Genome sequence of *Microvirga lupini* strain LUT6\(^T\), a novel *Lupinus* alphaproteobacterial microsymbiont from Texas

Wayne Reeve\(^1\), Matthew Parker\(^2\), Rui Tian\(^3\), Lynne Goodwin\(^4\), Hazuki Teshima\(^5\), Roxanne Tapia\(^1\), Cliff Han\(^7\), James Han\(^7\), Konstantinos Liolios\(^6\), Marcel Huntemann\(^4\), Amrita Pati\(^2\), Tanja Woyke\(^2\), Konstantinos Mavromatis\(^4\), Victor Markowitz\(^2\), Natalia Ivanova\(^4\), Nikos Kyrpides\(^4\).

1 Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
2 Biological Sciences Department, Binghampton University, New York, USA
3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
4 DOE Joint Genome Institute, Walnut Creek, California, USA
5 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA

*Correspondence: Wayne Reeve (W.Reeve@murdoch.edu.au)

Keywords: root-nodule bacteria, nitrogen fixation, rhizobia, Alphaproteobacteria

Microvirga lupini LUT6\(^T\) is an aerobic, non-motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of *Lupinus texensis*. LUT6\(^T\) was isolated in 2006 from a nodule recovered from the roots of the annual *L. texensis* growing in Travis Co., Texas. LUT6\(^T\) forms a highly specific nitrogen-fixing symbiosis with endemic *L. texensis* and no other *Lupinus* species can form an effective nitrogen-fixing symbiosis with this isolate. Here we describe the features of *M. lupini* LUT6\(^T\), together with genome sequence information and its annotation. The 9,633,614 bp improved high quality draft genome is arranged into 160 scaffolds of 1,366 contigs containing 10,864 protein-coding genes and 87 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of a DOE Joint Genome Institute 2010 Community Sequencing Project.

Introduction

Microvirga is one of the most recently discovered genera of *Proteobacteria* known to engage in symbiotic nitrogen fixation with legume plants, and joins a diverse set of at least twelve other lineages of *Proteobacteria* that share this ecological niche [1-4]. Several genera of legume root-nodule symbionts have a world-wide distribution and interact with many legume taxa. By contrast, symbiotic strains of *Microvirga* are currently known from only two legume genera and other two legume genera [5,6]. The limited geographic and host distribution of *Microvirga* symbionts, along with the fact that root-nodule symbiosis is not characteristic of the genus *Microvirga* as a whole [7], suggest a relatively recent evolutionary transition to legume symbiosis in this group.

M. lupini is a specialized nodule symbiont associated with the legume *Lupinus texensis*, an annual plant endemic to a relatively small geographic area in central Texas and northeastern Mexico [5]. The genus *Lupinus* has about 270 annual and perennial species concentrated in western North America and in Andean regions of South America, and a much smaller number of species in the Mediterranean region of Europe and northern Africa [8]. Basal lineages of *Lupinus* all occur in the Mediterranean and are associated with bacterial symbionts in the genus *Bradyrhizobium* [9,10]. *Bradyrhizobium* is also the main symbiont lineage for most *Lupinus* species in North and South America, although a few *Lupinus* species utilize nodule bacteria in the genus *Mesorhizobium* [10-13]. Thus, the acquisition of symbionts in the genus *Microvirga* by plants of *L. texensis* appears to be an unusual, derived condition for this legume genus.

L. texensis occurs in grassland and open shrub communities with an annual precipitation of 50 - 100 cm, on diverse soil types [14]. *L. texensis* appears to have a specialized symbiotic relationship with *M. lupini* in that existing surveys have
failed to detect nodule symbionts of any other bacterial genus associated with this plant [5]. Moreover, inoculation experiments with other North American species of Lupinus, as well as other legume genera, have so far failed to identify any plant besides L. texensis that is capable of forming an effective, nitrogen-fixing symbiosis with M. lupini [5]. M. lupini strain Lut6\(^7\) was isolated from a nodule collected from a L. texensis plant in Travis Co., Texas in 2006. Here we provide an analysis of the complete genome sequence of M. lupini strain Lut6\(^7\); one of the three described symbiotic species of Microvirga [15].

