This is the accepted manuscript made available via CHORUS. The article has been published as:

Multiferroic Phase Transition near Room Temperature in BiFeO$_3$ Films

I. C. Infante, J. Juraszek, S. Fusil, B. Dupé, P. Gemeiner, O. Diéguez, F. Pailhoux, S. Jouen, E. Jacquet, G. Geneste, J. Pacaud, J. Íñiguez, L. Bellaiche, A. Barthélémy, B. Dkhil, and M. Bibes

Phys. Rev. Lett. 107, 237601 — Published 30 November 2011

DOI: 10.1103/PhysRevLett.107.237601
Multiferroic phase transition near room temperature in BiFeO$_3$ films

I.C. Infante,$^{1, 2}$ J. Juraszezk,3 S. Fusil,1 B. Dupé,$^{2, 4}$ P. Gemeiner,2 O. Diéguez,5 F. Pailloux,$^{6, 7}$ S. Jouen,3 E. Jacquet,1 G. Geneste,$^{2, 4}$ J. Pacaud,6 J. Íñiguez,5 L. Bellaiche,8 A. Barthélémy,1 B. Dkhil,2 and M. Bibes1.*

1Unité Mixte de Physique CNRS/Thales, Campus de l’École Polytechnique, 1 avenue Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405, Orsay, France
2Laboratoire Structures, Propriétés et Modélisation des Solides, UMR 8580 CNRS-Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry Cedex, France
3Groupe de Physique des Matériaux, UMR6634 CNRS-Université de Rouen, F-76801 St. Étienne du Rouvray, France
4CEA-DAM DIF, F-91297 Arpajon, France
5Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Spain
6Institut Pprime, UPR 3346 CNRS-Université de Poitiers-ENSM, SP2MI, 86962 Futuroscope-Chasseneuil Cedex, France
7Canadian Center for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4M1, Canada
8Physics Department, University of Arkansas, AR 72701 Fayetteville, USA

In multiferroic BiFeO$_3$ thin films grown on highly mismatched LaAlO$_3$ substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic properties. Notably, the highly distorted phase quasi-concomitantly presents an abrupt structural change, transforms from a standard to a non-conventional ferroelectric and transitions from antiferromagnetic to paramagnetic at 360±20 K. These coupled ferroic transitions just above room temperature hold promises of giant piezoelectric, magnetoelectric and piezomagnetic responses, with potential in many applications fields.

PACS numbers: 77.5, 77.80.B, 75.30.Kz, 68.60.Bs

Multiferroics that display simultaneously magnetic, polar and elastic order parameters, are gaining much attention due to their fascinating fundamental physics [1] as well as their considerable application potential [2, 3]. Among them, BiFeO$_3$ (BFO) is intensively studied because both ferroelectric and magnetic orders coexist at room temperature (RT) [4]. Below the Curie temperature $T_C \approx 1100$ K, BFO is described by the rhombohedral R3c space group, which allows antiphase octahedral tilting and ionic displacements from the centrosymmetrical R3c space group, which allows antiphase octahedral tilting and ionic displacements from the centrosymmetrical R3c space group. For this reason, the T-like phase with giant tetragonality [8–10] and en-nett-T-Like phase is of interest due to their fascinating fundamental physics [1].

Below the Curie temperature T_C, BFO is described by the rhombohedral R3c space group, which allows antiphase octahedral tilting and ionic displacements from the centrosymmetrical R3c space group. For this reason, the T-like phase with giant tetragonality [8–10] and en-nett-T-Like phase is of interest due to their fascinating fundamental physics [1].

The coexistence of ferroic orders with several lattice instabilities makes BFO an interesting playground to investigate strain engineering [5–7]. In particular, a novel “T-like” phase with giant tetragonality [8–10] and enhanced properties [11] was revealed for mismatch strains of ~5%. Also, and in contrast with the situation in more “classical” ferroelectrics like BaTiO$_3$ [12] it was found that compressive strain depresses T_C while leaving T_N almost unchanged, as a consequence of the subtle interplay between polarization and oxygen octahedral tilts [5]. For compressive strain values lower than ~2.5%, T_C and T_N should meet [5], extending the interest of BFO films as the magnetoelectric response should then be enhanced [13, 14].

