Abstract: There is increasing scientific evidence that some pharmaceuticals are present in the marine ecosystems at concentrations that may cause adverse effects on the organisms that inhabit them. At present, there is still very little scientific literature on the (bio)accumulation of these compounds in different species, let alone on the relationship between the presence of these compounds and the adverse effects they produce. However, attempts have been made to optimize and validate analytical methods for the determination of residues of pharmaceuticals in marine biota by studying the stages of sample treatment, sample clean-up and subsequent analysis. The proposed bibliographic review includes a summary of the most commonly techniques, and its analytical features, proposed to determine pharmaceutical compounds in aquatic organisms at different levels of the trophic chain in the last 10 years.

Keywords: pharmaceuticals; contamination; analytical methods; aquatic organisms; trophic chain

1. Introduction

Pollution is one of the biggest environmental challenges worldwide. Like climate change or the depletion of water supplies, pollution threatens the stability of the earth’s support systems and is a growing concern for human health [1]. Ocean pollution is a very important, but under-recognised, component of global pollution [2]. Seawater covers 97% of surface waters and is considered one of the most abundant resources on our planet [1]. The unsustainable use of marine waters and resources by humans has altered the structure of marine ecosystems, relating to the phenomenon of eutrophication, loss of diversity or the presence of polluting chemicals [3].

Human activities have introduced a large number of contaminants of emerging concern (CECs) into the environment [4]. CECs include a wide variety of compounds such as disinfection by-products, natural toxins, flame retardants, personal care products or pharmaceutical active compounds (PhACs) [5]. Nowadays, an increasing number of people and animals are in need of health care, which means that the number and amount of PhACs consumed, and consequently excreted, is very high [6–8]. Approximately 3000 compounds are used as pharmaceuticals, with an annual production exceeding hundreds of tonnes [7]. It is well known that the wastewater treatment plants (WWTPs) are often unable to remove them completely, allowing their release into the environment [9,10]. In the case of PhACs, due to their constant release into the seas, even those that can undergo degradation may behave as pseudopersistent contaminants [11]. This continued exposure may present unexpected risks in the organisms that inhabit them such as reproductive disorders, survival of susceptible species, growth rate or development of bacterial resistance and endocrine disruption, among others [8,12,13].
The European Union has developed several laws for the monitoring and protection of the seas and their ecosystem. The Water Framework [14] and the Marine Strategy Framework Directive [15] are based on the maintenance as well as the protection and restoration of the marine environment. In addition, the European Commission has drawn up a first list for the monitoring of CECs in 2015, and then it was updated in 2018, 2020 and 2022. The decision 2022/1307/EC [16], includes some PhACs such as the antibiotics sulfamethoxazole and trimethoprim, or the antidepressant venlafaxine and its main metabolite, O-desmethylvenlafaxine, with a maximum permitted detection limit of 100 ng g\(^{-1}\) for the antibiotics and 6 ng g\(^{-1}\) for the others. Although quantitative analysis of PhACs in aquatic ecosystems is limited, as dilution makes detection difficult, the use of bioindicator species is valuable in assessing system contamination, since they are able to reflect bioavailability in a variability of concentrations in both water and sediment [11].

Due to the evidence of the presence of these active compounds in the environment and the concern that it raises, as well as the published EU directives, there is a need for the development of analytical methods with the appropriate characteristics to determine these PhACs in biomarkers. Furthermore, taking into account that the PhAC’s consumption depends on factors such as seasonal diseases, the health system and prescribing practices or the economic level of the population, the methodology developed must take into account local needs [10]. The present work deals with a comprehensive overview of the recent methods proposed for the determination of several groups of PhACs in aquatic organisms belonging to different levels of the trophic chain, emphasizing the sample treatment and contrasting the analytical results obtained. For that, we have focused mainly on methodological studies that include analytical quality parameters and relay on liquid chromatography (LC), the most useful separation technique for the multiresidue determination of PhACs [17]. Huerta et al. [18] already reviewed the state of the art of the analysis of PhACs in aquatic biota up to 2012. Thus, the present review provides an update on the current analytical methods since 2012 onwards.

2. Multi-Level Biological Groups as Biomarkers of Exposure

Biomarkers are defined as suborganic changes that occur at the cellular, physiological or molecular level, measurable in cells or tissues of an organism, which may be indicative of exposure [19]. To be a useful bioindicator, an organism must have certain characteristics such as a wide geographical distribution, long life duration, being easy to capture, a feeding mode that allows the accumulation of contaminants present in the environment (e.g., filtration) or the ability to accumulate and tolerate high concentrations of organic and inorganic contaminants in their tissues [20,21]. The use of sentinel species to monitor environmental pollution allows knowledge of the bioavailability of pollutants in the environment over prolonged periods of time [22]. In addition, information on the concentration of pollutants in different organisms is quite useful for considering toxicological and public health aspects of pollution in natural systems [23]. Among the distinct species used as bioindicators, fish and bivalves, particularly mussels, stand out, as the latter are present on coasts all over the world, are easy to capture and are filter-feeders [24,25]. However, it is necessary to study pollution in species other than mussels to assess trophic transfer in aquatic ecosystems. Figure 1 displays the number of studies devoted to the analysis of PhACs for each group of marine organisms according to the literature consulted in scientific databases. It shows that fish have been by far the most investigated in this field. This section summarises the use of some species belonging to the diverse levels of the trophic chain as bioindicators of pollution.
Phytoplankton is the group of organisms that form part of the exclusively plant-based plankton. They underlie productivity in aquatic environments and are widely used as biomarkers. Among the different species, pigments and fatty acids are mainly used in the study of pollution [3]. Primary aquatic production is carried out by phytoplanktons, which absorb pollutants from the surrounding water and incorporate large quantities into their cellular compartments. In the case, for example, of arsenic, it has been shown that phytoplankton can excrete it after metabolization into the environment, transferring it to higher trophic levels [26–28]. Yan et al. [29] studied the bioaccumulation of antibiotics and analgesics in cyanobacteria as target organisms.

Zooplankton is the fraction of exclusively animal organisms that are part of the plankton. They are very sensitive indicators of the ecological state of an aquatic system since they are able to respond rapidly to environmental changes with modifications in their composition and structure [30]. Zooplankton has an ecologically important role in marine ecosystems being the primary consumer of the food chain. Furthermore, depending on their life stage and the availability of prey, their feeding behaviour varies, being able to combine the selection with chemoreceptors and mechanoreceptors [31]. The same authors mentioned in the previous section also investigated the bioaccumulation of PhACs in several zooplankton species including Daphnia magna, Cepopeda, Caldocera and Rotifers [27–29].

Benthos

Benthic macro-invertebrate organisms are those that are found interred in the sand, attached to rocks or those that walk on the bottom, such as clams and cockles, mussels or crabs. Mussels have been recognised as ideal sentinels for the assessment of aquatic pollution because they have a wide geographical distribution, are easy to collect and are filter-feeders that accumulate pollutants in their bodies [32]. In addition, they have a long life-cycle, which allows the study of the effects of pollution over a long period of time [33]. However, although these organisms have often been used as bioindicators of marine pollution, pharmaceutical bioaccumulation is poorly developed, and the presence of these compounds in benthic species differs between sampling sites. Some authors have proposed the used of caged organisms rather than in wild ones, as it varies between species and the distribution and abundance of these specimens’ changes spatially and

Figure 1. Number of consulted studies according to the different taxonomic groups in aquatic environment.

2.1. Phytoplankton

2.2. Zooplankton

2.3. Benthos
temporally [34]. In the literature, the most studied molluscs were bivalves, specifically mussels, but also oysters, clams, limpets and sea snails [35–37]. Other molluscs also studied have been gastropods (conch, snail) and cephalopods, such as octopus [38–40]. Other benthos organisms such as crustaceans and echinoderms were studied for the determination on pharmaceuticals in aquatic environments, such as starfish as echinoderm [37] and barnacles, shrimp and crabs as crustaceans [27,38,41]. The most studied drugs include the antibiotic sulfamethoxazole, the analgesic naproxen, the antiepileptic carbamazepine and the antidepressant venlafaxine [37,42–44].

2.4. Fish

Fish are considered one of the most important bioindicators in both fresh and salt waters to estimate the level of pollution in the environment [3]. They have the ability to accumulate pollutants present in the surrounding environment in their fatty tissues [45]. Biomonitoring of these species is important due to human consumption, as they are a higher link in the food chain and, besides the inhalation exposure, the presence of contaminants in their bodies may be due to biomagnification (dietary exposure). Human exposure is the main reason to study the bioaccumulation of PhACs in different fish species as well as other biota across trophic levels [34]. Among the different fish species usually used in bioaccumulation studies are carp [38], flatfish [43], salmon and rainbow trout [46] or mullet [47,48]. Regarding the PhACs studied, they belong to many families of drugs, including antibiotics such as quinolones, sulphonamides, and tetracyclines [39,40], analgesics such as naproxen, diclofenac, and acetaminophen [49–51] and other families such as antidepressants, β-blockers or antiepileptics [52,53].

3. Analytical Methodologies for the Determination of Pharmaceuticals in Biota Samples

The growing concern about the contamination of the environment has led to an increase in the number of publications focused on the determination of PhACs in aquatic organisms in recent years. Table 1a–i summarizes the most relevant methods from the analytical point of view classified by taxonomic groups. Additionally, the graphs shown in Figure 2 represent the extraction techniques (a) and clean-up procedures (b) most commonly used for the sample treatment in the reviewed articles.
Table 1. (a) Analytical methods performance for PhACs concentration determination in biofilm. (b) Analytical methods performance for PhACs concentration determination in algae. (c) Analytical methods performance for PhACs concentration determination in plankton. (d) Analytical methods performance for PhACs concentration determination in molluscs. (e) Analytical methods performance for PhACs concentration determination in cephalopods. (f) Analytical methods performance for PhACs concentration determination in echinoderms. (g) Analytical methods performance for PhACs concentration determination in crustaceans. (h) Analytical methods performance for PhACs concentration determination in other invertebrates. (i) Analytical methods performance for PhACs concentration determination in fish.

Specie	Type and Amount of Sample (g)	Pre-Treatment	Extraction Technique	Clean-Up	Analysis	Analytical Features	Ref.		
(a)									
No data									
	Diclofenac, ibuprofen, 1-OH-ibuprofen, piroxicam, diltiazem, propyphenazone, sulfamethoxazole, verapamil, norverapamil, hydrochlorothiazide, bezafibrate, gemfibrozil, pravastatin, carbamazepine, acridone, 10,11-epoxy-CBZ, 2-OH-CBZ, citalopram, fluoxetine, paroxetine, venlafaxine, atazanerone, dexamethasone, metoprolol, propranolol	0.2 (d.w)	Freeze-dried, stored at −20 °C	PLE (citric buffer (pH 4)/ACN)	No data	UHPLC-MS/MS	No data	No data	[54]
Periphyton (No data)	Ethinylestradiol, acetaminophen, diclofenac	0.67 (d.w)	Air dry, powdered	USE (ACN/MeOH 1% acetic acid)	No data	HPLC-MS/MS	62	No data	[55]
(b)									
Sea lettuce (Ulva sp.), Red algae (Gelidium pristoides), Hanging wrack (Bifurcaria brassicaformis), Strapi caulerpa (Caulerpa filiformis), Slippery orbits (Aeodes orbotisa)	Phenytin, lamivudine, acetaminophen, caffeine, sulfamethoxazole, diclofenac, carbamazepine	10 (d.w)	Rinse, deshelled and dissected. Freeze-dried	Soxhlet (MeOH/Acetone)	SPE (HLB cartridges)	UHPLC-MS/MS	96.1–100.5	0.62–1.05 ng L⁻¹	[37]
Water starwort (Callitriche sp.), Pondweed (Potamogeton sp.)	Ethinylestradiol, acetaminophen, diclofenac	0.5 (d.w)	Air dry, powdered	USE (ACN/MeOH 1% acetic acid)	No data	HPLC-MS/MS	81	No data	[55]
Table 1. Cont.

Phytoplankton	Pharmaceuticals	Type and Amount of Sample (g)	Pre-Treatment	Treatment Extraction Technique	Clean-Up	Analysis	Recovery (%)	LOD (ng g⁻¹)	Ref.
Cyanobacteria (Microcystis aeruginosa), Chlorophyceae (Polanstrum spp. Crucigenia spp, Scedesmus spp. Sersu latu (Cosinodiscus spp., Cyclotella spp.), Diatoms (Mesita spp., Aulacoseira spp.), Dinophyceae (Peridiniopsis spp.), Cryptophyceae (Cryptomonas), Chrysohyceae (Dinobryon spp.), Euglenoidea (Euglenida spp.)	Sulfadiazine, sulfa-pyridine, sulfacetamide, sulfa-methazine, sulfa-ethoxazole, sulfa-ethylazine, trimethoprim, sulfadrin, ciprofoxacin, ox-tetracycline, tetracycline, erythromycin, roxithromycin	0.5–1.0 (d.w)	Frozen at −80 °C, stored in a vacuum desiccator	PLE (MeOH/acetone)	SPE (HLB cartridges)	UHPLC-MS/MS	No data	No data	[29]
Cyanobacteria (Microcystis aeruginosa), Chlorophyceae (Polanstrum spp. Crucigenia spp, Scedesmus spp. Sersu latu (Cosinodiscus spp., Cyclotella spp.), Diatoms (Mesita spp., Aulacoseira spp.), Dinophyceae (Peridiniopsis spp.), Cryptophyceae (Cryptomonas), Chrysohyceae (Dinobryon spp.), Euglenoidea (Euglenida spp.)	Sulfadiazine, sulfa-pyridine, sulfacetamide, sulfa-methazine, sulfa-ethoxazole, sulfa-ethylazine, trimethoprim, sulfadrin, ciprofoxacin, ox-tetracycline, tetracycline, erythromycin, roxithromycin	0.1–0.5 (d.w)	Freeze-dried, stored at −18°C	QuEChERs (ACN, acetic acid, 0.1M EDTA, NaCl, Na₂SO₄)	SPE (HLB cartridges)	LC-MS/MS	80.3–104.9	0.04–0.1	[28]
Cyanobacteria (Microcystis aeruginosa), Chlorophyceae (Polanstrum spp. Crucigenia spp, Scedesmus spp. Sersu latu (Cosinodiscus spp., Cyclotella spp.), Diatoms (Mesita spp., Aulacoseira spp.), Dinophyceae (Peridiniopsis spp.), Cryptophyceae (Cryptomonas), Chrysohyceae (Dinobryon spp.), Euglenoidea (Euglenida spp.)	Sulfadiazine, sulfa-pyridine, sulfacetamide, sulfa-methazine, sulfa-ethoxazole, sulfa-ethylazine, trimethoprim, sulfadrin, ciprofoxacin, ox-tetracycline, tetracycline, erythromycin, roxithromycin	0.5 (d.w)	Freeze-dried, homogenized, stored at −80 °C	PLE (MeOH/acetone)	SPE (HLB cartridges)	UHPLC-MS/MS	66–128	0.07–1.67	[27]
Specie	Pharmaceuticals	Type and Amount of Sample (g)	Pre-Treatment	Treatment	Clean-Up	Analysis	Analytical Features	Ref.	
------------------------	---	-------------------------------	---	-----------	-------------------	----------	---------------------	------	
Water flea (Daphnia magna)	Roxithromycin, propanol	Each sample point consisted by 10 daphnia individuals	Homogenized	Sonication (ACN)	SPE (HLB cartridges)	UHPLC-MS/MS	83–106	0.2	[57]
Water flea (Daphnia magna)	Tetracycline	30 organisms	Homogenized	MeOH, formic acid, EDTA	No data	LC-MS/MS	84.23	0.31 µg L⁻¹	[58]
Cyanobacteria (No data)	Sulfachlorpyridazine, sulfadiazine, sulfadoxine, sulfamerazine, sulfadimethoxine, sulfamethoxazole, sulfadinoxine, sulfapyridine, sulfadinoxaline, sulfoxazole, sulfathiazole, trimethoprim, chlorotetracycline, doxycycline, oxytetracycline, tetracycline, ciprofloxacin, difloxacin, danofloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, sarafloxacin, azithromycin, clarithromycin, leucomycin, oleandomycin, roxithromycin, tylosin, salinomycin, monensin, florfenicol, chloramphenicol	1 (d.w) Washed (water), freeze-dried, stored at −20°C	USE (MeOH, sodium acetate buffer pH 4)	SPE (SAX, HLB cartridges)	RRLC-MS/MS	54.2–117	0.02–9.38	[38]	
Green algae (Chlorophyta), Diatoms (Bacillariophyta), Blue green algae (Cyanophyta)	Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, chloramphenicol, sulfamerazine and sulfadiazine, sulfamethoxazole, ibuprofen, diclofenac, naproxen and indomethacin, clofibric acid, gemfibrozil and bezafibrate, 17β-estradiol, 17α-ethynylestradiol, propranolol, carbamazepine, ketoconazole, sertraline	0.25 (d.w) Freeze-dried, ground, stored at −20°C	PLE (MeOH/acetone)	SPE (HLB cartridges)	LC-MS/MS	68–116	0.01–1.12	[56]	
No data	Washed (water), freeze-dried, stored at −20 °C	USE (MeOH, sodium acetate buffer pH 4)	SPE (SAX, HLB cartridges)	RRLC-MS/MS	54.2–117	0.02–9.38	[38]		
---	---	---	---	---	---	---	---		
No data	Freeze-dried, homogenized, stored at −80 °C	PLE (MeOH/acetone)	SPE (HLB cartridges)	UHPLC-MS/MS	66–128	0.07–1.67	[27]		
Copepoda, Cladocera, Rotifera (No data)	Freeze-dried, stored at −18 °C	QuEChERs (ACN, acetic acid, 0.1 M EDTA, NaCl, Na₂SO₄)	d-SPE: QuEChERs (ACN, PSA, C18, Na₂SO₄)	LC-MS/MS	81.1–100.7	0.01–0.12	[28]		
Copepoda, Cladocera, Rotifera (No data)	Freeze-dried, ground, stored at −20 °C	PLE (MeOH/acetone)	SPE (HLB cartridges)	LC-MS/MS	68–116	0.01–1.12	[39]		
Table 1. Cont.

