Length scale competition in soliton-bearing systems: A collective coordinate approach

Sara Cuenda and Angel Sánchez

*Grupo Interdisciplinar de Sistemas Complejos (GISC) and Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
(Dated: November 15, 2018)

We study the phenomenon of length scale competition, an instability of solitons and other coherent structures that takes place when their size is of the same order of some characteristic scale of the system in which they propagate. Working on the framework of nonlinear Klein-Gordon models as a paradigmatic example, we show that this instability can be understood by means of a collective coordinate approach in terms of soliton position and width. As a consequence, we provide a quantitative, natural explanation of the phenomenon in much simpler terms than any previous treatment of the problem. Our technique allows to study the existence of length scale competition in most soliton bearing nonlinear models and can be extended to coherent structures with more degrees of freedom, such as breathers.

PACS numbers: 05.45.Yv, 03.75.Lm, 02.30.Jr
Keywords: Solitons, Coherent structures, Space-dependent perturbations, Length-scale competition, Collective coordinates

LEAD PARAGRAPH

Solitons, solitary waves, vortices and other coherent structures possess, generally speaking, a characteristic length or size. One important feature of these coherent structures, which usually are exact solutions of certain nonlinear models, is their robustness when the corresponding models are perturbed in different ways. A case relevant in many real applications is that of space-dependent perturbations, that may or may not have their own typical length scale. Interestingly, in the latter case, it has been known for a decade that when the perturbation length scale is comparable to the size of the coherent structures, the effects of even very small perturbing terms are dramatically enhanced. Although some analytical approaches have shed some light of the mechanisms for this special instability, a clear-cut, simple explanation was lacking. In this paper, we show how such explanation arises by means of a reduction of degrees of freedom through the so-called collective coordinate technique. The analytical results have a straightforward physical interpretation in terms of a resonant-like phenomenon. Notwithstanding the fact that we work on a specific class of soliton-bearing equations, our approach is readily generalizable to other equations and/or types of coherent structures.

I. INTRODUCTION

Fifty years after the pioneering discoveries of Fermi, Pasta and Ulam [1], the paradigm of coherent structures has proven itself one of the most fruitful ones of Nonlinear Science [2]. Fronts, solitons, solitary waves, breathers, or vortices are instances of such coherent structures of relevance in a plethora of applications in very different fields. One of the chief reasons that gives all these nonlinear excitations their paradigmatic character is their robustness and stability: Generally speaking, when systems supporting these structures are perturbed, the structures continue to exist, albeit with modifications in their parameters or small changes in shape (see [3,4] for reviews). This property that all these objects (approximately) retain their identity allows one to rely on them to interpret the effects of perturbations on general solutions of the corresponding models.

Among the different types of coherent structures one can encounter, topological solitons are particularly robust due to the existence of a conserved quantity named topological charge. Objects in this class are, e.g., kinks or vortices and can be found in systems ranging from Josephson superconducting devices to fluid dynamics. A particularly important representative of models supporting topological solitons is the family of nonlinear Klein-Gordon equations [2], whose expression is

\[\phi_{tt} - \phi_{xx} + \frac{dU}{d\phi} = 0. \] \hfill (1)

Specially important cases of this equation occur when

\[U(\phi) = \frac{1}{4}(\phi^2 - 1)^2, \] giving the so-called ϕ^4 equation, and when

\[U(\phi) = 1 - \cos(\phi), \] leading to the sine-Gordon (sG) equation, which is one of the few examples of fully integrable systems [3]. Indeed, for any initial data the
solution of the sine-Gordon equation can be expressed as a sum of kinks (and antikinks), breathers, and linear waves. Here we focus on kink solitons, which have the form

$$\phi(x, t) = 4 \arctan \left\{ \exp \left(\frac{x - vt}{\sqrt{1 - v^2}} \right) \right\},$$

(2)

where \(0 \leq v < 1\) being a free parameter that specifies the kink velocity. The topological character of these solutions arises from the fact that they join two minima of the potential \(U(\phi)\), and therefore they cannot be destroyed in an infinite system. Our other example, the \(\phi^4\) equation, is not integrable, but supports topological, kink-like solutions as well, given by

$$\phi(x, t) = \tanh \left(\frac{x - vt}{\sqrt{2(1 - v^2)}} \right).$$

(3)

