On certain multiplier projections

Henning Petzka

Abstract

Let $M(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}))$, denote the multiplier algebra over $C(\prod_{j=1}^{\infty} S^2, \mathcal{K})$, the algebra of continuous functions into the compact operators with spectrum the infinite product of two-spheres. We consider multiplier projections in $M(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}))$ of a certain diagonal form. We show that, while for each multiplier projection Q of the special form, we have that $Q(x) \in B(\mathcal{H}) \setminus \mathcal{K}$ for all $x \in \prod_{j=1}^{\infty} S^2$, the ideal generated by Q in $M(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}))$ might be proper. We further show that the ideal generated by a multiplier projection of the special form is proper if and only if the projection is stably finite.

1 Introduction

The C*-algebra $C(\prod_{j=1}^{\infty} S^2, \mathcal{K})$ of continuous functions into the compact operators with spectrum the infinite product of two-spheres has been of interest in the construction of C*-algebras with non-regular behavior. M. Rørdam used this algebra in [R1] to construct a separable simple C*-algebra with both a finite and a (non-zero) infinite projection. In [R3] Rørdam used it to construct an extension

$$0 \to C(\prod_{j=1}^{\infty} S^2, \mathcal{K}) \to B \to \mathcal{K} \to 0$$

such that B is not stable (despite the fact that both, ideal and quotient, are stable C*-algebras). Also, Rørdam’s construction in [R2] of a non-stable C*-algebra, which becomes stable after tensoring it with large enough (non-zero) matrix algebras, can be altered to using comparability properties of projections in matrix algebras over $C(\prod_{j=1}^{\infty} S^2, \mathcal{K})$.

Most constructions have in common that they take advantage of special multiplier projections of a certain diagonal form. The projections considered are infinite direct sums

$$Q = \bigoplus_{j=1}^{\infty} p_{I_j}, \quad (*)$$

where each direct summand p_{I_j} is a finite tensor product of Bott projections over coordinates specified by a finite subset I_j of the natural numbers. (We remind the reader of the detailed construction in the following section.) Using multiplier projections of this certain form, Rørdam proves in [R1] that there exists a finite full multiplier projection in $M(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}))$ (and thereby showing that the C*-algebra $C(\prod_{j=1}^{\infty} S^2, \mathcal{K})$ does not have the corona factorization property). Recall that a projection in a C*-algebra is called full, if the closed two-sided ideal generated by it is the whole C*-algebra. Fullness of a projection in the multiplier algebra implies that some multiple of it is equivalent to the identity ([RLL], Exercise 4.8). But the multiplier unit of a stable C*-algebra is properly infinite ([R5], Lemma 3.4). Hence, Rørdam’s finite full projection is not stably finite. (A projection is stably finite if any multiple of it is a finite projection).

In this paper we investigate non-full multiplier projections in $M(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}))$ of the special form as in $(*)$. Firstly, it is all but obvious that there exist non-full projections of this diagonal form at all. Identifying $M(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}))$ with the strictly continuous functions from $\prod_{j=1}^{\infty} S^2$ into $B(\mathcal{H})$,
any multiplier projection Q of the certain diagonal form satisfies that $Q(x) \in \mathcal{B(H)} \setminus \mathcal{K}$. In particular, locally, $Q(x)$ is full in $\mathcal{B(H)}$ for all $x \in X$. (It follows from the results of Pimsner, Popa and Voiculescu [PPV] that such a projection cannot be found when the spectrum is finite-dimensional.)

Using the techniques from [R1] we then prove the following result:

Theorem: Let

$$Q = \bigoplus_{j=1}^{\infty} p_{I_j} \in \mathcal{M}(\prod_{j=1}^{\infty} S^2, \mathcal{K}).$$

Then Q is non-full if, and only if, Q is stably finite.

The paper is organized as follows. In Section 2 we recall notation and constructions from [R1] and specify the multiplier projections the paper is devoted to. Section 3 contains the technical tool to prove our main results. In Section 4 we characterize non-fullness of multiplier projections in a combinatorial way. Finally, Section 5 contains the proof of the main theorem, i.e. we show that all non-full projections from section 4 are stably finite.

2 Preliminaries

Consider the following setting (and notation), which is adapted from [R1]. We will consider the Hausdorff space given by an infinite product of two-spheres, $X = \prod_{j=1}^{\infty} S^2$, equipped with the product topology. Since S^2 is compact, it follows from Tychonoff’s Theorem (see for example [M]) that X is compact. Let further

$$p \in C(S^2, M_2(\mathbb{C}))$$

denote the Bott projection, i.e., the projection corresponding to the ‘Hopf bundle’ ξ over S^2 with total Chern class $c(\xi) = 1 + x$ (see e.g. [K]).

With $\pi_n : X \to S^2$ denoting the coordinate projection onto the n-th coordinate, consider the (orthogonal) projection

$$p_n := p \circ \pi_n \in C(\prod_{j=1}^{\infty} S^2, M_2(\mathbb{C})).$$

If $I \subseteq \mathbb{N}$ is a finite subset, $I = \{n_1, n_2, \ldots, n_k\}$, then let p_I denote the pointwise tensor product

$$p_I := p_{n_1} \otimes p_{n_2} \otimes \ldots \otimes p_{n_k} \in C \left(\prod_{j=1}^{\infty} S^2, M_2(\mathbb{C}) \otimes M_2(\mathbb{C}) \otimes \ldots \otimes M_2(\mathbb{C}) \right).$$

It is shown in [R1] that the projection p_n corresponds to the pull-back of the Hopf bundle via the coordinate projection π_n, denoted by $\xi_n := \pi_n^*(\xi)$, and that the projection p_I corresponds to the tensor product of vector bundles $\xi_{n_1} \otimes \xi_{n_2} \otimes \ldots \otimes \xi_{n_k}$.

Considering the compact operators \mathcal{K} on a separable Hilbert space as an AF algebra, the inductive limit of the sequence

$$\mathbb{C} \to M_2(\mathbb{C}) \to M_3(\mathbb{C}) \to M_4(\mathbb{C}) \to \ldots,$$

with connecting *-homomorphisms mapping each matrix algebra into the upper left corner of any larger matrix algebra at a later stage, we get an embedding of each matrix algebra over \mathbb{C} into the compact operators \mathcal{K}. In this way we can consider all the projections p_n and p_I, defined as above, as projections in $C(\prod_{j=1}^{\infty} S^2, \mathcal{K})$.

