Supplementary Information

The C/D box small nucleolar RNA SNORD52 regulated by Upf1 facilitates hepatocarcinogenesis by stabilizing CDK1

Running title: SNORD52 exhibits an oncogenic effect in HCC

Cuicui Li¹, Long Wu², Pengpeng Liu², Kun Li², Zhonglin Zhang², Yueming He², Quanyan Liu², Ping Jiang², Zhiyong Yang², Zhisu Liu², Yufeng Yuan²✉, Lei Chang²✉

1. Department of Integrated Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China.
2. Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China.

✉ Corresponding Authors: Lei Chang, M.D., Ph.D., Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, #169 Donghu Road, Wuhan 430071, P.R. China. Tel.:+86 13237102029; E-mail: reniorchang@whu.edu.cn. Yufeng Yuan, M.D., Ph.D., Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, #169 Donghu Road, Wuhan 430071, P.R. China. Tel.:+86 13995564795; E-mail: yuanyf1971@163.com.
Supplementary Experimental Procedures

RNA-sequencing (RNA-seq) analysis

Total RNA was extracted using Trizol reagent (Invitrogen, CA, USA) following the manufacturer’s procedure. The total RNA quantity and purity were analysis of Bioanalyzer 2100 and RNA 6000 Nano LabChip Kit (Agilent, CA, USA) with RIN number >7.0 [1]. RNA degradation and contamination was monitored on 1% agarose gels. RNA purity was checked using the NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). RNA concentration was measured using Qubit®RNA Assay Kit in Qubit® 2.0 Flurometer (Life Technologies, CA, USA). RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA, USA). Sequencing libraries were generated using NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA) following manufacturer’s recommendations. First strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse Transcriptase (RNase H-). Second strand cDNA synthesis was subsequently performed using DNA Polymerase I and RNase H. The library quality was assessed on the Agilent Bioanalyzer 2100 system. The clustering of the index-coded samples was performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumia) according to the manufacturer’s instructions. After cluster generation, the library preparations were sequenced on an Illumina Hiseq 2500 platform and 125 bp paired-end reads were generated. Reference genome and gene model annotation files were downloaded from genome website browser (NCBI/UCSC/Ensembl) directly. Indexes of the reference genome were built using Bowtie v2.0.6 [2], and paired-end clean reads were aligned to the reference genome using TopHat v2.0.9 [3]. HTSeq v0.6.1 was used to count the read numbers mapped of each gene. Differential expression analysis between two groups was performed using the DESeq R package
based on the negative binomial distribution. The resulting P values were adjusted using the Benjamini and Hochberg’s approach for controlling the False Discovery Rate (FDR). Genes with $|\log_2[\text{fold change (FC)}]| > 1$ and $\text{FDR} < 0.05$ found by DESeq were assigned as differentially expressed [4]. RIP-seq raw reads were mapped to the human reference genome (hg38/GRCh38).

Fluorescence in situ hybridization (FISH)

RNA FISH was used to observe the relative subcellular localization and molecular abundance. FISH was performed according to the Ribo Fluorescence In Situ Hybridization Immobilized Kit (RN: 10910; RiboBio Co., Ltd. Guangzhou, China) protocol. After prehybridization buffer treatment, the probe mixture was diluted in hybridization buffer after removing prehybridization buffer and was incubated overnight at 37 °C. The DNA was dyed with DAPI for 10 minutes before sealing. The subcellular localization and molecular abundance were observed under the same optical conditions with a Double Disc Laser Confocal Imaging System (UltraVIEW VOX & 1 × 81; Perkin Elmer & Olympus).

Cell proliferation assay

Cell proliferation assays were conducted using a Cell Counting Kit-8 (Dojindo Molecular Technologies Inc., Kumamoto, Japan) according to the manufacturer’s protocol. Hepatoma cells were plated in 24-well plates in triplicate at a density of 2.5×10^4 cells per well and cultured in growth medium. Cells were treated with the ASOs or plasmids, and the numbers of cells per well were measured by the (450 nm) at the indicated time points. Additionally, for the colony formation assay, 500 cells were seeded in 6-well plates for 10 days, and colonies were fixed and stained with crystal violet solution. Each cell line was evaluated in three parallel replicates.

Flow cytometric analysis
For cell cycle analyses, HCCLM9 or HCCLM3 cells were harvested 48 h after transfection with siRNA, ASOs and vector, washed with phosphate-buffered saline (PBS), and fixed in 75% ethanol at 4 °C overnight. RNA was removed from the preparations by incubating the cells with RNase A (Sigma-Aldrich) at 37 °C for 30 min. Cells were then stained with propidium iodide (PI) solution (Sigma-Aldrich) for 30 min at room temperature and analyzed on a FACSaria I flow cytometer (BD Biosciences). Apoptosis was assessed 48 h after transfection using a FITC Annexin V Apoptosis Detection Kit I (BD Pharmingen, San Diego, CA, USA) and an Accuri C6 Flow Cytometer (BD Biosciences).

Western blot analysis

Cellular proteins from each sample were separated by SDS-polyacrylamide gel electrophoresis (4% stacking and 10% separating gels) and then transferred onto polyvinylidene fluoride (PVDF) membranes (Millipore, USA). The membranes were then incubated with primary antibodies overnight at 4 °C. After the membranes were incubated with secondary antibodies, they were subsequently subjected to immunoblot analysis using an ECL immunoblotting kit (Beyotime Institute of Biotechnology, China) according to the manufacturer’s protocol. The antibodies used in this study are listed in Table S2.

Transwell assay

The invasion of cells was assessed using Matrigel-coated chambers with 8-μm pores (BD Biosciences, Franklin Lakes, NY, USA). Briefly, hepatoma cells (1×10^5) were seeded in serum-free medium and were allowed to translocate toward complete media supplemented with 10% fetal bovine serum after knockdown of lncRNA-SNHG6. The cells that had invaded through the membrane to the lower surface were fixed, stained and counted after 24 h.
Colony formation assay

For soft agar colony formation assay, forty-eight hours after transfection with the indicated siRNAs, vector or ASOs, HCC cells were suspended in DMEM containing 10% FBS and 0.3% Seaplaque low melting temperature agarose (Lonza), and 1.5 ml agarose containing 5×10^3 cells were plated in one well of 6-well plates over a 1.5 ml layer of DMEM/10% FBS/0.6% agarose. Cells were incubated at 37 °C for 2 weeks, before they were fixed and stained with trypan blue. The colonies were then scored under microscope.

Hematoxylin-eosin (HE), Immunohistochemistry (IHC) and Immunofluorescence (IF)

For the HCC and adjacent tissue samples, tissue sections were deparaffinized in xylene and rehydrated with ethanol before paraffin embedding. All the tissue samples were sectioned to produce 4-mm thick slices. To perform HE staining, slices were stained with hematoxylin and eosin for 3 minutes and 5 seconds after dewaxing. For IHC, paraffin sections were cut to a thickness of 4 μm, the slides were deparaffinized in xylene and rehydrated with ethanol, and the endogenous peroxidase was inactivated with 0.3% hydrogen peroxide. All of the steps were performed using an UltraSensitiveTM S-P kit (Maixin, Fuzhou, China) according to the manufacturer’s protocol. The total immunostaining score was calculated as the sum of the positive percentage and the staining intensity of the stained cells, which ranged from 0 to 6. The percent positivity was scored as “0” (0-25%), “1” (26-50%), “2” (51-75%), and “3” (≥ 75%). The staining intensity was scored as “0” (no staining), “1” (weakly stained), “2” (moderately stained), and “3” (strongly stained). Negative expression of protein was defined as a total score ≤3, and positive expression was defined as a total score ≥4. For immunofluorescence, cells were fixed in 4% paraformaldehyde, permeabilized using 0.5% Triton X-100 and incubated with primary antibody and secondary antibodies according to the
manufacturer’s protocol. The coverslips were counterstained with DAPI and imaged with a confocal laser scanning microscope (Olympus FV1000). The antibodies used in this study are listed in Table S2.

