Characters on the Full Group of the Odometer.

Dudko A.

Abstract

Let X be the space of all infinite $0,1$-sequences and T be the odometer on X. In this paper we introduce a dense subgroup $S(2^\infty)$ of the full group $[T]$ and describe all indecomposable characters on $S(2^\infty)$. As result we obtain a description of indecomposable characters on $[T]$.

1 Introduction.

Let $X = \prod_1^{\infty} \{0,1\}$ be the space of all infinite $0,1$-sequences with the product topology and T be the odometer on X: $Tx = x + 1$. By definition, the full group of the automorphism T is the group $[T]$ of all Borel automorphisms S of X, such that $Sx \subset O_T(x)$ for all $x \in X$, where $O_T(x)$ is the orbit of x. Let $\mu = \nu^\otimes \infty$ be the standard product measure on X, where $\nu(\{0\}) = \nu(\{1\}) = 1/2$. The group $[T]$ is a topological group with the uniform topology, given by the norm $\|S_1 - S_2\| = \mu(\{x : S_1x \neq S_2x\})$. In this paper we obtain a description of all indecomposable characters on $[T]$.

Let X_n be the set of all 0,1-sequences of length n. Denote $S(2^n)$ the group of all permutations on X_n. Elements of $S(2^n)$ are arbitrary bijections $X_n \to X_n$. The group $S(2^n)$ acts naturally on X:

$$s \in S(2^n) : X \to X, \quad s((x, a)) = (s(x), a) \text{ for any } x \in X_n, a \in X.$$

Denote $S(2^\infty) = \bigcup_{n \in \mathbb{N}} S(2^n)$. Then $S(2^\infty)$ is a dense subgroup in $[T]$. It follows, that for each continuous factor representation π of $[T]$ the restriction of π onto $S(2^\infty)$ generates the same W^* algebra, therefore, also is a factor representation. In this paper we describe all indecomposable characters on $S(2^\infty)$. It turns out, that indecomposable characters on $S(2^\infty)$ have very
simple structure and each indecomposable character on $S(2^\infty)$ gives rise to an indecomposable character on $[T]$.

The group $S(2^\infty)$ is a parabolic analog of the infinite symmetric group $S(\infty)$. Another parabolic analog of $S(\infty)$ is the group R of rational rearrangements of the segment (see [3]). In [3] E. Goryachko studied K_0-functor and characters of the group R. Indecomposable characters on the infinite symmetric group were described by E. Thoma in [7]. In [1] and [2] A. Vershik and S. Kerov developed the asymptotic theory of characters on $S(\infty)$. In [5] and [6] G. Olshanski developed the semigroup approach to representations of groups, connected to $S(\infty)$. Using the semigroup approach, A. Okounkov found a new proof of the Thoma’s result (see [4]). In this paper we use the approach of Olshanski and Okounkov.

The author is grateful to Nessonov N.I. for the statement of the problem and useful discussions.

Now we remind some definitions from the representation theory.

Definition 1. A character on a group G is a function $\chi : G \rightarrow \mathbb{C}$, satisfying the following properties:

1) $\chi(g_1g_2) = \chi(g_2g_1)$ for any $g_1, g_2 \in G$;

2) the matrix $\{\chi(g_i^{-1}g_j)\}_{i,j=1}^n$ is nonnegatively defined for any n and $g_1, \ldots, g_n \in G$;

3) $\chi(e) = 1$.

A character χ is called indecomposable, if it can’t be represented in the form $\chi = \alpha \chi_1 + (1 - \alpha) \chi_2$, where $0 < \alpha < 1$ and χ_1, χ_2 are distinct characters.

For a unitary representation π of a group G denote \mathcal{M}_π the W^*-algebra, generated by the operators of the representation π. By definition, the commutant S' of a set S of operators in a Hilbert space \mathcal{H} is the algebra $S' = \{A \in B(\mathcal{H}) : AB = BA \text{ for any } B \in S\}$.

Definition 2. A representation π of a group G is called a factor representation, if the algebra \mathcal{M}_π is a factor, that is $\mathcal{M}_\pi \cap \mathcal{M}'_\pi = \mathbb{C}I$.

