Genotypic Characteristics and Correlation of Epidemiology of *Staphylococcus aureus* in Healthy Pigs, Diseased Pigs, and Environment

Yuanyuan Zhou 1, Xinhui Li 2 and He Yan 1,3, *

1 School of Food Science and Engineering, South China University of Technology, Guangzhou 510000, China; 201821025708@mail.scut.edu.cn
2 Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA; xli@uwlax.edu
3 Research Institute for Food Nutrition and Human Health, Guangzhou 510000, China
* Correspondence: yanhe@scut.edu.cn; Tel.: +86-20-87113848; Fax: +86-20-87112734

Received: 30 September 2020; Accepted: 17 November 2020; Published: 24 November 2020

**Abstract:** China is one of the largest producers of pigs and pork in the world. However, large-scale studies on pig-associated *Staphylococcus aureus* in relation to healthy pigs, diseased pigs and environment are scarce. The objective of the present study was to characterize and compare *S. aureus* isolates from healthy pigs, diseased pigs and environment through antimicrobial susceptibility testing, multiple locus sequence typing, *spa* typing, and antimicrobial resistance gene screening. Results showed all isolates were susceptible to linezolid and vancomycin. However, 66.7% (104/156) isolates were multidrug-resistant by displaying resistance to three or more antibiotics and high rates of resistance to penicillin, tetracycline, clindamycin, and clarithromycin were observed. Of the 20 multilocus sequence types (STs) identified among the isolates, ST9, ST188, and ST7 were most commonly isolated from healthy pigs and environment, while ST1 was most commonly isolated from diseased pigs. In total, 17 *spa* types were represented among the isolates, while t4792 was most commonly isolated from diseased pigs and t899, t189 were most commonly isolated from healthy pigs and environment. In conclusion, the genotypic and epidemiology characteristics observed among the isolates suggest pigs and pork could be important players in *S. aureus* dissemination.

**Keywords:** *Staphylococcus aureus*; antimicrobial resistance; virulence

1. Introduction

*Staphylococcus aureus* is an important opportunistic foodborne pathogen that can cause serious infections of the bloodstream, skin, and soft tissue in humans and animals [1]. According to reports, it can cause various suppurative infections and foodborne diseases in humans and animals, such as sepsis, pneumonia, mastitis, pericarditis, vomiting and diarrhea [2,3]. Human infections caused by pig-associated methicillin-resistant *Staphylococcus aureus* (MRSA) sequence type (ST) 398 indicate that pigs are a key reservoir of MRSA and these bacteria are transmitted to human through occupational contact with pigs [4]. Therefore, *S. aureus* is an important food safety hazard that requires special attention.

China is one of the largest pork producers in the world and houses more than 463 million pigs, accounting for 51.6% of all pigs worldwide [5]. In June 2015, the Chinese Academy of Sciences published a list of antibiotic use and final emissions in China and the report pointed out that of the 162,000 tons of antibiotics used in China in 2013, veterinary antibiotics accounted for 52%, while florfenicol, lincomycin, tylosin, and enrofloxacin are widely used in pig [6]. The frequent use of antibiotics and high feeding density on pig farms have facilitated the emergence and spread of *S. aureus* and...
livestock-associated methicillin-resistant *Staphylococcus aureus* (LA-MRSA) [7]. Antibiotics-resistant *S. aureus* have been isolated from pigs in farms, abattoirs, and markets in China. One study collected nasal swabs from 590 pigs in two abattoirs in Harbin and found 33.9% samples were *S. aureus*-positive, 38 samples were MRSA-positive, and ST398-t034 and ST9-t899 were most commonly isolated [7]. Another epidemiological survey of *S. aureus* in Danish retail meats found that the prevalence of *S. aureus* in turkey, pork and chicken was 86.96%, 75% and 78.43%, respectively [8], while ST398-t034 was the main type. Previous studies showed that raw and processed meat and food animals like pig as well as contaminated surfaces or tools could serve as vehicles for the transfer of *S. aureus* to foods in China [9,10], especially pig-associated ST9-t899-MRSA, which is the major strain [10].

In China, the prevalence of *S. aureus* has been paid attention to in different pig production chain, but there are few reports on the genotypic and epidemiology characteristics of *S. aureus* of the entire pork production chain. Therefore, the objective of this study was to characterize the prevalence of *S. aureus* colonization of healthy pigs, diseased pigs and environment and the antimicrobial resistance-associated phenotypes and genotypes and molecular characteristics of isolated *S. aureus*.

2. Results

2.1. Prevalence of *S. aureus* and MRSA

Among the 666 samples, 156 (23.4%) yielded *S. aureus* and 24 (3.6%) tested positive for MRSA (Table 1). Within the 156 *S. aureus* isolates, 121 (28.1%, 121/430) were from healthy pigs, 28 (17.0%, 28/165) were from diseased pigs, and 7 (9.9%, 7/71) were from environment. Among all types of samples, *S. aureus* had the highest prevalence in the abattoir (35.8%, 62/173), followed by the markets (23.1%, 37/160). MRSA prevalence ranged from 0% (0/97) from farm to 6.3% (10/160) from markets. Among the 28 *S. aureus* isolates of samples from diseased pigs, only three isolates (1.8%, 3/165) were MRSA.

| Source          | No. of Samples | *S. aureus* Including MRSA | MRSA * |
|-----------------|----------------|-----------------|-------|
| Healthy pigs    |                |                  |       |
| Farm            | 97             | 22 (22.7)        | 0 (0) |
| Abattoir        | 173            | 62 (35.8)        | 9 (5.2)|
| Market          | 160            | 37 (23.1)        | 10 (6.3)|
| Environment     | 71             | 7 (9.9)          | 2 (2.8)|
| Diseased pigs   | 165            | 28 (17.0)        | 3 (1.8)|
| All             | 666            | 156 (23.4)       | 24 (3.6)|

Rates of positive samples were compared among different groups using the chi-squared test, *p* < 0.05 and ***p* < 0.001.

2.2. Antimicrobial Susceptibility Profiles

All 128 *S. aureus* isolates, except those from diseased pigs, were susceptible to quinupristin-dalfopristin, linezolid, and vancomycin. Overall, as shown in Figure 1, isolates from pig farms, abattoirs, and markets were predominantly resistant to penicillin (98% to 100%), tetracycline (40–97%), and clindamycin (34–100%) and clarithromycin (40% to 93%). Many isolates were also resistant to gentamycin, ciprofloxacin, moxifloxacin), chloramphenicol, and other antibiotics. Resistance to a second-generation tetracycline, minocycline, was less prevalent than resistance to a first-generation tetracycline, tetracycline in general.
where the most common resistance pattern was PEN (28/156), followed by PEN-TET (11/156), PEN-GEN-TET-CLA-SXT-CLI-CIP-MXF (9/156), PEN-GEN-TET-CLA-SXT-CLI-CIP-LEV-MXF (10/156), PEN-GEN-TET-CLA-CLI-CIP-MXF (9/156), and Multidrug resistance was observed in 104 (66.7%) of the S. aureus isolates. Of the abattoir isolates, 30.6% (19/62) were multidrug-resistant (MDR), which is significantly fewer than farm isolates (22/22, 100%) and market isolates (32/37, 86.5%). Moreover, 85.7% (24/28) of the isolates from diseased pigs were MDR.

