The deuterium versus hydrogen (D/H) isotopic ratios are important to understand the source of water on Earth and other terrestrial planets. However, the determinations of D/H ratios suggest a hydrogen isotopic diversity in the planetary objects of the solar system. Photochemistry has been suggested as one source of this isotopic heterogeneity. Here, we have revealed the photodissociation features of the water isotopologue (HOD) at λ = 121.08 to 121.7 nm. The results show different quantum state populations of OH and OD fragments from HOD photodissociation, suggesting strong isotope effect. The branching ratios of H + OD and D + OH channels display large isotopic fractionation, with ratios of 0.70 ± 0.10 at 121.08 nm and 0.49 ± 0.10 at 121.6 nm. Because water is abundant in the solar nebula, photodissociation of HOD should be an alternative source of the D/H isotopic heterogeneity. This isotope effect must be considered in the photochemical models.

INTRODUCTION

The provenance of water on Earth and other terrestrial planets has been discussed for a long time without reaching a consensus. Existing scenarios range from negligible to significant cometary contributions to terrestrial water (1–4). The current criterion to distinguish between different scenarios is determining the D/H ratios (e.g., the HOD/H2O ratios) in the reservoirs for comets and Earth’s oceans, because the D/H ratios provide clues for the formation and evolution of water in star-forming regions and, by comparison with cometary data, on the origin of water on Earth.

Measurements of D/H ratios in Oort cloud comet (OCC) water are highly variable (1.4 × 10^-4 to 6.5 × 10^-4), with the lowest measured value being similar to the terrestrial ocean water [D/H = 1.5576 ± 0.0007, Vienna standard mean ocean water (5–9)]. The Jupiter family comets (JFCs) 103P/Hartley 2 and 45P/Honda-Mrkos-Pajdušáková have low water D/H ratios of 1.61 and less than 2.0 × 10^-4, respectively (10, 11), whereas the ROSINA mass spectrometer aboard the Rosetta spacecraft recorded a high D/H ratio (about three times that of Earth’s oceans) in water vapor from 67P/Churyumov-Gerasimenko (12). This wide range of D/H ratios in JFC and OCC water precludes the cometary origin for the oceans (12).

However, atmospheric processes, like isotopic exchange reactions (e.g., HOD + H2 ↔ H2O + HD) and photochemistry, may redistribute D/H ratio in water from the inner to the outer protoplanetary disc regions (13, 14). Isotopic exchange occurs rapidly at high temperatures in the inner regions of the disc and is sluggish at low temperatures in the outer regions of the disc. Therefore, after the Sun’s formation, the D/H ratio of water in the evolving protoplanetary disc would have been dependent on the temperature of the surrounding environment and distance from the Sun (15).

Photochemistry in the early solar nebula is regarded as an alternative source of isotopic fractionation (16). Isotope-selective photodissociation or self-shielding has been proposed for explaining the anomalous oxygen isotopic distributions observed among various early solar system objects that contain both 16O-rich and 16O-poor reservoirs (17–19). Self-shielding process happens when the solar radiation penetrates gaseous molecules (e.g., CO), which have isotopic-dependent spectral line absorption and different isotopic abundances. Photochemical self-shielding may also be important in the photodissociation of water, because replacing hydrogen by deuterium leads to significant variations in absorption line positions and oscillator strengths of water (20–22). Besides the self-shielding effects, photodissociation processes of the water isotopologue (HOD) have also been believed to play an important role in determining the D/H ratio heterogeneity in the solar system. The current photochemical models have only concerned the photodissociation branching ratios of HOD, with assuming the same dissociation features for the H + OD and D + OH channels (7). The validity of this assumption, however, has not been experimentally proved yet.

Photodissociation of H2O by solar vacuum ultraviolet (VUV) photons is known to be an important process in the solar nebula (23–26). Absorbing one photon at λ ~ 160 nm populates the lowest excited electronic (1A′1B1) state of water; the subsequent direct dissociation from this state yields an H atom plus a ground state OH (X′2Π) radical with little internal excitation (27–30). Absorption to the second excited singlet (B′2A′) state maximizes at λ ~ 128 nm. This state displays a minor direct dissociation channel to the H + OH (A′2Σ+) product and major indirect predissociation pathways via two conical intersections (CIs) with the ground (X′2A′) state potential energy surfaces (PESs) at linear HOH and OHH configurations that favor formation of highly rotationally excited OH (X, v = 0).
products (31–37). In addition, the higher electronic state \((D^1\text{A}_1)\) can be reached at around Lyman-\(\alpha\) wavelength (121.6 nm). Dissociation from the \(D\) state efficiently undergoes a fast conversion to the \(\tilde{B}\) state surface via an avoided crossing at bent geometry (38, 39).

