Detection of Fungi in Irrigation Water Sources using Different Isolation Methods

Al-Meshal Areej Suliman

Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.

Abstract

This study was conducted over a 6-month period (2018-2019) to study the inherent fungal contaminants of irrigation water in Al-Kharj farms. Water samples were collected from three sites of the wells (the north and south sides and the plastic housing) at the farms. Sewage samples were also collected. One hundred and sixty-seven fungal isolates were obtained from the wells and the sewage. These isolates belonged to 16 genera, of which 13 were deuteromycetes, one was a zygomycetes and one was an oomycete. The results showed that *Pythium*, *Aspergillus*, *Rhizoctonia*, *Rhizopus*, and *Fusarium* genera were found throughout most months of the year. The results for each month were similar in terms of the frequency of fungi detected (99.96–100%) and the fungi isolation frequency (average, 6.247–6.25%). *Pythium*, *Aspergillus*, *Rhizoctonia*, *Penicillium*, and *Diplococcium* were identified in the water samples taken from the wells and the plastic housing. *Alternaria* and *Fusarium* were identified in water samples taken from the wells, while *Candida* and *Macrophoma* were also found in water samples taken from the well, while *Cladosporium* was found in the water samples and the sewage samples. *Rhizopus* was found in water samples taken from all of the wells near the plastic housing. *Ulocladium* was found in water samples taken from the wells and the plastic housing, while *Thielaviopsis* was found in water samples taken from the wells near the housing and the sterile fungus was found in water samples taken from the wells and the plastic housing. Moreover, we found that the seed trap method was the best method for fungi isolation (isolation frequency, 11.17%) and was better than the direct method of isolation (isolation frequency, 8.53%).

Keywords: Well-Farm, Deuteromycete, zygomycetes, oomycete, seed traps

*Correspondence: a.almashal@psau.edu.sa

(Received: June 10, 2021; accepted: April 25, 2022)
INTRODUCTION

Water is a vital resource for all known living organisms, as there is no life without it.1 The Earth’s surface is 71% water and fresh water comprises 3% of the total amount of water on the Earth’s surface.2 This small percentage of fresh water plays an essential role in human life, as it is the main source of water for human consumption and it is suited to human needs.3 It is estimated that 80% of water use in the Middle East is for irrigation purposes.4 There are many sources of water pollution, but the most notable source is microbial contamination. Sewage or untreated wastewater releases a large amount of dissolved organic material, suspended materials, and harmful microbiological organisms.5

Fungi are one of the most important biological sources of water contamination. These fungi may originate from the soil. Several studies have been conducted to detect the presence of fungi in water. Muhsin et al.6 isolated several fungi from well water, including Alternaria alternata Aspergillus sp., Trichoderma viride, Penicillium sp., Fusarium oxysporum, and Cladosporium sp. Moreover, Rajanaika et al.7 isolated Pythium, Allomyces, Rhizopus, Achyla, Alternaria, Aspergillus, Saprolegnia, Chaetomidin, Cladosporium, Fusarium, Trichoderma, and Penicillium from the Tunga River in India. Kraume and Awad8 found 60 species of fungi belonging to 27 genera in wastewater samples, including 8.8% Geotrichum, 75% Penicillium, 65.7% yeasts, and 55.5% Trichoderma.

The aim of the present study was to identify pathogenic and other contaminating fungi in water samples collected from wells and sewage, which is used for irrigation at some Al-Kharj farms due to the lack of irrigation water. The fungal genera present in irrigation water samples and the physical and chemical properties of the water samples were analyzed.

MATERIALS AND METHODS

Sample Collection

Water samples were collected from three sites of wells (the north and south sides and the plastic housing) at Al-Kharj farms and from the sewage. Samples were collected in clean, sterile 600-mL plastic bottles that were opened under water and filled with the water sample. The water temperature was also measured directly using a thermometer, and an additional clean, sterile 600-mL plastic bottle was filled to measure mineral element concentrations.

