Moreno-Fuquen, R. and Azcarate, A. and Kennedy, A. R. (2015) Crystal structure of 3-chloro-N-(2-nitrophenyl)benzamide. Acta Crystallographica Section E: Structure Reports, 71 (9). ISSN 1600-5368 , http://dx.doi.org/10.1107/S2056989015014620

This version is available at https://strathprints.strath.ac.uk/54138/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Crystal structure of 3-chloro-N-(2-nitrophenyl)benzamide

Rodolfo Moreno-Fuquen, Alexis Azcárate and Alan R. Kennedy

Acta Cryst. (2015). E71, o674

This open-access article is distributed under the terms of the Creative Commons Attribution Licence
http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original authors and source are cited.
Crystal structure of 3-chloro-N-(2-nitrophenyl)benzamide

Rodolfo Moreno-Fuquen,*a Alexis Azcáratea and Alan R. Kennedyb

*aDepartamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland. *Correspondence e-mail: rodimo26@yahoo.es

Received 2 August 2015; accepted 3 August 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, C13H16ClN2O3, the mean plane of the central amide fragment (r.m.s. deviation = 0.016 Å) subtends dihedral angles of 15.2 (2) and 8.2 (2)° with the chloro- and nitro-substituted benzene rings, respectively. An intramolecular N—H···O hydrogen bond generates an S(6) ring. In the crystal, molecules are linked by weak C—H···C hydrogen bonds, forming C(7) chains which propagate along [010], but no Cl···Cl short contacts are observed.

Keywords: crystal structure; benzamide; hydrogen bonding; halogen—halogen interactions.

CCDC reference: 1416793

1. Related literature

For halogen—halogen interactions in benzanilide compounds, see: Vener et al. (2013); Nayak et al. (2011).

2. Experimental

2.1. Crystal data

C13H16ClN2O3 M, = 276.67

2.2. Data collection

Oxford Diffraction Gemini S diffractometer

Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)

3. Refinement

H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bond geometry (Å, °).

D—H—···A	D—H	H—···A	D···A	D—H···A
N1—H1N···O2	0.98	1.75	2.61	144 (6)
C10—H10···O11	0.95	2.39	3.15	138 (7)

Symmetry code: (i) −x + 1, y − 1/2, −z + 1/2

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Acknowledgements

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7476).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 345.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Nayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011). Cryst. Growth Des. 11, 1578-1596.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Vener, M. V., Shishkina, A. V., Rykousov, A. A. & Tsirolev, V. G. (2013). J. Phys. Chem. A, 117, 8459-8467.
Crystal structure of 3-chloro-N-(2-nitrophenyl)benzamide

Rodolfo Moreno-Fuquen, Alexis Azcárate and Alan R. Kennedy

S1. Comment
The crystal structure determination of 3-chloro-N-(2-nitrophenyl)benzamide (I), is part of a study on benzanilides carried out in our research group, and it was obtained from the reaction between 3-chlorobenzoic acid and 2-nitroaniline mediated by the presence of thionyl chloride. The study of intermolecular halogen-halogen interactions is a current problem and several authors have presented interesting results. Halogen-halogen short interactions, in other similar studies, show Cl···Cl distances of the order of 3.8 Å. Theoretical studies of density analysis, varying the Cl···Cl distance from 3.0 to 4.0 Å, using DFT solid state program, have been undertaken (Vener et al., 2013). Geometric considerations in halogen-halogen interactions, for various benzanilide systems, showed different behaviors. Interactions of fluorine with other halogens Cl, Br, I, in different benzanilide systems, include interactions type: trans, cis or L-geometry (Nayak et al., 2011). The molecular structure of (I) is shown in Fig. 1. The central amide moiety, C8—N1—C7(=O1)—C1, is essentially planar (r.m.s. deviation for all non-H atoms = 0.0164 Å) and it forms dihedral angles of 15.2 (2)° with the C1-C6 and 8.2 (2)° with the C8-C13 rings respectively. In the crystal structure (Fig. 2), molecules are linked by weak C-H···O intermolecular contacts. The C10-H10···O1 hydrogen bond interactions are responsible for crystal growth parallel to (2 0 -2). In this interaction, the C-H in the molecule at (x,y,z) acts as a hydrogen-bond donor to O1 atom of the carbonyl group at (-x+1,+y-1/2,-z+3/2). These interactions generate C(7) chains of molecules along [010]. Other intra N-H···O and N-H···N are observed (see Table 1, Nardelli, 1995). The shortest Cl···Cl contact distance in this structure is 3.943 (3) Å.

