5-11-2020

Burnout and Substance Use in Collegiate Athletic Trainers

Leslie W. Oglesby
University of Southern Mississippi

Andrew R. Gallucci
Baylor University

Christopher J. Wynveen
Baylor University

Kelly R. Ylitalo
Baylor University

Nicholas F. Benson
Baylor University

Follow this and additional works at: https://aquila.usm.edu/fac_pubs

Recommended Citation

Oglesby, L. W., Gallucci, A. R., Wynveen, C. J., Ylitalo, K. R., Benson, N. F. (2020). Burnout and Substance Use in Collegiate Athletic Trainers. *Journal of Athletic Training, 55*(6). Available at: https://aquila.usm.edu/fac_pubs/17379

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.
Burnout and Substance Use in Collegiate Athletic Trainers

Leslie W. Oglesby, PhD, LAT, ATC*
Andrew R. Gallucci, PhD, LAT, ATC, CSCS†; Christopher J. Wynveen, PhD†; Kelly R. Ylitalo, PhD†; Nicholas F. Benson, PhD†

*School of Health Professions, The University of Southern Mississippi, Hattiesburg; †Baylor University, Waco, TX

Context: The Smith Cognitive-Affective Model of Athletic Burnout suggests that athletic trainers (ATs) suffering from burnout may engage in substance use as a coping behavior. Increases in self-reported burnout symptoms are often associated with increases in heavy episodic drinking and tobacco use among various health care providers. However, this relationship has not been examined thoroughly.

Objective: To investigate the prevalence of substance use in ATs and identify relationships between symptoms of burnout and substance use among ATs.

Design: Cross-sectional study.

Setting: Web-based survey.

Patients or Other Participants: A total of 783 certified ATs working full time in the collegiate or university setting were sampled for this study. Graduate assistant and other part-time ATs were excluded. The survey was distributed via the National Athletic Trainers’ Association membership directory e-mail broadcast service.

Main Outcome Measure(s): A 100-item online questionnaire consisting of items from previously used scales was used for this study. The survey included the Maslach Burnout Inventory and questions on substance use from the Monitoring Inventory subscales) and dependent (use of alcohol, tobacco, and marijuana) variables were mapped to the Smith Cognitive-Affective Model of Athletic Burnout to determine which dimensions of burnout altered the odds of self-reported substance use.

Results: Almost half (46.3%) of participants admitted to at least 1 binge-drinking episode. However, the use of cigarettes, smokeless tobacco, marijuana, and energy drinks during the previous month was less pronounced in the sample. Emotional exhaustion (Exp[B] = 0.008, P = .023) and personal accomplishment (B = .016, P = .02) were significantly correlated with binge drinking. Emotional exhaustion (Exp[B] = 1.017, P < .001) was also significantly positively correlated with energy-drink consumption.

Conclusions: Some ATs engaged in heavy episodic drinking. Emotional exhaustion and a decreased sense of personal accomplishment were significantly correlated with this behavior.

Key Words: binge drinking, emotional exhaustion, depersonalization, energy drinks

Key Points

- Approximately 46% of a sample of 783 collegiate athletic trainers engaged in at least 1 binge-drinking session in the previous month.
- Emotional exhaustion and a decreased sense of personal accomplishment were significantly correlated with binge drinking.
- The use of other substances (eg, cigarettes, smokeless tobacco, marijuana, energy drinks) was less pronounced in the sample, but emotional exhaustion was significantly correlated with energy-drink use.

Burnout has been defined as a mental state of emotional and physical exhaustion or a stress reaction to a person’s inability to cope with the demands of his or her profession. As a psychological syndrome, burnout consists of 3 components: emotional exhaustion, a decreased sense of personal accomplishment, and depersonalization of the patients under one’s care. The bulk of research on burnout has been conducted on allied health professionals, with researchers finding that many suffer from high rates of burnout. In 1 study of physicians, 31% (n = 2181) reported a high level of emotional exhaustion; 25.3% (n = 1802), a high level of depersonalization; and 12.3% (n = 873), a low level of personal accomplishment. Thirty-six percent (n = 77) of nurses reported a high level of emotional exhaustion; 12% (n = 27), a high level of depersonalization; and 10% (n = 22), a low level of personal accomplishment.