Copepoda, Cladocera, Rotifera (No data)	Sulfadiazine, sulpyridine, sulfacetamide, sulfamethoxazole, sulfamethazine, trimethoprim, lomefloxacin, ciprofloxacin, norfloxac, oxytetracycline, tetracycline, dehydroerythromycin, roxithromycin	0.5–1.0 (d.w)	Frozen at −80 °C, stored in a vacuum desiccator	PLE (MeOH/acetone)	SPE (HLB cartridges)	UHPLC-MS/MS	No data	No data	[29]
No data	Nicotine, haloperidol, pyremethamine	0.14–0.2 (d.w)	Freeze-dried	USE (ACN, MeOH, H₂O), vortex, USE	SPE (No data)	LC-HRMS/MS	70–130	0.05–5.70 *	[59]
Green algae (Chlorophyta), Diatoms (Bacillariophyta), Blue green algae (Cyanophyta)	Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, chloramphenicol, ibuprofen, diclofenac, naproxen, indomethacin, clofibric acid, sulamerazine, sulfadiazine, sulfamethoxazole, gemfibrozil, bezafibrate, propranolol, carbamazepine, sertraline, ketoconazole, 17β-estradiol, 17α-ethynylestradiol	0.25 (d.w)	Freeze-dried, ground, stored at −20 °C	PLE (MeOH/acetone)	SPE (HLB cartridges)	LC-MS/MS	68–116	0.01–1.12	[56]

(d)

Bivalves

Specie	Pharmaceuticals	Type and Amount of Sample (g)	Pre-Treatment	Treatment Extraction Technique	Clean-Up	Analysis	Analytical Features	Recovery (%)	LOD (ng g⁻¹)	Ref.
Oysters (C. Gigas), Clams (C. gallina), Mussels (M. galloprovincialis)	Ronidazole, metronidazole, dimetridazole, sulfamethoxazole, N-acetyl-sulfamethoxazole, azithromycin, erythromycin, venlafaxine, O-desmethylvenlafaxine, carbamazepine, 10,11-Epoxycarbamazepine, citalopram,2-Hydroxyoxycarbamazepine, alprazolam, codeine, phenazone, propranolol, piroxicam, azaperone, azaperol, diltiazem, hydrochlorothiazide, tamsulosin	0.5 (d.w)	Shells removed, pooled for homogenizing, freeze-dried, ground and kept at −20 °C	PLE (MeOH/H₂O)	SPE (HLB cartridges)	UHPLC-MS/MS	40–115	0.01–0.80	[35]	
Zebra mussels (Dreissena polymorpha)	Diclofenac	0.1 (d.w)	Freeze-dried and grind	QuEChERs (H₂O, ACN, heptane, acetate salt, DMSO)	d-SPE: QuEChERs (acetate salt)	UHPLC-MS/MS	73–117	0.02–1	[60]	
Sample Type	Species	Compounds	Extraction Method	Pooled, Homogenized, Freeze-Dried	Analytical Method	Limits of Detection (LOD)				
-------------	---------	------------	-------------------	---------------------------------	------------------	-------------------------				
Mussels (Perna viridis), Oysters (Cassostrea hongkongensis)	Acetaminophen, amitrimtyline, aripiprazole, benzoylcegonine, buprenorphine, caffeine, carbamazepine, diclofenac, diltiazem, diphenydramine, fluoxetine, methylphenidate, norfluoxetine, promethazine, sertraline, amlodipine, desmethylsertraline, trimethoprim, erythromycin, sucralose, sulfamethoxazole	Separated from their shells, homogenized and frozen at −20 °C	Mechanical shaking (0.1 M acetic acid, MeOH)	No data	LC-MS/MS	80–120, 0.01–0.75 [36]				
Mussel (Mytilus galloprovincialis)	Cocaine, benzoylcegonine, cocomhyline, amphetamine, metamphetamine, MDMA, morphine, methadone, 6-monoacetylmorphine, EDDP, ketamine, lysergic acid diethylamide, A tetrahydrocannabinol, 11-hydroxy-A THC, 11-nor-9-carboxy-A THC, AH-7921, mephedrone, MDPV, caffeine, ephedrine, alprazolam, a-hydroxyalprazolam, midazolam, lormetazepam, a-hdroxymidazolam, diazepam, oxazepam, temazepam, citalopram, fluoxetine, sertraline, venlafaxine, zolpidem, chlorpromazine, hydroxyzine	Homogenized	Manual shaking (ACN, MgSO₄, NaCl, NaCitrate, DCS)	d-SPE: QuEChERs (PSA, C₁₈, MgSO₄)	LC-MS/MS	77–118, <2 [61]				
Mussel (Mytilus spp.)	Diclofenac, melenamic acid, trimethoprim, carbamazepine, gemfibrozil	Freeze-dried, ground	PLE (ACN/H₂O), Al₂O₃	SPE (Strata-X SPE cartridges)	LC-MS/MS	83–94, 4–29 * [62]				
Mussel (Mytilus galloprovincialis)	Carbamazepine, oxcarbazepine + non target compounds (caffeine, metoprolol, cotinine, ketoprofen)	Freeze-dried	QuEChERs (ACN, Na₂SO₄, NaCl, Na₃Cit: 2H₂O, Na₂HCit: 3H₂O)	d-SPE: QuEChERs (Na₂SO₄, PSA, C₁₈, formic acid)	LC-HRMS	67–110, 0.1–0.3 [63]				
Mussel (Mytilus galloprovincialis)	Diclofenac, diazepam, sotalol, carbamazepine, citalopram, venlafaxine, azithromycin, sulfamethoxazole	All edible meat (no data)	Pooled, homogenized, freeze-dried, kept at −20 °C	SPE (HLB cartridges)	UHPLC-MS/MS	No data, 0.01–0.65 [64]				
Table 1. Cont.										

Mussel (Mytilus galloprovincialis), Razor shell (Ensis siliqua), Cockle (cerastoderma edule)	Atenolol, metoprolol, nadolol, propanolol, sotalol, salbutamol, diazepam, carbamazepine, azaperol, azaperone, 10,11-epoxycarbamazepine, 2-OH-carbamazepine, citalopram, venlafaxine, alprazolam, chlorothiazide, codeine, phenazone, piroxicam, propyphenazone, nonidazole, dimetridazole, metronidazole, azithromycin, erythromycin	0.5 (d.w)	Freeze-dried	PLE (MeOH/H₂O)	SPE (HLB cartridges)	UHPLC-MS/MS	No data	0.01–2	[40]	
Mussel (Mytilus galloprovincialis)	Trimethoprim, ciprofloxacin, norfloxacin, sulfadiazine, sulfamethoxazole, amitriptyline, clomipramine, imipramine, nortriptyline, eprosartan, irbesartan, losartan, diclofenac, telmisartan, valsartan, propanolol, acetaminophen, ketoprofen, bezafibrate, clofibric acid, carbamazepine, phenytoin	0.5 (d.w)	Freeze-dried, ground, homogenized	FUSLE (MeOH/H₂O)	SPE (HLB cartridges)	LC-MS/MS	71–126	4–48	[65]	
Carib pointed-venus (Anomalocardia brasiliana), Blue Mussel (Mytilus edulis)	Bezafibrate, carbamazepine, chloramphenicol, diclofenac, 4′-Hydroxydiclofenac, furosemide, gemfibrozil, ibuprofen, indapamide, ketoprofen, naproxen, simvastatin	0.5 (d.w)	Dissection to obtain the morphometric measures, freeze-dried	QuEChERs (ACN, formic acid, NH₄Cl)	QuEChERs (MgSO₄, Z-Sep)	HPLC-MS/MS	77–126	0.002–1.09	[47]	
Limpets (Cymbula granatina and cymbula oculis), Sea snail (Oxytide sinesis and oxytele tigrina), Mussel (mytilus galloprovincialis)	Phenytoin, lamivudine, acetaminophen, caffeine, sulfamethoxazole, diclofenac, carbamazepine	10 (d.w)	Rinsed, deshelled and dissected, freeze-dried	Soxhlet (MeOH/Acetone)	SPE (HLB cartridges)	UHPLC-MS/MS	96.1–100.5	0.62–1.05 ng L⁻¹	[37]	
Oyster (Ostrea gigas), Scallop (Mimachlamys nobilis), Mussel (Mytilus edulis)	Sulfadiazine, sulfamerazine, sulfamethazine, trimethoprim, sulfamethoxazole, sulfaflazole, sulapyridine, ciprofloxacin, norfloxacin, ofloxacin, tetracycline, flumequine, oxytetracycline, gemfibrozil isochlortetracycline, penicillin G sodium, cefotaxime, spectinomycin, roxithromycin, erythromycin, clarithromycin, thiamphenicol, chloramphenicol, paracetamol, naproxen, ibuprofen, ketoprofen, diclofenac acid, carbamazepine, diltiazem, diphenhydramine	0.2 (d.w)	Freeze-dried, ground into powder, mixed	Sonication (ACN/H₂O)	SPE (HLB cartridges)	UHPLC-MS/MS	43–127	0.01–1.9	[39]	
Table 1. Cont.

Species	Compounds	LC-ESI-MS/MS * masses (m/z)	LC-ESI-MS/MS * retention time (min)	LC-ESI-MS/MS * concentration range (μg/L)	LC-ESI-MS/MS * method reference	
Zebra mussels (*Dreissena polymorpha*)	Nicotine, haloperidol, pyremethamine	USE (ACN, MeOH, H2O), vortex, USE	70–130	0.05–5.70 *	[59]	
Mussels (*Mytilus galloprovincialis, Mytilus edulis*)	Salicylic acid, clofibric acid, ketoprofen, naproxen, bezafibrate, diclofenac, ibuprofen	SPE (No data)	LC-HRMS/MS	61–90	2–50	[66]
Clams (*Ruditapes decussatus, raditapes philippinarum*)	Acetaminophen, clofibric acid, atenolol, bezafibrate, carbamazepine, cortisone, diclofenac, erythromycin, fluoxetine, ibuprofen, naproxen, propanolol, sulfadiazine, sulfapyridine, caffeine, sulfamethoxazole, testosterone, gestodene, metoprolol, diethylsilbestril, estradiol, estril, estrone, 17α-ethynylestradiol	SPE (Oasis MAX cartridges)	LC-MS/MS	35.2–118	0.35–5.86	[67]
Mussel (*Anodonta*), Snail (*Bellamya sp.*), Bivalve (*Corbiculidae*)	Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, chloramphenicol, sulfamerazine and sulfadiazine, sulfamethoxazole, ibuprofen, diclofenac, naproxen and indomethacin, clofibric acid, gemfibrozil and bezafibrate, 17β-estradiol and 17α-ethynylestradiol, propanolol, carbamazepine, ketoconazole, sertraline	SPE (HLB cartridges)	RRLC-MS/MS	68–116	0.01–1.12	[56]
Asian clam (*Corbicula fluminea*)	Sulfachlorpyridazine, sulfadiazine, sulfadoxine, sulfamerazine, sulfadimethoxine, sulfamethazine, sulfamethoxazole, sulfonamethoxine, sulfapyridine, sulfaguanoxaline, sulfisoxazole, sulfathioule, trimetoprim, chlorotetracycline, doxycycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacine, norfloxacin, ofloxacin, pefloxcin, sarafloxacin, azithromycin, clarithromycin, leucomycin, oleandomycin, roxithromycin, tylosin, salinomycin, monensin, florfenicol, chloramphenicol	SPE (SAX/PSA-HLB tandem cartridges)	RRLC-MS/MS	47.9–136.7	0.01–1.99	[38]
Table 1. Cont.

