A NOTE ON DERIVED MCKAY CORRESPONDENCE

JIUN-CHENG CHEN AND HSIAN-HUA TSENG

Abstract. We obtain a global version and a twisted version (in the sense of [BP05]) of the main theorem of [BK01].

1. Introduction

We work over the field of complex numbers.

Let X be an irreducible projective variety of dimension n. Assume that X has only quotient singularities. According to [VI89], there is a smooth Deligne-Mumford stack \mathcal{X} with coarse moduli space \tilde{X}, such that \mathcal{X} and X are isomorphic in codimension one. Note that \mathcal{X} is a quotient stack. Let $\pi: \mathcal{X} \to X$ denote the projection.

In the case where $X = M/G$ with G a finite group, let $Y \subset G\text{-Hilb}(M)$ be the irreducible component of the G-Hilbert scheme of M that contains the free orbits. There is a morphism $Y \to X$ called the Hilbert-Chow morphism. The main result of [BK01] can be stated as follows: Suppose that $\dim Y \times_X Y \leq n + 1$, then Y is smooth and there is an equivalence of derived categories $D^b(Y) \simeq D^b(\mathcal{X})$.

We study the global version of this problem (that is, X is not necessarily of the form M/G as above). Recall that for any Deligne-Mumford stack \mathcal{X}, étale locally on its coarse moduli space, \mathcal{X} is of the form $[U/G]$ with U a scheme and G a finite group. It is tempting to obtain a global crepant resolution by patching the local ones. This is, however, not obvious at all: Suppose that $\{V_i\}$ is an étale cover of X, $V_i \times_X \mathcal{X} \simeq [U_i/G_i]$, and for each i there is a crepant resolution $\phi_i: Y_i \to V_i$. Then it is not clear that we can patch these $\{Y_i\}$ together, since crepant resolution in higher dimension is not unique. In dimension 3, a global crepant resolution can be built from local ones since flops preserve smoothness and two crepant resolutions can be connected by a sequence of flops, see Proposition 3.4 below. In higher dimensions, this argument doesn’t work since flops do not preserve smoothness and may not terminate.

Date: November 5, 2021.

Research of J.-C. C. supported in part by National Center of Theoretical Science in Hsinchu, Taiwan and National Tsing Hua University Center for Mathematical Science.

Research of H.-H. T. supported in part by Clay Mathematics Institute Liftoff Fellowship program and a postdoctoral fellowship at the Mathematical Sciences Research Institute.
An observation, which we learned from D. Abramovich, is that a certain Hilbert functor studied by Olsson-Starr [OS03] is a good replacement for G-Hilbert schemes in the global situation. We denote the scheme representing this Hilbert functor by $\text{Hilb}(\mathcal{X})$. We will only be interested in a particular component $\text{Hilb}'(\mathcal{X}) \subset \text{Hilb}(\mathcal{X})$: Let $U \subset \mathcal{X}$ be the open set of non-stacky points in \mathcal{X}. There is a natural inclusion $U \subset \text{Hilb}(\mathcal{X})$. The scheme $\text{Hilb}'(\mathcal{X})$ is the component which contains U. There is a morphism

$$\text{Hilb}'(\mathcal{X}) \to \mathcal{X}$$

induced by the functor π_*.

Theorem 1.1. Assume that $\dim \text{Hilb}'(\mathcal{X}) \times \mathcal{X} \text{Hilb}'(\mathcal{X}) \leq n + 1$, then the normalization $(\text{Hilb}'(\mathcal{X}))^n$ is smooth and the Fourier-Mukai type transformation

$$F : D^b((\text{Hilb}'(\mathcal{X}))^n) \to D^b(\mathcal{X})$$

induced by the structure sheaf of the universal object over $(\text{Hilb}'(\mathcal{X}))^n$ is an equivalence of derived categories.

Remark 1.2. Crepant resolutions, if exist, may not be unique. In [BKR01], a particular crepant resolution is constructed as a moduli space. It is expected that this is a general phenomenon: every crepant resolution can be constructed as a moduli space. This is proved in [C105] when $X = \mathbb{C}^3/G$ where G is abelian. We speculate that the same is true for global orbifolds: every crepant resolution of a global orbifold can be constructed as a moduli space. Some variants of the Quot functor may be helpful. We hope to return to this problem in the future.

