BRUALDI-TYPE INEQUALITIES ON THE MINIMUM EIGENVALUE FOR THE FAN PRODUCT OF M-TENSORS

GANG WANG∗, YIJU WANG AND YUAN ZHANG

School of Management Science, Qufu Normal University
Rizhao, Shandong 276826, China

(Communicated by Bin Li)

Abstract. In this paper, we focus on some inequalities for the Fan product of M-tensors. Based on Brualdi-type eigenvalue inclusion sets of M-tensors and similarity transformation methods, we establish Brualdi-type inequalities on the minimum eigenvalue for the Fan product of two M-tensors. Furthermore, we discuss the advantages of different Brualdi-type inequalities. Numerical examples verify the validity of the conclusions.

1. Introduction. Let \(\mathbb{C}(\mathbb{R}) \) be the set of all complex (real) numbers, \(\mathbb{R}_+(\mathbb{R}_{++}) \) be the set of all nonnegative (positive) numbers, \(\mathbb{C}^n(\mathbb{R}^n) \) be the set of all dimension \(n \) complex (real) vectors, and \(\mathbb{R}_n^+(\mathbb{R}_{n+}^+) \) be the set of all dimension \(n \) nonnegative (positive) vectors. An \(m \)-order \(n \)-dimensional tensor \(A = (a_{i_1i_2\ldots i_m}) \) is a higher-order generalization of matrices, which consists of \(n^m \) entries:
\[
a_{i_1i_2\ldots i_m} \in \mathbb{R}, \quad i_k \in N = \{1, 2, \ldots, n\}, \quad k = 1, 2, \ldots, m.
\]
\(A \) is called nonnegative (positive) if \(a_{i_1i_2\ldots i_m} \in \mathbb{R}_+(a_{i_1i_2\ldots i_m} \in \mathbb{R}_{++}) \).

Tensor eigenvalue problems have attracted much attention in recent decades due to their wide applications in medical resonance imaging, higher-order Markov chains, positive definiteness of even-order multivariate forms in automatical control, blind source separation, see [1, 7, 8, 10, 14, 15]. Fan product and Hadamard product of tensors arises in a wide variety of ways, such as trigonometric equation kernel, the weak minimum principle in partial differential equations, and characteristic functions in probability theory, see [4, 9, 10]. For example, in the study of structured tensors, it is known that strong Hankel tensors, complete Hankel tensors, completely positive tensors and \(H \)-tensors are closed under Hadamard product and Fan product [17, 25, 31]. As a pioneer in the study of the Fan product, Horn et al. [9] proposed lower bounds on the minimum eigenvalue for the Fan product of two \(M \)-matrices. Improved results can be founded in [5, 12, 13, 29]. Recently, matrices with special structures such as \(M \)-matrices, \(Z \)-matrices and nonnegative matrices have been extended to higher order tensors and these are becoming the focus of tensor in recent research [6, 11, 19, 20, 23, 25, 26, 27, 28, 30]. Based on Gershgorin-type eigenvalue inclusion sets and Perron-Frobenius theorems for nonnegative tensors.

2020 Mathematics Subject Classification. Primary: 15A18, 15A42.

Key words and phrases. Fan product, nonnegative tensors, \(M \)-tensors.

This work was supported by the Natural Science Foundation of China (11671228) and the Natural Science Foundation of Shandong Province (ZR2016AM10).

∗ Corresponding author: Gang Wang.
Sun et al. [18] investigated some inequalities for the Hadamard product of tensors and obtained some bounds on the spectral radius, and used them to estimate the spectral radius of a directly weighted hypergraph. Wang et al. [21, 22] established lower bounds on the minimum eigenvalues for the Fan product of two M-tensors based on its algebra properties [28]. Meanwhile, it is noted that Brualdi-type inclusion set (Brauer-type inclusion set) is tighter than Gershgorin-type inclusion set [2, 3]. Motivated by these observations, we want to establish Brualdi-type (Brauer-type) inequalities for the Fan product of M-tensors, and further discuss comparisons among different Brualdi-type (Brauer-type) inequalities.

This paper is organized as follows. In Section 2, we introduce important notation and recall preliminary results on tensor analysis. In Section 3, we establish Brualdi-type inequalities on the minimum eigenvalues for the Fan product when $\Gamma(A \star B)$ is weakly connected. Furthermore, Brauer-type inequalities are proposed on the minimum eigenvalues for the Fan product when $\Gamma(A \star B)$ may be not weakly connected. Numerical examples verify the validity of the conclusions.

2. Notation and preliminaries. We start this section with some fundamental notion and properties related to eigenvalue of a tensor [11, 16], which are needed in the subsequent analysis.

Definition 2.1. Let A be an m-order n-dimensional tensor. Assume that Ax^{m-1} is not identical to 0. We say that $(\lambda, x) \in \mathbb{C} \times (\mathbb{C}^n \setminus \{0\})$ is an eigenvalue-eigenvector of A if

$$Ax^{m-1} = \lambda x^{m-1},$$

where $(Ax^{m-1})_i = \sum_{i_2, \ldots, i_m=1}^n a_{i_1 \ldots i_m} x_{i_2} \ldots x_{i_m}$, $x^{[m-1]} = [x_1^{m-1}, x_2^{m-1}, \ldots, x_n^{m-1}]^T$, and (λ, x) is called an H-eigenpair if they are both real.

Friedland et al. [6] defined weakly irreducible polynomial maps and weakly primitive polynomial maps by the connectivity of a graph associated with a polynomial map.

