Influence of social isolation and loneliness on the prognosis of advanced lung cancer patients: a prospective cohort study

Tomoyasu Takemura1 · Yuki Kataoka2,3,4,5 · Nanami Ashi6 · Chigusa Shirakawa7 · Koya Okazaki6 · Azusa Sakurai8 · Takuma Imakita9 · Shunkichi Ikegaki6 · Hirotaka Matsumoto9 · Emiko Saito6 · Hirohito Takata6 · Sawako Kaku10 · Nobuko Wada9 · Mariko Shinomiya9 · Takehiro Otoshi11 · Masatoshi Shimada12 · Junichi Nikaido5 · Reika Ikii6 · Katsuya Hirano9 · Tomoyuki Hirai6 · Kazuo Endo6 · Masataka Hirabayashi6 · Toru Naganuma13,14

Received: 5 January 2022 / Accepted: 31 March 2022 / Published online: 13 April 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Purpose The purpose of this study was to investigate the impact of social isolation and loneliness on the overall survival and death at home in patients with lung cancer.

Methods This prospective cohort study was conducted in a Japanese tertiary hospital. The enrollment period was from April 2018 to March 2020. Patients with pathologically diagnosed advanced lung cancer were included in this study. The primary outcome was overall survival, whereas the secondary outcome was death at home. The exposures were social isolation and loneliness.

Results A total of 211 patients were enrolled and divided into two groups and further into quartiles according to their social isolation and loneliness level, respectively. The hazard ratios of social isolation were 1.65 (95% confidence interval; 1.12 to 2.44) and 1.87 (95% confidence interval; 1.15 to 3.03) in the univariate analysis, while 1.40 (95% confidence interval; 0.92 to 2.13) in the multivariate analysis with complete case and multiple imputation. The odds ratio of death at home with social isolation was 3.47 (95% confidence interval; 1.08 to 11.1) in the multivariate analysis with multiple imputation. Loneliness was not associated with overall survival or death at home.

Conclusions Our study suggests that social isolation may be related to overall survival and death at home among patients with advanced lung cancer. More attention should be given to such patients at the time of diagnosis.

Keywords Social determinants of health (SDHs) · Social isolation · Loneliness · Advanced lung cancer · Overall survival · Prospective cohort study

Introduction

Non-medical factors, such as social factors, that influence people’s health are called the social determinants of health (SDHs) [1]. In 2011, during an international conference held in Rio de Janeiro, the World Health Organization (WHO) highlighted SDHs as factors that should be addressed to promote health equity [2]. The main focus of SDH research has been on social interactions, including social isolation and loneliness which can affect a person’s living environment, service access, and physical activity [3]. Macro-level factors such as race, ethnicity, and socioeconomic status are upstream SDH factors, and social isolation and loneliness are also considered to be in this category [3]. Health behaviors, education, and economic status are midstream factors [3] and are influenced by the upstream factors. Prevention, diagnosis, and treatment are downstream factors that are directly related to health. The upstream factors influence the midstream factors, and midstream factors influence the downstream factors [3]. Therefore, all the factors should be considered separately. For example, a cross-sectional study showed that the population attributable risk for cancer screening had a 38% difference between the lowest and highest advantaged socioeconomic groups [4]. A case–control study showed that Black and Hispanic patients had a higher attributable risk for inadequately treated hypertension in intracerebral hemorrhage compared to Caucasian patients [5].
Social isolation is defined as “the objectively quantified shortfall in an individual’s social relationships often measured in terms of social network size and diversity or frequency of contacts.” Loneliness is defined as “a perceived deficit between the actual and desired quality or quantity of relationships.” [6]. A systematic review showed that social isolation and loneliness were associated with higher all-cause mortality rates, depressive symptoms, and poorer quality of life in the general population [7, 8]. Previous cohort studies have shown that living in high-poverty areas, having no insurance, and having a low level of education were prognostic factors among lung cancer patients [9–12]. In contrast, few studies have assessed social isolation and loneliness in patients with cancer [3]. Our cross-sectional study investigated the relationship between social isolation and loneliness with diagnosis and treatment choice in patients with lung cancer [13]. We hypothesized that social isolation and loneliness potentially influenced the prognosis of patients with advanced lung cancer. The purpose of this study was to investigate the relationship between social isolation and loneliness with the overall survival (OS) and death at home in Japanese patients with advanced lung cancer.