Organism	Medications	Preparation/Storage Conditions	Extraction/Analysis Methodologies	Reporting Limits	References			
Mussel (Anodonta woodiana)	Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, sulfamethoxazole, sulfadiazine, sulfquinoloxaline, ibuprofen, diclofenac, naproxen, bezafibrate, propranolol, ketoconazole, carbamazepine, caffeine, fluoxetine, norfluoxetine, citalopram, paroxetine, sertraline, venlafaxine, duloxetine, bupropion, amitriptyline, fluvoxamine, trihexyphenidyl, clozapine, quetiapine, aripiprazole, chlorpromazine	0.5 (d.w) Freeze-dried, homogenized, stored at −80 °C	PLE (MeOH/acetone) SPE (HLB cartridges) UHPLC-MS/MS	66–128	0.07–1.67	[27]		
Clam (Ruditapes decussatus), Cockle (Cerastodema glaucum), Noble pen shell (Pinna nobilis), Sea snail (Murex trunculus)	Diclofenac, codeine, carbamazepine, citalopram, diazepam, lorazepam, atenolol, sotalol, propranolol, nadolol, carazolol, hydrochlorothiazide, clopicidegrel, salbutamol, levamisole	1 (d.w) Freeze-dried, milled	PLE (50 °C) GPC, HPLC-DAD UHPLC-MS/MS	<20–151.9	0.0004–6	[48]		
Pen shell (Atrina pectinate Linnaeus), Asian hard clam (Meretrix lusoria), Magallana rivularis (Crassostrea rivularis Gould).	Sulfadiazine, sulfadimethoxine, sulfadoxine, sulfamerazine, sulfameter, sulfamethazine, sulfamethoxazole, sulfamonomethoxine, sulfapyridine, sulfquinoloxaline, sulfathiazole, sulfisoxazole, trimethoprim, chlorotetracycline, doxycycline, methacycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, loxofloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, clarythromycin, erythromycin-H₂O, leucomycin, roxithromycin, oleandomycin	2 muscle (w.w) Frozen, muscle dissected	USE (MeOH/H₂O 0.1 mol L^{−1} acetic acid) SPE Cartridges (SAX/PSA and HLB cartridges) LC-MS/MS	50–150	0.05–9.06	[42]		
Clam (Anadara ferruginea)	Atenolol, metoprolol, venlafaxine, chloramphenicol	2 (d.w) Washed (water), dissected, homogenized, freeze-dried, stored at −50 °C	USE (MeOH/H₂O) SPE (MCX cartridges) LC-MS/MS	68–96	0.05–0.25	[44]		
Specie	Pharmaceuticals	Type and Amount of Sample (g)	Pre-Treatment	Treatment Extraction Technique	Clean-Up	Analysis	Analytical Features	Ref.
------------------------	--	-------------------------------	--------------------------------------	-------------------------------	----------	------------------------	--------------------	------
Snail (Bellamya aeruginosa)	Sulfachlorpyridazine, sulfadiazine, sulfadoxine, sulfamerazine, sulfadimethoxine, sulfamethazine, sulfapyridine, sulfamonomethoxine, sulfquinoline, sulfisoxazole, sulfathiazole, trimethoprim, chlortetracycline, doxycycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, sarafloxacin, azithromycin, leucomycin, clarithromycin, oleandomycin, roxithromycin, tylosin, salinomycin, monensin, florfenicol, chloramphenicol	1 soft tissues (d.w)	Washed (water), homogenized, freeze-dried, stored at −20 °C	USE (AcONa buffer/ MeOH) SPE (SAX/PSA−HLB tandem cartridges)	RRLC−MS/MS	47.9−136.7	0.01−1.99	[38]
Snail (Bellamya aeruginosa)	Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, sulfamethoxazole, sulfadiazine, sulfquinoline, ibuprofen, diclofenac, naproxen, bezalibrate, propranolol, ketocazole, carbamazepine, caffeine, fluoxetine, norfluoxetine, citalopram, paroxetine, sertraline, venlafaxine, duloxetine, bupropion, amitriptyline, clozapine, fluvoxamine, trihexyphenidyl, quetiapine, aripiprazole, chlorpromazine	0.5 (d.w)	Freeze-dried, homogenized, stored at −80 °C	PLE (MeOH/acetone) SPE (HLB cartridges)	UHPLC−MS/MS	66−128	0.07−1.67	[27]
Species	Compounds	Extraction Method	Clean-up Method	Detection Range	Detection Limit			
-------------------------------	---	--	--	-----------------	-----------------			
Conch (Bufonaria perelegans)	Sulfadiazine, sulfamerazine, sulfamethazine, trimethoprim, sulfamethoxazole, sulfathiazole, sulfapyridine, ciprofloxacin, norfloxacin, ofloxacin, flumequine, tetracycline, oxytetracycline, isochlortetracycline, penicillin G sodium, cefotaxime sodium, spectinomycin, roxithromycin, erythromycin-H₂O, clarithromycin, thiampenicol, chloramphenicol, paracetamol, naproxen, ibuprofen, ketoprofen, diclofenac acid, carbamazepine, diltiazem, diphenhydramine, gemfibrozil	Freeze-dried, ground into powder. The whole body was mixed	SPE (PRiME HLB cartridges)	UHPLC-MS/MS	43–127	0.01–1.9	[39]	
Sea snail (Murex trunculus)	Diclofenac, codeine, carbamazepine, citalopram, diazepam, lorazepam, atenolol, sotalol, propanolol, nadolol, carazolol, hydrochlorothiazide, clopidogrel, salbutamol, levamisole	Freeze-dried and milled	PLE (MeOH)	GPC, HPLC-DAD	UHPLC-MS/MS	<20–151.9	0.0004–6	[48]
Snail (B. tentaculata)	Ethinylestradiol, acetaminophen, diclofenac	Freeze-dried, powered	USE (ACN/MeOH 1% acetic acid)	No data	HPLC-MS/MS	67	No data	[55]
River limpet (Ancylus fluviatilis)	Diclofenac, ibuprofen, 1-OH-ibuprofen, piroxicam, acridone, propylphenazone, sulfamethoxazole, diltiazem, verapamil, norverapamil, hydrochlorothiazide, bezafibrate, gemfibrozil, pravastatin, carbamazepine, 10,11-epoxy-CBZ, 2-OH-CBZ, citalopram, fluoxetine, paroxetine, venlafaxine, azaperone, dexamethasone, metoprolol, propanolol	Homogenized with a mortar, kept at 20 °C	USE (MeOH)	Protein Precipitation and Phospholipid Removal, PlateOSTRO™ plate	UHPLC-MS/MS	No data	No data	[54]
Turritella bacillum Murex trapa, Bufonaria rana (No data)	Atenolol, metoprolol, venlafaxine, chloramphenicol	Washed (water), dissected, homogenized, freeze-dried, stored at −50 °C	USE (MeOH/H₂O)	SPE (MCX cartridges)	LC-MS/MS	68–96	0.05–0.25	[44]
Table 1. Cont.

Specie	Pharmaceuticals	Type and Amount of Sample (g)	Pre-Treatment	Treatment Extraction Technique	Clean-Up	Analysis	Analytical Features		
Octopus (*Octopus vulgaris*)	Atenolol, metoprolol, nadolol, propanolol, sotalol, salbutamol, diazepam, carbamazepine, 10,11-epoxycarbamazepine, 2-OH-carbamazepine, citralopram, venlafaxine, alprazolam, azaperol, azaperone, hydrochlorothiazide, codeine, phenazine, propyphenazine, piroxicam, ronidazole, dimetridazole, metronidazole, azithromycin, erythromycin	1 (d.w)	Freeze-dried	PLE (MeOH/H₂O)	GPC	UHPLC-MS/MS	No data	0.02–0.3	[40]
Sepia (*Sepia indica*), **Octopus** (*Octopus rugosus*), **Octopus minor** (*Polypus variabilis*), **Urotheutis** (*Loligo oshimai*)	Sulfamethazine, sulfapyridine, sulfathiazole, sulfanamide, sulfadiazine, sulfadimethoxine, sulfamonemethoxin, sulfametron, sulfamerazine, sulfamethoxazole, norflaxacin, enoxacin, ofloxacin, ciprofloxacin, enrofloxacin, dehydrated erythromycin, clarithromycin, azithromycin, roxithromycin, florfenicol, chloramphenicol, trimethoprim, lincomycin	5 (d.w)	Washed (water), dissected, homogenized, stored at −20 °C	USE (ACN, citric acid)	SPE (SAX-HLB cartridges)	UHPLC-MS/MS	47.7–172.7	0.04–0.24	[13]

(f)

Specie	Pharmaceuticals	Type and Amount of Sample (g)	Pre-Treatment	Treatment Extraction Technique	Clean-Up	Analysis	Analytical Features		
Starfish (*Marthasterias glacialis*), **Sea urchins** (*parichinus angulosus*)	Phenytoin, lamivudine, acetaminophen, caffeine, sulfamethoxazole, diclofenac, carbamazepine	10 (d.w)	Rinsed, deshelled, dissected, freeze-dried	Soxhlet (MeOH/Acetone)	SPE (HLB cartridges)	UHPLC-MS/MS	96.1–100.5	0.62–1.05 ng L⁻¹	[37]
Table 1. Cont.

Specie	Pharmaceuticals	Type and Amount of Sample (g)	Pre-Treatment	Treatment Extraction Technique	Clean-Up	Analysis	Analytical Features	Ref.
Barnacle (Balanus perforatus)	Atenolol, ranitidine, acetaminophen, caffeine, trimethoprim, atrazine, amitriptyline, carbamazepine, chlorpheniramine malate, ciprofloxacin, diclofenac, fluoxetine, ibuprofen, metronidazole, sulfamethoxazole, warfarin, cephalixin.	1 (d.w)	Dried, ground, pooled, homogenized, freeze-dried	USE (0.1 M acetic acid, MeOH)	SPE (Oasis MCX)	HPLC-MS/MS	30–103	0.1–13 ng mL\(^{-1}\) [52]
Shrimp (Caridea), Brown crab (Cancer pagurus)	Diclofenac, diazepam, sotalol, carbamazepine, citalopram, venlafaxine, azithromycin, sulfamethoxazole	All edible meat (no data)	Pooled, homogenized by grinding, freeze-dried, −20 °C	PLE (MeOH/H\(_2\)O)	SPE (HLB cartridges)	UHPLC-MS/MS	No data	0.01–0.65 [64]
Crabs (Calappa philargius), pen shell Atrina pectinata Linnaeus, shrimps (Fenneropenaeus penicillatus)	Sulfadiazine, sulfadimethoxine, sulfadoxine, sulfaemazine, sulfamerazine, sulfamethazine, sulfamethoxazole, sulfapyridine, sulfamonemethoxine, sulfaquinoxaline, sulfathiazole, sulfisoxazole, trimethoprim, chlorotetracycline, doxycycline, methacycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, clarithromycin, erythromycin-H\(_2\)O, leucomycin, roxithromycin, oleandomycin	2 muscle (w.w)	Frozen and muscle dissected	USE (MeOH/H\(_2\)O 0.1 mol L\(^{-1}\) acetic acid)	SPE (SAX/PSA, HLB cartridges)	LC-MS/MS	50–150	0.05–9.06 [42]
No data	Ketoprofen, naproxen, flurbiprofen, diclofenac sodium, ibuprofen	5 muscle tissue (w.w)	Chopped into mince	USE (ACN)	SPE (CF@UiO–66 NH\(_3\))	UHPLC-PDA	95–116.99	0.12–3.50 ng mL\(^{-1}\) [68]
Molecules 2022, 27, 7569	18 of 48							

| Table 1. Cont. |

Sample	Commodity	Concentration (d.w)	Extraction Method	Purification Method	Analytical Method	Detection Limit	References		
Goose Barnacle (*Pollicipes*) Carb (*Necora puber*)	Atenolol, metoprolol, nadolol, propanolol, sotalol, salbutamol, diazepam, carbamazepine, 10,11-epoxycarbamazepine, 2-OH-carbamazepine, citalopram, venlafaxine, alprazolam, azaperone, azaperol, hydrochlorothiazide, codeine, phenazone, propylenezaine, piroxicam, ronidazole, dimetridazole, metronidazole, azithromycin, erythromycin	1 (d.w)	Freeze-dried	PLE (MeOH)	GPC	UHPLC-MS/MS	No data	0.03–0.09	[40]
Shrimp (*Palaemon serratus*)	Metronidazole, acetaminophen, amoxicillin, acetzolamide, sulfadiazine, atenolol, caffeine, ampicillin, trimethoprim, norfloxacin, ofloxacin, ciprofloxacin, tetracycline, phenazone, metoprolol, spiramycin, azithromycin, sulfamethoxazole, oxolinic acid, erythromycin A, piperacillin, tylidine, cyclophosphamide, carbamazepine, flumequine, oxazepam, clarithromycin, roxithromycin, lorazepam, losartan, nordiazepam, jasycin, ketoprofen, 19-norethindrone, amiodarone, hydrochlorothiazide, acetylsalicylic acid, niflumic acid, diclofenac, ibuprofen, gemfibrozil	0.2 (d.w)	Separated abdomen muscle, freeze-dried	Mechanical shaking (MeOH 1% acetic acid)	No data	UHPLC-MS/MS	26–132	0.1–40.2 *	[69]
Freshwater amphipod (*Gammarus pulex*)	Propanolol hydrochloride, ketoprofen, diclofenac salt, bezafibrate, warfarin, flurbiprofen, indomethacin, ibuprofen sodium salt, melofenamic acid sodium salt, gemfibrozil, atenolol, sulfamethoxazole, sulfamethazine, furosemide, carbamazepine, nimesulide, (+-metoprolol) (+) tartrate, cimetidine, ranitidine, antipyrin, temazepam, diazepam, fluoxetine, nefedipine, mafenamic acid, trimethoprim, caffeine, naproxen	0.1 (d.w)	Freeze-dried, pulverized	PuLE (ACN)	SPE (HLB cartridges)	LC-MS/MS	41–89	1–13	[70]
Table 1. Cont.									
----------------	-----------------								
Green crab (Carcinus maenas)									
Alprazolam, amoxicillin, atenolol, atorvastatin, azithromycin, bisoprolol, benzylpenicillin, bezafibrate, carbamazepine, carvedilol, cinoxacin, ciprofloxacin, ceftiofur, cephalixin, chlorotetracycline, danofloxacin, diclofenac, doxycycline, enoxacin, enrofloxacin, epi-chlortetracycline, epi-tetracycline, erythromycin, epotetracycline, fenofibrate, flumequine, fluoxetine, furosemide, gabapentin, gemfibrozil, iberartan, ibuprofen, indapamide, loranepam, losartan, marbofloxacin, nalidixic acid, norflaxcin, nimesulide, ofloxacine, oxolinic acid, oxtetacycline, paracetamol, propanolol, sertraline, simvastatin, spiramycin, sulfachloropyridazine, sulfadiazine, sulfadimethoxine, sulfamethazine, sulfamethizole, sulfanalamide, sulpiridine, sulfisomidine, sulfadoxine, sulfamethoxazole, sulfquinocaine, sulfathiazole, sulfisoxazole, tetracycline, trimethoprim, venlafaxine, topiramate	2 (w.w)	Homogenized	Mechanical shaking (ACN, EDTA)	No data	UHPLC-MS/MS	79.2–109.5	0.59–4.11	[41]	
Shrimps: White vannamei prawn, Indian prawn, kiddi shrimp (No data)									
Amoxicillin, azithromycin, caffeine, carbamazepine, ciprofloxacin, clarithromycin, diclofenac, erythromycin, furosemide, ketoprofen, ibuprofen, naproxen, sulframethoxazole, tetracycline	2 (w.w)	Abdomen muscle separated, cut into small parts, frozen at −20 °C	Mechanical shaking (ACN, 0.1 M EDTA, hexane)	No data	UHPLC-MS/MS	81.2–99.4	0.017–1.371	[46]	
Shrimp (Harpiosquilla harpax), Crab (Charybdis japonica), Spear shrimp (Parapenaeopsis hardwickii), Giant tiger prawn (Penaeus monodon), Green mud crab (Scylla paramamosain), Prawn (Trachypenaeus sedili)									
Sulfamethazine, sulpiridine, sulfathiazole, sulfanalamide, sulfadiazine, sulfadimethoxine, sulfamonomethoxine, sulfamerazine, sulframethoxazole, norfloxacin, enoxacin, ofloxacine, ciprofloxacin, enrofloxacin, dehydrated, erythromycin, clarithromycin, azithromycin, roxithromycin, flornfenicol, chloramphenicol, trimethoprim, lincomycin	5 (d.w)	Washed (water), dissected, homogenized, stored at −20 °C	USE (ACN, citric acid)	SPE (SAX-HLB cartridges)	UHPLC-MS/MS	47.67–172.67	0.04–0.24	[13]	
Table 1. Cont.

Sample	Species/Type	Concentrations
Mud prawun (Meapenaeus ensis), Smoothshell shrimp (Parapenaeopsis tenella), Three-spot swimming crab (Portunus sanguinolentus), Jinga shrimp (Metapenaeus affinis), Robber harpiosquillid mantis shrimp (Harpiosquilla harpax)	Atenolol, metoprolol, venlafaxine, chloramphenicol 2 (d.w) washed (water), dissected, homogenized, freeze-dried, stored at −50 °C	USE (MeOH/H₂O) SPE (MCX cartridges) LC-MS/MS 68–96 0.05–0.25 [44]
White shrimp (Exopalaemon modestus) Taihu shrimp (Macrobranchium nipponense)	Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, chloramphenicol, sulfamerazene, sulfadiazine, sulfamethoxazole, ibuprofen, diclofenac, naproxen and indomethacin, clofibric acid, gemfibrozil, bezafibrate, 17β-estradiol, 17α-ethynylestradiol, propranolol, carbamazepine, ketoconazole, sertraline 0.5 (d.w) separated muscle of shrimp, freeze-dried, ground and stored at −20 °C	PLE (MeOH/acetone) SPE (HLB cartridges) LC-MS/MS 68–116 0.01–1.12 [56]
Water flea (Gammarus pulex)	Ethinylestradiol, acetaminophen, diclofenac 0.34 (d.w) freeze-dry, powered	USE (ACN/MeOH 1% acetic acid) no data HPLC-MS/MS 67 No data [55]
Shrimps (Paranthura sp., Macrobrachium nipponense), Crab (Eriocheir sinensis)	Sulfachlorpyridazine, sulfadiazine, sulfadoxine, sulfamerazene, sulfadimethoxine, sulfamethazine, sulfamethoxazole, sulfamonomethoxine, sulfapyridine, sulfaguanoxaline, sulfisoxazole, sulfathiazole, trimethoprim, chlorotetracycline, doxycycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, sarafloxacin, azithromycin, clarithromycin, leucomycin, oleandomycin, roxithromycin, tylosin, salinomycin, monensin, florfenicol, chloramphenicol 1 (d.w) washed (water), homogenized, freeze-dried, stored at −20 °C	USE (sodium acetate buffer / MeOH) SPE (SAX/PSA–HLB tandem cartridges) RRLC-MS/MS 47.9–136.7 0.01–1.99 [38]
Table 1. Cont.

