Actin Assembly in Electropermeabilized Neutrophils: Role of Intracellular Calcium

Gregory P. Downey,* Chi Kin Chan,* Suzanne Trudel,† and Sergio Grinstein‡

*Respiratory Division, Toronto General Hospital, Department of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8; and †Department of Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8

Abstract. Assembly of microfilaments involves the conversion of actin from the monomeric (G) to the filamentous (F) form. The exact sequence of events responsible for this conversion is yet to be defined and, in particular, the role of calcium remains unclear. Intact and electropermeabilized human neutrophils were used to assess more directly the role of cytosolic calcium ([Ca²⁺]) in actin assembly. Staining with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin and right angle light scattering were used to monitor the formation of F-actin. Though addition of Ca²⁺ ionophores can be shown to induce actin assembly, the following observations suggest that an increased [Ca²⁺] is not directly responsible for receptor-induced actin polymerization: (a) intact cells in Ca²⁺-free medium, depleted of internal Ca²⁺ by addition of ionophore, responded to the formyl peptide fMLP with actin assembly despite the absence of changes in [Ca²⁺], assessed with Indo-1; (b) fMLP induced a significant increase in F-actin content in permeabilized cells equilibrated with medium containing 0.1 μM free Ca²⁺, buffered with up to 10 mM EGTA; (c) increasing [Ca²⁺], beyond the resting level by direct addition of CaCl₂ to permeabilized cells resulted in actin disassembly. Conversely, lowering [Ca²⁺], resulted in spontaneous actin assembly. To reconcile these findings with the actin-polymerizing effects of Ca²⁺ ionophores, we investigated whether A23187 and ionomycin induced actin assembly by a mechanism independent of, or secondary to the increase in [Ca²⁺]. We found that the ionophore-induced actin assembly was completely inhibited by the leukotriene B₄ (LTB₄) antagonist LY-223982, implying that the ionophore effect was secondary to LTB₄ formation, possibly by stimulation of phospholipase A₂. We conclude that actin assembly is not mediated by an increase in [Ca²⁺], but rather that elevated [Ca²⁺] facilitates actin disassembly, an effect possibly mediated by Ca²⁺-sensitive actin filament-severing proteins such as gelsolin. Sequential actin assembly and disassembly may be necessary for functions such as chemotaxis.

Despite extensive study, the mechanisms responsible for initiating the conversion of G- to F-actin (polymerization, assembly) after receptor-mediated stimulation in neutrophils are still incompletely understood (see reviews by Korn, 1982; Naccache, 1987; Omann et al., 1987; Sha'afi and Molski, 1988). There is evidence pointing to the involvement of GTP-binding regulatory proteins (G proteins): the actin polymerization response induced by most soluble activators is blocked by pretreatment of the cells with pertussis toxin (Shefeyk et al., 1985). Moreover, in permeabilized cells actin assembly can be induced in the absence of stimuli by addition of GDP-γ-S or fluoroaluminate (AIF₄⁻) and these responses, as well as those mediated by receptors, are inhibited by GDP-β-S (Downey et al., 1989; Therrien and Naccache, 1989). By comparison, the nature of the events that occur following activation of the G protein(s) remains unclear. There is evidence implicating the interaction of membrane phosphoinositides with actin-binding and sequestering proteins such as profilin (Lassing and Lindberg, 1985; Stossel, 1989) and other data suggest involvement of protein kinase C (reviewed by Omann et al., 1987, and Sha'afi and Molski, 1988), but the precise mechanisms involved have not been defined.

Calcium plays a central role in signal transduction for many responses in neutrophils (Sha'afi and Molski, 1988). An early increase in cytosolic free Ca²⁺ ([Ca²⁺]) has been recorded after stimulation of neutrophils with a variety of agents (Bengtsson et al., 1986; Pozzan et al., 1983), leading to the suggestion that this calcium "transient" might signal the initiation of actin polymerization (Stendahl and Stossel, 1980). Evidence favoring this hypothesis includes: (a) the ability of calcium ionophores to promote actin assembly (Howard and Wang, 1987); (b) the observation that most neutrophil agonists that cause actin polymerization also induce an increase in intracellular Ca²⁺ (see review by Lew, 1987).
Materials and Methods
determined using Hitachi F2000 and F4000 fluorescence spectrometers.

Reagents
and ATP (K+ salt) were obtained from Sigma Chemical Co. (St. Louis,
and Percoll were obtained from Pharmacia Fine Chemicals (Montreal, Canada).

