Staggering behavior of 0^+ state energies in the $Sp(4)$ pairing model

K. D. Sviratcheva,1 A. I. Georgieva,1,2 and J. P. Draayer1

1Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
2Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria

We explore, within the framework of an algebraic $sp(4)$ shell model, discrete approximations to various derivatives of the energies of the lowest isovector-paired 0^+ states of atomic nuclei in the $40 \leq A \leq 100$ mass range. The results show that the symplectic model can be used to successfully interpret fine structure effects driven by the proton-neutron (pn) and like-particle isovector pairing interactions as well as interactions with higher J multipolarity. A finite energy difference technique is used to investigate two-proton and two-neutron separation energies, observed irregularities found around the $N = Z$ region, and the like-particle and pn isovector pairing gaps. A prominent staggering behavior is observed between groups of even-even and odd-odd nuclides. An oscillation, in addition to that associated with changes in isospin values, that tracks with alternating seniority quantum numbers related to the isovector pairing interaction is also found.

I. INTRODUCTION

The observed staggering of energy levels in atomic nuclei requires a theory that goes beyond mean-field considerations 1. Staggering data contain detailed information about the properties of the nucleonic interaction and suggest the existence of high-order correlations in the collective dynamics. Most studies of staggering focus on two aspects of the phenomena. There are discrete angular momentum dependent oscillations of physical observables; namely, of $M1$ transitions in nuclei 2 or of the energy levels themselves (e.g., in octupole 3, 4 bands in atomic nuclei, as well as in molecular rotational bands 1). And then there are sawtooth patterns of different physical quantities (most commonly binding energies) that track with changes in the number of particles in a system (both in nuclei 2 and in metallic clusters 3, 4).

In nuclear structure physics, staggering behavior of the second type is observed when one changes in a systematic way the usual nuclear characteristics such as proton (Z), neutron (N), mass (A) or isospin projection ($|Z-N|/2$) numbers. Examples of these nuclear phenomena include odd-even mass staggering (OEMS) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, odd-even staggering in isotope/isotope shifts 11, 12, and zigzag patterns of the first excited 2^+_1 state energies in even-even nuclei 13. The staggering behavior of a nuclear observable is most easily seen when discrete derivatives of second or higher order in its variable(s) are considered. The aim of this approach is to filter out the strong mean-field (global) effects and in so doing reveal weaker specific features. In this way, for example, the OEMS, which is usually attributed to the nuclear pairing correlations, manifests itself in certain finite differences of the binding energies that can provide for a measure of the empirical pairing gap 1. Likewise, various discrete approximation of derivatives (filters) of the binding energies can be considered to investigate detailed properties of the nuclear structure 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32.

In this paper, we consider the binding energies of the 0^+ ground states of even-A nuclei in the mass range $40 \leq A \leq 100$, and for the rest odd-odd nuclei with a $(J^\pi \neq 0^+)$ ground state, the energy of the lowest isobaric analog 0^+ excited state (which corresponds to the ground state of the even-even neighbor). We refer to these states as lowest isovector-paired 0^+ states 33. Our aim is to investigate how various, comparatively small but not insignificant, parts of the interaction between nucleons influence these states when we consider higher-order discrete derivatives of their energies within the framework of a convenient systematics.

The algebraic pairing model 33, 34 we exploit is based on a fermion realization of the symplectic $sp(4)$ algebra which is isomorphic to $so(5)$ 35, 36, 37. It includes an isovector (isospin $T = 1$) pairing interaction as well as a diagonal (in an isospin basis) pn isoscalar ($T = 0$) part. The latter is proportional to a so-called $T(T+1)$ symmetry term 38, 39. The operators of the reduction $sp(4) \supset u(2) \supset u(1) \oplus su(2)$ provide for a convenient and useful classification of nuclei and their corresponding ground and excited states. The systematics is in terms of the eigenvalues of these operators, namely, the total number n of valence nucleons and the third projection i of the isospin and their linear combinations.

We have already shown in 32 that the $Sp(4)$ 40 model leads to a good reproduction of the experimental energies 38 of the lowest isovector-paired 0^+ state for even-A nuclei, $32 \leq A \leq 100$. As pointed out 38, although the $T = 1$ like-particle pairing energy and the $T = 1$ pn pairing energy yield $\Delta n = 2$ staggering patterns that are of opposite phases, the total isovector pairing energy has a smooth behavior. It is the symmetry term that makes an accurate theoretical prediction of the regular zigzag pattern of the experimental energies in isobaric sequences possible. As a further and more detailed investigation, we now consider different types of discrete derivatives of the Coulomb corrected 39 energy function according to the $Sp(4)$ classification and with no adjustable parameters.

The symplectic $Sp(4)$ scheme not only allows for a sys-
tematic investigation of staggering patterns in the experimental energies of the even-\(A\) nuclei, it also offers a simple algebraic model for interpreting the results. Moreover, this detailed investigation serves as a test for the validity and reliability of the \(Sp(4)\) model and the interactions it includes.

II. \(Sp(4)\) CLASSIFICATION SCHEME

We start with a brief outline of the algebraic approach used to interpret phenomena that have been observed experimentally and are related to the isovector (\(T = 1\) pairing correlations) and isoscalar interactions in nuclei. The \(sp(4)\) algebra is realized in terms of creation \(e_{j m \sigma}^\dagger\) and annihilation \(c_{j m \sigma}\) fermion operators with the standard anticommutation relations \(\{c_{j m \sigma}, c_{j' m' \sigma'}^\dagger\} = \delta_{jj'} \delta_{mm'} \delta_{\sigma \sigma'}\), where these operators create (annihilate) a particle of type \(\sigma = \pm 1/2\) (proton/neutron) in a state of total angular momentum \(j\) (half integer) with projection \(m\) in a finite space \(2\Omega = \Sigma_j (2j + 1)\). In addition to the number operator \(\hat{N} = \hat{N}_p + \hat{N}_n\) and the third isospin projection \(T_3 = (\hat{N}_p - \hat{N}_n)/2\), the generators of \(Sp(4)\) are

\[
T_\pm = \frac{1}{\sqrt{2\Omega}} \sum_j c_{j m \pm 1/2}^\dagger c_{j m \mp 1/2},
\]

\[
A_{\mu} = \frac{1}{\sqrt{2\Omega (1 + \Delta_{\sigma \sigma'})}} \sum_j (-1)^j e_{j m \sigma}^\dagger c_{j m \mp 1/2}^\dagger,
\]

where \(\hat{N}_\pm\) are the valence proton (neutron) number operators, \(T_0\) and \(T_3\) are the valence isospin operators, and the generators, \(A_{10,1-1}\), create a proton-neutron (\(pn\)) pair, a proton-proton (\(pp\)) pair or a neutron-neutron (\(nn\)) pair of total angular momentum \(J^\pi = 0^+\) and isospin \(T = 1\). A totally symmetric finite space is spanned by the basis vectors constructed as \((T = 1)\)-paired fermions

\[
|n_{+1}, n_0, n_{-1}\rangle = (A_{1+}^\dagger)^{n_{+1}} (A_0^\dagger)^{n_0} (A_{-1}^\dagger)^{n_{-1}} |0\rangle,
\]

