INTRODUCTION

The pharmacokinetic properties as well as the binding kinetics of a drug/ligand are nowadays considered to direct the selectivity and duration of its clinical action.\(^1,2\) In this respect, induced-fit (IF) binding is often evoked as a means to achieve its long residence time at the target. Traditionally, this mechanism comprises fast binding of the ligand, L, to the free target, T, to yield a transient TL complex, followed by slow transconformation thereof into a more stable T*L species (Figure 1).\(^3-6\) This model represents a compromise between the classical “Occam’s razor” principle, which favors a reversible one-step binding, and increasing experimental evidence for a model in which TL experiences multiple small conformational adjustments.\(^7-9\)

Abstract

Induced fit- (IF) and conformational selection (CS) binding mechanisms have long been regarded to be mutually exclusive. Yet, they are now increasingly considered to produce the final ligand-target complex alongside within a thermodynamic cycle. This viewpoint benefited from the introduction of binding fluxes as a tool for analyzing the overall behavior of such cycle. This study aims to provide more vivid and applicable insights into this emerging field. In this respect, combining differential equation-based simulations and hitherto little explored alternative modes of calculation provide concordant information about the intricate workings of such cycle. In line with previous reports, we observe that the relative contribution of IF increases with the ligand concentration at equilibrium. Yet the baseline contribution may vary from one case to another and simulations as well as calculations show that this parameter is essentially regulated by the dissociation rate of both pathways. Closer attention should be paid to how the contributions of IF and CS compare at physiologically relevant drug/ligand concentrations. To this end, a simple equation discloses how changing a limited set of “microscopic” rate constants can extend the concentration range at which CS contributes most effectively. Finally, it could also be beneficial to extend the utilization of flux-based approaches to more physiologically relevant time scales and alternative binding models.

KEYWORDS
binding fluxes, conformational selection, equations, induced fit, rate constants, simulations, thermodynamic cycle
Conformational selection (CS) constitutes a well-known counterpart to IF. Traditionally, this mechanism implies that a slow conformational change between free T and T* precedes a fast but highly selective binding step.5,6,10,11,12 CS-binding has often been opposed to IF6,13,14 and, in this respect, Copeland15,16 asserted a decade ago that most of the drugs with high clinical efficacy act via IF. This conclusion was essentially based on the shape of k_{obs} versus [L] plots: i.e., a hyperbolic increase for IF and a hyperbolic decrease for CS.4,5 However, this strict distinction has been challenged by bio-mathematical considerations showing that CS may also bring about increasing plots.17,18 Hence, some previously qualified IF-binders could actually bind via CS.14

Analogous to the rate of product formation in enzymology, a binding flux refers to the rate by which one target species converts into another. As such, it relies on the concentration of a target species as well as on the rate constant for its transformation into the other species. While a reversible one-step mechanism only necessitates a “forward” and a “reverse” flux, a two-step mechanism such as IF and CS already requires four “microscopic” fluxes: i.e., two for each step (Figure 1, and Supporting Information Section S1). The overall conversion of T into T*L and back can also be expressed in terms of “macroscopic” forward- and reverse fluxes, F_{on} and F_{off} (Figure 1B). In this respect, Hammes et al.19 evaluated the relative contribution of IF, R_{C-IS}, and CS to T*L within a cycle by comparing their F_{on}-values at equilibrium. This approach is now also adopted by many others.13,20,23,24,25,26 The emerging picture is that R_{C-IS} invariably increases with [L]. This usually allows CS to dominate at low [L], but not always.19,24
Prior estimation/knowledge of all the microscopic rate constants is required for calculating F_{on}. The presently available sets of constants are not only theoretical but also based on molecular dynamics simulations and experimental observations.19,24,25,26 In this respect, it is striking that many of the published sets depart from the traditional frame of reference (Section 2.4 and Supporting Information Section S2). Moreover, it is still little known that F_{on} and/or Rc_{if} can also be directly calculated based on the microscopic rate constants without invoking concentration of each target species (e.g., Ref. [21]) and that relevant $R_{c_{if}}$ estimates can also be obtained by comparing by how much $T*L$ accumulates via each pathway (Supporting Information Section S1).

Binding flux-based concepts may appear quite exotic for many pharmacologists who are more acquainted with rate constants. This study aims to partly fill this gap by providing more vivid and applicable insights into this emerging field. Attention is first paid to the link between F_{on} and the microscopic forward fluxes for IF and CS separately. The impact of the rate of each step of the thermodynamic cycle on the Rc_{if}-$[L]$ relationship is examined next. The role of the most influential microscopic rate constants is finally highlighted.

