The plants of the genus *Ehretia* composed of about 150 species mainly distributed in tropical Asia, Africa, Australia, and North America. They have been used as traditional and folk medicines to treat various ailments in Japan, India, and China for a long time. Previous phytochemical screenings demonstrated that the *Ehretia* plants mainly contain fatty acids, phenolic acids, flavonoids, cyanogenic glycosides, and benzoquinones and other constituents from different chemical classes. The pharmacological studies confirmed that the crude extracts or individual compounds from the genus showed antioxidant, anti-inflammatory, antibacterial, antiarthritic, antitubercular, and antiallergic activities, as well as anti-snake venom property. In this review, we presented a summary of the secondary metabolites isolated from different species of *Ehretia* based on the published literatures up to March 2017. In addition to the traditional medicinal use of *Ehretia* plants, we focused on the known biological activities of the plants and discussed them in detail here.

Keywords: *Ehretia*, Traditional and medicinal importance, Essential oil, Antiparasitic activity, Future prospects.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i6.25178

ABSTRACT

The plants of the genus *Ehretia* composed of about 150 species mainly distributed in tropical Asia, Africa, Australia, and North America. They have been used as traditional and folk medicines to treat various ailments in Japan, India, and China for a long time. Previous phytochemical screenings demonstrated that the *Ehretia* plants mainly contain fatty acids, phenolic acids, flavonoids, cyanogenic glycosides, and benzoquinones and other constituents from different chemical classes. The pharmacological studies confirmed that the crude extracts or individual compounds from the genus showed antioxidant, anti-inflammatory, antibacterial, antiarthritic, antitubercular, and antiallergic activities, as well as anti-snake venom property. In this review, we presented a summary of the secondary metabolites isolated from different species of *Ehretia* based on the published literatures up to March 2017. In addition to the traditional medicinal use of *Ehretia* plants, we focused on the known biological activities of the plants and discussed them in detail here.

Keywords: *Ehretia*, Traditional and medicinal importance, Essential oil, Antiparasitic activity, Future prospects.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i6.25178

INTRODUCTION

Ehretia genus has around 150 species belongs to the family Boraginaceae [1-3]. Many species are mainly distributed in tropical Asia, Africa, Australia, Europe, and Northern America [4-14]. All species of *Ehretia* are trees (*Ehretia acuminate*) and shrubs [15] (*Ehretia rigida*). The leaves, barks, roots, branches, fruits, and heartwoods are used as the traditional medicines in China, Japan, and India. Some species produce small fruits are visited by a broad variety of opportunistic avian frugivores, and some species could be a valuable supplementary feedstuff for ruminant livestock and wild animal due to its fermentation characteristics as well as low fiber [15-19]. In India, genus *Ehretia* is reported for many species such as *Ehretia laevis* Roxb., *E. acuminate* R.Br. [20], and *Ehretia microphylla* [21,22]. These species are used in many herbal and traditional medicines in India and China because of their good response in many biological activities. *Ehretia* genus has reported the presence of phenolic acids, lignans, flavonoids, nitrile glycosides, quinonoids, steroids, triterpenoids, and pyrrolizidine alkaloids [23,24]. Many species of *Ehretia* genus are reported for anti-inflammatory, antidiabetic, and antibacterial activity. Some important species of this genus are *Ehretia longiflora*, *E. laevis*, *E. acuminate*, *E. microphylla*, and *Ehretia obtusifolia*.

In an effort to provide the up-to-date information of the genus *Ehretia*, in previous, some chemical constituents and activities have published up to 2010 [25], and this article represents the results of an extensive investigation of the chemotaxonomy, secondary metabolites, biological activities, and pharmacological applications of this genus up to 2017, which would assist further researches and potential applications of the plants.

TRADITIONAL AND MEDICINAL IMPORTANCE OF SOME SPECIES OF GENUS EHRETIA

Different plants of genus *Ehretia* are widely used traditionally in many herbal and Chinese medicines from last few decades in China, India, and Japan [26,27] (Table 1).

CHEMICAL CONSTITUENT PRESENT IN GENUS EHRETIA

Species present under the genus *Ehretia* contains many phytocomponents such as - phenolic acids, flavonoids, benzoquinones, cyanogenic glycosides, fatty acids, and some other important compounds.