5-ethynyl-2’-deoxyuridine (EdU) assay

EdU (5-ethynyl-2’-deoxyuridine), a nucleoside analog of thymidine, is readily incorporated into cellular DNA during DNA replication. Cell proliferation was evaluated using a Cell-Light EdU Apollo 567 In Vitro Imaging Kit (RiboBio, Guangzhou, China) as described by the manufacturer. Briefly, cells were incubated with 50 μM EdU for 2 h at 37 °C, fixed with 4% formaldehyde, stained with Apollo reaction cocktail and Hoechst 33342, and protected from light. Images were acquired by fluorescence microscopy and overlapped using Image-Pro Plus software (Version 6.0.0.260; Media Cybernetics, Inc., Tokyo, Japan).

Wound healing assay

HCC cells (1×10^6 cells/well) were treated with the indicated reagents, and wounds were made using a 100-μl plastic pipette tip. The size of the wound was measured after 24 h of wound formation and imaged. The cell migration area was measured between dashed regions using ImageJ software (NIH, Bethesda, MD) and normalized to control cells.

Northern blot analyses

Total RNA extracted from extracted from HCC cells with the Trizol reagent (Invitrogen). Briefly, 10 μg RNA was denatured in loading buffer, resolved on a 1% agarose gel, and transferred to a Hybond N nylon membrane (Amersham Bioscience Co., Piscataway, NJ, USA) by electrophoresis using a semidry transfer cell (Bio-Rad). Then, the membrane was prehybridized in DIG Easy Hyb (Roche, Indianapolis, IN, USA). Subsequently, a specific probe against SNORD52 (nucleotide position 1-50)
was labelled using the DIG-High Prime DNA Labeling and Detection Starter Kit II (Roche, USA) according to manufacturer’s instructions. Finally, the membrane was washed and signals detected using a Bioimaging Analyzer GelDoc XR (Bio-Rad). The size of each transcript was determined by comparing its corresponding band to the low range ssRNA ladder (New England Biolabs, #N0364S). The β-actin mRNA was used as an internal control. The primers used for this analysis were as follows: primer-SNORD52: forward 5’-GGGAATGATGATTTCACAGACT-3’, reverse 5’-TGACATCATGACCAGCATCG-3’, and primer-β-actin: forward 5’-AGAGCTACGAGCTGCCTGAC-3’, reverse 5’-AGCACTGTGTGTGGCGTACAG-3’.

Animal Model

The animal studies were approved by the Institutional Animal Care and Use Committee (IACUC) of Wuhan University in Wuhan, China. Male athymic 4-week-old BALB/c nude mice were obtained from the Animal Center of the Chinese Academy of Medical Sciences (Beijing, China) and were maintained in a specific pathogen-free facility. For xenograft implantation experiments, HCCLM9 cells were harvested from 6-well plates and suspended at 3-5×10^6 cells/ml. The suspended cells (100 μl) were subcutaneously injected into the armpits of 10 mice (5 mice per group). After 1 weeks, mice were randomly divided into two groups (Control ASO and SNORD52 ASO) and given respective ASO treatment (5 nmol per injection, RiboBio, Guangzhou, China) by intratumor injection 3 times per week for 4 weeks. When the study finished, the mice were anesthetized in 6 weeks, and the tumor volume and weight were measured. Bioluminescence imaging and tumor dissection were performed as described [5].
Supplementary References

1. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015; 33: 290-5.

2. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10: R25.

3. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012; 7: 562-78.

4. Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010; 26: 136-8.

5. Yang F, Zhang L, Huo XS, Yuan JH, Xu D, Yuan SX, et al. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology. 2011; 54: 1679-89.
Figure S1. Bioinformatics analysis of snoRNA sequencing results. (A) The clean reads of each sample were screened for snoRNAs in a certain length range for subsequent analysis. The length distributions of snoRNAs were calculated. (B) Distribution diagram of snoRNA expression level TPM density. The TPM density distribution can examine the gene expression pattern of the sample as a whole. (C) The correlation of gene expression level between samples is an important index to test the reliability of experiment and the rationality of sample selection. The closer the correlation coefficient is to 1, the higher the similarity of expression patterns between samples. If there is biological duplication in the sample, the correlation coefficient between the biological duplication is usually higher. (D) Clustering analysis of differential snoRNAs. Clustering analysis of differential snoRNAs was used to judge the clustering mode of differential snoRNA expression under different experimental conditions. (E) Visualization results of different snoRNA genomes. (F) Venn diagram of different snoRNAs.
Figure S2. Bioinformatics analysis of IncRNA sequencing results. (A) The proportion of IncRNAs in each sample. J, potentially novel isoform (fragment): at least one splice junction is shared with a reference transcript; I, a transfrag falling entirely within a reference intron; O, generic exonic overlap with a reference transcript; U, unknown intergenic transcript; X, exonic overlap with reference on the opposite strand. (B) Box chart of score statistics of IncRNA CNCI and CPC in each sample. (C) The ORF distribution of IncRNAs and mRNAs. (D) Cluster analysis of different gene expression levels.
Figure S3. RT-PCR results of SNORD52 expression levels in 10 pairs of HCC tissues and adjacent tissues.
Figure S4. Mass spectrometry of CDK1 from the RNA pull-down assay.
Figure S5. CDK1 was upregulated in digestive system tumors and associated with poor prognosis in hepatobiliary and pancreatic tumors. The data are from the TCGA database. (A) Quantitative RT-PCR analysis of CDK1 expression levels in liver hepatocellular carcinoma (LIHC), cholangiocarcinoma (CHOL), pancreatic adenocarcinoma (PAAD), stomach adenocarcinoma (STAD), esophageal carcinoma (ESCA) and colon adenocarcinoma (COAD). ***p<0.001. (B-C) Kaplan-Meier analysis of overall survival and recurrence-free survival based on CDK1 expression levels in patients with LHCC, CHOL and PAAD.
Figure S6. The biological function of SNORD52 was dependent on the presence of CDK1. si-CDK1 and control siRNA were transfected into SNORD52 overexpressed HepG2 and Huh7 cells. (A) The cell proliferation rate was assessed using EdU assays. *p<0.05, **p<0.01. (B) Colony formation assays were conducted to evaluate the proliferation ability of SNORD52-overexpressed HepG2 and Huh7 cells when si-CDK1 and control siRNA were transfected. *p<0.05, **p<0.01. (C) CCK-8 assays showed that the downregulation of CDK1 weakened the effect of SNORD52 on HepG2 and Huh7 cell proliferation. *p<0.05, **p<0.01. (D) Transwell assays showed that the downregulation of CDK1 weakened the effect of SNORD52 on HepG2 and Huh7 cell invasion. *p<0.05, **p<0.01. (E) Wound healing assays showed that the downregulation of CDK1 weakened the effect of SNORD52 on HepG2 and Huh7 cell migration. *p<0.05, **p<0.01. (F) Downregulation of CDK1 weakened the effect of SNORD52 on HepG2 and Huh7 cell cycle progression. *p<0.05, **p<0.01.
Figure S7

SNORD52 expression level was associated with high levels of CDK1 and checkpoint proteins of the G2/M phase. (A) Quantitative RT-PCR analysis of CDK1 expression in 80 patients with HCC. **p<0.01. (B-D) Bivariate correlation analysis of the relationship between SNORD52 and CDK1, Survivin, CyclinA2 expression levels in HCC tissues.
Supplementary Tables

