Atrial high-rate episodes and risk of major adverse cardiovascular events in patients with dual chamber permanent pacemakers: a retrospective study

Wei-Da Lu & Ju-Yi Chen

Patients with atrial high-rate episodes (AHRE) are at higher risk of major adverse cardiovascular events (MACE). The cutoff threshold for AHRE duration for MACE, with/without history of atrial fibrillation (AF) or myocardial infarction (MI), is unknown. A total of 481 consecutive patients with/without history of AF or MI receiving dual-chamber pacemaker implantation were included. The primary outcome was a composite endpoint of MACE after AHRE ≥ 5 min, ≥ 6 h, and ≥ 24 h. AHRE was defined as > 175 bpm (MEDTRONIC) or > 200 bpm (BIOTRONIK) lasting ≥ 5 min. Cox regression analysis with time-dependent covariates was conducted. Patients’ mean age was 75.3 ± 10.7 years and 188 (39.1%) developed AHRE ≥ 5 min, 115 (23.9%) ≥ 6 h, and 83 (17.3%) ≥ 24 h. During follow-up (median 39.9 ± 29.8 months), 92 MACE occurred (IR 5.749%/year, 95% CI 3.88–5.85). AHRE ≥ 5 min (HR 5.252, 95% CI 2.575–10.715, P < 0.001) and ≥ 6 h (HR 2.548, 95% CI 1.284–5.058, P = 0.007) was independently associated with MACE, but not AHRE ≥ 24 h. Patients with history of MI (IR 17.80%/year) had higher MACE incidence than those without (IR 3.77%/year, p = 0.001). Significant differences were found between MACE patients with/without history of AF in AHRE ≥ 5 min but not AHRE ≥ 6 h or ≥ 24 h. Patients with dual-chamber pacemakers who develop AHRE have increased risk of MACE, particularly after history of AF or MI.

Atrial fibrillation (AF) is a common arrhythmia encountered in clinical practice and is a major cause of preventable thromboembolic disease, namely stroke or systemic embolism. Paroxysmal atrial fibrillation (PAF), which is diagnosed by 12-lead electrocardiography, is transient and infrequent, and may be asymptomatic. The increased use of cardiac implantable electronic devices (CIEDs) has provided the technical ability to monitor atrial rhythm long term, and recent studies have focused on subclinical AF or atrial high-rate episodes (AHRE) detected by CIEDs, even in asymptomatic patients. Results of some studies have demonstrated that AHRE is associated with an increased risk of thromboembolic events. Increased risk of major adverse cardiovascular events (MACE) also have been studied in patients with AF and occasionally those with AHRE. However, the impact of both history of AF or myocardial infarction (MI) and the duration of AHRE on MACE lacks sufficient evidence to reach a conclusion.

Accordingly, we retrospectively examined the associations between different cutoff durations of AHRE and the incidence rates of MACE in patients with dual chamber permanent pacemakers with or without history of AF or MI.

Methods

Patients ≥ 18 years of age with dual chamber permanent pacemakers (MEDTRONIC or BIOTRONIK) who were treated in the Cardiology Department of National Cheng Kung University Hospital from January 2015 to August 2019 were recruited. The procedures followed were in accordance with the "Declaration of Helsinki" and the ethical standards of the responsible committee on human experimentation (the Institutional Review Board of National Cheng Kung University Hospital, Tainan, Taiwan (B-ER-108-278)). All included patients provided signed informed consent to participate.
Variables	All patients (n = 481)	AUHREs ≥ 5 min	AUHREs ≥ 6 h	AUHREs ≥ 24 h					
	Yes (N = 115)	No (N = 366)	P	Yes (N = 83)	No (N = 398)				
Age (years)	77.0 (14.0)	77.0 (15.0)	0.318	77.0 (14.0)	77.0 (15.3)	0.376	77.0 (14.0)	77.0 (15.3)	0.880
Gender	0.204	0.129	0.199						
Male	51 (53.8%)	205 (40.4%)	0.696	50 (60.2%)	209 (52.5%)	0.204	50 (60.2%)	209 (52.5%)	0.204
Female	444 (47.7%)	371 (38.4%)	0.013	444 (47.7%)	371 (38.4%)	0.013	444 (47.7%)	371 (38.4%)	0.013
BMI (kg/m²)	24.5 (2.9)	24.3 (3.3)	0.132	24.1 (3.1)	24.6 (2.7)	0.083	24.1 (3.7)	24.6 (2.8)	0.077
Device	< 0.001	< 0.001	< 0.001						
Metronic	320 (66.5%)	157 (35.5%)	0.019	75 (79.4%)	245 (61.6%)	0.045			
BIOTRONIK	161 (33.5%)	31 (64.5%)	0.194	89 (66.4%)	153 (38.4%)	0.194			
Primary indication	0.335	0.165	0.045						
Sinus node dysfunction	0.204	0.129	0.199						
Hypertension	451 (93.8%)	182 (96.8%)	0.027	341 (93.2%)	0.557				
Diabetes mellitus	250 (52%)	99 (52.7%)	0.810	189 (51.6%)	0.835				
Hyperlipidemia	442 (91.9%)	181 (96.3%)	0.005	320 (90.7%)	0.228				
Female	222 (46.2%)	80 (42.6%)	0.199	89 (49.6%)	0.931				
Female	259 (53.8%)	108 (57.4%)	0.019	171 (50.4%)	0.604				
CHA2DS2-VASc score	3.3 (1.3)	3.2 (1.3)	0.109	3.3 (1.3)	0.191				
HAS-BLED	2.3 (1.1)	2.2 (1.2)	0.069	2.3 (1.2)	0.370				
Chronic liver disease	22 (4.6%)	8 (4.3%)	0.789	7 (6.1%)	0.487				
Chronic kidney disease	182 (37.8%)	79 (42.0%)	0.130	79 (42.0%)	0.487				
Previously documented Af	126 (26.2%)	81 (43.1%)	0.003	60 (52.2%)	0.013				
LVEF (%)	69.0 ± 13.0	67.0 ± 15.0	0.002	66.0 ± 14.0	0.008				
Mitral E/e’ ratio	11.1 ± 5.0	11.6 ± 5.0	0.474	12.0 ± 6.0	0.174				
LA diameter (cm)	3.8 ± 0.7	3.9 ± 0.8	0.002	3.9 ± 0.8	0.005				
RV systolic function (c, m/s)	12.0 ± 2.0	12.0 ± 2.0	0.036	12.0 ± 2.0	0.393				
Drug prescribed at baseline									
Antiplatelets	153 (31.8%)	58 (30.9%)	0.718	117 (31.7%)	0.534				
Anticoagulants	122 (25.4%)	81 (43.1%)	0.001	66 (51.8%)	0.001				
Beta blockers	155 (32.2%)	81 (43.1%)	0.002	66 (51.8%)	0.001				
Amiodarone	100 (20.8%)	60 (31.9%)	0.002	66 (51.8%)	0.001				
Dronedarone	183 (37.8%)	147 (4.7%)	0.002	66 (51.8%)	0.001				
Carcinemia	20 (4.0%)	21 (2.1%)	0.152	21 (2.1%)	0.029				
Propafenone	24 (5.0%)	12 (4.1%)	0.261	14 (4.1%)	0.034				
Sotalol	20 (4.0%)	21 (2.1%)	0.152	21 (2.1%)	0.029				
Digoxin	5 (1%)	5 (1%)	0.152	5 (1%)	0.029				
Non-DHP CCBs	19 (4%)	11 (5.9%)	0.086	15 (4.1%)	0.055				
RAAS inhibitors	194 (40.4%)	74 (39.4%)	0.705	74 (39.4%)	0.179				
Diuretics	70 (14.6%)	26 (13.8%)	0.791	20 (13.7%)	0.180				
Stains	166 (34.5%)	62 (33.0%)	0.571	129 (35.2%)	0.870				
Metformin	78 (16.4%)	24 (12.8%)	0.083	67 (18.3%)	0.131				
SGLT2 inhibitors	1.0 (1.1%)	3 (1.0%)	1.000	1 (1.1%)	1.000				
Follow-up duration	39.9 ± 2.8	40.8 ± 2.9	0.588	40.2 ± 3.0	0.262				
Follow-up times	5.6 ± 4.2	5.5 ± 4.1	0.519	5.6 ± 4.2	0.239				

