False-positive galactomannan assay in broncho-alveolar lavage after enteral nutrition solution inhalation: a case report

Olivier Lheureux,1,* Isabel Montesinos,2 Olivier Taton,3 Martine Antoine,4 Jean-Charles Preiser,1 Joelle Nortier,5 Jacques Creteur,1 Frederique Jacobs6 and David Grimaldi1,*

Abstract

Introduction. Diagnosis of invasive aspergillosis is challenging and the gold standard for definite diagnosis remains histopathological tissue examination. However, invasive procedures such as lung biopsy are often not feasible in critically ill patients. The detection of fungal cell wall components like Aspergillus galactomannan in broncho-alveolar lavage remains a key component of the diagnostic procedure. False-positive of the Aspergillus galactomannan assay is not frequent.

Case presentation. We report a case of positive galactomannan in broncho-alveolar lavage fluid after enteral nutrition aspiration without signs of invasive aspergillosis. Galactomannan was positive in the enteral nutrition solution.

Conclusion. Physicians should be aware of this previously unrecognized cause of false-positive galactomannan in broncho-alveolar fluid which can result in unnecessary treatments.

INTRODUCTION

We describe the first report of a false-positive broncho-alveolar galactomannan due to aspiration of enteral nutrition. As enteral nutrition solutions are prescribed daily in critically ill patients and aspiration pneumonia is a common complication in intensive care, physicians should consider this possibility in case of broncho-alveolar lavage positive galactomannan assay under artificial enteral feeding.

We believe this finding will be of great interest to microbiologists and physicians, especially to those in contact with patients in intensive care.

CASE REPORT

A 65-year-old man was admitted in our intensive care unit (ICU) for pneumonia with septic shock. He was a heart transplant recipient since 1998 and had a renal graft in 2015 because of immunosuppressive treatment toxicity. Current immunosuppressive therapy consisted of methylprednisolone, mycophenolate mofetil and cyclosporine. Septic shock was associated with acute renal failure and severe acute respiratory distress syndrome requiring mechanical ventilation. No infectious pathogen was identified. The shock resolved in 4 days but respiratory conditions, only slowly improved, and the presence of a severe ICU-acquired weakness required a tracheotomy after 10 days of mechanical ventilation. The ICU stay was further complicated by a ventilator-associated pneumonia (VAP) due to Pseudomonas aeruginosa, a primary Enterococcus faecalis bacteremia and a severe herpetic stomatitis. A new respiratory deterioration at day 23 led to suspicion of a new episode of VAP treated by meropenem. Bronchoscopy revealed an important aspiration of enteral nutrition solution (Nutrison Protein Plus multifibre; Nutricia) due to incorrect position of the nasogastric tube. The procedure was followed by a pneumothorax, with pleural effusion, which required chest tube drainage. The pleural liquid had the same macroscopic aspect as the enteral nutrition solution. Aspergillus galactomannan (GM) assays performed in broncho-alveolar lavage (BAL) and pleural fluid, using the one-stage commercialized immunoenzymatic sandwich microplate assay (Platelia Aspergillus Ag; Bio-Rad), were highly positive in both fluids [optical density (OD) index 4.6 and >6, respectively; cut-off value >1]. Serum GM
OD index was 0.08 (cut-off value >0.50) and fungal cultures of both BAL and pleural fluid remained sterile. We initiated voriconazole treatment and completed the work up with chest and sinus CT scans; both showed no signs suggestive of invasive fungal infection (see supplementary material). Considering these inconsistent findings for an invasive aspergillosis (IA), we performed Aspergillus GM detection in the enteral nutrition solution, which proved highly positive (index >6) whereas fungal culture remained negative. We therefore tested two other commercialized enteral nutrition solutions [Isosource standard fibre(Nestlé) and Fresubin original fibre (Fresenius Kabi)] also used in our institution and confirmed that all were also higher than the upper detection threshold (index >6). We therefore stopped voriconazole after 8 days of treatment. Evolution was favourable without any further fungal infection.

DISCUSSION

Species of the genus *Aspergillus* are ubiquitous in nature, and inhalation of infectious conidia is a common event that can give rise to various clinical conditions depending essentially on the host’s immunological status. IA occurs most frequently in the setting of severe immunosuppression (prolonged neutropenia, haematopoietic stem-cell transplantation, solid organ transplantation or acquired immune deficiency syndrome) [1].

Diagnosis of IA is challenging and the gold standard for definite diagnosis remains histopathological tissue examination. However, invasive procedures such as lung biopsy are often not feasible in patients with severe respiratory insufficiency and critical illness [2]. Despite the lack of sufficiently sensitive or specific non-invasive test to establish definite diagnosis, the detection of a fungal cell wall component like *Aspergillus* GM remains a key component of the diagnostic procedure. *Aspergillus* GM are polysaccharides released during growth of the fungus and are detected by ELISA in biological fluid. In the serum, a positive GM is a strong indication of invasive aspergillosis, whereas fungal culture remained negative. We therefore stopped voriconazole after 8 days of treatment. Evolution was favourable without any further fungal infection.