Phenolic acids

Plants are potential sources of natural bioactive compounds such as secondary metabolites and antioxidants. Phenolic acids are the secondary metabolites and therapeutic agent present in medicinal plant. Phenolic compounds confer unique taste and health-promoting properties found in vegetables and fruits. The effect of dietary phenolics is currently of great interest due to their antioxidative and possible anticarcinogenic effect (Table 2).

Flavonoids

Flavonoids are the polyphenolic compounds among secondary metabolites in different parts of plants that possess a wide range of biological activities. They are present in fruits, vegetables, nuts, spices, and herbs and derived products such as wine, tea, and chocolate. The flavonoid class includes more than 6000 compounds as found in nature and comprises several subclasses including flavonols (e.g., queretin, kaempferol, myricetin, and rhamnatin), flavones (e.g., apigenin, luteolin, and tangeretin), flavanones (e.g., hesperetin, naringenin, and eriodictyol), flavanols (e.g., catechins and epicatechins), anthocyanidins (e.g., cyanidin, delphinidin, and malvidin), and isoflavones (e.g., genistein, daidzein, and glycitein) (Table 3).

Alkaloids

Alkaloids are quite important secondary metabolites of plants. They are internal constituents of plants so-called biomolecules. Uses of alkaloids primarily mean their use in health care. They act as lifesaving drugs in various serious disorders such as heart failure, blood pressure, and cancer. Several alkaloids isolated from natural herbs exhibit antimitastasis and antiproliferation effects on various types of cancers such as vinblastine and camptothecin and have already been successfully developed into anticancer drugs. Lycorine, indoline n-oxide, alstonine, cocaine, quinine, and quinidine are some alkaloids present in plants (Table 4).

Fatty acids

Plants synthesize a huge variety of fatty acids although only a few are major and common phytoconstituents. Fatty acids are...
important dietary sources of fuel for animals because, when metabolized, they yield large quantities of ATP (Adenosine triphosphate). Many types of cell can use either fatty acids or glucose for this purpose. Long-chain fatty acids are not capable to cross the blood–brain barrier and so cannot be used as fuel by the cells of the central nervous system (Table 5).

Benzoquinones

Quinones, a type of plant-derived secondary metabolites and benzoquinones, are widely distributed in the plant kingdom and mainly exist in higher plants, such as those from the Polygonaceae, Rubiaceae, Leguminosae, Rhamnaceae, Labiatae, and Boraginaceae families, among others. Moreover, a number of benzoquinones show significant biological activities such as anticancer and antibacterial activities (Table 6).

Glycosides

In the chemical constituents occur in a glycoside are important, secondary metabolites. However, biological activities of glycosides are, in many cases, susceptible to the nature of sugar moieties. They are an essential resource of natural medicine, health food, cosmetics, and food supplements (Table 7).

Table 1: Traditional uses of genus Ehretia

Botanical name	Common name	Part used	Traditional use	References
Ehretia acuminata R.Br.	Pudila, Nara, Koda	1. Leaves 2. Bark 3. Root	1. The extract of the leaves mixed with water and taken orally once daily for 2–3 days to cure acute dysentery	[28]
			2. Bark juice used in sores on tongue and fever	[29]
Ehretia laevis Roxb.	Chamror (Punjab), Kuptaa, Datanang (Maharashtra)	1. Leaves 2. Root 3. Bark 4. Fruit	1. Leaves juice is applied on ulcer, skin disease, and headache	[30]
			2. Root used in venereal diseases	[31]
			3. Bark is used internally and as gargle in throat infections, inner bark of E. laevis is used as food	[32]
			4. Fruit used in infections of urinary passages, diseases of lungs and spleen	[33]
Ehretia microphylla Lam.	Pala.	1. Leaves 2. Root	1. Dried leaves used in stomachic, decoction of the leaves is used as cure for coughs and is prescribed for the treatment of cyaniding with bloody discharge and for dysentery	[34]
			2. Root in cachexia and syphilis; an antidote to vegetable poisoning	
Ehretia obtusifolia, Hochst. ex A.DC		1. Leaves 2. Thin branches	1. Decoction of leaves and bark in Malaria	[35]
Ehretia cymosa		1. Leaves 2. Bark	1. Different parts of plant are used in diarrheea	[36]
			2. The extract of leaves used in Malaria	
			3. Bark and leaves used in epilepsy	
Ehretia amoena		1. Leaves 2. Bark 3. Root	1. Plant works against trypanosomiasis	[37]

