FULLY-HEAVY TETRAQUARK SPECTROSCOPY IN THE RELATIVISTIC QUARK MODEL

Rudolf N. Faustov, Vladimir O. Galkin and Elena M. Savchenko

1 Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, Vavilov Street 40, 119333 Moscow, Russia
2 Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
* Correspondence: savchenko.em16@physics.msu.ru

Abstract: Masses of the ground and excited (1P, 2S, 1D, 2P, 3S) states of the fully-heavy tetraquarks, composed of charm (c) and bottom (b) quarks and antiquarks, are calculated in the diquark-antidiquark picture within the relativistic quark model based on the quasipotential approach and quantum chromodynamics. The quasipotentials of the quark-quark and diquark-antidiquark interactions are constructed similarly to the previous consideration of mesons and baryons. Relativistic effects are consistently taken into account. A tetraquark is considered as a bound state of a diquark and an antidiquark. The finite size of the diquark is taken into account, using the form factors of the diquark-gluon interaction. It is shown that most of the investigated states of tetraquarks lie above the decay thresholds into a meson pair, as a result they can be observed only as broad resonances. The narrow state \(X(6900) \) recently discovered in the \(d-\bar{J}/\psi \) production spectrum by the LHCb, CMS and ATLAS Collaborations corresponds to an excited state of the fully-charmed tetraquark. Other recently discovered exotic heavy resonances \(X(6200), X(6400), X(6600), X(7200), X(7300) \) can also be interpreted as the different excitations of the fully-charmed tetraquark.

Keywords: tetraquark spectroscopy, diquark, heavy quarks, relativistic quark model

1. Introduction

The quark model of hadrons predicts various possible stable combinations of valence quarks and antiquarks, but for many decades only two kinds of combinations were observed: baryons, consisting of three quarks (qqq), and mesons, consisting of a quark and an antiquark (qq). Other possible combinations such as tetraquarks (qqqq), pentaquarks (qqqqq), glueballs (gg), hybrids (qgq) and others were called “exotic”.

For many years the very existence of those states was unclear, since there was no convincing experimental evidence for them. The first reliable candidate for an exotic state was the \(X(3872) \) particle (Belle 2003 [1]). This is a charmonium-like state with an extremely narrow width (\(\Gamma = 1.19 \pm 0.21 \text{ MeV} \) [2]) and uncharacteristic decays breaking the isospin symmetry of the \(\chi_{c0} \). Thus, the X(3872) does not fit into the naive quark picture of hadrons except as in the form of the two-quark–two-antiquark state (\(\chi_{c0} \)). Soon after, the first explicitly exotic state \(Z_{cc}^{+} (4430) \) (LHCb 2014 [4]) was discovered. This particle is of special interest since it is the charged charmonium state. A nonzero electric charge means that, in addition to a pair of charmed quark and antiquark, it contains also a light quark and antiquark of different flavors (\(cud\bar{d}, c\bar{c}u \)). Currently a few dozen of candidates and reliably confirmed tetraquarks (cc\bar{c}c — X(6900) – LHCb 2020 [5], CMS 2022 [6], ATLAS 2022 [7], etc.) and pentaquarks (\(uudc - P_{c}^{+} (4380), P_{c}^{-} (4450) - \text{LHCb 2015} [8] \)) have been discovered. The most recent detailed review can be found in Ref. [9].

The unified theoretical picture of exotic states has not been developed yet. In the absence of a direct description of hadrons from first principles of QCD, theorists have to use model assumptions about the structure and nature of the interaction of quarks in exotic hadrons. As a result, there are theoretical approaches that assume a different composition of exotic states and methods for their nonperturbative description. The predictions obtained within their framework agree with experimental data with varying degrees of...
success. The object of our research from all exotic states are fully-heavy tetraquarks, consisting of two heavy quarks and two heavy antiquarks. This choice significantly reduces the number of approaches applicable for their description. At the moment, there are already a number of theoretical calculations within the framework of different models, but there is no consensus on which of the predicted states are long-living enough for their experimental detection.

Experimental searches for such states are actively conducted at Large Hadron Collider (LHC) in CERN. At present, the LHCb [5,10], CMS [6,11,12] and ATLAS [7] Collaborations are actively searching for the fully-charmed \(cc\bar{c}\bar{c}\) and fully-bottom \(bb\bar{b}\bar{b}\) tetraquarks. The fully-charmed states \(cc\bar{c}\bar{c}\) are searched as the intermediate resonances in the processes \(p + p \rightarrow J/\psi(1S) J/\psi(1S), p + p \rightarrow J/\psi(1S) \psi(2S)\) and \(p + p \rightarrow J/\psi \mu^+ \mu^-\) at \(\sqrt{s} = 7, 8\) and 13 TeV (LHCb). The predicted mass of the \(cc\bar{c}\bar{c}\) tetraquark lies in the range of 5.8 – 7.4 GeV. Searches for it were performed in the mass range 6.2 – 7.4 GeV. In 2020 the LHCb Collaboration announced the discovery of the narrow resonance \(X(6900)\) in \(J/\psi\) spectrum [5], which, according to the measured mass and width, is a candidate for the excited \(cc\bar{c}\bar{c}\) state. Also several other broad structures peaking at about 6.4 and 7.2 GeV were reported. They can be other excitations of the same \(cc\bar{c}\bar{c}\) tetraquark. Later in 2022 CMS [6] and ATLAS [7] Collaborations presented preliminary data confirming \(X(6900)\) and giving hints of a few more states including structures at 6.4 and 7.2 GeV.

In the sector of fully-bottom tetraquarks \(bb\bar{b}\bar{b}\) there is no progress yet. These tetraquark states are searched as the intermediate resonances in the processes \(p + p \rightarrow Y(1S) Y(1S)\) and \(p + p \rightarrow Y \mu^+ \mu^-\) at \(\sqrt{s} = 7, 8\) and 13 TeV (LHCb) and 8 and 13 TeV (CMS). The predicted mass of the \(bb\bar{b}\bar{b}\) state lies in the range of 18.4 – 18.8 GeV. Searches for the \(bb\bar{b}\bar{b}\) state were carried out in the mass range of 17.5 – 20.0 GeV (LHCb) and 17.5 – 19.5 GeV (CMS). CMS also searched for the narrow resonances in the mass range 16.5 – 27 GeV. However, none of these studies revealed reliable signs of a resonance with properties expected for the exotic \(bb\bar{b}\bar{b}\) state in the given process and at such energies.

The paper is organized as follows. In Sec. 2 we give a description and physical justification of the model for studying these tetraquark structures. In Sec. 3 we describe the relativistic quark model and its application to the calculation of the tetraquark mass spectra. In Sec. 4 we present the results of our calculations. In Sec. 5 we analyze our predictions comparing them with the thresholds for the strong fall-apart decays. In Sec. 6 we give a comparison of our results with the predictions of other scientific groups. Finally, in Sec. 7 the results and conclusions are summarized.

2. Model description of fully-heavy tetraquarks

Tetraquark is a bound state of two quarks and two antiquarks. There are 6 flavors of quarks, and according to their masses they can be divided into two groups: light (with the current masses less than the \(\Lambda_{\text{QCD}} \approx 200\) MeV, quark confinement energy) and heavy (with masses larger than \(\Lambda_{\text{QCD}}\)) quarks. Light quarks are the \(u\)-quark with mass 2.16 \(\pm 0.49\) MeV, \(d\)-quark with mass 4.67 \(\pm 0.48\) MeV and \(s\)-quark with mass 93.4 \(\pm 3.4\) MeV. Heavy quarks are the \(c\)-quark with mass 1.27 \(\pm 0.02\) GeV, \(b\)-quark with mass 4.18 \(\pm 0.03\) GeV and \(t\)-quark with mass 172.69 \(\pm 0.30\) GeV [2]. We will focus on the fully-heavy tetraquarks. However, the \(t\)-quark is special. It is almost two orders of magnitude heavier than other heavy quarks, and thus it quickly decays via the weak interaction, not having enough time to form a bound state [13]. Therefore, we will not consider it.

From the two flavors of quarks and antiquarks, many combinations can be made. We have already done calculations for the ground states masses for all possible compositions [14,15]. However, given the large number of possible excited states, it is more rational to select and study those combinations that are easier to detect experimentally. The most convenient of these are the symmetric compositions: fully-charmed \(cc\bar{c}\bar{c}\), doubly charmed-bottom \(cc\bar{b}\bar{b}\), and fully-bottom \(bb\bar{b}\bar{b}\) tetraquarks. The reason for the preference of such combinations is that the tetraquarks are formed from the closely produced quark and antiquark pairs. Thus the formation of these states requires the production of only
two pairs \((2 \times cc, cc + b\bar{b} \text{ and } 2 \times b\bar{b})\) while the formation of other combinations requires the production of at least three pairs, which is a less probable event.

We consider the tetraquark as a bound state of a diquark \(QQ'\) and an antidiquark \(\bar{Q}\bar{Q}'\). This model is not new and is widely used in the hadron spectroscopy, giving good agreement between the calculations (for example, baryon masses) and experiments. Also theoretically predicted spectrum of possible baryon excitations in the genuine three body picture is much wider than the experimentally observed one. The quark-diquark model of baryons, on the other hand, freezes some degrees of freedom and imposes the necessary restrictions that bring the theory into better agreement with experiment \([16,17]\).

Another widely used model for the tetraquarks description is a molecular picture. We consider such a picture of fully-heavy tetraquarks significantly less probable. Indeed, in this case the meson molecule model has the following main problems. The interaction between mesons in a molecule is either due to the Van der Waals forces, or through the exchange of another meson containing the same quarks as in the molecule. The Van der Waals forces are weak in general and cannot provide sufficient binding. In the fully-heavy tetraquarks only heavy mesons can be exchanged: \(cc, cb, bc, b\bar{b}\). Such interaction is described by the Yukawa potential and its strength decreases with the increasing mass of the exchanged meson. Therefore, such potential can provide a weak coupling in the case of the exchange of the light mesons, like pions \((M_\pi = 139.57 \text{ MeV} \:[2])\), but in the considered case \((M_{\eta c} = M_{\bar{R}} = 2983.9 \pm 0.4 \text{ MeV} \:[2])\) the coupling will be vanishingly small.

In the diquark consideration one must take into account that a (anti)diquark is a bound system of fermions, and therefore must obey the generalized Pauli principle: the complete wave function of a (anti)diquark must be antisymmetric. The diquark color representation can be either antitriplet (the antisymmetric color wave function) or sextet (the symmetric color wave function). But in the case of sextet the interaction potential between the quarks within the diquark is repulsive and thus corresponding diquark cannot be a bound state, which we consider inappropriate for our problem. The above argument applies to the antidiquark. In the following we consider only color antitriplet diquarks. This means that if a (anti)diquark is composed of (anti)quarks of the same flavor (the symmetric flavor wave function), it can only have the symmetric spin wave function, thus being in the axialvector (A) state. If a diquark consists of quarks of different flavors, it can be either in the axialvector (A) or scalar (S) state.

3. Relativistic diquark-antidiquark model

For the calculation of the masses of tetraquarks, we use the relativistic quark model based on the quasipotential approach and the diquark-antidiquark picture of tetraquarks. In this approach the masses of tetraquarks are the solutions of the relativistic Schrödinger-type quasipotential equation \([18–20]\). This equation describes the bound state of two particles in a given quasipotential. We first apply it to the quark-quark system forming a diquark and then to the diquark-antidiquark system forming a tetraquark \([21,22]\):

\[
\left(\frac{b^2(M)}{2\mu_R(M)} - \frac{p^2}{2\mu_R(M)} \right) \Psi_{T,d}(p) = \int \frac{d^3q}{(2\pi)^3} V(p, q; M) \Psi_{T,d}(q). \tag{1}
\]

Here \(p\) is a vector of the relative momentum, \(M\) is the mass of the bound state, \(\mu_R\) is the relativistic reduced mass of the constituents given by

\[
\mu_R = \frac{E_1 E_2}{E_1 + E_2} = \frac{M^4 - (m_1^2 - m_2^2)^2}{4M^3}, \tag{2}
\]

where \(m_{1,2}\) are masses of the constituents and \(E_{1,2}\) are the on-mass-shell energies of constituents:

\[
E_{1,2} = \frac{M^2 - m_{1,2}^2 + m_{1,2}^2}{2M}. \tag{3}
\]
\(b^2(M) \) is the on-mass-shell relative momentum in the center-of-mass system squared:

\[
b^2(M) = \frac{[M^2 - (m_1 + m_2)^2][M^2 - (m_1 - m_2)^2]}{4M^2}, \tag{4}\]

\(\Psi_{T,q}(\mathbf{p}) \) are the bound state wave functions, \(V(p, q; M) \) is the quasipotential operator of the constituents.

The equation (1) is relativistic. On the left hand side it contains relativistic kinematics: the reduced mass of the bound state \(\mu_R \) and the on-mass-shell relative momentum \(b^2(M) \) are functions of the bound state mass \(M \) (Eq. (2)). The relativistic dynamics is contained on the right hand side of the Eq. (1), in the quasipotential \(V(p, q; M) \). The quasipotential is constructed with the help of the off-mass-shell scattering amplitude, projected onto the positive-energy states and contains all relativistic spin-independent and spin-dependent contributions.

