Research Article

Ulam-Hyers-Rassias Stability of Stochastic Functional Differential Equations via Fixed Point Methods

Abdellatif Ben Makhlouf 1,2, Lassaad Mchiri 3, and Mohamed Rhaima 3,4

1Department of Mathematics, College of Science, Jouf University, Saudi Arabia
2Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
3Department of Statistics and Operations Research, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
4University of Tunis Manar, Faculty of Sciences of Tunis, Department of Mathematics, Tunisia

Correspondence should be addressed to Abdellatif Ben Makhlouf; benmakhloufabdellatif@gmail.com

Received 8 February 2021; Revised 28 February 2021; Accepted 6 March 2021; Published 21 April 2021

Academic Editor: Zoran Mitrovic

The Ulam-Hyers-Rassias stability for stochastic systems has been studied by many researchers using the Gronwall-type inequalities, but there is no research paper on the Ulam-Hyers-Rassias stability of stochastic functional differential equations via fixed point methods. The main goal of this paper is to investigate the Ulam-Hyers Stability (HUS) and Ulam-Hyers-Rassias Stability (HURS) of stochastic functional differential equations (SFDEs). Under the fixed point methods and the stochastic analysis techniques, the stability results for SFDE are investigated. We analyze two illustrative examples to show the validity of the results.

1. Introduction

In recent years, SFDEs play an important role in different areas such as physics, mechanics, population dynamics, ecology, medicine biology, and other areas of sciences. SFDEs have great applications and have been developed very fast, see for example [1–5]. Stability investigation is conducted for stochastic nonlinear differential equations with constant delay. The Lyapunov method is used for stability investigation of different mathematical models such as predator-prey relationships and inverted controlled pendulum.

The HUS problem of functional systems began from a question of S. Ulam, queried in 1940, about the stability of functional differential equations for homomorphism as follows. The question regarding the stability problem of homomorphisms is as follows:

Denote by $H_1$ the group, and $H_2$ the metric group with a metric $\delta$ and a constant $\theta > 0$. The question is to study if there exists $\lambda > 0$ satisfies for every $h : H_1 \rightarrow H_2$ such that

$$\delta(h(\sigma v), h(\sigma) h(v)) \leq \lambda, \forall \sigma, v \in H_1,$$

there exists a homomorphism $f : H_1 \rightarrow H_2$ satisfies

$$\delta(h(\sigma), f(\sigma)) \leq \theta, \forall \sigma \in H_1.$$

In 1941, Hyers [6] presented a partial solution to the question of S. Ulam assuming that $D_1, D_2$ be two Banach spaces in the case of $\lambda$-linear transformations, that is

Let $D_1, D_2$ be two Banach spaces and set $h : D_1 \rightarrow D_2$ be a linear transformation satisfying

$$\|h(\sigma v) - h(\sigma) - h(v)\| \leq \lambda, \forall \sigma, v \in D_1 \lambda > 0.$$

There exists a unique linear transformation $\Delta : D_1 \rightarrow D_2$ such that the limit $\Delta(\sigma) = \lim_{n \to \infty} h(2^n\sigma)/2^n$ exists for each $\sigma \in D_1$ and $\|h(\sigma) - \Delta(\sigma)\| \leq \lambda$ for all $\sigma \in D_1$, which was the first step towards more answers in this area. Many researchers have analyzed the HUS of various classes of differential systems (see, for instance, [1, 6–21]). In 1978,
Rassias [22] provided a generalized answer to the Ulam question for approximate $\lambda$-linear transformations. In [23], Rassias obtained an extension of the Hyers’s answer.

In 1994, Gavruta [24] gave a generalization form of Rassias’s Theorem for the unbounded Cauchy difference $h(\sigma + \nu) - h(\sigma) - h(\nu)$ and introduced the notion of generalized HURS in the sense of Rassias approach.

In the last decades, there is an increasing interest and work on the Ulam stability and the Ulam-Hyers stability of some deterministic systems using the Banach contraction principle and Schaefer’s fixed point theorem (see [25, 26]).

In the literature, there are a few papers about the HUS and the HURS of the solution of the system are proved by using the fixed point methodology. In the last section, two numerical examples are presented to illustrate the main results.

