Management of technological modernization of production as the most important factor of labor productivity growth in the industry of the Arctic regions

V Zharov¹,² and N Zharov²

¹Apatity Branch of Murmansk Arctic State University, Apatity, Russia
²Luzin Institute of Economic Problems of Kola Science Centre Russian Academy of Sciences, Apatity, Russia

zharov_vs@mail.ru

Abstract. It is shown that technological modernization should have a significant impact on the growth of labor productivity but this process must be effectively managed for the maximum use of available production resources. For this purpose, it is proposed to follow a new direction of economic analysis of the production system activity, namely, the investment-and-innovation analysis which allows determining the economic necessity and possibility of technological renewal for any production enterprise or industry. It was found that over previous years the intensity of technological renewal of industrial production in the Arctic regions was insufficient. As a result, the growth of labor productivity was provided mainly extensively due to the increase in the level of fixed capital per worker. Accordingly, a significant increase in capital productivity, and hence labor productivity, while reducing the material intensity of products, which allows the volume of toxic waste emissions into the environment to be diminished, can only be achieved due to the introduction of intensive technological innovations of intensive type. At the same time, the effectiveness of practical implementation of such solutions is largely influenced by the quality of the human capital used by the industry. It is shown that the successful implementation of technological modernization largely depends on the regulatory role of the state.

1. Introduction

The level of labor productivity in the Russian economy is several times lower than that in developed countries [1], thus the study of opportunities for increasing labor productivity is an urgent task [2], [3]. This finding is of particular importance for the regions of the Russian Arctic, where labor productivity in industry is much lower than that in the Northern regions of the Scandinavian countries [4]. The fact is that, on the one hand, severe climatic conditions make it necessary for enterprises to provide employees with an increased level of wages, which reduces their profits compared to the enterprises operating under more favorable conditions. On the other hand, in many Arctic regions there is a tendency to decrease the number of permanent residents, mainly due to the outflow of young people - the most promising labor resources.

Digitalization of the economy should bring a new impetus to the growth of labor productivity, but the growth rates will vary in different sectors of the economy [5]. In the production sectors of the Russian economy, technological modernization should have a significant impact on labor productivity growth, but this process must be managed effectively for the maximum use of available production resources [6].

Labor productivity in production systems is known to be determined by multiplication of the value of fixed capital per worker by the value of capital productivity, where the former is the extensive factor of economic development and the latter is an intensive one. It is obvious that under modern conditions the
economic growth should be determined to a greater extend by the influence of intensive factors. This means that the growth of labor productivity in the production sectors of the Russian economy primarily depends on the growth of capital productivity which should provide the technological renewal of production.

Unfortunately, over the previous decade capital productivity in industry declined rather than increased. We have shown that between 2005 and 2015, its value decreased from 1.32 to 1.10 rubles/RUB. As a result, fixed capital per worker increased 5.1 times over these years, with labor productivity increasing only 4.3 times (in current prices), i.e. 80 per cent less. In our opinion, the reasons for this situation are as follows. On the one hand, in practice the implementation of cost-effective investment projects for technological innovations at existing enterprises does not always lead to an increase in the level of its capital productivity. On the other hand, companies often do not set the goal of increasing the level of capital productivity, since it, other things being equal, reduces the share of depreciation in production cost and therefore cuts the amount of their own financial resources which are not subject to taxation in contrast to profit. Thus, the purpose of the work is to determine the main directions of increasing labor productivity in the Russian industry on the example of the Arctic regions.

2. Materials and methods
The first situation arises because when an investment project is implemented at an existing enterprise, the project level of capital productivity may be less than its level at this enterprise. Unfortunately, this fact is not taken into account in the current (second) edition of the officially approved Methodological Recommendations for Evaluating the Effectiveness of Investment Projects [7], and even in its subsequent amended version from 2004 (the third edition), which has not been officially approved yet.

The second situation can be resolved by using the new direction of economic analysis of production systems’ activity that we are developing - the investment- and-innovation analysis [8], [9], [10], which allows one to determine the economic necessity and possibility of technological renewal for any production enterprise or industry. As a result, it is possible to significantly increase both the level of capital productivity, and hence labor productivity, and reduce the material intensity of products, that is, increase the profit and the share of added value in the cost of these products and, accordingly, the contribution of the production system to the growth of the country's GDP. In addition, reducing material intensity will decrease the toxic waste emissions into the Arctic environment, with its assimilation capacity being significantly lower than that of other Russian regions [11], [12], [13], [14].

