The Role of NMDA receptors in rat propofol self-administration

CURRENT STATUS: UNDER REVIEW

Bei ping Chen
Department of Anesthesiology, Second Affiliated Hospital and Institute of Neuroendocrinology, Wenzhou Medical University; Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University

ORCiD: https://orcid.org/0000-0002-7819-7232

Xi-xi Huang
Department of Anesthesiology, Second Affiliated Hospital and Institute of Neuroendocrinology, Wenzhou Medical University, Wenzhou, Zhejiang Province

Dong-mei Dong
Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province

Hui Wu
Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province

Tian-qi Zhu
Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province

Ben-fu WANG
Wenzhou Medical University

Corresponding Author

DOI: 10.21203/rs.2.23365/v2

SUBJECT AREAS
Anesthesiology & Pain Medicine

KEYWORDS
propofol, reinforcement, NMDA receptor, self-administration, MK-801
Abstract
Aim Propofol is among the most frequently used anesthetic agents, and it has the potential for abuse. The N-methyl-D-aspartate (NMDA) receptors are key mediators of both neural plasticity and development, as well as of addiction and neurodegeneration. Herein we explored the role of these receptors in rat propofol self-administration.

Methods Rats were trained to self-administer propofol (1.7 mg/kg/infusion) using an FR fixed ratio schedule of the course of 14 sessions (3 h/day). After training, rats were intraperitoneally administered the non-competitive NDMA receptor antagonist MK-801, and then 10 minutes later were subjected to a propofol self-administration session.

Results: After training, rats had acquired the ability to self-administer propofol successfully, as evidenced by a significant and stable rise in active nose-pokes leading to propofol administration relative to control nose-pokes (P<0.01) and became stable. Relative to control rats, rats that had been injected with 0.2 mg/kg MK-801 exhibited significantly more propofol infusions (F(3, 28)=4.372, P<0.01), whereas infusions were comparable in the groups administered 0.1 mg/kg and 0.4 mg/kg. In addition, MK-801 failed to alter numbers of active (F(3, 28)=1.353, P>0.05) or inactive (F(3, 28)=0.047, P>0.05) responses in study groups. Animals administered 0.4 mg/kg MK-801 exhibited significantly fewer infusions than animals administered 0.2 mg/kg (P=0.006, P<0.01). In contrast, however, animals in the 0.4 mg/kg MK-801 group exhibited a significant reduction in the number of active nose poke responses (F(3, 20)=20.8673, P<0.01) and the number of sucrose pellets (F(3, 20)=23.77, P<0.01), with increased locomotor activity (F(3, 20)=22.812, P<0.01).

Conclusion These findings indicate that NMDA receptors may play a role in regulating rat self-administration of propofol.

Background
Propofol (2,6-di-isopropylphenol) is an anesthetic agent that has the potential for recreational abuse, as its intake is associated with pleasant and euphoric feelings[1]. Indeed, one anesthesiologist that had been self-administering propofol reported eventual propofol-dependence[2]. Both conditioned place preference and self-administration studies in animals have further confirmed that propofol can
provide reinforcement[3-5]. We have previously demonstrated a role for GABA receptors in the ventral tegmental area (VTA) as regulators of propofol self-administration behavior[6]. We further found that the D1R antagonist SCH23390 was able to mediate a simultaneous dose-dependent reduction in propofol self-administration while also decreasing D1R-associated p-ERK/ERK levels in the nucleus accumbens (NAc)[7,8]. These previous results clearly indicate that propofol is susceptible to abuse, although the mechanistic basis for this susceptibility remains uncertain.

Glutamate directly and indirectly controls drug addiction via the regulation of the dopaminergic system[9-11]. Glutamatergic inputs within the VTA increase dopamine release within the NAc and result in increased dopaminergic cell activity[12]. Glutamate can further facilitate dopaminergic transmission, likely via acting at the presynaptic stage to regulate dopamine release[13]. Alcohol dependence and withdrawal have both been linked to elevated levels of glutamate and associated neuroadaptation in rodent models and in humans[14]. Dependence on other agents such as heroin, cocaine, and nicotine is similarly associated with clear changes in extracellular levels of glutamate in the VTA, NAc, PFC, and striatum[15,16]. Propofol has also been suggested to alter glutamate levels, with multiple studies having demonstrated that propofol can inhibit glutamate receptor-mediated excitatory synaptic transmission[17,18].