Table 2: Phenolic acids separated from genus Ehretia

S. no	Phenolic acid	Species	References
1.	Buddlenol B	E. ovalifolia	[37]
2.	Caffeic acid	E. thyrsiflora	[38]
3.	Danshensu	E. thyrsiflora	[39]
4.	Cinnamic acid	E. thyrsiflora	[39]
5.	Ehletianol A	E. ovalifolia	[37]
6.	Ehletianol B	E. ovalifolia	[37]
7.	Ehletianol D	E. ovalifolia	[37]
8.	(E)-ethyl caffeate	E. thyrsiflora	[39]
9.	Caffeic anhydride	E. obtusifolia	[34]
10.	Icariside E5	E. ovalifolia	[37]
11.	Lithospermic acid B	E. thyrsiflora	[39]
12.	Methyl 2-O-feruloyl-1a-O-vanillactate	E. obtusifolia	[34]
13.	Methyl rosmarinate	E. obtusifolia	[34]
14.	p-hydroxybenzoic acid	E. thyrsiflora	[38]
15.	Rosmarinic acid	E. obtusifolia	[34]
16.	Trans-4-hydroxycyclohexyl-2-O-p-coumaroyl-β-D-glucopyranoside	E. obtusifolia	[34]
17.	Ehletianol C	E. ovalifolia	[37]
18.	1-{(4-hydroxy-3-methoxyphenyl)-2-(2-methoxy-4-[1-(E) propen-3-ol]-phenoxy)-propane-3-diol (erythron)}	E. obtusifolia	[37]
19.	1-{(4-hydroxy-3-methoxyphenyl)-2-(2-methoxy-4-[1-(E) propen-3-ol]-phenoxy)-propane-1,3-diol (threo)}	E. ovalifolia	[37]
20.	Trans-ferulic acid	E. thyrsiflora	[39]

E. ovalifolia: Ehretia ovalifolia, E. thyrsiflora: Ehretia thyrsiflora, E. obtusifolia: Ehretia obtusifolia
Table 3: Flavonoids separated from genus Ehretia

S. no	Compound	Species	References
21.	Apigenin	E. ovalifolia	[40]
22.	Hyperoside	E. thyrsiflora	[39]
23.	Luteolin	E. ovalifolia	[40]
24.	Kaempferol-3-O-α-D-arabinoside	E. thyrsiflora	[38]
25.	Kaempferol-3-O-β-D-galactopyranoside	E. thyrsiflora	[39]
26.	Kaempferol-3-O-β-D-glucopyranoside	E. thyrsiflora	[39]
27.	Kaempferol-3-O-arabinosylgalactoside	E. thyrsiflora	[39]
28.	Kaempferol	E. thyrsiflora	[38]
29.	Quercetin	E. thyrsiflora	[38]
30.	Quercetin-3-O-α-D arabinoside	E. thyrsiflora	[38]
31.	Quercetin-3-O-β-D-glucopyranoside	E. thyrsiflora	[39]
32.	Quercetin-3-O-arabinosylgalactoside	E. thyrsiflora	[39]
33.	Ovalifolin	E. ovalifolia	[40]

Table 4: Alkaloids separated from genus Ehretia

S. no	Compound	Species	References
34.	Ehretinine	E. aspera	[41]
35.	Allantoin	E. thyrsiflora	[42]

Table 5: Fatty acids separated from genus Ehretia

S. no	Compound	Species	References
36.	Araneosol	E. ovalifolia	[40]
37.	Di (octadecyl) phthalate	E. thyrsiflora	[42]
38.	Tetradecanoic acid 2, 3-di-hydroxypropyl ester	E. thyrsiflora	[42]
39.	(10E, 12Z, 15Z)-9-hydroxy-10, 12, 15-octadecatrienoic acid methyl ester	E. dicksonii	[43]
40.	(9Z, 11E)-13-oxo-9, 11-octadecadienoic acid	E. dicksonii	[43]
41.	(9Z, 11E)-13-hydroxy-9, 11-octadecadienoic acid	E. dicksonii	[43]
42.	2-methoxybenzoic acid octyl ester	E. thyrsiflora	[42]

Table 6: Benzoquinones separated from genus Ehretia

S. no	Compound	Species	References
43.	Cyclomicrophyllone	E. microphylla	[33]
44.	Dehydromicrophyllone	E. microphylla	[33]
45.	Ehretianone	E. buxifolia	[44]
46.	Allicomicrophyllone	E. microphylla	[33]
47.	Hydroxymicrophyllone	E. microphylla	[33]
48.	Microphyllone	E. microphylla	[45]
49.	1,4-naphthoquinone	E. laevis	[46]
50.	Ehretiquinone	E. longiflora	[47]