In addition to the setting of [R1], let us denote by p^- the projection corresponding to the complex line bundle ξ^- over S^2 with total Chern class $c(\xi^-) = 1 - x$. (Recall that the first Chern class is a
complete invariant for complex line bundles (see Proposition 3.10 of [H]). The tensor product $\xi \otimes \xi^-$ is isomorphic to the one-dimensional trivial bundle, because its Euler class can be computed, using [R1] Equation 3.3, to be
\[e(\xi \otimes \xi^-) = x - x = 0 \]
and the only line bundle with zero Euler class is the trivial bundle θ_1 ([H] Proposition 3.10). Accordingly, the projection in $C(X, M_4(\mathbb{C}))$ that is given by the pointwise tensor product of p and p^- is equivalent to a 1-dimensional constant projection.

We finally define $p^-_n \in C(\prod_{j=1}^{\infty} S^2, \mathcal{K})$ as $p^-_n := p^- \circ \pi_n$.

The following well known result can be found for example in [L].

Lemma 2.1: Let X be a compact Hausdorff space. Let $C(X, \mathcal{K})$ denote the continuous functions from X into the compact operators \mathcal{K} on a separable Hilbert space \mathcal{H}. Let further $C_{*\text{-}s}(X, \mathcal{B}(\mathcal{H}))$ denote the \ast-strongly continuous (or strictly continuous) functions from X into the bounded operators on the Hilbert space \mathcal{H}. Then
\[\mathcal{M}(C(X, \mathcal{K})) \cong C_{*\text{-}s}(X, \mathcal{B}(\mathcal{H})). \]

We will often take advantage of identifying $C(X, \mathcal{K})$ with $C(X) \otimes \mathcal{K}$. For instance it is then immediate to see stability of $C(X, \mathcal{K})$.

For any stable C^*-algebra $A \cong A \otimes \mathcal{K}(\mathcal{H})$ we can embed the algebra of all bounded operators
\[\mathcal{B}(\mathcal{H}) \cong 1_{\mathcal{M}(A)} \otimes \mathcal{B}(\mathcal{H}) \]
into $\mathcal{M}(A)$ (see e.g. [L] Chapter 4). Hence, we can find a sequence $\{S_j\}_{j=1}^{\infty}$ of isometries with orthogonal range projections in $\mathcal{M}(A)$ such that the range projections sum up to the identity of $\mathcal{M}(A)$ in the strict topology:
\[S_j^* S_j = 1_{\mathcal{M}(A)} \text{ for all } j, \text{ and } \sum_{j=1}^{\infty} S_j S_j^* = 1_{\mathcal{M}(A)}. \]

Using such a sequence we can define infinite direct sums of projections in A:

For a sequence $\{p_j\}_{j=1}^{\infty}$ of projections in A we define
\[\bigoplus_{j=1}^{\infty} p_j := \sum_{j=1}^{\infty} S_j p_j S_j^* \in \mathcal{M}(A). \]

The sum is strictly convergent and hence defines a projection in the multiplier algebra of A, which, up to unitary equivalence, is independent of the chosen isometries ([R1], page 10). Also, its unitary equivalence class in the ordered Murray-von Neumann semigroup is independent of permutations of the direct summands (see Lemma 4.2 of [R1]).

For fixed projections $Q \in \mathcal{M}(A)$ we will denote the direct sum $Q \oplus Q \oplus \ldots \oplus Q$ of Q with itself m times by $m \cdot Q$.

We are now ready to specify the multiplier projections this paper is devoted to and which were considered by Rørdam in [R1] and [R3]: All our results are for multiplier projections given by
\[Q = \bigoplus_{j=1}^{\infty} p_{t_j}, \quad (*) \]
where each p_{t_j} is a tensor product of Bott projections as above.
3 Technical result

The following result is basically contained in [R1] by a combination of Proposition 3.2 with Proposition 4.5 from that paper. It makes it possible to check minorization of projections as in (\ast) by trivial projections in \(C(\prod_{j=1}^{\infty} S^2, K)\) in purely combinatorial terms. By a trivial projection we mean a projection that is equivalent to a constant one (i.e., any projection that corresponds to a trivial complex vector bundle). We will denote trivial 1-dimensional projections in \(C(\prod_{j=1}^{\infty} S^2, K)\) by \(g\). Recall that for any non-empty finite subset \(I\) of \(N\) we denote by \(p_I\) the tensor product of Bott projections over the coordinates given by \(I\).

Proposition 3.1: Let \(I_j, j \in N\), be finite subsets of \(N\), and consider the multiplier projection \(Q\) in \(M(C(\prod_{j=1}^{\infty} S^2, K))\) given by
\[
Q = \bigoplus_{j=1}^{\infty} p_{I_j}.
\]
Then the following statements are equivalent:

(i) \(g \not\leq Q = \bigoplus_{j=1}^{\infty} p_{I_j}\).

(ii) \(|\bigcup_{j \in F} I_j| \geq |F|\) for all finite subsets \(F \subseteq N\).

Proof. That (ii) implies (i) is the content of Proposition 4.5 (i) of [R1].

If, on the other hand, there is a finite subset \(F \subseteq N\) such that \(|\bigcup_{j \in F} I_j| < |F|\), consider the subprojection \(\bigoplus_{j \in F} p_{I_j}\) in \(C(\prod_{j=1}^{\infty} S^2, K)\). Let \(J := \bigcup_{j \in F} I_j\). With \(\pi_J\) denoting the projection onto the coordinates given by \(J\), we have \(\bigoplus_{j \in F} p_{I_j} = \pi_J^* (q)\) for some projection \(q \in C(\prod_{j=1}^{\mid J \mid} S^2, K)\). The projection \(q\) corresponds to a vector bundle of dimension \(|F|\) over \(|J| = |\bigcup_{j \in F} I_j|\)-many copies of \(S^2\). But then by [Hu], Theorem 8.1.2, this vector bundle majorizes a trivial bundle. In terms of projections this implies
\[
g = \pi_J^* (g) \preceq \pi_J^* (q) = \bigoplus_{j \in F} p_{I_j} \preceq Q.
\]

\[\Box\]

It is possible to generalize this result. The following proposition allows to count the precise number of trivial subprojections (while Proposition 3.1 is only good to check existence of some trivial subprojection).

