Latest Constraints from Jet Measurements on Parton Distribution Functions and on the Strong Coupling Constant

Sebastian Naumann-Emme1,\textup{a} (on behalf of the ATLAS, CDF, CMS, D0, H1 and ZEUS Collaborations)

1Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany

Abstract. Recent measurements of jet cross sections at HERA, the Tevatron and the LHC that provide constraints on parton distribution functions and allow for determinations of the strong coupling constant are presented.

1 Introduction

The factorization theorem of Quantum Chromodynamics (QCD) allows to separate cross sections, σ, into a hard-scattering matrix element, $\hat{\sigma}$, on one hand and parton distribution functions (PDFs) on the other. While $\hat{\sigma}$, describing the short-distance structure of the reaction, is process-dependent but perturbatively calculable, the PDFs, which account for the non-perturbative long-distance structure, are universal but have to be determined from experimental data.

Beside the quark masses, the only free parameter of the QCD Lagrangian is the strong coupling constant, α_S. The renormalization group equation predicts the energy dependence of the strong coupling, i.e. a functional form for $\alpha_S(Q)$, where Q is the energy transferred in the reaction. However, the absolute strength remains a free parameter of the theory, which for convenience is usually compared at the pole mass of the Z boson. The latest world average is $\alpha_S(M_Z) = 0.1184 \pm 0.0007$ \cite{1}. This average and its remarkable precision are driven by results obtained at relatively low energies, namely from hadronic decays of τ leptons and from lattice QCD.

Jet and multijet production rates are directly sensitive to α_S, in principle even allow for measurements of the “running” at high energies, and they provide constraints on PDFs, especially at medium and high parton momentum fractions, x. For both PDF and α_S analyses, the measured cross sections have to be compared to predictions, which for most jet observables are currently available to next-to-leading order (NLO) in perturbative QCD.

In this article, the latest jet measurements at HERA, the Tevatron and the LHC with sensitivity to PDFs and α_S are summarized.

ae-mail: sebastian.naumann@desy.de

2 Measurements at HERA

2.1 Deep-inelastic scattering

Based on an earlier publication with double-differential cross sections for inclusive jet, dijet and trijet production in deep-inelastic scattering (DIS) of electrons/positrons on protons at a center-of-mass energy, \sqrt{s}, of 318 GeV in Q^2 bins from 150 to 15000 GeV2 \cite{2}, which confirmed a reasonable description of the data by the NLO prediction and sensitivity to differences in the proton PDFs, the H1 Collaboration has recently released updated results based on a regularized unfolding that is performed for all bins and multijet categories simultaneously \cite{3}. This allows for an optimized correction of detector effects and yields a complete correlation matrix, valuable for the inclusion of these data into different QCD fits. The H1 Collaboration used the covariance matrix to normalize the different jet rates to the inclusive neutral-current DIS cross section. This normalization reduces both the experimental and the theoretical uncertainties. The results are shown in figure \ref{fig:1}

The cross-section predictions at next-to-leading and leading order were required to agree within 30\%, which was fulfilled for 42 out of 65 bins of this measurement, before performing a combined fit of $\alpha_S(M_Z)$ to the normalized inclusive jet, dijet and trijet data. The result is $\alpha_S(M_Z) = 0.1163 \pm 0.0011$ (exp.) ± 0.0014 (PDF) ± 0.0008 (hadr.) ± 0.0039 (th.).

The H1 and ZEUS Collaborations explicitly studied α_S-PDF correlations and the impact of HERA jet data on their PDF fits \cite{4}. When using inclusive DIS data only, taking α_S as a free parameter of the PDF fit increases the uncertainty on the gluon density at low x. Adding jet data, reduces the correlation between α_S and the gluon PDF and allows for an in-situ α_S determination. The result obtained within the HERAPDF1.6 fit is $\alpha_S(M_Z) = 0.1202 \pm 0.0013$ (exp.) ± 0.0007 (model/param.) ± 0.0012 (hadr.) $^{+0.0045}_{-0.0036}$ (scale).
2.2 Photoproduction

Besides the DIS regime ($Q^2 > 1$ GeV2), where a virtual boson is exchanged, there is photoproduction ($Q^2 \approx 0$ GeV2), where a quasi-real photon is emitted from the incoming lepton. In direct photoproduction, the photon directly takes part in the interaction, while the photon acts as a source of partons in events with resolved photoproduction. The latter are rather similar to hadron-hadron collisions since the cross section involves a photon PDF, there will be a photon remnant and the event can be affected by multijet interactions. As shown in figure 2, the ZEUS Collaboration published new double-differential jet cross sections in photoproduction events with a center-of-mass energy of the photon-proton system between 142 and 293 GeV [5]. Compared to DIS measurements, this analysis has a relatively high reach of transverse jet energies, E_T, up to 80 GeV. Overall, a reasonable agreement between data and the NLO prediction is observed. Discrepancies at low E_T and large pseudorapidities, η, could come from non-perturbative effects, in particular related to multi-parton interaction, or the photon PDF. The impact of the proton PDF uncertainty is in turn much smaller and relevant only at high E_T. The ZEUS Collaboration employed these jet cross sections to measure α_s. The considered range in $d\sigma/dE_T$ was restricted to $21 < E_T < 71$ GeV in order to reduce potential non-perturbative effects and the impact of the proton PDF uncertainty. Based on the k_T jet algorithm, an $\alpha_s(M_Z)$ of 0.1206 $^{+0.0023}_{-0.0022}$ (exp.) $^{+0.0042}_{-0.0033}$ (th.) was obtained. The dominant uncertainties are related to the photon PDF and terms beyond NLO. Results based on the anti-k_T and SIScone algorithms are almost identical.