Remark 1.3. Consider the case when X has only symplectic quotient singularities. If $(\text{Hilb}'(\mathcal{X}))^n \to X$ is a crepant resolution, then we have an equivalence of derived categories $D^b(\mathcal{X}) \to D^b((\text{Hilb}'(\mathcal{X}))^n)$, cf [Kal05].

In [BP05], a conjectural twisted version of derived McKay correspondence is formulated. This conjecture suggests an equivalence between the derived category of twisted sheaves on an orbifold and a related derived category of twisted sheaves on a crepant resolution. We establish this conjecture in the setting of [BKR01], see Theorem 4.1.

1.1. **Differential graded categories.** It is known (e.g. [BK90]) that the derived category $D(X)$ of coherent sheaves can be enriched to a differential graded (DG) category which we denote by $L_{\text{coh}}(X)$. Roughly speaking, objects in $L_{\text{coh}}(X)$ are complexes of sheaves. For two objects $A = (A^\cdot)$ and $B = (B^\cdot)$, a morphism ϕ of degree i between them is a collection (ϕ^i), $\phi^i : A^i \to B^{i+i}$. The space $\text{Hom}_{DG}(A, B)$ of morphisms is a \mathbb{Z}-graded vector space endowed with a differential $d\phi = d_B \circ \phi - (-1)^i \phi \circ d_A$. In other words, Hom_{DG} is a complex. One recovers $D(X)$ by localizing the homotopy category of $L_{\text{coh}}(X)$ with respect to the subcategory of acyclic complexes. For more details, see [Ke99].
Here we add a note to the theory of D-equivalence that Fourier-Mukai type equivalence can be “lifted” to the level of DG-categories.

Lemma 1.4. Let \(F : L_{\text{coh}}(X) \to L_{\text{coh}}(Y) \) be a DG functor which induces an equivalence of derived categories \(D(X) \to D(Y) \). Then \(F \) is a quasi-equivalence of DG categories.

Proof. Recall that a quasi-equivalence is a DG functor \(F : L_{\text{coh}}(X) \to L_{\text{coh}}(Y) \) such that

1. The morphism \(\text{Hom}_{DG}(A, B) \to \text{Hom}_{DG}(FA, FB) \) is a quasi-equivalence of complexes;
2. \(F \) induces an equivalence \(D(X) \to D(Y) \) of triangulated categories.

Hence we only need to show the first condition, i.e. the cohomologies coincide. In degree zero, this is part of the derived equivalence:

\[
H^0 \text{Hom}_{DG}(A, B) \simeq H^0 \text{Hom}_{DG}(FA, FB).
\]

On the other hand, we have

\[
H^i \text{Hom}_{DG}(A, B) = H^0 \text{Hom}_{DG}(A, B[i]) \\
\simeq H^0 \text{Hom}_{DG}(FA, FB[i]) = H^i \text{Hom}_{DG}(FA, FB).
\]

This completes the proof. \(\square \)

Since pushforward, pullback, and tensor product functors can be lifted to DG level, it is clear that a Fourier-Mukai functor comes from a DG functor \(L_{\text{coh}}(X) \to L_{\text{coh}}(Y) \) which, according to the lemma above, is a quasi-equivalence. It’s clear from the proof that in this context, having a quasi-equivalence at DG level yields no new information. However, the DG structure is sometimes necessary: for example, to construct the B-model potential of a Calabi-Yau manifold using a recent work of K. Costello [Co05].

This paper is organized as follows. Several properties of the Quot functors we need are established in Section 2. Theorem 1.1 is proved in Section 3. In Section 4 we prove some cases of a conjecture in [BP05] concerning twisted derived McKay correspondence.

Acknowledgements

We thank D. Abramovich, V. Baranovsky, D. Ben-Zvi, B. Keller, M. Olsson, and J. Starr, for many important discussions. Part of this work was done during the AMS summer institute in algebraic geometry in Seattle. We thank the organizers for hospitality and support.

