A note of pointwise estimates on Shishkin meshes

Jin Zhang∗†

December 21, 2013

Abstract

We propose the estimates of the discrete Green function for the streamline diffusion finite element method (SDFEM) on Shishkin meshes.

1 Problem

We consider the singularly perturbed boundary value problem

\begin{align}
Lu &:= -\varepsilon \Delta u + b \cdot \nabla u + u = f \quad \text{in} \quad \Omega = (0,1)^2, \\
u & = 0 \quad \text{on} \quad \partial \Omega,
\end{align}

where $\varepsilon \ll 1$ is a small positive parameter and $b = (b_1, b_2)^T > (0,0)^T$ is constant. It is also assumed that f is sufficiently smooth.

2 The SDFEM on Shishkin meshes

2.1 Shishkin meshes

Let $N > 4$ be a positive even integer. We use a piecewise uniform mesh — a so-called Shishkin mesh — with N mesh intervals in both x– and y–direction which condenses in the layer regions. For this purpose we define the two mesh transition parameters

$$\lambda_x := \min \left\{ \frac{1}{2}, \frac{2 \varepsilon}{\beta_1} \ln N \right\} \quad \text{and} \quad \lambda_y := \min \left\{ \frac{1}{2}, \frac{2 \varepsilon}{\beta_2} \ln N \right\}.$$

Assumption 1. We assume in our analysis that $\varepsilon \leq N^{-1}$, as is generally the case in practice. Furthermore we assume that $\lambda_x = 2 \varepsilon \beta_1^{-1} \ln N$ and $\lambda_y = 2 \varepsilon \beta_2^{-1} \ln N$ as otherwise N^{-1} is exponentially small compared with ε.

∗Email: JinZhangalex@hotmail.com
†Address: School of Science, Xi’an Jiaotong University, Xi’an, 710049, China
Figure 1: Dissection of Ω and triangulation Ω^N.

The domain Ω is dissected into four parts as $\Omega = \Omega_s \cup \Omega_x \cup \Omega_y \cup \Omega_{xy}$ (see FIG. 1), where

$$
\begin{align*}
\Omega_s &:= [0, 1 - \lambda_x] \times [0, 1 - \lambda_y], & \Omega_x &:= [1 - \lambda_x, 1] \times [0, 1 - \lambda_y], \\
\Omega_y &:= [0, 1 - \lambda_x] \times [1 - \lambda_y, 1], & \Omega_{xy} &:= [1 - \lambda_x, 1] \times [1 - \lambda_y, 1].
\end{align*}
$$

We introduce the set of mesh points $\{(x_i, y_j) \in \Omega : i = 0, \cdots, N\}$ defined by

$$
\begin{align*}
x_i &= \begin{cases}
2i(1 - \lambda_x)/N, & \text{for } i = 0, \cdots, N/2, \\
1 - 2(N - i)\lambda_x/N, & \text{for } i = N/2 + 1, \cdots, N
\end{cases}, \\
y_j &= \begin{cases}
2j(1 - \lambda_y)/N, & \text{for } j = 0, \cdots, N/2, \\
1 - 2(N - j)\lambda_y/N, & \text{for } j = N/2 + 1, \cdots, N.
\end{cases}
\end{align*}
$$

By drawing lines through these mesh points parallel to the x-axis and y-axis the domain Ω is partitioned into rectangles. This triangulation is denoted by Ω^N (see FIG. 1). If D is a mesh subdomain of Ω, we write D^N for the triangulation of D. The mesh sizes $h_{x,\tau} = x_i - x_{i-1}$ and $h_{y,\tau} = y_j - y_{j-1}$ satisfy

$$
\begin{align*}
h_{x,\tau} &= \begin{cases}
H_x := \frac{1 - \lambda_x}{N/2}, & \text{for } i = 1, \cdots, N/2, \\
h_x := \frac{\lambda_x}{N/2}, & \text{for } i = N/2 + 1, \cdots, N
\end{cases}.
\end{align*}
$$
and

\[h_{y,\tau} = \begin{cases}
H_y := 1 - \lambda_y \frac{N}{2}, & \text{for } j = 1, \cdots, N/2, \\
\lambda_y \frac{N}{2}, & \text{for } j = N/2 + 1, \cdots, N.
\end{cases} \]

The mesh sizes \(h_{x,\tau} \) and \(h_{y,\tau} \) satisfy

\[N^{-1} \leq H_x, H_y \leq 2N^{-1} \quad \text{and} \quad C_1 \varepsilon N^{-1} \ln N \leq h_x, h_y \leq C_2 \varepsilon N^{-1} \ln N, \]

where \(C_1 \) and \(C_2 \) are positive constants and independent of \(\varepsilon \) and of the mesh parameter \(N \). The above properties are essential when inverse inequalities are applied in our later analysis.

