Transient characteristics of β-Ga$_2$O$_3$ nanomembrane Schottky barrier diodes on various substrates

Junyu Lai and Jung-Hun Seo*

Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America

E-mail: junghuns@buffalo.edu

Received 19 February 2022, revised 27 June 2022
Accepted for publication 7 July 2022
Published 18 July 2022

Abstract
In this paper, transient delayed rise and fall times for beta gallium oxide (β-Ga$_2$O$_3$) nanomembrane (NM) Schottky barrier diodes (SBDs) formed on four different substrates (diamond, Si, sapphire, and polyimide) were measured using a sub-micron second resolution time-resolved electrical measurement system under different temperature conditions. The devices exhibited noticeably less-delayed turn on/turn off transient time when β-Ga$_2$O$_3$ NM SBDs were built on a high thermal conductive (high-k) substrate. Furthermore, a relationship between the β-Ga$_2$O$_3$ NM thicknesses under different temperature conditions and their transient characteristics were systematically investigated and verified it using a multiphysics simulator. Overall, our results revealed the impact of various substrates with different thermal properties and different β-Ga$_2$O$_3$ NM thicknesses on the performance of β-Ga$_2$O$_3$ NM-based devices. Thus, the high-k substrate integration strategy will help design future β-Ga$_2$O$_3$-based devices by maximizing heat dissipation from the β-Ga$_2$O$_3$ layer.

Supplementary material for this article is available online

Keywords: β-Ga$_2$O$_3$ nanomembrane diode, heat dissipation, transient characteristic

(Some figures may appear in colour only in the online journal)

1. Introduction
Beta gallium oxide (β-Ga$_2$O$_3$) has attracted considerable attention as a next-generation wide-bandgap semiconductor for power device applications, high-frequency devices, and solar-blind photodetectors due to its superior material properties [1, 2], such as an ultrawide bandgap value (>4.8 eV), good carrier mobility (>300 cm2 V$^{-1}$ s$^{-1}$), and critical breakdown electric field (>8 MV cm$^{-1}$) [3, 4]. To date, several β-Ga$_2$O$_3$ based field-effect transistors, gigahertz range microwave amplifiers, and solar-blind photodetectors have been successfully demonstrated [5–7]. However, one critical native disadvantage of β-Ga$_2$O$_3$ is its extremely low thermal conductivity (k) (10 ~ 25 W (m K)$^{-1}$) [8, 9], even compared with other popular wide bandgap semiconductors such as silicon carbide (SiC) at 387 W (m K)$^{-1}$ [10], aluminum nitride (AlN) at 200 W (m K)$^{-1}$ [11], and gallium nitride (GaN) at 170 W (m K)$^{-1}$ [12]. Because the abovementioned applications generate a significant amount of Joule heat during operation [13–15], β-Ga$_2$O$_3$ with poor thermal properties would become more pronounced in β-Ga$_2$O$_3$ based devices. This would cause an even greater increase in temperature and a nonuniform distribution of dissipated power, thus emerging as one of the most serious concerns in the degradation of variability and reliability in β-Ga$_2$O$_3$ based applications [16–18].
Since thermal management is critically important for the efficient operation of \(\beta \)-Ga\(_2\)O\(_3\) based devices, several studies have been performed to address the heat dissipation issue in \(\beta \)-Ga\(_2\)O\(_3\). For example, Agaiby et al [19] and O’Neill et al [20] reported a method of reducing the self-heating effect by strain-induced silicon substrate and target material, leading to an increase in carrier mobility and thus balancing the self-heating effect. However, this technology has the following two main challenges: (a) it is difficult to control the defect densities between the Si interface and (b) the target materials that control Si strains in the relaxation level. Another method by Li et al [21, 22] and Shi et al [21, 22] proposed a method of mitigating the lower thermal conductivity issue, increasing the thermal boundary conductance, and lowering the thermal resistance of \(\beta \)-Ga\(_2\)O\(_3\) with the assistance of metallic or dielectric interfacial layers. Recently, another novel route to manage a \(\beta \)-Ga\(_2\)O\(_3\) thermal property was to use a sub-micron thin and freestanding format of \(\beta \)-Ga\(_2\)O\(_3\), which also called \(\beta \)-Ga\(_2\)O\(_3\) nanomembrane (NM). \(\beta \)-Ga\(_2\)O\(_3\) NMs can be tailored as a desired shape and then transfer-printed onto any new substrates [23–27]. Thus, efficient heat dissipation from \(\beta \)-Ga\(_2\)O\(_3\) is expected when \(\beta \)-Ga\(_2\)O\(_3\) NMs are transfer-printed on a high-\(k \) substrate. For example, Zheng et al and Cheng et al used a single-crystal diamond substrate as a heat dissipator to create the \(\beta \)-Ga\(_2\)O\(_3\) NM/diamond structure and successfully characterized the thermal conductivity of \(\beta \)-Ga\(_2\)O\(_3\) NM and thermal boundary conductance at the \(\beta \)-Ga\(_2\)O\(_3\) NM/diamond interface [8, 28, 29]. Cheng et al and Zheng et al also formed the \(\beta \)-Ga\(_2\)O\(_3\) NM/SiC structure to realize a similar cooling effect [30, 31].

