Concentration estimates for the isoperimetric constant of the super critical percolation cluster

Eviatar B. Procaccia∗, Ron Rosenthal†
November 9, 2011

Abstract
We consider the Cheeger constant \(\phi(n) \) of the giant component of supercritical bond percolation on \(\mathbb{Z}^d/n\mathbb{Z}^d \). We show that the variance of \(\phi(n) \) is bounded by \(\xi n^d \), where \(\xi \) is a positive constant that depends only on the dimension \(d \) and the percolation parameter.

1 Introduction
Let \(\mathbb{T}^d(n) \) be the \(d \) dimensional torus with side length \(n \), i.e., \(\mathbb{Z}^d/n\mathbb{Z}^d \), and denote by \(\mathbb{E}_d(n) \) the set of edges of the graph \(\mathbb{T}^d(n) \). Let \(p_c(\mathbb{Z}^d) \) denote the critical value for bond percolation on \(\mathbb{Z}^d \), and fix some \(p_c(\mathbb{Z}^d) < p \leq 1 \). We apply a \(p \)-bond Bernoulli percolation process on the torus \(\mathbb{T}^d(n) \) and denote by \(C_d(n) \) the largest open component of the percolated graph (In case of two or more identically sized largest components, choose one by some arbitrary but fixed method). Let \(\Omega = \Omega_n = \{0, 1\}^{\mathbb{E}_d(n)} \) be the space of configurations for the percolation process and \(P = P_p \) is the probability measure associated with the percolation process. For a subset \(A \subset C_d(n) \) we denote by \(\partial C_d(n)A \) the boundary of the set \(A \) in \(C_d(n) \), i.e, the set of edges \((x, y) \in \mathbb{E}_d(n) \) such that \(\omega((x, y)) = 1 \) and with either \(x \in A \) and \(y \notin A \) or \(x \notin A \) and \(y \in A \). Throughout this paper \(c, C \) and \(c_i \) denote positive constants which may depend on the dimension \(d \) and the percolation parameter \(p \) but not on \(n \). The value of the constants may change from one line to the next.

Next we define the Cheeger constant

Definition 1.1. For a set \(\emptyset \neq A \subset C_d(n) \) we denote,

\[
\psi_A = \frac{|\partial C_d(n)A|}{|A|},
\]

where \(|\cdot| \) denotes the cardinality of a set. The Cheeger constant of \(C_d(n) \) is defined by:

\[
\phi = \phi(n) := \min_{\emptyset \neq A \subset C_d(n)} \psi_A.
\]

∗Weizmann Institute of Science
†Hebrew University of Jerusalem
In [BM03] Benjamini and Mossel studied the robustness of the mixing time and Cheeger constant of \mathbb{Z}^d under a percolation perturbation. They showed that for $p_c(\mathbb{Z}^d) < p < 1$ large enough $n\phi(n)$ is bounded between two constants with high probability. In [MR04], Mathieu and Remy improved the result and proved the following on the Cheeger constant:

Theorem 1.2. There exist constants $c_2, c_3, c > 0$ such that for every $n \in \mathbb{N}$

$$\mathbb{P}\left(\frac{c_2}{n} \leq \phi(n) \leq \frac{c_3}{n}\right) \geq 1 - e^{-c\log^2 n}.$$

Recently, Marek Biskup and Gábor Pete brought to our attention that better bounds on the Cheeger constant exist. In [Pet07] and [BBHK08] it is shown that:

Theorem 1.3 ([Pet07]). For $d \geq 2$ and $p > p_c(\mathbb{Z}^d)$, there are constants $\alpha(d, p) > 0$ and $\beta(d, p) > 0$ such that

$$\mathbb{P}\left(\exists S \text{ connected} : 0 \in S \subset C_\infty, M \leq |S| < \infty, \frac{|\partial S|}{|S|^{(d-1)/d}} \leq \alpha\right) \leq \exp\left(-\beta M^{(d-1)/d}\right)$$

The improved bounds don’t improve our result, thus we kept the original [MR04] bounds in our proofs.

Conjecture 1.4. The limit $\lim_{n \to \infty} n\phi(n)$ exists.