2. Quot Functors after Olsson-Starr

In this section we discuss some properties of Quot functors for Deligne-Mumford stacks following Olsson-Starr [OS03]. We will focus on the case of quotients of \(\mathcal{O}_X \). Let \(\text{Quot}(\mathcal{O}_X/X) \) (respectively \(\text{Quot}(\mathcal{O}_X/X) \)) denote the Quot functor associated to the sheaf \(\mathcal{O}_X \) over \(X \) (respectively the sheaf
According to [Gr62] and [OS03], these two functors are representable by projective schemes which we denote by \(\text{Quot}(\mathcal{O}_X/\mathcal{X})\) and \(\text{Quot}(\mathcal{O}_X/X)\) respectively.

Definition 2.1. There is a morphism \(\text{Quot}(\mathcal{O}_X/\mathcal{X}) \to \text{Quot}(\mathcal{O}_X/X)\) defined as follows: The exact functor \(\pi_* : \text{Coh}(\mathcal{X}) \to \text{Coh}(X)\) yields a natural transformation \(\text{Quot}(\mathcal{O}_X/\mathcal{X}) \Rightarrow \text{Quot}(\mathcal{O}_X/X)\) of Quot functors. Let \(\text{Quot}(\mathcal{O}_X/\mathcal{X}) \to \text{Quot}(\mathcal{O}_X/X)\) be the induced morphism between the corresponding schemes.

Note that \(X \subset \text{Quot}(\mathcal{O}_X/X)\) is an irreducible component. Let \(\text{Hilb}'(\mathcal{X}) \subset \text{Quot}(\mathcal{O}_X/\mathcal{X})\) denote the irreducible component containing the preimage of \(X_{sm}\). Restricting the morphism \(\text{Quot}(\mathcal{O}_X/\mathcal{X}) \to \text{Quot}(\mathcal{O}_X/X)\) yields the morphism \(\text{Hilb}'(\mathcal{X}) \to X\). Note that \(\text{Hilb}'(\mathcal{X})\) is contained in the locus \(\text{Quot}^1(\mathcal{O}_X/\mathcal{X})\) which parametrizes quotients with Hilbert polynomial 1.

Lemma 2.2. Assume that \(\mathcal{X}\) is of the form \([M/G]\) with \(M\) quasi-projective and \(G\) finite. Then \(\text{Hilb}'(\mathcal{X})\) is isomorphic to the irreducible component of \(G\text{-Hilb}(M)\) containing the free \(G\)-orbits.

Proof. There is a natural morphism \(\text{Hilb}'(\mathcal{X}) \to G\text{-Hilb}(M)\) defined as follows: Given an object \(Z \subset \mathcal{X} \times S\) of \(\text{Hilb}'(\mathcal{X})(S)\). The scheme \(Z \times_{(\mathcal{X} \times S)} (M \times S) \subset M \times S\) is naturally an \(S\)-family of \(G\)-clusters: Clearly the group scheme \(G \times S\) acts fiberwise on \(Z \times_{(\mathcal{X} \times S)} (M \times S)\). Also, since \(M \times S \to \mathcal{X} \times S\) is a principle \(G\)-bundle, the space \(\Gamma(\mathcal{O}_{Z \times_{(\mathcal{X} \times S)} (M \times S)})\) coincides with the regular representation \(\mathbb{C}[G] \otimes \Gamma(\mathcal{O}_S)\) of \(G \times S\). Thus this defines an object in \(G\text{-Hilb}(M)(S)\).

It is easy to check that this morphism is a closed immersion, as one may recover \(Z \subset \mathcal{X} \times S\) by taking the stack quotient \([Z \times_{(\mathcal{X} \times S)} (M \times S)/G]\). Moreover, let \(G\text{-Hilb}(M) \to X = M/G\) be the morphism induced from the Hilbert-Chow morphism. Then the following diagram commutes:

\[
\begin{array}{ccc}
\text{Hilb}'(\mathcal{X}) & \to & G\text{-Hilb}(M) \\
\downarrow & & \swarrow \\
X & &
\end{array}
\]

The result follows. \(\square\)

An important property is that \(\text{Hilb}'(\mathcal{X})\) behaves well under étale base-change on the coarse moduli space.

