MEETING REPORT
Meeting Report—3rd Neuroblastoma Research Symposium, Liverpool, 6–7th November, 2013

Emma Bell, BSc, PhD,1 Lindi Chen, BSc, PhD,2 Virginie F. Viprey, BSc, MSc, PhD,3 and Guy B. Blanchard, MA, MSc, PhD4*

Neuroblastoma is an embryonal malignancy of the developing neural crest. Despite improvements in treatment, prognosis remains dire for patients with high-risk disease. Interest in this enigmatic cancer has led to a rapidly changing research landscape and we report on the recent advances in four themes that were discussed at the 3rd Neuroblastoma Research Symposium: (1) The epigenetic signature of neuroblastoma and the epigenetic control of tumour development, (2) novel approaches to targeting MYCN, (3) valuable in vivo modelling and (4) improving differentiation therapies based on a knowledge of normal sympathetic neuron development. Through lively discussion, the development of combined therapies with synergistic effects for which we have a good mechanistic understanding emerged as offering greatest promise. Drug synergies enhance efficacy but also specificity, the latter crucial for reducing long-term side effects in young children. Pediatr Blood Cancer 2014; 61:1711–1713. © 2014 Wiley Periodicals, Inc.

Key words: animal models; differentiation therapy; epigenetics; MYCN; neuroblastoma

THE ROLE OF MYCN IN CHILDHOOD CANCERS

Historically, inhibiting MYC proteins with small molecules has proved difficult due to the complex nature of targeting transcription factor protein–protein and protein–DNA interactions. Evon Poon (Institute of Cancer Research) presented an elegant study describing how MYCN-amplified neuroblastoma cells depend on Aurora kinase A (AURKA) to protect MYCN from FBW7 mediated degradation. AURKA inhibitors promote conformational changes within the kinase domain of AURKA, blocking MYCN binding and destabilising the oncoprotein [4]. Disruption of MYCN activity in MYCN-amplified neuroblastoma cells induces growth arrest, differentiation and apoptosis. Marie Arsenian Henrikkson’s group (Karolinska Institute) have shown that MYCN knockdown or inhibiting the MYCN–MAX interaction using the inhibitor 10058-F4 induces the formation of lipid vesicles in the cytoplasm of neuroblastoma cells. Proteomic analysis revealed that reduction of MYCN leads to a decrease in respiratory chain and β-oxidation of fatty acids associated proteins [5]. Targeting MYCN activity with small molecule inhibitors requires a comprehensive model of both the mechanisms governing MYCN protein stability and the pathways influencing MYCN inhibition. MYCC and MYCN are oncogenic drivers in medulloblastoma, a childhood tumour of the cerebellum. Steve Clifford (Newcastle

1Neuroblastoma Genomics, German Cancer Center (DKFZ), Heidelberg, Germany; 2Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK; 3Institute of Cancer Therapeutics, University of Bradford, Bradford, UK; 4Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

Grant sponsor: The Neuroblastoma Society
Emma Bell, Lindi Chen, Virginie F. Viprey contributed equally to this work.

Conflict of interest: Nothing to declare.

*Correspondence to: Dr. Guy Blanchard, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK. E-mail: gb288@cam.ac.uk

Received 26 February 2014; Accepted 7 April 2014
University) explained that while MYCC amplification is strongly associated with poor prognosis, the significance of MYCN amplification for prognosis is dependent on additional factors, such as metastatic status [6]. Over-expression of MYC has paradoxical effects on cancer cells: driving proliferation and sensitising cells to apoptosis. Current studies targeting MYCN do not address how to inhibit MYCN driven proliferation without protecting cells from apoptosis. Future studies must precisely define the relevant pathways downstream of MYCN and aim for a comprehensive understanding of how developmental differences and additional risk factors influence the aggressiveness of MYCN driven malignancies.

Alongside MYCN, novel targets presented at the meeting included TAK1, Wee1 and PI3 kinase (Daniel Morgenstern, GOSH), BRD4 (Emma Bell, DKFZ) and p53-MDM2 antagonists as inhibitors of MDR-1 (Lindi Chen, Newcastle University). Taken together, these presentations had a clear message: Future successful treatment of neuroblastoma depends on intelligent design of drug combinations.