Materials and methods

Study design and setting

This prospective cohort study was in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology statement. This study was conducted at a tertiary referral hospital in Japan (Hyogo Prefectural Amagasaki General Medical Center). The study protocol and other results have been published previously [14, 15]. The study was conducted in accordance with the Declaration of Helsinki. All patients provided written informed consent before participation.

Participants and variables

The eligibility criteria were as follows: (i) patients who were pathologically diagnosed for lung cancer from April 2018 to March 2020, (ii) stage IIIA or higher based on the 8th edition of the American Joint Commission on Cancer and Union for Cancer Control tumor node metastasis (TNM) classification stage [16], (iii) patients who were considered unsuitable for radical surgery (to avoid omission of data with surgery), (iv) patients who had not been treated for lung cancer in the past 2 months (since there were some cases in which urgent treatment was started before the patient was judged for inclusion, we included the patients within 2 months after the start of treatment), and (v) written informed consent was obtained from the patient for participation. The exclusion criteria were as follows: (i) inability to complete the questionnaire due to dementia or psychiatric illness and (ii) those considered unsuitable for the study by the physician.

Exposures were defined as social isolation and loneliness. Social isolation was assessed using the Japanese version of the Lubben Social Network Scale (LSNS-6) [17]. Since the Japanese version did not have a threshold, we used the cutoff value of the English version (12 points out of 30) [17]. Loneliness was assessed using the third Japanese version of the University of California, Los Angeles (UCLA) Loneliness Scale (3–12 points) [18]. The UCLA scale was revised and converted into three questions to facilitate patient responses [19]. Since the scale did not have a clear cutoff point [19], participants were categorized into quartiles (low to high loneliness) to create a relatively homogeneous group.

The primary and secondary outcomes were OS and death at home, respectively. Potential confounders included sex, age, smoking status, insurance status (welfare or other), education status, employment status, dementia, Eastern Cooperative Oncology Group performance status, histology, TNM classification stage [16], targetable driver gene mutation, programmed death-ligand 1 (PD-L1) tumor proportion score, and initial treatment. Dementia was assessed using the Life Function Evaluation for Care Provision [20].

Statistical analysis

The protocol for this study required the enrollment of 300 patients. However, due to inadequate enrollment, recruitment was withdrawn 2 years later. To reduce information bias, the clinical research coordinator conducted the data collection.

The Kaplan–Meier method was used to estimate OS, and the differences were evaluated using the log-rank test. Cox proportional-hazards models were used for the univariate and multivariate analyses of the prognostic factors. Odds ratios and confidence intervals with death at home were calculated using a logistic regression model. We conducted a complete case analysis and multiple imputation to analyze the missing data for exposure and outcome variables and combined 20 imputed datasets using Rubin’s rule [21]. Statistical significance was set at P < 0.05.

Results

Overall survival

A total of 211 patients with advanced lung cancer were analyzed (Fig. 1). We observed the patients until March 2021. Patient characteristics are summarized in Table 1. The social isolation absent group included 135 patients...
(64%), and the present group included 73 (35%) patients. A total of six patients, three from each group, were excluded due to incomplete questionnaires. Patients were categorized into quartiles 1 (≤3 points), 2 (4–5 points), 3 (6–7 points), and 4 (8–12 points) based on the UCLA loneliness scale score. Each group included 56 (27%) patients, 33 (16%) patients, 81 (38%) patients, and 37 (18%) patients, respectively. Of these, four patients were not included in each group due to incomplete questionnaires. Except for the driver gene mutations and PD-L1 that were not required for all patients, the percentage of missing data for each confounding factor was less than 3%, due to incomplete questionnaires.

