Polyoxometalate-based homochiral metal-organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins

Qiuxia Han¹,²,* Bo Qi¹,* Weimin Ren¹, Cheng He¹, Jingyang Niu² & Chunying Duan¹,³

Currently, great interest is focused on developing auto-tandem catalytic reactions; a substrate is catalytically transferred through mechanistically distinct reactions without altering any reaction conditions. Here by incorporating a pyrrolidine moiety as a chiral organocatalyst and a polyoxometalate as an oxidation catalyst, a powerful approach is devised to achieve a tandem catalyst for the efficient conversion of CO₂ into value-added enantiomerically pure cyclic carbonates. The multi-catalytic sites are orderly distributed and spatially matched in the framework. The captured CO₂ molecules are synergistically fixed and activated by well-positioned pyrrolidine and amine groups, providing further compatibility with the terminal W=O activated epoxidation intermediate and driving the tandem catalytic process in a single workup stage and an asymmetric fashion. The structural simplicity of the building blocks and the use of inexpensive and readily available chemical reagents render this approach highly promising for the development of practical homochiral materials for CO₂ conversion.

¹State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China. ²Key Laboratory of Polyoxometalate Chemistry of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China. ³Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to C.D. (email: cyduan@dlut.edu.cn).
Recently, the selective and efficient conversion of light olefins with CO$_2$ as a C$_1$ building block into value-added enantiomerically pure cyclic carbonates has attracted great interest from chemists and governments due to its tremendous potential economic and environmental impact, especially considering the increasing worldwide greenhouse effect. The general synthetic procedure includes two mechanistically distinct catalytic processes consisting of the asymmetric epoxidation of olefins, based on the research of Sharpless and others, and the asymmetric coupling epoxide with CO$_2$ (refs 2–5). Both of the catalytic processes require asymmetric (or associated) catalysts to ensure enantioselectivity, as well as a sequential separation and purification process of the products from the reagents, the catalysts and the associated materials. Because light olefins are the least expensive and readily available chemical building blocks, a one-pot procedure that processes an olefin through a chain of discrete catalytic steps with multiple transformations using a single workup stage is highly desirable for the environmentally benign conversion of carbon dioxide to fine chemicals.

Inspired by natural enzymatic processes, chemists have attempted to emulate natural reaction cascades by developing auto-tandem catalytic reactions in which a substrate is catalytically transferred through two or more mechanistically distinct reactions without the addition of reagents or catalysts and without altering the reaction conditions. Recently, homogeneous organo- and organometallic auto-tandem catalysts have been found to show high efficiency in solution. This feature can be advantageous for separation and catalyst recovery by creating heterogenized catalysts using linkers to attach them to a support, such as high surface-area metal oxide materials, or alternatively, incorporating them within porous metal-organic frameworks (MOFs). One of the key advantages of MOFs lies in their easily tunable composition in which the constituents’ geometry, size and functionality can be widely varied. Thus, an ongoing challenge for the development of auto-tandem catalytic processes has been beyond the selection and incorporation of two or more catalytic sites by modifying these moieties in the building block of the original MOFs, but includes the achievement of compatibility between the reaction intermediates and synergy of the multiple catalytic cycles.

Polyoxometalates (POMs) are well-known catalysts studied in olefin epoxidation, with excellent thermal and oxidative stability towards oxygen donors. By combining chiral organic catalysts and POM components in a single MOF (POMOF), these POMOF materials can initiate the asymmetric organic catalysts and POM components in a single MOF (refs 10–12). Thus, an ongoing challenge for the development of MOFs lies in their easily tunable composition in which the intrinsic crystalline properties could provide precise knowledge about the nature and distribution of catalytically active sites and about the potential interactions between the catalytic sites and the adsorbed substrates, the use of POM-based homochiral MOFs offers the potential to facilitate analysis of the intermediates and the catalytic processes of each step of the tandem asymmetric transformation.