S2. Experimental
The title molecule was synthesized taking 0.200 g (1.270 mmol) of 3-chlorobenzoic acid and it was placed under reflux with 2 mL of thionyl chloride for two hours. After this time an equimolar amount of o-nitroaniline, dissolved in 10 mL of acetonitrile and allowed to reflux at constant stirring for 3 hours was added. The final solution was left to slow evaporation to obtain yellow crystals. [m.p. 399 (1)K].

S3. Refinement
All Hm atoms were positioned in geometrically idealized positions, C—H = 0.95 Å, and were refined using a riding-model approximation with $U_{iso}(H)$ constrained to 1.2 times U_{eq} of the respective parent atom. H1N atom was found from the Fourier maps and its coordinates were refined freely.
Figure 1
The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 2
Part of the crystal structure of (I), showing the formation of C(7) chains along [010] [Symmetry code: (i) -x + 1, y - 1/2, -z + 3/2].

3-Chloro-N-(2-nitrophenyl)benzamide

Crystal data
C₁₃H₉ClN₂O₃
$D_r = 1.574 \text{ Mg m}^{-3}$
Melting point: 399(1) K
$M_r = 276.67$
Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
Monoclinic, $P2_1/c$
Cell parameters from 10366 reflections
$\alpha = 12.6300 (9) \text{ Å}$
$\theta = 3.3–27.0^\circ$
$b = 14.1462 (12) \text{ Å}$
$\mu = 0.33 \text{ mm}^{-1}$
$c = 6.7797 (6) \text{ Å}$
$T = 123 \text{ K}$
$\beta = 105.475 (7)^\circ$
Needle, yellow
$V = 1167.39 (17) \text{ Å}^3$
$0.40 \times 0.08 \times 0.05 \text{ mm}$
$Z = 4$
$F(000) = 568$
Data collection

Oxford Diffraction Gemini S diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

\(\omega \) scans

Absorption correction: multi-scan

(CrystalPro; Oxford Diffraction, 2010)

\(T_{\text{min}} = 0.839, T_{\text{max}} = 1.000 \)

Refinement

Refinement on \(F^2 \)

Least-squares matrix: full

\(R[F^2 > 2\sigma(F^2)] = 0.068 \)

\(wR(F^2) = 0.179 \)

\(S = 1.00 \)

10367 reflections

177 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

\[w = 1/[(\sigma(F_o^2) + (0.0657P)^2)] \]

where \(P = (F_o^2 + 2F_c^2)/3 \)

\(\Delta\sigma_{\text{max}} < 0.001 \)

\(\Delta\rho_{\text{max}} = 0.78 \text{ e Å}^{-3} \)

\(\Delta\rho_{\text{min}} = -0.49 \text{ e Å}^{-3} \)

Special details

Experimental. IR spectra was recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. IR (KBr), cm\(^{-1}\), 3348 (amide N–H); 1684 (amide, C=O); 1499 and 1342 (-NO\(_2\))

Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.34.46 (release 25-11-2010 CrysAlis171 .NET) (compiled Nov 25 2010,17:55:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of \(F^2 \) against ALL reflections. The weighted \(R \)-factor \(wR \) and goodness of fit \(S \) are based on \(F^2 \), conventional \(R \)-factors \(R \) are based on \(F \), with \(F \) set to zero for negative \(F^2 \). The threshold expression of \(F^2 > \sigma(F^2) \) is used only for calculating \(R \)-factors(gt) etc. and is not relevant to the choice of reflections for refinement. \(R \)-factors based on \(F^2 \) are statistically about twice as large as those based on \(F \), and \(R \)-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å\(^2\))

