Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice

Yipeng Sui,1 Zhaojie Meng,1,2 Se-Hyung Park,1 Weiwei Lu,1 Christopher Livelo,2 Qi Chen,2 Tong Zhou,3 and Changcheng Zhou1,2

1Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536

2Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521

3Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557

Correspondence:

Changcheng Zhou, PhD, FAHA

Division of Biomedical Sciences, School of Medicine, 900 University Avenue, University of California, Riverside, CA 92521. Phone: 951-827-9139; Fax: 951-579-4118; Email: changcheng.zhou@ucr.edu

Running title: Role of myeloid PXR in atherosclerosis
Abbreviations:

Cardiovascular disease, CVD; liver X receptor, LXR; peroxisome proliferator-activated receptors, PPARs; pregnane X receptor, PXR; cytochrome P450, CYP; glutathione transferase, GST; multidrug resistance 1, MDR1; glucose tolerance test, GTT; fast-performance liquid chromatography, FPLC; optimal cutting temperature, OCT; Bone marrow-derived macrophages, BMM; peritoneal macrophages, PM; pregnenolone 16α-carbonitrile, PCN; transcript per million reads, TPM; false discovery rate, FDR; fold change, FC; smooth Muscle Cell, SMC; α-smooth muscle actin, α-SMA; differentially expressed genes, DEGs; Gene Ontology, GO; oxidized LDL, oxLDL; Niemann-Pick C1-like 1, NPC1L1; microsomal triglyceride transfer protein, MTP.
Abstract

The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR in different tissues or cell types contributes to atherosclerosis development remain elusive. In this study, we generated an LDL receptor-deficient mouse model with myeloid-specific PXR deficiency \((\text{PXR}^{\text{Amyr}}\text{LDLR}^{+/}) \) to elucidate the role of macrophage PXR signaling in atherogenesis. The myeloid PXR deficiency did not affect metabolic phenotypes and plasma lipid profiles, but PXR\(^{\text{Amyr}}\text{LDLR}^{+/} \) mice had significantly decreased atherosclerosis at both aortic root and brachiocephalic arteries compared with control littermates. Interestingly, the PXR deletion did not affect macrophage adhesion and migration properties, but reduced lipid accumulation and foam cell formation in the macrophages. PXR deficiency also led to decreased expression of the scavenger receptor CD36 and impaired lipid uptake in macrophages of the PXR\(^{\text{Amyr}}\text{LDLR}^{+/} \) mice. Further, RNA-Seq analysis indicated that treatment with a prototypical PXR ligand affects the expression of many atherosclerosis-related genes in macrophages \textit{in vitro}. These findings reveal a pivotal role of myeloid PXR signaling in atherosclerosis development and suggest that PXR may be a potential therapeutic target in atherosclerosis management.

Keywords: PXR, atherosclerosis, macrophages, CD36, foam cells, lipids, cardiovascular disease, xenobiotic sensor, lipid homeostasis, transcriptome.
Introduction

Despite major advances in developing diagnostic techniques and effective treatments, atherosclerotic cardiovascular disease (CVD) is still the leading cause of mortality and morbidity worldwide (1). Atherosclerosis is a complex chronic disease involving the interaction of genetic and environmental factors over many years. Nuclear receptors are one of the largest groups of transcriptional factors that function as master regulators of many genes involved in metabolic control including fat, glucose, cholesterol, bile acid, and xenobiotic metabolism (2, 3). Several nuclear receptors including liver X receptor (LXR) and peroxisome proliferator-activated receptors (PPARs) that play key roles in lipid homeostasis have been demonstrated to regulate atherosclerosis development in multiple animal models (4, 5).

The pregnane X receptor (PXR) is a unique nuclear receptor that can be activated by numerous endogenous hormones, dietary steroids, pharmaceutical agents, and xenobiotic chemicals (6-9). PXR is expressed at high levels in liver and intestine where it can regulate many genes required for xenobiotic metabolism, including cytochrome P450 (CYP) enzymes (e.g. CYP3A4), conjugating enzymes (e.g. glutathione transferase [GST]), and ABC family transporters (e.g. multidrug resistance 1 [MDR1]) (7-10). Since it was first identified in 1998, the role of PXR in the regulation of xenobiotic metabolism has been extensively studied by many laboratories including ours, and PXR has also been established as a xenobiotic sensor to mediate xenobiotic responses (7-9).

In addition to xenobiotic metabolism, recent studies have discovered novel functions of PXR in lipid homeostasis and atherogenesis (9, 11-14). For example, we previously demonstrated that PXR has pro-atherogenic effects in mouse models (11, 12) and found that ligand-mediated PXR activation increased plasma total cholesterol levels and atherogenic lipoproteins such as LDL levels in wild-type mice (11, 13-16). Interestingly, chronic activation of PXR also significantly increased atherosclerosis in atherosclerotic prone ApoE⁻/⁻ mice (11). To further study the role of PXR in atherosclerosis, we also
generated PXR-/-ApoE-/- double knockout mice and found that whole-body PXR deficiency significantly decreased atherosclerosis in PXR-/-ApoE-/- mice without affecting the plasma lipid profile (12).

In addition to liver and intestine, PXR is also expressed in immune cells including T cells, B cells and macrophages (11, 17-22). Macrophages play a key role in atherosclerosis initiation and development, and accumulation of lipid-loaded macrophages is a hallmark of atherosclerosis (23, 24). While our previous studies indicates that PXR may regulate macrophage functions to affect atherosclerosis development (11, 12), the role of macrophage PXR in atherosclerosis remains obscure partly due to the lack of conditional PXR knockout mice.

To define the functions of macrophage-derived PXR in atherogenesis, we developed a novel low-density lipoprotein receptor-deficient mouse model with myeloid-specific PXR deficiency (PXRΔMyeLLDLR-/-). Here we demonstrate that deficiency of myeloid PXR decreases atherosclerosis in LDLR-/- mice, which is likely due to reduced macrophage lipid uptake and foam cell formation.
Materials and Methods

Animals

Mice carrying PXR flox alleles (PXRFF) were generated by using mouse embryonic stem cell clones containing conditional PXR flox alleles (C57BL/6N background) as previously described (13, 14). PXRFF mice were then back crossed to C57BL/6J mice for at least six generation prior to further crossing. Myeloid-specific PXR knockout (PXRΔMye) mice were generated by crossing PXRFF mice with LysM-Cre transgenic mice (The Jackson Laboratory) (25, 26). To increase susceptibility to atherosclerotic development, the PXRΔMye mice were crossed to LDLR−/− mice (The Jackson Laboratories) to generate PXR\textsuperscript{ΔMyeLDLR−/−} and PXR\textsuperscript{FFLDLR−/−} mice. Since PXRFF and LysM-Cre transgenic mice have mixed C57BL/6J and C57BL/6N background, PXR\textsuperscript{ΔMyeLDLR−/−} and PXR\textsuperscript{FFLDLR−/−} littermates were used in this study. All experimental mice had PXR\textsuperscript{FFLDLR−/−} double-mutant background, and PXR\textsuperscript{ΔMyeLDLR−/−} mice carried heterozygous knock-in for LysM-Cre. For atherosclerosis study, 4-week-old male PXR\textsuperscript{ΔMyeLDLR−/−} and PXR\textsuperscript{FFLDLR−/−} littermates were fed a low-fat and low-cholesterol semi-synthetic AIN76a diet (27, 28) for 12 weeks until euthanasia at 16 weeks of age. Body composition was measured by EchoMRI (Echo Medical System) and intraperitoneal glucose tolerance test (GTT) was performed as previously described (29, 30). All animals were housed in a pathogen-free environment with a light-dark cycle under a protocol approved by the University of Kentucky Institutional Animal Care and Use Committee.

