Large transport J_c in Cu-sheathed Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ superconducting tape conductors

He Lin, Chao Yao, Haitao Zhang, Xianping Zhang, Qianjun Zhang, Chiheng Dong, Dongliang Wang & Yanwei Ma

Copper sheath is the first choice for manufacturing high-T_c superconducting wires and tapes because of its high electrical and thermal conductivities, low-cost and good mechanical properties. However, Cu can easily react with superconducting cores, such as BSCCO, MgB$_2$ and pnictides, and therefore drastically decrease the transport J_c. Here, we report the fabrication of Cu-sheathed Sr$_{1-x}$K$_x$Fe$_2$As$_2$ tapes with superior J_c performance using a simple hot pressing method that is capable of eliminating the lengthy high-temperature sintering. We obtained high-quality Sr$_{1-x}$K$_x$Fe$_2$As$_2$ tapes with processing at 800°C for 30 minutes and measured high T_c and sharp transition. By this rapid fabrication, Cu sheath does not give rise to apparent reaction layer, and only slightly diffuses into Sr-122 core. As a consequence, we achieved high transport J_c of 3.1×10^4 A/cm2 in 10 T and 2.7×10^4 A/cm2 in 14 T at 4.2 K. The in-field J_c performance is by far the highest reported for Cu-sheathed high-T_c conductors. More importantly, Cu-sheathed Sr-122 tapes also showed a high J_e value of 1.0×10^4 A/cm2 in 10 T at 4.2 K, which has reached the widely accepted practical level for applications. These results demonstrate that Cu is a very promising sheath for the practical application of pnictide conductors.
the high J_c-B performance ($>10^4$ A/cm2, at 4.2 K and 10 T) are prepared by using the expensive Ag or magnetic Fe sheath, which is similar to Ag-sheathed BSCCO and Fe-sheathed MgB$_2$ conductors$^{20-23}$. For practical applications of high-T_c superconductors including cuprate, pnictide and MgB$_2$, the copper material is a desirable sheath because of many advantages$^{24-26}$. Firstly, when compared with common Ag and Fe sheath, Cu is a low-cost and nonmagnetic material. Secondly, Cu sheath has good mechanical properties, which make the coil winding easier in magnet applications. Thirdly, high purity Cu has large residual resistivity ratio (RRR) value, and provides both electromagnetic stabilization against flux jumps and quench protection27,28. It is well known that Cu material has been proved to be an effective sheath in the conventional NbTi and NbSn$_3$ conductors. Cu is also used as stabilizer in high-T_c conductors, such as Nb/Cu/monel MgB$_2$ wires29,30, for providing electrical stability of magnets and other devices during transients. However, since the discovery of cuprate superconductors in 1986, no high transport J_c-B performance ($>10^4$ A/cm2, at 4.2 K and 10 T) has been reported for Cu-sheathed high-T_c superconductors. Cu is highly reactive to superconducting core at high-temperature sintering$^{31-33}$. The interfacial reaction layer and composition deviation of superconducting phase can lead to J_c degradation. In worse case, no transport J_c can be detected, because the thick reaction layer apparently prevented electric current from flowing from the sheath material to the superconducting core. Therefore, it is considered a grand challenge to develop a process for Cu-sheathed high-T_c superconductors with superior performance. In the present work, we report successfully fabricated Cu-sheathed Sr-122 tapes by an ex-situ PIT method. DC susceptibility of Sr-122 precursor powders was measured, and the result is shown in Fig. 1. The significant shielding currents appear at about 36.0 K and increase as the temperature decreased, which is similar to that reported for high-quality precursors17. During the final heat treatment, we introduce a hot pressing process with combination of short-time sintering (800°C/30 min or 700°C/60 min) and low external pressure (~20 MPa). This rapid fabrication can effectively avert the formation of reaction layer, and therefore result in a high transport J_c of 3.1×10^4 A/cm2 at 4.2 K and 10 T.

Results
Cu-sheathed Sr-122 tapes were finally hot pressed at 700°C (HP700 tapes) and 800°C (HP800 tapes). Fig. 2(a) shows a typical transverse cross-sectional optical image of HP800 tapes. After hot-pressing, the tape thickness of HP800 samples decreased from ~0.40 mm to ~0.29 mm. Fig. 2(b) displays a longitudinal cross-sectional optical microstructure of HP800 tapes. A uniform deformation of both superconducting core and Cu sheath along the length can be obviously seen, which is essential for the achievement of high transport J_c34,35. This uniformity is attributable to the good mechanical properties of Cu sheath.

