Diseases of Cymbopogon citratus (Poaceae) in China:
Curvularia nanningensis sp. nov.

Qian Zhang¹, Zai-Fu Yang¹, Wei Cheng², Nalin N. Wijayawardene³, Kevin D. Hyde⁴, Zhuo Chen⁵, Yong Wang¹

¹ Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, Guizhou Province, 550025, China ² Department of Pracaculture Science, Animal Science College, Guizhou University, Guiyang, Guizhou 550025, China ³ Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China ⁴ Center of Excellence in Fungal Research and School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand ⁵ Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China

Corresponding author: Zhuo Chen (gychenuzhuo@aliyun.com), Yong Wang (yongwangbis@aliyun.com)

Academic editor: Huzefa Raja | Received 11 December 2019 | Accepted 30 January 2020 | Published 13 February 2020

Citation: Zhang Q, Yang Z-F, Cheng W, Wijayawardene NN, Hyde KD, Chen Z, Wang Y (2020) Diseases of Cymbopogon citratus (Poaceae) in China: Curvularia nanningensis sp. nov. MycoKeys 63: 49–67. https://doi.org/10.3897/mycokeys.63.49264

Abstract
Five Curvularia strains isolated from diseased leaves of lemongrass (Cymbopogon citratus) in Guangxi Province, China, were examined. NCBI-Blast searches of ITS sequences suggested a high degree of similarity (99–100%) to Curvularia akaii, C. akaiiensis, C. bothriochloae, C. heteropogonis and C. sichuanensis. To accurately identify these strains, we further analysed their morphology and phylogenetic relationships based on combinations of ITS, GAPDH, and tef1 gene sequences. Morphological observations indicated that the key character differing from similar species was conidial size, whereas phylogenetic analyses indicated that the five strains represent one species that is also distinct from C. akaii, C. akaiiensis and C. bothriochloae by conidial size and conidiophore length. Thus, the strains examined are found to represent a new species described herein as Curvularia nanningensis. The pathogenicity test on the host and detached leaves confirmed the new species to be pathogenic on Cymbopogon citratus leaves. Standardised requirements for reliable identification of Curvularia pathogens are also proposed.

Keywords
Cymbopogon, phylogeny, plant disease, Pleosporaceae, taxonomy
Introduction

Cymbopogon citratus Stapf (lemongrass), believed to be a native of Malaysia, is now widely distributed in all continents and particularly in America, China, Guatemala and Southeast Asia. Essential oil from lemongrass is often used in aromatherapy (Williamson et al. 1996; Noel et al. 2002; Yang and Lei 2005; Shah et al. 2011). As a traditional Chinese medicine, lemongrass is known to provide relief from a variety of ailments including eczema, cold, headache and stomach-ache (Zhou et al. 2011). Guatemala is known to be the main exporter of lemongrass with about 250 tons per year. China produces 80 to 100 tons of lemongrass annually and the USA and Russia each imports about 70 tons per year (DAFF 2012). Depending on climatic conditions, lemongrass can be severely infected with a rust disease caused by *Puccinia nakanishikii* Dietel in Hawaii and California (Gardner 1985; Koike and Molinar 1999). In Brazil, a rust on lemongrass caused by another *Puccinia* species named *P. cymbopogonis* Massee has been reported (Vida et al. 2006). Joy et al. (2006) summarised the various disease symptoms and their causal agents of lemongrass.

Curvularia spp. infect many herbaceous plants including *Cymbopogon* Spreng. (Smith et al. 1989). *Helminthosporium cymbopogoni* C.W. Dodge (≡ *Curvularia cymbopogonis* (C.W. Dodge) J.W.Groves & Skolko) is responsible for a severe disease of lemongrass in the lowlands of Guatemala (Dodge 1942). Barua and Bordoloi (1983) discovered *C. verruciformis* causing disease on *Cymbopogon flexuosus* Stapf. *Curvularia andropogonis* (Zimm.) Boedijn led to foliage blight of *Cymbopogon nardus* (L.) Rendle in the Philippines (Sato and Ohkubo 1990). Thakur (1994) reported *C. lunata* (Wakker) Boedijn as the causal agent of a new blight disease of *Cymbopogon martini* (Roxb.) Wats. var. *motia* Burk. Chutia et al. (2006) discovered that a leaf blight of *Cymbopogon winterianus* Jowitt is caused by *Curvularia* spp., resulting in a dramatic change in oil yield and its constituents. Recently, Santos et al. (2018) characterised the morphological and molecular diversity of the isolates of *C. lunata*, associated with *Andropogon* Linn. seeds.

Starting in 2010, there have been outbreak reports of pathogenic *Curvularia* in Asian countries, especially India and Pakistan (Pandey et al. 2014; Avasthi et al. 2015; Majeed et al. 2015). As China is a neighbouring country, we felt obligated to evaluate the potential threat of *Curvularia* to our crops. A severe *Curvularia* leaf blight disease was observed in three farms of *Curcuma aromatica* Salisb. in Hainan Province during 2010 (Chen et al. 2013). Gao et al. (2012) reported a new rice black sheath spot disease caused by *C. fallax* Boedijn in Hunan Province. Our research group is also conducting a disease survey on the occurrence of *Curvularia* diseases in Southwest China since 2017. Two new pathogens (*C. asianensis* Manamgoda, L. Cai & K.D. Hyde and *C. microspora* Y. Liang, K.D. Hyde, J. Bhat & Yong Wang bis), which affected *Epipremnum pinnatum* (L.) Engl. and *Hippeastrum rutilum* Herb. (Liang et al. 2018; Wang et al. 2018), respectively, were found.

Meanwhile, a severe leaf blast disease on lemongrass was found in Guangxi Province, China, that first appeared on the tips of leaves. As the infection progressed, more than 30% of leaves showed different degrees of abnormalities, while in the later stages
more than 50% of the upper leaves appeared diseased and disease incidence reached 80% or above in the lower leaf blades. We provide a detailed morphological description and phylogenetic analyses of the pathogen confirming it as a new Curvularia species. Koch’s postulates (see later text) have been carried out to confirm its pathogenicity. Our study provides a further understanding of Curvularia disease on lemongrass in China.