Plasma analysis

Plasma total cholesterol and triglyceride concentrations were determined enzymatically by colorimetric methods as described previously (12, 26). Fast-performance liquid chromatography (FPLC) was used to analyze plasma lipoprotein cholesterol distributions in the pooled plasma samples from multiple mice (n=6) (12, 26).
Quantification of atherosclerosis

The atherosclerotic lesions were quantified as previously described (12, 26). To quantify the lesion areas at the aortic root, Optimal Cutting Temperature (OCT)-compound-embedded hearts were sectioned at a 12 μm thickness keeping all the three valves of the aortic root in the same plane, and stained with Oil red O as described before (12, 26). To quantify atherosclerosis at the brachiocephalic artery (BCA), the OCT-embedded brachiocephalic arteries were sectioned from distal to proximal at a thickness of 10 μm. Atherosclerotic lesions luminal to the internal elastic lamina were quantified in three equidistant oil red O-stained sections 200, 400 and 600 μm proximal from the branching point of the BCA into the carotid and subclavian arteries (12, 26).

Macrophage isolation and function assays

Macrophages were isolated as previously described (26, 31). Mice were injected intraperitoneally with 1 ml of 3% thioglycollate, and peritoneal macrophages were collected with PBS 4 days later. The peritoneal macrophages from each genotype were allowed to attach to coverslips for 4 hours and stained with Oil Red O/hematoxylin. Cells containing lipid droplets (>10) were counted as foam cells. Bone marrow-derived macrophages (BMM) were isolated from the femurs and tibias of mice and cultured in DMEM medium supplemented with 10 ng/mL recombinant mouse macrophage colony-stimulating factor (Invitrogen) for 8 to 10 days. For adhesion assay, calcein acetoxyethyl-labeled peritoneal macrophages were incubated with primary porcine endothelial cells (a gift from Dr. Bernhard Hennig at University of Kentucky). The attached cells were fixed and counted via microscope. Migration assays were performed using transwells with 8-μm pore polycarbonate membrane inserts (Corning). Macrophages with serum-free media were seeded on the transwell filters, and the lower chambers were filled with the complete media including 10% Fetal Bovine Serum (FBS) (Sigma-Aldrich) as a chemoattractant. After 16 hours, the cells were removed from the upper surface of the insert using Q-Tips. The membranes were fixed with 1% glutaraldehyde (Sigma), stained with hematoxylin (Leica), and mounted on the slides using glycerol gelatin. Hematoxylin-stained cells were counted under the microscope. For lipid uptake assay,
macrophages were incubated with serum-free DMEM containing 100 µg/mL of oxidized LDL (Biomedical Technologies) for 24 hours, followed by staining with Oil-red-O/hematoxylin. The number of foam cells were counted.

RNA Isolation and Quantitative Real-Time PCR Analysis

Total RNA was isolated from mouse tissues or cells using TRIzol Reagent (Thermo Fisher Scientific 15596026) and QPCR was performed using gene-specific primers and the SYBR Green PCR kit (Bio-Rad 170-8886) as previously described (32). The sequences of primer sets used in this study are listed in Supplemental Table S2.

RNA sequencing and data analysis

Peritoneal macrophages (PM) were isolated from PXR^{+/−}LDLR^{−/−} and PXR^{ΔMyc−}LDLR^{−/−} mice. Cells were attached to cell culture plates for 4 hours and were then treated with 20 µM mouse PXR ligand pregnenolone 16α-carbonitrile (PCN) or vehicle control (DMSO) for 12 hours. Total RNA was extracted, and RNA integrity was confirmed using a dual Agilent 2100 Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA). The creation of cDNA libraries and sequencing were performed using the Illumina standard operation pipeline as previously described (33, 34). For data analysis, we applied the *Sailfish* tool (35) to quantify the mRNA expression from the raw sequencing data, using the *Ensembl* (36) mouse gene annotation (GRCm38). Transcript per million reads (TPM) was used as the unit of mouse gene expression level. We then used the *edgeR* algorithm (37) to compare the groupwise transcriptomic pattern. We also applied the *TMM* algorithm implemented in the *edgeR* package to perform reads count normalization and effective library size estimation. Group-wise differential expression was estimated by the likelihood ratio test implicated in the *edgeR* package. The genes with false discovery rate (FDR) < 5% and fold change (FC) >1.5 were deemed differentially expressed. All RNA-Seq datasets have been
deposited in the Gene Expression Omnibus (GSE145719). We further performed gene ontology analysis upon the differentially expressed genes using the definition from the Gene Ontology (GO) project (38).

Western blotting

Western blotting was performed as previously described (39). Briefly, the cells or tissues were homogenized with Bullet Blender (Next Advance BBX24, Averill Park, NY) in 0.5 mL of ice-cold lysis buffer (Cell Signaling Technology 9803) containing protease inhibitor cocktails (Roche11836153001) and phosphatase inhibitor cocktails (Sigma-Aldrich P5726 & P0044). After homogenization, lysates were centrifuged at 16,000 x g for 15 min at 4 °C to collect the supernatant. Protein concentrations were measured by using BCA protein assay kit (Thermo Fisher Scientific 23225). Proteins were resolved on SDS-PAGE, and then transferred to nitrocellulose membrane. The membrane was blocked in phosphate buffered saline solution with 0.05% Tween 20 (PBST, pH 7.4) containing 5 % non-fat dry milk (Bio-Rad 170-6404) for 1-3 hr, and then incubated with goat anti-PXR antibodies (1:500, Santa Cruz Biotechnology sc-7739) in PBST containing 5% BSA at 4°C overnight. After the incubation, the membrane was washed four times with PBST, and incubated with HRP-conjugated rabbit anti-goat secondary antibodies (1:2000; Sigma-Aldrich A8919) in PBST with 5 % non-fat dry milk for 1 hr at room temperature. After subsequent three-time washing in PBST, the membrane was washed once in PBS and developed using Pierce ECL Western Blotting Substrate (Thermo Fisher Scientific 32209) and exposed to CL-XPosure films (Thermo Fisher Scientific 34099).

Immunohistochemistry

Immunohistochemistry was performed on 12-µm sections of aortic roots freshly embedded in OCT. The slides were fixed in ice-cold acetone for 15 min and permeabilized with PBS + 0.1% Triton X-100 (PBST) for 15 min, and blocked with PBST containing 5% BSA (Sigma-Aldrich A9647) for 1 hr at room temperature. The sections were then incubated with rat anti-CD68 antibody (1:100; AbD Serotec
MCA1957), rabbit anti-PXR antibody (1:50; Santa Cruz Biotechnology SC25381), rabbit anti-αSMA antibody (1:200; Abcam ab5694), or rat anti-mouse CD36 antibody (1:100; AbD Serotec MCA2683) at 4°C overnight. The slides were rinsed with PBS and incubated with corresponding secondary antibodies (1:500; Life Technologies). The nuclei were stained by mounting the slides with 4’,6-diamidino-2-phenylindole (DAPI) medium (Vector Laboratories). Images were acquired under a Nikon fluorescence microscope (Nikon). For collagen staining, Masson’s Trichrome staining was performed following the standard procedure (40).

Statistical Analysis

All data except the high-throughput sequencing data are presented as the mean ± SEM. Individual pairwise comparisons were analyzed by two-sample, two-tailed Student’s t-test unless otherwise noted, with p<0.05 was regarded as significant using GraphPad Prism. Two-way ANOVA was done using SigmaPlot 13.0 when multiple comparisons were made followed by a Bonferroni multiple comparisons test. N numbers are listed in figure legends.
Results

Generation of myeloid-specific PXR deficiency mice

To investigate the role of PXR in macrophage functions, we generated myeloid-specific PXR knockout mice (PXR^ΔMye) by crossing PXR flox mice (PXR^F/F) (13, 14) with LysM-Cre transgenic mice (25, 31) (Supplemental Figure S1A). To study the functions of macrophage PXR in atherosclerosis, PXR^ΔMye mice were crossed with LDLR^−/− mice to generate PXR^ΔMyeLDLR^−/− mice. PCR analysis using genomic DNA demonstrated that the Cre recombination was specific to the PM and BMM (Supplemental Figure S1B). QPCR assay suggested that the mRNA levels of PXR significantly descended in both PM and BMM but not in other major organs of PXR^ΔMyeLDLR^−/− mice compared to PXR^F/FLDLR^−/− littermates (Figure 1A). Consistently, the protein levels of PXR were also decreased in macrophages but not in liver of PXR^ΔMyeLDLR^−/− mice (Figure 1B). These results demonstrated the specific and efficient PXR deletion in macrophages of PXR^ΔMyeLDLR^−/− mice.

