Fourth Generation Pseudoscalar Quarkonium Production and Observability at Hadron Colliders

E. Arika, O. Çakırb, S.A. Çetina, S. Sultansoyc,d

a) Department of Physics, Faculty of Arts and Sciences, Boğaziçi University, Bebek, 80815, Istanbul, Turkey
b) Department of Physics, Faculty of Sciences, Ankara University, 06100, Tandoğan-Ankara, Turkey
c) Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500, Teknikokullar, Ankara, Turkey
d) Institute of Physics, Academy of Sciences, H. Cavid Avenue 33, 370143, Baku, Azerbaijan

Abstract

The pseudoscalar quarkonium state $\eta_4 (^1S_0)$, formed by the Standard Model (SM) fourth generation quarks, is the best candidate among the fourth generation quarkonia to be produced at the LHC and VLHC. The production of this $J^{PC} = 0^{+-}$ resonance is discussed and the background processes are studied to obtain the integrated luminosity limits for the discovery, depending on its mass.
The number of SM generations with light neutrinos are limited by the LEP data to \(N = 3.0 \pm 0.06 \) [1]. On the other hand, there are serious democracy arguments favoring the existence of a heavy fourth SM generation, with members having almost equal masses [2, 3, 4, 5]. Typical mass range considered is 300 GeV to 700 GeV. Within a democratic mass matrix approach, small masses for the first three neutrinos are compatible with large mixing angles, assuming that neutrinos are of the Dirac type [6]. Experimental lower bounds on the fourth SM generation fermions are as follows [1]: 92.4 GeV for charged lepton, 45(39.5) GeV for Dirac (Majorana) neutrino and 199(128) GeV for down quark decaying via neutral (charged) current.

Latest precision electroweak data allow the existence of a fourth SM generation with heavy Dirac neutrinos [7, 8]. Moreover, two or three extra generations with relatively light neutrinos (\(m_N \approx 50 \text{ GeV} \)) are also allowed [8]. The fourth generation quarks will be copiously produced at the LHC [3, 11, 12]. In addition, extra SM generations will yield an essential enhancement in Higgs production, via gluon-gluon fusion, at Tevatron and LHC [12, 13, 14, 15, 16]. Future lepton colliders will give an opportunity to investigate the fourth generation leptons [17, 18, 19].

Due to small inter-generation mixing, another expectation is the formation of the fourth generation quarkonia (\(Q_4 \bar{Q}_4 \)) , provided that the condition

\[
m_{Q_4} < (125 \text{ GeV})|V_{qQ_4}|^{-2/3}
\]

is satisfied [20]. Here \(q \) denotes the known quarks and \(V_{qQ_4} \) is the extended Cabibbo-Kobayashi-Maskawa matrix element. The parametrization given in [2, 3], for the fourth SM generation, satisfies the above requirement. In hadron collisions, gluon-gluon fusion is the main process for the production of quarkonia [21]. The \(J^{PC} = 0^{-+} \) pseudoscalar quarkonium state \(\eta_4 \) (\(^1S_0 \)) which is produced in the subprocess \(gg \rightarrow \eta_4 \), has a production cross section two orders of magnitude larger than the \(J^{PC} = 1^{--} \) vector state \(\Psi \), since \(gg \rightarrow g\Psi \) will be the mechanism for the vector quarkonium. For this reason, lepton colliders are more suitable for investigation of vector quarkonia [18, 19], whereas hadron machines are best for the investigation of pseudoscalar quarkonia.

In this work, we consider the process \(pp \rightarrow \eta_4 X \) for the production of \((u_4 \bar{u}_4) \) pseudoscalar quarkonium at the LHC, including possible energy (\(\sqrt{s} = 28 \text{ TeV} \)) and luminosity (\(L = 10^{35} \))
FIG. 1: Branching ratios for η_4 as a function of its mass with $m_h = 150$ GeV

cm$^{-2}$s$^{-1}$ upgrades [22], and the VLHC Stage 1 (2) with $\sqrt{s} = 40$ (175) TeV and $L = 10^{34}$ (2×10^{34}) cm$^{-2}$s$^{-1}$ [23]. For completeness we also consider the RLHC with $\sqrt{s} = 100$ TeV and $L = 10^{34}$ cm$^{-2}$s$^{-1}$ [24].

