Supplemental Materials
Molecular Biology of the Cell

McCoy et al.
Supplementary Material

Table S1. Plasmids used in this study

Plasmid name	Relevant marker/gene	Source
pMG2343	mCherry-NAT1	This work
pGEM-ARG4	ARG4	Wilson et al., 1999
pMG2120	GFP-NAT1	This work
pMG2254	mCherry-URA3	This work
pGEM-URA3	URA3	Wilson et al., 1999
pMG1646	GFP-HIS1	This work
pGEM-HIS1	HIS1	Wilson et al., 1999
pMG1602	GFP-URA3	This work

Table S2. Primers used in this study

Primer number	Primer purpose/location	Primer sequence				
5033	Forward primer to amplify mCherry-NAT1 to tag MTW1	CATTGATATGATAATACCAGAACCAAGAGACGATATAGATGTGGATGCAATAAAAGAATATAATGCTCAAATTgtttaaaggtgaagaagataaatgg				
5034	Reverse primer to amplify mCherry-NAT1 to tag MTW1	CGATTAGTATTGATCTATTGTTTGTAACCTAAATCAACTTGTATTTTGGATCCAGAACCTTACCACTGgtgtggacctgcgtgcttgcacttac				
2717	Forward primer within MTW1 ORF	GCTAGTGGTGCTGGTGGAATGAAG				
4036	Reverse primer within mCherry ORF	CACCAGTTGAATGTCTACCTTCAGCTC				
	Forward primer	Reverse primer	Sequence	Description		
---	----------------	----------------	------------------------------------	---		
4368	Forward primer to amplify ARG4 to delete KIP1	Reverse primer to amplify ARG4 to delete KIP1	CTCATAGCAGATTATCATCAATGTCAATAT CCAAGTTGGTTAGGTGCTCGAGGAAGGAA CTCCTCAAGgttttccagtcacgcgtt	Forward primer to amplify ARG4 to delete KIP1	Reverse primer to amplify ARG4 to delete KIP1	CTAGTATAAACCTCAAAATTTAAACATG TACGTGAAAAATGGAGTTAAACAAATATTG TCTAATTtggtgaattgtgacgggata
4371	Reverse primer to check deletion of KIP1 with ARG4	Forward primer within ARG4	GAACTATAAGGAGGAAAGGGAAGG	Reverse primer to check deletion of KIP1 with ARG4	Forward primer within ARG4	GTCGCAATGAAGAACCAGTGAATAAGC
4732	Forward primer to tag KIP1 with GFP-NAT	Reverse primer to tag KIP1 with GFP-NAT	ATAAAACAGATATAAACCTCAAAATATTAAACATG TACGTGAAAAATGGAGTTAAACAAATATTG TCTAATTtggtgaattgtgacgggata	Forward primer to tag KIP1 with GFP-NAT	Reverse primer to tag KIP1 with GFP-NAT	ATAAAACAGATATAAACCTCAAAATATTAAACATG TACGTGAAAAATGGAGTTAAACAAATATTG TCTAATTtggtgaattgtgacgggata
730	Reverse primer to check deletion of KIP1 with ARG4	Forward primer within ARG4	GTGGGTGTTGTTGCTACG	Reverse primer to check deletion of KIP1 with ARG4	Forward primer within ARG4	GTGGGTGTTGTTGCTACG
658	Reverse primer within GFP to check tagging	Forward primer within GFP to check tagging	TTTGTCACAATTCATCCATACCATG	Reverse primer within GFP to check tagging	Forward primer within GFP to check tagging	TTTGTCACAATTCATCCATACCATG
5838	Forward primer to tag TUB1 with mCherry-URA3	Reverse primer to tag TUB1 with mCherry-URA3	ATAAAACAGATATAAACCTCAAAATATTAAACATG TACGTGAAAAATGGAGTTAAACAAATATTG TCTAATTtggtgaattgtgacgggata	Forward primer to tag TUB1 with mCherry-URA3	Reverse primer to tag TUB1 with mCherry-URA3	ATAAAACAGATATAAACCTCAAAATATTAAACATG TACGTGAAAAATGGAGTTAAACAAATATTG TCTAATTtggtgaattgtgacgggata