Deficiency of myeloid PXR does not affect metabolic phenotypes and plasma lipid profiles in LDLR^−/− mice

To investigate the role of macrophage PXR in atherosclerosis development, 4-week-old male PXR^ΔMyeLDLR^−/− and PXR^F/FLDLR^−/− littermates were fed a modified semisynthetic low-fat (4.3%) and low-cholesterol (0.02%) AIN76 diet (27). This modified diet has been successfully used by us and others to induce atherosclerosis in LDLR^−/− or ApoE^−/− mice without eliciting obesity and associated metabolic disorders (12, 27, 28, 41). To determine whether deficiency of myeloid PXR affects weight gain and body composition, the body weight was measured weekly and the body composition was measured by EchoMRI. Deficiency of myeloid PXR did not affect the growth curve (Figure 2A) and the body composition including fat and lean mass in PXR^ΔMyeLDLR^−/− mice (Figure 2B). Further, myeloid PXR deficiency did not affect weight of major organs including liver, kidney, and BAT in LDLR^−/− at the time of euthanasia (Figure 2C).
In addition to similar body weight and composition, PXR^{\text{Amys}}LDLR^{-/-} and PXR^{\text{F/f}}LDLR^{-/-} mice had similar plasma glucose levels (Figure 2D), and glucose tolerance tests also demonstrated that myeloid PXR-deficiency did not alter glucose tolerance in PXR^{\text{Amys}}LDLR^{-/-} mice (Figure 2D). Further, myeloid PXR deletion did not alter plasma total cholesterol and triglyceride levels (Figure 3, A and B) and FPLC analysis also showed similar cholesterol distribution pattern between PXR^{\text{Amys}}LDLR^{-/-} and PXR^{\text{F/f}}LDLR^{-/-} mice (Figure 3C).

Deficiency of PXR in macrophages decreased atherosclerosis in LDLR^{-/-} mice

Although deficiency of myeloid PXR did not affect metabolic phenotypes and plasma lipid levels, quantification of cross-sectional lesion areas at the aortic root revealed that PXR^{\text{Amys}}LDLR^{-/-} mice had 50% decreased lesion sized (29214 ± 3669 \mu m^2) as compared with PXR^{\text{F/f}}LDLR^{-/-} littermates (58189 ± 9692 \mu m^2) (Figure 4A). Further, the lesional areas at the BCA were decreased by 28% in PXR^{\text{Amys}}LDLR^{-/-} mice (1574 ± 175 \mu m^2) as compared with PXR^{\text{F/f}}LDLR^{-/-} mice (2179 ± 190 \mu m^2) (Figure 4B). To determine whether myeloid PXR ablation affected atherosclerotic lesion composition, we next examined the collagen, smooth muscle cell and macrophage inside the lesion area by immunostaining of macrophage maker, CD68 and smooth muscle cell (SMC) marker \(\alpha\)-smooth muscle actin (\(\alpha\)-SMA) or Masson Trichrome staining. The results demonstrated that PXR^{\text{Amys}}LDLR^{-/-} mice had decreased macrophage contents but similar SMC and collagen contents within lesions as compared with PXR^{\text{F/f}}LDLR^{-/-} littermates (Figure 5, A-C). Thus, myeloid PXR deficiency significantly decreased atherosclerosis and macrophage contents in LDLR^{-/-} mice without altering metabolic functions.

Ablation of PXR reduces CD36 expression and macrophage foam cell formation

To determine whether PXR signaling regulates macrophage functions related to atherosclerosis development, we first investigated the effects of PXR deficiency on macrophage adhesion and migration.
properties. Incubation of freshly isolated PM with primary endothelial cells (EC) showed that ablation of PXR did not affect adhesion of macrophage to ECs (Supplemental Figure S2). We also examined the effects of PXR deficiency on macrophage migration by transwell assay. As shown in Supplemental Figure S3, PXR deficiency did not affect macrophage migration ability either.

Accumulation of lipid-loaded macrophages is a hallmark of atherosclerosis (23). We have previously demonstrated that PXR can affect lipid accumulation and foam cell formation in macrophage of ApoE−/− mice (11, 12). We then performed Oil red O staining to assess neutral lipid levels in fresh isolated PM of PXRWT/LDLR−/− and PXRΔMye/LDLR−/− mice. Consistently, deficient of PXR substantially reduced the lipid accumulation and foam cell formation in PM of PXRΔMye/LDLR−/− mice (Figure 6, A and B). Gene expression analysis demonstrated that PXR ablation significantly decreased the expression levels of scavenger receptor CD36 that plays a key role in macrophage lipid uptake and foam cell formation (Figure 6C) (9, 42, 43). However, the expression levels of another scavenger receptor SR-A and ABC transporters, ABCA1 and ABCG1 were comparable in macrophages of PXRWT/LDLR−/− and PXRΔMye/LDLR−/− mice (Figure 6C). Consistent with decreased macrophage CD36 expression, immunofluorescence staining showed that CD36 proteins were also decreased in the atherosclerotic lesions of PXRΔMye/LDLR−/− mice (Figure 7, A and B). Thus, deficiency of PXR decreased macrophage and lesional CD36 expression and reduced macrophage foam cell formation in PXRΔMye/LDLR−/− mice.

Since CD36 mediates macrophage uptake of oxidized LDL (oxLDL) which has been considered as the important atherogenic LDL (42), we then performed oxLDL uptake assays in control and PXR-deficient macrophages. As expected, the uptake of oxLDL was significantly decreased in PM of PXRΔMye/LDLR−/− mice as compared with that of PXRWT/LDLR−/− mice (Figure 8, A and B). In addition to PM, deficiency of PXR also decreased CD36 expression and oxLDL uptake in BMM of PXRΔMye/LDLR−/− mice (Supplemental Figure S4). These results suggest that PXR-mediated CD36 expression regulates foam cell formation in vitro.
PXR ligand treatment affects many atherosclerosis-related gene expression in macrophages *in vitro*

To further explore the role of PXR signaling in regulating macrophage transcriptome related to atherogenesis, PM were isolated from PXRF/FLDLR−/− and PXR\textsuperscript{A\textsubscript{Mye}}LDLR−/− mice and then treated with vehicle control or a prototypical PXR ligand pregnenolone 16α-carbonitrile (PCN) (9, 11) for RNA-Seq analysis. We found that PCN treatment can significantly induce 439 differentially expressed genes (DEGs) in macrophage of PXRF/FLDLR−/− mice with false discovery rate (FDR) < 5% and fold change (FC) >1.5 as a cut-off threshold (Figure 9A, left panel). The volcano plot also showed the distribution of DEGs, with 121 upregulated and 318 downregulated genes. By contrast, PCN only induced 38 DEFs in PXR-deficient macrophages (Figure 9A, right panel), indicating the important role of PXR in mediating PCN’s impact on macrophage transcriptome. Gene Ontology (GO) analysis of those DEGs in control macrophages revealed that DEGs were enriched in several biological processes that may contribute to atherogenesis (Figure 9B). For example, lipid metabolic, cholesterol biosynthetic, inflammatory response, and positive regulation of cytokine secretion processes were significantly affected by PCN treatment in macrophages of PXRF/FLDLR−/− mice. Many of those genes in lipid metabolism (e.g. Npc1l1, Jazf1, Sphk1, Hsd17b1 and Sorl1) and inflammatory responses (e.g. Itgb6, Ccl2, Ccl3, Clec4e, Tnfrsf14, Ccr2, Tlr1, Tlr3 and Tlr11) were regulated by PCN in a PXR-dependent manner (Figure 9C and Supplemental Table S1). Further, we also checked the CD36 gene expression in control and PXR-deficient macrophages. Consistent with our *in vivo* data, CD36 mRNA levels were significantly decreased by PXR deficiency in macrophages of PXR\textsuperscript{A\textsubscript{Mye}}LDLR−/− mice as compared with that of PXRF/FLDLR−/− mice (Supplemental Table S1). However, PCN treatment did not further affect CD36 expression *in vitro*, which is likely due to the different *in vitro* and *in vivo* conditions as well as the selected PCN dosage and treatment period. Collectively, these results suggest that PXR signaling may affect multiple processes of lipid homeostasis and inflammatory responses in macrophages that contribute to atherosclerosis development.
Discussion

