THE AUSLANDER GENERATORS OF THE EXTERIOR
ALGEBRA IN TWO VARIABLES

MAGDALINI LADA

Abstract. We compute a complete set of non-isomorphic minimal Auslander
generators for the exterior algebra in two variables.

Introduction

In 1971, Auslander introduced a new homological dimension for artin algebras,
called representation dimension, which was meant to measure how far an algebra is
from having finitely many isomorphism classes of finitely generated indecomposable
modules [1]. Quite a few years later, there were several publications that motivated
the further investigation of the representation dimension. Among those we have [6],
where Iyama proves that the representation dimension is always finite, [5], where
Igusa and Todorov prove that an artin algebra with representation dimension less
than or equal to three satisfies the finitistic dimension conjecture and [9], where
Rouquier uses the exterior algebras as examples of artin algebras with arbitrarily
large representation dimension.

The last years, there has been an increasing interest in the topic and several
researchers have worked on determining the representation dimension of certain
classes of algebras. This is usually done by constructing a module, which is a
generator-cogenerator for the module category and is such that the global dimen-
sion of its endomorphism ring is the smallest among the global dimensions of the
endomorphism rings of all modules that are generators-cogenerators for the module
category. Such a module is called an Auslander generator and in general it is not
easy to find.

Not much is known about the class of Auslander generators of an artin alge-
bra. In [8], the author showed how we can construct, under certain conditions, a
new Auslander generator by mutating a given one. In this paper, we compute all
minimal Auslander generators for the exterior algebra in two variables, up to iso-
morphism. This is, to our knowledge, the first non-trivial example where a complete
set of minimal Auslander generators is computed.

1. Background

Let Λ be an artin algebra. We denote by mod Λ the category of finitely generated
left Λ-modules, and by a Λ-module we will always mean a module in mod Λ. For
a Λ-module M we denote by add M the full subcategory of mod Λ, consisting of
direct summands of copies of M.

A Λ-module M is called a generator-cogenerator if all the indecomposable projective
and the indecomposable injective Λ-modules are in add M. The representation
dimension of Λ, which we denote by repdim Λ, is defined as follows

repdim Λ = \inf \{ \text{gldim } \text{End}_{\Lambda}(M) \mid M \text{ generator} - \text{cogenerator for } \text{mod } \Lambda \}.
A basic \(\Lambda \)-module \(M \) is called an \textit{Auslander generator} if \(\text{gldim} \ \text{End}_\Lambda(M) = \text{repdim} \Lambda \). An Auslander generator is called \textit{minimal} if for any direct summand \(N \) of \(M \), that does not contain any projective or injective \(\Lambda \)-modules, we have \(\text{gldim} \ \text{End}_\Lambda(M/N) > \text{gldim} \ \text{End}_\Lambda(M) \). Note that here, the factor module \(M/N \) is the cokernel of the split monomorphism \(N \hookrightarrow M \).

The following result was proved in [3]. Recall that, for an artin algebra \(\Lambda \), a \textit{node} is a non-projective, non-injective simple \(\Lambda \)-module \(S \), such that the middle term of the almost split sequence starting at \(S \) is projective.

Proposition 1.1. Let \(\Lambda \) and \(\Lambda' \) be two artin algebras with no nodes, and \(\alpha: \text{mod} \Lambda \to \text{mod} \Lambda' \) a stable equivalence. If the \(\Lambda \)-module \(\Lambda \oplus N \) is an Auslander generator of \(\Lambda \), then the \(\Lambda' \)-module \(\Lambda' \oplus \alpha N \) is an Auslander generator of \(\Lambda' \).

As a straightforward consequence of Proposition 1.1, we get the following corollary. Note that \(\tau \) denotes the Auslander-Reiten translation and \(\Omega \) denotes the syzygy functor.

Corollary 1.2. Let \(\Lambda \) be a selfinjective algebra with no nodes and \(\Lambda \oplus N \) an Auslander generator of \(\Lambda \). Then, the \(\Lambda \)-modules \(\Lambda \oplus \tau N \) and \(\Lambda \oplus \Omega(N) \) are also Auslander generators.

