Continued Bcl6 expression prevents the transdifferentiation of established Tfh cells into Th1 cells during acute viral infection

Citation for published version:
Alterauge, D, Bagnoli, JW, Dahlström, F, Bradford, B, Mabbott, N, Buch, T, Enard, W & Baumjohann, D 2020, 'Continued Bcl6 expression prevents the transdifferentiation of established Tfh cells into Th1 cells during acute viral infection', Cell Reports. https://doi.org/10.1016/j.celrep.2020.108232

Digital Object Identifier (DOI):
10.1016/j.celrep.2020.108232

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Cell Reports

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Continued Bcl6 Expression Prevents the Transdifferentiation of Established Tfh Cells into Th1 Cells during Acute Viral Infection

Graphical Abstract

- Induced ablation of Cxcr5 has minor effects on Tfh cell identity and function
- Continued Bcl6 expression is critical for the maintenance of established Tfh cells
- CD4+ T cell-expressed Bcl6 is important for the maintenance of germinal centers
- Induced ablation of Bcl6 converts “ex-Tfh” cells into Th1 cells during LCMV infection

Authors
Dominik Alterauge, Johannes W. Bagnoli, Frank Dahlström, ..., Thorsten Buch, Wolfgang Enard, Dirk Baumjohann

Correspondence
dirk.baumjohann@uni-bonn.de

In Brief
Alterauge et al. show that the induced loss of CXCR5 in established T follicular helper (Tfh) cells has minor effects on Tfh cell identity and germinal center (GC) maintenance. In contrast, induced Bcl6 ablation in CD4+ T cells results in GC resolution and transdifferentiation of established Tfh cells into Th1 cells during acute viral infection.
Continued Bcl6 Expression Prevents the Transdifferentiation of Established Tfh Cells into Th1 Cells during Acute Viral Infection

Dominik Alterauge,1 Johannes W. Bagnoli,2 Frank Dahlström,1 Barry M. Bradford,3 Neil A. Mabbott,3 Thorsten Buch,4 Wolfgang Enard,2 and Dirk Baumjohann1,5,6,7,*

1Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
2Anthropology & Human Genomics, Department of Biology II, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
3The Roslin Institute and the Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
4Institute of Laboratory Animal Science, University of Zurich, Wagistr. 12, 8952 Schlieren, Switzerland
5Medical Clinic III for Oncology, Hematology, Immuno-Oncology, and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
6Twitter: @BaumjohannLab
7Lead Contact
*Correspondence: dirk.baumjohann@uni-bonn.de
https://doi.org/10.1016/j.celrep.2020.108232

SUMMARY

T follicular helper (Tfh) cells are crucial for the establishment of germinal centers (GCs) and potent antibody responses. Nevertheless, the T cell-intrinsic factors that are required for the maintenance of already-established Tfh cells and GCs remain largely unknown. Here, we use temporally guided gene ablation in CD4+ T cells to dissect the contributions of the Tfh-associated chemokine receptor CXCR5 and the transcription factor Bcl6. Induced ablation of Cxcr5 has minor effects on the function of established Tfh cells, and Cxcr5-ablated cells still exhibit most of the features of CXCR5+ Tfh cells. In contrast, continued Bcl6 expression is critical to maintain the GC Tfh cell phenotype and also the GC reaction. Importantly, Bcl6 ablation during acute viral infection results in the transdifferentiation of established Tfh into Th1 cells, thus highlighting the plasticity of Tfh cells. These findings have implications for strategies that boost or restrain Tfh cells and GCs in health and disease.

INTRODUCTION

T follicular helper (Tfh) cells are critically important for providing help to B cells for potent antibody responses (Crotty, 2019; Vinuesa et al., 2016). Tfh cells are characterized by the expression of the chemokine receptor CXCR5 and the transcriptional repressor Bcl6. In addition, they express several co-stimulatory molecules such as inducible T cell co-stimulator (ICOS), CD40L, and B- and T-lymphocyte attenuator (BTLA) and inhibitory receptors such as programmed cell death protein-1 (PD-1) that allow for close interactions with B cells. Furthermore, Tfh cells produce cytokines such as interleukin-4 (IL-4) and IL-21 that instruct B cell class switching and survival.

Tfh cell differentiation is characterized by a multistep differentiation process that involves sequential interactions with dendritic cells (DCs) and B cells in distinct micro-anatomical locations, ultimately leading to the establishment of germinal centers (GCs), in which potent antibodies are generated (Crotty, 2019; Qi, 2016; Vinuesa et al., 2016). The induction of CXCR5- and Bcl6-expressing early Tfh cells from naive CD4+ T cell precursors is mediated by DCs, which at this stage are independent of cognate interactions with B cells (Baumjohann et al., 2011; Goenka et al., 2011). Bcl6 acts as a transcriptional repressor that restricts the expression of inappropriate genes and alternative fates in activated CD4+ T cells, thus promoting Tfh cell differentiation (Hatzi et al., 2015; Johnston et al., 2009; Liu et al., 2016; Nurieva et al., 2009; Yu et al., 2009). While the ensuing migration of these activated CD4+ T cells toward the T-B cell border and follicles is guided by the chemokine receptor CXCR5, simultaneous downregulation of the chemokine receptor CCR7, which is highly expressed on naive T cells, is required to enable activated T cells to re-localize to the T-B zone border and to enter the follicle and GC (Ansel et al., 1999; Arnold et al., 2007; Hardtke et al., 2005; Haynes et al., 2007; Junt et al., 2005). Interestingly, some CXCR5-deficient T helper cells have been observed in B cell areas in some of these studies, while in others they have not. The cause of these contradictory observations remains unclear. Localized within GCs, mature GC Tfh cells express the highest levels of CXCR5 and Bcl6 among CD4+ T cells.

Continued interactions between antigen-presenting cells, in particular B cells, and Tfh cells are required to maintain the Tfh cell phenotype and GC responses (Baumjohann et al., 2013b; Deenick et al., 2010). However, while the T cell-intrinsic factors that are required for the initial steps of Tfh cell differentiation...
Figure 1. Tfh Cells Continue to Express Tfh Cell Markers upon Induced Cxcr5 Ablation
(A) Schematic representation of the experimental protocol for the analysis of the impact of induced CD4+ T cell-specific ablation of Cxcr5 after NP-KLH/alum immunization.
(B) Flow cytometry of CD4+ T cells from draining lymph nodes of tamoxifen-treated Cd4-CreERT2+/+ and Cd4-CreERT2+/D mice, referred to as iCxcr5+/+ and iCxcr5+/D, respectively, analyzed on day 10 after immunization. Cells were pre-gated as live CD4+CD44hiCD19+ lymphocytes. Gate frequencies indicate the percentage of CXCRI5-PD-1hi cells, CXCRI5-PD-1hiGC Tfh cells, and CXCRI5-PD-1hi/int Tfh cells (upper panel) or CXCRI5-Bcl6hi cells and CXCRI5-Bcl6hiGC Tfh cells (lower panel). Right, quantification of the results; each symbol represents an individual mouse (n = 4–6).
(C) Quantification of CXCRI5-PD-1hi and CXCRI5+ Tfh cells from mice treated as in (B), measured on day 10, 14 and 28 (n = 4–6).
(D) Flow cytometry and quantification of PD-1hiBcl6hi CD4+ T cells in the draining lymph nodes of mice on day 10 after immunization as in (B) (n = 4–6). **p < 0.01 two-tailed nonparametric Mann-Whitney test (B–D); means ± SEMs in (B)–(D). See also Figure S1.

have been investigated in more detail (Crotty, 2019; Vinuesa et al., 2016), it remains largely unknown whether and how different T cell-expressed chemokine receptors and transcription factors are also required for the maintenance of already established Tfh cells, in part due to the lack of appropriate experimental systems. Here, we established a system that allowed us to ablate Cxcr5 and Bcl6 specifically in CD4+ T cells in a temporally controlled manner to systematically test the requirements of these two factors for Tfh cell and GC maintenance. We found that while CXCRI5+ Tfh cells kept most of the Tfh cell features and functions, Bcl6 was strictly required for the maintenance of Tfh cell identity by preventing the transdifferentiation into Th1 cells in an acute viral infection model. These functional insights not only emphasize the high degree of plasticity of Tfh cells but they also give indications about how ongoing GC reactions may be modulated in different disease settings.

RESULTS

Tfh Cells Retain B Cell Helper Capabilities upon Induced Cxcr5 Ablation
To investigate the impact of a loss of CXCRI5 expression in preexisting Tfh cells, we crossed mice bearing an inducible Cd4-Cre-ERT2 allele to mice containing loxP-flanked Cxcr5 alleles to generate compound mice in which Cxcr5 can be deleted specifically in CD4+ T cells upon tamoxifen application (designated as iCxcr5+/∆ mice) (Figure 1A). Tamoxifen application on days 3 and 4 after subcutaneous (s.c.) hock immunization with nitrophenylacetyl conjugated to keyhole limpet hemocyanin (NP-KLH) in alum resulted in an almost complete absence of CXCRI5 protein in CD4+ T cells from iCxcr5+/∆ mice that were analyzed on day 10 after immunization (Figure 1B). iCxcr5+/+ mice that
expressed one allele of Cd4-CreERT2 but lacked ioxP-flanked Cxcr5 alleles served as controls. CXCR5+ PD-1\(^{hi}\) (Tfh) and CXCR5\(^{lo}\)PD-1\(^{lo}\) (GC Tfh) cell populations were both absent in iCxcr5\(^{l/l}\) mice, further highlighting the very efficient deletion of Cxcr5 by Cd4-CreERT2 (Figure 1B). Interestingly, we observed PD-1\(^{hi}\) and B220+ cell populations within the CXCR5-CD4+ T cell compartment in iCxcr5\(^{l/l}\) mice that were not present in iCxcr5\(^{+/+}\) control mice (Figure 1B). These populations even persisted until days 14 and 28 after immunization without a substantial decrease over time (Figure 1C). The observation that B220 and PD-1 double-positive cells were detectable at similar frequencies in iCxcr5\(^{l/l}\) and iCxcr5\(^{l/l}\) mice indicated that these CXCR5- cells retained the expression of Tfh markers associated with GC Tfh cells, with the exception of CXCR5 itself (Figure 1D).

