ABSTRACT

The build-up of heavy metals in soils and waters continues to create serious global health concerns, as these metals cannot be degraded into non-toxic forms, but persist in the ecosystem. It is essential to remove or reduce heavy metal contamination in order to prevent or reduce contaminating the environment. Bioremediation utilizes microorganisms to eliminate hazardous contaminants from the environment. Algae have been applied to heavy metal removal because of their high sorption capacity. This review addresses the different factors influencing heavy metal removal by algae and its corresponding application in bioremediation. Based on the earlier reports, microalgae have the potential to become an effective and economical bio-sorbert for the bioremediation of heavy metal. Further, the development of technology for simultaneous detection and removal of toxic metals using microalgae will assist in bioremediation of toxic metal from contaminated sites and from industrial effluents.

INTRODUCTION

Heavy metal adversely affects microbial growth by inhibiting enzyme activity and bringing about change in nucleic acid and protein conformations. While prokaryotes are known to possess enough metal defense strategies, as they are the foremost biota that has evolved in the surrounding of metal, likewise, the eukaryotic microbial system has also been reported to have enough strategies to survive in metal stress. Depending on the surrounding conditions, microorganisms have developed numerous extracellular and intracellular defense mechanisms that help them cope with the toxic effect of metals [15]. While extracellular mechanisms prevent the entry of metal into the cell interior, intracellular mechanisms basically prevent the cell from the saddle of toxic metals that have been taken up in excess by the cell [16].

Metal ions are taken up in a two-stage adsorption and bioaccumulation process. At first, the metal ions are passively adsorbed on the cell surface (of both living and nonliving biomass) just in a few seconds or minutes; then the ions are carried slowly inside the cell membrane and are accumulated intracellular. Bioaccumulation occurs only in living cells, involving transport of metal ions across the cell membrane barrier and subsequent binding to cytoplasmic proteins or polysaccharides, or to specific cellular compartments such as vacuoles or polyphosphate bodies. The two above described processes, involving both adsorption and bioaccumulation by living and/or dead microorganisms, can be defined as 'biosorption'. Algae have high sorption capacities and strong metal ion sorption selectivity [17-20]. Some microalgae and cyanobacteria are metal stress-tolerant and possess high resistance towards metal toxicity, large surface area and high binding affinity [21].

Interaction of algae with toxic metal severely affects their physiological and enzymatic activity ultimately leading to their death. Algae, in turn, have promoted efficient defense mechanisms that alleviate the toxic effects generated by the metal ions and favor their survival at elevated concentrations of these metals. They employ both extracellular and intracellular modes for combating metal toxicity. Microalgae have been recorded to precipitate and bio accumulate the entrapped metal ions in different cellular organelles as a means to survive heavy metal stress. The large surface area to volume ratio and high-affinity functional groups on the cell surface of microalgae makes them susceptible for uptake and hence serves as proficient agents for metal storage systems [22]. The metal accumulation capacity of algal biomass is comparable or
sometimes higher than chemical sorbents. Therefore, algal biomass may be used as an economically feasible and efficient alternative to the existing physicochemical methods of metal removal [23].

Distinct binding groups, such as OH-, SH-, COO-, PO$_2$-, RS-and RO-promote the metal ion adsorption. These binding groups are attended by the cell surface, in the cytoplasm, and especially vacuoles. Since metal ions in water are usually in the cationic form, they are adsorbed onto the cell surface. If the mechanism of metal ion remediation is the uptake of ions by algal cells, proteins mediate the transfer of metal ions into the cells [24]. The toxic level of heavy metal ions in variant algal species can be highly strained specific, which consequently determines the potential remediation capacity using a distinct algal strain. In other words, a heavy metal ion may exhibit a selective interaction with one definite algal strain, in addition to differences between similar species. Algae cell walls are the first barrier against the biosorption of heavy metal ions. Polysaccharides and proteins present in algae cell walls have the greatest metal-binding sites [25]. Due to the different distribution and abundance of cell wall compositions in different algal strains, the capacity of metal ions biosorption by the variant algal strains will vary.

Various studies have shown that microalgae is capable of binding heavy metals like copper, zinc, nickel, cadmium, and lead. The metal sorption depends on biomass concentration, pH, temperature and availability of the heavy metal. The review addresses the different factors influencing heavy metal removal by algae and its corresponding application in bioremediation.