Table 1. Baseline characteristics of the overall study group. Data are presented as mean ± SD or median, IQR or n (%). AF atrial fibrillation, AUHRE atrial high-rate episodes, BMI body mass index, EF ejection fraction, IQR interquartile range, LA left atrium, LVEF left ventricular ejection fraction, RV right ventricle, non-DHP CCBs non-dihydropyridine calcium channel blockers, RAAS renin–angiotensin–aldosterone system, SGLT2 sodium glucose co-transporters 2.
3

Vol.:(0123456789)

Scientific Reports | (2021) 11:5753 | https://doi.org/10.1038/s41598-021-85301-7

Data collection and definitions. Patients’ medical history and data of co-morbidities and echocardiographic parameters were collected from chart records for retrospective evaluation. Diabetes mellitus was defined by the presence of symptoms and a casual plasma glucose concentration ≥ 200 mg/dL, fasting plasma glucose concentration ≥ 126 mg/dL, or taking medication for diabetes mellitus, as previously described5. Hypertension was defined as in-office systolic blood pressure (SBP) values ≥ 140 mmHg and/or diastolic BP (DBP) values ≥ 90 mmHg or taking antihypertensive medication6. Dyslipidemia was defined as low-density lipoprotein ≥ 140 mg/dL, high-density lipoprotein < 40 mg/dL, triglycerides ≥ 150 mg/dL, or taking medication for dyslipidemia7. Chronic kidney disease was defined as an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m²8. Acute coronary syndrome was defined as either an acute myocardial infarction (AMI; ST-elevation MI or non-ST elevation MI) or unstable angina9. Patients with previous ischemic stroke or transient ischemic attack were considered to have cerebrovascular disease. The history of AF was defined as any documented AF in 12-lead electrocardiography (ECG) or Holter recordings, before the date of pacemaker implantation. AHRE were extracted from the devices via telemetry at each office visit every 3 to 6 months4. AHRE electrograms were reviewed by at least one experienced electrophysiologist, who cautiously considered the possibility that AHRE included lead noise, far-field R-waves,

Table 2. Type and incidence of MACEs in the whole cohort. Data are presented as mean ± SD or n (%). AF: atrial fibrillation, AHREs: atrial high-rate episodes, CI: confidence intervals, MACEs: major adverse cardiac events, MI: myocardial infarction, NSTEMI: non-ST-elevation myocardial infarction, STEMI: ST-elevation myocardial infarction.

Types of MACEs	Number	Incidence rate (100 patient-years)	CI 95%	Time to event (months)	Age (years)	Gender (female)	History of Af	History of MI	AHREs > 5mins	AHREs > 6mins	AHREs > 12hrs	AHREs > 24hrs	
STEMI	2	0.125 (0.02–0.34)		10.5 ± 24.7 (13–48)	66.5 ± 2.1	0(0%)	2(100%)	1(50%)	2(100%)	2(100%)	2(100%)	2(100%)	
NSTEMI	23	1.437 (0.78–1.77)		29.9 ± 26.8 (2–99)	78.7 ± 9.2	11(47.8%)	8(34.5%)	15(65.2%)	16(69.6%)	16(69.6%)	9(39.1%)	7(30.4%)	
Unstable angina	35	2.187 (1.29–2.51)		26.8 ± 24.4 (2–106)	76.2 ± 8.0	11(31.4%)	9(25.7%)	19(54.3%)	23(65.7%)	23(65.7%)	13(37.1%)	11(31.4%)	
Deteriorated heart failure	23	1.437 (0.78–1.77)		23.4 ± 17.5 (2–82)	75.7 ± 8.5	6(26.1%)	9(39.1%)	14(60.9%)	15(65.2%)	15(65.2%)	10(43.5%)	9(39.1%)	8(34.8%)
Cardiovascular hospitalization	6	0.375 (0.13–0.65)		25.8 ± 24.2 (2–78)	73.8 ± 12.7	3(37.5%)	3(30%)	5(62.5%)	4(66.7%)	4(66.7%)	3(30%)	3(37.5%)	2(33.3%)
Cardiac death	3	0.187 (0.04–0.43)		25.7 ± 19.2 (22–27)	76.5 ± 9.2	0(0%)	3(100%)	2(66.7%)	2(66.7%)	2(66.7%)	1(33.3%)	1(33.3%)	0(0%)
Total event	92	5.749 (1.88–5.85)											

Figure 1. Receiver-operating characteristic curve analysis of atrial high-rate episodes (minutes) in patients with dual chamber permanent pacemakers with subsequent MACE. Atrial high-rate episodes: cutoff value, 5-min; sensitivity, 68.3%; specificity, 65.3%; AUC, 0.662; 95% CI, 0.588–0.736; p < 0.001.
Variables