Results

Synthesis and characterization of the POMOFs. The solvothermal reaction of TBA$_4$W$_{10}$O$_{32}$, Zn(NO$_3$)$_2$·6H$_2$O, NH$_3$·BPY and 1–N-tert-butoxy-carbonyl-2-(imidazol-1)-pyrroldine (t–BCIP) in a mixed solvent of acetonitrile and H$_2$O gave compound ZnW – PY1 in a yield of 68% (Supplementary Fig. 1). Elemental analyses and powder X-ray diffraction (PXRD) indicated the pure phase of the bulk sample (Supplementary Fig. 2). Circular dichroism spectrum of the bulk sample of ZnW – PY1 presented positive cotton effects at 276 nm ($\theta = 146$ mdeg) and negative cotton effects at 340 nm ($\theta = -41.2$ mdeg). The entire spectrum was different from the spectra of the chiral adducts t–BCIP and t–PY1 (Supplementary Fig. 3). ZnW – PY12 was prepared similarly to ZnW – PY1, except that t–BCIP replaced t–BCIP. The circular dichroism spectrum of ZnW – PY12 exhibited the cotton effects that were opposite to ZnW – PY1, as expected for a pair of enantiomers with a mirror–imager relationship (Fig. 1a). Single-crystal structural analysis revealed that ZnW – PY1 and ZnW – PY12 shared the same cell dimensions crystallized in the chiral space group P2$_1$ (Supplementary Data 1 and 2, Supplementary Fig. 14–21).

The crystal structures of POMOFs. The asymmetric unit of ZnW – PY1 consists of the Keggin anion ZnW$_{12}$O$_{40}$$_{6}$$^{–}$ and the cation [Zn$_2$(NH$_3$·BPY)$_2$(H$_2$O)(CH$_3$CN)]$^{6+}$ (Supplementary Fig. 4). The precursor W$_{10}$O$_{32}$$_{6}$$^{–}$ anion is labile under hydrothermal conditions and favours to rearrangement into the more stable Keggin-type ZnW$_{12}$O$_{40}$$_{6}$$^{–}$ anion. Each of these ZnW$_{12}$O$_{40}$$_{6}$$^{–}$ anions connects to four zinc ions through the terminal oxygen atoms and acts as a four connector (Supplementary Fig. 5). Each of the two crystallographically independent zinc ions adopts a distorted octahedral geometry (Supplementary Fig. 6,7) and coordinates to two terminal oxygen atoms from different ZnW$_{12}$O$_{40}$$_{6}$$^{–}$ anions, forming a two-dimensional square grid sheet (Fig. 1b,c, Supplementary Fig. 8,9).

Each of the NH$_3$·BPY ligands coordinates to two different zinc ions and further bridges the sheets to form a three-dimensional framework with one-dimensional chiral channels along the b axis (Fig. 1d, Supplementary Fig. 10,11). The accessible empty space of the framework is approximately 289.1 Å3 (8.1%), as calculated from PLATON analysis, suggesting the possibility that the MOF-based material ZnW – PY1 can absorb substrates within its pores. Chiral PY1 was located in the pores of the MOF, with the butoxycarbonyl of t–BCIP removed simultaneously in the reaction and the pyrrolidine nitrogen was protonated. The unique redox properties of ZnW$_{12}$O$_{40}$$_{6}$$^{–}$, with its oxygen-enriched surface, provide sufficient driving force for the transformation of the catalytic precursors to the active intermediate of the epoxidation. The chiral PY1s act as cooperative catalytic sites to forge a crucial reaction centre that enhances the activities of the oxidants and drives the catalysis asymmetrically. Detailed structural analyses reveal that one zinc ion has a water molecule at its sixth coordination position, while the other is associated with an acetonitrite molecule. The removability of the coordinated water molecules indicates the potential of ZnW – PY1 to act as an active Lewis acid catalyst (Supplementary Fig. 12). These amine groups in NH$_3$·BPY are positioned around the inner surface of the channels and act as accessible sites to activate CO$_2$ directly, enabling the catalytic performance in the coupling of carbon dioxide with epoxide under relatively mild conditions (Fig. 2).

