Brezzi–Douglas–Marini interpolation on
anisotropic simplices and prisms

Volker Kempf

May 11, 2022

Abstract The Brezzi–Douglas–Marini interpolation error on anisotropic elements has been analyzed in two recent publications, the first focusing on simplices with estimates in L^2, the other considering parallelotopes with estimates in terms of L^p-norms. This contribution provides generalized estimates for anisotropic simplices for the L^p case, $1 \leq p \leq \infty$, and shows new estimates for anisotropic prisms with triangular base.

Keywords anisotropic finite elements, interpolation error estimate, Brezzi–Douglas–Marini element

Mathematics Subject Classification (2020) 65D05, 65N30

1 Introduction

The Brezzi–Douglas–Marini (BDM) finite element [8] was introduced to approximate H_{div} by polynomials. This proves useful for problems of incompressible fluid flow, where recent approaches employ H_{div}-conforming discretizations to approximate the velocity solution. The corresponding interpolation operator can also be used as reconstruction operator to gain pressure-robust methods in the spirit of [7]. Boundary layers or edge singularities in these problems require the use of anisotropic, i.e., highly stretched elements, so interpolation error estimates for such settings are required, see [3]. In [2], these estimates were shown for simplicial elements in terms of the L^2-norm, and [5] contains estimates for anisotropic paralleloptopes in terms of L^p-norms.

The main focus in [5] is on estimates in the H_{div}-norm and while the technique for these proofs can also be used for simplices, it is not applicable for the case of prisms as defined in [8], as here the commuting diagram property [3, (3)] is not satisfied. Interestingly, it is neither satisfied on cubes as defined in [8]; here [5] uses the original definition of the BDM elements, see, e.g., [4].

In the following sections we provide a generalization of the results from [2] to L^p spaces, $1 \leq p \leq \infty$, and show new interpolation error estimates for anisotropic triangular prisms. The results with detailed proofs are contained in the author’s PhD thesis [6] that is to appear.

NOTATION: Vectors, vector valued functions and the spaces of such functions are set in bold and we use $I_n = \{1, \ldots, n\}$ for index sets. The spatial dimension is denoted by d and the expression $a \lesssim b$ means there is a positive constant C so that $a \leq Cb$. The norms of the Sobolev spaces $W^{m,p}(G)$ are denoted by $\|\cdot\|_{m,p,G}$, multi-indices by α. The directional derivative in direction I is denoted by $\frac{\partial}{\partial I}$.

1
2 Error estimates on anisotropic simplices

We state the anisotropic interpolation error estimates on simplices in terms of L^p-norms, which is a generalization of the results from [2], where only $p = 2$ was considered. As the proofs are largely analogous to those in [2], we omit them here. The principal idea of the proof is to first show stability estimates on the reference elements and then transfer them in two steps first to an element of a reference family using an affine transformation with a diagonal matrix and then to the general element.

Recall that a simplex is said to satisfy the maximum angle condition if all angles within and between facets are bounded by a constant $\bar{\phi} < \pi$. In addition, it satisfies the regular vertex property if for one vertex there is a constant $\bar{c} > 0$ so that $|\det N| \geq \bar{c}$ holds for the matrix N whose columns consist of the unit vectors $l_i, i \in I_d$, along the outgoing edges from this vertex. The lengths of the edges corresponding to the vectors l_i are the element size parameters and are denoted by h_i. The degrees of freedom for the BDM interpolation operator I_k^{BDM} of order k on simplices can be found in [8, p. 59].

The error estimates for the BDM interpolation depending on the geometric regularity are given by the two following theorems, cf. [2, Theorems 4.3, 4.4] and [1, Theorems 6.2, 6.3].