As GC B cells depend strongly on the presence of Tfh cells (Baumjohann et al., 2013b), we additionally assessed the impact of the induced deletion of Cxcr5 in CD4+ T cells on the B cell response. In iCxcr5\(^{l/l}\) mice, the fraction of Fas\(^{hi}\)IgD\(^{lo}\) GC B cells was reduced compared to iCxcr5\(^{+/+}\) control mice on day 10 (Figures 2A and 2B). NP-specific and immunoglobulin G1+ (IgG1+) class-switched GC B cells were not diminished (Figure 2C). Preferential GC B cell localization in the dark zone (DZ) of GCs was also unaffected by the CD4+ T cell-specific Cxcr5 deletion, as determined by the expression of the DZ and light zone (LZ) markers CXCR4 and CD86, respectively (Figure 2D). GC B cells, IgG1+ class-switched cells, and NP-specific GC B cells were maintained over time until day 28 (Figures 2E–2G). Interestingly, we observed a trend toward a higher abundance of class-switched IgG1+ cells throughout the immune response, which

Figure 2. Cxcr5-Ablated Tfh Cells Retain B Cell Helper Capabilities

(A) Schematic representation of the experimental protocol for the analysis of the impact of induced CD4+ T cell-specific ablation of Cxcr5 after NP-KLH/alum immunization.

(B) Flow cytometry of B cells from draining lymph nodes of tamoxifen-treated Cd4-CreERT2 Cxcr5\(^{+/+}\) and Cd4-CreERT2 Cxcr5\(^{l/l}\) mice, referred to as iCxcr5\(^{+/+}\) and iCxcr5\(^{l/l}\), respectively, analyzed on day 10 after immunization. Cells were pre-gated as live CD19+CD4– lymphocytes. Gate frequencies indicate the percentage of IgD\(^{hi}\)CD95\(^{hi}\) GC B cells. Right, quantification of the results; each symbol represents an individual mouse (n = 4–6).

(C) Flow cytometry and quantification of NP-specific and IgG1+ GC B cells as in (B). The gate frequencies indicate the percentage of IgG1+ NP GC B cells.

(D) Ratio of GC B cells with a CXCR4\(^{hi}\)CD86\(^{lo}\) dark zone (DZ) and CXCR4\(^{lo}\)CD86\(^{hi}\) light zone (LZ) phenotype in the draining lymph nodes of mice as in (B). The gate frequencies indicate the percentage of IgG1+NP GC B cells.

(E–G) Quantification of (E) GC B cell numbers, (F) NP+ GC B cells, and (G) IgG1+ GC B cells from mice as in (B), measured on days 10, 14, and 28 after immunization (n = 4–6). *p < 0.05, **p < 0.01 two-tailed nonparametric Mann-Whitney test (B–G); means + SEMs in (B)–(G). See also Figure S1.
A

Adoptive transfer of SM CD45.1/2 hosts: WT CD45.2
LCMV i.p. infection tamoxifen analysis

B

SMARTA cells per spleen

C

NP-KLH/alum s.c. immunization tamoxifen analysis

D

iCxcr5⁺ iCxcr5^{−/−}

E

Non-Tfh Tfh CXCR5-Tfh

PC1 (29.52 %) PC2 (12.14 %)

(legend on next page)
became more prominent by day 28 (Figure 2G). These findings did not depend on the continued presence of CXCR5 on the surface of CD4+ T cells. When Cxcr5 ablation was induced at the peak of the GC reaction on days 6 and 7 after immunization, similar effects on the maintenance of Tfh cell marker expression and GC B cell helper capabilities were observed (Figure S1).

Induced Cxcr5 Deficiency Has Little Impact on the Identity of Tfh Cells

To further explore the consequences of Cxcr5 ablation on established Tfh cells, we next crossed the Cd4-CreERT2 \(\text{Cxcr5}^{-/-} \) and Cd4-CreERT2 \(\text{Cxcr5}^{+/+} \) mice to animals bearing the lymphocytic choriomeningitis virus (LCMV)-specific SMARTA (SM) T cell receptor (TCR) transgene and congenic Cd45 alleles. Naive CD4+ T cells from these mice were adoptively transferred into wild-type hosts, followed by intraperitoneal (i.p.) infection with LCMV Armstrong to induce an acute viral infection (Figure 3A). Tamoxifen was administered on days 3 and 4 and the phenotype of the transferred SM cells was flow analyzed on day 10. In agreement with our findings from the immunization experiments, we observed a population of CXCR5+ iCXcr5\(^{\Delta/\Delta}\) SM cells that exhibited surface marker expression reminiscent of Tfh cells with low levels of P-selectin glycoprotein ligand-1 (PSGL-1) and signaling lymphocytic activation molecule (SLAM) (Figure 3B). To examine whether CXCR5-deficient Tfh cells only kept a few Tfh cell markers or maintained an overall Tfh-characteristic expression profile, we conducted RNA sequencing (RNA-seq) of CD4+ T cells after subcutaneous NP-KLH/albumin immunization (Figure 3C). Cxcr5 ablation was induced by tamoxifen gavage on days 3 and 4. On day 10 after immunization, CXCR5 Tfh (CD44hiCXCR5 PD-1\(^{\text{int/lo}}\)GITR\(^{\text{lo}}\)) cells were sorted from iCXcr5\(^{\Delta/\Delta}\) mice together with Tfh (CD44hiCXCR5 PD-1\(^{\text{hi/GITR}}\)) and non-Tfh (CD44hiCXCR5 PD-1\(^{\text{hi/GITR}}\)) cells from control i\(\text{Cxcr5}^{+/+}\) mice (Figure 3D). Sorted cells were pre gated on GITR\(^{\text{lo}}\) cells to avoid contamination with regulatory T (Treg) cells, which may also express PD-1. This strategy also excluded follicular regulatory (Thf) cells. Transcriptomic analysis revealed that the expression profile of CXCR5+ Tfh cells exhibited an extensive overlap with the profile of CXCR5+ Tfh cells, thereby remaining clearly distinct from non-Tfh cells (Figure 3E). Similar to their Cxcr5-sufficient Tfh cell counterparts, CXCR5+ Tfh cell counterparts, CXCR5- Tfh cells showed characteristic expression patterns of co-receptors (high Pdcd1 and Icos), signaling molecules (high Il6st), migratory molecules (low Sh2d2a; low Selplg, Ccr7, and Ly6c2), and transcription factors (increased Maf, Tox2, and Ascl2; decreased Kitl) (Figure 3E). Principal-component analysis (PCA) using the 500 most variable genes confirmed that the PD-1\(^{\text{hi}}\) cells from i\(\text{Cxcr5}^{\Delta/\Delta}\) mice were transcriptionally similar to Cxcr5-sufficient Tfh cells and differed strongly from non-Tfh cells (Figure 3F). More important, we could corroborate the largely unaltered identity of CXCR5+ Tfh cells also in our SM-based adoptive transfer model, in which i\(\text{Cxcr5}^{\Delta/\Delta}\) SM Tfh cells clearly shared a transcriptomic signature similar to i\(\text{Cxcr5}^{+/+}\) SM Tfh cells (data not shown). Likewise, the transcriptomic signature of i\(\text{Cxcr5}^{\Delta/\Delta}\) SM Th1 cells tightly overlapped with that of i\(\text{Cxcr5}^{+/+}\) SM Th1 control cells (data not shown). In summary, these data showed that the transcriptional programming of established Tfh cells did not depend on continued expression of Cxcr5.

Continued T Cell-Specific Bcl6 Expression Is Critical for GC Tfh and GC B Cell Maintenance

As we could show that the Tfh cell hallmark chemokine receptor CXCR5, which historically helped to define the term “Tfh cells” (Ansel et al., 1999; Breitfeld et al., 2000; Schaefer et al., 2000), was not required for the maintenance of the Tfh cell phenotype, we next investigated the requirement of the Tfh cell master regulator Bcl6 using our inducible-knockout system. To this end, Bcl6\(^{+/+}\) mice, which allow for the deletion of the Bcl6 DNA-binding domain, were intercrossed with the aforementioned Cd4-CreERT2 strain. Efficient tamoxifen-induced deletion of Bcl6 was confirmed on the genomic DNA and mRNA levels (Figures S2A and S2B). We then analyzed the impact of tamoxifen-induced, Cd4+ T cell-specific Bcl6 ablation on the T and B cell response after subcutaneous NP-KLH immunization (Figure 4A). We chose two different time points of Bcl6 ablation when Tfh cells were either already formed early on during the immune response (tamoxifen gavage on days 3 and 4) or later when the GC response was full blown (days 6 and 7). We observed a reduction in the frequency of CXCR5 PD-1\(^{\text{int/lo}}\) Tfh cells after Bcl6 ablation, which was more pronounced for the early tamoxifen time point (Figures 4B and S2C). There was also a significant decrease in the frequency of CXCR5 PD-1\(^{\text{int/lo}}\) Tfh cells in Bcl6\(^{+/+}\) mice as compared to control Bcl6\(^{+/+}\) mice for both ablation time points (Figures 4B and S2C). In line with the lower expression...
Bcl6 induced loss of PSGL-1lo cells that are normally representative of PD-1 and CXCR5, induced Bcl6 deficiency also resulted in a reduction of PSGL-1lo cells that are normally representative of GC Tfh cells (Figures S2D and S2E). Interestingly, when tamoxifen was administered on the earlier time point (days 3 and 4), CXCR5+Foxp3 Tfr cell frequencies were almost unchanged, while CXCR5+Foxp3 Tfh cells were strongly diminished, resulting in an altered Tfh:Tfr ratio (Figure 4C).

