Fusarium wilt was recorded in line DK 247 treated with Biospectrum BT – 8.9%. Corn borer infestation was reduced by Trichopsin BT and Biospectrum BT, which have both insecticide/fungicidal and growth-stimulating effects. The reduction in the incidence was 2.3–2.8%, depending on the genotype of the lines. Treatment with biologicals improved the cob structure of the studied lines. Trichopsin BT and Biospectrum BT had the greatest effects on the cob parameters. Due to Biospectrum BT, the cob length increased by 5.2–6.7%, the cob diameter – by 2.0–4.9%, and the cob grain weight – by 3.0–7.1%. The results of measurement of the yields from the parents (maize lines) showed that under irrigation the average performance of the studied maize lines ranged 3.75 to 6.11 t/ha, depending on the genotype of the lines (factor A) and the use of biologicals.

Conclusions. It was found that biologicals Fluorescein BT, Trichopsin BT, and Biospectrum BT reduced the damage to maize lines induced by blister smut, Fusarium wilt, and corn borer by 0.9–4.2%. Treatment with Biospectrum BT ensured the highest grain yields from the maize parent, which averaged 4.63 t/ha, the gain in the yield was 0.44 t/ha or 10.5%. Treatment with Trichopsin BT had a positive effect on the yield, which averaged 4.54 t/ha, providing a gain in the yield of 0.35 t/ha or of 8.4%. Treatment with Fluorescein BT increased the yield by 0.14 t/ha or by 3.3%. Biospectrum BT was the most effective agent, which provided a significant reduction in the damage to the maize lines caused by fungal diseases and pests.

Key words: line, parent component, biological product, affected, disease, yield, productivity

UDK 633.31:631.527 DOI: 10.30835/2413-7510.2020.222405

БІОЛОГІЧНІ ОСОБЛИВОСТІ ЗАПИЛЕННЯ ТА ФОРМУВАННЯ НАСІННЯ MEDICAGO SATIVA L., ЇХ ВПЛИВ НА ДОБІР ВИСОКОПРОДУКТИВНОГО ВИХІДНОГО МАТЕРІАЛУ

Повидало М.В., Корягін О.М., Остапець Т.А., Кургак В.Г.
Національний науковий центр «Інститут землеробства НААН», Україна

На основі опрацьованих наукових праць узагальнено інформацію стосовно біологічних особливостей запилення та формування повноцінного насіння *Medicago sativa* L. як важливої кормової ентомофільно-перехреснозапильної культури. Незважаючи на високий потенціал, зумовлений біологічними особливостями люцерни, проблематично отримати високий урожайні насіння, який залежить від особливостей будови квітки, запилення, проходження ембріонального періоду онтогенезу та погодних умов у період цвітіння. Наведено основні причини, які впливають на дегенерацію насіннєвих зачатків. Запропоновано шляхи підвищення насіннєвої продуктивності сортів люцерни, зокрема проведення попередньої оцінки та добір вихідного селекційного матеріалу за елементами насіннєвої продуктивності та рівнем прояву автогамії.

Ключові слова: люцерна, селекція, запилення, насіннєва продуктивність, самосумісність, оцінка

Селекційна робота з люцерною розпочалась услід за вивченням біології та агротехніки в регіонах із найбільшим ареалом її поширення. Останніми роками прослідковується тенденція до скорочення посівних площ під кормовими культурами,
зокрема й люцерною, внаслідок стрімкого скорочення поголів’я тварин [1]. Однак, не тільки це спричиняє скорочення посівної площі, зайнятій люцерною, а й дефіцит насіння. Нізький рівень насінневої продуктивності існуючих сортів люцерни в умовах Лісостепу та Полісся є основною перешкодою для насінництва і поширення у виробництві. Ці зони більшою мірою забезпечені вологою й тому мають перевагу перед степовою зоною, де посуки стали постійним явищем [2, 3, 4]. Надмірна розораність сільськогосподарських земель та зменшення агроценоту культур, зокрема збільшення в сівозміні частки посівів технічних наносить шкоду ентомофауні агроценозів внаслідок застосування інсектицидів. Це спричиняє зниження продуктивності насіння люцерни внаслідок зменшення популяції комах-запилювачів [2, 3].

На сьогодні селекційні програми в основному спрямовано на підвищення насінневої продуктивності, проте за роки досліджень виявилося, що існує тісна негативна кореляція між кормовою та насіннєвою продуктивністю, а до створення сортів люцерни висувають основну вимогу – поєднання високої кормової продуктивності з підвищеною насіннєвою продуктивністю [5].

Система розмноження виду насінням з одного боку включає структурні, морфологічні пристосування квітки до певного типу запилення, з іншого – залежить від функціональних особливостей біології квітки (гомогамія та дихогамія) та від генетичних механізмів (поліплоїдія, несумісність, стерильність). У системі розмноження виду як морфологічні, так і функціональні аспекти доцільно розглядати з позиції різноманіття екологічних факторів, які активно впливають на процес запилення-запліднення [6].

