SU(3) symmetry breaking in charmed baryon decays

C. Q. Geng1,2,4, Y. K. Hsiao1,2, Chia-Wei Liu2, Tien-Hsueh Tsai2

1 School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
2 Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan

Abstract We explore the breaking effects of the SU(3) flavor symmetry in the singly Cabibbo-suppressed anti-triplet charmed baryon decays of \(B_c \to B_{cM} \), with \(B_c = (\Xi_c^0, \Xi_c^+, \Lambda_c^+) \) and \(B_{cM} (M) \) the baryon (pseudo-scalar) octets. We find that these breaking effects can be used to account for the experimental data on the decay branching ratios of \(B(\Lambda_c^+ \to \Sigma^0 K^+, \Lambda^0 K^+) \) and \(R'_{K/\pi} = B(\Xi_c^0 \to \Sigma^- K^+)/B(\Xi_c^0 \to \Sigma^- \pi^+) \). In addition, we obtain that \(B(\Xi_c^0 \to \Sigma^- K^+, \Sigma^+ \pi^-) = (4.6 \pm 1.7, 12.8 \pm 3.1) \times 10^{-4} \), \(B(\Xi_c^0 \to \Sigma^0 K^+, \Sigma^+ \pi^-) = (3.0 \pm 1.0, 5.2 \pm 1.6) \times 10^{-4} \) and \(B(\Xi_c^0 \to \Sigma^0(\pi^+\pi^0)) = (10.3 \pm 1.7) \times 10^{-4} \), which all receive significant contributions from the breaking effects, and can be tested by the BESIII and LHCb experiments.

1 Introduction

It is known that the theoretical approach based on the factorization and quantum chromodynamics (QCD) barely explains the charmed hadron decays [1]. This is due to the fact that the mass of the charm quark, \(m_c \approx 1.5 \) GeV, is not as heavy as that of the bottom one, \(m_b \approx 4.8 \) GeV, resulting in an underestimated correction to the heavy quark expansion, such that the alternative models have to take place for this correction [2–8]. On the other hand, the SU(3) flavor (SU(3)\(_f \)) symmetry that works in the b-hadron decays [9–13] can be well applied to \(D \to M M \) and \(B_c \to B_{cM} \) [14–25], where \(B_c = (\Xi_c^0, -\Xi_c^+, \Lambda_c^+) \) are the lowest-lying anti-triplet charmed baryon states, while \(B_{cM} \) and \(M \) represent baryon and pseudoscalar meson states, respectively. Particularly, the SU(3)\(_f \) symmetry has been extended to investigate the singly charmed baryon sextet states as well as the doubly and triply charmed baryon ones [23,24]. For \(D \to M M \) decays, the measurements produce [26]

\[R_{D^0(K^0)} \equiv \frac{B(D^0 \to K^+ K^-)}{B(D^0 \to \pi^+ \pi^-)} = 2.82 \pm 0.07, \]

in comparison with \((R_{D^0(K^0)}), B_{D^0(K^0)} \) given by the theoretical calculations based on the SU(3)\(_f \) symmetry. The disagreements between the theory and experiment imply that the breaking effects of the SU(3)\(_f \) symmetry cannot be ignored in the singly Cabibbo-suppressed (SCS) processes. We note that, in the literature, the SU(3)\(_f \) breaking effects were used to relate \(R'_{K/\pi} \) to the possible large difference of the \(CP \) violating asymmetries of \(\Delta A_{CP} \equiv A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-) \) [15,27,28], which is recently measured to be \((0.10 \pm 0.08 \pm 0.03)\% \) by LHCb [29].

For the two-body \(B_c \to B_{cM} \) decays, both Cabibbo flavored (CF) and SCS decays are not well explained. In particular, the experimental measurements show that

\[B_{pK^0} \equiv B(\Lambda_c^+ \to p K^0) < 3 \times 10^{-4} \text{ (90\% C.L.)} [30,31], \]

\[R'_{K/\pi} \equiv \frac{B(\Xi_c^0 \to \Sigma^- K^+)}{B(\Xi_c^0 \to \Sigma^- \pi^+)} = 0.028 \pm 0.006 \approx 0.6 \pm 0.2 \% \] \[\times \frac{1}{s_c^2} [26], \]

\[B(\Lambda_c^+ \to \Lambda^0 K^+) = (6.1 \pm 1.2) \times 10^{-4} [26], \]

\[B(\Lambda_c^+ \to \Sigma^0 K^+) = (5.2 \pm 0.8) \times 10^{-4} [26], \]

where \(s_c \equiv \sin \theta_c = 0.2248 [26] \) with \(\theta_c \) the well-known Cabibbo angle. However, theoretical evaluations based on the SU(3)\(_f \) symmetry lead to \(B_{pK^0} = (5.7 \pm 1.5) \times 10^{-4} \) and \(R'_{K/\pi} \approx 1.0 s_c^2 [21] \), and those in the factorization approach give \(B_{pK^0} = f_2^2/(2f_K^2) s_c^2 B(\Lambda_c^+ \to p K^0) = (5.5 \pm 0.3) \times 10^{-4} \) and \(R'_{K/\pi} = (f_K/f_\pi)^2 s_c^2 \approx 1.4 s_c^2 \), where we have used the data of \(B(\Lambda_c^+ \to p K^0) = (3.16 \pm 0.16) \times 10^{-2} [26] \). In addition, the fitted results of \(B(\Lambda_c^+ \to \Lambda^0 K^+, \Sigma^0 K^+) = (4.6 \pm 0.9, 4.0 \pm 0.8) \times 10^{-4} [22] \) are \((1.3 - 1.6)\% \) away from the data in Eq. (2). In this study, we will consider the breaking effects of the SU(3)\(_f \) symmetry due to the fact of