For the mesh elements we shall use two notations: \(\tau_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \) for a specific element, and \(\tau \) for a generic mesh rectangle.

2.2 The streamline diffusion finite element method

Let \(V := H^1_0(\Omega) \). On the above Shishkin mesh we define a finite element space

\[V^N := \{ v^N \in C(\overline{\Omega}) : v^N|_{\partial \Omega} = 0 \text{ and } v^N|_{\tau} \text{ is bilinear}, \forall \tau \in \Omega^N \}. \]

In this case, the SDFEM reads as

\[(2.1) \quad \begin{cases}
\text{Find } U \in V^N \text{ such that for all } v^N \in V^N \\
\varepsilon(\nabla U, \nabla v^N) + (b \cdot \nabla U + U, v^N + \delta b \cdot \nabla v^N) = (f, v^N + \delta b \cdot \nabla v^N),
\end{cases} \]

where \(\delta = \delta(x) \) is a user-chosen parameter (see \cite{3}).

We set

\[b := \sqrt{b_1^2 + b_2^2}, \quad \beta := \left(\frac{b_1}{b_2} \right)/b, \quad \eta := \left(-\frac{b_2}{b_1} \right)/b \quad \text{and} \quad \nu \zeta := \zeta^T \nabla v \]

for any vector \(\zeta \) of unit length. By an easy calculation one shows that

\[(\nabla w, \nabla v) = (w_\beta, v_\beta) + (w_\eta, v_\eta). \]

We rewrite (2.1) as

\[\varepsilon(U_\beta, v^N_\beta) + \varepsilon(U_\eta, v^N_\eta) + (bU_\beta + U, v^N_\eta + \delta bv^N_\eta) = (f, v^N + \delta bv^N_\eta) \]

and, following usual practice, we set

\[\delta(x) := \begin{cases}
N^{-1}, & \text{if } x \in \Omega_s, \\
0, & \text{otherwise}.
\end{cases} \]

For technical reasons in the later analysis, we increase the crosswind diffusion (see \cite{4}) by replacing \(\varepsilon(U_\eta, v^N_\eta) \) by \(\tilde{\varepsilon}(U_\eta, v^N_\eta) \) where

\[\tilde{\varepsilon} := \max(\varepsilon, N^{-3/2}) \]
and
\[
\hat{\varepsilon}(x) := \begin{cases}
\tilde{\varepsilon}, & x \in \Omega_s, \\
\varepsilon, & x \in \Omega \setminus \Omega_s.
\end{cases}
\]

We now state our streamline diffusion method with artificial crosswind:

\begin{equation}
(2.2) \quad \begin{cases}
\text{Find } U \in V^N \text{ such that for all } v^N \in V^N \\
B(U, v^N) = (f, v^N + \delta b v^N),
\end{cases}
\end{equation}

with

\begin{equation}
(2.3) \quad B(U, v^N) := (\varepsilon + b^2 \delta)(U, v^N) + \hat{\varepsilon}(U, v^N) - b(1 - \delta)(U, v^N) + (U, v^N).
\end{equation}

3 The discrete Green function

Let \(x^* \) be a mesh node in \(\Omega \). The discrete Green’s function \(G \in V^N \) associated with \(x^* \) is defined by

\[
B(v^N, G) = v^N(x^*), \forall v^N \in V^N.
\]

The weighted function \(\omega \):

\[
\omega(x) := g \left(\frac{(x - x^*) \cdot \beta}{\sigma_\beta} \right) g \left(\frac{(x - x^*) \cdot \eta}{\sigma_\eta} \right) g \left(\frac{-(x - x^*) \cdot \eta}{\sigma_\eta} \right)
\]

where

\[
g(r) = \frac{2}{1 + e^r} \quad \text{for } r \in (-\infty, \infty).
\]

and \(\sigma_\beta = k N^{-1} \ln N \) and \(\sigma_\eta = k \tilde{\varepsilon}^{1/2} \ln N \).

