The Role of Innate Immune Cells in Nonalcoholic Fatty Liver Disease

Marina Natia, b, c Kyoung-Jin Chunga Triantafyllos Chavakisa, b, c

aInstitute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany; bPaul Langerhans Institute Dresden of Helmholtz Center Munich at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany; cGerman Center for Diabetes Research (DZD), Neuherberg, Germany

Keywords

Inflammation · Macrophages · Neutrophils · Non-alcoholic fatty liver disease

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a very common hepatic pathology featuring steatosis and is linked to obesity and related conditions, such as the metabolic syndrome. When hepatic steatosis is accompanied by inflammation, the disorder is defined as nonalcoholic steatohepatitis (NASH), which in turn can progress toward fibrosis development that can ultimately result in cirrhosis. Cells of innate immunity, such as neutrophils or macrophages, are central regulators of NASH-related inflammation. Recent studies utilizing new experimental technologies, such as single-cell RNA sequencing, have revealed substantial heterogeneity within the macrophage populations of the liver, suggesting distinct functions of liver-resident Kupffer cells and recruited monocyte-derived macrophages with regards to regulation of liver inflammation and progression of NASH pathogenesis. Herein, we discuss recent developments concerning the function of innate immune cell subsets in NAFLD and NASH.

Introduction: NAFLD and NASH

Nonalcoholic fatty liver disease (NAFLD) is the most frequent chronic liver pathology in developed countries [1]. The prevalence of NAFLD is approximately 25%; however, this prevalence is likely underestimated due to the absence of symptoms and lack of noninvasive diagnostic tools [2]. NAFLD affects up to 70\% of type 2 diabetes patients [3, 4] and is present in the majority of obese individuals subjected to weight loss surgery [5, 6]. Therefore, NAFLD can be contemplated as the liver component of the metabolic syndrome [7]. Given that obesity, metabolic syndrome, and diabetes have reached a pandemic state, and that nonalcoholic steatohepatitis (NASH) is an increasing etiology for liver transplantation, it can be easily reasoned and forecasted that the prevalence of NAFLD will further increase [8, 9].

NAFLD is hallmarked by hepatic steatosis without excessive alcohol intake and in the absence of other potential causes of fat accumulation in the liver, such as infections (specifically viral hepatitis), medication-related steatosis, or hepatic autoimmune pathologies [10]. In approximately 20–30\% of NAFLD patients, the disease progresses from simple steatosis to NASH [11]. NASH is characterized by necro-inflammation and ballooning of
hepatocytes; NASH may progress in a subset of patients toward development of fibrosis that can further lead to cirrhosis and liver failure, as well as hepatocellular carcinoma [12–14]. NAFLD may predispose to hepatocellular carcinoma even in the absence of cirrhosis and is a continuously increasing cause for liver transplantation [2, 8, 15–17]; in the United States, it is projected that NAFLD will likely become the main indication for liver transplantation in the near future [18]. The extent and significance of NAFLD as a health burden become even more obvious when considering the absence of approved treatments despite multiple ongoing clinical trials [19, 20].

During NASH, associated with obesity-related metabolic dysregulation, the expanded adipose tissue displays chronic low-grade inflammation and is a source for adipokines, such as leptin, and inflammatory cytokines, such as TNF or IL-6 [21]. Additionally, the obese adipose tissue releases free fatty acids (FFAs) into the circulation, which promotes ectopic fat deposition in the liver [21]. Fat accumulation in hepatocytes results in lipotoxicity, mitochondrial dysfunction, reactive oxygen species (ROS) generation, and endoplasmic reticulum stress [22]. In addition, NASH is associated with gut microbiota dysbiosis, and a dysfunctional gut barrier with enhanced permeability, resulting in the secretion of pro-inflammatory factors in the portal circulation that contribute to hepatic inflammation [23]. Pro-inflammatory cytokines, lipotoxicity, and gut-derived bacterial products promote activation of liver-resident macrophages, designated Kupffer cells (KCs), and recruitment of inflammatory macrophages [24]. Activation of innate immunity drives further hepatic infiltration and accumulation of inflammatory cells, thereby exacerbating liver inflammation and damage [25]. This inflammation-related pathological cascade leads to hepatic stellate cell (HSC) activation and their fibrogenic differentiation, culminating in liver fibrosis. Importantly, activated HSCs may further aggravate inflammation, thereby facilitating a vicious circle of inflammation and fibrosis, which can promote progression to cirrhosis [26].

In summary, understanding the molecular mechanisms triggering inflammation during NASH development and progression is a major research aim and focus of extensive investigations [25, 27–30]. Given the central role of innate immunity in NAFLD pathogenesis, the present article focuses on the role of neutrophils, macrophages, and KCs in the context of NAFLD and NASH development and progression.

The Role of Neutrophils in NAFLD

Being the most abundant leukocytes in human blood and the first responders to pathogen invasions, acute inflammation, or injury, neutrophils are principal players of the innate immune response [31–33]. Despite their extensively studied contribution in the context of acute sterile injury of the liver [34–37], less is known about their involvement in the metabolically induced chronic scenario of NAFLD.

