Feeling Touch *Through Glass*: A Modified Rubber Hand Paradigm

Rebekah C. White
Department of Experimental Psychology, University of Oxford, Oxford, UK

Jiexin Li
Pembroke College, University of Oxford, UK; Zhejiang University, Hangzhou, China

David Shacklette
Pembroke College, University of Oxford, UK; Illinois Wesleyan University, Bloomington, USA

Abstract
A variation on the rubber hand paradigm creates a striking illusion in which it seems to the participant that she or he is feeling touch through glass. This illusion provides insight about how individuals make use of predictive signals for integrating vision and touch.

Keywords
rubber hand illusion, predictive signals, tactile congruency, body representation

Over the past two decades, there has been an exponential increase in the number of experiments employing the rubber hand paradigm to investigate body awareness and representation. In the traditional version of the paradigm (Botvinick & Cohen, 1998), a prosthetic left hand is positioned on a table top in full view of the participant, and the participant’s left hand is hidden from view. (Note that the procedure can be adapted to a right hand, but for the sake of simplicity, we describe the methods as they apply to a left prosthetic hand and the participant’s left hand.) When the examiner administers *synchronous* touch to the two hands, it may seem to the participant that she or he is feeling touch at the location of the prosthetic hand (visual capture of touch), that the felt touch is caused by the paintbrush touching the prosthetic hand (illusion of causation), and that the prosthetic hand is the participant’s hand (illusion of ownership). This experience is referred to as the rubber hand illusion (RHI).

Corresponding author:
Rebekah C. White, Department of Experimental Psychology, University of Oxford, Oxford, UK.
Email: Rebekah.White@psy.ox.ac.uk

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
In a tutorial on experimental methods and design, we experimented with the set-up of the rubber hand paradigm and discovered that the RHI is resistant to a surprising manipulation. We made use of the furniture that was available in the tutorial room. The examiner and participant were seated on opposite sides of a glass-topped coffee table. The viewed prosthetic hand was positioned just below the glass and the participant's own left hand was positioned on top of the glass and hidden from view by way of a visual divider (Figure 1). Using one paintbrush, the examiner stroked the glass surface above the prosthetic hand, and using a second paintbrush, the examiner administered synchronous strokes to the participant's hidden left hand. Despite the viewed prosthetic hand being positioned below a sheet of glass, within 60 seconds, each of us experienced a compelling RHI.

Subsequently, we tested 12 new participants (10 women and 2 men; 18–60 years, $M = 36$ years) who were naïve to the RHI. There were three 60-second trials: (a) our novel glass rubber hand paradigm with synchronous stimulation, (b) the traditional rubber hand paradigm with synchronous stimulation, and (c) the glass rubber hand paradigm with asynchronous stimulation. Experience of the RHI was assessed using Botvinick and Cohen’s (1998) nine-item questionnaire (Figure 2). Three participants did not experience the RHI on any trial. The remaining nine participants experienced a compelling illusion on both of the synchronous trials. Seven of the nine participants gave identical agreement ratings across the two trials, suggesting that the glass and traditional paradigms elicit illusions of comparable strength.

How does the experience of our glass RHI sit with the existing literature? Schütz-Bosbach, Tausche, and Weiss (2009) found that the RHI was not diminished by tactile incongruence: The viewed prosthetic hand received touch from a rough stimulus, while the participant’s hidden hand received touch from a soft stimulus (and vice versa: for similar findings from the nonvisual RHI, see White, Aimola Davies, Halleen, & Davies, 2010). In contrast, Ward,
Mensah, and Jünemann (2015) found that a more dramatic tactile incongruence abolished the RHI: The viewed prosthetic hand received touch from a hard stimulus, while the participant’s hidden hand received touch from a soft stimulus. Drawing on the results from the two studies, Ward et al. suggested that participants use visual and somatosensory signals to make predictions about what touch should feel and look like, and with a sufficiently large discrepancy, the RHI is not elicited. They suggested that incongruency is detected in the somatosensory system, rather than via a more conceptual process based on the participant’s understanding of stimulus properties. Thus, the hard–soft difference is more dissimilar at the perceptual level (but perhaps not the conceptual level) than the rough–soft difference. Aimola Davies and White (2013) found that the RHI was not elicited with a no-touch rubber hand paradigm in which the viewed prosthetic hand was stroked with a paintbrush (touch) while the participant’s hidden hand did not receive any stimulation (no touch). Ward et al. suggested that the absence of the RHI with this set-up was due to there being “gross incongruity between what is predicted from vision and what is actually felt” (p. 1207). And yet, with our glass rubber hand paradigm, there is also gross incongruity between what is predicted from vision and what is actually felt, insofar as the viewed prosthetic hand does not receive any stimulation due to it being positioned beneath a sheet of glass (no touch), whereas the participant’s hidden hand does receive stimulation from a paintbrush (touch). Despite this, participants experience a compelling RHI.

