Environmental engineers and scientists have played pivotal roles in protecting the public from viral illnesses, and continue to do so today. We develop drinking water and municipal wastewater treatment technologies, make discoveries that inform related regulations and policies, and conduct critical research on the presence, persistence, and transport of viruses in the environment. A wide range of impactful research in our field has focused mainly on nonenveloped human enteric viruses such as human noroviruses and enteroviruses. More recently, a number of high-profile outbreaks such as Ebola virus, measles, Zika virus, avian influenza, SARS, MERS, and the ongoing COVID-19 pandemic have been caused by enveloped viruses. In addition to the RNA or DNA genomes and protective protein capsids that are common to all viruses, enveloped virus structures are also wrapped in bilipid membranes.

The primary mode of transmission for many enveloped viruses is by close contact with infected individuals. Some enveloped viruses, however, are released to the environment by the host and persist on surfaces (i.e., fomites), in the air, or in water, long enough to come into contact with another host for further onward transmission (i.e., indirect transmission). This includes viruses responsible for influenza and measles. The primary transmission routes for SARS-CoV-2 (the virus that causes COVID-19) are believed to be person-to-person contact and by exposure to large droplets produced from sneezing, coughing or talking, but indirect transmission routes may also play a role. This potential role of the environment in the spread of COVID-19 highlights the multitude of applied research needs that must be addressed to effectively control outbreaks and pandemics as novel enveloped viruses emerge. Environmental engineers and scientists are well positioned to apply their unique skill sets and experience with interdisciplinary research to address these needs.

Virus particles in the air and on fomites are exposed to a range of environmental conditions that influence their persistence. Relative humidity, fomite material, and air temperature can greatly impact enveloped virus inactivation rates. Even the medium in which the virus is suspended can greatly impact persistence. For example, chlorine-based solutions and hydrogen peroxide gas are effective at inactivating the enveloped virus surrogate Phi6 on fomites, but the presence of blood requires much higher hydrogen peroxide gas doses. Future mechanistic studies should probe how specific constituents in the matrix, temperature, humidity, and solar radiation each impact inactivation. Furthermore, research quantifying the transfer of enveloped viruses between fomites and skin, and determining effective hand washing and surface sanitizing methods, is needed to inform agent-based risk assessment models.

Viruses have a direct connection to wastewater and drinking water purification when they are excreted in feces or urine (Table 1), but there is limited data on the concentration of enveloped viruses in feces and urine. The human coronavirus responsible for the 2003 SARS outbreak was able to replicate in the human GI tract and infective particles were detected in stool samples. In fact, aerosolized fecal particles are believed
Table 1. Mean or Median Viral Loads in the Feces and Urine of Infected Individuals for Three Enveloped Viruses and Two Nonenveloped Viruses

Virus	Enveloped?	Urine (gc/mL)	Feces (gc/g)	Feces (gc/swab)	Source
SARS-CoV-2	yes	10^{13}	10^{11} NA	NA	21
cytomegalovirus (CMV)	yes	10^{15}	NA	NA	22
SARS-CoV-2 gI	yes	ND	NA	10^{6}	13
human norovirus GII	no	NA	10^{6.5} NA	NA	23
JC polyomavirus	no	10^{16}	NA	NA	24

Notes: “gc” is gene copy. NA = not analyzed in study, ND = analyzed, but not detected in study. Samples from approximately 100 patients with lab-confirmed illness, mean. Samples from 36 children with lab-confirmed illness, median. Rectal swab samples from 9 patients with lab-confirmed illness during first week of illness, mean. Samples from 627 patients with gastroenteritis symptoms, median. Samples from 71 health blood donors that tested positive or JC polyomavirus, median.

