Huang, Zhiheng; Zhao, Yanchong; Bo, Tao; Chu, Yanbang; Tian, Jinpeng; Liu, Le; Yuan, Yalong; Wu, Fanfan; Zhao, Jiaojiao; Xian, Lede; Watanabe, Kenji; Taniguchi, Takashi; Yang, Rong; Shi, Dongxia; Du, Luojun; Sun, Zhipei; Meng, Sheng; Yang, Wei; Zhang, Guangyu

Spatially indirect intervalley excitons in bilayer WSe2

Published in: Physical Review B

DOI: 10.1103/PhysRevB.105.L041409

Published: 15/01/2022

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Huang, Z., Zhao, Y., Bo, T., Chu, Y., Tian, J., Liu, L., Yuan, Y., Wu, F., Zhao, J., Xian, L., Watanabe, K., Taniguchi, T., Yang, R., Shi, D., Du, L., Sun, Z., Meng, S., Yang, W., & Zhang, G. (2022). Spatially indirect intervalley excitons in bilayer WSe2. *Physical Review B, 105*(4), [L041409].
https://doi.org/10.1103/PhysRevB.105.L041409
Spatially indirect intervalley excitons in bilayer WSe$_2$

Zhiheng Huang,1,2 Yanchong Zhao,1,2 Tao Bo,1,3 Yanbang Chu,1,2 Jinpeng Tian,1,2 Le Liu,1,2 Yalong Yuan,1,2 Fanfan Wu,1,2 Jiaojiao Zhao,1,2 Lede Xian,1 Kenji Watanabe,4 Takashi Taniguchi,5 Rong Yang,1,3,6 Dongxia Shi,1,2,6 Luojun Du,1,2,7§ Zhipei Sun1,2,7,8 Sheng Meng,1,2,3,† Wei Yang,1,2,6,‡ and Guangyu Zhang1,2,3,6,8,§

1Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Songshan Lake Materials Laboratory, Dongguang, Guangdong Province 523808, China
4Research Center for Functional Materials, National Institute for Materials Science, I-1 Namiki, Tsukuba 305-0044, Japan
5International Center for Materials Nanoarchitectonics, National Institute for Materials Science, I-1 Namiki, Tsukuba 305-0044, Japan
6Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China
7Department of Electronics and Nanoeengineering, Aalto University, Tietotie 3, FI-02150 Espoo, Finland
8Quantum Technology Finland (QTF) Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland

DOI: 10.1103/PhysRevB.105.L041409

Spatially indirect excitons with displaced wave functions of electrons and holes play a pivotal role in a large portfolio of fascinating physical phenomena and emerging optoelectronic applications, such as valleytronics, exciton spin Hall effect, excitonic integrated circuit, and high-temperature superfluidity. Here, we uncover three types of spatially indirect excitons (including their phonon replicas) and their quantum-confined Stark effects in hexagonal boron nitride encapsulated bilayer WSe$_2$ by performing electric field-tunable photoluminescence measurements. Because of different out-of-plane electric dipole moments, the energy order between the three types of spatially indirect excitons can be switched by a vertical electric field. Remarkably, we demonstrate, assisted by first-principles calculations, that the observed spatially indirect excitons in bilayer WSe$_2$ are also momentum indirect, involving electrons and holes from Δ and $K'\Gamma$ valleys in the Brillouin zone, respectively. This is in contrast to the previously reported spatially indirect excitons with electrons and holes localized in the same valley. Furthermore, we find that the spatially indirect intervalley excitons in bilayer WSe$_2$ can exhibit considerable, doping-sensitive circular polarization. The spatially indirect excitons with momentum-dark nature and highly tunable circular polarization provide a firm basis for the understanding and engineering of technological applications in photonics and optoelectronics.

Excitons, hydrogen-atom-like electron-hole pairs bound by their mutual Coulomb interaction, play an important role in a wide variety of intriguing optoelectronic properties of materials [1–4]. Depending on whether the wave functions of electrons and holes are spatially separated, excitons can be divided into two types: spatially direct and indirect excitons. Because of the separation of the electrons and holes, spatially indirect excitons have a much longer lifetime than spatially direct excitons and are predicted to exhibit a wide spectrum of emergent physical phenomena, including but not limited to quantum-confined Stark effect [5–7], Bose-Einstein condensation [8–14], strongly correlated excitonic insulator states [15–17], high-temperature superconductivity [18], valley physics [19–21], and dissipationless exciton transistors [22–24]. The recent emergence of two-dimensional transition metal dichalcogenides (TMDCs) and their van der Waals (vdW) heterostructures offers an unprecedented platform to realize spatially indirect excitons. Indeed, spatially indirect excitons have thus far been demonstrated in a wide variety of TMDC homo- and heterostructures [19], such as MoS$_2$/WS$_2$ [25–27], MoS$_2$/WSe$_2$ [28,29], MoSe$_2$/WSe$_2$ [20,22,30–33], and bilayer MoS$_2$ [7,34–39]. Specially, owing to the strongly reduced dielectric screening, spatially indirect excitons in homo-/heterobilayers of TMDCs possess substantial binding energies and show crucial advantages for applications, for example, superfluidity at high temperature [9].