\[
\| G \|_\omega^2 := (\varepsilon + b^2 \delta)\| \omega^{-1/2}G_\beta \|^2 + \hat{\varepsilon}\| \omega^{-1/2}G_\eta \|^2 + \frac{b}{2} \| (\omega^{-1})^{1/2}G \|^2 + \| \omega^{-1/2}G \|^2
\]

and

\begin{equation}
(3.1) \quad \| G \|_\omega^2 = B(\omega^{-1}G, G) - (\varepsilon + b^2 \delta)((\omega^{-1})_\beta G, G_\beta) - \hat{\varepsilon}((\omega^{-1})_\eta G, G_\eta) - b(1 - \delta)(\omega^{-1}G, G_\beta).
\end{equation}

Thus, we obtain

\[
B(\omega^{-1}G, G) = B(E, G) + B((\omega^{-1}G)^T, G)
\]

\[
= B(E, G) + (\omega^{-1}G)(x^*)
\]

where \(E := \omega^{-1}G - (\omega^{-1}G)^T \).

Lemma 1. If \(\sigma_\beta = k N^{-1} \ln N \) and \(\sigma_\eta = k \ln N \tilde{\varepsilon}^{1/2} \), then for \(k > 1 \) sufficiently large and independent of \(N \) and \(\varepsilon \), we have

\[
B(\omega^{-1}G, G) \geq \frac{1}{4} \| G \|_\omega^2.
\]
Proof. From (3.1), we estimate the following terms.

\[
(\varepsilon + \delta) \left| (\omega^{-1})_\beta G, G_\beta \right| \leq C(\varepsilon + \delta)^{1/2} \sigma_\beta^{-1/2} \cdot \left\| (\omega^{-1})_\beta G \right\| \cdot (\varepsilon + \delta)^{1/2} \| \omega^{-1/2} G_\beta \|
\]

and

\[
\hat{\varepsilon} \left| (\omega^{-1})_\eta G, G_\eta \right| \leq C\hat{\varepsilon}^{1/2} \sigma_\eta^{-1} \cdot \left\| \omega^{-1/2} G \right\| \cdot \hat{\varepsilon}^{1/2} \| \omega^{-1/2} G_\eta \|
\]

\[
\leq C\hat{\varepsilon}^{1/2} \sigma_\eta^{-1} \left\| G \right\|_0^2
\]

For \(b\delta(\omega^{-1} G, G_\beta) \), we make use of integration by parts.

From the definition of \(\sigma_\beta \) and \(\sigma_\eta \) and \(\varepsilon \leq N^{-1} \), we take \(k \) sufficiently large and we are done. \(\square \)

Lemma 2. If \(\sigma_\beta = kN^{-1} \ln N \), with \(k > 0 \) sufficiently large and independent of \(N \) and \(\varepsilon \). Then for each mesh point \(\mathbf{x}^* \in \Omega \setminus \Omega_{xy} \), we have

\[
\left| (\omega^{-1} G)(\mathbf{x}^*) \right| \leq \frac{1}{16} \left\| G \right\|_0^2 + CN \ln N.
\]

where \(C \) is independent of \(N \), \(\varepsilon \) and \(\mathbf{x}^* \).

Proof. First let \(\mathbf{x}^* \in \Omega_s \). Let \(\tau^* \) be the unique triangle that has \(\mathbf{x}^* \) as its north-east corner. Then

\[
\left| (\omega^{-1} G)(\mathbf{x}^*) \right| \leq CN \left\| G \right\|_{\tau^*}
\]

\[
\leq CN \max_{\tau^*} \left| (\omega^{-1})_\beta^{-1/2} \right| \cdot \left\| (\omega^{-1})_\beta^{-1/2} G \right\|_{\tau^*}
\]

Calculating \((\omega^{-1})_\beta^{-1}(\mathbf{x}) \) explicitly, we see that

\[
(\omega^{-1})_\beta^{-1}(\mathbf{x}) \leq C\sigma_\beta = CkN^{-1} \ln N \quad \forall \mathbf{x} \in \tau^*
\]

Thus

\[
\left| (\omega^{-1} G)(\mathbf{x}^*) \right| \leq CN \ln N + \frac{1}{16} \left\| G \right\|_0^2
\]

by means of the arithmetic-geometric mean inequality.