Proposition 3.2: Let \(I_j, j \in N\), be finite subsets of \(N\), and consider the multiplier projection \(Q\) in \(M(C(\prod_{j=1}^{\infty} S^2, K))\) given by
\[
Q = \bigoplus_{j=1}^{\infty} p_{I_j}.
\]
Let \(m \in N\).

Then the following statements are equivalent:

(i) \(m \cdot g \not\leq Q \sim \bigoplus_{j=1}^{\infty} p_{I_j}\).

(ii) \(|F| < |\bigcup_{j \in F} I_j| + m\) for all finite subsets \(F \subseteq N\).
Proof. The implication from (i) to (ii) can be seen from standard stability properties of vector bundles, as follows: Assume there is some finite subset \(F \) such that

\[
|F| \geq \left| \bigcup_{j \in F} I_j \right| + m.
\]

Then \(\bigoplus_{j \in F} p_I \) is an \(|F|\)-dimensional subprojection of \(Q \) that can be considered, using the identification of projections with vector bundles and using a pullback by the appropriate coordinate projection (as in the proof of Proposition 3.1), as an \(|F|\)-dimensional vector bundle over a base space consisting of the product of \(\bigcup_{j \in F} I_j \) copies of \(S^2 \). Then Theorem 8.1.2 from [Hu] proves the existence of a trivial \(\left(|F| - \bigcup_{j \in F} I_j \right) \)-dimensional subbundle. This implies (again in terms of projections in \(\mathcal{M}(\Pi_{j=1}^{\infty} S^2, K) \)):

\[
m \cdot g \leq \left(|F| - \left| \bigcup_{j \in F} I_j \right| \right) \cdot g \leq \bigoplus_{j \in F} p_I \leq \bigoplus_{j=1}^{\infty} p_I = Q.
\]

Let us now prove that (ii) implies (i): By hypothesis all finite subsets \(F \subseteq \mathbb{N} \) satisfy

\[
|F| < \left| \bigcup_{j \in F} I_j \right| + m.
\]

Assume \(m \cdot g \leq Q \). Then \(m \cdot g \leq \bigoplus_{j=1}^{N} p_I \) for some \(N \in \mathbb{N} \) by Lemma 4.4 of [R1]. Let \(k_1, k_2, \ldots, k_{m-1} \) be natural numbers in \(\mathbb{N} \setminus \bigcup_{j=1}^{N} I_j \). Then by Lemma 2.3 of [KN] there exists a projection \(q \) such that

\[
q \oplus \left(p_{k_1}^{-1} \otimes p_{k_2}^{-1} \otimes \ldots \otimes p_{k_{m-1}}^{-1} \right) \sim m \cdot g \leq Q.
\]

Tensoring (pointwise) both sides by \(p_K := p_{k_1} \otimes p_{k_2} \otimes \ldots \otimes p_{k_{m-1}} \), it follows that

\[
\left(q \otimes p_{k_1} \otimes p_{k_2} \otimes \ldots \otimes p_{k_{m-1}} \right) \oplus g \leq \bigoplus_{j=1}^{\infty} p_I \otimes p_{k_1} \otimes p_{k_2} \otimes \ldots \otimes p_{k_{m-1}}.
\]

In particular,

\[
g \leq \bigoplus_{j=1}^{\infty} p_I \otimes p_K = \bigoplus_{j=1}^{\infty} p_{I_j \cup K}.
\]

By Proposition 3.1 this entails that there is some finite subset \(F \subseteq \mathbb{N} \) such that

\[
\left| \bigcup_{j \in F} I_j \cup K \right| < |F|.
\]

Hence,

\[
|F| > \left| \bigcup_{j \in F} I_j \cup K \right| = \left| \bigcup_{j \in F} I_j \right| + |K| = \left| \bigcup_{j \in F} I_j \right| + (m - 1).
\]

But the existence of a finite subset \(F \) satisfying

\[
|F| \geq \left| \bigcup_{j \in F} I_j \cup K \right| + 1 = \left| \bigcup_{j \in F} I_j \right| + m
\]

contradicts the hypothesis. \(\Box \)
If we want to consider multiples of the multiplier projection as well, we can apply

Corollary 3.3: Let $I_j, j \in \mathbb{N}$, be finite subsets of \mathbb{N}, and consider the multiplier projection Q in $\mathcal{M}(\prod_{j=1}^{\infty} S^2, \mathcal{K})$ given by

$$Q = \bigoplus_{j=1}^{\infty} p_{I_j}.$$

Let $m, n \in \mathbb{N}$.

Then the following statements are equivalent:

(i) $m \cdot g \preceq n \cdot Q \sim \bigoplus_{j=1}^{\infty} n \cdot p_{I_j}$.

(ii) $n|F| < \left| \bigcup_{j \in F} I_j \right| + m$ for all finite subsets $F \subseteq \mathbb{N}$.

Proof. Note, that in $n \cdot Q$ each index set I_j appears n times. Choosing the same set I_j several times does not increase the left-hand side of the inequality (ii) of Proposition 3.2, while it does increase the right-hand side of that inequality. Now the statement follows immediately from Proposition 3.2. \qed

4 Non-full multiplier projections

The combinatorial description of subequivalences makes it possible to prove the following useful result.

Lemma 4.1: If $N \cdot g \preceq \bigoplus_{j=1}^{\infty} p_{I_j}$ for all $N \in \mathbb{N}$, then

$$1 \preceq Q.$$

Proof. By Proposition 3.2 the hypothesis is equivalent to:

For all $N \in \mathbb{N}$ there is some finite subset $F \subseteq \mathbb{N}$ such that

$$|F| \geq \left| \bigcup_{j \in F} I_j \right| + N. \quad (***)$$

Let $G \subseteq \mathbb{N}$ be any finite subset of the natural numbers. We claim that there is then some finite subset $H \subseteq (\mathbb{N} \setminus G)$ such that

$$g \preceq \bigoplus_{j \in H} p_{I_j}.$$

To show this, apply the hypothesis (**) to the choice $|G| + 1$ for N: we obtain a finite subset $F \subseteq \mathbb{N}$ such that

$$|F| \geq \left| \bigcup_{j \in F} I_j \right| + |G| + 1.$$

Then

$$\left| \bigcup_{j \in F \setminus G} I_j \right| + 1 \leq \left| \bigcup_{j \in F} I_j \right| + 1 \leq |F| - |G|.$$

By Proposition 3.1 this implies that

$$g \preceq \bigoplus_{j \in F \setminus G} p_{I_j},$$

and we can take $H := F \setminus G$.