To date, the studies of spatially indirect excitons have mainly focused on the momentum-bright species with electrons and holes localized in the same valley of the Brillouin zone (BZ) [7,19–25,29–42]. On the other hand, because of the existence of multiple electronic valleys, TMDC homo- and heterobilayers can also exhibit spatially indirect excitons with momentum-dark nature (that is, electrons and holes are from different valleys of the BZ) [6,28,43–45]. Since electrons and holes are further separated in momentum space, spatially indirect intervalley excitons, in principle, can possess a longer lifetime than spatially indirect but momentum-direct excitons and represent an advantageous scenario for numerous...
Theoretical, experimental, and technological advances. However, in contrast to the well-studied spatially indirect excitons with momentum-bright features, experimental progress on spatially indirect intervalley excitons is still largely limited.

In this paper, we demonstrate three types of spatially indirect intervalley excitons (i.e., two $\Lambda-K$ transitions, one $\Lambda-\Gamma$ exciton, and their phonon replicas) and their quantum-confined Stark effects in hexagonal boron nitride (h-BN) encapsulated bilayer WSe$_2$ through the combination of electric field-dependent photoluminescence (PL) measurements and density functional theory (DFT) calculations. The energy order between the three types of spatially indirect intervalley excitons can be switched by an electric field, owing to their different electric dipole moments. Interestingly, these spatially indirect intervalley excitons in bilayer WSe$_2$ show considerable negative circular polarization that is highly tunable with electron doping. Our results not only provide a complete understanding of the puzzling multiplet emissions in WSe$_2$ bilayers but also present possibilities for valleytronics, high-temperature superfluidity, and advanced functionalities in photonics and optoelectronics.

Among various TMDCs, bilayer WSe$_2$ provides a promising platform for spatially indirect intervalley excitons. First, for bilayer WSe$_2$, the conduction band minimum is located at the Λ (Λ') points of the BZ, while the critical points of the valence band are at K/K' and Γ, as shown in Fig. 1(a) [46–49]. Consequently, the lowest exciton transition in bilayer WSe$_2$ should be momentum-indirect $\Lambda-K$ or $\Lambda-\Gamma$ excitons, in marked contrast to the momentum-direct $K-K$ transition in the monolayer case. Second, as the Bloch states at conduction band Λ and valence bands K and Γ have distinct orbital compositions [Fig. 1(a)], their wave functions show different interlayer hybridization and reside at different positions in real space [Fig. 1(b)] (Supplemental Material [50]) [47,51]. Therefore, momentum-indirect $\Lambda-K$ and $\Lambda-\Gamma$ excitons are also spatially indirect with finite out-of-plane electric dipole moments. Third, because of the substantial exciton-phonon coupling and the inevitable existence of defects [52–57], $\Lambda-K$ and $\Lambda-\Gamma$ transitions in bilayer WSe$_2$, in principle, can be activated by phonon/defect scattering and show strong PL responses. Although there have been some studies on spatially indirect intervalley excitons in bilayer WSe$_2$ [6,43,58–61], their underlying origin remains equivocal. In addition, previous researchers have reported only one type of $\Lambda-K$ exciton [6,43], the other type of $\Lambda-K$ transition and the $\Lambda-\Gamma$ exciton have not been revealed.

We fabricated high-quality h-BN encapsulated bilayer WSe$_2$ devices by a vdW-mediated dry transfer method (see Supplemental Material [50] for more details). Few-layer graphene was used as both the bottom and top gate electrodes to further screen the charged impurities on SiO$_2$ substrates and improve the device quality [Fig. 1(c)]. Three h-BN encapsulated bilayer WSe$_2$ devices (labeled as D1, D2, and D3) were studied, showing similar behavior (see Supplemental Material [50] for more details). Unless otherwise specified, the data presented here are taken from device D1 in a high vacuum at 10 K, excited by 1.96 eV (633 nm) radiation. The dual-gated devices enabled us to independently tune the vertical electric field (E_z) and doping density (n_d) (Supplemental Material [50]).

Figure 2(a) shows the PL spectrum of bilayer WSe$_2$ without applying gate voltages. Apart from the momentum-direct $K-K$ transitions at ~1.69 eV (X_0), seven lower energy peaks in the range of 1.50–1.65 eV (black dotted box), corresponding to the momentum-indirect transitions, can be clearly observed [6,59]. It is noteworthy that benefiting from the high quality of our samples, the number of momentum-indirect excitons revealed here is larger than that previously observed [6]. As we mentioned above, the momentum-indirect excitons in bilayer WSe$_2$ should also be spatially indirect. To confirm this, we performed electric-field-tunable PL measurements. Figure 2(b) depicts the color plot of PL spectra as a function of E_z. Obviously, all the momentum-indirect excitons are highly tunable with E_z, evidencing the quantum-confined Stark effects and their spatially indirect nature. Note that the emission energy of $K-K$ transition X_0 remains unchanged.
with E_z (Supplemental Material [50]). To better resolve the fine features, we plotted the first-order derivative of intensity ($\partial I / \partial E$) [Fig. 2(c)]. Figure 2(d) displays the energies of different spatially indirect intervalley emissions as a function of E_z, extracted from Fig. 2(c). The spatially indirect intervalley excitons in bilayer WS$_2$, at first glance, can be divided into two types: one [blue dashed lines in Fig. 2(d)] with cross-shape features and the other [red dashed lines in Fig. 2(d)] with a conversion from nonlinear Stark shift at small $|E_z|$ to linear Stark shift at large $|E_z|$.