Variables	All patients (n = 481)	Major adverse cardiac events (MACE)	Multivariable Cox regression			
	Yes (N = 63)	No (N = 418)	Model A	Model B	Model C	
Age (years)	77.0,14.0	77.0,12.0	76.5,16.0	0.467		
Gender			0.269			
Male	259(53.8%)	38(60.3%)	221(52.9%)			
Female	222(46.2%)	25(39.7%)	197(47.1%)			
BMI (kg/m²)	24.5,2.9	25.1,2.6	24.5,3.0	0.258		
Device			0.584	1.252	0.602–2.604	
Metronic	320(66.5%)	40(63.5%)	280(67.0%)			
BIOTRONIK	161(33.5%)	23(36.5%)	138(33.0%)			
Primary indication			0.212			
Sinus node dysfunction	340(70.7%)	50(79.4%)	290(69.4%)			
Atrioventricular block	135(28.1%)	13(20.6%)	122(29.2%)			
Other	6(1.2%)	0(0%)	6(1.4%)			
CHA2DS2-VASc score	3.3 ± 1.3	4.3 ± 1.0	3.2 ± 1.3	< 0.001		
HAS-BLED	2.3 ± 1.1	3.3 ± 0.8	2.2 ± 1.1	< 0.001		
Hypertension	451(93.8%)	62(98.4%)	389(93.1%)	0.157		
Diabetes mellitus	250(52%)	52(82.5%)	198(47.4%)	< 0.001	2.536	1.163–5.528
Hyperlipidemia	442(91.9%)	63(100%)	379(90.7%)	0.005	1.550	0.001–1.555
History of stroke	28(5.8%)	4(6.3%)	24(5.7%)	0.775		
History of myocardial infarction	100(20.8%)	31(49.2%)	69(16.5%)	< 0.001	2.796	1.384–5.649
Heart failure			0.013	0.013	0.010	0.007
Preserved EF	50(10.4%)	11(17.5%)	39(9.3%)	1.170	0.458–2.987	
Reduced EF	50(10.4%)	24(38.1%)	26(6.2%)	3.656	1.498–8.921	
Chronic liver disease	22(4.6%)	11(1.6%)	21(5.0%)	0.337		
Chronic kidney disease	182(37.8%)	40(63.5%)	142(34%)	< 0.001	1.023	0.498–2.101
Previously documented AF	126(26.2%)	19(30.2%)	107(25.6%)	0.443		
Echo parameters						
LVEF (%)	69.0,13.0	57.0,30.0	70.0,11.3	< 0.001		
Mitral E/e’ ratio	11.5,5.0	12.0,7.0	11.0,5.0	0.005		
LA diameter (cm)	3.8,0.7	4.0,0.6	3.7,0.7	< 0.001	1.152	0.694–1.912
RV systolic function (cm/s)	12.0,2.0	12.0,2.0	12.0,2.0	< 0.001	0.818	0.658–1.018
Drug prescribed at baseline						
Antiplatelets	153(31.8%)	46(73.0%)	107(25.6%)	< 0.001		
Anticoagulants	122(25.4%)	19(30.2%)	103(24.6%)	0.348		
Beta blockers	155(32.2%)	41(65.1%)	114(27.3%)	< 0.001		
Amiodarone	100(20.8%)	25(39.7%)	75(17.9%)	< 0.001		
Dronedarone	18(3.7%)	2(3.2%)	16(3.8%)	1.0		
Flecainide	2(0.4%)	0(0%)	2(0.5%)	1.0		
Propafenone	24(5%)	3(4.8%)	21(5.0%)	1.0		
Sotalol	20(4.4%)	11(1.6%)	10(2.0%)	0.245		
Digoxin	5(1%)	4(6.3%)	1(0.2%)	0.001		
Non-DHP CCBs	19(4%)	2(3.2%)	16(3.8%)	0.726		
RAAS inhibitors	194(40.4%)	28(44.4%)	166(39.8%)	0.485		
Diuretics	70(14.6%)	19(30.2%)	51(12.2%)	< 0.001		
Statins	166(34.5%)	28(44.4%)	138(33.0%)	0.075		
Metformin	79(16.4%)	13(20.6%)	66(15.8%)	0.333		
SGLT2 inhibitors	5(1%)	11(1.6%)	4(1.0%)	0.506		
Follow-up duration	39.9 ± 29.8	41.6 ± 26.4	39.7 ± 30.3	0.630		

Continued
or other supraventricular tachyarrhythmias and visually verified AF in the detected AHRE. Atrial sensitivity was initially programmed to 0.2 mV with bipolar sensing of BIOTRONIK and 0.3 mV with bipolar sensing of MEDTRONIC.

The primary endpoint for this study was the occurrence of MACE as recorded in patients’ charts after the date of implantation of pacemakers, including ST elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), unstable angina, heart failure with acute exacerbation\(^4\), cardiovascular hospitalization (peripheral artery disease or stable angina) and cardiac death. AHRE was defined as atrial rate > 175 bpm (MEDTRONIC) or > 200 bpm (BIOTRONIK) and lasting for at least 5 min of atrial tachyarrhythmia recorded by the devices on any day during the study period. We also divided the different AHRE durations by time, including ≥ 5 min, ≥ 6 h and ≥ 24 h, to evaluate the cutoff threshold for MACE. If the patient had multiple AHREs, the longest AHRE duration was used for analysis. Then, if the patient’s longest AHRE duration was 24 h, this patient would be counted in AHRE ≥ 5 min, ≥ 6 h, and ≥ 24 h.

Statistical analysis

Among baseline characteristics, categorical variables are presented as percentages. Continuous variables are presented as means and standard deviations if normally distributed and median, interquartile range (IQR) if not normally distributed. Chi-square test or Fisher’s exact test was used for categorical variables, and a 2-sample student’s t test for normally distributed continuous variables or Mann–Whitney U test if not normally distributed. The receiver-operating characteristic (ROC) area under the curve (AUC) of AHRE and the associated 95% confidence intervals (CI) were investigated for associations with future MACE. The cutoff values were chosen based on the results of ROC curve analysis and used to evaluate the associated values of AHRE, in minutes, for determining endpoints. Cox regression analysis was used to identify variables associated with AHRE occurrence, reported as hazard ratios with 95% confidence intervals (CI). Indicators of AHRE ≥ 5 min, ≥ 6 h, and ≥ 24 h were determined separately as time-dependent covariates in multivariable Cox proportional hazards regression and survival curves were generated for patients without MACE. If the p value in univariable analysis was < 0.05, the parameter was entered into multivariable analysis, except for devices, which were essential confounders because of different detecting rates in AHRE definitions. Because LVEF was significantly associated with heart failure (Tables 3 and 4), heart failure was selected for inclusion into multivariable analysis. Because mitral E/e’ ratio was significantly associated with LA diameter, LA diameter was selected for inclusion into multivariable analysis. Because drug history was significantly associated with history of heart failure and myocardial infarction, it was not entered into multivariable analysis. Only mitral E/e’ ratio of echocardiographic parameter was included in multivariable analysis (Table 5). For all comparisons, p < 0.05 was considered statistically significant. All data were analyzed using SPSS statistical package version 23.0 (SPSS Inc. Chicago, IL, USA).

Ethics statement

The study protocol has been approved by the Institutional Review Board of National Cheng Kung University Hospital. (B-ER-108-278).

Ethics approval and consent to participate

This study was approved by the ethics committee of National Cheng Kung University Hospital and was conducted according to the guidelines of the International Conference on Harmonization for Good Clinical Practice. All patients provided written informed consent before enrollment.

