Symmetric Growth of Dual-Packed Kernel: Exploration of the Evolution of Au_{40}(SR)_{24} to Au_{49}(SR)_{27} and Au_{58}(SR)_{30} Clusters via the 2e⁻-Reduction Cluster Growth Mechanism

Lin Xiong and Yong Pei*

ABSTRACT: The symmetric and periodic growth of metal core and ligand shell has been found in a number of ligand-protected metal clusters. So far, the principle of symmetric growth has been widely used to understand and predict the cluster structure evolution. In this work, based on the experimentally resolved crystal structure of Au_{40}(o-MBT)_{24} and Au_{49}(2,4-DMBT)_{27} clusters and a newly proposed two-electron (2e⁻) reduction cluster growth mechanism, the evolution pathway from the quasi-face-centered-cubic (fcc)-structured Au_{40}(SR)_{24} cluster to the dual fcc- and nonfcc-packed Au_{49}(SR)_{27} and Au_{58}(SR)_{30} clusters was studied. The current research has clarified two important issues of cluster structure evolution. First, the formation of the dual-packed fcc and nonfcc kernel structure has been rationalized based on a 2e⁻-reduction-based seed-mediated cluster growth pathway. Second, it is found that the symmetrical growth does not necessarily lead to the formation of stable cluster structures. It was found that the formation of dual-packed kernels in the Au_{49}(SR)_{27} cluster is favorable because of the stability of the intermediate cluster structures and the relatively high thermodynamic stability of the cluster itself. However, although the structure of Au_{58}(SR)_{30} cluster conforms to the principle of symmetric growth, the tension between the ligand shell and the gold atom of the metal nucleus increases significantly during the cluster size evolution, and the stability of the intermediate clusters is poor, so the formation of the Au_{58}(SR)_{30} cluster is unfavorable. This study also shows that the 2e⁻-reduction cluster growth mechanism can be used to explore the structural evolution and stability of thiolate-protected gold clusters.

1. INTRODUCTION

Ligand-protected noble-metal clusters have become a research hotspot in the field of nanoscience because of their unique physicochemical properties.¹–⁶ In particular, because of the relatively excellent chemical stability of thiolate-protected gold nanoclusters (usually referred to as the Auₙ(SR)ₙ cluster, hereinafter denoted as RS-AuNCs), tremendous efforts have been devoted to the study of the structure and properties of such clusters.³,⁵,⁷–¹⁷ Pioneered by the breakthrough of successful crystallization of the Au_{50}(SR)₄₄ cluster in 2007,¹⁸ a large amount of RS-AuNCs has been experimentally crystallized, and precise atomic structures were characterized.³ On this basis, researchers can further explore the evolution of cluster structures and the structure–property relationship in order to understand more clearly the role of clusters as a mesoscopic substance in the process of connecting micro and macromatter and to develop its potential applications.³,⁶,¹⁹–²¹

X-ray single crystal diffraction analyses showed that the RS-AuNCs consisted of a symmetrical gold core and outer staple motifs.⁷ Until 2012, it was found that almost all the determined atomic structures of thiolate and the mixed phosphine/halide/thiolate-protected gold nanoclusters contained multiple-twinned gold core structures, and the icosahedron or its derivate served as the basic structural units of gold core.²²–²⁷ As more unprecedented stable cluster sizes and cluster structures were determined, it was discovered that these clusters showed different configurations of core structures, such as icosahedron, dodecahedron, face-centered cubic (fcc), hexagonal closet packing (hcp), and body-centered cubic (bcc) configurations.³,⁷

These resolved cluster crystal structures revealed some inherent structural evolution patterns, among which a typical evolution pattern is symmetry or periodicity.⁷,¹¹,²⁸ For example, the core structures of Au_{21}(SR)_{15},¹¹,²⁹ and Au_{23}(SR)_{16} clusters can be seen as one and two triangular Au₉, growing symmetrically on both sides of the Au₇ core of Au_{10}(SR)_{10}, respectively. A similar case of symmetric growth occurs in the sequences of Au_{30}(SR)_{20} → Au_{35}(SR)_{25} → Au_{40}(SR)_{30} and Au_{44}(SR)₂₈ → Au_{46}(SR)₃₆ → Au_{48}(SR)₄₄, although...
the structure of Au₆₈(SR)₃₆ have not been experimentally confirmed. The gold quantum boxes, including the Au₃₂₈, Au₃₆₈, and Au₅₂ magic series, reported by Jin et al., can also be regarded as a result of growing Au₇₃ triangles symmetrically on both sides of the double Au₇ core, starting from Au₅₈(TBBT)₃₆. Based on the experimentally determined cluster structures, a structure evolution map of the fcc-structured RS-AuNCs has been further proposed recently, which revealed the basic evolution pattern of RS-AuNC cluster containing an fcc core.¹¹

Although the symmetric growth has been found in a number of ligand-protected gold clusters and the principle has been used to understand and predict the structural evolution of ligand-protected gold clusters, the following question is raised: is the symmetric growth an eternal law in the evolution of RS-AuNCs? Recently, the new progress in the experimental studies indicated that the kernel atoms of RS-AuNCs can be packed into a dual-packed kernel configuration.³⁹⁻⁴¹ Such a dual-packed kernel cluster exhibited a subnanoscale heterojunction structure. Through the density functional theory (DFT) calculations, an interesting finding was obtained: the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) of dual-packed kernel Au₄₉(2,4-DMBT)₂₇ cluster are distributed in the fcc and nonfcc components of gold kernels, respectively.⁴⁰ Further experimental studies revealed that kernel packing greatly influences the electrochemical gap (EG), and the fcc structure exhibits a larger EG than the investigated nonfcc structure. Because the EG is correlated to some fundamental physicochemical properties of the materials, such dual-packed kernel metal clusters were expected to possess novel electronic and optical properties compared with the regular icosahedral or fcc gold clusters. Another prototype of dual-packed kernel clusters was found in a low-temperature isomer of the Au₃₈(SC₂H₄Ph)₂₄ cluster.⁴¹ In the isomeric Au₄₀(SC₂H₄Ph)₂₄ cluster, the metal core was composed of an icosahedral Au₁₃ and a group of fcc-structured Au atoms. The newly discovered dual-packed kernel clusters implied a new evolution pathway of the RS-AuNCs, which raised interesting questions with regard to the cluster structure evolution and growth mechanism. The first question is as follows: is there a new cluster sequence with the core structure that adopts a hybrid dual-packed fcc and nonfcc configuration? The second question is as follows: What is the formation mechanism of the dual-packed kernel structures? The last but not least, is the principle of symmetric growth maintained in the evolution of clusters?