A false-positive result of the *Aspergillus* GM assay is not frequent. In BAL, false-positive GM assays have been observed in case of histoplasmosis [5] and in other mycoses [6, 7]. Indeed, some fungal species such as *Penicillium* and *Paecilomyces* have shown cross-reactivity with the rat EBA-2 monoclonal antibody used in our report, which has been characterized in previous studies [8]. False-positive BAL GM have been demonstrated after lavage with Plasmalyte (Baxter, Lessines, Belgium) and under treatment with piperacillin-tazobactam [9, 10]. Several reports incriminate GM-containing foods (pasta, rice, energy drinks, etc) as the source of positive serum GM through a chemotherapy-induced permeability of the intestinal mucosal barrier [11–13] but this was not reported in BAL fluids. A positive serum GM test linked to enteral feeding products has been mentioned exceptionally [14]. To the best of our knowledge, this is the first report of positive BAL GM assay induced by aspiration of enteral nutrition solution. Whether subclinical micro-aspiration of enteral nutrition solutions could also induce false-positive BAL GM should be further studied.

Conclusion

This is the first report of a false-positive BAL GM due to aspiration of enteral nutrition. Physicians should consider this possibility in case of BAL positive GM assay under artificial enteral feeding.

Funding information

The authors received no specific grant from any funding agency.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

1. Meersseman W, Van Wijngaerden E. Invasive aspergillosis in the ICU: an emerging disease. Intensive Care Med 2007;33:1679–1681.
2. Koulen T, Garnacho-Montero J, Blot S. Approach to invasive pulmonary aspergillosis in critically ill patients. Curr Opin Infect Dis 2014;27:174–183.
3. Leefflang MM, Debeets-Ossenkopp YJ, Wang j, Visser CE, Scholten RJ. Galactomannan detection for invasive aspergillosis in immunocompromised patients. Cochrane Database Syst Rev 2015;12:CD007394.
4. Heng SC, Morrissey O, Chen SC, Thursky K, Manser RL et al. Utility of bronchoalveolar lavage fluid galactomannan alone or in combination with PCR for the diagnosis of invasive aspergillosis in adult hematological patients: a systematic review and meta-analysis. Crit Rev Microbiol 2015;41:124–134.
5. Vergidis P, Walker RC, Kaul DR, Kauffman CA, Freifeld AG et al. False-positive *Aspergillus* galactomannan assay in solid organ transplant recipients with histoplasmosis. Transpl Infect Dis 2012;14:213–217.
6. Borrás R, Roselló P, Chilet M, Bravo D, de Lomás JG et al. Positive result of the *Aspergillus* galactomannan antigen assay using bronchoalveolar lavage fluid from a patient with an invasive infection due to *Lichtheimia ramosa*. J Clin Microbiol 2010;48:3035–3036.
7. Kapoor MR, Agarwal P, Goel M, Jain S, Shivaparakash MR et al. Invasive pulmonary mycosis due to *Chaetomium globosum* with false-positive galactomannan test: a case report and literature review. Mycoses 2016;59:186–193.
8. Latgé JP, Kobayashi H, Debeauquis JP, Diaoquin M, Sarfati J et al. Chemical and immunological characterization of the extracellular galactomannan of *Aspergillus fumigatus*. Infect Immun 1994;62:5426–5433.
9. Hage CA, Reynolds JM, Durkin M, Wheat LJ, Knox KS. Plasmalyte as a cause of false-positive results for *Aspergillus* galactomannan in bronchoalveolar lavage fluid. J Clin Microbiol 2007;45:676–677.
10. Park SY, Lee SO, Choi SH, Sung H, Kim MN et al. *Aspergillus* galactomannan antigen assay in bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis. J Infect 2010;61:492–498.
11. Rachow T, Dornaus S, Sayer HG, Hermann B, Hochhaus A et al. Case report: false positive elevated serum-galactomannan
levels after autologous hematopoietic stem cell transplantation caused by oral nutritional supplements. *Clin Case Rep* 2016;4: 505–508.

12. **Gangneux JP, Lavarde D, Bretagne S, Guiguen C, Gandemer V.** Transient aspergillus antigenaemia: think of milk. *Lancet* 2002; 359:1251.

13. **Guigue N, Menotti J, Ribaud P.** False positive galactomannan test after ice-pop ingestion. *N Engl J Med* 2013;369:97–98.

14. **Girmenia C, Santilli S, Ballaró D, Del Giudice I, Armiento D et al.** Enteral nutrition may cause false-positive results of *Aspergillus* galactomannan assay in absence of gastrointestinal diseases. *Mycoses* 2011;54:e883–e884.