Materials and methods

Isolation

Leaves of Cymbopogon citratus showing leaf blast symptoms were collected from Guangxi Medicinal Botanical Garden in Nanning, China, during 2017. Diseased leaf pieces were surface disinfected with 70% ethanol for 30 s, 1% NaClO for 1 min and repeatedly rinsed in sterile distilled water for 30 s. For isolation of Curvularia, conidia were removed from the diseased tissue surface using a sterilised needle and placed in a drop of sterilised water followed by microscopic examination. The spore suspension was drawn with a Pasteur pipette and transferred to a Petri dish with 2% water agar (WA) or 2% malt extract agar (MEA) and 100 mg/l streptomycin to inhibit the growth of bacteria. The plates were incubated for 24 h in an incubator (25°C) and examined for single spore germination under a dissecting microscope. Germinating conidia were transferred separately to new 2% MEA plates (Chomnunti et al. 2014).

Morphological studies

Single germinated spores were transferred to PDA or MEA and incubated at 28°C in a light incubator with 12 h light/12 h darkness. Ten days later, the colony and morphological characters were recorded according to Manamgoda et al. (2011, 2012). Colony diameters on PDA and MEA were measured at 1, 3, 5 and 7 days post-inoculation and average growth rates were calculated. Conidia and conidiophores were examined using a compound microscope fitted with a digital camera (Olympus BX53). The holotype specimen is deposited in the Herbarium of the Department of Plant Pathology, Agricultural College, Guizhou University (HGUP). An ex-type culture is deposited in the Culture Collection of the Department of Plant Pathology, Agriculture College, Guizhou University, China (GUCC) and Mae Fah Luang University Culture Collection (MFLUCC) in Thailand (Table 1).

DNA Extraction and Sequencing

Fungal cultures were grown on PDA at 28°C until the entire Petri dish (90 mm) was colonised. Fresh fungal mycelia were scraped off the surface of the PDA using a sterilised scalpel. A BIOMIGA Fungus Genomic DNA Extraction Kit (GD2416,
Table 1. Sequences used for phylogenetic analysis.

