Semigraph Folding Approach for Generalization of Planar Triangulation

K. Thiagarajan1*, J. Padmashree2 and Ponnammal Natarajan3

1Department of Mathematics, P.S.N.A. College of Engineering and Technology, Dindugul - 624622, Tamil Nadu, India; vidhyamannan@yahoo.com
2Department of Mathematics, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India; padmasathiru@gmail.com
3Anna University, Chennai-600025, Tamil Nadu, India

Abstract
We applied triangulation in the cycle graphs C_n, $n \geq 3$ and generalized to n – transformation, also we observed that on splicing and folding introduced by Tom Head and E. El-Kholy & co. respectively in C_{2m}, $m \geq 2$ and it’s generalization leads to the resultant graph is $P_2, G_3^0, G_3^1, ..., G_3^{n-1}$ whereas on splicing and semigraph folding introduced by S. Jeyabharathi & Co. in C_{2m-1}, $m \geq 2$ and its generalization leads to the resultant semigraph with and an edge and one semi edge.

Keywords: Folding and Semigraph Folding, Planar Trinagulation, Splicing, Semigraph

1. Introduction
The concept of splicing system introduced by Tom Head has become a new interesting area on DNA molecule and the graph splicing scheme of Rudolf Freund with semigraphs introduced by E. Sampath kumar representing the spliced semigraph which is more powerful than graph. This presents communication volume accurately. Semigraph model will eventually replace graph partitioning in scientific computing. Here we apply the theory of splicing system and folding techniques in the planar triangulation where the planar triangulations on the cycle graph is plane graphs in which every face is a triangle. Triangulation today is used for many purposes, including surveying, navigation, metrology, astrometry, binocular vision, model rocketry and gun direction of weapons. In computational geometry, polygon triangulation is the decomposition of a polygonal area (simple polygon) into a set of triangles, i.e., finding a set of triangles with pair wise non-intersecting interiors whose union is polygonal area.

2. Preliminaries

2.1 Splicing System
Splicing is a model of the recombinant behaviour of double stranded molecules of DNA under the action of restriction enzymes and ligases. A single stranded of DNA is an oriented sequence of nucleotides A, C, G & T but since A can bind to T & G to C, two strands of DNA bind together to form a double stranded DNA molecule, if they have matching pairs of nucleotides when reading the second one along the reverse orientation.
2.2 Graph
A graph over \(V \) is a triple \((N, E, L)\) where \(N \) is the set of nodes, \(E \) is the set of edges of the form \((n, m)\) with \(n, m \in N, n \neq m \) and \(L \) is the function from \(N \) to \(V \) assigning a label from \(V \) to each node of \(N \). The set of all graphs over \(V \) is denoted by \(\gamma(V) \).

2.3 SemiGraph
A semigraph \(G \) is a pair \((V, X)\) where \(V \) is a non-empty set whose elements are called vertices of \(G \) and \(X \) is a set of \(n \)-tuples called edges of \(G \) of distinct vertices for various \(n \geq 2 \), satisfying the following conditions:

S.G-1 Any two edges have at most one vertex in common.
S.G-2 Two edges \((u_1, u_2, u_3, ..., u_n)\) and \((v_1, v_2, v_3, ..., v_m)\) are considered to be equal if and only if (i) \(m = n \) and (ii) either \(u_i = v_j \) or \(u_i = v_{n-j+1} \) for \(1 \leq i \leq n \). Thus the edges \((u_1, u_2, u_3, ..., u_n)\) are the same as the edge \((u_n, u_{n-1}, ..., u_1)\).

2.4 Semi Vertices
Let \(G \) be a graph, when splicing \(G \), we obtain new vertices which are called as semi vertices denoted by \(V' \), where \(|V'|=p'\).

2.5 Semi Edges
Let \(G \) be a graph when splicing \(G \), we obtain new edges by decomposition of edges which are called as semi edges denoted by \(E' \), where \(|E'|=q'\).

2.6 Spliced SemiGraph map
Let \(SSG_1 = (V_1, E_1) \) and \(SSG_2 = (V_2, E_2) \) be two Spliced Semigraphs and a map \(f : SSG_1 \to SSG_2 \) is said to be a spliced semigraph map, if

i. for each vertex \(v \in V_1 \), \(f(v) \) is a vertex in \(V_2 \),
ii. for each semi vertex \(v' \in V_1 \), \(f(v') \) is a vertex in \(V_2 \),
iii. for each edge \(e \in E_1 \), \(\dim(f(e)) \leq \dim(e) \),
iv. for each semi edge \(e' \in E_1 \), \(\dim(f(e')) \leq \dim(e') \).

where \(V_1 \) and \(V_2 \) are the set of vertices and semi vertices of the Spliced Semigraphs \(SSG_1 \) and \(SSG_2 \) respectively. \(E_1 \) and \(E_2 \) are the set of edges and semi edges of the Spliced Semigraphs \(SSG_1 \) and \(SSG_2 \) respectively.