These previous studies, however, primarily focused on the relationship between \(\beta \)-Ga\(_2\)O\(_3\) and the substrate. In particular, none of the previous studies investigated the impact of the \(\beta \)-Ga\(_2\)O\(_3\) NM thickness.

In this paper, we systematically investigated the relationship between \(\beta \)-Ga\(_2\)O\(_3\) NMs thickness and its time-resolved electrical properties on four different thermal conductivity substrates under different temperature conditions. To understand the transient time characteristics of \(\beta \)-Ga\(_2\)O\(_3\) based devices, \(\beta \)-Ga\(_2\)O\(_3\) NM based Schottky barrier diodes (SBDs) were built on four different substrates via a micro-transfer printing that has a wide thermal conductivity range, from 0.25 W (m K\(^{-1}\)) to 2200 W (m K\(^{-1}\)), which includes polyimide, sapphire, Si, and diamond substrate, and is characterized as a transport property of \(\beta \)-Ga\(_2\)O\(_3\) NM SBDs under different temperature conditions using a sub-micron second resolution time-resolved electrical measurement system. The devices exhibited noticeably less-delayed turn-on/off transient time when \(\beta \)-Ga\(_2\)O\(_3\) NM SBDs were transfer-printed on a high-\(k \) substrate. We also investigated a relationship between the \(\beta \)-Ga\(_2\)O\(_3\) NM thicknesses ranging from 300 nm to 1000 nm and their time-resolved electrical properties, which were verified using the Multiphysics simulator. Our results revealed the impact of various substrates with different thermal properties and different \(\beta \)-Ga\(_2\)O\(_3\) NM thicknesses on \(\beta \)-Ga\(_2\)O\(_3\) NM-based device performance. Thus, these results can help optimize the structure of various future \(\beta \)-Ga\(_2\)O\(_3\) based devices by maximizing heat dissipation from the \(\beta \)-Ga\(_2\)O\(_3\) layer.