The association between burnout and substance use in health care professionals has been examined. Previous authors suggested that physicians (n = 7209) and psychiatrists (n = 936) suffering from burnout were more likely to engage in binge drinking. In another study (n = 80), nurses suffering from burnout were more likely to smoke tobacco.

Athletic trainers (ATs) also suffer from burnout but at lower rates than other health care professionals. Researchers in 1 study (n = 206) found that 20% of ATs reported a high level of emotional exhaustion; 23.3%, a high level of...
depersonalization; and 15.5%, a low level off personal accomplishment. Comparisons with other health care professions suggested that ATs suffered from emotional exhaustion at a lower rate but decreased personal accomplishment at a higher rate. Some investigators have speculated the lower rates of emotional exhaustion reflect the ATs’ off-season for recovery, especially in the collegiate setting. However, recent rule changes in the National Collegiate Athletic Association now allow many sports much more practice time in their traditional off-season. Because these practices require the provision of medical care, it is possible that collegiate ATs are now working more than ever.

Although increased burnout has been associated with an increased risk of substance use in other health care professionals, the examination of substance use and its relationship with burnout in ATs has produced mixed results. In 1 study, 5% of ATs self-reported “excessive drinking” and that suffering from burnout increased an AT’s risk of excessive drinking. However, the researchers failed to define the level at which drinking was considered “excessive,” and a time frame for alcohol consumption was not provided, which prevents comparison with other substance use investigations. In another study, approximately 67% of ATs consumed alcohol and 2.2% smoked cigarettes. These values were lower than those of other health care professions: more than 14% of nurses and 14% of physicians had smoked cigarettes in the past year. Giacobbi measured alcohol consumption based on the average number of drinks per week but did not report a time frame. Similarly, he described percentages of smokers but did not give a time frame. More importantly, Giacobbi did not examine the relationship between substance use and burnout. To our knowledge, neither binge drinking (consuming 5 or more drinks in a row for males or 4 in a row for females) nor its relationship with burnout has been examined in ATs.

Although alcohol consumption and tobacco use in ATs have been previously examined, the use of other substances, such as marijuana and energy drinks, has not been observed. With approximately 4.8% of physicians and 3.6% of nurses reporting use of marijuana in the past year, comparing these rates with those of collegiate ATs would be beneficial. Although the use of energy drinks by the general population has received attention in the literature recently, consumption by health care professionals has not been examined. Those suffering from emotional exhaustion may use energy drinks to cope with fatigue, as more than 60% of energy drink consumers do so to gain energy. The current prevalence of binge drinking and other substance use in collegiate ATs remains unclear, as does the possible relationship between burnout and these behaviors.

The Smith Cognitive-Affective Model of Athletic Burnout (Figure 1) has been proposed as a possible theoretical model to explain the process of burnout in athletes and ATs. This model has found support within the athletic training literature and has been recommended for identifying ATs suffering from burnout. The model suggests that burnout follows a process similar to that for other stress reactions: situational concerns such as work-family conflict, high workload, and a low level of social support affect both cognitive appraisal (eg, the sense of personal accomplishment) and physiological responses (eg, emotional exhaustion). The cognitive appraisal and physiological response then lead to coping behaviors, such as depersonalization of patients and substance use. Although this model has been used to investigate burnout in ATs, it has not been used to determine if substance use is a coping behavior associated with burnout in this population. Also unknown is whether the model is still applicable to collegiate ATs due to the aforementioned changes in working patterns (ie, more practice time permitted in the off-season, which requires more AT coverage).

The purpose of our study was to investigate the proportions of substance use (ie, cigarettes, marijuana, smokeless tobacco, and energy drinks) and substance abuse (binge drinking) in collegiate ATs as well as possible relationships between these behaviors and burnout. We hypothesized that there would be a significant positive relationship between burnout and substance use or abuse (or both) in our sample.