As a xenobiotic sensor, the role of PXR in xenobiotic and drug metabolism has been well defined. Recent studies from us and other groups have revealed novel functions of PXR beyond xenobiotic metabolism, and emerging evidence suggests that PXR may also play an important role in regulating lipid homeostasis and atherosclerosis (9). For example, we have previously demonstrated the pro-atherogenic effects of PXR signaling in ApoE^{−/−} mice and found that whole-body PXR deficiency significantly decreases atherosclerosis in ApoE^{−/−} mice (12). PXR is expressed in macrophages but the role of macrophage PXR signaling in atherosclerosis remains elusive. In the current study, we generated novel myeloid-specific PXR deficient LDLR^{−/−} mice and demonstrated, for the first time, that deficiency of myeloid PXR significantly reduced atherosclerosis in LDLR^{−/−} mice. Myeloid PXR deficiency did not affect plasma lipid profiles but reduced macrophage lipid uptake and foam cell formation, which likely contribute to the decreased atherosclerosis development in those mice.

Macrophages play a central role in atherosclerosis initiation and progression. The innate immune response cell monocytes are recruited by the endothelium, derive into macrophages in the plaque, and contribute to the initiation, progression, and eventual rupture of atherosclerotic lesions (44, 45). The generation of foam cells is the initial and critical step in the development of atherosclerosis (46). Macrophages can uptake modified LDL such as oxLDL by a family of scavenger receptors, among which CD36 and SR-A are principal contributors to oxLDL uptake (47-49). In the current study, we found that deficiency of PXR decreased macrophage CD36 expression but did not affect the expression of SR-A and other genes regulating macrophage cholesterol efflux including ABCA1 and ABCG1. CD36 has been shown to mediate macrophages lipid uptake and foam cell formation in vitro and in vivo (42, 50-53). Indeed, we found that PXR-deficient macrophages also had reduced lipid accumulation and foam cell formation. Consistently, PXR<sup>−/−</sup/Myc^{−/−}LDLR^{−/−} mice had decreased CD36 protein levels and macrophage contents within the atherosclerotic lesions as compared with control littermates.
CD36 has been identified as a direct transcriptional target of PXR, and activation of PXR can also promote CD36-mediated hepatic lipid accumulation (54). We previously also demonstrated that activation of PXR by several ligands can increase CD36 expression and lipid accumulation in macrophages of ApoE^{−/−} mice in vivo, which may contribute to the increased atherosclerotic lesions in those mice (11, 55). Consistent with the current study, PXR^{−/−}ApoE^{−/−} mice also had decreased CD36 expression and CD36-mediated lipid uptake in macrophages (12). Interestingly, deficiency of another nuclear receptor FXR that is closely related to PXR also led to reduced CD36 expression and lipid accumulation in the macrophages of LDLR^{−/−} (56) or ApoE^{−/−} (57) mice, which may contribute to the decreased atherosclerosis in those mice. Therefore, it is likely that decreased atherosclerosis in PXR^{ΔMys}LDLR^{−/−} mice was due to, at least partially, reduced CD36 expression and CD36-mediated lipid uptake and foam cell formation.

The role of CD36 in the regulation of atherosclerosis development has been extensively studied by several groups in multiple mouse models. CD36 has been shown to promote macrophage foam cell formation and atherosclerosis development in ApoE^{−/−} mice (58), and deficiency of CD36 significantly decreased atherosclerotic lesion area at both aortic surface and aortic sinus in ApoE^{−/−} mice (51, 53). Consistently, depletion of CD36 in macrophages by bone marrow translation also resulted in significantly decreased atherosclerosis in ApoE^{−/−} mice and re-introduction of macrophage CD36 led to increased atherosclerosis in those mice (59). In addition to ApoE^{−/−} mice, CD36 can also contribute to atherosclerosis development in LDLR^{−/−} mice fed a cholesterol-enriched diet (43). Interestingly, another study found that CD36^{−/−}ApoE^{−/−} mice had increased rather than decreased atherosclerosis in the aortic sinus areas as compared with ApoE^{−/−} mice (52). Loss of CD36 and SR-A has also been shown to reduce atherosclerotic lesion complexity without affecting atherosclerotic lesion size in ApoE^{−/−} mice (60). Despite the discrepancy, strong evidence suggest that CD36 plays an important role in macrophage lipid accumulation and foam cell formation in vitro and in vivo (42, 52). CD36 signaling in response to oxLDL can modulate macrophage migration and contribute to macrophage trapping in atherosclerotic lesions (61). A recent study also demonstrated that oxLDL-bound CD36 can recruit NA/K-ATPase
complex in macrophages to promote atherosclerosis (62). Collectively, these studies suggest that functions of CD36 in atherosclerosis is complex, and multiple factors such as dietary cholesterol can affect CD36-mediated atherogenesis.

Human studies have indicated a potential link between CD36 expression and atherosclerosis development. An early study on human atherosclerotic arteries showed that obese people with dyslipidemia had increased CD36 expression in macrophages within atherosclerotic plaques, whereas the CD36 expression in macrophages without atherosclerotic lesions was negligible (63). Handberg and colleagues also found a correlation between the plasma soluble CD36 levels and carotid atherosclerosis in a human study throughout 14 European countries (64). Elevated soluble CD36 levels have also been detected in the monocytes of patients with coronary artery disease (65) or acute coronary syndrome (66). Future studies are required to investigate the detailed mechanisms through which PXR-CD36 axis regulates atherosclerosis development in different animal models and possibly in humans.

In addition to CD36, we and others have previously reported that PXR can regulate multiple genes including SCD-1, DGATs, lipin-1, Insig-1, and squalene epoxidase that mediate lipid homeostasis in other tissues (9, 13, 14, 16, 54, 67-71). For example, we recently identified several novel transcriptional targets of PXR including cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) and microsomal triglyceride transfer protein (MTP) that play key roles in regulating intestinal lipid absorption and lipoprotein assembly and secretion (14, 16). Interestingly, our RNA-Seq analysis of PM treated with control or PXR ligand PCN in vitro also demonstrated that PCN treatment can significantly affect many genes involved in lipid homeostasis in macrophages of PXR^{F/F}LDLR^{−/−} mice but not in that PXR^{ΔMyc}LDLR^{−/−} mice. Consistent with our previous results from other tissues and cell types (14, 16), NPC1L1 was also upregulated by PCN-mediated PXR activation in control but not PXR-deficient macrophages. In addition to regulating cholesterol uptake by enterocytes in the gut, NPC1L1 is also expressed in human macrophages and NPC1L1 may also contribute to class B scavenger receptor (e.g. CD36)-dependent uptake of oxLDL in those macrophages (72). Therefore, it is plausible that PXR may
regulate multiple pathways in macrophages that contribute to increased foam cell formation and atherosclerosis development.

