A model of three coupled wave guides and third order exceptional points

W D Heiss1,2 and G Wunner3

1Department of Physics, University of Stellenbosch, 7602 Matieland, South Africa
2National Institute for Theoretical Physics (NITheP), Western Cape, South Africa
3Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70 569 Stuttgart, Germany

E-mail: dieter@physics.sun.za and wunner@itp1.uni-stuttgart.de

Received 16 March 2016, revised 14 October 2016
Accepted for publication 26 October 2016
Published 17 November 2016

Abstract

A \mathcal{PT}-symmetric model for three interacting wave guides is investigated. Each wave guide is represented by an attractive δ-function potential being in equidistant positions. The two outer potentials are complex describing loss and gain, respectively. The real parts of the outer potentials are assumed to be equal. The major focus of the study lies on the occurrence of an exceptional point of third order and the physical effects of such singularity. While some results resemble those from similar studies with two wave guides, the three wave guides appear to have a richer structure. Emphasis is placed on the fine tuning in the approach of the EP3 as this appears to be a particular challenge for an experimental realization.

Keywords: wave guides, exceptional points, \mathcal{PT} symmetry

(Some figures may appear in colour only in the online journal)

1. Introduction

Exceptional points are points in the parameter space of a physical system where both eigenvalues and eigenvectors coincide. They can occur only for non-Hermitian operators. Exceptional points appear in particular in \mathcal{PT}-symmetric systems which are symmetric under the combined action of parity inversion and time reversal. In a ground-breaking paper in 1998 Bender and Boettcher [1] demonstrated that \mathcal{PT}-symmetric non-Hermitian Hamiltonians can have real eigenvalues, and that eigenstates coalesce at exceptional points when the symmetry is broken. Since then there has been a host of papers discussing \mathcal{PT} symmetry in a diversity of physical systems, involving microwave cavities, superconductivity, atomic diffusion,
nuclear magnetic resonance, coupled classical and electronic oscillators, and in particular in optics (see, e. g., [2–4] and references therein).

In a seminal paper in 2008, Klaiman et al [5] proposed the experimental visualization of exceptional points of second order in a system of two coupled \(\mathcal{PT} \)-symmetric wave guides. Their model consists of two wave guides in which the refractive index differs from that of the background substrate \((n_0) \) by a small amount \(\Delta n \), and imaginary parts \(\pm \gamma \) of equal size but opposite sign are introduced in the guides. Their predictions received convincing confirmation 2010 in the experiment by Rüter et al [6], when the coalescence of two wave guide modes at a branch point of second order was observed, when gain and loss were increased up to a critical value. In the experiment, loss is realized by pasting a metal on one wave guide, and gain by pumping laser light on the other.

The present paper goes beyond these investigations and explores the possibility of observing exceptional points of higher order, i.e. the coalescence of more than two modes in multi wave guide systems. Specifically, as a natural next step we consider a \(\mathcal{PT} \) triple wave guide system and search for the physical conditions under which an exceptional point of third order (EP3) could be observed. The effects of exceptional points of higher order in particular of third order (EP3s), have received increasing attention in recent years [7–15]. Extending the model by Klaiman et al [5] we place a third wave guide between the guides with gain and loss, but with only a real part of the refractive index that may be different from that of the outer wave guides.

We make use of the formal analogy between the equation of electrodynamics in paraxial approximation governing the propagation of waves and the one-dimensional Schrödinger equation of quantum mechanics. In this analogy the propagation direction of the waves (usually the \(z \) direction) is supplanted by time, and the refractive index \(n(x) \) is replaced by the potential \(V(x) = -k_0^2 n^2(x) \), where \(k_0 \) is the vacuum wave number. Thus the equivalent quantum mechanical problem is that of two potential wells of equal depth and the same amount of gain in one and loss in the other, and a third well with only a real-valued potential of different depth between them.

