Laguerre polynomials and the inverse Laplace transform using discrete data
Tran Ngoc Lien, Dang Duc Trong, Alain Pham Ngoc Dinh

To cite this version:
Tran Ngoc Lien, Dang Duc Trong, Alain Pham Ngoc Dinh. Laguerre polynomials and the inverse Laplace transform using discrete data. 10 pages. 2006. <hal-00098062v1>

HAL Id: hal-00098062
https://hal.archives-ouvertes.fr/hal-00098062v1
Submitted on 23 Sep 2006 (v1), last revised 19 Jan 2007 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Laguerre polynomials and the inverse Laplace transform using discrete data

September 23, 2006

Tran Ngoc Lien¹, Dang Duc Trong² and Alain Pham Ngoc Dinh³

Abstract. We consider the problem of finding a function defined on $(0, \infty)$ from a countable set of values of its Laplace transform. The problem is severely ill-posed. We shall use the expansion of the function in a series of Laguerre polynomials to convert the problem in an analytic interpolation problem. Then, using the coefficients of Lagrange polynomials we shall construct a stable approximation solution. Error estimate is given.

Keywords and phrases. inverse Laplace transform, Laguerre polynomials, Lagrange polynomials, ill-posed problem, regularization.

Mathematics Subject Classification 2000. 44A10, 30E05,33C45.

1 Introduction

Let $L^2_\rho(0, \infty)$ be the space of Lebesgue measurable functions defined on $(0, \infty)$ such that

$$\|f\|_{L^2_\rho}^2 \equiv \int_0^\infty |f(x)|^2 e^{-x} dx < \infty.$$

We consider the problem of recovering a function $f \in L^2_\rho(0, \infty)$ satisfying the equations

$$\mathcal{L} f(p_j) \equiv \int_0^\infty e^{-p_j x} f(x) dx = \mu_j \quad (DIL)$$

where $p_j \in (0, \infty), j = 1, 2, 3, ...$

As known, we have the classical problem of finding a function $f(x)$ from its given image $g(p)$ satisfying

$$\mathcal{L} f(p) \equiv \int_0^\infty e^{-px} f(x) dx = g(p), \quad (1)$$

where p is in a subset ω of the complex plane. We note that $\mathcal{L} f(p)$ is usually an analytic function on a half plane $\{ Re \ p > \alpha \}$ for an appropriate real number α. Frequently, the image of a Laplace

¹Faculty of Sciences, Cantho University, Cantho, Vietnam. Email: tnlien@ctu.edu.vn.
²Department of Mathematics and Computer Sciences, Hochiminh City National University, 227 Nguyen Van Cu, Hochiminh City, Vietnam. Email: ddtrong@mathdep.hcmuns.edu.vn.
³Mapmo UMR 6628, Université d’Orléans, BP 6759, 45067 Orleans Cedex, France. Email: alain.pham@univ-orleans.fr
transform is known only on a subset \(\omega \) of the right half plane \(\{ \Re p > \alpha \} \). Depending on the set \(\omega \), we shall have appropriate methods to construct the function \(f \) from the values in the set \(\{ \mathcal{L}f(p) : p \in \omega \} \).

Hence, there are no universal methods of inversion of the Laplace transform.

If the data \(g(p) \) is given as a function on a line \((-\infty + a, +\infty + a) \) (i.e., \(\omega = \{ p : p = a + iy, y \in \mathbb{R} \} \)) on the complex plane then we can use the Bromwich inversion formula ([25], p. 67) to find the function \(f(x) \).