Table S1. Primer sequence and target sequence used in this study

Target Gene	Sequence or Target Sequence				
Upf1-F	5'-CTGCAACGGGAGGGAAATAC-3'				
Upf1-R	5'-ACAGCCGCAGTTGAGCAC-3'				
β-actin-F	5'-AGGGAGCATCCCCAAGTT-3'				
β-actin-R	5'-GGGCAAGGGCAGCTCATATT-3'				
GAPDH-F	5'-GTCTCCTCTGACTTCAACAGCG-3'				
GAPDH-R	5'-ACCACTCTTCTGCTTAGCACA-3'				
U6-F	5'-CAGCTGAGGCCAGCATATAC-3'				
U6-R	5'-AAATATGGAAGCTTCACA-3'				
SNORD52-F	5'-GGGAAATGATGACTTCAACAGC-3'				
SNORD52-R	5'-TGACATCATGACACAGATCG-3'				
SNORD3D-F	5'-CGTGAGAGCCGAAAAACCC-3'				
SNORD3D-R	5'-GCGTTCTTCCTCCTCACTCC-3'				
RF00156-F	5'-CTGAGCTTCGGCTTCAT-3'				
RF00156-R	5'-CCCTAGAGGGAGCATAAGG-3'				
RF00096-F	5'-ATCCCTACGGCTTCGCTT-3'				
RF00096-R	5'-AGGCGAGGAGCCATAATACCA-3'				
CDK1-F	5'-AAACTACAGGGTCAAGTGGTAGC-3'				
CDK1-R	5'-TCCCTGCAATAGCACTCTCA-3'				
Survivin-F	5'-AGGACACCCGCATCTCTACAT-3'				
Survivin-R	5'-AAGTCTGGCTGCTTCACTGG-3'				
CyclinA2-F	5'-CGCTGAGGGTACTGGAAGTC-3'				
CyclinA2-R	5'-GAGGACACGGTGACTGTCAT-3'				
pCMV-CDK1-F	5'-CGCAATGGCGGTAGGGCTG-3'				
pCMV-CDK1-R	5'-TAGTCAGCCATGGGCGGAGA-3'				
Upf1-siRNA #1	5'-GGGAGAAGGACUAUCAUUTT-3'				
Upf1-siRNA #2	5'-UGAUUCAAAGUGGCUGCCT-3'				
Upf1-siRNA #3	5'-CUCAGGACUGGAUAAUCAUTT-3'				
Control-siRNA	5'-UGAUUCAAAGUGGCUGCCT-3'				
CDK1-siRNA	5'-UGAUUCAAAGUGGCUGCCT-3'				
Control ASO	5'-mUUmCmAmCmCTTCACCTCTmCmAmCmU-3'				
SNORD52 ASO	5'-mGmGmAmUmUATCCCCACTGmAmGmAmU-3'				
SNORD52 Sense-F	5'-TAATACGACTCAGCTATAGGGGGAAATGATGTATTTTACAGACTAAGTTTC-3'				
SNORD52 Sense-R	5'-GAAGTGCAGCTATCTGTTGACATC-3'				
SNORD52 Antisense-F	5'-TAATACGACTCAGCTATAGGGGGAAATGATGTATTTTACAGACTAAGTTTC-3'				
SNORD52 Antisense-R	5'-GGGGAATGATGATTTTACAGACTAAGTTTC-3'				
Antibody	WB	IHC	IF	Specificity	Company
--------------------------	-------	-----	-----	-------------	------------------------------
Upf1(#12040S)	1:1000			Rabbit polyclonal	Cell Signaling Technology
GAPDH(KM9002)	1:5000			Mouse monoclonal	Sungene Biotechnology
β-actin(66009-1-lg)	1:5000			Mouse monoclonal	Proteintech
Survivin(ab76424)	1:5000	1:500		Rabbit polyclonal	Abcam
p53(ab131442)	1:5000			Rabbit polyclonal	Abcam
p-p53(#2521)	1:1000			Rabbit polyclonal	Cell Signaling Technology
CyclinA2(ab181591)	1:5000	1:500		Mouse monoclonal	Abcam
CDK1(ab133327)	1:5000	1:500	1:200	Rabbit monoclonal	Abcam
p-CDK1(#4539)	1:1000			Rabbit polyclonal	Cell Signaling Technology
CyclinB1(#12231)	1:1000		1:100	Rabbit polyclonal	Cell Signaling Technology
Ki-67(sc-15402)	1:1000			Rabbit polyclonal	Santa Cruz Biotechnology
Table S3. The list of top deregulated snoRNAs from RNA-seq

snoRNAs_name	LM9_si_readcount	LM9_NC_readcount	Log2FoldChange	P val	P adj	
ENST00000583541.1 (SNORD52)	111.2731564	10.44783119	1.663	0.000755	0.055132	
ENST00000630092.1 (SNORD3D)	128.5635842	33.30184316	1.5816	3.41E-05	0.004982	
ENST00000365075.1 (RF00156)	6.268963647	0	1.4056	0.011562	NA	
ENST00000363156.1 (RF0096)	28.74808645	4.392867195	1.3565	0.005938	NA	
ENST00000384289.1	28.90790862	7.459107062	1.1684	0.015158	NA	
ENST00000363485.1	2.953625533	0	0.98557	0.028883	NA	
ENST00000408139.1	49.0889136	23.93056114	0.86465	0.013021	NA	
ENST00000617128.1	98.68457539	53.30554917	0.82384	0.002048	0.099657	
ENST00000365607.2	1588.441543	863.1393363	0.74989	0.00348	0.10161	
ENST00000390856.1	510.996204	289.8634238	0.69659	0.04572	0.44339	
ENST00000364805.1	30.40130523	17.45075125	0.678	0.048936	NA	
ENST00000386745.1	143.2937884	96.87706591	0.51737	0.036903	0.44339	
ENST00000384048.1	787.8541806	591.4769367	0.40314	0.011191	0.20423	
ENST00000364968.1	896.0234232	1154.509775	-0.35309	0.048591	0.44339	
ENST00000390861.1	150.1460736	232.5471632	-0.59086	0.028118	0.41052	
ENST00000362607.1	36.64799719	71.72780816	-0.84663	0.005262	0.12804	
ENST00000390994.1	84.79991191	169.0761283	-0.89945	0.003109	0.10161	
ENST00000384221.1	17.23689317	48.19303218	-0.9384	0.049717	NA	
ENST00000383961.1	2.597221022	12.6133019	-0.98843	0.045272	NA	
ENST00000383875.1	256.551286	641.623338	-1.0012	0.01769	0.28979	
ENST00000459128.1	7.340556133	21.27457918	-1.0254	0.027202	NA	
ENST00000384034.2	5.240708466	18.42852447	-1.1576	0.015229	NA	
ENST00000362396.1	0.473378614	4.476734564	-1.2313	0.011128	NA	
ENST00000620232.1	245.9763942	1773.62952	-1.2511	0.0111	0.20423	
LncRNA_name	Length	Gene_name	Log2(fc)	P val	Regulation	Significant
-----------------	--------	-----------	----------	-------	------------	-------------
ENST000000451424	2161	LINC00857	11.85	0.00	up	yes
ENST00000566551	348	AC015912.3	10.95	0.00	up	yes
ENST00000437681	3361	AP002761.4	10.86	0.00	up	yes
ENST00000624060	1112	AC087388.1	10.70	0.00	up	yes
ENST00000419190	788	ELF3-AS1	10.70	0.00	up	yes
ENST00000422847	4382	AC011815.1	10.54	0.00	up	yes
ENST00000500447	3819	AC018628.1	10.46	0.00	up	yes
ENST00000419190	2538	AL137003.2	10.36	0.00	up	yes
ENST00000565433	8149	Z82217.1	10.14	0.00	up	yes
ENST00000566747	2437	AC005154.1	9.97	0.00	up	yes
ENST00000537514	2005	AC005332.7	9.81	0.00	up	yes
ENST00000550601	5402	AC012313.8	9.17	0.00	up	yes
ENST00000563777	1504	LINC02001	4.88	0.00	up	yes
ENST00000571370	3792	FGD5-AS1	4.08	0.02	up	yes
ENST00000569832	6269	AL512590.3	5.04	0.00	up	yes
ENST00000563777	1504	LINC02001	4.88	0.00	up	yes
ENST00000571370	3792	FGD5-AS1	4.08	0.02	up	yes
ENST00000566747	2437	AC005154.1	9.97	0.00	up	yes
ENST00000537514	2005	AC005332.7	9.81	0.00	up	yes
ENST00000550601	5402	AC012313.8	9.17	0.00	up	yes
ENST00000563777	1504	LINC02001	4.88	0.00	up	yes
ENST00000571370	3792	FGD5-AS1	4.08	0.02	up	yes
ENST00000566747	2437	AC005154.1	9.97	0.00	up	yes
ENST00000537514	2005	AC005332.7	9.81	0.00	up	yes
ENST00000550601	5402	AC012313.8	9.17	0.00	up	yes
ENST00000563777	1504	LINC02001	4.88	0.00	up	yes
ENST00000571370	3792	FGD5-AS1	4.08	0.02	up	yes
ENST00000566747	2437	AC005154.1	9.97	0.00	up	yes
ENST00000537514	2005	AC005332.7	9.81	0.00	up	yes
ENST00000550601	5402	AC012313.8	9.17	0.00	up	yes
ENST00000563777	1504	LINC02001	4.88	0.00	up	yes
incRNA_name	length	gene_name	log2(fc)	pval	regulation	significant
---------------------	--------	-----------	----------	------	------------	-------------
ENST00000452320	5334	AC097376.2	-10.75	0.00	down	yes
ENST00000441991	1917	COX10-AS1	-11.82	0.00	down	yes
ENST00000610085	2995	AC007191.1	-11.86	0.00	down	yes
ENST00000375206	4192	AP003119.3	-12.07	0.00	down	yes
ENST00000416970	3951	FBXL19-AS1	-12.08	0.00	down	yes
Table S5. The correlation between SNORD52 expression and clinicopathological features in 80 HCC patients