Using this intermediate result we begin to iterate:

Firstly by assumption we have $g \preceq \bigoplus_{j=1}^{m_1-1} p_{I_j}$, and therefore by Lemma 4.4 of \cite{R1},

$$g \preceq \bigoplus_{j=1}^{m_1-1} p_{I_j}$$

for some $m_1 \in \mathbb{N}$. But then with $G = \{1, 2, \ldots, (m_1 - 1)\}$ we can find, by application of the proven claim, some natural number $m_2 > m_1$ and $H \subseteq \{m_1, (m_1 + 1), \ldots, (m_2 - 1)\}$ such that

$$g \preceq m_2 - 1 \bigoplus_{j=m_1}^{m_2-1} p_{I_j}.$$

Iterating, we get a strictly increasing sequence of natural numbers $1 = m_0 < m_1 < m_2 < m_3 < \ldots$ and, for all $i \in \mathbb{N}$, we get a partial isometry $v_i \in C(\prod_{j=1}^\infty S^2, K)$ such that

$$g = v_i^* v_i \sim v_i v_i^* \preceq \bigoplus_{j=m_i-1}^{m_i-1} p_{I_j}.$$

The multiplier

$$V = \bigoplus_{i=1}^\infty v_i$$

then implements the subequivalence

$$\mathbb{1} \sim \infty \cdot g \preceq \bigoplus_{j=1}^\infty p_{I_j} = Q.$$

We can now prove the main theorem of this section, which is a combinatorial characterization for multiplier projections of the special form to be non-full.

Theorem 4.2: Let $Q = \bigoplus_{j=1}^\infty p_{I_j} \in \mathcal{M}(C(\prod_{j=1}^\infty S^2, K))$ be as above. Then the following statements are equivalent:

(i) Q is non-full.

(ii) $\forall m \in \mathbb{N} \exists N(m) \in \mathbb{N}$ such that $N(m) \cdot g \not\preceq m \cdot Q$.

(iii) $\forall m \in \mathbb{N} \exists N(m) \in \mathbb{N}$ such that $m |F| < |\bigcup_{j \in F} I_j| + N(m)$ for all finite subsets $F \subseteq \mathbb{N}$.

Proof. The equivalence between (ii) and (iii) follows from Proposition 3.3.

If we are in the situation of the condition (ii), then, in particular, $\mathbb{1} \not\preceq m \cdot Q$ for any natural number m and so Q cannot be full (see \cite{RLL}, Exercise 4.8). This proves that (ii) implies (i).

Finally assume that there exists some $m \in \mathbb{N}$ such that for all $N \in \mathbb{N}$ we have $N \cdot g \preceq m \cdot Q$. Then by Lemma 4.4 also $\mathbb{1} \preceq m \cdot Q$ and Q is full. So (i) implies (ii). \qed

Rephrasing the content of Theorem 4.2 we get the following interesting result.

Corollary 4.3: There exists a compact Hausdorff space X and a projection Q in $C_{\ast}(X, \mathcal{B}(\mathcal{H}))$, the multiplier algebra of $C(X, K)$, such that $Q(x) \in \mathcal{B}(\mathcal{H}) \setminus K$ for all $x \in X$, and Q is not full in $C_{\ast}(X, \mathcal{B}(\mathcal{H}))$.

7
In particular, the projection $Q(x)$ is full in the fiber over each $x \in X$, but Q is itself non-full. It follows from the results of Pimsner, Popa and Voiculescu in [PPV] that for obtaining such an example the space X is necessarily of infinite dimension.

Proof. Let $X = \prod_{j=1}^{\infty} S^2$. To show existence of the projection Q, choose pairwise disjoint subsets $I_j \subseteq \mathbb{N}$ such that $|I_j| = n$ and set

$$Q := \bigoplus_{j=1}^{\infty} p_{I_j} \in \mathcal{M}(C(X, \mathcal{K})).$$

We then have that $Q(x) \in \mathcal{B}(\mathcal{H}) \setminus \mathcal{K}$, since $\|p_j(x)\| = 1$ for all $x \in X$ and all $j \in \mathbb{N}$ (and since a strictly convergent sum of pairwise orthogonal elements in the compact operators \mathcal{K} belongs to \mathcal{K} if, and only if, the elements converge to 0 in norm (cf. [R1] Proof of Proposition 5.2)). So we only need to show that the index sets I_j satisfy the condition (iii) of Theorem 4.2; that is, we need to show that

$$\forall m \in \mathbb{N} \exists N(m) \in \mathbb{N} \text{ such that } m < \left| \bigcup_{j \in F} I_j \right| + N(m) \frac{m(m-1)}{|F|}$$

for all finite subsets $F \subseteq \mathbb{N}$.

Now

$$\frac{\left| \bigcup_{j \in F} I_j \right| + \frac{m(m-1)}{2}}{|F|} \geq \frac{\sum_{j=1}^{|F|} j + \frac{m(m-1)}{2}}{|F|} = \frac{|F||F|+1}{2} + \frac{m(m-1)}{2} = \frac{1}{2} \left(1 + |F| + \frac{m(m-1)}{|F|} \right)$$

and the last expression is minimized when $|F| \in \{(m-1), m\}$.

Hence,

$$\frac{\left| \bigcup_{j \in F} I_j \right| + \frac{m(m-1)}{2} + 1}{|F|} > \frac{\left| \bigcup_{j=1}^{m-1} I_j \right| + \frac{m(m-1)}{2}}{m-1} = \frac{m(m-1)}{2} + \frac{m(m-1)}{2} = m.$$

So we can choose $N(m) = \frac{m(m-1)}{2} + 1$.\hfill\Box

5 **Stably finite multiplier projections**

In this section we will show that every multiple of a non-full projection

$$Q = \bigoplus_{j=1}^{\infty} p_{I_j}$$

constructed as in Theorem 4.2 above (and, in particular, every multiple of the explicit projection of Corollary 4.3), is a finite projection. In fact, our results show that a multiplier projection Q of the special form is non-full if, and only if, it is stably finite (Corollary 5.4).