In NAFLD patients, neutrophils are present in the portal inflammatory infiltrate and represent a source of pro-inflammatory IL-17 in progressed NASH; additionally, their number increases with NASH-related liver fibrosis [38]. Moreover, neutrophil abundance correlates with the degree of steatosis and neutrophils are often associated with steatotic hepatocytes in human NASH [39]. An elevation of the neutrophil-to-lymphocyte ratio in peripheral blood of human NAFLD patients has been suggested as a noninvasive marker for NASH and liver fibrosis severity [40]. In an attempt to clarify if neutrophil recruitment is a mere indication of the extent of liver damage or if it causally contributes to hepatocyte cytotoxicity and necro-inflammation, neutrophils were depleted, by using an antibody against Ly6G, in different murine models of NAFLD. Neutropenic mice were protected from both high-fat diet (HFD)-induced and methionine-choline-deficient (MCD) diet-induced steatohepatitis [41, 42]. The MCD diet induces steatosis, steatohepatitis, and fibrosis already after a few weeks [43]. On the other hand, the work of Calvente and colleagues [44] highlighted that neutrophils are also critical for the resolution of liver inflammation in a mouse NASH model based on MCD diet.

Several publications have underlined the potential role of neutrophil-derived factors in NAFLD progression. To immobilize and neutralize extracellular microbes, neutrophils release neutrophil extracellular traps (NETs), web-like structures comprising decondensed chromatin, nuclear, and granule proteins, in a process of self-induced death called NETosis [45]. Recently, a role of NETs in NAFLD progression was proposed. Elevated levels of myeloperoxidase (MPO)-DNA complexes, a NET biomarker, were found in the serum of NASH patients; additionally, neutrophil infiltration and NETosis were shown to promote NAFLD progression to hepatocellular carcinoma in mice [46]. Disrupting NET formation via deoxyribonuclease treatment or using peptidyl arginine deaminase type IV-deficient mice inhibited NASH-related cancer development [46]. Furthermore, the importance of NETs in promoting inflammation during early stages of

32 J Innate Immun 2022;14:31–41
DOI: 10.1159/000518407
Nati/Chung/Chavakis
murine NASH was confirmed by Zhao and colleagues [47] using deoxyribonuclease administration in a model in which mice were fed a methionine-choline-deficient and a high-fat diet. These authors also showed that NETosis is activated in mouse fatty livers via S1P receptor 2 signaling [47].

Neutrophil activation and NETosis result in the release of granule proteins, key activators of the innate immune response [48]. Among others, neutrophil elastase (NE) participates in the generation of NETs, cathelicidins interact with and modulate toll-like receptor (TLR) activation, bactericidal/permeability-increasing protein exerts antimicrobial activity, whereas MPO stored in azurophilic granules, is a lysosomal enzyme with bactericidal activity that promotes ROS generation [49–52]. There is a consistent body of literature investigating the role of MPO in NAFLD. MPO levels are elevated in the circulation and in livers of NASH subjects compared to patients with simple steatosis and correlates with severity of liver inflammation [39]. Circulating neutrophils isolated from NASH patients are more prone to generate ROS than neutrophils from healthy subjects [53]. Whether the enhanced preparedness for ROS generation of neutrophils from NASH patients indicates the involvement of trained innate immunity, a form of innate immune memory, which can lead to increased inflammatory responses of innate immune cells, including neutrophils [54–56], in NASH pathogenesis remains to be elucidated. In a similar context, intracellular ROS generation may also promote migration and activation of human HSCs/myofibroblasts, thereby contributing to liver damage and fibrosis [57]. Importantly, MPO-triggered oxidative stress may result in increased DNA damage and accumulation of genomic mutations that increase the risk of malignant transformation and hepatocellular carcinoma development in NAFLD patients [58]. MPO may also participate in a neutrophil-HSC cross talk in NASH. Specifically, hepatic MPO is increased in NAFLD livers and MPO activation protects mice from NASH development, HSC activation, and fibrogenesis; in turn activated HSC-derived GM-CSF and IL-15 may enhance neutrophil survival, and thereby contribute to a feed-forward loop connecting perpetuation of liver inflammation and fibrosis [59–61].

The release of neutrophil granule contents into the extracellular matrix has been studied extensively in the context of hepatic injury and NASH pathogenesis [48]. Human neutrophil peptides (HNPs) also known as α-defensins, are a major micbicidal component of neutrophils. Treating human HSCs with HNP-1 in vitro increases their proliferation. Consistently, transgenic overexpression of HNP-1 promotes HSC proliferation and liver fibrosis in mouse NASH triggered by feeding with a choline-deficient, L-amino acid-defined diet [62]; the choline-deficient, L-amino acid-defined diet is a frequently used diet that induces steatohepatitis and fibrosis [43]. Circulating levels of NE, proteinase 3, and lipocalin 2 (LCN2) are increased in patients with NASH [63–66]. Consistently, a treatment with sivelestat, an NE inhibitor, ameliorated inflammation, and liver damage during NASH in APOE −/− mice fed with high-fat, high-cholesterol diet [42]. Moreover, NE secretion has been linked to insulin resistance. Treatment of primary mouse and human hepatocytes with NE directly degrades insulin receptor substrate-1, thereby increasing insulin resistance [67]. Pharmacological and genetic inactivation of NE mitigates liver insulin resistance and hepatic steatosis in obese mice [67, 68]. Additionally, NE and proteinase 3 may also promote HFD-triggered NAFLD pathogenesis, via their propensity to enzymatically activate IL-1β [69, 70]. Ye et al. [65] showed that neutrophil-derived LCN2 is increased in circulation and liver of mice subjected to 2 diet-induced NASH models, the MCD and the high-fat, high-cholesterol dietary models. LCN2 promotes the expression of the CXCR2 chemokine receptor and drives macrophage accumulation in the liver via a neutrophil-dependent mechanism. Consequently, deficiency of LCN2 protects mice from NASH development while chronic infusion of recombinant LCN2 enhances inflammation and liver damage [65]. Taken together, NETosis and the release of neutrophil-derived granule proteins resulting upon neutrophil activation may participate in the development of NASH and hepatic fibrosis and could be considered as a potential pharmacological target in future preclinical and clinical studies.