The induced loss of Bcl6 had a strong impact on the GC B cell response. The frequencies of GC B cells were significantly decreased in immunized iBcl6Δ/Δ mice as compared to control mice (Figures 5A and 5B). Similar to the stronger reduction of Tfh cells that we observed for days 3 and 4 versus days 6 and 7 tamoxifen treatment, Bcl6 ablation on days 3 and 4 caused a more pronounced decrease in GC B cell frequencies than tamoxifen gavage on days 6 and 7 (Figure 5B). While the total pool of antigen-specific NP+ GC B cells was not affected in iBcl6Δ/Δ mice in both settings, we observed a defect in class switching toward IgG1 in the days 3 and 4 tamoxifen administration setting (Figure 5C). Consequently, the generation of IgG1+NP+ cells was also impaired in iBcl6Δ/Δ mice with an ~2.5-fold frequency decrease as compared to the control group (Figure 5C). In contrast, T cell-specific Bcl6 ablation at the peak of the GC reaction (days 6 and 7 after immunization) did not cause obvious alterations in class switching and NP specificity of PD-1 and CXCR5.

Induced Bcl6 Ablation Alters the Ratio of Tfh versus Th1 Cells during Acute Viral Infection

The data from the previous immunization experiments indicated that Bcl6 expression was particularly vital for GC Tfh cells. To gain further insight into the role of Bcl6 for Tfh cell maintenance,
we conducted cell fate analyses. In contrast to induced Cxcr5 deletion, Bcl6-ablated CD4+ T cells did not exhibit continued Tfh cell marker expression, thus hampering the tracking of these cells. To circumvent this issue, we used congenically marked SM cells of Cd4-CreERT2 Bcl6+/+ and Cd4-CreERT2 Bcl6fl/fl genetic backgrounds to follow the fate of these LCMV-specific

Figure 5. GC B Cell Responses Are Impaired upon the Induced Loss of Bcl6 in CD4+ T Cells

(A) Schematic representation of the experimental protocol for the analysis of the impact of induced CD4+ T cell-specific ablation of Bcl6 at 2 different time points after s.c. hock immunization with NP-KLH/alum.

(B) Flow cytometry and quantification of IgDloCD95hi GC B cells in the draining lymph nodes of mice treated with tamoxifen on days 3 and 4 (upper panel) or days 6 and 7 (lower panel) and analyzed on day 14 after immunization, pre-gated as live CD19+CD4+ lymphocytes. Right, quantification of the results; each symbol represents an individual mouse (n = 4–7).

(C) Flow cytometry and quantification of NP-specific and IgG1+ GC B cells as in (B). The gate frequencies indicate the percentage of IgG1+NP+, IgG1+NP+, and IgG1+NP+ GC B cells.

*p < 0.05, **p < 0.01 two-tailed nonparametric Mann-Whitney test (B and C); means ± SEMs in (B) and (C).
CD4+ T cells after transfer into wild-type mice, followed by LCMV Armstrong infection on day 0 and tamoxifen treatment on days 3 and 4 to ablate Bcl6 (Figure 6A). By day 10 after infection, control iBcl6+/+ SM cells had differentiated roughly equally into Th1 and Tfh cell populations (Figure 6B). Induced Bcl6 deficiency resulted in an almost complete loss of CXCR5+ cells and a concomitant increase in Th1 cell frequencies, while the total number of SM cells per spleen remained unaltered (Figure 6B). Low SLAM and PSGL-1 expression levels, which are normally associated with Tfh cells, were not maintained in the absence of Bcl6 (Figure 6B). Instead, Bcl6-ablated cells appeared to have regained the expression of both markers. In fact, the decrease in Tfh cell numbers was paralleled by an increase in Th1 cell numbers (Figure 6B). Since total iBcl6∆/∆ SM cell numbers were not changed,

![Diagram](image-url)
this suggested that Th1 cells either compensated for the loss of Tfh cells through increased proliferation or that Bcl6-ablated “ex-Tfh” cells had adopted a Th1 cell phenotype.

Bcl6 Prevents the Transdifferentiation of Tfh Cells into Th1 Cells during Acute Viral Infection
To dissect whether iBcl6Δ/Δ ex-Th1 SM cells converted into bona fide Th1 cells or still exhibited a Tfh-like transcriptional program in the background, we sorted CD45.1/2+ iBcl6Δ/Δ and iBcl6Δ/Δ SM cells for RNA-seq and transcriptomic analyses. Significant changes in differentially expressed genes between iBcl6+/+ and iBcl6Δ/Δ SM cells revealed many Th1-associated genes being upregulated in iBcl6Δ/Δ SM cells (e.g., GzmB, Id2, Ifngr1, Ly6c2) (Figure 6C). In contrast, numerous important Tfh cell molecules, including Cxcr5, Il6ra, Il6st, and Pou2af1 were downregulated. To assess the similarity of the SM iBcl6Δ/Δ cells to Th1 cell transcriptomes (Figure 6D), we used Th1 and Tfh signatures of SM iCxcr5Δ/+ control cells obtained from a complementary adoptive transfer experiment (data not shown). Here, we used PC2 and PC3, since most of the variability represented by the first principal component was due to batch effects, which is commonly observed when independently generated RNA-seq data are compared. The control Th1 and Tfh signatures were separated and the transcriptomes of Bcl6-sufficient SM cells were found in between them (Figure 6D), as the cells consisted of an equal mixture of Th1 and Tfh cells (Figure 6B). The biological replicates of Bcl6-ablated SM cells clustered closely with the Th1 transcriptomes (Figure 6D). This indicated that these cells did not maintain a Th1 cell transcriptional pattern but instead had adopted a Th1 cell gene expression program. This supported our initial hypothesis that the induced loss of Bcl6 in Th1 cells led to transdifferentiation into Th1 cells. To finally prove this in vivo, we conducted a retransfer experiment to also exclude the possibility that Bcl6-ablated cells were lost during the immune response and were compensated for by increased Th1 cell expansion. To this end, we first co-transferred CD45.12+ Cd4-CreERT2+/− Bcl6+/+ and CD45.1/1 Cd4-CreERT2+/− Bcl6+/+ SM cells into primary hosts, followed by acute LCMV Armstrong infection (Figure 7A). Four days later, Th1 (CXCR5+PSGL-1hi) and Tfh (CXCR5+PSGL-1lo) cells from both genotypes were retransferred into infection-matched secondary hosts (Figure 7B). Bcl6 was then deleted in the retransferred iBcl6Δ/Δ SM cells with tamoxifen on days 5 and 6 after infection. iBcl6Δ/Δ SM cells served as controls. The phenotypic stability of the transferred Th1 and Tfh SM cells was assessed on day 12 post-infection by flow cytometry and revealed that Th1 cells maintained the CXCR5+PSGL-1hiSLAMlo Th1 cell identity regardless of Bcl6 ablation (Figures 7B and 7C). The majority of the transferred iBcl6+/+ control SM Tfh cells continued to display a Tfh phenotype, while ~30% downregulated CXCR5 and gained PSGL-1 expression reminiscent of Th1 cells. In contrast, the ability of SM Tfh cells, which had been rendered Bcl6 deficient (iBcl6Δ/Δ), to gain Th1 cell marker expression was strongly increased from ~20% to ~70% (Figures 7B and 7C). Nevertheless, the total number of SM cells per spleen was unaffected by the induced Bcl6 knockout (Figure 7D). Moreover, Bcl6-ablated cells also expressed higher levels of the Th1-associated transcription factor T-bet compared to the Bcl6-sufficient SM control cells (Figure 7E). These data demonstrated that the loss of Bcl6 in established Thf cells resulted in a phenotypical shift toward Th1 surface marker expression, which was underlined by the adoption of a Th1-like transcriptional program.

DISCUSSION
Th1 cell differentiation is a multistep process that involves sequential cognate interactions with DCs and B cells in different micro-anatomical locations within secondary lymphoid organs (Crotty, 2019; Qi, 2016; Vinuesa et al., 2016). These processes are highly regulated on the molecular level by various transcription factors and microRNAs (miRNAs) (Maul et al., 2019; Qin et al., 2018). Until recently, it was difficult to assess the requirements of T cell-intrinsic factors that are required for the maintenance of already established Thf cells. Here, we used temporally guided ablation of the T cell characteristic genes Cxcr5 and Bcl6 to systematically assess their requirements for Tfh cell maintenance. Ablation of Cxcr5 in preexisting Tfh cells showed minor effects on the identity of these cells and their B cell helper abilities. In contrast, continued Bcl6 expression in T cells was critical for the maintenance of GC Thf and GC B cells. More important, our data highlighted Bcl6 as a gatekeeper of Tfh cell plasticity in vivo that limited the transdifferentiation of established Tfh cells into Th1 cells during acute viral infection.