Cell Isolation
Human neutrophils (>98% pure) were isolated from citrated whole blood

Cytosolic Calcium and Light Scattering Determinations
Intracellular free calcium concentration and right angle light scattering were determined using Hitachi F2000 and F4000 fluorescence spectrometers. For the measurement of \([Ca^{2+}]_i\), the cells were loaded with Indo-1 by pre-incubation with 1.5 μg/ml of the precursor acetoxyethyl ester at 37°C for 30 min as described (Nasmith and Grinstein, 1987). Aliquots of this cell suspension were washed by sedimenting in a microcentrifuge and resuspending in KRPD buffer and then placed in the indicated medium in a plastic cuvette with magnetic stirring. Fluorescence was measured with excitation at 331 nm and emission at 410 nm, using 5- or 10-nm slit widths. \([Ca^{2+}]_i\) was calibrated using ionomycin and Mn2+ as described (Nasmith and Grinstein, 1987). Right angle light scatter was monitored at either 340 or 550 nm, as described by Sklar et al. (1985). Similar results were obtained at both wavelengths. The data are expressed as percent of the initial scattering of untreated cells.

Permeabilization Procedure
Neutrophils were permeabilized by electroporation essentially as described (Grinstein and Fuyara, 1988). Briefly, 10^7 cells were sedimented and resuspended in 1 ml of ice-cold permeabilization medium (140 mM KCI, 1 mM MgCl2, 10 mM glucose, 1 mM ATP, 10 mM Hepes, pH 7.0, 1-10 mM EGTA, as indicated, and the appropriate amount of CaCl2 to give the final free Ca2+ concentration specified in the text, calculated by the method of Fabiato and Fabiato (1979). Aliquots of this suspension (0.8 ml) were transferred to a cuvette (Pulsar: Bio-Rad Laboratories, Cambridge, MA) and subjected to two discharges of 2 kV from a 25 μF capacitor using the gene pulser (Bio-Rad Laboratories). The cells were sedimented and resuspended in fresh ice-cold medium between pulses. Finally, the cells were equilibrated for 30 s in the indicated medium at 37°C before stimulation and measurement of actin polymerization. In the set of experiments described in Fig. 5, neutrophils were permeabilized in medium with 100 nM [Ca2+]i allowed to equilibrate for 1 min, and then the appropriate amount of CaCl2 added to give the final [Ca2+]i specified in the text. In the set of experiments described in Fig. 5, neutrophils were permeabilized in medium with the specified [Ca2+]i, allowed to equilibrate for 1 minute and then exposed to fMLP 10^{-8} M for an additional minute.

Flow Cytometry
Neutrophil content of polymerized actin (F-actin) was determined by NBD-phallacidin staining of fixed and permeabilized cells (Howard and Meyer, 1984), as previously described (Downey et al., 1989). This fluorescence method has been shown to correlate well with biochemical measurements of F-actin (Howard and Meyer, 1984; Wallace et al., 1984). The stained cells were analyzed on an Epics 5 or an Epics Profile fluorescence-activated cell sorter (Coulter Electronics Inc., Hialeah, FL). Cells were excited with an argon laser at 488 nm and emission recorded at 520 nm with band pass and short pass filters. Gating was done on the forward angle and right angle light scatter only to exclude debris and cell clumps. A minimum of 10,000 cells were measured per condition and all values are expressed as relative fluorescence index (RFI). For experiments carried out on the Epics 5, the RFI was calculated according to the formula RFI = 2(b - a)/a, where a equals mean channel number of the control cell population, b equals mean channel number of the cell population in question, and 26 equals number of channels representing a doubling of fluorescence intensity. For experiments carried out on the Coulter Profile, the RFI was calculated using the ratio of the linearized mean fluorescence of the cell populations in question, as provided by the data processing software.

Statistical Analysis
Data are reported as mean ± SEM of the number of experiments indicated. All data was analyzed by analysis of variance for repeated measures with correction for multiple comparisons (Sheffe), except the data in Fig. 2 which were analyzed by the paired t test.

Results and Discussion
Is Increased [Ca2+], Required for Actin Polymerization?

Fig. 1 illustrates a comparison of the kinetics of the increase in cytosolic free calcium ([Ca2+])] and of the change in right angle light scatter, used here as an index of actin polymerization (see Sklar et al., 1984). In agreement with earlier observations (Yuli and Snyderman, 1984; Sklar et al., 1984), the addition of fMLP to intact cells was followed almost immediately by a decrease in light scattering (Fig. 1 a, bottom...
conditions remain intact (b, bottom trace). (c) Changes in F-actin content of neutrophils in response to stimulation with 10^{-4} M fMLP, 10^{-8} M ionomycin, or pretreatment with 10^{-6} M ionomycin followed by stimulation with 10^{-8} M fMLP in low calcium (<10 nM) medium. F-actin content is expressed as the RFI relative to control (untreated) cells, calculated as described in Materials and Methods. Each value represents the mean ± SEM of five determinations. Asterisks indicate $P < 0.05$ with respect to the control, determined by analysis of variance for repeated measures with correction for multiple comparisons (Shefee).

