Interleukin-10-1082G/A polymorphism and acute liver graft rejection: A meta-analysis

Fei Liu, Bo Li, Wen-Tao Wang, Yong-Gang Wei, Lv-Nan Yan, Tian-Fu Wen, Ming-Qing Xu, Jia-Yin Yang

Fei Liu, Bo Li, Wen-Tao Wang, Yong-Gang Wei, Lv-Nan Yan, Tian-Fu Wen, Ming-Qing Xu, Jia-Yin Yang, Department of Liver and Vascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China

Author contributions: Liu F and Li B designed the study, collected and analyzed the data and wrote the manuscript; Wang WT and Wei YG collected and analyzed the data and wrote the manuscript; Yan LN analyzed the data and contributed to the discussion; Wen TF and Xu MQ revised the manuscript; Yang JY contributed to the discussion.

Correspondence to: Wen-Tao Wang, Professor, Department of Liver and Vascular Surgery, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, Sichuan Province, China. cdwangwentao@163.com

Telephone: +86-28-85422476 Fax: +86-28-85423724

Received: May 25, 2011 Revised: September 2, 2011 Accepted: October 28, 2011 Published online: February 28, 2012

Abstract

AIM: To investigate the association between interleukin (IL)-10-1082 (G/A) promoter polymorphism and acute rejection (AR) in liver transplant (LT) recipients.

METHODS: Two investigators independently searched the Medline, Embase, China National Knowledge Infrastructure, and Chinese Biomedicine Databases. Summary odds ratios (ORs) and 95% CIs for IL-10-1082 G/A polymorphism and AR were calculated in a fixed- and a random-effects model as appropriate.

RESULTS: This meta-analysis included seven case-control studies, which comprised 652 cases of LT recipients in which 241 cases developed AR and 411 cases did not develop AR. Overall, the variant A allele was not associated with AR risk when compared with the wild-type G allele (OR = 0.94, 95% CI: 0.64-1.39). Moreover, similar results were observed when the AA genotype was compared with the AG/GG genotype (OR = 1.05, 95% CI: 0.55-2.02). When stratifying for ethnicity, no significant association was observed among either Caucasians or Asians. Because only one study was performed in Asian patients, the result of subgroup analysis by ethnicity would not be reliable for Asians. Limiting the analysis to the studies with controls in the Hardy-Weinberg equilibrium, the results were persistent and robust. No publication bias was found in the present study.

CONCLUSION: This meta-analysis suggests that IL-10-1082 G/A polymorphism may not be associated with AR risk in LT recipients among Caucasians.

Key words: Liver transplantation; Acute rejection; Interleukin-10; Gene polymorphism; Meta-analysis

Peer reviewers: Satoshi Yamagiwa, MD, PhD, Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan; Valentin Fuhrmann, MD, Department of Internal Medicine 4, Intensive Care Unit, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Virendra Singh, MD, DM, Additional Professor, Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India

Liu F, Li B, Wang WT, Wei YG, Yan LN, Wen TF, Xu MQ, Yang JY. Interleukin-10-1082G/A polymorphism and acute liver graft rejection: A meta-analysis. World J Gastroenterol 2012; 18(8): 847-854 Available from: URL: http://www.wjgnet.com/1007-9327/full/v18/i8/847.htm DOI: http://dx.doi.org/10.3748/wjg.v18.i8.847

INTRODUCTION

Liver transplantation is regarded as an effective therapeutic option for end-stage liver disease as survival after liver transplantation has dramatically improved during...
the last two decades. Despite this success, graft dysfunction occurs in up to 13% of the patients during the first year after transplantation and rises to 35% in 5 years[12,3]. Acute rejection (AR) and recurrence of disease are two major immunological complications, which may lead to graft dysfunction. The inflammatory microenvironment within the graft may play a role in the precipitation of rejection[13], although the underlying mechanisms involved in such events remain unclear. A network of short-acting cytokines and growth factors in turn determines this environment. Cytokines have a central role in the immunologic events that occur after transplantation and are intimately implicated in graft rejection.

