CHARACTER FORMULÆ AND GKRS MULTIPLES IN EQUIVARIANT K-THEORY

GREGORY D. LANDWEBER AND REYER SJAMAAR

ABSTRACT. Let G be a compact Lie group, H a closed subgroup of maximal rank and X a topological G-space. We obtain a variety of results concerning the structure of the H-equivariant K-ring $K_H^*(X)$ viewed as a module over the G-equivariant K-ring $K^*_G(X)$. One result is that the module has a nonsingular bilinear pairing; another is that the module contains multiplets which are analogous to the Gross-Kostant-Ramond-Sternberg multiplets of representation theory.

INTRODUCTION

Frobenius [12] Band III, pp. 82-103] showed how to “extend” a character of a subgroup to a character of the ambient group. He considered only finite groups, but his method, which we will refer to as formal induction, was soon adapted in various ways to infinite and topological groups, and to this day is one of the most important technical tools of representation theory.

Induction methods for a compact Lie group G and a closed subgroup H were systematically studied by Bott [6] as an application of the index theory of equivariant elliptic operators. These index theory methods work well only if the subgroup H is of maximal rank. The purpose of this paper is to make some applications of Bott’s work and later work building on it to the equivariant K-theory of topological G-spaces. Our main results, all valid under the assumption that H is of maximal rank, are a relative duality theorem and a multiplet theorem. Many of our results are known in important special cases, which explains the largely expository nature of this paper.

The relative duality theorem, Theorem 4.1.5, states that for every compact G-space X the H-equivariant K-group $K^*_H(X)$ is equipped with a $K^*_G(X)$-bilinear nonsingular pairing. This result contains as a special case a form of Poincaré duality for the K-group of the homogeneous space G/H, and it generalizes results of Pittie [32], Steinberg [43], Shapiro [39, 40], McLeod [29], and Kazhdan and Lusztig [19]. For the special case of a maximal torus this result can be found in our earlier paper [15].

The multiplet theorem, Theorem 4.2.2, generalizes a result of Gross et al. [13], which says that the irreducible representations of H are naturally partitioned into multiplets which have the property that the alternating sum of the dimensions of the modules in each multiplet is zero. Our theorem states that the H-equivariant K-group $K^*_H(X)$ of a compact G-space X is similarly divided into multiplets. Under the forgetful map the classes in each multiplet map to classes in the ordinary K-group $K^*(X)$ with the property that the alternating sum is zero.

Date: 2012-10-01.
2000 Mathematics Subject Classification. 19L47 (58J05).
We have included some elementary background material. For instance, because the homogeneous space G/H is not always K-orientable (i.e. does not always have a Spin^c-structure), it is necessary to incorporate an orientation twist in the statement of our theorems, and in fact also in the definition of the induction map. This necessity was overlooked by Bott, which led to a number of minor errors in his paper. In §1 we offer a review of Bott’s work, in which we take care to correct these mistakes, and in §§2–3 we develop the resulting theory of twisted induction. In Appendix D we classify Spin^c-structures on G/H, which is an easy exercise, but which to our surprise we could not find in the literature. In a separate paper [27] we will list examples where such structures do not exist (the simplest of which is the Grassmannian of oriented 3-planes in \mathbb{R}^7).

Much of the material in this paper grew out of discussions with Megumi Harada. The authors are grateful for her help and encouragement. We also thank Eckhard Meinrenken, Peter Landweber and the referee for several helpful suggestions.

Contents

Introduction 1

1. Induction maps 2

2. Twisted Spin^c-induction: the character formula 12

3. Further properties of twisted Spin^c-induction 18

4. Applications to K-theory 24

Appendix A. Twisted K-theory 29

Appendix B. Central extensions 32

Appendix C. Shifted anti-invariants 35

Appendix D. Homogeneous Spin^c-structures 36

Index of Notation 40

References 41

1. Induction maps

This section is a review of Bott’s paper [6] on equivariant index theory for compact homogeneous spaces, where we extend his work by allowing for certain twists of representation rings. This amounts to working not with ordinary representations but with projective representations with a suitable central character. Although this is a routine generalization, the particulars are confusing and not always correctly recorded in the literature, which is why we provide a detailed treatment. The results are most conveniently formulated in terms of twisted K-theory in the sense of Donovan and Karoubi [11], which is reviewed in Appendix A. (We will only need to twist K-theory by torsion classes; we do not require Rosenberg’s more general version of this theory.) An induction map is then a wrong-way or pushforward homomorphism between equivariant twisted K-groups. In ordinary K-theory pushforward maps are commonly defined by means of a Dirac operator; in twisted K-theory we employ what we call a twisted Dirac operator. This term usually means a Dirac operator with coefficients in a bundle, but in this paper we will use it, following Murray and Singer [31], for a special type of transversely elliptic operator in the sense of Atiyah [2], which lives...
Notation. Our notational conventions in §§1–4 are as follows. See also the index at the end.

Let G be a compact connected Lie group, $\mathcal{X}(G) = \text{Hom}(G, U(1))$ the character group of G, and $R(G)$ the Grothendieck ring of the category of finite-dimensional complex G-modules. A character $\chi \in \mathcal{X}(G)$ determines a one-dimensional G-module C_χ and hence a class in $R(G)$, which we denote by e^χ.

(We use the term Grothendieck group in the sense of [33, §2, Theorem 1]: if \mathcal{C} is an exact category, then the Grothendieck or K-group $K(\mathcal{C})$ is the abelian group with one generator $[E]$ for every object E and one relation $[E_0] - [E_1] + [E_2] = 0$ for every short exact sequence $0 \to E_0 \to E_1 \to E_2 \to 0$ in \mathcal{C}. If \mathcal{C} has tensor products, then $K(\mathcal{C})$ is in fact a commutative ring. In this paper \mathcal{C} will always be a category of modules or vector bundles equipped with the usual notion of an exact sequence.)

We choose once and for all a maximal torus T of G. We denote the inclusion map by $i_G : T \to G$ and the Weyl group by $W_G = N_G(T)/T$. The map $\mathcal{X}(T) \to R(T)$ defined by $\chi \mapsto e^\chi$ identifies $R(T)$ with the group ring $\mathbb{Z}[\mathcal{X}(T)]$. The restriction homomorphism $i_G^* : R(G) \to R(T)$ induces an isomorphism $R(G) \cong R(T)^{W_G}$. (See e.g. [7, §IX.3].) In particular the ring $R(G)$ has no zero divisors.

Let $R_G \subseteq \mathcal{X}(T)$ be the root system of (G, T). We fix a basis \mathcal{B}_G of R_G, which determines a set of positive roots \mathcal{R}_G^+, and we let

$$\rho_G = \frac{1}{2} \sum_{\alpha \in \mathcal{R}_G^+} \alpha \in \frac{1}{2} \mathcal{X}(T)$$

be the half-sum of the positive roots. (Here we regard the character group $\mathcal{X}(T)$ as a lattice in the vector space of rational characters $\mathcal{X}(T)_Q = \mathbb{Q} \otimes \mathbb{Z} \mathcal{X}(T)$, and we denote by $\frac{1}{2} \mathcal{X}(T)$ the collection of rational characters $\chi \in \mathcal{X}(T)_Q$ such that $2\chi \in \mathcal{X}(T)$.)

We denote by H a closed subgroup of G with inclusion map $i : H \to G$. From §§1.5 on we will assume that H is connected and contains T. We let M be the homogeneous space G/H and $\bar{1} = 1H$ the identity coset. For any H-module V, we denote by

$$G \times^HV$$

the homogeneous vector bundle on M with fibre at $\bar{1}$ equal to V. This notation is not to be confused with

$$A \times_C B,$$

which we use for the fibred product of two objects A and B in some category (e.g. the category of groups) over a third object C. The tangent space to M at $\bar{1}$ is denoted by m and the isotropy representation by

$$\eta : H \to \text{GL}(m).$$

The H-module m is naturally isomorphic to g/h; and the tangent bundle TM is naturally isomorphic to $G \times^H m$. We choose a G-invariant inner product on g, and we identify g with g^* and m with the orthogonal complement of h in g.

not on the base manifold but on a suitable principal bundle over it. A definition of pushforwards in twisted K-theory very similar to ours was given earlier by Mathai, Melrose and Singer [28].
1.1. **Formal induction.** Let $R(G)^* = \text{Hom}_Z(R(G), Z)$ be the dual abelian group of $R(G)$. As in [6 §1] we will identify $R(G)^*$ with the group of possibly infinite Z-linear combinations $\sum k a_k E_k$ of isomorphism classes of irreducible G-modules E_k, and also with the Grothendieck group of the category of admissible G-modules. (A vector in a G-module E is called G-finite if it is contained in a finite-dimensional G-submodule of E. A G-module E is admissible if every vector in E is G-finite and every irreducible G-module has finite multiplicity in E.) If E is an admissible G-module and F a finite-dimensional G-module, then the dual pairing between the classes $[E] \in R(G)^*$ and $[F] \in R(G)$ is given by

$$\langle [E], [F] \rangle = \dim \text{Hom}_G(F, E).$$

Let V be a finite-dimensional H-module. We define the formal pushforward or formal induced module $i_!(V) = \text{ind}_H^G(V)$ of V to be the module of G-finite vectors of the G-module of smooth global sections $\Gamma(M, G \times^H V)$. It follows from the Peter-Weyl theorem that $i_!(V)$ is an admissible G-module. (See [6 §3].) This fact enables us to define the formal pushforward homomorphism or formal induction map

$$i_! : R(H) \rightarrow R(G)^*$$

by $i_!(V) = [i(V)]$. This map is $R(G)$-linear in the sense that $i_!(i^*(b) \phi) = bi_!(\phi)$ for all $b \in R(G)$ and $\phi \in R(H)^*$, where $i^* : R(G) \rightarrow R(H)$ is the restriction homomorphism induced by the inclusion $i : H \rightarrow G$. Formal induction satisfies Frobenius reciprocity, which can be stated by saying that $i_!$ is the composition of the two maps

$$i_! : R(H) \rightarrow R(H)^* \rightarrow R(G)^*.$$

Here $R(H) \rightarrow R(H)^*$ is the natural inclusion and i^* is the transpose of i^* (See [6 §2] or [27 §2].)

A less desirable property is that the module $i_!(V)$ is often infinite-dimensional even if V is finite-dimensional. We wish to look for induction maps that preserve finite-dimensionality, which forces us to give up Frobenius reciprocity. Accordingly, by an induction map we will mean any $R(G)$-linear map $R(H) \rightarrow R(G)$, i.e. any element of

$$R(H)^r = \text{Hom}_{R(G)}(R(H), R(G)),$$

the dual of the $R(G)$-module $R(H)$.

1.2. **Twisted induction.** We require a slightly more general notion involving projective representations. Part of the following material is taken from [26]. Let

$$\sigma : 1 \rightarrow U(1) \rightarrow G^{(\sigma)} \rightarrow G \rightarrow 1$$

(1.3)

be a central extension of G by the circle $U(1)$. (A notational convention: the label σ will refer to the exact sequence [18] as a whole, but when there is no danger of confusion, we will speak of “the extension $G^{(\sigma)}”$.) A complex $G^{(\sigma)}$-module V has central character or level $k \in Z$ if the subgroup $U(1)$ acts on V by $z \cdot v = z^k v$. Let $\mathcal{R}ep(G, \sigma)$ be the category of finite-dimensional complex $G^{(\sigma)}$-modules of level 1. We call the Grothendieck group $R(G, \sigma)$ of $\mathcal{R}ep(G, \sigma)$ the σ-twisted representation module of G. This is the G-equivariant twisted K-group of a point; see Example [A.14] in Appendix A. In the case of the trivial extension $\sigma = 0$ (which is defined by $G^{(0)} = U(1) \times G$) there is an evident equivalence of categories $\mathcal{R}ep(G, 0) \rightarrow \mathcal{R}ep(G)$, which identifies $R(G, 0)$ with $R(G)$.
Recall that the sum of two central extensions σ and v of G by $U(1)$ is the central extension $\sigma + v$ of G by $U(1)$ defined by

$$G^{(\sigma + v)} = G^{(\sigma, v)}/K.$$

Here $G^{(\sigma, v)}$ denotes the fibred product $G^{(\sigma)} \times_{G} G^{(v)}$ and K is a copy of $U(1)$ anti-diagonally embedded in $G^{(\sigma, v)}$. The extension opposite to σ is the extension $-\sigma$ obtained by precomposing the inclusion $U(1) \to G^{(\sigma)}$ with the automorphism $z \mapsto z^{-1}$ of $U(1)$. The tensor product functor

$$\mathcal{R} \text{Rep}(G, \sigma) \times \mathcal{R} \text{Rep}(G, v) \to \mathcal{R} \text{Rep}(G, \sigma + v)$$

induces a bi-additive map

$$R(G, \sigma) \times R(G, v) \to R(G, \sigma + v). \quad (1.4)$$

We will use multiplicative notation for this map; so if $a = [E] \in R(G, \sigma)$ and $b = [F] \in R(G, v)$, then $ab = [E \otimes F] \in R(G, \sigma + v)$. By taking $\sigma = 0$, we see that $R(G, v)$ is an $R(G)$-module for all v. With respect to this module structure, the multiplication law (1.4) is $R(G)$-bilinear.

1.2.1. Remark. If two extensions σ and v are equivalent, then the twisted representation modules $R(G, \sigma)$ and $R(G, v)$ are isomorphic, but the isomorphism depends on the choice of the equivalence. For this reason we do not identify $R(G, \sigma)$ with $R(G, v)$ unless an explicit equivalence $\sigma \sim v$ has been specified.

For any extension $G^{(\sigma)}$ as in (1.3) and any Lie group homomorphism $f : L \to G$ we can form the pullback extension

$$f^{*}\sigma : 1 \to U(1) \to L^{(f^{*}\sigma)} \to L \to 1,$$

where $L^{(f^{*}\sigma)} = G^{(\sigma)} \times_{G} L$ is the fibred product of $G^{(\sigma)}$ and L with respect to the homomorphisms $G^{(\sigma)} \to G$ and $f : L \to G$. There is an induced $R(L)$-linear homomorphism

$$f^{*} : R(G, \sigma) \to R(L, f^{*}\sigma).$$

For instance, taking f to be the inclusion $i : H \to G$ we get a central extension $H^{(i^{*}\sigma)}$ of H, which is simply the preimage of H under the projection $G^{(\sigma)} \to G$. To economize on notation we will write $H^{(\sigma)}$ instead of $H^{(i^{*}\sigma)}$. The map $G^{(\sigma)} \to G$ descends to a diffeomorphism $G^{(\sigma)}/H^{(\sigma)} \cong M$, which allows us to identify M with the homogeneous space $G^{(\sigma)}/H^{(\sigma)}$.

1.2.2. Lemma. Let σ and v be central extensions of G by $U(1)$.

(i) The $R(G)$-module $R(G^{(\sigma)})$ is the direct sum of the submodules $R(G, k\sigma)$ over all levels $k \in \mathbb{Z}$. Each summand $R(G, k\sigma)$ is nonzero.

(ii) The group $T^{(\sigma)}$ is a maximal torus of $G^{(\sigma)}$; the submodule $R(T, \sigma)$ of $R(T^{(\sigma)})$ is preserved by the W_{G}-action; and the restriction homomorphism $R(G, \sigma) \to R(T, \sigma)$ is an isomorphism onto $R(T, \sigma)^{W_{G}}$.

(iii) Let $a \in R(G, \sigma)$ and $b \in R(G, v)$. If $ab \in R(G, \sigma + v)$ is equal to 0, then $a = 0$ or $b = 0$.

Proof. (i) and (ii) are special cases of Lemma [5.1] in the Appendix (where $G^{(\sigma)}$ is denoted by \hat{G} and $R(G, k\sigma)$ by $R^{k}(\hat{G})$). The group $G^{(\sigma, v)} = G^{(\sigma)} \times_{G} G^{(v)}$ is
a central $U(1)$-extension of $G^{(v)}$ as well as of $G^{(v)}$. Therefore, by \[1], the modules $R(G,\sigma)$ and $R(G,\nu)$ are naturally isomorphic to submodules of $R(G^{(v)})$. Under this isomorphism, the bilinear map \[1.4\] corresponds to multiplication in $R(G^{(v)})$. Since $G^{(v)}$ is a central extension of G by the torus $U(1)^2$, it is connected, and therefore $R(G^{(v)})$ has no zero divisors. QED

1.2.3. Example. Suppose $G = T$ is a torus. Choose a character μ of $T^{(v)}$ of level 1. Then the character group $X(T^{(v)})$ is the direct sum of $X(T)$ and $Z\mu$, and therefore $R(T^{(v)}) = R(T)[e^{\mu}, e^{-\mu}]$ is a Laurent polynomial algebra over $R(T)$ in one variable. The level k submodule is $R(T, k\sigma) = R(T)e^{k\mu}$, which is a free $R(T)$-module of rank 1 on the generator $e^{k\mu}$.

1.2.4. Lemma. Let σ be a central extension of G by $U(1)$ and let V be an $H^{(v)}$-module of level 1. Then the space of smooth sections of the $G^{(v)}$-homogeneous vector bundle $G^{(v)} \times H^{(v)} V$ over M is a $G^{(v)}$-module of level 1.

Proof. Put $E = G^{(v)} \times H^{(v)} V$. A section of E is a function $f: G^{(v)} \to V$ satisfying $f(gh^{-1}) = h \cdot f(g)$ for all $h \in H^{(v)}$. The action of an element $k \in G^{(v)}$ on f is defined by $(k \cdot f)(g) = f(k^{-1}g)$ for $g \in G^{(v)}$. In particular, a central element $z \in U(1) \subseteq H^{(v)} \subseteq G^{(v)}$ acts by

$$(z \cdot f)(g) = f(z^{-1}g) = z \cdot f(g) = zf(g),$$

where the last equality follows from the assumption that V is an $H^{(v)}$-module of level 1. Therefore $z \cdot f = zf$. QED

1.2.5. Definition. A twisted induction map is an element of

$$\text{Hom}_{R(G)}(R(H, \tau), R(G, \sigma)),$$

where σ is a central extension of G by $U(1)$ and τ is a central extension of H by $U(1)$.

1.3. Elliptic operators. We will obtain twisted induction maps from transversely elliptic differential operators. To motivate Definition \[1.3.1\] below let us first consider the untwisted case. Let P be compact $G \times H$-manifold equipped with a $\mathbb{Z}/2\mathbb{Z}$-graded $G \times H$-equivariant vector bundle $E = E^0 \oplus E^1$ and a $G \times H$-equivariant differential operator $D: \Gamma(P, E^0) \to \Gamma(P, E^1)$ which is transversely elliptic with respect to H. (Recall that “Γ” denotes smooth sections.) There are a number of equivalent ways to define the \textit{equivariant index} of D. We will define it as the module of G-finite vectors of $\ker(D)$ minus the module of G-finite vectors of $\ker(D^*)$. By the discussion in \[2\] Lecture 2, p. 17] the index is an element of

$$\text{index}(D) \in R(H)^* \otimes_{\mathbb{Z}} R(G), \quad (1.5)$$

and so can be viewed as a \mathbb{Z}-linear map from $R(H)$ to $R(G)$. It follows from \[2\] Theorem 3.5] (see also Lemma \[1.3.2\] below) that this map is in fact $R(G)$-linear and is therefore an induction map in our sense.

Now suppose that the H-action on P is free, so that the quotient $X = P/H$ is a manifold and the quotient map $pr: P \to X$ is a principal H-bundle. Then the quotient $F = E/H$ is a G-equivariant vector bundle on X, and we have a natural identification $\Gamma(X,F) \cong \Gamma(P,E)^H$. It follows that D restricts to an operator
$D_0: \Gamma(X, F^0) \to \Gamma(X, F^1)$, which is a G-equivariant elliptic operator on X called the operator induced by D. As shown in [2, Lecture 3], every G-equivariant elliptic operator D_0 on X is induced by a $G \times H$-equivariant differential operator D on P which is transversely elliptic with respect to H. There are many possible choices for such an operator D, but its principal symbol satisfies

$$\text{symbol}(D)|T^*_H P = \text{pr}^* \text{symbol}(D_0)$$

(see the proof of [2, Theorem 3.1]), where $T^*_H P$ denotes the horizontal cotangent bundle of the principal H-bundle P, and $\text{symbol}(D)|T^*_H P$ denotes the restriction of the symbol to $T^*_H P$. It follows from this that the equivariant index of D, and hence the associated induction map, are uniquely determined by D_0. Since we are primarily interested not in D but in its index, we will sometimes allow ourselves to blur the distinction between the operators D and D_0.

