Weakly and strongly singular solutions of semilinear fractional elliptic equations

Huyuan Chen
Departamento de Ingeniería Matemática
Universidad de Chile, Chile

Laurent Véron
Laboratoire de Mathématiques et Physique Théorique
Université François Rabelais, Tours, France

Abstract
Let $p \in (0, \frac{N}{N-2\alpha})$, $\alpha \in (0, 1)$ and $\Omega \subset \mathbb{R}^N$ be a bounded C^2 domain containing 0. If δ_0 is the Dirac measure at 0 and $k > 0$, we prove that the weakly singular solution u_k of (E_k) $(-\Delta)\alpha u + u^p = k\delta_0$ in Ω which vanishes in Ω^c, is a classical solution of (E_\ast) $(-\Delta)\alpha u + u^p = 0$ in $\Omega \setminus \{0\}$ with the same outer data. When $\frac{2\alpha}{N-2\alpha} \leq 1 + \frac{2\alpha}{N}$, $p \in (0, 1 + \frac{2\alpha}{N})$ we show that the u_k converges to ∞ in whole Ω when $k \to \infty$, while, for $p \in (1 + \frac{2\alpha}{N}, \frac{N}{N-2\alpha})$, the limit of the u_k is a strongly singular solution of (E_\ast). The same result holds in the case $1 + \frac{2\alpha}{N} < 2\alpha$ excepted if $\frac{2\alpha}{N} < p < 1 + \frac{2\alpha}{N}$.

Contents
1 Introduction 2
2 Preliminaries 5
3 Regularity 7
4 The limit of weakly singular solutions 9
 4.1 The case $p \in (0, 1 + \frac{2\alpha}{N})$ 10
 4.2 The case $p \in (1 + \frac{2\alpha}{N}, \frac{N}{N-2\alpha})$ 14
 4.3 The case of $p \in (1 + \frac{2\alpha}{N}, \frac{N}{N-2\alpha})$ 15
 4.4 Proof of Theorem 1.2 (ii) and (iii) 19

Key words: Fractional Laplacian, Dirac measure, Isolated singularity, Weak solution, Weakly singular solution, Strongly singular solution.

MSC2010: 35R11, 35J75, 35R06

1chenhuyuan@yeah.net
2Laurent.Veron@lmpt.univ-tours.fr
1 Introduction

Let Ω be a bounded C^2 domain of $\mathbb{R}^N (N \geq 2)$ containing 0, $\alpha \in (0,1)$ and let δ_0 denote the Dirac measure at 0. In this paper, we study the properties of the weak solution to problem

\[
(-\Delta)^\alpha u + u^p = k\delta_0 \quad \text{in } \Omega, \\
\quad u = 0 \quad \text{in } \Omega^c,
\]

where $k > 0$ and $p \in (0, \frac{N}{N-2\alpha})$ and $(-\Delta)^\alpha$ is the α-fractional Laplacian defined by

\[
(-\Delta)^\alpha u(x) = \lim_{\epsilon \to 0^+} (-\Delta)^\alpha_\epsilon u(x),
\]

where for $\epsilon > 0$,

\[
(-\Delta)^\alpha_\epsilon u(x) = -\int_{\mathbb{R}^N} \frac{u(z) - u(x)}{|z-x|^{N+2\alpha}} \chi_\epsilon(|x-z|) \, dz
\]

and

\[
\chi_\epsilon(t) = \begin{cases}
0, & \text{if } t \in [0, \epsilon] \\
1, & \text{if } t > \epsilon.
\end{cases}
\]

In 1980, Benilan and Brezis (see [2, 1]) studied the case $\alpha = 1$ in equation (1.1) and proved in particular that equation

\[
-\Delta u + u^q = k\delta_0 \quad \text{in } \Omega, \\
\quad u = 0 \quad \text{on } \partial\Omega
\]

admits a unique solution u_k for $1 < q < N/(N-2)$, while no solution exists when $q \geq N/(N-2)$. Soon after, Brezis and Véron [3] proved that the problem

\[
-\Delta u + u^q = 0 \quad \text{in } \Omega \setminus \{0\} \\
\quad u = 0 \quad \text{on } \partial\Omega
\]

admits only the zero solution when $q \geq N/(N-2)$. When $1 < q < N/(N-2)$, Véron in [13] obtained the description of the all the possible singular behaviour of the positive solutions of (1.3). In particular he proved that this behaviour is always isotropic (when $(N+1)/(N-1) \leq q < N/(N-2)$ the assumption of positivity is unnecessary) and that two types of singular behaviour occur:

(i) either $u(x) \sim c_N k|x|^{2-N}$ when $x \to 0$ and k can take any positive value; u is said to have a weak singularity at 0, and actually $u = u_k$.

(ii) or $u(x) \sim c_{N,q} |x|^{\frac{2}{q-1}}$ when $x \to 0$ and u has a strong singularity at 0, and $u = u_\infty := \lim_{k \to \infty} u_k$.

A large series of papers has been devoted to the extension of semilinear problems involving the Laplacian to problems where the diffusion operator
is non-local, the most classical one being the fractional Laplacian, see e.g. [4, 5, 9, 10, 11]. In a recent work, Chen and Vérón [7] considered the problem

\[
(-\Delta)^\alpha u + u^p = 0 \quad \text{in} \quad \Omega \setminus \{0\}
\]
\[
u = 0 \quad \text{in} \quad \Omega^c,
\]
where \(1 + \frac{2\alpha}{N} < p < p^*_\alpha := \frac{N}{N-2\alpha}.\) They proved that (1.4) admits a singular solution \(u_s\) which satisfies

\[
\lim_{x \to 0} u_s(x)|x|^{\frac{2\alpha}{p-1}} = c_0,
\]
for some \(c_0 > 0.\) Moreover \(u_s\) is the unique positive solution of (1.4) such that

\[
0 < \liminf_{x \to 0} u(x)|x|^{\frac{2\alpha}{p-1}} \leq \limsup_{x \to 0} u(x)|x|^{\frac{2\alpha}{p-1}} < \infty.
\]

In this article we will call weakly singular solution a solution \(u\) of (1.4) which satisfies \(\limsup_{x \to 0} |u(x)| |x|^{\frac{2\alpha}{N-2\alpha}} < \infty\) and strongly singular solution if \(\lim_{x \to 0} |u(x)| |x|^{\frac{2\alpha}{N-2\alpha}} = \infty.\)

The existence of solutions of (1.1) is a particular case of the more general problem

\[
(-\Delta)^\alpha u + g(u) = \nu \quad \text{in} \quad \Omega
\]
\[
u = 0 \quad \text{in} \quad \Omega^c,
\]
which has been study by Chen and Vérón in [8] under the assumption that \(g\) is a subcritical nonlinearity, \(\nu\) being a positive and bounded Radon measure in \(\Omega.\)

Definition 1.1 A function \(u\) belonging to \(L^1(\Omega)\) is a weak solution of (1.7) if \(g(u) \in L^1(\Omega, \rho^\alpha dx)\) and

\[
\int_\Omega [u(-\Delta)^\alpha \xi + g(u)\xi] dx = \int_\Omega \xi d\nu \quad \forall \xi \in X_\alpha,
\]

where \(\rho(x) := \text{dist}(x, \Omega^c)\) and \(X_\alpha \subset C(\mathbb{R}^N)\) is the space of functions \(\xi\) satisfying:

(i) \(\text{supp}(\xi) \subset \Omega,\)

(ii) \((-\Delta)^\alpha \xi(x) \text{ exists for all } x \in \Omega \text{ and } |(-\Delta)^\alpha \xi(x)| \leq c_1 \text{ for some } c_1 > 0,\)

(iii) there exist \(\varphi \in L^1(\Omega, \rho^\alpha dx)\) and \(\epsilon_0 > 0\) such that \(|(-\Delta)^\alpha \xi| \leq \varphi \text{ a.e. in } \Omega, \text{ for all } \epsilon \in (0, \epsilon_0].\)

According to Theorem 1.1 in [8], problem (1.1) admits a unique weak solution \(u_k\), moreover,

\[
G_\alpha[k\delta_0] - G_\alpha[(G_\alpha[k\delta_0])^p] \leq u_k \leq G_\alpha[k\delta_0] \quad \text{in} \quad \Omega,
\]
where \(G_\alpha[\nu](x) = \int_\Omega G_\alpha(x, y) d\nu(y), \quad \forall \nu \in \mathfrak{M}(\Omega, \rho^\alpha), \quad (1.10) \)

with \(G_\alpha \) is the Green kernel of \((-\Delta)^\alpha\) in \(\Omega \) and \(\mathfrak{M}(\Omega, \rho^\alpha) \) denotes the space of Radon measures in \(\Omega \) such that \(\int_\Omega \rho^\alpha d|\nu| < \infty \). By (1.9),

\[
\lim_{x \to 0} u_k(x)|x|^{N-2\alpha} = c_{\alpha, N} k, \quad (1.11)
\]

for some \(c_{\alpha, N} > 0 \). From Theorem 1.1 in [8], there holds

\[
u_k(x) \leq u_{k+1}(x), \quad \forall x \in \Omega; \quad (1.12)
\]

then there exists

\[
u_\infty(x) = \lim_{k \to \infty} \nu_k(x) \quad \forall x \in \mathbb{R}^N \setminus \{0\}, \quad (1.13)
\]

and \(\nu_\infty(x) \in \mathbb{R}_+ \cup \{+\infty\} \).

