A dispersive regularization for the modified Camassa-Holm equation

Yu Gao∗1,2,3, Lei Li†2, and Jian-Guo Liu‡2,3

1Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, P.R. China.
2Department of Mathematics, Duke University, Durham, NC 27708, USA.
3Department of Physics, Duke University, Durham, NC 27708, USA.

Abstract

In this paper, we present a dispersive regularization for the modified Camassa-Holm equation (mCH) in one dimension, which is achieved through a double mollification for the system of ODEs describing trajectories of $N$-peakon solutions. From this regularized system of ODEs, we obtain approximated $N$-peakon solutions with no collision between peakons. Then, a global $N$-peakon solution for the mCH equation is obtained, whose trajectories are global Lipschitz functions and do not cross each other. When $N = 2$, the limiting solution is a sticky peakon weak solution. By a limiting process, we also derive a system of ODEs to describe $N$-peakon solutions. At last, using the $N$-peakon solutions and through a mean field limit process, we obtain global weak solutions for general initial data $m_0$ in Radon measure space.

1 Introduction

This work is devoted to investigate the $N$-peakon solutions to the following modified Camassa-Holm (mCH) equation with cubic nonlinearity:

\[ m_t + [(u^2 - u_x^2)m]_x = 0, \quad m = u - u_{xx}, \quad x \in \mathbb{R}, \quad t > 0, \quad (1.1) \]

subject to the initial condition

\[ m(x, 0) = m_0(x), \quad x \in \mathbb{R}. \quad (1.2) \]

From the fundamental solution $G(x) = \frac{1}{4}e^{-|x|}$ to the Helmholtz operator $1 - \partial_{xx}$, function $u$ can be written as a convolution of $m$ with the kernel $G$:

\[ u(x, t) = \int_\mathbb{R} G(x - y)m(y)dy. \]

In the mCH equation, the shape of function $G$ is referred to as a peakon at $x = 0$ and the mCH equation has weak solutions (see Definition 2.2) with $N$ peakons, which are of the form [8, 9]:

\[ u^N(x, t) = \sum_{i=1}^{N} p_i G(x - x_i(t)), \quad m^N(x, t) = \sum_{i=1}^{N} p_i \delta(x - x_i(t)), \quad (1.3) \]
As described below, if initial datum is of $N$-peakon form, then the regularized solution $u^{N,\epsilon}$ is also of $N$-peakon form, and so is the limiting $N$-peakon solution.

In general, solutions \{x_i(t)\}_{i=1}^N to (1.4) will collide with each other in finite time (see Remark 2.3). By the standard ODE theories, we know that (1.4) has global solutions \{x_i(0)\}_{i=1}^N subject to any initial data \{x_i(0)\}_{i=1}^N. However, $u^N(x,t)$ constructed by (1.3) with global solutions \{x_i(t)\}_{i=1}^N to (1.4) is not a weak solution to the mCH equation after the first collision time (see Remark 2.4). There are some nature questions:

(i) What will be a weak solution to the mCH equation after collisions? Is it unique? If not unique, what is the selection principle?

(ii) If there is a weak solution to the mCH equation after collisions, is it still in the form of $N$-peakon solutions (peakons can be coincide)?

(iii) If the weak solution is still a $N$-peakon solution after collision, how do peakons evolve?

In other words, do they stick together, cross each other, or scatter?

Paper [8] showed global existence and nonuniqueness of weak solutions when initial data $m_0 \in \mathcal{M}(\mathbb{R})$ (Radon measure space), which partially answered question (i). After collision, all the situations mentioned in the above question (iii) can happen (see Remark 2.3).

In this paper, we will study these questions through a dispersive regularization for the following reasons.

(i) This dispersive regularization could be a candidate for the selection principle.

(ii) As described below, if initial datum is of $N$-peakon form, then the regularized solution $u^{N,\epsilon}$ is also of $N$-peakon form, and so is the limiting $N$-peakon solution.

The main purpose of this paper is to study the behavior of $\epsilon \to 0$ limit for the dispersive regularization. First, we introduce the dispersive regularization for the mCH equation.

To illustrate the dispersive regularization method clearly, we start with one peakon solution $pG(x - x(t))$ (solitary wave solution). We know that $pG(x - x(t))$ is a weak solution if and only if the traveling speed is $\frac{d}{dt}x(t) = \frac{1}{6}p^2$ [8, Proposition 4.3]. Because characteristics equation for (1.1) is given by

\[
\frac{d}{dt}x(t) = u^2(x(t),t) + u_x^2(x(t),t), \tag{1.5}
\]

for solution $pG(x - x(t))$ we obtain

\[
\frac{d}{dt}x(t) = p^2G^2(0) - p^2(G_x^2)(0) = \frac{1}{6}p^2. \tag{1.6}
\]

(1.6) implies that to obtain solitary wave solutions, the correct definition of $G_x^2$ at 0 is given by

\[
(G_x^2)(0) = G^2(0) - \frac{1}{6} = \frac{1}{12}. \tag{1.7}
\]

However, $G_x^2$ is a BV function which has a removable discontinuity at 0 and

\[
(G_x^2)(0-) = (G_x^2)(0+) = \frac{1}{4}, \tag{1.8}
\]

which is different with (1.7). To understand the discrepancy between (1.7) and (1.8), our strategy is to use the dispersive regularization and the limit of the regularization. Mollify $G(x)$ as

\[ G^\epsilon(x) := (\rho_\epsilon * G)(x), \]

\[ G^\epsilon(x) := (\rho_\epsilon * G)(x), \]
where $\rho_\epsilon$ is a mollifier that is even (see Definition 2.1). Then, we can obtain (1.7) in the limiting process (Lemma 2.1):

$$\lim_{\epsilon \to 0} (\rho_\epsilon \ast (G_x^2)) (0) = \frac{1}{12}. \quad (1.9)$$

The above limiting process is independent of the mollifier $\rho_\epsilon$.

Naturally, we generalize this dispersive regularization method to $N$-peakon solutions $u^N(x, t) = \sum_{i=1}^{N} p_i G(x - x_i(t))$. From the characteristic equation (1.5), we formally obtain the system of ODEs for $x_i(t)$

$$\frac{dx_i(t)}{dt} = \left[ u^N(x_i(t), t) \right]^2 - \left[ u_x^N(x_i(t), t) \right]^2, \quad i = 1, \ldots, N. \quad (1.10)$$

$$[u^N(x, t)]^2 = \left( \sum_{j=1}^{N} p_j G(x - x_j(t)) \right)^2$$

is a BV function and it has a discontinuity at $x_i(t)$. By using similar regularization method in (1.9), we regularize the vector field in (1.10). For $\{x_k\}_{k=1}^{N}$ denote

$$u^{N, \epsilon}(x; \{x_k\}) := \sum_{i=1}^{N} p_i G^\epsilon(x - x_i) \quad \text{and} \quad U^{N, \epsilon}_i(x; \{x_k\}) := [u^{N, \epsilon}]^2 - [u_x^{N, \epsilon}]^2. \quad (1.11)$$

The dispersive regularization for N peakons is given by

$$\frac{d}{dt} x_i^\epsilon(t) = U_i^{N, \epsilon}(x_i^\epsilon(t); \{x_k^\epsilon(t)\}) := (\rho_\epsilon \ast U_i^N)(x_i^\epsilon(t); \{x_k^\epsilon(t)\}), \quad i = 1, \ldots, N. \quad (1.12)$$

The above regularization method is subtle. We emphasize that if we use $U_i^N$ given by (1.11) as a vector field (which is already global Lipschitz) instead of $U^{N, \epsilon}$, then comparing with (1.9) we have

$$\lim_{\epsilon \to 0} (G_x^2)^2(0) = 0.$$

In this case, the traveling speed of the soliton (one peakon) is given by

$$\frac{d}{dt} x^\epsilon(t) = p^2 G^2(0) - \rho^2 (G_x^2)(0) = \frac{1}{4} p^2,$$

which is different with the correct speed $\frac{1}{2} p^2$ for one peakon solution.

By solutions to (1.12), we construct approximate $N$-peakon solutions to (1.1) as:

$$u^{N, \epsilon}(x, t) := \sum_{i=1}^{N} p_i G^\epsilon(x - x_i^\epsilon(t)).$$

Let $\epsilon \to 0$ in $u^{N, \epsilon}(x, t)$ and we can obtain a $N$-peakon solution

$$u^N(x, t) = \sum_{i=1}^{N} p_i G(x - x_i(t)), \quad (1.13)$$

to the mCH equation, where $x_i(t)$ are Lipschitz functions (see Theorem 2.1).

If we fix $N$ and let $\epsilon$ go to 0 in the regularized system of ODEs (1.12), we can obtain a limiting ($\epsilon \to 0$ in the sense described in Proposition 2.2) system of ODEs to describe $N$-peakon solutions.

$$\frac{d}{dt} x_i(t) = \left( \sum_{j=1}^{N} p_j G(x_i(t) - x_j(t)) \right)^2 - \left( \sum_{j \in N_i(t)} p_j G_x(x_i(t) - x_j(t)) \right)^2 - \frac{1}{12} \left( \sum_{k \in N_i(t)} p_k \right)^2. \quad (1.14)$$

The vector field of the above system is not Lipschitz. Solutions for this equation are not unique, which implies peakon solutions to (1.1) are not unique. The nonuniqueness of peakon solutions was obtained in [8]. When $x_1(t) < x_2(t) < \cdots < x_N(t)$, the system of ODEs (1.14) is equivalent to (1.4).
We also prove that trajectories $x^i_t(t)$ given by (1.12) never collide with each other (see Theorem 3.1), which means if $x^1_t(0) < x^2_t(0) < \cdots < x^N_t(0)$, then $x^1_t(t) < x^2_t(t) < \cdots < x^N_t(t)$ for any $t > 0$. For the limiting $N$-peakon solutions (1.13), we have $x^1_t(t) \leq x^2_t(t) \leq \cdots \leq x^N_t(t)$. Notice that the sticky $N$-peakon solutions obtained in [8] also have this property and in the sticky $N$-peakon solutions, $(x^i(t)_{i=1}^N$ stick together whenever they collide. When $N = 2$, we prove that peakon solutions given by the dispersive regularization are exactly the sticky peakon solutions (see Theorem 3.2). However, the situation when $N \geq 3$ can be more complicated. Some of the peakon solutions given by the dispersive regularization are sticky peakon solutions (see Figure 1) and some are not (see Figure 2).

For general initial data $m_0 \in M(\mathbb{R})$, we use a mean field limit method to prove global existence of weak solutions to (1.1) (see Section 4).

There are also some other interesting properties about the mCH equation, which we list below.

The mCH equation was introduced as a new integrable system by several different researchers [4, 6, 13]. In a physical context, it was derived from the two-dimensional Euler equation by using a singular perturbation method in which the variable $u$ represents the velocity of fluid [14], and Lax-pair was also given in [14]. The mCH equation has a bi-Hamiltonian structure [9, 13] with Hamiltonian functionals

\[
H_0 = \int_{\mathbb{R}} m u dx, \quad H_1 = \frac{1}{4} \int_{\mathbb{R}} \left( u^4 + 2u^2 u_x^2 - \frac{1}{3} u_x^4 \right) dx.
\]

(1.15) can be written in the bi-Hamiltonian form [9, 13],

\[
m_t = -((u^2 - u_x^2)m)_x = J \frac{\delta H_0}{\delta m} = K \frac{\delta H_1}{\delta m},
\]

where

\[
J = -\partial_x \left( m \partial_x^{-1} (m \partial_x) \right), \quad K = \partial_x^3 - \partial_x
\]

are compatible Hamiltonian operators. Here $H_0$ and $H_1$ are conserved quantities for smooth solutions. $H_0$ is also a conserved quantity for $W^{2,1}(\mathbb{R})$ weak solutions [8]. $N$-peakon solutions are not in the solution class $W^{2,1}(\mathbb{R})$ and $H_0$, $H_1$ are not conserved for $N$-peakon solutions in the case $N \geq 2$. This is different with the CH equation:

\[
m_t + (m u)_x + m u_x = 0, \quad m = u - u_{xx}, \quad x \in \mathbb{R}, \quad t > 0,
\]

which also has $N$-peakon solutions of the form

\[
u^N(x,t) = \sum_{i=1}^N p_i(t) e^{-|x-x_i(t)|}.
\]