Classification and general features

M. lupini LUT6\(^7\) is a non-motile, Gram-negative rod in the order Rhizobiales of the class Alphaproteobacteria. The rod-shaped form varies in size with dimensions of 1.0 μm for width and 1.5-2.0 μm for length (Figure 1 Left and Center). It is fast growing, forming colonies within 3-4 days when grown on half strength Lupin Agar (½LA) [16], tryptone-yeast extract agar (TY) [17] or a modified yeast-mannitol agar (YMA) [18] at 28°C. Colonies on ½LA are white-opaque, slightly domed and moderately mucoid with smooth margins (Figure 1 Right).

Minimum Information about the Genome Sequence (MIGS) is provided in Table 1. Figure 2 shows the phylogenetic neighborhood of *M. lupini* LUT6\(^7\) in a 16S rRNA sequence based tree. This strain shares 100% (1,358/1,358 bases) and 98% (1,344/1,367 bases) sequence identity to the 16S rRNA of Microvirga sp. Lut5 and Microvirga lotononidis WSM3557\(^7\), respectively.

Table 1. Classification and general features of *M. lupini* LUT6\(^7\) according to the MIGS recommendations [19,20]

MIGS ID	Property	Term	Evidence code
	Domain	Bacteria	TAS [20]
	Phylum	Proteobacteria	TAS [21]
	Class	Alphaproteobacteria	TAS [22,23]
	Order	Rhizobiales	TAS [23,24]
	Family	Methyllobacteriaceae	TAS [23,25]
	Genus	Microvirga	TAS [15,26-28]
	Species	Microvirga lupini	TAS [15]
	Strain	LUT6\(^7\)	
	Gram stain	Negative	TAS [15]
	Cell shape	Rod	TAS [15]
	Motility	Non-Motile	IDA
	Sporulation	Non-sporulating	TAS [15]
	Temperature range	Mesophile	TAS [15]
	Optimum temperature	39°C	TAS [15]
	Salinity	Non-halophile	TAS [15]
MIGS-22	Oxygen requirement	Aerobic	TAS [15]
	Carbon source	Varied	TAS [15]
	Energy source	Chemoorganotroph	TAS [15]
MIGS-6	Habitat	Soil, root nodule, on host	TAS [15]
MIGS-15	Biotic relationship	Free living, symbiotic	TAS [15]
MIGS-14	Pathogenicity	Non-pathogenic	NAS
	Biosafety level	1	TAS [29]
	Isolation	Root nodule of *Lupinus texensis*	TAS [5]
MIGS-4	Geographic location	Travis Co., Texas	TAS [5]
MIGS-5	Soil collection date	03 Jan 2006	IDA
MIGS-4.1	Latitude	-97.838	IDA
MIGS-4.2	Longitude	30.459	IDA
MIGS-4.3	Depth	0-10 cm	IDA
MIGS-4.4	Altitude	270 m	IDA

Evidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [30].

References:

1. [Ida et al., 2007](#)
2. [Spencer et al., 2008](#)
3. [Jones et al., 2009](#)
4. [Patel et al., 2010](#)
Figure 1. Images of *M. lupini* LUT6^T using scanning (Left) and transmission (Center) electron microscopy and the appearance of colony morphology on solid medium (Right).

Figure 2. Phylogenetic tree showing the relationship of *M. lupini* LUT6^T (shown in bold print) to other root nodule bacteria in the order *Rhizobiales* based on aligned sequences of the 16S rRNA gene (1,320 bp internal region). All sites were informative and there were no gap-containing sites. Phylogenetic analyses were performed using MEGA, version 5 [31]. The tree was built using the Maximum-Likelihood method with the General Time Reversible model [32]. Bootstrap analysis [33] with 500 replicates was performed to assess the support of the clusters. Type strains are indicated with a superscript T. Brackets after the strain name contain a DNA database accession number and/or a GOLD ID (beginning with the prefix G) for a sequencing project registered in GOLD [34]. Published genomes are indicated with an asterisk.
Microvirga lupini

Symbiotaxonomy

M. lupini strain Lut6 7 was isolated in from a nodule collected from *Lupinus texensis* growing near Travis Co., Texas. The symbiotic characteristics of this isolate on a range of selected hosts are provided in Table 2.