Constructing the quasipotential of the quark-quark interaction, we assume that the effective interaction is the sum of the usual one-gluon exchange term with the mixture of the long-range vector and scalar linear confining potentials, where the vector confining potential vertex contains the additional Pauli term. Due to the difference in the \(QQ' \) and \(Q\bar{Q}' \) color states the quark-quark interaction quasipotential is considered to be \(V_{QQ'} = \frac{1}{2}V_{Q\bar{Q}'} \) of the quark-antiquark interaction quasipotential [16] and is given by

\[
V(p, q; M) = \overline{u}_1(p)\overline{u}_2(-p)V(p, q; M)u_1(q)u_2(-q), \tag{5}\]

with

\[
V(p, q; M) = V_{\text{OGE}} + V^V_{\text{conf.}} + V^S_{\text{conf.}}.
\]

\[
= \frac{1}{2} \left[\frac{4}{3} \alpha_s D_{\mu\nu}(k)\gamma_1^{\mu}\gamma_2^{\nu} + \frac{V^V_{\text{conf.}}(k)}{\Gamma_1^V(\mathbf{k})}\Gamma_2^V(-\mathbf{k}) + V^S_{\text{conf.}}(k) \right]. \tag{6}\]

Here \(k = p - q, \gamma_1^{\mu} \) and \(u_1^\lambda(p) \) are the Dirac matrices and spinors:

\[
u_1^\lambda(p) = \sqrt{\epsilon_1(p) + m_1}\left(\begin{array}{c} 1 \\ 0 \\ \sigma, \ 1, 2, \end{array} \right), \tag{7}\]

where \(\epsilon_1(p) \) is the quark energy:

\[
\epsilon_1(p) = \sqrt{m_1^2 + p^2}, \quad l = 1, 2, \tag{8}\]

\(\sigma \) and \(\chi^\lambda \) are the Pauli matrices and spinors:

\[
\chi^\lambda = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \lambda = 1, 2. \tag{9}\]

\(\alpha_s \) is the running QCD coupling constant with freezing [23,24]:

\[
\alpha_s(\mu^2) = \frac{4\pi}{(11 - \frac{2}{3}\eta_f) \ln[\frac{\mu^2 + M_{BG}^2}{\Lambda^2}]}, \tag{10}\]

\[
\left\{\begin{array}{l}
\mu = \frac{2m_1m_2}{(m_1 + m_2)}, \\
M_{BG} = 2.24\sqrt{\Lambda} = 0.95 \text{ GeV}, \\
\Lambda = 414 \text{ MeV}, \\
\eta_f = \begin{pmatrix} 4, & Q = Q' = c, \\
5, & Q, Q' = c, b, \end{pmatrix}
\end{array} \right. \tag{11}\]
where the scale μ is chosen to be equal to the reduced constituents mass, M_{BC} is the background mass, Λ is the parameter of the running coupling constant obtained from the analysis of meson mass spectra and η_f is the number of open flavors. $D_{\mu\nu}(k)$ is the gluon propagator in the Coulomb gauge:

$$
\begin{align*}
D_{00}(k) &= -\frac{4\pi}{k^2}, \\
D_{ij}(k) &= -\frac{4\pi}{k^2} \left(\delta_{ij} - \frac{\vec{k}_i \vec{k}_j}{k^2} \right), \quad i, j = \bar{1}, \bar{3}, \\
D_{0i} &= D_{i0} = 0,
\end{align*}
$$

(12)

Γ^μ_ν is the effective long-range vector interaction vertex \cite{25}, it contains both Dirac and Pauli terms:

$$
\Gamma^\mu_{\nu l}(k) = \gamma_\mu + \frac{ik}{2m_l} \sigma_{\mu\nu} k^\nu, \quad \vec{k} = (0, k), \quad l = 1, 2,
$$

(13)

where $\sigma_{\mu\nu}$ is the commutator of the Dirac matrices, κ is the long-range anomalous chromomagnetic moment of quarks and $\frac{\kappa}{2m_l} \sigma_{\mu\nu} k^\nu$ is the anomalous chromomagnetic interaction. $V^v_{\text{conf.}}$ are the vector and scalar confining potentials which in the nonrelativistic limit in configuration space (consistent with the lattice calculations) have the form

$$
\begin{align*}
V^V_{\text{conf.}}(r) &= (1 - \epsilon)V_{\text{conf.}}(r), \\
V^S_{\text{conf.}}(r) &= \epsilon V_{\text{conf.}}(r), \\
V^V_{\text{conf.}}(r) + V^S_{\text{conf.}}(r) &= V_{\text{conf.}}(r) = Ar + B,
\end{align*}
$$

(14)

where ϵ is the mixing coefficient. Therefore in the nonrelativistic limit the QQ' quasipotential reduces to:

$$
V^\text{NR}_{QQ'}(r) = \frac{1}{2} V^\text{NR}_{QQ'}(r) = \frac{1}{2} \left(-\frac{4}{3} \frac{\alpha_s}{r} + Ar + B \right),
$$

(15)

reproducing the usual Cornell potential. Thus, our quasipotential can be viewed as its relativistic generalization. It contains both spin-independent and spin-dependent relativistic contributions.

Constructing the diquark-antidiquark quasipotential, we use the same assumptions about the structure of the short- and long-range interactions. We also take into account the finite size of the diquarks and their integer spin. The quasipotential then is given by \cite{22,26}:

$$
V(p, q; M) = \frac{d(P)|d(Q)| d'(P') >}{2\sqrt{E_d \sqrt{E_d'}}} \left[\frac{4}{3} \frac{\alpha_s}{r} D^{\mu\nu}(k) \frac{d'(P')|d(Q') >}{2\sqrt{E_{d'} \sqrt{E_d}}} \right]
$$

$$
\begin{align*}
\text{diquark–gluon interaction} &+ \Psi^*_d(P) \Psi^*_d(P') |\delta_{\mu\nu} |d'(k)|V^V_{\text{conf.}}(k) + V^S_{\text{conf.}}(k)\rangle |\Psi_d(Q) \Psi_{d'}(Q')\rangle.
\end{align*}
$$

(16)

Here d and d' denote the diquark and antidiquark, $Q^{(i)} = (E_d q) \pm q$ and $P^{(i)} = (E_{d'} p) \pm p$ are the initial and final diquark momenta respectively, $k = P - Q$, $E_{d,d'}$ are the on-shell diquark energies (similar to Eq. (3)):

$$
\begin{align*}
E_d &= \frac{M^2 - M_d^2 + M^2}{2M}, \\
E_{d'} &= \frac{M^2 - M_{d'}^2 + M^2}{2M},
\end{align*}
$$

(17)

where $M_{d,d'}$ are the diquark and antidiquark masses. $\Psi_d(p)$ is the diquark wave function:

$$
\Psi_d(p) = \begin{cases} 1, & \text{scalar diquarks}, \\
\epsilon_d(p), & \text{axialvector diquarks}, \end{cases}
$$

(18)
where $\epsilon_d(p)$ is the polarization vector of an axialvector diquark with momentum p:

$$\epsilon_d(p) = \left(\frac{(\epsilon_d p)\mu}{M_d^2}, \epsilon_d + \frac{(\epsilon_d p)\mu}{M_d(M_d + E_d(p))} \right),$$

(19)

where $E_d(p)$ is the diquark energy (similar to Eq. (8)):

$$E_d(p) = \sqrt{M_d^2 + p^2}.$$

(20)

$I_{d,\mu}$ is the effective long-range vector interaction vertex of the diquark:

$$I_{d,\mu} = \frac{(P^+ Q)_\mu}{2\sqrt{E_d E_2}} + \frac{i\mu_d}{2M_d} \sum_\nu k_\nu, \quad \text{axialvector}$$

(21)

$$\mu_d = 0,$$

(22)

where μ_d is the total chromomagnetic moment of the diquark, which we choose equal to zero to vanish the long-range chromomagnetic interaction. $(\Sigma_{\rho\varepsilon})^{\mu}_\nu$ is a fully antisymmetric tensor:

$$(\Sigma_{\rho\varepsilon})^{\mu}_\nu = -i(g_{\rho\mu}e^{\varepsilon}_{\nu} - g_{\rho\nu}e^{\varepsilon}_{\mu}).$$

(23)

$< d(\mathcal{P}) | I_\mu | d(Q) >$ is the diquark-gluon interaction vertex (Fig. 1), which accounts for the internal structure of the diquark and leads to the emergence of the form factor $F(r)$ smearing the one-gluon exchange potential [21]:

$$< d(\mathcal{P}) | I_\mu | d(Q) > = \int \frac{d^3p \, d^3q}{(2\pi)^6} \mathbf{\bar{\Psi}}^\mathcal{P}_d(p) \Gamma_\mu(p, q) \Psi^Q_d(q).$$

(24)

Here I_μ is the quark current:

$$I_\mu = \bar{Q} \gamma_\mu Q,$$

(25)

where Q, \bar{Q} denotes the initial and final states of the quark, respectively. $\Gamma_\mu(p, q)$ is the vertex function of the diquark interaction with the gluon field [27,28]:

$\Gamma_\mu(p, q) = \prod_{Q_1} (p_1) \gamma^\mu u_{Q_1}(q_1)(2\pi)^3\delta(p_2 - q_2) + \prod_{Q_2} (p_2) \gamma^\mu u_{Q_2}(q_2)(2\pi)^3\delta(p_1 - q_1),$

(26)

$$\begin{cases}
q_l = \epsilon_l(q) \frac{Q_l}{M_l(q)} \pm \frac{3}{i} \sum_{i=1}^{3} n^{(i)}(Q) q^i, \\
p_l = \epsilon_l(p) \frac{P_l}{M_l(p)} \pm \frac{3}{i} \sum_{i=1}^{3} n^{(i)}(P) p^i, \\
n^{(i)}(Q) = \delta_{il} + \frac{Q_l Q_l}{M_l(q)(E_l(q) + M_l(q))}, \\
M_l(q) = \epsilon_l(q) + \epsilon_2(q),
\end{cases} \quad l = 1, 2 \equiv Q, Q'. $$

(27)
To take into account the finite size of the diquark, it is necessary to calculate the matrix elements of quark currents between diquarks \(\langle d(\mathcal{P})|j_\mu|d(\mathcal{Q}) \rangle \). These matrix elements are elastic (diagonal) and can be parametrized by the set of form factors \(h_{+1,2,3}(k^2) \) [21]. For a scalar diquark:

\[
\langle S(\mathcal{P})|j_\mu|S(\mathcal{Q}) \rangle = h_+(k^2)(\mathcal{P} + \mathcal{Q})_\mu,
\]

(28)

For an axialvector diquark:

\[
\langle A(\mathcal{P})|j_\mu|A(\mathcal{Q}) \rangle = -h_1(k^2) \left[\epsilon^*_d(\mathcal{P}) \cdot \epsilon_d(\mathcal{Q}) \right] (\mathcal{P} + \mathcal{Q})_\mu + h_2(k^2) \left[\epsilon^*_d(\mathcal{P}) \cdot \epsilon_{d\mu}(\mathcal{Q}) + \epsilon_d(\mathcal{Q}) \cdot \mathcal{P} \epsilon^*_d(\mathcal{P}) \right] + h_3(k^2) \frac{1}{M_A^2} \left[\epsilon^*_d(\mathcal{P}) \cdot \epsilon_d(\mathcal{Q}) \right] \left(\mathcal{P} + \mathcal{Q} \right)_\mu,
\]

(29)

where \(M_A \) is the mass of the axialvector diquark.

The calculation shows that [16]:

\[
\begin{align*}
 h_+(k^2) &= h_1(k^2) = h_2(k^2) = F(k^2), \\
 h_3(k^2) &= 0,
\end{align*}
\]

(30)

where \(F(k^2) \) is the form factor in the momentum space:

\[
F(k^2) = \frac{\sqrt{M_dE_d}}{M_d + E_d} \int \frac{d^3p}{(2\pi)^3} \left\{ \Psi_d(p + \frac{2\xi_{Q_1}(p)}{M_d + E_d}k) \sqrt{\frac{\epsilon_{Q_1}(p) + m_{Q_1}}{\epsilon_{Q_1}(p + k) + m_{Q_1}}} \frac{\Psi_d(p)}{\frac{\epsilon_{Q_1}(p) + m_{Q_1}}{\epsilon_{Q_1}(p + k) + m_{Q_1}}} \right\} \\
\times \frac{\xi_{Q_1}(p + k) + \xi_{Q_2}(p)}{2\sqrt{\epsilon_{Q_1}(p + k)\epsilon_{Q_1}(p)}} + \frac{\epsilon_{Q_1}(p + k) + \epsilon_{Q_1}(p)}{2\sqrt{\epsilon_{Q_1}(p + k)\epsilon_{Q_1}(p)}} \frac{pk}{\epsilon_{Q_1}(p + k)\epsilon_{Q_1}(p)} \left\{ \Psi_d(p + \frac{2\xi_{Q_2}(p)}{M_d + E_d}k) \sqrt{\frac{\epsilon_{Q_2}(p) + m_{Q_2}}{\epsilon_{Q_2}(p + k) + m_{Q_2}}} \frac{\Psi_d(p)}{\frac{\epsilon_{Q_2}(p) + m_{Q_2}}{\epsilon_{Q_2}(p + k) + m_{Q_2}}} \right\}.
\]

(31)

The form factor \(F(r) \) is determined by the Fourier transform of the \(F(k^2) \) which is then multiplied by \(r \). Numerical calculations show that it can be parameterized with high accuracy as [21]:

\[
F(r) = 1 - e^{-\frac{r}{\xi_r^2}},
\]

(32)

the accuracy of this approximation is shown in Fig. 2.