\[e-mail: geng@phys.nthu.edu.tw \]
where the notations of \(i, j, k\) are quark indices, to be connected to the initial and final states in the amplitudes. Note that \(H_{23}(6)\) and \(H_{32}(6)\) are derived from \(O_{6}^{l}\) and \(O_{6}^{d}\), respectively. The lowest-lying charmed baryon states \(B_{c}\) are an anti-triplet of \(\bar{3}\) to consist of \((d\bar{s} - s\bar{d})c\), \((u\bar{s} - su)c\) and \((ud - du)c\), presented as

\[
B_{c} = (\Xi_{c}^{0}, -\Xi_{c}^{+}, \Lambda_{c}^{+})
\]

together with the baryon and meson octets, given by

\[
B_{n} = \begin{pmatrix}
\frac{1}{\sqrt{6}}\Lambda_{c}^{0} + \frac{1}{\sqrt{2}}\Sigma_{c}^{0} & \frac{1}{\sqrt{6}}\Lambda_{c}^{0} - \frac{1}{\sqrt{2}}\Sigma_{c}^{0} & p \\
\Sigma_{c}^{-} & -\frac{1}{\sqrt{2}}\Lambda_{c}^{0} & -\sqrt{\frac{2}{3}}\Sigma_{c}^{0} \\
\Sigma_{c}^{+} & \frac{1}{\sqrt{2}}\Lambda_{c}^{0} & -\sqrt{\frac{2}{3}}\Sigma_{c}^{0}
\end{pmatrix},
\]

(9)

where we have removed the octet \(\eta_{8}\) and singlet \(\eta_{1}\) meson states to simplify our discussions. Subsequently, the amplitudes of \(B_{c} \rightarrow B_{n} M\) can be derived as

\[
A(B_{c} \rightarrow B_{n} M) = (B_{n} M | H_{\text{eff}} | B_{c})
\]

(10)

together with the baryon and meson octets, given by

\[
B_{n} = \begin{pmatrix}
\frac{1}{\sqrt{6}}\Lambda_{c}^{0} + \frac{1}{\sqrt{2}}\Sigma_{c}^{0} & \frac{1}{\sqrt{6}}\Lambda_{c}^{0} - \frac{1}{\sqrt{2}}\Sigma_{c}^{0} & p \\
\Sigma_{c}^{-} & -\frac{1}{\sqrt{2}}\Lambda_{c}^{0} & -\sqrt{\frac{2}{3}}\Sigma_{c}^{0} \\
\Sigma_{c}^{+} & \frac{1}{\sqrt{2}}\Lambda_{c}^{0} & -\sqrt{\frac{2}{3}}\Sigma_{c}^{0}
\end{pmatrix},
\]

(9)

where we have removed the octet \(\eta_{8}\) and singlet \(\eta_{1}\) meson states to simplify our discussions. Subsequently, the amplitudes of \(B_{c} \rightarrow B_{n} M\) can be derived as

\[
A(B_{c} \rightarrow B_{n} M) = (B_{n} M | H_{\text{eff}} | B_{c})
\]

(10)

together with the baryon and meson octets, given by

\[
B_{n} = \begin{pmatrix}
\frac{1}{\sqrt{6}}\Lambda_{c}^{0} + \frac{1}{\sqrt{2}}\Sigma_{c}^{0} & \frac{1}{\sqrt{6}}\Lambda_{c}^{0} - \frac{1}{\sqrt{2}}\Sigma_{c}^{0} & p \\
\Sigma_{c}^{-} & -\frac{1}{\sqrt{2}}\Lambda_{c}^{0} & -\sqrt{\frac{2}{3}}\Sigma_{c}^{0} \\
\Sigma_{c}^{+} & \frac{1}{\sqrt{2}}\Lambda_{c}^{0} & -\sqrt{\frac{2}{3}}\Sigma_{c}^{0}
\end{pmatrix},
\]

(9)

where we have removed the octet \(\eta_{8}\) and singlet \(\eta_{1}\) meson states to simplify our discussions. Subsequently, the amplitudes of \(B_{c} \rightarrow B_{n} M\) can be derived as

\[
A(B_{c} \rightarrow B_{n} M) = (B_{n} M | H_{\text{eff}} | B_{c})
\]

