NOTE

Detection of KI polyomavirus and WU polyomavirus DNA by real-time polymerase chain reaction in nasopharyngeal swabs and in normal lung and lung adenocarcinoma tissues

Shinobu Teramoto1,6, Miki Kaiho1,6, Yasuo Takano2, Rika Endo1,3, Hideaki Kikuta4, Hirofumi Sawa5,6, Tadashi Ariga1,6, and Nobuhisa Ishiguro1,6

1Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, 2Clinical Research Institute, Kanagawa Cancer Center, Yokohama, 3Department of Microbiology, 4Pediatric Clinic, Touei Hospital, 5Department of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, and 6Global Center of Excellence Program for Zoonosis Control, Hokkaido University, Sapporo, Japan

ABSTRACT

Polyomaviruses KI (KIPyV) and WU (WUPyV) were detected from 7 (3.0%) and 38 (16.4%) of 232 children with respiratory tract infections by real-time PCR. The rates of infection by KIPyV and WUPyV alone were 3 of 7 (42.9%) and 20 of 38 (52.6%), respectively. In the other samples, various viruses (human respiratory syncytial virus, human metapneumovirus, human rhinovirus, parainfluenza virus 1 and human bocavirus) were detected simultaneously. One case was positive for KIPyV, WUPyV and hMPV. There was no obvious difference in clinical symptoms between KIPyV-positive and WUPyV-positive patients with or without coinfection. KIPyV was detected in one of 30 specimens of lung tissue (3.3%). Neither of the viruses was detected in 30 samples of lung adenocarcinoma tissue.

Key words KI polyomavirus, real-time PCR, WU polyomavirus.
Table 1. Summary of KIPyV detection in respiratory specimens from patients with RTIs

Country	Number tested	Rate (%)	Method	Year reported	Authors	Ref
USA	2599	2.8	real-time PCR	2010	Hormozdi D.J.	21
UK	371	2.7	nested PCR	2008	Kiasari B.A. et al.	11
Sweden	371	2.7	nested PCR	2007	Allander T. et al.	4
France	537	0.94	nested PCR	2008	Foulounge V. et al.	9
Italy	222	0.45	nested PCR	2008	Babakir-Mina M. et al.	19
Italy	486	0.2	nested PCR	2010	Debiaggi M. et al.	22
The Netherlands	230	2.6	real-time PCR	2008	van der Zalm M.M. et al.	15
Australia	2866	2.6	nested PCR	2008	Biaslaiwicz S. et al.	6
Korea	486	1.0	nested PCR	2007	Han T.H. et al.	20
China	406	2.7	nested PCR	2008	Yuan X.H. et al.	14
Thailand	302	1.99	nested PCR	2008	Payungporn S. et al.	7
Philippines	411	0.5	nested PCR	2010	Furuse Y. et al.	18
Japan	232	3.0	real-time PCR	2011	Teramoto S. et al.	

Association between KIPyV and WUPyV infection and lung cancer.

After obtaining informed consent from their parents, 232 NPSs were collected from 219 children (115 boys and 104 girls) aged 1–90 months (average age, 19.0 months) with RTIs at four hospitals (see Acknowledgements) in Hokkaido, Japan during the period from June 2005 to May 2007. DNA was extracted from 200 μL of NPSs by Chomczynski’s protocol (30). The elution volume of the extractions was 90 μL. Thirty fresh sample pairs of lung adenocarcinoma and adjacent non-cancerous normal lung tissue were obtained from surgical material at the University of Toyama Hospital in 2002, with the informed consent of the patients. These patients included 20 men and 10 women aged from 45 to 77 years, with an average age of 61.7 years. None of the patients from whom samples were obtained for this study had immunodeficiency diseases. The tissue samples were frozen in liquid nitrogen and stored at −80°C until used for DNA extraction. DNA from 100 mg aliquots of frozen tissue samples was extracted using a standard method with proteinase K digestion and phenol–chloroform (31). The concentration of DNA extracted from lung tissues and tumors was adjusted to 50 ng/μL. Detection and quantification of KIPyV and WUPyV were performed by real-time PCR. The primers and probe for KIPyV were 5′-ACC TGA TAC CGG CGG AAC T-3′ (forward), 5′-CGC AGG AAG CTG GCT CAC-3′ (reverse) and 5′-[FAM]-CCA CAC AAT AGC TTT CAC TCT CGT GA -[TAMRA]-3′ (a TaqMan probe) (32). The primers and probe used for WUPyV were 5′-GGC ACG GCG CCA ACT-3′ (forward), 5′-CCT GTT GTA GGC CTT ACT TAC CTG TA-3′ (reverse) and 5′-[FAM]-TGC CAT ACC AAC ACA GCT GCT GAG C-[TAMRA]-3′ (a TaqMan probe) (32). The 50 μL amplification reaction mixture contained 50 ng (for lung tissues and tumors) or 5 μL (for NPSs) of sample DNA, 25 μL of TaqMan Gene Expression Master Mix (Applied Biosystems, Foster City, CA, USA), 900 nmol/L of each primer