Given a tensor $A = (a_{i_1 \ldots i_m})$, we associate A with a digraph Γ_A as follows. The vertex set of Γ_A is $V(A) = \{1, \ldots, n\}$ and the arc set of Γ_A is $E(A) = \{(i, j) : a_{i_1 \ldots i_m} \neq 0, j \in \{i_2, \ldots, i_m\} \neq \{i, \ldots, i\}\}$. A directed graph Γ_A is called weakly connected if for each vertex $v_i \in V$, there exists a circuit such that v_i belongs to the circuit. A directed graph Γ_A is called strongly connected if for each ordered pair of distinct vertices v_i and v_j, there is a path from v_i to v_j. Further, the tensor A is called weakly irreducible if the directed graph Γ_A is strongly connected.

The Perron-Frobenius theorems for weakly irreducible nonnegative tensors have been established in [6].

Lemma 2.2. Let A be a weakly irreducible nonnegative tensor of order m and dimension n. Then, there exists a unique x up to a multiplicative constant such that $(\rho(A), x)$ is a positive eigenpair.

The following specially structured tensors are extended from matrices [4, 28].

Definition 2.3. Let A and I be m-order n-dimensional tensors.

(i) We call $\sigma(A)$ as the set of all eigenvalues of A. Assume $\sigma(A) \neq \emptyset$. Then the minimum eigenvalue A is denoted by

$$\tau(A) = \min\{\lambda : \lambda \in \sigma(A)\}.$$
We call A as a Z-tensor if it can be written as $A = cI - B$, where $c > 0$, I is a unit tensor with entries
\[\delta_{i_1 i_2 \ldots i_m} = \begin{cases} 1, & \text{if } i_1 = i_2 = \cdots = i_m \\ 0, & \text{otherwise} \end{cases} \]
and B is a nonnegative tensor. Furthermore, if $c \geq \rho(B)$, then A is said to be an M-tensor. A is a weakly irreducible Z-tensor if B is weakly irreducible.

Note that all the off-diagonal entries of a Z-tensor are non-positive and the (strong) M-tensor is closely linked with the diagonal dominance defined below [28].

Definition 2.4. For an m-order n-dimensional tensor A, it is called diagonally dominant if
\[|a_{i_1 \ldots i_m}| \geq \sum_{\delta_{i_2 \ldots i_m} = 0} |a_{i_{i_2} \ldots i_{i_m}}|, \quad \forall i \in N. \]

Tensor A is called strictly diagonally dominant if the strict inequalities hold for all $i \in N$.

Let A be an m-order n-dimensional tensor and $D = \text{diag}(d_1, \ldots, d_n)$ be a positive diagonal matrix. Set
\[A_D = A \cdot D^{-(m-1)} \overline{D} \cdots \overline{D} \]
with $(A_D)_{i_1 \ldots i_m} = a_{i_1 \ldots i_m} d_{i_1}^{-(m-1)} d_{i_2} \ldots d_{i_m}$.

Lemma 2.5. [31] Suppose A is a Z-tensor and its all diagonal elements are non-negative (positive). Then, A is an (strong) M-tensor if and only if there exists a positive diagonal matrix D such that $B = A \cdot D^{-(m-1)} \overline{D} \cdots \overline{D}$ is (strictly) diagonally dominant.

Lemma 2.6. [27] Let A and B be order m dimension n tensors. If there is a diagonal nonsingular matrix D such that $B = A \cdot D^{-(m-1)} \overline{D} \cdots \overline{D}$, then they have the same eigenvalues.

Bu et al. [2, 3] gave Brualdi-type eigenvalue inclusion sets and Brauer-type eigenvalue inclusion sets for weakly connected tensors and general tensors.

Lemma 2.7. (Theorem 3.1 of [2]) Let $A = (a_{i_1 \ldots i_m})$ be an m-order n-dimensional tensor such that Γ_A is weakly connected. Then,
\[\sigma(A) \subseteq \bigcup_{\gamma \in C(\Delta)} \{ z \in C : \prod_{i \in \gamma} |z - a_{i \ldots i}| \leq \prod_{i \in \gamma} r_i(A) \}. \]
where $r_i(A) = \sum_{\delta_{i_1 \ldots i_m} = 0} |a_{i_{i_1} \ldots i_m}|$.

Lemma 2.8. (Theorem 4.1 of [3]) Let $A = (a_{i_1 \ldots i_m})$ be an m-order n-dimensional tensor with $r_{i_j}(A) \neq 0$ for all $i \in N$. Then
\[\sigma(A) \subseteq \bigcup_{(a_{i_1 \ldots i_m} \neq 0, \forall j \in \{1, \ldots, n\}) \neq (1, \ldots, 1)} \{ z \in C : \prod_{j=1}^{m} |z - a_{j \ldots j}| \leq \prod_{j=1}^{m} r_{i_j}(A) \}. \]

To end this section, we give the definition of the Fan product for tensors.
Definition 2.9. Let \mathcal{A} and \mathcal{B} be m-order n-dimensional tensors. Fan product of \mathcal{A} and \mathcal{B} is defined by $\mathcal{A} \star \mathcal{B} = (c_{i_1 i_2 \ldots i_m})$, where
\[
c_{i_1 i_2 \ldots i_m} = \begin{cases} a_{i_1 \ldots i}, & \text{if } i_1 = i_2 = \ldots = i_m = i, \\ -|a_{i_1 i_2 \ldots i_m} b_{i_1 i_2 \ldots i_m}|, & \text{otherwise.} \end{cases}
\]

3. Inequalities for the Fan product of M-tensors. In this section, we shall establish Brualdi-type results on the minimum eigenvalue for Fan product of M-tensors. To this end, we present several important lemmas.

Lemma 3.1. Let $\mathcal{A} = (a_{i_1 i_2 i_3 \ldots i_m})$ be an m-order n-dimensional M-tensor such that $\Gamma_\mathcal{A}$ is weakly connected. Then, there exists a circuit $\gamma \in C(\mathcal{A})$ such that
\[
\prod_{i \in \gamma} (a_{i_1 \ldots i} - \tau(\mathcal{A})) \leq \prod_{i \in \gamma} \tilde{r}_i(\mathcal{A}),
\]
where $\tilde{r}_i(\mathcal{A}) = \sum_{\delta_{i_1 i_2 \ldots i_m} = 0} -a_{i_1 i_2 \ldots i_m}$.

