Suppose \(m > 1 \). Let \(b \in U(p) \setminus Q_p \). There exists \(b' \in U(p^r) \) such that \(f_{p^r|p}(b') = b \). For \(c \in S(m) \), there exists \(a \in U(n) \) such that \(\psi(a) = (b', c) \).
Thus \(\left(\frac{a}{n} \right) = \left(\frac{b}{p} \right)^r \left(\frac{c}{m} \right) = 1 \) and so \(\varphi(a) = \left(\frac{a}{n} \right) = \left(\frac{b}{p} \right) = -1 \).

Remark 4.3. In particular if \(n \) is a prime \(p \), then \(L(n;p) = U(p) \).

Lemma 4.4. Let \(p' \) be a prime divisor of \(n \) and \(p \) be a prime divisor of \(n \) which is coprime with \(n' = n/p \). Then \(S(n') \subseteq f_{n|n'}(L(n;p')) \).

Proof. Let \(b \in S(n') \) where \(n' = n/p \). As \(p \) is coprime with \(n' \), by the Chinese remainder theorem we have an isomorphism \(\psi : U(n) \to U(n') \times U(p) \).

Suppose \(p = p' \). Let \(a \in U(n) \) such that \(\psi(a) = (b, 1) \). Thus \(f_{n|n'}(a) = b \) and \(a \in L(n; p') \) as

\[
\left(\frac{a}{n} \right) = \left(\frac{b}{n} \right) \left(\frac{1}{p} \right) = \left(\frac{1}{p} \right) = \left(\frac{a}{p} \right) = \left(\frac{a}{p'} \right).
\]

Suppose \(p \neq p' \). Then \(p' \) divides \(n' \). Let \(c \in U(p) \) such that \(\left(\frac{c}{p} \right) = \left(\frac{b}{p'} \right) \) and let \(a \in U(n) \) such that \(\psi(a) = (b, c) \). Thus \(f_{n|n'}(a) = b \) and \(a \in L(n; p') \) as

\[
\left(\frac{a}{n} \right) = \left(\frac{b}{n'} \right) \left(\frac{c}{p} \right) = \left(\frac{c}{p} \right) = \left(\frac{b}{p'} \right) = \left(\frac{a}{p'} \right).
\]

Lemma 4.5. Let \(p' \) be a prime divisor of \(n \) which is coprime to \(n' = n/p' \). Then \(U(p') \subseteq f_{n|p'}(L(n;p')) \).
Proof. Let \(b \in U(p')\). As \(n' = n/p'\) is coprime to \(p'\), by the Chinese remainder theorem we have an isomorphism \(\psi : U(n) \to U(n') \times U(p')\). There exists \(a \in U(n)\) such that \(\psi(a) = (1, b)\). Thus \(f_{n|p'}(a) = b\) and \(a \in L(n; p')\) as

\[
\left(\frac{a}{n}\right) = \left(\frac{1}{n'}\right) \left(\frac{b}{p'}\right) = \left(\frac{b}{p'}\right) = \left(\frac{a}{p'}\right).
\]

\[\square\]

Observation 4.6. Let \(A \subseteq \mathbb{Z}_n\), \(S\) be a sequence in \(\mathbb{Z}_n\) and \(n = m_1m_2\) where \(m_1\) and \(m_2\) are coprime. For \(i = 1, 2\), let \(A_i \subseteq \mathbb{Z}_{m_i}\) be given and \(S_i\) denote the image of the sequence \(S\) under \(f_{n|m_i}\). Suppose \(A_1 \times A_2 \subseteq \psi(A)\) where \(\psi : U(n) \to U(m_1) \times U(m_2)\) is the isomorphism given by the Chinese remainder theorem. If \(S_1\) is an \(A_1\)-weighted zero-sum sequence in \(\mathbb{Z}_{m_1}\) and \(S_2\) is an \(A_2\)-weighted zero-sum sequence in \(\mathbb{Z}_{m_2}\), then \(S\) is an \(A\)-weighted zero-sum sequence in \(\mathbb{Z}_n\).

Lemma 4.7. Let \(n\) be squarefree and \(p'\) be a prime divisor of \(n\). Suppose \(n' = n/p'\) and \(\psi : U(n) \to U(n') \times U(p')\) is the isomorphism given by the Chinese remainder theorem. Then \(S(n') \times U(p') \subseteq \psi(L(n; p'))\).

