Karyotype asymmetry: again, how to measure and what to measure?

Lorenzo Peruzzi¹, Halil E. Eroğlu²

¹ Dipartimento di Biologia, Università di Pisa, Via Luca Ghini 13, 56126 Pisa, Italy ² Bozok University, Faculty of Science and Art, Biology Department, 66200, Yozgat, Turkey

Corresponding author: Lorenzo Peruzzi (lperuzzi@biologia.unipi.it)

Abstract

One of the most popular, cheap and widely used approaches in comparative cytogenetics – especially by botanists – is that concerning intrachromosomal and interchromosomal karyotype asymmetry. Currently, there is no clear indication of which method, among the many different ones reported in literature, is the most adequate to infer karyotype asymmetry (especially intrachromosomal), above all in view of the criticisms recently moved to the most recent proposal published. This work addresses a critical review of the methods so far proposed for estimation of karyotype asymmetry, using both artificial and real chromosome datasets. It is shown once again how the concept karyotype of asymmetry is composed by two kinds of estimation: interchromosomal and intrachromosomal asymmetries. For the first one, the use of Coefficient of Variation of Chromosome Length, a powerful statistical parameter, is here confirmed. For the second one, the most appropriate parameter is the new Mean Centromeric Asymmetry, where Centromeric Asymmetry for each chromosome in a complement is easily obtained by calculating the difference of relative lengths of long arm and short arm. The Coefficient of Variation of Centromeric Index, strongly criticized in recent literature, is an additional karyological parameter, not properly connected with karyotype asymmetry. This shows definitively what and how to measure to correctly infer karyotype asymmetry, by proposing to couple two already known parameters in a new way. Hopefully, it will be the basic future reference for all those scientists dealing with cytotaxonomy.

Keywords

Artificial chromosome datasets, chromosomal heterogeneity, karyotype asymmetry, asymmetry indices, interchromosomal asymmetry, intrachromosomal asymmetry, karyological parameters, Stebbins classification
Introduction

Cytotaxonomy is a branch of cytogenetics, devoted to the comparative study of karyological features for systematic and evolutionary purposes (Siljak-Yakovlev and Peruzzi 2012). Today, a number of data can be obtained by chromosome studies: chromosome number, karyotype structure, karyotype asymmetry, chromosome banding, FISH, GISH and chromosome painting (Stace 2000, Levin 2002, Graphodatsky et al. 2011, Guerra 2012). Among them, one of the most popular, cheap and widely used approaches – especially by botanists – is that concerning karyotype asymmetry.

The concept of karyotype asymmetry, i.e. a karyotype marked by the predominance of chromosomes with terminal/subterminal centromeres (intrachromosomal asymmetry) and highly heterogeneous chromosome sizes (interchromosomal asymmetry), was developed for the first time by Levitsky (1931). Later, Stebbins (1971), in his masterpiece “Chromosomal evolution in higher plants”, proposed a quali-quantitative method for the estimation of karyotype asymmetry in twelve categories, by taking into account four classes (from 1 to 4), defined according to the increasing proportion of chromosomes with arm ratio <2:1, to be combined with three classes (from A to C) defined according to the increasing ratio between largest and smallest chromosome in a complement.

Concerning interchromosomal asymmetry, which is due to heterogeneity among chromosome sizes in a complement, other researchers proposed quantitative estimation methods in the following years. This is the case of the Rec index (Greilhuber and Speta 1976, Venora et al. 2002), the A_2 index (Romero Zarco 1986), the R ratio (Siljak-Yakovlev 1996), the CV_{CI} (Lavania and Srivastava 1992, Watanabe et al. 1999, Paszko 2006). The latter, actually a Coefficient of Variation, is a statistically correct parameter and is able to capture even small variation among chromosome sizes in a complement. Hence, the estimation method for interchromosomal asymmetry does not need to be further discussed here.