Proof. Letting $\tau(\mathcal{A})$ be the minimum eigenvalue of \mathcal{A}, from Lemma 2.7, we obtain
\[
\prod_{i \in \gamma} |a_{i_1 \ldots i} - \tau(\mathcal{A})| \leq \prod_{i \in \gamma} r_i(\mathcal{A}),
\]
where $r_i(\mathcal{A}) = \sum_{\delta_{i_1 i_2 \ldots i_m} = 0} |a_{i_1 i_2 \ldots i_m}|$. Since \mathcal{A} is a Z-tensor, from Lemma 4.1 of [18], one has
\[
\tau(\mathcal{A}) \leq \min_{i \in N} a_{i_1 \ldots i_1} \text{ and } \tilde{r}_i(\mathcal{A}) = r_i(\mathcal{A}).
\]
So, (2) is equivalent to
\[
\prod_{i \in \gamma} (a_{i_1 \ldots i} - \tau(\mathcal{A})) \leq \prod_{i \in \gamma} \tilde{r}_i(\mathcal{A}).
\]

Lemma 3.2. Let \mathcal{A} be a weakly irreducible M-tensor of order m dimension n. Then, there exists a positive vector u such that
\[
\mathcal{A} u^{m-1} = \tau(\mathcal{A}) u^{[m-1]}. \]

Proof. Since \mathcal{A} is a weakly irreducible Z-tensor, there exist a real number $s > 0$ and a weakly irreducible nonnegative tensor Q such that
\[
\mathcal{A} = s\mathcal{I} - Q \text{ and } \rho(Q) = s - \tau(\mathcal{A}),
\]
where $s \geq \rho(Q)$. It follows from weak irreducibility of Q and Lemma 2.2 that there exists a positive vector u such that
\[
Q u^{m-1} = \rho(Q) u^{[m-1]} = (s - \tau(\mathcal{A})) u^{[m-1]}.
\]
Hence,
\[
(s\mathcal{I} - Q) u^{m-1} = \tau(\mathcal{A}) u^{[m-1]},
\]
which implies
\[
\mathcal{A} u^{m-1} = \tau(\mathcal{A}) u^{[m-1]}.
\]

Lemma 3.3. Let \mathcal{A} and \mathcal{B} be two M-tensors of order m dimension n. Then, $\mathcal{A} \star \mathcal{B}$ is an M-tensor. Furthermore, if either \mathcal{A} or \mathcal{B} is a strong M-tensor, then $\mathcal{A} \star \mathcal{B}$ is a strong M-tensor.
Proof. By the definition of $A \star B$, it holds that
$$A \star B = \begin{cases} a_{i_1 \ldots i_m}b_{i_1 \ldots i_m}, & \text{if } i_2 = i_3 = \ldots = i_m = i, \\ -|a_{i_1 \ldots i_m}b_{i_1 \ldots i_m}|, & \text{otherwise}. \end{cases}$$

Since A and B are M-tensors, by Lemma 2.6, there exist positive diagonal matrices C, D such that
$$P = A \cdot C^{-(m-1)}a_1 \ldots a_m, \quad Q = B \cdot D^{-(m-1)}a_1 \ldots a_m$$
with
$$|p_{i_2 \ldots i_m}| = |a_{i_1 \ldots i_m}| \geq \sum_{i_{i_2 \ldots i_m}=0} |a_{i_1 \ldots i_m}| \geq \sum_{i_{i_2 \ldots i_m}=0} |a_{i_1 \ldots i_m}|C_{i_1 \ldots i_m},$$

$$|q_{i_2 \ldots i_m}| = |b_{i_1 \ldots i_m}| \geq \sum_{i_{i_2 \ldots i_m}=0} |b_{i_1 \ldots i_m}| = \sum_{i_{i_2 \ldots i_m}=0} |b_{i_1 \ldots i_m}|D_{i_1 \ldots i_m}.$$

Certainly,
$$|p_{i_1 \ldots i_m}q_{i_2 \ldots i_m}| = |a_{i_1 \ldots i_m}b_{i_1 \ldots i_m}| \geq \sum_{i_{i_2 \ldots i_m}=0} (|p_{i_1 \ldots i_m}|C_{i_1 \ldots i_m}) \sum_{i_{i_2 \ldots i_m}=0} (|q_{i_2 \ldots i_m}|D_{i_2 \ldots i_m}) \geq \sum_{i_{i_2 \ldots i_m}=0} (|p_{i_1 \ldots i_m}|C_{i_1 \ldots i_m}) \sum_{i_{i_2 \ldots i_m}=0} (|q_{i_2 \ldots i_m}|D_{i_2 \ldots i_m}) \geq \sum_{i_{i_2 \ldots i_m}=0} |p_{i_1 \ldots i_m}q_{i_2 \ldots i_m}|(c_{i_1 d_1} \ldots c_{i_m d_m}).$$

From (4), there exists a positive diagonal matrix $U = \text{diag}(c_1 d_1, c_2 d_2, \ldots, c_n d_n)$ such that
$$|p_{i_1 \ldots i_m}q_{i_2 \ldots i_m}| \geq \sum_{i_{i_2 \ldots i_m}=0} |p_{i_1 \ldots i_m}q_{i_2 \ldots i_m}|(u_i)^{(m-1)}u_{i_2} \ldots u_{i_m}.$$

It follows from Lemma 2.5 that $A \star B$ is an M-tensor. Similar to the argument for the first conclusion, we can obtain the second conclusion. \hfill \Box

3.1. $\Gamma(A \star B)$ is weakly connected. Based on the characterizations on the minimum eigenvalue of M-tensors, we propose lower bounds on minimum eigenvalue for the Fan product of two weakly connected M-tensors.

