Improved Stability Criteria for Time-Varying Delay System Using Second and First Order Polynomials

SHARAT CHANDRA MAHTO1, (Member, IEEE), RAJVIKRAM MADURAI ELAVARASAN2, SANDIP GHOSH3, (Senior Member, IEEE), R. K. SAKET2, (Senior Member, IEEE), EKLAS HOSSAIN3, (Senior Member, IEEE), AND SHYAM KRISHNA NAGAR1, (Member, IEEE)

1Department of Electrical Engineering, IIT (BHU), Varanasi 221005, India
2Clean and Resilient Energy Systems Laboratory, Texas A&M University, Galveston, TX 77553, USA
3Department of Electrical Engineering and Renewable Energy, Oregon Institute of Technology, Klamath Falls, OR 97601, USA

Corresponding authors: Rajvikram Madurai Elavarasan (rajvikram787@gmail.com) and Eklas Hossain (eklas.hossain@oit.edu)

\textbf{ABSTRACT} This article concerns the problem of stability analysis of systems with time-varying delay. Recent developments in this direction involves approximation of a second order polynomial function of time-delay. This article proposes a new Lyapunov-Krasovskii Functional that does not introduce the second-order polynomial and thereby avoid the approximation involved in obtaining the stability criterion. Two stability criterion are presented, one introduces the second-order polynomial and the other one does not. A comparison using numerical examples shows that the avoidance of second-order polynomial formulation leads to improved results.

\textbf{INDEX TERMS} Time-varying delay, Lyapunov-Krasovskii functional, Bessel-Legendre integral inequality, negative-determination lemma.

\section*{I. INTRODUCTION}
Consider a Time-delay system as:

\[
\dot{x}(t) = Ax(t) + A_x x(t - \tau(t)),
\]

where \(x(t) \in \mathbb{R}^n\) is the state vector; \(A, A_x \in \mathbb{R}^{n \times n}\) are the constant system matrices with continuously differentiable initial condition. The time-varying delay \(\tau(t)\) is otherwise represented as \(\tau(t)\) that satisfies the following properties:

\[
0 \leq \tau(t) \leq \bar{\tau}, \quad \mu_0 \leq \dot{\tau} \leq \mu_1
\]

where \(h, \mu_0\) and \(\mu_1\) are constants. The problem of stability analysis for time-delay system (1) has been widely investigated over the years and consistent improvement have been attained using the Lyapunov-Krasovskii (LK) approach [1]–[4]. Performance of such stability criteria is assessed by the maximum permissible upper bound (MPUB) of \(\tau(t)\). The key steps involved in obtaining improved results are by constructing appropriate LK Functional (LKF) involving augmentation of several states including state integrals and delayed states, and to find precise bound of the integral function in the derivative of LKF. It was shown in [5]–[8] that LKF must include the states involved in the integral function such that interaction among various states are established in the resulting criterion. Therefore, construction of LKFs depends on the integral function to be used in the derivation of the stability criterion.

On the other hand, regarding integral inequalities, Jensen and Wirtinger inequalities [5], [9] have been widely used to obtain bound of the integral function. Due to this reason, stability criteria are obtained as a first-order polynomials \(f(\tau) = a_1 \tau(t) + a_0\), where \(a_0(i = 0, 1) \in \mathbb{R}\) and independent of \(\tau(t)\). To make \(f(\tau) < 0\) for all \(\tau(t) \in [0, \bar{\tau}]\), two inequalities are to be satisfied as \(f(0) < 0\) and \(f(h) < 0\).

Recent developments involve the use of (i) double integral states to construct the LKF and (ii) higher order inequalities, such as auxiliary-polynomial based inequality [10] and Bessel Legendre function based inequality (BLBI) [11] to obtain bound of the integral function. The stability criteria are then obtained in quadratic form as: \(f(\tau) = a_2 \tau(t)^2 + a_1 \tau(t) + a_0\) with \(a_i(i = 0, 1, 2) \in \mathbb{R}\). In [12], the above is approximated as \(f(0) < 0\) and \(f(h) < 0\) to obtain \(f(\tau(t)) < 0\), but it applies when \(a_2 \geq 0\). The requirement \(a_2 \geq 0\) has been relaxed in [13] by introducing an additional condition \(-h^2 a_2 + f(h) < 0\). Similar works have been reported in [14]–[17], where some new set of conditions for negativity of a quadratic function.
have been developed. In [15] and [16], tuning parameters are introduced that lead to solving inequalities that are dependent on a tuning parameter to obtain less conservative results. In [14], the entire delay interval [0, h] is divided uniformly in multiple subintervals and for each of the sub-intervals, two end points are considered. It has been illustrates that less conservative results can be obtained by increasing the number of subintervals. Recently, two lemmas have been introduced in [17] to ensure the negativity of quadratic polynomial. The first inequality uses the property of cross-point between two tangent lines of the end points whereas the other inequality exploits the condition of finite interval. It should be noted that such quadratic inequalities also introduce conservativeness, since one has to approximate the polynomial. Then question arises “Can the appearance of quadratic form of τi be avoided while still using higher-order integral inequalities?”. An investigation on the appearance of τi2 dependent terms in the derivative of LKFs reveals that it is due to the combination of product of delay interval and interval-normalized states. To this end, a further inspection leads to the fact that these terms can be avoided by treating integral and its interval-normalized states as separate individual states. Moreover, not only this, out of the several possible LKFs, one requires to choose appropriate LKF that leads to less conservative result. This motivates the present work, which incorporates the following.

(i) An augmented-type delay-product LKF has been constructed by including single and double integral states along with their interval-normalized forms to incorporate more τi2 dependent terms in the resulting stability criterion.

(ii) Based on this LKF and negative-determination lemma (NDL) introduced in [13] to obtain negativity-definiteness of the resulting criterion, a stability criteria is derived leading to quadratic function based LMI conditions.

(iii) Another new stability criterion is derived by avoiding quadratic function based LMI conditions by treating integral states and their normalized forms as individual states in the derivative of the LKF.

Finally, three examples are considered to illustrate the less conservativeness of the proposed stability criterion that does not involve the NDL. It is demonstrated that not using the NDL leads to considerably less conservative results.

Notations:- In this article, 0 and I represent the zero and identity matrices respectively. For any square matrix N, we denoted Sym(N) = N + NT. Also, n-dimensional Euclidean space and set of all n x m real matrices are represented by R and Rnxm, respectively.

II. USEFUL LEMMAS

In this section, the following Lemmas are recalled that will be used to derive the main result. These are useful to deal with inversely weighted positive convexity parameters, integral function and second order polynomial conditions.