Separated tandem catalysis. The transformation of asymmetric epoxidation was initially examined using styrene and t-butylhydroperoxide (TBHP, 70% in decane) as the oxidant, along with...
ZnW$–$PYI (0.1% mol ratio) in a heterogeneous reaction at 50 °C for 5 days. As shown in Table 1 (entries 1–4), the result revealed the successful execution of our POMOF design, showing excellent yield (92%) and enantioselectivity (79% enantiomer excess (ee)) for (R)-styrene oxide (Supplementary Fig. 22, Supplementary Table 6). The control experiments showed that L$–$PYI and its hydrochloride salt could not initiate the reaction under similar conditions. The use of L$–$PYI and Zn$_3$[ZnW$_{12}$O$_{40}$]6 as homogeneous catalysts gave a conversion of 55% and an ee value of 18%. The higher conversion in the case of the ZnW$–$PYI system was attributed to the suitable distribution of pairs of the chiral PYI moiety and the ZnW$_{12}$O$_{40}$6 oxidant catalyst. Infrared of the catalyst impregnated with TBHP revealed a new ν(O–O) band at 821 cm$^{-1}$, which indicated that the active intermediate peroxotungstate was formed during the epoxidation process (Fig. 3a33). From a mechanistic perspective, the formation of hydrogen bonds between the pyrrolidine N atom and the terminal oxygen atoms of the ZnW$_{12}$O$_{40}$6 with the interatomic separation N(12)···O(7), approximately 2.8 Å, initially activated the corresponding W=O$_t$ (O$_t$ = terminal oxygen) and generated an active peroxytungstate intermediate, ensuring the smooth progress of the reaction (Supplementary Table 2–5). These hydrogen bonds then enforced the proximity between the conventional electrophilic oxidant and the chiral directors to

![Figure 1](image1.png) **Figure 1 | The structure and characterization of ZnW – PYIs.** (a) Circular dichroism spectra of bulk crystals of ZnW – PYI1 (black) and ZnW – PYI2 (red), respectively. (b) Plot of the one-dimensional connections between the bipyridine ligands and the zinc centres, showing the coordination mode of the zinc centres. (c) Perspective view of the two-dimensional sheet connected by the polyoxometalate clusters and the zinc centres, the bipyridine ligands were omitted for clarity. (d) 3D open network of ZnW – PYI1 viewed down the b axis. H atoms and solvent molecules are omitted for clarity. Carbon, nitrogen and zinc are drawn in gray (orange for PYI), blue, and cyan, respectively, with ZnW$_{12}$O$_{40}$6 shown as polyhedra.

![Figure 2](image2.png) **Figure 2 | The design concept of achieving a tandem catalyst.** Synthetic procedure of the metal-organic framework, showing the constitutive/constructional fragments of the MOF; and the schematic representation of tandem catalysis for the asymmetric cyclic carbonate transformation from olefins and carbon dioxide.
Table 1 | Yields and enantiomer excess (ee) in the asymmetric epoxidation of the olefins*, in the coupling of CO₂ to styrene oxide¹, and in the asymmetric auto-tandem catalysis of olefins to cyclic carbonates over ZnW – PYI catalysts².

Entry	Substrate	Product	Yield(%)³	ee(%)⁻¹
1			92(94)	79(-76)
2			87(88)	75(-74)
3			76(79)	75(-76)
4			87(85)	93(-70)
5		>99	trace	
6		>99	90	
7		>99	-96	
8		28	-	
9		92(90)	80(-77)	
10		83(85)	70(-73)	
11		72(70)	55(-59)	
12		25	-	

*Entries 1–4: Conditions: olefin: 10 mmol; ZnW – PYI: 0.01 mmol; TBHP(70% in decane): 20 mmol; 50 °C, 120 h.

*Entries 5–8: Conditions: styrene oxide: 10 mol, catalyst: 0.01 mmol, TBABr 0.1 mmol, CO₂, 0.5 MPa, 50 °C, 48 h.

