Effects of *Morus alba* L. (Mulberry) Leaf Extract in Hypercholesterolemic Mice on Suppression of Cholesterol Synthesis

Kobayashi Y1,4*, Miyazawa M1, Araki M2, Kamei A2, Abe K3, Hiroi T2, Hirokawa T2, Aoki N2, Ohsawa T2,5, and Kojima T1,6

1Chemistry Division, Kanagawa Prefectural Institute of Public Health, Chigasaki, Shimomachiyu 1-3-1, Chigasaki, Kanagawa 253-0087, Japan  
2Chemical Technology Division, Kanagawa Industrial Technology Center, Shimoinazumizaki 705-1, Ebina, Kanagawa 243-0435, Japan  
3Project on Health and Anti-aging, Kanagawa Academy of Science and Technology, Sakado 3-2-1, Takatsu, Kawasaki, Kanagawa 213-0012, Japan  
*Present address: Department of Marine Biosciences, Faculty of Marine Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan  
5Present address: Department of Environmental Engineering, Osaka Institute of Technology, Omiya 5-16-1, Asahi, Osaka 535-8585, Japan  
6Present address: Department of Life & Health Sciences, Faculty of Life & Environmental Sciences, Teikyo University of Science, Yatsuzawa 2525, Ueno-hara, Yamanashi 409-0193, Japan

Abstract

**Study background:** Hypercholesterolemia causes arteriosclerosis, a risk factor for cerebral or myocardial infarctions. Prevention of hypercholesterolemia by improving dietary habits has recently attracted attention in many Asian countries. It has been reported that the leaves of the mulberry plant, *Morus alba* L., which is commonly used for tea in Asia, can ameliorate hypercholesterolemic conditions.

**Method:** To determine its mechanism of action, we performed gene expression profiling of the liver of mice fed a high-cholesterol diet and a polyphenol-rich mulberry leaf extract containing abundant quercetin and kaempferol for 4 weeks.

**Results:** The levels of total cholesterol, low-density lipoprotein cholesterol, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase in plasma, and level of total cholesterol in the liver were significantly lower in the mice treated with the mulberry leaf extract than that in the control group mice. DNA microarray analysis revealed that mulberry extract downregulated the expression of genes involved in cholesterol biosynthesis, including hydroxymethylglutaryl-CoA reductase gene, and upregulated the transcription of peroxisome proliferator-activated receptor (PPAR)α and γ, transcriptional factors known to regulate lipid metabolism or immunity, and their target genes. Additionally, the mulberry extract stimulated both innate and acquired immunity, including the induction of scavenger and Toll-like receptors and the activation of pathways in various lymphocytes, such as macrophages, eosinophils, neutrophils, natural killer cells, B cells, and T cells.

**Conclusion:** The results obtained in this study suggest that quercetin and kaempferol in the mulberry leaf induce the activation of PPARα and PPARγ, transcription of *Pparg* and *Ppara* genes, and stimulation of PPAR signaling pathways. These phenomena ultimately lead to the reduction of cholesterol synthesis and immunostimulation.

**Keywords:** Adaptive immunity; Mulberry (*Morus alba* L.); Cholesterol biosynthesis; HMG-CoA reductase; Innate immunity; Kaempferol; Peroxisome proliferator-activated receptor (PPAR); Quercetin; Toll-like receptor

**Introduction**

In developed countries, atherosclerotic disease increases the risk of myocardial and cerebral infarctions, which are major causes of death [1]. Hypercholesterolemia, hypertriglyceridemia, obesity, hypertension, and impaired glucose metabolism are now recognized as risk factors for arteriosclerosis. Indeed, hypercholesterolemia is part of an important cluster of risk factors for coronary artery disease. Growth of atherosclerotic plaques in the coronary arteries in low-density lipoprotein (LDL)-hypercholesterolemic individuals is associated with an increase in plaque levels of oxidized LDL [2]. Higher concentration of oxidized LDL was associated with increased incidence of metabolic syndrome overall, as well as its components, abdominal obesity, hyperglycemia, and hypertriglyceridemia [3]. Since treatment results in huge health care costs, and places an enormous financial burden not only on individual patients, but also on the government, prevention of hypercholesterolemia by improving dietary habits, e.g. by increasing the consumption of functional foods, has attracted attention in many countries, especially developed ones.

Mulberry (*Morus alba* L.) is a deciduous tree native of China and Korea, belonging to Moraceae family. This tree was naturalized in various Asian countries such as Japan in ancient times. The leaf, root bark, and fruit of the mulberry plant have a long history in traditional Chinese medicine. The use of the root bark of mulberry is antitussive, anti-inflammatory agent, expectorant and diuretic. The fruit of mulberry has been used as tonic and analgesic agents. On the other hand, the leaf of mulberry has been used for pyretolysis, antitussive treatment, improvement of eye problems and blood cooling. Addition to these effects, the effects of mulberry for cardiovascular disease (Chuhu in ancient Japanese) had been described in the first treatise...
on tea, Kissa-yojoki, which was published in Japan in 1211. Nowadays, mulberry leaves have become available not only as traditional Chinese medicine but also as various food products containing mulberry leaves, such as mulberry tea, in many countries.

Our previous studies indicate that administration of mulberry leaves ameliorates dyslipidemia in general, and hypercholesterolemia in particular [4,5]. Other independent researchers have also demonstrated its hypocholesterolemic effects [6]. Mulberry leaves contain an abundance of the flavonoids quercetin (PubChem CID: 5280343) and kaempferol (PubChem CID: 5280863) (Supplementary Figure S1) [5,7]. Flavonoids, especially quercetin, are inversely correlated with levels of total cholesterol or LDL cholesterol in humans [8]. Therefore, the flavonoids in mulberry leaves are expected to similarly produce hypocholesterolemic effects. A flavonoid-rich mulberry leaf extract was found to reduce plasma levels of cholesterol in rabbits fed a high-cholesterol diet [5]. However, the functional mechanisms underlying this effect are still unknown. In the previous study, we demonstrated that supplementation with mulberry downregulates the cholesterol metabolic process and steroid biosynthesis, and upregulates the peroxisome proliferator-activated receptor (PPAR) signaling pathway [7,9]. In addition, it has been reported that PPARα agonists inhibit cholesterol synthesis [10-14]. Therefore, we predicted that the mulberry leaf also contains PPARα agonists that reduce cholesterol levels in hypercholesterolemia via the PPAR signaling pathway. We used DNA microarray analysis to investigate gene expression in the livers of hypercholesterolemic mice treated with a polyphenol-rich mulberry leaf extract to elucidate the mechanisms involved in the hypocholesterolemic effects of the extract.

