A simple and effective method to discern the true commercial Chinese cordyceps from counterfeits

Fu-Li Zhang1,2,3, Xiao-Feng Yang1,2,3, Dong Wang1,2, Shao-Rong Lei1,2, Ling-An Guo1,2, Wen-Juan Liu1,2 & Jun Song1,2*

The Chinese cordyceps, a complex of the fungus *Ophiocordyceps sinensis* and its species-specific host insects, is also called “DongChongXiaCao” in Chinese. Habitat degradation in recent decades and excessive harvesting by humans has intensified its scarcity and increased the prices of natural populations. Some counterfeits are traded as natural Chinese cordyceps for profit, causing confusion in the marketplace. To promote the safe use of Chinese cordyceps and related products, a duplex PCR method for specifically identifying raw Chinese cordyceps and its primary products was successfully established. Chinese cordyceps could be precisely identified by detecting an internal transcribed spacer amplicon from *O. sinensis* and a cytochrome oxidase c subunit 1 amplicon from the host species, at a limit of detection as low as 32 pg. Eleven commercial samples were purchased and successfully tested to further verify that the developed duplex PCR method could be reliably used to identify Chinese cordyceps. It provides a new simple way to discern true commercial Chinese cordyceps from counterfeits in the marketplace. This is an important step toward achieving an authentication method for this Chinese medicine. The methodology and the developmental strategy can be used to authenticate other traditional Chinese medicinal materials.

The ascomycetes fungus *Ophiocordyceps sinensis* (anamorph: *Hirsutella sinensis*)1, which is synonymous with *Cordyceps sinensis* in the historical classification system2, colonises and mummifies the larvae of moth species in the family *Hepialidae* in the winter1,2. Then, during the next late spring or early summer, the multiplied fungi breaks the host's exoskeleton at the head, forming a parasitic complex that comprises the remains of the caterpillar and a fungal sexual stroma bud3–6. This whole fruiting-body complex, with the characteristics “winter worm–summer grass”, is well known as Chinese cordyceps7 or “DongChongXiaCao” in Chinese3,7–9. It has a long history of being used for health and medicinal purposes in traditional Chinese medicine (TCM) as a tonic and renowned medicinal material7–9. Chinese cordyceps contains diverse bioactive ingredients10,11 and is widely used to enhance immunity or treat respiratory, bronchial and lung inflammation1,6,12.

Chinese cordyceps is distributed mainly in alpine regions at high altitudes (>3,000 m) on the Qinghai-Tibetan Plateau in southwestern China13. Owing to its strict host-specificity and confined geographic distribution14,15, the natural production of wild Chinese cordyceps is very limited. Habitat degradation in recent decades and excessive harvesting by humans have intensified its scarcity and increased the prices of natural populations6. Additionally, various counterfeit versions having a similar morphology, such as natural counterfeits *Cordyceps hawkesii* Gray (*C. gunni*), *C. liangschanensis*, *Cordyceps. militaris*, *Cordyceps. barnesii*, *Cordyceps. gracilis*, and the root of the *Starchys geobombycis* plant, as well as artificial mimics made from dough, are traded as natural Chinese cordyceps for profit, thereby causing confusion in marketplace and affecting the safe use of Chinese cordyceps16–20. Furthermore, some fermented mycelial products from *O. sinensis* or *C. militaris* have been accidentally or intentionally labelled as “DongChongXiaCao”, which also causes confusion16,18.

The Chinese cordyceps is often used directly as a raw material, but it is also processed into a powder that is used in patented Chinese medicinal and health products, which makes it nearly impossible to identify based on
morphological appearance16. To ensure the medicinal and edibility safety of Chinese cordyceps products in the marketplace, many detection methods for monitoring and verifying the Chinese cordyceps ingredients have been developed. The traditional methods, including macroscopic and microscopic observation16,20,27, which depend on the tester's subjective judgment and professional experience, could effectively recognise the crude Chinese cordyceps, except as powdered products. Molecular biology techniques based on the internal transcribed spacer (ITS) sequence of Chinese cordyceps, such as DNA barcoding17,21,22, DNA barcoding coupled with high resolution melting23, loop-mediated isothermal amplification24 and nested PCR25, have been developed and used for species identification in recent years. However, none of these methods could clearly differentiate Chinese cordyceps from fermented mycelia in powdered form.16,17,25 Because Chinese cordyceps is a parasitic complex, both the remains of the host larvae and the fungal sexual stroma are integral parts, as a commodity and raw medicinal material. Neither the fungus \textit{O. sinensis} nor its host species are equivalent to the TCM Chinese cordyceps. Thus, a scheme that identifies both the \textit{O. sinensis} fungus and its host species is theoretically reasonable and necessary, and it should more accurately identify Chinese cordyceps.