Interleukin-10 (IL-10), whose encoding gene is located on chromosome 1 (1q31-1q32), is an immunoregulatory cytokine produced by Th2 cells, monocytes/macrophages, and regulatory T cells, and is capable of downregulating T-cell activation and major histocompatibility complex expression on antigen-presenting cells in vitro[14]. Previous studies have suggested that IL-10 mRNA levels are increased just before a rejection episode[15]. The production of cytokines (including IL-10) is under genetic control and varies among individuals as a function of polymorphisms within the regulatory regions of the various genes that determine the transcriptional activation[16-19]. The promoter of the IL-10 gene contains three biallelic polymorphisms at positions -1082 (base G to A, dbSNP no. rs1800896), -819 (base C to T, dbSNP no. rs1800871), and -592 (base C to A, dbSNP no. rs1800872) from the transcription start site, and these influence the capacity of cells to produce IL-10[18]. For example, the G-to-A polymorphism at position -1082 of the IL-10 promoter reduces IL-10 production[1]. Alloimmune responses and variations in susceptibility to rejection may be influenced by individual variations in cytokine genes. Associations between cytokine gene polymorphisms and rejection of kidney[11,12], heart[18], and lung[14] have been reported.

Over the last two decades, a number of studies have assessed the association between the IL-10-1082 (G/A) promoter polymorphism and AR in liver transplant (LT) recipients in different populations; however, the results are inconsistent and inconclusive[16-22]. In 2005, Warlé et al[2] published findings from a meta-analysis of the IL-10-1082 (G/A) polymorphism and AR risk in LT recipients (based on five studies). The pooled results by Warlé et al[2] suggested that the IL-10 polymorphism at position -1082 was a genetic risk factor for acute liver graft rejection, and that LT recipients carrying the IL-10-1082 A allele displayed a lower rejection rate. However, this manuscript had some limitations mainly due to the small sample size and data retrieval. In order to derive a more comprehensive estimation of the association between IL-10-1082 polymorphism and AR risk in LT recipients, we conducted a meta-analysis to re-evaluate the association.

MATERIALS AND METHODS

Literature search strategy
We searched the PubMed, Embase, CNKI (China National Knowledge Infrastructure) and Chinese Biomedicine databases for all articles on the association between IL-10 polymorphisms and AR risk in LT recipients (last search update 20th March 2011). The following key words were used: “interleukin-10” or “IL-10”; “acute rejection” or “early graft rejection”; “liver transplantation”. The search was performed without restriction on language, but conducted on human subjects. The reference lists of reviews and retrieved articles were hand searched at the same time. We did not consider abstracts or unpublished reports. If more than one article was published by the same author using the same case series, we selected the study where the most individuals were investigated.

Inclusion and exclusion criteria
We reviewed abstracts of all citations and retrieved studies. The following criteria were used to include published studies: (1) evaluation of the association between IL-10-1082 G/A polymorphism and AR in LT recipients; (2) a case-control or cohort design; and (3) sufficient genotype data presented to calculate the odds ratio (OR) with 95% confidence interval (CI). Major reasons for exclusion of studies were: (1) duplicate data; (2) an abstract, comment, review or editorial; and (3) no sufficient data were reported.

Data extraction
Two investigators (Liu F and Li B) extracted information from all eligible publications independently according to the inclusion criteria listed above. Disagreements were resolved by discussion between the two investigators. The following information was collected from each study: first author, year of publication, transplant period, indication for transplantation, patient characteristics (age, gender, etc), definition of AR, immunosuppressive regimen, country of the first or corresponding author, ethnicity, number of AR cases and controls (non-AR), genotyping methods and evidence of Hardy-Weinberg equilibrium (HWE). Ethnicities were categorized as Asian or Caucasian.

Statistical analysis
We first assessed HWE in the controls for each study using the goodness-of-fit test (χ² or Fisher’s exact test) and a P < 0.05 was considered as significant disequilibrium. The strength of the association between AR and the IL-10-1082 G/A polymorphism was estimated using the OR and corresponding 95% CI. For the -1082G/A polymorphism, we estimated the risk of the variant A allele compared with the wild-type G allele, and then evaluated the risk of AA vs (AG + GG) which assumed a recessive effect of the variant A allele. We also carried out the stratified analyses by ethnicity (Caucasians/Asians) and HWE in controls (yes/no).