As shown in Fig. 3, the XRD analysis was performed on the planar surfaces of superconducting cores after peeling off Cu sheath. For comparison, the data for randomly orientated precursor powders is also included. The XRD patterns on the surfaces clearly exhibit a ThCr$_2$Si$_2$-type structure, ensuring that Sr-122 is the main phase for both HP700 and HP800 samples. Using a final short-time hot-pressing process, the formation of non-superconducting reaction layer at the interface seems to be prevented. More importantly, the transport critical current I_c may be measured and obtained in these Sr-122 tapes31. However, the impurity peaks are detected on the core surface, especially for HP800 samples. Some Cu reacted with Sr-122 phase, producing SrCuAs and Cu$_{9.5}$As$_4$ phases. This is consistent with large FWHM (full width at half-maximum) of (002) and (103) peaks for Sr-122 phase. On the other hand, the XRD patterns for the central planar sections of HP tapes after carefully polishing are also exhibited in Fig. 3. The diffraction peaks have some differences compared to those of the surfaces. The XRD patterns of central parts exhibit pure Sr-122 phase without detectable impurities. No Cu element can be detected in
the central parts by further EDX identification. The peak characteristics are similar to those of textured Sr-122 tapes, which have high transport J_c properties. We quantify the c-axis texture parameter F according to the Lotgering method with $F = (\rho - \rho_0)/(1 - \rho_0)$, where $\rho = \Sigma I(00l)/I(hkl)$ and $\rho_0 = \Sigma I_0(00l)/I_0(hkl)$. I and I_0 are the intensities of corresponding XRD peaks measured for the textured and randomly oriented samples, respectively. F values of 0.41 and 0.44 were obtained for HP700 and HP800 tapes, demonstrating that c-axis oriented grains have been achieved in Cu-sheathed tapes. The larger F value in HP800 samples is in agreement with the previous reports confirming that the higher HP temperature, the larger degree of grain alignment.

DC susceptibility measurements were conducted on HP700 and HP800 samples. Fig. 4(a) depicts two typical groups of the susceptibility curves under a 20 Oe magnetic field parallel to the tape plane. The superconducting transition of HP700 tapes begins at about 33.0 K. It is evident from the zero-field cooled (ZFC) signal that the susceptibility starts to decrease slowly and full shielding is reached at about 15 K.
This behavior suggests the presence of inhomogeneity37,14. For HP800 samples, the shielding current occurs at 33.5 K, which may be ascribed to improvement in crystallization. When compared to HP700 samples, the HP800 samples exhibit sharper superconducting transition and reach full shielding at higher temperature (≈20 K). Obviously, enhanced uniformity in superconducting phase has been achieved in HP800 samples37. Fig. 4(b) shows resistivity versus temperature curves. We measured onset T_c values of 34.6 and 35.1 K for HP700 and HP800 tapes, respectively, which are comparable to Fe-sheathed and Ag-sheathed tapes17,38,19, but slightly smaller than those reported in ref. 18. The impurity of copper compound in present work does not significantly affect the superconducting transition. In addition, the resistivity of HP700 and HP800 tapes drops to zero T_c at 32.3 and 33.8 K, respectively. The larger onset T_c and smaller transition width for HP800 samples are consistent with the above magnetic results.

From the viewpoint of practical applications, superconducting wires must be able to carry large transport current density in high magnetic fields. We determined the transport I_c by the standard four-probe method. Fig. 5 displays the J_c-B properties of HP700 and HP800 tapes at 4.2 K. For HP700 tapes, the J_c values of 3.5×10^4 A/cm2 and 4.2×10^3 A/cm2 are obtained in self-field and 10 T, respectively. The striking result is that HP800 tapes show a great enhancement of J_c values in the whole field up to 14 T. Such an improvement can be attributed to improved texture, better homogeneity and crystallization. For HP800 tapes, the J_c data in self-field is not given because the transport I_c is too large to be measured by the measurement system we used. Excitingly, the transport J_c reaches 3.1×10^4 A/cm2 at 10 T. To our knowledge, this is by far the highest critical current density under high field ever reported for Cu-sheathed high-T_c superconductors. Importantly, due to its extremely small magnetic field dependence, the transport J_c still maintains a high value of 2.7×10^4 A/cm2 in 14 T. It is convincible that the Cu-sheathed Sr-122 tapes have a very promising future for use in high-field superconducting magnets.