(10)

together with the baryon and meson octets, given by

\[
B_{n} = \begin{pmatrix}
\frac{1}{\sqrt{6}}\Lambda_{c}^{0} + \frac{1}{\sqrt{2}}\Sigma_{c}^{0} & \frac{1}{\sqrt{6}}\Lambda_{c}^{0} - \frac{1}{\sqrt{2}}\Sigma_{c}^{0} & p \\
\Sigma_{c}^{-} & -\frac{1}{\sqrt{2}}\Lambda_{c}^{0} & -\sqrt{\frac{2}{3}}\Sigma_{c}^{0} \\
\Sigma_{c}^{+} & \frac{1}{\sqrt{2}}\Lambda_{c}^{0} & -\sqrt{\frac{2}{3}}\Sigma_{c}^{0}
\end{pmatrix},
\]

(9)

where we have removed the octet \(\eta_{8}\) and singlet \(\eta_{1}\) meson states to simplify our discussions. Subsequently, the amplitudes of \(B_{c} \rightarrow B_{n} M\) can be derived as

\[
A(B_{c} \rightarrow B_{n} M) = (B_{n} M | H_{\text{eff}} | B_{c})
\]

(10)

together with the baryon and meson octets, given by

\[
B_{n} = \begin{pmatrix}
\frac{1}{\sqrt{6}}\Lambda_{c}^{0} + \frac{1}{\sqrt{2}}\Sigma_{c}^{0} & \frac{1}{\sqrt{6}}\Lambda_{c}^{0} - \frac{1}{\sqrt{2}}\Sigma_{c}^{0} & p \\
\Sigma_{c}^{-} & -\frac{1}{\sqrt{2}}\Lambda_{c}^{0} & -\sqrt{\frac{2}{3}}\Sigma_{c}^{0} \\
\Sigma_{c}^{+} & \frac{1}{\sqrt{2}}\Lambda_{c}^{0} & -\sqrt{\frac{2}{3}}\Sigma_{c}^{0}
\end{pmatrix},
\]

(9)
is due to the fact that the contributions to the branching rates from $H(15)$ and $H(6)$ lead to a small ratio of $R(15/6) = c_2^2/c_2^2 \simeq 17\%$ with $(c_+, c_-) = (0.76, 1.78)$ calculated at the scale $\mu = 1$ GeV in the NDR scheme [33, 34]. There remain two measurements to be explained. In Eq. (2), the prediction for B_{pr0} has the 2σ gap to reach the edge of the experimental upper bound. However, with $R(15/6)$ to be small, it is nearly impossible that, by restoring $a_{4,5,6,7}$ that have been ignored in the literature [20–23, 25], one can accommodate the data of B_{pr0} but without having impacts on the other decay modes, which are correlated with the same sets of parameters. Moreover, as seen from Eq. (12), there is no room for R_{K^*}/π as it is fixed to be $(1.0)^{2}_{-2}$. On the other hand, the results for $D \to MM$ decays in Eq. (1) suggest some possible corrections from the breaking effects of the $SU(3)_f$ symmetry in the SCS processes. In the charm baryon decays, we consider the similar effects. Due to $m_s \gg m_{ud, d}$, we present the matrix of $M_s = \epsilon(\lambda_s)\gamma_j^{(1)}$ [14] to break $SU(3)_f$, where $\epsilon \sim 0.2 - 0.3$ and λ_s is given by [14, 15, 18]

$$\lambda_s = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix},$$

which transforms as an octet of 8, such that its coupling to $H(6)$ is in the form of $8 \times 6 = \bar{3} + 6 + 6 + 15 + 24$, and $\bar{3}$ is the simplest break effects to be confined in the SCS processes [18, 35]. Note that from $\frac{1}{8}(\delta_1(\lambda_s)\gamma_j^{(1)}H(6))_{kn} - \delta_1(\lambda_s)\gamma_j^{(1)}H(6)_{kn} + \delta_1(\lambda_s)\gamma_j^{(1)}H(6)_{kn} - \delta_1(\lambda_s)\gamma_j^{(1)}H(6)_{kn}$ and the nonzero entry of $H(\bar{3})_l = s_l$ from the coupling of $H(6)_{23}$ and $H(6)_{12}$ [14], one can trace back to the break effect between SCS $c \to u\bar{s}s$ and $c \to u\bar{d}d$ transitions. As a result, the $SU(3)_f$ symmetry breaking gives rise to the new T-amplitudes, given by

$$T(H_3) = v_1(B_c)H(\bar{3})^{(1)}(B_u^{(1)})^{(1)}(M)_{kn}^{(1)} + v_2(B_c)H(\bar{3})^{(1)}(B_u^{(1)})^{(1)}(M)_{kn}^{(1)} + v_3(B_c)H(\bar{3})^{(1)}(B_u^{(1)})^{(1)}(M)_{kn}^{(1)},$$

where $v_{1,2,3}$ are the parameters related to the $SU(3)_f$ breakings. It is interesting to note that the v_i terms associated with $(B_c)H(\bar{3})^{(1)}$ in Eq. (14) occur in some of the $\Xi_c^{0,+}$ decays, but disappear in all Λ_c^{*5} modes. By adding $T(H_3)$ to $T(B_c \to B_u M)$ in Eq. (10), the full expansions of $T(B_c \to B_u M)$ are given in Table 1, to be used to calculate the decay widths, given by [26]

$$\Gamma(B_c \to B_u M) = \frac{|\tilde{p}_{cm}|}{8\pi m_{B_c}} |A(B_c \to B_u M)|^2,$$

where $|\tilde{p}_{cm}| = \sqrt{[(m_{B_c} - (m_{B_u} + m_M))^2][(m_{B_c} - (m_{B_u} - m_M))^2]}/(2m_{B_c}).$