Factors influencing heavy metal ion biosorption

Biomass concentration

The effect of biomass concentration on metal removal was investigated by many authors. Increasing the biomass concentration has apparently improved the metal adsorption due to the higher number of available metal-binding sites [26]. At the same time, decreased metal removal is often reported at very high biomass levels due to partial aggregation of biomass, as well as, by a decrease in the average distance between available adsorption sites. Bisnoi et al. [27] reported that copper uptake decreases when the biosorbent concentration is increased (40.5 g l$^{-1}$). Similarly, a marked reduction in lead uptake by *Spirulina maxima* was reported when biomass concentration increased from 0.1 to 20 g l$^{-1}$ [28]. Romera et al. [29] reported that maximum biosorption efficiency could be obtained at the lowest biomass concentration.

pH

Most of the studies have shown that the sorption of metal ions in batch as well as in a continuous system, is a function of pH of the solution. pH can affect the solubility and toxicity of heavy metals in the water; it is perhaps the most important parameter influencing metal adsorption by microalgae biomass [30-32]. It affects the speciation of metals in solution and algal tolerance [30]; particularly, it influences both, cell surface metal-binding sites, and, metal chemistry in water. Dependence of metal ion uptake on pH is related to the metal ion complexation chemistry in solution, and behavior of many different functional groups present at the surface of algal cells as well as to complex formation constants [11, 33, 34].

Peterson *et al.* [35] proved of pH-dependent metal toxicity in their report on algae. Since a majority of the metal-binding groups of algae are acidic (e.g., carboxyl), their availability is pH-dependent. These groups generate a negatively charged surface at acidic pH, and electrostatic interactions between cationic species and the cell surface are responsible for metal biosorption. The sorption of Cr (VI) and Cd on *Padina* sp. and *Sargassum* sp. [36], and Cesium sorption on *Padina australis* [37] was optimal at pH 2. Yu *et al.* [38] found very little sorption of Cu by *Dunaliella potatorum* at pH below 2. It is well known that high amounts of uranium (VI) are bound by *Chlorella vulgaris* in the pH range from 3 to 6 [39]. Han *et al.* [33] investigated the Cr (III) uptake by *Chlorella miniata* biomass and found that biosorption capacity in pH 3, 4 and 4.5, was 14.17, 28.72 and 41.12 mg Cr (III)/g dried algae, respectively. Similar research by Gupta and Rastogi [11] on the uptake of Pb (II) by *Spirogyra* sp. biomass showed that biosorption of Pb (II) at the pH-3, is very low. When the pH increased in the range of 3-5, an increase in lead ions sorption was observed, with the maximum amount of sorbed ions being 140 mg/g at pH 5. Species of *Desmodesmus* and *Heterochlorella* have the potential to withstand heavy metals such as Cu, Fe, Mn and Zn at an acidic pH of 3.5. These microalgae grew well, exhibiting predominant intracellular accumulation as well as removal of the selected metals [40]. Yan and Viraraghavan [41] further suggested that at acidic pH, H$_2$O$_4$ ions prevent metal adsorption as they cover the binding sites on the cell walls, while at alkaline pH, the functional groups are freely permitting the binding of metal ions.

Initial metal ion concentration

Heavy-metal ion removal by algal biomass depends largely on the initial concentration of metal ions in the solution phase. Biosorption initially increases as the initial concentration of metal ions increases. Metal sorption initially increases with an increase in metal concentration in the solution and then becoming saturated after a certain concentration of metal [42-44]. Monteiro *et al.* [45] reported a 5-fold increase in initial concentrations of Zn (II) (from 10 to 50 ppm) boosted the metal ion sorption from 19 to 209.6 mg Zn (II)/g dry biomass of *Scenedesmus obliquus*. In other words, the higher metal ion concentrations the lower the efficiency [46].

Microalgial growth showed to decrease at increasing metal concentrations, but promising metal removal efficiency was recorded up to 43% and 39% for Cu by *Desmodesmus* sp. and *C. vulgaris*. For nickel, in the concentration of 5.7 mg l$^{-1}$, the removal efficiency reached 32% for *C. vulgaris* and 39% for *Desmodesmus* sp [47]. Mehta and Gaur [43] reported that *Chlorella vulgaris* biomass is able to remove 69% and 80% of Ni (II) and Cu (II) cations in concentrations of 2.5 ppm, respectively. While an increase in the initial concentration of Ni (II) and Cu (II) to 10 ppm, the metal removal rate was reduced only to 37% and 42%, respectively.