We tentatively assigned the former (latter) type of spatially indirect intervalley excitons as Λ-Γ (Λ-K) transitions. Note that, here, we use Λ-K transitions to denote all the possible transitions between electrons at Λ/Λ' and holes at K/K' and the same for Λ-Γ transitions. We extracted the vertical displacement of these excitons from Fig. 2(c) using $d_{\perp} = -E t / qE_t$, where E is the emission energy, and q is the elementary charge. Note that the sign of d_{\perp} represents the direction of the electric dipole moment: positive (negative) means vertical upward (downward). For Λ-Γ transitions, the d_{\perp} is nearly fixed at ± 1.40 å [purple dots in Fig. 3(a)]. For Λ-K transitions, the d_{\perp} is ~ 1.80 å at zero electric field; then it gradually increases with the electric field; and finally, it saturates at ± 4.50 å [yellow dots in Fig. 3(b)].

To support our assignment, we then performed DFT calculations to derive the equivalent positions of spin-up/down wave functions at conduction band Λ and valence bands K and Γ. The equivalent position of a wave function is defined as $r_z = \int_{-\infty}^{+\infty} r |\varphi(r)|^2 dr$, where $|\varphi(r)|^2$ denotes the probability density of wave function $\varphi(r)$ at position r. The origin point (positive direction) is set as the midpoint between the two layers (vertical upward). For spin-up wave functions at conduction band Λ (Λ') and valence bands K (K') and Γ, the calculated equivalent positions at zero electric field are $r_z = -0.22t$ ($0.22t$), $-0.48t$ ($0.48t$) and 0, respectively [Fig. 1(b)], where $t = 6.6$ å is the interlayer distance of bilayer WS$_2$. For spin-down wave functions, the equivalent positions can be obtained simply by time-reversal symmetry (Supplemental Material [50]). It is worth noting that the equivalent positions of $\pm 0.48t$ indicate the virtually suppressed interlayer hybridization and spin-layer locking for holes at K'/K [62–64].

For Λ-Γ transitions, there are two paths with equal transition probability [Fig. 3(c)]. One is from spin-up electrons at Λ to holes at Γ with $d_{\perp} = r_z(\Gamma) - r_z(\Lambda) = 1.45$ å, and another is from spin-down electrons at Λ to holes at Γ with $d_{\perp} = r_z(\Gamma) - r_z(\Lambda) = -1.45$ å. Here, we take transitions from Λ to Γ as an example; transitions from Λ' to Γ could give the same results (Supplemental Material [50]). Remarkably, d_{\perp} obtained by first-principles calculations (± 1.45 å) is in good agreement with the experiments (± 1.40 å), confirming our assignment of Λ-Γ excitons [Fig. 3(a)].

For Λ-K transitions (here, we focus on spin-up holes at the K valley), there are four possible transition paths [Fig. 3(d)], depending on the spin and valley configuration of carriers. It is noteworthy that spatially indirect intervalley excitons...
with spin-triplet configuration in bilayer WSe$_2$ may be bright because of the broken out-of-plane mirror symmetry [65]. Among the four possible transitions, two of them (i.e., transitions associated with spin-down electrons at Λ and spin-up electrons at Λ') have a large d_L ($\sim -0.70 \ell = -4.62 \text{Å}$), while the other two (i.e., transitions associated with spin-up electrons at Λ and spin-down electrons at Λ') have a small d_L ($\sim -0.28 \ell = -1.85 \text{Å}$) [Fig. 3(d)]. According to the spatial inversion symmetry, we know that, for spin-up holes at the K' valley, there are also four possible transitions but with opposite d_L: two of them with a large positive d_L ($\sim 4.62 \text{Å}$) and the other two with a small positive d_L ($\sim 1.85 \text{Å}$) (Supplemental Material [50]). For $\Lambda-K'(\Lambda')$ transitions associated with spin-down holes, we can obtain similar results (Supplemental Material [50]). Again, a perfect agreement between theoretically calculated values and experimental results is obtained: $d_L = \pm 1.85$ and $\pm 4.62 \text{Å}$ obtained by DFT calculations match the experiments under zero electric field ($\pm 1.80 \text{Å}$) and large electric fields ($\pm 4.50 \text{Å}$) well [Fig. 3(b)]. Note that first-principles calculations show that d_L change slightly with E_z [Figs. 3(a) and 3(b)]. For example, the large d_L of $\Lambda-K$ transition changes from $\pm 4.62 \text{Å}$ at zero electric field to $\pm 4.50 \text{Å}$ at $E_z = 0.2 \text{V/\text{nm}}$, which is more consistent with our experimental results [Fig. 3(b)]. In short, we reveal three types of spatially indirect intervalley excitons: two $\Lambda-K$ transitions with different d_L and one $\Lambda-\Gamma$ excition, providing a complete understanding of the multiplet emissions in bilayer WSe$_2$.