Lemma 1 [18]: For a real scalar α ∈ (0, 1), symmetric matrices R1 ≥ 0, R2 ≥ 0 and any matrices U1 and U2,

the following inequality holds:

\[
\begin{bmatrix}
\frac{1}{\alpha}R_1 & 0 \\
0 & \frac{1}{1-\alpha}R_2
\end{bmatrix}
\geq
\begin{bmatrix}
R_1 + (1-\alpha)Z_1 & (1-\alpha)U_1 + \alpha U_2 \\
Z_1 & R_2 + \alpha Z_2
\end{bmatrix}_*
\]

(3)

where Z1 = R1 − U2R−1 2 1 U1T and Z2 = R2 − U1T R−1 1 U1

The above is known as the Reciprocity Lemma and it is used to obtain a bound of quadratic terms involving reciprocal parameters. Next, we introduce the second-order BLBI, which supersedes the inequalities proposed in [10] and [19], respectively.

Lemma 2 [11]: For any constant matrix R ≥ 0, the following inequality holds for all continuously differentiable function w ∈ [a, b] → R^n

\[
(b - a) \int_a^b \bar{w}^T(s)\bar{w}(s)ds \geq \bar{\vartheta}_1^T R\bar{\vartheta}_1 + 3\bar{\vartheta}_2^T R\bar{\vartheta}_2 + 5\bar{\vartheta}_3^T R\bar{\vartheta}_3
\]

(4)

where

\[
\begin{align*}
\bar{\vartheta}_1 &= w(b) - w(a), \\
\bar{\vartheta}_2 &= w(b) + w(a) - \frac{2}{(b-a)} \int_a^b w(s)ds, \\
\bar{\vartheta}_3 &= \bar{\vartheta}_1 - \frac{6}{(b-a)} \int_a^{b} w(s)ds + \frac{12}{(b-a)^2} \int_a^b \int_a^s w(r)drds
\end{align*}
\]

The next Lemma is known as the NDL and it guarantees the negative definiteness of a quadratic function in the interval [0, h] irrespective of its concave or convex nature.

Lemma 3 [13]: The given quadratic function z(u) = a2u2 + a1u + a0, where a0, a1, a2 ∈ R, satisfy z(u) < 0 for all u ∈ [0, h] if the following three inequalities hold:

(a) z(0) < 0 (b) z(h) < 0 (c) −h2a2 + z(0) < 0

To simplify matrix and vector representations, the following notations are subsequently used:

\[
1 - \bar{\tau}(t) = \bar{\tau}_i
\]

\[
\begin{align*}
\mathbf{w}_0(t) &= \left[x^T(t), x^T(t - \bar{\tau}_i) \right]^T, \\
\mathbf{w}_1(t) &= \left[\int_{t-\bar{\tau}_i}^{t} x^T(s)ds, \frac{1}{\bar{\tau}_i} \int_{t-\bar{\tau}_i}^{t} x^T(r)dr \right]^T, \\
\mathbf{w}_2(t) &= \left[\int_{t-h}^{t-\bar{\tau}_i} x^T(s)ds, \frac{1}{h} \int_{t-h}^{t-\bar{\tau}_i} x^T(r)dr \right]^T, \\
\mathbf{w}_3(t) &= \left[x^T(t-h), \dot{x}(t-\bar{\tau}_i) \right]^T, \\
\mathbf{w}_0(t) &= \left[w_0^T(t), w_1^T(t), w_2^T(t) \right]^T, \\
\mathbf{w}_1(t) &= \left[\frac{1}{\bar{\tau}_i} w_0^T(t), w_2^T(t) \right]^T, \\
\mathbf{w}_2(t) &= \left[\frac{1}{h-\bar{\tau}_i} w_0^T(t), w_2^T(t) \right]^T, \\
\mathbf{w}_3(t) &= \left[x^T(s), \dot{x}(s), \int_{t-\bar{\tau}_i}^{t} x^T(s)ds \right]^T
\end{align*}
\]
Note that the vectors \(w_i, (i = 1, 2) \) contain the integral states for the delay intervals \([t - \tau, t]\) and \([t - h, t - \tau]\). Their interval normalized forms are obtained by multiplying reciprocal of the delay interval with the integral states, for example, \(\frac{1}{\tau} w_1(t) \) and \(\frac{1}{h - \tau} w_2(t) \). In this article, both the integral and their interval normalized states are utilized to define the LKF.

III. MAIN RESULTS

In this section, two stability criteria are derived for system (1). One leads to a criterion involving the second-order polynomial and the other one does not. The construction of LKF is discussed next.

A. LYAPUNOV-KRASOVSKII FUNCTIONAL

In [20], a new type of LKF has been introduced in which single integral states have been used as pivot elements of augmented vectors to construct delay-coefficient based quadratic terms. The time-derivative of this LKF introduces terms involving both the delay and its derivative, so that these terms contribute to reduce conservativeness in the stability criterion. By extending this idea, in [21] and [22], new delay-product based LKF have been constructed by using double integral states. On the basis of these works, a new LKF is constructed by involving both the integral states and its interval-normalized forms. Further, appropriate zero equalities are used to exploit the time-dependency of the states. The following LKF is used in this work.

\[
V(t) = V_0(t) + V_1(t) + V_2(t)
\]

where

\[
V_0(t) = \psi_0^T(t) P \psi_0(t) + \tau_1 \psi_1^T(t) P_1 \psi_1(t) + (h - \tau_1) \psi_2^T(t) P_2 \psi_2(t)
\]

\[
V_1(t) = \int_{t - \tau_1}^{t} \phi_3(s) Q_1 \phi_3(s) ds + \int_{t - h}^{t} \phi_7(s) Q_2 \phi_7(s) ds
\]

\[
V_2(t) = \int_{t - \tau_1}^{t} \dot{\phi}_8(s) R_1 \dot{\phi}_8(s) ds + \int_{t - h}^{t} \dot{\phi}_8(s) R_2 \dot{\phi}_8(s) ds
\]

and \(\phi_i, i = 0, 1, 2, 3 \) are defined in section II. \(P, P_1, P_2, Q_1, Q_2, R_1 \) and \(R_2 \) are positive definite matrices.

Remark 1: In the functional \(V_0(t) \), additional integral states \(w_1(t) \) and \(w_2(t) \) are introduced in the augmented vectors of delay-coefficient based quadratic terms corresponding to the delay intervals \([t - \tau, t]\) and \([t - h, t - \tau]\), such that more \(\tau_1 \) and \(\tau_2 \) dependent terms appear in the derived conditions. Note that these terms have not been used in LKFs defined earlier in [23]–[25]. Also, using these states, delay-dependent zero-equalities are formulated to exploit the time-relation of the delayed states.

