A formal power series over a noncommutative Hecke ring and the rationality of the Hecke series for GSp_4

Fumitake Hyodo

Abstract

The present paper studies Hecke rings derived by the automorphism groups of certain algebras L_p over the ring of p-adic integers. Our previous work considered the case where L_p is the Heisenberg Lie algebra (of dimension 3) over the ring of p-adic integers. Although this Hecke ring is noncommutative, we showed that a formal power series with coefficients in this Hecke ring satisfies an identity similar to the rationality of the Hecke series for GL_2 due to E. Hecke. In the present paper, we establish an analogous result in the case of the Heisenberg Lie algebra of dimension 5 over the ring of p-adic integers. In this case, our identity is similar to the rationality of the Hecke series for GSp_4, due to G. Shimura.

1 Introduction

The present paper is a continuation of our previous works [5], [6] and [7]. We discuss identities for formal power series with coefficients in certain noncommutative Hecke rings. Our study is related to the work due to [4, Hecke], [8, Shimura] and [1, Andrianov]. Let p be a fixed prime number. They showed that, for each positive integer n, the Hecke series $P_n(X)$ for the general symplectic group $GSp_{2n}(\mathbb{Q}_p)$ of genus n over the p-adic field \mathbb{Q}_p has rationality as follows:

Theorem 1.1 (Rationality Theorem, [1, 4, 8]). Denote by R_n the Hecke ring associated with $GSp_{2n}(\mathbb{Q}_p)$. Then there exist elements $q^{(n)}_1, ..., q^{(n)}_{2^n}$ of R_n, and a polynomial $g^{(n)}(X) \in R_n[X]$ such that

$$
\sum_{i=0}^{2^n} q^{(n)}_i X^i P_n(X) = g^{(n)}(X),
$$

where $q^{(n)}_0 = 1$.

The above theorem is established by [4] for the case $n = 1$, by [8] for the case $n = 2$, and by [1] for any $n \geq 3$. Furthermore, it is known that R_n is isomorphic
to the (commutative) polynomial ring of \((n + 1)\) variables. Thus \(\{q^n_i\}_i\) and \(g^{(n)}(X)\) are unique.

Throughout the present paper, algebra implies an abelian group with a biadditive product (e.g., an associative algebra, a Lie algebra). Let \(L\) be an algebra that is free of finite rank as an abelian group, and let \(L_p = L \otimes \mathbb{Z}_p\). In [6], the Hecke rings \(R_{L_p}\) derived by the automorphism groups of \(L_p\) were introduced, and in [7], the formal power series \(P_{L_p}(X)\) with coefficients in the Hecke rings were defined. We call \(P_{L_p}(X)\) and \(R_{L_p}\) the local Hecke series and the local Hecke ring associated with \(L_p\), respectively.

In the present paper, we focus on the case where \(L_p\) is the Heisenberg Lie algebra \(H^{(n)}\) over \(\mathbb{Z}\) of dimension \(2n + 1\). Here, the ring homomorphisms \(s_n : R_n \rightarrow R_{H^{(n)}}, \phi_n : R_{H^{(n)}} \rightarrow R_n\) and \(\theta_n : R_{H^{(n)}} \rightarrow R_{H^{(n)}}\) satisfying the following property are constructed. They are presented in Sections 2 and 4.

Proposition 1.2 (Proposition 4.2, Corollary 4.4). The ring homomorphisms \(\phi_n, s_n\) and \(\theta_n\) satisfy the following properties:

1. \(\phi_n \circ s_n = id_{R_n}\).
2. \(\phi_n \circ \theta_n = \phi_n\).
3. \(P_{\phi_n}^{H^{(n)}}(X) = P_n(p^n X^{n+1})\).

We shall drop the subscript \(n\) from \(\phi_n, s_n\) and \(\theta_n\) when no confusion can occur.

Our previous work [5] shows the following identity as well as the noncommutativity of the coefficients of the local Hecke series associated with the Heisenberg Lie algebra \(H^{(1)}\) of dimension 3.

Theorem 1.3 ([5, Theorem 7.8]). We set \(P(X) = P_{H^{(1)}}^{(1)}(X), g(X) = g^{(1)}(X)\) and \(q_i = q_i^{(1)}\) for \(i = 0, 1, 2\). Then we have the following identity.

\[
P^0(X) + q_1 Y P^0(X) + q_2 Y^2 P(X) = g^*(Y),
\]

where \(Y = pX^2\).

Our main purpose of the present paper is to extend this result. Precisely, we establish the noncommutativity of the coefficients of \(P_{H^{(2)}}^{(2)}(X)\), moreover, the following identity.

Theorem 1.4 (Theorem 5.14). We set \(P(X) = P_{H^{(2)}}^{(2)}(X), g(X) = g^{(2)}(X),\) and \(q_i = q_i^{(2)}\) for \(0 \leq i \leq 4\). Then we have the following identity.

\[
\sum_{i=0}^{4} q_i^* Y^i P^{0^{4-i}}(X) = g^*(Y),
\]

where \(Y = p^2 X^3\).
It should be noted that Equalities (2) and (3) recover the rationality theorems of Hecke and Shimura via the morphisms ϕ_1 and ϕ_2, respectively. This is an immediate consequence of Proposition 1.2.

For the case $n \geq 3$, we show the noncommutativity of the coefficients of $P_{H_p}^n(X)$ (cf. Theorem 4.6), and raise the following unsolved problem.

Problem 1.5 (Problem 4.9). We set $P(X) = P_{H_p}^n(X)$, $g(X) = g^n(X)$, and $q_i = q_i^n$ for $0 \leq i \leq 2^n$. Does $P(X)$ satisfy the following identity?

$$\sum_{i=0}^{2^n} q_i^n Y^i P^{\theta N-i}(X) = g^i(Y). \quad (4)$$

Where $Y = p^n X^{n+1}$ and $N = 2^n$.

The outline of the present paper is as follows. In Section 2, we recall the definition of Hecke rings and study the morphisms s, ϕ and θ. Section 3 describes the local Hecke rings and the local Hecke series associated with algebras. In Section 4 we focus on the case of the Heisenberg Lie algebras, and then show the noncommutativity of the coefficients of $P_{H_p}^n(X)$ for all n. Finally, our main theorem is proved in Section 5.

2 Abstract Hecke rings and some morphisms

In this section, we recall the definition of Hecke rings and define the morphisms s, θ and ϕ which are used in section 4.

First, we recall the definition of Hecke rings. For more details, refer to [9, Shimura, Chapter 3]. Let G be a group, Δ be a submonoid of G, and Γ be a subgroup of Δ. We assume that the pair (Γ, Δ) is a double finite pair, i.e., for all $A \in \Delta$, $\Gamma \setminus \Gamma A$ and $\Gamma A \setminus \Gamma$ are finite sets. Then, one can define the Hecke ring $R = R(\Gamma, \Delta)$ associated with the pair (Γ, Δ) as follows:

- The underlying abelian group is the free abelian group on the set $\Gamma \setminus \Delta / \Gamma$.
- The product of $(\Gamma A \Gamma)$ and $(\Gamma B \Gamma)$ is defined by

$$\sum_{\Gamma CT \in \Gamma \setminus \Delta / \Gamma} m_C(\Gamma CT),$$

where

$$m_C = \left| \{ \Gamma \beta \in \Gamma \setminus \Gamma B \Gamma \mid C \beta^{-1} \in \Gamma A \Gamma \} \right| = \left| \{ \alpha \Gamma \in \Gamma A \Gamma / \Gamma \mid \alpha^{-1} C \in \Gamma B \Gamma \} \right|.$$

Note that $m_C \neq 0$ if and only if $C \in \Gamma A \Gamma B \Gamma$.

Define the element $T_{\Gamma, \Delta}(A)$ of $R(\Gamma, \Delta)$ by $\Gamma A \Gamma$ for every $A \in \Delta$. We also define $\text{deg}_{\Gamma, \Delta}(\Gamma A \Gamma)$ by $|\Gamma \setminus \Gamma A \Gamma|$ for every $A \in \Delta$. The map $\text{deg}_{\Gamma, \Delta}$ extends
by linearity to a homomorphism from $R(\Gamma, \Delta)$ to \mathbb{Z}, and forms a ring homomorphism. We will write simply “$T(A)$”, “deg” and “deg $T(A)$”, for $T_{\Gamma, \Delta}(A)$, $\deg_{\Gamma, \Delta}$ and $\deg_{\Gamma, \Delta}(T_{\Gamma, \Delta}(A))$ respectively when no confusion can arise.

Fix a double finite pair (Γ, Δ) and a both sides Δ-module M. Next, we construct a Hecke ring \tilde{R} using Δ, Γ and M. We define the monoid $\tilde{\Delta} = \tilde{\Delta}(\Delta, M)$ as follows.

- The underlying set is $\Delta \times M$.
- The operation is defined by $(A, a) \cdot (B, b) = (AB, A'b + aB)$ for $A, B \in \Delta$, $a, b \in M$.

We also define $\tilde{\Gamma} = \tilde{\Gamma}(\Gamma, M)$ by the subgroup of $\tilde{\Delta}$ whose underlying set is $\Gamma \times M$. Notice that the identity element of $\tilde{\Delta}$ is $(E, 0)$, where E and 0 are the identity elements of Δ and M respectively. It is easy to see $(X, x)^{-1} = (X^{-1}, -X^{-1}xX^{-1})$ for each $(X, x) \in \tilde{\Gamma}$.

From now on, we assume the following:

Assumption 2.1.

1. $M/(AM \cap MA)$ is a finite set for every $A \in \Delta$.
2. M is a sub-Δ-module of a both sides G-module M'.