The indecomposable characters on a group G are in one to one correspondence with the finite type factor representations of G. Namely, starting with an indecomposable character χ on G one can construct a triple $(\pi_\chi, \mathcal{H}_\chi, \xi_\chi)$,
called the Gelfand-Naimark-Siegel construction. Here π_χ is a finite type factor representation, acting in the space \mathcal{H}_χ, and ξ_χ is a unit vector in \mathcal{H}_χ, such that $\chi(g) = (\pi_\chi(g)\xi_\chi, \xi_\chi)$ for any $g \in G$. Note, that the vector ξ_χ is cyclic and separating for the algebra \mathcal{M}_π.

For $n \in \mathbb{N}$ denote the inclusion $i_n : S(2^\infty) \hookrightarrow S(2^\infty)$ as follows:

$$i_n(s)((x, y)) = (x, s(y)),$$

for any $x \in X_n, y \in X$. (1)

Put $S_n(2^\infty) = i_n(S(2^\infty))$. Note, that for any $s_1 \in S(2^n), s_2 \in S_n(2^\infty)$ one has $s_1s_2 = s_2s_1$. The following property is known as multiplicativity.

Proposition 3. A character χ on $S(2^\infty)$ is indecomposable iff $\chi(s_1s_2) = \chi(s_1)\chi(s_2)$ for any $n \in \mathbb{N}$ and $s_1 \in S(2^n), s_2 \in S_n(2^\infty)$.

The last proposition can be proven the same way, as the analogous statement for the indecomposable characters on the infinite symmetric group (see [4]). For $f \in [T]$ denote $\text{Fix}(f) = \{x \in X : f(x) = x\}$. The main results of this paper are the following two propositions:

Theorem 4. A function χ on $S(2^\infty)$ is an indecomposable character, if and only if there exists $\alpha \in \mathbb{Z}_+ \cup \{\infty\}$, such that $\chi(s) = \mu(\text{Fix}(s))^\alpha$ for any $s \in S(2^\infty)$.

In the last theorem we assume $0^0 = 1, x^\infty = 0$ for any $x \in [0, 1)$ and $1^\infty = 1$. Note, that $\alpha = 0$ and ∞ correspond to the trivial and the regular characters.

Corollary 5. A function χ on $[T]$ is an indecomposable character, if and only if there exists $\alpha \in \mathbb{Z}_+ \cup \{\infty\}$, such that $\chi(f) = \mu(\text{Fix}(f))^\alpha$ for any $f \in [T]$.

2 Construction of representations.

In this section we give a construction of II_1 factor-representations of $[T]$. Denote

$$Y_n = \{(x, y) \in X \times X : x_k = y_k \text{ for all } k > n\}, \ Y = \cup Y_n.$$

For $a, b \in X_n$ introduce cylindrical set

$$Y_n^{a,b} = \{(x, y) \in Y_n : x_i = a_i, y_i = b_i \text{ for all } i \leqslant n\}.$$

3
Introduce the measure γ on Y by the formula
\[\gamma(Y^{a,b}) = 2^{-n} \] for each $n \in \mathbb{N}$ and $a, b \in X_n$. \hfill (4)

Denote the unitary representation π of $[T]$ in $\mathcal{H} = L^2(Y, \gamma)$ by the formula
\[(\pi(s)f)(x, y) = f(s^{-1}(x), y) \] for each $f \in \mathcal{H}, s \in [T]$. \hfill (5)

Put $\xi(x, y) = \delta_{x,y}$ and $\chi(s) = (\pi(s)\xi, \xi), s \in [T]$. Then direct calculations show, that $\chi(s) = \mu(Fix(s))$ for all $s \in [T]$. In particular, χ is a central function on $[T]$. It follows, that χ is a character. By the proposition 3, χ is an indecomposable character on $S(2^\infty)$. It follows, that χ is an indecomposable characters on $[T]$. Moreover, for any $k \in \mathbb{N}$, considering the triple $(\pi^{\otimes k}, \mathcal{H}^{\otimes k}, \xi^{\otimes k})$, we get, that χ^k is an indecomposable character.

3 System of orthogonal projections.

Let χ be an indecomposable character on the group $S(2^\infty)$. Denote (π, \mathcal{H}, ξ) the corresponding GNS-construction. In this section we find a system of orthogonal projections in the algebra \mathcal{M}_π^*, satisfying remarkable properties.

First we describe the conjugate classes in $S(2^\infty)$. Let $g_1, g_2 \in S(2^\infty)$. Then there exists n, such that $g_1, g_2 \in S(2^n)$. The elements g_1 and g_2 are conjugate in $S(2^\infty)$, if and only if g_1 and g_2 are conjugate in $S(2^n)$. Remind, that conjugate classes in finite symmetric groups are parameterized by partitions, made from the lengths of the cycles.