*Entries 9–12: conditions: olefin: 10 mmol, catalyst: 0.01 mmol, TBHP 20 mmol, CO₂, 0.5 MPa, 50 °C, 96 h.

The transformation of the asymmetric coupling of CO₂ to styrene oxide was examined using the racemic styrene oxide and CO₂ in free solvent, along with ZnW – PYI (0.1% mol ratio) and cocatalyst TBABr (1% mol ratio), in a heterogeneous mixture at 50 °C and 0.5 MPa for 48 h, as shown in Table 1 (entry 5). The result exhibited excellent reaction efficiency (> 99% yield) for phenyl(ethylene carbonate) (Supplementary Table 7). The control experiments demonstrated that no detectable conversion was observed for the model reaction in the absence of ZnW – PYI or the ammonium salt cocatalyst. It is postulated that the directed coordination of the ZnW₁₂O₄₀⁻ anion to the zinc ions results in significant activation of the MOF on the acid surface, facilitating the coupling step because of its additional labile ligand sites, possibly through the provision of a carbon dioxide. The surface properties of the nanocation also meet a number of criteria for the carbon dioxide coupling reaction, such as an overall positive charge, the presence of coordinated water and the presence of functional groups for acid catalysis.
Figure 3 | The spectroscopic studies of ZnW–PYII. (a) Infrared (IR) spectra of fresh and TBHP-oxidized ZnW–PYI1. (b) IR spectra of fresh and cinnamaldehyde-incorporated ZnW–PYI. (c,d) IR spectra and Raman spectra of fresh (dark line) and CO2-adsorbed ZnW–PYII (blue line), respectively.

Enantiospecific phenyl(ethylene carbonate) could be obtained through the coupling of CO2 to the (R) or (S)-styrene oxide, catalysed with excellent reaction efficiency (>99% yield) and high enantioselectivity (>90% ee) (Supplementary Fig. 23, Supplementary Table 8) by ZnW–PYI1s (Table 1, entries 6,7). The retention of chirality through the asymmetric coupling process demonstrated that selective ring opening occurred preferentially at the methylene C–O bond of the terminal epoxides.5,32 The high selectivity of the asymmetric transformation reflected that CO2 molecules were also activated, providing favourable conditions for a fast reaction with epoxide by nucleophilic attack, avoiding the racemization of the epoxide through premature ring opening. It is postulated that these NH2 groups in the channels of ZnW–PYI1 solids could be isolated from the reaction suspension by simple filtration. The catalysts could be reused at least three times with moderate loss of activity (from 92 to 88% yield) and with a slight decrease in selectivity (from 80 to 77% ee) (Supplementary Table 10). The removal of ZnW–PYII1 by filtration after 48 h stopped the reaction, and the filtrate afforded nearly no additional conversion after stirring for another 48 h. These observations suggest that ZnW–PYII1 is a true heterogeneous catalyst. ZnW–PYI1 solids could be isolated from the reaction suspension by simple filtration. The catalysts could be reused at least three times with moderate loss of activity (from 92 to 88% yield) and with a slight decrease in selectivity (from 80 to 77% ee) (Supplementary Table 10). The index of PXRD patterns of the ZnW–PYII1 bulky sample filtered from the catalytic reaction revealed that the crystallinity was maintained. The ZnW–PYI2 solids exhibited similar catalytic activities but...
gave products with opposite chiralities in the asymmetric auto-tandem epoxidation/coupling of styrene.