3 Numerical analysis

In the numerical analysis, we examine $B(\Lambda_c^{+} \to \Lambda^0 K^+, \Sigma^0 K^+, \pi\pi^0)$ and $R_{K^*/\pi}$ by including the breaking effects of the $SU(3)_f$ symmetry to see if one can explain their data in Eq. (2). The theoretical inputs for the CKM matrix elements are given by [26]

$$(V_{cs}, V_{ud}, V_{us}, V_{cd}) = (1 - \lambda^2/2, 1 - \lambda^2/2, \lambda, -\lambda),$$

with $\lambda = 0.2248$ in the Wolfenstein parameterization. We perform the minimum χ^2 fit, in terms of the equation of [22]

$$\chi^2 = \sum_i \left(\frac{B_{th}^i - B_{ex}^i}{\sigma_{th}^i} \right)^2 + \sum_j \left(\frac{R_{thj} - R_{exj}}{\sigma_{thj}} \right)^2,$$

with $B = B(\Lambda_c^{+} \to \Lambda_c K^+)$ and $R = B(\Sigma_c^{0} \to \Sigma_c K^+)$, where the subscripts th and ex are denoted as the theoretical inputs from the amplitudes in Table 1 and the experimental data points in Table 2, respectively, while σ_{th} correspond to the 1σ errors. By following Refs. [21–23], we extract the parameters, which are in fact complex numbers, given by

$$a_1, a_2 e^{i\delta_{a2}}, a_3 e^{i\delta_{a3}}, v_1 e^{i\delta_{v1}}, v_2 e^{i\delta_{v2}}, v_3 e^{i\delta_{v3}},$$

where $a_{4,5,...}$ have been ignored as discussed in Sect. 3. Since only the relative phases contribute to the branching ratios, a_1 is set to be real without losing generality. However, we take v_j to be real numbers in order to fit 8 parameters with the 9 data points in Table 2. In the calculation, δ_{a_i} ($i=2,3$) from $a_i e^{i\delta_{a_i}}$ is a fitting parameter, which can absorb the phase of δ_{v_j} from the interference in the data fitting. Note that δ_{v_j} ($i=2,3$) have been fitted with the imaginary parts [22]. As a result, we may set $\delta_{v_{2,3}}$ along with the overall phase of δ_{a_i} to be zero for the estimations of the decay branching ratios due to the $SU(3)$ breaking effects. We will follow Ref. [25] to test our assumption, where a similar global fit in the approach of the $SU(3)_f$ symmetry has been done to extract $a_2 e^{i\delta_{a2}}$ by freely rotating the angle of δ_{a2} from -180° to 180° to estimate the uncertainties of the branching ratios. Subsequently, the fit with the breaking effects in the $SU(3)_f$ symmetry yields

$$T(\Lambda_c^{+} \to \Lambda^0 K^+),$$

$$T(\Sigma_c^{0} \to \Sigma_c K^+),$$

$$(v_1, v_2, v_3) = (0.090 \pm 0.032, -0.037 \pm 0.013, 0.025 \pm 0.012) \text{ GeV}^2,$$

with $\chi^2/d.o.f = 3.0/1$, where $d.o.f$ represents the degree of freedom. Note that $a_{1,2,3}$ and their phases are nearly the same as those without the breaking of $SU(3)_f$ [22]. With the parameters in Eq. (19), we obtain the branching ratios of the CF and SCS $B_c \to B_u M$ decays, shown in Table 3.
Table 1: Amplitudes of $T(B_c \rightarrow B_n M)$, where T-amps refers to $T(B_c \rightarrow B_n M)$ and CF (SCS) represents Cabibbo favored (singly Cabibbo-suppressed).

