Driving potent neutralization of a SARS-CoV-2 Variant of Concern with a heterotypic boost.

Daniel J. Sheward, Marco Mandolesi, Egon Urgard, Changil Kim, Leo Hanke, Laura Perez Vidakovics, Alec Pankow, Natalie L. Smith, Xaquin Castro Dopico, Gerald Mclnerney, Jonathan M. Coquet, Gunilla B. Karlsson Hedestam, Ben Murrell

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden

The emergence of SARS-CoV-2 Variants of Concern (VOCs) with mutations in key neutralizing antibody epitopes threatens to undermine vaccines developed against the pandemic founder variant (Wu-Hu-1). Widespread vaccine rollout and continued transmission are creating a population that has antibody responses of varying potency to Wu-Hu-1. Against this background, it is critical to assess the outcomes of subsequent immunization with variant antigens. It is not yet known whether heterotypic vaccine boosts would be compromised by original antigenic sin, where pre-existing responses to a prior variant dampen responses to a new one, or whether the primed memory B cell repertoire would bridge the gap between Wu-Hu-1 and VOCs. Here, we show that a single adjuvanted dose of receptor binding domain (RBD) protein from VOC 501Y.V2 (B.1.351) drives an extremely potent neutralizing antibody response capable of cross-neutralizing both Wu-Hu-1 and 501Y.V2 in rhesus macaques previously immunized with Wu-Hu-1 spike protein. Passive immunization with plasma sampled following this boost protected K18-hACE2 mice from lethal challenge with a 501Y.V2 clinical isolate, whereas only partial protection was afforded by plasma sampled after two Wu-Hu-1 spike immunizations.

Introduction

At least 20 candidate SARS-CoV-2 vaccines have already entered phase 3 clinical trials. A number of these demonstrated high efficacy1–5, significantly reducing morbidity and mortality, and are being rolled-out globally. This first generation of vaccines all encode or deliver a spike glycoprotein derived from the pandemic founder strain, Wu-Hu-1.6

Driven by multiple evolutionary forces8, SARS-CoV-2 is evading immune responses and undermining our prevention and mitigation strategies. Globally, a number of VOCs are rising in frequency (see Fig 1), each harbouring spike mutations that confer resistance to prior immunity. Of particular concern is the surge of variant 501Y.V29, with multiple mutations in dominant neutralizing antibody epitopes making it several fold more resistant to antibodies elicited by current vaccines10–12. This underpins the substantially reduced vaccine efficacies in South Africa, where this variant is circulating at high frequency13,14. Updated vaccines are likely required to protect against current and future mutated variants. Importantly, by the time these are rolled out, a significant proportion of the global population are likely to be seropositive as a result of either infection, or immunization with Wu-Hu-1 based vaccines. A relevant question now is whether a single dose will be sufficient to induce robust neutralising antibody responses to VOCs in seropositive individuals, and whether these boosts are sufficient to confer protection. Importantly, the first exposure to a pathogen can shape future responses to mutated variants. This immunological imprinting or original antigenic sin15 is well-described for influenza A virus, where protection is highest against the first strain encountered and diminished against those encountered later in life16,17. It is crucial for the design of updated vaccines and regimens to determine if existing immunity dampens antibody responses to new VOCs, or if a heterotypic boost can efficiently recruit cross-protective memory responses.

Results

To address this, we immunized three rhesus macaques with two doses of soluble prefusion-stabilized Wu-Hu-1 spike protein (2 µg), adjuvanted with saponin-based Matrix-M™ (Novavax AB, Uppsala, Sweden), with a one-month interval be-
between doses, mimicking an immunization schedule for approved SARS-CoV-2 vaccines. After a single dose, neutralizing antibodies were detectable against Wu-Hu-1 but not against 501Y.V2 (Fig. 2). Neutralizing antibody responses against Wu-Hu-1 were substantially boosted by the second immunization (“post S”, GMT = 3980 at peak), and then waned over the following months (Fig. 2), as also reported in immunized humans. Notably, VOC 501Y.V2 was on average 9-fold (range: 5.6 - 12.2 fold) less potently neutralized (GMT = 451 at peak), consistent with the responses observed in humans following vaccination.

Six months after their first immunization, macaques were boosted with either 2 µg (H05), 10 µg (H06), or 50 µg (H07) of soluble 501Y.V2 RBD in 50 µg Matrix-M™ adjuvant. One macaque (H05) was terminated 5 days after immunization, due to an unrelated illness that had begun prior to the third immunization, and was sampled for detailed follow-up studies of antibody specificities. The two other macaques (H06 and H07) were followed for 4 weeks. In all three animals, 501Y.V2 RBD efficiently boosted responses that potently cross-neutralized both Wu-Hu-1 and 501Y.V2, with similar titers (Fig. 2a-c; Wu-Hu-1 GMT = 11795, 501Y.V2 GMT = 12595). In contrast, for macaques previously immunized with three doses of Wu-Hu-1 spike, the reduced neutralization of 501Y.V2 compared to Wu-Hu-1 remained after the third homotypic spike immunization (Supp. Fig. 1).