Table 7: Glycosides separated from genus Ehretia

S. no	Compound	Species	References
51.	Simmondsin	E. philippinensis	[48]
52.	Ehretioside B	E. philippinensis	[48]
53.	Polyalcohol	E. philippinensis	[48]
54.	Ehretioside A	E. philippinensis	[48]
55.	Ehretioside A₂	E. philippinensis	[48]
56.	Ehretioside A₃	E. philippinensis	[48]

Table 8: Some other constituents separated from genus Ehretia

S. no	Compound	Species	References
57.	Bauerenol	E. laevis	[49]
58.	Betulin	E. laevis	[49]
59.	Bauerenol acetate	E. laevis	[49]
60.	Betulinic acid	E. laevis	[49]
61.	Luteol	E. laevis	[49]
62.	α-amyrin	E. laevis	[49]
63.	β-sitosterol	E. laevis	[49]
64.	Daucosterol	E. thyrsiflora	[42]
65.	Stigmasterol	E. buxifolia	[44]
66.	α-spinasterol	E. buxifolia	[44]
67.	Campesterol	E. buxifolia	[44]
68.	Stigmastanol	E. buxifolia	[44]
69.	Ehretiolide	E. longiflora	[47]
70.	Ehreticoumarin	E. longiflora	[47]
71.	Ehretialactone A	E. longiflora	[47]
72.	Ehretialactone B	E. longiflora	[47]
73.	Ehretiamide	E. longiflora	[47]
74.	Ehretine	E. longiflora	[47]
75.	Ehretiate	E. longiflora	[47]

Table 8: Other important constituents extract from genus Ehretia

Many other important constituents are also reported from different parts such as leaves, bark, fruit, and root of plants of *Ehretia* genus (Table 8).
CHEMICAL STRUCTURE OF COMPOUND PRESENT IN EHRETIA GENUS (FIGS. 1-75)
Some species of genus *Ehretia*

Essential oil extracted from leaves of *Ehretia cymosa* by hydrodistillation. Some chemical constituents separated by comparison of their mass spectra with NIST from essential oil which mainly comprised sesquiterpene hydrocarbon compounds. The other classes of compounds identified in these essential oils were monoterpenes, alcohols, phenylpropanoids, esters, and fatty acids. In addition, some of the studied volatile oils have exhibited biological activities such as antimicrobial, phytotoxicity, insecticidal, and cytotoxicity (Table 9).

SOME SPECIES OF GENUS EHRETIA
BIological activities of different species of genus Ehretia

Many species of genus Ehretia show different biological activities such as antioxidant, antibacterial, anti-inflammatory, antiarthritic, and anti-snake venom activities.

Antioxidant activity
Many compounds, naturally occurring from plant sources, have been identified as free radical or active oxygen scavengers. Recently, interest has increased substantially in finding naturally occurring antioxidant for use in foods or medicinal materials to replace synthetic antioxidants, which are being restricted due to their side effects such as carcinogenicity. Natural antioxidants can protect the human body from free radicals and retard the progress of many chronic diseases as well as decelerate lipid oxidative naccidity in foods. In Ehretia serrata, 1-butanol and chloroform fractions of leaves and ethyl acetate fraction of fruits showed appreciable results against free radical. 12 compounds including six phenolic acids and six flavonoids, rosmarinic acid, cinnamic acid, icariside E5, ferulic acid, α-hydroxydihydrocaffeic acid, lithospermic acid B, isouqueritin, hyperoside, trifolin, astragalin, kaempferol 3-O-arabinosylgalactoside, and quercitin 3-O-arabinosylgalactoside were first isolated from Ehretia thyrsiflora and have a significant response of antioxidant (Table 10).

Anti-inflammatory activity
The inflammatory process may be outline a sequence of events that occur in response to noxious stimulus, infection, or trauma. The classic signs of inflammation are redness, heat, swelling, pain, and loss of function. The issue of inflammation that underlines these manifestations are induced and regulated by a large number of chemical mediators including eicosanoids, kinins, complement proteins, histamine, and monokines (Table 11).