In this study, based on the crystal structure of the Au₄₀(o-MBT)₂₄ and Au₄₉(DMBT)₂₇ clusters, we explored the evolution pathway from the fcc-structured Au₄₀(SR)₂₄ to the dual-packed fcc and nonfcc clusters Au₄₉(SR)₂₇ and Au₅₈(SR)₃₀. The coordinate files of the clusters involved in the evolution path are presented in the Supporting Information. Very recently, we noted that Xu et al. predicted the atomic structure of Au₅₈(SR)₃₀ based on the symmetric growth of the nonfcc part of the Au₄₉(SR)₂₇ cluster.³⁵ Their predicted cluster structure is consistent with that of the Au₄₉-S iso2 in this study. Different from the previous report, this work reported a very comprehensive study on the formation mechanism of the nonfcc kernel structure on the Au₄₉(SR)₂₇ and Au₅₈(SR)₃₀ clusters based on a newly proposed 2e⁻ reduction-assisted seed-mediated cluster evolution mechanism.⁴⁴ An evolution pathway from the Au₄₀(SR)₂₄ to the Au₄₉(SR)₂₇ and then to the Au₅₈(SR)₃₀ was mapped out first based on the 2e⁻-reduction cluster growth mechanism, which explained the formation of the nonfcc kernel structure on the Au₄₉(SR)₂₇ and the Au₅₈(SR)₃₀ clusters. More importantly, the mapped evolution pathway enabled us to assess the stability of the intermediate and the product clusters with the dual-packed kernel. In the present study, energy evaluation by the DFT calculations showed that the formation of dual-packed kernel intermediate clusters Au₄₃(SR)₂₅, Au₄₆(SR)₂₆, and Au₄₉(SR)₂₇ is energetically favorable. However, the latter cluster evolution pathway from Au₄₉(SR)₂₇ to Au₅₈(SR)₃₀ was unfavorable in terms of both poor thermodynamic stability of intermediate...
clusters (i.e., Au34(SR)3 and Au34(SR)29) in the size-growth process and the low stability of the dual-packed structure of Au35(SR)25. Therefore, although the Au35(SR)25 conformed to the principle of the symmetric growth of the cluster structure, its low thermodynamic stability may not be conducive to its formation. This study also suggested that in order to study the evolution of clusters, it is necessary to comprehensively study the structural stability of clusters and the thermodynamics of the formation process. The 2e− reduction-assisted cluster size growth mechanism is a good scenario to explore the structure evolution, stability, and formation process of RS-AuNCs.

2. COMPUTATIONAL METHOD AND DETAILS

In this work, the cluster structural optimizations were performed by DFT, with the R groups simplified with CH3. The Perdew–Burke–Ernzerhof (PBE) functional45 and the d-polarization basis set (DND) were used for the elements C, H, and S. The DFT semicore pseudopotential (DSPF) approximation with some degree of relativistic correction into the core was used for Au implemented in the Dmol3 package.46,47 The dispersion effect was considered in the structural optimization and calculations of the transition state (TS) using the Tkatchenko and Scheffler method.48 In addition, in order to get closer to the experimental facts, the conductor-like screening model (COSMO) solvent model49 was adopted to reflect the solvent effect with water as the solvent. The time-dependent DFT (TD-DFT), as implemented in the Amsterdam density functional (ADF) software package,50 was utilized for calculating the ultraviolet–visible (UV–vis) spectra of the as-predicted cluster sequence. The triple-zeta polarized (TZP) basis set with the inclusion of the scalar relativistic effect via a zeroth-order regular approximation (ZORA) implemented in the ADF package was adopted. The TD-DFT calculations evaluated the lowest 500 singlet-to-singlet excitation energies. The structures of the clusters involved in the spectral calculations in this work are relatively large. Considering that the cluster structures do not change significantly after the ligands are replaced by the H atoms, we therefore use H atoms as substituents to simplify the ligands to save computational costs. Such spectral accuracy is sufficient for the qualitative analysis of the optical absorption characteristics of the gold clusters.

3. RESULTS AND DISCUSSION

3.1. Evolution Pathway of Cluster Structures from 16e− Au40(SR)24 to 22e− Au49(SR)27. Figure 1a,b displays the structure anatomy of the Au40(SR)24 and Au49(SR)27 clusters. According to the “divide-and-protected” scheme,51,52 the two clusters can be formulated as Au65[3Au(SR)2]2[4Au(SR)1]6 and Au34(SR)3[Au(SR)2]3[Au(SR)]3 respectively. Considering

that each bridge SR group or [Au4(SR)3] motif can bind one Au-6s electron, the total number of free valence electrons of the Au40(SR)24 and Au49(SR)27 clusters was 16 and 22, respectively, and the Au core in the two clusters can be viewed as Au126 and Au123 respectively. For both clusters, they showed a good relationship between the total number of free valence electrons and the polyhedron building blocks in the metal core. Our recent studies suggested that the tetrahedron-Au4 and the triangle-Au3 unit in the RS-AuNCs can be viewed as the basic 2e− building block, that is, Au42+ or Au33+. Based on this viewpoint, the 16e− and 22e− of Au40(SR)24 and Au49(SR)27 clusters correspond to their unique metal core stacking configurations. As shown in Figure 1a,b, the gold core in Au40(SR)24 was made of eight vertex-shared Au4 tetrahedra. Each Au4 tetrahedron can be considered as a 2e− unit (Au42+). As for the Au49(SR)27 cluster, the 22e− originates from 11 Au42+ units.

In view of the structure of the gold core of Au40 and Au49 clusters, the gold core in Au40 has a fcc-geometry made of a central Au4 bi-tetrahedron and a Kekulé ring-like conjugated Au4 tetrahedron ring25 while the gold core in the Au49 cluster can be regarded as adding three new Au4 triangular units to the gold core of the Au40 cluster.40 Based on the structures of the gold cores in the Au40 and Au49 clusters, a new cluster size growth mechanism may be implied. Quite evidently, there are some intermediate clusters in the size evolution from Au40 to Au49. Exploring the geometries and relative stabilities of these intermediate clusters will enable us to gain a deeper understanding of the evolutionary mechanism of the RS-AuNCs.

As shown in Figure 1b, the Au core of the Au49(SR)27 cluster can be evolved from the Au core of the Au40(SR)24 cluster by “growing” three triangular Au4 units on the vertex of three symmetric Au4 tetrahedra. At the same time, three trimeric staples on one side of the Au40 cluster lose three SR groups (the transparent red ball in Figure 1c), and the trimeric staple and its adjacent monomer staple each has an Au atom (turquoise balls) that contributes to the formation of a newly added Au4 unit. Because of the growth of three new triangle Au4 units and the rearrangement of the ligand motifs, the gold core of the Au49(SR)27 cluster forms a hybrid fcc and nonfcc dual-packed configuration.