Motivated by these results and in view of the nonlocal character of the fractional Laplacian, in this article we analyse the connection between the solutions of (1.1) and the ones of (1.4). Our main result is the following

Theorem 1.1 Assume that \(1 + \frac{2\alpha}{N} \geq \frac{2\alpha}{N-2\alpha} \) and \(p \in (0, p^\ast_\alpha) \). Then \(u_k \) is a classical solution of (1.4). Furthermore,

(i) if \(p \in (0, 1 + \frac{2\alpha}{N}) \),

\[
u_\infty(x) = \infty \quad \forall x \in \Omega; \quad (1.14)
\]

(ii) if \(p \in (1 + \frac{2\alpha}{N}, p^\ast_\alpha) \),

\[
u_\infty = u_s,
\]

where \(u_s \) is the solution of (1.4) satisfying (1.5).

Moreover, if \(1 + \frac{2\alpha}{N} = \frac{2\alpha}{N-2\alpha} \), (1.14) holds for \(p = 1 + \frac{2\alpha}{N} \).

The result of part (i) indicates that even if the absorption is superlinear, the diffusion dominates and there is no strongly singular solution to problem (1.4). On the contrary, part (ii) points out that the absorption dominates the diffusion; the limit function \(u_s \) is the least strongly singular solution of (1.4). Comparing Theorem 1.1 with the results for Laplacian case, part (i) with \(p \in (0, 1] \) and (ii) are similar as the Laplacian case, but part (i) with \(p \in (1, 1 + \frac{2\alpha}{N}) \) is totally different from the one in the case \(\alpha = 1 \). This striking phenomenon comes from the fact that the fractional Laplacian is a nonlocal operator, which requires the solution to belong to \(L^1(\Omega) \), therefore no local barrier can be constructed if \(p \) is too close to 1.

At end, we consider the case where \(1 + \frac{2\alpha}{N} < \frac{2\alpha}{N-2\alpha} \). It occurs when \(N = 2 \) and \(\frac{\sqrt{5}-1}{2} < \alpha < 1 \) or \(N = 3 \) and \(\frac{3(\sqrt{5}-1)}{4} < \alpha < 1 \). In this situation, we have the following results.
Theorem 1.2 Assume that \(1 + \frac{2\alpha}{N} < \frac{2\alpha}{N-2\alpha} \) and \(p \in (0, p^*_\alpha) \). Then \(u_k \) is a classical solution of (1.4). Furthermore,
(i) if \(p \in (0, \frac{N}{2\alpha}) \), then
\[
 u_\infty(x) = \infty \quad \forall x \in \Omega;
\]
(ii) if \(p \in (1 + \frac{2\alpha}{N}, \frac{2\alpha}{N-2\alpha}) \), then \(u_\infty \) is a classical solution of (1.4) and there exist \(\rho_0 > 0 \) and \(c_2 > 0 \) such that
\[
 c_2|x|^{-(N-2\alpha)p} \leq u_\infty \leq u_s \quad \forall x \in B_{\rho_0} \setminus \{0\}; \tag{1.15}
\]
(iii) if \(p = \frac{2\alpha}{N-2\alpha} \), then \(u_\infty \) is a classical solution of (1.4) and there exist \(\rho_0 > 0 \) and \(c_3 > 0 \) such that
\[
 c_3 \frac{|x|^{-(N-2\alpha)p}}{(1 + |\log(|x|)|)^{p-1}} \leq u_\infty \leq u_s \quad \forall x \in B_{\rho_0} \setminus \{0\}; \tag{1.16}
\]
(iv) if \(p \in (\frac{2\alpha}{N-2\alpha}, p^*_\alpha) \), then
\[
 u_\infty = u_s.
\]

We remark that \(\frac{N}{2\alpha} < 1 + \frac{2\alpha}{N} \) if \(1 + \frac{2\alpha}{N} < \frac{2\alpha}{N-2\alpha} \). Therefore Theorem 1.2 does not provide any description of \(u_\infty \) in the region
\[
 U := \left\{ (\alpha, p) \in (0, 1) \times (1, \frac{N}{N-2}) : \frac{N}{2\alpha} < 1 + \frac{2\alpha}{N}, \frac{2\alpha}{N} < p < 1 + \frac{2\alpha}{N} \right\}.
\]
Furthermore, in parts (ii) and (iii), we do not obtain that \(u_\infty = u_s \), since (1.15) and (1.16) do not provide sharp estimates on \(u_\infty \) in order it to belong to the uniqueness class characterized by (1.6).

The paper is organized as follows. In Section 2, we present some some estimates for the Green kernel and comparison principles. In Section 3, we prove that the weak solution of (1.1) is a classical solution of (1.4). Section 4 is devoted to analyze the limit of weakly singular solutions as \(k \to \infty \).

2 Preliminaries

The purpose of this section is to recall some known results. We denote by \(B_r(x) \) the ball centered at \(x \) with radius \(r \) and \(B_r := B_r(0) \).

Lemma 2.1 Assume that \(0 < p < p^*_\alpha \), then there exists \(c_4, c_5, c_6 > 1 \) such that
(i) if \(p \in (0, \frac{2\alpha}{N-2\alpha}) \),
\[
 \frac{1}{c_4} \leq G_\alpha([G_\alpha[\delta_0])^p] \leq c_4 \quad \text{in} \quad B_r \setminus \{0\};
\]
(ii) if \(p = \frac{2\alpha}{N-2\alpha} \),
\[
-\frac{1}{c_5} \ln |x| \leq G_\alpha([G_\alpha[\delta_0]]^p) \leq -c_5 \ln |x| \quad \text{in} \quad B_r \setminus \{0\};
\]

(iii) if \(p \in (\frac{2\alpha}{N-2\alpha}, p^*_\alpha) \),
\[
\frac{1}{c_6} |x|^{2\alpha-(N-2\alpha)p} \leq G_\alpha([G_\alpha[\delta_0]]^p) \leq c_6 |x|^{2\alpha-(N-2\alpha)p} \quad \text{in} \quad B_r \setminus \{0\},
\]
where \(r = \frac{1}{4} \min\{1, \text{dist}(0, \partial \Omega)\} \) and \(G_\alpha \) is defined by (1.7).

Proof. The proof follows easily from Chen-Song’s estimates of Green functions [9], see [6, Theorem 5.2] for a detailed computation. \(\square \)

Theorem 2.1 Assume that \(O \) is a bounded domain of \(\mathbb{R}^N \) and \(u_1, u_2 \) are continuous in \(\bar{O} \) and satisfy
\[
(-\Delta)^\alpha u + u^p = 0 \quad \text{in} \quad O.
\]
Moreover, we assume that \(u_1 \geq u_2 \) in \(O^c \). Then,
(i) either \(u_1 > u_2 \) in \(O \),
(ii) or \(u_1 \equiv u_2 \) a.e. in \(\mathbb{R}^N \).

Proof. The proof refers to [5, Theorem 2.3] (see also [4, Theorem 5.2]). \(\square \)

The following stability result is proved in [5, Theorem 2.2].