Duplex PCR technology is a good option for this purpose, because it can not only detect both targets simultaneously but is also simple and reliable. Minor genetic variations in \textit{O. sinensis} from different geographical regions have been reported26, and there are up to 60 host species of the fungus \textit{O. sinensis}5,16,27. Here, degenerate primer pairs were identified and designed, and a duplex PCR technique for Chinese cordyceps detection was developed. Additionally, it was confirmed that this strategy was applicable and could provide a new practical way to identify the TCM Chinese cordyceps.

Results

The development and optimisation of the duplex PCR method. In total, 78 ITS nucleotide sequences of \textit{O. sinensis} were aligned and showed high identity levels, and they differed from those of the counterfeit species (Fig. 1A). Areas that were conserved and stable among \textit{O. sinensis} species but differed greatly in the sequences of other species were selected as targets for designing species-specific identification primers. Because a few base variation still existed in the conserved and stable regions within these species, degenerate oligonucleotide primers for the ITS region were designed for good compatibility. The same was true for the host species' mitochondrial cytochrome oxidase c subunit 1 (COI) gene primers (Fig. 1B). Owing to the existence of single-base differences, degenerate primers were designed for the detection of the COI gene. Then, only 1 out of 17 primer pair combinations was selected for the detection of Chinese cordyceps. The CITS primer pair (CITS-F10': 5'-GGTTGCTCGCGGAGC-3'/CITS-R10'-2: 5'-CTTCTTGCTTCTCTGACTGAG-3') and the COI primer pair (COI-F: 5'-GGAAATCCCHGATCTTTAATT-3'/COI-R: 5'-AGTGCCCGMARTGTCGAAT-3'), were further tested for their species-specificity and retained for subsequent experiments. The primer pairs, in same PCR reactions, at a 0.3-μM primer concentration and at an annealing temperature of 54 °C always generated clean band of the expected size for \textit{O. sinensis} (113 bp) and its host \textit{Hepialus} (302 bp) in the positive control template. Then, the duplex PCR assay was successfully developed for Chinese cordyceps identification.

Specificity of the duplex PCR. As shown in Fig. 2, the predicted 185-bp amplicon was amplified from all the samples tested, except for the negative control. Thus, DNAs over a wide taxonomic range can be detected, and the validity of the extracted DNAs for PCR can be assessed using the T18S-F/T18S-R primer pair. The amplicon could be used effectively as an analytical control to evaluate the authenticity of the template DNA.

Duplex PCR assays were further performed, and the expected fragments for the ITS (113 bp) and COI gene (302 bp) were successfully amplified from 17 Chinese cordyceps samples using the two primer pairs (CITS-F10'/CITS-R10'-2 and COI-F/COI-R), and two clear electrophoretic strips displayed the GelRed stain (Fig. 2). A single band of 113 bp appeared in the mycelial samples, and a band of 302 bp appeared in the moth and \textit{C. gracilis} samples. No PCR products were detected from the other species tested, including the five readily confused varieties [\textit{C. barnesii}, \textit{C. militaris}, \textit{S. geobombbycis} and \textit{Euphorbia kansui}], which is the host component of “XinJiangChongCao” , belongs to a species of \textit{Hepialidae} family, which is the same as that of the host of Chinese cordyceps. As shown in Fig. 2, only the 302-bp host-specific amplicon appeared in the \textit{C. gracilis} sample. This result adequately verified and confirmed the assay's specificity.

A sequence analysis showed that the two amplified fragments were more than 99% identical to the corresponding COI gene of \textit{Hepialidae} species. (GenBank Accession No: KM197522, KF696585, JQ325935, etc.) and the ITS region of \textit{O. sinensis} (GenBank Accession No: KX321845~321856, MF987594, MF403011, KX082968, etc.), respectively. It was strong evidence for the specificity of the duplex PCR assay. Thus, the duplex PCR method developed in this study specifically identified the Chinese cordyceps.