5839	Reverse primer to tag TUB1 with mCherry-URA3	Forward primer within URA3	AGACCTATAGTGAGAGAGCA	Reverse primer to tag TUB1 with mCherry-URA3	Forward primer within URA3	AGACCTATAGTGAGAGAGCA
944	Reverse primer to check tagging of TUB1	Forward primer to delete KIP3 with ARG4	CCTCCTCTTTAACCATTGGACACACC	Reverse primer to check tagging of TUB1	Forward primer to delete KIP3 with ARG4	CCTCCTCTTTAACCATTGGACACACC
6042	Forward primer to delete KIP3 with ARG4	Reverse primer to delete KIP3 with ARG4	TAAATGAAAAACCCGACCTTTGTGATTAAAA AAAATTTAACATTAGCAACAAAGTGAAGAACA CGATCAAAttagaagaccacctttgattg	Forward primer to delete KIP3 with ARG4	Reverse primer to delete KIP3 with ARG4	TAAATGAAAAACCCGACCTTTGTGATTAAAA AAAATTTAACATTAGCAACAAAGTGAAGAACA CGATCAAAttagaagaccacctttgattg
6043	Reverse primer to check deletion of KIP3 with ARG4	Forward primer within URA3	GAAGAGATGATAGAAGAGAT	Reverse primer to check deletion of KIP3 with ARG4	Forward primer within URA3	GAAGAGATGATAGAAGAGAT
Primer ID	Description	Primer Sequence				
----------	---	-----------------				
6056	Forward primer to delete last 42 bases from KIP1 with URA3	ACAAAGATCAAAAAAGTAATGGCTCTGAAGATACATCACCACAAGATTCTACACGACCAATAATAATTGATGA ttccagtcacgagctgtgtaaaacga				
6057	Reverse primer to delete last 42 bases from KIP1 with URA3	ATAAACAAGATATAAAACCTCACAATTAATTAAACATGTACTGAACAAATGGAGTAAAACAAATATTGGTC tgtgtaaggatgtgacgcggataaattaatccac				
945	Reverse primer within URA3	CAAAACATCCTCTACCAACA				
5621	Forward primer within KIP1	GTGAAATCTATTTGGGATACAAAC				
5624	Reverse primer downstream of KIP1	CCGCTCGAGGGAAATATGGAACTATAAGGA GG				
5345	Reverse primer to tag TUB4 with mCherry-NAT1	GCGCAATATTAATCCACAACGGAAAAATGTT TTGACTCCACAACCAACAAAAAGTATTCCCTCA actccgacactggtgacgcgattgacttc				
4311	Forward primer to tag TUB4 with mCherry-NAT1	GGATGACCTAGAAGATGGTGTTGGAATGG TAAATTGGTTATAAAATATAGATGATGCAGATATGGGTATAGGTGTGTgttccaaaaggtgaaagagatatt				
3326	Reverse primer to check mCherry tag	CGCGGATCCTTATTTATATAATTCAATCCACATAC CACCAGTTG				
4313	Forward primer to check TUB4-mCherry tag	GTGCCCTGGGGTAGCTCGATCCGTATTAG				
2715	Forward primer to tag MTW1 with GFP-HIS1	CATTGATATGATAATACCAGAAACAAGACGAT ATAGATGTGGATGCAATAAAAGAATATAAAATG CTCAAATTctaaagtgaaggaatttatt				
4266	Reverse primer to tag MTW1 with GFP-HIS1	GATACTCAATCTGAAGAACCACAATTTGTTT ACTTTATGGGAAGATTACATGAAAGATGGCAT CAAGCAAGaatccggaatatttagaatgaaac				
4312	Reverse primer to tag TUB4 with mCherry-URA3	GCGCAATATTAATCCACAACGGAAAAATGTT TTGACTCCACAACCAACAAAAAGTATTCCCTCA ACTCGGACtctgaaggaccacctttgatttg				
565	Reverse primer within HIS1	CTGCAGTACCAATATATCGGTTGC				
4370	Forward primer to check deletion of KIP1	CTTCCTTTATGTGGCCTGCAATAGTATTGTC				
6158	Forward primer to tag KIP3 with GFP-URA3	GATGAATTCTGATCTGACATACCAATTAAGATCTAACTTAAATAACAGCTGACATCACAATAAGTAAATAAT TAGATATctaaaggtgaaggaatttatt				
Spindle length distributions for various cell lines