Even though the last conjecture is still open, and the expectation of the Cheeger constant is quite evasive, we managed to give a good bound on the variance of the Cheeger constant. This is given in the main Theorem of this paper:

Theorem 1.5. There exists a constant $\xi = \xi(p, d) > 0$ such that

$$\text{Var}(\phi) \leq \frac{\xi}{n^d}.$$

A major ingredient of the proof is Talagrand’s inequality for concentration of measure on product spaces. This inequality is used by Benjamini, Kalai and Schramm in [BKS03] to prove concentration of first passage percolation distance. A related study that uses another inequality by Talagrand is [AKV02], where Alon, Krivelevich and Vu prove a concentration result for eigenvalues of random symmetric matrices.

2 The Cheeger constant

Before turning to the proof of Theorem 1.5, we give the following definitions:

Definition 2.1. For a function $f : \Omega \to \mathbb{R}$ and an edge $e \in E(n)$ we define $\nabla_e f : \Omega \to \mathbb{R}$ by

$$\nabla_e f(\omega) = f(\omega) - f(\omega^e)$$
where
\[\omega'(\omega') = \begin{cases}
\omega(\omega') & \omega' \neq \omega \\
1 - \omega(\omega') & \omega' = \omega.
\end{cases} \]

In addition, for a configuration \(\omega \in \Omega \) and an edge \(e \in \mathcal{E}_d(n) \), let \(\bar{\omega} = \min\{\omega, \omega^e\} \) and \(\bar{\omega}^e = \max\{\omega, \omega^e\} \).

Definition 2.2. For \(n \in \mathbb{N} \) we define the following events:

\[
H^1_n(c_1) = \{ \omega \in \Omega : |C_d(n)(\omega)| > c_1n^d \}
\]

\[
H^2_n(c_2, c_3) = \left\{ \omega \in \Omega : \frac{c_2}{n} < \phi(n)(\omega) < \frac{c_3}{n} \right\}
\]

\[
H^3_n = \{ \omega \in \Omega : \forall e \in \mathcal{E}_d(n) \quad |C_d(n)(\omega) \Delta C_d(n)(\omega^e)| \leq \sqrt{n} \}, \tag{2.1}
\]

\[
H^4_n(c_4) = \{ \omega \in \Omega : \exists A : |A| > c_4n^d, \psi_A(\omega) = \phi(n)(\omega) \}
\]

\[
H^5_n(c_5) = \{ \omega \in \Omega : \exists A : |A| > c_5n^d, \psi_A(\omega^e) = \phi(n)(\omega^e) \}
\]

and
\[
H_n = H^1_n(c_1, c_2, c_3, c_4, c_5) = H^1_n(c_1) \cap H^2_n(c_2, c_3) \cap H^3_n \cap H^4_n(c_4) \cap H^5_n(c_5). \tag{2.2}
\]

We start with the following deterministic claim:

Claim 2.3. Given \(c_1, c_2, c_3, c_4, c_5 > 0 \), there exists a constant \(C = C(c_1, c_2, c_3, c_4, c_5, d, p) > 0 \) such that if \(\omega \in H_n(c_1, c_2, c_3, c_4, c_5) \) then for every \(e \in \mathcal{E}_d(n) \)
\[
|\nabla_e \phi(\omega)| \leq \frac{C}{n^d}.
\]

In order to prove Claim 2.3 we will need the following two lemmas:

Lemma 2.4. Fix a configuration \(\omega \in \Omega \) and an edge \(e \in \mathcal{E}_d(n) \). Let \(A \subset C_d(n)(\bar{\omega}^e) \) be a subset such that \(|A| = \alpha n^d \). Then
\[
|\nabla_e \psi_A| \leq \frac{1}{\alpha n^d}.
\]

Proof. Since \(A \) is a subset of \(C_d(n)(\bar{\omega}^e) \) it follows that the size of \(A \) doesn’t change between the configurations \(\bar{\omega}^e \) and \(\bar{\omega} \) and the size of \(\partial C_d(n)A \) is changed by at most 1. It therefore follows that
\[
|\nabla_e \psi(A)| = |\psi_A(\omega) - \psi_A(\omega^e)| = |\psi_A(\bar{\omega}^e) - \psi_A(\bar{\omega})| \leq \frac{|\partial A|}{|A|} + \frac{1}{|A|} = \frac{1}{|A|}. \tag{2.3}
\]

