AN ETHNOBOTANICAL STUDY OF WILD MEDICINAL PLANTS USED BY MIGRATORY SHEPHERDS – A TRIBAL COMMUNITY OF WESTERN HIMALAYAS

RADHA1*, PURI S2, KUMAR S2

1Department of Botany, School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India. 2Department of Botany, College of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh, India.

Email: radhuchauhan7002@gmail.com

Received: 31 December 2018, Revised and Accepted: 21 February 2019

ABSTRACT

Objectives: Migratory shepherds of Kinnaur, Shimla, and Sirmour districts in Himachal Pradesh of the western Himalayas have rich traditional knowledge of medicinal plants and its uses, in this respect; an ethnobotanical survey was carried out from 2017 to 2018.

Methods: The required information on ethnomedicines used by tribal migratory shepherds was collected through personal field visits, interview method and using a pretested questionnaire.

Results: It was observed that in all 78 species were used by shepherds en route from high hills to low hills. In high hills 35 species, in mid hills 20 species, and low hills 23 species were found to be used as ethnomedicine source.

Conclusion: This study shows that shepherds in tribal areas are highly dependent on ethnobotanical remedies, which evolved over generations of experience and practices, for health care. The common diseases were treated by ethnomedicinal plants such as cough, cold, body pain, Skin infection, wounds, diarrhoea, respiratory problems, and sunburn. The collected detailed information on the list of plants and their therapeutic practices among tribal migratory shepherds may be helpful to improve the future pharmaceutical applications.

Keywords: Ethnomedicines, Shepherds, Livestock, Biodiversity.

© 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2019.v12i4.31130

INTRODUCTION

The Indian Himalayan region is characterized by its unique ecosystem with a wide range of climates and habitat types which supports different flora and fauna [1]. The Himalaya Hotspot is home to the world’s highest mountains. The mountains of Himalaya rise abruptly, resulting in a variety of ecosystems [2]. Himachal Pradesh, a North Indian state, is located in the western part of the Himalaya. The state has a wide geographical area (55,673 km²) and altitudinal variation (350–7000 m asml) with a rich assortment of biotic components [3]. Himachal Pradesh has a forest cover of 22% and rich in medicinal plant species. The plant medications of inhabitants, handed down by word of mouth from one generation to the next generation, gradually became part of the knowledge of ancient civilization [4-8]. Majority of the rural societies possess significant traditional knowledge of natural resources, which they have inherited from their forefather. They closely depend on this knowledge for a variety of reasons related to the social order, health care, economy, shelter, food, etc. However, if the efforts are not made with instant effect, the rich traditional knowledge possessed by tribal society will diminish soon. This calls for an urgent need to document ethnomedical plant species. Ethnobotanical information is already given by many workers in different districts of Himachal Pradesh such as Lahaul and Spiti, Chamba, Mandi, and Kinnaur [9-13]. Moreover, Himachal Pradesh has led to tribal ways of life, adherence to the primitive customs and myths and traditions representing on enormous and difficult terrain of scattered human settlement [14]. The present study is an effort to enhance such surveys and make an addition to utilization of some of the wild medicinal plant species by tribal migratory shepherds which are not recorded earlier from the studied sites. The ethnobotanical information on medicinal plant species of the studied area is expected to provide new dimension’s forever expanding the pharmaceutical industry.

METHODS

Himachal Pradesh, a North Indian state, is situated in the heart of Western Himalaya and has a varied geographical grouping, mosaic sociocultural diversity and huge wealth of natural resources [15,16]. The present study is undertaken in Himachal Pradesh situated between 75°45’55”–79°04’20”E longitude and 30°22’40”–33°12’40”N latitude. Physiographically, the state consists of three distinct regions outer Himalaya, mid-Himalaya, and greater Himalaya. The outer Himalaya, also called Shivalik hills, ranges from 350 to 1500 amsl. The mid hills cover an area up to 3500 m. The greater Himalaya also called a high altitude alpine zone generally starts from an elevation of 3510m and above. It includes higher altitude areas of Kullu, Kinnaur, Lahaul, Spiti, and Chamba districts. Due to diverse ecological conditions and altitudinal differences, the state is rich in plant species, which includes around 3400 species of flowering plants ranging from alpine to tropical zone [1].