Consent for publication

All patients provided signed informed consent before enrollment.
Variable	History of atrial fibrillation (-) (N = 355)	Major adverse cardiac events (MACE)	Multivariable Cox regression								
	Yes (N = 44)	No (N = 311)	P								
Age (years)	77.0±12.3	77.0±16.0	0.468								
Gender			0.115								
Male	303(88.2%)	173(55.6%)									
Female	14(31.8%)	138(44.4%)									
BMI (kg/m²)	25.4±2.8	24.6±3.3	0.297								
Device	0.929	0.998	0.424–2.352	0.996	0.838	0.365–1.920	0.675	0.707	0.311–1.606	0.408	
Metronic	27(61.4%)	193(62.1%)									
BIOTRONIK	17(38.6%)	118(37.9%)	0.229								
Primary indication											
Sinus node dysfunction	34(77.3%)	200(64.3%)									
Atrioventricular block	10(22.7%)	110(35.4%)									
Other	0(0%)	1(0.3%)									
CHA2DS2-VASc score	4.3±1.0	3.1±1.3	<0.001								
HAS-BLED	3.2±0.7	2.1±1.1	<0.001								
Hypertension	43(97.7%)	283(91.6%)	0.226								
Diabetes mellitus	37(84.1%)	148(47.6%)	<0.001								
Hyperlipidemia	44(100%)	277(89.1%)	0.013								
History of stroke	2(4.5%)	12(3.9%)	0.688								
History of myocardial infarction	23(52.3%)	49(16.4%)	<0.001								
Heart failure	0(0%)	0(0%)	<0.001								
Preserved EF	4(13.6%)	22(7.1%)	1.208	0.968–2.646	0.508	2.400	0.913–6.307	0.076	2.271	0.872–5.917	0.093
Reduced EF	20(45.3%)	206(64.6%)	5.759	1.917–17.301	0.002	5.646	1.929–16.523	0.002	5.821	1.988–17.040	<0.001
Chronic liver disease	0(0%)	18(5.8%)	0.145								
Chronic kidney disease	29(65.9%)	104(33.4%)	<0.001								
LVEF %	55.0±3.4	70.0±3.0	0.001								
Mitral E/e' ratio	12.0±6.0	11.5±5.0	0.044								
LA diameter (cm)	4.0±0.7	3.6±0.8	<0.001								
RV systolic function (cm/s)	11.5±2.0	12.0±2.0	<0.001								
Drug prescribed at baseline											
Antiplatelets	36(81.8%)	92(29.6%)	<0.001								
Anticoagulants	5(11.4%)	7(8.7%)	0.361								
Beta blockers	26(59.1%)	70(21.9%)	<0.001								
Amiodarone	12(27.3%)	32(10.3%)	0.001								
Dronedarone	1(2.3%)	4(1.3%)	0.486								
Flecaïnide	0(0%)	0(0%)									
Propafenone	1(2.3%)	14(4.2%)	0.705								
Sotalol	1(2.3%)	10(3.2%)	0.233								
Digoxin	4(9.1%)	9(3.0%)	<0.001								
Non-DHP CCBs	2(4.5%)	10(3.2%)	0.650								
RAAS inhibitors	22(50.0%)	116(37.4%)	0.109								
Diuretics	16(36.4%)	41(13.2%)	<0.001								
Statins	21(47.7%)	100(32.2%)	0.041								
Metformin	10(22.2%)	47(15.1%)	0.198								
SGLT2 inhibitors	1(2.3%)	3(1.0%)	0.412								
Follow-up duration	43.2±27.5	41.7±31.7	0.478								
Follow-up times	6.0±3.8	5.8±4.4	0.759								
AHRE duration ≥ 5 min	23(56.8%)	82(26.4%)	<0.001								
AHRE duration ≥ 6 h	14(31.8%)	41(13.2%)	0.001								
AHRE duration ≥ 24 h	8(18.2%)	29(9.3%)	0.072								

Table 4. Cox proportional hazard regression analysis with time-dependent covariates for MACE predictors in patients without history of atrial fibrillation and with AHREs ≥5 mins (Model A), ≥6hrs (Model B), ≥24hrs (Model C). Data are presented as mean ± SD or median, IQR or n (%). AF atrial fibrillation, AHRE atrial high-rate episodes, BMI body mass index, EF ejection fraction, IQR interquartile range, LA left atrium, LVEF left ventricular ejection fraction, RV right ventricle, non-DHP CCBs non-dihydropyridine calcium channel blockers, RAAS renin–angiotensin–aldosterone system, SGLT2 sodium glucose co-transporters 2.
Results
Between January 1, 2014 and August 31, 2019, a total of 498 patients receiving dual chamber permanent pacemaker at our hospital were initially recruited. Seventeen patients were excluded due to loss of follow-up, inadequate or missing data and not providing informed consent. Therefore, the data of 481 patients were finally included as the analytic sample for this retrospective study.

The mean follow-up period was 39.9 ± 29.8 months after the implantation of dual chamber permanent pacemakers. Table 1 shows baseline demographic and clinical characteristics of all patients based on the occurrence of AHRE ≥ 5 min, ≥ 6 h or ≥ 24 h. Mean age was 75.3 ± 10.7 years and 46.2% were women. The most common indication for dual chamber permanent pacemaker implantation (Table 1) was sick sinus syndrome (70.7%), followed by atrioventricular block (28.1%). High percentages of hypertension (93.8%) and hyperlipidemia (91.9%) suggested a relatively high risk of MACE for the entire study cohort. During follow-up, 188 patients developed AHRE ≥ 5 min, 115 patients developed AHRE ≥ 6 h, and 83 patients developed AHRE ≥ 24 h. Patients with AHRE had significantly lower left ventricular ejection fraction, larger left atrial (LA) diameters and history of documented AF. Components, time to MACE, incidence rates and distribution of MACE are reported in Table 2.

The whole follow-up duration represented 1600.25 patient-years of observation, and the total number of MACE was 92 (IR 5.75%/year, 95% CI 3.88–5.85). The proportion of MACE for each separate AHRE duration decreased as AHRE duration increased. Patients with a history of MI at baseline (17.80%/year 95% CI 10.23–22.11) had a higher incidence of MACE than those without previous MI (IR 3.77%/year 95% CI 3.01–4.22; p = 0.001).

ROC-AUC determination of AHRE cutoff values associated with future MACE. The optimal AHRE cutoff value for association with future MACE was determined to be 5-min (sensitivity, 68.3%; specificity, 65.3%; AUC, 0.662; 95% CI, 0.588–0.736; p < 0.001) (Fig. 1).

Univariable and multivariable Cox regression analysis of associations between duration of AHRE and MACE in all patients. Univariable analysis revealed that the CHA2DS2-VASc score and HAS-BLED score for stroke risk; diabetes mellitus, hyperlipidemia, history of MI, heart failure, and chronic kidney disease; LV ejection fraction, mitral E/e ratio; LA diameter; RV systolic function, and AHRE duration ≥ 5 min, ≥ 6 h and ≥ 24 h were significantly associated with MACE occurrence in all patients (Table 3). Multivariable Cox regression analysis demonstrated that AHRE ≥ 5 min (HR 5.252, 95% CI 3.006–10.715, p < 0.001) in model A, and AHRE ≥ 6 h (HR 2.548, 95% CI 1.284–5.058, p = 0.007) in model B were independently associated with MACE. However, AHRE ≥ 24 h in model C was not significantly associated with MACE.

Univariable and multivariable Cox regression analysis of associations between AHRE duration and MACE in patients with or without history of AF. In the subgroup of patients with or without history of atrial fibrillation, multivariable Cox regression analysis showed that AHREs ≥ 5 min were significantly associated with MACEs in patients without history of AF (HR 4.266, 95% CI 1.856–9.805, p = 0.001) as same as heart failure reduced ejection fraction (HR 5.729, 95% CI 1.917–17.301, p = 0.002) (Table 4). For patients with history of AF, only AHREs ≥ 5 min (HR 18.383, 95% CI 2.006–168.428, p = 0.010) has significant difference (Table 5). Both patients demonstrated that AHREs ≥ 6 h and AHREs ≥ 24 h had no significant difference with MACEs.

