A NOTE ON A DEGREE SUM CONDITION FOR LONG CYCLES IN GRAPHS

JANUSZ ADAMUS

Abstract. We conjecture that a 2-connected graph G of order n, in which $d(x) + d(y) \geq n - k$ for every pair of non-adjacent vertices x and y, contains a cycle of length $n - k$ ($k < n/2$), unless G is bipartite and $n - k$ is odd. This generalizes to long cycles a well-known degree sum condition for hamiltonicity of Ore. The conjecture is shown to hold for $k = 1$.

1. Introduction

The subject of this note is the following conjecture, in which we generalize to long cycles a well-known degree sum condition for hamiltonicity of Ore [4]. All graphs considered are finite, undirected, with no loops or multiple edges.

Conjecture 1.1. Let G be a 2-connected graph of order $n \geq 3$, $n \neq 5, 7$, and let $k < n/2$ be an integer. If $d(x) + d(y) \geq n - k$ for every pair of non-adjacent vertices x and y, then G contains a cycle of length $n - k$, unless G is bipartite and $n - k \equiv 1 \pmod{2}$.

Remark 1.2. The conjecture is sharp. First of all, a quick look at C_5 and C_7 ensures that the assumption $|G| \neq 5, 7$ is necessary. Secondly, it is easy to see that without the 2-connectedness assumption, there could be no long cycles at all. Consider, for instance, a graph G obtained from disjoint cliques $H_1 = K_{\lfloor n/2 \rfloor}$ and $H_2 = K_{\lceil n/2 \rceil}$ by joining a single vertex x_0 of H_2 with every vertex of H_1. Finally, the bound for the degree sum of non-adjacent vertices is best possible, as shown in the example below.

Example 1.3. Let G be a graph obtained from the complete bipartite graph $K_{(n-k-1)/2,(n+k+1)/2}$ by joining all the vertices in the smaller colour class. Then $d(x) + d(y) \geq n - k - 1$ for every pair of non-adjacent vertices x and y, and G contains no cycle of length greater than $n - k - 1$.

Our main result is the following theorem that implies Conjecture 1.1 for $k = 1$, as shown in Section 2. The proof of Theorem 1.4 is given in the last section.

Theorem 1.4. Let G be a 2-connected graph of order $n \geq 3$, in which $d(x) + d(y) \geq n - 1$ for every pair of non-adjacent vertices x and y.

Key words and phrases. Hamilton cycle, long cycle, degree sum condition, Ore-type condition.
(i) If \(n \) is even, then \(G \) is hamiltonian.
(ii) If \(n \) is odd, then \(G \) contains a cycle of length at least \(n - 1 \).
Moreover, \(G \) is not hamiltonian only if the minimal degree of its \(n \)-closure, \(\text{Cl}_n(G) \), equals \((n - 1)/2 \). In this case, \(\text{Cl}_n(G) \) is a maximal non-hamiltonian graph.

Recall that the \(n \)-closure \(\text{Cl}_n(G) \) of \(G \) is a graph obtained from \(G \) by successively joining all pairs \((x, y)\) of non-adjacent vertices satisfying \(d(x) + d(y) \geq n \).

2. Long cycles in graphs

Proposition 2.1. Conjecture 1.1 holds for \(k = 1 \).

For the proof, we will need the following result of [3]:

Theorem 2.2 (Haggkvist-Faudree-Schelp). Let \(G \) be a hamiltonian graph on \(n \) vertices. If \(G \) contains more than \(\left\lfloor \frac{(n - 1)^2}{4} \right\rfloor + 1 \) edges, then \(G \) is pancyclic or bipartite.

Proof of Proposition 2.1. By Theorem 1.4, we may assume that \(G \) is hamiltonian. Suppose first that \(G \) is a 2-connected non-bipartite hamiltonian graph of order \(n \), in which \(d(x) + d(y) \geq n - 1 \) whenever \(xy \notin E(G) \).