Чисельні публікації щодо детального дослідження цвітіння та запилення багаторічної люцерни посівної свого часу детально розглянуто і підсумовано Пономаревим А.Н. [7]. За біологічними особливостями люцерна належить до факультативних перехреснозапильних культур ентомофільного типу з будовою квітки, яка перешкоджає вітрозапиленню та самозапиленню без відкриття квітки. Про це свідчать морфологія квітки, характер її розкриття та запилення, денний хід розпускання квіток і залежність насінневої продуктивності від оточуючого ландшафтно-біоценотичного середовища. Всі види люцерни мають метеликові квітки ентомофільного типу, які приваблюють комах своїм жовтим або синім забарвленням, що добре сприймається бджолиними. На пелюстках виділяються жилки більш темніше забарвлення – вказівники нектару. Синьоквіткові види мають перевагу над жовтоквітковими в кількості відвідувань комахами [7, 8]. Яковлєв І.В. [9] стверджує, що більшість дослідників вказують на поодиноких бджіл і джмелів, як на основних запилювачів люцерни. Цю думку підтримує Пономарев А.Н. [7]. За біологічними особливостями люцерна належить до факультативних перехреснозапильних культур ентомофільного типу з будовою квітки, яка є досить складною для проникнення в неї комах та самозапилення. Тому процеси цвітіння та плодоутворення, які визначають рівень урожаю, відбуваються досить складно [10, 11]. Винятково вагомий вплив на формування врожаю насіння люцерни має будова квітки [8], яка є досить складною для проникнення в неї комах та самозапилення. Фауна комах-запилювачів різиться залежно від грунтово-кліматичної зони [9]. Квітки люцерни також відповідають медоносні бджоли, проте, за результатами спеціальних спостережень, вони не відкривають квітки [11], а висмоктують нектар, розміщуючи хоботок між парусом і веслами, при цьому запилення не відбувається [10]. Загалом у запиленні люцерни приймають участь представники Apiidae (Бджолинних), близько 161 виду. У різних грунтово-кліматичних зонах вирощування люцерни основними запилювачами є 3–8 видів, решта – поодинокі особини [12].

Квітки містять пилок та нектар [6], усі види люцерни мають сучіття багатоквіткова витяжка [13]. Винятково вагомий вплив на формування врожаю насіння люцерни має будова квітки [8], яка є досить складною для проникнення в неї комах та самозапилення. Квітки люцерни також відповідають медоносні бджоли, проте, за результатами спеціальних спостережень, вони не відкривають квітки [11], а висмоктують нектар, розміщуючи хоботок між парусом і веслами, при цьому запилення не відбувається [10]. Загалом у запиленні люцерни приймають участь представники Apiidae (Бджолинних) 161 виду. У різних грунтово-кліматичних зонах вирощування люцерни основними запилювачами є 3–8 видів, решта – поодинокі особини [12].
бокові пелюстки мають назву весла, між ними знаходиться човник – зрослі між собою дві нижні пелюстки. Всередині закритого човника знаходиться колонка квітки, яка складається з десяти тичинок, дев’ять з яких зрослися основами тичинкових ниток, утворюючи жолобок з верхніми краями, що не зрослися. У жолобку розміщується тоненька маточка, а десята вільна тичинка прикриває щілину між краями [8, 13, 15, 16].

Особливістю будови квітки люцерни є те, що тичинкова трубка знаходиться у дуже напруженному стані. Така напружність та згин тичинкової трубки пояснюється асиметричністю її будови. Нижня частина колонки товста та м’ясиста, вона складається з багатьох шарів паренхімної тканини, доверху (до черевної частини) краї трубки поступово стають більш тонкими і з самого верху складаються з двох епідермісів, де-не-де скріплених одношаровими перетинками основної паренхіми. Напружність тичинкової трубки забезпечується високим осмотичним тиском клітинного соку, який сягає 32 атм. Тому сильне напруження нижньої сторони тичинкової трубки нічим не врівноважене з протилежної верхньої сторони і колонка намагається вигнутися в сторону вітрила. В нерозкритій квітці колонка утримується середні навколо апаратом, основною частиною якого є виступи, розташовані на внутрішній поверхні краї пелюсток човника. Ці виступи, впираючись в тіло тичинкової трубки, утримують колонку в човнику в напруженному стані. Із зовнішньої сторони човника виступи схожі на заглиблення, в які досить щільно входять особливі рогові відростки весел, що допомагає утримати колонку при нерозкритій квітці в горизонтальному положенні. Крім рогоподібних відростків, які ще називають замковим апаратом, весла квітки люцерни утворюють два вигнутих відростки, які притиснуті до верхньої сторони колонки й опускаються до її основи. Своїми кінцями вони впираються один в одного в одній точці. Внаслідок вказанних особливостей будови нерозкрита квітка постійно знаходиться в напруженному стані. Якщо виступи човника розсунути в сторони, він переходить на внутрішнє краплення, розміщене нижньою стороною. Видалення вітріл хоче все сірковидным приймачем. Колонка у розкритій квітці своєю відкритою поверхнею притискається до вітрила. Найсуттєвішою особливістю квітки люцерни є взаємне розташування тичинок і маточки в колонці. Тичинки різного розміру: нижні (при горизонтальному положенні колонки) довгі, а верхні – короткі. Десята, найкоротша, тичинка розміщена з самого верху, вона є вільною по всій довжині. Вивчаючи будову приймочки маточки, Благовещенская Н.Н. [15] звернула увагу на те, що в разі відкриття квітки з попереднім видаленням вітрила, звільняє колонка матиме відкриту форму, подібну до дзьоба, приймочку для пилок секрету, який в ній зберігається. Його роль полягає у тому, щоб захистити приймочку від зовнішніх впливів, крім того, внаслідок приймачка секрет запобігає його проростанню. Воно виконує сигнальну функцію, заманюючи комах; латеральні пелюстки (крыла) служать посадковим майданчиком і частково атрактивним засобом; човник є надійним захистом від дрібних неспеціалізованих запилювачів. Іншими словами, метеликовий віночок є «біологічним замком», який охороняє пилок і нектар від малоефективних запилювачів [6, 8].