The amplitudes $p_i(t)$ evolves with time which is different with the $N$-peakon solutions to mCH equation (1.1) where $p_i$ are constants. $p_i(t)$ and $x_i(t)$ satisfy the following Hamiltonian system of ODEs:

\[
\begin{cases}
\frac{d}{dt} x_i(t) = \sum_{j=1}^N p_j(t) e^{-|x_i(t) - x_j(t)|}, & i = 1, \ldots, N, \\
\frac{d}{dt} p_i(t) = \sum_{j=1}^N p_i(t) p_j(t) \text{sgn}(x_i(t) - x_j(t)) e^{-|x_i(t) - x_j(t)|}, & i = 1, \ldots, N,
\end{cases}
\]

(1.16)

and the Hamiltonian function is given by

\[
\mathcal{H}_0(t) = \frac{1}{2} \sum_{i,j=1}^N p_i(t) p_j(t) e^{-|x_i(t) - x_j(t)|},
\]

which is a conserved quantity for $N$-peakon solutions and the corresponding functional $H_0$ given by (1.15) is conserved for smooth solutions. When $p_i(0) > 0$, there is no collision
between $x_i(t)$ [1, 3]. In comparison, system (1.4) is a nonautonomous system as described below. Let $\tilde{x}_i(t) := x_i(t) - \frac{1}{2}p_i^2 t$. Denote

$$X(t) := (\tilde{x}_1(t), \tilde{x}_2(t), \ldots, \tilde{x}_N(t))^T,$$

and

$$\mathcal{H}(X(t) := \sum_{1 \leq i < j \leq N} p_i p_j e^{x_i(t) - x_j(t)} = \sum_{1 \leq i < j \leq N} p_i p_j e^{\frac{1}{2}(p_i^2 - p_j^2)t + \tilde{x}_i(t) - \tilde{x}_j(t)}.$$ 

Then, (1.4) can be rewritten as a Hamiltonian system:

$$\frac{dX}{dt} = A \frac{\delta\mathcal{H}}{\delta X}, \quad (1.17)$$

where

$$A = (a_{ij})_{N \times N}, \quad a_{ij} = \begin{cases} \frac{1}{2}, & i < j; \\ 0, & i = j; \\ \frac{1}{2}, & i > j. \end{cases}$$

and

$$\frac{\delta\mathcal{H}}{\delta X} := \left( \frac{\partial \mathcal{H}}{\partial \tilde{x}_1}, \ldots, \frac{\partial \mathcal{H}}{\partial \tilde{x}_N} \right). \quad (1.18)$$

Notice that $\mathcal{H}$ depends on $t$ and it is not a conservative quantity.

For more results about local well-posedness and blow up behavior of the strong solutions to (1.1) one can refer to [2, 5, 9, 10, 12]. In [15], Zhang used the method of dissipative approximation to prove the existence and uniqueness of global entropy weak solutions $u$ in $W^{2,1}(\mathbb{R})$ for the dispersionless mCH equation (1.1).

The rest of this article is organized as follows. In Section 2, we introduce the dispersive regularization in detail and prove global existence of $N$-peakon solutions. By a limiting process, we obtain a system of ODEs to describe $N$-peakon solutions. In Section 3, we prove that trajectories of $N$-peakon solutions given by dispersive regularization will never cross each other. When $N = 2$, the limiting peakon solutions are exactly the sticky peakon solutions. When $N = 3$, we present two figures to show two different situations. At last, we use a mean field limit method to prove global existence of weak solutions to (1.1) for general initial data $m_0 \in \mathcal{M}(\mathbb{R})$.

### 2 Dispersive regularization and $N$-peakon solutions

In this section, we introduce the dispersive regularization in detail and use the regularized ODE system to give approximate solutions. Then, by some compactness arguments we prove global existence of $N$-peakon solutions.

#### 2.1 Dispersive regularization and weak consistency

First, let $\mathcal{S}(\mathbb{R})$ be the Schwartz class of smooth functions to define mollifiers $f \in \mathcal{S}(\mathbb{R})$ if and only if $f \in C^\infty(\mathbb{R})$ and for all positive integers $m$ and $n$

$$\sup_{x \in \mathbb{R}} |x^m f^{(n)}(x)| < \infty.$$ 

**Definition 2.1.** (i). Define the mollifier $0 \leq \rho \in \mathcal{S}(\mathbb{R})$ satisfying

$$\int_{\mathbb{R}} \rho(x) dx = 1, \quad \rho(x) = \rho(|x|) \quad \text{for} \quad x \in \mathbb{R}.$$ 

(ii). For each $\epsilon > 0$, set

$$\rho_\epsilon(x) := \frac{1}{\epsilon} \rho\left(\frac{x}{\epsilon}\right).$$
Fix an integer $N > 0$. Give an initial data
\[
m^N(x) = \sum_{i=1}^N p_i \delta(x - c_i), \quad c_1 < c_2 < \cdots < c_N \quad \text{and} \quad \sum_{i=1}^N |p_i| \leq M_0, \quad (2.1)
\]
for some constants $p_i$, $c_i$ $(1 \leq i \leq N)$ and $M_0$.

As stated in Introduction, we set $G^*(x) = (G * \rho_\varepsilon)(x)$. For any $N$ particles $\{x_k\}_{k=1}^N \subset \mathbb{R}$, define $(p_k$ is the same as in (2.1))
\[
\begin{align*}
\begin{array}{l}
\quad u^{N,\varepsilon}(x;\{x_k\}_{k=1}^N) := \sum_{k=1}^N p_k G^*(x - x_k),
U^{N,\varepsilon}(x;\{x_k\}_{k=1}^N) := \left[(u^{N,\varepsilon})^2 - (\partial_x u^{N,\varepsilon})^2\right] (x;\{x_k\}_{k=1}^N),
\quad \text{and} \\
\end{array}
\end{align*}
\]

The system of ODEs for dispersive regularization is given by
\[
\frac{dx^i(t)}{dt} = U^{N,\varepsilon}(x^i(t);\{x_k\}_{k=1}^N), \quad i = 1, \cdots, N, \quad (2.2)
\]
with initial data $x^i(0) = c_i$ given in (2.1). This system is equivalent to (1.12) mentioned in Introduction. Because $U^{N,\varepsilon}$ is Lipschitz and bounded, existence and uniqueness of a global solution $\{x^i(t)\}_{i=1}^N$ to this system of ODEs follow from standard ODE theories. By using the solution $\{x^i(t)\}_{i=1}^N$, we set
\[
u^{N,\varepsilon}(x;\{x_k\}_{k=1}^N) := u^{N,\varepsilon}(x;\{x_k\}_{k=1}^N) \quad (2.3)
\]
and
\[
m^{N,\varepsilon}(x,t) := \sum_{i=1}^N p_i \delta(x - x^i(t)), \quad m^{N,\varepsilon}(x,t) := \sum_{i=1}^N p_i \delta(x - x^i(t)). \quad (2.4)
\]

Due to $(1 - \partial_x G^*) \rho_\varepsilon = \rho_\varepsilon$, we have
\[
m^{N,\varepsilon}(x,t) = (\rho_\varepsilon * m^N)(x,t) \quad \text{and} \quad (1 - \partial_x u^{N,\varepsilon})(x,t) = m^{N,\varepsilon}(x,t). \quad (2.5)
\]

Set
\[
U^N(x,t) := U^{N,\varepsilon}(x;\{x_k\}_{k=1}^N), \quad U^{N,\varepsilon}(x,t) := U^{N,\varepsilon}(x;\{x_k\}_{k=1}^N). \quad (2.6)
\]

Therefore, $U^{N,\varepsilon}(x,t) = (\rho_\varepsilon * U^N)(x,t)$ and (2.2) (or (1.12)) can be rewritten as
\[
\frac{dx^i(t)}{dt} = U^{N,\varepsilon}(x^i(t),t), \quad i = 1, \cdots, N. \quad (2.7)
\]

Next, we show that $u^{N,\varepsilon}$ defined by (2.3) is weak consistent with the mCH equation (1.1). Let us give the definition of weak solutions first. Rewrite (1.1) as an equation of $u$,
\[
(1 - \partial_x x) u_t + \left[(u^2 - u^2_x)(u - u_{xx})\right]_x = (1 - \partial_x x) u_t + (u^3 + uu^2_x)_x - \frac{1}{3}(u^3)_{xxx} + \frac{1}{3}(u^3_x)_{xx} = 0.
\]

For test function $\phi \in C^\infty_c(\mathbb{R} \times [0,T])$ $(T > 0)$, we denote the functional
\[
L(u,\phi) := \int_0^T \int_\mathbb{R} u(x,t)[\phi_t(x,t) - \phi_{xxx}(x,t)]dxdt \\
- \frac{1}{3} \int_0^T \int_\mathbb{R} u^3(x,t) \phi_{xxx}(x,t) dxdt - \frac{1}{3} \int_0^T \int_\mathbb{R} u^3(x,t) \phi_{xxx}(x,t) dxdt \\
+ \int_0^T \int_\mathbb{R} (u^3 + uu^2_x) \phi_x(x,t) dxdt. \quad (2.8)
\]

Then, the definition of weak solutions in terms of $u$ is given as follows.
**Definition 2.2.** For $m_0 \in \mathcal{M}(\mathbb{R})$, a function
\[ u \in C([0,T]; H^1(\mathbb{R})) \cap L^\infty(0,T; W^{1,\infty}(\mathbb{R})) \]
is said to be a weak solution of the mCH equation if
\[ \mathcal{L}(u, \phi) = - \int_{\mathbb{R}} \phi(x,0) dm_0 \]
holds for all $\phi \in C_c^\infty(\mathbb{R} \times [0,T])$. If $T = +\infty$, we call $u$ as a global weak solution of the mCH equation.

For simplicity in notations, we denote
\[ (m^N, \phi_t) + (U^{N,\epsilon}m^N, \phi_x) \]
With the definitions (2.4)-(2.7), for any $\phi \in C_c^\infty(\mathbb{R} \times [0,T])$, we have
\[ \langle m^N, \phi_t \rangle + \langle U^{N,\epsilon}m^N, \phi_x \rangle = \int_0^T \int_{\mathbb{R}} \sum_{i=1}^N p_i \delta(x - x^i(t)) \phi_t(x,t) dx dt \]
\[ + \int_0^T \int_{\mathbb{R}} \sum_{i=1}^N p_i \delta(x - x^i(t)) U^{N,\epsilon}(x,t) \phi_x(x,t) dx dt \]
\[ = \int_0^T \sum_{i=1}^N p_i [\phi_t(x^i(t),t) + U^{N,\epsilon}(x^i(t),t) \phi_x(x^i(t),t)] dt \]
\[ = \int_0^T \sum_{i=1}^N p_i \frac{d}{dt} \phi(x^i(t),t) dt = - \sum_{i=1}^N \phi(x_i(0),0) p_i = - \int_{\mathbb{R}} \phi(x,0) dm_0^N. \tag{2.9} \]

On the other hand, combining the definition (2.5) and (2.8) gives
\[ \mathcal{L}(u^{N,\epsilon}, \phi) = \int_0^T \int_{\mathbb{R}} u^{N,\epsilon}[\phi_t - \phi_{txx}] dx dt - \frac{1}{3} \int_0^T \int_{\mathbb{R}} (\partial_x u^{N,\epsilon})^3 \phi_{xxx} dx dt \]
\[ - \frac{1}{3} \int_0^T \int_{\mathbb{R}} (u^{N,\epsilon})^3 \phi_{xxx} dx dt + \int_0^T \int_{\mathbb{R}} (u^{N,\epsilon})^3 + u^{\epsilon}(u^{N,\epsilon})^2 \phi_x dx dt \]
\[ = \langle \phi_t(1 - \partial_x^3)u^{N,\epsilon} \rangle + \langle [u^{N,\epsilon}]^2 - (\partial_x u^{N,\epsilon})^2 \rangle (1 - \partial_x^2)u^{N,\epsilon}, \phi \rangle 
= \langle m^{N,\epsilon}, \phi_t \rangle + \langle U^{N,\epsilon}m^{N,\epsilon}, \phi_x \rangle. \]

Set
\[ E_{N,\epsilon} := \mathcal{L}(u^{N,\epsilon}, \phi) + \int_{\mathbb{R}} \phi(x,0) dm_0^N \]
\[ = \langle m^{N,\epsilon} - m_c^N, \phi_t \rangle + \langle U^{N,\epsilon}m^{N,\epsilon} - U^{N,\epsilon}m_c^N, \phi_x \rangle. \tag{2.10} \]

We have the following consistency result.

**Proposition 2.1.** We have the following estimate for $E_{N,\epsilon}$ defined by (2.10):
\[ |E_{N,\epsilon}| \leq C\epsilon, \tag{2.11} \]
where the constant $C$ is independent of $N,\epsilon$.