CF mode	T-amp	SCS mode	T-amp
$\Sigma_0^+ \rightarrow \Sigma^+ K^-$	$2 \left(a_2 + \frac{a_3 + a_4}{2} \right)$	$\Sigma_0^+ \rightarrow \Sigma^+ \pi^-$	$2 \left(a_2 + v_1 + v_3 + \frac{a_3 + a_4}{2} \right) S_c$
$\Sigma_0^+ \rightarrow \Sigma^0 K^0$	$-\sqrt{2} \left(a_2 + a_3 - \frac{a_4}{2} \right)$	$\Sigma_0^+ \rightarrow \Sigma^- K^0$	$2 \left(a_1 + v_1 + v_2 + \frac{a_3 + a_4}{2} \right) S_c$
$\Sigma_0^+ \rightarrow \Sigma^0 \pi^0$	$-\sqrt{2} \left(a_1 - a_3 - \frac{a_4}{2} \right)$	$\Sigma_0^+ \rightarrow \Sigma^0 \pi^0$	$2 \left(a_2 + a_3 - 2v_1 - v_2 - v_3 - \frac{a_3 + a_4 + a_5}{2} \right) S_c$
$\Sigma_0^+ \rightarrow \Sigma^- \pi^+$	$2 \left(a_1 + \frac{a_3 + a_4}{2} \right)$		
$\Sigma_0^+ \rightarrow \Lambda^0 K^0$	$-\sqrt{2} \left(2a_1 - a_2 - a_3 + \frac{2a_3 + a_4}{2} \right)$	$\Sigma_0^+ \rightarrow \Lambda^0 \pi^0$	$2 \left(a_1 - a_3 - v_1 + \frac{a_3 + a_4}{2} \right) S_c$
$\Sigma^+ \rightarrow \Sigma^+ K^0$	$-6 \left(a_3 - \frac{a_4 + a_5}{2} \right)$	$\Sigma^+ \rightarrow \Sigma^+ \pi^+$	$-\sqrt{2} \left(a_3 - a_2 + v_2 - v_3 + \frac{a_3 + a_4 + a_5 + a_7}{2} \right) S_c$
$\Sigma^+ \rightarrow \Sigma^0 \pi^+$	$2 \left(a_1 + \frac{a_3 + a_4}{2} \right)$	$\Sigma^+ \rightarrow \Sigma^0 \pi^0$	$\sqrt{2} \left(a_1 - a_2 + v_2 - v_3 - \frac{a_3 + a_4 + a_5 + a_7}{2} \right) S_c$
$\Sigma^+ \rightarrow \Sigma^+ K^+$	$2 \left(a_2 + a_3 + \frac{a_4 + a_5}{2} \right)$	$\Sigma^+ \rightarrow \Sigma^+ K^+$	$2 \left(a_2 + a_3 + v_2 + \frac{a_4 + a_5}{2} \right) S_c$
$\Sigma^+ \rightarrow \Sigma^+ \pi^+$	$2 \left(a_2 - a_3 - \frac{a_4}{2} \right)$	$\Sigma^+ \rightarrow \Lambda^0 \pi^+$	$\sqrt{2} \left(a_1 + a_2 + 2a_3 + v_2 - v_3 - \frac{3a_3 + a_4 + a_5 + a_7}{2} \right) S_c$
$\Lambda^+_c \rightarrow \Sigma^0 \pi^+$	$-\sqrt{2} \left(a_1 - a_2 + a_3 - \frac{a_4 + a_5}{2} \right)$	$\Lambda^+_c \rightarrow \Sigma^+ K^0$	$2 \left(a_1 - a_3 + v_3 - \frac{a_3 + a_5}{2} \right) S_c$
$\Lambda^+_c \rightarrow \Sigma^+ \pi^+$	$\sqrt{2} \left(a_1 - a_2 - a_3 - \frac{a_4}{2} \right)$	$\Lambda^+_c \rightarrow \Sigma^0 K^+$	$\sqrt{2} \left(a_1 - a_3 + v_3 - \frac{a_3 + a_5}{2} \right) S_c$
$\Lambda^+_c \rightarrow \Sigma^0 K^+$	$-2 \left(a_2 - \frac{a_3 + a_4}{2} \right)$	$\Lambda^+_c \rightarrow \Sigma^0 K^+$	$\sqrt{2} \left(a_2 + a_3 + v_2 - \frac{a_3 + a_5}{2} \right) S_c$
$\Lambda^+_c \rightarrow \Sigma^+ K^+$	$2 \left(a_1 - a_3 + \frac{a_4 + a_5}{2} \right)$	$\Lambda^+_c \rightarrow \Sigma^+ \pi^+$	$2 \left(a_2 + a_3 + v_2 + \frac{a_3 + a_5}{2} \right) S_c$
$\Lambda^+_c \rightarrow \Lambda^0 \pi^+$	$-\frac{3}{2} \left(a_1 + a_2 + a_3 - \frac{a_4 + a_5 + a_7}{2} \right)$	$\Lambda^+_c \rightarrow \Lambda^0 K^+$	$\sqrt{2} \left(a_1 + a_2 + a_3 + v_2 + v_3 - \frac{3a_3 + a_4 + a_5 + 2a_7}{2} \right) S_c$

4 Discussions and conclusions

As seen from Tables 2 and 3, the breaking effects associated with v_2 and v_3 on the branching ratios of the SCS $\Lambda^+_c \rightarrow B_n M$ decays are at most around 30%, which is close to the naive estimation of $(f_K/f_\pi)^2 \simeq 40\%$. In particular, we get $B(\Lambda^+_c \rightarrow \Lambda^0 K^+, \Sigma^0 K^+ \rightarrow (6.1 \pm 0.9, 5.2 \pm 0.7) \times 10^{-4}$, which explain the data in Eq. (2) well and alleviate the $(1.3 - 1.6)\sigma$ deviations by the fit with the exact $SU(3)_f$ symmetry [22]. Meanwhile, the branching ratios for the CF modes are fitted to be the same as those without the breaking except $B(\Lambda^+_c \rightarrow \Sigma^0 K^+)$, which is slightly different in order to account for the recent observational value given by BESIII [36].

