Insights into a dual function amide oxidase/macrocyclase from lankacidin biosynthesis

Jonathan Dorival1,4, Fanny Risser1, Christophe Jacob1, Sabrina Collin1, Gerald Dräger2, Cédric Paris3, Benjamin Chagot1, Andreas Kirschning2, Arnaud Gruez1 & Kira J. Weissman1

Acquisition of new catalytic activity is a relatively rare evolutionary event. A striking example appears in the pathway to the antibiotic lankacidin, as a monoamine oxidase (MAO) family member, LkCE, catalyzes both an unusual amide oxidation, and a subsequent intramolecular Mannich reaction to form the polyketide macrocycle. We report evidence here for the molecular basis for this dual activity. The reaction sequence involves several essential active site residues and a conformational change likely comprising an interdomain hinge movement. These features, which have not previously been described in the MAO family, both depend on a unique dimerization mode relative to all structurally characterized members. Taken together, these data add weight to the idea that designing new multifunctional enzymes may require changes in both architecture and catalytic machinery. Encouragingly, however, our data also show LkCE to bind alternative substrates, supporting its potential utility as a general cyclization catalyst in synthetic biology.

1 UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Biopôle de l’Université de Lorraine, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy Cedex, France. 2 Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, Hannover 30167, Germany. 3 Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires (ENSAIA), Université de Lorraine, 2 Avenue de la Fôret de Haye, BP 172, 54518 Vandœuvre-lès-Nancy Cedex, France. 4Present address: Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074 Roscoff, Bretagne, France. These authors contributed equally: Fanny Risser, Christophe Jacob. Correspondence and requests for materials should be addressed to A.G. (email: arnaud.gruez@univ-lorraine.fr) or to K.J.W. (email: kira.weissman@univ-lorraine.fr)
Enzyme activity within superfamilies frequently evolves via changes in substrate specificity, whereas reaction chemistry is usually retained. There are also well-documented examples of a conserved protein fold housing diverse catalytic activities: the αβ hydrophobic barrel fold accommodates at least six different types of acid–base chemistry, the fumarylacetoacetate hydrolase superfamily includes decarboxylases, isomerases, hydratases, and hydrolases, whereas the enolase superfamily has >30,000 members, which share an interdomain active site architecture and the mechanistic strategy of proton abstraction to a carboxylate and stabilization of the enolate by a magnesium ion.

This evolution of novel activity can occur via several different mechanisms, including the insertion or deletion of residues, changes in oligomerization state, and the recruitment of metal ions and cofactors. The enzyme LkcE from the lankacidin polyketide biosynthetic pathway of the bacterium Streptomyces rochei represents an interesting test case for understanding such gain-of-function, as it exhibits a monoamine oxidase (MAO) activity within superfamilies. The full-length chain is usually retained, whereas reaction chemistry frequently evolves via changes in substrate specificity, demonstrating the chemical competence of LC-KA05 as an intermediate.

In the final stages of the biosynthesis, the C-24 hydroxyl group is oxidized to a ketone and the C-7 acetyl group is cleaved, yielding lankacidin C, with the core of the lankacidin molecule being constructed from simple carbon-carbon bond.

Fig. 1 Proposed biosynthetic pathway to lankacidin C. The gene cluster, which has been shown to be sufficient for lankacidin biosynthesis, encodes five assembly-line proteins, LkcA (a hybrid NRPS/PKS subunit), LkcB (a discrete DH), LkcC, LkcF, and LkcG, together containing a total of only four KS domains, although eight KS-mediated extension cycles are required. One possibility that agrees with phylogenetic analysis of KS substrate specificity is shown here, in which the assembly-line incorporates multiple copies of the proteins LkcB, LkcC and LkcF (see ref. for an alternate view). The starter unit may be either pyruvoyl-ACP or lactoyl-ACP, both derived from 1,3-bisphosphoglycerate. However, we and others have found that in an LkcE-deleted mutant, only the lactoyl form of the first free intermediate LC-KA05 accumulates (Supplementary Fig. 8), so we propose that lactoyl-ACP serves as the starter unit. The enzyme responsible for acetyl transfer at C-7 likewise remains to be determined, although a candidate is LkcH, which shows homology to isochorismatases. The object of this study, LkcE, catalyzes the critical macrolactonization reaction of LC-KA05, resulting in lankacidinol A (2). The carbons implicated in the ring closure are indicated in red. Domain abbreviations: C, condensation; A, adenylation; PCP, peptidyl carrier protein; KS, ketosynthase; DH, dehydratase; KR, ketoreductase; MT, C-methyltransferase; ACP, acyl carrier protein; TE, thioesterase.

The core of the lankacidin molecule is constructed from simple acyl-CoA and amino-acid-building blocks by a series of gigantic multimodular polypeptides, which operate in assembly-line fashion (polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs), respectively). The full-length chain is released from the last multienzyme LkcG by a dedicated thioesterase domain. Unusually for this type of pathway, the product is liberated from the multienzyme not as a macrolide, but as a β-oxo-δ-lactone (Fig. 1). LkcE then catalyzes post-assembly macrolactonization via formation of a C-2–C-18 carbon-carbon bond.
characterized to date, to our knowledge LkcE is only the second adenine dinucleotide (FAD)-dependent amine oxidase that has been identified (Supplementary Tables 1 and 2) from *Escherichia coli*; thus in common with certain MAO family members, which underpin its second, cyclization activity. We also demonstrate the tolerance of LkcE to unsaturated fatty acid isomerase of *Propionibacterium acnes* (2BAB)18.

In this study, we have used a combination of X-ray crystallography, structure-guided mutagenesis, and kinetic analysis, to reveal key architectural differences between LkcE and other members of the MAO family, which underpin its second, cyclization activity. We also demonstrate the tolerance of LkcE to certain structural modifications of the substrate. As 1,3-diketones and amide functional groups are common in PK/NRP hybrid metabolites, LkcE represents a potentially valuable addition to a synthetic biology toolbox as a means to access novel macrocyclic metabolites, LkcE represents a potentially valuable addition to a synthetic biology toolbox as a means to access novel macrocyclic structures of various sizes and functionality.

Results

Structural characterization of holo and ligand-bound LkcE. S. rochei LkcE was purified to homogeneity as a recombinant protein (Supplementary Tables 1 and 2) from *Escherichia coli* and its redox cofactor identified as FAD by mass spectrometry following chromatographic separation under denaturing conditions (Supplementary Fig. 1); thus in common with certain MAO family members12 but distinct from the only other reported amide oxidase Afl12070 (ref. 10), the FAD cofactor is non-covalently bound. By UV-Vis, 45% of the protein was estimated to contain FAD (on a par with Afl12070 (ref. 10)) (Methods). We crystallized the enzyme in its holo form, but additionally in the presence of substrate analogs: ethyl 2-methylacetoacetate (EMAA) (4) that mimics the δ-lactone of LC-KA05, and N,N'-diallyl-1-tartardiamide (DATD) (5), which resembles the amide region (Fig. 2). The X-ray crystal structure of the holo protein was solved at 3.15 Å resolution by single-wavelength anomalous dispersion (SAD) using data collected on seleniated protein (Fig. 3a). The structure of LkcE (Fig. 3b, c) co-crystallized in the presence of the analogs was then solved at 2.80 Å by molecular replacement (the statistics for data collection, refinement, and validation of both structures are presented in Supplementary Table 3). For all four structures, > 99.7% of the residues were in allowed regions of the Ramachandran plot. In all but the SeLkcE structure, one Gly (299 or 300) was an outlier, whereas Glu313 was an outlier in both forms of the holo enzyme structure. However, for Glu313, clear electron density is present corresponding to the residue.