Fungi Isolation

1-Direct Isolation

Khaimi9 used the plate-pouring method, in which 1 mL of each water sample was placed on a sterile Petri dish with a 9-cm diameter. Five replicates were plated per sample. Potato dextrose agar (PDA) was added and sterilized using steam autoclave sterilization. Chloramphenicol was added to the medium at a concentration 250 mg/L. The plates were rotated to achieve homogenization between the sample and culture media and were then incubated at 25°C for 7-21 days. The number of growing fungal colonies was determined and the fungi were purified by transferring a small part of the outer fungal growth of the colony to new plates containing PDA. These plates were used for identification using taxonomic keys. The frequency of isolated fungal species was calculated using the following equation:

\[\text{frequency}\ (%) = \frac{\text{number of fungal isolates}}{\text{total number of isolates}} \times 100 \]

Moreover, the prevalence was calculated using the following equation: prevalence (%) = number of samples containing fungi/total number of samples × 100.

2- Seed Traps

The seed trap method described by Hussain et al.10 was used to isolate fungi from water samples. Fifty chard seeds were sterilized using an autoclave and placed in 15 mL of each water sample (three replicates for each source) for 24 hours. The seeds were dried with sterile blotting paper and then transferred to a sterile 9-cm-diameter Petri dish containing PDA, with 10 seeds per plate. Chloramphenicol was added to the medium at a concentration of 250 mg/L and the plates were incubated at 25°C for 7-21 days. The fungi were purified and the number of the growing fungal colonies, the frequency of isolated fungal species, and the appearance of the fungi were determined as described for the direct isolation method.

Chemical Analyses

The temperature of the water samples was measured directly using a thermometer. pH was also measured using a pH meter, as described by Jackson.11 Electrical conductivity and the
concentrations of dissolved positive and negative ions were measured using the method described by Richard.12

RESULTS

Fungi Isolation

One hundred and sixty-seven fungal isolates were obtained from well water and sewage water samples collected from Al-Kharj. These fungi belonged to 16 genera and included 13 deuteromycetes, one zygomycete, and one oomycete. The frequency of fungi isolation was equal between different samples (99.96–100%), with an isolation rate of 6.247–6.25%.

The most frequently isolated genera were Pythium, Rhizopus, Rhizoctonia, Aspergillus, and Fusarium, as shown in Table 1.

Direct Isolation Method

As shown in Table 2, the prevalence of fungi in the samples was 8.53%. Pythium, Aspergillus, Cladosporium, Rhizopus, Rhizoctonia, Candida, Penicillium, Alternaria, Fusarium, Macrophoma, Diplodocicum, Trichoderma, and Mycelia sterilia were isolated, but Ulocladium, Thielaviopsis, and Cephalosporium were not detected.

Well water samples had the highest percentage of fungal isolates, at 11.80%, and the plastic housing samples were the least polluted with fungi, at 5.90%.

Seed Trap Method

Fungal isolation using the seed trap method resulted in an overall fungal prevalence of 11.17% (Table 3). Pythium, Rhizoctonia, Aspergillus, Rhizopus, Cephalosporium, Ulocladium, Diplodocicum, Trichoderma, Alternaria, Fusarium, Mycelia sterilia, Penicillium, Cladosporium, and Thielaviopsis were isolated, but Candida and Macrophoma were not detected using this method.

The frequent appearance of Pythium, Rhizoctonia, Aspergillus, and Rhizopus was clear using both the direct isolation and seed trap methods.

Chemical Analysis of Water Samples

As shown in Table 4, the temperature range was from 11.9-35.3°C during the study period. A high temperature had adverse effects on Alternaria, Candida, Ulocladium, Trichoderma, and Cephalosporium, while temperatures above 25°C had a direct effect on Macrophoma and Thielaviopsis. The effect of temperature on the rest of the fungi ranged from a direct effect to the opposite effect.

The pH values ranged from 5.6-7.8. Acidic pH had an adverse effect on Candida at and acidic

Table 1. The percentage of the fungi appearance at different water sources in six months

Isolated Fungi	December	January	February	March	April	May
Aspergillus	0	17.39	7.5	2.85	29.62	32.25
Alternaria	18.18	0	0	28.57	0	0
Candida	6.81	0	0	0	0	0
Cephalosporium	0	0	27.5	0	0	0
Cladosporium	0	0	12.5	0	1.85	9.67
Diplodocicum	29.54	0	0	0	0	0
Fusarium	6.81	0	0	5.71	5.55	3.22
Macrophoma	0	0	0	0	1.85	0
Mycelia sterilia	0	0	0	0	0	4.83
Penicillium	0	10.86	0	0	1.85	0
Pythium	0	4.34	50	45.71	35.18	27.41
Rhizoctonia	6.81	23.91	0	8.57	11.11	22.58
Rhizopus	13.63	32.6	2.5	0	12.96	0
Thielaviopsis	0	0	0	8.57	0	0
Trichoderma	0	10.86	0	0	0	0
Ulocladium	18.18	0	0	0	0	0
Total	99.96	99.96	100	99.98	99.97	99.96
Rate	6.247	6.247	6.25	6.248	6.248	6.247
and alkali pH had adverse effects on *Thielaviopsis*. Direct effects on *Diplococcium*, *Ulocladium*, *Cephalosporium*, and *Alternaria* were observed at acidic and alkali pH. *Trichoderma* and *Fusarium* were affected by alkali pH. The effect of pH on the other fungi varied.

