Uncommonly High Upper Critical Field in the Superconducting KOs2O6 Pyrochlore

T. Shibuchi,1 L. Krusin-Elbaum,2 Y. Kasahara,1 Y. Shimono,1 Y. Matsuda1,3 R. D. McDonald,4 C. H. Mielke,4 S. Yonezawa,3 Z. Hiroi,3 M. Arai,5 T. Kita,6 G. Blatter,7 and M. Sigrist7

1Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
2IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
3Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
4NHMFL, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
5National Institute for Materials Sciences, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
6Division of Physics, Hokkaido University, Sapporo 060-0810, Japan
7Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland

The entire temperature dependence of the upper critical field \(H_{c2} \) in the \(\beta \)-pyrochlore KOs2O6 is obtained from high-field resistivity and magnetic measurements. Both techniques identically give \(H_{c2}(T \approx 0 \text{ K}) \) not only surprisingly high (~33 T), but also the approach to it unusually temperature-linear all the way below \(T_c \) (= 9.6 K). We show that, while \(H_{c2}(0) \) exceeds a simple spin-singlet paramagnetic limit \(H_{P} \), it is well below an \(H_{P} \) enhanced due to the missing spatial inversion symmetry reported recently in KOs2O6, ensuring that the pair-breaking here is executed by orbital degrees. \textit{Ab initio} calculations of orbital \(H_{c2} \) show that the unusual temperature dependence is reproduced if dominant s-wave superconductivity resides on the smaller closed Fermi surfaces.

PACS numbers: 74.25.Op, 74.25.Fy, 74.25.Ha, 74.20.Rp

Transition metal oxides, with a nexus of strong electron correlations and structural diversity in the ways oxygen tetrahedra and octahedra can be edge- and corner-linked, are well known to host rather unusual quantum states. High-\(T_c \) copper oxide superconductors or manganites are most explored\(^1\) but such quantum phenomena are also in evidence in the “pyrochlore” structure\(^2\) where, in addition, geometrical (spin) frustration enters in a crucial way. Superconductivity in \(\beta \)-pyrochlore oxides AOs2O6 discovered not long ago, with relatively high transition temperatures \(T_c \) (3.3 K, 6.3 K, and 9.6 K for \(A = \text{Cs} \), \(\text{Rb} \), \(\text{K} \) respectively) and distinctly odd behaviors in the normal state, suggests new physics, perhaps explicitly connected to this structure.

KOs2O6, with the highest \(T_c \), appears to be more unusual than the rest. The resistivity in the normal state has a pronounced \textit{convex} temperature dependence down to \(T_c \) indicating that electron-phonon scattering is strong — likely owing to the rattling motion of ‘caged’ K ions\(^3\). The specific heat has a jump \(\Delta C/T_c = 185 \text{ mJ K}^{-2} \text{ mol}^{-1} \) at \(T_c \), but also another (jump) anomaly at a lower temperature \(T_p \approx 7.5 \text{ K} \) that has been attributed to freezing of the K rattle\(^4,9,10,11\). In addition, strong electron correlations show up in important ways in transport and thermodynamic properties: for example, the thermal conductivity of KOs2O6 is enhanced in the superconducting state\(^11\) (reminiscent of high-\(T_c \) cuprates), and the Sommerfeld coefficient \(\gamma \) is also largely enhanced\(^10\) from the band calculation value\(^4\).

The coexistence of strong electron correlations that prefer an anisotropic order parameter and strong electron-phonon coupling that favors a fully gapped s-wave ground state may render the workings of superconducting pairing in KOs2O6 rather uncommon. Experimentally, the situation appears contradictory: \(\mu \text{SR} \) measurements\(^12\) suggest anisotropic gap functions with nodes, in sharp contrast to the node-less gap in RbOs2O6\(^13\) while low-temperature thermal conductivity\(^15\) — based on its magnetic field insensitivity — is consistent with a fully gapped state.