where \(n_{+1,0,-1}\) are the numbers of pairs of each kind, \(pp\), \(pn\), \(nn\), respectively, and \(|0\rangle\) denotes the vacuum state. In the like-particle pairing limit, \(n_0\) gives the number of protons (neutrons) not coupled to \(J = 0\) \((pp)\) (\(nn\)) pairs and hence defines the usual seniority quantum number \(\nu_0\), \(\nu_1 = n_0\). On the other hand, in the \(pm\) pairing limit another seniority number, \(2\nu_1 = 2n_{+1} + 2n_{-1}\), is recognized that counts the particles not coupled in \(J = 0\) \(pn\) pairs. The dependence of \(n_0\) on \(\nu_1\) within a given nucleus allows one to consider only \(n_0\) in the analysis; specifically, for a system of \(n\) valence particles with isospin projection \(i = (Z - N)/2\), the fully paired states \(|\nu_1\rangle\) differ in their coupling mode as the seniority quantum number \(\nu_1\) \((\nu_0 = n/2 - \nu_1)\) changes by \(\pm 2\) \((\pm 2)\).

TABLE I: Realizations of the \(u^\(1\)(2) = u^\(1\)(2) \oplus su^\(2\)(2)\) subalgebras of \(sp(4)\)

Symmetry (\(\mu\))	\(u^\(1\)(2)\) Eigenvalues of \(C_\mu^I\)	\(su^\(2\)(2)\)
Isospin (\(T\))	\(N\) \(n\)	\(T_3, T_0, T_{-}\)
pm pairs (0)	\(T_0\) \(i\)	\(A_{0}^\dagger \frac{1}{2}(N - \Omega, A_0)\)
pp pairs (+)	\(N_{-1}\) \(N_{-1}\)	\(A_{1+}^\dagger \frac{1}{2}(N_{+1} - \Omega, A_{+1}\)
nn pairs (−)	\(N_{+1}\) \(N_{+1}\)	\(A_{-1+}^\dagger \frac{1}{2}(N_{-1} - \Omega, A_{-1}\)

As a dynamical symmetry, the \(Sp(4)\) symplectic group describes isovector pairing correlations and isospin symmetry through the four different reduction chains \(Sp(4) \supset U^\(2\)(2) \supset U^\(1\)(2) \supset SU^\(2\)(2)\) with \(\mu = T, 0, \pm\) (Table I). The first order invariant of \(u^\(2\)(2), C_\mu^I = \{T, 0, \pm\}\) realizes the \(u^\(2\)(2) \supset su^\(2\)(2)\) reduction and reduces the finite action space into a direct sum of unitary irreducible representations (irreps) of \(U^\(2\)(2)\) \(\{(n, i, N_{\mp 1}\) multiplets). Within a multiplet the third projection generator of \(SU^\(2\)(2)\) (middle operator in the fourth column in Table I) further reduces the \(U^\(2\)(2)\) representation to a vector with fixed quantum numbers \((n, i)\), or alternatively \((N_{+1}, N_{-1})\), to which corresponds a given nucleus (a cell in Table II). In this way the dynamical \(Sp(4)\) symmetry provides for a natural classification scheme of nuclei as belonging to a single-\(j\) level or a major shell (multi \(j\)), which are mapped to the algebraic multiplets. This classification also extends to the corresponding ground and excited states of the nuclei including their isovector-paired \(0^+\) states.

TABLE II: Classification scheme of even-\(A\) nuclei in the 1fr/2 shell

\(\Delta n\) \(\Delta i\)	\(2\)	1	0	-1	-2	-3	-4
0	46\(^{20}\)Ca \(20\)	46\(^{22}\)Cr \(20\)	46\(^{24}\)Ca \(20\)	46\(^{26}\)Fe \(20\)	46\(^{28}\)Ni \(20\)	48\(^{30}\)Fe \(20\)	48\(^{32}\)Ni \(20\)
2	46\(^{22}\)Cr \(24\)	46\(^{24}\)Cr \(24\)	46\(^{26}\)Fe \(24\)	46\(^{28}\)Ni \(24\)	48\(^{30}\)Fe \(24\)	48\(^{32}\)Ni \(24\)	50\(^{34}\)Ni \(24\)
6	46\(^{22}\)Cr \(28\)	46\(^{24}\)Cr \(28\)	46\(^{26}\)Fe \(28\)	46\(^{28}\)Ni \(28\)	48\(^{30}\)Fe \(28\)	48\(^{32}\)Ni \(28\)	50\(^{34}\)Ni \(28\)
8	46\(^{22}\)Cr \(32\)	46\(^{24}\)Cr \(32\)	46\(^{26}\)Fe \(32\)	46\(^{28}\)Ni \(32\)	48\(^{30}\)Fe \(32\)	48\(^{32}\)Ni \(32\)	50\(^{34}\)Ni \(32\)
...

The general model Hamiltonian with \(Sp(4)\) dynamical symmetry, which consists of one- and two-body terms, can be expressed through the \(Sp(4)\) group generators,

\[
H = -GA_{0}^\dagger A_{0} - F(A_{1+}^\dagger A_{1+} + A_{-1-}^\dagger A_{-1-}) - [T(J^2 - \frac{\Omega^2}{4})](N_{+1} - \Omega) - \epsilon N_{-1},
\]

where \(G, F, E, C\) and \(D\) are strength parameters and
\(\epsilon > 0 \) is the Fermi level energy. This Hamiltonian conserves the number of particles and the third isospin projection and changes the seniority quantum number \(\nu_1 \) by zero or \(\pm 2 \), the latter implies scattering of a \(pp \) pair and an \(nn \) pair into two \(pn \) pairs and vice versa. The isospin breaking Hamiltonian \(\mathbf{H} \) includes an isovector \((T = 1) \) pairing interaction \((G \geq 0, F \geq 0 \) for attraction) and a diagonal (in an isospin basis) isoscalar \((T = 0) \) force, which is related to a symmetry term \((E)\). Within a shell (a single-\(j \) level, \(1f_{7/2}, \) or a major shell, \(1f(5/2)^2p(3/2)^1g(7/2), \) a reasonable estimate for the parameters in the Hamiltonian \(\mathbf{H} \) is obtained in a fitting procedure of the maximum eigenvalues of \(|H|, \) \(E_0, \) to the Coulomb corrected experimental energies \(E_0. \) of the lowest isovector-paired \(0^+ \) states in even-\(A \) nuclei \(\mathbb{E}. \) Although the fits yield quite good agreement with the relevant experimental values, a reproduction of the fine properties of nuclear structure (typically of an order of magnitude or two less than the energies that were fit) is not guaranteed due to the strong mean-field contribution. For the present investigation these parameters in the energy operator \(\mathbf{H} \) are not varied; their values are fixed as: \(G = 0.53\Omega, \) \(F = 0.45\Omega, \) \(C = 0.47, \) \(D = -0.97, \) \(E = -1.12(29), \) \(\epsilon = 9.36 \) in MeV for the \(1f_{7/2} \) level (with a \(^{40}\text{Ca} \) core) and \(G = 0.35\Omega, \) \(F = 0.30\Omega, \) \(C = 0.19, \) \(D = -0.80, \) \(E = -0.49(29), \) \(\epsilon = 9.57 \) in MeV for the \(1f(5/2)^2p(3/2)^1g(7/2) \) shell (with a \(^{56}\text{Ni} \) core) \(\mathbb{E}. \) In the second case, the parameters of the effective interaction in the \(Sp(4) \) model with degenerate multi-\(j \) levels are likely to be influenced by the nondegeneracy of the orbits. Nevertheless, as the dynamical symmetry properties of the two-body interaction in nuclei from this region are not lost, the model remains a good multi-\(j \) approximation \(\mathbb{E}. \) and the extent to which it provides for a realistic description can be further tested with the use of various discrete derivatives of the energy function.