The sodium concentration ranged from 4.56–801.4 mL/L, the potassium concentration from 0.06–81.66 mL/L, the calcium concentration from 0.3–9.5 mL/L, the chlorine concentration from 1–22 mL/L, the magnesium concentration from 1–22.4 mL/L, and the bicarbonate concentration from 1–13.5 mL/L. These elements had adverse effects on *Trichoderma* for the duration of the study, while potassium and bicarbonate had adverse effects on *Penicillium*. Moreover, sodium, calcium, chlorine, magnesium, and bicarbonate had positive effects on *Cephalosporium*, while potassium had adverse effects on *Mycelia sterilia*. Moreover, magnesium and bicarbonate had a direct effect on *Mycelia sterilia* throughout the study period.

DISCUSSION

Fungi Isolation

As shown in Table 1, the reason for the presence of *Rhizoctonia*, *Pythium*, and *Fusarium* during the study period may be attributed to the fact that these fungi are soil fungi that may be transmitted during irrigation processes. This is supported by several studies showing the presence of soil fungi in water sources. The abundant presence of *Aspergillus* may be attributed to the fact that this fungus is able to produce large numbers of asexual breeding units, it is able to survive in different environments, and it secretes enzymes that enable it to benefit from different food sources. *Rhizopus* is a widespread fungus that may exist in water. *Candida*, which is a genus of pathogenic fungi, was also isolated, indicating the serious public health impact of water from these wells if it was used for drinking or domestic purposes.

The fungi isolated in this study were similar to those isolated from other water sources, such as the Nile River, drinking water, and

Isolated Fungi	The North well	The South well	The Plastic houses well	Sewage Water	Appearance %
Aspergillus	27.77	27.77	27.77	11.11	22.216
Alternaria	5.55	16.66	0	0	6.664
Candida	0	16.66	0	0	3.332
Cephalosporium	0	0	0	0	0
Cladosporium	16.66	16.66	0	22.22	11.108
Diplococcium	0	0	0	0	1.11
Fusarium	16.66	0	0	0	8.886
Macrophoma	22.22	0	0	0	4.444
Mycelia sterilia	0	0	5.55	0	1.11
Penicillium	5.55	16.66	0	0	5.552
Pythium	33.33	38.88	38.88	33.33	35.55
Rhizoctonia	44.44	16.66	16.66	11.11	21.106
Rhizopus	16.66	16.66	0	16.66	13.328
Thielaviopsis	0	0	0	0	0
Trichoderma	0	0	0	0	2.222
Ulocladium	0	0	0	0	0
Total	188.84	166.61	88.86	94.43	136.6
Rate	11.80	10.41	5.55	5.90	8.5375

Table 2. The percentage of the appearance of fungi, isolated by direct isolation- per site
polluted water from the Shatt Al-Arab River and its ramifications18 and well water19, but at different frequencies.

Direct Isolation Method

The results presented in Table 2 show that well water had the highest incidence of fungi, at 11.80%. The plastic housing well water was the least polluted, as the fungi incidence was 5.90%. The lack of fungi in the plastic housing may be attributed to the frequent use of chemical pesticides near the water of the plastic housing.

Seed Trap Method

The results presented in Tables 2 and 3 show that the seed trap method was the most efficient at isolating pathogenic and non-pathogenic fungi, such as *Ulocladium*, *Thielaviopsis*, and *Cephalosporium*, which were not isolated using the direct isolation method.

The results showed that the lowest incidence of fungi was in sewage water (9.72%), and this may be due to the lack of oxygen in sewage water and the high percentage of pollutants, resulting in an inappropriate environment for these fungi.

