Cross-linked \(\beta\)-CD-CMC as an effective aqueous binder for silicon-based anode in rechargeable lithium-ion batteries

Hao-wen Jiang\(^a\), Yan Yang\(^a\), Yi-ming Nie\(^a\), Zhi-fang Su\(^a\), Yun-fei Long\(^a\), Yan-xuan Wen\(^a,b\) and Jing Su\(*^a\)

* Corresponding authors
\(^a\) School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China. E-mail: sujing@gxu.edu.cn
\(^b\) Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi University, Nanning, China

Fig. S1 The cross-linking ratio of \(\beta\)-CD to CMC on the electrochemical performance

The effect of the cross-linking ratio of \(\beta\)-CD to CMC on the electrochemical performance of the electrode is shown in Fig. S1). The binders synthesized with \(\beta\)-CD excess and CMC excess were compared with the samples synthesized in equal amounts, respectively. The results show that the electrode exhibits the characteristics of a pure CMC electrode when there is an excess of CMC, with the electrode having the highest initial capacity. When there is an excess of \(\beta\)-CD the electrode exhibits the characteristics of pure \(\beta\)-CD, with a low initial capacity but a gentle trend of capacity decay. Their capacity retention rates were 41%, 47% and 49% respectively. The equal...
synthesized samples have the highest capacity retention and a gentle capacity decay trend.