Theorem 2.2 Suppose that \(O \) is a bounded \(C^2 \) domain and \(h : \mathbb{R} \to \mathbb{R} \) is continuous. Assume \(\{u_n\} \) is a sequence of functions, uniformly bounded in \(L^1(O^c, \frac{dy}{1+|y|^{N+2\alpha}}) \), satisfying
\[
(-\Delta)^\alpha u_n + h(u_n) \geq f_n \quad (\text{resp} \quad (-\Delta)^\alpha u_n + h(u_n) \leq f_n) \quad \text{in} \quad O
\]
in the viscosity sense, where the \(f_n \) are continuous in \(O \). If there holds
(i) \(u_n \to u \) locally uniformly in \(O \),
(ii) \(u_n \to u \) in \(L^1(\mathbb{R}^N, \frac{dy}{1+|y|^{N+2\alpha}}) \),
(iii) \(f_n \to f \) locally uniformly in \(O \),
then
\[
(-\Delta)^\alpha u + h(u) \geq f \quad (\text{resp} \quad (-\Delta)^\alpha u + h(u) \leq f) \quad \text{in} \quad O
\]
in the viscosity sense.
3 Regularity

In this section, we prove that any weak solution of (1.1) is a classical solution of (1.4). To this end, we introduce some auxiliary lemma.

Lemma 3.1 Assume that
\[w \in C^{2, \alpha}_+(\bar{B}_1) \]
with \(\epsilon > 0 \) satisfies
\[(-\Delta)^\alpha w = h \quad \text{in} \quad B_1, \]
where \(h \in C^1(\bar{B}_1) \). Then for \(\beta \in (0, 2\alpha) \), there exists \(c_7 > 0 \) such that
\[\|w\|_{C^\beta(B_1/4)} \leq c_7 \left(\|w\|_{L^\infty(B_1)} + \|h\|_{L^\infty(B_1)} + \|(1 + |\cdot|)^{-N-2\alpha} w\|_{L^1(\mathbb{R}^N)} \right). \tag{3.1} \]

Proof. Let \(\eta : \mathbb{R}^N \to [0, 1] \) be a \(C^\infty \) function such that
\[\eta = 1 \quad \text{in} \quad B_{3/4} \quad \text{and} \quad \eta = 0 \quad \text{in} \quad B_1^c. \]
We denote \(v = w\eta \), then \(v \in C^{2+\epsilon}(\mathbb{R}^N) \) and for \(x \in B_1/2 \), \(\epsilon \in (0, 1/4) \),
\[(-\Delta)_{\epsilon}^\alpha v(x) = -\int_{\mathbb{R}^N \setminus B_\epsilon} \frac{v(x+y) - v(x)}{|y|^{N+2\alpha}} \, dy \]
\[= (-\Delta)_{\epsilon}^\alpha w(x) + \int_{\mathbb{R}^N \setminus B_\epsilon} \frac{(1 - \eta(x+y))w(x+y)}{|y|^{N+2\alpha}} \, dy. \]
Together with the fact of \(\eta(x+y) = 1 \) for \(y \in B_\epsilon \), we have
\[\int_{\mathbb{R}^N \setminus B_\epsilon} \frac{(1 - \eta(x+y))w(x+y)}{|y|^{N+2\alpha}} \, dy = \int_{\mathbb{R}^N} \frac{(1 - \eta(x+y))w(x+y)}{|y|^{N+2\alpha}} \, dy =: h_1(x), \]
thus,
\[(-\Delta)_{\epsilon}^\alpha v = h + h_1 \quad \text{in} \quad B_1/2. \]
For \(x \in B_1/2 \) and \(z \in \mathbb{R}^N \setminus B_{3/4} \), there holds
\[|z - x| \geq |z| - |x| \geq |z| - \frac{1}{2} \geq \frac{1}{16}(1 + |z|) \]
which implies
\[|h_1(x)| = \left| \int_{\mathbb{R}^N} \frac{(1 - \eta(z))w(z)}{|z - x|^{N+2\alpha}} \, dz \right| \leq \int_{\mathbb{R}^N \setminus B_{3/4}} \frac{|w(z)|}{|z - x|^{N+2\alpha}} \, dz \]
\[\leq 16^{N+2\alpha} \int_{\mathbb{R}^N} \frac{|w(z)|}{(1 + |z|)^{N+2\alpha}} \, dz \]
\[= 16^{N+2\alpha} \| (1 + |\cdot|)^{-N-2\alpha} w \|_{L^1(\mathbb{R}^N)}. \]
By [11] Proposition 2.1.9], for $\beta \in (0, 2\alpha)$, there exists $c_8 > 0$ such that
\[
\|v\|_{C^\beta(B_{1/4})} \leq c_8 (\|v\|_{L^\infty(\mathbb{R}^N)} + \|h + h_1\|_{L^\infty(B_{1/2})}) \\
\leq c_8 (\|w\|_{L^\infty(B_1)} + \|h\|_{L^\infty(B_{1/2})} + \|h_1\|_{L^\infty(B_{1/2})}) \\
\leq c_9 (\|w\|_{L^\infty(B_1)} + \|h\|_{L^\infty(B_{1/2})} + \|(1 + |\cdot|)^{-N-2\alpha}w\|_{L^1(\mathbb{R}^N)}),
\]
where $c_9 = 16^{N+2\alpha}c_8$. Combining with $w = v$ in $B_{\frac{3}{4}}$, we obtain (3.1).

Theorem 3.1 Let $\alpha \in (0, 1)$ and $0 < p < p_\alpha^*$, then the weak solution of (1.4) is a classical solution of (1.4).

Proof. Let u_k be the weak solution of (1.1). By [8] Theorem 1.1], we have
\[
0 \leq u_k = \mathbb{G}_\alpha[k\delta_0] - \mathbb{G}_\alpha[u_k^\beta] \leq \mathbb{G}_\alpha[k\delta_0]. \tag{3.2}
\]
We observe that $\mathbb{G}_\alpha[k\delta_0] = k\mathbb{G}_\alpha[\delta_0] = k\mathbb{G}_\alpha(\cdot, 0)$ is $C^2_{\text{loc}}(\Omega \setminus \{0\})$. Denote by O an open set satisfying $\overline{O} \subset \Omega \setminus B_r$ with $r > 0$. Then $\mathbb{G}_\alpha[k\delta_0]$ is uniformly bounded in $\Omega \setminus B_{r/2}$, so is u_k^p by (3.2).

Let $\{g_n\}$ be a sequence nonnegative functions in $C^\infty_0(\mathbb{R}^N)$ such that $g_n \to \delta_0$ in the weak sense of measures and let w_n be the solution of
\[
(-\Delta)^\alpha u + u^p = k g_n \quad \text{in } \Omega \\
u = 0 \quad \text{in } \Omega^c. \tag{3.3}
\]

From [8], we obtain that
\[
u_k = \lim_{n \to \infty} w_n \quad \text{a.e. in } \Omega. \tag{3.4}
\]
We observe that $0 \leq w_n = \mathbb{G}_\alpha[k g_n] - \mathbb{G}_\alpha[u_k^\beta] \leq k\mathbb{G}_\alpha[g_n]$ and $\mathbb{G}_\alpha[g_n]$ converges to $\mathbb{G}_\alpha[\delta_0]$ uniformly in any compact set of $\Omega \setminus \{0\}$ and in $L^1(\Omega)$; then there exists $c_{10} > 0$ independent of n such that
\[
\|w_n\|_{L^\infty(\Omega \setminus B_{r/2})} \leq c_{10} k \quad \text{and} \quad \|w_n\|_{L^1(\Omega)} \leq c_{10} k.
\]
By [10] Corollary 2.4 and Lemma 3.1 there exist $\epsilon > 0$, $\beta \in (0, 2\alpha)$ and positive constants $c_{11}, c_{12}, c_{13} > 0$ independent of n and k, such that
\[
\|w_n\|_{C^{2\alpha+\epsilon}(\Omega)} \leq c_{11} (\|w_n\|_{L^\infty(\Omega \setminus B_2)}^\beta + \|k g_n\|_{L^\infty(\Omega \setminus B_{2\epsilon})} + \|w_n\|_{C^\beta(\Omega \setminus B_{2\epsilon})}) \\
\leq c_{12} (\|w_n\|_{L^\infty(\Omega \setminus B_2)}^\beta + \|w_n\|_{L^\infty(\Omega \setminus B_{2\epsilon})} + \|k g_n\|_{L^\infty(\Omega \setminus B_{2\epsilon})} + \|w_n\|_{L^1(\Omega)}) \\
\leq c_{13} (k + k^p).
\]
Therefore, together with (3.4) and the Arzela-Ascoli Theorem, it follows that $u_k \in C^{2\alpha+\epsilon}(\Omega)$. This implies that u_k is $C^{2\alpha+\epsilon}$ locally in $\Omega \setminus \{0\}$. Therefore, $w_n \to u_k$ and $g_n \to 0$ uniformly in any compact subset of $\Omega \setminus \{0\}$ as $n \to \infty$. We conclude that u_k is a classical solution of (1.4) by Theorem 2.2. \(\Box\)
Corollary 3.1 Let u_k be the weak solution of (1.1) and O be an open set satisfying $\bar{O} \subset \Omega \setminus B_r$ with $r > 0$. Then there exist $\epsilon > 0$ and $c_{14} > 0$ independent of k such that
\[
\|u_k\|_{C^{2\alpha + \epsilon}(O)} \leq c_{14}\left(\|u_k\|^p_{L^\infty(\Omega \setminus B_r^2)} + \|u_k\|_{L^\infty(\Omega \setminus B_r^2)} + \|u_k\|_{L^1(\Omega)} \right). \tag{3.5}
\]

