A search for supersymmetry in hadronic final states with highly boosted W bosons and b jets is presented, focusing on compressed scenarios. The search is performed using proton-proton collision data at a center-of-mass energy of 8 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. Events containing candidates for hadronic decays of boosted W bosons are identified using jet substructure techniques, and are analyzed using the razor variables M_{R} and R^{2}, which characterize a possible signal as a peak on a smoothly falling background. The observed event yields in the signal regions are found to be consistent with the expected contributions from standard model processes, which are predicted using control samples in the data. The results are interpreted in terms of gluino-pair production followed by their exclusive decay into top squarks and top quarks. The analysis excludes gluino masses up to 1.1 TeV for light top squarks decaying solely to a charm quark and a neutralino, and up to 700 GeV for heavier top squarks decaying solely to a top quark and a neutralino.

The focus of many current searches is so-called compressed scenarios, the so-called compressed spectrum in which Δm is very small, of the order of a few GeV to tens of GeV (e.g. $[24–26]$), and scenarios where $\Delta m \approx m_{t}$. In the compressed case, the signature of top squark production is very similar to that of $t\bar{t}$ production, which has a much higher cross section. Therefore, to be sensitive to such processes, we cannot solely rely on the top squark decay products. Possibilities to discriminate the signal are tagging the top squark events based on a jet from initial-state radiation (ISR) using the monojet signature $[27,28]$, or searching for top squark events in cascade decays of heavier particles, such as the heavy top squark decays $\tilde{t}_{2} \rightarrow \tilde{t}_{1} + H/Z$ $[21]$, or from gluino decays.

In this paper, we search for the challenging top squark final states described above in gluino decays. Specifically, we consider gluino-pair production where each gluino decays to a top squark and a top quark. We consider the scenarios in which the gluino has a mass of around 1 TeV and the lighter top squark has a mass of a few hundred GeV. Because of the significant mass gap between the gluino and the top squark, the top quark from the gluino decay will receive a large boost. The top squark decays to $c\tilde{\chi}_{1}^{0}$ for a small Δm, or to $t\tilde{\chi}_{1}^{0}$ for $\Delta m \approx m_{t}$, as in the targeted searches for $\tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0}$ mentioned above. The analysis described in this paper is especially sensitive to the decay $\tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0}$. Consequently, this analysis provides new information about the viability of natural SUSY.
covers the systematic uncertainties. Finally, our results and their interpretation are presented in Sec. X, followed by a summary in Sec. XI.

II. RAZOR VARIABLES

The razor variables M_R and R^2 [39] are useful for describing a signal arising from the pair production of heavy particles, each of which decays to a massless visible particle and a massive invisible particle. In the two-dimensional razor plane, a signal with heavy particles is expected to appear as a peak on top of smoothly falling SM backgrounds, which can be empirically described using exponential functions. For this reason, the razor variables are robust discriminators for SUSY signals in which supersymmetric particles are pair produced and decay to SM particles and the LSP. For the simple case in which the final state comprises two visible particles, e.g. jets, the razor variables are defined using the momenta p^b_1 and p^b_2 of the two jets as

$$M_R \equiv \sqrt{(|\vec{p}^b_1| + |\vec{p}^b_2|)^2 - (p^b_1 + p^b_2)^2}, \quad (1)$$

$$M_R^R \equiv \sqrt{E_T^\text{miss}^\text{z} (p^b_1 + p^b_2) - \vec{E}_T^\text{miss} \cdot (\vec{p}^b_1 + \vec{p}^b_2)} / 2, \quad (2)$$

where $p^b_1, 2$ are the z components of the $j_1, 2$ momenta, \vec{E}_T^miss is the missing transverse momentum, computed as the negative vector sum of the transverse momenta of all observed particles in the event, and E_T^miss is its magnitude (see Sec. V for a more precise definition). Given M_R and the transverse quantity M_R^R, the razor dimensionless ratio is defined as

$$R \equiv M_R^R / M_R. \quad (3)$$

If the heavy mother particle is denoted by G and the heavy invisible daughter particle is denoted by χ, the peak of the M_R distribution and the end point of the M_R^R distribution are

The gluino-pair production processes described above, with $\tilde{t}_1 \rightarrow c \tilde{\chi}^0_1$ or $\tilde{t}_1 \rightarrow q \tilde{\chi}^0_1$, can be described using simplified model spectra [29–34]. Specifically, the models T1ttcc and T1ttt, shown in Fig. 1, are used in the design of the analysis and in the interpretation of the results.

In light of the discussion above, it is expected that boosted top quarks are a promising signature of new physics involving a massive gluino decaying to a relatively light top squark. Boosted objects with high transverse momentum, p_T, are characterized by merged decay products separated by $\Delta R \approx 2m/p_T$, where m denotes the mass of the decaying particle. For the top quark decay products to be merged within the typical jet size of $\Delta R = 0.5$ requires a top quark momentum of ≈ 700 GeV, a value difficult to reach with proton-proton collisions at 8 TeV. Therefore, in order to increase the signal efficiency by entering the boosted regime, we focus on W bosons from top quark decays, which require a more accessible p_T of around 300 GeV. The targeted final state therefore contains boosted W bosons and jets originating from b quarks (b jets) from top quark decays, light jet quarks from unmerged hadronic W boson decay products or charm quarks, and missing energy from the neutralinos. Hadronically decaying boosted W boson candidates are identified using the pruned jet mass [35–37] and a jet substructure observable called N-subjettiness [38]. The razor kinematic variables M_R and R^2 [39] are used to discriminate the processes with new heavy particles from SM processes in final states with jets and missing transverse energy. To increase the sensitivity to new physics, we perform the analysis by partitioning the (M_R, R^2) plane into multiple bins.

This paper is organized as follows. The razor variables are introduced in Sec. II. Section III gives a brief overview of the CMS detector, while Sec. IV covers the triggers, data sets, and Monte Carlo (MC) simulated samples used in this analysis. Details of the object definitions and event selection are given in Secs. V and VI, respectively. Section VII describes the data/simulation scale factors that are needed to correct the modeling of the boosted W boson tagger. The statistical analysis is explained in Sec. VIII, and Sec. IX...
both estimates of the quantity \((m_G^2 - m^2_j)/m_G\). When the decay chains are complicated, producing multiple particles in the final state, the razor variables can still be meaningfully calculated by reducing the final state to a two-“megajet” structure. The megajet algorithm aims to cluster visible particles coming from the decays of the same heavy supersymmetric particle. The razor variables \(M_R\) and \(R^2\) are computed using the four-momenta of the two megajets, where the megajet four-momentum is the sum of the four-momenta of the particles comprising the megajet. Studies show that, of all the possible clusterings, the one that minimizes the sum of the squared invariant masses of the megajets maximizes the efficiency with which particles are matched to their heavy supersymmetric particle ancestor [40].

Figure 2 shows the simulated distributions of the overall SM background and a T1ttcc signal with \(m_{g_1} = 1\) TeV, \(m_t = 325\) GeV, and \(m_{\chi_1^0} = 300\) GeV in the \((M_R, R^2)\) plane. The binning is chosen in accordance with the exponentially falling behavior of the razor variables, to optimize the statistical precision in each bin. The numerical values for the bin boundaries which are used all through the analysis are given in Table V. The SM background, which mainly arises from multijet production, is dominant at low \(R\) and \(M_R\) values for the bin boundaries which are used all through the analysis are given in Table V. The near hermeticity of the detector permits an accurate measurement of the momentum balance in the transverse plane.

III. THE CMS DETECTOR

A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found elsewhere [44]. A characteristic feature of the CMS detector is its superconducting solenoid magnet, of 6 m internal diameter, which provides a field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter. Muon detectors based on gas-ionization chambers are embedded in a steel flux-return yoke located outside the solenoid. Events are collected by a two-layer trigger system, where the first level is composed of custom hardware processors, and is followed by a software-based high-level trigger.

The tracking system covers the pseudorapidity region \(|\eta| < 2.5\), the muon detector \(|\eta| < 2.4\), and the calorimeters \(|\eta| < 3.0\). Additionally, the forward region at \(3 < |\eta| < 5\) is covered by steel and quartz fiber forward calorimeters.

The near hermeticity of the detector permits an accurate measurement of the momentum balance in the transverse plane.

IV. TRIGGER AND EVENT SAMPLES

This analysis is based on a sample of proton-proton collision data at \(\sqrt{s} = 8\) TeV collected by the CMS experiment in 2012 and corresponding to an integrated luminosity of 19.7 fb\(^{-1}\). Events are selected using two triggers, requiring either the highest jet \(p_T\) or the scalar sum \(H_T\) of jet transverse momenta to be above given thresholds. The jet \(p_T\) threshold was 320 GeV (and 400 GeV for a brief data taking period corresponding to 1.8 fb\(^{-1}\)), while the \(H_T\) threshold was 650 GeV. The two trigger algorithms were based on a fast implementation of the particle-flow (PF)
reconstruction method [45,46], which is described in Sec. V.

To measure the efficiency of these triggers, samples with unbiased jet p_T and H_T distributions are obtained using an independent set of triggers that require at least one electron or muon. Figure 3 shows, on the left-hand side, the efficiency of the requirement that events satisfy at least one of the two trigger conditions as well as the baseline selection described in Sec. VI, in the (H_T, leading jet p_T) plane. The trigger is fully efficient for events with $H_T > 800$ GeV. In order to account for the lower efficiency of the regions with $H_T < 800$ GeV, the measured trigger efficiency over the (H_T, leading jet p_T) plane is applied as an event-by-event weight to the simulated samples. The right-hand side of Fig. 3 shows the trigger efficiency across the (M_R, R^2) plane for the total simulated background.

Simulated event samples are used to investigate the characteristics of the background and signal processes. Multijet, $t\bar{t}$, $W(\rightarrow \ell\nu) +$ jets, $Z/\gamma^*(\rightarrow \ell\ell) +$ jets, and $Z(\rightarrow \nu\bar{\nu}) +$ jets events are generated using MadGraph 5.1.3.30 [47,48] with CTEQ6L1 [49] parton distribution functions (PDFs), while WW, WZ, and ZZ events are generated using PYTHIA 6.426 [50] with CTEQ6L1 PDFs. In what follows, W and Z bosons will be collectively referred to as V. Single top quark events are generated using POWHEG 1.0 [51,52] and CT10 PDFs [53]. The cross sections for these SM processes are given in Table II. The inclusive background processes are scaled to the highest-order cross section calculation available, whereas leading-order cross sections are used for $W(\rightarrow \ell\nu) +$ jets, $Z/\gamma^*(\rightarrow \ell\ell) +$ jets, and $Z(\rightarrow \nu\bar{\nu}) +$ jets, which are produced with varying generator-level H_T requirements. The simplified model signals are produced using MadGraph 5.1.5.4 using CTEQ6L1 PDFs. The signal cross sections are computed at next-to-leading order with next-to-leading-log corrections using PROSPINO and NLL-FAST [54–59]. The parton-level events are showered and hadronized using PYTHIA 6.426 with tune $Z2^*$ [60], which is derived from the Z1 tune [61]. The latter uses the CTEQ5L PDFs [62], whereas $Z2^*$ adopts CTEQ6L. For the background events, the response of the CMS detector is simulated in detail using a program (FullSim) based on GEANT 4 [63]. A parametrized fast detector simulation program (FastSim) is used to simulate the detector response for the signal events [64].