Legume Species	Nodulation	N$_2$ fixation	Comment
Lupinus texensis	Nod$^+$	Fix$^+$	Highly effective
Lupinus perennis	Nod$^-$	Fix$^-$	No nodulation
Lupinus succulentus	Nod$^-$	Fix$^-$	No nodulation
Lupinus microcarpus	Nod$^-$	Fix$^-$	No nodulation
Phaseolus vulgaris	Nod$^-$	Fix$^-$	No nodulation
Macroptilium atropurpureum	Nod$^+$	Fix$^-$	No fixation
Desmodium canadense	Nod$^-$	Fix$^-$	No nodulation
Cytisus scoparius	Nod$^+$	Fix$^-$	No fixation
Mimosa pudica	Nod$^-$	Fix$^-$	No nodulation

7Data compiled [5]. Note that '+' and '-' denote presence or absence, respectively, of nodulation (Nod) or N$_2$ fixation (Fix).

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the Community Sequencing Program at the U.S. Department of Energy, Joint Genome Institute (JGI) for projects of relevance to agency missions. The genome project is deposited in the Genomes OnLine Database [34] and an improved-high-quality-draft genome sequence in IMG. Sequencing, finishing and annotation were performed by the JGI. A summary of the project information is shown in Table 3.

MIGS ID	Property	Term
MIGS-31	Finishing quality	Improved high-quality draft
MIGS-28	Libraries used	Illumina GAii shotgun and a paired end 454 libraries
MIGS-29	Sequencing platforms	Illumina GAii and 454 GS FLX Titanium technologies
MIGS-31.2	Sequencing coverage	3.5× 454 paired end, 300× Illumina
MIGS-30	Assemblers	Velvet version 1.0.13; Newbler 2.3, phrap SPS - 4.24
MIGS-32	Gene calling methods	Prodigal 1.4
	GOLD ID	Gi06478
	NCBI project ID	66529
	Database: IMG	2508501050
	Project relevance	Symbiotic N$_2$ fixation, agriculture

1162 Standards in Genomic Sciences
Growth conditions and DNA isolation

M. lupini LUT6 was cultured to mid logarithmic phase in 60 ml of TY rich media [35] on a gyra-
tory shaker at 28°C. DNA was isolated from the cells using a CTAB (Cetyl trimethyl ammonium bromide) bacterial genomic DNA isolation method [36].

Genome sequencing and assembly

The genome of *M. lupini* LUT6 was sequenced at the Joint Genome Institute (JGI) using a combi-
nation of Illumina [37] and 454 technologies [38]. An Illumina GAii shotgun library which generated 77,090,752 reads totaling 5,858.9 Mbp, and a paired end 454 library with an average insert size of 8 Kbp which generated 238,026 reads totaling 81.4 Mb of 454 data were generated for this genome [36].

All general aspects of library construction and sequencing performed at the JGI can be found at [36]. The initial draft assembly contained 1,719 contigs in 6 scaffolds. The 454 paired end data were assembled together with Newbler, version 2.3-PreRelease-6/30/2009. The Newbler consensus sequences were computationally shredded into 2 Kbp overlapping fake reads (shreds). Illumina sequencing data was assembled with VELVET, version 1.0.13 [39], and the consensus sequence computationally shredded into 1.5 Kbp overlapping fake reads (shreds). The 454 Newbler consensus shreds, the Illumina VELVET consensus shreds and the read pairs in the 454 paired end library were integrated using parallel phrap, version SPS - 4.24 (High Performance Software, LLC). The software Consed [40-42] was used in the following finishing process. Illumina data was used to correct potential base errors and increase consensus quality using the software Polisher developed at JGI [43]. Possible mis-assemblies were corrected using gapResolution (Cliff Han, unpublished) or Dupfinisher [44]. Some gaps between contigs were closed by editing in Consed. The estimated genome size is 10.3 Mb and the final assembly is based on 36.2 Mb of 454 draft data which provides an average 3.5x coverage of the genome and 3,090 Mbp of Illumina draft data which provides an average 300x coverage of the genome.

Genome annotation

Genes were identified using Prodigal [45] as part of the DOE-JGI annotation pipeline [46]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. The tRNAScanSE tool [47] was used to find tRNA genes, whereas ribosomal RNA genes were found by searches against models of the ribosomal RNA genes built from SILVA [48]. Other non-coding RNAs such as the RNA components of the protein secretion complex and the RNase P were identified by searching the genome for the corresponding Rfam profiles using INFERNAL [49]. Additional gene prediction analysis and manual functional annotation was performed within the Integrated Microbial Genomes (IMG-ER) platform [50].