Remark 2: A new form of single integral functionals have been proposed in [20], in which cross terms \(x(s), \dot{x}(s) \) in the interval \([t - \tau, t]\) and \(x(s) \) in \([t - h, t - \tau]\) have been introduced. By extending this idea, \(V_1(t) \) incorporates cross-terms \(\int_{t - \tau}^{t} \dot{x}(s) ds, x(s), x(s) \) in one interval whereas \(x(s) \) in the other one to avoid the inclusion of \(x(t - h) \) in the delay coefficient based terms and in the Lyapunov-matrix related term. This also avoids the appearance of additional state in the form of derivative of \(x(t - h) \) in the derivative of the LKF. By doing so the number of LMI variables and maximum order of LMI decreases which in turn reduces the computational burden. Also similar concept has been addressed in [26] in the construction of new LKF, by not including the information of delayed states in the augmented vectors. Hence, the delayed state derivative terms can be eliminated from the augmented vectors of derivative of LKF to decrease the dimension of stability criteria in LMI form. In addition, the work in [27] demonstrated the advantage of using \(V_2(t) \) that leads to delay-derivative dependent integral terms.

B. ZERO-EQUALITIES

Zero-equalities are often used to exploit the time relation of the states [28], [29]. In [30], the integral states and its interval-normalized forms are utilized to construct new zero-equalities. The following two zero-equalities with slack variable matrices \(N_i, i = 1, 2, 3, 4 \), of appropriate dimensions are used in this work.

\[
(I), \ 2\xi^T(t) N_1 \left[\dot{E}_1 w_1(t) - \tau_1 \dot{E}_1 \left(\frac{1}{\tau_1} w_1(t) \right) \right] + 2\xi^T(t) N_2 \times \left[\dot{E}_1 w_2(t) - (h - \tau_1) \dot{E}_1 \left(\frac{1}{h - \tau_1} w_2(t) \right) \right] = 0
\]

\[
(II), \ 2\xi^T(t) N_3 \left[\dot{E}_2 w_1(t) - \tau_2 \dot{E}_2 \left(\frac{1}{\tau_2} w_1(t) \right) \right] + 2\xi^T(t) N_4 \times \left[\dot{E}_2 w_2(t) - (h - \tau_2) \dot{E}_2 \left(\frac{1}{h - \tau_2} w_2(t) \right) \right] = 0
\]

where \(\dot{E}_1 = [I \ 0], \dot{E}_2 = [0 \ I] \) and \(\xi(t) \) is a column vector to be appropriately chosen. Note that the above zero-equalities (6) and (7) are quadratic forms of interval-normalized states and involves zero-functions of both \(w_1(t) \) and \(w_2(t) \) in the sense that the bracketed terms are zero by virtue of their time-dependency. These inequalities will be augmented in the derivative of the quadratic LKF so that the time relation among the integrals can be exploited. The slack variables introduce some freedom in the interplay of the constraints imposed on other variables arising from the LKF.

C. STABILITY ANALYSIS

This section presents two stability criteria for system (1) incorporating LKF (5). The first method leads to terms involving \(\tau_2 \) and thereby leads to a criterion as a second-order polynomial function of \(\tau_2 \). Whereas the second one involves only a first-order polynomial that does not require further approximation for a polytopic representation. The first result is presented next.

Theorem 1: System (1) is asymptotically stable if there exist positive definite matrices \(P \in \mathbb{R}^{n_x \times n_x}, P_1, \)
The above involves block vectors defined as:

\[e_i = [0_{nx(i-1)}, I_n, 0_{nx(8-i)}], i = 1, 2, \ldots, 8, \]

\[e_8 = A e_1 + A e_2, e_0 = [0]_{n \times 8n} \]

Proof 1: By taking the time-derivative of the individual terms in the LKF (5) and defining \(\xi_1(t) = [w_0^T(t), \frac{1}{\tau_t} w_1^T(t), \frac{\tau_t}{\tau_t} w_2^T(t), \frac{w_3^T(t)}{\tau_t}]^T \), one gets

\[\dot{V}_0(t) = \xi^T_1(t) \Phi_0(\tau_t, \dot{\tau}_t) \xi_1(t) \]
(17)

\[\dot{V}_1(t) = \xi^T_1(t) \Phi(\tau_t, \dot{\tau}_t) \xi_1(t) \]
(18)

\[\dot{V}_2(t) = \xi^T_1(t) e_3^T \tau_t R_1 + (\dot{\tau}_t) R_2 e_3 \xi_1(t) - I(t) \]
(19)

where \(\Phi_0(\tau_t, \dot{\tau}_t) \) and \(\Phi(\tau_t, \dot{\tau}_t) \) are defined in (12) and (13) respectively, and

\[I(t) = \int_{t-\tau_t}^{t} \dot{x}^T(s) \dot{J}(\tau_t) \dot{x}(s) ds + \int_{t-h}^{t-\tau_t} \dot{x}^T(s) R_2 \dot{x}(s) ds \]

\[J(\tau_t) = \tilde{\tau}_t R_1 + \tau_t R_2 \]

Next, the bound for the integral term \(I(t) \) is obtained. Using Lemma 2, one can write

\[I(t) \geq \frac{\xi^T_1(t)}{h} \left(\frac{1}{\tau_t} (2 - \alpha) \tilde{J}(\tau_t) E_1 + E_2 (1 + \alpha) R_2 U_2 - 2U_1^T (\alpha U_1 + (1 - \alpha) U_2) E_2 \right) \]

\[\]
(20)

where

\[E_1 = [e_1^T - e_2^T, e_1^T + e_2^T - 2e_3^T, e_2^T - e_4^T - 6e_5^T + 12 e_4^T]^T \]

\[E_2 = [e_2^T - e_4^T, e_2^T + e_4^T - 2e_5^T, e_2^T - e_4^T - 6e_5^T + 12 e_4^T]^T \]

\[\tilde{J} = \text{diag} [\tilde{J}(\tau_t), 3 \tilde{J}(\tau_t), 5 \tilde{J}(\tau_t)] \]

\[R_2 = \text{diag} [R_2, 3 R_2, 5 R_2] \]

The RHS of (20) involves inverse of \(\tau_t \). It is taken care of by using Lemma 1. This step yields

\[I(t) \geq \frac{1}{h} \xi_1(t)^T [(2 - \alpha) E_1^T \tilde{J}(\tau_t) E_1 + (1 + \alpha) E_2^T R_2 E_2 + 2E_1^T (\alpha U_1 + (1 - \alpha) U_2) E_2 - \Delta_1] \xi_1(t) \]
(21)

where

\[\Delta_1 = (1 - \alpha) E_1^T U_2 R_2^{-1} U_2^T E_1 + \alpha E_2^T U_1^T \tilde{J}^{-1}(\tau_t) U_1 E_2 \]