Consider a vertex \(x \) of minimal degree \(d(x) = \delta(G) \) in \(G \). Write \(\delta = \delta(G) \). Then \(G \) has precisely \(n - 1 - \delta \) vertices non-adjacent to \(x \), each of degree at least \(n - 1 - \delta \).
The remaining \(\delta + 1 \) vertices are of degree at least \(\delta \) each, hence

\[
\|G\| \geq \frac{1}{2}[(\delta + 1)\delta + (n - 1 - \delta)^2].
\]

As \(\delta \geq 2 \), one immediately verifies that

\[
\frac{1}{2}[(\delta + 1)\delta + (n - 1 - \delta)^2] > \frac{(n - 1)^2}{4} + 1,
\]
whenever \(n \neq 5 \).

It remains to consider the case of \(G \) a bipartite 2-connected hamiltonian graph of order \(n \). But then \(n \) must be even, for otherwise \(G \) would contain an odd cycle.
Thus \(n - 1 \equiv 1 \pmod{2} \), which completes the proof. \(\square \)

For convenience, let us finally recall two well-known results, that we shall need in the proof of Theorem 1.4:

Theorem 2.3 (Dirac [2]). Let \(G \) be a graph of order \(n \geq 3 \) and minimal degree \(\delta(G) \geq n/2 \). Then \(G \) is hamiltonian.

Theorem 2.4 (Bondy-Chvatal [1]). Let \(G \) be a graph of order \(n \) and suppose that there is a pair of non-adjacent vertices \(x \) and \(y \) of \(G \) such that \(d(x) + d(y) \geq n \). Then \(G \) is hamiltonian if and only if \(G + xy \) is hamiltonian.

Corollary 2.5. A graph \(G \) is hamiltonian if and only if its \(n \)-closure \(\text{Cl}_n(G) \) is so.
3. Proof of Theorem 1.4

Proof of part (i). Suppose there exists an even integer \(n \geq 4 \) for which the assertion of the theorem does not hold. Let \(G \) be a maximal non-hamiltonian 2-connected graph of order \(n \), in which \(d(x) + d(y) \geq n - 1 \) whenever \(xy \notin E(G) \).

By maximality of \(G \), \(G + xy \) is hamiltonian for every pair of non-adjacent vertices \(x, y \in V(G) \). Hence, by Theorem 2.4 we must have

\[
(*) \quad d(x) + d(y) = n - 1 \quad \text{whenever} \quad xy \notin E(G).
\]

The minimal degree \(\delta(G) \) of \(G \) satisfies inequality \(\delta(G) < n/2 \), by Theorem 2.3, hence, in particular, \(n - 1 - \delta(G) \geq \delta(G) + 1 \).

Pick \(x \in V(G) \) with \(d(x) = \delta(G) \). There are precisely \(n - 1 - \delta(G) \) vertices in \(G \) non-adjacent to \(x \), each of degree \(n - 1 - \delta(G) \), by \((*)\). Put \(V = \{ v \in V(G) : xv \notin E(G) \} \). Pick \(y \in V \). As \(d(y) = n - 1 - \delta(G) \), there are precisely \(\delta(G) \) vertices in \(G \) non-adjacent to \(y \), each of degree \(\delta(G) \), by \((*)\) again. Put \(U = \{ u \in V(G) : uy \notin E(G) \} \). Then \(|U| = \delta(G), \ |V| = n - 1 - \delta(G), \ and \ U \cap V = \emptyset, \) because vertices in \(U \) are of degree \(\delta(G) \) and those in \(V \) are of degree \(n - 1 - \delta(G) > \delta(G) \). It follows that there exists a vertex \(z \) in \(G \) such that \(V(G) = U \cup V \cup \{ z \} \) is a partition of the vertex set of \(G \).

We will now show that \(d(z) = n - 1 \): Observe first that \(d(z) > \delta(G) \). Indeed, if \(d(z) = \delta(G) \), then by \((*)\), \(z \) is adjacent to every vertex in \(U \), as \(2\delta(G) < n - 1 \). But \(z \) is also adjacent to \(y \), as \(z \notin U \), hence \(d(z) \geq |U| + 1 = \delta(G) + 1 \); a contradiction. Consequently, \(z \) is adjacent to every vertex in \(V \), by \((*)\) again, as \(d(z) + (n - 1 - \delta(G)) > n - 1 \). Hence \(d(z) \geq |V| = n - 1 - \delta(G) \). On the other hand, \(z \) is adjacent to \(x \), as \(z \notin V \), which yields \(d(z) \geq |V| + 1 = n - \delta(G) \). This last inequality paired with \((*)\) implies that \(z \) is adjacent to every other vertex in \(G \), as required.