It is by now well established, already from pioneering works in the seventies \[8\] \[9\] \[10\] \[11\] \[12\] \[13\] \[14\] \[15\] \[16\] \[17\] that both types of kinks behave, under a wide class of perturbations, like relativistic particles. The relativistic character arises from the Lorentz invariance of their dynamics, see Eq. (1), and implies that there is a maximum propagation velocity for kinks (1 in our units) and their characteristic width decreases with velocity. Indeed, even behaving as particles, kinks do have a characteristic width; however, for most perturbations, that is not a relevant parameter and one can consider kinks as point-like particles. This is not the case when the perturbation itself gives rise to certain length scale of its own, a situation that leads to the phenomenon of length-scale competition, first reported in \[8\] \[9\] (see \[8\] for a review). This phenomenon is nothing but an instability that occurs when the length of a coherent structure approximately matches that of the perturbation: Then, small values of the perturbation amplitude are enough to cause large modifications or even destroy the structure. Thus, in \[8\], the perturbation considered was sinusoidal, of the form

$$\phi_{tt} - \phi_{xx} + \frac{dU}{d\phi}(1 + \epsilon \cos(kx)) = 0,$$

(4)

where \(\epsilon\) and \(k\) are arbitrary parameters. The structures studied here were breathers, which are exact solutions of the sine-Gordon equation with a time dependent, oscillatory mode (hence the name ‘breather’) and that can be seen as a bound kink-antikink pair. It was found that small \(k\) values, i.e., long perturbation wavelengths, induced breathers to move as particles in the sinusoidal potential, whereas large \(k\) or equivalent short perturbation wavelengths, were unnoticed by the breathers. In the intermediate regime, where length scales were comparable, breathers (which are not topological) were destroyed.

As breathers are quite complicated objects, the issue of length scale competition was addressed for kinks in \[10\]. In this case, kinks were not destroyed because of the conservation of the topological charge, but length scale competition was present in a different way: Keeping all other parameters of the equation constant, it was observed that kinks could not propagate when the perturbation wavelength was of the order of their width. In all other (smaller or larger) perturbations, propagation was possible and, once again, easily understood in terms of an effective point-like particle. Although an explanation of this phenomenon was provided in \[10\] in terms of a (numerical) linear stability analysis and the radiation emitted by the kink, it was not a fully satisfactory argument for two reasons: First, the role of the kink width was not at all transparent, and second, there were no simple analytical results. These are important issues because length scale competition is a rather general phenomenon: It has been observed in different models (such as the nonlinear Schrödinger equation \[11\], or with other perturbations, including random ones \[12\]. Therefore, having a simple, clear explanation of length scale competition will be immediately of use in those other contexts.

The aim of the present paper is to show that length scale competition can be understood through a collective coordinate approximation. Collective coordinate approaches were introduced in \[8\] \[9\] \[10\] to describe kinks as particles (see \[1\] \[2\] \[3\] \[4\] \[5\] \[6\] \[7\] \[8\] \[9\] \[10\] \[11\] \[12\] \[13\] \[14\] \[15\] \[16\] \[17\] for a very large number of different techniques and applications of this idea). Although the original approximation was to reduce the equation of motion for the kink to an ordinary differential equation for a time dependent, collective coordinate which was identified with its center, it is being realized lately that other collective coordinates can be used instead of or in addition to the kink center. One of the most natural additional coordinates to consider is the kink width, an approach that has already produced new and unexpected results such as the existence of anomalous resonances \[12\] or the rectification of ac drivings \[13\]. There are also cases in which one has to consider three or more collective coordinates (see, e.g., \[15\]). It is only natural then to apply these extended collective coordinate approximations to the problem of length scale competition, in search for the analytical explanation needed. As we will see below, taking into account the kink width dependence on time is indeed enough to reproduce the phenomenology observed in the numerical simulations. Our approach is detailed in the next Section, whereas in Sec. 3 we collect our results and discuss our conclusions.