Figure 2. Form factors \(F(r) \) for the various doubly heavy diquarks. \(\{Q, Q'\} \) denotes axialvector and \(\{Q, Q'\} \) denotes scalar diquarks, respectively.
Finally, we obtain the diquark-antidiquark interaction potential \([15,26]\):

\[
V(r) = \left[V_{\text{Coul.}}(r) + V_{\text{conf.}}(r) + \frac{1}{E_1E_2} \left\{ \mathbf{p} \left[V_{\text{Coul.}}(r) + V_{\text{conf.}}^V(r) \right] \mathbf{p} - \frac{1}{4} \Delta V_{\text{conf.}}^V(r) + V_{\text{Coul.}}(r) \frac{L^2}{2r} \right\} \right] a
\]

\[
+ \left\{ \frac{1}{2} \left[\frac{1}{E_1(E_1 + M_1)} + \frac{1}{E_2(E_2 + M_2)} \right] V_{\text{Coul.}}^r(r) \right\} b
\]

\[
- \frac{1}{2} \left[\frac{1}{M_1(E_1 + M_1)} + \frac{1}{M_2(E_2 + M_2)} \right] V_{\text{conf.}}^r(r) \right\} + \frac{\mu_d}{4} \left[\frac{1}{M_1^2} + \frac{1}{M_2^2} \right] \frac{V_{\text{conf.}}^V(r)}{r} \right\} \mathbf{L}(S_1 + S_2)
\]

\[
+ \left\{ \frac{1}{2} \left[\frac{1}{E_1(E_1 + M_1)} - \frac{1}{E_2(E_2 + M_2)} \right] V_{\text{Coul.}}^r(r) \right\} \mathbf{L}(S_1 - S_2)
\]

\[
+ \left[\frac{1}{3E_1E_2} \left\{ \frac{1}{r} V_{\text{Coul.}}^r(r) - V_{\text{Coul.}}^r(r) + \frac{\mu_d^2}{4} \frac{E_1E_2}{M_1M_2} \left(\frac{1}{r} V_{\text{conf.}}^V(r) - V_{\text{conf.}}^V(r) \right) \right\} \right. c
\]

\[
\times \left[\frac{3}{r^2} \left(\mathbf{S}_1 \mathbf{r} \right) \left(\mathbf{S}_2 \mathbf{r} \right) - \mathbf{S}_1 \mathbf{S}_2 \right]
\]

\[
+ \left[\frac{2}{3E_1E_2} \left\{ \Delta V_{\text{Coul.}}(r) + \frac{\mu_d^2}{4} \frac{E_1E_2}{M_1M_2} \Delta V_{\text{conf.}}^V(r) \right\} \mathbf{S}_1 \mathbf{S}_2 \right] d
\]

(33)

where \(\mathbf{p}\) is the relative momentum, \(M_{1,2}\) and \(E_{1,2}\) are the masses and energies of the diquark and antidiquark, \(\mu_d\) is the total chromomagnetic moment of the diquark (we chose it to be zero), \(S_d\) is the axialvector diquark spin, \(L\) is the relative orbital momentum of the system, \(V_{\text{conf.}}\) is the confining potential in the nonrelativistic limit:

\[
V_{\text{conf.}} = V_{\text{conf.}}^V + V_{\text{conf.}}^S = (1 - \epsilon)(Ar + B) + \epsilon(Ar + B) = Ar + B,
\]

(34)

where \(\epsilon\) are the scalar and vector confinement mixing coefficient, and the Coulomb potential \(V_{\text{Coul.}}(r)\) is taken to be

\[
V_{\text{Coul.}}(r) \approx -\frac{4}{3} \alpha_s \frac{F_1(r)F_2(r)}{r}
\]

(35)

\(F_{1,2}(r)\) are the form factors that take into account diquark sizes (Eq. (32)).

In Eq. (33) we explicitly separated the spin-independent (a) and spin-dependent terms: (b) for the spin-orbit, (c) for the tensor and (d) for the spin-spin interactions.

First, we calculate the masses and wave functions of the doubly-heavy (anti)diquarks as the bound (anti)quark-(anti)quark states. It is done by solving Eq. (1) with the quasipotential (5), (6)-(14) numerically. Then the masses of the tetraquarks and their wave functions are obtained for the bound diquark-antidiquark states with the same method.
Parameters such as the confinement potential mixing coefficient ε, anomalous chromomagnetic moment κ, parameter of the running coupling constant Λ, confining potential parameters A, B and quark masses m_c, b are taken from our previous works on the study of the properties of mesons and baryons [25,29–31] and are given in the Table 1. The diquark masses $M_{cc\bar{c}\bar{b}}, bb\bar{c}\bar{b}$ and the parameters of their form factors ξ and ζ have already been calculated earlier [21,26] and are given in the Table 2.

Table 1. Parameters of the model [25,29–31].

m_c, GeV	m_b, GeV	A, GeV^2	B, GeV	Λ, MeV	ε	κ
1.55	4.88	0.18	-0.3	414	-1	-1

Table 2. Masses M_{QQ} and form factor parameters ξ, ζ of diquarks. d is the axialvector (A) or scalar (S) diquark. $[Q, Q']$ and $\{Q, Q'\}$ denote combinations of quarks antisymmetric and symmetric in flavor, respectively [21,26].

QQ'	d	$Q = c$ M_{QQ}, MeV	ξ, GeV	ζ, GeV^2	$Q = b$ M_{QQ}, MeV	ξ, GeV	ζ, GeV^2
$[Q, c]$	S	6519	1.50	0.59			
$\{Q, c\}$	A	3226	1.30	0.42	6526	1.50	0.59
$\{Q, b\}$	A	6526	1.50	0.59	9778	1.30	1.60

4. Masses of fully-heavy tetraquarks

The calculated mass spectra of fully-heavy tetraquarks are given in Table 3. Masses of the ground states (1S) of all possible nine compositions of fully-heavy tetraquarks (including symmetrical: $cccc, cbcb, bbbb$, “mirrored”: $ccbb, bcce$ and nonsymmetrical: $ccbc, cbcc, cbb, bcb$, bbb) have already been calculated in our previous work [14].

As it already have been discussed in Sec. 2, a scalar (anti)diquark can be a part of a tetraquark only if the (anti)quarks that form it have different flavors. This means that the $cccc$ and $bbbb$ tetraquarks can consist only of an axialvector diquarks and antidiquarks, while $cbcb$ can also consist of a scalar and a mixture of axialvector and scalar diquarks and antidiquarks. As the result, we get more possible states for $cbcb$: additional 12 mixed and 6 scalar states are added to 32 axialvector states.
Table 3. Masses M_{QQQQ} of the ground (1S) and excited (1P, 2S, 1D, 2P, 3S) $cc\bar{c}\bar{c}, cb\bar{c}\bar{b}, b\bar{b}b\bar{b}$ states. d and d' are the axialvector (A) or scalar (S) diquark and antidiquark, respectively. S is the total spin of the diquark-antidiquark system. All masses are given in MeV.

$d\bar{d}'$	State	S	J^{PC}	$M_{cc\bar{c}\bar{c}}$	$M_{cb\bar{c}\bar{b}}$	$M_{b\bar{b}b\bar{b}}$
1S		0	0^{++}	6190	12838	19315
		1	1^{--}	6271	12855	19320
		2	2^{++}	6367	12883	19331
		0	0^{--}	6628	13100	19533
1P		1	1^{--}	6634	13103	19535
		2	2^{--}	6644	13108	19539
		1	1^{--}	6635	13103	19534
		2	2^{--}	6648	13109	19538
		3	3^{--}	6664	13116	19545
2S		0	0^{++}	6782	13247	19680
		1	1^{--}	6816	13256	19682
		2	2^{++}	6868	13272	19687
		0	0^{++}	6921	13306	19715
		1	1^{--}	6909	13299	19710
		2	2^{--}	6920	13304	19714
		3	3^{--}	6932	13311	19720
		0	0^{++}	6899	13293	19705
		1	1^{--}	6904	13296	19707
		2	2^{++}	6915	13301	19711
		3	3^{++}	6929	13308	19717
		4	4^{--}	6945	13317	19724
		0	0^{++}	7091	13428	19820
		1	1^{--}	7099	13431	19821
		2	2^{++}	7098	13431	19822
		3	3^{--}	7112	13436	19824
		0	0^{++}	7259	13558	19941
		1	1^{--}	7287	13566	19943
		2	2^{++}	7333	13580	19947
2P		1	1^{++}	12863		
		0	0^{--}	13096		
		1	1^{--}	13099		
		2	2^{--}	13104		
		0	0^{--}	13257		
		1	1^{--}	13293		
		2	2^{--}	13298		
		3	3^{--}	13305		
		0	0^{--}	13426		
		1	1^{--}	13426		
		2	2^{--}	13427		
		3	3^{--}	13566		
3S		0	0^{++}	12856		
		1	1^{--}	13096		
		2	2^{--}	13250		
		1	1^{--}	13293		
		2	2^{--}	13420		
		3	3^{--}	13559		

5. Threshold analysis

If a mass of the tetraquark exceeds the sum of the masses of a meson pair composed of the same flavor quarks and antiquarks, and its decay is not forbidden by quantum
numbers (spin-parity J^{PC}), then the tetraquark will decay into this meson pair through the quark rearrangement via the strong interaction. This is the so-called fall-apart process, which rate is governed by the difference of the tetraquark and threshold masses. If a mass of the tetraquark lies below the corresponding threshold, the decay is possible due to the heavy quark-antiquark annihilation into gluons or a radiative decay, but such processes are suppressed, making these tetraquarks narrow states.

In Tables 4-8 comparisons of mass spectra of fully heavy tetraquarks, calculated by us (Table 3), with the meson pair decay thresholds are given. The values of the phase volume Δ are of special interest:

$$\Delta = M_{QQ'QQ'} - M_{thr},$$

where $M_{QQ'QQ'}$ is the tetraquark mass and M_{thr} is the meson pair decay threshold. We are interested in the most probable decay modes for each tetraquark. They, in turn, correspond to the largest of possible values of Δ: Δ_{max}. Therefore, in Tables 4-8 we compare tetraquark masses not with all possible thresholds, but only with the lowest ones ($[M_{thr}]_{\text{min}} \rightarrow \Delta_{max} \rightarrow$ more probable decay mode).

Table 4. Masses M of the ground (1S) and excited (1P, 2S, 1D, 2P, 3S) $ccc\bar{c}$ states composed from the axialvector diquarks (Table 3) and the corresponding meson-meson thresholds. d and d' are the axialvector (A) or scalar (S) diquark and antidiquark, respectively. s is the total spin of the diquark-antidiquark system. M_{thr} is the corresponding meson-meson threshold [2]. Δ is the difference between the tetraquark mass and threshold: $\Delta = M - M_{thr}$. All masses are given in MeV. For the states with the maximum Δ (corresponding to lightest threshold, main decay channel) less than 300 MeV, all possible thresholds and their Δ are given. For the states with maximum Δ above 300 MeV, only the lightest thresholds are shown. The states with maximum Δ less than 100 MeV are additionally highlighted in violet as most promising to be stable. The states with negative maximum Δ are highlighted in red for the same reason. We also give thresholds with a small negative Δ, since we do not take into account the errors of theoretical calculations. The candidates for the states recently observed by LHCb [5], CMS [6] and ATLAS [7] are highlighted in color: turquoise for X(6200) (ATLAS), emerald for X(6400) (LHCb) and X(6600) (CMS, ATLAS), green for X(6900) (LHCb, CMS, ATLAS), blue for X(7200) (LHCb, ATLAS) and X(7300) (CMS). Additionally all di-J/ψ and di-$Y(1S)$ (in similar table for $bb\bar{b}b\bar{b}$ states) thresholds are shown in bold since this meson pairs are easiest to study in experiments.
Table 4. Table continued.

QQQQ	dd'	State	S	JPC	M	M_0	Δ	Meson pair
2S								
	0	0++		6782	5968	814	η(1S)η(1S)	
1	1	1−−			6816	6081	735	η(1S)/η(1S)
2	2	2++			6942	6920	828	η(1S)η(2S)
1D								
	0	0+++			6929	931	η(1S)η(1S)	
	1	1−+			6904	705	η(1S)η(1S)	
	2	2++			6915	710	η(1S)η(1S)	
2P								
	0	0++		7100	6399	701	η(1S)ηc(1P)	
1	1	1−−		7099	6495	604	η(1S)ηc(1P)	
2	2	2++		7098	6540	358	η(1S)ηc(1P)	
3S								
	0	0+++			7259	5968	1291	η(1S)ηc(1S)
1	1	1−−		6932	6827	828	η(1S)ηc(1S)	
2	2	2++		7333	7100	1206	ηc(1S)/ψ(1S)	

1 Candidate only for the X(6600) state.
2 Candidate only for the X(7300) state.

Table 5. Same as in Table 4 but for cb̄b̄ states composed from the axialvector (A) diquarks.

