Rapid early progression (REP) of glioblastoma is an independent negative prognostic factor: Results from a systematic review and meta-analysis

Mueez Waqar, Federico Roncaroli, Eric J. Lehrer, Joshua D. Palmer, Javier Villanueva-Meyer, Steve Braunstein, Emma Hall, Marianne Aznar, Philip C. De Witt Hamer, Pietro I. D’Urso, Daniel Trifiletti, Alfredo Quiñones-Hinojosa, Pieter Wesseling, and Gerben R. Borst

Department of Neurosurgery, Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust, Manchester, UK (M.W., P.I.D.); Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK (M.W., E.H., M.A., G.R.B.); Department of Neuropathology Unit, Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust, Manchester, UK (F.R., E.L.); Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA (F.R., E.L.); Department of Radiation Oncology, The James Cancer Hospital, Ohio, USA (J.D.P.); Department of Neuroradiology, University of California San Francisco, San Francisco, USA (J.V.-M.); Department of Radiation Oncology, University of California San Francisco, San Francisco, USA (S.B.); Department of Neurosurgery, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands (P.C.D.W.H.); Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA (D.T.); Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA (A.Q.-H.); Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands (P.W.); Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (P.W.); Department of Radiation Oncology, The Christie NHS Foundation Trust, Manchester, UK (G.R.B.); Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, The Christie National Health Trust, Manchester, UK (G.R.B.)

Corresponding Author: Gerben R. Borst, MD, PhD, Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, The Christie National Health Trust, Wilmslow Road, Manchester M20 4BX, UK (Gerben.Borst@nhs.net).

Abstract

Background. In patients with newly diagnosed glioblastoma, rapid early progression (REP) refers to tumor regrowth between surgery and postoperative chemoradiotherapy. This systematic review and meta-analysis appraised previously published data on REP to better characterize and understand it.

Methods. Systematic searches of MEDLINE, EMBASE and the Cochrane database from inception to October 21, 2021. Studies describing the incidence of REP—tumor growth between the postoperative MRI scan and pre-radiotherapy MRI scan in newly diagnosed glioblastoma were included. The primary outcome was REP incidence.

Results. From 1590 search results, 9 studies were included with 716 patients. The median age was 56.9 years (IQR 54.0–58.8 y). There was a male predominance with a median male-to-female ratio of 1.4 (IQR 1.1–1.5). The median number of days between MRI scans was 34 days (IQR 18–45 days). The mean incidence rate of REP was 45.9% (range 19.3%–72.0%) and significantly lower in studies employing functional imaging to define REP (P < .001). REP/ non-REP groups were comparable with respect to age (P = .99), gender (P = .33) and time between scans (P = .81). REP was associated with shortened overall survival (HR 1.78, 95% CI 1.30–2.43, P < .001), shortened progression-free survival (HR 1.78, 95% CI 1.30–2.43, P < .001), subtotal resection (OR 6.96, 95% CI 4.51–10.73, P < .001) and IDH wild-type versus mutant tumors (OR 0.20, 95% CI 0.02–0.38, P = .03). MGMT promoter methylation was not associated with REP (OR 1.29, 95% CI 0.72–2.28, P = .39).

Conclusions. REP occurs in almost half of patients with newly diagnosed glioblastoma and has a strongly negative prognostic effect. Future studies should investigate its biology and effective treatment strategies.
The study protocol was registered on the international prospective register of systematic reviews (PROSPERO) under the ID number: CRD42022301242. The review was undertaken, and the manuscript prepared according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis; see Supplementary Material) and MOOSE guidelines (see Supplementary Material).

The literature search strategy is outlined in Supplementary Table 1. All searches were conducted by two independent authors (MW and EH). MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews were queried from inception to October 21, 2021 using the NICE Healthcare Databases Advanced Search (HDAS) service. References of included studies were examined to extract potential further papers that may have been missed during the initial systematic search. Two independent authors (MW and EH) screened titles and abstracts independently and blindly to identify articles meeting the inclusion criteria. Discrepancies were resolved through discussion and review by a third author (GB). Studies were carefully screened and all duplicates were removed.