2 | MATERIALS AND METHODS

2.1 | Nomenclature

The rate constants that govern the individual steps in two-step binding models are commonly referred to as “microscopic” are denoted as for IF k_1 (in M$^{-1}$ min$^{-1}$) and k_2 (in min$^{-1}$) when moving forward from T to T* and as k_2 (in min$^{-1}$) and k_4 (in min$^{-1}$) when reverting to T (Figure 1A). The “macroscopic” constants are denoted as k_{on} and k_{off}, respectively. To keep the same type of nomenclature, we refer to fluxes that are associated with the individual steps as the “microscopic” F_1-F_4 and those that account for the “macroscopic” fluxes as F_{on} and F_{off} (Figure 1A). To distinguish between the IF and CS pathways of a thermodynamic cycle, those notations are appended by the appellation of each pathway in question. To distinguish between the notations for conventional IF binding (i.e., for which $k_3 < k_2$) and bivalent-like binding (i.e., for which $k_3 > k_2$)28 the latter are appended by ”Biv” (Supporting Information Section S2).

2.2 | Definitions

For a mono- molecular binding step (e.g. from T to T*), F_{3-CS} amounts to the product of $[T]$ and the associated first-order rate constant k_{1-CS} and, for a bimolecular step (e.g. from T* to T*), F_{3-CS} amounts to the product of $[T^*], [L]$ and the associated second-order rate constant k_{3-CS}. Hence, all fluxes can be expressed in % of $[T_{total}] \times \text{min}^{-1}$ (Figure 1A). The “competition” between IF and CS in a thermodynamic cycle is presently quantified by the relative contribution (also often denoted as dominance, prevalence...) of IF: i.e., $R_{c_{if}} = \frac{F_{on-if}}{F_{on-if} + F_{on-cs}}$.19

When based on how much each pathway has contributed to the accumulation of $T*L$, Acc after a given time span (such as proposed by Ordabayev et al.,26), $Rc_{if} = \frac{Acc_{if}}{(Acc_{if} + Acc_{cs})}$ (Supporting Information Section S1). Please note that Rc_{cs} equals 1-Rc_{if}, that the pathway with the highest Rc value is considered to “dominate” and that both pathways contribute equally when their Rc equals 0.5. Finally, it is only at equilibrium that F_{on} and F_{off} of each pathway can also be expressed in terms of their conditional rates (Figure 1B). While those also act as composite first order rate “constants” (Supporting Information Section S2), they should not be confounded with k_{obs}.

2.3 | Simulations

Microscopic rate constants are provided for each investigated case in Supporting Information Section S3. Accumulation of $T*L$ at time t' via a given pathway is obtained by integrating fluxes of the last microscopic step thereof,26 such as shown Supporting Information Section S1. The sum of both yields the total $[T*L]$. In general, numerical solutions for the differential equations are achieved by consecutively solving all their segments in parallel over very small time intervals.31 All simulations take account of the pre-existing equilibrium between $[T]$ and $[T^*]$. Simulated data are analyzed by non-linear regression analysis with GraphPad Prism® (GraphPad Software Inc.).

2.4 | Paradigms

Simulations are also based on the widely adopted paradigm according to which $[L]$ vastly exceeds $[T_{total}]$, so that $[L]$ remains constant throughout. This is often the case for drug-binding.17,19,21,23,32,33,34 The transconformation step should significantly contribute to the ligand’s affinity for genuine IF binding, i.e., $k_{2-if} > k_{4-if}$ (so that $[T^*L]$ exceeds $[TL]$ at equilibrium). Also, $[T^*]$ should also only represent a small fraction of the initial unbound targets, i.e., $k_{2-CS} > k_{3-CS}$.13,18

The microscopic rate constants should comply with the classical “rapid equilibrium” paradigm according to which the binding proceeds faster than the conformational change for both pathways, i.e., $k_{2-if} > k_{2-cs}$ and $k_{4-CS} > k_{4-CS}$.5,13,17,18,19 Yet, exceptions to those rules are nowadays tolerated, and those are here also taken into consideration. Finally, ratios between microscopic fluxes are only equivalent to the ratios between their constituent rate constants when they “originate” from the same target species and when they do not, or equally depend on $[L]$. This only concerns the F_{2-if}/F_{3-if} and F_{4-if}/F_{4-CS} ratios.

Since the difference in Gibbs free energy between T and $T*L$ needs to be rigorously the same for the two pathways of a thermodynamic cycle, their thermodynamic K_D’s (i.e., the k_{2-CS}/k_{3-CS} rates) need to be equal as well. This constraint has been referred to as the “detailed balance rule”.21 When only approximate rate constants are provided in the literature, one of them needs to be adjusted to conform to this rule. Also, when starting from a compliant situation, it is only permitted to change two (or more) of them in parallel, such as when changing the forward and reverse rate constants of a single
step equally (Figures 5 and 6). On the other hand, the two forward (or reverse) rate constants of a single pathway have to change oppositely and so on.

2.5 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corresponding entries in the IUPHAR/BPS Guide to PHARMACOLOGY,25 and are permanently archived in the Concise Guide to PHARMACOLOGY 2019/20.36,37

3 | RESULTS

3.1 | Bivalent-like- (Biv) versus genuine IF binding

It is of note that some authors have also classified as 'IF' cases that deviate from the classical *rapid equilibrium binding* premise (i.e., with \(k_3 < k_2 \)) by allowing the transconformation to proceed equally fast (i.e., \(k_3 = k_2 \)) or even faster than the dissociation (i.e., \(k_3 > k_2 \)).14 Kinetically speaking, the latter act like genuine bivalent ligands (Supporting Information Section S2) and are therefore abbreviated as 'biv'. Here we show that this \(k_3/k_2 \) ratio also determines the microscopic step that mostly impacts \(F_{on} \).