METHODS

Participants

All participants in this study (n = 783) were certified ATs working full time in the collegiate setting at various levels of competition (ie, National Collegiate Athletic Association Division I, II, or III; National Association of Intercollegiate Athletics; or National Junior College Athletic Association). All participants were also active members of the National Athletic Trainers’ Association (NATA). Recruits who indicated they no longer worked in the collegiate setting or were not full-time employees (eg, graduate assistants and interns) were excluded. Any participants who identified themselves as full-time academicians were also excluded.

Procedures

A cross-sectional, Web-based survey design was used to collect data for this study. The survey instruments were uploaded to Qualtrics (Provo, UT), and a hyperlink to the survey was generated. After receiving approval from the institutional review board, we asked the NATA Member-
We included the Maslach Burnout Inventory (MBI)-Health Human Services edition. All Three subscales measure emotional exhaustion, depersonalization, and sense of personal accomplishment. It consists of 22 items, with 9 items pertaining to emotional exhaustion, 5 to depersonalization, and 8 to personal accomplishment. Each item is answered on a 7-point Likert scale from never to every day. All items in a particular subscale are summed to create a subscale total. However, the 3 subscale scores cannot be totaled to create an overall “burnout score.” Rather, each subscale measures a separate aspect of burnout. For the emotional exhaustion and depersonalization subscales, a higher score indicates a higher level of burnout. Because a sense of personal accomplishment is considered a positive attribute, a lower score indicates a higher level of burnout. The 3 subscales have reported internal consistency coefficients of .89 (emotional exhaustion), .77 (depersonalization), and .74 (personal accomplishment).25

Substance Use. To assess the use or abuse of certain substances within the last 30 days, we asked questions from the Monitoring the Future Study.26 Items assessed their use of cigarettes, marijuana, smokeless tobacco, and energy drinks. We also asked about binge drinking (ie, “How many times [if any] have you had 5 or more drinks in a row [4 or more for females] over the last 30 days?”). Each question had 7 possible answers (never, 1–2, 3–5, 6–9, 10–19, 20–39, or 40+) and was scored from 0 (never) to 6 (40+).

Statistical Analysis

All statistical analyses were performed using SPSS (version 24; IBM Corp, Armonk, NY). All data were downloaded from Qualtrics into an SPSS worksheet. The analyzed variables were WFC, perceived social support, salary, average hours of work per week, burnout subscale scores, and use of various substances within the last 30 days.

Descriptive statistics (eg, mean, SD, and range) were used to examine the distribution and central tendency of responses. The assumptions of normality and homoscedasticity were checked using normal P-P plots and scatterplots. All hypotheses were tested using multiple regression models.

The variables were all mapped to the Smith Cognitive-Affective Model of Athletic Burnout (Figure 2).16 All situational variables (ie, WFC; perceived social support; salary; and fall, spring, and summer workload) were independent variables in 2 multiple regressions: 1 with emotional exhaustion and the other with personal accomplishment as the outcome variable. All situational variables were continuous. Salary was coded in $10 000 per year intervals from 1 = less than $20 000 per year to 10 = greater than $100 000 per year. Then, personal accomplishment was used as an independent variable, with emotional exhaustion as a dependent variable.

Finally, emotional exhaustion and personal accomplishment were used as independent variables in several multiple regressions, 1 to predict depersonalization and then 5 to predict each substance use outcome (ie, binge drinking, cigarettes, marijuana, smokeless tobacco, and energy drinks). All 3 burnout subscales were considered continu-
uous variables, and substance use was coded based on the number of times in the previous month (0 = never, 1 = 1–2, 2 = 3–5, 3 = 6–9, 4 = 10–19, 5 = 20–39, and 6 = 40+). Then, a multiple or simple regression (depending on the number of independent variables) was calculated to determine the extent to which variables altered the odds that a participant reported the symptoms or effects of burnout. Our treatment of ordinal data as continuous variables in multivariate regression is supported by previous literature. While checking the assumption of normality, we found that several substance use variables (ie, cigarettes, marijuana, and energy drinks) followed a Poisson distribution. Therefore, we used Poisson regressions for models that included these substances as dependent variables. Because smokeless tobacco use followed neither of these distributions, we dichotomized this variable (0 = no use, 1 = use), and a binomial logistic regression was performed. For all multiple regression analyses, multicollinearity was checked using variance inflation factors.