We conducted SEM/EDX to investigate the influence of hot pressing process on the microstructure of Cu-sheathed Sr-122 tapes. As shown in Figs. 6(a,b), both HP700 and HP800 samples exhibit dense...
layered structure, which is similar to that of Bi-2223 tapes. HP700 samples have smaller grain size than that of HP800 samples. It is noted that the boundary between Cu sheath and Sr-122 core is clear, further suggesting that there is no apparent reaction layer after hot pressing. The corresponding EDX element mappings of HP800 tapes are presented in Figs. 6(d–i). From the Cu mapping, we observe a diffusion of Cu into Sr-122 area, and the diffusion width is approximately 8 μm. This indicates that Cu element interdiffuses into Sr-122 core and reacts with it during heat treatment. For the elements of Sr-122 phase, Sr, K, Fe and As are detected locally in the core area, disappear almost completely at the border of the core area. Comparing with recent Ag-sheathed Sr-122 tapes, we conclude that the slight depression of superconducting properties in this work is mainly due to the diffusion of Cu. At the same time, the diffusion also causes the inhomogeneous distribution of the superconducting elements in Sr-122 area, particularly in the diffusion region. In addition, the EDX mapping of HP700 samples is showed in Fig. 6(j). For each element, the content has a dramatic change at the border of Sr-122 core. Further analysis reveals that the diffusion width of Cu element is smaller than 3 μm in HP700 samples. Although the sintering time of 60 min is longer than that used for HP800 tapes (30 min), the width is much smaller.

The diffusion of Cu and the composition deviation of superconducting phase easily induce severe porosity at the interface, and apparently break the electrical contact between Cu sheath and Sr-122 core. This disadvantageous phenomenon can be avoided by the simple HP method, because it can greatly reduce the pores and cracks by combining the deformation and heat treatment in a single step. As shown in Fig. 6c, the Cu sheath and Sr-122 core are tightly connected. As a result, high transport I_c values have been measured in our Cu-sheathed tapes.

For comparison, Cu-sheathed Sr-122 tapes were also sintered without hot-pressing, and the detailed information is exhibited in Table 1. The transport I_c values for both HP tapes are much larger than those of corresponding tapes without hot-pressing. For example, the I_c value of HP800 tapes (3.1×10^4 A/cm2) is an order of magnitude higher than that of R800 tapes (3.0×10^3 A/cm2), indicating the great I_c enhancement by the hot-pressing method.

Discussion

Using copper sheath for superconducting tapes with large transport I_c is highly desirable for practical applications. By a modified hot-pressing method with combination of final short-time sintering and low external pressure, we successfully prepared Cu-sheathed Sr-122 conductors with large transport current.
Figure 6. SEM microstructures of Sr-122 tapes: (a) HP700 and (b) HP800 samples. (c) SEM image showing the interface between Cu sheath and Sr-122 core for HP800 tapes. (d) The corresponding EDX mapping image for HP800 samples; (e–i) Area mappings of Cu, Sr, K, Fe and As element, respectively. (j) The EDX mapping image for HP700 samples.
We demonstrated that the fabricating method developed in our lab can produce high-performance Cu-sheathed superconductors. First, a short-time hot-pressing process can form high-quality Sr-122 phase, which is supported by XRD and resistivity characterizations. For HP800 tapes, the resistivity data demonstrates that the onset T_c is 35.1 K with a transition width of about 1.5 K. Second, this fast fabrication does not give rise to the reaction layer even though the Cu sheath is used. As discussed by above EDX mappings, only a little bit of Cu diffuses into polycrystalline Sr-122 phase. Earlier studies reveal that the thick reaction layer induces the contamination of the superconducting phase to decrease T_c, and prevents electric current from flowing from the sheath material to the superconducting core. Third, the Cu sheath and Sr-122 core are tightly connected under external pressure, and thus the current path can be enlarged. Meanwhile, the hot pressure can not only considerably increase the core density, but also effectively promote complete reaction of Sr-122 phase, which in return to solve the problem that is low sintering temperature (800 or 700 °C) and short-time reaction (30 or 60 min) yield poor re-crystallization and ordinary superconducting performance. In summary, the simple hot pressing method ensures high-quality Sr-122 phase and inhibit the formation of reaction layer in Cu-sheathed Sr-122 tapes.