The metaphase spindle length was determined by taking one standard deviation on either side of the mean spindle length (Figure S1A). The length of several spindles was tracked over time, and the spindles maintained a length around the average spindle length for a long period of time prior to a sudden lengthening event corresponding to anaphase (Figure S1B). The average spindle lengths with respect to Tub1-GFP of the various cell lines used is shown in figure S2. This shows a clear shortening of the metaphase spindle length in spindles with reduced numbers of Kip1p in the nucleus ($KIP1/kip1\Delta$ and $KIP1/kip1(NLS\Delta)$) relative to WT and an increase in spindle length of spindles with reduced numbers of Kip3p ($KIP3/kip3\Delta$), both of which are outcomes consistent with the model.

Figure S1A
LIMITS ON CHROMOSOME CONGRESSION

Figure S1B: Steady state spindle length defines metaphase spindles. A) Spindle length distributions of Tub1-GFP cell lines B) Spindle length time course for Tub1-GFP in WT spindles.
Figure S2: Mean spindle lengths measured from Tub1-GFP for each Tub1-GFP cell line

Tub4 spindle lengths are consistent with Tub1-GFP spindle lengths

Average spindle length measured relative to WT Tub4-mCherry and WT Tub4-GFP (γ-tubulin) is consistent with the average spindle length as measured relative to WT Tub1-GFP. γ-tubulin is an inner SPB protein and tagging it with either mCherry or GFP allows it to serve as a pole marker (Knop and Schiebel, 1997; Nguyen et al., 1998). The average spindle length in the WT Tub4-mCherry cells was measured to be 990 ± 10 nm (n = 99), and the WT Tub4-GFP spindles were measured to be 910 ± 10 nm (n = 54) as compared to 842 ± 6 nm in the WT Tub1-GFP cells (Figure S3). The longer spindle lengths measured using Tub4-GFP relative to Tub1-GFP are likely because γ-tubulin is located in the SPB, which is proximal to the spindle MTs. The longer spindle length measured using Tub4-mCherry relative to Tub4-GFP (p = 1.1 x 10⁻⁵) is likely due to the larger point spread function associated with the red fluorophore (Born and Wolf 1997). This means that γ-tubulin can be used as a marker to find in-plane spindles in
LIMITS ON CHROMOSOME CONGRESSION

lieu of α – tubulin in experiments where it is advantageous to use GFP as a marker for non α – tubulin proteins, such as described above for Cse4 and Kip3p.

Figure S3: The mean spindle lengths for the WT Tub4-mCherry spindles, WT Tub4-GFP spindles, and the WT Tub1-GFP spindles. Tub4-GFP/Tub4; Tub4-mCherry/Tub4; and Tub1-GFP/Tub1, MTW1-mCherry/MTW1.

Statistical Analysis

The p values for the fluorescence intensity distributions were calculated using a method to compare simulated random sum of square error (SSE) values to the experimentally determined SSE values. The SSE values were simulated by randomly shuffling all \((m + n)\) fluorescence intensity distributions in the experimental data set with \(m\) fluorescence intensity distributions for the WT cells and \(n\) fluorescence intensity distributions for the mutant cells. The first \(m\) shuffled distributions were set aside as the simulated wild type distributions and averaged, and the remaining \(n\) distributions were called the simulated mutant distributions and averaged. The SSE of the simulated wild type mean distribution and the simulated mutant mean distribution was calculated and stored. This was done 10,000 times, and the simulated SSEs were ranked. The SSE of the experimental data set was calculated and the rank of the experimental SSE was found with respect to the ranked simulated SSEs \((A)\). The p value was calculated as follows:

\[
p = \frac{10000 - U}{10000}
\]

(S1)

The p values for the spindle length comparisons were calculated using independent t-tests.
Model Simulation Parameters

Table S3 lists the model simulation parameters and the values used to obtain the results shown in figure 9 in the main text. These values are based on the values published in Gardner et al. 2008.

