Differential Impact of Caveolae and Caveolin-1 Scaffolds on The Membrane Raft Proteome*

Yu Zi Zheng‡, Cecile Boscher§, Kerry L. Inder¶, Maria Fairbank§, Dorothy Loo¶, Michelle M. Hill¶, Ivan R. Nabi§, and Leonard J. Foster‡

Caveolae, a class of cholesterol-rich lipid rafts, are smooth invaginations of the plasma membrane whose formation in nonmuscle cells requires caveolin-1 (Cav1). The recent demonstration that Cav1-associated cavin proteins, in particular PTRF/cavin-1, are also required for caveolae formation supports a functional role for Cav1 independently of caveolae. In tumor cells deficient for Golgi β-1,6N-acetylglucosaminyltransferase V (Mgat5), reduced Cav1 expression is associated not with caveolae but with oligomerized Cav1 domains, or scaffolds, that functionally regulate receptor signaling and raft-dependent endocytosis. Using subdiffraction-limit microscopy, we show that Cav1 scaffolds are homogenous subdiffraction-limit sized structures whose size distribution differs from that of Cav1 in caveolae expressing cells. These cell lines displaying differing Cav1/caveolae phenotypes are effective tools for probing the structure and composition of caveolae. Using stable isotope labeling by amino acids in cell culture, we are able to quantitatively distinguish the composition of caveolae from the background of detergent-resistant membrane proteins and show that the presence of caveolae enriches the protein composition of detergent-resistant membrane, including the recruitment of multiple heterotrimeric G-protein subunits. These data were further supported by analysis of immuno-isolated Cav1 domains and of methyl-β-cyclodextrin-disrupted detergent-resistant membrane. Our data show that loss of caveolae results in a dramatic change to the membrane raft proteome and that this change is independent of Cav1 expression. The proteomics data, in combination with subdiffraction-limit microscopy, indicates that noncaveolar Cav1 domains, or scaffolds, are structurally and functionally distinct from caveolae and differentially impact on the molecular composition of lipid rafts. *Molecular & Cellular Proteomics 10: 10.1074/mcp.M110.007146, 1–11, 2011.

Plasmalemml proteins and lipids can segregate into different subdomains, forming tightly packed, lipid-ordered phases enriched in specific subsets of proteins. Collectively known as lipid rafts, these structures can be biochemically enriched in a low-density detergent-resistant membrane (DRM) fraction (1). This compartmentalization helps to coordinate various activities of raft-associated proteins (2, 3), making the domains a subject of great interest for cell biologists (4) and proteomics scientists alike (5). Formation of caveolae, a subtype of rafts characterized by morphologically distinctive invaginations of the plasma membrane depends on the presence of the protein caveolin-1 (Cav1) (6). Recent comparative proteomic analyses of DRMs from wild-type and Cav1−/− fibroblasts identified PTRF (Polymerase I and transcript release factor) or cavin-1 as a crucial regulator of caveolae formation (7). Other cavin family proteins were subsequently identified with varying roles regulating caveolae formation, dynamics and size (8–11). The requirement for proteins other than Cav1 in caveolae formation argues that Cav1 functions outside of caveolae (6, 14, 15).

Despite these successes, it remains difficult to study the composition of caveolae because of a lack of effective tools; DRM preparations contain not just caveolae but other types of raft domains and many other contaminants, particularly from mitochondria (12, 13). Likewise, detergent-free methods of enriching caveolae are at least as fraught with complications (1). However, combining biochemical methods with genetic manipulation of relevant proteins can be an effective approach to probe the composition of these structures. The Golgi enzyme β-1,6-N-acetylglucosaminyltransferase V (Mgat5) modifies N-glycans, generating high affinity ligands for galectins that then lead to the genesis of another membrane domain, the galectin lattice (16). Mgat5-deficiency reduces mammary tumor growth and metastasis formation but...
Cav1 expression was inversely proportional to tumor size in Mgte5–/– mice, suggesting that Cav1 expression impacts on tumor growth only in the absence of Mgte5 and the galectin lattice (17, 18). These observations led to the development and characterization of three cell lines: 1) Mgte5+/– mammary carcinoma cells derived from wild-type tumors that express Cav1 and caveolae; 2) Mgte5–/– cells from small tumors that express Cav1 but no detectable caveolae; 3) Mgte5–/–ESC cells from large tumors that express minimal Cav1 protein and that have escaped (ESC) the growth limitations imposed by the lack of Mgte5 (18). Further characterization revealed that noncaveolar Cav1 in Mgte5–/– cells form high molecular weight oligomers and inhibit Epidermal Growth Factor Receptor (EGFR) signaling and endocytosis, as well as dynamics of the GM1-ganglioside binding raft marker cholera toxin b-subunit (CT-b) (18, 19). Intriguingly, whereas Cav1 inhibits EGFR signaling, EGFR is not associated with caveolae in the absence of ligand (20), suggesting that Cav1 scaffolds may represent a Cav1 regulatory domain (19).

Collectively, these observations suggest a model where caveolae, Cav1 scaffolds, and Cav1-free raft domains represent functionally distinct subtypes of lipid rafts whose expression may explain many of the discordant reports of Cav1 regulation of cellular signaling. However, apart from a few marker proteins, e.g. Cav1 and PTRF, the protein composition of caveolae and Cav1 scaffolds remains uncertain. Here we use super-resolution microscopy to show that Cav1 scaffolds represent homogenous, subdiffraction limit domains whose size and distribution differ from that of caveolae. We also analyzed the DRM proteome of cells containing Cav1/caveolae (Mgte5+/–), Cav1 scaffolds only (Mgte5–/–), or no Cav1 or caveolae (Mgte5–/–ESC) and compared the data with that of DRMs from wild-type and Cav1–/– MEFs (mouse embryonic fibroblasts). Our results show that expression of Cav1 scaffolds but not caveolae significantly depletes proteins, including signaling G proteins, from the raft proteome suggesting that caveolae and Cav1 scaffold expression differentially impacts on the protein composition and signaling potential of lipid raft domains.