The simulated plots in Figure 2 gradually move from Biv- (left side) to classical IF binding (right side) by lowering \(k_2 \) and \(k_4 \) (i.e., to keep the \(K_d \) constant and because the slow dissociation of IF binders is linked to a low \(k_4 \)). Alike previous observations,29 Figure 2A shows that binding equilibrium is reached faster for Biv- than for IF binding at equal [L]. Figure 2B compares how the microscopic forward fluxes for each step—\(F_2 \) and \(F_3 \)—evolve with time. Although both change considerably early on, they eventually reach a plateau when equilibrium is approximated and this takes again less time for Biv- than for IF binding. This difference also applies to the macroscopic \(F_{on} \) (Figure 2C).

At equilibrium, \(F_2 \) predominates for Biv binding, \(F_1 \) and \(F_3 \) are equal for the intermediate case (i.e., with \(k_2 = k_3 \)) and \(F_1 \) predominates for IF binding. As expected, \(F_{on} \) is largely determined by the smallest of the microscopic fluxes (i.e., \(F_2 \) for Biv and \(F_3 \) for IF) (Figure 2C). Similar relationships apply to the reverse fluxes. Figure 2C,D show that \(F_{off} \) always equals \(F_{on} \) at equilibrium and that this rule also applies to the microscopic fluxes (Figure 1A). Finally, the intermediate case (Figure 2C,mid) represents a special situation: the microscopic fluxes are all equal at equilibrium and \(F_{on} \) only equals 50% thereof. Figure 2D further shows that, at equilibrium, \(F_{on} \) increases with [L] until a plateau value for all three cases. Interestingly, the proportionality between \(F_{on} \) and its most influential microscopic flux (or fluxes) remains constant throughout. This invariance owes to fact that the \(F_2/F_3 \) ratio always equals the \(k_2/k_3 \) ratio (see Section 2.4).

3.2 | CS binding

Hyperbolically decreasing \(k_{obs} \) versus [L] plots were regarded to be a hallmark for CS binding.4,5 Yet, this shape only applies when \(k_4 > k_1 \) (Supporting Information Section S4). Otherwise (i.e., when \(k_4 < k_1 \)), the plots rather increase hyperbolically.17,32 In spite of this, all the forward (and reverse) fluxes still respond in the same way to increasing [L] for those two cases.

Figure 3 depicts the time-wise evolution of the forward fluxes for both cases at low- (left side) as well as at high [L] (mid). Here also, they tend to reach a standstill when equilibrium is approximated. All the connected forward and reverse fluxes then become equal as well (not shown). However, it is noteworthy that \(F_3 \) predominates at low [L] while \(F_2 \) predominates at high [L]. This shift is gradual such as shown by the bell-shaped profile of the \(F_{on} \) versus [L] plots (right side). This shape reflects the fact that \(F_{on} \) is governed by the lowest of the microscopic fluxes (i.e., from \(F_3 \) to \(F_1 \) when [L] increases). From the strict viewpoint of fluxes, increasing [L] allows CS- binding to shift from an IF- like- profile to a Biv- like profile.

3.3 | Thermodynamic cycles: from macroscopic to microscopic fluxes

Next, we evaluate the contribution of the IF- and CS- pathways to \(\Delta G/2 \) within a thermodynamic cycle. To this end, Figure 4 focuses on three cases with a distinct relative contribution of IF, \(R_{c,IF} \), at low [L] and at equilibrium. Although this difference received little attention until now, it offers a key to a better understanding of why this relative contribution is related to some of the microscopic rate constants.

Figure 4A compares their \(R_{c,IF} \) versus [L] plots. The microscopic rate constants for each case and their compliance with the classical frame of reference are related in Supporting Information Section S3. Case A represents the conventional model. For this and several other cases in the literature (e.g., Refs. [23,26,27]), CS largely dominates at low [L] and \(R_{c,IF} \) increases gradually with [L] until full IF-dominance. Such as for the two examples by Hammes et al.,19 \(R_{c,IF} \) already resides well above baseline at low [L] for Case B. Case C relies on molecular dynamics simulation- based rate constants for MDM2 binding to the intrinsically disordered transactivation domain of the tumor suppressor p53 protein.24 This case represents an extreme situation in which IF always overwhelmingly dominates at low [L]. Interestingly, the \(F_{on} \), the \(F_{off} \) and the accumulation- based approaches26 yield nearly alike plots for each of the three cases (Figure 4A). Yet, \(R_{c,IF} \) values may differ from one another for each case early on (Figure 4B). We will only deal with equilibrium binding below.