Chemical Analysis of Water Samples

The difference in the effect of temperature on the fungi confirmed that each fungus has a certain temperature range at which it can grow. Borut and Johnson20 found that there is a lack of response of fungi to physical and chemical factors. Moreover, Nakagiri et al.21 reported that temperature changes affect the geographical distribution of fungi.

The difference observed in the effect of pH values on fungi confirmed that each fungus has a certain pH range within which it can grow. Suzuki and Nimura22 reported that a pH range of 3-10 was appropriate for the majority of fungi to grow in aquatic environments. However, Mehrotra and Gupta23 found that pH had a minor effect on the presence of fungi. Khaimi9 isolated *Aspergillus niger*, *A. flavus*, *A. terms*, *Penicillium sp.*, *Cladosporium herbarum*, *Aspergillus sp.*, *Cladosporium sp.*, *Ulocladium botrytis*, *A. foetidus*, *Phomopsis*, *Phoma exigua*, *Pythium*, and yeasts and showed that they were able to grow at pH 6.5–8. However, salt concentrations from 0.63–6.81 had adverse effects on *Trichoderma*, *Candida*, and *Thielaviopsis* and direct effects on *Ulocladium*, *Cephalosporium*, *Macrophoma*, and *Alrernaria*. The effects of salt concentration on the rest of the fungi were varied.

The difference in the effect of salts on different fungi confirmed that each fungus has a

Isolated Fungi	The North well	The South well	The Plastic houses well	Sewage Water	Appearance %
Aspergillus	11.11	22.22	27.77	38.88	31.107
Alternaria	16.66	33.33	0	0	13.33
Candida	0	0	0	0	0
Cephalosporium	16.66	16.66	16.66	11.11	12.218
Cladosporium	0	0	0	11.11	2.222
Diplacoccium	16.66	16.66	16.66	0	13.328
Fusarium	0	5.55	0	0	2.22
Macrophoma	0	0	0	0	0
Mycelia sterilia	11.11	0	0	0	2.22
Penicillium	0	0	5.55	0	1.11
Pythium	8.883	838.8	33.33	72.22	46.662
Rhizoctonia	27.7	27.77	33.33	5.55	19.994
Rhizopus	16.66	22.22	16.66	16.66	18.884
Thielaviopsis	11.11	0	0	0	3.332
Trichoderma	0	0	0	0	3.332
Ulocladium	16.66	0	11.11	0	8.886
Total	183.28	183.29	161.07	155.53	178.847
Rate	11.455	11.455	10.66	9.720	11.177
sustainable range of salt concentrations at which it can grow. Abdel-Fattah et al. found that the total number of fungi is significantly affected by the total concentration of dissolved salts, especially sodium and calcium. We found that the effects of metallic elements on fungi were varied, resulting in the stabilization of some fungi, as shown in Table 4.

ACKNOWLEDGMENTS

The author would like to thank Prince Sattam bin Abdulaziz University for their scientific contributions and the laboratory in the Department of Biology for allowing to perform various experiments.

FUNDING

None.

DATA AVAILABILITY

All datasets generated or analyzed during this study are included in the manuscript.
ETHIC STATEMENTS

This article does not contain any studies with human participants or animals performed by the author.