This leads us to make a proposal about how the participant (or comparator system) makes use of visual and tactile signals. In making predictions about what touch should feel like, the participant considers what the visual stimulus would feel like if applied to her or his own

Figure 2. Mean agreement ratings for Botvinick and Cohen’s (1998) questionnaire. Statements 1 to 3 in the figure assessed the illusion (visual capture, causation, ownership) and Statements 4 to 9 were included to control for suggestibility. (Note that the order of statements was randomized.) Agreement ratings were provided on a 7-point scale ranging from 0 (not at all) to 6 (very strongly agree).
hand (i.e., brushstrokes), rather than what the visual stimulus must feel like as it is applied to
the viewed hand (i.e., no sensation due to the presence of an intermediary sheet of glass). And
likewise, in making predictions what touch should look like, the participant considers what
the administering tactile stimulus would look like (i.e., a paintbrush), rather than what the
administered tactile stimulation would look like (i.e., a paintbrush administering strokes
directly to the hand).

The findings from our glass rubber hand paradigm feed into the debate about how top-
down information (e.g., knowledge and expectations) affects the RHI. Although we know
that humans cannot feel touch through glass, this knowledge is insufficient to abolish the
RHI. We might consider that the paradigm elicits an illusion on top of an illusion. As with
the traditional rubber hand paradigm, the participant disregards proprioceptive
information to experience touch on a viewed hand, and in addition, the participant
perceives that she or he is feeling this touch through a sheet of glass. We hope that the
glass RHI will offer a new window through which to interpret past findings. As but one
example, many studies have shown that the RHI is not elicited when the viewed prosthetic
hand is replaced with a nonhand object (e.g., a block of wood: Tsakiris, Carpenter, James,
& Fotopoulou, 2010). One might question whether this is due to higher order beliefs about
the types of objects that could plausibly feel touch, but our glass RHI argues against this
interpretation: Although humans cannot feel touch through glass, the RHI is elicited with
this novel manipulation.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or
publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or
publication of this article: Rebekah White received a research allowance from Christ Church
(University of Oxford) to cover the costs associated with Open-Access publication.

References
Aimola Davies, A. M., & White, R. C. (2013). A sensational illusion: Vision-touch synaesthesia and the
rubber hand paradigm. Cortex, 49, 806–818.
Botvinick, M., & Cohen, J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature, 391, 756.
Schütz-Bosbach, S., Tausche, P., & Weiss, C. (2009). Roughness perception during the rubber hand
illusion. Brain and Cognition, 70, 136–144.
Tsakiris, M., Carpenter, L., James, D., & Fotopoulou, A. (2010). Hands only illusion: Multisensory
integration elicits sense of ownership for body parts but not for non-corporeal objects. Experimental
Brain Research, 204, 343–352.
Ward, J., Mensah, A., & Jünnemann, K. (2015). The rubber hand illusion depends on tactile congruency
of the observed and felt touch. Journal of Experimental Psychology: Human Perception and
Performance, 41, 1203–1208.
White, R. C., Aimola Davies, A. M., Halleen, T. J., & Davies, M. (2010). Tactile expectations and the
perception of self-touch: An investigation using the rubber hand paradigm. Consciousness and
Cognition, 19, 505–519.
Author Biographies

Rebekah C. White graduated with a BA/BSc and an MPhil (Psychology) from the Australian National University, and a DPhil in Experimental Psychology from the University of Oxford. At present, Rebekah is a junior research fellow at Christ Church, and she also provides academic mentoring to undergraduate and postgraduate psychology students at Pembroke College (University of Oxford). Her research interests include synaesthesia, inattentional blindness and body representation.

Jiexin Li was born in Shanxi province, China. She is currently studying toward a BA in Translation and Interpreting at Zhejiang University. From 2016–2017, she studied Experimental Psychology at Pembroke College (University of Oxford), as one of the first five students from mainland China on the Visiting Students program. Her research interests include speech perception, second language acquisition, hearing and visual perception, and interpreting.

David Shacklette is currently studying toward a BA in Philosophy at Illinois Wesleyan University. From 2016–2017, David studied Experimental Psychology and Philosophy at Pembroke College (University of Oxford) on the Visiting Students program. His main research interest is the interdisciplinary synergies between research in Philosophy of Mind and Neuropsychology.