Atomic-scale strain manipulation of a charge density wave

Shang Gao1, Felix Flicke2,3, Raman Sankaran4,5,6, He Zhao5, Zheng Ren5, Bryan Rachmilowitz2, Sidhika Balachandar5, Fangcheng Chou5, Kenneth S. Burch5, Ziqiang Wang6, Jasper van Wezel6, and Ilija Zeljkovic7,1

1Department of Physics, Boston College, Chestnut Hill, MA 02167; 2Department of Physics, University of California, Berkeley, CA 94720; 3Clarendon Laboratory, Department of Physics, The Rutherford Peiers Centre for Theoretical Physics, University of Oxford, OX1 3PU Oxford, United Kingdom; 4Center for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan; 5Institute of Physics, Academia Sinica, Nankang, 11529 Taipei, Taiwan; and 6Institute for Theoretical Physics, Institute of Physics, University of Amsterdam, 1090 GL Amsterdam, The Netherlands

Edited by J. C. Séamus Davis, Cornell University, Ithaca, NY, and approved May 18, 2018 (received for review October 30, 2017)

A charge density wave (CDW) is one of the fundamental instabilities of the Fermi surface occurring in a wide range of quantum materials. In dimensions higher than one, where Fermi surface nesting can play only a limited role, the selection of the particular wavevector and geometry of an emerging CDW should in principle be susceptible to controllable manipulation. In this work, we implement a simple method for straining materials compatible with low-temperature scanning tunneling microscopy (STM/S), and use it to strain-engineer CDWs in 2H-NbSe2. Our STM/S measurements, combined with theory, reveal how small strain-induced changes in the electronic band structure and phonon dispersion lead to dramatic changes in the CDW ordering wavevector and geometry. Our work unveils the microscopic mechanism of a CDW formation in this system, and can serve as a general tool compatible with a range of spectroscopic techniques to engineer electronic states in any material where local strain or lattice symmetry breaking plays a role.

Significance

Charge density waves (CDWs) are simple periodic reorganizations of charge in a crystal, and yet they are still poorly understood and continue to bear surprises. External perturbations, such as strain or pressure, can in principle push a CDW phase into a different ordering geometry. However, engineering this type of quantum criticality has been experimentally challenging. Here, we implement a simple method for straining bulk materials. By applying it to 2H-NbSe2, a prototypical CDW system studied for decades, we discover two dramatic strain-induced CDW phase transitions. Our atomic-scale spectroscopic imaging measurements, combined with theory, reveal the distinct roles of electrons and phonons in forming these emergent states, thus opening a window into the rich phenomenology of CDWs.
(3Q) CDW ordering of \(\sim 3a_0 \) period (CDW-3a_0) below 33 K (10, 21, 28). In our strained samples of 2H-NbSe_2, in addition to detecting the well-known CDW-3a_0 in small patches (Fig. 1B), we reveal two additional types of charge ordering in other large regions of the sample—unidirectional “stripe” (1Q) ordering with \(4a_0 \) period (CDW-4a_0) and a triangular (3Q) ordering with a \(2a_0 \) period (CDW-2a_0) (Fig. 2 C and D). The wavevectors of all observed CDWs are found to be oriented along the \(\Gamma-M \) directions, based on the Fourier transforms of STM topographs where each CDW peak lies exactly along the atomic Bragg wavevector \(\mathbf{Q}_{\text{Bragg}} \) (Fig. 1 E–G). We have observed the same CDW wavevectors on multiple NbSe_2 single crystals attached to substrates with mismatched TECs (Methods). Interestingly, all of the CDW wavevectors measured are commensurate with the lattice, in contrast to the recently observed incommensurate 1Q CDW phase with an \(\sim 3.5a_0 \) period, which was found in accidentally formed nanometer-scale “ribbons,” and which could possibly be attributed to strain (21, 29). The magnitudes of the wavevectors identified in our experiments also do not change as a function of energy (SI Appendix, section I), which eliminates a dispersive quasiparticle interference (QPI) signal (10) as the cause of our observations.