2. Experimental section

2.1. Device fabrication process

Figure 1(a) shows the schematic illustration of the device fabrication steps. The fabrication process began with a bulk \(\beta \)-Ga\(_2\)O\(_3\) substrate grown by molecular beam epitaxy and moderately Sn doped (concentration of \(1 \times 10^{18} \) cm\(^{-3}\)) in the [201] direction. The \(\beta \)-Ga\(_2\)O\(_3\) NMs were created by clipping several large segments from the bulk substrate at an angle of 77°, followed by an exfoliation using a well-known taping method. \(\beta \)-Ga\(_2\)O\(_3\) segments were easily mechanically exfoliated in the [100] direction due to the weak binding energy in this direction [24–26, 32]. In this step, various \(\beta \)-Ga\(_2\)O\(_3\) NM thicknesses can be created by adjusting exfoliation times. Once \(\beta \)-Ga\(_2\)O\(_3\) NMs were created, we carefully transfer printed them onto undoped Si, sapphire, diamond, and SU-8 coated polyimide substrates using an elastomeric stamp (polydimethylsiloxane, PDMS). Prior to the transfer, all the substrates were cleaned thoroughly by the sonification process in acetone, isopropyl alcohol, and de-ionized water for 10 min in each step. After the transfer processes were completed, ohmic metal and Schottky metal electrodes deposition processes were conducted. Prior to ohmic metal deposition, a plasma treatment was performed on \(\beta \)-Ga\(_2\)O\(_3\) NMs by a BCl\(_3\)/Ar plasma treatment using a reactive ion etcher to achieve ohmic contact and to avoid an additional high-temperature annealing process [25–27]. After that, an ohmic metal stack (Ti/Au = 20/100 nm) and a Schottky metal stack (Ti/Pt/Au = 20/30/100 nm) were then deposited to complete the device fabrication.

2.2. Measurement setup

Figures 1(b) and (c) show the three-dimensional profile and microscopic images of the as-fabricated \(\beta \)-Ga\(_2\)O\(_3\) NM SBDs on a diamond substrate to show a generic shape of the \(\beta \)-Ga\(_2\)O\(_3\) NM SBDs. Electrical characterization was performed using a Keithley 4200 semiconductor parameter analyzer with a pulsed \(I–V \) unit (Keithley 4225-RPM Remote Amplifier/Switch). Voltage–current measurement was conducted at a voltage bias of \(-3 \) V to \(3 \) V. To analyze the heat dissipation effect of \(\beta \)-Ga\(_2\)O\(_3\) NM SBDs, the pulsed current–voltage (\(I–V \)) setup was implemented as follows: the anode bias was pulsed from the off state to the on state. As shown in figure S2, the pulse width was 500 \(\mu \)s with a pulse period of 1000 \(\mu \)s. The time resolution for a rise and fall time of the pulsed \(I–V \) unit was 0.17 \(\mu \)s. All devices were measured using the current compliance setting at 3 mA to prevent unwanted thermal damage. To compare transient time in \(\beta \)-Ga\(_2\)O\(_3\) NM SBDs between room temperature (RT) and elevated temperatures, the devices were exposed in heated air and using an incandescent lamp with an objective...
lens for 10 min to heat the top surface of the device, while the stainless-steel probe station stage remained at 20 °C, as shown in figure (d), and the voltage–current measurement was repeated.

3. Results and discussion

Figure S1 shows $I–V$ curves that were measured from the β-Ga$_2$O$_3$ NM SBDs on PI, Si, sapphire, and diamond substrates with different β-Ga$_2$O$_3$ NM thicknesses varying from 300 nm to 1000 nm. As shown in figure S1, all β-Ga$_2$O$_3$ NM SBDs exhibited a good rectifying behavior with an on/off ratio higher than $\sim 10^5$ times and the ideality factor (n) of, on average, 1.5 ± 0.2, which was calculated based on thermionic emission theory [33]. Similarly good $I–V$ characteristics in β-Ga$_2$O$_3$ NM SBDs set a baseline for the time-resolved electrical characterization that relies on different substrates.

