Self-Assembly in Mixtures of Polymers and Small Associating Molecules

Haim Diamant and David Andelman.
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv 69978, Israel
(June 13, 2000)

The interaction between a flexible polymer in a good solvent and smaller associating solute molecules such as amphiphiles (surfactants) is considered theoretically. Attractive correlations, induced in the polymer because of the interaction, compete with intra-chain repulsion and eventually drive a joint self-assembly of the two species, accompanied by partial collapse of the chain. Results of the analysis are found to be in good agreement with experiments on the onset of self-assembly in diverse polymer–surfactant systems. The threshold concentration for self-assembly in the mixed system (critical aggregation concentration, \(\text{cac} \)) is always lower than the one in the polymer-free solution (critical micelle concentration, \(\text{cmc} \)). Several self-assembly regimes are distinguished, depending on the effective interaction between the two species. For strong interaction, corresponding experimentally to oppositely charged species, the \(\text{cac} \) is much lower than the \(\text{cmc} \). It increases with ionic strength and depends only weakly on polymer charge. For weak interaction, the \(\text{cac} \) is lower but comparable to the \(\text{cmc} \), and the two are roughly proportional over a wide range of \(\text{cmc} \) values.

Association of small molecules with amphiphilic polymers exhibiting intra-chain aggregation (polysoaps) is gradual, having no sharp onset.

1. INTRODUCTION

Aqueous solutions containing polymers and smaller solute molecules are common in biological systems and industrial applications. In many cases the small molecules are amphiphilic (surfactants) and may self-assemble with the polymer chains into joint aggregates. Such systems, synthetic as well as biological, have been the subject of extensive research in the past few decades. The possibility to achieve polymer–surfactant aggregation using very low surfactant concentration offers a delicate control over the properties of the solution, a feature being used in numerous applications.

The current article presents a theory for the onset of self-assembly in such mixed systems. The theory considers the various interactions in a very general way, not taking into account microscopic details of the small molecules or the polymer. Indeed, the particular structure of a surfactant may affect the details of its aggregation. Nevertheless, we suggest that the onset of joint polymer–surfactant self-assembly is mainly determined by simpler, more general considerations.

Self-assembly of polymer–surfactant complexes usually starts at a well-defined surfactant concentration, the ‘critical aggregation concentration’ (\(\text{cac} \)). One of the most consistent experimental observations in polymer–surfactant systems is that the \(\text{cac} \) is found to be lower than the ‘critical micelle concentration’ (\(\text{cmc} \)) of the polymer-free surfactant solution,

\[
\varphi_{\text{cac}} < \varphi_{\text{cmc}}.
\]

Consequently, polymer–surfactant systems are commonly divided into two categories: (i) systems whose \(\text{cac} \) is much lower than the \(\text{cmc} \), \(\varphi_{\text{cac}} \ll \varphi_{\text{cmc}} \); (ii) systems where the \(\text{cac} \) is lower than, but comparable to the \(\text{cmc} \), \(\varphi_{\text{cac}} \lesssim \varphi_{\text{cmc}} \). Experimentally, the former case corresponds to systems containing a polyelectrolyte and an oppositely charged ionic surfactant, e.g., polyacrylic acid (PAA) and dodecyltrimethylammonium bromide (DTAB). The strong electrostatic attraction between the two species can cause the \(\text{cac} \) in such systems to be several orders of magnitude lower than the \(\text{cmc} \). The latter case usually corresponds to systems containing a neutral polymer and an ionic surfactant, e.g., polyethylene oxide (PEO) and sodium dodecylsulfate (SDS). Somewhat less common are systems containing a polyelectrolyte and a nonionic surfactant, which can be included in the second category as their \(\text{cac} \) is comparable to the \(\text{cmc} \). Systems where both species exhibit a very weak effect.

The \(\text{cac} \) is usually interpreted in terms of the strength of interaction, or affinity, between the two species. In analogy to regular micellization, \(\log(\varphi_{\text{cac}}) \) is related to the free energy of transfer (in units of \(k_B T \)) of a molecule from the aqueous solution to a joint aggregate. Evidently, the affinity should be much stronger for oppositely charged...
species (the first category above) than for the other cases, resulting in a very low cac in those systems. The difficulty, however, is to correctly identify the various contributions to this free energy. Apart from the bare interactions among the various molecules, there may be additional contributions from conformational changes of the polymer induced by the joint self-assembly. Therefore, construction of a detailed, reliable molecular model for this complex system is a complicated task.

Several theories have been presented for polymer–surfactant aggregation. Most of the models attempt to add the polymer as another ingredient to the already-established thermodynamic theory of micellization. These models are usually applied to the case of neutral polymers. The prediction of \(\varphi_{\text{cac}} < \varphi_{\text{cmc}} \) does not arise naturally from the models but depends on the choice of parameters. Other models, inspired by the Zimm-Bragg theory of coil–helix transition, treat the bound surfactant as an adsorbed one-dimensional lattice gas. Using two fitting parameters, for the affinity between the two species and for ‘binding cooperativity’, they account for binding isotherms in polyelectrolyte–oppositely charged surfactant solutions. Additional models for polyelectrolyte–ionic surfactant systems attempt to calculate the interaction between the two species focusing on electrostatics and counterion-condensation effects.

The models mentioned above do not explicitly consider internal features of the polymer chain. This approach may be justified for rigid polymers such as DNA or strong polyelectrolytes at low ionic strength, where electrostatic interactions are not screened. It is somewhat more questionable in view of the strong conformational changes observed in flexible polymers upon self-assembly. In fact, most models use various interaction parameters to fit experimental data, which may implicitly contain conformational effects (e.g., the cooperativity parameter in one-dimensional models, whose physical origin is unspecified).

Two recent works have treated the polymer chains in more detail, but in a different context. Both assume that spherical surfactant micelles have already bound to the polymer and try to study the additional effect of the adsorbed chain. In another work a detailed molecular thermodynamic theory of polymer–surfactant complexes was presented. This model applies to neutral polymers and contains several molecular parameters.

The present work takes a different approach towards the joint self-assembly of polymers and small solute molecules such as surfactants. Instead of starting from a model of surfactant micellization and trying to add the polymer as a further complication, we rather focus on flexible polymers in solution and study the effect of small associating molecules, treated as impurities, on the chain statistics. Unlike surfactant micelles, a flexible polymer can be treated as a thermodynamic, large system. Hence, if the polymer undergoes a significant change of conformation at the onset of self-assembly, then a simple phenomenological approach might be more successful than in pure surfactant solutions. We thus conjecture that in a mixed system of flexible polymers and small molecules the cac is associated with a local instability (partial collapse) of the polymer chain. The instability occurs when attractive correlations induced by the interaction between the species overcome the intrinsic intra-chain repulsion. This description is reminiscent of de Gennes’ and Brochard’s treatment of a polymer in a binary mixture of good solvents close to the demixing critical point. Similar to the latter scenario, the polymer studied in the current work is predicted to undergo partial collapse at the cac, which marks the onset of association. The simple criterion of partial collapse leads to several interesting predictions which seem to be well supported by experiments. Furthermore, it allows us to distinguish and explain certain common, ‘universal’ features in the vast experimental literature which has accumulated on polymer–surfactant systems.

The theory presented here is phenomenological in nature and does not consider molecular or structural details. Hence, on one hand, its results are fairly general, relying on a single requirement — that the polymer be flexible enough for its local conformation to play a significant role in the self-assembly. (This assumption is quantified in Section 11.) Unlike detailed molecular models, the number of parameters is reduced to three: one accounting for the affinity between the two species \((\varphi) \), another for intra-chain repulsion \((\varphi) \), and the third is the cac of the polymer-free solution, \((\varphi_{\text{cmc}}) \). On the other hand, the theory is restricted to the onset of association \((\text{cac}) \) and its vicinity. Since we are not interested in the micellization itself, we treat the surfactant solution, as it approaches the \(\text{cmc} \), as a dilute solution of small associating molecules approaching phase separation. The theory cannot provide, therefore, a reliable detailed description of aggregation. More molecular approaches can be found in refs. Nevertheless, it is worth mentioning that models of a simpler, more general nature were successfully employed in the past for describing the interaction of polymers with surfactant monolayers. The free energy of the polymer solution is assumed to be characterized by a single interaction parameter \((2\text{nd virial coefficient}) \). The theory is thus applicable to a dilute as well as semi-dilute polymer regime. Issues of morphology, phase behavior and rheology, especially in semi-dilute and concentrated polymer–surfactant systems, are very interesting and important, but lie outside the scope of the current work.