Next, let \(\mathbf{x}^* \in \Omega_x \). (The case \(\mathbf{x}^* \in \Omega_y \) is similar.) Write \(\mathbf{x}^* = (x_i, y_j) \). Then

\[
\left| \omega^{-1} G(\mathbf{x}^*) \right| = \left| G(\mathbf{x}^*) \right|
\]

\[
= \left| \int_{x_i}^{1} G_x(t, y_j) dt \right|
\]

\[
\leq CH_\gamma^{-1} \int_{x_i}^{1} \int_{y_j}^{y_{j+1}} |G_x(t, y)| dy dt
\]

\[
\leq CN \left(\varepsilon \ln N \cdot N^{-1/2} \right) \| G \|_{\Omega_x}
\]

\[
\leq CN^{1/2} \ln^{1/2} N \| G \|
\]

5
where \(G_x(t, y_j) = \frac{G_k - G_{k+1}}{h_x} \) for \((t, y_j) \in \tau_{kj}\).

Analysis: for the relation of boundary integral and domain integral, we analyze

\[
\int_{x_i}^{x_{i+1}} \int_{y_j}^{y_{j+1}} |G_x(t, y)|
\]

where \(f \parallel \) for \(\Delta_1 \)

\[
\int_{x_i}^{x_{i+1}} \int_{y_j}^{y_{j+1}} \left| f(y) \frac{y_{j+1} - y}{H_y} + f(y_{j+1}) \frac{y - y_j}{H_y} \right| dy
\]

where \(f(y) = \frac{G_{k+1} - G_k}{h_x} \) and \(f(y_{j+1}) = \frac{G_{k+1} - G_{k+1}}{h_x} \).

For \(\Delta_1 := \int_{y_j}^{y_{j+1}} \left| f(y) \frac{y_{j+1} - y}{H_y} + f(y_{j+1}) \frac{y - y_j}{H_y} \right| dy \), we have

\[
\Delta_1 = \left\{ \begin{array}{ll}
\frac{1}{2} \max \{|f(y)|, |f(y_{j+1})|\} H_y & \text{if } f(y) f(y_{j+1}) \geq 0 \\
\frac{1}{2} \max \{|f(y)|, |f(y_{j+1})|\} H_y & \text{if } f(y) f(y_{j+1}) < 0
\end{array} \right.
\]

For \(\forall v \in C^2(\tau) \), we have

\[
|v_x| \leq C(|v_\beta| + |v_\eta|)
\]

\[
|v_{xx}| \leq C(|v_\beta| + |v_\eta|)
\]

Similarly, we have

\[
|v_\beta| \leq C(|v_x| + |v_y|)
\]

\[
|\beta| \leq C(|v_x| + |v_y|)
\]

Lemma 3. Let \(\tau \in \Omega^N \). Then

\[
\|\omega^{1/2} D^\alpha E\|_{\Omega_\tau} \leq C k^{1/2} N^{1/2} ||G|| \omega
\]

\[
\|\omega^{1/2} D^\alpha E\|_{\Omega^N \setminus \Omega_\tau} \leq C k^{-1/2} \ln^{-1} N ||G|| \omega
\]

where \(H_{\tau} = \max\{h_{x,\tau}, h_{y,\tau}\} \) and \(|\alpha| = 1 \), \(D^\alpha G \) are \(G_\beta \) and \(G_\eta \).

Proof. Assume \(p \in [1, \infty] \) and \(g \in C^3(\tau) \). Then (see [2] Theorem 4)

\[
\|g - g^l_x\|_{L^p(\tau)} \leq C (\frac{h^2}{h} \|g_{xxx}\|_{L^p(\tau)} + h_x \|h_{x,\tau} g_{xxy}\|_{L^p(\tau)} + h_y \|g_{xyy}\|_{L^p(\tau)})
\]

\[
+ Ch_{x,\tau} \|g_{xx}\|_{L^p(\tau)},
\]

\[
\|g - g^l_y\|_{L^p(\tau)} \leq C (\frac{h^2}{h} \|g_{xyy}\|_{L^p(\tau)} + h_x \|h_{x,\tau} g_{xxy}\|_{L^p(\tau)} + h_y \|g_{xyy}\|_{L^p(\tau)})
\]

\[
+ Ch_{y,\tau} \|g_{yy}\|_{L^p(\tau)},
\]

or (see [1] Comment 2.15)

\[
\|g - g^l_x\|_{L^2(\tau)} \leq C h_{x,\tau}^2 \|g_{xyy}\|_{L^2(\tau)} + Ch_{x,\tau} \|g_{xx}\|_{L^2(\tau)}
\]

\[
\|g - g^l_y\|_{L^2(\tau)} \leq C h_{x,\tau}^2 \|g_{xyy}\|_{L^2(\tau)} + Ch_{x,\tau} \|g_{yy}\|_{L^2(\tau)}.
\]
In the following analysis, $D^n v$ denotes the directional derivative of v along β or η for different orders. The following analysis makes use of the former estimates (The latter will make the analysis more shorter).