Materials and Method

Materials

Leaves of mulberry, *Morus alba* L., were collected at mulberry plantation in August in Aikawa, Kanagawa, Japan. A dried mulberry leaf sample was added to a 10-fold weight of 50% methanol and stirred for 2 h. The extract was filtered and centrifuged. The supernatant was passed through a column filled with a cation-exchange resin (Amberlite IR-120B, H+ form; Organo, Tokyo, Japan). The filtrate was concentrated using an evaporator to remove the methanol and was applied to a column filled with a cation-exchange resin (Amberlite IR-120B, H+ form; Organo, Tokyo, Japan). The filtrate was concentrated using an evaporator to remove the methanol and was applied to a column filled with Diaion HP-20 (Mitsubishi Chemical, Tokyo, Japan). After washing with water, the column was eluted with methanol. The concentration of the total polyphenols in the mulberry extract was measured as aglycon equivalents by using an aluminum chloride spectrophotometry. The same mixture, but without aluminum chloride, was used as a blank for each sample.

Quantification of quercetin and kaempferol

Quantification of quercetin and kaempferol, the major flavonoids in mulberry leaves, was achieved by reversed-phase high performance liquid chromatography (HPLC). First, the flavonoid glycosides were hydrolyzed to aglycons. The dried mulberry leaf extract was dissolved in 80% methanol at a concentration of 10 mg/mL. Aliquot (150 μL) was mixed with 600 μL of methanol containing 500 μg/mL tert-butylhydroquinone and 150 μL 2 mol/L HCl, before heating at 90°C for 3 h. The sample was added to 1,200 μL 1 mol/L Tris-HCl (pH 7.5) and 525 μL of dimethylsulfoxide, and the mixture was applied to reversed-phase HPLC. The column used was an Inertsil ODS-3 (4.6 mm × 150 mm; GL Sciences, Tokyo, Japan). Gradient elution was performed with solution A (1% tetrahydrofuran and 0.1% phosphoric acid) and solution B (acetonitrile) at a flow rate of 1 mL/min, in the following order: 95% solution A, linear gradient of solution B from 5%-20% in 30 min, linear gradient of solution B from 20%-50% in 30 min, and 50% of solution B for 20 min. The eluates were monitored at 260 and 370 nm with a UV detector. Quercetin and kaempferol were used to construct the calibration curve.

Ethics statement

Animal experiments were approved by the Animal Care and Use Committee at the Kanagawa Prefectural Institute of Public Health ( Permit Number: 2008-13). All animal experiments were performed according to the guidelines for animal experimentation of the Kanagawa Prefectural Institute of Public Health, which complies with Act on Welfare and Management of Animals (Ministry of the Environment, Japan) and Standards Regarding to the Care and Management of Laboratory Animals and Relief of Pain (Ministry of the Environment, Japan).

Animals

Male C57BL/6NcCrSlc mice (5-weeks-old) were purchased from Japan Slc (Shizuoka, Japan), and kept at 25°C with a 12 h light/dark cycle (light on at 8:00). They were fed a normal powdered diet (CE-2; Clea Japan, Kanagawa, Japan) for 1 week, and then divided into the following 3 groups (n=7) based on diet: high-cholesterol, consisting of powdered QuickFat (Clea Japan) with added 2% cholesterol and 0.4% cholic acid without administration of the mulberry leaf extract (control group); high-cholesterol with administration of the mulberry leaf extract at two concentrations (mulberry groups). Mice in the two mulberry groups were orally administrated the extract solution at 0.1 or 1 mg/mL as drinking water ad libitum for 4 weeks. After 12 h of food deprivation, the mice were anesthetized by pentobarbital. Blood samples were collected via heart using heparin as an anticoagulant, before heating at 90°C for 3 min, linear gradient of solution B from 20%-50% in 30 min, and 50% of solution B for 20 min. The eluates were monitored at 260 and 370 nm with a UV detector. Quercetin and kaempferol were used to construct the calibration curve.

Biochemical examination of blood

Plasma was prepared from the collected blood by centrifugation at 2,000 × g. Plasma levels of triglyceride, total cholesterol, high-density
lipoprotein (HDL) cholesterol, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were quantified using a Fuji DRI-CHEM 7000 system (Fujifilm, Tokyo, Japan). Plasma levels of LDL cholesterol were calculated using Friedewald's equation [15].

**Determination of lipid in liver**

The frozen liver (about 200 mg) was homogenized with 200 μL of water using a Multi-Beads Shocker (Yasui Kikai, Osaka, Japan) with metal beads at 2,500 rpm for 20 s. Lipids were extracted with 600 μL of chloroform-methanol (1:2, v/v) twice. After centrifugation, the extracts in the lower layer were collected, evaporated in vacuo to dryness, and dissolved in isopropyl alcohol-Triton X-100 (9.1, v/v). Cholesterol, triglyceride, and non-esterified fatty acids (NEFA) in the extracts were measured using LabAssay kits (Wako, Osaka, Japan) according to the manufacturer’s protocol.

**RNA isolation and microarray hybridization**

Ten mice (5 mice/group) were randomly selected from the control group and the 1 mg/mL mulberry group, and used in a subsequent experiment. Total RNA was extracted from the RNAlater-soaked liver of each mice in the control group and the 1 mg/mL mulberry group by using RNAiso solution (Takara Bio, Shiga, Japan) and purified using an RNase Mini kit (Qiagen, Tokyo, Japan). RNA qualities were checked using an Agilent Bioanalyzer (Agilent Technologies, Santa Clara, California, USA), and the average RIN score was calculated to be 8.3 ± 0.4. The total RNA (500 ng) was converted to double-strand cDNA using Agilent’s Quick Amp Labeling Kit, One-Color (Agilent Technologies) according to the manufacturer’s protocol. Cyanine 3-labeled cRNA was synthesized from the double-strand cDNA using the same kit. After washing using the RNeasy Mini kit, the cRNA was fragmented and hybridized to a Whole Mouse Genome Microarray 4x44K (Agilent Technologies) using a Hi-RPM Hybridization Kit (Agilent Technologies). After the array (n=5/group) was washed using Gene Expression Wash Buffer (Agilent Technologies), the fluorescence intensity was scanned using a DNA Microarray Scanner (Agilent Technologies).