V. EVENT RECONSTRUCTION

We select events that have at least one interaction vertex associated with at least four charged-particle tracks. The vertex position is required to lie within 24 cm of the center of the CMS detector along the beam direction and within 2 cm from the center in the plane transverse to the beam. Because of the high instantaneous luminosity of the LHC, hard scattering events are typically accompanied by overlapping events from multiple proton-proton interactions (pileup), and therefore contain multiple vertices. We identify the primary vertex, i.e., the vertex of the hard scatter, as the one with the highest value of the $\sum p_T^2$ of the associated tracks. Detector- and beam-related filters are used to discard events with anomalous noise that mimic events with high energy and a large imbalance in transverse momentum [65,66].

CMS reconstructs events using the PF algorithm, in which candidate particles (PF candidates) are formed by combining information from the inner tracker, the calorimeters, and the muon system. Each PF candidate is assigned to one of five object categories: muons, electrons, photons, charged hadrons, and neutral hadrons. Contamination from pileup events is reduced by discarding charged PF candidates that are incompatible with having originated from the primary vertex [67]. The average pileup
energy associated with neutral hadrons is computed event by event and subtracted from the jet energy and from the energy used when computing lepton isolation, i.e., a measure of the activity around the lepton. The energy subtracted is the average pileup energy per unit area (in $\Delta \eta \times \Delta \phi$) times the jet or isolation cone area [68,69].

Jets are clustered with FastJet 3.0.1 [70] using the anti-k_T algorithm [71] with distance parameter $\Delta R = 0.5$. These jets are referred to as AK5 jets. Corrections are applied as a function of jet p_T and η to account for the residual effects of a nonuniform detector response. The jet energies are corrected so that, on average, they match those of simulated particle-level jets [72]. After correction, jets are required to have $p_T > 30$ GeV and $|\eta| < 2.4$. We use the combined secondary vertex algorithm [73,74] to identify jets arising from b quarks. The medium tagging criterion, which yields a misidentification rate for light quark and gluon jets of $\approx 1\%$ and a typical efficiency of $\approx 70\%$, is used to select b jets. The loose tagging criterion, with a misidentification rate of $\approx 10\%$ and an efficiency of $\approx 85\%$, is used to reject events containing b jets.

To identify boosted W bosons, we follow a similar procedure as outlined in Ref. [75]. Jets are clustered with FastJet using the Cambridge-Aachen algorithm [76] and a distance parameter of 0.8, yielding CA8 jets. Jet energy corrections for these jets are derived from the anti-k_T jets with distance parameter $\Delta R = 0.7$. Simulations show that the corrections are valid for CA8 jets and have an additional uncertainty $\leq 2\%$.

The jet mass is calculated from the constituents of the jet after jet pruning, which removes the softest constituents of the jet. During jet pruning, the jet constituents are reclustered, and at each step the larger and larger angle “protojet” of the two protojets to be merged is removed should it fail certain criteria [35,36]. A CMS study has shown that jet pruning reduces pileup effects [37]. We define mass-tagged jets (mW) as CA8 jets with $p_T > 200$ GeV and jet mass within the range $70 < m_\text{jet} < 100$ GeV around the W boson mass.

In addition to the jet mass, we also consider the N-subjettiness [38] variables, which are obtained by first finding N candidate axes for subjets in a given CA8 jet, and then computing the quantity

$$
\tau_N = \frac{1}{R_0} \sum_k p_{T,k} \min(\Delta R_{1,k}, \Delta R_{2,k}, \ldots, \Delta R_{N,k}) / \sum_k p_{T,k},
$$

(4)

where R_0 is the original jet distance parameter and k runs over all constituent particles. The subjet axes are obtained with FastJet via exclusive k_T clustering, followed by a one-pass optimization to minimize the N-subjettiness value. The quantity τ_N is small if the original jet is consistent with having N or fewer subjets. Therefore, to discriminate boosted W bosons, which have two subjets, from qg jets characterized by a single subjet, we require that a W boson mass-tagged jet satisfy $\tau_2/\tau_1 < 0.5$ for it to be classified as a W boson tagged jet (labeled W in the following). The W boson tagging efficiency is dependent on the CA8 jet p_T, and is 50%–55% according to simulation. The corresponding misidentification rate is 3%–5%. We also define W boson antitagged jets (aW) as W boson mass-tagged jets that satisfy the complement of the τ_2/τ_1 criterion, and use these jets to define control regions for data-driven background modeling.

To calculate p_T^{miss} mass, which is used in the calculation of the razor variable R^2 defined in Eqs. (2) and (3), the vector sum over the transverse momenta is taken of all the PF candidates in an event.

Loosely identified and isolated electrons [77] (and muons [78]) with $p_T > 5$ GeV and $|\eta| < 2.5$ (2.4) are used both to suppress backgrounds in the signal region and in the definition of the control regions. Tightly identified isolated leptons, electrons (muons) with $p_T > 10$ GeV and $|\eta| < 2.5$ (2.4), define a control region enriched in $Z \rightarrow \ell\ell$ events, from which we estimate the systematic uncertainty in the predicted number of $Z \rightarrow \nu\nu$ events in the signal region. Electron candidates that lie in the less well-instrumented transition region between the barrel and end cap calorimeters, $1.44 < |\eta| < 1.57$, are rejected. We suppress the background from events that are likely to contain τ and other leptons that fail the loose selection by discarding events with isolated tracks with $p_T > 10$ GeV and a track-primary vertex distance along the beam direction $|d_z| < 0.05$ cm.

Known differences between the properties of data and MC simulated data are corrected by weighting simulated events with data/simulation scale factors for the jet energy scale, b tag, W mass-tag, W tag, and W antitag efficiency. The W tagging-related scale factors are described in Sec. VII. In addition, event-by-event weights are used to correct the simulated data so that their pileup, trigger, top quark p_T, and ISR characteristics match those of the data.

VI. ANALYSIS STRATEGY AND EVENT SELECTION

We search for deviations from the SM in the $(\text{high-}\text{$M_R$}, \text{high-}$R2) region using events with at least one boosted W boson, at least one b-tagged jet, and no isolated leptons or tracks. SM backgrounds in the signal region S are estimated using observations in control regions and scale factors, calculated from MC simulation, that relate the number of events in one region to that in another. Three control regions, Q, T, and W, select high-purity samples of multijet, $t\bar{t}$, and $W(\rightarrow \ell\nu) + $ jets events, respectively. Details of the background estimation method are given in Sec. VIII.
Events must satisfy the following baseline selection:

1. have at least one good primary vertex (see Sec. V);
2. pass all detector- and beam-related filters (see Sec. V);
3. have at least three selected AK5 jets of which at least one has \(p_T > 200 \text{ GeV} \), thereby defining the boosted phase space; and
4. satisfy \(M_R > 800 \text{ GeV} \) and \(R^2 > 0.08 \), where the megajets are constructed from the selected AK5 jets.

The details of the event selection in addition to the baseline selection are given in Table I. The signal and control regions are defined using different requirements on the multiplicities of leptons, \(b \)-tagged jets, and \(W \)-tagged jets, and on kinematic variables that discriminate between different processes. The multijet-enriched control sample \(Q \) is used for estimating the multijet background in the \(S \) and \(T \) regions. To characterize \(Q \), we use the fact that \(E_T^{\text{miss}} \) in multijet events is largely due to jet mismeasurements rather than the escape of particles that interact weakly with the detector; consequently, \(\hat{p}_T^{\text{miss}} \) will often be aligned with one of the jets. Therefore, a good discriminant between multijet events and events with genuine \(E_T^{\text{miss}} \) is

\[
\Delta \phi_{\text{min}} = \min_i (\Delta \phi(\hat{p}_T^{\text{miss}}, \hat{p}_T))
\]

that is, the minimum of the angles between \(\hat{p}_T^{\text{miss}} \) and the transverse momentum of each jet, where \(i \) runs over the three leading AK5 jets. Since detector inaccuracies mostly cause undermeasurements of the jet energy and momentum, the variable \(\Delta \phi_{\text{min}} \) provides a reliable discrimination of fake \(E_T^{\text{miss}} \) in multijet events.

The \(T \) and \(W \) control regions are used to characterize the \(t \bar{t} \) and \(W + \text{ jets} \) backgrounds, respectively, in the \(S \) region. The contamination in the \(S \) region from fully hadronic decays of \(t \bar{t} \) pairs is negligible because they do not produce sufficient genuine \(E_T^{\text{miss}} \) to satisfy our event selection. The \(t \bar{t} \) contamination consists thus of the semileptonic decays of \(t \bar{t} \) pairs in which one \(W \) boson is boosted and the other \(W \) boson decays to a charged lepton that is not identified. Therefore, the \(T \) region is required to have a lepton from the decay of a \(W \) boson, at least one \(b \)-tagged jet, and a \(W \)-tagged jet. Similarly, the \(W + \text{ jets} \) contribution in the \(S \) region comes from leptonic \(W \) boson decays in which the charged lepton is not identified and a jet is misidentified as a \(W \) jet. Therefore, we require the \(W \) region to have events with a lepton from the \(W \) boson and a mass-tagged boosted \(W \) jet, which is a quark or gluon initiated jet misidentified as a boosted \(W \) boson. The N-subjettiness criterion is not imposed in order to maintain high event yields in these control regions and therefore higher statistical precision.

![Figure 4](image-url)

TABLE I. Summary of the selections used, in addition to the baseline selection, to define the signal region (\(S \)), the three control regions (\(Q, T, W \)), and the two regions (\(S', Q' \)) used for the cross-checks described later in the text.

Selection	\(S \)	\(S' \)	\(Q \)	\(Q' \)	\(T \)	\(W \)
Number of \(b \)-tagged jets	\(\geq 1 \)	\(\geq 1 \)	\(0 \)	\(0 \)	\(\geq 1 \)	\(0 \)
Number of mass-tagged \(W \)s	\(\geq 1 \)					
Number of tagged \(W \)s	\(\geq 1 \)	\(\geq 1 \)	\(\ldots \)	\(\ldots \)	\(\geq 1 \)	\(\ldots \)
Number of anti-tagged \(W \)s	\(\ldots \)	\(\ldots \)	\(\geq 1 \)	\(\ldots \)	\(\ldots \)	\(\ldots \)
Number of loose leptons	\(0 \)	\(0 \)	\(0 \)	\(0 \)	\(1 \)	\(1 \)
Number of isolated tracks	\(0 \)	\(0 \)	\(0 \)	\(0 \)	\(\ldots \)	\(\ldots \)
\(m_T \) (GeV)	\(\ldots \)	\(\ldots \)	\(\ldots \)	\(\ldots \)	\(< 100 \)	\(30–100 \)
\(\Delta \phi_{\text{min}} \)	\(> 0.5 \)	\(< 0.5 \)	\(< 0.3 \)	\(> 0.5 \)	\(> 0.5 \)	\(> 0.5 \)

FIG. 4. Simulated \(M_R \) (left panel) and \(R^2 \) (right panel) distributions in the signal region, \(S \). Stacked on top of the background distributions is the predicted signal contribution from an example T1ttcc model, with parameters \(m_2 = 1 \text{ TeV} \), \(m_t = 325 \text{ GeV} \), and \(m_{\chi^1} = 300 \text{ GeV} \). The bin entries are normalized proportionally to the bin width.
In the T and W regions, we suppress potential signals using the transverse mass,
\[m_T = \sqrt{2p_T^{\text{miss}}(1 - \cos \Delta \phi)}, \]
where $\Delta \phi$ is the difference in azimuthal angle between the lepton p_T and p_T^{miss}, and p_T^{miss} is the magnitude of the lepton p_T. The m_T distribution exhibits a kinematic edge at the mass of the W boson for $t\bar{t}$ and $W(\rightarrow \ell\nu) +$ jets processes. However, such an edge is not present for signal events because of the extra contribution to E_T^{miss} from neutralinos, which escape direct detection. Therefore, potential signals are suppressed in the T and W regions by requiring $m_T < 100$ GeV. For the W region, we additionally require $m_T > 30$ GeV in order to reduce residual contamination from multijet events, which are expected to have small E_T^{miss} and therefore small m_T. Table I lists two additional control regions, S' and Q', which are used in the cross-checks described later in this section.