3 Measurements at the Tevatron

The inclusive jet cross-section in collisions of protons with anti-protons at $\sqrt{s} = 1.96$ TeV measured with high precision by the CDF and D0 Collaborations up to jet p_T of 600 GeV [6,7], serve as one of the main constraints on the gluon density for $x > 0.2$ - 0.3 in global PDF fits already since several years. Both Collaborations also measured differential dijet and trijet cross sections with significant sensitivity to differences between the available PDF sets (see e.g. [8]). The inclusion of such multijet cross sections in PDF fits could again help to decorrelate the value of α_s and the gluon density.

The D0 Collaboration performed an α_s measurement from the inclusive jet cross section [9]. Since the same data had already been used as input for the MSTW2008 PDF set, on which this α_s analysis was based, the phase space with $x \gtrsim 0.25$, where the impact on the gluon PDF had been significant, was neglected. Although that restricted the analysis to 22 data points up to jet p_T of 145 GeV, the extracted $\alpha_s(M_Z)$ of 0.1161 $^{+0.0034}_{-0.0033}$ (exp.) $^{+0.0016}_{-0.0012}$ (PDF) $^{+0.0025}_{-0.0029}$ (scale) is still the most precise based on jet data from hadron-hadron collisions to date.

Recently, the D0 Collaboration performed a new α_s determination using the observable $R_{\Delta p_T}(p_T , \Delta p_T^{\text{min}}) = \sum_{i=1}^{N_{\text{nbr}}} N_{\text{nbr}}(\Delta p_T^{\text{min}}) N_{\text{abl}}(\Delta p_T^{\text{abl}})/(N_{\text{abl}}(p_T))$ with N_{nbr} being the number of neighboring jets within a distance of ΔR that have a transverse momentum above p_T^{abl}. This normalized triple-differential cross section, shown in figure 3, was found to be well described by the NLO prediction for $p_T^{\text{abl}} = 50$ GeV and higher. $R_{\Delta p_T}$ allowed probing $\alpha_s(p_T)$ up to jet p_T of 400 GeV and mostly independent of assumptions on the running. By combining all data
4 Measurements at the LHC

Both the ATLAS and the CMS Collaboration measured double-differential cross sections for inclusive jet and dijet production at $\sqrt{s} = 7$ TeV using up to 37 pb$^{-1}$ from the 2010 dataset [11, 12], where the lower event pile-up allowed to measure down to relatively low jet momenta and dijet masses, and using the 5 fb$^{-1}$ of the 2011 dataset [13, 14], where the jet trigger and selection thresholds had to be raised but the huge amount of data collected yields small statistical uncertainties even at jet momenta up to 2 TeV and dijet masses up to 5 TeV. Overall, a reasonable agreement is observed between data and the NLO prediction. Experimental and theoretical uncertainties on these cross sections are of comparable size, where the jet energy scale is the dominant experimental uncertainty and PDF uncertainties give a significant contribution to the total uncertainty on the predicted cross sections. There are some discrepancies between the central predictions obtained with different PDF sets. However, these differences are well covered by the uncertainties.

Beginning of 2011, the LHC delivered proton-proton collisions at $\sqrt{s} = 7.6$ TeV, which the ATLAS Collaboration used to measure the inclusive jet cross section up to jet p_T of 430 GeV [15]. For given ranges in jet p_T and rapidity, y, these cross sections probe jet production at significantly different x and Q^2 compared to $\sqrt{s} = 7$ TeV. Despite the small size of the dataset (0.2 pb$^{-1}$), the statistical uncertainty on these cross sections at $\sqrt{s} = 7.6$ TeV is smaller than the total systematic uncertainty. A crucial aspect here is that the jet reconstruction, energy scale and resolution are common to the analyses at 2.76 and 7 TeV, which means that the main systematic uncertainties can be assumed to be fully correlated. This results in drastically reduced uncertainties on cross-section ratios, $\rho(p_T, y) = \sigma^{7.6\text{TeV}}(p_T, y)/\sigma^{7\text{TeV}}(p_T, y)$. PDF uncertainties are found to dominate the uncertainty on the prediction for these ratios and to be generally larger than the uncertainty on the measured ratio. The ATLAS Collaboration studied the impact of the jet cross sections at $\sqrt{s} = 2.76$ and 7 TeV with all their correlations using the HERAFitter framework. Compared to parton distribution functions obtained based on HERA DIS data only, the inclusion of the ATLAS jet data was found to result in a harder gluon distribution with a reduced uncertainty at high x, which is illustrated in figure 4, while slightly decreasing the high-x sea-quark density.