Proof. Since \(\Lambda \) is selfinjective, both of the functors \(\tau \) and \(\Omega \) induce a stable equivalence on \(\text{mod} \Lambda \). \(\square \)

2. The exterior algebra

In this section, \(\Lambda \) will denote the exterior algebra in two variables. We begin by describing \(\Lambda \) as the path algebra of a quiver modulo relations. Let \(Q \) be the quiver

\[
\begin{array}{c}
\alpha \\
\downarrow \\
1 \\
\downarrow \\
\beta \\
\end{array}
\]

and let \(kQ \) be the path algebra of \(Q \) over some algebraically closed field \(k \). Set \(\Lambda = kQ/I \), where \(I \) is the ideal of \(kQ \) generated by \(\{ \alpha^2, \alpha \beta + \beta \alpha, \beta^2 \} \). The quotient \(\Lambda/\text{Soc} \Lambda \) is stably equivalent to the Kronecker algebra (see [2]), and using this we can describe the AR-quiver of \(\Lambda \) as follows. For each \(p \) in \(\mathbb{P}^1(k) \) there is a tube of rank one

\[
\begin{array}{c}
R_p(5) \\
\downarrow \\
R_p(4) \\
\downarrow \\
R_p(3) \\
\downarrow \\
R_p(2) \\
\downarrow \\
R_p(1) \\
\end{array}
\]

For \(p = (1, \lambda) \) the indecomposable module \(R_{(1,\lambda)}(n) \), which we will denote by \(R_\lambda(n) \) corresponds to the representation

\[
f_\alpha^\lambda \left(k^{2n} \right) f_\beta^\lambda
\]

where \(f_\alpha^\lambda \) is given by the matrix \(\begin{pmatrix} 0_n & 0_n \\ I_n & 0_n \end{pmatrix} \) and \(f_\beta^\lambda \) is given by the matrix \(\begin{pmatrix} J_n(\lambda) & 0_n \\ 0_n & 0_n \end{pmatrix} \). Here \(J_n(\lambda) \) denotes the \(n \times n \) Jordan block with eigenvalue \(\lambda \).
For $p = (0,1)$, the indecomposable module $R_{(1,0)}(n)$, which we will denote by $R(n)$, corresponds to the representation

$$f_n \left(k^{2n} \right) f_{\beta}$$

where f_n is given by the zero matrix 0_{2n} and f_{β} is given by the matrix $\left(\begin{smallmatrix} 0_n & 0_n \\ I_n & 0_n \end{smallmatrix} \right)$.

Besides the tubes, there is one more component that contains the projective-injective Λ-module Λ and the simple Λ-module S.

We already know by [1] that $\text{repdim} \, \Lambda = 3$ and that the Λ-module $M = \Lambda \oplus S_0 \oplus \Lambda/\text{Soc} \, \Lambda$ is an Auslander generator. In the next proposition we give an infinite set of nonisomorphic Auslander generators. Then we prove that this set forms a complete set of non-isomorphic minimal Auslander generators of Λ.

Proposition 2.1. With the above notation, let $M_n = \Lambda \oplus S_n \oplus S_{n+1}$. Then, M_n is a minimal Auslander generator for all n in \mathbb{Z}.

Proof. For any integer m, we have by definition

$$M_{2m} = \Lambda \oplus (\tau^{-1})^m S \oplus (\tau^{-1})^m (\Lambda/\text{Soc} \, \Lambda)$$

\[= \Lambda \oplus (\tau^{-1})^m (S \oplus \Lambda/\text{Soc} \, \Lambda) \]

and

$$M_{2m+1} = \Lambda \oplus (\tau^{-1})^m (\Lambda/\text{Soc} \, \Lambda) \oplus (\tau^{-1})^{m+1} S$$

\[= \Lambda \oplus (\tau^{-1})^m \Omega^{-1} S \oplus (\tau^{-1})^m \Omega (\Lambda/\text{Soc} \, \Lambda) \]

\[= \Lambda \oplus (\tau^{-1})^m \Omega^{-1} (S \oplus \Lambda/\text{Soc} \, \Lambda). \]

Hence, by Corollary 1.2, we only need to show that $M_0 = \Lambda \oplus S_0 \oplus S_1 = \Lambda \oplus S \oplus \Lambda/\text{Soc} \, \Lambda$ is a minimal Auslander generator. We already know, by [1] that M_0 is an Auslander generator. As for the minimality, straightforward computations show
that
\[
gldim \text{End}_\Lambda(M_0/S_0) = gldim \text{End}_\Lambda(M_0/S_1) \\
= gldim \text{End}_\Lambda(M_0/(S_0 \oplus S_1)) \\
= \infty.
\]

\[\Box\]

Remark. We note that for \(n \geq 0\) the Auslander generators \(M_n\) can be obtained from \(M_0\) by iterated mutation, as described in [8, Section 4]. Dually for \(n \leq 0\), the Auslander generators \(M_n\) can be obtained from \(M_{-1}\) by iterated mutation.

The rest of the section is devoted to showing that the \(\Lambda\)-modules \(M_n\), for \(n\) in \(\mathbb{Z}\), are all the Auslander generators for \(\Lambda\), up to isomorphism.