Compared with a typical direct current measurement, an investigation of transient time measurement using a pulsed $I–V$ provides the isothermal condition of the device, thus offering a more accurate power dissipation effect and thermal resistance characteristics. Figure 2 shows the time-resolved pulsed $I–V$ characteristics of the β-Ga$_2$O$_3$ NM SBDs on PI, Si, sapphire, and diamond substrates at RT. The left panel in figures 2(a)–(c) contains the enlarged plots of transient rise times on different substrates and with different β-Ga$_2$O$_3$ NM thicknesses (from 300 nm to 1000 nm). Similarly, the right panel in figures 2(a)–(c) show the enlarged plots of the transient fall times on different substrates and the same β-Ga$_2$O$_3$ NM thicknesses, respectively. The full scale pulsed $I–V$ curves can be found in figure S2. As shown in figure 2, the rise and fall time of the devices were noticeably different depending on the substrate. β-Ga$_2$O$_3$ NM SBDs on a diamond substrate showed the shortest transient time, followed by the device with Si, sapphire, and PI substrate. The rising time for 300 nm thick β-Ga$_2$O$_3$ NM SBDs on the diamond, Si, sapphire, and PI substrates were 1.07 μs, 1.35 μs, 1.4 μs, and 2.65 μs, and their falling times were 1.07 μs, 1.5 μs, 1.65 μs, and 2.85 μs, respectively. Interestingly, the falling time tended to be longer when β-Ga$_2$O$_3$ NM SBDs were built on the low-k substrates. The rising and falling time for β-Ga$_2$O$_3$ NM SBDs on diamond substrate remained almost the same as 1.07 μs, while the fall time for devices on sapphire and PI substrates were increased compared to their rising from 1.4 μs and 2.65 μs to 1.65 μs and 2.85 μs, respectively. The trapping and de-trapping process in β-Ga$_2$O$_3$ NMs and the interaction between β-Ga$_2$O$_3$ NM and the substrate can explain this increase in the fall delay characteristic. The trapping and de-trapping process in semiconductors refers to the electron recombining and releasing process for defects or vacancies. Considering that β-Ga$_2$O$_3$ has a high level of oxygen vacancies, the trapping and de-trapping process becomes a major source of heat generation in β-Ga$_2$O$_3$ NMs. When β-Ga$_2$O$_3$ NM SBDs were biased, a Joule heat would be generated from the top surface of β-Ga$_2$O$_3$ NMs and begin to accumulate and propagate inside the β-Ga$_2$O$_3$ NM which is called a ‘self-heating’ effect. This process supplies sufficient activation energy to overcome the trap potential barrier and escape from the trap, and it is described by equation (1) [34]:

$$J = \frac{1}{\tau} \exp \left(- \frac{E_i}{kT} \right).$$ (1)
increased as the temperature increases. With higher temperatures also affect the de-trapping rate under elevated temperature. It is shown that the trapped electrons are de-trapped faster when the temperature is constant, and

\[\tau = \frac{N M}{J} \exp \left(\frac{-E_i}{kT} \right) \]

where, \(N_M \) is the current density, \(\tau \) is the trapping/de-trapping time constant, \(t \) is the trapping/de-trapping period, \(E_i \) is the trap energy, \(k \) is the Boltzmann constant, \(T \) is the temperature, \(I \) is the device on current, and \(\beta \) is the fitting parameter. When combining equations (1) and (2) with the same amount of the on-current, traps with a shorter trapping time constant require shorter times to be filled.

The thermal de-trapping rate is described as follows [36]:

\[k = N_C^\beta \sigma_c \exp \left(\frac{-E_i}{kT} \right) \]

where, \(N_C \) is the effective density of states of the material, \(\nu \) is the thermal velocity of carriers, \(\sigma_c \) is the capture cross-section of the trap, \(E_i \) is the activation energy, \(k \) is Boltzmann’s constant, and \(T \) is temperature. From this equation, it is shown that the trapped electrons are de-trapped faster when the temperature is the only parameter. However, various parameters also affect the de-trapping rate under elevated temperature. First, the activation energy of \(\beta\)-Ga\(_2\)O\(_3\) would be increased as the temperature increases. With higher temperatures, the more defects would be formed, and more dopants would be activated inside the \(\beta\)-Ga\(_2\)O\(_3\). The activated Sn dopant atoms in \(\beta\)-Ga\(_2\)O\(_3\) are present as Sn\(^{4+}\) and preferentially substitute for Ga at the octahedral site. With more gallium vacancies formed and more Sn dopant atoms being activated, the Sn (Sn\(^{4+}\), Sn\(^{2+}\)) would not only substitute at the Ga site but also might occupy these Ga vacancies directly and change the charge state and electronic configuration of these defects. This would finally increase the \(\beta\)-Ga\(_2\)O\(_3\) activation energy [37–39]. Under biasing conditions, an active region of \(\beta\)-Ga\(_2\)O\(_3\) devices becomes heated, and thus trapped electrons are more stable than those at RT [40] because electrons require more energy to overcome the trap barrier. This means that electrons need a longer time to be de-trapped. Second, as reported by Vaidya and Singisetti, the time constant to the traps increases with temperature due to the formation of temperature-induced defects [41].