RESULTS

Demographics

Of the 6867 e-mails that were sent to ATs, 1211 surveys were started and 857 were completed (29.2% dropout rate). Of those who completed the survey, 74 did not meet the inclusion criteria. This resulted in a sample size of 783 (11.4% response rate). Participants were 36.4 ± 11.1 years old (range = 22–79 years), with 12.6 ± 9.8 years (range = 0–45 years) of AT experience. They worked an average of 57 ± 11.6 (range = 30–100) hours per week during the fall semester (ie, August–December), 53.6 ± 11.2 (range = 30–100) hours per week during the spring semester (ie, January–May), and 23.3 ± 17.8 (range, 0–80) hours per week during June and July. The majority of participants identified as white, non-Hispanic (n = 713, 91.1%). Our sample was predominantly single (n = 409, 52.2%); most participants did not have children (n = 484, 61.8%), but those who did had an average of 2.05 ± 0.86 children (range = 1–6). Additional demographic information can be found in Table 1. By comparing our demographics with information collected by the NATA, we found that our sample was representative of the overall collegiate AT population in terms of sex, ethnicity, and NATA district.

Means, standard deviations, and ranges of results for the MBI subscales, Multidimensional Scale of Perceived Social Support, and WFC scales are presented in Table 2. Approximately 38.9% (n = 297) of participants scored ≥27 on the emotional exhaustion subscale, which indicates a high level of burnout. Similarly, 33.6% (n = 259) of participants had a high level of burnout according to the depersonalization subscale with a score of ≥10. Additionally, 17.7% (n = 135) had a high level of burnout based on a personal accomplishment score of ≤ 33.

Binge drinking at least once in the last 30 days was reported by 46.3% (n = 363). A total of 22.9% (n = 179) of participants stated they used energy drinks in the last 30 days. Other substance abuse behaviors were not as pronounced, with 3.5% (n = 28) admitting to marijuana use in the 30 days before survey completion. Additionally, few participants (n = 40, 5.2%) described smokeless tobacco use and 1.4% (n = 11) admitted to smoking at least 1 cigarette. A full report of substance use in our sample is shown in Tables 3 and 4.

Multiple Regression Analyses

After mapping all variables of interest (ie, WFC, perceived social support, salary, average hours of work per week, burnout subscales, and substance use) to the Smith Cognitive-Affective Model of Athletic Burnout (Figure 2), we conducted multiple regression analyses. Summaries for all analyses with significant results are provided in Tables 5 and 6. Situational factors correlated with emotional exhaustion were WFC with family being

Table 1. Demographics of the Sample
Demographic
Sex
Male
Female
Ethnicity
White
Black
Hispanic
Native American
Asian
Multiracial
Other
Marital status
Single
Married
Divorced
Widowed
National Athletic Trainers’ Association District
1 (CT, ME, MA, NH, RI, VT)
2 (DE, NJ, NY, PA)
3 (DC, MD, NC, SC, VA, WV)
4 (IL, IN, MI, MN, OH, WI)
5 (IA, KS, MO, NE, ND, OK, SD)
6 (AR, TX)
7 (AZ, CO, NM, UT, WY)
8 (CA, HI, NV, Guam, American Samoa)
9 (AL, FL, GA, KY, LA, MS, TN, Puerto Rico, Virgin Islands)
10 (AK, ID, MT, OR, WA)
Level of competition
NCAA Division I
NCAA Division II
NCAA Division III
National Association of Intercollegiate Athletics
National Junior College Athletic Association
Other
Salary, $
<20,000
20,000–29,999
30,000–39,999
40,000–49,999
50,000–59,999
60,000–69,999
70,000–79,999
80,000–89,999
90,000–99,999
>100,000

Abbreviation: NCAA, National Collegiate Athletic Association.
spouse or children or both (B = .475, P < .001; 95% CI = 0.33, 0.62), WFC with family being other close relatives (B = .416, P < .001; 95% CI = 0.27, 0.56) social support (B = -.172, P < .001; 95% CI = -0.23, -0.012), salary (B = -.630, P = .002; 95% CI = -1.03, -0.24), and average hours worked in the spring semester (B = .084, P = .029; 95% CI = 0.01, 0.16). Similarly, WFC with family being spouse or children or both (B = -.239, P < .001; 95% confidence interval [CI] = -0.33, -0.15), social support (B = -.113, P < .001; 95% CI = 0.08, 0.15), and salary (B = .468, P < .001; 95% CI = 0.22, 0.72) were all significantly associated with personal accomplishment. These 2 models explained 37.5% and 13.3% of the variance in emotional exhaustion and personal accomplishment, respectively, in our sample. A simple regression analysis also revealed that personal accomplishment was significantly negatively associated with emotional exhaustion (B = -.796, P < .001; 95% CI = -.92, -0.67; R² = .178).

