Revisiting the role of VraTSR in *Staphylococcus aureus* response to cell wall targeting antibiotics

Supplemental Information

Pedro B. Fernandes, Patricia Reed, João M. Monteiro and Mariana G. Pinho

Supplemental Methods

Construction of *S. aureus* strains

Sequence of primers used for strain construction as listed in Supplemental Table 3.

To construct the *vraTSR* promoter fusion, an 814-bp DNA fragment containing the *vraTSR* promoter region was amplified from COL genomic DNA using primers P vraSR_P1_KpnI and P vraSR_P2_New_XhoI, digested with KpnI and XhoI, and cloned into KpnI/XhoI digested pFAST3, upstream of sfgfp-p7, resulting in plasmid pP vra-pFAST3, confirmed by DNA sequencing. pP vra-pFAST3 was electroporated into the *S. aureus* RN4220 strain and integrated into the chromosome at the *vraTSR* promoter site by homologous recombination, as confirmed by PCR and sequencing; the resulting strain was named RN P vra-sGFP. Strain COL P vra-sGFP was constructed by transducing the integrated plasmid pP vra-pFAST3 from RN P vra-sGFP into COL using phage80α, as previously described

To construct the *S. aureus ΔpbpB* null mutant, lacking PBP2, we amplified 1Kb DNA fragments from *S. aureus* COL genomic DNA corresponding to the upstream (primers PBP2_KO-P1 and PBP2_KO-P2) and downstream (primers PBP2_KO-P13 and PBP2_KO-P4) regions of the *pbpB* gene. The resulting PCR products were joined by overlap PCR using primers PBP2_KO-P1 and PBP2_KO-P4. The overlap PCR product was digested with EcoRI and BamHI and cloned into the thermosensitive plasmid pMAD2, producing plasmid pHΔpbpB. The plasmid was sequenced and introduced into RN4220 by electroporation. Following electroporation, the plasmid was transduced into COL using phage 80α.
as previously described1. Insertion and excision of pΔpbpB was performed as previously described2, except the integration steps were performed at 37 °C instead of 43 °C, resulting in strain COLΔpbpB. Deletion of the target gene was verified by PCR and resulting strains were verified by whole genome sequencing.

To monitor vraTSR expression levels in the mutants lacking different enzymes involved in the last stages of peptidoglycan synthesis, pPvra-pFAST3 was transduced into the corresponding mutant strains, using phage 80α, with erythromycin selection, resulting in strains: ColPB1TP_Pvra-sGFP, COLΔpbpB_Pvra-sGFP, COLΔpbp3_Pvra-sGFP, COLΔpbpD_Pvra-sGFP, COLΔmgt_Pvra-sGFP, COLΔsgtA_Pvra-sGFP and COLΔmecA_Pvra-sGFP.