For subsets $A \subset X_n, B \subset X$ denote
\[A \times B = \{(a_1, \ldots, a_n, b_1, b_2, \ldots) : (a_1, \ldots, a_n) \in A, (b_1, b_2, \ldots) \in B\} \subset X. \]

We will call a subset $A \subset X$ nice, if $A = C \times X$ for some $k \in \mathbb{N}$ and $C \subset X_k$. Let A be nice and $m > k$. Denote $s^A_m \in S(2^\infty)$ as follows:
\[s^A_m(x) = \begin{cases} x, & \text{if } x \in A, \\ (x_1, \ldots, x_{m-1}, 1 - x_m, x_{m+1}, \ldots), & \text{if } x \notin A. \end{cases} \] \hfill (6)

Note, that s^A_m affects only m-th coordinate of an element of X.

Lemma 6. For any nice $A \subset X$ there exists the weak limit $P^A = \lim_{m \to \infty} \pi(s^A_m)$. The operators P^A are orthogonal projections.
Proof. Consider any elements $g_1, g_2 \in S(2^\infty)$. Fix M, such that $g_1, g_2 \in S(2^M)$. One can check, that for any $m > M$ the conjugate class of the element $g_1^{-1}s_m^Ag_2$ doesn’t depend on m. By the centrality of χ, the value

$$\left(\pi \left(s_m^A\right) \pi(g_2)\xi, \pi(g_1)\xi\right) = \chi\left(g_1^{-1}s_m^Ag_2\right)$$ \hspace{1cm} (7)

doesn’t depend on the choice of $m > M$. By definition of the GNS-construction, the vectors $\pi(g)\xi, g \in S(2^\infty)$ are dense in \mathcal{H}. Therefore, there exists the weak limit $P^A = \lim_{m \to \infty} \pi \left(s_m^A\right)$.

Further, since $\pi \left(s_m^A\right)^* = \pi \left((s_m^A)^{-1}\right) = \pi \left(s_m^A\right)$ for any m, the operator P^A is self-adjoint. As follows, $(P^A)^2$ is a positive operator. Obviously, $\|P^A\| \leq 1$. One can check, that for any $m_1 > m_2 > m_3$ the elements $s_{m_1}s_{m_2}s_{m_3}$ and $s_{m_1}s_{m_2}$ are conjugate. Therefore,

$$\left(\pi \left(s_{m_1}s_{m_2}s_{m_3}\right) \xi, \xi\right) = \left(\pi \left(s_{m_1}s_{m_2}\right) \xi, \xi\right).$$

In the limit we get:

$$\left((P^A)^3 \xi, \xi\right) = \left((P^A)^2 \xi, \xi\right) = \|P^A\xi\|^2.$$ \hspace{1cm} (8)

From the other hand, by the Cauchy-Schwartz inequality,

$$\left((P^A)^3 \xi, \xi\right) \leq \|P^A\xi\| \| (P^A)^2 \xi\| \leq \|P^A\xi\|^2.$$

The equality means, that $P^A\xi = c (P^A)^2\xi$ for some constant c. Since ξ is separating, the latter means, that $P^A = c (P^A)^2$. From (8) we get, that $P^A = (P^A)^2$, which finishes the proof. \hfill \Box

Recall, that the unique normalized trace on the algebra \mathcal{M}_π is given by the formula: $\text{tr}(T) = (T\xi, \xi)$.

Proposition 7. For any nice $A, B \subset X$ and $C \subset X_n, D \subset X_m, n, m \in \mathbb{N}$, the following is true:

1) if $s \in S(2^\infty)$, then $\pi(s)P^A\pi(s^{-1}) = P^{s(A)}$;

2) $P^AP^B = P^{A\cap B}$;

3) $\text{tr} \left(P^{C\times D\times X}\right) = \text{tr} \left(P^{C\times X}\right) \text{tr} \left(P^{D\times X}\right)$;
4) If \(\mu(A) \leq \mu(B) \), then \(\text{tr } (P^A) \leq \text{tr } (P^B) \).

In the item 3) by \(C \times D \times X \) we mean the set of sequences of the form
\[
(c_1, \ldots, c_n, d_1, \ldots, d_m, x_1, x_2, \ldots),
\]
where \((c_1, \ldots, c_n) \in C\), \((d_1, \ldots, d_m) \in D\) and \(x_i \in \{0, 1\}\).