Species name	Strain number	ITS GenBank Accession numbers	GAPDH GenBank Accession numbers	tef GenBank Accession numbers
Curvularia aeria	CBS 294.61†	HE861850	HF565450	–
C. affinis	CBS 154.34†	KJ909780	KM230401	KM196566
C. abrusenzis	CBS 144673†	KX139029	MG428693	MG428686
C. akati	CBS 317.86	KJ909782	KM230402	KM196569
C. akatiensis	BRIP 16080	KJ415539	KJ415407	KJ415453
C. alcornii	MFLUCC 10-0703†	JX256420	JX276433	JX266589
C. americana	UTHSC 08-3414	HE861833	HF565488	–
C. asiatica	MFLUCC 10-0711†	JX256424	JX276436	JX266593
C. australiensis	BRIP 12044†	KJ415540	KJ415406	KJ415452
C. australis	BRIP 12521†	KJ415541	KJ415405	KJ415451
C. bannonii	BRIP 10972†	MH444892	MH433638	MH433654
C. bealayi	BRIP 12942†	MH444894	MH433634	MH433657
C. boreriae	CBS 859.73	HE861848	HF565455	–
C. bothriochloae	MFLUCC 11-0422	KF400638	KP419987	KM196571
C. brachyspora	CBS 186.50	KJ922372	KM061784	KM230405
C. buchloes	CBS 246.49†	KJ909765	KM061789	KM196588
C. carica-papayae	CBS 135941	HG779021	HG779146	–
C. chiangmaiensis	CPC 28829	MF490814	MF490836	MF490857
C. chlamydospora	UTHSC 07-2764	HG779021	HG779151	–
C. clavata	BRIP 61680b	KU552205	KU552167	KU552159
C. coatesiae	BRIP 24261†	MH444897	MH433636	MH433659
C. colbranii	CBS 192.29	JN192373	JN600962	JN601006
C. dactyloctenii	CBS 135941†	HG778984	HG779146	–
C. dactyloctenicola	CPC 28810	MF490815	MF490837	MF490858
C. deightonii	BRIP 13524†	KJ415544	KJ415402	KJ415448
C. dactyloctenii	CBS 135941†	HG778984	HG779146	–
C. dactyloctenicola	CPC 28810	MF490815	MF490837	MF490858
C. dactyloctenii	BRIP 12846†	KJ415545	KJ415401	KJ415447
C. dactyloctenii	CBS 135941†	HG778984	HG779146	–
C. dactyloctenicola	CPC 28810	MF490815	MF490837	MF490858
C. dactyloctenii	BRIP 13524†	KJ415544	KJ415402	KJ415448
C. dactyloctenicola	CPC 28810	MF490815	MF490837	MF490858
C. dactyloctenii	BRIP 12846†	KJ415545	KJ415401	KJ415447
C. dactyloctenicola	CPC 28810	MF490815	MF490837	MF490858
C. dactyloctenii	BRIP 12846†	KJ415545	KJ415401	KJ415447
C. dactyloctenicola	CPC 28810	MF490815	MF490837	MF490858
C. dactyloctenii	BRIP 12846†	KJ415545	KJ415401	KJ415447
C. dactyloctenicola	CPC 28810	MF490815	MF490837	MF490858
C. dactyloctenii	BRIP 12846†	KJ415545	KJ415401	KJ415447
C. dactyloctenicola	CPC 28810	MF490815	MF490837	MF490858
C. dactyloctenii	BRIP 12846†	KJ415545	KJ415401	KJ415447
C. dactyloctenicola	CPC 28810	MF490815	MF490837	MF490858
C. dactyloctenii	BRIP 12846†	KJ415545	KJ415401	KJ415447
Species name	Strain number	ITS	GAPDH	tef
------------------------------	----------------	-----------	-----------	------------
Curvularia nanningensis sp. nov.	BRIP 12919^T	KJ415550	KJ415397	KJ415443
C. neergaardii	GUCC 11000	MH885316	MH980000	MH980006
C. nanningensis sp. nov.	GUCC 11001	MH885317	MH980001	MH980007
	GUCC 11002	MH885318	MH980002	MH980008
	GUCC 11003	MH885319	MH980003	MH980009
	GUCC 11005^T	MH885321	MH980005	MH980011
C. neovindica	BRIP 17439	AF081449	AF081406	–
C. nicotiae	CBS 655.74^T = BRIP 11983	KJ415551	KJ415396	KJ415442
C. nodosa	CPC 28800^T	MF490816	MF490838	MF490859
	CPC 28801	MF490817	MF490839	MF490860
	CPC 28812	MF490818	MF490840	MF490861
C. nodulosa	CBS 160.58	JN601033	JN600975	JN601019
C. oryzae	CBS 169.53^T	KP406050	KP645344	KM196590
C. ovarticola	CBS 470.90^T	JN192384	JN600976	JN601020
C. pallescens	CBS 156.35^T	KJ922380	KM083606	KM196570
C. pallescens	MFLUCC 14-0404	MF621582	–	–
C. pizoni	CBS 308.67^T	KJ909774	KM083617	KM196594
C. peritidis	CBS 350.90^T	JN192385	KJ415394	JN601021
C. peteritii	BRIP 14642^T	MH141405	MH433650	MH433668
C. pisi	CBS 190.48^T	KY905678	KY905690	KY905607
C. platanei	BRIP 27703^T	MH141406	MH433651	MH433669
C. portulacaee	CBS 239.48^T = BRIP 14541	KJ415553	KJ415393	KJ415440
C. prasadii	CBS 143.64^T	KJ22373	KM061785	KM230408
C. protuberata	CBS 376.65^T	KJ22376	KM083605	KM196576
C. pseudobrachyspora	CPC 28808^T	MF490819	MF490841	MF490862
C. pseudolunata	UTHSC 09-2092^T	HE861842	HF565459	–
C. pseudorobusta	UTHSC 08-3458	HE861838	HF565476	–
C. ravenni	BRIP 13165^T	JN192386	JN600978	JN601024
C. resii	BRIP 4358^T	MH141407	MH433637	HM433670
C. richardiae	BRIP 4371^T	KJ415555	KJ415391	KJ415438
C. robusta	CBS 624.68^T	KJ909783	KM083613	KM196577
C. ruhini	CBS 144674^T	KJX139030	MG428694	MG428687
C. ryleyi	BRIP 12554^T	KJ415556	KJ415390	KJ415437
C. senegalensis	CBS 149.71	HG779001	HG779128	–
C. sesuvi	Bp-Zj 01^T	EF175940	–	–
C. shahidchamranensis	IRAN 3133C	MH550084	MH550083	–
C. soli	CBS 222.96^T	KY905679	KY905691	KY905608
C. sorghina	BRIP 15900^T	KJ415558	KJ415388	KJ415435
C. subpapendorfii	CBS 173.55^T	JX256433	JX276445	JX266599
C. subpapendorfii	CBS 146.63^T	JX256433	JX276445	JX266599
C. subspicifera	CPC 274.52	JX256433	JX276445	JX266599
C. subulicola	CPC 28813	MF490820	MF490842	MF490863
C. subulicola	CPC 28814	MF490821	MF490843	MF490864
C. subulicola	CPC 28815^T	MF490822	MF490844	MF490865
C. subulicola	CPC 28816	MF490823	MF490845	MF490866
C. verruciformis	CBS 537.75^T	HG779026	HG779134	–
C. verruculosa	CBS 150.63^T	KP400652	KP645346	KP735695
	CPC 28792	MF490825	MF490847	MF490868
	CPC 28809	MF490824	MF490846	MF490867
C. warraberensis	BRIP 14817^T	MH141409	MH433653	MH433672
Bipolaris drechleri	MUS00028	KF500532	KM034846	KM037971
B. maydis	CBS 136.29^T	AF071325	KM034846	KM037974

Ex-type isolates were labeled with "^T".
BIOMIGA, Inc., San Diego, California, USA) was used to extract the genomic DNA. DNA amplification was performed in a 25 μl reaction volume which contained 2.5 μl 10 × PCR buffer, 1 μl of each primer (10 μM), 1 μl template DNA, 0.25 μl Taq DNA polymerase (Promega, Madison, WI, USA) and 18.5 μl ddH₂O. Primers used and thermal cycling programme for PCR amplification of the ITS (ITS4/ITS5), GAPDH (gpd1/gpd2) and tef1 (EF-526F/1567R) genes were followed as described previously (White et al. 1990; Berbee et al. 1999; Schoch et al. 2009; Liang et al. 2018).

Phylogenetic analyses

DNA sequences originated from five strains (GUCC 11000, GUCC 11001, GUCC 11002, GUCC 11003 and GUCC 11005) and reference sequences of ex-type or representative sequences of *Curvularia* species were downloaded from GenBank database (Table 1) with strains of *Bipolaris maydis* (Y. Nisik. & C. Miyake) Shoemaker (CBS 136.29) and *B. drechsleri* Manamgoda & Minnis (MUS0028) as outgroup taxa. Alignments for each locus were performed in MAFFT v7.307 online version (Katoh and Standley 2016) and manually verified in MEGA 6.06 (Tamura et al. 2013). Phylogenetic analyses were performed by Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian methods. Sequences were optimised manually to allow maximum alignment and maximum sequence similarity as detailed in Manamgoda et al. (2012). MP analyses were performed in PAUP v. 4.0b10 (Swofford 2003) using the heuristic search option with 1,000 random taxa additions and tree bisection and reconnection (TBR) as the branch-swapping algorithm. Five thousand maxtrees were set to build up the phylogenetic tree. The characters in the alignment matrix were ordered according to ITS+GAPDH+tef1 with equal weight, and gaps were treated as missing data. The MP phylogenetic analysis of *Curvularia* ITS sequences included pathogens from China, India and Pakistan and the wrong sequence (KN879930), actually belonging to *Alternaria alternata* (taxon:5599), was selected as the outgroup. The Tree Length (TL), Consistency Indices (CI), Retention Indices (RI), Rescaled Consistency Indices (RC) and Homoplasy Index (HI) were calculated for each tree generated. The resulting PHYLIP file was used to generate the ML tree on the CIPRES Science Gateway (https://www.phylo.org/portal2/login.action) using the RAxML-HPC2 black box with 1000 bootstrap replicates and GTR+GAMMA as the nucleotide substitution model. For Bayesian inference analysis, the best model of evolution (GTR+I+G) was determined using MrModeltest v2 (Nylander 2004). Bayesian inference analysis was done using MrBayes v 3.2.6 (Ronquist et al. 2012). Bayesian analyses were launched with random starting trees for 2 000 000 generations and Markov chains were sampled every 1000 generations. The first 25% resulting trees were discarded as burn-in. Alignment matrices are available in TreeBASE under the study ID 25080.
Koch’s Postulate test