Theorem 1. Let a simplicial element T satisfy the regular vertex property with constant \bar{c}. Then for $k \geq 1, 0 \leq m \leq k$ and $v \in W^{m+1,p}(T), 1 \leq p \leq \infty$, the estimate

$$
\|v - I_k^{\text{BDM}}v\|_{0,p,T} \lesssim \sum_{|\alpha| = m+1} h^\alpha \|D^\alpha v\|_{0,p,T} + h_T \sum_{|\alpha| = m} h^\alpha \|D^\alpha \text{div } v\|_{0,p,T}
$$

holds, the constant only depends on \bar{c} and k. Here $h_T = \text{diam } T$, $h^\alpha = \prod_{j \in I_d} h_j^\alpha_j$ and $D^\alpha = \frac{\partial^{|\alpha|}}{\partial l_1^{\alpha_1} \cdots \partial l_d^{\alpha_d}}$.

Theorem 2. Let a simplicial element T satisfy the maximum angle condition with constant $\bar{\phi}$. Then for $k \geq 1, 0 \leq m \leq k$ and $v \in W^{m+1,p}(T), 1 \leq p \leq \infty$, the estimate

$$
\|v - I_k^{\text{BDM}}v\|_{0,p,T} \lesssim h_T^{m+1} \|D^m v\|_{0,p,T}
$$

holds, the constant only depends on $\bar{\phi}$ and k. The notation D^n means the sum of the absolute values of all derivatives of order n.

3 Error estimates on anisotropic prisms

Similar results can be achieved for triangular prisms with some modifications. The prismatic reference element \hat{P} with the notation for the vertices is given on the left hand side of Figure 1. The element \hat{P} is transformed to an element \tilde{P} of the reference family \mathcal{R}_P by the transformation $\tilde{x} = J_{\tilde{P}} \hat{x}$, where

$$
J_{\tilde{P}} = \begin{pmatrix}
 h_1 & 0 & 0 \\
 0 & h_2 & 0 \\
 0 & 0 & h_3
\end{pmatrix},
$$

see Figure 1. The vertical facet of \hat{P} opposite of the vertices p_i and p^i is denoted by e_i, the horizontal facet at $\hat{x}_3 = 0$ by e_0 and the one at $\hat{x}_3 = 1$ by e_ℓ. The facet normals of \hat{P} are thus
Let \hat{P} be the reference element from Figure 1. Then

$$\hat{u}(\bar{x}) = \left(\hat{f}_1(\bar{x}_2, \bar{x}_3), 0, 0\right)^T, \quad \hat{v}(\bar{x}) = \left(0, \hat{f}_2(\bar{x}_1, \bar{x}_3), 0\right)^T, \quad \hat{w}(\bar{x}) = \left(0, 0, \hat{f}_3(\bar{x}_1, \bar{x}_2)\right)^T.$$
With this lemma, we get the stability estimate on the reference element.

Lemma 2. Let \(\hat{\mathbf{u}} \in W^{1,p}(\hat{P}) \), \(1 \leq p \leq \infty \). Then we have the estimates

\[
\left\| (I_k^{\text{BDM}} \hat{\mathbf{u}})_i \right\|_{0,p,\hat{P}} \lesssim \left\| \mathbf{u}_i \right\|_{1,p,\hat{P}} + \left\| \nabla \hat{\mathbf{u}} \right\|_{1,p,\hat{P}} + \left\| \frac{\partial \mathbf{u}_3}{\partial x_3} \right\|_{0,p,\hat{P}}, \quad i \in I_2,
\]

\[
\left\| (I_k^{\text{BDM}} \hat{\mathbf{u}})_3 \right\|_{0,p,\hat{P}} \lesssim \left\| \mathbf{u}_3 \right\|_{1,p,\hat{P}} + \left\| \nabla \hat{\mathbf{u}} \right\|_{0,p,\hat{P}}.
\]

Proof. The proofs for \(i \in I_2 \) are analogous so we only show the details for the first and third components, starting with \(i = 1 \). Let

\[
\hat{\mathbf{u}}_* = \begin{pmatrix}
0 \\
\hat{w}_2(\hat{x}_1, 0, \hat{x}_3) \\
\hat{w}_3(\hat{x}_1, \hat{x}_2, 0)
\end{pmatrix}, \quad \hat{\mathbf{v}} = \hat{\mathbf{u}} - \hat{\mathbf{u}}_* = \begin{pmatrix}
\hat{u}_1 \\
\hat{u}_2 - \hat{w}_2(\hat{x}_1, 0, \hat{x}_3) \\
\hat{u}_3 - \hat{w}_3(\hat{x}_1, \hat{x}_2, 0)
\end{pmatrix}.
\]