Proof. 1) The first property follows immediately from the equation \(s_m s_m s^{-1} = s_m^{(A)} \) for large enough \(m \).

2) Let \(m_1 > m_2 > m_3 \). It follows from (6), that the elements \(s_m^{A} s_m^{B} s_m^{A \cap B} \), \(s_m^{m_1} s_m^{m_2} \) and \(s_m^{m_1} s_m^{m_2} \) are in the same conjugate class. Therefore
\[
\chi (s_m^{m_1} s_m^{m_2} s_m^{A \cap B}) = \chi (s_m^{m_1} s_m^{B}) = \chi (s_m^{A \cap B}).
\]

When \(m_1, m_2, m_3 \) go to infinity, we get
\[
\text{tr } (P^A P^B P^{A \cap B}) = \text{tr } (P^A P^B) = \text{tr } (P^A P^{A \cap B}). \tag{9}
\]

From the other hand, by the Cauchy-Schwartz inequality, centrality of \(\text{tr} \) and lemma 6
\[
\text{tr } (P^A P^B P^{A \cap B}) \leq \text{tr } (P^A P^B)^{\frac{1}{2}} \text{tr } (P^A P^{A \cap B})^{\frac{1}{2}}. \tag{10}
\]

By (9), the equality holds. Therefore, as in the proof, that \(P^A \) is an orthogonal projection, we get, that \(P^A P^B = P^A P^{A \cap B} \).

3) This property follows from the multiplicativity of \(\chi \) (see prop. 3). Indeed, by the definition of operators \(P^A \) and the proof of the lemma 6 one has
\[
\text{tr } (P^{C \times D \times X}) = \chi (s_{n+m+1}^{C \times D \times X}). \tag{11}
\]

The conjugate class of the element \(s_{n+m+1}^{C \times D \times X} \) contains \(s_{n+1}^{C \times X} s_{n+m+2}^{X \times D \times X} \). Thus,
\[
\chi (s_{n+1}^{C \times X} s_{n+m+2}^{X \times D \times X}) = \chi (s_{n+1}^{C \times X}) \chi (s_{n+m+2}^{X \times D \times X}). \tag{12}
\]

To finish the proof, we note, that by centrality of \(\chi \), \(\chi (s_{n+1}^{C \times X}) = \text{tr } (P^{C \times X}) \) and
\[
\chi (s_{n+m+2}^{X \times D \times X}) = \text{tr } (P^{D \times X}).
\]

4) By the property 1), without loss of generality we may assume, that \(A \subset B \). By the property 2), \(P^A \leq P^B \). Therefore, \(\text{tr } (P^A) \leq \text{tr } (P^B) \).
Corollary 8. There exists $\alpha \in \mathbb{R}_+ \cup \{\infty\}$, such that for any n and finite union of cylinders $A \subset X$ one has $\text{tr} \left(P^A \right) = \mu(A)^\alpha$.

Proof. We split the proof into three cases, according to the possible values of α (0, ∞ or a positive number).

1. First assume, there exists $C \subset X$, $C \neq X$, such that $\text{tr} \left(P^{C \times X} \right) = 1$. Then for any m and any $D \subset X_m$, $D \neq \emptyset$ one can find k, such that $\mu \left(C^k \times X \right) \leq \mu(D \times X)$. By the proposition[1] $\text{tr} \left(P^{D \times X} \right) \geq \text{tr} \left(P^{C^k \times X} \right) = 1$. Therefore, $\text{tr} \left(P^{D \times X} \right) = 1$. Now we only need to check, that $\text{tr} \left(P^\emptyset \right) = 1$. Since ξ is separating for M_π, it follows, that $P^A = Id$ for any finite union of cylinders $A \neq \emptyset$. By the property 2) from the proposition[2] $P^\emptyset = Id$. Thus, in this case the corollary holds for $\alpha = 0$.

2. Now assume, that there exists $C \subset X$, $C \neq \emptyset$, such that $\text{tr} \left(P^{C \times X} \right) = 0$. Using the same ideas, as in the case 1, one can prove, that for any finite union of cylinders $B \subset X$, $B \neq X$, one has $\text{tr} \left(P^B \right) = 0$. Since $P^X = Id$, $\text{tr} \left(P^X \right) = 1$. In this case the corollary holds for $\alpha = \infty$.