In the next proposition we compute the global dimension of the endomorphism ring of a generator of \(\Lambda\), whose nonprojective summands belong to some tube (not necessarily the same) of the AR-quiver of \(\Lambda\).

We note here that the Hom-spaces between any two indecomposable \(\Lambda\)-modules can be described using the stable equivalence of \(\Lambda/\text{Soc} \Lambda\) and the Kronecker algebra. The Hom-spaces between any two indecomposable modules of the Kronecker algebra have been analytically described in [2, VIII.7] and we refer the reader there for details. The only extra morphisms that exist between two indecomposable \(\Lambda\)-modules of Loewy length 2, are the morphisms that factor through the simple \(\Lambda\)-module.

Proposition 2.2. Let \(M\) be a generator for \(\text{mod} \Lambda\) such that all its non-projective indecomposable summands are of the form \(R_p(n)\) for some \(p \in \mathbb{P}^1(k)\) and some \(n \in \mathbb{N}\). Then \(\text{gldim} \text{End}_\Lambda(M) = \infty\).

Proof. Let \(p \in \mathbb{P}^1(k)\) such that there is an indecomposable direct summand of \(M\) isomorphic to \(R_p(n)\). Choose \(n\) to be the largest natural number such that \(R_p(n)\) is isomorphic to a direct summand of \(M\). We show by induction that on the quiver of \(\text{End}_\Lambda(M)^{op}\) there is a loop at the vertex corresponding to the simple module \(S_{R_p(n)}\), where by \(S_{R_p(n)}\) we denote the top of the indecomposable projective \(\text{End}_\Lambda(M)^{op}\)-module \(\text{Hom}_\Lambda(M, R_p(n))\). In particular we show that there is a morphism \(f_n : R_p(n) \to R_p(n)\), which is not the identity, that does not factor through any indecomposable summand of \(M\). Considering the previous representation of the module \(R_p(n)\), the morphism \(f_n\) is given by the matrix
\[
A_{f_n} = \begin{pmatrix}
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{pmatrix}
\]
If \(M\) has an indecomposable direct summand \(R_p(m)\), then by the choice of \(n\), we have \(m \leq n\) and it is not hard to see, looking at all possible morphisms between \(R_p(m)\) and \(R_p(n)\), that in this case \(f_n\) does not factor through \(R_p(m)\). For \(p\) different from \(q\) and for any \(n\) and \(m\), the only nonzero morphisms from \(R_p(n)\) to \(R_q(m)\), and vice versa, factor through the simple \(\Lambda\)-module \(S\). Using this fact it is easy to see that \(f_n\) does not factor through any other indecomposable summand of \(M\) of the form \(R_q(m)\), for any \(m\) and \(q \neq p\). We show by induction on \(n\) that \(f_n\) does not factor through \(\Lambda\) either.

Let \(n = 1\). It is not hard to see that the composition of any morphism from \(\text{Hom}_\Lambda(R_p(1), \Lambda)\) with any morphism from \(\text{Hom}_\Lambda(\Lambda, R_p(1))\) is zero. It follows that
\(f_1 : R_p(1) \to R_p(1) \) does not factor through \(\Lambda \). Assume that \(f_k : R_p(k) \to R_p(k) \) does not factor through \(\Lambda \). We have the following factorization of \(f_k \)

\[
\begin{array}{ccc}
R_p(k) & \xrightarrow{f_k} & R_p(k) \\
\downarrow i & & \downarrow \pi \\
R_p(k+1) & \xrightarrow{f_{k+1}} & R_p(k+1)
\end{array}
\]

where \(i \) and \(\pi \) are the natural inclusion and natural projection respectively. Thus, we see that if \(f_{k+1} \) factors through \(\Lambda \) then so does \(f_k \). Hence \(f_n \) does not factor through \(\Lambda \) for any \(n \) in \(\mathbb{N} \). Hence we have proven that the quiver of \(\text{End}_\Lambda(\mathbb{M}) \), has a loop at the vertex of the simple module corresponding to \(R_p(n) \). This implies that \(\text{gldim} \text{End}_\Lambda(\mathbb{M}) = \infty \). □

The above proposition shows that the set of the indecomposable non-projective summands of an Auslander generator of \(\Lambda \) must contain at least one module isomorphic to \(S_n \) for some \(n \). Next, we consider the case where a generator of \(\Lambda \) has exactly one indecomposable direct summand isomorphic to \(S_n \) for some integer \(n \).