III. DISCRETE DERIVATIVES AND FINE STRUCTURE EFFECTS

The symplectic \(Sp(4) \) model \(\{(E_0 + \delta) - E_0(x)\}/\delta, \) is related to the \(\delta \)-particle separation energy, when \(x \) counts the (total, proton or neutron) number of particles. The general \(Stg_{\delta}^{(m)}(x) \) quantity represents a finite difference between the \(E_0 \) energies of neighboring nuclei, for example

\[
Stg_{\delta}^{(2)}(x) = \frac{E_0(x+\delta) - 2E_0(x) + E_0(x-\delta)}{\delta^2}, \tag{6}
\]

where \(m = 2, \) and

\[
Stg_{\delta}^{(3)}(x) = \frac{E_0(x+2\delta) - 3E_0(x+\delta) + 3E_0(x) - E_0(x-\delta)}{\delta^3}, \tag{7}
\]

when \(m = 3, \) and filters out contributions to \(E_0 \) proportional to \(x^{-m-1}. \)

The filters \(\mathbb{E} \) are \((m + 1)\)-point expressions that account for deviations from the common behavior of neighboring nuclei. When \(m \geq 3 \) the \(Stg_{\delta}^{(m)}(x) \) discrete derivative is independent of strong mean-field effects, strictly speaking it cancels out all regularly-varying linear and quadratic in \(x \) contributions to the energy, that are typically large, and only can provide for a description of higher-order terms in the variable \(x, \) as well as for discontinuities in the energy function. In this way, the finite energy difference isolates specific parts of the interaction that are comparatively smaller and may vary substantially from one nucleus to its neighbors. While these interactions do not contribute much to the overall trend of the \(E_0 \) energies, they play a very significant role in determining nuclear structure properties.

The mixed derivatives also provide useful information about the nuclear fine structure effects and are defined as

\[
Stg_{\delta_1,\delta_2}^{(1)}(x,y) = \frac{E_0(x+y+\delta_1) - E_0(x+y+\delta_2) - E_0(x+y) + E_0(x,y)}{\delta_1\delta_2}, \tag{8}
\]

where the variables represent quantities among the set \((x,y) = \{n,i,N_{+1},N_{-1}\} \) and \(\delta_1, \delta_2 \geq 1 \) is a discrete increment in accordance with the \(Sp(4) \) classification scheme (Table \(\mathbb{H} \)).

Different types of discrete derivatives are considered and various staggering patterns are investigated in the following sections. The corresponding components of the interaction isolated through the energy difference filters can be explained in analogous ways as in \(\mathbb{E} \) and \(\mathbb{E}, \) in addition to the advantage that because they are free of Coulomb effect they reflect phenomena related only to nuclear forces.

A. Discrete derivatives with respect to \(N_{+1} \) and \(N_{-1}: \) the \(N = Z \) region

For even-even nuclei, the discrete approximation of the \(\partial E_0/\partial N_{\pm 1} \) first derivative of the binding energies (in-
The $Sp(4)$ theory reproduces very well the available experimental data, especially the irregularity at $N=1$. The zero point of S_{2p} along an isotone sequence determines the two-proton-drip line (dashed black line in Figure 1), which according to the $Sp(4)$ model for the $1_{1/2}^+(2p_1^+_1 \frac{1}{2}g_9^+)$ major shell lies near the following even-even nuclei:

\begin{equation}
\begin{array}{c}
60\text{Ge}_{28}, \ 64\text{Se}_{30}, \ 68\text{Kr}_{32}, \ 72\text{Sr}_{34}, \ 76\text{Zr}_{36}, \\
78\text{Zr}_{38}, \ 82\text{Mo}_{40}, \ 86\text{Ru}_{42}, \ 90\text{Pd}_{44}, \ 94\text{Cd}_{46},
\end{array}
\end{equation}

beyond which the higher-Z isotones are unstable with respect to diproton emissions. These nuclei are not yet explored as seen in Figure 1 and an experimental comparison for the two-proton-drip line is expected to be soon possible due to radioactive beam experiments near the limits of stability. Yet, the findings of our model are in close agreement with the results of other theoretical predictions [43, 44, 45]. Particularly, the estimate for the two-proton separation energies in [43, 44, 45] confirms the division in nuclides such that the isotones with lower/higher Z values than the nuclei in (9) have positive/negative S_{2p} energies (compare to Figure 1). In addition, the two-proton separation energies for those of the nuclei in (9) considered also in the other studies are close in their estimates: the quadratic mean of the differences of the S_{2p} between our model and [43] is 0.32 MeV (in a comparison of the first three nuclei in (9)), is 0.78 MeV when all the nuclei in (9) are compared to [43] and is 0.43 MeV in a comparison to [43] of the first four nuclei in (9).

For odd-odd nuclei the zero point of S_{2p} can be also determined [60\text{Ge}_{29}, \ 64\text{As}_{31}, \ 68\text{Br}_{35}, \ 72\text{Rb}_{37}, \ 78\text{Y}_{39}, \ 82\text{N}_{b14}, \ 86\text{T}_{c43}, \ 90\text{Rb}_{45}, \ 94\text{Ag}_{47}]$ although it does not define the drip line, as S_{2p} is a relation of the lowest 0^+ state energies E_0 rather than of the binding energies for most odd-odd nuclei.