Theorem 3.4. Let A and B be two strong M-tensors of order m and dimension n. Fan product $A \star B$ is an M-tensor such that $\Gamma(A \star B)$ is weakly connected. For any $\gamma \in C(A \star B)$, then
$$\tau(A \star B) \leq \min_{i \in N} a_{i_1 \ldots i_m},$$

$$\prod_{i \in \gamma}(a_{i_1 \ldots i_m} - \tau(A \star B)) \leq \max_{\gamma \in C(A \star B)} \prod_{i \in \gamma}(a_{i_1 \ldots i_m} - \tau(A))(b_{i_1 \ldots i_m} - \tau(B)),$$

where $C(A \star B)$ is the set of circuits in $\Gamma(A \star B)$.

Proof. From Lemma 4.1 of [18], (5) holds. Next, we focus on (6). For this purpose, we break the proof into two cases.

Case 1. A and B are weakly irreducible. From Lemma 3.2, there exist positive vector u, v such that
$$a_{1 \ldots 1}v^{(m-1)} + \sum_{\delta_{i_2 \ldots i_m}=0} a_{i_1 \ldots i_m}u_{i_2} \ldots u_{i_m} = \tau(A)u_i^{(m-1)},$$
\[b_{1 \ldots i_{m}}^{[m-1]} + \sum_{\delta_{i_{12} \ldots i_{m}} = 0} b_{i_{1}i_{2} \ldots i_{m}} v_{i_{2}} \ldots v_{i_{m}} = \tau(B)v_{i}^{[m-1]} \]. \tag{8} \]

Set \(D = \text{diag}(u_{1}v_{1}, \ldots, u_{n}v_{n}) \). It is obvious that \(D \) is a positive diagonal matrix. Thus, \(\sigma(A \ast B) = \sigma(D^{-m}(A \ast B)D) \). By Lemma 3.1, (7) and (8), there exists a circuit \(\gamma \in C(A \ast B) \) such that

\[
\prod_{i \in \gamma} (a_{i \ldots i} - \tau(A \ast B)) \leq \prod_{i \in \gamma} \sum_{\delta_{i_{12} \ldots i_{m}} = 0} \frac{a_{i_{1}i_{2} \ldots i_{m}} b_{i_{1}i_{2} \ldots i_{m}} u_{i_{2}} \ldots u_{i_{m}} v_{i_{2}} \ldots v_{i_{m}}}{u_{i}^{[m-1]} v_{i}^{[m-1]}} \\
\leq \prod_{i \in \gamma} \sum_{\delta_{i_{12} \ldots i_{m}} = 0} \frac{-a_{i_{1}i_{2} \ldots i_{m}} u_{i_{2}} \ldots u_{i_{m}}}{u_{i}^{[m-1]}} \sum_{\delta_{i_{12} \ldots i_{m}} = 0} \frac{-b_{i_{1}i_{2} \ldots i_{m}} v_{i_{2}} \ldots v_{i_{m}}}{v_{i}^{[m-1]}} \\
= \prod_{i \in \gamma} (a_{i \ldots i} - \tau(A))(b_{i \ldots i} - \tau(B)). \tag{9} \]

Due to the uncertainty of \(\gamma \in C(A \ast B) \), (6) is established.

Case 2. Either \(A \) or \(B \) is weakly reducible. Let \(S \) be an order \(m \) dimension \(n \) tensor with

\[s_{i_{1}i_{2} \ldots i_{m}} = \begin{cases} 1, & \text{if } i_{2} = i_{3} = \cdots = i_{m} \neq i, \\ 0, & \text{otherwise}. \end{cases} \]

Then both \(A - \epsilon S \) and \(B - \epsilon S \) are weakly irreducible tensors for any \(\epsilon > 0 \). Now, we claim that \(A - \epsilon S \) and \(B - \epsilon S \) are both strong \(M \)-tensors when \(\epsilon > 0 \) is sufficiently small. Since \(A, B \) are strong \(M \)-tensors, there exist positive diagonal matrices \(C, D \) such that

\[P = A \cdot C^{-(m-1)} \underbrace{C \ldots C}_{m-1}, \quad Q = B \cdot D^{-(m-1)} \underbrace{D \ldots D}_{m-1} \]

with

\[|p_{i \ldots i}| = |a_{i \ldots i}| > \sum_{\delta_{i_{12} \ldots i_{m}} = 0} |a_{i_{1}i_{2} \ldots i_{m}}| = \sum_{\delta_{i_{12} \ldots i_{m}} = 0} |p_{i_{1}i_{2} \ldots i_{m}} c_{i_{1}}^{-(m-1)} c_{i_{2}} \ldots c_{i_{m}}|, \]

\[|q_{i \ldots i}| = |b_{i \ldots i}| > \sum_{\delta_{i_{12} \ldots i_{m}} = 0} |b_{i_{1}i_{2} \ldots i_{m}}| = \sum_{\delta_{i_{12} \ldots i_{m}} = 0} |q_{i_{1}i_{2} \ldots i_{m}} d_{i_{1}}^{-(m-1)} d_{i_{2}} \ldots d_{i_{m}}|. \]

Set

\[L = \max_{i \neq j} \left\{ \frac{|c_{i}^{[m-1]}|}{c_{i_{1}i_{2} \ldots i_{m}}}, \frac{|d_{i}^{[m-1]}|}{d_{i_{1}i_{2} \ldots i_{m}}} \right\} \]

and

\[\epsilon_{0} = \min_{i \neq j} \left\{ \frac{|a_{i \ldots i}| - \sum_{\delta_{i_{12} \ldots i_{m}} = 0} |a_{i_{1}i_{2} \ldots i_{m}} c_{i_{1}}^{-(m-1)} c_{i_{2}} \ldots c_{i_{m}}|}{(n-1)L}, \frac{|b_{i \ldots i}| - \sum_{\delta_{i_{12} \ldots i_{m}} = 0} |b_{i_{1}i_{2} \ldots i_{m}} d_{i_{1}}^{-(m-1)} d_{i_{2}} \ldots d_{i_{m}}|}{(n-1)L} \right\}. \]