Proof. By Theorem 3.1, u_k is a solution of (1.4). Then the result follows from [10, Corollary 2.4] and Lemma 3.1 since there exist $\epsilon > 0$, $\beta \in (0, 2\alpha)$ and constants $c_{15}, c_{16} > 0$, independent of k, such that
\[
\|u_k\|_{C^{2\alpha + \epsilon}(O)} \leq c_{15}\left(\|u_k\|^p_{L^\infty(\Omega \setminus B_r^2)} + \|u_k\|_{C^{\beta}(\Omega \setminus B_{3r}^2)} \right)
\leq c_{16}\left(\|u_k\|^p_{L^\infty(\Omega \setminus B_r^2)} + \|u_k\|_{L^\infty(\Omega \setminus B_r^2)} + \|u_k\|_{L^1(\Omega)} \right).
\]
\[\square\]

Theorem 3.2 Assume that the weak solutions u_k of (1.1) satisfy
\[
\|u_k\|_{L^1(\Omega)} \leq c_{17} \tag{3.6}
\]
for some $c_{17} > 0$ independent of k and that for any $r \in (0, \text{dist}(0, \partial \Omega))$, there exists $c_{18} > 0$ independent of k such that
\[
\|u_k\|_{L^\infty(\Omega \setminus B_r^2)} \leq c_{18}. \tag{3.7}
\]

Then u_∞ is a classical solution of (1.4).

Proof. Let O be an open set satisfying $\bar{O} \subset \Omega \setminus B_r$ for $0 < r < \text{dist}(0, \partial \Omega)$. By (3.5), (3.6) and (3.7), there exist $\epsilon > 0$ and $c_{19} > 0$ independent of k such that
\[
\|u_k\|_{C^{2\alpha + \epsilon}(O)} \leq c_{19}.
\]
Together with (1.13) and the Arzela-Ascoli Theorem, it implies that u_∞ belongs to $C^{2\alpha + \frac{\epsilon}{2}}(O)$. Hence u_∞ is $C^{2\alpha + \frac{\epsilon}{2}}$, locally in $\Omega \setminus \{0\}$. Therefore, $w_n \to u_k$ and $g_n \to 0$ uniformly in any compact set of $\Omega \setminus \{0\}$ as $n \to \infty$. Applying Theorem 2.2 we conclude that u_∞ is a classical solution of (1.4). \[\square\]

4 The limit of weakly singular solutions

We recall that u_k denotes the weak solution of (1.1) and $d = \min\{1, \text{dist}(0, \partial \Omega)\}$.
4.1 The case \(p \in (0, 1 + \frac{2\alpha}{N}) \)

Proposition 4.1 Let \(p \in (0, 1] \), then \(\lim_{k \to \infty} u_k(x) = \infty \) for \(x \in \Omega \).

Proof. We observe that \(G_\alpha[\delta_0], G_\alpha[(G_\alpha[\delta_0])^p] > 0 \) in \(\Omega \). Since by (1.3)

\[
 u_k \geq k^p G_\alpha[\delta_0] - k^p G_\alpha[(G_\alpha[\delta_0])^p],
\]

this implies the claim when \(p \in (0, 1) \), for any \(x \in \Omega \). For \(p = 1 \), \(u_k = ku_1 \).

The proof follows since \(u_1 > 0 \) in \(\Omega \). \(\square \)

Now we consider the case of \(p \in (1, 1 + \frac{2\alpha}{N}) \). Let \(\{r_k\} \subset (0, \frac{\delta}{4}] \) be a strictly decreasing sequence of numbers satisfying \(\lim_{k \to \infty} r_k = 0 \). Denote by \(\{z_k\} \) the sequence of functions defined by

\[
 z_k(x) = \begin{cases}
 -d^{-N}, & x \in B_{r_k}^c \\
 |x|^{-N} - d^{-N}, & x \in B_{r_k}.
 \end{cases} \tag{4.1}
\]

Lemma 4.1 Let \(\{\rho_k\} \) be a strictly decreasing sequence of numbers such that \(\frac{\alpha}{\rho_k} < \frac{1}{2} \) and \(\lim_{k \to \infty} \frac{\rho_k}{\rho_{k+1}} = 0 \). Then

\[
 (-\Delta)^\alpha z_k(x) \leq -c_{1,k} |x|^{-N-2\alpha}, \quad x \in B_{\rho_k}^c,
\]

where \(c_{1,k} = -c_{20} \log(\frac{\rho_k}{\rho_{k+1}}) \) with \(c_{20} > 0 \) independent of \(k \).

Proof. For any \(x \in B_{\rho_k}^c \), there holds

\[
 (-\Delta)^\alpha z_k(x) = -\frac{1}{2} \int_{\mathbb{R}^N} \frac{z_k(x+y) + z_k(x-y) - 2z_k(x)}{|y|^{N+2\alpha}} dy
\]

\[
 = -\frac{1}{2} \int_{\mathbb{R}^N} \frac{|x+y|^{-N} \chi_{B_{\rho_k}^c}(-x)(y) + |x-y|^{-N} \chi_{B_{\rho_k}^c}(x)(y) - 2|x|^{-N}}{|y|^{N+2\alpha}} dy
\]

\[
 = -\frac{1}{2} |x|^{-N-2\alpha} \int_{\mathbb{R}^N} \delta(x, z, r_k) \frac{d\chi_{B_{\rho_k}^c}}{|z|^{N+2\alpha}} dz,
\]

where \(\delta(x, z, r_k) = |z + e_x|^{-N} \chi_{B_{\rho_k}^c}(-e_x)(z) + |z - e_x|^{-N} \chi_{B_{\rho_k}^c}(e_x)(z) - 2 \) and \(e_x = \frac{x}{|x|} \).

We observe that \(\frac{\rho_k}{|x|} \leq \frac{\rho_k}{\rho_{k+1}} < \frac{1}{2} \) and \(|z \pm e_x| \geq 1 - |z| \geq \frac{1}{2} \) for \(z \in B_{\frac{\delta}{4}} \).

Then there exists \(c_{21} > 0 \) such that

\[
 |\delta(x, z, r_k)| \leq ||z + e_x|^{-N} + |z - e_x|^{-N} - 2| \leq c_{21}|z|^2.
\]

Therefore,

\[
 \left| \int_{B_{\frac{\delta}{4}}(0)} \frac{\delta(x, z, r_k)}{|z|^{N+2\alpha}} dz \right| \leq \int_{B_{\frac{\delta}{4}}(0)} \frac{|\delta(x, z, r_k)|}{|z|^{N+2\alpha}} dz
\]

\[
 \leq c_{21} \int_{B_{\frac{\delta}{4}}(0)} |z|^{2-N-2\alpha} dz \leq c_{22},
\]
where \(c_{22} > 0 \) is independent of \(k \).