**DNA microarray data analysis**

The scanned images were analyzed with Agilent Feature Extraction 10.1.1.1 software (Agilent Technologies) to obtain background-subtracted and spatially detrended, processed signal intensities. All data were deposited in the Gene Expression Omnibus public repository of the National Center for Biotechnology Information [16] under GEO Series accession number GSE65839. Signal intensities (gProcessedSignal) were normalized with quantile normalization [17] using statistical language R (http://www.r-project.org/) and the ‘limma’ version 3.6.9 package (http://www.bioconductor.org/). Probes with a gene symbol were extracted from all probes, and the signal intensities of the same gene symbol were averaged using statistical language R. The total number of probes was 21,200. The normalized, extracted, and averaged signals were transformed to a log 2 scale. To detect genes that were statistically and differentially expressed between the two groups, the probes were ranked by the Weighted Average Difference method [18] using statistical language R. The normalized, extracted, and averaged data were applied to analysis using statistical language R with R-package OCplus (http://www.bioconductor.org/), and the number of differentially expressed genes was detected to be about 3,000. Therefore, the 3,000 top-ranked probes (1,705 upregulated genes and 1,295 downregulated genes; supplementary Tables S1 and S2) in the gene ranking were subjected to further analysis. Next, pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [19] was performed on the 3,000 top-ranked genes (up or downregulated genes) using the Database for Annotation, Visualization, and Integrated Discovery program [20]. Then gene-annotation enrichment analysis based on the Biological Process in Gene Ontology (GO) database [21] was performed on the 3,000 top-ranked genes (up or downregulated genes) using the Cytoscape version 2.8.1 software (http://www.cytoscape.org/) and BiNGO version 2.42 plugin [22]. Terms on the pathway enrichment analysis and the gene-annotation enrichment analysis that had FDR-corrected p-values less than 0.0001 were extracted as significantly enriched terms.

**Enzyme-linked immunosorbent assay**

Mouse liver samples were homogenized in 100 mmol/L potassium phosphate buffer (pH 7.4), using a Multi-Beads Shocker (Yasui Kikai) with metal beads at 2,500 rpm for 20 s. The buffer contained 1% Triton X-100 and a 1% Protease Inhibitor Cocktail for Use with Mammalian Cell and Tissue Extracts (Nacalai Tesque, Kyoto, Japan). The extracts were treated in an ultrasonic bath for 20 min. After centrifugation at 500 × g for 30 min, the supernatant was mixed with an equal volume of glycerol, and this mixture was used in the subsequent experiment. Protein levels of HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase), CYP51 (cytochrome P450, family 51), TM7SF2 (transmembrane 7 superfamily member 2), SC4MOL (sterol-C4-methyl oxidase-like), encoded by the Hmgcr, Cyp51, Tm7sf2, and Sc4mol genes, respectively, were determined by enzyme-linked immunosorbent assay (ELISA), essentially as reported previously [7]. In brief, each extract (diluted 5-30 fold) was coated on a 96-well microtiter plate and reacted successively with the primary antibodies goat anti-HMGCR polyclonal antibody (6.67 μg/mL, HMGCR, C-18; Santa Cruz Biotechnology, Santa Cruz, California, USA), rabbit anti-CYP51A1 polyclonal antibody (0.267 μg/mL, Cat. No. 13431-1-AP, ProteinTech, Chicago, Illinois, USA), goat anti-TM7SF2 polyclonal antibody (6.67 μg/mL, TM7SF2, L-12; Santa Cruz Biotechnology), or rabbit anti-SC4MOL polyclonal antibody (3.33 μg/mL, ERG25, Y-21; Santa Cruz Biotechnology), followed by the secondary antibodies: horseradish peroxidase-conjugated rabbit anti-Goat IgG antibody (0.1 μg/mL, Cat. No. A50-100P; Bethyl Laboratories, Montgomery, Texas, USA) for the detection of HMGCR or TM7SF2, or horseradish peroxidase-conjugated sheep anti-rabbit IgG antibody (1:500, Cat. No. 55677; Cappel, Cochranville, Pennsylvania, USA) for the detection of CYP51 or SC4MOL. After the addition of the substrate, the color developed was measured by its absorbance at 450 nm.

**Statistical analysis**

Statistically significant differences between the control group and mulberry groups, except in the DNA microarray analysis, were analyzed using Dunnett’s multiple comparison tests.

**Results**

**Analysis of polyphenols**

The mulberry leaf extract contained 137 mg/g polyphenols. The concentration of total flavonoid aglycons in the mulberry leaf extract was 52.3 mg/g dry weight. Quercetin and kaempferol were present at concentrations of 22.1 and 18.0 mg/g of the mulberry leaf extract, respectively.

**Effects on metabolic variables**

Table 1 shows the body weight, liver weight, liver weight vs. body weight, and concentration of total flavonoid aglycons in the mulberry leaf extract. The mulberry leaf extract contained 137 mg/g polyphenols. The concentration of total flavonoid aglycons in the mulberry leaf extract was 52.3 mg/g dry weight. Quercetin and kaempferol were present at concentrations of 22.1 and 18.0 mg/g of the mulberry leaf extract, respectively.