Studies of the HOD isotopomer show that the quantitative outcome of its dissociation is not the mean of those for \(\text{H}_2\text{O}\) and \(\text{D}_2\text{O}\). Previous vibrationally mediated photodissociation of HOD with OD or OH bond preexcitation accessed different regions of the excited state PES, which leads to mode or isotopic selectivity (40–44).

Recently, Harich et al. (45) studied the HOD photodissociation at 121.6 nm and found “extremely-rotationally excited” distributions in OH \((X, v = 0)\) products. These states were slightly above the OH dissociation limit and were only supported through large centrifugal barriers. In another experiment (46), they revealed a strong population preference for OD \((A, v = 0, N = 28)\), labeled as “single \(N\) phenomenon.” However, the isotope specific photodissociation features of HOD at a state-to-state level were not obtained thus far.

In this work, we have recorded the quantum state–resolved photodissociation features of HOD as well as the branching ratios of the \(\text{H} + \text{OD}\) and \(\text{D} + \text{OH}\) channels between 120.8 and 121.7 nm by using tunable VUV sources combined with the high-resolution H (D) atom Rydberg tagging time-of-flight (HRTOF) technique (47). The experimental results show that the quantum state population distributions of OD products differ markedly from that of OH products, revealing very strong isotope effect. This implies that an in-depth understanding of the OH (OD) product quantum state population patterns from photodissociation of HOD is an essential prerequisite for any quantitative photochemical modeling. The mechanisms for this isotope effect may be general for other molecules where indirect dissociation dynamics are involved.

RESULTS AND DISCUSSION

Photodissociation dynamics of HOD

The present photodissociation studies were performed on the HRTOF apparatus, which was equipped with a tunable VUV laser radiation source generated by the two-photon resonance-enhanced four-wave mixing scheme or by the VUV free electron laser (FEL) at the Dalian coherent light source (DCLS) (see Materials and Methods for more details). A pulsed supersonic molecular beam of HOD was crossed by the VUV photolysis laser beam, and the H (D) products were then detected by HRTOF technique. Because the HOD sample was made from the mixing of \(\text{H}_2\text{O}\) and \(\text{D}_2\text{O}\) samples, the H atoms can be formed from both \(\text{H}_2\text{O}\) and \(\text{HOD}\) and D atoms from both \(\text{D}_2\text{O}\) and HOD. In the measurement of H atom TOF spectra, the sample was made by mixing \(\text{H}_2\text{O}/\text{D}_2\text{O}\) volume ratio of 1:5, which yielded the estimated ratio of \(\text{H}_2\text{O}/\text{HOD}\) to be \(\approx 1.95\) (fig. S1). The ratio in the molecular beam should be a little change due to different vapor pressures of HOD and \(\text{H}_2\text{O}\) at the same temperature. Nevertheless, the H atom signals from \(\text{H}_2\text{O}\) photodissociation were significantly suppressed and can be easily subtracted. The same strategy was used for D atom TOF spectra measurements by using the mixing ratio \(\text{H}_2\text{O}/\text{D}_2\text{O}\) of 5:1.

The H (D) atom TOF spectra from HOD photodissociation were recorded at several wavelengths between 120.8 and 121.7 nm. Knowing the distance traveled from the photodissociation region to the detector and the fragment masses, these TOF spectra can be converted into spectra of the total translational energy release \((E_T)\). The \(E_T\) distributions obtained with the polarization vector \(E_{\text{phot}}\) aligned parallel and perpendicular to the detection axis can then be used to construct three-dimensional (3D) flux diagrams of the \(\text{H} + \text{OD}\) (D + OH) fragments. Figure 1 shows these 3D flux diagrams with a photolysis wavelength of 121.08 nm. Each diagram shows two groups of features: an inner group, associated with formation of levels of electronically excited \(A\) state of OH (OD) fragments, and an outer group, associated with ground \(X\) state OH (OD) products. It is interesting that the extremely tall features in Fig. 1B, which are attributable to OD \((A)\) products, are not observed in the OH product features (Fig. 1A). These marked differences in the 3D distributions illustrate that the \(\text{H} + \text{OD}\) and \(\text{D} + \text{OH}\) channels may go through different dissociation pathways.