Remarkably, our results manifest three unique features for these spatially indirect intervalley excitons. First, from the comparison of experimental results and first-principles calculations, it can be known that $\Lambda-K$ transition is dominated by the one with small d_L at $E_z = 0$ and then gradually becomes dominated by the one with large d_L as $|E_z|$ increases. Such an exotic characteristic of the $\Lambda-K$ transition can be understood as follows. Since the wave functions of electrons and holes overlap more, $\Lambda-K$ excitons with small d_L possess larger binding energy than those with large d_L. As a result, $\Lambda-K$ excitons with small d_L have a lower energy and dominate the emission when $E_z = 0$ (Supplemental Material [50]). When E_z is applied, the larger Stark shift would lead the $\Lambda-K$ transition with large d_L to having a lower energy and thus more occupancy than that with small d_L. Consequently, the $\Lambda-K$ transition with large d_L would gain an increasing contribution and eventually dominate the emission under a strong electric field (e.g., $|E_z| > 0.1 \text{V/\text{nm}}$). Note that, under an intermediate electric field, the emission is a mixed state, contributed by both $\Lambda-K$ transitions with large and small d_L. Second, for both $\Lambda-K$ and $\Lambda-\Gamma$ transitions, there are a series of replicas, labeled as $X_{\Lambda K}$ ($X_{\Lambda\Gamma}$), $X_{\Lambda K}^1$ ($X_{\Lambda\Gamma}^1$) and $X_{\Lambda K}^2$ ($X_{\Lambda\Gamma}^2$) in sequence of decreasing emission energy. For the two sets of highest-energy transitions (i.e., $X_{\Lambda K}$ and $X_{\Lambda\Gamma}$), the emission intensities are much darker than that of their replicas at lower energy (i.e., $X_{\Lambda K}^1$ and $X_{\Lambda\Gamma}^1$) [Fig. 2(b)], indicating that $X_{\Lambda K}/X_{\Lambda\Gamma}$ and $X_{\Lambda K}^1/X_{\Lambda\Gamma}^1$ have different origins. We tentatively attribute $X_{\Lambda K}$ ($X_{\Lambda\Gamma}$) and $X_{\Lambda K}^1$ ($X_{\Lambda\Gamma}^1$) to primary $\Lambda-K$ ($\Lambda-\Gamma$) transitions activated by defect scattering and their phonon replicas, respectively. Notably, the energy difference ($\sim 42 \text{meV}$) between the primary $X_{\Lambda K}$ ($X_{\Lambda\Gamma}$) and the phonon replica $X_{\Lambda K}^2$ ($X_{\Lambda\Gamma}^2$) that dominates the emission outstrips the single phonon energy in WSe$_2$ ($\sim 37 \text{meV}$) [56,66]. This indicates that phonon replicas come mainly from two-/multiphonon scattering, rather than one-phonon scattering. One plausible reason is that two-/multiphonon processes possess more scattering paths than one-phonon scattering. Third, $X_{\Lambda\Gamma}$ is $\sim 18 \text{meV}$ lower than $X_{\Lambda K}$ under zero electric field. This
FIG. 4. (a) Photoluminescence (PL) spectra of device D2 under σ^+ (red line) and σ^- (black line) detections, excited by σ^+ light. (b) The degree of circular polarization (DOP) corresponding to (a) as a function of emission energy. DOPs calculated from the measured (blue line) and Lorentz-fitted intensities (orange dots) agree well with each other. (c) Contour plot of the DOP as a function of photon energy (bottom axis) and n_0 (left axis). E_z remains unchanged. (d) The DOP vs n_0, calculated from the integral intensity in the energy range from 1.45 to 1.60 eV. n_0 denotes the doping density induced by gate voltage.

seems a counterintuitive result because the valence Γ valley is located below the valence K valley [Fig. 1(a)] [6,49], which makes it natural to expect $X_{\Lambda\Gamma}$ to have higher emission energy than $X_{\Lambda K}$. In fact, the observed transition energy is determined by the difference between the electronic bandgap and the exciton binding energy rather than electronic bandgap only. Since the effective mass of holes at the Γ point ($\sim 1.01 m_e$; m_e is the free electron mass) is much larger than that at the K point ($\sim 0.27 m_e$) [46,60], $X_{\Lambda\Gamma}$ possesses a larger binding energy than $X_{\Lambda K}$, and thus, it can become the lower energy excitonic state.

Finally, we study the valley properties of spatially indirect intervalley excitons in bilayer WSe$_2$. Figure 4(a) shows the helicity-resolved PL spectra of device D2 for co-circularly (red) and cross-circularly polarized detections (black), excited by σ^+ radiation. We quantify the degree of circular polarization as $\text{DOP} = \frac{I_{\text{co}} - I_{\text{cross}}}{I_{\text{co}} + I_{\text{cross}}}$, where I_{co} and I_{cross} denote the intensities detected under co- and cross-circularly polarized configurations, respectively. Figure 4(b) shows the DOP against the photon energy; the blue line is calculated directly from the measured intensities, while the orange dots present the DOP of spatially indirect intervalley excitons calculated from the fitting intensities. It is explicit that DOPs calculated from the measured and Lorentz-fitted intensities of each exciton peak agree well with each other. Thus, for simplicity, all the following DOPs are calculated directly with the measured intensities. Obviously, both $\Lambda-K$ and $\Lambda-\Gamma$ transitions evince considerable negative DOP (~ -0.2), whereas the momentum-direct $K-K$ transition has a positive DOP. Furthermore, we find that the DOP of spatially indirect intervalley excitons in bilayer WSe$_2$ is highly tunable with doping density n_0 [Fig. 4(c)]. Figure 4(d) shows the DOP as a function of n_0, calculated with the integrated intensity from 1.45 to 1.60 eV. The DOP almost keeps constant for hole doping but gradually vanishes with increasing electron doping density. Such negative, highly tunable circular polarization of spatially indirect intervalley excitons may provide device paradigms to exploit the valley degree of freedom other than K (e.g., Λ and Γ). In-depth theoretical studies, however, are required to fully figure out the optical selection rules/intervalley coupling mechanisms/the role of phonons and further the highly tunable negative circular polarization of spatially indirect intervalley excitons in bilayer WSe$_2$ [67,68].