Квітки утворюють велику кількість нектару, нектарники розташовано в глибині квітки біля чашечки [10]. Взаємне розташування пелюсток також строго адаптивне. Всі пелюстки, завдяки системі вушок, зубців та виростів, поєднані один з одним і діють як єдина система, забезпечуючи вивітрьовування квітки – триппінг [6, 13]. Голобородько С.П., Боднарчук Л.И. [8] зазначають, що особливістю будови квітки люцерни є те, що після її розпускання тичинки та приймочка залишаються прикритими частиною інших обертальніх апаратів, тому колонка відкрита квітка прикривається дубліруючи полігональним апаратом, в який створюються сприятливі умови для проростання пилку, а через 1,5–2 години й сам парус огортається навколо колонки. Таким чином, приймочка відкритої квітки після викладу колонки залишається непокритою.
руйнування секрету на ньому, без перенесення пилку ззовні, вже не може отримати пилок, а отже й не можуть створюватися умови для його проростання.

Завдяки тому, що приймочка маточки виглядає з тичинкової трубки у вигляді дзьоба й завжди розташована нижче її трубки, забезпечується можливість як комахозапилення, так і самозапилення. Тому в люцерні розрізняють закрите цвітіння, коли колонка прихована у замкнутому човнику, та відкрите — коли човник відкритий, а колонка дугоподібно вигнута й притиснута до вітрила. Енергійне викидання колонки з човника, а також розкриття (трипінг) квітки супроводжується ударом об вітрило або грудиною комахи, в результаті чого порушується слизова плівка приймочки, що є необхідною умовою для проростання на ній пилку. Отже, запилення відбувається в момент розкриття квітки, коли приймочка стовпчика стикається з пилком на черевці комахи [7].

Звільнившись від важкості тільця бджоли, колонка з силою вдаряється об вітрило квітки і усю поверхнею щільно притискається до нього. У відкритій квітці приймочка не видно, оскільки вона зверху й знизу закрита довгими та короткими тичинками. Тобто, у відритій квітці приймочка не може піддаватися будь-якому впливу ззовні, навіть упродовж тих двох годин, доки парус ще не вистягає обернутися навколо колонки. Ці особливості будови квітки й забезпечують її запилення саме в момент розкриття [8]. Спостерігається запилення квіток люцерни є так, що за життєвий цикл квітку люцерни комаха-запилювач відвідає лише один раз — коли відкриває квітку (трипінгує) та запилює. Відкриті квітки комахи повторно не відвідують, на відміну від інших етомофільно запильних культур (єспарцет, грецька та ін.) [11].

Біологічні особливості люцерни сприяють формуванню на рослині великої кількості суцвіть, квіток у китиці та насіннєвих зачатків в одній зав'язі. Проте, незважаючи на біологічні задатки до високої насіннєвої продуктивності, за ряду причин простежується досить низький її рівень. Боби та насіння утворюються далеко не завжди, навіть у вигідних умовах запилення. Спостерігається відмирання насіннєвих зачатків люцерни як до розкривання квітки в процесі запилення, так і після запліднення. Аномалії репродуктивних процесів, поряд із недостатньою кількістю комах-запилювачів, є однією із основних причин, які зумовлюють зниження насіннєвої продуктивності люцерни [18, 49, 20, 21, 22, 23]. Разом з цим зниження насіннєвої продуктивності спричиняють ще й такі явища, як недостатня кількість пилкових трубок на одну зав'язь; опадання за зав'язі; опадання бутонів, квіток і зав'язі в результаті порушення фізіологічного балансу між об'ємом вегетативних і генеративних органів. Відмирання насіннєвих зачатків по мірі розвитку зав'язі є біологічною особливістю люцерни. Тільки близько третьини насіннєвих зачатків за сприятливих умов запилення розвиваються в насінину. Спостерігається відмирання частин насіннєвих зачатків зав'язі до запилення, в яких зародкові мішки не утворюються, внаслідок дегенерації клітини на ранніх фазах розвитку [6, 22, 23, 25, 26]. Вони менші за величиною від тих, які розвиваються в насінину [27]. Очевидно, що значна кількість аномалій у розвитку репродуктивних органів люцерни може бути пов'язана з гібридним походженням сортів тетраплоїдної люцерни (Medicago sativa L., M. varia Mart.). Це свідчить про те, що в селекційному процесі цієї культури не було проведено цілеспрямованого добору за зазначеними ознаками. Припускають, що гібридне походження також вплинуло на морфологію квітки та призвело до порушення всієї системи запилення [25].