Proof. Let \((b, c) \in S(n') \times U(p')\). There exists \(a \in U(n)\) such that \(\psi(a) = (b, c)\). Then \(a \in L(n; p')\) as

\[
\left(\frac{a}{n}\right) = \left(\frac{b}{n'}\right) \left(\frac{c}{p'}\right) = \left(\frac{c}{p'}\right) = \left(\frac{a}{p'}\right).
\]

\[\square\]

5 The constants \(D_{L(n;p)}(n)\) and \(C_{L(n;p)}(n)\)

Lemma 5.1. Let \(n\) be squarefree, \(p'\) be a prime divisor of \(n\), \(S = (x_1, \ldots, x_l)\) be a sequence in \(\mathbb{Z}_n\) such that for every prime divisor \(p\) of \(n\) at least two terms of \(S\) are coprime to \(p\). Assume that \(S'\) denotes the image of \(S\) under \(f_{n|n'}\), where \(n' = n/p'\). Suppose at most one term of \(S'\) is a unit or suppose there is a prime divisor \(p\) of \(n'/p'\) such that at least three terms of \(S\) are coprime to \(p\). Then \(S\) is an \(L(n; p')\)-weighted zero-sum sequence.

Proof. Let \(n' = n/p'\) and \(S'\) denote the image of the sequence \(S\) under \(f_{n|n'}\). As at least two terms of \(S'(n')\) are coprime to \(p'\), by Lemma 2.7 we have \(S'(n')\) is a \(U(p')\)-weighted zero-sum sequence.

If at most one term of \(S'\) is a unit, by Lemma 3.3 we see that \(S'\) is an \(S(n')\)-weighted zero-sum sequence in \(\mathbb{Z}_{n'}\), as \(n'\) is squarefree and for every prime divisor \(p\) of \(n'\) at least two terms of \(S'\) are coprime to \(p\).
If there is a prime divisor p of n/p' such that at least three terms of S are coprime to p, by Lemma 4.2 we get that S' is an $S(n')$-weighted zero-sum sequence, since at least three terms of S' are coprime to p.

As n is squarefree, n' is coprime to p'. Let $\psi : U(n) \to U(n') \times U(p')$ be the isomorphism given by the Chinese remainder theorem. By Lemma 4.7 we see that $S(n') \times U(p') \subseteq \psi(L(n;p'))$. Hence, by Observation 4.6 we see that S is an $L(n; p')$-weighted zero-sum sequence.

Theorem 5.2. Let n be a squarefree number whose every prime divisor is at least seven. Suppose that p' is a prime divisor of n and $\Omega(n) \neq 2$. Then $D_{L(n; p')}(n) = \Omega(n) + 1$.

Proof. Let p' be a prime divisor of n. We have $D_{U(n)}(n) \leq D_{L(n; p')}(n)$, as $L(n; p') \subseteq U(n)$. From Theorem 1.5 we have $D_{U(n)}(n) = \Omega(n) + 1$ and so $D_{L(n; p')}(n) \geq \Omega(n) + 1$. If $\Omega(n) = 1$, then $L(n; p') = U(n)$ and so by Theorem 1.5 we have $D_{L(n; p')}(n) = 2$.

Let n be a squarefree number whose every prime divisor is at least seven. Suppose $\Omega(n) \geq 3$ and $S = (x_1, \ldots, x_l)$ is a sequence in \mathbb{Z}_n of length $\Omega(n) + 1$. To show that $D_{L(n; p')}(n) \leq \Omega(n) + 1$, it suffices to show that S has an $L(n; p')$-weighted zero-sum subsequence.

Case 5.2.1. There is a prime divisor p of n such that at most one term of S is coprime to p.

Let us assume without loss of generality that x_i is divisible by p for $i > 1$ and let T denote the subsequence (x_2, \ldots, x_l) of S. Let $n' = n/p$ and let T' denote the sequence in $\mathbb{Z}_{n'}$ which is the image of T under $f_{n|n'}$. We have n' is squarefree, $\Omega(n') \geq 2$, every prime divisor of n' is at least seven and T' has length $\Omega(n') + 1$.

So it follows from Theorem 3.6 that T' has an $S(n')$-weighted zero-sum subsequence. As n is squarefree, p is coprime to n'. Now by Lemmas 2.6 and 4.4 we see that T has an $L(n; p')$-weighted zero-sum subsequence.

Case 5.2.2. For every prime divisor p of n/p' exactly two terms of S are coprime to p, and at least two terms of S are coprime to p'.