More complex and debated is the quantitative estimation of the intrachromosomal asymmetry, which is due to centromere position. To address this issue, the first quantitative index proposed was the TF% of Huziwara (1962), soon followed by the AsK% of Arano (1963). Then, further proposals were AsI% of Arano and Saito (1980), Syi (Greilhuber and Speta 1976, Venora et al. 2002), A_i (Romero Zarco 1986), CG (Lavania and Srivastava 1992), A (Watanabe et al. 1999), CV_{CI} (Paszko 2006). The latter, a Coefficient of Variation of Centromeric Index, was claimed by Paszko (2006) to be the only parameter with statistical foundation. However, her proposal was recently strongly criticized by Zuo and Yuan (2011), who evidenced that CV_{CI} is not able to capture and quantitatively express the original meaning of karyotype asymmetry (i.e. the prevalence of telocentric-subtelocentric chromosomes), but only to quantify the relative variation (heterogeneity) among centromere positions in a karyotype. Hence, the problem of a correct intrachromosomal asymmetry estimation is still open.

Finally, a few authors tried to combine the two kinds of asymmetry in a single index, such as Lavania and Srivastava (1992) with DI, Paszko (2006) with AI. However, both these indices were strongly criticized, by Paszko (2006) and Peruzzi et al. (2009)
respectively, and their use has to be definitely discouraged. The aim of this review is to
critically analyze the proposed methods for estimating intrachromosomal asymmetry
and to elaborate the proposal for a new suitable estimator which should be: 1) strictly
quantitative, 2) statistically correct, 3) not a dispersion or variability index.

Which kind of basic measures were used – and differently combined – for Intrachromosomal Asymmetry estimation?

Fundamentally, the basic measures, used in every method proposed so far, are those con-
cerning the length of long (L) and short arm (S) of each chromosome in a complement.
All the karyotypes where these measures are not applicable (for instance those with
holocentric chromosomes or those with very small chromosomes, 1 µm or less), are not
suitable for the estimation of intrachromosomal asymmetry at all. For all the others (the
majority), typically \(L \geq S \geq 0 \) and \(L \geq S \). The variation extremes are \(S = L \) (i.e. chromo-
somes with centromere perfectly median) and \(S = 0 \) (i.e. chromosomes with centromere
perfectly terminal). These two variables were combined by researchers in various ways:

- \(\frac{L}{S} \) also called *arm ratio* \((r)\), it was used for instance in the widely known
 chromosome nomenclature proposed by Levan et al. (1964). Its val-
 ues can range from 1 (if \(S = L \)) to \(+\infty\) (the limit for \(S = 0 \)).

- \(\frac{S}{L} \) first proposed by Battaglia (1955), it is reciprocal to the arm ratio. Its
 values can range from 1 (if \(S = L \)) to 0 (if \(S = 0 \)). It is fundamentally
 used also in \(S_{yi} = \frac{\text{Mean } S \text{ length}}{\text{Mean } L \text{ length}} \times 100 \) (Greilhuber
 and Speta 1976, Venora et al. 2002).

- \(\frac{S}{L+S} \) also called *centromeric index*, it is the proportion of short arm re-
 spect with the whole chromosome. Its values can range from 0.5 (if \(S = L \)) to 0 (if
 \(S = 0 \)). It is fundamentally used in \(T F\% = \frac{\text{Total length of } S \text{ in a chromosome set}}{\text{Total length of a chromosome set}} \times 100 \)
 (Huziwara 1962), \(C G = \frac{\text{Median } S \text{ length}}{\text{Median } (L+S) \text{ length}} \times
 100 \) (Lavania and Srivastava 1992), and \(CV_{ci} \) (Paszko 2006).

- \(\frac{L}{L+S} \) it is the proportion of long arm respect with the whole chromosome,
 being complementary to the centromeric index. Indeed, \(\frac{L}{L+S} + \frac{S}{L+S} = 1 \). Its val-
 ues can range from 0.5 (if \(S = L \)) to 1 (if \(S = 0 \)). It is fundamentally used in
 \(AsK\% = \frac{\text{Total length of } L \text{ in a chromosome set}}{\text{Total length of a chromosome set}} \times 100 \)
 (Arano 1963) and the identical \(AsI\% \) (Arano and Saito 1980).

- \(\frac{(L–S)}{L} \) it was conceived in order to be complementary to \(S/L \), indeed \(\frac{(L–S)}{L} + \frac{S}{L} = 1 \). Its values can range from 0 (if \(S = L \)) to 1 (if \(S = 0 \)). It
 is used in \(A_1 = 1 – \text{Mean } S/L \) (Romero Zarco 1986).