Based on the analysis on the structure and valence electron number of the Au40(SR)24 and Au49(SR)27 clusters, a stepwise 2e− evolution pathway is suggested. It proposes that the Au49(SR)27 cluster can be evolved from the Au40(SR)24 cluster by the sequential growth of Au4 tetrahedra and ligand motifs, that is, Au40(SR)24 (16e−)+Au4(SR)1→Au43(SR)23 (18e−)+Au4(SR)1→Au46(SR)26 (20e−)+Au4(SR)1→Au49(SR)27 (22e−). In the proposed cluster evolution pathway, Au49(SR)27 and Au46(SR)26 are two intermediate clusters, and their
structures can be constructed based on \(\text{Au}_{40}(\text{SR})_{24} \) by adding one or two \(\text{Au}_3(\text{SR})_1 \) units, as shown in Figure 2.

The mapped structural evolution pathway displayed in Figure 2 implies a seed-mediated cluster growth mechanism. That is, \(\text{Au}_{40}(\text{SR})_{24} \) can be viewed as a seed cluster. Upon reacting with the thiolate–gold complexes (e.g., three \([\text{Au}_3(\text{SR})_1] \)) under the reductive environment, it may gradually grow into a larger-size \(\text{Au}_{46}(\text{SR})_{26} \) cluster through three \(2e^- \)-incrementation steps. The seed-mediated cluster growth process can be therefore formulated as eqs 123, where the \(2e^- \) in each cluster size growth step comes from the reduction reagent such as \(\text{NaBH}_4 \) or \(\text{CO} \).

\[
\begin{align*}
\text{Au}_{40}(\text{SR})_{24} + [\text{Au}_3(\text{SR})_1] + 2e^- & \rightarrow \text{Au}_{43}(\text{SR})_{25} + 2\text{SR}^- \\
\text{Au}_{43}(\text{SR})_{25} + [\text{Au}_3(\text{SR})_1] + 2e^- & \rightarrow \text{Au}_{46}(\text{SR})_{26} + 2\text{SR}^- \\
\text{Au}_{46}(\text{SR})_{26} + [\text{Au}_3(\text{SR})_1] + 2e^- & \rightarrow \text{Au}_{49}(\text{SR})_{27} + 2\text{SR}^-
\end{align*}
\]

The theoretical speculated seed-mediated cluster growth process is supported by the recent experimental observation of the seed-mediated growth of RS-AuNCs. Xie et al. found that in the reduction environment, the magic stable \(\text{Au}_{43}(\text{SR})_{18} \) (8\(e^- \)) cluster can irreversibly grow into larger-size \(\text{Au}_{48}(\text{SR})_{24} \) (14\(e^- \)) and \(\text{Au}_{44}(\text{SR})_{26} \) (18\(e^- \)) clusters, and the size growth of clusters demonstrated clear stepwise \(2e^- \) incrementations. Based on the above discussion, we have manually constructed the structure of intermediate clusters \(\text{Au}_{43}(\text{SR})_{25} \), \(\text{Au}_{46}(\text{SR})_{26} \) and \(\text{Au}_{49}(\text{SR})_{27} \), and the structures of these intermediate clusters are displayed in Figure 2. Note that following the proposed \(2e^- \)-evolution pathway, the resulted \(\text{Au}_{49}(\text{SR})_{27} \) cluster has slightly different Au-S skeleton structure compared with the experimentally resolved structure of \(\text{Au}_{49}(2,4\text{-DMBT})_{27} \). The theoretically proposed isomer structure was then referred to as \(\text{Au}_{49}(\text{SR})_{27}-\text{iso} \) in this work. Herein, we focused on the geometric structure and the relative stabilities of the intermediate \(\text{Au}_{43}(\text{SR})_{25} \), \(\text{Au}_{46}(\text{SR})_{26} \) and \(\text{Au}_{49}(\text{SR})_{27} \)-iso clusters. Very recently, Wu et al. reported the synthesis and crystal structure of the \(\text{Au}_{43}((\text{CTH})_{25} \) cluster (\(\text{CTH} = \text{cyclohexanethiol} \)). In contrast to the \(\text{Au}_{43}(\text{SR})_{25} \) cluster found in this work, the \(\text{Au}_{43}((\text{CTH})_{25} \) cluster reported in their work contained a quasi-fcc gold kernel. DFT calculations were performed to investigate the relative stabilities of two isomeric structures of \(\text{Au}_{43}(\text{SR})_{25} \) clusters. The results showed that the experimentally resolved structure was slightly stable than the theoretically proposed \(\text{Au}_{43} \) cluster by 0.29 eV (\(\text{SR} = \text{SCH}_3 \)), which indicates that the newly constructed \(\text{Au}_{43} \) cluster structure model is energetically stable. On the other hand, we also compared the relative stability of \(\text{Au}_{49}(\text{SR})_{27}-\text{iso} \) and the experimentally resolved structure of \(\text{Au}_{49}(2,4\text{-DMBT})_{27} \). It was found that the \(\text{Au}_{49}(\text{SR})_{27}-\text{iso} \) in the evolution pathway is a higher-energy isomer compared with the experimental crystal structure, which is less stable by 0.47 eV (\(\text{SR} = \text{SCH}_3 \)).

3.2. Seed-Mediated Cluster Size Growth Mechanism from \(\text{Au}_{40}(\text{SR})_{24} \) to \(\text{Au}_{49}(\text{SR})_{27} \). Because the \(\text{Au}_{40} \) and \(\text{Au}_{49} \) clusters demonstrated a clear structural evolution pattern in both the Au core and ligand motifs, an intriguing question is raised: can we find an evolutionary mechanism from \(\text{Au}_{40} \) to \(\text{Au}_{49} \) clusters? Recent studies of real-time monitoring of the bottom-up growth and the seed-mediated growth of water-soluble RS-AuNCs by UV–vis absorption and electrospray ionization mass spectrometry (ESI-MS) have revealed several valuable details of the formation and seed-mediated size-evolution mechanism of RS-AuNCs at the molecular- or even atomic level. Among them, the seed-mediated growth of \(\text{Au}_{44}(\text{MBA})_{26} \) from \(\text{Au}_{25}(\text{MBA})_{18} \) in the mild CO-reduction system reported by Yao et al. clarified several fundamental puzzles of the NC field at the molecular level, especially the uncovering of an interesting gold cluster growth principle—the \(2e^- \) hopping pathway.