However, the investment- and innovation analysis shows that the simultaneous growth of capital and material productivity is possible only if the production system operates at one of the six possible stages of the technological development life cycle [10]. This provides the most significant increase in the coefficient of technological effectiveness level, which, in our opinion, reflects the impact of technological progress on the development of production systems. Thus, if the technological development of the production system corresponds to other stages, it reduces the efficiency of using production resources - material, labor and fixed capital. For example, capital productivity at enterprises can also grow in cases when the company increases output of products with a technology being in use for a long time, in which the equipment has a significant level of physical wear, hence the material intensity of products is no longer reduced, but begins to grow. Accordingly, if the technological renewal of production is not performed on time, at the next stage of the life cycle of technological development of production systems, along with the growth of material intensity, the capital productivity will simultaneously decrease, which will ultimately lead to a sharp decrease in enterprise’s profits and cause its financial insolvency with the subsequent possibility of bankruptcy.

3. Results
Unfortunately, over previous years, the intensity of technological renewal of industrial production in the Arctic regions was highly insufficient. The economic results of industrial development by type of industrial activity in the four regions that are in the Arctic zone of the Russian Federation within 2005 to 2015 (five-years results) presented in Table 1 show that, on the one hand, the growth of labor productivity in the industry of the Arctic regions is mainly provided extensively by increasing the level of fixed capital per worker. On the other hand, it is clear that a significant increase in capital productivity and hence labor productivity, while reducing the material intensity of products, can only be achieved due to the introduction
of technological innovations of intensive type, i.e. updating the active part of fixed assets of industrial enterprises on a new technological basis.

This circumstance is determined by the fact that in all Arctic regions the development of industrial production did not correspond to the best stage of the life cycle of technological development of production systems, although the values of the coefficient of technological effectiveness level of production tend to increase. Accordingly, it becomes possible to manage the innovative and effective development of the industry in the Arctic regions-subjects of the Russian Federation, which is basically what the regional industrial policy should be aimed at.

Of course, the effectiveness and implementation of such solutions largely depends on the quality of management activities at all levels of industry management and, in general, on the quality of human capital used by enterprises [15], [16], [17], [18]. Accordingly, on the one hand, the internal investment –and-innovation analysis allows enterprises to develop necessary requirements for knowledge, skills and practical experience of the labor force used and, on the other hand, to formulate prospective requirements for the education system at all levels to ensure the necessary quality of workers and specialists.

It should be noted that the successful technological modernization depends largely on the regulatory role of the state. In some cases, the authorities of the state and regions-subjects of the Federation can provide financial support to enterprises introducing actively technological innovations on the terms of private-public partnership, for example, in the form of the "quasi-self-financing" mechanism proposed by us. In addition, if such enterprises reduce the costs of production and sales of their products by increasing material, capital, and labor productivity, they could be allowed to use the accelerated depreciation mechanism within the limits that ensure that the profit tax they paid before the introduction of technological innovations is not reduced.

Table 1. Indicators of labor productivity (in thousands of rubles per person), fixed capital per worker and capital productivity in the Arctic regions by types of industrial activity (by five-year period)a,b

Regions	Indicators	2005	2010	2010/2005	2015	2015/ 2010	2015/2005
Nenets Autonomous district Mining	LP	8729	25595	2,932	26417	1,032	3,026
	FCW	8853	43381	4,900	63199	1,457	7,139
	CP	0,986	0,590	0,598	0,418	0,708	0,424
Processing	LP	863	1643	1,904	17737	10,795	20,553
	FCW	325	390	1,200	0,897	0,002	0,003
	CP	2,654	4,212	1,587	19771	4741,453	7449,5
Production of electricity, gas and water	LP	833	940	1,128	1523	1,620	1,828
	FCW	656	1123	1,712	1901	1,693	2,898
	CP	1,269	0,837	0,660	0,801	0,957	0,631
	LP	FCW	CP				
----------	-----	-----	-------				
	1181	3199	2,709				
Production	2,753	7593	2,374				
	6,430						
Processing	863	1943	2,251				
	3262	1,679	3,902				
	1,437	1078	2,368				
		1,648					
		2,082					
		3,841					
	1,895	2,971	0,950				
Production of	0,950	3,027	1,019				
electricity, gas and							
water	1,597						
	1108	2159	1,949				
Yamalo-Nenets	2,747	1,272	2,479				
Autonomous district							
Mining	4226	7522	1,780				
	18870	2,509	4,465				
		1,385					
		2,356					
Processing	562	2978	5,299				
	3300	1,108	5,872				
	6,248	2,484	1,609				
	0,397	0,292	0,760				
Production of	0,222						
electricity, gas and							
water	0,559						
Chukotka	941	1610	1,711				
Autonomous district	2,230	1,385	2,370				
Mining	2370	5514	2,327				
	10045	1,822	4,238				
	0,397	0,292	0,760				
	0,760						
	0,559						
	616	5916	9,604				
	13940	2,356	22,630				
5th International Conference "Arctic: History and Modernity"

IOP Conf. Series: Earth and Environmental Science 539 (2020) 012059
doi:10.1088/1755-1315/539/1/012059

Processing	LP	1054	1198	1,137	2427	2,026	2,303
	FCW	26	2214	85,154	3038	1,372	116,829
	CP	40,143	0,541	0,013	0,799	1,477	0,020

Production of electricity, gas and water	LP	752	1337	1,778	2477	1,853	3,294
	FCW	1519	2537	1,670	6027	2,376	3,968
	CP	0,495	0,527	1,065	0,411	0,780	0,830

a LP is labor productivity, FCW is fixed capital per worker, CP is capital productivity.
b Calculated according to the statistical collection "Regions of Russia. Socio-economic indicators".

