LETTER TO THE EDITOR

An isolate of *Vibrio campbellii* carrying the *pir*^{VP} gene causes acute hepatopancreatic necrosis disease

Xuan Dong^{1,2}, Hailiang Wang^{1,2}, Guosi Xie^{1,2}, Peizhuo Zou^{1,2}, Chengcheng Guo^{1,2}, Yan Liang^{1,2} and Jie Huang^{1,2}

Emerging Microbes & Infections (2017) 6, e2; doi:10.1038/emi.2016.131; published online 4 January 2017

Dear Editor,

In recent years, acute hepatopancreatic necrosis disease (AHPND) has rapidly spread in Asian countries and Mexico, causing severe mortality (up to 100%) and decreasing shrimp production. AHPND was originally shown to be caused by a specific virulent strain of *Vibrio parahaemolyticus*, namely the AHPND-causing *V. parahaemolyticus* (VPAHPND)^{1,5,6}. *V. parahaemolyticus* becomes virulent VPAHPND after acquiring a plasmid (pVA1) expressing the deadly toxin *pir*^{VP}, which consists of two subunits, PirA and PirB, and is homologous to the Pir (Photorhabdus insect-related) binary toxin.⁷ The plasmid pVA1 also carries a cluster of genes related to conjugative transfer; hence, this plasmid may potentially be able to transfer not only among *V. parahaemolyticus* strains but also to different bacterial species.^{7,10} So far, there have been no published reports directly demonstrating that *Vibrio campbellii* can harbor *pir*^{VP} and cause AHPND in shrimp. In this paper, we challenged *Litopenaeus vannamei* with a strain of *V. campbellii* (20130629003S01) carrying *pir*^{VP} isolated from a *L. vannamei* farm and demonstrated that *V. campbellii* is a causative agent of AHPND.

In this paper, strain 20130629003S01 was isolated in June of 2013 from diseased *L. vannamei* in Guangxi, China. PCR and RT-PCR amplifications were performed using VpPirA and VpPirB primers specific to *pir*^{VP} genes (*pirA* and *pirB*).¹¹ The electrophoresis of PCR products showed that both *pirA* (284 bp) and *pirB* (392 bp) were detected in the strain (Figure 1A). A partial sequence of 16S rRNA was obtained by sequencing the PCR products obtained with primers 27F (5′-AGA GTT TGA TCC TGG CTC AG-3′) and 1492R (5′-TAC GGC TAC CTT GTT ACG ACT T-3′),¹² and the pathogenicity of strain 20130629003S01 was examined in healthy *L. vannamei* shrimps weighing ~1 g, which were reared in 90 l artificial seawater at salinity 30 in plastic tanks (density 15 shrimps/tank) at 27 ± 2°C. An immersion challenge was used to follow the bioassay protocol described by Tran et al.⁵ All experimental groups were assayed in triplicate. Shrimp immersed with the bacterial suspension began to develop typical gross signs of AHPND within 12 h, massive mortalities occurred from 12 h post challenge, and cumulative mortalities reached 100% within 36 h. Gross signs of challenged *L. vannamei* included an empty stomach and gastrointestinal tract as well as pale and atrophied hepatopancreas (Figure 1D). A histopathological examination of moribund shrimp revealed the presence of AHPND lesions (Figure 1E) characterized by the acute sloughing of hepatopancreatic tubule epithelial cells, some of which displayed intact organelles, such as nuclei and cytoplasmic vesicles (Figure 1E). To our knowledge, our study is the first to demonstrate that a *V. campbellii* strain carrying *pir*^{VP} causes AHPND. Therefore, AHPND caused by non-*V. parahaemolyticus* should be further investigated.

The shrimp farming industry is one of the important economic industries for countries in Asia and Latin America. AHPND is characterized by the acute and massive mortality in shrimp farms,

¹Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; and²Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

Correspondence: J Huang
E-mail: huangjie@ysfri.ac.cn

Received 14 July 2016; revised 23 October 2016; accepted 1 November 2016
ACKNOWLEDGEMENTS

Effective biosecurity measures should be considered to prevent the spread of V. parahaemolyticus isolates has been reported in a Vibrio harveyi-like strain from Vietnam and a Vibrio owensii-like strain from China. The present results may provide evidence for the horizontal transfer of the pirVP gene or PVAl plasmid between different bacterial species, thereby potentially increasing the complexity of causative agents of AHPND and aggravating the threat to the shrimp industry. On the basis of our finding that a V. campbellii carrying pirVP causes AHPND, effective biosecurity measures should be considered to prevent the spread of AHPND in the future.