Genome properties

The genome is 9,633,614 nucleotides long with 60.26% GC content (Table 4) and comprised of 160 scaffolds (Figure 3) of 1,366 contigs. From a total of 10,951 genes, 10,864 were protein encoding and 87 RNA only encoding genes. The majority of genes (63.25%) were assigned a putative function whilst the remaining genes were annotated as hypothetical. The distribution of genes into COGs functional categories is presented in Table 5.

Attribute	Value	% of Total
Genome size (bp)	9,633,614	100.00
DNA coding region (bp)	7,880,506	81.80
DNA G+C content (bp)	5,805,078	60.26
Number of scaffolds	160	
Number of contigs	1,366	
Total genes	10,951	100.00
rRNA genes	87	0.79
rRNA operons	1	0.01
Protein-coding genes	10,864	99.21
Genes with function prediction	6,927	63.25
Genes assigned to COGs	6,990	63.83
Genes assigned Pfam domains	7,343	67.05
Genes with signal peptides	768	7.01
Genes with transmembrane helices	2,006	18.32
CRISPR repeats	0	
Figure 3. Graphical map of the genome of *Microvirga lupini* LUT6\(^7\) showing the four largest scaffolds. From bottom to the top of each scaffold: Genes on forward strand (color by COG categories as denoted by the IMG platform), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, sRNAs red, other RNAs black), GC content, GC skew.

Table 5. Number of protein coding genes of *Microvirga lupini* LUT6\(^7\) associated with the general COG functional categories.

Code	Value	%age	COG Category
J	209	2.72	Translation, ribosomal structure and biogenesis
A	1	0.01	RNA processing and modification
K	571	7.43	Transcription
L	667	8.68	Replication, recombination and repair
B	10	0.13	Chromatin structure and dynamics
D	53	0.69	Cell cycle control, mitosis and meiosis
Y	104	1.35	Nuclear structure
V	463	6.02	Defense mechanisms
T	316	4.11	Cell wall/membrane biogenesis
N	69	0.9	Cell motility
Z	0	0	Cytoskeleton
W	1	0.01	Extracellular structures
U	95	1.24	Intracellular trafficking and secretion
O	249	3.24	Posttranslational modification, protein turnover, chaperones
C	401	5.22	Energy production conversion
G	602	7.83	Carbohydrate transport and metabolism
E	828	10.77	Amino acid transport metabolism
F	100	1.3	Nucleotide transport and metabolism
H	263	3.42	Coenzyme transport and metabolism
I	266	3.46	Lipid transport and metabolism
P	388	5.05	Inorganic ion transport and metabolism
Q	263	3.42	Secondary metabolite biosynthesis, transport and catabolism
R	976	12.70	General function prediction only
S	790	10.28	Function unknown
-	3,961	36.17	Not in COGS
Acknowledgement
This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. We gratefully acknowledge research funding received from Murdoch University.

References
1. Ardley JK. Symbiotic specificity and nodulation in the southern African legume clade Lontonis s. l. and description of novel rhizobial species within the Alphaproteobacterial genus Microvirga: Murdoch University, Murdoch, WA, Australia; 2012.

2. Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, Estrada-de Los Santos P, Gross E, Dos Reis FB, Sprent JI, et al. Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 2011; 24:1276-1288. PubMed http://dx.doi.org/10.1094/MPMI-06-11-0172

3. Maynaud G, Willems A, Soussou S, Vidal C, Maure L, Moulin L, Cleyet-Marel JC, Brunel B. Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Syst Appl Microbiol 2012; 35:65-72. PubMed http://dx.doi.org/10.1016/j.syapm.2011.11.002

4. Willems A. The taxonomy of rhizobia; an overview. Plant Soil 2006; 287:3-14. http://dx.doi.org/10.1007/s11104-006-9058-7

5. Andam CP, Parker MA. Novel alphaproteobacterial root nodule symbiont associated with Lupinus tenexsis. Appl Environ Microbiol 2007; 73:5687-5691. PubMed http://dx.doi.org/10.1128/AEM.01413-07