By replacing (21) into (19), one obtains

\[\dot{V}_2(t) \leq \xi^T_1(t) [\Phi_2(\tau_t, \dot{\tau}_t) + \frac{\Delta_1}{h}] \xi_1(t) \]
(22)

where \(\Phi_2(\tau_t, \dot{\tau}_t) \) is defined in (11). Now, one obtains \(\dot{V}(t) \) by collecting the derivatives of individual terms in the LKFs (17), (18) and (22) as

\[\dot{V}(t) \leq \xi^T_1(t) (T(\tau_t, \dot{\tau_t}) + \frac{\Delta_1}{h}) \xi_1(t) \]
(23)

where \(T(\tau_t, \dot{\tau}_t) \) is defined in (13).
The matrix $\tilde{\Phi}_0(\tau_i, \tau_t)$ of $\tilde{Y}(\tau_i, \tau_t)$ contains t terms, so $\tilde{Y}(\tau_i, \tau_t) + \frac{d\tilde{Y}}{dt}$ can be expressed in quadratic form of $\tilde{\tau}_t$ as

$$
\tilde{Y}(\tau_i, \tau_t) + \Delta_1 = t_i^2 G_0(\tau_i) + t_i G_1(\tau_i) + G_2(\tau_i)
$$

(24)

where $G_0(\tau_i)$ is defined in (13), $G_1(\tau_i)$ and $G_2(\tau_i)$ are symmetric matrices and all are independent of τ_t. Therefore, using Lemma 3, the matrix $\tilde{Y}(\tau_i, \tau_t) + \Delta_1 < 0$ holds for $\tau_i \in [0, h]$ and $\tau_t \in [\mu_0, \mu_1]$ if the following inequalities, for $i = 0, 1$, hold:

$$
\begin{align*}
\tilde{Y}(0, \mu_i) + \Delta_1(0, \mu_i) & < 0 \\
\tilde{Y}(h, \mu_i) + \Delta_1(h, \mu_i) & < 0 \\
-\tilde{y}^2 G_0(\mu_i) + \tilde{Y}(0, \mu_i) + \Delta_1(0, \mu_i) & < 0
\end{align*}
$$

Using Schur complement, one can transform the above inequalities into LMIs (8)-(10). Hence, if LMIs (8)-(11) are satisfied, then $V(t) < 0$, which ensures the asymptotic stability of system (1). This completes the proof.

In Theorem 1, $\tilde{V}_0(t)$ yields t terms because the integral states $w_1(t)$ and $w_2(t)$ are considered as product of delay-interval and their interval-normalized form. Hence, the stability criterion is in the form of quadratic function of τ_t and this enforces using Lemma 3. However, Lemma 3 has inherent conservativeness that make the stability result conservative.

To deal with this issue, an improved criteria is proposed in the next theorem by treating $w_1(t)$ and $w_2(t)$ and their interval-normalized forms $\frac{1}{\tau_t}w_1(t)$ and $\frac{1}{\tau_t}w_2(t)$ are considered as separate individual states. This leads to no t term in the derivative of the LKF and thereby not introducing conservativeness invited by the use of Lemma 3. Note that, this step invokes more decision variables in the resulting criterion, which is a trade-off with the reduction in conservativeness.

Theorem 2: System (1) is asymptotically stable if there exist positive-definite matrices $P, Q_1, Q_2 \in \mathbb{R}^{6n \times 6n}, P_1, P_2 \in \mathbb{R}^{(3n \times 3n), Q_1 \in \mathbb{R}^{3n \times 3n}, Q_2 \in \mathbb{R}^{nxn}, R_1, R_2 \in \mathbb{R}^{nxn}$, any matrices $U_1, U_2 \in \mathbb{R}^{3n \times 3n}$ and N_1, N_2 of appropriate dimensions, satisfying the following LMI conditions:

$$
\mathcal{F}(\tau_i, \tau_t) = \tilde{\Phi}_0(\tau_i, \tau_t) + \tilde{\Phi}_1(\tau_i, \tau_t) + \tilde{\Phi}_2(\tau_i, \tau_t)
$$

(28)

$$
\begin{align*}
\tilde{Y}(0, \mu_i) + \Delta_1(0, \mu_i) & < 0 \\
\tilde{Y}(h, \mu_i) + \Delta_1(h, \mu_i) & < 0 \\
-\tilde{y}^2 G_0(\mu_i) + \tilde{Y}(0, \mu_i) + \Delta_1(0, \mu_i) & < 0
\end{align*}
$$

(26)

where

$$
\mathcal{F}(\mu_i) \geq 0, \text{ for } i = 0, 1
$$

(27)

and

$$
\begin{align*}
\tilde{Y}(\tau_i, \tau_t) & = \tilde{\Phi}_0(\tau_i, \tau_t) + \tilde{\Phi}_1(\tau_i, \tau_t) + \tilde{\Phi}_2(\tau_i, \tau_t) \\
\tilde{\Phi}_0(\tau_i, \tau_t) & = \text{Sym}[\tilde{A}_0^T P \tilde{A}_1 + \tilde{A}_1 \tilde{A}_0^T P_1 \tilde{A}_2 + \text{Sym}[\tilde{A}_1^T P_1 \tilde{A}_3] - \tilde{A}_3 \tilde{A}_1^T P_2 \tilde{A}_4 + \text{Sym}[\tilde{A}_1^T P_2 \tilde{A}_5] \\
\tilde{\Phi}_1(\tau_i, \tau_t) & = \tilde{A}_0^T \tilde{Q}_1 \tilde{A}_6 - \tilde{A}_4 \tilde{A}_0^T Q_1 \tilde{A}_7 + \text{Sym}[\tilde{A}_8^T Q_1 \tilde{A}_9] \\
& + \tilde{A}_7^T Q_2 \tilde{A}_9 - \tilde{A}_9^T Q_2 \tilde{A}_7 \\
& + \text{Sym}[\tilde{N}_3 \tilde{e}_9 - \tilde{N}_4 \tilde{e}_3] + \text{Sym}[\tilde{N}_3 \tilde{e}_9 - \tilde{N}_4 \tilde{e}_3] + \text{Sym}[\tilde{N}_3 \tilde{e}_9 - \tilde{N}_4 \tilde{e}_3] \\
& + \text{Sym}[\tilde{N}_3 \tilde{e}_9 - \tilde{N}_4 \tilde{e}_3] + \text{Sym}[\tilde{N}_3 \tilde{e}_9 - \tilde{N}_4 \tilde{e}_3]
\end{align*}
$$

(29)