To gain insight we simplify the problem further and model the potential wells by three delta functions. Delta-function potentials are popular as model systems in the literature [16–24], since they allow for analytic or partially analytic solutions, but are flexible enough to provide insight into characteristic phenomena of the more complex physical situations. Our model is expected to capture the essential features of the real, i.e. experimental problem, and may serve as a guide for the search of higher exceptional points in real multi wave guide systems. In fact, our findings point to high sensitivity in the parameters near to the EP3. In particular it is argued that, in contrast to the case of an EP2, a close approach of an EP3 cannot be achieved with only one real parameter. We hope that our findings can serve as a guide in an experimental effort to show that an EP3 is a physical reality.

2. The model for three wave guides

We model a \(\mathcal{PT} \)-symmetric system of three coupled wave guides by three delta-function shaped potential wells located at \(x = \pm b \) and \(x = 0 \), where loss is added to the left well while the same amount of gain is added to the right well. The connection to realistic wave guides is established in appendix C. The corresponding Schrödinger equation used in the present paper reads:

\[
-\Psi''(x) - [(1 + i\gamma)\delta(x + b) + \Gamma\delta(x) + (1 - i\gamma)\delta(x - b)]\Psi(x) = -k^2\Psi(x). \tag{1}
\]
The real-valued parameter γ determines the strength of the gain and loss terms. Units have been chosen in such a way that the strength of the real part of the two outer delta-function potentials is normalized to unity, while in the middle well we allow for a different depth given by the real parameter $\Gamma > 0$. For stationary solutions the eigenvalues k are real, but since the complete eigenvalue spectrum is complex in general, we will also consider solutions with $k \in \mathbb{C}$, $\Re(k) > 0$. Yet our major emphasis is focused upon the bound state solutions with real eigenvalues.

The bound-state wave function has the form (see also appendix A):

$$
\Psi(x) = \begin{cases}
A e^{kx} & : x < -b \\
2(r \cosh(kx) + \varphi_1 \sinh(kx)) & : -b < x < 0 \\
2(r \cosh(kx) + \varphi_2 \sinh(kx)) & : 0 < x < b \\
B e^{-kx} & : b < x.
\end{cases}
$$

Applying at the delta functions the continuity conditions for the wave functions and the discontinuity conditions for their first derivatives we obtain the system of linear equations for three unknowns

$$
\mathcal{M} \begin{pmatrix} r \\ \varphi_1 \\ \varphi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$

(2)

with the matrix

$$
\mathcal{M} = \begin{pmatrix}
\kappa_0 e^{-2kb} + \kappa_0 - 2k & \kappa_0 e^{-2kb} - \kappa_0 + 2k & 0 \\
\kappa_0 e^{-2kb} + \kappa_0 - 2k & 0 & -\kappa_0 e^{-2kb} + \kappa_0 - 2k \\
-\Gamma & k & -k
\end{pmatrix}
$$

where $\kappa_0 = 1 + i\gamma$. The remaining coefficients A and B are related to r, φ_1, φ_2 by $A = r(1 + e^{2kb}) + \varphi_1(1 - e^{2kb}), B = r(1 + e^{2kb}) + \varphi_2(e^{2kb} - 1)$.

The eigenvalues k are obtained by finding the roots of the corresponding secular equation

$$
\det(\mathcal{M}) = \Gamma(e^{-4kb}(1 + \gamma^2) - 2e^{-2kb}(\gamma^2 - 2k + 1) + \gamma^2 + (2k - 1)^2) + 2k(e^{-4kb}(1 + \gamma^2) - \gamma^2 - (2k - 1)^2) = 0.
$$

(4)

The roots depend on three parameters, the distance b of the wells, the strength γ of the loss/gain terms, and the depth Γ of the middle well.