TABLE S3: Model simulation parameters and values

Parameter description	Symbol	C. albicans WT parameter values	C. albicans KIP1/kip1 Δ parameter values	S. cerevisiae WT parameter values	S. cerevisiae cin8Δ Parameter values	Units
Growth velocity	V_g	1.2	1.2	1.2	1.9	µm/min
Shortening velocity	V_s	1.2	1.2	1.2	1.9	µm/min
Chromatin spring constant	ρ	0.9	0.9	0.9	0.9	µm⁻¹
Basal rescue frequency	k_r,0	9	9	9	9	min⁻¹
Basal rescue frequency (iMTs)	k_r,0_iM T	60	60	60	60	min⁻¹
Basal catastrophe frequency	k_c,0	2	2	2	2	min⁻¹
Catastrophe sensitivity factor	β_m	20	20	20	20	min⁻¹
Number of motors	N_m	30	10	90	20	--
Chromosome alignment during metaphase, also known as congression, is mediated by the dynamics of kinetochore microtubule plus ends (Goshima & Scholey, 2010b; Inoué & Salmon, 1995). As kinetochore microtubules assemble and disassemble, they move kinetochores, which are physical attachment sites between chromosomes and dynamic microtubule plus ends (Gardner et al., 2008; Maddox et al., 2000; Skibbens et al., 1993). A key feature of mitotic spindles is that they typically arrive at a congressed state, although with some degree of noise.

Limits on Chromosome Congression

Parameter	Symbol	Value 1	Value 2	Value 3	Value 4	
Unloaded motor velocity	\(v_u \)	100	100	100	100	nm/sec
Motor stall force	\(F_{\text{stall}} \)	6	6	6	6	pN
Motor spring constant	\(\rho_m \)	0.5	0.5	0.5	0.5	pN/nm
Unloaded motor off-rate constant	\(k_{\text{off}} \)	0.3	0.3	0.3	0.3	sec\(^{-1}\)
Motor on-rate constant	\(k_{\text{on}} \)	1	1	1	1	\(\mu M^{-1}\text{sec}^{-1} \)
Radius of 2\(^{nd}\) motor head attach point relative to 1\(^{st}\) motor head	\(r_M \)	40	40	40	40	Nm
Critical force	\(F_c \)	6	6	6	6	pN
Spindle length	--	0.84	0.77	1.6	1.4	\(\mu m \)

Derivation of dimensionless number based on Péclet number for precision in chromosome congression in the presence of kinetochore microtubule assembly/disassembly noise.
in the positioning, due to so-called directional instability (Skibbens et al., 1993). The positioning can be characterized by a signal-to-noise ratio (SNR) given by

\[SNR = \frac{\langle L \rangle}{\sigma} \]

(S2)

where \(\langle L \rangle \) is the mean kinetochore microtubule length and \(\sigma \) is the standard deviation of the length as illustrated in Figure 1. Another common definition of the relative strength of noise is the coefficient of variation (CV), which is defined by

\[CV = \frac{\sigma}{\langle L \rangle} = \frac{1}{SNR} \]

(S3)

In the limit of perfect congression, \(\sigma = 0 \), and so \(CV = 0 \) and \(SNR \to \infty \). However, in the limit of no motors, and therefore no length control, microtubule lengths will be exponentially distributed, in which case \(\langle L \rangle = \sigma \) (Odde & Buettner, 1998; Odde et al., 1995). Therefore, a fundamental limit for achieving congression is the following inequality

\[CV < 1 \]

(S4)

As a consequence, it would be useful to determine the CV as a function of the microtubule assembly parameters, including the motor-mediated catastrophe, which leads to an increase in catastrophe with increasing length (Gardner et al., 2005, 2008; Sprague et al., 2003; Varga et al., 2006). Using the microtubule dynamics model described above, where the catastrophe frequency increases with kMT length according to a constant, \(\beta \), there will be an “attractor” point, where the catastrophe frequency exceeds the rescue frequency and this attractor will be approximately located at \(\langle L \rangle \). As depicted in Figure S4, if a kMT grows longer than \(\langle L \rangle \), it will tend to undergo net disassembly, and if it is shorter than \(\langle L \rangle \), it will tend to undergo net assembly. Physically, this is due to the increased binding of motors and their transport to the plus end, which obeys a linear relationship between motor density and the growing tip and microtubule length (Gardner et al., 2008; Varga et al., 2006).
LIMITS ON CHROMOSOME CONGRESSION

Figure S4: The microtubule dynamics model predicts an attractor zone where the catastrophe frequency and the rescue frequency converge.

