FACILE ONE-POT METHOD FOR THE SYNTHESIS OF POLYSUBSTITUTED PHHTALIDE DERIVATIVES

Xiu-Yan Yang,1,2 Xiao-Qian Xu,1,2 Xiao-Kui Wang,2 Zhi-Bing Zheng,2 Guo-Ming Zhao,2 and Song Li1,2
1Shenyang Pharmaceutical University, Shenyang, China
2Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China

GRAPHICAL ABSTRACT

Abstract A new three-component cyclization method is described involving two starting materials, ethyl 4-chloroacetoacetate and aldehydes, catalyzed by piperidine, acid, and iodine. Ten corresponding polysubstituted phthalides are formed with good yields (44–78%). A mechanism of the reaction is also proposed.

Keywords Catalyst; cyclization; mechanism; phthalide

INTRODUCTION

Polysubstituted phthalides are common structural subunits in pharmaceutical and natural products that have a wide range of biological activities, including modulation of the central nervous system and protection against brain ischemia.[1–5] Moreover, they have been used as key intermediates in the synthesis of biologically active compounds such as nidulol and lactonamycin (Fig. 1).[6,7] As a result, the preparation of polysubstituted phthalides in general has been a focused area in organic synthesis.

Traditionally, synthetic methods for polysubstituted phthalide derivatives have been mainly based on benzannulation of 4-methoxycarbonylbut-2-enoate with methyl alkynoate or Diels–Alder reaction of methyl 2-(prop-1-en-2-yl)but-2-enoate

Received July 16, 2013.
Authors Xiu-Yan Yang and Xiao-Qian Xu contributed equally to this work.
Address correspondence to Guo-Ming Zhao, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China. E-mail: zhaogm@bmi.ac.cn
with furan-2,5-dione under appropriate conditions (Scheme 1).[8–12] However, these approaches have some drawbacks such as high cost and tedious procedures. Recently, methods that construct the aromatic backbone from acyclic precursors have received growing interest because of their short synthetic steps.[13–17] Herein, we describe an efficient method to synthesize polysubstituted phthalides from ethyl 4-chloroacetoacetate and aldehydes in the presence of piperidine, acid, and iodine (Scheme 2). Our method is simple and economical because no special apparatus or chemical is required. It is also devoid of any toxic by-products during the reaction.

RESULTS AND DISCUSSION

We initially conducted a preliminary study evaluating catalysis of acid and base using ethyl 4-chloroacetoacetate (2 equiv) and ethanal (1 equiv) as the starting substrates. The results are shown in Table 1. No product was found in the presence of acid or base only (Table 1, entries 1–3). Addition of catalytic amounts of both acid and base to the reaction yielded less product (Table 1, entry 4). Increasing the amounts of acid and base (1 equiv) led to more products (Table 1, entry 5), but greater
amounts of the catalysts did not result in greater yields (Table 1, entries 6). Addition of 0.12 equiv concentrated hydrochloric acid and 1 equiv iodine gave the best result, whereas other amounts completed the reaction in poor yields (Table 1, entries 7–9). In many cases, the poor yields were a result of the formation of other by-products that could not be isolated by column chromatography.

Table 2. Optimization of reaction solvents

Entry	Solvent	Yield (%)
1	Methanol	42
2	Ethanol	63
3	Ethanol	0
4	1,4-Dioxane	24
5	Acetic acid	15
6	DMF	0
7	DMSO	0

4-Chloroacetoacetate (2 equiv) with ethanol (1 equiv) in the presence of piperidine (1 equiv), glacial acetic acid (1 equiv), concentrated hydrochloric acid (0.12 equiv), and iodine (1 equiv) refluxed for 12 h in different solvents (except entry 3).

*Refers to pure products separated by chromatography.

Reacted at 40 °C in ethanol.
We continued to investigate the effect of solvents on the reaction, such as methanol, 1,4-dioxane, acetic acid, dimethylformamide (DMF), and dimethylsulfoxide (DMSO), but the yields were found no better than the yield of ethanol (Table 2).