During the preparation of the manuscript, we became aware of a similar independent work by Altaïary et al. [69]. Both our work and the work by Altaïary et al. [69] clearly uncover the underlying origin of the multiplet emissions in bilayer WSe$_2$, resolving previous debates. Meanwhile, our work unveils more features. First, our results demonstrate that there are two $\Lambda-K$ transitions with different d_\perp and with increasing E_z, $X_{\Lambda K}$ gradually changes from the one with small d_\perp to the one with large d_\perp, giving rise to the nonlinear Stark shift, while the work by Altaïary et al. [69] only reveals the $\Lambda-K$ transition with large d_\perp. Second, we uncover the doping-tunable circular polarization of
these spatially indirect intervalley excitons and their phonon replicas, providing a firm basis for photonics and optoelectronics.

In summary, we reveal three types of spatially indirect intervalley excitons (i.e., two $\Delta - \kappa$ transitions, one $\Delta - \Gamma$ exciton, and their phonon replicas) and their giant Stark shift in bilayer WSe$_2$ encapsulated by h-BN. Owing to their different electric dipole moments, the energy order and dominant luminescence between the three types of spatially indirect intervalley excitons can be switched by a vertical electric field. Remarkably, these spatially indirect intervalley excitons in bilayer WSe$_2$ show considerable negative circular polarization that is highly tunable with doping density. Our results not only provide a deep understanding of the multiplet momentum-dark emissions in bilayer WSe$_2$ but also hold a promising future for dissipationless exciton transport, high-temperature superfluidity, and valley-functional optoelectronic devices with multiple quantum degrees of freedom.

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplemental Material [50]. Additional data related to this paper may be requested from the authors.

We thank Yang Xu and Ting Wang in Institute of Physics, Chinese Academy of Sciences for useful discussion. This research was supported by the National Key Research and Development Program (Grants No. 2020YFA0309600 and No. 2018YFA0306900), the National Natural Science Foundation of China (Grants No. 61888102, No. 11834017, and No. 12074413), the Strategic Priority Research Program of CAS (Grants No. XDB30000000 and No. XDB33000000), the Key-Area Research and Development Program of Guangdong Province (Grant No. 2020B010134001). L.D. gratefully acknowledges the financial support by Academy of Finland (Grant No. 333099). Z.S. acknowledges support from Academy of Finland (Grants No. 314810, No. 333982, No. 336144, and No. 336818), Academy of Finland Flagship Programme (Grant No. 320167, PREIN), the European Union’s Horizon 2020 research and innovation program (Grants No. 820423, S2QUIP; and No. 965124, FEMTOCHIP), the EU H2020-MSCARIS-782049 (IPN-Bio), and the European Research Council (Grant No. 834742). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the Ministry of Education, Culture, Sports, Science and Technology, Japan, Grant No. JPMXP0112101001, Japan Society for the Promotion of Science KAKENHI Grant No. JP20H00354, and the CREST (JPMJCR15F3), JST. Z.H., Y.Z., and T.B. contributed equally to this paper. G.Z. and W.Y. supervised this paper; Z.H. and Y.Z. conceived the project and designed the experiments; Z.H. fabricated the devices and carried out the optical measurements; T.B. and S.M. conducted the first-principles calculations; K.W. and T.T. contributed high-quality h-BN crystals; Z.H., Y.Z., L.D., and W.Y. analyzed the data; Z.H., Y.Z., L.D., W.Y., and G.Z. cowrote the manuscript. All authors discussed the results and commented on the paper.

The authors declare that they have no competing interests.

[1] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, Colloquium: Excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys. 90, 021001 (2018).
[2] A. Tartakovskii, Excitons in 2D heterostructures, Nat. Rev. Phys. 2, 8 (2020).
[3] G. D. Scholes and G. Rumbles, Excitons in nanoscale systems, Nat. Mater. 5, 683 (2006).
[4] C. Jin, E. Y. Ma, O. Karni, E. C. Regan, F. Wang, and T. F. Heinz, Ultrafast dynamics in van der Waals heterostructures, Nat. Nanotechnol. 13, 994 (2018).
[5] K. F. Mak and J. Shan, Opportunities and challenges of interlayer exciton control and manipulation, Nat. Nanotechnol. 13, 974 (2018).
[6] Z. F. Wang, Y. H. Chiu, K. Honz, K. F. Mak, and J. Shan, Electrical tuning of interlayer exciton gases in WSe$_2$ bilayers, Nano Lett. 18, 137 (2018).
[7] N. Leisgang, S. Shree, I. Paradisanos, L. Sponfeldner, C. Robert, D. Lagarde, A. Balocchi, K. Watanabe, T. Taniguchi, X. Marie et al., Giant Stark splitting of an exciton in bilayer MoS$_2$, Nat. Nanotechnol. 15, 901 (2020).
[8] J. P. Eisenstein and A. H. MacDonald, Bose-Einstein condensation of excitons in bilayer electron systems, Nature (London) 432, 691 (2004).
[9] Z. F. Wang, D. A. Rhodes, K. Watanabe, T. Taniguchi, J. C. Hone, J. Shan, and K. F. Mak, Evidence of high-temperature exciton condensation in two-dimensional atomic double layers, Nature (London) 574, 76 (2019).
[10] J. I. A. Li, T. Taniguchi, K. Watanabe, J. Hone, and C. R. Dean, Excitonic superfluid phase in double bilayer graphene, Nat. Phys. 13, 751 (2017).
[11] X. Liu, K. Watanabe, T. Taniguchi, B. I. Halperin, and P. Kim, Quantum Hall drag of exciton condensate in graphene, Nat. Phys. 13, 746 (2017).
[12] M. M. Fogler, L. V. Butov, and K. S. Novoselov, High-temperature superfluidity with indirect excitons in van der Waals heterostructures, Nat. Commun. 5, 4555 (2014).
[13] Q. Shi, E.-M. Shih, D. A. Rhodes, B. Kim, K. Barmak, K. Watanabe, T. Taniguchi, Z. Papi’c, D. A. Abanin, J. Hone et al., Bilayer WSe$_2$ as a natural platform for interlayer exciton condensates in the strong coupling limit, arXiv:2108.10477 (2021).
[14] C. Lagoin and F. Dubin, Key role of the moiré potential for the quasicondensation of interlayer excitons in van der Waals heterostructures, Phys. Rev. B 103, L041406 (2021).
[15] L. Ma, P. X. Nguyen, Z. Wang, Y. Zeng, K. Watanabe, T. Taniguchi, A. H. MacDonald, K. F. Mak, and J. Shan, Strongly correlated excitonic insulator in atomic double layers, Nature (London) 598, 585 (2021).
[16] J. Gu, L. Ma, S. Liu, K. Watanabe, T. Taniguchi, J. C. Hone, J. Shan, and K. F. Mak, Dipolar excitonic insulator in a moire lattice, arXiv:2108.06588 (2021).
[17] Z. Zhang, E. C. Regan, D. Wang, W. Zhao, S. Wang, M. Sayyad, K. Yumigeta, K. Watanabe, T. Taniguchi, S. Tongay et al., Correlated interlayer exciton insulator in double layers of monolayer WSe$_2$ and moiré WS$_2$, arXiv:2108.07131 (2021).