To investigate the mechanism behind PBP2-dependent VraTSR activation, COLΔpbpB_Pvra-sGFP was complemented with plasmids encoding different alleles of PBP2. For that, a 2214-bp fragment encompassing the wild type pbpB allele was amplified using primers PBP2muts_P1 and PBP2muts_P2 from S. aureus COL genomic DNA. The same pair of primers was used to amplify a fragment, coding for the transglycosylase-inactive PBP2E114Q from COLTG424 genomic DNA. These fragments were introduced into Smal-digested pCNX using a Gibson assembly cloning kit (NEB), originating plasmids pPBP2 and pPBP2TG. Transduction of these plasmid into COLΔpbpB_Pvra-sGFP gave COLΔpbpB_Pvra-sGFPpPBP2 and COLΔpbpB_Pvra-sGFPpPBP2TG*, respectively. To construct plasmid pCNX-pbp2TP, a full copy of pbpB allele encoding for PBP2S398G (pbp2TP) was cloned into the pCNX plasmid, downstream of the cadmium inducible P\textsubscript{cad} promoter. The pbp2TP sequence was amplified from pMAD-pbp2TPbig which was constructed by amplifying two PCR fragments encompassing 1.7 kb upstream or downstream of nucleotide T1192 of pbpB using primers P1pMADpbp2TP/ P2pMADpbp2TP and P3pMADpbp2TP/ P4pMADpbp2TP, respectively. The two fragments were joined by overlap PCR using primers pair P1pMADpbp2TP and P4pMADpbp2TP, digested with BglII and Smal and cloned into pMAD, creating plasmid pMADpbp2TPbig. This plasmid contains the nucleotide exchanges T1192G and C1193G which switch the catalytic serine from the TP domain of PBP2 to a glycine (S398G) and a silent mutation (T1197C) that introduces a BamHI restriction site to facilitate screening
of clones. The pMAD-PBP2TPbig plasmid served as a template to amplify the full pbp2TP allele using primers P1pCNXpbp2 and P2pCNXpbp2. The resulting PCR fragment was cloned downstream of the Pcad promoter of pCNX plasmid, after digesting with Sall and KpnI, resulting in plasmid pCNX-pbp2TP. pCNX-pbp2TP was then transduced to COLΔpbpB_Pvra-sGFP, originating strain COLΔpbpB_Pvra-sGFPpPBP2TP*. To construct pBP2TGTP, the mutation coding for transglycosylase-inactive PBP2E114Q was inserted into plasmid pCNX-pbp2TP, via site-directed mutagenesis, using primers E114Q fw and E114Q rev. The resulting plasmid was transduced to COLΔpbpB_Pvra-sGFP, giving strain COLpbpB_Pvra-sGFPpPBP2TG*TP*.

To localize VraT and VraS, an N-terminal fusion of VraT to the P7 variant of superfast GFP (sfGFP)5 and a C-terminal fusion of VraS to mCherry were constructed. A 409-bp fragment encoding the upstream region of vraT was amplified by PCR from S. aureus COL genomic DNA, using primers orf1_fw_EcoRI and orf1_rev_link_sgfp. Primers sgfp_fw_link_orf1 and sgfp_rev_link_vraT were used to amplify gfp from pFAST3. A third 744-bp fragment containing vraT and a sequence encoding an 11 amino acid linker was amplified using primers vraT_fw_link_sgfp and vraT_rev_BamHI. The fragments were joined by overlap PCR using the primers orf1_fw_EcoRI and vraT_rev_BamHI. The resulting fragment was digested with EcoRI and BamHI restriction enzymes and cloned into pMAD, giving pVraT_GFP. The plasmid was sequenced and then electroporated into S. aureus RN4220 strain at 30 °C, using erythromycin and X-gal selection, and transduced to COL using phage 80α. Integration and excision of the plasmid into the chromosome was performed as previously described2, giving COLsGFP_VraT. An 862-bp fragment encoding VraS, excluding the stop codon, and a sequence encoding an 11 amino acid linker was amplified by PCR from S. aureus COL genomic DNA, using primers VraSCterfwd_NcoI and VraSmchMLbwd. Primers mCherryMLfwd and mCherrybwd2 were used to amplify mCherry from pBCB4-Cherry. A third 860-bp fragment containing the downstream region of vraS was amplified using primers Vrasfwd3 and VraRbwd_BamHI. The fragments were joined by overlap PCR using the primers mCherryMLfwd and VraRbwd_BamHI. The resulting fragment was digested with Ncol and BamHI restriction enzymes and cloned into pMAD, giving
pVraS-mCherry. The plasmid was sequenced and then electroporated into *S. aureus* RN4220 strain at 30 °C, using erythromycin selection in the presence of X-gal, and transduced into COLsGFP_VraT, using phage 80α. Integration and excision of the plasmid into the chromosome was performed as described\(^2\), resulting in strain COLsGFP-VraTVraS-mCherry.