When \(z \in B_{1/2}(-e_x) \) there holds

\[
\int_{B_{1/2}(-e_x)} \frac{\delta(x, z, r_k)}{|z|^{N + 2\alpha}} \, dz \geq \int_{B_{1/2}(-e_x)} \frac{|z + e_x|^{-N} \chi_{B_{r_k}}(-e_x)(z) - 2}{|z|^{N + 2\alpha}} \, dz \\
\geq c_{23} \int_{B_{1/2}(0) \setminus B_{r_k}(0)} (|z|^{-N} - 2) \, dz \\
\geq -c_{24} \log \frac{r_k}{|x|} \geq -c_{24} \log \left(\frac{r_k}{\rho_k} \right),
\]

where \(c_{23}, c_{24} > 0 \) are independent of \(k \).

For \(z \in B_{1/2}(e_x) \), we have

\[
\int_{B_{1/2}(e_x)} \frac{\delta(x, z, r_k)}{|z|^{N + 2\alpha}} \, dz = \int_{B_{1/2}(-e_x)} \frac{\delta(x, z, r_k)}{|z|^{N + 2\alpha}} \, dz.
\]

Finally, for \(z \in O := \mathbb{R}^N \setminus (B_{1/2}(0) \cup B_{1/2}(-e_x) \cup B_{1/2}(e_x)) \), we have

\[
| \int_{O} \frac{\delta(x, z, r_k)}{|z|^{N + 2\alpha}} \, dz | \leq c_{25} \int_{B_{1/2}(0)} \frac{|z|^{-N + 1}}{|z|^{N + 2\alpha}} \, dz \leq c_{26},
\]

where \(c_{25}, c_{26} > 0 \) are independent of \(k \).

Combining these inequalities we obtain that there exists \(c_{20} > 0 \) independent of \(k \) such that

\[
(-\Delta)^{\alpha} z_k(x) |x|^{N + 2\alpha} \leq c_{20} \log \left(\frac{r_k}{\rho_k} \right) := c_{1,k},
\]

which ends the proof. \(\square \)

Proposition 4.2 Assume that

\[
\frac{2\alpha}{N - 2\alpha} < 1 + \frac{2\alpha}{N}, \quad \max\{1, \frac{2\alpha}{N - 2\alpha}\} < p < 1 + \frac{2\alpha}{N} \quad (4.2)
\]

and \(z_k \) is defined by \((4.1) \) with \(r_k = k^{-\frac{p-1}{N-(2\alpha)p}} (\log k)^{-2} \). Then there exists \(k_0 > 0 \) such that for any \(k \geq k_0 \)

\[
u_k \geq c_{2,k} \, z_k \quad \text{in} \quad B_d, \quad (4.3)
\]

where \(c_{2,k} = \ln \ln k \).
Proof. For $p \in (\max\{1, \frac{2\alpha}{N-2\alpha}\}, 1 + \frac{2\alpha}{N})$, it follows by (1.9) and Lemma 2.1(iii) that there exist $\rho_0 \in (0, d)$ and $c_{27}, c_{28} > 0$ independent of k such that, for $x \in \overline{B}_{\rho_0} \setminus \{0\}$,

\[
\begin{align*}
u_k(x) &\geq kG_\alpha(\delta_0)(x) - k^pG_\alpha([G_\alpha(\delta_0)]^p)(x) \\
&\geq c_{27}k^p|x|^{-N+2\alpha} - c_{28}k^p|x|^{-(N-2\alpha)p+2\alpha} \\
&= c_{27}k^p|x|^{-N+2\alpha}(1 - \frac{c_{28}}{c_{27}}k^{p-1}|x|^{N-(N-2\alpha)p}).
\end{align*}
\]

We choose

\[\rho_k = k^{\frac{N-1}{N-(N-2\alpha)p}}(\log k)^{-1}. \tag{4.4}\]

There exists $k_1 > 1$ such that for $k \geq k_1$

\[
u_k(x) \geq c_{27}k^p|x|^{-N+2\alpha}(1 - \frac{c_{28}}{c_{27}}k^{p-1}\rho_k^{N-(N-2\alpha)p}) \geq \frac{c_{27}^2}{2}k|x|^{-N+2\alpha}, \quad x \in \overline{B}_{\rho_k} \setminus \{0\}. \tag{4.5}\]

Since $p < 1 + \frac{2\alpha}{N}$, $1 - \frac{2\alpha(p-1)}{N(N-2\alpha)p} > 0$ and there exists $k_0 \geq k_1$ such that

\[\frac{c_{27}^2}{2}kr_k^{2\alpha} \geq (\ln k)^{\frac{1}{p-\alpha}}, \tag{4.6}\]

for $k \geq k_0$. This implies

\[rac{c_{27}^2}{2}k|x|^{2\alpha} \geq (\ln k)^{\frac{1}{p-\alpha}}, \quad x \in \overline{B}_{\rho_k} \setminus B_{r_k}.
\]

Together with (4.1) and (4.5), we derive

\[
u_k(x) \geq (\ln k)^{\frac{1}{p-\alpha}}z_k(x), \quad x \in \overline{B}_{\rho_k} \setminus B_{r_k},
\]

for $k \geq k_0$. Furthermore, it is clear that

\[(\ln k)^{\frac{1}{p-\alpha}}z_k(x) \leq 0 \leq \nu_k(x)
\]

whenever $x \in B_{r_k}$ or $x \in B_d^c$. Set $c_{2,k} = \ln \ln k$, then by Lemma 4.1

\[(-\Delta)^{\frac{1}{2}}c_{2,k}^{\frac{1}{2}}z_k(x) + c_{2,k}^{\frac{1}{p}}z_k(x)^p \leq c_{2,k}^{\frac{1}{2}}|x|^{-N-2\alpha}(-1 + |x|^{N+2\alpha-Np}) \leq 0,
\]

for any $x \in B_d \setminus \overline{B}_{\rho_k}$, since $N + 2\alpha - Np \geq 0$ and $d \leq 1$. Applying Theorem 2.1, we infer that

\[c_{2,k}^{\frac{1}{p-1}}z_k(x) \leq \nu_k(x) \quad \forall x \in \overline{B}_d,
\]

which ends the proof. \[\square\]
Proposition 4.3 Assume

\[1 < \frac{2\alpha}{N-2\alpha} \leq 1 + \frac{2\alpha}{N} \quad \text{and} \quad p = \frac{2\alpha}{N-2\alpha} \] \tag{4.7}

and let \(z_k \) be defined by (4.1) with \(r_k = k^{-\frac{2\alpha}{N(N-2\alpha)}}(\log k)^{-3} \) and \(k > 2 \). Then there exists \(k_0 > 2 \) such that (4.3) holds for \(k \geq k_0 \).

Proof. By (1.9) and Lemma 2.1-(ii), there exist \(\rho_0 \in (0, d) \) and \(c_{30}, c_{31} > 0 \) independent of \(k \), such that for \(x \in B_{\rho_0} \setminus \{0\} \)

\[
\begin{align*}
u_k(x) &\geq c_{30}k|x|^{-N+2\alpha} + c_{31}k^p \log |x| \\
&= c_{30}k|x|^{-N+2\alpha}(1 + \frac{c_{31}}{c_{30}}k^{p-1}|x|^{N-2\alpha} \log |x|).
\end{align*}
\]

If we choose \(\rho_k = k^{-\frac{2\alpha}{N(N-2\alpha)}}(\log k)^{-2} \) there exists \(k_1 > 1 \) such that for \(k \geq k_1 \), we have \(1 + \frac{c_{31}}{c_{30}}k^{p-1}\rho_k^{-N+2\alpha} \log(\rho_k) \geq \frac{1}{2} \) and

\[
u_k(x) \geq \frac{c_{30}}{2}k|x|^{-N+2\alpha} \quad \forall x \in B_{\rho_k} \setminus \{0\}. \tag{4.8}
\]

Since \(\frac{2\alpha}{N-2\alpha} < 1 + \frac{2\alpha}{N} \), there holds \(1 - \frac{4\alpha^2}{N(N-2\alpha)} > 0 \) and there exists \(k_0 \geq k_1 \) such that

\[
\frac{c_{30}}{2}k^{2\alpha} = \frac{c_{30}}{2}k^{1-\frac{4\alpha^2}{N(N-2\alpha)}}(\log k)^{-6\alpha} \geq \left(\ln \ln k\right)^{\frac{1}{p-1}}
\]

for \(k \geq k_0 \). The remaining of the proof is the same as in Proposition 4.2. \(\square \)