ZHIHENG HUANG et al. PHYSICAL REVIEW B 105, L041409 (2022)
[18] Y. E. Lozovik and V. I. Yudson, A new mechanism for superconductivity: pairing between spatially separated electrons and holes, Zh. Eksp. Teor. Fiz 71, 738 (1976).

[19] P. Rivera, H. Y. Yu, K. L. Seyler, N. P. Wilson, W. Yao, and X. D. Xu, Interlayer valley excitons in heterobilayers of transition metal dichalcogenides, Nat. Nanotechnol. 13, 1004 (2018).

[20] P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Valley-polarized exciton dynamics in a 2D semiconductor heterostructure, Science 351, 688 (2016).

[21] Z. Huang, Y. Liu, K. Dini, Q. Tan, Z. Liu, H. Fang, J. Liu, T. Liew, and W. Gao, Robust room temperature valley Hall effect of interlayer excitons, Nano Lett. 20, 1345 (2020).

[22] L. A. Jauregui, A. Y. Joe, K. Pistunova, D. S. Wild, A. A. High, Y. Zhou, G. Scuri, K. De Greve, A. Sushko, C. H. Yu et al., Electrical control of interlayer exciton dynamics in atomically thin heterostructures, Science 366, 870 (2019).

[23] D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis, Room-temperature electrical control of exciton flux in a van der Waals heterostructure, Nature (London) 560, 340 (2018).

[24] D. Unuchek, A. Ciarrocchi, A. Avsar, Z. Sun, K. Watanabe, T. Taniguchi, and A. Kis, Valley-polarized exciton currents in a van der Waals heterostructure, Nat. Nanotechnol. 14, 1104 (2019).

[25] H. Heo, J. H. Sung, S. Cha, B.-G. Jang, J.-Y. Kim, G. Jin, D. Lee, J.-H. Ahn, M.-J. Lee, J. H. Shim et al., Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks, Nat. Commun. 6, 7372 (2015).

[26] M. Okada, A. Kutana, Y. Kureishi, Y. Kobayashi, Y. Saito, T. Saito, K. Watanabe, T. Taniguchi, S. Gupta, Y. Miyata et al., Direct and indirect interlayer excitons in a van der Waals heterostructure of hBN/WS2/MoS2/hBN, ACS Nano 12, 2498 (2018).

[27] Y. Zhao, T. Bo, L. Du, J. Tian, X. Li, K. Watanabe, T. Taniguchi, R. Yang, D. Shi, S. Meng et al., Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure, Chin. Phys. B 30, 057801 (2021).

[28] J. Kunstmann, F. Mooshammer, P. Nagler, A. Chaves, F. Stein, N. Paradiso, G. Plechinger, C. Strunk, C. Schüller, G. Seifert et al., Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures, Nat. Phys. 14, 801 (2018).

[29] O. Karni, E. Barre’, C. S. Lau, R. Gillen, E. Y. Ma, B. Kim, K. Watanabe, T. Taniguchi, J. Maultzsch, K. Barmak et al., Infrared Interlayer Exciton Emission in MoS2/WSe2 Heterostructures, Phys. Rev. Lett. 123, 247402 (2019).

[30] P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire et al., Observation of long-lived interlayer excitons in monolayer MoS2/WSe2 heterostructures, Nat. Commun. 6, 6242 (2015).

[31] E. R. Liu, E. Barre, J. van Baren, M. Wilson, T. Taniguchi, K. Watanabe, Y. T. Cui, N. M. Gabor, T. F. Heinz, Y. C. Chang et al., Signatures of moiré trions in WSe2/MoS2 heterobilayers, Nature (London) 594, 46 (2021).

[32] P. Nagler, M. V. Ballottin, A. A. Mitioglu, F. Mooshammer, N. Paradiso, C. Strunk, R. Huber, A. Chernikov, P. C. M. Christianen, C. Schüller et al., Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures, Nat. Commun. 8, 1551 (2017).

[33] M. Brotons-Gisbert, K. Baek, A. Campbell, K. Watanabe, T. Taniguchi, and B. D. Gerardot, Moiré-Trapped Interlayer Trions in a Charge-Tunable WSe2/MoS2 Heterobilayer, Phys. Rev. X 11, 031033 (2021).