It is also intriguing that CD36 expression was downregulated in PXR-deficient macrophages but was not upregulated by PCN treatment in *vitro* based on the RNA-Seq analysis. CD36 has been demonstrated to be regulated by multipole pathways including LXR, PPARγ, and inflammatory signaling such as Interferon-γ (73-76). For example, PPARγ is required for maintaining basal expression of CD36 in macrophages, and deficiency of PPARγ led to reduced CD36 expression in PPARγ-deficient mice (76, 77). In addition, we and other previously demonstrated that certain PXR ligands can activate PXR and regulate its target gene expression in a tissue-specific manner (9, 16, 78, 79). Thus, PXR signaling may be important for maintaining basal CD36 expression in macrophages *in vivo*. However, the different *in vitro* environment, the selected PCN dosage, and treatment period may partially explain that unaffected CD36 expression by PCN treatment *in vitro*. It would be interesting to study how PXR and other signaling pathways coordinately regulate CD36 expression and the potential impact on atherosclerosis development and CVD risk in humans in the future.

In addition to those lipogenic genes, PCN-mediated PXR activation also affected inflammatory gene expression *in vitro*. We previously demonstrated that PXR can cross-talk with NF-κB signaling pathway to regulate inflammatory responses (80). We have recently revealed the complex role of NF-κB signaling in atherogenesis and metabolic disorders, and found that NF-κB signaling in different cell types (e.g. myeloid, smooth muscle cells, adipocytes) may have pro- and anti-atherogenic effects (26, 29, 81, 82). In addition to NF-κB signaling, it has been reported that PXR can also regulate innate immunity by activating NLRP3 inflammasome in other cell types such as endothelia cells (83). Therefore, it is plausible that PXR signaling can also regulate NLRP3 inflammasome in macrophages and that myeloid PXR may regulate atherogenesis at multiple levels. Future studies are required to investigate the precise mechanisms through which PXR signaling regulates macrophage functions and atherosclerosis in different animal models and humans.
In summary, we generated a novel PXR^{Am}LDLR^{-/-} mouse model to study the role of myeloid PXR signaling in atherosclerosis. We found that myeloid-specific PXR deficiency decreased atherosclerosis in lean LDLR^{-/-} mice without affecting metabolic phenotypes and lipid profile. Deficiency of PXR reduced macrophage lipid uptake and foam cell formation, which likely contribute to the decreased atherosclerosis in PXR^{Am}LDLR^{-/-} mouse. RNA-Seq studies demonstrated that treatment with PXR ligand PCN affected many atherosclerosis-related gene expression in macrophages <i>in vitro</i>. PXR is an important xenobiotic sensor that plays a key role in mediating xenobiotic responses. Findings from this study will hopefully stimulate further investigations of the role of PXR in macrophage biology and atherogenesis, and the perspective of PXR-mediated “gene-environment interactions” in predisposing individuals to CVD.
Data availability

The RNA-Seq datasets have been deposited in the Gene Expression Omnibus (GSE145719). Data that support the plots within this paper and other findings of this study are available from the corresponding author upon request.

Acknowledgements

This work was supported in part by National Institutes of Health (NIH) grants (R01ES023470, R01HL123358, and R01HL131925) and American Heart Association (AHA) grant (19TPA34890065) (to C.Z.). The authors also acknowledge the core services (supported by NIH grant P30GM127211). The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH and AHA.
References

1. Roth, G. A., M. H. Forouzanfar, A. E. Moran, R. Barber, G. Nguyen, V. L. Feigin, M. Naghavi, G. A. Mensah, and C. J. Murray. 2015. Demographic and epidemiologic drivers of global cardiovascular mortality. *N Engl J Med* **372**: 1333-1341.

2. Robinson-Rechavi, M., A. S. Carpentier, M. Duffraisse, and V. Laudet. 2001. How many nuclear hormone receptors are there in the human genome? *Trends Genet* **17**: 554-556.

3. Mangelsdorf, D. J., C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and et al. 1995. The nuclear receptor superfamily: the second decade. *Cell* **83**: 835-839.

4. Barish, G. D., and R. M. Evans. 2004. PPARs and LXRs: atherosclerosis goes nuclear. *Trends Endocrinol Metab* **15**: 158-165.

5. Glass, C. K. 2006. Going nuclear in metabolic and cardiovascular disease. *J Clin Invest* **116**: 556-560.

6. Blumberg, B., W. Sabbagh, Jr., H. Juguilon, J. Bolado, Jr., C. M. van Meter, E. S. Ong, and R. M. Evans. 1998. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. *Genes Dev* **12**: 3195-3205.

7. Kliewer, S. A., B. Goodwin, and T. M. Willson. 2002. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. *Endocr Rev* **23**: 687-702.

8. Zhou, C., S. Verma, and B. Blumberg. 2009. The steroid and xenobiotic receptor (SRX), beyond xenobiotic metabolism. *Nucl Recept Signal* **7**: e001.

9. Zhou, C. 2016. Novel functions of PXR in cardiometabolic disease. *Biochim Biophys Acta* **1859**: 1112-1120.

10. Blumberg, B., and R. M. Evans. 1998. Orphan nuclear receptors--new ligands and new possibilities. *Genes Dev* **12**: 3149-3155.
11. Zhou, C., N. King, K. Y. Chen, and J. L. Breslow. 2009. Activation of PXR induces hypercholesterolemia in wild-type and accelerates atherosclerosis in apoE deficient mice. *J Lipid Res* **50**: 2004-2013.

12. Sui, Y., J. Xu, J. Rios-Pilier, and C. Zhou. 2011. Deficiency of PXR decreases atherosclerosis in apoE-deficient mice. *J Lipid Res* **52**: 1652-1659.

13. Gwag, T., Z. Meng, Y. Sui, R. N. Helsley, S. H. Park, S. Wang, R. N. Greenberg, and C. Zhou. 2019. Non-nucleoside reverse transcriptase inhibitor efavirenz activates PXR to induce hypercholesterolemia and hepatic steatosis. *Journal of hepatology* **70**: 930-940.

14. Meng, Z., T. Gwag, Y. Sui, S. H. Park, X. Zhou, and C. Zhou. 2019. The atypical antipsychotic quetiapine induces hyperlipidemia by activating intestinal PXR signaling. *JCI Insight* **4**: e125657.

15. Helsley, R. N., Y. Sui, N. Ai, S. H. Park, W. J. Welsh, and C. Zhou. 2013. Pregnane X receptor mediates dyslipidemia induced by the HIV protease inhibitor amprenavir in mice. *Mol Pharmacol* **83**: 1190-1199.

16. Sui, Y., R. N. Helsley, S. H. Park, X. Song, Z. Liu, and C. Zhou. 2015. Intestinal pregnane x receptor links xenobiotic exposure and hypercholesterolemia. *Mol Endocrinol* **29**: 765-776.

17. Dubrac, S., A. Elentner, S. Ebner, J. Horejs-Hoeck, and M. Schmuth. 2010. Modulation of T lymphocyte function by the pregnane X receptor. *J Immunol* **184**: 2949-2957.

18. Albermann, N., F. H. Schmitz-Winnenthal, K. Z’Graggen, C. Volk, M. M. Hoffmann, W. E. Haefeli, and J. Weiss. 2005. Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. *Biochem Pharmacol* **70**: 949-958.

19. Owen, A., B. Chandler, D. J. Back, and S. H. Khoo. 2004. Expression of pregnane-X-receptor transcript in peripheral blood mononuclear cells and correlation with MDR1 mRNA. *Antivir Ther* **9**: 819-821.
20. Siest, G., E. Jeannesson, J. B. Marteau, A. Samara, B. Marie, M. Pfister, and S. Visvikis-Siest. 2008. Transcription factor and drug-metabolizing enzyme gene expression in lymphocytes from healthy human subjects. *Drug Metab Dispos* **36**: 182-189.