Several studies have addressed the requirement of CXCR5 expression by Tfh cells for entering the follicle and induction of GCs (Ansel et al., 1999; Arnold et al., 2007; Hardtke et al., 2005; Haynes et al., 2007; Junt et al., 2005). CXCR5-deficient CD4+ T cells could still mount GC B cell responses, although the size of GCs was reduced and the frequencies of GC B cells and class switching were slightly lower (Arnold et al., 2007; Haynes et al., 2007). It should be noted that CXCR5-dependent follicular recruitment may also be bypassed by some T helper cells that are passively dragged into the follicle by B cells (Okada et al., 2005). Interestingly, mice that lack CXCR5+ CD4+ T cells were completely resistant to collagen-induced arthritis, despite grossly normal GC formation (Moschovakis et al., 2017). Previously, it was difficult to assess the role of CXCR5, especially during later stages of the GC response due to the lack of conditional Cxcr5 alleles. Instead, these studies relied either on adoptively transferred TCR-tg cells or mixed bone marrow chimeras using CXCR5−/− backgrounds. We therefore devised a versatile in vivo system that allowed us to delete a gene of interest specifically in CD4+ T cells in a temporally controlled fashion. Using this system, we explored the effect of acute ablation of Cxcr5 in settings of polyclonal as well as antigen-specific TCR-tg CD4+ T cell responses, with an emphasis on already-established Tfh cells. Interestingly, Tfh cells that no longer expressed CXCR5 on their surface were able to sustain the high, Tfh-characteristic protein expression levels of PD-1 and Bcl6. In addition, the transcriptome of Cxcr5-ablated cells was very similar to that of the CXCR5-sufficient control cells. These findings emphasize that CD4+ T cells can not only circumvent the need of CXCR5 expression for GC localization (Moriyama et al., 2014) but also they do not require continued CXCR5 expression to maintain their phenotype. This is surprising, as GC-localized Tfh cells express the highest levels of CXCR5, and the binding of CXCL13 induces
phosphatidylinositol 3-kinase (PI3K)-Akt signaling (Shi et al., 2018), which is essential for Tfh cells (Rolf et al., 2010). Although CXCR5 overexpression promotes enhanced GC localization (Shi et al., 2018), CXCR5-deficient CD4+ T cells were shown to still enter GCs, however, with reduced LZ polarization (Greczmiel et al., 2017; Haynes et al., 2007). This was associated with impaired affinity maturation toward epitopes of LCMV (Greczmiel et al., 2017). Therefore, it is conceivable that CXCR5 on T cells functions to first efficiently recruit T cells to the GC and then confine T cell help and hence selection of high-affinity GC B cells to the LZ, without affecting T cell-intrinsic properties.

Figure 7. Bcl6 Prevents the Transdifferentiation of Tfh Cells into Th1 Cells during Acute Viral Infection

(A) Schematic representation of the experimental protocol for the analysis of the impact of induced CD4+ T cell-specific ablation of Bcl6 in SM cells when Tfh and Th1 cells were first generated through LCMV Armstrong infection and then transferred into pre-infected secondary hosts as depicted prior to Bcl6 ablation.

(B) Flow cytometry of splenocytes from primary and secondary recipients, given adoptive transfers of SM cells. SM Tfh (CXCR5+PSGL-1lo) and SM Th1 (CXCR5−/PSGL-1hi) cells were sorted from pooled spleens of primary recipient mice on day 4 after i.p. LCMV infection and retransferred into infection-matched secondary hosts (left panel). On day 12 after infection, the co-transferred Th1 (right panel, upper row) and Tfh cells (right panel, lower row) from SM Cd4-CreERT2 Bcl6+/− and SM Cd4-CreERT2 Bcl6fl/fl mice were quantified. The gate frequencies indicate the percentage of CXCR5+/PSGL-1hi Th1 and CXCR5+PSGL-1lo Tfh cells.

(C and D) Quantification of the results depicted in (B); each symbol represents an individual mouse (n = 6–7).

(E) Flow cytometric analysis and quantification of T-bet expression in co-transferred SM Tfh cells analyzed on day 12 post-infection as in (B). "Endogenous" refers to polyclonal CD4+ T cells of the infected secondary host mice.

*p < 0.05, **p < 0.01 two-tailed nonparametric Mann-Whitney test (C and D); paired t test (E); means ± SEMs in (C) and (D).
A possible disentanglement of the Tfh cell phenotype and CXCR5 expression was also recently suggested by the observation of peripheral PD-1\(^{+}\)CXCR5\(^{+}\) Tfh-like cell populations with B cell helper abilities and Tfh cell marker expression patterns, for example, in the joints of rheumatoid arthritis patients and in tumors of cancer patients, although their ontology and function remain largely elusive (Gu-Trantien et al., 2017; Rao et al., 2017). The fact that many aspects of the GC B cell response were not altered by CD4\(^{+}\) T cell-specific Cxcr5 ablation raises the question of how CXCR5 Tfh cells manage to retain their GC localization. In our RNA-seq data, we could not find a compensatory upregulation of migratory modules upon the loss of CXCR5. A previous report showed that CXCR5 and S1PR2 have somewhat overlapping functions, and only CD4\(^{+}\) T cells deficient for both factors lost the capacity to enter GCs (Moriyama et al., 2014). Similar to control Tfh cells, Cxcr5-ablated Tfh cells in our experiments showed the continued expression of S1pr2 and simultaneous downregulation of Gpr183, which encodes EB12. Recently, Vanderleyden et al. (2020) showed that Tfr cells do not depend on CXCR5 to acquire and maintain GC localization, which complements our findings on the requirements of CD4\(^{+}\) T cell-expressed CXCR5 for Tfh cell and GC maintenance. The slight increase in IgG1\(^{+}\) GC B cells that we observed in our inducible CD4\(^{+}\) T cell-specific Cxcr5 deletion system stands in contrast to data from a study that used Cxcr5\(^{-/-}\) CD4\(^{+}\) T cells and reported impaired class switching (Arnold et al., 2007). Class switching has recently been shown to be an early event that is initiated before GC formation, when activated T cells interact with primed B cells at the T:B zone border (Roco et al., 2019). If CD4\(^{+}\) T cells lack CXCR5 expression during this early phase, Tfh cell migration toward the B cell follicle may be less efficient and thus curtails class switching, whereas the deletion of CXCR5 at later stages could have less adverse effects.

The importance of Bcl6 expression for the induction of Tfh cell differentiation is well established (Hollister et al., 2013; Johnston et al., 2009; Nurieva et al., 2009; Poholek et al., 2010; Yu et al., 2009). One of the main functions of Bcl6 is the inhibition of the Tfh cell antagonist Blimp-1 (Johnston et al., 2009). As Tfh cells are completely absent in mice with a conditional knockout of Bcl6 in CD4\(^{+}\) T cells, it was thus far not possible to easily address the role of Bcl6 beyond Tfh cell induction. Evidence for the function of Bcl6 in mature Tfh cells comes from chromatin immunoprecipitation sequencing (ChIP-seq) experiments that mapped the genomic occupancy at numerous genes relevant to Th1, Th2, and Th17 differentiation pathways (Hatzi et al., 2015; Liu et al., 2016), indicating a role for Bcl6 in preventing alternative cell fate programs. However, it has not been investigated before by detailed loss-of-function studies whether Bcl6 is required for the identity and function of fully matured Tfh cells. In our experiments, we found that GC Tfh cells, which express the highest levels of Bcl6, were particularly sensitive toward Bcl6 ablation, while Bcl6\(^{-/-}\) Tfh cells were only moderately affected. In GCs, Tfh cells must adapt to conditions such as hypoxia (Zhu et al., 2019), restricted localization within the LZ (Fuller et al., 1993; Haynes et al., 2007), and high concentrations of the antagonistic cytokine IL-2 (Papillon et al., 2019). High levels of Bcl6 may therefore be required to maintain GC localization by repressing several T cell zone migratory molecules such as CCR7 and PSGL-1 or chemotactic receptors responding to cues outside the GC, such as S1PR1 and EB12 (Hatzi et al., 2015). More important, through the inhibition of other T helper cell programs, Bcl6 may enable Tfh cells to withstand non-Tfh cell cues, for example, IL-2 and interferon-\(\gamma\) (IFN-\(\gamma\)). Outside the GC, however, Tfh cells may not equally rely on Bcl6. Despite the collapse of the GC Tfh cell population upon Bcl6 ablation, the frequencies of GC B cells were not similarly affected in our experiments, and a small but stable GC B cell population was maintained over time. CXCR5\(^{+}\)PD-1\(^{+}\) Tfh-like cells may be able to take over some of the functions of GC Tfh cells; however, these cells were not able to sustain normal frequencies of class-switched IgG1\(^{+}\) GC B cells.

Tfr cells share the expression of molecules that are normally associated with Tfh and Treg cells, as well as several molecular requirements for Tfh cell differentiation, such as co-stimulation and interactions with B cells (Chung et al., 2011; Linterman et al., 2011). Despite these striking similarities, we observed that Tfr cells were not equally affected by an induced loss of Bcl6. Moreover, when Bcl6 was deleted at early time points after immunization, Tfr cell frequencies were largely unaltered. This is unexpected, as Tfr cells are unable to form in Foxp3\(^{Cre}\) Bcl6\(^{fl/fl}\) mice (Botta et al., 2017; Fu et al., 2018; Wu et al., 2016). Nevertheless, Bcl6 expression is lower in Tfr cells relative to Tfh cells (Chung et al., 2011) and may be dispensable after Tfr cell development. It is also possible that despite a normal phenotype, Tfr cells in induced Bcl6-deficient mice may be functionally impaired and contribute to the defects observed in the GC response. It was recently shown that in the absence of Tfr cells, Tfh cells adopt a cytotoxic phenotype and appear to induce apoptosis in GC B cells (Xie et al., 2019). This could be an additional explanation for the reduced GC B cell frequencies in our system.