Both the Cochran Q statistic[24] to test for heterogeneity and the I² statistic to quantify the proportion of the total variation due to heterogeneity[25] were calculated. A P value of more than the nominal level of 0.10 for the Q
RESULTS

Characteristics of studies

There were 59 papers relevant to the search words. Via steps of screening the title and reading the abstract, 10 studies were identified\(^{(15-22,30,31)}\). Of these, three studies were excluded (two did not report the association between IL-10-1082 G/A polymorphism and AR in LT recipients\(^{(15,17)}\); two articles\(^{(22,31)}\) were published by a different first author using the same case series, and we selected the latest study\(^{(22)}\); thus, seven studies\(^{(15,17,22,29)}\) which included 241 AR cases and 411 non-AR cases were found to match our inclusion criteria. The flow chart of selection of studies and reasons for exclusion is presented in Figure 1. Characteristics of studies included in the meta-analysis are presented in Tables 1 and 2.

There were six studies of Caucasian descendents, one study of Asian descendents. Studies had been carried out in China, Turkey, the United States, Netherlands, Israel and the United Kingdom. All studies defined rejection as biopsy-proven episodes of AR during the early post-transplant period (AR within first 4-8 wk), treated with high-dose steroids, except for the study of Karasu et al\(^{(14)}\). Immunosuppressive regimen in all studies consisted of a calcineurin inhibitor (cyclosporin or tacrolimus) and prednisone with or without azathioprine. Mycophenolate mofetil was only used in a subgroup of patients studied by Xie et al\(^{(20)}\) and Mas et al\(^{(3)}\). Most studies extracted DNA from peripheral blood, and only two studies\(^{(25,31)}\) from surgically explant liver tissue from recipients. Several genotyping methods were used, including PCR-RFLP, PCR-SSP, direct sequencing, ARMS-PCR and AS-PCR. The genotype distributions among the controls of all studies were consistent with HWE except for Tambur’s study\(^{(20)}\).

Quantitative synthesis

Overall, the variant A allele was not associated with AR risk when compared with the wild-type G allele (OR\(_{random} = 0.94, 95\% CI: 0.64-1.39, \text{ Heterogeneity} = 0.07\) (Figure 2). When the AA genotype was compared with AG/GG genotype (recessive model), no significant association was observed (OR\(_{random} = 1.05, 95\% CI: 0.55-2.02, \text{ Heterogeneity} = 0.01\) (Figure 3). When stratified for ethnicity, no significant association was observed among either Caucasians or Asians (for Caucasians: A allele \(rs G \) allele, OR\(_{random} = 0.95, 95\% CI: 0.61-1.47, \text{ Heterogeneity} = 0.04; \text{ AA vs AG/GG, OR} = 1.07, 95\% CI: 0.49-2.32, \text{ Heterogeneity} = 0.01; for Asians: A allele \(rs G \) allele, OR\(_{random} = 0.96, 95\% CI: 0.34-2.68; \text{ AA vs AG/GG, OR} = 0.96, 95\% CI: 0.33-2.77). Because only one study was performed in Asian patients, the result of subgroup analysis by ethnicity could not be reliable for Asians.

In Tambur's study, the distribution of IL-10-1082 genotypes among controls was not in HWE. Limiting the analysis to the studies within HWE, the estimated association remained unchanged (A allele \(rs G \) allele, OR\(_{random} = 0.81, 95\% CI: 0.61-1.07, \text{ Heterogeneity} = 0.13; \text{ AA vs AG/GG, OR} = 0.98, 95\% CI: 0.46-2.11, \text{ Heterogeneity} = 0.009). Publication bias

Begg’s funnel plot and Egger’s test were performed to evaluate the publication bias of studies of AR in LT recipients. Figures 4 and 5 display funnel plots that examined the IL-10-1082 polymorphism and overall AR risk included in the meta-analysis. The shape of funnel plots did not reveal any evidence of funnel plot asymmetry. The statistical results did not show publication bias (A allele \(rs G \) allele; Begg’s test \(P = 0.55\), Egger’s test \(P = 0.26\); AA vs AG/GG: Begg’s test \(P = 0.76\), Egger’s test \(P = 0.67\)).