Proposition 2.3. Notation as above. Let \(U \to X\) be an étale morphism from a scheme \(U\). Then we have

\[U \times_X (\text{Hilb}'(\mathcal{X}))^n \simeq (\text{Hilb}'(U \times_X \mathcal{X}))^n.\]

Proof. To simply the notations, we denote \(\text{Hilb}'(\mathcal{X})\) by \(W\), \(\text{Hilb}'(U \times_X \mathcal{X})\) by \(W_U\). Let \(W^n\) be the normalization of \(W\) and \(W^n_U\) the normalization of \(W_U\). Observe that \(W \times_X U\) and \(W_U\) are birational (both of them are birational to \(U\)).
Consider the universal family $Z \to W$ of quotient sheaves of \mathcal{O}_X (with Hilbert polynomial 1), where $Z \subset W \times X$. Note that Z is indeed a substack of $W \times X$. Pull back the universal family $Z \to W$ to the scheme $U \times_X W$. The resulting family is a family of quotient sheaves of $\mathcal{O}_{U \times X}$ with Hilbert polynomial 1. Hence, there is a morphism $W \times_X U \to W_U$. Note that $W \to X$ and $W_U \to U$ are projective. The base change of $W \to X$ to $W \times_X U \to U$ is also projective. Since W is the fine moduli space (i.e. for $w_1 \neq w_2 \in W$, the corresponding quotient sheaves are distinct), and $U \to X$ is quasi-finite, the morphism $W \times_X U \to \text{Hilb}'(X \times X U) = W_U$ is also quasi-finite. Since both $W \times_X U$ and W_U are projective over U, it follows that $W \times_X U \to W_U$ is finite.

Since $W^n \to W$ is finite, it follows that $W^n \times_X U \to W_U$ is finite. Since $W^n \times_X U \to W^n_U$ is finite and birational, we conclude by Zariski’s main theorem that $W^n \times_X U \cong W^n_U$. □

Consider the universal quotient sheaf $Z \to \text{Hilb}(X)$ and the universal quotient sheaf $Z_U \to \text{Hilb}(X \times X U)$. Pull back Z to $(\text{Hilb}(X))^n$, denoted by Z'. Pull back Z_U to $U \times_X (\text{Hilb}(X))^n$, denoted by Z'_U. It can be seen from the proof that the further pull back of Z' to $\text{Hilb}(U \times X)$ is isomorphic to Z'_U. Lemma 2.2 and Proposition 2.3 imply in particular that in fact those G-Hilbert schemes patch together nicely to a global object.

3. Proof of 1.1

In this section we present two proofs of Theorem 1.1.

3.1. Some basic materials. We present several results concerning derived categories of coherent sheaves on smooth Deligne-Mumford stacks.

Proposition 3.1 (Serre functor). Let X be a smooth separated Deligne-Mumford stack which has a coarse moduli space X which is a quasi-projective Gorenstein variety, whose dualizing sheaf is denoted by ω_X. Then $D^b(X)$ has a Serre functor $S(-) := (- \otimes \pi^* \omega_X)[\dim X]$.

Proof. Note that S is clearly an equivalence. We need to show that for $u, v \in D^b(X)$ there is a bifunctorial isomorphism

$$\text{Hom}(u, v \langle k \rangle) \simeq \text{Hom}(v, S(u))^{\vee}.$$

Our argument is parallel to that in [Ka02], Proposition 2.6. First assume that u is a locally free sheaf and v is a sheaf with compact support. We may assume that $u = \mathcal{O}_X$ by replacing v by $u^{\vee} \otimes v$. Now we have

$$\text{Hom}(u, v[k]) \simeq H^k(X, v) \simeq H^k(X, \pi_* v).$$

On the other hand,

$$\text{Hom}(v[k], S(u)) \simeq \text{Ext}^{\dim \mathcal{X} - k}(v, \pi^* \omega_X) \simeq \text{Ext}^{\dim \mathcal{X} - k}(\pi_* v, \omega_X).$$

Hence $\text{Hom}(u, v[k]) \simeq \text{Hom}(v[k], S(u))^{\vee}$ by the duality for X.