Table 1 shows the body weight, liver weight, liver weight vs. body weight, and concentration of total flavonoid aglycons in the mulberry leaf extract. The mulberry leaf extract contained 137 mg/g polyphenols. The concentration of total flavonoid aglycons in the mulberry leaf extract was 52.3 mg/g dry weight. Quercetin and kaempferol were present at concentrations of 22.1 and 18.0 mg/g of the mulberry leaf extract, respectively.
Citation: Kobayashi Y, Miyazawa M, Araki M, Kamei A, Abe K, et al. (2015) Effects of Morus alba (Mulberry) Leaf Extract in Hypercholesterolemic Mice on Suppression of Cholesterol Synthesis. J Pharmacogn Nat Prod 2: 113. doi:10.4172/2472-0992.1000113

Table 1: Effect of polyphenol-rich extract from mulberry on metabolic variables (mean ± SE).

| Metabolic Variable | Control | Mulberry 0.2% | Mulberry 0.4% |
|--------------------|---------|----------------|----------------|
| Body weight (g)    | 22.0 ± 0.5 | 23.2 ± 0.5 | 22.5 ± 0.4 |
| Liver weight (g)   | 1.27 ± 0.04 | 1.41 ± 0.09 | 1.34 ± 0.06 |
| Liver weight/Body weight (mg/g) | 57.8 ± 1.8 | 60.4 ± 2.6 | 56.0 ± 3.0 |
| Liver triglyceride (mg/g) | 14.9 ± 3.6 | 9.5 ± 1.9 | 24.9 ± 6.3 |
| Liver cholesterol (mg/g) | 21.0 ± 2.3 | 12.9 ± 1.4* | 14.9 ± 2.1* |
| Liver NEFA (mg/g)   | 11.5 ± 2.1 | 10.6 ± 1.5 | 17.1 ± 2.6 |
| Plasma triglyceride (mg/dl) | 39.4 ± 6.8 | 57.3 ± 9.2 | 47.3 ± 7.5 |
| Plasma total cholesterol (mg/dl) | 214 ± 7 | 172 ± 16* | 140 ± 18** |
| Plasma LDL cholesterol (mg/dl) | 147 ± 10 | 103 ± 16* | 83 ± 14** |
| Plasma HDL cholesterol (mg/dl) | 58.7 ± 3.8 | 58.0 ± 6.7 | 47.7 ± 6.6 |
| Plasma HDL cholesterol/Plasma triglyceride | 27.8 ± 2.6 | 34.9 ± 4.1 | 35.4 ± 3.6 |
| Plasma AST (U/l)    | 179 ± 13 | 115 ± 21** | 99 ± 3** |
| Plasma ALT (U/l)    | 288 ± 67 | 85 ± 20** | 97 ± 13** |
| Plasma ALP (U/l)    | 532 ± 23 | 481 ± 21 | 512 ± 22 |
| Plasma LDH (U/l)    | 1041 ± 79 | 700 ± 54** | 767 ± 114** |

Asterisks indicate significant difference from the control group (*p<0.05, **p<0.01).

Table 2: Pathway enrichment analysis based on the KEGG database using the 1705 up-regulated and 1295 down-regulated genes.

| ID     | Category  | Gene counts | Fold enrichment | FDR-corrected p-value |
|--------|-----------|-------------|----------------|-----------------------|
| map03010 | Ribosome  | 37          | 3.8            | 7.26 × 10^{-10}       |
| map04650 | Natural killer cell mediated cytotoxicity | 41 | 3.1 | 4.73 × 10^{-10} |
| map04640 | Hematopoietic cell lineage | 32 | 3.5 | 1.71 × 10^{-4} |
| map04514 | Cell adhesion molecules | 43 | 2.5 | 3.59 × 10^{-7} |
| map04062 | Chemokine signaling pathway | 48 | 2.4 | 3.98 × 10^{-7} |
| map04060 | Cytokine-cytokine receptor interaction | 57 | 2.1 | 9.71 × 10^{-7} |
| map04612 | Antigen processing and presentation | 30 | 3 | 1.29 × 10^{-4} |
| map05332 | Graft-versus-host disease | 22 | 3.4 | 7.20 × 10^{-4} |
| map04660 | T cell receptor signaling pathway | 33 | 2.5 | 1.21 × 10^{-4} |
| map04682 | B cell receptor signaling pathway | 26 | 3 | 1.28 × 10^{-4} |
| map03320 | PPAR signaling pathway | 25 | 2.9 | 3.09 × 10^{-4} |
| map00771 | Fatty acid metabolism | 18 | 3.6 | 3.22 × 10^{-5} |
| map04670 | Leukocyte transendothelial migration | 32 | 2.4 | 3.55 × 10^{-5} |
| map05330 | Allograft rejection | 20 | 3.1 | 8.34 × 10^{-5} |

Next, we performed a gene-annotation enrichment analysis for approximately 18,800 items corresponding to biological processes in the GO database [21]. Using BiNGO, the enrichment analysis [22] extracted 533 GO terms using upregulated genes and 124 GO terms using downregulated genes (supplementary Tables S3 and S4), and visualized the intricately hierarchical structures of GO categories in various biological processes. Since this study focuses on the effects of mulberry on lipid metabolism and the deepest regions in hierarchical structures are more essential in understanding the dynamics of gene expression, we further extracted the deepest GO terms related to lipid metabolism from these hierarchical structures (Figures 1 and 2).

Processes relating to fatty acid oxidation were particularly prominent among the upregulated terms of lipid metabolism, including the long-chain fatty acid metabolic process (FDR-corrected p-value=2.92 × 10^{-5}), long-chain fatty acid transport (3.31 × 10^{-5}), fatty acid β-oxidation (7.85 × 10^{-5}), very long-chain fatty acid metabolic process (1.19 × 10^{-2}), acyl-CoA metabolic process (1.73 × 10^{-2}), and negative regulation of lipid metabolic process (4.06 × 10^{-2}). Mulberry treatment downregulated the cholesterol biosynthetic process (3.69 × 10^{-2}) and the fatty acid biosynthetic process (4.52 × 10^{-2}).

Expression of genes involved in the synthesis and esterification of cholesterol

We focused our investigation on the hypocholesterolemic effect of mulberry extract in this study, and describe the up and downregulated genes that are involved in the synthesis and esterification of cholesterol below (Figure 3). Cholesterol is synthesized from acetyl-CoA and esterified to cholesterol ester in 23 steps. Only the catalysis step of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthase 2, mitochondrial) was upregulated in the mulberry group, whereas the following 12 genes in 14 steps of the cholesterol synthesis were downregulated: Hmgcr, Idi1 (isopentenyl-diphosphate δ isomerase 1), Fdps (farnesyl diphosphate synthase), Fdft1 (farnesyl-
Figure 1: Hierarchical structures of GO categories involved in lipid metabolism extracted using upregulated genes. GO categories were extracted by gene enrichment analysis (p<0.0001) using 1,705 upregulated genes. Colored bar expresses significance level for categories by hypergeometric test with Benjamini and Hochberg false discovery rate (FDR) correction. Node size indicates number of genes associated with each GO term (i.e., larger nodes represent GO terms associated with many genes).