Sensitivity. In the sensitivity test, 50.23 ng/μL total genomic DNA was initially extracted from the reference material, powdered Chinese cordyceps, and nine serial DNA dilutions were generated by fivefold serially diluting the initial extract. Then, 2 μL of each DNA dilution was added as the template in a PCR reaction, corresponding to approximately 20,000, 4,000, 800, 160, 32, 6.4, 1.3, 0.25 and 0.05 pg of the specific amplicon of the Chinese cordyceps per PCR reaction. As shown in Fig. 3, both target amplicons were simultaneously detected down to the 32 pg level in all the parallel reactions. The amplicons could not be detected in all the reactions at a lower template amount. Thus, the limit of detection (LOD), with a 95% confidence interval, for the duplex PCR assay was 32 pg in
accordance with the criteria reported by Žel et al.29. Thus, the Chinese cordyceps was detected with an acceptable level of precision and accuracy. These results confirmed that the duplex PCR assay established in this study was a good approach for detecting and authenticating Chinese cordyceps.

Applicability. Some commercial samples were tested. As shown in Table 1, in total nine raw samples (Samples 30-T, 32-T–38-T and 40-T) produced positive amplicons, and the target bands for the ITS from O. sinensis and the COI gene from the host Hepialidae species were synchronously amplified. No bands were detected in sample 31-T and three health-care products (Samples 42-T–44-T). Additionally, a single amplicon of O. sinensis was observed in sample 39-T and two other health-care products (Samples 41-T and 45-T). This confirmed that spurious products exist on the market and that the presence of Chinese cordyceps in the samples could be diagnosed accurately. The duplex PCR method developed in this study could distinguish products made from powdered mycelia of O. sinensis fungi from raw natural Chinese cordyceps. Thus, it is a quick and efficient way to identify and authenticate Chinese cordyceps.

Conclusions and Discussions
Degenerate primer pairs targeting the ITS region of O. sinensis and the COI gene of its species-specific host were designed, and a duplex PCR assay for Chinese cordyceps was successfully established that can easily be performed in any molecular biology laboratory. It could specifically detect raw Chinese cordyceps and its primary components in products in which the genomes are undamaged. The results of the specificity analysis were in accordance with the criteria reported by Žel et al.29. Thus, the Chinese cordyceps was detected with an acceptable level of precision and accuracy. These results confirmed that the duplex PCR assay established in this study was a good approach for detecting and authenticating Chinese cordyceps.
with the preliminary identifications provided by experts. The LOD for Chinese cordyceps DNA could be as low as 32 pg. The accuracy and precision of the established duplex PCR method were confirmed and validated in this study. The applicability test further confirmed that the developed duplex PCR method can reliably identify and authenticate Chinese cordyceps. In addition, the duplex PCR method developed in this study is very simple to operate and cost-effective, which will be beneficial for its popularisation and utilisation. We believe that this method will be useful in the quality control and the identification of Chinese cordyceps and related products. The methodology and developmental strategy could be applied to other TCM materials as well, which will make authenticating TCMs easier. However, the method is not perfect. We were not able to differentiate mixed powders containing *O. sinensis* fungus mycelia and its insect host caterpillar from powders of the natural Chinese cordyceps using this method, although it was difficult to artificially raise the specific host insects required. In the future, chromatography methods that can detect the specific components of the Chinese cordyceps could be used together with the duplex PCR method. This may increase the reliability and accuracy of the identification of true Chinese cordyceps in any form.
Materials and Methods

Samples and materials. In total, 16 dried Chinese cordyceps samples (1-QH-GL, 2-XZ-NQ, 3-XZ-LS, 4-XZ-LS, 5-XZ-SN, 6-XZ-LZ, 7-XZ-LZ, 8-XZ-CD, 10-QH-GL, 11-QH-YS, 12-QH-YS, 13-QH-HB, 14-QH-HN, 15-QH-TR, 16-SC-KD and 17-AB) and one fresh Chinese cordyceps sample (9-XZ-LS) were collected from different sites in Qinghai, Tibet and Sichuan Provinces, where The Chinese cordyceps are mainly distributed. Four other varieties, C. hawkesii Gray (different sites in Qinghai, Tibet and Sichuan Provinces, where The Chinese cordyceps are mainly distributed. Four other varieties, C. hawkesii Gray (C. gunni hawkesii Gray (21-XLS), C. barnesii Thwaites (22-XJCC) and YunNanChongCao (18-YN) were collected in a local market in Qinghai. XinJiangChongCao [C. gracilis (Grev.) duretMont., 22-XJCC] was purchased from a local market in Urumqi, Xinjiang. The C. militaris (28-YCC) and two dried roots of S. geobombycis (27-GS) were purchased from a local market. A moth specimen (25-HY) of the family Hepialidae was provided by Harvard University. All the samples above were identified and confirmed by traditional morphological and DNA bar-coding method. A powdered reference material of Chinese cordyceps (No.121201) was purchased from National Institutes for Food and Drug Control, China. The mixed powder sample (29-MC) of conventional crop seeds including Pisum sativum, Glycine max, Zea mays, Triticum aestivum, Oryza sativa, Vicia faba were preserved and provided by Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences. Two fungal strains (23-JZ1 and 24-JZ2) were isolated from stromal tissue of natural Chinese cordyceps specimens (9-XZ-LS) and were cultivated under previously described conditions.