If v is a locally free sheaf and u is a sheaf with compact support, then by the previous case, we have

$$\text{Hom}(u, v[k]) \simeq \text{Hom}(S(u), S(v)[k]) \simeq \text{Hom}(v[k], S(u))^\vee.$$

The general case follows by taking locally free resolutions. □

Note that if X is isomorphic to X in codimension 1, then $\pi^*\omega_X \simeq \omega_X$ as Cartier divisors. In this case the Serre functor is given by $S(-) = (- \otimes L \omega_X)[\text{dim} X]$.

Proposition 3.2 (a spanning class). Let \mathcal{X} be a smooth Deligne-Mumford stack which has Serre duality. Then the set

$$\{O_Z | Z \subset \mathcal{X} \text{ is a closed substack, } \pi(Z) \text{ is a point in } X\}$$

is a spanning class of $D^b(\mathcal{X})$.

Proof. This follows from the argument of [Br99], Example 2.2. □

It follows that a Deligne-Mumford stack as in Proposition 3.1 has a spanning class given as above.

3.2. Reduction to local case: the first proof. Let $\{U_i\}$ be an étale cover of X such that $U_i \times_X \mathcal{X} \simeq [M_i/G_i]$ for some schemes M_i and finite groups G_i. Consider the diagram

$$\begin{array}{ccc}
\mathcal{X} & \xrightarrow{\pi} & X \\
\downarrow & & \downarrow \\
(U_i \times_X (\text{Hilb}'(\mathcal{X})))^n & \leftrightarrow & (\text{Hilb}'(\mathcal{X}))^n,
\end{array}$$

and its pullback to U_i

$$\begin{array}{ccc}
\mathcal{X}_i := U_i \times_X \mathcal{X} & \xrightarrow{\pi_i} & U_i \\
\downarrow & & \downarrow \\
(U_i \times_X (\text{Hilb}'(\mathcal{X})))^n & \leftrightarrow & (U_i \times_X \text{Hilb}'(\mathcal{X}))^n.
\end{array}$$

Note that $(\text{Hilb}'(\mathcal{X}) \times_X U_i)^n \cong (\text{Hilb}'(\mathcal{X} \times X U_i))^n$ (Proposition 2.3) and $\text{Hilb}'(\mathcal{X} \times X U_i)$ is already smooth. Let $F : D^b((\text{Hilb}'(\mathcal{X}))^n) \to D^b(\mathcal{X})$ be a Fourier-Mukai type transformation defined by an object $E \in D^b(\text{Hilb}'(\mathcal{X}) \times X \mathcal{X})$ and $F_i : D^b(U_i \times_X (\text{Hilb}'(\mathcal{X}))^n) \to D^b(\mathcal{X}_i)$ the Fourier-Mukai type transformation given by pulling everything back to U_i.

Proposition 3.3. Assume that F_i are equivalences of derived categories for all i, then so is F.

Proof. This follows from the argument of [Ch02], Proposition 3.2, using the spanning class given in Proposition 3.2. □
Proof of Theorem 1.1. By Lemma 2.2 and Proposition 2.3, the functor
\[F_i : D^b((U_i \times \mathcal{X})^n) \to D^b(\mathcal{X}_i) \]
is the Fourier-Mukai type transformation defined by the universal object of the Hilbert scheme \(G_i \)-Hilb(\(M_i \)). Again by Proposition 2.3, Lemma 2.2 and [BKR01], \(U_i \times_X (\text{Hilb}'(\mathcal{X}))^n \) is smooth and \(\text{Hilb}'(\mathcal{X} \times_X U_i) \) is smooth and \(\text{Hilb}'(\mathcal{X} \times_X U_i) \to U_i \) is a crepant resolution. It follows that \((\text{Hilb}'(\mathcal{X}))^n \to X\) is a crepant resolution. By Proposition 3.3 it follows that \(F \) is an equivalence. □

3.3. Patching local crepant resolutions. In general, without knowing the global space \(\text{Hilb}'(\mathcal{X}) \), it is not a priori clear the crepant resolutions of \(U_i \) given by G-Hilbert schemes can be patched to a crepant resolution of \(X \). We note that it in fact can be done in dimension 3.