To confirm the pathogenicity of the fungus, five healthy plants of *Cymbopogon citratus* were inoculated with 5 mm diameter mycelial plugs of the five isolates (GUCC 11000, GUCC 11001, GUCC 11002, GUCC 11003 and GUCC 11005) cut from the margins of 10-day-old actively growing cultures; the control was treated with sterile agar plugs. The plants were kept for two days in an illuminating incubator at 28° ± 3°C. Additionally, two plants were sprayed with distilled water and kept as control under the same conditions. Both inoculated (host and detached leaves) and control plants were kept for two days in an illuminating incubator at 28 ± 3°C. After four days of incubation, the inoculated plants and leaves were observed for the development of symptoms (Zhang et al. 2018). Infected leaves were collected and the fungus was re-isolated using PDA medium and the ITS sequence was compared with original strains.

Results

Phylogenetic analyses

First, we compared the DNA sequence identity of ITS, GAPDH and *tef1* gene regions (Table 2). Among our five strains, there was only one base difference. In the ITS gene region, for *C. akatiensis*, the base sequence was identical to our strains; only 1 difference for *C. bothriochloae*; base differences were 8 for *C. akaii*, 9 for *C. deightonii* and 5 for *C. sichuanensis*. Only *C. heteropogonis* had noticeable (25) base differences with our strains. In the GAPDH and *tef1* gene regions, the mutation rate of DNA bases was apparently faster than the ITS region. There were between 9 to 19 base differences in GAPDH and 3 to 8 in *tef1*. This means that in *Curvularia*, GAPDH has a faster

Table 2. DNA sequence differences between *Curvularia nanningensis* and related species in three gene regions.

Species	Strain number	ITS (1–547 bp)	GAPDH (550–1031bp)	tef1 (1034–1899 bp)
C. nanningensis	GUCC11000	0	1	0
	GUCC11001	0	0	0
	GUCC11002	0	1	0
	GUCC11003	0	1	0
	GUCC11005^T	0	0	0
C. akaii	CBS 317.86	8	9	4
C. akatiensis	BRIP 16080^T	0	10	5
C. bothriochloae	BRIP 12522^T	1	19	8
C. deightonii	CBS 537.70	9	13	–
C. heteropogonis	CBS 284.91^T	25	12	3
C. sichuanensis	HSAUP II.2650-1^T	5	–	–

^T = ex-type
Figure 1. Maximum Parsimony (MP) topology of *Curvularia* generated from a combination of ITS, GAPDH and *tef1* sequences. *Bipolaris maydis* (CBS 136.29) and *B. drechsleri* (MUS0028) were used as outgroup taxa. MP and ML above 50% and BPP values above 0.90 were placed close to topological nodes and separated by “/”. The bootstrap values below 50% and BPP values below 0.90 were labelled with “-”. Our main research clade was labelled with green colour.
Curvularia nanningensis sp. nov

Figure 2. Maximum Parsimony (MP) analysis of Curvularia pathogens in China, India and Pakistan based on ITS sequences. Alternaria alternata (taxon:5599) was used as outgroup taxon. Bootstrap values (≥ 50%) of the MP method are shown near the nodes.

evolutionary rate than ITS and tef1 and therefore some mycologists have suggested the use of ITS+GAPDH for phylogenetic analysis and GAPDH as a secondary barcode marker for accurate identification.
The alignment of *Curvularia* combining three gene fragments (ITS, GAPDH and tef1) comprised 116 strains belonging to 104 taxa. In order to accurately identify our strains, phylogenetic analysis included all ex-type and published strains of all *Curvularia* spp. described recently (Hyde et al. 2017; Marin-Felix et al. 2017; Dehdari et al. 2018; Heidari et al. 2018; Hernández-Restrepo et al. 2018; Mehrabi-Koushki et al. 2018; Tán et al. 2018; Jayawardena et al. 2019) which are listed in Table 1. The final alignment comprised 2032 characters (each gene fragment was separated with 2 “N”) including gaps (ITS: 1–600, GAPDH: 603–1162 and tef1: 1165–2032). Among these characters, 2032 are constant, 125 variable characters are parsimony-uninformative and 503 are parsimony-informative. The parameters of the phylogenetic trees are TL = 2590, CI = 0.38, RI = 0.72 and HI = 0.62. In the *Curvularia* phylogenetic tree (Figure 1), all isolates grouped together with 100% (MP and ML) bootstrap support. Our strains (GUCC 11000, 11001, 11002, 11003 and 11005) formed a strongly supported group (MP: 100%; ML: 100%; BPP: 1.00) with a close relationship to *C. akaii*, *C. akaiiensis*, *C. bothriochloae*, *C. deightonii* and *C. heteropogonii* with high bootstrap support (MP: 94%; ML: 97%; BPP: 1.00). In this group, the five examined strains were closer to *C. akaii*, *C. akaiiensis* and *C. bothriochloae* and also showed high bootstrap support (MP: 82% and ML: 94%; BPP: 0.98).