3. Now assume, that $0 < \text{tr} \left(P^A \right) < 1$ for any n and any $A \subset X$, such that $A \neq X$ and $A \neq \emptyset$. It follows from the property 4) of the previous proposition, that $\text{tr} \left(P^A \right)$ depends only on the measure of A. Therefore, there is a function φ from the set $D = \left\{ \frac{k}{2^n} : p, q \in \mathbb{N}, p < 2^q \right\}$ of dyadic numbers to the set of positive numbers, such that

$$\text{tr} \left(P^A \right) = \varphi(\mu(A)) \text{ for any } A \subset X, A \neq X, A \neq \emptyset. \quad (13)$$

By the properties 3), 4) from the proposition[7] φ is a monotone multiplicative homomorphism. It follows, that there exists $0 < \alpha < \infty$, such that $\phi(d) = d^\alpha$ for any $d \in D$.

\begin{proof}

4 The proof of the classification theorems.

Proposition 9. Let $A \subset X$ be nice and $s \in S(2^\omega)$, such that $A \subset \text{Fix}(s) = \{x \in X : s(x) = x\}$. Then $\pi(s)P^A = P^A$.

Proof. There exists n, such that $A = C \times X$ for some $C \subset X_n$ and $s \in S(2^n)$. Assume first, that s contains only cycles of length 1 and 2. Than the permutations ss_m^A and s_m^A are conjugate for large m. Therefore, $(\pi(s)P^A, \xi) = (P^A, \xi) = \|P^A\|^2$. Using the Cauchy-Schwartz inequality, we get

$$(\pi(s)P^A, \xi) = (\pi(s)P^A, P^A, \xi) \leq \|\pi(s)P^A\| \|P^A\| \leq \|P^A\|^2 \quad (14).$$

\end{proof}
Since the equality holds, \(\pi(s)P^A \xi = P^A \xi \). Since \(\xi \) is separating, \(\pi(s)P^A = P^A \). Now notice, that permutations \(s \in S(2^n) \), such that \(A \subseteq Fix(s) \) and \(s \) has only cycles of length 1 and 2, generate all permutations \(w \in S(2^n) \), such that \(A \subseteq Fix(w) \). This finishes the proof.

Corollary 10. Let \(s \in S(2^\infty) \) have cycles of length 1 and only. Then \(\chi(s) = \mu(Fix(s))^\alpha \), where \(\alpha \) is from the corollary 8.

Proof. Denote \(A = Fix(s) \). Then for large \(m \) the elements \(s \) and \(ss_m^A \) are conjugate. Therefore, using the propositions 9 and corollary 8 we get

\[
\chi(s) = tr \left(\pi(s)P^A \right) = tr \left(P^A \right) = \mu(A)^\alpha.
\]

(15)

Proposition 11. For any \(s \in S(2^\infty) \) one has \(\chi(s) = \mu(Fix(s))^\alpha \), where \(\alpha \) is the number from the corollary 8.

Proof. Let \(s \neq e \). Put \(A = Fix(s) \). Fix arbitrary \(k \in \mathbb{N} \). There exist permutations \(s_1, \ldots, s_k \in S(2^\infty) \), such that the following is true:

1) elements \(s_i \) are conjugate to \(s \);

2) \(Fix(s_is_j^{-1}) = Fix(s_i) = A \) for any \(i \neq j \);

3) for any \(i \neq j \) the element \(s_is_j^{-1} \) has cycles of length 1 and 2 only.

We postpone the proof of the existence of \(s_i \) to the appendix, since this statement is purely combinatoric. Consider the system of vectors \(\eta_i = (\pi(s_i) - P^A) \xi \). Put \(\eta = (\pi(s) - P^A) \xi \). It follows from 1), that \((\eta_i, \xi) = (\eta, \xi) \) for any \(i \). By the proposition 9 and property 2) of \(s_i \), \(\pi(s_i)P^A = P^A \). Thus, by the corollaries 8 and 10 for any \(i \neq j \)

\[
(\eta_i, \eta_j) = ((\pi(s_i) - P^A) \xi, (\pi(s_j) - P^A) \xi) = \chi(s_is_j^{-1}) - tr \left(P^A \right) = 0. \quad (16)
\]

Note, that by the same reasons \(\|\eta_i\| = \sqrt{1 - tr \left(P^A \right)} = \|\eta\| \) for any \(i \). Therefore, one has:

\[
|\langle \eta, \xi \rangle| = \frac{1}{k} \left| \sum_{i=1}^{k} \eta_i, \xi \right| \leq \frac{1}{k} \left\| \sum_{i=1}^{k} \eta_i \right\| = \frac{\|\eta\|}{\sqrt{k}}. \quad (17)
\]

Since \(k \) is arbitrary, the last inequality means \(\langle \eta, \xi \rangle = 0 \). It follows, that \(\chi(s) = tr \left(P^A \right) = \mu(A)^\alpha \).
Proposition 12. Let $0 < \alpha < \infty$. Denote $\chi_\alpha(s) = \mu(Fix(s))^{\alpha}$, $s \in S(2^\infty)$. Assume, that χ_α is a character. Then $\alpha \in \mathbb{N}$.