Comparing how \(F_{on} \) is related to its constituent microscopic fluxes offers better insight into why \(R_{c,IF} \) may be so different at low [L] (Figure 4C). Although both pathways now act in unison (so that they can potentially influence one another), the relationships that applied to the separate pathways (Figures 2 and 3) remain largely preserved. In
particular, $F_{\text{on}}^{\text{CS}}$ is limited by $F_{3-\text{CS}}$ at low [L] only while $F_{\text{on}}^{\text{IF}}$ is always limited by $F_{3-\text{IF}}$. The differences between the three cases can thus be explained as follows: IF is marginal for Case A because $F_{3-\text{CS}}$ exceeds $F_{3-\text{IF}}$, both pathways contribute almost alike for Case B because $F_{3-\text{IF}}$ and $F_{3-\text{CS}}$ are nearly equal and IF dominates for Case C because $F_{3-\text{CS}}$ exceeds $F_{3-\text{IF}}$ (Figure 4C).
3.4 | Link between R_{c-if} and the rate of individual steps

Ideally, it should be of interest to examine the impact of each rate constant on the R_{c-if} versus $[L]$ plots separately. Unfortunately, the “detailed balance rule” (Section 2.4) requires two (or more) rate constants to be changed in parallel. We here compare how changing the two rate constants of each step affect those plots.

Figure 5 focuses on the k_3- and k_4 values for Case A. Decreasing or increasing those values for CS prompts an inverse change of R_{c-if} at low $[L]$ (Figure 5A). This is to be expected since changing k_{3-CS} produces an identical change of F_{on-CS} and F_{on-CS} ratio and thus also of R_{c-if} at low $[L]$ (Figure 5B). However, changing this tandem also prompts an appreciable horizontal shift of the R_{c-if} versus $[L]$ plot, i.e., a decrease thereof allows CS to remain efficacious until higher $[L]$ whereas an increase narrows this concentration range. As shown at the right side, those horizontal shifts reflect the ability of $k_{3,IF}$ to change the amplitude of the F_{on-CS} ratio (see also Supporting Information Section S6).

Figure 6 focuses on the k_1- and k_2 values for Case A. Here, decreasing or increasing this tandem for CS produces a (respectively) left- and rightward shift of the R_{c-if} versus $[L]$ plot (Figure 6A). In essence, these shifts reflect the ability of k_{1-CS} to change the overall shape of the biphasic F_{on-CS} versus $[L]$ plot (right side). Please see also Supporting Information Section S6 for more detailed information. Finally, Figure 6B shows that increasing or decreasing the k_{4-if}- k_{2-if} tandem does not affect those plots.
Taken together, the present observations disclose the diversity of outcomes that can be obtained by changing the overall rate of each step. In particular, they shed light on the ability of both trans-conformation steps to modulate the ligand’s concentration range within which CS remains most efficacious (Figures 5B and 6A) and also on the ability of both $k_3 - k_4$ tandems to modulate R_{c-IF} at low $[L]$ (Figure 5A,B). Comparable outcomes are also observed for Case B (Supporting Information Section S5) and the above principles can also be applied for transforming the IF-dominated situation for Case C (Figure 4C) into a situation in which CS remains dominant for an extended range of ligand concentrations (Supporting Information Section S7).

3.5 | What do equations tell?

In line with the common practice, the previous figures essentially referred to forward fluxes. Yet, it is of note that substituting the forward fluxes by their reverse counterparts yields equivalent outcomes at equilibrium. Moreover, this special condition also allows F_{on}...
8 of 13

FIGURE 5 Impact of the rate of the second step of each pathway on $R_{C_{ij}}$ at equilibrium. Microscopic rate constants k_3 and k_4 are changed 10-fold in tandem (to keep the k_2 unchanged) for a single pathway. The impact thereof on the $R_{C_{ij}}$ versus [L] plots is here shown for Case A (as control). Similar outcomes are also observed for Case B (Supporting Information Section S5). While Case A allows a better appreciation of the horizontal shifts, Case B allows a better appreciation of the vertical ones. (A) Left side: Decreasing or increasing the value of the k_3-CS-k_4-CS tandem does not affect the ascending portion of the $R_{C_{ij}}$ versus [L] plots but shifts $R_{C_{ij}}$ at low [L] in the opposite way. Right side: This shift can be related to the ability of changing k_3-CS to produce a similar change of F_{on-CS} at low [L] (not shown) and thus also of F_{on-CS}. Hence, the F_{on-CS}/F_{on-CS} ratio changes in the opposite way. (B) Left side: Decreasing or increasing the value of the k_3-IF-k_4-IF tandem shifts the ascending portion of the $R_{C_{ij}}$ versus [L] plots in the opposite way (i.e., to higher and lower [L], respectively) but shifts $R_{C_{ij}}$ at low [L] in a similar way. Right side: This latter shift can be related to the ability of changing k_3-IF to produce an alike change of F_{on-CS} (via F_{3-CS}) and thus also of the F_{on-CS}/F_{on-CS} ratio at low [L]. The more complex link between k_3-IF and the horizontal shifts is documented in Supporting Information Section S6.
Finally, please note that the present differential equation- and conditional rate-based calculations provide closely the same $R_{\text{c,IF}}$ versus [L] plots as the reported ones for cases whose input data were based on molecular dynamics simulations and experimental observations (not shown). Conclusions about the impact of microscopic rate constants on those plots (see Discussion) remain pertinent as well.