Univariable and multivariable Cox regression analysis of associations between duration of AHRE and MACEs in patients with or without history of MI. Multivariate Cox regression analysis showed that AHRE ≥ 5 min (HR 4.086, 95% CI 1.638–10.192, p = 0.003), AHRE ≥ 6 h (HR 2.756, 95% CI 1.166–6.517, p = 0.021) and AHRE ≥ 24 h (HR 3.348, 95% CI 1.359–8.243, p = 0.009) were all significantly associated with MACE in patients without history of MI (Table 6), but only AHRE ≥ 5 min (HR 10.370, 95% CI 2.860–37.595, p < 0.001) were significantly associated with MACE in patients with history of MI (Table 7). Other risk factor such as heart failure reduced ejection was also independently associated with MACEs in patients with all three AHRE durations without history of MI.

Freedom from MACE. We divided the duration of AHREs into five groups. No AHRE, AHRE < 5 min, AHRE ≥ 5 minutes and < 6 h, AHRE ≥ 6 h and < 24 h, and AHRE ≥ 24 h for all patients and with history of AF, history of MI or not. Cox regression survival analysis of all patients showed that only AHRE ≥ 5 min and < 6 h were significantly different compared with patients with no AHRE (Fig. 2). No significant differences were found between patients with no AHRE and any specific duration of AHRE in patients with history of AF. For patients without history of AF, only those with AHRE ≥ 6 h and < 24 h showed significant differences between AHRE duration and MACE occurrence. For patients without history of MI, only AHRE ≥ 24 h had significant differences between AHRE duration and MACE occurrence. In patients with history of MI, AHRE ≥ 5 min and < 6 h, AHRE ≥ 6 h and < 24 h had significant differences between AHRE duration and occurrence of MACE.

Discussion
The present ‘real world’ cohort study of the associations between different cutoff durations of AHRE and the incidence rates of MACE in patients with dual chamber permanent pacemakers with or without history of AF or MI revealed that (1) almost 40% of patients receiving dual-chamber pacemakers have device-detected AHRE; (2) hypertension, hyperlipidemia, heart failure, history of AF, chronic kidney disease, LA diameter, and AHRE duration are all independent predictors of incident MACE; and (3) although patients with dual chamber pacemakers had higher incidence rates of MACE in patients with dual chamber permanent pacemakers, the proportion of MACE for each separate AHRE duration decreased as AHRE duration increased. Patients with a history of MI at baseline (17.80%/year 95% CI 10.23–22.11) had a higher incidence of MACE than those without previous MI (IR 3.77%/year 95% CI 3.01–4.22; p = 0.001).
Variable	History of atrial fibrillation (+) (N = 126)	Major adverse cardiac events (MACE)	Multivariate Cox regression										
	Yes (N = 19)	No (N = 107)	Model A	Model B	Model C								
	Age (years)		HR	95% CI	p	HR	95% CI	p	HR	95% CI	p		
	77.0±11.0	74.0±13.0	0.733										
	Gender												
	Male	8(42.1%)	48(44.9%)	0.824									
	Female	11(57.9%)	59(55.1%)										
	BMI (kg/m²)	24.8±4.0	24.2±2.6	0.542									
	Device												
	Metronic	13(68.4%)	87(81.3%)	0.201	2.363	0.510–6.945	0.272	1.578	0.384–6.479	0.526	1.355	0.340–5.405	0.667
	BIOTRONIK	6(31.6%)	20(18.7%)										
	Primary indication												
	Sinus node dysfunction	16(84.2%)	90(84.1%)	0.557									
	Atrioventricular block	3(15.8%)	12(11.2%)										
	Other	0(0%)	5(4.7%)										
	CHADS2-VASc score	4.3±0.9	3.5±1.3	0.015									
	HAS-BLED	3.3±0.9	2.4±1.0	<0.001									
	Hypertension	19(100%)	104(97.2%)	1.000									
	Diabetes mellitus	15(78.9%)	50(46.7%)	0.012	2.482	0.644–9.568	0.187	2.820	0.794–10.023	0.109	2.642	0.745–9.368	0.132
	Hyperlipidemia	19(100%)	102(95.3%)	1.000									
	History of stroke	2(10.5%)	12(11.2%)	1.000									
	History of myocardial infarction	8(42.1%)	20(18.7%)	0.024	3.635	0.987–13.384	0.052	3.099	0.941–10.207	0.063	3.020	0.917–9.945	0.069
	Heart failure		0.026		0.955	0.708	0.549						
	Preserved EF	5(26.3%)	17(15.9%)	0.928	0.997–4.362	0.924	1.080	0.265–4.397	0.914	1.065	0.262–4.323	0.930	
	Reduced EF	4(21.1%)	6(5.6%)		1.271	0.188–8.579	0.805	2.125	0.351–12.866	0.412	2.712	0.441–16.664	0.281
	Chronic liver disease	1(5.3%)	3(2.8%)		0.484								
	Chronic kidney disease	1(5.7%)	38(35.5%)	0.065									
	Echo parameters												
	LV EF %	60.0±14.0	70.0±10.0	<0.001									
	Mitral E/e' ratio	13.0±10.0	10.6±4.7	0.035	1.090	0.940–1.266	0.255	1.069	0.930–1.229	0.348	1.084	0.944–1.245	0.252
	LA diameter (cm)	4.0±0.5	3.9±0.7	0.157									
	RV systolic function (c, m/s)	12.0±3.0	12.0±2.0	0.058									
	Drug prescribed at baseline												
	Antiplatelets	10(52.6%)	15(14.0%)	<0.001									
	Anticoagulants	14(73.7%)	76(71.0%)	0.813									
	Beta blockers	15(78.9%)	44(41.1%)	0.003									
	Amiodarone	13(68.4%)	43(40.2%)	0.022									
	Dronedarone	10(53.3%)	12(11.2%)	0.690									
	Flecainide	0(0%)	2(1.9%)		1.000								
	Propafenone	2(10.5%)	7(6.5%)	0.624									
	Sotalol	0(0%)	0(0%)		1.000								
	Digoxin	0(0%)	1(0.9%)										
	Non-DHP CCBs	1(5.3%)	6(5.6%)	1.000									
	RAAS inhibitors	6(31.8%)	50(46.7%)	0.221									
	Diuretics	3(15.8%)	10(9.3%)	0.414									
	Statins	7(36.8%)	38(35.5%)	0.911									
	Metformin	3(15.8%)	19(17.8%)	1.000									
	Continued												
Table 5. Cox proportional hazard regression analysis with time-dependent covariates for MACE predictors in patients with history of atrial fibrillation and with AHREs ≥ 5 min (Model A), ≥ 6 h (Model B), ≥ 24 h (Model C). Data are presented as mean ± SD or median, IQR or n (%). AF = atrial fibrillation, AHRE = atrial high-rate episodes, BMI = body mass index, EF = ejection fraction, IQR = interquartile range, LA = left atrium, LVEF = left ventricular ejection fraction, RV = right ventricle, non-DHP CCBs = non-dihydropyridine calcium channel blockers, RAAS = renin-angiotensin-aldosterone system, SGLT2 = sodium glucose co-transporters 2.