Figure 1. Relative time courses of intracellular calcium (a and b, top traces) and right angle light scatter (a and b, bottom traces) in neutrophils in response to stimulation with 10^{-4} M fMLP or 10^{-6} M ionomycin in low calcium medium (<10 nM). The arrow indicates the time at which the specified stimulus was added. The discontinuity of the traces represents the artifact created by opening the lid of the sample compartment of the fluorimeter that closes the shutter of the photomultiplier tube. Each trace is representative of at least four determinations. Note the failure of fMLP to increase intracellular calcium after pretreatment with ionomycin in low calcium medium (b, top trace) but that the changes in light scattering under the same conditions reflect changes in [Ca$^{2+}$].

Figure 2. F-actin content of electropereableized neutrophils equilibrated with media containing 100 nM free calcium, buffered with either 1 or 10 mM EGTA as indicated. Where specified, the cells were stimulated with 10^{-4} M fMLP for 1 min at 37°C. Data are expressed as the RFI relative to control neutrophils incubated in a comparable concentration of EGTA. Each value represents the mean ± SEM of five determinations. Asterisks indicate $P < 0.05$ with respect to the control, determined by student's t test for paired data.
Figure 3. F-actin content of electropermeabilized neutrophils equilibrated with media containing 1 mM EGTA and either 100 nM or <10 nM free calcium (obtained by adding EGTA to nominally calcium-free solution) as specified. Where indicated, the cells were treated with 10^-8 M fMLP or 200 μM GDP-β-S, or pretreated as the RFI relative to control neutrophils that are permeabilized and maintained in 100 nM free calcium. Each value represents the mean ± SEM of at least five determinations. Asterisks indicate P < 0.05 with respect to the control (100 nM free calcium), determined by analysis of variance for repeated measures with correction for multiple comparisons (Sheffe).

Chemotaxant-stimulated polymerization was evident not only in the regular permeabilization medium, which is buffered at 100 nM [Ca^{2+}] with 1 mM EGTA, but also when the cytosol was equilibrated with a more heavily buffered solution, containing 10 mM EGTA but the same free [Ca^{2+}] (Fig. 2). The continuity between the external medium and the cytosol, together with the high buffering capacity of the medium used, ensured that changes in [Ca^{2+}], in response to fMLP, if present, were minimal. Together, these observations indicate that an elevation of [Ca^{2+}] is neither sufficient nor necessary for chemotaxant-induced actin assembly.

Effects of Varying [Ca^{2+}] on Resting and Stimulated Actin Polymerization

Though an increase in [Ca^{2+}], does not appear to be essential for actin polymerization, the presence of physiological (resting) [Ca^{2+}] levels may have a "permissive" effect, as has been shown for the chemotaxant-induced respiratory burst (Sklar and Oades, 1985). To determine if the presence of intracellular calcium was required for actin assembly to occur, [Ca^{2+}] was lowered to <10 nM by incubating electropermeabilized neutrophils with nominally calcium-free permeabilization buffer (5 mM EGTA with no added CaCl_2). As shown in Fig. 3, these conditions resulted in a spontaneous assembly of actin in the absence of exogenously added stimuli (RFI at 100 nM [Ca^{2+}] = 1.0 vs. 1.55 ± 0.12 at [Ca^{2+}] < 10 nM, n = 9, P < 0.05). The spontaneous actin polymerization promoted by lowering [Ca^{2+}] was not inhibited by addition of GDP-β-S, nor by pretreatment of the cells with pertussis toxin (Fig. 3), suggesting that this effect was not mediated by a GTP-binding protein. Under low calcium conditions ([Ca^{2+}] < 10 nM), the receptor-mediated pathway for actin assembly remained functional, as evidenced by the response to the subsequent addition of fMLP, which resulted in further G- to F-actin transformation (Fig. 3). Thus, calcium does not appear to play a permissive role in chemotaxant-induced actin assembly.

Because reduction of [Ca^{2+}], in the permeabilized cells led to an unexpected spontaneous actin polymerization, it was of interest to establish the effects of increasing [Ca^{2+}], under otherwise comparable conditions. Electroporated cells were permeabilized in EGTA-buffered media containing physiologic free [Ca^{2+}] (100 nM). The appropriate amount of CaCl_2 (calculated using the algorithm of Fabiato and Fabiato, 1979) was then added to obtain the desired free [Ca^{2+}], and F-actin content was measured using NBD-phallacidin. The results of these experiments are summarized in Fig. 4. Increasing the medium free [Ca^{2+}], and therefore also [Ca^{2+}], above the physiological level of 100 nM caused substantial actin disassembly. This effect was evident at levels of free [Ca^{2+}] above 500 nM and appeared to be maximum at >10 μM (Fig. 4 a). The calcium-induced actin disassembly was time dependent, peaking between 30 s and 1 min and returning to near baseline levels by 5 min (Fig. 4 b). Calcium-induced depolymerization was not mediated by the response to the subsequent addition of fMLP, which was not mediated by a GTP-binding protein. Under low calcium conditions ([Ca^{2+}] < 10 nM), the receptor-mediated pathway for actin assembly remained functional, as evidenced by the response to the subsequent addition of fMLP, which resulted in further G- to F-actin transformation (Fig. 3). Thus, calcium does not appear to play a permissive role in chemotaxant-induced actin assembly.