To determine the topology of VraT, PhoB fusions to VraT were made at both N- and C-terminal ends. For the N-terminal fusion to VraT a 1389-bp fragment encompassing *phoB* allele and a 5 amino acid linker was amplified using primers phoB_vraT_P1 and phoB_vraT_P2 from *S. aureus* COL genomic DNA. Another fragment with 748-bp with *vraT* coding sequence was amplified from the same genomic DNA, using primers phoB_vraT_P3 and phoB_vraT_P4. These fragments were introduced into Smal-digested pCN51 using a Gibson assembly cloning kit (NEB), originating plasmid pPhoB_VraT. For the C-terminal PhoB fusion to VraT, a 772-bp fragment with *vraT* coding sequence and encoding a 5 amino acid linker was amplified from *S. aureus* COL genomic DNA, using primers vraT_phoB_P1 and vraT_phoB_P2. Primers vraT_phoB_P3 and vraT_phoB_P4 were used to amplify a 1376-bp DNA fragment with *phoB* coding sequence, from the same genomic template. These fragments were introduced into Smal-digested pCN51 using a Gibson assembly cloning kit (NEB), originating plasmid pVraT-PhoB. Plasmids pCN51, pPhoB_VraT and pVraT-PhoB were transduced to COLΔ*phoB*, giving strains COLΔ*phoBpCN51*, COLΔ*phoBpPhoB-VraT* and COLΔ*phoBpVraT-PhoB*, respectively.
Supplementary Figure 1. Blocking early, middle or late stages of CW synthesis results in VraTSR activation. *S. aureus* cells expressing GFP under the control of the *vraTSR* promoter (COL P*vra*-sGFP) were incubated with 1x MIC of different CW targeting antibiotics for 60 mins prior to imaging by fluorescence microscopy. Cells from a control experiment, with no antibiotic, were always present on the same slide and those cells were labelled with DNA dye Hoechst 33342, to discriminate the two populations. Incubation with the FtsZ inhibitor PC190273, an antibiotic that does not target the CW synthesis, was also included as a control. N > 223 cells for each condition. Data represented in violin plots where the middle line represents the median and the other two lines the quartiles.
Supplementary Figure 2. PBP2 delocalizes in the presence of cell wall targeting antibiotics. COL *pbpB::sgfp-pbpB* (BCBPM073) cells were imaged by epifluorescence microscopy after incubation for 60 min with 1 x MIC of PC190273, (+PC, 1 µg mL$^{-1}$), fosfomycin (+Fosfo, 300 µg mL$^{-1}$), D-cycloserine (+D-cyc, 125 µg mL$^{-1}$), bacitracin (+Bac, 40 µg mL$^{-1}$), 2-(2-Chlorophenyl)-3-[1-(2,3-dimethylbenzyl)piperidin-4-yl]-5-fluoro-1H-indole (+CDFI, 1.5 µg mL$^{-1}$), oxacillin (+Oxa, 800 µg mL$^{-1}$) and vancomycin (+Van, 2 µg mL$^{-1}$). Incubation in TSB without antibiotics was used as negative control. In the presence of all antibiotics tested, septal enrichment of PBP2 is lost or decreased and the protein becomes dispersed over the membrane. Scale bar = 1µm
Supplemental Tables