4 | DISCUSSION

IF and CS pathways are increasingly considered to operate alongside within a thermodynamic cycle. This allows both of them to contribute to the final T^*L complex instead of being mutually exclusive. The notion by Hammes et al. that binding fluxes are more appropriate than rate constants for evaluating this contribution is also gaining ground. The present article aims to provide better insight into the basic aspects of this new approach, with special focus on the connection between such fluxes and their constituent rate constants (Figure 1).

Although the concept of binding- or “reactive” fluxes is already pretty ancient, the equations that were presented by Hammes et al. have the merit to express the “macroscopic” fluxes of each pathway (F_{on} for T to T^*L) in terms of the “microscopic” fluxes of the intervening steps (e.g., $F_{1,IF}$ for T to TL) under equilibrium- as well as under non-equilibrium conditions. The present simulations show such relationships as a function of time, the ligand concentration and of the kinetic properties of each pathway. While they confirm that F_{on} is chiefly dictated by the lowest of the microscopic fluxes (Figures 2 and 3), they also call attention to differences between IF and CS at equilibrium. F_{on}:IF is governed by the flux of the transconformation step ($F_{3,IF}$) at all [L] whereas F_{on}:CS is successively controlled by the binding step ($F_{3,CS}$) and the transconformation step ($F_{1,CS}$) when [L] increases. This shift is gradual and confers a bell-shaped profile to the F_{on}:CS versus [L] plots.

The relative contribution of both pathways to T^*L within a cycle is now also customary evaluated by comparing their F_{on}: values at equilibrium (here referred to as $R_{\text{c,IF}} = F_{\text{on}}$:IF/$F_{\text{on}}$:IF + F_{on}:CS). Like all previous reports, Figure 4A shows that $R_{\text{c,IF}}$ increases with [L] until IF fully dominates for three distinct Cases. However, matching profiles can also be obtained by the accumulation-based approach (Supporting Information Section S1). This correspondence is especially striking because both approaches embody different perceptions of the term “contribution”. Indeed, the former refers to a macroscopic flux at a given time point which, by definition, has to originate from T. Alternatively, the accumulation-based approach plays the role of an “archivist” by adding up all the net contributions each pathway to T^*L during a given time frame.

Figure 4 also clearly shows that the positive relationship between $R_{\text{c,IF}}$ and [L] does not imply that CS necessarily dominates at
It is therefore of interest to find out how this parameter is governed by microscopic fluxes and even rate constants. To this end, comparing the Cases in Figure 4C, changing the k_3-k_4 tandems for each pathway (Figure 5) as well as simplifying the conditional rate-based equations (Figure 7B and Supporting Information Sections S2 and S8-D) shed light on a major impact of the two k_4's on the baseline value of R_{c-IF} for a genuine IF–CS–composed cycle. Taken together, $minR_{c-IF}$ can be approximated as $F_{3-IF}/(F_{3-IF} + F_{3-CS})$, such as already hinted at in Figure 4C, but also as $F_{4-IF}/(F_{4-IF} + F_{4-CS})$ and even as $k_{4-IF}/(k_{4-IF} + k_{4-CS})$. This owes to the equivalence between the forward- and reverse fluxes for each step at equilibrium as well as to the equivalence between the F_{4-IF}/F_{4-CS} and k_{4-IF}/k_{4-CS} ratios. In this respect, it is of note that the ratios between the F_- and the more elemental k_3's values are not equivalent (see Section 2.4). Because of the limiting role of the k_3's with respect to the dissociation of T^* via both IF and CS, it can be inferred that R_{c-IF} at low [L] is essentially controlled by the rates of the bidirectional transit between T and T^*. In other words, it implies that the fastest pathway dominates. Such conclusion was previously also reached for heterobivalent ligand binding and it is also central to a model where T_L to T^* transition goes along with the formation of a ‘lid’ that occludes bound L from the aqueous surrounding. This shielding is considered to greatly impair the spontaneous escape of the ligand so that its dissociation is most prone to proceed via a retrograde IF mechanism.