**Proof.** By changing of variable and the definition of Schwartz function, we can obtain
\[ \int_{\mathbb{R}} |x| \rho(x) dx = \int_{\mathbb{R}} |x| \frac{1}{\epsilon} \rho\left( \frac{x}{\epsilon} \right) dx = \epsilon \int_{\mathbb{R}} |x| \rho(x) dx \leq C_\rho \epsilon, \tag{2.12} \]
Due to \( \sum_{i=1}^{N} |p_i| \leq M_0 \) and (2.12), the first term on the right hand side of (2.10) can be estimated as

\[
|m^{N,\epsilon} - m^{N,\epsilon}_0| = \left| \int_0^T \int_{\mathbb{R}} p_i \rho_e(x - x_i^\epsilon(t))[\phi_t(x(t)) - \phi_t(x_i^\epsilon(t), t)] dx dt \right|
\]

\[
\leq \sum_{i=1}^{N} |p_i| \int_0^T \int_{\mathbb{R}} \rho_e(x - x_i^\epsilon(t))|\phi_{tx}|_{L^\infty}|x - x_i^\epsilon(t)| dx dt
\]

\[
\leq C_\rho M_0|\phi_{tx}|_{L^\infty} T\epsilon.
\]

For the second term, by definitions (2.4) and (2.6) we can obtain

\[
\langle U^N m^{N,\epsilon} - U^N m^N, \phi_x \rangle = \sum_{i=1}^{N} p_i \int_0^T \int_{\mathbb{R}} U^N(x) \rho_e(x - x_i^\epsilon(t)) \phi_x(x, t) dx dt - \sum_{i=1}^{N} p_i \int_0^T U^N(x_i^\epsilon(t)) \phi_x(x_i^\epsilon(t), t) dt
\]

\[
= \sum_{i=1}^{N} p_i \int_0^T \int_{\mathbb{R}} U^N(x) \rho_e(x - x_i^\epsilon(t)) \phi_x(x, t) dx dt
\]

\[
- \sum_{i=1}^{N} p_i \int_0^T \int_{\mathbb{R}} U^N(x) \rho_e(x_i^\epsilon(t) - x_i^\epsilon(t)) \phi_x(x_i^\epsilon(t), t) dx dt
\]

\[
= \sum_{i=1}^{N} p_i \int_0^T \int_{\mathbb{R}} U^N(x) \rho_e(x - x_i^\epsilon(t)) |\phi_x(x, t) - \phi_x(x_i^\epsilon(t), t)| dx dt.
\]

Due to \( \|U^N\|_{L^\infty} \leq \frac{1}{2} M_0^2 \), we have

\[
\langle U^N m^{N,\epsilon} - U^N m^N, \phi_x \rangle \leq \frac{1}{2} C_\rho M_0^2 |\phi_{xx}|_{L^\infty} T\epsilon.
\]

This ends the proof.

**2.2 Convergence theorem**

In this subsection, we prove global existence of \( N \)-peakon solutions for the mCH equation.

**Theorem 2.1.** Let \( m^N_0(x) \) be given by (2.1) and \( \{x_i(t)\}_{i=1}^{N} \) is defined by (2.7) subject to initial data \( x_i^0(0) = c_i \), \( u^{N,\epsilon}(x, t) \) is defined by (2.3). Then, the following holds.

(i). There exist \( \{x_i(t)\}_{i=1}^{N} \subset C([0, +\infty)) \), such that \( x_i^\epsilon \to x_i \) in \( C([0, T]) \) as \( \epsilon \to 0 \) (in subsequence sense) for any \( T > 0 \). Moreover, \( x_i(t) \) is global Lipschitz and for a.e. \( t > 0 \), we have

\[
\left| \frac{dx_i(t)}{dt} \right| \leq \frac{1}{2} M_0^2 \text{ for } i = 1, \ldots, N.
\]

(ii). Set \( u^N(x, t) := \sum_{i=1}^{N} p_i G(x - x_i(t)) \), and we have (in subsequence sense)

\[
u^{N,\epsilon} \to u^N, \quad \partial_x u^{N,\epsilon} \to u^N_x \text{ in } L^1_{loc}(\mathbb{R} \times [0, +\infty)) \text{ as } \epsilon \to 0.
\]

(iii). \( u^N(x, t) \) is a \( N \)-peakon solution to (1.1).

**Proof.** (i). Due to \( G^\epsilon = G \ast \rho_\epsilon \), we have

\[
\|G^\epsilon\|_{L^\infty} \leq \frac{1}{2} \text{ and } \|G_x^\epsilon\|_{L^\infty} \leq \frac{1}{2}.
\]
Hence,

\[ ||u^{N,\epsilon}||_{L^\infty} \leq \frac{1}{2} M_0 \quad \text{and} \quad ||u_x^{N,\epsilon}||_{L^\infty} \leq \frac{1}{2} M_0, \tag{2.15} \]

where \( M_0 \) is given in (2.1). By Definition (2.6) and (2.15), we have

\[ |U^{N,\epsilon}(x,t)| \leq ||U^N||_{L^\infty} \int_{\mathbb{R}} \rho_c(x) dx \leq ||u^{N,\epsilon}||_{L^\infty}^2 + ||\partial_x u^{N,\epsilon}||_{L^\infty}^2 \]

\[ \leq \frac{1}{4} M_0^2 + \frac{1}{4} M_0^2 = \frac{1}{2} M_0^2. \tag{2.16} \]

Combining (2.7) and (2.16), we have

\[ |x^*_i(t) - x^*_i(s)| = \left| \int_s^t \frac{d}{d\tau} x^*_i(\tau) d\tau \right| = \left| \int_s^t U^{N,\epsilon}(x^*_i(\tau), \tau) d\tau \right| \]

\[ \leq \int_s^t |U^{N,\epsilon}(x^*_i(\tau), \tau)| d\tau \leq \frac{1}{2} M_0^2 |t - s|. \tag{2.17} \]

For each \( 1 \leq i \leq N \), by (2.16) and (2.17), we know \( \{x^*_i(t)\}_{i>0} \) is uniformly (in \( \epsilon \)) bounded and equi-continuous in \( [0,T] \). For any fixed time \( T > 0 \), Arzelà-Ascoli Theorem implies that there exists a function \( x_i \in C([0,T]) \) and a subsequence \( \{x^*_i(\epsilon)\}_{\epsilon>0} \subset \{x^*_i\}_{i>0} \), such that \( x^*_i(\epsilon) \to x_i \) in \( C([0,T]) \) as \( \epsilon \to 0 \). Then, use a diagonalization argument with respect to \( T = 1, 2, \ldots \) and we obtain a subsequence (still denoted as \( x^*_i \)) of \( x^*_i \) such that \( x^*_i \to x_i \) in \( C([0,T]) \) as \( \epsilon \to 0 \) for any \( T > 0 \). Moreover, by (2.17), we have

\[ |x_i(t) - x_i(s)| \leq \frac{1}{2} M_0^2 |t - s|. \]

Hence, \( x_i(t) \) is a global Lipschitz function and (2.13) holds.

(ii). Because \( u^{N,\epsilon}(x,t) \to u^N(x,t) \) and \( \partial_x u^{N,\epsilon}(x,t) \to u_x^N(x,t) \) as \( \epsilon \to 0 \) for a.e. \( (x,t) \in \mathbb{R} \times [0,\infty) \) (for \( (x,t) \neq (x_i(t),t) \)), then (2.14) follows by Lebesgue dominated convergence Theorem.

(iii). Next, we prove that \( u^N \) is a weak solution to the mCH equation.

Obviously, we have

\[ u^N \in C([0,\infty); H^1(\mathbb{R})) \cap L^\infty(0,\infty; W^{1,\infty}(\mathbb{R})). \]

Similarly as (2.9), for any test function \( \phi \in C_c^\infty(\mathbb{R} \times [0,\infty)) \) we have

\[ \langle m^N_x, \phi_t \rangle + \langle U^{N,\epsilon} m^N, \phi_x \rangle = -\int_{\mathbb{R}} \phi(x,0) dm^N_0, \]

where \( (m^N_x, m^{N,\epsilon}) \) is defined by (2.4) and \( (U^N_x, U^{N,\epsilon}) \) is defined by (2.6). By the consistency result (2.11), we have

\[ \mathcal{L}(u^{N,\epsilon}, \phi) + \int_{\mathbb{R}} \phi(x,0) dm^N_0 \to 0 \quad \text{as} \quad \epsilon \to 0, \tag{2.18} \]

where

\[ \mathcal{L}(u^{N,\epsilon}, \phi) = \int_0^T \int_{\mathbb{R}} \left( u^{N,\epsilon}(\phi_t - \phi_{1xx}) dxdt - \frac{1}{3} \int_0^T \int_{\mathbb{R}} (\partial_x u^{N,\epsilon})^3 \phi_{xx} dxdt \right. \]

\[ \left. - \frac{1}{3} \int_0^T \int_{\mathbb{R}} (u^{N,\epsilon})^3 \phi_{xx} dxdt + \int_0^T \int_{\mathbb{R}} [(u^{N,\epsilon})^3 + u^{N,\epsilon}(\partial_x u^{N,\epsilon})^2] \phi_{x} dxdt. \tag{2.19} \]

(Here, \( T = T(\phi) \) and \( \phi \in C_c^\infty(\mathbb{R} \times [0,T]). \)) We now consider convergence for each term of \( \mathcal{L}(u^{N,\epsilon}, \phi) \).
For the first term on the right hand side of (2.19), using (2.14) and the fact that \text{supp}\{\phi\} is compact we can see
\[
\int_0^T \int_{\mathbb{R}} u^{N,\epsilon}(\phi_t - \phi_{1xx})dxdt \to \int_0^T \int_{\mathbb{R}} u^N(\phi_t - \phi_{1xx})dxdt \quad \text{as} \quad \epsilon \to 0.
\]
The second term can be estimated as follows
\[
\left| \int_0^T \int_{\mathbb{R}} \left[ (\partial_x u^{N,\epsilon})^3 - (u^N)^3 \right] \phi_{xx} dxdt \right|
\leq \frac{3}{4} M_0^2 \| \phi_{xx} \|_{L^\infty} \int \int_{\text{supp}\{\phi\}} |\partial_x u^{N,\epsilon} - u_x^N| dxdt \to 0 \quad \text{as} \quad \epsilon \to 0.
\]
Similarly, we have the following estimates for the rest terms on the right hand side of (2.19):
\[
\int_0^T \int_{\mathbb{R}} [(u^{N,\epsilon})^3 - (u^N)^3] \phi_{xxx} dxdt \to 0 \quad \text{as} \quad \epsilon \to 0,
\]
\[
\int_0^T \int_{\mathbb{R}} [(u^{N,\epsilon})^3 - (u^N)^3] \phi_{x} dxdt \to 0 \quad \text{as} \quad \epsilon \to 0,
\]
and
\[
\int_0^T \int_{\mathbb{R}} [u^{N,\epsilon} (\partial_x u^{N,\epsilon})^2 - u^N (u_x^N)^2] \phi_x dxdt
\to 0 \quad \text{as} \quad \epsilon \to 0.
\]
Hence, the above estimates shows that for any test function \( \phi \in C^\infty_c(\mathbb{R} \times [0,\infty)) \)
\[
\mathcal{L}(u^{N,\epsilon}, \phi) \to \mathcal{L}(u^N, \phi) \quad \text{as} \quad \epsilon \to 0. \tag{2.20}
\]
Therefore, combining (2.18) and (2.20) gives
\[
\mathcal{L}(u^N, \phi) + \int_{\mathbb{R}} \phi(x,0) dm_0^N = 0,
\]
which implies that \( u^N(x,t) \) is a \( N \)-peakon solution to the mCH equation with initial date \( m_0^N(x) \).

### 2.3 A Limiting system of ODEs as \( \epsilon \to 0 \)

In this section, we derive a system of ODEs to describe \( N \)-peakon solutions by letting \( \epsilon \to 0 \) in (2.7). First, we give an important lemma.