The structure of the article is as follows. In Section 1 a simple thermodynamic model for the onset of self-assembly in the mixed system is presented. The main results of this model, as given in Section 13, can be divided into two limiting cases, corresponding to strong or weak effective interaction between the two species. In Section 11 we present a more refined model, using a scaling approach to treat the partial collapse of the polymer in more detail. We
qualitatively discuss in Section IV the special case of amphiphilic polymers and polysoaps, which provides experimental support for our assumptions. Finally, in Section III we present some conclusions and future directions. Throughout the paper we compare our results with available experiments whenever possible, and stress points where experimental support is still required. In order to make the central results as clear as possible, we have put most of the technical calculations in two appendices. Appendix A contains a detailed statistical-mechanical calculation, which is used to verify the general results of Section II while allowing for their systematic improvement. Appendix B presents the details of the scaling calculation leading to the results of Section II.

II. THERMODYNAMIC APPROACH

A. The Model

Consider a solution of polymer and smaller solute molecules whose local concentrations are denoted by \(c \) and \(\varphi \), respectively. The free energy density can be divided into three terms accounting for the polymer contribution, the small solute one, and the coupling between the two,

\[
f(c, \varphi) = f_p(c) + f_s(\varphi) + f_{ps}(c, \varphi).
\]

(All energies are expressed hereafter in units of the thermal energy \(k_B T \), i.e., \(f \) has the dimensions of inverse volume.) We treat the repulsion between monomers of the chains using a 2nd-virial term,

\[
f_p = f_p^0 + \frac{1}{2} wc^2,
\]

where \(f_p^0 \) is the free energy of an ideal polymer solution and \(v > 0 \) is the 2nd virial coefficient (having dimensions of volume). This treatment is valid for dilute, as well as semi-dilute polymer solutions. Since the concentration of both species is low and we are interested only in the onset of association, the leading quadratic term in the expansion of \(f_{ps}(c, \varphi) \) suffices,

\[
f_{ps} = -wc\varphi,
\]

where \(w \equiv -\partial^2 f_{ps}/\partial c \partial \varphi \) is a parameter characterizing the interaction strength and having dimensions of volume. In fact, as will be shown below, this general model is sufficient for obtaining our main qualitative results. However, for the sake of clarity, let us specify an expression for the small solute contribution as well:

\[
f_s(\varphi) = \varphi(\log \varphi - 1) - \frac{1}{2} u\varphi^2 - \mu\varphi.
\]

The first term in this expression accounts for the ideal entropy of mixing of the small molecules, the second describes short-range attraction, and the third is due to a contact with a reservoir of small molecules having a chemical potential \(\mu \).

In the absence of polymer the small solute concentration has a bulk value, \(\varphi = \varphi_b \), corresponding to the minimum of \(f_s \). Consider a small perturbation in local concentration, \(\varphi = \varphi_b + \delta \varphi \). Assuming that the solution is both below its \(cac \) and \(cme \), \(f \) can be expanded in small \(\delta \varphi \) to yield

\[
f = f_p(c) + f_s(\varphi_b) - wc(\varphi_b + \delta \varphi) + \frac{1}{2} f_s''(\varphi_b)\delta \varphi^2,
\]

where \(f_s''(\varphi) \equiv \partial^2 f_s/\partial \varphi^2 \). In this work we identify the \(cme \) as the value of \(\varphi \) at which, for \(c = 0 \), the solution becomes unstable to small perturbations, i.e.,

\[
f_s''(\varphi_{cme}) = 0.
\]

Equation II.6 is essentially a (spinodal) phase separation condition. In practice, due to the particular structure of surfactants and the resulting finite-size effects, the \(cme \) does not correspond to a true phase transition, and \(f_s''(\varphi_{cme}) \) is not strictly zero. In the case of aggregation into finite micelles of typical aggregation number \(n \), a rough estimate for \(\phi_{cme} f_{ps}'(\varphi_{cme}) \) is given by \(\varphi_1/\varphi_n \), the volume-fraction ratio of single molecules and molecules participating in aggregates. This gives \(\varphi_{cme} f_{ps}'(\varphi_{cme}) \sim n^{-1} e^{-\epsilon} \), where \(\epsilon \) is the energy per molecule (in units of \(k_B T \)) gained by aggregation.\[12\] For typical values of \(n \sim 100 \) and \(\epsilon \) of a few \(k_B T \), this is a small, yet finite number. Since we are
interested in the onset of the joint self-assembly (which is subsequently found to occur at a lower concentration than the polymer-free surfactant micellization), we allow ourselves to ignore these delicate considerations. Using eq II.6, we thus assume that for \(\varphi \leq \varphi_{\text{cac}} \) specific features of the surfactant can be incorporated in the phenomenological parameter \(\varphi_{\text{cmc}} \).

In the presence of the polymer, minimization of eq II.3 with respect to \(\delta \varphi \) gives

\[
f = f_p^0 + f_s(\varphi_b) - w_c \varphi_b + \frac{1}{2} \left(v - \frac{w^2}{f_s'(\varphi_b)} \right) \psi^2.
\]

The last term in \(f \) implies an effective reduction in the 2nd virial coefficient of the polymer,

\[
v_{\text{eff}} = v - v_{ps}; \quad v_{ps} \equiv \frac{w^2}{f_s'(\varphi_b)}.
\]

Thus, letting the distribution of small molecules, \(\varphi \), reach equilibrium has led to an effective attraction between chain monomers. \[1\]

The polymer will become unstable when \(v_{\text{eff}} = 0 \). At this point \(c \) is expected to increase significantly (due to contraction of chain conformation), leading to a sharp increase in \(\delta \varphi \) as well. We identify this point, therefore, as the \(\text{cac} \). Setting \(v_{\text{eff}} = 0 \) in eq II.8 and using eq II.4 for \(f_s \), we find the following expression for the cac:

\[
\varphi_{\text{cac}} = \varphi_{\text{cmc}} F \left(\frac{v}{w^2 \varphi_{\text{cmc}}} \right) < \varphi_{\text{cmc}}
\]

\[
F(x) = \frac{1}{1 + 1/x} \simeq \begin{cases}
 x - x^2 & x \ll 1 \\
 1 - 1/x & x \gg 1
\end{cases}
\]

This simple calculation demonstrates the physics governing the mixed system: the affinity between the flexible polymer and the small solute induces attractive correlations between monomers, which compete with the bare monomer-monomer repulsion. The correlations become stronger as the \(\text{cmc} \) is approached, and \(\text{they are bound to win before reaching the cmc}, \) i.e., \(\varphi_{\text{cac}} < \varphi_{\text{cmc}} \). The fact that the \(\text{cac} \) is lower than the \(\text{cmc} \) has been established by numerous experiments. \[2\]

According to the description given here, this fact is a manifestation of a general effect of equilibrated (annealed) impurities.

It is important to note that the qualitative features of expression II.3, relating the \(\text{cac} \) and \(\text{cmc} \), do not depend on the specific model taken for the small molecules, i.e., the expression for \(f_s \). In Appendix A we present a more detailed statistical-mechanical calculation, yielding eq II.3 as a first order in an expansion. Going beyond this first, mean-field approximation gives the same qualitative relation between \(\varphi_{\text{cac}} \) and \(\varphi_{\text{cmc}} \) as in eq II.3 with merely a modified function \(F \). This modified function can be written in a close form using the inverse function \(x = F^{-1}(y) \) of \(y = F(x) \):

\[
F^{-1}(y) = \frac{y(1 - y + y^2)}{(1 - y)^3}
\]

\[
F(x) \simeq \begin{cases}
 x - 2x^2 & x \ll 1 \\
 1 - 1/x^{1/3} & x \gg 1
\end{cases}
\]

Both expressions for \(F(x) \), eqs II.9 and II.10, have the same limiting behavior, i.e., \(F(x) \simeq x \) for small \(x \) and \(F(x) \simeq 1 \) for large \(x \). The two expressions differ, however, in higher orders. The difference is particularly significant in the asymptotic approach towards saturation (\(x \gg 1 \)). The mean-field calculation gives a \(x^{-1} \) dependence, whereas the improved analysis yields a much slower trend towards saturation of \(x^{-1/3} \). The difference is also evident in Figure \[3\], which shows the two results for \(F(x) \). Indeed, large values of the argument \(x \) correspond to solute concentrations approaching the \(\text{cmc} \), \(\varphi_{\text{cac}} \sim \varphi_{\text{cmc}} \), where solute-solute correlations become strong and the mean-field approximation should give poor results.