As a whole, the higher-order derivatives with respect to proton (neutron) number have a smooth behavior. This is because these derivatives reflect changes only within a sequence of either even-even or odd-odd nuclei. The discretization of the $\delta^2 E_0/\delta N^2$ second-order derivative, $\delta I_{pp(n)}(N)$, as an estimation of the nonpairing like-particle nuclear interaction in MeV for the $N=34, 36, 38$ multiplets;

\begin{align}
\delta I_{pp(n)}(N) &= (E_0(N+1) - 2E_0(N) - E_0(N-1)/4, \text{ for } N \text{ even-even or odd-odd, } \\
&= 45g_2^2(N) [56], \text{ accounts for the interaction between the last two } pp \text{ pairs in the } (N, Z) \text{ nucleus (Figure 2(a)). The average interaction } \delta I_{pp(n)} \text{ may be used as an alternative way to } [56] \text{ to estimate the nonpairing like-particle interaction } [56] \text{ [of the last two protons (neutrons)]. It shows no outlined staggering pattern but a repulsive peak around the } N=Z \text{ nuclei in very good agreement with the experiment [56] and with the results and discussions of [56]. Another smaller peak is observed around midshell (Figure 2(a)), which is due to the particle-hole discontinuity introduced in the pairing theory. The analysis yields that as a whole the } Sp(4) \text{ model reproduces the fine structure effects in interactions isolated via the } Stg_2^2(N) \text{ filters.}
\end{align}

Another aspect of the nuclear interaction is revealed by the second-order discrete mixed derivative of the energy $\delta V_{pn}(N+1, N) = (E_0(N+1, N-2) - E_0(N+1, N-1) - E_0(N+1, N-1) + E_0(N+1, N-1))/4$. For even-even nuclei it was found to represent the residual interaction between the last proton and the last neutron [27, 28, 29, 36] and it was empirically approximated by $40/A$. The theoretical discrete derivative (Figure 2(b)) agrees remarkably well with the experiment [36], especially in reproducing the typical behavior at $N=1$ and $N-1$, and is consistent with the empirical trend (on average, ~ 0.71 for $1f_7/2$ and ~ 0.52 for the major shell above $N=1$ for the 56Ni core). It is well-known that the attractive peak in
the self-conjugate nuclei cannot be described by a model with an isovector interaction only, and in this respect our model achieves this result due to the additional terms included in the Hamiltonian, mainly the symmetry term (Figure 3). The \(\delta V_{pn} \) energy difference provides for a powerful test for the symplectic model: the theory not only gives a thorough description of the isovector \(pn \) and like-particle pairing but additionally accounts for \(J > 0 \) components of the \(pn \) interaction in a consistent way with the experiment. As a result the model can be used to provide for a reasonable prediction of \(\delta V_{pn} \) of proton-rich exotic nuclei as well as odd-odd nuclei.

B. Discrete derivatives with respect to \(n \) and \(i \): staggering behavior

The \(Sp(4) \) classification scheme can also be used to investigate energy differences with respect to the total number of particles \(n \) and their isospin projection \(i \). Indeed, in contrast with the typical smooth behavior observed for discrete derivatives with respect to \(N_{+1} \) and \(N_{-1} \) that was highlighted in the preceding section, the derivatives with respect to \(n \) and \(i \) are the ones that reveal distinct staggering effects. They give a relation between even-even (\(ee \)) and odd-odd (\(oo \)) nuclei and the patterns can be referred as an “\(ee-oo \)” staggering.

1. **Second and higher-order derivatives in one variable**

The discrete derivatives, \(Stg_1^{(m)}(i) \), \(m = 1, 2, ... \), show a prominent \(\Delta i = 1 \) staggering of the experimental energies \(\exp \) of the lowest \(0^+ \) isovector-paired states for different isobaric multiplets [see Figure 4 for the \(1f_{7/2} \) shell and Figure 5(a) for nuclei above the \(^{56}Ni \) core] of the lowest \(0^+ \) isovector-paired states for different isobaric multiplets [see Figure 4 for the \(1f_{7/2} \) shell and Figure 5(a) for nuclei above the \(^{56}Ni \) core] states. The theory reproduces this staggering very well. For each of the \(i \) multiplets (\(i \) fixed), a \(\Delta n = 2 \) staggering effect is also observed for the experimental energies \(\exp \) via the energy filters \(Stg_2^{(m)}(n) \), \(m = 1, 2, ... \), and successfully predicted by the symplectic model (Figure 3 (1f_{7/2}) and Figure 4(b) \((1f_{7/2})^2(1g_{7/2}) \)).

FIG. 3: (Color online) \(\delta V_{pn} \) in MeV of the total binding energy (■) and of the \(T = 1 \) pairing energy (•) in comparison to experiment (×) for Ti-isotopes in the \(1f_{7/2} \) shell. The isovector pairing interaction is not enough to reproduce the experimental peak at \(N = Z \).

FIG. 4: (Color online) The \(Stg_1^{(1,2)}(i) \) discrete derivatives for different isobaric multiplets for even-\(A \) nuclei with valence nucleons in the \(1f_{7/2} \) shell with a core \(^{40}Ca \).

FIG. 5: (Color online) Discrete derivatives \(Stg_1^{(m)}(i) \) \((1f_{7/2})^2(1g_{7/2}) \), a \(^{56}Ni \) core: (a) \(\delta = 1, m = 2, 3, 4 \) for \(A = 76 \) isotobars; (b) \(\delta = 2, m = 2, 4 \) for \(i = -1 \) multiplet \([N = Z + 2] \).

The staggering amplitudes of both \(Stg_1^{(m)}(i) \) and \(Stg_2^{(m)}(n) \), while almost independent of the total number of particles \(n \), increase with increasing difference in proton and neutron numbers, \(i \), and hence the \(ee-oo \) staggering effect is greater for the proton- (neutron-) rich nuclei than around \(N \approx Z \). Also, the amplitude of \(Stg_1^{(m)}(i) \) increases in higher-order derivatives. This analysis shows a more complicated dependence of the energy function on the isospin projection \(i \) than on the mass number \(A \).

The first, \(m = 1 \), discrete derivative, \(S_{pn} = 2Stg_2^{(1)}(n) = E_0(n + 2) - E_0(n) \), where \(i \) is fixed, corresponds to the energy gained when a \(T = 1 \) \(pn \) pair is added [Figure 3(a) \((1f_{7/2}) \) and Figure 4(a) \(a \) \(^{56}Ni \) core)]. \(S_{pn} \) is the true \(pn \) separation energy only when \(E_0 \) is the binding energy of the odd-odd nucleus involved in its calculation. The experimental data, where available \(\exp \), is also shown in Figure 4, and the \(Sp(4) \) model follows the distinctive zigzag pattern very well. A \(\Delta n = 4 \) bifurcation separates the nuclei into two groups: one of
even-even nuclei \([n/2 + i]-\text{even}\) and another of odd-odd nuclei \([n/2 + i]-\text{odd}\). The \(S_{pn}\) energy difference has a smooth behavior within each group. The magnitude of \(S_{pn}\) is proportional to the total number of particles and increases (decreases) with \(i\) for odd-odd (even-even) nuclei (Figure 4). Furthermore, the Stg\(_4^{(1)}(n) = \frac{Stg_{n+1}^{(1)}(n)+Stg_{n+2}^{(1)}(n)}{2}\) energy difference shows no \(\Delta n = 4\) staggering (average values of two consecutive data points in Figure 4). This indicates that the addition of an \(\alpha\)-like cluster has almost the same effect for both even-odd and odd-even nuclei. This statement does not contradict the stronger binding of even-pairs nuclei as compared to odd-pairs ones, which is detected via \(S_{pn}\) and the binding energy \((BE)\) filter, \(BE(Z+2, N+2) - \frac{BE(Z+2, N) + BE(Z, N+2)}{2}\).