Then, the monoid $\tilde{\Delta}$ is naturally a submonoid of the group $\tilde{\Delta}(G, M')$. Let us calculate the degree of each $(A, a) \in \tilde{\Delta}$ and prove the double finiteness of the pair $(\tilde{\Gamma}, \tilde{\Delta})$. We put $\Gamma_A = A^{-1} \Gamma A \cap \Gamma$ and $\Gamma^A = \Gamma \cap A \Gamma^{-1}$. Note that there are natural bijections of $\Gamma_A \setminus \Gamma$ onto $\Gamma \setminus \Gamma_A \Gamma$ and Γ / Γ^A onto $\Gamma \setminus \Gamma A \Gamma$.

Proposition 2.2. For any two elements (A, a) and (A, b) of $\tilde{\Delta}$, $\tilde{\Gamma}(A, a)\tilde{\Gamma} = \tilde{\Gamma}(A, b)\tilde{\Gamma}$ if and only if there exists $X \in \Gamma^A$ such that

$$X \ast a \equiv b \mod AM + MA.$$

Where $X \ast a = Xa \Gamma^{-1} - A^{-1}X^{-1}A$.

Proof. $\tilde{\Gamma}(A, a)\tilde{\Gamma} = \tilde{\Gamma}(A, b)\tilde{\Gamma}$ if and only if there exist $(X, x), (Y, y) \in \tilde{\Gamma}$ such that $(X, x)(A, a) = (A, b)(Y, y)$, which is equivalent to

$$Y = A^{-1}X A, \quad X \ast a - b = AY^{-1} - xX^{-1}A.$$

This completes the proof. \qed

Proposition 2.3. For $(A, a) \in \tilde{\Delta}$, we have

$$\left| \tilde{\Gamma} \setminus \tilde{\Gamma}(A, a)\tilde{\Gamma} \right| = \left| \Gamma : \Gamma_A \right| [AM : AM \cap MA] \left| \Gamma^A \ast (a \mod AM + MA) \right|.$$

where $\Gamma^A \ast (a \mod AM)$ means the orbit of $(a \mod AM + MA)$ in $M/(AM + MA)$ under Γ^A acting by \ast. Particularly, $\left| \tilde{\Gamma} \setminus \tilde{\Gamma}(A, a)\tilde{\Gamma} \right|$ is finite.
Proof. We put
\[\tilde{\Gamma}_{(A,a)} = \left\{ (X,x) \in \tilde{\Gamma} \mid (A,a)(X,x) = (Y,y)(A,a) \text{ for some } (Y,y) \in \tilde{\Gamma} \right\}. \]

Then \[\left| \tilde{\Gamma}(A,a) \Gamma \right| = \left| \tilde{\Gamma}(A,a) \tilde{\Gamma} \right|. \] \((X,x) \in \tilde{\Gamma}(A,a)\) if and only if \((X,x)\) has the following three conditions:
\begin{align*}
X &\in \Gamma_A, \tag{5} \\
(AXA^{-1}) * a - a &\in AM + MA, \tag{6} \\
Axx^{-1} &\in (AXA^{-1}) * a - a + MA. \tag{7}
\end{align*}

Let \(\Gamma_1\) be the image of \(\tilde{\Gamma}(A,a)\) by the canonical projection \(\tilde{\Gamma} \to \Gamma\), and put \(\mathcal{N} = \{ x \in M \mid Ax \in AM \cap MA \}\). Then we have a commutative diagram as follows.
\[
\begin{array}{c c c c c}
1 & \longrightarrow & M & \longrightarrow & \tilde{\Gamma} & \longrightarrow & \Gamma & \longrightarrow & 1 \\
& & \uparrow & & \uparrow & & \uparrow & & \\
1 & \longrightarrow & \mathcal{N} & \longrightarrow & \tilde{\Gamma}(A,a) & \longrightarrow & \Gamma_1 & \longrightarrow & 1 \\
\end{array}
\]

where \(M \to \tilde{\Gamma}\) is the canonical embedding, and each of the three vertical morphisms is the inclusion. Since the two horizontal sequences are exact, we have
\[[\tilde{\Gamma} : \tilde{\Gamma}(A,a)] = [\Gamma : \Gamma_A][\Gamma_A : \Gamma_1][\mathcal{M} : \mathcal{N}]. \]

Clearly, \(\mathcal{M}/\mathcal{N}\) is naturally isomorphic to \(AM/AM \cap MA\). Since \(\Gamma_1\) coincides with the subgroup of \(\Gamma\) consisting of elements satisfying (5) and (6), \(A\Gamma_1 A^{-1}\) is the stabilizer subgroup of \((a \mod AM + MA)\) in \(\Gamma A\). Thus we have the desired identity. \(\square\)

A similar argument shows that \(\left| \tilde{\Gamma}(A,a) \tilde{\Gamma}/\tilde{\Gamma} \right|\) is also finite. Thus we have:

Corollary 2.4. The pair \((\tilde{\Gamma}, \tilde{\Delta})\) is double finite.

We write \(\tilde{R} = R(\tilde{\Gamma}, \tilde{\Delta})\) and \(\tilde{T} = T_{\tilde{\Gamma}, \tilde{\Delta}}\). The above proposition is equivalent to the following statement:

Corollary 2.5. For \((A,a) \in \tilde{\Delta}\), we have
\[\deg \tilde{T}(A,a) = [\Gamma : \Gamma_A][AM : AM \cap MA][\Gamma A * (a \mod AM + MA)]. \]

The following three subsections define the morphisms \(s\), \(\theta\) and \(\phi\), respectively. From now on, we assume the following:

Assumption 2.6. \(AM \supset MA\) for every \(A \in \Delta\).
2.1 The injection s

We define $\psi : \tilde{\Delta} \to \Delta$ and $s_0 : \Delta \to \tilde{\Delta}$ by $((C, e) \mapsto C)$ and $(C \mapsto (C, 0))$, respectively.

Lemma 2.7. For $A, B \in \Delta$, let

$$\tilde{\mathcal{X}} = \tilde{\Gamma}(A, 0)\tilde{\Gamma}(B, 0)\tilde{\Gamma}/\tilde{\Gamma}, \text{ and } \mathcal{X} = \Gamma(\Gamma A\Gamma B\Gamma)/\Gamma.$$

Let $\tilde{\psi} : \tilde{\mathcal{X}} \to \mathcal{X}$ and $s_0 : \mathcal{X} \to \tilde{\mathcal{X}}$ be the maps defined by ψ and s_0, respectively. Then $\tilde{\psi}$ and s_0 are the inverse to each other.

Proof. It is clear that $\tilde{\psi} \circ s_0$ is the identity. We shall show $s_0 \circ \tilde{\psi}$ is also the identity. For $(X, x) \in \tilde{\mathcal{X}}$, we put $\delta = \beta(X, x) = (Bx, 0)$. Since $\Gamma(A) = (\Gamma A)\Gamma B\Gamma$, by Proposition 2.2 we have

$$\tilde{\Gamma}(A, 0)(X, x)(B, 0)\tilde{\Gamma} = \tilde{\Gamma}(AXB, 0)\tilde{\Gamma}.$$

This completes the proof.

Lemma 2.8. For $A, B, C \in \Delta$, let $\alpha = (A, 0), \beta = (B, 0), \gamma = (C, 0)$. We put

$$\tilde{\mathcal{X}} = \{\tilde{\Gamma}\delta \in \tilde{\Gamma}\beta \Gamma; \gamma \delta^{-1} \in \tilde{\Gamma} \alpha \Gamma\}$$

and

$$\mathcal{X} = \{\Gamma D \in \Gamma \beta \Gamma; CD^{-1} \in \Gamma \alpha \Gamma\}.$$

Let $\tilde{\psi} : \tilde{\mathcal{X}} \to \mathcal{X}$ and $s_0 : \mathcal{X} \to \tilde{\mathcal{X}}$ be the maps defined by ψ and s_0, respectively. Then $\tilde{\psi}$ and s_0 are the inverse to each other, especially, $|\tilde{\mathcal{X}}| = |\mathcal{X}|$.

Proof. It is essential to prove $s_0 \circ \tilde{\psi}$ is the identity. For $(X, x) \in \tilde{\mathcal{X}}$, we put $\delta = (X, x) = (Bx, 0)$, and assume $\gamma \delta^{-1} \in \tilde{\Gamma} \alpha \Gamma$. It suffices to prove

$$\tilde{\Gamma}(X, x)(B, 0)\tilde{\Gamma} = \tilde{\Gamma}(Bx, 0)\tilde{\Gamma}.$$

Since $\gamma \delta^{-1} = (CX^{-1}B^{-1}, -CX^{-1}x(Bx)^{-1})$, we have $CX^{-1}B^{-1} \in \Gamma A\Gamma$. Hence $(CX^{-1}B^{-1}, 0) \in \Gamma \alpha \Gamma$. Thus

$$(CX^{-1}B^{-1}, -CX^{-1}x(Bx)^{-1}) \in \tilde{\Gamma}(CX^{-1}B^{-1}, 0)\tilde{\Gamma}.$$

By Proposition 2.2, $-CX^{-1}x(Bx)^{-1} \in CX^{-1}B^{-1}\mathcal{M}$, namely, $x \in B^{-1}\mathcal{M}$. Put $x = B^{-1}yBx$, then

$$\delta = (Bx, yBx) = (E, y)(Bx, 0).$$

This completes the proof.

By the above two lemmas, we have:

Proposition 2.9. The natural injection $s : R \to \tilde{R}$ defined by

$$T(A) \mapsto \tilde{T}(A, 0), \text{ for } A \in \Delta,$$

is a ring homomorphism.
2.2 The endomorphism θ

Let C_0 be an element of the center of Δ. First, we calculate the products $\tilde{T}(C_0, 0)\tilde{T}(A, a)$ and $\tilde{T}(A, a)\tilde{T}(C_0, 0)$ for each $(A, a) \in \Delta$.