Kaplan–Meier survival curves for all patients and stratified by social isolation and loneliness are shown in Figs. 2, 3, and 4, respectively. These survival curves indicated that social isolation was associated with poorer OS. However, no difference in OS was observed between the groups. The results of the Cox proportional-hazards models for OS are summarized in Table 2. The hazard ratios of social isolation were 2.25 (95% confidence interval (CI); 0.88 to 5.76) in the univariate analysis, 3.36 (95% CI; 1.36 to 9.36) in the multivariate analysis with complete case, and 3.47 (95% CI; 1.08 to 11.1) in the multivariate analysis with multiple imputation.

Death at home

A total of 102 patients died during the study period. The numbers of deaths at home were 5 of 23 (22%), 4 of 18 (22%), 9 of 41 (22%), and 5 of 20 (25%) in the loneliness quartiles 1, 2, 3, and 4, respectively. Additionally, 10 of 63 (16%) from the group without social isolation and 11 of 39 (28%) from the group with social isolation died at home. The logistic regression models for death at home are summarized in Table 2. In the multivariate analysis with multiple imputation, the odds ratios of death at home with social isolation were 2.25 (95% CI; 0.88–5.76) in the univariate analysis, 3.36 (95% CI; 1.36–9.36) in the multivariate analysis with complete case, and 3.47 (95% CI; 1.08–11.1) in the multivariate analysis with multiple imputation. Loneliness was not associated with OS in univariate analysis, multivariate analysis with complete cases, and multiple imputation.

Discussion

Key results

We investigated the relationship between loneliness and social isolation with OS and death at home in Japanese
Table 1 Characteristics of patients

Characteristic	Overall, \(N=211 \)	Social isolation \(^* \)	Loneliness \(^† \)					
	Absent, \(N=135 \)	Present, \(N=73 \)	\(q1 \leq 3 \), \(N=56 \)	\(q2 \leq 5 \), \(N=33 \)	\(q3 \leq 7 \), \(N=81 \)	\(q4 \geq 8 \), \(N=37 \)		
Age (years)	71 (67, 77)	72 (68, 77)	70 (65, 79)	72 (68, 81)	73 (68, 79)	70 (66, 76)	71 (64, 77)	
Gender (male)	166 (79%)	103 (76%)	61 (84%)	37 (66%)	28 (85%)	63 (78%)	34 (92%)	
Smoke status	158 (89%)	92 (85%)	64 (96%)	31 (70%)	27 (93%)	67 (96%)	30 (94%)	
(Current smoker or ex-smoker)	33	27	6	12	4	11	5	
Performance status (≥ 2)	51 (24%)	28 (21%)	21 (29%)	10 (18%)	10 (30%)	20 (25%)	11 (30%)	
Education	46 (22%)	31 (23%)	15 (21%)	11 (20%)	4 (12%)	21 (26%)	8 (22%)	
(University or higher-level degree)	1	1	0	1	0	0	0	
Insurance (welfare)	29 (14%)	11 (8.1%)	18 (25%)	4 (7.1%)	3 (9.1%)	12 (15%)	10 (27%)	
Histology	107 (51%)	76 (56%)	29 (40%)	39 (70%)	14 (42%)	36 (44%)	16 (43%)	
Non-squamous non-small	51 (24%)	26 (19%)	24 (33%)	9 (16%)	6 (18%)	20 (25%)	14 (38%)	
Squamous	53 (25%)	33 (24%)	20 (27%)	8 (14%)	13 (39%)	25 (31%)	7 (19%)	
Staging	3A	26 (12%)	7 (9.6%)	7 (12%)	1 (3.0%)	13 (16%)	4 (11%)	
	3B	35 (17%)	21 (16%)	13 (18%)	11 (20%)	7 (21%)	11 (14%)	6 (16%)
	3C	13 (6.2%)	6 (4.4%)	7 (9.6%)	2 (3.6%)	3 (9.1%)	4 (4.9%)	11 (4%)
	4A	66 (31%)	45 (33%)	21 (29%)	17 (30%)	7 (21%)	29 (36%)	11 (30%)
	4B	71 (34%)	44 (33%)	25 (34%)	19 (34%)	15 (45%)	24 (30%)	12 (32%)
Targetable driver gene mutation\(^‡ \)	28 (30%)	23 (34%)	4 (16%)	18 (50%)	1 (9.1%)	6 (20%)	2 (13%)	
(Missing)	117	68	48	20	22	51	22	
PD-L1 positive	105 (78%)	64 (77%)	39 (81%)	30 (79%)	15 (79%)	36 (75%)	22 (81%)	
(Missing)	77	52	25	18	14	33	10	
Treatment	33 (16%)	19 (14%)	13 (18%)	10 (18%)	8 (24%)	10 (12%)	4 (11%)	
Chemoradiotherapy	126 (60%)	83 (61%)	41 (56%)	31 (55%)	17 (52%)	51 (63%)	24 (65%)	
Chemotherapy	6 (2.8%)	3 (2.2%)	3 (4.1%)	1 (1.8%)	0 (0%)	3 (3.7%)	2 (5.4%)	
Radiotherapy	46 (22%)	30 (22%)	16 (22%)	14 (25%)	8 (24%)	17 (21%)	7 (19%)	

