Performance analysis of Xen virtual machines in real-world scenarios

ADRIAN HEISSLER
University of Applied Sciences Technikum Wien

This paper presents results of the performance benchmarks of the Open Source hypervisor Xen. The study focuses on the network related performance as well as on the application related performance of multiple virtual machines that were running on the same Xen hypervisor. The comparison was carried out using a self-developed benchmark suite that consists of easily available Open Source tools. The goal is to measure the performance of the hypervisor in typical real-world application scenarios when used for “mass virtual hosting”, such as hosting solutions of so called virtual private servers for small-to-medium sized businesses environments. The results of the benchmarks show, that the tested Xen setup offers good performance with respect to network traffic stress tests, but only 75% of the performance of the non-virtualized reference environment. This application performance score decreases as more virtual machines are running simultaneously.

Categories and Subject Descriptors: D.4.8 [Operating Systems]: Performance
General Terms: Measurement, Performance
Additional Key Words and Phrases: System virtualization, virtual machine monitor, hypervisor, Xen, benchmark

1. INTRODUCTION

System virtualization has become an important tool in the information technology community. It is useful in many scenarios, e.g., server consolidation or rapid deployment of new virtual servers. To better utilize the hardware of a physical machine, the main goal in real-world scenarios often is to run as many virtual machines as possible on the same physical host.

In this paper, the networking performance of virtual machines with respect to the metrics latency and throughput is measured and analysed. Furthermore, the performance of application programs that run inside virtual machines is benchmarked and analysed. The study deals with virtual machines that are created by the popular Open Source hypervisor Xen. The chosen application benchmark scenarios, reflect typical application programs that are used by small-to-medium businesses and that may be virtualized. These scenarios include a web server, database server, and file server.

Many of the commonly used benchmarks suites that are used to study server consolidation scenarios are only available as commercial products. This paper proposes a benchmark suite that consists of easily available and well known Open Source programs.

The benchmarks that have been carried out, also try to honor a typical setup scenario at many sites, such as hosting providers of virtual private servers: For maintenance reasons, the disk images of the virtual machines are often stored on a network shared storage that is accessed via iSCSI or NFS, e.g., to enable live
migration of virtual machines between physical hosts.

2. RELATED WORK

The measurement of the performance of hypervisors like Xen has been subject to many studies, including Barham et al. [2003], [Clark et al. 2004], Deshane et al. [2008], Apparao et al. [2006], Cherkasova and Gardner [2005], Matthews et al. [2007], Xu et al. [2008], [Tanaka et al. 2009].

In addition to the benchmark suite proposed in this paper, well known benchmark suites are IBM Virtualization Grand Slam benchmark [IBM Corporation 2004], vConsolidate [Casazza et al. 2006; Apparao et al. 2008], and VMmark [Makhija et al. 2006].

3. SETUP

The test platform is a HP ProLiant DL380 G5 with 2 Quad Core Intel Xeon processors (2.66 GHz, 4 MB cache size), 16 GB RAM, two PCI-E Dual Port Multifunction Gigabit network controllers, and a HP Smart Array controller (two 140 GB SAS disks are configured in a RAID 1). The setup consists of CentOS 5.4 (i386) on the host machine. For the Xen hypervisor tests, kernel 2.6.18-164.6.1.el5xen and Xen 3.0.31 are used. All the software packages are installed from the official CentOS repositories. The SMP Credit Scheduler has been used as the hypervisor scheduler throughout all benchmarks. The virtual machines are run in para-virtualized mode.

The disk images of the virtual machines are stored on a NFS share on top of a NetApp FAS3140 cluster. The host machine is connected to the NetAPP filer via a Gigabit Ethernet link, which is dedicated to serve only connections between the host and the NetApp filer.

The benchmark suite is twofold: the first part deals with network performance of the virtual machines, the second part details on the performance of typical application scenarios that may be run virtualized.

The maximum network data transfer rate of each virtual machine has been limited to 50 Mbit/s during all the tests.

4. EVALUATION OF NETWORK DATA RATE AND LATENCY OF VIRTUAL MACHINES

The goal of this experiment is to measure the performance of the virtual machines’ virtual interfaces (VIF) with respect to two metrics — throughput and latency. For this experiment, all virtual machines are set up with 1 virtual CPU (vCPU), 512 MB RAM, 1 GB swap space and a 18 GB virtual hard disk. CentOS 5.4 with kernel 2.6.18-164.6.1.el5xen has been installed from the official CentOS repository on the virtual machine.

