Transduced Tat-DJ-1 protein inhibits cytokines-induced pancreatic RINm5F cell death

Hyo Sang Jo*, Hyeon Ji Yeo*, Hyun Ju Cha, Sang Jin Kim, Su Bin Cho, Jung Hwan Park, Chi Hern Lee, Eun Ji Yeo, Yeon Joo Choi, Won Sik Eum* & Soo Young Choi*

Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea

INTRODUCTION

Loss of pancreatic β-cells by oxidative stress or cytokines is associated with diabetes mellitus (DM). DJ-1 is known to be a multifunctional protein, which plays an important role in cell survival. We prepared cell permeable wild type (WT) and mutant type (M26I) Tat-DJ-1 proteins to investigate the effects of DJ-1 against combined cytokines (IL-1β, IFN-γ and TNF-α)-induced RINm5F cell death. Both Tat-DJ-1 proteins were transduced into RINm5F cells. WT Tat-DJ-1 proteins significantly protected against cell death from cytokines by reducing intracellular toxicities. Also, WT Tat-DJ-1 proteins markedly regulated cytokines-induced pro- and anti-apoptosis proteins. However, M26I Tat-DJ-1 protein showed relatively low protective effects, as compared to WT Tat-DJ-1 protein. Our experiments demonstrated that WT Tat-DJ-1 protein protects against cytokine-induced RINm5F cell death by suppressing intracellular toxicities and regulating apoptosis-related protein expression. Thus, WT Tat-DJ-1 protein could potentially serve as a therapeutic agent for DM and cytokine related diseases. [BMB Reports 2016; 49(5): 297-302]

RESULTS AND DISCUSSION

Purified Tat-DJ-1 protein transduced into RINm5F cells

DJ-1 expression is known to play a crucial role in protecting against cell death by a variety of stimuli (23). However, the effect of wild type DJ-1 or M26I mutant DJ-1 proteins on pancreatic β-cell death is poorly understood. To examine the effect of DJ-1 proteins against cytokine-induced cell death, cell
Tat-DJ-1 protects cytokine damage in RINm5F cells
Hyo Sang Jo, et al.

Permeable WT Tat-DJ-1 and M26I Tat-DJ-1 proteins were constructed and purified. Also, we constructed and purified control DJ-1 protein without a Tat peptide. Tat peptides are one of a variety of protein transduction domains (PTDs) that are widely used to transduce therapeutic molecules into cells (18). As shown in Figs. 1A-1C, we confirmed purified Tat-DJ-1 proteins by SDS-PAGE and Western blot analysis using an anti-histidine antibody. Next, we examined purified DJ-1 protein transduction into RINm5F cells. Immunofluorescence data demonstrated that purified Tat-DJ-1 proteins were markedly detected in the cytoplasm and nucleus of RINm5F cells (Fig. 1D). The results of these experiments demonstrated the successful transduction of purified Tat-DJ-1 protein into RINm5F cells.

The transduction efficiency of Tat-DJ-1 proteins into pancreatic RINm5F cells was determined by treating RINm5F cells with various Tat-DJ-1 proteins (0.5-3 μM) for 1 h or with Tat-DJ-1 proteins (3 μM) for various times (5-60 min). Then, transduction efficiency analysis was conducted by Western blotting. As shown in Fig. 2, Tat-DJ-1 proteins were transduced into RINm5F cells time- or dose-dependently. However, WT Tat-DJ-1 proteins were more rapidly transduced into the cells as compared to M26I Tat-DJ-1 proteins; whereas, control DJ-1 protein did not transduce into cells. Also, we confirmed the intracellular stability of Tat-DJ-1 proteins in RINm5F cells. The quantity of WT Tat-DJ-1 proteins persisted in the cells for 24 h, as compared to M26I Tat-DJ-1 proteins. Other studies have demonstrated lower and highly unstable mutant DJ-1 protein levels, as compared with WT DJ-1 protein (24, 25).