Kinnour district of Himachal Pradesh is well known for migratory shepherding, where the shepherds move from their places to low hills on a set route to enter sites in Shimla and Sirmour districts. The present study documents the use of ethnomedicines used by migratory shepherds of district Kinnour Himachal Pradesh. A total of five field surveys were carried out taking into account the migratory route of the shepherds from high hills to low hills. In the higher reaches of Kinnour district, the Kinnuare (shepherds) started the movement from five different villages of Kinnour and these were Kamru, Sangla, Baseri, Rackcham, and Chitkul. Besides, the place of origin of shepherds, surveys were done for four other places, namely – Chopal (mid hills), Churdhar (mid hills), Remulaji (low hills), and Poanta-Sahib (low hills). These four places were their part of the migratory route. The migratory shepherd’s groups were selected randomly for an interview during field visits.
Shepherds’ migration started from Kamru (2700 m), Sangla (2600 m), Batseri (2700 m), Rakchham (3100 m), and Chitkul (3450 m) in July. These originated sites of migratory shepherds located at high altitude remain cutoff from the rest of the world due to heavy snowfall during winters. The information on ethnobotanical medicines was collected using a pre-tested questionnaire, interview, through participatory discussion and observation from July 2017 to October 2018. The specimens of ethnobotanical medicines being used by migratory shepherds for their health care were collected, dried, and mounted on herbarium sheets, with label information describing when and where they were collected. Plants were identified either in the field itself or with the help of experts from Botanical Survey of India (BSI) Dehradun, Uttarakhand and Forest Research Institute (FRI) Dehradun, Uttarakhand. Vouchers of plants were places in the herbarium of Shoolini University, Solan [17].

RESULTS

Harsh environmental conditions cause seasonal migration of shepherds from high hills to low hills in Himachal Pradesh (Fig. 1). Seasonal migration is a traditional process in the tribes of the Himalayan region. It was observed that the majority of shepherds start their migration from their villages (Fig. 2) in July. However, a few also migrate in August and September, but there is no migration as the winters sets in. The migratory shepherds move in a group of their family members. The