It is instructive to consider the limit $kb \gg 1$, i.e., no coupling between the modes. Then (4) simplifies to

$$
[\gamma^2 + (2k - 1)^2](\Gamma - 2k) = 0
$$

(5)

with the solutions $k_1 = \Gamma/2$ and $k_{2,3} = (1 \pm i\gamma)/2$. This means that the middle well retains its unperturbed eigenvalue, while the eigenvalues of the outer wells acquire an imaginary part, corresponding to the exponential growth and decrease of the gain and loss mode, respectively. This demonstrates that \mathcal{PT} symmetric modes can exist only when there is sufficient coupling between the wave guides.

Within the present context the case $\gamma = 0$ requires special treatment for the eigenvector of the intermediate (in size), i.e. second eigenvalue k_2. In fact, the explicit values for $\varphi_1^{(2)}, \varphi_2^{(2)}$ obtained for $\gamma > 0$ blow up when $\gamma \to 0$ (see appendix B). It is related to the fact that in the limit $\gamma \to 0$, the determinant of \mathcal{M} (see (4)) factorizes as
which for the second root implies\(e^{-2k_2b} + 2k_2 - 1 = 0 \). Note that this second eigenvalue—yielding the relation \(b = -\log((1 - 2k_2)/(2k_2)) \)—is independent of \(\Gamma \). Inserting this expression for \(b \) into that for \(\rho_{1,2}^{(2)} \) we obtain the expansion

\[
\rho_{1,2}^{(2)} = -i \frac{1 - 2k_2}{k_2} \pm \frac{1 - k_2}{k_2} + O(\gamma^2)
\]

and hence

\[
\lim_{\gamma \to 0} \gamma \rho_{1,2}^{(2)} = -i \frac{1 - 2k_2}{k_2}
\]

Figure 1. Top: eigenvalues \(k \) of the three bound states as a function of \(\gamma \) for the underlying model for \(b = 6.1 \). The two larger eigenvalues coalesce at \(\gamma = 0.06522 \) to form an EP2; they become complex for still larger values of \(\gamma \). Bottom: to avoid the three eigenvalues from becoming complex for \(\gamma \leq \gamma_{\text{EP3}} \) the values of \(b \) have to be adjusted; intermediate values are shown for \(b = 6.14 \) at \(\gamma = 0.0635 \) and \(b = 6.2075 \) at \(\gamma = 0.065 \). The EP3 is indicated by a red dot, its numerical values are given in the text. Note that the curves of the bottom figure coincide with those of the top for \(0.05 \leq \gamma \leq 0.06 \). \(\Gamma \) is kept fixed at 1.002 for all points.
The essential finding is the factor $-i$ for this second eigenvector in the limit $\gamma \to 0$. As we see in the following section it is due to this factor that we obtain a smooth dependence on γ also for the eigenvector associated with the second eigenvalue.

3. Results and discussion

3.1. Eigenvalues

For $\gamma = 0$ the model is Hermitian, i.e. we expect three real eigenvalues. Owing to the underlying PT symmetry we expect real eigenvalues for some range $\gamma > 0$ until we reach a coalescence of at least two eigenvalues where two eigenvalues become complex at an EP2. Such value depends on the other parameters b and Γ. Here we seek these parameters in such a way that the triplet of the three (real) parameters (γ, b, Γ) leads to the coalescence of all three levels, i.e. to an EP3.

$\lim_{\gamma \to 0} \gamma \begin{pmatrix} r^{(2)} \\ e_1^{(2)} \\ e_2^{(2)} \end{pmatrix} = -i \frac{1}{k_2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$

The essential finding is the factor $-i$ for this second eigenvector in the limit $\gamma \to 0$. As we see in the following section it is due to this factor that we obtain a smooth dependence on γ also for the eigenvector associated with the second eigenvalue.
Let us recall that if a non-Hermitian Hamiltonian has an EP3 at a real eigenvalue a change of only one parameter would result in the sprouting out of three coalescing eigenvalues in a symmetric way meaning that at most one eigenvalue can be real while the other two will be complex. In other words, to achieve the coalescence of three real eigenvalues at least two parameters have to be judiciously chosen. It is at this point where we would expect the need for a careful fine-tuning in an experimental realization.