Discussion

It was found that performing the reaction through a one-pot process could greatly shorten the reaction time to 4 days, and the configuration was maintained throughout both of the steps. It is clear from the crystal structures of the ZnW–PYI that the smooth and stereoselective conversion of the olefins into the epoxide can be attributed to the hydrogen bonding interaction between the spatially matched organocatalyst PYI and the oxidation catalyst ZnW_{12}O_{40}^{6–} and to the potential π–π interaction between the benzene ring of styrene oxide and the imidazole ring of PYI. Because the CO₂ molecules adsorbed in the channels of ZnW–PYI are activated by NH₂ groups, the weak hydrogen bonding interactions between the chiral amine group N(12) and the amino group N(3) (interatomic separation of 3.79 Å) is believed to enforce the proximity between the activated CO₂ and the terminal epoxide (Fig. 4). The well-matched positions and the suitable interactions provide a promising route for nucleophilic attack at the methylene C–O bond, ensuring chiral retention in the coupling process. The Lewis acid catalytic zinc centres restricted within the MOF channels have the potential to interact synergistically with CO₂ such that the compatibility between the reaction intermediates and the synergy of the multiple catalytic cycles allow the auto-tandem reaction to proceed smoothly and efficiently.36 Most importantly, the multi-catalytic sites with orderly distribution and spatial matching in the three-dimensional open framework provide favourable conditions for the auto-tandem reaction and avoid cross-interference.

The use of this catalyst can be extended to other styrene derivatives with comparable activity and asymmetric selectivity. In contrast to the smooth reaction of substrates 9–11, the one-pot catalytic reaction in the presence of cinnamaldehyde only gave 25% conversion under the same reaction conditions (Table 1, entry 12). It is suggested that the aldehyde group has the potential to interact with the NH₂ group, inactivating these sites for the activation and concentration of CO₂, which further substantiates the pivotal role of NH₂ in the one-pot process.

We have developed an asymmetric auto-tandem epoxidation/cycloaddition catalytic reaction catalysed solely by chiral POMOFs, which proceeds in a highly enantioselective manner for the efficient conversion of light olefins into value-added enantiomerically pure cyclic carbonates in a one-pot procedure. The results demonstrated that asymmetric auto-tandem catalysis is an atom-economical and environmentally benign synthetic method for producing useful chiral compounds.

Future work will focus on design structurally diverse chiral POMOFs and optimizing such reactions. The structural simplicity of catalyst and the use of inexpensive and readily available chemical reagents render this approach highly promising for the development of practical homochiral materials for asymmetric catalytic reactions.

Methods

Reagents and Syntheses. All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. All epoxides were purchased from Acros and distilled under a nitrogen atmosphere from CaH₂ prior to use. Carbon dioxide (99.995%) was purchased from Dalian Institute of Special Gases and used as received. All manipulations involving air- and/or water-sensitive compounds were carried out in glove box or under dry nitrogen using standard Schlenk techniques.

Elemental analyses. Elemental analyses of C, H and N were performed on a Vario EL III elemental analyser.

Inductively coupled plasma. W and Zn analyses were performed on a Jarrel-Ash®-A1100 spectrometer.

Fourier translation infrared spectrum (FT-IR). FT-IR spectra were recorded as KBr pelletson JASCO FT/IR-430.

Powder X-ray diffractograms. PXRDs were obtained on a Rigaku D/Max-2,400 X-ray diffractometer with Cu sealed tube (λ = 1.54178 Å).

Circular dichroism spectrum. Circular dichroism spectra were measured on JASCO J-810 with solid KBr tabletting.

Laser-Raman spectrum. Raman spectroscopy (Lab Raman HR Evolution) measurements were performed using a solid state 785 nm laser. A laser power of
1–2.5% was used to avoid degradation of the sample under the laser beam during the Raman measurements.

Thermogravimetric analysis. Thermogravimetric analyses were performed on a Mettler-Toledo TGA/SDTA851 instrument and recorded under N2 or under air, upon 14 equilibration at 100 °C, followed by a ramp of 5 °C min⁻¹ up to 800 °C.

Gas adsorption isotherms. Gas adsorption isotherms were collected using a Micrometrics 3Flex 128 instrument. As-synthesized crystals were thoroughly washed with anhydrous dichloromethane and dried under argon flow, approximately 100 mg of each sample was added into a pre-weighted sample analysis tube. The adsorption was degassed at 100 °C under vacuum for 24–48 h until the pressure change rate was no more than 3.5 mTorr min⁻¹. Ultrahigh purity (UHP) grade N2 and CO2 gas adsorbs (99.999%) were used in this study.