Fig. 1. The 3D product translational energy distributions. 3D contour plots of the (A) \(\text{D} + \text{OH}\) and (B) \(\text{H} + \text{OD}\) products from the photodissociation of HOD at 121.08 nm, with the translational energy up to 18,000 cm\(^{-1}\). The double-headed arrow shows the alignment of photolysis laser, \(E_{\text{phot}}\). The outer rings in both plots are associated with formation of rovibrational states of the ground state OH/OD \((X)\) radical products, while the inner structures are primarily due to OH/OD \((A)\) products.
rotational levels and has strongly inverted rotational state distributions with the peak around $N = 21$.

In comparison with H_2O, a subtle difference can be observed. The rotational excitation of the OH (X, $v = 0$) product from HOD photodissociation is noticeably higher than that from H_2O [peaked at $N = 46$ (35)]. This can be directly attributed to the kinetic consequences of the difference in product masses. In H_2O, as the two H atoms start to accelerate away from the symmetrical Franck-Condon configuration, the developing translational energy will tend initially to be equally shared between them. One of these atoms dissociate, while the motion of the other will become internal energy of the OH product. In contrast, this sharing of the translational energy will tend to be two-thirds to the H atom and one-third to the D atom for product. In contrast, this sharing of the translational energy will tend initially to be equally shared between them. One of these atoms dissociate, while the motion of the other will become internal energy of the OH product. In contrast, this sharing of the translational energy will tend to be two-thirds to the H atom and one-third to the D atom for product.

Fig. 3. The product quantum state population distributions from HOD photodissociation. (A) Rotational state population distributions of the OH/OD ($A, v' = 0$) and (B) vibrational state population distributions of the OH/OD (X) products formed in the photodissociation of HOD at 121.08 nm. The fitting spectrum for the D + OH channel did not contain the rotational levels for $v = 7$ to 10 due to a little relative resolution of the spectrum in the middle translational energy region shown in Fig. 2A.

D + OH channel from HOD photolysis around 121.0 to 121.6 nm also dominantly undergoes the HOD CI pathway between the \tilde{B} and \tilde{X} state surfaces, following the fast conversion from the initial excited \tilde{D} state to the \tilde{B} state (Fig. 4C).

In the case of the H + OD channel, however, the photodissociation features are markedly different. The structure assignment has been displayed in Fig. 2B. The striking phenomenon is extremely tall peaks at low translational energy, which are ascribed to the populations of OD ($A, v = 0, N = 27$ to 29) rotational levels. In particular, the intensity of the OD ($A, v = 0, N = 29$) state is almost 10 times larger than any other states except $N = 27$ and 28. The fitted rotational state population distributions of the OD ($A, v = 0$) are displayed in Fig. 3A. It is noted that more than 80% of OD (A) products populate in the three rotational levels $N = 27$ to 29. This abnormal rotational propensity has never been found in previous photodissociation of H_2O and D_2O and in the D + OH channel from HOD, to the best of our knowledge. This phenomenon can be seen in the whole wavelength region (120.8 to 121.7 nm) used in this work, and the E_T spectra at other five wavelengths have been shown in fig. S3. It is noted that the “single N propensity”—an extremely strong population for a single rotational state OD ($A, v = 0, N = 28$)—has also been observed at 121.68 and 121.43 nm (fig. S4), which is similar to that reported by Harich et al. (46) in the 121.6-nm HOD photodissociation. Another interesting phenomenon in this channel is that the OD ($A, v = 0$) product does not populate to the highest
energetically accessible rotational levels \(N_{\text{max}} = 31\) for OD \((A, v = 0)\) at 121.08 nm, unlike the case for the D + OH channel.

The key to the understanding of the dissociation mechanism for this channel relies on the shape of the PES of the \(\tilde{B}\) state. As mentioned above, the initial excitation of water to the \(\tilde{D}\) state will fast convert to the \(\tilde{B}\) state, and on the \(\tilde{B}\) state, molecules undergo two main dissociation pathways: direct dissociation from this state to produce OD \((A)\) products or indirect predissociation via nonadiabatic transfer from the \(\tilde{B}-\tilde{X}\) states at the two CI regions, yielding OD \((X)\) products (Fig. 4A). The deep potential wells at CI regions force the hydrogen atom moving toward the linear geometry and get large amount of orbital angular momentum. For instance, when H atom moves toward the HOD CI (Fig. 4C), the OD molecule will rotate clockwise to compensate the change in angular momentum of the hydrogen atom. When \(N\) gets large, rotational barriers due to the \(N (N + 1)/(2\mu_R R^2)\) term in the Hamiltonian significantly increase.