Species/Type	Medications	Preparation Method	Extraction Method	Analytical Method	Concentration Range	Reference		
Shrimp (Macrobrachium nipponense)	Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, sulfadiazine, sulfamethoxazole, sulfadiazine, naproxen, ibuprofen, diclofenac, bezoire, propranolol, ketoconazole, carbamazepine, caffeine, fluoxetine, norfluoxetine, citalopram, paroxetine, sertraline, venlafaxine, duloxetine, bupropion, amitriptyline, fluvoxamine, trihexyphenidyl, clozapine, quetiapine, aripiprazole, chlorpromazine	Freeze-dried, homogenized, stored at −80 °C	PLE (MeOH/acetone)	SPE (HLB cartridges)	UHPLC-MS/MS 66–128 0.07–1.67	[27]		
Shrimps (No data)	Naproxen, methyltestosterone, 17α-hydroxyprogesterone caproate, progesterone	Ground, homogenized	Manual shaking (ACN 0.1% acetic acid)	No data	LC-MS/MS 68–117 1–2	[43]		
Crabs: Spectacled box crab (Calappa philargius). Shrimps: Redtail shrimp/Redtail prawn (Fenneropenaeus penicillatus)	Sulfadiazine, sulfadimethoxine, sulfadoxine, sulfamerazine, sulfameter, sulfamethazine, sulfamethoxazole, sulfapyridine, sulfamonomethoxine, sulfaquinixaline, sulfathiazole, sulfisoxazole, trimethoprim, chlorotetracycline, doxycycline, methacycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, diflloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, clarythromycin, erythromycin-H2O, leucomycin, roxithromycin, oleandomycin	Frozen and muscle dissected	USE (MeOH/H2O, 0.1 M acetic acid)	SPE Cartridges (SAX/PSA, and HLB cartridges)	LC-MS/MS 50–150 0.05–9.06	[42]		
Specie	Pharmaceuticals	Type and Amount of Sample (g)	Pre-Treatment	Treatment Extraction Technique	Clean-Up	Analysis	Analytical Features	Ref.
----------------------------	---	-------------------------------	---------------	--------------------------------	----------	------------	---------------------	------
Ragworm (Hedyste diversicolor)	Alprazolan, amoxicillin, atenolol, atorvastatin, azithromycin, bisoprolol, benzylpenicillin, bezafibrate, carbamazepine, carvedilol, cinoxacin, ciprofloxacin, cefotaxim, cephalexin, chlorotetracycline, danofloxacin, dicyclofenac, doxycycline, enoxacin, enrofloxacin, fluoxetine, epichlorotetracycline, epi-tetracycline, erythromycin, epotetraycline, fenofibrate, flumequine, furosemide, gabapentin, gemfibrozil, ibersartan, ibuprofen, indapamide, lornazepam, losartan, marboflxicin, nalidixic acid, norfloxacin, nimesulide, ofloxacin, oxolinic acid, oxytetracycline, paracetamol, propanolol, sertraline, simvastatin, spiramycin, sulfadiazine, sulfadimethoxine, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfadoxine, sulfadiazine, sulfadimethoxine, sulfadiazine, sulfadiazine, sulfadimethoxine, sulfamethazine, sulfamethizole, sulfadimethoxine, sulfadoxine, sulfamethoxazole, sulfadoxine, sulfamethoxazole, trimethoprim, tylosin, venlafaxine, topiramate	2.0 (w.w) Homogenized	Mechanical shaking (ACN, EDTA)	No data	UHPLC-MS/MS	79.2–109.5	0.59–4.11	[41]
Table 1. Cont.

	Molecules, 2022, 27, 7569								
Polychaeta (Perinereis aibuhitensis, Notomastus latericeps, Sabella pavonina), **Worm** (Limnodrilus hoffmeisteri)	Washed (water), homogenized, freeze-dried, stored at −20 °C	USE (sodium acetate buffer/ MeOH)	SPE (SAX/PSA—HLR tandem cartridges)	47.9–136.7	0.01–1.99	[38]			
Porifera: Sponge (Cf. Hyrtios)	Caffeine, fluoxetine, norfluoxetine	0.25 (d.w)	USE (acidified methanol, acetonitrile)	SPE (HLB)	UHPLC-MS	80	0.01–10	[71]	
Insecta (Hydropsyche sp., Phagocata vitta)	Diclofenac, ibuprofen, 1-OH-ibuprofen, piroxicam, propyphenazone, sulfamethoxazole, diltiazem, verapamil, norverapamil, hydrochlorothiazide, bezafibrate, gemfibrozil, pravastatin, carbachol, amrinone, acriderone, 10,11-epoxy-CBZ, 2-OH-CBZ, citalopram, fluoxetine, paroxetine, venlafaxine, dexamethasone, azaperone, metoprolol, propanol	0.1 (d.w)	Homogenized with a mortar, kept at 20 °C	USE (MeOH)	Protein precipitation and phospholipid removal, PlateOSTRO™ plate	UHPLC-MS/MS	No data	No data	[54]
Table 1. Cont.

Specie	Pharmaceuticals	Type and Amount of Sample (g)	Pre-Treatment	Treatment Extraction Technique	Clean-Up	Analysis	Analytical Features	Ref.	
Surgeonfish (Acanthurus xanithenes), Smallmouth catfish (Ariopsis felis), Bull fish (Caranx caninus), Milkfish (Chanos chanos), Yellowfin mojarra (Gerres cinereus), Elongated grunt (Haemulopsis elongatus), Silk snapper (Lutjanus peru), White mullet (mugil curema), California halibut (Paralichthys californicus), Bigscale goatfish (Pseudupeneus grandisquamis), Peruvian moonfish (Selene peruviana), Common snook (Centropomus robalito), Reef Lizardfish (Synodus lacertinus), Striped bonito (Sarda orientalis)	Diclofenac, ibuprofen, ketorolac, naproxen	25–30 (w.w)	Minced, homogenized	USE (No data)	No data	UHPLC-MS/MS	92–95	0.97–23.1	[72]
Table 1. Cont.									

Black Crappie (*Pomoxis nigromaculatus*), Black Redhorse (*Moxostoma duquesni*), Bluegill (*Leponis macrochirus*), Common Carp (*Cyprinus carpio*), Flathead Catfish (*Pylodictis olivaris*), Freshwater Drum (*Aplodinotus grunniens*), Gizzard Shad (*Dorosoma cepedianum*), Golden Redhorse (*Moxostoma erythrum*), Hybrid White x Striped Bass (*Morone chrysops x Morone saxatilis*), Largemouth Bass (*Micropterus salmoides*), Mooneye (*Hiodontidae*), Nothern Hog sucker (*Hypentelium nigricans*), Quillback Carpsucker (*Carpiodes cyprinus*), River Carpsucker (*Carpiodes carpio*), Sauger (*Sander canadensis*), Saugeye (*Sander canadensis x Sander vitreus*), Silver Redhorse (*Moxostoma anisurum*), Smallmouth Bass (*Micropterus dolomies*), Smallmouth Buffalo (*Ictiobus bubalus*), Smallmouth Redhorse (*Moxostoma breviceps*), Spotted Sucker (*Minytrema melanops*), White Bass (*Morone chrysops*), White Crappie (*Pomoxis annularis*), Tylosin, lincomycin, furazolidone, sulfadimethoxine, sulfamethazine, sulfmethoxazole, sulfilamidine, cotinine, carbamazepine, acetaminophen, thiamphenicol, fleroxenicol, chloramphenicol, caffeine, trimethoprim, azithromycin, triclosan erythrohydrobuproprion	0.5 (w.w)	Homogenized	QuEChERS (ACN/H2O 1% acetic acid, MgSO4, AcONa)	d-SPE-QuEChERS (MgSO4, PSA, C18)	UHPLC-MS/MS	67–148	0.2–2.6	[73]	
Fish Species	Chemicals	Cell Disruption	SPE Method	LC-MS/MS	Data Range	Ref.			
---	---	---	---	---	---	---	---	---	---
Perch (Perca fluviatilis), Flounder (Platichthys flesus), Turbot (Scophthalmus maximus), Cod (Gadus morhua callarias), Bream (Abramis brama), Crucian (Carassius carassius)	Bisoprolol, carbamazepine, clarithromycin, erythromycin, fluoxetine, metronidazole, ofloxacin, promazine, sulfadimethoxine, thiabendazole, tianeptine, acetobutolol, 1-Naphthoxyacetic acid, amitriptyline, amlodipine, atenolol, azithromycin, bosentan, cefotaxime, chlorpromazine, clorotetacycline, clindamycin, clomipramine, codeine, desipramine, dextromethorphan, diclofenac, diltiazem, doxepin, drotaverine, duloxetine, enalapril, escitalopram, fenofibrate, flevoracin, fluconazole, fluvoxamine, guaifenesin, imipramine, labelatal, losartan, levofloxacin, lincomycin, lomeflloxacin, lovastatin, maprotiline, mebendazole, metformin, methoxyverapamil, metoprolol, mianserin, mirtazapine, moclobemide, morantel, mycophenolic acid, nalidixic acid, nifedipine, norfloxacin, nortriptyline, omeprazole, opipramol, oxymetazoline, oxytetracycline, pantoprazole, paroxetine, pefloxacin, piperacillin, propafenone, propanolol, protriptyline, pseudophedrine, quinapril, ramipril, ranitidine, roxithromycin, salbutamol, sotalol, sertraline, sulfadiazine, sulfamethazine, sulfamethoxazole, sulfanilamide, sulfathiazole, telmisartan, tetracycline, tiapamil, tianeptine, tolorperisone, trazodone, trimethoprim, tyloxin, valsartan, verapamil, xylometazoline	Mechanical shaking (ACN 0.1% formic acid), frozen, centrifuged. Added ammonium acetate and stirred	d-SPE: C18 sorbent	LC-QTRAP	No data	0.01–0.88	[74]		
Rainbow trout (Oncorhynchus mykiss)	Citalopram	Brain tissue (no data)	Brain separated	TissueLyser II at 30 Hz for 10 min. (ACN:i-propanol 3:1 with 0.1% formic acid)	No data	LDTD-HRPS	97–108	0.39	[75]
Bream (no data)	Bezafibrate, carbamazepine, 2-hydroxycarbamazepine, 10,11-dihydroxy-10,11-dihydrocarbamazepine, cetirizine, citalopram, desmethylcitalopram, clopidogrel, diclofenac, diphenhydramine, fexodenadine, fluconazole, norfluoxetine, furosemide, hydrochlorothiazide, metoprolol, oxazepam, primidone, sertraline, sulfamethoxazole, trimethoprim, N-acetyl sulfamethoxazole, telmisartan, tramadol, valsartan, venlafaxine, O-desmethylvenlafaxine	0.05 (fish liver), 0.1 for (fish fillet) (d.w)	Homogenized, lyophilized	Cell disruption (4 m/s for 40 s)	d-SPE: Silica gel	LC-MS/MS	70–130	0.05–5.5 ng mL$^{-1}$	[76]
Table 1. Cont.

Gillthead sea bream (Sparus aurata), Sea bass (Dicentrarchus labrax)	Ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, flumequine, marbofloxacin, norfloxacin, ofloxacin, oxolinic acid, sarafloxacin, chlorotetracycline, doxycycline, minocycline, oxytetracycline, tetracycline, cefalor, cefadroxil, cefalexin, cefapirin, cefotiofur, cefazolinamoxicillin, ampicillin, cloxacillin, dicloxacillin, oxacillin, penicillin G, penicillin V, azithromycin, clarithromycin, erythromycin-H₂O, tiamulin, tilmicosin, dapsone, sulfachloropyridazine, sulfadiazine, sulfadoxine, sulfadimethoxine, sulfadimidine, sulfaguanidine, sulfamerazine, sulfamethizole, sulfamethoxazole, sulfamethoxypridazine, sulfamonomethoxine, sulfamoxole, sulfapyridine, sulfadiazine, sulfathiazole, sulfisoxazole, carbadox, olaquindox, florenicol, thiamenicol, baquoloprin, trimthoprim, lincosycin, novobiocin, rifaximin, albendazole, albendazole oxide, albendazole sulfone, febantel, dimetridazole, fenbendazole, flubendazole, morantel, levamisole, mebendazole, metronidazole, oxendazole, piperazine, ronidazole, termadazole, thiabenzadole, triclabendazole, arpinocid, clopidol, decoquinate, diaveridine, ethopabate, halofuginone, imidocarb, lasalocid, monensin, narasin, nigerin, robenidine, salinomycin, 5-hydroxyflunixin, aceclofenac, diclofenac, flunixin, ketoprofen, mefenamic acid, naproxen, meloxicam, nimfumic acid, phenylbuntazone, tolfenamic acid, vedaprofen, cimaterol, clenbuterol, clenpenterol, mabuterol, ractopamine, salbutamol, terbutaline, betamethasone, cortisol, cortisone, dexamethazone, methyl-thiouracil, methylprednisolone, progesteron, phenyl-thiouracil, propyl-thiouracil, ambroxol, atenolol, atorvastatin, caffeine, carbamazepine, cimetidine, gemfibrozil, haloperidol, indapamide, metformin, metoprolol, propranolol, ranitidine, simvastatin, theophylline, tramadol, triamterene, valsartan, bromhexine, chlorpromazine, colchicine, melamine, coumaphos
1.0 (w/w)	Homogenized, stored at −20 °C
Ultrasonic bath (H₂O containing 0.1% formic acid, 0.1% EDTA (w/v), MeOH, ACN), Precipitation of lipids and proteins	
Hexane and further low temperature	UHPLC-MS/MS
No data	Chloramphenicol, thiamphenicol, tinidazole, metronidazole, malachite green, crystal violet
Sea bream (Sparus aurata)	Erythromycin, N-acetyl sulfamethoxazole, sulfadiazine, sulfamethazine, sulfamethazole, sulfamethoxazole, sulfamethoxypyridazine, sulpyridine, sulfaquinoxaline, sulfathiazole, trimethoprim, caffeine, paracetamol, phenazone, carbamazepine, carbamazepine-10,11-epoxide, citalopram, fluoxetine, N desmethyl sertraline, norfluoxetine, O desmethyl venlafaxine, sertraline, venlafaxine
Sonek (Thysites atun), Bonito (Sarda orientalis), Panga (Pachymetopon blochii), Hottentot (Pterogymnus laniarius)	Acetaminophen, caffeine, diclofenac, lamivudine, sulfamethoxazole, carbamazepine
Sabalo (Prochilodus lineatus), Boga (Megaleporinus obtusidens), Dorado (Salminus brasiliensis)	Atenolol, carazolol, metoprolol, nadolol, propanolol, sotalol, diazepam, lorazepam, carbamazepine, 10,11-epoxycarbamazepine, 2-hydroxy carbamazepine, venlafaxine, clopidogrel, salbutamol, codeine, diclofenac, hydrochlorothiazide
Table 1. Cont.