To evaluate the TCP performance of a virtual machine, \textit{iperf} [Gates and Warschavsky 2008] version 2.0.4 has been used to measure the maximum achievable network throughput (goodput) between the virtual machines and external physical hosts. For network latency the \textit{ping} utility is used to measure the packet round trip time (RTT) between the virtual machines and the external physical hosts.

1Since the distribution release 5.2, the CentOS Xen 3.0.3 package includes in fact selected backports of Xen 3.1.2.
Several test runs have been executed, starting with only a single virtual machine. Then the number of virtual machines that were each concurrently running the tests, is increased. All virtual machines were running on the same host.

Each virtual machine has one of three external physical hosts as a “partner” during each test run. The external physical hosts are connected via a Gigabit link to the same switch as the Xen host.

A test run for a certain virtual machine consists of two iperf tests and a ping test. Each iperf test was run for 60 s. One iperf run tests the sending capabilities, the second iperf run tests the receiving capabilities of the virtual machine. For the iperf tests, the TCP window size has been set to the default value of 16 KB on the sender and receiver. The ping utility is run for 10 s during every first iperf run. It sends 64-byte ICMP messages to the remote host.

According to Gavrilovska et al. [2007], there are two possibilities how virtualization can introduce latency. Firstly, a packet must be classified to which VIF it belongs to. Secondly, the guest domain that owns this VIF has to be notified.

When measuring the latency for virtual machines with no network load introduced, the average RTT was around 0.232 ms. As shown in figure 1, the RTT increases as the number of virtual machines increases that were each performing the network throughput test. Only with 20 virtual machines concurrently performing the iperf test, the average latency significantly increases to almost 10 ms. The increase of latency is mainly produced by CPU contention, as well as by increased context switches and interrupt servicing in the Xen driver domain (Domain-0) on the host [Apparao et al. 2006].

Figure 2 shows the iperf results for both, the sender and receiver test. Both streams can sustain almost 50 Mbit/s during the entire tests up to 14 virtual ma-
chines concurrently introducing network load. With 14 and 20 virtual machines the throughput decreases, particularly for the receiver tests.

The gap between achieved throughput and theoretical data transfer rate is mostly due to the fact that TCP’s features such as flow control mechanisms, are limiting the throughput. Thus, TCP is often not able to fully utilize the available network data rate.

5. APPLICATION PERFORMANCE EVALUATION OF VIRTUAL MACHINES

In order to evaluate the performance of the virtual machines a methodology partly inspired by benchmarks proposed by IBM Corporation [2004], Casazza et al. [2006], and Makhija et al. [2006] has been used.

The benchmark uses three application environments, each representing a different application that would be typically run on a virtual machine. The benchmark consists of the following three application environments:

—Apache web server. *Siege* [Fulmer 2009] version 2.69 is used for benchmarking the Apache HTTP server. This benchmark is run from an external physical machine (this machine is interconnected to the Xen host via a single switch). A workload of 25 concurrent users accessing a 65 KB static HTML site is simulated.

—PostgreSQL database server. The *pgbench* [PostgreSQL Global Development Group 2009] program is used here for the benchmarks. Pgbench is a simple program for running benchmark tests on a PostgreSQL database. This benchmark is run locally on the tested virtual machine.

—Samba file server. The *dbench* [Tridgell 2008] application version 4.0 is used to simulate file system load by performing all the same I/O calls that a server

Fig. 2: Aggregated average TCP throughput of the virtual machines.
Performance analysis of Xen virtual machines in real-world scenarios

Resource	Web server	Database server	File server	Idle
CPUs (#)	1	1	1	1
RAM (MB)	2048	2048	2048	512
Swap space (MB)	4096	4096	4096	1024
Hard disk (GB)	72	72	72	18
OS (32 bit)	CentOS 5	Debian 5	Ubuntu 8.04 LTS	CentOS 5
Application	Apache	PostgreSQL 8.4.1	Samba	-
Benchmark	siege	pgbench	dbench	-
Metric	Transact./s	Transact./s	MB/s	-

Table I: Load profile and hardware environment for the VM application benchmarks.

message block (SMB) server in Samba would produce when confronted with a NetBench run. This benchmark is run locally on the tested virtual machine with 48 simulated clients.