Indeed, there has been much speculation about possible (unconventional) modes of pair-breaking in KOs2O6 at low temperatures. Based on \textit{extrapolated} (from low fields) estimates of upper critical field \(H_{c2} \) in the \(T \to 0 \text{ K} \) limit, suggestions have been made\(^9,10,13,14\) that the spin contribution to the pair-breaking must be significant, that \(H_{c2}(0) \) in KOs2O6 may exceed the Pauli paramagnetic limit expected in a spin-singlet superconductor, that a quantum critical state may enter, and that a state with a spatially modulated order parameter (Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state\(^15\)) may appear at low \(T \) and high magnetic fields.

Here we show that in this pyrochlore system, \textit{missing spatial inversion symmetry} can uniquely control the pair-breaking process, leading to unconventional behavior of the upper critical field without an unconventional pairing mechanism found in some heavy fermion systems (e.g. CePt3Si (Ref. \(^16\))) that also lack inversion symmetry.

We have experimentally reached the low-\(T \) high-field limit to obtain the full temperature dependence of \(H_{c2} \) in KOs2O6. We find that \(H_{c2} \) in the \(T \to 0 \text{ K} \) limit is not only surprisingly high, but also the approach to it does not display the typical flattening at low \(T \). Both high-field resistivity and magnetic penetration measurements gave us an identical \(H_{c2}(T) \) growing \textit{linearly} with temperature and reaching ~32 T in the sub-Kelvin range. This value is clearly beyond the simple Clogston paramagnetic limit of \(H_P \sim 18 \text{ T} \). Following a remarkable recent structural finding of broken symmetry in KOs2O6\(^14\) we show by relying on experimental inputs how this limit can be hugely enhanced (up to ~54 T). This enhancement leaves orbital pair-breaking protected from spin ef-
fects up to very high fields, with the observed \(T \)-linear \(H_{c2} \) fully consistent with the orbital contributions from the closed Fermi surfaces.

In this study, we used a block containing several single crystals of cubic K\(\text{Os}_2\text{O}_6 \) grown by the technique described in Ref. [7]. The resistivity was recorded using a 100 kHz lock-in technique in a 65 T maximum field, 60 ms pulsed magnet at the National High Magnetic Field Laboratory (NHMFL in Los Alamos). The magnetic penetration was measured by a tunnel diode oscillator (TDO) operating at \(f \sim 55 \text{ MHz} \) in an LC tank circuit [8]. A heterodyne technique was used to beat down the frequency to the hundreds of kHz range, with the waveform recorded during the pulse. The sample was inserted in one coil of the pair wound in a gradiometer configuration [sketched in Fig. 2], and the inductance change due to the change in the penetration depth was detected by the shift of the resonance frequency \(\Delta f \).

Figure 1 shows the field dependence of the resistivity \(\rho \) in K\(\text{Os}_2\text{O}_6 \). Upon the field sweep, \(\rho(H) \) evolves, as expected, from the superconducting (vortex) state at low fields to the high-field normal state. The resistive transition is relatively sharp; a certain amount of broadening is expected since the crystals in a block are weakly connected. The upper critical field \(H_{c2} \) can therefore be determined in the usual way from the field at which \(\rho(H) \) is fully restored to its normal-state value. In order to remove any ambiguity in the resistively determined \(H_{c2} \) (Ref. [21]) we have further corroborated our results by magnetic measurements. The inset of Fig. 2 displays the frequency shift \(\Delta f \) of the TDO as a function of \(H \). The observed hysteresis is related to the asymmetry of the field pulse shown in the inset of Fig. 1 – the field pulse rise time (10 ms) is much shorter than the fall time (50 ms). The field direction is perpendicular to the axis of the coils; in our setup one coil detects the change in the sample and the other is for the cancellation of the voltage signal from \(dB/dt \). To bypass the somewhat imperfect cancellation, we plot \(df/dt \) as a function of field in the main panel of Fig. 2, where the anomaly (peak) due to the change in the penetration depth is clearly articulated. The high-field end point of the peak in \(df/dt \) corresponds to the field where the whole sample becomes normal, and hence it is the value of the upper critical field. The \(H_{c2} \) values determined from the up and down sweeps of the field pulse coincide with each other, which is a solid indication that our measurements are free from eddy-current heating \(\propto (dB/dt)^2 \).