Median (IQR); number (%)

SCLC, small cell lung cancer; PD-L1, programmed death ligand 1; BSC, best supportive care

\(^* \)Three patients were excluded due to missingness

\(^† \)Four patients were excluded due to missingness

\(^‡ \)Including epidermal growth factor receptor (EGFR) gene mutation, anaplastic lymphoma kinase (ALK) translocation, and c-ros oncogene 1 receptor tyrosine kinase (ROS1) translocation
patients with advanced lung cancer. Our study suggested that social isolation could be related to shorter OS and more death at home, while loneliness was not related to OS and death at home.

Interpretation

To the best of our knowledge, this is the first study to suggest a relationship between social isolation and shorter OS.
Fig. 4 Kaplan–Meier survival curves for patients with lung cancer stratified by loneliness. *p*-value between with and without social isolation was evaluated by the log-rank test.

| Table 2 Cox proportional-hazards models for overall survival/death at home |
|---------------------------------|-----------------|-----------------|-----------------|
| | Univariate analysis | Multivariate analysis* with complete case | Multivariate analysis* with multiple imputation |
| Overall survival | | | |
| Social isolation | 1.65 (1.12 to 2.44) | 1.87 (1.15 to 3.03) | 1.40 (0.916 to 2.13) |
| Presence vs. absence | | | |
| Loneliness | | | |
| q2 vs. q1 | 1.73 (0.93 to 3.22) | 1.90 (0.88 to 4.10) | 1.23 (0.62 to 2.41) |
| q3 vs. q1 | 1.35 (0.81 to 2.25) | 1.07 (0.52 to 2.19) | 0.99 (0.55 to 1.78) |
| q4 vs. q1 | 1.58 (0.86 to 2.88) | 1.20 (0.54 to 2.66) | 1.15 (0.60 to 2.2) |
| Death at home | | | |
| Social isolation | 2.25 (0.88 to 5.76) | 3.36 (1.36 to 9.36) | 3.47 (1.08 to 11.1) |
| Presence vs. absence | | | |
| Loneliness | | | |
| q2 vs. q1 | 1.03 (0.23 to 4.56) | 0.93 (0.20 to 4.38) | 0.69 (0.08 to 5.65) |
| q3 vs. q1 | 1.01 (0.29 to 3.49) | 0.92 (0.25 to 3.41) | 1.60 (0.56 to 4.54) |
| q4 vs. q1 | 1.2 (0.29 to 4.95) | 1.26 (0.26 to 6.21) | 1.06 (0.36 to 2.79) |

Hazard ratio (95% confidence intervals)

Social isolation was evaluated with Japanese version of the Lubben Social Network Scale (LSNS-6). Patients were divided by the cut-off of English version. Loneliness was evaluated with Japanese Version 3 of the UCLA (University of California, Los Angeles) Loneliness Scale. Higher score means worse loneliness. Patients were divided into quartiles.