21. Casey, S. C., and B. Blumberg. 2012. The steroid and xenobiotic receptor negatively regulates B-1 cell development in the fetal liver. *Mol Endocrinol* **26**: 916-925.

22. Casey, S. C., E. L. Nelson, G. M. Turco, M. R. Janes, D. A. Fruman, and B. Blumberg. 2011. B-1 cell lymphoma in mice lacking the steroid and xenobiotic receptor, SXR. *Mol Endocrinol* **25**: 933-943.

23. Lusis, A. J. 2000. Atherosclerosis. *Nature* **407**: 233-241.

24. Glass, C. K., and J. L. Witzum. 2001. Atherosclerosis. the road ahead. *Cell* **104**: 503-516.

25. Clausen, B. E., C. Burkhardt, W. Reith, R. Renkawitz, and I. Forster. 1999. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. *Transgenic Res* **8**: 265-277.

26. Park, S. H., Y. Sui, F. Gizard, J. Xu, J. Rios-Pilier, R. N. Helsley, S. S. Han, and C. Zhou. 2012. Myeloid-specific IκB kinase beta deficiency decreases atherosclerosis in low-density lipoprotein receptor-deficient mice. *Arterioscler Thromb Vasc Biol* **32**: 2869-2876.

27. Teupser, D., A. D. Persky, and J. L. Breslow. 2003. Induction of atherosclerosis by low-fat, semisynthetic diets in LDL receptor-deficient C57BL/6J and FVB/NJ mice: comparison of lesions of the aortic root, brachiocephalic artery, and whole aorta (en face measurement). *Arterioscler Thromb Vasc Biol* **23**: 1907-1913.

28. Wolfrum, S., D. Teupser, M. Tan, K. Y. Chen, and J. L. Breslow. 2007. The protective effect of A20 on atherosclerosis in apolipoprotein E-deficient mice is associated with reduced expression of NF-kappaB target genes. *Proc Natl Acad Sci U S A* **104**: 18601-18606.

29. Sui, Y., S. H. Park, J. Xu, S. Monette, R. N. Helsley, S. S. Han, and C. Zhou. 2014. IKKbeta links vascular inflammation to obesity and atherosclerosis. *J Exp Med* **211**: 869-886.

30. Helsley, R. N., Y. Sui, S. H. Park, Z. Liu, R. G. Lee, B. Zhu, P. A. Kern, and C. Zhou. 2016. Targeting IκB kinase beta in Adipocyte Lineage Cells for Treatment of Obesity and Metabolic Dysfunctions. *Stem Cells* **34**: 1883-1895.
31. Wang, F., Z. Liu, S. H. Park, T. Gwag, W. Lu, M. Ma, Y. Sui, and C. Zhou. 2018. Myeloid beta-Catenin Deficiency Exacerbates Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. *Arterioscler Thromb Vasc Biol* **38**: 1468-1478.

32. Sui, Y., S. H. Park, F. Wang, and C. Zhou. 2018. Perinatal Bisphenol A Exposure Increases Atherosclerosis in Adult Male PXR-Humanized Mice. *Endocrinology* **159**: 1595-1608.

33. Zhong, S., J. G. Joung, Y. Zheng, Y. R. Chen, B. Liu, Y. Shao, J. Z. Xiang, Z. Fei, and J. J. Giovannoni. 2011. High-throughput illumina strand-specific RNA sequencing library preparation. *Cold Spring Harb Protoc* **2011**: 940-949.

34. Levin, J. Z., M. Yassour, X. Adiconis, C. Nusbaum, D. A. Thompson, N. Friedman, A. Gnirke, and A. Regev. 2010. Comprehensive comparative analysis of strand-specific RNA sequencing methods. *Nature methods* **7**: 709-715.

35. Patro, R., S. M. Mount, and C. Kingsford. 2014. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. *Nat Biotechnol* **32**: 462-464.

36. Zhao, S., and B. Zhang. 2015. A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification. *BMC Genomics* **16**: 97.

37. Robinson, M. D., D. J. McCarthy, and G. K. Smyth. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**: 139-140.

38. Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet* **25**: 25-29.

39. Sui, Y., Z. Liu, S. H. Park, S. E. Thatcher, B. Zhu, J. P. Fernandez, H. Molina, P. A. Kern, and C. Zhou. 2018. IKKbeta is a beta-catenin kinase that regulates mesenchymal stem cell differentiation. *JCI Insight* **3**.

40. Rao, X., J. Zhong, A. Maiseyeu, B. Gopalakrishnan, F. A. Villamena, L. C. Chen, J. R. Harkema, Q. Sun, and S. Rajagopalan. 2014. CD36-dependent 7-ketocholesterol accumulation in macrophages
mediates progression of atherosclerosis in response to chronic air pollution exposure. *Circ Res* **115**: 770-780.

41. Zhou, C., B. Pridgen, N. King, J. Xu, and J. L. Breslow. 2011. Hyperglycemic Ins2AkitaDlr-/-mice show severely elevated lipid levels and increased atherosclerosis: a model of type 1 diabetic macrovascular disease. *J Lipid Res* **52**: 1483-1493.

42. Rahaman, S. O., D. J. Lennon, M. Febbraio, E. A. Podrez, S. L. Hazen, and R. L. Silverstein. 2006. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. *Cell Metab* **4**: 211-221.

43. Kennedy, D. J., S. D. Kuchibhotla, E. Guy, Y. M. Park, G. Nimako, D. Vanegas, R. E. Morton, and M. Febbraio. 2009. Dietary cholesterol plays a role in CD36-mediated atherogenesis in LDLR-knockout mice. *Arterioscler Thromb Vasc Biol* **29**: 1481-1487.

44. Hansson, G. K., and A. Hermansson. 2011. The immune system in atherosclerosis. *Nat Immunol* **12**: 204-212.

45. Hamers, A. A., M. Vos, F. Rassam, G. Marinkovic, K. Kurakula, P. J. van Gorp, M. P. de Winther, M. J. Gijbels, V. de Waard, and C. J. de Vries. 2012. Bone marrow-specific deficiency of nuclear receptor Nur77 enhances atherosclerosis. *Circ Res* **110**: 428-438.

46. Stary, H. C., A. B. Chandler, S. Glagov, J. R. Guyton, W. Insull, Jr., M. E. Rosenfeld, S. A. Schaffer, C. J. Schwartz, W. D. Wagner, and R. W. Wissler. 1994. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. *Circulation* **89**: 2462-2478.

47. de Villiers, W. J., and E. J. Smart. 1999. Macrophage scavenger receptors and foam cell formation. *J Leukoc Biol* **66**: 740-746.

48. Kunjathoor, V. V., M. Febbraio, E. A. Podrez, K. J. Moore, L. Andersson, S. Koehn, J. S. Rhee, R. Silverstein, H. F. Hoff, and M. W. Freeman. 2002. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. *J Biol Chem* **277**: 49982-49988.
49. Collot-Teixeira, S., J. Martin, C. McDermott-Roe, R. Poston, and J. L. McGregor. 2007. CD36 and macrophages in atherosclerosis. *Cardiovasc Res* **75**: 468-477.

50. Abumrad, N. A., M. R. el-Maghrabi, E. Z. Amri, E. Lopez, and P. A. Grimaldi. 1993. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. *J Biol Chem* **268**: 17665-17668.

51. Febbraio, M., E. A. Podrez, J. D. Smith, D. P. Hajjar, S. L. Hazen, H. F. Hoff, K. Sharma, and R. L. Silverstein. 2000. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. *J Clin Invest* **105**: 1049-1056.

52. Moore, K. J., V. V. Kunjathoor, S. L. Koehn, J. J. Manning, A. A. Tseng, J. M. Silver, M. McKee, and M. W. Freeman. 2005. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. *J Clin Invest* **115**: 2192-2201.