The decay modes of η_4 are gg, $f\bar{f}$, $\gamma\gamma$, ZZ, $Z\gamma$, Zh, WW; where the $\eta_4 \rightarrow Zh$ decay has the largest branching ratio (for $m_{\eta_4} \geq 600$ GeV). In Figure 1(2), we present the variation of the η_4 branching ratios as a function of the m_{η_4} for the Higgs boson mass $m_h = 150$ (250) GeV. The total decay width is presented in Fig. 3 which is calculated using Coulomb potential for the $(u_4\bar{u}_4)$ bound state.

The cross section for η_4 production at hadron colliders, can be expressed as

$$\sigma(pp \rightarrow \eta_4 X) = K \frac{\pi^2}{8 \, m_{\eta_4}^3} \Gamma(\eta_4 \rightarrow gg) \tau \int_\tau^1 \frac{dx}{x} \, g(x, Q^2) \, g(\frac{\tau}{x}, Q^2)$$ \hspace{1cm} (2)

where

$$\Gamma(\eta_4 \rightarrow gg) = 8 \, \alpha_s^2(Q^2) \, |R_S(0)|^2 / (3 \, m_{\eta_4}^2),$$ \hspace{1cm} (3)
FIG. 2: Branching ratios for η_4 as a function of its mass with $m_h = 250$ GeV

FIG. 3: Total decay width of η_4 as a function of its mass for $m_h = 150$ and 250 GeV
\(\alpha_s(Q^2) \) is the strong coupling constant and \(\tau = m_{\eta_4}^2/s \) with \(\sqrt{s} \) being the center of mass energy of the collider. \(R_S(0) \) is the radial wave function of the S-state evaluated at the origin \([21]\). \(K \approx 2 \) is the enhancement factor for next-to-leading order QCD effects. For the gluon distribution function \(g(x, Q^2) \) we have used CTEQ5L \([26]\) with \(Q^2 = m_{u_4}^2 \).

In Figure 4, \(\eta_4 \) production cross section is plotted for the LHC, upgraded LHC, RLHC and VLHC. In Tables I and II the production cross sections and branching ratios for all the decay modes are given for different values of \(m_{\eta_4} \). The most promising channels are \(\eta_4 \rightarrow \gamma\gamma \) and \(\eta_4 \rightarrow Zh \). For the background calculations we use PYTHIA 6.2 \([25]\).

\(\gamma\gamma \) Channel. The dominant backgrounds to this channel are \(f\bar{f} \rightarrow \gamma\gamma \) and \(gg \rightarrow \gamma\gamma \) with cross sections \(2 \times 10^4 \) pb and \(3 \times 10^5 \) pb, respectively. In order to suppress the backgrounds we apply a cut \(p_T > 0.4m_{\eta_4} \) on transverse momentum of both photons. This requirement reduces the signal by \(\sim 40\% \), whereas the background drops drastically. Furthermore, we use \(|\eta| < 2.5 \) for pseudorapidity coverage, and also consider 60% efficiency for two photon identification. Finally, we use a mass window \(m_{\gamma\gamma} \pm 2\sigma_m \) for two photons invariant mass.
using:

\[\sigma_m = m_{\gamma\gamma} \left(\frac{0.07}{\sqrt{E_{\gamma}}} + 0.005 \right) \] \hspace{1cm} (4)

The number of signal and background events and the corresponding statistical significances satisfying the conditions above are given in Table III for \(L_{\text{int}} = 100 \text{fb}^{-1} \). In the last two columns of the Table, the integrated luminosities needed to achieve 3\(\sigma \) and 5\(\sigma \) discovery criteria are presented. One can see that LHC with \(\sqrt{s} = 14 \text{ TeV} \) and \(L_{\text{int}} = 100 \text{fb}^{-1} \) is able to explore the quarkonia with mass around 400 GeV. The luminosity upgrade will allow the observation up to \(m_{\eta_4} = 500 \text{ GeV} \). The same mass region could be covered by the energy upgraded LHC with \(L_{\text{int}} = 100 \text{fb}^{-1} \). With both the energy and luminosity upgrades LHC can reach \(m_{\eta_4} = 600 \text{ GeV} \). The achievable upper mass limits at VLHC are 600 GeV and 800 GeV for stage 1 and stage 2, respectively.