To determine whether restoration of neutralizing antibody titers to 501Y.V2 afforded a biologically relevant improvement in protective immunity, mice transgenic for human ACE2 (K18-hACE2) were passively immunized intraperitoneally (i.p.) with plasma samples taken either 2 weeks following the second spike immunization (N=8) (“post S”), or 1-2 weeks following the RBD booster immunization (N=8) (“post vRBD”). Passive immunization conferred titers approximately 10-fold lower than donor plasma (Supp. Fig 2), and macaque polyclonal antibodies were not rapidly cleared following xenotransfusion with an unchallenged mouse still maintaining titers >1400 after 5 days (data not shown). Mice were then challenged intranasally with 2.4x10⁶ RNA copies of either 501Y.V2 or ‘wild-type’ (encoding a spike matching Wu-Hu-1) virus (corresponding to 100 PFU of 501Y.V2 or 86 PFU of wild-type), and weight — a reliable proxy for disease severity — was monitored daily.

Across all groups, protection was strongly correlated with the neutralizing antibody titers to the challenge virus on the day of challenge (Spearman’s ρ = 0.822, p<1x10⁻⁸, Fig. 3a). All control mice that did not receive plasma (PBS only) succumbed to disease when challenged with either variant, showing precipitous weight loss starting around three days post-challenge (Fig. 3b-d). Passive transfer of post S serum conferred protection from WT virus (Fig. 3c) but not from 501Y.V2 (Fig. 3d), clearly demonstrating that evasion of the antibody response by this VOC was sufficient to cause disease. Notably, passive transfer of post vRBD plasma protected against both WT and 501Y.V2 (Fig. 3c,d).

Discussion

For many licensed vaccines, reduced efficacy has been observed against the 501Y.V2 variant. Moreover, the decay of vaccine-elicited antibody titers suggests that over
Fig. 3. Heterotypic RBD boost restores protection against 501Y.V2 in passively immunized k18-hACE2 mice. (a) Pseudovirus neutralizing antibody titers against the challenge spike (ID$_{50}$) in passively immunized mice on the day of challenge are associated with infection, and disease severity summarized as weight loss 6 days following challenge. Titers below the limit of detection of the assay (20) are plotted as 10. (b) Weight loss at day 6 for each group. Unchallenged littermates housed in the same cages (grey); PBS, mock immunized mice (black). Post S, passive immunization with plasma following the second spike immunization (6 week plasma); post vRBD, passive immunization with plasma from macaques boosted with variant (501Y.V2) RBD (31 or 32 week plasma). Statistical comparisons are summarized as: ∗∗, p ≤ 0.01; ∗∗∗, p ≤ 0.001; ns, not significant. Groups displaying significant weight loss compared to uninfected mice are annotated above the points for that group. (c-d) Weight loss following challenge with either (c) ‘wild-type’ (‘WT’) or (d) 501Y.V2 virus for K18-hACE2 mice passively immunized with NHP plasma sampled post S or post vRBD. Control mice mock immunized with PBS and subsequently challenged (‘PBS’) are shown in black, while uninfected littermates housed in the same cages (‘uninfected’) are shown in grey.

The ability of vaccines to broaden existing responses to new variants is still largely unclear. Despite weak immunogenicity of soluble, monomeric RBD as a priming antigen, heterotypic RBD administered as a boost elicited a potent recall response in non-human primates. This was robust to the boosting dose, and effective as low as 2 µg, possibly aided by a dose-sparing effect of Matrix-M. While reduced neutralization of 501Y.V2 was evident following 2 doses of Wu-Hu-1 spike, both Wu-Hu-1 and 501Y.V2 were potently neutralized following heterotypic (501Y.V2) RBD boost. In animal challenge models, neutralizing antibodies following passive immunization represented a robust correlate of protection such that the restoration of neutralizing antibody titers to 501Y.V2 also translated into protective immunity.