The most effective contribution of CS can also be perceptibly extended to higher [L] by changing the transconformation rates of IF and CS (Figures 5B and 6A). Although this issue has only been scantily addressed in previous studies it also merits particular attention since it relates to how much each pathway is able to contribute to T^* within a physiological range of [L]. While horizontal shifts of the R_{c-IF} versus [L] plots (left side) are quite arduous to interpret in terms of microscopic fluxes (right side), this is not the case when turning to the

FIGURE 7 All equations refer to equilibrium binding and, unless explicitly specified, R_c applies to IF as well as to Biv (Supporting Information Section S2). The graph at the top shows the parameters that define a R_c versus [L] plot: $minR_c$ for the minimal value of R_c (i.e., when [L] reaches 0), $[L]_{med}$ for [L] at which the ascending portion of the plot is half-maximal and $[L]_{0.5}$ for [L] at which IF and CS contribute equally (i.e., when $R_c = 0.5$). Please see Supporting Information Section S8 for the elaboration of the equations. They are all based on the conditional rate-based equations for F_{on} and F_{off} (Figure 1B). (A) Equations for R_c at all [L]: The F_{on}- and F_{off}- based approaches yield the same value for the recurrent parameter, α. (B) $minR_c$: The conditional rate-based equations can be simplified when [L] = 0 (see also Supporting Information Section S2). Simplification of the F_{off}-based equations discloses the implication of k_{4-IF} and k_{4-CS} for IF-CS-based cycles. (C) IF and CS contribute equally at $[L]_{0.5}$. The presented equation is mathematically equivalent to the one in. Those do obviously not apply when $minR_c$ exceeds 0.5. (D) $[L]_{med}$ refers to "Median" value of [L], i.e., at which the R_c versus [L] plot is half-maximal between $minR_c$ and 1. Please see Table 1 for numerical values.
The present binding flux-based approaches provide better insight into how the microscopic rate constants of IF and CS pathways affect their relative contribution to T*L at equilibrium. Thus, the median/midpoint is calculated via equation 25 in Supporting Information Section S8 (also presented in Figure 7D) based on the k_{2-CS}/k_{3-CS} ratio and the simplified expression of the baseline value of the relative contribution of IF (i.e., minRc_{IF} as k_{4-IF}/(k_{4-IF} + k_{4-CS})) for Case A and variations thereof as shown in Figures 5 and 6. Those calculated [L]_{med} values are already in excellent agreement with those that are obtained by non-linear regression analysis with GraphPad Prism® (Graphpad Software Inc.) of the F_{on-} based Rc_{IF} versus Log[L] plots (in where F_{on-} values are based on the microscopic rate constants and simulated concentrations of the different target species at equilibrium, such as related).^{19}

A perfect fit between both [L]_{med-} values is obtained when expressing minRc_{IF} by its unabridged equation in Figure 7B (not shown). Other parameters: Please see Figure 1.

Table 1

Parameters	minRc_{IF} (approximated)	k_{3-CS}/k_{2-CS}	[L]_{med} in nM (calculated)	[L]_{med} in nM (simulated)^a
	0.0476	0.8	16.8	16.9

Fold-shift in Figures 5 and 6 by changing

- k_{3-CS} and k_{3-CS}:
 - x0.1: x7.0 x10 x1.43 x1.43
 - x10: x0.104 x0.1 x0.96 x0.96

- k_{2-CS} and k_{2-CS}:
 - x0.1: x0.104 x1.0 x9.57 x9.52
 - x10: x7.0 x1.0 x0.143 x0.148

- k_{1-CS} and k_{1-CS}:
 - x0.1: x1.0 x0.1 x1.0 x1.0
 - x10: x1.0 x1.0 x1.0 x1.0

The ascending portion of the sigmoidal Rc_{IF} versus Log[L] plot is half-maximal at [L]_{med}. This median/midpoint is calculated via equation 25 in Supporting Information Section S8 (also presented in Figure 7D) based on the k_{2-CS}/k_{3-CS} ratio and the simplified expression of the baseline value of the relative contribution of IF (i.e., minRc_{IF} as k_{4-IF}/(k_{4-IF} + k_{4-CS})) for Case A and variations thereof as shown in Figures 5 and 6. Those calculated [L]_{med} values are already in excellent agreement with those that are obtained by non-linear regression analysis with GraphPad Prism® (Graphpad Software Inc.) of the F_{on-} based Rc_{IF} versus Log[L] plots (in where F_{on-} values are based on the microscopic rate constants and simulated concentrations of the different target species at equilibrium, such as related).^{19}

A perfect fit between both [L]_{med-} values is obtained when expressing minRc_{IF} by its unabridged equation in Figure 7B (not shown). Other parameters: Please see Figure 1.

Parameters	k_{1-CS} × 10	k_{2-CS} × 10	k_{3-CS} × 10	k_{4-CS} × 10
Fold-shift	x0.1	x1.43	x1.43	x1.43
	x1.0	x0.1	x0.96	x0.96
	x0.104	x1.0	x9.57	x9.52
	x7.0	x1.0	x0.143	x0.148
	x1.0	x1.0	x1.0	x1.0

Table 1

[L]_{med} and related parameters for Case A

Parameters	minRc_{IF} (approximated)	k_{3-CS}/k_{2-CS}	[L]_{med} in nM (calculated)	[L]_{med} in nM (simulated)^a
	0.0476	0.8	16.8	16.9

Fold-shift in Figures 5 and 6 by changing

- k_{3-CS} and k_{3-CS}:
 - x0.1: x7.0 x10 x1.43 x1.43
 - x10: x0.104 x0.1 x0.96 x0.96