Our independent resistive and magnetic measurements define a unique upper critical field line \(H_{c2}(T) \) (Fig. 3) which is also consistent with previous low-field data [7, 10, 14]. We surmise then this temperature dependence is intrinsic to K\(\text{Os}_2\text{O}_6 \). \(H_{c2}(T) \) has two salient features: (i) its temperature dependence is linear in \(T \), without any visible saturation at low temperatures, and (ii) it reaches 32 T at the lowest temperature measured (0.5 K) and unambiguously extrapolates to 33 T in the zero temperature limit, which corresponds to the coherence length \(\xi(0) = 3.2 \text{ nm} \). To understand the pair-breaking mode, both of these features need to be accounted for.

Since this upper limiting field is so large, let us attempt a more realistic estimate of the Pauli paramagnetic limiting field \(H_P \). At \(H_P \), Cooper pairs are broken apart by the Zeeman splitting produced by the magnetic-field coupling to the electron spins. This takes place...
when the Zeeman energy reaches the condensation energy $U_c = N(0)\Delta^2/2 = H_s^2/8\pi$ [$N(0)$ is the density of states at the Fermi level, Δ is the superconducting gap, and H_s is the thermodynamic critical field]:

$$U_c = [\chi_n - \chi_s(T)]H_P^2/2.$$

Here $\chi_n = g^2\mu_B^2N(0)/2$ is the Pauli spin susceptibility in the normal state (μ_B is Bohr magneton) and $\chi_s(T)$ is the spin susceptibility in the superconducting state. In spin-singlet superconductors, $\chi_s(T)$ follows the Yoshida function which vanishes at $T = 0$ K. Simple calculations within the weak-coupling BCS theory with $\Delta = 1.76k_BT_c$ and the assumption $g = 2$ give the well-known result H_P [in Tesla] $= 1.85T_c$ [in Kelvin]. In KO$_2$O$_6$, this limit is 17.8 T, clearly much lower than the observed $H_{c2}(0)$.

We may improve on this estimate by making use of experimental parameters for the susceptibility χ_n and in the determination of the condensation energy U_c: the normal-state Pauli susceptibility $\chi_n \approx 4.2 \times 10^{-4}$ emu/mol has been measured just above T_c. The specific heat jump $\Delta C/T_c = 185$ mJ K$^{-2}$ mol$^{-1} = [dH_c/d\Delta][\Delta/T_c^2]/\pi\tau$ at T_c (Ref. 3[23]) gives an estimate for the $T = 0$ thermodynamic critical field $H_{c2}(0) \approx 0.26$ T. Using Eq. (1), this results in a larger critical field $H_{c2}(0) \approx 27$ T by Brühwiler et al.12 using strong coupling corrections.25 These values are near but still below the experimental $H_{c2}(0) \approx 33$ T. We point out that in usual spin-singlet superconductors $H_{c2}(T)$ tends to saturate below H_P,26 which appears to contradict our data.

At first glance, this would suggest spin-triplet superconductivity for which $\chi_s(T)$ remains of order of the normal-state value, pushing the Pauli limit towards higher fields. Rather than invoking unconventional pairing, an alternative scenario providing a finite $\chi_s(T = 0)$ derives from the recently reported non-centrosymmetric crystal structure of KO$_2$O$_6$ by Schuck et al.32 They found a volume deviation from an ideal β-pyrochlore lattice in Os tetrahedral and O octahedral networks and found the structure to be cubic with $F43m$ space group.

