I. INTRODUCTION

The conversion decays of a vector resonance (V) into a pseudoscalar meson (P) and a lepton pair, \(V \rightarrow P\gamma^* \rightarrow P\ell\ell \), provide a stringent test for theoretical models of the structure of hadrons and the interaction mechanism between photons and hadrons [1]. In these processes, the squared dilepton invariant mass corresponds to the virtual photon 4-momentum transfer squared, \(q^2 \). The \(q^2 \) distribution depends on the underlying dynamical electromagnetic structure of the transition \(V \rightarrow P\gamma^* \). Furthermore, through the vector-meson dominance (VMD) model [1], the virtual photon effectively couples to vector particles, such as the \(\rho, \omega, \phi \) and even the heavier \(J/\psi \) particle. However, the off-shell effects cannot be calculated reliably [2]. Experimental measurement of the \(q^2 \) distribution is crucial to validate these calculations.

Several light meson decays with virtual photon-conversion to an \(e^+e^- \) pair, e.g., \(\omega \rightarrow \pi^0 e^+e^- \) [3], \(\phi \rightarrow \pi^0 e^+e^- \) [4], and \(\phi \rightarrow \eta e^+e^- \) [5], have been observed. The charmonium electromagnetic (EM) Dalitz decay, \(\psi(3686) \rightarrow e^+e^-\eta \) [6], \(\psi(3686) \rightarrow e^+e^-\eta_{cJ} \) [7], and \(J/\psi \rightarrow e^+e^-\eta \) [8], have also been reported. The charm meson decay \(D_s^{\ast+} \rightarrow D_s^0 e^+e^- \) was observed by CLEO [9], and the ratio of the branching fractions \(\frac{B(D^{\ast+} \rightarrow D_s^0 e^+e^-)}{B(D^{\ast+} \rightarrow D_s^0 \gamma)} \) is measured to be \((0.72 \pm 0.18)\%\), which agrees with the theoretical calculation based on the VMD model. However, there is no experimental result for the corresponding EM Dalitz decays of \(D^{\ast0} \) and \(D^{\ast} \). According to the VMD model, the \(D_s^{\ast+} \rightarrow D_s^0 e^+e^- \) decay mainly occurs via the coupling of the virtual photon to the vector \(\phi \) meson, while the \(D^{\ast0} \rightarrow D^{\ast} e^+e^- \) decay proceeds through the coupling to the \(\rho \) or \(\omega \) meson. Hence, the study of the decay \(D^{\ast0} \rightarrow D^{\ast} e^+e^- \), with the diagrams depicted in FIG. 1, provides information on the form factor for the couplings \(\gamma^* \rightarrow \rho \) and \(\gamma^* \rightarrow \omega \). The ratio between branching fractions of \(D^{\ast0} \rightarrow D^0 e^+e^- \) and \(D^{\ast0} \rightarrow D^0 \gamma \) is defined as

\[
R_{e\gamma} = \frac{B(D^{\ast0} \rightarrow D^0 e^+e^-)}{B(D^{\ast0} \rightarrow D^0 \gamma)}. \tag{1}
\]

Based on 3.19 fb\(^{-1}\) of \(e^+e^- \) collision data accumulated at the center-of-mass energy 4.178 GeV with the BESIII detector operating at the BEPCII collider, the electromagnetic Dalitz decay \(D^{\ast0} \rightarrow D^0 e^+e^- \) is observed for the first time with a statistical significance of 13.2\sigma. The ratio of the branching fraction of \(D^{\ast0} \rightarrow D^0 e^+e^- \) to that of \(D^{\ast0} \rightarrow D^0 \gamma \) is measured to be \((11.08 \pm 0.76 \pm 0.49) \times 10^{-3}\). By using the world average value of the branching fraction of \(D^{\ast0} \rightarrow D^0 \gamma \), the branching fraction of \(D^{\ast0} \rightarrow D^0 e^+e^- \) is determined to be \((3.91 \pm 0.27 \pm 0.17 \pm 0.10) \times 10^{-3}\), where the first uncertainty is statistical, the second is systematic and the third is from external input of the branching fraction for \(D^{\ast0} \rightarrow D^0 \gamma \).
Calculateds using the VMD model give $R_{ee} = 0.67\%$ along with the following differential decay rate [1]:

$$\frac{dR_{ee}}{dq^2} = \frac{\alpha}{3\pi q^2} \left[f(q^2) \right]^2 \left[1 - \frac{4m_e^2}{q^2} \right]^{\frac{1}{2}} \left[1 + \frac{2m_e^2}{q^2} \right] \left(\frac{q^2}{A} - \frac{4m_{D^0}\ast q^2}{A^2} \right)^{\frac{3}{2}}.$$ (2)

Here, α is the fine structure constant, $A = m_{D^\ast} - m_{D^0}$, $f(q^2)$ is the transition form factor for D^\ast to D^0, m_e is the mass of electron and m_{D^0} (m_{D^\ast}) is the mass of D^0 (D^\ast). The form-factor ratio $\frac{f(q^2)}{f(0)}$ is equal to $(1 - \frac{q^2}{m_e^2})^{-1}$, where m_ρ is the ρ resonance mass.

FIG. 1. Diagrams of the decay $D^\ast \rightarrow D^0 e^+ e^-$. The symbol V^\ast indicates the virtual ρ, ω, ϕ or J/ψ meson.

In this paper, the EM Dalitz decay $D^\ast \rightarrow D^0 e^+ e^-$ is studied and R_{ee} is measured using 3.19 fb$^{-1}$ of $e^+ e^-$-collision data collected with the BESIII detector at the center-of-mass energy $\sqrt{s} = 4.178$ GeV. To control background contributions, the candidates for both $D^0 \rightarrow D^\ast e^+ e^-$ and $D^\ast \rightarrow D^0 e^+ e^-$ are reconstructed with $e^+ e^- \rightarrow D^\ast(D^0)$ on the recoiling side is not detected. The inclusion of charge-conjugate states is implied throughout this paper.

II. DESCRIPTION OF THE BEPCII AND THE BESIII DETECTOR

The BESIII detector [10] records symmetric $e^+ e^-$ collisions provided by the BEPCII storage ring [11], which operates in the center-of-mass energy range from 2.0 – 4.96 GeV. BESIII has collected large data samples in this energy region [12]. The cylindrical core of the BESIII detector covers 93% of the full solid angle and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator and multi-gap resistive plate chamber time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identification modules interleaved with steel. The charged-particle momentum resolution at 1 GeV/c is 0.5%, and the dE/dx resolution is 6% for electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5% (5%) at 1 GeV in the barrel (end cap) region. The time resolution in the TOF barrel region is 68 ps, while that in the end cap region is 60 ps [13].

III. MONTE CARLO SIMULATION

Simulated data samples produced with a GEANT4-based [14] Monte Carlo (MC) package, which includes the geometric description of the BESIII detector and the detector response, are used to determine detection efficiencies and to estimate backgrounds. The simulation models the beam energy spread and initial state radiation (ISR) in the $e^+ e^-$ annihiliations with the generator KKM [15]. The inclusive MC sample includes the production of open charm processes, the ISR production of vector charmonium-like states, and the continuum processes incorporated in KKM [15]. The known decay modes are modeled with EVTGEN [16] using branching fractions taken from the Particle Data Group [17], and the remaining unknown charmonium decays are modeled with LUNDCHARM [18]. Final state radiation (FSR) from charged final state particles is incorporated using PHOTOS [19].