Next observe that \(u_1 u_2 \in E(G) \) for every pair of vertices \(u_1, u_2 \) in \(U \), as \(d(u_1) + d(u_2) = 2\delta(G) < n - 1 \). It follows that \(N(u) \supset U \cup \{ z \} \setminus \{ u \}, \) and hence, by comparing cardinalities, \(N(u) = U \cup \{ z \} \setminus \{ u \} \) for every \(u \in U \).

Similarly, \(v_1 v_2 \in E(G) \) for every pair \(v_1, v_2 \) in \(V \), hence \(N(v) = V \cup \{ z \} \setminus \{ v \} \) for every \(v \in V \). Therefore \(G = G_1 \cup G_2 \), where \(G_1 \) is a complete graph of order \(\delta(G) + 1 \) spanned on the vertices of \(U \cup \{ z \} \), and \(G_2 \) is a complete graph of order \(n - \delta(G) \) spanned on \(V \cup \{ z \} \). Then \(z \) is a cutvertex, contradicting the assumption that \(G \) be 2-connected.

Proof of part (ii). Suppose there exists a 2-connected graph of odd order \(n \geq 3 \), in which \(d(x) + d(y) \geq n - 1 \) for every pair of non-adjacent vertices \(x \) and \(y \), that does not contain neither a Hamilton cycle nor a cycle of length \(n - 1 \). Let \(G \) be maximal such a graph of order \(n \). By maximality of \(G \), \(G + xy \) contains a cycle of length at least \(n - 1 \) whenever \(xy \notin E(G) \). Hence \(G \) contains a path of length at least \(n - 2 \) between any two of its non-adjacent vertices.

Pick a pair of non-adjacent vertices \(x \) and \(y \). By a theorem of Pósa, \(G \) contains a Hamilton \(x - y \) path \(P \), and hence, by Theorem 2.4, the sum \(d(x) + d(y) \) actually equals \(n - 1 \). Write \(P = u_1 u_2 \ldots u_n \), where \(u_1 = x \) and \(u_n = y \).

Put \(I_x = \{ i : xu_{i+1} \in E(G), 1 \leq i \leq n - 1 \} \) and \(I_y = \{ i : uy \in E(G), 1 \leq i \leq n - 1 \} \). If \(I_x \cap I_y \neq \emptyset \), say \(i_0 \in I_x \cap I_y \), then \(G \) contains a Hamilton cycle

\[
u_1 u_{i_0+1} u_{i_0+2} \ldots u_n u_{i_0} u_{i_0-1} \ldots u_2 u_1.
\]
We may thus assume that $I_x \cap I_y = \emptyset$. Then, for every $1 \leq i \leq n - 1$, either u_i is adjacent to y or else u_{i+1} is adjacent to x, because $|I_x| + |I_y| = d(x) + d(y) = n - 1$. Let $d = d(y)$ and let $v_1, \ldots, v_d = y$ be the vertices that lie on P next to the (respective) neighbours of y.

If there exists $j < d$ such that $v_j \notin N(y)$, then $v_j = u_{i_0}$ for some $i_0 \in I_x$. It follows that u_{i_0+1} is adjacent to x, and G contains a cycle of length $n - 1$ of the form

$$u_1 u_{i_0+1} u_{i_0+2} \ldots u_n u_{i_0-1} u_{i_0-2} \ldots u_2 u_1.$$

Therefore we can assume that

$$(i) \quad v_1, \ldots, v_{d-1} \text{ are all adjacent to } y.$$

Let z denote the furthermost neighbour of y on P. It follows from (i) that all the vertices between z and y on P are adjacent to y, and hence $z = u_{n-d}$.