IN VIVO NEUROBLASTOMA MODELS

Getting a new drug into clinical trial requires proof-of-response in preclinical animal models. Laura Danielson (Institute of Cancer Research) provided an overview of transgenic neuroblastoma murine models. The TH-MYCN mouse was the first and is now well-established [7]. With advances in technology and the identification of further genetic/biological aberrations in neuroblastoma, additional transgenics are emerging (e.g. ALK
\(^{F1147E}\), LIN28B, Caspase-8 deficient, MYCN/NCYM) [8–12]. The utility of the ALK model is of particular interest as ALK is a novel therapeutic target in neuroblastoma. Suzanne Turner (University of Cambridge) presented an overview of the well-established ALK induced mechanisms in Anaplastic Large Cell Lymphoma (ALCL) and an encouraging example of how the NPM-ALK transgenic mouse enabled the successful treatment of a relapsed ALCL patient with Imatinib [13].

A major limitation of neuroblastoma murine models has been the lack of distant metastases; however both the caspase-8 deficient and MYCN/NCYM models appear to have overcome this and may prove highly useful in the future. Louis Chesler’s group (Institute of Cancer Research) are establishing a doxycycline-regulatable MYCN-off model that will enable greater control and understanding of MYCN during neuroblastoma tumourigenesis and oncogenic addiction.

Anti-GD2 immunotherapy is now routinely used in the clinic. Poster presentations at the symposium highlighted the ongoing efforts to enhance the efficacy of GD2 therapy by the co-administration of immune adjuvants. Juliet Gray (University of Southampton) discussed the importance of immunocompetent murine models, in view of the difficulties of recapitulating the immune microenvironment in vitro. The TH-MYCN murine model was found to be the most comparable with neuroblastoma patients with respect to GD2 expression and the immune environment. More specifically, TH-MYCN
\(^{+/−}\) mice are preferred over TH-MYCN
\(^{+/+}\) mice due to longer tumour latency, enabling the development of a more mature immune system. The narrow therapeutic window in which to assess immunotherapy strategies due to tumour burden has been a major challenge. To overcome this, Juliet Gray and colleagues use a sub-therapeutic dose of cyclophosphamide (40 mg/kg) to control tumour burden. The utility for studying immunotherapy of the new generation of transgenics remains to be established.

Violaine Sée (University of Liverpool) described the development of a metastatic model system in the chick embryo in which the behaviour and transport of fluorescently tagged neuroblastoma cells within the vascular system could be visualised. Cells with prior exposure to hypoxia were more likely to attach to vessel walls and invade local tissue, suggesting that hypoxia-activated genes could be therapeutic targets. Metastasis was also the focus of posters by Sue Burchill’s group (University of Leeds), who are isolating stem cell-like neuroblastoma cells that have disseminated to the bone marrow, and by Robert Falconer’s team (University of Bradford), who are developing inhibitors of the enzyme responsible for the production of cell-surface polysialic acid to reduce tumour cell dissemination [14].

Discussions focused on the need for models not involving MYCN, representing the different subgroups or stages of disease (pre-treatment, minimal residual disease, relapse), and whether a ‘murine models consortium’ should be established to help facilitate the development of such valuable research models. Further discussions touched on other cheaper models, primarily zebrafish, *Xenopus* frog and fruit fly, each of which offer something unique to cancer modelling, particularly for understanding conserved pathways affected in neuroblastoma. However novel routes to treatment would continue to require in vivo murine models.

DIFFERENTIATING NEUROBLASTOMA

The administration of 13-cis-retinoic acid (RA) induces neuroblastoma differentiation and leads to improved survival rates [15]. Gareth Veal (Newcastle University) demonstrated the importance of monitoring the ratio of parent drug to metabolite obtained in plasma and of subsequent adjustments to the second dosage of RA to achieve the specified therapeutic dose [16]. The need to consider carefully drug formulation when administered to children was discussed. Andrew Stoker (UCL) presented mechanisms for how oxovanadium compounds, protein tyrosine phosphatase inhibitors given to patients with diabetes, drive neuroblastoma differentiation and senescence in combination with RA [17].

Approaching neuroblastoma therapy with expertise from developmental biology, Marthe Howard (University of Toledo) and Anna Philpott (University of Cambridge) focused on Hand2 and ASCL-1, respectively. Both transcription factors are required for the differentiation of sympathetic neurons [18] and are implicated in aggressive neuroblastomas. The talks reported progress towards a mechanistic understanding of how neuronal differentiation occurs normally and hence how this process could be encouraged therapeutically in neuroblastoma. Marthe Howard showed that the key neuroblastoma genes MYCN, ALK and Phox2B are direct targets of Hand2, and that siRNA knockdown of Hand2 in cell lines led to a reduction in protein levels of all three. Hence Hand2 emerges with therapeutic potential.