In fact, the leading asymptotic behavior of the function \(F \), relating the \(\text{cac} \) and \(\text{cmc} \), can be obtained on very general grounds, without specifying an expression for \(f_s \). To this end we use the following mathematical construction. (The uninterested reader can skip the following derivation and just recall the general result, eq II.11.) Let \(F \) be a dimensionless function, such that \(\varphi = \varphi_{\text{cmc}} F(x) \) solves the equation \(\varphi_{\text{cmc}} f_s''(\varphi) = 1/x \). (\(x \) is now merely an unspecified argument.) According to eq II.4 for \(x \to \infty \) the solution to the equation is \(\varphi = \varphi_{\text{cmc}} \). Hence we get the asymptotic behavior for small arguments, \(F(x \gg 1) \simeq 1 \). In the other limit one has \(x \to 0 \) and \(f_s''(\varphi) \to \infty \). Since \(f_s(\varphi) \) is a well-behaved function for \(\varphi > 0 \), the solution for \(\varphi \) must tend to zero. Hence \(F(x \to 0) \to 0 \). Moreover, in this limit the solution \(\varphi \to 0 \) must become independent of the fixed parameter \(\varphi_{\text{cmc}} \), which leads to the asymptotic behavior \(F(x \ll 1) \sim x \). The general expression for the \(\text{cac} \) is thus

\[
F(x) \simeq \begin{cases}
 x - 2x^2 & x \ll 1 \\
 1 - 1/x^{1/3} & x \gg 1
\end{cases}
\]
\[\varphi_{\text{cac}} = \varphi_{\text{cmc}} F\left(\frac{v}{w^2 \varphi_{\text{cmc}}} \right) < \varphi_{\text{cmc}} \]

\[F(x) \sim \begin{cases}
 x & x \ll 1 \\
 1 & x \gg 1
\end{cases} \tag{II.11} \]

B. Results

The argument \(x = v/(w^2 \varphi_{\text{cmc}}) \) in eq. \(\text{II.11} \) determines the strength of effective interaction between the polymer and the small molecules. Two limiting cases arise: (i) strong effective interaction \((x \ll 1)\), where \(\varphi_{\text{cac}} < \varphi_{\text{cmc}} \); (ii) weak interaction \((x \gg 1)\), where \(\varphi_{\text{cac}} \lesssim \varphi_{\text{cmc}} \). The two limiting behaviors, together with a third one corresponding to polysoaps (Section \[\text{III} \]), are presented in the diagram of Figure \[\text{2} \]. Note that the distinction between strong and weak interaction involves not only the bare interaction between the species, as compared to the interaction among small molecules, but also intra-chain features. In our opinion, this observation was not given proper attention by previous studies.

1. Strong Interaction

In the case of strong effective interaction between the two species, \(w^2 \gg v/\varphi_{\text{cmc}} \) (upper part of the diagram in Figure \[\text{2} \]), the attraction among the small molecules has no effect on the \(\text{cac} \) and, according to eq \[\text{II.11} \], it becomes independent of the \(\text{cmc} \),

\[\varphi_{\text{cac}} \sim v/w^2 \ll \varphi_{\text{cmc}}. \tag{II.12} \]

In practice, this case corresponds to systems containing oppositely charged species, \textit{e.g.}, a polyacid and a cationic surfactant. \[\text{II} \] Because of the strong electrostatic interactions, the \(\text{cac} \) in such systems is usually found to be two to three orders of magnitude lower than the \(\text{cmc} \). In order for the requirement of polymer flexibility to be fulfilled, the system must contain additional salt which would screen the electrostatic interactions on length scales comparable to those of the induced attractive correlations.

Both \(v \) and \(w \) are expected to be dominated in such systems by electrostatics, and, therefore, mainly depend on the polymer ionization degree, \(I \), and salt concentration, \(c_{\text{salt}} \). A polyelectrolyte solution is a complicated system by itself, exhibiting diverse behavior as function of \(I \) and \(c_{\text{salt}} \). However, two observations can generally be made: (i) the monomer–monomer parameter, \(v \), should have a stronger dependence on \(I \) than the monomer–small solute one, \(w \) (the simplest dependence would be \(v \sim I^2 \) and \(w \sim I \)); (ii) both \(v \) and \(w \) should have a similar (increasing) dependence on the Debye screening length, \(\lambda_D \sim c_{\text{salt}}^{-1/2} \), \textit{i.e.}, a similar decreasing dependence on \(c_{\text{salt}} \). Consequently, \(\varphi_{\text{cac}} \sim v/w^2 \) should increase with \(c_{\text{salt}} \) and, somewhat more surprisingly, be only weakly dependent on \(I \). A model which is focused on the bare interaction between the species would necessarily yield a \textit{strongly decreasing} dependence of \(\varphi_{\text{cac}} \) on \(I \). The weak dependence on \(I \) is a characteristic result of our approach, which takes into account intra-chain features. It stems from a competition between two effects that compensate each other: a mutual affinity effect (increasing \(I \) strengthens the attraction between the oppositely charged species), and an intra-chain effect (larger \(I \) implies stronger intra-chain repulsion). \[\text{II} \]

Apart from these rather general conclusions, we may try to reach more quantitative predictions. \[\text{III} \] The excluded-volume parameter for a flexible (weak) polyelectrolyte should roughly scale like \(v \sim I^2 \lambda_D^2 \sim I^2 c_{\text{salt}}^{-1} \). \[\text{IV} \] (This result can be simply interpreted as an electrostatic energy \(I^2/\lambda_D \) integrated over a volume \(\lambda_D^3 \).) Similarly, we write for the monomer–small solute parameter \(w \sim I c_{\text{salt}}^{-1} \). The resulting \(\text{cac} \) should scale, therefore, as

\[\varphi_{\text{cac}} \sim I^s (c_{\text{salt}})^t \quad s = 0, \quad t = 1. \tag{II.13} \]

A more detailed calculation, however, yields a different scaling and is discussed in Section \[\text{III} \] (eq \[\text{II.6} \]).

Table \[\text{I} \] summarizes various experimental results for the dependence of \(\varphi_{\text{cac}} \) on \(I \) in the presence of salt. The first six experimental systems presented in the table exhibit vanishing dependence on \(I \), the next four — an increasing dependence, and the last one — a weak decrease. The fact that most experiments found a vanishing or slightly increasing dependence of \(\varphi_{\text{cac}} \) on \(I \) clearly indicates the important role of intra-chain features in the self-assembly. If intra-chain features are disregarded, one would expect, upon increasing \(I \), a stronger attraction between the oppositely charged species and, hence, a sharp decrease in the \(\text{cac} \), \textit{i.e.}, an opposite trend to the one observed in Table \[\text{I} \].
As mentioned above, the solution must contain enough salt for our description to hold. Electrostatic interactions should be screened on length scales comparable to the correlation length in the surfactant solution, i.e., the Debye screening length, λ_D, should be smaller than a few nanometers. For monovalent salt, it means that the salt concentration should exceed about 10 mM. This might explain the inconsistent trends observed in systems containing only about this amount of salt (Table I).

Figure 3 shows experimental results for the dependence of φ_{cac} on c_{salt}, taken from eleven different experiments with different mixtures of polymers, surfactants and mono-valent salts. All systems exhibit an increasing dependence on c_{salt}, in qualitative agreement with our finding. Previous works focused on small differences in the slopes of $\log(\varphi_{\text{cac}})$ vs. $\log c_{\text{salt}}$ for different systems, attributing them to different ionization degrees of the charged aggregates. While such effects are probably present, we would rather like to draw the attention to the striking uniformity of the slopes — all of the graphs in Figure 3, representing eleven different polymer-surfactant systems, have fitted slopes in the narrow range of 0.68–0.77, namely $\varphi_{\text{cac}} \sim (c_{\text{salt}})^t$ with $t \approx 0.68–0.77$. This uniformity was not pointed out before. It might indicate that specific molecular details are not essential to determining the onset of self-assembly, as suggested here. Quantitatively, the observed power law disagrees with the exponent $t = 1$ in eq II.13. We return to this point in Section III.

It is important to note again that our results hold for flexible polymers only. A different behavior as function of c_{salt} is observed for stiff polymers such as DNA or proteins. Similarly, the cac in salt-free solutions of strongly charged polyelectrolytes, which cannot be regarded as flexible chains, depends sensitively on I. 54

2. Weak Interaction

In the other limiting case of eq II.11, $w^2 \ll v/\varphi_{\text{cmc}}$ (lower part of the diagram in Figure 2), the effective interaction between the polymer and small molecules is weak and the cac and cmc become comparable (yet still $\varphi_{\text{cac}} < \varphi_{\text{cmc}}$),

$$\varphi_{\text{cac}} = A\varphi_{\text{cmc}},$$

where $A = F[v/(w^2\varphi_{\text{cmc}})] \lesssim 1$ can be considered essentially as a prefactor which is not very sensitive to changes in v, w or φ_{cmc} since $F(x)$ is close to saturation; cf. eq II.11. Experimentally, this weak-interaction limit applies to systems where at least one of the species is uncharged, e.g., neutral polymers interacting with ionic surfactants or polyelectrolytes interacting with nonionic surfactants. The cac is expected to depend in this case on molecular details. However, most of this complicated dependence is incorporated in φ_{cmc} itself. In other words, changing various parameters (e.g., ionic strength) may lead to considerable changes in both the cmc and cac; yet, according to eq II.14, their ratio is expected to remain roughly constant. We note again that the model is not presumed to properly account for the cmc itself. It is expected, however, to correctly capture the relation between the cac and cmc, due to the particular behavior of the polymer at the cac.