Moreover, the fitted value of $\mathcal{R}_f'\mathcal{R}_f = (0.6 \pm 0.2) \pm 0.03 \pm 0.01$ explains the data very well for the first time. This leads to the prediction of $B(\Sigma^0 \rightarrow \Sigma^- K^+) = (4.6 \pm 1.7) \times 10^{-4}$, with $v_1 + v_2$ as the destructive contribution to reduce the value of $(7.6 \pm 0.4) \times 10^{-4}$ under the exact $SU(3)_f$ symmetry, whereas $B(\Sigma^0 \rightarrow \Sigma^- \pi^+) = (12.8 \pm 3.1) \times 10^{-4}$ receives the constructive contribution from $v_1 + v_2$, with $T(\Sigma^0 \rightarrow \Sigma^- K^+, \Sigma^- \pi^+) = \mp [a_1 \mp (v_1 + v_2)] S_c$. Since
Table 2 The data of the $B_c \rightarrow B_m \ M$ decays, together with the reproduction with the exact (broken) $SU(3)_f$ symmetry in the 3rd (4th) column

(Branching)	Data [26,30,36]	Exact [22]	Broken
$10^3 B(A_{c}^{+} \rightarrow \Sigma^{+} K^+)$	5.2 ± 0.8	4.0 ± 0.8	5.2 ± 0.7
$10^3 B(A_{c}^{+} \rightarrow \Lambda^{0} K^+)$	6.1 ± 1.2	4.6 ± 0.9	6.1 ± 0.9
$R'_{K/\pi} = \frac{B(\Xi_1^0 \rightarrow \Xi^- K^+)}{B(\Xi_1^0 \rightarrow \Xi^- \pi^+)}$	$(0.6 \pm 0.2) s_{c}$	$(1.0) s_{c}$	$(0.6 \pm 0.2)s_{c}$
$10^2 B(\Lambda_{c}^{+} \rightarrow \Sigma^{0} \pi^+)$	1.29 ± 0.07	1.3 ± 0.2	1.3 ± 0.1
$10^2 B(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^0)$	1.24 ± 0.10	1.3 ± 0.2	1.3 ± 0.1
$10^2 B(\Lambda_{c}^{+} \rightarrow \Xi_0^0 K^+)$	0.59 ± 0.09	0.5 ± 0.1	0.6 ± 0.1
$10^2 B(\Lambda_{c}^{+} \rightarrow \rho K^0)$	3.16 ± 0.16	3.3 ± 0.2	3.2 ± 0.1
$10^2 B(\Lambda_{c}^{+} \rightarrow \Lambda^{0} \pi^+)$	1.30 ± 0.07	1.3 ± 0.2	1.3 ± 0.1
$R''_{K/\pi} = \frac{B(\Xi_1^0 \rightarrow \Lambda^{0} K^0)}{B(\Xi_1^0 \rightarrow \Xi^- \pi^+)}$	0.42 ± 0.06	0.5 ± 0.1	0.5 ± 0.1

Table 3 The branching ratios of the $B_c \rightarrow B_m \ M$ decays, where the numbers with the dagger (†) correspond to the reproductions of the experimental data input, instead of the predictions

CF mode	Exact [22]	Broken	SCS mode	Exact [22]	Broken
$10^3 B(\Xi_{c}^{0} \rightarrow \Sigma^{+} K^-)$	3.5 ± 0.9	3.8 ± 0.6	$10^4 B(\Xi_0^0 \rightarrow \Sigma^{+} \pi^-)$	2.0 ± 0.5	5.2 ± 1.6
$10^3 B(\Xi_{c}^{0} \rightarrow \Sigma^{0} K^-)$	4.7 ± 1.2	5.2 ± 0.8	$10^4 B(\Xi_0^0 \rightarrow \Sigma^{-} \pi^-)$	9.0 ± 0.4	12.8 ± 3.1
$10^3 B(\Xi_{c}^{0} \rightarrow \Xi^{0} \pi^-)$	4.3 ± 0.09	4.4 ± 0.4	$10^4 B(\Xi_0^0 \rightarrow \Sigma^{0} \pi^-)$	3.2 ± 0.3	7.7 ± 2.2
$10^3 B(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^-)$	15.7 ± 0.7	15.2 ± 0.7	$10^4 B(\Xi_0^0 \rightarrow \Xi^{-} \pi^-)$	7.6 ± 0.4	4.6 ± 1.7
$10^3 B(\Xi_{c}^{0} \rightarrow \Lambda^{0} K^-)$	8.3 ± 0.9	7.8 ± 0.5			
$10^3 B(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^-)$	8.0 ± 3.9	7.8 ± 2.7	$10^4 B(\Xi_0^0 \rightarrow \Sigma^{0} \pi^-)$	18.5 ± 2.2	10.3 ± 1.7
$10^3 B(\Xi_{c}^{+} \rightarrow \Xi^{0} \pi^-)$	8.1 ± 4.0	7.9 ± 2.7	$10^4 B(\Xi_0^0 \rightarrow \Sigma^{+} \pi^-)$	18.5 ± 2.2	10.3 ± 1.7
$10^3 B(\Lambda_{c}^{+} \rightarrow \Sigma^{0} \pi^-)$	$(1.3 \pm 0.2) t$	$(1.3 \pm 0.1) t$			
$10^2 B(\Xi_{c}^{0} \rightarrow \Sigma^{0} \pi^-)$	$(1.3 \pm 0.2) t$	$(1.3 \pm 0.1) t$			
$10^2 B(\Lambda_{c}^{+} \rightarrow \Sigma^{0} \pi^-)$	$(0.5 \pm 0.1) t$	$(0.6 \pm 0.1) t$			
$10^2 B(\Lambda_{c}^{+} \rightarrow \rho K^0)$	$(3.3 \pm 0.2) t$	$(3.2 \pm 0.1) t$			
$10^2 B(\Lambda_{c}^{+} \rightarrow \Lambda^{0} \pi^+)$	$(1.3 \pm 0.2) t$	$(1.3 \pm 0.1) t$			