Then for any \(0 < \epsilon < \epsilon_{0} \), it holds that \(A - \epsilon S \) and \(B - \epsilon S \) are two strong \(M \)-tensors. Noting that \(A \) and \(B \) are two strong \(M \)-tensors, for the circuit \(\gamma \in C(A \ast B) \), we get \(\gamma \in C((A - \epsilon S) \ast (B - \epsilon S)) \). Substituting \(A - \epsilon S \) and \(B - \epsilon S \) for \(A \) and \(B \) and letting \(\epsilon \rightarrow 0 \), we can obtain the desired results by the continuity of \(\tau(A - \epsilon S) \) and \(\tau(B - \epsilon S) \).

By making use of the information of the absolute maximum in the off-diagonal elements, we are at the position to establish the following theorem.
Theorem 3.5. Let A and B be two strong M-tensors of order m and dimension n. Fan product $A \ast B$ is an M-tensor such that $\Gamma_{(A \ast B)}$ is weakly connected. For any $\gamma \in C(A \ast B)$, then

$$\tau(A \ast B) \leq \min_{i \in N} a_i b_i,$$

(10)

$$\prod_{i \in \gamma} (a_{i_1 \ldots i_m} - \pi(A \ast B)) \leq \max_{\gamma \in C(A \ast B)} \prod_{i \in \gamma} (\alpha_i \beta_i (a_{i_1 \ldots i} - \pi(A)) (b_{i_1 \ldots i} - \pi(B)))^{\frac{1}{2}},$$

where $\alpha_i = \max_{\delta_{i_1 \ldots i_m} = 0} -a_{i_1 \ldots i_m}$ and $\beta_i = \max_{\delta_{i_1 \ldots i_m} = 0} -b_{i_1 \ldots i_m}$.

Proof. The following argument is divided into two cases.

Case 1. A and B are weakly irreducible. From Lemma 3.2, there exist two positive eigenvectors $u = (u_i^T)$ corresponding to $\tau(A)$ and $\tau(B)$ such that

$$a_{i_1 \ldots i} u_i^{2[m-1]} + \sum_{\delta_{i_1 \ldots i_m} = 0} a_{i_1 \ldots i_m} u_{i_2}^2 \ldots u_{i_m}^2 = \tau(A) u_i^{2[m-1]},$$

(11)

$$b_{i_1 \ldots i} v_i^{2[m-1]} + \sum_{\delta_{i_1 \ldots i_m} = 0} b_{i_1 \ldots i_m} v_{i_2}^2 \ldots v_{i_m}^2 = \tau(B) v_i^{2[m-1]},$$

(12)

Without loss of generality, assume that $u, v \in \mathbb{R}^n_{++}$. Set $D = \text{diag}(u_1 v_1, \ldots, u_n v_n)$. Thus, $\sigma(A \ast B) = \sigma(D^{1-m}(A \ast B D))$. By Lemma 3.1, (11) and (12), there exists a circuit $\gamma \in C(A \ast B)$ such that

$$\prod_{i \in \gamma} (a_{i_1 \ldots i} - \pi(A \ast B)) \leq \prod_{i \in \gamma} \sum_{\delta_{i_1 \ldots i_m} = 0} \frac{a_{i_1 \ldots i_m} u_{i_2}^2 \ldots u_{i_m}^2}{u_i^{2[m-1]}} \frac{b_{i_1 \ldots i_m} v_{i_2}^2 \ldots v_{i_m}^2}{v_i^{2[m-1]}},$$

(13)

$$\leq \prod_{i \in \gamma} \left(\sum_{\delta_{i_1 \ldots i_m} = 0} \frac{-a_{i_1 \ldots i_m} u_{i_2}^2 \ldots u_{i_m}^2}{u_i^{2[m-1]}} \frac{-b_{i_1 \ldots i_m} v_{i_2}^2 \ldots v_{i_m}^2}{v_i^{2[m-1]}} \right) \prod_{i \in \gamma} \left(\sum_{\delta_{i_1 \ldots i_m} = 0} \frac{a_{i_1 \ldots i_m} u_{i_2}^2 \ldots u_{i_m}^2}{u_i^{2[m-1]}} \frac{b_{i_1 \ldots i_m} v_{i_2}^2 \ldots v_{i_m}^2}{v_i^{2[m-1]}} \right)^{\frac{1}{2}},$$

$$\leq \prod_{i \in \gamma} (\alpha_i \beta_i (a_{i_1 \ldots i} - \pi(A)) (b_{i_1 \ldots i} - \pi(B)))^{\frac{1}{2}},$$

where the third inequality uses the Cauchy-Schwarz inequality. From the uncertainty of $\gamma \in C(A \ast B)$, (10) holds.

Case 2. Either A or B is weakly reducible. Similar to the proof of Theorem 3.4, we obtain the desired result.

We next give a simple comparison of between Theorem 3.4 and Theorem 3.5.

Remark 1. Let A and B be strong M-tensors of order m dimension n. Define $f(x) = \prod_{i \in \gamma} (a_{i_1 \ldots i} b_{i_1 \ldots i} - x)$. For $x \in D = (-\infty, \min_{i \in N} a_{i_1 \ldots i} b_{i_1 \ldots i})$ and $0 \leq k_1 \leq k_2$, we have

$$S_{k_1} = \{ x \in D : f(x) \leq k_1 \} \subseteq S_{k_2} = \{ x \in D : f(x) \leq k_2 \}.$$

Thus, the lower bound of S_{k_1} is not less than that of S_{k_2}. Set

$$k_1 = \prod_{i \in \gamma} (a_{i_1 \ldots i} - \pi(A)) (b_{i_1 \ldots i} - \pi(B)), k_2 = \prod_{i \in \gamma} (\alpha_i \beta_i (a_{i_1 \ldots i} - \pi(A)) (b_{i_1 \ldots i} - \pi(B)))^{\frac{1}{2}}.$$
where β.