2. Preliminary

Denote by $\{\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P\}$ the complete probability space where $\{\mathcal{F}_t\}_{t \geq 0}$ is a filtration satisfying the usual conditions. $W(\sigma)$ is an $m$-dimensional Brownian motion defined on the probability space. Denote by $\mathcal{L}^2([v, w], \mathbb{R}^b)$ the set of $\mathbb{R}^b$-valued $\mathcal{F}_\omega$-adapted processes $\{\mathbf{\psi}(\sigma)\}_{\sigma \geq \omega}$ such that $\int_\omega^\infty |\mathbf{\psi}(\sigma)|^2 d\sigma < \infty$ a.s. and $\mathcal{M}^2([v, w], \mathbb{R}^b)$ the set of processes $\{\mathbf{\psi}(\sigma)\}_{\sigma \geq \omega}$ in $\mathcal{L}^2([v, w], \mathbb{R}^b)$ satisfies $\int_\omega^\infty |\mathbf{\psi}(\sigma)|^2 d\sigma < \infty$.

Let $C([-\omega, 0]; \mathbb{R}^b)$ denote the set of functions $\mathbf{\varphi}$ from $[-\omega, 0]$ to $\mathbb{R}^b$ that are right-continuous and have limits on the left. $C([-\omega, 0]; \mathbb{R}^b)$ is equipped with the norm $\|\mathbf{\varphi}\| = \sup_{\omega \leq \sigma \leq 0} |\mathbf{\varphi}(\sigma)|$ and $|\mathbf{x}| = \sqrt{\sum_{i} x_i}$ for any $\mathbf{x} \in \mathbb{R}^b$. Denote by $C^b_\mathcal{F}_\omega([-\omega, 0]; \mathbb{R}^b)$ the set of all $\mathcal{F}_\omega$-measurable bounded $C([-\omega, 0]; \mathbb{R}^b)$-valued random variables $\mathbf{\chi} = \{\chi(\kappa): -\omega \leq \kappa \leq 0\}$. Let $L^2_{\mathcal{F}_\omega}([0, \infty), \mathbb{R}^b)$, $t \geq 0$, denote the set of all $\mathcal{F}_t$-measurable, $C([-\omega, 0]; \mathbb{R}^b)$-valued random variables $\mathbf{\zeta} = \{\zeta(\kappa): -\omega \leq \kappa \leq 0\}$ satisfies $\sup_{\omega \leq \sigma \leq 0} E|\zeta(\sigma)|^2 < \infty$.

Consider the following SFDE for $0 \leq \omega_0 < T$ fixed:

$$d\mathbf{\zeta}(\omega) = f(\omega, \mathbf{\zeta}_\omega) d\omega + g(\omega, \mathbf{\zeta}_\omega) dW(\omega), \omega_0 \leq \omega \leq T,$$

(4)

with the initial condition

$$\mathbf{\zeta}_{\omega_0} = \mathbf{\chi} \in L^2_{\mathcal{F}_{\omega_0}}([-\omega, 0]; \mathbb{R}^b),$$

(5)

and recall that, given $\mathbf{\zeta} \in C([\omega_0, T]; \mathbb{R}^b)$, for each $\omega \in [\omega_0, T]$, we denote by $\mathbf{\zeta}_{\omega}(\cdot)$ the function in $C([\omega_0 - \omega, 0]; \mathbb{R}^b)$ defined as $\mathbf{\zeta}_{\omega}(p) = \mathbf{\zeta}(\omega + p), -\omega \leq p \leq 0$. We assume that

$$f : [\omega_0, T] \times C\left([-\omega, 0]; \mathbb{R}^b\right) \rightarrow \mathbb{R}^b, g$$

$$: [\omega_0, T] \times C\left([-\omega, 0]; \mathbb{R}^b\right) \rightarrow \mathbb{R}^{b \times b}.$$

(6)

Using the definition of Itô’s stochastic differential and integrating the two sides of equation (4) from $\omega_0$ to $\omega$, we have

$$\mathbf{\zeta}(\omega) = \mathbf{\zeta}(\omega_0) + \int_{\omega_0}^\omega f(\nu, \mathbf{\zeta}_\nu) d\nu + \int_{\omega_0}^\omega g(\nu, \mathbf{\zeta}_\nu) dW(\nu), \omega_0 \leq \omega \leq T.$$