It is fairly easy to see that the projections $m \cdot Q$, where Q is one of the non-full projections from Theorem 4.2, cannot be properly infinite. This follows from the following lemma, together with the existence (Theorem 4.2) of a number $N(m) \in \mathbb{N}$ such that

$$N(m) \cdot g \notin m \cdot Q,$$

but $N(m) \cdot g \preceq l \cdot Q$ for sufficiently large l.

8
Lemma 5.1: Let A be a C^*-algebra and p and q two projections in $A \otimes K$ such that $p \preceq k \cdot q$, but $p \not\preceq m \cdot q$ for some $m < k$. Then q is not properly infinite.

Proof. Assume that q is properly infinite. Then

$$p \preceq k \cdot q = (q \oplus q) \oplus \ldots \oplus q$$

$$\preceq (q) \oplus q \oplus \ldots \oplus q = (k - 1) \cdot q$$

$$\preceq (k - 2) \cdot q \preceq \ldots \preceq m \cdot q,$$

in contradiction with the assumption.

It does not seem possible to see finiteness of these projections in a similarly easy way. To show finiteness we will need to give a somewhat complicated proof. The idea is the content of the following lemma and is essentially contained in the proof of Theorem 5.6 of [R1].

Lemma 5.2: Let B be a simple inductive limit C^*-algebra,

$$B_1 \xrightarrow{\varphi_1} B_2 \xrightarrow{\varphi_2} \ldots \xrightarrow{\varphi_i} B_i \xrightarrow{\varphi} \ldots \xrightarrow{\varphi_i} B$$

with injective connecting $*$-homomorphisms φ_j. Let q be a projection in B_1. If the image $\varphi_{i,1}(q)$ of the projection q is not properly infinite in any building block algebra B_i, then q must be finite.

Proof. The hypothesis that $\varphi_{i,1}(q) \in B_i$ is not properly infinite for any $i \in \mathbb{N}$ together with Proposition 2.3 of [R1] applied to the inductive sequence

$$qB_1q \xrightarrow{\varphi_{2,1}(q)B_2\varphi_{2,1}(q)} \ldots \xrightarrow{\varphi_{i,1}(q)B_i\varphi_{i,1}(q)} \ldots$$

implies that the image of q in the inductive limit algebra B cannot be properly infinite either. Now B is a simple C^*-algebra, in which by a result of Cuntz in [C], every infinite projection is properly infinite. Hence, the image of q in B is finite.

Now, injectivity of the connecting maps φ_j implies that q must be finite, too.

We can now prove the main result.

Theorem 5.3: Let

$$Q = \bigoplus_{j=1}^{\infty} p_{I_j} \in \mathcal{M}(C(\prod_{j=1}^{\infty} S^2, K))$$

be a multiplier projection as before. Suppose there is some $k \in \mathbb{N}$ such that $k \cdot g \not\preceq Q$.

Then Q is finite.

Proof. First we reduce to the case that $\mathbb{N} \setminus \bigcup_{j=1}^{\infty} I_j$ is infinite:

Consider the projection map $\rho : \prod_{j=1}^{\infty} S^2 \to \prod_{j=1}^{\infty} S^2$ onto the odd coordinates:

$$\rho(x_1, x_2, x_3, x_4, x_5, \ldots) = (x_1, x_3, x_5, \ldots).$$

9
Then the induced mapping $\rho^* : C(\prod_{j=1}^{\infty} S^2, K) \to C(\prod_{j=1}^{\infty} S^2, K)$ given by

$$\rho^*(f) = f \circ \rho$$

is injective and extends to an injective mapping between the multiplier algebras

$$\rho^* : \mathcal{M} \left(C(\prod_{j=1}^{\infty} S^2, K) \right) \to \mathcal{M} \left(C(\prod_{j=1}^{\infty} S^2, K) \right)$$

(to see this consult [L] Proposition 2.5 and use that $\rho^*(n \cdot g) \xrightarrow{n \to \infty} 1$, where g denotes a constant one-dimensional projection as before).

Now Q must be finite in $\mathcal{M}(C(\prod_{j=1}^{\infty} S^2, K))$, if $\rho^*(Q)$ is. Indeed, on supposing Q to be infinite, i.e. $Q \sim Q_0 < Q$ for some projection Q_0, injectivity of ρ^* implies $\rho^*(Q - Q_0) > 0$ and hence infiniteness of $\rho^*(Q)$.

But now $\rho^*(Q)$ is of the same form as Q, i.e.,

$$\rho^*(Q) = \bigoplus_{j=1}^{\infty} p_{I_j},$$

and the sets I_j of indices being used satisfy $\mathbb{N} \setminus \bigcup_{j=1}^{\infty} I_j \supseteq 2\mathbb{N}$, and in particular $\mathbb{N} \setminus \bigcup_{j=1}^{\infty} I_j$ is infinite, as desired.

After this reduction step we start the main part of the proof. By assumption we can find $k \in \mathbb{N} \cup \{0\}$ such that $k \cdot g \preceq Q$, but $(k+1) \cdot g \not\preceq Q$. Choose a partition $\{A_i\}_{i=-\infty}^{\infty}$ of \mathbb{N} such that each A_i is infinite and such that $A_0 = \bigcup_{j=1}^{\infty} I_j$, i.e., A_0 contains exactly all the indices used in our multiplier projection Q. Also, choose a partition $\{B_i\}_{i=-\infty}^{\infty}$ of A_{-1} with each B_i of cardinality k, except in the case $k = 0$ where we do not need the sets B_i at all.

For each $r \geq 0$, choose an injective map

$$\gamma_r : \mathbb{Z} \times A_r \to A_{r+1}.$$

We can now define an injective map $\nu : \mathbb{Z} \times \mathbb{N} \to \mathbb{N}$, by

$$\nu(j, l) = \gamma_r(j, l), \text{ for every } l \in A_r.$$

Injectivity of ν follows from injectivity of each γ_r and disjointness of the sets A_j.