The potent, cross-neutralizing antibody response that arises following a heterotypic boost indicates that original antigenic sin does not represent a significant barrier to the acquisition of protective immunity against current SARS-CoV-2 VOCs. In the immunized animal sampled only 5 days post vRBD boost, neutralizing titers (against both Wu-Hu-1 and 501Y.V2) were already elevated suggesting these titers are the product of a rapidly activated population of antibody secreting cells. Further, this time course indicates that successive rounds of affinity maturation likely were not required...
for neutralization of 501Y.V2, but rather that vRBD-specific antibody responses could be boosted from the pool of existing memory B cells primed by Wu-Hu-1. These responses are largely consistent with recently reported results from 501Y.V2 spike mRNA (mRNA1273.351, Moderna) booster vaccinations.28,29 The observation that immunization with RBD (and not whole spike) was capable of inducing robust neutralizing antibody responses is particularly promising as RBD is a small, stable protein that can be easily synthesized and efficiently expressed. Taken together, these data indicate that potent, cross-neutralizing and cross-protective antibody responses can be recruited with heterotypic SARS-CoV-2 immunogens following a primary exposure, and identify soluble RBD booster immunizations as an attractive strategy to broaden vaccine protection from new SARS-CoV-2 variants.

ACKNOWLEDGEMENTS
We thank Dr. Bengt Eriksson and all personnel at Astrid Fagraeus laboratory for expert assistance with thucos macaques. We thank Monika Adori for assistance processing samples. We also thank Novavax, AB, Uppsala, Sweden, for generously making the Matrix-M™ adjuvant available. We gratefully thank James Voss, Deli Huang, and Jesse Bloom for reagents. We gratefully acknowledge Penny Moore and the Animal Care Division (South Africa) for providing the 201Y.V2 spike plasmid (used here for PSV neutralization assays) which was generated using funding from the South African Medical Research Council. We thank Jonas Klingstrom for sharing the Swedish SARS-CoV-2 isolate and Alex Sigal from the Africa Health Research Institute in training in order to reduce the stress associated with experimental procedures. The animal work was conducted with the approval of Stockholm County Council’s ethical committee (DAST), AP, BM; Writing – original draft: DJS, BM; Writing – review editing: all authors; Funding acquisition: GMM, JMC, GKH, BM; Investigation: DJS, MM, EU, CK, AP, BM; Conceptualization: DJS, MM, EU, JMC, GKH, BM; Formal Analysis: DJS, BM; Author contributions: DJS, MM, EU, JMC, GKH, BM; Bacterial pneumonia (Inview) per the manufacturer’s protocols. Media was changed 12-16 hours after transfection, and pseudotyped viruses were harvested at 48- and 72-hours post-transfection, clarified by centrifugation, and stored at -80°C until use. Pseudotyped viruses sufficient to generate 50,000 relative light units (RLUs) were incubated with serial dilutions of plasma for 60 min at 37°C in a 96-well plate, and then 15,000 HEK293F/AACE2 cells were added to each well. Pseudotyped virus was determined by luciferase expression. For 501Y.V2 neutralization assays, we gratefully acknowledge all data contributors i.e. the Authors and their Originating Laboratories responsible for obtaining the specimens, and their Submitting Laboratories that generated the genetic sequence and metadata and shared via the GISAID initiative the data on which the variant frequency estimates in this research are based. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 101003653 (CoroNAb), to GM, GKH, and BM, from the Swedish Research Council to GM, JMC, GKH, GM, and from Karolinska Institutet Development Office and Karolinska Institutet’s President’s Fund to GM, GKH, and BM. EU is supported by a Wenner Gren Fellowship.

METHODS
Ethics statement. The animal work was conducted with the approval of Stockholms Länsstyrelsen’s ethical committee (10513-2020, 1842-2019 and 10895-2020). All animal procedures were performed according to approved guidelines.