На формування насіннєвої продуктивності люцерни впливає багато чинників, зокрема погодно-кліматичні та грунтові умови, освітленість посіву, сортові особливості й т. п. Зокрема, у період цвітіння-плодоутворення суттєво впливають на процес запилення та плодоутворення сумарна кількість тепла, середня температура та відносна вологість повітря, сума опадів і кількість ясних сонячних днів. Варто зазначити, що, як за нашими спостереженнями, так і на думку інших авторів, всі ці фактори діють не окремо, а в комплексі. Вони впливають на інтенсивність запилення та рівень зав'язування бобів, на кількість насіння, що зав’язалося на один біб [4, 28, 29]. Помічене, якщо в період цвітіння-плодоутворення за невисокої відносної вологості повітря й інтенсивного сонячного...
випромінювання була жарка сонячна погода, то запилення квіток було задовільно. І навпаки, за наявності атмосферних опадів, пониженної температури та відносної вологості повітря – погіршувалося. Яковлєв І.В. [9] на основі власних спостережень дійшов висновку, що добова динаміка чисельності бджолиних залежить від погодних умов, числа доби та змін у виділенні нектару рослинами люцерни.

За сучасними вимогами нові сорти люцерни мають бути стійкими до негативних чинників середовища, зокрема ґрунтово-кліматичних умов, шкідників і хвороб, а саме реагувати на внесення добрив та зрошення, а також забезпечувати високі врожаї зеленої маси в поєднанні зі стабільною насіннєвою продуктивністю [10]. Для вирішення цих та інших задач при створенні сортів застосовують методи гетерозисної, адаптивної селекції, віддалену та внутрішньовидову гібридизації. Вихідний матеріал створюють методами автотріппінгу, гнучкої самосумісності й самонесумісності [30].

Використання явища самонесумісності й автотріппінгу є одним із шляхів підвищення насіннєвої продуктивності сортів люцерни. Введення в синтетичну популяцію генотипів люцерни з такими ознаками сприятиме підвищенню насіннєвої продуктивності за рахунок утворення насіння на самосумісних і здатних до автотріппінгу формах, особливо в умовах недостатнього запилення [31]. Це призведе до необхідності оцінювання їхнього рівня плодоутворення за самозапилення та з’ясування ступеня впливу інбридингу на рівень прояву факторів самосумісності, характер цвітіння та триппінг, хід запилення, запліднення та розвиток насіння [22, 32, 33, 34]. Інбридна депресія певною мірою обмежує широке введення самозапилюваних форм і збільшення їхнього співвідношення в сортових популяціях. Здатність утворювати насіння за самозапилення в поєднанні зі збереженням здатності до перехрестя залежить від насіннєвої продуктивності люцерни, необхідно використовувати самофертильні форми з підвищеною схильністю до автотріппінгу, інбридингу, гібридизації, а також необхідно проводити добір генотипів із високим рівнем зав’язування життєздатного насіння.

Перехід до селекції синтетичних і складно-гібридних популяцій сприяв створенню нових високопродуктивних сортів люцерни, в яких можливим є часткове використання ефекту гетерозису, прояв якого важко прогнозувати в наступних поколіннях репродуковання сортів без збереження чистоти складових популяції. В масовому насінництві гібридної люцерни існують складнощі, пов’язані з контролем запилення. Основою для нього можуть бути генетична чоловіча стерильність, цитоплазматична чоловіча стерильність і самонесумісність. Дослідження показали, що стерильні форми не завжди поєднують високу насіннєву продуктивність, як і гібриди, отримані на їх основі [35, 36]. Але за рядом причин перенесення гетерозисної селекції на люцерну останнім часом не є актуальним. Передусім це пояснюється низькою насіннєвою продуктивністю рослин, особливо вихідних стерильних форм, а також гібридів, отриманих на їх основі, складністю підтримки й розмноження їхньих компонентів за ентомофільного запилення.

Важливою ланкою в селекції сортів люцерни – синтетичних і складно-гібридних популяцій – є створення нового та вивчення існуючого вихідного матеріалу. Це робить необхідним залучення й детальне вивчення широкого генофонду колекційних зразків різного еколого-географічного походження [5, 37, 38], характеру мінливості та взаємозв’язків між різними цінними ознаками [11, 39, 40, 41], пошуку непрямих ознак добру [3, 42, 43]. За результатами наших досліджень найбільш вагомими ознаками оцінки селекційних зразків люцерни є такі складові елементи насіннєвої продуктивності, як максимальна кількість бобів на біб [44]. За результатами наших досліджень найбільш вагомими ознаками оцінки селекційних зразків люцерни є такі складові елементи насіннєвої продуктивності, як максимальна кількість обертів спіралі та кількість повноцінного сформованого насіння на біб [44].
Однак варто зазначити, що за вільного запилення визначення рівня зав'язування бобів і кількості насіння, що зав'язалося, на квітку є досить трудомістким.