In figure 1 two sets of the three eigenvalues are illustrated as a function of γ for $\Gamma = 1.002$, they are given by the roots of $\det(M)$ (see (4)). The rather weak dependence on γ of the eigenvalues—except within the near neighborhood of the EP3—is due to the fairly large value of b: the states interact weakly. The position of the EP3 is determined by at least two real parameters, we have chosen γ and b for fixed Γ. To find the EP3 and ensure the

Figure 3. Temporal evolution of a superposition of the three stationary solutions for increasing non-hermiticity parameter. Top left: $\gamma = 0, b = 6.1$, height of contour lines from 0.6 to 0.1, top right: $\gamma = 0.06, b = 6.1$, height of contour lines from 9 to 1, bottom: $\gamma = 0.65, b = 6.2075$, close to the EP3, height of contour lines from 16 000 to 2000.
realities of all three eigenvalues for the whole interval $0 \leq \gamma \leq \gamma_{\text{EP3}}$, the second parameter b must be judiciously varied as well. For $\Gamma = 1.002$ the values at the EP3 are $\gamma_{\text{EP3}} = 0.065278$, $b_{\text{EP3}} = 6.20124$, $k_{\text{EP3}} = 0.495849$. The verification of the EP3 can be achieved numerically: (1) use for the values γ and Γ the values just given at the EP3 and find the (complex) zeros for a first round with $b = 6.20124 + 0.00001 \exp(2i\pi n/50)$ for $n = 0, \ldots, 50$ to obtain the first third of a (possibly slightly deformed) circle around k_{EP3} with a suitable initial value for k, (2) to obtain the second and third section of the closed curve around k_{EP3} use the same procedure with judiciously chosen initial values for k. This way one obtains the full encircling in the k-plane by going three times around b_{EP3} in the b-plane.
3.2. Wave functions

Some wave functions are illustrated for a few values of γ in figure 2. The continuous change is clearly visible when γ is switched on. For real eigenvalues, in line with the underlying \mathcal{PT}-symmetry, the real part of the wave function must be symmetric and the imaginary part accordingly antisymmetric. This is the case when the factor $-i$ is applied as discussed at the end of section 2. Note the increasing imaginary part of the wave functions associated with the largest and smallest eigenvalues for increasing γ while it is the real part that is increasing for the intermediate eigenvalue. Near to the EP3 the wave functions become essentially equal as expected. Since we deal with a non-Hermitian Hamiltonian we must use the c-norm given by $\langle \hat{\Psi} | \Psi \rangle$ (with $\langle \hat{\Psi} |$ being not the complex conjugate of $|\Psi\rangle$ but, in this case, rather its equal). Also note that the norms, when taken separately for the real and imaginary part, become comparable for $\gamma \gg \gamma_{\text{EP3}}$; in fact their respective c-norms (being the difference of the respective separate norms) vanish at the EP3 as can be noticed by the increasing scale of the wave function.

3.3. Time evolution

The time evolution of the wave functions is given by

$$|\Psi(t, x)\rangle = \sum_{i=1}^{3} c_i |\Psi_i(x)\rangle \exp(i k_i^2 t)$$

(10)

with $c_i = \langle \hat{\Psi}_i | \Psi(t = 0) \rangle$ determining an initial condition. Note that here the c-norm is of utmost importance. The modulus squared of (10) yields the intensity within the respective potential wells as a function of t and x. The illustration in figure 3 displays the results for different parameter sets.