Animal models. Rhesus macaques (Macaca mulatta) of Chinese origin, 5-6 years old, were housed at the Astrid Fagraeus Laboratory at Karolinska Institutet. Housing and care procedures complied with the provisions and general guidelines of the Swedish Board of Agriculture. The facility has been assigned an Animal Welfare Assurance number by the Office of Laboratory Animal Welfare (OLAW) at the National Institutes of Health (NIH). The macaques were housed in groups in enriched cages with a daily 14 m3 cages. They were habituated to the housing conditions for more than six weeks before the start of the experiment and subjected to positive reinforcement training in order to reduce the stress associated with experimental procedures. The macaques were weighed at each sampling. All animals were confirmed negative for simian immunodeficiency virus, simian T cell lymphotropic virus, simian retrovirus type D and simian herpes B virus. Mice transgenic for human ACE2 under control of the cytokeratin 18 (K18) promoter30 were obtained from the Jackson Laboratory. Mice were maintained as a hemizygous line, with hACE2 transgene presence confirmed in each quadricep. All immunizations and blood samplings were performed under sedation with 10-15 mg/kg ketamine (Ketamin, Intervet, Sweden) administered i.m. Blood plasma was isolated by centrifugation, and heat inactivated at 56°C for 60 minutes.
Pseudotyped virus neutralization assays. All plasma and serum samples were heat-inactivated at 56°C for 60 minutes. Pseudotyped lentiviruses displaying either the SARS-CoV-2 pandemic-related vRBD variant spike31 and packaging a firefly luciferase reporter gene were generated by the co-transfection of HEK293T cells using Lipofectamine 3000 (Invitrogen) per the manufacturer’s protocols. Media was changed 12-16 hours after transfection, and pseudotyped viruses were harvested at 48- and 72-hours post-transfection, clarified by centrifugation, and stored at -80°C until use. Pseudotyped viruses sufficient to generate 50,000 relative light units (RLUs) were incubated with serial dilutions of plasma for 60 min at 37°C in a 96-well plate, and then 15,000 HEK293F/AACE2 cells were added to each well. Pseudotyped virus was determined by luciferase expression. For 501Y.V2 neutralization assays, we gratefully acknowledge all data contributors i.e. the Authors and their Originating Laboratories responsible for obtaining the specimens, and their Submitting Laboratories that generated the genetic sequence and metadata and shared via the GISAID initiative the data on which the variant frequency estimates in this research are based. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 101003653 (CoroNAb), to GM, GKH, and BM, from the Swedish Research Council to GM, JMC, GKH, GM, and from Karolinska Institutet Development Office and Karolinska Institutet’s President’s Fund to GM, GKH, and BM. EU is supported by a Wenner Gren Fellowship.

AUTHOR CONTRIBUTIONS
Conceptualization: DJS, MM, EU, JMC, GKH, BM; Formal Analysis: DJS, BM; Funding acquisition: GMM, JMC, GKH, BM; Investigation: DJS, MM, EU, CK, AP, NLS, XDC; Methodology: DJS, MM, EU, AP, NLS, JMC, GKH, BM; Resources: CK, LH, LPV, Software: BM; Supervision: LH, GMM, JMC, GKH, BM; Visualization: DJS, AP, BM; Writing – original draft: DJS, BM; Writing – review editing: all authors; Funding acquisition: GMM, JMC, GKH, BM; Investigation: DJS, MM, EU, AP, NLS, JMC, GKH, BM; Resources: CK, LH, LPV, Software: BM; Supervision: LH, GMM, JMC, GKH, BM; Visualization: DJS, AP, BM; Writing – original draft: DJS, BM; Writing – review editing: all authors; Funding acquisition: GMM, JMC, GKH, BM; Investigation: DJS, MM, EU, AP, NLS, JMC, GKH, BM; Resources: CK, LH, LPV, Software: BM; Supervision: LH, GMM, JMC, GKH, BM; Visualization: DJS, AP, BM; Writing – original draft: DJS, BM; Writing – review editing: all authors; Funding acquisition: GMM, JMC, GKH, BM; Investigation: DJS, MM, EU, AP, NLS, JMC, GKH, BM; Resources: CK, LH, LPV, Software: BM; Supervision: LH, GMM, JMC, GKH, BM; Visualization: DJS, AP, BM; Writing – original draft: DJS, BM; Writing – review editing: all authors; Funding acquisition: GMM, JMC, GKH, BM; Investigation: DJS, MM, EU, AP, NLS, JMC, GKH, BM; Resources: CK, LH, LPV, Software: BM; Supervision: LH, GMM, JMC, GKH, BM; Visualization: DJS, AP, BM; Writing – original draft: DJS, BM; Writing – review editing: all authors; Funding acquisition: GMM, JMC, GKH, BM; Investigation: DJS, MM, EU, AP, NLS, JMC, GKH, BM; Resources: CK, LH, LPV, Software: BM; Supervision: LH, GMM, JMC, GKH, BM; Visualization: DJS, AP, BM; Writing – original draft: DJS, BM; Writing – review editing: all authors;
linear combination of 400 randomly drawn Fourier basis features (aka. a “Randon Kitchen Sink” [34]) to allow frequencies to vary non-linearly as a function of time. We estimate the model parameters with an L2 norm on the random feature coefficients, using the GLMnet.jl package, plotting the map with Cartopy (https://github.com/MurrellGroup/VOCfreq). Code available at https://github.com/MurrellGroup/VOCfreq.

ID50 titers. Neutralizing antibody ID50 titers were calculated in Prism 9 (GraphPad Software) by fitting a four-parameter logistic curve bounded between 0 and 100, allowing the fit to extrapolate beyond the plasma/serum dilution where RLUs were reduced by 0.5% to 99.5%. The association between neutralizing antibody titers and weight loss was assessed with a Spearman’s rank correlation in Prism 9 (GraphPad Software).

