Supporting Information

Comparison of electrocatalytic activity of Pt$_{1-x}$Pd$_x$/C catalyst for ethanol electro-oxidation in acidic and alkaline media

Qiang Zhanga, Ting Chena, Rongyan Jiangb, Fengxing Jiangac

aSchool of Science, Shandong Jianzhu University, Jinan 250101, China

bSchool of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101, China

cDepartment of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China

*Corresponding Author: F. Jiang, E-mail: f.x.jiang@live.cn

Number of pages: 5

Number of Figures: 1

Number of Schemes: 0

Number of Tables: 1
Fig. S1 CO stripping voltammograms of Pt$_{1-x}$Pd$_x$/C catalysts in 0.5 M H$_2$SO$_4$ solution.
Table S1. Comparison of ethanol oxidation behavior on the Pt\textsubscript{1-x}Pd\textsubscript{x}/C composites and recent state-of-the art Pt or Pd-based electrocatalysts.

Catalysts	\(j_f \) (mA mg\(^{-1}\))	Electrolyte	Reference
PdCoNTAs\(^a\)/CFC\(^b\)	1500	1.0 M C\(_2\)H\(_5\)OH + 1.0 M KOH	1
Pd PNs \(^c\)/VXC	1300	1.0 M C\(_2\)H\(_5\)OH + 0.5 M NaOH	2
Pd@CoPNS\(^d\)/CFC	1413.3	1.0 M C\(_2\)H\(_5\)OH + 1.0 M KOH	3
PdAg-HNs \(^e\)	1615.9	1.0 M C\(_2\)H\(_5\)OH + 1.0 M KOH	4
Pd/PANI/Pd	350	1.0 M C\(_2\)H\(_5\)OH + 1.0 M KOH	5
SNTAs \(^f\)			
PdCu\(_2\)	1630	1.0 M C\(_2\)H\(_5\)OH + 1.0 M KOH	6
Pd-Sn ANSDs \(^g\)	576	1.0 M C\(_2\)H\(_5\)OH + 1.0 M KOH	7
PdNi/C	450	0.5 M C\(_2\)H\(_5\)OH + 0.1 M KOH	8
Pd\(_{45}\)Pt\(_{55}\)	~950	1.0 M C\(_2\)H\(_5\)OH + 0.5 M NaOH	9
nanowires/GCE\(^h\)			
PdAg BANWs \(^i\)	1970	1.0 M C\(_2\)H\(_5\)OH + 1.0 M KOH	10
Pt-based electrocatalysts			
Pt/C+20 wt.%TiO\(_2\)	647.6	1.0 M C\(_2\)H\(_5\)OH + 1.0 M HClO\(_4\)	11
PtRu/C	1200	1.0 M C\(_2\)H\(_5\)OH + 1.0 M KOH	12
Pt/3DGF\(^j\)	1406	1.0 M C\(_2\)H\(_5\)OH + 1.0 M KOH	13
PtCu/C	1200	0.1 M C\(_2\)H\(_5\)OH + 0.3 M KOH	14
Pt-Pd/C	100	1.0 M C\(_2\)H\(_5\)OH + 0.1 M HClO\(_4\)	14
Pd\(_{45}\)Pt\(_{55}\)	900	1.0 M C\(_2\)H\(_5\)OH + 0.5 M NaOH	15
PtCu nanocone alloy	320	0.1 M C\(_2\)H\(_5\)OH + 0.5 M H\(_2\)SO\(_4\)	16
Pt-Ru/C	201.23	0.5 M C\(_2\)H\(_5\)OH + 0.1 M H\(_2\)SO\(_4\)	17
Pt\(_{1}\)Ru\(_{1}\)-RGO	1194	1.0 M C\(_2\)H\(_5\)OH + 1.0 M KOH	18
Pt\(_{34}\)Pd\(_{32}\)Cu\(_{33}\)	190	0.5 M C\(_2\)H\(_5\)OH + 0.1 M HClO\(_4\)	19
Pt-CeO\(_2\)-MWCNT	1410	1.0 M C\(_2\)H\(_5\)OH + 1.0 M KOH	20
Pt\(_{25}\)Pd\(_{77}\)/C	2453.7	1.0 M C\(_2\)H\(_5\)OH + 1.0 M KOH	This work