Figure 4 shows the simulated distributions in the signal region for the M_R and R^2 variables, where the smoothly falling nature of the backgrounds, as well as their relative contributions, can be observed. The m_T distribution in the T and W regions prior to the m_T and $\Delta \phi_{\text{min}}$ selection is shown in Fig. 5, while Fig. 6 shows the $\Delta \phi_{\text{min}}$ distribution in the Q region, for both data and simulated backgrounds. Overall, there is reasonable agreement between the observed and simulated yields. The discrepancies are accommodated by the systematic uncertainties we assign to the simulated yields.

In Table II, we show the expected number of events obtained from simulation for the different background processes and for the example T1ttcc model with $m_{\tilde{g}} = 1$ TeV, $m_{\tilde{t}} = 325$ GeV, and $m_{\chi^0_1} = 300$ GeV. The observed event counts after different levels of selection, beyond the trigger requirement, are also reported. The background composition in percent after the baseline, S, Q, T, and W region selections is reported in Table III. The signal region is $t\bar{t}$ dominated, with additional contributions from $W(\rightarrow \ell\nu) +$ jets and multijet processes. Each control region, Q, T, and W, has high purity for the background process it targets, 90% multijet, 83% $t\bar{t}$, and single top quark processes, and 85% $W(\rightarrow \ell\nu) +$ jets, respectively. The discrepancies between the observations and the simulation are due to uncertainties in the MC modeling, especially for the multijet processes.

We do not explicitly estimate the background in the signal region. Rather, from the observations in the control regions, we create a prior distribution (described in...
TABLE II. Event yields in simulated event samples and in data as event selection requirements are applied. The simulated event counts are normalized to an integrated luminosity of 19.7 fb$^{-1}$. “Other” refers to the sum of the small background components $Z/\gamma \rightarrow \ell \bar{\ell}+\text{jets}$, triboson, and $\bar{t}V$. The signal is the Ttcc model with $m_{\bar{t}} = 1000$ GeV, $m_{t} = 325$ GeV, $m_{W} = 300$ GeV. The row corresponding to $n_{W} > 0$ gives the event counts after applying the noise filters, pileup reweighting, top p_T reweighting for \bar{t}, ISR reweighting for the signal, and the requirement of at least one primary vertex. The column listing the total number of background events also includes some processes that only contribute at the early stages of the event selection. The cross sections used for each sample are listed in the second line of the header. Several of the simulated background samples were produced with generator-level selections applied, which are not fully covered by the first selection levels listed in this table.

Selection	Multijet	\bar{t}	$W(\rightarrow \ell \nu)$	Diboson	Single top	$Z(\rightarrow \ell \bar{\ell})$	Other	Total background	Signal	Data
No selection	2.1×10^{11}	4.9×10^{6}	2.2×10^{6}	1.9×10^{6}	2.3×10^{6}	1.2×10^{7}	4.9×10^{5}	2.1×10^{11}	149	
$n_{PV} > 0$	1.05×10^{11}	4.42×10^{6}	2.02×10^{6}	1.08×10^{6}	1.72×10^{6}	2.87×10^{6}	4.0×5^{6}	1.05×10^{11}	479	
$n_{t} \geq 3$	2.04×10^{10}	4.08×10^{6}	1.51×10^{6}	5.19×10^{5}	1.10×10^{6}	6.24×10^{6}	3.37×10^{6}	2.05×10^{10}	472	
$p_T(j_1) > 200$ GeV	1.82×10^{8}	2.88×10^{5}	4.36×10^{5}	1.86×10^{4}	6.08×10^{4}	5.89×10^{4}	7.23×10^{4}	1.82×10^{8}	403	
$M_R > 800$, $R^2 > 0.08$	3.47×10^{4}	5.83×10^{3}	1.17×10^{4}	309	900	3.25×10^{3}	645	57 557	224	
Trigger	3.15×10^{4}	5.12×10^{3}	9.38×10^{3}	249	786	2.32×10^{3}	569	50 164	216	67 037
No leptons	3.09×10^{4}	1.87×10^{3}	3.75×10^{3}	96.3	311	2.30×10^{3}	216	39 666	142	562 220
$n_b \geq 1$	9.37×10^{3}	1.51×10^{3}	590	25.2	226	302	79.8	$12,187$	119	18 164
$n_w \geq 1$	841	332	56.4	8.52	56.7	22.1	16.9	$1,350$	28	1817
S	14.8	90.4	23.1	3.7	11.7	12.7	4.17	160	23.4	187
$n_b = 0$	1.25×10^{4}	98.3	1.70×10^{3}	35.6	25.9	1.25×10^{3}	54.3	15 691	5.65	20 667
$n_{W} \geq 1$	1519	18.7	204	8.36	7.40	158	6.98	1923	0.667	2712
Q	1447	10.6	93.1	3.88	3.94	38.9	4.48	1 603	0.07	2240

1 lepton

$n_b \geq 1$	585.9	2.74 $\times 10^{3}$	5.52 $\times 10^{3}$	132	421	221	272	9 699	65.0	10 008
$n_w \geq 1$	236.7	2.17 $\times 10^{3}$	625	29.9	301	4.14	102	3470	54	3930
T	24.3	496	61.6	10.0	50.9	0.56	21.9	666	12.3	770
$n_b = 0$	150.5	153	2.86 $\times 10^{3}$	52.8	41.3	11.5	68.8	3 329	2.54	3165
$n_{W} \geq 1$	30.8	79.1	605	33.1	13.8	2.4	20.3	786	1.19	581
W	0	15.5	127	3.6	1.6	0.64	1.4	150	0.06	116
In Eqs. (7), regions as will be used in the likelihood procedure incorporate the same relations between signal and control equations are used only in this cross-check. However, they are estimated number of events in the signal region while preserving the rest of the signal selection. The signal-like control region, and compare these predictions uncertainties only.

In the first cross-check, we predict the background in a signal-like control region, and compare these predictions with the observations in that region. This control region, denoted by S', is defined by inverting the $\Delta \phi_{\text{min}}$ requirement while preserving the rest of the signal selection. The estimated number of events in the S' region for the multijet, $W(\rightarrow \ell \nu) +$ jets, and top quark processes is computed as follows:

$$\hat{N}_{\text{multijet}}^{S'} = \frac{(N_{\text{obs}}^Q - N_{\text{other,Mc}}^Q)}{(N_{\text{multijet}}^Q)_{\text{MC}}} \cdot (7)$$

$$\hat{N}_{W(\rightarrow \ell \nu)}^{S'} = \frac{(N_{\text{obs}}^W - N_{\text{other,Mc}}^W)}{(N_{W(\rightarrow \ell \nu)}^S)_{\text{MC}}} \cdot (8)$$

$$\hat{N}_{TTJ+T}^{S'} = \frac{(N_{\text{obs}}^T - \hat{N}_{\text{multijet}}^T - N_{\text{other,Mc}}^T)}{(N_{TTJ+T}^S)_{\text{MC}}} \cdot (9)$$

while the estimated number of multijet events in the control region T is given by

$$\hat{N}_{\text{multijet}}^T = \frac{(N_{\text{obs}}^Q - N_{\text{other,Mc}}^Q)}{(N_{\text{multijet}}^Q)_{\text{MC}}} \cdot (10)$$

In Eqs. (7)–(10), the superscripts denote one of the control regions, while the subscripts “other,” $W(\rightarrow \ell \nu)$, $TTJ+T$, and multijet denote the sum of the small backgrounds, $W(\rightarrow \ell \nu) +$ jets, $\bar{t}t$ plus single top quark, and multijet, respectively, while “obs” labels observed counts. These equations are used only in this cross-check. However, they incorporate the same relations between signal and control regions as will be used in the likelihood procedure described in Sec. VIII. As can be seen from Table III, the nominal choice of the parameters associated with systematic uncertainties leads to $N_{\text{multijet,Mc}}^T = 0$. The total estimated background in S' is

$$\hat{N}_{S'} = \sum_i \hat{N}_{i}^{S'}, (11)$$

where i runs over all background processes. For smaller backgrounds, $\hat{N}_{S'}$ is determined by simulation. Backgrounds are estimated bin by bin in the (M_R, R^2) space, where the bin boundaries are numerically defined in Table V. However, the estimated scale factors are global as the statistical precision is not sufficient to yield reliable bin-by-bin estimates. The expected global scale factors, which we denote by κ, are defined in Sec. VIII, which also describes how they are calculated.

Figure 7 shows the projection on the M_R and R^2 axes of the predicted and observed distributions in the S' region. The prediction agrees with observation within $\approx 20\%$. This cross-check of the background modeling shows that it is feasible to estimate a multicomponent background in a signal-like region using the control regions we have defined.

In the second cross-check, we use the Q region to estimate the background in a signal-like Q region, denoted by Q', for which $\Delta \phi_{\text{min}} > 0.5$, from the relationship

$$\hat{N}_{Q'} = \frac{N_{\text{obs}}^Q}{N_{\text{MC}}^Q} \times N_{\text{other,Mc}}^Q \times \kappa. (12)$$

Here, N_{MC}^Q includes all contributing background processes, and N_{obs}^Q is the observed count in the Q region. This test assesses the degree to which the simulated distribution of $\Delta \phi_{\text{min}}$ as well as its extrapolation from the Q region to the S region are reliable. As observed from Table III, the multijet process is only a small contribution in the Q' region. Therefore, this cross-check assesses how well the reduction of the multijet process, via the $\Delta \phi_{\text{min}} > 0.5$ requirement, is modeled. The comparison between prediction and observation can be made from data shown in Fig. 8. The level of discrepancy between the prediction and the observation in
this cross-check is incorporated as a systematic uncertainty of 42% in the global scale factor for the multijet component, as described in Sec. VIII.