The result (11) follows from the well-known definition of the empirical like-particle pairing gap [1]

\[
\Delta_{pp(nn)} = \frac{1}{2} \left(BE(N_{+1}+1, N_{-1}+1) - BE(N_{+1}-1, N_{-1}-1) - 2[BE(N_{+1},N_{-1}+1) - BE(N_{+1}-1,N_{-1}-1)] \right)
\]

which isolates the isovector pairing interaction of the \((N_{+1})^{th}\) and \((N_{-1})^{th}\) protons (neutrons) for an even-even \((N_{+1} - 1, N_{-1} - 1)\)-core (marked by a square) [28]. We also define the \(pn\) isovector pairing gap

\[
\Delta_{pn} = \frac{1}{2} \left(E_0(N_{+1}, N_{-1}) - BE(N_{+1}, N_{-1}) - [BE(N_{+1}-1, N_{-1}) - BE(N_{+1}-1,N_{-1}-1)] \right)
\]

as the pairing interaction of the \((N_{+1})^{th}\) proton and the \((N_{-1})^{th}\) neutron. In order to account correctly for the \(T = 1\) mode of the \(pn\) pairing one should consider in [18] the \(E_0\) energy of the odd-odd \((N_{+1}, N_{-1})\) nucleus (that is, the energy of the isobaric analog state rather than its ground state energy, \(BE\)). For the remaining even-even nuclei in [18], replacing the symbol \(E_0\) with \(BE\) is justified. In the computation of \(\Delta\) all odd-\(A\) binding energies in [12] and [13] cancel so their theoretical calculation is not required.

The \(\Delta\) relation of the gaps is a measure of the difference in the isovector pairing energy between even-even nuclei.
and odd-odd nuclei. For odd-odd $N = Z$ nuclei information about Δ is extracted via the $Stg_1^{(2)}(i)$ energy filter \[10\]. Both experimental and model estimations yield $\Delta \cong 0$ for all the odd-odd $i = 0$ nuclei in the $1f_{7/2}$ shell (for example, see solid (purple) line with open squares in Figure 8 for $A = 46$, $i = 0$). The result reflects the fact that in this case all three isovector pairing gaps, Δ_{pp}, Δ_{nn} and Δ_{pn}, are equal \[33, 32\].

![Figure 8](image-url)

FIG. 8: (Color online) Theoretical staggering amplitudes for the total energy in comparison to experiment \[33\], for the isovector pairing energy, the pn and the like-particle pairing energies, and for the symmetry energy for $A = 48$, $A = 46$ and $A = 44$ nuclei in the $1f_{7/2}$ shell (a 40Ca core).

A different scenario regarding two aspects is encountered when one considers the $Stg_1^{(2)}(i)$ discrete derivative centered at an even-$(n/2 + i)$ $N = Z$ nucleus [relative to a $(N_{+1} - 2, N_{-1} - 2)$-core]:

$$Stg_1^{(2)}(i) = \begin{pmatrix} 3 \\ 0 \\ 0 \\ -2 \\ 3 \end{pmatrix}$$

$$\approx -\frac{2}{3} \Delta + I_{2}^{j\neq 0,T\neq 1}, \quad (\frac{N}{2} + i) \text{ even}, \quad (14)$$

where an additional nonpairing two-body interaction $I_{2}^{j\neq 0,T\neq 1}$ is not filtered out in this case. Here, for example, $I_{2}^{j\neq 0,T\neq 1}$ is related to the nonpairing interaction of the three protons and of the three neutrons in the odd-odd nuclei \[33\]. Another new feature of \[14\] is that $Stg_1^{(2)}(i = 0)$ does not simply account for the energy gained when two pn pairs are created (in the first two odd-odd nuclei) and the energy lost to destroy a pp pair and a nn pair in the even-even $N = Z$ nucleus. The straightforward reason is that pp, nn and pn $T = 1$ pairs coexist. A good approximation that serves well in estimating the pairing gaps is to assume that a $2p-2n$ formation above the inactive core \[13\] consists of $n_0 = 2/3$ pn pairs, $n_1 = 2/3$ pp pairs and $n_{-1} = 2/3$ nn pairs (rather than a proton pair ($n_1 = 1$) and a neutron pair ($n_{-1} = 1$)). This is in analogy to an even-even $n = 4$ nucleus where the pp, nn and pn “numbers of pairs” are the same and equal to one third the total number of pairs, $n/2$ \[33, 67\]. Additionally, the relations like \[11\] and \[13\] are based on the assumptions that the interaction of a particle with the core is independent of the type of added/removed particles and is the same for all protons (neutrons) above the core. Finally, all the approximations are of an order $O(1/\Omega)$.

The additional nonmonopole two-body residual interaction $I_{2}^{j\neq 0,T\neq 1}$ should be also taken into account for the rest $i \neq 0$ of the (ee, and oo) nuclei

$$Stg_1^{(2)}(i \neq 0) \approx \begin{cases} -\frac{2}{3} \Delta + I_{2}^{j\neq 0,T\neq 1}, \quad ee \\ \frac{2}{3} \Delta + I_{2}^{j\neq 0,T\neq 1}, \quad oo \end{cases}, \quad (15)$$

The main contribution to the $I_{2}^{j\neq 0,T\neq 1}$ interaction is due to the symmetry energy as is apparent from the $Sp(4)$ model.

The very close theoretical reproduction of the experimental staggering allows us to use the symplectic model as a microscopic explanation of the observed effects through the investigation of the different terms in the Hamiltonian \[3\] (Figure 8). According to the $Sp(4)$ model, the $ee - oo$ staggering patterns appear due to the discontinuous change of the seniority numbers driven by the $T = 1$ pairing interaction \[33\]. Even values of the seniority quantum number (n_1) in even-even nuclei and odd values for odd-odd nuclei lead to a change in pn and like-particle pairing energies in opposite directions. After the contribution from the isovector pairing energy is taken away, the theoretical staggering amplitude, $(-)\frac{2}{3} + i Stg_1^{(2)}(i)$, has still a (typically large) component from the remaining ($j \neq 0, T \neq 1$) interactions in the Hamiltonian \[3\], mainly the symmetry (T^2) term [Figure 8] long-dashed (purple) line with squares]. This is the same nonmonopole nuclear interaction, $I_{2}^{j\neq 0,T\neq 1}$, that was suggested in \[13\] and \[15\] using phenomenological arguments. Indeed, the symmetry energy contribution is significant and nonzero in all nuclei but the odd-odd $N = Z$ \[4\] (Figure 3), which is consistent with the discussion above \[13\] and \[15\]. Also, an estimation of the pairing gaps is possible based on the examination of the model Hamiltonian but the theoretical staggering amplitudes of the $T = 1$ pairing energies (shown in Figure 8) need to be rescaled in accordance with \[13\] and \[15\].

