Supernova Neutrino Process and its Impact on the Galactic Chemical Evolution of the Light Elements

Takashi Yoshidaa, Toshitaka Kajinobc

aAstronomical Institute, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan
bNational Astronomical Observatory of Japan and The Graduate University for Advanced Studies, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
cDepartment of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

In order to resolve the overproduction problem of ^{11}B in supernova explosions during Galactic chemical evolution, the dependence of the ejected masses of the light elements produced through the ν-process in supernova explosions on supernova neutrino parameters is investigated and constraints on the supernova neutrinos are evaluated. Detailed nucleosynthesis in a supernova explosion model corresponding to SN 1987A is calculated by postprocessing. The ejected masses of ^{11}B and ^{7}Li depend strongly on the temperature of $\nu_{\mu,\tau}$ and $\bar{\nu}_{\mu,\tau}$ and are roughly proportional to the total neutrino energy. The range of temperature of $\nu_{\mu,\tau}$ and $\bar{\nu}_{\mu,\tau}$ appropriate for the amount of ^{11}B necessary for Galactic chemical evolution and the total neutrino energy deduced from the gravitational energy of a typical neutron star is between 4.8 MeV and 6.6 MeV. In the case of neutrino energy spectra with non-zero chemical potential, this range decreases by about 10%.

1. INTRODUCTION

Supernova explosions are one of the sites promoted for the production of light elements, Li, Be, and B, in Galactic chemical evolution (GCE), in addition to the Galactic Cosmic Rays (GCRs), AGB stars, and novae1. They continuously provide ^{7}Li and ^{11}B through the interactions of nuclei such as ^4He and ^{12}C with neutrinos emitted from a proto-neutron star. This synthesis process is called the ν-process2.

Overproduction of ^{11}B in supernovae is one of the standing problems in supernova nucleosynthesis and the GCE (e.g.,1). Previous works have indicated that the supernova contribution of ^{11}B production evaluated from supernova nucleosynthesis models3 is too large by a factor of $2.5 \sim 5.6$ to reproduce the GCE of the light elements; the factor depends on models of the GCE1,4,5. Most supernova nucleosynthesis calculations were carried out with a total neutrino energy of 3×10^{53} ergs and temperature of 8 MeV for $\nu_{\mu,\tau}$ and $\bar{\nu}_{\mu,\tau}$ and 4 MeV for ν_e and $\bar{\nu}_e$2,3. The supernova explosion mechanism has not been resolved, so the characteristics of the supernova neutrinos, especially their energy spectra, have not been fully determined6. Therefore, the light element amounts
have not been obtained from a specific neutrino model precisely determined by supernova explosion models. Therefore, we systematically investigate the dependence of the light element synthesis in supernova explosions on the supernova neutrinos. Furthermore, on the basis of the evaluated dependence and the results of the GCE of the light elements, we restrict the characteristics of the supernova neutrinos, such as their energy spectra.

2. SUPERNOVA EXPLOSION AND SUPERNOVA NEUTRINO MODELS

The neutrino luminosity is assumed to decrease exponentially with a decay time of $\tau_\nu = 3$ s as in \[2,3,7\]. The luminosity is equally divided into each flavor of neutrinos. The neutrino energy spectra are assumed to obey Fermi distribution with zero chemical potential. We set the temperature of $\nu_{\mu,\tau}$ and $\bar{\nu}_{\mu,\tau}$, T_ν, and the total neutrino energy E_ν as parameters. The ranges of T_ν and E_ν are 4.0 MeV $\leq T_\nu \leq 9.0$ MeV and 1.0×10^{53} ergs $\leq E_\nu \leq 6.0 \times 10^{53}$ ergs. These ranges include the neutrino temperatures adopted in previous studies \[3,7\] and the total neutrino energy range (2.4×10^{53} ergs $\leq E_\nu \leq 3.5 \times 10^{53}$ ergs) deduced from the gravitational energy of a ~ 1.4 M_\odot neutron star \[8\]. For the temperatures of ν_e and $\bar{\nu}_e$, we choose 3.2 MeV and 5.0 MeV \[7\]. With these neutrino temperatures, a successful r-process abundance pattern, an appropriate third-to-second peak ratio, has been obtained using a neutrino-driven wind model \[7\].