[34] I. C. Gerber, E. Courtade, S. Shree, C. Robert, T. Taniguchi, K. Watanabe, A. Balocchi, P. Renucci, D. Lagarde, X. Marie et al., Interlayer excitons in bilayer MoS2 with strong oscillator strength up to room temperature, Phys. Rev. B 99, 035443 (2019).

[35] I. Niehues, A. Blob, T. Stiehm, S. M. de Vasconcellos, and R. Bratschitsch, Interlayer excitons in bilayer MoS2 under uniaxial tensile strain, Nanoscale 11, 12788 (2019).

[36] A. Arora, T. Deilmann, P. Marauhn, M. Drüppel, R. Schneider, M. R. Molas, D. Vaclavkova, S. Michaelis de Vasconcellos, M. Rohlfing, M. Potemski et al., Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides, Nanoscale 10, 15571 (2018).

[37] E. Lorchet, M. Selig, F. Katsch, K. Yumigeta, S. Tongay, A. Knorr, C. Schneider, and S. Höfling, Excitons in Bilayer MoS2 Displaying a Colossal Electric Field Splitting and Tunable Magnetic Response, Phys. Rev. Lett. 126, 037401 (2021).

[38] Y. Zhao, L. Du, S. Yang, J. Tian, X. Li, C. Shen, J. Tang, Y. Chu, K. Watanabe, T. Taniguchi et al., Optically and magnetically addressable valley pseudospin of interlayer excitons in bilayer MoS2, arXiv:2106.00351 (2021).

[39] N. Peimyoo, T. Deilmann, F. Withers, J. Escolar, D. Notting, T. Taniguchi, K. Watanabe, A. Taghizadeh, M. F. Craciun, K. S. Thygesen et al., Electrical tuning of optically active interlayer excitons in bilayer MoS2, Nat. Nanotechnol. 16, 888 (2021).

[40] A. Arora, M. Drüppel, R. Schmidt, T. Deilmann, R. Schneider, M. R. Molas, P. Marauhn, S. Michaelis de Vasconcellos, M. Potemski, M. Rohlfing et al., Interlayer excitons in a bulk van der Waals semiconductor, Nat. Commun. 8, 639 (2017).

[41] C. Jin, E. C. Regan, D. Wang, M. I. B. Utama, C.-S. Yang, J. Cai, Y. Qin, Y. Shen, Z. Zheng, K. Watanabe et al., Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons, Nat. Phys. 15, 1140 (2019).

[42] J. Choi, M. Florian, A. Steinhoff, D. Erben, K. Tran, D. S. Kim, L. Sun, J. Quan, R. Claassen, S. Majumder et al., Twist Angle-Dependent Interlayer Exciton Lifetimes in van der Waals Heterostructures, Phys. Rev. Lett. 126, 047401 (2021).

[43] G. Scuri, T. I. Andersen, Y. Zhou, D. S. Wild, J. Sung, R. J. Gelly, D. Bérubé, H. Hoseok, L. Shao, A. Y. Joe et al., Electrically Tunable Valley Dynamics in Twisted WSe2/WSe2 Bilayers, Phys. Rev. Lett. 124, 217403 (2020).

[44] L. Yuan, B. Zheng, J. Kunstmann, T. Brumme, A. B. Kuc, C. Ma, S. Deng, D. Blach, A. Pan, and L. Huang, Twist-angle-dependent interlayer exciton diffusion in WS2/WSe2 heterobilayers, Nat. Mater. 19, 617 (2020).

[45] J. Sung, Y. Zhou, G. Scuri, V. Ziółomy, T. L. Andersen, H. Yoo, D. S. Wild, A. Y. Joe, R. J. Gelly, H. Heo et al., Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoS2 bilayers, Nat. Nanotechnol. 15, 750 (2020).

[46] A. Kormanyos, G. Burkard, M. Gmitra, J. Fabian, V. Zolyomi, and N. D. Drummond, and V. Fal’ko, k.p theory for two-dimensional transition metal dichalcogenide semiconductors, 2D Mater. 2, 022001 (2015).
G. B. Liu, D. Xiao, Y. G. Yao, X. D. Xu, and W. Yao, Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides, Chem. Soc. Rev. 44, 2643 (2015).

N. R. Wilson, P. V. Nguyen, K. Seyler, P. Rivera, A. J. Marsden, Z. P. L. Laker, G. C. Constantinescu, V. Kandyba, A. Barinov, N. D. M. Hine et al., Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures, Sci. Adv. 3, e1601832 (2017).

P. V. Nguyen, N. C. Teutsch, N. P. Wilson, J. Kahn, X. Xia, A. J. Graham, V. Kandyba, A. Giampietri, A. Barinov, G. C. Constantinescu et al., Visualizing electrostatic gating effects in two-dimensional heterostructures, Nature (London) 572, 220 (2019).

See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.105.L041409 for details on device fabrication, effective field-dependent PL spectra and DOP, results of device D2 and D3, equivalent positions of spin-down wave functions, possible transition configurations of Λ-I$'$ transitions, Λ-K$'$ transitions associated with spin-up holes and Λ'-K$'$-K$'$ transitions associated with spin-down holes, and first-principles calculations, which includes Refs. [70–76].

L. J. Du, T. T. Zhang, M. Z. Liao, G. B. Liu, S. P. Wang, R. He, Z. P. Ye, H. Yu, R. Yang, D. X. Shi et al., Temperature-driven evolution of critical points, interlayer coupling, and layer polarization in bilayer MoS$_2$, Phys. Rev. B 97, 165410 (2018).