In the sequel, we point out the fact that the limit behavior of the \(u_k \) depends which of the following three cases holds:

\[
\begin{align*}
\frac{2\alpha}{N-2\alpha} &= 1 + \frac{2\alpha}{N} = \frac{N}{2\alpha}; \quad (4.9) \\
\frac{2\alpha}{N-2\alpha} &< 1 + \frac{2\alpha}{N} < \frac{N}{2\alpha}; \quad (4.10) \\
\frac{2\alpha}{N-2\alpha} &> 1 + \frac{2\alpha}{N} > \frac{N}{2\alpha}. \quad (4.11)
\end{align*}
\]

Proposition 4.4 Assume

\[1 < \frac{2\alpha}{N-2\alpha} \leq 1 + \frac{2\alpha}{N} \quad \text{and} \quad 1 < p < \frac{2\alpha}{N-2\alpha}, \] \tag{4.12}

or

\[1 + \frac{2\alpha}{N} < \frac{2\alpha}{N-2\alpha} \quad \text{and} \quad 1 < p < \frac{N}{2\alpha}, \] \tag{4.13}

and \(z_k \) is defined by (4.1) with \(r_k = k^{-\frac{2\alpha}{N-2\alpha}}(\log k)^{-1} \). Then there exists \(k_0 > 2 \) such that (4.3) holds for \(k \geq k_0 \).
Step 2: We claim that
\[p < \frac{N}{2} \]
Clearly
\[p \]
it covers
\[u \]
We denote by
\[\rho \]
Proof. By (1.9) and Lemma 2.1 (i), there exist \(\rho_0 \in (0, d) \) and \(c_{33}, c_{34} > 0 \) independent of \(k \) such that for \(x \in \bar{B}_{\rho_0} \setminus \{0\} \),
\[u_k(x) \geq c_{33}k|x|^{-N+2\alpha} - c_{34}k^p \]
\[= c_{33}k|x|^{-N+2\alpha}(1 - \frac{c_{34}}{c_{33}}k^{p-1}|x|^{N-2\alpha}). \]
We choose \(\rho_k = k^{-\frac{N-2\alpha}{N-2\alpha}} \). Then there exists \(k_1 > 1 \) such that for \(k \geq k_1 \),
\[1 - \frac{c_{34}}{c_{33}}k^{p-1}\rho_k \geq \frac{1}{2} \]
and
\[u_k(x) \geq \frac{c_{33}}{2}k|x|^{-N+2\alpha} \quad \forall x \in \bar{B}_{\rho_k} \setminus \{0\} \tag{4.14} \]
Clearly \(p < \frac{N}{2} \) by assumptions (4.12), (4.13), together with relations (4.9) (4.10), (4.11), thus \(1 - (p-1)\frac{2\alpha}{N-2\alpha} > 0 \). Therefore there exists \(k_0 \geq k_1 \) such that
\[\frac{c_{33}}{2}k\alpha \leq \frac{c_{33}}{2}k^{1-(p-1)\frac{2\alpha}{N-2\alpha}} (\log k)^{-2\alpha} \geq (\log \log k)^{-\frac{1}{p-1}} = c_{2,k} \]
for \(k \geq k_0 \). The remaining of the proof is similar to the one of Proposition 4.2. \(\square \)

4.2 The case \(p \in (1, 1 + \frac{2\alpha}{N}) \)

We give below the proof, in two steps, of Theorem 1.1 part (i) with \(p \in (1, 1 + \frac{2\alpha}{N}) \) and Theorem 1.2 part (i) with \(p \in (1, \frac{2\alpha}{N}) \).

Step 1: We claim that \(u_\infty = \infty \) in \(B_d \). We observe that for \(\frac{2\alpha}{N-2\alpha} < 1 + \frac{2\alpha}{N} \), Propositions 4.2 4.3 4.4 cover the case \(p \in (\max\{1, \frac{2\alpha}{N-2\alpha}\}, 1 + \frac{2\alpha}{N}) \), the case \(1 < \frac{2\alpha}{N-2\alpha} < 1 + \frac{2\alpha}{N} \) along with \(p = \frac{2\alpha}{N-2\alpha} \) and the case \(1 < \frac{2\alpha}{N-2\alpha} < 1 + \frac{2\alpha}{N} \) along with \(p \in (1, \frac{2\alpha}{N-2\alpha}) \) respectively. For \(\frac{2\alpha}{N-2\alpha} = 1 + \frac{2\alpha}{N} \), Proposition 4.3 4.4 cover the case \(p = \frac{2\alpha}{N-2\alpha} \) and the case \(p \in (1, \frac{2\alpha}{N-2\alpha}) \) respectively. So it covers \(p \in (1, 1 + \frac{2\alpha}{N}) \) in Theorem 1.1 part (i). When \(\frac{2\alpha}{N-2\alpha} < 1 + \frac{2\alpha}{N} \), Proposition 4.3 covers \(p \in (1, \frac{2\alpha}{N-2\alpha}) \) in Theorem 1.1 part (i). Therefore, we have
\[u_\infty \geq c_{2,k}^{\frac{1}{p-1}} z_k \quad \text{in} \quad B_d \]
and since for any \(x \in B_d \setminus \{0\} \), \(\lim_{k \to \infty} c_{2,k}^{\frac{1}{p-1}} z_k(x) = \infty \), we derive
\[u_\infty = \infty \quad \text{in} \quad B_d. \]

Step 2: We claim that \(u_\infty = \infty \) in \(\Omega \). By the fact of \(u_\infty = \infty \) in \(B_d \) and \(u_{k+1} \geq u_k \) in \(\Omega \), then for any \(n > 1 \) there exists \(k_n > 0 \) such that \(u_{k_n} \geq n \) in \(B_d \). For any \(x_0 \in \Omega \setminus B_d \), there exists \(\rho > 0 \) such that \(\bar{B}_\rho(x_0) \subset \Omega \cap B_{d/2}^c \). We denote by \(w_n \) the solution of
\[(-\Delta)^\alpha u + u^p = 0 \quad \text{in} \quad B_\rho(x_0) \]
\[u = 0 \quad \text{in} \quad B_\rho^c(x_0) \setminus B_{d/2} \tag{4.15} \]
\[u = n \quad \text{in} \quad B_{d/2}. \]

14
Then by Theorem 2.1, we have

\[u_{kn} \geq w_n, \quad (4.16) \]

Let \(\eta_1 \) be the solution of

\[(-\Delta)^\alpha u = 1 \quad \text{in} \quad B_\rho(x_0) \]
\[u = 0 \quad \text{in} \quad B_\rho^c(x_0), \]

and \(v_n = w_n - n\chi_{Bd/2} \), then \(v_n = w_n \) in \(B_\rho(x_0) \) and

\[(-\Delta)^\alpha v_n(x) + v_n^p(x) = (-\Delta)^\alpha w_n(x) - n(-\Delta)^\alpha \chi_{Bd/2}(x) + w_n^p(x) \]
\[= n \int_{Bd/2} \frac{dy}{|y - x|^{N+2\alpha}} \quad \forall x \in B_\rho(x_0). \]

This means that \(v_n \) is a solution of

\[(-\Delta)^\alpha u + u^p = n \int_{Bd/2} \frac{dy}{|y - x|^{N+2\alpha}} \quad \text{in} \quad B_\rho(x_0), \quad (4.17) \]
\[u = 0 \quad \text{in} \quad B_\rho^c(x_0). \]

It is clear that

\[\frac{1}{c_{35}} \leq \int_{Bd/2} \frac{dy}{|y - x|^{N+2\alpha}} \leq c_{35} \quad \forall x \in B_\rho(x_0) \]

for some \(c_{35} > 1 \). Furthermore \((\frac{n}{2c_{35} \max \eta_1})^\frac{1}{p} \eta_1 \) is sub solution of \((4.17)\) for \(n \) large enough. Then using Theorem 2.1 we obtain that

\[v_n \geq (\frac{n}{2c_{35} \max \eta_1})^\frac{1}{p} \eta_1 \quad \forall x \in B_\rho(x_0), \]

which implies that

\[w_n \geq (\frac{n}{2c_{35} \max \eta_1})^\frac{1}{p} \eta_1 \quad \forall x \in B_\rho(x_0). \]