For $\tau \in \Omega^N$, we have

\[
\|\omega^{1/2} E_{\beta}\|_\tau \leq C \max_{\tau} \omega^{1/2}(\|E_x\|_\tau + \|E_y\|_\tau)
\]

\[
\leq C \max_{\tau} \omega^{1/2} \left\{ h_{\tau,\tau}^2 \| (\omega^{-1})_{xx} \|_\tau + h_{\tau,\tau} \| (\omega^{-1})_{xx} \|_\tau + h_{\tau,\tau} H_{\tau} \| (\omega^{-1})_{xy} \|_\tau \right\} + H_{\tau} h_{\tau,\tau} \| (\omega^{-1})_{xy} \|_\tau + h_{\tau,\tau} \| (\omega^{-1})_{yy} \|_\tau + h_{\tau,\tau} \| (\omega^{-1})_{ys} \|_\tau \}
\]

\[
\leq C h_{\tau,\tau}^2 \| (\omega^{-1})_{xx} \|_\tau + \| (\omega^{-1})_{xx} \|_\tau + \| (\omega^{-1})_{xy} \|_\tau + C h_{\tau,\tau} \| (\omega^{-1})_{xy} \|_\tau + \| (\omega^{-1})_{yy} \|_\tau + \| (\omega^{-1})_{ys} \|_\tau + \| (\omega^{-1})_{ys} \|_\tau + \| (\omega^{-1})_{ys} \|_\tau
\]

\[
+ H_{\tau} h_{\tau,\tau} \| (\omega^{-1})_{xy} \|_\tau + \| (\omega^{-1})_{xx} \|_\tau + \| (\omega^{-1})_{xy} \|_\tau + \| (\omega^{-1})_{yy} \|_\tau + \| (\omega^{-1})_{ys} \|_\tau + \| (\omega^{-1})_{ys} \|_\tau
\]

\[
\leq C h_{\tau,\tau}^2 \sum_{k=2}^3 \sum_{|\alpha| + |\gamma| = 3} \| D^{\alpha} (\omega^{-1}) D^{\gamma} g \|_\tau + C H_{\tau} \sum_{k=1}^2 \sum_{|\alpha| + |\gamma| = 2} \| D^{\alpha} (\omega^{-1}) D^{\gamma} g \|_\tau
\]

where we have used the following analysis for $\sum_{|\alpha| = 1, |\gamma| = 2} D^{\alpha} (\omega^{-1}) D^{\gamma} g$:

\[
\| (\omega^{-1})_{xx} \|_\tau \leq C \| \sum_{|\alpha| = 1} |D^{\alpha} (\omega^{-1})| \cdot G_{xx} \|_\tau
\]

\[
\leq C \max_{\tau} \sum_{|\alpha| = 1} |D^{\alpha} (\omega^{-1})| \cdot \| G_{xx} \|_\tau
\]

\[
\leq C h_{\tau,\tau}^{-1} \max_{\tau} \sum_{|\alpha| = 1} |D^{\alpha} (\omega^{-1})| \cdot \| G_{x} \|_\tau
\]

\[
\leq C h_{\tau,\tau}^{-1} \sum_{|\alpha| = 1} |D^{\alpha} (\omega^{-1})| \cdot \| G_{x} \|_\tau
\]

The same analysis can be applied to $\|\omega^{1/2} E_{\eta}\|_\tau$.