Lemma 2.5. Let \(G \) be a finite graph, and let \(A, B \subset G \) be disjoint such that there exists a unique edge \(e = (x, y) \), such that \(x \in A \) and \(y \in B \), then
\[
\psi_{A \cup B} \geq \min\{\psi_A, \psi_B\} - \frac{2}{|A| + |B|}.
\]
Proof. From the assumptions on A and B it follows that

$$\psi_{A\cup B} = \frac{|\partial (A \cup B)|}{|A \cup B|} = \frac{|\partial A| + |\partial B| - 2}{|A| + |B|} \geq \min \left\{ \frac{|\partial A|}{|A|}, \frac{|\partial B|}{|B|} \right\} - \frac{2}{|A| + |B|},$$

and so the lemma follows. \hfill \Box

Proof of Claim 2.3. We separate the proof into six different cases according to the following table:

$e=(x,y)$	$\omega(e) = 0$	$\omega(e) = 1$
$x, y \notin C_d(n)$	1	2
$x, y \in C_d(n)$	3	4
$x \in C_d(n), y \notin C_d(n)$ or $y \in C_d(n), x \notin C_d(n)$	5	6

- **Cases 1 and 2:** In those cases the set $C_d(n)$ and the edges available from it is the same for both configurations ω and ω^e. It therefore follows that $\nabla_e \phi(\omega) = 0$. See Figure 2.1a and 2.1b.

- **Case 3:** In this case the set $C_d(n)$ is the same for both configurations ω and ω^e, however the set of edges available from $C_d(n)$ is increased by one when moving to the configuration ω^e, see figure 2.1c. Fix a set $A \subset C_d(n)(\omega)$ of size bigger than $c_4 n^d$ which realize the Cheeger constant. It follows that

$$\psi_A(\omega) = \phi(\omega) \leq \phi(\omega^e) \leq \psi_A(\omega^e),$$

and therefore by Lemma 2.4 we have

$$|\phi(\omega^e) - \phi(\omega)| \leq \psi_A(\omega^e) - \psi_A(\omega) \leq \frac{1}{c_4 n^d},$$

as required.

- **Case 4:** We separate this case into two subcases according to the fact whether $C_d(n)(\omega) \setminus C_d(n)(\omega^e)$ is an empty set or not. If $C_d(n)(\omega) \setminus C_d(n)(\omega^e) = \emptyset$ then we are in the same situation as in Case 3, see Figure 2.1d, and so the same argument gives the desired result. So, let us assume that $C_d(n)(\omega) \setminus C_d(n)(\omega^e) \neq \emptyset$, see Figure 2.1e. Since $\omega \in H_n$ we know that

$$|C_d(n)(\omega) \setminus C_d(n)(\omega^e)| \leq \sqrt{n}. \tag{2.5}$$

Since $\omega \in H_n^4$ there exists a set $A \subset C_d(n)(\omega)$ of size bigger than $c_4 n^d$ realizing the Cheeger constant in the configuration ω. We denote $A_1 = A \cap C_d(n)(\omega^e)$ and $A_2 = A \cap (C_d(n)(\omega) \setminus C_d(n)(\omega^e))$. Applying Lemma 2.3 to A_1 and A_2 we see that

$$\psi_A(\omega) = \psi_{A_1 \cup A_2}(\omega) \geq \min \{ \psi_{A_1}(\omega), \psi_{A_2}(\omega) \} - \frac{2}{|A|}. \tag{2.6}$$
Figure 2.1: Illustrations of the different cases
From [2.5] it follows that \(|A_2| \leq \sqrt{n}\) and therefore \(\psi_{A_2}(\omega) \geq \frac{1}{\sqrt{n}}\) which gives us that\(\min\{\psi_{A_1}(\omega), \psi_{A_2}(\omega)\} = \psi_{A_1}(\omega)\). Indeed, if the last equality doesn’t hold then
\[
\frac{c_2}{n} \geq \psi_A(\omega) \geq \psi_{A_2}(\omega) - \frac{2}{|A|} \geq \frac{1}{\sqrt{n}} - \frac{2}{c_4 n^d},
\]
which for large enough \(n\) yields a contradiction. Consequently from [2.6] we get that
\[
\psi_{A_1}(\omega) - \frac{2}{c_4 n^d} \leq \phi(\omega) \leq \psi_{A_1}(\omega),
\]
and so
\[
\phi(\omega^e) - \frac{2}{c_4 n^d} \leq \psi_{A_1}(\omega^e) - \frac{2}{c_4 n^d} \leq \psi_{A_1}(\omega) - \frac{2}{c_4 n^d} \leq \phi(\omega),
\]
i.e, \(\phi(\omega^e) - \phi(\omega) \leq \frac{2}{c_4 n^d}\).