The Role of KCs and Monocyte-Derived Macrophages in NAFLD

KCs, the liver-resident macrophages, are yolk sac-derived, self-renewing macrophages located inside the hepatic sinusoids, in close proximity with endothelial cells [71–75]. C-Type Lectin Domain Family 4 Member F (CLEC4F) has been identified as a KC-specific marker [76, 77]; additionally, T-cell immunoglobulin and mucin domain containing 4 (TIM4, a receptor mediating effrocytosis of apoptotic cells [78], is also a marker of KCs [77, 79, 80]. Several studies suggest a critical regulatory participation of KCs in human NASH. Increased numbers of KCs/macrophages have been observed in liver biopsies of
NASH patients, positively correlating with NAFLD disease severity; moreover, KCs and macrophages may form hepatic “crown-like structures” in NASH; crown-like structures represent macrophage aggregates surrounding steatotic hepatocytes that usually contain large lipid droplets [81, 82]. Enhanced numbers of portal macrophages are found at the early stages of human NASH, preceding subsequent inflammatory events [38]. In addition to KCs that are F4/80^hi^ and CD11b^int^, recruited CD11b^high^ monocyte-derived macrophages (MoMFs) have also been implicated in NAFLD and NASH development and progression [24, 83]. In a series of studies in rodents subjected to different diet-induced NASH models, global depletion of KCs and macrophages via clodronate liposomes or gado-linum chloride protected against the development of steatosis, necro-inflammation, and fibrosis, hence suggesting that liver KCs/macrophages are a component of NASH pathogenesis [84–91].

The mechanisms underlying the role of KCs and macrophages in NASH are multifaceted. Hepatic macrophages/KCs may be activated by FFAs originating from the obese adipose tissue, in a manner that involves TLR signaling; in this regard, palmitate and TLR2 may collaborate to induce KC/macrophage inflammasome activation, while palmitate interacts with the TLR4/MD2-complex stimulating ROS generation in inflammatory macrophages [21, 92–94]. Additionally, trans-fatty acids and peroxidized lipids derived from an unbalanced diet can promote activation of KCs [95, 96]. In experimental models leading to NAFLD/NASH, including genetic deficiency of leptin in ob/ob mice or feeding a HFD followed by carbon tetrachloride administration to induce steatohepatitis, the adipocytokine leptin, deriving from the obese adipose tissue, stimulates KC production of pro-inflammatory and pro-fibrogenic cytokines [97–99]. At the same time, the decreased levels of adiponectin in obesity promote steatohepatitis in mice, as adiponectin exerts anti-inflammatory actions on KCs [100, 101].

NASH is also associated with altered gut microbiota composition and related elevated intestinal barrier permeability; in this context, bacteria or their products, such as endotoxin, may reach the liver via the portal circulation and contribute to KC/macrophage activation [102]. Bacterial lipopolysaccharide (LPS) and bacterial DNA interact with TLR4 and TLR9, respectively, thereby promoting pro-inflammatory and pro-fibrotic activity in KCs/macrophages in rodent NASH models; consistently, in humans with NAFLD, TLR4 expression correlated with portal inflammation and fibrosis [86, 103–106]. Once activated, KCs may contribute to steatosis development by regulating hepatocyte lipid metabolism. Stienstra et al. [107] showed that KCs stimulate fat accumulation in hepatocytes by reducing their fatty acid oxidation via IL-1β-dependent suppression of peroxisome proliferator-activated receptor α activity. Moreover, TNF is involved in mediating the KC-dependent impaired fatty acid oxidation and enhanced triglyceride accumulation, as shown in rat KC-hepatocyte co-cultures using antibodies blocking TNF [84].

During hepatic steatosis, excessive lipid metabolism in hepatocytes and increased oxidative stress further reinforce KC activation and inflammation development; a major lipotoxic molecule in the context of NASH is free cholesterol [108]. In both NASH patients and mouse models, KCs form crown-like structures, similar to those present in the inflamed adipose tissue [82, 109, 110]; such crown-like structures surround dying steatotic hepatocytes, which contain cholesterol crystals [111]. KCs engulf modified lipids, for instance, oxidized low-density lipoproteins, mainly via CD36 and scavenger receptor A, and become pro-inflammatory lipid-laden “foamy cells”; in this context, NLRP3 inflammasome stimulation by cholesterol crystals may represent a mechanism underlying KC activation [112–116]. Interestingly, cholesterol-loaded KCs are more prone to produce inflammatory cytokines and chemokines in response to LPS stimulation [117]. Whether this may reflect innate immune memory in KCs has not been addressed; however, oxidized low-density lipoproteins can induce innate immune memory in macrophages [118]. The combined effect of lipotoxicity and inflammation during steatohepatitis results in hepatocyte damage and necroptosis, which in turn further perpetuates KC/macrophage pro-inflammatory activation, hence, representing a possible feed-forward loop in NASH development [119].