Anti-allergic activity
Allergic disorders such as rhinitis, sinusitis, atopic dermatitis, asthma, pollenosis, and food allergy are the most common cause of human disease. There are a number of pharmacological agents available for the treatment of allergic conditions such as asthma and allergy rhinitis, and we also focus antiallergic activity as an essential step to the development of effective anti- allergic agent. Some species of Ehretia genus have compounds such as dimeric prenylbenzoquinones, nitrile glucosides, and rosmarinic acid show antiallergic effect (Table 12).

Anti-bacterial activity
All extracts of E. laevis leaves (methanol, chloroform, and aqueous solvent) have revealed excellent antibacterial activity. When compared to methanol, chloroform, and aqueous methanolic extract showed the high antibacterial activity on Gram-positive and Gram-negative bacteria, and aqueous extracts show the high antibacterial activity on Gram-negative than Gram-positive. Some other species also show positive respond against antibacterial activity (Table 13).

Antitubercular activity
In human being, tuberculosis is a contagious infectious disease primarily caused by Mycobacterium tuberculosis. Although regimens exist for treating tuberculosis, they are far from ideal. Development of effective strategies for the treatment of human tuberculosis has posed a challenge, considering the increase in infections associated with the human immunodeficiency virus and immunocompromised patients. Phytoconstituents have been used in traditional treatment of many diseases; however, careful investigation of these constituents has not been undertaken with respect to treatments of tuberculosis. Two compounds ehretiolide and prenylhydroquinone have extracted from root of Ehretia longiflora are responsible for antitubercular activity (Table 14).

Anti-snake venom activity
Snakebite is an important cause of morbidity and mortality and is one of the major health problems in India and other Asian countries. Ehretia buxifolia claimed to be useful in treating snake poison. The present study evaluated the potential antivenom effect Ehretia genus. A compound ehretianone has isolated from MeOH extract from E. buxifolia is responsible for anti-snake venom activity (Table 15).

Antiarthritic activity
Arthritis is an inflammatory disorder involving damage of joints. There are over a hundred different forms of arthritis, of which rheumatoid arthritis, osteoarthritis, and psoriatic arthritis are the most common. The treatment of any systemic disorder with allopathic drugs causes moderate-to-severe adverse effect that could cause death. Hence, alternative systems of medicine are being explored to treat diseases. E. laevis treatment supports antiarthritic activity. Of the three parts such as stem, leaf, and bark and fruit employed, the leaf extract was the most effective. This antiarthritic respond may be due to the presence of active constituents such as hexadecanoic acid (palmitic acid), oleic acid, and other fixed oils (Table 16).
Antitrypanosomal and antiprotozoal activity
Sleeping sickness, leishmaniasis, Chagas disease, and malaria are infectious diseases caused by unicellular eukaryotic parasites "protozoans." The available drugs for the treatment of trypanosomiasis and protozoans are old, expensive, and less effective, associated with severe adverse reactions and face the problem of drug resistance. This situation underlines the urgent need for the development of new safe, cheap, and effective drugs for the treatment of parasitic disease. The search for new antitrypanosomal and antiprotozoal agents in this study is based on ethnomedicine. *E. amoena* show weak antitrypanosomal potential with ethanol extract of leaves, bark, and root. *E. acuminata* show antiprotozoal activity with methanol extract of leaves (Table 17).

Antidiabetic activity
Diabetes mellitus, one of the fastest-growing health problems, is concerned about the use of antihyperglycemic drugs because of undesirable pathological conditions, for example, the adverse effect of metformin is gastrointestinal discomfort, pioglitazone with bladder cancer and heart failure, and sulfonymureas with hypoglycemia and weight gain. There are the ethnomedical studies of medicinal plants used in the treatment of diabetes mellitus in many countries. A lot of genus have already reported for effective respond of antidiabetic potential, but a few species of genus *Ehretia* are reported for antidiabetic activity yet. A species of *E. laevis* shows antidiabetic potential using multiwalled carbon nanotubes paste electrode in electrochemical measurement (Table 18).

Cardiotonic activity
Carmona retusa (*E. microphylla*) has a high potential enlighting the growth and multiplication of cancer cells. However, there are no scientific data on the use of this plant on cardiotonic activity. Hence, this study was carried out to evaluate the effect of aqueous extract of various aerial parts of *C. retusa* on isolated frog's heart. The activity of the aqueous extract was found to be effective (Table 19).