QQQQ	dd'	State	S	JPC	M	M_0	Δ	Meson pair
1S								
	0	0++		12838	12383	455	η(1S)η(1S)	
1	1	1−−		12855	12444	411	η(1S)ηc(1S)	
2	2	2++		12883	12557	326	η(1S)ηc(1S)	
1P								
	0	0++		13100	12875	228	η(1S)ηc(1P)	
1	1	1−+		13103	12883	220	η(1S)η(1P)	
2−								

1 Candidate only for the X(6600) state.
2 Candidate only for the X(7300) state.
Table 5. Table continued.

QQQQ	d*	State	S	JPC	M	M_{thr}	Δ	Meson pair
	1P	2		1−−	13103	12875	228	χ_c(1P)Υ(1S)
						12883	220	η_c(1S)h_b(1P)
						12924	179	h_c(1P)η_b(1S)
						12956	147	Φ(1S)χ_{b2}(1P)
						12971	132	Φ(1S)Υ(1S)
						12990	113	Φ(1S)χ_{b2}(1S)
						13009	94	Φ(1S)Υ(1S)
		2		2−−	13109	13016	87	η_c(1P)Υ(1S)
						12971	132	η_c(1P)Υ(1S)
						13009	100	Φ(1S)χ_{b2}(1P)
						13016	93	η_c(1P)Υ(1S)
						13009	107	Φ(1S)Υ(1S)
	2S	1		1−−	13247	12383	64	η_c(1S)h_b(1S)
						13256	812	η_c(1S)Υ(1S)
						13272	715	Φ(1S)Υ(1S)
						13206	749	Φ(1S)Υ(1S)
				1−−	13299	12444	855	η_c(1S)Υ(1S)
				1+−	13304	13148	156	η_c(1S)Υ(1S)
				2+−	13301	13222	82	ψ(3823)η(1S)
				3+−	13311	13241	70	ψ(3842)η(1S)
	1D	2		0+	13293	12383	910	η_c(1S)h_b(1S)
				1+	13296	12557	739	η_c(1S)Υ(1S)
				2+	13301	12557	744	η_c(1S)Υ(1S)
				3+	13308	13261	47	η_c(1S)Υ(1S)
				4+	13317	13284	24	ψ(3823)Υ(1S)
				5+	13303	13303	5	ψ(3842)Υ(1S)
				6+	13317	13303	14	ψ(3842)Υ(1S)
	2P	1		0−	13428	12875	553	η_c(1S)η(1S)
				1−	13431	12813	618	η_c(1S)Υ(1S)
				1+	13431	12877	554	η_c(1S)Υ(1S)
				2+	13431	12896	535	η_c(1S)χ_{b2}(1P)
				3−	13434	12875	559	η_c(1S)Υ(1S)
				3+	13435	12971	464	η_c(1S)Υ(1S)
				4−	13436	13009	427	Φ(1S)χ_{b2}(1P)
	3S	2		0−	13558	12383	1175	η_c(1S)η(1S)
				1−	13566	12444	1122	η_c(1S)Υ(1S)
				2+	13580	12557	1023	Φ(1S)Υ(1S)

From Tables 4-8 a number of conclusions can be drawn. First of all, with the exception of the two following states:

\[X_{b0b0} \] 1D \(S = 1 \) 3−− 19720 MeV (37)

\[X_{b0b0} \] 1D \(S = 2 \) 4+ 19724 MeV (38)

for all other tetraquark states there is at least one meson pair with the total mass less than the tetraquark mass \(\Delta_{\text{max}} > 0 \). Therefore for almost all tetraquarks there is a possibility of such fall-apart decay.

For most tetraquarks the value of \(\Delta_{\text{max}} \) significantly exceeds 300 MeV. These tetraquarks lie significantly higher than the decay thresholds and, thus, they rapidly fall-apart in the meson pair due to the quark and antiquark rearrangements. This means that experimentally such a state will manifest itself not as a narrow, but as a wide resonance which is hard to observe. However, such arguments can be applied only to the ground states of tetraquarks. For the excited states there are additional restrictions. In particular, these decays will be suppressed either by the centrifugal barrier between the quark and antiquark (for the orbital excitations), or by the zeros of the wave
Table 6. Same as in Table 4 but for the $c\bar{c}b\bar{b}$ states composed from the mixture of axial-vector (A) and scalar (S) diquarks.

QQQQ	d\(\bar{d}'\)	State	S	J^{PC}	M	M_{thr}	\Delta	Meson pair
		1S		1^{++}	12863			12557, 206, \(\eta_c(1S)\)Y(1S)
				1^{+-}	12444	419		12813, 283, \(\chi_{c0}(1P)\)\(\eta_c(1S)\)
				1^{--}	13096			12843, 253, \(\eta_c(1S)\)\(\chi_{c0}(1P)\)
				0^{++}				12986, 110, \(\eta_c(1P)\)Y(1S)
				0^{+-}				12996, 100, \(\eta_c(1S)\)\(\eta_b(1P)\)
				0^{--}				12971, 125, \(\chi_{c1}(1P)\)Y(1S)
				1^{++}				12990, 106, \(\eta_c(1S)\)\(\chi_{c1}(1P)\)
				1^{+-}				12977, 222, \(\eta_c(1S)\)\(\chi_{c1}(1P)\)
				1^{--}				12986, 113, \(\eta_c(1P)\)Y(1S)
		1P		1^{++}	13099			12883, 216, \(\eta_c(1S)\)\(\eta_b(1P)\)
				1^{+-}				12924, 175, \(\eta_c(1P)\)\(\eta_b(1S)\)
				1^{--}				12956, 143, \(\eta_c(1P)\)\(\eta_b(1P)\)
				2^{++}	13104			12971, 128, \(\chi_{c1}(1P)\)Y(1S)
				2^{+-}				12990, 109, \(\eta_c(1S)\)\(\chi_{c1}(1P)\)
				2^{--}				13009, 90, \(\eta_c(1S)\)\(\chi_{c2}(1P)\)
				3^{++}				13016, 83, \(\chi_{c2}(1P)\)Y(1S)
				3^{+-}				12996, 208, \(\eta_c(1S)\)\(\chi_{c2}(1P)\)
				3^{--}				12955, 149, \(\chi_{c1}(1P)\)\(\eta_b(1S)\)
				1^{++}				12986, 118, \(\eta_c(1P)\)Y(1S)
				1^{+-}				12996, 108, \(\eta_c(1S)\)\(\eta_b(1P)\)
				1^{--}				12971, 133, \(\chi_{c1}(1P)\)Y(1S)
				2^{++}				12990, 114, \(\eta_c(1S)\)\(\chi_{c1}(1P)\)
				2^{+-}				13009, 114, \(\eta_c(1S)\)\(\chi_{c2}(1P)\)
				2^{--}				13016, 114, \(\chi_{c2}(1P)\)Y(1S)
		2S		1^{++}	13257			12557, 700, \(\eta_c(1S)\)Y(1S)
				1^{+-}	12444	813		12557, 736, \(\eta_c(1S)\)Y(1S)
				1^{--}	13293			12444, 849, \(\eta_c(1S)\)Y(1S)
				2^{++}	13298			12557, 741, \(\eta_c(1S)\)Y(1S)
				2^{+-}				13148, 150, \(\eta_c(1S)\)Y(1S)
				3^{++}	13305			13222, 76, \(\psi_2(3825)\)\(\eta_b(1S)\)
				3^{+-}				13261, 44, \(\eta_c(1S)\)Y(1S)
				3^{--}				13284, 21, \(\psi_3(3825)\)Y(1S)
				1^{++}	13426			13303, 2, \(\psi_3(3825)\)Y(1S)
				1^{+-}				13241, 64, \(\psi_3(3825)\)\(\eta_b(1S)\)
				1^{--}				12813, 613, \(\chi_{c0}(1P)\)\(\eta_b(1S)\)
		2P		1^{++}	13426			12971, 455, \(\chi_{c1}(1P)\)Y(1S)
				1^{+-}	13246			12877, 549, \(\eta_c(1S)\)\(\chi_{c1}(1P)\)
				1^{--}				12875, 551, \(\chi_{c0}(1P)\)Y(1S)
				2^{++}	13427			12896, 531, \(\eta_c(1S)\)\(\chi_{c2}(1P)\)
				2^{+-}				12971, 456, \(\chi_{c1}(1P)\)Y(1S)
				2^{--}				13537, 1009, \(\eta_c(1S)\)Y(1S)
				3^{++}	13566			12544, 1122, \(\eta_c(1S)\)Y(1S)

\[c\bar{c}b\bar{b} = \frac{1}{\sqrt{2}} (A S \pm S A) \]
masses and widths of all currently observed fully-charmed states, and not very distinctive peaks near 6.4 GeV and 7.2 GeV which can also be interpreted as ground states. The CMS Collaboration observed 3 distinct states in the di-ψ decay channels: X(6200), X(6600), X(6900) and X(7200). As it was already pointed out before, X(6900) is the most prominent of them all since it was observed by all three experiments with very close mass. The peaking structure around 7.2 GeV in LHCb data was confirmed in these experiments (X(7200) and X(7300)). The X(6200) observed by ATLAS is very close to our prediction for the lowest ground state 0++ pair with branching fractions ~5% and, thus, have a clear experimental signature.

The results of experimental searches are fully correlated with our conclusions. In particular, the LHCb, CMS and ATLAS Collaborations are searching for the fully-charmed ccbb tetraquarks. In Table 9 masses and widths of all currently observed fully-charmed tetraquark states and our candidates for the interpretation of such states are given. One state named \(\bar{c} \bar{b} \) is sufficiently negative, the state cannot decay via the strong fall-apart decay processes into two \(\bar{c} \bar{b} \) and the main channels will be either a decay due to the heavy quark-antiquark annihilation into gluons with their subsequent hadronization into the lighter hadrons (strongly suppressed according to the Okubo-Zweig-Iizuka rule), or radiative decays (if allowed). As a result, this state will be a narrow state that can be observed experimentally in other decay channels: either to hadrons made up of lighter quarks and antiquarks, or two quarkonia and a photon.

All possible di-\(J/\psi \) and di-\(Y(1S) \) decay thresholds are also given in Tables 4-8 (and highlighted in bold). Such decay channels are the most convenient for the experimental studies, since these mesons have a characteristic decay into a \(\mu^+ \mu^- \) pair with branching fractions ~5% and, thus, have a clear experimental signature.

So far, the results of experimental searches are fully correlated with our conclusions. In particular, the LHCb, CMS and ATLAS Collaborations are searching for the fully-charmed \(c \bar{c} \bar{c} \bar{c} \) and fully-bottom \(b \bar{b} b \bar{b} \) tetraquarks. In Table 9 masses and widths of all currently observed fully-charmed tetraquark states and our candidates for the interpretation of such states are given. One state named \(X(6900) \) has already been reliably detected by all three Collaborations (LHCb 2020 [5], CMS 2022 [6], ATLAS 2022 [7]). It is clearly a candidate for the excited fully-charmed state. Moreover, the measured value of its mass is very close to our prediction. In fact we have 5 candidates for this resonance with the masses within the range of 50 MeV from the measured \(X(6900) \) mass. Thus it is important to measure the quantum numbers of this state (states?). Additionally LHCb data indicates two wide and not very distinctive peaks near 6.4 GeV and 7.2 GeV which can also be interpreted as ground and excited fully-charmed tetraquark states.

Very recently the CMS [6] and ATLAS [7] Collaborations reported preliminary results on the observation of exotic charmed states. The CMS Collaboration observed 3 distinct states in the \(J/\psi /\psi \) mass spectrum: X(6600), X(6900) and X(7300), while the ATLAS Collaboration observed 4 distinct states in the di-\(J/\psi \) and di-\(\psi /\psi \) channels: X(6200), X(6600), X(6900) and X(7200). As it was already pointed out before, X(6900) is the most prominent of them all since it was observed by all three experiments with very close mass. The peaking structure around 7.2 GeV in LHCb data was confirmed in these experiments (X(7200) and X(7300)). The X(6200) observed by ATLAS is very close to our prediction for the lowest ground state 0++ with the mass 6190 MeV. The authors of Ref. [32] also predicted this state from the analysis of the LHCb data back in 2021. For the X(6600) structure observed both by CMS and ATLAS we also propose candidates but with greater deviations from central values of the observed mass.

Table 7. Same as in Table 4 but for the \(\bar{c} \bar{b} \) states composed from the scalar (S) diquarks.

\(Q \bar{Q} \bar{Q} \bar{Q} \)	\(d\bar{d} \)	State	S	\(J^P \)	M (MeV)	\(M_{th} \) (MeV)	\(\Delta \) (MeV)	Meson pair
1S	0++	12856	12383	473	\(\eta_c(1S) \eta_c(1S) \)			
1P	1−−	13095	12956	139	\(\eta(1S) h_b(1P) \)			
2S	0++	13250	12383	867	\(\eta(1S) \eta_b(1S) \)			
3P	1−−	13420	12875	545	\(\eta(1S) \eta_b(1S) \)			
3S	0++	13559	12383	1176	\(\eta(1S) \eta_b(1S) \)			
Table 8. Same as in Table 4 but for the $b b b b$ states composed from the axialvector (A) diquarks.