### 2.3. Prevalence of Resistance Genes

To evaluate the role of certain genes in the development of antimicrobial resistance, resistance-associated genes were amplified from the S. aureus isolates based on individual antibiotic resistance profiles. The results are presented in Table 2.
Table 2. Prevalence of antibiotic resistance associated genes among S. aureus isolates.

| Antibiotics | Resistance Genes | Environment (n = 7) | Healthy Pigs (n = 121) | Disease Pigs (n = 28) | All (n = 156) |
|-------------|------------------|---------------------|------------------------|-----------------------|--------------|
|             |                  | Farm (n = 22)       | Abattoir (n = 62)      | Market (n = 37)       |              |
| Penicillin  | meca             | 2 (28.6)            | 0 (0)                  | 9 (14.5)              | 10 (27.0)    | 3 (10.7)     | 24 (15.4) |
|             | blaZ             | 7 (100)             | 22 (100)               | 62 (100)              | 37 (100)     | 28 (100)     | 156 (100) |
| Gentamycin  | ant(4')-Ia       | 7 (100)             | 22 (100)               | 53 (85.5)             | 28 (75.7)    | 9 (32.1)     | 119 (76.3) |
|             | aadE             | 6 (85.7)            | 21 (95.5)              | 48 (77.4)             | 14 (37.8)    | 27 (96.4)    | 116 (74.4) |
|             | aacA-aphD        | 7 (100)             | 22 (100)               | 58 (93.5)             | 28 (75.7)    | 28 (100)     | 143 (91.7) |
|             | aac(6')/aph(2')  | 5 (71.4)            | 21 (95.5)              | 35 (56.5)             | 22 (59.5)    | 3 (10.7)     | 86 (55.1)  |
| Chloramphenicol | femA            | 0 (0)               | 1 (4.5)                | 25 (40.3)             | 9 (24.3)     | 4 (14.3)     | 39 (25.0)  |
|             | catI             | 3 (42.9)            | 18 (81.8)              | 51 (82.3)             | 32 (86.5)    | 13 (46.4)    | 117 (75.0) |
|             | cmlA             | 0 (0)               | 0 (0)                  | 0 (0)                 | 0 (0)        | 9 (32.1)     | 9 (5.8)    |
| Tetracycline | tetK             | 6 (85.7)            | 21 (95.5)              | 51 (82.3)             | 32 (86.5)    | 13 (46.4)    | 123 (78.8) |
| Tetracycline | tetM             | 0 (0)               | 0 (0)                  | 1 (1.6)               | 6 (16.2)     | 19 (67.9)    | 26 (16.7)  |
|             | tetL             | 6 (85.7)            | 22 (100)               | 53 (85.5)             | 19 (51.4)    | 27 (96.4)    | 127 (81.4) |
| Clindamycin | linA             | 7 (100)             | 22 (100)               | 58 (93.5)             | 33 (89.2)    | 27 (96.4)    | 147 (94.2) |
|             | lnu(B)           | 7 (100)             | 22 (100)               | 58 (93.5)             | 33 (89.2)    | 27 (96.4)    | 147 (94.2) |
| quinupristin- | lsa(E)           | 7 (100)             | 22 (100)               | 58 (93.5)             | 33 (89.2)    | 27 (96.4)    | 147 (94.2) |
| dalopristin  |                  |                     |                        |                       |              |              |            |
| Clarithromycin | ermA             | 0 (0)               | 0 (0)                  | 1 (1.6)               | 2 (5.4)      | 24 (85.7)    | 27 (17.3)  |
|             | ermB             | 1 (14.3)            | 4 (18.2)               | 5 (8.1)               | 5 (15.3)     | 24 (85.7)    | 39 (25.0)  |
|             | ermC             | 0 (0)               | 2 (9.1)                | 1 (1.6)               | 0 (0)        | 3 (1.9)      | 3 (1.9)    |
| Trimethoprim- | sulI             | 0 (0)               | 0 (0)                  | 0 (0)                 | 0 (0)        | 0 (0)        | 0 (0)      |
| sulfamethoxazole | dfrA             | 2 (9.1)             | 4 (6.5)                | 5 (13.8)              | 25 (89.3)    | 36 (23.1)    | 66 (42.4)  |
|             | sulII            | 0 (0)               | 0 (0)                  | 0 (0)                 | 0 (0)        | 0 (0)        | 0 (0)      |
|             | dfrG             | 6 (85.7)            | 22 (100)               | 42 (67.7)             | 17 (45.9)    | 7 (25.0)     | 94 (60.3)  |

The gene meca confers resistance to β-lactams and was present in 24 S. aureus isolates. Meanwhile, no mecC carriers were detected and blaz was present in all isolates. The aminoglycoside resistance genes ant(4')-Ia, aadE, aacA-aphD, and aac(6')/aph(2') were highly percentages among the isolates. Among the three genes associated with chloramphenicol resistance, cmlA was only detected in isolates from diseased pigs. A large proportion of isolates from diseased pigs carried the tetM gene, in contrast to isolates from other sources.

The lsa(E) gene, which is associated with pleuromutilin/lincosamide/streptogramin A resistance, has a high prevalence in farm isolates (100%, 22/22), abattoir isolates (93.5%, 58/62), market isolates (89.2%, 33/37) and diseased-pig isolates (96.4%, 27/28). Meanwhile, none of the isolates contained the multi-resistance gene variant of cfr(B). The linA gene, which confers resistance to clindamycin, was highly represented among the isolates from retail pork, while lnu(B) was detected at high frequencies in farm (100%, 22/22) and abattoir (62.9%, 39/62) isolates. Three genes associated with clarithromycin resistance, ermA, ermB, and ermC, were also detected. Only isolates from diseased pigs displayed a high prevalence of ermA and ermB, while ermC was detected in only three isolates, which were from farms and abattoir. The dfrG gene was frequently present, while sulI, sulII, and dfrA were rarely found.

