Appendix S1

Ecosphere

Agricultural landscape composition affects the development and life expectancy of colonies of *Bombus impatiens*

Gervais, A., V. Fournier & M. Bélisle

Table S1. ΔAICc comparing both scale (500m vs 1000m) for all models

Models	ΔAICc 500m	ΔAICc 1000
Max quad weight	0	1.52
Colony survival	0	3.75
Queen production	0	4.23
Nest weight	0	0.28
Depredation	1.1	0
Pollen	0	1.9
mean	0.18	1.95
Table S2. Model-averaged coefficients and their unconditional 95% confidence intervals estimated by multimodel inference following model selection (see Table 2). Model coefficients were computed with standardized explanatory variables (zero mean and unit variance).

Response variable	Model Type	Random factor	Averaged parameters	95% IC
Max Quad weight (kg)	LM	None	Intensive crops	-0.39, -0.60, -0.17
			Flowering crops	0.23, 0.005, 0.45
			Flower diversity	0.14, -0.10, 0.32
Colony survival	Cox regression	Quad	Intensive crops	-1.90, -2.39, -1.40
			Flowering crops	1.61, 1.14, 2.09
			Flowering crops X Flower diversity	0.03, -0.48, 0.53
			Flowering crops X Flower diversity	0.48, -0.17, 1.12
Queen production	GLMM (neg. binom.)	Quad	Intensive crops	-0.06, -0.22, 0.09
			Flowering crops	-0.02, -0.16, 0.12
			Flower diversity	0.08, -0.08, 0.27
			Intensive crops X Flowering crops	-0.11, -0.28, 0.07
			Flowering crops X Flower diversity	0.06, -0.14, 0.27
			Intensive crops X Flower diversity	-0.25, -0.48, -0.02
Nest weight (g)	LMM	Quad	Intensive crops	-6.45, -13.55, 0.66
			Flowering crops	11.29, 4.93, 17.65
			Flower diversity	-8.41, -15.65, -1.17
			Depredation	10.63, -5.80, 27.06
			Intensive crops X Flowering crops	1.35, -6.04, 8.74
			Flowering crops X Flower diversity	-1.73, -9.11, 5.65
			Intensive crops X Flower diversity	-8.48, -19.07, 2.12
Depredation probability	GLMM (binomial)	Quad	Intensive crops	-0.20, -4.31, 3.91
			Extensive crops	0.68, -4.24, 5.60
			Quad weight	0.05, -3.25, 3.36
			Intensive crops X Extensive crops	-0.36, -5.24, 4.52
			Intensive crops	-0.04, -0.16, 0.08
Pollen species richness	GLM (neg. binom.)	None	Flowering crops	-0.14, -0.01, -0.27
			Flower diversity	0.02, -0.11, 0.14
			Intensive crops X Flowering crops	0.06, -0.09, 0.20
			Flowering crops X Flower diversity	0.08, -0.03, 0.21
			Intensive crops X Flower diversity	0.22, 0.07, 0.38
Table S3. Estimated coefficients for every parameter of the more complex Max quad weight model with their associated standard error and variation inflation factor (VIF). The VIF quantifies the severity of multicollinearity within the model, where parameters with VIF >5 are considered as highly multicollinear.

Parameters	Estimate	Standard error	VIF
Intercept	6.05	0.11	X
INT	-0.39	0.11	1.06
FLO	0.24	0.11	1.09
LOC	0.11	0.11	1.03
Table S4. Estimated coefficients for every parameter of the more complex colony survival model with their associated standard error and variation inflation factor (VIF). The VIF quantifies the severity of multicollinearity within the model, where parameters with VIF > 5 are considered as highly multicollinear.

Parameters	Estimate	Standard error	VIF
INT	-1.84	6.28	1.25
FLO	1.65	0.19	1.28
LOC	-0.27	1.31	1.23
INT x FLO	0.49	0.61	1.71
INT x LOC	0.03	0.97	1.63
FLO x LOC	0.48	0.62	1.28
Table S5. Estimated coefficients for every parameter of the more complex queen production model with their associated standard error and variation inflation factor (VIF). The VIF quantifies the severity of multicollinearity within the model, where parameters with VIF >5 are considered as highly multicollinear.

Parameters	Estimate	Standard error	VIF
Intercept	2.25	0.09	X
INT	-0.09	0.08	1.70
FLO	-0.09	0.08	1.40
LOC	0.01	0.10	1.63
INT x FLO	-0.13	0.10	1.80
INT x LOC	-0.25	0.12	1.39
FLO x LOC	0.06	0.10	2.04
Table S6. Estimated coefficients for every parameter of the more complex nest weight model with their associated standard error and variation inflation factor (VIF). The VIF quantifies the severity of multicollinearity within the model, where parameters with VIF > 5 are considered as highly multicollinear.

Parameters	Estimate	Standard error	VIF
Intercept	80.77	5.02	X
depredation	18.15	8.14	1.84
INT	-8.63	3.44	1.40
FLO	10.51	3.34	1.30
LOC	-10.06	3.79	1.73
INT x FLO	-1.26	4.21	1.71
INT x LOC	-8.47	5.41	1.58
FLO x LOC	-1.73	3.76	1.63
Table S7. Estimated coefficients for every parameter of the more complex depredation model with their associated standard error and variation inflation factor (VIF). The VIF quantifies the severity of multicollinearity within the model, where parameters with VIF > 5 are considered as highly multicollinear.

Parameters	Estimate	Standard error	VIF
Intercept	-7.20	3.13	X
Max weight	-0.56	2.89	3.31
INT	-0.29	2.17	2.07
EXT	0.71	2.49	1.79
INT x EXT	-0.36	-0.36	1.17
Table S8. Estimated coefficients for every parameter of the more complex pollen model with their associated standard error and variation inflation factor (VIF). The VIF quantifies the severity of multicollinearity within the model, where parameters with VIF > 5 are considered as highly multicollinear.

Parameters	Estimate	Standard error	VIF
Intercept	0.96	0.05	X
INT	-0.01	0.05	1.23
FLO	-0.09	0.05	1.21
LOC	0.04	0.05	1.24
INT x FLO	0.17	0.07	1.75
INT x LOC	0.23	0.08	1.29
FLO x LOC	0.09	0.06	1.58