CONCLUSION AND FUTURE PROSPECTS
The genus *Ehretia* contains abundant ingredients displaying extensive biological and pharmacological functions such as anti-snake venom, antiarthritic, antitrypanosomal, and antiprotozoal activity, and antitumor activities. Despite that many *Ehretia* species have been used as the traditional medicines in Australia, North America, and Asian countries for long time, and numerous studies on chemistry and pharmacology have been conducted, the authors propose herein a few opinions with an attempt to shed light on the related investigations on *Ehretia* in future.

Foremost, *Ehretia* is a relatively vast genus, and there are considerable differences in their major secondary metabolites, these molecules were intensively described from *E. longiflora, E. laevis, E. microphylla, E. obtusifolia, E. thyrsiflora, E. buxifolia, E. philippinensis, E. dicksonii,* and *E. ovalifolia,* while no reports were found for other investigated species *E. alba, E. angolensis, E. bakeri, E. coerulea, E. dichotoma, E. dolichandra, E. exsoluta, E. hainanensis, E. javanica, E. latifolia,* and *E. papuana.* There are nine species found in South Africa *E. coerulea, E. amoena, E. obtusifolia, E. namibiensis subsp. kaokoensis, E. namibiensis subsp. namibiensis, E. alba, E. rigida subsp. rigidia, E. rigida subsp. silvatica,* and *E. rigida subsp. nervifolia.* Recently, a new species of *Ehretia retroserata* is reported in China [67].

Second, great efforts were devoted to explore the study of *E. microphylla* which indicate great potential of antibacterial and a recent research has done in India which shows *Ehretia microphylla* helps in treating irregular ovulation disorders and promotes fertility in female [68]. In Bangladesh, *E. microphylla* used in traditional medicinal treatment of various forms of cancer, and it is expected that scientific studies on this plants shall lead to discovery of novel anticancer compounds [66,69,70]. *E. microphylla* used widely in the traditional Philippine medicine and considered most promising for large-scale culture. Advice is given on vegetative propagation culture, harvesting, and storage (where appropriate), based on the results of preliminary trials [71].

E. laevis used as masticatories by the ethnic communities in India [72]. Unexplored wound healing property has shown by *E. laevis.* The best part is its leaves are effective, and hence, plenty of material is available without requirement of uprooting of plant [73]. Many researches have done by Indian scientists to improve the germination of multipurpose trees like *E. laevis* [74]. Molecular study has also done on some species to better understand the properties of genus *Ehretia* [75]. Recently, a research has done on *Ehretia tinifolia* which show positive response against diabetic complications, atherosclerosis, and cardiovascular diseases [76].

These properties have created a sense of conservation reservation and cultivation of the plant. The treatment is also very economic as only

Table 9: Compound separated from essential oil

S. no	Compound	References
1	Linalool	[35]
2	trans-3-Butylglucoside	[40]
3	Methyl salicylate	[40]
4	O-tetralactone	[40]
5	β-Ylangene	[40]
6	β-Damascenone	[40]
7	β-Cedrene	[40]
8	β-Caryophyllene	[40]
9	Trans-α-Bergamotene	[40]
10	Isocaryophyllene	[40]
11	ar-Curcumene	[40]
12	β-Bisabolene	[40]
13	Oxygenated monoterpenes	[40]
14	Sesquiterpene hydrocarbons	[40]

Table 10: Antioxidant activity of genus *Ehretia*

S. no	Species	Part used	References
1	*Ehretia thyrsiflora*	Leaves	[50]
2	*Ehretia laevis* Roxb.	Leaves	[51]
3	*Ehretia serrata*	Leaves and fruit	[52]
4	*Ehretia laevis* Roxb.	Fruit	[54]
5	*Ehretia tinifolia*	Fruit	[55]
6	*Ehretia microphylla*	Aerial part	[56]

S. no	Species	Part used	References
1	*E. dicksonii*	Leaves	[43]
2	*E. obtusifolia*	Leaves	[34]
3	*E. laevis* Roxb.	Leaves	[57]
4	*E. longiflora*	Root	[47]

Table 12: Antiallergic activity of genus *Ehretia*

S. no	Species	Compound	References
1	*Ehretia philippinensis*	Nitrile glucosides, rosmarinic acid, methyl rosmarinate	[48]
2	*Ehretia microphylla*	Rosmarinic acid	[58]
Table 13: Anti-bacterial activity of genus Ehretia