EXPERIMENTAL PROCEDURES

Materials and Cell Lines—The following materials were obtained from the indicated commercial sources: Dulbecco’s Modified Eagle’s Medium (DMEM), L-glutamine, penicillin and streptomycin, BCA asay kit and cell culture trypsin (ThermoFisher, Nepean, Ontario, Canada); Fetal bovine serum, both qualified and dialyzed forms, Alexa-488 coupled secondary antibody, ProGold and Lipofectamine 2000 (Invitrogen, Burlington, Ontario, Canada); L-Lys- and L-Arg-deficient DMEM (Caissin Labs, North Ogden, UT); L-Lys, L-Arg, methyl-beta-cyclodextrin (MjCJD), isoproterenol, Triton X-100 (TX-100), sodium deoxycholate (SDC), dioleinreitol, iodocadmate, lactose, sucrose and Alexa-546 coupled-CT-b (Sigma-Aldrich, St.Louis, MO); 15N2-lysine, 15N4-arginine, 13C6-N2-lysine, and 13C6-N2-arginine (Cambridge Isotope Laboratories, Cambridge, MA); Sequencing grade modified porcine trypsin (Promega, Madison, WI); Protease inhibitor mixture tablets with EDTA (Roche Diagnostics, Mannheim, Germany); Coomassie Plus kit (Pierce, Nepean, Ontario, Canada); Protein A Sepharose beads (Amersham Biosciences, Sweden); Mouse protein nonspecific IgG (Biomedia, Foster city, CA). Antibodies used and their sources were as follows α-PTRF (BD Transduction, San Jose, CA); α-actin, α-caveolin-1 (Santa Cruz Technology, Santa Cruz, CA). The Mgte5+/–, Mgte5–/–, Mgte5–/–ESC cell lines were cultured as previously described (18).

Cell Culture and SILAC—Both duplex and triplex stable Isotope Labeling by Amino acids in Cell culture (SILAC) labeling was conducted as described previously (13). Before labeling, all Mgte5 cells were maintained in DMEM supplemented with 10% fetal bovine serum (v/v), 1% L-Gln (v/v), and 1% penicillin/streptomycin (v/v) at 5% CO2 and 37 °C then transferred to SILAC medium with dialyzed fetal bovine serum plus Lys and Arg isologopols; cell populations were amplified 200-fold in the labeling media to achieve complete labeling. Here we refer to the different labels as “0/0” for the normal isotopic abundance Lys and Arg, “4/6” for 15N4-Lys and 13C6-Arg, and “8/10” for 13C6-15N4-Lys and 13C6-15N4-Arg. For each analysis, six 15-cm plates of Mgte5 cells were used per condition for detergent-resistant membrane extractions, quantitative co-immunoprecipitations and MjCJD treatment experiments. For the MjCJD treatment experiment, all 0/0 and 4/6 labeled Mgte5–/– cells were serum starved for 5 h to deplete free cholesterol before MjCJD treatment and DRM extraction. 0/0 cells were treated with 5 μM MjCJD for 1 h at 37 °C with 4/6 untouched. WT and Cav1–/– MEFs were maintained in normal DMEM medium as ‘label-free’ samples (7). Two 15 cm plates of MEF cells were used per each cell type for detergent-resistant membrane extraction prepared in parallel.

DRM Preparation—DRMs were extracted from normal or treated SILAC cells as described previously (12, 13). Very briefly, cells were solubilized in lysis buffer (1% Triton X-100, 25 mM 2-(N-morpholino)ethanesulfonate (MES), pH 6.5, Protease Inhibitor Mixture). Relative protein concentrations of cell lysates were determined using Coomassie Plus and equal masses of protein from each SILAC condition were mixed together. From this step, lysates are combined into one sample and adjusted to 45% sucrose by addition of an equal volume of 90% sucrose (in 25 mM MES, 150 mM NaCl, pH 6.5 (MES-buffered saline or MBS)). This is then layered in the bottom of an ultracentrifuge tube, followed by successive layers of 35 and 5% sucrose. These gradients were then centrifuged for 18 h at 166,000 relative centrifugal force (r.c.f.) and the white, light-scattering band appearing between 35 and 5% sucrose is extracted using a needle to puncture the side of the tube and a syringe to draw out the desired layer. This extracted layer is then diluted out ~threefold with MBS and membranes are pelleted by centrifugation at 166,000 r.c.f. for 2 h. Each plate would typically yield between 10 to 20 μg of DRM protein. All steps above were carried out at 4 °C.

Quantitative Co-immunoprecipitation—Caveolae were precipitated from both detergent and detergent-free extracts of Mgte5–/– cells. In the detergent method, 0/0 and 4/6 Mgte5–/– cells were lysed in Tx-100 for 1 h; 4, 8, or 20 μg of Caveolin-1 antibody or protein nonspecific IgG were added to 4/6 and 0/0 lysate respectively. After adding Protein A Sepharose beads, both the lysates were rotated for 2 h at 4 °C, after which the beads were pelleted at 600 r.c.f. for 10 min and washed three times with ice-cold phosphate-buffered saline buffer. Finally, the beads were solubilized in 100 μl 1% SDS in 50 mM Tris (pH 8.0), heated for 10 min 99 °C with mixing at 1400 rpm; the protein concentration of both the supernatants were measured by BCA assay and combined at a 1:1 protein ratio. In the detergent-free method, cells were scraped in homogenization buffer (250 mM sucrose, 10 mM Tris-HCl, and 0.1 mM EGTA, pH 7.4) with Protease Inhibitor Mixture added fresh, and then lysed by passage through a 25-G needle syringe until >95% of the cells were broken by examining under microscope. All nuclear and cell debris were pelleted at...
Membrane Raft Regulation by Caveolin-1

16,000 r.c.f. for 10 min, and then Tx-100 was added to the supernatant to extract DRMs and allowed to incubate for 1 h. The remainder of the detergent-free procedure was the same as the detergent method except 10 μg of Caveolin-1 ab and IgG were used.