DISCUSSION

In spite of major advances in the field of immunosuppressive therapy, acute hepatic allograft rejection remains an important problem after liver transplantation. Almost 30%-50% of patients experience at least one episode of rejection within the first year\(^{(32)}\). Cytokines, a group

Figure 1 Flow chart of selection of studies and specific reasons for exclusion from the meta-analysis.
of small, soluble, or cell membrane-bound protein or glycoprotein molecules, play an essential role in the regulation of inflammatory and immune responses. Despite the many variables that influence acute rejection, previous reports indicate that cytokine genotypes that result from polymorphisms can sometimes correlate with acute allograft rejection\[13,34\]. Alloimmune responses and variations in susceptibility to rejection may be influenced by individual variations in cytokine genes. An association between susceptibility to graft rejection and polymorphism in cytokine gene promoters in kidney, heart, lung, and bone marrow recipients has been reported by some centers\[14,30\], although others have not confirmed this\[36,38\].

IL-10 is an anti-inflammatory cytokine, which can inhibit the production of tumor necrosis factor-\(\alpha\), IL-1, IL-6, IL-8, and IL-12 in monocytes/macrophages and interferon-\(\gamma\) in T cells\[4\]. Therefore, in the context of allograft rejection, local IL-10 release may have inhibitory properties on macrophages, T cells, and cytokines. However, the role of IL-10 in LT patients remains controversial. For example, some studies have suggested that IL-10 mRNA levels are increased just before a rejection episode\[3\], while others have indicated that IL-10 levels are unchanged during rejection of the LT\[9\]. In animal models, overexpression of IL-10 by gene transfer prolonged graft survival of orthotopic LTs\[40\]. Since some studies\[33,34\] reported that cytokine genotypes that result from polymorphisms can sometimes correlate with acute

Table 1 Baseline characteristics of studies included in the meta-analysis

Ref.	Transplant period	Indications for transplantation	Patients characteristics (age, gender)	Definition of acute rejection	Immunosuppression regimens
Bathgate et al\[31\]	1992-1998	ALD, PBC, PSC, chronic viral hepatitis, acute liver failure, autoimmune hepatitis, other	Not described	Liver biopsy and treatment with high-dose steroids	CsA/tacrolimus + prednisone + azathioprine
Tambur et al\[32\]	Not described	Hepatitis B and/or hepatitis C, PBC, PSC, cryptogenic, other	20-69 yr, M/F: 32/36	Liver biopsy (AR within first 6 wk)	CsA/tacrolimus + prednisone with or without azathioprine.
Warlé et al\[33\]	1992-1999	Hepatitis B, hepatitis C, PBC, PSC, ALD, other	AR group: 47 ± 11 yr, M/F: 22/19	Liver biopsy and treatment with high-dose steroids (AR within first 4 wk)	CsA/tacrolimus + prednisone with or without azathioprine.
Fernandes et al\[34\]	Not described	Not described	19-73 yr, M/F: 26/27	Liver biopsy and treatment with high-dose steroids	Tacrolimus + prednisolone
Mas et al\[35\]	1999-2000	Hepatitis B, Hepatitis C, PSC, HCC, ALD, Cryptogenic, other	24-60 yr, M/F: 44/33	Liver biopsy (AR within first 8 wk)	CsA/tacrolimus + steroids + MMF
Karasu et al\[36\]	2002-2003	Viral, nonviral	AR group: 44.4 ± 12.7 yr, M/F: 17/9	Treatment with high-dose steroids (AR within first 8 wk)	CsA/tacrolimus + steroids Maintain target therapeutic blood levels of 5-10 ng/mL for tacrolimus
Xie et al\[37\]	2003-2005	HBV-related cirrhosis, HBV-related HCC, fulminating hepatitis B	AR group: 43.6 ± 9.0 yr, M/F: 35/6	Liver biopsy (AR within first 4 wk)	CsA/tacrolimus + prednisolone + MMF

ALD: Alcoholic liver disease; PBC: Primary biliary cirrhosis; PSC: Primary sclerosing cholangitis; HCC: Hepatocellular carcinoma; HBV: Hepatitis B viral; CsA: Cyclosporine A; MMF: Mycophenolate mofetil; AR: Acute rejection.

