Monitoring of formulation and hazardous ingredients of residential insecticide which sold in Palembang

Mia Hayati Khairunnisa1, Ahmad Ghiﬀari2, Chairil Anwar3*, Dalilah Dalilah3
1 Medical Faculty, Universitas Sriwijaya, Palembang, Indonesia
2 Department of Parasitology, Medical Faculty, Universitas Muhammadiyah Palembang, Palembang, Indonesia
3 Department of Parasitology, Medical Faculty, Universitas Sriwijaya, Palembang, Indonesia
chairil53@fk.unsri.ac.id

Abstract. The insect-borne disease is one of health problem. The high mortality and morbidity rates of disease mostly controlled on chemical insecticide. Precaution was needed on selecting the residential insecticides since it can also harm human. This study was to identify the formulation and active ingredients of residential insecticides. This was a descriptive study with an observational design. The sample used was all insecticides sold in location of Palembang Square Mall. Variables observed were the insecticides’ forms, the insect targets, the active ingredients, and the class of toxicity. As conclusion, there were 57 type of insecticides and 14 type of active ingredients found in the location. Most insecticides were from liquid synthetic pyrethroid group, unfortunately categorized in the hazardous class. Further research is necessary to determined whether the insecticide already effects on human health.

1. Introduction
Pesticides that been widely used against insects may have unwanted side-effects, including cancer [1]. Residential pesticide use has been linked to health outcomes in numerous epidemiological studies [2]. Several studies examining the potential association between childhood leukemia [3]. Total pesticide exposure also associated with birth defects such as several congenital heart defects, the gastrointestinal, and genitourinary [4]. The incidence of testicular germ cell tumors has doubled over the last 30 years, thus a role of environmental factors such as insecticide exposure is strongly suspected [5]. Lifetime environmental exposure associated with Parkinson disease [6]. Several studies have suggested that exposure to DDT may be related to changes in thyroid hormone levels in animals and humans [7].

Residential-use pesticides have been shown to be a major source of pesticide exposure to people. However, little is understood about the exposures to household pesticides. One method to help ascertain the amount of pesticides present at home is monitoring of hazardous pesticide from marketing companies such as Palembang Indah Mall [8].

2. Methods
2.1. Study site
The study was carried out in Palembang Indah Mall Sumatra, Indonesia, between July 2014 until January 2015.

2.2. Study design
The design was descriptive study with an observational approach.

2.3. Samples
The samples are all products that can be used to control the insect population sold at study site.

2.4. Data collection and processing
The primary data was carried out by observing the samples, watching the preparations and label’s packaging. Recording the active ingredients, and documenting the insecticide products.

2.5. Data analysis
Data was displayed in form of tables, and explained in narrative. Univariate analysis was to describe each variable.

3. Results and Discussions
Table 1 showed the percentage of insecticide based on forms, which dominantly in liquid.

Formes	Number	Percentage %
Solid	1	1.75
Liquid	40	70.18
Gas	16	28.07
Total	57	100.00

Regulatory guidance values (RGVs) are applied worldwide in an effort to limit exposure on human health risk considerations where children encounter contamination by soil ingestion, inhalation, and dermal contact [9]. Hand pesticide loadings were associated to children who exhibited object-to-mouth behaviors [10,11].

Intensive pesticide application during pregnancy is a risk factor for the induction of significant changes in umbilical cord blood form elements and fetal development [12]. Studies have revealed a positive association between residential exposure to pesticides and childhood brain tumors, with gliomas as outcome [13]. A study found that first and second but not third trimester exposure to pesticides was associated with preterm delivery [14]. Exposure during pregnancy may have a negative effect on the child’s mental and motor development and behaviour during the first stages of childhood [15].

Table 2 showed the percentage of insecticide based on target insects, which dominantly targeting mosquitoes.

Target insects	N (type)	Percentage %
Mosquitoes	33	57.89
Mosquitoes, flies	2	3.51
Mosquitoes, flies, cockroaches	13	22.81
Mosquitoes, flies, cockroaches, ants	8	14.03
Cockroaches, ants	1	1.75
Total	57	100.00

There was widespread occurrence of urban-use where the presence of pyrethroids was relatively uniform in areas around a house, suggesting long persistence and redistribution [16]. Bendiocarb and
microencapsulated pirimiphos methyl are viable alternatives for indoor residual spraying where resistance to pyrethroids and DDT is high and may assist in the management of pyrethroid resistance [17].

The study near rice fields in Pathum Thani had higher organophosphate (OP) exposure than those reported in children residing in other areas in Thailand [18]. Fruit intake was the main dietary source of exposure to OP pesticides in young urban pregnant women in the Netherlands [19]. Table 3 showed the percentage of insecticide based on active chemical ingredients, which dominantly pyrethroids compound.

Table 3. The distribution of insecticide based on active chemical ingredients (N=57)

Active chemical ingredients	N (type)	Percentage %
Organochlorine	0	0
Organophosphate	0	0
Carbamate	0	0
Synthetic pyrethroids	45	78.95
DEET	12	21.05
Total	57	100.00

Public health policies should be developed for that purpose, including educational measures to increase the awareness of the population, and particularly of young couples, women of childbearing age or pregnant women about the potential impact of residential pesticide use on children health. Table 4 showed the percentage of insecticide based on toxicity classes, which dominantly dangerous level.