In the present study, the suggested stepwise \(2e^- \)-incrementation size-evolution pathway from \(\text{Au}_{40} \) to \(\text{Au}_{49} \) clusters agreed very well with the growth principle of water-soluble RS-AuNCs. Inspired by these experimental facts and combined with the \(2e^- \)-incrementation pathway displayed in Figure 2, here, we proposed a new mechanism to address the evolution process from the \(\text{Au}_{40}(\text{SR})_{24} \) cluster to the \(\text{Au}_{49}(\text{SR})_{27} \) cluster using CO as a model reduction agent. As mentioned in the reaction eqs 123, the size-evolution from the \(\text{Au}_{40}(\text{SR})_{24} \) cluster to the \(\text{Au}_{49}(\text{SR})_{27} \) cluster can be divided into three \(2e^- \)-incrementation size-growth steps. In each cluster size-growth step, \(2e^- \) reduction is required to achieve the growth of a new tetrahedron \(\text{Au}_4 \) unit in the core and the new...
Figure 3. Illustration of the size evolution from \(\text{Au}_{40}(\text{SR})_{24} \) to \(\text{Au}_{43}(\text{SR})_{25} \) based on the carboxylation-decarboxylation mechanism using CO as the model reduction agent. (a) Framework of \(\text{Au}_{40}(\text{SR})_{24} \). (b) Carboxylated \(\text{Au}_{3}(\text{SR})_{3} \) fragment is inserted between an Au–S bond in the ligand of \(\text{Au}_{40} \). (c) Process of decarboxylation. In this process, two SR groups (marked by red circles) are eliminated, which come from the \(\text{Au}_{40} \) and \(\text{Au}_{3}(\text{SR})_{3} \), fragments, respectively. (d) TS structure in the process of evolution from \(\text{Au}_{40}(\text{SR})_{24} \) to \(\text{Au}_{43}(\text{SR})_{25} \) (This process involves the collapse of motif Au). (e) Skeleton structure of \(\text{Au}_{43}(\text{SR})_{25} \). Light orange/pink/turquoise, Au atoms; bright green/pink, sulfur. R groups are omitted for clarity.

Figure 4. Energy curve of the dual-packed cluster sequence from \(\text{Au}_{40}(\text{SR})_{24} \) to \(\text{Au}_{49}(\text{SR})_{27} \)-exp based on the carboxylation and decarboxylation mechanism. C1, C3, and C5 are cluster species formed by \(\text{Au}_{40}(\text{SR})_{24}, \text{Au}_{43}(\text{SR})_{25} \), and \(\text{Au}_{49}(\text{SR})_{27} \) combined with one \([\text{Au}(\text{SR})_{2}-\text{COOH}]^{-}\) fragment, respectively. C2, C4, and C6 are the products of decarboxylation of \([\text{Au}_{40}(\text{SR})_{24}-\text{Au}_{3}(\text{SR})_{3}-\text{COOH}]^{-}\), \([\text{Au}_{43}(\text{SR})_{25}-\text{Au}_{3}(\text{SR})_{3}-\text{COOH}]^{-}\), and \([\text{Au}_{49}(\text{SR})_{27}-\text{Au}_{3}(\text{SR})_{3}-\text{COOH}]^{-}\), respectively. TS1, TS2, and TS3 represent the transition states of motif Au collapse and nucleation. TS4a and TS4b indicate two different ways of isomerization between the \(\text{Au}_{49} \) isomers: the former is the rearrangement of the staples, and the latter is the rotation of the core.

An isomerization process is required to form the \(\text{Au}_{49} \) isomer. Here, using CO as a model reduction agent, Scheme 1 illustrates the basic idea of the newly proposed CO reduction-assisted 2e\(^{-}\) reduction-assisted gold cluster growth mechanism.\(^{44}\)

In the first reaction step, an Au(I)–thiolate complex such as \([\text{Au}_{3}(\text{SR})_{3}]^{-}\) reacts with CO to form a \([\text{Au}_{4}(\text{SR})_{2}-\text{CO}]^{-}\) species, which can further react with OH\(^{-}\) via a Hieber base reaction to generate a \([\text{Au}_{4}(\text{SR})_{3}-\text{COOH}]^{-}\) species in the alkaline environment. This activation mechanism is essentially the same as that previously proposed by Xie et al.\(^{33}\) However, different from Xie’s proposal, we, herein, suggested a new intermolecular association mechanism to account for the gold-core formation and 2e\(^{-}\)-hopping process. As illustrated in Scheme 1, if the \(\text{Au}_{40}(\text{SR})_{24} \) cluster is considered as a seed cluster, we propose that the \([\text{Au}_{4}(\text{SR})_{3}-\text{COOH}]^{-}\) species may attach onto the surface of \(\text{Au}_{40}(\text{SR})_{24} \) by the insertion of the terminal Au–COOH group between an Au–S bond on the surface of the seed cluster. This intermolecular association leads to the formation of a new anionic complex formulated \([\text{Au}_{40}(\text{SR})_{24}-\text{Au}_{3}(\text{SR})_{3}-\text{COOH}]^{-}\).