Anna Philpott reported that both the amount of ASCL-1 and its phosphorylation by CDK2 control the fate of sympathetic neurons. Dephosphorylation of ASCL-1 leads to cell cycle exit and differentiation, both in normal development and in neuroblastoma cells, suggesting a mechanism for why CDK inhibitors are effective in neuroblastoma [19]. Through mechanisms that are not yet fully understood, RA works synergistically with CDK inhibition and potentially ASCL-1 dephosphorylation, with Hand2 knockdown and with oxovanadium compounds above. Understanding this
synergy could bring significant improvements to differentiation therapies that are urgently needed to reduce the risk of relapse.

CONCLUSION

Finding therapeutic synergies through a mechanistic understanding of how drug combinations affect neuroblastomas, and developing and testing these in a range of animal models, is the most promising route to improve current therapies. Therapeutic synergies will bring efficacy but also specificity to tumour cells, crucial for reducing long-term side effects in pediatric patients. A mechanistic understanding is essential for identifying the likely key pharmacokinetic measures that will allow precise monitoring of drug efficacy and patient differences in response. The 4th Neuroblastoma Research Symposium will be held in the autumn of 2015 in Newcastle, UK.

ACKNOWLEDGMENTS

With thanks to Mrs. Shirley Clark, Dr. Yvonne Boyd, Professor Debbie Tweddle for their help in organising the meeting, to The Neuroblastoma Society for funding the meeting, and to delegates for contributions to lively discussions.

REFERENCES

1. Maris JM. Recent advances in neuroblastoma. N Engl J Med 2010;362:2202–2211.
2. Pugh TJ, Morozova O, Attiyeh EF; et al. The genetic landscape of high-risk neuroblastoma. Nat Genet 2013;45:279–284.
3. Decock A, Ongenaert M, Hoebeck J; et al. Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers. Genome Biol 2012;13:R9.
4. Brockmann M, Poon E, Berry T; et al. Small molecule inhibitors of aurora-a induce proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell 2013;24:75–89.
5. Zirath H, Frenzel A, Oliynyk G; et al. MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc Natl Acad Sci USA 2013;110:10258–10263.
6. Ryan SL, Schwabte E, Cole M; et al. MYC family amplification and clinical risk-factors interact to predict an extremely poor prognosis in childhood medulloblastoma. Acta Neuropathol 2012;123:501–513.
7. Weiss WA, Aldape K, Mohagafia G; et al. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 1997;16:2995–2995.
8. Berry T, Luttrell W, Bhutania N; et al. The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell 2012;22:117–130.
9. Hryniewicz L, Thor T, Schramm A; et al. Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Sci Transl Med 2012;4:141ra191.
10. Molenaar J, Domingo-Fernandez R, Brous ME; et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat Genet 2012;44:1199–1206.
11. Tetz T, Inoue M, Valentine MB; et al. Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Res 2013;73:4086–4097.
12. Serna Y, Islam SM, Alapa J; et al. NCYM, a cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3beta resulting in the stabilization of MYCN in human neuroblastomas. PLoS Genet 2014;10:e1003996.
13. Laimer D, Dolz H, Kollmann K; et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat Med 2012;18:1699–1704.
14. Al-Saraireh YM, Sutherland M, Springer BR; et al. Pharmacological inhibition of polysialyltransferase ST6GalI modulates tumour cell migration. PLoS One 2013;8:e73366.
15. Matthews KR, Reynolds CP, Seegert BC; et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: A children’s oncology group study. J Clin Oncol 2009;27:1007–1013.
16. Vral GM, Errington J, Rowbotham SE; et al. Adaptive dosing approaches to the individualization of 13-cis-retinoic acid (isotretinoin) treatment for children with high-risk neuroblastoma. Clin Cancer Res 2013;19:469–479.
17. Clark O, Daga S, Stoker AW. Tyrosine phosphatase inhibitors combined with retinoic acid can enhance differentiation of neuroblastoma cells and trigger ERK- and AKT-dependent, p53-independent senescence. Cancer Lett 2013;328:44–54.
18. Reiter H. Transcriptional control of differentiation and neurogenesis in autonomic ganglia. Eur J Neurosci 2011;34:1563–1573.
19. Rader J, Roussey MB, Hart LS; et al. Dual CDK4/CDK6 Inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res 2013;19:6173–6182.