Figure 2: Hierarchical structures of GO categories involved in lipid metabolism extracted using downregulated genes. GO categories were extracted by gene enrichment analysis (p<0.0001) using 1,295 downregulated genes. Colored bar expresses significance level for categories by hypergeometric test with Benjamini and Hochberg false discovery rate (FDR) correction. Node size indicates number of genes associated with each GO term (i.e., larger nodes represent GO terms associated with many genes).
diphosphate farnesyltransferase 1), Cyp51, Tm7sf2, Sc4mol, Nsdhl (NAD(P)-dependent steroid dehydrogenase-like), Ebp (emopamil binding protein, sterol isomerase), Sc5d (sterol-C5-desaturase homolog), and Dhc7 (7-dehydrocholesterol reductase). In these genes, Hmgcr, which codes for the HMGCR protein, is especially important because it catalyzes the rate-limiting step of cholesterol biosynthesis. Similarly, the Acat2 (acetyl-CoA acetyltransferase 2) gene, which catalyzes the esterification of cholesterol, was downregulated in the mulberry-treated group. In addition, mulberry supplementation facilitated the expression of Acadl (acyl-CoA dehydrogenase, long-chain), Acadm (acyl-CoA dehydrogenase, medium chain), and Acox1 (acyl-CoA oxidase 1, palmitoyl), which encode the rate-limiting enzyme in the β-oxidation of fatty acids. Oral administration of mulberry extract upregulated the expression of Cpt1a (carnitine palmitoyltransferase 1a, liver), Cpt1b, and Cpt2, which are essential for the transport of fatty acids into the mitochondria, and whose products are rate-limiting enzymes of β-oxidation. In addition, mulberry increased the transcript levels of Cyp4a10 (cytochrome P450 family 4, subfamily a, polypeptide 10), Cyp4a14, and Cyp4a31, genes that code the rate-limiting enzymes in the ω-oxidation of long-chain fatty acids in the endoplasmic reticulum for β-oxidation at both ends. In addition to genes related to lipid metabolism, mulberry supplementation induced the expression of Cd36, which encodes the CD 36 antigen, which is a scavenger receptor for β-glucan and oxidized LDL.

**Measurement of HMGCR, CYP51, TM7SF2, and SC4MOL proteins**

Since the Hmgcr, Cyp51, Tm7sf2, and Sc4mol genes, which were expressed at lower levels in the mulberry group, are essential for cholesterol biosynthesis; we measured the expression levels of the HMGCR, CYP51, TM7SF2, and SC4MOL proteins by ELISA (Figure 4). Compared with the control group, the protein expression levels of HMGCR, CYP51, and TM7SF2 tended to decrease dose-dependently in the mulberry groups. The expression of these proteins in the 1 mg/ml mulberry group was significantly lower than that in the control group. There was no change in the expression of SC4MOL.

**Upregulated PPAR genes and PPAR signaling pathway**

Two of 3 PPAR isoform genes, Ppara and Pparg, were upregulated by intake of the mulberry polyphenol fraction (Table 3). Ppard, which encodes PPARδ, was not up or downregulated following mulberry consumption. Furthermore, 37 PPAR target genes (Table 3) were upregulated after mulberry supplementation. Many of these genes code important proteins that function as rate-limiting enzymes in fatty acid metabolism, in particular the β- and ω-oxidation of fatty acids. For instance, mulberry supplementation facilitated the expression of Acad1 (acyl-CoA dehydrogenase, long-chain), Acadm (acyl-CoA dehydrogenase, medium chain), and Acox1 (acyl-CoA oxidase 1, palmitoyl), which encode the rate-limiting enzyme in the β-oxidation of fatty acids. Oral administration of mulberry extract upregulated the expression of Cpt1a (carnitine palmitoyltransferase 1a, liver), Cpt1b, and Cpt2, which are essential for the transport of fatty acids into the mitochondria, and whose products are rate-limiting enzymes of β-oxidation. In addition, mulberry increased the transcript levels of Cyp4a10 (cytochrome P450 family 4, subfamily a, polypeptide 10), Cyp4a14, and Cyp4a31, genes that code the rate-limiting enzymes in the ω-oxidation of long-chain fatty acids in the endoplasmic reticulum for β-oxidation at both ends. In addition to genes related to lipid metabolism, mulberry supplementation induced the expression of Cd36, which encodes the CD 36 antigen, which is a scavenger receptor for β-glucan and oxidized LDL.

**Discussion**

In this study, we investigated the effects of the polyphenol-rich extract of mulberry leaves on mice fed a high-cholesterol diet. Daily oral administration of the extract suppressed an increase in total and LDL cholesterol in the plasma, and total cholesterol in the liver. Furthermore, the supplementation of mulberry depressed the
Effect of mulberry supplementation on the accumulation of cholesterol occurred in many mice fed the high-cholesterol diet. The suppressive hepatic sinusoids and bile canaliculi in the liver. Cholestasis presumably group without mulberry, suggests that the cholesterol crystals impaired liver and high levels of plasma cholesterol in the cholesterol-feeding biochemical parameters, plasma AST, ALT, and LDH. The increase in these liver function parameters, accumulation of cholesterol in the liver and high levels of plasma cholesterol in the cholesterol-feeding group without mulberry, suggests that the cholesterol crystals impaired hepatic sinusoids and bile canaliculi in the liver. Cholestasis presumably occurred in many mice fed the high-cholesterol diet. The suppressive effect of mulberry supplementation on the accumulation of cholesterol in the liver might have inhibited the progression of symptoms.

SREBP-1, which is encoded by Srebf1, is a nuclear factor and induces transcription of Hmgcr gene. Overexpression of SREBP-1c that lacks the membrane attachment site leads overproduction of cholesterol via expression of Hmgcr mRNA [23]. Mulberry supplementation attenuated expression of both Srebf1 and Hmgcr genes. Therefore, downregulation of Srebf1 expression seems to suppress cholesterol synthesis through the downregulation of expression of Hmgcr in mulberry groups.