Articles comparing the first postoperative MRI scan and pre-radiotherapy MRI scan in glioblastoma patients were included. This comparison involved structural and/or functional imaging (see Outcomes). A PICOS table is provided in Supplementary Table 2.
progression-free survival (PFS) were also collected together with confidence intervals.

Outcomes and Definitions

- **Primary:** incidence rate of REP—defined as interval tumor growth between the postoperative and pre-radiotherapy MRI scans. In general, tumor growth referred to an increase in enhancing tumor between these time points.
- **Secondary:**
 - Impact of demographic factors and time between MRI scans on REP.
 - Impact of type of MRI scan sequences used to assess REP: the rate of REP was compared between studies utilizing structural MRI sequences alone (e.g., T1 with contrast; denoted as the structural group) versus those using structural plus one or more functional sequences (e.g., diffusion and/or perfusion-weighted MRI—DWI/PWI; denoted as the functional group).
 - Impact of REP on overall survival (OS).
 - Impact of REP on the location of future disease progression and progression-free survival (PFS). PFS was defined in standard terms as the time interval between surgery and first evidence of disease progression after postoperative chemoradiotherapy (i.e., not including REP).
 - Impact of extent of resection on REP: the rate of REP was compared between gross total resection (GTR) versus subtotal resection (STR)/biopsy. The latter two groups were combined given the sample size of the biopsy group. The study-specific definition of GTR was used.
 - Impact of MGMT promoter methylation and IDH mutation status on REP.

Risk of Bias

As all included studies were diagnostic and non-randomized, the risk of bias was assessed using the QUADAS-2 tool. This is designed for diagnostic studies and recommended by the Cochrane group.

Statistical Analysis

Statistical analysis was performed in R version 4.0.5 (R Foundation for Statistical Computing; Vienna, Austria). Baseline factors were compared between REP/non-REP
groups using nonparametric weighted Mann–Whitney U tests by sample size, given the paucity of reported variance, and Fisher’s exact tests. Demographic factors were described with weighted medians and interquartile ranges (IQR) or ranges, with an indicator of the number of studies used. All meta-analyses were performed using the Meta package in R using the Cochrane Revman template. Dichotomous outcome meta-analyses were performed using a Mantel–Haenszel method and fixed- or random-effects models, using odds ratios or risk difference if the event rate was zero in one group. Generic inverse variance meta-analyses were used for survival analyses with hazard ratios. Fixed-effects models were used when interstudy heterogeneity was judged as low, otherwise random-effects models were used. Sensitivity analyses were performed using a subset of studies assessing REP using functional imaging.

Results

From 1590 search results, 836 unique records were found and 9 studies were included in quantitative meta-analysis (Supplementary Figure 1).5–10,12–15 Study characteristics are presented in Table 1, including 7 retrospective and 2 prospective studies. Patient selection accounted for the highest source of bias (56%) (Supplementary Table 3 and Supplementary Figure 2).

In total, 716 patients with newly diagnosed glioblastoma were included across all studies from 7 different countries. The median age was 56.9 years (IQR 54.0–58.8 years; 6 studies). There was a male excess with a median male-to-female ratio of 1.4 (IQR 1.1–1.5; 5 studies). The median interval between the postoperative MRI scan and pre-radiotherapy MRI scan was 34 days (IQR 18–45 days; 9 studies). The indication for the pre-radiotherapy MRI scan was not detailed in included studies. A total of 485 patients across 6 studies had data pertaining to the extent of resection, although this was only explicitly defined in 4 studies. In all 4 studies, GTR was defined as the absence of postoperative residual enhancing disease. The breakdown of extent of resection was as follows: GTR 184/485 (37.9%), STR 272/485 (56.1%), and biopsy 29/485 (6.0%). No patient was reported to undergo reoperation for STR.