Then

\[\lim_{n \to \infty} w_n(x_0) \to \infty. \]

Since \(x_0 \) is arbitrary and together with \((4.16)\), it implies that \(u_\infty = \infty \) in \(\Omega \), which completes the proof. \(\square \)

4.3 The case of \(p \in (1 + \frac{2\alpha}{N}, \frac{N}{N-2\alpha}) \)

Proposition 4.5 Let \(\alpha \in (0, 1) \) and \(r_0 = \text{dist}(0, \partial \Omega) \). Then

(i) if \(\max\{1 + \frac{2\alpha}{N}, \frac{2\alpha}{N-2\alpha}\} < p < p^*_\alpha \), there exist \(R_0 \in (0, r_0) \) and \(c_{36} > 0 \) such that

\[u_\infty(x) \geq c_{36}|x|^{-\frac{2\alpha}{p-1}} \quad \forall x \in B_{R_0} \setminus \{0\}, \quad (4.18) \]
(ii) if \(\frac{2\alpha}{N-2\alpha} > 1 + \frac{2\alpha}{N} \) and \(p = \frac{2\alpha}{N-2\alpha} \), there exist \(R_0 \in (0, r_0) \) and \(c_{37} > 0 \) such that

\[
 u_\infty(x) \geq \frac{c_{37}}{(1 + |\log(|x|)|)^{p-1}} |x|^{-\frac{p(N-2\alpha)}{p-1}}, \quad \forall x \in B_{R_0} \setminus \{0\},
\]

(4.19)

(iii) if \(\frac{2\alpha}{N-2\alpha} > 1 + \frac{2\alpha}{N} \) and \(p \in (1 + \frac{2\alpha}{N}, \frac{2\alpha}{N-2\alpha}) \), there exist \(R_0 \in (0, r_0) \) and \(c_{38} > 0 \) such that

\[
 u_\infty(x) \geq c_{38} |x|^{-\frac{p(N-2\alpha)}{p-1}} \quad \forall x \in B_{R_0} \setminus \{0\}.
\]

(4.20)

Proof. (i) Using (4.19) and Lemma 2.1(i) with \(\max\{1+\frac{2\alpha}{N}, \frac{2\alpha}{N-2\alpha}\} < p < p_0^* \), we see that there exist \(\rho_0 \in (0, r_0) \) and \(c_{39}, c_{40} > 0 \) such that

\[
 u_k(x) \geq c_{39} k |x|^{-N+2\alpha} - c_{40} k^p |x|^{-(N-2\alpha)p+2\alpha} \quad \forall x \in B_{\rho_0} \setminus \{0\}.
\]

(4.21)

Set

\[
 \rho_k = \left(2^{(N-2\alpha)p-2\alpha-1}c_{40}k^{p-1}\right)^{\frac{1}{N-2\alpha+(p-1)\alpha}}.
\]

(4.22)

Since \((N-2\alpha)(p-1) - 2\alpha < 0 \), there holds \(\lim_{k \to \infty} \rho_k = 0 \). Let \(k_0 > 0 \) such that \(\rho_{k_0} \leq \rho_0 \), then for \(x \in B_{\rho_k} \setminus \overline{B_{\frac{4}{3}\rho_k}} \), we have

\[
 c_{40} k^p |x|^{-(N-2\alpha)p+2\alpha} \leq c_{40} k^p \left(\frac{\rho_k}{2}\right)^{(N-2\alpha)p+2\alpha} = \frac{c_{39}}{2} k^{-N+2\alpha} \leq \frac{c_{39}}{2} k^{-N+2\alpha}
\]

and

\[
 k = \left(2^{(N-2\alpha)p-2\alpha-1}c_{40}k^{p-1}\right)^{-\frac{1}{N-2\alpha+(p-1)\alpha}} \geq c_{41} |x|^{N-2\alpha-\frac{2\alpha}{p-1}},
\]

where \(c_{41} = \left(2^{(N-2\alpha)p-2\alpha-1}c_{40}\right)^{-\frac{1}{p-1}} 2^{(N-2\alpha)(p-1)-2\alpha-1} \).

Combining with (4.15), we obtain

\[
 u_k(x) = c_{39} k |x|^{-N+2\alpha} - c_{40} k^p |x|^{-(N-2\alpha)p+2\alpha} \geq \frac{c_{39}}{2} k^{-N+2\alpha} \geq c_{42} |x|^{-\frac{2\alpha}{p-1}},
\]

(4.23)

for \(x \in B_{\rho_k} \setminus \overline{B_{\frac{4}{3}\rho_k}} \), where \(c_{42} = \frac{1}{2} c_{39} c_{41} \) is independent of \(k \). By (4.22), we can choose a sequence \(\{k_n\} \subset [1, +\infty) \) such that

\[
 \rho_{k_{n+1}} \geq \frac{1}{2} \rho_{k_n}.
\]

16
For any \(x \in B_{\rho_{k_0}} \setminus \{0\} \), there exists \(n \) such that \(x \in B_{\rho_{kn}} \setminus B_{\frac{\rho_{kn}}{2}} \), then, by (4.23),
\[
 u_{kn}(x) \geq c_{42}|x|^{-\frac{2\alpha}{p-1}}.
\]
Together with \(u_{k+1} > u_k \), we derive
\[
 u_k(x) \geq c_{42}|x|^{-\frac{2\alpha}{p-1}}, \quad x \in B_{\rho_{k_0}} \setminus \{0\}.
\]

(ii) By (1.9) and Lemma 2.1-(ii) with \(p = \frac{2\alpha}{N-2\alpha} \), there exist \(\rho_0 \in (0, r_0) \) and \(c_{43}, c_{44} > 0 \) such that
\[
 u_k(x) \geq c_{43}|x|^{-N+2\alpha} - c_{44}k^p|\log(|x|)|, \quad x \in B_{\rho_0} \setminus \{0\}. \quad (4.24)
\]
Let \(\{\rho_k\} \) be a sequence of real numbers with value in \((0, 1)\) and such that
\[
 c_{44}k^{p-1}|\log\left(\frac{\rho_k}{2}\right)| = \frac{c_{43}}{2} \rho_k^{-N+2\alpha}. \quad (4.25)
\]
Then \(\lim_{k \to \infty} \rho_k = 0 \) and there exists \(k_0 > 0 \) such that \(\rho_{k_0} \leq \rho_0 \). Thus, for any \(x \in B_{\rho_{k_0}} \setminus B_{\frac{\rho_{k_0}}{2}} \) and \(k \geq k_0 \),
\[
 c_{43}k^p|\log(|x|)| \leq c_{44}k^p|\log\left(\frac{\rho_k}{2}\right)| = \frac{c_{43}}{2} k^{p-1} \rho_k^{-N+2\alpha} \leq \frac{c_{43}}{2} k^{p-1} \rho_k^{-N+2\alpha}.
\]
Therefore, assuming always \(x \in B_{\rho_{k_0}} \setminus B_{\frac{\rho_{k_0}}{2}} \), we derive from (4.25) that
\[
 k \geq \left(\frac{c_{44}}{2c_{43}} \right)^{-\frac{1}{p-1}} \left(\frac{\rho_k^{-N+2\alpha}}{1 + |\log(\rho_k)|} \right)^{\frac{1}{p-1}} \geq c_{45} \frac{|x|^{-\frac{N-2\alpha}{p}}}{(1 + |\log(|x|)|)^{\frac{1}{p-1}}},
\]
where \(c_{45} = \frac{2}{p-1} \left(\frac{c_{44}}{2c_{43}} \right)^{-\frac{1}{p-1}}. \) Consequently
\[
 u_k(x) \geq c_{43}|x|^{-N+2\alpha} - c_{44}k^p|\log(|x|)| \geq \frac{c_{43}}{2} k^{p-1} \rho_k^{-N+2\alpha} \geq c_{46} \frac{|x|^{-\frac{N-2\alpha}{p}}}{(1 + |\log(|x|)|)^{\frac{1}{p-1}}}, \quad (4.26)
\]
where \(c_{46} = \frac{1}{2} c_{43} c_{45} \) is independent of \(k \).