The presence of multiple distinct CDWs in different regions of the same strained single crystal suggests that these phases may be associated with strain of locally varying magnitude and/or direction. Although in an ideal homogeneous sample attached to a substrate under elastic deformation the strain is expected to remain laterally uniform as it is transmitted to the surface, this is unlikely to be the case in real materials that are inevitably inhomogeneous. In our NbSe_2 sample glued to a silica substrate by epoxy, inhomogeneous transmission of strain could arise due to the weak van der Waals interlayer bonding that makes the material prone to warping (4) or inhomogeneous glue distribution at the interface. To shed light on what type of strain, if any, might play a role in the formation of each observed CDW, it is necessary to quantify strain at the atomic length scales. We start with an STM topograph \(T(r) \) to which we apply the transformation \(r \rightarrow r - \mathbf{u}(r) \) [where \(\mathbf{u}(r) \) is the total displacement field obtained from the Lawler–Fujita algorithm (30)], such that the resulting topograph \(T(r - \mathbf{u}(r)) \) contains a perfect hexagonal lattice. We disentangle the experimental artifacts (piezo and thermal drift) from structural strain in \(\mathbf{u}(r) \) by fitting and subtracting a polynomial background to create the strain field \(s(r) \). The directional derivatives of \(s(r) \) form a strain tensor \(s_{ij}(r) \equiv \partial s_i(r)/\partial r_j \) (where \(i, j = x, y \)), and their linear combinations provide information on the strain type and magnitude (31–33) (SI Appendix, section II). For example, we can extract biaxial (isotropic) strain as \((s_{xx} + s_{yy})/2 \) (Fig. 2 C and D). Although this algorithm cannot provide us with the absolute value of the applied strain, it can extract the relative local strain variations between different regions within a single STM topograph. Applying this procedure to the occasionally encountered boundaries between the CDW-3a_0 and the newly observed CDW-2a_0 and CDW-4a_0 phases (Fig. 2 A and B), we find that regions hosting CDW-2a_0 and CDW-4a_0 are both under biaxial tensile strain (Fig. 2 C and D) with a prominent uniaxial strain component relative to the CDW-3a_0 phase (SI Appendix, section II).
maps to extract the electronic band dispersion. First, we area, and calculates the relative strain with respect to it. Larger and $(D-10)$ allows us to disentangle two distinct QPI peaks maps show a circular QPI $Q = 39 mV$, in the Inset region, we observe only the QPI $Q = 39 mV$ is notably absent in our measurable momentum range, in (Fig. 3 A) Schematic of the Fermi surface within the first Brillouin zone. (B) The dispersion of the QPI peaks as a function of energy along the Γ–Σ direction in the CDW-4a_0 region. Figs of dI/dV maps acquired at $(E) -39 mV$, $(F) 5 mV$, and $(G) 50 mV over the CDW-2$a_0$ region of the sample. (F, Inset) Schematic of the Fermi surface under small tensile strain, which is expected to move the Fermi surface pockets around Γ further apart. Only Q_1 vector in E–G can be seen, while Q_2 is notably absent. (h) The dispersion of the QPI peak as a function of energy along the Γ–M direction in the CDW-2a_0 region. QPI peak positions in D and H are determined using Gaussian peak fitting to a one-dimensional curve extracted along a line connecting the center of the FT and the atomic Bragg peak. QPI peaks and CDW peaks are denoted by the guides for the eye in panels A–C and E–G: Q_1 (green line), Q_2 (pink line), $Q_{3 \Sigma}$ (orange circle), and $Q_{4 \Sigma}$ (brown square). The center of all FTs has been artificially suppressed to emphasize other features. All FTs have been sixfold symmetrized to enhance signal to noise, and cropped to the same $1.25|Q_{\text{Bragg}}|$ square size window. The region of the sample where the data in A–C was taken contains domains of CDW-4a_0 along only two lattice directions (SI Appendix, Fig. 2A). As CDW-4a_0 is intrinsically a unidirectional order, the sixfold symmetry of the $Q_{4 \Sigma}$ peak in A–C is an artifact of the symmetrization process. STM setup conditions: $(A-C) I_{\text{set}} = 320 pA$, $V_{\text{sample}} = -60 mV$, and $V_{\text{bias}} = 10 mV$ (zero-to-peak); $(E) I_{\text{set}} = 200 pA$, $V_{\text{sample}} = -39 mV$, and $V_{\text{bias}} = 1 mV$; $(F) I_{\text{set}} = 20 pA$, $V_{\text{sample}} = 5 mV$, and $V_{\text{bias}} = 1.5 mV$; $(G) I_{\text{set}} = 300 pA$, $V_{\text{sample}} = 50 mV$, and $V_{\text{bias}} = 10 mV$.
the concomitant increase in the interlayer tunneling (as the interlayer orbital overlaps increase). Our QPI measurements however have been unable to detect any scattering vectors larger than \(\mathbf{Q}_{\text{Bragg}} \) in either CDW-2a\(_0\) or CDW-4a\(_0\) regions at any energy (SI Appendix, section V), and we therefore cannot directly observe the shift of \(\mathbf{Q}_2 \) to higher momenta. A possible explanation for the lack of signal at higher momenta may be canting of the orbital texture toward more in-plane orientations (34), making them likely to be detected by the STM tip. Nevertheless, our measurements reveal that a larger distortion to the Fermi surface accompanies the formation of a CDW-2a\(_0\).