Plasticity among CD4\(^{+}\) T helper cells is a widely accepted concept (DuPage and Bluestone, 2016; O’Shea and Paul, 2010), and several lines of evidence also point to the extensive plasticity of Tfh cells (Cannons et al., 2013). For example, in vitro-generated Tfh-like cells could be polarized to increase Th1, Th2, or Th17 cytokine expression (Lu et al., 2011). The loss of the miR-17-92 cluster in LCMV-specific SM cells resulted in the co-expression of a Th17 gene expression program that was layered on top of the Tfh cell program (Baumjohann et al., 2013a). Another study found that Tfh cells gave rise to pathogenic Th2 cells in an allergy model (Ballesteros-Tato et al., 2016). Our finding that Bcl6 ablation in Tfh cells during LCMV Armstrong infection resulted in an increased plasticity toward Th1 cells expands the view of Bcl6 as a critical inhibitor of alternative T cell fates to already-established Tfh cells. The compatibility of Th1 and Tfh cell programs has been suggested by the co-expression of Bcl6 and T-bet in certain contexts, and Bcl6\(^{+}\) Tfh cells may also represent a transitional differentiation state or may serve as precursors for other effector cells (Sheikh et al., 2019; Baumjohann et al., 2011; Nakayamada et al., 2011; Oestreich et al., 2011; Weinstein et al., 2018; Yusuf et al., 2010). In our experiments, upon induced Bcl6 ablation, LCMV-specific SM cells lost the characteristic surface marker expression of Tfh cells and downregulated Tfh cell-associated transcripts, including Il6ra and Il6st. The loss of the Tfh cell phenotype and the propensity to adopt a Th1 cell phenotype in
our temporally controlled Bcl6 ablation system may be additionally explained by the findings of a recent study, in which IL-6 signaling during a viral infection was reported to shield Tfh cells from abundant IL-2 signals, which destabilize the Tfh cell phenotype (Papillion et al., 2019). Bcl6 expression in T cells has been shown to prevent transdifferentiation into other T helper cell subsets, thus highlighting the plasticity of Tfh cells.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - **Lead Contact**
 - **Materials Availability**
 - **Data and Code Availability**
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
- **METHOD DETAILS**
 - Immunizations, adoptive cell transfers, immunizations, infections, and tamoxifen treatment
 - Flow cytometry
 - Quantitative RT-PCR analysis
 - RNA-sequencing
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.celrep.2020.108232.

ACKNOWLEDGMENTS

D.B. was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Emmy Noether Programme BA 5132/1-1 and BA 5132/1-2 (252623821), SFB 1054 Teilprojekt B12 (210592381), and Germany’s Excellence Strategy EXC2151 (390873048), as well as by LMUexcellent. W.E. was supported by the DFG under SFB 1243 Teilprojekt A14. N.A.M. and B.M.B. were supported by the UK Biotechnology and Biological Sciences Research Council (grant nos. BB/F019762/1, BB/S010002/1, and BB/B017298/1). The authors would like to thank Helmut Blum and Stefan Krebs for the sequencing of libraries; Thomas Brocker, Dietmar Zehn, Yinshui Chang, and Lisa Rausch for help with LCMV titre determination; the BMC Core Facility Flow Cytometry of the LMU Munich for providing equipment; and Vigo Heissmeyer for discussions and comments on the manuscript.

AUTHOR CONTRIBUTIONS

D.A. designed, performed, and analyzed most of the experiments, interpreted the data, and wrote the manuscript. J.W.B. and W.E. provided critical tools and performed the RNA-seq analyses. F.D. performed the qPCR analyses. B.M.B. and N.A.M. provided the Cxcr5^{−/−} mouse strain. T.B. provided the C24-CreER⁷² strain. D.B. conceived the project, designed the experiments, interpreted the data, wrote the manuscript, and provided the overall direction of the study. All of the authors read and approved the final version of the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 30, 2020
Revised: July 1, 2020
Accepted: September 15, 2020
Published: October 6, 2020

REFERENCES

Akiba, H., Takeda, K., Kojima, Y., Usui, Y., Harada, N., Yamazaki, T., Ma, J., Tezuka, K., Yagita, H., and Okumura, K. (2005). The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J. Immunol. 175, 2340–2348.

Ansel, K.M., McHeyzer-Williams, L.J., Ngo, V.N., McHeyzer-Williams, M.G., and Cyster, J.G. (1999). In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134.

Arnold, C.N., Campbell, D.J., Lipp, M., and Butcher, E.C. (2007). The germinal center response is impaired in the absence of T cell-expressed CXCR5. Eur. J. Immunol. 37, 100–109.

Bagnoli, J.W., Ziegenhain, C., Janic, A., Wange, L.E., Vieth, B., Parekh, S., Geuder, J., Hellmann, I., and Enard, W. (2018). Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nat. Commun. 9, 2937.

Ballesteros-Tato, A., Randall, T.D., Lund, F.E., Spolski, R., Leonard, W.J., and León, B. (2016). T Follicular Helper Cell Plasticity Shapes Pathogenic T Helper 2 Cell-Mediated Immunity to Inhaled House Dust Mite. Immunity 44, 259–273.

Baumjohann, D., and Ansel, K.M. (2015). Tracking early T follicular helper cell differentiation in vivo. Methods Mol. Biol. 1291, 27–36.

Baumjohann, D., Okada, T., and Ansel, K.M. (2011). Cutting Edge: distinct waves of BCL6 expression during T follicular helper cell development. J. Immunol. 187, 2089–2092.

Baumjohann, D., Kagayama, R., Clingan, J.M., Morar, M.M., Patel, S., de Kouchkovsky, D., Bannard, O., Bluestone, J.A., Matloubian, M., Ansel, K.M., and Jeker, L.T. (2013a). The microRNA cluster miR-17–92 promotes TFH cell differentiation and represses subset-inappropriate gene expression. Nat. Immunol. 14, 840–848.

Baumjohann, D., Preite, S., Reboldi, A., Ronchi, F., Ansel, K.M., LanzaVecchia, A., and Sallusto, F. (2013b). Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 38, 596–605.

Botta, D., Fuller, M.J., Marquez-Lago, T.T., Bachus, H., Bradley, J.E., Weinmann, A.S., Zajac, A.J., Randall, T.D., Lund, F.E., León, B., and Ballesteros-Tato, A. (2017). Dynamic regulation of T follicular regulatory cell responses by interleukin 2 during influenza infection. Nat. Immunol. 18, 1249–1260.

Bradford, B.M., Reizis, B., and Mabbott, N.A. (2017). Oral Prion Disease Pathogenesis Is Impeded in the Specific Absence of CXCR5-Expressing Dendritic Cells. J. Virol. https://doi.org/10.1128/JVI.00124-17.
Breitfeld, D., Ohl, L., Kremmer, E., Ellwart, J., Sallusto, F., Lipp, M., and Förster, R. (2000). Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552.

Cannons, J.L., Lu, K.T., and Schwartzberg, P.L. (2013). T follicular helper cell diversity and plasticity. Trends Immunol. 34, 200–207.

Choi, Y.S., Kageyama, R., Eto, D., Escobar, T.C., Johnston, R.J., Monticelli, L., Lao, C., and Crotty, S. (2011). ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946.

Choi, Y.S., Yang, J.A., Yusuf, I., Johnston, R.J., Greenbaum, J., Peters, B., and Crotty, S. (2013). Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory. J. Immunol. 190, 4014–4026.

Chung, Y., Tanaka, S., Chu, F., Nurieva, R.I., Martinez, G.J., Rawal, S., Wang, Y.H., Lim, H., Reynolds, J.M., Zhou, X.H., et al. (2011). Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17, 983–988.

Cossarizza, A., Chang, H.D., Radbruch, A., Acs, A., Adam, D., Adam-Klagen, S., Agace, W.W., Aghaeepour, N., Akdis, M., Allez, M., et al. (2019). Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 49, 1457–1973.

Crotty, S. (2019). T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity 50, 1132–1148.

Deenick, E.K., Chan, A., Ma, C.S., Gatto, D., Schwartzberg, P.L., Brink, R., and Tangye, S.G. (2010). Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. Immunity 33, 241–253.

Dobin, A., Davis, C.A., Schlesinger, F., Derekow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 25–15.

DuPage, M., and Bluestone, J.A. (2016). Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149–163.

Fu, W., Liu, X., Lin, X., Feng, H., Sun, L., Li, S., Chen, H., Tang, H., Lu, L., Jin, W., and Dong, C. (2018). Deficiency in T follicular regulatory cells promotes autoimmunity. J. Exp. Med. 215, 815–825.

Fuller, K.A., Kanagawa, O., and Nahm, M.H. (1993). T cells within germinal centers are specific for the immunizing antigen. J. Immunol. 151, 4505–4512.

Goenka, R., Barnett, L.G., Silver, J.S., Ketter, P.J., Hunter, C.A., Cancro, M.P., and Lauffer, T.M. (2011). Cutting edge: dendritic cell-cell antitumor antigen presentation initiates the follicular helper T cell program but cannot complete ultimate effector differentiation. J. Immunol. 187, 1091–1095.

Greczmiel, U., Kräutler, N.J., Pedrioli, A., Bartsch, I., Agnelliini, P., Bedenikovic, G., Harker, J., Richter, K., and Oxenius, A. (2017). Sustained T follicular helper cell response is essential for control of chronic viral infection. Sci. Immunol. 2, eaam8686.

Gu-Trantien, C., Migliori, E., Buissetet, L., de Wind, A., Brohé, S., Garaud, S., Ichii, H., and Tokuhisa, T. (2007). Role of CXCR5 and CCR7 in follicular T cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179, 5099–5108.

Haynes, N.M., Allen, C.D., Lesley, R., Ansell, K.M., Killeen, N., and Cyster, J.G. (2007). Role of CXCR5 and CCR7 in follicular T cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179, 5099–5108.

Hollister, K., Kusam, S., Wu, H., Clegg, N., Mondal, A., Sawant, D.V., and Dent, A.L. (2013). Insights into the role of Bcl6 in follicular Th cells using a conditional mutant mouse model. J. Immunol. 191, 5708–5711.

Ichiei, H., Sakamoto, A., Arima, M., Hatano, M., Kuroda, Y., and Tokuhisa, T. (2007). Bcl6 is essential for the generation of long-term memory CD4+ T cells. Int. Immunol. 19, 427–433.

Ise, W., Inoue, T., McLaughlan, J.B., Kometani, K., Kubo, M., Okada, T., and Kurosaki, T. (2014). Memory B cells contribute to rapid Bcl6 expression by memory follicular helper T cells. Proc. Natl. Acad. Sci. USA 111, 11792–11797.

Johnston, R.J., Hoolewek, A.C., DiToro, D., Yusuf, I., Eto, D., Barnett, B., Dent, A.L., Craft, J., and Crotty, S. (2009). Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010.