Table 2. Summary of WUPyV detection in respiratory specimens from patients with RTIs

Country	Number tested	Rate (%)	Method	Year reported	Authors	Ref
USA	410	1.2	PCR	2007	Gaynor A.M. et al.	5
Canada	79	2.5	PCR	2007	Abed Y. et al.	12
UK	371	1.08	PCR	2008	Kiasari B.A. et al.	11
Germany	1277	4.9	PCR	2008	Neské F. et al.	8
France	537	2.4	PCR	2008	Foulounge V. et al.	9
Italy	486	1.4	nested PCR	2010	Debiaggi M. et al.	22
The Netherlands	230	9.1	real-time PCR	2008	van der Zalm M.M. et al.	15
Australia	2866	4.5	PCR	2008	Biaslaiwicz S. et al.	6
Korea	486	7.0	PCR	2007	Han T.H. et al.	20
China	406	4.2	PCR	2008	Yuan X.H. et al.	14
Thailand	302	6.29	PCR	2008	Payungporn S. et al.	7
Philippines	411	1.5	PCR	2010	Furuse Y. et al.	18
Japan	232	16.4	real-time PCR	2011	Teramoto S. et al.	
Table 3. Detection of KIPyV and WUPyV genomes in normal lung, lung cancer tissue and nasopharyngeal swab samples

Samples	KIPyV	WUPyV
Normal lung tissue	1/30 (3.3%)	0/30 (0.0%)
Adenocarcinoma	0/30 (0.0%)	0/30 (0.0%)
Nasopharyngeal swab	7/232 (3.0%)	38/232 (16.4%)

and 100 nmol/L of a probe. Amplification was performed using an ABI Prism 7000 Sequence Detection System (Applied Biosystems) with the following instrument settings: 50°C for 2 min, 95°C for 10 min and then 50 cycles of 95°C for 15 s and 60°C for 1 min. The plasmids pKIPyV-real and pWUPyV-real containing the PCR products of the qualitative PCR in the vector pT7Blue (Novagene, Madison, WI, USA) were used as positive controls and for standard curves. All real-time PCR reactions were performed in duplicate and the results analyzed using ABI Prism 7000 SDS software. Viral loads were calculated from the CT values of individual samples with respect to the standard curve. The minimum concentrations of KIPyV and WUPyV genomes that would allow reproducible quantification were 10 copies per reaction. These correspond to 2×10^2 copies/μg (lung tissues and tumors) and 2×10^3 copies/mL (NPSs). As an internal control, β-actin was also amplified using TaqMan β-actin detection reagents according to the manufacturer’s instructions (Applied Biosystems). Nested PCR for KIPyV and PCR for WUPyV were also performed for lung tissue samples and NPSs as described previously (4, 5). All specimens that were positive for KIPyV and WUPyV were also assayed for the presence of twelve other respiratory viruses: hRSV, hMPV, HRV, HBoV, PIV 1–3, influenza A and B viruses, HEV, HCoV, and adenoviruses. The PCR and RT-PCR protocols used for detecting these twelve viruses were the same as those previously described (33, 34).