The mixed powder sample (29-MC) of conventional crop seeds including Pisum sativum, Glycine max, Zea mays, Triticum aestivum, Oryza sativa, Vicia faba were preserved and provided by Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences. Two fungal strains (23-JZ1 and 24-JZ2) were isolated from stromal tissue of natural Chinese cordyceps specimens (9-XZ-LS) and were cultivated under previously described conditions.

DNA extraction and purification. All the samples were treated and homogenised in liquid nitrogen. Genomic DNAs were isolated and purified from all the samples, except for two mycelia specimens, using a Plant Genomic DNA Kit (DP305-02, TIANGEN Biotech Co., Ltd., Beijing, China) in accordance with the manufacturer’s instructions. However, before that, the homogenised samples (50–100mg each) were pre-processed in Proteinase K buffer [20-mM Tris-HCl (pH 8.0), 5-mM ethylenediaminetetraacetic acid (EDTA), 400-mM NaCl, 0.3% sodium dodecyl sulfate and 200μg/mL Proteinase K (P6556, Sigma-Aldrich, Saint Louis, MO, USA)]. The resultant mixtures were incubated at 55 °C for 30 min, followed by 95 °C for 5 min. An equal volume of phenol/chloroform (1:1) was added to the suspensions and mixed fully for 5 min, and then, the mixtures were centrifuged at 12,000 × g for 5 min. The supernatants were transferred to fresh tubes and treated once with chloroform.

The total genomic DNAs of the two mycelia samples were prepared using the benzyl chloride method. The concentrations and qualities of the DNA samples were measured and evaluated using a NanoDrop ND-1000 UV/Vis Spectrophotometer (Thermo Scientific, Waltham, MA, USA) by examining the OD260/OD280 and OD260/OD230.

Primer design. ITS sequences from O. sinensis (GenBank Accession No: AJ243775, AJ243776, AJ243778, AJ245559, AJ309354, AJ309357, AJ309361, AJ313178–AJ313184, AJ507399–AJ507405, FJ654148, FJ654149 and FJ654206–FJ654259) and its related species C. militaris (GenBank Accession No: EU825996), C. hawkesii (GenBank Accession No:AJ336571), Hirsutella sp. (GenBank Accession No: EF469126) and C. liangshansensis (GenBank Accession No: AJ238503) were aligned using DNAMAN Version 6.0 (Lynnon Corporation, Lachat, USA).

Table 1. The test results for several commercial Chinese cordyceps samples.

