The motion of a rigid body and a viscous fluid in a bounded domain in presence of collisions

Nikolai V. Chemetov1, Šárka Nečasová2

1 University of Lisbon, Portugal
nvchemetov@fc.ul.pt
2 Institute of Mathematics,
Žitná 25, 115 67 Praha 1, Czech Republic
matus@math.cas.cz

Résumé

We consider the motion of a rigid body, governed by the Navier-Stokes equations in a bounded domain. Navier’s condition is prescribed on the boundary of the body. We give the global in a time solvability result of weak solution. The result permits a possibility of collisions of the body with the boundary of the domain.

Le mouvement d’un corps rigide avec les conditions aux limites de Navier en présence de collisions. Nous considérons le mouvement d’un corps rigide, régi par les équations de Navier-Stokes dans un domaine borné. L’état de Navier est prescrit à la limite du corps. Nous donnons le global dans le résultat de solvabilité de temps de solution faible. Ce résultat permet une possibilité de collisions du corps avec le bord du domaine.

Version française abrégée

Dans l’article, nous étudions le mouvement d’un corps rigide à l’intérieur d’un visqueux fluide incompressible. Soit Ω un domaine borné de \mathbb{R}^N, $N = 2$ ou 3. A l’instant initial $t = 0$ le corps et le fluide occupent un ensemble ouvert connexe $S_0 \subset \Omega$ et l’ensemble $F_0 = \Omega \setminus S_0$, respectivement. A tout moment, $t \in [0, T]$ le mouvement du fluide et le corps est régi par system (1)-(4).

L’existence d’une solution globale faible pour ce système avec une condition aux limites non-glissement (celui de Dirichlet) sur les limites du corps et le domaine a été traitée par de nombreux mathématiciens. Les enquêtes dans les articles [6], [8], [9], [14] a montré que l’anti-dérapant condition limite donne un
résultat paradoxal d’aucune collision entre le le corps et le bord du domaine. Ces résultats ont démontré qu’un modèle plus précis est nécessaire pour la description de la mouvement des corps dans un fluide visqueux incompressible.

Dans les articles [3], [11], [12] ont proposé de système étude (1)-(4) en ajoutant une condition de limite de glissement (de Navier un) au lieu de la condition à la limite de non-glissement sur les limites du corps et le domaine. Dans ces articles il a été montré que la condition de limite de glissement nettoie le paradoxe sans collision.

Dans notre article, nous fermons système (1)-(4) en ajoutant la condition de limite de Navier (5) sur la limite du corps \(S(t) \) et l’état limite de Dirichlet (6) sur la frontière du domaine \(\Omega \). avec ces conditions aux limites dans le théorème 2.1 nous avons montré l’existence de solution faible pour le problème (1)-(6). En raison de la faible régularité des limites \(\partial \Omega \in C^{0,1}, \partial S_0 \in C^2 \) et que la force extérieure \(g \in L^2((0,T); (LD^2_0(\Omega))^*) \), les contacts du corps et la frontière du domaine sont disponibles dans le théorème 2.1.

Pour montrer le théorème 2.1 nous considérons le problème approximative (12)-(14) au système (1)-(6), en utilisant l'idée que le "corps+fluide" peut être approchée par une fluid non homogène, ayant des valeurs différentes de viscosité en trois zones : rapprochement des "corps", approximation de la limite de Navier état (5) et la zone "fluide". Puis, en problème (12)-(14) que nous passons sur les limites à l’égard des paramètres \(\varepsilon, \delta \). Dans la limite \(\varepsilon \to 0 \) nous obtenons le mouvement du corps rigide dans un fluide visqueux. Puis, dans la deuxième limite \(\delta \to 0 \), nous obtenons le mouvement du corps déjà avec la condition limite de Navier (13). Depuis la démonstration du théorème 2.1 est assez longue et technique l’un pour plus de détails, nous renvoyons à [4].