S. no	Species	Part used	References
1.	*Ehretia laevis* Roxb.	Leaves	[57,59]
2.	*Ehretia abyssinica* rbr. Ex fresen	Leaves	[60]
3.	*Ehretia microphylla*	Leaves	[61]

Table 14: Antitubercular activity of genus Ehretia

S. no	Species	Part used	Reference
1.	*E. longiflora*	Root	[47]

Table 15: Anti-snake venom activity of genus Ehretia

S. no	Species	Part used	Reference
1.	*E. buxifolia*	Root, Bark	[44]

Table 16: Antiarthritic activity of genus Ehretia

S. no	Species	Part used	Reference
1.	*E. laevis* Roxb.	Leaves	[62]

Table 17: Antitrypanosomal and antiprotozoal activity of genus Ehretia

S. no	Species	Part used	References
1.	*E. amoena*	Leaves, root, bark	[36,63]
2.	*E. acuminate*	Leaves	[64]

Table 18: Antidiabetic activity of genus Ehretia

S. no	Species	Part used	Reference
1.	*E. laevis*	Leaves	[65]

Table 19: Cardiotonic activity of genus Ehretia

S. no	Species	Part used	Reference
1.	*E. microphylla*	Aerial part	[66]

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. Gottschling M, Hilger HH. Characterisation of a novel fruit type found in Ehretia (Ehretiaceae, Boraginaceae). Blumea 2004a;49:145-53.
2. Sahay SK. On the Pollen Morphology of Ehretiaceae with Reference to Taxonomy. IV Int. Palynol. Conf. 1979. p. 471-9.
3. Rabayy D, Lens F, Smet E, Jansen S. The phylogenetic significance of vented pits in Boraginaceae. Int Assoc Plant Taxonomy 2010;59:510-6.
4. Sultana A, Hussain MS, Rathore DK. Diversity of tree vegetation in Rajasthan, India. Trop Ecol 2014;55:403-10.
5. Mandal G, Joshi SP. Analysis of vegetation dynamics and phytodiversity from three dry deciduous forests of Doon Valley, Western Himalaya, India. J Asia Pac Biodivers 2014a;7:292-304.
6. Gottschling M, Hilger HH. The systematic position of *Ehretia cortesia* nom. nov. (*Cortesia cuneifolia*; Ehretiaceae, Boraginaceae) inferred from molecular and morphological data. Int Assoc Plant Taxonomy 2004b;53:919-23.
7. Hester AJ, Scoopings PF, Trollope WS. Long-term impacts of goat browsing on bush-clump dynamics in a semi-arid subtropical savanna. Plant Ecol 2006;183:277-90.
8. Miller JS. Classification of Boraginaceae subfam. Ehretioideae: Resurrection of the genus *Hilsenberga* Tausch ex Meisn. World 2003;25:151-89.
9. Forster PI. *Ehretia grahamii* (Boraginaceae): Notes on distribution, habitat, variation and conservation status. Queensland Herbarium 1995;4:451-2.
10. Gottschling M, Hilger HH. First fossil record of transfer cells in angiosperms. Am J Bot 2003;90:957-9.
11. Gurke M. Die natürlichen Pflanzenfamilien. Vol. 4. Germany: W. Engelmann; Leipzig; 1893. p. 59-96.
12. Pimmanta-Barrios E, Robles-Murgui C, Martinez-Chavez CC. Ecophysiological responses of native and exotic young trees to drought and rainfall. Rev Fitotecnia Mex 2012;35:15-20.
13. Retief E, Van Wyk AE. The genus *Ehretia* (Boraginaceae: Ehretiaceae). In South Africa. Bothalia 2001;31:9-23.
14. Shu HK. *Ehretia* P. Browne, C. nat. Hist. Jamaica 168. 1756. Flora of China. 1995;16:333-6.
15. Miller JS. A revision of the new world species of *Ehretia* (Boraginaceae). Ann Mo Bot Gard 1989;76:1050-76.
16. Scott PE, Martin RF. Avian consumers of *Bursera, Ficus,* and *Ehretia* fruits in Yucatan. Biotropica 1984;16:319-23.
17. Joshi R, Singh R. Feeding behaviour of wild Asian elephants (elephas maximus) in the Rajaji National Park. J Am Sci 2008;4:34-48.
18. Bakshi MP, Wadhwa M. Evaluation of forest tree leaves of semi-hilly arid region as livestock feed. Asian J Anim Sci 2004;17:777-83.