Lemma 2.10. For all $(A, a) \in \Delta$,

$$\tilde{T}(C_0, 0)\tilde{T}(A, a) = \tilde{T}(C_0A, C_0a).$$

Proof. For $(X, x) \in \tilde{\Gamma}$,

$$(C_0, 0)(X, x)(A, a) = (X, 0)(C_0A, C_0a)(E, A^{-1}X^{-1}xA).$$

Hence $\tilde{T}(C_0, 0)\tilde{T}(A, a)\tilde{T} = \tilde{T}(C_0A, C_0a)\tilde{T}$. Thus there exists a positive integer c such that

$$\tilde{T}(C_0, 0)\tilde{T}(A, a) = c\tilde{T}(C_0A, C_0a).$$

Hence we have

$$c = \frac{\deg \tilde{T}(C_0, 0)\deg \tilde{T}(A, a)}{\deg \tilde{T}(C_0A, C_0a)}.$$

By Corollary 2.5, we have $c = 1$, which completes the proof. \hfill \Box

Lemma 2.11. For all $(A, a) \in \Delta$,

$$\tilde{T}(A, a)\tilde{T}(C_0, 0) = \frac{\Gamma^A*(a \mod AM)}{\Gamma^A*(C_0^{-1}aC_0 \mod AM)}\tilde{T}(C_0A, aC_0).$$

Proof. For $(X, x) \in \tilde{\Gamma}$,

$$(X, x)(C_0, 0) = (X, 0)(C_0, 0)(X, C_0^{-1}xC_0).$$

Hence $\tilde{T}(A, a)\tilde{T}(C_0, 0)\tilde{T} = \tilde{T}(C_0A, aC_0)\tilde{T}$. Thus there exists a positive integer c such that

$$\tilde{T}(A, a)\tilde{T}(C_0, 0) = c\tilde{T}(C_0A, aC_0).$$

By Corollary 2.5 we have

$$c = \frac{\Gamma^A*(a \mod AM)}{\Gamma^A*(C_0^{-1}aC_0 \mod AM)},$$

which completes the proof. \hfill \Box

By the lemma 2.10, the left multiplication by $\tilde{T}(C_0, 0)$ gives an injective map from the basis $\{T(\xi)\}_{\xi \in \Gamma \setminus \Delta}^r$ of \tilde{R} to the same set. This implies that $\tilde{T}(C_0, 0)$ is a left nonzero divisor. Thus we can define the following element.

Definition 2.12. The linear endomorphism $\theta = \theta_{C_0}$ of \tilde{R} is defined by the requirement that for each $(A, a) \in \Delta$

$$\tilde{T}(A, a)\tilde{T}(C_0, 0) = \tilde{T}(C_0, 0)\tilde{T}(A, a)\theta.$$
Proposition 2.14. Let ϕ be the canonical map $M \to M$. Put N be a finite subset of Δ. Hence, we can define a map $\theta : \Gamma \times C_0^{-1}aC_0 \to \tilde{T}(A, C_0^{-1}aC_0)$.

Especially, $\xi \phi = \xi$ for each $\xi \in \text{Im}(s)$.

Let X be a subset of $\tilde{\Delta}$ such that $\tilde{T}(X) / \tilde{F}$ is a finite set. Then we define

$$\tilde{T}(X) = \sum_{\tilde{T}(A, a) / \tilde{F}} \tilde{T}(A, a) \cdot$$

And put

$$\tilde{T}(A, N) = \tilde{T}(A \times N),$$
$$\tilde{T}(A, N) = \tilde{T}(\{A\} \times N),$$
$$\tilde{T}(A) = \tilde{T}(A, M),$$

for a finite subset A of Δ, $A \in \Delta$, and a subset N of M. By Proposition 2.12, we can define $\tilde{T}(A, a)$ for $a \in \Gamma^{A} \setminus (\Gamma^{A}N + AM) / AM$ in a natural way. Then, we easily see that $\tilde{T}(A, N) = \sum_{A} \tilde{T}(A, a)$, where a runs through the set

$$\Gamma^{A} \setminus (\Gamma^{A}N + AM) / AM.$$

Proposition 2.13. For all $(A, a) \in \tilde{\Delta},$

$$\tilde{T}(A, a)^{\theta} = \frac{|\Gamma^{A} \times (a \mod AM)|}{|\Gamma^{A} \times (C_0^{-1}aC_0 \mod AM)|} \tilde{T}(A, C_0^{-1}aC_0).$$

Especially, $\xi^{\theta} = \xi$ for each $\xi \in \text{Im}(s)$.

Let X be a subset of $\tilde{\Delta}$ such that $\tilde{T}(X) / \tilde{F}$ is a finite set. Then we define

$$\tilde{T}(X) = \sum_{\tilde{T}(A, a) / \tilde{F}} \tilde{T}(A, a).$$

And put

$$\tilde{T}(A, N) = \tilde{T}(A \times N),$$
$$\tilde{T}(A, N) = \tilde{T}(\{A\} \times N),$$
$$\tilde{T}(A) = \tilde{T}(A, M),$$

for a finite subset A of Δ, $A \in \Delta$, and a subset N of M. By Proposition 2.12, we can define $\tilde{T}(A, a)$ for $a \in \Gamma^{A} \setminus (\Gamma^{A}N + AM) / AM$ in a natural way. Then, we easily see that $\tilde{T}(A, N) = \sum_{A} \tilde{T}(A, a)$, where a runs through the set

$$\Gamma^{A} \setminus (\Gamma^{A}N + AM) / AM.$$

Proposition 2.14. Let N be a subgroup of M such that $\Gamma^{A}N = N$, $N + AM = N$. Put $N' = C_0^{-1}NC_0$. Let N_A and N'_A be the images of N and N' under the canonical map $M \to M / AM$, respectively. Then we have

$$\tilde{T}(A, N)^{\theta} = \frac{|N_A|}{|N'_A|} \tilde{T}(A, N').$$

Proof. Let $f : N \to N'$ be the morphism being $a \mapsto C_0^{-1}aC_0$. Let f_A and f_A be its derived maps $N_A \to N'_A$ and $\Gamma^{A}N_A \to \Gamma^{A}N'_A$, respectively. Let φ be the canonical map $M / AM \to \Gamma^{A}N_A / AM$. Put $\varphi_{N} = \varphi_{N_A}, \varphi_{N'} = \varphi_{N'_A}$. Since N_A and N'_A are Γ^{A}-invariant sets, we have $\varphi^{-1}(a) = \varphi^{-1}_{N}(a)$ and $\varphi^{-1}(b) = \varphi^{-1}_{N'}(b)$ for each $a \in \Gamma^{A}N_A$, $b \in \Gamma^{A}N'_A$. Hence

$$\tilde{T}(A, N)^{\theta} = \sum_{a \in \Gamma^{A}N_A} \frac{|\varphi^{-1}_{N}(a)|}{|\varphi^{-1}_{N}(f_A(a))|} \tilde{T}(A, f_A(a)).$$

Hence

$$\tilde{T}(A, N)^{\theta} = \sum_{b \in \Gamma^{A}N'_A} \sum_{a \in f_A^{-1}(b)} \frac{|\varphi^{-1}_{N}(a)|}{|\varphi^{-1}_{N'}(b)|} \tilde{T}(A, b).$$
Since $\bar{f}_A \circ \varphi_N = \varphi_{N'} \circ f_A$,

$$\bar{T}(A,N)\theta = \sum_{b \in \Gamma \setminus N'_{A'}} |\varphi_{N'_{A'}}^{-1}(b)| \bar{T}(A,b).$$

Since $|\varphi_{N'_{A'}}^{-1}(b)| = |\varphi_{N_{A'}}^{-1}(b)| |\ker f_A| = |\varphi_{N_{A'}}^{-1}(b)| |N_A| / |N'_{A'}|,

$$\bar{T}(A,N)\theta = \frac{|N_A|}{|N'_{A'}|} \sum_{b \in \Gamma \setminus N'_{A'}} \bar{T}(A,b).$$

This completes the proof. \(\square\)

2.3 The projection ϕ

Let C_0 be an element of the center of Δ satisfying the following assumption:

Assumption 2.15. $C_0^{-1}MC_0 \neq M$.

Since the endomorphism of \mathcal{M} being $(a \mapsto C_0^{-1}aC_0)$ is injective, the sequence $\{C_0^{-n}MC_0^n\}$ is a strictly decreasing sequence of sets. Since \mathcal{M}/AM is a finite set, there exists a positive integer m such that $C_0^{-m}MC_0^m \subseteq AM$. Hence the sequence $\{C_0^{-n}MC_0^n \mod AM\}_n$ is stable and its limit is the identity element for each $a \in \mathcal{M}$. Thus, Proposition 2.2 and Corollary 2.13 imply the stability of the sequence $\{\bar{T}(A,a)^{\theta^n}\}$ for each $(A,a) \in \bar{\Delta}$ and that its limit is an element of the image of s.

Definition 2.16. For each $(A,a) \in \bar{\Delta}$, the limit of the sequence $\{\bar{T}(A,a)^{\theta^n}\}$ is denoted by $\bar{T}(A,a)^{\theta^\infty}$, and $\phi : \bar{R} \to R$ is defined by $s^{-1} \circ \theta^\infty$.

Note that both θ^∞ and ϕ are naturally ring homomorphisms.

Proposition 2.17. The morphism ϕ satisfies the following properties:

1. $\phi \circ s = \text{id}_R$.
2. $\phi \circ \theta = \phi$.
3. $\bar{T}(A)^\phi = |\mathcal{M}/AM| \bar{T}(A)$.