Note the different time scales. Also note the different scales of the heights of the contours owing to the decreasing c-norm. What becomes immediately obvious is the increase of the repeat time of the maxima with increasing γ. Note that we cannot expect strict periodicity as the three eigenvalues are likely to be incommensurate. What is observed here is the beat produced by the three eigenenergies. They are fairly distant for $\gamma = 0$ yielding a short beat time. In contrast, they are very near to each other for $\gamma = 0.065$ yielding a very long beat time. Except for $\gamma = 0$ the pattern is virtually independent of some initial conditions: the system has ‘its own life’, irrespective of the way it is triggered. This aspect is particularly pronounced in the vicinity of the singularity. We mention that very close to the EP3 the detailed pattern depends somewhat on the path in the two parameter plane by which the EP3 is approached while the gross features prevail.

For different choices of b and Γ an EP3 can be found up to $\Gamma = 1.11$, see figure 4. For values of $\Gamma > 1.002$, γ_{EP3} becomes larger while b_{EP3} becomes smaller. However, the qualitative patterns remain similar in that substantial changes happen only close to the EP3. For small values of b (and $\gamma \ll \gamma_{\text{EP3}}$), the levels are rather distant due to the stronger coupling. This is why a larger value of γ is needed to force the three levels together. But again, the levels depend weakly on the increasing γ, that is figures 1–3 remain qualitatively unchanged. The very first point in figure 4 is for $\Gamma = 1.000001$ as, by the discussion at the end of section 2, b_{EP3} tends to infinity for $\Gamma \to 1$.
4. Summary and outlook

Using a simple \mathcal{PT}-symmetric model for the interaction of three wave guides an exceptional point of third order can be identified for a certain parameter range. Some of the features found are qualitatively reminiscent of similar investigations for two interacting wave guides and an EP of second order. The time dependent pattern (being actually the mode pattern along the extension of the wave guides) shows the characteristic pattern of more and more distant intensity maxima when the spectral singularity is approached.

The new aspect of the present paper is the much increased sensitivity of parameter dependence in the approach of the EP3. Moreover, in the close approach of the EP3 the three eigenvalues cannot be real if only one real parameter is tentatively used. In fact, if an experiment would be attempted with only one parameter two of the three closely lying eigenvalues would infallibly form an EP2 and then disappear into the complex plane. In other words, at least two parameters must be tuned carefully to force three real eigenvalues into an EP3 and thus visualize the expected pattern. While this constitutes a great challenge for experimentation we feel that the present paper could give some guidance.

Along this line, an experimental verification of an EP of even higher order would be accordingly more demanding.

Acknowledgments

WDH and GW gratefully acknowledge the support from the National Institute for Theoretical Physics (NITheP), Western Cape, South Africa. GW expresses his gratitude to the Department of Physics of the University of Stellenbosch where this work was carried out.

Appendix A. Wave function

The bound-state wave function in between the wave guides is a superposition of exponentials

\[\Psi(x) = \begin{cases} C e^{i\kappa x} + D e^{-i\kappa x} : -b < x < 0 \\ E e^{i\kappa x} + F e^{-i\kappa x} : 0 < x < b. \end{cases} \]

If we define \(r_1 = (C + D)/2, \varrho_1 = (C - D)/2, r_2 = (E + F)/2, \varrho_2 = (E - F)/2, \) and note that \(r_1 = r_2 = r \) because of the continuity condition for the wave function at \(x = 0, \) we arrive at the form of the wave function given in section 2.

Appendix B. Explicit coefficients

Setting \(r = 1 \) we read off from (2)

\[\varrho_1^{(i)} = \frac{(1 + i\gamma)\exp(-2bk_i) + 1 + i\gamma - 2k_i}{(1 + i\gamma)\exp(-2bk_i) - 1 - i\gamma + 2k_i}, \]

\[\varrho_2^{(i)} = \frac{(1 - i\gamma)\exp(-2bk_i) + 1 - i\gamma - 2k_i}{(1 - i\gamma)\exp(-2bk_i) - 1 + i\gamma + 2k_i}, \]

where a zero \(k_i, i = 1, 2, 3 \) of the determinant of \(\mathcal{M} \) has to be inserted to satisfy the third equation of (2). Note that both denominators vanish at the intermediate (the second) value \(k_2 \) for \(\gamma \to 0, \) i.e. when \(b = -\text{Log}(1 - 2k_2)/(2k_2). \) Inserting this expression into \(\varrho_1^{(2)} \) and \(\varrho_2^{(2)} \) the expansions in powers of \(\gamma \) as given in the main text follow.
Appendix C. Relation to realistic wave guides