For the other direction, since \(\omega \in H^5_n\) there exists a set \(B \subset C_d(n)(\omega^e)\) of size bigger than \(c_5 n^d\) realizing the Cheeger constant in \(\omega^e\), then
\[
\phi(\omega) \leq \psi_B(\omega) \leq \psi_B(\omega^e) + \frac{1}{|B|} = \phi(\omega^e) + \frac{1}{|B|} \leq \phi(\omega^e) + \frac{1}{c_5 n^d}.
\]

Consequently,
\[
|\phi(\omega) - \phi(\omega^e)| \leq \max \left\{ \frac{2}{c_4 n^d}, \frac{1}{c_5 n^d} \right\},
\]
as required.

- **Case 5:** This case is similar to **Case 4**, see Figure 2.11. The proof of this case follows the proof of **Case 4** above.

- **Case 6:** This case is impossible by the definition of the set \(C_d(n)(\omega)\).

Next we turn to estimate the probability of the event \(H_n\).

Claim 2.6. There exist constants \(c_1, c_2, c_3, c_4, c_5 > 0\) and a constant \(c > 0\) such that for large enough \(n \in \mathbb{N}\) we have
\[
P(H_n^c) \leq e^{-c \log^3 n}. \tag{2.7}
\]

Proof. Since \(P(H_n^c) \leq \sum_{i=1}^5 P((H_i^1)^c)\), it’s enough to bound each of the last probabilities. The proof of the exponential decay of \(P((H_n^1)^c)\) for appropriate constant is presented in the Appendix.

By [MR04] Theorem 3.1 and section 3.4, there exists a \(c > 0\) such that for \(n\) large enough, \(P((H_n^2)^c) \leq e^{-c \log^{1/2} n}\) for some constants \(c_2, c_3 > 0\).
By [MR04] Appendix B and [Gri99] Theorem 8.61, for large enough n we have that, the occurrence of this event implies the existence of an open cluster of size bigger than \sqrt{n} which is not connected to $C_d(n)$, and therefore its probability is bounded by

$$
\Pr((H_n^3)^c) = \frac{1}{1-p} \Pr \left(\{ \omega \in \Omega : \exists e \in E_d(n) \ |C_d(n)(\omega)\triangle C_d(n)(\omega^c)| \geq \sqrt{n}, \ e \text{ is closed} \} \right)
$$

$$
\leq \frac{1}{1-p} \Pr \left(\{ \omega \in \Omega : \exists e \in E_d(n) \ |C_d(n)(\omega)\triangle C_d(n)(\omega^c)| \geq \sqrt{n}, \ e \text{ is closed} \} \cap H_n^1 \right)
$$

$$
+ \frac{1}{1-p} \Pr((H_n^4)^c).
$$

(2.8)

We already gave appropriate bound for the last term and therefore we are left to bound the probability of $\{ \omega \in \Omega : \exists e \in E_d(n) \ |C_d(n)(\omega)\triangle C_d(n)(\omega^c)| \geq \sqrt{n}, \ e \text{ is closed} \} \cap H_n^1$. Notice that the occurrence of this event implies the existence of an open cluster of size bigger than \sqrt{n} which is not connected to $C_d(n)$.