Nuclear magnetic resonance. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Varian INOVA-400 MHz type (¹H, 400 MHz; ¹³C, 100 MHz) spectrometer. Their peak frequencies were referenced versus a standard internal standard (tetramethylsilane (TMS)) shifts at 0.00 ppm for ¹H NMR and against the solvent, chloroform-D at 77.00 ppm for ¹³C NMR, respectively.

High-performance liquid chromatography. High-performance liquid chromatography analyses was performed on Agilent 1,150 using a Chiralpak OD-H column or AD-H column purchased from Daicel Chemical Industries, Ltd.

Crystallography. Data of POMOZnW – PY1 were collected on a Bruker SMART APEX CCD diffractometer with graphite-monochromated Mo-Kα (λ = 0.71073 Å) using the SMART and SAINT programs. Routine Lorentz polarization and Multi-scan absorption correction were applied to intensity data. Their structures were determined and the heavy atoms were found by direct methods using the SHELXTL-97 program. The remaining atoms were found from successive full-matrix least-squares refinements on F² and Fourier syntheses. Not all the non-hydrogen atoms were refined anisotropically.

Hydrogen atoms within the ligand backbones were fixed geometrically at their calculated positions and allowed to ride on the parent atoms. Crystallographic data for ZnW – PY1 are summarized in Supplementary Table 1.

Synthesis of ZnW – PY11. A mixture of [n-C₄H₉]₄N[W₂O₇]₂ (66.4 mg, 0.02 mmol), Zn(NO₃)₂.6H₂O (60.0 mg, 0.20 mmol), NH₄BPY (10.3 mg, 0.06 mmol) and i-BCP (7.5 mg, 0.03 mmol) in mixed water (4.0 ml) and acetonitrile (2.0 ml) was stirred and its pH value was adjusted to 4.3 with 1 mol l⁻¹ NaOH. Aqueous TBABr (0.1 mmol), TBHP (20 mmol) and styrene (10 mmol) was added to a Schlenk flask (50 ml) equipped with a three-way stopcock. Then CO₂ was charged into the autoclave, and the pressure (0.5 MPa) was kept constant during the reaction. The autoclave was put into a bath and heated to the 50 °C. After the expiration of the desired time, the excess gases were vented. The remaining mixture was degassed and fractionally distilled under reduced pressure or purified by column chromatography on silica gel to obtain the cyclic carbonate.