Temperature

Temperature exerts an important effect on metal speciation because most chemical reaction rates are very sensitive to temperature changes. In general, higher temperature favors greater solubility of metal ions in a solution and hence weakens the biosorption of metal ions [48]. Biosorption efficiency of each metal ion is different for each algae species with altered response to the temperature [49, 50]. Previously published studies claimed that increased algal culture temperatures could potentially increase metal ion biosorption capacity [11, 51-55]. Aksu [56] observed increased adsorption of Ni$^{2+}$ in the dry biomass of *C. vulgaris* with rising temperatures. Contrarily, the same author in a previous study [57] reported an increase in temperature (from 20 to 50 °C) caused a decreased cadmium (II) biosorption capacity (from 85.3 to 51.2 mg g$^{-1}$). Gupta and Rastogi [11] reported lower adsorption of Cd$^{2+}$ by *Oedogonium* spp. at higher temperatures. Further studies suggest that metal ion uptake by some algae is exothermic and uptake capacity increases with decreasing temperature [48, 58]. But certain reports show that temperature has no effect on metal sorption [59-61, 26].

Several studies reported temperature-linked changes in metal ions uptake by living algal cells, while others also showed that the temperature has no significant influence on metal ions uptake by dead algal cells [62]. In general, different algal strains behave differently to uptake metal ions at varied temperatures [63-65].

Contact time

Biosorption takes place in two stages. First, for algae biomass, metal ions were passively adsorbed to cell membranes, and biosorption of metal ions occurs rapidly within the first minute. Second, for live alga, active biosorption occurs as the algal cell slowly uptakes the heavy metal ions. An increase in contact time up to the optimum contact time increases biosorption; afterward, it becomes relatively constant. The uptake of uranium (II) by biomass of nonliving *C. vulgaris* during the initial 5 min was more than 90% [66, 67]. Biomass of *Chlamydomonas reinhardtii* microalgae rapidly adsorbed free ions of Hg$^{2+}$, Cd$^{2+}$, and Pb$^{2+}$, with biosorption equilibrium achieved in 60 min [68, 69]. Mata *et al.* [70] reported the amount of Au (III) adsorbed at a pH of 7 on the biomass of *Fucus vesiculosus*.
macroalgae after 1 and 8 h were 28.95 mg g⁻¹ and 74.05 mg g⁻¹ of dry algae, respectively. Lamiaa et al., [71] measured the uptake of cadmium and lead ions by Cladophora fracta, separately harvested after 2, 4, 6, and 8 d, and found greater biosorption capacity was obtained in older cultures. The bio removal of heavy metal ions (Hg²⁺, Pb²⁺ and Cd²⁺) by Pseudochlorococcum typicum from aqueous solution showed that the highest percentage of metal bio removal occurred in the first 30 min of contact recording 97% (Hg²⁺), 86% (Cd²⁺) and 70% (Pb²⁺) [14]. Mastocarpus stellatus attained over 50% of the total biomass cadmium uptake within 2 min of contact and over 90% in the first 9 min. Ashrutha et al., [72] reported efficient removal of chromium, zinc, cadmium, lead, copper, and cobalt by bacterial consortia at approximately 75 to 85% in less than two hours of contact duration. In a study by Goher et al., [73], the maximum removal efficiency for copper and lead by C. vulgaris at ambient room temperature was recorded at pH 5 and 2 min contact time, while the contact time of 120 min at pH 6 created the most suitable conditions for cadmium biosorption.

CONCLUSION

The development of technology for simultaneous detection and removal of toxic metals using microalgae will assist in the bioremediation of toxic metal from contaminated sites and from industrial effluents. Understanding the mechanism will thereby enable the utilization of green, non-toxic, and efficient means of heavy metal bioremediation. This review clearly indicates that microalgae have the potential to become an effective and economical biosorbent for the bioremediation of heavy metal.