The simple prediction given in eq II.14 is verified in various experiments, as summarized in Table I. In each of the four experimental systems presented in Table I, the ratio $\varphi_{\text{cac}}/\varphi_{\text{cmc}}$ remains roughly constant, sometimes over a wide range of cmc values. 55

III. SCALING APPROACH

A. The Model

The treatment given in Section II for the onset of self-assembly is not accurate enough and should be regarded as a first step in a more rigorous calculation. Its description of the cac resembles a ‘shifted’ θ collapse — a sharp transition of polymer conformation occurring when the 2nd virial coefficient changes sign. In practice, however, flexible polymers do not exhibit a sharp coil-to-globule collapse at the cac. Their association with small surfactant molecules exhibits a steep, albeit continuous increase at the cac, the finite slope being associated with the ‘binding cooperativity’. 56

The difference between a θ point and the cac lies in the different ranges of competing interactions. In a regular θ point the competing interactions (between monomers and between monomers and solvent molecules) have a similar short range. This leads to a sharp conformational collapse which is stabilized by three-body interactions (3rd virial coefficient term). By contrast, in the system discussed here the strong, short-range repulsion between monomers is overcome by weaker, yet longer-range attractive correlations. These attractive correlations are induced by the small associating molecules interacting with the polymer, as has been found in Section II. As a result of the competition between interactions of different ranges, the polymer undergoes a more moderate partial collapse into sub-units.
self-consistency condition is the correlation length in the solution the chain statistics should satisfy. This self-consistency condition gives a precise definition for the requirement of polymer flexibility — on the scale of not be stretched, having $\nu = 1$.) For example, in polyelectrolyte solutions this condition sets a lower bound for salt concentration φ. Since, for very long chains, ξ is the only length scale in the problem, it must also be the typical size of a blob.

Let us consider, therefore, a chain of blobs of size ξ, each containing g statistical (Kuhn) segments, as sketched in Figure 4. If each blob contains a large number of segments, its size ξ is related to the number g by a power law,

$$\xi \sim g^\nu a^z v^{(1-z)/3},$$

where a is the length of a Kuhn segment. In the case of excluded-volume repulsion in three dimensions, the Flory argument yields $\nu = 3/5$ and $z = 2/5$. Further properties of the ‘chain of blobs’ can be studied using scaling arguments, as presented in detail in Appendix B. This calculation leads to the following relations between g, ξ and the phenomenological parameters introduced in Section II:

$$g \sim \left(\frac{v}{v_{ps}}\right)^{1/\alpha} \left(\frac{a^3}{v}\right)^{z/\alpha} \nu^{\alpha z/\alpha},$$

$$\xi \sim \left(\frac{v}{v_{ps}}\right)^{\nu/\alpha} \left(\frac{a^3}{v}\right)^{\nu z/\alpha} a^z v^{(1-z)/3},$$

$$\alpha \equiv 2 - 3\nu,$$

where $v_{ps}(\varphi)$ is the effective reduction in the 2nd virial coefficient due to the added solute (surfactant), defined in eq II.3.

B. Results

Several interesting observations arise from eq III.2. In order for the results to be consistent, g and ξ must increase with decreasing $v_{ps}(\varphi)$ so that the entire chain should reduce to a single blob for small enough φ. Hence, the self-consistency condition is

$$\alpha > 0 \iff \nu < 2/3.$$

This self-consistency condition gives a precise definition for the requirement of polymer flexibility — on the scale of the correlation length in the solution the chain statistics should satisfy $\nu < 2/3$. (In particular, the chain should not be stretched, having $\nu = 1$.) For example, in polyelectrolyte solutions this condition sets a lower bound for salt concentration, below which the chain would be too stretched on the length scale of ξ, and the partial-collapse picture described here would become invalid.

Repeating the calculation for chains embedded in d dimensions, the same result as eq III.3 is obtained, with $\alpha = 2 - d\nu$. This self-consistency condition, $\alpha > 0$, is similar to well known results for the critical behavior of disordered systems. For both equilibrated (annealed) and frozen (quenched) disorder — Fisher renormalization [54] and the Harris criterion, [55] respectively — the critical behavior is affected by impurities if $\nu < 2/d$, i.e., $\alpha > 0$. Thus, in a similar way, small solute molecules affect the conformational transition of a polymer if $\nu < 2/d$.

We stress again that the solution discussed here is not close to a critical point and, hence, the correlations induced in the polymer may be strong but their range remains finite. As a result, the blobs cannot be arbitrarily large, i.e., g and ξ are bounded by certain maximum values, g^* and ξ^*. Since ξ^* characterizes the range of correlations in the
solution of small molecules (surfactants), it can be estimated by the typical size of aggregates (micelles) formed at the cmc, i.e., typically a few nm. The value of \(g^* \), in turn, is given by the number of monomers in a blob whose size is equal to \(\xi^* \).

The onset of association in the mixed system (the cac) is expected when blobs can form, i.e., when the value of \(g \) required for partial collapse (eq III.2) becomes smaller than the threshold \(g^* \). Setting the right-hand side of eq III.2 for \(g \) equal to \(g^* \), and substituting eq II.8 for \(v_{ps} \) and the function \(F(x) \) defined in Section II, we find the following expression for the cac:

\[
\varphi_{cac} = \varphi_{cmc} F \left[\left(g^* \right)^{-\alpha} \left(\frac{a^3}{v} \right)^z \frac{v}{w^2 \varphi_{cmc}} \right]
\]

\[
F(x) \sim \begin{cases} x & x \ll 1 \\ 1 & x \gg 1 \end{cases}
\]

(III.4)

Comparison to eq II.11 shows that the less refined analysis of Section II corresponds, in fact, to complete collapse \((g = 1)\), rather than the actual partial collapse \((g = g^*)\).

The similarity to the Harris criterion persists. Suppose that we could somehow control the correlations in the solution, i.e., tune \(g^* \), while keeping the concentration of small molecules \(\varphi \) fixed (this might be achieved, for example, by changing the temperature). In such a scenario, instead of \(\varphi_{cac} \), there would be a certain value of \(g^* \) corresponding to the onset of self-assembly. For \(\varphi/\varphi_{cmc} \ll 1 \) we find from eq III.4 that this value of \(g^* \) satisfies \(g^* \sim \varphi^{-1/\alpha} \). It implies that in the absence of ‘impurities’ \((\varphi = 0)\) only complete collapse of an infinite chain can take place \((g^* \to \infty)\), whereas for finite \(\varphi \) a smoother, partial collapse into finite blobs is possible. This is analogous to Harris’ result for the broadening of a critical point by impurities, where, instead of a sharp transition at a critical temperature \(T = T_c \), there is a smooth crossover along a range of temperatures \(\Delta T \). Harris’ result for this broadening is \(\Delta T/T_c \sim \varphi^{-1/\alpha} \), where \(\varphi \ll 1 \) is, in this case, the concentration of impurities. Recall that the number of monomers serves as a conjugate variable to \(\Delta T/T_c \) in the analogy between polymers and critical phenomena, i.e., \(g^* \to \infty \) corresponds to \(\Delta T/T_c \to 0 \). The smoothing of the \(\theta \) collapse of an infinite chain into partial collapse of finite blobs, due to small solute molecules, is thus analogous to the smoothing of critical points by impurities.

Another result of the partial-collapse picture is that at the cac, since the ‘chain of blobs’ is at a \(\theta \) point, it should obey Gaussian statistics. Hence, the radius of gyration of the polymer should scale with the polymerization degree, \(N \), as \(N^{1/2} \). This prediction is still to be confirmed experimentally. Contraction of the polymer at the cac was observed in several systems. Additional support is found in light-scattering and potentiometric experiments reporting a surprisingly weak interaction between charged aggregates of ionic surfactant and neutral polymer.