\(R\) is the internuclear distance, and \(\mu_R\) is the reduced mass of the H-OD complex. In Fig. 4B, the adiabatic potential energy curves are shown for OD \((A, v = 0)\) and for \(N\) levels between 26 and 32, obtained by fixing the O-D bond length of 2.04 bohr (close to the optimal OD distance with \(v = 0, N = 28\)). The photon energy at 121.08 nm is displayed with the dashed line. The state with \(N = 31\) is actually an energetically accessible channel at 121.08 nm, but the rotational barriers for \(N = 31\) and 30 prevent direct dissociation, which explains the observation of almost no population of \(N > 29\) rotational levels.

When the hydrogen atom attempts to escape, the rotational barrier prevents dissociation, and the H atom returns to the OD molecule. The hydrogen atom would attempt several times to escape the OD molecule, and during each attempt, the torque modifies angular momentum for the OD and H motion, until finally \(N\) is low enough for the H atom to overcome the progressively smaller centrifugal barrier. This process leads to a strong preference for the formation...
of OD fragments with the highest possible N value for which the barrier is low enough. Theoretical calculations (51) demonstrated that this abnormal rotational propensity can be interpreted in terms of dynamically constraint trajectories, i.e., trajectories that have turning points in the dissociation coordinate R due to the rotational barrier, rather than quantum interferences. Only the trajectories that pass the collinear ODH CI region with the R value in a specific narrow region will produce this strong rotational population propensity. This phenomenon is strongly energy-dependent and exclusively exists in the H + OD channel for HOD photodissociation around 121 nm.

The photodissociation feature of the H + OD channel in the high translational energy region is also different from that of the D + OH channel. At translational energy between 12,000 and 24,000 cm$^{-1}$, most of the sharp structures can be well assigned to rotational states of OD ($X, \nu = 1$), rather than OD ($X, \nu = 0$). The fitted vibrational state distributions of OD (X) products display that the OD ($X, \nu = 1$) is the dominant vibrational channel, while the vibrational ground state OD (X) products have only 20% population (Fig. 3B and fig. S5), in notable comparison with more than 50% OH (X) products in its ground vibrational state for the D + OH channel. The increased population of the vibrational excited OD products is a consequence of indirect predissociation from the ODH CI pathway (35). Dissociating molecules passing through the ODH CI will be temporarily trapped and make multiple jumps between the B and X state PESs, facilitating intramolecular vibrational redistribution between D-H and O-D vibrational motions that manifests OD (X) product vibrational excitation.

Thus, the cumulative evidence suggests that the H + OD channel from HOD photodissociation at around 121 nm mainly proceeds via the ODH CI pathway, whereas the D + OH channel at the same wavelength predominantly formed through the HOD(HOH) CI pathway (Fig. 4C). The different predissociation pathways cause the distinctive quantum state population distributions for the H + OD and D + OH channels, suggesting notably isotopic effects in the HOD photodissociation. The origin of this isotope effect is not immediately clear. Cheng et al. (52) demonstrated that the substitution in H$_2$O of one H by D leads to a rotation of the inertial axes by ca. 21° such that the H atom lies further away from the a-inertial axis than does the D atom by a factor of about 3.6. Hence, the rotational velocity of the H atom around the a axis will be 3.6 times greater than that of the D atom, which may force the H atom to easily access the linear ODH geometry.

Photodissociation branching ratios

As for the photodissociation process of HOD, branching ratios between the H + OD and D + OH channels have been an important “hotspot” for many theorists and experimentalist, not only because the ratios stimulate steering chemical reactions by the laser radiation but also because they directly relate to the D/H isotopic fractionation in the solar nebula. The theoretical calculations (40) predicted that the production of H + OD is favored over D + OH by a factor of 2.5, the value of which was usually used in the photochemical models (7). Experimentally, the branching ratios of the H and D products at 157.6 nm were separately estimated to be 4 ± 1 (53) and 2.46 ± 0.4 (27). In contrast, a ratio of 1.66 ± 0.50 in the 121.6-nm HOD photolysis has been reported (54), but the conclusion was questioned immediately by other researchers (55). These results showed that the photodissociation branching ratio of HOD is energy dependent and an accurate determination of the branching ratio is indispensable.