**Lemma 2.1.** The following equality holds
\[
\lim_{\epsilon \to 0} (\rho_\epsilon * (G^\epsilon_x)^2)(0) = \frac{1}{12}.
\]
**Proof.** Set \( F(y) = \int_{-\infty}^{\epsilon} \rho(x)dx \). Because \( \rho \) is an even function, we have
\[
F(-y) = \int_{-\infty}^{-y} \rho(x)dx = \int_{y}^{\infty} \rho(x)dx.
\]
Therefore,
\[ F(y) + F(-y) = \int_{-\infty}^{y} \rho(x)dx + \int_{y}^{\infty} \rho(x)dx = 1. \]  

(2.21)

Furthermore, we have
\[ F(\infty) = 1, \quad F(-\infty) = 0. \]

Due to \( \rho(x) = \rho(-x) \), we can obtain
\[
I_{\epsilon} := (\rho_{\epsilon} * (G_{\epsilon}^2)^2)(0) = \int_{\mathbb{R}} \rho_{\epsilon}(y) \left( \frac{1}{2} \int_{\mathbb{R}} e^{-|x-y|} \rho_{\epsilon}'(x) dx \right)^2 dy
\]
\[
= \frac{1}{4} \int_{\mathbb{R}} \rho(y) \left( \int_{-\infty}^{y} e^{\epsilon(x-y)} \rho'(x) dx + \frac{1}{\epsilon} \int_{y}^{\infty} e^{\epsilon(y-x)} \rho'(x) dx \right)^2 dy
\]
\[
= \frac{1}{4} \int_{\mathbb{R}} \rho(y) \left( \int_{-\infty}^{y} e^{-\epsilon|x-y|} \rho(x) dx - \int_{y}^{\infty} e^{-\epsilon|x-y|} \rho(x) dx \right)^2 dy.
\]

Then, by using Lebesgue dominated convergence Theorem and (2.21) we have
\[
\lim_{\epsilon \to 0} I_{\epsilon} = \frac{1}{4} \int_{\mathbb{R}} \rho(y) \left( \int_{-\infty}^{y} \rho(x) dx - \int_{y}^{\infty} \rho(x) dx \right)^2 dy
\]
\[
= \frac{1}{4} \int_{\mathbb{R}} \rho(y) (F(y) - F(-y))^2dy = \frac{1}{4} \int_{-\infty}^{\infty} F'(y)(1 - 2F(y))^2dy
\]
\[
= \frac{1}{4} \int_{-\infty}^{\infty} F'(y) - 2(F^2(y))' + \frac{4}{3}(F^3(y))'dy
\]
\[
= \frac{1}{4} \left( F(+\infty) - 2F^2(+\infty) + \frac{4}{3} F^3(+\infty) \right) = \frac{1}{12}.
\]

\( \square \)

Remark 2.1. The above limit is independent of the mollifier \( \rho \) and intrinsic to the mCH equation (1.1). Consider one peakon solution \( pG(x - x(t)) \). To obtain the correct speed for \( x(t) \), the right value for \( G_2^2 \) at 0 is the limit obtained by Lemma 2.1:
\[
(G_2^2)(0) = \frac{1}{12}.
\]

By the jump condition for piecewise smooth weak solutions to (1.1) in [7, Equation (2.2)], the speed for \( x(t) \) should be
\[
\frac{dx(t)}{dt} = G^2(0) - \frac{1}{3}[G_x^2(0+) + G_x(0+)G_x(0-) + G_x^2(0-)],
\]

implying that the correct value of \( G_2^2 \) at 0 is
\[
\frac{1}{3}[G_2^2(0+) + G_x(0+)G_x(0-) + G_2^2(0-)] = \frac{1}{12},
\]

which agrees with the limit obtained by Lemma 2.1. This is different from the precise representative of the BV function \( G_2^2 \) at the discontinuous point 0
\[
\frac{1}{2}[G_2^2(0-) + G_2^2(0+)] = \frac{1}{4}.
\]

Next, we use Lemma 2.1 to obtain the system of ODEs to describe \( N \)-peakon solutions by letting \( \epsilon \to 0 \) in (2.7).
Proposition 2.2. For any constants \( \{p_i\}_{i=1}^N, \{x_i\}_{i=1}^N \subset \mathbb{R} \) (note that \( x_i \) are fixed compared with \( x_i'(t) \) in (2.3)), denote \( \mathcal{N}_1 := \{1 \leq j \leq N : x_j \neq x_i\} \) and \( \mathcal{N}_2 := \{1 \leq j \leq N : x_j = x_i\} \) for \( 1 \leq i \leq N \). Set

\[
u^{N, \epsilon}(x) := \sum_{j=1}^N p_j G^\epsilon(x - x_j),
\]
and

\[

u^\epsilon(x) := [p_\ast (u^{N, \epsilon})^2](x) - [p_\ast (u^{N, \epsilon}_x)^2](x).
\]

(Note that \( x_i \) are constants in \( U^\epsilon(x) \) comparing with \( U^{N, \epsilon}(x, t) \) defined by (2.6).) Then we have

\[
\lim_{\epsilon \to 0} U^\epsilon(x_i) = \left( \sum_{j=1}^N p_j G(x_i - x_j) \right)^2 - \left( \sum_{j \in \mathcal{N}_1} p_j G_x(x_i - x_j) \right)^2 - \frac{1}{12} \left( \sum_{k \in \mathcal{N}_2} p_k \right)^2. \tag{2.22}
\]

Proof. Because \( \sum_{j=1}^N p_j G(x - x_j) \) is continuous, we have

\[

\lim_{\epsilon \to 0} p_\ast (u^{N, \epsilon})^2(x_i) = \left( \sum_{j=1}^N p_j G(x_i - x_j) \right)^2. \tag{2.23}
\]

Next we estimate the second term \( [p_\ast (u^{N, \epsilon}_x)^2](x_i) \) in \( U^\epsilon(x_i) \). We have

\[
\begin{align*}
(u^{N, \epsilon}_x)^2(x) &= \left( \sum_{j \in \mathcal{N}_1} p_j G_x(x - x_j) \right)^2 + 2 \sum_{j \in \mathcal{N}_1, k \in \mathcal{N}_2} p_j G_x(x - x_j) p_k G_x(x - x_k) \\
&\quad + \left( \sum_{k \in \mathcal{N}_2} p_k G_x(x - x_k) \right)^2 := F_1^\epsilon(x) + F_2^\epsilon(x) + F_3^\epsilon(x). \tag{2.24}
\end{align*}
\]

Because \( G_x(x) \) is continuous at \( x_i - x_j \), we have the following estimate for \( F_1^\epsilon \)

\[
\lim_{\epsilon \to 0} (p_\ast F_1^\epsilon)(x_i) = \left( \sum_{j \in \mathcal{N}_1} p_j G_x(x_i - x_j) \right)^2. \tag{2.25}
\]

Because \( G \) and \( p_\ast \) are even functions, we know \( G_x \) is an odd function. Next, consider the second term \( F_2^\epsilon \) on the right hand side of (2.24). Due to \( x_k = x_i \) for \( k \in \mathcal{N}_2 \), we have

\[
\begin{align*}
(p_\ast F_2^\epsilon)(x_i) &= 2 \sum_{j \in \mathcal{N}_1, k \in \mathcal{N}_2} p_j p_k \int_{\mathbb{R}} |p_\ast (x_i - y) G_x^\epsilon(y - x_j) G_x^\epsilon(y - x_i)| dy \\
&= 2 \sum_{j \in \mathcal{N}_1, k \in \mathcal{N}_2} p_j p_k \int_{\mathbb{R}} |G_x(x_i - x_j - y - x) - G_x(x_i - x_j + y - x)| \rho_\ast(x) dx dy \\
&\leq 2 \sum_{j \in \mathcal{N}_1, k \in \mathcal{N}_2} p_j p_k \int_{\mathbb{R}} |G_x^{\epsilon}(y)| \rho_\ast(x) dx dy \\
&\quad \times \left( \int_{\mathbb{R}} \left| G_x(x_i - x_j - y - x) - G_x(x_i - x_j + y - x) \right| \rho_\ast(x) dx \right) dy \\
&\quad + 3 \sum_{j \in \mathcal{N}_1, k \in \mathcal{N}_2} p_j p_k \int_{\mathbb{R}} \rho_\ast(x) dx =: I_1^\epsilon + I_2^\epsilon. \tag{2.26}
\end{align*}
\]
Due to $x_j \neq x_i$ for $j \in \mathcal{N}_1$, we can choose $\epsilon$ small enough such that
\[
(x_i - x_j - y - x)(x_i - x_j + y - x) > 0, \text{ for } |x|, |y| < \sqrt{\epsilon}.
\]
Hence,
\[
|G_x(x_i - x_j - y - x) - G_x(x_i - x_j + y - x)| \leq \frac{1}{2}|2y| < \sqrt{\epsilon}.
\]
Putting the above estimate into $I_1'$ gives
\[
I_1' = 2 \sum_{j \in \mathcal{N}_1, k \in \mathcal{N}_2} p_j p_k \int_0^{\sqrt{\epsilon}} \rho_\epsilon(y)G_x'(-y)dy
\times \left( \int_{-\sqrt{\epsilon}}^{\sqrt{\epsilon}} |G_x(x_i - x_j - y - x) - G_x(x_i - x_j + y - x)| \rho_\epsilon(x)dx \right) dy
\leq \sum_{j \in \mathcal{N}_1, k \in \mathcal{N}_2} |p_j p_k| \cdot \sqrt{\epsilon} \to 0 \text{ as } \epsilon \to 0.
\]
(2.27)

For $I_2'$, changing variable gives
\[
I_2' = 3 \sum_{j \in \mathcal{N}_1, k \in \mathcal{N}_2} p_j p_k \int_{\sqrt{\epsilon}}^{\infty} \rho_\epsilon(y)dy
= 3 \sum_{j \in \mathcal{N}_1, k \in \mathcal{N}_2} p_j p_k \int_{\sqrt{\epsilon}}^{\infty} \rho(y)dy \to 0 \text{ as } \epsilon \to 0.
\]
(2.28)

Combining (2.26), (2.27), and (2.28), we have
\[
\lim_{\epsilon \to 0} |(\rho_\epsilon * F_2')(x_i)| = 0.
\]
(2.29)

For $F_3'$ in (2.24), using Lemma 2.1 we can obtain
\[
\lim_{\epsilon \to 0} (\rho_\epsilon * F_3')(x_i) = \lim_{\epsilon \to 0} \int_{\mathbb{R}} \rho_\epsilon(x_i - y) \left( \sum_{k \in \mathcal{N}_2} p_k \int_{\mathbb{R}} G(y - x_k - x) \rho_\epsilon(x)dx \right)^2 dy
= \left( \sum_{k \in \mathcal{N}_2} p_k \right)^2 \lim_{\epsilon \to 0} \int_{\mathbb{R}} \rho_\epsilon(y) \left( \int_{\mathbb{R}} G(y - x) \rho_\epsilon(x)dx \right)^2 dy
= \left( \sum_{k \in \mathcal{N}_2} p_k \right)^2 \lim_{\epsilon \to 0} [(G_x')^2 * \rho_\epsilon](0)
= \frac{1}{12} \left( \sum_{k \in \mathcal{N}_2} p_k \right)^2,
\]
(2.30)

where we used $x_i = x_k$ for $k \in \mathcal{N}_2$ in the second step. Finally, combining (2.25), (2.29) and (2.30) gives
\[
\lim_{\epsilon \to 0} [\rho_\epsilon * (u_x^{N/2})^2](x_i) = \frac{1}{12} \left( \sum_{k \in \mathcal{N}_2} p_k \right)^2 + \left( \sum_{j \in \mathcal{N}_1} p_j G_x(x_i - x_j) \right)^2.
\]
(2.31)

Combining (2.23) and (2.31) gives (2.22).

\[\Box\]

**Remark 2.2** (System of ODEs). From Proposition 2.2, we give a system of ODEs to describe $N$-peakon solution $u_N(x, t) = \sum_{i=1}^N p_i G(x - x_i(t))$. For $1 \leq i \leq N$, set $\mathcal{N}_1(t) =$
\[ \{1 \leq j \leq N : x_j(t) \neq x_i(t)\} \text{ and } \mathcal{N}_{ij}(t) = \{1 \leq j \leq N : x_j(t) = x_i(t)\}. \] The system of ODEs is given by, \(1 \leq i \leq N,\)

\[
\frac{d}{dt} x_i(t) = \left( \sum_{j=1}^{N} p_j G(x_i(t) - x_j(t)) \right)^2 - \left( \sum_{j \in \mathcal{N}_{ij}(t)} p_j G(x_i(t) - x_j(t)) \right)^2 - \frac{1}{12} \left( \sum_{k \in \mathcal{N}_{ij}(t)} p_k \right)^2.
\] (2.32)

Before the collisions of peakons, we can deduce (1.4) from (2.32).

