RESUMEN

Objetivo: Estudar el espacio areolar localizado anteriormente a la columna lumbar y también el posicionamiento de los grandes vasos con enfoque en abordaje lateral. Métodos: Estudio morfométrico con 108 casos con base en exames de ressonância magnética con ponderação T2 en posición supina. Foram realizadas as seguintes medidas: lordose lumbar y segmentar; diámetro discal anteroposterior; espacio entre el disco/corpo vertebral y los vasos; bifurcación de la aorta abdominal y confluencia de las veias ilíacas comunes en relación al nivel lumbar. Resultados: El espacio areolar con relación a las veias ilíacas y a la vena cava aumentó en sentido craneal (p<0,001), partiendo de média de 0,6 mm en L4-L5 y alcanzando en 8,4 mm en L2, y a la arteria aorta abdominal no presentó praderao al longo dos diferentes níveis (p = 0,135), variando de 1,8-4,6 mm. El diámetro de los discos aumentó distalmente (p<0,01), así como a lordose (p<0,001). El diámetro discal foi 11% superior ao dos corpos vertebrais adjacentes (p<0,001) e isso refletiu na menor distancia dos vasos no nível discal do que no nível dos corpos vertebrais (p<0,001). A bifurcación aórtica estava geralmente à frente de L4 (52%) e com menos frecuencia, em L3-L4 (28%) e L4-L5 (18%). La confluencia de las veias foi, em geral, no nível de L4-L5 (38%) e de L5 (37%), e menos frequentemente em L4 (26%). Conclusões: Existe um plano identificável entre os grandes vasos e a columna lumbar, que é especialmente estreito em sua porção distal. A través de acesso lateral el teóricamente factível, porém desafiante, atingir este plano, manipular el complejo anterior del disco/LLA y proteger los grandes vasos.

Descritores: Vasos sanguíneos; Aorta; Veias cavae; Região lombossacral; Lordose; Imagem por ressonância magnética; Radiologia.

ABSTRACT

Objective: This work aims to study the areolar space anterior to the lumbar spine, and also the positioning of the large vessels focusing a lateral approach. Methods: This is a morphometric study of 108 cases based on T2 weighted-MRI images in the supine position. The following measurements were performed: lumbar and segmental lordosis; anteroposterior disc diameter; space between the disc/corpo vertebral and the vessels; bifurcation between the abdominal aorta and the common iliac veins confluence in relation to the lumbar level. Results: The areolar space with respect to the iliac veins, and with the vena cava increased cranially (p<0.001), starting from average 0.6mm at L4-L5 and reaching 8.4mm at L2, while the abdominal aorta showed no increase or decrease pattern across the different levels (p=0.135) ranging from 1.8 to 4.6mm. The diameter of the discs increased distally (p<0.01) as well as the lordosis (p<0.001). The disc diameter was 11% larger when compared to the adjacent vertebral bodies (p<0.001) and that resulted in a smaller distance of the vessels in the disc level than in the level of the adjacent vertebral bodies (p<0.001). The aortic bifurcation was generally ahead of L4 (52%) and less frequently at L3-L4 (28%) and L4-L5 (18%). The confluence of the veins was usually at the L4-L5 level (38%) and at L5 (37%), and less frequently at L4 (26%). Conclusions: There is an identifiable plane between the great vessels and the lumbar spine which is particularly narrow in its distal portion. It is theoretically feasible to reach this plan, handle the anterior complex disc/ALL and protect the great vessels by lateral approach, however, it is challenging.

Keywords: Blood vessels; Aorta; Venae cavae; Lumbosacral region; Lordosis; Magnetic resonance imaging; Radiology.