In the strong-interaction regime [small argument of \(F(x) \) in eq III.4], the partial-collapse analysis leads to an expression for the cac which is different from the one given in Section II (compare to eq II.13).

\[
\varphi_{cac} \sim (g^*)^{-\alpha} \left(\frac{a^3}{v} \right)^z \frac{v}{w^2}
\]

(III.5)

In polyelectrolyte systems relevant to this regime, the Kuhn length \(a \) should be taken as the electrostatic persistence length. For flexible, weak polyelectrolytes it depends on the polymer ionization degree, \(I \), and salt concentration, \(c_{salt} \), as \(a \sim I \lambda_D \sim I c_{salt}^{-1/2} \). As in Section II, we take the simple, weak-polyelectrolyte expressions for \(v \) and \(w \):

\[
v \sim I^2 c_{salt}^{-1} \quad \text{and} \quad w \sim I c_{salt}^{-1}
\]

The last factor to account for in eq II.13 is the threshold number of monomers, \(g^* \), whose dependence on \(I \) and \(c_{salt} \) is unknown. We consider two simplified cases: (i) constant threshold for the number of monomers in a blob, \(g^* \); (ii) constant threshold for the spatial size of a blob, \(\xi^* \). In reality, neither of these cases is expected to be strictly correct. The resulting dependence of the cac on \(I \) and \(c_{salt} \) for the two simplified cases is

\[
\varphi_{cac} \sim \begin{cases} I^s (c_{salt})^t & \text{constant } g^* \\ z = 2/5, & \text{constant } \xi^* \\ z + (\alpha/3\nu)(2 + z) = 2/3, & \text{constant } \xi^* \\ 1 - z/2 = 4/5, & \text{constant } g^* \\ 1 - z/2 - (\alpha/6\nu)(2 + z) = 2/3, & \text{constant } \xi^* \end{cases}
\]

(III.6)

where we have used again the Flory values \(\nu = 3/5 \) and \(z = 2/5 \).

Comparison to eq II.13 shows that the partial-collapse analysis has led to quantitatively different results. Instead of a vanishing dependence on \(I \) we find a weakly increasing one. Both vanishing and weakly increasing dependencies were observed experimentally (Table I). As discussed in Section II these findings qualitatively support our approach,
emphasizing the significance of intra-chain interactions. In order to quantitatively determine the correct dependence on I, more experiments are needed, in particular at higher ionic strength.

Equations (II.13) and (III.6) differ also in the quantitative dependence on c_{salt}. The dependence in eq (III.6) agrees with the experimentally observed power laws (Figure 3), having exponents of $t \approx 0.68-0.77$.

IV. COMMENTS ON AMPHIPHILIC POLYMERS & POLYSOAPS

Our basic conjecture, regarding instability of polymer conformation at the onset of self-assembly, can be qualitatively supported by considering a special class of polymers — associating polymers that form intra-chain aggregates in the absence of any additional associating solute. A good example for this case are amphiphilic side-chain polymers, which consist of a hydrophilic backbone (usually a polyacid) and many hydrophobic side chains. Within a certain range of hydrophobicity, those polymers exhibit intra-chain aggregation while still remaining water-soluble, in which case they are called polysoaps. By synthesizing polymers with various side-chain lengths and controlling their ionization degree, a crossover between regular polyelectrolyte behavior and intra-chain association (polysoap) can be observed.

According to our description, a polysoap is already partially collapsed. No further instability is supposed to occur upon addition of small solute molecules and, hence, no sharp onset of self-assembly is expected. Association of small molecules to such a chain should progress gradually as function of concentration, by means of partitioning of molecules between the aqueous solution and the already-collapsed polymeric aggregates.

The association of ionic surfactants with such hydrophobically modified polyelectrolytes, poly(maleic acid-co-alkyvinyl ether), was thoroughly studied. When the polymer is in the regular polyelectrolyte regime (e.g., having short side chains of 1–4 hydrocarbon groups), a sharp, cooperative binding is observed. On the other hand, when the polymer behaves as a polysoap (having longer side chains and exhibiting intra-chain aggregation), surfactant association is found to be gradual with no apparent c_{ac}. We regard this experimental observation as a strong support for our conjecture, associating the c_{ac} with partial collapse.

Furthermore, let us consider amphiphilic polymers which still behave like polyelectrolytes but lie very close to the polysoap regime. This can be achieved, for example, by tuning their ionization degree. The effective 2nd virial coefficient of such polymers should be small, leading, according to eq (II.13) or (II.12), to low c_{ac}. The physical reason is that close to the polysoap regime the stability of the polymer is only marginal, i.e., v is close to zero even in the absence of additional solute (surfactant). Hence, a small amount of solute is sufficient to cause self-assembly. In this region of $v \geq 0$, therefore, intra-chain features, rather than the affinity between the two species, determine the onset of self-assembly. As a result, the c_{ac} can be significantly reduced without a significant change in the bare interaction, or, moreover, even if the bare affinity becomes weaker (e.g., by reducing I). There are two available experimental works demonstrating this surprising effect, as shown in Figure 5. Both experiments involved amphiphilic polyelectrolytes whose charge density was varied. Although reducing charge density must weaken the interaction with the oppositely charged surfactant, the c_{ac} was shown to decrease, the effect becoming sharp close to the polysoap limit.

The polymers discussed above have many hydrophobic groups along their backbone. Also worth mentioning are experiments involving polyelectrolytes with a very small number of hydrophobic groups. In this case too, the c_{ac} was found to significantly decrease upon increasing the degree of hydrophobic modification, implying a sensitive dependence on intra-chain features.

V. CONCLUSIONS

Focusing on the onset of self-assembly (the c_{ac}), we have presented a unified description of the interaction between a flexible polymer and small associating molecules in dilute solution. Utilizing a conjecture of partial collapse of the polymer at the onset of self-assembly, we have obtained simple predictions which seem to be well supported by experiments on diverse polymer–surfactant systems.

Apart from the bare interaction between the two species, we argue that intra-chain interactions have an important role as well. In certain cases, such as systems involving amphiphilic polymers, intra-chain features may even become the dominant factor determining the c_{ac}. The interplay between various interactions in the system (monomer–solute, monomer–monomer and solute–solute) leads to three self-assembly scenarios, which are summarized in the diagram of Figure 2. By modifying intra-chain features of the polymer, one can obtain a crossover between the various self-assembly regimes without necessarily changing the bare interaction between the two associating species. An interesting experiment would be to take a weakly interacting system (e.g., a polycacid like PAA and a nonionic surfactant like...
C_nE_m) and by modifying the polymer (e.g., changing hydrophobicity) gradually shift it to the strong-interaction regime and finally to the polyelectrolyte regime; the cac is predicted to decrease from a value close to the cmc to much lower values and finally to disappear.

In spite of the vast experimental literature available on polymer–surfactant systems, additional experiments are still required in order to verify the theory presented in this work. In particular, measurement of polymer statistics at the cac (i.e., dependence of size on polymerization degree) may provide a clear verification of the partial-collapse conjecture.

We have presented a scaling function relating the cac and cmc and demonstrated its universal features. The scaling function was explicitly calculated in a mean-field approximation and at the next level beyond mean field. It is worth noting, however, that we expect the scaling law of eqs (1.11) and (1.12) to be of more general validity than any specific model discussed here. It should be interesting, therefore, to gain more information on the scaling law, e.g., by computer simulations, and check the analytic results. We have pointed at interesting similarities between the effect of small associating molecules on polymer conformation and general results concerning the effect of impurities on critical phenomena.

One future extension of this work would be to apply the partial collapse approach to more concentrated solutions, where the onset of self-assembly involves many-chain effects and leads to interesting phase behavior and gelation. [1.1] Another direction may be to consider more complicated polymers such as polypeptides, where surfactant binding was shown to promote the formation of secondary structures. [7.2] In addition, the partial-collapse approach is valid only for flexible polymers, as demonstrated in Section 11. The interaction of stiff polymers with small associating molecules is governed by different physics, requiring a separate treatment. [7.2]

ACKNOWLEDGMENTS

We are grateful to R. Zana for many illuminating discussions. We greatly benefited from conversations and correspondence with T. Garel, B. Harris, I. Iliopoulos, L. Leibler, B. Lindman, H. Orland, L. Piculell, Y. Rabin and T. Witten. Partial support from the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities — Centers of Excellence Program, and the US–Israel Binational Science Foundation (BSF) under grant No. 98-00429, is gratefully acknowledged. HD would like to thank the Clore Foundation for financial support.

APPENDIX A: THE SCALING FUNCTION BEYOND MEAN FIELD THEORY

We present in detail a statistical-mechanical model leading to explicit expressions for the scaling function, $F(x)$, introduced in Section 11. A systematic expansion is derived, which yields the simple mean-field result, eq (1.9), as a leading order, yet allowing us to proceed beyond the mean-field approximation.

Consider P polymer chains of N monomers each, which are immersed in a dilute solution containing S small molecules (e.g., surfactants). We use the grand-canonical ensemble, where S is not fixed but controlled by a chemical potential, μ. The coordinates of the monomers are denoted by $\{x^p_n\}_{p=1..P,n=1..N}$ and those of the small solute molecules are $\{y_s\}_{s=1..S}$. Let the potentials of solute-solute, monomer-monomer, and monomer-solute interactions be, respectively, $U(r-r')$, $V(r-r')$, and $W(r-r')$. The partition function of the system is

$$Z = \frac{1}{P!} \sum_{S=0}^{\infty} \frac{1}{S!} e^{\mu S} \int \prod_{p=1}^{P} \prod_{n=1}^{N} dx^p_n \prod_{s=1}^{S} dy_s \exp(-\mathcal{H}_\text{id} - \mathcal{H}_\text{int})$$

$$\mathcal{H}_\text{int} = \frac{1}{2} \sum_{p \neq p', n \neq n'} V(x^p_n - x^{p'}_{n'}) + \frac{1}{2} \sum_{s \neq s'} U(y_s - y_{s'}) + \sum_{p} \sum_{n} \sum_{s} W(x^p_n - y_s),$$

where all energy and interaction parameters are given in units of $k_B T$, the thermal energy, and $\mathcal{H}_\text{id}\{x^p_n\}$ is the Hamiltonian of P ideal Gaussian chains. [7.4] Our aim is to trace out the degrees of freedom of the small molecules ($\{y_s\}$) and find the resulting effective interaction between monomers.