Table 2 Characteristics of studies included in the meta-analysis

Ref.	Country	Ethnicity	No. of case/control	Case	Control	Genotyping methods	HWE in controls
Bathgate et al\[31\]	United Kingdom	Caucasian	68/76	16	22	PCR-SSP	Yes
Tambur et al\[32\]	Israel	Caucasian	33/30	19	14	PCR-SSP	No
Warlé et al\[33\]	Netherlands	Caucasian	41/48	6	17	ARMS-PCR	Yes
Fernandes et al\[34\]	United States	Caucasian	13/40	4	15	ARMS-PCR	Yes
Mas et al\[35\]	United States	Caucasian	19/55	12	43	DNA-sequencing	Yes
Karasu et al\[36\]	Turkey	Caucasian	26/17	12	8	PCR-SSP	Yes
Xie et al\[37\]	China	Asian	41/145	36	127	PCR-RFLP	Yes

PCR-SSP: Polymerase chain reaction and sequence-specific primer typing; ARMS-PCR: Amplification refractory mutation system-polymerase chain reaction; AS-PCR: Allele-specific polymerase chain reaction; PCR-RFLP: Polymerase chain reaction-restriction fragment length polymorphism; HWE: Hardy-Weinberg equilibrium.
allograft rejection, a number of studies have assessed the association between the IL-10-1082 promoter polymorphism and AR in LT recipients in different populations. However, some of the results were conflicting, even in the same population, and thus a systematic review and meta-analysis of the association between IL-10-1082 G/A polymorphism and AR risk was of great value.

A meta-analysis can overcome some problems caused by a single study, such as small sample size, low test power and selection bias; however, some concerns have to be addressed before aggregating data. First, the definition of AR, as the main outcome measure for this analysis, should be consistent among included studies. In six studies, AR was defined as “early” biopsy-proven AR within the first 4-8 wk after liver transplantation, treated with high-dose steroids. However, Karasu et al defined AR as an increase in liver enzymes in the absence of vascular or biliary problems, associated with an improvement in liver function. Other definitions included treatment with high-dose steroids for normalization of liver function tests, or a combination of both. This heterogeneity in definitions makes it difficult to compare the results from different studies.

Table: Odds ratios and 95% CI of individual studies and pooled data for the association of the interleukin-10-1082 G/A polymorphism and acute rejection comparing A allele with G allele.

Study	OR (95% CI)	% Weight
Xie et al	0.96 (0.34, 2.68)	9.75
Karasu et al	1.08 (0.42, 2.72)	11.15
Tambur et al	1.66 (0.78, 3.51)	14.32
Bathgate et al	0.72 (0.45, 1.14)	21.41
Warlé et al	0.48 (0.26, 0.88)	17.78
Fernandes et al	0.82 (0.33, 2.01)	11.61
Mas et al	1.92 (0.89, 4.14)	13.99
Overall	0.94 (0.64, 1.39)	100

Table: Odds ratios and 95% CI of individual studies and pooled data for the association of the interleukin-10-1082 G/A polymorphism and acute rejection comparing AA genotype with AG/GG Genotype.

Study	OR (95% CI)	% Weight
Xie et al	0.96 (0.33, 2.77)	14.37
Tambur et al	1.55 (0.57, 4.20)	15.09
Bathgate et al	0.76 (0.36, 1.60)	17.8
Warlé et al	0.31 (0.11, 0.89)	14.53
Fernandes et al	0.74 (0.19, 2.83)	11.74
Mas et al	6.14 (1.98, 19.03)	13.69
Karasu et al	0.96 (0.28, 3.28)	12.78
Overall	1.05 (0.55, 2.02)	100

Figure 2: Begg's funnel plot of interleukin-10-1082 G/A polymorphism and acute rejection risk in liver transplant recipients (AA vs AG/GG). OR: Odds ratios.

Figure 3: Egger's publication bias plot of interleukin-10-1082 G/A polymorphism and acute rejection risk in liver transplant recipients (AA vs AG/GG). OR: Odds ratios.
after treatment by increasing the dose of immunosuppressive drugs or pulse steroid therapy within the first 8 wk. In the overall meta-analysis performed in this study, the number of patients from the Karasu et al study is small, suggesting that this factor probably had little effect on the overall estimates. Moreover, the immunosuppressive regimen among different studies included is also an important factor which should be addressed. All LT patients included in this meta-analysis received more or less the same type of immunosuppression: a calcineurin inhibitor and prednisone, with or without azathioprine. However, there were some differences in the type of induction therapy, dosages and maintenance of target levels in blood, which can provide a possible explanation for significant heterogeneity in a recessive model.