Proof. The assertions 1-2 are trivial. We shall prove the last assertion. We see that there exists a positive integer m such that $C_0^{-m}MC_0^m \subseteq AM$. Put $\eta = \theta_{C_0^m}$, then $\bar{T}(A)^{\theta^\infty} = \bar{T}(A)^{\theta^m} = \bar{T}(A)^\eta$. By Proposition 2.14 we have $\bar{T}(A)^\eta = |\mathcal{M}/AM| \bar{T}(A,0)$, which completes the proof. \(\square\)
2.4 Computation of the product $\tilde{T}(A,0)\tilde{T}(B)$

In this subsection, we compute the product $\tilde{T}(A,0)\tilde{T}(B)$ for each $A, B \in \Delta$, in the case where G has an anti-automorphism $(\alpha \mapsto \hat{\alpha})$ preserving $\Gamma\Lambda\Gamma$ for all $A \in \Delta$. Then it is well known that R is commutative. For each $A, B, C \in \Delta$, we put

$$\mathcal{X}(A, B, C) = \{\alpha \in \Gamma \mid \hat{\alpha}^{-1}C \in \Gamma \Lambda C\}.$$

Then, for each system of representatives $\{\alpha_i\}_i$ of $\Gamma \setminus \Gamma\Lambda\Gamma$ in $\Gamma\Lambda\Gamma$, $\{\hat{\alpha}_i\}_i$ is a system of representatives of $\Gamma\Lambda\Gamma/\Gamma$ in $\Gamma\Lambda\Gamma$. Hence we see that, for each $A, B \in \Delta$,

$$T(A)T(B) = \sum_{GCT \in \Gamma\setminus\Gamma\Lambda/G} |\Gamma\setminus\mathcal{X}(A, B, C)|T(C).$$

Similarly, we have the following formula:

Lemma 2.18. For $A, B, C \in \Delta$, and $c \in \mathcal{M}$, we put

$$\mathcal{Y}(A, B, C, c) = \{\alpha \in \mathcal{X}(A, B, C) \mid \hat{\alpha}^{-1}c \in \mathcal{M}\}.$$

Then, for $A, B \in \Delta$, we have

$$\tilde{T}(A,0)\tilde{T}(B) = \sum_{(C,c)} |\Gamma\setminus\mathcal{Y}(A, B, C, c)||\tilde{T}(C,c),$$

where (C, c) runs through a system of representatives of $\tilde{\Gamma}\setminus\tilde{\Gamma}$ in $\tilde{\Delta}$.

Proof. Let $\{\alpha_i\}_i$ be a system of representatives of $\Gamma \setminus \Gamma\Lambda\Gamma$ in $\Gamma\Lambda\Gamma$. Since $AM \supset M\Lambda$, the set $\{(\alpha_i, 0)\}$ is a system of representatives of $\tilde{\Gamma}(A,0)\tilde{\Gamma}/\tilde{\Gamma}$ in $\tilde{\Gamma}(A,0)\tilde{\Gamma}$. Hence, we have

$$\tilde{T}(A,0)\tilde{T}(B) = \sum_{(C,c)} \left\{\left|i \mid (\hat{\alpha}_i^{-1},0)(C,c) \in \cup_{b \in \mathcal{M}}\tilde{T}(B,b)\tilde{T}\right\} \right\} \tilde{T}(C,c)$$

$$= \sum_{(C,c)} \left\{\left|i \mid \hat{\alpha}_i^{-1}C \in \Gamma\Lambda\Gamma, \hat{\alpha}_i^{-1}c \in \mathcal{M}\right\} \right\} \tilde{T}(C,c)$$

$$= \sum_{(C,c)} |\Gamma\setminus\mathcal{Y}(A, B, C, c)||\tilde{T}(C,c).$$

3 Local Hecke rings and local Hecke series associated with algebras

In this section, we recall the definition of the local Hecke rings and the local Hecke series defined in [6] and [7], respectively. Let L be an algebra which is free of rank r as an abelian group, and fix a \mathbb{Z}-basis of L. Then $\text{Aut}_{\mathbb{Q}_p}(L \otimes \mathbb{Q}_p)$ and
The local Hecke ring R_{L_p} associated with L is defined by the Hecke ring with respect to the pair $(\Gamma_{L_p}, \Delta_{L_p})$.

Next, the local Hecke series $P_{L_p}(X)$ defined in [7] are recalled by using notation of Section 2. Set $T_{L_p} = T_{\Gamma_{L_p}, \Delta_{L_p}}$. For each nonnegative integer k, define an element $T_{L_p}(p^k)$ of R_{L_p} by

$$ T_{L_p}(p^k) = \sum_{\alpha} T_{L_p}(\alpha), $$

where α runs through a system of representatives of $\Gamma_{L_p} \setminus \Delta_{L_p} / \Gamma_{L_p}$ and satisfies $|L_p/L_p^\alpha| = p^k$. The local Hecke series $P_{L_p}(X)$ associated with L is defined to be the generating function of $\{T_{L_p}(p^k)\}_k$, that is,

$$ P_{L_p}(X) = \sum_{k \geq 0} T_{L_p}(p^k)X^k \in R_{L_p}[[X]]. $$

Example 3.1.

1. If L is the ring \mathbb{Z}^r of the direct sum of r-copies of \mathbb{Z} for some positive integer r, then $\Gamma_{L_p} = GL_r(\mathbb{Z}_p)$ and $\Delta_{L_p} = M_r(\mathbb{Z}_p) \cap GL_r(\mathbb{Q}_p)$. The ring structure of R_{L_p} and the rationality of $P_{L_p}(X)$ were shown by [4, Hecke] and [10, Tamagawa].

2. If L is the Heisenberg Lie algebra of dimension 3, R_{L_p} and $P_{L_p}(X)$ are treated in our previous paper [5]. $P_{L_p}(X)$ is slightly different from $D_{2,2}(X)$ defined in [5]. For the details, see Remark 4.1.

4 The local Hecke rings associated with the Heisenberg Lie algebras

Let n be a positive integer. The Heisenberg Lie algebra of dimension $2n + 1$ over \mathbb{Z}, denoted by $H^{(n)}$, is the Lie algebra of square matrices of size $n + 2$ with entries in \mathbb{Z} of the form

$$ \begin{pmatrix} 0 & a & c \\ 0 & O_n & b \\ 0 & 0 & 0 \end{pmatrix}, $$

where a is a row vector of length n, b is a column vector of length n, and O_n is the zero matrix of size n. We study the local Hecke ring and the local Hecke
series associated with $\mathcal{H}^{(n)}$. Put $L = \mathcal{H}^{(n)}$. By choosing the standard basis of L, one can identify G_{L_p} with the group of matrices of the form

$$\begin{pmatrix} A & a \\ 0_{2n} & \mu(A) \end{pmatrix},$$

where $A \in GSp_{2n}(\mathbb{Q}_p)$, $\mu(A)$ is the multiplier of A, a is a column vector of length $2n$, and 0_{2n} is the zero row vector of length $2n$. It is easy to see that $\Delta_{L_p} = GL_p \cap M_{2n+1}(\mathbb{Z}_p)$ and $\Gamma_{L_p} = GL_p \cap GL_{2n+1}(\mathbb{Z}_p)$.

Put $G = GSp_{2n}(\mathbb{Q}_p)$, $\Delta = G \cap M_{2n}(\mathbb{Z}_p)$, $\Gamma = GSp_{2n}(\mathbb{Z}_p)$, and let \mathcal{M} be the set of column vectors of length $2n$ with entries in \mathbb{Z}_p. Then Δ acts on \mathcal{M} on the left naturally, and does on the right as follows: $aA = \mu(A)a$ for each $a \in \mathcal{M}$, $A \in \Delta$. Hence \mathcal{M} is a both sides Δ-module. Note that $X * a = \mu(X)^{-1}Xa$ for each $A \in \Delta$, $X \in \Gamma^A$, $a \in \mathcal{M}$. Let us put $\tilde{\Delta} = \tilde{\Delta}(\Delta, \mathcal{M})$, $\tilde{\Gamma} = \tilde{\Gamma}(\Gamma, \mathcal{M})$. It is well known that (Γ, Δ) is double finite (cf. [9]). Thus, Corollary 4.1 implies that $(\tilde{\Gamma}, \tilde{\Delta})$ is also double finite. We put $R = R(\Gamma, \Delta)$, $T = T_{\Gamma, \Delta}$, $\tilde{R} = \tilde{R}(\Gamma, \Delta)$ and $\tilde{T} = T_{\tilde{\Gamma}, \tilde{\Delta}}$. Then it is easy to see that Δ_{L_p} is isomorphic to $\tilde{\Delta}$ by the map

$$\begin{pmatrix} A & a \\ 0_n & \mu(A) \end{pmatrix} \mapsto (A, a),$$

and that the isomorphism derives the isomorphism from R_{L_p} onto \tilde{R}. Let us indentity R_{L_p} with \tilde{R}. Then

$$T_{L_p} \begin{pmatrix} A & a \\ 0_n & \mu(A) \end{pmatrix} = \tilde{T}(A, a).$$

Let k be a nonnegative integer. We denote by $T(p^k)$ the sum of all the elements of the form $T(\Gamma \Delta)$ with $\Gamma \Delta \in \Gamma \setminus \Delta / \Gamma$ and $v_p(\mu(A)) = k$, and by $\tilde{T}(p^k)$ the sum of all the elements of the form $\tilde{T}(\tilde{\Gamma} \tilde{\Delta})$ with $\tilde{\Gamma}(A, a) \tilde{\Gamma} \in \tilde{\Gamma} \setminus \tilde{\Delta} / \tilde{\Gamma}$ and $v_p(\mu(A)) = k$. The Hecke series $P_n(X)$ associated with GSp_{2n} is defined by

$$P_n(X) = \sum_{k \geq 0} T(p^k) X^k.$$

In addition, let us define the formal power series $\tilde{P}_n(X)$ with coefficients in \tilde{R} by

$$\tilde{P}_n(X) = \sum_{k \geq 0} \tilde{T}(p^k) X^k.$$

Note that $\tilde{T}(p^k) = T_{L_p}(p^{(n+1)k})$ for all nonnegative integer k, and $\tilde{P}_n(X^{n+1}) = P_{\tilde{R}_p}(X)$.