The \tilde{A} related quadratic term in the above consists of the following vectors:

$$
\begin{align*}
\tilde{A}_0 & = [\bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T, (h - \tau_t) e_0^T]^T \\
\tilde{A}_1 & = [\bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T, (h - \tau_t) e_0^T]^T \\
\tilde{A}_2 & = [\bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T]^T, \\
\tilde{A}_3 & = [\bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T, \bar{e}_1^T]^T \\
\end{align*}
$$

(30)

The above expression involves block vectors $\bar{e}_0, \ldots, \bar{e}_{12}$ defined as:

$$
\begin{align*}
\bar{e}_i & = [0_{nx(i-1)}, I_n, 0_{nx(12-i)}], i = 1, 2, \ldots, 12, \\
\bar{e}_i & = A e_1 + A e_2, \bar{e}_6 = [0]_{n \times 12n}
\end{align*}
$$

(31)

Proof 2: Similar to Theorem 1, consider the LKF (5). Next, by taking the derivative of $V_0(t)$ and by treating the integral and its normalized version as individual states to reformulate second order polynomial into first order, one obtains

$$
\tilde{V}_0(t) = [e_1^T(t) \Phi_0(\tau_i, \tau_t) \xi_2^T(t)]
$$

(32)

where $\Phi_0(\tau_i, \tau_t)$ is defined in (29) and $\xi_2(t) = [w_0^T(t), \frac{1}{\tau_t}w_1^T(t), \frac{1}{\tau_t}w_2^T(t), w_0^T(t), w_0^T(t), w_0^T(t)]^T$.

In the zero equalities of (6) and (7), the integral states $w_1(t)$ and $w_2(t)$ and their normalized version are considered as separate individual states then one obtains

$$
\begin{align*}
2 \xi_2^T(t) [N_1(\bar{e}_9 - \bar{e}_3) + N_2(\bar{e}_{10} - (h - \tau_t) \bar{e}_5)] \xi_2(t) & = 0 \\
2 \xi_2^T(t) [N_3(\bar{e}_{11} - \bar{e}_4) + N_4(\bar{e}_{12} - (h - \tau_t) \bar{e}_6)] \xi_2(t) & = 0
\end{align*}
$$

(33)

(34)

Next, by including (33) and (34) in the derivatives of $V_1(t)$, we have

$$
\begin{align*}
\tilde{V}_1(t) = [\xi_2^T(t) \Phi_1(\tau_i, \tau_t) \xi_2^T(t)]
\end{align*}
$$

(35)

where $\Phi_1(\tau_i, \tau_t)$ is defined in (10). Similarly, the derivative of $V_2(t)$ can be expressed as:

$$
\tilde{V}_2(t) = \xi_2^T(t) [\tau_t R_1 + (h - \tau_t) R_2] \xi_2(t) - T(t)
$$

(36)
where
\[
I(t) = \int_{t-t}^{t} \dot{x}^T(s) J(t) \dot{x}(s) ds \\
+ \int_{t-h}^{t-t} \dot{x}^T(s) R_2 \dot{x}(s) ds
\]
(37)

By bounding the integral function \(I(t) \) using Lemma 1 and 2, and invoking (34), one obtains
\[
\dot{V}_2(t) \leq \xi_2^T(t) \Phi_2(t, t) + \frac{\Pi_1}{h} \xi_2(t),
\]
(38)

where \(\Phi_2(t, t) \) is defined in (31) and
\[
\Pi_1 = (1 - \alpha) \tilde{E}_1^T S_2 \tilde{R}_2^{-1} S_2^T \tilde{E}_1 + \alpha \tilde{E}_2^T S_1^{-1} \tilde{J}^{-1}(t) S_1 \tilde{E}_2
\]
where
\[
\tilde{E}_1 = [\tilde{e}_1^T - \tilde{e}_3^T, \tilde{e}_1^T + \tilde{e}_2^T - 2\tilde{e}_3^T, \tilde{e}_1^T - \tilde{e}_3^T - 6\tilde{e}_3^T + 12\tilde{e}_4^T]^T
\]
\[
\tilde{E}_2 = [\tilde{e}_2^T - \tilde{e}_4^T, \tilde{e}_2^T - \tilde{e}_3^T - 2\tilde{e}_4^T, \tilde{e}_2^T - \tilde{e}_3^T - 6\tilde{e}_4^T + 12\tilde{e}_6^T]^T
\]
\[
\tilde{J} = \text{diag}\{J(t), J(t), J(t), S(\tilde{t}), \tilde{S}(\tilde{t})\}
\]
\[
\tilde{R}_2 = \text{diag}\{R_2, R_2, R_2\}
\]

Finally, one can write \(\dot{V}(t) \) using (32)-(34) as
\[
\dot{V}(t) \leq \xi_2^T(t) \Upsilon(t, t) + \frac{\Pi_1}{h} \xi_2(t)
\]
(39)

where \(\Upsilon(t, t) \) is defined in (28).

If the matrix \(\Upsilon(t, t) + \frac{\Pi_1}{h} \) is negative definite for all \(t \in [0, h] \) and \(t \in [\mu_0, \mu_1] \), then \(\dot{V}(t) < 0 \). Now, using Schur complement one can transform \(\Upsilon(t, t) + \frac{\Pi_1}{h} < 0 \) into LMIs (25) and (26). This completes the proof.

Remark 3: In Theorem 2, the integral and their interval-normalized forms are treated as separate individual states, to avoid the use of Lemma 3. Therefore, in Theorem 2, additional states \(w_1(t) \) and \(w_2(t) \) are considered as compared to Theorem 1. Two zero equalities are also modified to take these states into account. In doing so, the maximum order of the LMI criterion and number of LMI variables are increased. This results in computational burden and convergence time. In general, the potential to yield better result using Theorem 2 in comparison to Theorem 1 is at the price of more computational burden and convergence time. This yet again provides the trade-off between complexity and conservativeness.

IV. NUMERICAL EXAMPLES

In order to demonstrate the less conservativeness of Theorem 2, following three examples are considered and comparisons are constructed in terms of MPUB of \(h \) and number of LMI variables (NLVs).

A. SYSTEM PARAMETERS

Consider system (1) with the following three sets of system matrices:

\[
A = \begin{bmatrix} -2 & 0 \\ 0 & -0.9 \end{bmatrix}, \quad A_r = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix}
\]
(40)

B. COMPARATIVE RESULTS

(a) Delay upper-bound (\(h \)): The MPUB of delay for various values of \(\mu \) obtained using different approaches are tabulated in Tables 1, 2 and 3 for example 1, 2 and 3, respectively. It can be seen that the MPUBs obtained using Theorem 2 is larger than Theorem 1. This shows that use of Lemma 3 due to the involvement of \(\tau_i^2 \) terms introduces considerably conservativeness. This can be avoided if the states are appropriately augmented.