(7)

We consider the following assumption:

$\mathcal{A}_1$: (Uniform Lipschitz condition): Suppose that there is a constant $K > 0$ satisfies

$$|f(\omega, \nu_1) - f(\omega, \nu_2)| + |g(\nu_1) - g(\nu_2)| \leq K \|\nu_1 - \nu_2\|^2,$$

(8)

$$\forall \omega \in [\omega_0, T] \text{ and } \nu_1, \nu_2 \in C([-\omega, 0]; \mathbb{R}^b), \text{ where } z_1 \leq z_2, \text{ define the maximum of } z_1 \text{ and } z_2.$$

3. Stability Results

In this part, we discuss the HUS and the HURS of equation (4) under the assumption $\mathcal{A}_1$.

Definition 1. Equation (4) is called HUS with respect to (w.r.t) $\epsilon$ if there exists a constant $M > 0$ such that for each $\epsilon > 0$ and for each solution $\mathbf{\zeta} \in \mathcal{M}^2([\omega_0 - \omega, T], \mathbb{R}^b)$, with $\mathbf{\zeta}_{\omega_0} = \mathbf{\chi}$, of the following inequation:

$$E\left|\mathbf{\zeta}(\omega) - \mathbf{\zeta}(\omega_0) - \int_{\omega_0}^\omega f(\nu, \mathbf{\zeta}_\nu) d\nu - \int_{\omega_0}^\omega g(\nu, \mathbf{\zeta}_\nu) dW(\nu)\right|^2 \leq \epsilon, \forall \omega \in [\omega_0, T],$$

(9)

there exists a solution $\mathbf{\zeta} \in \mathcal{M}^2([\omega_0 - \omega, T], \mathbb{R}^b)$ of (4), with $\mathbf{\zeta}_{\omega_0} = \mathbf{\chi}$, such that $E|\mathbf{\zeta}(\omega) - \mathbf{\zeta}(\omega_0)|^2 \leq M\epsilon$,

$$\forall \omega \in [\omega_0, T].$$

(10)

Definition 2. Equation (4) is called HURS w.r.t $(\epsilon, \theta(\omega))$, with $\mathbf{\theta}(\cdot) \in C([\omega_0, T]; \mathbb{R}_+)$, if there exists a constant $M > 0$ such that for each $\epsilon > 0$ and for each solution $\mathbf{\zeta} \in \mathcal{M}^2([\omega_0 - \omega, T], \mathbb{R}^b)$, with $\mathbf{\zeta}_{\omega_0} = \mathbf{\chi}$, satisfying

$$E\left|\mathbf{\zeta}(\omega) - \mathbf{\zeta}(\omega_0) - \int_{\omega_0}^\omega f(\nu, \mathbf{\zeta}_\nu) d\nu - \int_{\omega_0}^\omega g(\nu, \mathbf{\zeta}_\nu) dW(\nu)\right|^2 \leq \epsilon \theta(\omega), \forall \omega \in [\omega_0, T],$$

(11)
there exists a solution \( \zeta(\omega) \in \mathcal{M}^2([\omega_0 - q, T], \mathbb{R}^b) \) of (4), with \( \zeta_{w_0} = \chi \), such that \( \forall \omega \in [\omega_0, T], E[\zeta(\omega) - \zeta(\omega)]^2 \leq \varepsilon M \theta(\omega). \)

**Definition 3.** Equation (4) is generalized HURS w.r.t \( \theta(\omega) \), with \( \theta(\cdot) \in C([\omega_0 - q, T]; \mathbb{R}_+) \), if there exists a constant \( M > 0 \) such that for each solution, 
\[
\tilde{\zeta} \in \mathcal{M}^2([\omega_0 - q, T], \mathbb{R}^b), \text{ with } \tilde{\zeta}_{\omega_0} = \chi, \text{ satisfying }
\]
\[
E[\tilde{\zeta}(\omega) - \zeta(\omega)]^2 \leq E[\tilde{\zeta}(\omega) - \zeta(\omega)]^2 \leq \varepsilon M \theta(\omega),
\]

where \( \varepsilon > 0 \) and \( \theta(\cdot) \in C([\omega_0 - q, T]; \mathbb{R}_+) \) is a nondecreasing function. Then, there is a solution \( \zeta \in \mathcal{M}^2([\omega_0 - q, T], \mathbb{R}^b) \) of (4), with \( \zeta_{\omega_0} = \chi, \) such that \( \forall \omega \in [\omega_0, T], E[\zeta(\omega) - \zeta(\omega)]^2 \leq \varepsilon M \theta(\omega). \)