S. No.	Particulars	Study villages							
		Kamru	Sangla	Batseri	Rakchham	Chitkul			
1.	Altitude (m)	2700 m	2600 m	2700 m	3100 m	3450 m			
2.	Group size (No.)	5	6	6	5	5			
3.	Average family income (Rs., Lakh/annum)	3	2	4	2	3			
4.	Horses (No.)	2	2	4	2	3			
5.	Dogs (No.)	2	3	4	2	3			
6.	Flock size (sheep and goats)	654	712	990	640	780			
S. No.	Botanical name	Family	Common name	Flowering and Fruiting period	Parts used	Habit	Voucher specimen number	Ailments/diseases treated	Ethnobotanical Uses
-------	----------------	--------	-------------	-------------------------------	------------	-------	-------------------------	--------------------------	------------------------
1	Abies spectabilis (D.Don.) Spach.	Pinacea	Kolroi, Tosh, Talispatra	April–May, Cones ripen during September–October May–July	Leaves	Tree	SUBMS/BOT-431	Asthma, Fever, Bronchitis	Juice of leaves is used.
2	Asparagus filcinus D. Don.	Asparagaceae	Chiriyakhana, Sahasisuli, Sharanoi Satyanasali, Bharband	Throughout the year	Whole part	Herb	SUBMS/BOT-388	Malaria	The whole plant is used to make a tea and as much tea as possible is drunk until symptoms disappear. Whole plant is used.
3	Argemone mexicana L.	Papaveraceae	Satyanashi, Bharband	Throughout the year	Whole part	Herb	SUBMS/BOT-455	High Blood Pressure, Body pain, Respiratory infection	Fruits are edible and highly nutritious. Roots decoction is given in jaundice. Decoction of rhizome prescribed to cure cold and joint pains. Leaves and flowers used for fever. Seeds mixed with Cynodon dactylon and paste prepared and used on the fractured part then covered with the bark of Betula utilis.
4	Achillea millefolium L.	Asteraceae	Bhutalesi	June–December	Whole part	Herb	SUBMS/BOT-378	Bone fracture	Juice of roots is used.
5	Berberis lycium Royle.	Berberidaceae	Karmashal	March–July	Fruits, roots	Shrub	SUBMS/BOT-659	Nutritious for health, Jaundice	Fruits are edible and highly nutritious. Roots decoction is given in jaundice. Decoction of rhizome prescribed to cure cold and joint pains. Leaves and flowers used for fever. Seeds mixed with Cynodon dactylon and paste prepared and used on the fractured part then covered with the bark of Betula utilis.
6	Bergenia ciliate (Haw.) Sternb.	Saxifragaceae	Pashanbhed	June–August	Rhizomes, leaves, flowers	Herb	SUBMS/BOT-352	Cold, Joint pains, Fever	Juice of whole grass is used.
7	Betula utilis D. Don.	Betulaceae	Bhojpatra	May–October	Seeds	Tree	SUBMS/BOT-387	Urinary infections, Dysentery, Sunburn	Seeds are used for the treatment of urinary infections. The juice of the roots is used in the treatment of dysentery. The juice of the stem is applied to sunburn. Juice of tubers and leaves is used.
8	Celtis tetrandra Roxb.	Ulmaceae	Khirk	February–April	Seeds	Tree	SUBMS/BOT-378	Indigestion	Juice of whole grass is used.
9	Cannabis sativa L.	Cannabaceae	Bhang	June–September	Leaves	Herb	SUBMS/BOT-658	Abdominal pain	Leaves of Cannabis sativa burn over flame and smoke is used for abdominal pain.
10	Cynodon dactylon L. Pers.	Poaceae	Doob, Durva	Throughout the year	Whole part	Grass	SUBMS/BOT-338	Headache, Skin allergy, Cough, Cold, High Blood Pressure	Juice of whole grass is used.
11	Chenopodium album L.	Chenopodiaceae	Bathua	June–September	Seeds, roots, stem	Herb	SUBMS/BOT-660	Urinary infections, Dysentery, Sunburn	Seeds are used for the treatment of urinary infections. The juice of the roots is used in the treatment of dysentery. The juice of the stem is applied to sunburn.
12	Dioscorea deltoidea Wall. Ex Grisdb.	Dioscoreaceae	Singli mingli	July–October	Tubers, leaves	Climber	SUBMS/BOT-661	Skin allergy, Constipation, wound healing, Burns Jaundice	Juice of tubers and leaves is used.
13	Euphorbia hirta L.	Euphorbiaceae	Duddhi	November–April.	Stem, leaves	Herb	SUBMS/BOT-662	Cold, Coughs, Asthma, Respiratory problems	Juice of stem and leaves is used.
14	Ephedra gerardiana Wallich ex C. A. Meyer.	Ephedraceae	Rachi, Budagur, Ghhe	May–September	Whole part	Shrub	SUBMS/BOT-422		Tea of leaves is used.
S. No.	Botanical name	Family	Common name	Flowering and Fruiting period	Parts used	Habit	Voucher specimen number	Ethnobotanical Uses	
-------	--------------------------------	-----------------------	-------------	------------------------------	----------------	-----------	------------------------	---	
15	Ficus religiosa L.	Moraceae	Peepal	November–February	Leaves, bark	Tree	SUBMS/BOT-361	Powder of dried bark and needles is used.	
16	Azadirachta indica L.	Meliaceae	Neem	April–September	Leaves, fruits	Shrub	SUBMS/BOT-330	Bark, leaves, and seeds are used.	
17	Juniperus communis L.	Cupressaceae	Bethar, Pethri	March–September	Bark, needles	Shrub	SUBMS/BOT-366	Juice of bark and needles is taken internally.	
18	Heracleum lanatum Michx.	Apiaceae	Patrala, Padara	June–July	Roots	Herb	SUBMS/BOT-399	Juice of bark and needles is taken orally.	
19	Hymalanthus trifoliatus	Urticaceae	Kandali	July–September	Leaves, shoots	Herb	SUBMS/BOT-357	Juice of shoots and roots is used.	
20	Hymalanthus trifoliatus	Urticaceae	Kandali	July–September	Leaves, shoots	Herb	SUBMS/BOT-357	Juice of shoots and roots is used.	
21	Rubus ellipticus Sm.	Rosaceae	Anehhu, Hinsalu, Aakhe	February and April	Fruits	Shrub	SUBMS/BOT-665	Juice of roots is taken orally.	
22	Solanum nigrum L.	Solanaceae	Kantkari	April–August	Fruits	Shrub	SUBMS/BOT-666	Juice of fruits is used.	
23	Valeriana officinalis L.	Caprifoliaceae	Muskbala	March–April	Leaves, roots	Herb	SUBMS/BOT-334	Leaves and seeds are considered a popular remedy of fever.	
24	Valeriana officinalis L.	Caprifoliaceae	Muskbala	March–April	Leaves, roots	Herb	SUBMS/BOT-334	Leaves and seeds are considered a popular remedy of fever.	
25	Valeriana officinalis L.	Caprifoliaceae	Muskbala	March–April	Leaves, roots	Herb	SUBMS/BOT-334	Leaves and seeds are considered a popular remedy of fever.	
26	Valeriana officinalis L.	Caprifoliaceae	Muskbala	March–April	Leaves, roots	Herb	SUBMS/BOT-334	Leaves and seeds are considered a popular remedy of fever.	
27	Thalictrum aquilegifolium L.	Rosaceae	Thaliq	June–July	Roots, shoots	Herb	SUBMS/BOT-352	Juice of leaves is used.	
28	Thalictrum aquilegifolium L.	Rosaceae	Thaliq	June–July	Roots, shoots	Herb	SUBMS/BOT-352	Juice of leaves is used.	
29	Thalictrum aquilegifolium L.	Rosaceae	Thaliq	June–July	Roots, shoots	Herb	SUBMS/BOT-352	Juice of leaves is used.	
30	Thalictrum aquilegifolium L.	Rosaceae	Thaliq	June–July	Roots, shoots	Herb	SUBMS/BOT-352	Juice of leaves is used.	
31	Thalictrum aquilegifolium L.	Rosaceae	Thaliq	June–July	Roots, shoots	Herb	SUBMS/BOT-352	Juice of leaves is used.	
32	Thalictrum aquilegifolium L.	Rosaceae	Thaliq	June–July	Roots, shoots	Herb	SUBMS/BOT-352	Juice of leaves is used.	
33	Thalictrum aquilegifolium L.	Rosaceae	Thaliq	June–July	Roots, shoots	Herb	SUBMS/BOT-352	Juice of leaves is used.	
34	Thalictrum aquilegifolium L.	Rosaceae	Thaliq	June–July	Roots, shoots	Herb	SUBMS/BOT-352	Juice of leaves is used.	
35	Thalictrum aquilegifolium L.	Rosaceae	Thaliq	June–July	Roots, shoots	Herb	SUBMS/BOT-352	Juice of leaves is used.	