Engulfment of hepatocyte-derived apoptotic bodies by KCs promotes the production of death ligands and TNF [120]. Dying hepatocytes release damage-associated molecular patterns (DAMPs) capable of enhancing inflammation by activating their respective pattern recognition receptors on KCs and by driving recruitment of inflammatory cells, such as monocytes and neutrophils [121]. Along this line, microparticles containing the DAMP mitochondrial DNA, deriving from steatotic hepatocytes, activate a pro-inflammatory response in KCs/macrophages in a TLR9-dependent manner, as shown in a mouse HFD model [122]. Another DAMP released from damaged hepatocytes is extracellular adenosine triphosphate [123]. In in vitro studies, adenosine triphosphate contributed to LPS-induced IL-6 secretion by mouse KCs...
[123]. Thus, DAMPs derived from hepatocyte death may potentiate hepatic inflammation in NASH.

Activation of resident KCs/macrophages in the liver and increased production of pro-inflammatory factors promotes the recruitment and accumulation of nonresident inflammatory cells to the liver, such as B lymphocytes, T lymphocytes, neutrophils, and monocytes, the latter giving rise to macrophages [90, 91, 117, 120, 124]. Chemo- kines produced by activated KCs regulate the recruitment of inflammatory cells; among them, C-C motif ligand 2 (CCL2) plays a crucial role in NASH development. In diet-induced NASH models in mice, CCL2 interacting with its cognate receptor CCR2 facilitates the accumulation of Ly6Chi monocytes in the liver [90, 91]. These infiltrating monocytes give rise to a distinct recruited hepatic macrophage population, MoMFs [124]. MoMFs originate from bone marrow hematopoietic cells and differ phenotypically from KCs [125]. Morinaga et al. [124] showed that the MoMFs infiltrating the steatotic liver of obese mice had higher expression of CCR2 but lower expression of CCL2 than KCs. Increased abundance of CCR2-expressing MoMFs was also identified in human NAFLD [126]. This infiltrating population is distinct from resident KCs and its abundance in the liver of patients correlates with severity of NASH and the stage of fibrosis [126]. In the recovery phase of carbon tetrachloride-induced fibrosis in mice, macrophages promote matrix degradation and repair [127]. Alternatively activated KCs/macrophages with an anti-inflammatory phenotype may promote apoptosis in M1-polarized pro-inflammatory KCs/macrophages, and thereby limit NAFLD-related liver injury in mice [128].

The mostly studied pro-inflammatory cytokines produced by liver KCs/macrophages during NASH are TNF [90, 129, 130] and IL-1\beta, the latter deriving from caspase-1 activation [131]. Macrophage-derived TNF and IL-1\beta may promote survival of activated HSCs in a manner that involves actions of the nuclear factor-kappaB, while TNF stimulates expression of tissue inhibitor of metalloproteinase 1 in HSCs as well, as shown in mouse models [132, 133]. Activated KCs/macrophages may also promote HSC transdifferentiation into collagen-secreting pro-fibrotic myofibroblast-like cells via TGF-\beta1 secretion, thereby aggravating hepatic fibrosis [134–136]. Interestingly, activin-A, a member of the TGF-\beta family, stimulates expression of TNF and TGF-\beta1 in mouse KCs thereby reinforcing the paracrine cross talk of KCs with HSCs [134]. Together, the interaction of KCs/macrophages with HSCs may promote NASH-related hepatic fibrosis contributing to progression of steatohepatitis toward liver cirrhosis.

Recent utilization of RNA sequencing and single-cell RNA sequencing techniques allowed a better investigation and understanding of the properties of distinct hepatic macrophage populations and resulted in functional diversification between KCs and MoMFs [137, 138]. Using a Western diet mouse model, Krenkel et al. [138] identified in NASH-livers expansion of MoMFs characterized by a unique inflammatory phenotype. Xiong et al. [139] identified a NASH-specific macrophage subset highly expressing triggering receptors expressed on myeloid cells 2 (TREM2). This population was designated as NASH-associated macrophages and is present both in human and mouse NASH [139]. Moreover, TREM2 also characterizes the lipid-associated macrophages (LAMs) of the adipose tissue in obesity [140]. A TREM2+CD9+ subpopulation of macrophages was also discovered in human NASH and named scar-associated macrophages due to their pro-fibrogenic phenotype [141]. Furthermore, recent studies demonstrated that KC numbers decrease in the NAFLD/NASH liver of mice and are replaced by recruited MoMFs of hematopoietic origin [142, 143]. In mice fed with a Western diet, high in fat, cholesterol, and sugar, liver-infiltrated MoMFs comprised 2 subpopulations, of which one is reminiscent of KCs and the other had LAM-like properties [143]. The latter population was characterized by osteopontin expression and was predominantly present in hepatic regions displaying fibrosis and low KC abundance [143]. Another study confirmed that TIM4-positive and CLEC4F-positive KCs are reduced, while abundance of infiltrated TIM4-negative MoMFs increases in the liver of mice upon NAFLD induction with a high-fat, high-sucrose-diet [79]. A subset within these recruited MoMFs expressed Trem2 and other markers of LAMs, such as Cd63, Cd9, and Gpmnb; an another transitional subpopulation expressed Cx3cr1 and Ccr2 and were designated C-LAMs. LAMs and C-LAMs were localized primarily in macrophage aggregates and crown-like structures of the NASH liver and might operate in a fashion that protects against NASH-related fibrosis [79]. A further recent mouse study identified a monocyte-derived KC population with decreased self-renewal and a pro-inflammatory phenotype that aggravates liver injury during NASH [144]. Despite the heterogeneity in markers and nomenclature, it can be stated that MoMFs play a significant role in NASH progression by promoting inflammation in a multitude of likely synergistically acting ways, including production of chemokines, cytokines, or ROS, although, as recently suggested, MoMF-derived LAMs may also protect against fibrosis [79, 141, 144–147].
Additionally, under certain circumstances, cells of hematopoietic origin, specifically monocytes derived from the bone marrow, may contribute to the replenishment of the KC niche giving rise to self-renewing and fully differentiated KCs [77, 148]. Upon acute depletion of KCs in mice, recruited macrophages acquired KC identity in a manner requiring Notch, TGF-β, and liver-X-receptor signaling [149]. Consistently, a parallel study demonstrated that early TNF- and IL-1-dependent inflammatory signaling following KC depletion in mice activated HSCs and the endothelium to upregulate adhesion receptors and chemokines, thereby triggering monocyte recruitment. Recruited monocytes, in turn, gave rise to new KCs associated with induction of liver-X-receptor α expression, stimulated by interaction with HSCs and endothelial cells and involvement of NOTCH and bone morphogenetic protein (BMP) signaling [150].