N-methyl-D-aspartate (NMDA) receptors are glutamate receptors that control learning, neuroplasticity, and memory, but that also contribute to drug addiction. Studies of chronic neuronal exposure to ethanol have demonstrated that NMDA receptor activity can be directly influenced by ethanol[19], with similar findings having been made in vivo[20]. The non-competitive NMDA antagonist MK-801 can be systemically administered to animals, and such administration has been shown to suppress the development of opioid dependence and opioid tolerance[21]. MK-801 can similarly inhibit the onset of morphine withdrawal syndrome[22], interfere with the acquisition of cocaine self-administration behaviors[23], and alter conditioned place preference study outcomes[24]. NMDA receptor antagonism can also alter responses to other psychostimulant compounds including amphetamines and alcohol[25]. Work in vitro has shown that propofol can inhibit NMDA receptors, thereby causing hallucinations that are known to occur following propofol
anesthetization[26]. Additional work suggests that when used at an anesthetic dose, propofol can disrupt NDMA receptor agonist-induced calcium entry into cells[27,28]. These findings thus strongly suggest that there is a link between the NMDA receptor and propofol dependence.

Based on these prior findings, we hypothesized that NMDA receptors play a role in regulating propofol addiction. To test this possibility, we developed a rat propofol self-administration model system. These model rats were then intraperitoneally administered MK-801, after which we assessed the effects of such administration on both general and propofol-specific activity in these animals.

Methods

Subjects

In total, 80 male Sprague-Dawley rats (280-300 g) from the Slac Laboratory Animal Center of Shanghai (Shanghai, China) were obtained and individually housed in a temperature-controlled facility with a 12 h light/dark cycle and free food/water access. All animal protocols were approved by the Animal Care and Use Committee of Wenzhou Medical University (wydw2015-0121, Zhejiang, China). At the end of the study, animals were euthanized using sodium pentobarbital (100mg/kg, IP).

Drugs

Animals were injected intravenously with propofol (10 mg/mL; Diprivan, Astrazeneca, Italy), with drug solutions being prepared immediately prior to use. The 1.7 mg/kg per infusion dose of propofol used in this self-administration model was chosen based on a previous report[29]. MK-801 was obtained from Sigma-Aldrich (USA), and was prepared using sterile water.

Apparatus

Twelve customized plexiglass operant boxes (Ningbo Addiction Research and Treatment Center, China) were used for propofol training studies, as detailed in previous reports[30]. These boxes contained two nose-poke holes at a height of 5 cm, with each hole containing a yellow LED light. In addition, a larger light was present on the wall over these holes (28 V, 0.1 mA). Drugs were delivered to animals via Tygon tubing, with a leash assembly being used to protect the tubing and a plastic swiveling apparatus being used to guide the tubing through the ceiling. Animals wore jackets containing a customized fluid connector that attached to the leash assembly. A 5 mL syringe pump
was attached to the tubing, delivering fluids at a 1.2 mL/min rate. A MED Associates interface on an IBM PC was used for experimental control, which was achieved with software written internally using Borland Delphi 6.0.

Surgery

Sodium pentobarbital (50mg/ml) was used to anesthetize animals, after which incisions were made on the chest above the right jugular vein and at the mid-scapular level on the back. Next, a chronically indwelling silastic jugular cannula was implanted such that it extended from the back of the animal[30]. A total of 0.2 mL of a saline-heparin solution (25 U/mL heparin) was flushed through these cannulas each day in order to maintain patency, while infections were prevented via the daily administration of sodium penicillin for 5 days after surgery. Prior to study initiation, animals were given a 7 day post-operative recovery period[29].