**Remark 2.3** (nonuniqueness). Consider the initial two peakons \( p_1 \delta(x-x_1(0)) + p_2 \delta(x-x_2(0)) \) with \( x_1(0) < x_2(0) \) and \( 0 < p_2 < p_1 \). Before collision, the evolution system for \( x_1(t) \) and \( x_2(t) \) is given by

\[
\begin{aligned}
\frac{d}{dt} x_1(t) &= \frac{1}{6} p_1^2 + \frac{1}{2} p_1 p_2 e^{x_1(t)-x_2(t)}, \\
\frac{d}{dt} x_2(t) &= \frac{1}{6} p_2^2 + \frac{1}{2} p_1 p_2 e^{x_1(t)-x_2(t)}.
\end{aligned}
\] (2.33)

This system is the same as \(1.4\) for \( N = 2\). The relative speed of the first peakon with respect to the second one is \( \frac{1}{6} (p_1^2 - p_2^2) > 0 \). Hence, they will collide at finite time \( T_* = \frac{6(x_2(0) - x_1(0))}{p_1^2 - p_2^2} \).

When \( t > T_* \), if we assume the two peakons sticky together, according to (2.32) the evolution equation is given by

\[
\frac{d}{dt} x_i(t) = \frac{1}{6} (p_1 + p_2)^2, \quad t > T_*, \quad i = 1, 2.
\] (2.34)

The peakon solution \( u(x, t) = p_1 G(x - x_1(t)) + p_2 G(x - x_2(t)) \) constructed by (2.33) and (2.34) corresponds to the sticky peakon weak solution given by [8]. In the next section, we will prove that when \( N = 2 \), the limiting peakon solution (for \( t > T_* \)) given by Theorem 2.1 also corresponds to \( u(x, t) \), which means it is a sticky peakon weak solution.

If we assume the two peakons cross each other when \( t > T_* \) (still with amplitudes \( p_1, p_2 \)), then according to (2.32), the evolution equation for \( x_1(t) \) and \( x_2(t) \) is given by

\[
\begin{aligned}
\frac{d}{dt} x_1(t) &= \frac{1}{6} p_1^2 + \frac{1}{2} p_1 p_2 e^{x_1(t)-x_2(t)}, \quad t > T_*, \\
\frac{d}{dt} x_2(t) &= \frac{1}{6} p_2^2 + \frac{1}{2} p_1 p_2 e^{x_1(t)-x_2(t)}, \quad t > T_*.
\end{aligned}
\] (2.35)

This system is different with (1.4) and one can easily check that, \( \tilde{u}(x, t) = p_1 G(x - \tilde{x}_1(t)) + p_2 G(x - \tilde{x}_2(t)) \) constructed by (2.33) and (2.35) is a weak solution while \( \tilde{u}(x, t) = p_1 G(x - \tilde{x}_1(t)) + p_2 G(x - \tilde{x}_2(t)) \) constructed by (1.4) is not a weak solution for \( t > T_* \).

Both \( u(x, t) \) and \( \tilde{u}(x, t) \) are global two peakon solutions, which proves nonuniqueness of weak solutions to the mCH equation. This nonuniqueness example can also be found in [8, Proposition 4.4].

The above example also shows that after collision peakons can merge into one or cross each other. Moreover, if we view \( T_* \) as the start point with one peakon, then the above example shows the scattering of one peakon. This indicates all the situation mentioned in question (iii) in Introduction.

At the end of this section, we give a useful proposition.

**Proposition 2.3.** Let \( x_i(t), \) \( 1 \leq i \leq N, \) be \( N \) Lipschitz functions in \([0, T]\) with \( x_1(t) < x_2(t) < \cdots < x_N(t) \) and \( p_1, \cdots, p_N \) are \( N \) non-zero constants. Then, \( u^N(x, t) := \sum_{i=1}^{N} p_i G(x - x_i(t)) \) is a weak solution to the mCH equation if and only if \( x_i(t) \) satisfies (1.4).

**Proof.** Obviously, we have

\[
u^N \in C([0, T]; H^1(\mathbb{R})) \cap L^\infty(0, T; W^{1, \infty}(\mathbb{R})).
\]

In the following proof we denote \( u := u^N. \) For any test function \( \phi \in C_c^\infty(\mathbb{R} \times [0, T]), \) let

\[
\mathcal{L}(u, \phi) = \int_0^T \int_{\mathbb{R}} u(\phi_t - \phi_{xx}) dx dt = \int_0^T \int_{\mathbb{R}} \left[ \frac{1}{3} u_3^3 \phi_{xx} + u^3 \phi_{xxx} - (u + u_x^2) \phi_x \right] dx dt
\] (2.36)
Denote $x_0 := -\infty$, $x_{N+1} := +\infty$ and $p_0 = p_{N+1} = 0$. By integration by parts for space variable $x$, we calculate $I_1$ as

$$I_1 = \int_0^T \int_R u(\phi_t - \phi_{txx}) dx dt = \sum_{i=0}^N \int_0^T \int_{x_i}^{x_{i+1}} u(\phi_t - \phi_{txx}) dx dt$$

$$= \sum_{i=0}^N \int_0^T \int_{x_i}^{x_{i+1}} \left( \frac{1}{2} \sum_{j<i} p_j e^{x_j - x} + \frac{1}{2} \sum_{j>i} p_j e^{x-x_j} \right) (\phi_t - \phi_{txx}) dx dt$$

$$= \int_0^T \sum_{i=1}^N p_i \phi_t(x_i(t), t) dt. \quad (2.37)$$

Similarly, for $I_2$ we have

$$I_2 = -\int_0^T \int_R \left[ \frac{1}{3}(u_x^3 \phi_{xxx} + u^3 \phi_{xxxx}) - (u^3 + uu_x^2) \phi_x \right] dx dt$$

$$= \int_0^T \sum_{i=1}^N p_i \phi_x(x_i(t)) \left( \frac{1}{6} p_i^2 + \frac{1}{2} \sum_{j<i} p_j p_i e^{x_j - x_i} + \frac{1}{2} \sum_{j>i} p_j p_i e^{x-x_j} \right.$$

$$\left. + \sum_{1\leq m<n \leq N} p_m p_n e^{x_m - x_n} \right) dt$$

$$= \int_0^T \sum_{i=1}^N p_i \phi_x(x_i(t)) F(t) dt. \quad (2.38)$$

where

$$F(t) := \frac{1}{6} p_i^2 + \frac{1}{2} \sum_{j<i} p_j p_i e^{x_j - x_i} + \frac{1}{2} \sum_{j>i} p_j p_i e^{x-x_j} + \sum_{1\leq m<n \leq N} p_m p_n e^{x_m - x_n}.$$ (3.1)

Combining (2.36), (2.37) and (2.38) gives

$$\mathcal{L}(u, \phi) = \sum_{i=1}^N p_i \int_0^T \frac{d}{dt} \phi(x_i(t), t) dt + \int_0^T \sum_{i=1}^N p_i \phi_x(x_i(t)) \left( F(t) - \frac{d}{dt} x_i(t) \right) dt$$

$$- \int_R \phi(x, 0) dm_0^N + \int_0^T \sum_{i=1}^N p_i \phi_x(x_i(t)) \left( F(t) - \frac{d}{dt} x_i(t) \right) dt. \quad (2.39)$$

By Definition 2.2 we know $u^N$ is a weak solution if and only if $\frac{d}{dt} x_i(t) = F(t)$, which is (1.4).

**Remark 2.4.** Form Remark 2.3 and Proposition 2.3, we know that solutions to (1.4) can not be used to construct peakon weak solutions after $t > T_*$. Because $x_1(t) > x_2(t)$ when $t > T_*$, (2.35) is the right evolution equation for $x_i(t)$, $i = 1, 2$.

Proposition 2.3 also implies the uniqueness of the limiting trajectories $x_i(t)$ before collision.

### 3 Limiting peakon solutions as $\epsilon \to 0$

In this section, we analysis peakon solutions given by the dispersive regularization.

#### 3.1 No collisions for the regularized system

In this subsection, we show that trajectories $\{x_i^\epsilon(t)\}_{i=1}^N$ obtained by (2.7) will never collide. Define

$$f_1^\epsilon(x) := \frac{1}{2} \int_0^\infty \rho^\epsilon(x-y) e^{-y} dy \quad \text{and} \quad f_2^\epsilon(x) := \frac{1}{2} \int_{-\infty}^0 \rho^\epsilon(x-y) e^y dy. \quad (3.1)$$

15
Changing variable gives 
\[ f_1'(x) = \frac{1}{2} \int_{-\infty}^{x} \rho_s(y)e^{y-x}dy \quad \text{and} \quad f_2'(x) = \frac{1}{2} \int_{x}^{\infty} \rho_s(y)e^{x-y}dy. \] (3.2)

It is easy to see that both \( f_1', f_2' \in C^\infty(\mathbb{R}) \) and we have the following lemma.

**Lemma 3.1.** Let \( C_0 := ||\rho||_{L^\infty} \). Then, the following properties for \( f_i' \ (i = 1, 2) \) hold:

(i) \[ f_2'(x) = f_1'(-x), \quad G'(x) = f_1' + f_2', \quad \text{and} \quad G'_2(x) = -f_1'(x) + f_2'(x). \] (3.3)

(ii) \[ ||f_1'||_{L^\infty}, ||f_2'||_{L^\infty} \leq \frac{1}{2}, \quad \text{and} \quad ||\partial_x f_1'||_{L^\infty}, ||\partial_x f_2'||_{L^\infty} \leq \frac{C_0}{2\epsilon} + \frac{1}{2}. \] (3.4)

**Proof.** (i) The first two equalities in (3.3) can be easily proved. For the third one, taking derivative of (3.2) gives 
\[ \partial_x f_1'(x) = \frac{1}{2} \rho_s(x) - f_1'(x), \quad \text{and} \quad \partial_x f_2'(x) = -\frac{1}{2} \rho_s(x) + f_2'(x). \] (3.5)

Hence, we have \( G'_2(x) = -f_1'(x) + f_2'(x) \).

(ii) By Definition (3.1), we can obtain 
\[ ||f_1'||_{L^\infty}, ||f_2'||_{L^\infty} \leq \frac{1}{2}. \]

Due to (3.5) and \( C_0 = ||\rho||_{L^\infty} \), we have 
\[ ||\partial_x f_1'||_{L^\infty}, ||\partial_x f_2'||_{L^\infty} \leq \frac{C_0}{2\epsilon} + \frac{1}{2}. \]

\( \square \)

**Theorem 3.1.** Let \( \{x_i^\epsilon(t)\}_{i=1}^{N} \) be a solution to (2.7) subject to \( x_i^\epsilon(0) = c_i, \ i = 1, \ldots, N \) and \( \sum_{i=1}^{N} |p_i| \leq M_0 \) for some constant \( M_0 \). If \( c_1 < c_2 < \cdots < c_N \), then \( x_1^\epsilon(t) < x_2^\epsilon(t) < \cdots < x_N^\epsilon(t) \) for all \( t > 0 \).

**Proof.** If collision between \( \{x_i^\epsilon\}_{i=1}^{N} \) happens, we assume the first collision is between \( x_k^\epsilon \) and \( x_{k+1}^\epsilon \) for some \( 1 \leq k \leq N - 1 \) at time \( T_* > 0 \). Our target is to prove \( T_* = +\infty \).

By (2.3) and (3.3), we have 
\[ u^{N,\epsilon}(x, t) = \sum_{i=1}^{N} p_i G^\epsilon(x - x_i^\epsilon) = \sum_{i=1}^{N} p_i (f_i'(x - x_i^\epsilon) + f_2'(x - x_i^\epsilon)), \]
and 
\[ u_x^{N,\epsilon}(x, t) = \sum_{i=1}^{N} p_i G_x^\epsilon(x - x_i^\epsilon) = \sum_{i=1}^{N} p_i (-f_1'(x - x_i^\epsilon) + f_2'(x - x_i^\epsilon)). \]

Hence, we obtain 
\[ U^{N,\epsilon}(x, t) = (u^{N,\epsilon} + u_x^{N,\epsilon}) - u_x^{N,\epsilon} = 4 \left( \sum_{i=1}^{N} p_i f_2'(x - x_i^\epsilon) \right) \left( \sum_{i=1}^{N} p_i f_1'(x - x_i^\epsilon) \right). \]

From (2.7), we have 
\[ \frac{d}{dt} x_k^\epsilon = \left[ \rho_\epsilon * U^{N,\epsilon}(x_k^\epsilon) \right] \quad \text{and} \quad \frac{d}{dt} x_{k+1}^\epsilon = \left[ \rho_\epsilon * U^{N,\epsilon}(x_{k+1}^\epsilon) \right]. \] (3.6)
For $t < T_*$, taking the difference gives
\[
\frac{d}{dt}(x_{k+1}^t - x_k^t) = 4 \int_{\mathbb{R}} \rho_i(y) \left( \sum_{i=1}^{N} p_i f_2^t(x_{k+1}^t - y - x_i^t) - 4 \int_{\mathbb{R}} \rho_i(y) \left( \sum_{i=1}^{N} p_i f_2^t(x_k^t - y - x_i^t) \right) dy - 4 \int_{\mathbb{R}} \rho_i(y) \left( \sum_{i=1}^{N} p_i f_1^t(x_k^t - y - x_i^t) \right) \right) dy.
\]
Combining (3.3) and (3.4) gives
\[
\left| \frac{d}{dt}(x_{k+1}^t - x_k^t) \right| \leq 2M_0^2 \| \partial_x f_1^t \|_{L^\infty} (x_{k+1}^t - x_k^t) + 2M_0^2 \| \partial_x f_2^t \|_{L^\infty} (x_{k+1}^t - x_k^t) = C_t(x_{k+1}^t - x_k^t), \quad t < T_*,
\]
where
\[
C_t = M_0^2 \left( \frac{C_0}{e} + 1 \right).
\]
Hence, for $t < T_*$,
\[
-C_t(x_{k+1}^t - x_k^t) \leq \frac{d}{dt}(x_{k+1}^t - x_k^t) \leq C_t(x_{k+1}^t - x_k^t),
\]
which implies
\[
0 < (c_{k+1} - c_k)e^{-C_t t} \leq x_{k+1}^t(t) - x_k^t(t) \quad \text{for} \quad t < T_.*
\]
By our assumption about $T_*$, we know $T_* = +\infty$. Hence, we have $x_1^t(t) < x_2^t(t) < \cdots < x_N^t(t)$ for all $t > 0$.