By [MR04] Appendix B and [Gri99] Theorem 8.61, for large enough n we have that,

$$
\Pr(F \cap H_n^1) := \Pr(\{ \exists B, |B| \geq \sqrt{n}, B \text{ is an open cluster that is not connected to } C_d(n) \} \cap H_n^1).
$$

By (2.8) we define one last event

$$
G_n = \left\{ I_{\epsilon(n)}(C_d(n)) \geq c_6 n^{d(\frac{4}{\xi(n)})-1} \right\},
$$

where $\epsilon(n) = d + 2d \frac{\log \log n}{\log n}$ and

$$
I_{\epsilon}(C_d(n)) = \min_{\emptyset \neq A \in C_d(n)} \frac{|\partial C_d(n)A|}{|A|^{(\epsilon-1)/\epsilon}}.
$$

(2.10)

By [MR04] there exists a constant $c > 0$ such that for large enough $n \in \mathbb{N}$ $\Pr(G_n^c) < e^{-c \log^2 n}$. As before we write

$$
\Pr((H_n^4)^c) \leq \Pr((H_n^4)^c \cap H_n^1 \cap H_n^2 \cap G_n) + \Pr((H_n^1)^c \cup (H_n^2)^c \cup G_n^c),
$$

and by the probability bound mentioned so far it’s enough to bound the probability of the first event $(H_n^4)^c \cap H_n^1 \cap H_n^2 \cap G_n$. What we will actually show is that for appropriate choice of $0 < c_4 < \frac{1}{2}$ we have $(H_n^4)^c \cap H_n^1 \cap H_n^2 \cap G_n = \emptyset$. Indeed, since we assumed the event G_n occurs we have that for large enough $n \in \mathbb{N}$ and every set $A \subset C_d(n)(\omega)$ of size smaller than $c_4 n^d$

$$
|\partial C_d(n)A| \geq c_6 n^{d(\frac{4}{\xi(n)})-1}|A|^{(\epsilon(n)-1)/\epsilon(n)}.
$$
It follows that
\[\psi_A \geq c_6 n^{d-1} \frac{1}{|A|^{1/\epsilon(n)}} \geq c_6 n^{\epsilon(n)-1} \frac{1}{c_4^{1/\epsilon(n)} n^{d/\epsilon(n)}} = \frac{c_6}{c_4^{1/\epsilon(n)} n}. \quad (2.11) \]
Choosing \(c_4 > 0 \) such that for large enough \(n \in \mathbb{N} \) we have \(\frac{c_6}{c_4^{1/\epsilon(n)}} > c_3 \), we get a contradiction to the event \(H_n^2 \), which proves that the event is indeed empty.

Finally we turn to deal with the event \((H_n^5)^c\). As before it’s enough to bound the probability of the event \((H_n^5)^c \cap H_n^1 \cap H_n^2 \cap H_n^3 \cap H_n^4 \cap G_n \). We divide the last event into two disjoint events according to the status of the edge \(e \), namely
\[
\begin{align*}
V_n^0 &= (H_n^5)^c \cap H_n^1 \cap H_n^2 \cap H_n^3 \cap H_n^4 \cap G_n \cap \{ \omega(e) = 0 \} \\
V_n^1 &= (H_n^5)^c \cap H_n^1 \cap H_n^2 \cap H_n^3 \cap H_n^4 \cap G_n \cap \{ \omega(e) = 1 \},
\end{align*}
\]
and will show that for right choice of \(c_5 \) both \(V_n^0 \) and \(V_n^1 \) are empty events.