Propofol self-administration

Propofol self-administration training was performed as in previous reports [30]. Briefly, after surgical recovery animals were placed into the customized operant boxes and infusion lines were attached as appropriate. At the start of each session, the yellow LED within the active nose-poke hole was lit. Once rats completed the active nose-poke ratio requirement (FR1), they were administered one 1.7 mg/kg infusion of propofol. This administration was paired to a 5-second illumination of the house light in addition to the noise of the infusion pump apparatus. After this time, a 15 second timeout period was activated during which responses were recorded but did not alter drug administration. At the end of this period, the yellow LED within the active nose-poke hole was again illuminated. There were no consequences for responses to the inactive nose-poke hole. Sessions were allowed to continue until either 3 hours had elapsed or until 100 propofol infusions had been administered.

Specific experiments

The 32 rats in this study underwent propofol self-administration training once per day (1.7 mg/kg per infusion). Once rats exhibited a stable response (±5%) for 5 consecutive days, they were intraperitoneally administered MK-801 (0, 0.1, 0.2, or 0.4 mg/kg; n=8/group) 10 minutes before starting the next session, as determined based on previous reports[31]. Animal responses over a 1
hour self-administration period were then recorded, after which animals were euthanized.

Sucrose self-administration

For sucrose administration tests, rats were placed in 30 x 20 x 24 cm operant conditioning chambers and trained according to an FR1 schedule using food reinforcement (45 mg pellets; Noyes, NH, USA) over a period of 7 days. For these chambers, two nose-poke holes were present with a light above each and a food dispenser located between the two holes. In addition, a house light was present on the opposite wall. Food pellets were delivered only in response to the pressing of the active hole during nose-poke tests, while pressing the inactive hole elicited no response. Tests were allowed to proceed either for 3 hours or until 100 food pellets had been acquired.

After rats exhibited stable sucrose acquisition responses, they were intraperitoneally injected with MK-801 (0, 0.1, 0.2, or 0.4 mg/kg) 10 minutes prior to the next session. The numbers of active/inactive pose-poke responses and the number of sucrose pellets obtained were then recorded over the course of a 1 hour session period.

General activity test

In order to explore the ability of MK-801 to non-specifically influence general activity in rats, animals were intraperitoneally administered MK-801, after which locomotion in a novel context was analyzed. In total, 24 naive rats (n=6/group) were administered MK-801 (0, 0.1, 0.2, or 0.4 mg/kg), with their total distance traveled (cm) then being measured and analyzed with the MED Associates SOF-811 Open-field Activity Software.

Statistical analysis

The number of infusions or responses for active and inactive holes during self-administration testing was analyzed using a one-way analysis of variance (ANOVA) or a two-way (hole, treatment) repeated-measures ANOVA. Newman-Keuls multiple comparison tests with an alpha level of 0.05 or 0.01 were used for post-hoc comparisons of group means.

Results

Acquisition of propofol self-administration in rats

Over the course of propofol self-administration training, the numbers of active nose-pokes rose
significantly relative to the number of inactive nose-pokes in study animals (P<0.01)(Fig. 1). Using an FR1 schedule of propofol self-administration (1.7 mg/kg per infusion), rats exhibited stable responses after a total of 14 training sessions.

The impact of MK-801 on propofol self-administration

We observed no significant differences in numbers of active (F(3, 28)=1.353, P>0.05) (Fig. 2A) or inactive (F(3, 28)=0.047, P>0.05) (Fig. 2A) responses among groups when NMDA receptor activity was antagonized. We did, however, observe a significant difference in the number of infusions per session following MK-801 administration (F(3, 28)=4.372, P<0.01) (Fig. 2B), with a significant increase in number of infusions for animals pre-treated with 0.2 mg/kg MK-801 relative to saline controls (P=0.003,P<0.01).

Acquisition of sucrose self-administration responses in rats

Using an FR1 schedule, rats acquired a stable sucrose self-administration response after 7 total sessions. There was a significant increase in the number of active but not inactive nose-poke responses over this training period (Fig. 3A). After 4 days, rats were stably acquiring 100 food pellets per training session (Fig. 3B)

The impact of MK-801 pretreatment on sucrose self-administration

We observed no changes in the numbers of active or inactive nose-poke responses in rats treated with MK-801 (0.1 or 0.2mg/kg, ip) during sucrose self-administration testing, whereas animals administered the higher 0.4 mg/kg MK-801 dose exhibited a significant reduction in the number of active nose-poke responses (F(3, 20)=20.8673, P<0.01), coinciding with a reduction in numbers of sucrose pellets obtained (F(3, 20)=23.77, P<0.01)(Fig. 4).