II. COLLECTIVE COORDINATE APPROACH

We now present our collective coordinate approach to the problem of length scale competition for kinks \[10\]. We will use the lagrangian based approach developed in \[16\], which is very simple and direct. Equivalent results can be obtained with the so-called generalized travelling wave \textit{Ansatz} \[17\] somewhat more involved in terms of computation but valid even for systems that cannot be described in terms of a lagrangian.

Let us consider the generically perturbed Klein-
Gordon equation:
\[\phi_{tt} - \phi_{xx} + \frac{dU}{d\phi} + \epsilon f(x, t) g(\phi) = 0. \] (5)

The starting point of our approach is the lagrangian for the above equation, which is given by
\[L = \int_{-\infty}^{\infty} dx \left\{ \frac{1}{2} \phi^2 - \frac{1}{2} \phi_x^2 - U(\phi) + \epsilon g(\phi) \phi_x \int_{x_0}^{x} dy f(y, t) \right\}. \] (6)

As stated above, we now focus on the behaviour of kink excitations of the form (3) and (2). To do so, we will use a two collective coordinates approach by substituting the Ansatz
\[\phi(z(t)) = \tanh(z(t)) \] (7)
in the lagrangian of the \(\phi^4 \) system, and
\[\phi(z(t)) = 4 \text{arctan}\left\{ \exp(z(t)) \right\} \] (8)
in sG, where \(z(t) = \frac{2 - X(t)}{l(t)} \) and \(X(t) \) and \(l(t) \) are two collective coordinates that represent the position of the center and the width of the kink, respectively. Substituting the expressions (7) and (8) in the lagrangian (6), with our perturbation, \(f(x, t) = \cos(kx) \) and \(g(\phi) = \frac{dU}{d\phi} \), we obtain an expression of the lagrangian in terms of \(X \) and \(l \),
\[L = \frac{M_0 l_0}{2l} \dot{X}^2 + \frac{\alpha M_0 l_0^2}{2l} - \frac{M_0}{2} \left(\frac{l_0}{l} + \frac{l}{l_0} \right) - \frac{\epsilon}{k} \cos(kX) w(a)|_{a=kl}, \] (9)

where, for the \(\phi^4 \) system, \(M_0 = 4/(3\sqrt{2}) \), \(l_0 = \sqrt{2} \) and \(\alpha = (\pi^2 - 6)/12 \), and for the sG system, \(M_0 = 8 \), \(l_0 = 1 \) and \(\alpha = \pi^2/12 \), and
\[w(a) = \int_{-\infty}^{\infty} dz \tanh(z)(\phi'(z))^2 \sin(az), \] (10)
which is
\[w(a) = \frac{\pi a^2 (a^2 + 4)}{24 \sinh \left(\frac{\pi a}{2} \right)} \] (11)
for \(\phi^4 \) and
\[w(a) = \frac{2\pi a^2}{\sinh \left(\frac{\pi a}{2} \right)} \] (12)
for the sG model. We note that the effect of a spatially periodic perturbation like the one considered here was studied for the \(\phi^4 \) model in [13], although the authors were not aware of the existence of length scale competition in this system and focused on unrelated issues.

The equations of motion of \(X \) and \(l \) can now be obtained using the Lagrange equations,
\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{Y}_i} \right) = \frac{\partial L}{\partial Y_i}, \] (13)
where \(Y_i \) stands for the collective coordinates \(X \) and \(l \). The ODE system for \(X \) and \(l \) is, finally,
\[\dot{P} = \epsilon \sin(kX) w(a)|_{a=kl}, \] (14)
\[\dot{Q} = -\frac{1}{2M_0 l_0} \left(P^2 + \frac{Q^2}{\alpha} \right) + \frac{M_0 l_0}{2} \left(\frac{1}{l^2} - \frac{1}{l_0^2} \right) - \epsilon \cos(kX) w'(a)|_{a=kl}, \] (15)

where \(P = M_0 l_0 \dot{X}/l \) and \(Q = \alpha M_0 l_0 l/l \).