Taking the aforementioned recent studies into account, it can be stated that bone marrow-derived MoMFs seem to play an important pathogenic role in NASH, including promotion of inflammation and fibrosis; on the other hand, KCs may be more important in liver homeostasis [72, 125]. In fact, recent studies that identified markers distinguishing KCs and MoMFs also suggest that NASH-associated pathogenic functions that were previously ascribed to activated KCs may rather be mediated by recruited MoMFs. Additionally, in contrast to previ-
ously prevailing ideas that both KC and MoMF numbers increase during NASH, recent studies have changed our view by suggesting that enhanced MoMF infiltration may be accompanied by a reduction of KCs in different models of dietary NASH and that NASH is linked with a dysfunction of KC homeostasis [79, 144, 151]. In conclusion, due to their central role in regulating steatosis, inflammation, and fibrosis in NASH pathogenesis, macrophages may represent therapeutic targets for NASH development and progression.

Conclusions and Future Perspectives

Animal models and clinical studies have shown a critical role of cells of the innate immunity, particularly myeloid cells, such as neutrophils or MoMFs in initiation and propagation but also modulation and amelioration of hepatic inflammation in the context of NASH development, progression, and resolution [41, 42, 72, 79, 127, 141, 143] (Fig. 1). Therefore, myeloid cells and products thereof might represent potential therapeutic targets and noninvasive markers for assessing disease severity. However, due to their dual role in both contributing to and protecting against NASH pathogenesis, it is important to be able to target distinct myeloid cell subsets with pathological or pro-resolving properties specifically.

In recent years, advances in single-cell RNA sequencing allowed to explore the heterogeneity of MoMFs and KCs revealing the limitations and inadequacy of previously used markers. Novel markers and pathogenic players were identified in the context of NASH by characterizing distinct hepatic macrophage subpopulations on the basis of their transcriptional signatures [138, 139, 141]. Widely used traditional markers, such as CD68, F4/80 or CD11b, are clearly not sufficient to distinguish between resident and bone marrow-derived macrophages; novel markers, such as CLEC4F and TIM4, have been identified for KCs [77, 79, 80] or TREM2 and CD9 for inflammatory and pro-fibrotic MoMFs [141]. Due to these recent findings, researchers have shifted their focus from KCs to recruited MoMFs. Along this line, inhibiting the chemokine-dependent infiltration of monocytes seems like a promising therapeutic strategy. CCR2 and CCR5 are key players in the monocyte/macrophage and leukocyte trafficking, and cinacriviroc, a dual CCR2–CCR5 antagonist, ameliorated steatohepatitis, and fibrosis in different diet-induced mouse models of NASH [126]. Moreover, in a phase II b study, twice as many patients treated for 1 year with cinacriviroc presented fibrosis reduction when compared with the placebo group [152] and a phase III trial is in progress in NASH patients with stage F2 or F3 fibrosis [153]. Furthermore, Cenicriviroc is also tested in combination with Tropifexor, an agonist of the bile acid receptor, farnesoid X activated receptor [154]. Future studies utilizing innovative methodologies, such as single-cell RNA sequencing, and focusing on specific cellular subsets will help elucidate the exact role of different innate immune cell subsets in the complex pathophysiology of NASH and will likely provide novel therapeutic targets.

Acknowledgments

The figure was created using Biorender.com.

Conflict of Interest Statement

The authors have no conflicts of interest to declare in relation to this work.

Funding Sources

T.C. is supported by funds from the European Research Council (ERC), the German Research Foundation (DFG), the National Institute of Dental and Craniofacial Research/National Institutes of Health (NIDCR/NIH), the German Ministry of Research and Education (BMBF), and the Else Kröner Fresenius Center for Digital Health Dresden.

Author Contributions

M.N. wrote the first draft; K.-J.C. and T.C. reviewed and edited the manuscript.

References

1 Rinella M, Charlton M. The globalization of nonalcoholic fatty liver disease: prevalence and impact on world health. Hepatology. 2016 Jul;64(1):19–22.
2 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016 Jul;64(1):73–84.
3 Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L, et al. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2007 May;30(5):1212–8.
11 Calzadilla Bertot L, Adams LA. The natural history of nonalcoholic fatty liver disease. Inflamm Regen. 2020 Feb;42(1):10–21.

7 Boppidi H, Daram SR. Nonalcoholic fatty liver disease: hepatocellular carcinoma risk factors in patients undergoing bariatric surgery. Obes Surg. 2015 Dec;25(12):2335–43.