4. Conclusion
It is shown that under conditions of digitalization of the Russian economy, a significant increase in labor productivity in the industry of the Arctic regions can only be achieved due to effective management of the process of technological modernization. To do this, it is proposed to use a mechanism for performing a new direction of economic analysis of production systems - the investment- and innovation analysis.

It was revealed that over previous years the intensity of technological renewal of industrial production in the Arctic regions was highly insufficient. As a result, the growth of labor productivity was provided mainly extensively due to the increase in the level of fixed capital per worker. Accordingly, a significant increase in capital productivity, and hence labor productivity, while reducing the material intensity of products, which allows the volume of toxic waste emissions into the environment to be diminished, can only be achieved due to the introduction of technological innovations of intensive type.

References
[1] Kardashevsky V V 2014 The most Important task of modernization of the Russian economy is to increase labor productivity Labor Protection and Economy 2 74-83
[2] Sukharev O S and Strizhakova E N 2014 Labor productivity in industry: system task of management Economics and entrepreneurship 8 389-402
[3] Dranitsyna O V and Morozova E V 2013 Analysis of the causes of low labor productivity in Russia Academic Bulletin 3 168-174
[4] Kozlov A V et al 2016 Complex Development of the Arctic Zone of the Russian Federation (Saint Petersburg: Saint Petersburg Peter the Great Polytechnical University) p 315
[5] Porokhovsky A A 2019 Digitalization and labor productivity USA and Canada: economy, politics, culture 49(8) 5-24
[6] Zharov V S 2019 Digitalization of the technological development management process of the Russian economy Proc. of the 1st Int. Scientific Conf. ”Modern Management Trends and the Digital Economy: from Regional Development to Global Economic Growth” (MTDE 2019). Published by Atlantis Press. Advances in Economics, Business and Management Research 81 273-276 doi: 10.2991 / MTDE-19.2019.52
[7] 2000 Methodological Recommendations for Evaluating the Effectiveness of Investment Projects (second edition) (Moscow: Economics Publ) p 421
[8] Zharov V S and Kozlov A V 2018 Management of Technological Development of Enterprises on the Basis of a Life Cycle Model Proc. of the 2018 IEEE Int. Conf. "Quality Management,
[9] Zharov V S and Tsukerman V A 2019 Interrelation of technological, ecological and economic aspects of industrial development of Arctic mineral resources Proc. of the Arctic Biomonitoring. IOP Publishing. IOP Conf. Series: Earth and Environmental Science 263 012066 doi:10.1088/1755-1315/263/1/012066.

[10] Zharov V and Tsukerman V 2019 Investment-innovation analysis of interactions between technological and economic aspects of industrial development of mineral resources in the Arctic IOP Publishing. IOP Conf. Series: Earth and Environmental Science 302 012130 doi:10.1088/1755-1315/302/1/012130.

[11] Druzhinin P V, Shkiperova G T and Potasheva O V 2017 Assessment of the impact of economy on the environment (spatial aspects) North and Market: Formation of Economic Order 54 228-237

[12] Englington A, Israel R and Vartanov R 1998 Towards sustainable development for the Murmansk region Ocean and Coastal Management 41(2-3) 257-271

[13] Kozlov A Gutman S Zaychenko I Rytova E and Nijinskaya P 2015 Environmental management on the basis of complex regional indicators concept: case of the Murmansk region IOP Conference Series: Materials Science and Engineering 012073

[14] Tsukerman V, Ivanova L and Selin V 2016 System of State Regulation of Sustainable Ore Processing and Production Waste Treatment in the Russian Arctic Rewas 2016: Towards Materials Resource Sustainability. February 14-18, 2016, Nashville, Tennessee (Hoboken, NJ: John Wiley & Sons, Inc.) 215-231 doi 10.1007/978-3-319-48768-7_31

[15] Agostini L and Nosella A 2017 Enhancing radical innovation performance through intellectual capital components Journal of Intellectual Capital 18(4) 789-806 doi.org/10.1108/JIC-10-2016-0103

[16] Delgado-Verde M, Martin-de Castro G and Amores-Salvado J 2016 Intellectual capital and radical innovation: exploring the quadratic effects in technology-based manufacturing firms Technovation 54 35-47

[17] Agostini L and Nosella A 2016 The central role of a company’s technological reputation in enhancing customer performance in the B2B context of SMEs Journal of Engineering and Technology Management 42 1-14

[18] Agostini L, Nosella A and Filippini R 2017 Does intellectual capital allow improving innovation performance? A quantitative analysis in the SME context Journal of Intellectual Capital 18(2) 400-418