Despite the research outlined above, enveloped viruses are extremely diverse, with a range of genome types, structures, replication cycles, and pathogenicities. For example, of the 158 identified human RNA viruses species as of 2018, 122 species from 11 virus families were enveloped and 36 species from 6 families were nonenveloped. Consequently, enveloped viruses likely display a diverse range of environmental behavior, persistence, and fate. The limited studies on enveloped-virus fate, transport, and inactivation have focused on only a small fraction of human viruses or their proxies including animal coronaviruses and bacteriophage phi6. Although studies using animal coronaviruses have been valuable for the current COVID-19 outbreak, it is essential to consider an expanded set of enveloped viruses that better represent human enveloped virus diversity.

Future studies on enveloped viruses should seek to carefully characterize and even standardize the conditions under which measurements are conducted. Media composition, the purity of virus stock, and when possible, virus concentrations in both gene copies and infective units, should be described. When studying oxidants, the demand of the solution and change in oxidant concentration through the experiment should be provided. When studying radiation (UVC and/or sunlight), attenuation through the experimental solution should be well-characterized incorporated into reported doses. Researchers should include a well-studied surrogate virus in their experiments in addition to the enveloped virus of interest to facilitate cross-study comparisons. We recommend using the nonenveloped bacteriophage MS2 for this purpose, as it is one of the most studied viruses in environmental systems.

Finally, there are emerging research areas in our field that we believe can inform the current COVID-19 outbreak and future novel viral outbreaks. For example, predictive models based on the underlying mechanisms controlling the persistence of enveloped viruses, and other characteristics, may reduce the need to study every virus under every condition. Another promising area of research involves using sewage to monitor virus circulation in communities and detect outbreaks before clinical cases are identified. Recently applied to pathogenic bacteria and nonenveloped viruses, this will necessitate a better understanding of which enveloped viruses are excreted in urine and feces and at what levels.

SARS-CoV-2 will certainly not be the last novel virus to emerge and seriously threaten global public health. Researchers and funding agencies have a tendency to focus intensely on a specific virus during its outbreak, but then move on to other topics when the outbreak subsides. Given the historical contributions from our field, and the grand challenges that lie ahead, environmental science and engineering researchers should take a broader, long-term, and more quantitative approach to understanding viruses that are spread through the environment. Similar to how we approach chemical pollutants in the environment, we should aim to understand and communicate to our colleagues in medicine and public health the specific characteristics that drive transport and inactivation of enveloped viruses in solutions, on surfaces, and in the air. Likewise, we should seek to understand how environmental factors shape possible virus transmission routes. That way, regardless of the identity of the enveloped virus that causes the next major outbreak, we can provide more informed descriptions of its persistence and recommendations on how to mitigate its spread.

https://dx.doi.org/10.1021/acs.est.0c01476
Environmental Science & Technology 2020, 54, 3776–3799
AUTHOR INFORMATION

Corresponding Author
Krista R. Wigginton − Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States; Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States; orcid.org/0000-0001-6665-5112; Phone: +1 (734) 763-2125; Email: kwigg@umich.edu; Fax: +1 (734) 764-4292

Author
Alexandria B. Boehm − Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States; orcid.org/0000-0002-8162-5090

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.est.0c01476

Notes
The authors declare no competing financial interest.