Висновки. Отже, незважаючи на біологічні задатки до високої насінневої продуктивності культура люцерни реалізує свій потенціал на 10–20% в залежності від комплексу факторів, які склалися в період формування врожаю. Тому на сьогодні досить актуально є селекційна робота, спрямована на підвищення не лише кормової, а й насінневої продуктивності, зокрема добір стабільного високопродуктивного вихідного матеріалу.

Список використаних джерел
1. Петриченко В.Ф. Актуальні проблеми кормовиробництва в Україні. Вісник аграрної науки. 2010. № 10. С. 18–21.
2. Бобер А.Ф. Генетика систем размножения и селекция на повышение семенной продуктивности гречихи и люцерны: автореф. дис. ... д-ра біол. наук: 03.00.15; 06.01.05. Київ, 1989. 39 с.
3. Бобер А.Ф., Корягін О.М., Повидало М.В. Селекция люцерны с использованием само-совместимости и генетичних маркеров. Земледелие и селекция в Беларуси. 2014. Вып. 50. С. 316–329.
4. Жарінов В.І. Основні шляхи розвитку насінництва люцерни. Вісник с.-г. науки. 1980. № 11. С. 30–34.
5. Мамальга В.С., Чумак А.А. Исходный материал для селекции сортов люцерны различного хозяйственного назначения. IV съезд генетиков и селекционеров Украины. К.: Наукова думка, 1981. Ч. 4. С. 41–42.
6. Верещагина В.А., Колясникова Н.Л., Новоселова Л.В. Репродуктивная биология видов рода Medicago L. Пермь: Изд-во Перм. ун-та, 2004. 226 с.
7. Пономарев А.Н. Экология цветения и опыления злаков и люцерны. Ботанический журнал. 1954. Т. 39. № 5. С. 706–720.
8. Голобордько С.П., Боднарчук Л.И. Семеноводство люцерны. Киев: Фитосоциоцентр, 1998. 171 с.
9. Яковлев И.В. Видовой склад запилювачів люцернового агроценозу та їх добова активність у правобережному Лісостепу України. Луб'яні та технічні культури. 2015. Вип. 4. С. 104–109.
10. Башкірова Н.В., Глибовець А.О. Оцінка нових самофертильних селекційних зразків люцерни посівної (Medicago sativa L.). Сортовивчення та охорона прав на сорти рослин. 2014. № 1. С. 10–14. DOI 10.21498/2518-1017. 1(22),2014.56287.
11. Коваленко В.И., Шумный В.К. Триппинг и семенная продуктивность у многолетних видов люцерны Medicago L. при свободном цветении и опылении. Информационный вестник ВОГиС. 2008. Том 12. № 3. С. 740–748.
12. Гончаров П.Л. Лубенец П.А. Биологические аспекты возделывания люцерны. Новосибирск: Наука, 1985. 255 с.
13. Царев А.П., Царева М.А. Агробиологические основы формирования высокопродуктивных агрофитоценозов люцерны на корм и семена в Поволжье. Саратов. 2010. 261 с.
14. Ткаченко И.К., Думачева Е.В., Бабенков В.Л., Воронкина Т.И. Проблемы и задачи автогамии у люцерны. Научные известия Белгородского государственного университета. 2008. № 3 (43) С. 60–68.
15. Благовещенская Н.Н. О строении и опылении цветка люцерны Medicago sativa L. Ботанический журнал. 1968. Т. 53., № 9 С. 1246–1253.
16. Зінченко О.І., Коротєєв А.В., Каленьска С.М. та ін. Рослинництво. За ред. О.І. Зінченка. Практикум. Вінниця: Нова Книга, 2008. 536 с.
17. Коперкинський В.В. Щибря А.А Биология цветения и образование семян люцерны. Люцерна. М.: Сельхозгиз, 1950. С. 181–194, 194–211
18. Неприна Л.И. Материалы по эмбриологии люцерны. Учен. зап. Молотовского ГУ им. А.М. Горького. 1956. Т. 10. Вып. 1. С. 135–142.