The KIPyV genome was detected in 7 of the 232 NPSs (3.0%) (Table 3), consistent with previously reported detection rates (0.5 to 5%) (28). The median viral load of all KIPyV-positive NPSs was 1.8×10^5 copies/mL, and the maximum value 4.1×10^5 copies/mL. The prevalence of KIPyV in NPSs determined by real-time PCR was the same as that determined using nested PCR (4), and direct sequencing of PCR products of the seven samples showed that they were completely identical to the published sequence of KIPyV strain Stockholm 350 (Genbank accession number EF127907 bases 1536 to 1860) (4). The WUPyV genome was detected in 38 of the 232 NPSs (16.4%) by means of real-time PCR (Table 3). The median viral load of all WUPyV-positive NPSs was 5.1×10^3 copies/mL, and the maximum value 3.2×10^7 copies/mL. Three of the seven

Table 4. Coinfection with other viruses in nasopharyngeal samples

Coinfection with another virus	hRSV	hMPV	HRV	HBoV	PIV1		Coinfection with two other viruses	hMPV+HBoV	hRSV+HBoV	HRV+HBoV
------------------------------	------	------	-----	------	------		------------------------------	-----------	-----------	-----------
KIPyV	0	2	0	0	0		KIPyV	1	0	0
WUPyV	7	4	1	2	1		WUPyV	0	1	1
KIPyV/WUPyV	0	1	0	0	0		KIPyV/WUPyV	0	0	0
total	7	7	1	2	1		total	1	1	1

© 2011 The Societies and Blackwell Publishing Asia Pty Ltd
Table 5. Clinical symptoms in KIPyV-positive and WUPyV-positive patients with or without coinfection

Symptom	KIPyV Single-infection	Coinfection	WUPyV Single-infection	Coinfection
Number of patients	3	4*	20	18*
Cough	3/3	4/4	19/20	18/18
Rhinorrhea	2/3	3/4	18/20	14/18
Hypoxia	0/3	0/4	1/20	1/18
Wheezing	2/3	3/4	12/20	9/18
Fever (>37.5°C)	3/3	4/4	18/20	17/18
Maximum (°C)	40.5	39.5	40.4	40.2
Average (°C)	38.9	38.9	39.2	39.0
Mean duration of fever (days)	3.0	5.8	3.6	3.8
Hospitalization required	3/3	4/4	17/20	17/18
Mean duration of hospitalization (days)	6.0	7.3	5.4	4.9

*One case was positive for KIPyV, WUPyV and hMPV.

KIPyV-positive samples were detected simultaneously with other viruses (two with hMPV and one with hMPV and HBoV). Among the 38 WUPyV-positive samples, 17 were detected simultaneously with other viruses (7 with hRSV, 4 with hMPV, 1 with HRV, 2 with HBoV, 1 with PIV1, 1 with hRSV and HBoV, and 1 with HRV and HBoV). One case was positive for KIPyV, WUPyV and hMPV (Table 4). Seven KIPyV-positive samples were collected during the period from March to September (one sample in March, one in April, one in June, two in July, one in August and one in September) (Supplemental figure). Thirty-eight WUPyV-positive samples were collected in all months except February (two samples in January, one in March, four in April, five in May, five in June, four in July, one in August, one in September, two in October, eight in November and five in December) (Supplemental figure).

The prevalence of WUPyV in NPSs in this study was obviously higher than previously reported prevalences (0.4 to 9%) (28), though by switching the detection method from real-time PCR to PCR (5), the rate of WUPyV-positive NPSs fell from 16.4% (38 of 232) to 5.6% (13 of 232). The detection limit of PCR (5) (100 copies per reaction, which corresponds to 2 × 10^3 copies per mL) explains the prevalence gap for WUPyV in NPSs in this study. The copy numbers of 13 NPSs that were real-time PCR-positive but PCR-negative were all below 2 × 10^4 copies per mL except for one (Fig. 1). Direct sequencing of the PCR products of the 13 PCR-positive samples showed that 10 of the 13 sequences were completely identical to the published sequence of WUPyV strain B0 (Genbank accession number EF444549 bases 1331 to 1580), and 3 of the 13 sequences had a single-base-pair substitution (G1369C, A1396C and C1432A) in the VP3 gene (5).

Clinical and laboratory features of the KIPyV- and WUPyV-positive patients are shown in Table 5 and Supplemental table. The ages of patients with KIPyV-positive samples ranged from 3 months to 2 years 11 months, and the ages of patients with WUPyV-positive samples ranged from 1 month to 4 years 11 months. All seven of the KIPyV-positive patients (100%) and 34 of the 38 WUPyV-positive patients (89.5%) were admitted to hospital for 3 to 11 days. The clinical diagnoses of the KIPyV-positive patients were wheezy bronchitis (three patients), bronchitis (three) and pneumonia (one). The clinical diagnoses of the WUPyV-positive patients were bronchitis (15 patients), wheezy bronchitis (14), pneumonia (5), asthma (1), laryngotracheitis (1), acute pharyngolaryngitis (1), and acute pharyngitis (1). There was no obvious difference in clinical symptoms among KIPyV- and WUPyV-positive patients with or without coinfection.