Figure 4. (a) Effect of varying free calcium on the F-actin content of electropermeabilized neutrophils. Cells were permeabilized in EGTA-buffered medium containing 100 nM free calcium (RFI = 1). After 1 min equilibration at 37°C, additional CaCl_2 was added to give the specified free calcium concentration (0.5, 1, 10, and 100 μM), calculated according to the method of Fabiato and Fabiato (1979). Each value represents the mean ± SEM of four determinations. Asterisks indicate P < 0.05 with respect to the control (100 nM free calcium), determined by analysis of variance for repeated measures with correction for multiple comparisons (Sheffe). (b) Time course of the changes in F-actin content induced by elevated intracellular calcium. Electroporomobilized neutrophils were permeabilized with EGTA-buffered medium containing 100 nM free calcium (RFI = 1). After 1 min, additional CaCl_2 was added to elevate the free calcium concentration to 10 μM and samples were taken at the time periods specified. Each value represents the mean ± SEM of five determinations. Asterisks indicate P < 0.05 with respect to the control (100 nM free calcium), determined by analysis of variance for repeated measures with correction for multiple comparisons (Sheffe).
by GTP-binding proteins, inasmuch as it was not inhibited by either the addition of 200 μM GDP-β-S to electroporomabilized cells (in six experiments, RFI with 10 μM Ca²⁺ was 0.60 ± 0.16 vs. 0.53 ± 0.28 in the absence and presence of GDP-β-S, respectively), or by pretreating intact cells with pertussis toxin before permeabilization (RFI in 10 μM Ca²⁺ was 0.59 ± 0.26, n = 4). These conditions are known to prevent fMLP-induced actin assembly, a GTP-protein-mediated event (Downey et al., 1989; Therrien and Naccache, 1989).

We compared the relative F-actin content of neutrophils as a function of [Ca²⁺]i, in the presence and absence of fMLP. The results are summarized in Fig. 5. Perusal of these data indicates that actin polymerization can be induced by reducing [Ca²⁺]i, as well as by treatment with fMLP at constant [Ca²⁺]. Thus, the effect of the chemoattractant is equivalent to reducing the susceptibility of the filaments to disassembly by calcium. As the level of free [Ca²⁺]i was increased above 1 μM, exposure to fMLP failed to produce significant polymerization. At supraphysiological [Ca²⁺]i, actin disassembly resulted regardless of the order of exposure to high Ca²⁺ and fMLP. Moreover, raising free Ca²⁺ above 1 μM after stimulation with fMLP at normal [Ca²⁺] completely reversed the chemoattractant-induced actin assembly (in five experiments RFI for fMLP at 100 nM Ca²⁺ was 2.14 ± 0.24 versus 0.78 ± 0.16 for fMLP at 100 nM Ca²⁺ followed by 10 μM Ca²⁺). Therefore, the depolymerizing effect of Ca²⁺ supersedes the polymerizing action of fMLP.

Calcium Ionophore vs. Electroporation-induced Increases in [Ca²⁺]

The effects on actin assembly were diametrically opposed when [Ca²⁺]i was raised by electroporation when compared with the use of ionophores. The latter method induced a delayed polymerization (increased F-actin content), whereas increasing [Ca²⁺]i in electroporated cells decreased F-actin content (cf. Figs. 1 and 4). The experiments described in this section were intended to reconcile these apparently discrepant observations. Treatment of intact cells with ionomycin in calcium containing solutions elicited a shape change associated with actin assembly (Fig. 6 c). As shown in Fig. 6 a, this response was partially inhibited by omission of extracellular calcium, suggesting that mobilization of internal calcium stores suffices to generate actin polymerization, or that the effects of the ionophore are unrelated to [Ca²⁺]i. It is unlikely that the response to ionomycin is nonspecific, due for instance to the insertion of the ionophore into the plasma membrane bilayer. This was concluded because, as described by others (Howard and Wang, 1987), addition of the structurally unrelated calcium ionophore A23187 also resulted in actin assembly (Fig. 6, b and d). As was the case for ionomycin, omission of external calcium decreased, but did not entirely eliminate the response to A23187 (Fig. 6 b).