6. Yates RJ, Howieson JG, Reeve WG, Nandaseda KG, Law IJ, Bräu L, Ardley JK, Nistelberger HM, Real D, O’Hara GW. Lontonis angolensis forms nitrogen fixing, lupinoid nodules with phylogenetically unique, fast-growing, pink-pigmented bacteria, which do not nodulate L. bainesii or L. listii. Soil Biol Biochem 2007; 39:1680-1688. http://dx.doi.org/10.1016/j.soilbio.2007.01.025

7. Weon HY, Kwon SW, Son JA, Jo EH, Kim SJ, Kim YS, Kim BY, Ka JO. Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas floculans Takeda et al. 2004 as Microvirga floculans comb. nov. and emended description of the genus Microvirga. Int J Syst Evol Microbiol 2010; 60:2596-2600. PubMed http://dx.doi.org/10.1099/ijs.0.018770-0

8. Drummond CS, Eastwood RJ, Miotto ST, Hughes CE. Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Syst Biol 2012; 61:443-460. PubMed http://dx.doi.org/10.1093/sysbio/syr126

9. Jarabo-Lorenzo A, Velazquez E, Perez-Galdona R, Vega-Hernandez MC, Martinez-Molina E, Mateos PF, Vinuesa P, Martinez-Romero E, Leon-Barrios M. Restriction fragment length polymorphism analysis of 16S rDNA and low molecular weight RNA profiling of rhizobial isolates from shrubby legumes endemic to the Canary islands. Syst Appl Microbiol 2000; 23:418-425. PubMed http://dx.doi.org/10.1016/S0723-2276(00)80073-9

10. Stepkowski T, Hughes CE, Law IJ, Markiewicz L, Gurda D, Chlebicka A, Moulin L. Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Environ Microbiol 2007; 73:3254-3264. PubMed http://dx.doi.org/10.1128/AEM.02125-06

11. Barrera LL, Trujillo ME, Goodfellow M, Garcia FJ, Hernandez-Lucas I, Davila G, van Berkum P, Martinez-Romero E. Biodiversity of Bradyrhizobium nodulating Lupinus spp. Int J Syst Evol Microbiol 1997; 47:1086-1091. PubMed

12. Koppell JH, Parker MA. Phylogenetic clustering of Bradyrhizobium symbionts on legumes indigenous to North America. Microbiology 2012; 158:2050-2059. PubMed http://dx.doi.org/10.1099/mic.0.059238-0

13. Simms EL, Taylor DL, Povich J, Shefferson RP, Sachs JL, Urbina M, Tauschky Z. An empirical test of partner choice mechanisms in a wild legume-Rhizobium interaction. Proceedings of Biological Sciences 2006;273(1582):77-81.

14. Nixon ES. Edaphic responses of Lupinus tenexsis and Lupinus subcarnosus. Ecology 1964; 45:459-469. http://dx.doi.org/10.2307/1936099

15. Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dillworth MJ, Willems A, Howieson JG. Microvirga lupini
Microvirga lupini

sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 2012; 62:2579-2588. PubMed http://dx.doi.org/10.1099/ijs.0.035097-0

16. Howieson JG, Ewing MA, D’antuono MF. Selection for acid tolerance in Rhizobium meliloti. Plant Soil 1988; 105:179-188. http://dx.doi.org/10.1007/BF02376781

17. Beringer JE. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 1974; 84:188-198. PubMed http://dx.doi.org/10.1099/00221287-84-1-188

18. Terpolilli JJ. Why are the symbioses between some genotypes of Sinorhizobium and Medicago suboptimal for N, fixation? Perth: Murdoch University; 2009. 223 p.

19. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen M, Angiuoli SV, et al. Towards a richer description of our complete collection of genomes and metagenomes "Minimum Information about a Genome Sequence " (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed http://dx.doi.org/10.1038/nbt1360

20. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:5576-5579. PubMed http://dx.doi.org/10.1073/pnas.87.12.5576

21. Garrity GM, Bell JA, Lilburn T. Phylum XIV. Proteobacteria phyl. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 1

22. Garrity GM, Bell JA, Lilburn T. Class I. Alphaproteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part C, Springer, New York, 2005, p. 1.