To get twisted induction maps we will modify this set-up by replacing G with a central extension $G^{(\sigma)}$ and H with a central extension $H^{(\tau)}$. We will take P to be a $G^{(\sigma)} \times H^{(\tau)}$-manifold on which $H^{(\sigma)}$ acts freely. However, the bundle E and the operator $D: \Gamma(P, E^0) \to \Gamma(P, E^1)$ will not be equivariant with respect to $G^{(\sigma)} \times H^{(\sigma)}$, but with respect to $G^{(\sigma)} \times H^{(\sigma, \tau)}$, where

$$H^{(\sigma, \tau)} = H^{(\sigma)} \times_H H^{(\tau)}.$$

Therefore $H^{(\sigma)}$ does not act on E, and so D does not descend to an operator on the quotient $P/H^{(\sigma)}$ (except when $\tau = 0$). Nevertheless we will call D a “twisted” operator on $P/H^{(\sigma)}$.

Specifically, we take $P = G^{(\sigma)}$, so that $P/H^{(\sigma)} \cong G/H = M$. We view the group $H^{(\sigma, \tau)}$ as an iterated $U(1)$-central extension of H, namely

$$H^{(\sigma, \tau)} = \left(H^{(\sigma)} \right)^{(\tau)},$$

the pullback of the central extension τ via the homomorphism $H^{(\sigma)} \to H$. Thus, by an $H^{(\sigma, \tau)}$-module of level 1 we mean an $H^{(\sigma, \tau)}$-module on which the second factor of the central torus $U(1) \times U(1)$ acts with weight 1. We take E to be a product bundle $E = G^{(\sigma)} \times U$, where U is a $\mathbb{Z}/2\mathbb{Z}$-graded $H^{(\sigma, \tau)}$-module U of level 1. Note that E is is a $G^{(\sigma)} \times H^{(\sigma, \tau)}$-equivariant, where $G^{(\sigma)}$ acts on the base $G^{(\sigma)}$ by left multiplication, and $H^{(\sigma, \tau)}$ acts on the base by right multiplication via the homomorphism $H^{(\sigma, \tau)} \to H^{(\sigma)}$ and linearly on the fibre U.

1.3.1. Definition. Let U be a $\mathbb{Z}/2\mathbb{Z}$-graded $H^{(\sigma, \tau)}$-module U of level 1. A (σ, τ)-twisted equivariant elliptic differential operator on M (or a (σ, τ)-twisted operator for short) is a $G^{(\sigma)} \times H^{(\sigma, \tau)}$-equivariant linear differential operator

$$D: \Gamma\left(G^{(\sigma)} \times U^0\right) \to \Gamma\left(G^{(\sigma)} \times U^1\right)$$

on $G^{(\sigma)}$ which is transversely elliptic relative to $H^{(\sigma, \tau)}$.

If $\tau = 0$ is the trivial extension, then a (σ, τ)-twisted operator descends to a $G^{(\sigma)}$-equivariant elliptic differential operator on M in the usual sense.

Following [15], we view the index of a (σ, τ)-twisted operator D as a \mathbb{Z}-linear map $\text{index}(D): R(H^{(\sigma, \tau)}) \to R(G^{(\sigma)})$.

1.3.2. Lemma. Let D be a (σ, τ)-twisted operator.
(i) The index of D is $R(G^{(\sigma)})$-linear and maps $R(H, \tau - \sigma)$ to $R(G, \sigma)$.

(ii) Let V be an $H^{(\tau - \sigma)}$-module of level 1. Let E_V be the $\mathbb{Z}/2\mathbb{Z}$-graded $G^{(\sigma)}$-homogeneous vector bundle $G^{(\sigma)} \times H^{(\sigma)} (U \otimes V^*)$ over M. Then D descends to a $G^{(\sigma)}$-equivariant elliptic differential operator

$$D_V : \Gamma (M, E^*_V) \longrightarrow \Gamma (M, E^*_V)$$

with the property that $\text{index}(D_V) = \langle \text{index}(D), [V] \rangle$.

Proof. The $R(G^{(\sigma)})$-linearity is a special case of the multiplicity property of the index, [2 Theorem 3.5]. (Take $X = pt$ and $Y = G$ in the statement of that theorem.) Let V be an $H^{(\tau - \sigma)}$-module of level 1. Then for $p = 0$, 1 the tensor product $U^p \otimes V^*$ is an $H^{(\sigma)}$-module of level 1, and the bundle $G^{(\sigma)} \times (U^p \otimes V^*)$ over $G^{(\sigma)}$ is $G^{(\sigma)} \times H^{(\sigma)}$-equivariant. This shows that the vector bundle E^*_V is well-defined. It follows from (1.1) that

$$\langle \text{index}(D), [V] \rangle = [\text{Hom}_{H^{(\sigma)}} (V, \ker(D))] - [\text{Hom}_{H^{(\sigma)}} (V, \ker(D^*))] \in R(G^{(\sigma)}).$$

(1.6)

Now $\text{Hom}_{H^{(\sigma)}} (V, \ker(D)) \cong (V^* \otimes \ker(D))^{H^{(\sigma)}}$ is a $G^{(\sigma)}$-submodule of

$$(V^* \otimes \Gamma(G^{(\sigma)}, G^{(\sigma)} \times U^0))^{H^{(\sigma)}} \cong \Gamma (G^{(\sigma)}, G^{(\sigma)} \times (U^0 \otimes V^*))^{H^{(\sigma)}} \cong \Gamma (M, E^0),$$

(1.7)

and is therefore of level 1 by Lemma [1.24]. Similarly, $\text{Hom}_{H^{(\sigma)}} (V, \ker(D^*))$ is isomorphic to a $G^{(\sigma)}$-submodule of $\Gamma (M, E^1)$ and so is of level 1. It now follows from (1.6) that $\langle \text{index}(D), [V] \rangle \in R(G, \sigma)$, which proves (i).

The operator

$$\text{id} \otimes D : V^* \otimes \Gamma(G^{(\sigma)}, G^{(\sigma)} \times U^0) \longrightarrow V^* \otimes \Gamma(G^{(\sigma)}, G^{(\sigma)} \times U^1)$$

is $H^{(\sigma, \tau)}$-equivariant. Taking $H^{(\sigma, \tau)}$-invariants on both sides and composing with the natural isomorphism (1.7) we get an operator $D_V : \Gamma (M, E^*_V) \longrightarrow \Gamma (M, E^*_V)$, which is a $G^{(\sigma)}$-equivariant differential operator because D is. The principal symbol of D is a morphism of $G^{(\sigma)} \times H^{(\sigma, \tau)}$-equivariant bundles over $T^*_H^{(\sigma, \tau)} G^{(\sigma)} = G^{(\sigma)} \times m$,

$$\text{symbol}(D) : G^{(\sigma)} \times m \times U^0 \longrightarrow G^{(\sigma)} \times m \times U^1,$$

(1.8)

which is an isomorphism off the zero section $G^{(\sigma)} \times m \times \{0\}$. This transversely elliptic symbol induces an elliptic symbol

$$(G^{(\sigma)} \times m) \times H^{(\sigma)} (U^0 \otimes V^*) \longrightarrow (G^{(\sigma)} \times m) \times H^{(\sigma)} (U^1 \otimes V^*)$$

on $T^* M = (G^{(\sigma)} \times m) / H^{(\sigma)}$, which is the symbol of D_V. Hence D_V is elliptic. If V is irreducible, then under the isomorphism (1.7) the kernel of D_V corresponds to the V-isotypical subspace of $\ker(D)$. Similarly, $\ker(D^*_V)$ corresponds to the V-isotypical subspace of $\ker(D^*)$. Therefore, by (1.6), $\text{index}(D_V) = \langle \text{index}(D), [V] \rangle$ for irreducible V. The index of D_V is additive with respect to V, so we conclude that $\text{index}(D_V) = \langle \text{index}(D), [V] \rangle$ for general V.

QED

1.3.3. Definition. Let D be a (σ, τ)-twisted operator. The associated induction map is the map

$$i_D : \text{Hom}_{R(G)}(R(H, \sigma - \tau), R(G, \sigma))$$

defined by $i_D([V]) = \text{index}(D_V) = \langle \text{index}(D), [V^*] \rangle$.
Let BM be the unit ball bundle and SM the unit sphere bundle of the cotangent bundle T^*M. The principal symbol \((1.8)\) of a \((\sigma, \tau)\)-twisted operator D defines a class $[D]$ in the twisted relative K-group of the pair (BM, SM) called the symbol class,

$$[D] \in K^0_{G(\sigma)}(BM, SM, \tau).$$

\[(1.9)\]

(The relative twisted K-group occurring here is explained in Appendix A.2) Let $\zeta: M \to T^*M$ be the zero section of T^*M. We will call the restriction of the symbol class to the zero section,

$$e(D) = \zeta^*([D]) = [U^0] - [U^1] \in K^0_{G(\sigma)}(M, \tau) \cong K^0_{H(\sigma)}(pt, \tau) \cong R(H(\sigma), \tau),$$

\[(1.10)\]

the (G-equivariant) Euler class of D. Note that the Euler class depends only on the coefficient module U of D. (If D is the twisted Spinc Dirac operator on M, which is defined in \S2.1, then $e(D)$ is the usual equivariant Euler class of M. The isomorphisms in \(1.10\) are explained in Appendix A.1 Examples A.1.4–A.1.6.)

The following statement, which summarizes and extends to the twisted case results of Bott [6], says that an induction map defined by a twisted operator depends only on the Euler class. Moreover, all such induction maps vanish if the subgroup is not of maximal rank. The situation in the maximal rank case is diametrically opposite and is described in Theorem 3.4.3 below. For simplicity we will compute the Euler class of some twisted Dirac operators in Appendix A.1, Examples A.1.4–A.1.6.

By [6, Theorem I], the element $i_1 i_1^*(\iota_1) = i_1^*(\iota_1(D))$ and $i_D^*(\iota_1) = i_D(\iota_1)$ are in $R(G, \sigma)^*$. Therefore, by Lemma 1.3.2(iii),

$$i_D([V]) = \text{index}(D_{V^*}) = i_D^*(\iota_1(D) \cdot [V]),$$

which proves \(6\). \(\text{iii}\) follows from [6, Theorem II] if H is connected. In the general case we argue as in \[37\ \S2\]: the character of the virtual $G^{(\sigma)}$-module $i_D(a)$ is given by the Lefschetz fixed point formula of Atiyah and Bott [3], but if H does not contain a maximal torus of G, then $H^{(\sigma)}$ does not contain a maximal torus of $G^{(\sigma)}$, so $T^{(\sigma)}$ acts on M without fixed points, so $i_D(a) = 0$. Finally, \(\text{iii}\) follows immediately from \(6\) and the $R(G)$-linearity of i_D (Lemma 1.3.2(b)).

1.4. **Twisted Dirac operators.** The operators of most interest to us will be twisted versions of Atiyah and Singer’s generalized Dirac operators. We state the definition here and we will compute the Euler class of some twisted Dirac operators in Lemma 2.2.1(iv) and Proposition D.4.

Let X be an oriented G-manifold equipped with an invariant Riemannian metric and let $\text{Cl}(X) = \text{Cl}(T^*X)$ be the Clifford bundle of the cotangent bundle
T^*X. Let \(\text{pr}: P \to X \) be a G-equivariant principal bundle over X with structure group H. Let τ be a central extension of H by $U(1)$ and let $E = E^0 \oplus E^1$ be a $\mathbb{Z}/2\mathbb{Z}$-graded $G \times H^{(\tau)}$-equivariant vector bundle over P on which the central circle $U(1)$ of $H^{(\tau)}$ acts by fibrewise scalar multiplication. (In the language of Appendix 0 we call E a G-equivariant twisted vector bundle over X.) Suppose also that E is a graded module for the bundle of Clifford algebras $\text{pr}^* \text{Cl}(X)$ and is equipped with a connection ∇. Assume that the module structure and the connection are $G \times H^{(\tau)}$-equivariant. Choose a G-invariant connection $\theta \in \Omega^1(P, \mathfrak{h})$ on the H-bundle P and let $p: T^*P \to \text{pr}^* T^*X$ be the associated projection. Let $\text{cliff}: \text{pr}^* T^*X \times E^0 \to E^1$ the Clifford multiplication. Form a first-order operator on P,

$$D: \Gamma(P, E^0) \xrightarrow{\nabla} \Gamma(P, T^*P \otimes E^0) \xrightarrow{p} \Gamma(P, \text{pr}^* T^*X \otimes E^0) \xrightarrow{\text{cliff}} \Gamma(P, E^1).$$

(1.11)

This is a $G \times H^{(\tau)}$-equivariant operator on P which is transversely elliptic relative to $H^{(\tau)}$.

Let σ be a central extension of G by $U(1)$. Replacing G with $G^{(\sigma)}$ and $H^{(\tau)}$ with $H^{(\sigma, \tau)}$ in this definition, we obtain a $G^{(\sigma)} \times H^{(\sigma, \tau)}$-equivariant operator D on P which is transversely elliptic relative to $H^{(\sigma, \tau)}$. We refer to D as the twisted Dirac operator determined by the equivariant Clifford module E and the connection θ.

Its symbol defines a class $[D] \in K^0_{G^{(\sigma)}}(BT^*X, ST^*X, \tau)$, which is independent of the choice of θ.

As a special case we take X to be the homogeneous space $M = G/H = G^{(\sigma)}/H^{(\sigma)}$ and P to be the group $G^{(\sigma)}$. The Clifford bundle $\text{pr}^* \text{Cl}(M)$ is then the product bundle $G^{(\sigma)} \times \text{Cl}(m)$. For E we take a product bundle $E = G^{(\sigma)} \times U$, where U is a $\mathbb{Z}/2\mathbb{Z}$-graded $H^{(\sigma, \tau)}$-module of level 1. To make E an equivariant $\text{pr}^* \text{Cl}(M)$ bundle we assume that U is an H-equivariant $\text{Cl}(m)$-module. The orthogonal splitting $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ defines a connection $\theta \in \Omega^1(G^{(\sigma)}, \mathfrak{h}^{(\sigma)})$ on the principal $H^{(\sigma)}$-bundle $G^{(\sigma)} \to M$. A connection $\nabla = d + \theta$ on the bundle E is then defined by

$$\nabla_v f = df(v) + \theta(v) \cdot f$$

for all tangent vectors v to $G^{(\sigma)}$ and smooth functions $f: G^{(\sigma)} \to U$. In this formula $\theta(v) \in \mathfrak{h}^{(\sigma)}$ acts on f by combining the infinitesimal right multiplication action on $G^{(\sigma)}$ with the action

$$\mathfrak{h}^{(\sigma)} \to \mathfrak{h} \xrightarrow{\theta} \mathfrak{m} \xrightarrow{\ell(m)} \mathfrak{gl}(U)$$

on U. (Here $\ell(m)$ is the Lie algebra of the Clifford group, i.e. the vector space $\text{Cl}(m)$ equipped with the commutator bracket $[x, y] = xy - yx$.) Thus the data U and θ define a twisted Dirac operator on M, which is a (σ, τ)-twisted equivariant elliptic differential operator in the sense of Definition 1.3.3. By Theorem 1.3.4 the induction map i_D associated with D depends only on the Euler class $e(D) = [U^0] - [U^1]$.

1.5. The maximal rank case. In view of Theorem 1.3.4(ii) we assume for the remainder of the paper that the subgroup H of G contains T. For simplicity we will also assume H to be connected. Then the homogeneous space $M = G/H$ is simply connected ([7, Ch. IX, §2.4]). In this section we will calculate
the pushforward homomorphism defined by a twisted elliptic operator on M by means of the Lefschetz formula of Atiyah and Bott.

Notation. We denote the various inclusion maps by

$$T^j : G, \quad T^j : H \longrightarrow G.$$

We let $G^{(\sigma)}$ be a central $U(1)$-extension of G and $H^{(\tau)}$ a central $U(1)$-extension of H. Then we have a pullback extension $H^{(\sigma)}$ of H and two pullback extensions $T^{(\sigma)}$ and $T^{(\tau)}$ of T, and corresponding inclusion maps

$$T^{(\sigma)} : G^{(\sigma)}, \quad T^{(\tau)} : H^{(\tau)}, \quad H^{(\sigma)} : H^{(\tau)} \longrightarrow G^{(\sigma)}.$$

The root system of G contains that of H. We let B_H be the unique basis of B_H such that the associated positive roots R^+_H are positive for G. We define

$$W^H = \{ w \in W_G \mid w(B_H) \subseteq B_H \}.$$

Then W^H is a system of coset representatives for W_G/W_H. The set $B_M = B_G \setminus B_H$ (which is usually not a root system) is the set of weights of the complexified T-module m. We call the weights in $R^+_M = B_G \setminus B_H$ positive; the set R_M is the disjoint union of R^+_M and $-R^+_M$. The dimension of M is the cardinality of R^+_M, which is even. For any root α of G, let $g^\alpha_C \subseteq g_C$ be the root space corresponding to α. We have

$$m_C = \bigoplus_{\alpha \in R^+_M} g^\alpha_C, \quad m = \bigoplus_{\alpha \in R^+_M} m^\alpha,$$

where $m^\alpha = m \cap (g^\alpha_C \oplus g^{-\alpha}_C)$. The projection $m_C \rightarrow m$ which sends a vector to its real part induces T-equivariant R-linear isomorphisms $g^\alpha_C \rightarrow m^\alpha$ for all $\alpha \in R^+_M$. We endow m with the T-invariant complex structure provided by this isomorphism (which depends on the choice of the positive weights R^+_M).

1.5.1. **Theorem.** Let D be a (σ, τ)-twisted operator on M and let $i_D : R(H, \sigma - \tau) \rightarrow R(G, \sigma)$ be the induction map determined by D. Then

$$j_G^* i_D(a) = \sum_{w \in W_H} w \left(\frac{j_H(\tau_D a)}{\prod_{i \in R^+_M} (1 - e^{\lambda_i})} \right)$$

for all $a \in R(H, \sigma - \tau)$.

Proof. First assume that $\sigma = 0$. Then D is a $G \times H^{(\tau)}$-equivariant operator

$$D : \Gamma(G, G \times U^0) \rightarrow \Gamma(G, G \times U^1)$$

that is transversely elliptic with respect to $H^{(\tau)}$, where U^0 and U^1 are $H^{(\tau)}$-modules of level 1. Choose a representative $\tilde{w} \in N_G(T)$ for each $w \in W^H$. The map $W^H \rightarrow M^T$ defined by $w \mapsto \tilde{w} H / H$ is a bijection. Let V be an $H^{(\tau)}$-module of level -1 and let $\chi_V : H^{(\tau)} \rightarrow B$ be its character. Let χ be the character of the virtual G-module $i_D([V]) = \text{index}(D_V)$. Let t be a generic element of T. By [3 §II.5], $\chi(t) = \sum_{w \in W_H} \chi_w(t)$, where

$$\chi_w(t) = \frac{\text{trace}(k^0(w^{-1}(t))) - \text{trace}(k^1(w^{-1}(t)))}{\text{det}_R(1 - \eta(w^{-1}(t^{-1})))},$$

where k^0 and k^1 are the characteristic functions of the subgroups $H^{(\tau)}$ and $H^{(\tau)}$ of $G^{(\tau)}$, respectively, and η is the modular function of $G^{(\tau)}$.

and \(\kappa^p \) is the representation \(H \to \text{GL}(U^p \otimes V) \) for \(p = 0 \) or 1. We have
\[
\text{trace}(\kappa^p(w^{-1}(t))) = \chi_{U^p}(w^{-1}(t)) \chi_V(w^{-1}(t)),
\]
and arguing as in [3, §II.5] we find
\[
\det_R(1 - \eta(w^{-1}(t^{-1}))) = \prod_{a \in \gamma_M} (1 - t^{w(a)}) (1 - t^{-w(a)}) > 0.
\]
Therefore
\[
\chi(t) = \sum_{w \in WH} \frac{[\chi_{U^p}(w^{-1}(t)) - \chi_{U^1}(w^{-1}(t))] \chi_V(e^{w^{-1}(t)})}{\prod_{a \in \gamma_M} (1 - t^{w(a)})}.
\]
This identity, valid for generic \(t \), amounts to an identity in the fraction field of the representation ring \(R(T) \), namely
\[
j_G^* i_D([V]) = \sum_{w \in WH} \frac{wj_H^*([U^0] - [U^1]) \cdot [V]}{\prod_{a \in \gamma_M} (1 - e^{w(a)})},
\]
from which the assertion follows immediately. The case of a general extension \(\sigma \) is handled by replacing \(G \) with \(G^{(c)} \), \(H \) with \(H^{(c)} \), and \(H^{(r)} \) with \(H^{(c)} \times_H H^{(r)} \).