Remark 4.1. $D_{2,2}(X)$ in our previous paper [9] coincides with $\tilde{P}_1(X)$. Thus $P_{\tilde{R}^{(1)}_p}(X) = D_{2,2}(X^2)$.

12
Put $C_0 = pE$. Then, the tuple $(G, \Delta, \Gamma, \mathcal{M}, C_0)$ satisfies Assumptions 2.1 and 2.15. Hence, the ring homomorphisms, $s = s_n: R \rightarrow \tilde{R}$, $\theta = \theta_n: \tilde{R} \rightarrow \tilde{R}$, and $\phi = \phi_n: \tilde{R} \rightarrow R$. are constructed. Set $(p) = T(pE), (p^2) = T(p^2E)$. Note that for each $(A, a) \in \Delta$, we have

$$\langle p \rangle s_{\tilde{T}}((A, a)) = \tilde{T}(pA, pa),$$

and

$$\tilde{T}(A, a)^\theta = \frac{[\Gamma^A * (a \mod AM)]}{[\Gamma^A * (pa \mod AM)]} \tilde{T}(A, pa).$$

By Proposition 2.17, we have the following properties:

Proposition 4.2. The three ring homomorphisms ϕ, s and θ satisfy the following properties:

1. $\phi \circ s = id_R$.
2. $\phi \circ \theta = \phi$.
3. $\tilde{T}(A)^\phi = p^{v_p(\mu(A))}T(A)$.

Proof. We need only prove the last identity, which is an immediate consequence of the facts $\frac{|\mathcal{M}/AM|}{|\det A|} = p^{v_p(\mu(A))}$ and $(\det A)^2 = \mu(A)^2$.

Corollary 4.3. $\tilde{T}(p^k)^\phi = p^{nk}T(p^k)$ for each nonnegative integer k.

Corollary 4.4. $\tilde{P}_n^2(X) = P_n(p^nX)$.

Proof. They are straightforward consequences of Property 3.

Next we show the non-commutativity of the coefficients of $\tilde{P}_n(X)$. For every positive integer m, we denote by Δ_{p^m}, the set of elements (A, a) of Δ such that $v_p(\mu(A)) = m$. To prove this, we need the following lemma.

Lemma 4.5. For positive integers k, l with $k < l$. Let c_2 be an element of $\mathbb{Z}_{l}^n - p\mathbb{Z}_{p^{l}}^n$, and put

$$C = \begin{pmatrix} \begin{array}{cc} p^kE & O \\ O & p^lE \end{array} \end{pmatrix} \in \tilde{\Delta}, \quad c = \begin{pmatrix} 0 \\ c_2 \end{pmatrix} \in \mathbb{Z}_{p^{2n}}^n,$$

where E and O are respectively the identity matrix and the zero matrix of size n. Then we have:

$$\tilde{\Delta}_{p^k} \cdot \tilde{\Delta}_{p^l} \ni (C, c), \quad \tilde{\Delta}_{p^l} \cdot \tilde{\Delta}_{p^k} \not\ni (C, c).$$
Proof. Since
\[
\left(\left(\begin{array}{cc} p \ E & O \\ O & E \end{array} \right), 0 \right) \in \tilde{\Delta}_{p^k}, \left(\left(\begin{array}{cc} E & O \\ O & p^l \end{array} \right), \left(\begin{array}{c} 0 \\ c_2 \end{array} \right) \right) \in \tilde{\Delta}_{p^l},
\]
we have \(\tilde{\Delta}_{p^k} \cdot \tilde{\Delta}_{p^l} \ni (C, c) \).

Let \((A, a)\) and \((B, b)\) be elements of \(\tilde{\Delta}_{p^l}\) and \(\tilde{\Delta}_{p^k}\), respectively. And assume \(AB = C\). The second component of \((A, a) (B, b)\) is contained in \(A b + p^k \mathbb{Z}_{p^2}^2\).

Since \(A = C B^{-1}\) and \(p^k B^{-1} \in \tilde{\Delta}\), we have \(A \mathbb{Z}_{p^2}^2 \subset \left(\mathbb{Z}_{p}^n / p^{l-k} \mathbb{Z}_{p}^n \right)\). Hence \(A b + p^k \mathbb{Z}_{p^2}^2\) is contained in \(\left(\mathbb{Z}_{p}^n / p^{l-k} \mathbb{Z}_{p}^n \right)\). Therefore, \(\tilde{\Delta}_{p^l} \cdot \tilde{\Delta}_{p^k} \not\ni (C, c)\).

Now we prove the non-commutativity.

Theorem 4.6. Notations being as the above lemma, \(\tilde{T}(p^k)\) and \(\tilde{T}(p^l)\) are not commutative to each other.

Proof. By the above lemma, the coefficients of \(\tilde{T}(C, c)\) in \(\tilde{T}(p^k) \tilde{T}(p^l)\) and \(\tilde{T}(p^l) \tilde{T}(p^k)\) are respectively not zero and zero, respectively. \(\square\)

To state the identity for \(\hat{P}_n(X)\), we recall the rationality theorem associated with \(GSp_{2n}\).

Theorem 4.7 (Rationality Theorem, [1], [4], [8]). \(P_n(X)\) is rational, namely there exist elements \(q_1, ..., q_{2^n}\) of \(R\) and \(g(X) \in R[X]\) such that
\[
\sum_{i \geq 0} q_i X^i P_n(X) = g(X), \quad (8)
\]
where \(q_0 = 1\). Especially,

1. If \(n = 1\) then \(q_1 = -T(\text{diag}(1, p))\), \(q_2 = p\langle p \rangle\), \(g(X) = 1\).
2. If \(n = 2\) then

 \[
 \begin{align*}
 q_1 &= -T(\text{diag}(1, 1, p, p)), \\
 q_2 &= p T(\text{diag}(1, p, p^2, p)) + p(p^2 + 1) \langle p \rangle, \\
 q_3 &= -p^3 \langle p \rangle T(\text{diag}(1, 1, p, p)), \\
 q_4 &= p^6 \langle p^2 \rangle, \\
 g(X) &= 1 - p^2 \langle p \rangle X^2.
 \end{align*}
 \]

Where, \(\langle p \rangle = T(pE)\) and \(\langle p^2 \rangle = T(p^2 E)\).

Note that the sequence \(\{q_i\}\) and \(g(X)\) depend on \(n\). Our previous paper [5] shows the following theorem:
Theorem 4.8 ([5 Theorem 7.8]). Let us keep the notations of Theorem 4.7. If \(n = 1 \) then \(\tilde{P}_1(X) \) satisfies the following identity.

\[
\tilde{P}_1^{d_2}(X) - q_1^s Y \tilde{P}_1^d(X) + q_2^s Y^2 \tilde{P}_1(X) = 1,
\]

where \(Y = pX \).

We note that it derives the rationality of \(P_1(X) \) using Corollary 4.4. Moreover, the above identity is a solution of the following problem in the case where \(n = 1 \).

Problem 4.9. Let us keep the notations of Theorem 4.7. Does \(\tilde{P}_n(X) \) satisfy the following formula for each \(n \)?

\[
2^n \sum_{k=0}^{2^n} q_k^s Y^k \tilde{T}^{p^\Theta_{n-k}}(X) = g^s(Y), \tag{9}
\]

where \(Y = p^n X \).

Remark that, for each \(n \), this identity implies the rationality of \(P_n(X) \) via the morphism \(\phi_n \). In the present paper, we solve our problem for the case \(n = 2 \).

Proposition 4.10. Equality (9) is true modulo \(X^{2^n} \).

Proof. Let \(h(X) = \sum_{k=0}^{\infty} a_k X^k \) be the left hand side of (9). Then, for each \(k \leq 2^n \), \(a_k \) is a linear combination of elements of \(\{ \tilde{T}^i(p^j)_{i,j} \} \) with coefficients in the image of \(s \). Hence for each \(k \leq 2^n \), \(a_k \) is an element of the image \(s \). The proposition follows from the injectivity of \(s \) and the Theorem 4.7. \(\square \)

Thus we are reduce to proving the following problem.

Problem 4.11. Put \(N = 2^n \). For all \(k \geq 0 \), Is the following identity true?

\[
\sum_{i=0}^{N} p^n(N-i) q_{N-i} \tilde{T}(p^k+i)^{\Theta_i} = 0.
\]

In the rest of this section, we give a formula of the product \(\tilde{T}(A,0)\tilde{T}(p^k) \) using Lemma 2.18. Define \(\tilde{A} = \mu(A)A^{-1} \) for each \(A \in G \). Then the anti-automorphism \((A \mapsto \tilde{A}) \) satisfies the condition in Subsection 2.4. Since

\[
\mathcal{X}(A,B,C) = \{ \alpha \in \Gamma A \Gamma \mid \alpha C \in \mu(A) \Gamma B \Gamma \}, \quad \mathcal{Y}(A,B,C,c) = \{ \alpha \in \mathcal{X}(A,B,C) \mid \alpha c \in \mu(A) \mathcal{M} \},
\]

for all \(A, B, C \in \Delta, c \in \mathcal{M} \), we have:
Lemma 4.12. For each $A, C \in \Delta, c \in \mathcal{M}$, put

\begin{align*}
\mathcal{X}(A, C) &= \{ \alpha \in \Gamma A | \alpha C \in \mu(A) \Delta \}, \\
\mathcal{Y}(A, C, c) &= \{ \alpha \in \mathcal{X}(A, C) | \alpha c \in \mu(A) \mathcal{M} \}.
\end{align*}

Then, for each $A \in \Delta$,

\[\tilde{T}(A, 0) \tilde{T}(p^k) = \sum \left| \Gamma \setminus \mathcal{Y}(A, C, c) \right| \tilde{T}(C, c), \]

where (C, c) runs through a system of representatives of $\tilde{\Gamma} \setminus \tilde{\Delta} / \tilde{\Gamma}$ and satisfies $v_p(\mu(A^{-1}C)) = k$.