In a way analogous to that used in \[16\], the second-order discrete derivative with respect to n (can be compared to the filter used in \[31\]) is related to the pairing gap relation

$$Stg_2^{(2)}(n) = \frac{E_0(n+2) - 2E_0(n) + E_0(n-2)}{4}, \quad i = \text{const} \quad (16)$$

where in the odd-odd case, for example, $I_{2}^{j\neq 0,T\neq 1}$ is the non-pair interaction of the last two protons with the last two neutrons in the $(n + 2)$ nucleus. The effects due to Δ cannot be isolated via \[17\] because of the additional...
nonzero contribution due to the symmetry energy. However, the staggering amplitude of the discrete derivative \(-3(-)^{i+1}Stg_2^{(2)}(n,i)\), of the theoretical total, \(pp\) \((nn)\) and \(pn\) pairing energies can provide for estimation of the pairing gaps \(\Delta, \Delta_{pp(nn)}\) and \(-2\Delta_{pn}\), respectively [Figure 7(a)]. The like-particle pairing gap can be compared to the empirical value of \(\Delta_{pp} + \Delta_{nn} = 24/A^{1/2}\) [solid (purple) line]. The gap is smaller in odd-odd nuclei as compared to their even-even neighbors. This is a consequence of a decrease in the like-particle pairing energy in the odd-odd nuclei due to the blocking effect while there is an increase in energy due to the \(pn\) pairing. The \(pn\) isovector pairing gap increases toward \(i = 0\) and eventually gets almost equal to \(\Delta_{pp(nn)}\) for odd-odd nuclei around the \(N = Z\) region, which is in agreement with the discussion of 31, 32.

\[\Delta_{|i|\neq 0.1} \approx \frac{3}{16}(-)^{i/2+i}(Stg_1^{(4)}(i) - I_2^{J\neq 0,T\neq 1})\] (18)

\[\approx 3(-)^{i/2+i}(Stg_2^{(4)}(n) - I_2^{J\neq 0,T\neq 1}).\] (19)

Assuming that the \(pn\) pairing gap is negligible for high- \(i\) nuclei in large shells like the \(1f_{7/2}\) major shell, the gap relation 18 or 19 provides for a rough estimation of the like-particle pairing gaps. With the use of the model Hamiltonian 16 we can estimate the additional \(I_2^{J\neq 0,T\neq 1}\) interaction with the major input being the symmetry energy. Although the existence of a very small mixing of isospin values complicates the computation of the symmetry energy for nuclear systems with very large interaction matrices, as a very good approximation one may use \(E_{\text{sym},T} = \frac{2\Omega}{2T}(T+1)\) with isospin values \(T = |i|\) for even-even nuclei and \(T = |i|+1\) for odd-odd nuclei. Once the fourth-order discrete derivative \(I_2^{J\neq 0,T\neq 1}\) of the approximated symmetry energy is removed from \(Stg_1^{(4)}(i)\) 16, the like-particle pairing gaps \(\Delta_{pp} + \Delta_{nn}\) are found to be in a very good agreement with the experimental approximation of 24/\(\sqrt{A}\) for the \(|i| = \pm 6, \pm 7, \pm 8\) multiplets in the \(1f_{7/2}2p_{1/2}1g_{7/2}\) major shell (Figure 9(b)). For lower \(|i|\) values the difference increases due to an increase in the \(pn\) pairing gap as mentioned above. As a whole, the agreement would not be possible if the significant energy contribution due to the symmetry energy was not taken into account.

3. Second-order mixed derivatives

Next we consider the second-order discrete derivative of the relevant energies with respect to the total number \(n\) and the third projection \(i\)

\[Stg_2^{(2)}(n,i) = E_0(n+2,i+1) - E_0(n,i)\]

\[\approx \begin{cases}
\frac{2}{3} \Delta + I_2^{J\neq 0,T\neq 1}, & ee \\
-\frac{2}{3} \Delta + I_2^{J\neq 0,T\neq 1}, & oo,
\end{cases}\] (20)

where in addition to the pairing gaps relation, \(\Delta\), there is the contribution due to the nonpairing interaction, \(I_2^{J\neq 0,T\neq 1}\). For example, for the odd-odd \{even-even\} case it is the positive \{negative\} nonpairing average interaction between the last three protons \{neutrons\} in the \((n+2, i, n+1)\) nucleus with a \((n-2, \{n-4\}, i)\) core. Within the \(Sp(4)\) framework the additional nonpairing contribution corresponds to the staggering of the symmetry energy approximation, \(E_{\text{sym},T}\), of \((-)^{i/2+i}E_2^{(2)}(2|i| + 3)\).

![Figure 9](image_url)

FIG. 9: (Color online) Estimation of the pairing gaps: (a) total isovector pairing gap \(\Delta, 2\Delta_{pn}\) and \(\Delta_{pp(n)} + \Delta_{nn}\), as well as the empirical like-particle pairing gap \(\Delta_{pp} + \Delta_{nn} = 24/A^{1/2}\) shown for comparison, for \(A = 48\) and \(A = 46\) nuclei versus \(i\) \((1f_{7/2}\) shell); (b) like-particle pairing gap (according to 16) versus \(A\) for \(|i| = \pm 6, \pm 7, \pm 8\) multiplets in the \(1f_{7/2}2p_{1/2}1g_{7/2}\) shell.

Furthermore, an average of the additional non-pair interaction is achieved by the fourth-order derivatives both in \(n\) \([Stg_2^{(3)}(n)\) i] and \([Stg_1^{(4)}(i)\)

\[\Delta_{|i|\neq 0.1} \approx \frac{3}{16}(-)^{i/2+i}(Stg_1^{(4)}(i) - I_2^{J\neq 0,T\neq 1})\] (18)

\[\approx 3(-)^{i/2+i}(Stg_2^{(4)}(n) - I_2^{J\neq 0,T\neq 1}).\] (19)

Assuming that the \(pn\) pairing gap is negligible for high- \(i\) nuclei in large shells like the \(1f_{7/2}\) major shell, the gap relation 18 or 19 provides for a rough estimation of the like-particle pairing gaps. With the use of the model Hamiltonian 16 we can estimate the additional \(I_2^{J\neq 0,T\neq 1}\) interaction with the major input being the symmetry energy. Although the existence of a very small mixing of isospin values complicates the computation of the symmetry energy for nuclear systems with very large interaction matrices, as a very good approximation one may use \(E_{\text{sym},T} = \frac{2\Omega}{2T}(T+1)\) with isospin values \(T = |i|\) for even-even nuclei and \(T = |i|+1\) for odd-odd nuclei. Once the fourth-order discrete derivative \(I_2^{J\neq 0,T\neq 1}\) of the approximated symmetry energy is removed from \(Stg_1^{(4)}(i)\) 16, the like-particle pairing gaps \(\Delta_{pp(n)} + \Delta_{nn}\) are found to be in a very good agreement with the experimental approximation of 24/\(\sqrt{A}\) for the \(|i| = \pm 6, \pm 7, \pm 8\) multiplets in the \(1f_{7/2}2p_{1/2}1g_{7/2}\) major shell (Figure 9(b)). For lower \(|i|\) values the difference increases due to an increase in the \(pn\) pairing gap as mentioned above. As a whole, the agreement would not be possible if the significant energy contribution due to the symmetry energy was not taken into account.