1 Presentation of the problem

We investigate the motion of a rigid body inside of a viscous incompressible fluid. Let \(\Omega \) be a bounded domain of \(\mathbb{R}^N \) for \(N = 2 \) or 3. At the initial moment \(t = 0 \) the body and the fluid occupy an open connected set \(S_0 \subset \Omega \) and the set \(F_0 = \Omega \setminus S_0 \), respectively. The motion of any point \(y = (y_1, \ldots, y_N)^T \in S_0 \) is described by a preserving orientation isometry

\[
A(t, y) = q(t) + Q(t)(y - q(0)), \quad t \in [0, T],
\]

where \(q = q(t) \) is the body mass center and \(Q = Q(t) \) is the rotation matrix, such that \(Q(t)Q(t)^T = I, Q(0) = I \) with \(I \) being the identity matrix. Hence the body and the fluid occupy the sets \(S(t) = A(t, S_0) \) and \(F(t) = \Omega \setminus S(t) \) at any time \(t \). The velocity of the body is related with the isometry \(A \) by

\[
u = q'(t) + P(t)(x - q(t)) \quad \text{for} \quad x \in S(t),
\]

where a matrix \(P(t) \) fulfills \(\alpha(t)Q^T = P \), such that there exists a vector \(\omega = \omega(t) \in \mathbb{R}^N \), satisfying \(P(t)x = \omega(t) \times x \), \(\forall x \in \mathbb{R}^N \).
The motion of the fluid and the body is governed by the following system

\[
\frac{\partial \rho}{\partial t} + (u \cdot \nabla)\rho = 0, \quad \text{div}u = 0, \quad \text{for } x \in F(t),
\]

\[
\rho\left(\frac{\partial}{\partial t}u + (u \cdot \nabla)u\right) = \text{div}P + g,
\]

\[
mq'' = \int_{\partial S(t)} Pn \, dx + \int_{S(t)} g \, dx, \quad \text{for } x \in S(t),
\]

\[
\frac{d(J\omega)}{dt} = \int_{\partial S(t)} (x - q(t)) \times Pn \, dx + \int_{S(t)} (x - q(t)) \times g \, dx \quad \text{(3)}
\]

with the initial conditions

\[
S = S_0, \quad \rho = \rho_0, \quad u = u_0 \quad \text{at } t = 0. \quad \text{(4)}
\]

Here \(m = \int_{S(t)} \rho \, dx \) - the mass of the body; \(\rho \) is the density in the body \(S(t) \) and in the fluid \(F(t) \); \(P = -pI + 2\mu_f \text{D}u \) and \(\text{D}u = \frac{1}{2}(\nabla u + (\nabla u)^T) \) - the stress and the deformation-rate tensors of the fluid; \(p \) - the fluid pressure; \(\mu_f > 0 \) - the constant viscosity of the fluid; \(n \) - the unit outward normal to \(\partial S(t) \); \(J = \int_{S(t)} \rho \|x - q(t)\|^2I - (x - q(t)) \otimes (x - q(t)) \) \(dx \) - the matrix of the inertia moments of the body; \(g \) - an external force.

The global existence of weak solution has been treated by many mathematicians: Hoffmann, Starovoitov, Conca, San Martín, Tucsnak, Feireisl, Nečasová, Hillairet, Bost, Cottet, Maitre; Desjardins, Esteban, Gunzburger, Lee, Seregin, Takahashi and etc.. All of these authors have considered non-slip boundary condition on boundaries of the body and the domain, but this boundary condition gives a paradoxical result of no collisions between the body and the boundary of the domain: Hesla [8], Hillairet [9], Starovoitov [14]. In the articles [6], [13], [14] the authors have studied the question of possible collisions with respect of the regularity of velocity and the regularity of boundaries. For instance, in [6] Gérard-Varet, Hillairet have demonstrated that under \(C^{1,\alpha} \)-boundaries the collision is possible in finite time if and only if \(\alpha < 1/2 \). These mentioned results have demonstrated that a more accurate model is needed for the description of the motion of bodies in a viscous incompressible fluid.

Neustupa, Penel [11] have investigated a prescribed collision of a ball with a wall, when the slippage is allowed on the boundaries of the ball and of the wall. The slippage is prescribed by Navier’s boundary condition, having only the continuity of velocity field just in the normal component. This pioneer result [11] have shown that the slip boundary condition cleans the no-collision paradox. Recently Gérard-Varet, Hillairet [5] have proved a local-in-time existence result: up to collisions. The motion of a single body, moved in the whole space \(\mathbb{R}^3 \), have considered in [12]. The free fall of a ball above a wall with the slippage, prescribed on the boundaries, have been studied in [7], where it was shown that the ball touches the boundary of the wall in a finite time.