2.4. Molecular Characteristics of S. aureus

Isolates were analyzed by multiple locus sequence typing (MLST) and spa typing (Figure 2). A total of 20 STs and 17 spa-types were identified. For farm isolates, the main MLST type was ST9 (77.3%, 17/22). And ST4292 was a newly discovered ST type in S. aureus. And there were 15 different ST types of isolates from the abattoirs, while the main types were ST188 (29.0%, 18/62), ST9 (21.0%, 13/62) and ST3387 (12.9%, 8/62). Meanwhile, nine different ST types have been identified in the market isolated, among them ST7 (40.5%, 15/37) and ST188 (18.9%, 7/37), were the main popular types.
Figure 2. Dendrogram showing the resistance phenotypes and genotypes of *S. aureus* isolated from the pork production. The dendrogram was established based on the presence and absence of selected
determinants or phenotypes using Jaccard’s coefficient of similarity and the unweighted-pair group method with arithmetic averages (UPMGA).

Only one spa types, t899 (100%, 22/22) isolated from the farm. It can be seen that the types are relatively concentrated and single. In the environment, only one isolate with the spa type of t189 was observed and the others were all t899 type. The spa types of S. aureus isolated from the abattoirs were rich and diverse, including 13 types, mainly t189 (29.0%, 18/62) and t899 (32.3%, 20/62). There are seven spa types of S. aureus from the markets, mainly t091 (43.3%, 16/37) and t189 (24.3%, 9/37). The remaining types were t037, t899, t437, t1852 and t6675.

2.5. Genetic Relatedness

Based on the presence or absence of phenotypic resistance data and selected resistance genes, a dendrogram of similarity was established (Figure 2), which separated the 128 isolates in four main clusters. As determined by the dendrogram, the vast majority of S. aureus isolates clustered at the top of the dendrogram were abattoir isolates, and ten were market isolates. This cluster of isolates had diverse STs and spa types. In contrast, the remaining of the market isolates form two clusters towards the middle and the bottom of the dendrogram, respectively. Only seven abattoir isolates and the farm isolates clustered by dendrogram had identical STs and spa types, ST9 and t899, while the other abattoir isolates in this cluster had different STs and spa types.

3. Discussion

In order to monitor changes in the epidemiology and characteristics of S. aureus, some effective approaches like molecular typing were used in this study to analyze S. aureus isolates originating from healthy pigs, diseased pigs and environment. S. aureus was present in 9.9% to 35.8% of samples, where the most frequent contamination was observed in the abattoir (35.8%). MRSA prevalence ranged from 0% of samples from farms to 6.3% from markets. The overall prevalence of S. aureus and MRSA in our study was 23.4% and 3.6%, respectively. The average prevalence of S. aureus in this study was lower than that described in a study conducted in food and food animals in the Shaanxi province, China [11]. Similar results were obtained in a study in Hong Kong, where the prevalence of S. aureus in pigs was estimated to be 24.9% [12]. However, the results of our study appear higher \((p \leq 0.001)\) than another study for other pork samples or swine carcasses in the Shandong province, China (19.6%) [13]. Due to the complex environment of farms, markets and diseased pigs, S. aureus carrying rate of samples is high and relatively close, therefore we pay more attention to the genotype and phenotypic characteristics of strains from different sources.

Of the samples from the abattoir, 35.8% (62/173) were positive for S. aureus. The increased prevalence of S. aureus in samples after slaughtering compared to pigs on farms and retail meat suggest pig slaughtering process may play an important role in the transmission of S. aureus. During slaughtering, S. aureus can get transmitted via direct or indirect contact with the environment or meat products, including through processing machinery, refrigerators, meat containers, and staff. A study by Beneke estimated the occurrence of MRSA in abattoir environments was 12% in slaughterhouse samples [14]. One study also highlighted the role of the environment as a source of MRSA in the commercial pig production chain, where MRSA was detected in the pork production shower facilities of two commercial swine systems [15]. Another study found MRSA carriage by abattoir workers was caused by cross-contamination between workers and carcasses [16]. All of these elements acted as reservoirs and sources of pathogens and, consequently, lead to higher contamination levels. However, because the terminal samples did not all originate from the abattoir tested in this study, it was difficult to track contamination between transportation from the abattoir to the markets.

A total of 20 STs and 17 spa types were present in isolates from different sources. Abattoir isolates were notably diverse in MLST \((n = 16)\) and spa type \((n = 9)\) in, while market pork samples \((n = 12\) and 7,
whether there is a direct link between typing and gene combination requires further study. This high prevalence of MDR isolates may lead to a reduction in the effectiveness of antimicrobial agents used in clinical treatments of humans, including for food-borne diseases. However, different farm sources may explain differences in MLST and spa types in isolates from healthy and diseased pigs. While the ST9-899 clone was most frequently found in healthy pigs, ST1-t4792 was the most common one in diseased pigs. ST1 isolates are generally community-acquired MRSA [29] and also associated with staphylococcal food poisoning in South Korea and China [30,31]. Therefore, it is essential to continuously monitor the prevalence and resistance of S. aureus in livestock healthy and diseased pigs. Compared with isolates from other sources, isolates from diseased pigs have a higher gene carrying rate of aadE, cmlA, tetM, ermA, ermB, sulI and sulII (p ≤ 0.001) and cmlA was only detected in isolates from diseased pigs. However, we only focused on the characteristics of S. aureus in these samples in the current study. Therefore, we cannot draw a direct conclusion from our research that S. aureus causes clinical disease. To determine which pathogen caused the disease, high-throughput sequencing and clinical experiments are required, like histopathology immunohistochemistry [32] and metagenomics [33,34]. Future research should also elucidate the relationships among phylogenetic and clinical disease of S. aureus and expanding the sample size and sampling range is also necessary.

In our study, we found that cmlA, sulII and dfrA were only detected in diseased pig. The carrying rates were 32.1%, 42.9%, and 10.7%. However, ermC was only detected in healthy pigs. The most common detected gene combinations of the diseased pigs were cmlA + tetM + sulII (23/28), and all the strains that conform to this gene combination are ST1-t4792. However, due to the limited sample size, whether there is a direct link between typing and gene combination requires further study.

It is worth noting that the detection rate of lsa(E) gene in S. aureus isolated from this study was 94.2% (147/156), however in 2014, Yan et al. screened for lsa(E) gene from pigs’ isolates of two abattoirs in Harbin with a detection rate of only 22.0% (44/200). Among the strains isolated from the farm,
the positive rate of the multidrug resistance gene cluster \((aadE-spc-lsa(E)-lnu(B)-tnp)\) was 95.5%, and only one strain contained only the \(lsa(E)\) gene instead of the gene cluster. The multidrug resistance gene cluster is relatively conservative and is not susceptible to structural changes, which is an important reason for exacerbating the mutual transmission of resistance genes among different species.

4. Materials and Methods

4.1. Sampling

The 666 samples used in the present study were collected from the environment \((n = 71)\), healthy pigs \((n = 430)\) and diseased pigs \((n = 165)\). All samples were collected in Fujian and Guangdong, China between December 2014 and June 2017.