For $\tau \in \Omega_\star$, we have

\[
\|\omega^{1/2} E_{\eta}\|_\tau \leq C k^{-5/2} N^{-2} \left[(\sigma_{\beta}^{-5/2} + \sigma_{\beta}^{-3/2} \sigma_{\eta}^{-1} + \sigma_{\beta}^{-1/2} \sigma_{\eta}^{-2} \max_{\tau} (\omega^{-1})_{\beta}^{1/2} + \sigma_{\eta}^{-3} \max_{\tau} (\omega^{-1})_{\beta}^{-1/2}) \right] \|G\|_\tau
\]

\[
+ C k^{-3/2} H_{\tau} \left[(\sigma_{\beta}^{-3/2} + \sigma_{\beta}^{-1/2} \sigma_{\eta}^{-1}) \max_{\tau} (\omega^{-1})_{\beta}^{1/2} + \sigma_{\eta}^{-2} \max_{\tau} (\omega^{-1})_{\beta}^{-1/2} \right] \cdot N \|G\|_\tau
\]

\[
+ C k^{-3/2} H_{\tau} \left[(\sigma_{\beta}^{-3/2} + \sigma_{\beta}^{-1/2} \sigma_{\eta}^{-1}) \max_{\tau} (\omega^{-1})_{\beta}^{1/2} + \sigma_{\eta}^{-2} \max_{\tau} (\omega^{-1})_{\beta}^{-1/2} \right] \|G\|_\tau
\]

\[
+ C \max_{\tau} \omega^{1/2} H_{\tau} \sum_{|\alpha| = 1} \|D^{\alpha} (\omega^{-1})\|_{L^\infty(\tau)} \cdot \sum_{|\gamma| = 1} \|D^{\gamma} g\|_\tau
\]

\[
\leq C k^{-1/2} N^{1/2} \|\|G\|_\omega
\]

where we have used the estimates of ω^{-1}, standard inverse estimates and Hölder.
inequalities. Similarly, we have
\[\| \omega^{1/2} E_\eta \|_{\Omega_4} \leq C k^{-1/2} N^{1/2} \|G\|_\omega. \]

For \(\tau \in \Omega_4 \setminus \Omega_4^N \), we have
\[
\| \omega^{1/2} E_\beta \|_\tau \leq C k^{-5/2} H_\tau^2 \left[(\sigma_\beta^{1/2} + \sigma_\beta^{3/2} \sigma_q^{-1} + \sigma_\beta^{-1/2} \sigma_q^{-2}) \max(\omega^{-1})_\beta^{1/2} + \sigma_q^{-3/2} \max(\omega^{-1})_\omega^{1/2} \right] \| G \|_\tau
\]
\[
+ C k^{-2} \| \varepsilon^{-1/2} H_\tau^2 [(\sigma_\beta^{1/2} + \sigma_\beta^{-1/2} \sigma_q^{-1}) \max(\omega^{-1})_\beta^{1/2} + \sigma_q^{-2} \max(\omega^{-1})_\omega^{1/2}] \| G \|_\tau
\]
\[
+ C k^{-3/2} H_\tau [(\sigma_\beta^{1/2} + \sigma_\beta^{-1/2} \sigma_q^{-1}) \max(\omega^{-1})_\beta^{1/2} + \sigma_q^{-2} \max(\omega^{-1})_\omega^{1/2}] \| G \|_\tau
\]
\[
\leq C k^{-1} \| \varepsilon^{-1/2} N \| \| G \|_\omega
\]

Similarly, we have
\[\| \omega^{1/2} E_\eta \|_{\Omega_4 \setminus \Omega_4} \leq C k^{-1} \| \varepsilon^{-1/2} N \| \| G \|_\omega. \]

\[\square \]

Lemma 4. Let \(\tau \in \Omega_4^N \). Let \(E = (\omega^{-1} G - (\omega^{-1} G)^1 \) where \((\omega^{-1} G)^1 \) denote the bilinear function that interpolates to \(\omega^{-1} G \) at the vertices of \(\tau \). Then
\[
\| \omega^{1/2} E \|_{\Omega_4} \leq C k^{-1} N^{-1/2} \|G\|_\omega
\]
\[
\| \omega^{1/2} E \|_{\Omega_4 \setminus \Omega_4} \leq C k^{-1} \| \varepsilon^{-1/2} N \| \| G \|_\omega
\]

where \(H_\tau = \max \{ h_{x,\tau}, h_{y,\tau} \} \).

Proof. We make use of the following standard interpolation error bounds
\[
\| u - u^I \|_{L^p(\tau)} \leq h_{x,\tau}^2 \| u_{xx} \|_{L^p(\tau)} + h_{y,\tau}^2 \| u_{yy} \|_{L^p(\tau)}
\]
where \(p \in [1, \infty] \) and \(u \in C(\tau) \cap W^{2,p}(\tau) \).