In this article we close system (3) by adding Navier’s boundary condition

\[
u_s \cdot n = u_f \cdot n, \quad (P_f n + \gamma(u_f - u_s)) \cdot s = 0 \quad \text{on } \partial S(t),
\]

\[
\text{(5)}
\]
and Dirichlet’s boundary condition
\[u = 0 \quad \text{on } \partial \Omega. \] (6)

Here \(u_s \) and \(u_f \) are the trace values of the velocity \(u \) on \(\partial S(t) \) from the rigid side \(S(t) \) and from the fluid side \(F(t) \), respectively; \(n \) and \(s \) are the external normal and arbitrary tangent vector to \(\partial S(t) \); the constant \(\gamma > 0 \) is the friction coefficient of \(\partial S_0 \).

2 Weak solution of system (1)-(6) and the main result

To introduce the concept of weak solution for system (1)-(6), let us define some spaces of functions

\[V^{0,2}(\Omega) = \{ v \in L^2(\Omega) : \text{div} \, v = 0 \quad \text{in} \quad \mathcal{D}'(\Omega), \quad v \cdot n = 0 \quad \text{in} \quad H^{-1/2}(\partial \Omega) \}, \]

\[BD_0(\Omega) = \{ v \in L^1(\Omega) : Dv \in M(\Omega), \quad v = 0 \quad \text{on} \quad \partial \Omega \}, \]

where \(n \) is the unit normal to the boundary \(\partial \Omega \) of the domain \(\Omega \) and \(M(\Omega) \) is the space of bounded Radon measures. Let \(S \) be an open connected subset of \(\Omega \). We consider the space

\[KB(S) = \{ v \in BD_0(\Omega) : Dv \in L^2(\Omega \setminus S), \quad Dv = 0 \quad \text{a.e. on} \quad S, \quad \text{div} \, v = 0 \quad \text{in} \quad \mathcal{D}'(\Omega) \}. \]

Définition 2.1 The triple \(\{ A, \rho, u \} \) is a weak solution of system (1)-(6), if the following three conditions are fulfilled:

1) The function \(A(t, \cdot) : \mathbb{R}^N \rightarrow \mathbb{R}^N \) is a preserving orientation isometry (1), such that the functions \(q, Q \) are absolutely continuous on \([0, T]\). The isometry \(A \) is compatible with the rigid body velocity (2) on \(S(t) \) and defines a time dependent set \(S(t) = A(t, S_0) \);

2) The function \(\rho \in L^\infty((0, T) \times \Omega) \) satisfies the integral equality

\[\int_0^T \int_\Omega \rho(\xi_t + (u \cdot \nabla)\xi) \, dt \, dx = - \int_\Omega \rho_0 \xi(0, \cdot) \, dx \] (7)

for any \(\xi \in C^1([0, T] \times \Omega) \), \(\xi(T, \cdot) = 0 \);

3) The function \(u \in L^2(0, T; KB(S(t))) \cap L^\infty(0, T; V^{0,2}(\Omega)) \) satisfies the integral equality

\[\int_0^T \int_{\Omega\setminus S(t)} \{ \rho(\psi_t + (u \otimes u) : D\psi - 2\mu_f \, Du : D\psi + g\psi) \} \, dx \, dt \]

\[= - \int_\Omega \rho_0 u_0 \psi(0, \cdot) \, dx + \int_0^T \int_{\partial S(t)} \beta(u_s - u_f)(\psi_s - \psi_f) \, dx \, dt \] (8)

...
for any $\psi \in L^2(0,T;KB(S(t)))$, such that $\psi_t \in L^2(0,T;L^2(\Omega\setminus\partial S(t)))$ and
$\psi(T,\cdot) = 0$. Here we denote the trace values of u, ψ on $\partial S(t)$ from the rigid side $S(t)$ and the fluid side $F(t)$ by $u_s(t,\cdot)$, $\psi_s(t,\cdot)$ and $u_f(t,\cdot)$, $\psi_f(t,\cdot)$, respectively.

Our main result is the following theorem.

Theorem 2.1 We assume that $S_0 \subset \Omega$, such that $\text{dist}[S_0,\Omega] > 0$. We admit that the boundaries $\partial \Omega \in C^{0,1}$ and $\partial S_0 \in C^2$. Let

$$\rho_0(x) = \begin{cases}
\rho_s(x) \geq \text{const} > 0, & x \in S_0; \\
\rho_f = \text{const} > 0, & x \in F_0, \\
\rho_s \in L^\infty(S_0),
\end{cases}$$

$u_0 \in V^{0,2}(\Omega)$, $\mathbb{D}u_0 = 0$ in $\mathcal{D}'(S_0)$, $g \in L^2((0,T);(LD^2_0(\Omega))^*)$. (9)