Proof. Note first, that χ_α is indecomposable by the proposition 3. Let $(\pi_\alpha, \mathcal{H}_\alpha, \xi_\alpha)$ be the GNS-construction, corresponding to χ_α.

Let $n \in \mathbb{N}$. Following Okounkov [4], consider the orthogonal projection $\text{Alt}(n) = \frac{1}{2n!} \sum_{s \in S(2^n)} \sigma(s) \pi_\alpha(s),$ where $\sigma(s)$ is the sign of the permutation s. One has:

$$0 \leq (\text{Alt}(n)\xi_\alpha, \xi_\alpha) = \frac{1}{2n!} \sum_{s \in S(2^n)} \sigma(s) \chi_\alpha(s) =$$

$$= \frac{1}{2n!} \sum_{s \in S(2^n)} \sigma(s) \frac{\{x \in X_n : s(x) = x\}^{\alpha}}{2^{\alpha n}}. \quad (18)$$

Calculate the last sum. Denote $\Sigma_k = \sum_{E_k} \sigma(s)$, where E_k is the set of permutations $s \in S(k)$, such that $s(j) \neq j$ for $1 \leq j \leq k$. We prove by induction, that $\Sigma_k = (-1)^{k-1}(k - 1)$. Base $k = 1, 2$ is obvious. Let $k \geq 2$. Each element of E_{k+1} can be represented as $(i, k+1)s$, where s is either any element of E_k, or a permutation from $S(k)$, such that $s(i) = i$ and $s(j) \neq j$ for $j \neq i, 1 \leq j \leq k$. Therefore, $\Sigma_{k+1} = -k(\Sigma_k + \Sigma_{k-1}) = (-1)^kk$. Let $m \in \mathbb{N}$. One has:

$$\sum_{s \in S(m)} \sigma(s) \{j : s(j) = j\}^{\alpha} = \sum_{A \subset \{1, \ldots, m\} \text{Fix}(s) = A} \sum_{s \in S(m)} \sigma(s) |A|^{\alpha}. \quad (19)$$

For any j there are C_m^j subsets A of cardinality $m - j$, each of which makes contribution $\Sigma_j \cdot (m - j)^{\alpha} = (-1)^{j-1}(j - 1)(m - j)^{\alpha}$ to the sum (19). Thus,

$$\sum_{A \subset \{1, \ldots, m\} \text{Fix}(s) = A} \sum_{A \subset \{1, \ldots, m\} \text{Fix}(s) = A} \sigma(s) |A|^{\alpha} = \sum_{j=0}^{m} C_m^j (-1)^{j-1}(j - 1)(m - j)^{\alpha}. \quad (20)$$

From (18) – (20) for $m = 2^n$ one gets:

$$C_\alpha(m) = \sum_{j=0}^{m} C_m^j (-1)^{j-1}(j - 1)(m - j)^{\alpha} \geq 0. \quad (21)$$
We will show, that for any noninteger $\alpha > 0$ there exist $m \in \mathbb{N}$, such that $C_\alpha(m) < 0$.

Note, that for $\alpha = n \in \mathbb{N}$ the last sum can be written in terms of Stirling numbers of the second type:

$$C_n(m) = m!(S(n, m) + S(n, m - 1)),$$

where $S(n, m) = \frac{1}{m!} \sum_{j=0}^{m} C_j^m (-1)^j (m - j)^n$.