Each of these applications has been installed on three different virtual machines with different Linux distributions as operating systems. Again, only software packages from the official distribution repositories have been installed on the virtual machines. These virtual machines are configured with 1 vCPU, 2 GB RAM, 4 GB swap space, and 72 GB virtual hard disk.

Furthermore, an idle server has been set up with 1 vCPU, 512 MB RAM, 1 GB swap, and 18 GB virtual hard disk. Although idle, this system still place resource demands upon the virtualization layer and can impact the performance of the other virtual machines.

All four virtual machines have been started on the same physical host, no other virtual machines were running on this host during the tests.

This host machine itself also acts as a reference system. For its own test series it has been configured with 1 CPU and 2 GB RAM.

Table I summarizes the different workload profiles used throughout the measurements.

The benchmark involves the following scenarios:

(1) Each application is run individually for one hour on the physical host to get reference results.

(2) Each application is run individually for one hour in its virtual machine to establish a baseline. The virtual machines baseline results are compared to the results of the reference host.

(3) All application workloads are run concurrently for one hour, each in its virtual machine. These results are compared to the baselines obtained in the second scenario.

As shown in table I, the results of the above described tests are compared regarding different metrics. The results are presented below.

The web server performance tests show equal results for all three scenarios. The non-virtualized Linux system was able to make an average of 49.77 HTTP transactions/s after the one hour individual test run. The virtual machine reached 49.68 transactions/s in its individually run scenario. This is a performance score of 99.82% compared to the non-virtualized environment. In the third scenario, all
(a) Web server performance test results. (b) Database server performance test results.

(c) File server performance test results.

Fig. 3: Performance test results of three application programs.
virtual machines were simultaneously under load with respect to their tested services. In this scenario the web server performance of the virtual machine was only slightly behind and performed 49.20 transactions/s, which is a performance score of 98.85%. The results of the three scenarios for the web server tests are shown in figure 3a.

For the database server test, the non-virtualized Linux system performs better than the virtualized one in their individual runs (scenario 1 vs. scenario 2). The non-virtualized Linux was able to process 1299.33 TPC-B\(^2\) transactions/s, whereas the virtual machine processed 773.75 transactions/s. Thus, the virtual machine was able to achieve a performance score of 59.55%. In scenario 3, the virtual machine running the database server performed weaker than in scenario 2: pgbench reported 488.71 transactions/s, which is a performance score of only 37.61%. The results of the three scenarios for the database server tests are shown in figure 3b. The significant performance loss between the Scenario 1 and 2 is due to the fact, that a lot of I/O requests sent from the host to the NFS backend are waiting. Thus, the networking subsystem can be considered a bottleneck in this scenario.

During the file server tests, the non-virtualized Linux performed better than the virtual machine in their individual scenarios. It managed to reach a throughput of 181.56 MB/s in its individual run, while the virtual machine reached a throughput of 116.67 MB/s. The virtual machine achieved a performance score of 64.26%. In scenario 3, the throughput of the virtual machine was slightly weaker (106.70 MB/s), which equals a performance score of 58.77%. The results of the three scenarios for the web server tests are shown in figure 3c. The performance gap between the non-virtualized scenario and the virtualized ones is also caused by the NFS connections to the virtual disk images.

6. CONCLUSION

In this paper, the network performance of Xen-based virtual machines as well as the performance of typical application programs for small-to-medium businesses that may reasonably run in virtual machines have been investigated.

The benchmark results show, that the Xen hypervisor provides sufficient capacities to offer good network performance in terms of latency and throughput to up to 20 virtual machines on the same host.

The applications performance tests that have been carried out, show that the Xen hypervisor offers — with slight constraints — decent performance for typical small-to-medium business application environments such as web servers, file servers, or database servers. The performance score in the virtualized environment was roughly around 75% of the non-virtualized environment. This is an acceptable result, given the fact that the disk images of the virtual machines are stored on a network shared storage (NFS).

The performance penalties of running these applications at high load in multiple, different virtual machines at the same time are around 10% compared to running their virtual machines exclusively on the host machine. The performance score here is at 65% of the standalone virtual machine environments.