If \(\omega \subset \{ p \in \mathbb{R} : p > 0 \} \) then we have the problem of real inverse Laplace transform. The right hand side is known only on \((0, \infty) \) or a subset of \((0, \infty) \). In this case, the use of the Bromwich formula is therefore not feasible. The literature on the subject is impressed in both theoretical and computational aspects (see, e.g. [2,3,10,15,17,21]). In fact, if the data \(g(p) \) is given exactly then, by the analyticity of \(g \), we have many inversion formulas (see,e.g., [3,7,8,19,20]). In [3], the author approximate the function \(f \) by

\[
\beta u_\beta + \mathcal{L}^* \mathcal{L} u_\beta = \mathcal{L}^* g, \quad \beta > 0.
\]

Since \(\mathcal{L} \) is self-adjoint (cf. [7]), the latter equation can be written as

\[
\beta u_\beta + \int_0^\infty \frac{u_\beta(s)}{s + t} ds = \int_0^\infty e^{-st}g(s)ds.
\]

The latter problem is well-posed.

Although the inverse Laplace transform has a rich literature, the papers devoted to the problem with discrete data are scarce. In fact, from the analyticity of \(\mathcal{L}f(p) \), if \(\mathcal{L}f(p) \) is known on a countable subset of \(\omega \subset \{ \Re p > \alpha \} \) accumulating at a point then \(\mathcal{L}f(p) \) is known on the whole \(\{ \Re p > \alpha \} \). Hence, generally, a set of discrete data is enough for constructing an approximation function of \(f \). It is a moment problem. In [15], the authors presented some theorems on the stabilization of the inverse Laplace transform. The Laplace image is measured at \(N \) points to within some error \(\epsilon \). This is achieved by proving parallel stabilization results for a related Hausdorff moment problem. For a construction of an approximate solution of (DIL), we note that the sequence of functions \((e^{-p_j t}) \) is
(algebraically) linear independent and moreover the vector space generated by the latter sequence is
dense in $L^2(0, \infty)$. The method of truncated expansion as presented in ([6], Section 2.1) is applicable
and we refer the reader to this reference for full details. In [11, 13], the authors convert (DIL) into a
moment problem of finding a function in $L^2(0, 1)$ and, then, they use Muntz polynomials to construct
an approximation for f.

Now, in the present paper, we shall convert (DIL) to an analytic interpolation problem on
the Hardy space of the unit disc. After that, we shall use Laguerre polynomials and coefficients of
Lagrange polynomials to construct the function f. An approximation corresponding to the nonexact
data and error estimate will be given.

The remainder of the paper divided into two sections. In Section 2, we convert our problem into
an interpolation one and give a uniqueness result. In Section 3, we shall give two regularization
results in the cases of exact data and nonexact data.

2. A uniqueness result

In this paper we shall use Laguerre polynomials

$$L_n(x) = \frac{e^x \, d^n}{n! \, dx^n} (e^{-x} x^n).$$

We note that $\{L_n\}$ is a sequence of orthonormal polynomials on $L^2_\rho(0, \infty)$. We note that (see, e.g.,
[9], page 67)

$$\exp \left(\frac{x z}{z - 1} \right) (1 - z)^{-1} = \sum_{n=0}^{\infty} L_n(x) z^n.$$

Hence, if we have the expansion

$$f(x) = \sum_{n=0}^{\infty} a_n L_n(x)$$

then

$$\int_{0}^{\infty} f(x) \exp \left(\frac{x z}{z - 1} \right) (1 - z)^{-1} e^{-x} \, dx = \sum_{n=0}^{\infty} a_n z^n.$$

It follows that

$$\sum_{n=0}^{\infty} a_n z^n = \int_{0}^{\infty} f(x) \exp \left(\frac{x}{z - 1} \right) (1 - z)^{-1} \, dx.$$

Put $\Phi f(z) = \sum_{n=0}^{\infty} a_n z^n$, $\alpha_j = 1 - 1/p_j$, one has

$$\Phi f(\alpha_j) = p_j \mu_j,$$

i.e., we have an interpolation problem of finding an analytic function Φf in the Hardy space $H^2(U)$.
Here, we denote by U the unit disc of the complex plane and by $H^2(U)$ the Hardy space. In fact, we
recall that $H^2(U)$ is the space of all functions ϕ analytic in U and if, $\phi \in H^2(U)$ has the expansion

$$\phi(z) = \sum_{k=0}^{\infty} a_k z^k$$

then $\|\phi\|_{H^2(U)}^2 = \sum_{k=0}^{\infty} |a_k|^2$. We can verify directly that the linear operator Φ
is an isometry from L^2_ρ onto $H^2(U)$. In fact, we have