The MC events of the signal process $e^+ e^- \rightarrow D^\ast(D^0)\bar{D}^\ast(D^0)$, $D^\ast \rightarrow D^0 e^+ e^-$ are generated according to the VMD model. Following Ref. [20], the decay $D^\ast \rightarrow D^0 e^+ e^-$ is described as

$$\frac{d\Gamma}{dq^2 d\cos \theta_e} \propto \frac{|f(q^2)|^2}{q^2} \left(1 - \frac{4m_e^2}{q^2} \right)^{\frac{1}{2}} \left[\left(1 + \frac{4m_{D^0}^2 - m_{D^\ast}^2}{q^2} \right) - \frac{4m_{D^0}^2 q^2}{A^2} \right]^{\frac{3}{2}} \left[\left(1 + \frac{4m_e^2}{q^2} \right) + \left(1 - \frac{4m_e^2}{q^2} \right) \cos^2 \theta_e \right].$$ (3)

where θ_e is the helicity angle of the electron pair system. The MC samples of the reference process $D^\ast \rightarrow D^0\gamma$ are generated with the KKMC.
IV. EVENT SELECTION

To reconstruct the signal and reference processes, D^0 candidates are selected via three decay modes $D^0 \rightarrow K^-\pi^+, K^-\pi^+\pi^0$ and $K^-\pi^+\pi^-\pi^+$. For each charged track candidate, the polar angle θ in the MDC is required to be in the range $|\cos\theta| < 0.93$, and the distance of closest approach to the interaction point is required to be less than 10 cm along the beam direction and less than 1 cm in the plane perpendicular to the beam. The dE/dx recorded by the MDC and the time-of-flight information measured by the TOF are combined to calculate particle identification (PID) probability for the pion (P_{π}) and kaon (P_K) hypotheses. Pion candidates are selected by requiring $P_{\pi} > 0$ and $P_K > P_{\pi}$, and kaon candidates are required to satisfy $P_K > 0$ and $P_K > P_{\pi}$. Photon candidates are reconstructed with isolated clusters in the EMC in the region $|\cos\theta| \leq 0.80$ (barrel) or $0.86 \leq |\cos\theta| \leq 0.92$ (end cap). The deposited energy of the cluster is required to be larger than 25 (50) MeV in the barrel (end cap) region, and the angle between the photon candidate and any charged track is larger than 10°. All $\gamma\gamma$ combinations are considered as candidate π^0 mesons, and the reconstructed mass $M_{\gamma\gamma}$ is required to satisfy $0.115 < M_{\gamma\gamma} < 0.150$ GeV/c^2. A kinematic fit is performed to constrain the $\gamma\gamma$ invariant mass to the nominal π^0 mass taken from the PDG [17], and candidates with the fit quality $\chi^2 < 200$ are retained. The $K^-\pi^+\pi^0$, $K^-\pi^+\pi^-\pi^+$ combinations are required to be within the mass windows $1.85 < M_{K^-\pi^+\pi^0} < 1.88$ GeV/c^2, $1.84 < M_{K^-\pi^+\pi^-\pi^+} < 1.89$ GeV/c^2 and $1.85 < M_{K^-\pi^+\pi^-\pi^+} < 1.88$ GeV/c^2, respectively. For each decay mode, all possible combinations are kept for further analysis.

For the $D^{*0} \rightarrow D^0 e^+e^-$ decay, the electron and positron candidates are identified using the following criteria: the energy E_{beam} and the position of the electron candidate are required to be within 3σ of the track in the MDC. The probability criteria of $P_{\pi} > 0$, $P_{\pi} > P_{\gamma}$ and $P_e > P_K$ are applied. The energy $E_{beam} - E_D$ is defined as $\Delta E = E_{beam} - E_D$, where E_{beam} is the reconstructed energy of D^{*0} candidates in the rest frame of the e^+e^- initial beams. The variable ΔE is defined as $\Delta E = E_{beam} - E_D$, where E_{beam} is the beam energy; $|\Delta E| < 0.03$ GeV is required to reduce background contributions. If there are multiple candidates (13% of the selected events) in an event, only the one with the minimum $|\Delta E|$ is accepted. Similarly, for the $D^{*0} \rightarrow D^0\gamma$ candidates, if there are multiple combinations (32% of the selected events) in an event, only the candidate with the minimum $|\Delta E|$ is kept. The variable $|\Delta E| < 0.03$ GeV is required to reduce background contributions. To separate D^{*0} candidates from e^+e^-, the beam-constrained mass M_{BC} is defined as $M_{BC}^2 = E_{beam}^2 - p_{D^{*0}}^2$, where $p_{D^{*0}}$ is the measured total momentum of D^{*0} candidates in the rest frame of initial e^+e^- beams. In addition, a veto for dielectrons from photon conversion is applied to suppress background from $D^{*0} \rightarrow D^0\gamma$, where the dielectron comes from the transition photon interacting with the materials in the beam pipe and the MDC inner wall. The variable of R_{xy} which represents the distance between beam interaction point and vertex of photon-conversion in xy plane [21] is calculated. Figure 2(a) shows the R_{xy} distribution of the D^{*0} candidates, where two clear peaks corresponding to the beam pipe position (3 cm) and the MDC inner wall (6 cm) are observed. An additional requirement $R_{xy} < 2.0$ cm removes the photon-conversion events. Figures 2(b), 2(c) and 2(d) show the distributions of the momentum of the e^+e^- pair, the opening angle between e^+ and e^-, and the q^2 of the e^+e^- candidates for the $D^{*0} \rightarrow D^0 e^+e^-$, respectively. Good agreement between data and MC simulation is shown in FIG. 3.