QED

The following example is well-known; see e.g. [37] §2.

1.5.2. Example. Let \(\sigma = \tau = 0 \). The exterior algebra \(\Lambda(m_C) \) is a \(\mathbb{Z}/2\mathbb{Z} \)-graded \(H \)-equivariant \(\text{Cl}(m) \)-module. The corresponding Dirac operator defined with respect to the Levi-Civita connection (see §1.4) is the Hodge-de Rham operator
\[
D = d + d^* : \Gamma(M, \Lambda^\text{even}(T_C M)) \to \Gamma(M, \Lambda^\text{odd}(T_C M)),
\]
where \(d^* \) is the adjoint of the exterior derivative \(d \) with respect to the Riemannian metric on \(M \). Also, \(e(D) = e^*([\sigma(D)]) = \lambda_{-1}([m_C]) \), and hence
\[
j_H^* (e(D)) = \lambda_{-1}(j_H^*([m_C])) = \prod_{a \in \gamma_M^+} (1 - e^a)(1 - e^{-a}).
\]
This expression cancels against the denominator in Theorem 1.5.1 and therefore
\[
j_G^* i_D(a) = \sum_{w \in WH} w(j_H^*(a))
\]
for all \(a \in R(H) \). In particular
\[
i_*(e(D)) = i_D(1) = \sum_{w \in WH} 1 = |W_G/W_H|
\]
is the Euler characteristic of \(M \).

2. Twisted Spin*-induction: the character formula

Among all twisted equivariant elliptic differential operators on a maximal-rank homogeneous space \(M = G/H \) there is a preferred one, the twisted \(\text{Spin}^c \) Dirac operator \(D_M = D \), defined in (2.3) below. (The definition easily extends to give a natural twisted \(\text{Spin}^c \) Dirac operator on every oriented Riemannian manifold, which is closely analogous to the twisted \(\text{Spin} \) Dirac operator of Murray and Singer [21, §3.3].) Thanks to the Thom isomorphism every elliptic induction map can be expressed in terms of \(D \) (Theorem 2.1.2 below). In this section we develop
the properties of twisted Spinc-induction up to the “Weyl character formula” (Theorem 2.2.4).

Notation. We retain the hypotheses and the notational conventions stated at the beginning of §1 and §1.5. In addition we define

\[\rho_M = \rho_G - \rho_H = \frac{1}{2} \sum_{\alpha \in \mathcal{F}_M} \alpha \in \frac{1}{2} \mathcal{F}(T). \]

2.1. The Thom isomorphism

Let

\[\text{Spin}^c(m) = (U(1) \times \text{Spin}(m))/K \]

be the complex spinor group of \(m = T_1M \). Here \(K \cong \mathbb{Z}/2\mathbb{Z} \) denotes the central subgroup \(\{(1,1), (-1,-1)\} \) of \(U(1) \times \text{Spin}(m) \), with \(x \) being the nontrivial element in the kernel of the double cover \(\text{Spin}(m) \to \text{SO}(m) \). The central extension

\[1 \to U(1) \to \text{Spin}^c(m) \to \text{SO}(m) \to 1 \]

pulls back via the tangent representation \(\eta : H \to \text{SO}(m) \) to a central extension

\[\omega = \omega_M : 1 \to U(1) \to H \times_{\text{SO}(m)} \text{Spin}^c(m) \to H \to 1, \]

which we call the orientation system of \(M \). (See Appendix A Example A.1.3. The orientation system is trivial if and only if \(\eta \) lifts to a representation \(H \to \text{Spin}^c(m) \), which is equivalent to \(M \) having a \(G \)-invariant \(\text{Spin}^c \)-structure, i.e. an orientation in equivariant K-theory. See Appendix D for a discussion of \(\text{Spin}^c \)-structures on \(M \).)

Let us write elements of \(\text{Spin}^c(m) \) as equivalence classes \([z,g]\) with \(z \in U(1) \) and \(g \in \text{Spin}(m) \). The involution \(f([z,g]) = [z^{-1},g] \) of \(\text{Spin}^c(m) \) restricts to the identity on the subgroup \(\text{Spin}(m) \) and therefore induces the identity on \(\text{SO}(m) \). The involution \(\eta^*(f) \) of \(H^1(\omega) \) therefore defines an equivalence between the orientation system \(\omega_M \) and its opposite, and hence an isomorphism of \(R(H) \)-modules

\[R(H, \omega_M) \cong R(H, -\omega_M), \]

which we will use to identify these two modules. (See Remark 12.1.)

2.1.1. Remark

Let \(\text{Ext}(G, U(1)) \) be the group of equivalence classes of central extensions of \(G \) by \(U(1) \). There is an isomorphism of abelian groups

\[\text{Ext}(G, U(1)) \cong H^3_G(\text{pt}, \mathbb{Z}). \]

(See [4] §6 or [15] §2.3.) Under the isomorphism \(H^3_G(M, \mathbb{Z}) \cong H^3_H(\text{pt}, \mathbb{Z}) \), the class of \(\omega_M \) in \(\text{Ext}(H, U(1)) \cong H^3_H(\text{pt}, \mathbb{Z}) \) corresponds to the integral equivariant Stiefel-Whitney class \(W^3_G(M) \in H^3_G(M, \mathbb{Z}) \), which is a 2-torsion element. If \(G \) is simply connected, the forgetful map \(H^3_G(M, \mathbb{Z}) \to H^3(M, \mathbb{Z}) \) is injective (see [22] Lemma 3.3), so \(M \) is \(\text{Spin}^c \) if and only if it is \(G \)-invariantly \(\text{Spin}^c \).

Let \(S = S^0 \oplus S^1 \) be the spinor module of the Clifford algebra \(\text{Cl}(m) \). This is a \(\mathbb{Z}/2\mathbb{Z} \)-graded \(H^{(\omega)} \)-equivariant Clifford module, and the \(H^{(\omega)} \)-action is of level 1. The associated Dirac operator

\[D = D_M : \Gamma_G(c, G^{(c)} \times S^0) \to \Gamma_G(c, G^{(c)} \times S^1) \]

(2.3)
is a \((\sigma, \omega)\)-twisted equivariant elliptic operator (see §1.4), which we refer to as the twisted \(\text{Spin}^c\) Dirac operator on \(M\). We denote the corresponding induction map by
\[
i_* = i_D : R(H, \sigma + \omega_M) \longrightarrow R(G, \sigma).
\]

Let \(\pi : T^*M \to M\) be the cotangent bundle projection. The Thom isomorphism theorem, Theorem A.3.1 in Appendix A.3 states that for every central \(U(1)\)-extension \(\tau\) of \(H\) the map
\[
\zeta_* : R(H^{(\tau)}(\tau, \tau) \cong K^*_G(M, \tau) \longrightarrow K^*_G(BM, SM, \pi^*(\tau + \omega_M))
\]
defined by \(\zeta_*(a) = \pi^*(a)\text{th}(M)\) is an isomorphism of \(R(H)\)-modules. We denote the inverse of \(\zeta_*\) by \(\pi_*\). Here \(\text{th}(M)\) is the Thom class of \(M\), which by \((A.2)\) is equal to the symbol class of the operator \(D\).

It was observed by Atiyah and Singer that the Thom isomorphism theorem reduces the index theorem for general elliptic operators to the case of the Dirac operator. In exactly the same way the Thom isomorphism enables us to express every induction map defined by a twisted elliptic operator in terms of twisted \(\text{Spin}^c\)-induction.

2.1.2. Theorem. Let \(D\) be a \((\sigma, \tau)\)-twisted operator on \(M\). There is a unique element \(a_D \in R(H^{(\sigma)}(\tau, \tau + \omega_M))\) such that \(e(D) = a_D e(D)\), namely \(a_D = \pi_*([D])\). This element has the property that \(i_D(a) = i_*(a_D a)\) for all \(a \in R(H, \sigma - \tau)\).

Proof. Put \(a_D = \pi_*([D])\). Using the definition of \(\zeta_*\) and the fact that \(\text{th}(M) = [D]\) we obtain \([D] = \pi^*(a_D[D])\). Pulling back to the zero section gives
\[
e(D) = \zeta^*([D]) = a_D \xi^*([D]) = a_D e(D).
\]
It follows from Lemma 1.2.2(iii) that \(a_D\) is the only class that satisfies this identity. Using this and applying Theorem A.3.1 twice we find that
\[
i_D(a) = i_*(e(D)a) = i_*(e(D)a_D a) = i_D(a_D a)
\]
for all \(a \in R(H, \sigma - \tau)\). \(\Box\)

2.1.3. Example. Let \(V\) be an \(H^{(\tau-\omega_M)}\)-module of level 1. The twisted Dirac operator \(D\) defined by the \(H^{(\tau)}\)-equivariant Clifford module \(S \otimes V\) is a \((\sigma, \tau)\)-twisted operator. (See §1.4) The symbol class of \(D\) is \([D] = [D] \pi^*([V])\), so the class \(a_D\) is equal to
\[
a_D = \pi_*([D]) = \pi_*([D] \pi^*([V])) = \pi_*([D][V]) = [V].
\]
Hence \(i_D(a) = i_*(a[V])\) for all \(a \in R(H, \sigma - \tau)\) by Theorem 2.1.2.

2.2. The character formula. The centre of \(\text{Spin}^c(m)\) is \(U(1)\) and its commutator subgroup is \(\text{Spin}(m)\), the universal covering group of \(SO(m)\). We therefore have a natural infinitesimal splitting \(\text{spin}^c(m) = \mathfrak{u}(1) \oplus \mathfrak{so}(m)\) of the extension \((2.1)\). Pulling back to \(H\) we obtain an infinitesimal splitting of the orientation system \(\omega\), and then restricting to the maximal torus \(T\) of \(H\) we get an infinitesimal splitting of the extension
\[
1 \longrightarrow U(1) \longrightarrow T^{(\omega)} \longrightarrow T \longrightarrow 1,
\]
where \(T^{(\omega)} \subset H^{(\omega)}\) is the inverse image of \(T\). Dually we have a rational splitting \(\mathfrak{r} : \mathfrak{r}(U(1)) \to \mathfrak{r}(T^{(\omega)})\) of the exact sequence of character groups
\[
0 \longrightarrow \mathfrak{r}(T) \longrightarrow \mathfrak{r}(T^{(\omega)}) \longrightarrow \mathfrak{r}(U(1)) \longrightarrow 0.
\]
Since Spin(m) is a double covering of $\text{SO}(m)$, we have $\epsilon_0 \in \frac{1}{2} \mathcal{X}(T^{(\omega)})$.

In the next lemma we compute the Euler class $e(D) \in R(H, \omega_M)$, or rather its restriction to the maximal torus $T^{(\omega)}$ of $H^{(\omega)}$. For ease of notation we denote the inclusion $T^{(\omega)} \to H^{(\omega)}$ by j_H.

2.2.1. Lemma.

(i) $\epsilon_0 - \rho_M \in \mathcal{X}(T^{(\omega)})$.

(ii) $\mathcal{X}(T^{(\omega)}) = \mathcal{X}(T) \oplus \mathbb{Z} \cdot (\epsilon_0 - \rho_M)$.

(iii) $R(T, \omega) = R(T) \cdot e^{\omega_0 - \rho_M}$.

(iv) $j_H^* (e(D)) = \prod_{\alpha \in \mathcal{R}_M} (1 - e^{\alpha}) = e^{\omega_0} \prod_{\alpha \in \mathcal{R}_M} (e^{-\alpha/2} - e^{\alpha/2})$.

Proof. Let $\mathcal{R}_M = \{\alpha_1, \alpha_2, \ldots, \alpha_l\}$ and put $m_k = m^{\alpha_k}$. The group

$$ T = \prod_{k=1}^l \text{SO}(m_k) $$

is a maximal torus of $\text{SO}(m)$ that contains the torus $\eta(T)$. Let ϵ_k be the weight of the T-action on m_k. (Recall our convention whereby we identify m_k with the root space q_k, so turning m into a unitary T-module.) Let \hat{T} be the inverse image of T in Spin(m). Using [7, Ch. VI, Planche IV] we compute the character group $\mathcal{X}(T)$ of $\text{Spin}(m)$ and write

$$ \mathcal{X}(T) = \bigoplus_{k=1}^l \mathbb{Z} \epsilon_k. $$

where $\hat{\epsilon} = \epsilon_0 - \frac{1}{2} \sum_{k=1}^l \epsilon_k$. Because T acts with weight α_k on m_k, the homomorphisms

$$ \eta^*: \mathcal{X}(T) \to \mathcal{X}(T), \quad \hat{\eta}^*: \mathcal{X}(T) \to \mathcal{X}(T^{(\omega)}) $$

induced by $\eta: T \to T$ and its lift $\hat{\eta}: T^{(\omega)} \to \hat{T}$ are given by

$$ \eta^*(\epsilon_k) = \alpha_k, \quad \hat{\eta}^*(\hat{\epsilon}) = \epsilon_0 - \rho_M. $$

By definition $T^{(\omega)}$ is the pullback $T \times_T \hat{T}$, so dually its character group $\mathcal{X}(T^{(\omega)})$ is the pushout

$$ \mathcal{X}(T^{(\omega)}) \cong (\mathcal{X}(T) \oplus \mathcal{X}(\hat{T}))/\mathcal{X}(T). $$

Hence $\mathcal{X}(T^{(\omega)})$ is generated by $\mathcal{X}(T)$ and $\epsilon_0 - \rho_M$, which proves (i) and (ii). Let $\lambda \in \mathcal{X}(T^{(\omega)})$ and write $\lambda = \mu + k(\epsilon_0 - \rho_M)$ with $\mu \in \mathcal{X}(T)$ and $k \in \mathbb{Z}$. Then the element $e^\lambda \in \mathbb{Z}[\mathcal{X}(T^{(\omega)})] \cong R(T^{(\omega)})$ is of level 1 if and only if $k = 1$. Thus the $R(T)$-module $R(T, \omega)$ is spanned by the element $e^{\omega_0 - \rho_M}$, which proves (iii).

According to (1.10), the Euler class of D is

$$ e(D) = \hat{\eta}^*([S^0] - [S^1]) \in R(H, \omega). $$

To find its restriction to $R(T, \omega)$, we must describe the T-action on the half-spin representations S^0 and S^1. As vector spaces,

$$ S = \Lambda_C(m), \quad S^0 = \Lambda_C^{\text{even}}(m), \quad S^1 = \Lambda_C^{\text{odd}}(m). $$

For $1 \leq k \leq l$, let $v_k \in m_k$ be a vector of unit length. Then the products

$$ v_1 = v_{i_1} \wedge \cdots \wedge v_{i_t} $$

(2.5)
where \(i = (i_1, i_2, \ldots, i_k) \) ranges over all increasing multi-indices \(i \) of length \(|i| = k \in \{0, 1, \ldots, l\} \), form an orthonormal basis of \(\Lambda_C(m) \). Let \(T \) be the inverse image in \(\text{Spin}(m) \) of the maximal torus \(T \). Its character group is

\[
\mathcal{X}(T) = \mathbb{Z} \bar{e} + \bigoplus_{k=1}^{l} \mathbb{Z} e_k,
\]

where \(\bar{e} = \frac{1}{l} \sum_{k=1}^{l} e_k \). The vector \(v_i \) is a weight vector of the \(T \)-action with weight \(-\bar{e} + \epsilon_i \), where \(\epsilon_i = \epsilon_{i_1} + \cdots + \epsilon_{i_k} \). (Cf. [2] §VIII.13.4.) The centre \(U(1) \) of \(\text{Spin}^c(m) \) acts by scalar multiplication, so the weight of \(v_i \) for the \(\hat{T} \)-action is \(\epsilon_0 - \bar{e} + \epsilon_i = \hat{\epsilon} + \epsilon_i \). Hence the weight of \(v_i \) for the \(T \)-action is

\[
\eta(\hat{\epsilon} + \epsilon_i) = \epsilon_0 - \rho_M + \alpha_i.
\]

(2.6)

Thus the class of \(\Lambda^k_C \) in \(R(T, \omega)_L \) is \(e^{\epsilon_0 - \rho_M} \sum_{|i|=k} e^{\alpha_i} \), and hence

\[
j_H^* (e(D)) = e^{\epsilon_0 - \rho_M} \sum_{|i|=k} (-1)^k \sum_{|i|=k} e^{\alpha_i} = e^{\epsilon_0 - \rho_M} \prod_{k=1}^{l} (1 - e^{\alpha_k}),
\]

which establishes (2.5).

QED

2.2.2. Remark. Let \(Z[\rho_M + \mathcal{X}(T)] \) be the free abelian group generated by the affine lattice \(\rho_M + \mathcal{X}(T) \) in \(\mathcal{X}(T)_Q \). The basis elements of \(Z[\rho_M + \mathcal{X}(T)] \) are of the form \(e^{\mu+\rho_M} \) with \(\mu \in \mathcal{X}(T) \). The group

\[
Z[\rho_M + \mathcal{X}(T)] = Z[\mathcal{X}(T)] \cdot e^{\rho_M} \cong R(T) \cdot e^{\rho_M}
\]

is not a ring, but a module over the ring \(Z[\mathcal{X}(T)] \cong R(T) \). By Lemma 2.2.1, the affine map \(\rho_M + \mathcal{X}(T) \to \mathcal{X}(T(\omega)) \) defined by \(\lambda \mapsto \epsilon_0 + \lambda \) induces an isomorphism

\[
R(T) \cdot e^{\rho_M} \xrightarrow{\cong} R(T, \omega), \quad a \mapsto e^{\epsilon_0} \cdot a
\]

doing \(R(T) \)-modules, which we will call the level shift. The preimage of \(j_H^*(e(D)) \) under the level shift is the class

\[
e^{-\rho_M} \prod_{\alpha \in X_M^+} (1 - e^{\alpha}) \in Z[\rho_M + \mathcal{X}(T)].
\]

Since \(\rho_M = w(\rho_M) \) is in the root lattice of \(G \) for all \(w \in W_H \), the \(W_H \)-action on \(\mathcal{X}(T)_Q \) preserves \(\rho_M + \mathcal{X}(T) \). Because \(\epsilon_0 \) is central, the level shift is \(W_H \)-equivariant and hence restricts to an isomorphism of \(\mathcal{R}(H) \)-modules

\[
Z[\rho_M + \mathcal{X}(T)]^{W_H} \xrightarrow{\cong} R(H, \omega),
\]

which we also refer to as the level shift. (If \(\rho_M \notin \mathcal{X}(T) \), i.e. if \(M \) does not have a \(G \)-invariant \(\text{Spin} \)-structure, we can view \(R(H) \oplus R(H, \omega) \) as the representation ring of the double cover \(H \times_{SO(m)} \text{Spin}(m) \) of \(H \).) In the sequel we will make the identifications

\[
R(T, \omega) = R(T) \cdot e^{\rho_M}, \quad R(H, \omega) = (R(T) \cdot e^{\rho_M})^{W_H}.
\]

Formally this amounts to setting \(\epsilon_0 = 0 \), which has the desirable effect of cleaning up several formulas.
The antisymsmtrizer of W_G is the element J_G of the group ring $Z[W_G]$ defined by
\[
J_G = \sum_{w \in W_G} \det(w)w. \tag{2.7}
\]
Let A be a W_G-module and let A^{-W_G} denote the set of anti-invariant elements of A, i.e. those $a \in A$ satisfying $w(a) = \det(w)a$ for all $w \in W_G$. Then J_G defines a $Z[W_G]$-linear operator $J_G : A \to A^{-W_G}$, and we have $J_G(a) = |W_G|a$ for all anti-invariant $a \in A$. Similarly, we have the antisymmetrizer $J_H \in Z[W_H]$ with respect to the Weyl group W_H. We also define a relative antisymmetrizer $J_M \in Z[W_G]$ by
\[
J_M = \sum_{w \in W_H} \det(w)w.
\]
The fact that each $w \in W$ can be written uniquely as a product $w'w''$ with $w' \in W^H$ and $w'' \in W_H$ implies that
\[
J_G = J_M J_H. \tag{2.8}
\]
Recall that the W_G-anti-invariant element $J_G(e^{\rho G})$ of $Z[\frac{1}{2} \mathfrak{g}(T)]$ is equal to the Weyl denominator
\[
d_G = e^{\rho G} \prod_{\alpha \in \Phi_+^H} (1 - e^{-\alpha}). \tag{2.9}
\]
(See e.g. [7] VI.3, Proposition 2.) The duality homomorphism $R(H, \tau) \to R(H, -\tau)$ is the map $b \mapsto b^*$ defined on generators by $[V]^* = [V^*]$.