We introduce continuous densities for the two species,

$$c(r) \equiv \sum_{p,n} \delta(r - x^p_n), \quad \varphi(r) \equiv \sum_{s} \delta(r - y_s),$$

and their conjugate fields, $\gamma(r)$ and $\psi(r)$, respectively, such that
\[
\delta \left[c(r) - \sum_{p,n} \delta (r - x_n^p) \right] = \int D\gamma \exp \left\{ -i\gamma \left[c(r) - \sum_{p,n} \delta (r - x_n^p) \right] \right\}
\]

\[
\delta \left[\varphi (r) - \sum_s \delta (r - y_s) \right] = \int D\psi \exp \left\{ -i\psi \left[\varphi (r) - \sum_s \delta (r - y_s) \right] \right\}. \tag{A.2}
\]

The partition function is then rewritten as

\[
Z = \int DcD\varphi D\gamma D\psi \exp (-\mathcal{H}_{\text{cont}}) \times \zeta_p \times \zeta_s
\]

\[
\mathcal{H}_{\text{cont}} = \int dr d' \left[\frac{1}{2} c(r)V(r - r')c(r') + \frac{1}{2} \varphi (r)U(r - r')\varphi (r') + c(r)W(r - r')\varphi (r') \right]
- i \int dr [\gamma (r)c(r) + \psi (r)\varphi (r)]
\]

\[
\zeta_p = \frac{1}{P!} \int \prod_{p,n} dx_n^p \exp \left[-H_{\text{id}} - i \sum \gamma (x_n^p) \right]
\]

\[
\zeta_s = \sum_{s=1}^{\infty} \frac{1}{S!} e^{\mu S} \int \prod_{s=1}^S dy_s \exp \left[-i \sum \psi (y_s) \right] = \exp [\varphi_b \int dr \ e^{-i\psi (r)}]. \tag{A.3}
\]

In the last equation we have exploited the independence of the integral term on \(s \) and the expansion of the exponential function in power series, where \(\varphi_b \equiv e^{\mu} \) is the average solute concentration in the bulk reservoir. (We assume an ideal solution of small solute molecules in the bulk reservoir, \(i.e. \), a vanishing \(\psi \) and \(\mu = \log \varphi_b \).)

It is convenient to transform to Fourier space, \(\hat{f}_k \equiv \int dr \ e^{-ik \cdot r} f(r) \), whereupon \(\mathcal{H}_{\text{cont}} \) becomes

\[
\mathcal{H}_{\text{cont}} = \int dk \left[\frac{1}{2} \hat{\psi}_k \hat{\psi}_k + \frac{1}{2} \hat{\bar{\psi}}_k \hat{\bar{\psi}}_k + \hat{W}_k \hat{\bar{\psi}}_k + i\hat{\bar{\psi}}_k + i\hat{\bar{\psi}}_k \right].
\]

Tracing over the solute concentration profile, \(\varphi_k \), is straightforward, giving (up to a constant factor)

\[
Z = \int D\hat{c}_k D\hat{\psi}_k D\hat{\bar{\psi}}_k \exp \left\{ \int dk \left[\frac{1}{2} \hat{\bar{\psi}}_k \hat{\psi}_k + \frac{1}{2} \hat{W}_k \hat{\bar{\psi}}_k + \hat{W}_k \hat{\bar{\psi}}_k + \frac{1}{2} \hat{\bar{\psi}}_k \hat{\bar{\psi}}_k \right] \right\} \times \zeta_p \times \zeta_s. \tag{A.4}
\]

In the usual case, where the potentials of interaction, \(U(r, r') \), \(V(r, r') \) and \(W(r, r') \), depend only on \(r - r' \), they are diagonal in \(k \)-space and can be simply inverted, \(e.g. \), \(\hat{U}_k^{-1} = 1/\hat{U}_k \).

In order to trace out also the solute field, \(\psi \), we proceed by an expansion of \(\zeta_s \) in small \(\psi \). Physically, \(\psi \) accounts for interactions between the small solute molecules. The small parameter of the expansion, therefore, is the strength of solute-solute correlations in the solution. The following calculation is expected to give good results in the regime of strong polymer–solute interaction \((F \ll 1) \), and less accurate results in the limit of weak polymer–solute interaction \((F \gg 1) \), where solute–solvent correlations become important.

Gaussian Approximation

In the Gaussian approximation \(\zeta_s \) is expanded to 2nd order in \(\psi \),

\[
\zeta_s \approx \text{const} \times \exp \left[-\varphi_b \int dr (i\psi + \frac{1}{2} \psi^2) \right] = \text{const} \times \exp \left[-\varphi_b \left(\frac{1}{2} \int dk \left| \psi_k \right|^2 - i\bar{\psi}_0 \right) \right]. \tag{A.5}
\]

where \(\bar{\psi}_0 \equiv \bar{\psi}_{k=0} = \int dr \psi (r) \). Substituting this expression in eq \(\text{A.4} \) we get

\[
Z \simeq Z_2 = \int D\hat{c}_k D\hat{\psi}_k \exp (-\mathcal{H}_2) \times \zeta_p
\]

\[
\mathcal{H}_2 = \int dk \left[\frac{1}{2} (\hat{U}_k^{-1} + \varphi_b) \left| \psi_k \right|^2 - i\hat{W}_k \hat{\psi}_k \psi_k + \frac{1}{2} (\hat{V}_k - \hat{W}_k^2 \hat{U}_k^{-1}) \left| \psi_k \right|^2 + i\hat{\bar{\psi}}_k \hat{\psi}_k \right]
- i\varphi_b \bar{\psi}_0. \tag{A.6}
\]
For $c = 0$, instability with respect to small perturbations in ψ will occur if there exists k such that the coefficient of $|\psi_k|^2$ vanishes, i.e., $1/\tilde{U}_k + \varphi_b = 0$. The cmc is therefore identified as

$$\varphi_{mc} = \min_k (-1/\tilde{U}_k). \quad (A.7)$$

Tracing $\tilde{\psi}_k$ out of eq (A.6) gives (again, up to a constant factor)

$$Z_2 = \int D\tilde{c}_k D\tilde{\gamma}_k \exp \left\{ -\frac{1}{2} (\tilde{V}_k - \frac{\varphi_b \tilde{W}_k^2}{1 + \varphi_b \hat{U}_k}) |\tilde{c}_k|^2 - \frac{\varphi_b (\tilde{W}_k \tilde{c}_k + \varphi_b \tilde{U}_k/2)}{1 + \varphi_b \hat{U}_k} \delta(k) - i \tilde{\gamma}_k \tilde{c}_k \right\} \times \zeta_p. \quad (A.8)$$

Thus, as we found in Section II, the small solute induces an effective reduction in the potential between monomers, which becomes more significant as the cmc is approached,

$$\tilde{V}_k,_{eff} = \tilde{V}_k - \frac{\varphi_b \tilde{W}_k^2}{1 + \varphi_b \hat{U}_k} \quad (A.9)$$

The second term in eq (A.9) can be identified as the Fourier transform of the induced potential between monomers, as is phenomenologically introduced in Appendix B, $\tilde{\Phi}_k = -\varphi_b \tilde{W}_k^2/(1 + \varphi_b \hat{U}_k)$.