This meta-analysis was based on seven case-control studies and showed that IL-10-1082 G/A polymorphism was not associated with the risk of AR in LT recipients. Our result is not consistent with a previous systemic review. This is probably because the previous meta-analysis had a relatively small sample size (the Warlé et al meta-analysis included only five studies for IL-10-1082 G/A polymorphism and AR risk in LT recipients) and may have generated a very rough risk estimate. The G-to-A polymorphism at position -1082 of the IL-10 promoter reduces IL-10 production, and individuals with the IL-10-1082-GG genotype showed the greatest IL-10 production after in vitro stimulation, whereas IL-10-1082-GA and -AA showed intermediate and low production, respectively. Moreover, previous studies showed that Th2 cytokines, such as IL-10, are associated with graft tolerance. Therefore, it can be deduced that patients with an IL-10 genotype corresponding to low IL-10 production are more susceptible to rejection, whereas the IL-10 genotype corresponding to high production is found mainly among nonrejectors. However, our result is inconsistent with the above hypotheses. This is probably because the notion, derived mainly from animal studies, that IL-10 has a role in human allograft tolerance needs re-evaluation. In addition, since the effect of the IL-10-1082 promoter polymorphism on in vitro and thus in vivo cytokine production is still inconclusive, its biological effect on acute liver graft rejection remains speculative.

As previously described, ethnicity can strongly influence the distribution of cytokine gene polymorphisms. In Caucasian patients, the IL-10 AA genotype at position -1082 occurred in 32.5%, while among Asian patients, it occurred in 88.2%.

In conclusion, this meta-analysis suggests that IL-10 -1082 G/A polymorphism may be not associated with AR risk in LT recipients among Caucasians. Since only one study was from an Asian population, it is critical that larger and well-designed multicenter studies based on Asian patients should be performed to re-evaluate the association.

COMMENTS

Background

Interleukin (IL)-10 is an anti-inflammatory cytokine, which can inhibit the production of tumor necrosis factor-alpha, IL-1, IL-6, IL-8 and IL-12 in monocytes/
References

1. Yu AS, Ahmed A, Keefe EB. Liver transplantation: evolving patient selection criteria. Can J Gastroenterol 2001; 15: 729-738
2. Keefe EB. Patient selection and listing policies for liver transplantation. J Gastroenterol Hepatol 1999; 14 Suppl: S42-S47
3. Jazrawi SF, Zaman A, Muhammad Z, Rabkin JM, Corless CR, Pravica V, Sinnott PJ, Hutchinson IV. Tumor necrosis factor-alpha promoter polymorphisms and the risk of rejection after liver transplantation: a case control analysis of 210 donor-recipient pairs. Liver Transpl 2003; 9: 377-382
4. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Cytokine gene polymorphisms and their association with acute rejection and recurrence of hepatitis B in Chinese liver transplant recipients. Arch Med Res 2008; 39: 420-428
5. Karasu Z, Ulukaya S, Ayanoglu HO, Basturk B, Ulukaya AK, Sinnott PJ, Hutchinson IV. Tumor necrosis factor-gamma polymorphisms in the development of bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2002; 74: 1297-1302
6. Lu KC, Jaramillo A, Lecha RL, Schuessler RB, Aloush A, Trulock EP, Mendeloff EN, Huddleston CB, Alexander Patterson G, Mohanakum T. Interleukin-6 and interferon-gamma gene polymorphisms in the development of chronic rejection. Hum Immunol 2001; 62: 140-142
7. Liu F et al. Interleukin-10 polymorphisms and liver graft rejection.
Liu F et al. Interleukin-10 polymorphisms and liver graft rejection