ACAT2 is the major ACAT enzyme in the liver. It participates in the assembly and secretion of cholesteryl esters in lipoproteins [24]. Therefore, ACAT2-deficient mice showed resistance to diet-induced and genetic hypercholesterolemia [25]. In the present study, we observed a downregulation in the Acat2 gene. This may contribute to the reduction in serum cholesterol levels in the mulberry groups. Quercetin supplementation in rats fed a high-cholesterol diet also reduced hepatic ACAT activity [26]. Thus, the quercetin in mulberry leaves was expected to lead to suppression of cholesterol increases in the plasma and liver.

Quercetin exerts a hypocholesterolemic effect. Literatures have revealed that the addition or administration of quercetin inhibits cholesterol synthesis or reduces cholesterol levels in cultured cells [27,28], in an in vivo animal assay [26,29,30], and in obese human patients [31]. The mechanism is thought to be the suppression of cholesterol biosynthesis mediated by HMGCR, because the activity of HMGCR was suppressed by the administration of quercetin in hypercholesterolemic

| Gene symbol | Gene name | Fold change |
|-------------|-----------|-------------|
| Ppara       | peroxisome proliferator activated receptor α | 1.21 |
| Pparg       | peroxisome proliferator activated receptor γ | 1.33 |
| Acaa1a      | acetyl-Coenzyme A acyltransferase 1A | 1.49 |
| Acaa1b      | acetyl-Coenzyme A acyltransferase 1B | 1.49 |
| Acadl       | acyl-Coenzyme A dehydrogenase, long-chain | 1.23 |
| Acadm       | acyl-Coenzyme A dehydrogenase, medium chain | 1.36 |
| Acot1       | acyl-CoA thioesterase 1 | 1.92 |
| Acot8       | acyl-CoA thioesterase 8 | 1.34 |
| Acox1       | acyl-Coenzyme A oxidase 1, palmitoyl | 1.2 |
| Acot1       | acyl-CoA synthetase long-chain family member 1 | 1.44 |
| Agaat4      | 1-acylglycerol-3-phosphate O-acetyltransferase 4 (lysophosphatidic acid acyltransferase, β) | 1.72 |
| Angp4       | angiopoietin-like 4 | 1.27 |
| Cd36        | CD36 antigen | 1.55 |
| Cerk        | ceramide kinase | 1.88 |
| Chkb        | choline kinase β | 1.27 |
| Cpt1a       | carnitine palmitoyltransferase 1a, liver | 1.29 |
| Cpt1b       | carnitine palmitoyltransferase 1b, muscle | 1.54 |
| Cpt2        | carnitine palmitoyltransferase 2 | 1.18 |
| Cyp4a10     | cytochrome P450, family 4, subfamily a, polypeptide 10 | 1.59 |
| Cyp4a14     | cytochrome P450, family 4, subfamily a, polypeptide 14 | 1.77 |
| Cyp4a31     | cytochrome P450, family 4, subfamily a, polypeptide 31 | 1.78 |
| Cyp8b1      | cytochrome P450, family 8, subfamily b, polypeptide 1 | 1.7 |
| Ehhaadh     | enoyl-Coenzyme A, hydratase/3-hydroxacyl Coenzyme A dehydrogenase | 1.79 |
| Ephx2       | epoxide hydrolase 2, cytoplasmic | 1.1 |
| Fabp1       | fatty acid binding protein 1, liver | 1.12 |
| Fabp2       | fatty acid binding protein 2, intestinal | 1.22 |
| Gpd1        | glycerol-3-phosphate dehydrogenase 1 (soluble) | 1.45 |
| Gyk         | glycerol kinase | 1.3 |
| Hadh        | hydroxacyl-Coenzyme A dehydrogenase | 1.18 |
| Hmgcs2      | 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 | 1.39 |
| Hsd17b11    | hydroxysteroid (17-β) dehydrogenase 11 | 1.27 |
| Hsd17b4     | hydroxysteroid (17-β) dehydrogenase 4 | 1.17 |
| Lipe        | lipase, hormone sensitive | 1.37 |
| Pck2        | phosphoenolpyruvate carboxykinase 2 (mitochondrial) | 1.43 |
| Rps27a      | ribosomal protein S27A | 1.12 |
| Slc27a1     | solute carrier family 27 (fatty acid transporter), member 1 | 1.12 |
| Slc27a2     | solute carrier family 27 (fatty acid transporter), member 2 | 1.39 |
| Ubb         | ubiquitin B | 1.10 |
| Ubc         | ubiquitin C | 1.10 |

Table 3: PPAR genes and PPAR target genes which are up-regulated by mulberry supplementation.
rats [26]. Kaempferol also has a hypocholesterolemic effect. The addition of kaempferol to cultured cells [28] and oral administration in animals [32,33] led to hypocholesterolemic effects. Since the polyphenol-rich mulberry extract contains abundant quercetin and kaempferol, the functional substituents for cholesterol reduction are thought to be these flavonoids.

Isemann and Green [34] cloned PPARα for the first time and reported that clofibric acid (a metabolite of clofibrate) activates PPARα. Subsequently, many flavonoids have been reported to be agonists of PPARα. Since all flavonoids have a hydroxyl group in their structure, they have been prescribed for patients with hyperglycemia. However, flavonoids also have a hypocholesterolemic effect and were commonly used to treat patients with hypercholesterolemia until HMGCR inhibitors, such as statin, replaced them. It has been reported that the oral administration of flavonoids in rats as well as in rat liver transplantation [10,12-14,35].

Since the activation of the PPAR signaling pathway by mulberry supplementation was observed in the present study, we expected that the polyphenol-rich mulberry extract would contain a PPARα agonist. Furthermore, the mechanism of its hypocholesterolemic effect is similar to that of PPARα agonists such as fibrates. The expression of mRNAs and proteins relating to cholesterol biosynthesis in the present paper were found to be inhibited, similar to many experiments using a PPARα agonist. Fibrates not only affect the activation of HMGCR, but also act downstream from the synthesis of mevalonate. Aoyai et al. [10] reported that clofibrate mainly inhibited the synthesis of mevalonate from acetate, and that it somewhat suppressed the synthesis of cholesterol from mevalonate. Considering that HMGCR is the rate-limiting enzyme for cholesterol synthesis, the results reported by Aoyai et al. [10] are consistent with our finding that mulberry supplementation reduced the expression of the mRNAs of HMGCR and also many genes related to cholesterol biosynthesis. Fibrates actually have been reported to reduce the activity of HMGCR in cultured cells, animals, and humans [11-14]. Reduction of HMGCR activity is attributed to the downregulation of Hmgcr transcription [11]. Therefore, PPARα functions in suppressing cholesterol biosynthesis. PPARα deficient mice express high cholesterol levels in the serum and liver [36].