Specifically, for the healthy pig samples, 173 samples were from abattoirs including 133 pork and 40 intestines, 160 were from markets and 97 were nasal swabs from 3 commercial swine farms. In addition, market samples were pork \((n = 85)\), ribs \((n = 24)\) and haslets \((n = 51)\). As for environmental samples, there were pigpen gates \((n = 18)\), soil \((n = 20)\) and ground \((n = 33)\) samples. Healthy pig samples and environmental samples are the same as our previous research [35]. All 165 samples were collected from pork \((n = 60)\), brain \((n = 23)\), and internal organs \((n = 82)\) of diseased pigs. These samples of diseased pigs come from two different farms with symptomatic disease, including diarrhea and respiratory disease. The pork samples were about 250 g, and intestine samples were about 100 g. Sterile swabs were used to collect and preserve the environment and pig nose samples.

However, these terminal samples of meat from the markets did not all originate from the abattoir tested in the present study.

4.2. Bacterial Isolation and Identification

Isolation and identification of \(S.\) aureus were performed according to China’s National Technical Standard GB 4789.10-2016. Briefly, the samples were transferred to 7.5% NaCl broth and incubated at 37 °C for 24 h. The broth was then streaked onto Baird-Parker agar plates containing 5% potassium tellurite egg-yolk reagent (Huankai, Guangzhou, China) and incubated at 37 °C for 24–48 h. Presumptive \(S.\) aureus colonies were confirmed using plasma coagulase assays and were further screened by PCR amplification of the \(nuc\) gene [36]. One \(S.\) aureus isolate per sample was further analyzed. MRSA were determined by antibiotic phenotype and confirmed by PCR amplification of \(mecA\) using the primers listed in Table A1 (Appendix A).

4.3. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility profile for each isolate was examined using broth microdilution for vancomycin and the disk diffusion method on Mueller-Hinton agar plates for the remaining antibiotics in accordance with current guidelines from the Clinical and Laboratory Standards Institute [37]. The following antimicrobial agents were tested, β-lactams antibiotics, penicillin (PEN, 10 µg), cefalotin (CEP, 30 µg), oxacillin (OXA, 1 µg), cefoxitin (FOX, 30 µg); aminoglycoside antibiotics, gentamicin (GEN, 10 µg); macrolide antibiotics, Clarithromycin (CLA, 15 µg); tetracycline antibiotics, tetracycline (TET, 30 µg), minocycline (MIN, 30 µg); lincosamides antibiotics, clindamycin (CLI, 2 µg); sulfonamides antibiotics, trimethoprim-sulfamethoxazole (SXT, 1.25/23.75 µg, respectively), ansamycin antibiotics, rifampin (RIF, 5 µg), fluoroquinolone antibiotics, ciprofloxacin (CIP, 5 µg), levofloxacin (LEV, 5 µg), moxifloxacin (MXF, 5 µg), gatifloxacin (GAT, 5 µg); oxazolidinone antibiotics, linezolid (LZD, 15 µg), and streptogramin antibiotics, quinupristin-dalfopristin (QDA, 15 µg). \(S.\) aureus strain ATCC 29,213 was used as a control. Isolates with intermediate levels of susceptibility were classified as resistant. MDR isolates were defined as having non-susceptibility to at least one agent in three or more antimicrobial categories.
4.4. Screening of Antimicrobial Resistance Genes

Bacterial genomic DNA was extracted from the isolates using a DNA extraction kit (Biomed, Beijing, China). The presence of potential antimicrobial resistance genes were selected according to the tested antimicrobials, and included mecA, mecC, blaZ, aac(6’)/aph(2”), aph(3’)-Illa, ant(4’)-Ia, aadE, tetK, tetL, tetM, ermA, emrC, msrA, msrB, catI, cmlA, fexA, dfrG, linA, lnu(B), lsa(E), cfr(B), sulI, sulII. They were assessed by PCR and sequencing using primers listed in Table A1 (Appendix A) for all isolates.

4.5. Molecular Typing

All S. aureus isolates were characterized by multiple locus sequence typing (MLST) and spa typing, where fragments of seven housekeeping genes (arcC, aroE, glpF, gmk, pta, tpi, and yqiL) and the variable repeat region of the spa gene, were amplified by PCR and sequenced [38]. MLST were assigned using the default parameters listed on the MLST home page (http://www.mlst.net/) and spa type were assigned using the Ridom SeqSphere+ software [39].

4.6. Statistical Analyses

The dendrogram of similarity was established by using Jaccard’s coefficient of similarity and the unweighted-pair group method with arithmetic averages (UPMGA), which based on the presence or absence of phenotypic resistance data and selected resistance genes.

All statistical analyses were performed using SPSS 22.0 software. Rates of bacterial antimicrobial resistance were compared among different groups using the chi-squared test, where a p value of < 0.05 was considered statistically significant.

5. Conclusions

In conclusion, 156 S. aureus isolated from 666 samples have been analyzed for genotypic and epidemiology characteristics. The multidrug resistance and diverse resistance patterns observed among the isolates suggest pigs and pork could be important players in S. aureus dissemination. In addition, S. aureus ST9-t899 was found colonizing pigs on the farms. Contamination of a downstream abattoir and retail market with these two types, respectively, revealed S. aureus clones were diverse across the pork production. Further studies are needed to examine additional risk factors for S. aureus colonization or infection that may be attributable to meat slaughtering and handling. This may indicate whether control strategies in the animal production process are feasible and could significantly reduce rates of S. aureus infections and carriage.

Author Contributions: H.Y. designed and supervised the study, received the grants, and responsible for the overall manuscript preparation. X.L. reviewed and revised drafts of the manuscript, and approved the final draft. Y.Z. conducted the experiment, conducted data analysis and wrote the draft of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Basic Research Program: 2016YFD0500606; Science and Technology Planning Project of Guangdong Province: 2016A020219001; the Central Universities construct the world first-class university (discipline) and Characteristic Development Guidance Special Fund: K5174960 and the 111 Project (B17018).