**Remark 3.1.** Let $u^N(x,t) = \sum_{i=1}^{N} G(x - x_i(t))$ be a $N$-peakon solution to the mCH equation obtained by Theorem 2.1. From Theorem 3.1, we have
\[
x_1(t) \leq x_2(t) \leq \cdots \leq x_N(t).
\]
This result shows that the limit solution allows no cross between peakons.

### 3.2 Two peakon solutions

As mentioned in Introduction, the sticky peakon solutions given in [8] also satisfy (3.9). In this subsection, when $N = 2$, we show that the limiting $N$-peakon solutions given in Theorem 2.1 agree with sticky peakon solutions (see $u(x,t)$ in Remark 2.3). Due to Proposition 2.3, the cases with no collisions are easy to verify.

Consider the case with a collision for $N = 2$. When $p_1^* > p_2^*$ and $x_1(0) = c_1 < c_2 = x_2(0)$, the equations for $x_1(t)$ and $x_2(t)$ before collisions are given by
\[
\begin{align*}
\frac{d}{dt}x_1(t) &= \frac{1}{6}p_1^* + \frac{1}{2}e^{x_1(t)-x_2(t)}, \\
\frac{d}{dt}x_2(t) &= \frac{1}{6}p_2^* + \frac{1}{2}e^{x_1(t)-x_2(t)}.
\end{align*}
\]
The two peakons collide at $T_* = \frac{6(c_2 - c_1)}{p_1^* - p_2^*}$. Next, we prove the following theorem.
Theorem 3.2. Assume $N = 2$ and $\mu_0^N(x) = p_1\delta(x - c_1) + p_2\delta(x - c_2)$ with $p_1^2 > p_2^2$ and $c_1 < c_2$. Then, the peakon solution $u^N(x, t) = p_1G(x - x_1(t)) + p_2G(x - x_2(t))$ obtained in Theorem 2.1 is a sticky peakon solution, which means

$$x_1(t) = x_2(t) \quad \text{for} \quad t \geq T_* := \frac{6(c_2 - c_1)}{p_1^2 - p_2^2}. \tag{3.11}$$

To prove Theorem 3.2, we first consider (2.7) for $N = 2$. Denote $S_\epsilon(t) := x_2(t) - x_1(t) > 0$. By the fact that $f_1'(-x) = f_2'(x)$, we find that

$$\frac{d}{dt}x_1' = 4 \int_{-\infty}^{\infty} \rho_\epsilon(y) [p_1f_2(-y) + p_2f_2(-S_\epsilon - y)] [p_1f_1'(-y) + p_2f_1'(-S_\epsilon - y)] dy$$

$$= 4 \int_{-\infty}^{\infty} \rho_\epsilon(y) [p_1f_1(y) + p_2f_1'(S_\epsilon + y)] [p_1f_2'(y) + p_2f_2'(S_\epsilon + y)] dy. \tag{3.12}$$

By changing of variables $y \to -y$ and using the fact that $\rho_\epsilon$ is even, we obtain

$$\frac{d}{dt}x_2' = 4 \int_{-\infty}^{\infty} \rho_\epsilon(y) [p_1f_2(S_\epsilon - y) + p_2f_2(-y)] [p_1f_1'(S_\epsilon - y) + p_2f_1'(-y)] dy$$

$$= 4 \int_{-\infty}^{\infty} \rho_\epsilon(y) [p_1f_2'(S_\epsilon + y) + p_2f_2'(y)] [p_1f_1'(S_\epsilon + y) + p_2f_1'(y)] dy \tag{3.13}$$

Taking the difference of (3.12) and (3.13) gives

$$\frac{d}{dt}S_\epsilon = 4(p_2^2 - p_1^2) \int_{-\infty}^{\infty} \rho_\epsilon(y) [f_1'(y)f_2'(y) - f_1'(S_\epsilon + y)f_2'(S_\epsilon + y)] dy. \tag{3.14}$$

We have the following useful proposition.

Proposition 3.1. For any $s > 0$, we have

$$\lim_{\epsilon \to 0} 4 \int_{-\infty}^{\infty} \rho_\epsilon(x) [f_1'(x)f_2'(x) - f_1'(s + x)f_2'(s + x)] dx = \frac{1}{6}. \tag{3.15}$$

The above convergence is uniform about $s \in [\delta, +\infty)$ for any $\delta > 0$.

Proof. Let

$$4 \int_{-\infty}^{\infty} \rho_\epsilon(x) [f_1'(x)f_2'(x) - f_1'(s + x)f_2'(s + x)] dx =: I_1' - I_2',$$

where

$$I_1' := 4 \int_{-\infty}^{\infty} \rho_\epsilon(x) f_1'(x)f_2'(x) dx \quad \text{and} \quad I_2' := 4 \int_{-\infty}^{\infty} \rho_\epsilon(x) f_1'(s + x)f_2'(s + x) dx.$$

For $I_1'$, by changing of variables, we have

$$I_1' = \int_{-\infty}^{\infty} \rho(x) \left( \int_{-\infty}^{x} \rho(y)e^{c(y-x)} dy \right) \left( \int_{x}^{\infty} \rho(y)e^{c(x-y)} dy \right) dx.$$

Set

$$F(x) := \int_{-\infty}^{x} \rho(y) dy.$$

By Lebesgue Dominated convergence Theorem, we have

$$\lim_{\epsilon \to 0} I_1' = \int_{-\infty}^{\infty} \rho(x) \left( \int_{-\infty}^{x} \rho(y) dy \right) \left( \int_{x}^{\infty} \rho(y) dy \right) dx$$

$$= \int_{-\infty}^{\infty} F'(x)F(x)(1 - F(x)) dx = \frac{1}{6}. \tag{3.16}$$
Similarly, for $I_2'$ we have

$$I_2' = \int_{-\infty}^{\infty} \rho(x) \left( \int_{-\infty}^{x+\frac{2}{\epsilon}} \rho(y) e^{(y-x) - \delta} \, dy \right) \left( \int_{x+\frac{2}{\epsilon}}^{\infty} \rho(y) e^{(x-y) + \delta} \, dy \right) \, dx.$$ 

When $\delta > 0$ and $s \in [\delta, +\infty)$, we have $\frac{\delta}{\epsilon} \leq \frac{s}{\epsilon}$. Hence,

$$0 < I_2' \leq \int_{-\infty}^{\infty} \rho(x) \left( \int_{-\infty}^{\infty} \rho(y) \, dy \right) \left( \int_{x+\frac{2}{\epsilon}}^{\infty} \rho(y) \, dy \right) \, dx$$

$$\leq \int_{-\infty}^{\infty} \rho(x) \left( \int_{x+\frac{2}{\epsilon}}^{\infty} \rho(y) \, dy \right) \, dx.$$ 

Therefore, the following convergence holds uniformly for $s \in [\delta, +\infty)$:

$$\lim_{\epsilon \to 0} I_2' = 0. \quad (3.17)$$

Combining (3.16) and (3.17) gives (3.15).

**Proof of Theorem 3.2.** Let $m_0^\delta(x) = p_1 \delta(x-c_1) + p_2 \delta(x-c_2)$ for constants $p_i$ and $c_i$ satisfies

$$c_1 < c_2 \quad \text{and} \quad p_1^2 > p_2^2. \quad (3.18)$$

$x_1^\delta(t)$ and $x_2^\delta(t)$ are obtained by (2.7). From Theorem 3.1, we have $x_1^\delta(t) < x_2^\delta(t)$ for any $t \geq 0$. By Theorem 2.1, for any $T > 0$, there are $x_1(t), x_2(t) \in C([0,T])$ such that

$$x_1^\delta(t) \to x_1(t) \quad \text{and} \quad x_2^\delta(t) \to x_2(t) \quad \text{in} \quad C([0,T]), \quad \epsilon \to 0.$$

Hence, we have

$$x_1(t) \leq x_2(t).$$

By Proposition 2.3, we know that solution given by Theorem 2.1 is the same as the sticky peakon solution when $t < T_*$. By (3.14) and Proposition 3.1, we can see that for any $0 < \delta < \min \{ c_2 - c_1, -\frac{1}{6} (p_2^2 - p_1^2) \}$, there is a $\epsilon_0 > 0$ such that when $S_\epsilon(t) \geq \delta$ we have

$$\frac{1}{6} (p_2^2 - p_1^2) - \delta < \frac{d}{dt} S_\epsilon(t) < \frac{1}{6} (p_2^2 - p_1^2) + \delta < 0 \quad \text{for any} \quad \epsilon < \epsilon_0.$$

**Claim 1:** If there exists $t_0 > 0$ such that $S_\epsilon(t_0) \leq \delta$, then $S_\epsilon(t) \leq \delta$ for $t > t_0$. Indeed, if there is $t_1 > t_0$ and $S_\epsilon(t_1) > \delta$, we set

$$t_2 := \inf \{ t < t_1 : S_\epsilon(s) > \delta \quad \text{for} \quad s \in (t, t_1) \}.$$ 

Hence, $t_2 \geq t_0$ and $S_\epsilon(t_2) = \delta$. Moreover, $S_\epsilon(t) > \delta$ for $t \in (t_2, t_1)$. Therefore,

$$S_\epsilon(t_1) = \int_{t_2}^{t_1} \frac{d}{ds} S_\epsilon(s) \, ds + S_\epsilon(t_2) \leq \left[ \frac{1}{6} (p_2^2 - p_1^2) + \delta \right] (t_1 - t_2) + \delta \leq \delta,$$

which is a contradiction with $S_\epsilon(t_1) > \delta$.

**Claim 2:** We have $S_\epsilon(t) \leq \delta$ for $t \geq \frac{6(c_2 - c_1) - \delta}{p_1^2 - p_2^2} := t_\delta$. If not, from Claim 1 we have $S_\epsilon(t) > \delta$ for $t \leq t_\delta$. Hence,

$$S_\epsilon(t_\delta) = \int_{0}^{t_*} \frac{d}{ds} S_\epsilon(s) \, ds + c_2 - c_1 \leq \left[ \frac{1}{6} (p_2^2 - p_1^2) + \delta \right] t_\delta + c_2 - c_1 \leq \delta,$$

which is a contradiction.

With the above claims, we can obtain

$$\lim_{\epsilon \to 0} S_\epsilon(t) = 0 \quad \text{for} \quad t \geq \frac{6(c_2 - c_1)}{p_1^2 - p_2^2}, \quad (3.19)$$

which implies (3.11)
Proposition 2.3 we know that $x_i$ be trajectories to sticky peakon solutions given in [8]. Before the first collision time, we can check formally that

\[ (p_1 + p_2) \frac{1}{6} (p_1 + p_2)^2 = p_1 \left( \frac{1}{6} p_1^2 + \frac{1}{2} p_1 p_2 \right) + p_2 \left( \frac{1}{6} p_2^2 + \frac{1}{2} p_1 p_2 \right). \]

We can then introduce the instantaneous (infinite) “force” as

\[ F_1 = p_1 [\dot{x}_1] \delta(t - T_*) = \frac{1}{6} p_1 p_2 (p_2 - p_1) \delta(t - T_*) \]

where $[\dot{x}_1]$ represents the jump of $\dot{x}$ at $t = T_*$. Similarly,

\[ F_2 = p_2 [\dot{x}_2] \delta(t - T_*) = \frac{1}{6} p_2 p_1 (p_1 - p_2) \delta(t - T_*) \]

Here $F_1 + F_2 = 0$, which is equivalent to the “local conservation of momentum”.

