and the retrospective nature and lack of detailed comorbidities of clinical cohorts.

In summary, our study suggests that the second consensus criteria for diagnosis of MSA needs to be revised with respect to the range of onset age of MSA.

Yang Hyun Lee, MD,1 Ⓢ Takashi Ando, MD,2,8
Jae Jung Lee, MD,3 Ⓢ Min Seok Baek, MD,4
Chul Hyoung Lyoo, MD, PhD,4 Sang Jin Kim, MD, PhD,5
Minkyeong Kim, MD,6 Jin Whan Cho, MD, PhD,6
Young H. Sohn, MD, PhD,1 Masahisa Katsuno, MD, PhD,2
Hirohisa Watanabe, MD, PhD,7 Mari Yoshida, MD, PhD,8,*
and Phil Hyu Lee, MD, PhD1,9 Ⓢ
1Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
2Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
3Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
4Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
5Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
6Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
7Department of Neurology, Fujita Health University, Toyoake, Japan
8Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
9Severance Biomedical Science Institute, Yonsei University, Seoul, Korea

References
1. Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008;71: 670–676.
2. Obelieniene D, Bauzaitis S, Kulakiene I, Keleras E, Eitmonaiite I, Rastenyte D. Diagnostic challenges in multiple system atrophy. Neuropsychiatr Dis Treat 2018;14:179–184.
3. Kim HJ, Jeon BS, Lee JY, Yun JY. Survival of Korean patients with multiple system atrophy. Mov Disord 2011;26:909–912.
4. Ben-Shlomo Y, Wenning GK, Tison F, Quinn NP. Survival of patients with pathologically proven multiple system atrophy: a meta-analysis. Neurology 1997;48:384–393.

Insulin Sensitivity in De Novo Parkinson’s Disease: A Hyperinsulinemic-Euglycemic Clamp Study

A recent clinical trial found that exenatide, an antidiabetic drug, could slow down the rate of decline in motor performance in patients with Parkinson’s disease (PD).1 A higher prevalence of diabetes mellitus (DM) has been reported in PD patients,2 whereas an increased incidence of PD was found in patients with DM.3–5 Although these findings suggest that peripheral insulin resistance might be involved in PD pathogenesis,6 systemic substrate metabolism and its responsiveness to insulin stimulation have not been rigorously assessed before in de novo, medication-free PD patients. Therefore, using the hyperinsulinemic-euglycemic clamp technique, the most accurate and precise method available for quantifying insulin sensitivity, we aimed to assess whether insulin resistance is an inherent feature of PD.

We performed a hyperinsulinemic-euglycemic clamp with stable isotopes (6,6-H2-glucose and [2H5]-glycerol), as

5. Watanabe H, Saito Y, Terao S, et al. Progression and prognosis in multiple system atrophy: an analysis of 230 Japanese patients. Brain 2002;125:1070–1083.
6. Roncovic D, Palma JA, Martinez J, Goulding N, Nordcliff-Kaufmann L, Kaufmann H. Cerebellar and parkinsonian phenotypes in multiple system atrophy: similarities, differences and survival. J Neural Transm (Vienna) 2014;121:507–512.

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.
previously described,7 to accurately quantify glucose and fat metabolism in 8 de novo, medication-free PD patients and 8 age-, sex-, fat-, and lean body mass–matched controls (Supporting Information Table S1). The diagnosis of PD was made by a movement disorders specialist (R.A.C.R.) according to the UK Parkinson’s Disease Society Brain Bank criteria. The study was approved by the local ethics committee. Intergroup differences were assessed using the unpaired t-test, with the significance threshold set at \(P < 0.05\). Given the exploratory nature of the study, we did not apply multiple comparison adjustments. Data are presented as mean ± standard error.

During basal steady-state conditions, peripheral glucose disposal rate and endogenous glucose production rate were similar between PD patients and controls (21.9 ± 0.5 vs. 21.0 ± 0.5 μmol/kgFatFreeMass/FFM/min, respectively; \(P = 0.26\)). In PD and control subjects, insulin stimulation increased whole-body glucose disposal rate (57.5 ± 8.5 vs. 48.0 ± 4.9 μmol/kgFatFreeMass/FFM/min; \(P = 0.35\)) and suppressed glucose production rate (14.4 ± 1.6 vs. 12.3 ± 1.0 μmol/kgFatFreeMass/min; \(P = 0.30\)) to a similar extent, although with a slightly higher hepatic insulin resistance index in PD patients (3,829 ± 227 vs. 3,020 ± 265 μmol kgFFM/min/ pmol × I_{2}; \(P = 0.04\); Table 1). Both plasma glycerol levels and its rate of appearance, a measure of lipolysis, were similar between the two groups, with a similar degree of suppression of lipolysis by hyperinsulinemia (Table 1).

We found that whole-body glucose disposal rate, the gold standard for quantification of peripheral insulin resistance, was remarkably similar between newly diagnosed, medication-free PD patients and age-, sex-, and body composition–matched controls. In addition, other physiological responses of systemic glucose and fat metabolism to insulin challenge were unaltered in PD patients. These findings thus indicate that PD is not associated with insulin resistance. Our results therefore also suggest that the putative neuroprotective action of antidiabetic drugs, including exenatide, may originate from their effect at the neuronal level rather than on systemic metabolism.1 However, given the increased risk of developing PD and a more aggressive course of PD in those with DM,2,3 it remains possible that treatment of the systemic metabolic disturbances in PD patients with hyperglycemia and insulin resistance may affect disease progression.

References

1. Athauda D, Maclagan K, Skene SS, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 2017;390:1664–1675.

2. Pressley JC, Louis ED, Tang MX, et al. The impact of comorbid disease and injuries on resource use and expenditures in parkinsonism. Neurology 2003;60:87–93.

3. De Pablo-Fernandez E, Goldacre R, Pakpour J, Noyce AJ, Warner TT. Association between diabetes and subsequent Parkinson disease: a record-linkage cohort study. Neurology 2018;91:139–142.

4. Pagano G, Polychronis S, Wilson H, et al. Diabetes mellitus and Parkinson disease. Neurology 2018;90:e1654–e1662.

5. Jeong SM, Han K, Kim D, Rhee SY, Jang W, Shin DW. Body mass index, diabetes, and the risk of Parkinson’s disease. Mov Disord 2020;35:236–244.

6. Polytzb T, Athauda D. Diabetes, BMI, and Parkinson’s. Mov Disord 2020;35:201–203.

7. Aziz NA, Pijl H, Froligh M, et al. Systemic energy homeostasis in Huntington’s disease patients. J Neurol Neurosurg Psychiatry 2010;81:1233–1237.

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.