The phylogenetic analysis of the ITS gene region evaluated all new *Curvularia* pathogens recently described from China, India and Pakistan. The aligned matrix consisted of fifty-four ITS sequences and included ex-type sequences of 13 *Curvularia* species (Supplementary Table 1). The phylogenetic tree (Figure 2) indicated that ITS BLAST searches only provided limited value for pathogenic identification. In *Curvularia lunata*, only one sequence WCCL (MG063428) showed a very close relationship with the ex-type strain sequence of *C. lunata* CBS 730.96 (MG722981). The other eight sequences were grouped into two branches, e.g. taxon:5503 (LN879926) which might belong to *C. aeria*, while the other seven formed an independent lineage. ITS sequences did not separate *Curvularia affinis*, *C. asianensis* and *C. fallax* and some of their sequences even clustered with *C. australiensis* HNW99-1 (KT719300). After multi-gene analysis, the phylogenetic distance was shown to be unreliable and may suggest whether they belong perhaps to different species.

Taxonomy

Curvularia nanningensis Qian Zhang, K.D. Hyde & Yong Wang bis, sp. nov.

Mycobank No: 829056
Facesoffungi number: FoF 05596
Figure 3A–I

Diagnosis. Characterised by the size of conidia.

Type. China, Guangxi Province, Nanning City, Guangxi Medicinal Botanical Garden, 22°51’N, 108°19’E, on blighted leaves of *Cymbopogon citratus*, 30 Septem-
Figure 3. *Curvularia nanningensis* (GUCC11005, holotype) A, B diseased symptom C colony on PDA from above D colony on PDA from below E-G conidia and conidiophores H-I conidia. Scale bars: 50 μm (E), 20 μm (F), 10 μm (G-I).

December 2017, Q. Zhang, ZQ0091 (HGUP 11005, holotype, MFLU19-1227, isotype), GUCC 11005 and MFLUCC 19-0092, ex-type.

Description. Pathogenic on *Cymbopogon citratus*. Fungus initially producing white to grey lesions with dark borders on all parts of the shoot, later enlarging and coalescing over entire leaf.

Colonies on PDA irregularly circular, with mycelial growth rate = 1.0 cm/day, vegetative hyphae septate, branched, subhyaline to brown, smooth to verruculose, 2–3 μm, anastomosing. *Aerial mycelium* dense, felted, initially pale grey, becoming darkened and greyish-green at maturity, producing black extracellular pigments. On MEA, the colony morphology similar to PDA, with growth rate = 1.35 cm/day. **Sexual morph:** Undetermined. **Asexual morph:** Hyphomycetous. *Conidiophores* macronematous, arising singly, simple or branched, flexuous, 8–10 septate, geniculate, pale brown to dark brown, paler towards apex, 120–200 × 2–3 μm (av. = 170 × 2.5 μm, n = 30). *Conidiogenous cells* polytretic, sympodial, terminal, sometimes intercalary, cicatrised, with thickened and darkened conidiogenous loci up to 1.0–1.2 μm diam., smooth. *Mature conidia* 3 to rarely 4 septa, acropleurogenous, obovoid, usually straight to curved at the slightly wider, smooth-walled, larger third cell from the base, 24.5–36.0 × 14.0–20.5 μm (av. = 29.5 × 17.5 μm, n = 50), sub-hyaline to pale brown end cells, pale brown to dark brown at intermediate cells, with conspicuous or sometimes slightly protuberant hilum. Germination of conidia bipolar.

Distribution. China, Guangxi Province, Nanning City.

Other material examined. China, Guangxi Province, Nanning city, Guangxi Medicinal Botanical Garden, on blight leaves of *C. citratus*, 30 September 2017,
With reference to the location, Nanning City where the fungus was isolated.

Pathogenicity test

Four days after inoculation, blast symptoms appeared on all inoculated plants, which were similar to symptoms of plants in the field (Figures 3A, B, 4A, B). Non-treated control plants remained healthy without any symptoms (Figure 4C). *Curvularia nanningensis* was re-isolated from the lesions of inoculated plants and the identity of the fungus was confirmed by sequencing the ITS region. Meanwhile, a detached leaf-experiment was also conducted in an illuminated incubator at 28 ± 3°C, where similar symptoms appeared on healthy inoculated leaves of *Cymbopogon citratus* after four days (Figure 4D right), while the control leaf (Figure 4D left) did not show symptoms.

Discussion

Phylogenetic analysis based on combined DNA sequences of ITS, GAPDH and tefl showed that our strains were related to three *Curvularia* species named *C. akaii* (Tsuda & Ueyama) Sivan., *C. akaiiensis* Sivan. and *C. bothriochloae* Sivan., Alcorn & R.G. Shivasa. The main morphological characters that discriminate our strains from related species are the size-range of conidia and length of conidiophores. *Curvularia bothriochloae* produced conidia measuring 30–47 × 15–25 μm (Sivanesan et al. 2003) while *C. akaiiensis* produced the smallest conidia (22.5–27.5 × 7.5–15.5 μm). Conidial length of *C. nanningensis* was very close to *C. akaiii* (24–34 μm) (Tsuda and Ueyama 1985) but the conidia of our species were broader than those of *C. akaiii* (8.7–13.8 μm). Conidiophores of *C. nanningensis* were shorter than those of *C. bothriochloae* (360–425 μm) (Alcorn 1990). In the case of *C. sichuanensis* Meng Zhang & T.Y. Zhang, only one ITS sequence AB453881 was available in GenBank for analysis. While examining our sequences, only 4–5 bp differences were revealed in 499 bp characters between *C. nanningensis* and *C. sichuanensis*, thus indicating a close relationship between the two strains based on ITS sequence data and likely between the two species. However, according to Zhang et al. (2007), the conidial width of *C. sichuanensis* (10–15 μm) is smaller than *C. nanningensis* (14–20.5 μm) on PDA. For *C. sichuanensis*, the conidial wall of the median cell is deepened and thickened while *C. nanningensis* obviously does not have these characters. Meanwhile, the hilum of conidia in *C. sichuanensis* is obviously protuberant while *C. nanningensis* lacked this character.