The lack of inversion symmetry [visualized by the Os network in the inset of Fig. 3] affects the electronic properties through the appearance of an antisymmetric spin-orbit coupling (ASOC) term $\alpha \sum_{\vec{k},\sigma,s} \vec{g}(\vec{k})\vec{\sigma}\cdot \vec{c}_{\vec{k}s}^\dagger \vec{c}_{\vec{k}s}$ in the Hamiltonian, where α denotes the spin-orbit coupling strength, \vec{g} is the Pauli matrices vector, $\vec{c}_{\vec{k}s}$ ($\vec{c}_{\vec{k}s}^\dagger$) creates (annihilates) an electron with momentum \vec{k} and spin s, and $\vec{g}(\vec{k})$ is a dimensionless vector with $\vec{g}(-\vec{k}) = -\vec{g}(\vec{k})$. Such a term will admix spin-singlet and spin-triplet pairing27 and hence modify the spin susceptibility $\chi_s(T)$ in the superconducting state.28

The effect has been extensively studied for the non-centrosymmetric superconductor CePt$_3$Si35 there the susceptibility $\chi_s(T)$ of the spin-singlet state assumes the form of a spin-triplet material with the $\vec{d}(\vec{k})$-vector of the triplet order-parameter replaced by the spin-orbit coupling vector $\vec{g}(\vec{k})$.28 With a simple s-wave superconductivity found in the sister compounds RbOs$_2$O$_6$ and CsOs$_2$O$_6$, it appears natural to start from an s-wave scenario also in the present case. Given the $F43m$ symmetry in KO$_2$O$_6$ (as in zincblende), the spin-orbit coupling vector $\vec{g}(\vec{k})$ has a form28

$$\vec{g}(\vec{k}) = [k_x(k_y^2 - k_z^2), k_y(k_z^2 - k_x^2), k_z(k_z^2 - k_y^2)]/k_F^2, $$

with k_F the Fermi wave vector.

In KO$_2$O$_6$, we expect a fairly large α from the heavy Os atoms, allowing us to use the spin-triplet state expression in the determination of $\chi_s(0)$, with the replacement $\vec{d}(\vec{k}) \rightarrow \vec{g}(\vec{k})$ as noted above. Following the calculations formulated in28 with $\vec{g}(\vec{k})$ in Eq. (2), we obtain the value $\chi_s(0) = (2/3)\chi_n$. The right hand side of our Eq. (1) then is reduced by a factor $1/3$, resulting in a paramagnetic limiting field H_P enhanced by a factor of $\sqrt{3}$. Taking our above estimate of 31 T based on experimental values for U_c and χ_n, we find an enhanced limiting field $H_P \sim 54$ T, way beyond the observed value of $H_{c2}(0)$.24 This large H_P then resides sufficiently far above the measured value $H_{c2}(0) \approx 33$ T and thus protects the orbital upper critical field $H_{c2}(T)$ from spin effects.

The remaining question is how the orbital effects can enforce the observed linear temperature dependence. The orbital depairing is usually well described by the
Werthamer-Helfand-Hohenberg (WHH) theory where the reduced critical field \(h^*(t) = \frac{H_{c2}(t)}{\frac{dH_{c2}(t)}{dt}|_{t=1}} \) saturates to \(h^*(0) = 0.727 \) in the clean limit. This \(h^*(t = \frac{T}{T_c}) \), plotted as solid line in Fig. 3, clearly deviates from the experimental data at low \(T \).

Recently Kita and Arai provided a theoretical framework that allows for \textit{ab initio} calculations of orbital \(H_{c2} \), accounting for electronic band-structure effects. Band structure calculations for the \(\text{AO}\text{S}_2\text{O}_6 \) compounds unveil two kinds of Fermi surfaces (FS): one is the connected FS with necks along the three-fold axis, while the other involves closed sheets centered on the \(\Gamma \) point. Taking these Fermi surface shapes into account, we performed \textit{ab initio} calculations of \(h^*(t) \). We find that the FS anisotropy gives a maximum \(H_{c2} \) in the [111] direction, which we compare with the experimental \(H_{c2} \) taken as the field where the \textit{whole} sample becomes normal.