38 DOI: 10.1159/000518407

4 Williamson RM, Price JF, Glancy S, Perry E, et al. Projected increases in burden of disease: the Edinburgh type 2 diabetes study. Diabetes Care. 2011 May;34(5):1139–44.

5 Beymer C, Kowdley KV, Larson A, Edmonson P, Delliger EP, Flum DR. Prevalence and predictors of asymptomatic liver disease in patients undergoing gastric bypass surgery. Arch Surg. 2003 Nov;138(11):1240–4.

3 Morita De Santi Neto D, Morita FH, Morita NK, Lobo SM. Prevalence of non-alcoholic fatty liver disease and steatohepatitis risk factors in patients undergoing bariatric surgery. Obes Surg. 2015 Dec;25(12):2335–43.

13 Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Dellinger EP, Flum DR. Prevalence and predictors of asymptomatic liver disease in patients undergoing gastric bypass surgery. Arch Surg. 2003 Nov;138(11):1240–4.

10 Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the study of liver diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012 Jun;55(6):2005–23.

9 Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2010 Jan;61(1):123–33.

14 Brunt EM, Janney CG, Di Bisceglie AM, Brunt EM, Cusi K, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guideline by the American Association for the study of liver diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012 Jun;55(6):2005–23.

11 Calzadilla Bertot L, Adams LA. The natural course of non-alcoholic fatty liver disease. Int J Mol Sci. 2016 May;17(5):774.

12 Loomba R, Adams LA. The 20% rule of NASH progression: the natural history of advanced fibrosis and cirrhosis caused by NASH. Hepatology. 2019 Dec;70(6):1885–8.

15 Goldberg D, Ditah IC, Saeian K, Lalchzari M, Aronsohn A, Gorescu EC, et al. Changes in the prevalence of hepatitis C virus infection, nonalcoholic steatohepatitis, and alcoholic liver disease among patients with cirrhosis or liver failure on the waitlist for liver transplantation. Gastroenterology. 2017 Apr;152(2):1090–99.e1.

16 Charlton MB, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011 Oct;141(4):1249–53.

17 Mittal S, El-Serag HB, Sada YH, Kanwal F, Duan Z, Temple S, et al. Hepatocellular carcinoma in the absence of cirrhosis in United States Veterans is associated with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2016 Jan;14(1):124–31.e1.

18 Parikh ND, Marrero WJ, Wang, Je, Steuer J, Tapper EB, Konerman M, et al. Projected increase in obesity and non-alcoholic-steatohepatitis-related liver transplantation waitlist additions in the United States. Hepatology. 2019 Aug;70(2):487–95.

19 Konerman MA, Jones JC, Harrison SA. Pharmacotherapy for NASH: current and emerging. J Hepatol. 2018 Feb;68(2):362–75.

20 European Association for the Study of the Liver (EASL); European Association for the Study of Obesity (EASO); European Association for the Study of Obesity (EASO). EASL-EASO-EASD clinical practice guidelines for the management of non-alcoholic fatty liver disease. Obes Facts. 2016;9(2):65–90.

21 Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2012 Apr;142(4):711–25.

22 Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology. 2010 Aug;52(2):744–88.

23 Aron-Wisnewsky J, Vigliotti C, Witjes J, Le P, Ruytinx P, Amaral FA, Brandolini L, et al. Intravital microscopic evaluation of the effects of a CXCR2 antagonist in a model of liver ischemia reperfusion injury in mice. J Hepatol. 2018 Feb;57:1718–28.

24 Slaba I, Wang J, Kolaczkowska E, McDonald B, Lee WY, Kubes P. Imaging the dynamic platelet-neutrophil response in sterile liver injury and repair in mice. Hepatology. 2015 Nov;62(5):1593–605.

25 de Oliveira TH, Marques PE, Poostl F, Ruytinx P, Aradami L, Bravolini D, Isono K, Hayashida S, et al. Intravital imaging of neutrophil recruitment reveals the efficacy of FPR1 blockade in hepatic ischemia-reperfusion injury. J Immunol. 2017 Feb;198(4):1718–28.

26 Rensen SS, Slats Y, Nijhuis J, Jans A, Bieghs IA, Goldin R, Dan YY, et al. Mouse models of non-alcoholic fatty liver disease. J Innate Immun. 2022;14(3):31–41. DOI: 10.1159/000518407

27 Haczeyni F, Yeh MM, Ioannou GN, Leclercq AM, Chavakis T. From leukocyte recruitment to resolution of inflammation: the cardinal role of integrins. J Leukoc Biol. 2017 Sep;102(3):677–83.
Innate Immunity in NAFLD