Western Blotting—Ten micrograms of whole cell lysate from Mgtat5+/−, Mgtat5−/−, and Mgtat5−/−ESC were combined with SDS sample buffer, separated by 12% SDS-PAGE, transferred to polyvinylidene difluoride membrane and blocked with 5% milk powder. Primary antibodies were used as follows: α-caveolin-1 diluted 1 in 200 for 1 h; α-PTRF, 1/100 for 1 h and α-actin, 1/100 for 1 h. Horseradish peroxidase conjugated anti-mouse secondary was used at 1/4000 and signal detected with SuperSignalWest PicoChemiluminescent detection system.

Transfection and Immunofluorescence—Mgtat5+/−, Mgtat5−/−, and Mgtat5−/−ESC cells were plated and 24 h later transfected with Gus-GFP(10) using Lipofectamine 2000. Twenty-four hours after transfection, cells were incubated with or without Alexa-546 coupled-CT-b (1/400) for 20 min at 4 °C and fixed with methanol/aceton (50%/50% v/v) at −20 °C. For the isoproterenol experiments, one hour before treatment, complete media was replaced with serum-free DMEM. Gus-GFP transfected cells were then incubated with or without Alexa-546 coupled-CT-b as described above. Next, the cells were washed with warm phosphate-buffered saline and incubated with 10 μm isoproterenol for 15 min at 37 °C. The cells were then fixed for 20 min with 4% paraformaldehyde (PFA) at room temperature, and permeabilized with 0.2% Tx-100. In both cases, preparations were extensively washed with phosphate-buffered saline containing 100 μm Ca²⁺ and 100 nm Mg²⁺, blocked with 1% bovine serum albumin and then the cover slides were incubated sequentially with the primary and secondary antibodies. Cover slides were mounted in Gelvatol for confocal analysis and images acquired using an Olympus Fluoview 1000 confocal microscope. Pearson’s coefficients were calculated from individual cells (11–19 cells) using ImagePro Plus and ImageJ software.

For the stimulated emission depletion microscopy (STED) microscopy, Mgtat5 cells were fixed in 3% paraformaldehyde, permeabilized with 0.2% Triton X-100 and blocked with 1% bovine serum albumin before incubation with anti-Cav1. Cells were then incubated with Alexa488 α-rabbit secondary antibody and then mounted in ProGold for confocal STED analysis. Images were acquired using a Leica SP5 STED CW microscope (courtesy of Vladimir Zhukarev, Leica). Signal dynamic range was adjusted for each STED and confocal image acquisition (gain ~800 V for confocal images and ~1000 V for STED images) and images processed using a median filter radius of 3 and application of a 30–255 intensity threshold to 8-bit images. Area of Cav1-positive structures was measured with ImageJ software, and the averages of individual cells pooled to obtain the mean of all cells from independent experiments. Statistical analysis was performed on GraphPad Prism software: to determine p values unpaired T tests were performed between two different conditions using 95% confidence intervals.

LC-MS/MS, Database Searching and Data Analysis—All analyses here involved in solution digestions in 1% DDC (50 mm Tris, pH 8) with protein pellets or bead-bound protein in the pull-down experiments being solubilized directly in SDS and then subjected to trypsin digestion. Protein solutions were reduced (1 μg dithiothreitol/50 μg protein), alkylated (5 μg iodoacetamide/50 μg protein) and digested (1 μg trypsin/50 μg protein) as described (22). For each sample, 5 μg (measured by BCA method) of digested peptides were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) on a LTQ-OrbitrapXL (ThermoFisher, Bremen, Germany). The LTQ-OrbitrapXL was on-line coupled to Agilent 1100 Series nanoHPLC instruments using a nanospray ionization source (Proxeon Biosystems) holding columns packed into 15-cm-long, 75-μm-inner diameter fused silica emitters (8-μm-diameter opening, pulled on a P-2000 laser puller from Sutter Instruments) using 3-μm-diameter ReproSil Pur C18 beads. Buffer A consisted of 0.5% acetic acid, and buffer B consisted of 0.5% acetic acid and 80% acetonitrile. Gradients were run from 6% B to 30% B over 60 min, then 30% B to 80% B in the next 10 min, held at 80% B for 5 min, and then dropped to 6% B for another 15 min to recondition the column. The LTQ-OrbitrapXL was set to acquire a full-scan range from 350 to 1500 Th in the Orbitrap and to simultaneously fragment the top five peptide ions in each cycle in the LTQ. In all experiments, digested peptides were also further fractionated by strong cation exchange chromatography into five fractions using 0, 20, 50, 100, and 500 mM of NH₄CH₃COO or 10 fractions using 0, 10, 20, 50, 75, 100, 150, 200, 350, and 500 mM of NH₄CH₃COO as described (22) and analyzed as above on an LTQ-OrbitrapXL.

Protein identification and quantification were done using Proteome Discover (v.1.2, ThermoFisher, Bremen, Germany) and Mascot (version 2.3, Matrix Science) to search against the International Protein Index (IPI) Mouse (version 3.69, 110,771 sequences)—common serum contaminants and human keratins added and all reversed sequences were concatenated database with the following criteria: electrospray ionization-ion trap fragmentation characteristics, trypsin specificity with up to one missed cleavages; ±10 parts-per-million and ±0.6 Da accuracy for MS and MS/MS measurements respectively; cysteine carbamidomethylation as a fixed modification; N-terminal protein acetylation, methionine oxidation, deamidation (NQ), duplex (H,Lys, 13C6-Arg) or triplex (13C63N2-Lys and 13C63N2-Lys and 13C63N2-Lys) SILAC modifications as appropriate; peptide false discovery rate was set at 1%. Quantitation was done using a mass precision of 2 ppm (three times the mass precision is used to create extracted ion chromatograms). After extracting each ion chromatogram, Proteome Discoverer runs several filters to check for, among other things, interfering peaks and the expected isotope pattern, and peptides that do not meet all the criteria are not used in calculating the final ratio for each protein. The ratios presented in the various tables are the raw measured ratios, with the exception of the Mgtat5−/− versus Mgtat5−/−ESC comparison, where the ratios were standardized around a mean of 1.0. We consider proteins identified if at least two peptides were observed. Analytical variability of SILAC data in the types of experiments performed here is typically <30% on average and biological variability was addressed in these experiments by performing at least three independent replicates of each protein.