The pathogenicity test based on natural inoculation and detached leaves (Figure 3) confirmed that *Curvularia nanningensis* is a pathogen of *Cymbopogon citratus* blast disease. We previously named our strains as *C. cymbopogonis* following a previous report of the species by Groves and Skolko (1945) as a seed-borne pathogen of *Cymbopogon*.
Curvularia nanningensis sp. nov

Figure 4. Pathogen inoculation and symptom (4 days). A Cymbopogon citratus inoculated and disease symptom B inoculation point and disease symptom C control D detached experiment. Left. Control. Right. Inoculation point and disease symptoms.

Curvularia cymbopogonis is a common pathogen which also causes diseases of sugar-cane, rice, seedlings of itchgrass, Agrostis palustris Huds. and Dactylis glomerata L. (Santamaria et al. 1971; Walker and White 1979; Olufolaji 1996; Yi et al. 2002). A single strain named C. cymbopogonis (CBS 419.78) included in our analyses grouped distant from C. nanningensis but its reliability seems questionable and apparently belongs to a different species (Fig. 1). We further checked the original description of this species (Groves and Skolko 1945) and found that differences in conidial shape mainly resulted from conidial width (C. cymbopogonis: 11–13 μm vs C. nanningensis: 14–20.5 μm). Additionally, Groves and Skolko (1945), Hall and Sivanesan (1972) and Yi et al. (2002) reported that C. cymbopogonis produced 4 to 5-septate conidia, whereas conidia of C. nanningensis only had 3-septa. Curvularia spp. are important pathogens of lemongrass. Morphological studies together with phylogenetic analyses provided evidence that C. nanningensis is a new pathogen distinct from all hitherto reported diseases on lemongrass. Our findings expanded the documented diversity of Cymbopogon
pathogens within the genus *Curvularia* and further clarified the taxonomy of this novel pathogen, *Curvularia nanningensis*.

Moreover, 29 first reports of *Curvularia* diseases on different plants in China, India and Pakistan were found in the literature from 2010 to the present. It is evident that in this vast geographical area, *Curvularia* spp. have maintained a close association with plant diversity and thereby possess a rich fungal diversity that is affected by crops distribution. Among them, six reports only provided morphological data and more than half (16) only referred to ITS sequence data and morphological description (Suppl. Table 1). For unknown reasons, Iftikhar et al. (2016) misidentified the *Curvularia* pathogen with an *Alternaria* sequence (LN879930.1). Our phylogenetic tree, based on 54 reported ITS sequence data of *Curvularia* diseases in these countries (Figure 2), also indicated that this approach is not effective for identifying these pathogens, especially in the case of *C. lunata* as a prevalent species. However, identification of *Curvularia* isolates by multi-gene phylogenetic analyses has withstood scrutiny (Liang et al. 2018; Wang et al. 2018; Zhang et al. 2018). Additionally, nearly all reports, even for severe diseases, are based on a single isolate, which preclude an objective evaluation. We, therefore, propose the following standardised steps as required for the reliable identification of *Curvularia* diseases: 1) collect several isolates from diseased samples, 2) obtain sequences of the ITS, GAPDH and *tef*1 or at least ITS+GAPDH for phylogenetic analysis, 3) perform BLAST searches with sequences originated from ex-type or representative strains in GenBank, and 4) combine morphological comparison and phylogenetic analysis for accurate identification.

Acknowledgments

This research is supported by the following projects: National Natural Science Foundation of China (No. 31972222, 31560489), Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023), Science and Technology basic work of MOST [2014FY120100], National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2014BAD23B03/03), Talent project of Guizhou Science and Technology Cooperation Platform ([2017]5788-5 and [2019]5641) and Guizhou Science, Technology Department International Cooperation Base project ([2018]5806). Nalin Wijayawardene thanks National Natural Science Foundation of China (No. NSFC 31950410558). We thank Mr Mike Skinner for linguistic editing.

References

Alcorn JL (1990) Additions to *Cochliobolus*, *Bipolaris* and *Curvularia*. Mycotaxon 39: 361–392.

Avasthi S, Gautam AK, Bhadauria R (2015) Occurrence of leaf spot diseases on *Aloe vera* (L.) Burm.f. caused by *Curvularia* species from Madhya Pradesh, India. Biodiversitas 16(1): 79–83. https://doi.org/10.13057/biodiv/d160110
Barua A, Bordoloi DN (1983) Record of a new disease of lemongrass (*Cymbopogon flexuosus* Stapf.) caused by *Curvularia verruciformis* Agarwal and Sahni. Current Science 52: 640–641.

Berbee ML, Pirseyedi M, Hubbard S (1999) *Cochliobolus* phylogenetics and the origin of known, highly virulent pathogens inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91(6): 964–977. https://doi.org/10.2307/3761627

Chen XY, Feng JD, Su Z, Sui C, Huang X (2013) First report of *Curvularia* leaf blight on *Cymbopogon wenyujin* caused by *Curvularia clavata* in China. Plant Disease 97(1): 138. https://doi.org/10.1094/PDIS-04-12-0392-PDN

Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Persoh D, Dhami MK, Alias AS, Xu J, Liu X, Stadler M, Hyde KD (2014) The sooty moulds. Fungal Diversity 66(1): 1–36. https://doi.org/10.1007/s13225-014-0278-5

Chutia M, Mahanta JJ, Sakia RC, Baruah AKS, Sarma TC (2006) Influence of leaf blight disease on yield and its constituents of Java citronella and in vitro control of the pathogen using essential oils. World Journal of Agricultural Sciences 2(3): 319–321.

DAFF (Department: Agriculture, Forestry and Fisheries REPUBLIC OF SOUTH AFRICA) (2012) Lemongrass production. pp. 1–20.