Sequence alignment (Supplementary Fig. 2) and comparison with the structures of the five closest structural homologs to LkcE identified by the DALI13 server confirmed that LkcE belongs to the MAO family. The respective root mean square deviation (rmsd) of Ca positions was 4.232 Å (212 Ca) for 6-hydroxy-1-nicotine oxidase (6HDNO) from *Paerarthrobacter nicotinovorans* (PDB 3NG7)14; 4.720 Å (254 Ca) for human monoamine oxidase (hMAO) A (2Z5X)15; 5 Å (267 Ca) for hMAO B (1GOS)16; 10.239 (271 Ca) for protoporphyrinogen oxidase (PPOX) of *Bacillus subtilis* (3I6D)17; and 14.660 Å (162 Cα) for a polyunsaturated fatty acid isomerase of *Propionibacterium acnes* (2BAB)18.

The LkcE monomer contains two domains, a FAD-binding domain and a substrate-binding domain (Fig. 3a), which are joined by a substantial number of loop regions. The cofactor-binding domain (which includes residues 1−45 incorporating a characteristic FAD-binding motif (zxxGxGxxGxxxxhxxh(x)4hxhE(D)12), 70−83, 206−279, and 368−438), is topologically similar to other proteins with the ‘3-layer (BBA) sandwich’ fold in the CATH database19, and comprises a central four-stranded antiparallel β-sheet flanked on one side by five α-helices, and on the other side by a second three stranded, antiparallel β-sheet and three α-helices. The FAD cofactor is present at 100% occupancy (Supplementary Fig. 3), and as in other members of the MAO family, it adopts an elongated conformation. Although the specific FAD-binding residues differ among LkcE and its closest structural homologs (Supplementary Fig. 2), the types of interactions are similar, with the exception of those to the isoalloxazine ring. In all of the structures except LkcE and PPOX, the isoalloxazine is flanked by two bulky aromatic residues (Tyr, and in 3NG7 only, a Tyr and a Trp). In LkcE, the equivalent residue positions are Gly364 and Leu398, respectively, whereas in PPOX, the analogous amino acids are M413 and G449. Thus, it

Fig. 2 Structures of selected compounds investigated in this study. Compound LC-KA05 (1) was shown by NMR to exist almost exclusively in the enol form, and thus its derivatives 6 and 7 are also represented as enols. The gray boxes indicate where 6 and 7 differ from 1. The stereochemistry of the C-6-C-7 double bond in 7 and cyclized 7 (8) is unknown, as indicated by the question marks. The enol form, and thus its derivatives 6 and 7 are also represented as enols. The gray boxes indicate where 6 and 7 differ from 1. The stereochemistry of the C-6-C-7 double bond in 7 and cyclized 7 (8) is unknown, as indicated by the question marks. The enol form, and thus its derivatives 6 and 7 are also represented as enols. The gray boxes indicate where 6 and 7 differ from 1. The stereochemistry of the C-6-C-7 double bond in 7 and cyclized 7 (8) is unknown, as indicated by the question marks.
appears that the FAD-binding site has been modified in these two enzymes in order to accommodate the large macrocycles of the substrates/products.

The substrate-binding domain contains an orthogonal α-helix bundle that packs against a β-sheet. Visual inspection of the overlaid structures shows that although the cofactor-binding domain is well-conserved, the substrate-binding domain is significantly divergent in terms of both α-helical content and orientation (Supplementary Fig. 4). This is unsurprising given the pronounced structural differences between LC-KA05 and the typical small-molecule amine substrates of the MAO family20.

Although the majority of characterized MAO family members are homodimeric, there is some disagreement between crystallographic and solution data, and at least one homolog is monomeric9. LkcE is clearly a homodimeric protein in the crystal, with an extensive interface (4705 Å², representing 15% of the total surface area). It is also homodimeric in solution, as well as to its closest structural homolog 6HDNO14 (Fig. 5), giving it a distinctive quaternary organization. In the hMAO B crystal structure, the dimerization interface is formed by both the cofactor- and substrate-binding domains, whereas in the case of 6HDNO, stabilization of the homodimer is additionally provided by two molecules of diacylglycerophospholipid. In contrast, the dimer interface of LkcE is formed exclusively by the substrate-binding domain of each monomer. The interface residues include E68, K69, V87, L106, F108, E114, D121, Q125, N128, Q129, S188, Y199, R201, H332, and R335. Most of these are well-conserved between LkcE and its nearest homologs, but not all (Supplementary Fig. 2). This distinct mode of dimerization, coupled with the high content of loops at the interdomain interface within each monomer (Fig. 3a), would favor movement of the domains relative to each other, with potentially important implications for the catalytic mechanism, as discussed below.

Structure-guided site-directed mutagenesis of LkcE. Analysis of the crystal structures with substrate analogs bound revealed clear electron density attributable to EMAA and DATD, but only one of these compounds was present in any given active site, as their positions overlapped (Fig. 3b, c). Inspection of the two binding sites coupled with mechanistic considerations identified E64, H65, Y168, Y182, R326, and T397 as candidate catalytic residues (Supplementary Fig. 2). The presence of amino acids in the active site capable of acting as general acids/bases contrasts with other flavin-dependent amine oxidase homologs which lack such residues14,20.

In particular, E64, Y182, and R326 are strictly conserved in all genes putatively encoding LkcE-type cyclases (Supplementary Fig. 2). Site-specific mutagenesis was used to produce five mutants: E64A, E64Q, Y182F, R326L, and R326Q, which were purified to homogeneity (FAD content, respectively: E64A, 58%; E64Q, 53%; Y182F, 42%; R326L, 20%; R326Q, 60%). Analysis by circular dichroism (CD) confirmed that the mutations had not dramatically altered the structures (Supplementary Fig. 5).