2.2.3. Lemma. Let $D_{G/T}$ and $D_{H/T}$ be the twisted Spinc Dirac operators of the flag varieties G/T, resp. H/T. We have the identities
\[
d_G = e(D_{G/T})^*, \quad j_H^*(e(D_M)^*) = d_G/d_H, \quad e(D_{G/T}) = j_H^*(e(D_{G/H})e(D_{H/T})).
\]
Proof. This follows immediately from Lemma 2.2.1 iv and (2.9) (after applying a level shift; see Remark 2.2.2).

A version of the following character formula was stated by Bott [6, p. 179], but his hypotheses and proof are not entirely correct. Incorporating the ω-twist resolves the problems in Bott’s treatment. A version for Lie algebras (which does not require any twists) can be found in [13]. Note that the character formula depends on the choice of the positive roots. The induction map i_σ, however, is independent of this choice.

2.2.4. Theorem. Let D_M be the twisted Spinc Dirac operator on M and let $i_\sigma : R(H, \sigma + \omega_M) \to R(G, \sigma)$ be the associated induction map. Then
\[
j_G^* i_\sigma(a) = \frac{J_M(d_H j_H^*(a))}{d_G}
\]
for all $a \in R(H, \sigma + \omega_M)$.

Proof. It follows from Lemma 2.2.1 iv that
\[
j_H^*(e(D)e(D)^*) = \prod_{\alpha \in \Phi_M} (1 - e^{\alpha}).
\]
Substituting this expression into the formula of Theorem 1.5.1 yields
\[
j_G^* i_\sigma(a) = \sum_{w \in W_H} w(j_H^* \left(\frac{a}{e(D)^*} \right)) \tag{2.10}
\]
for all $a \in R(H, \sigma + \omega_M)$. Lemma 2.2.3 shows that

$$w\left(\mathcal{J}_H^*\left(\frac{a}{e(D)_r}\right)\right) = w\left(\frac{d_{H/H}^c(a)}{d_G}\right) = \frac{\det(w) w(d_{H/H}^c(a))}{d_G}$$

for all $w \in W^H$, and substituting this into (2.10) proves the result. QED

Let us explain the extent to which this formula is parallel to Weyl's character formula. For simplicity let $\sigma = 0$. The following result generalizes a well-known result for semisimple simply connected groups. The proof is in Appendix C.

2.2.5. **Proposition.**

(i) The W_G-action on $R(T(\omega_G/T))$ preserves $R(T, \omega_G/T)$.

(ii) The set of anti-invariants $R(T, \omega_G/T)^{-W_G}$ is a free $R(G)$-module of rank 1 generated by d_G.

(iii) The elements $J_G(e^\lambda)$, with $\lambda \in \rho_G + \mathcal{Z}(T)$ strictly dominant, form a basis of the \mathbb{Z}-module $R(T, \omega_G/T)^{-W_G}$.

Applying this to G and H and using the equivalence $\omega_{G/H} + \omega_{H/T} \sim \omega_{G/T}$ (see Lemma 3.1.1 below), we can interpret the character formula for twisted Spinc-induction as a three-step process,

$$R(H, \omega_{G/H}) \xrightarrow{d_H^c} R(T, \omega_{G/T})^{-W_H} \xrightarrow{I_{M}} R(T, \omega_{G/T})^{-W_G} \xrightarrow{d_G} R(G).$$

3. **Further properties of twisted Spinc-induction**

We continue our discussion of the twisted induction map defined by means of the twisted Spinc Dirac operator on the homogeneous space $M = G/H$. We retain the notational conventions of §§1 and 2. We show that twisted Spinc-induction is functorial with respect to the subgroup H (Theorem 3.1.2). If M has an invariant Spinc-structure (which is not always the case), then there is a transparent relationship between Spinc-induction and twisted Spinc-induction (Theorem 3.2.1). Twisted induction of irreducible modules behaves according to a “Borel-Weil-Bott formula” (Theorem 3.3.1). Twisted Spinc-induction gives rise to a bilinear pairing between twisted representation modules. These modules are twisted equivariant K-groups, and the pairing is analogous to an intersection pairing in ordinary equivariant cohomology. Under a mild condition on G the pairing is nonsingular (Theorem 3.4.2), which enables us to characterize all twisted induction maps from H to G (Theorem 3.4.3).

3.1. **Twisted induction in stages.** Twisted Spinc-induction is functorial with respect to the subgroup H. Consider two closed connected subgroups $H_2 \subseteq H_1$ of G, both of which contain T. We have a diagram of inclusions

$$\begin{array}{c}
H_2 \searrow \downarrow i_2 \\
H_1 \nearrow \uparrow i_1 \\
G
\end{array}$$

Let $m_1 = g/h_1$, $m_2 = g/h_2$ and $n = h_1/h_2$. Being a sum of root spaces, m_2 is naturally isomorphic to the orthogonal direct sum $m_1 \oplus n$. We have three orientation
systems,
\[\omega_{\mathcal{G}/H_1}/1 \rightarrow \mathcal{U}(1) \rightarrow H_p \times \text{SO}(m_p) \text{ Spin}^c(m_p) \rightarrow H_p \rightarrow 1 \quad (p = 1, 2), \]
\[\omega_{H_1/H_2}/1 \rightarrow \mathcal{U}(1) \rightarrow H_2 \times \text{SO}(n) \text{ Spin}^c(n) \rightarrow H_2 \rightarrow 1. \]

3.1.1. Lemma. The natural homomorphism \(f : \text{SO}(m_1) \times \text{SO}(n) \rightarrow \text{SO}(m_2) \) induces an equivalence of extensions \(f^* : k^*(\omega_{\mathcal{G}/H_1}) + \omega_{H_1/H_2} \sim \omega_{\mathcal{G}/H_2}. \)

Proof. For \(p = 0 \) or 1, put \(\mathcal{G}_p = \text{SO}(m_p) \) and \(\hat{\mathcal{G}}_p = \text{Spin}^c(m_p). \) Put \(\mathcal{G} = \text{SO}(n) \) and \(\hat{\mathcal{G}} = \text{Spin}^c(n). \) The homomorphism \(f : \mathcal{G}_1 \times \mathcal{G} \rightarrow \mathcal{G}_2 \) lifts to a morphism of \(\mathcal{U}(1) \)-extensions of \(\mathcal{G}_1, \)

\[(\hat{\mathcal{G}}_1 \times \mathcal{G})/K \rightarrow \hat{\mathcal{G}}_2, \]

where \(K \) is a copy of \(\mathcal{U}(1) \) anti-diagonally embedded in \(\hat{\mathcal{G}}_2 \times \hat{\mathcal{G}}. \) The morphism \((3.1) \) is an isomorphism by the five-lemma. Pulling the extension \(\mathcal{H}_1(\omega_{\mathcal{G}/H_1}) \) of \(\mathcal{H}_1 \) back to \(\mathcal{H}_2 \) gives the \(\mathcal{U}(1) \)-extension

\[\mathcal{H}_2 \times \mathcal{H}_1 \mathcal{G}_1 (G_1 \times \mathcal{G}) \cong \mathcal{H}_2 \times \mathcal{G}_1 \mathcal{G}_1 \]

of \(\mathcal{H}_2. \) Adding this extension to \(\mathcal{H}_2(\omega_{\mathcal{G}/H_2}) \) gives the extension

\[[(\mathcal{H}_2 \times \mathcal{G}_1 \mathcal{G}_1) \times \mathcal{H}_2 (\mathcal{H}_2 \times \mathcal{G}_1 \mathcal{G}_1)]/K \cong [(\mathcal{H}_2 \times \mathcal{G}_1 \mathcal{G}_1) \times \mathcal{G}_1 \mathcal{G}_2]/K \]

\[\cong \mathcal{H}_2 \times \mathcal{G}_1 \mathcal{G}_2 [(\hat{\mathcal{G}}_1 \times \mathcal{G})/K] \]

of \(\mathcal{H}_2, \) which is isomorphic to \(\mathcal{H}_2 \times \mathcal{G}_2 \hat{\mathcal{G}}_2 \) by \((3.1). \) QED

For the sake of brevity we will write this equivalence as

\[\omega_{\mathcal{G}/H_1} + \omega_{\mathcal{G}/H_2} \sim \omega_{\mathcal{G}/H_2} \]

and use it to make the identification

\[R(\mathcal{H}_2, \sigma + \omega_{\mathcal{G}/H_2}) = R(\mathcal{H}_2, \sigma + \omega_{\mathcal{G}/H_1} + \omega_{\mathcal{H}_1/H_2}). \]

A version of the next theorem, under the assumption that \(\mathcal{G}/H_1 \) and \(H_1/H_2 \) are \(\text{Spin}, \) was proved in [41 Part II, §4].

3.1.2. Theorem. (i) The Euler class of the twisted \(\text{Spin}^c \) Dirac operator is multiplicative in the sense that \(e(D_{\mathcal{H}_2/H_2}) = k^*(e(D_{\mathcal{H}_1/H_1}))e(D_{\mathcal{H}_1/H_2}). \)

(ii) Twisted \(\text{Spin}^c \)-induction is functorial in the sense that the diagram

\[R(\mathcal{H}_2, \sigma + \omega_{\mathcal{G}/H_1} + \omega_{\mathcal{H}_1/H_2}) \xrightarrow{k_*} R(\mathcal{H}_1, \sigma + \omega_{\mathcal{G}/H_1}) \]

\[R(\mathcal{H}_2, \sigma + \omega_{\mathcal{G}/H_2}) \xrightarrow{i_{\mathcal{G}}*} R(\mathcal{G}, \sigma) \]

commutes.

Proof. (i) follows from Lemma 2.2.1 [3]. Let \(a \in R(\mathcal{H}_2, \sigma + \omega_{\mathcal{G}/H_2}). \) It follows from (1.2) that the formal pushforward homomorphism is functorial in the sense
that $i_{2,1} = i_{1,1} \circ k_{1}$. Hence, using Theorem 1.3.4, the $R(H_{1})$-linearity of the formal pushforward, and the multiplicity of the Euler class, we obtain

$$i_{2*}(a) = i_{2,1}(e(D_{G/H_{2}})a)$$

$$= i_{1,1}(k_{1}^{*}(e(D_{G/H_{1}}))e(D_{H_{1}/H_{2}})a)$$

$$= i_{1,1}(k_{1}(e(D_{G/H_{1}})k_{1}(e(D_{H_{2}/H_{1}})a)))$$

$$= i_{1,1}k_{*}(a)$$

for all a, so $i_{2*} = i_{1,*} \circ k_{*}$. QED

3.2. **Spin**\(^{c}\) **versus twisted Spin**\(^{c}\). We call a character $\gamma \in \mathcal{X}(H)$ c-spinorial if the homomorphism $\gamma \times \eta: H \to U(1) \times SO(m)$ lifts to a homomorphism $\hat{\gamma}: H \to Spin^{c}(m)$. Such characters γ exist if and only if M admits a G-invariant Spin\(^{c}\)-structure, and they classify such structures up to equivalence. See Appendix D and [27] for a discussion of invariant Spin\(^{c}\)-structures. Let γ be a c-spinorial character. Then we have the untwisted elliptic operator

$$\delta = \delta_{\gamma}: \Gamma(M, G \times H S^{0}) \xrightarrow{\nabla} \Gamma(M, G \times H (m \times S^{0})) \xrightarrow{\text{cliff}} \Gamma(M, G \times H S^{1}),$$

called the Spin\(^{c}\) Dirac operator on M associated with γ. Coupling the Dirac operator with untwisted H-modules gives rise to an induction map

$$i_{0} = i_{\delta_{\gamma}}: R(H) \to R(G).$$

3.2.1. **Theorem.** Let γ be a c-spinorial character of H. Then the $R(H)$-module $R(H, \omega)$ is freely generated by $e^{i/2}$, and the diagram

$$\begin{array}{ccc}
R(H) & \xrightarrow{i_{0}} & R(G) \\
\downarrow e^{i/2} & \cong & \downarrow e^{i/2} \\
R(H, \omega) & \xrightarrow{i_{*}} & R(H, \omega)
\end{array}$$

commutes. Hence $i_{0}^{*}i_{0}(a) = I_{M}(e^{i/2}d_{H}a)/d_{G}$ for all $a \in R(H)$.

Proof. As in Remark 2.2.2, we identify $R(H, \omega)$ with the $R(H)$-module

$$(R(T) \cdot e^{\theta M})^{WH} \cong (Z[\mathcal{X}(T)] \cdot e^{\theta M})^{WH}.$$

By Proposition D.3.2, the element $\rho_{M} - \frac{1}{2} j_{H}^{T}(\gamma)$ is in $\mathcal{X}(T)$, and therefore $e^{i_{H}^{T}(\gamma)/2}$ generates the $Z[\mathcal{X}(T)]$-module $Z[\mathcal{X}(T)] \cdot e^{\theta M}$. Being the restriction of a character of H, the element $e^{i_{H}^{T}(\gamma)/2}$ is invariant under W_{H}. Therefore

$$Z[\mathcal{X}(T)] \cdot e^{\theta M}^{WH} = (Z[\mathcal{X}(T)] \cdot e^{i_{H}^{T}(\gamma)/2})^{WH} = Z[\mathcal{X}(T)]^{WH} \cdot e^{i_{H}^{T}(\gamma)/2},$$

which implies that $e^{i/2}$ generates $R(H, \omega)$. Since is $e^{i/2}$ a unit, this shows that $R(H, \omega)$ is free. By Proposition D.4.4, the Euler class of δ_{γ} is $e^{i/2}e(D)$. Therefore, by Theorem 2.1.2, $i_{0}(a) = i_{*}(e^{i/2}a)$ for all $a \in R(H)$. The last assertion now follows from the character formula, Theorem 2.2.4 QED

The best-known special cases of Spin\(^{c}\)-induction are Spin-induction and holomorphic induction. The comparison with twisted Spin\(^{c}\)-induction is as follows.
3.2.2. Example. Suppose that M possesses a G-invariant Spin-structure. This is the case if and only if $\rho_M \in \mathcal{X}(T)$. The c-spinorial character of the corresponding Spin*-structure is $\gamma = 0$. (See Example [D.5]) Therefore, in this case twisted Spin*-induction is the same as Spin-induction. (However, twisted induction is defined even if M has no invariant Spin-structure.) The character formula reads $j^c_G j^a_0(a) = j^c_M(d_H a)/d_G$ for all $a \in R(H)$. In particular, setting $H = T$ and supposing that $\rho_G \in \mathcal{X}(T)$, we find $j^c_G j^a_0(a) = j^c_G(a)/d_G$ for all $a \in R(T)$.

3.2.3. Example. Suppose that M possesses a G-invariant complex structure. This is the case if and only if H is the centralizer of a subtorus of T. The c-spinorial character for the associated Spin*-structure is given by $j^c_H(\gamma) = 2\rho_M$. (See Example [D.8]) Therefore holomorphic induction is given by $i_0(a) = i_* (e^{\rho_M} a)$. Holomorphic induction depends on the choice of the invariant complex structure (in other words, the choice of the basis of the root system), but twisted induction does not. The character formula is $j^c_G j^a_0(a) = j^c_M(e^{\rho_M} a)/d_G$ for all $a \in R(H)$. In particular, setting $H = T$ gives $j^c_G j^a_0(a) = j^c_G(e^{\rho_M} a)/d_G$ for all $a \in R(T)$, which is the usual Weyl character formula.

3.3. Irreducibles. The pushforward of an irreducible H-module to G is given by a well-known Borel-Weil-Bott type formula, Theorem 3.3.1 below. Such a formula was obtained for homogeneous Spin-manifolds by Slebarski [11 Part II, §4, Theorem 2] and for homogeneous Spin*-manifolds by Landweber [25, 28]. Versions for Lie algebra representations were given by Gross et al. [13] and Kostant [20]. Our modest contribution is to state a version of the formula which holds at the group level, but which does not hypothesize the existence of a Spin*-structure. Since it is an equality of characters, the formula actually follows from the Lie algebra version. To illustrate our techniques we will derive it from the functoriality theorem, Theorem 3.1.2.

An irreducible $G^{(e)}$-module V is determined up to isomorphism by its highest weight, which is a dominant character $\lambda \in \mathcal{X}(T^{(e)})$. If V is of level 1, then its highest-weight space V_λ is a one-dimensional $T^{(e)}$-module of level 1. We will call such a λ a G-dominant character of level 1, and denote the module by $V_G(\lambda, \sigma)$. If $\sigma = 0$, we write $V_G(\lambda, \sigma) = V_G(\lambda)$.

3.3.1. Theorem. Let μ be an H-dominant level 1 character of $T^{(\sigma + \omega_M)}$. There exists at most one $w \in W_H$ such that $w(\mu + \rho_H) - \rho_G$ is G-dominant. If no such w exists, then $i_* ([V_H(\mu, \sigma + \omega_M)]) = 0$; if w exists, then

$$i_* ([V_H(\mu, \sigma + \omega_M)]) = \text{det}(w)[V_G(w(\mu + \rho_H) - \rho_G, \sigma)].$$

Proof. The Borel-Weil-Bott theorem for the group G implies the following assertion: for each $\kappa \in \mathcal{X}(T)$ there is at most one $v \in W_G$ such that $v(\kappa + \rho_G) - \rho_G$ is G-dominant; if no such v exists, then $j^c_G (e^\kappa) = 0$; if v exists, then

$$j^c_G (e^\kappa) = \text{det}(v)[V_G(v(\kappa + \rho_G) - \rho_G)].$$

Here $j^c_G: R(T) \to R(G)$ is the holomorphic induction map. (See e.g. [10].) Let us apply this to the group $G^{(e)}$ and recall that holomorphic induction preserves the level. (This follows from Lemma [12.4]) Let us also use the formula $j^c_G (e^\kappa) = j^c_G (e^{\rho_G})$ of Example 3.2.3. The following statement results: for each level 1 character λ of $T^{(e)}$ there is at most one $v \in W_G$ such that $v(\lambda) - \rho_G$ is G-dominant;
if no such v exists, then $j_{G,*}(e^\lambda) = 0$; if v exists, then

$$j_{G,*}(e^\lambda) = \det(v)[V_G(v(\lambda) - \rho_G, \sigma)].$$

(3.2)

This statement applies to the group $H^{(\rho + \omega_M)}$. Taking an H-dominant level 1 character μ of $T^{(\rho + \omega_M)}$ and putting $\lambda = \mu + \rho_H$, we find $v = 1$ and

$$[V_H(\mu, \sigma + \omega_M)] = j_{H,*}(e^{\mu + \rho_H}).$$

Applying i_* to both sides and using Theorem 3.1.2 yields

$$i_*([V_H(\mu, \sigma + \omega_M)]) = i_* j_{H,*}(e^{\mu + \rho_H}) = j_{G,*}(e^{\mu + \rho_H}).$$

The result now follows from (3.2) plus the observation that, if $w \in W_G$ maps the strictly H-dominant character $\lambda = \mu + \rho_H$ to a strictly G-dominant element $w(\lambda)$, then $w \in W^H_G$. QED

3.3.2. Example. The character ρ_M is a highest weight of the spinor module S (see (2.6)) and hence is H-dominant. Therefore $i_*([V_H(\rho_M, \omega_M)]) = 1$ by Theorem 3.3.1.