Label-free quantitation was performed using Mass Profiler Professional and MassHunter (Agilent) software based on area-under-the-curve method (supplemental Fig. S1). In this procedure, at least four biological replicates of DRMs (4 μg each) from WT and Cav1−/− MEFs were analyzed by LC-MS (i.e., only MS1 spectra acquired) using 160 nl (75 mm × 150 μm) high capacity C18 reverse phase HPLC-chip with 55 min gradient from 0 to 45% acetonitrile on a 1200 Series nano HPLC and Chip-Cube Q-TOF 6510 (Agilent Technologies) with V_cap set at 1850 V and the fragmentor voltage set at 175 V. MassHunter Qualitative Analysis software was used to extract the 1000 most abundant molecular features between 100 and 3200 Th, defined by precursor ion m/z, retention time (RT) and intensity. Statistical analysis of the extracted molecular features was performed using Mass Profiler Professional (Agilent) to generate MS/MS target lists with features significantly up-regulated in either WT or Cav1−/− DRM. The following settings were used in generating the inclusion list: minimum absolute abundance = 1000 counts, minimum # of ions = 2, 2+ or greater charge state required; compound alignment: RT window 0.1% + 0.15 min, mass window 5.0 ppm + 2.0 mA; flag filter at least four out of eight samples have acceptable value; frequency filter retain entities that appear in at least 100% of samples in at least one condition; p value cut off 0.001, fold-change cut-off of 100; features
that only present in one of the two cell types were selected. Inclusion list exportation settings: RT window ±0% ± 0.1 min, number of precursor ions per compound limited to 1, minimum ion abundance 1000 counts, export monoisotopic m/z, prefer highest abundance charge state(s). The inclusion lists were imported into MassHunter and the target sample (MEF WT or Cav1−/− DRM) were subjected to targeted MS/MS in which the instrument selects the included m/z at a specific retention time window for MS/MS. This method obviously relies on highly reproducible chromatography so we examined the reproducibility of our Chip-LC-MS system using repeated injections of PC3 DRM samples. Total ion chromatograms (TICs), base peak chromatograms, peptide and protein identifications are all highly reproducible, with the large majority of proteins and peptides identified in all replicates (supplemental Fig. S2). Mass spectra extraction, database searching and quantitative ratios were performed using Spectrum Mill software (Agilent, A03.03) against NCBInr Mouse database (B3233 Sequences). Cysteine carboxamidomethylation was used as a fixed/mix modification. Other parameters include up to two missed cleavages for trypsin; ±20 ppm and ±50 ppm accuracy for MS and MS/MS measurements respectively. Positive identification required a protein score >11, peptides with score >10 and % SPI (Scored Peak Intensity) >60.

RESULTS

Cav1 Scaffold Domains by STED Microscopy—As previously reported (19, 20), Cav1 expression in Mgst5+/− cells is greatly reduced relative to Mgst5+/+ cells and in Mgst5−/− ESC cells it is eliminated essentially completely. Expression of PTRF/cavin-1 is significantly reduced in both Mgst5−/− cell lines (Fig. 1A); this is consistent with its requirement for caveolae formation (7) but also for stable Cav1 expression (24). Thus, Mgst5+/− cells potentially have caveolae, Cav1 scaffolds and noncaveolar lipid rafts, Mgst5−/− cells have Cav1 scaffolds and noncaveolar lipid rafts and Mgst5−/− ESC only contain noncaveolar lipid rafts (Fig. 1B). This is consistent with the hypothesis that the functional noncaveolar, Cav1-positive domains in Mgst5−/− cells are different from caveolae in Mgst5+/− cells.

Indeed, confocal images show that Cav1 is distributed in larger clusters in caveolae-expressing Mgst5+/− cells compared with Mgst5−/− cells (Fig. 2A). Super-resolution imaging of Cav1 in Mgst5+/+ and Mgst5−/− cell lines using STED allows us to resolve many more and much smaller-diameter spots than with conventional confocal microscopy (Fig. 2B and 2C). This state-of-the-art imaging method did not offer a significant advantage when analyzing Mgst5+/+ cells as the spot size hovered around the resolution of diffraction-limited microscopy. However, in Mgst5−/− cells, STED was able to accurately measure what confocal could not: average spot size in these cells was 128 ± 10 nm. Of particular interest, Cav1 in Mgst5+/+ cells presented a highly variable spot size, even in STED images, perhaps because of the presence of both individual caveolae clusters and Cav1 scaffolds. Cav1 spot size in Mgst5−/− cells was highly homogeneous. This suggests that Cav1 scaffolds are uniform suboptical resolution domains smaller than and distinct from caveolae.

The DRM Proteome of Caveolae and Cav1 Scaffold Expressing Cells—As these cell models appear to have distinct caveolar structures, we then turned to mass spectrometry-based proteomics to characterize the differential protein com-
position of DRMs from these cells (13, 25, 26). Mgat5+/+ cells were mass encoded with SILAC and then combined with equal masses of protein from light-labeled Mgat5−/− or Mgat5−/−ESC cells; DRMs were subsequently purified and analyzed by mass spectrometry. A high heavy:light ratio for a protein detected in this scheme would suggest that it is enriched in the Mgat5+/+ cell DRMs and therefore potentially associated with caveolae (Fig. 3). To assign a protein as specific to the DRMs of one cell type or another, we opted to use a cut-off set at two population standard deviations away from the mean (±2σ) for three or four biological replicates. In a binary comparison of Mgat5+/+ versus Mgat5−/−, this yielded 66 proteins specific to Mgat5+/+ DRMs and 33 proteins specific to Mgat5−/− DRMs, out of more than 400 proteins identified. There was also roughly twice the number of proteins identified in Mgat5+/+ DRMs versus Mgat5−/−ESC (100 versus 51 out of 700 total protein identifications) (Fig. 4). The Mgat5+/+−specific subset includes Cav1, the raft marker protein Flotillin as well as PTRF/cavin-1 and SDPR/cavin-2 (supplemental Tables S1 and S2). Comfortingly, the SILAC ratios validated our immunoblotting (Fig. 1A), with Cav1 showing very large Mgat5+/+Mgat5−/−ESC and Mgat5+/+Mgat5−/− ratios. PTFR/cavin-1 showed a 7:1 Mgat5+/+Mgat5−/− ratio and very large (>10) Mgat5+/+Mgat5−/−ESC ratio. These proteomic data confirm the graded expression of Cav1 from Mgat5+/+Mgat5−/−/Mgat5−/−ESC cells as well as the elevated expression of PTFR/cavin-1 in Mgat5+/+ cells relative to both Mgat5−/− and Mgat5−/−ESC cells.