Lemma 1 Let $f \in L^2_\rho(0, \infty)$. Then $\mathcal{L} f(z)$ is analytic on $\{z \in \mathbb{C} \mid \text{Re} z > 1/2\}$. If we have an
expansion

$$f = \sum_{n=0}^{\infty} a_n L_n$$
then one has \(\Phi f \in H^2(U) \) and
\[
\| \Phi f \|_{H^2(U)}^2 = \sum_{n=0}^{\infty} |a_n|^2 = \| f \|_{L^2_\rho(0, \infty)}^2.
\]
Moreover, if we have in addition that \(xe^{-x}|f'|^2 \in L^1(0, \infty) \) then
\[
\sum_{n=0}^{\infty} n|a_n|^2 \leq \| xe^{-x}|f'|^2 \|_{L^1(0, \infty)}.
\]

Proof

Putting \(F_z(t) = e^{-zt}f(t) \), we have \(F \in L^2(0, \infty) \) for every \(\text{Re}z > 1/2 \). Hence \(Lf(z) = \int_0^\infty F_z(t)dt \) is analytic for \(\text{Re}z > 1/2 \). From the definitions of \(L^2_\rho(0, \infty) \) and \(H^2(U) \), we have the isometry equality.

Now we prove the second inequalities. We first consider the case \(f', f'' \) in the space \(B = \{ g \text{ Lebesgue measurable on } (0, \infty) | \sqrt{\pi}g \in L^2_\rho(0, \infty) \} \).

We have the expansion
\[
f = \sum_{n=0}^{\infty} a_n L_n.
\]
The function \(y = L_n \) satisfies the following equation
\[
xy'' + (1-x)y' + ny = 0
\]
which gives
\[
(xe^{-x}y')' + nye^{-x} = 0.
\]
It follows that
\[
\int_0^\infty f(xe^{-x}L'_m)x \text{d}x = \sum_{n=0}^{\infty} a_n \int_0^\infty (xe^{-x}L'_m)L_n \text{d}x
\]
\[
= \sum_{n=0}^{\infty} a_n \int_0^\infty (xe^{-x}L'_n)L_m \text{d}x
\]
\[
= -\sum_{n=0}^{\infty} na_n \int_0^\infty L_nL_me^{-x} \text{d}x.
\]
Hence, the orthonormality of \((L_m) \) gives
\[
\int_0^\infty (xe^{-x}f''(x))a_nL_m(x) \text{d}x = -ma_n^2 \quad \text{for } m = 0, 1, ...
\]
It follows that
\[
\int_0^\infty (xe^{-x}f''(x))f(x) \text{d}x = -\sum_{n=0}^{\infty} na_n^2.
\]
Integrating by parts, we get
\[
\int_0^\infty xe^{-x}|f'(x)|^2 \text{d}x = \sum_{n=0}^{\infty} na_n^2.
\]
Now, for \(f' \in B \) we choose \((f_k)\) such that \(f'_k, f''_k \in B \) for every \(k = 1, 2, \ldots \) and \(f_k \to f \) in \(L^2_\rho \) as \(n \to \infty \). Assume that

\[
f_k = \sum_{n=0}^{\infty} a_{kn} L_n.
\]

Then we have

\[
\int_{0}^{\infty} x e^{-x} |f'_k(x)|^2 \, dx = \sum_{n=0}^{\infty} na^2_{kn}.
\]

Let \(k \to \infty \) in the latter equality, we complete the proof of Lemma 1.