By (4.25), we can choose a sequence \(k_n \in [1, +\infty) \) such that
\[
 \rho_{k_{n+1}} \geq \frac{1}{2} \rho_{k_n},
\]
Then for any \(x \in B_{\rho_{k_0}} \setminus \{0\} \), there exists \(n \) such that \(x \in B_{\rho_{k_n}} \setminus B_{\frac{\rho_{k_n}}{2}} \). By (4.26) there holds
\[
 u_{kn}(x) \geq c_{46} \frac{|x|^{-\frac{N-2\alpha}{p}}}{(1 + |\log(|x|)|)^{\frac{1}{p-1}}}. \quad (17)
\]
Together with \(u_{k+1} > u_k \), we infer

\[
u_\infty(x) \geq c_{46} \frac{|x|^{-\frac{p(N-2\alpha)}{p-1}}}{(1 + |\log(|x|)|)^{\frac{p-1}{p}}} \quad \forall x \in B_{\rho_{k_0}} \setminus \{0\}.
\]

(iii) By (1.49) and Lemma 2.1-(iii) with \(p \in (1 + \frac{2\alpha}{N}, \frac{2\alpha}{N-2\alpha}) \), there exist \(\rho_0 \in (0, r_0) \) and \(c_{47}, c_{48} > 0 \) such that

\[
u_k(x) \geq c_{47}|x|^{-N+2\alpha} - c_{48}k^p \quad \forall x \in B_{\rho_0} \setminus \{0\}.
\] (4.27)

Put

\[
\rho_k = \left(\frac{c_{48}}{2c_{47}} \right)^{-\frac{1}{p-1}} \rho_k^{-\frac{N-2\alpha}{p-1}},
\] (4.28)

then \(\lim_{k \to \infty} \rho_k = 0 \) and there exists \(k_0 > 0 \) such that \(\rho_{k_0} \leq \rho_0 \). Therefore, if \(x \in B_{\rho_k} \setminus B_{\rho_k^2} \) and \(k \geq k_0 \), there holds

\[
c_{48}k^p = \frac{c_{47}}{2} k \rho_k^{-N+2\alpha} \leq \frac{c_{47}}{2} k |x|^{-N+2\alpha},
\]

which yields

\[
k = \left(\frac{c_{48}}{2c_{47}} \right)^{-\frac{1}{p-1}} \rho_k^{-\frac{N-2\alpha}{p-1}} \geq c_{49} |x|^{-\frac{N-2\alpha}{p-1}},
\]

by (4.28), where \(c_{49} = 2^{-\frac{N-2\alpha}{p-1}} \left(\frac{c_{48}}{2c_{47}} \right)^{-\frac{1}{p-1}} \). Consequently,

\[
u_k(x) \geq c_{47}|k|^{-N+2\alpha} - c_{48}k^p \geq \frac{c_{47}}{2} k |x|^{-N+2\alpha} \geq c_{50}|x|^{-\frac{p}{p-1}(N-2\alpha)},
\] (4.29)

where \(c_{50} = \frac{1}{2} c_{47} c_{49} \) is independent of \(k \).

By (4.28), we can choose a sequence \(k_n \in [1, +\infty) \) such that

\[
\rho_{k_{n+1}} = \frac{1}{2} \rho_{k_n},
\]

Then for any \(x \in B_{\rho_{k_0}} \setminus \{0\} \), there exists \(k_n \) such that \(x \in B_{\rho_{k_n}} \setminus B_{\rho_{k_n}^2} \) and then by (4.29),

\[
u_{k_n}(x) \geq c_{50}|x|^{-\frac{p(N-2\alpha)}{p-1}}.
\]

Together with \(u_{k+1} > u_k \), we have

\[
u_\infty(x) \geq c_{50}|x|^{-\frac{p(N-2\alpha)}{p-1}} \quad \forall x \in B_{\rho_{k_0}} \setminus \{0\},
\]

which ends the proof. \(\square \)
Lemma 4.2 Let \(p \in (1 + \frac{2\alpha}{N}, p^*_\alpha) \) and \(u_s \) be a strongly singular solution of (1.4) satisfying (1.5). Then
\[
u_\infty \leq u_s \quad \text{in} \quad \Omega \setminus \{0\},
\]
where \(u_\infty \) is defined by (1.13).

Proof. By (1.5) and (1.9), it follows
\[
\lim_{x \to 0} u_s |x|^{\frac{2\alpha}{\alpha - 1}} = c_0 \quad \text{and} \quad \lim_{x \to 0} u_k |x|^{N-2\alpha} = c_k,
\]
which implies that there exists \(r_1 > 0 \) such that
\[
u_k < u_s \quad \text{in} \quad \Omega \setminus \{0\}.
\]
Since by Theorem 3.1 \(u_k \) satisfies
\[
(-\Delta)^\alpha u_k + u_k^p = 0 \quad \text{in} \quad \Omega \setminus B_{r_1}(0),
\]
so does \(u_s \). By Theorem 2.1 there holds \(u_k \leq u_s \) in \(\Omega \setminus \{0\} \). Jointly with (1.13), it implies
\[
u_\infty \leq u_s \quad \text{in} \quad \Omega \setminus \{0\}.
\]

Proof of Theorem 1.1 (ii) and Theorem 1.2 (iv). By Lemma 4.2 and Theorem 3.2 we obtain that \(u_\infty \) is a classical solution of (1.4). Moreover, by Proposition 4.5 part (i) and Lemma 4.2 we have
\[
\frac{1}{c_{51}} |x|^{-\frac{2\alpha}{p-1}} \leq u_\infty (x) \leq c_{51} |x|^{-\frac{2\alpha}{p-1}},
\]
for some \(c_{51} > 1 \). Then \(u_\infty = u_s \) in \(\mathbb{R}^N \setminus \{0\} \) since \(u_s \) is unique in the class of solutions satisfying (1.6).

4.4 Proof of Theorem 1.2 (ii) and (iii)

By Lemma 4.2 and Theorem 3.2 \(u_\infty \) is a classical solution of (1.4) and it satisfies
\[
u_\infty \leq u_s \quad \text{in} \quad \Omega \setminus \{0\}.
\]
Therefore (1.16) and (1.15) follow by Proposition 4.5 part (ii) and (iii), respectively.
References

[1] Ph. Benilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation, *J. Evolution Eq.* 3, 673-770, (2003).

[2] H. Brezis, Some variational problems of the Thomas-Fermi type. Variational inequalities and complementarity problems, *Proc. Internat. School, Erice, Wiley, Chichester*, 53-73 (1980).

[3] H. Brezis and L. Véron, Removable singularities of some nonlinear elliptic equations, *Arch. Rational Mech. Anal.* 75, 1-6 (1980).

[4] L. Caffarelli and L. Silvestre, Regularity theory for fully non-linear integrodifferential equations, *Comm. Pure Appl. Math.* 62, 597-638 (2009).

[5] H. Chen, P. Felmer and A. Quaas, Large solutions to elliptic equations involving fractional Laplacian, *submitted*.

[6] H. Chen and L. Véron, Solutions of fractional equations involving sources and Radon measures, *HAL : hal-00766824, version 1, Dec. 2012*.

[7] H. Chen and L. Véron, Singular solutions of fractional elliptic equations with absorption, *arXiv:1302.1427v1, [math.AP]*, 6 (Feb. 2013).

[8] H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures, *arXiv:1305.0945v2, [math.AP]*, 15 (May 2013).

[9] Z. Chen, and R. Song, Estimates on Green functions and poisson kernels for symmetric stable process, *Math. Ann. 312*, 465-501 (1998).

[10] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional laplacian: regularity up to the boundary, *J. Math. Pures Appl.*, to appear.

[11] L. Silvestre, Regularity of the obstacle problem for a fractional power of the laplace operator, *Comm. Pure Appl. Math.* 60, 67-112 (2007).

[12] L. Véron, Weak and strong singularities of nonlinear elliptic equations, *Proc. Symp. Pure Math.* 45, 477-495 (1986).

[13] L. Véron, Singular solutions of some nonlinear elliptic equations, *Nonlinear Anal. T. M. & A.* 5, 225-242 (1981).

[14] L. Véron, Elliptic equations involving Measures, Stationary Partial Differential equations, *Vol. I, 593-712, Handb. Differ. Equ., North-Holland, Amsterdam* (2004).