Then, we have
\[
\| E \|_{\tau} \leq h_{x,\tau}^2 \| (\omega^{-1} G)_{xx} \|_{\tau} + h_{y,\tau}^2 \| (\omega^{-1} G)_{yy} \|_{\tau}
\]
\[
\leq CH_\tau^2 \sum_{|\alpha|=2} \| D^\alpha (\omega^{-1}) \cdot G \|_{\tau} + CH_\tau^2 \int_{\tau} \frac{1}{(\omega^{-1})_\beta} \| (\omega^{-1})_\beta \|_{\tau} + \int_{\tau} \frac{1}{(\omega^{-1})_\eta} \| (\omega^{-1})_\eta \|_{\tau}
\]
\[
\leq CH_\tau^2 \left\{ \| (\omega^{-1})_\beta G_\beta \|_{\tau} + \| (\omega^{-1})_\beta G_\eta \|_{\tau} + \| (\omega^{-1})_\eta G_\beta \|_{\tau} + \| (\omega^{-1})_\eta G_\eta \|_{\tau} \right\}
\]
\[
+ CH_\tau^2 \sum_{|\alpha|=2} | D^\alpha (\omega^{-1}) \cdot G |_{\tau}.
\]

From the above inequality, we have
\[\| \omega^{1/2} E \|_{\Omega_4} \leq C k^{-1} N^{-1/2} \|G\|_\omega. \]
and
\[\|\omega^{1/2}E\|_{\Omega \setminus \Omega_x} \leq C k^{-1} \varepsilon^{-1/2} N^{-1} ||G||_\omega. \]

Following the techniques of (see [9, Lemma 4.4]), we have
\[(\omega^{1/2}E)(x) = \int_x^{\Gamma(x)} (\omega^{1/2}E)_\eta ds \]
where \(x \in \Omega \setminus \Omega_x \), \(\Gamma(x) \in \Gamma \) satisfies \((x - \Gamma(x)) \cdot \beta = 0 \) and the following condition:
For \(\forall y \in \Gamma, (x - y) \cdot \beta = 0 \),
\[|x - \Gamma(x)| = \min_y |x - y|. \]

From the above representation of \(\omega^{1/2}E \), we have
\[
\begin{aligned}
\|\omega^{1/2}E\|_{L^2}^2 &= \int_{\lambda_0}^{1-\lambda_y} \left[\int_{\Gamma(x)} (\omega^{1/2}E)_\eta ds \right]^2 d\Omega \\
&+ \int_{1-\lambda_y}^{1} \left[\int_{\Gamma(x)} (\omega^{1/2}E)_\eta ds \right]^2 d\Omega + \int_{0}^{\lambda_y} \left[\int_{\Gamma(x)} (\omega^{1/2}E)_\eta ds \right]^2 d\Omega \\
&\leq C \lambda_x^2 \left\{ ||(\omega^{1/2})_\eta E||_{L^2}^2 + ||\omega^{1/2}E||_{L^2}^2 \right\} \\
&\leq C \varepsilon^2 \ln^2 N \left\{ \sigma_x^{-2} ||\omega^{1/2}E||_{L^2}^2 + ||\omega^{1/2}E||_{L^2}^2 \right\} \\
&\leq C k^{-2} \varepsilon^2 \ln^2 N \left\{ N^{3/2} \ln^{-2} N \cdot \varepsilon^{-1} N^{-2} + \varepsilon^{-1} \ln^{-2} N \right\} ||G||_\omega^2 \\
&\leq C k^{-2} \varepsilon ||G||_\omega^2
\end{aligned}
\]
where \(\lambda_0 = \frac{b_1}{b_2} \lambda_x \) and
- \(x_{lu} \in \{(1 - \lambda_x, y) : \lambda_0 \leq y \leq 1 - \lambda_y\}; \)
- \(x_{ld} \in \{(1 - \lambda_x, y) : 0 \leq y \leq \lambda_0\}; \)
- \(x_u \in \{(x, 1 - \lambda_y) : 1 - \lambda_x \leq x \leq 1\}. \)

\[\square \]