The impact of MK-801 on rat general activity

We did not observe any apparent impact of 0.1 mg/kg or 0.2 mg/kg MK-801 on general locomotor activity in rats (P>0.05), whereas the higher 0.4 mg/kg MK-801 dose significantly increased this activity (F(3, 20)=22.812, P<0.01)(Fig. 5).

Discussion

Our results clearly demonstrate that propofol is capable of mediating reinforcement in self-
administration studies, consistent with previous studies[6-8]. We found that lower doses of MK-801 (0.1-0.2 mg/kg) were able to increase propofol self-administration infusion numbers in a dose-dependent fashion in rats without impacting general locomotor activity, in line with previous findings. For example, one study has found that MK-801 increases cocaine self-administration breaking points for animals on a progressive-ratio schedule[32]. Recent research suggests that MK-801 disrupts the reconsolidation of cocaine-associated memories during conditioned place preference but not self-administration studies in rats[33]. Another study indicates that MK-801 treatment can increase low rates of operant responding[34]. MK-801 has been shown to facilitate low intracranial self-stimulation (ICSS) rates maintained by low brain-stimulation frequencies in rats[35]. We additionally found that MK-801 at these dose levels did not impact locomotor activity or sucrose-self administration in rats, with our results thus indicating that 0.2 mg/kg MK-801 increases propofol reinforcement.

For the highest MK-801 dose used in this study (0.4 mg/kg), the increase in the number of propofol infusions over control was lower than was observed for the two lower MK-801 doses (Fig. 1B). This is consistent with previous results indicating that at lower doses MK-801 is capable of lowering the reward threshold for brain stimulation, thereby influencing self-administration, whereas higher doses (0.3 mg/kg) are capable of disrupting operant performance[36], consistent with the observed impact on sucrose self-administration in the present study (Fig. 4 P<0.01). Higher doses of MK-801 may be inducing continuously increasing effects on brain electric energy, leading to stronger behavioral effects[37], which can lead to increased ataxia in rats[38]. Consistent with this, we observed no impact of lower MK-801 doses on rat general locomotion, whereas the higher 0.4 mg/kg MK-801 dose led to ataxia and increased hovering behavior in our study animals (Fig. 5 P<0.01).

Multiple mechanisms have the potential to explain the ability of MK-801 to increase propofol rewarding. MK-801 is able to potently bind to the NMDA binding site in a non-competitive manner [39]. As such, MK-801 is able to block NMDA receptor signaling, thereby reducing transduction through glutamatergic nerves. MK-801 has also been shown to enhance the effects of propofol via increasing DA input in the NAc. In microdialysis experiments, the systemic delivery of MK-801 (0.2-0.5 mg/kg) has indeed been shown to result in a marked increase in extracellular DA within the Nac [40].
Another hypothesis proposes that DA signaling may be a dominant mediator of drug addiction, with glutamate signaling playing a less substantial secondary role in this process. Indeed, MK-801 is only able to partially ablate the cocaine-induced expression of c-Fos, whereas the D1 receptor antagonist SCH23390 can completely abolish this induction [41]. Similarly, MK-801 can mediate the partial inhibition of progressive ERK activation in the NAc and dorsal striatum of rats following acute Δ9-tetrahydrocannabinol (THC) administration, while SCH23390 fully blocked this response [42]. We have previously found the D1 dopamine receptors to be linked with ERK activity in the NAc in the context of propofol self-administration[7,8]. This suggests that NMDAR activity is likely a mediator of propofol self-administration responses, with dopamine signaling being dominant and glutamate signaling playing a secondary role in this process.

In summary, these results suggest that NMDA receptors play a role in regulating propofol self-administration. This study does have certain limitations, such as the lack of inclusion of other NMDAR antagonists or agonists, and a lack of intracerebral microinjection experiments or measurements of ERK protein activation. As such, additional research will be needed to clarify the role of these receptors in propofol addiction.