Organism	Drugs	Dilution	Sample Treatment	Extraction Method	LC-MS/MS Range	Recovery %	References				
Carps (Carassius), Japanese medakas (Oryzias latipes), Mosquitofish (Gambussia affinis)	Diclofenac, indomethacin, mafenamic acid, ibuprofen, bezafibrate, fenofibrinic acid, clofibric acid, gemfibrozil, diltiazem, amlodipine, propanolol, carvedilol, losartan, telmisartan, irbesartan, valsartan, rebamipide, cetirizine, diphenhydramine, chlorpheniramine, fexofenadine, epinastine, warfarin, tramadol, O-desmethyl tramadol, N-desmethyl tramadol, sertraline, norsertraline, fluoxetine, norfluoxetine, paroxetine, citalopram, venlafaxine, lorazepam, alprazolam, etizolam, sulfapyridine, sulfamethizole, sulfamethoxazole, sulfamonomethoxine, sulfamethoxazole, sulfadimethoxine, trimethoprim, lincomycin, fluconazole, erythromycin, clarithromycin, rixothromycin, florfenicol	200 µL plasma (Carassius carassius) and 0.1 g whole-body tissue (rest)	Homogenized	USE (MeOH/ACN, and acetic acid-ammonium acetate buffer)	Homogenized	LC-MS/MS 70–120 ng mL−1	[50]				
European eel (Anguilla anguilla)	Acetaminophen, atenolol, caffeine, diclofenac, etoricoxib, ibuprofen, naproxen, salicylic acid, tricosanol, vildaglipitin	1.0 pool (w.w)	Pooled, chopped, and homogenized	d-SPE: QuEChERs (ACN, MgSO4, NaCl, DCS and TCD)	d-SPE: EMR-Lipid (MgSO4 and NaCl)	USE (0.1 M K2HPO4 (pH = 6.5))	UHPLC-MS/MS 70–120	1.4–12	[51]		
Rainbow trout (Oncorhynchus mykiss)	Enrofloxacin, norfloxacin, ciprofloxacin	5.0 muscle (w.w)	Boned	SPE (0.1 M Na2HPO4 (pH = 6.5))	SPE (Strata XC cartridges)	USE (0.1 M aqueous acetic acid/Methanol and NH4OH 0.1 M)	LC-MS/MS	91.1–108.9	3.3–3.6	[80]	
Nile Tilapia (Oreochromis niloticus), Milk fish (chamos chaos), Common silver biddy (gerres oyena), Golden snapper (lutjanus johni), Emperor fish (ethinus nebulosus)	Atenolol, ranitidine, acetaminophen, caffeine, trimethoprim, atrazine, amitriptyline, carbamazepine, chlorpheniramine malate, ciprofloxacin, diclofenac, fluoxetine, ibuprofen, metronidazole, sulfamethoxazole, warfarin, cephalaxin.	1.0 (d.w)	Filleted and cut into small sections and lyophilized. Pooled and homogenized	USE (0.1 M aqueous acetic acid/Methanol and NH4OH 0.1 M)	SPE (Oasis MCX cartridges)	HPLC-MS/MS	30–103	0.1–13 ng mL−1	[52]		
Mackerel (Scomber scordurus), tuna (Thunnus thynnus), cod (Gadus morhua), perch (Perca fluviatilis), Pangas catfish (Pangasius pangasius), sole (Solea solea), seabream (Sparus aurata), plaice (Pleuronectes platessa), salmon (Salmonidae)	Diclofenac, diazepam, sotalol, carbamazepine, citalopram, venlafaxine, azithromycin, sulfamethoxazole	Fillet (no data)	Pooled, homogenized by grinding, freeze-dried, kept at −20 °C	PLE (MeOH)	GPC	UHPLC-MS/MS	No data	0.01–0.65	[64]		
Table 1. Cont.											
----------------	-----------------										
Rusell’s snapper (Lutjanus ruselli), Saddle tailed sea perch (Lutjanus erythopterus), Silverfish (Trachinotus ovatus)	Sulfadiazine, sulfadimethoxine, sulfadoxine, sulfamerazine, sulfameter, sulfamethazine, sulfamethoxazole, sulfapyridine, sulfamonomethoxine, sulfonic acid, sulfonamides, sulfathiazole, sulfisoxazole, trimethoprim, chloramphenicol, doxycycline, methacycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, floxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, clarythromycin, erythromycin, leucamycin, roxithromycin, oleandomycin										
	2 (w:w)	Frozen, muscle dissected	USE: MeOH/H2O, 0.1 M acetic acid	SPE (SAX/PSA, HLB cartridges)	LC-MS/MS	50–150	0.05–9.06	[42]			
No data	Ketoprofen, naproxen, flurbiprofen, diclofenac, ibuprofen	5 (w:w)	Chopped into mince	USE (ACN)	SPE CF@UiO-66 NH2	UHPLC-MS/MS	95–116.99	0.12–3.50 ng mL⁻¹	[68]		
European pilchardus (Sardina pilchardus)	Atenolol, metoprolol, nadolol, propranolol, sotalol, salbutamol, diazepam, carbamazepine, 10,11-epoxycarbamazepine, 2-OH-carbamazepine, citalopram, venlafaxine, alprazolam, azaperone, azaperol, hydrochlorothiazide, codeine, phenazone, propyphenazona, piroxicam, onidazole, dimetridazole, metronidazole, azithromycin, erythromycin	1 (d.w)	Freeze-dried	PLE (MeOH, 4 extraction cycles)	GPC	UHPLC-MS/MS	No data	0.1–0.6	[40]		
Hake (Merluccius merluccius), Red mullet (Mullus surmuletus), Sole (Solea solea)	Metronidazole, acetaminophen, amoxicillin, metronidazole, sulfadiazine, atenolol, caffeine, ampicillin, trimethoprim, norfloxacin, ofloxacin, ciprofloxacin, tetracycline, phenazone, metoprolol, spiramycin, azithromycin, sulfamethoxazole, oxolinic acid, erythromycin A, piperacillin, tylolidine, cefoperazone, carbapenem, piperacillin, oxazepam, clarithromycin, roxithromycin, lorazepam, losartan, nordiazepam, josamycin, ketoprofen, 19-norethindrone, amiodarone, hydrochlorothiazide, acetalsalicylic acid, niflumic acid, diclofenac, ibuprofen, gemfibrozil	0.2 (d.w)	Separated white dorsal muscle, freeze-dried	Mechanical shaking (MeOH, 1% acetic acid)	No data	UHPLC-MS/MS	28–188	0.1–40.2 *	[69]		
Sea bream (Sparus aurata)	Trimethoprim, ciprofloxacin, norfloxacin, sulfadiazine, sulfamethoxazole, amitriptyline, clomipramine, imipramine, nortriptyline, eprosartan, losartan, telmisartan, valsartan, propranolol, acetaminophen, diclofenac, ketoprofen, bezafibrate, clofibrate acid, carbamazepine, phenytoin	0.5 fish muscle and liver; 0.1 fish gills and brain (d.w)	Freeze-dried, ground, homogenized	FUSLE (MeOH/H2O)	SPE (HLB cartridges)	LC-MS/MS	71–126	4–48	[79]		
Species 1	Species 2	Samples 1 - d.w	Methodology 1	Methodology 2	Methodology 3	Methodology 4	Methodology 5	Methodology 6	Methodology 7	Methodology 8	Methodology 9
-----------------------------------	----------------------------------	----------------	---	---	---	---	---	---	---	---	---
Mullet (Mugil spp., *Mugil*	Snook (Centropomus spp.)	0.5	Dissection to obtain the morphometric measures,	d-SPE: QuEChERs (ACN, formic acid, NH₄Cl)	HPLC-MS/MS	70–133	0.004–2.16	[43]			
			freeze-dried	QuEChERs (MgSO₄, Z-Sep)							
Golden grey mullet (*Liza*	Black goby (*Gobius niger*)	1.0	Freeze-dried, milled	PLE (MeOH)	GPC	<20–200	0.02–6.6	[48]			
Yellow grouper (*Epinephelus*	Topmouth culter (*Culter*	0.2	Freeze-dried, ground into powder. Separation of	USE (ACN/H₂O)	SPE (PRiME HLB cartridges)	UHPLC-MS/MS	43–127	0.01–1.9	[39]		
			back muscles and abdominal muscles								
Senegal seabram (*Diplodus*	European sea bass (*Dicentrarchus*	2 (w.w)	Homogenized	Mechanical shaking (ACN, EDTA)	No data	UHPLC-MS/MS	79.2–109.5	0.59–4.11	[41]		
	labrax), Meagre (*Argyrosomus*										
	regius), Lusitanian toadfish										
	(*Halobatrachus didactylus*)										
Fish Species	Antibiotics	Concentration Range	Sample Preparation	Extraction Method	LC-MS/MS Range	*R* Value	Notes				
----------------------------------	--	------------------------------	--------------------------	-------------------	-----------------	-----------	-------				
White bream, roach, bleak, perch, asp, pike, pikeperch (No data)	Nicotine, haloperidol, pyremethamine	0.14–0.2 (d.w)	Dissected into fillet and carcass, frozen	USE (ACN, MeOH, H₂O)	SPE (No data)	LC-HRMS/MS	70–130	0.05–5.7 * [59]			
Atlantic salmon, Atlantic sea wolf, rainbow trout, Atlantic cod (No data)	Amoxicillin, azithromycin, caffeine, carbamazepine, ciprofloxacin, clarithromycin, diclofenac, erythromycin, furosemide, ketoprofen, ibuprofen, naproxen, sulfamethoxazole, tetracycline	2 (w.w)	Dorsal muscle separated, cut into small parts, frozen at −20 °C	Mechanical shaking (ACN, 0.1 M EDTA, hexane)	No data UHPLC-MS/MS	81.2–99.4	0.017–1.371 [46]				
Flatfish (No data)	Albendazole, 2-amino albendazole sulfone, albendazole sulfone, albendazole sulfoxide, febantel, fenbendazole, flubendazole, 2-amino flubendazole, oxendazole, oxendazole sulfone, oxibendazole, cefapirin, desacetylfefapirin, cefazoline, cefoperazone, halofuginone, azithromycin, tildipirosin, dimetridazole, ipronidazole, ipronidazole-OH, metronidazole, metronidazole-OH, tinidazole, noridazole, dicloxacillin, nafcillin, oxacillin, penicillin V, 2-hydroxyethyl-1-methyl-5-nitromidazole, 4-methylaminoantipyrine, sarafloxacin, orbifloxacin, carbadox, quinoxaline-2-carboxylic acid, olaquindox, 3-methylquinolin-2-carboxylic acid, dapson, N-acetyl dapson, sulfapyridine, aprinod, azaperol, azaperon, carazolol, caffeine, clenbuterol, clochicine, diphehydramine, flunixin, imidocarb, isomectamidium, ketoprofen, loperamide, metoclopramide, nitroxylin, phenacetin, ractopamine, scopolamine, triamcinolone, valnemuline	2 (w.w)	Homogenized, stored at −20 °C	Mechanical shaking (Water/ACN)	d-SPE: C18 UHPLC-MS/MS	73.2–115	0.5–5 * [81]				
Species	Antimicrobial Agents	Extraction Method	Storage Temperature	SPE	UHPLC-MS/MS	Concentration Range	Reference				
---------	----------------------	-------------------	---------------------	-----	-------------	---------------------	-----------				
Goldsilk seabream, Indo-Malaysian barracuda, Yellow seabream, Spotted scat	Sulfamethazine, sulfapyridine, sulfathiazole, sulfanilamide, sulfadiazine, sulfadimethoxine, sulfamonomethoxin, sulfamerazine, sulfamethoxazole, norfloxacin, enoxacin, ofloxacin, ciprofloxacin, enrofloxacin, dehydrated erythromycin, clarithromycin, azithromycin, roxithromycin, florfenicol, chloramphenicol, trimethoprim, lincomycin	Washed (water), dissected, homogenized	−20 °C	USE (ACN, citric acid)	SPE (SAX-HLB cartridges)	47.67–172.67	0.04–0.24	[13]			
Eel, flatfish (No data)	Naproxen, methyltestosterone, 17α-hydroxyprogesterone caproate, progesterone	Ground, homogenized	Manual shaking (ACN 0.1% acetic acid)	No data	LC-MS/MS	68–117	1–2	[43]			
Molecules 2022, 27, 7569	34 of 48										
--------------------------	----------										

Table 1. Cont.

Fish Species	Antimicrobials	Storage Conditions	Method	LOD (µg/kg)	Ref.		
Silver carp (<i>Hypophthalmichthys molitrix</i>), Bighead carp (<i>Aristichthys nobilis</i>), Common carp (<i>Cyprinus carpio</i>), Goldfish (<i>Carassius auratus</i>), Common skygazer (<i>Cultrichthys erythropterus</i>), Topmouth culter (<i>Calter alburnus</i>), Japanese grenadier anchovy (<i>Coilia ectenae taihuensis</i>), Asian pencil halfbeak (<i>Protosalanx halocranii</i>), Common sawbelly (<i>Hemiculter leniusculus</i>), Bitterling (<i>Rhodeus sinensis</i>), River sand pond snakehead (<i>Odontobutis potamophila</i>), Yellow catfish (<i>Pelteobagrus fulvidraco</i>)	Sulfachlorpyridazine, sulfadiazine, sulfadoxine, sulfamerazine, sulfadimethoxine, sulfamethazine, sulfamethoxazole, sulfamonomethoxine, sulfapyridine, sulfaquinoxaline, sulfisoxazole, sulfathiazole, trimethoprim, chlortetracycline, doxycycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, enrofloxacin, fleroxacin, dirfloxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, sarafloxacin, azithromycin, leucromycin, clarithromycin, oleandomycin, roxithromycin, tylosin, salinomycin, monensin, florfenicol, chloramphenicol	Washed (water), dissected, homogenized, freeze-dried, stored at −20 °C	No data	No data	RRLC-MS/MS 37.6–135 0.01–1.99	[38]	
Grass carp (<i>Ctenopharyngodon idellus</i>), Silver carp (<i>Hypophthalmichthys molitrix</i>), Common carp (<i>Cyprinus carpio</i>), Crucian carp (<i>Carassius auratus</i>), Bighhead carp (<i>Hypophthalmichthys nobilis</i>), Whitebait (<i>Reganisalanx brachyrostralis</i>), Yellow catfish (<i>Pelteobagrus fulvidraco</i>), Catfish (<i>Silurus asotus</i>), Loach (<i>Paramisgurnus dabryanus</i>)	Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, sulfadiazine, diclofenac, naproxen, bezafibrate, propranolol, ketoconazole, carbamazepine, caffeine, fluoxetine, norfluoxetine, citalopram, paroxetine, sertraline, venlafaxine, duloxetine, bupropion, amitriptyline, fluvoxamine, trihexyphenidyl, clozapine, quetiapine, artpiprazole, chlorpromazine	Freeze-dried, homogenized, stored at −80 °C	PLE (MeOH/acetone)	SPE (HLB cartridges)	UHPLC-MS/MS 66–128 0.07–1.67	[27]	
Red bigeye (*Priacanthus macracanthus*), Horn dragnet (*Callionymus curvicornis*), White-spotted spinefoot (*Siganus canaliculatus*), Silver jewfish (*Penaulia argentina*), Burrowing goby (*Trypauchen vagina*), Threadfin porgy (*Eynnis cardinalis*), Palad (*Solea ovata*), Anchoy (*Thryssa kammalensis*), Bony fishes (*Johnius heterolepis*), Japanese flathead (*Inegocia japonica*), Shortnose ponyfish (*Leiognathus brevirostris*), Big head croaker (*Collichthys lucidus*), Goatee croaker (*Dendrophysa russelii*), Yellow croaker (*Larimichthys crocea*), Largehead hairtail (*Trichiurus lepturus*)	Atenolol, metoprolol, venlafaxine, chloramphenicol 2 (d.w)	Washed (water), dissected, homogenized, freeze-dried, stored at −50 °C	USE (MeOH/ H₂O)	SPE (Oasis MCX cartridges)	LC-MS/MS 68–96	0.05–0.25	[44]
Table 1. Cont.