Primary Outcome

The overall mean incidence rate of REP was 45.9% (reported range 19.3%–72.0%; Figure 2A). Data relating to the location of REP were available in 103 patients across 3 studies. The vast majority (85/103, 82.5%) of REP lesions were within or adjacent to the surgical cavity and only a minority was described as de novo and distant from the surgical cavity (18/103, 17.5%).

Secondary Outcomes

A comparison between patients with and without REP revealed that there were no significant differences in mean age (57 vs. 57 years, Mann-Whitney, \(P = .62 \), gender...
ratio (%males 57.6% vs. 62.9%, Fisher's Exact, \(p = .33 \)) or mean time between MRI scans (30.5 vs. 29.6 days, Mann-Whitney, \(p = .27 \)) between these groups.

Studies using functional imaging sequences to define REP (Table 1) did not consider all enhancing signal as indicative of tumor regrowth. Therefore, the overall mean incidence rate of REP was significantly higher in studies employing structural imaging alone to define REP versus those using structural and one or more functional imaging sequences (55.6% vs. 40.2%, Fisher's exact, \(p < .001 \); Figure 2B).

Meta-analysis results are presented in Figures 3–4. Subtotal resection/biopsy were predictive of REP (OR 6.96, 95% CI 4.51–10.73, \(p < .001 \); Figure 3A). REP was an independent negative prognostic factor and associated with OS due to an increased hazard ratio of death (HR 2.10, 95% CI 1.83–2.41, \(p < .001 \); Figure 3B). REP was also associated with PFS due to an increased hazard ratio of post-radiotherapy disease progression (See Methods for REP/PFS definitions; HR 1.78, 95% CI 1.30–2.43, \(p < .001 \); Figure 3C). MGMT promoter methylation was not associated with REP incidence (50/81 vs. 77/147; OR 1.29, 95% CI 0.72–2.28, \(p = .39 \); Figure 3D). IDH wildtype tumors had a significantly higher incidence of REP versus IDH mutant tumors (46/166 vs. 1/12; OR 0.20, 95% CI 0.02–0.38, \(p = .03 \); Figure 3E), even though this was only assessed in two studies.

One study robustly evaluated the correlation between the location of REP and future disease progression in 42 patients. In the vast majority of these patients (39/42, 92.9%), further disease progression occurred at sites of REP. Given the association of REP with both extent of resection and OS, we further analyzed the interrelations between these variables (Figure 4). Five studies provided sufficient data to allow binary study subgrouping based on the median rate of GTR (36.0%; Figure 4A). Studies with less than the median rate of GTR had a higher incidence rate of REP although differences did not reach statistical significance (OR 2.07, 95% CI 1.75–2.45, \(p = .10 \); Figure 4A). We then compared the effect size of STR/biopsy versus REP on overall survival by comparing

![Figure 2. Incidence rate of REP in glioblastoma. (A) This figure shows proportions and percentages of patients with/without REP across studies to demonstrate the overall mean rate of REP (45.9%). (B) This figure divides studies into 2 groups based on the use of functional MRI to define REP. Studies employing functional imaging reported a significantly lower mean incidence rate of REP (55.6% vs. 40.2%, Fisher's exact, \(p < .001 \)).](image-url)
Extent of resection and REP

Study	STR/biopsy	Total Events	QTR Total	Weight	Odds ratio MH, Fixed, 95% CI
Lakomy 2020	36	51	10	39	20.9% 6.96 [2.72; 17.78]
Palmer 2019	38	61	7	26	23.2% 4.49 [1.63; 12.31]
De Barros 2019	46	48	8	27	2.7% 54.63 [10.61; 281.34]
Merkel 2017	34	55	2	6	8.6% 3.24 [0.54; 19.25]
Villanueva Meyer 2017	50	72	17	68	33.5% 6.82 [3.24; 14.34]
Pirzkall 2008	10	14	7	18	11.0% 3.93 [0.88; 17.56]