When using the cognitive appraisal and physiological response variables to predict coping and task behaviors, we found that emotional exhaustion (B = .288, P < .001; 95% CI = 0.26, 0.32) and personal accomplishment (B = -.174, P < .001; 95% CI = -0.23, -0.12) were both significantly associated with depersonalization (R² = .460). Emotional exhaustion (B = .008, P = .023; 95% CI = 0.001, 0.015) and personal accomplishment (B = -.016, P = .02; 95% CI = -.029, -.003) were significantly correlated with the number of binge-drinking episodes in the past 30 days (R² = .022). Emotional exhaustion was significantly positively correlated with energy drink use (Exp[B] = 1.017, P < .001, 95% CI = 1.009, 1.026). Neither emotional exhaustion nor personal accomplishment was significantly associated with cigarette, marijuana, or smokeless tobacco use.

DISCUSSION

The purpose of our study was 2-fold: to explore (1) substance use behaviors of ATs in the collegiate setting and (2) possible relationships between burnout and substance use. We found that approximately 46% of participants engaged in at least 1 reported episode of binge drinking in the last 30 days. This rate was much higher than the previous findings of 5% in ATs and 16% in nurses. It is also double the national average of adults aged 26 and older, with 22.5% of respondents from the general population engaging in at least 1 binge-drinking episode during the past month. In a study of AT drinking behaviors, Campbell et al. did not define excessive drinking, which may have allowed participants to determine for themselves if their alcohol consumption was excessive. We explicitly defined the behavior (≥5 drinks for males, ≥4 drinks for females) without labeling it as a negative behavior (eg, excessive drinking or binge drinking). This could have resulted in self-reporting that was more honest. To our knowledge, we are the first to examine binge drinking with an appropriate definition in an AT sample.

Additionally, 1.4% of our participants smoked at least 1 cigarette in the last 30 days, which is similar to an earlier finding and lower than results in other health care professions: more than 14% of nurses and 14% of physicians smoked cigarettes in the previous year. Although both sets of researchers examined past-year use instead of past-month use, the prevalence rates are remarkably different. However, comparing our results with those of studies that are 20 years old presents concerns, as current trends of cigarette use in physicians and nurses may differ. More recent research on these professions was not available in the literature. Regardless, the proportion of cigarette smoking among these professionals was lower than the 20.8% of the US population who reported smoking a cigarette in the previous 30 days.

To our knowledge, we are the first to examine the use of marijuana, smokeless tobacco, and energy drinks among collegiate ATs. Approximately 3.5% of our sample reported marijuana use in the previous month. This result was similar to the findings in other health care professions, with 4.75% of physicians and 3.6% of nurses describing the use of marijuana. Thus, the proportion of marijuana use in health care professionals was less than half of the 8.4% reported in the general population. We identified that 5.2% of our sample used smokeless tobacco in the previous 30 days. Because smokeless tobacco use has not been assessed in other health care professionals, a comparison is

Table 2. Participant Scores on Survey Scales
Questionnaire Component
Maslach Burnout Inventory
Emotional exhaustion subscale
Depersonalization subscale
Personal accomplishment subscale
Work-family conflict scale A
Work-family conflict scale B
Multidimensional Scale of Perceived Social Support