VII. THE W BOSON TAGGING SCALE FACTORS

The W boson tagger used in this analysis is the same as that defined and used in previous CMS analyses [75,79]. Since the W boson tagging efficiency does not depend significantly on the event topology, we use the same scale factor [75],

$$\text{SF}_{\text{Wtag}} = 0.86 \pm 0.07, \quad (13)$$

as used in these previous analyses, for correcting the modeling differences between FullSim and data for the W boson tagging efficiency and apply the scale factor to processes with genuine hadronically decaying W bosons (mainly $t\bar{t}$ and signal) in the S and T regions.

On the other hand, the data/FullSim scale factors for the misidentification (mistag) efficiency for mass-tagged, anti-tagged, and tagged W bosons are derived specifically for this analysis. The mistag efficiency is defined as the probability to tag, with one of the W taggers, a jet not originating from the hadronic decay of a W boson. Scale factors are necessary to correct the mistag efficiencies for W boson mass tagging and antitagging in the MC simulation of the Q and W control regions, respectively, whereas the mistag efficiency scale factor for W boson tagging is used to correct simulated events with misidentified W bosons, e.g. multijet or $W(\rightarrow \ell\nu) +$ jets events, in the S and T regions. All three mistag efficiency scale factors are derived using the same...
multijet-enriched control region, defined as region Q with the exception of all selections related to razor variables and W tagging. To obtain the mistag efficiencies ϵ_f for W boson tagging, mass tagging, and antitagging, we use the leading CA8 jet in each event and measure the fraction of these jets passing the given tagger. After obtaining ϵ_f in both data and FullSim, we compute the scale factor,

$$SF(p_T) = \frac{\epsilon_f^{\text{data}}(p_T)}{\epsilon_f^{\text{FullSim}}(p_T)}.$$ \hspace{1cm} (14)

The scale factors for the W boson tagging, mass tagging, and antitagging mistag efficiency vary between 1.0 and 1.2, 1.1 and 1.4, and 1.2 and 1.5, respectively, depending on the CA8 jet p_T. The uncertainties in the scale factor include the statistical uncertainty as well as the trigger efficiency and jet energy scale uncertainties, and vary between 2% and 7% depending on the CA8 jet p_T.

Because the signal processes are simulated with FastSim, the resulting tagging efficiencies must be corrected for modeling differences between the programs FullSim and FastSim. To compute the W boson tagging efficiency FullSim/FastSim scale factor we use a sample of $t\bar{t}$ events simulated with FullSim and FastSim. We first determine the W boson tagging efficiency for both samples, considering only events with exactly one hadronically decaying W boson at the generator level for which the closest reconstructed CA8 jet lies within $\Delta R = 0.8$ of the W boson. Since we wish to select boosted W bosons, and not boosted top quarks, we require that there be no (generator-level) b quark from the top quark decay within the cone of the closest CA8 jet. The W boson tagging efficiency as a function of p_T for a given sample is then obtained by dividing the p_T distribution of the closest CA8 jets that also satisfy the tagging condition ($70 < m_{b} < 100$ GeV and $\tau_2/\tau_1 < 0.5$) by the p_T distribution of all of the closest CA8 jets. To determine the FullSim/FastSim scale factor for the W boson tagging efficiency, we divide the efficiencies ϵ obtained from the FullSim and FastSim samples, $SF_{\text{FullSim/FastSim}}(p_T) = \epsilon^{\text{FullSim}}(p_T)/\epsilon^{\text{FastSim}}(p_T)$. This scale factor is applied to all signal samples and varies between 0.89 and 0.95, depending on the p_T of the given CA8 jet, with an uncertainty of less than 3%.

VIII. STATISTICAL ANALYSIS

The statistical analysis of the observations in the signal region is based on a likelihood function, $L(\sigma)$, given by

$$L(\sigma) = \int d\mathcal{L} \int d\tilde{\theta}_1 \cdots \int d\tilde{\theta}_M \prod_{i=1}^{M} p(N_i^{S}(\sigma, \mathcal{L}, \tilde{\theta}_i)) \pi(\tilde{\theta}_1, \ldots, \tilde{\theta}_M) \pi(\mathcal{L}),$$

where σ is the total signal cross section, $M = 25$ is the number of bins in the (M_R, R^2) plane, N_i^{S} is the observed count in bin i of the signal region, and the bin-by-bin parameters e, b_{multijet}^{S}, b_{TTJ}^{S}, $b_{W(\rightarrow \ell\nu)}^{S}$, and b_{other}^{S} are denoted collectively by θ. The parameter e represents the M signal efficiencies (including acceptance) for a given signal model, while the bin-by-bin background parameters for a given background process in the S region are denoted by b_{process}^{S}. The function $\pi(\mathcal{L})$ is the integrated luminosity prior and $\pi(\tilde{\theta}_1, \ldots, \tilde{\theta}_M)$ is an evidence-based prior constructed from observations in the control regions and the four global scale factors $\kappa_{A/B}^{\text{process}} = \sum_i b_{\text{process,MC,i}}^{A}/\sum_i b_{\text{process,MC,i}}^{B}$, where the sum is over all bins of the simulated data; A and B denote any of the S, Q, T, or W regions.

The association of the global scale factors with the control regions is shown in Fig. 9, which also shows which control regions provide constraints on the background parameters, b_{process}^{S}. Although we use the same global scale factors in each bin, shape uncertainties in the simulated distributions are accounted for by allowing the uncertainty

![Graphical representation of the analysis method](image-url)

FIG. 9. Graphical representation of the analysis method. The circles represent the signal (S) and control (Q, T, W) regions, with their definition summarized in the associated boxes. Listed inside each circle are the likelihood parameters relevant to that region: the bin-by-bin background parameters $b_{\text{process}}^{\text{region}}$ for the given region and background process, as well as the global scale factors $\kappa_{A/B}^{\text{process}} = \sum_i b_{\text{process,MC,i}}^{A}/\sum_i b_{\text{process,MC,i}}^{B}$, where the sum is over all bins of the simulated data. A connection between two regions indicates that one or more parameters are shared. The total expected background, per the (M_R, R^2) bin, is the sum of the terms shown for each region. Furthermore, associated with each bin of each region is an observed count, N_{region}, a simulated count, $N_{\text{region}}^{\text{MC}}$, and a count $N_{\text{other,MC}}$ equal to the sum of the smaller backgrounds, $Z/\nu^* \rightarrow \ell\ell+\text{jets}$, diboson, triboson, and $t\bar{t}V$, with an associated parameter in the likelihood $b_{\text{other}}^{\text{region}}$.
in the scale factors to be bin dependent. The 25 signal bins in the \((M_R, R^2)\) plane are divided into three sets for which different uncertainties are applied: the four bins nearest the origin (set 1), the five surrounding bins (set 2), and the remaining bins (set 3). The likelihood per bin is taken to be \(p(N^S|\sigma, \mathcal{L}, \tilde{\theta}) = \text{Poisson}(N^S, \sigma \mathcal{L} + b^S_{\text{multijet}} + b^S_{TTJ} + b^S_{W(-\ell\nu)} + b^S_{\text{other}})\).

The integral in Eq. (15) is approximated using MC integration by sampling the priors \(\pi(\mathcal{L})\) and \(\pi(\tilde{\theta}_1, \ldots, \tilde{\theta}_M)\) and averaging the multibin likelihood with respect to the sampled points \(\{(\mathcal{L}, \tilde{\theta}_1, \ldots, \tilde{\theta}_M)\}\). The priors for the expected integrated luminosity \(\mathcal{L}\), signal efficiencies \(\epsilon\), and simulated background counts \(b^S_{\text{region}}\) are modeled with gamma function densities,

\[
\text{Ga}(x, \gamma, \beta) = \beta^{-1}(x/\beta)^{-\gamma-1}\exp(-x/\beta)/\Gamma(\gamma),
\]

where the mode is set to \(c\) and the variance to \(\delta c^2\), where \(c \pm \delta c\) denotes either the measured integrated luminosity or, for a given bin of a given region and process, the simulated signal efficiency, or the simulated background count. From \(c \pm \delta c\), we calculate the gamma density parameters,

\[
\gamma = \left[(k + 2) + \sqrt{(k + 2)^2 - 4}/2,\right.
\]

\[
\beta = \left[\sqrt{c^2 + 4\delta c^2} - c\right]/2,
\]

where \(k = (c/\delta c)^2\). For empty bins, we set \(\gamma = 1\) and the bin value is constrained to zero by setting the \(\beta\) parameter to \(10^{-4}\).

For the signal efficiencies and backgrounds, the prior is modeled hierarchically,

\[
\pi(\tilde{\theta}_1, \ldots, \tilde{\theta}_M) = \int d\tilde{c}_1 \cdots \int d\tilde{c}_M \int d\phi \prod_{i=1}^M \pi(\tilde{\theta}_i|\tilde{c}_i) \\
\times \pi(\tilde{c}_1, \ldots, \tilde{c}_M|\phi)\pi(\phi),
\]

where \(\phi\) represents parameters that characterize the independent sources of systematic uncertainty, described in Sec. IX. The integral in Eq. (19) is evaluated as follows: \(\phi\) values are sampled from \(\pi(\phi)\) following the procedure described in Sec. IX, then \(\tilde{c}_i\) values from \(\pi(\tilde{c}_i|\phi)\), then \(\tilde{\theta}_i\) values from \(\pi(\tilde{\theta}_i|\tilde{c}_i)\). The sampling from \(\pi(\phi)\) and \(\pi(\tilde{\theta}_i|\tilde{c}_i)\) is straightforward because the functional forms are known. However, the sampling of \(\tilde{c}_i\) requires running the analysis multiple times, yielding an ensemble of histograms in the \((M_R, R^2)\) plane, which is the output of the procedure described in Sec. IX. Thereafter, the sampling, which yields the points \(\{(\mathcal{L}, \tilde{\theta}_1, \ldots, \tilde{\theta}_M)\}\), proceeds as follows:

1. sample the integrated luminosity parameter;
2. sample the efficiency parameters, \(\epsilon\), for every bin and every signal model;
3. sample the background parameters \(b^S_{\text{region}}\) for every bin and every background;
4. scale \(b^Q_{\text{multijet}}\) by a random number sampled from a gamma density of unit mode and standard deviation 0.36 in order to induce the 42% uncertainty in the multijet global scale factor \(\kappa_{\text{multijet}}^Q\) and the remaining bins (set 3). The likelihood\(b^S_{\text{multijet}}\) is mapped to a posterior density in \(b^S_{\text{multijet}}\) using a flat prior in \(b^S_{\text{multijet}}\), and \(b^S_{\text{multijet}}\) is sampled from the posterior density.
5. scale each \(\kappa\) parameter from the appropriate background sums, for example, \(\kappa_{\text{multijet}}^Q = \sum_i b^Q_{\text{multijet},MC,i}/\sum_i b^S_{\text{multijet},MC,i}\);
6. scale each \(\nu\) value by a random number sampled from a gamma density with unit mode and standard deviation of either 0.5 or 1.0 for the bins in set 2 or set 3, respectively, to account for the larger uncertainties in the tails of the simulated distributions; and
7. sample the background parameters \(b^S_{\text{multijet}}, b^S_{TTJ},\) and \(b^S_{W(-\ell\nu)}\), from the Poisson models of the control regions; for example, for region \(Q\), Poisson\(N^Q, \kappa_{\text{multijet}}^Q b^S_{\text{multijet}} + b^S_{\text{other}}\) is mapped to a posterior density in \(b^S_{\text{multijet}}\) using a flat prior in \(b^S_{\text{multijet}}\), and \(b^S_{\text{multijet}}\) is sampled from the posterior density.