Let $n' = n/p'$ and $S' = (x_1', \ldots, x_l')$ be the image of S under $f_{n|n'}$. Suppose at most one term of S' is a unit. By Lemma 5.1 we see that S is an $L(n; p')$-weighted zero-sum sequence. Suppose at least two terms of S' are units. By the assumption in this case we see that exactly two terms of S' are units, say x_{i_1}' and x_{j_2}', and the other terms of S' are zero. It follows that all terms of S are divisible by n' except x_{j_1} and x_{j_2}.
Hence, if some term \(f_{n|p'}(x_j) \) of \(S^{(p')} \) is zero for \(j \neq j_1, j_2 \), then \(x_j = 0 \). So we can assume that all the terms of \(S^{(p')} \) are non-zero except possibly two terms. As \(k \geq 3 \), the sequence \(S \) has length at least 4. Let \(T \) be a subsequence of \(S \) of length at least two which does not contain the terms \(x_{j_1} \) and \(x_{j_2} \).

As all the terms of \(T^{(p')} \) are non-zero and as \(T^{(p')} \) has length at least 2, by Lemma 2.7 we see that \(T^{(p')} \) is a \(U(p') \)-weighted zero-sum sequence. Also all the terms of \(T \) are divisible by \(n' \). Hence, by Lemmas 2.6 and 4.5 we see that \(T \) is an \(L(n; p') \)-weighted zero-sum subsequence of \(S \).

Case 5.2.3. Given any prime divisor \(p \) of \(n \) at least two terms of \(S \) are coprime to \(p \), and there is a prime divisor \(p \) of \(n/p' \) such that at least three terms of \(S \) are coprime to \(p \).

In this case, we are done by Lemma 5.1.

Theorem 5.3. Let \(n = p'q \) where \(p' \) and \(q \) are distinct primes which are at least seven. Then \(D_{L(n; p')(n)} = 4 \).

Proof. Let \(n \) be as in the statement of the theorem. As \(L(n; p') \subseteq U(n) \), we have \(f_{n|p'}(L(n; p')) \subseteq U(p') \). Also observe that \(f_{n|q}(L(n; p')) \subseteq Q_q \). As from Theorem 1.5 we have \(D_{U(p')(p')} = 2 \) and from Theorem 1.4 we have \(D_{Q_q(q)} = 3 \), by Lemma 1.8 it follows that \(D_{L(n; p')(n)} \geq 4 \).

Let \(S = (x_1, x_2, x_3, x_4) \) be a sequence in \(\mathbb{Z}_n \). We will show that \(S \) has an \(L(n; p') \)-weighted zero-sum subsequence. It will follow that \(D_{L(n; p')(n)} = 4 \). If some term of \(S \) is zero, then we are done. So we can assume that all the terms of \(S \) are non-zero. We continue with the notations and terminology which were used in the proof of Theorem 5.2.

Case 5.3.1. There is a prime divisor \(p \) of \(n \) such that at most one term of \(S \) is coprime to \(p \).

We can find a subsequence \(T \) of \(S \) of length 3 such that all the terms of \(T \) are divisible by \(p \). Let \(n' = n/p \) and let \(T' \) be the sequence in \(\mathbb{Z}_{n'} \) which is the image of \(T \) under \(f_{n|n'} \). As all the terms of \(S \) are non-zero, no term of \(T \) can be divisible by \(n' \). So \(T' \) is a sequence of non-zero terms of length 3. As \(n' \) is a prime, \(S(n') = Q_{n'} \) and by Corollary 2.10 we see that \(T' \) is a \(Q_{n'} \)-weighted zero-sum subsequence. Thus, by Lemmas 2.6 and 4.5 we see that \(T \) is an \(L(n; p') \)-weighted zero-sum subsequence of \(S \).

Case 5.3.2. Exactly two terms of \(S \) are coprime to \(q \).

Let us assume that \(x_1 \) and \(x_2 \) are coprime to \(q \) and let \(T : (x_3, x_4) \). The sequence \(T^{(q)} \) has both terms zero and hence it is an \(S(q) \)-weighted zero-sum sequence. As \(S \) has all terms non-zero, we see that both the terms of \(T^{(p')} \) are
non-zero, and so by Lemma 2.7 we get that $T^{(p')}$ is a $U(p')$-weighted zero-sum sequence. Let $\psi : U(n) \to U(q) \times U(p')$ be the isomorphism given by the Chinese remainder theorem. By Lemma 4.3 we have $S(q) \times U(p') \subseteq \psi(L(n;p'))$. Thus, by Observation 1.6 we see that T is an $L(n;p')$-weighted zero-sum subsequence of S.

Case 5.3.3. At least three terms of S are coprime to q, and at least two terms of S are coprime to p'.

In this case, we are done by Lemma 5.1.