Lemma 5. If \(\sigma_\beta = kN^{-1} \ln N \) and \(\sigma_\eta = k\varepsilon^{1/2} \ln N \), where \(k > 1 \) sufficiently large and independent of \(N \) and \(\varepsilon \). Then
\[B((\omega^{-1}G)^t - \omega^{-1}G, G) \leq \frac{1}{16} ||G||_\omega^2. \]

Proof. Cauchy-Schwarzs inequality gives
\[
\begin{aligned}
|B(E, G)| &\leq (\varepsilon + b^2 \delta)^{1/2} \|\omega^{1/2}E_\beta\| \cdot (\varepsilon + b^2 \delta)^{1/2} \|\omega^{-1/2}G_\beta\| + \varepsilon^{1/2} \|\omega^{1/2}E_\eta\| \cdot \varepsilon^{1/2} \|\omega^{-1/2}G_\eta\| \\
&+ C \|\omega^{1/2}E\| \cdot \|\omega^{-1/2}G_\beta\| + \|\omega^{1/2}E\| \cdot \|\omega^{-1/2}G\|.
\end{aligned}
\]

From Lemma 3 and Lemma 4 we are done. \[\square \]
Theorem 3.1. Assume that $\sigma_\beta = kN^{-1}\ln N$ and $\sigma_\eta = k\varepsilon^{1/2}\ln N$, where $k > 0$ is sufficiently large and independent of ε and N. Let $x^* \in \Omega\setminus\Omega_{xy}$. Then for each nonnegative integer v, there exists a positive constant $C = C(v)$ and $K = K(v)$ such that

$$\|G\|_{W^{1,\infty}(\Omega_s\setminus\Omega'_0)} \leq CN^{-v},$$

$$\varepsilon|G|_{W^{1,\infty}((\Omega_s\cup\Omega_y)\setminus\Omega'_0)} + \|G\|_{L^\infty((\Omega_s\cup\Omega_y)\setminus\Omega'_0)} \leq C\varepsilon^{-1/2}N^{-v},$$

and

$$\varepsilon|G|_{W^{1,\infty}(\Omega_{xy}\setminus\Omega'_0)} + \|G\|_{L^\infty(\Omega_{xy}\setminus\Omega'_0)} \leq C\varepsilon^{-1/2}N^{-v}.$$

Proof. On Ω_s, we apply an inverse estimate. On $\Omega\setminus\Omega_s$ the application of an inverse estimate does not yield a satisfactory result, so we use a different technique.

Let $x \in \Omega_s \setminus \Omega'_0$ be arbitrary. Starting from x we choose a polygonal curve $\Gamma \subset (\Omega \setminus \Omega_{xy}) \setminus \Omega'_0$ that joints x with some point on outflow boundaries. If $(x - x^*) \cdot \eta < 0$, we can choose Γ as a line parallel to β. If $(x - x^*) \cdot \eta > 0$, the situation is a little complicated. We can choose Γ as follows:

In $\Omega_s \setminus \Omega'_0$, we choose the direction of Γ along η or the negative direction of x-axis so that $\Gamma \cap \Omega_{xy} = \Phi$. In $(\Omega_s \cup \Omega_y) \setminus \Omega'_0$, we choose the direction of Γ along η or the positive direction of y–axis.

Let T^N be the set of mesh rectangle τ in $(\Omega \setminus \Omega_{xy}) \setminus \Omega'_0$ that Γ intersects. Note that the length of the segment of Γ that lies in each τ is at most $C\varepsilon N^{-1}\ln N$ if $\tau \in \Omega_s$ or $\tau \in \Omega_y$.

Then, by the fundamental theorem of calculus and inverse estimates in different domain, we can obtain the results.

References

[1] T. Apel. *Anisotropic Finite Elements: Local Estimates and Applications*. B. G. Teubner Verlag, Stuttgart, 1999.

[2] T. Apel and M. Dobrowolski. Anisotropic interpolation with applications to the finite element method. *Computing*, 47:277–293, 1992.

[3] C. Johnson. *Numerical Solution of Partial Differential Equations by the Finite Element Method*. Cambridge University Press, Cambridge, 1987.

[4] C. Johnson, A. H. Schatz, and L. B. Wahlbin. Crosswind smear and pointwise errors in streamline diffusion finite element methods. *Mathematics of Computation*, 49(179):25–38, 1987.

[5] T. Linß and M. Stynes. The SDFEM on shishkin meshes for linear convection–diffusion problems. *Numer. Math.*, 87:457–484, 2001.