Ingenuity Pathways Analysis showed that the proteins enriched in Mgat5+/+ relative to either Mgat5−/− or Mgat5−/−ESC showed noticeable enrichment of proteins associated with lipid transport, lipid metabolism, and lipid droplet metabolism. These data, in combination with the localization data, suggest that Mgat5−/− is preferentially involved in lipid metabolism and that Mgat5−/−ESC is preferentially involved in lipid droplet metabolism.

Fig. 2. STED and confocal analysis of Cav1 labeled structures in Mgat5+/+ and Mgat5−/− cells. A, Mgat5+/+ and Mgat5−/− cells were stained for Cav1 and analyzed by confocal and STED microscopy as indicated. Signal dynamic range was adjusted for each STED and confocal image acquisition (gain ~ 800 V for confocal images and ~1000 V for STED images) and images processed using a median filter radius 3 and application of a 30–255 intensity threshold to 8-bit images. Bar: 10 μm. B, The mean diameter (±S.E.) of Cav1-positive structures from STED and confocal images for Mgat5+/+ and Mgat5−/− cells was quantified for 11–12 cells from three independent experiments. ** p < 0.01, *** p < 0.005. C, Quantified data for the diameter of Cav1-positive structures from STED and confocal images is presented in table form.
Mgat5^{−/−} ESC cells were highly relevant to cellular movement and morphology, cellular assembly and organization and cell signaling (supplemental Fig. S3). Supporting this analysis, common proteins enriched in Mgat5^{+/+} relative to either Mgat5^{−/−} or Mgat5^{−/−} ESC cells include Actin, Cav1, Flotillin, Rac, R-Ras, CD44, Aminopeptidase N and several heterotrimeric G-protein subunits (supplemental Table S1 and Table I).

The very high enrichment of heterotrimeric G-proteins suggests that their localization in DRM depends on caveolae formation and that loss of caveolae results in reduction of this class of proteins from membrane rafts. In order to orthogonally validate the specificity of proteins identified in the SILAC/Mgat5 data, we used a label-free mass spectrometry approach to compare DRMs from WT and Caveolin-1 knock out (Cav1^{−/−}) mouse embryonic fibroblasts (MEFs); reassuringly, there was at least 30% overlap between the caveolae-specific proteins identified between the two methods, which differed in both the cell type and analytical approach (supplemental Table S1).

To validate the distribution of heterotrimeric G-proteins in and out of rafts and caveolae, we determined the extent of colocalization of Gαs-GFP with the GM₁-ganglioside binding raft marker CT-b and with Cav1. Gαs-GFP shows increased colocalization with CT-b in Mgat5^{+/+} cells relative to Mgat5^{−/−} or Mgat5^{−/−} ESC cells. It also shows increased colocalization with Cav1 on Mgat5^{+/+} cells relative to Mgat5^{−/−} (Fig. 5). We further assessed surface Gαs-GFP expression in the cell lines and its response to β-adrenergic receptor activation with isoproterenol (Fig. 6). Consistent with its elevated raft expression in Mgat5^{+/+} and Mgat5^{−/−} ESC cells, Gαs-GFP showed increased surface distribution in these cells relative to Mgat5^{−/−} cells. Upon treatment with isoproterenol, surface expression in Mgat5^{+/+} cells was lost and, importantly, partially colocalized with CT-b in internal vesicles, as previously reported (27). This validates the increased expression of heterotrimeric G-proteins seen in the DRM proteomic analysis and suggests that caveoleae expression promotes recruitment of heterotrimeric G-proteins to both caveolar and noncaveolar raft domains.

A dramatic bias was observed in the Mgat5^{−/−} versus Mgat5^{−/−} ESC, with almost 600 proteins expressed dominantly in the Mgat5^{−/−} ESC cell rafts and only 56 in Mgat5^{−/−} (Fig. 4, supplemental Table S2). This suggests that whereas caveolar Cav1 expression recruits proteins to rafts, noncaveolar Cav1, or Cav1 scaffolds, restricts the DRM proteome. Indeed, Gαs-GFP association with CT-b-labeled rafts was increased in Mgat5^{−/−} ESC cells relative to Mgat5^{−/−} cells (Fig. 5). Supported by the proteomics data, 17 out of the 19 heterotrimeric G-proteins identified in Mgat5^{−/−} versus Mgat5^{−/−} ESC meet the (\(\bar{x} + 2\sigma\)) criteria and are therefore enriched in the Mgat5^{−/−} ESC DRMs (Fig. 4 and Table I). Moreover, many of the proteins (e.g., Actin, Filamin-B, Tyrosine kinase Yes) enriched in the caveoleae-containing Mgat5^{−/−} DRM were also identified with high ratios here, meaning they are restored in the Mgat5^{−/−} ESC DRM when there is no Cav1 expression in the cell. Ingenuity Pathways Analysis showed that Mgat5^{−/−} ESC DRMs are enriched in proteins involved in signaling, growth, assembly and cell movement as well as proteins related to cancer and cell death (supplemental Fig. S3). That we were only able to detect 33 proteins enriched in the Mgat5^{−/−} DRM proteome versus Mgat5^{+/+} and 57 versus Mgat5^{−/−} ESC cells suggests that Cav1 scaffolds interact with a narrower set of proteins than whole caveolae. The dramatic enrichment of DRM proteins in Mgat5^{−/−} ESC cells, in which loss of Cav1 scaffolds restores EGFR signaling and CT-b movement and endocytosis (19, 20), suggests that Cav1 may indirectly regulate raft composition. These observations are unlikely to be explainable by the lack of a galectin lattice in Mgat5^{−/−} or Mgat5^{−/−} ESC versus...
Table I