The supernova explosion is pursued using a spherically symmetrical Lagrangian PPM code with 13 element α-particle nuclear reaction network for energy generation \[9\]. The presupernova structure is adopted from a 16.2 M_\odot star corresponding to SN 1987A \[10\]. The explosion energy is set to be 1×10^{51} ergs and the mass cut is set to be 1.6 M_\odot. Detailed nucleosynthesis of the supernova explosion is calculated by postprocessing. The nuclear reaction network consists of 291 species of nuclei \[7\]. We interpolate the logarithmic values of the cross sections listed in \[11\].

3. RESULTS AND DISCUSSION

Figure 1 shows mass fraction distribution of light elements in the supernova ejecta. The light elements are mainly produced in the He/C layer and smaller amounts are in the inner O rich layer. We have shown that 7Li and 11B are produced through the ν-process reactions: 4He$(\nu, \nu'p)^3$H, 4He$(\nu, \nu'n)^3$He and α-captures in the He layer and 12C$(\nu, \nu'p)^{11}$B in the inner O rich layer \[7\]. They are partly destroyed by the capture of α-particles.

The ejected mass of 11B as a function of the temperature of $\nu_{\mu,\tau}$ and $\bar{\nu}_{\mu,\tau}$, T_ν, is shown in Fig. 2. The dependence of T_ν on the ejected mass is stronger than linear. Since the ejected mass is roughly proportional to E_ν \[7\], the dependence of T_ν is stronger than the E_ν dependence. This is because the dependence on the cross sections of the ν-process is larger than a linear dependence. The 11B ejected mass in the case of $E_\nu = 3 \times 10^{53}$ ergs and $T_\nu = 8$ MeV is consistent with that in \[3\] in spite of different values of T_{ν_e} and $T_{\bar{\nu}_e}$. Since T_{ν_e} and $T_{\bar{\nu}_e}$ are smaller than T_ν and neutral current interactions are important for the ν-process of the light elements, the difference of T_{ν_e} and $T_{\bar{\nu}_e}$ from \[3\] scarcely affects the ejected masses of the light elements \[7\].

We will apply the above results to GCE of the light elements. Recent studies of the GCE have indicated that both GCRs and supernovae contribute to the B production: 10B is produced through the GCRs and 11B is produced through the GCRs and SNe. In
order to reproduce meteoritic $^{11}\text{B}/^{10}\text{B}$ ratio (=4.05) at solar metallicity, the supernova contribution of ^{11}B is important since the $^{11}\text{B}/^{10}\text{B}$ ratio of the GCRs is 2.5 [11,12]. However, ^{11}B is overproduced in SN nucleosynthesis models [3] compared to the evaluation of the GCE. Prior evaluations of the GCE of the light elements give the overproduction factor f_ν to be 0.18 [4], 0.28 [5], and 0.40 [1]. Thus, we set the range of the factor appropriate for the ^{11}B amount in GCE to be $0.18 \leq f_\nu \leq 0.40$ as in [7]. The corresponding range of the ^{11}B ejected mass is $3.3 \times 10^{-7} M_\odot \leq M(^{11}\text{B}) \leq 7.4 \times 10^{-7} M_\odot$ (two horizontal lines of Fig. 2). We also restrict E_ν to be the gravitational energy of a typical neutron star (see §2) [8]. Finally, we obtain a shaded region satisfying both of the conditions of the ^{11}B mass and E_ν (see Fig. 2). The obtained range of T_ν is $4.8 \text{ MeV} \leq T_\nu \leq 6.6 \text{ MeV}$, which is smaller than 8 MeV in [8].