Proposition 2.3. Let \(M \) be a generator for \(\text{mod} \Lambda \) such that it has exactly one indecomposable direct summand isomorphic to \(S_n \) for some integer \(n \). Then \(\text{gldim} \text{End}_\Lambda(\mathbb{M}) \geq 4 \).

Proof. Due to Corollary 1.2, we can assume that \(S_n = S_0 = S \). Moreover, since \(\text{gldim} \text{End}_\Lambda(\Lambda \oplus S) = \infty \), we can also assume that \(M \) has at least one more non-projective indecomposable direct summand besides \(S \). Set \(\Gamma = \text{End}_\Lambda(M)^{\text{op}} \). We will compute the projective dimension of the simple \(\Gamma \)-module \(S \), that corresponds to \(S \). Let \(p_1, p_2, \ldots, p_m \) in \(\mathbb{P}^1(k) \), be such that there is an indecomposable direct summand of \(M \) isomorphic to \(R_{p_i}(n_i) \). We choose \(n_i \) to be the largest natural number such that \(R_{p_i}(n_i) \) is isomorphic to a direct summand of \(M \). Straightforward computations show that \(\text{gldim} \text{End}_\Lambda(\Lambda \oplus S \oplus R_p(1)) = \infty \), for any \(p \) in \(\mathbb{P}^1(k) \), so we can assume in addition that if \(m = 1 \), then \(n_1 > 1 \). Let \(g_1 : R_{p_1}(n_1) \to S \) be the morphism given by the matrix

\[
A_{g_1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}
\]

We show that we then have an exact sequence

\[
0 \to S_{(\sum_{i=1}^m n_i)-1} \to R_{p_1}(n_1) \oplus \cdots \oplus R_{p_m}(n_m) \xrightarrow{\sum_{i=1}^m g_i} S \to 0
\]

We use induction on \(m \). Let \(m = 1 \). We show induction on \(n_1 \) that we have an exact sequence

\[
0 \to S_{n_1-1} \to R_{p_1}(n_1) \xrightarrow{g_1} S \to 0.
\]

For \(n_1 = 1 \) it is obvious that the sequence

\[
0 \to S \to R_{p_1}(1) \xrightarrow{g_1} S \to 0
\]

is exact. Assume that for \(n_1 = k \) the sequence

\[
0 \to S_{k-1} \to R_{p_1}(k) \xrightarrow{g_1} S \to 0
\]
is exact and consider the following pushout diagram

\[
\begin{array}{ccccccccc}
0 &
\rightarrow & S_{k-1} &
\rightarrow & R_p(k) &
\rightarrow & S &
\rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 &
\rightarrow & \text{Ker } q_1 &
\rightarrow & R_p(k+1) &
\rightarrow & S &
\rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
R_p(1) &
\rightarrow & R_p(1) &
\rightarrow & 0 &
\rightarrow & 0 \\
\end{array}
\]

where the inclusion \(i \) is the irreducible morphism from \(R_p(k) \) to \(R_p(k+1) \). Since the rightmost vertical short exact sequence of the diagram is non-split, the leftmost vertical short exact sequence is also non-split. We claim \(\text{Ker } q_1 \cong S_k \). First note that since all the morphisms involved in the above diagram are graded, with respect to the grading induced by the radical layers, we can view the above diagram over the Kronecker algebra. If \(X \) is an indecomposable direct summand of \(\text{Ker } q_1 \), then as we see from the leftmost vertical sequence of the diagram, there is a nonzero morphism from \(S_{k-1} \), which is a preprojective module, to \(X \), and a nonzero morphism from \(X \) to \(R_p(1) \), which is a regular module. This means that \(X \) has to be either a preprojective module with \(t \geq k-1 \) or a regular module from the same tube as \(R_p(1) \). Since the sequence \(0 \rightarrow S_{k-1} \rightarrow \text{Ker } q_1 \rightarrow R_p(1) \rightarrow 0 \) does not split, it is easy to see, by counting the dimensions of the top and the socle sequence, that \(X \) has to be isomorphic to \(S_k \). Hence \(\text{Ker } q_1 \cong S_k \).