Lakomy 2020 0.64 0.1449 13.7% 1.90 [1.43; 2.52]
Palmer 2019 0.74 0.1180 17.1% 2.10 [1.67; 2.65]
De Barros 2019 0.59 0.1386 14.4% 1.81 [1.38; 2.38]
Merkel 2017 1.06 0.1284 15.7% 2.90 [2.25; 3.73]
Villanueva Meyer 2017 0.81 0.1091 18.4% 2.24 [1.81; 2.77]

Heterogeneity: Tau² = 0.0147; Chi² = 10.12, df = 5 (P = 0.07); I² = 51%
Test for overall effect: Z = 10.63 (P < 0.001)

Total (95% CI) 214 301 51 184 100.0% 6.96 [4.51; 10.73]

Study	STR/biopsy	Total Events	QTR Total	Weight	Odds ratio IV, Random, 95% CI
Lakomy 2020	26	143	17	39	25.0% 1.90 [1.43; 2.52]
Palmer 2019	74	118	7	26	17.1% 2.10 [1.67; 2.65]
De Barros 2019	59	138	14	28	14.4% 1.81 [1.38; 2.38]
Merkel 2017	106	1284	8	27	15.7% 2.90 [2.25; 3.73]
Villanueva Meyer 2017	81	1091	7	24	18.4% 2.24 [1.81; 2.77]

Lakomy 2020 0.26 0.1365 31.2% 1.30 [0.99; 1.70]
Palmer 2019 0.83 0.1245 32.5% 2.30 [1.80; 2.94]
De Barros 2019 0.62 0.0865 36.3% 1.85 [1.56; 2.19]

Heterogeneity: Tau² = 0.0621; Chi² = 9.65, df = 5 (P < 0.01); I² = 79%
Test for overall effect: Z = 3.63 (P < 0.001)

Total (95% CI) 100.0% 2.10 [1.83; 2.41]

Overall survival and REP

Study	TE	SE	Weight IV, Random, 95% CI
Lakomy 2020	0.64	0.1449	13.7% 1.90 [1.43; 2.52]
Palmer 2019	0.74	0.1180	17.1% 2.10 [1.67; 2.65]
De Barros 2019	0.59	0.1386	14.4% 1.81 [1.38; 2.38]
Merkel 2017	1.06	0.1284	15.7% 2.90 [2.25; 3.73]
Wee 2017	0.81	0.1091	18.4% 2.24 [1.81; 2.77]
Villanueva Meyer 2017	0.61	0.0943	20.7% 1.85 [1.54; 2.22]

Total (95% CI) 100.0% 2.10 [1.83; 2.41]

Progression-free survival and REP

Study	TE	SE	Weight IV, Random 95% CI
Lakomy 2020	0.26	0.1365	31.2% 1.30 [0.99; 1.70]
Merkel 2017	0.83	0.1245	32.5% 2.30 [1.80; 2.94]
Villanueva Meyer 2017	0.62	0.0865	36.3% 1.85 [1.56; 2.19]

Total (95% CI) 100.0% 2.17 [1.83; 2.43]

MGMT and REP

Study	MGMTpos Events Total	MGMTneg Events Total	Odds ratio MH, Fixed, 95% CI
Lakomy 2020	6 14	17 39	25.0% 0.97 [0.28; 3.33]
Palmer 2019	17 31	28 56	43.8% 1.21 [0.50; 2.93]
De Barros 2019	17 22	13 18	15.8% 1.31 [0.31; 5.49]
Merkel 2017	10 14	19 34	15.4% 1.97 [0.52; 7.56]

Total (95% CI) 50 81 77 147 100.0% 1.29 [0.72; 2.28]

Heterogeneity: Tau² = 0; Chi² = 9.65, df = 5 (P<0.01); I² = 79%
Test for overall effect: Z = 3.63 (P < 0.001)

IDH and REP

Study	IDHneg Events Total	IDHpos Events Total	Risk difference MH, Fixed, 95% CI
Lakomy 2020	23 49	1 4	30.7% 0.22 [−0.23; 0.67]
Wee 2017	23 177	0 8	69.3% 0.20 [0.03; 0.36]

Total (95% CI) 46 166 1 12 100.0% 0.20 [0.02; 3.28]