Table 2: (Continued)
S. No.	Botanical name	Family	Hindi name	Flowering and fruiting	Parts used	Voucher no.	Ailments/diseases treated
1	Bergenia ciliata (Haw.)	Saxifragaceae	Pashanbhed	June–August	Rhizomes, leaves, flowers	SUBMS/BOT-667	Cold, Joint pains, Fever
2	Chenopodium album L.	Chenopodiaceae	Bathua	June–September	Seeds, Roots	SUBMS/BOT-668	Urinary infections, dysentery, sunburn, Urti, eruptions, Skin allergy
3	Commelina benghalensis L.	Commelinaceae	Kana, Kankawa	Throughout the year	Leaves, Roots, Flowers	SUBMS/BOT-669	Diarrhea, Stomach disorder, Eye problems
4	Cannabis sativa L.	Cannabaceae	Bhang	June–September	Leaves	SUBMS/BOT-348	Abdominal pain
5	Dioscorea deltoidea Wall.	Dioscoreaceae	Singli mingli	July-October	Tubers, Leaves, Rhizomes	SUBMS/BOT-353	Skin allergy, Constipation, Wound healing, Burns
6	Hypericum oblongifolium Choisy.	Hypericaceae	Basant	May–September	Roots	SUBMS/BOT-345	Urinary infections
7	Hedychium spicatum Sm.	Zingiberaceae	Kapurkachri	July–October	Rhizomes	SUBMS/BOT-384	Cough, Asthma, Headache, Skin infections
8	Lyonia ovalifolia (Wall.)	Ericaceae	Ayar, Airan Alhan	April–September	Leaves, Buds	SUBMS/BOT-371	Throat infections, Insecticides
9	Morchella esculenta Fr.	Morchellaceae	Guchhi	March–October	Whole part	SUBMS/BOT-446	Indigestions
10	Punica granatum L.	Punicaceae	Daru	April–December	Fruits	SUBMS/BOT-577	Nutritious for health
11	Prunus cerasoides D.Don	Rosaceae	Pajja	December–March	Fruits	SUBMS/BOT-576	Fruits are used
12	Picrorhiza kurroa Royle	Scrophulariaceae	Karru, Kutki	June–August	Roots, Rhizomes	SUBMS/BOT-577	Mucositis, Cold Ulcers, Abscess
13	Urtica dioica L.	Urticaceae	Bichhu Booti	June–October	Leaves, Shoots	SUBMS/BOT-672	Spurt of foot
14	Urtica palviflora Roxb.	Urticaceae	Kandali	March–September	Leaves, Shoots	SUBMS/BOT-671	Juice of bark and seeds and Fruits is used