Sample code	Sample definition	Target amplicons	Chinese cordyceps ingredient (Yes or No)		
30-T	Chongcao	+	Yes		
31-T	Chongcao	−	−		
32-T	Chongcao	+	Yes		
33-T	Chongcao	+	Yes		
34-T	Chongcao	+	Yes		
35-T	Chongcao	+	Yes		
36-T	Chongcao	+	Yes		
37-T	Chongcao	+	Yes		
38-T	Chongcao	+	Yes		
39-T	Chongcao	+	No		
40-T	Chongcao	+	Yes		
41-T	Corbrin Capsule	+	−		
42-T	JinShuiBaoNang	−	−		
43-T	Cordyceps pills	−	No		
44-T	Cordyceps pills	−	No		
45-T	Cordyceps MaiTake Capsule	+	No		
Sample code	Sample name	Brand	Description	Source	Acquiring way
-------------	-------------	-------	-------------	--------	---------------
1-QH-GL	DongChongXiaCao	—	Dried raw material	Guoluo, Qinghai	Collected by Dr. Youqing Bai
2-XZ-NQ	DongChongXiaCao	—	Dried raw material	Naqu, Tibet	
3-XZ-LS	DongChongXiaCao	—	Dried raw material	Lhasa, Tibet	
4-XZ-LS	DongChongXiaCao	—	Dried raw material	Lhasa, Tibet	
5-XZ-SN	DongChongXiaCao	—	Dried raw material	Shannan, Tibet	
6-XZ-LZ	DongChongXiaCao	—	Dried raw material	Lanzhi, Tibet	
7-XZ-LZ	DongChongXiaCao	—	Dried raw material	Lanzhi, Tibet	
8-XZ-CD	DongChongXiaCao	—	Dried raw material	Changdu, Tibet	
9-XZ-LS	DongChongXiaCao	—	Fresh	Lhasa, Tibet	Purchased from Sichuan Academy of Chinese Medicine
10-QH-GL	DongChongXiaCao	—	Dried raw material	Guoluo, Qinghai	
11-QH-YS	DongChongXiaCao	—	Dried raw material	Yushu, Qinghai	
12-QH-YS	DongChongXiaCao	—	Dried raw material	Yushu, Qinghai	
13-QH-HB	DongChongXiaCao	—	Dried raw material	Haibei, Qinghai	
14-QH-HN	DongChongXiaCao	—	Dried raw material	Hainan, Qinghai	
15-QH-TR	DongChongXiaCao	—	Dried raw material	Tongren, Qinghai	
16-SC-KD	DongChongXiaCao	—	Dried raw material	Kangding, Sichuan	
17-AB	DongChongXiaCao	—	Dried raw material	Aba, Sichuan	
18-YN	TuNanChongCao	—	Dried raw material	Lijiang, Yunnan	
19-XYB	YaXiangBangChongCao (Cordyceps gunnii)	—	Dried raw material	unknown	
20-XB	XiangBangChongCao (C. sharnesi)	—	Dried raw material	unknown	
21-LS	LiangShanChongCao (C. liangshansensis)	—	Dried raw material	Liangshan, Sichuan	
22-XJCJ	XinjiangChongCao (C. grisacilis [Grev.] duretMont.)	—	Dried raw material	Altai region, Xinjiang	
23-JZ1	fungi strain	—	Fresh mycelium	—	Isolated from Fresh crude material 9-XZ-LS
24-JZ2	fungi strain	—	Fresh mycelium	—	Isolated from Fresh crude material 9-XZ-LS
25-HY	moth of the family Hepialiae	—	Dried raw material	Aba, Sichuan	Provided by Dr. Zhengyang Wang
26-DC	Dichan (Stachys geobombylis)	—	Dried raw material	unknown	Purchased from local market in Chengdu
27-GS	Ganshu (Euphorbia kansui)	—	Dried raw material	unknown	Purchased from local market in Chengdu
28-YCC	YongChongCao (C. militaris)	—	Dried raw material	Chengdu, Sichuan	Provided by Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences.
29-MC	Mixed powder of several conventional crops	—	Dried raw material	Chengdu, Sichuan	
30-T	Chongcao	Dongqiangtang	Dried raw material	Naqu, Tibet	Purchased from local market in Urumqi, Xinjiang
31-T	Chongcao	Ayshe	Dried raw material	Naqu, Tibet	
32-T	Chongcao	Tongqinghetang	Dried raw material	Yushu, Qinghai	
33-T	Chongcao	Tongqinghetang	Dried raw material	Yushu, Qinghai	
34-T	Chongcao	Shanshijiagong	Dried raw material	Naqu, Tibet	
35-T	Chongcao	Zangzetang	Dried raw material	Naqu, Tibet	
36-T	Chongcao	Kaoshanzhang	Dried raw material	Naqu, Tibet	
37-T	Chongcao	Qingyuantang	Dried raw material	Yushu, Qinghai	
38-T	Chongcao	Yongzhiyan	Dried raw material	Yushu, Qinghai	
39-T	Chongcao	unlabeled	Dried raw material	unknown	
40-T	Chongcao	unlabeled	Dried raw material	unknown	
41-T	Corbrin Capsule	BaiLing	Processed health-care products	Hangzhou, Zhejiang	Purchased from Chinese herbal pharmacy in Chengdu.
42-T	JinShuiBaoJiaoNang	JinShuiBao	Processed health-care products	Yichun, Jiangxi	
43-T	Cordyceps pills	Kangfulai	Processed health-care products	Foshan, Guangdong	Purchased from Jingdong Mall. (An online shopping platform)
44-T	Cordyceps pills	Kangfulai	Processed health-care products	Foshan, Guangdong	
45-T	Cordyceps MaiTake Capsule	Mega	Processed health-care products	USA	

No.121201 The reference material of DongChongXiaCao — Powder — Purchased from National institutes for Food and Drug control, China.