It is fascinating that the largest J_c value of 3.1×10^4 A/cm2 in 10 T has been obtained in our best Cu-sheathed tapes. Moreover, the J_c of 122-type pnictides have very weak field dependence in strong fields up to 28 T, in accordance with ultrahigh H_{c2} values. Thus, the J_c data above 14 T is given by extrapolating from low fields, as presented in Fig. 7. The curve tendency shows that the crossovers with Cu-sheathed NbTi and Nb$_3$Sn wires are around 9.5 and 18.5 T, respectively. This clearly strengthens the position of pnictide conductors as a competitor to the conventional superconductors for high-field applications. On the other hand, researchers are usually more concerned with the engineering (total cross section) current density J_e in practical applications. As showed in Fig. 7, a high J_e of about 1.0×10^4 A/cm2 at 10 T has been achieved in our Cu-sheathed Sr-122 tapes, which has reached the widely accepted practical level for applications. This achievement is a significant technical breakthrough for the practical applications of Cu-sheathed high-T_c conductors. In the future, if the HP process can be properly adjusted to match the balance between the well re-crystalline reaction and little impurity phase, an even higher J_c can be expected.

The specific cost ($/kA$) of superconducting wires and tapes must be considered in practical applications. The price ($/kg$) of Cu metal is 1-2 order of magnitude lower than that of expensive Ag metal. Tape conductors with high J_c (10^4 A/cm2) sheathed in comparatively cheap copper have the strong potential for low specific cost. Moreover, Cu-sheathed conductors do not need additional stabilization or mechanical reinforcement. In contrast, the Ag sheathed wires usually need mechanical reinforcement. For example, the stainless steel or Ag0.5 wt%Al alloy sheath have been used in superconducting wires, which decrease the engineering J_e or increase the complexity and cost of fabrication process. From these view points, we can conclude that the comprehensive performances of our Cu-sheathed Sr-122 tapes are much more attractive for applications than the reported Ag sheathed tapes, demonstrating that Cu is a very promising sheath for the pnictide wires and tapes.

Methods

Sample preparation. We fabricated Cu-sheathed Sr$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ tapes by ex-situ PIT method. Sr fillings, K pieces, and Fe and As powder with a ratio of Sr:K:Fe:As = 0.6: 0.5: 2: 2.05 were mixed for 12 hours.
by ball-milling method. The milled powders were packed into Nb tubes and then sintered at 900°C for 35 h. As prepared Sr-122 superconducting powders were packed into Cu tubes with OD 6 mm and ID 4 mm. These tubes were sealed and then cold worked into tapes (~0.4 mm thickness) by swaging, drawing and flat rolling. Finally, hot pressing was performed on the 60 mm long tapes under ~20 MPa at two different sintering processes of 800°C/30 min and 700°C/60 min. These tapes are defined as HP800 and HP700 tapes, respectively.

Measurements. Phase identification of samples was characterized by X-ray diffraction (XRD) analysis with Cu Kα radiation. Magnetization versus temperature curves and resistivity measurements of the superconducting cores were carried out using a PPMS system. The cross sections were polished and then observed by optical images. Microstructure characterization was analyzed using SEM images and EDX scanning. The transport critical current \(I_c \) was measured at 4.2 K using short tape samples of 3 cm in length with the standard four-probe method and evaluated by the criterion of 1 μV/cm. The applied fields up to 14 T in transport \(I_c \) measurement were parallel to the tape surface.