Table 3: Ethnomedicinal plants used by migratory shepherds in mid hills, (Chopal in Shimla-district and Churdhar in Sirmour-district) Himachal Pradesh.
Table 4: Ethnomedicinal plants used by migratory shepherds in low hills, Renukaji and Poanta-Sahib of district Sirmour

S. No.	Botanical name	Family	Hindi name	Flowering and fruiting	Parts used	Habit	Voucher no.	Ailments/ diseases treated	Ethnobotanical uses
1	*Amaranthus viridis* L.	Amaranthaceae	Jungali chauliya	July–October	Leaves, Roots	Herb	SUBMS/BOT-401	Skin infections	Juice of leaves and roots is applied.
2	*Abras precatorius* L.	Fabaceae	Ratti, Gunchi	October–May	Leaves	Climber	SUBMS/BOT-428	Wound healing Malaria	The juice of leaves is used. *Argemone Mexicana* tea is used.
3	*Argemone Mexicana* L.	Papaveraceae	Satyanashi, Bhurband Arusa, Vasaka	Throughout the year	Whole part	Herb	SUBMS/BOT-586	Cough, asthma, cold	Juice of leaves is used.
4	*Adhatoda vasa* Nees.	Acanthaceae	December-June	Leaves	Herb	SUBMS/BOT-382	Urinary infections, dysentery, Sunburn Abdominal pain	Juice of dried leaves and Bark is used. Juice of seeds, roots, and stem is used. Leaves of *Cannabis sativa* burn over flame and smoke is used.	
5	*Bauhinia veriegata* (L.) Benth.	Fabaceae	Kachnar	April–November	Leaves, bark	Tree	SUBMS/BOT-638	Skin cuts	Juice of leaves is applied.
6	*Chenopodium album* L.	Chenopodiaceae	Bathua	June–September	Seed, roots, stem	Herb	SUBMS/BOT-585	Nutritious for health Fever, Cough, Cold	Juice of dried flowers, seeds and leaves are used. Leaves fruits and stem are used. Juice of leaves is used. Tender leaves and twigs are cooked as a vegetable. Juice of dried flowers is used.
7	*Cannabis sativa* L.	Cannabaceae	Banga	June–September	Leaves	Herb	SUMS/BOT-584	Nutritious for health	Fruits are edible.
8	*Eupatorium adenophora* (Spreng.) King and H. Rob.	Asteraceae	Pamakani	March–April	Leaves	Shrub	SUBMS/BOT-398	Skin allergy	Juice of leaves and roots are applied.
9	*Hypericum perforatum* L.	Hypericaceae	Basant, Balsana	May–September	Leaves, roots	Roots	SUBMS/BOT-408	Skin allergy	Juice of leaves and roots are applied.
10	*Hypericum oblongifolium* Choisy. *Juglans regia* L.	Hypericaceae	Akhrot	April–October	Roots, Bark, Leaves, Fruits	Herb	SUBMS/BOT-342	Skin allergy	Juice of roots is used. Bark, leaves and fruits are used.
12	*Prunus cerasoides* D.Don	Rosaceae	Pajja	December-March	Fruits	Tree	SUBMS/BOT-341	Nutritious for health	Fruits are edible.
13	*Ocimum sanctum* L.	Lamiaceae	Tulsi	June–September	Flowers, seeds, leaves	Herb	SUBMS/BOT-369	Nutritious for health	Fruits are edible.
14	*Pyracantha crenulata* (D. Don.) M. Roem.	Rosaceae	Bedu, Chhota seb	March–June	Leaves, fruits, stem	Shrub	SUBMS/BOT-434	Tonic, fever	Juice of leaves is used.
15	*Pinus roxburghii* Sarg.	Pinaceae	Chir	March-May	Leaves	Tree	SUBMS/BOT-393	Joint pains Nutritious for health Gough, Cold, Fever	Juice of leaves is used. Tender leaves and twigs are cooked as a vegetable. Juice of dried flowers is used.
16	*Phytolacca acina* Roxb.	Phytolaccaceae	Jharka, Jalga	June–September	Leaves, Twigs	Herb	SUBMS/BOT-582	Joint pains Nutritious for health Gough, Cold, Fever	Juice of leaves is used. Tender leaves and twigs are cooked as a vegetable. Juice of dried flowers is used.
17	*Rhododendron arboretum* Sm.	Ericaceae	Burans	March-September	Flowers	Tree	SUBMS/BOT-364	Nutritious for health	Juice of leaves is used. Tender leaves and twigs are cooked as a vegetable. Juice of dried flowers is used.
18	*Rhus parviflora* Roxb.	Anacardiaceae	Samakdan, Samakdan	July-August	Bark	Shrub	SUMS/BOT-581	Headache	The paste prepared from the dried Bark is used. Juice of fruits is used. The juice of leaves and roots is applied. Juice of leaves and roots is used. Tender leaves and shoots cooked as a vegetable. Juice of leaves is applied.
19	*Solanum surratense* Burm. f.	Solanaceae	Kantkari	April-August	Fruits	Herb	SUBMS/BOT-458	Stone in Bladder Root infection	Juice of leaves is used. Tender leaves and roots is used. Tender leaves and shoots cooked as a vegetable. Juice of leaves is applied.
20	*Solanum nigrum* L.	Solanaceae	Mokoi, Dhakh	April-July	Leaves, roots	Herb	SUBMS/BOT-580	Stone in Bladder Root infection	Juice of leaves is used. Tender leaves and roots is used. Tender leaves and shoots cooked as a vegetable. Juice of leaves is applied.
21	*Urtica dioica* L.	Urticaceae	Bichhu Booti	June-October	Leaves, roots, shoots	Herb	SUBMS/BOT-579	Nutritious for health	Juices of leaves and seeds is used. Tender leaves and shoots cooked as a vegetable. Juice of leaves is applied.
22	*Vitex negundo* L.	Verbenaceae	Nirgandhi Tirmir	March-September	Leaves, Bark, seeds, fruits	Herb	SUBMS/BOT-578	Joint pains Fever, tooth pain	Juice of leaves is applied.
23	*Zanthoxylum armatum* DC.	Rutaceae	Dooli, Tirmir	April-June	Leaves, Bark, seeds, fruits	Herb	SUBMS/BOT-365	Joint pains Fever, tooth pain	Juice of leaves is applied.