If no statistically significant signal is observed, we determine limits on the total signal cross section using the CLs criterion [80–82] and the test statistic \(t_\sigma = 2\ln[L(\hat{\sigma})/L(\sigma)]\) when \(0 \leq \hat{\sigma} \leq \sigma\) and \(t_\sigma = 0\) when \(\hat{\sigma} > \sigma\). Large values of \(t_\sigma\) indicate incompatibility between the best fit hypothesis \(\sigma' = \hat{\sigma}\) and the hypothesis \(\sigma' = \sigma\) being tested. Given the \(p\) values \(p_0 = \Pr(t_\sigma > t_{\sigma,\text{obs}}|\sigma = 0)\) and \(p_\sigma = \Pr(t_\sigma > t_{\sigma,\text{obs}}|\sigma' = \sigma)\), obtained by simulation, a 95% CLs upper limit on the cross section is obtained by solving \(\text{CLs}(\sigma) = p_\sigma/p_0 = 0.05\). The quantity \(t_{\sigma,\text{obs}}\) denotes the observed values of the test statistic, one for each hypothesis \(\sigma' = \sigma\).

IX. SYSTEMATIC UNCERTAINTIES

The input to the statistical analysis is an ensemble of histograms in the \((M_R, R^2)\) plane that incorporate systematic uncertainties in the simulated signal and background samples. The independent systematic effects, described below, are sampled simultaneously. For each sampled systematic effect, a Gaussian variate with zero mean and unit variance is used in the calculation of the random shift due to the systematic effect for all the signal and background models. Likewise, the same randomly sampled PDFs are used for all signal and background models. In this way, the statistical dependencies among all bins of the signal and background models are correctly, and
automatically, modeled. The sampling of the systematic effects is repeated several hundred times.

In all cases, except for those associated with PDFs, the systematic uncertainties are in the scale factors (SF) applied to the simulated samples to correct them for modeling deficiencies. We consider the systematic uncertainties in the following quantities:

(i) **Jet energy scale.**—The uncertainties are dependent on jet p_T and η [72].

(ii) **Parton distribution functions.**—We use 100 randomly sampled sets of PDFs from NNPDF23_lo_as_0130_qed [83], MSTW2008lo68cl [84], and CT10 [53]. The samples for the latter two are generated using the program HESSIAN2REPLICAS, recently released with LHAPDF6 [85]. Given a sampled set i, for PDF set K and the PDF set O with which the events were simulated, events are reweighted using the scale factors, $SF_{K,i} = w_{K,i}/w_O$, where the weights w are products of the event-by-event PDFs for the colliding partons.

(iii) **Trigger efficiency.**—We take the uncertainty in each bin, as a function of H_T and leading jet p_T, to be the maximum of the statistical uncertainty in the efficiency after the baseline selection and the difference between the efficiencies before and after the baseline selection.

(iv) **b tagging scale factors.**—The b tagging performance differs between data and simulation, and differs between FullSim and FastSim, which is used to model signal processes. The simulated events are therefore corrected by applying jet flavor-, p_T-, and η-dependent data/FullSim and FullSim/FastSim scale factors on the b tagging or mistagging efficiency. The uncertainties in these scale factors are also jet flavor, p_T, and η dependent, and are of the order of a few percent [74].

(v) **W tagging scale factors.**—The W boson tag efficiency, and the mistag efficiency for W boson tagging, W boson mass tagging, and W boson antitagging differ between data and simulation, as well as between FullSim and FastSim. Data/FullSim and FullSim/FastSim scale factors, whose uncertainties are functions of jet p_T, are applied to the simulated samples.

(vi) **Lepton identification.**—For electrons, we use p_T- and η-dependent scale factors for the identification efficiency. The uncertainties are also p_T and η dependent [77]. The scale factor for the muon identification efficiency equals one and the corresponding uncertainties are negligible [78].

(vii) **Initial-state radiation.**—Deficiencies in the modeling of ISR are corrected by reweighting [19] the signal samples using an event weight that depends on the p_T of the recoiling system. The associated systematic uncertainty is equal to the difference $1 - w_{\text{ISR}}$, where w_{ISR} is the ISR event weight.

(viii) **Top quark transverse momentum.**—Differential top quark pair production cross section analyses have shown that the shape of the p_T spectrum of top quarks in data is softer than predicted [86]. To account for this, we reweight events based on the p_T of the generator level t and \bar{t} quarks in the $t\bar{t}$ simulation. The uncertainty associated with this reweighting is taken to be equal to the full amount of the reweighting.

(ix) **Pileup.**—Simulated events are reweighted so that their vertex multiplicity distribution matches that observed in data. The minimum-bias cross section is varied by ±5%, thereby changing the shape of the vertex multiplicity distribution and therefore the weights.

(x) **Multijet spectrum.**—The cross-checks described in Sec. VI showed that there is a 42% uncertainty in the multijet scale factor κ between the S and Q regions. This uncertainty is incorporated by increasing the uncertainty in the κ parameter, as described in Sec. VIII.

(xi) $Z(\rightarrow \nu\bar{\nu}) + \text{jets prediction.}$—About 8% of the background in the signal region is composed of $Z(\rightarrow \nu\bar{\nu}) + \text{jets}$ events. Since we require the presence of at least one b-tagged jet, and given the known deficiency in modeling Z production in association with heavy flavor quarks [87], we include an extra systematic uncertainty in the $Z(\rightarrow \nu\bar{\nu}) + \text{jets}$ contribution. This uncertainty is estimated using a data control region enriched in $Z(\rightarrow \ell\ell) + \text{jets}$, required

TABLE IV: Summary of ±1 standard deviation systematic uncertainties for the average signal efficiency over all mass assumptions in the T1ttcc model ($\Delta m = 25$ GeV), and for the total background count in the signal region, unless indicated otherwise, as determined from simulation.

Systematic effect	Signal (%)	Background (%)
Jet energy scale	+2.2 ± 2.1	+10.9 ± 5.2
Trigger	+1.1 ± 1.3	+3.4 ± 5.7
b tagging FullSim	+2.1 ± 2.3	+3.9 ± 4.0
b tagging FastSim	+1.2 ± 1.3	...
W tag efficiency FullSim	+9.0 ± 8.9	+4.6 ± 4.6
W tag efficiency FastSim	+2.2 ± 2.2	...
W tag mistag efficiency	...	+1.4 ± 1.4
FullSim
W antitag mistag efficiency	...	+2.6 ± 2.6
FullSim (Q region only)
W mass-tag mistag efficiency	...	+2.3 ± 2.3
FullSim (W region only)
Electron identification (T and W region only)	...	+0.2 ± 0.2
Pileup	+0.5 ± 0.5	+1.0 ± 1.1
ISR	+6.6 ± 6.6	...
Top quark p_T	...	+20.5 ± 14.4
$Z(\rightarrow \nu\bar{\nu})$ + heavy flavor	...	+4.0 ± 4.0
PDF	20.7	10.7
All	24.4	22.1
to have exactly two tight leptons with the same flavor (e or μ) and opposite charge, $60 < m_{\ell\ell} < 120$ GeV, at least one b-tagged jet, and at least one W mass-tagged jet. We estimate the uncertainty by first computing bin-by-bin data/simulation ratios in this control region. Then, we take the uncertainty in the ratio in each bin as the standard deviation of a Gaussian density, normalized to the number of events in that bin. Finally, the Gaussian densities from all bins are superposed, and the uncertainty is taken to be the magnitude of the 68% band around a ratio of unity.

As noted above, all systematic effects are varied simultaneously across (M_R, R^2) bins. However, to assess the
 SEARCH FOR SUPERSYMMETRY IN pp COLLISIONS …

The effect of each systematic uncertainty individually, each one is varied by one standard deviation up and down. The effect on the background count and signal efficiency in the signal region is shown in Table IV. The signal values are obtained from averaging over all mass points in the $T_1t_1t_t$ model ($\Delta m = 25$ GeV) plane. The PDF systematic uncertainties are obtained by running over 100 different members from the three PDF sets and fitting a Gaussian function to the efficiency distribution. The last line in the table corresponds to the full sampling of the systematic uncertainties. To obtain this value, we again fit a Gaussian function to the efficiency distribution obtained from the full systematic sampling including 500 variations. Although the effects of some of these systematic uncertainties on the backgrounds are large, they do not influence our results greatly because only the ratios of simulated background counts enter the statistical analysis, not the absolute values. Therefore, most of the systematic effects cancel. The statistical precision on the number of events in the control regions is the leading uncertainty in the background prediction for the search bins at large M_R or R^2. The dominant systematic uncertainty in the signal efficiency arises from the PDFs.

X. RESULTS AND INTERPRETATION

Our background predictions for each bin in the (M_R, R^2) plane are presented in Fig. 10 and in Table V, which also lists the observed event yield in each bin. The background predictions are presented as the mean and standard deviation as determined from the background prior $\pi(\theta)$ described in Sec. VIII. The observed event yields are found to be in agreement with the predicted backgrounds from SM processes. Consequently, no evidence of a signal is observed.

We interpret our results in terms of the simplified model spectra $T_1t_1t_t$, whose diagrams are shown in Fig. 1. These models each have three mass parameters: the gluino, top squark, and LSP masses. The mass of the gluino is varied between 600 and 1300 GeV and that of the LSP between 1 and 500 GeV, while the mass difference between the top squark and the LSP, Δm, is fixed at 10, 25, or 80 GeV for the $T_1t_1t_t$ model, and at 175 GeV for the T_1t_t model. In both models the gluino is assumed to decay 100% of the time into a top squark and a top quark.