Discussion

Having quantified the changes in the structural and electronic properties of regions hosting CDW-2a\(_0\) and CDW-4a\(_0\), we turn to the fundamental question of what drives and stabilizes a particular CDW wavevector and geometry in this quasi-2D system. Taking into account the exactly commensurate nature of all observed CDWs, Fermi surface nesting is even more unlikely to play a role for the observed CDW phases. To provide further insight, we construct a simple model that captures the strain effects on both the electronic structure and phonon dispersion. We start with a tight-binding fit to the angle-resolved photoemission spectroscopy (ARPES) data (26, 35), include the in-plane strain by modifying the hopping integrals, and employ the Random Phase Approximation to calculate the resulting full electronic susceptibility \(\mathbf{D}(\mathbf{q}) \) (Methods and SI Appendix, section VI). We separately introduce the effect of the uniaxial strain on the phonons by shifting their bare energies differently in lattice-equivalent directions (29). Within this model’s description, the CDW ordering vector can be identified as the first wavevector for which the calculated susceptibility \(\mathbf{D}(\mathbf{q}) \) exceeds the bare phonon energy \(\Omega(\mathbf{q}) \) identified in resonant inelastic X-ray scattering experiments (20, 36).

In our model, we consider the effects of both uniaxial and biaxial in-plane strain, each modeled by a relative change in the nearest-neighbor overlap integrals; \(\sigma \) associated with the uniaxial strain and \(\sigma \) associated with the biaxial strain (for more details, see Methods and SI Appendix, section VI). For simplicity, we explore the effects of the two types of strain separately. We find that biaxial strain by itself has very little effect on the shape of \(\mathbf{D}(\mathbf{q}) \), while the uniaxial strain can lead to a significant change in \(\mathbf{D}(\mathbf{q}) \) and induce different types of CDW ordering (Fig. 4). Specifically, we find that \(\sigma = 0.1 \) (stretching along \(\Gamma-M \) and compressing along the perpendicular \(\Gamma-K \) direction) stabilizes the CDW-4a\(_0\) order, with a peak in \(\mathbf{D}(\mathbf{q}) \) forming near \(0.25\mathbf{Q}_{\text{Bragg}} \) and \(0.28\mathbf{Q}_{\text{Bragg}} \) momentum transfer wavevector (Fig. 4). The predicted CDW geometry is 3Q, but inclusion of anisotropy in the phonon energies of around 1.8%, the same order of magnitude as the strain, is enough to yield the experimentally observed 1Q state. Similarly, we find that \(\sigma = -0.3 \) (stretching along \(\Gamma-K \) and compressing along the perpendicular \(\Gamma-M \) direction) leads to a CDW with a peak in \(\mathbf{D}(\mathbf{q}) \) forming near \(0.4\mathbf{Q}_{\text{Bragg}} \) (Fig. 4). In this case, the energetic payoff of locking into the nearest commensurate structure (37), which is not included in the present model, would be expected to increase the CDW wavevector to the observed CDW-2a\(_0\) period. While it is difficult to obtain the exact relationship between \(\sigma/\sigma_0 \) and the magnitude of real-space lattice distortion, the generic dependence of the orbital overlap on interatomic distance found in, for example ref. (38), suggests that changes in the overlap integrals are expected to be approximately five times the relative strain as defined in the experimental analysis. Using this rough estimate, we calculate the magnitude and the direction of strain used in our model to achieve different CDWs, which leads to a reasonable agreement with the relative strain values observed in the experiment (SI Appendix, section VII). Moreover, the electronic band dispersion used to calculate \(\mathbf{D}(\mathbf{q}) \) in the presence of these strain levels presents a good match to the experimentally measured electronic dispersion obtained from the QPI data in Fig. 3. Remarkably, the calculations indicate that both 1Q and 3Q phases of CDW-2a\(_0\) may be stabilized, which can in fact be observed in STM data acquired at higher bias (SI Appendix, section VIII). Despite its simplicity, our model is able to reproduce the wavevectors and geometries of all observed CDWs, and points to the dominant physical mechanism behind the CDW formation. CDW order is sensitive to two effects of strain—softening of phonon energies and modification of electron-hopping parameters—each playing a distinct role in the formation of the resulting CDW phase. The main effect of the changes in the phonon dispersion by strain is the favoring of one type of geometry (stripe 1Q) over another (triangular 3Q). The effect of the electronic modification, on the other hand, is to alter the CDW wavevector, and even relatively small strain can have a significant effect. Exploiting these trends, we should in principle be able to strain-engineer desired charge-ordering structures in this and other materials by considering the shift in the peak in the electronic susceptibility.