Let us assume a wave guide of width a centered around the origin $x = 0$ and placed on a substrate with background refractive index n_0. Across the wave guide the refractive index is altered to $n(x) = n_0 + \Delta n$, where Δn is complex, constant, and $|\Delta n| \ll n_0$. The eigenvalue equation of the amplitude of the electric field vector of an electromagnetic wave propagating along the wave guide in the z direction, $E_y(x, z, t) = E_y(x) e^{i(kz - \omega t)}$, with β the propagation constant, reads (see [5])

$$
\left(\frac{d^2}{dx^2} + k_0^2 n^2(x) \right) E_y(x) = \beta^2 E_y(x), \quad (C.1)
$$

where $k_0 = 2\pi/\lambda_0 = \omega_0/c$, with λ_0 the vacuum wavelength. To first order in Δn, $n^2(x) = n_0^2 + 2n_0 \Delta n$, and (C.1) becomes

$$
\left(\frac{d^2}{dx^2} + 2n_0 \Delta nk_0^2 \right) E_y(x) = (\beta^2 - n_0^2 k_0^2) E_y(x). \quad (C.2)
$$

If we replace the effect of the altered refractive index across the wave guide by a delta function $\delta(x)$ we have to require that the integral across the wave guide obeys $2n_0 \Delta nk_0^2 a = \delta_0$. Instead of (C.2) we then have

$$
\left(\frac{d^2}{dx^2} + 2n_0 \Delta nk_0^2 \right) E_y(x) = (\beta^2 - n_0^2 k_0^2) E_y(x). \quad (C.3)
$$

We decompose Δn into its real and imaginary parts, $\Delta n = \Delta n + i \Delta n'$. The characteristic length scale set by Δn is

$$
\ell = (2n_0 \Delta nk_0^2)^{-1/2}. \quad (C.4)
$$

Defining a further length scale $L = \ell^2/a$ and multiplying (C.3) by $-L^2$, by noting that $L \delta(x) = \delta(\ell x)$, with the dimensionless coordinate $\tilde{x} = x/L$, we finally obtain

$$
\left(-\frac{d^2}{d\tilde{x}^2} - (1 + i \Delta n'/\Delta n) \delta(\tilde{x}) \right) E_y(\tilde{x}) = -L^2 (\beta^2 - n_0^2 k_0^2) E_y(\tilde{x}). \quad (C.5)
$$

Comparing (C.5) with the triple delta-function Schrödinger equation (1), we identify $\gamma = \Delta n'/\Delta n$, where the eigenvalues of (C.5) are related to the eigenvalues k^2 of (1) by $k^2 = L^2 (\beta^2 - n_0^2 k_0^2)$, and the dimensionless coordinate x in (1) is equal to \tilde{x}.

To give an example, for the values used in [5], $n_0 = 3.3$, $\Delta n = 10^{-3}$, $\lambda = 1.55 \mu m$ and $a = 5 \mu m$, one obtains $\ell = 3.036 \mu m$ and $L = 1.843 \mu m$, both on the order of the wavelength of the injected microwave.