Bibliography

1. Lindsey R Baden, Hana M E Sali, Brandon Essink, Karen Kottkamp, Sharon Fry, Novak David, Dimansan Daniel, Stroper A, Blouin S, Morozova R, Christersson C, Budy Croom, John McGinty, Scarlett Kheitan, Nathaniel Segal, Joel Situs, Adam Carlos Ferrio, Howard Schwartz, Kathleen Neuzil, Larry Corey, Peter Gilbert, Holly Janes, Dean Follmann, Mary Marovich, John Mascara, Lucia Polakowski, Julie Ledgerwood, Barnaby S Graham, Hamilton T Molitor, Roosevelt J, Connor Kruglyk, Brett Sciutto, Christos Katsatos, Shu Han, Melanie Iversons, Jacqueline Miller, Tai Zakes, and COVDEE Study Group. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med., 384(5):403–416, February 2021.

2. Ferenc Pj Pajak, Stephen J Thomas, Nicholas Kitchin, Judith Absaloja, Alexandra Gurn- man, Stephen Lockhart, John L Perez, Gonzalez Perez-Marcos Edson D Morena, Cristiana Zentini, Ruby Bahra, Kinya A Swanson, Sarath Rajchounthy, Kenneth Koury, Ping Li, Warren V Kalina, David Cooper, Robert W Fyson, Jr, Laura L Hammitt, Otsu Toreyes, Haynelle N Bell, Dale Schaffer, Ati Dia, Our Mather, Philip R Dormont, Ila Ur, Sin- ghan, Kathrin U Jansen, William C Grubauer, and C459101 Clinical Trial Group. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N. Engl. J. Med., December 2020.

3. Merryn Voysey, Anne P Werner, John J Moliva, Angela Choi, Guillaume E Stewart- Jones, Hamilton Bennett, Seyhan Boyoglu-Barnum, William Lofftus, Yuriko Isojima, Sandrine Carl, Kizmekia S Corbett, Robert A Seder, and Darin K Edwards. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv, January 2021.

4. Shahid Madhi, Vicky Bailey, Clare L Cutland, Merryn Voysey, Anthony L Kenne, Leo Fair- lie, Sherman D Padayachee, Keerthan De dna, Shaan L Baranbas, Gamin E Bhorat, Car- men Ben, Gaurav Kwatra, Kathia Ahlward, Parvinder A Al, Sukitha Bimala, Jhina Ben, Adar E Bhorat, Jeanne de Pissis, Alasir Esmali, Marias Gromova, Eliza Horne, Shri L Ns, Aylin Jessa, Teresa Lambe, Matt Laubacher, Muskhi Moodley, Bole Masenya, Mozudezi Masilasi, Shaftel McKenzie, Kagoelo Milapso, Andrew Mouli- tere, Suzette Oldefelt, Faezeh Patel, Suneetpreet Sillay, Jh stores, Hylton R Boden, Lindsay Rossouw, Costas Taouanas, Hingyow Tegali, Asha Thomayoral, Samuel van Eek, Consta- stions K Walter, Suzanne J Dunachie, Elizabeth E Fry, Fany Mutsogol- paya, Jhingan Ren, David I Stuart, and Gavin R Scoe Bran. Evidence of escape of SARS-CoV-2 variant b.1.351 from natural and vaccine induced sera. Cell, February 2021.

5. Kai Wu, Anne P Werner, Jiu Moliu, Matthew Kokk, Angela Choi, Guillaume E Stewart- Jones, Hamilton Bennett, Seyhan Boyoglu-Barnum, William Lofftus, Yuriko Isojima, Sandrine Carl, Kizmekia S Corbett, Robert A Seder, and Darin K Edwards. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv, January 2021.

6. Marco Mandolesi, Daniel J Sheward, Leo Hanke, Junjie Ma, Pradeepa Pushparaj, Laura Donn, Robert F Stii, Daniel L Green, Simon Kerridge, Anthonet Koen, Gaurav Kwatra, Jane Leong, Kizzmekia S Corbett, Robert A Seder, and Darin K Edwards. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv, January 2021.

7. Vivek Sinha, Sutika Bhakta, Zahiya Hossain, Mohdshin Arhardiy, Ashamit Bhorat, Farhad Malekian, Leahy Shenon, Leon Fouche, Cheryl Louw, Michele Tameirs, Nishehta Singh, Ameena Goga, Keerthan De dna, Coert Grobbelaar, Gertruda Kruger, Nazanin Carrim-Garvey, Vicky Bailey, Tulsi de Olivera, Aneicev, Theresa Lambre, Matt Laubacher, Muskh Moodley, Botle Masenya, Mozudezi Masilasi, Shaftel McKenzie, Kagoelo Milapso, Andrew Moul- tere, Suzette Oldefelt, Faezeh Patel, Suneetpreet Sillay, Jh stores, Hylton R Boden, Lindsay Rossouw, Constas Taouanas, Hingyow Tegali, Asha Thomayoral, Samuel van Eek, Consta- stions K Walter, Suzanne J Dunachie, Elizabeth E Fry, Fany Mutsogol- paya, Jhingan Ren, David I Stuart, and Gavin R Scoe Bran. Evidence of escape of SARS-CoV-2 variant b.1.351 from natural and vaccine induced sera. Cell, February 2021.