**Lemma 4** (see [2]). Set \( \mathcal{M} = \mathcal{M}^2([\omega_0 - q, T], \mathbb{R}^b) \). Let \( d: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}_+ \) be the function such that
\[
d^2(\zeta_1, \zeta_2) = \inf \left\{ \lambda \in [0, +\infty), \frac{E[\zeta_1(\omega) - \zeta_2(\omega)]^2}{h_2(\omega)} \leq \lambda h_2(\omega), \forall \omega \in [\omega_0 - q, T] \right\},
\]
where \( h_1, h_2 \in C([\omega_0 - q, T], \mathbb{R}_+) \). Then, \( (\mathcal{M}, d) \) is a complete metric space.

**Theorem 5** (see [29]). Suppose \( (F, d) \) is a complete metric space and \( L: F \rightarrow F \) is a contraction (with \( \tau \in [0, 1) \)). Suppose that \( \nu \in F, \lambda > 0 \) and \( d(\nu, L(\nu)) \leq \lambda \). So, there exists a unique \( \beta \in F \) satisfies \( \beta = L(\beta) \). Moreover,
\[
d(\nu, \beta) \leq \frac{\lambda}{1 - \tau}.
\]

**Theorem 6.** Suppose that \( \mathcal{A}_1 \) hold. Let \( \tilde{\zeta} \in \mathcal{M}^2([\omega_0 - q, T], \mathbb{R}^b) \), with \( \tilde{\zeta}_{\omega_0} = \chi \), be a stochastic process satisfies
\[
E[\tilde{\zeta}(\omega) - \tilde{\zeta}(\omega)]^2 \leq E[\tilde{\zeta}(\omega) - \tilde{\zeta}(\omega)]^2 \leq \varepsilon M \theta(\omega),
\]
where \( \varepsilon > 0 \) and \( \theta(\cdot) \in C([\omega_0 - q, T]; \mathbb{R}_+) \) is a nondecreasing function. Then, there is a solution \( \zeta \in \mathcal{M}^2([\omega_0 - q, T], \mathbb{R}^b) \) of (4), with \( \zeta_{\omega_0} = \chi, \) such that \( \forall \omega \in [\omega_0, T], E[\zeta(\omega) - \zeta(\omega)]^2 \leq \varepsilon M \theta(\omega). \)
Theorem 8. Assume that \( \mathcal{A} \) hold. Let \( \tilde{\zeta} \in \mathcal{M}^2([\omega_0 - q, T], \mathbb{R}^b) \), with \( \tilde{\zeta}_{\omega_0} = \chi \), be a stochastic process satisfies

\[
E\left| \tilde{\zeta}(\omega) - \tilde{\zeta}(\omega_0) - \int_{\omega_0}^{\omega} f\left( v, \tilde{\zeta}_v \right) dv - \int_{\omega_0}^{\omega} g\left( v, \tilde{\zeta}_v \right) dW(v) \right|^2 \leq \epsilon, \quad \forall \omega \in [\omega_0, T],
\]

as desired.

Remark 7. In our analysis of the HURS, we do not suppose any condition on \( K \) unlike the case of the Theorem 6 in [29].