In this work, within the same experimental conditions, we have measured the total E_T distributions for the H + OD channel and the D + OH channel at 121.08 nm with the detection angle of 54.7° by using the VUV FEL laser (the magic angle; fig. S7). The detection efficiency of the H (D) RTOF technique has been calibrated by using the HD molecule dissociation. By integrating each rovibrational peak, the quantum yields for both channels can be obtained; thereby, their ratio will be considered to be the branching ratio. The ratio of φ (defined as (H + OD)/(D + OH)) is determined to be 0.70 ± 0.10 at 121.08 nm, notably different from the theoretical predictions (40) and previous experimental results (27, 53, 54). The branching ratio determined here is surprising because the OH bond fission propensity was expected, due to the OH bond $[D_0 (H-OD) = 41,283 \pm 5 \text{cm}^{-1}]$ being weaker than the OD bond $[D_0 (D-OD) = 41,751.3 \pm 5 \text{cm}^{-1}]$ (56). The probable reason is that in the nonadiabatic decay from the initial excited D state to the B state of HOD, there may be ample time for some vibrational modes to reach unexpected parts of the B state surface, leading to dissociation dynamics different from starting according to a Frank-Condon–like transition. Previous experimental studies have also displayed the vibrationally mediated selective bond dissociation process of HOD, which leads to the large variation of the branching ratios [φ (H + OD)/(D + OH) = 0.08 to 12] (40–44).

We have also measured the branching ratio of HOD photodissociation at 121.6 nm ($\varphi = -0.49 \pm 0.10$), which means that the yield of D + OH products is about two times larger than that of H + OD products; see fig. S8). The result again shows the OD bond fission propensity, opposite to the theoretical prediction (40). It is obvious that the photodissociation branching ratio of HOD strongly varies with the photodissociation wavelength changing. This isotopic fractionation should also be considered in the photochemical models.

Potential relevance to the D/H isotopic fractionation in the solar system

Determination of the abundance ratios of the stable isotopes of the light elements, like D/H ratios, in different objects of the solar system provides important clues to the study of its origin and early history. Astronomical observations of the characteristic atomic and molecular emissions or absorptions from the interstellar space through ground- and/or space-based telescopes become the most important way to gain the isotopic abundance ratios in comets (15, 57). However, the D/H ratios returned by these measurements deviate significantly from Earth’s water D/H ratio, which brings back to the table the long-standing question whether or not water on Earth was delivered by comet impacts. Photochemistry has been accounted for in recent photochemical models for understanding the large isotopic fractionation effects that are apparent in carbon and oxygen in the solar system (58), which may also suit for understanding of the D/H isotope heterogeneity.

In this work, a notable quantum state–resolved isotope effect associated with the VUV photodissociation of HOD has been revealed. In the H + OD channel, dissociation via the linear ODH CI pathway between the B and X states leads to about 60% of OD products populating in the electronically excited state OD (A) (fig. S6), and most of which lie in the rotational levels ($\nu = 0, N \leq 27$ to 29). In comparison, in the D + OH channel, dissociation via the linear HOD CI pathway yields only ~20% of OH products in the OH (A) state with a wider range of rotational excitation. This confirms that the determination of the D/H isotopic ratios, which are based on the emission of the photofragments (like H/D Lyman-α or OH/OH A-X emission),
should involve this information in the photochemical modeling. It is noted that the rotational temperature of water at the expansion condition in this work is estimated to be about 10 K (36), which is close to the temperature of the interstellar medium. At higher temperatures, the water should populate to higher rotational levels. The dissociation features may be different because of rotational-specific predissociation dynamics.

The photodissociation branching ratios should also vary the cometary D/H isotopic ratio in water. The diatomic OH/OD fragments that resulted from these processes are highly excited with a lifetime of ~1 μs (59) and are thus very chemically reactive. The subsequent ion- and/or neutral-molecule exchange reactions may redistribute the D/H ratios. Given that the total yields of HOD → H + OD plus D + OH are equal to those of H2O → H + OH, HOD/H2O = (φ + 1)/φ × (OD/OH), where φ is the branching ratio of the H + OD and D + OH channels. It is noted that the D/H ratio is equal to half the HOD/H2O ratio, because water contains two atoms of hydrogen. Some models assume the ratio φ to be 2.5, adopted from previous theoretical calculations (40), which yields D/H = ~0.7 × (OD/OH). In this work, the ratio φ around 121 nm is determined to be 0.70. This gives D/H = ~1.2 × (OD/OH). This means that by adopting the branching ratio value from 2.5 to 0.70, the deduced D/H isotopic ratio increases about 70%. The quantitative assessment of these isotope effects needs to measure the photodissociation branching ratio of HOD in the entire solar VUV radiation region, and this is being performed in our laboratory. However, Lyman-α is the strongest line in the T Tauri phase of the Sun (60), the VUV flux of which in the early solar nebula is ~10 to 100 times higher than its neighboring wavelengths. The combination of the VUV flux and the absorption cross sections renders Lyman-α as the strongest contributor in the VUV photodissociation. Therefore, photodissociation of the HOD isotopomer and subsequent isotope exchange reactions may vary the D/H isotopic ratios in the inner and outer regions and/or in different periods of the solar nebula, which partly cause the D/H isotope heterogeneity in the solar system.