Supplementary Table 1. Plasmids used in this study

Plasmids	Description	Source or reference
pCN51	Shuttle vector containing a cadmium inducible Pcad promoter; Amp^R^ Ery^R^	6
pCNX	Shuttle vector containing a cadmium inducible Pcad promoter; Amp^R^ Kan^R^	7
pMAD	*E. coli-S. aureus* shuttle vector with a thermosensitive origin of replication for Gram-positive bacteria; Amp^R^ Ery^R^ lacZ	2
pBCB4-ChE	*S. aureus* integrative vector for N- and C-terminal mCherry fusions; Amp^R^ Ery^R^	8
pFAST3	*S. aureus* integrative vector that allows for C-terminal sGFP fusions; Amp^R^ Ery^R^	9
pVra-pFAST3	*S. aureus* integrative vector with vraTSR promoter upstream of sgfp-p7	This study
pPBP2	pCNX derivative containing *pbpB* under the control of Pcad promoter; Amp^R^ Kan^R^	This study
pPBP2TG	pCNX derivative containing *pbpBTG*(E114Q) under the control of Pcad promoter; Amp^R^ Kan^R^	This study
pCNX-pbp2TP	pCNX derivative containing *pbp2TP*(S398G) under the control of Pcad promoter; Amp^R^ Kan^R^	This study
pPBP2TGTP	pCNX derivative containing *pbp2TGTP*(E114Q and S398G) under the control of Pcad promoter; Amp^R^ Kan^R^	This study
pVraT-GFP	pMAD with *sgfp* 5' fusion to vraT, Amp^R^, Ery^R^	This study
pVraS-mCherry	pMAD with *mCherry* 3' fusion to vraS, Amp^R^, Ery^R^	This study
pVraT-PhoB	pCN51 derivative containing *phoB* 3' fusion to vraT under the control of Pcad promoter, Amp^R^, Ery^R^	This study
pPhoB_VraT	pCN51 derivative containing *phoB* 5' fusion to vraT under the control of Pcad promoter, Amp^R^, Ery^R^	This study
Supplementary Table 2. Strains used in this study.