Heterogeneity: Tau² = 0; Chi² = 0.01, df = 1 (P = 0.93); I² = 0%
Test for overall effect: Z = 2.23 (P = 0.026)

Figure 3. Associations of REP. (A) Comparison of patients with gross total versus subtotal resection/biopsy (combined as the biopsy group was relatively small). Subtotal resection/biopsy were predictive of REP using a fixed-effects model (OR 6.96, 95% CI 4.51-10.73, P < .001). (B) Patients with REP had a higher hazard ratio of death (HR 2.10, 95% CI 1.83-2.41, P < .001) using a random-effects model. (C) Patients with REP had a higher hazard ratio of disease progression (HR 1.78, 95% CI 1.30-2.43, P < .001) using a random-effects model. (D) MGMT promoter methylation (denoted as “MGMTpos” versus “MGMTneg” to denote its absence) was not associated with REP incidence (OR 1.29, 95% CI 0.72-2.28, P = .39) using a fixed-effects model. (E) Only 2 studies presented data on the interrelations between REP and IDH. IDH wild-type tumors (IDHneg) had a significantly higher incidence of REP versus IDH mutant (IDHpos) tumors (OR 0.20, 95% CI 0.02-0.38, P = .03) using a fixed-effects model.
Figure 4. Subtotal resection and REP—subgroup analyses.

(A) Studies were stratified into 2 groups based on the median rate of GTR and the group with a lower rate of GTR had a tendency toward a higher incidence rate of REP, although differences were not statistically significant (OR 2.07, 95% CI 1.75–2.45, \(\chi^2 = 2.67, P = .10\)).

(B) To determine which factor may have a bigger effect on prognosis, we pooled and compared hazard ratios for STR/biopsy versus REP in 4 studies that presented this comparative data. REP was associated with a significantly higher overall hazard ratio of death (\(\chi^2 = 8.34, P < .001\)).

A.

Study or Subgroup	TE	SE	Weight IV, Random, 95% CI	Hazard ratio IV, Random, 95% CI
Resection = Studies with more than median rate of GTR (36%)				
Lakomy 2020	0.64	0.1449	17.4%	1.90 [1.43; 2.52]
De Barros 2019	0.59	0.1386	18.1%	1.81 [1.38; 2.38]
Villanueva Meyer 2017	0.61	0.0943	24.3%	1.85 [1.54; 2.22]
Total (95% CI)	59.8%	1.85 [1.62; 2.12]		

Heterogeneity: \(\tau^2 = 0; \chi^2 = 0.06, df = 2 (P = 0.97); I^2 = 0\%\)

Test for overall effect: \(Z = 8.96 (P < 0.001)\)

Study or Subgroup	TE	SE	Weight IV, Random, 95% CI	Hazard ratio IV, Random, 95% CI
Resection = Studies with less than median rate of GTR (36%)				
Palmer 2019	0.74	0.1180	20.8%	2.10 [1.67; 2.65]
Merkel 2017	1.06	0.1284	19.4%	2.90 [2.25; 3.73]
Total (95% CI)	40.2%	2.46 [1.80; 3.37]		

Heterogeneity: \(\tau^2 = 0.0363; \chi^2 = 3.38, df = 1 (P = 0.07); I^2 = 70\%\)

Test for overall effect: \(Z = 5.61 (P < 0.001)\)

Study or Subgroup	TE	SE	Weight IV, Random, 95% CI	Hazard ratio IV, Random, 95% CI
Group = REP hazard ratios				
Lakomy 2020	0.64	0.1449	12.4%	1.90 [1.43; 2.52]
Palmer 2019	0.74	0.1180	13.7%	2.10 [1.67; 2.65]
Merkel 2017	1.06	0.1284	13.2%	2.90 [2.25; 3.73]
Wee 2017	0.81	0.1091	14.1%	2.24 [1.81; 2.77]
Total (95% CI)	53.3%	2.26 [1.92; 2.67]		