Theorem 9. Assume that \( \mathcal{A}_1 \) hold. Let \( \tilde{\zeta} \in \mathcal{M}^2([\omega_0 - q, T], \mathbb{R}^b) \), with \( \tilde{\zeta}_{\omega_0} = \chi \), be a stochastic process satisfies

\[
E\left| \tilde{\zeta}(\omega) - \tilde{\zeta}(\omega_0) - \int_{\omega_0}^{\omega} f\left( v, \tilde{\zeta}_v \right) dv - \int_{\omega_0}^{\omega} g\left( v, \tilde{\zeta}_v \right) dW(v) \right|^2 \leq \epsilon, \quad \forall \omega \in [\omega_0, T],
\]

where \( \epsilon > 0 \). Then, there is a solution \( \zeta \in \mathcal{M}^2([\omega_0 - \rho, T], \mathbb{R}^b) \) of (4), with \( \zeta_{\omega_0} = \chi \), such that \( \forall \omega \in [\omega_0, T] \),

\[
E\left| \tilde{\zeta}(\omega) - \zeta(\omega) \right|^2 \leq \frac{1}{\left( 1 - \sqrt{\alpha/\alpha + \delta} \right)^2} \exp \left( (\alpha + \delta)(T - \omega_0) \right) \epsilon,
\]

where \( \alpha = 2K^2[[T - \omega_0] + 1] \) and \( \delta \) is a positive constant.

Proof. The proof of this theorem is similar to Theorem 6.
with \( q > 0 \). Then, replacing now \( \xi_1 \) by the segment of a solution \( \zeta_\omega \), we get

\[
g(\omega, \zeta_\omega) = \frac{1}{\sqrt{1 + \omega^2}} \zeta(\omega) + \frac{e^{-\omega}}{\sqrt{1 + \omega^2}} \zeta(\omega - q),
\]

\[
f(\omega, \zeta_\omega) = \sin (\omega) \zeta(\omega) + \cos (\omega)\zeta(\omega - q).
\]

Let \( \xi_1, \xi_2 \in C([-q, 0]; \mathbb{R}) \), then

\[
|f(\omega, \xi_1) - f(\omega, \xi_2)|^2 = |\sin (\omega)(\xi_1(0) - \xi_2(0)) + \cos (\omega)(\xi_1(-q) - \xi_2(-q))|^2
\]

\[
\leq 2\sin^2(\omega)^2|\xi_1(0) - \xi_2(0)|^2 + 2\cos^2(\omega)^2|\xi_1(-q) - \xi_2(-q)|^2
\]

\[
\leq 4|\xi_1 - \xi_2|^2.
\]

\[
g(\omega, \xi_1) - g(\omega, \xi_2)^2 = \left| \frac{1}{\sqrt{1 + \omega^2}} (\xi_1(0) - \xi_2(0)) + \frac{e^{-\omega}}{\sqrt{1 + \omega^2}} (\xi_1(-q) - \xi_2(-q)) \right|^2
\]

\[
\leq \frac{2\sin^2(\omega)^2}{1 + \omega^2}|\xi_1(0) - \xi_2(0)|^2 + \frac{2\cos^2(\omega)^2}{1 + \omega^2}|\xi_1(-q) - \xi_2(-q)|^2
\]

\[
\leq 4|\xi_1 - \xi_2|^2.
\]

(34)

Hence, the uniform Lipschitz condition is satisfied.

Therefore, by Theorem 6, there is a solution \( \zeta \in \mathcal{M}^2([-\omega_0, \omega_0]; \mathbb{R}) \) of (31), with \( \omega_0 = \chi \), such that \( \forall \omega \in [\omega_0, T] \),

\[
E|\tilde{\zeta}(\omega) - \zeta(\omega)|^2 \leq \frac{1}{(1 - \sqrt{\alpha/\alpha + \delta})^3} \exp ((\alpha + \delta)(T - \omega_0)) \epsilon(\omega + 1),
\]

(35)

where \( \alpha = 32[(T - \omega_0) + 1] \) and \( \delta > 0 \).

For System (31), we conduct a simulation based on the Euler-Maruyama scheme with step size 10^{-3}, for which we set \( \omega_0 = 0 \), \( q = 0.5 \) and the initial data \( \chi \) as a map, namely, \( \chi = \omega^2 \) for all \(-0.5 \leq \omega \leq 0\). In Figure 1, we give a sequence of computer simulations of the exact solution path \( \zeta(\omega) \) and the rough solution path \( \tilde{\zeta}(\omega) \) for System (31) on the interval \([-0.5, 8]\). Choosing \( \epsilon = 10^{-4}, \delta = 15, a = 35.2, \) and \( T = 0.1 \) one obtain \( M = (1/1 - \sqrt{\alpha/\alpha + \delta})^3 \exp ((\alpha + \delta)(T - \omega_0)) = 5.72 \times 10^3 \). We use the time step 10^{-4} of the interval \([0,0.1]\) and 10000 realizations for this discretisation; we give in Figure 2 the trajectory of \( e \times M \times (\omega + 1) \) and simulation of the mean square of \( |\tilde{\zeta}(\omega) - \zeta(\omega)| \) on the interval \([0,0.1]\). It is clear that the convergence plot verifies the theoretical findings.