Theorem 5.4. Let n be squarefree whose every prime divisor is at least seven. Suppose p' is a prime divisor of n and $\Omega(n) \neq 2$. Then $C_{L(n;p')} (n) = 2^{\Omega(n)}$.

Proof. If n is a prime, then $n = p'$ and $L(n;p') = U(p')$. So from Theorem 1.5 we have $C_{L(n;p')} (n) = 2$. Let $n = p_1 \ldots p_k$ where $k \geq 3$ and let $p' = p_k$. As $L(n;p') \subseteq U(n)$, we have $C_{L(n;p')} (n) \geq C_{U(n)} (n)$. So from Theorem 1.5 we have $C_{L(n;p')} (n) \geq 2^{\Omega(n)}$. Let $S = (x_1, \ldots, x_l)$ be a sequence in \mathbb{Z}_n of length $l = 2^{\Omega(n)}$. If we show that S has an $L(n;p')$-weighted zero-sum subsequence of consecutive terms, it will follow that $C_{L(n;p')} (n) \leq 2^{\Omega(n)}$. If any term of S is zero, then we get an $L(n;p')$-weighted zero-sum subsequence of S of length 1.

Case 5.4.1. There is a prime divisor p of n such that at most one term of S is coprime to p.

We can find a subsequence say T of consecutive terms of S of length $l/2$ such that all the terms of T are divisible by p. Let $n' = n/p$ and let T' be the image of T under $f_{n|n'}$. As $\Omega(n') = \Omega(n) - 1 \geq 2$ and as T' has length $2^{\Omega(n')}$, by Theorem 5.4 we see that T' has an $S(n')$-weighted zero-sum subsequence of consecutive terms. By Lemma 4.3 we get $S(n') \subseteq f_{n|n'} (L(n;p'))$ and so by Lemma 2.6 we get that T (and hence S) has an $L(n;p')$-weighted zero-sum subsequence of consecutive terms.

Case 5.4.2. For every prime divisor p of n/p' exactly two terms of S are coprime to p, and at least two terms of S are coprime to p'.

In this case, we can use a slight modification of the argument which was used in the same case of the proof of Theorem 5.2. We just observe that in a sequence S of length at least eight which has at most two terms which are not divisible by n', we can find a subsequence T of consecutive terms of length at least two such that all the terms of T are divisible by n'.

Case 5.4.3. For every prime divisor p of n at least two terms of S are coprime to p, and there is a prime divisor p of n/p' such that at least three terms of S are coprime to p.
In this case, we are done by Lemma 5.1.

Theorem 5.5. Let \(n = p'q \) where \(p' \) and \(q \) are distinct primes which are at least seven. Then \(C_{L(n;p')} (n) = 6 \).

Proof. Let \(n \) be as in the statement of the theorem. By Theorems 1.5 and 1.6, we see that \(C_{U(p')}(p') = 2 \) and \(C_{Q_{n}}(q) = 3 \). Also as \(f_{n\mid p'} (L(n; p')) \subseteq U(p') \) and \(f_{n\mid q} (L(n; p')) \subseteq Q_{q} \), by Lemma 1.7 it follows that \(C_{L(n;p')} (n) \geq 6 \).

Let \(S = (x_1, \ldots, x_6) \) be a sequence in \(\mathbb{Z}_n \). It is enough to show that \(S \) has an \(L(n;p') \)-weighted zero-sum subsequence of consecutive terms. We can assume that all the terms of \(S \) are non-zero.

Case 5.5.1. There is a prime divisor \(p \) of \(n \) such that at most one term of \(S \) is coprime to \(p \).

In this case, we can find a subsequence \(T \) of \(S \) of consecutive terms of length three whose all terms are divisible by \(p \). As all the terms of \(S \) are non-zero, all the terms of \(T \) are coprime to \(n' \) where \(n' = n/p \). If \(T' \) is the image of \(T \) under \(f_{n\mid n'} \), then \(T' \) is a sequence of non-zero terms of length three in \(\mathbb{Z}_{n'} \). As \(n' \) is a prime, \(S(n') = Q_{n'} \) and by Corollary 2.10 we get that \(T' \) is a \(Q_{n'} \)-weighted zero-sum sequence. By using Lemmas 2.6 and 4.4 it follows that \(T \) is an \(L(n; p') \)-weighted zero-sum subsequence of consecutive terms of \(S \).

Case 5.5.2. Exactly two terms of \(S \) are coprime to \(p \).