To illustrate the expected signal sensitivity, we show in Fig. 11 the signal efficiencies as a function of the gluino and neutralino masses, for the $T_1t_1t_t$ model, to which this analysis is particularly sensitive, and for the T_1t_t model. Efficiencies of up to 6% in the most boosted regimes are reached. For the $T_1t_1t_t$ model a drop in efficiency is observed for the region of model parameter space with the lowest neutralino mass ($m_{\tilde{\chi}_1^0} = 1$ GeV), which can be explained by Lorentz boosts. For LSP masses higher than

R^2	M_R (GeV)	$t\bar{t}$	Multijet	$W(\rightarrow \ell\nu)$	Other	Total	Observed
[0.08, 0.12]	[800, 1000]	47.1 ± 8.6	21.1 ± 32.0	6.1 ± 1.9	6.0 ± 2.3	80.2 ± 33.4	75
[1000, 1200]	15.2 ± 4.1	4.7 ± 9.9	1.9 ± 0.9	2.2 ± 0.9	24.0 ± 10.6	24	
[1200, 1600]	7.3 ± 4.8	1.4 ± 0.9	1.3 ± 1.0	1.4 ± 0.7	11.4 ± 5.1	10	
[1600, 2000]	0.8 ± 1.2	0.2 ± 0.2	0.4 ± 0.5	0.1 ± 0.6	1.5 ± 1.3	0	
[2000, 4000]	0.8 ± 1.1	0.0 ± 0.1	0.4 ± 0.6	0.1 ± 0.1	1.4 ± 1.3	0	
[800, 1000]	15.5 ± 4.2	2.5 ± 1.2	1.1 ± 0.8	2.8 ± 1.2	21.9 ± 4.8	34	
[1000, 1200]	3.4 ± 1.8	0.5 ± 0.3	1.3 ± 0.6	1.2 ± 0.7	6.4 ± 2.0	8	
[0.12, 0.16]	[1200, 1600]	2.8 ± 2.3	0.2 ± 0.1	0.6 ± 0.5	0.6 ± 0.4	4.1 ± 2.3	3
[1600, 2000]	0.8 ± 1.2	0.0 ± 0.1	0.2 ± 0.3	0.1 ± 0.0	1.1 ± 1.2	0	
[2000, 4000]	0.8 ± 1.1	0.0 ± 0.0	0.2 ± 0.4	0.2 ± 0.0	0.3 ± 0.0	0	
[800, 1000]	9.1 ± 5.8	0.7 ± 0.4	1.8 ± 1.4	2.4 ± 1.1	14.0 ± 6.0	16	
[1000, 1200]	2.5 ± 2.4	0.2 ± 0.1	0.5 ± 0.5	1.5 ± 0.8	4.7 ± 2.5	4	
[0.16, 0.24]	[1200, 1600]	0.9 ± 1.0	0.1 ± 0.1	1.3 ± 0.9	0.2 ± 0.2	2.5 ± 1.4	2
[1600, 2000]	0.9 ± 1.6	0.0 ± 0.0	0.2 ± 0.3	0.0 ± 0.0	1.1 ± 1.7	1	
[2000, 4000]	0.9 ± 1.3	0.0 ± 0.0	0.2 ± 0.3	0.0 ± 0.0	1.1 ± 1.3	0	
[800, 1000]	7.4 ± 7.0	0.1 ± 0.1	0.9 ± 1.2	2.1 ± 1.0	10.4 ± 7.2	8	
[1000, 1200]	1.3 ± 1.4	0.0 ± 0.0	0.9 ± 1.0	0.6 ± 0.3	2.7 ± 1.6	0	
[0.24, 0.5]	[1200, 1600]	0.8 ± 1.4	0.0 ± 0.0	0.4 ± 0.6	0.2 ± 0.2	1.5 ± 1.5	1
[1600, 2000]	0.8 ± 1.1	0.0 ± 0.0	0.2 ± 0.2	0.1 ± 0.0	1.0 ± 1.1	0	
[2000, 4000]	0.8 ± 1.2	0.0 ± 0.0	0.2 ± 0.3	0.0 ± 0.0	1.1 ± 1.2	0	
[800, 1000]	2.0 ± 1.9	0.0 ± 0.0	0.4 ± 0.6	0.5 ± 0.3	2.9 ± 2.0	0	
[1000, 1200]	0.9 ± 1.3	0.0 ± 0.0	0.2 ± 0.4	0.1 ± 0.1	1.2 ± 1.4	1	
[0.5, 1]	[1200, 1600]	0.9 ± 1.2	0.0 ± 0.0	0.2 ± 0.3	0.1 ± 0.1	1.2 ± 1.3	0
[1600, 2000]	0.8 ± 1.1	0.0 ± 0.0	0.2 ± 0.5	0.0 ± 0.0	1.0 ± 1.2	0	
[2000, 4000]	0.8 ± 1.0	0.0 ± 0.0	0.2 ± 0.3	0.0 ± 0.0	1.0 ± 1.0	0	
the mass of the charm quark, the LSP will assume most of the momentum. For the bins with the lowest LSP mass, however, the LSP and the charm quark have about equal mass, so that after the boost they will share the momentum about equally. This results in a softer E_{T}^{miss} spectrum and therefore a lower R^2 value, which reduces the efficiency substantially.

Figure 12 shows the observed 95% confidence level (CL) upper limit on the signal cross section as a function of the gluino and neutralino masses, obtained using the CLs method described briefly in Sec. VIII, for the T1ttt model and for the T1ttcc model with $\Delta m = 10$, 25, and 80 GeV. Additionally, the figure also shows contours corresponding to the observed and expected lower limits, including their uncertainties, on the gluino and neutralino masses. This analysis has made significant inroads into the parameter space of the T1ttcc model. Gluinos with mass up to about 1.1 TeV have been excluded for neutralinos with a mass less than about 400 GeV when the top squark decays to a charm quark and a neutralino and $\Delta m < 80$ GeV. This also means that top squarks with masses up to about 400 GeV have been excluded for the scenarios with $\Delta m < 80$ GeV. This also means that top squarks with masses up to about 400 GeV have been excluded for the scenarios with
The observed limit for this model is lower than the expected limit because of the small excess in the low M_R bins for $0.12 \leq R^2 < 0.16$, which are among the most sensitive bins for the T1t1t model.

XI. SUMMARY

We have presented a search for new physics in hadronic final states with at least one boosted W boson and a b-tagged jet using data binned at high values of the razor kinematic variables, M_R and R^2. The analysis uses 19.7 fb$^{-1}$ of 8 TeV proton-proton collision data collected by the CMS experiment. The SM backgrounds are estimated using control regions in data. Scale factors, derived from simulations, connect these control regions to the signal region. The observations are found to be consistent with the SM expectation, as shown in Fig. 10 and Table V. The results, which are encapsulated in a binned likelihood, are interpreted in terms of supersymmetric models describing pair production of heavy gluinos decaying to boosted top quarks. Limits are set on the gluino and neutralino masses using the CLs criterion on the gluino-neutralino mass plane, as shown in Fig. 12. Assuming that the gluino...
always decays into a top squark and a top quark, this analysis excludes gluino masses up to 1.1 TeV for top squarks with a mass of up to about 450 GeV that decay exclusively to a charm quark and a neutralino. In this scenario, the mass difference considered between the top squark and the neutralino is less than 80 GeV. This analysis also excludes gluino masses of up to 700 GeV when the top squark decays solely to a top quark and a neutralino, and the mass difference between the top squark and the neutralino is around the top quark mass.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and the National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and the Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and the National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, Unizh, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, UK; the U.S. Department of Energy, and the U.S. National Science Foundation. Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced by the European Union, Regional Development Fund; the OPUS program of the National Science Center (Poland); the Compagnia di San Paolo (Torino); MIUR Project No. 20108T4XTM (Italy); the Thalis and Aristea programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); the Chulalongkorn Academic into its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, Contract No. C-1845.
[1] J. Wess and B. Zumino, Supergauge transformations in four-dimensions, *Nucl. Phys.* B70, 39 (1974).

[2] Yu. A. Gol’fand and E. P. Likhtman, Extension of the algebra of Poincaré group generators and violation of P invariance, ZhETF Pis. Red. 13, 452 (1971) [JETP Lett. 13, 323 (1971)].

[3] D. V. Volkov and V. P. Akulov, Possible universal neutrino interaction, ZhETF Pis. Red. 16, 621 (1972)[JETP Lett. 16, 438 (1972)].

[4] A. H. Chamseddine, R. L. Arnowitt, and P. Nath, Locally Supersymmetric Grand Unification, *Phys. Rev. Lett.* 49, 970 (1982).

[5] G. L. Kane, C. F. Kolda, L. Roszkowski, and J. D. Wells, Study of constrained minimal supersymmetry, *Phys. Rev. D* 49, 6173 (1994).

[6] P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, *Nucl. Phys.* B90, 104 (1975).

[7] R. Barbieri, S. Ferrara, and C. A. Savoy, Gauge models with spontaneously broken local supersymmetry, *Phys. Lett.* B198, 343 (1982).

[8] L. J. Hall, J. D. Lykken, and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, *Phys. Rev. D* 27, 2359 (1983).

[9] P. Ramond, Dual theory for free fermions, *Phys. Rev. D* 3, 2415 (1971).

[10] R. Barbieri and D. Pappadopulo, S-particles at their naturalness limits, *J. High Energy Phys.* 10 (2009) 061.

[11] M. Papucci, J. T. Ruderman, and A. Weiler, Natural SUSY endures, *J. High Energy Phys.* 09 (2012) 035.

[12] ATLAS Collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in $\sqrt{s} = 8$ TeV pp collisions with the ATLAS detector, *J. High Energy Phys.* 10 (2013) 189.

[13] ATLAS Collaboration, Search for direct top-squark pair production in final states with two leptons in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, *J. High Energy Phys.* 06 (2014) 124.

[14] ATLAS Collaboration, Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, *J. High Energy Phys.* 09 (2014) 015.

[15] ATLAS Collaboration, Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with b-tagged jets in pp collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS detector, *Eur. Phys. J.* C 74, 3109 (2014).

[16] ATLAS Collaboration, Search for top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in $\sqrt{s} = 8$ TeV pp collisions with the ATLAS detector, *J. High Energy Phys.* 11 (2014) 118.

[17] ATLAS Collaboration, Search for direct top squark pair production in events with a Z boson, b-jets and missing transverse momentum in $\sqrt{s} = 8$ TeV pp collisions with the ATLAS detector, *Eur. Phys. J.* C 74, 2883 (2014).

[18] ATLAS Collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets at $\sqrt{s} = 8$ TeV proton-proton collisions with the ATLAS detector, *J. High Energy Phys.* 10 (2014) 024.
CMS Collaboration, Identification techniques for highly boosted W bosons that decay into hadrons, J. High Energy Phys. 12 (2014) 017.

T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

A. L. Read, Presentation of search results: The CLS technique, J. Phys. G 28, 2693 (2002).

ATLAS and CMS Collaborations, Reports No. CMS-NOTE-2011-005 and No. ATL-PHYS-PUB-2011-11, 2011; http://cds.cern.ch/record/1379837.

R. D. Ball, V. Bertone, S. Carrazza, L. Del Debbio, S. Forte, A. Guffanti, N. P. Hartland, and J. Rojo, Parton distributions with QED corrections, Nucl. Phys. B877, 290 (2013).

A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63, 189 (2009).

A. Buckley, J. Ferrando, S. Lloyd, K. Nördstrom, B. Page, M. Rüfenacht, M. Schönherr, and G. Watt, LHAPDF6: Parton density access in the LHC precision era, Eur. Phys. J. C 75, 132 (2015).

CMS Collaboration, Measurement of differential top-quark pair production cross sections in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \), Eur. Phys. J. C 73, 2339 (2013).

