ON INHOMOGENEOUS DIOPHANTINE APPROXIMATION
AND HAUSDORFF DIMENSION

M. Laurent

UDC 511.72

Abstract. Let $\Gamma = \mathbb{Z}A + \mathbb{Z}^n \subset \mathbb{R}^n$ be a dense subgroup of rank $n+1$ and let $\hat{\omega}(A)$ denote the exponent of uniform simultaneous rational approximation to the generating point A. For any real number $v \geq \hat{\omega}(A)$, the Hausdorff dimension of the set B_v of points in \mathbb{R}^n that are v-approximable with respect to Γ is shown to be equal to $1/v$.

1. Inhomogeneous Approximation

We first introduce the general framework of inhomogeneous approximation, following the traditional setting employed in the book of Cassels [7] and adhering to the notations of [5] for the various exponents of approximation involved.

Let m and n be positive integers and let A be an $(n \times m)$-matrix with real entries. The transposed matrix of A is denoted by tA. We consider both the subgroup $\Gamma = AZ^n + \mathbb{Z}^n \subset \mathbb{R}^n$, generated modulo \mathbb{Z}^n by the m columns of A, and its dual subgroup $\Gamma' = ^tAZ^m + \mathbb{Z}^m \subset \mathbb{R}^m$, generated modulo \mathbb{Z}^m by the n rows of A. Alternatively Γ can be looked upon as a subgroup of classes modulo \mathbb{Z}^n lying in the n-dimensional torus $T^n = (\mathbb{R}/\mathbb{Z})^n$. Kronecker’s theorem asserts in order that Γ be dense in \mathbb{R}^n it is necessary and sufficient that the dual group Γ' have maximal rank $m+n$ over \mathbb{Z}. Henceforth we shall assume that $\text{rk}_\mathbb{Z}\Gamma' = m+n$.

In order to measure how sharp is the approximation to a given point β in \mathbb{R}^n by elements of Γ, we introduce the following exponent $\omega(A, \beta)$. For any point θ in \mathbb{R}^n, let $|\theta|$ be the supremum norm of θ and let $\|\theta\| = \min_{x \in \mathbb{Z}^n} |\theta - x|$ be the distance in T^n between θ mod \mathbb{Z}^n and 0.

Definition 1. For any $\beta \in \mathbb{R}^n$, let $\omega(A, \beta)$ be the supremum, possibly infinite, of the real numbers ω for which there exist infinitely many integer points $q \in \mathbb{Z}^m$ such that

$$\|Aq - \beta\| \leq |q|^{-\omega}.$$

It is clear from the definition that $\omega(A, \beta) \geq 0$.

Now, in relation to the linear independence of the rows of A, we introduce, for any real matrix M, the following uniform homogeneous exponent.

Definition 2. Let M be an $(m \times n)$-matrix with real entries. We denote by $\hat{\omega}(M)$ the supremum, possibly infinite, of the real numbers ω such that, for any sufficiently large positive real number Q, there exists a nonzero integer point $q \in \mathbb{Z}^n$ such that

$$|q| \leq Q, \quad \|Mq\| \leq Q^{-\omega}.$$

By Dirichlet’s box principle, we have $\hat{\omega}(M) \geq n/m$. Now we are able to formulate the classical assertion about the relationship between homogeneous and inhomogeneous approximations in terms of these exponents. To do so we need the following result.

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 16, No. 5, pp. 93–101, 2010.
Theorem 1 ([5]). For any \(n \)-tuple \(\beta \) of real numbers, the lower bound
\[
\omega(A, \beta) \geq \frac{1}{\hat{\omega}(A)}
\] (1)
holds. Moreover, inequality (1) becomes an equality for a.e. \(\beta \) with respect to the Lebesgue measure on \(\mathbb{R}^n \).

Now we come to our main topic: to examine, for \(v \geq 0 \), the family of subsets
\[
B_v = \{ \beta \in \mathbb{R}^n; \omega(A, \beta) \geq v \} \subseteq \mathbb{R}^n,
\]
and their Hausdorff dimension \(\delta(v) \) as a function of \(v \). It follows immediately from Theorem 1 that \(B_v = \mathbb{R}^n \) when \(v \leq 1/\hat{\omega}(A) \), while \(B_v \) is a null set for \(v > 1/\hat{\omega}(A) \). Furthermore, these sets are relatively small on account of the following crude result, quoted as Proposition 7 in [5].

Theorem 2. For any real number \(v > 1/\hat{\omega}(A) \), the Hausdorff dimension \(\delta(v) \) is strictly less than \(n \).

In fact, the proof of Proposition 7 of [5] gives the explicit upper bound
\[
\delta(v) \leq n - 1 + \frac{1}{1 + (v\hat{\omega}(A) - 1)/(1 + v)}.
\] (2)

On the other hand, an easy application of Hausdorff–Cantelli’s lemma (see [1, 3]) provides us with the following bound.

Theorem 3. For any \(v > 0 \),
\[
\delta(v) \leq \min(n, \frac{m}{v}).
\] (3)

We refer to Theorem 5 of [4] for a proof of inequality (3). We note that (2) is certainly sharper than (3) with \(v \) lying in the interval \([1/\hat{\omega}(A), m/n]\), while the upper bound (3) is expected to be an equality for sufficiently large values of \(v \). When \(m = n = 1 \), it has been proved independently in [2] and in [11] that \(\delta(v) = \min(1, 1/v) \), so that (3) is indeed an equality for any \(v > 0 \) in that case. However, the examples displayed in Theorem 1 of [4] for \((m, n) = (2, 1)\) or \((m, n) = (3, 1)\) show that inequality (3) may well be strict for any given \(v > 1 \). Motivated by Theorem 5 below, we pose the following problem.

Problem. Assume that \(\hat{\omega}(A) \) is finite. Show that \(\delta(v) = m/v \) for all \(v \) that are sufficiently large in term of \(\hat{\omega}(A) \).

We observe that \(\hat{\omega}(A) \geq m/n \). It seems plausible that the assumption \(v \geq \hat{\omega}(A) \) should always be sufficient in order to ensure that \(\delta(v) = m/v \). This holds for \(m = 1 \) by Theorem 5 below. We also note that the lower bound \(v \geq \hat{\omega}(A) \) appears naturally in the construction of a Cantor-type set \(\mathcal{K} \) as in Sec. 4.

2. Simultaneous Approximation

Our knowledge in regard to the Hausdorff dimension \(\delta(v) \) is more profound for \(m = 1 \), that is to say when
\[
\Gamma = \mathbb{Z} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} + \mathbb{Z}^n
\]
is generated by a single vector spinning in \(\mathbb{T}^n \), for in this cases there are fine results [4] by Bugeaud and Chevallier. With regard to the above Problem, let us first quote their Theorem 3 as follows.

Theorem 4. Let \(A = (\alpha_1, \ldots, \alpha_n) \) be an \((n \times 1)\) real matrix such that \(1, \alpha_1, \ldots, \alpha_n \) are linearly independent over \(\mathbb{Q} \). Then \(\delta(v) = 1/v \) for any \(v \geq 1 \).

Now we state our main result.

Theorem 5. Let \(A = (\alpha_1, \ldots, \alpha_n) \) be an \((n \times 1)\) real matrix such that \(1, \alpha_1, \ldots, \alpha_n \) are linearly independent over \(\mathbb{Q} \). Then the equality \(\delta(v) = 1/v \) holds for any \(v \geq \hat{\omega}(A) \).