V. DETERMINATION OF THE BRANCHING FRACTION

In the data sample, the observed number of signal events is expressed as

$$N_{\text{sig}} = 2 \cdot N_{D^{*0}D^{*0}} \cdot B(D^{*0} \rightarrow D^0 e^+e^-) \cdot B_{\text{int}} \cdot \varepsilon_{\text{sig}},$$

and the observed number of the reference process as

$$N_{\text{ref}} = 2 \cdot N_{D^{*0}D^{*0}} \cdot B(D^{*0} \rightarrow D^0\gamma) \cdot B_{\text{int}} \cdot \varepsilon_{\text{ref}}.$$

Here, $N_{D^{*0}D^{*0}}$ is the total number of $D^{*0}\bar{D}^{*0}$ pairs in data, ε_{sig} and ε_{ref} denote the detection efficiencies of the signal and reference processes, respectively, and B_{int} stands for the branching fractions for the three D^0 decay modes and secondary decay of the π^0 meson. For the signal process, the efficiency ε_{sig} has been corrected to account for differences of the photon conversion, tracking and PID efficiencies between data and MC simulation (see discussion of systematic uncertainties below). Thus, the ratio R_{ee} for each decay mode is given as

$$R_{ee} = \frac{B(D^{*0} \rightarrow D^0 e^+e^-)}{B(D^{*0} \rightarrow D^0\gamma)} = \frac{N_{\text{sig}} \cdot \varepsilon_{\text{ref}}}{N_{\text{ref}} \cdot \varepsilon_{\text{sig}}}.$$

The individual yields of the signal and reference processes are obtained by simultaneous fits to the M_{BC} distributions. The M_{BC} distributions of the accepted candidates for both signal and reference channels are shown in FIG. 4. In the fits, the signal shapes are obtained from the corresponding simulated shapes convolving with Gaussian functions to compensate the resolution difference between data and MC simulation. A common R_{ee} is used for all three tag modes in the simultaneous fit, after the relevant efficiencies and branching fractions for each D^0 mode are taken into account. Note that peaking contributions from the corresponding doubly Cabibbo suppressed modes $\bar{D}^0 \rightarrow K^-\pi^+$, $K^-\pi^+\pi^0$ and $K^-\pi^+\pi^-\pi^+$ cancel out in calculating R_{ee}. Background studies indicate no peaking structures in the fit range, as illustrated.
FIG. 2. The distributions of (a) R_{xy}, (b) the momentum of the e^+e^- pair, (c) the angle between e^+ and e^- in the laboratory frame and (d) the virtual photon 4-momentum transfer square (q^2) of the candidates for $D^{*0} \to D^0 e^+ e^-$. The points with error bars are data. The brick-filled green histograms indicate the scaled backgrounds derived from inclusive MC samples. The slash-filled red histograms label the normalized signal $D^{*0} \to D^0 e^+ e^-$ contributions, extracted from the signal MC samples. For all distributions, the three D^0 decay modes are combined and M_{BC} is required to be in the region $(2.00, 2.02) \text{ GeV}/c^2$. The distributions of (b), (c) and (d) show events passing the $R_{xy} < 2.0$ cm requirement.