AUTHORS CONTRIBUTIONS

All the author have contributed equally

CONFLICT OF INTERESTS

Declared none

REFERENCES

1. Ehrlich HL. Geomicrobiology, 4th edn. Marcel Dekker Publisher, New York; 2002.
2. Jing Y, He Z, Yang X. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci 2007;8:192-207.
3. Srivastava S. Phytoremediation of heavy metal contaminated soils. J Department Appl Sci Hum 2007;6:95-7.
4. Aiyar V, Selvaraju M, Thirugnanamoorthy K. Growth and heavy metals accumulation potential of microcode grown in sewage wastewater and petrochemical effluents. Pak J Biol Sci 2011;14:805-11.
5. Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH. Microalgae—a promising tool for heavy metal remediaion. Ecological Environ Saf 2015;113:329-52.
6. Monteiro CM, Castro PML, Malcata FX. Use of the macroalgae Scenedesmus obliquus to remove cadmium cations from aqueous solutions. World J Microbiol Biotechnol 2009; 25:1573-8.
7. Basta NT, Ryan JA, Chaney RL. Trace element chemistry in residual-treated soil key concepts and metal bioavailability. J Environ Qual 2004;34:49-63.
8. Islam E, Yang XE, He ZL, Mahmood Q. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B 2007;8:1-13.
9. Khan MA, Rao RA, Ajmal M. Heavy metal pollution and its control through non-conventional adsorbents (1998-2007): a review. J Int Environ Appl Sci 2008;3:101-4.
10. Chan Was A, Salsal H, McBean E. Heavy metal removal (copper and zinc) in a secondary effluent from wastewater treatment plants by microcode. ACS Sustain Chem Eng 2013;2:130-7.
11. Gupta VK, Rastogi A. Equilibrium and kinetic modeling of cadmium(II) biosorption by non-living algal biomass Oedogonium sp. from the aqueous phase. J Hazard Mater 2008;153:759-66.
12. Singh TP, Goel S, Majumder C. Biosorption of heavy metals by acclimated microbial species, Acinetobacter baumannii. Innovare J Life Sci 2016;6:5-9.
13. Abdel Ghani NT, El Chaghaby GA. Biosorption for metal ions removal from aqueous solutions: a review of recent studies. Int J Latest Res Sci Technol 2014;4:3:237-51.
14. Shabab S, Issa A, Shablay E. Bioremoval capacity of three heavy metals by some microcode species (Egyptian Isolates). Plant Signal Behav 2012;7:392-9.
15. Haferburg G, Kothe E. Microbes and metals: interactions in the environment. J Basic Microbiol 2007;47:453-67.
16. Bellion M, Courbot M, Jacob C, Blaudze D, Chalot M. Extracellular and cellular mechanisms are sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 2006;254:173-81.
17. De Philippis R, Colica G, Michelei E. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 2011;92:697-708.
18. Markou G, Mitragiannis T, Aktas A, Boxkurt H, Georgakakis D, Chrysikopoulos CV. Biosorption of Cu²⁺ and Ni⁺⁺ on Arthrospira platensis with different biochemical compositions. Chem Eng J 2015;259:806-13.
19. Michelei E, Colica G, Viti C, Tamagni P, De Philippis R. Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria. J Appl Microbiol 2008;105:88-94.
20. Rossi F, Michelei E, Bruno L, Adhikary SP, Albertano P, De Philippis R. Characteristics and role of the excellence polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Biofouling 2012;28:215-24.
21. Bux F, Chisti Y. Eds. Algae Biotechnology Products and Processes. Springer; 2016.
22. Rajamani S, Sriprornadulsil S, Falcao V, Torres M, Colepico P, Sayre R. Phycoremediation of heavy metals using transgenic microalgae. Adv Exp Med Biol 2007;616:99-109.
23. Mehta SK, Gaur JP. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 2005;25:113-52.
24. Perales Vela HV, Pena Castro JM, Canizares Villanueva RO. Heavy metal detoxification in eukaryotic microalgae. Chemosphere 2006;64:1-10.
25. Schiewer S, Volesky B. Biosorption by marine algae. In: Valdes J, Ed. Bioremediation. Springer, Netherlands; 2000. p 139-69.
26. Monteiro CM, Castro PML, Malcata FX. Metal uptake by microcode: underlying mechanisms and practical applications. Biotechnol Prog 2012;28:299–311.