ACKNOWLEDGEMENTS

This work was supported by projects under the China Agriculture Research System (CARS-47), the Special Scientific Research Funds for Central Non-Profit Institutes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (Grant No: 20603022016012), the Construction Programme for ‘Taishan Scholarship’ of Shandong Province of China (S41201203) and the Project of the Aoshan Science and Technology Innovation Program of Qingdao National Laboratory for Marine Science and Technology (Grant No: 2015ASKJ02).

1 Soto-Rodriguez SA, Gomez-Gil B, Lozano-Olivera R, Belancourt-Lozano M, Morales-Covarrubias MS. Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico. Appl Environ Microbiol 2015; 81: 1689–1699.
2 de la Pena LD, Cabillon NA, Catedral DD et al. Acute hepatopancreatic necrosis disease (AHPND) outbreaks in Penaeus vannamei and P. monodon cultivated in the Philippines. Dis Aquat Organ 2015; 116: 251–254.
3 Gomez-Jimenez S, Noriega-Orozco L, Sotelo-Mundo RR et al. High-quality draft genomes of two Vibrio parahaemolyticus strains aid in understanding acute hepatopancreatic necrosis disease of cultured shrimps in Mexico. Genome Announc 2014; 2: e00800–e00814.
4 De Schryver P, Defoirdt T, Sorgeloos P. Early mortality syndrome outbreaks: a microbial management issue in shrimp farming? PLoS Pathog 2014; 10: e1003919.
5 Tran L, Nunan L, Redman RM et al. Determination of the infectious nature of the agent causing severe production collapses and heavy economic losses. Ignoring the biosecurity of shrimp hatcheries and farms provides possibilities for the spread of V.\textsubscript{parahaemolyticus}. The existence of pirVP in non-V. parahaemolyticus isolates has been reported in a Vibrio harveyi-like strain from Vietnam and a Vibrio owensii-like strain from China. The present results may provide evidence for the horizontal transfer of the pirVP gene or PVAl plasmid between different bacterial species, thereby potentially increasing the complexity of causative agents of AHPND and aggravating the threat to the shrimp industry. On the basis of our finding that a V. campbellii carrying pirVP causes AHPND, effective biosecurity measures should be considered to prevent the spread of AHPND in the future.

ACKNOWLEDGEMENTS

This work was supported by projects under the China Agriculture Research System (CARS-47), the Special Scientific Research Funds for Central Non-Profit Institutes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (Grant No: 20603022016012), the Construction Programme for ‘Taishan Scholarship’ of Shandong Province of China (S41201203) and the Project of the Aoshan Science and Technology Innovation Program of Qingdao National Laboratory for Marine Science and Technology (Grant No: 2015ASKJ02).

1 Soto-Rodriguez SA, Gomez-Gil B, Lozano-Olivera R, Belancourt-Lozano M, Morales-Covarrubias MS. Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico. Appl Environ Microbiol 2015; 81: 1689–1699.
2 de la Pena LD, Cabillon NA, Catedral DD et al. Acute hepatopancreatic necrosis disease (AHPND) outbreaks in Penaeus vannamei and P. monodon cultivated in the Philippines. Dis Aquat Organ 2015; 116: 251–254.
3 Gomez-Jimenez S, Noriega-Orozco L, Sotelo-Mundo RR et al. High-quality draft genomes of two Vibrio parahaemolyticus strains aid in understanding acute hepatopancreatic necrosis disease of cultured shrimps in Mexico. Genome Announc 2014; 2: e00800–e00814.
4 De Schryver P, Defoirdt T, Sorgeloos P. Early mortality syndrome outbreaks: a microbial management issue in shrimp farming? PLoS Pathog 2014; 10: e1003919.
5 Tran L, Nunan L, Redman RM et al. Determination of the infectious nature of the agent causing severe production collapses and heavy economic losses. Ignoring the biosecurity of shrimp hatcheries and farms provides possibilities for the spread of V.\textsubscript{parahaemolyticus}. The existence of pirVP in non-V. parahaemolyticus isolates has been reported in a Vibrio harveyi-like strain from Vietnam and a Vibrio owensii-like strain from China. The present results may provide evidence for the horizontal transfer of the pirVP gene or PVAl plasmid between different bacterial species, thereby potentially increasing the complexity of causative agents of AHPND and aggravating the threat to the shrimp industry. On the basis of our finding that a V. campbellii carrying pirVP causes AHPND, effective biosecurity measures should be considered to prevent the spread of AHPND in the future.