19. Орел Л.И., Иванов А.И., Константинова Л.Н., Дзюбенко Н.И. Определение уровня потенциальной плодовитости завязей люцерны в связи с семенной продуктивностью. Биол. ВИР. 1983. Вып. 131. С. 56–58.
20. Пестова Т.М. Цитоэмбриологические особенности люцерны синегибридной. Цитология и генетика. 1982. Т. 16. № 3. С. 26–30.
21. Busbice T.H. Effect of inbreeding on fertility in Medicago sativa L. Crop Sci. 1968. V. 8. № 2. Р. 231–324.
22. Cooper D.C., Brink R.A. Partial self-incompatibility and the collapse of fertile ovules as factors affecting seed formation in alfalfa. J. Agr. Res. 1940. V. 60. № 7. Р. 453–472.
23. Sayers E.R., Murphy R.P. Seed set in alfalfa as related to pollen tube, growth, fertilization. Crop Sci. 1966. V. 6. № 3. Р. 365–368.
24. Sangduen N., Sorensen E.L., Liang G.H. Pollen germination and pollen tube growth following self-pollination and intra- and interspecific pollination of Medicago species. Euphytica. 1983. V. 32. № 2. Р. 527–534.
25. Фегри К.Л. ван дер Пэйл. Основы экологии опыления. (Пер. с англ. Л.В. Ковалевой, Э.Л Мильяевой). М., 1982. 377 с.
26. Cooper D.C., Brink R.A., Albrecht H.R. Embryo mortality in relation to seed formation in alfalfa (Medicago sativa). Amer. J. Bot. 1937. V. 24. N 4. P. 203–213.
27. Дорофеев В.Д. Методические указания по отбору растений люцерны с высокой плодовитостью завязей. Л., 1985. 34 с.
28. Дюкова Н.Н., Харадгин А.С. Аспекты семейной продуктивности люцерны в Северном Зауралье. Аграрный вестник Урала. 2017. № 02 (156). С. 33–36.
29. Туранова Т.А., Нургалиев Н.Ш. Изучение фертильности и самофертильности у различных экотипов синей люцерны (M. sativa L.). Молодой ученый. 2014. № 1.2 (60.2). С. 34–37.
30. Посталатий А.А. Биологическое значение самонесовместимости у люцерны и использование её для получения гибридных семян. Сб. работ молодых учёных. Одесса. 1969. С. 42–45.
31. Иванова А.И. Методические указания по проведению самоопыления, гибридизации, учета самофертильности и автотриппинга у люцерны. Л., 1981. 16 с.
32. Дзюбенко Н.И. Использование автотриппинга в селекции люцерны. Тр. по прикл. бот. и сел. 1981. Т. 71. № 2. С. 87–94.
33. Квасова Э.В., Шумный В.К. Инибридирование люцерны. Изв. СО АН СССР. Сер. биол. науки. 1981. № 15/3. С. 80–85.
34. Квасова Э.В., Шумный В.К. О росте пыльцевых трубок и оплодотворении в завязях закрытых цветков люцерны при инбридинге. Изв. СО АН СССР. Сер. биол. наук. 1982. № 15/3. С. 62–68.
35. Бугайов В.Д., Васильківський С.П, Власенко В.А. та ін. Селекція багаторічних трав. Спеціальна селекція польових культур. За ред. М.Я. Молоцького. Біла Церква, 2010. С. 342–362
36. Staszewski Z. Badania nad hiterozja lucerny. Biul. Inst. Hod. I klim. Rosl. 1972. № 5–6. P. 157.
37. Абубекеров Б.А. Комбинационная способность сортов люцерны по облиственности растений. IV съезд Всесоюзного общества генетиков и селекционеров им. Н. И. Вавилова. Кишинев: Штиица, 1982. Ч. 2. С. 7–8.
38. Юсупов Ю.Б., Каражанова Ю.Б., Куатбаев О.К. Об итогах селекции люцерны в Кара-калпакии. Сел. и семеноводство. 1982. № 8. С. 21–22.
39. Аубакиров К.А. Ценные формы посевной люцерны для селекции. Селекция и семеноводство. 1972. № 6. С. 72–73.
40. Аубакиров К.А. Некоторые биологические особенности и хозяйственные признаки коллекции люцерны посевной в условиях предгорной зоны Алма-Атинской области. Вестн. с-х науки Казахстана. 1973. № 1. С. 35–35.