*Adjusted variables: gender (male vs. female), age (≥71 vs. 70≥), smoke status (current or ex-smoker), performance status (≥2 vs. 1≥), TNM staging (stage 4 vs. stage 3), histology (non-squamous non-small vs. squamous vs. small cell lung carcinoma), treatment (chemoradiotherapy, chemotherapy, radiotherapy vs. best supportive care)
in patients with lung cancer. Our previous study used the same dataset and showed no difference in treatment between patients with or without social isolation [13]. Therefore, it is speculated that the OS difference was not due to treatment choice, but owing to opportunities to access medical services or quality of home care. A systematic review showed that some determinants of hospital visits were regular sources of care and family resources [22]. This indicated that other people noticed a change in the patient’s condition and encouraged hospital visits if the patient was socially connected. Evaluation of social isolation at the time of diagnosis might contribute to better prognosis.

Holt-Lunstad J reported that high social isolation group (odds ratio 1.29) was associated with an average of 29% all-cause death [7]. The hazard ratios of social isolation in this study were 1.65, 1.87, and 1.40 in the univariate analysis, multivariate analysis with complete case, and multiple imputation, respectively. The mortality influenced by social isolation is higher than the previous study and not to be ignored. The outcome is speculated to be not small. Alcaraz et al. state that institutional environments such as laws, regulations, and policies are upstream factors to social isolation [3]. Governments and other institutions can adopt policies or programs to connect society and isolated elderly patients.

There was no difference in OS and death rates in hospitals with or without loneliness. It is speculated that patients’ feelings of loneliness did not change their medical access or home care. A systematic review showed that patients’ mental condition related to hospital visits was attitudes toward health and not loneliness [22].

We found that social isolation was related to death at home. No previous study has investigated the relationship between social isolation and death at home in patients with advanced lung cancer. Obviously, caregivers are necessary for death at home [23]. In the case of a patient living alone whose relatives take care of the patient, they can wish to spend more time with the patient at home [24]. However, in the case of socially isolated patients, neighbors or adult guardians may recommend hospitalization. Further studies are required to assess the quality of death among socially isolated patients with advanced lung cancer.

Generalizability

Our inclusion criteria may have caused a selection bias. Some higher-income patients who preferred receiving more advanced treatments in specialized hospitals were not included. Patients who were clinically diagnosed with lung cancer, but did not visit the tertiary hospital for various reasons, were excluded. In such cases, the relationship between social factors and prognosis may become weaker. In addition, this study was conducted in a country under a universal health insurance system. Furthermore, Japan had the highest rates socially isolated groups among the 21 Organization for Economic Co-operation and Development (OECD) countries [25]. The outcome of this study might not be applicable to countries with the different situation. Further cohort studies with other insurance systems are warranted.

Strengths and limitations

This study has two limitations. First, due to the slow recruitment rate of patients, we could not include enough patients as defined in the protocol. A small sample size may lead to beta errors. Hence, we could not estimate enough narrow confidence intervals. Second, social isolation and loneliness at the time of diagnosis may have changed during the observation period. However, social isolation or loneliness was speculated to be stable or worsened with time among patients with cancer. Further studies that evaluate the changes over time are necessary.

Conclusion

Our study suggests that social isolation may be related to OS and death at home among patients with advanced lung cancer, while loneliness does not seem to be related. Medical staff should pay attention to the social isolation of patients with advanced lung cancer at the time of their diagnosis.

Acknowledgements We are grateful to Kyoko Wasai for providing professional advice concerning the planning of this research and Editage (www.editage.jp) for English language editing.

Author contribution (I) Conception and design: Tomoyasu Takemura, Yuki Kataoka, Toru Naganuma; (II) administrative support: Kazuo Endo, Masataka Hirabayashi; (III) provision of study materials or patients: all authors except for Toru Naganuma; (IV) collection and assembly of data: all authors except for Toru Naganuma; (V) data analysis and interpretation: Tomoyasu Takemura, Yuki Kataoka, Toru Naganuma; (VI) manuscript writing: all authors; (VII) final approval of manuscript: all authors.