Proposition 3.4. Let \(X \) be a normal \(\mathbb{Q} \)-factorial projective threefold and \(\{U_i\} \) an open cover of \(X \). Suppose that for every \(i \) there is a crepant resolution \(\phi_i : Y_i \to U_i \), then there is a crepant resolution \(\phi : Y \to X \).

Proof. Consider a relative minimal model \(f : Y \to X \), where \(Y \) is terminal, \(\mathbb{Q} \)-factorial and \(K_Y \) is \(f \)-nef. We only need to prove that \(Y \to X \) is crepant and \(Y \) is smooth. Note that \(X \) has only canonical singularities since local crepant resolutions exist. The first part follows since \(X \) is canonical and \(K_Y \) is \(f \)-nef. To check that \(Y \) is smooth we only need to check it locally. Thus we consider the restriction \(f|_{U_i} : Y|_{U_i} \to U_i \). Both \(Y|_{U_i} \to U_i \) and \(Y_i \to U_i \) are relative minimal models of \(U_i \), so they can be connected by a sequence of flops. Since flops in dimension 3 preserve smoothness, the result follows. □

Remark 3.5. This argument does not work in higher dimensions, since flops may not terminate and may not preserve smoothness.

3.4. Another proof of 1.1 Instead of using results of [BKR01], the second proof uses their arguments. It is not hard to check that the arguments in [BKR01] extends to our case provided Proposition 2.3 and the following:

1. the category \(D^b(\mathcal{X}) \) is indecomposable;
2. we have the Grothendieck duality for the morphism \((\text{Hilb}'(\mathcal{X}))^n \to (\text{Hilb}'(\mathcal{X}))^n \);
3. we have a Serre functor for \(D^b(\mathcal{X}) \).

(1) follows from the argument of [BKr99], Example 3.2, provided we know that for any integral closed substack \(\mathcal{W} \) of \(\mathcal{X} \), the sheaf \(\mathcal{O}_W \) is indecomposable. This can be seen as follows: Since \(\mathcal{X} \) is smooth, we have \(\mathcal{X} \simeq [M/GL_r] \) where \(GL_r \) is some general linear group. By assumption \(\mathcal{X} \) is connected, so is \(X \). It follows that \(M \) is connected. Let \(p : M \to \mathcal{X} \) be the structure morphism. Then \(p^* : D^b(\mathcal{X}) \to D^b(M) \) is fully faithful, and \(p^* \mathcal{O}_W = \mathcal{O}_{W \times_X M} \) is indecomposable. Hence \(\mathcal{O}_W \) is indecomposable.
For (2), note that \((\text{Hilb}'(\mathcal{X}))^n \times X \to (\text{Hilb}'(\mathcal{X}))^n\) factors as
\[
(\text{Hilb}'(\mathcal{X}))^n \times X \xrightarrow{id \times \pi} (\text{Hilb}'(\mathcal{X}))^n \times X \to (\text{Hilb}'(\mathcal{X}))^n.
\]
Also note that \((id \times \pi)_*\) is exact and has the left and right adjoint \((id \times \pi)^*\).

We may conclude by the Grothendieck duality for schemes.

(3) follows from Proposition 3.1.

4. Twisted derived McKay correspondence

In this section we discuss the twisted version of derived McKay correspondence proposed in [BP05]. Let \(X = M/G\) with \(M\) quasi-projective of dimension \(n\) and \(G\) finite and \(X\) be the associated stack as discussed above. Also let \(Y\) be the component of \(G\)-Hilbert scheme of \(M\) which contains free orbits.