The previous Lemma[1] thus yields \((I_k^{\text{BDM}} \hat{\mathbf{v}})_1 = (I_k^{\text{BDM}} \hat{\mathbf{u}})_1\), and it holds \(\nabla \hat{\mathbf{v}} = \nabla \hat{\mathbf{u}} - \nabla \hat{\mathbf{u}}_* = \nabla \hat{\mathbf{u}} \). We define the two functions

\[
\hat{\mathbf{v}}_* = \begin{pmatrix}
0 \\
\hat{x}_2 \hat{q}_2 \\
\hat{x}_3 \hat{q}_3
\end{pmatrix}, \quad \hat{\mathbf{w}} = \hat{\mathbf{v}} - \hat{\mathbf{v}}_* = \begin{pmatrix}
\hat{v}_1 \\
\hat{v}_2 - \hat{x}_2 \hat{q}_2 \\
\hat{v}_3 - \hat{x}_3 \hat{q}_3
\end{pmatrix},
\]

where \(\hat{q}_2 \in P_{k-1,k}(\hat{P}) \), \(\hat{q}_3 \in P_{k,k-1}(\hat{P}) \), so that

\[
\int_{\hat{P}} \hat{w}_2 z \, d\mathbf{x} = \int_{\hat{P}} (\hat{v}_2 - \hat{x}_2 \hat{q}_2) z \, d\mathbf{x} = 0 \quad \forall z \in P_{k-1,k}(\hat{P}),
\]

\[
\int_{\hat{P}} \hat{w}_3 z \, d\mathbf{x} = \int_{\hat{P}} (\hat{v}_3 - \hat{x}_3 \hat{q}_3) z \, d\mathbf{x} = 0 \quad \forall z \in P_{k,k-1}(\hat{P}).
\]

This means that the functions \(\hat{q}_2 \) and \(\hat{q}_3 \) are well defined. Since \(\hat{\mathbf{v}}_* \in P_{k,k}(\hat{P}) \) it follows that \(I_k^{\text{BDM}} \hat{\mathbf{v}}_* = \hat{\mathbf{v}}_* \) and thus \((I_k^{\text{BDM}} \hat{\mathbf{v}})_1 = (I_k^{\text{BDM}} \hat{\mathbf{u}})_1 = (I_k^{\text{BDM}} \hat{\mathbf{u}})_1\). The interpolated function \(I_k^{\text{BDM}} \hat{\mathbf{w}} = \mathbf{t} = (\hat{t}_1, \hat{t}_2, \hat{t}_3)^T \) is then defined by the relations, see [2],

\[
\int_{e_b} \hat{t}_3 z \, ds = \int_{e_b} \hat{w}_3 z \, ds = 0 \quad \forall z \in P_k(e_b),
\]

\[
\int_{e_t} \hat{t}_3 z \, ds = \int_{e_t} \hat{w}_3 z \, ds = \int_{e_t} \hat{w}_3 z \, ds - \int_{e_b} \hat{w}_3 z \, ds = \int_{\hat{P}} \frac{\partial \hat{w}_3}{\partial x_3} z \, d\mathbf{x} \quad \forall z \in P_k(e_t),
\]

\[
\int_{e_1} \hat{t}_1 z \, ds = \int_{e_1} \hat{w}_1 z \, ds \quad \forall z \in Q_k(e_1),
\]

\[
\int_{e_2} \hat{t}_2 z \, ds = \int_{e_2} \hat{w}_2 z \, ds = 0 \quad \forall z \in Q_k(e_2),
\]

\[
\int_{e_3} (\hat{t}_1 + \hat{t}_2) z \, ds = \int_{e_3} (\hat{w}_1 + \hat{w}_2) z \, ds \quad \forall z \in Q_k(e_3),
\]