Conflicts of Interest: The authors declare no conflict of interest.
## Appendix A

### Table A1. Primers used PCR.

| Gene | Forward Primer Sequence (5’-3’) | Reverse Primer Sequence (5’-3’) | References |
|------|---------------------------------|---------------------------------|------------|
| mecA | GTAGAAATGACTGAAAGTGCTGCCGTAAGA | CCAATTCCACATGTTTCTGCTCTAAGA   | [40]       |
| mecC | GAAAATAAGGCCTATAAGACGCGTTTCG | GAAGATCTTTCTGCAGTTGAGCA        | [41]       |
| aac(6')-aph(2'') | ACATGGCAAGCTCTAGGAA | GAAGATCGAGAAAGGAGA        | [42]       |
| aph(3')-Ila | CTGTAAAATATCATACGCTGCGCT | CATGCGAATACCGAATACGCA        | [43]       |
| tetK | GAATGAGAATGAGTAAATACGAACT  | CAACTGCTAAATCTGCAGAAGGC      | [44]       |
| tetL | GTAGGCAATATGGAATATGCTAGGA  | CAACTGCTAAATCTGCAGAAGGC      | [45]       |
| ermA | AAGCCGGTAAACCCCTCCTGA | CATGCGAATACCGAATACGCA        | [46]       |
| ermB | CATTTAACGCAAGAATGCGCTA | CATGCGAATACCGAATACGCA        | [47]       |
| emrC | ATCTTTGAAATCGGCTCAGG  | CATGCGAATACCGAATACGCA        | [48]       |
| msrA | TCAATCATGACCACAAATCT | CATGCGAATACCGAATACGCA        | [49]       |
| msrB | TATGATAATGCAAATAATATACGCAATCT | CATGCGAATACCGAATACGCA        | [50]       |
| sulI | CTGCAATGAGCGCGCGGGGCGGCG | CATGCGAATACCGAATACGCA        | [51]       |
| cmlA | TGTCATTTCCCCATCTCGA | CATGCGAATACCGAATACGCA        | [52]       |
| fexA | GTACTCTGAGGTCAATTACGATCTCGTA | CATGCGAATACCGAATACGCA        | [53]       |
| dfrG | TGCTCGATGAGACTGAGAAGGAGCTGTC | CATGCGAATACCGAATACGCA        | [54]       |
| linA | GGTGGGCTGGGGGGTTAGATGGATAGGCTG | CATGCGAATACCGAATACGCA        | [55]       |
| linB | CTTATACACTTCTCTCTGAGGGAA | CATGCGAATACCGAATACGCA        | [56]       |
| cfr(B) | AAAGCGCAACAAATCTACGCAACAA | CATGCGAATACCGAATACGCA        | [57]       |
| sulII | TCAATGACTGCAAATACGCAACAA | CATGCGAATACCGAATACGCA        | [58]       |
| catI | AGTTGCTCAATGCTACTTACAAAACCGG | CATGCGAATACCGAATACGCA        | [59]       |
| blaZ | ACCGCAACCTGCTGCTTCT | CATGCGAATACCGAATACGCA        | [60]       |
| tetM | AGTGCGAGACATGCAAGGAA | CATGCGAATACCGAATACGCA        | [61]       |
| lso(E) | TGACTGTTCAATTGATTGATTG | CATGCGAATACCGAATACGCA        | [62]       |
| aadE | GCAGAAACAGGATGACGACGACGACGAT | CATGCGAATACCGAATACGCA        | [63]       |
| PCR 1 | GCAGAAACAGGATGACGACGACGAT | CATGCGAATACCGAATACGCA        | [64]       |
| PCR 2 | TGTTGTTGAGCTTTCGCTT | CATGCGAATACCGAATACGCA        | [65]       |
| PCR 3 | TTCCATAGCCTGCTGCTCACC | CATGCGAATACCGAATACGCA        | [66]       |
| PCR 4 | TCCCAAGGAGAACGGAGAAGAACGACG | CATGCGAATACCGAATACGCA        | [67]       |
Table A2. Multidrug resistance patterns among 156 *S. aureus* isolates.

| Resistance Pattern *a* | No. of Antimicrobial Classes | No. of Antimicrobials | Environment (n = 156) | Healthy Pigs (n = 121) | Disease Pigs (n = 28) | All (n = 156) |
|------------------------|------------------------------|-----------------------|-----------------------|------------------------|-----------------------|--------------|
|                        |                              |                       | Abattoir (n = 62)     | Farm (n = 22)          | Market (n = 37)       |              |
| -                      | 0                            | 0                     | 0                     | 0                      | 1                     | 1            |
| PEN                    | 1                            | 1                     | 0                     | 22                     | 5                     | 1            |
| PEN-TET                | 2                            | 2                     | 0                     | 9                      | 2                     | 0            |
| PEN-CLA                | 2                            | 2                     | 0                     | 6                      | 0                     | 6            |
| PEN-CHL                | 2                            | 2                     | 0                     | 0                      | 2                     | 0            |
| PEN-CLI                | 2                            | 2                     | 0                     | 3                      | 0                     | 3            |
| PEN-CIP                | 2                            | 2                     | 0                     | 1                      | 0                     | 1            |
| PEN-CIP-LEV-MXF        | 2                            | 4                     | 0                     | 0                      | 1                     | 0            |
| PEN-GEN-CLA            | 3                            | 3                     | 0                     | 1                      | 0                     | 1            |
| PEN-CLA-SXT-CLI        | 3                            | 3                     | 0                     | 1                      | 0                     | 1            |
| PEN-GEN-CLA-SXT-CLI    | 3                            | 5                     | 0                     | 1                      | 0                     | 1            |
| PEN-GEN-CLA-CLA-CLI    | 4                            | 4                     | 0                     | 1                      | 0                     | 1            |
| PEN-CL-A-SXT-CLI       | 4                            | 4                     | 0                     | 1                      | 0                     | 1            |
| PEN-CLA-FOX-CLA-CHL-CLI| 5                            | 5                     | 0                     | 2                      | 0                     | 2            |
| PEN-CL-A-SXT-CLI-LEV-MXF| 5                            | 5                     | 0                     | 2                      | 0                     | 2            |
| PEN-CLA-FOX-CLA-CHL-CLI| 5                            | 5                     | 0                     | 2                      | 0                     | 2            |
| PEN-CLA-FOX-CLA-CHL-CLI| 5                            | 5                     | 0                     | 2                      | 0                     | 2            |
| PEN-FOX-CLA-FOX-CLA-SXT-RIF| 5                            | 7                     | 0                     | 2                      | 0                     | 2            |
| PEN-CLA-FOX-CLA-CHL-CLI| 5                            | 7                     | 0                     | 2                      | 0                     | 2            |
| PEN-CLA-FOX-CLA-CHL-CLI| 5                            | 7                     | 0                     | 2                      | 0                     | 2            |
| PEN-FOX-CLA-FOX-CLA-CHL-CLI| 5                            | 7                     | 0                     | 2                      | 0                     | 2            |
| PEN-CLA-FOX-CLA-CHL-CLI| 5                            | 7                     | 0                     | 2                      | 0                     | 2            |
| PEN-CLA-FOX-CLA-CHL-CLI| 5                            | 7                     | 0                     | 2                      | 0                     | 2            |
| PEN-FOX-CLA-FOX-CLA-CHL-CLI| 5                            | 7                     | 0                     | 2                      | 0                     | 2            |
Table A2. cont.