According to [BKR01], we have an integral functor \(\Phi : D^b(Y) \to D^b(X)\) given by the kernel \(O_Z\), which is an equivalence under certain conditions. Here \(Z = [Z/G]\) and \(Z \subset Y \times M\) is the universal closed subscheme.

The authors of [BP05] proposed a twisted version of this equivalence, which we recast in our setting as follows: Let \(Br(Y)\) be the Brauer group of \(Y\). It is shown in [BP05] that both \(Br(Y)\) and \(H^2(G, \mathbb{C}^*)\) can be embedded into a larger group, namely \(Br(X_{sm})\). Let \(\alpha \in Br(Y) \cap H^2(G, \mathbb{C}^*)\) be a class which is \(r\)-torsion. It follows that there is an injective homomorphism \(t : \mu_r \to \mathbb{C}^*\) such that \(\alpha\) is in the images of the induced maps \(H^2_{et}(Y, \mu_r) \to H^2_{et}(Y, \mathbb{C}^*)\) and \(H^2(G, \mu_r) \to H^2(G, \mathbb{C}^*)\). Thus we can associate a \(\mu_r\)-gerbe \(\mathcal{Y}_\alpha\) over \(Y\) and a \(\mu_r\)-gerbe \(\mathcal{X}_\alpha\) over \(X\). The \(\alpha\)-twisted derived categories \(D^b(Y, \alpha)\) and \(D^b(X, \alpha)\) are derived categories of coherent sheaves on \(\mathcal{Y}_\alpha\) and \(\mathcal{X}_\alpha\) whose actions by \(\mathbb{C}^*\) and \(\mu_r\) are compatible via \(t : \mu_r \to \mathbb{C}^*\) (see [Li04]).

It is conjectured in [BP05] that there is an equivalence of derived categories
\[
D^b(Y, \alpha) \to D^b(X, \alpha).
\]

We prove this conjecture in our situation. Consider the following diagram:

\[
\begin{array}{ccc}
\mathcal{X}_\alpha \times \mathcal{Y}_\alpha & \xrightarrow{\pi_\mathcal{Y}} & \mathcal{Y}_\alpha \\
\downarrow \pi_X & & \downarrow \phi \\
\mathcal{X}_\alpha & \xrightarrow{p_\mathcal{X}} & X
\end{array}
\]

Since \(\alpha \in Br(Y) \cap H^2(G, \mathbb{C}^*)\), it is not hard to check that the integral functor \(\Phi_\alpha\) defined by the kernel \((p_Y \times p_X)^*O_Z\) is a functor between \(D^b(Y, \alpha)\) and \(D^b(X, \alpha)\).

Theorem 4.1. Assume that \(\dim Y \times_X Y \leq n + 1\), then \(\Phi_\alpha\) is an equivalence of triangulated categories.

Proof. According to [BKR01], \(Y\) is smooth and \(Y \to X\) is a crepant resolution. It follows that \(\mathcal{Y}_\alpha\) and \(\mathcal{X}_\alpha\) are smooth Deligne-Mumford stacks. In view of this, that \(\Phi_\alpha\) is an equivalence is a special case of a stack version of Bridgeland’s result ([Br99], Theorem 1.1). It is straightforward (although
lengthy) to modify Bridgeland’s arguments in [Br99] to prove that Φ_α is an equivalence if and only if
\begin{equation}
\text{(4.1)}
\text{Ext}^i_{X_\alpha}(p_Y \times p_X)^*\mathcal{O}_Z|_{y_1}, (p_Y \times p_X)^*\mathcal{O}_Z|_{y_2}) = 0 \text{ for all } i \geq 0, y_1 \neq y_2 \in Y_\alpha;
\end{equation}
\begin{equation}
\text{(4.2)}
(p_Y \times p_X)^*\mathcal{O}_Z|_y \simeq (p_Y \times p_X)^*\mathcal{O}_Z|_y \otimes p_Y^*p_X^*\omega_X \text{ for all } y \in Y_\alpha.
\end{equation}

We simply note that in order for the arguments in [Br99] to work for this, we need to have a Serre functor, a spanning class and indecomposability of the derived categories, as well as calculations of certain Ext groups. These have been settled in Proposition 3.1, 3.2 and in Section 3.4. The needed calculations of Ext groups follows from those in [BKR01]. Now the calculations in [BKR01] immediately imply (4.1) and (4.2). Hence Φ_α is an equivalence. \hfill \Box

Remark 4.2.