For a comparison among the proposed results and the existing ones in literature, one can observe that Theorem 1 in example 1 is more conservative than all the approaches except Theorem 1 and 2 of [14] and [27], respectively. However, Theorem 2 yields better results as compared to all other approaches consistently. In case of example 2, Theorem 1 mostly provides conservative result except Proposition of [30] and Theorem 2(N = 2) of [35]. Further, for example 3, Theorem 1 yields better results among all that are listed in table 3 except Theorem 1 of [27].

(b) Complexity computation: The computational complexity depends on the maximum order of LMIIs (MOL) involved in the stability criteria and also on the number of scalar LMI variables (NLV) used. Due to the use of extra states and zero equalities in the stability analysis of Theorem 2, the MOL is increased by four as compared to Theorem 1. Also the NLVs used in Theorem 2 are larger than that of Theorem 1. So, the computational burden and convergence time is more in Theorem 2 as compared to Theorem 1. Further, for comparison with the existing methods, the NLVs are listed in all the Tables. One can observe that the NLVs required in proposed Theorem 2 are less as compared to the other approaches except in Theorem 1 (C3) of [14], Theorem 2(C1) of [27].
TABLE 1. For Example 1 the MPUB of Delay \bar{h} for Various Values of μ.

Methods	$\mu = -\mu_0 = \mu_1$	\text{NLVs}			
	0.1	0.2	0.5	0.8	
Theorem 1 (C3) [14]	4.939	-	3.298	2.869	$104n^2 + 15n$
Theorem 2(C1) [27]	4.940	4.262	3.304	2.877	$69n^2 + 12n$
Theorem 3 [31]	4.944	4.274	3.305	2.850	$221.5n^2 + 12.5n$
Theorem 1 [32]	4.942	-	3.309	2.882	$108n^2 + 12n$
Theorem 8(N=4) [33]	5.01	4.29	3.19	2.70	$146.5n^2 + 9.5n$
Theorem 2 [16]	5.041	-	3.431	2.980	$162.5n^2 + 16.5n$
Theorem 3 [17]	5.026	-	3.428	2.977	$252.5n^2 + 0.5n$
Corollary 2 [34]	5.044	-	3.443	2.983	$235n^2 + 34n$
Theorem 1	4.9438	4.2673	3.3104	2.8800	$76n^2 + 11n$
Theorem 2	5.0588	4.4317	3.4606	2.9981	$124n^2 + 11n$

TABLE 2. For Example 2 the MPUB of Delay \bar{h} for Various Values of μ.

Methods	$\mu = -\mu_0 = \mu_1$	\text{NLVs}			
	0.1	0.2	0.5	0.8	
Proposition 1 [30]	7.230	4.556	2.509	1.940	$54.5n^2 + 6.5n$
Theorem 2(N=2) [35]	7.263	4.591	2.575	2.011	$65n^2 + 8n$
Theorem 3 [32]	7.400	4.795	2.717	2.089	$108n^2 + 12n$
Theorem 1 (C3) [14]	7.401	4.765	2.709	2.094	$104n^2 + 15n$
Theorem 3 [31]	7.550	4.902	2.714	2.054	$221.5n^2 + 12.5n$
Theorem 2 [16]	7.616	4.949	2.798	2.142	$162.5n^2 + 16.5n$
Theorem 3 [17]	7.651	4.936	2.764	2.114	$252.5n^2 + 0.5n$
Theorem 1	7.3083	4.6622	2.6401	2.0583	$76n^2 + 11n$
Theorem 2	7.6657	4.9675	2.7948	2.1335	$124n^2 + 11n$

TABLE 3. For Example 3 the MPUB of Delay \bar{h} for Various Values of μ.

Methods	$\mu = -\mu_0 = \mu_1$	\text{NLVs}		
	0.05	0.1	0.5	
Theorem 3 [36]	2.5903	2.4382	2.0260	$70n^2 + 12n$
Proposition 1 [30]	2.6370	2.4742	2.0424	$54.5n^2 + 6.5n$
Theorem 2(N=2) [35]	2.6377	2.4770	2.0447	$65n^2 + 8n$
Theorem 1 [27]	2.646	2.498	2.113	$100.5n^2 + 8.5n$
Theorem 1	2.6435	2.4905	2.0962	$76n^2 + 11n$
Theorem 2	2.6692	2.5300	2.1370	$124n^2 + 11n$

C. SIMULATION VERIFICATION

From Table 1, one can observed that proposed Theorem 2 guarantees the stability of system (1) for example 1 until $\bar{h} = 5.0588$ for $\mu = 0.1$. Similarly from Table 2, for example 2 until $\bar{h} = 7.6657$ for $\mu = 0.1$. Further from Table 3 for example 3 until $\bar{h} = 2.6692$ for $\mu = 0.05$.

For verification of proposed results, we consider the following parameters.
Example 1: $x(t) = [1, -1]^T$ and $\tau(t) = 4.9588 + 0.1 \sin(t)$
Example 2: $x(t) = [0.5, -1.5]^T$ and $\tau(t) = 7.5657 + 0.1 \sin(t)$
Example 3: $x(t) = [1, -1.5]^T$ and $\tau(t) = 2.6192 + 0.05 \sin(t)$
The state responses of all the three examples are shown in Figs. 1-3. In all the cases, the systems are seen to be asymptotically stable that corroborates the obtained results.

V. CONCLUSION
Two new criteria in the form of second and first-order polynomial functions of τ have been proposed. Both the criteria are obtained using small LKF for the stability analysis of systems with time-varying delay. Using comparative studies, it is observed that the conservativeness in the stability criterion due to use of NDL is considerable and it can be removed by avoiding appearance of the quadratic term of τ. However, zero-equalities are used with additional states which leads to more number of LMI variables and complexities as well. The effectiveness of the proposed LMI conditions are demonstrated by considering three examples, which shows that the proposed Theorem 2 consistently yields improved results.

ACKNOWLEDGMENT
The authors would like to thank the Department of Electrical Engineering, IIT (BHU), Varanasi, Uttar Pradesh, India, for providing the laboratory facilities to accomplish the research work in time. They would also like to thank Dr. Irfan Ahmad Khan with the Clean and Resilient Energy Systems Laboratory, Texas A&M University, Galveston, USA, for the technical expertise provided.