As a result, the activation energy and temperature-induced defects of \(\beta\)-Ga\(_2\)O\(_3\) lead to a longer trapping/de-trapping time constant which in turn causes a time delay in the rise and fall time under heating conditions. Furthermore, such temperature-dependent transient characteristics are severely affected by the thermal conductivity of the substrate—the low thermal conductive substrate inefficiently dissipates heat from the device. Due to the self-heating effect, as temperature increases, the trapping time constant increases and enables these traps to take a longer time to be filled during the charging process. When devices were heated at the same rate and the input power to the device was the same, the rising time for each case did not vary noticeably. However, when the current is stopped, the heat must be dissipated to both air and substrate. The thermal conductivity values of diamond, Si, and sapphire were higher up to 2200, 144, and 40 W (m K)\(^{-1}\), respectively, compared to that of \(\beta\)-Ga\(_2\)O\(_3\) NMs, and the thermal conductivity of PI is substantially lower to 0.25 W (m K)\(^{-1}\) compared to that of \(\beta\)-Ga\(_2\)O\(_3\) NMs [42–45]. Thus, their cooling rates are different, therefore, we can conclude that the switching characteristic becomes enhanced when \(\beta\)-Ga\(_2\)O\(_3\) NM SBDs are formed on a high-\(k \) substrate. This trend is consistent regardless of the thickness of \(\beta\)-Ga\(_2\)O\(_3\) NMs (both 300 nm thick and 1000 nm thick \(\beta\)-Ga\(_2\)O\(_3\) NMs), as shown in figure 2.

To further investigate the relationship between delay time, device substrates, and \(\beta\)-Ga\(_2\)O\(_3\) NM thickness, the same time-resolved pulsed I–V charactertizations were performed at the elevated temperature. Figure 3 shows the time-resolved pulsed I–V characteristics of the \(\beta\)-Ga\(_2\)O\(_3\) NM SBDs on PI, Si, sapphire, and diamond substrates at elevated temperatures. To analyze the heat dissipation effect of \(\beta\)-Ga\(_2\)O\(_3\) NM SBDs, devices were heated using the following two heating sources: (a) a focused incandescent light bulb via an objective lens and (b) a heat gun. Both were placed at the top of the device until the top surface reached 70 °C and then the device was biased at 3 V. We repeated this at least three times at RT and 70 °C for transient time characterization. The devices were cooled for a sufficient time (about 1 h intervals). In the left panel of figures 3(a)–(c), the enlarged plots show the transient rise times on four different substrates and different \(\beta\)-Ga\(_2\)O\(_3\) NM thicknesses. Similarly, the right panel of figures 3(a)–(c) are the enlarged plots of transient fall times on four different

![Figure 2](https://example.com/figure2.png)

Figure 2. A set of pulsed I–V curves of \(\beta\)-Ga\(_2\)O\(_3\) NM SBDs on four different substrates measured at room temperature with three different \(\beta\)-Ga\(_2\)O\(_3\) NMs thicknesses: (a) 300 nm, (b) 600 nm, (c) 1000 nm, respectively.
A set of pulsed I–V curves of β-Ga_2O_3 NM SBDs on four different substrates measured at 70 $^\circ$C with three different β-Ga_2O_3 NMs thicknesses (a) 300 nm, (b) 600 nm, (c) 1000 nm, respectively. The rising time for 300 nm thick β-Ga_2O_3 NM SBDs on diamond, Si, sapphire, and PI substrates were 1.45 μs, 1.55 μs, 1.65 μs, and 3.4 μs, and their falling times were 1.45 μs, 1.6 μs, 1.8 μs, and 3.8 μs, respectively. Similar to the test result at room temperature, the rising and falling time of β-Ga_2O_3 NM SBDs on diamond remained almost the same to be 1.45 μs, while the fall time for devices on the PI substrate increased compared to the rising time from 3.4 μs to 3.8 μs, respectively.