Calculated results including all Fermi surfaces (connected and closed) are shown in Fig. 3. This \(h^*(t) \) still deviates from the \(H_{c2}(T) \) data at low temperatures. In contrast, if we ignore the connected surface and calculate \(h^*(t) \) for the closed surfaces alone, we obtain an essentially \(T \)-linear \(h^*(t) \) without saturation at low \(T \), in very good agreement with the data. We conclude then, that depairing at the upper limiting field is enforced by the orbital degrees of freedom, without interferences from the Pauli limit, and that the superconducting pairing mainly occurs on the closed Fermi surfaces.

Our finding of orbitally limited \(H_{c2} \) is compatible with the fully gapped superconductivity suggested by thermal conductivity measurements. In the spin-triplet case, a nodeless gap is possible for the \(\vec{d} = (k_x, k_y, k_z) = \vec{d}_{\text{BW}} \) (known as Ballan-Werthamer state). This state, however, is easily suppressed by the ASOC term that satisfies \(\vec{g}(\vec{k}) \cdot \vec{d}_{\text{BW}} = 0 \). This strongly suggests that the s-wave spin-singlet component is dominant in \(\text{KO}\text{S}_2\text{O}_6 \), which is likely mediated by the strong electron-phonon coupling that wins over the electron correlations.

Lastly we comment on new vortex phases that can arise. In CePt\(_3\)Si, the ASOC forms a helical vortex phase analogous to the FFLO state with a finite net momentum of Cooper pairs. Thus, there is an intriguing expectation that a new vortex state may also appear in \(\text{KO}\text{S}_2\text{O}_6 \). So in summary, our results highlight a profound influence of broken spatial inversion symmetry on the nature of pair-breaking in \(\text{KO}\text{S}_2\text{O}_6 \).

We acknowledge fruitful discussions with S. Fujimoto, M. Takigawa, Y. Yanase, P.A. Frigeri, B. Batlogg, M. Brühwiler, J. Karpinski and K. Rogacki. This work was partly supported by Grants-in-Aid for Scientific Research from MEXT and by the Swiss National Fonds, including the NCCR MaNEP. After completion of this work, we became aware of high-field penetration depth data by Ohnishi \textit{et al.} corresponding to similarly high \(H_{c2} \).