Our simple platform for exerting strain on bulk single crystals presented here can be combined with a variety of characterization techniques. A single CDW domain can be found over microscopically large regions of the sample covering hundreds of nanometers (SI Appendix, section VIII), so in addition to nano- scope methods, micro-ARPES or micro-Raman spectroscopy could also be used to study these phases. Moreover, this strain
technique can be applied to a range of other materials. For example, 1T-TiSe₂ could be strained to induce superconductivity (39) or novel CDW wavevector geometries in analogy to what we observe in 2H-NbSe₂. Similarly, Fe-based superconductors could be strained, potentially using substrates with a TEC along a preferred direction (3), to create a rich playground to study the interplay of nematic order and superconductivity (40) within a single material using SI-STM.

Methods

Single crystals of 2H-NbSe₂ were grown using vapor transport growth technique with iodine (I₂) as the transport agent, and exhibit superconducting transition temperature $T_c \sim 7$ K after the samples were strained and remeasured. Typical size of the single crystals used was 2 mm x 2 mm, with ~ 0.1 mm thickness before cleaving and ~ 0.01 mm to ~ 0.1 mm thickness postcleaving. Instead of attaching the 2H-NbSe₂ crystals directly to a metallic holder with TEC comparable to that of NbSe₂, as typically used in most STM experiments, we use conducting epoxy (EPO-TEK H20E) to glue the bottom of NbSe₂ to silica (SiO₂), a material with a vastly different TEC (Fig. 1A). Then, the NbSe₂ crystal is attached to the STM sample holder and cooled down to ~ 4.5 K (more information in SI Appendix, section IX). Supernovae occurring transition temperature remained approximately the same with $T_c \sim 7$ K after the samples were strained and remeasured. Typical size of the single crystals used was 2 mm x 2 mm, with ~ 0.1 mm thickness before cleaving and ~ 0.01 mm to ~ 0.1 mm thickness postcleaving. Instead of attaching the 2H-NbSe₂ crystals directly to a metallic holder with TEC comparable to that of NbSe₂, as typically used in most STM experiments, we use conducting epoxy (EPO-TEK H20E) to glue the bottom of NbSe₂ to silica (SiO₂), a material with a vastly different TEC (Fig. 1A). Then, the NbSe₂ crystal is attached to the STM sample holder and cooled down to ~ 4.5 K (more information in SI Appendix, section IX). Based on the difference between TECs of NbSe₂ and silica, NbSe₂ is expected to stretch isotropically in-plane by $\sim 0.15\%$. As we demonstrate from STM topographs, the actual induced strain at the sample surface can be spatially inhomogeneous. To create a clean surface necessary for STM measurements, the samples were cleaved in ultra-high vacuum (UHV), and inserted into the STM head within minutes. We studied four different NbSe₂ crystals glued on silica (five different surfaces as one sample was cleaved for the second approach). For each of these five, we approached the tip on several different points on the sample, which are typically tens of micrometers away from one another, and searched for different types of CDWs. We observed: all three CDWs on two surfaces, just CDW-2a and CDW-4a, on two other surfaces, and just CDW-3a on one surface.

STM data were acquired using a Unisoku USM1300 STM at the base temperature of ~ 4.5 K. All spectroscopic measurements have been taken using a standard lock-in technique at 15-Hz frequency and varying bias excitation as detailed in the figure legends. The STM tips used were home-made, chemically etched tips annealed to bright-orange color in UHV. Tip quality has been evaluated on the surface of single-crystal Cu(111) before performing the measurements presented in this paper. The Cu(111) surface was cleaned by repeated cycles of heating and argon sputtering in UHV before it was inserted into the STM head.