2020 Apr;129(10):4091–109.
Boeltz S, Amini P, Anders HJ, Andrade F, Bilyy R, Chatfield S, et al. To NET or not to NET: current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ. 2019 Mar;26(3):395–408.
van der Windt DJ, Sud V, Zhang H, Varley PR, Goswami J, Yazdani HO, et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology. 2018 Oct;68(4):1347–60.
Zhang Y, Yang C, Jiang H, Xu Y, Yang Y, et al. Neutrophils undergoing switch of apoptotic cells during murine fatty liver injury via SIP receptor 2 signaling. Cell Death Dis. 2020 May;11(5):379.
Wu L, Gao X, Guo Q, Li J, Yao J, Yan K, et al. The role of neutrophils in innate immunity-driven nonalcoholic steatohepatitis: lessons learned and future promise. Hepatol Int. 2020 Sep;14(5):652–66.
Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005 May;77(5):598–625.
Gunny G, Levy O. Bacterial/permeability-increasing protein (BPI) and BPI homologs at mucosal sites. Trends Immunol. 2008 Nov;29(11):541–7.
Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012 Sep;189(6):2689–95.
Scheenstra MR, van Harten RM, Veldhuizen Al. Altered phenotype and functionality of circulating immune cells characterize adult patients with nonalcoholic steatohepatitis. J Clin Immunol. 2011 Dec;31(6):1120–30.
Chavakis T, Mitroulis I, Hajishengallis G. Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat Immunol. 2019 Jul;20(7):802–11.
Kalafati I, Kourtzelis I, Schulte-Schrepping J, Xie D, Li X, Zuo H, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. J Clin Endocrinol Metab. 2019 Dec;104(12):4381–88.
Park JW, Jeong G, Kim MK, Park SM. Predictors reflecting the pathological severity of non-alcoholic fatty liver disease: comprehensive study of clinical and immunohistochemical findings in younger Asian patients. J Gastroenterol Hepatol. 2007 Apr;22(4):491–7.
Itoh M, Kato H, Suganami T, Konuma K, Marumoto Y, Terai S, et al. Hepatic crown-like structure: a unique histological feature in non-alcoholic steatohepatitis in mice and humans. PLoS One. 2013 Dec;8(12):e82163.
Guillot A, Tacke F. Liver macrophages: old dogmas and new insights. Hepatol Commun. 2019 Apr;3(6):730–43.
Huang W, Metlakunta A, Dedousis N, Zhang P, Sipula I, Dube JJ, et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes. 2010 Feb;59(2):347–57.
Mirea AM, Tack CJ, Chavakis T, Joosten LAB, Toonen EJM. IL-1 family cytokine pathways underlying NAFLD: towards new treatment strategies. Trends Mol Med. 2018 May;24(5):458–71.
Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Compr Physiol. 2013 Apr;3(2):785–97.
Westen M, Lambrecht B, Cuneo F. Hepatic macrophages in liver hepatosteatosis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol. 2021 Jan;18(1):45–56.
Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016 Mar;44(3):439–49.
Shulcz G, Gonzalez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of Myd and hematopoietic stem cells. Science. 2012 Apr;336(6072):966–970.
Remmerie A, Martens I, Scott CL. Macrophage subsets in obesity, aligning the liver and adipose tissue. Front Endocrinol. 2020 Apr;11(259):259.
Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014 Dec;159(6):1312–26.
Scott CL, Zheng F, De Baetselier P, Martens L, Saey S, De Prijck S, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 2016 Jan;7(1):10521.
Kourtzelis I, Hajishengallis G, Chavakis T. Phagocytosis of apoptotic cells in resolution of inflammation. Front Immunol. 2020 Mar;11:553.
85 Lanthier N, Molendi-Coste O, Cani PD, van Rooijen O, Horsmans Y, Leclercq IA. Kupffer cell depletion prevents but has no therapeutic effect on metabolic and inflammatory changes induced by a high-fat diet. FASEB J. 2011 Dec; 25(12):4301–11.

86 Rivera CA, Adegboyega P, van Rooijen N, Tagalicul A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol. 2007 Oct; 47(4):571–9.

87 Li L, Chen L, Hu L, Liu Y, Sun HY, Tang J, et al. Nuclear factor high-mobility group box1 mediating the activation of toll-like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice. Hepatology. 2011 Nov; 54(5):1620–30.

88 Lanthier N, Molendi-Coste O, Horsmans Y, van Rooijen N, Cani PD, Leclercq IA. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am J Physiol Gastrointest Liver Physiol. 2010 Jan; 298(1):G107–16.

89 Neyrinck AM, Cani PD, Dewulf EM, De Vos M, Vanoosthuyse V, Novobrantseva TI, Hahn YS. Kupffer cells and the gut-liver axis in NASH pathogenesis. Am J Physiol Gastrointest Liver Physiol. 2009 Jul; 385(3):351–6.

90 Tosello-Trampont AC, Landes SG, Nguyen M, Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin Y, et al. Nuclear factor-kappa B activity. A novel hypothesis to explain steatohepatitis. J Hepatol. 2007 Oct; 47(4):571–9.

91 Li Z, Lin H, Yang S, Diet HL. Murine leptin deficiency alters Kupffer cell production of cytokines that regulate the innate immune system. Gastroenterology. 2002 Oct; 123(4):1304–10.

92 Wang J, Leclercq I, Bymora JM, Xu N, Ramezani-Moghadam M, London RM, et al. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology. 2009 Aug; 137(2):713–23.

93 Chatterjee S, Ganini D, Tokar EJ, Kumar A, Das S, Bertott J, et al. Leptin is key to peroxisome proliferated liver and Kupffer cell activation in experimental non-alcoholic steatohepatitis. J Hepatol. 2013 Apr; 58(4):778–84.

94 Fukushima J, Kamada Y, Matsumoto H, Yoshiba Y, Ezaki H, Takamura T, et al. Adiponectin prevents progression of steatohepatitis in mice by regulating oxidative stress and Kupffer cell phenotype polarization. Hepatol Res. 2009 Jul; 39(7):724–38.

95 Luo N, Chung BH, Wang X, Klein RL, Tang CK, Garvey WT, et al. Enhanced adiponectin actions by overexpression of adiponectin receptor 1 in macrophages. Atherosclerosis. 2013 May; 228(1):124–35.

96 Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018 Feb; 58(2):280–95.