1. Y. Tokura and N. Nagaosa, Science \textbf{288}, 462 (2000).
2. See, for example, B. Canals and C. Lacroix, Phys. Rev. B \textbf{61}, 1149 (2000).
3. S. Yonezawa, Y. Muraoka, and Z. Hiroi, J. Phys. Soc. Jpn. \textbf{73}, 1655 (2004).
4. S. Yonezawa, Y. Muraoka, Y. Matsushita, and Z. Hiroi, J. Phys. Soc. Jpn. \textbf{73}, 819 (2004).
5. S. M. Kazakov \textit{et al.}, Supercond. Sci. Technol. \textbf{17}, 1169 (2004).
6. S. Yonezawa \textit{et al.}, J. Phys. Condens. Matter \textbf{16}, L9 (2004).
7. Z. Hiroi \textit{et al.}, J. Phys. Soc. Jpn. \textbf{74}, 1682 (2005); J. Phys. Soc. Jpn. \textbf{74}, 3400 (2005). The weakly anisotropic crystals in the sample block are most likely randomly aligned. In our study we use a similar sample block, so we experimentally define \(H_{c2} \) as the maximum field where the superconducting current has completely vanished.
8. J. Kunes, T. Jeong, and W. E. Pickett, Phys. Rev. B \textbf{70}, 174510 (2004).
9. Z. Hiroi \textit{et al.}, preprint.
10. M. Brühwiler, S. M. Kazakov, J. Karpinski, and B. Batlogg, Phys. Rev. B \textbf{73}, 094518 (2006).
11. Y. Kasahara \textit{et al.}, Phys. Rev. Lett. \textbf{96}, 247004 (2006).
12. A. Koda \textit{et al.}, J. Phys. Soc. Jpn. \textbf{74}, 1678 (2005).
13. K. Magishi \textit{et al.}, Phys. Rev. B \textbf{71}, 024524 (2005).
14. G. Schuck \textit{et al.}, Phys. Rev. B \textbf{73}, 144506 (2006).
15. P. Fulde, and R. A. Ferrel, Phys. Rev. \textbf{135A}, 550 (1964); A. I. Larkin, and Y. N. Ovchinnikov, Sov. Phys. JETP \textbf{20}, 762 (1965).
16. E. Bauer \textit{et al.}, Phys. Rev. Lett. \textbf{92}, 027003 (2004). CePt\(_3\)Si has \textit{P4mm} space group and a Rashba-type coupling \(\vec{g}(\vec{k}) \propto (k_y, -k_z, 0) \).
17. A. M. Clogston, Phys. Rev. Lett. \textbf{9}, 266 (1962).
18. L. Krusin-Elbaum, T. Shibauchi, and C. H. Mielke, Phys. Rev. Lett. \textbf{92}, 097005 (2004).
19. C. H. Mielke \textit{et al.}, J. Phys. Condens. Mat. \textbf{13}, 8325 (2001).
20. G. Blatter \textit{et al.}, Rev. Mod. Phys. \textbf{66}, 1125 (1994).
21. N. Morozov \textit{et al.}, Phys. Rev. Lett. \textbf{84}, 1784 (2000).
22. F. Zuo \textit{et al.}, Phys. Rev. B \textbf{61}, 750 (2000).
23. P. G. de Gennes, in \textit{Superconductivity of Metals and Alloys} (Addison Wesley, New York, 1989), p. 18.
24. Here, in evaluating \(\chi_n \), a possible orbital susceptibility is ignored and consequently the Wilson ratio \(R_W \) close to 1 is obtained. Taking \(R_W \sim 2 \), as widely observed for strongly correlated materials, the \(H_P \) estimates are reduced only by a factor of \(\sim \sqrt{2} \), not affecting our conclusions.
25. T. P. Orlando \textit{et al.}, Phys. Rev. B \textbf{19}, 4545 (1979).
26. T. Tayama \textit{et al.}, Phys. Rev. B \textbf{65}, 180504(R) (2002). In the heavy-fermion CeCoIn\(_5 \) superconductor, the Pauli-limited \(H_{c2}(T) \) is markedly flatter relative to WHH.
27. P. A. Frigeri, D. F. Agterberg, and M. Sigrist, \textit{cond-mat/0505108}
28. H. Q. Yuan \textit{et al.}, Phys. Rev. Lett. \textbf{97} 017006 (2006).
29. P. A. Frigeri \textit{et al.}, Phys. Rev. Lett. \textbf{92}, 097001 (2004); P. A. Frigeri \textit{et al.}, New J. Phys. \textbf{6}, 115 (2004); P.A. Frigeri, doctoral thesis (2005).
30. N. R. Werthamer, E. Helfand, P. C. Hohenberg, Phys. Rev.
30. T. Kita and M. Arai, Phys. Rev. B 70, 224522 (2004).
31. The anti-symmetric spin-orbit coupling suppresses odd pairing states with \(\vec{d} \)-vectors not parallel to \(\vec{g} \), see Ref. 28.
32. R. P. Kaur, D. F. Agterberg, and M. Sigrist, Phys. Rev. Lett. 94, 137002 (2005).
33. E. Ohmichi et al., J. Phys. Soc. Jpn. 75, 045002 (2006).