\(^a\)NTAs: nanotube arrays; \(^b\)CFC: carbon fiber cloth; \(^c\)PNPs: porous nanoparticles; \(^d\)NSs: nanosheets; \(^e\)HNs: hollownanoflowers; \(^f\)SNTAs: sandwich structured nanotube arrays; \(^g\)ANSDs: alloy nanosheet dendrites; \(^h\)GCE: glass carbon electrode; \(^i\)BANWs: bimetallic alloy networks; \(^j\)NPNCs: N-dopedporous carbon nanocapsules; \(^3\)DGF: 3D graphene framework

REFERENCES

1 A. L. Wang, X. J. He, X. F. Lu, H. Xu, Y. X. Tong and G. R. Li, Angew. Chem.
Int. Ed., 2015, 54, 3669-3673.

2 W. Hong, Y. Fang, J. Wang and E. Wang, J. Power Sources, 2014, 248, 553-559.

3 S. H. Ye, J. X. Feng and G. R. Li, ACS Catal., 2016, 6, 7962-7969.

4 D. Bin, B. Yang, K. Zhang, C. Wang, J. Wang, J. Zhong, Y. Feng, J. Guo and Y. Du, Chemistry, 2016, 22, 16642-16647.

5 A. L. Wang, H. Xu, J. X. Feng, L. X. Ding, Y. X. Tong and G. R. Li, J. Am. Chem. Soc., 2013, 135, 10703-10709.

6 J. Xue, G. Han, W. Ye, Y. Sang, H. Li, P. Guo and X. S. Zhao, ACS Appl. Mater. Interfaces, 2016, 8, 34497-34505.

7 L. X. Ding, A. L. Wang, Y. N. Ou, Q. Li, R. Guo, W. X. Zhao, Y. X. Tong and G. R. Li, Sci. Rep., 2013, 3, 1-6.

8 K. Lee, S. W. Kang, S. U. Lee, K. H. Park, Y. W. Lee and S. W. Han, ACS Appl. Mater. Interfaces, 2012, 4, 4208-4214.

9 C. Zhu, S. Guo and S. Dong, Adv. Mater., 2012, 24, 2326-2331.

10 S. Fu, C. Zhu, D. Du and Y. Lin, ACS Appl. Mater. Interfaces, 2015, 7, 13842-13848.

11 L. Yu and J. Xi, Electrochim. Acta, 2012, 67, 166-171.

12 H. Gao, S. Liao, Z. Liang, H. Liang and F. Luo, J. Power Sources, 2011, 196, 6138-6143.

13 C. Hu, H. Cheng, Y. Zhao, Y. Hu, Y. Liu, L. Dai and L. Qu, Adv. Mater., 2012, 24, 5493-5498.

14 J. Maya-Cornejo, R. Carrera-Cerritos, D. Sebastián, J. Ledesma-García, L. G. Arriaga, A. S. Aricò and V. Baglio, Int. J. Hydrogen Energy, 2017, 42, 27919-27928.

15 C. Zhu, S. Guo and S. Dong, Adv. Mater., 2012, 24, 2326-2331.

16 F. Saleem, Z. Zhang, B. Xu, X. Xu, P. He and X. Wang, J. Am. Chem. Soc., 2013, 135, 18304-18307.

17 D. González-Quijano, W. J. Pech-Rodríguez, J. A. González-Quijano, J. I. Escalante-García, G. Vargas-Gutiérrez, I. Alonso-Lemus and F. J. Rodriguez-Varela, Int. J. Hydrogen Energy, 2015, 40, 17291-17299.

18 Q. Q. Xia, L. Y. Zhang, Z. L. Zhao and C. M. Li, J. Colloid Interface Sci., 2017,
506, 135-143.

19 J. Lan, K. Wang, Q. Yuan, X. Wang, *Mater. Chem. Front.* 2017, 1, 1217-1222.

20 M. Sedighi, A. A. Rostami, E. Alizadeh, *Int. J. Hydrogen Energy* 2017, 42, 4998-5005.