FIG. 3. The comparison between data and MC components for $D^{*0} \to D^0 e^+ e^-$ process, where plot (a) is for $D^0 \to K^- \pi^+$ mode, plot (b) for $D^0 \to K^- \pi^+ \pi^0$ mode and plot (c) for $D^0 \to K^- \pi^+ \pi^- \pi^+$ mode. Black dots with error bars are data, the blue lines are signal processes. The shaded histograms are the background processes for $D^{*0} \to D^0 \gamma$ (green), open charm (red) and other (yellow) processes, respectively.
TABLE I. Yields and efficiencies of the three D^0 tag decay modes and the obtained branching fractions. For the obtained branching fractions, the first uncertainties are statistical and the second systematic, while the uncertainties are statistical only for the other numbers. The third systematic uncertainty is quoted from the uncertainty of $D^{\ast 0} \rightarrow D^0\gamma$ in PDG.

ϵ_{ref} (%)	N_{ref}	ϵ_{sig} (%)	N_{sig}	R_{cc}	$B(D^{\ast 0} \rightarrow D^0e^+e^-)$
35.82±0.28	6648±423	5.61±0.04	111.3±7.6	(11.08±0.76±0.49) × 10^{-3}	(3.91±0.27±0.17±0.10) × 10^{-3}
14.81±0.20	97471±327	2.58±0.03	181.5±12.4	74196±249	223±97471
19.11±0.15		3.09±0.03	128.1±8.7		

FIG. 4. Fits to the M_{BC} distributions of the candidates for $D^{\ast 0} \rightarrow D^0e^+e^-$ (top) and $D^{\ast 0} \rightarrow D^0\gamma$ (bottom), plots (a) and (d) are reconstructed using $D^0 \rightarrow K^+\pi^+$ mode, plots (b) and (e) are reconstructed using $D^0 \rightarrow K^-\pi^+\pi^0$ mode. Plots (c) and (f) are reconstructed using $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$ mode. Black dots with error bars are data, the solid red lines are total MC-predicted backgrounds. The shaded areas represent the combinatorial backgrounds. The solid green lines are signals and the dotted blue lines are smooth backgrounds. The shaded areas represent the MC-predicted backgrounds.

VI. SYSTEMATIC UNCERTAINTY

The main sources of systematic uncertainties are summarized in Table II and discussed in detail next. Systematic uncertainties in D^0 reconstruction are canceled in the ratio R_{cc}.

To study the efficiencies of the tracking and PID of low-momentum e^\pm, a control sample of $e^+e^- \rightarrow \gamma e^+e^-$ is selected. Due to relatively large efficiency differences, a reweighting procedure according to the two-dimensional kinematic distribution in transverse momentum and $\cos \theta$...
In order to assign an uncertainty, we replace the form factor of $\rightarrow J/\psi$ in the reconstruction efficiency of photon is assigned to D of ρ to data, we assign 1.0% as the corresponding systematic lower than that determined in MC simulation by a factor of $\sim 3\%$ of the corrected signal MC samples from the nominal efficiencies is taken as systematic uncertainty. For the requirements are estimated using ρ with a double-Gaussian function, while the background shape is varied from a second-order polynomial function to a linear function. The resultant changes on the final result are adopted as systematic uncertainties.

VII. SUMMARY

Based on 3.19 fb$^{-1}$ of e^+e^- collision data collected at $\sqrt{s} = 4.178$ GeV with the BESIII detector, the EM Dalitz decay $D^{\ast 0} \rightarrow D^0 e^+ e^-$ is observed for the first time. The branching fraction of this decay relative to that of $D^{\ast 0} \rightarrow D^0 \gamma$ is measured to be $(11.08 \pm 0.76 \pm 0.49) \times 10^{-3}$. This result deviates from the ratio of 0.67% according to Eq. (2) with 3.5σ. Using the world average $B(D^{\ast 0} \rightarrow D^0 \gamma) = (35.3 \pm 0.9)\%$ [17], we determine $B(D^{\ast 0} \rightarrow D^0 e^+ e^-) = (3.91 \pm 0.27 \pm 0.17 \pm 0.10) \times 10^{-3}$, where the first uncertainty is statistical, the second is systematic and the third is from the uncertainty of the input $B(D^{\ast 0} \rightarrow D^0 \gamma)$. The obtained distribution of virtual photon 4-momentum transfer square is compatible with the model prediction in Eq. (2), as shown in FIG. 2(d).