Variable	History of atrial fibrillation (+) (N = 126)	Univariate p value	HR (95% CI) p	Model B HR (95% CI) p	Model C HR (95% CI) p	
	Major adverse cardiac events (MACE)					
Yes (N = 19)	No (N = 107)					
SCCT2 inhibitors	0(0%)	1(0.9%)	1.000			
Follow duration	33.4 ± 22.6	33.8 ± 25.1	0.949			
Follow times	4.4 ± 2.5	5.3 ± 4.0	0.327			
AHRE duration ≥ 5 min	18(94.7%)	63(58.9%)	0.002	18.383	2.006–164.428	0.010
AHRE duration ≥ 6 h	12(63.2%)	48(44.9%)	0.141	2.345	0.715–7.696	0.160
AHRE duration ≥ 24 h	9(47.4%)	37(34.6%)	0.286	2.129	0.677–6.692	0.196

pacemakers who develop AHRE are at increased risk of MACE, patients with history of AF or history of MI and the longest AHRE duration also may have higher risk of MACE.

Results of previous studies have demonstrated that AHRE significantly increases risk for MACE and heart failure, which depends upon the AHRE burden and duration in individual patients. However, in the present study, no linear relationship was found between duration of AHRE and development of MACE. Although AHRE ≥ 5 min and ≥ 6 h were independently associated with MACE, AHRE ≥ 24 h was not. However, in a study with a similar objective, Pastori et al. found that patients implanted with CIEDs who develop AHRE had a significantly elevated risk of MACE, and that the incidence rate of MACE occurring after AHRE onset was higher in patients with AHRE ≥ 24 h. Although this may correspond with our suggestion that patients with the longest duration of AHRE may be at greater risk of MACE, we did not show this definitively, most likely due to our smaller sample and different definition of MACE.

Results of Pastori et al. agreed with our results showing that AHRE ≥ 5 min, diabetes and heart failure were independent predictors of MACE. In the present study, we also found that hypertension, hyperlipidemia, history of AF, chronic kidney disease, and increased LA diameter were all significantly associated with the occurrence of AHRE. We also found that patients with MEDTRONIC devices have more frequent occurrence of AHRE than those with BIOTRONIK devices (p < 0.05), which may be due to different default settings for detecting AHRE.

In patients with implantable devices and with no history of AF, device-detected AHRE can predict long-term mortality outcomes, and are known to be associated with increased risk of clinical AF, stroke, and thromboembolic events. In the present study, we found that in patients with history of MI, only those with AHRE ≥ 5 min were independently associated with MACE, and for those without history of MI, AHRE ≥ 5 min and ≥ 6 h and ≥ 24 h were all independently associated with MACE. These results suggest that the cutoff value of AHRE may be lower in patients with history of MI than in patients without history of MI, even though the ROC-AUC analysis showed that the optimal cut-off was 5 min.

Three proposed mechanisms of MACE in patients with AF included: (1) both atherosclerosis and inflammatory process yield a pro-thrombotic state; (2) direct coronary thromboembolism from left atrial appendage; and (3) tachycardia episodes resulting in a supply–demand mismatch. However, while AHRE, viewing as subclinical AF, is also recognized as an important clinical entity, therefore it may not always be considered in patients with stroke or transient ischemic attack. As such, AHRE duration remains an important target of research. Future larger prospective studies are needed to explore which duration of AHRE may be the standard cutoff for further evaluation of MACE in patients with AHREs.

Most previous AHRE studies excluded patients with AF history. We tried evaluating patients with and without AF history in order to identify possible differences. The results showed that only AHRE ≥ 5 min was independently associated with development of MACE, suggesting that in patients with documented history of AF, AHRE may have no important role in the occurrence of MACE.

The other issue we noted was about using anticoagulants in patients with AHRE, even though such a large review of data is not warranted. When we come across a patient with AHRE ≥ 5 min and CHA2DS2-VASc scores ≥ 2 in our daily practice, we follow the current recommendation of 2016 ESC guideline. At the third Joint Consensus Conference of the German Atrial Fibrillation Network (AFNET) and the European Heart Rhythm Association on AF, an algorithm was proposed for management of patients with AHRE. Updated guidelines recommend that in patients with AHRE ≥ 24 h, clinicians should view them with regard to AF and initiate treatment with a DOAC based on CHA2DS2-VASc scores in order to prevent stroke. Evidence of MACE prevention in AHRE patients is lacking. Results of one study showed that DOAC therapy reduced MI compared with VKA therapy in AF patients. However, other study data showed that the presence of AF was independently associated with a heightened risk of MI despite a lower baseline burden and progression rate of
Variable	History of myocardial infarction (−) (N = 381)	Mace major adverse cardiac events	Multivariate Cox regression									
	Yes (N = 33)	No (N = 349)										
	Univariate P value	Multivariate Cox regression Model A	Model B	Model C								
	HR 95% CI	HR 95% CI	HR 95% CI	HR 95% CI								
Age (years)	77.0, 11.3	76.0, 16.0	0.620									
Gender												
Male	20(62.5%)	180(51.6%)	0.236									
Female	12(37.5%)	169(48.4%)										
BMI (kg/m²)	25.5±2.5	24.5±2.8	0.184									
Device	0.199	0.571	0.201–1.624	0.293	0.530	0.190–1.479	0.225	0.473	0.169–1.324	0.154		
Metronic	25(78.1%)	254(70.0%)										
BIOTRONIK	7(21.9%)	115(30.0%)										
Primary indication												
Sinus node dysfunction	27(84.4%)	237(67.9%)	0.145									
Atrioventricular block	5(15.6%)	107(30.7%)										
Other	0(0%)	51(4%)										
CHA₂DS₂-VASc score	3.9±1.0	3.0±1.3	<0.001									
HAS-BLED	3.0±0.8	1.9±1.0	<0.001									
Hypertension	32(100%)	32(100%)	0.151									
Diabetes mellitus	24(75.0%)	146(41.8%)	<0.001									
Hyperlipidemia	32(100%)	310(88.8%)	0.060									
History of stroke	4(12.5%)	19(5.4%)	0.116									
Heart failure												
Preserved EF	20(63%)	24(69%)	0.475	0.093–2.418	0.370	0.621	0.123–3.073	0.559	0.576	0.114–2.903	0.504	
Reduced EF	10(31.3%)	11(3.2%)	3.475	1.061–11.379	0.040	4.578	1.428–14.684	0.011	5.399	1.692–17.223	0.004	
Chronic liver disease	1(3.1%)	16(4.6%)	1.000									
Previously documented Af	11(34.4%)	87(24.9%)	0.242									
Chronic kidney disease	16(50.0%)	100(28.7%)	0.012	1.162	0.484–2.788	0.737	1.060	0.436–2.578	0.898	1.135	0.474–2.715	0.776
Echo parameters												
LVEF %	64.0±28.5	70.0±11.0	0.010									
Mitral E/e' ratio	12.0±6.2	11.0±4.4	0.075									
LA diameter (cm)	4.0±0.7	3.6±0.8	0.002	1.229	0.665–2.717	0.511	3.291	0.702–2.373	0.411			
RV systolic function (c, ms)	12.0±2.0	13.0±2.0	<0.001	0.695	0.509–0.948	0.022	0.699	0.516–0.947	0.021			
Drug prescribed at baseline												
Antiplatelets	23(71.9%)	82(17.8%)	<0.001									
Anticoagulants	12(37.5%)	80(22.9%)	0.065									
Beta blockers	18(63.3%)	80(22.9%)	<0.001									
Amiodarone	11(34.4%)	55(15.8%)	0.008									
Dronedarone	0(0%)	13(3.7%)	0.613									
Flecainide	0(0%)	10(3.0%)	1.000									
Propafenone	3(9.4%)	21(6.0%)	0.441									
Sotalol	1(3.1%)	0(0%)	0.084									
Digoxin	2(6.3%)	1(0.3%)	0.019									
Non-DHP CCBs	3(9.4%)	14(4.0%)	0.163									
RAAS inhibitors	11(34.4%)	128(36.8%)	0.787									
Diuretics	8(25.0%)	33(9.5%)	0.007									
Statins	10(31.3%)	98(28.1%)	0.703									
Metformin	5(15.6%)	55(15.8%)	0.984									
SGLT2 inhibitors	0(0%)	20(6.6%)	1.000									
Follow-up duration	40.2±27.3	41.9±31.4	0.783									
Follow-up times	5.9±3.9	6.0±4.9	0.923									
AHRE duration ≥ 5 min	24(75.0%)	236(68.1%)	<0.001	4.086	1.638–10.192	0.003						
AHRE duration ≥ 6 h	16(50.0%)	75(21.5%)	<0.001	2.756	1.166–6.517	0.021						
AHRE duration ≥ 24 h	11(34.4%)	55(15.2%)	0.005	3.348	1.359–8.243	0.009						