8. Vivek Sinha, Sutika Bhakta, Zahiya Hossain, Mohdshin Arhardiy, Ashamit Bhorat, Farhad Malekian, Leahy Shenon, Leon Fouche, Cheryl Louw, Michele Tameirs, Nishehta Singh, Ameena Goga, Keerthan De dna, Coert Grobbelaar, Gertruda Kruger, Nazanin Carrim-Garvey, Vicky Bailey, Tulsi de Olivera, Aneicev, Theresa Lambre, Matt Laubacher, Muskh Moodley, Botle Masenya, Mozudezi Masilasi, Shaftel McKenzie, Kagoelo Milapso, Andrew Moul- tere, Suzette Oldefelt, Faezeh Patel, Suneetpreet Sillay, Jh stores, Hylton R Boden, Lindsay Rossouw, Constas Taouanas, Hingyow Tegali, Asha Thomayoral, Samuel van Eek, Consta- stions K Walter, Suzanne J Dunachie, Elizabeth E Fry, Fany Mutsogol- paya, Jhingan Ren, David I Stuart, and Gavin R Scoe Bran. Evidence of escape of SARS-CoV-2 variant b.1.351 from natural and vaccine induced sera. Cell, February 2021.

9. Houriyah Tegali, Edwin Wilkinson, Marta Giovanetti, Arash Iraniizadeh, Vagner Fonseca, Jennifer Giandomini, Deelan Doolah, Sureshnee Pillay, Emmanuel James San, Nokukhanya Msomi, Koleka Misana, Anne von Gottberg, Sibongile Walaza, Musul Alaim, Arshad Is- mail, Thaleh Mbahle, Allison J Glass, Susan Engelbrecht, Gerti Van Zyj, Wim Preiser, Francois Petroianu, Alex D. Saelens, Martin H assman, Harald D Kluge, Mary Ann Davies, Lynn Tyers, Innocent Mudiwa, Denis York, Caroline Masilo, Do- minique Goehrels, Shareal Abrams, Oluwakemi Laguda-Akingba, Arghavan Alasofan- Dekordh, Adam Godzick, Constantinos K Wibmer, Bryan Trevor Sewell, Josef Lorenzo, Luc Q. Ng, восставал пальчики, Vankosh Pond, Shroudne Pillay, and Mustapha Bakkali. Editorial: The emergence and ongoing convergent evolution of the SARS-CoV-2 Spike gene in 2021. medRxiv, March 2021.
22. Emma S Winkler, Adam L Bailey, Natasha M Kelai, Sharmila Nair, Brec T McCune, Ji-sheng Yu, Julie M Fox, Rita E Chen, James T Earnest, Shamus P Keeler, Jon H Ritter, Liang-I Kang, Sarah Dort, Annette Robichaud, Richard Head, Michael J Holtzman, and Michael S Diamond. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol., 21(11):1327–1332, November 2020.
23. Lath J Abu-Raddad, Hiam Cheamet, Adel A Butt, and National Study Group for COVID-19 Vaccination. Effectiveness of the BNT162b2 covid-19 vaccine against the b.1.1.7 and b.1.351 variants. N. Engl. J. Med., May 2021.
24. Nicole Doria-Rose, Mehul S Suthar, Mat Makowski, Sarah O’Connell, Adrian B McDevitt, Juan Manuel Carreño, Veronika Chromikova, Carine Claes, Lynda Coughlan, Yashica Ganga, Khadija Khan, Mallory Bernstein, Alejandro B Balazs, Bernadett I Gosnell, Jennifer Giandhari, Sureshnee Pillay, Eduan Wilkinson, Yeshnee Naidoo, Farina Karim, Susan Meiring, Anne von Gottberg, Cheryl Cohen, Lynn Morris, Jinal N Bhiman, and Prudence Kgagudi, Brent Oosthuysen, Bronwen E Lambson, Tulio de Oliveira, Marion Vermeulen, Karin van der Berg, Theresa Rossouw, Michael Boswell, Veronica Ueckermann, and in mice.
25. Constantinos Kurt Wibmer, Frances Ayres, Tandile Hermanus, Mashudu Madzivhandila, Kai Wu, Angela Choi, Matthew Koch, Sayda Elbashir, Lingzhi Ma, Diana Lee, Angela Bedard, Patrick Raffael Nachbagauer, Jodi Feser, Abdollah Naficy, David I Bernstein, Jeffrey Guptill, Victor M Corman, Olfert Landt, Marco Kaiser, Richard Molenkamp, Adam Meijer, Daniel Kw Chu, Tobias Bleicker, Sebastian Brünink, Lisa Schneider, Marie Luisa Schmidt, Daphne Gjic Mulders, Bart L Haagmans, Bas van der Veer, Sharon van den Brink, Lisa Wijman, Gabriel Goderski, Jean-Louis Rossette, Joanna Ellis, Maria Zambon, Malik Peiris, Herman Goosmann, Chantal Reusken, Marion PG Koopmans, and Christian Drosten. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill., 25(3), January 2020.