To estimate $\langle L \rangle$, we first define the drift velocity of kMT plus ends as (Seetapun & Odde, 2010)

$$V_D = \frac{\langle L_g \rangle - \langle L_s \rangle}{t_g + t_s} \quad (S5)$$

where $\langle L_g \rangle = V_g/k_c$ is the mean growth length, $\langle L_s \rangle = V_s/k_r$ is the mean shortening length, $t_g = 1/k_c$ is the mean growth time, and $t_s = 1/k_r$ (note the V_g, V_s, k_c, and k_r are the usual four parameters of dynamic instability that define the net growth rate, the net shortening rate, the catastrophe frequency, and the rescue frequency, respectively). In the case of length-dependent catastrophe, we can linearly approximate the catastrophe frequency as

$$k_c(x) = \beta x \quad (S6)$$

where x is the distance from the kMT plus end to its minus end (located at the spindle pole), and β is the strength of the length-dependent catastrophe. Substituting, Eqn. 6 into Eqn. S5, we obtain a position-dependent drift velocity

$$V_D(x) = \frac{V(1-t_s\beta x)}{1+t_s\beta x} \quad (S7)$$
where \(V = V_g = V_s \) (assumes that \(V_g \approx V_s \); see Gardner et al., 2008; Table S3). Let \(x_1 \) define the position of the attractor for kMT plus ends, which is also the value of \(x \) at which the drift velocity is zero

\[
V_D(x_1) = 0 \quad (S8)
\]

which, when combined with Eqn. S7, yields

\[
x_1 = \frac{1}{\tau_s \beta} . \quad (S9)
\]

Since \(x_1 \approx <L> \), we thus have the following relationship for the mean kMT length

\[
\langle L \rangle = \frac{1}{\beta \tau} \quad (S10)
\]

where \(\tau = t_g(x_1) = t_s \), is the mean time for catastrophe at the attractor position, or equivalently the mean time for rescue (since \(t_g(x_1) = t_s \) at the attractor position \(x_1 \)).

To estimate \(\sigma \), we first consider the kMT plus end as if it were a thermally driven spring, with rest position defined by the plus end attractor position, \(x_1 \) (i.e. the value of \(x \) where \(V_D(x) = 0 \), or equivalently when \(x = <L> \)), so that by the Equipartition Theorem (Howard, 2001)

\[
\sigma^2 = \frac{k_B T}{\kappa} \quad (S11)
\]

where \(k_B \) is Boltzmann’s constant, \(T \) is the absolute temperature, and \(\kappa \) is the spring constant.

The spring constant here describes an “effective” spring that acts to restore the kMT plus end to its mean length via the length-dependent catastrophe. To obtain an expression for \(\kappa \), we can start by writing a force balance for this system as

\[
\sum F = ma = -\kappa (x - x_1) - \gamma v . \quad (S11)
\]

Assuming an overdamped system (\(m = 0 \)), solving for \(v \), and substituting the drift velocity, we obtain

\[
V_D(x) = -\frac{\kappa (x - x_1)}{\gamma} . \quad (S12)
\]
Substituting for the drift velocity (Eqn. S7), and the catastrophe gradient strength for x_1 (Eqns. S9 and S10), we obtain

$$V(1-t_s\beta x) \left(1 + t_s\beta x\right) = -\kappa \left(x - \frac{1}{t_s\beta}\right) \gamma^{-1}. \quad \text{(S13)}$$