3. Second-order mixed derivatives

Next we consider the second-order discrete derivative of the relevant energies with respect to the total number \(n\) and the third projection \(i\)

\[Stg_2^{(2)}(n,i) = E_0(n+2,i+1) - E_0(n,i)\]

\[\approx \begin{cases}
\frac{2}{3} \Delta + I_2^{J\neq 0,T\neq 1}, & ee \\
-\frac{2}{3} \Delta + I_2^{J\neq 0,T\neq 1}, & oo,
\end{cases}\] (20)

where in addition to the pairing gaps relation, \(\Delta\), there is the contribution due to the nonpairing interaction, \(I_2^{J\neq 0,T\neq 1}\). For example, for the odd-odd \{even-even\} case it is the positive \{negative\} nonpairing average interaction between the last three protons \{neutrons\} in the \((n+2, i, n+1)\) nucleus with a \((n-2, \{n-4\}, i)\) core. Within the \(Sp(4)\) framework the additional nonpairing contribution corresponds to the staggering of the symmetry energy approximation, \(E_{\text{sym},T}\), of \((-)^{i/2+i}E_2^{(2)}(2|i| + 3)\).
{Δn, Δi} = {2, 1} symmetric oscillating pattern as it is observed in the experiment. It its positive (negative) value is centered at even-even (odd-odd) nuclei and its amplitude increases (decreases) with |Δi|. This mixed discrete derivative serves as another test for the Sp(4) model and allows for a detailed investigation of the nonpairing, like-particle interactions involved.

To isolate the effect of nonpairing interactions (again, it is understood to order 1/Ω), an energy difference with respect to both N±1 and i can be considered. The second discrete derivative of the energy

\[Stg_{1/1}^{(2)}(N_{±1}, i) = \]

\[= E_{0}(N_{±1}+1, i+1) - E_{0}(N_{±1}, i) - E_{0}(N_{±1}, i+1) + E_{0}(N_{±1}, i) \] (22)

represents the negative \{positive\} nonpairing two-body interaction of the last two neutrons (protons) with a proton and a neutron in the \((N_{±1} + 1, i \{+1\})\) nucleus. It shows prominent \(Δi = 1\) staggering patterns for different \(i\) multiplets (Figure 11). While in the framework of the Sp(4) model its amplitude does not depend on \(N_{±1}\) and \(i\) except for irregularities around the mid-shell, the magnitude of the few experimental values (where data exist) tends to be slightly lower away from the closed shell. As a whole, the results show that the staggering behavior of this interaction is due to the fine structure features in the relationship between the like-particle and \(pn\) nonpairing interactions and differs between proton-rich and neutron-rich nuclei.

![FIG. 11: (Color online) Discrete derivative, \(Stg_{1/1}^{(2)}(x, i)\), for various \(i\) multiplets for even-\(A\) nuclei: (a) \(x = N_{+1}, 1f_{7/2}\) level; (b) \(x = N_{+1}, 1f_{7/2} 2p_{3/2} \frac{1}{2}g_{9/2}\) shell; (c) \(x = N_{-1}, 1f_{7/2} 2p_{3/2} \frac{1}{2}g_{9/2}\) shell.](image)

Regarding and the other discrete approximations of the derivatives in Section III B it is clear that the oscillating patterns that exist and their regular appearance throughout the nuclear chart cannot be a simple artifact due to errors in the experimental or theoretical energies. Even more, the staggering amplitudes are usually (very) large compared to the energy uncertainties.

For all the discrete derivatives that we have investigated above and that show “\(ee-oo\)” staggering behavior, the discontinuity of the symmetry term (due to discrete changes in the isospin value) plays an important role. In contrast, when these discrete derivatives include states of odd-odd nuclei with a dominant \(T = 0\) \(pn\) coupling there is a constant or no contribution due to the symmetry effects, and hence yield patterns of different shapes and interpretations. Our investigation does not aim to account for such effects. It is focused on the \(ee-oo\) staggering behavior of the \(E_{oo}\) energies of the lowest isovector-paired states as observed from the experimental data and reproduced remarkably well by the Sp(4) model.

IV. CONCLUSIONS

A dynamical Sp(4) symmetry was used to provide for a natural classification scheme of nuclei and to describe isovector pairing correlations and high-\(J\) interactions. In a previous study, it was found that the Sp(4) model reproduced reasonably well the experimental energies of the lowest isovector-paired \(0^+\) states and provided for an estimation of the interaction strength parameters. Here the sp(4) algebraic approach has been further tested through second- and higher-order discrete derivatives of the energies of the lowest isovector-paired \(0^+\) states in the Sp(4) systematics, without any parameter variation. If reality were only a mean-field theory, none of the finite energy differences would reveal regular or irregular staggering effects. The reason is that any effect due to a smoothly varying mean-field part of the nuclear interaction is either entirely cancelled out in a finite energy difference filter or contributes regularly to the isolated part of the interaction. Indeed, the results obtained show that this is not the case and staggering behavior is observed. The theoretical discrete derivatives investigated not only followed the experimental patterns but their magnitude was found to be in a remarkable agreement with the data. The proposed model successfully interpreted the following: the two-proton (two-neutron) separation energy \(S_{2p(2n)}\) (hence determined the two-proton drip line) for even-even nuclei, the \(S_{pn}\) energy difference when a \(pn\) pair is added, the observed irregularities around \(N = Z\), the prominent \(ee-oo\) staggering when even-even and odd-odd nuclei are considered simultaneously, the like-particle and \(pn\) isovector pairing gaps, and the large contribution to the finite energy differences due to the symmetry term. The oscillating effects, where observed, were found to develop due to the discontinuity of the seniority numbers for the \(pn\) and like-particle isovector pairing, which is in addition to the larger staggering due to the discontinuous change in isospin values (symmetry term) between even-even and odd-odd nuclei.

We found a finite energy difference that, for a spe-
cific case, can be interpreted as an isovector pairing gap, \(\Delta = \Delta_{pp} + \Delta_{nn} - 2\Delta_{pn} \), which is related to the like-particle and \(pn \) isovector pairing gaps. They correspond to the \(T = 1 \) pairing mode because we do not consider the binding energies for all the nuclei but the respective isobaric analog \(0^+ \) states for the odd-odd nuclei with a \(J \neq 0^+ \) ground state. This investigation is the first of its kind. Moreover, the relevant energies are corrected for the Coulomb interaction and therefore the isolated effects reflect solely the nature of the nuclear interaction.

The outcome of this investigation shows that, in comparison to the experiment, the simple \(Sp(4) \) model reproduces not only global trends of the relevant energies but as well the smaller fine structure effects driven by isovector pairing correlations and higher-\(J \) \(pn \) and like-particle nuclear interactions. In particular, the \(sp(4) \) algebraic model was used to interpret specific phenomena revealed in finite energy differences and to investigate the contribution of the underlying interactions. In this way, it provides for an estimation of the isovector pairing gaps. For \(N = Z \) odd-odd nuclei all three pairing gaps were found equal while the \(pn \) pairing was found to weaken relative to the like-particle pairing strengths with increasing proton (neutron) excess. The like-particle pairing gaps were found to be in a good agreement with the empirical value of \(12/\sqrt{A} \). Additionally, the discrete derivatives give insight into particular small parts of the various non-\((J = 0, T = 1) \) interactions, mainly into the detailed contribution of the interaction related to the \(T(T + 1) \) term (symmetry energy). Small deviations from the experimental data are attributed to other two-body interactions or higher-order correlations that are not included in the theoretical model.