Table 3. Synthesis of substituted phthalides 1a–1j

Entry	R Product	Yield\(^a\) (%)
1	CH\(_3\) 1a	63
2	CH\(_2\)CH\(_2\)CH\(_2\) 1b	69
3	2-Br-C\(_6\)H\(_4\) 1c	56
4	4-Cl-C\(_6\)H\(_4\) 1d	65
5	2-OCH\(_3\)-C\(_6\)H\(_4\) 1e	50
6	3-Br-4-OH-C\(_6\)H\(_4\) 1f	58
7	3-OCH\(_3\)-4-OH-C\(_6\)H\(_4\) 1g	44
8	3-Br-4-OH-5-OCH\(_3\)-C\(_6\)H\(_5\) 1h	60
9	2-Cl-4-F-C\(_6\)H\(_3\) 1i	60
10	3-NO\(_2\)-C\(_6\)H\(_4\) 1j	78

\(^a\)Refers to pure products separated by chromatography.

We continued to investigate the effect of solvents on the reaction, such as methanol, 1,4-dioxane, acetic acid, dimethylformamide (DMF), and dimethylsulfoxide (DMSO), but the yields were found no better than the yield of ethanol (Table 2).

Scheme 3. Possible mechanism of the reaction.
To see the scope of this method, two aliphatic aldehydes and eight aromatic aldehydes were examined under the optimized conditions, and the corresponding results were summarized in Table 3. The substitutes on the aromatic aldehydes exhibited an effect on the yields of the reactions. The electron-withdrawing groups gave better yields than the electron-donating groups. For example, 3-nitrobenzaldehyde afforded the desired product \(1j\) as a white crystalline solid in 78% yield (Table 3, entry 10). By comparison, 2-methoxy benzaldehyde, 3-bromo-4-hydroxy-5-methoxy benzaldehyde, 3-bromo-4-hydroxybenzaldehyde, and 3-methoxy-4-hydroxybenzaldehyde gave lower yields.

To further the scope the present synthesis, a plausible mechanism of the reaction is proposed (Scheme 3). It involves the Knoevenagel reaction of aldehydes with 4-chloroacetoacetate to give a Konevenagel product \(2\), which undergoes both Michael-type addition and intramolecular aldol condensation in the presence of piperidine to give a 1,3-dicarbonyl derivative \(4\), which can form the enol \(5\) by isomerazation. It is possible to generate the stable aromatization product \(6\) after the dehydrohalogenation of allyl halide catalyzed by base. Then hydrolyzation of \(6\) give the intermediate \(7\). Finally, the desired phthalide derivatives \(1\) is easily obtained by internal esterification in the presence of acid. In this process iodine is possible to promote elimination and hydrolyzation through an exchange of chlorine.

In summary, we have identified and studied a new and facile reaction of 4-chloroacetoacetate with aldehydes to produce corresponding substituted phthalides in moderate yields. The proposed procedure leads to building blocks, potential intermediates of organic materials, and new substituted phthalides. It holds potential for use in organic synthesis.

EXPERIMENTAL

\(^1H\) NMR and \(^{13}C\) NMR spectra were recorded at 400 MHz and 100 MHz on a JNM-ECA-400 instrument with tetramethylsilane (TMS) as an internal standard in the DMSO. Infrared (IR) spectra were recorded in KBr disk using a Nicolet 6700 FT-IR spectrophotometer. Electrospray ionization–mass spectrometry (ESI-MS, high resolution) was done using a Waters Xevo G2 Qtof (ESI) mass spectrometer. Melting points were determined using a RY-1 apparatus and were uncorrected.