Multiplying both sides by $t_s\beta\gamma$, Eqn. S13 becomes

$$t_s\beta V(1-t_s\beta x) \left(1 + t_s\beta x\right) = -\kappa (t_s\beta x - 1) \quad \text{(S14)}$$

which allows us to solve for κ, given by

$$\kappa = \frac{t_s\beta V}{1 + t_s\beta x} \quad \text{(S15)}$$

near $x=x_1=<L>$, we can use Eqns. S9 and S10 to obtain

$$\kappa = \frac{\gamma V \beta \tau}{2} \quad \text{(S16)}$$

Substituting Eqn. S16 into Eqn. S11, the variance in tip position can now be written as

$$\sigma^2 = \frac{2k_BT}{\gamma V \beta \tau} \quad \text{(S17)}$$

which can be further simplified by defining a diffusion coefficient, $D=k_BT/\gamma$, to yield

$$\sigma^2 = \frac{2D}{V \beta \tau} \quad \text{(S18)}$$

The diffusion coefficient, D, represents the “noise” in microtubule dynamic instability, which has been previously derived by Maly (2002; Eqn. 15) in terms of the four parameters of dynamic instability as

$$D = \frac{k_c k_r (V_s + V_c)^2}{(k_c + k_r)^3}. \quad \text{(S19)}$$
LIMITS ON CHROMOSOME CONGRESSION

In the present case, the catastrophe frequency is modeled as a linear function of x (Eqn. S6), and also we assume that $V=V_g=V_s$ (justified above for Eqn. S7), so that

$$D(x) = \frac{\beta x_k r (2V)^2}{(\beta x + k_r)^3}.$$ \hspace{1cm} (S20)

As described above, when $x=x_1=<L>$, then $\tau=\tau_0(x_1)=t_s$, meaning that $k_c(x_1)=k_r=\beta x_1$, so that we can rewrite Eqn. S20 as

$$D(x_1) = \frac{(\beta x_1)^2 (2V)^2}{(2 \beta x_1)^3}.$$ \hspace{1cm} (S21)

or equivalently,

$$D(x_1) = \frac{V^2}{2 \beta x_1}.$$ \hspace{1cm} (S22)

Since $\tau=1/\beta x_1$, we can rewrite Eqn. S22 as

$$D(x_1) = \frac{\tau V^2}{2}.$$ \hspace{1cm} (S23)

Returning now to the CV, or equivalently the SNR, as a metric for congression quality, Eqns. S10 and S18 can be combined to obtain

$$\frac{\sigma^2}{\langle L \rangle^2} = \frac{\left(\frac{2D}{V \beta \tau}\right)}{\left(\frac{1}{\beta \tau}\right)^2}.$$ \hspace{1cm} (S24)

which simplifies to become

$$\frac{\sigma^2}{\langle L \rangle^2} = \frac{2D \beta \tau}{V}.$$ \hspace{1cm} (S25)

Again, substituting in Eqn. S10, we obtain
The dimensionless quantity on the right-hand side of Eqn. S26 can be rewritten as

\[\frac{\sigma^2}{\langle L \rangle^2} = \frac{2}{Pe} \]

(S27)

where

\[Pe = \frac{V\langle L \rangle}{D} \]

(S28)

with \(Pe \) representing the dimensionless quantity in convection-diffusion problems known as the Péclet number, which quantifies the strength of convective transport (\(V \)) relative to diffusive transport (\(D \)) for a system of a given size (\(<L> \)) (see Griffin et al., 2011). Therefore, the CV is given by

\[\frac{\sigma}{\langle L \rangle} = \sqrt{\frac{2}{Pe}} . \]

(S29)

We can rewrite \(Pe \) in terms of the fundamental microtubule assembly parameters, using Eqns. S10 and S23, as

\[Pe = \frac{V(\beta \tau)^{-1}}{\left(\frac{\tau V^2}{2} \right)} \]

(S30)

which simplifies to

\[Pe = \frac{2}{V \beta \tau^2} \]

(S31)

and the CV becomes

\[\frac{\sigma}{\langle L \rangle} = \sqrt{V \beta \tau} . \]

(S32)
In practice, we note that for finite spindle length, the distribution of plus-ends within the spindle will be approximately uniform, which has \(CV = \frac{1}{\sqrt{3}} = 0.58 \) (assuming \(V_D \sim 0 \)). Therefore, in practice for finite spindles, we do not expect to observe \(CV > 0.58 \) even in the absence of kMT length control (unless \(V_D < 0 \)).