On the other hand, experiments with pertussis toxin sug-

2. For these experiments, the cells were resuspended in the permeabilization medium containing the specified [Ca²⁺]i and equilibrated for 1 min before exposure to fMLP for an additional minute. Unlike the cells in Fig. 4, the control cells for these experiments, which remained in the permeabilization medium for the same period of time (2 min), did not demonstrate significant disassembly induced by [Ca²⁺]i. In the range of 500 nM to 1 μM. Since the calcium-induced actin disassembly is time dependent (Fig. 4 b), it is possible that the cells had returned to their baseline at the time of fixation.

3. While this decrease in light scattering was observed in four out of five experiments, a decrease in F-actin content was observed in only three out of six experiments and the mean of the experiments was not significantly <1. We interpret this to reflect incomplete inhibition of the GTP-binding protein by pertussis toxin in some of the experiments. Alternatively, under these conditions a decrease in light scattering may reflect changes in other cellular properties, such as granularity.

*Figure 5. Effect of fMLP on the F-actin content of electroporomabilized neutrophils equilibrated with EGTA-buffered media of varying free calcium concentration. The cells were permeabilized in media of the specified free calcium concentration, equilibrated for 1 min, and then incubated with (top curve) or without 10⁻⁸ M fMLP for an additional minute. Relative F-actin content was assayed by NBD-phallacidin staining. All data are expressed relative to the F-actin content of untreated cells suspended in 100 nM free calcium (RFI = 1). Each value represents the mean ± SEM of five experiments.***
concentration of extracellular calcium, a supraphysiological $[\text{Ca}^{2+}]$, is attained in the vicinity of the plasma membrane upon treatment with the ionophores. This abnormally high $[\text{Ca}^{2+}]$ could stimulate phospholipid hydrolysis by phospholipase A$_2$, a calcium-sensitive enzyme, generating arachidonic acid (Matsumoto et al., 1988). The products of lipid hydrolysis by phospholipase A$_2$ (e.g., arachidonic acid) or one of their metabolites, such as platelet activating factor (PAF) or leukotriene B$_4$ (LTB$_4$) (Naccache, 1987; Graff and Anderson, 1989), could be responsible for actin assembly, through a receptor-mediated (and in the case of PAF and LTB$_4$, pertussis toxin-sensitive) pathway. To investigate the possibility that PAF was signaling actin assembly, the neutrophils were pretreated with two chemically unrelated PAF antagonists: WEB-2086 and L659,989 (Hellewell and Williams, 1989). As demonstrated in Table I, these antagonists inhibited PAF-induced actin assembly but did not attenuate the responses induced by A23187 or ionomycin, making it unlikely that PAF was mediating the effects of the ionophores.

We next investigated whether formation of LTB$_4$ and subsequent interaction with its receptor could account for the polymerization of actin triggered by the ionophores. For this purpose, we used a specific LTB$_4$ antagonist, compound LY-223982 (Sheppell et al., 1989; Omann et al., 1989). As shown in Fig. 7, pretreatment of the cells for 1 min with this agent largely abolished the response to exogenously added LTB$_4$ (10$^{-8}$ M). A similar treatment with LY-223982 completely inhibited actin polymerization induced by either A23187 or ionomycin,4 but not that induced by fMLP (Fig. 7). The finding that LY-223982 had no effect on the response to fMLP indicates that the inhibitory effects of the leukotriene antagonist are specific. Furthermore, treatment with LY-223982 did not abolish the ionophore-induced increase in $[\text{Ca}^{2+}]$, (data not shown). Thus, the data suggest that the actin polymerization induced by either A23187 or ionomycin is likely secondary to ionophore-induced stimulation of phospholipase A$_2$ in response to the elevated $[\text{Ca}^{2+}]$, resulting in arachidonate release and oxidation to LTB$_4$. The leukotriene can then interact with plasma membrane receptors of the same or vicinal cells, stimulating actin polymerization through a pertussis toxin-sensitive GTP-binding protein. Such a mechanism would account for two earlier observations: (a) that the actin-polymerizing effect of the ionophores is sensitive to pertussis toxin and (b) that there is a slight delay between the ionophore-induced calcium influx and the initiation of actin polymerization.