QQQQ	$d d'$	State	S	J^{PC}	M	M_{thr}	Δ	Meson pair
	1S		0	0^{++}	19315	18798	517	$\eta_b(1S)\eta_b(1S)$
			1	1^{++}	19320	18859	461	$\eta_b(1S)\Upsilon(1S)$
			2	2^{++}	19331	18921	410	$\Upsilon(1S)\Upsilon(1S)$
	1P		0	1^{--}	19536	19298	238	$\eta_b(1S)\eta_b(1P)$
						19320	216	$\eta_b(1S)\chi_{10}(1P)$
						19353	183	$\eta_b(1S)\chi_{01}(1P)$
						19373	163	$\eta_b(1S)\chi_{22}(1P)$
			1	0^{++}	19533	19258	275	$\eta_b(1S)\chi_{10}(1P)$
						19360	173	$\eta_b(1S)\eta_b(1P)$
						19291	244	$\eta_b(1S)\chi_{01}(1P)$
						19360	175	$\eta_b(1S)\eta_b(1P)$
			2	2^{++}	19539	19311	228	$\eta_b(1S)\chi_{22}(1P)$
						19360	179	$\eta_b(1S)\eta_b(1P)$
	2S		0	0^{++}	19680	18798	882	$\eta_b(1S)\eta_b(1S)$
						18921	759	$\Upsilon(1S)\Upsilon(1S)$
			1	1^{++}	19682	18859	823	$\eta_b(1S)\Upsilon(1S)$
			2	2^{++}	19687	18921	766	$\Upsilon(1S)\Upsilon(1S)$
	1D		0	0^{++}	19715	19705	907	$\eta_b(1S)\eta_b(1S)$
						18921	784	$\Upsilon(1S)\Upsilon(1S)$
			1	1^{++}	19710	18859	851	$\eta_b(1S)\Upsilon(1S)$
			2	2^{++}	19714	19562	152	$\eta_b(1S)\chi_{22}(1D)$
						19812	-92	$\chi_{10}(1P)\chi_{22}(1P)$
			3	3^{++}	19720	19717	93	$\Upsilon(1S)\chi_{22}(1D)$
						19624	93	$\Upsilon(1S)\chi_{22}(1D)$
						19824	-100	$\chi_{10}(1P)\chi_{22}(1P)$
	2P		0	1^{++}	19820	19298	522	$\eta_b(1S)\eta_b(1P)$
			1	0^{++}	19821	19258	563	$\eta_b(1S)\chi_{10}(1P)$
						19291	530	$\eta_b(1S)\chi_{01}(1P)$
						19311	511	$\eta_b(1S)\chi_{22}(1P)$
						19298	525	$\eta_b(1S)\eta_b(1P)$
			2	2^{++}	19823	19353	470	$\Upsilon(1S)\chi_{22}(1P)$
						19373	481	$\Upsilon(1S)\chi_{22}(1P)$
						19824	481	$\chi_{22}(1P)\chi_{22}(1P)$
	3S		0	0^{++}	19941	18798	1143	$\eta_b(1S)\eta_b(1S)$
			1	1^{++}	19943	18859	1084	$\eta_b(1S)\Upsilon(1S)$
			2	2^{++}	19947	18921	1026	$\Upsilon(1S)\Upsilon(1S)$
On the other hand searches for the fully-bottom tetraquark in the process:

\[pp \rightarrow X_{bb\bar{b}} \rightarrow Y(1S)Y(1S) \]

(39)

in the mass range 17.5-20 GeV (covering the mass range we predict: 19.3-20 GeV) have not yet yielded any results (LHCb 2018 [10], CMS 2017 [11], 2020 [12]). Moreover, lattice calculations [33] do not find fully-bottom tetraquark bound states in this mass region. Such conclusion correlates with our results that the masses of the fully-bottom tetraquarks are significantly higher than the decay thresholds. Thus these states rapidly fall-apart and can appear only as wide, hard to detect resonances. However, according to our calculations, there are two states of such tetraquarks, corresponding to high orbital excitations with high values of total spin \(J \), that lie below any decay thresholds, these are the states already mentioned in (37)-(38). Therefore, these states can be observed as narrow states decaying to lighter hadrons.

Table 9. Exotic \(X \) states observed by the LHCb [5], CMS [6] and ATLAS [7] Collaborations in di-\(J/\psi \) invariant mass spectra and our candidates. All masses are given in MeV.

Collaboration	State	Mass	Width	Our candidates
ATLAS	X(6200)	6220 ± 50^{+60}_{-30}	310 ± 120^{+70}_{-30}	1S 0 0^{+} 6190
LHCb	X(6400)	∼ 6400	1S 2 2^{+} 6367	
CMS	X(6600)	6552 ± 10 ± 12	124 ± 29 ± 34	1S 2 2^{+} 6367
ATLAS	X(6900)	6620 ± 30^{+100}_{-50}	310 ± 90^{+110}_{-60}	2S 0 0^{+} 6782
LHCb	X(6900)	6905 ± 11 ± 7	80 ± 19 ± 33	2S 2 2^{+} 6868
CMS	X(6900)	6886 ± 11 ± 11	168 ± 33 ± 69	1D 2 2^{+} 6921
ATLAS	X(7200)	∼ 7200	1D 2 0^{+} 6899	
LHCb	X(7300)	7220 ± 30^{+100}_{-50}	100 ± 130^{+120}_{-70}	3S 0 0^{+} 7259
CMS	X(7300)	7287 ± 19 ± 5	95 ± 46 ± 20	3S 2 2^{+} 7333

6. Theoretical predictions

In Tables 10-30 we compare our predictions for the masses (Table 3) with the results of other scientific groups obtained in different theoretical approaches.

We have introduced abbreviations in Tables 10-30, but only in cases when the authors used different models or parameter values within the same work. The most common abbreviations are the following.

- DA, MM, mix – diquark-antidiquark, meson-meson models and their mixing;
- (I-III)\(_{2}\) – different sets of variable parameter values (quark masses, potential parameters, constants, etc.).

Other abbreviations that occur a few times only:

- SpB, Osc,II [34] – Spherical Bag Model and Oscillating Potential Model;
- QDSCM, ChQM [35] – Quark Delocalization Color Screening Model and Chiral Quark Model;
- RSM [36] – Real Scaling Method;
- Cur, Op [37,38] – different expressions for currents;
- LO, NLO, NLO\(_{-/}\)G3 [37,39] – higher corrections;
- CQM, CMIM, MCFTM [40] – Constituent Quark Model, Color-Magnetic Interaction Model and Multiquark Color Flux-Tube Model;
- K [41,42] – other geometric configurations of the system that are neither diquark nor meson;
- NR, Rel [43] – non-relativistic and relativistic considerations, respectively;
- Br, F, FJ [44] – “butterfly” and “flip-flop” potentials.

A few more clarifying notes to Tables 10-30:

- In many papers using the diquark-antidiquark picture, the cases of color antitriplet-diquark–triplet-antidiquark 3 \(\otimes \) 3 and color sextet-diquark–antisextet-antidiquark 6 \(\otimes \) 6 were considered. As we discussed in Sec. 2, in the color sextet (anti)diquark, the interaction potential
between (anti)quarks within the (anti)diquark is repulsive and thus corresponding diquark cannot be a bound state, which we consider inappropriate for our problem. Therefore, in Tables 10-30 we give theoretical predictions for the masses calculated only for the $3 \otimes \bar{3}$ configuration. If the results were a mixture of two configurations, we chose those masses that contain more of the triplet state in percentage. We note a general trend: in almost all cases, the calculated masses of sextet configurations turned out to be approximately 10 – 100 MeV higher than their triplet counterparts.

- In some papers (for example, [45]), tetraquarks containing excited diquarks were also considered. Again, as discussed in Sec. 2, we have limited ourselves to diquark ground states. Therefore, the masses of such tetraquarks, composed of excited diquarks, are not included in our comparison.

- *in [34] for model 1, corrections were calculated only for all 1S states and for the two lowest 1P states; corrections for all other states were not calculated.

- **Two cases were considered in [46]: the presence and absence of the heavy η_b-meson exchange. The results only for the case without such an exchange are given.

- ***in [37], LO results were also obtained, but they are quite similar to NLO⊕G3, so we do not present them.

- ****in [39], all results were obtained in two mass schemes: in the \overline{MS}-scheme and on-Shell-scheme. In view of the already colossal number of results of this study, we took the masses only in the \overline{MS}-scheme.

Table 10. Comparison of theoretical predictions for the masses of the $cc\bar{c}\bar{c}$ tetraquark ground state (1S) with the axialvector diquark and antidiquark. S is the total spin of the diquark-antidiquark system. All masses are given in MeV. Masses are sorted chronologically, oldest predictions first.

State	S	J^{PC}	$\Delta\Delta$	$\Delta\Delta$	$\Delta\Delta$
	0	0$^+$			
	1	1$^+$			
	2	2$^+$			
Our	6190	6271	6367		
[47]	6200				
	6276 (DA, SpB);	6276 (DA, SpB);	6267 (DA, SpB);		
	6426 (DA, OscI);	6440 (DA, OscI);	6469 (DA, OscI);		
	6450 (DA, OscII);	6450 (DA, OscII);	6450 (DA, OscII);		
	6221, 6260 (MM, SpB)	6221, 6260 (MM, SpB)	6221, 6260 (MM, SpB)		
[48]	6477	6528	6573		
[49]	6038 ± 6115	6101 ± 6176	6172 ± 6216		
[50]	5970	6050	6220		
[51]	5966	6051	6223		
[52]	5300 ± 500				
[53]	6192 ± 25				
[54]	5990 ± 80			6090 ± 80	
[55], [56]	6460 ± 160,	6470 ± 160,	6510 ± 150	6510 ± 150	
[57]	7016	6899	6956		
[43]	η 6140				
[58], [59]	5969	6021	6115		
[60]	6487	6500	6524		
[61]	5970 ± 40			6050 ± 80	
[62]	6425 (Id);	6425 (Id);	6432 (Id);		
[63]	6483 (Id);	6450 (Id);	6479 (Id);		
[64]	5888	6120	6246		
[65]	6192 ± 25			6429 ± 25	
d̄d′	A	A	A		
------	---	---	---		
Our	6190	6271	6367		
6128, 6270,	6149, 6285,	6197, 6314,	6407 (DA, QDCSM (I-III);		
6358 (DA, QDCSM (I-III);	6375 (DA, QDCSM (I-III);	6498, 6499,	6505 (DA, ChQM (I-III);		
6466, 6482,	6479, 6488,	6512, 6607 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
6493 (DA, ChQM (I-III);	6495 (DA, ChQM (I-III);	6519 ± 6207 (MM, QDCSM (I-III);	5961 ± 6701 (MM, ChQM (I-III);		
6501 (MM, ChQM (I-III);	6505 (MM, ChQM (I-III);	6519 ± 6602 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
6509 (MM, ChQM (I-III);	6519 ± 6602 (MM, ChQM (I-III);	6519 ± 6602 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
6519 ± 6602 (MM, ChQM (I-III);	6519 ± 6602 (MM, ChQM (I-III);	6519 ± 6602 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	6520 ± 6602 (MM, ChQM (I-III);	5961 ± 6206 (MM, QDCSM (I-III);		
Table 10. Table continued.

d̄d'	State	S	JPC	A	A
				1S	1
		0	0^-	1^-	2^-
Our	6190 (Bt);	6874 (Bt);	6913 (Bt);	6990 (Bt);	
[44]	6850 (FL);	6870 (FL);	6913 (FL);		
[87]	6822 (mix);	6822 (mix);			
	5978	6155	6822	6263	
[39]****	6070 ±50	6070 ±80	6080 ±40	6150 ±80	6070 ±50
	6600 ±40	6690 ±120	6650 ±100	6650 ±130	6650 ±100
	5090 ±60	7110 ±130	6040 ±60	7070 ±140	6040 ±60
	6360 ±80	8330 ±150	6650 ±80	8320 ±180	6650 ±80
[88]	7035, 7202	7050, 7274			
[89]	6384	6452			
[90]	6035	6137			
[91]					

Table 11. Same as in Table 10 but for the first orbital excitation (1P).

d̄d'	State	S	JPC	A	A
				1P	1P
		0	0^-	1^-	2^-
Our	6631	6628	6634	6644	6635
[92]	6550	6550	6550	6550	6550
[34]*	6694 (OscI);	6695 (OscI);	6718 (OscI);	6718 (OscI);	6718 (OscI);
	6714 (OscII)				
[48]	7004	6969	7013		
[49]	6998 ±7052	6993 ±7051	7275 ±7363	7002 ±7055	7278 ±7357
[93]	6420 ±180 (DA);	6411 ±35 (MM);			
[55], [56]	6830 ±180	6850 ±180	6880 ±180		
[58], [59]	6577	6480	6577	6610	6495
[62]	6110 ±80				
[64]	6550	6596			
[45]	6681	6676	6667	6768	6630
[76]	6553	6460	6554	6587	6459
[79]	6740	6723	6743	6752	6740
[81]	6060 (Id);	6054 (Id);	6054 (Id);	6054 (Id);	6056 (Id);
	6999 (Id);	6995 (Id);	6995 (Id);	6995 (Id);	6996 (Id);
[83]	6990 ±220	7000 ±220	7000 ±220	6980 ±210	190°
	7170 ±220	7020 ±220	7070 ±210		
	6610 ±120	6540 ±140	6530 ±110		
	(DA, LO);	(DA, LO);	(DA, LO);		
[39]****	7970 ±170	7510 ±160	8020 ±170		
	6530 ±140	6530 ±110	6530 ±110		
	6610 ±140	6610 ±140	6610 ±140		
	(MM, LO);	(MM, LO);	(MM, LO);		
	7550 ±150	7300 ±130	7550 ±150		
	±8090 ±80	±8530 ±150	±8090 ±80		
	(MM, NLO);	(MM, NLO);	(MM, NLO);		
[88]	6330 ±100				
Table 12. Same as in Table 10 but for the first radial excitation (2S).