Isolation of the native substrate of LkcE. To obtain the native LkcE substrate LC-KA05, we disrupted gene lkcE of the S. rochei by PCR targeting, using a strategy similar to that described previously8,21,22 (Supplementary Figs. 6 and 7). Following analysis of the lkcE mutant by high-performance liquid chromatography-mass spectrometry (HPLC-MS) to verify the presence of LC-KA05

![Fig. 3](image-url) Crystal structures of LkcE and its mutants. **a** Crystal structure of homodimeric, wild-type LkcE. The FAD-binding domain is shown in light blue and light purple for the monomers A and B, respectively, whereas the substrate-binding domain is shown in dark blue and purple. The FAD is colored in yellow.

b View of the active site of wild-type LkcE in the presence of bound DATD (pink) with its $2F_o-F_c$ map contoured at 1σ. Binding occurs mainly via hydrophobic interactions and a single hydrogen bond with T397.

c View of the active site of wild-type LkcE in the presence of bound EMAA (orange) with its $2F_o-F_c$ map contoured at 0.6σ. Comparison with **b** shows the analog to be binding in the same region of the active site.

d View of the active site of the LkcE E64Q mutant in the presence of bound LC-KA05 (green), which adopts a linear conformation. The $2F_o-F_c$ map surrounding the substrate is contoured at 1σ.
and the absence of all downstream metabolites (Supplementary Fig. 8 and Supplementary Table 4), I was obtained in pure form by preparative HPLC (Supplementary Fig. 9). Unfortunately, LC-KA05 was unstable, undergoing degradation via loss of the C-7 acetate, both by hydrolysis (to give 7-OH 6, Fig. 2) and elimination (to give 7 (Fig. 2)), which co-eluted with LC-KA05. However, 16 mg of mixed metabolite could be obtained from the extracts of 20–30 L of culture, with I and 7 present in an ~2:1 ratio (chemical data on all three compounds are provided in the Methods). As HPLC-MS analysis of extracts of both the wild-type strain...
and the lkcE mutant did not reveal any evidence for 7, nor, in the
case of the wild type, for its cyclized equivalent 8 (Fig. 2; Supple-
mental Fig. 10 and Supplementary Table 4), the cellular environ-
ment must protect against this type of non-productive
degradation. The 7-OH compound 6 was observed in extracts of the
lkcE mutant although not in the wild type (Supplementary Fig. 10
and Supplementary Table 4), presumably because in the presence of
active LkcE it can be productively cyclized to give lankacidinol C (9)
(Fig. 2) (see below), and from there transformed to lankadinol C.
Interestingly, NMR analysis of purified LC-KA05 revealed that
the δ-lactone was almost exclusively in the enol form (Supple-
mental Fig. 9) as recently described for a new lankadinol-derived
metabolite23, presumably because the six-membered ring forces
overlap in the π-system.

Kinetic characterization of LkcE and its mutants. Attempts to
determine the kinetics of LkcE-catalyzed conversion of LC-KA05
to lankadinol A by HPLC-MS were frustrated by the rapid
degradation of 1 under the assay conditions (Supplementary
Fig. 11). Nonetheless, larger scale incubation of 1 in the presence
of LkcE produced authentic lankadinol A, as judged by HPLC-
MS comparison with extracts of wild-type S. rochei containing
this metabolite, providing conclusive evidence that recombinant
LkcE was active (Supplementary Fig. 12 and Supplementary
Table 4). The enzyme was also found capable of cyclizing the
degradation product 7, as well as purified, deacetylated substrate
6, to give lankadinol C, as established by HPLC-MS (Supple-
mentary Fig. 12 and Supplementary Table 4), evidence for its
relaxed specificity toward structural variations at the C-6/C-7 ring
positions.

As an alternative and more-sensitive kinetic method, we
employed a coupled enzymatic assay to detect the H2O2 formed
during each catalytic cycle. For this, we utilized NADH
peroxidase from Streptococcus faecalis, which catalyzes the
NADH-dependent reduction of H2O2 to water. In this way, LkcE
turnover (production of H2O2) was detected via the consumption
of NADH (loss of absorbance at 340 nm) under conditions where
NADH peroxidase was not rate-limiting (see Methods)24. We
also confirmed that the presence of dimethyl sulfoxide (used to
solubilize the substrates) had no effect on the measured kinetic
parameters (Fig. 6 and Table 1). However, as 1 was present at
only ca. 66% in the mixture, and degraded spontaneously during the
assays, the kinetic parameters must be considered lower
estimates. Nonetheless, the possibility to rapidly acquire many
data points in the initial stages of the reaction (A340 nm was
measured every 0.4 s) meant that effects of the decomposition of 1
were minimized.

With the ca. 2:1 LC-KA05/eliminated derivative 7 mixture,
this system yielded the following steady-state kinetic parameters
for the wild type (average of measurements in duplicate, and
taking into account the observed proportion of holo LkcE
(45%)): $k_{cat} = 3.4 \pm 0.2 \text{ min}^{-1}$ and $K_M = 5 \pm 2 \mu M$. This k_{cat}
is comparable to both the overall rate of turnover reported for an
intact PKS system in vitro (1.1 min$^{-1}$)25, as well as that for the
amide oxidase Afi12070 (ca. 5 min$^{-1}$ (ref. 10)) (Fig. 6 and
Table 1). Analysis of the wild-type enzyme with deacetylated
substrate 6 yielded comparable parameters ($k_{cat} = 2.4 \pm 0.1 \text{ min}^{-1}$,
$K_M = 5 \pm 1 \mu M$) (Fig. 6 and Table 1). Mutants E64A, E64Q,
and R326L were completely inactive with the 1/7 mixture (as
was boiled protein control), whereas mutants Y182F and R326Q
showed good activity towards the deacetylated derivative 6:
R326Q, $k_{cat} = 0.88 \text{ min}^{-1}$, $K_M = 4 \mu M$; Y182F, $k_{cat} = 1.5 \text{ min}^{-1}$,
$K_M = 4 \mu M$ (Fig. 6 and Table 1) (owing to limited quantities, the
1/7 mixture was not tested with these mutants). Taken together,
these data are consistent with residues E64 and R326 playing
critical roles in the catalytic mechanism (although R can be
substituted by Q without a significant effect on activity), whereas
Y182 is not essential. We also confirmed lack of turnover with the
substrate analogs EMAA and DATD, both separately and
(together (using 2 and 10 µM enzyme and up to 400 µM in both
substrates), consistent with their overlapping binding modes
(Fig. 3b, c).

Crystal structures of LkcE mutants in complex with LC-KA05.
In order to obtain complexes with LC-KA05, mutants E64A,
E64Q, Y182F, R326L, and R326Q were soaked with the 1/7
substrate mixture followed by rapid acquisition of the X-ray
diffraction data (owing both to the low availability of LC-KA05
and its high instability, it was not possible to carry out co-
crystallization experiments). Of the five mutants, only E64Q and
R326Q yielded co-complexes with 1; 7 was not observed in the
active sites, as the acetate of 1 was clearly visible. The structure
of the LkcE E64Q/LC-KA05 complex was solved at 3.03 Å resolution,
and that of the LkcE R326Q/LC-KA05 complex at 2.50 Å
resolution by molecular replacement, using the structure of the
LkcE/EMAAM/DATD complex as the search model, and the pre-

cence of LC-KA05 confirmed using a weighted $F_o - F_c$ omit map
(Supplementary Fig. 3; Supplementary Table 3).