- \(\frac{(L–S)}{L+S} \) it is the difference between the two (complementary) proportions \(L/\)
 \((L+S)\) and \(S/(L+S) \). Hence, its values can range from 0 (if \(S = L \)) to 1
(if \(S = 0 \)). It is used in \(A = \text{Mean} \ (L-S)/(L+S) \) (Watanabe et al. 1999).

Please note that it can be expressed also as \(2L/(L+S) - 1 \) or as \(1 - 2S/(L+S) \).

Given that \(L/(L+S) \) and \(S/(L+S) \) are the only parameters which are formally correct on descriptive statistical grounds (they are both proportions, or relative lengths), and given their peculiar complementary relationships, the only parameter well suited to capture the mean intrachromosomal asymmetry in a karyotype is that proposed by Watanabe et al. (1999). It is noteworthy that these authors already stressed that their method is preferable respect with others “because it usually follows a normal distribution”. Indeed, given an artificial dataset of chromosomes with normal distribution (mean = median), only the estimators \(L/(L+S) \), \(S/(L+S) \) and their difference \((L-S)/(L+S) \) are able to correctly describe these features (Table 1). However, it also must be noted that all the other karyotype intrachromosomal asymmetry estimators proposed in literature (\(\text{Syi}, \ TF\%, \ CG, \ AsK\%, \ A_j \)), albeit not statistically correct, are highly correlated with \(A \), with values typically above \(r = |0.9|, p < 0.01 \) (Paszko 2006, Peruzzi et al. 2009).

How to compare Karyotype Asymmetry among individuals, populations, species etc.?

Let us return to karyotype asymmetry as a whole, with its two parts: interchromosomal and intrachromosomal. Concerning the measure of interchromosomal asymmetry, as explained above, the main point is to measure how much the chromosome lengths of a complement are different each other, and \(CV_{CL} \) (Paszko 2006) is perfectly suited for it. As all coefficients of variation, it is a ratio between standard deviation and mean of a sample (i.e. a dispersion index) \(\times 100 \) (Sokal and Rohlf 1981). Typically, this parameter ranges from 0 (no variation) to 100 or more (in those cases of exceptionally heterogeneous samples, where standard deviation can be higher than the mean).

chromosome	1	2	3	4	5	6	7	8	9	10	11	mean
\(S \) (µm)	10	9	8	7	6	5	4	3	2	1	0	5
\(L \) (µm)	10	11	12	13	14	15	16	17	18	19	20	15
\(S/L \)	1.00	0.82	0.67	0.54	0.43	0.33	0.25	0.18	0.11	0.05	0.00	0.40
\(S/(L+S) \)	0.50	0.45	0.40	0.35	0.30	0.25	0.20	0.15	0.10	0.05	0.00	0.25
\(L/(L+S) \)	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00	0.75
\((L-S)/L \)	0.00	0.18	0.33	0.46	0.57	0.67	0.75	0.82	0.89	0.95	1.00	0.60
\((L-S)/(L+S) \)	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	0.50

Table 1. Comparison of different estimators of intrachromosomal asymmetry on a set of 11 artificial chromosomes with gradually increasing asymmetry, from perfectly median (on the left) to perfectly terminal (on the right) centromeres. Also the mean values are reported in the last column on the right. \(L/S \) was excluded because no real value is obtained when \(S = 0 \).
Concerning the measure of intrachromosomal asymmetry, \(CV_{CI} \) should not be used for the reasons explained above. Indeed, it is actually a measure of intrachromosomal heterogeneity, which does not necessarily means asymmetry in the original sense given by Levitsky (1931) and Stebbins (1971). Among others, as shown above, the statistically best suited parameter is \(A \) (Watanabe et al. 1999), ranging from 0 (perfectly symmetric) to 1 (perfectly asymmetric).

Since the two kinds of asymmetry express different concepts, it is not desirable to combine them in a single value. On the contrary, as argued for the first time by Romero Zarco (1986) and then by Peruzzi et al. (2009), the best way in representing karyotype asymmetry relationships among organisms is by means of bidimensional scatter plots, where the two asymmetry estimators are put in the x and y axes and points represent each sample. Up to the present day, this was done with the couples of parameters \(A_1 \) and \(A_2 \) (Romero Zarco 1986) or \(CV_{CI} \) and \(CV_{CL} \) (noteworthy, \(CV_{CL} = A_2 \times 100 \)) (Paszko 2006; Peruzzi et al. 2009).