To construct a model which captures experimental observations, we employ a tight-binding fit to the ARPES data for the two bands crossing the Fermi level (described in detail in refs. 26 and 35). The model assumes the two bands to be bonding and antibonding combinations of the two Nb d₃z²−r₂ orbitals. We include both biaxial and uniaxial in-plane strain by modifying the hopping integrals based on the assumption that overlap integrals are linearly dependent on displacement, with an equal prefactor for all overlap. In modeling uniaxial strain, we assume that a tensile strain in one direction leads to a compressive strain in the perpendicular in-plane direction, conserving the volume of the unit cell. Then, we employ the Random Phase Approximation to calculate the phonon softening as seen in resonant inelastic X-ray scattering (20, 36). The CDW wavevector is identified as the first wavevector to soften to zero. By including nonlinear terms in the Landau free-energy expression we are able to reveal whether the CDW geometry consists of stripes (1Q) or triangles (3Q) (see SI Appendix, section VI for more details).

ACKNOWLEDGMENTS. We thank Peter Littlewood and Vidya Madhavan for helpful conversations. F.F. acknowledges support from a Lindemann Trust Fellowship of the English-Speaking Union, and the Astor Junior Research Fellowship of New College, Oxford. J.L.W. acknowledges support from a Vidi grant financed by the Netherlands Organisation for Scientific Research. K.S.B. appreciates support from the National Science Foundation under Grant NSF-DMR-1709987. J.W. is supported by the Department of Energy Grant DE-FG02-99ER45471. I.Z. gratefully acknowledges the support from the National Science Foundation under Grant NSF-DMR-1654011 for the partial support of S.G., H.Z., B.R., and Z.R.

References

1. Hicks CW, et al. (2014) Strong increase of T_c of Sr$_2$RuO$_4$ under both tensile and compressive strain. Science 344:283–285.
2. Chu LH, et al. (2010) In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329:824–826.
3. He M, et al. (2017) Dichotomy between in-plane magnetic susceptibility and resistivity anisotropies in extremely strained BaFe$_2$(As$_{1−x}$P$_x$)$_4$. Nat Commun 8:504.
4. Manzeli S, Ovchinnikov D, Pasquier D, Yazeyev OV, Kis A (2017) 2D transition metal dichalcogenides. Nat Mater 17:21033.
5. Roldán R, Castellanos-Gomez A, Cappelluti E, Guinea F (2015) Strain engineering in semiconducting two-dimensional crystals. J Phys Condens Matter 27:33201.
6. Levy N, et al. (2010) Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329:544–547.
7. Zhu S, Stauss JA, Li T (2015) Programmable extreme pseudomagnetic fields in grapheme by a uniaxial stretch. Phys Rev Lett 115:245501.
8. Hicks CW, Barber ME, Edkins SD, Brody DK, Mackenzie AP (2014) Piezolectric-based apparatus for strain tuning. Rev Sci Instrum 85:066003.
9. Wilson JA, Di Salvo FJ, Mahajan S (1975) Charge-density waves and superlattices in the dichalcogenides. Adv Phys 24:117–201.
10. Argueso C, et al. (2015) Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2H-NbSe₂. Phys Rev Lett 114:037001.
11. Berthier C, Moliné P, Jérôme D (1976) Evidence for a connection between charge density waves and the pressure enhancement of superconductivity in 2H-NbSe₂. Solid State Commun 18:1393–1395.
12. Borisenko SV, et al. (2009) Two energy gaps and Fermi-surface "arcs" in NbSe₂. Phys Rev Lett 102:166402.
13. Chatterjee U, et al. (2015) Emergence of coherence in the charge-density-wave state of 2H-NbSe₂. Nat Commun 6:6313.
14. Feng Y, et al. (2015) Itinerant density wave instabilities at classical and quantum critical points. Nat Phys 11:865–871.
15. Feng Y, et al. (2012) Order parameter fluctuations at a buried quantum critical point. Proc Natl Acad Sci USA 109:7224–7229.
16. Harper JME, Gellel TH, Di Salvo FJ (1975) Heat capacity of 2H-NbSe₂ at the charge density wave transition. Phys Lett A 54:27–28.
17. Kiss T, et al. (2007) Charge-order-maximized momentum-dependent superconductivity. Nat Phys 3:720–725.
18. Hou X-Y, et al. (2017) Proximity-induced superconductivity in new superstructures on 2H-NbSe₂ surface. Chin Phys Lett 34:77403.
19. Roushdjian D, et al. (2012) Gaps and kinks in the electronic structure of the superconductor 1T-NbSe₂. Phys Rev B 85:245422.
20. Weber F, et al. (2011) Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe₂. Phys Rev Lett 107:107403.
21. Soumyanarayanan A, et al. (2013) Quantum phase transition from triangular to stripe charge order in NbSe₂. Proc Natl Acad Sci USA 110:1623–1627.