41. Vondracek J., Rod J. Improvement of selection decisions in lucerne breeding. Sci. agr. bohemols. 1986. 18. № 3. Р. 181–184.

42. Зинченко Б.С., Ткаченко І.К., Ладижинская Н.В. Селекционно-семеноводческая рабо-та с многолетними травами на Полтавской опытной станции. Селекция и семеноводст-во многолетних трав: Тезисы докл. Киев, 1974. С. 16–19.

43. Шумный В.К., Квасова Э.В. Изменение самофертильности клоун люцерны в разных условиях выращивания. Изв. СО АН СССР. 1971. № 10. Вып. 2. С. 60–64.

44. Бобер А.Ф., Корягин О.М., Повидало М.В. Форма бобу, її генетика і зв'язок з умовами поширення і продуктивністю виду люцерна. Вісник аграрної науки. 2009. №4. С. 40–43.

References
1. Petrychenko VF. Actual problems of feed production in Ukraine. Visnyk ahrarnoi nauky. 2010; 10: 18–21.
2. Bober A. Genetics of breeding systems and breeding to increase the seed productivity of buckwheat and alfalfa. [dissertation]. Kyiv (Ukraine), 1989.
3. Bober AF, Koriagin OM, Povydalo MV. Alfalfa breeding using self-compatibility genes and genetic markers. Zemledelie i selekcija v Belarusi. 2014; 50: 316–329.
4. Zharinov BI. The main ways of development of alfalfa seed production. Visnyk silskogospodarskoi nauky. 1980; 11: 30–34.
5. Mamalyga VS, Chumak AA. Source material for the selection of alfalfa varieties for various household purposes. IV Congress of the All-Union Society of Geneticists and Breeders named after N.I. Vavilov. 1981; 4: 41–42.
6. Vereshchagina VA, Koliasnikova NL, Novoselova LV. Reproductive biology of species of the genus Medicago L. Perm: Izdatelstvo Permskogo universiteta, 2004. 226 p.
7. Ponomarev AN. Ecology of flowering and pollination of cereals and alfalfa. Botanicheskiy zhurnal. 1954; 39(5): 706–720.
8. Goloborodko SP, Bodnarchuk LI. Alfalfa seed production. Kyiv: Fitosotciotcentr, (1998). 171 p.
9. Yakovlev IV. Species composition of pollinators alfalfa agroecosis their daily activity on the right banksteppe of Ukraine. Lubyani ta tekhimichni kultury. 2015; 4: 104–109.
10. Bashkirova NV, Hlybovets AO. Assessment of new self-fertile breeding samples of lucerne (Medicago sativa L.). Sortovychnina ta okhorona prav na soryt roslyn. 2014; 1: 10–14. DOI 10.21498/2518-1017. 1(22).2014.56287.
11. Kovalenko VI, Shumnyj VK. Tripping and seed productivity in perennial species of Medicago L. alfalfa with free flowering and pollination. Informatsionnyi Vestnik VOGilS. 2008; 12(3): 740–748.
12. Koncharov PL, Lubneti PA. Biological aspects of alfalfa cultivation. Novosibirsk, 1985. 255 p.
13. Tsarev AP, Tsareva MA. Agrobiological basis for the formation of highly productive agrophytocenes of alfalfa for fodder and seeds in the Volga region. Saratov, 2010. 261 p.
14. Tkachenko IK, Dymacheva EV, Babenkov VL, Voronkina TI. Problems and tasks of autogamy in alfalfa. Nauchnye Izvestija Belgorodskogo gosudarstvennogo universiteta. 2008; 3(43): 60–68.
15. Blagoveshchenskaya NN. About the structure and pollination of lucerne flower. Botanicheskiy zhurnal. 1968; 53(9): 1246–1253.
16. Zinchenko OL, Koroteiev AV, Kalenska SM. et al. Plant growing. In: O. Zinchenko, editor. Vinnyca, 2008. 536 p.
17. Koperzhinskiy VV, Shchibria AA. Flowering biology and seed formation of alfalfa. Liutserna. 1950. P. 181–194, 194–211.