Junt, T., Fink, K., Förster, R., Senn, B., Lipp, M., Muramatsu, M., Zinkemagel, R.M., Ludewig, B., and Hengartner, H. (2005). CXCRS-dependent seeding of follicular niches by B and Th cells augments antiviral B cell responses. J. Immunol. 175, 7109–7116.

Kitano, M., Moriyama, S., Ando, Y., Hikida, M., Mori, Y., Kurosaki, T., and Okada, T. (2011). Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34, 961–972.

Linterman, M.A., Pierson, W., Lee, S.K., Kallies, A., Kawamoto, S., Rayner, T.F., Srivastava, M., Dinev, D.P., Beaton, L., Hogan, J.J., et al. (2011). Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982.

Liu, X., Yan, X., Zhong, B., Nurieva, R.I., Wang, A., Wang, X., Martin-Orozco, N., Wang, Y., Chang, S.H., Esplugues, E., et al. (2012). Bcl6 expression specifies the T follicular helper cell program in vivo. J. Exp. Med. 209, 1841–1852, S1–S24.

Liu, X., Lu, H., Chen, T., Nallaparaju, K.C., Yan, X., Tanaka, S., Ichiyama, K., Zhang, X., Zhang, L., Wen, X., et al. (2016). Genome-wide Analysis Identifies Bcl6-Controlled Regulatory Networks during T Follicular Helper Cell Differentiation. Cell Rep. 14, 1735–1747.

Love, M.J., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

Lu, K.T., Kanno, Y., Cannons, J.L., Handon, R., Bible, P., Elkahloou, A.G., Anderson, S.M., Wei, L., Sun, H., O’Shea, J.J., and Schwartzberg, P.L. (2011). Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity 35, 622–632.

Maul, J., Alterauge, D., and Baumjohann, D. (2019). MicroRNA-mediated regulation of T follicular helper and T follicular regulatory cell identity. Immunol. Rev. 288, 97–111.

Moriyama, S., Takahashi, N., Green, J.A., Hori, S., Kubo, M., Cyster, J.G., and Okada, T. (2014). Sphingosine-1-phosphate receptor 2 is critical for follicular helper T cell retention in germinal centers. J. Exp. Med. 211, 1297–1305.

Moschovakis, G.L., Bubke, A., Friedrichsen, M., Falk, C.S., Feederle, R., and Förster, R. (2017). T cell specific Cxcr5 deficiency prevents rheumatoid arthritis. Sci. Rep. 7, 8933.

Nakayama, S., Kanno, Y., Takahashi, H., Jain, K.R., Chang, S.H., Elkahloou, A.G., Anderson, S.M., and Cyster, J.G. (2011). Sustained T follicular helper cell response is essential for control of chronic viral infection. Sci. Immunol. 2, eaam8686.

Oestreich, K.J., Huang, A.C., and Weinmann, A.S. (2011). The lineage-defining factors T-bet and Bcl-6 collaborate to regulate Th1 gene expression patterns. Cell Rep. 4, 1841–1852, e91487.

O’Garra, A., Cahalan, M.D., and Cyster, J.G. (2005). Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. J. Exp. Med. 208, 1001–1013.

Oxford, K., Bachmann, M.F., Zinkemagel, R.M., and Hengartner, H. (1998). Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on...
humoral and cellular immune responses after viral infection. Eur. J. Immunol. 28, 390–400.

Papillon, A., Powell, M.D., Chisom, D.A., Bachus, H., Fuller, M.J., Weinmann, A.S., Villarino, A., O’Shea, J.J., León, B., Oestreich, K.J., and Ballesteros-Tato, A. (2019). Inhibition of IL-2 responsiveness by IL-6 is required for the generation of GC-TFH cells. Sci. Immunol. 4, eaaw7636.

Parekh, S., Ziegenhain, C., Vieth, B., Enard, W., and Hellmann, I. (2018). zUMIs - a fast and flexible pipeline to process RNA sequencing data with UMIs. Gigante, A., Alpeggiani, O., Jin, W., et al. (2016). CXC chemokine receptor 5 expression defines follicular homing T cells. J. Immunol. 185, 1553–1562.

Qi, H. (2016). T follicular helper cells in space-time. Nat. Rev. Immunol. 16, 612–625.

Qin, L., Waseem, T.C., Sahoo, A., Bierkerkazhi, S., Zhou, H., Galatica, E.V., and Nurieva, R. (2018). Insights Into the Molecular Mechanisms of T Follicular Helper-Mediated Immunity and Pathology. Front. Immunol. 9, 1884.

Rao, D.A., Gurish, M.F., Marshall, J.L., Slowikowski, K., Fonseka, C.Y., Liu, Y., Donlin, L.T., Henderson, L.A., Wei, K., Mizoguchi, F., et al. (2017). Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114.

Roco, J.A., Mesin, L., Binder, S.C., Netfeger, C., Gonzalez-Figueroa, P., Canete, P.F., Ellyard, J., Shen, Q., Robert, P.A., Cappello, J., et al. (2019). Class-Switch Recombination Occurs Infrequently in Germinal Centers. Immunity 51, 337–350.e7.

Rolf, J., Bell, S.E., Kvesduri, D., Janas, M.L., Soond, D.R., Webb, L.M., Santinelli, S., Saunders, T., Hebeis, B., Killeen, N., et al. (2010). Phosphoinositide 3-kinase activity in T cells regulates the magnitude of the germinal center reaction. J. Immunol. 185, 4042–4052.

Schaerli, P., Willimann, K., Hernandez, S.G., Eto, D., Chandele, A., Weinstein, J.S., et al. (2019). Context-Dependent Role for T-bet in T Follicular Helper Cell Differentiation and Germinal Center Function following Viral Infection. Cell Rep 28, 1758–1772.

Shi, J., Hou, S., Fang, Q., Liu, X., Liu, X., and Qi, H. (2018). PD-1 Controls Follicular T Helper Cell Positioning and Function. Immunity 49, 264–274.e4.

Sledzinska, A., Hemmers, S., Mair, F., Gorka, O., Ruland, J., Fairbairn, L., Nissler, A., Müller, W., Waisman, A., Becher, B., and Buch, T. (2013). TGF-β signaling is required for CD4+ T cell homeostasis but dispensable for regulatory T cell function. PLOS Biol. 11, e1001674.

Vanderleyden, I., Fra-Bido, S.C., Innocentin, S., Stebegg, M., Okkennah, H., Evans-Bailey, N., Pierson, W., Denton, A.E., and Linterman, M.A. (2020). Follicular Regulatory T Cells Can Access the Germinal Center Independently of CXCR5. Cell Rep. 30, 611–619.e4.

Vinuesa, C.G., Linterman, M.A., Yu, D., and MacLennan, I.C. (2016). Follicular Helper T Cells. Annu. Rev. Immunol. 34, 353–368.

Weber, J.P., Fuhrmann, F., Feist, R.K., Lahmann, A., Al Baz, M.S., Gentz, L.J., Vu Van, D., Mages, H.W., Haftmann, C., Riedel, R., et al. (2015). ICOS maintains the T follicular helper cell phenotype by down-regulating Kruppel-like factor 2. J. Exp. Med. 212, 217–233.

Weinstein, J.S., Laidlaw, B.J., Lu, Y., Wang, J.K., Schulz, V.P., Li, N., Herman, E.I., Kaech, S.M., Gallagher, P.G., and Craft, J. (2018). STAT4 and T-bet control follicular helper T cell development in viral infections. J. Exp. Med. 215, 337–355.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York).

Wu, H., Chen, Y., Liu, X., Xu, L.L., Teuscher, P., Wang, S., Lu, S., and Dent, A.L. (2016). Follicular regulatory T cells repress cytokine production by follicular helper T cells and optimize IgG responses in mice. Eur. J. Immunol. 46, 1152–1161.

Xie, M.M., Fang, S., Chen, Q., Liu, H., Wan, J., and Dent, A.L. (2019). Follicular regulatory T cells inhibit the development of granulocyte B-expressing follicular helper T cells. JCI Insight 4, e128076.

Yu, D., Rao, S., Tsai, L.M., Lee, S.K., He, Y., Sutcliffe, E.L., Srivastava, M., Linterman, M., Zheng, L., Simpson, N., et al. (2009). The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468.

Yusuf, I., Kageyama, R., Monticelli, L., Johnston, R.J., Ditoro, D., Hansen, K., Barnett, B., and Crotty, S. (2010). Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). J. Immunol. 185, 190–202.

Zeitrag, J., Alterauge, D., Dahlstrom, F., and Baumjohann, D. (2020). Gene dose matters: Considerations for the use of inducible CD4-CreER(T2) mouse lines. Eur. J. Immunol. 50, 603–605.