Using Lemma 1, one has a uniqueness result

Theorem 1. Let \(p_j > 1/2 \) for every \(j = 1, 2, \ldots \). If

\[
\sum_{p_j > 1} \frac{1}{p_j} + \sum_{1/2 < p_j < 1} \frac{2p_j - 1}{p_j} = \infty
\]

then Problem (DIL) has at most one solution in \(L^2_\rho(0, \infty) \).

Proof

Let \(f_1, f_2 \in L^2_\rho(0, \infty) \) be two solutions of (DIL). Putting \(g = f_1 - f_2 \) then \(g \in L^2_\rho(0, \infty) \) and \(Lg(p_j) = 0 \). It follows that \(\Phi g(1 - 1/p_j) = 0, \ j = 1, 2, \ldots \) It follows that \(\alpha_j = 1 - 1/p_j \) are zeroes of \(\Phi g \). We have \(\Phi g \in H^2(U) \) and

\[
\sum_{j=1}^{\infty} (1 - |\alpha_j|) = \sum_{p_j > 1} \frac{1}{p_j} + \sum_{1/2 < p_j < 1} \frac{2p_j - 1}{p_j} = \infty.
\]

Hence we get \(\Phi g \equiv 0 \) (see, e.g.,[18]). It follows that \(g \equiv 0 \). This completes the proof of Theorem.

3. Regularization and error estimates

In the section, we assume that \((p_j)\) is a convergent sequence. Without loss of generality, we shall assume that \(\lim_{j \to \infty} p_j = 1 \). In fact, if \(\lim_{j \to \infty} p_j = \rho_0 > 1 \) then, by putting \(\tilde{f}(x) = e^{-(\rho_0 - 1)x} f(x) \) and \(p'_j = p_j - \rho_0 + 1 \), we can transform the problem to the one of finding \(\tilde{f} \in L^2_\rho(0, \infty) \) such that

\[
\int_{0}^{\infty} e^{-p'_j x} \tilde{f}(x) \, dx = \mu_j, \quad j = 1, 2, \ldots
\]

in which \(\lim_{j \to \infty} p'_j = 1 \).

We denote by \(\ell^{(m)}_k(\nu) \) the coefficient of \(z^k \) in the expansion of the Lagrange polynomial \(L_m(\nu) (\nu = (\nu_1, \ldots, \nu_m)) \) of degree (at most) \(m - 1 \) satisfying

\[
L_m(\nu)(z_k) = \nu_k, \quad 1 \leq k \leq m,
\]

where \(z_k = \alpha_k \). We denote by

\[
L^0_m(\nu)(z) = \sum_{0 \leq k \leq \theta(m-1)} \ell^{(m)}_k(\nu) z^k.
\]
The polynomial $L_n^\theta(\nu)$ is called a truncated Lagrange polynomial (see also [24]). For every $g \in L_p^2(0, \infty)$, we put
\[T_n g = (p_1 L g(\alpha_1) \ldots p_n L g(\alpha_n)). \]
Here, we recall that $\alpha_n = 1 - 1/p_n$. We shall approximate the function f by
\[F_m = \Phi^{-1} L_m^\theta(T_m f) = \sum_{0 \leq k \leq \theta(m-1)} \ell_k^{(m)}(T_m f) L_k. \]
We shall prove that F_m is an approximation of f. More precisely, one has

Theorem 2 Let $\sigma \in (0, 1/3)$, let f be as in Lemma 1 and let $p_j > 1/2$ for $j = 1, 2, \ldots$ satisfy $\lim_{j \to \infty} p_j = 1$ and
\[\left| 1 - \frac{1}{p_j} \right| \leq \sigma. \]
Put θ_0 be the unique solution of the equation (unknown x)
\[\frac{2\sigma^{1-x}}{1-\sigma} = 1. \]
Then for $\theta \in (0, \theta_0)$, one has
\[||f - F_m||_{L_2^2(0, \infty)} \longrightarrow 0 \quad \text{as} \quad m \to \infty. \]
If, we assume in addition that $xe^{-x/2}|f'(x)|^2 \in L^1(0, \infty)$ then
\[||f - F_m||_{L_2^2(0, \infty)} \leq (1 + m\theta^3)||f||_{L_2^2}^2 \left(\frac{2\sigma^{1-\theta}}{1-\sigma} \right) + \frac{1}{m\theta} \frac{xe^{-x/2}|f'(x)|^2||_{L^1(0, \infty)}}{L_2^2}. \]

