Title: Bicontinuous and mixed gels in binary mixtures of patchy colloidal particles

Author(s): de las Heras, Daniel¹; Tavares, José Maria²,¹; Telo da Gama, Margarida M.³,¹

Source: Soft Matter
Volume: 8 Issue: 6 Pages: 1785-1794 DOI: 10.1039/c1sm06948a Published: 2012

Abstract: We investigate the thermodynamics and percolation regimes of model binary mixtures of patchy colloidal particles. The particles of each species have three sites of two types, one of which promotes bonding of particles of the same species while the other promotes bonding of different species. We find up to four percolated structures at low temperatures and densities: two gels where only one species percolates, a mixed gel where particles of both species percolate but neither species percolates separately, and a bicontinuous gel where particles of both species percolate separately forming two interconnected networks. The competition between the entropy and the energy of bonding drives the stability of the different percolating structures. Appropriate mixtures exhibit one or more connectivity transitions between the mixed and bicontinuous gels, as the temperature and/or the composition changes.

Document Type: Article
Language: English

KeyWords Plus: Directional Attractive Forces; Fluids; Spheres; Complex; Sites

Reprint Address: de las Heras, D (reprint author), Univ Lisbon, Ctr Fis Teor & Computac, Ave Prof Gama Pinto 2, P-1649003 Lisbon, Portugal.

Addresses:
1. Univ Lisbon, Ctr Fis Teor & Computac, P-1649003 Lisbon, Portugal
2. Inst Super Engn Lisboa, P-1590062 Lisbon, Portugal
3. Univ Lisbon, Dept Fis, Fac Ciencias, P-1749016 Lisbon, Portugal

ResearcherID Numbers: [?]

Publisher: Royal Soc Chemistry
Address Publisher: Thomas Graham House, Science Park, Milton RD, Cambridge CB4 0WF, Cambs, England

IDS Number: 878XY
ISSN: 1744-683X