Heterogeneity: \(\tau^2 = 0.0129; \chi^2 = 5.58, df = 3 (P = 0.13); I^2 = 46\%\)

Study or Subgroup	TE	SE	Weight IV, Random, 95% CI	Hazard ratio IV, Random, 95% CI
Group = STR/biopsy hazard ratios				
Lakomy 2020	0.18	0.1625	11.5%	1.20 [0.87; 1.65]
Palmer 2019	0.41	0.1383	12.7%	1.51 [1.15; 1.98]
Merkel 2017	0.41	0.2561	7.7%	1.51 [0.92; 2.50]
Wee 2017	0.61	0.0939	14.8%	1.84 [1.53; 2.21]
Total (95% CI)	46.7%	1.54 [1.26; 1.89]		

Heterogeneity: \(\tau^2 = 0.0197; \chi^2 = 5.52, df = 3 (P = 0.14); I^2 = 46\%\)

Study or Subgroup	TE	SE	Weight IV, Random, 95% CI	Hazard ratio IV, Random, 95% CI
Total (95% CI)	100.0%	1.88 [1.56; 2.26]		

Heterogeneity: \(\tau^2 = 0.0516; \chi^2 = 25.25, df = 7 (P < 0.01); I^2 = 72\%\)

Test for subgroup differences: \(\chi^2 = 8.34, df = 1 (P < 0.01)\)
The high incidence of REP supports a routine multimodal pre-radiotherapy MRI scan in glioblastoma patients, which includes at least one functional imaging sequence to mitigate for the effects of surgery. This was not the practice at any of the studies included in this review and contrary to current guidance. Given the correlation between REP sites and future disease progression, omitting this scan may grossly underestimate the required irradiation volume. The use of functional imaging sequences as part of this scan is justified as above, but notably, functional imaging sequences have limited voxel resolutions that may not detect very small tumor residuum.

Our analysis demonstrated that REP is clinically relevant and not just related to remnant enhancing tumor, as patients with GTR can also develop REP. These patients harbor a variable volume of non-enhancing disease diffusely infiltrating the brain that may play a role in REP. The relationship between a greater enhancing tumor residuum and increased incidence of REP supports the standard of maximal safe resection in glioblastoma patients. Indeed, Wee et al. reported that every 1 cm³ increase in residual enhancing disease increased the risk of REP by 3.9%. However, preclinical studies have demonstrated that mechanical cell injury as induced by surgery can increase tumor cell migration, proliferation, and infiltration. These effects can be considerable and contribute, for example, to dynamic growth of the biopsy component of a multi-focal glioblastoma versus the non-biopsied component. These observations require further validation in relation to the beneficial effects of surgery. In addition, the biological basis for REP remains unclear and has not been investigated at the histological or molecular level due to the rarity of reoperation for glioblastoma.

The frequency of REP may actually be under-represented here given that not all patients make it to postoperative adjuvant therapy and represents an important challenge to the treatment strategy for newly diagnosed glioblastoma. At present, this comprises surgery followed by chemoradiotherapy after a time period of 4–6 weeks. In this early time period (ie pre-, intra-, or early-postoperative period), intensified upfront therapy could counteract factors contributing to REP as simply commencing postoperative adjuvant therapy earlier does not improve outcome. We recently reviewed these early treatment strategies, and found that neoadjuvant immunotherapy and intraoperative radiotherapy may represent the most promising options. Early intensified therapy has demonstrated benefit in several other cancer types. For example, neoadjuvant chemotherapy/radiotherapy can downstage locally advanced breast cancer, sarcoma, and several gastrointestinal cancers, improving the likelihood of organ preserving gross total resection. Our results highlight the importance of further investigation of early interventions for newly diagnosed glioblastoma.