\[
\int_{e_b} \hat{t}_3 z_3 \, ds = \int_{\hat{P}} \hat{w}_3 z_3 \, d\mathbf{x} = \int_{\hat{P}} (\hat{v}_3 - \hat{x}_3 \hat{q}_3) z_3 \, d\mathbf{x} = 0 \quad \forall z_3 \in P_{k,k-2}(\hat{P}),
\]

\[
\int_{e_b} \hat{t}_1 z_1 + \hat{t}_2 z_2 \, ds = \int_{\hat{P}} \hat{w}_1 z_1 + \hat{w}_2 z_2 \, d\mathbf{x} = \int_{\hat{P}} \hat{w}_1 z_1 \, d\mathbf{x} \quad \forall (z_1, z_2) \in P_{k-1,k}(\hat{P}),
\]
where the definitions of \hat{q}_2, \hat{q}_3, and that $\hat{w}_2|_{e_2} \equiv 0$, $\hat{w}_3|_{e_3} \equiv 0$ were used. Additional computations for the relation on e_3 yield

$$\frac{1}{\sqrt{2}} \int_{e_3} (\hat{t}_1 + \hat{t}_2) z \, ds = \frac{1}{\sqrt{2}} \int_{e_3} (\hat{w}_1 + \hat{w}_2) z \, ds = \int_{e_3} \hat{w} \cdot n_{e_3} \, ds$$

$$= \int_{\hat{P}} \left(\frac{\partial \hat{w}_1}{\partial \hat{x}_1} + \frac{\partial \hat{w}_2}{\partial \hat{x}_2} \right) z \, dx + \int_{\hat{P}} \hat{w}_1 \frac{\partial z}{\partial \hat{x}_1} \, dx - \int_{\partial \hat{P}_{\hat{e}_3}} \hat{w} \cdot n_{\partial \hat{P}} z \, ds$$

$$= \int_{\hat{P}} (\text{div} \, \hat{w} - 2 \frac{\partial \hat{w}_3}{\partial \hat{x}_3}) \, dx + \int_{\hat{P}} \hat{w}_1 \frac{\partial z}{\partial \hat{x}_1} \, dx - \int_{e_3} \hat{w}_1 z \, ds .$$

Thus, the terms

$$\int_{e_1} \hat{w}_1 z \, ds = \int_{e_1} \hat{u}_1 z \, ds ,$$

$$\int_{\hat{P}} \frac{\partial \hat{w}_3}{\partial \hat{x}_3} z \, dx = \int_{\hat{P}} \frac{\partial \hat{u}_3 - \hat{x}_3 \hat{q}_3}{\partial \hat{x}_3} z \, dx ,$$

$$\int_{\hat{P}} (\text{div} \, \hat{w}) z \, dx = \int_{\hat{P}} \text{div} (\hat{u} - \hat{v}_s) z \, dx$$

define the interpolant. We get the desired estimate

$$\left\| (\mathbf{P}^{\text{BDM}})^{k-1}_{P_0} \hat{u} \right\|_{0,P_0,\hat{P}} \lesssim \left\| \hat{u}_1 \right\|_{1,p,\hat{P}} + \left\| \text{div} \, \hat{u} \right\|_{0,p,\hat{P}} + \left\| \frac{\partial \hat{u}_3}{\partial \hat{x}_3} \right\|_{0,p,\hat{P}}$$

using a trace theorem and steps similar to those in the proof of \cite[Lemma 3.3]{1} to estimate the terms involving $\hat{x}_3 \hat{q}_3$ and $\text{div} \, \hat{v}_s$. For the third component, with the definitions

$$\hat{v} = \hat{u} - \hat{v}_s = \left(\begin{array}{c} \hat{u}_1 - \hat{u}_1(0, \hat{x}_2, \hat{x}_3) \\ \hat{u}_2 - \hat{u}_2(\hat{x}_1, 0, \hat{x}_3) \\ \hat{u}_3 \end{array} \right) , \quad \hat{v}_s = \left(\begin{array}{c} \hat{x}_1 \hat{q}_1 \\ \hat{x}_2 \hat{q}_2 \\ 0 \end{array} \right) , \quad \hat{w} = \hat{v} - \hat{v}_s = \left(\begin{array}{c} \hat{v}_1 - \hat{x}_1 \hat{q}_1 \\ \hat{v}_2 - \hat{x}_2 \hat{q}_2 \\ \hat{v}_3 \end{array} \right) ,$$