Dehdari F, Mehrabi-Koushki M, Hayati J (2018) *Curvularia shahidchamranensis* sp. nov., a crude oil-tolerant fungus. Current Research in Environmental & Applied Mycology 8: 572–584. https://doi.org/10.5943/cream/8/6/2

Dodge CW (1942) *Helminthosporium* spot in *Citronella* and lemongrass in Guatemala. Annals of the Missouri Botanical Garden 29: 127–140. https://doi.org/10.2307/2394334

Gao BD, Huang W, Xia H (2012) A new rice disease, black sheath spot, caused by *Curvularia fallax* in China. Plant Disease 96(8): 1224. https://doi.org/10.1094/PDIS-01-12-0021-PDN

Gardner DE (1985) Lemongrass rust caused by *Puccinia nakanishikii* in Hawaii. Plant Disease 69(12): 1100. https://doi.org/10.1094/PD-69-1100a

Groves JW, Skolko AJ (1945) Notes on seed-borne fungi. III. *Curvularia*. Canadian Journal of Research 23: 94–104

Hall JA, Sivanesan A (1972) *Cochliobolus* state of *Curvularia cymbopogonis*. Transactions of the British Mycological Society 59(2): 314, 317. https://doi.org/10.1016/S0007-1536(72)80018-4

Heidari K, Mehrabi-Koushki M, Farokhinejad R (2018) *Curvularia mosaddeghii* sp. nov., a novel species from the family Pleosporaceae. Mycosphere 9(4): 635–646. https://doi.org/10.5943/mycosphere/9/4/2

Hernández-Restrepo M, Madrid H, Tan YP, da Cunha KC, Gené J, Guarro J, Crous PW (2018) Multi-locus phylogeny and taxonomy of *Exserohilum*. Persoonia 41: 71–108. https://doi.org/10.3767/persoonia.2018.41.05

Hyde KD, Norphanphoun C, Bazzicalupo A, Karunarathna A, Ekanayaka AH, Dissanayake A J, Soares MA, Phukhamsakda A, Wanasinghe DN, Tennakoon DS, Abdel-Aziz FA, Lee H, Siedlecki I, Senanayake IC, Manawasinghe IS, Küshan I, Yang J, Li J, Chethana KWT, Thambugala KM, He MQ, Mapook A, Clericuzio M, Dayarathne MC, Liu NG, Tian Q, Phookamsak R, Jayawardena RS, Tibpromma S, Huang SK, Hongsanan S, Konta S,
Jayasiri SC, Abreu VP, Li V, Li WJ, Zeng XY, Xiao YP, Luo ZL, Daranagama DA, de Silva NI, Shang QJ, Perera RH, Vizzini A, Bahkali AH, Romero Al, Mešić A, Buyck B, Miller D, Camporesi E, Dovana F, Plautz HL, Promputtha I, Su HY, Bhat DJ, Jones EBG, McKenzie EHC, Kang JC, Liu JK, Xu JC, Pawlowska J, Ryvarden L, Jadan M, Wrzosek M, Berbee ML, Doilom M, Abdel-Wahab MA, Kim NK, Matoćec N, Pereira O L, Chomnunti P, Zhao Q, Castañeda-Ruiz RF, Jeewon R, Zhao RL, Lumyong S, Maharachchikumbura SSN, Karunarathna SC, Boonmee S, Suetrong S, Gibertoni TB, Wen TC, Lim YW, Tkáčec Z, Liu ZY, Mortimer PE (2017) Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity 87(1): 1–235. https://doi.org/10.1007/s13225-017-0391-3

Iftikhar S, Shahid AA, Ali S (2016) First report of Curvularia lunata var. aeria causing leaf blight on tomato in Pakistan. Journal of Plant Pathology 98(1): 180.

Jayawardena RS, Hyde KD, Jeewon R, Ghobad-Nejad M, Wanasinghe DN, Liu NG, Phillips AJL, Oliveira-Filho JRC, da Silva GA, Gibertoni TB, Abeywikrama P, Carris LM, Chethana KWT, Dissanayake AJ, Hongsanan S, Jayasiri JC, McTaggart AR, Perera R H, Phuththacharoen K, Savchenko KG, Shivas RG, Thongklang N, Dong W, Wei DP, Wijayawardena NN, Kang JC (2019) One stop shop II: taxonomic update with molecular phylogeny for important phytopathogenic genera: 26–50. Fungal Diversity 94(1): 41–129. https://doi.org/10.1007/s13225-019-00418-5

Joy PP, Skaria BP, Mathew S, Mathew G, Joseph A (2006) Lemongrass: the fame of cochin. Indian Journal of Arecaanut, Spices & Medicinal Plants 2: 55–64. https://doi.org/10.1533/9781845691717.3.400

Katoh K, Standley DM (2016) A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 32: 1933–1942. https://doi.org/10.1093/bioinformatics/btw108

Koike ST, Molinar RH (1999) Rust Disease on Lemongrass in California. Plant Disease 83(3): 304. https://doi.org/10.1094/PDIS.1999.83.3.304D

Liang Y, Ran SF, Bhat J, Hyde KD, Wang Y, Zhao DG (2018) Curvularia microspora sp. nov. associated with leaf diseases of Hippeastrum striatum in China. MycoKeys 29: 49–61. https://doi.org/10.3897/mycokeys.29.21122

Majeed RA, Shahid AA, Ashfaq M, Saleem MZ, Haider MS (2015) First report of Curvularia lunata causing brown leaf spots of rice in Punjab, Pakistan. Plant Disease 100(1): 219. https://doi.org/10.1094/PDIS-05-15-0581-PDN

Manamgoda DS, Cai L, Bahkali AH, Chukeatirote E, Hyde KD (2011) Cochliobolus: an overview and current status of species. Fungal Diversity 51(1): 3–42. https://doi.org/10.1007/s13225-011-0139-4

Manamgoda DS, Cai L, McKenzie EHC, Crous PW, Madrid H, Chukeatirote E, Shivas RG, Tan YP, Hyde KD (2012) A phylogenetic and taxonomic re-evaluation of the Bipolaris–Cochliobolus–Curvularia complex. Fungal Diversity 56(1): 131–144. https://doi.org/10.1007/s13225-012-0189-2

Marin-Felix Y, Senwanna C, Cheewangkoon R, Crous PW (2017) New species and records of Bipolaris and Curvularia from Thailand. Mycosphere 8(9): 1556–1574. https://doi.org/10.5943/mycosphere/8/9/11
Curvularia nanningensis sp. nov

Mehrabi-Koushki M, Pooladi P, Eisvand P, Babaahmadi G (2018) *Curvularia ahvazensis* and *C. rouhani* spp. nov. from Iran. Mycosphere 9(6): 1173–1186. https://doi.org/10.5943/mycosphere/9/6/7

Noel B, Amrine J, Kovacs A (2002) Organic treatment IPM for honey bee mites. American Bee Journal 142(5): 359–361.