In conclusion, several lines of evidence strongly suggest that fMLP-induced actin polymerization does not depend on an increase of $[\text{Ca}^{2+}]$. First, significant actin assembly in response to the chemotactic peptide was noted (a) in cells pretreated with ionomycin in low calcium medium, under conditions where fMLP had little effect on $[\text{Ca}^{2+}]$, (Fig. 1), and (b) in electropermeabilized cells equilibrated with media containing high concentrations of calcium buffering agents (Fig. 2). Though the occurrence of small, localized changes

4. LY-223982 is a specific LTB$_4$ receptor antagonist with no other known actions (Sheppell et al., 1989; Omann et al., 1989). In preliminary studies (Lue, D., and S. Grinstein, unpublished observations) we have demonstrated that LY-223982 inhibits LTB$_4$-induced superoxide production but not that due to either fMLP or arachidonic acid, supporting its specificity of action on the LTB$_4$ receptor.

5. A similar dose of LY-223982 inhibited actin polymerization more thoroughly in ionomycin-stimulated cells than in LTB$_4$-treated ones, despite the fact that the ionophore response was larger. This may be due to the unmasking of the direct actin depolymerizing effect of elevated $[\text{Ca}^{2+}]$, depicted in Fig. 4.
Table 1. Effect of PAF Antagonists on Calcium Ionophore-induced Actin Assembly

Condition	RFI
Control	1.0
PAF 10^{-8} M	2.30 ± 0.16
PAF 10^{-8} M (PreRx WEB 2086)	1.37 ± 0.13
PAF 10^{-8} M (PreRx L659,989)	1.14 ± 0.16
A23187 10^{-6} M	3.47 ± 0.32
A23187 10^{-6} M (PreRx WEB 2086)	3.18 ± 0.41
A23187 10^{-6} M (PreRx L659,989)	3.03 ± 0.15
Ionomycin 10^{-6} M	3.56 ± 0.27
Ionomycin 10^{-6} M (PreRx WEB 2086)	3.48 ± 0.29
Ionomycin 10^{-6} M (PreRx L659,989)	2.80 ± 0.13

Where indicated, intact neutrophils were pretreated with either WEB 2086 or L659,989 at a concentration of 10^{-8} M for 10 min at 37°C prior to stimulation with PAF or the indicated ionophore. The reaction was then terminated and actin polymerization determined using NBD-phallacidin as described in Materials and Methods. Data are presented as RFI ± SEM of n = 5 experiments.

in [Ca^{2+}], could not be rigorously excluded, additional evidence makes it unlikely that an increase in cytosolic Ca^{2+} initiated the conversion of G- to F-actin. Increasing [Ca^{2+}] in electropermeabilized cells, in the absence of ionophores or other neutrophil stimuli, resulted in actin disassembly (Fig. 4). Such an actin-depolymerizing effect of calcium has been postulated in other cell types such as adrenal chromaffin cells (Sontag et al., 1988; Burgoyne et al., 1989). Furthermore, the prevailing [Ca^{2+}] appeared to determine the sensitivity of the actin assembly pathway to subsequent stimulation with IMLP, with progressively smaller responses obtained at higher [Ca^{2+}], (Fig. 5). Finally, we reconciled the disparate effects of the calcium ionophores and of electropermeabilization on the induction of actin assembly. Increased F-actin content in response to ionophores is sensitive to pertussis toxin, implying mediation by GTP-binding proteins, and is inhibited in the presence of an LTB4 antagonist. These findings suggest that the ionophores activate phospholipase A2, and that the arachidonate released is metabolized via the lipoygenase pathway. According to this model, LTB4 would be directly responsible for activation of the cells. In contrast, equilibration of permeabilized cells in high [Ca^{2+}] media exposes a direct actin depolymerizing effect of calcium (Fig. 4). The latter can be unmasked in intact cells treated with ionophore, provided the G proteins that mediate stimulation of actin assembly are inhibited by pertussis toxin (Fig. 6, c and d).

We therefore believe that, under physiological conditions, the result of increased [Ca^{2+}] during stimulation is to promote actin disassembly, an effect that may be mediated through calcium sensitive actin-serving protein(s) such as gelsolin, which is known to be activated by [Ca^{2+}], in the range of 500–1,000 nM (Yin et al., 1980). Thus, in response to a receptor-mediated stimulus such as IMLP, actin polymerization is initiated by a pathway involving a GTP-binding protein, perhaps via the PIP2-induced dissociation of profilin from the profilactin complex (Lassing and Lindberg, 1985; Stossel, 1989). This polymerization pathway would be independent of changes in [Ca^{2+}], and thus compatible with our observations. Simultaneously or shortly thereafter, the transient increase in [Ca^{2+}] would result in activation of calcium-sensitive actin-severing protein(s), promoting actin depolymerization. The ensuing sequential assembly and disassembly of actin filaments could be essential for neutrophil function. In this regard, oscillations in both [Ca^{2+}] (Marks and Maxfield, 1990) and F-actin content (Omann et al., 1989) were recently reported to occur in stimulated phagocytes. Such oscillations may be an indication that a series of actin assembly/disassembly steps, rather than a single cycle, is required for chemotaxis and/or phagocytosis.