The equations above are our final result for the dynamics of sG and \(\phi^4 \) kinks in terms of their center and width. As can be seen, they are quite complicated equations and we have not been able to solve them analytically. Therefore, in order to check whether or not they predict the appearance of length scale competition, we have integrated them numerically using a Runge-Kutta
FIG. 2: Different behaviours of $X(t)$ for different values of k for $\epsilon = 0.7$, $X(0) = 0$, $\dot{X}(0) = 0.5$ as obtained from numerical simulations of the full ϕ^4 model.

The radiation emission as observed in the simulation is smoother than in the length scale competition trapping.

III. DISCUSSION AND CONCLUSIONS

As we have seen in the preceding section, a collective coordinate approach in terms of the kink center and width is able to explain in a correct quantitative manner the phenomenon of length scale competition, observed in numerical simulations earlier for the sG equation with a spatially periodic perturbation ϕ, $l(t)$. The structure of the equations makes it clear the necessity for a second collective coordinate; imposing $l(t) = l_0$ constant, we recover the equation for the center already derived in [10], which shows no sign at all of length scale competition, predicting effective particle-like behavior for all k. The validity of this approach has been also shown in the context of the ϕ^4 equation, which had not been considered before from this viewpoint. In spite of the fact that the collective coordinate equations cannot be solved analytically, they provide us with the physical explanation of the phenomenon in so far as they reveal the key role played by the width changes with time and their coupling with the translational degree of freedom.

It is interesting to reconsider the analysis carried out in [10] of length scale competition through a numerical linear stability analysis. In that previous work, it was argued that the instability arose because, for the relevant perturbation wavelengths, radiation modes moved below the lowest phonon band, inducing the emission of long wavelength radiation which in turn led to the trapping of the kink. It was also argued that those modes became internal modes, i.e., kink shape deformation modes in the process. The approach presented here is a much more simple way to account for these phonon effects: Indeed, as was shown by Quintero and Kevrekidis [20], (odd) phonons do give rise to width oscillations very similar to those induced by an internal mode [20]. We are confident that what our perturbation technique is making clear is precisely the result of the action of those phonons, summarized in our approach in the width variable $l(t)$. The case for the ϕ^4 equation is slightly different: Whereas the sG kink does not have an internal mode [21] and $l(t)$ is hence a collective description of phonon modes, the ϕ^4 kink possesses an intrinsic internal mode that is easily excited by different mechanisms (such as interaction with inhomogeneities, [22, 23]). Therefore, one would expect that for the ϕ^4 equation the effect of a perturbation of a given length is more dramatic than for the sG model, as indeed is the case: See Fig. 11 for a comparison, showing that the kink is trapped for a wider range of values of k. The validity of this approach has been also shown in the context of the ϕ^4 equation, which had not been considered before from this viewpoint. In spite of the fact that the collective coordinate equations cannot be solved analytically, they provide us with the physical explanation of the phenomenon in so far as they reveal the key role played by the width changes with time and their coupling with the translational degree of freedom.

As we have seen in the preceding section, a collective coordinate approach in terms of the kink center and width is able to explain in a correct quantitative manner the phenomenon of length scale competition, observed in numerical simulations earlier for the sG equation with a spatially periodic perturbation ϕ, $l(t)$. The structure of the equations makes it clear the necessity for a second collective coordinate; imposing $l(t) = l_0$ constant, we recover the equation for the center already derived in [10], which shows no sign at all of length scale competition, predicting effective particle-like behavior for all k. The validity of this approach has been also shown in the context of the ϕ^4 equation, which had not been considered before from this viewpoint. In spite of the fact that the collective coordinate equations cannot be solved analytically, they provide us with the physical explanation of the phenomenon in so far as they reveal the key role played by the width changes with time and their coupling with the translational degree of freedom.
term. We believe it is appealing to explore this possibility from a more formal viewpoint; if this idea is correct, then one could think of a scheme for adding in an standard way as many collective coordinates as needed to achieve the required accuracy. Progress in that direction would provide the necessary mathematical grounds for this fruitful approximate technique.