Table 3. Substance Use Demographics for the Previous Month

Use	Binge Drinking, n (%)	Marijuana, n (%)	Smokeless Tobacco, n (%)	Energy Drink, n (%)
Never	418 (53.4)	750 (95.8)	741 (94.6)	602 (76.9)
1–2 times	208 (26.6)	12 (1.5)	6 (0.8)	76 (9.7)
3–5 times	92 (11.7)	4 (0.5)	6 (0.8)	38 (4.9)
6–9 times	37 (4.7)	1 (0.1)	3 (0.4)	18 (2.3)
10–19 times	21 (2.7)	4 (0.5)	0 (0.0)	24 (3.1)
20–39 times	4 (0.5)	2 (0.3)	7 (0.9)	18 (2.3)
40+ times	1 (0.1)	5 (0.6)	18 (2.3)	5 (0.6)
not possible. Yet this rate was approximately 1.5 times higher than the 3.3% rate in the general population. Among our participants, 22.9% stated they consumed energy drinks in the previous month. Investigators rarely explore energy drink consumption in individuals other than adolescents or college students. As collegiate ATs spend many hours working and traveling with their teams, both physical and emotional exhaustion could cause them to resort to energy drinks to meet the demands of their days. Approximately 38.9% of our sample reported a high level of emotional exhaustion; 33.6%, a high level of depersonalization; and 17.7%, a low level of personal accomplishment. High levels of emotional exhaustion were almost twice as common in our respondents compared with a 2009 study of collegiate ATs and high levels of depersonalization were 44% more common. Meanwhile, the low level of personal accomplishment was comparable with previous findings. Our findings are also similar to burnout statistics for physicians and nurses. This suggests that burnout symptoms in collegiate ATs are more prevalent today than previously. The constant decrease in the off-season time of recovery for collegiate ATs could be a contributor and should be examined further by future authors.

Table 4. Cigarette Use Demographics for the Previous Month

Cigarette Use	n (%)
None	769 (98.2)
<1/d	6 (0.8)
1–5/d	4 (0.5)
About 0.5 pack/d	1 (0.1)

Table 5. Summary of Regression Analyses

Variable	B	SE	Exp(B)	Wald	df
Emotional exhaustion	0.475	0.284	6.418a	15.315a	1
Work-family conflict A	0.416	0.253	5.639a	19.479a	1
Salary	-0.630	0.096	0.513	0.488	1
Social support	-0.172	0.090	0.840	15.315a	1
Workload fall	0.066	0.065	1.813	0.488	1
Workload spring	0.084	0.079	2.194	15.315a	1
Workload summer	-0.016	0.024	0.735	0.488	1
Emotional exhaustion	-0.796	-0.424	-12.783	15.315a	1
Personal accomplishment	-0.174	-0.187	-6.286	15.315a	1

Table 6. Summary of Substance Use Regression Analyses

Variable	B	SE	Exp(B)	Wald	df
Cigarette use					
Emotional exhaustion	0.002	0.022	1.002	0.010	1
Personal accomplishment	-0.054	0.035	0.948	2.375	1
Marijuana use					
Emotional exhaustion	-0.019	0.011	0.981	2.957	1
Personal accomplishment	-0.020	0.019	0.980	1.112	1
Smokeless tobacco use					
Emotional exhaustion	-0.037	0.020	0.976	3.628	1
Personal accomplishment	-0.010	0.034	0.990	0.080	1
Energy drink use					
Emotional exhaustion	0.017	0.004	1.017	15.315b	1
Personal accomplishment	-0.011	0.008	0.989	1.983	1

a P < .001.
b P < .05.
c P < .01.

The Smith Cognitive-Affective Model of Athlete Burnout has been applied to ATs in the past and recommended for future use. We found that this model was appropriate for the exploration of burnout in collegiate ATs and further demonstrates that the Smith model is appropriate for the exploration of burnout in collegiate ATs. The model showed that the average number of hours worked per week in the spring semester was significantly positively associated with emotional exhaustion but not personal accomplishment. A longitudinal study of work-life balance in collegiate ATs showed that they suffered from increased conflict during their competitive season. It is possible that athletes in more sports are actively competing during the winter and spring months, which would lead to increased WFC. As increased WFC led to increased symptoms of burnout in our sample, this is a reasonable explanation for the association between hours worked in the spring semester and burnout. Examinations of ATs who work in specific college sports and how they experience burnout throughout the year should be conducted in the future.