| dd' | State | JPC | A|AA | A|AA | A|AA |
|-----|-------|-----|---|----|---|----|---|
| | | | 0 | 1 | 2 | | |
| | | | 0\(^+\)\(^+\) | 1\(^-\) | 2\(^+\) | | |
| Our | | | 6782 | 6816 | 6868 | | |
| [38], [59] | [63] | [64] | [65] | 6663 | 6675 | 6698 | | |
| [63] | | | 6856 (td); | 6894 (ltd); | 6919 (ltd); | | |
| [64] | | | 6573 | 6699 | 6739 | | |
| [65] | | | 6871 ± 25 | | 6967 ± 25 | | |
| [35] | | | 6950, 6975 (DA, QDCSM (I-III)\(_d\)); | 7250, 7280 (DA, QDCSM (I-III)\(_d\)); | 7250, 7275, 7280 (DA, ChQM (I-III)\(_d\)); | | |
| [66] | | | 6940 | 6928 | 6948 | | |
| [70] | | | 6908 | 6896 | 6921 | | |
| [94] | | | 6480 ± 80 | 6520 ± 80 | 6560 ± 80 | | |
| [74] | | | 6916 (td); | 6957 (td); | 7001 (td); | | |
| [78] | | | 6773 (ltd); | 6792 (ltd); | 6843 (ltd); | | |
| [79] | | | 6924 (lttd); | 6966 (lttd); | 7011 (lttd); | | |
| [80] | | | 6642 | 6654 | 6676 | | |
| [81] | | | 7007 | 6954 | 6917 | | |
| [82] | | | 6883 | 6911 | 6968 | | |
| [84] | | | 7073 (td); | 7025 (td); | 7041 (td); | | |
| [85] | | | 8095 (lttd); | 8060 (lttd); | 8072 (lttd); | | |
| [88] | | | 6575 | 6699 | 6639 | | |
| [88] | | | 6393 (td); | 6438 (td); | 6438 (td); | | |
| [88] | | | 6411 (lttd); | 6502 (lttd); | 6502 (lttd); | | |
| [88] | | | 6575 (lttd); | 6799 (lttd); | 6794 (lttd); | | |
| [85] | | | 6555 ± 37 | | 6566 ± 35 | | |
| [85] | | | 6908 | 6919 | 6927 | | |
| [88] | | | 6570 ± 90 | 6640 ± 90 | 6690 ± 90 | | |
Table 13. Same as in Table 10 but for the second orbital excitation (1D).

dd'	State	S	jPC	0	1	1+	2	3	3+	4+
AÅ	1D									
Our										
[92]	6921	6909	6920	6932	6899	6904	6915	6929	6945	
[49]	6780	6780	6780	6780	6780	6780	6780	6780	6780	
[55], [56]	6586 ± 6648									
[64]	6827	6829	6827	6827	6827	6827	7140, 7150,			
[35]							7170 (DA, QDCSM (I-III),			
							7150, 7160 (DA, ChQM (I-III),			
[95]	6832	6833	6835	6844	6848	6851	6857	6863	6870	
[39]****										

Table 14. Same as in Table 10 but for the first orbital and radial excitation (2P).

dd'	State	S	jPC	0	1	1+	2	3	3+	
AÅ	2P									
Our										
[38], [59]	7091	7100	7099	7098	7113	7113	7112			
[64]	6944	6867	6944	6970	6876	6962	6997			
[94]	6940	6953								
[78]	6580 ± 90									
[81]	6925	6851	6926	6951	6849	6944	6982			
[88]	7143 (td);	7130 (td);	7130 (td);	7130 (td);	7134 (td);	7134 (td);	7134 (td);			
	8174 (ld);	8162 (ld);	8162 (ld);	8162 (ld);	8166 (ld);	8166 (ld);	8166 (ld);			
	6740 ± 90									
Table 15. Same as in Table 10 but for the second radial excitation (3S).

\(\bar{\text{d}} \bar{\text{d}}' \) State	\(\bar{\text{A}} \bar{\text{A}} \) \(\bar{\text{S}} \)	0	1	2
\(0^{++} \)				
Our	7259	7287	7333	
63		6915	6919	
64		7036	7058	
35		6948	7016	

\[7225, 7250 \text{(DA, QDCSM (I-III);) } \]
\[7210, 7250, 7260 \text{(DA, CHQM (I-III);) } \]

\(\bar{\text{S}} \) \(\bar{\text{PC}} \)	0	1	2
\(1^{-} \)			
\(1^{-} \)			
\(2^{++} \)			
60	7063	7052	7064
70	7296	7300	7320
94	6940\(\pm 80 \)	6960\(\pm 80 \)	7000\(\pm 80 \)
74	7224 \(\text{(Id);} \)	7263 \(\text{(Id);} \)	7257 \(\text{(Id);} \)
74	7054 \(\text{(Id);} \)	7066 \(\text{(Id);} \)	7097 \(\text{(Id);} \)
74	7229 \(\text{(Id);} \)	7268 \(\text{(Id);} \)	7258 \(\text{(Id);} \)
78	7010	7017	7032
79	7225	7253	7310
80	6782	6814	6842
84	6441 \(\text{(Id);} \)	6464 \(\text{(Id);} \)	6464 \(\text{(Id);} \)
84	6477 \(\text{(Id);} \)	6536 \(\text{(Id);} \)	6536 \(\text{(Id);} \)
84	6897 \(\text{(Id);} \)	7148 \(\text{(Id);} \)	7148 \(\text{(Id);} \)
84	6883\(\pm 27 \)	6890\(\pm 27 \)	6890\(\pm 27 \)
85	7240	7243	7248
88	6920\(\pm 90 \)	7030\(\pm 90 \)	7090\(\pm 90 \)
Table 16. Same as in Table 10 but for the ground state (1S) of \(\bar{c}b\bar{c}b \) composed from the axialvector diquark and antidiquark.

\(\mathbf{d\bar{d}'} \)	\(\mathbf{A\bar{A}} \)			
\(\mathbf{S} \)	\(\mathbf{j_{PC}} \)	0	1	2
\(\mathbf{0^{-+}} \)	\(1^{++} \)	\(2^{++} \)		
Our	12838	12855	12883	
[51]	12471	12488	12566	
[57]	13483	13592	13590	
[43]	\(\lesssim 12620 \)	12864	12884	
[96]	12746 (DA); 12322, 12684 (MM); 12322 (mix)	12432, 12737 (MM); 12432 (mix)	12561, 12791 (MM); 12561 (mix)	
[64]	12374	12491	12576	
[69]	12534	12510	12582	
[40]	13043 (CQM); 13043 (CQM); 12955 (MCFTM); 12955 (MCFTM)	13052 (CQM); 13052 (CQM); 12984 (MCFTM); 12984 (MCFTM)		
[76]	12510 \(\pm 100 \), 12580 \(\pm 100 \), 12670 \(\pm 100 \), 12740 \(\pm 110 \)	-	-	
[77]	12682	12720	12755	
[41], [42]	12861 (DA); 12861 (DA); 12888 (DA); 12926 (DA); 12369, 12809 (MM); 12431, 12843 (MM); 12565, 12885 (MM); 12599, 12717 (K); 12635, 12768 (K); 12771, 12844 (K)	12380 \(\pm 130 \), 12380 \(\pm 130 \), 12300 \(\pm 140 \), 12300 \(\pm 140 \), 12430 \(\pm 117 \), 12401 \(\pm 106 \), 12401 \(\pm 106 \), 12401 \(\pm 106 \)		
[97]	12460 \(\pm 150 \), 12460 \(\pm 150 \)			
[85]	12387 \(\pm 109 \), 12387 \(\pm 109 \)			
[87]	12503	12016	12897	
[90]	12759	12797	12882	
[91]	12595	12573	12597	

Table 17. Same as in Table 10 but for the first orbital excitation (1P) of \(\bar{c}b\bar{c}b \) composed from the axialvector diquark and antidiquark.

\(\mathbf{d\bar{d}'} \)	\(\mathbf{A\bar{A}} \)						
\(\mathbf{S} \)	\(\mathbf{j_{PC}} \)	0	1	2			
\(\mathbf{1^{-}} \)	\(0^{-} \)	\(1^{-} \)	\(2^{-} \)				
Our	13103	13100	13103	13108	13103	13109	13116
[64]	12934	12943	12944				

Table 18. Same as in Table 10 but for the first radial excitation (2S) of \(\bar{c}b\bar{c}b \) composed from the axialvector diquark and antidiquark.

\(\mathbf{d\bar{d}'} \)	\(\mathbf{A\bar{A}} \)			
\(\mathbf{S} \)	\(\mathbf{j_{PC}} \)	0	1	2
\(\mathbf{0^{++}} \)	\(1^{++} \)	\(2^{++} \)		
Our	13247	13256	13272	
[64]	12975	13022	13063	
[85]	12911 \(\pm 48 \), 12911 \(\pm 48 \)			
[57]	13483	13592	13590	
[96]	12746 (DA); 12322, 12684 (MM); 12322 (mix)	12432, 12737 (MM); 12432 (mix)	12561, 12791 (MM); 12561 (mix)	
[64]	12374	12491	12576	
[69]	12534	12510	12582	
[40]	13043 (CQM); 13043 (CQM); 12955 (MCFTM); 12955 (MCFTM)	13052 (CQM); 13052 (CQM); 12984 (MCFTM); 12984 (MCFTM)		
[76]	12510 \(\pm 100 \), 12580 \(\pm 100 \), 12670 \(\pm 100 \), 12740 \(\pm 110 \)	-	-	
[77]	12682	12720	12755	
[41], [42]	12861 (DA); 12861 (DA); 12888 (DA); 12926 (DA); 12369, 12809 (MM); 12431, 12843 (MM); 12565, 12885 (MM); 12599, 12717 (K); 12635, 12768 (K); 12771, 12844 (K)	12380 \(\pm 130 \), 12380 \(\pm 130 \), 12300 \(\pm 140 \), 12300 \(\pm 140 \), 12430 \(\pm 117 \), 12401 \(\pm 106 \), 12401 \(\pm 106 \), 12401 \(\pm 106 \)		
[97]	12460 \(\pm 150 \), 12460 \(\pm 150 \)			
[85]	12387 \(\pm 109 \), 12387 \(\pm 109 \)			
[87]	12503	12016	12897	
[90]	12759	12797	12882	
[91]	12595	12573	12597	
Table 19. Same as in Table 10 but for the second orbital excitation (1D) of $cb\bar{c}\bar{b}$ composed from the axialvector diquark and antidiquark.

$\bar{d}d'$ State	$\bar{A}A$ 1D		
S	0	1	2
J^{PC}	2$^{++}$	1$^{++}$	3$^{++}$
	0$^{++}$	1$^{++}$	2$^{++}$
	1$^{++}$	2$^{++}$	3$^{++}$
	2$^{++}$	3$^{++}$	4$^{++}$
Our [64]	13306	13299	13304
	13311	13293	13296
	13301	13308	13317

Table 20. Same as in Table 10 but for the first orbital and radial excitation (2P) of $cb\bar{c}\bar{b}$ composed from the axialvector diquark and antidiquark.

$\bar{d}d'$ State	$\bar{A}A$ 2P		
S	0	1	2
J^{PC}	1$^{−−}$	0$^{−−}$	1$^{−−}$
	2$^{−−}$	1$^{−−}$	2$^{−−}$
	2$^{−−}$	3$^{−−}$	
Our [64]	13428	13431	13431
	13431	13434	13435
		13436	
[64]	13262	13269	

Table 21. Same as in Table 10 but for the second radial excitation (3S) of $cb\bar{c}\bar{b}$ composed from the axialvector diquark and antidiquark.

$\bar{d}d'$ State	$\bar{A}A$ 3S		
S	0	1	2
J^{PC}	3$^{++}$	1$^{++}$	2$^{++}$
	0$^{++}$	1$^{++}$	
	1$^{++}$	2$^{++}$	
Our [64]	13558	13566	13580
	13301	13335	13365
[85]	13200$^{+35}_{−36}$	13202$^{+35}_{−36}$	
Table 22. Same as in Table 10 but for the ground state (1S) first orbital excitation (1P) and first radial excitation (2S) of $cb\bar{c}\bar{b}$ composed from the mixture of axialvector and scalar diquark and antidiquark.