We propose that quercetin and kaempferol in mulberry leaves are agonists of PPARα, and that these flavonoids suppress cholesterol biosynthesis via the PPARα signaling pathway. Quercetin functions as a PPARα agonist at the molecular level [9]. Kang et al. [37] used a luciferase reporter gene assay to prove the agonist activity of kaempferol for PPARα. Induction of PPARα target genes was observed after quercetin or kaempferol supplementation [38,39]. Taken collectively, these observations further support our hypothesis. Quercetin and kaempferol are nearly identical in structure except for a hydroxyl group at the 5'-position in the B ring of quercetin (Supplementary Figure S1). Thus, the hypothesis that both flavonoids are PPARα agonists is appropriate.

Quercetin and kaempferol have not only been reported to have agonist activity for PPARα, but they also induce the expression of the Ppara gene itself [29,32]. Mulberry extract, which is rich in quercetin and kaempferol, was observed to upregulate Ppara transcription in the liver of hereditary type 2 diabetic mice [39]. In our study, we also observed an induction in the expression of the Ppara gene after supplementation with polyphenol-rich mulberry extract, and confirmed an upregulation in the PPAR signaling pathway [7].

The Cdx6 gene was induced in the liver of rats supplemented with mulberry. PPARγ agonists have been reported to induce the expression of Cdx6 [40]. Of the 3 PPAR isoforms, only the PPARγ agonist can induce the expression of Cdx6 [41]. Mulberry administration seems to not only induce the expression of the Pparg gene itself, but also activate the PPARγ protein directly. Cdx6 functions as a receptor for oxidized LDL [42]. PPARγ protects against the progression of arteriosclerosis by suppressing foam cell formation, and this process mediates Cdx6. In addition, PPARγ-induced Cdx6 expression promotes reverse cholesterol transport [43]. Therefore, mice that overexpress Cdx6 have low levels of cholesterol in the blood [44]. Mulberry leaves are thought to modulate PPARγ activity and to exert inhibitory effect against arteriosclerosis via Cdx6.

The polyphenol-rich mulberry leaf extract, which contains abundant quercetin and kaempferol, has hypocholesterolemic and immunostimulatory effects (see supporting manuscript). DNA microarray analysis revealed that mulberry extract downregulated the expression of genes involved in cholesterol biosynthesis, including HMG-CoA reductase gene, which encodes the rate-limiting enzyme, and upregulated the transcription of PPARα and PPARγ, transcriptional factors known to regulate lipid metabolism, immunity, and their target genes. Additionally, the mulberry extract stimulated both innate and acquired immunity, including the induction of scavenger and Toll-like receptors and the activation of pathways in various lymphocytes, such as macrophages, eosinophils, neutrophils, natural killer cells, B cells, and T cells (see supporting manuscript). The data obtained in the current study indicates that quercetin and kaempferol suppress cholesterol synthesis via the PPARα signaling pathway. At the moment, the relationships between PPARα and cholesterol synthesis, and between PPARγ and immune system, are not well understood. Therefore, further studies are needed to confirm our findings. Although many vegetables and fruits contain quercetin and kaempferol [45,46], their concentrations are not very high. Therefore, because mulberry leaves contain these flavonoids at much higher levels [7], they would contain more health-promoting benefits than other foods.

Acknowledgment

We thank Ms. Junko Aso, Ms. Kyoko Shigai, and Mr. Yuuki Nagasawa of the Chemistry Division of the Kanagawa Prefectural Institute of Public Health for their assistance and support during this study. The authors also thank Chieko Yasuma, Hakusan Pharmaceutical Company Limited, for providing the polyphenol-rich mulberry leaves for the study. This work was supported by the grant of Project on Health and Anti-Ageing from Kanagawa Academy of Science and Technology.

References

1. The United Nations Statistics Division. Demographic Yearbook 2013. Demographic Yearbook system, UNSD Statistical Databases.
2. Holvoet P, Theilmeier G, Shivalkar B, Flameng W, Collen D (1998) LDL hypercholesterolemia is associated with accumulation of oxidized LDL, atherosclerotic plaque growth, and compensatory vessel enlargement in coronary arteries of miniature pigs. Arterioscler Thromb Vasc Biol 18: 415-422.
3. Holvoet P, Lee DH, Steffies M, Gross M, Jacobs DR Jr (2008) Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. JAMA 299: 2287-2293.
4. Doi K, Kojima T, Harada M, Horiguchi Y (1994) Effect of mulberry leaves on lipid metabolism in rabbits fed a cholesterol diet. Journal of Japanese Society of Nutrition and Food Science 47: 15-22.
5. Doi K, Kojima T, Harada M, Horiguchi Y, Fujimoto Y (1999) Effect of Various Fractions Extracted Mulberry Leaves on Lipid Metabolism in Rabbits Fed a Cholesterol Diet. Journal of Japanese Society of Nutrition and Food Science 52: 85-90.
6. Chen J, Li X (2007) Hypolipidemic effect of flavonoids from mulberry leaves in
triton WR-1339 induced hyperlipidemic mice. Asia Pac J Clin Nutr 16 Suppl 1: 290-294.

7. Kobayashi Y, Miyazawa M, Kamei A, Abe K, Kojima T (2010) Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress. Biosci Biotechnol Biochem 74: 2385-2395.

8. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, et al. (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130: 2243-2250.

9. Kobayashi Y, Miyazawa M, Kojima T (2010) The use of Morus alba L. (mulberry) and Eucommia ulmoides (Tochu) leaves as functional foods: a promising approach in the management of hyperlipidemia. Journal of Traditional Medicines 27: 225-230.

10. Avory DR, Swyryd EA, Gould RG (1965) Effects Of Alpha-P-Chlorophenoxysobutyryl Ethyl Ester (Cpib) with and without Androsterone on Cholesterol Biosynthesis In Rat Liver. J Lipid Res 6: 369-376.