In the Spin case Kostant [20], [21] has established a refinement of Theorem 3.3.1 which amounts to a vanishing theorem for the kernel or the cokernel of the Dirac operator (taken with respect to a very special connection), and which yields a $\mathbb{Z}/2\mathbb{Z}$-graded generalization of the classical Borel-Weil-Bott theorem. Kostant’s assumption of the existence of a Spin-structure on G/H can be removed by means of our techniques, but we will not pursue that avenue here.

3.4. Duality and induction. There is a natural pairing between twisted representation modules defined by means of twisted Spinc-induction. As before, we let τ be a central extension of H by $U(1)$. Define

$$\mathcal{P}: R(H, \tau) \times R(H, \omega_M - \tau) \rightarrow R(G)$$

by $\mathcal{P}(a_1, a_2) = i_*(a_1a_2)$ for $a_1 \in R(H, \tau)$ and $a_2 \in R(H, \omega_M - \tau)$. It follows from the $R(G)$-linearity of the induction map i_* that \mathcal{P} is $R(G)$-bilinear. Recall that A^\vee denotes the dual of an $R(G)$-module A. We call the pairing nonsingular if the two $R(G)$-linear maps

$$\mathcal{P}^\#: R(H, \tau) \rightarrow R(H, \omega_M - \tau)^\vee, \quad R(H, \omega_M - \tau) \rightarrow R(H, \tau)^\vee$$

induced by \mathcal{P} are isomorphisms. The map $\mathcal{P}^\#$ fits into a diagram

$$
\begin{array}{ccc}
R(T) & \xrightarrow{\beta^\#_G} & R(T)^\vee \\
\downarrow \pi & & \downarrow \pi^\vee \\
R(H, \tau) & \xrightarrow{\mathcal{P}^\#} & R(H, \omega_M - \tau)^\vee
\end{array}
$$

(3.3)

Here β is the $R(G)$-bilinear pairing on $R(T)$ defined by holomorphic induction (cf. Example 3.2.3),

$$\mathcal{P}_\beta(b_1, b_2) = j_{G,*}(b_1b_2) = j_{G,*}(e^{\mu}b_1b_2)$$

for $b_1, b_2 \in R(T)$. Choose a character μ of level 1 of the extended torus $T^{(\tau)}$. Then e^μ is a free generator of the $R(T)$-module $R(T, \tau)$ (see Example 1.2.3), and
we define \(\iota, \pi, \iota^\vee, \) and \(\pi^\vee \) to be the compositions of the following \(R(H) \)-linear maps:

\[
\begin{align*}
\iota: & \quad R(H, \tau) \xrightarrow{j^*_{H, \tau}} R(T, \tau) \xrightarrow{e^\mu} R(T), \quad (3.4) \\
\pi: & \quad R(T) \xrightarrow{\partial H + \mu} R(T, \omega_{H/T} + \tau) \xrightarrow{i^*_{H, \tau}} R(H, \tau), \quad (3.5)
\end{align*}
\]

\[
\begin{align*}
\iota^\vee: & \quad R(H, \omega_M - \tau)^\vee \xrightarrow{\iota^*(\lambda_{H, \tau})} R(T, \omega_{G/T} - \tau)^\vee \xrightarrow{\iota^*(\lambda^G - \mu)} R(T)^\vee, \\
\pi^\vee: & \quad R(T)^\vee \xrightarrow{\iota^*(\lambda^PM + \mu)} R(T, \omega_M - \tau)^\vee \xrightarrow{\iota^*(\lambda_{H, \tau})} R(H, \omega_M - \tau)^\vee.
\end{align*}
\]

Here \(e^\lambda \) denotes “multiplication by \(e^\lambda \)” and \(\iota^*(\lambda) \) the transpose operator, etc. We show next that the diagram (3.3) commutes in two different ways and that the \(\iota \)'s are sections of the \(\pi \)'s.

3.4.1. Lemma. We have

\[
\iota^\vee \circ \mathcal{P}^\vee = \mathcal{P}^\vee \circ \iota, \quad \pi \circ \mathcal{P}^\vee = \mathcal{P} \circ \pi, \quad \pi \circ \iota = \text{id}, \quad \pi^\vee \circ \iota^\vee = \text{id}.
\]

In particular the \(R(H) \)-module \(R(H, \tau) \) is isomorphic to a direct summand of \(R(T) \).

Proof. Let \(a \in R(H, \tau) \) and \(b \in R(T) \). Then

\[
\iota^\vee(\mathcal{P}^\vee(a))(b) = \mathcal{P}^\vee(a)(j_{H, \tau}(e^{\mu}b)) = \iota(a)(j_{H, \tau}(e^{\mu}b))
\]

and

\[
\mathcal{P}^\vee(i(a))(b) = j_{G, \tau}(e^{\mu}j^*_{H, \tau}(a)b) = i_s(j_{H, \tau}(e^{\mu}j^*_{H, \tau}(a)b)) = \iota(a)(j_{H, \tau}(e^{\mu}b)),
\]

where we used functoriality of induction, \(j_{G, \tau} = i_s \circ j_{H, \tau} \) (Theorem 3.1.2). Therefore \(\iota^\vee \circ \mathcal{P}^\vee = \mathcal{P} \circ \iota \) is similar. Let \(a \in R(H) \). Then

\[
\pi \circ \iota = \iota^\vee(\mathcal{P}^\vee(a) \circ \mathcal{P}^\vee(a))(b) = \mathcal{P}^\vee(a)(j_{H, \tau}(e^{\mu}b)) = \iota(a)(j_{H, \tau}(e^{\mu}b)) = \text{id}
\]

QED.

We can now establish a basic structure result for the twisted modules \(R(H, \tau) \), which generalizes theorems of Pittie [32] and Steinberg [43] and Kazhdan and Lusztig [19].

3.4.2. Theorem. Assume that \(\pi_1(G) \) is torsion-free. Then the pairing \(\mathcal{P} \) is nonsingular and \(R(H, \tau) \) is a free \(R(G) \)-module of rank \(|W^H| \).

Proof. Kazhdan and Lusztig [19] Proposition 1.6] showed that the map \(\mathcal{P} \) is an isomorphism. Together with Lemma 3.4.1 this proves that \(\mathcal{P} \) is also an isomorphism. Upon replacing \(\tau \) with \(\omega_M - \tau \) we see that the map

\[
R(H, \omega_M - \tau) \to R(H, \tau)^\vee
\]

induced by \(\mathcal{P} \) is likewise an isomorphism. Therefore \(\mathcal{P} \) is nonsingular. The Pittie-Steinberg theorem [32, 43] says that \(R(H) \) is a free \(R(G) \)-module of rank \(|W^H| \). By Lemma 3.4.1 \(R(H, \tau) \) is isomorphic to a direct summand of \(R(T) \), so applying Pittie-Steinberg to \(H = T \) we find that \(R(H, \tau) \) is a projective \(R(G) \)-module. Moreover, since \(R(T) \) is finitely generated and \(R(G) \) is a Noetherian ring, \(R(H, \tau) \) is finitely generated. Steinberg proved also that \(R(G) \) is the tensor
product of a polynomial algebra and a Laurent polynomial algebra over \(\mathbb{Z} \). The assertion that \(R(H, \tau) \) is free now follows from the theorem of Quillen \cite{quillen} and Suslin \cite{suslin}, which states that finitely generated projective modules over such rings are free. (Quillen and Suslin proved their result for polynomial algebras over a principal ideal domain and Suslin remarked that his proof works just as well for mixed polynomial and Laurent polynomial algebras. See also \cite[Chapter V]{adem-jill}.)

Lemma \(\ref{lemma:basis} \) (see Appendix \(\ref{appendix:basis} \)) states that \(\text{rank}_{R(H)}(R(H, \tau)) = 1 \). By the Pittie-Steinberg theorem we conclude that

\[
\text{rank}_{R(G)}(R(H, \tau)) = \text{rank}_{R(G)}(R(H)) \cdot \text{rank}_{R(H)}(R(H, \tau))
\]
is equal to \(|W^K| \).

QED

In general it is not true that the twisted module \(R(H, \tau) \) is free over \(R(H) \). (See Example \(\ref{example:basis} \).) Steinberg \cite{steinberg} has constructed an explicit basis of the \(R(G) \)-module \(R(H) \). We do not know if there is a similar construction for a basis of \(R(H, \tau) \).

The next result, which is in essence \cite[Theorem III]{bott-tu}, highlights the contrast between maximal rank subgroups and other subgroups of \(G \) (cf. Theorem \(\ref{theorem:linear} \)): in the maximal rank case every twisted induction map (at least for \(\sigma = 0 \)) arises from twisted equivariant elliptic operators.

Theorem. Assume that \(\pi_1(G) \) is torsion-free. Then the group of twisted induction maps \(R(H, \tau)^\vee \) is a free \(R(G) \)-module of rank \(|W^K| \). Every twisted induction map \(f \in R(H, \tau)^\vee \) is of the form \(f = \mathcal{P}^\tau(a) \) for a unique \(a \in R(H, \omega_M - \tau) \). Choose \(H(\omega_M - \tau) \)-modules \(V_0 \) and \(V_1 \) of level 1 such that \(a = [V_0] - [V_1] \). Let \(D_0 \) and \(D_1 \) be the twisted Dirac operators defined by the equivariant Clifford modules \(S \otimes V_0 \), resp. \(S \otimes V_1 \). Then \(f = i_{D_0} - i_{D_1} \).

Proof. The first two assertions follow immediately from Theorem \(\ref{theorem:induction} \). We have \(i_{D_0}(b) = i_{\tau}([V_0]b) \) and \(i_{D_1}(b) = i_{\tau}([V_1]b) \) for all \(b \in R(H, \tau) \) by Example \(\ref{example:induction} \). Hence \(f(b) = i_{\tau}(ab) = i_{D_0}(b) - i_{D_1}(b) \) for all \(b \).

QED

4. Applications to K-theory

The results of the previous sections lead to some direct consequences in equivariant K-theory. We use the same notation as in \(\S \S \ref{section:k-theory} \). Recall that \(G \) denotes a compact connected Lie group, \(H \) a closed connected subgroup of maximal rank, \(T \) a common maximal torus of \(H \) and \(G \), and \(\tau \) a central extension of \(H \) by \(\mathbb{U}(1) \). In addition we denote by \(X \) a compact topological \(G \)-space, by \(K^*_C(X) \) its \(G \)-equivariant K-ring, and by \(K^*_H(X, \tau) \) its \(\tau \)-twisted \(H \)-equivariant K-group.

4.1. The Künneth theorem and duality

We establish an equivariant Künneth formula, Proposition \(\ref{proposition:kunneth} \), which is a minor variation on results of Hodgkin \cite{hodgkin}, Snaith \cite{snaith}, McLeod \cite{mcleod}, and Rosenberg and Schochet \cite{rosenberg-schochet}, and which allows us to extend the results of \(\S \ref{section:applications} \) to equivariant K-theory. This formula implies that the \(G \)-equivariant K-group \(K^*_C(X) \) is a direct summand of the (untwisted) \(H \)-equivariant K-group \(K^*_H(X) \), and in Theorem \(\ref{theorem:kunneth} \) we identify this direct summand in terms of linear equations. Theorem \(\ref{theorem:duality} \) is a duality theorem, which generalizes the nonsingular pairing \(\mathcal{P} \) from representation rings to equivariant K-theory.
First we extend the definition of twisted induction maps to K-theory. The action map

$$A: G \times X \to X$$

defined by $A(g, x) = gx$ is G-equivariant with respect to the left multiplication action on G and H-invariant with respect to the action $h \cdot (g, x) = (gh^{-1}, hx)$. In the sense of [5, §1] the triple $X = (G \times X, X, A)$ is a $G \times H$-equivariant family of smooth manifolds over X with fibre G and projection A. The H-action on X is free and the quotient family $\tilde{X} = (G \times^H X, \tilde{A})$ is a G-equivariant family of smooth manifolds over X with fibre $M = G/H$ and projection map $\tilde{A}: \tilde{X} \to X$ given by $\tilde{A}([g, x]) = gx$.

Now let U be a $\mathbb{Z}/2\mathbb{Z}$-graded $H^{(\tau)}$-module of level 1 and let

$$D: \Gamma(G, G \times U^0) \to \Gamma(G, G \times U^1)$$

be a twisted equivariant elliptic differential operator on M. Let V be an H^τ-equivariant vector bundle of level -1 over X. Then $E = U \otimes V$ is a $\mathbb{Z}/2\mathbb{Z}$-graded H-equivariant vector bundle over X. The pullback $E = A^*E$ is a $\mathbb{Z}/2\mathbb{Z}$-graded $G \times H$-equivariant vector bundle over the family X. It is shown in [1, §2] that there exists a $G \times H$-equivariant family of differential operators

$$D_{V, X}: \Gamma(A^{-1}(x), E^0|A^{-1}(x)) \to \Gamma(A^{-1}(x), E^1|A^{-1}(x))$$

whose symbol is equal to

$$\text{symbol}(D_{V}) = \text{symbol}(D) \otimes \text{id}_V.$$

It follows that the family D_{V} is H-transversely elliptic. The H-action being free, D_{V} descends to a G-equivariant elliptic family

$$D_{V, X}: \Gamma(\tilde{A}^{-1}(x), E^0|\tilde{A}^{-1}(x)) \to \Gamma(\tilde{A}^{-1}(x), E^1|\tilde{A}^{-1}(x))$$

over \tilde{X} with coefficients in the quotient bundle $\tilde{E} = G \times^H E$. We define the induction map

$$i_D: K^*_H(X, -\tau) \to K^*_G(X)$$

by $i_D([V]) = \text{index}(D_{V})$.

4.1.1. Remark. The family of manifolds \tilde{X} is trivial (a trivialization is given by mapping a class $[g, x] \in \tilde{X}$ to the pair $(gH, gx) \in G/H \times X$), but the family of vector bundles \tilde{E} is not trivial unless the H-equivariant vector bundle E over X is G-equivariant. Thus D_{V} is a nontrivial family of operators.

More generally, if σ is a central extension of G by $U(1)$ and D is a (σ, τ)-twisted operator, this construction gives rise to an induction map

$$i_D: K^*_H(X, \sigma - \tau) \to K^*_G(X, \sigma),$$

which is linear over the ring $K^*_G(X)$. Taking D to be the twisted Spin^c Dirac operator D we get the looked-for map

$$i_* = i_D: K^*_H(X, \sigma + \omega_M) \to K^*_G(X, \sigma). \quad (4.1)$$

Replacing G with H and H with T gives the map $j_{H,*}: K^*_T(X, \tau + \omega_{H/T}) \to K^*_H(X, \tau)$, which occurs in the proof of the following Künneth formula.
4.1.2. Proposition. Assume that $\pi_1(G)$ is torsion-free. Then the map

$$\phi: R(H, \tau) \otimes_{R(G)} K^*_G(X) \to K^*_H(X, \tau)$$

defined by $\phi(u \otimes b) = u \cdot i^*(b)$ is an isomorphism of $\mathbb{Z}/2\mathbb{Z}$-graded $R(H)$-modules. Hence $K^*_H(X, \tau)$ is a free module over $K^*_G(X)$ of rank $|W^H|$.

Proof. Evidently ϕ is an $R(H)$-linear morphism of degree 0. To prove that it is bijective we consider a diagram similar to (3.3),

$$\begin{array}{ccc}
R(T) \otimes_{R(G)} K^*_G(X) & \xrightarrow{\psi} & K^*_T(X) \\
\downarrow{\iota \otimes \text{id}} & & \downarrow{\iota}
\end{array}
\begin{array}{ccc}
R(H, \tau) \otimes_{R(G)} K^*_G(X) & \xrightarrow{\phi} & K^*_H(X, \tau).
\end{array}$$

Here ψ is defined by $\psi(u \otimes b) = u \cdot j^*_G(b)$ and the maps ι and π on the left are defined in (3.4) and (3.5). Analogously the maps ι and π on the right are defined to be the compositions

$$\begin{array}{ccc}
\iota: K^*_H(X, \tau) & \xrightarrow{j^*_H} & K^*_T(X, \tau) \\
& \xrightarrow{e^{-\mu}} & K^*_T(X, \tau),
\end{array}
\begin{array}{ccc}
\pi: K^*_T(X) & \xrightarrow{e^{\rho_H+\mu}} & K^*_T(X, \omega^{H/T} + \tau) \\
& \xrightarrow{j^*_H} & K^*_H(X, \tau).
\end{array}$$

As in Lemma 3.4.1 we have the properties

$$\iota \circ \phi = \psi \circ (\iota \otimes \text{id}), \quad \pi \circ \psi = \phi \circ (\pi \otimes \text{id}),$$

which follow from the $K^*_H(X)$-linearity of the restriction map j^*_H and the induction map j^*_H, and the property $\pi \circ \iota = \text{id}$, which follows from $j^*_H(\mu^{H}) = 1$. The map ψ is an isomorphism by the usual equivariant Künneth theorem of [35]. Hence ϕ is also an isomorphism. The second statement of the proposition now follows from Theorem 3.4.2.

QED

4.1.3. Example. Assume that $\pi_1(G)$ is torsion-free. Take $X = G$ and let G act by right multiplication. Then $K^*_H(X, \tau) \cong K^*(X/H, \tau)$ because the action is free, so Proposition 4.1.2 gives an isomorphism

$$K^*(G/H, \tau) \cong R(H, \tau) \otimes_{R(G)} \mathbb{Z}.$$

Taking $X = G/H$ and letting H act by right multiplication gives an isomorphism

$$K^*_H(G/H, \tau) \cong R(H, \tau) \otimes_{R(G)} R(H).$$

The equivariant Künneth formula expresses H-equivariant K-theory in terms of G-equivariant K-theory, but it also enables us to do the reverse. Let $\mathcal{E} = \text{End}_{R(G)}(R(H))$ be the ring of $R(G)$-linear endomorphisms of $R(H)$ and let $I(\mathcal{E})$ be the left ideal

$$I(\mathcal{E}) = \{ \Delta \in \mathcal{E} \mid \Delta(1) = 0 \}.$$

For any left \mathcal{E}-module A let $A^I(\mathcal{E})$ denote the subgroup of elements annihilated by $I(\mathcal{E})$. The Künneth isomorphism, Proposition 4.1.2, shows that $K^*_H(X)$ is in a natural way a left \mathcal{E}-module if $\pi_1(G)$ is torsion-free. A version of the next theorem for the maximal torus $H = T$ was proved in [15] Theorem 4.6. (However, the version for the maximal torus is stronger: it is less restrictive in that it does

not require the assumption on $\pi_1(G)$, and it is more explicit in that there is a description of the left ideal $I(\mathcal{E})$ in terms of divided difference operators.)

4.1.4. **Theorem.** Assume that $\pi_1(G)$ is torsion-free. Then the map $i^*: K^*_G(X) \to K^*_H(X)$ is an isomorphism onto $K^*_H(X)^{I(\mathcal{E})}$.

Proof. The group $R(H)$ is an \mathcal{E}-$R(G)$-bimodule. By the Pittie-Steinberg theorem, $R(H)$ is free of finite rank $|W^H|$ as a $R(G)$-module and therefore it is a progenator of the category of $R(G)$-modules. Hence, by the first Morita equivalence theorem (see e.g. [23, §18]), the functor

$$\mathcal{F}: B \mapsto R(H) \otimes_{R(G)} B$$

is an equivalence from the category of left $R(G)$-modules to the category of left \mathcal{E}-modules, whose inverse is the functor

$$\mathcal{G}: A \mapsto \text{Hom}_{\mathcal{E}}(R(H), A).$$

As in the proof of [15, Theorem 4.6] (which deals with the case $H = T$) one shows that the functor \mathcal{G} is isomorphic to the functor $\mathcal{F}: A \mapsto A^{I(\mathcal{E})}$. We conclude that $B \cong \mathcal{F}(\mathcal{G}(B))$ for all $R(G)$-modules B. In particular we can take $B = K^*_C(X)$. Then $\mathcal{G}(B) \cong K^*_H(X)$ by Proposition 4.1.2, so $B \cong \mathcal{F}(K^*_H(X)) = K^*_H(X)^{I(\mathcal{E})}$. QED

The pairing \mathcal{P} defined in §3.4 generalizes to a bi-additive pairing

$$\mathcal{P}_X: K^*_H(X, \tau) \times K^*_H(X, \omega_M - \tau) \to K^*_C(X)$$

defined by $\mathcal{P}_X(a_1, a_2) = \iota_*(a_1 a_2)$ for $a_1 \in K^*_H(X, \tau)$ and $a_2 \in K^*_H(X, \omega_M - \tau)$. It follows from the naturality of ι_* that

$$\mathcal{P}_X(f^*(a_1), f^*(a_2)) = f^* \mathcal{P}_Y(a_1, a_2) \quad (4.2)$$

for $a_1 \in K^*_H(Y, \tau)$ and $a_2 \in K^*_H(Y, \omega_M - \tau)$, where $f: X \to Y$ is any G-equivariant continuous map.