We wish to thank Ms. Cheryl Smith and Mr. J. Davidson for assistance in flow cytometry.

This work was supported by the Medical Research Council of Canada, the Ontario Thoracic Society, and the National Sanatorium Association. Dr. Downey is the recipient of a Career Scientist Award from the Ontario Ministry of Health and Dr. Grinstein of a Scientist Award from the Medical Research Council of Canada.

Received for publication 23 January 1990 and in revised form 2 March 1990.

References

Bengtsson, T., O. Stendahl, and T. Andersson. 1986. The role of cytosolic free calcium transient for Met-Leu-Phc induced actin polymerization in human neutrophils. Eur. J. Cell Biol. 42:338–343.

Burgoyne, R. D., A. Morgan, and A. J. O’Sullivan. 1989. The control of cytoskeletal actin and exocytosis in intact and permeabilized adrenal chromaffin cells: role of calcium and protein kinase C. Cell. Signal. 1:323–334.

Cockcroft, S., and B. D. Gomperts. 1985. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature (Lond.). 314:534–536.

Downey, G. P., and S. Grinstein. 1989. Receptor-mediated actin assembly in electropermeabilized neutrophils: role of intracellular pH. Biochem. Biophys. Res. Commun. 160:18–24.

Downey, G. P., R. S. Gumbay, D. E. Doherty, J. F. LaBreque, J. M. Henson, P. M. Henson, and G. S. Worthen. 1988. PGE2 enhancement of pulmonary inflammation: evidence for a vasodilator effect. J. Appl. Physiol. 64:728–741.

Downey, G. P., C. K. Chan, and S. Grinstein. 1989. Receptor-mediated actin assembly in electropermeabilized neutrophils: role of G-proteins. Biochem. Biophys. Res. Commun. 164:700–705.

Fabia, A., and F. Fabia. 1979. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. (Paris). 164:728–741.

Graff, G., and L. A. Anderson. 1989. 1-[4-[3-[4-[3-hydroxy-2-methyl-1-piperidinyl]propoxy]-3-methoxyphenyl]ethanone (AH-5333): a selective human blood neutrophil 5-lipoxygenase inhibitor. Prostaglandins. 38:473–96.

Grinstein, S., and W. Furuya. 1986. Cytoplasmic pH regulation in phorbol es-
ter activated human neutrophils. Am. J. Physiol. 251:C55–C65.

Grinstein, S., and W. J. Furuya. 1988. Receptor-mediated activation of electropermeabilized neutrophils. Evidence for a Ca\(^{2+}\) and protein kinase C-independent signalling pathway. Biol. Chem. 263:1779–1783.

Hartwig, J. H., K. A. Chambers, and T. P. Stossel. 1989. Association of gelsolin with actin filaments and cell membranes of macrophages and platelets. J. Cell. Biol. 108:467–479.

Haslett, C., L. A. Guthrie, M. M. Kopaniak, R. B. Johnston, Jr., and P. M. Henson. 1985. Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am. J. Pathol. 119:101–108.

Hellewell, P. G., and T. J. Williams. 1989. Antagonism of PAF-induced oedema formation in rabbit skin: a comparison of different antagonists. Br. J. Pharmacol. 97:171–180.

Howard, T. H., and W. H. Meyer. 1984. Chemotactic peptide modulation of actin assembly and locomotion in neutrophils. J. Cell Biol. 98:1265–1271.

Howard, T. H., and D. Wang. 1987. Calcium ionophore phorbol ester and chemotactic peptide-induced cytoskeletal reorganization in human neutrophils. J. Clin. Invest. 79:1359–1364.

Korn, E. 1982. Actin polymerization and its regulation by proteins from non-muscle cells. Physiol. Rev. 62:672–737.

Lassing, I., and U. Lindberg. 1985. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature (Lond.). 314:472–474.

Lew, D. 1989. Receptor signalling and intracellular calcium in neutrophil activation. Eur. J. Clin. Invest. 19:338–346.

Marks, P. W., and F. R. Maxfield. 1990. Transient increases in cytosolic free calcium appear to be required for migration of adherent human neutrophils. J. Cell Biol. 110:43–52.

Matsumoto, T., T. Weeng, and R. I. Sha'afi. 1988. Demonstration of calcium-dependent phospholipase A activity in membrane preparation of rabbit neutrophils. Biochem. J. 250:343–348.

Naccache, P. H. 1987. Signals for actin polymerization in neutrophils. Biomed. & Pharmacother. 41:297–304.

Nasmith, P. E., and S. Grinstein. 1987. Phorbol ester-induced changes in cytoplasmic Ca\(^{2+}\) in human neutrophils. Involvement of a pertussis toxin-sensitive G-protein. J. Biol. Chem. 258:13558–13566.