Fish Species	Antibiotics and Other Chemicals	Separation Method	LC/MS/MS	LOD (μg/L)
Silver carp (*Hypophthalmichthys molitrix*), Common carp (*Cyprinus carpio*), Crucian carp (*Carassius auratus*), Lake anchovy (*Coilia extenes*), whitebait (*Reganialax brachyprostralis*), Redfin culter (*Callichthys erythropterus*), Yellow catfish (*Pelteobagrus fulvidraco*)	Roxithromycin, erythromycin, ofloxacin, norfloxacain, ciprofloxacin, tetracycline, chloramphenicol, sulfamerazine and sulfadiazine, sulfamethoxazole, ibuprofen, diclofenac, naproxen, indomethacin, clofibric acid, gemfibrozil, bezafibrate, 17β-estradiol, 17α-ethynylestradiol, propranolol, carbamazepine, ketoconazole, sertraline	Separation of liver, brain, gills, and muscle. Freeze-dried, ground, stored at −20 °C	PLE (MeOH/acetone)	LC-MS/MS 68–116 0.01–1.12
Crucian carp (*Carassius carassius*)	Florfenicol, thiamphenicol, ofloxacin, pipemidic acid	Liver, muscle, gill and bile separated, washed with 0.15 M KCl, stored at −20 °C	USE (0.1 M AcONa, MeOH) SPE (SAX/PSA-HLB tandem cartridges)	LC-MS/MS 79.2–91.0 0.5–0.6

* Limit of quantification; ACN: acetonitrile; DAD: diode-Array detection; DLLME: dispersive liquid-liquid microextraction; DMSO: dimethyl sulfoxide; d-SPE: dispersive solid phase extraction; d.w.: dry weight; FUSLE: focused ultrasonic solid-liquid extraction; GPC: gel permeation chromatography; HPLC: high performance liquid chromatography; HRMS: high resolution mass spectrometry; HRPS: high resolution product scan; LDTD: laser diode thermal desorption; LC: liquid chromatography; MAE: microwave assisted extraction; MeOH: methanol; MS: mass spectrometry; MS/MS: tandem mass spectrometry; PLE: pressurized liquid extraction; PSA: primary secondary amine; PuLE: pulvured liquid extraction; QuEChERs: Quick, easy, cheap, effective, rugged and safe; RRLC: rapid resolution liquid chromatography; UHPLC: ultra-high performance liquid chromatography; USE: ultrasound assisted extraction; w.w.: wet weight.
will be explained below. Argüello-Pérez et al. [77] determine four analgesics in fourteen different fish species using USE at 20 °C at 400 W power with a surface area of 3.8 cm², achieving recoveries close to 100% in all cases. Focused ultrasound solid-liquid extraction (FUSLE) is a relatively new extraction technique, which started gaining popularity because the ultrasonic bath often provides low power. By introducing a probe directly into the extraction mixture, a sonication power up 100 times higher is achieved, as well as greater reproducibility and efficiency. The ultrasound energy is concentrated at the tip of the probe.
and is hence focused [83], and when ultrasound waves cross the liquid, many gaseous bubbles are formed which, when they implode, produce locally very high temperatures as well as high pressures and velocities of solvent micro-jets [84]. Mijangos et al. used FUSLE to extract antibiotics, analgesics and antiepileptics, among others from mussels and sea bream. For the extraction, authors used 30 s and 10% amplitude with 7 μL of MeOH/H$_2$O (95:5, v/v) as solvent at 0 °C (extraction efficiencies from 71 to 126%) [85]. Some works apply ultrasound in a simpler way, by sonication in a common laboratory ultrasound machine. In this case, ultrasonic irradiation takes place indirectly, i.e., through the sample container. This equipment works at a single frequency, therefore the wave amplitude cannot be controlled. Danesaki et al. [74] used an ultrasonic bath at 60 °C (20 min) followed by a precipitation of lipids and proteins to recover 143 veterinary drugs from fish, while Ali et al. [51], analyzed different PhACs at room temperature (15 min) obtaining recoveries between 30% and 103% and limits of detection (LODs) from 0.1 to 13 ng mL$^{-1}$.

3.3.2. Pressurized Liquid Extraction

Pressurized liquid extraction (PLE), also called accelerated solvent extraction (ASE), is used for the extraction of analytes from solid or semi-solid matrices, by combining the use of different solvents with high temperatures and pressures. This allows higher recoveries and good extraction efficiencies while decreasing extraction time [65]. MeOH, acetonitrile (ACN) and water, or a mixture of them, have frequently used as extractant solvents. In addition, working temperatures are around 50 °C. Rojo et al. [52] studied different families of PhACs in fish muscle tissue, achieving recoveries between 26 and 115%. Other authors have proposed this technique to investigated different drugs in several types of fish as well as biofilm, plankton, bivalves, crustaceans and cephalopods obtaining LODs between 0.0004 and 6 ng g$^{-1}$ and recoveries ranging from 20 to 151% [26,34,39,47,75,86].

3.3.3. Microwave Assisted Extraction

Microwave-assisted extraction (MAE) was first used to replace Soxhlet extraction with the aim of reducing the amount of extraction solvent, achieving similar or better recoveries than Soxhlet extraction and reducing digestion time. It consists of heating the closed vessel to warm the solvent and decrease its viscosity, while increasing the solubility of the analytes in the extraction solvent and to facilitate the penetration into the matrix [54]. In the literature consulted, only the research by Argüello-Pérez et al. used this assisted extraction technique, for the analysis of several antimicrobials in fish as matrix [72]. ACN was used as solvent and it was carried out for 5 min at 40 °C with a power of 400 W. They obtained recoveries higher than 87% for all analytes and LODs between 4.54 and 101.3 pg kg$^{-1}$.

3.3.4. Solid-Phase Extraction

Solid phase extraction (SPE) allows the concentration of a target analyte by removing interferents present in the matrix via a solid stationary phase. This is an absorbent, which will be chosen according to the physicochemical properties of target compounds, in order to correctly separate the analytes from the rest of the interferents [76]. There are different types of sorbents; some of them retain the analytes and others the interferents. Boulard et al. [61] used silica gel for cleaning fish liver and fillet extracts in bream together with water and ACN to remove non-polar compounds from the extract. They achieved low LODs for the different PhACs, between 0.05 and 5.5 ng mL$^{-1}$. Another sorbent used in SPE is the alumina column, which is capable of retaining compounds with an acidic character. It is used for the separation of compounds with medium polarity [87]. Huang et al. [72] used an alumina column in the clean-up phase for the determination of 6 antibiotics in fish muscle. This clean-up took place in two steps, after the alumina column in which ACN was used; a DLLME was carried out. They achieved recoveries higher than 87%.

According to the scientific literature consulted, SPE with cartridges is the most commonly clean-up technique. Among all the sorbents, the most widely used cartridge is
the HLB, as it is a universal for acidic, neutral or alkaline compounds. Other sorbents packed in the cartridges are SAX and PSA, which are multilayer cartridges suitable for polar interactions. Chen et al. used this type combined with the HLB cartridge, facilitating the separation of polar and non-polar compounds for sulfonamides and tetracyclines in crabs, shrimps and different types of fish, reaching recoveries between 50 and 150% [41]. McEneff et al. used a cartridge with Strata-X, which is a reversed-phase polymeric cartridge, at SPE for the determination of different analgesics and antiepileptic drugs in mussels, achieving yields between 83 and 94% [60]. Tanoue et al. used a Hybrid SPE-Phospholipid cartridge, which removed exogenous proteins as well as phospholipid interferences for different drugs and some of their metabolites in fish analysis, with recoveries between 70 and 120% [49].

Gao et al. developed a different type of clean-up based on SPE [79]. These authors used a metal organic framework (MOF) as adsorbent. SPE (CF@UiO-66-NH₂) is a MOF based on Zr and modified with cotton fiber, resulting in CF@UiO-66-NH₂, which has a high adsorption capacity because it has many active sites. After adsorption, desorption of the analytes takes place by using desorption solvents. Gao et al. [79] used this adsorbent for the extraction of some analgesics such as ketoprofen, naproxen, flurbiprofen, diclofenac sodium and ibuprofen in fish and crustaceans’ tissue, achieving recoveries between 95 and 116.99% and LODs between 0.12 and 3.50 ng mL⁻¹.

3.3.5. Dispersive Solid Phase Extraction (dSPE)

This technique consists of the dispersion of a solid sorbent in a liquid or dissolved sample so that impurities or interferents are retained, resulting in a clean extract. After separation, the sorbent is removed, usually by centrifugation [88]. There are different types of sorbents: those used in the consulted literature will be explained below.

C18 sorbent is used for the extraction of non-polar or relatively polar compounds, being able to retain most of the organic compounds present in an aqueous phase.

QuEChERs (quick, easy, cheap, effective, rugged and safe) is one of the most user-friendly techniques. High extraction efficiencies can be achieved and it is also in agreement with green chemistry as it uses a small amount of sample as well as solvent. This makes it one of the most widely used extraction methods nowadays [89]. This technique is applied in two sequential stages. The first one is the extraction phase, which is performed using an organic solvent, normally ACN in the presence of different salts, such as MgSO₄ or NaCl, whose function is to regulate pH, control polarity to favor the phase separation and contribute to the recovery of the analyte. Then, a second stage of cleaning is carried out, which consists of purification dSPE. With this step, the residual water and other interfering compounds present in the matrix are removed. For this purpose, some salts are used, such as MgSO₄, which removes excess water; PSA (primary/secondary amine), which removes organic acids, fatty acids and sugars from the matrix; C18 (sorbent), which eliminates fats and other non-polar interferences; and graphitized black carbon (GCB), which removes pigments from the sample [89].

3.3.6. Others

Soxhlet. Since it involves much larger quantities of solvent and much longer times than other extraction techniques, and the yields of extraction obtained are not much better, it is a technique rarely used today. It consists of the continuous flow of solvent through the sample, using a distillation flask. When the solvent condenses, it does so with the dissolved analytes. This operation is repeated until extraction process is completed, achieving good extraction efficiencies [90]. Ojemaye and Petrick [36,48] used this technique for the extraction of a group of drugs, such an antiepileptic, antibiotics and an analgesic, in fish, bivalves, algae and echinoderms. They used MeOH and ACN (3:1, v/v) as extractant solvents and they achieved recoveries between 69.2 and 107.5% for fish and 96.1 and 100.5% for the rest of the species as well as LODs of 0.01 and 0.036 ng g⁻¹ for fish and between 0.62 and 1.05 ng L⁻¹ for the other species under study.
TissueLyser II. TissueLyser consists of bead mill equipment which, with adapters, is capable of lysing biological samples by agitation at high speeds. It has many applications, such as the disruption of human, animal, plant and even bacterial tissues. It is a very efficient extraction [91]. Borik et al. [53] used this type of lysis for the extraction of citalopram from rainbow trout fish brain tissue, achieving close to 100% recovery with a LOD of 0.39 ng g\(^{-1}\).

Mechanical shaking. This is one of the simplest extraction techniques as it consists of stirring the sample with the extraction solvent for a certain time to ensure the migration of the analytes from the solid phase to the liquid one. Generally, this agitation is followed by centrifugation so that the decantation can take place and the phases can be separated correctly, leaving the target analytes dissolved in the liquid [92,93]. Not many studies based on the use of this technique have been found, as the time required is usually longer. The most commonly used solvents are can and MeOH, sometimes acidified with formic or acetic acid. López-García et al. [61] used ACN with salts (MgSO\(_4\), NaCl, sodium citrate and DCS (sodium citrate sesquihydrate)) for the study of mussel’s tissue, with recoveries between 77% and 118% and and low LODs (<2 ng g\(^{-1}\)). Bobrowska-Korczak et al. [64] and Miossec et al. [73], studied the presence of 98 and 41 PhACs, respectively, in fish and shrimps, with LODs between 0.1 and 40.2 ng g\(^{-1}\), reaching recoveries in the range of 28 to 188%.

Cell disruption. This technique is carried out in a high-speed shaking equipment that, in a very short time, is able to extract the maximum amount of DNA, RNA, proteins and other compounds with very good efficiency. This is why after this type of extraction the cleaning and purification protocol plays an essential role in the removal of interferents. Boulard et al. [61] used this extraction technique for the analysis of 26 PhACs in bream and the time required for extraction was 40 s, achieving recoveries from 70% to 130% and LODs from 0.05 to 5.5 ng mL\(^{-1}\).

Pulverised liquid extraction (PuLE). In this extraction technique, the sample is homogenized and the analytes are extracted simultaneously by shaking. The solid sample is placed in a vessel together with two glass beads and then it is agitated in a homogeniser at a known speed and time. Only one study found in the scientific literature have used this extraction modality. This technique was used to extract 29 PhACs in the amphipod *Gammarus pulex*. The recoveries were between 41 and 89% [70].

Gel permeation Chromatography (GPC) is a technique traditionally used for the clean-up of the extracts because it removes biological macromolecules such as fats or proteins, separating them according to size. The column packing is a porous gel, and the beads packaged in it interact with the compounds, so it differs from other separation techniques in that it does not rely on physical or chemical interactions [94]. Rojo et al. used GPC for clean-up of the extracts of fish species when they had determined 15 PhACs and two of their metabolites, achieving recoveries between 26 and 115% [52]. Álvarez-Muñoz et al. studied 8 PhACs from different families in 9 different fish species using GPC as a clean-up technique [75].

Of all the extraction techniques described in this section, those based on the use of ultrasound (USE and FUSLE) have been the most attractive alternatives for the analysis of PhACs in biota (36% of the studies), followed by PLE (30% of the consulted studies). Both techniques are simple, provide automatization, short extraction times and low solvent consumption. For clean-up, SPE using Oasis HLB cartridges has been shown to be an efficient method and the most popular used as a clean-up procedure (71% of the studies), regardless of the aquatic organism under study.

4. Instrumental Analysis

4.1. Liquid Chromatography

LC separation technique coupled with an adequate detector allows quantitative determinations of the compounds with high selectivity, sensibility and accuracy. LC is a very suitable technique for the multiresidue PhACs separation. Furthermore, it does not require the previous derivatization step.
Regarding the retention mechanisms, a broad variety may be applicable in LC. Some examples are reverse phase chromatography (RP-LC), normal phase liquid chromatography (NP-LC), hydrophilic interaction liquid chromatography (HILIC), ion-pairing chromatography (IPC), ion exchange chromatography (IEC), or hydrophobic interaction chromatography (HIC), among others. As far as the determination of PhACs in aquatic organisms is concerned, and considering the physicochemical properties of the target compounds (polar compounds), the RP-LC modality has been the best choice for all the authors. This retention mechanism is related to non-polar selectivity consisting of a non-polar stationary phase and, as mobile phases, a solvent mixture of high polarity solvents. Consequently, the least polar compounds of the mixture appear first in the chromatogram. RP-LC using C18 silica columns is mainly used for separation, although chiral columns based on α₁-glycoprotein (AGP) and phenyl or phenyl-hexyl columns have been also used as stationary phases [44,73,78]. Generally, the most commonly used solvents in the mobile phase are water as the aqueous component (phase A), and in the organic phase, ACN or MeOH (phase B) [68,78,79]. Some authors such as Moreno-González et al. used dichloromethane and methanol (90:20, v/v) in isocratic mode as mobile phases for the analysis of 20 PhACs in fishes and molluscs, prior to a study of bioaccumulation [47]. Sometimes, the use of additives in the aqueous phase, or occasionally in both, such as formic acid, ammonium formate, ammonium acetate or acetic acid at low concentrations, assists ionization when mass spectrometry is selected as detection technique. The use of additives provides better analytical signals and thus, make it easier to determine the target analytes [52,70,73,95].

On the other hand, HILIC is considered by far an attractive alternative for the separation of polar compounds, such as pharmaceuticals. This one is associated to polar selectivity, but also using polar mobile phases. Although the reported articles were based on RP-LC, the use of diol and amine columns may be also considered, as they could provide promising results in the separation of PhACs.

In recent years, the HPLC technique has been largely replaced by UHPLC as it has many advantages over the former. The analyses are faster and more sensitive. This is due to the fact that the column packing consists of smaller and more porous particles (sub-2-micron particles) that achieve better chromatographic peaks, and therefore greater sensitivity, although the collateral effect is that the work is carried out at higher pressures. As this review work has focused on the last 10 years of research, most of the studies included the use of UHPLC technique [34,46,72] (56%) while the remaining 44% used classical HPLC (Table 1a–i). The chromatographic columns used in the first case are usually 10 cm long [13,27], although some studies achieve separation even with 5 cm columns [35,39,60]. In the case of HPLC, longer chromatographic columns are used, usually 15 cm [28,55,56,58,62], with the exception of some studies using shorter columns of 10 cm [42,52] or 12.5 cm in length [61].