1. It is natural to ask for a global version of the conjecture in [BP05]. One expects that the work of [BP05] can be generalized to give such a conjecture. Our work should be helpful in proving such a conjecture on global twisted derived McKay correspondence.

2. Consider the following situation: $X = M/G$ as above, $\mathcal{X} = [M/G]$ is the Deligne-Mumford stack as before, and $Y \to X$ is a crepant resolution. Suppose that there is an equivalence of derived categories $D^b(Y) \simeq D^b(\mathcal{X})$. It is known that such an equivalence is a Fourier-Mukai transform given by an integral kernel $\mathcal{E} \in D^b(Y \times \mathcal{X})$. If \mathcal{E} is a sheaf on $Y \times \mathcal{X}$, then our arguments can be modified to show that for $\alpha \in Br(Y) \cap H^2(G, \mathbb{C}^*)$, the integral functor given by the pullback of \mathcal{E} to the associated gerbe yields an equivalence $D^b(Y, \alpha) \simeq D^b(\mathcal{X}, \alpha)$. It is interesting to understand whether this is the case or not, if \mathcal{E} is not a sheaf.

References

[BP05] V. Baranovsky and T. Petrov, *Brauer groups and crepant resolutions*, preprint, math.AG/0509593.

[BK90] A. Bondal and M. Kapranov, *Enhanced triangulated categories*, Math. USSR-Sb. 70 (1991), no. 1, 93–107.

[Br99] T. Bridgeland, *Equivalences of triangulated categories and Fourier-Mukai transforms*, Bull. London Math. Soc. 31 (1999), no. 1, 25–34.

[BKR01] T. Bridgeland, A. King and M. Reid, *The McKay correspondence as an equivalence of derived categories*, J. Amer. Math. Soc. 14 (2001), no. 3, 535–554.

[Ca00] A. Caldararu, *Derived categories of twisted sheaves on Calabi-Yau manifolds*, Ph.D. Thesis, Cornell University, 2000.

[Ch02] J.-C. Chen, *Flops and equivalences of derived categories for threelfolds with only terminal Gorenstein singularities*, J. Differential Geom. 61 (2002), no. 2, 227–261.

[CT05] J.-C. Chen and H.-H. Tseng, *Cone Theorem via Deligne-Mumford stacks*, preprint, math.AG/0505043.
[Co05] K. Costello, *The Gromov-Witten potential associated to a TCFT*, preprint, math.QA/0509264.

[CI05] A. Craw and A. Ishii, *Flops of G-Hilb and equivalences of derived categories by variation of GIT quotient*, Duke Math. J. 124 (2004), no. 2, 259–307.

[Gr62] A. Grothendieck, *Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.]* (French), Secrétariat mathématique, 1962.

[Ka02] Y. Kawamata, *Francia’s flip and derived categories*, Algebraic geometry, 197–215, de Gruyter, Berlin, 2002.

[Kal05] D. Kaledin, *Derived equivalences by quantization*, preprint, math.AG/0504584, to appear in GAFA.

[Ka05] A. Neeman, *The Grothendieck duality theorem via Bousfield’s techniques and Brown representability*, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236.

[Mi80] J. Milne, *Étale Cohomology*, Princeton University Press, 1980.

[NV99] A. Vistoli, *Intersection theory on algebraic stacks and on their moduli spaces*, Invent. Math. 97 (1989), no. 3, 613–670.

Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208-2370, USA

Current address: Department of Mathematics, National Tsing Hua University, 3rd General Building, 101 Section 2, Kuang Fu Road, Hsinchu 300, Taiwan

E-mail address: jcchen@math.northwestern.edu, jcchen@math.nthu.edu.tw

Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z1, Canada

E-mail address: hhtseng@math.ubc.ca