Proof

We have in view of Lemma 1
\[||f - F_m||_{L_2^2(0, \infty)}^2 = \sum_{0 \leq k \leq m-1} |\delta_k^{(m)}|^2 + \sum_{k > \theta(m-1)} |a_k|^2 \]
where $\delta_k^{(m)} = a_k - \ell_k^{(m)}(T_m f)$. We shall give an estimate for $\delta_k^{(m)}$. In fact, we have
\[||\Phi f - L_m(T_m f)||_{L_2^2(U)}^2 = \sum_{k=0}^m |\delta_k^{(m)}|^2 + \sum_{k=m+1}^\infty |a_k|^2. \]
On the other hand, the Hermite representation (see, e.g. [12]) gives
\[\Phi f(z) - L_m(T_m f)(z) = \frac{1}{2\pi i} \int_{\partial U} \frac{\omega_m(z) f(\zeta) d\zeta}{\omega_m(\zeta)(\zeta - z)} \]
where $\omega_m(z) = (z - \alpha_1) \ldots (z - \alpha_m)$. Now, if we denote by $\sigma_{-1}^{(m)} = \sigma_{-2}^{(m)} = \ldots = 0$ and
\[\sigma_0^{(m)} = 1 = \sum_{1 \leq j_1 < \ldots < j_r \leq m} \alpha_{j_1} \ldots \alpha_{j_r} \quad (1 \leq r \leq m), \]
\[\beta_s^{(m)} = \frac{1}{2\pi i} \int_{\partial U} \frac{f(\zeta) d\zeta}{\zeta^{s+1} \omega_m(\zeta)} \]
then we can write in view of the Hermite representation
\[
\Phi f(z) - L_m(T_m f)(z) = \sum_{k=0}^{\infty} \left(\sum_{r=0}^{k} (-1)^{m-r} \sigma_{m-r}^{(m)} \beta_{k-r}^{(m)} \right) z^k.
\]
From the latter representation, one gets
\[
\delta_k^{(m)} = \sum_{r=0}^{k} (-1)^{m-r} \sigma_{m-r}^{(m)} \beta_{k-r}^{(m)}, \quad 0 \leq k \leq m - 1.
\]
Now, by direct computation, one has
\[
|\delta_k^{(m)}| \leq (1 + m\theta) \|f\|_{L^2(1 - \sigma)} \left(\frac{2\sigma^{1-\theta}}{1 - \sigma} \right)^m.
\]
From the latter inequality, one has in view of (2)
\[
\|f - F_m\|_{L^2(0, \infty)}^2 \leq (1 + m\theta)^3 \|f\|_{L^2(1 - \sigma)}^2 \left(\frac{2\sigma^{1-\theta}}{1 - \sigma} \right)^{2m} + \sum_{k>m\theta} \|a_k\|^2.
\]
For \(\theta \in (0, \theta_0)\), one has
\[
0 < \frac{2\sigma^{1-\theta}}{1 - \sigma} < \frac{2\sigma^{1-\theta_0}}{1 - \sigma} = 1.
\]
Hence, we have
\[
\lim_{m \to \infty} \|f - F_m\|_{L^2(0, \infty)}^2 = 0
\]
as desired.

Now if \(xe^{-x}|f'|^2 \in L^1(0, \infty)\) then one has
\[
\sum_{k>m\theta} \|a_k\|^2 \leq \frac{1}{m\theta} \sum_{k=0}^{\infty} k|a_k|^2 = \frac{1}{m\theta} \|xe^{-x}|f'|^2\|_{L^1(0, \infty)}.
\]
This completes the proof of Theorem 1.