2.7 Semigraph Folding
A Spliced Semigraph map \(f : SSG_1 \to SSG_2 \) a semigraph folding, if and only if \(f \) maps vertices to vertices, semi vertices to semi vertices, edges to edges and semi edges to semi edges.

Example for semigraph folding:
The graph \(G \) [fig 1] represents 1-Cut splicing \((u_1)\) with the semi vertices \(\{1', 2', 3', 4', 5', 6'\}\) and the semi edges \(\{(1, 1'), (2, 2'), (2, 3'), (5, 5'), (5, 4'), (4, 6')\}\). Here \(|V'|=6\) and \(|E'|=6\).

On splicing, the graph \(G \) forms 2 bipartite semigraphs \(G_1 \) & \(H_1 \) [Fig 2]. Further on applying sequence of semigraph folding on either \(G_1 \) or \(H_1 \), the resultant semigraph with one edge and one semiedge. [fig 3]

\[\text{Figure 1. Graph G with 1-Cut splicing (}u_1\text{)}\]

\[\text{Figure 2. Bipartite semigraphs.}\]

\[\text{Figure 3. Semigraph folding on G_1 results in G_3.}\]
2.8 SemiGraph (SG) notation

The semigraph SG is denoted by quadruple \(SG = (V, E, V', E') \).

where
- \(V \) denotes the set of vertices in the semigraph SG
- \(E \) denotes the set of edges in SG
- \(V' \) denotes the set of semi vertices in SG and
- \(E' \) denotes the set of semi edges in SG.

Example for Semigraph (SG) Notation:
Form Fig. 3, the semigraph \(G_3 \) is denoted by quadruple \(G_3 = ({1, 6}, \{(1, 6)\}, \{1', \}, \{(1,1')\}) \)

2.9 \(\eta(SG) \)

The number of vertices, edges, semi vertices and semi edges in a semigraph SG is denoted by quadruple \(\eta(SG) = (\eta(V), \eta(E), \eta(V'), \eta(E')) \)

where
- \(\eta(V) \) denotes the number of vertices in SG.
- \(\eta(E) \) denotes the number of edges in SG
- \(\eta(V') \) denotes the number of semi vertices in SG and
- \(\eta(E') \) denotes the number of semi edges in SG.

Example for \(\eta(SG) \):
Form Fig. 3, the number of vertices, edges, semi vertices and semi edges in a semigraph \(G_3 \) is denoted by quadruple \(\eta(G_3) = (2, 1, 1, 1) \).

3. Generating triangulation in \(C_n \)

3.1 Algorithm for generating triangulation in \(C_n \) graph

Step 1: Take a cycle graph ‘G’ with ‘n’ vertices \((v_1, v_2, v_3, …, v_n) \), \(n \geq 3 \). Let it be denoted by \(G_n^0 \).

Step 2: Introduce a vertex ‘vn+1’ inside \(G_n^0 \) and connect the vertex ‘vn+1’ to all other vertices by an edge in \(G_n^0 \). The resultant graph is denoted by \(G_n^1 \). And \(T_1 \) is the transformation of generating triangulation from the graph \(G_n^0 \) to \(G_n^1 \).

Step 3: Introduce vertices \(v_{n+2}, v_{n+3}, v_{n+4}, …, v_{2n+1} \) in each \(C_n \) embedded in \(G_n^1 \) and connect the corresponding vertices \(v_{n+2}, v_{n+3}, v_{n+4}, …, v_{2n+1} \) to all 3 vertices in the embedded \(C_n \) in which it lies in that region. The resultant graph is denoted by \(G_n^2 \). And \(T_2 \) is the transformation of generating triangulation from the graph \(G_n^1 \) to \(G_n^2 \).

Step 4: Repeat Step 3 to required number of times.

Note: On repeating step 4 further to infinite and by introducing of new vertex \((v) \) in each \(C_n \) (a triangle) embedded will lie on the edges at some point.