Remind, that $S(n, m) = 0$ for $n < m$ and $S(n, m) > 0$ for $n \geq m$. Further, using the binomial rule, we get:

$$C_\alpha(m) = m^\alpha \sum_{j=0}^{m} C_j^m (-1)^{j-1} (j - 1) \left(1 - \frac{j}{m}\right)^\alpha =$$

$$m^\alpha \sum_{j=0}^{m} C_j^m (-1)^{j-1} (j - 1) \sum_{k=0}^{\infty} \binom{m-1}{k} (-\frac{j}{m})^k$$

$$= \sum_{k=0}^{\infty} (-1)^{k} m^{\alpha-k} C_\alpha^k \sum_{j=0}^{m} C_j^m (-1)^{j-1} (j - 1) j^k.$$

Using change $r = m - j$, we get:

$$\sum_{j=0}^{m} C_j^m (-1)^{j-1} (j - 1) j^k = \sum_{r=0}^{m} C_r^m (-1)^{m-r-1} (m - r - 1) (m - r)^k =$$

$$(-1)^{m-1} \left((m - 1) \sum_{r=0}^{m} C_r^m (-1)^r (m - r)^k - \sum_{r=0}^{m} r C_r^m (-1)^r (m - r)^k\right) =$$

$$m! ((m - 1) S(k, m) + S(k, m - 1)).$$

Finally, we get

$$C_\alpha(m) = m! \sum_{k=m-1}^{\infty} (-1)^{k+m-1} m^{\alpha-k} C_\alpha^k ((m - 1) S(k, m) + S(k, m - 1)).$$

Let α be noninteger. The sign of the expression $(-1)^k C_\alpha^k$ doesn’t depend on k for $k > [\alpha] + 1$. It follows, that $C_\alpha(m) < 0$ either for $m = [\alpha] + 3$ or for $m = [\alpha] + 4$. This finishes the proof. \qed
5 Appendix: existence of s_i.

Here we prove the next combinatorial statement.

Proposition 13. Let $s \in S(2^\infty)$. Then for any r there exist permutations $s_1, \ldots, s_{2r} \in S(2^\infty)$, such that the following is true:

1) elements s_i are conjugate to s;
2) $\text{Fix}(s_is_j^{-1}) = \text{Fix}(s_i) = A$ for any $i \neq j$;
3) for any $i \neq j$ the element $s_is_j^{-1}$ has cycles of length 1 and 2 only.

We will divide the proof of the last proposition into several lemmas. For pairwise distinct numbers k_0, \ldots, k_{l-1} denote $(k_0, k_1, \ldots, k_{l-1})$ the cyclic permutation, sending k_i to $k_i \mod l$. In particular, (k, l) stands for the transposition of k and l.

Lemma 14. Let $k > 4$ be an odd number. Then for $l \in \{2k - 2, 2k - 4\}$ there exist permutations $g_1, g_2 \in S(l)$, such that each of g_1, g_2 has only cycles of length k or 1, and $g_1g_2^{-1}$ has only even cycles.

Proof. Let $l = 2k - 2$. Put

$$g_1 = (1, 2, \ldots, k) = (1, 2)(2, 3) \cdots (k - 1, k), \quad g_2 = (2k - 2, 2k - 3, \ldots, k - 1) = (2k - 2, 2k - 3)(2k - 3, 2k - 4) \cdots (k, k - 1).$$

Then g_1 and g_2 are cycles of length k and

$$g_1g_2^{-1} = (1, 2)(2, 3) \cdots (k - 2, k - 1) \times (k, k + 1)(k + 1, k + 2) \cdots (2k - 3, 2k - 2) = (1, 2, \ldots, k - 1) \times (k, k + 1, \ldots, 2k - 2)$$

is a product of two cycles of length $k - 1$.

Let $l = 2k - 4$. Then denote $g_1 = (1, 2)(2, 3) \cdots (k - 1, k)$ as above and $g_2 = (2k - 4, 2k - 5)(2k - 5, 2k - 6) \cdots (k + 1, k) \times (k - 3, k - 2)(k - 2, k - 1)(k - 1, k)$. Again, g_1 and g_2 are cycles of length k. One has

$$g_1g_2^{-1} = (1, 2)(2, 3) \cdots (k - 4, k - 3) \times (k, k + 1)(k + 1, k + 2) \cdots (2k - 5, 2k - 4)$$

is a product of two cycles of length $k - 3$. \qed
Corollary 15. For any k there exists $M = M(k)$, such that for any $m \geq M$
there exist $g_1, g_2 \in S(2^m)$, satisfying the following conditions:
1) g_1 and g_2 have cycles of length dividing k;
2) $g_1 g_2^{-1}$ has only even cycles.

Proof. If k is even, put $M = 2$. Let $m \geq 2$. Consider $S(2^m)$ as the group of
permutations on X_m. Let $g_i, i = 1, 2$ be the permutation, arising from the
change $0 \leftrightarrow 1$ on the i-th coordinate of X_m. Obviously, g_1, g_2 satisfy to the
condition of the corollary.