In summary, the quantum state–resolved dissociation features of the HOD photodissociation around 121 nm have been determined using tunable VUV sources in combination with the high-resolution H (D) RTOF technique. The distinctive quantum state populations of the H + OD and D + OH channels observed mainly stem from different predissociation pathways. The measurements also show that the branching ratios for the H + OD and D + OH channels vary with the photodissociation wavelengths. This extremely strong isotope effect in the photochemistry may affect the D/H isotope heterogeneity in the solar system and needs to be considered in the photochemical models.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/7/30/eabg7775/DC1

REFERENCES AND NOTES

1. B. Martí, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).
2. C. M. O. Alexander, R. Bowden, M. L. Fogel, K. T. Howard, C. D. K. Herd, L. R. Nittler, The Provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012).
3. N. Dauphas, The dual origin of the terrestrial atmosphere. Icarus 165, 326–339 (2003).
4. T. Owen, A. Barnum, I. Kleinfeld, Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars. Nature 358, 43–46 (1992).
5. H. Balsiger, K. Altwegg, J. Geiss, D/H and 16O/18O ratio in the hydronium ion and in neutral water from in situ ion measurements in comet Halley. J. Geophys. Res. 100, 5827–5834 (1995).
23. C. Li, R. Boyarkin, M. A. Koshelev, O. Aseev, P. Makyszynenko, T. R. Rizzo, N. F. Zobov, L. Lodig, J. Tennyson, O.-L. Polanyansky. Accurate bond dissociation energy of water determined by triple-resonance vibrational spectroscopy and ab initio calculations. Chem. Phys. Lett. 568, 14–20 (2013).

24. J. S. A. Brooke, P. F. Bernath, C. M. Western, C. Svedn, M. Afsar, G. Li, L. E. Gordon. Line strengths of vibrational and rotational transitions in the \(\text{X}^{2}\text{II} \) ground state of OH. J. Quant. Spectrosc. Radiat. Transfer. 168, 142–157 (2016).

25. Y. Chang, Y. Yu, H. L. Wang, X. Xu, M. Li, K. L. Yang, S. Su, Z. G. He, Z. C. Chen, L. Che, X. Wang, W. G. Zhang, G. R. Wu, X. X. Hu, D. Q. Xie, K. J. Yuan, X. M. Yang. Electronically excited OH super-rotors from water photodissociation by using vacuum ultraviolet free-electron laser pulses. J. Phys. Chem. Lett. 7, 1617–1623 (2020).

26. E. F. van Dishoeck, E. Herbst, D. A. Neufeld. Interstellar water chemistry: From laboratory to observations. Chem. Rev. 113, 9043–9085 (2013).

27. J. S. Carr, J. R. Najita. The OH rotational population and photodissociation of \(\text{H}_2\text{O} \) in DG Tau. Astrophys. J. 788, 66 (2014).

28. X. F. Yang, D. W. Hwang, J. J. Lin, X. M. Ying. Dissociation dynamics of the water molecule on the \(\text{A}^1\text{E}^+ \) electronic surface. J. Chem. Phys. 113, 10597–10604 (2000).

29. L. S. Zhou, D. Q. Xie, Z. G. Sun, H. Guo. Product fine-structure resolved photodissociation dynamics: The \(\text{A}^1\text{E}^+ \) electronic surface. J. Phys. Chem. A. 140, 024310 (2014).

30. Y. Peng, V. Steffl, R. V. Lander, F. F. Crim, R. L. Senion, B. Hudson, P. Andrews, S. Hennig, K. Weide, R. Schinke. Photodissociation of water in the first absorption band: A prototype for dissociation on a repulsive potential energy surface. J. Phys. Chem. 96, 3201–3213 (1992).

31. D. H. Mordant, M. N. R. Ashfold, R. N. Dixon. Dissociation dynamics of \(\text{H}_2\text{O} \) \((\text{D}_2\text{O}) \) following photodissociation at the Lyman-\(\alpha \) wavelength (121.6 nm). J. Chem. Phys. 109, 7360–7375 (1998).