Proof. By Lemma 3.1 and (7), there exists a circuit $\gamma \in D \in \gamma$, such that

$$\prod_{i \in \gamma} (a_i - \tau(A)) (b_{i...i} - \tau(B)) \geq \prod_{i \in \gamma} [\alpha_i \delta_i (a_{i...i} - \tau(A))((b_{i...i} - \tau(B))]^2.$$

Similarly, the lower bound in (6) is not less than that of (10).

Theorem 3.6. Let A and B be two strong M-tensors of order m and dimension n. Fan product $A \ast B$ is an M-tensor such that $\Gamma_{(A \ast B)}$ is weakly connected. For any $\gamma \in C(A \ast B)$, then

$$\tau(A \ast B) \leq \min_{i \in N} a_i b_{i...i},$$

$$\prod_{i \in \gamma} (a_i b_{i...i} - \tau(A \ast B)) \leq \max_{\gamma \in C(A \ast B)} \beta_i (a_{i...i} - \tau(A)),$$ (14) where $\beta_i = \max_{\delta_{i...i}} = 0 - b_{i...i}.$

Proof. The following argument is divided into two cases.

Case 1. A is weakly irreducible. From Lemma 3.2, there exists a positive vector u such that (7) holds. Set $D = \text{diag}(u_1, \ldots, u_n)$. Thus, $\sigma(A \ast B) = \sigma(D^{1-m}(A \ast B)D).$ By Lemma 3.1 and (7), there exists a circuit $\gamma \in C(A \ast B)$ such that

$$\prod_{i \in \gamma} (a_i b_{i...i} - \tau(A \ast B)) \leq \prod_{i \in \gamma} \sum_{\delta_{i...i}} a_{i...i} b_{i...i} u_{i...i} \leq \prod_{i \in \gamma} \beta_i \sum_{\delta_{i...i}} -a_{i...i} u_{i...i} \leq \prod_{i \in \gamma} \beta_i (a_{i...i} - \tau(A)).$$ (15)

By the uncertainty of $\gamma \in C(A \ast B)$, (14) holds.

Case 2. A is weakly reducible. Similar to the proof of Theorem 3.4, then $A - \epsilon S$ is a weakly irreducible M-tensor for sufficiently small positive real number ϵ. Noting that A and B are two strong M-tensors, for the circuit $\gamma \in C(A \ast B)$, we get $\gamma \in C((A - \epsilon S) \ast B).$ Substituting $A - \epsilon S$ for A and letting $\epsilon \to 0$ on (15), we can obtain the desired results by the continuity of $\tau(A - \epsilon S)$. \hfill \Box

Since Fan product is commutative, the inequality (14) remains correct if A and B are switched. Moreover, the following result can be immediately obtained.

Theorem 3.7. Let A and B be two strong M-tensors of order m and dimension n. Fan product $A \ast B$ is an M-tensor such that $\Gamma_{(A \ast B)}$ is weakly connected. For any $\gamma \in C(A \ast B)$, then

$$\tau(A \ast B) \leq \min_{i \in N} a_i b_{i...i},$$

$$\prod_{i \in \gamma} (a_i b_{i...i} - \tau(A \ast B)) \leq \max_{\gamma \in C(A \ast B)} \alpha_i (b_{i...i} - \tau(B)),$$ (16) where $\alpha_i = \max_{\delta_{i...i}} = 0 - a_{i...i}.$

We next give comparisons among Theorems 3.4, 3.6 and 3.7.
Remark 2. Let A and B be strong M-tensors of order m dimension n.

(i) For $\gamma \in C(A \ast B)$ and $i \in \gamma$, if $b_{i...i} - \tau(B) \leq \beta_i$, then
\[
\prod_{i \in \gamma} (a_{i...i} - \tau(A))(b_{i...i} - \tau(B)) \leq \prod_{i \in \gamma} \beta_i(a_{i...i} - \tau(A)).
\]

Thus, the lower bound in (6) is not less than that of (14).

For $\gamma \in C(A \ast B)$ and $i \in \gamma$, if $b_{i...i} - \tau(B) \geq \beta_i$, then
\[
\prod_{i \in \gamma} (a_{i...i} - \tau(A))(b_{i...i} - \tau(B)) \geq \prod_{i \in \gamma} \beta_i(a_{i...i} - \tau(A)).
\]

Hence, the lower bound in (6) is not more than that of (14).

(ii) For $\gamma \in C(A \ast B)$ and $i \in \gamma$, if $a_{i...i} - \tau(A) \leq \alpha_i$, then
\[
\prod_{i \in \gamma} (a_{i...i} - \tau(A))(b_{i...i} - \tau(B)) \leq \prod_{i \in \gamma} \alpha_i(b_{i...i} - \tau(B)).
\]

Therefore, the lower bound in (6) is not less than that of (16).

For $\gamma \in C(A \ast B)$ and $i \in \gamma$, if $a_{i...i} - \tau(A) \geq \alpha_i$, then
\[
\prod_{i \in \gamma} (a_{i...i} - \tau(A))(b_{i...i} - \tau(B)) \geq \prod_{i \in \gamma} \alpha_i(b_{i...i} - \tau(B)).
\]

Consequently, the lower bound in (6) is not more than that of (16).

Similarly, we still establish similar comparisons of among Theorems 3.5-3.7. For the sake of simplicity, the details are omitted.

The following example exhibits efficiency of Theorems 3.4-3.7.