Notes: S. No. stands for sequence number, *Botanical name* refers to the scientific name of the plant, *Family* indicates the plant family to which the species belongs, *Hindi name* is the common name of the plant in Hindi, *Flowering and fruiting* denotes the period when the plant flowers and fruits, *Parts used* refers to the parts of the plant that are used, *Habit* indicates whether the plant is a herb, shrub, tree, climber, etc., *Voucher no.* is the voucher number for the specimen collected, *Ailments/ diseases treated* lists the ailments or diseases that the plant is used to treat, and *Ethnobotanical uses* provides information on how the plant is utilized ethnomedicinally.*
migration flock includes both goats and sheep and size of the flock varies (Table 1). Shepherds move first to grazing pasture in Chopal (district Shimla) irrespective of their origin place of migration. The shepherds take along with them 2–4 horses for carrying tents and provisions. Often four to five dogs also accompany the shepherds, and in fact, these dogs are trained in protecting the goats and sheep from wild animals and also keep the flock together. The disparity of flock size generally is an indicator of the status of farmer’s livestock holding capacity. The present study also indicated that shepherds having a high number of the flock are comparatively well off compared to those with less number. Many studies have reported that flock size is directly associated with migration distance, flock with larger size travel longer distance as compared to small size flocked [18,19]. In our study, it was found that irrespective of flock size, the shepherds travel the same distance. In the second stage, the shepherds then move to Churdhar ranges and from here to Renukaji in Sirmour district. The routes of migration are generally fixed (Fig. 2) and proper permission is obtained from the authorities for the purpose. Finally, in the months of September–October, they reach the low hills in Poonhaar-Sahib in Sirmour district and temporarily settle here up to March, and start their return journey to their respective places by end March (spring season). It was also observed that the shepherds are not highly qualified and it varied from 1st class to 12th class (Fig. 3).

The present studies revealed that the livelihood of shepherd’s family is dependent either getting food and fruits from the forests/trees on the path they tramp and selling the meat and milk products from their herds. The wild plants not only serve as their food but also for their livestock. It was observed that during their migration from upper hills to lower hills a total of 78 medicinal species were being used by the migratory shepherds, and a few of these belonged to the same families. All these medicinal plants are an integral part of shepherd’s health-care during migration (Tables 2–4). The collection of various medicinal plants and plant parts varied from plant to plant, depending on their availability and usability. During their seasonal migration, the shepherds are much dependent on forest products for their requirements of fruits, vegetables, and medicines.