After the formation of the anionic complex, the COOH\(^{-}\) group subjects a decarboxylation reaction with the OH\(^{-}\) in the solution. The decarboxylation reaction results in 2e\(^{-}\) injection, and the remaining \([\text{Au}_{40}(\text{SR})_{24}-\text{Au}_{3}(\text{SR})_{3}]^{-}\) complex has a -2 valence state. The \([\text{Au}_{40}(\text{SR})_{24}-\text{Au}_{3}(\text{SR})_{3}]^{-}\)\(^{-}\) complex may further relax into the neutral state by the removal of two SR\(^{-}\) groups (Figure 3c). During this SR\(^{-}\) removal process, the terminal Au atom of the newly added \([\text{Au}_{3}(\text{SR})_{3}]^{-}\) fragment bonded with a S atom. The resulted intermediate was formulated as \(\text{Au}_{43}(\text{SR})_{25} \). Then, the metastable \(\text{Au}_{43}(\text{SR})_{25} \) transforms into the more stable structure by collapsing a motif Au atom into the metal core, which bonded two metal-core gold atoms to form a new tetrahedron \(\text{Au}_{4} \) unit, as shown in Figure 3d. The energy barrier of this Au atom migration process was only 0.32 eV. The whole process is described in Figure 3.
iso. Considering that the difference between the two clusters is mainly due to the arrangement of three ligand motifs on the surface (Figure 5a), we considered two isomerization pathways. As shown in Figure 5b, the first one, perhaps the most intuitive, is performed by the rearrangement of dimer motifs, which required breaking three Au–S bonds. DFT calculations show that the TS energy barrier of such a ligand-rearrangement process is 1.27 eV (TS4a in Figure 4). However, considering that the average distance between the three Au atoms (Au1, Au2, and Au3 in Figure 5a) in the kernel of Au49-iso (2.941 Å) is close to the Au–Au bond length in the core tetrahedral units, we assumed that the rotation of these three core Au atoms drives the outer ligand for distortion to occur, leading to isomerization of the structure (Figure 5c). The energy barrier of the TS generated in such an isomerization manner is 0.66 eV (TS4b in Figure 4). According to the Eyring equation, it is estimated that such isomerization barriers can be crossed at room temperature. It is worth mentioning that Hatcher et al.43 based on a similar symmetric evolution of the cluster growth of double-helix tetrahedron Au4 units was clearly exhibited symmetric growth of the polyhedron core and ligand arrangements. By isomerizing the ligand motifs, the Au49-exp cluster not only demonstrates higher thermodynamic stability but also larger H–L gaps. Such a tendency confirms that the Au49-iso tends to isomerize into the Au49-exp. Second, as shown in Table S1, there is no imaginary frequency in the calculations of the frequencies of these clusters, indicating that all clusters are thermodynamically stable. The Cartesian coordinates of the as-predicted optimal structures of these clusters (Au43(SR)25, Au46(SR)26, and Au49(SR)27-iso) are shown in the Supporting Information. The UV−vis spectra of the as-predicted dual-packed clusters were also calculated, as shown in Figure S2.

The favorable chemical and thermodynamic stabilities of the intermediate clusters were further demonstrated by DFT calculations. First, the HOMO−LUMO (H−L) gaps of clusters in this sequence are presented in Table S1. The value of H−L gaps gradually decreases from Au59 to Au49-exp and then increases. Note that the H−L gap of Au49-iso is relatively small, which can be attributed to its ligand motif arrangements. By isomerizing the ligand motifs, the Au49-exp cluster not only demonstrates higher thermodynamic stability but also larger H−L gaps. Such a tendency confirms that the Au49-iso tends to isomerize into the Au49-exp. Second, as shown in Table S1, there is no imaginary frequency in the calculations of the frequencies of these clusters, indicating that all clusters are thermodynamically stable. The Cartesian coordinates of the as-predicted optimal structures of these clusters (Au43(SR)25, Au46(SR)26, and Au49(SR)27-iso) are shown in the Supporting Information. The UV−vis spectra of the as-predicted dual-packed clusters were also calculated, as shown in Figure S2.

3.3. Symmetric Growth of Dual-Packed Kernels from the Au46(SR)27 to Au58(SR)30 Cluster. A prominent feature of the structural evolution of the RS-AuNCs is that the clusters exhibited symmetric growth of the polyhedron core and ligand motifs. For instance, the one-dimensional (1D) symmetrical growth of double-helix tetrahedron Au41 units was clearly identified according to the crystal structure of Au28(TBBT)20, Au36(TBBT)24, Au44(TBBT)28, and Au52(TBBT)32.36 In addition, the centrosymmetric growth of triangular Au3 units and ligand motifs from Au28(SR)20 to Au30(SR)18 clusters33 as well as the two-dimensional (2D) crystal face growth from Au44(SR)28 to Au42(SR)34 clusters37 were also discovered.

In view of the nearly D3 symmetry of the Au49 cluster, it is natural to consider whether or not the cluster size growth may happen on both sides of the cluster, which will lead to the formation of a larger-size cluster formulated Au58(SR)30 with symmetrical distribution of six newly added triangular Au3 units. This new cluster size evolution process can be formulated as Au46(SR)27 + Au41(SR)3 → Au52(SR)28 + Au36(SR)24 + Au44(SR)28 + Au52(SR)32. During this process, three triangular Au3 units are further formed on the Au46(SR)27. Based on this assumed evolution pathway, four new clusters, Au42(SR)28, Au45(SR)29, Au52(SR)30-iso1, and Au58(SR)30-iso2, are perspective. Note that the Au46(SR)27 (marked as Au48-iso1) obtained through this growth mechanism may transform into the Au58-iso2 via structural isomerization. The latter cluster was also predicted by Xu et al.53 based on a similar symmetric evolution of the cluster structure. Herein, our DFT calculations showed that the Au49-iso2 was 0.78 eV more stable than the Au48-iso1, and the energy barrier of isomerization was determined to be 1.17 eV (Figure S3).
However, it is found that the optimized core structure of the product Au58-iso2 cluster is significantly different from those of Au40 and Au49-exp. As shown in Figure 6, the two conjugated tetrahedron Au4 units at the center of the Au49-exp iso2 core adopt a consistent orientation. In terms of the overall cluster structure, three trimeric staples are gradually shortened to monomer staples in the process of Au40 to Au49 and then to Au58. Correspondingly, the tension of the staples gradually increases. As a result, the core structure is distorted to a great extent. For instance, the two tetrahedron Au4 units in the core with lower staple tension adopt a misalignment arrangement of about 60° in the Au40 cluster. After the growth of three new triangular Au3 units and ligand motifs on one side, in the Au49-exp, the relatively large tension caused by the shortening of the staples induces a slight twist in the two Au4 units. Finally, to the Au58-iso2, the orientations of these two Au3 units overlaps, as shown in Figure 6.

![Figure 6. Comparison of the ligand layer structure and core structures of Au40, Au49-exp, and Au58-iso2 clusters. R groups are omitted for clarity.](image)

The gradual structural distortion of gold cores from the Au49 to Au58 cluster displayed in Figure 6 prompts us to examine the stability of the cluster structures. It should be pointed out that it is difficult to quantitatively evaluate the intrinsic tension in the Au49 cluster. After the growth of three new triangular Au4 units and ligand motifs on one side, in the Au49-exp, the relatively large tension caused by the shortening of the staples induces a slight twist in the two Au4 units. Finally, to the Au58-iso2, the orientations of these two Au3 units overlaps, as shown in Figure 6.