REFERENCES

(1) Cai, J.; Sun, W.; Huang, J.; Gamber, M.; Wu, J.; He, G. Early Release - Indirect Virus Transmission in Cluster of COVID-19 Cases, Wenzhou, China. Emerging Infect. Dis. 2020, 26 (6), June, DOI: 10.3201/eid2606.200412.
(2) Kim, Y.; Krishna, V. D.; Torremorell, M.; Goyal, S. M.; Cheean, M. C.-J. Stability of Porcine Epidemic Diarrhea Virus on Fomite Materials at Different Temperatures. Veterinary Sciences. 2018, 5, 21.
(3) Casanova, L. M.; Jeon, S.; Rutala, W. A.; Weber, D. J.; Sobsey, M. D. Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces. Appl. Environ. Microbiol. 2010, 76, 2712−2717.
(4) Casanova, L.; Rutala, W. A.; Weber, D. J.; Sobsey, M. D. Coronavirus Survival on Healthcare Personal Protective Equipment. Infection Control & Hospital Epidemiology. 2010, 31, S60−S61.
(5) Lin, K.; Marr, L. C. Humidity-Dependent Decay of Viruses, but Not Bacteria, in Aerosols and Droplets Follows Disinfection Kinetics. Environ. Sci. Technol. 2020, 54, 1024−1032.
(6) Walker, C. M.; Ko, G. Effect of Ultraviolet Germicidal Irradiation on Viral Aerosols. Environ. Sci. Technol. 2007, 41, 5460−5465.
(7) Gallandat, K.; Wolfe, M. K.; Lantagne, D. Surface Cleaning and Disinfection: Efficacy Assessment of Four Chlorine Types Using Escherichia coli and the Ebola Surrogate Phū. Environ. Sci. Technol. 2017, 51, 4624−4631.
(8) Wood, J. P.; Richter, W.; Sunderland, M.; Calfee, M. W.; Serre, S.; Mickelsen, L. (2020) Evaluating the Environmental Persistence and Inactivation of MS2 Bacteriophage and the Presumed Ebola Virus Surrogate Phū Using Low Concentration Hydrogen Peroxide Vapor. Environ. Sci. Technol. 54,3581.
(9) Wigginton, K. R.; Ye, Y.; Ellenberg, R. M. Emerging investigators series: the source and fate of pandemic viruses in the urban water cycle. Environmental Science: Water Research & Technology. 2015, 1, 735−746.
(10) Leung, W. K.; To, K.; Chan, P. K. S.; Chan, H. L. Y.; Wu, A. K. L.; Lee, N.; Yuen, K. Y.; Sung, J. J. Y. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection 1 The authors thank Man-yeung Yung, Sara Fung, Dr. Bonnie Kwan, and Dr. Thomas Li for their help in retrieving patient information. Gastroenterology 2003, 125,1011−1017.
(11) Yu, I. T. S.; Li, Y.; Wong, T. W.; Tam, W.; Chan, A. T.; Lee, J. H. W.; Leung, D. Y. C.; Ho, T. Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus. N. Engl. J. Med. 2004, 350, 1731−1739.
(12) Holshue, M. L.; DeBolt, C.; Lindquist, S.; Lofy, K. H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; Diaz, G.; Cohn, A.; Fox, L.; Patel, A.; Gerber, S. I.; Kim, L.; Tong, S.; Lu, X.; Lindstrom, S.; Pallansch, M. A.; Weldon, W. C.; Biggs, H. M.; Uyeki, T. M.; Pillai, S. K. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929−936.
(13) Wölfel, R.; Corman, V. M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Mueller, M. A.; Niemeyer, D.; Vollmar, P.; Rothe, C.; Hoelscher, M.; Bleicker, T.; Brunink, S.; Schneider, J.; Ehmann, R.; Zwinglmaier, K.; Drosten, C.; Wendter, C. Clinical presentation and virological assessment of hospitalized cases of coronavirus disease 2019 in a travel-associated transmission cluster, Infectious Diseases (except HIV/AIDS) 2020, DOI: 10.10110/2020.03.2003502.
(14) Brainard, J.; Pond, K.; Hunter, P. R. Censored Regression Modeling To Predict Virus Inactivation in Wastewaters. Environ. Sci. Technol. 2017, 51, 1795−1801.