Using the injective map ν, let us now define a *-homomorphism

$$\varphi : \mathcal{M}(C(\prod_{j=1}^{\infty} S^2, K)) \to \mathcal{M}(C(\prod_{j=1}^{\infty} S^2, K)).$$

The construction of this *-homomorphism is only a small variation of a mapping that M. Rørdam defined in his paper [R1] to construct “A simple C*-algebra with a finite and an infinite projection”. φ will depend on the natural number k from the hypothesis of the theorem. But the change of φ for varying k is minor, so we can take care of all cases at once. (Only the case $k = 0$ has to be treated separately, but this is actually exactly Rørdam’s map from [R1].)

For $j \leq 0$ and in the case $k \geq 1$ we define $\varphi_j : C(\prod_{j=1}^{\infty} S^2, K) \to C(\prod_{j=1}^{\infty} S^2, K)$ by

$$\varphi_j(f)(x_1, x_2, x_3, \ldots) = \tau(f(x_{\nu(j,1)}), x_{\nu(j,2)}, x_{\nu(j,3)}, x_{\nu(j,4)}, \ldots) \otimes p_{B_i})$$
with the finite sets $B_j \subseteq \mathbb{N}$ chosen above, and a chosen isomorphism $\tau : \mathcal{K} \otimes \mathcal{K} \to \mathcal{K}$. In the case $k = 0$ we simply define φ_j by

$$\varphi_j(f)(x_1, x_2, x_3, \ldots) = f(x_{\nu(j,1)}, x_{\nu(j,2)}, x_{\nu(j,3)}, x_{\nu(j,4)}, \ldots).$$

For $j \geq 1$ we define $\varphi_j : C(\prod_{j=1}^{\infty} S^2, \mathcal{K}) \to C(\prod_{j=1}^{\infty} S^2, \mathcal{K})$ by

$$\varphi_j(f)(x_1, x_2, x_3, \ldots) = \tau(f(c_{j,1}, c_{j,2}, \ldots, c_{j,j}, x_{\nu(j,j+1)}, x_{\nu(j,j+2)}, \ldots) \otimes p_{B_j \cup \{\nu(j,1), \nu(j,2), \ldots, \nu(j,j)\}})$$

with points

$$c_{1,1}, c_{2,1}, c_{2,2}, c_{3,1}, c_{3,2}, c_{3,3}, c_{4,1}, c_{4,2}, c_{4,3}, c_{4,4}, \ldots.$$

in S^2 chosen in such a way that for all $j \in \mathbb{N}$,

$$\{(c_{k,1}, c_{k,2}, \ldots, c_{k,j}) \mid k \geq j\} \text{ is dense in } \prod_{i=1}^{j} S^2.$$

(Here the case $k = 0$ just means that every set B_j is taken to be the empty set.)

After choosing a sequence of isometries $\{S_j\}_{j=-\infty}^{\infty}$ in $\mathcal{M}(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}))$ such that

$$S_j^* S_j = 1 \text{ for all } j \in \mathbb{Z} \text{ and } \sum_{j=-\infty}^{\infty} S_j S_j^* = 1,$$

define $\tilde{\varphi} : C(\prod_{j=1}^{\infty} S^2, \mathcal{K}) \to \mathcal{M}(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}))$ by

$$\tilde{\varphi} := \sum_{j=-\infty}^{\infty} S_j \varphi_j S_j^*.$$

Then by Proposition 8.3 recalling that the cardinality of each set B_j was chosen to be equal to k, and by the fact that $\varphi_j(g) \sim p_{B_j}$ for all $j \leq 0$, we get

$$\tilde{\varphi} ((k+1) \cdot g) \geq \bigoplus_{j=-\infty}^{0} (k+1) \cdot p_{B_j} \geq \bigoplus_{j=-\infty}^{0} g \sim 1.$$

Hence $\tilde{\varphi}(n \cdot g)$ converges strictly for $n \to \infty$ to a projection

$$F \sim \bigoplus_{j=-\infty}^{\infty} F_j \geq 1,$$

where

$$F_j = \begin{cases} \tau(1 \otimes p_{B_j}) & \text{for } j \leq 0 \text{ and } k \geq 1 \\ 1 & \text{for } j \leq 0 \text{ and } k = 0 \\ \tau \left(1 \otimes p_{B_j \cup \{\nu(j,1), \nu(j,2), \ldots, \nu(j,j)\}}\right) & \text{for } j \geq 1 \text{ and } k \geq 1 \\ \tau \left(1 \otimes p_{\{\nu(j,1), \nu(j,2), \ldots, \nu(j,j)\}}\right) & \text{for } j \geq 1 \text{ and } k = 0. \end{cases}$$

Here the map $\tilde{\tau} : \mathcal{B}(\mathcal{H}) \otimes \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ is the extension of τ to $\mathcal{B}(\mathcal{H}) \otimes \mathcal{B}(\mathcal{H})$, which exists because $\tau(e_n \otimes e_n) \to 1$ strictly (L)).
Since $F \succeq 1$, by Lemma 4.3 of [R1] $F \sim 1$ and hence there is an isometry $V \in \mathcal{M}(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}))$ such that the map
\[\varphi := V^* \phi V \]
extends to a unital mapping $\varphi : \mathcal{M}(C(\prod_{j=1}^{\infty} S^2, \mathcal{K})) \to \mathcal{M}(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}))$. (Here we are using [L] again.)

For every $0 \neq f$ there is some $\delta > 0$ and some open set
\[U = U_1 \times U_2 \times U_3 \times \ldots \times U_r \times S^2 \times S^2 \times \ldots \subseteq S^2 \times S^2 \times S^2 \times \ldots \times S^2 \times S^2 \times \ldots \]
such that $\|f_U\| \geq \delta$. By the density condition on the c_{ij} there are infinitely many $j \geq 0$ such that for any $x \in \prod_{j=1}^{\infty} S^2$,
\[\|\varphi_j(f)(x)\| \geq \delta > 0. \]
Hence $\varphi(f)(x) \in \mathcal{B}(\mathcal{H}) \setminus \mathcal{K}$ for all x and $\varphi(f) \in \mathcal{M}(C(\prod_{j=1}^{\infty} S^2, \mathcal{K})) \setminus C(\prod_{j=1}^{\infty} S^2, \mathcal{K})$.