| Resistance Pattern | No. of Antimicrobial Classes | No. of Antimicrobials | Environment (n = 7) | Healthy Pigs (n = 121) | Disease Pigs (n = 28) | All (n = 156) |
|--------------------|------------------------------|-----------------------|---------------------|------------------------|-----------------------|--------------|
|                    |                               |                       | Farm (n = 22)       | Abattoir (n = 62)      | Market (n = 37)       |
| PEN-FOX-GEN-TET-CLA-CHL-CLI | 6                            | 7                     | 0                   | 0                      | 0                     | 1            |
| PEN-GEN-TET-SXT-CLIP-MXF | 6                            | 7                     | 0                   | 1                      | 0                     | 0            |
| PEN-GEN-TET-SXT-CLIP-LEV-MXF | 6                             | 8                     | 1                   | 0                      | 0                     | 0            |
| PEN-TET-CLA-CHL-CLIP-LEV-MXF | 6                             | 8                     | 0                   | 0                      | 0                     | 0            |
| PEN-TET-CHL-RIF-CLIP-LEV-MXF | 6                             | 8                     | 0                   | 0                      | 0                     | 0            |
| PEN-OXA-FOX-GEN-CHL-SXT-CLIP-LEV-MXF | 6                            | 10                    | 0                   | 0                      | 0                     | 1            |
| PEN-TET-CLA-CHL-SXT-RIF-CLI | 7                             | 7                     | 0                   | 0                      | 0                     | 1            |
| PEN-GEN-TET-CLA-SXT-CLI-CIP | 7                             | 7                     | 0                   | 1                      | 0                     | 1            |
| PEN-GEN-TET-CLA-SXT-CLI-CIP-MXF | 7                             | 8                     | 2                   | 7                      | 0                     | 0            |
| PEN-OXA-TET-CLA-CHL-SXT-RIF-CLI | 7                             | 8                     | 0                   | 0                      | 0                     | 2            |
| PEN-GEN-TET-CLA-SXT-CLI-CIP-LEV-MXF | 7                             | 9                     | 0                   | 10                     | 0                     | 0            |
| PEN-OXA-CEP-TET-CLA-CHL-SXT-RIF-CLI | 7                             | 9                     | 0                   | 0                      | 0                     | 2            |
| PEN-CEP-GEN-TET-CLA-SXT-CLI-CIP-LEV-MXF | 7                             | 10                    | 0                   | 2                      | 0                     | 0            |
| PEN-GEN-TET-CLA-CHL-SXT-CLI-CIP | 7                             | 10                    | 1                   | 0                      | 0                     | 0            |
| PEN-GEN-TET-CLA-CHL-SXT-CLIP-MXF | 8                             | 8                     | 0                   | 0                      | 0                     | 1            |
| PEN-GEN-TET-CLA-SXT-RIF-CLIP-MXF | 8                             | 9                     | 0                   | 1                      | 0                     | 1            |
| PEN-GEN-TET-CLA-SXT-RIF-CLI-CIP | 8                             | 9                     | 1                   | 0                      | 0                     | 1            |
| PEN-GEN-TET-CLA-SXT-RIF-CLI-CIP-MXF | 8                             | 9                     | 0                   | 1                      | 0                     | 1            |
| PEN-GEN-TET-CLA-CHL-SXT-RIF-CLI-CIP-MXF | 8                             | 10                    | 2                   | 0                      | 1                     | 0            |
| PEN-FOX-TET-CLA-CHL-SXT-RIF-CLI-CIP-LEV-MXF | 8                             | 11                    | 0                   | 1                      | 0                     | 1            |
| PEN-OXA-FOX-GEN-TET-CLA-SXT-RIF-CLI-CIP-MXF | 8                             | 11                    | 0                   | 0                      | 1                     | 0            |
| PEN-GEN-TET-CLA-CHL-SXT-RIF-CLI-CIP-LEV-MXF | 9                             | 11                    | 0                   | 0                      | 1                     | 0            |
| PEN-OXA-FOX-TET-CLA-CHL-SXT-RIF-CLI-CIP-MXF-QDA | 9                             | 12                    | 0                   | 0                      | 0                     | 1            |
| PEN-OXA-FOX-CEP-GEN-TET-CLA-CHL-SXT-RIF-CLI-CIP-MXF | 9                             | 13                    | 0                   | 0                      | 1                     | 0            |
| Combined all above | 38                            | 104                   | 22                  | 19                     | 32                    | 24           |

*a* See the text for abbreviations.
References

1. Crombé, F.; Argudín, M.A.; Vanderhaeghen, W.; Hermans, K.; Haesebrouck, F.; Butaye, P. Transmission dynamics of methicillin-resistant Staphylococcus aureus in pigs. Front Microbiol. 2013, 4, 57. [CrossRef] [PubMed]

2. Van Belkum, A.; Durand, G.; Peyret, M.; Chatellier, S.; Zambardi, G.; Schrenzel, J.; Shortridge, D.; Engelhardt, A.; Dunne, W.M., Jr. Rapid clinical bacteriology and its future impact. Ann. Lab. Med. 2013, 33, 14–27. [CrossRef] [PubMed]

3. Thammavongsa, V.; Missiakas, D.M.; Schneewind, O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 2013, 342, 863–866. [CrossRef] [PubMed]

4. Li, J.; Jiang, N.S.; Ke, Y.B.; Fessler, A.T.; Wang, Y.; Schwarz, S.; Wu, C.M. Characterization of pig-associated methicillin-resistant Staphylococcus aureus. Vet. Microbiol. 2017, 201, 183–187. [CrossRef] [PubMed]

5. Zhou, L.J.; Ying, G.G.; Liu, S.; Zhang, R.Q.; Lai, H.J.; Chen, Z.F.; Pan, C.G. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Sci. Total Environ. 2013, 444, 183–195. [CrossRef]

6. Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, Multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [CrossRef] [PubMed]

7. Yan, X.; Yu, X.; Tao, X.; Zhang, J.; Zhang, B.; Dong, R.; Xue, C.; Grundmann, H.; Zhang, J. Staphylococcus aureus ST398 from slaughter pigs in northeast China. Int. J. Med. Microbiol. IJMM 2014, 304, 379–383. [CrossRef]

8. Tang, Y.; Larsen, J.; Kjeldgaard, J.; Andersen, P.S.; Skov, R.; Ingmer, H. Methicillin-resistant and -susceptible Staphylococcus aureus from retail meat in Denmark. Int. J. Food Microbiol. 2017, 249, 72–76. [CrossRef]

9. Chao, G.; Bao, G.; Jiao, X. Molecular epidemiological characteristics and clonal genetic diversity of Staphylococcus aureus with different origins in China. Foodborne Pathog. Dis. 2014, 11, 503–510. [CrossRef]