Supplementary Brief Discussion on the Limits of Prokaryotic Genome Segregation

Recent studies suggest that there are fundamental limits to high fidelity chromosome segregation across phylogeny at around \(\sim 1 \) \(\mu m \) length scales. In the case of Ptacin et al., (2010), they investigated plasmid segregation in \(C. \) crescentus, and articulated a “burnt-bridge Brownian ratchet” mechanism for segregation. Here it seems that the fundamental prokaryotic spindle length is limited by the cell length, which is fundamentally different from the eukaryotic spindles, which often are much smaller than the cell size, even in smaller cells like \(C. \) albicans. Therefore, we suggest that bacterial segregation is largely limited by cell size, and that eukaryotic segregation is largely limited by spindle size. In the study of Vecchiarelli et al. (2014), a “diffusion-ratchet model” was proposed. The fundamental limits to length scales of such reaction-diffusion systems have been discussed previously in our modeling work (Lipkow and Odde, 2008) where the kinetics of the deactivating enzyme (e.g. phosphatase) limit the length of gradient to \(\sim 0.1-1 \) \(\mu m \). Thus, prokaryotic cell sizes need to be roughly one order of magnitude larger than the gradient length scale to exploit this mechanism, i.e. 1-10 \(\mu m \) (or equivalently Thiele modulus \(\sim 10 \); see Eqn. 2 in Lipkow and Odde), consistent with typical prokaryotic cell sizes.

Cimini, D., Cameron, L. A., & Salmon, E. D. (2004). Anaphase spindle mechanics prevent mis-segregation of merotelically oriented chromosomes. *Current Biology : CB, 14*(23), 2149–55.

Drechsler, H., & McAinsh, A. D. (2012). Exotic mitotic mechanisms. *Open Biology, 2*(12), 120140.

Gan, L., Ladinsky, M. S., & Jensen, G. J. (2011). Organization of the smallest eukaryotic spindle. *Current Biology : CB, 21*(18), 1578–83.

Gardner, M. K., Bouck, D. C., Paliulis, L. V, Meehl, J. B., O’Toole, E. T., Haase, J., … Odde, D. J. (2008). Chromosome Congression by Kinesin-5 Motor-Mediated Disassembly of Longer Kinetochore Microtubules. *Cell, 135*(5), 894–906.
LIMITS ON CHROMOSOME CONGRESSION

Gardner, M. K., Pearson, C. G., Sprague, B. L., Zarzar, T. R., Bloom, K., Salmon, E. D., & Odde, D. J. (2005). Tension-dependent Regulation of Microtubule Dynamics at Kinetochores Can Explain Metaphase Congression in Yeast. *Molecular Biology of the Cell, 16*(8), 3764–3775.

Goshima, G., & Scholey, J. M. (2010a). Control of Mitotic Spindle Length. *Annual Review of Cell and Developmental Biology, 26*(1), 21–57.

Goshima, G., & Scholey, J. M. (2010b). Control of mitotic spindle length. *Annual Review of Cell and Developmental Biology, 26*, 21–57.

Griffin, E. E., Odde, D. J., & Seydoux, G. (2011). Regulation of the MEX-5 Gradient by a Spatially Segregated Kinase/Phosphatase Cycle. *Cell, 146*(6), 955–968.

Hill, T. L., & Chen, Y. (1984). Phase changes at the end of a microtubule with a GTP cap. *Proceedings of the National Academy of Sciences of the United States of America, 81*(18), 5772–5776.

Howard, J. (2001). *Mechanics of motor proteins and the cytoskeleton*. Sunderland, Mass: Sinauer Associates, Publishers.

Inoué, S., & Salmon, E. D. (1995). Force Generation by Microtubule Assembly/Disassembly in Mitosis and Related Movements. *Molecular Biology of the Cell, 6*(12), 1619–1640.

Jiang, K., Toedt, G., Montenegro Gouveia, S., Davey, N. E., Hua, S., van der Vaart, B., ... Akhmanova, A. (2015). A Proteome-wide Screen for Mammalian SxIP Motif-Containing Microtubule Plus-End Tracking Proteins. *Current Biology, 22*(19), 1800–1807.