Here we show that AFM and ferroelectric phase transitions occur quasi-concomitantly in BFO films deposited onto (001)-oriented LaAlO$_3$ (misfit strain of ~4.8%). Remarkably, this multiferroic phase transition takes place just above RT, in a range of interest for applications. Combining temperature-dependent X-ray diffraction (XRD), piezoresponse force microscopy (PFM) and Mössbauer (MS) spectroscopy techniques, we evidence that both transitions occur in the temperature domain of 340 K - 380 K. These findings are supported by theoretical calculations based on first-principles.

The films were grown by pulsed laser deposition in conditions reported elsewhere [9, 15]. The 70 nm-thick sample used for MS was grown using a ~100% 57Fe enriched target. For PFM measurements, an 11 nm-thick fully strained La$_{2/3}$Sr$_{1/3}$MnO$_3$ (LSMO) bottom electrode was used. Symmetric X-ray diffraction (XRD) 2θ – ω scans indicated a majoritary phase with a large c axis parameter of 4.67 Å (corresponding to the T-like phase; in-depth analysis of electron microscopy results not presented here suggests a crystallization in a Cm space group), while asymmetric scans indicated the presence of an additional R-like phase. This phase coexistence is confirmed by high resolution transmission electron microscopy (HRSTEM). Fig. 1a displays a bright field image and Fig. 1b the corresponding diffraction pattern. Digital dark field images were calculated from the Fourier transform (FT) of the HRSTEM image by selecting a spot of a given phase and performing an inverse FT. In this FT, three families of spots can be identified along the growth direction: the LAO substrate (Fig. 1c), T-like BFO with a large c/a ratio (Fig. 1d) and R-like BFO with the c-axis tilted.
FIG. 1: (color online) (a) Bright field image of a BFO film, (b) FT of (a) showing spots coming from the different phases (labeled 1, 2 and 3), (c-e) digital dark field images of the considered spots. The white scale bar in (c) corresponds to 20 nm.

of about 3 degrees from the growth direction (Fig. 1e). The R-like diffraction can then be attributed to the large slanted grain and the main T-like phase is visible in the rest of the image. Using the GPA method, the average out-of-plane and in-plane lattice parameters for the T-like and R-like phases are \(c=4.66\,\text{Å}\) and \(a=3.79\,\text{Å}\), and \(c=4.10\,\text{Å}\) and \(a=3.91\,\text{Å}\), respectively. The R-phase thus experiences a \(-1.3\%\) compressive strain, as in BFO films grown on SrTiO\(_3\) [5].

\(^{57}\text{Fe Mössbauer spectra were measured using the conversion electron technique (CEMS) which allows the characterization of thin films [16]. The spectra were collected under normal incidence using a gas-flow proportional counter mounted inside a closed cycle Janis cryostat, and a \(\sim50\,\text{mCl}^{57}\text{Co radioactive source in a Rh matrix in constant acceleration mode. The isomer shift is given with respect to }\alpha-\text{Fe at 300 K. Fig. 2a-d displays the spectra at different temperatures. The data unambiguously show the contribution of two AFM components associated with two different sets of magnetically split sextets between 100 K and 300 K. Isomer shifts values (\(\delta=0.31\text{-}0.37\,\text{mm/s}\)) for both components are characteristic of Fe\(^{3+}\) ions in octahedral coordination. At 100 K, the spectrum exhibits a sharp sextet with a magnetic hyperfine field \(B_{hf}=51\,\text{T}\) and a slightly broader one fitted with a narrow magnetic hyperfine field distribution \(P(B_{hf})\) centered at \(B_{hf}=47\,\text{T}\). The sharp sextet has a \(B_{hf}\) close to that of bulk BFO and is identified to the R-like phase whereas the less magnetic component is identified to the T-like phase. Both sub-spectra are very similar to the spectrum recorded for BFO grown on GdScO\(_3\) (GSO) [5] indicating that low temperature antiferromagnetism is G-type. It should be noted that the line intensity ratio \(R_{23}\) of the second and third lines of each Zeeman sextet is close to 4.0, evidencing the in-plane orientation of the Fe\(^{3+}\) magnetic moments for both phases.

The spectral area ratio between both magnetic phases, represents roughly 2/3 (T-like) and 1/3 (R-like) of the sample volume at all temperatures, meaning that one phase does not transform into the other. In fact, the coexistence of both phases is not an unexpected feature considering their energy diagrams as a function of misfit strain [17, 18]. We argue that the minority-phase allows the stabilization of the giant tetragonality majority-phase. Indeed, the T-phase is associated with a misfit-strain of \(-4.8\%\), whereas the addition of 1/3 of R-phase with a misfit-strain of \(-1.3\%\) would decrease the global misfit-strain felt by the BFO film to \(\sim-3.6\%\).