53. Guy, E., S. Kuchibhotla, R. Silverstein, and M. Febbraio. 2007. Continued inhibition of atherosclerotic lesion development in long term Western diet fed CD36-/-apoEo mice. *Atherosclerosis* **192**: 123-130.

54. Zhou, J., Y. Zhai, Y. Mu, H. Gong, H. Uppal, D. Toma, S. Ren, R. M. Evans, and W. Xie. 2006. A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway. *J Biol Chem* **281**: 15013-15020.

55. Sui, Y., S. H. Park, R. N. Helsley, M. Sunkara, F. J. Gonzalez, A. J. Morris, and C. Zhou. 2014. Bisphenol A increases atherosclerosis in pregnane X receptor-humanized ApoE deficient mice. *Journal of the American Heart Association* **3**: e000492.

56. Zhang, Y., X. Wang, C. Vales, F. Y. Lee, H. Lee, A. J. Lusis, and P. A. Edwards. 2006. FXR deficiency causes reduced atherosclerosis in Ldlr-/- mice. *Arterioscler Thromb Vasc Biol* **26**: 2316-2321.
57. Guo, G. L., S. Santamarina-Fojo, T. E. Akiyama, M. J. Amar, B. J. Paigen, B. Brewer, Jr., and F.
J. Gonzalez. 2006. Effects of FXR in foam-cell formation and atherosclerosis development. *Biochim
Biophys Acta* **1761**: 1401-1409.

58. Febbraio, M., D. P. Hajjar, and R. L. Silverstein. 2001. CD36: a class B scavenger receptor
involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. *J Clin Invest* **108**: 785-
791.

59. Febbraio, M., E. Guy, and R. L. Silverstein. 2004. Stem cell transplantation reveals that absence
of macrophage CD36 is protective against atherosclerosis. *Arterioscler Thromb Vasc Biol* **24**: 2333-2338.

60. Manning-Tobin, J. J., K. J. Moore, T. A. Seimon, S. A. Bell, M. Sharuk, J. I. Alvarez-Leite, M. P.
de Winther, I. Tabas, and M. W. Freeman. 2009. Loss of SR-A and CD36 activity reduces atherosclerotic
lesion complexity without abrogating foam cell formation in hyperlipidemic mice. *Arterioscler Thromb
Vasc Biol* **29**: 19-26.

61. Park, Y. M., M. Febbraio, and R. L. Silverstein. 2009. CD36 modulates migration of mouse and
human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the
arterial intima. *J Clin Invest* **119**: 136-145.

62. Chen, Y., D. J. Kennedy, D. P. Ramakrishnan, M. Yang, W. Huang, Z. Li, Z. Xie, A. C.
Chadwick, D. Sahoo, and R. L. Silverstein. 2015. Oxidized LDL-bound CD36 recruits an Na(+)/K(+)-
ATPase-Lyn complex in macrophages that promotes atherosclerosis. *Sci Signal* **8**: ra91.

63. Nakata, A., Y. Nakagawa, M. Nishida, S. Nozaki, J. Miyagawa, T. Nakagawa, R. Tamura, K.
Matsumoto, K. Kameda-Takemura, S. Yamashita, and Y. Matsuzawa. 1999. CD36, a novel receptor for
oxidized low-density lipoproteins, is highly expressed on lipid-laden macrophages in human
atherosclerotic aorta. *Arterioscler Thromb Vasc Biol* **19**: 1333-1339.

64. Handberg, A., K. Hojlund, A. Gastaldelli, A. Flyvbjerg, J. M. Dekker, J. Petrie, P. Piatti, H.
Beck-Nielsen, and R. Investigators. 2012. Plasma sCD36 is associated with markers of atherosclerosis,
insulin resistance and fatty liver in a nondiabetic healthy population. *Journal of internal medicine* **271**:
294-304.
65. Teupser, D., M. A. Mueller, J. Koglin, W. Wilfert, J. Ernst, W. von Scheidt, G. Steinbeck, D. Seidel, and J. Thiery. 2008. CD36 mRNA expression is increased in CD14+ monocytes of patients with coronary heart disease. *Clin Exp Pharmacol Physiol* **35**: 552-556.

66. Piechota, M., A. Banaszewska, J. Dudziak, M. Slomczynski, and R. Plewa. 2012. Highly upregulated expression of CD36 and MSR1 in circulating monocytes of patients with acute coronary syndromes. *Protein J* **31**: 511-518.

67. He, J., J. Gao, M. Xu, S. Ren, M. Stefanovic-Racic, R. M. O’Doherty, and W. Xie. 2013. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. *Diabetes* **62**: 1876-1887.

68. Moreau, A., C. Teruel, M. Beylot, V. Albalea, V. Tamasi, T. Umlandstock, Y. Parmentier, A. Sa-Cunha, B. Suc, J. M. Fabre, F. Navarro, J. Ramos, U. Meyer, P. Maurel, M. J. Vilarem, and J. M. Pascussi. 2009. A novel pregnane X receptor and S14-mediated lipogenic pathway in human hepatocyte. *Hepatology* **49**: 2068-2079.

69. Roth, A., R. Looser, M. Kaufmann, S. Blaettler, F. Rencurel, W. Huang, D. D. Moore, and U. A. Meyer. 2008. Regulatory Crosstalk between Drug Metabolism and Lipid Homeostasis: Car and PXR Increase Insig-1 Expression. *Mol Pharmacol.*

70. Nakamura, K., R. Moore, M. Negishi, and T. Sueyoshi. 2007. Nuclear pregnane X receptor crosstalk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver. *J Biol Chem* **282**: 9768-9776.

71. Bachmanov, A. A., D. R. Reed, G. K. Beauchamp, and M. G. Tordoff. 2002. Food intake, water intake, and drinking spout side preference of 28 mouse strains. *Behavior genetics* **32**: 435-443.

72. Seedorf, U., T. Engel, A. Lueken, G. Bode, S. Lorkowski, and G. Assmann. 2004. Cholesterol absorption inhibitor Ezetimibe blocks uptake of oxidized LDL in human macrophages. *Biochem Biophys Res Commun* **320**: 1337-1341.
73. Zhou, J., M. Febbraio, T. Wada, Y. Zhai, R. Kuruba, J. He, J. H. Lee, S. Khadem, S. Ren, S. Li, R. L. Silverstein, and W. Xie. 2008. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. *Gastroenterology* **134**: 556-567.

74. Han, J., D. P. Hajjar, J. M. Tauras, J. Feng, A. M. Gotto, Jr., and A. C. Nicholson. 2000. Transforming growth factor-beta1 (TGF-beta1) and TGF-beta2 decrease expression of CD36, the type B scavenger receptor, through mitogen-activated protein kinase phosphorylation of peroxisome proliferator-activated receptor-gamma. *J Biol Chem* **275**: 1241-1246.

75. Yesner, L. M., H. Y. Huh, S. F. Pearce, and R. L. Silverstein. 1996. Regulation of monocyte CD36 and thrombospondin-1 expression by soluble mediators. *Arterioscler Thromb Vasc Biol* **16**: 1019-1025.

76. Moore, K. J., E. D. Rosen, M. L. Fitzgerald, F. Randow, L. P. Andersson, D. Altshuler, D. S. Milstone, R. M. Mortensen, B. M. Spiegelman, and M. W. Freeman. 2001. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. *Nat Med* **7**: 41-47.

77. Akiyama, T. E., S. Sakai, G. Lambert, C. J. Nicol, K. Matsuse, S. Pimprale, Y. H. Lee, M. Ricote, C. K. Glass, H. B. Brewer, Jr., and F. J. Gonzalez. 2002. Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. *Mol Cell Biol* **22**: 2607-2619.

78. Zhou, C., M. M. Tabb, A. Sadatrafiei, F. Grun, and B. Blumberg. 2004. Tocotrienols activate the steroid and xenobiotic receptor, SXR, and selectively regulate expression of its target genes. *Drug Metab Dispos* **32**: 1075-1082.