**Example 11.** Consider the following SFDE for each \( \epsilon > 0 \)

\[
\left\{ \begin{array}{l}
d\zeta(\omega) = f(\omega, \zeta_\omega)d\omega + g(\omega, \zeta_\omega)dW(\omega), \\
E|\tilde{\zeta}(\omega) - \zeta(0)| - \int_0^\omega f(\nu, \tilde{\zeta}_\nu)dv - \int_0^\omega g(\nu, \tilde{\zeta}_\nu)dW(\nu)|^2 \leq \epsilon.
\end{array} \right.
\]

(36)

\[
f(\omega, \xi_1) = \omega \xi_1(0) + \omega^2 \xi_1(-q), \xi_1 \in C([-q, 0]; \mathbb{R}),
\]

\[
g(\omega, \xi_1) = \omega^2 \xi_1(0) + \omega \xi_1(-q), \xi_1 \in C([-q, 0]; \mathbb{R}),
\]

(37)

with \( \rho > 0 \). Then, replacing now \( \xi_1 \) by the segment of a solution \( \xi_\omega \), we have

\[
f(\omega, \xi_\omega) = \omega \xi_\omega + \omega^2 \xi_\omega(\omega - q),
\]

\[
g(\omega, \xi_\omega) = \omega^2 \xi_\omega + \omega \xi_\omega(\omega - q).
\]

(38)
Therefore, by Theorem 8, there is a solution \( \zeta \in \mathcal{M}^2([-\varrho, 3], \mathbb{R}) \) of (36), with \( \zeta_0 = \chi \), such that \( \forall \omega \in [0, 3] \),

\[
E|\hat{\zeta}(\omega) - \zeta(\omega)|^2 \leq \frac{1}{1 - \sqrt{a/\alpha + \delta}} \exp \left(3(\alpha + \delta)\right),
\]

where \( \alpha = 1440 \) and \( \delta > 0 \).

We use again Euler-Maruyama scheme with step size \( 0.05 \) to conduct a simulation for System (36). We fix \( \rho = 0.5 \) and the initial data \( \chi = -\omega + 1 \) for all \( -0.5 \leq \omega \leq 0 \). In Figure 3, we plot the path of the exact solution \( \zeta(\omega) \) and the rough solution path \( \hat{\zeta}(\omega) \) for System (36) on the interval \([-0.5, 2]\). Choosing \( \epsilon = 10^{-9} \), \( \delta = 10 \), \( \alpha = 1440 \), and \( T = 0.06 \) one obtain a large value of \( M = \left(1 - \sqrt{a/\alpha + \delta}\right)^{-1/2} \exp (3(\alpha + \delta)). \)

We use the time step \( 10^{-4} \) of the interval \([0,0.06]\) and 10000 realizations for this discretisation; we give in Figure 4 the trajectory of the constant function \( \epsilon \times M \) and simulation of the mean square of \( |\hat{\zeta}(\omega) - \zeta(\omega)| \) on the interval \([0, 0.06]\). It is clear that the convergence plot verifies the theoretical findings.

5. Conclusion

In this paper, we investigate the Ulam-Hyers-Rassias stability of stochastic functional differential equations. To obtain the main results, we used the fixed point theorem and the classical stochastic calculus techniques. Moreover, we extend the Ulam-Hyers-Rassias stability for a generalization version. An example is presented to show the applicability of our results.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through Research Group No (RG-1441-328).