In particular, φ is injective, and $C(\prod_{j=1}^{\infty} S^2, \mathcal{K})\varphi(f)C(\prod_{j=1}^{\infty} S^2, \mathcal{K})$ is norm dense in $C(\prod_{j=1}^{\infty} S^2, \mathcal{K})$. (The latter holds since $\varphi(f)(x) \neq 0$ for all $x \in \prod_{j=1}^{\infty} S^2$.)

We get that $(k + 1) \cdot g$ is an element in $C(\prod_{j=1}^{\infty} S^2, \mathcal{K})\varphi(f)C(\prod_{j=1}^{\infty} S^2, \mathcal{K})$. Further, $\varphi((k + 1) \cdot g) \succeq 1$, and so $\varphi^2(f)$ is full in $\mathcal{M}(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}))$.

This implies the simplicity of the inductive limit
\[B := \lim_{\to} \mathcal{M} \left(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}) \right), \varphi \right). \]

We have now arrived in the setting of Lemma 5.2 and it suffices to show that $\varphi^m(Q)$ is not properly infinite for all $m \in \mathbb{N}$. For this we define maps
\[\alpha_j : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N}), \quad j \in \mathbb{Z}, \]
\[\alpha_j(J) = \nu(j, J) \cup B_j \cup \{\nu(j, 1), \nu(j, 2), \ldots, \nu(j, j)\}, \]
with the convention that $\{\nu(j, 1), \nu(j, 2), \ldots, \nu(j, j)\} = \emptyset$ for $j \leq 0$. To simplify our computations let us introduce new notation and denote from now on $B_j \cup \{\nu(j, 1), \nu(j, 2), \ldots, \nu(j, j)\}$ simply by \bar{B}_j.

With these definitions, one has
\[\varphi(p_I) \sim \bigoplus_{j=-\infty}^{\infty} p_{\alpha_j(I)} = \bigoplus_{j=-\infty}^{\infty} p_{\nu(j,1),\ldots,\nu(j,j)} \bar{B}_j. \]

Set $\Gamma_0 := \{I_s \mid s \in \mathbb{N}\}$ and define inductively
\[\Gamma_{n+1} := \{\alpha_j(I) \mid j \in \mathbb{Z}, \ I \in \Gamma_n\}. \]

Then
\[\varphi^m(Q) \sim \bigoplus_{I \in \Gamma_m} p_I. \]

We will prove that $\varphi^m(Q)$ is not properly infinite by applying Rørdam’s criterion (Proposition 3.1), showing that for each $m \geq 1$ there is an injective map
\[t_m : \Gamma_m \to \mathbb{N} \]
such that $t_m(I) \in I$ for all $I \in \Gamma_m$. Once we have this map, it follows that
\[\varphi^m(Q) \sim \bigoplus_{I \in \Gamma_m} p_I \not\in g. \]
for any \(m \geq 1 \). But for each \(m \) the projection \(g \) is in the ideal of \(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}) \) given by

\[
\left(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}) \right) \varphi^m(Q) \left(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}) \right).
\]

Then \(g \preceq l \cdot \varphi^m(Q) \) for some \(l \in \mathbb{N} \) ([RLL] Exercise 4.8) and an application of Lemma 5.1 shows that none of the projections \(\varphi^m(Q), m \in \mathbb{N} \), is properly infinite. By Lemma 5.2 this implies that the projection \(Q \) is finite.

The maps \(t_m \) are defined inductively as follows: For \(m = 1 \), note that

\[
\Gamma_1 = \{ \nu(j, I_s) \cup \tilde{B}_j \mid j \in \mathbb{Z}, s \in \mathbb{N} \}.
\]

For each \(j \in \mathbb{Z} \), set

\[
\Gamma_j^j := \{ \nu(j, I_s) \cup \tilde{B}_j \mid s \in \mathbb{N} \} =: \{ J^j_s \mid s \in \mathbb{N} \}.
\]

Then

\[
\Gamma_1 = \bigcup_{j=-\infty}^{\infty} \Gamma_j^j = \{ J^j_s \mid s \in \mathbb{N}, j \in \mathbb{Z} \}, \quad \text{and} \quad \Gamma_j^j \cap \Gamma_j^{j_2} = \emptyset \quad \text{for} \quad j_1 \neq j_2.
\]

(The latter property holds, because \(\nu \) was chosen to be injective.)

Since \(k \cdot g \preceq Q \), but \((k + 1) \cdot g \not\preceq Q \), we know by Proposition 3.2 that for any finite subset \(F \subseteq \mathbb{N} \)

\[
\left| \bigcup_{s \in F} I_s \right| + k \geq |F|, \tag{***}
\]

and in the case \(k \geq 1 \) that there is some finite subset \(F_0 \) such that

\[
\left| \bigcup_{s \in F_0} I_s \right| + k = |F_0|.
\]

If \(k = 0 \), we set \(F_0 \) to be the empty set.

After choosing such a finite subset \(F_0 \), for any finite subset \(F \supseteq F_0 \) we must have

\[
\left| \left(\bigcup_{s \in F} I_s \right) \setminus \left(\bigcup_{s \in F_0} I_s \right) \right| \geq |F \setminus F_0|,
\]

since, otherwise, the finite subset \(F \) would violate the inequality (***). By injectivity of \(\nu \) we get for each \(j \in \mathbb{Z} \) that

\[
\left| \bigcup_{s \in F_0} \nu(j, I_s) \right| + k = |F_0|,
\]

and

\[
\left| \left(\bigcup_{s \in F} \nu(j, I_s) \right) \setminus \left(\bigcup_{s \in F_0} \nu(j, I_s) \right) \right| \geq |F \setminus F_0|.
\]

Then by Hall’s marriage theorem one can find for each \(j \) an injective mapping

\[
t_j^j : \Gamma_j^j \to \mathbb{N}
\]
such that for all $J^j_s = (\nu(j, I_s) \cup \tilde{B}_j) \in \Gamma^j_1$,

$$t_1^j(J^j_s) \in J^j_s,$$

and $t_1^j(J^j_s) \notin B_j$ whenever $s \notin F_0$.

(Using the cardinality of each $B_j \subseteq \tilde{B}_j$, $|B_j| = k$, we are able to construct the injective map

$$t_1^j : \{ J^j_s \mid s \in F_0 \} \to \{ J^j_s \mid s \in F_0 \}$$

successively in s, choosing different elements of B_j for different values of s.)