Strains	Description	Source or reference
Escherichia coli		
DC10B	Δdam in the DH10B background; Dam methylation only	10
Staphylococcus aureus		
COL	HA-MRSA	11
RN4220	Restriction-deficient derivative of NCTC8325-4	12
COL Pvra-sGFP	COL with pFAST3-Pvra; Ery^R	This study
ColPBP1TP	COL tet³ pbpA::pbpA^{5214A}	13
COLΔpbpB	pbpB deletion in COL	This study
COLΔpbp3	pbp3 deletion in COL	13
COLΔpbpD	pbpD deletion in COL	14
COLΔmgt	mgt deletion in COL	15
COLΔsgtA	sgtA deletion in COL	15
COLΔmecA	mecA deletion in COL	16
ColPBP1TP_Pvra-sGFP	COL tet³ pbpA::pbpA^{5214A} with pPvra-pFAST3; Ery^R	This study
COLΔpbpB_Pvra-sGFP	COLΔpbpB with pPvra-pFAST3; Ery^R	This study
COLΔpbp3_Pvra-sGFP	COLΔpbpC with pPvra-pFAST3; Ery^R	This study
COLΔpbpD_Pvra-sGFP	COLΔpbpD with pPvra-pFAST3; Ery^R	This study
COLΔmgt_Pvra-sGFP	COLΔmgt with pPvra-pFAST3; Ery^R	This study
COLΔsgtA_Pvra-sGFP	COLΔsgtA with pPvra-pFAST3; Ery^R	This study
COLΔmecA_Pvra-sGFP	COLΔmecA with pPvra-pFAST3; Ery^R	This study
COLΔpbpB_Pvra-sGFPpCNX	COLΔpbpB_Pvra-sGFP with pCNX; Ery^R, Kan^R	This study
COLΔpbpB_Pvra-sGFPpPBP2	COLΔpbpB_Pvra-sGFP with pPBP2; Ery^R, Kan^R	This study
COLΔpbpB_Pvra-sGFPpPBP2TG[*]	COLΔpbpB_Pvra-sGFP with pPBP2TG; Ery^R, Kan^R	This study
COLΔpbpB_Pvra-sGFPpPBP2TP[*]	COLΔpbpB_Pvra-sGFP with pCNX-pbp2TP; Ery^R, Kan^R	This study
COLΔpbpB_Pvra-sGFPpPBP2TG[*]TP[*]	COLΔpbpB_Pvra-sGFP and pPBP2TGTP, Ery^R, Kan^R	This study
BCBPM073	COL pbpB::sgfp-pbpB	17
COLsGFP_VraT	COL vraT::sgfp-vraT	This study
COLsGFP-VraTVraS-mCherry	COL vraT::sgfp-vraT, vraS::vraS-mcherry	This study
COLΔphoB	phoB deletion in COL	Veiga & Pinho
COLΔ\(\text{phoB}\)pCN51	\(\text{ColΔphoB with pCN51; Ery}^R\)	This study
-------------------------------	--	------------
COLΔ\(\text{phoB}\)pVraT-\(\text{PhoB}\)	\(\text{ColΔphoB with pVraT}_\text{PhoB}; Ery}^R\)	This study
COLΔ\(\text{phoB}\)p\(\text{PhoB-VraT}\)	\(\text{ColΔphoB with pPhoB}_\text{VraT}; Ery}^R\)	This study
Primer name	Sequence (5'-3')	
-------------	-----------------	
PVraSR_P1_KpnI	gctgcggtaccgcgtgctatgttctgcgc	
PVraSR_P2_New_Xho	cgcgcgctgatataaataagtttaaatgcccaaatgcc	
PBP2KO-P1	acagcaatccaaataactctcgtgc	
PBP2KO-P2	tagttgaatatatcgcgtatagcggtctctacttc	
PBP2KO-P3	tgaggacccgctgtagggatatatttcaactatc	
PBP2KO-P4	acgcaggattctgtccactttagagatgg	
PBP2muts_P1	ggtgcactctagaggatccccctccggtgtgatattagata	
PBP2muts_P2	aagtgaggcccgggtatagcccgcagaaagatcttcttctt	
P1pMADpbp2TP	ggcgccccggatcaaatatccttttacttacttc	
P2pMADpbp2TP	cgcggatcaccagtagggtgagtc	
P3pMADpbp2TP	cgcggatcccaaaaactttcttagcctcttct	
P4pMADpbp2TP	cgcgtgcagcacttttaaaagatcttct	
P1pCNXpbp2	caagtcgatcggatcttttctctctgatgatagtttct	
P2pCNXpbp2	cgcctgaattcgagctcggtaccctcaactctcacttct	
E114Q fw	gtactcgcgactcaagacaatcgtttctacgaacatg	
E114Q rev	cgcgtctggattctgtttatagatggacttacttct	
VraSCterfwdNcoI	gcgcgcggatgggtacaagtggtctctttcacttttc	
VraSmchMLbwd	agaacccagcagcggcaggagccagaaatatttaaggtgttcttacttt	
mCherryMLfwd	tccggtcgtcttctgctgactgttagttgaagtaaggtgagttctt	
mCherrybwd2	atacgaatctctctcttagtacagcgcgtcacgcagcccagc	
Vrasfwd3	aagagagatcgtgtagtacgaatttaagatagtgtggtgagat	
VraBrdBamHI	gcgcgccgatctctcttagtacagcgcgtcactgtcactg	
orf1_fw_EcoRI	gcgcggagtgacgagtc gccggtcagcttttcaatccaatctcag	
orf1_rev_link_sgfp	cttgacagacgcgctcttctacttacttctaagttgat	
sgfp_fw_link_orf1	gaccgccgatcggatcttttctctctgatgatagtttctt	
sgfp_rev_link_vraT	gacatcgcgcgatcggatcttttctctctgatgatagtttctt	
vraT_fw_link_sgfp	tccggtcgtcgcgtgctgtgctgactgttagttgatagtttctt	
vraT rev bamHI	gcgcggatcgcgctcttttctctctgatgatagtttctt	
phoB_vraT_P1	gtcgcggatcgcgctcttttctctctgatgatagtttctt	
phoB_vraT_P2	cagcgcggctcttttctctctgatgatagtttctt	
phoB_vraT_P3	caagtcgctggcggcgggccctcatgcacacacaaatataatc	
phoB_vraT_P4	cccggtcgtccggttctgctgactgttagttgatagtttctt	
vraT_phoB_P1	gttgcgcggatcgcgctcttttctctctgatgatagtttctt	
vraT_phoB_P2	ggatcgcggatcgcgctcttttctctctgatgatagtttctt	
vraT_phoB_P3	cgcggatcgcgctcttttctctctgatgatagtttctt	
vraT_phoB_P4	gcgcggatcgcgctcttttctctctgatgatagtttctt	
References