![Figure 7. Energy curve of the hypothetical reaction path from Au49-exp to Au58-iso2. C1, C3, and C5 are cluster species formed by Au49(SR)27-exp, Au52(SR)28, and Au55(SR)29 inserted by one [Au3(SR)3COOH]− fragment, respectively. C2, C4, and C6 are the products of decarboxylation of [Au49(SR)27−Au3(SR)3COOH]−, [Au52(SR)28−Au3(SR)3COOH]−, and [Au55(SR)29−Au3(SR)3COOH]−, respectively. TS1, TS2, and TS3 represent the TSs of motif Au collapse and nucleation. TS4 means the TS of the isomerization process from Au58-iso1 to Au58-iso2.](image)

In order to further explore the possibility of cluster size-growth from Au49 to Au58, we plotted the energy profile of this process. It is seen from Figure 7 that such a growth process needs to cross relatively high energy barriers. In light of high energy barriers during this cluster size growth pathway and the relatively low stability of the intermediate clusters, the formation of Au58(SR)30 is not supported. Although the Au58(SR)30 cluster followed the principle of symmetric growth from Au49(SR)27 to Au49(SR)27-exp, the tension between the ligand shell and the metal core increases significantly during the cluster size evolution, and the stability of the intermediate clusters is poor, which indicates that the formation of the Au58(SR)30 cluster is not favorable.

4. CONCLUSIONS

In conclusion, based on the 2e−-reduction cluster growth mechanism, the formation mechanism of the dual-packed kernel structure in the Au49(SR)27 and the Au58(SR)30 clusters was studied. The DFT energy calculation results showed that the favorable formation of dual-packed kernels in the Au49(SR)27 cluster is due to the stability of the intermediate cluster structures as well as the relatively high thermodynamic stability of the cluster itself. However, although the structure of Au58(SR)30 clusters conforms to the principle of symmetric growth, the tension between the ligand shell and the metal core gold atoms increases significantly during the cluster size evolution, and the stability of the intermediate clusters is poor, which hinders the formation of the Au58(SR)30 cluster. This study shows that it is necessary to consider the structural factors.
stability and thermodynamics of cluster formation when studying the evolution of clusters according to the symmetry growth principle. The $2e^-$-reduction-assisted cluster size growth mechanism provides a good scheme for exploring the evolution path of cluster structures and evaluating the stability of clusters.

ASSOCIATED CONTENT

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c01791.

Details of $\text{Au}_{10}^+\text{(SR)}_{18}$ and $\text{Au}_{20}^+\text{(SR)}_{32}$-iso cluster size-growth steps, structural isomerization of Au_{40} and Au_{58} clusters, and atomic coordinates of $\text{Au}_{24}^+(\text{SCH}_2)_2\text{Cl}_{25}$, $\text{Au}_{24}^+(\text{SCH}_2)_5\text{Cl}_{20}$, and $\text{Au}_{24}^+(\text{SCH}_2)_2\text{Cl}_{25}$-iso clusters (PDF).

AUTHOR INFORMATION

Corresponding Author

Yong Pei — Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China; orcid.org/0000-0003-0585-2045; Email: ypei2@xtu.edu.cn

Author

Lin Xiong — Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acsomega.1c01791

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the financial support by NSFC (91961121, 21773201, and 21422305) and the project of innovation team of the ministry of education (IRT_17R90).

REFERENCES

(1) Aikens, C. M. Electronic Structure of Ligand-Passivated Gold and Silver Nanoclusters. *J. Phys. Chem. Lett.* 2011, 2, 99–104.

(2) Yao, S. H.; Varavski, O.; Goodson, T., III An Ultrasfast Look at Au Nanoclusters. *Acc. Chem. Res.* 2013, 46, 1506–1516.

(3) Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. *Chem. Rev.* 2016, 116, 10346–10413.

(4) Kang, X.; Zhu, M. Tailoring the Photoluminescence of Atomically Precise Nanoclusters. *Chem. Soc. Rev.* 2019, 48, 2422–2457.

(5) Higaki, T.; Li, Y.; Zhao, S.; Li, Q.; Li, S.; Du, X. S.; Yang, S.; Chai, J.; Jin, R. Atomically Tailored Gold Nanoclusters for Catalytic Application. *Angew. Chem., Int. Ed.* 2019, 131, 8377–8388.

(6) Zhou, M.; Higaki, T.; Li, Y.; Zeng, C.; Li, Q.; Sfeir, M. Y.; Jin, R. Three-Stage Evolution from Nonscalable to Scalable Optical Properties of Thiolate-Protected Gold Nanoclusters. *J. Am. Chem. Soc.* 2019, 141, 19754–19764.

(7) Pei, Y.; Zeng, X. C. Investigating the Structural Evolution of Thiolate Protected Gold Clusters from First-Principles. *Nanoscale* 2012, 4, 4054–4072.

(8) Jin, R. Atomically Precise Metal Nanoclusters: Stable Sizes and Optical Properties. *Nanoscale* 2015, 7, 1549–1565.

(9) Sakhiviel, N. A.; Dass, A. Aromatic Thiolate-Protected Series of Gold Nanomolecules and a Contrary Structural Trend in Size Evolution. *Acc. Chem. Res.* 2018, 51, 1774–1783.

(10) Yao, Q.; Chen, T.; Yuan, X.; Xie, J. Toward Total Synthesis of Thiolate-Protected Metal Nanoclusters. *Acc. Chem. Res.* 2018, 51, 1338–1348.

(11) Xiong, L.; Yang, S.; Sun, X.; Chai, J.; Rao, B.; Yi, L.; Zhu, M.; Pei, Y. Structure and Electronic Structure Evolution of Thiolate-Protected Gold Nanoclusters Containing Quasi Face-Centered-Cubic Kernels. *J. Phys. Chem. C* 2018, 122, 14988–14907.

(12) Wang, P.; Xiong, L.; Sun, X.; Ma, Z.; Pei, Y. Exploring the Structure Evolution and Core/Ligand Structure Patterns of a Series of Large Sized Thiolate-Protected Gold Clusters $\text{Au}_{145-165}^+(\text{SR})_{62-72}$ (N=1–8): A First Principles Study. *Nanoscale* 2018, 10, 3918–3929.

(13) Yan, N.; Xiao, N.; Liao, L.; Zhu, M.; Jin, F.; Jin, R.; Wu, Z. Unraveling the Long-Pursued Au_{44} Structure by X-ray Crystallography. *Sci. Adv.* 2018, 4, No. eaat7259.

(14) Narsaruddin, R. R.; Chen, T.; Yan, N.; Xie, J. Roles of Thiolate Ligands in the Synthesis, Properties and Catalytic Application of Gold Nanoclusters. *Coord. Chem. Rev.* 2018, 368, 60–79.

(15) Malola, S.; Hakkinen, H. Chiral Inversion of Thiolate-Protected Gold Nanoclusters via Core Reconstruction without Breaking an Au–S Bond. *J. Am. Chem. Soc.* 2019, 141, 6006–6012.