Table 6. Cox proportional hazard regression analysis with time-dependent covariates for MACE predictors in patients without history of myocardial infarction and with AHREs ≥ 5 min (Model A), ≥ 6 h (Model B), ≥ 24 h (Model C). Data are presented as mean ± SD or median, IQR or n (%). AF atrial fibrillation, AHRE atrial high-rate episodes, BMI body mass index, EF ejection fraction, IQR interquartile range, LA left atrium, LVEF left ventricular ejection fraction, RV right ventricle, non-DHP CCBs non-dihydropyridine calcium channel blockers, RAAS renin–angiotensin–aldosterone system, SGLT2 sodium glucose co-transporters 2.
Variable	History of myocardial infarction (+) (N = 100)	Multivariate Cox regression									
	Yes (N = 31)	No (N = 69)	Univariate P value	Model A	Model B	Model C					
Age (years)	78.0,14.0	78.0,10.0	0.887								
Gender	0.899										
Male	18(58.1%)	41(59.4%)									
Female	13(41.9%)	28(40.6%)									
BMI (kg/m²)	24.8,2.6	23.9,3.5	0.425								
Device	0.083	4.881	1.346–17.695	0.016	2.357	0.834–6.663	0.106	1.903	0.669–5.413	0.228	
Metronic	15(48.4%)	46(66.7%)									
BIC-TRONIK	16(51.6%)	23(33.3%)									
Primary indication	0.733										
Sinus node dysfunction	23(74.2%)	53(76.8%)									
Atrioventricular block	8(25.8%)	15(21.7%)									
Other	0(0%)	1(1.4%)									
CHA2DS2-VASc score	4.7 ± 0.7	4.3 ± 1.0	0.929								
HAS-BLED	3.5 ± 0.6	3.3 ± 0.8	0.268								
Hypertension	30(96.8%)	68%(98.6%)									
Diabetes mellitus	28(90.3%)	32(75.4%)									
Hyperlipidemia	31(100%)	69(100%)									
History of stroke	0(0%)	5(7.2%)									
Heart failure	0.012	0.033	0.054	0.035							
Preserved EF	9(29.0%)	15(21.7%)	2.728	0.756–9.845	0.125	2.832	0.855–8.381	0.088	3.395	1.017–11.336	0.047
Reduced EF	14(45.2%)	15(21.7%)	5.143	1.477–17.901	0.010	3.565	1.192–10.660	0.023	3.833	1.268–11.585	0.017
Chronic liver disease	0(0%)	5(7.2%)									
Chronic kidney disease	24(77.4%)	42(60.9%)									
Previously documented Af	8(25.8%)	20(29.0%)									
Echo parameters	0.743										
LVEF %	52.0,27.0	65.0,21.0	0.012								
Mitral E/e’ ratio	13.0,10.0	13.0,7.0	0.687								
LA diameter (cm)	4.0,0.4	4.0,0.7	0.599								
RV systolic function (cm/s)	12.0,2.0	12.0,3.0	0.055								
Drug prescribed at baseline	0.001										
Antiplatelets	23(74.2%)	45(65.2%)	0.573								
Anticoagulants	7(22.6%)	23(33.3%)	0.278								
Beta blockers	23(74.2%)	34(49.3%)	0.020								
Amiodarone	14(45.2%)	20(29.0%)	0.114								
Dronedarone	2(6.5%)	3(4.3%)	0.644								
Flecainide	0(0%)	1(1.4%)	1.000								
Propafenone	0(0%)	0(0%)									
Sotalol	0(0%)	1(1.4%)	1.000								
Digoxin	2(6.5%)	0(0%)	0.094								
Non-DHP CCBs	0(0%)	2(2.9%)	1.000								
RAAS inhibitors	17(54.8%)	38(55.1%)	0.983								
Continued											
coronary atheroma. Also, aspirin was suggested to have benefit for primary prevention of MACE in specific groups, including among subgroups defined by age, statin use, diabetes and smoking. One study showed that statin use tended to be associated with lower risk of new-onset AF after AMI, but no evidence was found for this association in this study.

Variable	History of myocardial infarction (+) (N = 100)	Multivariate Cox regression						
	MACE major adverse cardiac events	Univariate	Model A	Model B	Model C			
	P value	HR 95% CI p	HR 95% CI p	HR 95% CI p	HR 95% CI p			
Diuretics	Yes (N = 31)	11(35.5%) 18(26.1%)	0.338					
	No (N = 69)	18(38.1%) 40(38.0%)	0.993					
Metformin	8(25.8%)	11(15.9%) 11.245						
SGLT2 inhibitors	1(3.2%)	2(2.9%) 1.000						
Follow duration	43.0 ± 25.9	28.6 ± 21.2 0.004						
Follow time	5.1 ± 3.1	4.0 ± 3.0 0.105						
AHRE duration ≥ 5 min	19(61.3%) 19(27.5%)	0.001	10.370	2.860–37.395	<0.001			
AHRE duration ≥ 6 h	10(32.3%) 14(20.3%)	0.195	2.146	0.717–6.419	0.172			
AHRE duration ≥ 24 h	6(19.4%) 13(18.8%)	0.952						

Table 7. Cox proportional hazard regression analysis with time-dependent covariates for MACE predictors in patients with history of myocardial infarction and with AHREs ≥ 5 min (Model A), ≥ 6 h (Model B), ≥ 24 h (Model C). Data are presented as mean ± SD or median, IQR or n (%). AF atrial fibrillation, AHRE atrial high-rate episodes, BMI body mass index, EF ejection fraction, IQR interquartile range, LA left atrium, LVEF left ventricular ejection fraction, RV right ventricle, non-DHP CCBs non-dihydropyridine calcium channel blockers, RAAS renin–angiotensin–aldosterone system, SGLT2 sodium glucose co-transporters.