After further evaluation of the model, we determined that emotional exhaustion and personal accomplishment were inversely correlated. These findings agree with those of previous researchers who assessed relationships between the MBI subscales among helping professionals, such as physicians, psychologists, nurses, and social workers. We also learned that both emotional exhaustion and personal accomplishment were positively and negatively associated with depersonalization, respectively. This result is consistent with previous work and further demonstrates that the Smith model is appropriate for the exploration of burnout in collegiate ATs.
of respondents. Due to the cross-sectional nature of our study, we were not able to infer causality from our analyses. Because our data were collected from only collegiate ATs, our findings may not be generalizable to ATs in other work settings. It is also important to recognize that many participants did not have a spouse or children, possibly affecting their perception of WFC. By dividing the sample into 3 groups (ie, no spouse or children, both spouse and children, and either spouse or children) and comparing the mean WFC score of each group with the overall average, we determined that none of the group means differed from the overall average by more than 5%. Furthermore, WFC was still significantly associated with emotional exhaustion and personal accomplishment, regardless of group.

In the future, researchers should continue to examine substance use in collegiate ATs and possible contributing factors to substance abuse behaviors, such as binge drinking. They should also examine variables that may influence the various components of the Smith Cognitive Affective Model of Athletic Burnout to alleviate symptoms of burnout and its potential causes and outcomes. We also encourage further assessment of the use of energy drinks by ATs.

Lastly, specific methods of identifying and assisting ATs who are suffering from burnout should be developed. Our results and the previous literature have contributed to our knowledge of causes and outcomes, but very little attention has focused on how to help suffering individuals. As the effects of burnout on the provision of health care continue to grow in importance, we should establish better ways of caring for both ourselves and our patients.

CONCLUSIONS

Binge-drinking behaviors and the use of smokeless tobacco were more common in our sample of collegiate ATs than in studies of other health care professionals and the general population. Although marijuana use in our sample was similar to that of other health care professionals, it was less common than in the general population. The proportion of cigarette use in our sample was less than in other health care professionals and the general population. By using the Smith Cognitive Affective Model of Athletic Burnout, we found that emotional exhaustion and diminished personal accomplishment were both significantly associated with increases in binge-drinking behaviors. We also demonstrated that emotional exhaustion was significantly positively associated with use of energy drinks. Our goal in this research was to illuminate substance use patterns of collegiate ATs and point to potential causes to try to improve the overall well-being of members of the profession.

ACKNOWLEDGMENTS

We acknowledge Jeff Levin, PhD, for his contributions to this research.

REFERENCES

1. Burnout. In: Marcovitch H, ed. Black's Medical Dictionary. 42nd ed. London, United Kingdom: A&C Black; 2010.
2. Maslach C. Burnout, the Cost of Caring. Englewood Cliffs, NJ: Prentice-Hall; 1982.
3. Oreskovich MR, Shanafelt T, Dyrbey LN, et al. The prevalence of substance use disorders in American physicians. Am J Addict. 2015;24(1):30–38.

4. Braun M, Schonfeld-Lecuona C, Kessler H, Beck J, Beschoner P, Freudennann R. Burnout, depression and substance use in German psychiatrists: data of a pilot study. Nervenheilkunde. 2008;27(9):800–804.

5. Dyrbey L, Shanafelt TD, Balch CM, Satele D, Freischlag J. Physicians married or partnered to physicians: a comparative study in the American College of Surgeons. J Am Coll Surg. 2010;211(5):663–671.

6. Edwards D, Burnard P, Hannigan B, et al. Clinical supervision and burnout: the influence of clinical supervision for community mental health nurses. J Clin Nurs. 2006;15(8):1007–1015.

7. Los Angeles ME, Becerro de Bengoa Vallejo R, Salvadores Fuentes P. The relationship between experiential avoidance and burnout syndrome in critical care nurses: a cross-sectional questionnaire survey. Int J Nurs Stud. 2010;47(1):30–37.

8. Giacobbi PR. Low burnout and high engagement levels in athletic trainers: results of a nationwide random sample. J Athl Train. 2009;44(4):370–377.

9. Kania ML, Meyer BB, Ebersole KT. Personal and environmental characteristics predicting burnout among certified athletic trainers at National Collegiate Athletic Association institutions. J Athl Train. 2009;44(1):58–66.