3.3 Discussion about three particle system

When $N \geq 3$, the limiting $N$-peakon solutions obtained by Theorem 2.1 can be complicated. In this subsection, we study three peakon trajectory interactions.

Denote the initial data $x_1(0) < x_2(0) < x_3(0)$ and constant amplitudes of peakons $p_i > 0$, $i = 1, 2, 3$. Let $x_i^\epsilon(t)$, $i = 1, 2, 3$, be solutions to the regularized system (2.7) and $x_i(t)$, $i = 1, 2, 3$, be the limiting trajectories given by Theorem 2.1. Let $x_i^\epsilon(t)$, $i = 1, 2, 3$, be trajectories to sticky peakon solutions given in [8]. Before the first collision time, by Proposition 2.3 we know that $x_i(t) = x_i^\epsilon(t)$, $i = 1, 2, 3$, which is the solution to (1.4). However, after collisions, the limiting trajectories $x_i(t)$ may or may not coincide with the sticky trajectories $x_i^\epsilon(t)$. Below, we consider two typical cases.

**Sticky case (i).** We illustrate this case by an example with $p_1 = 4$, $p_2 = 2$, $p_3 = 1$ and $x_1(0) = -7$, $x_2(0) = -5$, $x_3(0) = -3$ (see Figure 1). For the sticky trajectories (red dashed lines in Figure 1) $x_i^\epsilon(t)$, $i = 1, 2, 3$, the first collision happens between $x_2^\epsilon(t)$ and $x_3^\epsilon(t)$ at time $t_1^\epsilon$. Then $x_2^\epsilon(t)$ and $x_3^\epsilon(t)$ sticky together traveling with new amplitude $p_2 + p_3$ for $t \in (t_1^\epsilon, t_2^\epsilon)$. Because $p_1 > p_2 + p_3$, $x_1^\epsilon(t)$ catches up with $x_2^\epsilon(t)$ and $x_3^\epsilon(t)$ at $t_2^\epsilon$. At last, the three peakons all sticky together after $t_2^\epsilon$.

When $\epsilon > 0$ is small, the behavior of trajectories $x_i^\epsilon(t)$, $i = 1, 2, 3$, given by the regularized system (2.7) is very similar to the sticky trajectories (see blue solid lines in Figure 1). This indicates that $x_i(t) \equiv x_i^\epsilon(t)$ for any $t > 0$ and the limiting peakon solution given by Theorem 2.1 agrees with the sticky peakon solution.
Figure 1: $p_1 = 4$, $p_2 = 2$, $p_3 = 1$ and $x_1(0) = -7$, $x_2(0) = -5$, $x_3(0) = -3$; $\epsilon = 0.02$. The blue lines are trajectories of three peakons \{$x_i^*(t)$\}$_{i=1}^3$ given by dispersive regularization system (2.7). The red dashed lines are trajectories of sticky three peakons.

Sticky and separation case (ii). We illustrate this case by an example with $p_1 = 4$, $p_2 = 2$, $p_3 = 3$ and $x_1(0) = -7$, $x_2(0) = -6$, $x_3(0) = -2$ (see Figure 2). For the sticky trajectories (red dashed lines in Figure 2) $x_i^*(t)$, $i = 1, 2, 3$, the first collision happens between $x_1^*(t)$ and $x_2^*(t)$ at time $\hat{t}_1$. Then $x_1^*(t)$ and $x_2^*(t)$ sticky together traveling with new amplitude $p_1 + p_2$ for $t \in (\hat{t}_1, \hat{t}_2)$. Because $p_1 + p_2 > p_3$, $x_1^*(t)$ and $x_2^*(t)$ catch up with $x_3^*(t)$ at $\hat{t}_2$. At last, the three peakons all sticky together after $\hat{t}_2$.

When $\epsilon > 0$ is small, the behavior of trajectories $x_i^*(t)$, $i = 1, 2, 3$, given by the regularized system (2.7) is very similar with the sticky trajectories $x_i^*(t)$ before $T_1$, where $x_i^*(t)$ get close to $x_2^*(t)$. However, when $x_1^*(t)$ comes close to $x_2^*(t)$, $x_2^*(t)$ separates from $x_1^*(t)$ around $T_1$ and gradually moves to $x_3^*(t)$ and then holds together with $x_3^*(t)$. Since $p_2 + p_3 > p_1$, $x_3^*(t)$ and $x_3^*(t)$ get far away from $x_1^*(t)$.

This indicates the limiting trajectories $x_i(t) \neq x_i^*(t)$ for $t \geq T_1$ and the limiting peakon solution given by Theorem 2.1 does not agree with the sticky peakon solution. Below, we give some discussions about this interesting phenomenon.

Figure 2: $p_1 = 4$, $p_2 = 2$, $p_3 = 3$ and $x_1(0) = -7$, $x_2(0) = -6$, $x_3(0) = -2$; $\epsilon = 0.02$. The blue lines are trajectories for three peakons \{$x_i^*(t)$\}$_{i=1}^3$ obtained by dispersive regularization system (2.7). The red dashed lines are trajectories of sticky three peakons.
Next, we discuss in detail the limiting solution in cases like Figure 2, i.e. \( p_1 > p_2 > 0, \) \( p_1 + p_2 > p_3 > 0, \) \( p_1 < p_2 + p_3 \) and \( x_3(0) - x_2(0) \gg x_2(0) - x_1(0) > 0. \) Consider the limiting solution of the form:

\[
u(x, t) = \sum_{i=1}^{3} p_i G(x - x_i(t)),
\]

where \( x_i(t) \) are Lipschitz continuous and \( x_1(t) \leq x_2(t) \leq x_3(t). \) Since \( x_1(0) < x_2(0) < x_3(0), \) by Proposition 2.3, \( x_i(t) : i = 1, 2, 3 \) satisfy the following system for \( t \in (0, T_s) \) where \( T_s > 0 \) is the first collision time:

\[
\begin{align*}
\frac{dx_1}{dt} &= \frac{1}{6} p_1^2 + \frac{1}{2} p_1 p_2 e^{-(x_2-x_1)} + \frac{1}{2} p_1 p_3 e^{-(x_3-x_1)}, \\
\frac{dx_2}{dt} &= \frac{1}{6} p_2^2 + \frac{1}{2} p_1 p_2 e^{-(x_2-x_1)} + \frac{1}{2} p_2 p_3 e^{-(x_3-x_2)} + p_1 p_3 e^{-(x_3-x_1)}, \\
\frac{dx_3}{dt} &= \frac{1}{6} p_3^2 + \frac{1}{2} p_1 p_3 e^{-(x_3-x_1)} + \frac{1}{2} p_2 p_3 e^{-(x_3-x_2)}. \tag{3.20}
\end{align*}
\]

Let \( S_i := x_{i+1} - x_i \geq 0, \) \( i = 1, 2. \) From (3.20), the distances \( S_i \) satisfy the following equations for \( t < T_s: \)

\[
\begin{align*}
\frac{dS_1}{dt} &= \frac{1}{6} (p_2^2 - p_1^2) + \frac{1}{2} p_2 p_3 e^{-S_2} + \frac{1}{2} p_1 p_3 e^{-(S_1+S_2)}, \\
\frac{dS_2}{dt} &= \frac{1}{6} (p_3^2 - p_2^2) - \frac{1}{2} p_1 p_2 e^{-S_1} - \frac{1}{2} p_1 p_3 e^{-(S_1+S_2)}. \tag{3.21}
\end{align*}
\]

For the case in Figure 2 to happen, \( S_2(0) \) should be large enough so that \( S_1(T_s) = 0 \) and

\[
\lim_{t \to T_s^-} \frac{dS_1}{dt} = \frac{1}{6} (p_2^2 - p_1^2) + \frac{1}{2} p_2 p_3 e^{-S_2(T_s)} + \frac{1}{2} p_1 p_3 e^{-(S_1+S_2)} < 0.
\]

In other words, \( S_2(T_s) > S_2^* > 0, \) where \( S_2^* \) is defined by:

\[
\frac{1}{6} (p_2^2 - p_1^2) + \frac{1}{2} p_2 p_3 e^{-S_2^*} + \frac{1}{2} p_1 p_3 e^{-S_2^*} = 0.
\]

Since \( S_1(t) \geq 0, \) while

\[
\frac{1}{6} (p_2^2 - p_1^2) + \frac{1}{2} p_2 p_3 e^{-S_2} + \frac{1}{2} p_1 p_3 e^{-(S_1+S_2)} < 0,
\]

(3.21) must not be valid for \( t \in (T_s, T_s + \delta) \) for some \( \delta > 0 \) and neither does (3.20). Indeed, the new system of equations must be (1.4) for \( N = 2: \)

\[
\begin{align*}
\frac{dx_1}{dt}(t) &= \frac{1}{6} (p_1 + p_2)^2 + \frac{1}{2} (p_1 + p_2) p_3 e^{x_1(t) - x_3(t)}, \quad i = 1, 2, \\
\frac{dx_2}{dt}(t) &= \frac{1}{6} p_3^2 + \frac{1}{2} (p_1 + p_3) p_3 e^{x_2(t) - x_3(t)}. \tag{3.22}
\end{align*}
\]

Hence, \( S_1(t) = 0 \) for \( t \in (T_s, T_s + \delta) \) while \( S_2(t) \) keeps decreasing because \( p_1 + p_2 > p_3. \)

Note that the sticky solutions \( x_i^*(t) \) satisfy (3.22) until \( x_1^*(t) = x_2^*(t). \) On the contrary, the simulations indicate that \( x_1(t) \) and \( x_2(t) \) can split when \( x_2(t) < x_3(t) \) and then \( \{x_i(t)\}^3_{i=1} \) do not satisfy (3.22) after the splitting. Define the splitting time \( T_1 \) as

\[
T_1 = \inf\{t \geq T_s : S_1(t) > 0\}.
\]

We claim that \( T_1 \geq T_2 := \inf\{t > 0 : x_2(t) = S_2^* \} > T_s. \) Suppose for otherwise \( T_1 < T_2, \) then there exists \( \delta > 0 \) such that \( S_1(t) > 0 \) for \( t \in (T_1, T_1 + \delta) \) with some small \( \delta, S_1(T_1) = 0 \) and \( S := \inf_{t \in (T_1, T_1 + \delta)} S_2(t) > S_2^*. \) For \( t \in (T_1, T_1 + \delta), \) \( S_1 \) and \( S_2 \) must satisfy (3.21) by Proposition 2.3. Consequently,

\[
\frac{d}{dt} S_1(t) \leq \frac{1}{6} (p_2^2 - p_1^2) + \frac{1}{2} p_2 p_3 e^{-S} + \frac{1}{2} p_1 p_3 e^{-S} < 0, \quad t \in (T_1, T_1 + \delta).
\]
Since $S_1(T_1) = 0$, we must have $S_1(t) \leq 0$ for $t \in (T_1, T_1 + \delta)$. This is a contradiction.

Now that (3.22) holds on $(T_1, T_1)$ while $T_1 \geq T_2$, we find

$$T_2 = T_1 + 6(S_2(T_1) - S_2^*(0))/((p_1 + p_2)^2 - p_3^2) > T_1.$$ 

The question is that when the split happens (i.e. how large can $T_1$ be).

**Conjecture.** At the point of splitting ($t = T_1$), both $x_1(t)$ and $x_2(t)$ are right-differentiable, and $x_1(t) : t \geq T_1$ and $x_2(t) : t \geq T_1$ are tangent at $t = T_1$.

If this conjecture is valid, then we must have

$$\lim_{t \to T_1^+} \frac{d}{dt} S_1(t) = 0$$

and therefore

$$T_1 = T_2.$$

In summary, the dispersive regularization limit weak solution is quite different from the sticky particle model in [8] when $N \geq 3$. Another difference we note is that the sticky particle model has bifurcation instability for the dynamics of three peakon system: consider a three particles system with initial data: $p_1 = 4, x_1(0) = -4, p_2 = 3, x_2(0) \in (-4, 4)$ and $p_3 = 2, x_3(0) = 4$. There exists $x_c \in (-4, 4)$ such that in the $x_2(0) < x_c$ cases, the second and third peakons merge first and then they move apart from the first one (see Figure 3 (b)), while $x_2(0) < x_c$ implies that the first two merge first and then they catch up with the third one, merging into a single particle (see Figure 3 (a)). This is a kind of bifurcation instability due to the initial position of the second peakon: a little change in $x_2(0)$ results in very different solutions at later time. It seems that the $\epsilon \to 0$ limit does not possess such instability due to the splitting as in Figure 2.