As the shepherds move from their respective place of origin (high hills), it was noted that 35 species (herbs, shrubs, and trees) were found to be used by the shepherds for their health care (Table 2). Interestingly, the shepherds informed that their preference for medicine is Picrorhiza kurroa (herb) as it is one of the important medicinal plants in their tribe. Similarly, in the mid-hills 20 plant species were found to be taken as medicine as the shepherds move toward Shimla hills (Table 3). Some of the medicinal plant species such as Chenopodium album, Bergenia ciliata, Cannabis sativa, Dioscorea deltoidea, Picrorhiza kurroa, and Urtica palviflora found in mid hills were also present in higher hill regions (Table 3). Three species, namely Cannabis sativa, Vitex negundo, and Zanthoxylum armatum were frequently used for medicinal purposes. The use of many of these medicinal plants has also been reported by many workers from different parts of Himachal Pradesh [20,21].

Due to variation in climatic conditions from high hills to low hills (Table 4), shepherds were commonly affected by many common diseases such as cough, asthma, cold, skin allergy, and fever. Five species from low hills, namely Adhatoda vasica, Hypericum oblongifolium, Rhododendron arboreum, and Urtica dioica were frequently used by shepherds to treat common diseases. The shepherds during migration generally move along the roadside and rarely adopt bridals pathways or shortcuts. For their own stay, they use makeshift tents and shift tents frequently within 5–6 days. There is always a scarcity of food and fodder for themselves and livestock. For this, they explore adjoining areas, particularly degraded lands, fallow fields, and village commons. It was interesting to note that their migration patterns closely mirrors the seasonal availability of natural food, fodder, and medicinal plants. In Khamchendzonga National Park, it was observed that migration movements match with seasonal fodder resource availability [22]. Shepherds during en route migration face constraints such as food, fodder, water deficit, veterinary facilities, wild animals, predators, and sometimes road accidents of their livestock. Such constraints have also been reported by many previous studies [23–26].

DISCUSSION

It is also emphasized that sufficient interest has not been put in conserving and promoting traditional wild medicinal plants. The need is to adopt large scale plantation of these medicinal plants within forests as well as along roadsides so that the migratory shepherds are benefitted. Unfortunately, deforestation activities and the changing climatic conditions have made the availability of medicinal plants as a scarce resource to the migratory shepherds. Plants and plant products play an important role in the lives of these migratory shepherds. The critical review of the past work done and the results of this survey suggest that wild medicinal plants are very important for migratory shepherds living in tribal areas of Himachal Pradesh. The documentation of the ethnobotanical approach is an improvement for enhancing the understanding of native knowledge systems [27–28]. The present trends for surviving healthy long life entirely dependent on the traditional medicines and it possesses several natural constituents to eliminate the critical causes of the disease [29,30]. Plants are a rich source of free radical scavenging molecules such as terpenoids, vitamins, lignins, phenolic acids, flavonoids, tannins, quinones, alkaloids, coumarins, betalains, amines, and other metabolites which are rich in antioxidant property. The antioxidants property in plant products helps in the stimulation of biological system against oxidative damage [31–33]. In the modern day world traditional ethnomedicinal plants play a significant role in the health-care system, but due to lack of interest between the younger generation and their tendency to migrate to cities for lucrative jobs, a wealth of traditional knowledge is decreasing. The need of the hour is to harness this important traditional knowledge and preserve this traditional knowledge for the benefit of future generation. The information generated from the study regarding the ethnomedicinal plants used by tribal migratory shepherds needs a through phytochemical investigation including physicochemical extraction and isolation along with few clinical trials. This could help in creating mass awareness regarding their conservation within the region.

CONCLUSION

In the present investigation, the traditionally using plants as medicinal value by migratory shepherds a tribal community of Western Himalaya were identified. They are using the plants for cough, cold, fever, asthma, skin allergy, bone fracture, abdominal pain, jaundice, body pain, bone fracture, malaria, wound healing, etc. in various forms such as decoction, powder, paste, and juice. The foremost important thing is to give awareness and training to tribal migratory shepherds on a critical review of the past work done and results of this survey. This valuable survey may be useful to improve the pharmaceutical and application in the future.

ACKNOWLEDGMENT

We are grateful to the migratory shepherds and local peoples of the study area for their cooperation in providing valuable information about
etno aspects. Thanks to experts from BSI Dehradun, Uttarakhand, and FRI Dehradun, Uttarakhand for the identification of ethnomedicinal plant specimens collected from study sites.

AUTHORS’ CONTRIBUTIONS

The concept, design, and questionnaire of the study were done by Radha. Fieldwork and literature study was done by Radha. Interpretation of data was prepared by Radha, Dr. Sunil Puri and Dr. Sanjeev Kumar. Revision of the article was done by Radha and Dr. Sanjeev Kumar.

CONFLICTS OF INTEREST

We declare that we have no conflicts of interest.