where the functions $\hat{q}_j \in P_{k-1,k}(\hat{P})$, $j \in I_2$, are now defined by

$$\int_{\hat{P}} \hat{w}_j z \, dx = \int_{\hat{P}} (\hat{v}_j - \hat{x}_j \hat{q}_j) z \, dx = 0 \quad \forall z \in P_{k-1,k}(\hat{P}),$$

the relevant terms of the interpolation relations are

$$\int_{e_2} \hat{w}_3 z \, ds = \int_{e_2} \hat{u}_3 z \, ds ,$$

$$\int_{\hat{P}} \hat{w}_3 z \, dx = \int_{\hat{P}} \hat{u}_3 z \, dx ,$$

$$\int_{\hat{P}} \text{div} \, \hat{w} z \, dx = \int_{\hat{P}} \text{div} (\hat{u} - \hat{v}_s) z \, dx .$$

From here the same steps as for the first component yield the desired estimate.

\[\square \]

Using the transformation \cite[Lemma 3.3]{1} we bring the stability estimate to an element of the reference family.

Lemma 3. Let $\hat{P} = J \hat{P} + x_0$, $x_0 \in \mathbb{R}^3$, and $\hat{v} \in W^{1,p}(\hat{P})$, $1 \leq p \leq \infty$. Then on the prism \hat{P} the estimate

$$\left\| \mathbf{P}^{\text{BDM}} \right\|_{0,p,\hat{P}} \lesssim \sum_{|\alpha| \leq 1} h^\alpha \left\| D^\alpha \hat{v} \right\|_{0,p,\hat{P}} + h_{\hat{P}} \left\| \text{div} \, \hat{v} \right\|_{0,p,\hat{P}} + (h_1 + h_2) \left\| \frac{\partial \hat{u}_3}{\partial \hat{x}_3} \right\|_{0,p,\hat{P}}$$

holds, where $h_{\hat{P}} = \max\{h_1, h_2, h_3\}$.

\[5 \]
Proof. Using Lemma 2 and the relations
\[
\| \hat{w} \|_{0,p,\bar{P}} = \left(\int_{\bar{P}} \sum_{i \in I_d} \| \hat{w}_i \|^p \, dx \right)^{1/p} \\
\leq (\det J_{\bar{P}})^{1/p} \sum_{i \in I_d} \| i^{-1} \left(\int_{\bar{P}} \| \hat{w}_i \|^p \, dx \right) = (\det J_{\bar{P}})^{1/p} \sum_{i \in I_d} i^{-1} \| \hat{w}_i \|_{0,p,\bar{P}},
\]
where \(\downarrow h = \prod_{j \in I_3 \setminus \{i\} \bar{P} } \downarrow h_j \), we compute
\[
\| \tilde{I}_k^{BDM} \|_{0,p,\bar{P}} \leq (\det J_{\bar{P}})^{1/p} \sum_{i \in I_3} \| \tilde{I}^{BDM} \|_{0,p,\bar{P}} \leq (\det J_{\bar{P}})^{1/p} \sum_{i \in I_3} \| \tilde{I}^{BDM} \|_{0,p,\bar{P}} \leq (\det J_{\bar{P}})^{1/p} \sum_{i \in I_3} \| \tilde{I}^{BDM} \|_{0,p,\bar{P}} \leq \sum_{i \in I_3} \| \tilde{I}^{BDM} \|_{0,p,\bar{P}}.
\]

The estimate from the previous lemma can be brought to the general prism \(P \) where the transformation is assumed to be reasonable in a certain sense. The stability estimate on \(P \) can be used to get the interpolation error estimate by a Bramble–Hilbert type argument. The proofs for the stability and interpolation error estimates on the element \(P \) follow the same steps as their analogs on simplices, see [2, Theorems 3.5, 4.3] and cf. [1, Theorems 3.1, 6.2], which is why they are omitted for brevity.