Table 2. Detailed information on the samples used in this study.
size separated using electrophoresis on 2.5% agarose gel in 1× Tris-acetate-EDTA buffer and stained with GelRed® (Biotium, Inc. Fremont, CA, USA) for visualisation. The amplicons were further purified to determine the optimal annealing temperature. The program was as follows: one step of 5 min at 95 °C, 35 cycles of 30 s at 95 °C, 30 s at 50°C–60°C and 30 s at 72°C; followed by one step of 7 min at 72°C. The PCR products were size separated using electrophoresis on 2.5% agarose gel in 1× Tris-acetate-EDTA buffer and stained with GelRed Nucleic Acid Stain (Cat. 41003, Biotium, Inc. Fremont, CA, USA) for visualisation. The amplicons were further confirmed by cloning and sequencing (Sangon Biotech (Shanghai) Co. Ltd.).

PCR conditions. Each PCR reaction was performed in a 25-μL reaction volume with 1× HotStar Taq® Plus Master Mix (QIAGEN GmbH, Hilden, Germany), various concentrations of forward and reverse primers and 50 ng genomic DNA as the template. The tested primer concentrations were 0.16, 0.24, 0.32, 0.40 and 0.8 μM. Two primer pairs (CITS-F10′/CITS- R′-2 and COI-F/COI-R) were simultaneously added into the PCR reaction system to develop a duplex PCR assay for Chinese cordyceps differentiation. Primer combinations at different concentrations were tested to determine the optimal proportions that influenced the amplification efficiency. A gradient PCR was performed with annealing temperatures ranging from 50 °C to 60 °C in an ABI Veriti 96 thermal cycler (Applied Biosystems). Six temperatures in a gradient, 50 °C, 52 °C, 54 °C, 56 °C, 58 °C and 60 °C, were tested to determine the optimal annealing temperature. The program was as follows: one step of 5 min at 95 °C, 35 cycles of 30 s at 95°C, 30 s at 50°C–60°C and 30 s at 72°C; followed by one step of 7 min at 72°C. The PCR products were size separated using electrophoresis on 2.5% agarose gel in 1× Tris-acetate-EDTA buffer and stained with GelRed Nucleic Acid Stain (Cat. 41003, Biotium, Inc. Fremont, CA, USA) for visualisation. The amplicons were further confirmed by cloning and sequencing (Sangon Biotech (Shanghai) Co. Ltd.).

Specificity test. To determine the specificity of the primer pairs and the obtained method, the duplex PCR was tested three times using both the ITS and COI gene primer mixtures and template DNAs from Chinese cordyceps samples (17), several easily confused varieties (5), counterfeit plants (2), mycelial samples (2), a moth from the family Hepialidae (1) and a powdered mixture of conventional crops seeds (1), as mentioned in Section 2.1.

Additionally, DNA from the Chinese cordyceps reference material was used as the positive control, and sterile water was used as the negative control.

Sensitivity analysis. To further evaluate the sensitivity of the established method, genomic DNA from raw Chinese cordyceps was prepared and fivefold serially diluted using nuclease-free Tris-EDTA buffer to 0.05 pg/μL, and the gradient dilution technique previously published by Zhang et al.32. The duplex PCR assays were performed as described in Section 2.4, and the serial dilutions were used as the templates. All the reactions were repeated three times, with 15 parallel runs for each template DNA, to determine the LOD of the duplex PCR assay based on the positive result criteria32.

Applicability test. To test the applicability of the duplex PCR method for analysing practical samples, 16 samples were purchased from a local market or Jingdong Mall, as described in Section 2.1. DNAs were isolated from 11 raw Chinese cordyceps samples and 5 health-care products containing Chinese cordyceps, according to the labels. Then, the duplex PCR assays were performed in triplicate using the obtained DNAs as templates. The genomic DNA isolated from the Chinese cordyceps reference material was used as the positive control. Sterile water was used as the negative control.