Although our review evaluated the association between REP and several factors, existing data are not exhaustive and REP remains relatively understudied. No study has related the preoperative growth rate of glioblastoma to REP, which would otherwise control for the major confounder of the tumor’s intrinsic aggressiveness. Another important question that requires further investigation is which...
postoperative residual glioblastoma niches contribute to REP. Macroscopically, factors such as necrosis, vascularity, and prognostically unfavorable tumor locations (eg adjacent to the subventricular zone, SVZ) could be related and should be studied in future. SVZ adjacency (<5 mm) was evaluated in a single study of 75 glioblastoma patients in which it was not associated with REP in multivariate analysis.11

Limitations of this meta-analysis include the retrospective nature of many studies and the different definitions of REP. There was a high risk of bias relating to patient selection and incomplete imaging at the time points of interest. However, the overall sample size was relatively large and results were consistent/comparable between studies. Data relating to the indication for the pre-radiotherapy MRI scan were not available, although this is often routinely performed in centers such as our own. Not all studies presented data pertaining to secondary outcomes, so this analysis was subject to publication bias. Not enough studies presented data on patient treatment, including the use of concurrent medication such as corticosteroids, which could have limited our analysis. Studies also did not describe the clinical impact of REP on patient management. Lastly, there was also a uniform lack of investigation of the biological basis of REP.

Conclusion

This systematic review and meta-analysis demonstrates that almost half of all patients with newly diagnosed glioblastoma experience tumor recurrence referred to as REP in the time interval between surgery and postoperative chemoradiotherapy. REP has a strongly negative prognostic effect on both OS and PFS, and is more common in patients with a STR. Its effect on prognosis appears to be even worse than STR. The biological basis of REP remains unclear and should be subject to future investigation through development of REP prediction models as well as prospective validation in patients. The high incidence of REP should also encourage efforts to better understand the role of early intensified therapy for glioblastoma.

Supplementary material

Supplementary material is available at Neuro-Oncology Advances online.

Keywords

extent of resection | glioblastoma | IDH | MGMT | prognosis | progression | recurrence | REP | survival.

Acknowledgements

None.