146
18. Neprina LI. Alfalfa embryology materials. Uchenie Zapiski Molotovskogo GU imeni AM. Gorkogo. 1956; 10(1): 135–142.
19. Orel LI, Ivanov AI, Konstantinova LN, Dziubenko NI. Determination of the potential fertility of alfalfa ovaries in connection with seed productivity. Buleten VIR. 1983; 131: 56–58.
20. Pestova TM. Cytoembryological features of alfalfa synhybrid. Citologia i genetika. 1982; 16(3): 26–30.
21. Busbice TH. Effect of inbreeding on fertility in *Medicago sativa* L. Crop Sci. 1968; 8(2): 231–324.
22. Cooper DC, Brink RA. Partial self-incompatibility and the collapse of fertile ovules as factors affecting seed formation in alfalfa. J. Agr. Res. 1940; 60: 453–472.
23. Sayers ER, Murphy RP. Seed set in alfalfa as related to pollen tube, growth, fertilization. Crop Sci. 1966; 6(3): 365–368.
24. Sangduen N, Sorensen EL, Liang GH. Pollen germination and pollen tube growth following self-pollination and intra- and interspecific pollination of *Medicago* species. Euphytica. 1983; 32(2): 527–534.
25. Fegri K, van der Pjejl L. The principles of pollination ecology. In: LV Kovaleva, YeL Miliaeva, trans. Moscow: Mir, 1982. 377 p.
26. Cooper DC, Brink RA, Albrecht HR. Embryo mortality in relation to seed formation in alfalfa (*Medicago sativa*). Amer. J. Bot. 1937; 24(4): 203–213.
27. Dorofeev VD. Guidelines for the selection of alfalfa plants with high fertility of ovaries. Leningrad, 1985. 34 p.
28. Diukova NN, Kharalgin AS. Aspects of alfalfa seed production in the northern trans-urals. Agrarnyi vestnik Urala. 2017; 02(156): 33–36.
29. Turganova TA, Nurgaliev NSh. The study of fertility and self-fertility in various ecotypes of blue alfalfa (*M. sativa* L.). Molodoy uchenyi. 2014; 1.2(60.2): 34–37.
30. Postolatyi AA. The biological significance of self-incompatibility in alfalfa and its use for hybrid seeds. Sbornik rabot molodyh uchjonyh. 1969. P. 42–45.
31. Ivanova AI. Guidelines for self-pollination, hybridization, accounting for self-fertility and autotripping in alfalfa. Leningrad, 1981. 16 p.
32. Dziubenko NI. The use of autotripping in the selection of alfalfa. Trudy po prikladnoy botanike, genetike i selekcii. 1981; 2: 87–94.
33. Kvasova YeV, Shumnyi VK. Inbreeding in alfalfa. Izvestiia SO AN SSSR, ser. biologicheskikh nauk. 1981; 15(3): 80–85.
34. Kvasova YeV, Shumnyi VK. About the growth of pollen tubes and fertilization in the ovary of closed alfalfa flowers during inbreeding. Izvestiia SO AN SSSR, ser. biologicheskikh nauk. 1982; 15(3): 62–68.
35. Bughajov VD. Selection of perennial herbs. In: Molocjkyi M, editor. Specialna selekciia poliovykh kultur. Bila Cerkva, 2010. P. 342–362.
36. Staszevski Z. Badania nad hiterozja lucerny. Biul. Inst. Hod. I klim. Rosl. 1972; 5–6: 157.
37. Abubekerov BA. The combining ability of alfalfa varieties by leafy plants. IV Congress of the All-Union Society of Geneticists and Breeders named after N.I. Vavilov. 1982; 2: 7–8.
38. Yusupov YuB, Karazhanova YuB, Kuatbaev OK. On the results of alfalfa selection in Karakalpakstan. Selekciiia i semenovodstvo. 1982; 8: 21–22.
39. Aubakirov KA. Valuable forms of sowing alfalfa for selection. Selekciiia i semenovodstvo. 1972; 6: 72–73.
40. Aubakirov KA. Some biological features and economic characteristics of the alfalfa collection in the foothill zone of the Alma-Ata region. Vestnik selskokhosiasistvennoy nauki Kazahstana. 1973; 1: 30–35.
41. Vondracek J, Rod J. Improvement of selection decisions in lucerne breeding. Sci. agr. bohemols. 1986; 18(3): 181–184.
42. Zinchenko BC, Tkachenko IK, Ladyzhinskaja NV. Breeding and seed-growing work with perennial grasses at the Poltava experimental station. Selekciiia i semenovodstvo mnogoletnikh trav. Proceed. Confer. Kyiv, 1974. P. 16–19.
44. Bober AF, Koriagin OM, Povydalo MV. Pod form, its genetics and connektion with the spreading conditions and lucerne species productivity. Visnyk ahrarnoi nauky. 2009; 4: 40–43.

БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ОПЫЛЕНИЕ И ФОРМИРОВАНИЯ СЕМЕНА MEDICAGO SATIVA L., ИХ ВЛИЯНИЕ НА ОТБОР ВЫСОКОПРОИЗВОДИТЕЛЬНОГО ИСХОДНОГО МАТЕРИАЛА

Повыдало М.В., Корягин О.М., Остапец Т.А., Кургак В.Г.
Национальный научный центр «Институт земледелия НААН», Украина

На основании анализа научных трудов обобщена информация, касающаяся биологических особенностей опыления и формирования полноценных семян Medicago sativa L. как важной кормовой энтомофильно-перекрёстноопылительной культуры. Несмотря на высокий потенциал, обусловленный биологическими особенностями люцерны, проблематичным является получение высокого урожая семян, зависящего от особенностей строения цветка, опыления, прохождения эмбрионального периода онтогенеза и погодных условий в период цветения. Приведены основные причины, влияющие на дегенерацию семенных зачатков. Предложены пути повышения семенной продуктивности сортов люцерны, в особенности проведение предварительной оценки, а также отбора исходного селекционного материала по элементам семенной продуктивности и уровню проявления автогами.

Ключевые слова: люцерна, селекция, опыление, семенная продуктивность, самосовместимость, оценка.

BIOLOGICAL FEATURES POLLINATION AND FORMATION OF SEEDS OF MEDICAGO SATIVA L. THEIR INFLUENCE ON THE SELECTION OF HIGH-PERFORMANCE ORIGIN MATERIAL

Povydalo M.V., Koryagin O.M., Ostapets T.A., Kurgak VG.
National Research Center "Institute of Agriculture NAAS", Ukraine

On the basis of the processed scientific papers, information was summarized regarding the biological characteristics of pollination and the formation of full-fledged seeds of Medicago sativa L. as an important forage entomophilous-cross-pollinated crop. Despite the high potential due to the biological characteristics of alfalfa, it is problematic to obtain a high yield of seeds, depending on the structural features of the flower, pollination, the passage of the embryonic period of ontogenesis and weather conditions during the flowering period. The main reasons that affect the degeneration of seed buds are given. The ways of increasing the seed productivity of alfalfa varieties are proposed, in particular, a preliminary assessment, as well as selection, of the initial breeding material for the elements of seed productivity and the level of manifestation of autogamy.

Key words: alfalfa, selection, pollination, seed productivity, self-compatibility, assessment.