Then system (1) - (6) possesses a weak solution $\{A, \rho, u\}$, such that the isometry $A(t,\cdot)$ is Lipschitz continuous with respect to $t \in [0,T]$,

$$\rho(t,x) = \begin{cases}
\rho_s(A^{-1}(t,x)), & x \in S(t); \\
\rho_f, & x \in F(t),
\end{cases} \quad \text{for a.e. } t \in (0,T),$$

$u \in C_{\text{weak}}(0,T;V^{0,2}(\Omega))$ and the following energy inequality holds

$$\frac{1}{2} \int_\Omega \rho_0 |u_0|^2(x) \, dx + \int_0^T \left\{ \int_{\partial S(t)} 2 \mu_f \mathbb{D} u_s^2 \, ds \right\} \, dt \leq \frac{1}{2} \int_\Omega \rho_0 |u_0|^2 \, dx + \int_0^T < g, u > \, dt \quad \text{for a.e. } r \in (0,T).$$

(11)

Let us point that in [7] it has been shown that the ball never touches the boundary of the wall for mixed boundary conditions [3]. Nevertheless of the result [2], the contacts of the body and the boundary of the domain are available in Theorem 2.1, due to the low regularity of the boundaries $\partial \Omega \in C^{0,1}$, $\partial S_0 \in C^2$. And moreover $g \in L^2((0,T);(LD^2_0(\Omega))^*)$, we refer to the example constructed by Starovoitov [14]. In order to create a collision of the body with the boundary of the domain (in the case of non-slip conditions on the boundaries $\partial \Omega$ and ∂S_0), Starovoitov adds an external force from H^{-1}-space.

3 Sketch of the proof of Theorem

First we introduce an approximate scheme to system (1) - (6), using the idea that the "body+fluid" can be approximated by a non-homogeneous fluid, having different values of viscosity in three zones: approximation of "body", approximation of Navier’s boundary condition [3] and "fluid" zone.

To construct such approximation problem we fix the following notations. For an open connected set $S \subset \mathbb{R}^N$, we define $\text{dist}[x,S] = \inf_{y \in S} |x - y|$.

\[d_S(x) = \text{dist}[x, \mathbb{R}^N \setminus S] - \text{dist}[x, S] \] for any \(x \in \mathbb{R}^N \) and \([S]_\delta = d_S^{-1}(\delta, +\infty) \)-the \(\delta \)-kernel of \(S \), \([S]_\delta = d_S^{-1}(\delta, +\infty) \)-the \(\delta \)-neighborhood of \(S \). The characteristic functions of the sets \(S_0 \), \([S_0]_\delta \) and \([S_0]_\delta \setminus S_0 \) are denoted by \(\varphi_0 \), \(\zeta_\delta^0 \) and \(\chi_\delta^0 \), which are defined in \(\mathbb{R}^N \).

The approximation problem to system (11)-(13) consists of the linear transport equations

\[
\begin{align*}
\partial_t \rho + (u \cdot \nabla) \rho &= 0, & \partial_t \zeta + (\nabla \cdot \nabla) \zeta &= 0 \quad \text{in } (0, T) \times \mathbb{R}^N, \\
\rho(0) &= \rho_0^\varepsilon, & \zeta(0) &= \zeta_0^\delta \quad \text{in } \mathbb{R}^N,
\end{align*}
\] (12)

and the momentum equation

\[
\begin{align*}
\rho (\partial_t u + (u \cdot \nabla) u) &= \text{div} P + g, & \text{div} u &= 0 \quad \text{in } (0, T) \times \Omega, \\
u(0) &= u_0 \quad \text{in } \Omega,
\end{align*}
\] (13)

where \(\rho_0^\varepsilon = \varepsilon \chi_\delta^0 + \rho_f \theta_\delta^0 + \rho_s \varphi_0 \), \(\theta_\delta^0 = 1 - (\varphi_0 + \chi_0) \) and

\[
P = -p + \mu_{\varepsilon, \delta} \text{D} u, \quad \mu_{\varepsilon, \delta} = \frac{1}{\varepsilon} \varphi + 2 \delta \beta \chi + 2 \mu_f \theta, \quad \theta = 1 - (\varphi + \chi) \quad (14)
\]

and \(\varphi, \chi \) are the characteristic functions, defined in \(\mathbb{R}^N \), of the sets \(\tilde{S}(\varphi) = |S(\zeta)|_\delta \), \(S(\chi) = |S(\zeta)|_\delta \setminus |S(\zeta)|_\delta \). The function \(\nabla \cdot \nabla \) is the standard mollification of \(u \) on the parameter \(\delta \).