27. Bishnoi NR, Pant A, Garima P. Biosorption of copper from aqueous solution using algal biomasses. J Sci Ind Res 2004;63:813-6.
28. Gong R, Ding Y, Liu H, Chen Q, Liu Z. Lead biosorption and desorption in intact and procrated Spirulina maxima biomass. Chemosphere 2005;58:125-30.
29. Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA. Comparative study of biosorption of heavy metals using different type of algae. Bioreasour Technol 2007;98:3344:53.
30. Brinza L, Dring MJ, Gavrilescu M. Marine micro and macroalgae species as bioscience for heavy metals. Environ Eng Manag J 2007;6:237-51.
31. Jeba Kumar ST, Balavinagswaran CK, Arun Vijay M, Srinivas Kumar KP. Biosorption of lead (II) and chromium (VI) by immobilized cells of microalgae Isochrysis ganaobana. J Algal Biomass Util 2013;4:42-50.
32. Indhumathi P, Syed Shabudeen PS, Shoba US, Saraswathy CP. The removal of chromium from aqueous solution by using a green microcode. J Chem Pharm Res 2014;6:799-808.
33. Han X, Wong YS, Tam NF. Surface complexion mechanism and modeling in Cr(III) biosorption by a microbial isolate, Chlorella miniatia. J Colloid Interface Sci 2006;303:365-71.
34. Sheng PX, Tan LH, Chen JP, Ting YP. Biosorption performance of two brown marine algae for removal of chromium and cadmium. J Dispers Sci Technol 2010;31:679-86.
35. Peterson HG, Healey FP, Wagemann R. Metal toxicity to algae: a highly pH-dependent phenomenon. Can J Fish Aquat Sci 1984;41:974-9.
36. Sheng PX, Ting YP, Chen JP, Hong L. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass:
characterization of disruptive capacity and investigation of mechanisms. J Colloid Interface Sci 2004;275:131-41.
37. Jalali Rad R, Ghalacervin H, Asf Y, Dalir ST, Sahafpour MH, Gharanjik BM. Biosorption of cesium by native and chemically modified biomass of marine algae: Introduce the new biologist for biotechnology. J Hazard Mater 2009;165:56-62.
38. Yu Q, Kaewsarn P, Duong LV. Electron microscopy study of biosorption from marine macroalga Durvillaea potatorum. Chemosphere, 2000;41:589-94.
39. Gunther A, Raff J, Geipel G, Bernhard G. Spectroscopic investigations of U(VI) species sorbed by the green algae Chlorella vulgaris. Biometals 2008;21:33-41.
40. Abinandan S, Subhashchandra Bose SR, Panneerselvan L, Venkateswarlu K, Megharaj M. Potential of acid-tolerant microcode, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, in heavy metal removal and biodiesel production at acidic pH. Biosour Technol 2019;278:9-16.
41. Yan G, Viraraghavan T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 2003;37:4486-96.
42. Da Costa ACA, Leite SFG. Metal biosorption by sodium alginate immobilized Chlorella homosphaera cells. Biotechnol Lett 1999;13:359-62.
43. Mehta SK, Gaur JP. Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris. Ecol Eng 2001;18:1-13.
44. Mehta SK, Singh A, Gaur JP. Kinetics of adsorption and uptake of Cu by Chlorella vulgaris: influence of pH, temperature, culture age, and cations. J Environ Sci Health Part A 2002;37:399-414.
45. Monteiro C, Castro PL, Xavier Malcata FX. Biosorption of zinc ions from aqueous solution by the microalga Scenedesmus obliquus. Environ Sci Lett 2011;9:169-76.
46. Mallick E, Nuhoglu Y. The removal of chromium (VI) from synthetic wastewater by Ulothrix zonata. Fresenius Environ Bull 2003;12:76-81.
47. Rugnini L, Costa G, Congestri R, Bruno L. Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media. Sci Total Environ 2017;601-602:959-67.
48. Lau PS, Lee HY, Tsang CCK, Tam NFY, Wong YS. Effect of metal interference, pH and temperature on Cu and Ni biosorption by Chlorella vulgaris and Chlorella miniata. Environ Technol 1999;20:953-61.
49. Monteiro C, Castro PL, Malcata FX. Cadmium removal by two strains of Desmodesmus pleiomerophus cells. Water Air Soil Pollut 2010;208:17-27.