Characteristics	No. of cases (%)	Low expression n=40	High expression n=40	P value					
Age				0.25					
≥58	51 (63.75%)	28 (70.00%)	23 (57.50%)						
< 58	29 (36.25%)	12 (30.00%)	17 (42.50%)						
Gender				0.56					
Male	66 (82.50%)	34 (85.00%)	32 (80.00%)						
Female	14 (17.50%)	6 (15.00%)	8 (20.00%)						
Serum AFP				0.14					
≥400µg/L	56 (70.00%)	31 (77.50%)	25 (62.50%)						
<400µg/L	24 (30.00%)	9 (22.50%)	15 (37.50%)						
Tumor Size				0.64					
≥5cm	52 (65.00%)	27 (67.50%)	25 (62.50%)						
<5cm	28 (35.00%)	13 (32.50%)	15 (37.50%)						
TNM Stage				<0.01***					
I-II	57 (71.25%)	35 (87.50%)	22 (55.00%)						
III-IV	23 (28.75%)	5 (12.50%)	18 (45.00%)						
HBV Infection				0.41					
Present	63 (78.75%)	33 (82.50%)	30 (75.00%)						
Absent	17 (21.25%)	7 (17.50%)	10 (25.00%)						
Liver Cirrhosis				0.11					
Present	47 (58.75%)	20 (50.00%)	27 (67.50%)						
Absent	33 (41.25%)	20 (50.00%)	13 (32.50%)						
Microvascular Invasion				<0.01***					
Present	21 (26.25%)	3 (7.50%)	18 (45.00%)						
Absent	59 (73.75%)	37 (92.50%)	22 (55.00%)						
No.	Unused	Acc	Coverage (%)	Length	Mass	#Unique Peptide	#Unique Spectrum		
-----	--------	----------------	--------------	--------	------------	-----------------	-----------------		
1	34.77	sp	P11142	HSP7C_HUMAN	26.62999928	646	70897.6	16	31
2	31.12	sp	P08238	HS90B_HUMAN	21.26999944	724	83263.5	12	20
4	30.74	sp	Q13085	ACACA_HUMAN	7.927999645	2346	265551.7	14	26
5	29.08	sp	P60709	ACTB_HUMAN	41.60000086	375	41736.4	2	9
6	27.93	sp	Q08211	DHX9_HUMAN	12.43999973	1270	140957.5	12	21
7	27.9	sp	P07437	TBB5_HUMAN	41.22000039	444	49670.5	4	7
8	27.41	sp	Q7KZF4	SN1D1_HUMAN	18.12999994	910	101996.1	12	19
9	26.49	sp	P04406	G3P_HUMAN	36.4199996	335	36053	14	40
10	22.45	sp	O43707	ACTN4_HUMAN	16.47000015	911	104853.2	11	21
11	21.76	sp	P11021	BIP_HUMAN	25.83999932	654	72332.4	12	21
12	19.33	sp	P13639	EF2_HUMAN	14.45000023	858	95337.4	11	21
14	18.08	sp	P25705	ATPB_HUMAN	17.54000038	553	59750.1	8	12
15	17.75	sp	Q71U36	TBA1A_HUMAN	23.72999936	451	50135.2	5	8
16	17.52	sp	P07900	HS90A_HUMAN	17.75999963	732	84659	10	16
17	17.29	sp	P38646	GRP75_HUMAN	14.73000005	679	73680	8	15
18	17.26	sp	P11498	PYC_HUMAN	7.554999739	1178	129632.6	8	15
19	16.18	sp	P06576	ATPB_HUMAN	17.96000004	529	56559.4	8	11
20	16.08	sp	P14618	KPYM_HUMAN	20.53000033	531	57936.4	8	17
22	15.84	sp	P16403	H12_HUMAN	23.46999943	213	21364.6	3	5
23	15.68	sp	P02545	LMNA_HUMAN	15.65999985	664	74138.8	8	11
24	14.83	sp	P08195	F2_HUMAN	13.49000037	630	67993.3	7	11
25	14.76	sp	Q96AE4	FUBP1_HUMAN	13.19999993	644	67560.2	7	12
26	14.74	sp	P04075	ALDOA_HUMAN	21.15000039	364	39419.7	8	10
27	14.49	sp	P06733	ENO3A_HUMAN	24.65000004	434	47168.6	8	17
28	14.34	sp	P07195	LDHB_HUMAN	24.85000044	334	36638.2	5	5
29	13.72	sp	P04843	RPN1_HUMAN	12.69000024	607	68568.8	7	9
30	13.69	sp	P07355	ANXA2_HUMAN	23.60000014	339	38603.6	7	10
31	12.84	sp	P30101	PDIA3_HUMAN	19.21000034	505	56781.8	7	13
32	12.68	sp	P07237	PDIA1_HUMAN	10.23999974	508	57115.8	6	8
33	12.55	sp	P22314	UBA1_HUMAN	7.089000195	1058	117848.1	6	14
34	12.28	sp	P13272	CPSM_HUMAN	5.133000016	1500	164938.1	6	9
35	12.15	sp	P05023	AT1A1_HUMAN	8.211000264	1023	112895	7	11
36	11.6	sp	P08670	VIME_HUMAN	14.38000053	466	53651.2	6	7
37	10.66	sp	P10809	CH60_HUMAN	12.56999969	573	61054.2	5	13
38	10.63	sp	Q00839	HNRP3_HUMAN	8.606000245	825	90584.1	5	11
39	10.19	sp	P62826	RAN_HUMAN	22.68999964	216	24423	4	7
40	10	sp	P26641	EF1G_HUMAN	16.48000032	437	50118.4	5	7
41	10	sp	Q8N163	CCAR2_HUMAN	8.991999924	923	102900.6	5	7
No.	Unused	Acc	Coverage (%)	Length	Mass	#Unique Peptide	#Unique Spectrum		
-----	--------	----------------------	--------------	--------	---------	----------------	------------------		
43	9.91	sp	P00338	LDHA_HUMAN	17.47000068	332	36688.5	5	7
44	9.46	sp	Q15393	SF3B3_HUMAN	5.834000185	1217	135576.2	5	7
45	9.12	sp	P26038	MOES_HUMAN	9.358999878	577	67819.6	2	2
46	9.06	sp	P50990	TCPQ_HUMAN	9.488999844	548	59620.1	4	8
48	8.95	sp	P50783	K1C18_HUMAN	14.88000005	430	48057.4	5	9
49	8.81	sp	P17987	TCPA_HUMAN	7.914000005	556	60342.9	4	7
50	8.7	sp	P67809	YBOX1_HUMAN	29.01000082	324	35924.1	5	5
51	8.67	sp	P00966	ASSY_HUMAN	10.67999974	412	46530.1	4	5
52	8.67	sp	P62937	PPIA_HUMAN	38.78999949	165	18012.4	5	13
53	8.66	sp	Q92945	FUBP2_HUMAN	9.564000368	711	73115.2	4	6
54	8.45	sp	P40483	ANXA1_HUMAN	13.86999935	346	38713.9	4	4
57	8.28	sp	P49926	MDHM_HUMAN	14.79000002	338	35502.9	4	9
58	8.23	sp	Q15366	PCBP2_HUMAN	16.70999974	365	38579.7	2	4
59	8.18	sp	P02786	TFR1_HUMAN	7.631999999	760	84870.7	4	9
60	8.12	sp	P29401	TKT_HUMAN	10.75000018	623	67876.9	4	9