Theorem 3. Let \(P \) be a prism element that emerges by the affine transformation \(\mathbf{x} = J_P \mathbf{z} \), with \(\| J_P \|, \| J_P^{-1} \| \leq C \), of the element \(\bar{P} \in \mathcal{K}_P \). Then for \(\mathbf{v} \in W^{1,p}(P) \), \(1 \leq p \leq \infty \), the estimate
\[
\| I_k^{BDM} \|_{0,p,P} \leq \sum_{i \in I_3} (h_i \| \partial \mathbf{v} \|_{0,p,P} + h_p \| \mathbf{v} \|_{0,p,P} + (h_1 + h_2) \| \partial \mathbf{v} \|_{0,p,P})
\]
is satisfied. The vectors \(l_j \) are the outgoing unit vectors along the edges adjacent to the transformed vertex \(p_i \).

Theorem 4. Let a prism \(P \) satisfy the same condition as in Theorem 3. Then for \(k \geq 1 \), \(0 \leq m \leq k \) and \(\mathbf{v} \in W^{m+1,p}(P) \), \(1 \leq p \leq \infty \), the estimate
\[
\| \mathbf{v} - I_k^{BDM} \|_{0,p,P} \leq \sum_{|\alpha|=m+1} h_\alpha \| D_\alpha \mathbf{v} \|_{0,p,P} + h_p \sum_{|\alpha|=m} h_\alpha \| D_\alpha \mathbf{v} \|_{0,p,P} + (h_1 + h_2) \sum_{|\alpha|=m} \| \partial \mathbf{v} \|_{0,p,P}
\]
holds and the constant only depends on \(k \).
References

[1] G. Acosta, T. Apel, R. G. Durán, and A. L. Lombardi. “Error estimates for Raviart–Thomas interpolation of any order on anisotropic tetrahedra”. *Math. Comp.* 80.273 (2011), pp. 141–163. URL: https://doi.org/10.1090/S0025-5718-2010-02406-8 (cit. on pp. 2, 5, 6).

[2] T. Apel and V. Kempf. “Brezzi–Douglas–Marini interpolation of any order on anisotropic triangles and tetrahedra”. *SIAM J. Numer. Anal.* 58.3 (2020), pp. 1696–1718. URL: https://doi.org/10.1137/19M1302910 (cit. on pp. 1, 3, 6).

[3] T. Apel and V. Kempf. “Pressure-robust error estimate of optimal order for the Stokes equations: domains with re-entrant edges and anisotropic mesh grading”. *Calcolo* 58.2 (2021), p. 15. URL: https://doi.org/10.1007/s10092-021-00402-z (cit. on p. 1).

[4] D. Boffi, F. Brezzi, and M. Fortin. *Mixed Finite Element Methods and Applications*. Berlin: Springer, 2013. URL: https://doi.org/10.1007/978-3-642-36519-5 (cit. on p. 1).

[5] S. Franz. “Anisotropic H_{div}-norm error estimates for rectangular H_{div}-elements”. *Appl. Math. Lett.* 121 (2021). 107453. URL: https://doi.org/10.1016/j.aml.2021.107453 (cit. on p. 1).

[6] V. Kempf. “Pressure-robust discretizations for incompressible flow problems on anisotropic meshes”. Doctoral Thesis. Universität der Bundeswehr München, submitted on 2022-04-07 (cit. on p. 1).

[7] A. Linke. “On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime”. *Comput. Methods Appl. Mech. Engrg.* 268 (2014), pp. 782–800. URL: https://doi.org/10.1016/j.cma.2013.10.011 (cit. on p. 1).

[8] J.-C. Nédélec. “A new family of mixed finite elements in \mathbb{R}^n”. *Numer. Math.* 50.1 (1986), pp. 57–81. URL: https://doi.org/10.1007/BF01389668 (cit. on pp. 1, 3).