32. L. S. Zhou, B. Jiang, D. Q. Xie, H. Guo. State-to-state photodissociation dynamics of \(\text{H}_2\text{O} \) in the \(\text{B}^2\text{Σ}^+ \) band: Competition between two coexisting nonadiabatic pathways. J. Phys. Chem. A. 117, 6940–6947 (2013).

33. K. J. Yuan, R. N. Dixon, X. Yang. Photochemistry of the water molecule: Adiabatic versus nonadiabatic dynamics. Acc. Chem. Res. 44, 369–378 (2011).

34. R. N. Dixon, D. W. Hwang, X. F. Yang, S. A. Harich. J. J. Lin, X. Yang. Chemical “double slits”: Dynamical interference of photodissociation pathways in water. Science 285, 1249–1253 (1999).

35. S. Arich, D. W. Hwang, X. F. Yang, J. J. Lin, X. Yang. R. N. Dixon. Photodissociation of \(\text{H}_2\text{O} \) at 121.6 nm: A state-to-state dynamical picture. J. Phys. Chem. A. 110, 10073–10090 (2006).

36. J. Bin, D. Q. Xie, H. Guo. State-to-state photodissociation dynamics of triatomic molecules: \(\text{H}_2\text{O} \) in the \(\text{B}^2\text{Σ}^+ \) band. J. Chem. Phys. 136, 043002 (2012).

37. J. H. Fillion, R. van Harrevelt, J. Ruiz, N. Castillo, A. H. Zanganeh, J. L. Lemaire, M. C. van Hemert, F. Rostas, Photodissociation of \(\text{H}_2\text{O} \) and \(\text{D}_2\text{O} \) in \(\text{B}^2\text{Σ}^+ \) and \(\text{D}^2\text{Σ}^+ \) states (134–199 nm). Comparison between experiment and ab initio calculations. J. Phys. Chem. A. 105, 11441–11424 (2001).

38. Y. Chang, J. M. Zhou, J. Z. Luo, Z. C. Chen, Z. G. He, S. R. Yu, L. Che, G. R. Wu, X. G. Wang, K. J. Yuan, X. M. Yang. Photodissociation dynamics of \(\text{H}_2\text{O} \) and \(\text{D}_2\text{O} \) via the \(\text{D}^2\text{Σ}^+ \) electronic state. J. Phys. Chem. A. 22, 4379–4386 (2020).

39. K. J. Yuan, L. N. Cheng, Y. Cheng, Q. Guo, D. X. Dai, X. Yuan. Two-photon photodissociation dynamics of \(\text{H}_2\text{O} \) via the \(\text{D}^2\text{Σ}^+ \) electronic state. J. Chem. Phys. 131, 074301 (2009).

40. J. Z. Zhang, D. G. Imre. \(\text{OH/OD} \) Bond breaking selectivity in \(\text{HOD} \) photodissociation. Chem. Phys. Lett. 194, 233–238 (1998).

41. R. L. Vanderwal, J. L. Scott, F. F. Crim. Selectively breaking the \(\text{O–H} \) bond in \(\text{H}_2\text{O} \). J. Chem. Phys. 92, 803–805 (1990).

42. R. L. Vanderwal, J. L. Scott, F. F. Crim, K. Weide, R. Schinke. An experimental and theoretical study of the bond selected photodissociation of \(\text{H}_2\text{O} \). J. Chem. Phys. 94, 3548–3555 (1991).

43. H. Akagi, H. Fukazawa, K. Yokoyama, A. Yokoyama. Selective \(\text{OD} \) bond dissociation of \(\text{HOD} \): Photodissociation of vibrationally excited \(\text{HOD} \) in the \(\text{B}^2\text{Σ}^+ \) state. J. Chem. Phys. 123, 184305 (2005).

44. S. Su, H. Z. Wang, Z. C. Chen, S. R. Yu, D. X. Dai, K. J. Yuan, X. Yang. Photodissociation dynamics of \(\text{HOD} \) via the \(\text{B}^2\text{Σ}^+ \) electronic state. J. Chem. Phys. 143, 184302 (2015).

45. S. A. Harich, Y. F. Yang, X. M. Yang, R. N. Dixon. Extremely rotationally excited \(\text{OH} \) from \(\text{HOD} \) photodissociation through conical intersection. Phys. Rev. Lett. 87, 253201 (2001).

46. S. A. Harich, X. F. Yang, X. M. Yang, R. van Harrevelt, M. C. van Hemert. Single rotational product propensity in the photodissociation of \(\text{HOD} \). Phys. Rev. Lett. 87, 263001 (2001).