61	8.09	sp	P04792	HSBP1_HUMAN	32.67999887	205	22782.3	5	11
62	8	sp	P60842	IF4A1_HUMAN	13.30000013	406	46153.5	4	6
63	8	sp	P08865	RSSA_HUMAN	16.60999954	295	32853.8	4	5
64	7.96	sp	P80723	BASPI1_HUMAN	51.09999776	227	22693.2	4	4
65	7.9	sp	P00558	PGK1_HUMAN	17.50999987	417	44614.4	5	10
66	7.74	sp	P21333	FLNA_HUMAN	2.342000045	2647	280737.6	4	5
67	7.7	sp	P00367	DHE3_HUMAN	10.04000008	558	61397.3	4	6
68	7.66	sp	P14625	ENPL_HUMAN	5.728999898	803	92468.1	4	8
69	7.57	sp	P11586	C1TC_HUMAN	5.775000155	935	101558.4	4	5
70	7.49	sp	P60174	TPIS_HUMAN	19.58000064	286	30790.8	4	5
71	7.43	sp	P13489	RINI_HUMAN	11.50000021	461	49972.8	4	4
72	7.42	sp	O95573	ACSL3_HUMAN	7.917000353	720	80419.4	4	5
73	7.32	sp	P09211	GSTP1_HUMAN	19.51999962	210	23355.6	4	15
74	7.3	sp	P22626	ROA2_HUMAN	16.70999974	353	37429.7	4	8
75	7.21	sp	P55072	TERA_HUMAN	6.82400018	806	89320.9	4	7
76	7.11	sp	P61978	HNRPK_HUMAN	8.639000356	463	50975.8	4	7
77	6.94	sp	Q13838	DX39B_HUMAN	7.242999971	428	48990.9	3	3
78	6.85	sp	P52272	HNRPM_HUMAN	3.973000124	730	77515.3	3	5
79	6.76	sp	P06493	CDK1_HUMAN	12.12000027	297	34095.1	3	4
80	6.57	sp	P40939	ECHA_HUMAN	6.029000133	763	82999	3	4
81	6.36	sp	Q06210	GFP1_HUMAN	5.722000077	699	78805.8	3	4
82	6.34	sp	P55060	XPO2_HUMAN	2.883999981	971	110415.4	2	4
83	6.29	sp	Q06830	PRDX1_HUMAN	16.58000052	199	22110.2	2	4
84	6.23	sp	Q9H2U1	DHX36_HUMAN	3.86900077	1008	114759.3	3	4
85	6.2	sp	P34932	HSP74_HUMAN	4.881000146	840	94330.2	2	3
No.	Unused	Acc	Coverage (%)	Length	Mass	#Unique Peptide	#Unique Spectrum		
-----	--------	------------------------------	-------------	--------	---------------	----------------	-----------------		
87	6.15	sp	P41091	IF2G_HUMAN	10.17000005	472	51109.1	3	6
88	6.12	sp	Q9NR30	DDX21_HUMAN	3.830999881	783	87343.9	3	3
89	6.11	sp	P22102	PUR2_HUMAN	4.554000124	1010	107766.3	3	5
91	6.07	sp	Q43390	HNPR_HUMAN	4.106999934	633	70942.8	3	4
92	6.01	sp	Q9BW7	SFNX3_HUMAN	13.4000033	321	35503.1	3	4
93	6.01	sp	P31943	HNRH1_HUMAN	10.23999974	449	49229.2	3	5
94	6	sp	Q16555	DPYL2_HUMAN	9.091000259	572	62293.1	3	3
95	6	sp	Q14498	RBM39_HUMAN	8.112999797	530	59379	3	4
96	6	sp	P21796	VDA1C_HUMAN	13.77999932	283	30772.4	3	6
97	6	sp	P62888	RL30_HUMAN	40.86999893	115	12783.9	3	6
98	5.91	sp	Q99832	TCPH_HUMAN	6.998000294	543	59366.1	3	4
99	5.87	sp	Q13283	G3BP1_HUMAN	10.93999967	466	52164	3	5
100	5.86	sp	P27797	CALR_HUMAN	8.152999729	417	48141.2	3	3
101	5.74	sp	Q13423	NNTM_HUMAN	4.143999889	1086	113894.6	3	4
102	5.72	sp	P50991	TCPD_HUMAN	6.30799979	539	57923.6	3	4
103	5.71	sp	P62805	H4_HUMAN	29.12999988	103	11367.3	3	4
104	5.7	sp	P12004	PCNA_HUMAN	15.71000069	261	28768.5	3	5
105	5.66	sp	Q00325	MPCP_HUMAN	5.24899968	362	40094.5	3	5
106	5.63	sp	P53985	MOT1_HUMAN	9.399999678	500	53943.7	3	3
107	5.58	sp	P16401	H15_HUMAN	15.03999978	226	22579.9	3	3
108	5.58	sp	P37837	TALDO_HUMAN	10.39000005	337	37539.7	3	3
109	5.46	sp	P25786	PSA1_HUMAN	18.62999946	263	29555.3	3	3
110	5.45	sp	P53621	COPA_HUMAN	3.430999815	1224	138344.6	3	3
111	5.41	sp	P05141	ADT2_HUMAN	11.41000018	298	32852	2	4
112	5.25	sp	P49411	EFTU_HUMAN	9.291999787	452	49541.1	3	4
114	5.2	sp	P00505	AATM_HUMAN	6.278999895	430	47517.3	2	2
115	5.19	sp	Q12906	ILF3_HUMAN	2.907999977	894	95338	3	3
116	5.14	sp	Q9UJS0	CMC2_HUMAN	5.62999936	675	74175	3	4
117	5.1	sp	Q00610	CLH1_HUMAN	2.08999989	1675	191613	3	4
118	5.04	sp	Q12931	TRAP1_HUMAN	7.385999709	704	80109.2	4	7
119	5.02	sp	P18124	RL7_HUMAN	16.94000065	248	29225.6	3	5
120	4.85	sp	P26640	SYVC_HUMAN	2.452999912	1264	140474.8	2	3
121	4.8	sp	P05166	PCCB_HUMAN	5.380000174	539	58215.1	2	3
122	4.66	sp	P27695	APEX1_HUMAN	12.25999966	318	35554.2	2	2
123	4.65	sp	P23396	RS3_HUMAN	17.28000045	243	26688.1	3	5
125	4.57	sp	P22087	FBRL_HUMAN	8.10000024	321	33784.1	2	2
126	4.52	sp	P39656	OSTG_HUMAN	4.385999963	456	50800.3	2	5
127	4.45	sp	Q07020	RL18_HUMAN	12.7700001	188	21634.3	2	2
128	4.41	sp	P13667	PDIA4_HUMAN	4.96100001	645	72931.9	3	2
No.	Unused	Acc	Coverage (%)	Length	Mass	#Unique Peptide	#Unique Spectrum		
-----	--------	----------------	--------------	--------	----------	----------------	------------------		
129	4.37	sp	P22392	NDKB_HUMAN	13.81999999	152	17297.9	2	3
130	4.36	sp	P62979	RS27A_HUMAN	18.59000027	156	17964.8	2	4
131	4.33	sp	P49588	SYAC_HUMAN	2.58300064	968	106809.5	2	2
132	4.31	sp	P23284	PPIB_HUMAN	12.03999966	216	23742.4	2	7
133	4.25	sp	P22695	QCR2_HUMAN	9.272000194	453	48442.6	3	5
134	4.22	sp	Q07065	CKAP4_HUMAN	7.309000194	602	66022	3	3
135	4.18	sp	P19338	NUCL_HUMAN	2.676000074	710	76613.9	2	4
136	4.15	sp	P07954	FUMH_HUMAN	6.274999678	510	54636.6	2	4
137	4.12	sp	P51149	RAB7A_HUMAN	13.0400002	207	23489.5	2	2