Using real-time PCR, the KIPyV genome was detected in 1 of the 30 specimens of normal lung tissue (3.3%), whereas the WUPyV genome was not detected in any of the 30 specimens of normal lung tissues (Table 3). The viral load in KIPyV-positive normal lung tissue was 3.58 × 10^2 copies/μg. The sequence of KIPyV detected in normal lung tissue could not be determined because the KIPyV genome was not successfully amplified by nested PCR. On the other hand, neither the KIPyV genome nor the WUPyV genome was detected in 30 Japanese lung adenocarcinoma tissue samples (Table 3). The mean β actin values of the normal and adenocarcinoma lung tissues were 3.6 × 10^5 DNA molecules (range, 7.6 × 10^4 to 6.9 × 10^5) and 2.8 × 10^5 DNA molecules (range, 9.8 × 10^4 to 6.6 × 10^5) per μg, respectively.
ACKNOWLEDGMENTS

This research was supported in part by a Grant-in-Aid for Scientific Research (C), 2010 (22591174), from the Ministry of Education, Science, Sports and Culture of Japan. All of the necessary ethics approval for this study was obtained from the Institutional Review Board of Hokkaido University Hospital for Clinical Research. Nasopharyngeal swab samples were kindly provided by Yutaka Takahashi of KKR Sapporo Medical Center, Hiroyuki Sawada and Tsuguyo Nakayama of Hokkaido Social Insurance Hospital, Mutsuko Konno of Sapporo Kosei General Hospital, and Kunio Ozutsumi of Nemuro City Hospital. We thank Stewart Chisholm for proofreading the manuscript.

REFERENCES

1. Zur Hausen H. (2008) Novel human polyomaviruses–re-emergence of a well known virus family as possible human carcinogens. Int J Cancer 123: 247–50.
2. Gardner S.D., Field A.M., Coleman D.V., Hulme B. (1971) New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet 1: 1253–7.
3. Padgett B.L., Walker D.L., Zurhein G.M., Eckroade R.J., Dessel B.H. (1971) Cultivation of papova-like virus from human brain with progressive multifocal leukoencephalopathy. Lancet 1: 1257–60.
4. Allander T., Andreasonn K., Gupta S., Bjerkner A., Bogdanovic G., Persson M.A., Dalianis T., Ramqvist T., Andersson B. (2007) Identification of a third human polyomavirus. J Virol 81: 4130–6.
5. Gaynor A.M., Nissen M.D., Whiley D.M., Mackay I.M., Lambert S.B., Wu G., Brennan D.C., Storch G.A., Sloots T.P., Wang D. (2007) Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog 3: e64.
6. Bialasiewicz S., Whiley D.M., Lambert S.B., Jacob K., Bletchly C., Wang D., Nissen M.D., Sloots T.P. (2008) Presence of the newly discovered human polyomaviruses KI and WU in Australian patients with acute respiratory tract infection. J Clin Virol 41: 63–8.
7. Payungporn S., Chioeansantis T., Thongmee C., Samransamruakkit R., Theamboomers A., Poovorawan Y. (2008) Prevalence and molecular characterization of WU/KI polyomaviruses isolated from pediatric patients with respiratory disease in Thailand. Virus Res 135: 230–6.
8. Neske F., Blessing K., Ullrich F., Protel A., Wolfgang Kreth H., Weissbrich B. (2008) WU polyomavirus infection in children, Germany. Emerg Infect Dis 14: 680–1.
9. Fouloungne V., Brieu N., Jeziorksi E., Chatain A., Rodiere M., Segondy M. (2008) KI and WU polyomaviruses in children, France. Emerg Infect Dis 14: 523–5.
10. Ren L., Gonzalez R., Xie Z., Zhang J., Liu C., Li J., Li Y., Wang Z., Kong X., Yao Y., Hu Y., Qian S., Geng R., Yang Y., Vernet G., Paranhos-Baccala G., Jin Q., Shen K., Wang J. (2008) WU and KI polyomavirus present in the respiratory tract of children, but not in immunocompetent adults. J Clin Virol 43: 330–3.
11. Abedi Kiasari B., Valley P.J., Corless C.E., Al-Hammadi M., Klapper P.E. (2008) Age-related pattern of KI and polyomaviruses in children, Canada. Emerg Infect Dis 13: 1939–11.
12. Abed Y., Wang D., Boivin G. (2007) WU polyomavirus in children, Canada. Emerg Infect Dis 13: 123–5.
13. Lin F., Zheng M., Li H., Zheng C., Li X., Rao G., Wu F., Zeng A. (2008) WU polyomavirus in children with acute lower respiratory tract infections, China. J Clin Virol 42: 94–102.
14. Yuan X.H., Jin Y., Xie Z.P., Gao H.C., Xu Z.Q., Zheng L.S., Zhang R.F., Song J.R., Hou Y.D., Duan Z.I. (2008) Prevalence of human KI and WU polyomaviruses in children with acute respiratory tract infection in China. J Clin Microbiol 46: 3522–5.
15. Van Der Zalm M.M., Rossen J.W., Van Ewijk B.E., Wilbrink B., Van Esch P.C., Wolfs T.F., Van Der Ent C.K. (2008) Prevalence and pathogenicity of WU and KI polyomaviruses in children, the Netherlands. Emerg Infect Dis 14: 1787–9.
16. Mourez T., Bergeron A., Ribaud P., Scieux C., De Latour R.P., Tazi A., Socie G., Simon F., Legoff J. (2009) Polyomaviruses KI and WU polyomaviruses in children, France. Emerg Infect Dis 15: 107–9.
17. Kleines M., Scheithauer S., Hengst M., Honnef D., Ritter K., Muller E., Hauser M. (2008) Low to medium WU-virus titers in young children with lower respiratory tract infections. Intervirology 51: 444–6.
18. Furuse Y., Suzuki A., Kishi M., Galang H.O., Olveda R.M., Oshitani H. (2010) Detection of novel respiratory viruses from influenza-like illness in the Philippines. J Med Virol 82: 1071–4.
19. Babakir-Mina M., Ciccozzi M., Dimonte S., Farchi F., Valdarchi C., Rezza G., Perno C.F., Giotti M. (2008) Identification of the novel KI virus WUPyV in lung and nasopharynx.
polyomavirus in the respiratory tract of an Italian patient. J Med Virol 80: 2012–4.