4. Working model of the proposed algorithm

Let \(G_j^k \), \(j \geq 3 \), \(k \geq 0 \) be the denotation of the Cycle graph (\(C_n \)) and its generalization, \(j \) indicates the number of vertices in the cycle graph and \(k \) indicates the generalization of each stages which takes the value from 0,1, 2, 3, … .

\(C_j \) (Triangle) and its generalization:

\(C_4 \) (Square) and its generalization:

\(C_5 \) (Pentagon) and its generalization:

\(C_6 \) (Hexagon) and its generalization:
Semigraph Folding Approach for Generalization of Planar Triangulation

4.1 Cycle graph \((C_n)\), \(n \geq 3\) Versus number of vertices

The number of vertices in each triangulation of \(C_n\), \(n \geq 3\) is given in Table 1.

Cycle graph \((C_n)\), \(n \geq 3\) Vs number of vertices	\(G_n^0\)	\(G_n^1\)	\(G_n^2\)	\(G_n^3\)	\(G_n^4\)
\(C_3\)	3	4	7	16	43
\(C_4\)	4	5	9	21	57
\(C_5\)	5	6	11	26	71
\(C_6\)	6	7	13	31	85
\(C_7\)	7	8	15	36	99
...

Note: In Table I, the denotation of \(n, n_1, n_2, n_3, \ldots\) indicates the number of vertices in each cycle graph and its generalization.

On applying triangulation for cycle graph with \(n\) vertices and in its generalization in each triangulation is observed as recurrence relation

\[n_k = n_{k-1} + (n \times 3^{k-2}), \quad k = 2, 3, \ldots \text{ for } n_1 = n + 1. \]

4.2 Cycle graph \((C_n)\) Versus number of \(C_3\)

The number of \(C_3\) embedded in each triangulation is given in Table 2.

Cycle graph \((C_n)\) Vs number of \(C_3\)	\(n\)	\(G_n^0\)	\(G_n^1\)	\(G_n^2\)	\(G_n^3\)	\(G_n^4\)	
\(C_3\)	3	1	1	9	27	81	
\(C_4\)	4	0	4	12	36	108	324
\(C_5\)	5	0	5	15	45	135	405
\(C_6\)	6	0	6	18	54	162	486
\(C_7\)	7	0	7	21	63	189	567
\(C_8\)	8	0	8	24	72	216	648
\(C_9\)	9	0	9	27	81	243	729
\(C_{10}\)	10	0	10	30	90	270	810
...

From Table 2, \(I_i, i = 0, 1, 2, 3, \ldots\) denotes the number of triangles in each cycle graph and its generalization.

Thus, for any cycle graph with \(n\) vertices \(\forall n \geq 3\), the number of \(C_3\) embedded in each triangulation is separated as Case 1 and Case 2.

Case 1: When \(n = 3\), the number of \(C_3\) embedded in each triangulation is 1, 3, 9, 27, 81,\ldots

Case 2: When \(n \geq 4\), the number of \(C_3\) embedded in each triangulation is 1, 3, 9, 27, 81,\ldots

4.3 Folding on \(C_{2m}\), \(m \geq 2\) and its Generalization

Let \(f_i, i \geq 1\) be the folding on the graphs.

Table III shows the folding on \(C_{2m}\), \(m \geq 2\) and its generalization.

4.3.1 Proposition

For \(C_4\), the number of folding is 2.
Table 3. Folding on C_{2m}, $m \geq 2$ and its generalization

G_{2m}	m	n	Graph	Applying folding techniques on graph	Resultant graph after folding
G^n_{2m}	2	0	G^0_{4}	f_1, f_2	P_2 (Path of length 1)
	1		G^1_{4}	f_1, f_2	C_3 (which is G^0_{3})
	2		G^2_{4}	f_1, f_2	G^1_{3}
	3		G^3_{4}	f_1, f_2	G^2_{3}
	...			f_1, f_2	...
	n		G^n_{4}	f_1, f_2	G^{n-1}_{3}
3	0		G^0_{6}	f_1, f_2, f_3	P_2 (Path of length 1)
	1		G^1_{6}	f_1, f_2, f_3	C_3 (which is G^0_{3})
	2		G^2_{6}	f_1, f_2, f_3	G^1_{3}
	3		G^3_{6}	f_1, f_2, f_3	G^2_{3}
	...			f_1, f_2, f_3	...
	n		G^n_{6}	f_1, f_2, f_3	G^{n-1}_{3}
4	0		G^0_{8}	f_1, f_2, f_3	P_2 (Path of length 1)
	1		G^1_{8}	f_1, f_2, f_3	C_3 (which is G^0_{3})
	2		G^2_{8}	f_1, f_2, f_3	G^1_{3}
	3		G^3_{8}	f_1, f_2, f_3	G^2_{3}
	...			f_1, f_2, f_3	...
	n		G^n_{8}	f_1, f_2, f_3	G^{n-1}_{3}

...
Proof:
From Appendix 5.1, it is evident that the proposition holds true.