Conclusion

These findings indicate that NMDA receptors may play a role in regulating rat self-administration of propofol.

Abbreviations

- **NMDA**: N-methyl-D-aspartate
- **FR**: fixed ratio
- **GABA**: Gamma-aminobutyric acid
- **VTA**: ventral tegmental area
- **D1R**: Dopamine1 receptor
- **NAc**: nucleus accumbens
- **PFC**: Prefrontal cortex
- **I.p**: Intraperitoneal injection
DA Dopamine
THC Δ9-tetrahydrocannabinol

Declarations

Ethics approval and consent to participate
All animal protocols were approved by the Animal Care and Use Committee of Wenzhou Medical University (wydw2015-0121, Zhejiang, China).

Consent for publication
Not applicable.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Funding
The experimental material, conduct of the study and publication of the manuscript were supported by the National Nature Science Foundation of China (81271469).

Authors’ contributions
BC Contribution: Design the study, conduct the study, analyse the data, and write the manuscript. XH Contribution: Conduct the study and analyze the data. DD Contribution: Design the study. HW Contribution: Design the study and write the manuscript. TZ Contribution: Design and conduct the study and write the manuscript. BW Contribution: Design the study, analyze the data. All authors read and approved the final manuscript.

Acknowledgements
Thanks to the professor Qing-quan Lian for his guidance on this paper

Author information

Affiliations
Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai
village, Nanbaixiang town, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China

Beiping Chen, Dongmei Dong, Hui Wu, Tianqi Zhu

Department of Anesthesiology, Second Affiliated Hospital and Institute of Neuroendocrinology, Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, City, 325000, Zhejiang Province, China

Xixi Huang, Benfu Wang

References

1. Grant IS, Mackenzie N. Recovery following propofol(‘Diprivan’) anaesthesia: a review of there different anaesthetic techniques. Postgrad Med J. 1985;61:133-7

2. Follette JW, Farley WJ. Anesthesiologist addicted to propofol. Anesthesiology. 1992;77:817-8.

3. Pain L, Oberling P, Sandner G, Di Scala G. Effect of propofol on affective state as assessed by place conditioning paradigm in rats. Anesthesiology 1996;85:121- 8.

4. Pain L, Oberling P, Sandner G, Di Scala G. Effect of midazolam on propofol-induced positive affective state assessed by place conditioning in rats. Anesthesiology 1997;87:935– 43.

5. Mark G. LeSage · David Stafford · John R. Glowa. Abuse liability of the anesthetic propofol: self-administration of propofol in rats under fixed-ratio schedules of drug delivery Psychopharmacology (2000) 153:148–154.

6. Wang BF, Lv K, Liu HF, Su Y, Wang H, Wang SC, Bao SH, Zhou WH, Lian QQ. Contribution of the α5 GABAA receptor to the discriminative stimulus effects of propofol in rat, Neuroreport. 2018;29(5):347-352.

7. Lian Q, Wang B, Zhou W, Jin S, Xu L, Huang Q, Lai M, Lu K, Tang L, Zhu H, Lin H, Zhang F, Cao H, Li J, Chen JF, Ge RS. Self-administration of propofol is mediated by dopamine D1 receptors in nucleus accumbens in rats. Neuroscience. 2013;231:373-
8. Wang BF, Lv K, Liu HF, Su Y, Wang H, Wang SC, Bao SH, Zhou WH, Lian QQ. Extracellular signal-regulated kinase in nucleus accumbens mediates propofol self-administration in rats. Neurosci Bull. 2016;32(6):531-537

9. Kalivas PW. Neurocircuitry of addiction. Neuropsychopharmacology: the fifth generation of progress. 2002;95:1357-66.

10. Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992;13:177-184.

11. Spanagel R, Weiss F. The dopamine hypothesis of reward: past and current status. Trends Neurosci. 1999;22:521-527.

12. Tzschentke TM. Pharmacology and behavioural pharmacology of the mesocortical dopamine system. Prog Neurobiol. 2001;63:241-320.