26. Rafael Nachbagauer, Jodi Feser, Abdollah Naficy, David I Bernstein, Jeffrey Guptill, Emmanuel B Walter, Francesco Berlinda-Scorza, Daniel Stadbauer, Patrick C Wilson, Teresa Aydillo, Mohammad Amin Behzad, Disha Bhavsar, Carly Bliss, Christina Capuano, Juan Manuel Carreño, Veronika Chromikova, Carine Claes, Lynda Coughlan, Alec W Freyn, Christopher Gast, Andres Javier, Kajun Jiang, Chiara Marottini, Meagan McMahan, Monica McNeil, Alicia Solizarrago, Shirin Strohmeyer, Weina Sun, Marie Van der Weilen, Bruce L Imm, Adolfo García-Sastre, Peter Palese, and Florian Kramer. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nat. Med., 27(1):106–114, January 2021.
27. Kizzmekia S Corbett, Martha C Nason, Britta Flach, Matthew Gagne, Sarah O’Connell, Timothy S Johnston, Shriut N Shah, Venkata Viswanadh Edara, Katharine Floyd, Lili Lai, Charlene McDanal, Joseph R Francica, Barbara Flynn, Kai Wu, Angela Choi, Matthias Koch, Olubukola M Abiona, Anne P Werner, Gabriela S Alvarado, Shayne F Andrew, Mitzi M Donaldson, Jonathan Fintzi, Dillon R Reeb, Eva Lamb, Amy T Neo, Saule T Numukhambetova, Samantha J Provost, Anthony Cook, Alan Dodson, Sardrew Faudenz, Jack Greenhouse, Swagata Kar, Laurent Pessaint, Macchi Portico, Katelyn Stengreibe, Daniel Valentin, Serge Zouantcha, Kevin W Borch, Mahnaz Minai, Bianca M Nagata, Juan I Moliva, Renee van de Wetering, Seyhan Boyoglu-Barmun, Kaynneey Leung, Wei Shi, Eun Sang Yang, Yi Zhang, John-Paul M Todd, Linshu Wang, Hanne Andersen, Kathryn E Foudis, Dain K Edwards, John R Gracalla, Ian N Moore, Mark Lewis, Andrea Carli, David Montefiori, Meuhel S Suthar, Adrian B McDevitt, Nancy J Sullivan, Marco Reoderer, Daniel C Douek, Barney S Graham, and Robert A Seder. Immune correlates of protection by mRNA-1273 immunization against SARS-CoV-2 infection in nonhuman primates. bioRxiv, April 2021.
28. Jing-Hui Tian, Nita Patel, Robert Haupt, Haixia Zhou, Stuart Weston, Holly Hammond, James Logue, Alyse D Pornthom, James Norton, Mimi Guatre-Kabier, Bin Zhou, Kelsey Jacobson, Sonia Maziejebski, Rafia Khatoon, Maalgorga Wisisawa, Will Moffit, Stefanie Kluepfel-Stah1, Beverly Ekchukwu, James Papin, Sarahi Bodda1, C. Jason Wong, Pedro A Piedra, Matthew B Frieman, Michael J Massare, Louis Fries, Karin Llivgren Bengtsson, Linda Sterman, Larry Ewingworth, Gregory Glenn, and Gale Smith. SARS-CoV-2 spike glycoprotein vaccine candidate NXY-CoV2373 immunogenicity in baboons and protection in mice. Nat. Commun., 12(1):372, January 2021.
29. Kai Wu, Angela Choi, Matthew Koch, Sayda Elbashir, Lingzhi Ma, Diana Lee, Angela Woods, Carole Henry, Charis Palandjian, Anna Hii, Julian Quinones, Naveen Nunna, Sarah O’Connell, Adrian B McDevitt, Samantha Falcone, Elisabeth Narayanan, Tonya Colpitts, Hamilton Bennett, Kizzmekia S Corbett, Robert Seder, Barney S Graham, Guillaume B E Stewart-Jones, Andrea Carli, and Dain K Edwards. Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice. April 2021.
30. Kai Wu, Angela Choi, Matthew Koch, Lingzhi Ma, Anna Hii, Naveen Nunna, Venmai Huang, Judy Oestreicher, Tonya Colpitts, Hamilton Bennett, Holly Legault, Yamuna Paila, Biliana Nesterova, Baoyu Ding, Rolando Pajon, Jacqueline M Miller, Brett Leav, Andrea Carli, Roderick McPhee, and Dain K Edwards. Preliminary analysis of safety and immunogenicity of a SARS-CoV-2 variant vaccine booster. May 2021.