Figures 4(a) and (b) summarize the rising and falling time for β-Ga_2O_3 NM SBDs, respectively, which were extracted from figures 2 and 3. To provide a clear view of the relationship between the electrical performance of β-Ga_2O_3 NM SBDs with respect to the β-Ga_2O_3 NM thickness and substrate thermal conductivity, a transient delay time was plotted with the product of the β-Ga_2O_3 NM thickness and substrate thermal conductivity (W K$^{-1}$ s: W K$^{-1}$ vs. delay time). Therefore, the slope of the curve indicates the capacity for heat dissipation as well as the rate of the trapping/de-trapping process. For the rising time of β-Ga_2O_3 NM SBDs on the diamond substrate, the slope value was 6.32×10^{-3} which is 35, 168, and 1.02×10^2 times smaller than that on the Si, sapphire, and PI substrate, respectively. Similar trends were observed for the fall time of β-Ga_2O_3 NM SBDs on a diamond substrate compared with β-Ga_2O_3 NM SBDs on other substrates.

To further understand the heat dissipation effect on β-Ga_2O_3 NM SBDs, we performed a multiphysics simulation using the thermal module in COMSOL. The model structure was established using the same dimensional parameters and the empirical material parameters such as density, crystal structure, thermal resistance, and heat capacity from various references [8, 42–46]. In the simulation, the dissipated power was calculated as $P = V_{\text{on}} \times I_{\text{on}}$, where I_{on} is on state current and V_{on} is the corresponding bias. The actual biasing point was 3 mA at 4 V for all devices, and thus, an input power density of 12 mW was added to the electrode with a simulated structure. The initial temperature of the entire structure was set to 293.15 K as a boundary condition. Figures 5 and S2 present the heat distribution of β-Ga_2O_3 NMs with 100 nm, 500 nm,
and 1000 nm thicknesses under various substrates in the equilibrium state and the transit state at 1 μs. As shown in figure 5, the local temperature at the electrode/β-Ga2O3 NM interface tends to rise higher when β-Ga2O3 NM SBDs are on a lower-κ substrate. The interface temperature of β-Ga2O3 NM SBDs on the diamond, Si, sapphire, and PI substrate under biasing conditions were calculated to be 298 K, 334 K, 365 K, and 420 K, respectively, which suggests that efficient heat dissipation can occur, or that the higher power can be handled when β-Ga2O3 devices are built on a high-κ substrate. In addition, the heat distributions for various β-Ga2O3 NM thicknesses on different substrates were simulated.