(15) Ye, Y.; Ellenberg, R. M.; Graham, K. E.; Wigginton, K. R. Survivability, Partitioning, and Recovery of Enclosed Viruses in Untreated Municipal Wastewater. Environ. Sci. Technol. 2016, 50, 5077−5085.
(16) Bibby, K.; Fischer, R. J.; Casson, L. W.; Stachler, E.; Haas, C. N.; Munster, V. J. Persistence of Ebola Virus in Sterilized Wastewater. Environ. Sci. Technol. Lett. 2015, 2, 245−249.
(17) Casanova, L. M.; Weaver, S. R. Inactivation of an Enclosed Surrogate Virus in Human Sewage. Environ. Sci. Technol. Lett. 2015, 2, 76−78.
(18) Gundy, P. M.; Gerba, C. P.; Pepper, I. L. Survival of Coronaviruses in Water and Wastewater. Food Environ. Virol. 2009, 1, 10.
(19) Rice, E. W.; Adcock, N. J.; Sivaganesan, M.; Brown, J. D.; Stallknecht, D. E.; Swayne, D. E. Chlorine Inactivation of Highly Pathogenic Avian Influenza Virus (H5N1). Emerging Infect. Dis. 2007, 13, 1568−1570.
(20) Ye, Y.; Chang, P. H.; Hartert, J.; Wigginton, K. R. Reactivity of Enclosed Virus Genome, Proteins, and Lipids with Free Chlorine and UV254. Environ. Sci. Technol. 2018, 52, 7798−7808.
(21) Hung, I. F. N.; Cheng, V. C. C.; Wu, A. K. L.; Tang, B. S. F.; Chan, K. H.; Chu, C. M.; Wong, M. M. L.; Hui, W. T.; Poon, L. L. M.; Tse, D. M. W.; Chan, K. S.; Woo, P. C. Y.; Lau, S. K. P.; Peiris, J. S. M.; Yuen, K. Y. Viral Loads in Clinical Specimens and SARS Manifestations. Emerging Infect. Dis. 2004, 10, 1550−1557.
(22) Cannon, M. J.; Stowell, J. D.; Clark, R.; Dollard, P. R.; Johnson, D.; Mask, K.; Stover, C.; Wu, K.; Amin, M.; Hendley, W.; Guo, J.; Schmid, D. S.; Dollard, S. C. Repeated measures study of weekly and daily cytomegalovirus shedding patterns in saliva and urine of healthy cytomegalovirus-seropositive children. BMC Infect. Dis. 2013, 4, 569.
(23) Gar, M. C. W.; Sung, J. Y. J.; Lam, R. K. Y.; Chan, K. P. S.; Lee, N. L. S.; Lai, R. W. M.; Leung, W. K. Fecal Viral Load and Norovirus-associated Gastroenteritis. Emerging Infect. Dis. 2006, 12(8) August, 1275.
(24) Egli, A.; Infanti, L.; Dumoulin, A.; Buser, A.; Samaridis, J.; Stehler, C.; Gosert, R.; Hirsch, H. H. Prevalence of Polyomavirus BK and JC Infection and Replication in 400 Healthy Blood Donors. J. Infect. Dis. 2009, 199, 837−846.
(25) Woolhouse, M. E. J.; Adair, K. The diversity of human RNA viruses. Future Virol. 2013, 8, 159−171.
(26) Aquino de Carvalho, N.; Stachler, E. N.; Bibby, K.; Evaluation of Phi6 Persistence and Suitability as an Enclosed Virus Surrogate. Environ. Sci. Technol. 2017, 51, 8692−8700.
(27) Hulwick, R. L.; Casanova, L. M.; Rutala, W. A.; Weber, D. J.; Sobsey, M. D. Inactivation of surrogate coronaviruses on hard surfaces by health care germicides. Am. J. Infect. Control 2011, 39, 401−407.
(28) Diemert, S., Yan, T. Clinically Unreported Salmonellosis Detected via Comparative Genomic Analysis of Municipal Wastewater Salmonella Isolates. Appl. Environ. Microbiol. 2019, DOI: 10.1128/AEM.00139-19.
(29) Berchenko, Y.; Manor, Y.; Friedman, L. S.; Kaliner, E.; Grotto, I.; Mendelson, E.; Huppert, A. Estimation of polio infection prevalence from environmental surveillance data. Sci. Transl. Med. 2017, 9ea6786.
Environmental Engineering for the 21st Century: Addressing Grand Challenges; National Academies Press, 2019.