31. Ching-Lien Hsieh, Jory A Goldsmith, Jeffrey M Schaub, Andrea M DiVenere, Hung-Chen Kuo, Kizzmekia S Corbett, Timothy S Johnston, Shriut N Shah, Venkata Viswanadh Edara, Katharine Floyd, Lili Lai, Charlene McDanal, Joseph R Francica, Barbara Flynn, Kai Wu, Angela Choi, Matthias Koch, Olubukola M Abiona, Anne P Werner, Gabriela S Alvarado, Shayne F Andrew, Mitzi M Donaldson, Jonathan Fintzi, Dillon R Reeb, Eva Lamb, Amy T Neo, Saule T Numukhambetova, Samantha J Provost, Anthony Cook, Alan Dodson, Sardrew Faudenz, Jack Greenhouse, Swagata Kar, Laurent Pessaint, Macchi Portico, Katelyn Stengreibe, Daniel Valentin, Serge Zouantcha, Kevin W Borch, Mahnaz Minai, Bianca M Nagata, Juan I Moliva, Renee van de Wetering, Seyhan Boyoglu-Barmun, Kaynneey Leung, Wei Shi, Eun Sang Yang, Yi Zhang, John-Paul M Todd, Linshu Wang, Hanne Andersen, Kathryn E Foudis, Dain K Edwards, John R Gracalla, Ian N Moore, Mark Lewis, Andrea Carli, David Montefiori, Meuhel S Suthar, Adrian B McDevitt, Nancy J Sullivan, Marco Reoderer, Daniel C Douek, Barney S Graham, and Robert A Seder. Immune correlates of protection by mRNA-1273 immunization against SARS-CoV-2 infection in nonhuman primates. bioRxiv, April 2021.
32. Bas van der Veer, Sharon van den Brink, Lisa Wijman, Gabriel Goderski, Jean-Louis Rossette, Joanna Ellis, Maria Zambon, Malik Peiris, Herman Goosmann, Chantal Reusken, Marion PG Koopmans, and Christian Drosten. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill., 25(3), January 2020.
33. Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: replacing mini¬mization with randomization in learning. In Nips, pages 1313–1320, 2008.
Fig. SI1. (left) Longitudinal neutralizing antibody responses against Wu-Hu-1 (blue) and 501Y.V2 (red) for plasma samples from Mandolesi et al.20, where three rhesus macaques (NHP1-NHP3) were immunized with three doses of Wu-Hu-1 spike (100 µg) in Matrix-M™ adjuvant. Vertical blue lines indicate the timing of immunizations (at 0, 4, and 9 weeks). (right) Comparison of the titers at 6 weeks (post 2) and 11 weeks (post 3) illustrating that reduced titers to 501Y.V2 (red) compared to Wu-Hu-1 (blue) were maintained after a third homotypic spike boost.

Fig. SI2. Relationship between donor and recipient titers following passive immunization. Mice were passively immunized with 200 µl of plasma, resulting in titers approximately 10-fold lower than in the donor. Correcting for weight, Spearman’s $r = 0.98$ (after a variance-stabilizing square-root transform).
20A Calu-3 72 hpi

20A Vero E6

20H/501Y.V2 isolate

20H/501Y.V2 Calu-3 72 hpi

20H/501Y.V2 Vero E6

Fig. S13. Expansion of SARS-CoV-2 isolates in Vero E6 but not Calu-3 cells rapidly selected for mutations and deletions proximal to the furin cleavage site. Challenge stocks used in this study were produced in Calu-3 cells, and confirmed by Sanger sequencing to harbour no high frequency cell culture adaptation mutations in spike. Electropherograms spanning the furin cleavage site from sanger sequencing of amplified viral RNA are shown for virus cultured in Vero E6 or Calu-3 cells demonstrating the rapid loss of the furin recognition sequence upon culture in Vero E6 cells but not Calu3 cells. Received stock of 501Y.V2 (“20H/501Y.V2 isolate”) had a mixture of intact/knocked-out furin site.