Upon increasing temperature up to 300 K, the overall splitting of the outer emission lines, that measures the average effective \(B_{hf}\) at the nucleus, drastically decreases for the T-like component, revealing the approach of a magnetic phase transition (Figs. 2b-d). The cor-
responding $P(B_{hf})$ distribution becomes broader and its maximum is progressively shifted to lower fields (Fig. 2c). The temperature dependence of the average B_{hf} for both the T-like and R-like phases, and their fits using a mean field model are shown in Fig. 2f. For the T-phase they indicate a $T_N \approx 360$ K far from the bulk value of 640 K. The same analysis for the R-like phase yields a T_N of ≈ 640 K as expected from the calculated phase diagram based on a monoclinic Cc ground state [5].

The proximity of the T_N for the T-phase with RT is also confirmed by our simulations. It has been shown [19] that the magnetic interactions in BFO super-tetragonal phases are characterized by a strong splitting of the in-plane (J_{ab}) and out-of-plane (J_c) couplings between nearest-neighbouring Fe spins. Further, the basic magnetic properties can be captured in a simple Heisenberg Hamiltonian ($E = E_0 + J_{ij} S_i S_j$, with $|S_i| = 1$ and the sum being limited to first-nearest neighbors) with $J_{ab} \approx 40$ meV and $J_c \approx 4$ meV. We solved such a model using standard Monte Carlo techniques and obtained the temperature dependence of the AFM order parameter shown with solid lines in Fig. 2f; the computed T_N is about 425 K, in reasonable agreement with our Mössbauer data for the T-like phases. (We checked that the computed T_N remains essentially unchanged upon ± 2 meV variations of the coupling constants.) In Fig. 2f we also show the simulation results for the analogous Heisenberg Hamiltonian corresponding to BFO’s bulk-like phase (defined by $J_{ab} = J_c = 38$ meV); in this case we obtained $T_N \approx 650$ K, in good agreement with the experimental value of 640 K for the R-like phase. Our theory thus confirms that the majority T-like and minority R-like phases in our films present a markedly different temperature dependence of their magnetic properties, as well as different magnetic critical temperatures. From this analysis, we conclude that the films consist of a mixture of a 1.3% strained R-like phase, whose physical properties are described in Ref. [5], and a poorly known T-like phase that we discuss further in the following.

We characterized the structural properties as a function of temperature using XRD [5, 20]. Fig. 3a displays the thermal variation of the c-axis parameters of the T-like phase and the substrate. The c-axis parameter increases rapidly as temperature rises before reaching a plateau above ~ 340 K (heating) or ~ 370 K (cooling). The plateau spreads over 150 K before the c-axis parameter starts to decrease continuously upon increasing temperature. While another change of behaviour is visible at ~ 700 K (black arrow in Fig. 3a) and might be evidence for a structural modification, the abrupt change at 340 K-370 K appears as a signature of a reversible structural phase transition with hysteresis. As the elastic change is rather strong, it cannot be directly due to the AFM to paramagnetic phase transition that we evidenced using MS [5, 20, 21]. More likely, this transition is related to a ferroelectric phase transition. More insight on this point is gained from the temperature dependence of the (103) reflection. As visible in Fig. 3b, its normalized intensity shows an obvious change of behavior at ~ 380K. Its shape also changes from asymmetric (Fig. 3c), in agreement with a monoclinic-like phase [10, 22], to symmetric above 370 K (Fig. 3d-g), which strongly suggests that beyond the transition the phase is more tetragonal-like. Complementary Raman spectroscopy measurements (not shown) also indicate a phase transition occurring at ~ 380 K.

To explore the ferroelectric nature of this phase transition we characterized the ferroelectric properties using PFM. Piezoelectric loops were recorded while heating the samples in situ up to 498 K. AT RT, loops can consistently be measured irrespective of the tip position on the sample, as expected for a standard ferroelectric, see Fig. 4c and Fig. 4g (inset). However, at high temperatures, the response shows a strong variability with tip position, i.e. either loops with low coercive field values (Fig. 4e-h) can be recorded or there is no response at all. This suggests that BFO/LAO exhibits a transition toward a phase with qualitatively different ferroelectric or ferroelectric-like response whose precise nature remains to be determined. Clearly this transition occurs in the same temperature range as the detected magnetic and structural phase transitions.