Mgat5+/+ vs. Mgat5−/−	Mgat5+/+ vs. Mgat5−/−-ESC	Mgat5+/+ vs. Mgat5−/−	Quantitative CoIP	Non treated vs. MβCD treated Mgat5+/+	MEF WT/ Cave−/−
Names	**Ratios**	**Names**	**Ratios**	**Names**	**Names**
Gng2⁰	4.48	Gna1⁰	7.33	Gnb3⁰	Gna3⁰
Gnb4⁰	3.85	Gnaq⁰	2.76	Gng10⁰	Gnaq²
Gnao1⁰	3.69	Gng2⁰	2.51	Gnb2⁰	Gnb3⁰
Gna13⁰	3.42	Gnb4⁰	2.9	Gnb2¹	Gnb2⁰
Gng10¹	3.36	Gna11	2.14	Gnb1¹	Gnb2²
Gnao1⁰	2.99	Gnb3	1.96	Gna3⁰	Gnb2³
Gna2⁰	2.95	Gnb4	1.88	Gna1⁰	Gnaq⁴
Gnb2⁰	2.91	Gnb2	1.84	Gna11³	Gnaq⁵
Gng12⁰	2.82	Gng12	1.68	Gna3³	Gna3⁶
Gnb1	2.47	Gnb1	1.62	Gna13³	Gna3⁷
Gna13	1.91	Gna2	1.51	Gnas-1³	Gna3⁸
Gng5	1.68	Gng5	1.25	Gng12⁰	Gna3⁹
Gna11	1.48	Gna3	1.2	Gna2⁰	Gna3⁰
Gnas-1	0.8	Gnb2	2.37	Gna2⁰	Gna3⁰
Gng10	0.62	Gnb21⁰	2.16	Gna2¹	Gna3⁰
Gnaq⁰	0.62	Gnaq¹	1.97	Gnaq²	Gna3⁰
Gna1	0.61	Gng5	1.63	Gng5²	Gna3⁰
Gng7	0.74	Gng7	0.74	Gnao1	Gna3⁰
Gnao1	0.32	Gnao1	0.32		

*Indicates which proteins satisfied the requirement for enrichment.

Mgat5+/+ because interfering with lattice integrity in Mgat5+/+ cells with lactose actually results in more proteins in the DRMs (Boscher et al., in preparation).

Cav1 and Cholesterol-dependence of the Caveolar DRM Proteome—To complement the subcellular fractionation approach above, we also immunosolated Cav1-containing structures from DRMs of Mgat5+/+ cells and quantitatively compared the composition of this preparation versus a non-specific IgG control using SILAC (Fig. 7A and 7B). Of more than 400 proteins identified and quantified from four independent experiments, 94 proteins exceeded (x + 2σ); these include Cav1 and Cav2 with the highest ratios and most peptides identified, PTERF/cavin-1, heterotrimeric G-proteins, Filamin, and Actin (Fig. 7C). Among the 94 Cav1-associated proteins, eight of them were also identified to be caveola-associated in the Mgat5+/+ versus Mgat5−/− and Mgat5+/+ versus Mgat5−/−-ESC comparisons (148 caveola proteins identified in total, either present in Mgat5+/+ versus Mgat5−/− and/or Mgat5+/+ versus Mgat5−/−-ESC) (Fig. 8A), meaning some of the DRM-associated proteins in caveola-expressing cells associate with Cav1 (supplemental Table S1 and S3). The presence of heterotrimeric G-protein subunits and other signaling proteins supports the role of caveola formation in the recruitment of these proteins to lipid rafts by Cav1 but also suggests that raft association of G proteins may occur independently of Cav1 and caveola (Table I).

In order to test how many of the caveola proteins identified are actually components of lipid rafts or raft-dependent proteins, we next measured the cholesterol-dependence of the caveola proteins identified here (13). Three biological replicates of DRM analyses from MβCD-treated versus untreated Mgat5+/+ cells identified more than 1000 proteins with non-treated and treated ratios ranging from over 10 to less than 1. Of the 199 proteins depleted by MβCD, 37 of them were previously identified as caveola proteins from the DRM comparison experiments (Fig. 8B) and 47 are in caveola and/or Cav1-associated (supplemental Table S1 and S3), when taking into account the Cav1 immunosolating experiments. Consistent with the raft enrichment of heterotrimeric G-proteins in Mgat5+/+ cells, all 18 heterotrimeric G-protein subunits identified have high ratios, indicative of their cholesterol-dependent raft localization (Table I). Similarly, other signaling proteins (e.g. Tyrosine kinase Fyn and Yes, R-Ras) and Vimentin and Filamin were strongly affected by MβCD, consistent with a previous study (14) (Fig. 9).

DISCUSSION

Rafts have fascinated cell biologists for over twenty years and proteomists for almost half that time. Although it is clear that multiple distinct classes of rafts exist, as opposed to a continuum of sizes and compositions, it is equally clear that existing biochemical methods are insufficient to tease apart these subtleties. Cav1 is a critical regulator of raft domains and here we have taken advantage of the distinct states of caveolin and caveola in a series of cell lines derived from wild-type and Mgat5−/− mammary tumors to identify how caveolar and noncaveolar Cav1 impact on the protein composition of detergent-resistant membranes in cells. To our knowledge, all previous biochemical preparations of rafts and/or caveola have contained nonraft contaminants that complicate any interpretation of the data without resorting to biased selection of "real" raft proteins (28). Two recent studies have used Cav1−/− cells (7, 25) to identify some of the proteins in caveola but other than
Cav1 itself and members of the cavin family of proteins, none of the other reported proteins seem likely to be functional components of caveolae. Beyond simply extending the catalogue of caveolar proteins, our identification here of many signaling proteins in DRMs reinforces the role of rafts as cellular signaling platforms and reveals that caveolae and rafts seem to be particularly enriched for heterotrimeric G protein subunits.