20. Han T.H., Chung J.Y., Koo J.W., Kim S.W., Hwang E.S. (2007) WU polyomavirus in children with acute lower respiratory tract infections, South Korea. Emerg Infect Dis 13: 1766–8.

21. Hormozdi D.J., Arens M.Q., Le B.M., Buller R.S., Agapov E., Storch G.A. (2010) KI polyomavirus detected in respiratory tract specimens from patients in St. Louis, Missouri. Pediatr Infect Dis J 29: 329–33.

22. Debiaggi M., Canducci E., Brezza R., Sampaolo M., Marinozzi M.C., Parea M., Arghiu M., Alessandri E.P., Nava S., Nucleo E., Romero E., Clementi M. (2010) Molecular epidemiology of KI and WU polyomaviruses in infants with acute respiratory disease and in adult hematopoietic stem cell transplant recipients. J Med Virol 82: 153–6.

23. Feng H., Shuda M., Chang Y., Moore P.S. (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319: 1096–100.

24. Andres C., Ihrler S., Puchta U., Flaig M.J. (2009) Merkel cell polyomavirus is prevalent in a subset of small cell lung cancer: a study of 31 patients. Thorax 64: 1007–8.

25. Helmbold P., Lahtz C., Herpel E., Schnabel P.A., Dammann R.H. (2009) Frequent hypermethylation of RASSF1A tumour suppressor gene promoter and presence of Merkel cell polyomavirus in small cell lung cancer. Eur J Cancer 45: 2207–11.

26. Dalianis T., Ramqvist T., Andreasson K., Kean J.M., Garcea R.L. (2009) KI, WU and Merkel cell polyomaviruses: a new era for human polyomavirus research. Semin Cancer Biol 19: 270–5.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article:

Figure S1 Clinical characteristics of KIPyV-poitive and WUPyV-positive patients.

Table S1 Seasonal distribution of KIPyV- and WUPyV-positive cases and numbers of samples collected.

Please note: Wiley–Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.