Finally, some comments are in order regarding the applicability of our results. We believe that the collective coordinate approach may also explain the length scale competition for breathers, that so far lacks any explanation. For this problem, the approach would likely involve the breather center and its frequency, as this magnitude controls the kink width when the kink is at rest. Of course, such an Ansatz would only be valid for the breather initially at rest, and the description of the dynamical problem would be more involved, needing perhaps more collective coordinates (such as an independent width). If this approach succeeds, one can then extend it to other breather like excitations, such as nonlinear Schrödinger solitons or intrinsic localized modes. Work along these lines is in progress. On the other hand, it would be very important to have an experimental setup where all these conclusions could be tested in the real world. A modified Josephson junction device has been proposed recently [24] where the role of the kink width is crucial in determining the performance and dynamical characteristics. We believe that a straightforward modification of that design would permit an experimental verification of our results. We hope that this paper stimulates research in that direction.

Acknowledgments

We thank Niurka R. Quintero and Elías Zamora-Sillero for discussions on the lagrangian formalism introduced in [16]. This work has been supported by the Ministerio de Ciencia y Tecnología of Spain through grant BFM2003-07749-C05-01. S.C. is supported by a fellowship from the Consejería de Educación de la Comunidad Autónoma de Madrid and the Fondo Social Europeo.

[1] E. Fermi, J. R. Pasta, and S. M. Ulam, Los Alamos Scientific Laboratory Report no. LA-UR-1940 (1955); reprinted in *Nonlinear Wave Motion*, A. C. Newell, ed., (American Mathematical Society, Providence, 1974).
[2] A. C. Scott, *Nonlinear Science* (Oxford University Press, Oxford, 1999).
[3] Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 763 (1989).
[4] A. Sánchez and L. Vázquez, Int. J. Mod. Phys. B 5, 2825 (1991).
[5] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Phys. Rev. Lett. 30, 1262 (1973).
[6] D. W. McLaughlin and A. C. Scott, Phys. Rev. A 18, 1652 (1978).
[7] M. B. Fogel, S. E. Trullinger, A. R. Bishop, and J. A. Krumhansl, Phys. Rev. Lett. 36, 1411 (1976); Phys. Rev. B 15, 1578 (1976).
[8] A. Sánchez, R. Scharf, A. R. Bishop, and L. Vázquez, Phys. Rev. A 45, 6031 (1992).
[9] A. Sánchez and A. R. Bishop, SIAM Review 40, 579 (1998).
[10] A. Sánchez, A. R. Bishop, and F. Domínguez-Adame, Phys. Rev. E 49, 4603 (1994).
[11] R. Scharf and A. R. Bishop, Phys. Rev. E 47, 1375 (1993).
[12] J. Garnier, Phys. Rev. B 68, 134302 (2003).
[13] N. R. Quintero, A. Sánchez, and F. G. Mertens. Phys. Rev. Lett. 84, 871 (2000); Phys. Rev. E 62, 5695 (2000).
[14] L. Morales-Molina, N. R. Quintero, F. G. Mertens, and A. Sánchez. Phys. Rev. Lett. 91, 234102 (2003).
[15] M. Meister, F. G. Mertens, and A. Sánchez Eur. Phys. J. B 20, 405 (2001)
[16] N. R. Quintero and E. Zamora-Sillero, Physica D 197, 63 (2004).
[17] H. J. Schnitzer, and A. R. Bishop, Phys. Rev. B 56, 2510 (1997).
[18] Z. Fei, V. V. Konotop, M. Peyrard, and L. Vázquez, Phys. Rev. E 48, 548 (1993).
[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes in C*, 2nd edition (Cambridge University Press, New York, 1992).
[20] N. R. Quintero and P. G. Kevrekidis, Phys. Rev. E 64, 056608 (2001).
[21] N. R. Quintero, A. Sánchez, and F. G. Mertens, Phys. Rev. E 62, R60 (2000).
[22] D. K. Campbell, J. F. Schonfeld, and C. A. Wingate, Physica D 9, 1 (1983).
[23] Z. Fei, Yu. S. Kivshar, and L. Vázquez, Phys. Rev. A 46, 5214 (1992).
[24] L. Morales-Molina, F. G. Mertens, and A. Sánchez. Eur. Phys. J. B 37, 79 (2004).