Ethyl 4-chloroacetoacetate (2 mmol) and ethanal (1 mmol) were placed in a flask under an atmosphere of nitrogen. Piperidine (1 mmol), glacial acetic acid (1 mmol), iodine (1 mmol), concentrated hydrochloric acid (0.01 mL), and ethanol (10 mL) were added. The resulting mixture was heated at 80°C for 12 h. After cooling to room temperature, the solvent was removed by evaporation. The residue was poured into 50 mL of water and extracted with ether. The organic layer was separated and was washed with saturated sodium chloride solution. The solvent was removed after dried over sodium sulfate and the residue was purified by column chromatography on silica gel to give the product \(1a\) (0.15 g, white powder) in 63% yield, mp 138.3–139.1°C. \(^1H\) NMR (DMSO-d\(_6\), 400 MHz): \(\delta\) ppm, 11.12 (s, 1H, OH), 6.91 (s, 1H, Ph-H), 5.24 (s, 2H, CH2), 4.3 (q, 2H, CH2, \(J = 8\) Hz), 2.45 (s, 3H, CH3), 1.29 (t, 3H, CH3, \(J = 8\) Hz); \(^{13}C\) NMR (DMSO-d\(_6\), 100 MHz), \(\delta\) ppm, 170.2, 166.7, 159.5, 150.9, 136.9, 124.2, 123.6, 113.3, 106.6, 68.3, 61.0, 14.0, 13.6. HRMS: calc. for C\(_{12}\) H\(_{11}\)O\(_5\) 235.0612; found 235.0612.
FUNDING

This study was supported by the National Nature Science Foundation of China (Grant No. 21172263).

SUPPLEMENTAL MATERIAL

Supplemental data for this article can be accessed on the publisher’s website.

REFERENCES

1. Mitsui, A.; Suzuki, S. J. Antibiot. 1969, 22, 358.
2. Carter, S. B.; Flanklin, T. J.; Jones, D. F.; Leonard, B. J.; Mills, S. D.; Turner, R. W. Nature 1969, 223, 848.
3. Lin, G.; Chan, S.-K.; Chung, H.-S.; Li, S.-L. Studies in Natural Products Chemistry 2005, 611.
4. Kazuko, Y.; Naoki, K.; Toshihiro, H. A.; Kyosuke, Y.; Toshiaki, I.; Takashi, K. I. Biol. Pharm. Bull. 2010, 33, 1355.
5. Zhang, Y.; Wang, L.; Li, J.; Wang, X.-L. J. Pharmacol. Exp. Ther. 2006, 317, 973.
6. Hariprakash, H. K.; Subba Rao, G. S. R. Indian J. Chem. Sect. B 1998, 37, 851.
7. Matsumoto, N.; Tsuchida, T.; Maruyama, M. J. Antibiot. 1999, 52, 269.
8. Adrian, C.-Z.; Laura, S. G.-S.; Luis, A. M.; Moises, R.-O.; Jose, G. A.-Z. Synthesis 2005, 14, 2293.
9. Kelly, T. R.; Dongcheng, X.; Gabriel, M.; Haixia, W. Org. Lett. 2002, 4, 1527.
10. Witulski, B.; Zimmermann, A. Synlett. 2002, 11, 1855–1859.
11. Tanaka, K.; Nishida, G.; Wada, A.; Noguchi, K. Angew. Chem. Int. Ed. 2004, 43, 6510–6512.
12. Taishi, K.; Shinichi, S.; Yoshinori, Y. J. Org. Chem. 2002, 67, 2653–2658.
13. Geirsson, J. K. F.; Arnadottir, L.; Jonsson, S. Tetrahedron 2004, 60, 9149.
14. Anindra, S.; Jyoti, P.; Tripathi, R. P. Tetrahedron Lett. 2009, 50, 1812.
15. Nobuko, S.; Masato, K.; Atsushi, S.; Takao, I. Chem. Pharm. Bull. 1992, 40, 851.
16. Hajime, N.; Koi, T.; Ikuo, U. Chem. Pharm. Bull. 1992, 40, 858.
17. Bhaskar, K. T.; Dhananjaya, G.; Sumanth, C.; Vaishaly, S.; Gajanan, B. M.; Srinivasa Rao, K. B.; Chandra Sekhar, K.; Shiva, K.; Manojit, P. RSC Adv. 2013, 3, 2207.