References
1. Kamihara, Y. et al. Iron-based layered superconductor La[O₁₋ₓFₓ]FeAs (x = 0.05-0.12) with \(T_c = 26 \) K. *J. Am. Chem. Soc.* 130, 3296 (2008).
2. Chen, X. et al. Superconductivity at 43 K in SmFeAsO₁₋ₓFₓ. *Nature* 453, 761 (2008).
3. Rotter, M. et al. Superconductivity at 38 K in the iron arsenide (Ba₁₋ₓKₓ)Fe₂As₂. *Phys. Rev. Lett.* 101, 107006 (2008).
4. Patti, M. et al. New Fe-based superconductors: properties relevant for high-Tc applications. *Supercond. Sci. Technol.* 23, 034003 (2010).
5. Ma, Y. Progress in wire fabrication of iron-based superconductors. *Supercond. Sci. Technol.* 25, 113001 (2012).
6. Yang, H. et al. Fishtail effect and the vortex phase diagram of single crystal Ba₁₋ₓKₓFe₂As₂. *Appl. Phys. Lett.* 93, 142506 (2008).
7. Wang, X. et al. Very strong intrinsic flux pinning and vortex avalanches in (Ba,K)Fe₂As₂ superconducting single crystals. *Phys. Rev. B* 82, 024525 (2010).
8. Kataoka, Y. et al. Advantageous grain boundaries in iron pnictide Superconductors. *Nat. Commun.* 3, 409 (2011).
9. Zhang, X. et al. Effect of sheath materials on the microstructure and superconducting properties of SmOₓFe₀.₉₁Fe₀.₉₁Asₓ wires. *Physica C* 470, 104 (2010).
10. Wang, L. et al. Large transport critical currents of powder-in-tube Sr₁₋ₓKₓFe₂Asₓ/Ag superconducting wires and tapes. *Physica C* 470, 183 (2010).
11. Wang, L. et al. Textured Sr₁₋ₓKₓFe₂Asₓ superconducting tapes with high critical current density. *Physica C* 471, 1689 (2011).
12. Zhang, X. et al. Mechanism of enhancement of superconducting properties in a Ba₁₋ₓKₓFe₂As₂ superconductor by Pb addition. *Supercond. Sci. Technol.* 25, 084024 (2012).
13. Yao, C. et al. Improved transport critical current in Ag and Pb co-doped Ba₁₋ₓKₓFe₂As₂ superconducting tapes. *Supercond. Sci. Technol.* 25, 035020 (2012).
14. Gao, Z. et al. High critical current density and low anisotropy in textured Sr₁₋ₓKₓFe₂Asₓ tapes for high field applications. *Sci. Rep.* 2, 998 (2012).
15. Togano, K. et al. Enhancement in transport critical current density of ex situ PIT Ag/(Ba,K)Fe₂As₂ tapes achieved by applying a combined process of flat rolling and uniaxial pressing. *Supercond. Sci. Technol.* 26, 115007 (2013).
16. Gao, Z. et al. Achievement of practical level critical current densities in Ba₁₋ₓKₓFe₂Asₓ/Ag tapes by conventional cold mechanical deformation. *Sci. Rep.* 4, 4065 (2014).
17. Lin, H. et al. Strongly enhanced current densities in Sr₁₋ₓKₓFe₂Asₓ+Sn superconducting tapes. *Sci. Rep.* 4, 4465 (2014).
18. Lin, H. et al. Hot pressing to enhance the transport \(I_c \) of Sr₁₋ₓKₓFe₂Asₓ superconducting tapes. *Sci. Rep.* 4, 6944 (2014).
19. Zhang, X. et al. Realization of practical level current densities in Sr₁₋ₓKₓFe₂Asₓ tape conductors for high-field applications. *Appl. Phys. Lett.* 104, 202601 (2014).
20. Yuan, Y. et al. Significantly enhanced critical current density in Ag-sheathed (Bi, Pb)Sr₁₋ₓCaₓCuₓOᵧ composite conductors prepared by overpressure processing in final heat treatment. *Appl. Phys. Lett.* 84, 2127 (2004).
21. Larbalestier, D. C. et al. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T. *Nat. Mater.* 13, 375 (2014).
22. Hossain, M. S. A. et al. The enhanced \(J_c \) and \(R_p \) of in situ MgB₂ wires and tapes alloyed with CₓHₓOᵧ (malic acid) after cold high pressure densification. *Supercond. Sci. Technol.* 22, 095004 (2009).
23. Herrmann, M. et al. Touching the properties of NbTi by carbon doped tapes with mechanically alloyed MgB₂. *Appl. Phys. Lett.* 91, 082507 (2007).
24. Wilson, M. N. *Superconducting Magnets* (Clarendon, 1987).
25. Cooley, L. D. et al. Costs of high-field superconducting strands for particle accelerator magnets. *Supercond. Sci. Technol.* 18, R51 (2005).
26. Wosniak, M. et al. Study of short duration heat treatments of an in situ copper-sheathed MgB₂ wire. *Supercond. Sci. Technol.* 23, 105009 (2010).