50. Gupta VK, Rastogi A, Nayak A. Biosorption of nickel onto Ulothrix zonata immobilized Chlorella homosphaera cells. Water Air Soil Pollut 2003;12:76-81.
51. Deng L, Su Y, Su H, Wang X, Zhu X. Biosorption of copper (II) and lead (II) from aqueous solutions by nonliving green algae Cladophora fascicularis: equilibrium, kinetics and environmental effects. Adsorption 2006;12:267-77.
52. Sari A, Tuzen M. Equilibrium, thermodynamic and kinetic studies on aluminum biosorption from aqueous solution by brown alga (Padina pavonica) biomass. J Hazard Mater 2009;171:973-9.
53. Sag Y, Kutsal T. Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochem Eng J 2000;6:145-51.
54. Aksu Z. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions on to Chlorella vulgaris. Proc Biochem 2002;38:89-99.
55. Aksu Z. Equilibrium and kinetic modeling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of pH, temperature, and cations. J Hazard Mater 2007;144:24-34.
56. Tuzen M, Sari A, Mendil D, Uluozlu OD, Soyak M, Dogan M. Characterization of biosorption process of As(III) on green algae Ullothrix cylindrica. J Hazard Mater 2009;165:56-62.
57. Rangsawat N, Upatham E, Kruatrachue M, Pokethityook P, Lanza G. Phytoremediation potential of Spirulina (Arthrosperia) platensis biosorption and toxicity studies of cadmium. Environ Pollut 2002;119:45-53.
58. Martins RJF, Pardo R, Boaventura RAR. Cadmium (II) and zinc (II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Res 2004;38:693-9.
59. Lodero P, Barriada JL, Herrero R, Saxtre de Vicente ME. The marine macroalga Cystoseira baccata as biosorbent for cadmium (II) and lead (II) removal: kinetic and equilibrium studies. Environ Pollut 2006;142:264-73.
60. Babarak D, Azarpira H, Mostafapour FK. Thermodynamics of removal of cadmium by adsorption on barley husk biomass. Der Pharm Chem 2016;6:24-7.
61. Furushashi Y, Honda R, Noguchi M, Hara Yamamura H, Kobayashi S, Higashimine K, et al. Optimum conditions of pH, temperature and preculture for biosorption of europium by microalga Acutodesmus obliquus. Biochem Eng J 2019;143:58-64.
62. Mantzorou A, Navakoudis E, Faschalis K, Ververidis F. Microalgae as a potential tool for remediating aquatic environments from toxic metals. Int J Environ Sci Technol 2018;16:1815-30.
63. Vilar VJ, Botelho CM, Boaventura RAJPB. Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algae waste. Proc Biochem 2005;40:3267-75.
64. Sooksawat N, Meetam M, Kruatrachue M, Pokethityook P, Inthorn D. Equilibrium and kinetic studies on biosorption potential of charophyte biomass to remove heavy metals from synthetic metal solution and municipal wastewater. Bioremediation J 2016;20:240-51.
65. Vogel M, Gunther A, Rossberg A, Li B, Bernhard G, Raff J. Biosorption of U (VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci Total Environ 2010;409:384-95.
66. Nowicka B, Plucinski B, Kuczynska P, Kruk J. Physiological characterization of Chlamydomonas reinhardtii aclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotoxicol Environ Saf 2016;130:133-45.
67. Tuzen I, Bayramoglu G, Yalcin E, Basaran G, Celik G, Arica MY. Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalga Chlamydomonas reinhardtii. J Environ Manage 2005;77:85-92.
68. Mata YN, Torres E, Blazquez ML, Ballester A, Gonzalez F, Munoz JA. Gold(III) biosorption and bioreduction of the brown alga Fucus vesiculosus. J Hazard Mater 2009;166:612-8.
69. Lamas C, Kruatrachue M, Pokethityook P, Upatham ES, Soonthornsarathoda V. Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta (OF Muller ex Vahl) Kützing: a laboratory study. Sci Asia 2005;31:121-7.
70. Ashrta GA, Nanoty V, Bhalekar U. Biosorption of heavy metals from aqueous solution using bacterial EPS. Int J Life Sci 2014;2:373-7.
71. Goher ME, Abd El-Monem AM, Abdel Satar AM, Ali MH, Hussain AM, Napokrorska K, Kredietke A. Biosorption of some toxic metals from aqueous solution using non-living algal cells of Chlorella vulgaris. J Ecol 2016;2(1):703-14.