LC-KA05 lies at the interface between the substrate-binding
domain and the cofactor-binding domain and adopts an extended
conformation. The substrate sits in a deep pocket (∼ 20 Å from
the protein surface and ~ 6–8 Å wide), and is surrounded by
hydrophobic residues (L70, Y168, Y182, L185, M189, W200,
L324, F345, V396, and G398). In addition to these hydrophobic
interactions, binding is likely mediated by seven hydrogen bonds:
two to the lactone ring at the entry point of the pocket (by N179
and T397), one to the acetate at C-7 by the side chain of Q428,
and four to the lactoyl moiety (two with Y168, and one each with
E64 and R326). Notably, in this configuration, the lactoyl portion
of LC-KA05 stacks against the FAD isoalloxazine in a position
appropriate for hydride transfer (the amide proton is situated at
3.2 Å from the FAD N-5). On the other hand, superposition of
the R326Q/LC-KA05 structure and that of the holo wild type
shows that if LC-KA05 bound into the wild type in the same
orientation as in the LkcE R326Q/LC-KA05 complex, its C-24
hydroxyl would sterically clash with R326 (Supplementary
Fig. 13). In the E64Q structure in which R326 is present, the
protein is identical, but the substrate adopts an alternative
orientation, which allows it to interact with R326 (3.1 Å between
the C-23 carbonyl of LC-KA05 and the R326 side chain)
(Supplementary Fig. 13).

In both structures obtained in the presence of 1, the observed
linear configuration of the polyketide chain would not permit
subsequent cyclization involving the C-2 and C-18 centers (they
are separated by 13.2 Å). This observation is consistent with the
idea that LC-KA05 bound into the E64Q and R326Q mutants
represents an on-pathway, pre-cyclization conformation. Indeed,
the fact that the R326Q mutant retains essentially wild-type
activity means that we have not simply captured a non-
productive complex with the enzyme. To create the space
necessary for LC-KA05 to adopt its cyclization-ready state, the
enzyme must undergo a conformational change. Based on our
structural analysis, we propose that this involves a hinge
movement between the cofactor-binding and substrate-binding
domains, made possible by the distinctive dimerization mode of
LkcE. The new substrate configuration may be stabilized by a
second hydrogen bonding interaction with the bifunctional R326.
This new configuration would also position the substrate enol in
proximity to E64. Such a large-scale conformational change of
the enzyme might account for the observation that soaking 1 with
the
E64Q and R326Q mutants failed to yield a cyclization-compatible conformation.

Based on these data, we propose the following mechanism for LkcE (Fig. 7). LC-KA05 in its enol form binds into the active site via interactions that include H-bonding between the amide portion and R326. The fact that no degradation products of LC-KA05 are observed in the wild type in vivo strongly suggests that binding into LkcE is closely coupled to release of the intermediate from the PKS and its acetylation, perhaps by physical association of LkcE, the last PKS subunit, LkcG, and the as yet unidentified acetyltransferase. Hydride transfer then occurs to FAD to form the iminium. Although we initially considered that the conserved R326 in the active site might facilitate substrate oxidation by acting as a catalytic general base to deprotonate the amide, the near wild-type activity of the R326Q mutant is instead consistent with the residue playing a role in maintaining the cyclization-ready conformation of the substrate established by a subsequent conformational change. The side chain of E64 would then initiate ring closure by acting as a general base catalyst to activate the enol (there is no counterpart of this residue, to our knowledge, in other MAO family members). This key role is supported by the complete loss of activity seen with the E64A and E64Q mutants.

Fig. 6 Kinetic analysis by coupled assay of LkcE and its mutants. Data for which errors are shown were obtained by experiments repeated in duplicate (a) (the error bars thus show the two data points) or triplicate (b) (the error bars indicate the standard deviation). a LkcE acting on its native substrate, LC-KA05 (1), as a 2:1 mixture with eliminated product 7. b LkcE acting on deacetylated (7-OH) substrate 6. c LkcE acting on 6 but with each concentration adjusted to contain the maximum amount of DMSO (that present at 100 μM in b). As the data in b and c are essentially identical, the concentration of DMSO in this range had no effect on the rate. d LkcE R326Q acting on 6. e LkcE Y182F acting on 6. It must be noted that as we were limited in these assays for reasons of sensitivity to higher concentrations of substrate, it is possible that we missed an earlier sigmoidal dependence on concentration, indicative of cooperative behavior between the two LkcE monomers.
This mechanism could also explain the advantage of modifying the intermediate with an acetyl protecting group35 as this assures that attack on the iminium occurs only from C-2 and not from the C-7 hydroxyl.

Discussion

Studying how enzymes naturally gain new functions is a valuable source of information for attempts to replicate this process in the laboratory using rational design or combined rational/directed evolution approaches28. Here, we have investigated the bifunctional amide oxidase/macrocyclase LkcE to understand how a subsequent cyclization function might have been acquired by an MAO scaffold.

Existing structure/function data, although insufficient to reliably trace the evolution of the MAO family, clearly demonstrate that the shared di-domain structure of the enzymes can support a common oxidation mechanism of diverse amine substrates, including primary and secondary amines, polyamines, amino acids, and methylated lysine side chains in proteins9. Our results including primary and secondary amines, polyamines, amino acids, that the shared di-domain structure of the enzymes can support a catalytic role in the active site. E64, a second residue that has been implicated in the reaction mechanism, is located in a position that favors non-deleterious mutation, on a surface loop whose sequence is highly divergent between LkcE and hMAOs A and B (Supplementary Fig. 2).

Evolving specificity for LC-KA05 relative to classical MAO substrates also evidently required a substantial shift in amino-acid sequence within the substrate-binding domain (Supplementary Fig. 2)1, as well as at least two mutations increasing the space available adjacent to the FAD cofactor. In this context, the inherent promiscuity of the MAOs likely provided a favorable evolutionary starting point for the acquisition of new substrate specificity1. We have shown here that LkcE is capable of binding two substantially smaller substrate analogs, and shows tolerance toward structural variation at C-6/C-7 in the native substrate. Although further work will be required to define its substrate profile in detail, these data encourage the idea that LkcE may find wider use as a ligation/macrocyclization catalyst in both synthetic biology and organic synthesis applications. In view of the largely hydrophobic nature of the binding pocket, it will be particularly interesting to explore whether minimally functionalized acyl chains are also substrates.

In conclusion, on the basis of our analysis we propose that the bifunctional amide oxidase/macrocyclase LkcE acting on a highly functionalized polyketide chain, arose from an ancestral amine oxidase not only through substantial modification of the substrate-binding region and recruitment of two catalytic residues into the active site, but also by adoption of a different quaternary organization from modern MAOs. This adds to the emerging awareness of the wider structural alterations that may be necessary to introduce new reaction chemistry into existing enzyme active sites29.