Zh Channel. The decay \(\eta_4 \to Zh \) where both \(Z \) and \(h \) decaying into charged leptons has a negligible branching ratio. The final states with \(Z \to ll \) where \(l = e, \mu \) and \(h \to b\bar{b} \) have an overall branching ratio of about 0.5\%. If \(m_h < 160 \text{ GeV} \), this mode will be the best one, otherwise, \(h \to WW^{(*)}, ZZ^{(*)} \) final states may be preferable at LHC (for branching

\(m_\eta (\text{GeV}) \)	400	500	600	700	800	900	
\(\sigma (\text{pb}) \)	LHC (14 TeV)	1.43 \times 10^6	4.61 \times 10^{-1}	1.77 \times 10^{-1}	7.68 \times 10^{-2}	3.66 \times 10^{-2}	1.87 \times 10^{-2}
	LHC (28 TeV)	6.35 \times 10^6	2.19 \times 10^6	9.11 \times 10^{-1}	4.29 \times 10^{-1}	2.21 \times 10^{-1}	1.22 \times 10^{-1}
	VLHC (40 TeV)	1.28 \times 10^3	4.61 \times 10^6	1.96 \times 10^6	9.39 \times 10^{-1}	4.95 \times 10^{-1}	2.79 \times 10^{-1}
	VLHC (100 TeV)	5.82 \times 10^3	2.35 \times 10^4	1.09 \times 10^4	5.69 \times 10^4	3.17 \times 10^4	1.89 \times 10^4
	VLHC (175 TeV)	5.28 \times 10^2	2.58 \times 10^2	1.39 \times 10^2	8.13 \times 10^2	4.99 \times 10^2	2.95 \times 10^2
ratios of the Higgs boson decays see [13]). The main background comes from the pair production of t quarks, associated Zh production and $Zb\bar{b}$ with the cross sections 23 pb, 4×10^{-3} pb and 21 pb, respectively. We use the cuts on the invariant mass of two leptons and two b–jets by requiring $|m_{ll} - m_Z| < 5$ GeV and $|m_{bb} - m_h| < 10$ GeV. These cuts reduce the $t\bar{t}$ and $Zb\bar{b}$ backgrounds by two orders, whereas the signal and Zh background drop to $\approx 85\%$. Furthermore, we assume two b–tagging efficiency as 25% and two lepton identification efficiency 80%. For this channel, we define a variable mass window $m_{llbb} \pm 2\sigma_m$ where

$$\sigma_m = \sqrt{\left(\frac{\Gamma_{\eta_4}}{2.36}\right)^2 + (0.05 m_{\eta_4})^2}.$$ \hspace{1cm} (5)

Since the resolution for b–jets is worse than that for leptons, we use an overall mass resolution of 5% in Eq. (5) which is an average value for b–jets.

The number of signal and background events and the corresponding statistical significances satisfying the conditions above are given in Table IV and for $L_{int} = 100 fb^{-1}$. In the last two columns of the Table, the integrated luminosities needed to achieve 3σ and 5σ are presented. One can see that upgraded LHC with $\sqrt{s} = 14$ TeV and $L_{int} = 1000 fb^{-1}$ cover the quarkonia mass up to 800 GeV. The same mass region could be covered by the energy upgraded LHC with $L_{int} = 100 fb^{-1}$. With both the energy and luminosity upgrades LHC can reach $m_{\eta_4} = 1200$ GeV. The same region will be covered by the VLHC stage 1. The whole predicted mass region for η_4 quarkonia will be covered by VLHC stage 2 and RLHC.

In conclusion, the fourth family pseudoscalar quarkonium η_4 will be copiously produced at future hadron colliders. However, attainable mass ranges are restricted by the large backgrounds. The vector partner of η_4 quarkonium, namely ψ_4 will clearly manifest itself as resonance in lepton collisions. In Table V, we give the correspondence between the hadron \cite{22, 23, 24} and lepton \cite{27, 28, 29} colliders in view of their potentials to observe the fourth family quarkonia.