there are other similar interferences between a_i and v_i, which come from $T(\Xi_0^0 \rightarrow \rho K^-)$, $\Sigma^{+} \pi^-$, $\Sigma^{+} \pi^0$, and $T(\Xi_1^{+} \rightarrow \Sigma^{0} \pi^+)$, $\Sigma^{+} \pi^0) = \mp \sqrt{2}((a_1 - a_2) + (v_2 - v_3)s_c)$, it is predicted that $B(\Xi_0^0 \rightarrow \rho K^-)$, $\Sigma^{+} \pi^-$) = $(3.0 \pm 1.0, 5.2 \pm 1.6) \times 10^{-4}$ and $B(\Xi_1^{+} \rightarrow \Sigma^{0} \pi^+)$, $\Sigma^{+} \pi^0)$) = $(10.3 \pm 1.7) \times 10^{-4}$. It is interesting to note that the important roles of the terms associated with v_1 in the T amplitudes are also projected in the Ξ_0^0 modes, particularly, $\Xi_0^0 \rightarrow \Xi^{-} K^+$ and $\Xi_0^0 \rightarrow \Xi^{-} \pi^0$. Clearly, these SCS Ξ_0^0 decays all contain sizable $SU(3)_f$ breaking effects, and can be treated as golden modes to test the $SU(3)_f$ symmetry.

In our calculation, we treat v_3 as the norm in $T(\Lambda_c^+ \rightarrow \Sigma^0 K^+) \simeq \sqrt{2}(a_1 - a_3 + v_3)s_c$ of Table I, such that δv_3 is allowed to rotate from -90° to 50° without letting $B(\Lambda_c^+ \rightarrow \Sigma^0 K^+) \succ 0$ exceed the data. Since the allowed range for δv_3 is large, it is clear that its value is insensitive to the data. On the other hand, in order to explain the experimental data of $R''_{K/\pi}$ with the smallest corrections from $v_ie^{\delta v_1}$, we assume maximally destructive interferences between $a_i e^{\delta v_i}$ and $v_i e^{\delta v_i}$. Explicitly, in $T(\Xi_0^0 \rightarrow \Xi^{-} K^-)$, $\Xi_1^{+} \rightarrow \Sigma^{+} \pi^0)$, $\Sigma^{+} \pi^0)$), we can take $\delta v_1 = \delta v_2 = \delta v_1 = 0$ as an overall phase in $T(\Xi_1^{+} \rightarrow \Xi^{-} K^-)$. Consequently, we are able to assume real values for $v_i (i = 1,2,3)$ without loss of generality. Finally, we remark that, even with the breaking effects, we are still unable to fit the data of $\Lambda_c^+ \rightarrow \rho \pi^0$ in Eq. (1) as our result for its branching ratio of $(5.4 \pm 1.0) \times 10^{-4}$, which is close to $(5.5 \pm 0.3) \times 10^{-4}$ from the factorization.
approach [22], is lower than the current experimental upper bound of 3×10^{-4} [30, 31]. However, it is possible that $H(15)$ would be non-negligible in $\Lambda_c^+ \rightarrow p\pi^0$. For example, with $T(\Lambda_c^+ \rightarrow p\pi^0) = \sqrt{2}(a_2 + a_3 + v_z - (a_6 - a_f))/2$s, the contribution from $(a_6 - a_f)$ of $H(15)$ in Table 1 might be comparable with that from $a_2 + a_3 + v_z$ of $H(6)$, while $a_{1,2,3}$ and v_2 of Eq. (19) are taken to be small. In particular, with $(a_6 - a_f)$ to be around 25% of $a_2 + a_3 + v_z$, $B(\Lambda_c^+ \rightarrow p\pi^0)$ can be reduced to be within the experimental upper bound due to the destructive interference. In this case, there is a corresponding constructive interference in $\Lambda_c^+ \rightarrow n\pi^+$, leading to $B(\Delta^+_c \rightarrow n\pi^+) \sim 17 \times 10^{-4}$, which breaks the relation of $A(\Lambda_c^+ \rightarrow n\pi^+) = \sqrt{2}A(\Lambda_c^+ \rightarrow p\pi^0)$ [8]. Clearly, in order to confirm the importance of $H(15)$, both experimental observations of $\Lambda_c^+ \rightarrow p\pi^0$ and $\Lambda_c^+ \rightarrow n\pi^+$ are needed.