Table 1 Kinetic data obtained for LkcE and its mutants

Enzyme	Substrate(s)	k_{cat} (s$^{-1}$)	K_M (µM)
LkcE wt	LC-KA05 (1)/elimination derivative (7) mixture	3.4 ± 0.2	5 ± 2
LkcE wt	Deacetylated derivative (6)	2.4 ± 0.1	5 ± 1
LkcE wt	Deacetylated derivative (6) complemented with DMSO	2.2	3
LkcE wt	EMMA (4)	X	X
LkcE wt	DATD (5)	X	X
LkcE wt	EMMA (4)/DATD (5)	X	X
LkcE E64A	LC-KA05 (1)/elimination derivative (7) mixture	X	X
LkcE E64Q	LC-KA05 (1)/elimination derivative (7) mixture	X	X
LkcE R326L	LC-KA05 (1)/elimination derivative (7) mixture	X	X
LkcE R326Q	Deacetylated derivative (6)	0.88	4
LkcE Y182F	Deacetylated derivative (6)	1.5	4

X = no detected activity

![Proposed mechanism of the LkcE-catalyzed reaction.](image-url)
Methods

Analysis in silico of LkcE. As a starting point for characterizing LkcE, we identified its closest sequence homologs in the NCBI database using Blastp30. For the top 11 hits, we also determined the genomic context of the genes (Supplementary Fig. 2). This analysis revealed nine LkcE homologs located within complete or partial lankacidin (or the closely related chejuenolide) gene clusters (as determined with reference to that described in S. rochei) (Supplementary Fig. 2), with sequence identity to the S. rochei LkcE gene in the range 70–100%. To aid in defining features that distinguish LkcE from classical monooxidases, we also included in our alignment the two nearest homologs that are not present in lankacidin clusters. We also used two of the closest structural homologs to LkcE from the Thermo Fisher Scientific and NADH peroxidase from NZYTech. DNA isolation and manipulation were performed using standard methods33,34. Isolation of DNA fragments from agarose gel and purification of PCR products were carried out using the NucleoSpin Extract II kit (Macherey Nagel, Hoesteln, France). Standard PCR reactions were carried out using Phusion high-fidelity DNA polymerase (Thermo Fisher Scientific); reactions were carried out on a Mastercycler Pro (Eppendorf). Synthetic oligonucleotides were purchased from Sigma-Aldrich, and DNA sequencing was carried out by GATC Biotech (Mulhouse, France). All organic solvents used were HPLC grade and purchased from Sigma-Aldrich.

Bacterial strains and culture conditions. E. coli strain DH5α was used for cloning (the primer sequences are provided in Supplementary Table 1), E. coli Rosetta 2 and E. coli B834 pRARE2 (DE3) were used respectively for producing unlabeled and selenolabeled protein, E. coli BW25113 for PCR targeting21,35, and E. coli ET12567 (pUZ8002) for transforming S. rochei var. volatilis ATCC 21250. This strain of S. rochei was a kind gift of Professor P.F. Leadlay (University of Cambridge). E. coli strains were grown on 2YT (16 g L−1 tryptone, 5 g L−1 yeast extract, 5 g L−1 NaCl, adjusted to pH 7.6 with NaClO4) for cloning purposes and LB (10 g L−1 tryptone, 10 g L−1 yeast extract, 5 g L−1 NaCl, adjusted to pH 7 with NaOH) for production of unlabeled protein. Selenolabeled protein was produced in M9 medium (50 mM NaH2PO4, 22 mM KH2PO4, 10 mM NaCl, 20 mM NH4Cl, adjusted to pH 7.2 with NaOH). After autoclaving, sterile-filtered ingredients were added as follows: 50 mg mL−1 of thiamine and riboflavin, 4 g L−1 glucose, 100 μM CaCl2, 2 mM MgSO4, 40 mg mL−1 selenomethionine, and 40 mg mL−1 of the remaining 19 amino acids). The E. coli cultures also contained the appropriate concentration of antibiotics (50 mg mL−1 kanamycin and 25 mg mL−1 ampicillin) in pre-cultures, and 5 and 2.5 mg mL−1 chloramphenicol in pre-cultures; 5 and 2.5 mg mL−1 kanamycin and 1 mg mL−1 apramycin in SFM medium (1 g L−1 D-glucose). E. coli BW25113 for PCR targeting21,35, and S. rochei var. volatilis ATCC 21250 for sequencing. The protein was then diluted 3 times into reconstituted ionic strength buffer (30 mM HEPES, 1 mM EDTA, pH 7.5) in order to allow for purification by anion exchange. For this, the sample was injected (5 mL min−1) onto a Q-sepharose column (trimethylammonium on 6% agarose) equilibrated in buffer (30 mM HEPES, 100 mM NaCl, 1 mM EDTA, pH 7.5). LkcE was then eluted using a NaCl gradient (from 100 mM to 1 M) at 5 mL min−1. The LkcE-containing fractions were identified by 12.5% SDS-PAGE, and pooled. In order to eliminate the remaining contaminant and any aggregating intermediate, the protein was subjected to a further purification step. For this, it was concentrated using an Amicon Ultra-30 (Merck Millipore) by centrifugation at 4000 g, to obtain a volume of less than 8 mL. This was then injected via a 10 mL loop onto a Superdex 200 26/60 prep grade column (GE), which had been pre-equilibrated with the buffer containing 20 mM imidazole, and the flow-through containing LkcE collected. After this reverse needle step, the protein was diluted three times into reduced ionic strength buffer (30 mM HEPES, 1 mM EDTA, pH 7.5). The protein was then diluted to 20 mg mL−1 by centrifugation at 4000 g using an Amicon Ultra-30, and 30 μL aliquots frozen in liquid nitrogen prior to storage at −80°C.

Analysis by CD of LkcE and its mutants. CD was carried out on a Chirascan CD (Applied Photophysics). Data were collected at 0.5 nm intervals in the wavelength range 200–260 nm at 20°C at a temperature of 20–24°C. For the determination of the secondary structure, the LkcE CD spectrum was collected using 10 μM protein sample at 50 μM was used for all the measurements. Each spectrum represents the average of three scans, and sample spectra were corrected for buffer background by subtracting the average spectrum of buffer alone.

Identification of LkcE FAD cofactor. The LkcE cofactor was identified as FAD by passing the enzyme over a reverse phase C8 column (Grace) using an HPLC (Äkta Explorer, GE Healthcare) in a gradient of 0–80% acetonitrile containing 0.1% trifluoroacetic acid. The peaks corresponding to the protein and to the released FAD were then analyzed by mass spectrometry (F. Dupire, Mass Spectrometry Service of the Faculty of Sciences and Technologies, Université de Lorraine). The FAD content of LkcE was then estimated by UV-Vis by measuring its absorbance (453 nm) at 20°C using 5 μM protein in buffer containing 1% acetonitrile (280 nm, ε = 58640). For this, LkcE was prepared at three different concentrations, and the OD measured at 280 and 540 nm. The value at 280 nm was divided by 56,840 to obtain the protein concentration and that at 540 nm by 11,500 to obtain the FAD concentration, and then the ratio of the two values determined. The % FAD values reported represent the average of the three calculated concentrations.