5 The local Hecke series associated with the Heisenberg Lie algebra of dimension 5

In this section, we shall prove our main theorem. Let us keep the notation of Section 4 and suppose $n = 2$. First we introduce some notation.

\[e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \]

\[P_1 = \text{diag}(1, 1, p, 1), \]
\[P_3 = \text{diag}(1, p, p, p), \]
\[A = \text{diag}(1, 1, p, p), \]
\[B = P_1 P_3 = \text{diag}(1, p, p^2, p), \]

\[\Gamma^A = \Gamma \cap A \Gamma A^{-1} = \left\{ \begin{pmatrix} * & * & * & * \\ * & * & * & * \\ p^* & p^* & * & * \\ p^* & p^* & p^* & * \end{pmatrix} \right\} \cap \Gamma, \]

\[\Gamma' = \Gamma^{P_1} = \Gamma^{P_3} = \left\{ \begin{pmatrix} * & * & * & * \\ p^* & * & * & * \\ p^* & p^* & * & * \\ p^* & p^* & p^* & * \end{pmatrix} \right\} \cap \Gamma. \]

Next, we provide a lemma.
Lemma 5.1. The following identities hold.

\[\Gamma' e_3 = Z_p^4 - P_1 Z_p^4, \]
\[\Gamma' e_2 = P_1 Z_p^4 - P_3 Z_p^4, \]
\[\Gamma' e_1 = P_3 Z_p^4 - p Z_p^4, \]
\[\Gamma^A e_3 = Z_p^4 - A Z_p^4, \]
\[\Gamma^A e_1 = A Z_p^4 - p Z_p^4. \]

Proof. It is essential to prove that the left-hand-side contains the right-hand-side for each identity. Put

\[P(x, y, z) = \begin{pmatrix} 1 & -z & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}, \]
\[Q(x, y) = \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & y & 1 \end{pmatrix}. \]

for each \(x, y, z \in \mathbb{Z}_p \). Clearly, they are elements of \(\Gamma \). Let

\[a = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]

be an element of \(\mathbb{Z}_p^4 \).

(10). For \(a \in \mathbb{Z}_p^4 - P_1 Z_p^4 \), we show \(\Gamma' a = \Gamma' e_3 \). We are reduced to the case where \(c = 1 \). Then

\[a = P(a, b, d) e_3. \]

(11). We assume \(a \in P_1 Z_p^4 - P_3 Z_p^4 \). For \(X \in SL_2(\mathbb{Z}_p) \),

\[T_{2,3} \begin{pmatrix} E & O \\ O & X \end{pmatrix} T_{2,3} \]

is an element of \(\Gamma' \), where \(T_{2,3} \) is the permutation matrix corresponding to \((2 \ 3) \in S_4 \). Hence we are reduced to the case where \(b = 1 \) and \(d = 0 \). Then

\[a = Q(a, c) e_2. \]

(12). For \(a \in P_3 Z_p^4 - p Z_p^4 \), we show \(\Gamma' a = \Gamma' e_1 \). We are reduced to the case where \(a = 1 \). Then

\[a = \begin{pmatrix} P(c, d, -b) \end{pmatrix} e_1. \]

(13). For \(a \in Z_p^4 - A Z_p^4 \), we show \(\Gamma^A a = \Gamma^A e_3 \). Since

\[\begin{pmatrix} X & O \\ O & i X^{-1} \end{pmatrix} \in \Gamma^A \]

for each \(X \in GL_2(\mathbb{Z}_p) \), we may assume that \(c = 1, d = 0 \). Then

\[a = P(a, b, 0) e_3. \]
For $a \in A\mathbb{Z}_p^4 - p\mathbb{Z}_p^4$, we show $\Gamma^A a = \Gamma^A e_1$. We may assume that $a = 1, b = 0$ for the same reason. Then
\[
a = ^tP(c,d,0)e_1.
\]
This completes the proof.

Corollary 5.2. The following identities hold.
\[
\mathbb{Z}_p^4 = \Gamma e_3 \cup \Gamma e_2 \cup \Gamma e_1 \cup p\mathbb{Z}_p^4 \quad \text{(disjoint)}.
\]
\[
\mathbb{Z}_p^4 = \Gamma^A e_3 \cup \Gamma^A e_1 \cup p\mathbb{Z}_p^4 \quad \text{(disjoint)}.
\]

Proof. Clear.

Next we give systems of representatives of $\Gamma \setminus \Gamma A \Gamma$ in $\Gamma A \Gamma$ and $\Gamma \setminus \Gamma B \Gamma$ in $\Gamma B \Gamma$, respectively. It is an immediate consequence of [2, Proposition 3.35] and the following lemmas. The details are left to the reader. We denote the matrix $\text{diag}(p^\alpha, p^\beta, p^{k-\alpha}, p^{k-\beta})$ by $C(\alpha, \beta, k)$ for nonnegative integers k, α, β, with $0 \leq \alpha \leq \beta \leq k - \beta$.

Lemma 5.3 ([3, Chapter 6, Lemma 5.2]). Let M be an element of Δ with $v_p(\mu(M)) = 2$. $M \in \Gamma B \Gamma$ if and only if $rk_p(M) = 1$, where $rk_p(M)$ means the rank M over \mathbb{F}_p.

Proof. It is a straightforward application of the “symplectic divisors theorem”. (cf. [2, Theorem 3.28]).

Lemma 5.4. For $D \in GL_n(\mathbb{Z}_p)$, we define the set $B(D)$ by
\[
B(D) = \{ B \in M_n(\mathbb{Z}_p) \mid ^tDB \text{ is symmetric} \}.
\]
Then $B(DD') = B(D)D'$ for each $D' \in GL_n(\mathbb{Z}_p)$.

Proof. Obvious.
Proposition 5.5. We put

\[
A_1 = \begin{pmatrix}
p & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix},
\]

\[
A_2(d, x) = \begin{pmatrix}
p & 0 & 0 & 0 \\
-x & 1 & 0 & d \\
0 & 0 & 1 & x \\
0 & 0 & 0 & p
\end{pmatrix} \text{ with } 0 \leq d, x < p,
\]

\[
A_3 \begin{pmatrix} a \\ b \\ d \end{pmatrix} = \begin{pmatrix}
1 & 0 & a & b \\
0 & 1 & b & d \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{pmatrix} \text{ with } 0 \leq a, b, d < p,
\]

\[
A_4(d) = \begin{pmatrix}
1 & 0 & d & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \text{ with } 0 \leq d < p.
\]

Then the set of these matrices is a system of representatives of \(\Gamma \backslash \Gamma \Lambda \Gamma\) in \(\Gamma \Lambda \Gamma\).

Corollary 5.6. Let \(\alpha, \beta, k\) be nonnegative integers with \(0 \leq \alpha \leq \beta \leq k - \beta\) and \(k > 0\), then the set of the following matrices is a system of representatives of \(\Gamma \backslash \mathcal{X}(A, C(\alpha, \beta, k))\) in each case.

1. If \(\alpha = 0, \beta = 0\),

\[A_1.\]

2. If \(\alpha = 0, \beta \geq 1\),

\[A_1, \quad A_2(d, 0) \quad (0 \leq d < p).\]

3. If \(\alpha \geq 1\), all matrices in Lemma 5.5.

Proof. Clear.
Proposition 5.7. We put

\[B_1(x) = \begin{pmatrix} p^2 & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & p \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -x & 1 & 0 & 0 \\ 0 & 0 & 1 & x \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ with } 0 \leq x < p, \]

\[B_2 = \begin{pmatrix} p & 0 & 0 & 0 \\ 0 & p^2 & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \]

\[B_3 \begin{pmatrix} a & b \\ b & d \end{pmatrix} = \begin{pmatrix} p & 0 & a & b \\ 0 & p & b & d \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix} \text{ with } 0 \leq a, b, d < p, \; \text{rk}_p \begin{pmatrix} a & b \\ b & d \end{pmatrix} = 1, \]

\[B_4(b, d, x) = \begin{pmatrix} p & 0 & 0 & pb \\ 0 & 1 & b & d \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p^2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -x & 1 & 0 & 0 \\ 0 & 0 & 1 & x \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ with } 0 \leq d < p^2, \; 0 \leq b, x < p, \]

\[B_5(a, b) = \begin{pmatrix} 1 & 0 & a & b \\ 0 & p & pb & 0 \\ 0 & 0 & p^2 & 0 \\ 0 & 0 & 0 & p \end{pmatrix} \text{ with } 0 \leq a < p^2, \; 0 \leq b < p. \]

Then the set of these matrices is a system of representatives of \(\Gamma \bs \Gamma B \Gamma \) in \(\Gamma B \Gamma \).

Corollary 5.8. Let \(\alpha, \beta, k \) be nonnegative integers with \(\alpha \leq \beta \leq k - \beta \) and \(k \geq 3 \), then the set of the following matrices is a system of representatives of \(\Gamma \bs \mathcal{X}(B, C(\alpha, \beta, k)) \).

1. If \(\alpha = 0, \beta = 0 \),
 \[\emptyset. \]
2. If \(\alpha = 0, \beta \geq 1 \),
 \[B_1(0). \]
3. If \(\alpha = 1, \beta = 1 \),
 \[B_1(x) \quad (0 \leq x < p); \quad B_2; \quad B_3 \begin{pmatrix} a & b \\ b & d \end{pmatrix} \quad (0 \leq a, b, d < p, \; \text{rk}_p \begin{pmatrix} a & b \\ b & d \end{pmatrix} = 1). \]
4. If $\alpha = 1, \beta \geq 2,$
\[B_1(x) \quad (0 \leq x < p), \]
\[B_2, \]
\[B_3 \begin{pmatrix} a & b \\ b & d \end{pmatrix} \quad (0 \leq a, b, d < p, \; \text{rk}_p \begin{pmatrix} a & b \\ b & d \end{pmatrix} = 1), \]
\[B_4(b, d, 0) \quad (0 \leq d < p^2, \; 0 \leq b < p). \]

5. If $\alpha \geq 2,$ all matrices in Lemma 5.7.

Proof. Obvious.