M. H. He, P. Rivera, D. V. Tuan, N. P. Wilson, M. Yang, T. Taniguchi, K. Watanabe, J. Q. Yan, D. G. Mandrus, H. Y. Yu et al., Valley phonons and exciton complexes in a monolayer semiconductor, Nat. Commun. 11, 618 (2020).

E. Liu, J. van Baren, C.-T. Liang, T. Taniguchi, K. Watanabe, N. M. Gabor, Y.-C. Chang, and C. H. Lui, Multipath Optical Recombination of Intervally Dark Excitons and Trions in Monolayer WSe_2, Phys. Rev. Lett. 124, 196802 (2020).

E. Liu, J. van Baren, T. Taniguchi, K. Watanabe, Y.-C. Chang, and C. H. Lui, Valley-selective chiral phonon replicas of dark excitons and trions in monolayer WSe_2, Phys. Rev. Research 1, 032007(R) (2019).

Z. P. Li, T. M. Wang, C. H. Jin, Z. G. Lu, Z. Lian, Y. Z. Meng, M. Blei, S. Y. Gao, T. Taniguchi, K. Watanabe et al., Emerging photoluminescence from the dark-exciton phonon replica in monolayer WSe$_2$, Nat. Commun. 10, 2469 (2019).

L. J. Du, M. Z. Liao, J. Tang, Q. Zhang, H. Yu, R. Yang, K. Watanabe, T. Taniguchi, D. X. Shi, Q. M. Zhang et al., Strongly enhanced exciton-phonon coupling in two-dimensional WSe$_2$, Phys. Rev. B 97, 235145 (2018).

P. Rivera, M. He, B. Kim, S. Liu, C. Rubio-Verdú, H. Moon, L. Mennel, D. A. Rhodes, H. Yu, T. Taniguchi et al., Intrinsic donor-bound excitons in ultraclean monolayer semiconductors, Nat. Commun. 12, 871 (2021).

G. Wang, X. Marie, L. Bouet, M. Vidal, A. Balocchi, T. Amand, D. Lagarde, and B. Urbaszek, Exciton dynamics in WSe$_2$ bilayers, Appl. Phys. Lett. 105, 182105 (2014).

J. Lindlau, M. Selig, A. Neumann, L. Colombier, J. Forste, V. Funk, M. Forg, J. Kim, G. Berghausser, T. Taniguchi et al., The role of momentum-dark excitons in the elementary optical response of bilayer WSe$_2$, Nat. Commun. 9, 2586 (2018).

W. J. Zhao, R. M. Ribeiro, M. L. Toh, A. Carvalho, C. Kloc, A. H. C. Neto, and G. Eda, Origin of indirect optical transitions in few-layer MoS$_2$, WS$_2$, and WSe$_2$, Nano Lett. 13, 5627 (2013).

P. Chen, C. Cheng, C. Shen, J. Zhang, S. Wu, X. Lu, S. Wang, L. Du, K. Watanabe, T. Taniguchi et al., Band evolution of two-dimensional transition metal dichalcogenides under electric fields, Appl. Phys. Lett. 115, 083104 (2019).

A. M. Jones, H. Y. Yu, J. S. Ross, P. Klement, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe$_2$, Nat. Phys. 10, 130 (2014).

Z. R. Gong, G. B. Liu, H. Y. Yu, D. Xiao, X. D. Cui, X. D. Xu, and W. Yao, Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers, Nat. Commun. 4, 2053 (2013).

L. Du, M. Liao, G.-B. Liu, Q. Wang, R. Yang, D. Shi, Y. Yao, and G. Zhang, Strongly distinct electrical response between circular and valley polarization in bilayer transition metal dichalcogenides, Phys. Rev. B 99, 195415 (2019).

H. Yu, G.-B. Liu, and W. Yao, Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers, 2D Mater. 5, 035021 (2018).

X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe$_2$, Phys. Rev. B 88, 195313 (2013).

M. Selig, F. Katsch, R. Schmidt, S. Michaelis de Vasconcellos, R. Bratschitsch, E. Malic, and A. Knorr, Ultrfast dynamics in monolayer transition metal dichalcogenides: Interplay of dark excitons, phonons, and intervalley exchange, Phys. Rev. Research 1, 022007(R) (2019).

G. Berghauser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niewies, P. Erhart, S. Michaelis de Vasconcellos, R. Bratschitsch, A. Knorr, and E. Malic, Inverted valley polarization in optically excited transition metal dichalcogenates, Nat. Commun. 9, 971 (2018).

M. M. Altaiary, E. Liu, C.-T. Liang, F.-C. Hsiao, B. J. van, T. Taniguchi, K. Watanabe, N. M. Gabor, Y.-C. Chang, and C. H. Lui, Electric-field-tunable intervalley excitons and phonon replicas in bilayer WSe$_2$, arXiv:2101.11161 (2021).

F. Pizzocchero, L. Gammelgaard, B. S. Jessen, J. M. Caridad, L. Wang, J. Hone, P. Boggild, and J. T. Booth, The hot pick-up technique for batch assembly of van der Waals heterostructures, Nat. Commun. 7, 11894 (2016).

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller et al., One-dimensional electrical contact to a two-dimensional material, Science 342, 614 (2013).

K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. M. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, Band alignment in WSe$_2$-graphene heterostructures, ACS Nano 9, 4527 (2015).

J. P. Peredew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).

P. E. Blochl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).

J. Klimes, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83, 195131 (2011).