The present proposal is to couple \(CV_{CI} \) with a new parameter called \(M_{CA} \) (Mean Centromeric Asymmetry), where Centromeric Asymmetry of a single chromosome is given by the formula \((L-S)/(L+S) \). Accordingly, \(M_{CA} = A \times 100 \). Generally, \(CV_{CI} \) is not correlated with \(M_{CA} \) (e.g. in small dataset of Calamagrostis Adanson, 1753 used by Paszko 2006), so that it could be used sometimes as an optional third parameter to reveal karyotype relationships among organisms, besides asymmetry sensu stricto. This could be useful especially when chromosome size variation is negligible.

![Figure 1](image.png)

Figure 1. Scatter plot of the fifteen artificial karyotypes reported in Table 2 against \(M_{CA} \) (x axis) and \(CV_{CI} \) (y axis).
Table 2. Karyomorphometric features of a dataset with fifteen artificial karyotypes, all with the chromosomes of the same length (no chromosome size variation).

Karyotype	1	2	3	4	5	6	7	8	9	10	11	12
Karyotype I	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Karyotype II	5.5	4.5	5.5	4.5	5.5	4.5	5.5	4.5	5.5	4.5	5.5	4.5
Karyotype III	7.5	2.5	7.5	2.5	7.5	2.5	7.5	2.5	7.5	2.5	7.5	2.5
Karyotype IV	8.5	1.5	8.5	1.5	8.5	1.5	8.5	1.5	8.5	1.5	8.5	1.5
Karyotype V	9.5	0.5	9.5	0.5	9.5	0.5	9.5	0.5	9.5	0.5	9.5	0.5
Karyotype VI	10	0	10	0	10	0	10	0	10	0	10	0
Karyotype VII	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Karyotype VIII	5.5	4.5	5.5	4.5	5.5	4.5	5.5	4.5	5.5	4.5	5.5	4.5
Karyotype IX	7.5	2.5	7.5	2.5	7.5	2.5	7.5	2.5	7.5	2.5	7.5	2.5
Karyotype X	8.5	1.5	8.5	1.5	8.5	1.5	8.5	1.5	8.5	1.5	8.5	1.5
Karyotype XI	9.5	0.5	9.5	0.5	9.5	0.5	9.5	0.5	9.5	0.5	9.5	0.5
Karyotype XII	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Karyotype XIII	5.5	4.5	5.5	4.5	5.5	4.5	5.5	4.5	5.5	4.5	5.5	4.5
Karyotype XIV	7.5	2.5	7.5	2.5	7.5	2.5	7.5	2.5	7.5	2.5	7.5	2.5
Karyotype XV	8.5	1.5	8.5	1.5	8.5	1.5	8.5	1.5	8.5	1.5	8.5	1.5
For instance, in an artificial karyotypes dataset with no chromosome size variation (Table 2), it is once again evident how samples, even with the most different intrachromosomal asymmetries (M_{CA}), could not be discriminated by CV_{CL} if there is not variation in chromosome size. Conversely, samples with almost identical intrachromosomal asymmetry can reveal their different karyotype structure following use of the CV_{CI} (compare karyotypes III and XIII, or IV and XIV, in Figure 1). In some special case, if CV_{CI} results positively correlated with M_{CA}, this former additional karyological parameter is not useful at all and may be omitted. This is the case of the large Liliaceae dataset used by Peruzzi et al. (2009), where the correlation among CV_{CI} and M_{CA} is $r = 0.792$ ($p < 0.01$). As can be seen in Figure 2, the three tribes of subfamily Lilioideae show a clear tendency to have karyotypes distinct on asymmetry grounds: tribe Medeoleae, with relatively low intrachromosomal (M_{CA}) and interchromosomal asymmetry (CV_{CI}), tribe Tulipeae, with higher interchromosomal asymmetry, and tribe Lilieae, with higher intrachromosomal asymmetry. Almost identical results were indeed obtained by Peruzzi et al. (2009) by using the, now “old-fashioned”, couple CV_{CI} and CV_{CL}. Finally, it is also important to remember here, once again, that a symmetric karyotype does not necessarily implies “primitivity”, as assumed by earlier students (see, for instance, Siljak-Yakovlev 1996 for the concept of “secondary symmetry”). As for other cytotaxonomic features, once