In sum, we have studied the singly Cabibbo-suppressed charmed baryon decays. We have shown that the breaking effect of the $SU(3)_f$ symmetry can be used to understand the experimental data of $B(\Lambda_c^+ \rightarrow \Sigma^0 K^+, \Lambda^0 K^+)$ and $R'_{K/\pi} = B(\Sigma_c^0 \rightarrow \pi^0 K^+)/B(\Sigma_c^0 \rightarrow \pi^- \pi^+)$. With these effects, we have obtained that $B(\Sigma_c^0 \rightarrow \pi^0 K^+, \pi^- \pi^+) = (4.6 \pm 1.7, 12.8 \pm 3.1) \times 10^{-4}$, $B(\Sigma_c^0 \rightarrow pK^-, \pi^- \pi^+) = (3.0 \pm 1.0, 5.2 \pm 1.6) \times 10^{-4}$ and $B(\Sigma_c^0 \rightarrow \Sigma^0 \pi^0(\pi^+)) = (10.3 \pm 1.7) \times 10^{-4}$, which are quite different from those predicted by the approach with the exact $SU(3)_f$ symmetry. However, even with the breaking effects, our result for the branching ratio of $\Lambda_c^+ \rightarrow p\pi^0$ is still higher than the current experimental upper bound, which clearly requires a closer examination by a future dedicated experiment.

Acknowledgements This work was supported in part by National Center for Theoretical Sciences, MoST (MoST-104-2112-M-007-003-MY3), and National Science Foundation of China (11675030).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

References

1. A. Khodjamirian, A.A. Petrov, Phys. Lett. B 774, 235 (2017)
2. H.Y. Cheng, B. Tseng, Phys. Rev. D 46, 1042 (1992)
3. H.Y. Cheng, B. Tseng, Phys. Rev. D 55, 1697(E) (1997)
4. H.Y. Cheng, B. Tseng, Phys. Rev. D 48, 4188 (1993)
5. P. Zenczykowski, Phys. Rev. D 50, 402 (1994)
6. Fayyazuddin, Riazuddin, Phys. Rev. D 55, 255 (1997) [Erratum: Phys. Rev. D 56, 531 (1997)]
7. R. Dwir, C.S. Kim, Phys. Rev. D 91, 114008 (2015)
8. H.Y. Cheng, X.W. Kang, F. Xu, Phys. Rev. D 97, 074028 (2018)
9. X.G. He, Y.K. Hsiao, J.Q. Shi, Y.L. Wu, Y.F. Zhou, Phys. Rev. D 64, 034002 (2001)
10. H.K. Fu, X.G. He, Y.K. Hsiao, Phys. Rev. D 69, 074002 (2004)
11. Y.K. Hsiao, C.F. Chang, X.G. He, Phys. Rev. D 93, 114002 (2016)
12. X.G. He, G.N. Li, Phys. Lett. B 750, 82 (2015)
13. M. He, X.G. He, G.N. Li, Phys. Rev. D 92, 036010 (2015)
14. Y. Grossman, D.J. Robinson, JHEP 1304, 067 (2013)
15. D. Pirtskhalava, P. Uttayarat, Phys. Lett. B 712, 81 (2012)
16. H.Y. Cheng, C.W. Chiang, Phys. Rev. D 86, 014014 (2012)
17. M.J. Savage, R.P. Springer, Phys. Rev. D 42, 1527 (1990)
18. M.J. Savage, Phys. Lett. B 257, 414 (1991)
19. G. Altarelli, N. Cabibbo, L. Maiani, Phys. Lett. 57B, 277 (1975)
20. C.D. Lu, W. Wang, F.S. Yu, Phys. Rev. D 93, 056008 (2016)
21. C.Q. Geng, Y.K. Hsiao, Y.H. Lin, L.L. Liu, Phys. Lett. B 776, 265 (2017)
22. C.Q. Geng, Y.K. Hsiao, C.W. Liu, T.H. Tsai, Phys. Rev. D 97, 073006 (2018)
23. C.Q. Geng, Y.K. Hsiao, C.W. Liu, T.H. Tsai, JHEP 1711, 147 (2017)
24. W. Wang, Z.P. Xing, J. Xu, Eur. Phys. J. C 77, 800 (2017)
25. D. Wang, P.F. Guo, W.H. Long, F.S. Yu, JHEP 1803, 066 (2018)
26. C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, 100001 (2016)
27. J. Brod, A.L. Kagan, J. Zupan, Phys. Rev. D 86, 014023 (2012)
28. J. Brod, Y. Grossman, A.L. Kagan, J. Zupan, JHEP 1210, 161 (2012)
29. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 116, 191601 (2016)
30. M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 95, 111102 (2017)
31. Private communications with Dr. Peilian Li from the BESIII Collaboration for the original data
32. A.J. Buras, arXiv: hep-ph/9806471
33. Hn Li, C.D. Lu, F.S. Yu, Phys. Rev. D 86, 036012 (2012)
34. S. Fabj, P. Singer, J. Zupan, Eur. Phys. J. C 27, 201 (2003)
35. L.F. Abbott, P. Sikivie, M.B. Wise, Phys. Rev. D 21, 768 (1980)
36. M. Ablikim et al. [BESIII Collaboration], arXiv:1803.04299 [hep-ex]