By injectivity of ν and pairwise disjointness of the sets B_j, $j \in \mathbb{Z}$, there is then an injective map

$$t_1 : \{ J^j_s \mid s \in \mathbb{N}, j \in \mathbb{Z} \} = \Gamma_1 \to \mathbb{N}.$$

We have finished defining an injective map $t_1 : \Gamma_1 \to \mathbb{N}$.

Inductively we define $t_{m+1} : \Gamma_{m+1} \to \mathbb{N}$ after definition of $t_m : \Gamma_m \to \mathbb{N}$ by

$$t_{m+1}(\alpha_j(I)) := \nu(j, t_m(I))$$

for $\alpha_j(I) \in \Gamma_{m+1}$ (and $I \in \Gamma_m$).

With this choice the map t_{m+1} is injective. Indeed, the equations

$$t_{m+1}(\alpha_j(I)) \parallel t_{m+1}(\alpha_j(\tilde{I}))$$

$$\nu(j, t_m(I)) \parallel \nu(\tilde{j}, t_m(\tilde{I}))$$

imply by injectivity of ν that

$j = \tilde{j}$, and $t_m(I) = t_m(\tilde{I})$.

By the induction hypothesis, t_m was chosen to be injective, and hence

$I = \tilde{I}$.

For each $m \in \mathbb{N}$ we ended up with an injective map

$$t_m : \Gamma_m \to \mathbb{N}$$

such that $t_m(I) \in I$ for all $I \in \Gamma_m$, which is all that was left to construct.

Corollary 5.4: Let

$$Q = \bigoplus_{j=1}^{\infty} p_{I_j} \in \mathcal{M}(C(\prod_{j=1}^{\infty} S^2, \mathcal{K})).$$

Then Q is non-full if, and only if, Q is stably finite.

Proof. If all multiples $n \cdot Q$ of Q are finite, then $n \cdot Q \not\preceq 1$ for any $n \in \mathbb{N}$ and Q can’t be full. The converse direction follows from combining Theorem 5.3 with Theorem 4.2.

If a multiplier projection of the form

$$Q = \bigoplus_{j=1}^{\infty} p_{I_j}$$

is full, then $1 \preceq m \cdot Q$ for some $m \in \mathbb{N}$. Hence some multiple of Q is properly infinite. The projection Q itself might be finite though (see [R1]).

On the other hand if Q is non-full, then Q is stably finite by Corollary 5.4.

Summarized, the results state that every multiplier projection in $\mathcal{M}(C(\prod_{j=1}^{\infty} S^2, \mathcal{K}))$ of the special form (*) considered above is either non-full and stably finite, or full and stably properly infinite.
References

[B] Lawrence G. Brown; *Semicontinuity and multipliers of C*-algebras*; Canadian Journal of Mathematics 40:4 (1988), pp. 865–988

[C] Joachim Cuntz; *The structure of multiplication and addition in simple C*-algebras*; Mathematica Scandinavia 40 (1977), pp. 215–233

[H] Allen Hatcher; *Vector bundles and K-Theory*; preprint (www.math.cornell.edu/ hatcher/VBKT/VB.pdf), Version 2.1 May 2009

[HRW] Ilan Hirshberg, Mikael Rørdam, Wilhelm Winter; *C₀(X)-algebras, stability and strongly self-absorbing C*-algebras*; Mathematische Annalen 339 (2007), pp. 695–732

[Hu] Dale Husemoller; *Fibre Bundles*; Graduate Texts in Mathematics, Third Edition, Springer Verlag New York Berlin Heidelberg 1966

[JS] Xinhui Jiang, Hongbing Su; *On a simple projectionless C*-algebra*; American Journal of Mathematics 121, No. 2 (1999), pp. 359–413

[K] Max Karoubi; *Lectures on K-theory*; Contemporary developments in algebraic K-theory, ICTP Lecture Notes, XV, Abdus Salam International Center of Theoretical Physics, Trieste, (2004), pp. 1–95

[KN] Dan Kucerovsky, Ping Wong Ng; *A simple C*-algebra with perforation and the corona factorization property*; Journal of Operator Theory 61, No. 2 (2009), pp. 227–238

[KN2] Dan Kucerovsky, Ping Wong Ng; *S-regularity and the corona factorization property*; Mathematica Scandinavica, 99 (2006), pp. 204–216

[L] E. Christopher Lance; *Hilbert C*-Modules: A Toolkit for Operator Algebraists*; London Mathematical Society Lecture Notes Series 210, Cambridge University Press (1995)

[M] James R. Munkres; *Topology*; 2nd edition, Upper Saddle River, NJ: Prentice Hall (2000, 1975)

[Ng] P. W. Ng; *The corona factorization property*; Cont. Math. (AMS) 414 (2006), pp. 97–111

[PPV] Mihai Pimsner, Sorin Popa, Dan-Virgil Voiculescu; *Homogeneous C*-extensions of C(X) ⊗ K(H)*; Journal Operator Theory 1 (1979), pp. 55–108

[R1] Mikael Rørdam; *A simple C*-algebra with a finite and an infinite projection*; Acta Mathematica 191 (2003), pp.109–142

[R2] Mikael Rørdam; *Stability of C*-algebras is not a stable property*; Documenta Mathematica, Journal of the DMV, 2 (1997), pp. 375–386.

[R3] Mikael Rørdam; *Extensions of stable C*-algebras*; Documenta Mathematica, Journal of the DMV 6 (2001), pp. 241–246

[R4] Mikael Rørdam; *The stable and the real rank of Z-absorbing C*-algebras*; International Journal of Mathematics, 15, No. 10 (2004), pp. 1065–1084

[R5] Mikael Rørdam; *On sums of finite projections*; Operator Algebras and Operator Theory (ed. Liming Ge, Huaxin Lin, Zhong-Jin Ruan, Dianzhou Zhang, Shuang Zhang), Contemporary Mathematics 228 (1998), pp. 327–340

[RLL] Mikael Rørdam, Flemming Larsen, Niels Jakob Laustsen; *An Introduction to K-Theory for C*-Algebras*; 256 pp., London Mathematical Society, Student Text 49, Cambridge University Press, Cambridge (2000)