In a similar fashion to the data presented here (Figs. 5, 6), Cav1 knockdown in C6 glioma cells reduces Gαs-GFP association with lipid rafts and reduces Gαs-GFP internalization in response to β-adrenergic receptor activation with isoproterenol (27). Our results further suggest that Cav1 expression independently of caveolae, i.e. Cav1 scaffolds, is particularly associated with reduced lipid raft association of G proteins. Cav1 regulation of GPCR and G protein signaling therefore appears to be associated not just with Cav1 expression but also by the relative expression of caveolae and Cav1 scaffolds. Reduced expression of Cav1 and of PTRF, as shown here in Mgat5−/− cells, will result in Cav1 scaffold expression. However, impairment of endothelial VEGF signaling by transgenic expression of Cav1 independently of increased caveolae (29) suggests that caveolae and Cav1 scaffolds can co-exist and function independently in the same cell to regu-

![Fig. 5. Increased colocalization of Gαs-GFP with Cholera Toxin b and Cav1 in Mgat5+/+ cells. A, Mgat5+/+, Mgat5−/− and Mgat5−/−-ESC cells were transfected with Gαs-GFP and incubated with Alexa-546 coupled-CT-b before staining for Cav1. Pearson’s coefficient revealed the level of colocalization between Gαs-GFP and CT-b (B), Gαs-GFP and Cav1 (C) and Cav1 and CT-b (D). Pearson’s colocalization coefficients for Gαs-GFP and CT-b colocalization are shown for Mgat5+/+, Mgat5−/−, and Mgat5−/−-ESC cells and colocalization with Cav1 for Mgat5+/+, and Mgat5−/− cells. Graphs represent 10–18 cells from one representative experiment over four independent experiments. * p < 0.05, *** p < 0.005. Bar: 10 μm.](image-url)
late signaling. Indeed, the extent to which caveolin-cavin expression and stoichiometry impacts on relative expression of caveolae, Cav1 scaffolds and noncaveolar lipid rafts and their regulation of signaling pathways, including but not limited to G proteins, remains to be determined.

Intriguingly, our data also suggest that caveolin expression is not the only determinant of protein composition of caveolar domains, which is in agreement with other reports that cavin proteins also play a major role in caveolae formation (7–9, 11). In Mgat5−/− cells where Cav1 is found at the cell surface but where caveolae do not form, more than twice as many proteins come out of DRMs as go in, indicating that the caveolae structure itself has a dramatic impact on caveolae and membrane raft composition. This is consistent with STED measurements suggesting that the Cav1 scaffolds at the membrane of these cells exist as much smaller domains than whole caveolae in wild-type cells. Minimal Cav1 oligomers have been reported to consist of ∼15 Cav1 monomers whereas caveolae have been proposed to contain ∼144 Cav1 molecules (30, 31). Although we cannot predict the precise size of Cav1 scaffolds, the highly homogeneous and reduced size of Cav1 staining in Mgat5−/− cells lacking caveolae suggests that Cav1 scaffolds might correspond to minimal Cav1 oligomers that subsequently combine to form caveolae. The fact that Cav1 scaffolds restrict the raft proteome to a greater extent than caveolae suggests that recruitment to caveolae impacts on Cav1 interaction with proteins and its regulation of raft domains.

Our data allow us to resolve one class of rafts, i.e. caveolae, away from the others found in DRMs and demonstrate the
existence of distinct Cav1-associated subtypes. Because the set of proteins enriched in Cav1 IPs and the set impacted by Mgat5/H11002/ESC or Mgat5/H11002/ESC ESC cells (Fig. 4 versus Fig. 7) do not completely overlap, it suggests that the proteins that copurify with Cav1 but that are not affected by caveola disruption may represent a subclass of Cav1 domains distinct from classical caveolae. At the same time, however, the immunoprecipitation of Cav1-containing structures has some caveats. Although we tried to enrich membranes before detergent extraction and subsequent Cav1 immunoprecipitation, some typically nuclear and cytosolic proteins clearly remain: whether this reflects the real composition of Cav1-containing structures or simply copurifying contaminants will require more study. As a general comment, we have found that it can be very difficult to obtain sufficient enrichment of the desired targets when immunoisolating membranes from detergent solubilized cells. Immunoisolation is used frequently and effectively to enrich vesicles and other membrane-bound organelles so we suspect that the presence of detergents and the associated micelles result in more nonspecific interactions.

Using a panel of cell types with varying caveolae statuses, as well as subdiffraction limit microscopy and conventional confocal microscopy, we show that caveolae and Cav1 scaffolds differ in size and impact differently on the protein com-
position of lipid raft domains. Together with noncaveolar raft domains, these therefore represent functionally distinct subtypes of lipid rafts. Differential raft protein composition in Cav1 scaffold expressing Mgat5−/− cells argues that both Cav1 and its cavin-dependent ability to form caveola impact on raft composition and function defining novel biological roles for caveola.

Acknowledgments—We thank the other members of our respective groups for fruitful discussions. We are particularly grateful to Vladimir Zhukarev (Leica), who provided us with access to a Leica SPS STED CW microscope and assisted us with acquisition of the images; Rob Parton for providing the MEF cells; Tom Hennessy from Agilent for software help, and Nick Stoynov for his help with Proteome Discover.

* This work was supported by the Canadian Institutes of Health Research Operating Grant MOP-77688 to LJF and MOP-43938 to IRN and a Prostate Cancer Canada grant to LJF and IRN. YZZ is supported by a University of British Columbia Four-year Fellowship, MF by a Michael Smith Foundation for Health Research Fellowship, and LJF is the Canada Research Chair in Quantitative Proteomics. The mass spectrometry facilities used in this study were supported, in part, by the Canada Foundation for Innovation, the BC Knowledge Development Fund, and the BC Proteomics Network. MMH is supported by Australian National Health and Medical Research Council Career Development Fellowship APP569512.

This article contains supplemental Figs S1 to S3 and Tables S1 to S3.

To whom correspondence should be addressed: Leonard J. Foster, Centre for High-Throughput Biology and Department of Biochemistry and Molecular Biology, 2125 East Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3. Tel.: 604-822-8311; E-mail: foster@chibi.ubc.ca. Ivan R. Nabi, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3. Tel.: 604-822-7000; E-mail: irnabi@interchange.ubc.ca.