Tat-DJ-1 protein inhibited cytokine-induced cellular cytotoxicity

Pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α and oxidative stress are major risk factors to induce pancreatic β-cell death, since antioxidant protein expression levels in pancreas tissues are lower than those found in other tissues (5, 7, 26). Thus, we determined whether Tat-DJ-1 protein protects against cytokine-induced RINm5F cell death using a MTT assay. As shown in Fig. 3A, WT Tat-DJ-1 protein markedly increased cell survival up to 67% against cytokine-induced cell death while M26I Tat-DJ-1 protein slightly increased cell survival (51%) and control DJ-1 protein did not affect cell survival compared to the survival (48%) of cytokine alone treated cell. In addition, we examined the effects of Tat-DJ-1 protein on cytokine-induced ROS production and DNA fragmentation. RINm5F cells were pretreated with Tat-DJ-1 protein for 1 h and exposed to cytokines. Subsequently, intracellular ROS levels were determined. Intracellular ROS levels were significantly increased by cytokines, while WT Tat-DJ-1 protein markedly reduced ROS levels compared to the levels of cytokine treated cells. However, M26I Tat-DJ-1 and control DJ-1 protein did not affect ROS production (Fig. 3B). We also determined DNA fragmentation levels. As shown in Fig. 3C, cytokines markedly increased the green fluorescence stained cells, as compared with the control cells. WT Tat-DJ-1 treated cells drastically reduced green fluorescence stained cells; whereas, M26I Tat-DJ-1 proteins treated cells showed slightly reduced staining and control DJ-1 protein did not affect DNA fragmentation in cytokine treated RINm5F cells. Previous studies have shown the protective effects of the overexpression of antioxidant proteins against pancreatic β-cell death caused by cytokine- or ROS-induced cellular toxicity (27, 28). In agreement with other studies, we have demonstrated that WT Tat-DJ-1 protein significantly protected against cytokine-induced RINm5F cell death. Our results demonstrated that WT Tat-DJ-1 proteins act as an antioxidant against cytokine-induced RINm5F cell death.

Tat-DJ-1 protein inhibits cytokine-induced signaling in RINm5F cells

Several studies have demonstrated that excesses of cytokines and oxidative stress lead to apoptosis via mitochondria dysfunction and intrinsic apoptosis pathways. The intrinsic apoptosis pathway is triggered by cytochrome c release from mitochondria. Released cytochrome c enhances the activation
Fig. 2. Tat-DJ-1 proteins transduced into RINm5F cells. Tat-DJ-1 (0.5-3 μM) proteins were added to the cell culture media for 1 h (A), Tat-DJ-1 (3 μM) proteins were added to the cell culture media for 5-60 min (B). The stability of Tat-DJ-1 proteins in RINm5F cells. The cells were treated with 3 μM Tat-DJ-1 proteins and incubated for 1-72 h, and analyzed by Western blotting and bands intensity was measured by densitometer (C).

Fig. 3. Effects of Tat-DJ-1 proteins on cytokine-induced cellular cytotoxicity. Tat-DJ-1 proteins (3 μM) were pretreat with RINm5F cells for 1 h and treated with cytokines (5 ng/ml IL-1β, 10 ng/ml TNF-α, and 10 ng/ml IFN-γ). Then cell viability was determined (A), ROS production (B), and DNA fragmentation (C) as described in Materials and Methods. *P < 0.01, compared with cytokine-treated cells.
of caspase-9, and subsequently the activation of caspase-3 that leads to cell death (29-31). In addition, anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bax expression are involved with apoptotic cell death (32). Thus, we examined the effect of Tat-DJ-1 protein on cytokine-induced apoptotic signaling in RINm5F cells. Fig. 4 showed how WT Tat-DJ-1 protein significantly inhibited cytokine-induced cytochrome c release and activation of caspase-3, while M26l Tat-DJ-1 and control DJ-1 proteins showed little affect, as compared to WT Tat-DJ-1 protein. Also, we demonstrated that WT Tat-DJ-1 protein markedly increased Bcl-2 expression levels in cytokine exposed cells. In contrast, WT Tat-DJ-1 protein reduced Bax expression levels unlike M26l Tat-DJ-1 and control DJ-1 and showed similar expression levels compared to cytokine only treated control cells. These results indicated that WT Tat-DJ-1 protein has a protective function against cytokine-induced RINm5F cell death via regulation of cell survival signaling pathways. In this regard, WT Tat-DJ-1 protein has a beneficial effect against cytokines.

Taken together, we demonstrated that transduced WT Tat-DJ-1 protein has a beneficial protective effect against cytokine-induced RINm5F cell death, suggesting that WT Tat-DJ-1 protein is a potential therapeutic agent for DM.