Next assume that for \(m = k > 1 \) there is an exact sequence

\[
0 \rightarrow S_{(\sum_{i=1}^{k} n_i)-1} \rightarrow R_p(n_1) \oplus \cdots \oplus R_p(n_k) \rightarrow S \rightarrow 0
\]

Let \(j \in \{1, \ldots, k, k+1\} \) and consider the following commutative exact diagram:

\[
\begin{array}{ccccccccc}
0 &
\rightarrow & S_{(\sum_{i=1}^{k+1} n_i)-1} &
\rightarrow & \sum_{i \neq j}^{k+1} R_p(n_i) &
\rightarrow & S &
\rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 &
\rightarrow & \text{Ker } q &
\rightarrow & \sum_{i=1}^{k+1} R_p(n_i) &
\rightarrow & S &
\rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
R_p(n_j) &
\rightarrow & R_p(n_j) &
\rightarrow & 0 &
\rightarrow & 0 \\
\end{array}
\]

We view the above diagram over the Kronecker algebra \(H \). Then, as we see from the diagram, there is a nonzero morphism form \(\text{Ker } q \) to \(R_p(n_j) \), for all \(j \) in \(\{1, \ldots, k, k+1\} \). But since over the Kronecker algebra we have
\(\text{Hom}_H(R_p(n), R_q(m)) = \{0\} \), for \(p \neq q \) and any \(m \) and \(n \), we conclude that \(\text{Ker} \ g \) does not contain any summand isomorphic to \(R_p(n) \) for any \(p \) and \(n \). Hence, \(\text{Ker} \ g \) only contains summands isomorphic to \(S_n \) for some \(n \geq (\sum_{i=1}^{k+1} n_i) - 1 \). The only \(n \) such that \(S_n \) satisfies the dimension formulas for the top and the socle sequences of the sequence \(0 \to S_{(\sum_{i=1}^{k+1} n_i) - 1} \to \text{Ker} \ g \to R_p(n_i) \to 0 \), is \(n = (\sum_{i=1}^{k+1} n_i) - 1 \). Thus, we have that

\[\text{Ker} \ g \simeq S_{(\sum_{i=1}^{k+1} n_i) - 1}. \]

Hence, we have shown that for any \(m \geq 0 \) we have an exact sequence

\[0 \to S_{(\sum_{i=1}^{m} n_i) - 1} \to R_{p_1}(n_1) \oplus \cdots \oplus R_{p_m}(n_m) \xrightarrow{g = (g_1, \ldots, g_m)} S \to 0 \]

Recall that \(n_i \) is chosen to be the largest natural number such that \(R_{p_i}(n_i) \) is isomorphic to a direct summand of \(M \). Due to this fact it is not hard to see that the cokernel of the morphism

\[\text{Hom}_A(M, g): \text{Hom}_A(M, R_{p_1}(n_1) \oplus \cdots \oplus R_{p_m}(n_m)) \to \text{Hom}_A(M, S) \]

is the simple module \(S \) (see again [2, IV.7] for the structure of the Hom-spaces between regular modules over the Kronecker algebra). Since the functor \(\text{Hom}_A(M, -) \) is left exact, we have an exact sequence of \(\Gamma \)-modules

\[0 \to \text{Hom}_A(M, S_{(\sum_{i=1}^{m} n_i) - 1}) \to \text{Hom}_A(M, R_{p_1}(n_1) \oplus \cdots \oplus R_{p_m}(n_m)) \xrightarrow{\text{Hom}_A(M, g)} \text{Hom}_A(M, S) \to S \to 0 \]

Note that the \(\Gamma \)-modules \(\text{Hom}_A(M, R_{p_1}(n_1) \oplus \cdots \oplus R_{p_m}(n_m)) \) and \(\text{Hom}_A(M, S) \) are projective, hence \(\text{Hom}_A(M, S_{(\sum_{i=1}^{m} n_i) - 1}) \simeq \Omega^+_\Gamma(S) \). Since we have assumed that if \(m = 1 \), then \(n_1 > 1 \), we have that \(S_{(\sum_{i=1}^{m} n_i) - 1} \) is not in add \(M \), hence \(\text{pd}_\Gamma S > 2 \). To compute the rest of the projective resolution of \(S \), we need to find an add \(M \)-approximation of the \(\Lambda \)-module \(S_{(\sum_{i=1}^{m} n_i) - 1} \). Let

\[p: P \to S_{(\sum_{i=1}^{m} n_i) - 1} \]

be the projective cover of \(S_{(\sum_{i=1}^{m} n_i) - 1} \) and

\[i: \text{Soc}(S_{(\sum_{i=1}^{m} n_i) - 1}) \to S_{(\sum_{i=1}^{m} n_i) - 1} \]

be the natural inclusion. Then, it is easy to verify that the morphism

\[P \oplus \text{Soc}(S_{(\sum_{i=1}^{m} n_i) - 1}) \xrightarrow{(p \ i)} S_{(\sum_{i=1}^{m} n_i) - 1} \]

is the minimal add \(M \)-approximation of \(S_{(\sum_{i=1}^{m} n_i) - 1} \). Moreover, straightforward computation shows that

\[\text{Ker}(p \ i) \simeq S_{-(\sum_{i=1}^{m} n_i) + 1} \]