Our evaluation is carried out only in the case of SN 1987A, which corresponds to about 20 M_\odot star in ZAMS stage. For ^{11}B production, the ν-process reactions of ^4He in the He layer and ^{12}C in the O layer are important. It depends on the progenitor mass models which layer is more important. Fortunately, however, the neutrino temperature dependence does not change strongly in either ν-process reactions. Thus, the appropriate range of the neutrino temperature would be a good approximation for supernovae with different progenitor masses. The investigation of the dependence of the ^{11}B production on the neutrinos spectra for different progenitor mass is a future subject.
We briefly discuss the effect of non-zero chemical potential of the supernova neutrinos. Detailed discussion is written in [13]. Recent studies on the neutrino transfer during supernova explosions have indicated that the energy spectra of the supernova neutrinos approximately obey “pinched” Fermi-Dirac distribution rather than that with zero chemical potential [6]. In such a case, it is expected that the ejected masses of the light elements change since reaction rates of the \(\nu \)-process change. Hartmann et al. [14] discussed the effect of non-zero chemical potential assuming that cross sections of the \(\nu \)-process are proportional to the square of the neutrino energy. We generalize their discussion: we approximate the cross sections of the \(\nu \)-process to the \(\alpha \)th power law of the neutrino energy. Then, we evaluate the effect on the reaction rates of the \(\nu \)-process. The reaction rates of the \(\nu \)-process can be written as a function of the degeneration factor \(\eta_\nu = \mu_\nu/kT_\nu \) for given \(\alpha \) and the neutrino temperature \(T_\nu \), and increase by a factor of 1.4 \(\sim \) 1.5 in the case of \(\eta_\nu = 3 \) and of the \(\alpha \) range 4 \(\leq \alpha \leq 7 \) compared to that with \(\eta_\nu = 0 \). Since the ejected masses of \(^{11}\text{B} \) and \(^{7}\text{Li} \) are roughly proportional to the \(\nu \)-process reaction rates, they increase with the same factor. In this effect, the neutrino temperature range appropriate for the \(^{11}\text{B} \) amount in GCE should decrease in the case of non-zero chemical potential. In the case of \(\eta_\nu = 3 \), this range decreases by 10\% at most.

REFERENCES

1. B.D. Fields, K.A. Olive, E. Vangioni-Flam, and M. Cassé, ApJ 540 (2000) 930.
2. S.E. Woosley, D.H. Hartmann, R.D. Hoffman, and W.C. Haxton, ApJ 356 (1990) 272.
3. S.E. Woosley and T.A. Weaver, ApJS 101 (1995) 181.
4. R. Ramaty, R.E. Lingenfelter, and B. Kozlovsky, in Proc. IAU Symp. 198, The Light Elements and Their Evolution, ed. L. da Silva, M. Spite, and J.R. de Medeiros, Cambridge Univ. Press, Cambridge 51 (2000).
5. A. Alibés, J. Labay, and R. Canal, ApJ 571 (2002) 326.
6. M.Th. Keil, G.G. Raffelt, and H.-Th. Janka, ApJ 590 (2003) 971.
7. T. Yoshida, M. Terasawa, T. Kajino, and K. Sumiyoshi, ApJ 600 (2004) 204.
8. J.M. Lattimer and M. Prakash, ApJ 550 (2001) 426.
9. T. Shigeyama, K. Nomoto, H. Yamaoka, and F.-K. Thielemann, ApJ 386 (1992) L13.
10. T. Shigeyama and K. Nomoto, ApJ 360 (1990) 242.
11. R.D. Hoffman and S.E. Woosley, unpublished

http://www-phys.llnl.gov/Research/RRSN/nu_csbr/neu_rate.html

12. T.P. Walker, G.J. Mathews, and V.E. Viola, ApJ 299 (1985) 745.
13. T. Yoshida, T. Kajino, and D.H. Hartmann, Submitted to Phys. Rev. Lett. (2004).
14. D. Hartmann, J. Myers, S. Woosley, R. Hoffman, and W. Haxton, in ASP Conf. Ser. 171, LiBeB, Cosmic Rays and Related X- and Gamma-Rays, ed. R. Ramaty, E. Vangioni-Flam, M. Cassé, and K. Olive, ASP, San Francisco 235 (1999).