As in the previous sections, the cac is assumed to correspond to the vanishing of the effective interaction,

$$\varphi_{ca} = \min_k -\frac{1/\hat{U}_k}{1 - \tilde{W}_k^2/(\tilde{V}_k \hat{U}_k)} \quad (A.10)$$

If we neglect the finite range of the various interactions and substitute the corresponding simplified potentials (taking the monomer-monomer interaction as repulsive and the monomer-solute and solute-solute ones as attractive, i.e., $u, v, w > 0$),

$$V(r - r') = v\delta(r - r'), \quad U(r - r') = -u\delta(r - r'), \quad W(r - r') = -w\delta(r - r')$$

our mean-field result II.9 is recovered,

$$\varphi_{ca} = \varphi_{mc} F[v/(w^2 \varphi_{mc})] \quad (A.11)$$

Beyond Gaussian Approximation

We now calculate the first correction to the Gaussian approximation (i.e., mean field) considering terms of 3rd order in ψ,

$$Z \simeq Z_3 = \int DcD\gamma D\psi \exp(-\mathcal{H}_2 - \mathcal{H}_3) \times \zeta_p$$

$$\mathcal{H}_3 = -\frac{i}{6} \varphi_b \int d\mathbf{r} \psi^3 \quad (A.12)$$

To the same order of approximation we can write

$$\int d\mathbf{r} \psi^3 \simeq \int d\mathbf{r} \langle \psi^3 \rangle = \int d\mathbf{k} d\mathbf{k}' \langle \tilde{\psi}_k \tilde{\psi}_{-k} \tilde{\psi}_{k'} \rangle \quad (A.13)$$

where $\langle \cdots \rangle$ denotes a thermal average using the Gaussian approximation (\mathcal{H}_2). By means of our results for Z_2, eqs (A.6) and (A.8) we find
\[g_1(k) = \langle \hat{\psi}_k \rangle = i \frac{\tilde{W}_k \tilde{e}_k + \varphi_b \tilde{U}_k \delta(k)}{1 + \varphi_b \tilde{U}_k} \]

\[g_2(k, k') = \langle \hat{\psi}_k \hat{\psi}_{k'} \rangle = g_1(k)g_1(k') + \frac{\tilde{U}_k \delta(k - k')}{1 + \varphi_b \tilde{U}_k} \]

\[g_3(k, k', k'') = \langle \hat{\psi}_k \hat{\psi}_k \hat{\psi}_{k''} \rangle = 3g_2(k, k')g_1(k'') - 2g_1(k)g_1(k')g_1(k'') \]

\[= g_1(k)g_1(k')g_1(k'') + \frac{3\tilde{U}_k \delta(k - k')}{1 + \varphi_b \tilde{U}_k} - g_1(k''). \] \hspace{1cm} (A.14)

The expression for \(g_3 \) should now be integrated according to eq \(\text{A.13} \). However, focusing on the effective pairwise potential between monomers we look for terms which are quadratic in \(c \). There is only one such term, coming from the integration of \(g_1(k)g_1(k-k')g_1(k') \). This gives

\[\mathcal{H}_3 = -\frac{\varphi_b^2 \tilde{U}_0}{2(1 + \varphi_b \tilde{U}_0)} \int \frac{d\tilde{k}^2}{(1 + \varphi_b \tilde{U}_k)^2} |\tilde{e}_k|^2 + \text{non-quadratic terms}. \] \hspace{1cm} (A.15)

The effective potential, therefore, is

\[\tilde{V}_{k,\text{eff}} = \tilde{V}_k - \frac{\varphi_b \tilde{W}_k}{1 + \varphi_b \tilde{U}_k} \left[1 + \frac{\varphi_b \tilde{U}_0}{(1 + \varphi_b \tilde{U}_0)(1 + \varphi_b \tilde{U}_k)} \right]. \] \hspace{1cm} (A.16)

where the second term can be identified, again, as the induced potential, \(\tilde{\Phi}_k \). Substituting the simpler potentials, \(\tilde{V}_k = \nu, \tilde{U}_k = -u, \tilde{W}_k = -w \), we find the corrected scaling function (given in an implicit form),

\[\varphi_{\text{cac}} = \varphi_{\text{cmc}} F[y/(w^2 \varphi_{\text{cmc}})] \]

\[F^{-1}(y) = \frac{y(1 - y + y^3)}{(1 - y)^4} \]

\[F(x) \simeq \begin{cases} x - 2x^2 & x \ll 1 \\ 1 - 1/x^{1/3} & x \gg 1 \end{cases} \] \hspace{1cm} (A.17)

APPENDIX B: SCALING ANALYSIS OF PARTIAL COLLAPSE

Based on a scaling analysis we obtain a more detailed description of the polymer at partial collapse, leading to more accurate predictions regarding the \(\text{cac} \). (The reasoning presented in this Appendix is similar to that of ref \([28]\).)

As shown in Section \([\II]\), the interaction with the small molecules induces attractive correlations between monomers in the chain. In the following analysis, therefore, the small molecules (\(e.g., \) surfactants) do not appear explicitly, but are represented by an effective attractive potential exerted between monomers,

\[\Phi(r) = -e^2 \chi(r/\xi). \]

Following the notation of ref \([23]\), \(e^2 \) is a coupling constant, \(\xi \) a correlation length, and \(\chi(r/\xi) \) a dimensionless function which decays fast to zero for \(r > \xi \). The two microscopic parameters, \(e^2 \) and \(\xi \), are to be related to our phenomenological interaction parameter, \(w \). Assuming weak correlations, \(\Phi < 1 \) (in units of \(k_B T \)), we readily obtain for the effective excluded-volume parameter of the chain,

\[\nu_{\text{eff}} = \nu + \int dr \Phi(r) = \nu - k_1 e^2 \xi^3, \]

where \(k_1 \) is a dimensionless constant. Comparing to eq \([\II.8]\) we can identify

\[e^2 \sim \frac{\nu_{\text{ps}}}{\xi^3}. \] \hspace{1cm} (B.1)

In accordance with the model presented in Section \([\II]\), we consider a chain of blobs of size \(\xi \), each containing \(g \) statistical segments (see Figure \([\II]\). The potential of interaction between two blobs consists of a hard-core part for \(r < \xi \), and an attractive part for \(r > \xi \) coming from the integrated interaction of \(g^2 \) pairs of monomers,
The resulting excluded-volume parameter for the blobs is

\[v_{\text{blob}} = \int dr [1 - e^{-\Phi_{\text{blob}}(r)}] \approx k_2 \xi^3 - k_3 \xi^3 e^{k_4 g^2 e^2} , \]

(B.2)

where \(k_2, k_3, k_4 \) are dimensionless constants. (Note that although \(\Phi < 1 \), \(\Phi_{\text{blob}} \sim g^2 \Phi \) may be large.) The condition for partial collapse is

\[v_{\text{blob}} = 0, \]

i.e.,

\[g^2 e^2 = \log(k_2/k_3)/k_4 = \text{const}. \]

(B.3)

Two relations for \(e^2, g \) and \(\xi \) have been obtained (eqs B.1 and B.3). A third relation comes from the statistics of the polymer, i.e., the power law relating the blob size and number of segments in the blob,

\[\xi \sim g^\nu a^z v^{(1-z)/3}, \]

(B.4)

where \(a \) is the length of a Kuhn segment. From the three relations — B.1, B.3 and B.4 — we get

\[g \sim \left(\frac{v}{v_{ps}} \right)^{1/\alpha} \left(\frac{a^3}{v} \right)^{z/\alpha}, \]

\[\xi \sim \left(\frac{v}{v_{ps}} \right)^{\nu/\alpha} \left(\frac{a^3}{v} \right)^{\nu z/\alpha} a^z v^{(1-z)/3}, \]

\[\alpha \equiv 2 - 3\nu. \]

(B.5)
We have recently demonstrated how the introduction of polymeric degrees of freedom into such a one-dimensional lattice model leads to an effective ‘cooperativity’ among bound surfactants. See Diamant, H.; Andelman, D. unpublished, cond-mat/9804086.

This is always the case for annealed impurities, e.g., this analysis applies only in the case where annealing has a purely electrostatic origin. Results are different when additional interactions, e.g., hydrophobic ones, become significant, as is demonstrated in Section IV.

In view of the complexity of polyelectrolyte solutions, the following, more quantitative attempts should be considered with caution. Being aware of the limitations of such calculations, we restrict to the simplest case of very weak polyelectrolytes.

Many workers have chosen to present experimental results by means of \(c_{1/2} \) (sometimes referred to as \(1/Ku \)), the surfactant concentration at which the binding reaches half of its saturation value, rather than the \(\text{cac} \). The effect of parameters such as \(c_{\text{sat}} \) and \(I \) on \(c_{1/2} \) is a combination of two different effects: one on the \(\text{cac} \) value and another on the binding cooperativity. As a result, this presentation tends to obscure the universal nature of the phenomenon. In Table I and Figure 3 we present only \(\text{cac} \) values, i.e., the concentrations corresponding to the onset of association. Although less sharply defined, these are the values relevant to our analysis.

This value seems to be much lower in the case of multivalent salt. See Hayakawa, K.; Kwak, J. C. T. J. Phys. Chem. 1983, 87, 506.

Moreover, according to eq III.11 there should be a weak decreasing dependence of \(\varphi_{\text{cac}}/\varphi_{\text{cmc}} \) on \(\varphi_{\text{cmc}} \), which seems to agree with the data of Table I.

Interestingly, the \(\text{cac} \) was found to be accompanied by a coil-to-globule collapse in certain DNA–surfactant systems: Mel’nikov, S. M.; Sergeyev, V. G.; Yoshikawa, K. J. Am. Chem. Soc. 1995, 117, 2401. ibid., 9951.