In summary, we have found that in BFO films deposited onto LAO substrate a majority T-like phase and a minority R-like one coexist. We argued that such phase coexistence allows to release the huge misfit strain imposed by the substrate. Remarkably, the T-like phase exhibits both structural, magnetic and ferroelectric phase transitions.
transitions in a narrow temperature range around 360 K, as evidenced by XRD, Mössbauer spectroscopy and PFM studies, respectively, and confirmed by theory. Our results thus demonstrate the possibility of engineering a multiferroic having its critical temperatures (and thus diverging dielectric and magnetic susceptibilities, piezoelectricity, magnetoelectricity, etc) close to 300 K, which opens new paths for the use of BFO in applications.

NOTE: After this manuscript was submitted two papers also reported a structural transition at about 370K in T-like BFO [23, 24].

We thank D. Colson, B. Warot-Fonrose, H. Béa, M. Couillard and G. Botton. This work was supported by the French C-Nano Ile-de-France Magellan, PRES UniversudNano-Ox, ANR Pnano project "Méloic", MICINN-Spain Grants No. MAT2010-18113, MAT2010-10093-E, CSD2007-00041, the ONR Grants No. N00014-04-1-0413, N00014-08-1-0915, and N00014-07-1-0825, NSF Grants No. DMR 0701558 and DMR-0080054, and the Department of Energy, Office of Basic Energy Sciences, under contract ER-466120. Part of the microscopy work was carried out at the Canadian Centre for Electron Microscopy, a National Facility supported by NSERC and McMaster University.

* Electronic address: manuel.bibes@thalesgroup.com

[1] K. Wang, J.-M. Liu, and Z. Ren, Adv. Phys. 58, 321 (2009).
[2] H. Béa, M. Gajek, M. Bibes, and A. Barthélémy, J. Phys.: Condens. Matter 20, 434221 (2008).
[3] M. Bibes, J.E. Villegas, and A. Barthélémy, Adv. Phys. 60, 5 (2011).
[4] G. Catalan and J.F. Scott, Adv. Mater. 21, 2463 (2009).
[5] I.C. Infante et al., Phys. Rev. Lett. 105, 057601 (2010).
[6] A.J. Hatt., N.A. Spaldin, and C. Ederer, Phys. Rev. B 81, 054109 (2010).
[7] O. Diéguez, O.E. Gonzalez-Vazquez, J.C. Wojdel, and J. Iñiguez, Phys. Rev. B 83, 0940105 (2011).
[8] D. Ricinschi, K.-Y. Yun, and M.A. Okuyama, J. Phys.: Condens. Matter. 18, L97 (2006).
[9] H. Béa et al., Phys. Rev. Lett. 102, 217603 (2009).
[10] H.M. Christen, J.H. Nam, H.S. Kim, A.J. Hatt, and N.A. Spaldin, Phys. Rev. B 83, 144107 (2011).
[11] R.J. Zeches et al., Science 326, 977 (2009).
[12] K.J. Choi et al., Science 306, 1005 (2004).
[13] J.C. Wojdel and J. Iñiguez, Phys. Rev. Lett. 105, 037208 (2010).
[14] S. Prosandeev, I.A. Kornev, and L. Bellaiche, Phys. Rev. B 83, 020102(R) (2011).
[15] H. Béa et al., Appl. Phys. Lett. 87, 072508 (2005).
[16] J. Juraszek, O. Zivotsky, H. Chiron, C. Vaudolon, and J. Teillet, Rev. Sci. Instrum. 80, 043905 (2009).
[17] B. Dupé et al., Phys. Rev. B 81, 144128 (2010).
[18] Z. Chen et al. (2011), arXiv.org:1104.4712v1.
[19] O. Diéguez and J. Iñiguez (2011), arXiv.org:1105.2043.
[20] H. Toupet, F. Le Marrec, C. Lichtensteiger, B. Dkhil, and M. Karkut, Phys. Rev. B 81, 140101(R) (2010).
[21] R. Haumont et al., Phys. Rev. B 78, 134108 (2008).
[22] N. Noheeda et al., Phys. Rev. B 65, 224101 (2002).
[23] W. Siemons, M.D. Biegalski, J.H. Nam, and H.M. Christen, Appl. Phys. Express 4, 095801 (2011).
[24] J. Kreisel et al., J. Phys.: Condens. Matter. 23, 342202 (2011).