13. Floresco SB, Yang CR, Phillips AG, Blaha CD. Basolateral amygdala stimulation evokes glutamate receptor-dependent dopamine efflux in the nucleus accumbens of the anesthetised rat. Eur J Neurosci. 1998;10:1241-1251.

14. Hermann D, Weber-Fahr W, Sartorius A, Hoerst M, et al. Translational magnetic resonance spectroscopy reveals excessive central glutamate levels during alcohol withdrawal in humans and rats. Biol Psychiatry. 2012;71(11):1015-21.

15. van Huijstee AN, Mansvelder HD. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction. Front Cell Neurosci. 2015;8:1-13.

16. Knackstedt LA, Kalivas PW. Glutamate and reinstatement. Curr Opin Pharmacol. 2009;9:59-64.

17. Lodge D, Anis A. Effects of ketamine and three other anaesthetics on spinal reflexes and inhibition in the cat. Br J Anaesth. 1984;65:1143-1150.

18. Bianchi M, Galzigna L. 2,6-Diisopropylphenol, a general anaesthetic, inhibits
glutamate action on rats ynaptosomes. Neurochem Res. 1991;16:443-466.

19. Chandler LJ. Ethanol and brain plasticity: receptors and molecular networks of the postsynaptic density as targets of ethanol. Pharmacology therapeutics. 2003;99(3):311-26.

20. Szumlinski K, Woodward JJ. Glutamate signaling in alcohol abuse and dependence. Neurobiology of Alcohol Dependence. London: Academic Press; 2014. p.173-206.

21. Trujillo KA, Akil H. Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science. 1991;251:85-87.

22. Higgins GA, Nguyen P, Sellers EM. The NMDA antagonist dizocilpine (MK-801) attenuates motivational as well as somatic aspects of naloxone precipitated opioid withdrawal. Life Sci. 1992;50: PL167–PL172.

23. Schenk S, Valadez A, Worley CM, McNamara C. Blockade of the acquisition of cocaine self-administration by the NMDA antagonist MK 801 (dizocilpine) Behav Pharmacol.1993;4:652-659.

24. Kim HS, Park WK, Jang CG, Oh S. Inhibition by MK-801 of cocaine-induced sensitization, conditioned place preference, and dopamine-receptor supersensitivity in mice. Brain Research Bulletin. 1996;40:201-207.

25. Kalivas PW, Alesdatter JE. Involvement of N-methyl-D-aspartate receptor stimulation in the ventral tegmental area and amygdala in behavioral sensitization to cocaine. J Pharmacol Exp Ther. 1993;267:486-95.

26. Orser BA, Bertlik M, Wang LY, MacDonald JF. Inhibition by propofol (2,6 di-isopropylphenol) of the N-methyl-D-aspartate subtype of glutamate receptor in cultured hippocampal neurones. Br J Phormocol. 1995;116:1761-8.

27. Hirota K, Lambert DG. I.v. anaesthetic agents do not interact with the verapamil binding site on L-type voltage-sensitive Ca2+ channels. Br J Anoesth. 1996;77:385-6.
28. Todorovic SM, Lingle C. Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents. J Neurophysiol. 1998;79:240-52.

29. LeSage MG, Stafford D, and Glowa JR. Abuse liability of the anesthetic propofol: self-administration of propofol in rats under fixed-ratio schedules of drug delivery. Psychopharmacology (Berl). 2000;153:148-54.

30. Zhou W, Liu H, Zhang F, Tang S, Zhu H, Lai M, et al. Role of acetylcholine transmission in nucleus accumbens and ventral tegmental area in heroin-seeking induced by conditioned cues. Neuroscience. 2007;144:1209-18.

31. Pierce RC, Meil WM, Kalivas PW. The NMDA antagonist, dizocilpine, enhances cocaine reinforcement without influencing mesoaccumbens dopamine transmission. Psychopharmacology. 1997;133:188-195.

32. Ranaldi R, French E, Roberts DC. Roberts. Systemic pretreatment with MK-801 (dizocilpine) increases breaking points for self-administration of cocaine on a progressive-ratio schedule in rats. Psychopharmacology. 1996;128:83-88.