(16) Chevrier, D. M.; Raich, L.; Rovira, C.; Das, A.; Luo, Z.; Yao, Q.; Chatt, A.; Xie, J.; Jin, R.; Akola, J.; Zhang, P. Molecular-Scale Ligand Effects in Small Gold-Thiolate Nanoclusters. *J. Am. Chem. Soc.* 2018, 140, 15430–15436.

(17) Pei, Y.; Wang, P.; Ma, Z.; Xiong, L. Growth-Rule-Guided Structural Exploration of Thiolate-Protected Gold Nanoclusters. *Acc. Chem. Res.* 2019, 52, 23–33.

(18) Jadhav, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution. *Science* 2007, 318, 430–433.

(19) Kagawa, T.; Negishi, Y.; Kawasaki, H. Photo/Electrocatalysis and Photosensitization Using Metal Nanoclusters for Green Energy and Medical Applications. *Nanoscale Adv.* 2020, 2, 17–36.

(20) Dou, X.; Chen, X.; Zhu, H.; Liu, Y.; Chen, D.; Yuan, X.; Yao, Q.; Xie, J. Water-Soluble Metal Nanoclusters: Recent Advances in Molecular-Level Exploration and Biomedical Applications. *Dalton Trans.* 2019, 48, 10385–10392.

(21) Tao, Y.; Li, M.; Ren, J.; Xu, Q. Metal Nanoclusters: Novel Probes for Diagnostic and Therapeutic Applications. *Chem. Soc. Rev.* 2015, 44, 8636–8663.

(22) Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal Structure of the Gold Nanoparticle $[\text{N(C}_{8}\text{H}_{17})_{4}]_{2^{-}}\text{Au}_{13}(\text{SCH}_{2}\text{CH}_{2})_{10}^{2+}$: A Stepping Stone to the Realization of a Theoretical Prediction. *J. Chem. Soc., Chem. Commun.* 1981, 201–202.

(23) Zhu, M.; Aikens, C. M.; Hollander, F. J.; Scharf, G. C.; Jin, R. Correlating the Crystal Structure of A Thiol-Protected Au_{55} Cluster and Optical Properties. *J. Am. Chem. Soc.* 2008, 130, 5883–5885.

(24) Briant, C. E.; Theobald, B. R. C.; White, P. J.; Bell, L. K.; Mingos, D. M. P.; Welch, A. J. Synthesis and X-ray Structural Characterization of the Centrosahedral Gold Cluster Compound $[\text{Au}_{55}(\text{PMe}_{3}\text{Ph})_{16}\text{Cl}_{13}]^{6+}$(PF$_6$)$_3$; the Realization of a Theoretical Prediction. *J. Chem. Soc., Chem. Commun.* 1991, 201–202.

(25) Shichibu, Y.; Negishi, Y.; Watanabe, T.; Chaki, N. K.; Kawaguchi, H.; Tsukida, T. Biicosahedral Gold Clusters $[\text{Au}_{125}(\text{PPh}_{3})_{6}(\text{SC}_{8}\text{H}_{17})_{n}\text{Cl}_{2}]^{2+}$ ($n=2–18$): A Stepping Stone to Cluster-Assembled Materials. *J. Phys. Chem. C* 2007, 111, 7845–7847.

(26) Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. Total Structure Determination of Thiolate-Protected Au_{19} Nanoparticles. *J. Am. Chem. Soc.* 2010, 132, 8280–8281.

(27) Qian, H.; Eckenhoff, W. T.; Bier, M. E.; Pintauer, T.; Jin, R. Crystal Structures of Au_{45} Complex and Au_{35} Nanocluster and Mechanistic Insight into the Conversion of Polydisperse Nanoparticles into Monodisperse Au_{19} Nanoclusters. *Inorg. Chem.* 2011, 50, 10735–10739.
(28) Xu, W. W.; Zhu, B.; Zeng, X. C.; Gao, Y. A Grand Unified Model for Liganded Gold Clusters. *Nat. Commun.* **2016**, *7*, 13574.

(29) Chen, S.; Xiong, L.; Wang, S.; Ma, Z.; Jin, S.; Sheng, H.; Pei, Y.; Zhu, M. Total structure determination of Au_{12}(S-Adm)$_{12}$ and geometrical/electronic structure evolution of thiolated gold nanoclusters. *J. Am. Chem. Soc.* **2016**, *138*, 10754−10757.

(30) Das, A.; Li, T.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. Nonsuperatomic [Au$_{15}$(SC$_6$H$_11$)$_{10}$]$_{1/2}$ Nanocluster Featuring Bipyramid Au$_{15}$ Kernel and Trimeric Au$_3$(SR)$_3$. *Molit*. *J. Am. Chem. Soc.* **2013**, *135*, 18264−18267.

(31) Zeng, C.; Liu, C.; Chen, Y.; Rosi, N. L.; Jin, R. Gold–thiolate ring as a protecting motif in the Au$_{18}$(SR)$_{10}$ nanocluster and implications. *J. Am. Chem. Soc.* **2014**, *136*, 11922−11925.

(32) Chen, Y.; Liu, C.; Tang, Q.; Zeng, C.; Higaki, T.; Das, A.; Jiang, D.; Rosi, N. L.; Jin, R. Isomerism in Au$_{17}$(SR)$_{10}$ Nanocluster and Stable Structures. *J. Am. Chem. Soc.* **2016**, *138*, 1482−1485.

(33) Xiong, L.; Peng, B.; Ma, Z.; Wang, P.; Pei, Y. A Ten-Electron (10e) Thiolate-Protected Au$_{10}$(SR)$_{10}$ cluster: Structure Prediction and a ‘Gold-Atom Insertion, Thiolate-Group Elimination’ Mechanism. *Nanoscale* **2017**, *9*, 2895−2902.

(34) Li, Y.; Zhou, M.; Song, Y.; Higaki, T.; Wang, H.; Jin, R. Double-helical assembly of heterodimeric nanoclusters into supracrystals. *Nature* **2021**, *594*, 380−384.

(35) Dass, A.; Jones, T.; Rambukwella, M.; Crasto, D.; Gagnon, K. J.; Sementa, L.; De Vetta, M.; Baseggio, O.; Aprà, E.; Stener, M.; Fortunelli, A. Crystal Structure and Theoretical Analysis of Green Gold Au$_{18}$(S-tBu)$_{18}$ Nanomolecules and Their Relation to Au$_{18}$(S-tBu)$_{18}$. *J. Phys. Chem. C* **2016**, *120*, 6256−6261.

(36) Zeng, C.; Chen, Y.; Iida, K.; Nobusada, K.; Kirschbaum, K.; Lambright, K. J.; Jin, R. Gold Quantum Boxes: On the Periodicities and the Quantum Confinement in the Au$_{32a}$ Au$_{32b}$ Au$_{44}$ and Au$_{32}$ Magic Series. *J. Am. Chem. Soc.* **2016**, *138*, 3950−3953.