4.3.2 Proposition

For every C_{2n}, $n \geq 3$, the number of folding is 3.

Proof:
From Appendix 5.2, it is evident that the proposition holds true.

4.4 Folding on C_{2m-1}, $m \geq 2$ and its Generalization

Let $f_i, i \geq 1$ be the folding on the graphs and $S_i, i \geq 1$ be the semigraph splicing.

Table 4 shows the folding on C_{2m+1}, $m \geq 2$ and its generalization.

Note: From Table 4, the resultant semigraph after splicing and folding $\eta(SG)$ is $(2,1,1,1)$ which is equivalent to Fig. i [From Appendix 5.3]

4.4.1 Proposition

The number of folding on C_{2m-1}, $m \geq 2$ and its generalization is increased by 2.

Proof:
From Appendix 5.4, it is evident that the folding f_1 is used in Fig.j whereas f_1, f_2 and f_3 in Fig.k.

Also from Appendix 5.5, the folding f_1 and f_2 is used in Fig.l and the foldings f_1, f_2, f_3 & f_4 in Fig.m.

Thus the number of folding is increased by 2 on C_{2m-1}, $m \geq 2$ and its generalization.

4.4.2 Proposition

The number of folding techniques applied on each C_{2m-1}, $m \geq 2$ and its generalization is increased by 1 from one cycle graph to another.

Proof:
The folding f_i is used in Fig.j of Appendix 5.4 whereas the folding f_1 and f_2 in Fig.l of Appendix 5.5.

Also the foldings f_1, f_2 and f_3 is used in Fig.k of Appendix 5.4 whereas the folding f_1, f_2, f_3 & f_4 in Fig.m of Appendix 5.5. Thus the number of folding is increased by 1 from one cycle graph and it’s generalization to another.

5. Appendix

5.1 Folding on C_4

On applying folding technique f_1 & f_2 on each $G_0^0, G_1^1, G_2^2, G_3^3, \ldots$ the corresponding resultant graph is P_2 (Path of length 1) $G_0^0, G_1^1, G_2^2, \ldots$ [From Fig. a, Fig. b, Fig. c, Fig. d]
Table 4. Folding on C_{2m+1}, $m \geq 2$ and its generalization

C_{2m+1}, $m \geq 2$ and its generalization	n	Graph	Applying splicing	Applying folding	Sequence of applying splicing and folding in graph	Resultant semigraph after splicing η(SG)
G_3^n	0	G_3^0	S_1	f_1	S_1 f_1	(2,1,1,1)
	1	G_3^1	S_1, S_2	f_1, f_2, f_3	S_1 f_1, S_2 f_2, f_3	(2,1,1,1)
	2	G_3^2	S_1, S_2, S_3	f_1, f_2, f_3, f_5	S_1 f_1, S_2 f_2, S_3 f_3, f_5	(2,1,1,1)
	3	G_3^3	S_1, S_2, S_3, S_4	f_1, f_2, f_3, f_4, f_6	S_1 f_1, S_2 f_2, S_3 f_3, S_4 f_4, f_6	(2,1,1,1)
	(2,1,1,1)
	n	G_3^n	$S_1, S_2, S_3, ..., S_{m+1}$	$f_1, f_2, f_3, ..., f_{2n+1}$	S_1 f_1 S_2 f_2 S_3 f_3 S_{m+1} f_{2n+1}	(2,1,1,1)
G_5^n	0	G_5^0	S_1	f_1, f_2	S_1 f_1, f_2	(2,1,1,1)
	1	G_5^1	S_1, S_2	f_1, f_2, f_3, f_4	S_1 f_1, f_2, S_2 f_3, f_4	(2,1,1,1)
	2	G_5^2	S_1, S_2, S_3	f_1, f_2, f_3, f_4, f_5	S_1 f_1, f_2, S_3 f_3, f_4, f_5	(2,1,1,1)
	3	G_5^3	S_1, S_2, S_3, S_4	$f_1, f_2, f_3, f_4, f_5, f_6$	S_1 f_1, S_3 f_3, S_4 f_4, f_6	(2,1,1,1)
	(2,1,1,1)
	n	G_5^n	$S_1, S_2, S_3, ..., S_{m+1}$	$f_1, f_2, f_3, ..., f_{2n+2}$	S_1 f_1 S_2 f_2 S_{m+1} f_{2n+2}	(2,1,1,1)
G_7^n	0	G_7^0	S_1	f_1, f_2, f_3	S_1 f_1 f_2 f_3	(2,1,1,1)
	1	G_7^1	S_1, S_2	f_1, f_2, f_3, f_5	S_1 f_1, f_2, S_2 f_3, f_5	(2,1,1,1)
	2	G_7^2	S_1, S_2, S_3	f_1, f_2, f_3, f_4, f_5	S_1 f_1, f_2, S_3 f_3, f_4, f_5	(2,1,1,1)
	3	G_7^3	S_1, S_2, S_3, S_4	$f_1, f_2, f_3, f_4, f_5, f_6$	S_1 f_1, S_3 f_3, S_4 f_4, f_6	(2,1,1,1)
	(2,1,1,1)
	n	G_7^n	$S_1, S_2, S_3, ..., S_{m+1}$	$f_1, f_2, f_3, ..., f_{2n+3}$	S_1 f_1 S_2 f_2 S_{m+1} f_{2n+3}	(2,1,1,1)
	(2,1,1,1)
5.2 Folding on C_6:

On applying folding technique f_1, f_2, & f_3 on G_0^0, G_6^1, G_6^2, G_6^3,, the corresponding resultant graph is P_2 (Path of length 1), G_0^3, G_3^1, G_3^2, [From Fig. e, Fig. f, Fig. g, Fig. h]

5.3 Folding on G_n^e, $n = 0, 1, 2, 3, ...$

In Fig. j & Fig.k, ‘s’ indicates the splicing along the edge and ‘r’ is the semivertices (r_1 & r_2) after applying splicing along the edge.

5.4 Folding on G_n^e, $n = 0, 1, 2, 3, ...$

In Fig.l & Fig.m,’s’ indicates the splicing along the edge and ‘r’ is the semivertices (r_1 & r_2) after applying splicing along the edge.
On applying splicing rule \(S_1 \) and folding technique \(f_1 \) & \(f_2 \) on \(G_5^0 \) resulting to a semigraph \(\eta(G_5^0) = (2,1,1,1) \). [From Fig. 1]

On applying splicing rule \(S_1, S_2 \) simultaneously and folding technique \(f_1, f_2, f_3 \) & \(f_4 \) on \(G_5^1 \) resulting to a semigraph \(\eta(G_5^1) = (2,1,1,1) \). [From Fig.m]

6. Acknowledgement

The authors would like to thank Professor E.Sampath Kumar Acharya and Professor L.Pushpalatha, University of Mysore, Mysore, for their initiative ideas and fruitful discussions with respect to the paper’s contribution.

7. References

1. El-Kholy E, El-Esawy A. Graph Folding of Some Special Graphs. Journal of Mathematics and Statistics. 2005; 1(1):66–70.

2. Jeyabharathi S, Thiagarajan K, Padmashree J, Sinthanai Selvi S. Semigraph Structure on DNA Splicing System, 2011 Sixth International Conference in Bio-Inspired Computing: Theories and Applications, IEEE. 2011. p. 182–7.

3. Sampathkumar E. Semigraphs and their Applications, Report on the DST project. 2000.

4. Brinkmann G, McKay BD. Fast generation of planar graphs. MATCH Commun Math Comput Chem. 2007; 58: 323–57.

5. Gnanamalar David K, Subramanian KG, Gnanaraj Thomas D. A Note on Graph Splicing Languages. Lecture Notes in Computer Science, Springer-Verlag. 2001; 2340:381–90.

6. Head T. Formal Language Theory and DNA An analysis of the generative capacity of recombinant behaviors. Bulletin of Mathematical Biology. 1987; 49:735–59.

7. Padmashree J, Thiagarajan K, Kameshwari M, Jeya Bharathi S. DNA Splicing System through semigraph. Proc International Conference on Emerging Trends in Mathematics and Computer Applications, India. 2010. p. 75–8.

8. Jonoska N. 3D DNA Patterns and Computation. Proc Molecular Computing, India. 1998; 20–32

9. Freund R. Splicing Systems on Graphs. Proc Intelligence in Neural and Biological Systems, IEEE Press. 1995; 189–94.