Creation of the lkcE knockout strain of S. rochei. The gene lkcE was inactivated in S. rochei var. volatilis ATCC 21250 by PCR targeting, using a method similar to that described previously5. For this, oligonucleotides (Supplementary Table 2) were designed to amplify an apramycin resistance cassette, flanked on both sides with 39 bp of homology to the genomic regions up and downstream of lkcE. These primers were used in a PCR reaction with plasmid pPh773 (ref. 37) encoding for Apr8. The injected 3 μL min−1 onto a Ni-Sepharose column (GE eichromides) Lc2B12 (kind gift of Professor P.F. Leadlay), a derivative of SuperCos1 (ref.22). For this, E. coli BW25113 was co-transformed with cosmid Lc2B12, plasmid pPh790 (temperature-sensitive 6xHis recombinant helper plasmid38), and the PCR fragment. Recombinants were selected by growth on LB supplemented with apramycin, and the presence andochloro location of the deletion confirmed by PCR screening and sequencing. E. coli ET12567 (pUZ8002) was then transformed with the mutant cosmid, and used for conjugation with spores of S. rochei. Recombinants were selected for apramycin resistance, and the inactivation of lkcE on plasmid pRSV (this plasmid contains the lankacidin cluster8) was confirmed by sequencing. The presence of the LkcE PCR product was then used to replace the LkcE gene in the lkcE mutant was confirmed by HPLC-MS analysis, by comparison with the wild-type strain (Supplementary Fig. 8 and Supplementary Table 4).

Materials and DNA manipulation. Biochemicals and media were purchased from Thermo Fisher Scientific (EDTA), VWR (glycerol, NaPi, NaCl), BD (peptone, yeast extract), Euromex (isoproxy β-1-1-thiogalactopyranoside; IPTG), and Sigma-Aldrich (RNase and DNAase). Protein purification was performed using equipment from Thermo Fisher Scientific and NADH peroxidase from NZYTech. DNA isolation and manipulation were performed using standard methods33,34. Isolation of DNA fragments from agarose gel and purification of PCR products were carried out using the NucleoSpin Extract II kit (Macherey Nagel, Hoesteln, France). Standard PCR reactions were carried out using Phusion high-fidelity DNA polymerase (Thermo Fisher Scientific); reactions were carried out on a Mastercycler Pro (Eppendorf). Synthetic oligonucleotides were purchased from Sigma-Aldrich, and DNA sequencing was carried out by GATC Biotech (Mulhouse, France). All organic solvents used were HPLC grade and purchased from Sigma-Aldrich.

Expression and purification of recombinant LkcE and mutants. After an overnight pre-culture at 37°C, E. coli Rosetta 2 containing pBG-102-LkcE was grown in LB medium supplemented with riboflavin (10–50 mg L−1) in order to support FAD biosynthesis. When the cultures reached an A600 of 0.6, the cultures were subjected to a cold shock, and the cells were centrifuged at 4000 g for 2 h at 4°C, and then protein expression induced by the addition of IPTG (final concentration of 0.1 mM). Incubation was then continued at 15°C overnight. The culture was then centrifuged for 30 min at 3500 g, the resulting cell pellet resuspended in 30 mL phosphate buffer (100 mM NaPi, 10% glycerol, 10 mM EDTA, pH 7.4), and the cells re-centrifuged, before storage at −20°C.

The cells resulting from 1 L of culture were resuspended in lysis buffer (30 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 500 mM NaCl, pH 7.5) (10 mL of buffer were used for each A600 unit at the end of culturing). In total, 400 units of benzamidine were added to each 100 mL of culture, as well as 6 mM MgSO4, in order to eliminate nucleic acids. The cells were then lysed using a cell disruptor (Basic Z, Constant Systems Ltd.) at 15 kPs (1000 bars) at 4°C, and the cellular debris removed by centrifugation (35,000 g for 40 min). After sterile filtration (0.22 μm filter) and addition of 70 mM imidazole, the supernatant was applied to a His6-SUMO tag, to yield pBG-102-LkcE (the full list of plasmids used in this study was a kind gift of Professor P.F. Leadlay (University of Cambridge). Multiple sequence alignment was carried out using ClustalW (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_npsaclus.html)39 and the figures created using ESPript40.
Isolation of LC-KA05. The LkcE mutant of S. rochei was grown in YM medium (3 x 10^6 L of culture). After removal of the cells by centrifugation (4550 g, 30 min), the supernatant was extracted with ethyl acetate (3 x equivalent volume). The organic phase was then evaporated, yielding 100–200 mg of material. 200 mg crude extract was dissolved in 2 mL methanol and cleared by centrifugation (2 min, 9610 g). The clear supernatant was purified by preparative HPLC on a Nucleodur C18 Liss column (5 µm, 250 x 21 mm; Machery Nagel) using a linear gradient (0 min: 20% B; 100 min: 100% B; flow: 1.5 mL·min⁻¹) of water (A) and acetonitrile (B). The chromatography was monitored by electrospray ionization (ESI)-MS using a 1:500 static splitter (methanol was used to achieve splitting at a flow rate of 500 µL·min⁻¹) coupled to a ZQ mass spectrometer (capillary voltage: 3 kV, 850 L·h⁻¹ nitrogen, 250 °C desolvation temperature). LC-KA05 showed a typical retention time of 39–49 min. The fractions were pooled and freeze dried yielding 20 mg as a 2:1 mixture with an elimination product (C₂₃H₃₇NO₇Na⁺), corresponding to loss of the C-7 acetate group. It should be noted that traces of formic acid in the chromatography solvents lead to quantitative formation of the elimination product upon freeze drying. An additional hydrolysis product (calc. for C₂₅H₃₇NO₇Na⁺) was detected (free C-7-OH group) at a retention time of 23–27 min. Assignment of the identities of 6 and 7 was based on HR-ESI-MS data (QToF Premier (Waters)), as well as their fragmentation patterns (ESI positive), with several cycles of manual rebuilding in Coot and re-rebuilding in PyMol (Schrödinger, LLC) to confirm the structures.

LkcE activity tests in vitro with substrate analogs. LkcE (50 µM) was incubated with 1, 5, or 50 mM of the two substrate analogs (in combination or separately) at 25 °C for 1 h in buffer (30 mM HEPES, 150 mM NaCl, 1 mM EDTA, pH 7.5), and the reaction was stopped by adding 2 x the equivalent volume of ethyl acetate. The organic phase was evaporated overnight at room temperature and then the residue analyzed by HPLC-MS (see section 2.1.3), after resuspension in H₂O/acetonitrile (80:20 v/v).