- k_{2-CS} and k_{2-CS}:
 - x0.1: x0.104 x1.0 x9.57 x9.52
 - x10: x7.0 x1.0 x0.143 x0.148

- k_{1-CS} and k_{1-CS}:
 - x0.1: x1.0 x0.1 x1.0 x1.0
 - x10: x1.0 x1.0 x1.0 x1.0

The ascending portion of the sigmoidal Rc_{IF} versus Log[L] plot is half-maximal at [L]_{med}. This median/midpoint is calculated via equation 25 in Supporting Information Section S8 (also presented in Figure 7D) based on the k_{2-CS}/k_{3-CS} ratio and the simplified expression of the baseline value of the relative contribution of IF (i.e., minRc_{IF} as k_{4-IF}/(k_{4-IF} + k_{4-CS})) for Case A and variations thereof as shown in Figures 5 and 6. Those calculated [L]_{med} values are already in excellent agreement with those that are obtained by non-linear regression analysis with GraphPad Prism® (Graphpad Software Inc.) of the F_{on-} based Rc_{IF} versus Log[L] plots (in where F_{on-} values are based on the microscopic rate constants and simulated concentrations of the different target species at equilibrium, such as related).^{19}

A perfect fit between both [L]_{med-} values is obtained when expressing minRc_{IF} by its unabridged equation in Figure 7B (not shown). Other parameters: Please see Figure 1.

Table 1

Parameters	k_{1-CS} × 10	k_{2-CS} × 10	k_{3-CS} × 10	k_{4-CS} × 10
Fold-shift	x0.1	x1.43	x1.43	x1.43
	x1.0	x0.1	x0.96	x0.96
	x0.104	x1.0	x9.57	x9.52
	x7.0	x1.0	x0.143	x0.148
	x1.0	x1.0	x1.0	x1.0

The present binding flux-based approaches provide better insight into how the microscopic rate constants of IF and CS pathways affect their relative contribution to T*L at equilibrium. Relying on this special condition is now common practice since it facilitates comparative studies by getting rid of time-related variations. Also, it is only at equilibrium that T_{c-IF} can be expressed in terms of simple equations. On the backside, it is obvious that equilibrium binding is only rarely met in real-life situations.^{41} This important consideration pleads for extending the use of the present—as well as additional flux-related approaches to more physiologically relevant time scales.^27,43

Ligand-target interactions are still often classified as either IF or CS based on the shape of their k_{obs} versus [L] plots (e.g., Ref. [44]). Yet, while the already many reported hyperbolically decreasing plots do still point at CS, increasing plots are nowadays considered as inconclusive.^{57,58} Interestingly, the thermodynamic cycle model allows them to be biphasic (i.e., with an initial decrease and subsequent increase)^25,27 and such pattern has also been observed experimentally (e.g., Refs. [46-50]). Structural biology provides complementary information. Refinements in molecular dynamics simulations and in experimental techniques like nuclear magnetic resonance- and fluorescence spectroscopy already provided the kinetic parameters for some of the reported relative contributions of IF and CS.^{19,24,26} They also greatly improved our insight about the conformational plasticity of many targets. In this respect, it is now considered that CS-prone sampling can take place when the unbound target is already able to adopt a “binding-competent” conformation^{51} and especially when ligand binding increases the population thereof. On the other hand, IF is to be preferred when new conformations are produced. Based on a mixed profile, Sušac et al.^{52} recently concluded that agonist-mediated adenosine A2A receptor activation might utilize both mechanisms. The constitutive activity of many wild-type and mutant G protein-coupled receptors, the existence of inverse agonists^{12} and the results from above-mentioned simulations and measurements^{53-55} point to the ability of such receptors to perform highly dynamic sampling between “inactive” and “active” conformations. Such CS-prone sampling has also been observed for other target proteins. The Hsp90 heat shock protein offers a striking example. Based on the ascending profile of its k_{obs} versus [L] plot, it was initially assumed that the antagonist geldanamycin binds to this protein via IF.^{15,16,56} However, this profile has meanwhile been related to its conversion into a more potent species in the assay medium.^{57,58} Instead, simulations and measurements now indicate that the involved N-terminal domain can sample a wide range of conformations...
in between the fully open- and the ATP- bound closed ones and recent kinetic considerations further suggest that the binding of related antagonists implicate both IF and CS.

In this respect, there is also increasing awareness that conformational changes can take place within a large range of timescales and that the energy landscape of a binding process may be funnel-like with rapidly interconverting conformations at each bottom.9,16,64,65,66 While some authors opted to neglect such fast transconformations, others rather opted to extend the CS model to an increasingly popular one in where a fast CS- binding precedes a slower IF- like conformational change of the complex.67-69 Since this hybrid model is thought to allocate high selectivity (via CS) and high affinity (via IF) to drug binding, it could be of particular interest to pay more attention to this model in terms of fluxes.

ACKNOWLEDGEMENTS
We are very much indebted to Dr Denis Michel (Univ. Rennes-1) for helpful comments.