Hence, we have an exact sequence

\[0 \to \text{Hom}_A(M, S_{-(\sum_{i=1}^{m} n_i) + 1}) \to \text{Hom}_A(M, P \oplus \text{Soc}(S_{(\sum_{i=1}^{m} n_i) - 1})) \xrightarrow{\text{Hom}_A(M, (p \ i))} \text{Hom}_A(M, S_{(\sum_{i=1}^{m} n_i) - 1}) \to 0 \]

Since \(S_{-(\sum_{i=1}^{m} n_i) + 1} \) is not in add \(M \), we have that the \(\Gamma \)-module \(\text{Hom}_A(M, S_{-(\sum_{i=1}^{m} n_i) + 1}) \), which is isomorphic to \(\Omega^+_\Gamma(S) \), is not projective. Hence \(\text{pd}_\Gamma(S) \geq 4 \), which implies that \(\text{gldim} \Gamma \geq 4 \). Thus, \(\text{gldim} \text{End}_A(M) \geq 4 \). \(\square \)

So, according to Propositions 2.2 and 2.3, the set of non-projective indecomposable summands of an Auslander generator \(M \) of \(\Lambda \), must contain at least two modules from the component of the AR-quiver that contains \(\Lambda \). We show that if \(M \) is in addition minimal, then \(M \simeq M_n \), for some integer \(n \). We need the following lemma.
Lemma 2.4. For any positive integers n and k, there exists a short exact sequence

$$0 \to S^{k}_{-(n+k)} \to S^{k+1}_{-(n+k)} \xrightarrow{f_{-(n+k)}} S_{-n} \to 0,$$

where the morphism $f_{-(n+k)}$ has the following property: if X is an indecomposable Λ-module which is not isomorphic to $S_{-(n+i)}$ for $i = 0, \ldots, k-1$, then any morphism $f: X \to S_{-n}$, factors through $f_{-(n+k)}$.

Proof. We prove the claim using induction on k. Let $k = 1$. Then the almost split sequence

$$0 \to S_{-(n+2)} \to S^{2}_{-(n+1)} \to S_{-n} \to 0$$

has the desired properties, so we can choose $f_{-(n+1)}$, to be the minimal right almost split morphism ending at S_{-n}. Assume that for $k = l$ there exists a short exact sequence

$$0 \to S^{l}_{-(n+l+1)} \xrightarrow{g} S^{l+1}_{-(n+l)} \xrightarrow{f_{-(n+l)}} S_{-n} \to 0,$$

with the property described in the statement of the lemma. Let

$$0 \to S^{l+1}_{-(n+l+2)} \to S^{2(l+1)}_{-(n+l+1)} \xrightarrow{\epsilon} S^{l+1}_{-(n+l)} \to 0$$

be the direct sum of $l+1$ copies of the almost split sequence ending at $S_{-(n+l)}$. Then, there exists a morphism $h: S^{l}_{-(n+l+1)} \to S^{2(l+1)}_{-(n+l+1)}$ such that $\epsilon \circ h = g$. Viewing these morphisms over the Kronecker algebra H, and using that $\dim H \text{Hom}_{H}(S^{l}_{-(n+l+1)}, S^{2(l+1)}_{-(n+l+1)}) = 1$, we conclude that h is a split monomorphism. Hence, we obtain the following pullback diagram

$$
\begin{array}{ccc}
0 & \to & S^{l+1}_{-(n+l+2)} \\
\downarrow & & \downarrow h \\
S^{l}_{-(n+l+1)} & \xrightarrow{g} & S^{l+1}_{-(n+l)} \\
\downarrow & & \downarrow \epsilon \\
0 & \to & S^{2(l+1)}_{-(n+l+1)} \\
\downarrow & & \downarrow f_{-(n+l)} \\
0 & \to & S^{l+2}_{-(n+l+1)} \\
\downarrow & & \downarrow f_{-(n+l+1)} \\
0 & \to & S^{l+1}_{-(n+l+2)} \\
\downarrow & & \downarrow f_{-(n+l+2)} \\
0 & \to & S_{-n} \\
\end{array}
$$

It is easy to verify, from the above commutative diagram, that the morphism $f_{-(n+l+1)}$ has the desired factorization property. \qed

We are now ready to prove that the Λ-modules $M_n = \Lambda \oplus S_n \oplus S_{n+1}$, for n in \mathbb{Z}, form a complete set of non-isomorphic minimal Auslander generators of Λ.

Theorem 2.5. Let M be a minimal Auslander generator of Λ. Then M is isomorphic to $M_n = \Lambda \oplus S_n \oplus S_{n+1}$, for some integer n.