4.2. Detection Systems

After chromatographic separation, spectrophotometric detection has been used on a limited, but interesting, number of cases, depending on the properties of the compounds under study [96]. For example, Gao et al. coupled an ultraviolet detection system for the determination of 5 NSAIDs in fish and shrimp muscle tissues using a new synthetic MOF in the extraction of the compounds, achieving LODs between 0.12 and 3.50 ng mL⁻¹ [79]. It is a universal and inexpensive detector that is very useful for routine analysis. However, MS was the most common detection system used in the literature consulted. For the ionization of the sample, the main interface used is electrospray ionization (ESI). In the literature consulted, 80 studies indicate the use of this interface. ESI involves generating ions by applying a high voltage to a liquid, generating an aerosol. It is often used in the case of macromolecules, as they tend to fragment after ionization. Other interfaces used are atmospheric pressure chemical ionization (APCI) [75] and heated electrospray ionization [63]. In both cases, they use heat and a nebulization gas to form an aerosol and ionize the molecules in the gas phase. In some cases, thermal degradation may occur due to
the use of heat, so this interface is often used when the analytes are heat stable and volatile. For that reason, articles consulted in the literature mainly used ESI as an interface, as the PhACs are generally high molecular weight compounds [71].

Based on MS resolution, two main categories are typically distinguished: low resolution (LRMS) and high resolution (HRMS) mass spectrometry. The former gives two decimal m/z digits and is commonly used in targeted analysis, while the latter offers higher resolving power which is advantageous in non-targeted analysis. In the reviewed works, LRMS, in particular, tandem mass spectrometry (MS/MS) using a triple-quadrupole mass analyzer (QqQ), is the most frequently used because of its increased selectivity, low LODs and improved S/N ratio. Multiple reaction monitoring mode (MRM) is particularly useful for the simultaneous determination of different classes of PhACs in one single run and has been able to detect large amounts of analytes in complex matrices even in trace quantities [46,51,68,85]. López-García et al. [61] used a QqLit analyzer (quadrupole ion trap), consisting of three quadrupoles analyzers in which the last one acts as a linear ion trap, offering better sensitivity. In the determination of psychoactive substances in mussels, they achieved LODs below 2 ng g\(^{-1}\), with high recoveries. Similarly, the use of other systems based on MS/MS, as the HCT (ultra ion trap) [80] and the QTRAP mass spectrometer [48,50,74], have been proposed. In contrast, it should be noted that only one study used a simple quadrupole analyzer. They determined three drugs in sea sponge, achieving detection limits between 0.01 and 10 ng g\(^{-1}\) with a recovery of 80% [70].

Likewise, the HRMS counterpart has undergone a noteworthy evolution in the last years. Although it is typically used in non-targeted analyzes when the compounds are unknown a priori, it has been shown to possess sufficient resolving power for quantitative purposes as well. It is especially useful for example to know the transformation products or identify compounds with the same molecular mass, thanks to the structural fragmentation patterns, the accurate mass, and the isotopic distribution. In light of this, analyzers such as Orbitrap or TOF, which also offer very good characteristics, have been employed in some of the revised works [41,48,59,63,73,77,79]. For example, Baesu et al. and Danesaki et al. used the Q-TOF for the determination of drugs from different families in fillet of fish, reaching LODs of 0.2–2.6 ng g\(^{-1}\) and 20–200 ng g\(^{-1}\), respectively [73,77]. Kalogeropoulou et al. used a Q-Orbitrap MS achieving limits of quantification (LOQs) between 0.5–19 ng g\(^{-1}\) for the analysis of several antibiotics, antiepileptics and antidepressants in fish muscle [79].

5. Conclusions and Future Perspectives

Advances in analytical tools and instrumentation have allowed the development of a high number of sensitive and selective methods to determinate a broad range of PhACs in complex matrices, such as aquatic organisms. The present work provides an overview of the recent available methodologies for the analysis of PhACs in aquatic biota from different levels of the food chain. Among the PhACs, most investigated were antibiotics (ciprofloxacin, trimethoprim, and sulfamethoxazole), non-steroidal anti-inflammatory drugs (NSAIDs), analgesics (diclofenac, ibuprofen, naproxen and acetaminophen), antidepressants (venlafaxine) and antihypertensive drugs (propranolol and metoprolol), in this order, which also corresponds to those most accepted and consumed by the human population. Other groups, such as the cholesterol-lowering, antidiabetic and anticancer drugs, which have greatly increased in the last decade, have occasionally been considered in the studies consulted [97]. In addition, it should be noted that limited research has been conducted to analyze their transformation products (metabolites and degradation products) which emphasizes the need to develop analytical methods to cover this gap.

In relation to the studied taxonomic groups in the determination of PhACs, fish has been the most extensively organism investigated (33%), followed by molluscs (29%) and crustaceans (17%). In contrast, there are few proposed methods to assess the presence of these compounds in echinoderms (1%), and in biota of the first level of the food chain such as algae (2%), phytoplankton (5%), or zooplankton (8%). Therefore, more studies are needed to analyze PhACs at the lowest levels of the food chain, such as producers
and benthic primary consumers, since the latter seem to be the main bioaccumulators for filter-feeding [98]. This would help to broaden the knowledge about the trophic transfer of PHACs, a barely explored field.

Given the complexity of biota matrices, special attention has been played to the sample preparation step, both extraction and purification, to obtain clean extracts and not compromise instrument sensitivity due to matrix effects. The extraction step is key in determining the analytical parameters of the method. As far as extraction techniques, extraction using ultrasound (USE, FUSLE) has been the most attractive alternative, used in 36% of the studies consulted, followed by PLE, used in 30% of the studies. Both techniques provide automatization, short extraction times and low solvent consumption, compared to other techniques, such as traditional Soxhlet extraction. ACN, MeOH and water have been the solvents of choice for UAE while for PLE, in addition to these, the combination of acetone and MeOH has been extensively used. However, other green techniques should be explored for the extraction of these compounds to further reduce solvent and extraction time, such as aqueous two-phase systems (ABS), which remove volatile organic compounds and have very promising prospects. For clean-up, SPE using cartridges has shown to be an efficient method and the most popular used as a clean-up procedure (71% of the studies), regardless of the aquatic organism under study. Polymeric reversed-phase sorbents, and in particular Oasis HLB cartridges, have been the most suitable par excellence. Future trends in PHACs analysis in biota may include the design of on-line extraction techniques to reduce sample handling and avoid tedious sample treatments.

Finally, UHPLC-MS/MS has shown to be the most widely used technology for the analysis of PHACs due to the benefits it can offer. On the one hand, there has been a trend towards the use of UHPLC since, unlike HPLC, it operates at higher pressures and provides better resolution due to shorter column lengths and smaller particle sizes. On the other hand, its coupling with MS/MS detection is advantageous as it provides high sensitivity and selectivity, allowing quantification in the low ng L$^{-1}$ or ng g$^{-1}$. It should also be noted that some recent works, instead, have used HRMS (Orbitrap or QTOF analyzers) for determining PHACs in the organisms under study being able to distinguish between compounds with comparable masses.

Author Contributions: Conceptualization, all authors; methodology, M.d.C.G.-R., L.M.-P., J.M. and A.Z.-G.; formal analysis and investigation, all authors; resources, M.d.C.G.-R., L.M.-P. and J.M.; data curation, J.L.S., I.A., E.A. and A.Z.-G.; writing—original draft preparation, M.d.C.G.-R., L.M.-P. and J.M.; writing—review and editing, M.d.C.G.-R., J.M., J.L.S. and A.Z.-G.; visualization and supervision, E.A. and A.Z.-G.; project administration and funding acquisition, E.A. and A.Z.-G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by MCIN/AEI/10.13039/501100011033 (Spanish Government), grant number PID2020-117641RB-I00” and the FEDER/Regional Government of Andalusia—Ministry of Economy and Knowledge, including European funding from ERDF 2014-2020 program, grants number B.RNM.362.UGR20 and P20_00556.

Institutional Review Board Statement: The study did not require ethical approval.

Informed Consent Statement: No human subjects are involved in this study.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Landrigan, P.J.; Stegeman, J.J.; Fleming, L.E.; Allemand, D.; Anderson, D.M.; Backer, L.C.; Brucker-Davis, F.; Chevalier, N.; Corra, L.; Czeruckall, D.; et al. Human health and ocean pollution. *Ann. Glob. Health* 2020, 86, 151. [CrossRef] [PubMed]
2. European Environmental Agency. Contaminants in Europe’s Seas Moving Towards a Clean, Non-Toxic Marine Environment. *EEA Report 2019, 25/2018*. Available online: https://www.eea.europa.eu/publications/contaminants-in-europes-seas (accessed on 3 November 2022).
3. Lomartire, S.; Marques, J.C.; Gonçalves, A.M.M. Biomarkers based tools to asses environmental and chemical stressors in aquatic systems. *Ecol. Indic.* 2021, 122, 107207. [CrossRef]
4. Zhang, C.; Barron, L.; Sturzenbaum, S. The transportation, transformation and (bio)accumulation of pharmaceuticals in the terrestrial ecosystem. *Sci. Total Environ.* 2021, 781, 146684. [CrossRef] [PubMed]

5. Vagi, M.C.; Petsas, A.S.; Kostopoulou, M.N. Potential effect of persistent organic contaminants on Marine Biota: A review on recent research. *Water* 2021, 13, 2488. [CrossRef]

6. Arnold, K.E.; Brown, A.R.; Ankley, G.T.; Sumpter, J.P. Medicating the environment: Assessing risks of pharmaceuticals to wildlife and ecosystems. *Phil. Trans. R. Soc. B* 2014, 369, 20130569. [CrossRef]

7. Ortúzar, M.; Esterhuizen, M.; Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Pharmaceutical pollution in aquatic environments: A concise review of environmental impacts and biomagnification systems. *Front. Microbiol.* 2022, 13, 869332. [CrossRef]

8. Golbazi, S.; Yaghmaeian, K.; Isazadeh, S.; Zamanzadeh, M. Environmental risk assessment of multiclass pharmaceutical active compounds: Selection of high priority concern pharmaceuticals using entropy-utility functions. *Environ. Sci. Pollut. Res.* 2021, 28, 59745–59770. [CrossRef]

9. Prionti, C.; Ricciardi, M.; Proto, A.; Bianco, P.M.; Montano, L.; Motta, O. Endocrine-disrupting compounds: An overview on their occurrence in the aquatic environment and human exposure. *Water* 2021, 13, 1347. [CrossRef]

10. Ramírez-Morales, D.; Masis-Mora, M.; Montiel-Mora, J.R.; Cambroner-Heinrichs, J.C.; Pérez-Rojas, G.; Tormo-Budowski, R.; Méndez-Rivera, M.; Briceno-Guevara, S.; Gutiérrez-Quirós, J.A.; Arias-Mora, V.; et al. Multi-residue analysis of pharmaceuticals in water samples by liquid chromatography-mass spectrometry: Quality assessment and application to the risk assessment of urban-influenced surface waters in a metropolitan area of Central America. *Process Saf. Environ. Environ.* 2021, 153, 289–300. [CrossRef]

11. Bravo, A.; Silva, S.; Rodrigues, J.; Cardoso, V.V.; Benoliel, M.J.; Correia, C.; Coelho, M.R.; Rosa, M.J.; Almeida, C.M.M. Understanding the bioaccumulation of pharmaceutical active compounds by clams *Ruditapes decussatus* exposed to a UWWTP discharge. *Environ. Res.* 2022, 208, 112632. [CrossRef]

12. Blanco, G.; Junza, A.; Barrón, D. Occurrence of veterinary pharmaceuticals in golden eagle nestlings: Unnoticed scavenging on livestock carcasses and other potential exposure routes. *Sci. Total Environ.* 2017, 586, 355–361. [CrossRef] [PubMed]

13. Wu, Q.; Pan, C.-G.; Wang, Y.-H.; Xiao, S.-K.; Yu, K.-F. Antibiotics in a subtropical food web from the Beibu Gulf, South China: Occurrence, bioaccumulation and trophic transfer. *Sci. Total Environ.* 2021, 751, 141718. [CrossRef] [PubMed]

14. Water Framework Directive (WFD) 2000/60/EC. Available online: https://www.eea.europa.eu/policy-documents/water-framework-directive-wfd-2000. (accessed on 27 September 2022).

15. Marine Strategy Framework Directive 2008/56/EC. Available online: https://www.eea.europa.eu/policy-documents/2008-56-ec. (accessed on 27 September 2022).

16. European Union. Commission Implementing Decision (EU) 2022/1307 of 22 July 2022 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. OJEU. 2022, 197/117. Available online: https://euroalert.net/en/oj/105661/commission-implementing-decision-eu-2022-1307-of-22-july-2022-establishing-a-watch-list-of-substances-for-union-wide-monitoring-in-the-field-of-water-policy-pursuant-to-directive-2008-105-ec-of-the-european-parliament-and-of-the-council-notified-under-document-c-2022-5098. (accessed on 3 November 2022).

17. Richardson, S.D.; Ternes, T.A. Water analysis: Emerging contaminants and current issues. *Anal. Chem.* 2018, 90, 398–428. [CrossRef]

18. Huerta, B.; Rodríguez-Moraz, S.; Barceló, D. Pharmaceuticals in biota in the aquatic environment: Analytical methods and environmental implications. *Anal. Bioanal. Chem.* 2012, 404, 2611–2624. [CrossRef] [PubMed]

19. McCarthy, J.F.; Shugart, L.R. (Eds.) *Biomarkers of Environmental Contamination*, 1st ed.; Lewis Publishers: Boca Raton, FL, USA, 1990. [CrossRef]

20. Vidal-Liñán, L.; Bellas, J.; Campillo, J.A.; Beiras, R. Integrated use of antioxidant enzymes in mussels, *Mytilus galloprovincialis*, for monitoring pollution in highly productive coastal areas of Galicia (NW Spain). *Chemosphere* 2010, 78, 265–272. [CrossRef] [PubMed]

21. Rios-Fuster, B.; Alomar, C.; Panaiagua González, G.; Garciuño Martínez, R.M.; Soliz Rojas, D.; Fernández Hernando, P. Assessing microplastic ingestion and occurrence of bisphenols and phthalates in bivalves, fish and holothurians from a Mediterranean marine protected area. *Environ. Res.* 2022, 214, 114034. [CrossRef] [PubMed]

22. Fossi, M.C.; Pedá, C.; Compa, M.; Tsangaris, C.; Alomar, C.; Claro, F.; Ioakeimidis, C.; Galgani, F.; Hema, T.; Deudero, S.; et al. Bioindicators for monitoring marine litter ingestion and its impacts on Mediterranean biodiversity. *Environ. Pollut.* 2018, 237, 1023–1040. [CrossRef] [PubMed]

23. Bartolomé, L.; Etxebarría, N.; Martínez-Arkarazo, I.; Raposo, J.C.; Usobiaga, A.; Zuloaga, O.; Raingeard, D.; Cajaraville, M.P. Distribution of organic microcontaminants, butyltins, and metals in mussels from the Estuary of Bilbao. *Arch. Environ. Contam. Toxicol.* 2010, 59, 244–254. [CrossRef]

24. Viñas, L.; Pérez-Fernández, B.; Soriano, J.A.; López, M.; Bargiela, J.; Alves, I. Limpet (*Patella sp.*) as a biomonitor for organic pollutants. A proxy for mussel? *Mar. Pollut. Bull.* 2018, 133, 271–280. [CrossRef]

25. Qu, Y.; Zhang, T.; Zhang, R.; Wang, X.; Zhang, Q.; Wang, Q.; Dong, Z.; Zhao, J. Integrative assessment of biomarker responses in *Mytilus galloprovincialis* exposed to seawater acidification and copper ions. *Sci. Total Environ.* 2022, 851, 158146. [CrossRef]