CMS Collaboration, Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \), J. High Energy Phys. 06 (2014) 120.
SEARCH FOR SUPERSYMMETRY IN pp COLLISIONS … PHYSICAL REVIEW D 93, 092009 (2016)

R. Chudasama,51 D. Dutta,51 V. Jha,51 V. Kumar,51 A. K. Mohanty,51,e L. M. Pant,51 P. Shukla,51 A. Topkar,51 T. Aziz,52 S. Banerjee,52 S. Bhownik,52 R. M. Chatterjee,52 R. K. Dewanjee,52 S. Dugad,52 S. Ganguly,52 S. Ghosh,52 M. Guchait,52 A. Gurtu,52,e S. Jan,52 G. Kole,52 S. Kumar,52 B. Mahakud,52 M. Maity,52,g G. Majumder,52 K. Mazumdar,52 S. Mitra,52 G. B. Mohanty,52 B. Parida,52 T. Sarkar,52,y N. Sur,52 B. Sutar,52 N. Wickramage,52,a,s S. Chauhan,53 S. Dube,53 A. Kapoor,53 K. Kothekar,53 S. Sharma,53 H. Bakhshiansohi,54 H. Behnamian,54 S. M. Etesami,54,b,b A. Fahim,54,c L. M. Pant,54 M. Khakzad,54 M. Mohammadi Najafabadi,54 M. Naseri,54 S. Paktinat Mehdiaabadi,54 F. Rezaei Hosseinabadi,54 B. Safarzadeh,54,d Me. Zeinali,55 M. Felcini,55 M. Grunewald,55 M. Abbrescia,56,a,b,c Calabria,56,a,b,c Caputo,56,a,b,c A. Colaleo,56,a,b,c D. Creanza,56,a,b,c L. Cristella,56,a,b,c N. De Filippis,56,a,b,c M. De Palma,56,a,b,c L. Fiore,56,a,b,c G. Isaelli,56,a,b,c M. Maggi,56,a,b,c G. Minelli,56,a,b,c S. My,56,a,b,c S. Nuzzo,56,a,b,c A. Pompili,56,a,b,c G. Pugliese,56,a,b,c R. Radogna,56,a,b,c A. Ranieri,56,a,b,c G. Selvaggi,56,a,b,c L. Silvestris,56,a,c R. Venditti,56,a,b,c G. Abbiendi,57,a,c Battilana,57,a,c D. Bonacorsi,57,a,b,c S. Braibant-Giacomelli,57,a,b,c L. Brigiadoni,57,a,b,c R. Campanini,57,a,b,c P. Capiluppi,57,a,b,c A. Castro,57,a,b,c F. R. Cavallo,57,a,b,c S. S. Chhibra,57,a,b,c G. Codispoti,57,a,b,c M. Cuffiani,57,a,b,c G. M. Dallavalle,57,a,b,c F. Fabbi,57,a,b,c A. Fanfani,57,a,b,c D. Fasanella,57,a,b,c P. Giacomelli,57,a,b,c C. Grandi,57,a,b,c L. Guiducci,57,a,b,c S. Marcellini,57,a,b,c G. Masetti,57,a,b,c A. Montanari,57,a,b,c F. L. Navarria,57,a,b,c A. Perrotta,57,a,b,c A. M. Rossi,57,a,b,c T. Rovelli,57,a,b,c G. P. Siroli,57,a,b,c N. Tosi,57,a,b,c M. Chiorboli,58,a,b,c S. Costa,58,a,b,c A. Di Mattia,58,a,b,c F. Fiordano,58,a,b,c R. Potenza,58,a,b,c A. Tricomi,58,a,b,c C. Tuve,58,a,b,c G. Barbagi,59,a,b,c V. Ciulli,59,a,b,c G. Civinini,59,a,b,c R. D’Alessandro,59,a,b,c E. Focardi,59,a,b,c M. Meschini,59,a,b,c S. Paolotti,59,a,b,c G. Sguazzoni,59,a,b,c L. Viliani,59,a,b,c L. Benussi,60,a,b,c S. Bianco,60,a,b,c F. Fabbi,60,a,b,c D. Piccolo,60,a,b,c F. Primavera,60,a,b,c V. Ciulli,61,a,b,c F. Fannoni,61,a,b,c F. Ferro,61,a,b,c M. Lo Vetere,61,a,b,c M. R. Monge,61,a,b,c E. Robutti,61,a,b,c S. S. Tosi,61,a,b,c L. Bria,61,a,b,c M. E. Dinardo,62,a,b,c S. Fiorendi,62,a,b,c S. Gennai,62,a,b,c R. Gerosa,62,a,b,c A. Ghezzi,62,a,b,c D. Gyun,62,a,b,c B. Hong,62,a,b,c H. Kim,62,a,b,c Y. Kim,62,a,b,c B. Lee,62,a,b,c K. Lee,62,a,b,c K. S. Lee,62,a,b,c S. Lee,62,a,b,c J. Lim,62,a,b,c S. Lee,62,a,b,c Y. D. Oh,62,a,b,c A. Sakharov,62,a,b,c S. Sekmen,62,a,b,c D. C. Son,62,a,b,c J. A. Brochero Cifuentes,71,h Kim,71,h J. T. Kim,71,h S. Song,71,h S. Cho,75,a,b,c S. Choi,75,y G. Y. Go,75,a,b,c D. Gyun,75,a,b,c B. Hong,75,a,b,c H. Kim,75,a,b,c Y. Kim,75,a,b,c B. Lee,75,a,b,c K. Lee,75,a,b,c K. S. Lee,75,a,b,c S. Lee,75,a,b,c J. Lim,75,a,b,c S. K. Park,75,y H. D. Yoo,75,a,b,c M. Choi,77,a,b,c H. Kim,77,a,b,c J. H. Kim,77,a,b,c J. S. H. Lee,77,a,b,c I. C. Park,77,a,b,c G. Ryu,77,a,b,c M. S. Ryu,77,a,b,c Y. Choi,78,a,b,c J. Goh,78,a,b,c D. Kim,78,a,b,c E. Kwon,78,a,b,c J. Lee,78,a,b,c I. Yu,78,a,b,c V. Dudeney,79,a,b,c A. Jo,79,a,b,c J. Vaitkus,79,a,b,c I. Ahmed,80,a,b,c A. Hernandez-Almada,81,a,b,c R. Lopez-Fernandez,81,a,b,c J. Mejia Guisao,81,a,b,c A. Sanchez-Hernandez,81,a,b,c S. Carrillo Moreno,81,a,b,c
SEARCH FOR SUPERSYMMETRY IN \(pp \) COLLISIONS …

\begin{align*}
\text{PHYSICAL REVIEW D} & \text{ 93,} \quad 092009 (2016)
\end{align*}
| Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Lewis, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, J. M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmes, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, E. Sexton-Kennedy, A. Soha, W. J. Spalding, L. Spiegel, S. Stoynev, N. Strobbe, L. Taylor, S. Tkaczzyk, N. V. Tran, L. Uplegger, E. W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H. A. Weber, A. Whitbeck, D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, S. Das, R. D. Field, I. K. Furic, J. Königsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, P. Milenovic, D. Rank, R. Rossin, L. Shchutska, M. Snowball, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J. L. Rodriguez, A. Ackert, J. R. Adams, T. Adams, A. Askew, S. Bein, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K. F. Johnson, A. Khattwada, H. Prosper, M. Weinberg, M. M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohmann, H. Kalakhety, D. Noonan, T. Roy, F. Yumiceva, M. R. Adams, L. Apaian, D. Berry, R. R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C. E. Gerber, D. J. Hofman, P. Kurt, C. O’Brien, I. D. Sandoval Gonzalez, P. Turner, N. Varelas, Z. Wu, M. Zakaria, J. Zhang, B. Bilki, W. Clarida, K. Dilsiz, S. Durgut, R. P. Gandraju, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzol, K. Yi, I. Anderson, B. A. Barnett, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A. V. Gritsan, P. Maksimovic, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, C. You, P. Baringer, M. Bean, C. Bruner, R. P. Kenny III, D. Majumder, M. Malek, W. Mebrayer, M. Murray, S. Sanders, R. Stringer, Q. Wang, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammad, L. K. Saini, N. Skhirtladze, S. Toda, D. Lange, F. Rebasso, D. Wright, C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S. C. Enò, C. Ferraioli, J. A. Gomez, N. J. Hadley, S. Jabeen, R. G. Kellogg, T. Kolberg, C. J. Kunkle, Y. Lu, A. C. Mignerey, Y. H. Shin, A. Skuja, M. B. Tonjes, S. C. Tonwar, A. Apyan, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I. A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, Y. Iiyama, G. M. Innocenti, M. Klute, D. Kovalskyi, V. S. Lii, Y.-J. Lee, A. Levin, P. D. Luckey, A. C. Marini, C. Meginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G. S. F. Stephens, K. Sumorok, K. Tatar, M. Valenza, D. Velicanii, J. Veverka, J. Wang, T. W. Wang, B. Wyslouch, M. Yang, V. Zhukova, A. C. Benvenuti, B. Dahmes, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S. C. Kao, K. Klappoetke, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkevitz, J. G. Acosta, S. Oliveros, E. Avdeyeva, R. Bartek, K. Bloom, S. Bose, D. R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, D. Knowlton, I. Kravenchko, F. Meier, J. Monroy, F. Ratnikov, J. E. Siado, G. R. Snow, A. Atham, A. Godshalk, C. Hargrave, L. Iashvili, J. Käsin, J. Kharzhilava, K. M. Ecklund, M. K. Jha, M. Jones, A. W. Jung, K. Jung, A. Kumar, D. H. Miller, N. Neumeister, B. C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, J. Sun, A. Sytyakovskiy, F. Wang, W. Xie, L. Xu, N. Parashar, J. Stupak, A. Adair, B. Akgun, Z. Chen, K. M. Ecklund, F. J. M. Geurts, 092009-26 | PHYSICAL REVIEW D 93, 092009 (2016) |
M. Guilbaud,159 W. Li,159 B. Michlin,159 M. Northup,159 B. P. Padley,159 R. Redjimi,159 J. Roberts,159 J. Rorie,159 Z. Tu,159 J. Zabel,159 B. Betchart,160 A. Bodek,160 P. de Barbaro,160 R. Demina,160 Y. Eshaq,160 T. Ferbel,160 A. Garcia-Bellido,160 J. Han,160 O. Hindrichs,160 A. Khukhunaishvili,160 K. H. Lo,160 P. Tan,160 M. Verzetti,160 J. P. Chou,161 E. Contreras-Campana,161 D. Ferencek,161 Y. Gershtein,161 E. Halkiadakis,161 M. Heindl,161 D. Hidas,161 E. Hughes,161 S. Kaplan,161 R. Kunnawalkam Elayavalli,161 A. Lath,161 K. Nash,161 H. Saka,161 S. Salur,161 M. Verzetti,161 J. P. Chou,162 E. Contreras-Campana,162 D. Ferencek,162 Y. Gershtein,162 E. Halkiadakis,162 M. Heindl,162 D. Hidas,162 E. Hughes,162 S. Somalwar,162 R. Stone,162 S. Thomas,162 P. Thomassen,162 M. Walker,162 G. Riley,162 K. Rose,162 S. Spanier,162 K. Thapa,162 O. Bouhali,163,rrr A. Castaneda Hernandez,163,rrr A. Celik,163 M. Dalchenko,163 M. De Mattia,163 A. Delgado,163 S. Dildick,163 R. Eusebi,163 J. Gilmore,163 T. Huang,163 T. Kamon,163,sss V. Krutelyov,163 R. Mueller,163 I. Osipenkov,163 Y. Pakhotin,163 R. Patel,163 A. Perloff,163 A. Rose,163 A. Safonov,163 A. Tatarinov,163 K. A. Ulmer,163 N. Akchurin,164 C. Cowden,164 J. Faulkner,164 S. Kunori,164 K. Lamichhane,164 S. W. Lee,164 T. Libeiro,164 S. Undleeb,164 V. Krutelyov,164 R. Mueller,164 I. Osipenkov,164 Y. Pakhotin,164 R. Patel,164 A. Perloff,164 A. Rose,164 A. Safonov,164 A. Tatarinov,164 K. A. Ulmer,164 J. Velkovska,165 Q. Xu,165 M. W. Arenton,165 B. Cox,165 M. Grothe,165 M. Herndon,165 A. Hervé,165 P. Klabbers,165 A. Lanaro,165 A. Levine,165 K. Long,165 R. Loveless,165 A. Mohapatra,165 I. Ojalvo,165 T. Perry,165 G. A. Pierro,165 G. Polese,165 T. Ruggles,165 T. Sarangi,165 A. Savin,165 A. Sharma,165 N. Smith,165 W. H. Smith,165 D. Taylor,165 P. Verwilligen,165 and N. Woods165 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der OeAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12Universidade Estadual Paulista, São Paulo, Brazil
13Universidade Federal do ABC, São Paulo, Brazil
14Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
15Institute of High Energy Physics, Beijing, China
16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17Universidade de Los Andes, Bogota, Colombia
18University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
19University of Split, Faculty of Science, Split, Croatia
20Institute Rudjer Boskovic, Zagreb, Croatia
21University of Cyprus, Nicosia, Cyprus
22Charles University, Prague, Czech Republic
23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25Department of Physics, University of Helsinki, Helsinki, Finland
26Helsinki Institute of Physics, Helsinki, Finland
27Lappeenranta University of Technology, Lappeenranta, Finland
28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