Nylander J (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Olufolaji DB (1996) Effects of some fungicides on germination, growth and sporulation of *Curvularia cymbopogonis*. Cryptogamie Mycologie 17(1): 47–53.

Pandey S, Kumar R, Rishi R, Giri K, Mishra G (2014). First report of *Curvularia malucans* causing severe leaf necrosis of *Curculigo orchoides* in India. Journal of Biology & Earth Sciences 4(2): B176–B178.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Santamaria PA, Benoit A, Mathur SB (1971) *Curvularia cymbopogonis*, a hitherto unreported species pathogenic to rice in the Philippines. Plant Disease Reporter 55: 349–350.

Santos PRR, Leão EU, Aguilar RWS, Melo MP, Santos GR (2018) Morphological and molecular characterization of *Curvularia lunata* pathogenic to andropogon grass. Bragantia 77(2): 326–332. https://doi.org/10.1590/1678-4499.2017258

Sato T, Ohkubo H (1990) Newly discovered leaf blight of citronella grass caused by *Curvularia andropogonis* in the Philippines. Japan Agricultural Research Quarterly 23(3): 170–175.

Schoch CL, Sung GH, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ, Arzanlou M, de Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K, Gryzenhout M, Wingfield MJ, Aptroot A, Suh SO, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman AG, Lumbsch H.T., Lücking R, Büdel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkman-Kohlmeier B, Mostert L, O’Donnell K, Simpson H, Rogers JD, Shoemaker RA, Sugiyama J, Summerbell RC, Untereiner W, Johnston PR, Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe JM, Yahr R, Lutzoni F, Spatafora JW (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 58(2): 224–239. https://doi.org/10.1093/sysbio/syp020

Shah G, Shri R, Panchal V, Sharma N, Singh B, Mann AS (2011) Scientific basis for the therapeutic use of *Cymbopogon citratus*, stapf (lemongrass). Journal of Advanced Pharmaceutical Technology and Research 2(1): 3–8. https://doi.org/10.4103/2231-4040.79796

Sivanesan A, Alcorn JL, Shivas RG (2003) Three new graminicolous species of *Curvularia* (anamorphic fungi) from Queensland, Australia. Australian Systematic Botany 16(2): 275–278. https://doi.org/10.1071/SB02007

Smith JD, Jackson N, Woolhouse AR (1989) Fungal Diseases of Amenity Turf Grasses, 3rd Edn. London: E. & F.N. Spon.
Swofford D (2003) PAUP* – Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts, USA.

Tan YP, Crous PW, Shivas RG (2018) Cryptic species of Curvularia in the culture collection of the Queensland Plant Pathology Herbarium. MycoKeys 35: 1–25. https://doi.org/10.3897/mycokeys.35.25665

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. https://doi.org/10.1093/molbev/mst197

Thakur RN (1994) Curvularia leaf blight - a new disease of Palma rosa. Indian Phytopathology 47: 214.

Tsuda M, Ueyama A (1985) Two new Pseudocochliobolus and a new species of Curvularia. Transactions of the Mycological Society of Japan 26: 321–330.

Vida JB, Carvalho Jr. AA, Verzignassi JR (2006) Primeira ocorrência de ferrugem em capim-limão causada por Puccinia cymbopogonis no Brasil. Summa Phytopathologica 32(1): 89–91. http://dx.doi.org/10.1590/S0100-54052006000100015

Walker HL, White JC (1979) Curvularia cymbopogonis, a pathogen of itchgrass (Rottboellia exalata) in southern Louisiana. Plant Disease Reporter 63: 642–644.

Wang Y, Pan XJ, Zhang Q, Zhao DG (2018). First report of Curvularia asiatica, a leaf blotch disease associated with Epipremnum pinnatum in Guangxi Autonomous Region of China. Plant Disease 102(9): 1854.

White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Gelfand M, Sninsky JI, White TJ (Eds) PCR protocols: a guide to methods and applications, Academic Press, USA, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Williamson EM, Okpako DT, Evans FJ (1996) Selection, Preparation and Pharmacological Evaluation of Plant Material. New York, UK: John Wiley & Sons.

Yang SY, Lei Y (2005) Antimicrobial activity of Cymbopogen citratus against utilized bacteria and fungus. Journal of Shanghai Jiaotong University (Science) 23(4): 374–382.

Yi JH, Kim JW, Lee DH, Shim GY (2002) Identification of Curvularia spp. isolated from gramineous plants in Korea. Febs Letters 30: 244–248. https://doi.org/10.4489/KJM.2002.30.1.056

Zhang M, Wu HY, Pei ZY, Zhang TY (2007) A new species and a new variety of Curvularia in China. Southwest China Journal of Agricultural Sciences 20(5): 1144–1145.

Zhang W, Liu JX, Huo PH, Huang ZC (2018) Curvularia malina causes a foliar disease on hybrid Bermuda grass in China. European Journal of Plant Pathology 151(2): 557–562. https://doi.org/10.1007/s10658-017-1390-7

Zhou J, Xie G, Yan X (2011) Encyclopedia of Traditional Chinese Medicines – Molecular Structures, Pharmacological Activities, Natural Sources and Applications: Isolated Compounds T-z, References for Isolated Compounds Tcm Original Plants and Congeners. Berlin: Springer-Verlag.
Supplementary material 1

Table S1. Disease occurrence caused by *Curvularia* spp. in China, India and Pakistan

Authors: Qian Zhang, Zai-Fu Yang, Wei Cheng, Nalin N. Wijayawardene, Kevin D. Hyde, Zhuo Chen, Yong Wang

Data type: occurrence

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.63.49264.suppl1