Next we calculate $\tilde{T}(A, 0) \tilde{T}(p^{k+1})^\theta$ and $\tilde{T}(B, 0) \tilde{T}(p^{k+2})^\theta$. Let us introduce some notation. Put
\[C_k = \{ C(\alpha, \beta, k) | 0 \leq \alpha \leq \beta \leq k - \beta \}, \; C_k^0 = \{ C(0, \beta, k) | 1 \leq \beta \leq k - \beta \}. \]

For each $D \in \Delta$ and each finite subset C of Δ, we put
\[S_D(C) = \sum_{C \in C} \sum_{a | \Gamma \setminus \mathcal{Y}(D, C, a)} \tilde{T}(C, a), \]
where a runs through a system of representatives of $\Gamma^C \setminus \mathbb{Z}_p^4/C\mathbb{Z}_p^4$ for each C.

The following lemmas are useful.

Lemma 5.9. Let \mathcal{N} and \mathcal{N}' be two subsets of \mathbb{Z}_p^4, and let $C \in \Delta$. If $\Gamma^C \mathcal{N} + C\mathbb{Z}_p^4$ and $\Gamma^C \mathcal{N}' + C\mathbb{Z}_p^4$ are disjoint, then
\[\tilde{T}(C, \mathcal{N} \cup \mathcal{N}') = \tilde{T}(C, \mathcal{N}) + \tilde{T}(C, \mathcal{N}'). \]

Especially, if \mathcal{N} is a subset of $p\mathbb{Z}_p^4$, \mathcal{N}' is a subset of $\mathbb{Z}_p^4 - p\mathbb{Z}_p^4$, and $C \in p\Delta$, then the above formula holds.

Proof. Clear.

Lemma 5.10. For each $k \geq 0$, the following identities hold:
\[
\begin{align*}
\tilde{T}(pC_k, \mathbb{Z}_p^4)^\theta & = p^4(p)^\theta \tilde{T}(p^k), \quad (15) \\
\tilde{T}(pA^{k+2}, p\mathbb{Z}_p^4)^\theta & = p^2\tilde{T}(pA^{k+2}, p\mathbb{Z}_p^4)^\theta, \quad (16) \\
\tilde{T}(C_{k+4}^0, p\mathbb{Z}_p^4)^\theta & = p^3\tilde{T}(C_{k+4}^0, B\mathbb{Z}_p^4), \quad (17) \\
\tilde{T}(pC_{k+2}^0, p\mathbb{Z}_p^4)^\theta & = p^4(p)^\theta \tilde{T}(C_{k+4}^0, p\mathbb{Z}_p^4), \quad (18) \\
\tilde{T}(p^{k+2})^\theta & = p^2\tilde{T}(A^{k+2}, p\mathbb{Z}_p^4) + p^3\tilde{T}(C_{k+2}^0, p\mathbb{Z}_p^4) + p^4\tilde{T}(pC_k, p\mathbb{Z}_p^4). \quad (19)
\end{align*}
\]
Proof. They are immediate consequences of Proposition 2.2, Proposition 2.14, and the facts that $\Gamma^A \subset \Gamma^A_l$ for each $l \geq 1$ and that $\Gamma^C_1 \subset \Gamma^C_1$ for each $C \in C_l^0$ with $l \geq 2$.

Proposition 5.11. For each nonnegative integer k, $\bar{T}(A, 0) \bar{T}(p^{k+1})$ equals

$$\bar{T}(C^0_{k+2}; P_1 Z_4^p)^{\theta} + p^4 (1 + p)(p^1) \bar{T}(p^k) + p^3 (p^1) \bar{T}(p^k)^{\theta} + \frac{1}{p^2} \bar{T}(p^{k+2})^{g2}.$$

Proof. By Lemma 4.12

$$\bar{T}(A, 0) \bar{T}(p^{k+1}) = S_A(\{A^{k+2}\}) + S_A(C^0_{k+2}) + S_A(pC_k).$$

Let us put

$$X(\alpha, \beta) = X(A, C(\alpha, \beta, k + 2)),$$

and

$$Y(\alpha, \beta, a) = Y(A, C(\alpha, \beta, k + 2), a).$$

We shall calculate $|\Gamma \setminus Y(\alpha, \beta, a)|$. Notice that, for all $b \in Z_4^p$,

$$Y(\alpha, \beta, a) = Y(\alpha, \beta, a + pb).$$

The calculation will be divided into three cases.

1. If $\alpha = 0, \beta = 0$, then Corollary 5.6 implies $X(\alpha, \beta) = \Gamma A_1$. Hence it is easy to see that

$$\begin{cases}
|\Gamma \setminus Y(\alpha, \beta, a)| = 1, & \text{if } a \in A Z_4^p, \\
|\Gamma \setminus Y(\alpha, \beta, a)| = 0, & \text{otherwise}.
\end{cases}$$

Hence it is easy to see that

$$S_A(\{A^{k+2}\}) = \bar{T}(A^{k+2}, AZ_4^p).$$

By Proposition 2.2 we have

$$\bar{T}(A^{k+2}, AZ_4^p) = \bar{T}(A^{k+2}, pZ_4^p).$$

Hence, we have

$$S_A(\{A^{k+2}\}) = \bar{T}(A^{k+2}, pZ_4^p).$$

2. If $\alpha = 0, \beta \geq 1$, then

$$X(\alpha, \beta) = \left\{ \begin{pmatrix} p^1 * * * \\ p^1 * * * \\ p^1 * * * \\ p^1 * * * \end{pmatrix} \right\} \cap \Gamma A_1.$$
which is a right Γ' invariant set. Hence for all $Y \in \Gamma'$,
\[Y'(\alpha, \beta, a) Y = Y'(\alpha, \beta, Y^{-1}a). \]

Thus, for all $Y \in \Gamma'$,
\[|\Gamma \setminus Y'(\alpha, \beta, a)| = |\Gamma \setminus Y'(\alpha, \beta, a)|. \]

By Corollary 5.2, we are reduced to the case where $a \in \{e_3, e_2, e_1, 0\}$. By Corollary 5.6 it is easy to see
\[|\Gamma \setminus Y'(\alpha, \beta, e_3)| = 0, \quad |\Gamma \setminus Y'(\alpha, \beta, e_2)| = 1, \]
\[|\Gamma \setminus Y'(\alpha, \beta, e_1)| = 1 + p, \quad |\Gamma \setminus Y'(\alpha, \beta, 0)| = 1 + p. \]

Thus, we have
\[S_A(C_{k+2}^0) = \tilde{T}(C_{k+2}^0, \Gamma^e \cup \Gamma^e \cup p\mathbb{Z}_p^4) + p\tilde{T}(C_{k+2}^0, \Gamma^e \cup p\mathbb{Z}_p^4) \]
\[= \tilde{T}(C_{k+2}^0, P_3^4) + p\tilde{T}(C_{k+2}^0, P_3^4). \]

By Proposition 2.2 we have
\[\tilde{T}(C_{k+2}^0, P_3^4) = \tilde{T}(C_{k+2}^0, P_3^4). \]

Hence, we have
\[S_A(C_{k+2}^0) = \tilde{T}(C_{k+2}^0, P_3^4) + p\tilde{T}(C_{k+2}^0, P_3^4). \]

(21)

3. If $\alpha \geq 1$, then $X'(\alpha, \beta) = \Gamma A \Gamma$ is naturally a right Γ invariant set. Since
\[|\Gamma \setminus Y(\alpha, \beta, e_1)| = 1 + p, \quad |\Gamma \setminus Y(\alpha, \beta, 0)| = 1 + p + p^2 + p^3, \]
we have
\[S_A(pC_k) = (1 + p)\tilde{T}(pC_k, P_3^4) + (p^3 + p^2)\tilde{T}(pC_k, p\mathbb{Z}_p^4). \]

By (19) of Lemma 5.10
\[S_A(pC_k) = p^4(1 + p)(p)^\theta \tilde{T}(pC_k, P_3^4) + p^3(p)^\theta \tilde{T}(pC_k, p\mathbb{Z}_p^4). \]

(22)

Equality (19) of Lemma 5.10 and (20) − (22) imply the desired identity.

\[\square \]

Proposition 5.12. For each nonnegative integer k,
\[\tilde{T}(B, 0) \tilde{T}(p^{k+2}) = \tilde{T}(C_{k+4}^0, B\mathbb{Z}_p^4) + \tilde{T}(pC_{k+2}^0, P_3^4) \]
\[+ p^8(p^2)^\theta \tilde{T}(p^k) + p^7(p^3)^\theta \tilde{T}(p^k) \]
\[+ (p^2 + p - 1)(p)^\theta \tilde{T}(p^{k+2}) \]
\[+ (p)^3 \tilde{T}(p^{k+2})^\theta. \]
Proof. By Lemma 4.12, we have
\[
\hat{T} (B, 0) \hat{T} (p^{k+2}) = S_B (C_{k+4}^0) + S_B (\{pA^{k+2}\}) + S_B (pC_{k+2}^0) + S_B (p^2C_k).
\]
Note that \(S_B (\{A^{k+4}\}) = 0 \), by corollary 5.8. Let us put
\[
\mathcal{X}(\alpha, \beta) = \mathcal{X} (B, C(\alpha, \beta, k + 4)),
\]
and
\[
\mathcal{Y} (\alpha, \beta, a) = \mathcal{Y} (B, C(\alpha, \beta, k + 4), a).
\]
We shall calculate \(|\Gamma \\mathcal{Y}(\alpha, \beta, a)|\). Notice that, for all \(b \in \mathbb{Z}_p^4 \),
\[
\mathcal{Y} (\alpha, \beta, a) = \mathcal{Y} (\alpha, \beta, a + p^2b).
\]
The calculation will be divided into four cases.