4.1.5. **Theorem.** Assume that $\pi_1(G)$ is torsion-free. Then the pairing \mathcal{P}_X is nonsingular. Hence

$$K^*_H(X, \tau) \cong \text{Hom}_{K^*_C(X)}(K^*_H(X, \omega_M - \tau), K^*_C(X))$$

as $\mathbb{Z}/2\mathbb{Z}$-graded left $K^*_C(X)$-modules.

Proof. This follows from the nonsingularity of the pairing \mathcal{P} (Theorem 3.4.2), the Künneth theorem (Proposition 4.1.2) and the naturality property (4.2). (See [15, Proposition 5.1] for the case $H = T$.) QED

4.1.6. **Example.** Assume that $\pi_1(G)$ is torsion-free. Let $\tau = 0$. Theorem 4.1.5 contains as special cases various forms of Poincaré duality in K-theory. For instance, taking $X = G$ with H acting by right multiplication gives a nonsingular pairing

$$K^*(G/H) \times K^*(G/H, \omega_{G/H}) \to \mathbb{Z}.$$

Taking $X = G/H$ with H acting by left multiplication gives a nonsingular pairing

$$K^*_H(G/H) \times K^*_H(G/H, \omega_{G/H}) \to R(H).$$

If G/H has an invariant Spin^c-structure, then $\omega_{G/H} = 0$, so we have a nonsingular \mathbb{Z}-valued pairing on $K^*(G/H)$ and a nonsingular $R(H)$-valued pairing on $K^*_H(G/H)$.
4.2. **GKRS multiplets.** In this section we show how each T-equivariant K-class on a G-space X gives birth to a litter of T-equivariant classes parametrized by W^H, which we call a *Gross-Kostant-Ramond-Sternberg multiplet*. This is an extension of the notion of a multiplet introduced in [13] from a one-point space to an arbitrary G-space X. Generalizing a result of [13], we show that the alternating sum of a multiplet, when mapped to ordinary K-theory, vanishes.

We start by rewriting (2.8) in the “opposite” way. Define $f_{M}^{op} \in \mathbb{Z}[W_{G}]$ by

$$f_{M}^{op} = \sum_{w \in W^H} \det(w)w^{-1}.$$

By decomposing $w \in W$ as $w = w''(w')^{-1}$ with $w' \in W^H$ and $w'' \in W_H$ we obtain

$$I_{G} = I_{H}f_{M}^{op}.$$

Let us write $\partial_{G} = j_{G}^{*} \circ j_{G,*}$. This is an $R(G)$-linear operator from $R(T, \omega_{G/T})$ to $R(T)$, and the Weyl character formula for G states that $\partial_{G}(a) = I_{G}(a)/d_{G}$ for all $a \in R(T, \omega_{G/T})$. Similarly, for the group H we have $\partial_{H}(b) = I_{H}(b)/d_{H}$ for all $b \in R(T, \omega_{H/T})$. Combining this with (4.3) and substituting Lemma 2.2.1(iv) yields

$$\partial_{G}(a) = \frac{I_{G}(a)}{d_{G}} = \frac{1}{j_{H}(e(D_{M})^{*})} \frac{I_{H}(f_{M}^{op}(a))}{d_{H}} = \frac{1}{j_{H}(e(D_{M})^{*})} \partial_{H}(f_{M}^{op}(a))$$

for all $a \in R(T, \omega_{G/T})$. This amounts to an identity of $R(G)$-linear operators, namely

$$j_{H}^{*}(e(D_{M})^{*})\partial_{G} = \partial_{H} \circ f_{M}^{op},$$

where the first operator on the left is multiplication by $j_{H}^{*}(e(D_{M})^{*})$. Except for the twists by the various orientation systems, which makes it work at the group level as opposed to the Lie algebra level, this identity is formula (1) in [13].

Because the induction maps $j_{G,*}$ and $j_{H,*}$ are defined in K-theory (see (4.1)), the operators ∂_{G} and ∂_{H} make sense in K-theory. The operator ∂_{G} maps $K_{G}^{*}(X, \omega_{G/T})$ to $K_{T}^{*}(X)$ and ∂_{H} maps $K_{G}^{*}(X, \omega_{G/T})$ to

$$K_{G}^{*}(X, \omega_{G/T} - \omega_{H/T}) = K_{T}^{*}(X, \omega_{M}).$$

The next lemma means that we can substitute in the identity (4.4) any class $a \in K_{G}^{*}(X, \omega_{G/T})$.

4.2.1. **Lemma.** The following diagram commutes:

$$\begin{array}{ccc}
K_{G}^{*}(X, \omega_{G/T}) & \xrightarrow{\partial_{G}} & K_{T}^{*}(X) \\
\downarrow f_{M}^{op} & & \downarrow j_{H}(e(D_{M})^{*}) \\
K_{G}^{*}(X, \omega_{G/T}) & \xrightarrow{\partial_{H}} & K_{T}^{*}(X, \omega_{M}).
\end{array}$$

Proof. First assume that $\pi_{1}(G)$ is torsion-free. Then the result follows by combining (4.4) with the Künneth formula (Proposition 4.1.2) and the $K_{G}^{*}(X)$-linearity of ∂_{G} and ∂_{H}. If $\pi_{1}(G)$ is not torsion-free, we choose a covering $\phi: \tilde{G} \rightarrow G$ of G by a compact connected \tilde{G} such that $\pi_{1}(\tilde{G})$ is torsion-free, and we let \tilde{T} be the maximal torus $\phi^{-1}(T)$ of \tilde{G}. Any extension $\tilde{T}^{(r)}$ of T induces an extension $\tilde{T}^{(r)}$ of \tilde{T}. It follows from [42] Lemma 2.4 that the pullback map

$$\phi^{*}: K_{r}^{*}(X, \tau) \longrightarrow K_{T}^{*}(X, \tau)$$
is injective. Since the kernel of ϕ is a central subgroup of \tilde{G} and a W-invariant subgroup of T, the pullback map is natural with respect to each of the maps occurring in the identity \([4.4]: \phi^* \circ \partial_G = \partial_G \circ \phi^* \), etc. Therefore the commutativity of the diagram for the group G follows from the commutativity for \tilde{G}. QED

For $w \in WH$ and $a \in K_T^*(X, \omega_G/T)$ put
$$a_w = \partial_H(w^{-1}(a)) \in K_T^*(X, \omega^*_M).$$
We call the W^H-tuple $(a_w)_{w \in WH}$ the multiplet generated by a. Let $f: 1 \to T$ be the trivial homomorphism, which induces the forgetful map
$$f^*: K_T^*(X, \omega_M) \to K^*(X, \omega_M).$$

4.2.2. Theorem. Suppose that $H \neq G$. Let $(a_w)_{w \in WH}$ be a multiplet in $K_T^*(X, \omega_M)$. Then $\sum_{w \in WH} \det(w)f^*(a_w) = 0$.

Proof. Since $H \neq G$, we have $\mathcal{R}_M \neq \emptyset$ and hence
$$f^* j_H^*(\mathbf{e}(D_M)^*) = \prod_{a \in \mathcal{R}_M^H} f^*(e^{-a/2} - e^{a/2}) = \prod_{a \in \mathcal{R}_M^H} (1 - 1) = 0$$
by Lemma 2.2.1(iv). Therefore
$$\sum_{w \in WH} \det(w)f^*(a_w) = f^* \partial_H f_M^{op}(a) = f^* (j_H^*(\mathbf{e}(D_M)^*)\partial_G(a)) = 0$$
by Lemma 4.2.1 QED

This result reduces to that of [13] by pulling back a multiplet on X to a point, i.e. by applying the augmentation map $K_T^*(X, \omega_M) \to R(T, \omega_M)$. It must be said that this K-theory version of the multiplet theorem is much weaker than the original version and the later version of [20]. For instance, there is no telling whether the elements of a multiplet are distinct or even nonzero. (However, suppose that $\pi_1(G)$ is torsion-free and that a is of the form $a = e^b j_G^*(b)$, where λ is a strictly G-dominant character and $b \in K_G^*(X)$ is nonzero. Then $a_w = \partial_H(w^{-1}(e^b)) j_G^*(b)$. The elements $\partial_H(w^{-1}(e^b))$ are restrictions to T of irreducible H-modules with distinct highest weights, and so by the Kunneth formula the multiplet elements a_w are distinct and nonzero.)

Appendix A. Twisted K-theory

In this appendix we summarize the necessary facts from twisted K-theory in a form suited to our purpose. Like the original treatment by Donovan and Karoubi [11], we cover only K-theory twisted by torsion classes. We denote by X a compact topological space and by G and H two (not necessarily connected) compact Lie groups. Contrary to our convention elsewhere in the paper we do not assume H to be a subgroup of G.

A.1. Twists and twisted vector bundles. A twist of X is a pair $\tau = (P, H^{(\tau)})$, where $\text{pr}: P \to X$ is a principal H-bundle over X and $H^{(\tau)}$ is a central extension of H by $U(1)$. We regard P as an $H^{(\tau)}$-space on which the central circle $U(1)$ acts trivially. A τ-twisted vector bundle over X is an $H^{(\tau)}$-equivariant complex vector bundle over P which is of level 1, in the sense that the central circle of $H^{(\tau)}$ acts on E by scalar multiplication on the fibres.
A morphism between τ-twisted vector bundles E_1 and E_2 is an $H^{(\tau)}$-equivariant vector bundle homomorphism $E_1 \to E_2$. We denote by $\mathfrak{Vec}(X, \tau)$ the category of τ-twisted vector bundles. This is an additive category, in which there is an obvious notion of an exact sequence. Thus we can form the Grothendieck group of $\mathfrak{Vec}(X, \tau)$, which we will denote by $K(X, \tau)$.

A twist τ is a simple example of a gerbe with band $U(1)$ over X, and $K(X, \tau)$ is called the τ-twisted K-group of X, or the K-group of X with coefficients in τ. See [8 §2] or [45 §2.5] for more general notions of gerbe and a comparison with other versions of twisted K-theory.

We can multiply a twisted bundle F by an ordinary vector bundle E on X by the rule $E \cdot F = \text{pr}^* E \boxtimes F$. This rule turns $K(X, \tau)$ into a $K(X)$-module. More generally, let $\tau_1 = (P_1, H^{(\tau_1)}_1)$ and $\tau_2 = (P_2, H^{(\tau_2)}_2)$ be two twists of X. The sum of τ_1 and τ_2 is the twist $\tau = (P, H^{(\tau)}_1)$, where P is the fibre product $P_1 \times_X P_2$, viewed as a principal bundle over X with structure group $H = H_1 \times H_2$, and the central extension $H^{(\tau)}_1$ is the quotient of $H^{(\tau_1)}_1 \times H^{(\tau_2)}_2$ by the anti-diagonal copy of $U(1)$. Any τ_1- and τ_2-twisted bundles on X can be lifted to P and the tensor product of the lifts is a $\tau_1 + \tau_2$-twisted bundle. This defines a multiplication law

$$K(X, \tau_1) \times K(X, \tau_2) \to K(X, \tau_1 + \tau_2).$$

A twist τ pulls back under a continuous map $f: Y \to X$ in an evident way, and we have an induced homomorphism

$$f^*: K(X, \tau) \to K(Y, f^* \tau).$$

The twist τ is (Morita) trivial if there exists a trivialization, i.e. a principal $H^{(\tau)}$-bundle Q over X such that P is the quotient of Q by the central circle of $H^{(\tau)}$. (If the extension $H^{(\tau)}_1$ of H is trivial, then the twist τ is Morita trivial, but the converse is false.) If τ is Morita trivial, then

$$K(X, \tau) \cong K_{H^{(\tau)}}(Q) \cong K(Q/H^{(\tau)}_1) \cong K(X).$$ \hspace{1cm} (A.1)

This isomorphism depends on the choice of the trivialization Q.

A.1.1. Example. Let V be an oriented real vector bundle of rank m over X provided with a Riemannian metric. The orientation twist or orientation system associated with V is the pair $\omega_V = (\text{SO}(V), \text{Spin}^c(m))$. Here $\text{SO}(V)$ is the oriented orthogonal frame bundle of V, which has structure group $\text{SO}(m)$, and $\text{Spin}^c(m)$ is the Spin^c-group of the Euclidean space \mathbb{R}^m. The orientation system is Morita trivial precisely when V possesses a Spin^c-structure, i.e. an orientation in K-theory. If X is an oriented Riemannian manifold, the orientation twist ω_X of X is defined to be the orientation twist of the tangent bundle of X.

A.1.2. Example. Let τ be a central extension of a compact Lie group H by $U(1)$. By letting H act on itself by right multiplication we can view H as a principal bundle over the one-point space $X = \text{pt}$. From this point of view τ is nothing but a twist of a point. As such it is Morita trivial, and therefore it follows from (A.1) that $K(\text{pt}, \tau) \cong \mathbb{Z}$.

Suppose the compact Lie group G acts continuously on X. A twist $\tau = (P, H^{(\tau)})$ of X is G-equivariant if the principal bundle P is G-equivariant, i.e. equipped with a G-action by bundle maps which lifts the G-action on the base X.
and which commutes with the action of the structure group H. A G-equivariant τ-twisted vector bundle over X is a $G \times H^{(\tau)}$-equivariant complex vector bundle over P which is of level 1 with respect to $H^{(\tau)}$. Such twisted bundles are the objects of an exact category $\mathfrak{Vec}_G(X, \tau)$, whose K-group $K_G(X, \tau)$ is the equivariant K-group of X with coefficients in τ.

A.1.3. Example. The orientation twist of an oriented Riemannian vector bundle V is equivariant with respect to any compact Lie group which acts on V by orientation-preserving isometric bundle maps. In particular, the orientation twist of an oriented Riemannian manifold X is equivariant with respect to any compact Lie group which acts on X by orientation-preserving isometries.

A.1.4. Example. Let $X = \text{pt}$ and let τ be as in Example A.1.2. We turn τ into an H-equivariant twist by letting H act on H by left multiplication. Every $H \times H^{(\tau)}$-equivariant vector bundle E over H trivializes equivariantly to a product bundle $E \cong H \times U$. On this product bundle H acts on the base H by left multiplication and trivially on the vector space U, and $H^{(\tau)}$ acts on the base by right multiplication and linearly on the fibre. Thus the bundle E is of level 1 if and only if the $H^{(\tau)}$-module U is of level 1. It follows that the category $\mathfrak{Vec}_H(\text{pt}, \tau)$ is equivalent to the category of level 1 $H^{(\tau)}$-modules. We conclude that $K_H(\text{pt}, \tau) \cong R(H, \tau)$, the twisted representation module of H.

A.1.5. Example. Generalizing Example A.1.4 we let X be a topological H-space and $p: X \to \text{pt}$ the constant map. The H-equivariant twist τ pulls back to the H-equivariant twist $p^*\tau$ on X. We view X as an $H^{(\tau)}$-space on which the central circle acts trivially. As in Example A.1.4 one shows that the category $\mathfrak{Vec}(X, p^*\tau)$ is equivalent to the category of $H^{(\tau)}$-equivariant level 1 vector bundles on X. Thus $K_H(X, p^*\tau)$ is the Grothendieck group of $H^{(\tau)}$-equivariant level 1 vector bundles on X. To simplify the notation we will often write this group as $K_H(X, \tau)$.

A.1.6. Example (induced twists). Continuing Example A.1.5 we suppose that H is a subgroup of G and let $i: H \to G$ the inclusion map. We view the product $G \times X$ as a G-equivariant principal H-bundle over the associated bundle $G \times^H X$. Hence the pair

$$i_*\tau = (G \times X, H^{(\tau)})$$

is a G-equivariant twist of $G \times X$, called the twist induced by τ. If E is a τ-twisted vector bundle over X, then $G \times E$ is a $i_*\tau$-twisted vector bundle over $G \times X$. The map $E \mapsto G \times E$ defines an equivalence of categories between $\mathfrak{Vec}(X, \tau)$ and $\mathfrak{Vec}(G \times^H X, i_*\tau)$. Thus we have a natural isomorphism

$$K_G(G \times^H X, i_*\tau) \cong K_H(X, \tau).$$

For $X = \text{pt}$ this specializes to $K_G(M, i_*\tau) \cong R(H, \tau)$, where $M = G/H$. For simplicity we will often write $K_G(G \times^H X, i_*\tau)$ instead of $K_G(G \times^H X, i_*\tau)$.

A.2. Relative twisted K-theory. Relative twisted K-classes are presented by complexes of twisted vector bundles. Let X be a compact G-space and let $\tau = (P, H^{(\tau)})$ be a G-equivariant twist of X. Consider the category $\mathfrak{Vec}_G^\tau(X, \tau)$ of bounded complexes associated with the additive category $\mathfrak{Vec}_G^\tau(X, \tau)$. Thus an object of $\mathfrak{Vec}_G^\tau(X, \tau)$ is a \mathbb{Z}-graded G-equivariant τ-twisted bundle E^* such that
$E^j = 0$ for almost all j, furnished with a differential of degree 1. Let Y be a closed G-invariant subspace of X. We denote by $\mathcal{V}t\mathcal{C}_G^*(X,Y,\tau)$ the full subcategory of $\mathcal{V}t\mathcal{C}_G(X,\tau)$ comprising all objects E^* with the property that the restriction of E^* to the subspace $\text{pr}^{-1}(Y)$ of P is an exact complex. The set $L_G(X,Y,\tau)$ of isomorphism classes of $\mathcal{V}t\mathcal{C}_G^*(X,Y,\tau)$ is an abelian monoid. A quotient of $L_G(X,Y,\tau)$ by an appropriate submonoid (which is defined in the same way as in ordinary K-theory; see [36, §3]) is the relative twisted K-group $K_G(X,Y,\tau)$ of X. The Euler characteristic map $L_G(X,Y,\tau) \to K_G(X,\tau)$ defined by $[E^*] \mapsto \sum_{j}(-1)^j[E^j]$ induces a homomorphism

$$K_G(X,Y,\tau) \to K_G(X,\tau),$$

which is an isomorphism if Y is empty.

The group $K_G^0(X,Y,\tau) = K_G(X,\tau)$ is the degree 0 part of the $\mathbb{Z}/2\mathbb{Z}$-graded K-group $K_G^*(X,Y,\tau)$. The degree 1 part is defined by

$$K_G^1(X,Y,\tau) = K_G(X \times [0,1],(Y \times [0,1]) \cup (X \times \{0,1\}),\tau).$$

A.3. The Thom isomorphism. Let X be a compact G-space and let τ be a G-equivariant twist of X. Let $\pi: V \to X$ be a G-equivariant oriented real vector bundle of even rank $m = 2l$ equipped with an invariant Riemannian metric, and let ω_V be the orientation twist of V. We denote the unit ball bundle of V by BV, the unit sphere bundle by SV, and the zero section by $\zeta: X \to V$. Let $P = \text{SO}(V)$. The spinor module $S = S^0 \oplus S^1$ of the Clifford algebra $\text{Cl}(\mathbb{R}^{2l})$ is a level 1 $\text{Spin}^c(2l)$-module, so the product bundle $E = \pi^*(P) \times S$ is a $\mathbb{Z}/2\mathbb{Z}$-graded $\pi^*(\omega_V)$-twisted vector bundle over (the total space of) V. Consider the two-term $G \times \text{Spin}^c(2l)$-equivariant complex of vector bundles

$$E^0 \xrightarrow{\text{cliff}} E^1$$

(A.2)

defined by placing the term E^j in degree j and for each $v \in V$ letting $	ext{cliff}(v): E^0_v \to E^1_v$ be Clifford multiplication by v. Since $\text{cliff}(v)$ is an isomorphism for $v \neq 0$, the complex (A.2) defines a class in $L_G(BV,SV,\pi^*(\omega_V))$, and hence a class

$$\text{th}(V) \in K_G^0(BV,SV,\pi^*(\omega_V)),$$

which is called the Thom class of V. The Thom map is the map

$$\xi_*: K_G^0(X,\tau) \to K_G^0(BV,SV,\pi^*(\tau + \omega_V))$$

defined by $\xi_*(a) = \pi^*(a)\text{th}(V)$. The following result is [13 Theorem IV.6.21]. See also [9 §3.2] for a discussion closer to our treatment.