Received: 31 October 2019; Accepted: 5 February 2020; Published online: 19 February 2020

References

1. Lo, H. C. et al. A Systematic Review of the Mysterious Chinese cordyceps Ophiocordyceps sinensis in DongChongXiaCao (冬蟲夏草 Dong Chong Xia Cao) and Related Bioactive Ingredients. Journal of Traditional and Complementary Medicine 3, 16–32 (2013).
2. Sung, G. H. et al. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology 57, 5–59 (2007).
3. Hu, X. et al. Genome survey uncovers the secrets of sex and lifestyle in Chinese cordyceps. Chinese Science Bulletin 58, 2846–2854 (2013).
4. Zeng, W. et al. The growth of Cordyceps sinensis (Berk.) Sacc. In the infection and parasitic phases. Mycosystema 25, 646–650 (2006).
5. Lei, W. et al. The latent infection process of Ophiocordyceps sinensis in host Thitarodes larvae. Journal of Environmental Entomology 37, 387–392 (2015).
6. Xu, M., Xu, M. & Li, R. Q. Progress and prospects of several crucial aspects in the biological and ecological research on the The Chinese cordyceps, Ophiocordyceps sinensis. Acta Ecologica Sinica 39(5), 1853–1862 (2019).
7. Shrestha, B. et al. What is The Chinese cordyceps Ophiocordyceps sinensis (Ophiocordycipitaceae)? Mycology 1, 228–236 (2010).
8. Zhang, S. et al. Ophiocordyceps sinensis and Cordyceps militaris: research advances, issues and perspectives. Mycosystema 32, 577–597 (2013).
9. Han, R. C. et al. Research on Chinese cordyceps during the past 70 years in China. Chinese Journal of Applied Entomology 56(5), 849–883 (2019).
25. Jin, G. S.
28. Wang, Y.
31. Zhu, H., Qu, F. & Zhu, L. H. Isolation of genomic DNAs from fungi using benzyl chloride.
30. Zhang, Y. J., Liu, X. Z. & Wang, M. Cloning, expression, and characterization of two novel cuticle-degrading serine proteases from
29. Žel, J.
24. Zhao, M.
22. Chen, S.
19. Liu, H.
18. Hsu, T. H.
17. Xiang, L.
16. Su, Y. Y.
13. Li, Y.
14. Wichadakul, D.
12. Nakamura, K., Shinozuka, K. & Yoshikawa, N. Anticancer and antimetastatic effects of cordycepin, an active component of
Cordyceps sinensis. Journal of Pharmacological Sciences 127, 53–56 (2015).
11. Hu, X. D. et al. Progress in Pharmacological Research of Cordyceps Polysaccharides from Ophiocordyceps sinensis. 6, 224–229 (2016).
10. Li, H. Y. et al. Quantitative analysis of five nucleosides in Cordyceps by HPLC and quality control of Cordyceps militaris. Chinese
Traditional and Herbal Drug 22, 5410–5417 (2018).
9. Hsu, T. H. et al. A survey of the geographic distribution of Ophiocordyceps sinensis. The Journal of Microbiology 49, 913–919 (2011).
8. Zhang, F. L. et al. How to Reliably Test for GMOs. Springer Briefs in Food, Health, and Nutrition, 1–95 (2012).
7. Zhang, F. L., et al. A new construct specific real-time PCR method for screening GMO ingredients with gut-tspinII cassette in foods
and seeds. Food Control 86, 266–274 (2018).

Acknowledgements
This work was financially supported by the Special Funds of Ability Promotion Project from Sichuan Provincial Finance (2016GYSH-032). We thank Dr. Youqing Bai from Tibet, Mr. Ling Ma from Qinghai Province, Zhi-Qiong Lan from Chengdu University of Traditional Chinese Medicine and Dr. Zhengyang Wang from Sichuan who helped us during sample collection. We thank Prof. Liangke Song and Jia-Yu Zhou from Southwest Jiaotong University for their expert help in identifying materials. Additionally, we thank all the reviewers for useful suggestions during the preparation of this manuscript. We thank Lesley Benyon, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript. Thanks to our family and friends for all the support.

Author contributions
Zhang F.-L., Lei S.-R., Guo L.-A. and Song J. conceived the study. Zhang F.-L. and Yang X.-F. carried out the experiments and prepared the manuscript. Wang D. and Liu W.-J. provided suggestions about the manuscript. All authors have read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.S.

Reprints and permissions information
is available at www.nature.com/reprints.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020