Data availability The data supporting the results of this study are available from the corresponding author upon reasonable request.

Code availability Not applicable.

Declarations

Ethics approval The protocol was approved by the Hyogo Prefectural Amagasaki General Medical Center Institutional Review Board (#29–164).

Consent to participate Informed consent was obtained from all individual participants included in the study.

Conflict of interest The authors declare no competing interests.
References

1. The College of Family Physicians of Canada. Best advice social determinants of health, published March 2015. Available online: http://patientsmedicalhome.ca/files/uploads/BA_SocialD_ENG_WEB.pdf#search=%20college+o+f+family+physicians+o+f+canada+SDH%27. (Accessed August 30, 2021)
2. World Health Organization. Rio political declaration on social determinants of health, published October 21, 2011. Available online: http://www.who.int/sdhconference/declaration/Rio_political_declaration.pdf?ua=1. (Accessed August 30, 2021)
3. Alcaraz KI, Wied TL, Daniels EC et al (2020) Understanding and addressing social determinants to advance cancer health equity in the United States: a blueprint for practice, research, and policy. CA Cancer J Clin 70:31–46
4. Hurtado JL, Bacigalupe A, Calvo M et al (2015) Social inequalities in a population based colorectal cancer screening programme in the Basque Country. BMC Public Health 15:1021
5. Kittner SJ, Sekar P, Comeau ME et al (2021) Ethnic and racial variation in intracerebral hemorrhage risk factors and risk factor burden. JAMA Netw Open 4(8):e2121921. https://doi.org/10.1001/jamanetworkopen.2021.21921
6. Malcolm M, Frost H, Cowie J (2019) Loneliness and social isolation causal association with health-related lifestyle risk in older adults: a systematic review and meta-analysis protocol. Syst Rev 8:48
7. Holt-Lunstad J, Smith TB, Baker M et al (2015) Loneliness and social isolation as risk factors for mortality: a meta-analytic review [abstract]. Perspect Psychol Sci 10:227–237
8. Hyland KA, Small BJ, Gray JE et al (2019) Loneliness as a mediator of the relationship of social cognitive variables with depressive symptoms and quality of life in lung cancer patients beginning treatment [abstract]. Psychooncology 28:1234–1242
9. Finke I, Behrens G, Schwettmann L et al (2020) Socioeconomic differences and lung cancer survival in Germany: investigation based on population-based clinical cancer registration [abstract]. Lung Cancer 142:1–8
10. Pezzi TA, Schwartz DL, Mohamed ASR et al (2018) Barriers to combined-modality therapy for limited-stage small-cell lung cancer. JAMA Oncol 4:e174504
11. Tendler S, Holmqvist M, Wagenius G et al (2020) Educational level, management and outcomes in small-cell lung cancer (SCLC): a population-based cohort study [abstract]. Lung Cancer 139:111–117
12. Forrest LF, Adams J, Wareham H et al (2013) Socioeconomic inequalities in lung cancer treatment: systematic review and meta-analysis. PLoS Med 10:e1001376
13. Takemura T, Kataoka Y, Shirakawa C et al (2021) Influence of loneliness and social isolation on the diagnosis and treatment of Japanese patients with advanced lung cancer: a prospective cohort study. Ann Palliat Med 10(6):6236–6246. https://doi.org/10.21037/apm-21-402
14. Takemura T, Yuki K, Koya O et al (2018) Influence of social determinants of health on patients with advanced lung cancer: a prospective cohort study. BMJ Open 8:e023152
15. Ashi N, Kataoka Y, Takemura T et al (2020) Factors influencing social isolation and loneliness among lung cancer patients: a cross-sectional study. Anticancer Res 40(12):7141–7145. https://doi.org/10.21873/anticancer.14744
16. Union for International Cancer Control. TMN classification of malignant tumours, eighth edition, 2017. Available online: https://www.wiley.com/en-us/TNM+Classification+of+Malignant+Tumours%2C+8th+Edition-p-9781119263579. (Accessed August 30, 2021)
17. Kurimoto A, Awata S, Ohkubo T et al (2011) Reliability and validity of the Japanese version of the abbreviated Lubben Social Network Scale. Nihon Ronen Igakkai Zasshi 48:149–157
18. Shioda A, Tadaka E, Okochi A (2017) Reliability and validity of the Japanese version of the Community Integration Measure for community-dwelling people with schizophrenia. Int J Ment Health Syst 11:29
19. EndLonelinessUK. Measuring your impact on loneliness in later life. 2009 Available online: http://www.campaigntendonelinessorg/wp-content/uploads/Loneliness-Measurement-Guidance1.pdf. (Accessed August 30, 2021)
20. Suzuk T. Manual about life function assessment for care provision. 2009 Available online: http://www.mhlw.go.jp/topics/2009/05/dl/p0501-1c_0001.pdf. (Accessed August 30, 2021)
21. Rubin DB (2004) Multiple imputation for nonresponse in surveys. John Wiley & Sons Ltd. https://www.wiley.com/en-us/Multiple-Imputation+for+Nonresponse+in+Surveys-p-9780471655749
22. McCusker J, Karp I, Cardin S et al (2003) Determinants of emergency department visits by older adults: a systematic review. Determinants of emergency department visits by older adults: a systematic review. Acad Emerg Med 10(12):1362–70. https://doi.org/10.1111/j.1553-2712.2003.tb00011.x
23. Alonso-Babarito A, Bruea E, Varela-Cerdeira M et al (2011) Can this patient be discharged home? Factors associated with at-home death among patients with cancer. J Clin Oncol 29(9):1159–1167. https://doi.org/10.1200/JCO.2010.31.6752
24. Hashimoto K, Sato K, Kawahara M et al (2018) Current state of home palliative care and factors influencing death at home for terminally ill cancer patients living in single-person households. Palliat Care Res 13(1):39–48
25. Society at a Glance 2005. OECD social indicators. Available online: https://www.oecd-ilibrary.org/docserver/soc_glance-2005-en.pdf?expires=1648285014&id=id&accname=guest&checksum=5BD3F99FCF272A7AE0F2D63CB0FA205B. (Accessed March 27, 2022)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Authors and Affiliations