139	4.09	sp	P24539	AT5F1_HUMAN	10.15999988	256	28908.5	3	3
140	4.07	sp	P35232	PHB_HUMAN	8.088000119	272	29830.8	2	4
141	4.03	sp	P68371	TBB4_B_HUMAN	40.90000093	445	49830.7	3	6
142	4.03	sp	Q14683	SMC1A_HUMAN	3.162999824	1233	143231.9	2	2
143	4.03	sp	P62258	1433E_HUMAN	9.01999951	255	29173.6	2	3
144	4.01	sp	P14550	AK1A1_HUMAN	8.614999801	325	36572.7	2	3
146	4	sp	Q9BUF5	TBB6_HUMAN	21.29999995	446	49856.8	3	2
147	4	sp	Q14103	HNRPD_HUMAN	6.761000305	355	38434.1	2	3
148	4	sp	P35221	CTNA1_HUMAN	3.311000019	906	100070.3	2	2
149	4	sp	Q43143	DHX15_HUMAN	3.395999968	795	90932	2	2
151	4	sp	P63104	1433Z_HUMAN	9.387999773	245	27744.8	2	2
152	4	sp	P46776	RL27A_HUMAN	8.78399983	148	16561.4	2	2
153	4	sp	Q9Y230	RUVB2_HUMAN	4.535999894	463	51156.1	2	2
154	4	sp	Q14165	MLEC_HUMAN	10.62000021	292	32233.6	2	3
155	4	sp	Q04837	SSBP_HUMAN	18.24000031	148	17259.6	2	3
156	4	sp	Q02978	M2OM_HUMAN	10.18999964	314	34061.4	2	2
157	4	sp	Q01518	CAP1_HUMAN	6.105000153	475	51901.1	2	3
158	4	sp	P61981	1433G_HUMAN	9.312000126	247	28302.3	2	4
159	4	sp	P35637	FUS_HUMAN	7.224000245	526	53426	2	2
160	4	sp	P30041	PRDX6_HUMAN	10.27000025	224	25034.7	2	3
161	3.96	sp	P62906	RL10A_HUMAN	13.35999966	217	24831.1	2	6
162	3.96	sp	P30419	NMT1_HUMAN	5.040000007	496	56805.9	2	2
163	3.89	sp	P53396	ACLY_HUMAN	2.270999923	1101	120838.3	2	2
164	3.88	sp	P31948	STIP1_HUMAN	5.525000021	543	62638.7	2	3
165	3.87	sp	P49368	TCPG1_HUMAN	4.219999909	545	60533.3	2	4
166	3.82	sp	Q96EP5	DAZP1_HUMAN	7.124999911	407	43383.3	2	3
167	3.77	sp	P16615	AT2A2_HUMAN	2.686999924	1042	114755.8	2	3
168	3.76	sp	O60701	UGDH_HUMAN	5.262999882	494	55023.5	2	2
169	3.62	sp	P31939	PUR9_HUMAN	4.222999886	592	64615.3	2	2
170	3.54	sp	P26599	PTBP1_HUMAN	6.215000153	531	57220.9	2	3
171	3.52	sp	P62917	RL8_HUMAN	6.615000218	257	28024.5	2	2
No.	Unused	Acc	Coverage (%)	Length	Mass	#Unique	#Unique Spectrum		
-----	--------	-------------	--------------	--------	----------	---------	-----------------		
172	3.48	sp	000299]CLIC1_HUMAN	12.4499999	241	26922.5	2		
173	3.44	sp	P62241]RS8_HUMAN	12.5	208	24205	2		
174	3.43	sp	P61247]RS3A_HUMAN	10.6100004	264	29444.8	2		
175	3.39	sp	P40227]TCPZ_HUMAN	5.273000151	531	58023.6	2		
176	3.36	sp	Q14974]IMBI1_HUMAN	3.539000799	876	97169.2	2		
177	3.34	sp	Q8WM4]PDC6L_HUMAN	3.341000155	868	96022.3	2		
178	3.31	sp	P39023]RL3_HUMAN	5.211000144	403	46108.7	2		
179	3.27	sp	P42704]LPPRC_HUMAN	0.860800035	1394	157903.4	1		
180	3.21	sp	Q95347]SMC2_HUMAN	2.171999961	1197	135655.1	2		
181	3.19	sp	P48047]ATPO_HUMAN	10.32999977	213	23277.1	2		
182	3.06	sp	P08758]ANXA5_HUMAN	2.811999992	320	35936.4	1		
183	3.02	sp	P26373]RL13_HUMAN	9.004999697	211	24261.3	2		
184	3	sp	P07737]PROF1_HUMAN	20.0000003	140	15054.1	2		
185	2.98	sp	Q12905]ILF2_HUMAN	6.409999728	390	43061.8	2		
186	2.98	sp	P51659]DHB4_HUMAN	3.804000095	736	79685.7	2		
187	2.96	sp	P09525]ANXA4_HUMAN	6.897000223	319	35882.4	2		
188	2.94	sp	Q9NV17]ATD3A_HUMAN	3.784999996	634	71368.6	2		
189	2.94	sp	P36776]LONM_HUMAN	3.127999976	959	106488.4	2		
190	2.93	sp	P26583]HMGB2_HUMAN	13.40000033	209	24033.6	2		
191	2.92	sp	Q92841]DDX17_HUMAN	3.291999921	729	80271.8	2		
192	2.87	sp	O95831]AFM1_HUMAN	1.79399997	613	66900.1	2		
193	2.87	sp	Q9P258]RCC2_HUMAN	6.51300028	522	56084.1	2		
194	2.86	sp	P50454]SERPH_HUMAN	5.502000079	418	46440.1	2		
195	2.8	sp	Q8N1F7]NUP93_HUMAN	1.58699993	819	93487.4	2		
196	2.76	sp	P62249]RS16_HUMAN	6.848999858	146	16445.2	2		
197	2.75	sp	P19525]E2AK2_HUMAN	2.359000035	551	62093.7	2		
198	2.74	sp	P52597]HNRPF_HUMAN	3.85500064	415	45671.6	2		
199	2.69	sp	Q8NB15]S43A3_HUMAN	3.054999933	491	54528.2	2		
200	2.64	sp	Q96124]FUBP3_HUMAN	2.44800014	572	61640.1	2		
201	2.63	sp	P35613]BASI_HUMAN	4.156000167	385	42200.1	2		
202	2.62	sp	P13797]PLST_HUMAN	2.06300016	630	70810.4	2		
203	2.59	sp	P13967]HXK1_HUMAN	2.071999945	917	102485.1	2		
204	2.59	sp	Q13247]SRSF6_HUMAN	6.685999781	344	39586.3	2		
205	2.57	sp	P26639]SYTC_HUMAN	1.38299996	723	83434.5	2		
206	2.5	sp	O00410]IPO5_HUMAN	2.278999884	1097	123628.9	2		
207	2.48	sp	P46940]IQGA1_HUMAN	0.60350000	1657	189250.4	2		
208	2.47	sp	Q96AG4]LR59_HUMAN	3.909000009	307	34930.1	2		
209	2.46	sp	P06744]G6PI_HUMAN	1.97100006	558	63146.7	2		
210	2.46	sp	P31930]QCR1_HUMAN	2.50000037	480	52645.3	2		
211	2.41	sp	O75390]CISY_HUMAN	2.36099957	466	51712	2		
No.	Unused	Acc	Coverage (%)	Length	Mass	#Unique Peptide	#Unique Spectrum		
-----	--------	----------------	--------------	--------	----------	----------------	-----------------		
213	2.4	sp	Q08J23	NSUN2_HUMAN	1.565000042	767	86470	1	2
214	2.39	sp	P05556	ITB1_HUMAN	3.759000078	798	88414.6	2	2