We explored independent finite energy differences based on a simple \(sp(4) \) algebraic classification scheme. The results suggest that this theoretical framework can be used to reproduce various experimental results including observed staggering behavior in fine structure effects of nuclear collective motion.

Acknowledgments

This work was supported by the US National Science Foundation through Grant No. 0140300. K.D.S. acknowledges supplemental support from the Graduate School of Louisiana State University.

[1] A. Bohr and B. R. Mottelson, The Nuclear Structure, Benjamin, New York (1975).
[2] E. A. Stefanova, Phys. Rev. C 67, 054319 (2003).
[3] W. R. Phillips et al., Phys. Rev. Lett. 57, 3257 (1986).
[4] W.-T. Chour, R. F. Casten and N. V. Zamfir, Phys. Rev. C 45, R2545 (1992).
[5] N. Minkov, S. B. Drenska, P. P. Raychev, R. P. Roussev and D. Bonatsos, Phys. Rev. C 63, 044305 (2001).
[6] S. Flibotte et al., Phys. Rev. Lett. 71, 4299 (1993).
[7] T. Hamamoto and B.R. Mottelson, Phys. Lett. B333, 294 (1994).
[8] D. S. Haslip, S. Flibotte, C. E. Svensson and J. C. Waddington, Phys. Rev. C58, R1803 (1994).
[9] H. Toki and L. A. Wu, Phys. Rev. Lett. 79, 2006 (1997).
[10] N. Minkov, S. B. Drenska, P. P. Raychev, R. P. Roussev and D. Bonatsos, Phys. Rev. C61, 064301 (2000).
[11] D. Bonatsos, C. Daskaloyannis, S. B. Drenska, G. A. Lalazissis, N. Minkov, P. P. Raychev and R. P. Roussev, Phys. Rev. A54, R2533 (1996).
[12] W. Heisenberg, Z. Phys. 78, 156 (1932).
[13] W. A. de Heer, Rev. Mod. Phys. 66, 611 (1993).
[14] S. Neukermans et al., Phys. Rev. Lett. 90, 033401 (2003).
[15] D. G. Madland and J. R. Nix, Nucl. Phys. A476, 1 (1988); P. Möller and J. R. Nix, Nucl. Phys. A536, 20 (1992).
[16] W. Satula, J. Dobaczewski and W. Nazarewicz, Phys. Rev. Lett. 81, 3599 (1998).
[17] Y. Alhassid, S. Liu and H. Nakada, Phys. Rev. Lett., 83, 4265 (1999).
[18] M. Bender, K. Rutz, P.-G. Reinhard and J. A. Maruhn, Eur.Phys.J. A8, 59 (2000).
[19] J. Dobaczewski, P. Magierski, W. Nazarewicz, W. Satula and Z. Szymański, Phys. Rev. C 63, 024308 (2001).
[20] T. Duguet, P. Bonche, P.-H. Heenen and J. Meyer, Phys. Rev. C 65, 014311 (2001).
[21] V. Velázquez and A. P. Zuker, Phys. Rev. Lett. 88, 072502 (2002).
[22] W. J. Tomlinson, III, and H. H. Stroke, Phys. Rev. Lett. 8, 436 (1962).
[23] E. Caurier, K. Langanke, G. Martinez-Pinedo, F. Nowacki and P. Vogel, Phys.Lett. B522, 240 (2001).
[24] S. Drenska, A. Georgieva and N. Minkov, Phys. Rev. C65, 054303 (2002).
[25] D. E. Gross and M. C. Nemes, Phys. Lett. 130B, 131 (1983).
[26] Y. K. Gambhir, P. Ring and P. Schuck, Phys. Rev. Lett. 51, 1235 (1983).
[27] J.-Y. Zhang, R.F. Casten and D.S. Brenner, Phys. Lett. B227, 1 (1989).
[28] N.V. Zamfir and R.F. Casten, Phys. Rev. C43, 2879 (1991).
[29] K. Kaneko and M. Hasegawa, Phys. Rev. C60, 024301 (1999).
[30] G. Röpke, A. Schnell, P. Schuck and U. Lombardo, Phys. Rev. C61, 024306 (2000).
[31] A. O. Macchiavelli et al., Phys. Rev. C61, 041303(R) (2000).
[32] P. Vogel, Nucl. Phys. A662 (2000) 148.
[33] K. D. Sviratcheva, A. I. Georgieva and J. P. Draayer, J. Phys. G: Nucl. Part. Phys. 29, 1281 (2003).
[34] K. D. Sviratcheva, A. I. Georgieva, V. G. Gueorgiev, J. P. Draayer and M. I. Ivanov, J. Phys. A: Math. Gen. 34, 8365 (2001).
[35] J. N. Ginocchio, Nucl. Phys. 74, 321 (1965).
[36] K. T. Hecht, Nucl. Phys. 63 (1965) 177; Phys. Rev. 139 (1965) B794; Nucl. Phys. A102 (1967) 11.
[37] J. Engel, K. Langanke and P. Vogel, Phys. Lett. B389 (1996) 211; J. Dobes, Phys. Lett. B413 (1997) 239.
[38] G. Audi and A. H. Wapstra, Nucl. Phys. A595, 409 (1995); R. B. Firestone and C. M. Baglin, Table of Isotopes, 8th Edition (John Wiley & Sons, 1998).

[39] J. Retamosa, E. Caurier, F. Nowacki and A. Poves, Phys. Rev. C55, 1266 (1997).

[40] G. Racah, Phys. Rev. 62, 438 (1942); Phys. Rev. 63, 367 (1943).

[41] A. K. Kerman, Ann. Phys. 12, 300 (1961).

[42] R. Smolańczuk and J. Dobaczewski, Phys. Rev. C48, R2166 (1993).

[43] E. Ormand, Phys. Rev. C55, 2407 (1997).

[44] P. Möller, J. R. Nix and K.-L. Kratz, LA-UR-94-3898 (1994); At. Data Nucl. Data Tables 66, 131 (1997).

[45] B. A. Brown, R. R. C. Clement, H. Schatz and A. Volya, Phys. Rev. C65, 045802 (2002).

[46] J. Jänecke and H. Behrens, Phys. Rev. C9, 1276 (1974).

[47] D. S. Brenner, C. Wesselborg, R. F. Casten, D. D. Warner and J.-Y. Zhang, Phys. Lett. B243, 1 (1990).

[48] It is common to address the symmetry energy in a slightly different way: the \(T(T+1) \) term together with the isospin dependence of the isovector pairing term yield symmetry \((\sim T^2) \) and Wigner \((\sim T) \) energies.

[49] We distinguish between groups denoted with capital letters [e.g. \(Sp(4) \)] and the associated algebras of their generators denoted with lower-case letters [e.g. \(sp(4) \)].

[50] The meaning of “nonpairing” relates to \(J \neq 0 \) and \(T \neq 1 \) interaction or any interaction that is different than the isovector pairing. Also, here the approximation is of \(O(1/\Omega) \).

[51] When \((n/2+i) \) corresponds to an odd-odd nucleus \(S_{pn} \) is related to the properties of the even-even \((n+2) \) nucleus.