SEARCH FOR SUPERSYMMETRY IN pp COLLISIONS … PHYSICAL REVIEW D 93, 092009 (2016)

092009-27
Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS-IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia

Thilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

National and Kapodistrian University of Athens, Athens, Greece

University of Ioánnina, Ioánnina, Greece

Wigner Research Centre for Physics, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

University of Debrecen, Debrecen, Hungary

National Institute of Science Education and Research, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

University College Dublin, Dublin, Ireland

INFN Sezione di Bari, Bari, Italy

Università di Bari, Bari, Italy

Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Bologna, Italy

Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Catania, Italy

Università di Catania, Catania, Italy

INFN Sezione di Firenze, Firenze, Italy

Università di Firenze, Firenze, Italy

INFN Laboratori Nazionali di Frascati, Frascati, Italy

INFN Sezione di Genova, Genova, Italy

Università di Genova, Genova, Italy

INFN Sezione di Milano-Bicocca, Milano, Italy

Università di Milano-Bicocca, Milano, Italy

INFN Sezione di Napoli, Napoli, Italy

Università di Napoli "Federico II", Napoli, Italy

Università della Basilicata, Roma, Italy

Università G. Marconi, Roma, Italy

INFN Sezione di Padova, Padova, Italy

Università di Padova, Padova, Italy

Università di Trento, Trento, Italy

INFN Sezione di Pavia, Pavia, Italy

Università di Pavia, Pavia, Italy

INFN Sezione di Perugia, Perugia, Italy

Università di Perugia, Perugia, Italy

INFN Sezione di Pisa, Pisa, Italy

Università di Pisa, Pisa, Italy

Scuola Normale Superiore di Pisa, Pisa, Italy

INFN Sezione di Roma

Università di Roma

INFN Sezione di Torino, Torino, Italy
SEARCH FOR SUPERSYMMETRY IN pp COLLISIONS …

PHYSICAL REVIEW D 93, 092009 (2016)

69Università di Torino, Torino, Italy

69cUniversità del Piemonte Orientale, Novara, Italy

70INFN Sezione di Trieste, Trieste, Italy

70aUniversità di Trieste, Trieste, Italy

71Kangwon National University, Chunchon, Korea

72Kyungpook National University, Daegu, Korea

73Chonbuk National University, Jeonju, Korea

74Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

75Korea University, Seoul, Korea

76Seoul National University, Seoul, Korea

77University of Seoul, Seoul, Korea

78Sungkyunkwan University, Suwon, Korea

79Vilnius University, Vilnius, Lithuania

80Kyungpook National University, Daegu, Korea

81Chonbuk National University, Jeonju, Korea

82Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

83Korea University, Seoul, Korea

84Seoul National University, Seoul, Korea

85University of Seoul, Seoul, Korea

86Sungkyunkwan University, Suwon, Korea

87Vilnius University, Vilnius, Lithuania

88Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

89Universidad Iberoamericana, Mexico City, Mexico

90Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

91Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

92University of Auckland, Auckland, New Zealand

93University of Canterbury, Christchurch, New Zealand

94National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

95National Centre for Nuclear Research, Swierk, Poland

96Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

97Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

98Joint Institute for Nuclear Research, Dubna, Russia

99Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

100Institute for Nuclear Research, Moscow, Russia

101Institute for Theoretical and Experimental Physics, Moscow, Russia

102National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

103P.N. Lebedev Physical Institute, Moscow, Russia

104Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

105State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

106University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

107Instituto de Investigaciones Energéticas Mediambientales y Tecnológicas (CIEMAT), Madrid, Spain

108Universidad Autónoma de Madrid, Madrid, Spain

109Universidad de Oviedo, Oviedo, Spain

110CERN, European Organization for Nuclear Research, Geneva, Switzerland

111Paul Scherrer Institut, Villigen, Switzerland

112Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

113Universität Zürich, Zurich, Switzerland

114National Central University, Chung-Li, Taiwan

115National Taiwan University (NTU), Taipei, Taiwan

116Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

117Cukurova University, Adana, Turkey

118Middle East Technical University, Physics Department, Ankara, Turkey

119Bogazici University, Istanbul, Turkey

120Istanbul Technical University, Istanbul, Turkey

121Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

122National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

123University of Bristol, Bristol, United Kingdom

124Rutherford Appleton Laboratory, Didcot, United Kingdom

125Imperial College, London, United Kingdom

126Brunel University, Uxbridge, United Kingdom

127Baylor University, Waco, USA

128The University of Alabama, Tuscaloosa, USA

129Boston University, Boston, USA

130Brown University, Providence, USA

131University of California, Davis, Davis, USA
V. KHACHATRYAN et al.

PHYSICAL REVIEW D 93, 092009 (2016)

126 University of California, Los Angeles, USA
127 University of California, Riverside, Riverside, USA
128 University of California, San Diego, La Jolla, USA
129 University of California, Santa Barbara, Santa Barbara, USA
130 California Institute of Technology, Pasadena, USA
131 Carnegie Mellon University, Pittsburgh, USA
132 University of Colorado Boulder, Boulder, USA
133 Cornell University, Ithaca, USA
134 Fermi National Accelerator Laboratory, Batavia, USA
135 University of Florida, Gainesville, USA
136 Florida International University, Miami, USA
137 Florida State University, Tallahassee, USA
138 Florida Institute of Technology, Melbourne, USA
139 University of Illinois at Chicago (UIC), Chicago, USA
140 The University of Iowa, Iowa City, USA
141 Johns Hopkins University, Baltimore, USA
142 The University of Kansas, Lawrence, USA
143 Kansas State University, Manhattan, USA
144 Lawrence Livermore National Laboratory, Livermore, USA
145 University of Maryland, College Park, USA
146 Massachusetts Institute of Technology, Cambridge, USA
147 University of Minnesota, Minneapolis, USA
148 University of Mississippi, Oxford, USA
149 University of Nebraska-Lincoln, Lincoln, USA
150 State University of New York at Buffalo, Buffalo, USA
151 Northeastern University, Boston, USA
152 Northwestern University, Evanston, USA
153 University of Notre Dame, Notre Dame, USA
154 The Ohio State University, Columbus, USA
155 Princeton University, Princeton, USA
156 University of Puerto Rico, Mayaguez, USA
157 Purdue University, West Lafayette, USA
158 Purdue University Calumet, Hammond, USA
159 Rice University, Houston, USA
160 University of Rochester, Rochester, USA
161 Rutgers, The State University of New Jersey, Piscataway, USA
162 University of Tennessee, Knoxville, USA
163 Texas A&M University, College Station, USA
164 Texas Tech University, Lubbock, USA
165 Vanderbilt University, Nashville, USA
166 University of Virginia, Charlottesville, USA
167 Wayne State University, Detroit, USA
168 University of Wisconsin - Madison, Madison, WI, USA

Deceased.

Also at Vienna University of Technology, Vienna, Austria.

Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.

Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.

Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.

Also at Universidade Estadual de Campinas, Campinas, Brazil.

Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France.

Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.

Also at Joint Institute for Nuclear Research, Dubna, Russia.

Also at British University in Egypt, Cairo, Egypt.

Also at Suez University, Suez, Egypt.

Also at Cairo University, Cairo, Egypt.

Also at Fayoum University, El-Fayoum, Egypt.

Also at Université de Haute Alsace, Mulhouse, France.
also at Tbilisi State University, Tbilisi, Georgia.
also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
also at University of Hamburg, Hamburg, Germany.
also at Brandenburg University of Technology, Cottbus, Germany.
also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
also at Eötvös Loránd University, Budapest, Hungary.
also at University of Debrecen, Debrecen, Hungary.
also at Wigner Research Centre for Physics, Budapest, Hungary.
also at Indian Institute of Science Education and Research, Bhopal, India.
also at University of Visva-Bharati, Santiniketan, India.
also at King Abdulaziz University, Jeddah, Saudi Arabia.
also at University of Ruhuna, Matara, Sri Lanka.
also at Isfahan University of Technology, Isfahan, Iran.
also at University of Tehran, Department of Engineering Science, Tehran, Iran.
also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
also at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy.
also at Università degli Studi di Siena, Siena, Italy.
also at Purdue University, West Lafayette, USA.
also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico.
also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
also at Institute for Nuclear Research, Moscow, Russia.
also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
also at California Institute of Technology, Pasadena, USA.
also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
also at INFN Sezione di Roma, Università di Roma, Roma, Italy.
also at National Technical University of Athens, Athens, Greece.
also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
also at National and Kapodistrian University of Athens, Athens, Greece.
also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
also at Adiyaman University, Adiyaman, Turkey.
also at Mersin University, Mersin, Turkey.
also at Cag University, Mersin, Turkey.
also at Piri Reis University, Istanbul, Turkey.
also at Gaziosmanpasa University, Tokat, Turkey.
also at Ozyegin University, Istanbul, Turkey.
also at Izmir Institute of Technology, Izmir, Turkey.
also at Marmara University, Istanbul, Turkey.
also at Kafkas University, Kars, Turkey.
also at Istanbul Bilgi University, Istanbul, Turkey.
also at Yildiz Technical University, Istanbul, Turkey.
also at Hacettepe University, Ankara, Turkey.
also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
also at Instituto de Astrofísica de Canarias, La Laguna, Spain.
also at Utah Valley University, Orem, USA.
also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
also at Argonne National Laboratory, Argonne, USA.
also at Erzincan University, Erzincan, Turkey.
also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
also at Texas A&M University at Qatar, Doha, Qatar.
also at Kyungpook National University, Daegu, Korea.