![Figure 3: (a). $p_1 = 4, p_2 = 3, p_3 = 2$ and $x_1(0) = -4$, $x_2(0) = -3$, $x_3(0) = 4$. The three peakons merge into one peakon. (b). $p_1 = 4, p_2 = 3, p_3 = 2$ and $x_1(0) = -4$, $x_2(0) = -2$, $x_3(0) = 4$. The three peakons merge into two separated peakons.](image)

### 4 Mean field limit

In this section, we use a particle blob method to prove global existence of weak solutions to the mCH equation for general initial data $m_0 \in \mathcal{M}(\mathbb{R})$.

Assume that the initial date $m_0$ satisfies

$$m_0 \in \mathcal{M}(\mathbb{R}), \quad \text{supp}(m_0) \subset (-L, L), \quad M_0 := \int_R d|m_0| < +\infty. \quad (4.1)$$

Let us choose the initial data $\{c_i\}_{i=1}^N$ and $\{p_i\}_{i=1}^N$ to approximate $m_0(x)$. Divide the interval $[-L, L]$ into $N$ non-overlapping sub-interval $I_j$ by using the uniform grid with size $h = \frac{2L}{N}$. We choose $c_i$ and $p_i$ as

$$c_i := -L + (i - \frac{1}{2})h; \quad p_i := \int_{[c_i - \frac{1}{2}, c_i + \frac{1}{2}]} dm_0, \quad i = 1, 2, \cdots, N. \quad (4.2)$$

23
Hence, we have

\[ \sum_{i=1}^{N} |p_i| \leq \int_{[-L,L]} dm_0 \leq M_0. \tag{4.3} \]

Using (4.2), one can easily prove that \( m_0 \) is approximated by

\[ m^N_0(x) := \sum_{j=1}^{N} p_j \delta(x - c_j) \tag{4.4} \]

in the sense of measures. Actually, for any test function \( \phi \in C^0_b(\mathbb{R}) \), we know \( \phi \) is uniformly continuous on \([-L,L]\). Hence, for any \( \eta > 0 \), there exists a \( \delta > 0 \) such that when \( x, y \in [-L,L] \) and \( |x - y| < \delta \), we have \( |\phi(x) - \phi(y)| < \eta \). Hence, choose \( \frac{\delta}{2} < \delta \) and we have

\[
\left| \int_{\mathbb{R}} \phi(x) dm_0 - \int_{\mathbb{R}} \phi(x) dm^N_0 \right| = \left| \int_{[-L,L]} \phi(x) dm_0 - \int_{[-L,L]} \phi(x) dm^N_0 \right| \\
\leq \sum_{i=1}^{N} \int_{(c_i - \frac{\delta}{2}, c_i + \frac{\delta}{2})} (\phi(x) - \phi(c_i)) dm_0 \leq \eta \sum_{i=1}^{N} \int_{(c_i - \frac{\delta}{2}, c_i + \frac{\delta}{2})} |dm_0| \leq M_0 \eta. \tag{4.5} \]

Let \( \eta \to 0 \) and we obtain the narrow convergence from \( m^N_0(x) \) to \( m_0(x) \).

For initial data \( m^N_0(x) \), Theorem 2.1 gives a weak solution \( u^N(x,t) = \sum_{i=1}^{N} p_i G(x-x_i(t)) \), where \( x_i(0) = c_i \) and \( p_i \) are given by (4.2). Moreover, (2.13) holds for \( x_i(t), 1 \leq i \leq N \).

Next, we are going to use some space-time BV estimates to show compactness of \( u^N \). To this end, we recall the definition of BV functions.

**Definition 4.1.** (i). For dimension \( d \geq 1 \) and an open set \( \Omega \subset \mathbb{R}^d \), a function \( f \in L^1(\Omega) \) belongs to \( BV(\Omega) \) if

\[ \text{Tot.Var.}\{f\} := \sup \left\{ \int_{\Omega} f(x) \nabla \cdot \phi(x) dx : \phi \in C^0_c(\Omega; \mathbb{R}^d), ||\phi||_{L^\infty} \leq 1 \right\} < \infty. \]

(ii). (Equivalent definition for one dimension case) A function \( f \) belongs to \( BV(\mathbb{R}) \) if for any \( \{x_i\} \subset \mathbb{R}, x_i < x_{i+1}, \) the following statement holds:

\[ \text{Tot.Var.}\{f\} := \sup_{\{x_i\}} \left\{ \sum_{i} |f(x_i) - f(x_{i-1})| \right\} < \infty. \]

**Remark 4.1.** Let \( \Omega \subset \mathbb{R}^d \) for \( d \geq 1 \) and \( f \in BV(\Omega) \). \( Df := (D_{x_1}f, \ldots, D_{x_d}f) \) is the distributional gradient of \( f \). Then, \( Df \) is a vector Radon measure and the total variation of \( f \) is equal to the total variation of \( |Df| \): \( \text{Tot.Var.}\{f\} = |Df|(\Omega) \). Here, \( |Df| \) is the total variation measure of the vector measure \( Df \) ([11, Definition (13.2)]).

If a function \( f : \mathbb{R} \to \mathbb{R} \) satisfies Definition 4.1 (ii), then \( f \) satisfies Definition (i). On the contrary, if \( f \) satisfies Definition 4.1 (i), then there exists a right continuous representative which satisfies Definition (ii). See [11, Theorem 7.2] for the proof.

Now, we give some space and time BV estimates about \( u^N, \partial_x u^N \), which is similar to [8, Proposition 3.3].

**Proposition 4.1.** Assume initial value \( m_0 \) satisfies (4.1), \( p_i \) and \( c_i, 1 \leq i \leq N \), are given by (4.2) and \( m^N_0 \) is defined by (4.4). Let \( u^N(x,t) = \sum_{i=1}^{N} p_i G(x-x_i(t)) \) be the \( N \)-peakon solution given by Theorem 2.1 subject to initial data \( m^N_0(x,0) = (1-\partial_x x)u^N(x,0) = m_0^N(x) \). Then, the following statements hold.

(i). For any \( t \in [0, \infty) \), we have

\[ \text{Tot.Var.}\{u^N(\cdot,t)\} \leq M_0, \quad \text{Tot.Var.}\{\partial_x u^N(\cdot,t)\} \leq 2M_0 \text{ uniformly in } N. \tag{4.6} \]

(ii).

\[ ||u^N||_{L^\infty} \leq \frac{1}{2} M_0, \quad ||\partial_x u^N||_{L^\infty} \leq \frac{1}{2} M_0 \text{ uniformly in } N. \tag{4.7} \]
(iii). For \( t, s \in [0, \infty) \), we have
\[
\int_{\mathbb{R}} |u_N(x,t) - u_N(x,s)| dx \leq \frac{1}{2} M_0^2 |t-s|, \quad \int_{\mathbb{R}} |\partial_x u_N(x,t) - \partial_x u_N(x,s)| dx \leq M_0^3 |t-s|.
\] (4.8)

(iv). For any \( T > 0 \), there exist subsequences of \( u_N, u_{x_N} \) (also labeled as \( u_N, u_{x_N} \)) and two functions \( u, u_x \) in \( BV(\mathbb{R} \times [0,T]) \) such that
\[
u_N \rightarrow u, \quad u_{x_N} \rightarrow u_x \quad \text{in} \quad L^1_{loc}(\mathbb{R} \times [0,\infty)), \quad (N \rightarrow \infty),
\]
and \( u, u_x \) satisfy all the properties in (i), (ii) and (iii).

**Proof.** See [8, Proposition 3.3]. We remark that the key estimate to prove (4.8) is (2.13).

With Proposition 4.1, we have the following theorem:

**Theorem 4.1.** Let the assumptions in Proposition 4.1 hold. Then, the following statements hold:

(i). The limiting function \( u \) obtained in Proposition 4.1 ((iv)) satisfies
\[
u \in C([0, \infty); H^1(\mathbb{R}) \cap L^\infty(0, +\infty; W^{1,\infty}(\mathbb{R})) \quad (4.10)
\]
and it is a global weak solution of the mCH equation (1.1).

(ii). For any \( T > 0 \), we have
\[
u = (1 - \partial_{xx})u \in M(\mathbb{R} \times [0, T])
\]
and there exists a subsequence of \( \nu_N \) (also labeled as \( \nu_N \)) such that
\[
u_N \rightharpoonup^\ast \nu \quad \text{in} \quad M(\mathbb{R} \times [0, T]) \quad (as \quad N \rightarrow +\infty). \quad (4.11)
\]

(iii). For a.e. \( t \geq 0 \) we have (in subsequence sense)
\[
u_N(\cdot, t) \rightharpoonup^\ast \nu(\cdot, t) \quad \text{in} \quad M(\mathbb{R}) \quad (N \rightarrow +\infty) \quad (4.12)
\]
and
\[
\text{supp}\{\nu(\cdot, t)\} \subset -L - \frac{1}{2} M_0^2 t, L + \frac{1}{2} M_0^2 t, \quad (4.13)
\]

**Proof.** The proof is similar to [8, Theorem 3.4] and we omit it.

**Remark 4.2.** We remark that when \( m_0 \) is a positive Radon measure, \( m \) is also positive. Actually, \( m_0 \in M_+(\mathbb{R}) \) implies that \( p_t \geq 0 \) and \( m_{N,t} \geq 0 \). Therefore, the limiting measure \( m \) belongs to \( M_+(\mathbb{R} \times [0, T]) \).

By the same methods as in [8, Theorem 3.5], we can also show that for a.e. \( t \geq 0 \),
\[
m(\cdot,t)(\mathbb{R}) = m_0(\mathbb{R}), \quad |m(\cdot,t)|(\mathbb{R}) \leq |m_0|(\mathbb{R}). \quad (4.14)
\]
References

[1] R. Camassa, J. Huang, and L. Lee. Integral and integrable algorithms for a nonlinear shallow-water wave equation. *J. Comput. Phys.*, 216(2):547–572, 2006.

[2] R. M. Chen, Y. Liu, C. Qu, and S. Zhang. Oscillation-induced blow-up to the modified Camassa–Holm equation with linear dispersion. *Adv. Math.*, 272:225–251, 2015.

[3] A. Chertock, J.-G. Liu, and T. Pendleton. Convergence of a particle method and global weak solutions of a family of evolutionary PDEs. *SIAM J. Numer. Anal.*, 50(1):1–21, 2012.

[4] A. S. Fokas. The Korteweg-de Vries equation and beyond. *Acta Appl. Math.*, 39(1-3):295–305, 1995.

[5] Y. Fu, G. Gui, Y. Liu, and C. Qu. On the cauchy problem for the integrable modified Camassa–Holm equation with cubic nonlinearity. *J. Differential Equations*, 255(7):1905–1938, 2013.

[6] B. Fuchssteiner. Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation. *Phys. D*, 95(3):229–243, 1996.

[7] Y. Gao, L. Li, and J.-G. Liu. Patched peakon weak solutions of the modified Camassa–Holm equation. *arXiv:1703.07466*, 2017.

[8] Y. Gao and J.-G. Liu. Global convergence of a sticky particle method for the modified Camassa–Holm equation. *SIAM J. Math. Anal.*, 49(2):1267–1294, 2017.

[9] G. Gui, Y. Liu, P. J. Olver, and C. Qu. Wave-breaking and peakons for a modified Camassa–Holm equation. *Comm. Math. Phys.*, 319(3):731–759, 2013.

[10] A. A. Himonas and D. Mantzavinos. The Cauchy problem for the Fokas–Olver–Rosenau–Qiao equation. *Nonlinear Anal.*, 95:499–529, 2014.

[11] G. Leoni. *A first course in Sobolev spaces*, volume 105. American Mathematical Society Providence, RI, 2009.

[12] Y. Liu, P. J. Olver, C. Qu, and S. Zhang. On the blow-up of solutions to the integrable modified Camassa–Holm equation. *Anal. Appl.*, 12(04):355–368, 2014.

[13] P. J. Olver and P. Rosenau. Tri-hamiltonian duality between solitons and solitary-wave solutions having compact support. *Phys. Rev. E*, 53(2):1900, 1996.

[14] Z. Qiao. A new integrable equation with cuspons and w/m-shape-peaks solitons. *J. Math. Phys.*, 47(11):112701–112900, 2006.

[15] Q. Zhang. Global wellposedness of cubic Camassa–Holm equations. *Nonlinear Anal.*, 133:61–73, 2016.