References

1. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–996.
2. Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 2017;318(23):2306–2316.
3. Cantrell JN, Waddle MR, Rotman M, et al. Progress toward long-term survivors of glioblastoma. Mayo Clin Proc. 2019;94(7):1278–1286.
4. Poon MTC, Sudlow CLM, Figueroa JD, Brennan PM. Longer-term (>2 years) survival in patients with glioblastoma in population-based studies pre- and post-2005: a systematic review and meta-analysis. Sci Rep. 2020;10(1):11622.
5. Pirzkall A, McGue C, Saraswathy S, et al. Tumor regrowth between surgery and initiation of adjuvant therapy in patients with newly diagnosed glioblastoma. Neuro-oncology 2009;11(6):842–852.
6. Villanueva-Meyer JE, Han SJ, Cha S, Butowski NA. Early tumor growth between initial resection and radiotherapy of glioblastoma: incidence and impact on clinical outcomes. J Neurooncol. 2017;134(1):213–219.
7. Palmer JD, Bhamidipati D, Shukla G, et al. Rapid early tumor progression is prognostic in glioblastoma patients. Am J Clin Oncol. 2019;42(5):481–486.
8. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–536.
9. Cochrane.org. QUADAS-2: an updated quality assessment tool for diagnostic accuracy studies. https://abstracts.cochrane.org/2011-madrid/quadas-2-updated-quality-assessment-tool-diagnostic-accuracy-studies. Accessed December 31, 2021.
10. Lakomy R, Kazda T, Selingerova I, et al. Pre-radiotherapy progression after surgery of newly diagnosed glioblastoma: corroborate of new prognostic variable. Diagnostics (Basel) 2020;10(9):3–13.
11. De Barros A, Attal J, Roques M, et al. Impact on survival of early tumor growth between surgery and radiotherapy in patients with de novo glioblastoma. J Neurooncol. 2019;142(3):489–497.
12. Wee CW, Kim E, Kim TM, et al. Impact of interim progression during the surgery-to-radiotherapy interval and its predictors in glioblastoma treated with temozolomide-based radiochemotherapy. J Neurooncol. 2017;134(1):169–175.
13. Merkel A, Soeldner D, Wendl C, et al. Early postoperative tumor progression predicts clinical outcome in glioblastoma-implication for clinical trials. J Neurooncol. 2017;132(2):249–254.
14. Majos C, Cos M, Castaner S, et al. Preradiotherapy MR imaging: a prospective pilot study of the usefulness of performing an MR examination shortly before radiation therapy in patients with glioblastoma. AJNR Am J Neuroradiol. 2016;37(12):2224–2230.
15. Farace P, Amelio D, Ricciardi GK, et al. Early MRI changes in glioblastoma in the period between surgery and adjuvant therapy. J Neurooncol. 2013;111(2):177–185.
16. Thiepold AL, Luger S, Wagner M, et al. Perioperative cerebral ischemia promote infiltrative recurrence in glioblastoma. Oncotarget 2015;6(16):14537–14544.
17. Leao DJ, Craig PG, Godoy LF, Leite CC, Policeni B. Response assessment in neuro-oncology criteria for gliomas: practical approach using conventional and advanced techniques. AJNR Am J Neuroradiol. 2020;41(1):10–20.
18. Filatova A, Acker T, Garvalov BK. The cancer stem cell niche(s): the cross-talk between glioma stem cells and their microenvironment. Biochim Biophys Acta. 2013;1830(2):2496–2508.
19. Guo L, Wang G, Feng Y, et al. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors. Radiat Oncol. 2016;11(1):123.
20. Burger PC, Heinz ER, Shibata T, Kleihues P. Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg. 1988;68(5):698–704.
21. Alieva M, Margarido AS, Wieles T, et al. Preventing inflammation inhibits biopsy-mediated changes in tumor cell behavior. Sci Rep. 2017;7(1):7529.
22. Okolie O, Bago JR, Schmid RS, et al. Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro-oncology 2016;18(12):1622–1633.
23. Ma R, Chari A, Brennan PM, et al. Residual enhancing disease after surgery for glioblastoma: evaluation of practice in the United Kingdom. Neuronalcol Pract 2018;5(2):74–81.
24. Lakomy R, Kaza T, Selingerova I, et al. Real-world evidence in glioblastoma: stupp’s regimen after a decade. Front Oncol. 2020;10:840.
25. Buszek SM, Al Feghali KA, Elhalawani H, et al. Optimal timing of radiotherapy following gross total or subtotal resection of glioblastoma: a real-world assessment using the national cancer database. Sci Rep. 2020;10(1):4926.
26. Blumenthal DT, Won M, Mehta MP, et al. Short delay in initiation of radiotherapy for patients with glioblastoma-effect of concurrent chemotherapy: a secondary analysis from the NRG Oncology/Radiation Therapy Oncology Group database. Neuro-oncology 2018;20(7):966–974.
27. Osborn VW, Lee A, Garay E, Safdieh J, Schreiber D. Impact of timing of adjuvant chemoradiation for glioblastoma in a large hospital database. Neurosurgery 2018;83(5):915–921.
28. Waqar M, Trifiletti D, McBain C, et al. Early therapeutic interventions for newly-diagnosed glioblastoma: rationale and review of the literature. Curr Oncol Rep. 2022;24(3):311–324.
29. Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477–486.
30. Giordano FA, Brehmer S, Murle B, et al. Intraoperative radiotherapy in newly diagnosed glioblastoma (INTRAGO): an open-label, dose-escalation phase I/II trial. Neurosurgery 2019;84(1):41–49.
31. Early Breast Cancer Trialists’ Collaborative G. Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018;19(1):27–39.
32. Sjoquist KM, Burmeister BH, Smithers BM, et al. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis. Lancet Oncol. 2011;12(7):681–692.
33. Sebag-Montefiore D, Stephens RJ, Steele R, et al. Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial. Lancet 2009;373(9666):811–820.
34. Grobmyer SR, Maki R, Demetri GD, et al. Neo-adjuvant chemotherapy for primary high-grade extremity soft tissue sarcoma. Ann Oncol Off J Euro Soc Med Oncol/ ESMO. 2004;15(11):1667–1672.