Proof. Let

$$M = \Lambda \oplus M_1 \oplus \cdots \oplus M_s,$$

where M_i is indecomposable non-projective for $i = 1, \ldots, s$. In view of Propositions 2.2 and 2.3 the set of the indecomposable non-projective direct summands of M must contain at least two modules from the component of the AR-quoter of Λ that contains Λ. So we can assume that $M_1 \simeq S_m$ and $M_2 \simeq S_n$, where n and m are
such that \(n < m \), and if one of the modules \(M_i \), for \(i = 3, \ldots, s \), is isomorphic to \(S_l \), then \(l < n \). Let \(i \) be an integer such that \(m - 2i < -1 \) and consider the module

\[
\widetilde{M} = \Lambda \oplus \tau^i(M_1 \oplus \cdots \oplus M_s).
\]

By Corollary 1.2, we have that \(\widetilde{M} \) is also a minimal Auslander generator. Moreover

\[
\tau^i M_1 \simeq \tau^i S_m \simeq S_{m-2i}
\]

and

\[
\tau^i M_2 \simeq \tau^i S_n \simeq S_{n-2i}.
\]

Set \(m - 2i = m' \) and \(n - 2i = n' \). Then \(n' < m' < -1 \). In order to prove the claim of the theorem, we compute a projective resolution of the simple \(\text{End}_\Lambda(\widetilde{M})^{\text{op}} \)-module \(S_\Lambda \), that corresponds to \(\Lambda \). We show that \(\text{pd} S_\Lambda \leq 3 \) if and only if \(m' = n' + 1 \).

We first need to compute an add \(\widetilde{M} \)-approximation of \(\text{rad} \Lambda = S_{-1} \). Let

\[
0 \rightarrow S_{m'-1}^{-(m'+1)} \rightarrow S_{m'}^{m'} \xrightarrow{f_{m'}} S_{-1} \rightarrow 0
\]

be the short exact sequence that we get from Lemma 2.4 for \(n = -1 \) and \(k = -m' + 1 \). Then, by the choice of \(m' \), the morphism \(f_{m'} \) is a right add \(\widetilde{M} \)-approximation of \(S_{-1} \). Hence, applying the functor \(\text{Hom}_\Lambda(\widetilde{M}, -) \) to the short exact sequence above, we get the short exact sequence

\[
0 \rightarrow \text{Hom}_\Lambda(\widetilde{M}, S_{m'-1}^{-(m'+1)}) \rightarrow \text{Hom}_\Lambda(\widetilde{M}, S_{m'}^{m'}) \rightarrow \text{Hom}_\Lambda(\widetilde{M}, S_{-1}) \rightarrow 0.
\]

But \(S_{-1} = \tau_\Lambda \) and the natural inclusion \(i: S_{-1} \rightarrow \Lambda \) is the right almost split morphism ending at \(\Lambda \), so we have a short exact sequence

\[
0 \rightarrow \text{Hom}_\Lambda(\widetilde{M}, S_{-1}) \rightarrow \text{Hom}_\Lambda(\widetilde{M}, \Lambda) \rightarrow S_\Lambda \rightarrow 0.
\]

Moreover, \(\Lambda \) and \(S_{m'} \) are in add \(\widetilde{M} \), which implies that \(\text{Hom}_\Lambda(\widetilde{M}, \Lambda) \) and \(\text{Hom}_\Lambda(\widetilde{M}, S_{m'}^{m'}) \) are projective \(\text{End}_\Lambda(\widetilde{M})^{\text{op}} \)-modules. Hence,

\[
\text{Hom}_\Lambda(\widetilde{M}, S_{m'-1}^{-(m'+1)}) = \Omega^2_{\text{End}_\Lambda(\widetilde{M})^{\text{op}}}(S_\Lambda).
\]

Now, assume that \(S_{m'-1} \) is not in add \(\widetilde{M} \). We will show that this assumption leads to a contradiction. To continue the projective resolution of \(S_\Lambda \), we need to compute a right add \(\widetilde{M} \)-approximation of \(S_{m'-1} \). Let

\[
0 \rightarrow S_{n'-1}^{n'-1} \rightarrow S_{n'}^{n'} \xrightarrow{f_{n'}} S_{m'-1} \rightarrow 0
\]

be the short exact sequence that we get from Lemma 2.4 for \(n = -(m' - 1) \) and \(k = m' - n' - 1 \). Then, by the choice of \(m' \) and \(n' \), the morphism \(f_{n'} \), is a right add \(\widetilde{M} \)-approximation of \(S_{m'-1} \). Hence, applying the functor \(\text{Hom}_\Lambda(\widetilde{M}, -) \), we get the short exact sequence

\[
0 \rightarrow \text{Hom}_\Lambda(\widetilde{M}, S_{n'-1}^{n'-1}) \rightarrow \text{Hom}_\Lambda(\widetilde{M}, S_{n'}^{n'}) \rightarrow \text{Hom}_\Lambda(\widetilde{M}, S_{m'-1}) \rightarrow 0.
\]