Let us start with \(V_n^0 \). Going back to the proof of Claim 2.3 one can see that under the event \(H_n^1 \cap H_n^2 \cap H_n^3 \cap H_n^4 \) there exists a constant \(c > 0 \) such that
\[\phi(e) \leq \frac{c}{n^d} \leq \frac{c_3}{n^d}, \]
and therefore \(\phi(\omega^c) \leq \tilde{c}_3 > c_3 \) and \(n \in \mathbb{N} \) large enough. If \(\emptyset \neq A \subset C_d(n)(\omega^e) \) is a set of size smaller than \(\frac{n}{\tilde{c}_3} \) then
\[\psi_A(\omega^e) \geq \frac{1}{|A|} > \frac{\tilde{c}_3}{n}, \]
and therefore \(A \) cannot realize the Cheeger constant. On the other hand, if \(A \subset C_d(n)(\omega^c) \) satisfy \(\frac{n}{\tilde{c}_3} \leq |A| \leq c_5 n^d \) then
\[|\partial_{C_d(n)(\omega^e)} A| \geq |\partial_{C_d(n)(\omega^c)} (A \cap C_d(n)(\omega))| - 1 \geq |\partial_{C_d(n)(\omega)} (A \cap C_d(n)(\omega))| - 2, \]
and therefore (Since we assumed the event \(G \) occurs)
\[\psi_A(\omega^e) \geq \frac{|\partial_{C_d(n)(\omega)} (A \cap C_d(n)(\omega))| - 2}{|A|} \geq \frac{c_6 n^{d/\epsilon(n)-1}}{|A|} - 2 \frac{1}{|A|} = \frac{c_6}{2c_5^{1/\epsilon(n)} n} - \frac{2\tilde{c}_3}{n}. \quad (2.15) \]
Taking \(c_5 > 0 \) small enough such that \(\frac{c_6}{2c_5^{1/\epsilon(n)} n} - 2\tilde{c}_3 > \tilde{c}_3 \) we get a contradiction to (2.13). It follows that no set \(A \subset C_d(n)(\omega^c) \) of size smaller than \(c_5 n^d \) can realize the Cheeger constant which contradicts \((H_n^5)^c\), i.e., \(V_n^0 = \emptyset \).

Finally, for \(V_n^1 \). The case \(A \subset C_d(n)(\omega^e) \) such that \(|A| < \frac{n}{\tilde{c}_3} \) is the same as for the event \(V_n^0 \). If \(A \subset C_d(n)(\omega^c) \) satisfy \(\frac{n}{\tilde{c}_3} \leq |A| \leq c_5 n^d \) then
\[|\partial_{C_d(n)(\omega^c)} A| \geq |\partial_{C_d(n)(\omega)} A| - 1. \]
and therefore as in the case of V_n^0

$$\psi_A(e^n) \geq \frac{|\partial C_d(n)(\omega)| - 1}{|A|} \geq c_6 n^{d/\epsilon(n) - 1} |\partial C_d(n)(\omega)| A| - 1 \geq c_6 \frac{2c_5^{1/2} n}{n} - \frac{c_3}{n}. \tag{2.16}$$

Choosing c_5 small enough, we again get a contradiction to (2.13), and as before this yields that $V_n^1 = \emptyset$.

Proof of theorem 1.5. By [Tal94] (Theorem 1.5) the following inequality holds for some $K = K(p)$,

$$\text{Var}(\phi) \leq K \cdot \sum_{e \in E(C_n(n))} \frac{||\nabla_e \phi||_2^2}{1 + \log (||\nabla_e \phi||_2/||\nabla_e \phi||_1)}. \tag{2.17}$$

Where $||\nabla_e \phi||_2^2 = E[(\nabla_e \phi)^2]$ and $||\nabla_e \phi||_1 = E[|\nabla_e \phi|]$. Observe that $||\nabla_e \phi||_1 = ||\nabla_e \phi 1_{\{\nabla_e \phi \neq 0\}}||_1 \leq ||\nabla_e \phi||_2 1_{\{\nabla_e \phi \neq 0\}}||_2$, and therefore

$$\frac{||\nabla_e \phi||_2}{||\nabla_e \phi||_1} \geq \frac{1}{\sqrt{\mathbb{P}(\nabla_e \phi \neq 0)}} \geq 1.$$

Consequently, if we fix some edge $e_0 \in E_d(n)$,

$$\text{Var}(\phi) \leq K \cdot \sum_{e \in E(C_n(n))} ||\nabla_e \phi||_2^2 = K|E_d(n)| \cdot ||\nabla_{e_0} \phi||_2^2 = Kdn^d \cdot ||\nabla_{e_0} \phi||_2^2. \tag{2.18}$$

where the first equality follows from the symmetry of $T_d(n)$.

$$||\nabla_{e_0} \phi||_2^2 = E[|\nabla_{e_0} \phi|^2 1_{H_n}] + E[|\nabla_{e_0} \phi|^2 1_{H_n^c}]. \tag{2.19}$$

Notice that since $|\nabla_{e_0} \phi| \leq 4d$ we have $E[|\nabla_{e_0} \phi|^2 1_{H_n}] \leq 16d^2 \mathbb{P}(H_n^c)$. Thus applying Lemma 2.6,

$$E[|\nabla_{e_0} \phi|^2 1_{H_n}] \leq 16d^2 e^{-c \log^2 2(n)}, \tag{2.20}$$

and by Lemma 2.3

$$E[|\nabla_{e_0} \phi|^2 1_{H_n}] \leq \frac{C^2}{n^{2d}}. \tag{2.21}$$

Thus combining equations (2.20) and (2.21) with equation (2.18) the result follows.