(37) Wang, P.; Sun, X.; Liu, X.; Xiong, L.; Ma, Z.; Pei, Y. Theoretical Predictions of a New ~14 kDa Core-Mass Thiolate-Protected Gold Nanoparticle: Au$_{18}$(SR)$_{16}$. *J. Phys. Chem. Lett.* **2017**, *8*, 1248−1252.

(38) Zeng, C.; Liu, C.; Chen, Y.; Rosi, N. L.; Jin, R. Atomic Structure of Self-Assembled Monolayer of Thiolates on a Tetragonal Au$_{32}$ Nanocrystal. *J. Am. Chem. Soc.* **2016**, *138*, 8710−8713.

(39) Liao, L.; Zhuang, S.; Yao, C.; Yan, N.; Chen, J.; Wang, C.; Xia, N.; Liu, X.; Li, M.-B.; Li, L.; Bao, X.; Wu, Z. Structure of Chiral Au$_{30}$(2,4-DMBT)$_{30}$ Nanocluster with an 18-Electron Shell Closure. *J. Am. Chem. Soc.* **2016**, *138*, 10425−10428.

(40) Liao, L.; Zhuang, S.; Wang, P.; Xu, Y.; Yan, N.; Dong, H.; Wang, C.; Zhao, Y.; Xia, N.; Li, J.; Deng, H.; Pei, Y.; Tian, S.-K.; Wu, Z. Quasi-Dual-Packed-Kerneled Au$_{49}$(2,4-DMBT)$_{27}$ Nanoclusters and the Influence of Kernel Packing on the Electrochemical Gap. *Angew. Chem., Int. Ed.* **2017**, *56*, 12644−12648.

(41) Tian, S.; Li, Y.-Z.; Li, M.-B.; Yuan, J.; Yang, J.; Wu, Z.; Jin, R. Structural Isomerism in Gold Nanoparticles Revealed by X-ray Crystallography. *Nat. Commun.* **2015**, *6*, 8667.

(42) Zeng, C.; Chen, Y.; Liu, C.; Nobusada, K.; Rosi, N. L.; Jin, R. Gold Tetrahedra Coil Up: Kekulé-like and Double Helical Superstructures. *Sci. Adv.* **2015**, *1*, e1500425.

(43) Xu, W.-W.; Zheng, M. Medium-Sized Au$_{15}$(SR)$_{10}$: A New Chiral Structure Evolving from Crystallized Au$_{10}$(SR)$_{12}$ and Au$_{15}$(SR)$_{22}$. *J. Phys. Chem. C* **2020**, *124*, 9077−9081.

(44) Peng, J.; Wang, P.; Wang, B.; Xiong, L.; Liu, H.; Pei, Y.; Zeng, X. C. Exploration of Formation and Size-Evolution Pathways of Thiolate-Gold Nanoclusters in the CO-Directed [Au$_{22}$(SR)$_{12}$]$_{1/2}$ Synthesis. *Small* **2020**, No. 2000627.

(45) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865−3868.

(46) Delley, B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. *J. Chem. Phys.* **1990**, *92*, 508−517.

(47) Delley, B. From Molecules to Solids with the DMOl3 Approach. *J. Chem. Phys.* **2000**, *113*, 7756−7764.

(48) Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. *Phys. Rev. Lett.* **2009**, *102*, No. 073005.

(49) Dolney, D. M.; Hawkins, G. D.; Winget, P.; Li, S.-F.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Conductor-Like Screening Model. *J. Comput. Chem.* **2000**, *21*, 340−366.

(50) ADF2010.01, SCM. *Theoretical Chemistry*; Vrije Universiteit: Amsterdam, The Netherlands. http://www.scm.com.

(51) Pei, Y.; Gao, Y.; Zeng, X. C. Structural Prediction of Thiolate-Protected Au$_{38}$: A Face-Fused Bi-cis-hedral Au Core. *J. Am. Chem. Soc.* **2008**, *130*, 7830−7832.

(52) Häkkinen, H.; Walter, M.; Grönbeck, H. Divide and Protect: Capping Gold Nanoclusters with Molecular Gold–Thiolate Rings. *J. Phys. Chem. B* **2006**, *110*, 9927−9931.

(53) Yao, Q.; Yuan, X.; Fung, V.; Yu, Y.; Leong, D. T.; Jiang, D.; Xie, J. Understanding Seed-Mediated Growth of Gold Nanoclusters at Molecular Level. *Nat. Commun.* **2017**, *8*, 927.

(54) Dong, Q.; Liao, L.; Wu, Z. Two-Way Transformation between fcc- and Nonfcc-Structured Gold Nanoclusters. *J. Phys. Chem. Lett.* **2017**, *8*, 5338−5343.

(55) Luo, Z.; Nachammavai, V.; Zhang, B.; Yan, N.; Leong, D. T.; Jiang, D.; Xie, J. Toward Understanding the Growth Mechanism: Tracing All Stable Intermediate Species from Reduction of Au(I)−Thiolate Complexes to Evolution of Au$_3$ Nanoclusters. *J. Am. Chem. Soc.* **2014**, *136*, 10577−10580.

(56) Eyring, H. The Activated Complex in Chemical Reactions. *J. Chem. Phys.* **1935**, *3*, 107−115.

(57) Das, A.; Liu, C.; Byun, H. Y.; Nobusada, K.; Zhao, S.; Rosi, N.; Jin, R. Structure Determination of [Au$_{18}$(SR)$_{14}$]. *Angew. Chem., Int. Ed.* **2015**, *54*, 3140−3144.

(58) Crasto, D.; Barcaro, G.; Stener, M.; Sementa, L.; Fortunelli, A.; Dass, A. Au$_{24}$(SAdm)$_{16}$ Nanomolecules: X-ray Crystal Structure, Theoretical Analysis, Adaptability of Adamantane Ligands to Form Au$_{25}$(SAdm)$_{16}$ and Au$_{25}$(SAdm)$_{16}$ and Its Relation to Au$_{25}$(SR)$_{15}$. *J. Am. Chem. Soc.* **2014**, *136*, 14933−14940.

(59) Xu, G. T.; Wu, L. L.; Chang, X. Y.; Ang, T. W. H.; Wong, W. Y.; Huang, J. S.; Che, C. M. Solvent-Induced Cluster-to-Cluster Transformation of Homoleptic Gold(I) Thiolates between Catenane and Ring-in-Ring Structures. *Angew. Chem., Int. Ed.* **2019**, *131*, 16443−16452.