Omann, G. M., R. A. Allen, G. M. Bokoch, R. G. Painter, A. E. Traynor, and L. A. Sklar. 1987. Signal transduction and cytoskeletal activation in the neutrophil. Physiol. Rev. 67:285–322.

Omann, G. M., Porasik, M. M., and L. A. Sklar. 1989. Oscillating actin polymerization/depolymerization responses in human polymorphonuclear leukocytes. J. Biol. Chem. 264:16355–16358.

Pozzan, T., D. P. Lew, C. B. Wollheim, and R. Y. Tsien. 1983. Is cytosolic ionized calcium regulating neutrophil activation? Nature (Lond.). 221:1413–1415.

Shappell, S. B., C. W. Smith, A. C. Gasic, A. A. Taylor, and J. R. Mitchell. 1989. Effects of a specific LTβ, antagonist on human neutrophil function. FASEB (Fed. Am. Soc. Exp. Biol.) J. 3:A2145.

Shefeyk, J., R. Yassin, M. Volpi, T. F. P. Molski, P. M. Naccache, J. J. Muñoz, B. L. Becker, M. B. Feinstein, and R. I. Sha’afi. 1985. Pertussis toxin but not cholera toxin inhibits the stimulated increase in actin association with the cytoskeleton in rabbit neutrophils: role of “G-proteins” in stimulus-response coupling. Biochem. Biophys. Res. Commun. 126:1174–1181.

Sha’afi, R. I., and T. F. P. Molski. 1988. Activation of the neutrophil. Prog. Allergy. 42:1–64.

Shefeyk, J., J. Shefeyk, R. Yassin, T. F. P. Molski, M. Volpi, P. H. Naccache, J. R. White, M. B. Feinstein, and E. L. Becker. 1986. Is a rise in intracellular free calcium necessary or sufficient for actin polymerization. J. Cell Biol. 102:1459–1463.

Shesterline, P. J., E. Rickard, B. Boothroyd, and R. C. Richards. 1986. Phorbol ester induces rapid actin assembly in neutrophil leukocytes independently of changes in Ca\(^{2+}\), and pH. J. Muscle Res. Cell Motil. 7:405–412.

Sklar, L. A., Z. G. Oudes, and D. A. Finney. 1984. Neutrophil degranulation detected by right angle light scattering: spectroscopic methods suitable for simultaneous analysis of degranulation or shape change, elastase release, and cell aggregation. J. Immunol. 133:1483–1487.

Sklar, L. A., G. M. Omann, and R. A. Painter. 1985. Relationship of actin polymerization and depolymerization to light scattering in human neutrophils: dependence on receptor occupancy and intracellular calcium. J. Cell Biol. 101:1161–1166.

Sonag, J. M., D. Aunis, and M. F. Bader. 1988. Peripheral actin filaments control calcium-mediated catecholamine release from streptolysin-O-permeabilized chromaffin cells. Eur. J. Cell Biol. 46:316–326.

Southwick, F. S., G. A. Dahari, M. Paschetta, and S. H. Zigmond. 1989. Polymorphonuclear leukocytes adherence induces actin polymerization by a transduction pathway which differs from that used by chemoattractants. J. Cell Biol. 109:1561–1569.

Stendahl, O. I., and T. P. Stossel. 1980. Actin-binding protein amplifies actomyosin contraction, and gelsolin confers calcium control on the direction of contraction. Biochem. Biophys. Res. Commun. 92:675–681.

Stossel, T. P. 1989. From signal to pseudopod. How cells control cytoplasmic actin assembly. J. Biol. Chem. 264:18261–18264.

Therrien, S., and P. H. Naccache. 1989. Guanine nucleotide-induced polymerization of actin in electropermeabilized neutrophils. J. Cell Biol. 109:1125–1132.

Wallace, P. J., R. P. Wetzao, C. H. Packman, and M. A. Lichtman. 1984. Chemotactic peptide-induced changes in neutrophil actin conformation. J. Cell Biol. 99:1060–1065.

Worthen, G. S., B. Schwab, E. L. Elson, and G. P. Downey. 1989. Cellular mechanics of stimulated neutrophils: stiffening of cells induces retention in pores in vitro and lung capillaries in vivo. Science (Wash. DC). 245:183–186.

Yin, H. L., K. S. Zaner, and T. Stossel. 1980. Calcium control of actin gelation. Interaction of gelsolin with actin filaments and regulation of actin gelation. J. Biol. Chem. 255:9494–9500.

Yuli, I., R. J. Synderman. 1984. Rapid light scattering from human polymorphonuclear leukocytes exposed to chemoattractants. Discrete responses correlated with chemotactic and secretory functions. J. Clin. Invest. 73:1408–1417.