State	$\frac{1}{\sqrt{2}}(A\hat{S} \pm S\hat{A})$
1S	1
1P	1^\pm
2S	0^\pm

Our	12863	13096	13099	13104	13257		
	12485 (+);	12424 (-)	13599 (+);	13555 (-)	12870 (+);	12852 (-)	
[51]	12804 (DA);	12561, 12737 (MM);	12561 (mix) (+)				
[60]	12533	12922	12922 (-)	13036			
[64]	12569 (+);	12510 (-)	12703 (+);	12744 (-)	12903 (DA);		
[69]							
[77]	12431, 12843 (MM);	12635, 12768 (KK) (+)	12300 +150;	12320 +150 (-)	12155 (+);	12896 (-)	
[41], [42]	124531	12431, 12843 (MM);	12635, 12768 (KK) (+)	12300 +150;	12320 +150 (-)	12155 (+);	12896 (-)
[97]							
[87]	12857 (+)	12338 (+);	12339 (-)				
[90]							
[91]							

Table 23. Same as in Table 10 but for the second orbital excitation (1D) first orbital and radial excitation (2P) and second radial excitation(3S) of $cb\bar{c}\bar{b}$ composed from the mixture of axialvector and scalar diquark and antidiquark.

State	$\frac{1}{\sqrt{2}}(A\hat{S} \pm S\hat{A})$
1D	1
2P	1^\pm
3S	0^\pm

Our	13293	13298	13305	13426	13426	13427	13566
[64]	13154	13250	13250 (-)	13427	13427	13566	
							13342

| [41], [42] | | | | | | | | | |
Table 24. Same as in Table 10 but for the ground state (1S), first orbital excitation (1P), first radial excitation (2S), second orbital excitation (1D), first orbital and radial excitation (2P), second radial excitation (3S) of $c\bar{c}b\bar{b}$ composed from the scalar diquark and antidiquark.

$d\bar{d}'$ State	$S\bar{S}$ J^{PC}	$1S$	$1P$	$2S$	$1D$	$2P$	$3S$
S	J^{PC}	0++	1−−	0++	2++	1−−	0++
Our		12856	13095	13250	13293	13420	13559
[51]		12359					
[57]		13553					
[60]		12835					
[64]		12521	12910	13024	13143	13238	13330
[69]		12534					
[77]		12747					
[41], [42]		12892 (DA);	12369, 12809 (MM);	12599, 12717 (K)			
[97]		12280$^{+150}_{−140}$					
[87]		12359					
[91]		12431					

Table 25. Same as in Table 10 but for the ground state (1S) of the $b\bar{b}b\bar{b}$.

$d\bar{d}'$ State	$A\bar{A}$ J^{PC}	$1S$	$1P$	$2S$	$1D$	$2P$	$3S$
S	J^{PC}	0++	1−−	2++			
Our		19315	19320	19331			
[51]		18754	18808	18916			
[53]		18826 ± 25	18840 ± 90	18850 ± 90			
[54]		18460 ± 140	18490 ± 160	18540 ± 150	18530 ± 150		
[55], [56]		18800	20275	20212	20243		
[43]		18720 ± 20 (NR, MM);	18750 ± 50 (Rel, DA);	18890			
[33]		18798	18859	18921			
[60]		19322	19329	19341			
[66]**		19191, 19221 (DA);	19227 (DA);	19238 (DA);			
[61]		18670, 18928, 19195, 19205 (MM);	18799, 19179 (MM);	18928, 19195 (MM);			
[62]		18670 (mix)	18799 (mix)	18928 (mix)			
[63]		18690 ± 30	18840 ± 90	19249 (Id);			
[64]		19247 (Id);	19305 (Id);	19325 (Id);			
[65]		18748	18828	18900			
[66]		18826 ± 25	18956 ± 25				
Table 25. Table continued.

d\(d^c\)	\(A\)	\(\bar{\bar{A}}\)
Our		
19315	199320	19331
19165, 19256, 19344	19184, 19264, 19354	19236, 19279, 19374
(DA, QDCSM (I-III)); (MM, QDCSM (I-III));	(DA, QDCSM (I-III)); (MM, QDCSM (I-III));	
19313, 19456, 19466	19323, 19461, 19467	19344, 19471
(DA, ChQM (I-III));	(DA, ChQM (I-III));	
18800±18925	18860±18864	18921±18925
(MM, QDCSM (I-III));	(MM, QDCSM (I-III));	
18800±20041	18860±19927	18921±19933
(MM, ChQM (I-III));	(MM, ChQM (I-III));	

19717 ± 118 (DA, Op, NLO\(\pm \)C3); 19770 ± 137, 19653 ± 131 (MM) |

| 19259 ± 88, 19430 ± 145, |

197975, 19033 (DA);	18065, 19093 (DA);	18241, 19211 (DA);
17999, 18038,	18062, 19087 (MM);	18238, 19207 (MM);
19036, 19699 (MM);	18009, 19338,	18189, 19451,
17917, 18010,	19627 (mix)	19708 (mix)
19280 (mix)		
19199	19276	19289
19226	19214	19232
19417 (CQM);	19413 (CQM);	19429 (CQM);
18834 (CMIM);	18890 (CMIM);	18921 (CMIM);
19377 (MCFTM);	19373 (MCFTM);	19387 (MCFTM);
19650, 20110,		
21470 (Id);		
22310, 22660,		
23720 (Id);		
19205 (Id);		
19221 (Id);		
19253 (Id);		
19187 (Id);		
19202 (Id);		
19234 (Id);		
19209 (IIIId);		
19225 (IIIId);		
19257 (IIIId);		
18572		
18380 ± 110, 18440 ± 100,		
18500 ± 100, 18590 ± 110		
18981	18969	19000
19196 (DA);	19205 (DA);	19223 (DA);
18802, 19144 (MM);	18864, 19126 (MM);	18926, 19197 (MM);
18977, 19143 (K);	19053, 19206 (K);	19093, 19225 (K);
18719 (Id);	18734 (Id);	18764 (Id);
18749 (Id);	18764 (Id);	18792 (Id);
19666	19673	19680
18130\(\pm 130\) \(\pm 90\);	18140\(\pm 140\) \(\pm 90\);	18150\(+140\) \(\pm 90\)
18150 \(\pm 140\) \(\pm 100\);		
19428 (Id);	19557 (Id);	19557 (Id);
19428 (Id);	19558 (Id);	19558 (Id);
19302 (IIIId);	19409 (IIIId);	19409 (IIIId);
18475\(\pm 151\) \(\pm 169\);	18483\(+149\) \(\pm 168\);	18484 \(\pm 168\);
18444 (B0);	18444 (B0);	18444 (B0);
18440 (FL);	18440 (FL);	18440 (FL);
18440 (mix)	18440 (mix)	18440 (mix)
Table 25. Table continued.

d¯d′	S	JPC	A ¯A
	0	1	2
	0^+	1^-	2^+
Our			
[87]	19315	19320	19331
	18752	18805	18920
	18500±170 −260 to 18510±170 −260 (DA, LO);	18500±170 −250 (DA, LO);	18500±170 −260 (DA, LO);
	18970±110 −110 (DA, NLO);	18970±110 −110 (DA, NLO);	18910±110 −180 18950±70 −130 (DA, NLO);
[39]***	18500±170 −260 ±19210±200 −260 (MM, LO);	18500±170 −260 ±19210±200 −260 (MM, LO);	18500±170 −260 ±19210±200 −260 (MM, LO);
	18930±90 −160 ±19660±50 −100 (MM, NLO);	18600±190 −160 ±19530±110 −170 (MM, NLO);	18890±110 −180 ±19620±40 −80 (MM, NLO);
[90]	19240	19304	19328
[91]	18834	18890	18921

Table 26. Same as in Table 10 but for the first orbital excitation (1P) of the bbnb.

d¯d′	S	JPC	A ¯A				
	0	1	2				
	0^+	1^-	2^-				
Our							
[55, 56]	19536	19533	19535	19539	19534	19538	19545
[62]	18770 ±160	18790 ±180	18830 ±180				
[64]	18890 ±90						
[45]	19381 (Id); 19340 (Id); 19395 (Id); 19393 (Id); 19338 (Id); 19390 (Id); 19412 (Id); 19412 (Id);						
[100]	19361 (Id); 19427 (Id); 19361 (Id);						
[83]	18460±150 −110 to 18450±150 −110						
	18540±120 −120 to 18750±120 −120						
	18860±240 to 18860±240						
	18820±240 to 18820±240						
	18860±240 to 18860±240						
	18820±240 to 18820±240						
	(DA, LO); (DA, LO); (DA, LO); (DA, LO);						
[39]***	19180±130 −140 to 19230±130						
	18850±260 to 18850±260 (MM, LO); (MM, NLO);						
	18870±260 to 18870±260 (MM, LO); (MM, NLO);						
	19220±50 −110 to 19220±50 −110						
	19310±40 −90 to 19310±40 −90						
	(MM, NLO) (MM, NLO); (MM, NLO) (MM, NLO);						
Table 27. Same as in Table 10 but for the first radial excitation (2S) of the $b\bar{b}b\bar{b}$.

$d\bar{d}'$ State	\bar{A}	$A\bar{A}$	
	$2S$		
	$0^{+ +}$	$1^{- -}$	$2^{+ +}$
Our	19680	19682	19687
[63]		19594 (ld);	19596 (ld);
		19813 (ld);	19823 (ld);
[64]	19335	19366	19398
[65]	19434 ± 25	19481 ± 25	19633
[66]	19625	19625	19594
[70]	19583	19582	19684 (ld);
[74]	19544 (ld);	19556 (ld);	19591 (ld);
	19662 (ld);	19671 (lld);	19694 (ltd);
[100]	19441 (ld);	19443 (ld);	19448 (ld);
[82]	19414 (ld);	19416 (ld);	19421 (ld);
[84]	19841	19849	19585
[85]	19512 (ld);	19587 (ld);	19587 (ld);
	19597 (ld);	19597 (ld);	19597 (ld);
[95]	19680	19684	19686
[95]	19684	19686	19686

Table 28. Same as in Table 10 but for the second orbital excitation (1D) of the $b\bar{b}b\bar{b}$.

$d\bar{d}'$ State	\bar{A}	$A\bar{A}$							
	$1D$								
	$0^{+ +}$	$1^{+ -}$	$2^{+ +}$	$3^{+ -}$	$4^{+ +}$				
Our	19715	19710	19714	19720	19705	19707	19711	19717	19724
[55], [56]									
[64]	19510	19511	19513	19512	19510				
[95]	19669	19671	19672	19675	19677	19678	19680	19684	19686
[39]**									
Table 29. Same as in Table 10 but for the second orbital and radial excitation (2P) of the $b\bar{b}b\bar{b}$.

$d\bar{d}'$ State S	$A\bar{A}$ 2P			
	0	1	2	
	$1^−−$	$0^+−$	$1^+−$	$2^−−$
Our [64]	19820	19821	19821	19822
	19597	19602	19602	

Table 30. Same as in Table 10 but for the third radial excitation (3S) of the $b\bar{b}b\bar{b}$.

$d\bar{d}'$ State S	$A\bar{A}$ 3S		
	0	1	2
	$0^−+−$	$1^−+−$	$2^+−−$
Our [63]	19941	19943	19947
	19681 (Id);	19682 (Id);	19688 (Id);
	20065 (Id);	20077 (Id)	19736
[64]	19644	19665	19926 (Id);
	19726	19733	19930 (Id);
[70]	19887	19889	19936 (Id);
	19907 (Id);	19930 (Id);	19936 (Id);
	19975 (Id);	19815 (Id);	19822 (Id);
	19991 (Id);	19983 (Id);	19984 (Id);
	19759 (Id);	19760 (Id);	19764 (Id);
	19701 (Id);	19703 (Id);	19706 (Id);
[82]	20001	20012	20021
	19557 (Id);	19597 (Id);	19997 (Id);
	19565 (Id);	19615 (Id);	19615 (Id);
	19845 (Id);	20016 (Id);	20016 (Id);
[85]	19353$^+42$		19355$^+43$
[95]	19979	19980	19982

We compare our predictions with the results obtained in the following approaches and models:

- Various quark models: [34–36,40–53,57–61,63–70,72,74,75,77–82,84–87,89–92,95,96,98–100].
- QCD sum rules: [37–39,54–56,62,71,73,76,83,88,94,97].
- Lattice calculations: [33,93].

Among them the following configurations can be distinguished:

- Diquark-antidiquark model: [33–37,39–46,50,51,53–69,71,73–75,77–82,84,85,87–98,100].
- Meson-meson model: [34–37,39,41,42,46,68,76,81,83,89,93,96].
- Mixing of the diquark and meson structures: [36,46,52,68,70,96].

It is seen from the Tables 10–30 that our results agree well (within the ±50 MeV range) with the following results:

- For the $c\bar{c}c\bar{c}$ tetraquark:
 - in the diquark-antidiquark picture: $[43,53,67,72,75]$ (all predictions); $[65,84,88]$ (ground states only); $[45,55,56,64]$ (1P); $[63]$ (2S); $[80,95]$ (3S); $[35]$ (1S, 3S); $[74]$ (2S, 3S); $[39]$ (1P, 1D).
 - in the other models: $[35,37–39,41,42,47,72]$ (all predictions); $[34,83]$ (ground states only); $[81]$ (2P); $[70]$ (3S).