References

[1] Bender C M and Boettcher S 1998 Real spectra in non-Hermitian hamiltonians having \mathcal{PT} symmetry Phys. Rev. Lett. 80 5243
[2] Moiseyev N 2011 Non-Hermitian Quantum Mechanics (Cambridge: Cambridge University Press)
[3] Heiss W D 2012 The physics of exceptional points J. Phys. A: Math. Theor. 45 444016
[4] Bender C M, Gianfreda M, Peng P, Özdemir S K and Yang L 2013 Twofold transition in \mathcal{PT}-symmetric coupled oscillators Phys. Rev. A 88 062111
[5] Klaiman S, Günther U and Moiseyev N 2008 Visualization of branch points in \mathcal{PT}-symmetric waveguides Phys. Rev. Lett. 101 080402
[6] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Observation of parity-time symmetry in optics Nat. Phys. 6 192
[7] Graefe E-M, Gütther U, Korsch H J and Niederle A E 2008 A non-Hermitian PT symmetric Bose–Hubbard model: eigenvalue rings from unfolding higher-order exceptional points J. Phys. A: Math. Theor. 41 255206
[8] Heiss W D 2008 Chirality of wavefunctions for three coalescing levels J. Phys. A: Math. Theor. 41 244010
[9] Demange G and Graefe E-M 2012 Signatures of three coalescing eigenfunctions J. Phys. A: Math. Theor. 45 025303
[10] Ryu J-W, Lee S-Y and Kim S W 2012 Analysis of multiple exceptional points related to three interacting eigenmodes in a non-Hermitian hamiltonian Phys. Rev A 85 042101
[11] Gutöhrlein R, Main J, Cartarius H and Wunner G 2013 Bifurcations and exceptional points in dipolar Bose–Einstein condensates J. Phys. A: Math. Theor. 46 305001
[12] Heiss W D and Wunner G 2015 Resonance scattering at third-order exceptional points. J. Phys. A: Math. Theor. 48 345203
[13] Am-Shallem M, Kosloff R and Moiseyev N 2015 Exceptional points for parameter estimation in open quantum systems: analysis of the Bloch equations New J. Phys. 17 113036
[14] Am-Shallem M, Kosloff R and Moiseyev N 2016 Parameter estimation in atomic spectroscopy using exceptional points Phys. Rev. A 93 032116
[15] Ding K, Ma G, Xiao M, Zhang Z Q and Chan C T 2016 The emergence, coalescence and topological properties of multiple exceptional points and their experimental realization Phys. Rev. X 6 012007
[16] Jakubský V and Znojil M 2005 An explicitly solvable model of the spontaneous PT-symmetry breaking Czech. J. Phys. 55 1113–6
[17] Mostafazadeh A 2006 Delta-function potential with a complex coupling J. Phys. A: Math. Gen. 39 13495
[18] Mehri-Dehnavi H, Mostafazadeh A and Batal A 2010 Application of pseudo-Hermitian quantum mechanics to a complex scattering potential with point interactions J. Phys. A: Math. Theor. 43 145301
[19] Mostafazadeh A 2013 Nonlinear spectral singularities for confined nonlinearities Phys. Rev. Lett. 110 260402
[20] Jones H F 2008 Interface between Hermitian and non-Hermitian Hamiltonians in a model calculation Phys. Rev. D 78 065032
[21] Cartarius H and Wunner G 2012 Model of a PT-symmetric Bose–Einstein condensate in a δ-function double-well potential Phys. Rev. A 86 013612
[22] Cartarius H, Haag D, Dast D and Wunner G 2012 Nonlinear Schrödinger equation for a PT-symmetric delta-function double well J. Phys. A: Math. Theor. 45 444008
[23] Löhle A, Cartarius H, Dast D, Haag D, Main J and Wunner G 2015 Stability of Bose–Einstein condensates in a PT-symmetric double-delta potential close to branch points Acta Polytech. 54 133
[24] Barashenkov I V and Zezyulin D A 2016 Localised nonlinear modes in the PT-symmetric double-delta well Gross–Pitaevski equation Proc. 15th Int. Conf. on Non-Hermitian Hamiltonians in Quantum Physics, Palermo 2015 (Springer Series in Physics) ed F Bagarello, R Passante and C Trapani (New York: Springer) pp 123–42