23. Validation List No. 107. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2006; 56:1-6. PubMed http://dx.doi.org/10.1099/ijs.0.064188-0

24. Kuykendall LD. Order VI. Rhizobiales ord. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology. Second ed: New York: Springer - Verlag; 2005. p 324.

25. Garrity GM, Bell JA, Lilburn T. Family IX. Methylobacteriaceae fam. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part C, Springer, New York, 2005, p. 567.

26. Kango S, Patel BKC. Microvirga subterrarnea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 2003; 53:401-406. PubMed http://dx.doi.org/10.1099/ijse.0.02348-0

27. Zhang J, Song F, Xin YH, Zhang J, Fang C. Microvirga guangxiensis sp. nov., a novel alphaproteobacterium from soil, and emended description of the genus Microvirga. Int J Syst Evol Microbiol 2009; 59:1997-2001. PubMed http://dx.doi.org/10.1099/ijse.0.007997-0

28. Weon H-Y, Kwon S-W, Son J-A, Jo E-H, Kim S-J, Kim Y-S, Kim B-Y, Ka J-O. Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga. Int J Syst Evol Microbiol 2010; 60:2596-2600. PubMed http://dx.doi.org/10.1099/ijse.0.018770-0

29. Gubler M, Hennecke H, Fix A, B and C genes are essential for symbiotic and free-living, microaerobic nitrogen fixation. FEMS Lett 1986; 200:186-192. http://dx.doi.org/10.1016/0014-5793(86)80536-1

30. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25-29. PubMed http://dx.doi.org/10.1038/75556

31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011; 28:2731-2739. PubMed http://dx.doi.org/10.1093/molbev/msr121

32. Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press; 2000.

33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783-791. http://dx.doi.org/10.2307/2408678

34. Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated
metadata. Nucleic Acids Res 2008; 36:D475-D479. PubMed
http://dx.doi.org/10.1093/nar/gkm884

35. Reeve WG, Tiwari RP, Worsley PS, Dilworth MJ, Glenn AR, Howieson JG. Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology 1999; 145:1307-1316. PubMed
http://dx.doi.org/10.1099/13500872-145-6-1307

36. DOE Joint Genome Institute user homepage. http://my.jgi.doe.gov/general/index.html

37. Bennett S. Solexa Ltd. Pharmacogenomics 2004; 5:433-438. PubMed
http://dx.doi.org/10.1517/14622416.5.4.433

38. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437:376-380. PubMed

39. Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Current Protocols in Bioinformatics 2010;Chapter 11:Unit 11 5.

40. Ewing B, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998; 8:186-194. PubMed
http://dx.doi.org/10.1101/gr.8.3.175

41. Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998; 8:175-185. PubMed
http://dx.doi.org/10.1101/gr.8.3.175

42. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res 1998; 8:195-202. PubMed
http://dx.doi.org/10.1101/gr.8.3.195

43. LaButti K, Foster B, Lowry S, Trong S, Goltsman E, Ladiges A. POLISHER: a Tool for Using Ultra Short Read in Microbial Genome Finishing http://publications.lbl.gov/fedora/repository/ir%3A150163. Berkeley Lab Publications 2008.

44. Han C, Chain P. Finishing repeat regions automatically with Dupfinisher. In: Valafar HRAH, editor. Proceeding of the 2006 international conference on bioinformatics & computational biology: CSREA Press; 2006. p 141-146.

45. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ, Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119. PubMed http://dx.doi.org/10.1186/1471-2105-11-119

46. Mavromatis K, Ivanova NN, Chen IM, Szeto E, Markowitz VM, Kyrpides NC. The DOE-JGI Standard operating procedure for the annotations of microbial genomes. Stand Genomic Sci 2009; 1:63-67. PubMed
http://dx.doi.org/10.4056/sigs.632

47. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955-964. PubMed
http://dx.doi.org/10.1093/nar/25.5.0955

48. Pruesse E, Quast C, Knittel K. Fuchs BdM, Ludwig W, Peples J, Glöckner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007; 35:7188-7196. PubMed
http://dx.doi.org/10.1093/nar/gkm864

49. INFERNAL. http://infernal.janelia.org

50. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009; 25:2271-2278. PubMed
http://dx.doi.org/10.1093/bioinformatics/btp393

http://standardsingenomics.org 1167