Since \(S_{n'} \) is in add \(\widetilde{M} \), the \(\text{End}_\Lambda(\widetilde{M})^{\text{op}} \)-module \(\text{Hom}_\Lambda(\widetilde{M}, S_{n'}^{n'}) \) is projective. Hence,

\[
\text{Hom}_\Lambda(\widetilde{M}, S_{n'-1}^{n'-1}) = \Omega^3_{\text{End}_\Lambda(\widetilde{M})^{\text{op}}}(S_\Lambda).
\]

Since \(\widetilde{M} \) is an Auslander generator, we have that \(\text{gldim} \text{End}_\Lambda(\widetilde{M})^{\text{op}} = 3 \), so \(\text{pd}_{\text{End}_\Lambda(\widetilde{M})^{\text{op}}} S_\Lambda \leq 3 \). Hence, \(\text{Hom}_\Lambda(\widetilde{M}, S_{n'-1}^{n'-1}) = \Omega^3_{\text{End}_\Lambda(\widetilde{M})^{\text{op}}}(S_\Lambda) \) is projective which implies that \(S_{n'-1} \) is in add \(\widetilde{M} \). But then \(\widetilde{M} \) contains as direct summands the modules \(S_{n'-1}, S_{n'} \) and \(S_{m'} \), which contradicts the minimality of \(\widetilde{M} \), since the module \(M_{n'-1} = \Lambda \oplus S_{n'-1} \oplus S_{n'} \) is already an Auslander generator.
Hence, the Λ-module $S_{m' - 1}$ is in $\text{add} \tilde{M}$, and since \tilde{M} is a minimal Auslander generator, we have that $m' = n' + 1$

$$\tilde{M} \simeq \Lambda \oplus S_{n'} \oplus S_{n'+1} \simeq M_{n'}$$

and then,

$$M \simeq \Lambda \oplus S_n \oplus S_{n+1} \simeq M_n.$$

□

We end this section with a remark on the number of the non-projective indecomposable direct summands of the minimal Auslander generators of Λ. In [10], Rouquier proved that for a selfinjective algebra A with repdim $A = 3$, the number of the non-projective indecomposable direct summands m of an Auslander generator M, is at least half of the number of the isomorphism classes of simple A-modules n. In [3], Dugas improved this result by showing that $m \geq (2/3)n$, and if, in addition, A is weakly symmetric or of Loewy length three, then $m \geq n$. In the case of the exterior algebra in two variables Λ, that we studied here, we have $m = 2$, that is twice the number of simple Λ-modules, for all minimal Auslander generators. This fact might suggest that the bounds given by Dugas can be further improved. Moreover, a natural question that arises is whether the number of the non-projective indecomposable direct summands is the same for all minimal Auslander generators, for any artin algebra.

References

[1] M. Auslander, Representation dimension of Artin algebras, Queen Mary College Mathematics Notes (1971).
[2] M. Auslander, I. Reiten, S. O. Smalø, Representation theory of artin algebras.
[3] A. Dugas, Representation Dimension as Relative Homological Invariant of Stable Equivalence, Algebr. Represent. Theory 10 (2007), no. 3, 223–240.
[4] K. Igusa, Notes on the no loops conjecture, J. Pure Appl. Algebra 69 (1990), no. 2, 161–176.
[5] K. Igusa, G. Todorov, On the finitistic global dimension conjecture for Artin algebras, Representations of algebras and related topics, 201–204, Fields Inst. Commun., 45, Amer. Math. Soc., Providence, RI, 2005.
[6] O. Iyama, Finiteness of representation dimension, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1011–1014.
[7] M. Lada, Relative homology and maximal l-orthogonal modules, J. Algebra 321 (2009), 2798–2811.
[8] M. Lada, Mutation of Auslander generators, arXiv:0906.5288.
[9] R. Rouquier, Representation dimension of exterior algebras, Invent. Math. 165 (2006), no. 2, 357–367.
[10] R. Rouquier, Dimensions of triangulated categories, J. K-Theory 1(2008), no. 2, 193–256.

Magdalini Lada, Institutt for matematiske fag, NTNU, N–7491 Trondheim, Norway
E-mail address: magdalina@math.ntnu.no