A.3.1. Theorem. The Thom map is an isomorphism of graded $K_G^*(X)$-modules.

Appendix B. Central extensions

In this appendix we gather a few elementary facts regarding central extensions. The notation is as stated at the beginning of §11. In particular G denotes a compact connected Lie group. In addition \hat{G} denotes a connected central extension of G by a compact abelian Lie group C,

$$1 \to C \to \hat{G} \to G \to 1.$$

A complex \hat{G}-module V has central character $\chi \in \mathcal{X}(C)$ if the subgroup C acts on V by $c \cdot v = \chi(c)v$. Let $\text{Rep}^c(\hat{G})$ be the category of finite-dimensional complex
Č-modules of central character χ. We call the Grothendieck group $\mathcal{R}^\chi(\hat{G})$ of $\mathfrak{Rep}^\chi(\hat{G})$ the χ-twisted representation module of G. The category $\mathfrak{Rep}^0(\hat{G})$ (where $\chi = 0$ is the trivial character) is equivalent to $\mathfrak{Rep}(G)$, so the groups $\mathcal{R}^0(G)$ and $\mathcal{R}(G)$ are isomorphic. The tensor product functor

$$\mathfrak{Rep}^{\chi_1}(\hat{G}) \times \mathfrak{Rep}^{\chi_2}(\hat{G}) \rightarrow \mathfrak{Rep}^{\chi_1+\chi_2}(\hat{G})$$

induces a bi-additive map

$$\mathcal{R}^{\chi_1}(\hat{G}) \times \mathcal{R}^{\chi_2}(\hat{G}) \rightarrow \mathcal{R}^{\chi_1+\chi_2}(\hat{G})$$

In particular $\mathcal{R}^{\chi}(\hat{G})$ is an $\mathcal{R}(G)$-module for all χ.

B.1. Lemma. (i) The $\mathcal{R}(G)$-module $\mathcal{R}(\hat{G})$ is the direct sum of the submodules $\mathcal{R}^{\chi}(\hat{G})$ over all $\chi \in \mathcal{X}(C)$. Each summand $\mathcal{R}^{\chi}(\hat{G})$ is nonzero.

(ii) Let $\hat{T} \subseteq \hat{G}$ be the inverse image of T. Then \hat{T} is a maximal torus of \hat{G}; for each character χ of C the submodule $\mathcal{R}^{\chi}(\hat{T})$ of $\mathcal{R}^{\chi}(\hat{G})$ is preserved by the W_G-action; and the restriction homomorphism $\mathcal{R}^{\chi}(\hat{G}) \rightarrow \mathcal{R}^{\chi}(\hat{T})$ is an isomorphism onto $\mathcal{R}^{\chi}(\hat{T})^{W_G}$.

Proof. Every \hat{G}-module V decomposes under the action of C into a direct sum $\bigoplus_{\chi \in \mathcal{X}(C)} V^\chi$ of isotypical submodules V^χ. This decomposition is functorial and defines an equivalence of categories

$$\mathfrak{Rep}(\hat{G}) \xrightarrow{\sim} \bigoplus_{\chi \in \mathcal{X}(C)} \mathfrak{Rep}^{\chi}(\hat{G}).$$

Passing to Grothendieck groups we obtain the direct sum decomposition in (i).

Each of the submodules $\mathcal{R}^{\chi}(\hat{G})$ is nonzero, because there exists an irreducible representation of \hat{G} with central character χ, for instance an appropriate subrepresentation of the formally induced representation $\text{ind}_{C}^{\hat{G}}(C\chi)$. Since C is central in \hat{G}, the group \hat{T} is a maximal torus of \hat{G}, and the homomorphism $\hat{G} \rightarrow G$ induces isomorphisms of root systems $\mathcal{R}_G \cong \mathcal{R}_C$ and of Weyl groups $W_G \cong W_C$. The homomorphism $\hat{T} \rightarrow T$ is W_C-equivariant. The W_C-action on T fixes C and therefore the submodule $\mathcal{R}^{\chi}(\hat{T})$ of $\mathcal{R}^{\chi}(\hat{G})$ is W_C-stable for each $\chi \in \mathcal{X}(C)$. The isomorphism $\mathcal{R}^{\chi}(\hat{G}) \cong \mathcal{R}^{\chi}(\hat{T})^{W_C}$ now follows from $\mathcal{R}(\hat{G}) \cong \mathcal{R}(\hat{T})^{W_C}$. QED

Let V be an irreducible \hat{G}-module. By Schur’s lemma, the central subgroup C acts on V by a character χ_V. Define

$$c \cdot [V] = \chi_V(c)[V] \quad \text{(B.1)}$$

for $c \in C$. By linear extension, this formula defines a C-action on the complexified representation ring $\mathcal{R}(\hat{G})_C$ by ring automorphisms. The ring of C-invariants is

$$\mathcal{R}(\hat{G})_C^C \cong \mathcal{R}(G)_C \quad \text{(B.2)}$$

Recall that the rank of a module A over a domain R is the dimension of the vector space $F \otimes_R A$, where F is the fraction field of R, and is denoted by $\text{rank}_R(A)$.

B.2. Lemma. $\text{rank}_{\mathcal{R}(G)}(\mathcal{R}^{\chi}(\hat{G})) = 1$ for every $\chi \in \mathcal{X}(C)$.

Proof. Assume first that C is finite. Since G and \hat{G} are connected, the rings $\mathcal{R}(G)$ and $\mathcal{R}(\hat{G})$ have no zero divisors, so we can form the fraction fields K of $\mathcal{R}(G)_C$ and
\(\mathcal{K} = R(\hat{G})_C \otimes_{R(G)_C} K \) of \(R(\hat{G})_C \). It follows from \ref{B.2} that \(\mathcal{K} \) is a Galois extension of \(K \) with Galois group \(C \), which implies \(\dim_K(\mathcal{K}) = |C| \). For \(\chi \in \mathcal{A}(C) \) let

\[\mathcal{K}^\chi = R^\chi(\hat{G})_C \otimes_{R(G)_C} K, \]

which is a \(K \)-linear subspace of \(\mathcal{K} \). It follows from Lemma \ref{B.11} that as a vector space over \(K \)

\[K = \bigoplus_{\chi \in \mathcal{A}(C)} \mathcal{K}^\chi, \]

where each of the summands is nonzero. The number of summands is \(|C| \) because of the fact that \(\mathcal{A}(C) \cong C \), and therefore \(\dim_K(\mathcal{K}^\chi) = 1 \) for all \(\chi \). Hence

\[\text{rank}_{R(G)}(R^\chi(\hat{G})) = \dim_K(\mathcal{K}^\chi) = 1. \]

For general \(C \) we make the basic observation, which appears to go back to Shapiro \cite{38}, that the compact central extension \(\hat{G} \) is the pushout of a finite central extension

\[1 \longrightarrow Z \longrightarrow \hat{G} \longrightarrow G \longrightarrow 1. \]

One produces \(\hat{G} \) by choosing a Lie algebra homomorphism \(\kappa : g \to \hat{g} \) which splits the exact sequence

\[0 \to \mathfrak{e} \to \hat{g} \to g \to 0. \]

One can choose \(\kappa \) to be defined over \(Q \); this ensures that it exponentiates to a Lie group homomorphism \(\kappa : \hat{G} \to G \), where \(\hat{G} \) is a finite connected covering group of \(G \). Let \(Z \) be the kernel of the covering \(\hat{G} \to G \); then \(\kappa(Z) \) is contained in \(C \). Let \(\hat{\chi} \) be a character of \(C \) and \(\kappa^\chi(\hat{\chi}) \) its pullback to \(Z \). Then the \(R(G) \)-module \(R^\chi(\hat{G}) \) is isomorphic to \(R^{\kappa^\chi(\hat{\chi})}(\hat{G}) \), and we already know that the latter is of rank 1. \(\text{QED} \)

\textbf{B.3. Example.} Let \(\hat{G}_1 = \hat{G}_2 = \text{SU}(2) \) and

\[\hat{G} = \hat{G}_1 \times \hat{G}_2 \cong \text{Spin}(4), \quad C = \{ \pm(I,I) \}, \quad G = \hat{G}/C \cong \text{SO}(4). \]

Then \(R(\hat{G}) \cong R(\hat{G}_1) \otimes R(\hat{G}_2) \cong \mathbb{Z}[x_1,x_2] \). Identify \(\mathcal{A}(C) \) with \(\mathbb{Z}/2\mathbb{Z} = \{ 0,1 \} \); then \(C \) acts on the monomial \(x_1^{r_1}x_2^{r_2} \in R(\hat{G}) \) with weight \((r_1+r_2) \mod 2 \). Hence \(R(\hat{G}) \) is the direct sum of the submodules

\[R(\hat{G}) \cong R^0(\hat{G}) = \bigoplus_{r_1+r_2=0} \mathbb{Z} \cdot x_1^{r_1}x_2^{r_2}, \quad R^1(\hat{G}) = \bigoplus_{r_1+r_2=1} \mathbb{Z} \cdot x_1^{r_1}x_2^{r_2}, \]

where the congruences are modulo 2. As a ring,

\[R(\hat{G}) \cong \mathbb{Z}[y_1,y_2,y_3]/(y_1y_2 - y_3^2), \]

where the inclusion \(R(G) \to R(\hat{G}) \) is given by

\[y_1 \mapsto x_1^2, \quad y_2 \mapsto x_2^2, \quad y_3 \mapsto x_1x_2. \]

The twisted module \(R^1(\hat{G}) \) is generated by \(x_1 \) and \(x_2 \), which are subject to the single relation \(y_3x_1 - y_1x_2 = 0 \). Over the quotient field of \(R(G) \) the two generators are multiples of each other, \(x_2 = (y_2y_3^{-1})x_1 \) and \(x_1 = (y_1y_3^{-1})x_2 \), so \(R^1(\hat{G}) \) is of rank 1, as predicted by Lemma \ref{B.2}. However, \(R^1(\hat{G}) \) is not generated by any single element and is therefore not free.
Appendix C. Shifted anti-invariants

This appendix is devoted to the proof of the statement below (Proposition 2.2.5 in the main text). We use the notation defined in §2. In particular, G is a compact connected Lie group with maximal torus T, ωG/T is the orientation system of the flag variety G/T defined in (2.2), JG is the antisymmetrizer (2.7), and dG is the Weyl denominator (2.9). Recall that A−WG denotes the set of anti-invariant elements of a WG-module A. If G is semisimple and simply connected, then ρ = ρG ∈ 𝒳(T) and therefore the R(T)-module R(T, ωG/T) is WG-equivariantly isomorphic to R(T) by Lemma (2.2.1(iii)). The proposition is then a standard fact; see e.g. [7 § VI.3, Proposition 2]. We will deduce the general case from this special case.

Proposition. (i) The WG-action on R(T(ωG/T)) preserves R(T, ωG/T).

(ii) The set of anti-invariants R(T, ωG/T)−WG is a free R(G)-module of rank 1 generated by dG.

(iii) The elements JG(eλ), with λ ∈ ρ + 𝒳(T) strictly dominant, form a basis of the Z-module R(T, ωG/T)−WG.

Proof. Let

\[W = WG, \quad J = J_G, \quad \omega = \omega_{G/T}, \quad d = d_G, \quad \rho = \rho_G. \]

We identify R(T) with Z[𝒳(T)] and R(T, ω) with R(T) eρ = Z[ρ + 𝒳(T)] as in Remark (2.2.2). The fact that ρ − w(ρ) is in the root lattice for all w ∈ W implies that the W-action on 𝒳(T)Q preserves the affine lattice ρ + 𝒳(T). This proves (i).

Let \(\phi: \tilde{G} \to G \) be a compact connected covering group which is the product \(\tilde{G} = C \times \tilde{G} \) of a torus C and a simply connected group \(\tilde{G} \). Let \(\tilde{T} \) be the maximal torus \(\tilde{C} \cap \tilde{T} \) of \(\tilde{G} \). Since \(\tilde{G} \) is simply connected, \(\rho, \tilde{\rho} \in \tilde{𝒳}(\tilde{T}) \) and therefore \(d \in R(\tilde{T}) \). We have

\[R(\tilde{T})^W = R(C \times \tilde{T})^W = (R(C) \otimes Z R(\tilde{T}))^W = R(C) \otimes Z R(\tilde{T})^W, \]

because W acts trivially on R(C) and R(C) is a free abelian group. Since \(\tilde{G} \) is simply connected, it follows from [7 § VI.3, Proposition 2] that

\[R(\tilde{T})^{-W} = R(\tilde{T})^W \cdot d. \]

Therefore

\[R(\tilde{T})^{-W} = R(C \times \tilde{T})^{-W} = (R(C) \otimes Z R(\tilde{T}))^{-W} = R(C) \otimes Z R(\tilde{T})^{-W} = R(C) \otimes Z (R(\tilde{T})^{-W} \cdot d) \]

\[= (R(C) \otimes Z (R(\tilde{T})^{-W} \cdot d) = (R(C) \otimes Z R(\tilde{T})^{-W} \cdot d = R(\tilde{T})^{-W} \cdot d. \]

(C.1)

Now let \(a \in R(T, \omega)^{-W} \subseteq R(T)^{-W} \). It follows from (C.1) that \(a = bd \) for some \(b \in R(\tilde{T})^W \). We need to argue that \(b \in R(T) \). Let \(K \subseteq \tilde{T} \) be the kernel of the covering homomorphism \(\phi: \tilde{G} \to G \). This group acts on the complexified representation ring \(R(\tilde{T})_C \) as in (B.1), and the ring of K-invariants \((R(\tilde{T})_C)^K \) is isomorphic to \(R(T)_C \). Since \(a \) and \(d \) are in \(R(T, \omega) = R(T)e^\rho \), we have \(k \cdot a = \rho(k)a \) and \(k \cdot d = \rho(k)d \) for all \(k \in K \) and hence

\[\rho(k)(-1)^k \cdot a = \rho(k)(-1)^k \cdot (bd) = \rho(k)(-1)(k \cdot b)(k \cdot d) = (k \cdot b)d. \]

It follows that \(k \cdot b = b \) for all \(k \in K \), i.e., \(b \in R(T) \). This proves (iii). (iii) is proved in exactly the same way as [7 § VI.3, Proposition 1].

QED
Appendix D. Homogeneous Spinc-structures

In this appendix we review the classification of invariant Spinc-structures on equal-rank homogeneous spaces, which is surely well-known but for which we could not find a reference. (But see [16, § 2.6] and also Example D.5 below for remarks on the Spin case.) See [30, Example 4.6] and [27] for examples of maximal-rank homogeneous spaces that do not carry invariant Spinc-structures.

The notation and the assumptions are as explained at the beginning of §§1 and 2. Recall that G denotes a compact connected Lie group, H a closed and connected subgroup of maximal rank, and T a common maximal torus of G and H. Recall also that $m = T \hat{1} M$ denotes the tangent space at the identity coset of the homogeneous space $M = G / H$, and $\eta: H \to \text{SO}(m)$ denotes the tangent representation. We denote the set of equivalence classes of G-invariant Spinc-structures on M by $\text{Spin}_G^c(M)$.

D.1. Definition. The orthogonal representation η is c-spinorial if it lifts to a homomorphism $H \to \text{Spin}^c(m)$. The subgroup H is c-spinorial if η is c-spinorial.

Note that η is c-spinorial if and only if M possesses a G-invariant Spinc-structure, i.e. if and only if $\text{Spin}_G^c(M)$ is nonempty. Moreover, liftings of η to $\text{Spin}^c(m)$ correspond bijectively to elements of $\text{Spin}_G^c(M)$.

A lifting of η to Spin$^c(m)$ determines a trivialization s of the central extension

$$\omega = \omega_M: 1 \longrightarrow \text{U}(1) \longrightarrow H^{(\omega)} \xrightarrow{s} \phi \longrightarrow H \longrightarrow 1$$

defined in (2.2). Conversely, given a section s of ϕ we can compose it with the canonical homomorphism $H^{(\omega)} \longrightarrow H \longrightarrow \text{Spin}^c(m)$ to obtain a lifting of η,

$$H \xrightarrow{s} H^{(\omega)} \xrightarrow{\hat{\eta}} \text{Spin}^c(m).$$

Thus we have a natural one-to-one correspondence between $\text{Spin}_G^c(M)$ and the set of trivializations of the orientation system ω.

The determinant character is the character $\text{det}: H^{(\omega)} \longrightarrow \text{U}(1)$ obtained by pulling back the determinant character of Spin$^c(m)$, which is defined by $\text{det}([z,a]) = z^2$. The homomorphism

$$\psi = \text{det} \times \phi: H^{(\omega)} \longrightarrow \text{U}(1) \times H$$

is a double covering map. Let s be a section of ϕ and let γ be the character $\text{det} \circ s$ of H. Then s is a lifting homomorphism of $\gamma \times \text{id}$, as in the commutative diagram

$$\begin{align*}
H^{(\omega)} & \xrightarrow{s} s \circ \gamma \times \text{id} \longrightarrow \text{U}(1) \times H,
\end{align*}$$

and so $s = s_\gamma$ is uniquely determined by γ.

D.2. Definition. A character $\gamma \in \mathcal{X}(H)$ is c-spinorial (relative to the orthogonal H-module m) if the lifting s_γ of $\gamma \times \text{id}$ exists. We denote the set of c-spinorial characters by $\mathcal{X}(H)^c$.

The conclusion is that we have natural bijections between the set \(\text{Spin}_c^G(M) \), the set of trivializations of \(\omega \), and the set \(\mathcal{X}(H)^c \). This proves the first part of the following proposition. The map \(v: \mathcal{X}(H)^c \to \frac{1}{2}\mathcal{X}(T) \) in the second part is defined by

\[
v(\gamma) = \frac{1}{2} j_H^*(\gamma) - \frac{1}{2} \sum_{\alpha \in \mathcal{A}_H^+} \alpha = \frac{1}{2} j_H^*(\gamma) - \rho_M.
\]

D.3. Proposition. (i) For a c-spinorial character \(\gamma \), define a \(G \)-invariant principal \(\text{Spin}^c(m) \)-bundle over \(M \) by

\[
P_\gamma = G \times^H \text{Spin}^c(m),
\]

where the right-hand side denotes the quotient of \(G \times \text{Spin}^c(m) \) by the \(H \)-action \(h \cdot (g, k) = (gh^{-1}, \hat{\eta}(s_\gamma(h))k) \). The map

\[
f: \mathcal{X}(H)^c \to \text{Spin}^c_G(M)
\]

which sends \(\gamma \) to the equivalence class of \(P_\gamma \) is bijective. In particular \(\text{Spin}^c_G(M) \) is nonempty if and only if \(\mathcal{X}(H)^c \) is nonempty.

(ii) A character \(\gamma \) of \(H \) is c-spinorial if and only if \(v(\gamma) \in \mathcal{X}(T) \). Hence \(\mathcal{X}(H)^c = v^{-1}(\mathcal{X}(T)) \).

