Supplement of

The impact of chlorine chemistry combined with heterogeneous \(\text{N}_2\text{O}_5 \) reactions on air quality in China

Xiajie Yang et al.

Correspondence to: Qiaoqiao Wang (qwang@jnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.
Table S1. Anthropogenic chlorine emissions from different sectors in China in the model.

Species	Sectors	Emissions Gg Cl a⁻¹
HCl	Power plant	17
	Heat plant	2.2
	Industry	148
	Residential	20
	Prescribed waste incineration emissions	4.4
	Others	26
	Total	218

Cl₂	Power plant	0.71
	Heat plant	0.13
	Industry	6.2
	Residential	0.82
	Others	1.1
	Total	8.9

Cl⁻	Residential	169
	Industry	102
	Power plant	108
	Total	379

Table S2. Field measurements of CINO₂ and N₂O₅ from literatures

Site	Longitude	Latitude	Period	Species	Reference
Taizhou	120.00° E	32.55° N	May 23 – June 15, 2018	N₂O₅	Li et al. (2020)
Changping	116.23° E	40.22° N	May 13 – June 23, 2016	CINO₂	Le Breton et al. (2018)
Beijing	116.36° E	39.97° N	June 11 – 16, 2017	CINO₂	Zhou et al. (2018)
Wangdu	115.20° E	38.66° N	June 20 – July 9, 2014	CINO₂ and N₂O₅	Tham et al. (2016)
Mount Tai	117.10° E	36.25° N	July 24 – August 27, 2014	CINO₂ and N₂O₅	Wang et al. (2017)
Mount TaiMoShan	114.13° E	22.41° N	November 15 – December 6, 2013	CINO₂	Wang et al. (2016)
Table S3. Normalized mean bias (NMB) and correlation coefficients (r) between observed and simulated aerosol components at different observation sites

Site	Case	SO$_4^{2-}$	NO$_3^-$	NH$_4^+$	Cl$^-$	OM					
	NMB	r	NMB	r	NMB	r	NMB	r			
Dongying	Base	-33%	0.89	-41%	0.87	-40%	0.83	-36%	0.68	49%	0.77
	McDuffie	-40%	0.84	-40%	0.88	-42%	0.88	-35%	0.68	49%	0.77
	NoEm	-40%	0.84	-40%	0.86	-46%	0.85	-89%	-0.05	49%	0.77
Guangzhou	Base	-8.2%	0.19	129%	0.18	65%	0.25	39%	0.71	20%	0.28
	McDuffie	-8.4%	0.18	143%	0.16	71%	0.26	56%	0.71	21%	0.27
	NoEm	-7.0%	0.16	141%	0.16	64%	0.23	-79%	0.61	22%	0.26
Gucheng	Base	-43%	0.34	-11%	0.72	-27%	0.67	-4.7%	0.40	-11%	0.60
	McDuffie	-44%	0.33	-12%	0.73	-27%	0.67	-4.0%	0.39	-12%	0.60
	NoEm	-43%	0.33	-13%	0.73	-41%	0.66	-96%	0.10	-12%	0.60

Figure S1. Spatial distributions of annual chlorine emissions from (a) sea salt aerosol, (b) CH$_3$Cl, (c) CH$_2$Cl$_2$ and (d) CHCl$_3$.
Figure S2. Spatial distribution of observation sites. Locations of the Northeast Plain (NP), North China Plain (NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SCB) are highlighted by red rectangles.
Figure S3. Annual mean $\gamma_{\text{N}_2\text{O}_5}$ for different simulation cases over China in 2018.
Figure S4. Annual mean ϕ_{CINO_2} for different simulation cases over China in 2018. The values of ϕ_{CINO_2} for the NoHet and NoChem cases are zero and not shown here.
Figure S5. Annual mean ratios of ClNO$_2$ to HNO$_3$ for different simulation cases over China in 2018. Ratios of ClNO$_2$ to HNO$_3$ for the NoHet and NoChem cases are zero and not shown here.

Figure S6. Annual mean correlation coefficients (r) between observed and simulated (a) MDA8 O$_3$ and (b) PM$_{2.5}$ over China in 2018.
Figure S7. Effects of chlorine chemistry on annual mean surface concentrations of (a) HO₂, (b) OH, (c) NO₃⁻, (d) NH₄⁺ and (e) SO₄²⁻ in China, estimated as the differences between the Base and NoChem cases.
Figure S8. Effects of the heterogeneous N\textsubscript{2}O\textsubscript{5} + Cl chemistry on annual mean surface concentrations of (a) NO\textsubscript{3}-, (b) NH\textsubscript{4}+ and (c) SO\textsubscript{4}2- in China, estimated as the differences between the Base and NoHet cases.