REFERENCES

1. Singh JP, Roy MM, Radotra S. Technical Bulletin. Jhansi: Grasslands of Himachal Pradesh. Director, Indian Grassland and Fodder Research Institute; 2009.
2. Myres N, Mitremer RA, Mitremer CG, da Fonseca GA, Ken J. Biodiversity hotspots for conservation priorities. Nature 2000;403:853-8.
3. Wildlife Institute of India. Protected Areas of Himachal Pradesh; 2014. Available from: http://www.wii.gov.in.
4. Negi KS, Gaur RD, Tiwari JK. Ethnobotanical notes on the flora of Haruki Doon (district Uttarkashi), Garwal Himalaya UP, India. Ethnobotany 1999;11:9-17.
5. Khanna KK, Ramesh K. Ethno‑medicinal plants used by Gujjar tribe of Himachal Pradesh. Indian Forester 2003;129:979-98.
6. Thakur R, Singh R, Saxena P, Mani A. Evaluation of antibacterial activity of *Prosopis juliflora* (SW.) DC. stems. Afr J Tradit Complement Altern Med 2014;11:182-8.
7. Sharma PK, Lal B. Ethnobotanical notes on medicinal and aromatic plants of Himachal Pradesh. Indian J Tradit Knowl 2005;4:424-8.
8. Rawat DS, Kharwal AD. Ethnobotanical studies of weed flora in Shivalik Hills, Himachal Pradesh, India. Int J Adv Res 2014;2:218-26.
9. Singh KN, Kumar A, Lal B, Todaria NP. Species diversity and population status of threatened plants in different landscape elements of the Rohtang Pass, Western Himalaya. J Mountain Sci 2008;5:73-83.
10. Balamurugan V, Krishnamoorthy P, Veerregowda BM, Sen A, Rajak KK, Bhanuprakash V, et al. Seroprevalence of peste des petits ruminants in cattle and buffaloes from Southern Peninsular India. Trop Anim Health Prod 2012;44:301-6.
11. Chauhan NS, Lal B. Commercially important medicinal and aromatic plants of Parvati Valley, Himachal Pradesh. J Econ Taxonomic Bot 2003;27:937-42.
12. Thakur K, Puri S. Ethnobotanical plants of bandli wildlife sanctuary, Mandi, Himachal Pradesh. Int J Adv Res 2016;4:106-8.
13. Tambe S, Rawat GS. Traditional livelihood based on sheep grazing in the Khandherdzonara national park, Sikkim. Indian J Tradit Knowl 2009;8:75-80.
14. Rao KA, Rao KS, Rao SJ, Ravi A, Anitha A. Studies on migration of sheep flocks in north coastal zone of Andhra Pradesh: Identification of traditional migration tracts. Indian J Small Rumin 2009;8:75-80.
15. Suresh A, Gupta DC, Mann JS. Trends, determinants and constraints of sheep migration in Rajasthan-an economic analysis. Agric Econ Res Rev 2011;24:235-65.
16. Kaintura S, Kumar N, Kothiyal P. Correlation of antihypertensive drugs and new onset diabetes: A review. Int J Pharm Sci 2017;8:36-40.
17. Kalaiselvan M, Gopalan R. Ethnobotanical uses of medicinal plants by irula tribes of Bolampatty valley, Nilgiri biosphere reserve (NBR), Southern Western Ghats, India. Asian J Pharm Clin Res 2014;7:22-6.
18. Ranganathan R, Vijayalakshmi R, Parameswari P. Ethnomedicinal survey of Jawadhul hills in Tamil Nadu. Asian J Pharm Clin Res 2012;5:45-9.
19. Agarwal P, Mishra A. Pharmaceutical quality audits: A review. Int J Appl Pharm 2019;11;14:22.
20. Maurya H, Kumar T. Formulation, standardization and evaluation of polyherbal dispersible tablet. Int J Pharm Pharm Sci 2019;11:158-67.
21. Ansari N, Chandel D. Antioxidant studies on methanol and aqueous extracts of *Gymnosporia montana* plant. Int J Pharm Pharm Sci 2019;11:65-70.
22. Arirudrai B, Janani B, Rao US. Evaluation of antioxidant and chemopreventive potential of methanolic extracts of leaf of *Aegle marmelos* attributes towards ductal carcinoma studied in mcf7 cells. Int J Pharm Pharm Sci 2019;11:21-5.
23. Sharma M, Biswajit D. Medicinal plants of North-East region of India: A small review. Int J Curr Pharm Res 2019;10:11-2.