\(^2\)Transaction Processing Performance Council (TPC) Benchmark B (TPC-B) measures throughput in terms of how many transactions per second a system can perform [TPC 1994].
REFERENCES

APPARAO, P., IYER, R., ZHANG, X., NEWELL, D., AND ADELMeyer, T. 2008. Characterization & analysis of a server consolidation benchmark. In VEE ’08: Proceedings of the fourth ACM SIGPLAN/SIGOPS international conference on Virtual execution environments. ACM, New York, NY, USA, 21–30.

APPARAO, P., MARENENI, S., AND NEWELL, D. 2006. Characterization of network processing overheads in Xen. In VTDC ’06: Proceedings of the 2nd International Workshop on Virtualization Technology in Distributed Computing. IEEE Computer Society, Washington, DC, USA.

BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. 2003. Xen and the art of virtualization. In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems principles. ACM, New York, NY, USA, 164–177.

CASAZZA, J. P., GREENFIELD, M., AND SHI, K. 2006. Redefining Server Performance Characterization for Virtualization Benchmarking. Intel Tech. J. 10, 3 (Aug), 243–251.

CHERRASOVA, L. AND GARDNER, R. 2005. Measuring cpu overhead for i/o processing in the xen virtual machine monitor. In ATAC ’05: Proceedings of the annual conference on USENIX Annual Technical Conference. USENIX Association, Berkeley, CA, USA, 24–24.

CLARK, B., DESHANE, T., DOW, E., EVANCHIK, S., FINLAYSON, M., HERNE, J., AND MATTHEWS, J. N. 2004. Xen and the art of repeated research. In ATAC ’04: Proceedings of the annual conference on USENIX Annual Technical Conference. USENIX Association, Berkeley, CA, USA, 47–47.

DESHANE, T., SHEPHERD, Z., MATTHEWS, J. N., BEN-YEHUDA, M., AND BALAJH RAO, A. S. 2008. Quantitative Comparison of Xen and KVM. In Xen Summit, Boston, MA, June 23–24, 2008. Xen.org, Boston, MA, USA.

FULMER, J. 2009. The Siege HTTP load testing and benchmarking utility.

GATES, M. AND WARSHAVSKY, A. 2008. NLANR/DAST Iperf – The TCP-UDP Bandwidth Measurement Tool.

GAVRILOVSKA, A., KUMAR, S., RAJ, H., SCHWAN, K., GUPTA, V., NATHUI, R., NIRANJAN, R., RANADIVE, A., AND SARAIYA, P. 2007. High-Performance Hypervisor Architectures: Virtualization in HPC Systems. In HPCVirt ’07. ACM, New York, NY, USA.

IBM CORPORATION. 2004. IBM eServer i5 Virtualization Grand Slam Benchmark: Executive Summary.

MARKJA, V., HERDON, B., SMITH, P., RODERICK, L., ZAMOST, E., AND ANDERSON, J. 2006. VMark: A Scalable Benchmark for Virtualized Systems. Tech. rep., VMware, Inc. Sep.

MATTHEWS, J. N., HU, W., HAPUARACHCHI, M., DESHANE, T., DIMATOS, D., HAMILTON, G., AND MCCABE, M. 2007. Quantifying the performance isolation properties of virtualization systems. In ecs’07: Experimental computer science on Experimental computer science. USENIX Association, Berkeley, CA, USA, 5–5.

POSTGRESQL GLOBAL DEVELOPMENT GROUP. 2009. PostgreSQL 8.4.1 Documentation.

TANAKA, T., TARUI, T., AND NAONO, K. 2009. Investigating suitability for server virtualization using business application benchmarks. In VTDC ’09: Proceedings of the 3rd international workshop on Virtualization technologies in distributed computing. ACM, New York, NY, USA, 43–50.

TPC. 1994. TPC Benchmark B – Standard Specification Revision 2.0.

TRIDGELL, A. 2008. The dbench benchmark.

XU, X., ZHOU, F., WAN, J., AND JIANG, Y. 2008. Quantifying performance properties of virtual machine. In ISISE ’08: Proceedings of the 2008 International Symposium on Information Science and Engineering. IEEE Computer Society, Washington, DC, USA, 24–28.