A first α_S determination based on LHC data was performed using the inclusive jet cross section from the ATLAS experiment at $\sqrt{s} = 7$ TeV up to jet p_T of 600 GeV [16]. The result obtained by simultaneously fitting different rapidity bins up to $|y| < 4.4$ is $\alpha_S(M_Z) = 0.1151 \pm 0.0047 \text{ (stat.)} \pm 0.0014 \text{ (pert. range)} \pm 0.0060 \text{ (jet size)}$ ($\rho(p_T, y)$). The resulting α_S is smaller than the total systematic uncertainty. A crucial aspect here is that the jet reconstruction, energy scale and resolution are common to the analyses at 2.76 and 7 TeV, which means that the main systematic uncertainties can be assumed to be fully correlated. This results in drastically reduced uncertainties on cross-section ratios, $\rho(p_T, y) = \sigma^{7.6\text{TeV}}(p_T, y)/\sigma^{7\text{TeV}}(p_T, y)$. PDF uncertainties are found to dominate the uncertainty on the prediction for these ratios and to be generally larger than the uncertainty on the measured ratio. The ATLAS Collaboration studied the impact of the jet cross sections at $\sqrt{s} = 2.76$ and 7 TeV with all their correlations using the HERAFitter framework. Compared to parton distribution functions obtained based on HERA DIS data only, the inclusion of the ATLAS jet data was found to result in a harder gluon distribution with a reduced uncertainty at high x, which is illustrated in figure 4, while slightly decreasing the high-x sea-quark density.

The CMS Collaboration has recently performed a measurement of R_{32}, the ratio between the inclusive dijet and dijet production rates [17]. Again, both the experimental and the theoretical uncertainties are drastically reduced by taking a cross-section ratio. When selecting jets with $p_T > 150$ GeV, the 2011 dataset allows probing the kinematic region of $250 < \langle p_{T1,2} \rangle < 1400$ GeV, where $\langle p_{T1,2} \rangle$ is the average p_T of the two leading jets in the event. Overall, the measured R_{32} is well described by the NLO prediction. Only when using the ABM11 PDF set, the prediction significantly underestimated the data up to $\langle p_{T1,2} \rangle$.
density in ABM11 would yield an \(\alpha_s(M_Z) \) larger than 0.1200, which is the upper edge of the \(\alpha_s(M_Z) \) values supported by that PDF group.

5 Conclusions

Cross sections for jet and multijet production have been measured with high precision at HERA, the Tevatron and the LHC, probing QCD predictions over impressive ranges in \(x \) and \(Q^2 \). They provide strong constraints on the gluon PDF at medium to high \(x \), allowing measuring \(\alpha_s \) up to the TeV scale already and disentangling gluon PDF and \(\alpha_s \). Figure 5 compares recent jet-based \(\alpha_s(M_Z) \) results, all of them perfectly compatible with the latest world average but affected by significant theory uncertainties. Given the sizable uncertainties related to choice and variation of factorization and renormalization scales as well as from non-perturbative corrections, all such jet measurements and subsequent extractions of QCD parameters are eagerly awaiting cross-section predictions beyond NLO.

References

[1] Particle Data Group, Phys. Rev. D 86, 010001 (2012)
[2] H1 Collaboration (2011), H1prelim-11-032
[3] H1 Collaboration (2012), H1prelim-12-031
[4] H1 and ZEUS Collaborations (2011), H1prelim-11-034, ZEUS-prel-11-001
[5] H. Abramowicz et al. (ZEUS Collaboration), Nucl.Phys. B864, 1 (2012), 1205.6153
[6] T. Aaltonen et al. (CDF Collaboration), Phys.Rev. D78, 052006 (2008), 0807.2204
[7] V. Abazov et al. (D0 Collaboration), Phys.Rev.Lett. 101, 062001 (2008), 0802.2406
[8] V. Abazov et al. (D0 Collaboration), Phys.Lett. B704, 434 (2011), 1104.1986
[9] V. Abazov et al. (D0 Collaboration), Phys.Rev. D80, 111107 (2009), 0911.2710
[10] V. Abazov et al. (D0 Collaboration), Phys.Lett. B718, 56 (2012), 1207.4957
[11] G. Aad et al. (ATLAS Collaboration), Phys.Rev. D86, 014022 (2012), 1112.6297
[12] S. Chatrchyan et al. (CMS Collaboration), Phys.Rev.Lett. 107, 132001 (2011), 1106.8208
[13] ATLAS Collaboration (2012), ATLAS-CONF-2012-021
[14] S. Chatrchyan et al. (CMS Collaboration) (2012), Submitted to Phys. Rev. D. 1212.6660
[15] ATLAS Collaboration (2012), ATLAS-CONF-2012-128
[16] B. Malaescu, P. Starovoitov, Eur.Phys.J. C72, 2041 (2012), 1203.5416
[17] CMS Collaboration (2012), CMS-PAS-QCD-11-003
[18] Figure provided by R. Kogler.