References
1. Raman, S. K., Brule´, E., Tschan, M. J. L. & Thomas, C. M. Tandem catalysis: a new approach to polypeptides and cyclic carbonates. Chem. Commun. 50, 13773–13776 (2014).
2. Zhu, Y. G., Wang, Q., Cornwall, R. G. & Shi, Y. A. Metal-catalyzed asymmetric sulfoxidation, epoxidation and hydroxylation by hydrogen peroxide. Chem. Rev. 114, 8199–8256 (2014).
3. Katsuki, T. & Sharpless, K. B. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc. 102, 5974–5976 (1980).
4. Zhang, S. L., Huang, Y. Z., Jing, H. W., Yao, W. X. & Yan, P. Chiral ionic liquids improved the asymmetric cycloaddition of CO₂ to epoxides. Green Chem. 11, 935–938 (2009).
5. Ren, W. M., Liu, Y. & Lu, X. B. Bifunctional Aluminum Catalyst for CO₂ Fixation: Regioselective ring opening of three-membered heterocyclic compounds. J. Org. Chem. 79, 9771–9777 (2014).
6. Sun, J. S. et al. Direct synthetic processes for cyclic carbonates from olefins and CO₂. Catal. Surv. Asia 15, 49–54 (2011).
7. Abou-Shehada, S. & Williams, J. M. Separated tandem catalysis, It's about time. Nat. Chem. 6, 12–13 (2014).
8. Li, L. & Herzon, S. B. Temporal separation of catalytic activities allows anti-Markovnikov reductive functionalization of terminal alkenes. Nat. Chem. 6, 22–27 (2014).
9. Grondal, C., Jeaney, M. & Enders, D. Organocatalytic cascade reactions as a new tool in total synthesis. Nat. Chem. 2, 167–170 (2010).
10. Yoon, M., Srirambalaji, R. & Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 112, 1196–1213 (2012).
11. Cook, T. R., Zheng, Y. R. & Stang, P. J. Metal – organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal – organic materials. Chem. Rev. 113, 734–777 (2013).
12. An, J. et al. Metal-adenate vertices for the construction of an exceptionally porous metal-organic framework. Nat. Commun. 3, 604 (2012).
13. Bromberg, L., Su, X. & Hatton, T. A. Heteropolycylic-functionalized aluminum 2-amino-tetraethpa-hetero-metal organic frameworks as reactive aldehyde sorbents and catalysts. ACS Appl. Mater. Interfaces 5, 5468–5477 (2013).
14. Zhang, Z. C. et al. Photosensitizing metal – organic framework enabling visible-light driven proton reduction by a Wells – Dawson-type polyoxometalate. J. Am. Chem. Soc. 137, 3197–3200 (2015).
15. Wu, P. Y. et al. Photoactive chloral metal – organic frameworks for light-driven asymmetric a-alkylation of aldehydes. J. Am. Chem. Soc. 134, 14991–14999 (2012).
16. Mizuno, N. & Kamata, K. Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coord. Chem. Rev. 255, 2358–2370 (2011).
17. Du, D. Y., Qin, J. S., Li, S. L., Su, Z. M. & Lan, Y. Q. Recent advances in porous polyoxometalate-based metal–organic framework materials. Chem. Rev. 43, 4615–4632 (2014).
18. Hua, Z. K., Fu, X. K., Li, Y. D. & Tu, X. B. Highly efficient and excellent reusable catalysts of molybdenum(VI) complexes grafted on ZPS-PVPA for epoxidation of olefins with tert-ButOOH. Appl. Organometal. Chem. 25, 128–132 (2011).
19. Han, Q. X. et al. Engineering chiral polyoxometalate hybrid metal – organic frameworks for asymmetric dihydroxylation of olefins. J. Am. Chem. Soc. 135, 10186–10189 (2013).
20. Kim, J. S. et al. Metal homo- and heterocoordination with MOF catalysts. Appl. Catal. A Gen. 453, 175–180 (2013).
21. Feng, D. W. et al. Construction of ultrastable porphyrin Zn metal – organic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105–17110 (2013).
22. Gao, W. Y. et al. Crystal engineering of an nbo topology metal–organic framework for chemical fixation of CO₂ under ambient conditions. Angew. Chem. Int. Ed. 53, 2615–2619 (2014).
23. Boyzavi, M. H. et al. A Hafnium-based metal – organic framework as an efficient and multifunctional catalyst for facile CO₂ fixation and regioselective and enantioselective epoxide activation. J. Am. Chem. Soc. 136, 15861–15864 (2014).
24. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003).
25. Mizuno, N., Yamaguchi, K. & Kamata, K. Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates. Coord. Chem. Rev. 249, 1944–1956 (2005).
26. Duncan, D. C., Chambers, R. C., Hecht, E. & Hill, C. L. Mechanism and dynamics in the H₂[PW₁₄O₄十六] catalyzed selective epoxidation of terminal olefins by H₂O₂. Formation, reactivity, and stability of [PO₄(WO₂)₂]⁻⁻. J. Am. Chem. Soc. 117, 681–691 (1995).
27. Taylor, M. S. & Jacobsen, E. N. Asymmetric allylation by chiral hydrogen-bond donors. Angew. Chem. Int. Ed. 45, 1520–1524 (2006).
28. Melchiorre, P., Marigo, M., Carlone, A. & Bartoli, G. Asymmetric aminocatalysis—gold rush in organic chemistry. Angew. Chem. Int. Ed. 47, 6138–6171 (2008).
29. Couch, S. et al. An amine-functionalized MIL-53 metal – organic framework with large separation power for CO₂ and CH₄. J. Am. Chem. Soc. 131, 6326–6327 (2009).
30. Vaidyanathan, R. Direct observation and quantification of CO₂ binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).
31. Pham, T. et al. Understanding hydrogen sorption in a metal—organic framework with open-metal sites and amide functional groups. *J. Phys. Chem. C* 117, 9340–9354 (2013).