26. Ghosh, D.; Ghosh, A.; Bhadury, P. Arsenic through aquatic trophic levels: Effects, transformations and biomagnification—A concise review. *Geosci. Lett.* 2022, 9, 20. [CrossRef]
27. Yang, H.; Lu, G.; Yan, Z.; Liu, J.; Dong, H.; Bao, X.; Zhang, X.; Sun, Y. Residues, bioaccumulation and trophic transfer of pharmaceuticals and personal care products in highly urbanized rivers affected by water diversion. *J. Hazard. Mater.* 2020, 391, 122245. [CrossRef] [PubMed]

28. Tang, J.; Wang, S.; Tai, Y.; Tan, N.F.; Su, L.; Shi, Y.; Luo, B.; Tao, R.; Yang, Y.; Zheng, X. Evaluation of factors influencing annual occurrence, bioaccumulation and biomagnification of antibiotics in planktonic food webs of a large subtropical river in South China. *Water Res.* 2020, 170, 115302. [CrossRef] [PubMed]

29. Yan, N.; Long, S.; Xiong, K.; Zhang, T. Antibiotic bioaccumulation in zooplankton from the Yelang Lake Reservoir of Anshun City, Southwest China. *Pol. J. Environ. Stud.* 2022, 31, 2367–2380. [CrossRef]

30. Moreira, F.W.A.; Leite, M.G.P.; Fijaco, M.A.G.; Mendoça, F.P.C.; Campos, L.P.; Eskinazi-Sant’Anna, E.M. Assessing the impacts of mining activities on zooplankton functional diversity. *Acta Limin. Bras.* 2016, 28, 107. [CrossRef]

31. Moreno-González, R.; Rodríguez-Mozaz, S.; Huerta, B.; Barceló, D. Multi-residue method for the analysis of pharmaceuticals and some of their metabolites in bivalves. *Environ. Sci. Technol.* 2013, 47, 6646–6655. [CrossRef] [PubMed]

32. Xu, X.; Pan, B.; Shu, F.; Chen, X.; Xu, N.; Ni, J. Bioaccumulation of 35 metal(loids) in organisms of a freshwater mussel (*Hyriopsis cumingii*) and environmental implications in Poyang Lake, China. *Chemosphere* 2022, 307, 136150. [CrossRef]

33. Sharma, J.; Behera, P.K. Abundance & distribution of aquatic macro-invertebrate families of river Ganga and correlation with environmental parameters. *Environ. Monit. Assess.* 2022, 194, 546. [CrossRef]

34. Grabicová, K.; Stanová, A.V.; Svěcová, H.; Nováková, P.; Kodes, V.; Leontovycová, D.; Brooks, B.W.; Grabic, R. Invertebrates differentially bioaccumulate pharmaceuticals: Implications for routine biomonitoring. *Environ. Pollut.* 2022, 309, 119715. [CrossRef]

35. Álvarez-Muñoz, D.; Huerta, B.; Fernandez-Tejedor, M.; Rodriguez-Mozaz, S.; Barceló, D. Multi-residue method for the analysis of pharmaceuticals and some of their metabolites in bivalves. *Talanta* 2015, 136, 174–182. [CrossRef]

36. Burket, S.R.; Sapozhnikova, Y.; Zheng, J.S.; Chung, S.S.; Brooks, B.W. At the Intersection of urbanization, water, and food security: Determination of select contaminants of emerging concern in mussels and oysters from Hong Kong. *J. Agric. Food Chem.* 2018, 66, 5089–5091. [CrossRef]

37. Ojemaye, C.Y.; Petrik, L. Pharmaceuticals and personal care products in the marine environment around False Bay, Cape Town, South Africa: Occurrence and risk assessment study. *Environ. Toxicol. Chem.* 2022, 41, 614–634. [CrossRef] [PubMed]

38. Zhou, L.-J.; Wang, W.-X.; Lv, Y.-J.; Mao, Z.-G.; Chen, C.; Wu, Q.L. Tissue concentrations, trophic transfer and human risks of pharmaceuticals and some of their metabolites in bivalves. *Molecules* 2022, 27, 7569. [CrossRef] [PubMed]

39. Zhou, L.-J.; Wang, W.-X.; Lv, Y.-J.; Mao, Z.-G.; Chen, C.; Wu, Q.L. Tissue concentrations, trophic transfer and human risks of pharmaceuticals and some of their metabolites in bivalves. *Molecules* 2022, 27, 7569. [CrossRef] [PubMed]

40. Hart, S.J.; Rountree, C.R.; Barceló, D.; Garbisu, C. Potential human dietary exposure to pharmaceuticals and personal care products in highly urbanized rivers affected by water diversion. *J. Hazard. Mater.* 2020, 307, 149744. [CrossRef] [PubMed]

41. Fonseca, V.F.; Duarte, A.; Freitas, A.; Vila Pouca, A.S.; Barbosa, J.; Gillanders, B.M.; Reis-Santos, P. Environmental risk assessment and bioaccumulation of pharmaceuticals in a subtropical marine food web. *Sci. Total Environ.* 2021, 783, 147021. [CrossRef]

42. Shaib, Z.; Liu, S.; Xu, X.-R.; Liu, S.-S.; Zhou, G.-J.; Sun, K.-F.; Zhao, J.-L.; Ying, G.-G. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure. *Mar. Pollut. Bull.* 2015, 90, 181–187. [CrossRef]

43. Zheng, W.; Yoo, K.-H.; Choi, J.-M.; Park, D.-H.; Kim, S.-K.; Kang, Y.-S.; El-Aty, A.M.A.; Hacimüftüoğlu, A.; Wang, J.; Shim, J.-H.; et al. Residual detection of naproxen, methyltestosterone and 17α-hydroxyprogesterone caproate in aquatic products by simple liquid-liquid extraction method coupled with liquid Chromatography-tandem mass spectrometry. *Biomol. Chromatogr.* 2019, 33, e4396. [CrossRef] [PubMed]

44. Ruan, Y.; Lin, H.; Zhang, X.; Wu, R.; Zhang, K.; Leung, K.M.Y.; Lam, J.C.W.; Lam, P.K.S. Enantiomer-specific bioaccumulation and distribution of chiral pharmaceuticals in water and biota of urban lowland rivers. *Sci. Total Environ.* 2022, 828, 154303. [CrossRef] [PubMed]

45. Mastrogiacomo, P.; Valdés, M.E.; Eissa, B.; Ossana, N.A.; Barceló, D.; Sabater, S.; Rodriguez-Mozaz, S.; Giorgi, A.D.N. Occurrence and accumulation of pharmaceutical products in water and biota of urban lowland rivers. *Sci. Total Environ.* 2020, 783, 125337. [CrossRef] [PubMed]

46. Pasha, R.; Dzingeleviciene, R.; Abbasi, S.; Szulitka-Mlyniska, M.; Buszewski, B. Determination of 15 pharmaceutical residues in fish and shrimp tissues by high-performance liquid chromatography-tandem mass spectrometry. *Environ. Monit. Assess.* 2022, 194, 325. [CrossRef] [PubMed]

47. Mello, F.V.; Cunha, S.C.; Fogaça, F.H.S.; Alonso, M.B.; Torres, J.P.M.; Fernandes, J.O. Occurrence of pharmaceuticals in seafood from two Brazilian coastal areas: Implication for human risk assessment. *Sci. Total Environ.* 2022, 803, 149744. [CrossRef] [PubMed]

48. Moreno-González, R.; Rodríguez-Mozaz, S.; Huerta, B.; Barceló, D.; León, V.M. Do pharmaceuticals bioaccumulate in marine molluscs and fish from a coastal lagoon? *Environ. Res.* 2016, 146, 282–298. [CrossRef] [PubMed]
49. Ojemaye, C.Y.; Petrik, L. Occurrences, levels and risk assessment studies of emerging pollutants (pharmaceuticals, perfluoroalkyl and endocrine disrupting compounds) in fish samples from Kalk Bay harbour, South Africa. *Environ. Pollut.* 2019, 252, 562–572. [CrossRef]

50. Tanoue, R.; Nozaki, K.; Nomiyama, K.; Kunisue, T.; Tanabe, S. Rapid analysis of 65 pharmaceuticals and 7 personal care products in plasma and whole-body tissue samples of fish using acidic extraction, zirconia-coated silica cleanup, and liquid Chromatography-tandem mass spectrometry. *J. Chromatogr. A* 2020, 1631, 461586. [CrossRef]

51. Vitale, D.; Picó, Y.; Álvarez-Ruiz, R. Determination of organic pollutants in *Anguilla anguilla* by liquid Chromatography coupled with tandem mass spectrometry (LC-MS/MS). *MethodsX* 2021, 8, 101342. [CrossRef]

52. Ali, A.M.; Thorsen-Ronning, H.; Sydnes, L.K.; Alarif, W.M.; Kallenborn, R.; Al-Lihaibi, S.S. Detection of PPCPs in marine organisms from contaminated coastal waters of the Red Sea. *Sci. Total Environ.* 2018, 621, 654–662. [CrossRef]

53. Rojo, M.; Álvarez-Muñoz, D.; Dománico, A.; Foti, R.; Rodriguez-Mozaz, S.; Barceló, D.; Carriquiborde, P. Human pharmaceuticals in three major fish species from the Uruguay River (South America) with different feeding habits. *Environ. Pollut.* 2019, 252, 146–154. [CrossRef]

54. Ruhi, A.; Acuña, V.; Barceló, D.; Huerta, B.; Mor, J.-R.; Rodriguez-Mozaz, S.; Sabater, S. Bioaccumulation and trophic magnification of pharmaceuticals endocrine disruptors in a Mediterranean river food web. *Sci. Total Environ.* 2016, 540, 250–259. [CrossRef]

55. Wilkinson, J.L.; Hooda, P.S.; Swinden, J.; Barker, J.; Barton, S. Spatial (bio)accumulation of pharmaceuticals, illicit drugs, plasticisers, perfluorinated compounds and metabolites in river sediment, aquatic plants and benthic organisms. *Environ. Pollut.* 2018, 234, 864–875. [CrossRef]

56. Xie, Z.; Lu, G.; Yan, Z.; Liu, J.; Wang, P.; Wang, Y. Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake. *Environ. Pollut.* 2017, 222, 356–366. [CrossRef] [PubMed]

57. Ding, D.; Lu, G.; Liu, J.; Yang, H.; Li, Y. Uptake, depuration and bioconcentration of two pharmaceuticals, roxithromycin and propranolol, in *Daphnia magna*. *Ecotoxicol. Environ. Saf.* 2016, 126, 85–93. [CrossRef] [PubMed]

58. Kim, H.Y.; Jeon, J.; Hollender, J.; Yu, S.; Kim, S.D. Aqueous and dietary bioaccumulation of antibiotic tetracycline in *D. magna* and its multigenerational transfer. *J. Hazard. Mater.* 2014, 279, 428–435. [CrossRef] [PubMed]

59. Fu, Q.; Meyer, C.; Patrick, M.; Kosfeld, V.; Rüdel, H.; Koschorreck, J.; Hollender, J. Comprehensive screening of polar emerging organic contaminants including PFASs and evaluation of the trophic transfer behavior in a freshwater food web. *Water Res.* 2022, 218, 118514. [CrossRef] [PubMed]

60. Danielle, G.; Fieu, M.; Joachim, S.; James-Casas, A.; Andres, S.; Baudoin, P.; Bonnard, M.; Bonnard, I.; Geffard, A.; Vulliet, E. Development of a multi-residue analysis of diclofenac and some transformation products in bivalves using QuEChERS extraction and liquid Chromatography-tandem mass spectrometry. Application to samples from mesocosm studies. *Talanta* 2016, 155, 1–7. [CrossRef]

61. López-García, E.; Postigo, C.; López de Alda, M. Psychotropic substances in mussels: Analysis and occurrence assessment. *Mar. Pollut. Bull.* 2019, 146, 985–992. [CrossRef]

62. McEniff, G.; Barron, L.; Kelleher, B.; Paull, B.; Quinn, B. The determination of pharmaceutical residues in cooked and uncooked marine bivalves using pressurized liquid extraction, solid-phase extraction and liquid Chromatography-tandem mass spectrometry. *Anal. Bioanal. Chem.* 2013, 405, 909–921. [CrossRef]

63. Martínez-Bueno, M.J.; Boillot, C.; Fenet, H.; Chiron, S.; Casellas, C.; Gómez, E. Fast and easy extraction combined with high-resolution-mass spectrometry for residue analysis of two anticonvulsants and their transformation products in marine mussels. *J. Chromatogr. A* 2013, 1305, 27–34. [CrossRef]

64. Álvarez-Muñoz, D.; Rodriguez-Mozaz, S.; Jacobs, S.; Serra-Compte, A.; Cáceres, N.; Sioen, I.; Verbeke, W.; Barbosa, V.; Ferrari, F.; Fernández-Tejedor, M.; et al. Pharmaceuticals and endocrine disruptors in raw and cooked seafood from European market: Concentrations and human exposure levels. *Environ. Int.* 2018, 119, 570–581. [CrossRef]

65. Mijangos, L.; Ziarrusta, H.; Zabela, I.; Usobiaga, A.; Olivares, M.; Zuñiga, O.; Ezpebarria, N.; Prieto, A. Multiresidue analytical method for the determination of 41 multiclass organic pollutants in mussel and fish tissues and biofluids by liquid Chromatography combined to tandem mass spectrometry. *Anal. Bioanal. Chem.* 2019, 411, 493–506. [CrossRef]

66. Núñez, M.; Borruel, F.; Focurull, E.; Fontanals, N. Pressurized liquid extraction followed by liquid chromatography with tandem mass spectrometry to determine pharmaceuticals in mussels. *J. Sep. Sci.* 2016, 39, 741–747. [CrossRef] [PubMed]

67. Rodríguez, J.; Albino, S.; Silva, S.; Cravo, A.; Cardoso, V.V.; Benoïel, M.J.; Almeida, C.M.M. Development of a multiresidue method for the determination of 24 pharmaceuticals in clams by QuEChERS and liquid Chromatography-triple quadrupole tandem mass spectrometry. *Food Anal. Methods* 2019, 12, 838–851. [CrossRef]

68. Gao, Y.; Wang, S.; Zhang, N.; Xum, X.; Bao, T. Novel solid-phase extraction filter based on a zirconium meta-organic framework for determination of non-steroidal anti-inflammatory drugs residues. *J. Chromatogr. A* 2021, 1652, 462349. [CrossRef] [PubMed]

69. Miossec, C.; Mille, T.; Lanceleur, L.; Monperrus, M. Simultaneous determination of 42 pharmaceuticals in seafood samples by solvent extraction coupled to liquid Chromatography-tandem mass spectrometry. *Food Chem.* 2020, 322, 126765. [CrossRef]

70. Miller, T.H.; McEniff, G.L.; Brown, R.J.; Owen, S.F.; Bury, N.R.; Barron, L.P. Pharmaceuticals in the freshwater invertebrate, *Gammarus pulex*, determined using pulsed liquid extraction, solid phase extraction and liquid Chromatography-tandem mass spectrometry. *Sci. Total Environ.* 2015, 511, 153–160. [CrossRef]

71. Rizzi, C.; Seveso, D.; Galli, P.; Villa, S. First record of emerging contaminants in sponges of an inhabited island in the Maldives. *Mar. Pollut. Bull.* 2020, 156, 111273. [CrossRef]
96. Clarke, W. Mass spectrometry in the clinical laboratory: Determining the need and avoiding pitfalls. In *Mass Spectrometry in the Clinical Laboratory*, 1st ed.; Nair, H., Clarke, W., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 1–15. [CrossRef]

97. González-Peña, O.I.; López-Zavala, M.A.; Cabral-Ruelas, H. Pharmaceuticals market, consumption, trends and disease incidence are not driving the pharmaceutical research on water and wastewater. *Int. J. Environ. Res. Public Health* **2021**, *18*, 2532. [CrossRef]

98. Świacka, K.; Maculewicz, J.; Kowalska, D.; Caban, M.; Smolarz, K.; Świeżak, J. Presence of pharmaceuticals and their metabolites in wild-living aquatic organisms—Current state of knowledge. *J. Hazard. Mater.* **2022**, *424*, 127350. [CrossRef]