REFERENCES

1. Shiklomonov IA. Appraisal and Assessment of World Water Resources. Water International. 2000;25(1):11-32. doi: 10.1080/02508060008686794
2. Hamid RH. An environmental study of Oomycetes in the Tigris River and their pathogenicity of some fish. Master thesis, College of Science, Iraq. 2006
3. Saada A, Ibrahim MN. Environmental pollution and the role of microorganisms, positive and negative. Arab Thought House. 2000:248.
4. Topkaya B. Water resources in the middle east: Forthcoming problems and solutions for sustainable development of the region cresport. Akdeniz University Faculty of engineering : Antalya, Turkey. 1998:18.
5. Mefeters GA, Singh A. Effect of aquatic environmental stress on enteric bacterial pathogens. J Appl Bac. 1991;20:1155-1205.
6. Muhsin TM, Zwain KH, Lafta AH, Lafta AH. A Study on the fungal populations of ground waters in Basrah, Iraq. Pol Arch Hydrobiol. 1989;36(3):312-322.
7. Rajanaika PD, Hoskeri J, Krishna V. Diversity of Aquatic Fungi in Relation to Environmental conditions in Tunga River (South India). Diversity of Aquatic Fungi. 2009;1(6):54-62.
8. Awad MF, Kraume M. The occurrence of fung in activated sludge from MBRs World Academy of Seience. Engineering and Technology. 2010;71:561-564.
9. Khaimi MbA. An Environmental and Physiological Study of Medium Salinity Tolerant Fungi in Al-Qassim, Kingdom of Saudi Arabia. Saudi Journal of Biology Sciences. 2007;14(2):115-123.
10. Hussian T, Ishiqah CMM, Hussain A, Mehmood T, Sultana K, Ashraf M. Incidence of Fungi in Water Springs of Samahni Valley, District Bihmber, Azad Kashmir, Pakistan. Int J Biol. 2010;2(2):99-101. doi: 10.5539/ijb.v2n2p94
11. Jackson ML. Soil chemical analysis prentice hall,Ino, Englewood- IRfs, N.J. 1958.
12. Richard L.A. Diagosis and improemont of saline and alkaline soils USDA.and book 60 USDA. Washington DC, USA. 1954.
13. Bettucci L, Roquebert L. Studies on Microfungi from Tropical Rain Forest Litter and Soil: A Preliminary Study Nova Hedwigia. 1995;61(1-2):111-118.
14. Park D. On The Ecology of heterotrophic microorganisms in fresh water. Trans Br Mycol Soc. 1972;58(2):291-299.
15. Flannigan B, Sellars PN. Amylase, Beta Glucosidase and Beta Xylosidase Activity of Thermotolerant and Thermophilic Fungi isolated from Barley. Trans Br Mycol Soc. 1977;69(2):316-327. doi: 10.1016/S0007-1536(77)80053-3
16. EL-Nagdy MA. Studies on Fresh Water Fungi in River Nile M.Sc. Thesis, Bot. Dept. Fac. Sci. Assiut Univ., Assuit, Egypt. 1981.
17. Arvanitidou M, Kaneliou K, Constantinides TC, Katsougannopoles V. The occurrence of fungi in hospital and community potable water. Lett Appl Microbiol. 1999;29(2):81-84. doi: 10.1046/j.1365-2672.1999.00583.x
18. El-Dohlob SM, Ali BZ. Fungal population inhabiting polluted water of the River of Shatt-Al-Al and its creeks at Basrah, Iraq. J Univ Kuwait Sci. 1981;8:235-240.
19. Okpako EC, Osagwuru AN, Duke AE, Ntui VO. Prevalence and significance of fungi in sachet and borehole drinking water in calaban, Nigeria. Afr J Microbiol Res. 2009;3(2):56-61.
20. Borut SY, Johnson TW. Some biological observation on fungi in estuarine sediments. Mycologia. 1962;54(2):181-193.
21. Nakagiri A, Okane I, Ito T. Geographical and seasonal distribution of arenicolous marine fungi along the pacific coast of the Bousou Peninsula. IFO RES Comm. 1999;19:22-33.
22. Suzuki S, Nimura H. Relation between the distribution of aquatic hyphomycetes in Japanese lakes types-Botan. Mag (Tokyo). 1961;74(872):51-55. doi: 10.15281/jplantres1887.74.51
23. Gupta AK, Mehrotra RS. Seasonal periodicity of aquatic fungi in tanks at kurukshetra, India. Hydrobiol. 1989;173:219-229. doi: 10.1007/BF00008969
24. Abdel-Fattah HM, Moubasher AH, Abdel-Hafez SI. Studies on myco- flora of salt marshes in Egypt.I.Suger fungi. Mycopathologia. 1977;61:19-26. doi: 10.1007/BF00440754
25. Barnett HL, Hunter BB. I Illustraed Genera of Imperfect Fungi.3rd.edition Burgess Publishing Company Minneapolis, Minnesota. 1972.
26. Domsh KH, Gams W. compendium of soil fungi. Academic Press, London. 1980:894.
27. Parmeter JR, Whitnery HS. Taxonomy and nomen clature of the imperfect state In: Rhizoctonia solani Biology and pathology:ed. J.R. Parmeter .University of California Barkely. Los Angeles. 1970;7-10. doi: 10.1525/9780520318243-004
28. Sarhan ART. Water Resources Scarcity and its Impact on Water Quality and Pollution. Qadisiyah University Magazine. 2002;4(7):133-184.