1. If \(\alpha = 0, \beta \geq 1 \), then \(\mathcal{X}(\alpha, \beta) = \Gamma B_1(0) \). Hence it is easy to see that
\[
S_B (C_{k+4}^0) = \hat{T} (C_{k+4}^0, B\mathbb{Z}_p^4).
\] (23)

2. If \(\alpha = 1, \beta = 1 \), then
\[
\mathcal{X}(\alpha, \beta) = \left\{ \begin{pmatrix} p^* & p^* & * & * \\ p^* & p^* & * & * \\ p^* & p^* & * & * \\ p^* & p^* & * & * \end{pmatrix} \right\} \cap \Gamma B\Gamma.
\]
Hence \(\mathcal{X}(\alpha, \beta) \) is right \(\Gamma^A \) invariant. By Corollary 5.2, we are reduced to the case where \(a \in \{ e_3, e_1, pe_3, pe_1, 0 \} \). By cor 5.8 we have
\[
|\Gamma \\mathcal{Y}(\alpha, \beta, e_3)| = 0,
|\Gamma \\mathcal{Y}(\alpha, \beta, e_1)| = 1,
|\Gamma \\mathcal{Y}(\alpha, \beta, pe_3)| = p,
|\Gamma \\mathcal{Y}(\alpha, \beta, pe_1)| = p + p^2,
|\Gamma \\mathcal{Y}(\alpha, \beta, 0)| = p + p^2.
\]

By Lemma 5.1, \(S_B (\{pA^{k+2}\}) \) equals
\[
\hat{T} (pA^{k+2}, AZ_p^4 - p\mathbb{Z}_p^4) + p\hat{T} (pA^{k+2}, p\mathbb{Z}_p^4) + p^2\hat{T} (pA^{k+2}, pA\mathbb{Z}_p^4).
\]
By Lemma 5.9 we have
\[
\hat{T} (pA^{k+2}, AZ_p^4 - p\mathbb{Z}_p^4) = \hat{T} (pA^{k+2}, AZ_p^4) - \hat{T} (pA^{k+2}, p\mathbb{Z}_p^4).
\]
By (16) of Lemma 5.10 we have
\[
S_B (\{pA^{k+2}\})^\theta = (p^2 + p - 1)\hat{T} (pA^{k+2}, p\mathbb{Z}_p^4)^\theta
+ p^2\hat{T} (pA^{k+2}, p^2\mathbb{Z}_p^4)^\theta. \quad (24)
\]
3. If $\alpha = 1, \beta \geq 2$, then

$$\mathcal{X}(\alpha, \beta) = \begin{pmatrix} p^* & * & * \\ p^* & * & * \\ p^* & * & * \\ p^* & * & * \end{pmatrix} \cap \Gamma \mathcal{V}.$$

Hence $\mathcal{X}(\alpha, \beta)$ is a right Γ' invariant set. By Corollary 5.2, we are reduced to the case where $a \in \{ e_3, e_2, e_1, p e_3, p e_2, p e_1, 0 \}$. By Lemma 5.8 we have

$$|\Gamma \setminus \mathcal{Y}(\alpha, \beta, e_3)| = 0,$$

$$|\Gamma \setminus \mathcal{Y}(\alpha, \beta, e_2)| = 1,$$

$$|\Gamma \setminus \mathcal{Y}(\alpha, \beta, e_1)| = 1,$$

$$|\Gamma \setminus \mathcal{Y}(\alpha, \beta, p e_3)| = p + p^2,$$

$$|\Gamma \setminus \mathcal{Y}(\alpha, \beta, p e_2)| = p + p^2,$$

$$|\Gamma \setminus \mathcal{Y}(\alpha, \beta, p e_1)| = p + p^2 + p^3,$$

$$|\Gamma \setminus \mathcal{Y}(\alpha, \beta, 0)| = p + p^2 + p^3.$$

Thus $S_B(p e_3^0) = \tilde{T}(p e_3^0, p^2 \mathbb{Z}_p^4) + (p + p^2) \tilde{T}(p e_3^0, p^3 \mathbb{Z}_p^4) + p^3 \tilde{T}(p e_3^0, P P \mathbb{Z}_p^4).$

Proposition 2.2 implies $\tilde{T}(p e_3^0, P P \mathbb{Z}_p^4) = \tilde{T}(p e_3^0, p^2 \mathbb{Z}_p^4).$ Thus we have

$$S_B(p e_3^0) = \tilde{T}(p e_3^0, P_1 \mathbb{Z}_p^4) + (p^2 + p - 1) \tilde{T}(p e_3^0, p^2 \mathbb{Z}_p^4) + p^3 \tilde{T}(p e_3^0, p^2 \mathbb{Z}_p^4). \quad (25)$$

4. If $\alpha \geq 2$, then $\mathcal{X}(\alpha, \beta) = \Gamma \mathcal{V}$ is naturally right Γ invariant set. Since

$$|\Gamma \setminus \mathcal{Y}(\alpha, \beta, e_1)| = 1,$$

$$|\Gamma \setminus \mathcal{Y}(\alpha, \beta, p e_1)| = p + p^2 + p^3,$$

$$|\Gamma \setminus \mathcal{Y}(\alpha, \beta, 0)| = p + p^2 + p^3 + p^4,$$

$S_B(p e_3^0) = \tilde{T}(p e_3^0, P_1 \mathbb{Z}_p^4) + (p^3 + p^2 + p - 1) \tilde{T}(p e_3^0, p \mathbb{Z}_p^4) + p^4 \tilde{T}(p e_3^0, p^2 \mathbb{Z}_p^4).$

By Corollary 5.10

$$\tilde{T}(p^2 \mathbb{C}_k, \mathbb{Z}_p^4)^{[2]} = p^8 (p^2)^* \tilde{T}(p^k), \tilde{T}(p^2 \mathbb{C}_k, p \mathbb{Z}_p^4)^{[0]} = p^4 (p^2)^* \tilde{T}(p^k).$$

25
Thus we have

\[
S_B(p^2C_k)_{\theta^2} = p^8\langle p^2 \rangle \tilde{T}(p^k) + p^7\langle p^2 \rangle \tilde{T}(p^k)\theta^2 \\
+ (p^2 + p - 1)\tilde{T}(p^2C_k, p\mathbb{Z}_p^4)_{\theta^2} \\
+ p^4\tilde{T}(p^2C_k, p^2\mathbb{Z}_p)_{\theta^2}.
\]

(26)

Combining (19) of Lemma 5.10 and (23)–(26), we complete the proof.

By (17) and (18) of Lemma 5.10, we thus have the following identity:

Corollary 5.13. For all nonnegative integers \(k \),

\[
p^9\langle p \rangle T(A)_s\tilde{T}(p^{k+1})_{\theta^3} + p^2T(A)_s\tilde{T}(p^{k+3})_{\theta^3} = p^{14}\langle p^2 \rangle \tilde{T}(p^k) + p^5(T(B)_s + (p^2 + 1)\langle p \rangle)\tilde{T}(p^{k+2})_{\theta^2} + \tilde{T}(p^{k+4})_{\theta^4}.
\]

(27)

The above corollary implies the main theorem.

Theorem 5.14. Problem 4.9 holds for \(n = 2 \). Namely, put

\[
q_1 = -T(A), \\
q_2 = pT(B) + p(p^2 + 1)\langle p \rangle, \\
q_3 = -p^3\langle p \rangle T(A), \\
q_4 = p^6\langle p^2 \rangle, \\
g(X) = 1 - p^2\langle p \rangle X^2,
\]

then we have

\[
g^s(Y) = \tilde{P}_2^g(X) + q_1^4Y\tilde{P}_2^g(X) \\
+ q_2^4Y^2\tilde{P}_2^g(X) + q_3^4Y^3\tilde{P}_2^g(X) + q_4^4Y^4\tilde{P}_2(X),
\]

(27)

where \(Y = p^2X \).

Remark 5.15. Our theorem recovers Shimura’s rationality via the morphism \(\phi \).
References

[1] A. N. Andrianov, Rationality theorems for Hecke series and zeta functions of the groups GL_n and SP_n over local fields, Izv. Math. 3(3) 439–476 (1969).

[2] A. N. Andrianov, *Introduction to Siegel Modular Forms and Dirichlet Series*. Springer, New York (2009)

[3] A. Krieg, *Hecke algebras*, Mem. Amer. Math. Soc. 87(435) (1990).

[4] E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung, I, II, Math. Ann. 114(1) 1–28,316–351 (1937).

[5] F. Hyodo, A formal power series of a Hecke ring associated with the Heisenberg Lie algebra over \mathbb{Z}_p, Int. J. Number Theory 11(8) 2305–2323 (2015).

[6] F. Hyodo, A note on a Hecke ring associated with the Heisenberg Lie algebra, Math. J. Okayama Univ., 64 (2022) 215–225.

[7] F. Hyodo, Global properties of a Hecke ring associated with the Heisenberg Lie algebra, Preprint, 2022, [arXiv:2110.01768v2].

[8] G. Shimura, On modular correspondences for $Sp(n, \mathbb{Z})$ and their congruence relations, Proc. Nat. Acad. Sci. U.S.A. 49(6) 824–828 (1963).

[9] G. Shimura, *Introduction to the arithmetic theory of automorphic functions*, Publ. Math. Soc. Japan, vol. 11, Iwanami Shoten, Publishers and Princeton University Press, Princeton, (1971).

[10] T. Tamagawa, On the ζ-functions of a division algebra, *Ann. of Math.* 77(2) (1963) 387–405.

Department of Health Informatics, Faculty of Health and Welfare Services Administration, Kawasaki University of Medical Welfare, Kurashiki, 701-0193, Japan

Email address: fumitake.hyodo@mw.kawasaki-m.ac.jp