215	2.36	sp	P68366	TBA4A_HUMAN	15.85000008	448	49924	1	1
216	2.36	sp	Q14697	GANAB_HUMAN	3.390000015	944	106873.1	1	1
217	2.35	sp	P21266	GSTM3_HUMAN	5.333000049	225	26559.3	1	2
218	2.28	sp	P60866	RS20_HUMAN	15.12999982	119	13372.6	2	2
219	2.24	sp	P56537	IF6_HUMAN	5.714000016	245	26598.8	1	1
220	2.23	sp	P62424	RL7A_HUMAN	4.134999961	266	29995.4	1	3
221	2.21	sp	P43243	MTRAT3_HUMAN	3.187999874	847	94622.4	2	2
222	2.19	sp	O14684	PTGES_HUMAN	6.578999758	152	17102.1	1	1
223	2.17	sp	Q9H9B4	SFXN1_HUMAN	4.036999866	322	35619.1	1	1
224	2.17	sp	Q12965	MYO1E_HUMAN	1.805000007	1108	127061.1	1	1
225	2.15	sp	Q15029	US1S1_HUMAN	1.33699993	972	109434.8	1	2
226	2.14	sp	Q9BU12	HNRL1_HUMAN	1.75199993	856	95738	1	1
227	2.14	sp	Q16658	FSCN1_HUMAN	5.07100001	493	54529.5	2	2
228	2.12	sp	P08708	RS17_HUMAN	8.147999644	135	15550	1	1
229	2.1	sp	P23246	SFPQ_HUMAN	1.69699993	707	76149.1	1	2
230	2.1	sp	Q9UQ7	SMC3_HUMAN	1.150000002	1217	141540.7	1	1
231	2.09	sp	Q15365	PCBP1_HUMAN	17.1299994	356	37497.5	2	4
232	2.09	sp	P53992	SC24C_HUMAN	1.188000012	1094	118323.8	1	1
233	2.09	sp	O15173	PGRC2_HUMAN	8.519999683	223	23818.2	1	1
234	2.08	sp	P75533	SF3B1_HUMAN	1.150000002	1304	145829.1	1	1
235	2.08	sp	P15328	FOLR1_HUMAN	4.28000018	257	29818.9	1	1
236	2.07	sp	Q92598	HS105_HUMAN	3.497000039	858	96864.3	1	1
237	2.07	sp	P30050	RL12_HUMAN	9.091000259	165	17818.4	2	2
238	2.07	sp	Q43175	SERA_HUMAN	2.813999914	533	56650	1	1
239	2.06	sp	Q99714	HCD2_HUMAN	6.51300028	261	26922.9	1	1
240	2.06	sp	P49792	RBP2_HUMAN	0.403199997	3224	358196.4	1	1
241	2.06	sp	P50416	CPT1A_HUMAN	1.81099996	773	88366.9	1	1
242	2.06	sp	P38117	ETFB_HUMAN	4.706000164	255	27843.4	1	1
243	2.05	sp	P15880	RS2_HUMAN	7.508999854	293	31324.2	2	2
244	2.05	sp	P62701	RS4X_HUMAN	3.421999887	263	29597.5	1	5
245	2.05	sp	P17812	PYRG1_HUMAN	2.03000091	591	66689.9	1	2
246	2.05	sp	Q9HCC0	MCCB_HUMAN	2.487000078	563	61332.7	1	2
247	2.04	sp	P05187	PPB1_HUMAN	3.364000097	535	57953.3	1	1
248	2.04	sp	Q13148	TADBP_HUMAN	4.348000139	414	44739.6	1	1
249	2.04	sp	P42765	THIM_HUMAN	7.052999735	397	41923.8	2	2
250	2.03	sp	P43246	MSH2_HUMAN	1.28499959	934	104742.3	1	1
252	2.02	sp	P52789	HXK2_HUMAN	1.527000032	917	102379.1	1	1
253	2.02	sp	Q9UHX1	PUF60_HUMAN	2.862000093	559	59875	1	5
No.	Unused	Acc	Coverage (%)	Length	Mass	#Unique Peptide	#Unique Spectrum		
-----	--------	--------------	--------------	--------	------------	----------------	-----------------		
254	2.02	sp	Q9BM7	DHCR7_HUMAN	2.737000026	475	54489	1	1
255	2.02	sp	P48643	TCPE_HUMAN	2.218000032	541	59670.5	1	3
256	2.02	sp	P04040	CATA_HUMAN	2.466999926	527	59755.8	1	1
257	2.01	sp	Q9NSE4	SYIM_HUMAN	1.185999997	1012	113790.6	1	1
258	2.01	sp	P30040	ERP29_HUMAN	5.747000128	261	28993.2	1	1
259	2	sp	P63261	ACTG_HUMAN	41.33000076	375	41792.5	1	1
260	2	sp	P10412	H14_HUMAN	21.92000002	219	21865	1	2
261	2	sp	Q99729	ROAA_HUMAN	8.433999866	332	36224.8	2	1
262	2	sp	P12236	ADT3_HUMAN	6.711000204	298	32866	1	1
264	2	sp	Q13310	PABP4_HUMAN	1.707999967	644	70782.3	1	1
265	2	sp	P62263	RS14_HUMAN	8.608999848	151	16272.6	1	1
266	2	sp	P40925	MDHC_HUMAN	5.090000108	334	36425.8	1	1
267	2	sp	P33992	MC5M_HUMAN	1.771000028	734	82284.7	1	1
268	2	sp	P22234	PUR6_HUMAN	2.824000083	425	47078.8	1	3
269	2	sp	O43684	BUB3_HUMAN	4.267999902	328	37154.5	1	2
270	2	sp	O15533	TPSN_HUMAN	2.902000025	448	47625.3	1	1
271	2	sp	Q9NY93	DDX56_HUMAN	2.559000067	547	61588.9	1	1
272	2	sp	Q96RQ3	MCCA_HUMAN	1.516999956	725	80472.4	1	1
274	2	sp	Q96QQ7	DDX27_HUMAN	1.508000027	796	89834.5	1	1
275	2	sp	Q16891	MIC60_HUMAN	2.507000044	656	68478.2	1	2
276	2	sp	Q13409	DC112_HUMAN	3.291999921	758	83677.1	1	1
277	2	sp	Q01844	EWS_HUMAN	2.1	33999951	85595.4	1	2
278	2	sp	Q61964	WDR5_HUMAN	4.191999882	334	36588.1	1	1
280	2	sp	P62318	SMD3_HUMAN	7.936999947	126	13916.2	1	1
281	2	sp	P16152	CBR1_HUMAN	4.191999882	419	48162	1	2
282	2	sp	P14314	GLU2B_HUMAN	1.893999986	528	59429.9	1	1
283	2	sp	O95336	6PGL_HUMAN	6.202000007	258	27546.5	1	1
284	2	sp	P61221	SCAM3_HUMAN	4.611000046	347	37563.5	1	1
285	2	sp	O60749	RL1D1_HUMAN	3.469000012	490	54972	1	1
286	2	sp	O75131	CPNE3_HUMAN	2.350000022	537	60130.2	1	1
287	2	sp	O76021	RL1D1_HUMAN	3.469000012	537	60130.2	1	1
288	2	sp	O00303	EIF3F_HUMAN	4.761999846	357	37563.5	1	1
289	2	sp	Q9Y6E2	BZW2_HUMAN	2.147999965	419	48162	1	1
290	2	sp	Q9Y5M8	SRPRB_HUMAN	7.011000067	271	29701.9	1	1
291	2	sp	Q9Y4P3	TBL2_HUMAN	3.13199982	447	49797.4	1	1
No.	Unused	Acc	Coverage (%)	Length	Mass	#Unique Peptide	#Unique Spectrum		
-----	--------	----------------------	--------------	--------	-----------	----------------	-----------------		
297	2	sp	Q9Y285	SYFA_HUMAN	2.755999938	508	57563.2	1	1