32. Chisholm, M. H. & Zhou, Z. P. Concerning the mechanism of the ring opening of propylene oxide in the copolymerization of propylene oxide and carbon dioxide to give poly(propylene carbonate). *J. Am. Chem. Soc.* 126, 11030–11039 (2004).

33. Ishimoto, R., Kamata, K. & Mizuno, N. A. Highly active protonated tetranuclear peroxotungstate for oxidation with hydrogen peroxide. *Angew. Chem. Int. Ed.* 51, 4662–4665 (2012).

34. Aggrawal, V. K., Lopin, C. & Dandrinelli, F. New insights in the mechanism of amine catalyzed epoxidation: dual role of protonated ammonium salts as both phase transfer catalysts and activators of ozone. *J. Am. Chem. Soc.* 125, 7596–7601 (2003).

35. Yoshizawa, M., Tamura, M. & Fujita, M. Diels-alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. *Science* 312, 251–254 (2006).

36. Liao, P. Q. et al. Strong and dynamic CO$_2$ sorption in a flexible porous framework possessing guest chelating claws. *J. Am. Chem. Soc.* 134, 17380–17383 (2012).

37. Gassensmith, J. J. et al. Strong and reversible binding of carbon dioxide in a green metal–organic framework. *J. Am. Chem. Soc.* 133, 15312–15315 (2011).

38. Srikanth, C. S. & Chuang, S. S. C. Spectroscopic investigation into oxidative degradation of silica-supported amine sorbents for CO$_2$ capture. *Chem. Sus. Chem.* 5, 1435–1442 (2012).

39. McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg$_2$(dobpdc). *J. Am. Chem. Soc.* 134, 7056–7065 (2012).

40. Nijem, N. et al. Understanding the preferential adsorption of CO$_2$ over N$_2$ in a flexible metal-organic framework. *J. Am. Chem. Soc.* 133, 12849–12857 (2011).

41. Luo, S. Z. et al. Functionalized chiral ionic liquids as highly efficient asymmetric organocatalysts for Michael addition to nitroolefins. *Angew. Chem. Int. Ed.* 45, 3093–3097 (2006).

42. Katritzky, A. R. et al. Preparation of nitropyridines by nitration of pyridines with nitric acid. *Org. Biomol. Chem.* 3, 538–541 (2005).

43. Ginsberg, A. P. Inorganic syntheses, Copyright © 1990, By. *Inorg. Synth., Inc* 27, 81–82 (1990).

44. SMART, Data collection software (version 5.629) (Bruker AXS Inc., Madison, WI, 2003).

45. SAINT, Data reduction software (version 6.45) (Bruker AXS Inc., Madison, WI, 2003).

46. Sheldrick, G. M. SHELXTL97, Program for Crystal Structure Solution (University of Göttingen: Göttingen, Germany, 1997).

Acknowledgements

This study was supported by the National Natural Science Foundation of China (21421005, 21231003 and U1304201), the Basic Research Program of China (2013CB733700), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1213).

Author contributions

Q.X.H., C.H. and C.Y.D. conceived and designed the experiments. Q.X.H., B.Q. and W.M.R. performed the experiments. C.H., J.Y.N. and C.Y.D. contributed materials and analysis tools. Q.X.H., C.H. and C.Y.D. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Additional information

Accession codes: The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 1063826–1063827. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications.

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Han, Q.* et al.* Polyoxometalate-based homochiral metal-organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins. *Nat. Commun.* 6:10007 doi: 10.1038/ncomms10007 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/