LkcE activity tests in vitro with the native substrate. Steady-state kinetics parameters were determined at 25 °C in gel filtration buffer (30 mM HEPES, 150 mM NaCl, 1 mM EDTA, pH 7.5) with variable concentrations of substrate, either the LC-KA05 (1)/elimination derivative product 7 mixture, the decatylated derivative 6, or the substrate analogs EMAA (4) and DATD (5) (in combination and separately). Reactions were carried out with 2 µM LkcE (and additionally with 4 µM enzyme in experiments with the substrate analogs 4 and 5) in the presence of NADH peroxidase from S. faecalis (0.5 U mL⁻¹) and NADH (0.3 mM). Initial rate measurements were obtained on a SAFAS VUcm² spectrophotometer by following the oxidation of NADH at 340 nm. Where appropriate, data were fitted to the Michaelis–Menten equation using least-squares regression analysis to determine k_cat and K_M. We confirmed that the NADH peroxidase in the reaction was not rate-limiting in the reaction by showing that doubling its concentration (from 3 to 6 U mL⁻¹) had no effect on the rate, whereas increasing the concentration of LkcE by a factor of five (from 5 to 25 µM) produced the expected fivefold increase in velocity.

Large-scale assays for analysis by HPLC-MS were carried out with 20 µM active LkcE, and the native substrate or some structures, either the LC-KA05 (1)/elimination derivative mixture 6 or decatylated derivative 6 was added every 10 min, until a final concentration of 1 mM substrate was reached. Enzymatic reactions were carried out overnight at 25 °C. One milliliter of ethyl acetate was then added and the mixture was thoroughly vortexed. The organic phase was separated from the aqueous phase, and the extraction repeated twice. The combined organic layers were evaporated to dryness on a SpeedVac concentrator.

HPLC-MS analysis. HPLC-MS analysis was performed using an HPLC (Dionex, Ultimate 3000) coupled to a LTQ Orbitrap XL hybrid mass spectrometer (Thermo Scientific) fitted with an ESI source. HPLC-MS data were processed using Xcalibur (v. 2.1) for sheath gas, auxiliary gas, spray voltage, aux gas flow, capillary temperature, capillary voltage, sheath gas, cone gas flow, and cone gas voltage. All the spectra were validated using the PDB (PDB: 3NG7, 3NG8, 3NG9) for the search model, manually.

Received: 26 March 2018 Accepted: 20 August 2018
Published online: 28 September 2018

References

1. Tyzack, J. D., Furnham, N., Sillitoe, I., Orenjo, C. M. & Thornton, J. M. Understanding enzyme function evolution from a computational perspective. Curr. Opin. Struct. Biol. 47, 131–139 (2017).

Data availability

Protein Data Bank coordinates for the LkcE, LkcF, LkcG, and LkcH enzymes were obtained via inspection of the protein structures and refinement statistics are presented in Supplementary Table 3.

Isolation of LC-KA05. The LkcE mutant of S. rochei was grown in YM medium (3 x 10^6 L of culture). After removal of the cells by centrifugation (4550 g, 30 min), the supernatant was extracted with ethyl acetate (3 x equivalent volume). The organic phase was then evaporated, yielding 100–200 mg of material. 200 mg crude extract was dissolved in 2 mL methanol and cleared by centrifugation (2 min, 9610 g). The clear supernatant was purified by preparative HPLC on a Nucleodur C18 Liss column (5 µm, 250 x 21 mm; Machery Nagel) using a linear gradient (0 min: 20% B; 100 min: 100% B; flow: 1.5 mL·min⁻¹) of water (A) and acetonitrile (B). The chromatography was monitored by electrospray ionization (ESI)-MS using a 1:500 static splitter (methanol was used to achieve splitting at a flow rate of 500 µL·min⁻¹) coupled to a ZQ mass spectrometer (capillary voltage: 3 kV, 850 L·h⁻¹ nitrogen, 250 °C desolvation temperature). LC-KA05 showed a typical retention time of 39–49 min. The fractions were pooled and freeze dried yielding 20 mg as a 2:1 mixture with an elimination product (C₂₃H₃₇NO₇Na⁺), corresponding to loss of the C-7 acetate group. It should be noted that traces of formic acid in the chromatography solvents lead to quantitative formation of the elimination product upon freeze drying. An additional hydrolysis product (calc. for C₂₅H₃₇NO₇Na⁺) was detected (free C-7-OH group) at a retention time of 23–27 min. Assignment of the identities of 6 and 7 was based on HR-ESI-MS data (QToF Premier (Waters)), as well as their fragmentation patterns (ESI positive), with several cycles of manual rebuilding in Coot and re-rebuilding in PyMol (Schrödinger, LLC) to confirm the structures.

LkcE activity tests in vitro with substrate analogs. LkcE (50 µM) was incubated with 1, 5, or 50 mM of the two substrate analogs (in combination or separately) at 25 °C for 1 h in buffer (30 mM HEPES, 150 mM NaCl, 1 mM EDTA, pH 7.5), and the reaction was stopped by adding 2 x the equivalent volume of ethyl acetate. The organic phase was evaporated overnight at room temperature and then the residue analyzed by HPLC-MS (see section 2.1.3), after resuspension in H₂O/acetonitrile (80:20 v/v).

LkcE activity tests in vitro with the native substrate. Steady-state kinetics parameters were determined at 25 °C in gel filtration buffer (30 mM HEPES, 150 mM NaCl, 1 mM EDTA, pH 7.5) with variable concentrations of substrate, either the LC-KA05 (1)/elimination derivative product 7 mixture, the decatylated derivative 6, or the substrate analogs EMAA (4) and DATD (5) (in combination and separately). Reactions were carried out with 2 µM LkcE (and additionally with 4 µM enzyme in experiments with the substrate analogs 4 and 5) in the presence of NADH peroxidase from S. faecalis (0.5 U mL⁻¹) and NADH (0.3 mM). Initial rate measurements were obtained on a SAFAS VUcm² spectrophotometer by following the oxidation of NADH at 340 nm. Where appropriate, data were fitted to the Michaelis–Menten equation using least-squares regression analysis to determine k_cat and K_M. We confirmed that the NADH peroxidase in the reaction was not rate-limiting in the reaction by showing that doubling its concentration (from 3 to 6 U mL⁻¹) had no effect on the rate, whereas increasing the concentration of LkcE by a factor of five (from 5 to 25 µM) produced the expected fivefold increase in velocity.

Large-scale assays for analysis by HPLC-MS were carried out with 20 µM active LkcE, and the native substrate or some structures, either the LC-KA05 (1)/elimination derivative mixture 6 or decatylated derivative 6 was added every 10 min, until a final concentration of 1 mM substrate was reached. Enzymatic reactions were carried out overnight at 25 °C. One milliliter of ethyl acetate was then added and the mixture was thoroughly vortexed. The organic phase was separated from the aqueous phase, and the extraction repeated twice. The combined organic layers were evaporated to dryness on a SpeedVac concentrator.