- For the $c\bar{b}c\bar{b}$ tetraquark:
 - in the diquark-antidiquark picture: $A\bar{A} - \frac{1}{\sqrt{2}}(A\bar{S} \pm S\bar{A})$, $S\bar{S} - [41,42,60,90]$ (all predictions).
 - in other models: $A\bar{A} - [41,42,76]$ (all predictions); $\frac{1}{\sqrt{2}}(A\bar{S} \pm S\bar{A})$, $S\bar{S} - [41,42]$ (all predictions).
The generally higher values of tetraquark masses predicted in our model originate primarily from the weakening of the one-gluon exchange potential due to the form factors of the diquark–gluon interaction. It results in weakening of the one-gluon exchange potential and, thus, increasing the tetraquark mass.

A number of other conclusions can be drawn from this data:

- Predictions of Refs. [41,42] are in full agreement with our results for the $cb\bar{c}\bar{b}$ tetraquark;
- Predictions of Refs. [60,90] give good agreement for the $cb\bar{c}\bar{b}$ and $bb\bar{b}\bar{b}$ tetraquarks, but do not agree at all for the $cc\bar{c}\bar{c}$ tetraquark;
- Predictions of Refs. [35,45,63,74,95] give partial agreement for the $cc\bar{c}\bar{c}$ and $bb\bar{b}\bar{b}$ tetraquarks in the diquark-antidiquark picture;
- Predictions of Refs. [35,37–39,70] give partial agreement for the $cc\bar{c}\bar{c}$ and $bb\bar{b}\bar{b}$ tetraquarks in models other than the diquark-antidiquark.

In addition, throughout comparison of our results with those of other scientific groups shows that:

- For the $cc\bar{c}\bar{c}$ tetraquark our results are generally median: there are many results giving both heavier and lighter masses;
- For the $cb\bar{c}\bar{b}$ tetraquark masses our results exceed those of other scientific groups for all diquark spins and excitations;
- For the $bb\bar{b}\bar{b}$ tetraquark masses our results are slightly higher than those of most other scientific groups.

The generally higher values of tetraquark masses predicted in our model originate primarily from taking into account the finite size of the diquark. It results in weakening of the one-gluon exchange potential and, thus, increasing the tetraquark mass.

Note that the authors of Ref. [57] came to an unexpected conclusions. They argue that the ground state of the asymmetric tetraquark $bb\bar{c}\bar{b}$ may be stable (its ground states have been studied by us in Refs. [14,15] and were found to be significantly above the fall-apart decay thresholds), and they also expect the $cb\bar{c}\bar{b}$ tetraquark to be a narrow state in contradiction with our conclusions.

7. Conclusions

Within the framework of the relativistic quark model, we calculated masses of the ground states, radial (up to 3S) and orbital (up to 1D) excitations of the fully-charmed $cc\bar{c}\bar{c}$, doubly charmed-bottom $cb\bar{c}\bar{b}$ and fully-bottom $bb\bar{b}\bar{b}$ tetraquarks. An important feature of our calculations is the consistent account of the relativistic effects and the finite size of the diquark (as it is shown in the Sec. 3), which leads to the weakening of the one-gluon exchange potential due to the form factors of the diquark–gluon interaction.

A detailed analysis of the calculated mass spectra was carried out. We compared calculated tetraquark masses with the thresholds of the strong fall-apart decays into the meson pairs. As it is shown in Sec. 5, most of the tetraquark states lie significantly above the meson pair decay threshold. However, tetraquark states with the smallest widths and, as a result, with the most probability to be observed as narrow states have been identified. An argument is given why the excited states in general can be narrow, despite the large phase space.

It should be noted that the mass of the narrow state $X(6900)$ recently discovered in the di-J/ψ pair production (LHCb 2020 [5], CMS 2022 [6], ATLAS 2022 [7]) agrees well with our prediction for the masses of the fully-charmed tetraquark excited (2S, 1D) states. According to the calculations, several candidates for the interpretation of this state are proposed. Candidates are also identified for all other recently discovered states such as $X(6200)$ (ATLAS), $X(6400)$ (LHCb), $X(6600)$ (CMS, ATLAS), $X(7200)$ (LHCb, ATLAS), $X(7300)$ (CMS).

In conclusion, we note that experimental searches for fully-heavy tetraquarks are currently ongoing and should be continued. Therefore, it can be expected that new experimental candidates will appear in the near future.

Author Contributions: Authors contributed equally to the preparation of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The work of Elena M. Savchenko was funded in part by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” grant number 22-2-10-3-1.
Acknowledgments: The authors are grateful to D. Ebert for very fruitful and pleasant collaboration in developing the diquark-antidiquark model of tetraquarks. We are grateful to A.V. Berezhnoy for useful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Choi, S.K. et al. Observation of a Narrow Charmoniumlike State in Exclusive $B^± \to K^±\pi^±\pi^\mp J/\psi$ Decays. Phys. Rev. Lett. 2003, 91, 262001, [hep-ex/0309032]. doi:10.1103/PhysRevLett.91.262001.

2. Workman, R.L. et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. doi:10.1093/ptep/ptac097.

3. Tornqvist, N.A. Isospin breaking of the narrow charmonium state of Belle at 3872 MeV as a deuson. Phys. Lett. B 2004, 590, 209–215, [hep-ph/0402237]. doi:10.1016/j.physletb.2004.03.077.

4. Aaij, R. et al. Observation of the Resonant Character of the $Z(4430)^-$ State. Phys. Rev. Lett. 2014, 112, 222002, [arXiv:hep-ex/1404.1903]. doi:10.1103/PhysRevLett.112.222002.

5. Aaij, R. et al. Observation of structure in the J/ψ pair mass spectrum. Sci. Bull. 2020, 65, 1983–1993. doi:10.1016/j.scib.2020.08.032.

6. Observation of new structures in the J/ψ pair mass spectrum in pp collisions at $\sqrt{s} = 13$ TeV. Technical report, CERN, Geneva, 2022.

7. Observation of an excess of di-charmonium events in the four-muon final state with the ATLAS detector. Technical report, CERN, Geneva, 2022.

8. Aaij, R. et al. Observation of J/ψ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \to J/\psi K^- p$ Decays. Phys. Rev. Lett. 2015, 115, 072001, [arXiv:hep-ex/1507.00414]. doi:10.1103/PhysRevLett.115.072001.

9. Chen, H.X.; Chen, W.; Liu, X.; Liu, Y.R.; Zhu, S.L. An updated review of the new hadron states. Prog. Theor. Exp. Phys. 2007, 0706.3853.

10. Aaij, R. et al. Search for beautiful tetraquarks in the $Y(1S)\mu^+\mu^-$ invariant-mass spectrum. J. High Energy Phys. 2018, 2018, 086, [arXiv:hep-ex/1806.07007]. doi:10.1007/JHEP10(2018)086.

11. Khachatryan, V. et al. Observation of $Y(1S)$ pair production in proton-proton collisions at $\sqrt{s} = 8$ TeV. J. High Energy Phys. 2017, 05, 013, [arXiv:hep-ex/1610.07995]. doi:10.1007/JHEP05(2017)013.

12. Sirunyan, A.M. et al. Measurement of the $Y(1S)$ pair production cross section and search for resonances decaying to $Y(1S)\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} = 13$ TeV. Phys. Lett. B 2020, 808, 135578, [2002.06393]. doi:10.1016/j.physletb.2020.135578.

13. Bigi, I.; Dokshitzer, Y.; Khoze, V.; Kühn, J.; Zerwas, P. Production and decay properties of ultra-heavy quarks. Phys. Lett. B 1986, 181, 157–163. doi:10.1016/0370-2693(86)91275-x.

14. Faustov, R.N.; Galkin, V.O.; Savchenko, E.M. Masses of the $\psi(2S)$ and other heavy tetraquarks in the relativistic quark model. Phys. Rev. D 2006, 72, 076001, [hep-ph/0504112]. doi:10.1103/PhysRevD.72.034026.

15. Ebert, D.; Faustov, R.N.; Galkin, V.O. Masses of heavy baryons in the relativistic quark model. Phys. Rev. D 2011, 84, 014025, [arXiv:hep-ph/1105.0583]. doi:10.1103/PhysRevD.84.014025.

16. Logunov, A.A.; Tavkhelidze, A.N. Quasi-Optical Approach in Quantum Field Theory. Nuovo Cim. 1963, 29, 380–399. doi:10.1007/BF02750359.

17. Martynenko, A.P.; Faustov, R.N. Relativistic reduced mass and quasipotential equation. Theor. Math. Phys. 1985, 64, 765–770. doi:10.1007/BF01017955.

18. Galkin, V.O.; Faustov, R.N. Some properties of the solutions of a quasipotential equation. Theor. Math. Phys. 1990, 85, 1119–1123. doi:10.1007/BF01017254.

19. Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P. Mass spectra of doubly heavy baryons in the relativistic quark model. Phys. Rev. D 2002, 66, 014008, [hep-ph/0201217]. doi:10.1103/PhysRevD.66.014008.

20. Ebert, D.; Faustov, R.N.; Galkin, V.O. Masses of heavy tetraquarks in the relativistic quark model. Phys. Lett. B 2006, 634, 214–219, [hep-ph/0512230]. doi:10.1016/j.physletb.2006.01.026.

21. Simonov, Y.A. Perturbation theory in the nonperturbative QCD vacuum. Phys. Atom. Nucl. 1995, 58, 107–123, [arXiv:hep-ph/9411247]. doi:10.1007/10.1103/PhysRevD.66.014008.

22. Badalian, A.M.; Veselov, A.I.; Bakker, B.L.G. Restriction on the strong coupling constant in the IR region from the 1D-1P splitting in bottomonium. Phys. Rev. D 2004, 70, 016007. doi:10.1103/PhysRevD.70.016007.

23. Galkin, V.O.; Mishurov, A.Y.; Faustov, R.N. Meson masses in the relativistic quark model. Sov. J. Nucl. Phys. 1992, 55, 1207–1213.

24. Ebert, D.; Faustov, R.N.; Galkin, V.O.; Lucha, W. Masses of tetraquarks with two heavy quarks in the relativistic quark model. Phys. Rev. D 2007, 76, 114015, [0706.3853]. doi:10.1103/PhysRevD.76.114015.

25. Ebert, D.; Faustov, R.N.; Galkin, V.O.; Lucha, W. Masses of tetraquarks in the relativistic quark model. Phys. Rev. D 2007, 76, 114015, [0706.3853]. doi:10.1103/PhysRevD.76.114015.

26. Faustov, R.N. Magnetic Moment of the Relativistic Composite System. Nuovo Cim. A 1970, 69, 37–46. doi:10.1007/BF02728769.

27. Faustov, R.N. Relativistic Wavefunction and Form Factors of the Bound System. Annals Phys. 1973, 78, 176–189. doi:10.1016/0003-4916(73)9007-9.
91. Zhuang, Z.; Zhang, Y.; Ma, Y.; Wang, Q. Lineshape of the compact fully heavy tetraquark. *Phys. Rev. D* **2022**, *105*, 054026. doi:10.1103/PhysRevD.105.054026.

92. Chao, K.T. The \((cc) - (\bar{c}\bar{c})\) (Diquark - Antidiquark) States in \(e^+e^\) Annihilation. *Z. Phys. C* **1981**, *7*, 317. doi:10.1007/BF01431564.

93. Chiu, T.W.; Hsieh, T.H. \(Y(4260)\) on the lattice. *Phys. Rev. D* **2006**, *73*, 094510, [hep-lat/0512029]. doi:10.1103/PhysRevD.73.094510.

94. Wang, Z.G. Tetraquark candidates in LHCb’s \(d \bar{d} - J/\psi\) mass spectrum. *Chinese Phys. C* **2020**, *44*, 113106. doi:10.1088/1674-1137/abb080.

95. Liu, F.X.; Liu, M.S.; Zhong, X.H.; Zhao, Q. Higher mass spectra of the fully-charmed and fully-bottom tetraquarks. *Phys. Rev. D* **2021**, *104*, 116029. doi:10.1103/PhysRevD.104.116029.

96. Chen, X. Fully-heavy tetraquarks: \(b\bar{b}c\bar{c}\) and \(bc\bar{b}\bar{c}\). *Phys. Rev. D* **2019**, *100*, 094009, [arXiv:hep-ph/1908.08811]. doi:10.1103/PhysRevD.100.094009.

97. Yang, Z.Y.; Wang, Q.N.; Chen, W.; Chen, H.X. Investigation of the stability for fully-heavy \(bc\bar{b}\bar{c}\) tetraquark states. *Phys. Rev. D* **2021**, *104*, 014003. doi:10.1103/PhysRevD.104.014003.

98. Esposito, A.; Polosa, A.D. A \(b\bar{b}b\bar{b}\) di-bottomonium at the LHC? *Eur. Phys. J. C* **2018**, *78*, 782, [arXiv:hep-ph/1807.06040]. doi:10.1140/epjc/s10052-018-6269-z.

99. Vogt, R.; Angerami, A. Bottom tetraquark production at RHIC? *Phys. Rev. D* **2021**, *104*, 094025. doi:10.1103/PhysRevD.104.094025.

100. Tiwari, R.; Rathaud, D.P.; Rai, A.K. Mass-spectroscopy of \([bb][bb]\) and \([bq][\bar{b}\bar{q}]\) tetraquark states in a diquark-antidiquark formalism. *Eur. Phys. J. A* **2021**, *57*. doi:10.1140/epja/s10050-021-00601-w.