	x	y	z	\(U_{iso} \)/\(U_{eq} \)	
Cl1	-0.13525 (11)	0.17880 (10)	0.1877 (3)	0.0345 (4)	
O1	0.3249 (3)	0.3758 (3)	0.5550 (7)	0.0413 (11)	
O2	0.2403 (3)	0.0390 (3)	0.4902 (6)	0.0417 (12)	
O3	0.3446 (4)	-0.0604 (3)	0.6933 (7)	0.0467 (13)	
N1	0.2996 (4)	0.2164 (3)	0.5084 (7)	0.0270 (11)	
N2	0.3297 (4)	0.0170 (4)	0.6117 (7)	0.0306 (12)	
C3	-0.0406 (4)	0.2702 (4)	0.2478 (9)	0.0246 (12)	
C2	0.0686 (4)	0.2489 (4)	0.3410 (8)	0.0266 (14)	
H2	0.0914	0.1852	0.3698	0.032*	
C1	0.1440 (5)	0.3226 (4)	0.3914 (8)	0.0263 (13)	
C6	0.1099 (5)	0.4148 (4)	0.3463 (9)	0.0344 (16)	
----------	----------	----------	----------	----------	----------
	\(u_{11}^2\)	\(u_{22}^2\)	\(u_{33}^2\)	\(u_{12}^2\)	\(u_{13}^2\)
C11	0.0180 (6)	0.0357 (8)	0.0445 (8)	−0.0025 (6)	−0.0009 (8)
O1	0.023 (2)	0.030 (3)	0.064 (3)	−0.001 (2)	−0.001 (2)
O2	0.021 (2)	0.035 (3)	0.061 (3)	−0.0019 (19)	−0.004 (2)
O3	0.034 (3)	0.028 (3)	0.072 (3)	−0.002 (2)	0.003 (2)
N1	0.017 (2)	0.028 (3)	0.032 (3)	−0.002 (2)	−0.002 (2)
N2	0.017 (3)	0.032 (3)	0.041 (3)	−0.002 (2)	0.006 (2)
C3	0.018 (3)	0.028 (3)	0.028 (3)	−0.001 (2)	0.005 (3)
C4	0.018 (3)	0.030 (3)	0.031 (3)	0.001 (3)	0.004 (2)
C5	0.019 (3)	0.031 (4)	0.028 (3)	0.000 (3)	0.005 (2)
C6	0.023 (3)	0.028 (4)	0.048 (4)	−0.001 (3)	0.002 (3)
C7	0.024 (3)	0.033 (4)	0.053 (4)	0.007 (2)	0.000 (4)
C8	0.022 (3)	0.039 (4)	0.039 (3)	0.007 (3)	0.005 (3)
C9	0.022 (3)	0.027 (3)	0.027 (3)	0.002 (3)	0.001 (2)
C10	0.016 (3)	0.031 (4)	0.025 (3)	0.001 (3)	0.001 (2)
C11	0.018 (3)	0.043 (4)	0.041 (4)	0.002 (3)	0.003 (3)
C12	0.017 (3)	0.042 (4)	0.040 (4)	0.004 (3)	0.005 (3)
C13	0.022 (3)	0.028 (3)	0.038 (3)	0.002 (3)	0.005 (3)

Geometric parameters (Å, °)

C11—C3	1.735 (5)	C6—H6
O1—C7	1.212 (6)	C5—C4
O2—N2	1.247 (5)	C5—H5
O3—N2	1.219 (6)	C4—H4
N1—C7	1.376 (7)	C8—C9

Acta Cryst. (2015). E71, o674
Bond Description	Distance (Å)	Bond Description	Distance (Å)
N1—C8	1.405 (7)	C8—C13	1.397 (7)
N1—H1N	0.98 (7)	C9—C10	1.397 (8)
N2—C9	1.474 (7)	C10—C11	1.374 (8)
C3—C4	1.365 (7)	C10—H10	0.9500
C3—C2	1.388 (7)	C11—C12	1.360 (8)
C2—C1	1.392 (7)	C11—H11	0.9500
C2—H2	0.9500	C12—C13	1.387 (7)
C1—C6	1.382 (7)	C12—H12	0.9500
C1—C7	1.513 (8)	C13—H13	0.9500
C6—C5	1.396 (7)		