Suppose $N(v_j) \subset \{z, v_1, \ldots, v_d\}$ for $j \leq d$. Then $N(u_i) \subset \{u_1, \ldots, u_{n-d-1}, z\}$ for $i \leq n - d - 1$. Consequently, $d(u_i) \leq n - d - 1$, $d(v_j) \leq d$, and $u_i v_j \notin E(G)$ for $i \leq n - d - 1$ and $j \leq d$. But then $d(u_i) + d(v_j) \geq n - 1$ yields

$$d(u_i) = n - d - 1 \quad \text{and} \quad d(v_j) = d \quad \text{for} \quad i = 1, \ldots, n - d - 1, \quad j = 1, \ldots, d.$$

Therefore, as in the proof of part (i), we get that $G = G_1 \cup G_2$, where G_1 is a complete graph of order $n - d$ spanned on the vertices $\{u_1, \ldots, u_{n-d-1}, z\}$ and G_2 is a complete graph of order $d + 1$ on $\{z, v_1, \ldots, v_d\}$. Then z is a cutvertex contradicting our assumptions on G.

It remains to consider the case of some v_{j_0} being adjacent to u_{i_0}, where $i_0 \leq n - d - 1$. But then again G contains a Hamilton cycle

$$u_1 \ldots u_{i_0} v_{j_0} \ldots v_d v_{j_0-1} \ldots u_{i_0+1} u_1.$$

For the proof of the last assertion of Theorem 1.4, suppose that $n = 2k + 1$ is odd and G is a non-hamiltonian 2-connected graph on n vertices, satisfying $d(x) + d(y) \geq n - 1$ for every pair of non-adjacent x and y. Then the n-closure of G, $G^* = Cl_n(G)$ is not hamiltonian either, by Theorem 2.1 and we have equality

$$d_{G^*}(x) + d_{G^*}(y) = n - 1 \quad \text{whenever} \quad xy \notin E(G^*).$$

Now, if $\delta(G^*) < k = \frac{2n - 1}{2}$, then $n - 1 - \delta(G^*) > \delta(G^*)$ and one can repeat the proof of part (i) to show that G^* contains a Hamilton cycle, which contradicts the assumptions on G.

Thus $\delta(G^*) = \frac{2n - 1}{2}$. Moreover, $d_{G^*}(x) + d_{G^*}(y) = n - 1 = 2k$ for $xy \notin E(G^*)$ implies that $d_{G^*}(x) = k$ or $d_{G^*}(x) = n - 1$ for every vertex x.

Suppose G^* is not maximal among the non-hamiltonian 2-connected graphs on n vertices. Then G^* has a pair of non-adjacent vertices x and y such that $G^* + xy$ is contained in a maximal non-hamiltonian graph H. By maximality of H, $H + uv$ contains a Hamilton cycle for every $uv \notin E(H)$, so Theorem 2.2 implies that $d_H(u) + d_H(v) = n - 1$ for every $uv \notin E(H)$.

Notice that $d_{G^*}(x) = k$, as $d_{G^*}(x) < n - 1$. Then $d_H(x) \geq k + 1$ and hence, for every v non-adjacent to x in G^*, $d_H(x) + d_H(v) \geq d_{G^*}(x) + 1 + d_{G^*}(v) > n - 1$, implying $xv \in E(H)$. Therefore H is obtained from G by increasing degrees of at least x and all its non-neighbours in G^*, that is, at least $1 + (n - 1 - k) = k + 1$ vertices. But then H contains at least $k + 1$ vertices of degree $n - 1$, which
means that $\delta(H) \geq k + 1 = \frac{n+1}{2}$, and hence H is hamiltonian by Theorem 2.3; a contradiction.

\[\square \]

References

1. J. A. Bondy, V. Chvatal, *A method in graph theory*, Discrete Math. **15** (1976), 111–136.
2. G. A. Dirac, *Some theorems on abstract graphs*, Proc. London Math. Soc. **3**, No.2 (1952), 69–81.
3. R. Haggkvist, R. J. Faudree, R. H. Schelp, *Pancyclic graphs-connected ramsey number*, Ars Combin. **11** (1981), 37–49.
4. O. Ore, *Note on hamiltonian circuits*, Amer. Math. Monthly **67** (1960) 55.