1. Oshida T, Tomasz A. Isolation and characterization of a Tn551-autolysis mutant of Staphylococcus aureus. J Bacteriol. 1992;174(15):4952-4959 doi:10.1128/JB.174.15.4952-4959.1992

2. Arnaud M, Chastanet A, Débarbouillé M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol. 2004;70(11):6887-6891 doi:10.1128/AEM.70.11.6887-6891.2004

3. Kraemer GR, Iandolo JJ. High-frequency transformation of Staphylococcus aureus by electroporation. Curr Microbiol. 1990;21(6):373-376 doi:10.1007/BF02199440

4. Pinho MG, de Lencastre H, Tomasz A. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc Natl Acad Sci U S A. 2001;98(19):10886-91 doi:10.1073/pnas.191260798

5. Fisher AC, DeLisa MP. Laboratory evolution of fast-folding green fluorescent protein using secretory pathway quality control. PLoS One. 2008;3(6):e2351 doi:10.1371/journal.pone.0002351

6. Charpentier E, Anton AI, Barry P, Alfonso B, Fang Y, Novick RP. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl Environ Microbiol. 2004;70(10):6076-6085 doi:10.1128/AEM.70.10.6076-6085.2004

7. Monteiro JM, Fernandes PB, Vaz F, et al. Cell shape dynamics during the staphylococcal cell cycle. Nat Commun. 2015;6, 8055 doi:10.1038/ncomms9055

8. Pereira PM, Veiga H, Jorge AM, Pinho MG. Fluorescent reporters for studies of cellular localization of proteins in Staphylococcus aureus. Appl Environ Microbiol. 2010;76(13):4346-4353 doi:10.1128/AEM.00359-10

9. Nair DR, Monteiro JM, Memmi G, et al. Characterization of a novel small molecule that potentiates β-lactam activity against gram-positive and gram-negative pathogens. Antimicrob Agents Chemother. 2015;59(4):1876-1885 doi:10.1128/AAC.04164-14

10. Monk IR, Shah IM, Xu M, Tan MW, Foster TJ. Transforming the untransformable: Application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio. 2012;3(2) doi:10.1128/mBio.00277-11

11. Gill SR, Fouts DE, Archer GL, et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol. 2005;187(7):2426-2438 doi:10.1128/JB.187.7.2426-2438.2005

12. Nair D, Memmi G, Hernandez D, et al. Whole-genome sequencing of
Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. *J Bacteriol*. 2011;193(9):2332-2335. doi:10.1128/JB.00027-11

13. Reichmann NT, Tavares AC, Saraiva BM, *et al*. SEDS–bPBP pairs direct lateral and septal peptidoglycan synthesis in *Staphylococcus aureus*. *Nat Microbiol*. 2019;4(8):1368-1377 doi:10.1038/s41564-019-0437-2

14. Memmi G, Filipe SR, Pinho MG, Fu Z, Cheung A. *Staphylococcus aureus* PBP4 is essential for β-lactam resistance in community-acquired methicillin-resistant strains. *Antimicrob Agents Chemother*. 2008;52(11):3955-3966. doi:10.1128/AAC.00049-08

15. Reed P, Veiga H, Jorge AM, Terrak M, Pinho MG. Monofunctional transglycosylases are not essential for *Staphylococcus aureus* cell wall synthesis. *J Bacteriol*. 2011;193(10):2549-2556. doi:10.1128/JB.01474-10

16. Reed P, Atilano ML, Alves R, *et al*. *Staphylococcus aureus* survives with a minimal peptidoglycan synthesis machine but sacrifices virulence and antibiotic resistance. *PLoS Pathog*. 2015;11(5):e1004891 doi:10.1371/journal.ppat.1004891

17. Tan CM, Therien AG, Lu J, *et al*. Restoring methicillin-resistant *Staphylococcus aureus* susceptibility to β-lactam antibiotics. *Sci Transl Med*. 2012;4(126) doi:10.1126/scitranslmed.3003592