Knop, M., & Schiebel, E. (1997). Spc98p and Spc97p of the yeast gamma-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. *The EMBO Journal, 16*(23), 6985–95. 5

Lipkow, K., & Odde, D. J. (2008). Model for Protein Concentration Gradients in the Cytoplasm. *Cellular and Molecular Bioengineering, 1*(1), 84–92.

Maddox, P. S., Bloom, K. S., & Salmon, E. D. (2000). The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. *Nature Cell Biology, 2*(1), 36.

Maly, I. (2002). Diffusion approximation of the stochastic process of microtubule assembly. *Bulletin of Mathematical Biology, 64*(2), 213–238.

Mitchison, T., Wühr, M., Nguyen, P., Ishihara, K., Groen, A., & Field, C. M. (2012). Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. *Cytoskeleton (Hoboken, N.J.), 69*(10), 738–50.

Nguyen, T., Vinh, D. B., Crawford, D. K., & Davis, T. N. (1998). A genetic analysis of interactions with Spc110p reveals distinct functions of Spc97p and Spc98p, components of the yeast gamma-tubulin complex. *Molecular Biology of the Cell, 9*(8), 2201–16.
Odde, D. J., & Buettner, H. M. (1998). Autocorrelation function and power spectrum of two-state random processes used in neurite guidance. *Biophysical Journal, 75*(3), 1189–1196.

Odde, D. J., Cassimeris, L., & Buettner, H. M. (1995). Kinetics of microtubule catastrophe assessed by probabilistic analysis. *Biophysical Journal, 69*(3), 796–802. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1236309/

Ptacin, J. L., Lee, S. F., Garner, E. C., Toro, E., Eckart, M., Comolli, L. R., ... Shapiro, L. (2010). A spindle-like apparatus guides bacterial chromosome segregation. *Nat Cell Biol, 12*(8), 791–798.

Seetapun, D., & Odde, D. J. (2010). Cell-length-dependent microtubule accumulation during polarization. *Current Biology : CB, 20*(11), 979–88.

Shimogawa, M. M., Graczyk, B., Gardner, M. K., Francis, S. E., White, E. A., Ess, M., ... Davis, T. N. (2006). Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase. *Current Biology : CB, 16*(15), 1489–501.

Skibbens, R. V., Skeen, V. P., & Salmon, E. D. (1993). Directional instability of kinetochore motility during chromosome congreession and segregation in mitotic newt lung cells: a push-pull mechanism. *The Journal of Cell Biology, 122*(4), 859–875.

Sprague, B. L., Pearson, C. G., Maddox, P. S., Bloom, K. S., Salmon, E. D., & Odde, D. J. (2003). Mechanisms of Microtubule-Based Kinetochore Positioning in the Yeast Metaphase Spindle. *Biophysical Journal, 84*(6), 3529–3546.

Tytell, J. D., & Sorger, P. K. (2006). Analysis of kinesin motor function at budding yeast kinetochores. *The Journal of Cell Biology, 172*(6), 861–874.

Varga, V., Helenius, J., Tanaka, K., Hyman, A. A., Tanaka, T. U., & Howard, J. (2006). Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. *Nature Cell Biology, 8*(9), 957–962.

Vecchiarelli, A. G., Neuman, K. C., & Mizuuchi, K. (2014). A propagating ATPase gradient drives transport of surface-confined cellular cargo. *Proceedings of the National Academy of Sciences, 111*(13), 4880–4885.

Winey, M., Mamay, C. L., O’Toole, E. T., Mastronarde, D. N., Giddings, T. H., McDonald, K. L., & McIntosh, J. R. (1995). Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. *The Journal of Cell Biology, 129*(6), 1601–1615.

Yeh, E., Skibbens, R. V, Cheng, J. W., Salmon, E. D., & Bloom, K. (1995). Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. *The Journal of Cell Biology, 130*(3), 687–700.

Wilson, R. B., Davis, D., & Mitchell, A. P. (1999). Rapid Hypothesis Testing with Candida albicans through Gene Disruption with Short Homology Regions. *Journal of Bacteriology, 181*(6), 1868–1874.