Tomoyasu Takemura1 · Yuki Kataoka2,3,4,5 · Nanami Ashi6 · Chigusa Shirakawa7 · Koya Okazaki8 · Azusa Sakurai8 · Takuma Imakita9 · Shunkichi Ikegaki6 · Hirotaka Matsumoto6 · Emiko Saito6 · Hirohito Takata6 · Sawako Kaku10 · Nobuko Wada6 · Mariko Shinomiya6 · Takehiro Otoshi11 · Masatoshi Shimada12 · Junichi Nikaido6 · Reika Iki6 · Katsuya Hirano6 · Tomoyuki Hirai6 · Kazuo Endo6 · Masataka Hirabayashi6 · Toru Naganuma13,14

1 Department of Internal Medicine, Kyoto Min-Iren Chuo Hospital, Uzumasa Tsuchimotocho, 2-1, Ukyo, Kyoto 616-8147, Japan
2 Section of Clinical Epidemiology, Department of Community Medicine, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
3 Department of Healthcare Epidemiology, Kyoto University Graduate School of Medicine/Public Health, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
4 Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan
5 Department of Internal Medicine, Kyoto Min-Iren Asukai Hospital, 89 Tanaka-asukaicho Sakyō, Kyoto, Japan
6 Department of Respiratory Medicine, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
7 Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
8 Department of Gynecology, Kyoto University Hospital, Kyoto, Japan
9 Division of Respiratory Medicine, Center for Respiratory Diseases, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
10 Department of Diagnostic Radiology, National Cancer Center Hospital, Chuo, Tokyo, Japan
11 Division of Respiratory Medicine/Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
12 Division of Internal Medicine, Miyaji Hospital, Kobe, Hyogo, Japan
13 Futaba Emergency and General Medicine Support Center, Fukushima Medical University, Fukushima, Japan
14 Department of General Internal Medicine, Fukushima Medical University, Fukushima, Japan