28 Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088-1101
29 Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634
30 Li D, Zhu JY, Gao J, Wang X, Lou YQ, Zhang GL. Polymorphisms of tumor necrosis factor-alpha, interleukin-10, cytochrome P450 3A5 and ABCB1 in Chinese liver transplant patients treated with immunosuppressant tacrolimus. Clin Chim Acta 2007; 383: 133-139
31 Moral T, Shabtai E, Ben-Ari Z, Ortegel JW, Micovitz R, Tur-Kaspa R, Tambur AR. Cytokine gene polymorphism in liver allograft recipients. Transplant Proc 2001; 33: 2941-2942
32 Wiesner RH, Demetris AJ, Belle SH, Seaberg EC, Lake JR, Zetterman RM, Everhart J, Detre KM. Acute hepatic allograft rejection: incidence, risk factors, and impact on outcome. Hepatology 1998; 28: 638-645
33 Turner D, Grant SC, Yonan N, Sheldon S, Dyer PA, Sinnott PJ, Hutchinson IV. Cytokine gene polymorphism and heart transplant rejection. Transplantation 1997; 64: 776-779
34 Marshall SE, McLaren AJ, Halder NA, Bunce M, Morris PJ, Welsh KI. The impact of recipient cytokine genotype on acute rejection after renal transplantation. Transplantation 2000; 70: 1485-1491
35 Dugré FJ, Gaudreau S, Belles-Isles M, Houde I, Roy R. Cytokine and cytokotopic molecule gene expression determined in peripheral blood mononuclear cells in the diagnosis of acute renal rejection. Transplantation 2000; 70: 1074-1080
36 Lee H, Clark B, Gooi HC, Stoves J, Newstead CG. Influence of recipient and donor IL-1alpha, IL-4, and TNFalpha genotypes on the incidence of acute renal allograft rejection. J Clin Pathol 2004; 57: 101-103
37 Poole KL, Gibbs PJ, Evans PR, Sadek SA, Howell WM. Influence of patient and donor cytokine genotypes on renal allograft rejection: evidence from a single centre study. Transpl Immunol 2001; 8: 259-265
38 Bijlsma FJ, Brugink AH, Hartman M, Gmelig-Meyling FH, Tilanus MG, de Jonge N, de Weger RA. No association between IL-10 promoter gene polymorphism and heart failure or rejection following cardiac transplantation. Tissue Antigen 2001; 57: 151-153
39 Bishop GA, Rokahr KL, Napoli J, McCaughan GW. Intragraft cytokine mRNA levels in human liver allograft rejection analysed by reverse transcription and semi-quantitative polymerase chain reaction amplification. Transpl Immunol 1993; 1: 253-261
40 Shinozaki K, Yahata H, Tanji H, Sakaguchi T, Ito H, Dohi K. Allograft transduction of IL-10 prolongs survival following orthotopic liver transplantation. Gene Ther 1999; 6: 816-822
41 Edwards-Smith CJ, Jonsson JR, Purdine DM, Bansal A, Short-house C, Powell EE. Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alfa. Hepatology 1999; 30: 526-530
42 Dallman MJ. Cytokines as mediators of organ graft rejection and tolerance. Curr Opin Immunol 1993; 5: 778-793
43 Motttram PL, Han WR, Purcell LJ, McKenzie IF, Hancock WW. Increased expression of IL-4 and IL-10 and decreased expression of IL-2 and interferon-gamma in long-surviving mouse heart allografts after brief CD4-monoclonal antibody therapy. Transplantation 1995; 59: 559-565
44 Cartwright NH, Keen LJ, Demainie AG, Hurlock NJ, McGonigle RJ, Rowe PA, Shaw JF, Szydlo RM, Kaminiski ER. A study of cytokine gene polymorphisms and protein secretion in renal transplantation. Transpl Immunol 2001; 8: 237-244
45 Warlé MC, Farhan A, Metselaar HJ, Hop WC, Perrey C, Zondervan PE, Kap M, Kvekkeboem J, Ljoomans JN, Tilanus HW, Pravica V, Hutchinson IV, Bouma GJ. Are cytokine gene polymorphisms related to in vitro cytokine production profiles? Liver Transpl 2003; 9: 170-181
46 Hoffmann SC, Stanley EM, Cox ED, DiMercurio BS, Koziol DE, Harlan DM, Kirk AD, Blair PJ. Ethnicity greatly influences cytokine gene polymorphism distribution. Am J Transplant 2002; 2: 560-567
47 Mitchell AA, Cutler DJ, Chakravarti A. Undetected genotyping errors cause apparent overtransmission of common alleles in the transmission/disequilibrium test. Am J Hum Genet 2003; 72: 598-610
48 Hosking I, Lumsden S, Lewis K, Yeo A, McCarthy L, Bansal A, Riley J, Purvis I, Xu CF. Detection of genotyping errors by Hardy-Weinberg equilibrium testing. Eur J Hum Genet 2004; 12: 395-399
49 Salanti G, Amoutzia G, Nitzani EE, Ioannidis JP. Hardy-Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet 2005; 13: 840-848
50 Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JP. Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol 2006; 163: 300-309

S-Editor: Tian L L-Editor: Cant MR E-Editor: Zhang DN