DISCLOSURES
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

AUTHOR CONTRIBUTIONS
G. Vauquelin: conception and design of this work, generation of data and writing of this manuscript. D Maes: design of this work, generation of mathematical data and writing of this manuscript.

ETHICS APPROVAL STATEMENT
N/A.

DATA AVAILABILITY STATEMENT
No data have been shared.

ORCID
Georges Vauquelin https://orcid.org/0000-0001-8613-1711

REFERENCES
1. Swinney DC. Biochemical mechanisms of drug action, what does it take for success? Nat Rev Drug Discov. 2004;3:801-808.
2. Copeland RA, Pompliano DL, Meek TD. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov. 2006;5:730-739.
3. Koshland DE. (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA. 1958;44:98-104.
4. Strickland S, Palmer G, Masset V. Determination of dissociation constants and specific rate constants of enzyme-substrate (or protein-ligand) interactions from rapid reaction kinetic data. J Biol Chem. 1975;250:4048-4052.
5. Tummino PJ, Copeland RA. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry. 2008;47:5481-5492.
6. Du X, Li YL, Xia Y-L, et al. Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci. 2016;17:144-177.
7. Garvey EP. Structural mechanism of slow-onset, two-step enzyme inhibition. Curr Chem Biol. 2010;4:64-73.
8. Dror RO, Pan AC, Arlow DH, et al. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci USA. 2011;108:13118-13123.
9. Weis WI, Kobilka BK. The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem. 2018;87:897-919.
10. Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model. J Mol Biol. 1965;12:88-118.
11. Burgen AS. Conformational changes and drug action. Fed Proc. 1981;40:2723-2728.
12. Changeux JP, Edelstein S. Conformational selection or induced fit? 50 years of debate resolved. F1000 Biol Rep. 2011;3:19. https://doi.org/10.3410/B3-19
13. Greves N, Zhou H-X. Both protein dynamics and ligand concentration can shift the binding mechanism between conformational selection and induced fit. Proc Natl Acad Sci USA. 2014;11:10197-10202.
14. Chakraborty P, Di Cera P. Induced fit is a special case of conformational selection. Biochemistry. 2017;56(22):2853-2859.
15. Copeland RA. The dynamics of drug-target interactions: drug-target residence time and its impact on efficacy and safety. Expert Opin Drug Discov. 2010;5:305-310.
16. Copeland RA. Conformational adaptation in drug-target interactions and residence time. Future Med Chem. 2011;3:1491-1501.
17. Vogt AD, Di Cera E. Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry. 2012;51:5894-5902.
18. Gianni S, Dogan J, Jemth P. Distinguishing induced fit from conformational selection. Biophys Chem. 2014;189:33-39.
19. Hannes GG, Chang YC, Oas TG. Conformational selection or induced fit: a flux description of reaction mechanism. Proc Natl Acad Sci USA. 2009;106:13737-13741.
20. Daniels KG, Tonthat NK, McClure DR, et al. Ligand concentration regulates the pathways of coupled protein folding and binding. J Am Chem Soc. 2014;136:822-825.
21. Michel D. Conformational selection or induced fit? New insights from old principles. Biochimie. 2016;128-129:48-54.
22. Meyer-Almes FJ. Discrimination between conformational selection and induced fit protein-ligand binding using Integrated Global Fit analysis. Eur Biophys J. 2016;45:245-257.
23. Galburt EA, Rammohan JA. Kinetic signature for parallel pathways: conformational selection and induced fit. Links and disconnects between observed relaxation rates and fractional equilibrium flux under pseudo-first-order conditions. Biochemistry. 2016;55:7014-7022.
24. Zhou G, Pantelopoulos GA, Kenakin T, Christopoulos A. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol Rev. 2003;55:597-606.
25. Vauquelin G. Distinct in vivo target occupancy by bivalent- and induced-fit-like binding drugs. Br J Pharmacol. 2017;137:16-16.
26. Vauquelin G, Maes D, Swinney DC. Fluxes for unraveling complex binding mechanisms. Trends Pharmacol Sci. 2020;41:923-932.
27. Neubig R, Spedding M, Kenakin T, Christopoulos A. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVII. Update on terms and symbols in quantitative pharmacology. Pharmacol Rev. 2003;55:597-606.
28. Vauquelin G. Conserved conformational selection mechanism of p53-MDM2 binding with kinetic network models. Biophys J. 2017;113:785-793.
29. Sekhar A, Velyvis A, Zoltsman G, Rosenzweig G, Bouvignies G, Kay LE. Conserved conformational selection mechanism of HP70 chaperone-substrate interactions. Elife. 2018;7:e32764.
30. Ordbavey YA, Nguyen B, Kozlov AG, Jia H, Lohman TM. UvrD helicase activation by MutL involves rotation of its 2B sub-domain. Proc Natl Acad Sci USA. 2019;116:16320-16325.
31. Vauquelin G, Maes D, Swinney DC. Fluxes for unraveling complex binding mechanisms. Trends Pharmacol Sci. 2020;41:923-932.