19. Tefera S, Mlambo V, Dlamini BJ, Dlamini AM, Koralagama KD, Mould FL. Chemical composition and *in vitro* ruminal fermentation of common tree forages in the semi-arid rangelands of Swaziland. Anim Feed Sci Technol 2008;142:99-110.
20. Bandyopadhyay S, Kr MS. Wild edible plant of Koch Bihar District, West Bengal. Natl Prod Radiance 2009;8:64-72.
21. Mandal G, Joshi SP. Quantitative vegetation dynamics and invasion success of lantana camara from the tropical forests of doon valley. Int J Conserv Sci 2014b;5:511-26.
22. Rao BH, Rao PSP. Embryology of three species of *Ehretia.* Proc Indian Acad Sci (Plant Sci.) 1984;93:57-65.
23. Li L, Li MH, Xu LJ, Guo N, Wu-Lan T, Shi R, et al. Distribution of seven polyphenols in several medicinal plants of *Boraginaceae* in China. J Med Plants Res 2010;4:1216-21.
24. Jeruto P, Mutai C, L., O. G. Phytochemical constituents of some medicinal plants. J Anim Plant Sci 2011;9:1201-10.
25. Li L, Peng Y, Yao X, Xu L, Wulan T, Liu Y, et al. Chemical constituents and biological activities of plants from the genus *Ehretia* Linn. Chinese Herb Med 2010;2:106-11.
26. Jain S, Srivastava S. Dictionary of Ethnoveterinary Plants of India. Dictionary of Ethnoveterinary Plants of India. New Delhi: Deep Publications; 1999. p. 218.
27. Wang WT. Flora Repubbliche Populari Sinicae. Beijing: Science Press; 1979.
28. Choudhury S, Sharma P, Choudhury MD, Sharma GD. Ethnomedicinal plants used by Chotechn tribes of Southern Assam, North Eastern India. Asian Pac J Trop Dis 2012;2:141-7.
Roxb by leaves. Pharmazie and their biological: P
Ehretia laevis
Shukla and Kaur 54.
53.
50.
46.
45.
41.
36.
35.
34.
33.
32.
29.
Bio Sci 2013;4:847-57.
serrata
activities of various solvent extracts of fruits and leaves of
Saman Z, Dildar A, Hira B, Muhammad I. Evaluation of antioxidant
Saad R, Asmani F, Saad M, Hussain M, Khan J, Kaleemullah R, et al.
Anti-inflammatory and anti-bacterial activities of different solvent
extracts of Ehretia laevis Roxb. J Pharm Sci Res 2016;8:715-20.
Roxb. Int J ChemTech Res 2011;3:1589-91.
Sharma J, Gairola S, Sharma YP, Gaur RD. Ethnomedicinal plants used
to treat skin diseases by Tharu community of district Udham Singh
Nagar, Uttarakhand, India. J Ethnopharmacol 2014;158:PA.148-206.
Yamamura S, Simpol LR, Ozawa K, Ohtani K, Otsuka H, Kasi R, et al.
Anti-inflammatory and anti-bacterial activities of different solvent
extracts of Ehretia laevis. Int J Pharm Sci Res 2016;7:715-20.
Shukla and Kaur 54.
53.
50.
46.
45.
41.
36.
35.
34.
33.
32.
29.
Bio Sci 2013;4:847-57.
serrata
activities of various solvent extracts of fruits and leaves of
Saman Z, Dildar A, Hira B, Muhammad I. Evaluation of antioxidant
Saad R, Asmani F, Saad M, Hussain M, Khan J, Kaleemullah R, et al.
Anti-inflammatory and anti-bacterial activities of different solvent
extracts of Ehretia laevis Roxb. J Pharm Sci Res 2016;8:715-20.
Roxb. Int J ChemTech Res 2011;3:1589-91.
Sharma J, Gairola S, Sharma YP, Gaur RD. Ethnomedicinal plants used
to treat skin diseases by Tharu community of district Udham Singh
Nagar, Uttarakhand, India. J Ethnopharmacol 2014;158:PA.148-206.
Yamamura S, Simpol LR, Ozawa K, Ohtani K, Otsuka H, Kasi R, et al.
Anti-inflammatory and anti-bacterial activities of different solvent
extracts of Ehretia laevis. Int J Pharm Sci Res 2016;7:715-20.
Shukla and Kaur 54.
53.
50.
46.
45.
41.