10. Cui, S.; Li, J.; Hu, C.; Jin, S.; Li, F.; Guo, Y.; Ran, L.; Ma, Y. Isolation and characterization of methicillin-resistant Staphylococcus aureus from swine and workers in China. J. Antimicrob. Chemother. 2009, 64, 680–683. [CrossRef]

11. Wang, X.; Meng, J.; Zhou, T.; Zhang, Y.; Yang, B.; Xi, M.; Sheng, J.; Zhi, S.; Xia, X. Antimicrobial susceptibility testing and genotypic characterization of Staphylococcus aureus from food and food animals. Foodborne Pathog. Dis. 2012, 9, 95–101. [CrossRef] [PubMed]

12. Ho, P.L.; Chow, K.H.; Lai, E.I.; Law, P.Y.; Chan, P.Y.; Ho, A.Y.; Ng, T.K.; Yam, W.C. Clonality and antimicrobial susceptibility of Staphylococcus aureus and methicillin-resistant S. aureus isolates from food animals and other animals. J. Clin. Microbiol. 2012, 50, 3735–3737. [CrossRef]

13. He, W.; Liu, Y.; Qi, J.; Chen, H.; Zhao, C.; Zhang, F.; Li, H.; Wang, H. Food-animal related Staphylococcus aureus multidrug-resistant ST9 strains with toxin genes. Foodborne Pathog. Dis. 2013, 10, 782–788. [CrossRef] [PubMed]

14. Beneke, B.; Klees, S.; Stührenberg, B.; Fetsch, A.; Kraushaar, B.; Tenhagen, B.A. Prevalence of methicillin-resistant Staphylococcus aureus in a fresh meat pork production chain. J. Food Prot. 2011, 74, 126–129. [CrossRef]

15. Leedom Larson, K.R.; Harper, A.L.; Hanson, B.M.; Male, M.J.; Wardyn, S.E.; Dressler, A.E.; Wagstrom, E.A.; Tendolkar, S.; Diekema, D.J.; Donham, K.J.; et al. Methicillin-resistant Staphylococcus aureus in pork production shower facilities. Appl. Environ. Microbiol. 2011, 77, 696–698. [CrossRef] [PubMed]

16. Normanno, G.; Dambrosio, A.; Lorusso, V.; Samoïlis, G.; Di Taranto, P.; Parisi, A. Methicillin-resistant Staphylococcus aureus (MRSA) in slaughtered pigs and abattoir workers in Italy. Food Microbiol. 2015, 51, 51–56. [CrossRef]

17. Fang, H.W.; Chiang, PH.; Huang, Y.C. Livestock-associated methicillin-resistant Staphylococcus aureus ST9 in pigs and related personnel in Taiwan. PLoS ONE 2014, 9, e88826. [CrossRef]

18. Guardabassi, L.; O’Donoghue, M.; Moodley, A.; Ho, J.; Boost, M. Novel lineage of methicillin-resistant Staphylococcus aureus, Hong Kong. Emerg. Infect. Dis. 2009, 15, 1998–2000. [CrossRef]

19. Neela, V.; Mohd Zafriul, A.; Mariana, N.S.; van Belkum, A.; Liew, Y.K.; Rad, E.G. Prevalence of ST9 methicillin-resistant Staphylococcus aureus among pigs and pig handlers in Malaysia. J. Clin. Microbiol. 2009, 47, 4138–4140. [CrossRef]
20. Vestergaard, M.; Cavaco, L.M.; Sirichote, P.; Unahalekhaka, A.; Dangsakul, W.; Svendsen, C.A.; Aarestrup, F.M.; Hendriksen, R.S. SCCmec type IX element in methicillin resistant *Staphylococcus aureus* spa type t337 (CC9) isolated from pigs and pork in Thailand. *Front Microbiol.* 2012, 3, 103. [CrossRef]

21. Liu, Y.; Wang, H.; Du, N.; Shen, E.; Chen, H.; Niu, J.; Ye, H.; Chen, M. Molecular evidence for spread of two major methicillin-resistant *Staphylococcus aureus* clones with a unique geographic distribution in Chinese hospitals. *Antimicrob. Agents Chemother.* 2009, 53, 512–518. [CrossRef] [PubMed]

22. Kim, D.W.; Park, J.Y.; Park, K.D.; Kim, T.H.; Lee, W.J.; Lee, S.J.; Kim, J. Are there predominant strains and toxins of *Staphylococcus aureus* in atopic dermatitis patients? Genotypic characterization and toxin determination of *S. aureus* isolated in adolescent and adult patients with atopic dermatitis. *J. Dermatol.* 2009, 36, 75–81. [CrossRef] [PubMed]

23. Ghaznavi-Rad, E.; Goering, R.V.; Nor Shamsudin, M.; Weng, P.L.; Sekawi, Z.; Tavakol, M.; van Belkum, A.; Simpson, A.J.; Rambaut, A.; Nübel, U.; Fitzgerald, J.R. Recent human-to-poultry host jump, adaptation, and pandemic spread of *Staphylococcus aureus*. *Proc. Natl. Acad. Sci. USA* 2009, 106, 19545–19550. [CrossRef]

24. Chuang, Y.Y.; Huang, Y.C. Livestock-associated meticillin-resistant *Staphylococcus aureus* in Asia. An emerging issue? *Int. J. Antimicrob. Agents* 2015, 45, 334–340. [CrossRef]

25. Lakhundi, S.; Zhang, K. Methicillin-resistant *Staphylococcus aureus*. Molecular characterization, evolution, and epidemiology. *Clin. Microbiol. Rev.* 2018, 31, e00200-18. [CrossRef]

26. Lowder, B.V.; Guinane, C.M.; Ben Zakour, N.L.; Weinert, L.A.; Conway-Morris, A.; Cartwright, R.A.; Simpson, A.J.; Rambaut, A.; Nübel, U.; Fitzgerald, J.R. Recent human-to-poultry host jump, adaptation, and pandemic spread of *Staphylococcus aureus*. *Proc. Natl. Acad. Sci. USA* 2009, 106, 19545–19550. [CrossRef]

27. Guedes, R.M.C.; Gebhart, C.J. Comparison of intestinal mucosa homogenate and pure culture of the *Staphylococcus aureus* respiratory disease complex in intensive commercial farms in Sichuan province, China. *Sci. Rep.* 2018, 8, 13341. [CrossRef] [PubMed]

28. Yang, X.; Wang, B.; Tao, X.; Hu, Q.; Cui, Z.; Zhang, J.; Lin, Y.; You, Y.; Shi, X.; Grundmann, H. Characterization of *Staphylococcus aureus* strains associated with food poisoning in Shenzhen, China. *Appl. Environ. Microbiol.* 2012, 78, 6637–6642. [CrossRef] [PubMed]