![Figure 2](image)

Figure 2. Scatter plot of samples from the three tribes Medeoleae, Tulipeae and Lilieae against M_{CA} (x axis) and CV_{CI} (y axis). Data derived from the dataset published by Peruzzi et al. (2009).
karyological relationships between taxa are demonstrated, it is also important to have some independent source of information in order to infer the direction of changes (Siljak-Yakovlev and Peruzzi 2012).

References

Arano H (1963) Cytological studies in subfamily Carduoideae (Compositae) of Japan. IX. The karyotype analysis and phylogenic considerations on Pertya and Ainsliaea. Botanical Magazine (Tokyo) 76: 32–39.

Arano H, Saito H (1980) Cytological studies in family Umbelliferae 5. Karyotypes of seven species in the subtribe Seselinae. Kromosomo 2: 471–480.

Battaglia E (1955) Chromosome morphology and terminology. Caryologia 8: 179–187.

Graphodatsky AS, Trifonov VA, Stanyon R (2011) The genome diversity and karyotype evolution of mammals. Molecular Cytogenetics 4: 22. doi: 10.1186/1755-8166-4-22

Greilhuber J, Speta F (1976) C-banded karyotypes in the Scilla bohemackeri Group, S. persica and Puschkinia (Liliaceae). Plant Systematics and Evolution 126: 149–188. doi: 10.1007/BF00981669

Guerra M (2012) Cytotaxonomy: the end of childhood. Plant Biosystems 146: 703–710.

Huziwara Y (1962) Karyotype analysis in some genera of Compositae. VIII. Further studies on the chromosome of Aster. American Journal of Botany 49: 116–119. doi: 10.2307/2439026

Lavania UC, Srivastava S (1992) A simple parameter of dispersion index that serves as a adjunct to karyotype asymmetry. Journal of Biosciences 17: 201–220. doi: 10.1111/j.1601-5223.1994.tb01953.x

Levin DA (2002) The role of chromosome change in plant evolution. New York: Oxford University Press.

Levitsky GA (1931) The karyotype in systematics. Bulletin of Applied Botany, Genetics and Plant Breeding 27: 220–240.

Paszko A (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Systematics and Evolution 258: 39–48. doi: 10.1007/s00606-005-0389-2

Peruzzi L, Leitch IJ, Caparelli KF (2009) Chromosome diversity and evolution in Liliaceae. Annals of Botany (London) 103: 459–475. doi: 10.1093/aob/mcn230

Romero Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35: 526–530. doi: 10.2307/1221906

Siljak-Yakovlev S (1996) La dysploïdie et l’évolution du caryotype. Bocconea 5: 211–220.

Siljak-Yakovlev S, Peruzzi L (2012) Cytogenetic characterization of endemics: past and future. Plant Biosystems 146: 694–702.

Sokal RR, Rohlf FJ (1981) Biometry. New York, USA: W. H. Freeman and Company.

Stace CA (2000) Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49: 451–477. doi: 10.2307/1224344
Stebbins GL (1971) Chromosomal evolution in higher plants. London, UK: Edward Arnold (Publishers) Ltd.
Venora G, Blangiforti S, Ruffini Castiglione M, Pignone D, Losavio F, Cremonini R (2002) Chromatin organisation and computer aided karyotyping of *Triticum durum* Desf. cv Timilia. Caryologia 55: 91–98. doi: 10.1080/00087114.2002.10589262
Watanabe K, Yahara T, Denda T, Kosuge K (1999) Chromosomal evolution in the genus *Brachyscome* (Asteraceae, Astereae): Statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. Journal of Plant Research 112: 145–161. doi: 10.1007/PL00013869
Zuo J, Yuan G (2011) The difference between the heterogeneity of the centromeric index and intrachromosomal asymmetry. Plant Systematics and Evolution 297: 141–145. doi: 10.1007/s00606-011-0528-x