REFERENCES
[1] X.-L. Zhu and G.-H. Yang, “Jensen integral inequality approach to stability analysis of continuous-time systems with time-varying delay,” IET Control Theory Appl., vol. 2, no. 6, pp. 524–534, Jun. 2008.
[2] W. Duan, Y. Li, and J. Chen, “Further stability analysis for time-delayed neural networks based on an augmented Lyapunov function,” IEEE Access, vol. 7, pp. 104655–104666, 2019.
[3] B. Yang, J. Cao, M. Hao, and X. Pan, “Further stability analysis of generalized neural networks with time-varying delays based on a novel Lyapunov-Krasovskii functional,” IEEE Access, vol. 7, pp. 91253–91264, 2019.
[4] L. V. Hien and H. Trinh, “Refined Jensen-based inequality approach to stability analysis of time-delay systems,” IET Control Theory Appl., vol. 9, no. 14, pp. 2188–2194, Sep. 2015.
[5] A. Seuret and F. Gouaisbaut, “Wirtinger-based integral inequality: Application to time-delay systems,” Automatica, vol. 49, no. 9, pp. 2860–2866, Sep. 2013.
[6] X.-M. Zhang, Q.-L. Han, A. Seuret, and F. Gouaisbaut, “An improved reciprocally convex inequality and an augmented Lyapunov–Krasovskii functional for stability of linear systems with time-varying delay,” Automatica, vol. 84, pp. 221–226, Oct. 2017.
[7] Y. Xue, H. Li, and X. Yang, “An improved reciprocally convex inequality and application to stability analysis of time-delay systems based on delay partition approach,” IEEE Access, vol. 6, pp. 40245–40252, 2018.
[8] Z. Zhao, M. He, J. Zhang, and J. Sun, “Improved stability method for linear time-varying delay systems,” IEEE Access, vol. 6, pp. 7753–7758, 2018.
[9] K. Gu, J. Chen, and V. L. Kharitonov, Stability of Time-Delay Systems. Springer, Jun. 2003.
[10] P. Park, W. I. Lee, and S. Y. Lee, “Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems,” J. Franklin Inst., vol. 352, no. 4, pp. 1378–1396, Apr. 2015.
[11] A. Seuret and F. Gouaisbaut, “Hierarchy of LMI conditions for the stability analysis of time-delay systems,” Syst. Control Lett., vol. 81, pp. 1–7, Jul. 2015.
[12] X.-M. Zhang and Q.-L. Han, “New stability criterion using a matrix-based quadratic convex approach and some novel integral inequalities,” IET Control Theory Appl., vol. 8, no. 12, pp. 1054–1061, Aug. 2014.
[13] J.-H. Kim, “Further improvement of Jensen inequality and application to stability of time-delayed systems,” Automatica, vol. 64, pp. 121–125, Feb. 2016.
[14] J. Chen, J. H. Park, and S. Xu, “Stability analysis of systems with time-varying delay: A quadratic-partitioning method,” IET Control Theory Appl., vol. 13, no. 18, pp. 3184–3189, Dec. 2019.
[15] C.-K. Zhang, F. Long, Y. He, W. Yao, L. Jiang, and M. Wu, “A relaxed quadratic function negative-determination lemma and its application to time-delay systems,” Automatica, vol. 113, Mar. 2020, Art. no. 108764, doi: 10.1016/j.automatica.2019.108764.
[16] T. H. Lee, “Geometry-based conditions for a quadratic function: Application to stability of time-varying delay systems,” IEEE Access, vol. 8, pp. 92462–92468, 2020.
[17] J. Park and P. Park, “Finite-interval quadratic polynomial inequalities and their application to time-delay systems,” J. Franklin Inst., vol. 357, no. 7, pp. 4316–4327, May 2020.
[18] C.-K. Zhang, Y. He, L. Jiang, M. Wu, and H.-B. Zeng, “Stability analysis of systems with time-delaying delay via relaxed integral inequalities,” Syst. Control Lett., vol. 92, pp. 52–61, Jun. 2016.
[19] H.-B. Zeng, Y. He, M. Wu, and J. She, “New results on stability analysis for systems with discrete distributed delay,” Automatica, vol. 60, pp. 189–192, Oct. 2015.
[20] C.-K. Zhang, Y. He, L. Jiang, and M. Wu, “Notes on stability of time-delay systems: Bounding inequalities and augmented Lyapunov-Krasovskii functionals,” IEEE Trans. Autom. Control, vol. 62, no. 10, pp. 5331–5336, Oct. 2017.
[21] X.-M. Zhang, Q.-L. Han, and J. Wang, “Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5319–5329, Nov. 2018.
[22] X.-M. Zhang, Q.-L. Han, X. Ge, and B.-L. Zhang, “Passivity analysis of delayed neural networks based on Lyapunov–Krasovskii functionals with delay-dependant matrices,” IEEE Trans. Cybern., vol. 50, no. 3, pp. 946–956, Mar. 2020, doi: 10.1109/TCYB.2018.2874273.
[23] H.-T. Xu, C.-K. Zhang, L. Jiang, and J. Smith, “Stability analysis of linear systems with two additive time-varying delays via delay-product type Lyapunov functional,” Appl. Math. Model., vol. 45, pp. 955–964, May 2017.
[24] Z. Lian, Y. He, C.-K. Zhang, and M. Wu, “Stability and stabilization of T-S fuzzy systems with time-varying delays via delay-product-type functional method,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2580–2589, Jun. 2020.
[25] W.-J. Lin, Y. He, C.-K. Zhang, M. Wu, and J. Sheng, “Extended dissipativity analysis for Markovian jump neural networks with time-varying delay via delay-product-type functionals,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 8, pp. 2528–2537, Aug. 2019.
[26] J.-J. Xiong and G. Zhang, “Improved stability criterion for recurrent neural networks with time-varying delays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5756–5760, Nov. 2018, doi: 10.1109/TNNLS.2018.2795546.
[27] F. Long, C.-K. Zhang, L. Jiang, Y. He, and M. Wu, “Stability analysis of systems with time-varying delay via improved Lyapunov-Krasovskii functionals,” IEEE Trans. Syst. Man, Cybern., Syst., early access, May 13, 2019, doi: 10.1109/TSMC.2019.2914367.
[28] S. H. Kim, C. Jeong, and P. Park, “Robust H_∞ stabilisation of networked control systems with packet analyser,” IET Control Theory Appl., vol. 4, no. 9, pp. 1828–1837, Sep. 2010.
[29] O.-M. Kwon, M.-J. Park, J. H. Park, S.-M. Lee, and E.-J. Cha, “Analysis on robust H_∞ performance and stability for linear systems with interval time-varying state delays via some new augmented Lyapunov-Krasovskii functional,” Appl. Math. Comput., vol. 224, pp. 108–122, Nov. 2013.
[30] C.-K. Zhang, Y. He, L. Jiang, W.-J. Lin, and M. Wu, “Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach,” Appl. Math. Comput., vol. 294, pp. 102–120, Feb. 2017.
[31] M. J. Park, O. M. Kwon, and J. H. Ryu, “Advanced stability criteria for linear systems with time-varying delays,” J. Franklin Inst., vol. 355, no. 1, pp. 520–543, Jan. 2018.
[32] J. Chen, J. H. Park, and S. Xu, “Stability analysis of continuous-time systems with time-varying delay using new Lyapunov–Krasovskii functionals,” J. Franklin Inst., vol. 355, no. 13, pp. 5957–5967, Sep. 2018.
[33] A. Seuret and F. Gouaisbaut, “Stability of linear systems with time-varying delays using Bessel–Legendre inequalities,” IEEE Trans. Autom. Control, vol. 63, no. 1, pp. 225–232, Jan. 2018.