Let the terms \(x_{j_1} \) and \(x_{j_2} \) be coprime to \(q \). As \(S \) has length six, we can find a subsequence \(T \) of consecutive terms of \(S \) of length two, which does not have any term from the positions \(j_1 \) and \(j_2 \). As \(x_j \) is divisible by \(q \) when \(j \neq j_1, j_2 \), all the terms of \(T \) are divisible by \(q \). As \(S \) has all terms non-zero, all the terms of \(T \) are coprime to \(p' \).

By Lemma 2.7 we get that \(T(n') \) is a \(U(p') \)-weighted zero-sum sequence. So by Lemmas 2.6 and 4.4 it follows that \(T \) is an \(L(n; p') \)-weighted zero-sum subsequence of consecutive terms of \(S \).

Case 5.5.3. At least three terms of \(S \) are coprime to \(q \), and at least two terms of \(S \) are coprime to \(p' \).

In this case, we are done by Lemma 5.1.

6 Concluding remarks

We have \(S(15) = \{1, 2, 4, 8\} \). We can check that the sequence \(S : (1, 1, 1) \) does not have any \(S(15) \)-weighted zero-sum subsequence. So \(D_{S(15)}(15) \geq 4 \) and hence \(D_{S(15)}(15) > \Omega(15) + 1 \). This shows that the statement of Theorem 3.3.
is not true in general if some prime divisor of \(n \) is smaller than seven. It will be interesting to find the Davenport constant \(D_{S(n)}(n) \) for non-squarefree \(n \).

In [2], it was proposed to characterize the weight-sets \(A \subseteq \mathbb{Z}_n \) which have the same value of \(D_A(n) \). In this paper we have seen that if \(A \subseteq \mathbb{Z}_n \) is such that \(S(n) \subseteq A \subseteq U(n) \) and if \(n \) is not a prime, then \(D_A(n) = D_{U(n)}(n) \). We have also seen that if \(A \subseteq \mathbb{Z}_n \) is such that \(L(n;p) \subseteq A \subseteq U(n) \) and if \(\Omega(n) \neq 2 \), then again \(D_A(n) = D_{U(n)}(n) \). We can try to see whether this can happen for some other weight-sets \(A \subseteq \mathbb{Z}_n \).

Acknowledgement. Santanu Mondal would like to acknowledge CSIR, Govt. of India, for a research fellowship.

References

[1] S. D. Adhikari, Y. G. Chen, Davenport constant with weights and some related questions, II, \textit{J. Combin. Theory A} \textbf{115} (1) (2008), 178-184.

[2] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin and F. Papppalardi, Contributions to zero-sum problems, \textit{Discrete Math.} \textbf{306} (2006), 1-10.

[3] S. D. Adhikari, C. David and J. J. Urroz, Generalizations of some zero-sum theorems, \textit{Integers} \textbf{8} (2008), #A52.

[4] S. D. Adhikari and S. Hegde, Zero-sum constants involving weights, \textit{Proc. Indian Acad. Sci. (Math. Sci.)} \textbf{137} (2021), #A37.

[5] S. D. Adhikari, I. Molla and S. Paul, Extremal sequences for some weighted zero-sum constants for cyclic groups, \textit{CANT IV, Springer Proc. Math. Stat.} \textbf{347} (2021), 1-10.

[6] S. D. Adhikari and P. Rath, Davenport constant with weights and some related questions, \textit{Integers} \textbf{6} (2006), #A30.

[7] M. N. Chintamani and B. K. Moriya, Generalizations of some zero sum theorems, \textit{Proc. Indian Acad. Sci. (Math. Sci.)} \textbf{122} (1) (2012), 15-21.

[8] S. Griffiths, The Erdős-Ginzberg-Ziv theorem with units, \textit{Discrete Math.} \textbf{308} (23) (2008), 5473-5484.

[9] D. J. Grynkiewicz, L. E. Marchan and O. Ordaz, A weighted generalization of two theorems of Gao, \textit{Ramanujan J.} \textbf{28} (2012), 323-340.
[10] K. Ireland and M. Rosen, *A Classical Introduction to Modern Number Theory*, Springer, New York, 1982.

[11] F. Luca, A generalization of a classical zero-sum problem, *Discrete Math.* 307 (2007), 1672-1678.

[12] S. Mondal, K. Paul and S. Paul, On a different weighted zero-sum constant, *Discrete Math.* 346 (6) (2023), 113350.

[13] S. Mondal, K. Paul and S. Paul, Extremal sequences for a weighted zero-sum constant, *Integers* 22 (2022), #A93.

[14] P. Yuan and X. Zeng, Davenport constant with weights, *European J. Combin.* 31 (2010), 677-680.