ACKNOWLEDGEMENTS

This work was supported by projects under the China Agriculture Research System (CARS-47), the Special Scientific Research Funds for Central Non-Profit Institutes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (Grant No: 20603022016012), the Construction Programme for ‘Taishan Scholarship’ of Shandong Province of China (S41201203) and the Project of the Aoshan Science and Technology Innovation Program of Qingdao National Laboratory for Marine Science and Technology (Grant No: 2015ASKJ02).

1 Soto-Rodriguez SA, Gomez-Gil B, Lozano-Olivera R, Belancourt-Lozano M, Morales-Covarrubias MS. Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico. Appl Environ Microbiol 2015; 81: 1689–1699.
2 de la Pena LD, Cabillon NA, Catedral DD et al. Acute hepatopancreatic necrosis disease (AHPND) outbreaks in Penaeus vannamei and P. monodon cultivated in the Philippines. Dis Aquat Organ 2015; 116: 251–254.
3 Gomez-Jimenez S, Noriega-Orozco L, Sotelo-Mundo RR et al. High-quality draft genomes of two Vibrio parahaemolyticus strains aid in understanding acute hepatopancreatic necrosis disease of cultured shrimps in Mexico. Genome Announc 2014; 2: e00800–e00814.
4 De Schryver P, Defoirdt T, Sorgeloos P. Early mortality syndrome outbreaks: a microbial management issue in shrimp farming? PLoS Pathog 2014; 10: e1003919.
5 Tran L, Nunan L, Redman RM et al. Determination of the infectious nature of the agent causing acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Organ 2013; 105: 45–55.
6 Zhang BC, Liu F, Bian HH Liu J, Pan LQ, Huang J. Isolation, identification, and pathogenicity analysis of a Vibrio parahaemolyticus strain from Litopenaeus vannamei (Chinese J.). Prog Fishery Sci 2012; 33: 56–62.
7 Lee CT, Chen IT, Yang YT et al. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc Natl Acad Sci USA 2015; 112: 10798–10803.
8 Nunan L, Lighthizer D, Pantoja C, Gomez-Jimenez S. Detection of acute hepatopancreatic necrosis disease (AHPND) in Mexico. Dis Aquat Organ 2014; 111: 81–86.
9 Kondo H, Tinwongger S, Proespraiwong P et al. Draft genome sequences of six strains of Vibrio parahaemolyticus isolated from early mortality syndrome/acute hepatopancreatic necrosis disease shrimp in Thailand. Genome Announc 2014; 2: e00221–14.
10 Liu L, Xiao J, Xia X, Pan Y, Yan S, Wang Y. Draft genome sequence of *Vibrio owensii* strain SH-14, which causes shrimp acute hepatopancreatic necrosis disease. *Genome Announc* 2015; 3: e01395–15.

11 Han JE, Tang KF, Tran LH, Lightner DV. Photorhabdus insect-related (Pir) toxin-like genes in a plasmid of *Vibrio parahaemolyticus*, the causative agent of acute hepatopancreatic necrosis disease (AHPND) of shrimp. *Dis Aquat Organ* 2015; 113: 33–40.

12 Bosshard PP, Santini Y, Gruter D, Stettler R, Bachofen R. Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis. *FEMS Microbiol Ecol* 2000; 31: 173–182.

13 Pascual J, Macian MC, Arahal DR, Garay E, Pujalte MJ. Multilocus sequence analysis of the central clade of the genus *Vibrio* by using the 16S rRNA, *recA*, *pyrH*, *rpoD*, *gyrB*, *rctB* and *foxR* genes. *Int J Syst Evol Microbiol* 2010; 60: 154–165.

14 Sirikharin R, Taengchaiyaphum S, Sanguanrut P et al. Characterization and PCR detection of Binary, Pir-Like toxins from *Vibrio parahaemolyticus* isolates that cause acute hepatopancreatic necrosis disease (AHPND) in Shrimp. *PloS one* 2015; 10: e0126987.

15 Kondo H, Van PT, Dang LT, Hirono I. Draft genome sequence of non-*Vibrio parahaemolyticus* acute hepatopancreatic necrosis disease strain KC13.17.5, isolated from diseased shrimp in Vietnam. *Genome Announc* 2015; 3: e00978–15.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/