Zhu, Y., Zhao, Y., Zou, L., Zhang, D., Aki, D., and Liu, Y.C. (2019). The E3 ligase VHL promotes follicular helper T cell differentiation via glycolytic-epigenetic control. J. Exp. Med. 216, 1664–1681.
STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
anti-CD4-PB	BioLegend	Cat# 100531; RRID: AB_493374
anti-CD4-BV510	BioLegend	Cat#:100559 RRID: AB_2562608
anti-CD4-BUV395	BD Biosciences	Cat# 740208; RRID: AB_2734761
anti-CD45.1-APC	BioLegend	Cat# 110713; RRID: AB_313502
anti-CD45.1-BV510	BioLegend	Cat# 110741; RRID: AB_2563378
anti-CD45.1-FITC	BioLegend	Cat# 110706; RRID: AB_313495
anti-CD45.2-V450	BD Thermo Fisher Scientific	Cat# 11-0454-85; RRID: AB_465062
anti-CD44-AF700	BioLegend	Cat# 103026; RRID: AB_493713
anti-CXCR5-Biotin (clone L138D7)	BioLegend	Cat# 145509; RRID: AB_2562125
anti-PD1-BV711 (clone 29F.1A12)	BioLegend	Cat# 135231; RRID: AB_2566158
anti-PD1-PE-eF610 (clone J43)	BioLegend	Cat# 61-9985-82; RRID: AB_2574688
anti-PSLGL-1-BV510	BD Biosciences	Cat# 563448; RRID: AB_2738211
anti-GITR-BV711	BD Biosciences	Cat# 563390; RRID: AB_2738176
anti-CD19-BV605	BioLegend	Cat# 115540; RRID: AB_2563067
anti-CD19-BV510	BioLegend	Cat# 115546; RRID: AB_2562137
anti-CD19-AF488	BioLegend	Cat# 115521; RRID: AB_389307
anti-igD-BV786 (clone 11-26c.2a)	BD Biosciences	Cat# 563618; RRID: AB_2738322
anti-IgG1-BV421	BD Biosciences	Cat# 115659; RRID: AB_2562402
anti-Fas-BV605	BD Biosciences	Cat# 557653; RRID: AB_396768
anti-IgG1-FITC	BD Biosciences	Cat# 562580; RRID: AB_2737664
anti-Foxp3-PE-Cy7	Thermo Fisher Scientific	Cat# 25-5773-82; RRID: AB_891552
anti-Foxp3-AF488	Thermo Fisher Scientific	Cat# 53-5773-82; RRID: AB_763537
anti-Bcl6-PE (clone K112-91)	BD Biosciences	Cat# 561522; RRID: AB_10717126
anti-Bcl6-AF647 (clone K112-91)	BD Biosciences	Cat# 561525; RRID: AB_1089007
anti-IgG1-AF488	BD Biosciences	Cat# 533443; RRID: AB_394862
anti-Foxp3-PE-Cy7	Thermo Fisher Scientific	Cat# 25-5773-82; RRID: AB_891552
anti-Foxp3-AF488	Thermo Fisher Scientific	Cat# 53-5773-82; RRID: AB_763537
anti-Bcl6-PE (clone K112-91)	BD Biosciences	Cat# 561522; RRID: AB_10717126
anti-Bcl6-AF647 (clone K112-91)	BD Biosciences	Cat# 561525; RRID: AB_1089007
anti-IgG1-AF488	BD Biosciences	Cat# 533443; RRID: AB_394862
anti-Foxp3-PE-Cy7	Thermo Fisher Scientific	Cat# 25-5773-82; RRID: AB_891552
anti-Foxp3-AF488	Thermo Fisher Scientific	Cat# 53-5773-82; RRID: AB_763537
anti-Bcl6-PE (clone K112-91)	BD Biosciences	Cat# 561522; RRID: AB_10717126
anti-Bcl6-AF647 (clone K112-91)	BD Biosciences	Cat# 561525; RRID: AB_1089007
anti-IgG1-AF488	BD Biosciences	Cat# 533443; RRID: AB_394862
anti-Foxp3-PE-Cy7	Thermo Fisher Scientific	Cat# 25-5773-82; RRID: AB_891552
anti-Foxp3-AF488	Thermo Fisher Scientific	Cat# 53-5773-82; RRID: AB_763537
anti-Bcl6-PE (clone K112-91)	BD Biosciences	Cat# 561522; RRID: AB_10717126
anti-Bcl6-AF647 (clone K112-91)	BD Biosciences	Cat# 561525; RRID: AB_1089007
anti-IgG1-AF488	BD Biosciences	Cat# 533443; RRID: AB_394862
anti-Foxp3-PE-Cy7	Thermo Fisher Scientific	Cat# 25-5773-82; RRID: AB_891552
anti-Foxp3-AF488	Thermo Fisher Scientific	Cat# 53-5773-82; RRID: AB_763537
anti-Bcl6-PE (clone K112-91)	BD Biosciences	Cat# 561522; RRID: AB_10717126
anti-Bcl6-AF647 (clone K112-91)	BD Biosciences	Cat# 561525; RRID: AB_1089007
anti-IgG1-AF488	BD Biosciences	Cat# 533443; RRID: AB_394862
Bacterial and Virus Strains		
LCMV Armstrong	Zehn Laboratory	Generated in house
Chemicals, Peptides, and Recombinant Proteins		
7-AAD	Thermo Fisher Scientific	Cat# 00-6993-50
2-mercaptoethanol	Sigma-Aldrich	Cat# M6250
Imject Alum	Thermo Fisher Scientific	Cat# 77161
Corn oil	Sigma-Aldrich	Cat# C8267
Exonuclease I	NEB	Cat# M0293
Fixable Viability Dye eFluor 780	Thermo Fisher Scientific	Cat# 65-0865-14
Fluoromount G	Thermo Fisher Scientific	Cat# 00-4958-02
Guanidine hydrochloride	Sigma-Aldrich	Cat# G3272
Maxima H Minus Reverse Transcriptase	Thermo Fisher Scientific	Cat# EP0753

(Continued on next page)
Continued

REAGENT or RESOURCE	SOURCE	IDENTIFIER
NP24-KLH or 4-hydroxy-3-nitrophenylacetyl conjugated to keyhole limpet hemocyanin	Biosearch Technologies	Cat# N-5060
Proteinase K solution	Ambion	Cat# AM2546
Streptavidin-APC	BioLegend	Cat# 405207
Streptavidin-PE	BioLegend	Cat# 405204
Tamoxifen	Sigma-Aldrich	Cat# T5648
Taq Polymerase	NEB	Cat# M0273S
Terra PCR Direct Polymerase Mix	Takara Bio	Cat# 639287
UltraPure DNase/RNase-Free Distilled Water	Thermo Fisher Scientific	Cat# 10977-049

Critical Commercial Assays

REAGENT or RESOURCE	SOURCE	IDENTIFIER
CD4+ T cell Isolation Kit, mouse	Miltenyi Biotech	Cat# 130-104-454
CleanNGS	CleanNA	Cat# CNGS-0050
EasySep Mouse Naive CD4+ T cell Isolation Kit	STEMCELL Technologies	Cat# 19765
Foxp3 / Transcription Factor Staining buffer set	Thermo Fisher Scientific	Cat# 00-5523-00
High Sensitivity DNA Analysis Kits	Agilent Technologies	Cat# FC-131-1024 and Cat# FC-131-1001
Nextera XT DNA Sample Preparation Kit	Illumina	Cat# FC-131-1024 and Cat# FC-131-1001
SensiFAST Probe No-ROX One-Step Kit	Bioline	Cat# BIO-76001

Deposited Data

REAGENT or RESOURCE	SOURCE	IDENTIFIER
RNA-Sequencing data	This work	GEO: GSE142229

Experimental Models: Organisms/Strains

Bcl6f/f	The Jackson Laboratory	JAX #023727
CD45.1 (PtprcPepc/BoyJ)	The Jackson Laboratory	JAX #002014
Cdx4-CreERT2 knock-in (Cdx4tm1(OseERT2ThBu))	Sledzinska et al., 2013	n/a
Cxcr5f/f	Bradford et al., 2017	n/a
Floxed mouse with a 2-step flippase and yFP (Gf(Rosa))	The Jackson Laboratory	JAX #006148
SMARTA (Tg(TcrLCMV)Aox)	Oxenius et al., 1998	n/a
B6.Cg-Cd4tm1(cre/ERT2)Thbu-Cxcr5tm1.Namt	This work	n/a
B6.Cg-Tg(TcrLCMV)Aox-Ptpcr- Ptpcr- Cxcr5tm1.1Namt	This work	n/a
B6.Cg-Tg(TcrLCMV)Aox-Ptpcr- Ptpcr- Cxcr5tm1.1Namt	This work	n/a
B6.Cg-Tg(TcrLCMV)Aox-Ptpcr- Ptpcr- Cxcr5tm1.1Namt	This work	n/a
B6.Cg-Tg(TcrLCMV)Aox-Ptpcr- Ptpcr- Cxcr5tm1.1Namt	This work	n/a
B6.Cg-Tg(TcrLCMV)Aox-Ptpcr- Ptpcr- Cxcr5tm1.1Namt	This work	n/a
B6.Cg-Tg(TcrLCMV)Aox-Ptpcr- Ptpcr- Cxcr5tm1.1Namt	This work	n/a
B6.Cg-Tg(TcrLCMV)Aox-Ptpcr- Ptpcr- Cxcr5tm1.1Namt	This work	n/a
B6.Cg-Tg(TcrLCMV)Aox-Ptpcr- Ptpcr- Cxcr5tm1.1Namt	This work	n/a
B6.Cg-Tg(TcrLCMV)Aox-Ptpcr- Ptpcr- Cxcr5tm1.1Namt	This work	n/a
B6.Cg-Tg(TcrLCMV)Aox-Ptpcr- Ptpcr- Cxcr5tm1.1Namt	This work	n/a

Oligonucleotides

REAGENT or RESOURCE	SOURCE	IDENTIFIER
PrimeTime Assay Bcl6	IDTDNA	Mm.PT.58.1178966; FAM
PrimeTime Assay Actb	IDTDNA	Assay ID: Mm.PT.58.3325736; gs; HEX

(Continued on next page)
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dirk Baumjohann (dirk.baumjohann@uni-bonn.de).

Materials Availability
This study generated several mouse strains by intercrossing various commercially and non-commercially available mouse strains. There are restrictions to the availability of the generated strains as some of the original strains were obtained under material transfer agreement that do not permit redistribution of these strains without prior permission of the strain owner.