Let $k = 3$. Denote $g_1 = (1, 2)(2, 3), g_2 = (4, 3)(3, 2) \in S(2^2)$. For any
$m \geq 2$ one can consider g_1, g_2 as elements of $S(2^m)$, acting on first two
coordinates only. Obviously, these elements satisfy to the conditions of the
corollary.

Let $k > 4$ be odd. Put $M = k$. For any $m \geq k$ the number 2^m
can be represented as $2^m = (2k - 4)l + (2k - 2)r$ with r, l nonnegative integer.
Divide the set of 2^m elements onto l subsets of $2k - 4$ elements and r subsets
of $2k - 2$ elements. Organize the permutations g_1, g_2 on each subset using
the lemma [13].

Proof of the proposition [13]. Let $s \in S(2^n)$. For $x \in X_n$ denote $ord(x)$ the
number of elements in the trajectory of x. That is, $ord(x)$ is the length of
the cycle of s, containing x. Let m be the maximal of $M(ord(x)), x \in S(2^n)$
(see the corollary [15]). For any x, putting $k = ord(x)$, let $g_i^{(k)}$, $i = 1, 2$ be the
permutations from $S(2^m)$, which satisfy to the conditions of the corollary [15].
Let $r \in \mathbb{N}$. For $a = (a_1, a_2, \ldots, a_r), a_i \in \{1, 2\}, k \in \{ord(x) : x \in X_n\}$
denote $g_a^{(k)} \in S(2^{mr}), s_a \in S(2^{n+mr})$ as follows:

$$g_a^{(k)}(y_1, y_2, \ldots, y_r) = (g_{a_1}^{(k)}(y_1), g_{a_2}^{(k)}(y_2), \ldots, g_{a_r}^{(k)}(y_r)),$$

$$s_a(x, y) = \begin{cases} (x, y), & \text{if } x \in Fix(s), \\ (s(x), g_a^{(ord(x))}(y)), & \text{otherwise}, \end{cases}$$

where $x \in X_n, y_i \in X_m, y \in X_{mr}$. Note, that each $g_a^{(k)}$ has cycles of length k
and 1 only. It follows, that s_a is conjugate to s for each a. Moreover, for any
$a, b \in \{1, 2\}^r$ one has:

$$s_a s_b^{-1}(x, y) = \begin{cases} (x, y), & \text{if } x \in Fix(s), \\ (x, g_a^{(ord(x))}(g_b^{(ord(x))})^{-1}(y)), & \text{otherwise}. \end{cases}$$
Therefore, by the definition of $g^{(k)}_i$ (see the corollary [13]), $\text{Fix} \left(s_a s_b^{-1} \right) = \text{Fix}(s)$ and $s_a s_b^{-1}$ has only even cycles and fixed elements for $a \neq b$. Thus, s_a satisfy to the conditions of the proposition [13].

References

[1] A. Vershik and S. Kerov, *Asymtotic theory of characters of the symmetric groups*, Functional analysis and its applications, 15 (1981), no. 4, 15-27.

[2] A. Vershik and S. Kerov, *Characters and factor representations of the infinite symmetric group*, Soviet Math. Dokl., 23 (1981), no. 2, 389–392.

[3] Goryachko E., *The K_0-functor and characters of the group of rational rearrangements of the segment*, Representation theory, dynamics systems, combinatorial methods. Part XVI, Zap. Nauchn. Sem. POMI, 360, POMI, St. Petersburg, 2008, 124–138.

[4] A.Okounkov, *On the representation of the infinite symmetric group*, Representation theory, dynamical systems, combinatorial and algorithmic methods. Part II, Zap. Nauchn. Sem. POMI, 240, POMI, St. Petersburg, 1997, 166–228.

[5] G.Olshanski, *An introduction to harmonic analysis on the infinite symmetric group*, RT-0311369.

[6] G.Olshanski, *Unitary representations of (G, K)–pairs connected with the infinite symmetric group $S(\infty)$*, Algebra i Analiz 1 (1989), no. 4, 178-209 (Russian); English translation in Leningrad Math. J. 1 (1990), no. 4, 983-1014.

[7] E.Thoma, *Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen symmetrischen Gruppe*, Math. Zeitschr. 85 (1964), no.1, 40-61.

Artem Dudko, University of Toronto, artem.dudko@utoronto.ca