[34] F. S. S. de Oliveira and F. O. Souza, “Further refinements in stability conditions for time-varying delay systems,” Appl. Math. Comput., vol. 369, Mar. 2020, Art. no. 124866, doi: 10.1016/j.amc.2019.124866.

[35] W. I. Lee, S. Y. Lee, and P. Park, “Affine Bessel–Legendre inequality: Application to stability analysis for systems with time-varying delays,” Automatica, vol. 93, pp. 535–539, Jul. 2018.

[36] T. H. Lee and J. H. Park, “Improved stability conditions of time-varying delay systems based on new Lyapunov functionals,” J. Franklin Inst., vol. 355, no. 3, pp. 1176–1191, Feb. 2018.

SHARAT CHANDRA MAHTO (Member, IEEE) received the bachelor’s degree in electrical engineering from OUAT, Bhubaneswar, India, and the master’s degree in control systems from IIT (BHU), Varanasi, India, in 2011, where he is currently pursuing the Ph.D. degree in control engineering with the Department of Electrical Engineering. His research interests include non-linear control theory, event triggered control, and time-delay systems.

RAVIKRAM MADURAI ELAVARASAN received the B.E. degree in electrical and electronics engineering from Anna University, Chennai, India, and the M.E. degree in power system engineering from the Thiagarajar College of Engineering, Madurai. He was a Gold Medalist in his master’s degree. He held an Associate Technical Operations with the IBM Global Technology Services Division. He was as an Assistant Professor with the Department of Electrical and Electronics, Sri Venkateswara College of Engineering, Sriperumbudur, India. He is currently a Visiting scholar with the Clean and Resilient Energy Systems Laboratory, Texas A&M University, Galveston, TX, USA. His research interests include renewable energy and smart grids, wind energy research, power system operation and control, and artificial intelligence control techniques. He serves as a Recognized Reviewer for reputed journals such as the IEEE SYSTEMS JOURNAL, IEEE ACCESS, the IEEE Communications Magazine, the International Transactions on Electrical Energy Systems (Wiley), Energy Sources, Part A: Recovery, Utilization and Environmental Effects (Taylor and Francis), Scientific Reports (Springer Nature), Chemical Engineering Journal (Elsevier), CFD Letters, and 3 Biotech (Springer).

SANDIP GHOSH (Senior Member, IEEE) received the B.E. degree in electrical engineering from the Bengal Engineering College, Durgapur, India, in 1999, the master’s degree in control system engineering from Jadavpur University, India, in 2003, and the Ph.D. degree from IIT Kharagpur, Kharagpur, India, in 2010. He was with the National Institute of Technology, Rourkela, India, and was also a Postdoctoral Fellow with the University of Cape Town, South Africa. He is currently an Associate Professor in electrical engineering with the IIT (BHU), Varanasi, India. His research interests include the wide-area control of power systems, decentralized control, networked control, and time-delay systems.

R. K. SAKET (Senior Member, IEEE) is currently with the Department of Electrical Engineering, IIT (BHU) Varanasi, India. He has more than 20 years of academic and research experience. He has authored or coauthored approximately 110 scientific articles, book chapters, and research articles in the prestigious international journals and conference proceedings. His research interests include power system reliability, electrical machines and drives, reliability engineering, induction generators, DFIG controller design, and renewable energy systems. He is a Fellow of the Institution of Engineers, India, and a member of IET, U.K. He has received many awards, honors, and recognition for his academic and research contributions including the prestigious GYTI Award 2018 by the Hon’ble President of India at New Delhi, India; the Design Impact Award 2018 by Padma Vibhushan Ratan Tata at Mumbai, India; and the Nehru Encouragement Award by M.P. State Government, Bhopal (Madhya Pradesh), India. He is an Associate Editor of the IET Renewable Power Generation, U.K., and an Editorial Board Member of the Engineering, Technology, and Applied Science Research, Greece, and the Journal of Electrical Systems, France.

EKLAS HOSSAIN (Senior Member, IEEE) received the B.S. degree in electrical & electronic engineering from the Khulna University of Engineering and Technology, Bangladesh, in 2006, the M.S. degree in mechatronics and robotics engineering from the International Islamic University of Malaysia, Malaysia, in 2010, and the Ph.D. degree from the College of Engineering and Applied Science, University of Wisconsin Milwaukee (UWM). He is currently involved with several research projects on renewable energy and grid tied microgrid system with the Oregon Institute of Technology (Oregon Tech), where he has been an Assistant Professor with the Department of Electrical Engineering and Renewable Energy, since 2015. He has been working in the area of distributed power systems and renewable energy integration for last 10 years. He has published a number of research papers and posters in this field. He and his dedicated research team is looking forward to explore methods to make the electric power systems more sustainable, cost-effective, and secure through extensive research and analysis on energy storage, microgrid systems, and renewable energy sources. His research interests include the modeling, analysis, design, and control of power electronic devices, energy storage systems, renewable energy sources, the integration of distributed generation systems, microgrid and smart grid applications, and robotics and advanced control systems. He is also serving as an Associate Editor of IEEE ACCESS.

SHYAM KRISHNA NAGAR (Member, IEEE) was born in Varanasi, India, in May 1955. He received the B.Tech. and M.Tech. degrees in electrical engineering from IIT (BHU), in 1976 and 1978, respectively, and the Ph.D. degree in electrical engineering from the University of Roorkee, Roorkee, India, under the Quality Improvement Programme (QIP). In 1980, he joined as a Lecturer with IIT (BHU), where he was as a Reader in 1993. In 2001, he joined as a Professor of electrical engineering with IIT (BHU), where he is also with the department of Electrical Engineering. He has supervised 5 Ph.D. theses in the area of model reduction and controller design. He has published 20 articles in regular journals and presented 40 articles in National and International Conferences. His current research interests include model reduction, digital control, and discrete event systems. He was the National Advisory Committee Member of the National System Conference (NSC), in 2008, and a Technical Program Committee Member of the Student’s Conference on Engineering and Systems (SCES), in 2014. He is a Life Member of the System Society of India and a Fellow of the Institution of Engineers. He received the Best Paper Award from the National System Conference (NSC), in 2011.