3 Appendix

In this Appendix for completeness and future reference we sketch a proof of the exponential decay of $\mathbb{P}((H_n^c)^c)$. The proof follows directly from two papers [DP96] by Deuschel and Pistorza and [AP96] by Antal Pisztora, which together gives a proof by a renormalization argument. We borrow the terminology of [AP96] without giving here the definitions.
Lemma 3.1. Let $p > p_c(\mathbb{Z}^d)$. There exists a $c_1, c > 0$ such that for n large enough
\[
P_p(|C_d(n)(\omega)| < c_1 n^d) < e^{-cn}.
\]

Proof. By [DP96] Theorem 1.2, there exists a $p_c(\mathbb{Z}^d) < p^* < 1$ such that for every $p > p^*$, $P_p(|C_d(n)(\omega)| < \tilde{c}_1 n^d) < e^{-cn}$. Since $\{|C_d(n)(\omega)| < \tilde{c}_1 n^d\}^c$ is an increasing event, by Proposition 2.1 of [AP96] for $N \in \mathbb{N}$ large enough, i.e such that $\bar{p}(N) > p^*$,
\[
P_N(|C_d(n)(\omega)| < \tilde{c}_1 n^d) \leq P^*_{\bar{p}(N)}(|C_d(n)(\omega)| < \tilde{c}_1 n^d) < e^{-cn},
\]
where P_N is the probability measure of the renormalized dependent percolation process and $P^*_{\bar{p}(N)}$ is the probability measure of standard bond percolation with parameter $\bar{p}(N)$. From the definition of the event $R_i^{(N)}$, the crossing clusters of all the boxes B'_i that admit $R_i^{(N)}$ are connected, thus
\[
P_p\left(|C_d(n)(\omega)| < \frac{\tilde{c}_1}{N^d} n^d\right) < e^{-cn}.
\]

References

[AKV02] N. Alon, M. Krivelevich, and V.H. Vu. On the concentration of eigenvalues of random symmetric matrices. *Israel Journal of Mathematics*, 131(1):259–267, 2002.

[AP96] P. Antal and A. Pisztora. On the chemical distance for supercritical bernoulli percolation. *The Annals of Probability*, pages 1036–1048, 1996.

[BBHK08] N. Berger, M. Biskup, C.E. Hoffman, and G. Kozma. Anomalous heat-kernel decay for random walk among bounded random conductances. In *Annales de l’Institut Henri Poincaré, Probabilités et Statistiques*, volume 44, pages 374–392. Institut Henri Poincaré, 2008.

[BKS03] I. Benjamini, G. Kalai, and O. Schramm. First passage percolation has sublinear distance variance. *Annals of probability*, 31(4):1970–1978, 2003.

[BM03] I. Benjamini and E. Mossel. On the mixing time of a simple random walk on the super critical percolation cluster. *Probability Theory and Related Fields*, 125(3):408–420, 2003.

[DP96] J.D. Deuschel and A. Pisztora. Surface order large deviations for high-density percolation. *Probability Theory and Related Fields*, 104(4):467–482, 1996.

[Gri99] G. Grimmett. *Percolation*. Springer Verlag, 1999.

[MR04] P. Mathieu and E. Remy. Isoperimetry and heat kernel decay on percolation clusters. *The Annals of Probability*, 32(1):100–128, 2004.
[Pet07] G. Pete. A note on percolation on zd: Isoperimetric profile via exponential cluster repulsion. *Preprint (arxiv: math. PR/0702474)*, 2007.

[Tal94] M. Talagrand. On russo’s approximate zero-one law. *The Annals of Probability*, pages 1576–1587, 1994.