In relation (14) the \(\varepsilon \)-dependence of the "viscosity" \(\mu_{\varepsilon, \delta} \) is a penalization, introduced in [10], where the rigid body is replaced by a fluid, having high viscosity value. The \(\delta \)-dependence of \(\mu_{\varepsilon, \delta} \) defines a mixture region between the fluid and the "body", which approximates the jump boundary term on \(\partial S(t) \) in (8). The solvability of this approximation problem (12)-(14) can be shown by a fixed point argument, Galerkin’s method and theoretical results for transport equations (see [1], [2], [15]).

Next in the approximation problem we have to pass on limits with respect to the parameters \(\varepsilon, \delta \). These limits are based on the results for the transport equations [2].

— The first limit on \(\varepsilon \to 0 \) is related with a so-called "solidification" procedure in the zone of the non-homogeneous fluid, corresponding to the "body". This limit can be treated as in [10], [13]. In the limit we obtain the motion of the rigid body in a viscous fluid;

— In the second limit on \(\delta \to 0 \), we obtain the motion of the body already with a prescribed Navier’s boundary condition. Firstly we need to construct an appropriate set of test functions, depending on \(\delta \). Then, using embedding results in cusp domains, we show that the viscous term \(2 \delta \beta \chi \) converges to the jump boundary term on \(\partial S(t) \) in (8). The embedding results allow also to apply a compactness result in the convective term of (13) by using the approach of Proposition 6.1 in [13].

The demonstration of Theorem 2.1 is a quite lengthy and technical one. The details can be found in [4].
References

[1] Antontsev S.N., Kazhikhov A.V., Monakhov V.N., Boundary Value Problems in Mechanics of Non-homogeneous Fluids. Nauka, Sibirskoe Otdelenie, Novosibirsk (in Russian) (1983); Studies in Mathematics and its Applications, 22, North-Holland Publishing Co., Amsterdam (1990).

[2] F. Boyer. Trace theorems and spacial continuity properties for the solutions of the transport equations. Differential Integral Equations, 18 (8), 891-934, 2005.

[3] D. Bucur, E. Feireisl, Š. Nečasová, J. Wolf. On the asymptotic limit of the Navier-Stokes system with rough boundaries. J. Differential Equations, 244 (11), 2890–2908, 2008.

[4] Chemetov N.V., Necasova S., The motion of the rigid body in viscous fluid including collisions. Global solvability result. Preprint IM-2013-41, Institute of Mathematics, Prague, Czech Republic.

[5] Gérard-Varet D., Hillairet M., Existence of weak solutions up to collision for viscous fluid-solid systems with slip. Comm. Pure Appl. Math., 67 (12), 2022–2075, 2014.

[6] Gérard-Varet D., Hillairet M., Regularity issues in the problem of fluid structure interaction. Arch. Ration. Mech. Anal., 195, n. 2 (2010), 375–407.

[7] Gérard–Varet D., Hillairet M., Wang C., The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow. J. Math. Pures Appl., 103 (1), 1–38, 2015.

[8] Hesla T. I., Collision of smooth bodies in a viscous fluid: A mathematical investigation. PhD Thesis – Minnesota, 2005.

[9] Hillairet M., Lack of collision between solid bodies in a 2D incompressible viscous flow. Comm. Partial Differential Equations, 32, n. 7–9 (2007), 1345–1371.

[10] Hoffmann K.-H., Starovoitov V. N., On a motion of a solid body in a viscous fluid. Two dimensional case. Adv. Math. Sci. Appl., 9 (1999), 633–648.

[11] Neustupa J., Penel P., Existence of a weak solution to the Navier-Stokes equation with Navier’s boundary condition around striking bodies. Comptes Rendus Mathematique, 347, n. 11–12, (2009), 685–690.

[12] Planas G., Sueur F., On the “viscous incompressible fluid + rigid body” system with Navier conditions. Accepted in: Ann. I. H. Poincare.

[13] San Martin J.A., Starovoitov V.N., Tucsnak M., Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Rational Mech. Anal., 161 (2002), 93–112.

[14] Starovoitov V. N., Behavior of a rigid body in an incompressible viscous fluid near boundary. Published in: International Series of Numerical Mathematics, 147 (2003) 313–327.
[15] TEMAM R., Navier-Stokes equations. Theory and numerical analysis. AMS Chelsea publishing, Providence, Rhode Island, 2001.