However, the statistics for now is still low for meaningful measurements of the q^2-dependent form factor. Better precisions can be achieved with more data taken at BESIII in the future [12], which could be used for more physics goals, such as searching for the light vector boson X17 decaying into the e^+e^- pairs [23].

ACKNOWLEDGMENTS

We thank Jia-Jun Wu for useful discussions. The BESIII collaboration thanks the staff of BEPCII and the HEP computing center for their strong support. This work is supported in part by National Key Research and Development Program of China under Contracts Nos. 2020YFA0406400, 2020YFA0406300; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11875115, 11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012, 12005311; The Fundamental Research Funds for the Central Universities, Sun Yat-sen University; The Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1732263, U1832207, U2032110; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; Euro-Union Horizon 2020 research and innovation programme under Contract No. Marie Sklodowska-Curie grant agreement No 894790; German Research Foundation DFG under Contracts Nos. 443159800, Collaborative Research Center CRC 1044, FOR 2359, FOR 2359, GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; Olle Engkvist Foundation under Contract No. 200-0605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No.
[1] L. G. Landsberg, Phys. Rep. 128, 301 (1985).
[2] J. J. Wu, T. S. H. Lee and B. S. Zou, Phys. Rev. C 100, 035206 (2019).
[3] M. N. Achasov, K. I. Beloborodov, A. V. Berdyugin, A. G. Bogdanchikov, A. D. Bukin, D. A. Bukin, A. V. Vasilev, V. B. Golubev, T. V. Dimova and V. P. Druzhinin, et al. J. Exp. Theor. Phys. 107, 61 (2008).
[4] A. Anastasi et al. (KLOE-2 Collaboration), Phys. Lett. B 757, 362 (2016).
[5] D. Babusci et al. (KLOE-2 Collaboration), Phys. Lett. B 742, 1 (2015).
[6] M. Ablikim et al. (BESIII Collaboration), Phys. Lett. B 783, 452 (2018).
[7] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 118, 221802 (2017).
[8] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 99, 012006 (2019).
[9] D. Cronin-Hennessy et al. (CLEO Collaboration), Phys. Rev. D 86, 072005 (2012).
[10] M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 614, 345 (2010).
[11] C. H. Yu et al., Proceedings of IPAC2016, Busan, Korea (JACoW, Geneva, Switzerland, 2016).
[12] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 44, 040001 (2020).
[13] X. Li et al., Radiat. Detect. Technol. Methods 1, 13 (2017); Y. X. Guo et al., Radiat. Detect. Technol. Methods 1, 15 (2017); P. Cao et al., Nucl. Instrum. Methods Phys. Res., Sect. A 953, 163053 (2020).
[14] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[15] S. Jadach, B. F. L. Ward and Z. Was, Phys. Rev. D 63, 113009 (2001); Comput. Phys. Commun. 130, 260 (2000).
[16] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001); R. G. Ping, Chin. Phys. C 32, 599 (2008).
[17] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[18] J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang and Y. S. Zhu, Phys. Rev. D 62, 034003 (2000); R. L. Yang, R. G. Ping and H. Chen, Chin. Phys. Lett. 31, 061301 (2014).
[19] E. Richter-Was, Phys. Lett. B 303, 163 (1993).
[20] Y. Tan, Z. Zhang and X. Zhou, arXiv:2111.04932.
[21] Z. R. Xu and K. L. He, Chin. Phys. C 36, 742 (2012).
[22] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 81, 052005 (2010).
[23] G. L. Castro and N. Quintero, Phys. Rev. D 103, 093002 (2021).