Note that the following analysis treats a single chain and is applicable, therefore, only in the dilute polymer limit.

As the small molecules interacting with the polymer are allowed to equilibrate (i.e., they are represented by annealed degrees of freedom), the Fisher renormalization seems a priori to be the more relevant analogy. Note, however, that the scaling analysis given above has not included any explicit annealing. Minimization with respect to \(\varphi \) has already been performed in the calculation of \(v_{ps} \) in Section II (eq II.8). Once this dependence has been specified, the partial collapse analysis
regards the correlations (i.e., v_{ps}) as an effective quenched perturbation — hence the similarity to Harris’ analysis. In fact, the calculation of Appendix B is analogous to a general derivation of the Harris criterion; see Ma, S.-K. Modern Theory of Critical Phenomena; Benjamin-Cummings: Massachusetts, 1976, Chapter X. Our self-consistency condition thereby parallels the requirement that the disorder be a relevant variable in the renormalization-group sense. Indeed, Fisher’s change of exponents, $\nu \rightarrow \nu/(d\nu - 1)$, does not give relevant results in the current case (e.g., for a two-dimensional polymer with excluded volume, this transformation gives a change of ν from 3/4 to the unphysical value of 3/2).

[63] Holmberg, C.; Nilsson, S.; Singh, S. K.; Sundelöf, L.-O. J. Phys. Chem. 1992, 96, 871. Nilsson, S. Macromolecules 1995, 28, 7837.
[64] Cabane, B.; Duplessix, R. Colloid Surf. 1985, 13, 19.
[65] Jennings, D. E.; Kuznetsov, Y. A.; Timoshenko, E. G.; Dawson, K. A. J. Chem. Phys. 1998, 108, 1702.
[66] Norwood, D. P.; Minnati, E.; Reed, W. F. Macromolecules 1998, 31, 2957. Minnati, E.; Norwood, D. P.; Reed, W. F. Macromolecules 1998, 31, 2966.
[67] Gilanyi, T.; Wolfram, E. Colloid Surf. 1981, 3, 181.
[68] Ullner, M.; Jönsson, B; Peterson, C.; Sommelius, O.; Söderberg, B. J. Chem. Phys. 1997, 107, 1279. Ha, B. Y.; Thirumalai, D. Macromolecules 1995, 28, 577. Reed, W. F.; Ghosh, S.; Medjahdi, G.; François, J. Macromolecules 1991, 24, 6189.
[69] Binana-Limbé, W.; Zana, R. Macromolecules 1987, 20, 1331. Binana-Limbé, W.; Zana, R. Macromolecules 1990, 23, 2731. Cochin, D.; Candau, F.; Zana, R. Macromolecules 1993, 26, 5755. Ibid., 5765. Cochin, D.; Candau, F.; Zana, R.; Talmon, Y. Macromolecules 1992, 25, 4220. Zana, R.; Kaplun, A.; Talmon, Y. Langmuir 1993, 9, 1948. Kamenka, N.; Kaplun, A.; Talmon, Y.; Zana, R. Langmuir 1994, 10, 2960. Anthony, O.; Zana, R. Macromolecules 1994, 27, 3885. Anthony, O.; Zana, R. Langmuir 1996, 12, 3590.
[70] Chen, L.; Yu, S.; Kagami, Y.; Gong, J.; Osada, Y. Macromolecules 1998, 31, 787.
[71] Magy, B.; Ilipoulos, I.; Zana, R.; Audebert, R. Langmuir 1994, 10, 3180.
[72] Satake, I.; Gondo, T.; Kimizuka, H. Bull. Chem. Soc. Jpn. 1979, 52, 361.
[73] Diamant, H.; Andelman, D. Phys. Rev. E 2000, 61, 6740.
[74] See, e.g., Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Oxford University Press: Oxford, 1986, Chapter 2.
TABLE I. Dependence of cac on polyelectrolyte ionization degree in the strong-interaction regime

polymer	surfactant	salt	c_{salt} (mM)	I	φ_{cac} (mM)	reference
PMAMVE	DTAB	KBr	5	0.5	0.16	[37]
				1	0.16	
PMAEVE	DTAB	KBr	5	0.5	0.09	[38]
				1	0.1	
PMAMVE	DTAC	NaCl	20	0	6	[39]
				1	5	
chitosan	SDS	NaBr	20	0.76	0.028	[40]
				0.84	0.028	
				0.99	0.028	
PMASt	C_{12}PyCl	NaCl	25	0.5	0.025	[41]
				1	0.025	
PMAIn	C_{12}PyCl	NaCl	25	0.5	0.012	[41]
				1	0.016	
PMAEVE	C_{12}PyCl	NaCl	25	0.5	0.15	[41]
				1	0.22	
PMAE	C_{12}PyCl	NaCl	25	0.5	0.13	[41]
				1	0.27	
PAA	TTAB	NaBr	10	0.14	0.0068	[42]
				0.26	0.0092	
				0.6	0.025	
				1	0.029	
PAA	DTAB	NaCl	30	pH=5.3a	0.4	[43]
				6.4	0.7	
				8.1	0.9	
				10.8	0.95	
PVS	DTAB	KCl	10	0.18	0.18	[44]
				0.34	0.11	
				0.50	0.12	
				0.68	0.06	
				0.74	0.05	
				1	0.05	

apH values were reported; I depends monotonously on pH

TABLE II. Relation between cac and cmc in the weak-interaction regime

polymer	surfactant	salt/counterion	φ_{cac} (mM)	φ_{cmc} (mM)	$\varphi_{cac}/\varphi_{cmc}$	reference
PEO	DS$^-$	NaDS	4.2	8.2	0.51	[22]
		LiDS	3.9	7.7	0.51	
		NaDS, 0.1M NaCl	0.8	1.4	0.57	
PEO	SDS	no salt	not reporteda	8.2	0.65	[24]
		0.075M NaCl	reporteda	8.2	0.67	
		0.15M NaCl		8.2	0.69	
		0.2M NaCl	0.94	0.76		
		0.4M NaCl	0.59	0.78		
PVP	SDS	0.01M NaCl	2.2	5.5	0.40	[24]
		0.1M NaCl	0.84	1.9	0.44	
PAA	C_{10}E_8	—	0.7	1	0.7	[9]
	C_{12}E_8		0.063	0.08	0.79	
	C_{14}E_8		0.007	0.009	0.78	

aOnly the ratio $\varphi_{cac}/\varphi_{cmc}$ was reported
FIGURE CAPTIONS

Figure 1 The scaling function $F(x)$. Solid line — mean-field calculation (eq II.9); dashed — beyond mean field (eq II.10).

Figure 2 Summary of self-assembly regimes: (i) a strong-interaction regime ($w^2 \varphi_{cmc} > \varphi$) where $\varphi_{cac} < \varphi_{cmc}$, corresponding experimentally to systems containing oppositely charged species; (ii) a weak-interaction regime ($w^2 \varphi_{cmc} < \varphi$) where $\varphi_{cac} \approx \varphi_{cmc}$, corresponding to systems where at least one of the species is neutral; (iii) a polysoap regime ($\varphi = 0$) where association is gradual (no cac), corresponding to polymers which form intra-chain aggregates by themselves.

Figure 3 Dependence of cac on monovalent salt concentration in various polyelectrolyte–oppositely charged surfactant systems. From top to bottom: (1) NaPA, DTAB, NaBr (ref [45]); (2) PMAMVE, DTAB, KBr (ref [48]); (3) PVS, C$_{16}$PyBr, NaBr (ref [46]); (4) NaDxS, C$_{11}$PyBr, NaCl (ref [46]); (5) PAS, SDeS, NaCl (ref [15]); (6) NaDxS, DTAB, NaCl (ref [47]); (7) NaDxS, C$_{12}$PyCl, NaCl (ref [46]); (8) PMABVE, DTAB, KBr (ref [48]); (9) NaDxS, C$_{13}$PyBr, NaCl (ref [46]); (10) PSS, DTAB, NaCl (ref [47]); (11) NaDxS, C$_{14}$PyBr, NaCl (ref [46]). Fitted slopes lie in the range 0.68–0.77.

Figure 4 Schematic sketch of a partially collapsed chain.

Figure 5 Dependence of cac on polymer charge close to the polysoap regime. Triangles – PMABVE, DTAB, 5 mM KBr (ref [48]). For $I < 0.5$ this polymer becomes a polysoap. Circles – (CH$_2$)$_x$(CH$_3$)$_y$-ionine bromide, SDS, no salt; squares – with 20 mM NaBr (ref [70]). A distance of 3 hydrocarbon groups between charged groups along the backbone has been defined as $I = 1$. The lines are merely guides to the eye.
FIG. 1.

FIG. 2.
FIG. 3.

\[\xi \text{ monomers/blob} \]

FIG. 4.

\[g \text{ monomers/blob} \]
FIG. 5.