Now, we consider the case of non-exact data. Put
\[
D_m = \max_{1 \leq n \leq m} \left(\max_{|z| \leq R} \left| \frac{\omega_m(z)}{(z - \alpha_n)\omega'_m(z)} \right| \right).
\]
Let $\psi: [0, \infty) \to \mathbb{R}$ be an increasing function satisfying
\[\psi(m) \geq (m + 1)D_m, \quad m = 1, 2, \ldots \]
and
\[m(\epsilon) = [\psi(\epsilon^{-1/2})] + 1 \]
where $[x]$ is the greatest integer $\leq x$.

Theorem 2. Let the assumptions of Theorem 1 hold. Let $\epsilon > 0$ and let (μ_j^ϵ) be a measured data of $(\mathcal{L}f(p_j))$ satisfying
\[\sup_j |p_j(\mathcal{L}f(p_j) - \mu_j^\epsilon)| < \epsilon. \]
Then we have
\[\|f - \Phi^{-1}L^\theta_{\mu_j^\epsilon}(\nu^\epsilon)\|_{L^2_\rho}^2 \leq 2(1 + m(\epsilon)\theta^3\|f\|_{L^2_\rho}^2 \left(\frac{2\sigma^{1-\theta}}{1-\sigma} \right)^{2m(\epsilon)} + \frac{1}{m(\epsilon)\theta}\|xe^{-x}|f'|^2\|_{L^1(0,\infty)} + \epsilon^{1/2}. \]
where $\nu_j^\epsilon = p_j\mu_j^\epsilon$ for $j = 1, 2, \ldots$

Proof

We note that
\[L_m(T_mf)(z) - L_m(\nu^\epsilon)(z) = \sum_{j=0}^m (p_j\mu_j - \nu_j^\epsilon) \frac{\omega_m(z)}{(z - \alpha_j)\omega_m'(z)}. \]
It follows that
\[\|L_m(T_mf) - L_m(\nu^\epsilon)\|_{\infty} \leq \epsilon(m + 1)D_m. \]
Hence
\[\|L_m^\theta(T_mf) - L_m(\nu^\epsilon)\|_{H^2(U)} \leq \|L_m(T_mf) - L_m(\nu^\epsilon)\|_{\infty} \leq \epsilon(m + 1)D_m. \]
It follows by the isometry property of Φ
\[\|f - \Phi^{-1}L^\theta_{\mu_j^\epsilon}(\nu^\epsilon)\|_{L^2_\rho}^2 \leq 2\|f - F_m\|_{L^2_\rho}^2 + 2\|\Phi^{-1}L^\theta_{\mu_j^\epsilon}(T_mf) - \Phi^{-1}L^\theta_{\mu_j^\epsilon}(\nu^\epsilon)\|_{L^2_\rho}^2 \leq (1 + m\theta)^3\|f\|_{L^2_\rho}^2 \left(\frac{2\sigma^{1-\theta}}{1-\sigma} \right)^{2m} + \frac{1}{m\theta}\|xe^{-x}|f'|^2\|_{L^1(0,\infty)} + \epsilon(m + 1)D_m. \]
By choosing $m = m(\epsilon)$ we get the desired result. This completes the proof of Theorem 2.

References

[1] Abramowitz, M. and Stegun, I. A.: *Handbook of Mathematical Functions*. New York: Dover, 1972.

[2] Ahn, J., Kang S. and Kwon, Y.: *A flexible inverse Laplace transform algorithm and its applications*. Computing 71, 2003, no.2, 115-131.

[3] Al-Shuaibi, A., A regularization method for approximating the inverse Laplace transform, Approx. Theory Appl. (N.S.) 13 (1997), no 1, 58-65
[4] Amano, K., Saitoh, S. and Yamamoto, M.: *Error estimates of the real inversion formulas of the Laplace transform*, Integral Transforms and Special Functions 10, 2000, pp. 165-178.