MATERIALS AND METHODS

Materials and cell culture
Cytokines (IL-1β, IFN-γ and TNF-α) were obtained from R&D system (Minneapolis, MN, USA). Primary, secondary, and β-actin antibodies were obtained from Cell Signaling Technology (Beverly, MA, USA) and Santa Cruz Biotechnology (Santa Cruz, CA, USA). Mutant M26l DJ-1 cDNA was obtained from Dr. Eun-Hye Joe (Ajou University). Tat peptides were purchased from PEPTRON (Daejeon, Korea). All other agents were of the highest grade available unless otherwise stated.

RINm5F cells, a pancreatic β-cell line, were purchased from the ATCC (Manassas, VA, USA) and grown in RPMI1640 medium containing 10% fetal bovine serum (FBS) and antibiotics (100 μg/ml streptomycin, 100 U/ml penicillin) at 37°C in a humidity chamber with 5% CO2 and 95% air.

Construction and purification of Tat-DJ-1 protein
Tat expression vector was prepared as described previously (33). Briefly, human DJ-1 cDNA were amplified by PCR using the sense primer 5'–CTCGAGGCTTCCAAAAGAGC-3' and the antisense primer, 5'–GGATCCCTAGTCTTTAAGAA-3'. After PCR, the product was cloned in a TA cloning vector and ligated into the Tat expression vector.

The Tat-DJ-1 expression vectors were transformed into E. coli BL21 cells and induced with IPTG (0.5 mM) at 37°C for 3-4 h. Then, harvested cells were lysed and Tat-DJ-1 proteins...
were purified using affinity column chromatograph. Purified protein concentration was determined by the Bradford assay (34).

Confocal microscopy analysis
To examine the transduction of Tat-DJ-1 proteins into RINm5F cells, we performed double staining using Alexa fluor 488 and DAPI, as described previously (20). The obtained data were expressed as the means ± SD from three experiments. Differences among means were analyzed using one-way ANOVA and student’s t-test. P < 0.01 was significantly different.

ACKNOWLEDGEMENTS
This work was supported through the National Research Foundation of Korea funded by the Ministry of Education (2013R1A1A4A01008026) and it was also supported by a Priority Research Centers Program grant (NRF-2009-0093812) through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning in the Republic Korea, and by Hallym University Research Fund (HRF-G-2015-2).