Proof. It remains to prove (ii). By covering space theory and our standing assumption that \(H \) is connected, a lifting \(s \) of \(\gamma \times \text{id} \) exists if and only if it exists on the level of fundamental groups, as in the diagram

\[
\begin{array}{ccc}
\pi_1(H^{(\omega)}) & \xrightarrow{s^*} & \pi_1(U(1)) \oplus \pi_1(H).
\end{array}
\]

Let \(\mathcal{Y}(T) = \text{Hom}(U(1), T) \) denote the cocharacter group of \(T \). The fundamental group \(\pi_1(H) \) is naturally isomorphic to \(\mathcal{Y}(T)/Q(\mathcal{A}_H^+) \), where \(Q(\mathcal{A}_H^+) \) is the coroot lattice in \(\mathcal{Y}(T) \). (See e.g. \([2] \text{§IX.4.6}\).) Since \(\psi \) is a covering map, \(\psi_* \) maps the coroot system of \(H^{(\omega)} \) bijectively to that of \(U(1) \times H \). Therefore the lifting problem (D.1) is equivalent to the lifting problem

\[
\begin{array}{ccc}
\mathcal{Y}(T^{(\omega)}) & \xrightarrow{s_*} & \mathcal{Y}(T) \oplus \mathcal{Y}(T).
\end{array}
\]

Since \(\mathcal{X}(T) \) and \(\mathcal{Y}(T) \) are dual abelian groups, this lifting problem is equivalent to the dual extension problem

\[
\begin{array}{ccc}
\mathcal{X}(T^{(\omega)}) & \xrightarrow{s^*} & \mathcal{X}(T) \oplus \mathcal{X}(T).
\end{array}
\]

(D.2)
By Lemma 2.2.1, \(\mathcal{X}(T^{(\omega)}) \) is the direct sum of \(\phi^*(\mathcal{X}(T)) \) and \(Z \cdot (\varepsilon_0 - \rho_M) \). Let \(\mathcal{X} \) be the image of \(\psi^* \), which is a sublattice of \(\mathcal{X}(T^{(\omega)}) \) of index 2. Since \(2\rho_M \) is in \(\mathcal{X}(T) \) and \(\psi^* \) maps the generator \(\varepsilon_0 \) of \(\mathcal{X}(U(1)) \) to the determinant character \(\det = 2\varepsilon_0 \), the element \(\varepsilon_0 - \rho_M \in \mathcal{X}(T^{(\omega)}) \) is a representative of the nontrivial coset in \(\mathcal{X}(T^{(\omega)}) / \mathcal{X} \). Because \(2(\varepsilon_0 - \rho_M) \) is equal to \(\psi^*(\varepsilon_0 - 2\rho_M) \), the extension problem (D.2) is soluble if and only if

\[
2v(\gamma) = j_H^*(\gamma) - 2\rho_M = \gamma^*(\varepsilon_0) - 2\rho_M \in \mathcal{X}(T)
\]

divisible by 2 in \(\mathcal{X}(T) \). If this is the case, the extension \(s^* = s_\gamma^* \) is uniquely determined by the formula

\[
s_\gamma^*(\varepsilon_0 - \rho_M) = v(\gamma) \in \mathcal{X}(T).
\]

This proves (ii).

QED

We call \(\gamma \in \mathcal{X}(H)^c \) the character of the \(\text{Spin}^c \)-structure \(P_\gamma \). Let \(\gamma \in \mathcal{X}(H)^c \) and \(\chi \in \mathcal{X}(H) \). Then

\[
v(\gamma + 2\chi) = v(\gamma) + j_H^*(\chi) \in \mathcal{X}(T),
\]

so \(\gamma + 2\chi \in \mathcal{X}(H)^c \). Thus we have an action of the abelian group \(\mathcal{X}(H) \) on the set of \(c \)-spinorial characters defined by \(\chi \cdot \gamma = \gamma + 2\chi \). Let \(L_\chi = G \times^H C_\chi \) be the homogeneous complex line bundle on \(M \) defined by \(\chi \in \mathcal{X}(H) \). Recall the natural isomorphisms

\[
\mathcal{X}(H) \xrightarrow{\sim} \text{Pic}_G(M) \xrightarrow{\sim} H_G^2(M, \mathbb{Z}),
\]

where \(\text{Pic}_G(M) \) denotes the (topological) Picard group of isomorphism classes of homogeneous complex line bundles on \(M \). The first map sends a character \(\chi \) to the class of the bundle \(L_\chi \) and the second map sends the class of a bundle \(L \) to its equivariant Chern class \(c_1^G(L) \). (See e.g. [14, Theorem C.47].) A natural action of \(\text{Pic}_G(M) \) on \(\text{Spin}^c_G(M) \) is defined by

\[
[L] \cdot [P] = [U(L) \times U(1)_M P],
\]

where \(U(L) \) denotes the circle bundle associated to \(L \) and we identify the circle \(U(1) \) with the kernel of \(\psi : \text{Spin}^c(m) \rightarrow \text{SO}(m) \). (The quotient in the right-hand side is taken in the category of manifolds over \(M \), and \(U(1)_M = M \times U(1) \) denotes the constant groupoid over \(M \) with fibre \(U(1) \).)

D.4. Proposition. The notation is as in Proposition D.3.

(i) The bijection \(f : \mathcal{X}(H)^c \rightarrow \text{Spin}^c_G(M) \) is \(\mathcal{X}(H) \)-equivariant with respect to the group isomorphism (D.4).

(ii) \(\text{Spin}^c_G(M) \) is a principal homogeneous space for the abelian group \(\mathcal{X}(H) \). In particular \(\text{Spin}^c_G(M) \) consists of at most one element if \(H \) is semisimple.

(iii) Let \(\gamma \in \mathcal{X}(H)^c \). The determinant line bundle of \(P_\gamma \) is \(L_\gamma = G \times^H C_\gamma \). Its equivariant Chern class \(c_1(L_\gamma) \in H_G^2(M, \mathbb{Z}) \cong \mathcal{X}(H) \) is equal to \(\gamma \).

(iv) Let \(\gamma \in \mathcal{X}(H)^c \) and let \(\partial_\gamma \) be the \(\text{Spin}^c \) Dirac operator associated with \(P_\gamma \). The equivariant Euler class of \(\partial_\gamma \) is \(e(\partial_\gamma) = e^{1/2}e(D) \in R(H) \), where \(D \) is the twisted \(\text{Spin}^c \) Dirac operator of \(M \).
Proof. Let $\gamma \in \mathcal{R}(H)^c$ and $\chi \in \mathcal{R}(H)$. The fibre of $U(L_\chi) \times U(1) \rtimes P_\gamma$ over the identity coset $1 \in M$ is

$$U(C_\chi) \times U(1) \text{ Spin}^c(m),$$

where $U(C_\chi)$ denotes the unit circle in C_χ. The map

$$U(C_\chi) \times U(1) \text{ Spin}^c(m) \to \text{ Spin}^c(m)$$

defined by $(z,k) \mapsto zk$ is a diffeomorphism and is equivariant with respect to the H-actions defined on the left-hand side by

$$h \cdot [z,k] = [\chi(h)^{-1}z, \hat{\eta}(s_\gamma(h))k]$$

and on the right-hand side by $h \cdot k = \hat{\eta}(s_\gamma(h))k$. It follows that $[L_\chi] \cdot [P_\gamma] = [P_{\gamma + 2\chi}]$, which proves (ii). It is easy to verify that the $\mathcal{R}(H)$-action on $\mathcal{R}(H)^c$ is free and transitive. Thus (ii) follows from (i). The determinant line bundle of P_γ is

$$L_\gamma = P_\gamma \times \text{Spin}^c(m) \text{ Cdet} = \left(G \times^H \text{Spin}^c(m)\right) \text{ Cdet} = G \times^H C_\gamma.$$

The isomorphism $\mathcal{R}(H) \to H^2_G(M,\mathbb{Z})$ defined in (D.4) maps γ to $c^1_G(L_\gamma)$, which proves (iii). By (1.10) and (2.4), the Euler class of δ_γ is

$$e(\delta_\gamma) = (\hat{\eta} \circ s_\gamma)^*([S^0] - [S^1]) = s_\gamma \hat{\eta}^*([S^0] - [S^1]) = s_\gamma(e(D)) \in R(H),$$

where S is the spinor module of $\text{Cl}(m)$. Using Lemma 2.2.1(iv) and (D.3) we obtain

$$j_H^*(e(\delta_\gamma)) = s_\gamma^*(e^{\rho_M} \prod_{a \in \mathcal{A}^c_M} (1 - e^a)) = e^{\tau(\gamma)} \prod_{a \in \mathcal{A}^c_M} (1 - e^a) = j_H^*(e^{\tau/2} e(D)),$$

which establishes (iv).

QED

D.5. Example (Spin-structures). Let us call the orthogonal representation $\eta : H \to \text{SO}(m)$, or the subgroup H, spinorial if η lifts to a homomorphism $\hat{\eta} : H \to \text{Spin}(m)$. Thus, H is spinorial if and only if M has a G-invariant Spin-structure, and such a structure is unique up to equivalence, because H is connected. A Spin-structure determines a Spinc-structure by means of the homomorphism $\kappa \circ \hat{\eta} : H \to \text{Spin}^c(m)$, where $\kappa : \text{Spin}(m) \to \text{Spin}^c(m)$ is the inclusion map. The corresponding c-spinorial character of H is $\gamma = \det \kappa \circ \hat{\eta} = 0$, because Spin$^c(m)$ is the kernel of the determinant character. Hence, by Proposition D.3(ii), M is G-invariantly Spin if and only if $\rho_M \in \mathcal{R}(T)$. The Euler class of the Spin Dirac operator is equal to that of the twisted Spinc Dirac operator D.

D.6. Remark. If H is c-spinorial and semisimple, then a lifting $H \to \text{Spin}^c(m)$ takes values in the commutator subgroup $\text{Spin}(m)$, so H is spinorial.

D.7. Example (almost complex structures). Up to homotopy, G-invariant almost complex structures on M correspond bijectively to H-invariant orthogonal complex structures on m. Let J be such a structure; then the tangent representation $\eta : H \to \text{SO}(m)$ takes values in $U(m,J)$, the group of J-holomorphic orthogonal maps. We equip M with the Spinc-structure defined by composing this homomorphism with the canonical ι (see e.g. [14; §D.3.1]),

$$H \xrightarrow{\eta} U(m,J) \hookrightarrow \text{Spin}^c(m).$$
The associated c-spinorial character \(\gamma \) is then
\[\gamma = \det \circ \alpha \circ \eta. \]
Since \(\det \circ \alpha \) is equal to the usual complex determinant character of \(U(m, j) \), we have
\[j_H^+ (\gamma) = \sum_{k=1}^l \beta_k, \]
where the \(\beta_k \) are the weights of the \(T \)-action on \(m \) with respect to \(j \). To compute this, let \(\mathcal{R}_+^m = \{ a_1, a_2, \ldots, a_l \} \) and let \(j_0 \) be the \(T \)-invariant complex structure on \(m \) given by the decomposition
\[m = \bigoplus_{k=1}^l m_k, \]
where \(m_k \cong \mathfrak{a}_k \). On \(m_k \) we have
\[J = c_k j_0, \]
where \(c_k = \pm 1 \). Hence \(\beta_k = c_k a_k \) and
\[j_H^+ (\gamma) = \sum_{k=1}^l c_k a_k. \]

D.8. Example (complex structures). As a special case of Example D.7, let us take \(H \) to be the centralizer of a subtorus of \(T \). This is the case precisely when \(M \) has an integrable almost complex structure, as one sees from the well-known identification \(M \cong G_C / P \) (§ IX.4, Exercise 8), where \(P \) is the parabolic subgroup of \(G_C \) generated by \(H \) and the negative root spaces. The corresponding orthogonal almost complex structure \(J \) on \(m \) is positive with respect to the inner product on \(m \), so \(c_k = 1 \) for all \(k \) and hence
\[j_H^+ (\gamma) = 2 \rho_M, \quad \nu(\gamma) = 0, \quad j_H^+ (\rho)(\partial \gamma)) = \prod_{k=1}^l (1 - e^{\alpha_k}). \]

The Kähler structure on \(M \) and the associated \(\text{Spin}^c \) structure depend on the choice of the basis of \(\mathcal{R}_G \).

Index of Notation

- \(\bar{1} \), identity coset \(1H \in M \), 3
- \(A \times_C B \), fibred product, 3
- \(\alpha_i \), root of \(G \), 3
- \(\mathcal{R}_G \), basis of \(\mathcal{R}_G \), 3
- \(BM \), unit ball bundle of cotangent bundle \(T^* M \), 9
- \(C_{\chi} \), one-dimensional \(G \)-module defined by character \(\chi \in \mathcal{X} (G) \), 3
- \(C \), Clifford algebra of a vector space or vector bundle \(E \), 9
- \([D] \), symbol class of operator \(D \), 9
- \(d_{C^*} \), Weyl denominator of \(G \), 17
- \(D \), Dirac operator, 12
- \(\delta, \text{Spin}^c \) Dirac operator, 20
- \(e^{\alpha} \), class of \(C_{\alpha} \) in \(R(G) \), 3
- \(e(D) \), Euler class of operator \(D \), 9
- \(e_0 \), standard generator of \(\mathcal{X} (U(1)) \cong \mathbb{Z} \), 15
- \(\eta \), tangent representation \(H \to \text{GL}(m) \), 3
- \(G \), compact connected Lie group, 3
- \(G \times H V \), homogeneous vector bundle, 3
- \(G^{(c)} \), central extension of \(G \) by \(U(1) \), 4
- \(\Gamma \), smooth global sections functor, 4
- \(\gamma \), c-spinorial character of \(H \), 20
- \(\mathfrak{g} \), Lie algebra of \(G \), 3
- \(\mathfrak{g}_C \), root space of \(\mathfrak{g}_C \), 11
- \(H \), closed subgroup of \(G \), from §14 onward connected and containing \(T \), 3
- \(H^{(r)} \), central extension of \(H \) by \(U(1) \), 6
- \(i \), inclusion \(H \to G \), 3
- \(i_* \), formal induction, 4
- \(i^* \), twisted \(\text{Spin}^c \)-induction, 14
- \(i^{\mathfrak{c}} \), \(\text{Spin}^c \)-induction, 20
- \(i_D \), induction defined by operator \(D \), 8
- \(\text{ind} \), formal induction, 4
- \(j_C \), inclusion \(T \to G \), 3
- \(j_M \), inclusion \(T \to H \), 11
- \(J_C \), antisymmetrizer of \(W_C \), 17
- \(J_M \), relative antisymmetrizer, 17
- \(J_M^{(\mathfrak{c})} \), “opposite” of \(J_M \), 28
- \(K(\mathcal{E}) \), Grothendieck group of category \(\mathcal{E} \), 3
- \(M \), homogeneous space \(G / H \), 3
- \(m \), tangent space \(T_1 M \), 3
- \(m^e \), weight space, 11
- \(\omega_M \), orientation system of \(M \), 13
- \(\pi \), projection \(T^* M \to M \), 14
- \(R(G) \), representation ring, 3
- \(R(G)^* \), dual \(\mathbb{Z} \)-module of \(R(G) \), 4
- \(R(G, c) \), twisted representation module, 4
- \(R(H)^* \), dual \(R(G) \)-module of \(R(H) \), 4
- \(\mathcal{R}_G \), root system of \(G \), 3
- \(\mathcal{R}_G^c \), positive roots of \(G \), 3
- \(\mathcal{R}_M \), weights \(\mathcal{R}_G \setminus \mathcal{R}_H \) of \(m_C \), 11
- \(\mathcal{R}_M^{(\mathfrak{c})} \), positive weights \(\mathcal{R}_G^{c} \setminus \mathcal{R}_H^{(\mathfrak{c})} \) of \(m_C \), 11
- \(\rho_C \), half-sum of positive roots of \(G \), 3
A cubic Dirac operator and the emergence of Euler number multiplets of representations for

B. Kostant,

V. Guillemin, V. Ginzburg, and Y. Karshon,
The Weyl character formula, the half-spin representations, and equal rank subgroups

B. Gross, B. Kostant, P. Ramond, and S. Sternberg,
Divided differences and the Weyl character formula in

M. Harada, G. Landweber, and R. Sjamaar,
The equivariant Künneth theorem in K-theory

P. Donovan and M. Karoubi,
Graded Brauer groups and K-theory with local coefficients

F. G. Frobenius,
Elliptic genera, involutions, and homogeneous spin manifolds

F. Hirzebruch and P. Slodowy,
Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215.

B. Kostant,
A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999), no. 3, 447–501.

A generalization of the Bott-Borel-Weil theorem and Euler number multiplets of representations, Lect. Math. Phys. 52 (2000), no. 1, 61–78, Conference Moshe Flato 1999 (Dijon).

Pre-quantization of the moduli space of flat G-bundles over a surface, J. Geom. Phys. 58 (2008), no. 11, 1624–1637.
23. T. Y. Lam, *Lectures on modules and rings*, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999.
24. , *Serre’s problem on projective modules*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006.
25. G. Landweber, *Harmonic spinors on homogeneous spaces*, Represent. Theory 4 (2000), 466–473.
26. , *Twisted representation rings and Dirac induction*, J. Pure Appl. Algebra 206 (2006), no. 1-2, 21–54.
27. G. Landweber and R. Sjamaar, *Homogeneous Spinc-structures*, in preparation.
28. V. Mathai, R. Melrose, and I. Singer, *Equivariant and fractional index of projective elliptic operators*, J. Differential Geom. 78 (2008), no. 3, 465–473.
29. J. McLeod, *The Künneth formula in equivariant K-theory*, Algebraic Topology (Waterloo, 1978) (P. Hoffman and V. Snaith, eds.), Lecture Notes in Mathematics, vol. 741, Springer-Verlag, Berlin, 1979, pp. 316–333.
30. E. Meinrenken, *On the quantization of conjugacy classes*, Enseign. Math. (2) 55 (2009), no. 1-2, 33–75.
31. M. Murray and M. Singer, *Gerbes, Clifford modules and the index theorem*, Ann. Global Anal. Geom. 26 (2004), no. 4, 355–367.
32. H. Pittie, *Homogeneous vector bundles on homogeneous spaces*, Topology 11 (1972), 199–203.
33. D. Quillen, *Higher algebraic K-theory I*, Algebraic K-theory I: Higher K-theories (Seattle, WA, 1972) (H. Bass, ed.), Lecture Notes in Mathematics, vol. 341, Springer-Verlag, Berlin, 1973, pp. 85–147.
34. , *Projective modules over polynomial rings*, Invent. Math. 36 (1976), 167–171.
35. J. Rosenberg and C. Schochet, *The Künneth theorem and the universal coefficient theorem for equivariant K-theory and KK-theory*, Mem. Amer. Math. Soc. 62 (1986), no. 348, vi+95.
36. G. Segal, *Equivariant K-theory*, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129–151.
37. , *The representation ring of a compact Lie group*, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 113–128.
38. A. Shapiro, *Group extensions of compact Lie groups*, Ann. of Math. (2) 50 (1949), 581–586.
39. J. Shapiro, *A duality theorem for the representation ring of a compact connected Lie group*, Illinois J. Math. 18 (1974), 79–106.
40. , *On the algebraic structure of the K-theory of G_2/SU(3) and F_4/Spin(9)*, Illinois J. Math. 18 (1974), 509–515.
41. S. Slebarski, *The Dirac operator on homogeneous spaces and representations of reductive Lie groups I, II, III*, Amer. J. Math. 109 (1987), no. 2, 283–301, ibid. 109 (1987), no. 3, 499–520, ibid. 110 (1988), no. 3, 451–471.
42. V. Snaith, *On the Künneth formula spectral sequence in equivariant K-theory*, Proc. Cambridge Philos. Soc. 72 (1972), 167–177.
43. R. Steinberg, *On a theorem of Pittie*, Topology 14 (1975), 173–177.
44. A. Suslin, *Projective modules over polynomial rings are free*, Dokl. Akad. Nauk SSSR 229 (1976), no. 5, 1063–1066 (Russian), English translation in Soviet Math. Dokl. 17 (1976), no. 4, 1160–1164.
45. J.-L. Tu, P. Xu, and C. Laurenţ-Gengoux, *Twisted K-theory of differentiable stacks*, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 6, 841–910.

E-mail address: gregland@bard.edu

Department of Mathematics, Bard College, Annandale-on-Hudson, NY 12504-5000, USA

E-mail address: sjamaar@math.cornell.edu

Department of Mathematics, Cornell University, Ithaca, NY 14853-4201, USA