Example 3.1. Let $A = (a_{ijk}), B = (b_{ijk})$ be two strong M-tensors of order 3 dimension 3 with elements defined as follows:

\[A = [A(1, :, ::), A(2, :, ::), A(3, :, ::)], B = [B(1, :, ::), B(2, :, ::), B(3, :, ::)],\]

where
\[
A(1, :, ::) = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix},
A(2, :, ::) = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 4 & 0 \\ 0 & -2 & 0 \end{pmatrix},
A(3, :, ::) = \begin{pmatrix} -1 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 6 \end{pmatrix},
\]
\[
B(1, :, ::) = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix},
B(2, :, ::) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 4 & 0 \\ -1 & -2 & 0 \end{pmatrix},
B(3, :, ::) = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \end{pmatrix}.
\]

By computations, we get $\tau(A) = 2.0000, \tau(B) = 1.3826, \alpha_1 = \alpha_2 = \alpha_3 = 2, \beta_1 = 1, \beta_2 = 2, \beta_3 = 3, \tau(A \ast B) = 13.8992$. Obviously, $\Gamma(A \ast B)$ is weakly connected and $\Gamma(A \ast B)$ has 3 circuits:

\[2 \rightarrow 2; 1 \rightarrow 2 \rightarrow 3 \rightarrow 1; 1 \rightarrow 3 \rightarrow 1.\]

By Theorem 3.4, for the circuit 2 \rightarrow 2, we have
\[\tau(A \ast B) \geq 10.7652;\]

for the circuit 1 \rightarrow 2 \rightarrow 3 \rightarrow 1, we deduce
\[\tau(A \ast B) \geq 10.9565;\]

for the circuit 1 \rightarrow 3 \rightarrow 1, we know
\[\tau(A \ast B) \geq 11.0714;\]
Thus, \[\tau(A \ast B) \geq \min_{\gamma \in C(A \ast B)} \{10.7652, 10.9565, 11.0714\} = 10.7652. \]

Similarly, by Theorem 3.5, we obtain
\[\tau(A \ast B) \geq \min_{\gamma \in C(A \ast B)} \{11.4241, 12.3464, 12.0722\} = 11.4241. \]

Similarly, it follows from Theorem 3.6 that
\[\tau(A \ast B) \geq \min_{\gamma \in C(A \ast B)} \{12, 12, 12\} = 12. \]

Similarly, using Theorem 3.7, we know
\[\tau(A \ast B) \geq \min_{\gamma \in C(A \ast B)} \{10.7652, 12.6588, 13.4023\} = 10.7652. \]

To sum up above theorems, we yield
\[12 \leq \tau(A \ast B) \leq 15. \]

3.2. \(\Gamma_{(A \ast B)} \) may not be connected. When \(\Gamma_{(A \ast B)} \) may not be connected, Brualdi-type inclusion sets can not be satisfied. To overcome the difficulties, Bu et al. [3] established Brauer-type eigenvalue inclusion sets for general tensors. Based on these results, we establish Brauer-type lower bounds for the Fan product of two \(M \)-tensors.

Theorem 3.8. Let \(A \) and \(B \) be two strong \(M \)-tensors of order \(m \) and dimension \(n \). Then,
\[
\tau(A \ast B) \leq \min_{\tau \in \mathbb{N}} \prod_{j=1}^{m} (a_{i_j...i_j} - \tau(A \ast B)) \leq \max_{a_{i_1...i_m} \neq 0} \prod_{j=1}^{m} \left[(a_{i_j...i_j} - \tau(A)) (b_{i_j...i_j} - \tau(B)) \right].
\]

(17)

Proof. If \(A \) and \(B \) are both weakly irreducible, similar to the proof of Theorem 3.4, by Lemma 2.8, we obtain (17).

If either \(A \) or \(B \) is weakly reducible, then both \(A - \epsilon S \) and \(B - \epsilon S \) are weakly irreducible for any \(\epsilon > 0 \). Similar to the proof of Theorem 3.4, we claim that \(A - \epsilon S \) and \(B - \epsilon S \) are both strong \(M \)-tensors when \(\epsilon > 0 \) is sufficiently small. Observing that \(A \) and \(B \) are strong \(M \)-tensors, for \(-a_{i_1...i_m} b_{i_1...i_m} \neq 0 \) in \(A \ast B \), we get \(-(a_{i_1...i_m} - \epsilon)(b_{i_1...i_m} - \epsilon) \neq 0 \) in \((A - \epsilon S) \ast (B - \epsilon S) \). Substituting \(A - \epsilon S \) and \(B - \epsilon S \) for \(A \) and \(B \) and letting \(\epsilon \to 0 \), we can obtain the desired results by the continuity of \(\tau(A - \epsilon S) \) and \(\tau(B - \epsilon S) \). So, (17) holds.

Based on Lemma 2.8 and Theorems 3.5-3.7, we propose Brauer-type lower bounds for the Fan product of two \(M \)-tensors.

Theorem 3.9. Let \(A \) and \(B \) be two strong \(M \)-tensors of order \(m \) and dimension \(n \). Then,
\[
\tau(A \ast B) \leq \min_{\tau \in \mathbb{N}} \prod_{j=1}^{m} (a_{i_j...i_j} - \tau(A \ast B)) \leq \max_{a_{i_1...i_m} \neq 0} \prod_{j=1}^{m} \left[(a_{i_j...i_j} \beta_{i_j...i_j} - \tau(A))(b_{i_j...i_j} - \tau(B)) \right].
\]
Theorem 3.10. Let \mathcal{A} and \mathcal{B} be two strong M-tensors of order m and dimension n. Then,

$$\tau(\mathcal{A} \star \mathcal{B}) \leq \min_{i \in \mathbb{N}} a_{i...i} b_{i...i},$$

$$\prod_{j=1}^{m} (a_{i...j} b_{j...i} - \tau(\mathcal{A} \star \mathcal{B})) \leq \max_{a_{i1...im} b_{i1...im} \neq 0} \prod_{j=1}^{m} \beta_{ij} (a_{i1...im} b_{i1...im} - \tau(\mathcal{A})).$$