27. Larbalestier, D. C. et al. High-\(T_c \) superconducting materials for electric power applications. *Nature* 414, 368 (2001).
28. Scanlan, R. M. et al. Superconducting materials for large scale applications. *Proceedings of the IEEE* 92, 1639 (2004).
29. Tomsic, M. et al. Development of magnesium diboride (MgB₂) wires and magnets using in situ strand fabrication method. *Physica C* 456, 203 (2007).
30. Sumption, M. D. et al. Transport properties of multifilamentary, in situ route, Cu-stabilized MgB₂ strands: one metre segments and the \(J_c(B, T) \) dependence of short samples. *Supercond. Sci. Technol.* 19, 155 (2006).
31. Ding, Y. et al. Effects of cold high pressure densification on Cu sheathed Ba₁₋ₓKₓFe₂Asₓ superconducting wire. *Physica C* 483, 13 (2012).
32. Nakamura, Y. et al. Effect of Bi2223 addition in precursor on the formation and \(I_c \) property of Bi2223 tapes sheathed with the Ag–Cu alloy. *Supercond. Sci. Technol.* 21, 035001 (2008).
33. Pachla, W. et al. Structural characterization of multifilament heat treated ex situ MgB₂ superconducting wires with Cu and Fe sheaths. *Supercond. Sci. Technol.* 17, 1289 (2004).
34. Han, Z. et al. The mechanical deformation of superconducting BiSrCaCuO/Ag composites. *Supercond. Sci. Technol.* 10, 371 (1997).
35. Osamura, K. et al. Work instability and its influence on the critical current density of silver sheathed Bi2223 tapes. *Supercond. Sci. Technol.* 5, 1 (1992).
36. Lotgering, F. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. J. Inorg. Nucl. Chem. 9, 113 (1959).
37. Palenzona, A. et al. A new approach for improving global critical current density in Fe(Se0.5Te0.5) polycrystalline materials. Supercond. Sci. Technol. 25, 115018 (2012).
38. Lin, H. et al. Effects of heating condition and Sn addition on the microstructure and superconducting properties of Sr12K0.5Fe2As2 tapes. Physica C 495, 48 (2013).
39. Husek, I. et al. Microhardness as a tool for the filament density and metal sheath analysis in MgB2/Fe/(Cu) wires. Supercond. Sci. Technol. 17, 971 (2004).
40. Flukiger, R. et al. Superconducting properties of MgB2 tapes and wires. Physica C 385, 286 (2003).
41. Gao, Z. et al. High transport Ic in magnetic fields up to 28T of stainless steel/Ag double sheathed Ba122 tapes fabricated by scalable rolling process. Supercond. Sci. Technol. 28, 012001 (2015).
42. Ochiai, S. et al. Thermally and mechanically induced residual strain and strain tolerance of critical current in stainless steel-laminated Bi2223/Ag/Ag alloy composite superconductors. Supercond. Sci. Technol. 21, 075009 (2008).
43. Kajbafvala, A. et al. High strength oxide dispersion strengthened silver aluminum alloys optimized for Bi2Sr2CaCu2O8+δ round wire. Supercond. Sci. Technol. 26, 125012 (2013).

Acknowledgements
The authors thank Professors S. Awaji and K. Watanabe for the transport Ic measurements. We acknowledge suggestions and discussions with Dr. B. Ma at ANL. This work is partially supported by the National ‘973’ Program (grant No. 2011CBA00105), the National Natural Science Foundation of China (grant Nos. 51172230, 51320105015 and 51202243) and the Beijing Municipal Science and Technology Commission (grant No. Z141100004214002).

Author Contributions
Y.W.M. directed the research. H.L. designed the experimental plan and fabricated the tape samples. H.L. carried out XRD, magnetization, resistivity, and microstructure characterizations. X.P.Z. and D.L.W. did the high-field Ic measurement. Q.J.Z. and C.H.D. helped with the tape preparation. C.Y. and H.T.Z. contributed to manuscript preparation. H.L. and Y.W.M. wrote the manuscript. All the authors contributed to discussion on the results for the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Lin, H. et al. Large transport Ic in Cu-sheathed Sr0.6K0.4Fe2As2 superconducting tape conductors. Sci. Rep. 5, 11506; doi: 10.1038/srep11506 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/