Table 4. The distribution of active chemical on toxicity classes (N=57)

Toxicity classes	N	Percentage %
Extremely dangerous	0	0
Very dangerous	1	7.14
Dangerous	7	50.00
Harmful enough	3	21.43
Not harmful	3	21.43
Total	14	100.00

4. Conclusion

There were 57 type of insecticides and 14 type of active ingredients found in the marketing mall. Most insecticides were from synthetic pyrethroid group, in liquid form. Unfortunately, the most sold ingredients used were categorized in the hazardous class. Further research is necessary to determined whether the insecticide already effects on human health.

Acknowledgments

The authors greatly thank the Ministry of Research, Technology and Higher Education of the Republic of Indonesia for the grant.

References

[1] Van Maele-Fabry G, Lantin A-C, Hoet P and Lison D 2010 Residential exposure to pesticides and childhood leukaemia: A systematic review and meta-analysis *Environ. Int.* **37** 280–91

[2] Guha N, Ward M H, Gunier R, Colt J S, Lea C S, Buffler P A and Metayer C 2013 Characterization of Residential Pesticide Use and Chemical Formulations through Self-Report and Household Inventory: The Northern California Childhood Leukemia Study *Environ. Heal. Perspect.* **121** 276–82

[3] Turner M C 2010 Residential pesticides and childhood leukemia: a systematic review and meta-analysis *Pesticidas residenciais e leucemia na infância: revisão sistemática e meta-
análise 1915–31

[4] Rappazzo K M, Warren J L, Meyer R E, Herring A H, Sanders A P, Brownstein N C and Luben T J 2016 Maternal Residential Exposure to Agricultural Pesticides and Birth Defects in a 2003 to 2005 North Carolina Birth Cohort

[5] Béranger R, Pérol O, Bujan L, Faure E, Blain J, Le Cornet C, Flechon A, Charbotel B, Philip T, Schütz J and Fervers B 2014 Studying the impact of early life exposures to pesticides on the risk of testicular germ cell tumors during adulthood (TESTIS project): study protocol BMC Cancer 14 1–10

[6] Brouwer M, Huss A, Mark M Van Der, Nijssen P C G, Mulleners W M, Sas A M G, Laar T Van, Snoo G R De, Kromhout H and Vermeulen R C H 2017 Environmental exposure to pesticides and the risk of Parkinson’s disease in the Netherlands Environ. Int. 107 100–10

[7] Blanco-Muñoz J, Lacasăna M, López-Flores I, Rodríguez-Barranco M, González-Alzaga B, Bassol S, Cebrian M E, López-Carrillo L and Aguilar-Garduño C 2016 Association between organochlorine pesticide exposure and thyroid hormones in floriculture workers Environ. Res. 150 357–63

[8] Bekarian N, Payne-Sturges D, Edmondson S, Chism B and Woodruff T J 2006 A Global Access Science Source Use of point-of-sale data to track usage patterns of residential pesticides: methodology development Environ. Heal. J. 5 1–11

[9] Jennings A A and Li Z 2015 Residential surface soil guidance values applied worldwide to the original 2001 Stockholm Convention POP pesticides J. Environ. Manage. 160 16–29

[10] Roberts J R and Karr C J 2012 Pesticide Exposure in Children Am. Acad. Pediatr. 130 e1765

[11] Freeman N C, Hore P, Black K, Jimenez M, Sheldon L, Tulve N and Lioy P J 2005 Contributions of children’s activities to pesticide hand loadings following residential pesticide application J. Expo. Anal. Environ. Epidemiol. 15 81–8

[12] Quintana M M, Vera B, Magnarelli G, Guíañazú N and Rovedatti M G 2017 Neonatal, placental, and umbilical cord blood parameters in pregnant women residing in areas with intensive pesticide application Environ. Sci. Pollut. Res.

[13] Van Maele-Fabry G, Gamet-Payrastre L and Lison D 2017 Residential exposure to pesticides as risk factor for childhood and young adult brain tumors: A systematic review and meta-analysis Environ. Int. 106 69–90

[14] Ling C, Liew Z, von Ehrenstein O S, Heck J E, Park A S, Cui X, Cockburn M, Wu J and Ritz B 2018 Prenatal Exposure to Ambient Pesticides and Preterm Birth and Term Low Birthweight in Agricultural Regions of California Toxics 6 1–18

[15] González-Alzaga B, Lacasà Na M, Aguilar-Garduño C, Garduño G, Rodriguez-Barranco M, Ballester F, Rebagliato M and Hernández A F 2014 A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure Toxicol. Lett. 230 104–21

[16] Richards J, Reif R, Luo Y and Gan J 2016 Distribution of pesticides in dust particles in urban environments Environ. Pollut. 214 290–8

[17] Tangena J A, Adiamoh M, Alessandro U D, Jarju L, Jawara M, Jeffries D, Malik N, Nwakanna D, Kaur H, Takken W, Lindsay S W and Pinder M 2013 Alternative Treatments for Indoor Residual Spraying for Malaria Control in a Village with Pyrethroid- and DDT- Resistant Vectors in The Gambia PLoS One 8 1–8

[18] Rohnirattana J, Panuwet Phd P, Barry P, Phd R, Boyd D, Phd B, Robson M G, Fiedler N, Siriwinong W, Panuwet P and Barr D B 2014 Organophosphate Pesticide Exposure in School-Aged Children Living in Rice and Aquacultural Farming Regions of Thailand J. Agromedicine 19 406–16

[19] van den Dries M A, Pronk A, Guxens M, Spaan S, Voortman T, Jaddoe V W, Jusko T A, Longnecker M P and Tiemeier H 2018 Determinants of organophosphate pesticide exposure in pregnant women: A population-based cohort study in the Netherlands Int. J. Hyg. Environ. Health 221 489–501