REFERENCES

1. Eizirik DL, Colli ML and Ortis F (2009) The role of inflammation in insulitis and beta-cell loss in type 1 diabetes Nat Rev Endocrinol 5, 219-226
2. Crop M, Vidal J, Hull RL et al (2007) Progressive loss of beta-cell function leads to worsening glucose tolerance in first-degree relatives of subjects with type 2 diabetes. Diabetes Care 30, 677-682
3. Shaw JE, Sicree RA and Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pr 87, 4-14
4. Agrawal NK, Maiti R, Dash D and Pandey BL (2007) Cilostazol reduces inflammatory burden and oxidative stress in hypertensive type 2 diabetes mellitus patients. Pharmacol Res 56, 118-123
5. Lundh M, Scully SS, Mandrup-Poulsen T and Wagner BK (2013) Small-molecule inhibition of inflammatory beta cell death. Diabetes Obes Metab 15, Suppl 3, 176-184
6. Tang FM, Liu ZZ, Zhao LX, Yang XH, Zhao JJ and Shi J (2013) Effect of glucose control in type 2-diabetes patients to inflammatory factors. Biomed Eng Clin Med 17, 474-476
7. Donath MY and Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11, 98-107
8. Nagakubo D, Taia T, Kitaura H et al (1997) DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem Biophys Res Commun 231, 509-513
9. Inden M, Taia T, Kitamura Y et al (2006) PARK7 DJ-1 protects against degeneration of nigral dopaminergic neurons in Parkinson’s disease rat model. Neurobiol Dis 24, 144-158
10. Kim RH, Smith PD, Aleyashin H et al (2005) Hypersensitive of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A 102, 5215-5220
11. Yu HH, Xu Q, Chen HP et al (2013) Stable overexpression of DJ-1 protects H9c2 cells against oxidative stress under a hypoxia condition. Cell Biochem Funct 31, 643-651
12. Kim W, Kim DW, Jeong HJ et al (2014) Tat-DJ-1 protects neurons from ischemic damage in the ventral horn of rabbit spinal cord via increasing antioxidant levels. Neurochem Res 39, 187-193
13. Bonifati V, Oostra BA and Heutink P (2004) Linking DJ-1 to neurodegeneration offers novel insights for understanding the pathogenesis of Parkinson’s disease. J Mol Med 82, 163-174
14. van den Berg A and Dowdy SF (2011) Protein transduction domain delivery of therapeutic macromolecules. Curr Opin Biotechnol 22, 888-893
15. Kubo E, Fatma N, Akagi Y, Beier DR, Singh SP and Singh DP (2008) TAT-mediated PRDX6 protein transduction protects against eye lens epithelial cell death and delays lens opacity. Am J Physiol Cell Physiol 294, C842-C855
16. Kim MJ, Jeong HJ, Kim DW et al (2014) PEP-1-PON1 protect regulates inflammatory response in Raw 264.7 macrophages and ameliorates inflammation in a TPA-induced animal model. PLoS One 9, e86034
17. Zho Z, Li Y, Yuan C, Zhang Y and Qu L (2015) Oral administration of TAT-PTD-Diapause hormone fusion protein interferes with Helicoverpa armigera (Lepidoptera: noctuidae) development. J Insect Sci 15, 123
18. Ramsey JD and Flynn NH (2015) Cell-penetrating peptides transport therapeutics into cells. Pharmacol Therapeut 154, 78-86
19. Hou CL, Huang Q, Wei Y et al (2012) Protein transduction domain-Ha20 fusion protein protects endothelial cells against high glucose-induced injury. Genet Mol Res 11, 1899-1908
20. Kim MJ, Park MY, Kim DW et al (2015) Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson’s disease model. Biomaterials 64, 45-56
21. Kim YN, Kim DW, Jo HS et al (2015) Tat-CBR1 inhibits inflammatory response through the suppression of NfκB and MAPKs activation in macrophages and TPA-induced ear edema in mice. Toxicol Applied Pharmacol 286, 124-134
22. Eom SA, Kim DW, Shin MJ et al (2015) Protective effects of PEP-1-Catalase on stress-induced cellular toxicity and MPTP-induced Parkinson’s disease. BMB Rep 48, 395-400
23. Yokota T, Sugawara K, Ito K, Takahashi R, Ariga H and Mizusawa H (2003) Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun 312, 1342-1348
24. Lakshminarasimhan M, Maldonado MT, Zhou W, Fink AL and Wilson MA (2008) Structural impact of three Parkinsonism-associated missense mutations on human DJ-1. Biochem 47, 1381-1392
25. Macedo MG, Anar B, Bronner IF et al (2003) The DJ-1L166P mutant protein associated with early onset Parkinson’s disease is unstable and forms higher-order protein complexes. Hum Mol Genet 12, 2807-2816
26. Rabinovitch A and Suarez-Pinzon WL (1998) Cytokines and their roles in pancreatic islet beta-cell destruction and insulin-dependent diabetes mellitus. Biochem Pharmacol 55, 1139-1149
27. Papaccio G, Nicoletti F, Pisanti FA, Galdieri M and Bendtzen K (2002) An imidazoline compound completely counteracts interleukin-1[beta] toxic effects to rat pancreatic islet [beta] cells. Mol Med 8, 536-545
28. Burkart V and Kolb H (1993) Protection of islet cells from inflammatory cell death in vitro. Clin Exp Immunol 93, 273-278
29. Riedl SJ and Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5, 897-907
30. Gharavi S, Hashemi M, Ande SR et al (2009) Apoptosis and cancer: mutations within caspase genes. J Med Genet 46, 497-510
31. Fulda S and Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798-4811
32. Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family protein: Mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13, 1378-1386
33. Kwon HY, Eum WS, Jang HW et al (2000) Transduction of Cu,Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into mammalian cells. FEBS Lett 485, 163-167
34. Bradford MA (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254
35. Seo WY, Youn GS, Choi SY and Park J (2015) Butein, a tetrahydroxylchalcone, suppresses pro-inflammatory responses in HaCaT keratinocytes. BMB Rep 48, 495-500