[5] D. D. Ang, R. Gorenflo and D. D. Trong, A multidimensional Hausdorff moment problem: regularization by finite moments, Zeitschrift für Anal. und ihre Anwendungen 18, No.1, 1999, pp 13-25.

[6] D. D. Ang, R. Gorenflo, L. K. Vy and D. D. Trong, *Moment Theory and Some Inverse Problems in Potential Theory and Heat Conduction*, Lecture Notes in Mathematics: Springer, 2002.

[7] Ang, D.D., Lund, J. and Stenger, F.: *Complex variables and regularization method of inversion of the Laplace transform*, Math. Computation 54, No 188, 1989, pp. 589-608.

[8] Boumenir, A. and Al-Shuaibi, A.: *The inverse Laplace transform and analytic pseudodifferential operators*. J. Math. Anal. Appl. 228, 1998, no. 1, 16-36.

[9] Peter Borwein and Tamas Erdelyi, *Polynomials and polynomial Inequalities*, Graduate Texts in Mathematics: Springer-Verlag, 1995.

[10] Byun, D.-W. and Saitoh, S.: *A real inversion formula for the Laplace transform*, Z. Anal. Anw. 12, 1993, pp. 597-603

[11] Dung, N., Huy, N.V., Quan, P.H., Trong, D.D.: *A Hausdorff-like Moment Problem and the Inversion of the Laplace transform*. Math. Nachr., Vol 279, Issue 11, 2006, pp.1147-1158.

[12] Gaier, D.: Lectures on Complex Approximation, Birkhauser, Boston-Basel-Stuttgart, 1987.

[13] Nguyen Vu Huy and Dang Duc Trong, *A Hausdorff Moment Problems with Non-Integral Powers: Approximation by Finite Moments*, Vietnam Journal of Mathematics 32:4, 2004, pp. 371-377.

[14] Lebedev, N. N.: *Special Functions and Their Applications*. New York: Dover Publications Inc. 1972.

[15] de Mottoni, P. and Talenti, G.: Stabilization and error bounds for the inverse Laplace transform, Numer. Funct. Anal. Optim. 3(1981), no.3, 265-283.

[16] Rabenstein, A. L.: *Introduction to Ordinary Differential Equations*, New York et al.: Acad. Press, 1972.

[17] Rizzardi, M.: A modification of Talbot’s method for the simultaneous approximation of several values of the inverse transform, ACM Trans. Math. Software 21, 1995, no. 4, 347-371.

[18] Rudin, W.: Real and Complex analysis, New York et al.: McGraw-Hill,1987.

[19] Saitoh, S.: *Integral transforms, Reproducing kernels and their Applications*, Pitman, Res. Notes in Math. Series 369, Addison Wesley Longman Ltd., U.K., 1997.

[20] Saitoh, S., Vu Kim Tuan and Yamamoto, M.: *Conditional stability of a real inverse formula for the Laplace transform*, Z. Anal. Anw. 20, 2001, 193-202.

[21] Soni, R.C. and Singh, D.: *A unified inverse Laplace transform formula involving the product of a general class of polynomials and the Fox H-function*. Tamkang J. Math. 36, 2005, no.2, 87-92.
[22] Talenti, G.: *Recovering a function from a finite number of moments.* Inverse Problems 3, 1987, 501-517.

[23] Taylor, A.: *Advanced Calculus.* New York et al.: Blaisdell Publ. Comp., 1965.

[24] Trong, D.D. and Lien, T.N.: *Reconstructing an analytic function using truncated Lagrange polynomials.* Zeitschrift fur Analysis und ihre Anwendungen, Vol. 22, 2003, No.4, 925-938.

[25] Widder, D.V.: *The Laplace transform,* Princeton University Press, 1946.