Data and Code Availability
Source transcriptomic data are available through GEO: GSE142229. Other source data are available from the Lead Contact upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cd4-CreERT2 knock-in (C57BL/6-CD4tm1(CreERT2)ThBu) mice (Śledzińska et al., 2013) and Cxcr5fl/fl (Cxcr5tm1.Namt) mice (Bradford et al., 2017) have been described previously. Bcl6fl/fl (Bcl6tm1.1Dent, stock number 023727) and Rosa26Stop-fli-YFP (Gt(Rosa)26Sortm1(EYFP)Cos, stock number 006148) mice were purchased from The Jackson Laboratory. For adoptive transfer experiments, compound mouse lines were further intercrossed with LCMV GP61-80 peptide-specific SMARTA TCR-tg mice (Oxenius et al., 1998) and congenic CD45.1 alleles. Wild-type C57BL/6 mice were purchased from Charles River or Janvier Labs. All Mice were housed under specific pathogen free conditions in individually ventilated cages and all animal experiments were performed in accordance with European Regulation and Federal Law and approved by the Regierung von Oberbayern. All mice used for experiments were used at 8-12 weeks of age. Experimental groups were sex and age-matched. To better reveal the dynamic range of the gene ablation effects, our approved animal protocol containing limited numbers of experimental animals focused on testing a wide range of different tamoxifen application and analysis time points as well as independently reproducing the results in two different experimental systems with sufficient numbers of animals, instead of performing extensive repetition experiments for only a few time points.

METHOD DETAILS

Immunizations, adoptive cell transfers, immunizations, infections, and tamoxifen treatment
For immunizations, 4-hydroxy-3-nitrophenylacetyl conjugated to keyhole limpet hemocyanin (NP24-KLH, Biosearch Technologies) dissolved in PBS was mixed 1:1 with alum (Imject Alum, Thermo Scientific) and rotated for 45 min at room temperature prior to

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Bcl6 gDNA F (ACCACTGACCCAGAGGATTA)	IDTDNA	Custom
Bcl6 gDNA R (GGTTCAAATCCCAAGAAAG)	IDTDNA	Custom
CXCR5 gDNA F (ACATCTGGTGCCTGTAATC)	IDTDNA	Custom
CXCR5 gDNA R (ACTAAGAGAGTCGCGCTACT)	IDTDNA	Custom

Software and Algorithms
FlowJo software https://www.flowjo.com/ RRID:SCR_008520
GraphPad Prism 8 https://www.graphpad.com/ RRID:SCR_002798
Cowplot Love et al., 2014 RRID:SCR_018081
Ggplot2 Wickham, 2016 RRID:SCR_014601
ImageJ https://imagej.net/Welcome RRID:SCR_003070
Light Cycler 480 SW 1.5.1 Roche RRID:SCR_012155
STAR 2.6.0a https://github.com/alexdobin/STAR RRID:SCR_015899
zUMIS https://github.com/sdparekh/zUMIs RRID:SCR_016139
immunization. Mice were anesthetized by isoflurane inhalation and injected s.c. with 10 μg NP-KLH into the hock of each hind limb using an insulin syringe (BD Biosciences). Adoptive cell transfers of SMARTA cells into wild-type hosts were performed as previously described (Baumjohann et al., 2013a). In brief, naive CD4+ T cells were isolated from spleens and LNs of SMARTA mice through negative selection using the EasySep Mouse Naive CD4 T cell isolation kit (StemCell Technologies). For most experiments, 1x10^6 naive SMARTA cells were adoptively transferred in PBS into wild-type recipients by tail vein injection, followed by i.p. injection of 1x10^6 pfu LCMV Armstrong. Tamoxifen-induced ablation experiments were performed with Cd4-CreERT2 knock-in mice as previously described (Zeitrag et al., 2020). In brief, tamoxifen (1g, Sigma-Aldrich) was dissolved in 100% Ethanol (1ml). 29ml corn oil (Sigma-Aldrich) were added and the mixture was incubated in a water bath at 56 °C until the solid tamoxifen was fully dissolved. Aliquots of the 33.3 mg/ml stock solution were stored at −20 °C until further use. Mice received a dose of 5 mg tamoxifen in 150 μl volume by intragastric gavage twice daily on two consecutive days (either day 3 and 4 or day 6 and 7 after immunization). For the retransfer experiment, 0.5x10^6 naive SMARTA cells were adoptively transferred into wild-type mice one day prior to infection with 1x10^6 pfu LCMV Armstrong. Tfh and Th1 cells derived from the transferred CD45.1/2 Cd4-CreERT2^Bcl6^f/f SMARTA cells were sorted as CXCR5^PSGL-1^lo and CXCR5^PSGL-1^hi, respectively, into PBS + 2% FCS, washed, and counted. 2x10^4 Th1 or Tfh cells from both genotypes were then co-transferred into infection-matched secondary wild-type hosts. Recipients were gavaged with tamoxifen one and two days after the re-transfer.

Flow cytometry
General guidelines for the use of flow cytometry and cell sorting in immunological studies were followed (Cossarizza et al., 2019). Single-cell suspensions from spleen or peripheral lymph nodes were prepared by mincing the tissue between the frosted ends of glass slides. Dead cells were excluded with 7-AAD (eBioscience/Thermo Fisher) for surface maker analyses or with the fixable viability dye eFluor 780 (eBioscience/Thermo Fisher) for intracellular analyses. Before staining of surface/intracellular molecules, Fc receptors were blocked by preincubation of cells with anti-CD16/32 (clone 93; Biolegend) and 1% mouse/rat serum (StemCell Technologies). The following antibodies were used for analysis of all samples by flow cytometry: CD4 (RM4-5, BD Biosciences, BioLegend), CD45.2 (104, BD Biosciences, eBioscience), CD86 (GL1, BD Biosciences, BioLegend); CD19 (6D5), CD44 (IM7), CD45.1 (A20), PD-1 (29F.1A12), SLAM (TC15-12F12.2) (all Biolegend); Fas (Jo2), GITR (DTA-1), IgG1 (A85-1), PSLG-1 (2PH1) (all BD Biosciences); CXCR4 (2B11), PD-1 (J43), IgG (11-26c) (all eBioscience). CXCR5 was stained with biotinylated anti-CXCR5 (clone L138D7 from Biolegend) for 30min on ice, followed by washing and incubation with streptavidin conjugated to APC or PE (Biolegend) for 15min on ice (Baumjohann and Ansel, 2015). Intracellular transcription factor stainings were performed with the Foxp3 Staining Set from Biolegend using the following fluorophore-coupled mAbs: Bcl6 (K112-91, BD Biosciences), T-bet (4B10, BioLegend) and Foxp3 (FJK-16s, eBioscience). NP-PE (4-Hydroxy-3-nitrophenylacetyl hapten conjugated to phycoerythrin) was purchased from Biosearch Technologies (conjugation ratio 28:1). Samples were acquired on a three-laser BD FACS Canto II or a 5-laser BD LSRFortessa using BD FACS Diva software. Cell sorting was performed on a BD FACSaria Fusion. Data were analyzed with FlowJo software (Treestar).

Quantitative RT-PCR analysis
RT-qPCR was used to quantify deletion efficiency of Bcl6 genomic DNA und mRNA. 200-500 CXCR5^+ PD-1^+ cells were sorted into a 96-well qPCR plate (Roche Diagnostics) containing 5 μl lysis buffer consisting of a 1:500 dilution of Phusion HF buffer (New England Biolabs) in nuclease free water (Thermo Fisher). Cellular components were removed by protease K (Ambion) digest for 10 minutes at 55 °C, followed by desiccation at 95 °C for 10 minutes without a seal to reduce the volume and inactivate protease K. RNA was subsequently transcribed into cDNA using the SensisFast One-Step Real-Time RT-PCR kit (Bioline). The expression of Bcl6 mRNA was measured by multiplexed qRT-PCR using PrimeTime gene expression probes (IDT DNA) for Bcl6 (Mm.PT.58.11789661; FAM) and the housekeeping Actb (Mm.PT.58.33257376.gs; HEX). For the quantification of Bcl6 gDNA, the reverse transcriptase step was omitted and custom PrimeTime probes (IDT DNA) for genomic Bcl6 (F: ACCACTGACCCAGAGTGAATC; R: GCTTCAAATCCCAGTTACT; HEX) were used. The expression was measured on a Light Cycler 480II (Roche) device with the Light Cycler 480 SW 1.5.1 software.

RNA-sequencing
For RNA-seq analysis, 1,000-2,000 Tfh or non-Tfh cells were sorted into a 96-well plate containing 50 μl lysis buffer using a FACSaria Fusion cell sorter (BD Biosciences). The lysis buffer consisted of 5 M Guanidine hydrochloride (Sigma-Aldrich), 1% 2-mercaptoethanol (Sigma-Aldrich) and a 1:500 dilution of Phusion HF buffer (New England Biolabs). After sorting the cells were briefly centrifuged and immediately frozen on dry ice. cDNA was then generated using a modified version of the single cell RNA-seq protocol mcSCRB (Bagnoli et al., 2018). cDNA was amplified with the Nextera XT DNA Library Prep Kit (Illumina) using 0.8 ng as input. Libraries were paired-end sequenced on high output flow cells of an Illumina HiSeq 1500 instrument at LAIFUGA Genomics of LMU Munich’s Gene Center. Sixteen bases were sequenced with the first read to obtain cellular and molecular barcodes and 50 bases were sequenced in the second read into the cDNA fragment. An additional 8 bp bases were sequenced to obtain the i7 barcode. All raw fastq data were processed with zUMIs (Parekh et al., 2018) and mapped to the mouse genome (mm10) using STAR 2.6.0a (Dobin et al., 2013). Gene annotations were obtained from Ensembl (GRCm38.75). Samples were identified via the i7 and Cellular Barcode or only the i7 barcode, with initial phred score filtering allowing 2 or 1 bases below 20, respectively. UMI phred filtering allowed 2 bases below 20. After initial data processing, generated count matrices were loaded into R. We filtered out sparsely detected
genes via UMI per genes and detection abundance (> 1 UMI) over all samples. Afterwards libraries were normalized with DESeq2 (Love et al., 2014). Hierarchical clustering for marker gene expression was performed using Complex Heatmaps. Differentially expressed genes were called with DESeq2. All plotting was performed using ggplot2 and cowplot.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed with Prism 8 (GraphPad) and are specified in each corresponding figure legend.