This work is partially supported by Turkish State Planning Committee (DPT) under the Grant No 2002K102250.

\begin{thebibliography}{99}
\bibitem{1} Review of Particle Physics, D. E. Groom \textit{et al.}, Eur. Phys. J. C \textbf{15}, 1 (2000).
\end{thebibliography}
[2] A. Celikel, A.K. Ciftci and S. Sultansoy, Phys. Lett. B 342, 257 (1995).
[3] S. Atag et al., Phys. Rev. D 54, 5745 (1996).
[4] A. Datta and S. Raychaudhuri, Phys. Rev. D 49, 4762 (1994).
[5] S. Sultansoy, hep-ph/0004271 (2000).
[6] J.I. Silva-Marcos, Phys. Rev. D 59, 091301 (1999).
[7] H. J. He, N. Polonsky and S. Su, Phys. Rev. D 64, 053004 (2001).
[8] V.A. Novikov, L.B. Okun, A.N. Rozanov and M.I. Vysotsky, Phys. Lett. B 529, 111 (2002).
[9] E. Arik et al., "A search for the fourth family quarks at hadron colliders", CERN - ATLAS Internal Note ATL-PHYS-96-091 (1996); E. Arik et al, Phys. Rev. D 58, 117701 (1998).
[10] E. Arik et al., “Observability of standard model fourth family quarks at CERN - LHC”, CERN - ATLAS Internal Note ATL-PHYS-99-005 (1999).
[11] ATLAS Technical Design Report 15, CERN/LHCC/99-15, Vol.2, Ch. 18 (1999).
[12] O. Cakir and S. Sultansoy, Phys. Rev. D 65, 013009 (2002).
[13] E. Arik et al., “Enhancement of the standard model Higgs boson production cross-section with the fourth standard model family quarks”, CERN - ATLAS Internal Note ATL-PHYS-98-125 (1998).
[14] E. Arik et al., “With four Standard Model families, the LHC could discover the Higgs boson with a few fb-1”, CERN - ATLAS Scientific Note SN-ATLAS-2001-006 (2001), e-Print Archive: hep-ph/0109037.
[15] E. Arik, O. Cakir, S. A. Cetin and S. Sultansoy, Phys. Rev. D 66, 033003 (2002).
[16] I. F. Ginzburg, I. P. Ivanov and A. Schiller, Phys. Rev. D 60, 095001 (1999).
[17] H. Ciftci and S. Sultansoy, hep-ph/0107321 (2001).
[18] A. K. Ciftci, R. Ciftci and S. Sultansoy, Phys. Rev. D 65 055001 (2002).
[19] R. Ciftci, A. K. Ciftci, E. Recepoglu and S. Sultansoy, hep-ph/0203083 (2002).
[20] I. Bigi et al., Phys. Lett. B 181, 157 (1986).
[21] V. Barger et al., Phys. Rev. D 35, 3366 (1987).
[22] G. Azuelos et al., J. Phys. G: Nucl. Part. Phys. 28, 2453-2474 (2002).
[23] G. Ambrossio et al., “The VLHC Design Study Group”, Fermilab-TM-21-49 (2001); W. Barletta, Proc. of the 2001 Particle Accelerator Conference, Vol. 1, p. 33, Chicago (2001).
[24] G. Dugan, P. Limon and M. Cyphers, in Proceedings of the 1996 DPF/DPB Summer Study on High Energy Physics, Vol. 1, p.251 (1996).
[25] T. Sjostrand, Comput. Phys. Commun. 135, 238 (2001).

[26] CTEQ Collaboration, H.L. Lai et al., Phys. Rev. D 55, 1280 (1997).

[27] C. Adolphsen et al., International Study Group Progress Report on Linear Collider Development, SLAC-Report-559, KEK Report 2000-7 (2000).

[28] J. Andruszkow et al., TESLA Technical Design Report, Chapter II, DESY-2001-11 (2001).

[29] R. W. Assmann et al., A 3 TeV e+e− Linear Collider Based on CLIC Technology, CERN-2000-08 (2000).
\(m_\eta \) (GeV)	1000	1200	1400	1600	1800	2000				
\(\sigma (pb) \)	\(LHC \ (14 \ T e V) \)	\(LHC \ (28 \ T e V) \)	\(VLHC \ (40 \ T e V) \)	\(VLHC \ (100 \ T e V) \)	\(VLHC \ (175 \ T e V) \)
1.01 \times 10^{-2}	7.11 \times 10^{-2}	1.67 \times 10^{-1}	1.17 \times 10^{0}	3.22 \times 10^{3}						
3.37 \times 10^{-3}	2.72 \times 10^{-3}	6.71 \times 10^{-2}	5.09 \times 10^{-1}	1.48 \times 10^{0}						
1.28 \times 10^{-3}	1.18 \times 10^{-2}	3.06 \times 10^{-2}	2.48 \times 10^{-1}	7.57 \times 10^{-1}						
5.31 \times 10^{-4}	5.62 \times 10^{-3}	1.52 \times 10^{-2}	1.32 \times 10^{-1}	4.19 \times 10^{-1}						
2.38 \times 10^{-4}	2.88 \times 10^{-3}	8.12 \times 10^{-2}	7.49 \times 10^{-2}	2.46 \times 10^{-1}						
1.33 \times 10^{-4}	1.55 \times 10^{-3}	4.58 \times 10^{-3}	4.51 \times 10^{-2}	1.52 \times 10^{-1}						