79. Cheng, J., Y. M. Shah, X. Ma, X. Pang, T. Tanaka, T. Kodama, K. W. Krausz, and F. J. Gonzalez. 2010. Therapeutic role of rifaximin in inflammatory bowel disease: clinical implication of human pregnane X receptor activation. *J Pharmacol Exp Ther* **335**: 32-41.

80. Zhou, C., M. M. Tabb, E. L. Nelson, F. Grun, S. Verma, A. Sadatrafiei, M. Lin, S. Mallick, B. M. Forman, K. E. Thummel, and B. Blumberg. 2006. Mutual repression between steroid and xenobiotic
receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. *J Clin Invest* **116**: 2280-2289.

81. Park, S. H., Z. Liu, Y. Sui, R. N. Helsley, B. Zhu, D. K. Powell, P. A. Kern, and C. Zhou. 2016. IKKbeta Is Essential for Adipocyte Survival and Adaptive Adipose Remodeling in Obesity. *Diabetes* **65**: 1616-1629.

82. Lu, W., S. H. Park, Z. Meng, F. Wang, and C. Zhou. 2019. Deficiency of Adipocyte IKKbeta Affects Atherosclerotic Plaque Vulnerability in Obese LDLR Deficient Mice. *Journal of the American Heart Association* **8**: e012009.

83. Wang, S., T. Lei, K. Zhang, W. Zhao, L. Fang, B. Lai, J. Han, L. Xiao, and N. Wang. 2014. Xenobiotic pregnane X receptor (PXR) regulates innate immunity via activation of NLRP3 inflammasome in vascular endothelial cells. *J Biol Chem* **289**: 30075-30081.
Figure 1. Generation of LDLR−/− mice with myeloid-specific PXR deficiency.

(A) mRNA levels of PXR in peritoneal macrophages (PM), bone marrow-derived macrophages (BMM), and the other major tissues of PXRF/F/LDLR−/− and PXRDMye/LDLR−/− mice (n=4-5, *p<0.05). (B) Immunoblotting for PXR proteins in PM, BMM, and liver of PXRF/F/LDLR−/− and PXRDMye/LDLR−/− mice.
Figure 2. Deficiency of myeloid PXR does not affect body weight and glucose tolerance in LDLR⁻/⁻ mice.

Four-week-old male PXR⁺⁺/⁻LDLR⁻/⁻ and PXR⁻/⁻/⁻LDLR⁻/⁻ littermates were fed a semi-synthetic AIN76a diet containing 0.02% cholesterol for 12 weeks. Growth curve (A), fat and lean mass (B), major organ weight (C), and glucose tolerance (D) were measured (n=7-12).
Figure 3. Deletion of PXR in myeloid cells has no effects on plasma lipid profiles in LDLR^{−/−} mice.

Four-week-old male PXR^{FF}LDLR^{−/−} and PXR^{MY}LDLR^{−/−} littermates were fed an AIN76a diet for 12 weeks. The plasma levels of cholesterol (A) and triglyceride (B) were measured (n=6), and plasma cholesterol distribution (C) was analyzed by fast-performance liquid chromatography.
Figure 4. Deficiency of myeloid PXR decreases atherosclerosis in LDLR^{−/−} mice.

Four-week-old male PXR^{F/F}LDLR^{−/−} and PXR^{ΔMye}LDLR^{−/−} littermate were fed an AIN76a diet for 12 weeks. Quantitative analysis of the atherosclerotic lesion area at the aortic root (A) and brachiocephalic artery (B) of PXR^{F/F}LDLR^{−/−} and PXR^{ΔMye}LDLR^{−/−} mice (n=11-13, *P<0.05 and **P<0.01).

Representative images of Oil-red-O-stained sections from each genotype are displayed below the quantification data. Scale bars, 500 μm (A) and 100 μm (B).
Figure 5. Ablation of PXR reduces macrophage contents without affecting smooth muscle cell and collagen contents in atherosclerotic lesions of LDLR^{−/−} mice.

Four-week-old male PXR^{F/F}LDLR^{−/−} and PXR^{Mye}LDLR^{−/−} littermates were fed an AIN76a diet for 12 weeks. Representative images and quantification data of CD68 (A) and α-SMA (B) immunofluorescence staining, and Masson’s Trichrome staining (C) at aortic root of PXR^{F/F}LDLR^{−/−} and PXR^{Mye}LDLR^{−/−} mice (n=3-5, *P<0.05; Scale bars, 100 μm).
Figure 6. Deficiency of PXR reduces foam cell formation and CD36 expression in macrophages of PXR^DeltaMye^LDLR^-/- mice.

(A) Fresh isolated peritoneal macrophages from PXR^FF^LDLR^-/- and PXR^DeltaMye^LDLR^-/- mice fed an AIN76a diet for 12 weeks were stained with Oil red O and haematoxylin (Scale bars, 100 μm). (B) Foam cell quantification from peritoneal macrophages in studies described in panel A (n=7, ***P<0.001). (C) Total RNAs were isolated from fresh isolated peritoneal macrophages of PXR^FF^LDLR^-/- and PXR^DeltaMye^LDLR^-/- mice, and the expression levels of indicated genes were analyzed by QPCR (n=5, *P<0.05).
Figure 7. Deficiency of myeloid PXR decreases atherosclerotic lesional CD36 expression in PXR^ΔMyε^LDLR^−/−^ mice.

(A) Sections of atherosclerotic lesions at aortic root of PXR^F/F^LDLR^−/−^ and PXR^ΔMyε^LDLR^−/−^ mice were stained with anti-mouse CD36 primary antibodies, followed by fluorescein-labeled secondary antibodies. The nuclei were stained with DAPI (blue). Scale bars, 100 μm. (B) Quantification data of CD36 immunofluorescence staining (n=5, ***P<0.001).
Figure 8. PXR-deficient macrophages have impaired lipid uptake properties.

(A) Fresh isolated peritoneal macrophages from PXR^{F/F}LDLR^{−/−} and PXR^{ΔMyc}LDLR^{−/−} littermates were incubated with oxLDL (100 μg/mL) for 24 hr, and stained with Oil red O and haematoxylin. (Scale bars, 100 μm). (B) Foam cell quantification from peritoneal macrophages in studies described in panel A (n=5, ***p<0.001).
Figure 9. PXR ligand treatment affects many atherosclerosis-related gene expression in macrophages in vitro.

Peritoneal macrophages were isolated from PXR^FF^LDLR^+/−^ and PXR^ΔMyε^LDLR^+/−^ mice. Macrophages were treated with 20 μM PXR ligand pregnenolone 16α-carbonitrile (PCN) or vehicle control (DMSO) for 12 hr and total RNA was isolated for RNA-Seq analysis (n = 3-6). (A) Volcano plots of differentially expressed genes (DEGs) in control and PXR-deficient macrophages after PCN treatment. Orange dots indicate upregulation; blue dots indicate downregulation; and gray dots indicate non-significance relative to cut-off criteria for DEG significance. The significance threshold used was false discovery rate (FDR) < 5% and fold change (FC) >1.5. The y-axis displays the -log10P-value for each gene, while the x-axis displays the log2 fold change for that gene relative to control. (B) The Gene Ontology (GO) Biological Process terms significantly associated with the DEGs in control macrophages after PCN treatment. The
P-values were computed by *Fisher’s* exact test. The vertical dash line indicates the significance level of $\alpha=0.05$. The y-axis displays the GO Biological Process terms while the x-axis displays the P-values. (C) Heatmap representation of DEGs involved in the biological processes of “Lipid metabolic process”, “Cholesterol biosynthetic process”, “Inflammatory response” and “Positive regulation of cytokine secretion” shown in panel B. Each row shows one individual gene and each column a biological duplicate of mouse.