Each row from left to right in figure 5 shows the simulation result with 100 nm, 500 nm, and 1000 nm thick β-Ga2O3 NM on different substrates. In this simulation, we used the empirical thermal conductivity values of β-Ga2O3 NM by Zheng et al and Zheng et al [8, 28], which shows a decreasing trend in thermal conductivity of β-Ga2O3 NM from 8.7 W (m K)^{-1} for a 1000 nm thick β-Ga2O3 NM to 3.1 W (m K)^{-1} for a 100 nm thick β-Ga2O3 NM. The thermal conductivity decreases smaller as the β-Ga2O3 NM thickness decreases, and a higher temperature in the β-Ga2O3 NM is expected as the thickness of β-Ga2O3 NM decreases. However, the simulation result revealed that the electrode/β-Ga2O3 NM interface temperature decreases as the β-Ga2O3 NM thickness decreases. While the thermal conductivity of thinner β-Ga2O3 NMs is less than that of a thicker NM (i.e. 8.7 W (m K)^{-1} for 1000 nm thick β-Ga2O3 NM and 3.1 W (m K)^{-1} for 100 nm thick β-Ga2O3 NM), β-Ga2O3 NMs are prone to undergo heating as the β-Ga2O3 NM becomes thinner, and faster heat dissipation could occur when the β-Ga2O3 NMs are thinner and built on a high-κ substrate. The simulation result suggests that devices with a thin β-Ga2O3 NM can dissipate heat faster through a high-κ substrate which is important to prevent the device from overheating during a biasing condition. While this relationship affects better heat dissipation in β-Ga2O3 NMs, it should be noted that implanting a high-κ substrate is more effective and primary way for the heat dissipation from the β-Ga2O3 NM than thinning down the β-Ga2O3 NM layer.

Figure 3 and the simulated temperature profiles shown in figure 5 offer a useful design aspect of β-Ga2O3 NM devices. For example, as shown in figures 2 and 3, the diamond substrate offers the best heat dissipation due to the inherent high thermal conductivity. However, the largest single-crystal diamond substrate available on the market is less than 1 cm^2 and it is also expensive. Therefore, despite its’ excellent thermal properties, choosing a diamond substrate as a heat dissipator is not a cost-effective option in commercial power applications. In this regard, figure 3 with the support of figure 5 provides an alternative solution for the thermal management.
Table 1. Thermal conductivity values of substrates and β-Ga$_2$O$_3$ used in the simulation.

Substrate	TC
PI [44]	0.25 W (m K)$^{-1}$
SU-8 [46]	0.2 W (m K)$^{-1}$
Si [43]	144 W (m K)$^{-1}$
Sapphire [42]	40 W (m K)$^{-1}$
Diamond [45]	2200 W (m K)$^{-1}$
β-Ga$_2$O$_3$ NM [8]	3.1 W (m K)$^{-1}$ (100 nm), 5.2 W (m K)$^{-1}$ (500 nm), 8.68 W (m K)$^{-1}$ (1000 nm)

of β-Ga$_2$O$_3$ NM devices. For example, figure 4 (a summary graph of figures 2 and 3) illustrates alternative substrates with different β-Ga$_2$O$_3$ NM thicknesses from the product of the substrate thermal conductivity and β-Ga$_2$O$_3$ NM thickness. Therefore, the Si substrate ($k = 144$ W (m K)$^{-1}$) or SiC substrate ($k = \sim 300$ W (m K)$^{-1}$) with a slightly thicker β-Ga$_2$O$_3$ NM can offer a similar heat dissipation capability as that of the diamond substrate with a much larger substrate size.

On the other hands, the opposite trend was observed for β-Ga$_2$O$_3$ NM SBDs on the PI substrate, which represents a low-k substrate. In other words, the temperature at the electrode/β-Ga$_2$O$_3$ NM interface becomes heated several tens of degrees higher to 405 K, 413 K, and 420 K as the electrode/β-Ga$_2$O$_3$ NM thickness is reduced from 1000 nm to 500 nm and 100 nm, respectively. This opposite trend can be explained by the thermal conductivity of the β-Ga$_2$O$_3$ NM and PI substrate. As shown in table 1, the thermal conductivity of β-Ga$_2$O$_3$ NM thicknesses (5 W (m K)$^{-1}$ on average) is much larger than the thermal conductivity of PI and SU-8 (0.25 and 0.2 W (m K)$^{-1}$, respectively). Thus, heat dissipation occurs along with the β-Ga$_2$O$_3$ NM rather than through the PI substrate. Therefore, as the simulation result indicates, the integration of β-Ga$_2$O$_3$ NM with a low-k substrate degrades the contact resistance and affects the sheet resistance and overall bulk properties.