47. Y. Chang, Z. Chen, J. Zhou, Z. Luo, Z. He, G. Wu, M. N. R. Ashfold, K. Yuan, X. Yang. Striking isotopologue-dependent photodissociation dynamics of water molecules: The signature of an accidental resonance. J. Phys. Chem. Lett. 10, 4209–4214 (2019).

48. O. V. Boyarkin, M. A. Koshelev, O. Aseev, P. Makyszynenko, T. R. Rizzo, N. F. Zobov, L. Lodig, J. Tennyson, O.-L. Polanyansky. Accurate bond dissociation energy of water determined by triple-resonance vibrational spectroscopy and ab initio calculations. Chem. Phys. Lett. 568, 14–20 (2013).
56. L. N. Cheng, Y. Cheng, K. J. Yuan, Q. Guo, T. Wang, D. X. Dai, X. Yang. Photodissociation of HOD via the C1B1 state: OD/OH branching ratio and OD bond dissociation energy. Chin. J. Chem. Phys. 24, 129–133 (2011).

57. D. Bockele-Morvan, U. Calmonte, S. Charnley, J. Duprat, C. Engrand, A. Gicquel, M. Hassig, E. Jehin, H. Kawakita, B. Marty, S. Milam, A. Morse, P. Rousselot, S. Shridan, E. Wirstrom. Cometary isotopic measurements. Space Sci. Rev. 197, 47–83 (2015).

58. P. Jiang, X. P. Chi, Q. H. Zhu, M. Cheng, H. Gao. Strong and selective isotope effect in the vacuum ultraviolet photodissociation branching ratios of carbon monoxide. Nat. Commun. 10, 3175 (2019).

59. D. R. Yarkony. A theoretical treatment of the predissociation of the individual rovibronic levels of OH/OD(A 2Σ+). J. Chem. Phys. 97, 1838–1849 (1992).

60. M. W. Claire, J. Sheets, M. Cohen, I. Ribas, V. S. Meadows, D. C. Catling. The evolution of solar flux from 0.1 nm to 160 μm: Quantitative estimates for planetary studies. Astrophys. J. 757, 95 (2012).

61. K. J. Yuan, L. N. Cheng, Y. Cheng, Q. Guo, D. X. Dai, X. M. Yang. Tunable VUV photochemistry using Rydberg H atom time-of-flight spectroscopy. Rev. Sci. Instrum. 79, 124101 (2008).

62. J. M. Zhou, Y. R. Zhao, C. S. Hansen, J. Y. Yang, Y. Chang, Y. Yu, G. K. Cheng, Z. C. Chen, Z. G. He, S. R. Yu, H. B. Ding, W. Q. Zhang, G. R. Wu, D. X. Dai, C. M. Western, M. N. R. Ashfold, K. J. Yuan, X. Yang. Ultraviolet photolysis of H2S and its implications for SH radical production in the interstellar medium. Nat. Commun. 11, 1547 (2020).

63. S. A. Harich, K. F. Yang, D. W. H. Hwang, J. J. Lin, X. Yang, R. N. Dixon. Photodissociation of D2O at 121.6 nm: A state-to-state dynamical picture. J. Chem. Phys. 114, 7830–7837 (2001).

Acknowledgments
Funding: The experimental work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB17000000), the Chemical Dynamics Research Center (grant 21688102), the National Natural Science Foundation of China (grants 21873099, 21923036, and 21773236), the Key Technology Team of the Chinese Academy of Sciences (grant GJSTD20190002), the international partnership program of Chinese Academy of Sciences (grant 121421KYYSB20170012), and Liaoning Revitalization Talents Program (grant XLYC1907154).

Author contributions: K.Y. designed the experiments. Z.L., Y.Z., Z.C., Y.Cha., S.e-Z., Y.W. and Y.Che. performed the experiments. K.Y. and Z.L. analyzed the data. K.Y., J.Y., Y. Che, L.C., G.W., D.X., and X.Y. discussed the experimental results. K.Y., Z.L., and X.Y. prepared the manuscript.

Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.
Strong isotope effect in the VUV photodissociation of HOD: A possible origin of D/H isotope heterogeneity in the solar nebula

Zijie Luo, Yarui Zhao, Zhichao Chen, Yao Chang, Su-e Zhang, Yucheng Wu, Jiayue Yang, Yi Cheng, Li Che, Guorong Wu, Daiqian Xie, Xueming Yang and Kajun Yuan

Sci Adv 7 (30), eabg7775.
DOI: 10.1126/sciadv.abg7775