We have declared no conflict of interest.

REFERENCES

1. Zheng, Y. Z., and Foster, L. J. (2009) Biochemical and proteomic approaches for the study of membrane microdomains. J. Proteomics, 72, 12–22

2. Simons, K., and Ikonen, E. (1997) Functional rafts in cell membranes. Nature, 387, 569–572

3. Brown, D. A., and Rose, J. K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell, 68, 533–544

4. Lajoie, P., and Nabi, I. R. (2010) Lipid rafts, caveolae, and their endocytosis. Int. Rev. Cell Mol. Biol., 282, 135–163

5. Foster, L. (2006) Mass spectrometry outgrows simple biochemistry: new approaches to organelle proteomics. Biophys. Rev. Lett., 1, 165–175

6. Parton, R. G., and Simons, K. (2007) The multiple faces of caveola. Nat. Rev. Mol. Cell Biol., 8, 185–194

7. Hill, M. M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S. J., Walser, P., Abankwa, D., Oorschot, V. M., Martin, S., Hancock, J. F., and Parton, R. G. (2008) PTRAf-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell, 132, 113–124

8. McMahon, K. A., Zajicek, H., Li, W. P., Peyton, M. J., Minna, J. D., Herzenberg, L. A., Oorschot, V. M., Martin, S., Hancock, J. F., and Parton, R. G. (2008) PTRAf-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell, 132, 113–124

9. Zheng, Y. Z., Berg, K. B., and Foster, L. J. (2009) Mitochondria do not contain lipid rafts, and lipid rafts do not contain mitochondrial proteins. J. Lipid Res., 50, 988–998

10. Head, B. P., and Insel, P. A. (2007) Do caveolins regulate cell death by actions outside of caveola? Trends Cell Biol., 17, 51–57

11. Lajoie, P., Goetz, J. G., Dennis, J. W., and Nabi, I. R. (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J. Cell Biol., 185, 381–385

12. Nabi, I. R. (2009) Cavin fever: regulating caveolae. Trends Mol. Biol., 36, 561–569

13. Foster, L. J., De Hoog, C. L., and Mann, M. (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl. Acad. Sci., U.S.A., 100, 5813–5818

14. Zheng, Y. Z., Berg, K. B., and Foster, L. J. (2009) Mitochondria do not contain lipid rafts, and lipid rafts do not contain mitochondrial proteins. J. Lipid Res., 50, 988–998

15. Dennis, J. W., Lau, K. S., Demetriou, M., and Nabi, I. R. (2009) Diverse regulation at the cell surface by N-glycosylation. Traffic, 10, 1569–1578

16. Granovsky, M., Fata, J., Pawling, J., Muller, W. J., Khokha, R., and Dennis, J. W. (2000) Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med., 6, 306–312

17. Dennis, J. W., Lau, K. S., Demetriou, M., and Nabi, I. R. (2009) Adaptive regulation at the cell surface by N-glycosylation. Traffic, 10, 1569–1578

18. Granovsky, M., Fata, J., Pawling, J., Muller, W. J., Khokha, R., and Dennis, J. W. (2000) Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med., 6, 306–312

19. Lajoie, P., Partridge, E. A., Guay, G., Goetz, J. G., Pawling, J., Lagana, A., Joshi, B., Dennis, J. W., and Nabi, I. R. (2007) Plasma membrane domain organization regulates EGFR signaling in tumor cells. J. Cell Biol., 179, 341–356

20. Lajoie, P., Kojic, L. D., Nim, S., Lai, L., Dennis, J. W., and Nabi, I. R. (2009) Caveolin-1 regulation of dynamic-dependent, raft-mediated endocytosis of cholera toxin-B sub-unit occurs independently of caveolae. J. Cell. Mol. Med., 13, 3218–3226

21. Sigismund, S., Woeik, T., Puri, C., Maspero, E., Tacchetti, C., Transidico, D., Di Fiore, P. P., and Polo, S. (2005) Clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl. Acad. Sci., U.S.A., 102, 2760–2765

22. Rogers, L. D., and Foster, L. J. (2007) The dynamic phagosomal proteome and the contribution of the endoplasmic reticulum. Proc. Natl. Acad. Sci., U.S.A., 104, 18520–18525

23. Chan, Q. W., and Foster, L. J. (2008) Changes in protein expression during honey bee larval development. Genome Biol., 9, R156

24. Liu, L., Brown, D., McKee, M., Lebrasseur, N. K., Yang, D., Albrecht, K. H., Ravid, K., and Pilch, P. F. (2008) Deletion of Cavin/PTFR causes global loss of caveola, dyslipidemia, and glucose intolerance. Cell. Metab., 8, 310–317

25. Döbavs, A., Fernández-Hernando, C., Sowa, G., Derakshan, B., Lin, M. I., Lee, J. Y., Zhao, H., Luo, C., Colangelo, C., and Sessa, W. C. (2010) Quantitative proteomics of caveolin-1-regulated proteins: characterization of polymerase I and transcript release factor CAVIN-1 in endothelial cells. Mol. Cell. Proteomics, 9, 2109–2124

26. Zheng, Y. Z., and Foster, L. J. (2009) Contributions of quantitative proteomics to understanding membrane microdomains. J. Lipid Res., 50, 1976–1985

27. Allen, J. A., Yu, J. Z., Dave, R. H., Bhattachar, A., Roth, B. L., and Rasenick, M. M. (2009) Caveolin-1 and lipid microdomains regulate gap junctional communication and kiss-and-run recycling of caveolae. Nature, 436, 128–133

Molecular & Cellular Proteomics 10.10
In order to cite this article properly, please include all of the following information: Zheng, Y. Z., Boscher, C., Inder, K. L., Fairbank, M., Loo, D., Hill, M. M., Nabi, I. R., and Foster, L. J. (2011) Differential Impact of Caveolae and Caveolin-1 Scaffolds on The Membrane Raft Proteome. Mol. Cell. Proteomics 10(10): M110.007146. DOI: 10.1074/mcp.M110.007146.