Angle Description	Angle (°)	Angle Description	Angle (°)
C7—N1—C8	127.8 (5)	C5—C4—H4	120.2
C7—N1—H1N	126 (4)	O1—C7—N1	124.1 (5)
C8—N1—H1N	106 (4)	O1—C7—C1	121.3 (5)
O3—N2—O2	121.9 (5)	N1—C7—C1	114.6 (5)
O3—N2—C9	119.0 (5)	C9—C8—C13	116.8 (5)
O2—N2—C9	119.1 (5)	C9—C8—N1	120.8 (5)
C4—C3—C2	121.8 (5)	C13—C8—N1	122.4 (5)
C4—C3—C11	119.3 (4)	C8—C9—C10	122.7 (5)
C2—C3—C11	118.9 (4)	C8—C9—N2	122.5 (5)
C3—C2—C1	118.7 (5)	C10—C9—N2	114.8 (5)
C3—C2—H2	120.6	C11—C10—C9	118.3 (6)
C1—C2—H2	120.6	C11—C10—H10	120.9
C6—C1—C2	120.0 (5)	C9—C10—H10	120.9
C6—C1—C7	116.0 (5)	C12—C11—C10	120.3 (6)
C2—C1—C7	124.0 (5)	C12—C11—H11	119.8
C1—C6—C5	120.0 (6)	C10—C11—H11	119.8
C1—C6—H6	120.0	C11—C12—C13	121.7 (6)
C5—C6—H6	120.0	C11—C12—H12	119.2
C4—C5—C6	119.9 (6)	C13—C12—H12	119.2
C4—C5—H5	120.0	C12—C13—C8	120.1 (5)
C6—C5—H5	120.0	C12—C13—H13	119.9
C3—C4—C5	119.5 (5)	C8—C13—H13	119.9
C3—C4—H4	120.2		

Angle Description	Angle (°)	Angle Description	Angle (°)
O2—O2—N2—O3	0.0 (3)	C7—N1—C8—C13	−18.1 (9)
O2—O2—N2—C9	0.0 (6)	C13—C8—C9—C10	0.9 (9)
C4—C3—C2—C1	0.2 (9)	N1—C8—C9—C10	−179.8 (5)
C11—C3—C2—C1	−179.1 (4)	C13—C8—C9—N2	−179.1 (5)
C3—C2—C1—C6	−0.8 (8)	N1—C8—C9—N2	0.2 (8)
C3—C2—C1—C7	179.9 (5)	O3—N2—C9—C8	−166.2 (6)
C2—C1—C6—C5	1.1 (9)	O2—N2—C9—C8	15.1 (8)
C7—C1—C6—C5	−179.6 (5)	O2—N2—C9—C8	15.1 (8)
C1—C6—C5—C4	−0.9 (10)	O3—N2—C9—C10	13.8 (7)
C2—C3—C4—C5	0.0 (10)	O2—N2—C9—C10	−164.8 (5)
C11—C3—C4—C5	179.3 (5)	O2—N2—C9—C10	−164.8 (5)
C6—C5—C4—C3	0.3 (10)	C8—C9—C10—C11	−0.6 (9)
C8—N1—C7—O1	3.7 (10)	N2—C9—C10—C11	179.4 (5)
C8—N1—C7—C1 −176.5 (5) C9—C10—C11—C12 0.0 (9)
C6—C1—C7—O1 9.1 (8) C10—C11—C12—C13 0.2 (9)
C2—C1—C7—O1 −171.5 (6) C11—C12—C13—C8 0.1 (9)
C6—C1—C7—N1 −170.6 (5) C9—C8—C13—C12 −0.6 (8)
C2—C1—C7—N1 8.7 (8) N1—C8—C13—C12 −179.9 (5)
C7—N1—C8—C9 162.7 (6)

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	D—H···A
N1—H1N···O2	0.98 (7)	1.75 (7)	2.612 (6)	144 (6)
C10—H10···O1i	0.95	2.39	3.158 (7)	138

Symmetry code: (i) −x+1, y−1/2, −z+3/2.