References

[1] X. Ma, X. B. Shu, and J. Mao, "Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay," *Stochastics and Dynamics*, vol. 20, pp. 1–31, 2020.
[2] X. Mao, *Stochastic Differential Equations and Applications*, Ellis Horwood, Chichester, U. K., 1997.
[3] X. Mao, *Exponential Stability of Stochastic Differential Equations*, Marcel Dekker, 1994.
[4] X. Mao, "Robustness of exponential stability of stochastic differential delay equations," *IEEE Transactions on Automatic Control*, vol. 41, no. 3, pp. 442–447, 1996.
[5] P. H. A. Ngoc, "A new approach to mean square exponential stability of stochastic functional differential equations," *IEEE Control Systems Letters*, vol. 5, no. 5, pp. 1645–1650, 2021.

[6] D. H. Hyers, "On the stability of the linear functional equation," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 27, no. 4, pp. 222–224, 1941.

[7] Y. Başı, A. Misir, and S. Öğrekçi, "On the stability problem of differential equations in the sense of Ulam," *Results in Mathematics*, vol. 75, no. 1, article 6, 2020.

[8] S. Boularès, A. Ben Makhlouf, and H. Khellaf, "Generalized weakly singular integral inequalities with applications to fractional differential equations with respect to another function," *The Rocky Mountain Journal of Mathematics*, vol. 50, no. 6, pp. 2001–2010, 2020.

[9] M. Choubin and H. Javanshiri, "A new approach to the Hyers-Ulam-Rassias stability of differential equations," *Results in Mathematics*, vol. 76, no. 1, article 11, 2021.

[10] Y. Gao and Y. Li, "Initial value problems of semilinear supdiffusion equations," *Mathematics*, vol. 9, no. 1, pp. 1–10, 2021.

[11] P. Gavruta and L. Gavruta, "A new method for the generalized Hyers-Ulam-Rassias stability," *International Journal of Nonlinear Analysis and Applications*, vol. 1, no. 2, pp. 11–18, 2010.

[12] Y. Guo, X. B. Shu, Y. Li, and F. Xu, "The existence and Hyers-Ulam stability of solution for an impulsive Riemann Liouville fractional neutral functional stochastic differential equation with infinite delay of order $1 < \beta < 2$," *Boundary Value Problems*, vol. 2019, no. 1, Article ID 59, 2019.

[13] Y. Guo, M. Chen, X. B. Shu, and F. Xu, "The existence and Hyers-Ulam stability of solution for almost periodic fractional stochastic differential equation with fBm," *Stochastic Analysis and Applications*, pp. 1–24, 2020.

[14] D. H. Hyers, G. Isac, and T. H. M. Rassias, *Stability of functional equation in several variables*, Birkhäuser, Basel, 1998.

[15] T. Li and A. Zada, "Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces," *Advances in Difference Equations*, vol. 2016, no. 1, Article ID 153, 2016.

[16] L. Liu, Q. Dong, and G. Li, "Exact solutions and Hyers-Ulam stability for fractional oscillation equations with pure delay," *Applied Mathematics Letters*, vol. 112, p. 106666, 2021.

[17] O. Saidi, D. Boucenna, and A. Chidouh, "Study of Mainardi’s fractional heat problem," *Journal of Computational and Applied Mathematics*, vol. 378, p. 112943, 2020.

[18] A. Taieb and Z. Dahmani, "Triangular system of higher order singular fractional differential equations," *Kragujevac Journal of Mathematics*, vol. 45, no. 1, pp. 81–101, 2021.

[19] L. Tan, W. Jin, and Y. Suo, "Stability in distribution of neutral stochastic functional differential equations," *Statistics & Probability Letters*, vol. 107, pp. 27–36, 2015.

[20] C. Tunç and E. Biçer, "Hyers-Ulam-Rassias stability for a first order functional differential equation," *Journal of Mathematical and Fundamental Sciences*, vol. 47, no. 2, pp. 143–153, 2015.

[21] S. M. Ulam, *A Collection of the Mathematical Problems*, Interscience Publ, New York, 1960.

[22] T. M. Rassias, "On the stability of the linear mapping in Banach spaces," *Proceedings of the American Mathematical Society*, vol. 72, no. 2, pp. 297–300, 1978.

[23] T. M. Rassias, "On a modified Hyers-Ulam sequence," *Journal of Mathematical Analysis and Applications*, vol. 158, no. 1, pp. 106–113, 1991.