Figure S9. Effects of the heterogeneous N\textsubscript{2}O\textsubscript{5} + Cl chemistry on annual mean ratio of (a) NO\textsubscript{x} to NO\textsubscript{y} and (b) NO\textsubscript{3} to NO\textsubscript{x} in China, estimated as the differences between the Base and NoHet cases. Note that here NO\textsubscript{x} = NO + NO\textsubscript{2} + ClNO\textsubscript{2} and NO\textsubscript{3} = NO + NO\textsubscript{2} + CINO\textsubscript{2} + HNO\textsubscript{3} + 2 X N\textsubscript{2}O\textsubscript{5} + NO\textsubscript{3} + HONO + HNO\textsubscript{4} + NO\textsubscript{y} + various organic nitrates.
Figure S10. Impacts of chlorine chemistry other than the heterogeneous $\text{N}_2\text{O}_5 + \text{Cl}$ chemistry on annual surface mean surface concentrations of MDA8 O$_3$ in China, estimated as the differences between the NoHet and NoChem cases.

Figure S11. Effects of anthropogenic and biomass burning chlorine emissions on annual mean surface concentrations of (a) NH_4^+ and (b) SO_2^- in China, estimated as the differences between the Base and NoEm cases.
Figure S12. Effects of anthropogenic and biomass burning chlorine emissions without the heterogeneous \(\text{N}_2\text{O}_5 + \text{Cl} \) chemistry on annual mean surface concentrations of (a) Cl atoms and (b) MDA8 \(\text{O}_3 \) in China, estimated as the differences between the NoHet and NoEmHet cases.

Figure S13. Effects of the heterogeneous \(\text{N}_2\text{O}_5 + \text{Cl} \) chemistry without anthropogenic and biomass burning chlorine emissions on annual mean surface concentrations of (a) nighttime max ClNO\(_2\) and (b) MDA8 \(\text{O}_3 \) in China, estimated as the differences between the NoEm and NoEmHet cases.
Reference

Le Breton, M., Hallquist, Á. M., Pathak, R. K., Simpson, D., Wang, Y., Johansson, J., Zheng, J., Yang, Y., Shang, D., Wang, H., Liu, Q., Chan, C., Wang, T., Bannan, T. J., Priestley, M., Percival, C. J., Shallcross, D. E., Lu, K., Guo, S., Hu, M., and Hallquist, M.: Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase Cl–VOC production, Atmos. Chem. Phys., 18, 13013-13030, 10.5194/acp-18-13013-2018, 2018.

Li, Z., Xie, P., Hu, R., Wang, D., Jin, H., Chen, H., Lin, C., and Liu, W.: Observations of N2O5 and NO3 at a suburban environment in Yangtze river delta in China: Estimating heterogeneous N2O5 uptake coefficients, J. Environ. Sci., 95, 248-255, https://doi.org/10.1016/j.jes.2020.04.041, 2020.

Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L., Lu, K., Ma, N., Bohn, B., Li, X., Kecorius, S., Größ, J., Shao, M., Wiedensohler, A., Zhang, Y., and Wang, T.: Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China, Atmos. Chem. Phys., 16, 14959-14977, 10.5194/acp-16-14959-2016, 2016.

Wang, T., Tham, Y. J., Xue, L., Li, Q., Zha, Q., Wang, Z., Poon, S. C. N., Dubé, W. P., Blake, D. R., Louie, P. K. K., Luk, C. W. Y., Tsui, W., and Brown, S. S.: Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China, J. Geophys. Res.: Atoms., 121, 2476-2489, https://doi.org/10.1002/2015JD024556, 2016.

Wang, Z., Wang, W., Tham, Y. J., Li, Q., Wang, H., Wen, L., Wang, X., and Wang, T.: Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain, Atmos. Chem. Phys., 17, 12361-12378, 10.5194/acp-17-12361-2017, 2017.

Zhou, W., Zhao, J., Ouyang, B., Mehra, A., Xu, W., Wang, Y., Bannan, T. J., Worrall, S. D., Priestley, M., Bacak, A., Chen, Q., Xie, C., Wang, Q., Wang, J., Du, W., Zhang, Y., Ge, X., Ye, P., Lee, J. D., Fu, P., Wang, Z., Worsnop, D., Jones, R., Percival, C. J., Coe, H., and Sun, Y.: Production of N2O5 and ClNO2 in summer in urban Beijing, China, Atmos. Chem. Phys., 18, 11581-11597, 10.5194/acp-18-11581-2018, 2018.