4. Conclusions

In conclusion, a transient delay in the rising and falling time of β-Ga$_2$O$_3$ NM SBDs that were formed on four different substrates were measured using a sub-micron second resolution time-resolved electrical measurement system under different temperature conditions. The devices exhibited noticeably less-delayed turn on/off transient time when β-Ga$_2$O$_3$ NM SBDs were transfer-printed on a high-k substrate. Furthermore, a relationship between the β-Ga$_2$O$_3$ NM thickness and its time-resolved electrical properties was systematically investigated, and thinner β-Ga$_2$O$_3$ NM showed better heat dissipation, although the thermal conductivity of thinner β-Ga$_2$O$_3$ NM thicknesses was smaller than that of thicker NMs. Overall, our results reveal the impact of various substrates with different thermal properties and different β-Ga$_2$O$_3$ NM thicknesses on the performance of β-Ga$_2$O$_3$ NM-based devices. Thus, these results can guide future efforts to optimize the performance of β-Ga$_2$O$_3$ devices by maximizing heat dissipation from the β-Ga$_2$O$_3$ layer. Successful implementation of the high-k substrates on β-Ga$_2$O$_3$ devices will have a transformative impact on next-generation communications, power electronics, and optoelectronics. Additionally, the physical dimension (i.e. a thickness) of the β-Ga$_2$O$_3$ layer is a secondary factor that decides the effective heat dissipation. Combined, our results will enable the realization of a higher operation frequency in β-Ga$_2$O$_3$ RF devices as well as compact and efficient β-Ga$_2$O$_3$ power conversion systems.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

This work was supported by the National Science Foundation (Grant No. ECCS-1809077).

ORCID ID

Jung-Hun Seo https://orcid.org/0000-0002-5039-2503

References

[1] Sharma S, Zeng K, Saha S and Singisetti U 2020 Field-plated lateral Ga$_2$O$_3$ MOSFETs with polymer passivation and 8.03 kV breakdown voltage IEEE Electron Device Lett. 41 836–9
[2] Hasan M N, Swinnich E and Seo J-H 2020 Wide Bandgap Semiconductor Electronics and Devices pp 65–78
[3] Pearson S I, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 A review of Ga$_2$O$_3$ materials, processing, and devices Appl. Phys. Rev. 5 011301
[4] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Gallium oxide (Ga$_2$O$_3$) metal-semiconductor field-effect transistors on single-crystal β-Ga$_2$O$_3$ (010) substrates Appl. Phys. Lett. 100 013504
[5] Zeng K, Vaidya A and Singisetti U 2019 A field-plated Ga$_2$O$_3$ MOSFET with near 2-kV breakdown voltage and 520 mΩ·cm2 on-resistance Appl. Phys. Express 12 081003
[6] Green A J et al 2017 β-Ga$_2$O$_3$ MOSFETs for radio frequency operation IEEE Electron Device Lett. 38 790–3
[7] Oh S, Kim C-K and Kim J 2018 High responsivity β-Ga$_2$O$_3$ metal–semiconductor–metal solar-blind photodetectors with ultraviolet transparent graphite electrodes ACS Photonics 5 1123–8
[8] Zheng Y, Swinnich E and Seo J-H 2020 Investigation of thermal properties of β-Ga$_2$O$_3$ nanomembranes on diamond heterostructure using Raman thermometry ECS J. Solid State Sci. Technol. 9 055007
[9] Guo Z, Verma A, Wu X, Sun F, Hickman A, Masui T, Kuramata A, Higashiwaki M, Jena D and Luo T 2015 Anisotropic thermal conductivity in single crystal β-gallium oxide Appl. Phys. Lett. 106 111909
[10] Burgemeister E A, Muench W V and Pettenpaal E 1979 Thermal conductivity and electrical properties of 6H silicon carbide J. Appl. Phys. 50 5790–4
Zheng Y, Hasan M N and Seo J-H 2021 High-performance
Shi J, Oh S H, Lee K-C, Chun J, Kim M and Lee S S 2001 Micro
der Waals heterogeneous interfaces APL Mater. 7 031118