\(BR(\eta \to ZZ) \) \(m_\eta = 150 \ GeV \)	\(m_\eta = 250 \ GeV \)	\(m_\eta = 150 \ GeV \)	\(m_\eta = 250 \ GeV \)	\(m_\eta = 150 \ GeV \)	\(m_\eta = 250 \ GeV \)
8.17 \times 10^{-5}	4.08 \times 10^{-5}	4.72 \times 10^{-5}	2.59 \times 10^{-5}	1.54 \times 10^{-5}	9.70 \times 10^{-6}
2.25 \times 10^{-5}	1.34 \times 10^{-4}	2.75 \times 10^{-5}	1.61 \times 10^{-5}	1.00 \times 10^{-5}	6.60 \times 10^{-6}
8.40 \times 10^{-6}	5.60 \times 10^{-6}	6.40 \times 10^{-6}	6.00 \times 10^{-6}	2.04 \times 10^{-5}	2.10 \times 10^{-5}

\(BR(\eta \to WW) \) \(m_\eta = 150 \ GeV \)	\(m_\eta = 250 \ GeV \)	\(m_\eta = 150 \ GeV \)	\(m_\eta = 250 \ GeV \)	\(m_\eta = 150 \ GeV \)	\(m_\eta = 250 \ GeV \)
2.99 \times 10^{-4}	1.49 \times 10^{-4}	1.61 \times 10^{-4}	1.13 \times 10^{-4}	1.20 \times 10^{-4}	1.50 \times 10^{-4}
4.90 \times 10^{-5}	3.08 \times 10^{-5}	8.73 \times 10^{-5}	6.20 \times 10^{-6}	3.80 \times 10^{-6}	2.40 \times 10^{-6}
9.00 \times 10^{-5}	2.04 \times 10^{-5}	3.20 \times 10^{-5}	2.30 \times 10^{-5}	1.60 \times 10^{-5}	1.60 \times 10^{-5}

\(BR(\eta \to f \bar{f}) \) \(m_\eta = 150 \ GeV \)	\(m_\eta = 250 \ GeV \)	\(m_\eta = 150 \ GeV \)	\(m_\eta = 250 \ GeV \)	\(m_\eta = 150 \ GeV \)	\(m_\eta = 250 \ GeV \)
1.56 \times 10^{-1}	1.14 \times 10^{-1}	1.23 \times 10^{-1}	9.17 \times 10^{-2}	9.13 \times 10^{-2}	6.67 \times 10^{-2}
8.66 \times 10^{-2}	6.76 \times 10^{-2}	7.07 \times 10^{-2}	7.06 \times 10^{-2}	4.42 \times 10^{-2}	4.42 \times 10^{-2}
5.41 \times 10^{-2}	5.11 \times 10^{-2}	5.11 \times 10^{-2}	5.11 \times 10^{-2}	4.42 \times 10^{-2}	4.42 \times 10^{-2}

\(BR(\eta \to gg) \) \(m_\eta = 150 \ GeV \)	\(m_\eta = 250 \ GeV \)	\(m_\eta = 150 \ GeV \)	\(m_\eta = 250 \ GeV \)	\(m_\eta = 150 \ GeV \)	\(m_\eta = 250 \ GeV \)
1.77 \times 10^{-2}	9.46 \times 10^{-3}	4.49 \times 10^{-2}	4.76 \times 10^{-3}	9.13 \times 10^{-2}	1.82 \times 10^{-2}
8.46 \times 10^{-2}	2.58 \times 10^{-3}	1.58 \times 10^{-2}	1.64 \times 10^{-2}	1.58 \times 10^{-2}	1.58 \times 10^{-2}
4.94 \times 10^{-2}	4.94 \times 10^{-2}	3.12 \times 10^{-2}	3.12 \times 10^{-2}	3.12 \times 10^{-2}	3.12 \times 10^{-2}