29. Brakstad, O.G.; Aasbak, K.; Maeland, J.A. Detection of *Staphylococcus aureus* by polymerase chain reaction amplification of the *nuc* gene. *J. Clin. Microbiol.* 1992, 30, 1654–1660. [CrossRef]

30. Zhou, W.; Li, X.; Shi, L.; Wang, H.H.; Yan, H. Novel SCCmec type XII methicillin-resistant *Staphylococcus aureus* isolates identified from a swine production and processing chain. *Vet. Microbiol.* 2018, 225, 105–113. [CrossRef]

31. Chen, X.; Wang, W.K.; Han, L.Z.; Liu, Y.; Zhang, H.; Tang, J.; Liu, Q.Z.; Huangfu, Y.C.; Ni, Y.X. Epidemiological and genetic diversity of *Staphylococcus aureus* causing bloodstream infection in Shanghai, 2009–2011. *PLoS ONE* 2013, 8, e72811. [CrossRef]
39. Harmsen, D.; Claus, H.; Witte, W.; Rothganger, J.; Claus, H.; Turnwald, D.; Vogel, U. Typing of methicillin-resistant *Staphylococcus aureus* in a university hospital setting by using novel software for *spa* repeat determination and database management. *J. Clin. Microbiol.* 2003, 41, 5442–5448. [CrossRef]

40. Zhang, K.; Sparling, J.; Chow, B.L.; Elsayed, S.; Hussain, Z.; Church, D.L.; Gregson, D.B.; Louie, T.; Conly, J.M. New quadruplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of *Staphylococcus aureus* from coagulase-negative Staphylococci. *J. Clin. Microbiol.* 2004, 42, 4947–4955. [CrossRef]

41. Stegger, M.; Andersen, P.S.; Kearns, A.; Pichon, B.; Holmes, M.A.; Edwards, G.; Laurent, F.; Teale, C.; Skov, R.; Larsen, A.R. Rapid detection, differentiation and typing of methicillin-resistant *Staphylococcus aureus* harbouring either mecA or the new mecA homologue mecA(LGA251). *Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis.* 2012, 18, 395–400.

42. Vakulenko, S.B.; Donabedian, S.M.; Voskresenskiy, A.M.; Zervos, M.J.; Lerner, S.A.; Chow, J.W. Multiplex PCR for detection of aminoglycoside resistance genes in Enterococci. *Antimicrob. Agents Chemother.* 2003, 47, 1423–1426. [CrossRef] [PubMed]

43. Strommenger, B.; Kettlitz, C.; Werner, G.; Witte, W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in *Staphylococcus aureus*. *J. Clin. Microbiol.* 2003, 41, 4089–4094. [CrossRef] [PubMed]

44. Ng, L.K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. *Mol. Cell. Probes* 2001, 15, 209–215. [CrossRef] [PubMed]

45. Suttle, J.; Grebe, T.; Tait-Kamradt, A.; Wondrack, L. Detection of erythromycin-resistant determinants by PCR. *Antimicrob. Agents Chemother.* 1996, 40, 2562–2566. [CrossRef] [PubMed]

46. Martineau, F.; Picard, F.J.; Lansac, N.; Ménard, C.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of *Staphylococcus aureus* and *Staphylococcus epidermidis*. *Antimicrob. Agents Chemother.* 2000, 44, 231–238. [CrossRef] [PubMed]

47. Lina, G.; Quaglia, A.; Reverdy, M.E.; Leclercq, R.; Vandenesch, F.; Etienne, J. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among *Staphylococci*. *Antimicrob. Agents Chemother.* 1999, 43, 1062–1066. [CrossRef]

48. Guerra, B.; Soto, S.M.; Argüelles, J.M.; Mendoza, M.C. Multidrug resistance is mediated by large plasmids carrying a class 1 integron in the emergent *Salmonella enterica* serotype [4,5,12.i.-]. *Antimicrob. Agents Chemother.* 2001, 45, 1305–1308. [CrossRef]

49. Kehrenberg, C.; Schwarz, S. Florfenicol-chloramphenicol exporter gene *fexA* is part of the novel transposon Tn558. *Antimicrob. Agents Chemother.* 2005, 49, 813–815. [CrossRef] [PubMed]

50. Argudín, M.A.; Tenhagen, B.A.; Fetsch, A.; Sachsenröder, J.; Käsbohrer, A.; Schroeter, A.; Hammerl, J.A.; Hertwig, S.; Helmuth, R.; Bräunig, J.; et al. Virulence and resistance determinants of *German Staphylococcus aureus* ST398 isolates from nonhuman sources. *Appl. Environ. Microbiol.* 2011, 77, 3052–3060. [CrossRef]

51. Bozdogan, B.; Berrezouga, L.; Kuo, M.S.; Yurek, D.A.; Farley, K.A.; Stockman, B.J.; Leclercq, R. A new resistance gene, *linB*, conferring resistance to lincomycins by nucleotidylation in *Enterococcus faecium* HM1025. *Antimicrob. Agents Chemother.* 1999, 43, 925–929. [CrossRef] [PubMed]

52. Deshpande, L.M.; Ashcraft, D.S.; Kahn, H.P.; Pankey, G.; Jones, R.N.; Farrell, D.J.; Mendes, R.E. Detection of a New cfr-Like Gene, *cfr*(B), in *Enterococcus faecium* isolates recovered from human specimens in the United States as part of the sentry antimicrobial surveillance program. *Antimicrob. Agents Chemother.* 2015, 59, 6256–6261. [CrossRef] [PubMed]

53. Liu, Z.B.; Zhang, Z.G.; Yan, H.; Li, J.R.; Shi, L. Isolation and Molecular Characterization of Multidrug-Resistant Enterobacteriaceae Strains from Pork and Environmental Samples in Xiamen, China. *J. Food Prot.* 2015, 78, 78–88. [CrossRef] [PubMed]
54. Duran, N.; Ozer, B.; Duran, G.G.; Onlen, Y.; Demir, C. Antibiotic resistance genes & susceptibility patterns in staphylococci. *Indian J. Med. Res.* 2012, 135, 389–396.

55. Li, B.; Wendlandt, S.; Yao, J.; Liu, Y.; Zhang, Q.; Shi, Z.; Wei, J.; Shao, D.; Schwarz, S.; Wang, S.; et al. Detection and new genetic environment of the pleuromutilin-lincosamide-streptogramin A resistance gene *lsa(E)* in methicillin-resistant *Staphylococcus aureus* of swine origin. *J. Antimicrob. Chemother.* 2013, 68, 1251–1255. [CrossRef]

**Publisher’s Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).