33. Brown TE., Lee BR., Sorg BA. The NMDA antagonist MK-801 disrupts reconsolidation of a cocaine-associated memory for conditioned place preference but not for self-administration in rats. Learn Mem.2008;15:857-865.

34. Hillhouse TM, Porter JH. Ketamine, but not MK-801, produces antidepressant-like effects in rats responding on a differential-reinforcement-of-low-rate operant schedule. Behav Pharmacol. 2014;25(1):80-91.

35. Hillhouse TM, Porter JH, Negus SS. Dissociable effects of the noncompetitive NMDA receptor antagonists ketamine and MK-801 on intracranial self-stimulation in rats. Psychopharmacology (Berl). 2014;231(13):2705-16.

36. Bespalov A, Dravolina O, Belozertseva I, Adamcio B, Zvartau E. Lowered brain
stimulation reward thresholds in rats treated with a combination of caffeine and N-methyl-D-aspartate but not alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate or metabotropic glutamate receptor-5 receptor antagonists. Behavioural Pharmacology. 2006;17:295-302.

37. Dimpfel W, Spüler M. Dizocilpine (MK-801), ketamine and phencyclidine: low doses affect brain field potentials in the freely moving rat in the same way as activation of dopaminergic transmission. Psychopharmacol. 1990;101:317-23.

38. Kovacic P, Somanathan R. Clinical physiology and mechanism of dizocilpine (MK-801): electron transfer, radicals, redox metabolites and bioactivity. Oxidative medicine and cellular longevity. 2010;3:13-22.

39. Bresink I, Danysz W, Parsons CG, Mutschler E. Different binding affinities of NMDA receptor channel blockers in various brain regions--indication of NMDA receptor heterogeneity. Neuropharmacology. 1995;34(5):533-40.

40. Mathe JM, Nomikos GG, Hildebrand BE, Hertel P, Svensson TH. Prazosin inhibits MK-801 induced hyperlocomotion and dopamine release in the nucleus accumbens. Eur J Pharmacol. 1996;309:1-11.

41. Wei-Lun Sun, Luyi Zhou, Ruhal Hazim, Vanya Quinones-Jenab and Shirzad Jenab. Effects of dopamine and NMDA receptors on cocaine-induced Fos expression in the striatum of Fischer rats. Brain Res. 2008 December 3; 1243: 1-9.

42. Valjent E, Caboche J, Vanhoutte P. Mitogen-activated protein kinase/extracellular signal-regulated kinase induced gene regulation in brain: a molecular substrate for learning and memory? Mol Neurobiol. 2001;23:83-99

Figures
Figure 1

The X-axis represents the number of days of propofol self-administration training. The Y-axis represents the number of responses, with ● representing active nose-pokes and ○ representing inactive nose-poke.
Figure 2

Figure 2A: The X-axis represents the dose of MK-801 (mg/kg). The Y-axis represents the number of responses in 1 hour of propofol self-administration. Black bars represent active nose-pokes, while gray bars represent inactive nose-pokes. Figure 2B: The X-axis represents the dose of MK-801 (mg/kg). The Y-axis represents the number of propofol infusions in 1 hour, Black bars represent the number of propofol infusions in 1 hour.
Figure 3

Figure 3A: The X-axis represents the number of days of sucrose self-administration training. The Y-axis represents the number of responses, with ● representing active nose-pokes and ○ representing inactive nose-poke.

Figure 3B: The X-axis represents the number of days of sucrose self-administration training. The Y-axis represents the number of food pellets acquired in 1 hour.
Figure 4

The X-axis represents the dose of MK-801 (mg/kg). The Y-axis represents the number of responses in 1 hour of sucrose self-administration. Black bars represent active nose-pokes, while gray bars represent inactive nose-pokes.
The X-axis represents the dose of MK-801 (mg/kg). The Y-axis represents the total distance covered by rats in 3 hours.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

NC3Rs ARRIVE Guidelines Checklist (fillable).pdf
Total distance in 3h.xlsx
sucrose self-administration date.xls
the original date 1h.xls