Theorem 3.11. Let \mathcal{A} and \mathcal{B} be two strong M-tensors of order m and dimension n. Then,

$$\tau(\mathcal{A} \star \mathcal{B}) \leq \min_{i \in \mathbb{N}} a_{i...i} b_{i...i},$$

$$\prod_{j=1}^{m} (a_{i...j} b_{j...i} - \tau(\mathcal{A} \star \mathcal{B})) \leq \max_{a_{ij...im} b_{ij...im} \neq 0} \prod_{j=1}^{m} \alpha_{ij} (b_{ij...im} - \tau(\mathcal{B})).$$

4. Conclusion. In this paper, we characterized some properties on M-tensors. Based on these properties, we established Brualdi-type (Brauer-type) inequalities on the minimum eigenvalue for the Fan product by similarity transformation methods, which are novel even for matrices. Finally, we discussed the advantages of different Brualdi-type (Brauer-type) inequalities.

Acknowledgments. The authors are in debt to anonymous referees for numerous insightful comments and suggestions, which have greatly improved the paper.

REFERENCES

[1] L. Bloy and R. Verma, On computing the underlying fiber directions from the diffusion orientation distribution function in Medical Image Computing and Computer-Assisted Intervention, Springer, 2008, 1–8.

[2] C. Bu, Y. Wei, L. Sun and J. Zhou, Brualdi-type eigenvalue inclusion sets of tensors, Linear Algebra Appl., 480 (2015), 168–175.

[3] C. Bu, X. Jin, H. Li and C. Deng, Brauer-type eigenvalue inclusion sets and the spectral radius of tensors, Linear Algebra Appl., 512 (2017), 234–248.

[4] W. Ding and Y. Wei, Solving multi-linear systems with M-tensors, J. Sci. Comput., 68 (2016), 689–715.

[5] F. Fang, Bounds on eigenvalues of Hadamard product and the Fan product of matrices, Linear Algebra Appl., 425 (2007), 7–15.

[6] S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl., 438 (2013), 738–749.

[7] L. Gao, D. Wang and G. Wang, Further results on exponential stability for impulsive switched nonlinear time-delay systems with delayed impulse effects, Appl. Math. Comput., (2015), 186–200.

[8] L. Gao and D. Wang, Input-to-state stability and integral input-to-state stability for impulsive switched systems with time-delay under asynchronous switching, Nonlinear Anal.-Hybri., (2016), 55–71.

[9] R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1985.

[10] C. Jutten and J. Herault, Blind separation of sources, part I: An adaptive algorithm based on neurimimetic architecture, Signal Process., 24 (1991), 1–10.

[11] L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Mexico (2005), 129–132.

[12] Y. Li, F. Chen and D. Wang, New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse, Linear Algebra Appl., 430 (2009), 1423–1431.

[13] Q. Liu, G. Chen and L. Zhao, Some new bounds on the spectral radius of matrices, Linear Algebra Appl., 432 (2010), 936–948.

[14] M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090–1099.
[15] Q. Ni, L. Qi and F. Wang, An eigenvalue method for testing the positive definiteness of a multivariate form, IEEE Trans. Automat. Contr., 53 (2008), 1096–1107.

[16] L. Qi, Eigenvalues of an even-order real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302–1324.

[17] L. Qi, Hankel tensors: Associated Hankel matrices and Vandermonde decomposition, Commun. Math. Sci., 13 (2015), 113–125.

[18] L. Sun, B. Zheng, J. Zhou and H. Yan, Some inequalities for the Hadamard product of tensors, Linear Multilinear Algebra, 66 (2018), 1199–1214.

[19] G. Wang, G. Zhou and L. Caccetta, Z-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. Ser-B., 22 (2017), 187–198.

[20] G. Wang, Y. Wang and Y. Yang, Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors, Linear Multilinear Algebra, (2019).

[21] G. Wang, Y. Wang and L. Liu, Bound estimations on the eigenvalues for Fan product of M-tensors, Taiwan. J. Math., 23 (2019), 751–766.

[22] G. Wang, Y. Wang and Y. Zhang, Some inequalities for the Fan product of M-tensors, J. Inequal. Appl., 257 (2018), 15 pp.

[23] G. Wang, G. Zhou and L. Caccetta, Sharp Brauer-type eigenvalue inclusion theorems for tensors, Pac. J. Optim., 14 (2018), 227–244.

[24] X. Wang, H. Chen and Y. Wang, Solution structures of tensor complementarity problem, Front. Math. China., 13 (2018), 935–945.

[25] Y. Wang, G. Zhou and L. Caccetta, Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numer. Linear. Algebra. Appl., 22 (2015), 1059–1076.

[26] Y. Wang, K. Zhang and H. Sun, Criteria for strong H-tensors, Front. Math. China., 11 (2016), 577–592.

[27] Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors I, SIAM J. Matrix Anal. Appl., 31 (2010), 2517–2530.

[28] L. Zhang, L. Qi and G. Zhou, M-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437–452.

[29] D. Zhou, G. Chen, G. Wu and X. Zhang, On some new bounds for eigenvalues of the Hadamard product and the Fan product of matrices, Linear Algebra Appl., 438 (2013), 1415–1426.

[30] G. Zhou, G. Wang, L. Qi and A. Alqahtani, A fast algorithm for the spectral radii of weakly reducible nonnegative tensors, Numer. Linear. Algebra. Appl., 25 (2018), e2134.

[31] J. Zhou, L. Sun, L. P. Wei and C. Bu, Some characterizations of M-tensors via digraphs, Linear Algebra Appl., 495 (2016), 190–198.

Received September 2018; 1st revision January 2019; 2nd revision March 2019.

E-mail address: gwlj11977@163.com
E-mail address: wang-yiju@163.com
E-mail address: zymath1115@163.com