97 Vespasiani-Gentilucci U, Carotti S, Perrone G, Mazzarello C, Galati G, Onetti-Muda A, et al. Hepatic toll-like receptor 4 expression is associated with portal inflammation and fibrosis in patients with NAFLD. Liver Int. 2015 Feb; 35(2):569–81.

98 Ye D, Li FY, Lam KS, Li H, Jia W, Wang Y, et al. Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut. 2012 Jul; 61(7):1058–67.

99 Chatterjee S, Ganini D, Tokar EJ, Kumar A, Das S, Bertott J, et al. Leptin is key to peroxisome proliferated liver and Kupffer cell activation in experimental non-alcoholic steatohepatitis. J Hepatol. 2013 Apr; 58(4):778–84.
Innate Immunity in NAFLD

127 Duffield JS, Forbes SJ, Constantinou CM, Morinaga H, Mayoral R, Heinrichsdorff J, De Taeye BM, Novitskaya T, McGuinness Wan J, Benkdane M, Teixeira-Clerc F, Bontemps-Pinder S, Papouchado J. 2014 Jan; 59(1): 130–42.

128 Wan J, Berndt M, Toma J, Varga E, Abdallah AT, Mossanen JC, Kohlhenn M, et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology. 2018 Apr;67(4): 1270–83.

129 Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005 Jan;115(1):56–65.

130 Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Loubet A, Lattilf D, et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology. 2014 Jan;59(1):130–42.

131 Crespo J, Cayón A, Fernández-Gil P, Hernández-Guerra M, Mayorga M, Domínguez-Diez A, et al. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology. 2001 Dec;34(6):1158–73.

132 De Taeye BM, Novitskaya T, McGuinness OP, Gleaves L, Medda M, Covington JW, et al. Macrophage TNF-alpha contributes to insulin resistance and hepatic steatosis in diet-induced obesity. Am J Physiol Endocrinol Metab. 2007 Sep;293(3):E713–25.

133 Dixon LJ, Berk M, Thapaliya S, Papouchado BG, Feldstein AE. Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Lab Invest. 2012 May;92(5):713–23.

134 Pradere JP, Kluew J, de Minicus S, Jiao JJ, Gwak GY, Dapito DH, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 2013 Oct;58(4):1461–73.

135 Tomita K, Tamiya G, Ando S, Ohsumi K, Chiy T, Mizutani A, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 2006 Mar;55(3):415–24.

136 Kiagiadaki F, Kampa M, Voumouvaraki A, Castanas E, Kouroumalis E, Notas G. Activin-A causes hepatic stellate cell activation via the induction of TGFα and TGFβ in Kupffer cells. Biochim Biophys Acta Mol Basis Dis. 2018 Mar;1863(4):891–9.

137 Cai B, Dongiovanni P, Corey KE, Wang X, Shmarakov IO, Zheng Z, et al. Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis. Cell Metab. 2020 Feb; 31(2):406–21.e7.

138 Okina Y, Sato-Matsubara M, Matsubara T, Daikoku A, Longato L, Rombouts K, et al. TGF-β1-driven reduction of cytoglobin leads to oxidative DNA damage in stellate cells during non-alcoholic steatohepatitis. J Hepatol. 2020 Oct;73(4):882–95.

139 McGettigan B, McMahan R, Orlicky D, Burdich M, Danhorn T, Francis P, et al. Dietary lipids differentially shape nonalcoholic steatohepatitis progression and the transcriptome of Kupffer cells and infiltrating macrophages. Hepatology. 2019 Jul;70(1):67–83.

140 Krenkel O, Hundertmark J, Abdallah AT, Kohlhenn M, Puengel T, Roth T, et al. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut. 2020 Mar;69(3):513–61.

141 Xiong X, Huang H, Ansari S, Liu T, Gong J, Wang S, et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secreteme gene analysis. Mol Cell. 2019 Aug;75(3):644–60.e5.

142 Jaitin DA, Adlung L, Thaiss CA, Weiner A, Li B, Descamps H, et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell. 2019 Jul;178(3):686–98.e14.

143 Ramachandran P, Dobie R, Wilson-Kamorari JR, Dora EF, Henderson BEP, Luu NT, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019 Nov;575(7783):512–8.

144 Seidman JS, Troutman TD, Seidman O, Ouyang Z, Spann NJ, Abe Y, et al. Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity. Immunology. 2019 Oct;51(4):655–70.e8.

145 Bonnarel J, T’Jonck W, Gaublomme D, Browaey R, Scott CL, Martens L, et al. Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunology. 2019 Oct;51(4):638–54.e9.

146 Deisserlach L, Scott CL, Lefere S, Raesens V, Bogaerts E, Paridaens A, et al. Non-alcoholic steatohepatitis induces transient changes within the liver macrophage pool. Cell Immunol. 2017 Dec;322:74–83.

147 Friedman LD, Ratzkriz V, Harrison SA, Abdelmalek MF, Aithal GP, Caballera J, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology. 2018 May;67(5):1754–67.

148 Anson QM, Neuschwander-Tetri BA, Wong VW, Abdelmalek MF, Younossi ZM, Yuan J, et al. Cenicriviroc for the treatment of liver fibrosis in adults with nonalcoholic steatohepatitis: AURORA phase 3 study design. Contemp Clin Trials. 2020 Feb;89:105922.

149 Dufour JF, Causée C, Loomba R. Combination therapy for non-alcoholic steatohepatitis: rationale, opportunities and challenges. Gut. 2020 Oct;69(10):1877–84.

Innate Immunity in NAFLD

DOI: 10.1159/000518407