10. Campbell D, Miller MH, Robinson WW. The prevalence of burnout among athletic trainers. Athl Train. 1985;20(2):110–113.

11. Mazerolle SM, Eason CM. Exploring summer medical care within the National Collegiate Athletic Association Division I setting: a perspective from the athletic trainer. J Athl Train. 2016;51(2):175–183.

12. Drinking levels defined. National Institute on Alcohol Abuse and Alcoholism Web site. https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/moderate-binge-drinking. Updated 2016. Accessed March 19, 2018.

13. Hughes PH, Storr CL, Brandenburg NA, Baldwin DC, Anthony JC, Seeahan DV. Physician substance use by medical specialty. J Addict Dis. 1999;18(2):23–37.

14. Trinkoff AM, Storr CL. Substance use among nurses: differences between specialties. Am J Public Health. 1998;88(4):581–585.

15. Oglesby LW, Amrani KA, Wynveen CJ, Gallucci AR. Do energy drink consumers study more? J Community Health. 2018;43(1):48–54.

16. Smith RE. Toward a cognitive affective model of athletic burnout. J Sport Psychol. 1986;8(1):36–50.

17. Mazerolle SM, Bruening JE, Casa DJ, Burton LJ. Work-family conflict, part II: job and life satisfaction in National Collegiate Athletic Association Division I-A certified athletic trainers. J Athl Train. 2008;43(5):513–522.

18. Mazerolle SM, Pagnotta KD. Student perspectives on burnout. Athl Train Educ J. 2011;6(2):60–68.

19. Netemeyer RG, Boles JS, McMurrian R. Development and validation of work-family conflict and family-work conflict scales. J Appl Psychol. 1996;81(4):400–410.

20. Pitney WA, Mazerolle SM, Pagnotta KD. Work-family conflict among athletic trainers in the secondary school setting. J Athl Train. 2011;46(2):185–193.

21. Zimet GD, Dahlem NW, Zimet SG, Farley GK. The multidimensional scale of perceived social support. J Pers Assess. 1988;52(1):30–41.

22. Kazarian SS, McCabe SB. Dimensions of social support in the MSPSS: factorial structure, reliability, and theoretical implications. J Community Psychol. 1991;19(2):150–160.

23. Maslach C, Jackson SE. Maslach Burnout Inventory: Human Services Edition. Mountain View, CA: Consulting Psychologists Press, Inc; 1986.

24. Gaffney B, Hardin R, Fitzburgh E, Koo G. The relationship between burnout and job satisfaction in certified athletic trainers. Int J Sport Manage. 2012;13(1):73–86.

25. Maslach C, Jackson SE. The measurement of experienced burnout. J Occup Behav. 1981;2:99–113.

26. Johnston LD, O’Malley PM, Miech RA, Bachman JG, Schulenberg JE. Monitoring the Future: National Survey Results on Drug Use, 1975–2015: 2015 Overview, Key Findings on Adolescent Drug Use. Ann Arbor, MI: Institute for Social Research; 2016.

27. Kim J. Multivariate analysis of ordinal variables. Am J Sociol. 1975;81(2):261–298.

28. March 2018 NATA membership by job setting. National Athletic Trainers’ Association Web site. https://members.nata.org/members1/documents/membstats/2018-03.htm. Updated 2018. Accessed April 13, 2018.

29. Hedden SL, Kennett J, Lipari R, et al. Substance Abuse and Mental Health Services Administration, RTI International. Behavioral Health Trends in the United States: Results From the 2014 National Survey On Drug Use and Health. Vol (SMA) 15-4927. Rockville, MD: Substance Abuse and Mental Health Services Administration, Department of Health & Human Services; 2015.

30. Mazerolle S, Eason C. A longitudinal examination of work-life balance in the collegiate setting. J Athl Train. 2016;51(3):223–232.

Address correspondence to Leslie W. Oglesby, PhD, LAT, ATC, School of Health Professions, The University of Southern Mississippi, 118 College Drive, #5122, Hattiesburg, MS 39406. Address e-mail to leslie.oglesby@usm.edu.