| \(BR(\eta \to Zh) \) \(m_\eta = 150 \ GeV \) | \(m_\eta = 250 \ GeV \) | \(m_\eta = 150 \ GeV \) | \(m_\eta = 250 \ GeV \) | \(m_\eta = 150 \ GeV \) | \(m_\eta = 250 \ GeV \) |
| 8.25 \times 10^{-1} | 8.77 \times 10^{-1} | 9.08 \times 10^{-1} | 9.26 \times 10^{-1} | 9.42 \times 10^{-1} | 9.53 \times 10^{-1} |
TABLE III: $\eta_4 \rightarrow \gamma \gamma$ channel: Number of signal, background events and corresponding statistical significances for $L_{int} = 100fb^{-1}$. Integrated luminosities needed to achieve 3σ and 5σ levels are also given. $m_h = 150$ GeV is assumed.

\sqrt{s} (TeV)	m_{η} (GeV)	Signal	Background	S/\sqrt{B}	L_{int} (fb$^{-1}$) for 3σ	L_{int} (fb$^{-1}$) for 5σ
LHC	14					
	400	87	534	3.8	64	178
	500	15	261	0.9	1073	2980
	28					
	400	385	1184	11.2	7	20
	500	70	599	2.9	109	303
	600	16	312	0.9	1048	2910
VLHC Stage 1	40					
	400	776	1800	18.3	3	7
	500	148	909	4.9	37	104
	600	35	456	1.6	331	920
	700	10	282	0.6	2570	7130
RLHC Stage 1	100					
	400	3527	5284	48.5	0.4	1
	500	754	2616	14.7	4	11
	600	196	1338	5.3	31	87
	700	60	787	2.1	195	542
	800	20	527	0.9	1104	3068
VLHC Stage 2	175					
	400	7575	9780	76.6	0.2	0.4
	500	1695	5022	23.9	2	4
	600	464	2574	9.1	11	30
	700	147	1488	3.8	62	172
	800	53	990	1.7	315	875
	900	21	684	0.8	1382	3840
TABLE IV: $\eta_4 \rightarrow Zh$ channel: Number of signal, background events and corresponding statistical significances for $L_{int} = 100 fb^{-1}$. Integrated luminosities needed to achieve 3σ and 5σ levels are also given. $m_h = 150$ GeV is assumed.

\sqrt{s} (TeV)	m_η (GeV)	Signal	Background	S/\sqrt{B}	$L_{int} (fb^{-1})$ for 3σ	$L_{int} (fb^{-1})$ for 5σ
LHC 14	400	56	1035	1.8	295	820
	500	31	315	1.8	290	800
	600	16	124	1.5	430	1190
	700	8	46	1.2	605	1680
	800	4	19	1.0	890	2470
	900	2	12	0.7	1940	5380
VLHC Stage 1 40	400	503	8868	5.4	31	87
	600	178	817	6.2	23	64
	800	59	202	4.2	52	145
	1000	22	53	3.1	96	267
	1200	10	11	2.8	111	310
	1400	5	5	2.1	201	559
RLHC 100	400	2289	39268	11.6	7	19
	600	991	4834	14.3	4	12
	800	377	1118	11.3	7	20
	1000	156	426	7.6	16	44
	1200	72	171	5.5	30	82
	1400	36	128	3.2	87	240
VLHC Stage 2 175	400	4916	89213	16.5	3	9
	600	2347	11928	21.5	2	5
	800	967	2290	20.2	2	6
	1000	429	663	16.7	3	9
	1200	211	379	10.8	8	21
	1400	111	283	6.6	21	57

12
TABLE V: The comparison of hadron and lepton colliders potentials in view of the fourth family quarkonia searches.

pp Colliders	e^+e^- Colliders
LHC 14, 100 fb$^{-1}$	JLC/NLC, TESLA, CLIC - stage 1
LHC 14, 1000 fb$^{-1}$	JLC/NLC, TESLA, CLIC - stage 2
LHC 28, 100 fb$^{-1}$	JLC/NLC, TESLA, CLIC - stage 2
LHC 28, 1000 fb$^{-1}$	CLIC - stage 3
VLHC 40, 100 fb$^{-1}$	JLC/NLC, CLIC - stage 2
RLHC 100, 100 fb$^{-1}$	CLIC - stage 3
VLHC 175, 200 fb$^{-1}$	CLIC - stage 3