Figure 2. Cox regression event-free survival curves from primary endpoint at 39.9 ± 29.8 months of follow-up based on five subgroups. (A) All patients. (B) Patients without history of AF. (C) Patients with history of AF. (D) Patients without history of MI. (E) Patients with history of MI. (AF atrial fibrillation, MI myocardial infarction).
supporting an association between risk and new onset AHRE. Two large ongoing trials (NOAH-AFNET 6 and ARTEsia)21,22 will address unmet needs regarding the effectiveness of edoxaban and apixaban for stroke and systemic embolism in patients with AHRE. Further studies are needed to focus on this issue and determine definitively whether patients with new-onset AHRE are at greater risk of MACE, including AF.

Previous studies23,24 have shown that AHREs were associated with thromboembolic events in Asian patients. Moreover, two proposed models postulated that atrial cardiomyopathy might play a key role between AHRE and the risk of future ischemic stroke25,26. Systemic vascular risk factors accompanied aging can lead to abnormal atrial substrates subsequently resulting in atrial cardiomyopathy, which interacts with hypercoagulability and may be related to atrial dilatation, atrial inflammation/fibrosis, endothelial dysfunction, and/or mechanical dysfunction.

Limitations. The present study has several limitations. First, this is a single-center, retrospective, and observational study in a hospital-based setting with a relatively small number of included patients, and all patients were Taiwanese. As a result, causality cannot be inferred between AHRE and MACE and results may have been affected by confounding factors. Also, results cannot likely be generalized to other populations. Second, AHRE may have been underestimated due to different default settings for AHRE in devices designed by different companies. The device was viewed as a confounder in the multivariable analysis and was not an independent factor for MACE. Prospective multicenter studies with larger samples are required to confirm results of the present study.

Conclusion

Patients with dual chamber pacemakers who develop AHRE have significantly increased risk of MACE, particularly those with history of AF or history of MI. However, although this patient population is at increased risk of MACE, the impact on MACE by different cutoff points for AHRE duration in different subpopulations such as those with history of AF or MI must be considered when evaluating risk. Patients with or without history of AF history may have the same cutoff for predicting MACE, but those with MI history may have a lower cutoff point than those without MI.

Data availability

All data generated or analysed during this study are included in this published article.

Received: 17 September 2020; Accepted: 28 February 2021
Published online: 11 March 2021

References

1. Kirchhof, P. et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. J. Cardiothorac. Surg. 50, e1–e88 (2016).
2. Healey, J. S. et al. Subclinical atrial fibrillation and the risk of stroke. N. Engl. J. Med. 366, 120–129 (2012).
3. Soliman, E. Z. et al. Atrial fibrillation and the risk of myocardial infarction. JAMA Intern. Med. 174, 107–114 (2014).
4. Pastori, D. et al. Atrial high-rate episodes and risk of major adverse cardiovascular events in patients with cardiac implantable electronic devices. Clin. Res. Cardiol. 109, 96–102 (2020).
5. American Diabetes Association. Summary of Revisions: Standards of Medical Care in Diabetes—2019. Diabetes Care 42, S4–S6 (2019).
6. Williams, B. et al. 2018 Practice guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Blood Press. 27, 314–340 (2018).
7. Authors/Task Force Members, ESC Committee for Practice Guidelines (CPG) & ESC National Cardiac Societies. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis 290, 140–205 (2019).
8. Eknoyan, G. et al. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 3, 5–14 (2013).
9. Thygesen, K. et al. Fourth universal definition of myocardial infarction. J. Am. Coll. Cardiol. 72, 2231–2264 (2018).
10. Nishinairita, R. et al. Burden of implanted-device-detected atrial high-rate episode is associated with future heart failure events—clinical significance of asymptomatic atrial fibrillation in patients with implantable cardiac electronic devices. Circ. J. 83, 736–742 (2019).
11. Gonzalez, M. et al. Newly detected atrial high rate episodes predict long-term mortality outcomes in patients with permanent pacemakers. Heart Rhythm 11, 2214–2221 (2014).
12. Witt, C. T. et al. Early detection of atrial high rate episodes predicts atrial fibrillation and thromboembolic events in patients with cardiac resynchronization therapy. Heart Rhythm 12, 2368–2275 (2015).
13. Violi, F., Soliman, E. Z., Pignatelli, P. & Pastori, D. Atrial fibrillation and myocardial infarction: A systematic review and appraisal of pathophysiological mechanisms. J. Am. Heart Assoc. 5, e003347 (2016).
14. Camm, A. J. et al. Atrial high-rate episodes and stroke prevention. Eurospace 19, 169–179 (2017).
15. Kirchhof, P. et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962 (2016).
16. Kirchhof, P. et al. Comprehensive risk reduction in patients with atrial fibrillation: Emerging diagnostic and therapeutic options—A report from the 3rd Atrial Fibrillation Competence NETwork/European Heart Rhythm Association consensus conference. Eurospace 14, 8–27 (2012).
17. Lee, C. et al. Risk of myocardial infarction in anticoagulated patients with atrial fibrillation. J. Am. Coll. Cardiol. 72, 17–26 (2018).
18. Bayturan, O. et al. Atrial fibrillation, progression of coronary atherosclerosis and myocardial infarction. Eur. J. Prevent. Cardiol. 24, 373–381 (2017).
19. Gelbengizer, G. et al. Aspirin for primary prevention of cardiovascular disease: A meta-analysis with a particular focus on subgroups. BMC Med. 17, 198 (2019).
20. Tseng, C. H. et al. Statins reduce new-onset atrial fibrillation after acute myocardial infarction: A nationwide study. Medicine 99, e18517 (2020).
21. Kirchhof, P. et al. Probing oral anticoagulation in patients with atrial high rate episodes: Rationale and design of the Non-vitamin K antagonist Oral anticoagulants in patients with Atrial High rate episodes (NOAH-AFNET 6) trial. *Am. Heart J.* **190**, 12–18 (2017).
22. Lopes, R. D. et al. Rationale and design of the Apixaban for the Reduction of Thrombo-Embolism in Patients With Device-Detected Sub-Clinical Atrial Fibrillation (ARTESiA) trial. *Am. Heart J.* **189**, 137–145 (2017).
23. Kawakami, H. et al. Clinical significance of atrial high-rate episodes for thromboembolic events in Japanese population. *Heart Asia* **9**, e010954 (2017).
24. Li, Y. G. et al. Atrial high-rate episodes and thromboembolism in patients without atrial fibrillation: The West Birmingham Atrial Fibrillation Project. *Int. J. Cardiol.* **292**, 126–130 (2019).
25. Nakano, M., Kondo, Y., Nakano, M., Kajiyama, T. & Kobayashi, Y. Atrial high rate episodes and atrial cardiomyopathy on the future stroke. *J. Cardiol.* **74**, 394–395 (2019).
26. Kamel, H., Okin, P. M., Elkind, M. S. & Iadecola, C. Atrial fibrillation and mechanisms of stroke: time for a new model. *Stroke* **47**, 895–900 (2016).

Acknowledgements
The authors would like to thank Convergence CT for assistance with English editing of the manuscript.

Author contributions
W.D.L. and J.Y.C. wrote the main manuscript text and prepared Figs. 1 and 2. All authors reviewed the manuscript.

Funding
The authors would like to thank the Ministry of Science and Technology of the Republic of China, Taiwan, for financially supporting this research under contract MOST 108-2218-E-006-019 and MOST 109-2218-E-006-024.

Competing interests
These authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to J.-Y.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021