HPLC-MS analysis. HPLC-MS analysis was performed using an HPLC (Dionex, Ultimate 3000) coupled to a LTQ Orbitrap XL hybrid mass spectrometer (Thermo Scientific) fitted with an ESI source. HPLC-MS data were processed using Xcalibur (v. 2.1) for sheath gas, auxiliary gas, spray voltage, aux gas flow, capillary temperature, capillary voltage, sheath gas, cone gas flow, and cone gas voltage. All the spectra were validated using the PDB (PDB: 3NG7, 3NG8, 3NG9) for the search model, manually.
2. Furnham, N., Dawson, N. L., Rahman, S. A., Thornton, J. M. & Orengo, C. A. Large-scale analysis exploring evolution of catalytic machineries and superfamilies in enzyme superfamilies. *J. Mol. Biol.* 428, 253–267 (2016).

3. Eberhardt, R. Y. et al. Filling out the structural map of the NTF2-like superfamily. *BMC Bioinformatics* 14, 327 (2013).

4. Weiss, A. K. H., Loef, H. W., Liedl, K. R., Gstaiger, M. & Orengo, C. A. The fumarylacetoacetate hydratase (FAH) superfamily of enzymes: multifunctional enzymes encoded from microbes to mitochondria. *Biochem. Soc. Trans.* 46, 295–309 (2018).

5. Gerlt, J. A., Babbitt, P. C., Jacobson, M. P. & Almo, S. C. Divergent evolution in enoase superfamily: strategies for assigning functions. *J. Biol. Chem.* 287, 29–34 (2012).

6. Staunton, J. & Weissman, K. J. Polyketide biosynthesis: a millennium review. *Nat. Prod. Rep.* 18, 380–416 (2001).

7. Horsman, M. E., Hari, T. P. A. & Boddy, C. N. Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: logic gate or a victim of fate? *Nat. Prod. Rep.* 33, 183–202 (2016).

8. Arakawa, K., Sugino, F., Kodama, K., Ishii, T. & Kinashi, H. Cyclization mechanism of the NADH dehydrogenase of the monoamine oxidase (MAO) family. *Biochemistry* 50, 8756–8769 (2011).

9. Wu, L.-L., Xiang, Y., Yang, D.-C., Guan, Z. & He, Y.-H. Biocatalytic asymmetric Mannich reaction of ketimines using wheat germin lipase. *Catal. Sci. Technol.* 6, 3963–3970 (2016).

10. Ames, B. D. et al. Complexity generation in fungal peptidyl alkaloid biosynthesis: oxidation of fumiquinazoline A to the heptacyclic hemiaminal *treptomyces rochei* 3323 (2003).

11. Gust, B., Challis, G. L., Fowler, K., Kieser, T. & Chater, K. F. PCR-targeted mutagenesis: an additional dehydratase-like activity is required for biosynthesis of lankacidin in *Streptomyces rochei*. *Arch. Biochem. Biophys.* 512, 249–256 (2012).

12. Dym, O. & Eisenberg, D. Sequence-structure analysis of FAD-containing oxidase of the monoamine oxidase (MAO) family. *Arch. Biochem. Biophys.* 411, 60–67 (2003).

13. Dickschat, J. S. et al. An additional dehydratase-like activity is required for the control of opening the entry for substrates/inhibitors. *Proc. Natl. Acad. Sci. USA* 103, 13532–13537 (2006).

14. Reimer, D. & Bode, H. B. A natural prodrug activation mechanism in the deoxyerythronolide B synthase. *Biochemistry* 41, 4800–4805 (2002).

15. Sambrook, J. & Russell, D. *Molecular Cloning: A Laboratory Manual 3rd edn* (Cold Spring Harbor Laboratory Press, New York, 2000).

16. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. *Practical Streptomyces Genetics* (The John Innes Foundation, Norwich, UK, 2000).

17. Datensko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci. USA* 97, 6640–6645 (2000).

18. Liavonchanka, A., Hornung, E., Feussner, I. & Rudolph, M. G. Structure and function of the NMR data was recorded on the NMR spectrometer of the Plateforme de Bio-physique et Biologique Structurelle (B2S) (IBSLOr, UM5208, CNRS-UL-INSERM).

19. Steiner, K. & Schwab, H. Recent advances in rational approaches for enzyme engineering. *Trends Biotechnol.* 19, 13–14 (2001).

20. Steiner, K. & Schwab, H. Recent advances in rational approaches for enzyme engineering. *Trends Biotechnol.* 19, 13–14 (2001).

21. Lowry, B. et al. In vitro reconstitution and analysis of the 6-deoxyerythronolide B synthase. *J. Am. Chem. Soc.* 135, 16809–16812 (2013).

22. Guillem Schilpke, Y. V. & Hedstrom, L. A twisted base: the role of arginine in enzyme-catalyzed proton abstractions. *Arch. Biochem. Biophys.* 433, 266–278 (2005).

23. Reimer, D. & Bode, H. B. A novel prodrug activation mechanism in the biosynthesis of nonribosomal peptides. *Nat. Prod. Rep.* 31, 154–159 (2014).

24. Chen, R. Enzyme engineering: rational redesign versus directed evolution. *Trends Biotechnol.* 19, 13–14 (2001).

25. Lowry, B. et al. In vitro reconstitution and analysis of the 6-deoxyerythronolide B synthase. *J. Am. Chem. Soc.* 135, 16809–16812 (2013).

26. Guillem Schilpke, Y. V. & Hedstrom, L. A twisted base: the role of arginine in enzyme-catalyzed proton abstractions. *Arch. Biochem. Biophys.* 433, 266–278 (2005).

27. Reimer, D. & Bode, H. B. A novel prodrug activation mechanism in the biosynthesis of nonribosomal peptides. *Nat. Prod. Rep.* 31, 154–159 (2014).

28. Chen, R. Enzyme engineering: rational redesign versus directed evolution. *Trends Biotechnol.* 19, 13–14 (2001).

29. Steiner, K. & Schwab, H. Recent advances in rational approaches for enzyme engineering. *Trends Biotechnol.* 19, 13–14 (2001).

30. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J. Mol. Biol.* 215, 403–410 (1990).

31. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 22, 4673–4680 (1994).

32. Gouet, P., Robert, X. & Couderc, E. ESPript/EnScript: Extracting and rendering sequence and 3D information from atomic structures of proteins. *Nucleic Acids Res.* 31, 3320–3323 (2003).

33. Sambrook, J. & Russell, D. *Molecular Cloning: A Laboratory Manual 3rd edn* (Cold Spring Harbor Laboratory Press, New York, 2000).

34. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. *Practical Streptomyces Genetics* (The John Innes Foundation, Norwich, UK, 2000).

35. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J. Mol. Biol.* 215, 403–410 (1990).

36. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 22, 4673–4680 (1994).

37. Gouet, P., Robert, X. & Couderc, E. ESPript/EnScript: Extracting and rendering sequence and 3D information from atomic structures of proteins. *Nucleic Acids Res.* 31, 3320–3323 (2003).

38. Sambrook, J. & Russell, D. *Molecular Cloning: A Laboratory Manual 3rd edn* (Cold Spring Harbor Laboratory Press, New York, 2000).
supervised the research, and analyzed the data. K.J.W. wrote the paper, with input from all other authors.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-06323-w.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018