298	2	sp	Q9H936	GHCL1_HUMAN	4.644000158	323	34469.8	1	1
299	2	sp	Q9BVC6	TM109_HUMAN	4.938000068	243	26209.6	1	3
301	2	sp	Q96HE7	ERO1A_HUMAN	2.991000004	468	54392.1	1	1
302	2	sp	Q969M3	YIPF5_HUMAN	4.668999836	257	27989	1	1
304	2	sp	Q8NC51	PAIRB_HUMAN	5.14700003	408	44965.2	1	3
306	2	sp	Q16563	SYPL1_HUMAN	4.247000068	259	28565	1	1
307	2	sp	Q15717	ELAV1_HUMAN	3.373999894	326	36091.6	1	1
308	2	sp	Q16041	AR6P1_HUMAN	4.926000163	203	23362.6	1	1
309	2	sp	Q14157	UBP2L_HUMAN	1.379999884	1087	114533.8	1	1
310	2	sp	Q14137	BOP1_HUMAN	1.876999997	746	83628.8	1	1
311	2	sp	Q13867	BLMH_HUMAN	4.396000132	455	52561.9	1	1
312	2	sp	Q01650	LAT1_HUMAN	3.550000116	507	55009.6	1	2
313	2	sp	P84098	RL19_HUMAN	8.673000336	196	24646.8	1	1
314	2	sp	P62913	RL11_HUMAN	7.864999771	178	20252.2	1	2
315	2	sp	P62910	RL32_HUMAN	9.629999846	135	15859.7	1	1
316	2	sp	P62861	RS30_HUMAN	16.94999933	59	6647.9	1	2
317	2	sp	P16353	RL27_HUMAN	6.617999822	136	15797.6	1	2
319	2	sp	P52565	GDIR1_HUMAN	7.353000343	204	23206.9	1	4
320	2	sp	P52209	PGD_HUMAN	3.519999981	483	53139.6	1	1
321	2	sp	P47914	RL29_HUMAN	9.433999658	159	17751.9	1	2
322	2	sp	P46087	NOP2_HUMAN	1.724000089	812	89301.1	1	1
323	2	sp	P35268	RL22_HUMAN	10.15999988	128	14786.9	1	2
324	2	sp	P35080	PROF2_HUMAN	10.00000015	140	15046.2	1	1
325	2	sp	P29692	EF1D_HUMAN	8.540999889	281	31121.6	1	1
326	2	sp	P27338	AOFB_HUMAN	2.885000035	520	58762.5	1	1
327	2	sp	P25788	PSA3_HUMAN	4.706000164	255	28433	1	1
328	2	sp	P24534	EF1B_HUMAN	5.778000131	225	24763.5	1	2
329	2	sp	P12268	IMDH2_HUMAN	2.528999932	514	55804.5	1	2
330	2	sp	P11413	G6PD_HUMAN	3.106999956	515	59256.3	1	1
331	2	sp	P11166	GTR1_HUMAN	2.033000067	492	54083.3	1	3
332	2	sp	P05198	IF2A_HUMAN	3.810000047	315	36111.8	1	1
333	2	sp	P05165	PCCA_HUMAN	2.06000004	728	80058.3	1	1
334	2	sp	O75489	NDUS3_HUMAN	4.924000055	264	30241.2	1	1
335	2	sp	O75396	SC22B_HUMAN	6.511999667	215	24593.1	1	2
336	2	sp	O60568	PLD3_HUMAN	1.896999963	738	84784.5	1	1
337	2	sp	O14980	XPO1_HUMAN	1.11999996	1071	123385	1	1
338	2	sp	O00567	NOP56_HUMAN	2.188999951	594	66049.3	1	1
339	1.92	sp	P49748	ACADV_HUMAN	1.83199998	655	70389.6	1	1
340	1.89	sp	Q15125	EBP_HUMAN	4.348000139	230	26352.6	1	1
No.	Unused	Acc	Coverage (%)	Length	Mass	#Unique Peptide	#Unique Spectrum		
-----	--------	--------------------------	--------------	--------	----------	----------------	-----------------		
341	1.89	sp	P78417	GSTO1_HUMAN	5.8090000134	241	27565.6	1	1
342	1.89	sp	Q9N2T2	OGFR_HUMAN	1.772999995	677	73324	1	1
344	1.87	sp	P24752	THIL_HUMAN	3.044000082	427	45199.2	1	2
345	1.85	sp	P42766	RL35_HUMAN	11.37999967	123	14551.4	1	1
346	1.84	sp	P20700	LMNB1_HUMAN	1.876999997	586	66407.7	1	1
347	1.82	sp	P63244	RACK1_HUMAN	2.524000034	317	35076.5	1	1
348	1.8	sp	Q02543	RL18A_HUMAN	7.385999709	176	20762.2	1	2
349	1.8	sp	Q99536	VAT1_HUMAN	2.799000032	393	41920	1	1
350	1.79	sp	Q9UG18	TES_HUMAN	4.512999952	421	47996.1	1	1
351	1.78	sp	P04899	GNA12_HUMAN	3.099000081	355	40450.5	1	2
352	1.77	sp	P45974	UBP5_HUMAN	1.748000085	858	95785.4	1	2
353	1.76	sp	Q9NRG9	AAAS_HUMAN	2.747000009	546	59573.6	1	1
354	1.72	sp	P08574	CY1_HUMAN	4.922999814	325	35421.6	1	3
355	1.7	sp	Q9NY9H	UTP6_HUMAN	2.512999979	597	70193.2	1	1
356	1.66	sp	Q12792	TWFC1_HUMAN	3.714000061	350	40282.4	1	1
357	1.61	sp	Q9Y265	RUVB1_HUMAN	3.07	456	50227.6	1	1
358	1.6	sp	P61619	S61A1_HUMAN	2.311000042	476	52264.2	1	1
359	1.59	sp	Q13435	SF3B2_HUMAN	1.675999991	895	100226.9	1	1
360	1.59	sp	P46777	RL5_HUMAN	4.713999853	297	34362.4	1	1
361	1.58	sp	O06064	PLIN3_HUMAN	4.146999866	434	47074.7	1	1
362	1.55	sp	Q9Y310	RITCB_HUMAN	2.177999914	505	55209.9	1	1
363	1.54	sp	Q15311	EZR1_HUMAN	5.973000079	586	69412.3	1	1
364	1.5	sp	Q9756	RB52_HUMAN	2.135000005	843	100184.5	1	1
365	1.49	sp	P13798	ACP8_HUMAN	1.775999926	732	81223.9	1	2
366	1.47	sp	O9S581	BAG2_HUMAN	5.21299988	211	23771.7	1	1
367	1.47	sp	Q3LX3	TKFC_HUMAN	3.826000169	575	58946.5	1	1
369	1.43	sp	P33993	MC7_HUMAN	1.807999983	719	81307.2	1	1
370	1.43	sp	Q96C2X	KCD12_HUMAN	4.922999814	325	35700.4	1	1
371	1.4	sp	Q13162	PRDX4_HUMAN	8.487000316	271	30539.6	1	1
372	1.38	sp	P10909	CLUS_HUMAN	3.562999889	449	52494.2	1	1
373	1.37	sp	P30740	ILEU_HUMAN	2.902000025	379	42741.4	1	1
374	1.36	sp	P48507	GSHO_HUMAN	4.744999856	274	30726.7	1	1
375	1.35	sp	Q9BK6	TMED9_HUMAN	3.830000013	235	27277.2	1	1
377	1.33	sp	P21980	TMG2_HUMAN	1.892000064	687	77328.2	1	1
378	1.32	sp	P00390	GSHR_HUMAN	2.29899995	522	56256.6	1	1
379	1.32	sp	Q9UNE2	PH3L_HUMAN	3.810000047	315	34463.7	1	1
380	1.31	sp	Q02790	FKBP4_HUMAN	1.961000077	459	51804.2	1	1
381	1.3	sp	P15559	QNO1_HUMAN	4.744999856	274	30867.4	1	1