11. Do GM, Kwon EY, Ha TY, Park YB, Kim HJ, et al. (2011) Tannic acid is more effective than clofibrate for the elevation of hepatic β-oxidation and the inhibition of 3-hydroxy-3-methyl-glutaryl-CoA reductase and aortic lesion formation in apo E-deficient mice. Br J Nutr 106: 1855-1863.

12. Berndt J, Gaumert R, Still J (1978) Mode of action of the lipid-lowering agents, clofibrate and BM 15075, on cholesterol biosynthesis in rat liver. Atherosclerosis 30: 147-152.

13. Stange EF, Osenbrügge M, Rustan M, Reimann F, Schneider A, et al. (1991) Inhibition of HMG-CoA reductase in mononuclear cells during gemfibrozil treatment. Atherosclerosis 91: 257-265.

14. Schneider A, Stange EF, Ditschuneit HH, Ditschuneit H (1985) Fenofibrate treatment inhibits HMG-CoA reductase activity in mononuclear cells from hyperlipoproteinemic patients. Atherosclerosis 56: 257-262.

15. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without the use of the preparative ultracentrifuge. Clin Chem 18: 499-502.

16. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI repository for microarray and highthroughput sequence data. Database 2002: article1.

17. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185-193.

18. Kallola K, Nakay Y, Shimbizu K (2008) A weight-averaged difference analysis method for detecting differentially expressed genes from microarray data. Algorithms Mol Biol 3: 8.

19. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27-30.

20. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4: P3.

21. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25-29.

22. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Nucleic Acids Res 33: 2448-2452.

23. Shimano H, Horton JD, Hammer RE, Shimomura I, Brown MS, et al. (1996) Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest 98: 1575-1584.

24. Parini P, Davis M, Lada AT, Erickson SK, Wright TL, et al. (2004) ACAT2 is localized to hepatocytes and is the major cholesterol-esterifying enzyme in human liver. Circulation 110: 2017-2023.

25. Buhman KK, Accad M, Novak S, Choi RS, Wong JS, et al. (2000) Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 6: 1341-1347.

26. Bok SH, Park SY, Park YB, Lee MK, Jeon SM, et al. (2002) Quercetin dihydrate and gallate supplements lower plasma and hepatic lipids and change activities of hepatic antioxidant enzymes in high cholesterol-fed rats. J Nutr 132: 161-169.

27. Glässer G, Grasfe EU, Struck F, Veit M, Gebhardt R (2002) Comparison of antioxidant activities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine 9: 33-40.

28. Kim K, Yeo E, Moon S, Cho S, Han Y, et al. (2008) Inhibitory Effects Of Naringenin, Kaempferol, and Apigenin on Cholesterol Biosynthesis In HepG2 and MCF-7 Cells. Food Sci Biotechnol 17: 1361-1364.

29. Kobori M, Masumoto S, Akimoto Y, Oike H (2011) Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57BL/6J mice. Mol Nutr Food Res 55: 530-540.

30. Basarkar PW, Nath N (1983) Hypcholesterolemic and hypolipidemic activity of quercetin—a vitamin P-like compound in rats. Indian J Med Res 77: 122-126.

31. Egert S, Boesch-Saadatmandi C, Wolffsm F, Rimbach G, Müller MJ (2010) Serum lipid and blood pressure responses to quercetin vary in overweight patients with type 2 diabetes. J Nutr Biochem 21: 674-684.

32. Miyazawa M, Kojima T, Araki M, Kamei A, Abe K, et al. (2015) Effects of Morus alba L. (mulberry) and Eucommia ulmoides (Tochu) leaves as functional foods: a promising approach in the management of hyperlipidemia. J Pharmacogn Nat Prod 2: 113. doi:10.4172/2472-0992.1000113

33. Citation: Kobayashi Y, Miyazawa M, Araki M, Kamei A, Abe K, et al. (2015) Effects of Morus alba L. (Mulberry) Leaf Extract in Hypercholesterolemic Mice on Suppression of Cholesterol Synthesis. J Pharmacogn Nat Prod 2: 113. doi:10.4172/2472-0992.1000113

34. Buhman KK, Accad M, Novak S, Choi RS, Wong JS, et al. (2000) Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 6: 1341-1347.

35. Bok SH, Park SY, Park YB, Lee MK, Jeon SM, et al. (2002) Quercetin dihydrate and gallate supplements lower plasma and hepatic lipids and change activities of hepatic antioxidant enzymes in high cholesterol-fed rats. J Nutr 132: 161-169.

36. Glässer G, Grasfe EU, Struck F, Veit M, Gebhardt R (2002) Comparison of antioxidant activities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine 9: 33-40.

37. Kim K, Yeo E, Moon S, Cho S, Han Y, et al. (2008) Inhibitory Effects Of Naringenin, Kaempferol, and Apigenin on Cholesterol Biosynthesis In HepG2 and MCF-7 Cells. Food Sci Biotechnol 17: 1361-1364.

38. Kobori M, Masumoto S, Akimoto Y, Oike H (2011) Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57BL/6J mice. Mol Nutr Food Res 55: 530-540.

39. Basarkar PW, Nath N (1983) Hypcholesterolemic and hypolipidemic activity of quercetin—a vitamin P-like compound in rats. Indian J Med Res 77: 122-126.

40. Egert S, Boesch-Saadatmandi C, Wolffsm F, Rimbach G, Müller MJ (2010) Serum lipid and blood pressure responses to quercetin vary in overweight patients with type 2 diabetes. J Nutr Biochem 21: 674-684.

41. Miyazawa M, Kojima T, Araki M, Kamei A, Abe K, et al. (2015) Effects of Morus alba L. (mulberry) and Eucommia ulmoides (Tochu) leaves as functional foods: a promising approach in the management of hyperlipidemia. J Pharmacogn Nat Prod 2: 113. doi:10.4172/2472-0992.1000113

42. Buhman KK, Accad M, Novak S, Choi RS, Wong JS, et al. (2000) Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 6: 1341-1347.

43. Bok SH, Park SY, Park YB, Lee MK, Jeon SM, et al. (2002) Quercetin dihydrate and gallate supplements lower plasma and hepatic lipids and change activities of hepatic antioxidant enzymes in high cholesterol-fed rats. J Nutr 132: 161-169.