RESUMO

Objetivo: O trabalho tem como objetivo estudar o espaço areolar situado anteriormente à coluna lombar e também o posicionamento dos grandes vasos com enfoque em abordagem lateral. Métodos: Este estudo morfométrico de 108 casos realizados em T2 ponderada-MRI imagens em posição supina. Foram realizadas as seguintes medidas: lordose lumbar e segmentar; diâmetro discal anteroposterior; espaço entre o disco/corpo vertebral e os vasos; bifurcação da aorta abdominal e confluência das veias ilíacas comuns em relação ao nível lombar. Resultados: O espaço areolar com relação às veias ilíacas e à veia cava aumentou no sentido cranial (p < 0,001), partindo de média de 0,6 mm em L4-L5 e chegando em 8,4 mm em L2, e a artéria aorta abdominal não apresentou padrão ao longo dos diferentes níveis (p = 0,135), variando de 1,8-4,6 mm. O diâmetro dos discos aumentou distalmente (p < 0,01), assim como a lordose (p < 0,001). O diâmetro discal foi 11% superior ao dos corpos vertebrais adjacentes (p < 0,001) e isso refletiu na menor distância dos vasos no nível discal do que no nível dos corpos vertebrais (p < 0,001). A bifurcação aórtica estava geralmente à frente de L4 (52%) e com menos frequência, em L3-L4 (28%) e L4-L5 (18%). A confluência das veias foi, em geral, no nível de L4-L5 (38%) e de L5 (37%), e menos frequentemente em L4 (26%). Conclusões: Existe um plano identificável entre os grandes vasos e a coluna lombar, que é especialmente estreito em sua porção distal. Através de acesso lateral é teoricamente factível, porém desafiador, atingir este plano, manipular o complexo anterior do disco/LLA e proteger os grandes vasos.

Descritores: Vasos sanguíneos; Aorta; Veias cavae; Região lombossacral; Lordose; Imagem por ressonância magnética; Radiologia.
INTRODUÇÃO

Apesar de lesão vascular iatrogênica em cirurgia vertebral lombar não ser muito frequente (0,017% a 0,14%), pode ser considerada a complicação mais devastadora na cirurgia do disco intervertebral, uma taxa de mortalidade muito importante, podendo chegar a 65%. Os principais vasos incluem a aorta abdominal, a veia cava inferior, e as artérias ilíacas comuns e veias, situados em posição anterior justaposta à coluna lombar. Estas estruturas, especialmente as veias, são vulneráveis a lacerações durante cirurgias que envolvam os discos intervertebrais.

Como bem descrito na literatura, a disectomia e fusão intervertebral na coluna lombar por via lateral transpsoas preserva o complexo anterior do anel apofisário/ ligamento longitudinal anterior, e assim, não exige manipulação e geralmente não coloca em risco os grandes vasos que se situam logo à frente a este complexo disco/ligamento. Contudo, recentemente uma nova indicação foi incorporada ao acesso lateral: reconstrução do plano sagital com utilização de espaçadores hiperlordóticos. Segundo os relatos, é necessário mobilizar o segmento vertebral através de ressecção do complexo anterior do disco, e assim ganho de angulação segmentar.

A anatomia vascular anterior à coluna lombar tem sido estudada em relação às suas implicações principalmente em relação a uma abordagem anterior ou posterior. Na área da abordagem lateral transpsoas, apesar de análises parciais ou relatos de caso incluindo os grandes vasos, a anatomia mais estudada é a do plexo lombar e sua relação aos discos lombares. Contudo, não há estudo sobre a distribuição dos grandes vasos relacionando o espaço entre estes ao aspecto anterior da coluna lombar.

O objetivo deste artigo é estudar o posicionamento dos grandes vasos e distribuição do espaço areolar na região da coluna lombar com enfase na segurança na abordagem do complexo anterior do disco intervertebral por via lateral.

MÉTODOS

Secções sagitais e axiais ponderadas em T2 de exames de ressonância nuclear magnética (RNM) da coluna lombar, selecionados a partir do arquivo DICOM da nossa Instituição foram estudadas. Critérios de exclusão: artrodese da coluna lombar; mais ou menos que cinco vértebras lombares; deformidades como escoliose (ângulo maior 10°); hiperfície; espondilolistese; discos intervertebrais colapsados ou hérnia de disco extrusa; baixa qualidade de imagem (sem possibilidade de distinção de vasos); exames com secções mais espaçadas do que 3 mm. Foram selecionados 108 exames de casos. A média de idade foi de 51 anos (desvio padrão 16, intervalo de confiança 48 – 54) e 60% eram participantes do sexo masculino.

As medidas foram determinadas utilizando o programa OsiriX (Pixmeo, Suíça). Para reduzir variação interobservador, as medidas foram revisadas por dois autores. Como o acesso lateral à coluna lombar é realizado somente entre os discos toracolombares, foram analisadas as medidas de distância foram analisadas na região situada entre o disco L4-L5, à veia ilíaca direita (vd) e esquerda (ve), artéria ilíaca direita (ad) e esquerda (ae), veia cava inferior (vc) e sua relação aos discos lombares.

As medidas foram determinadas utilizando o programa OsiriX (Pixmeo, Suíça). Para reduzir variação interobservador, as medidas foram revisadas por dois autores. Como o acesso lateral à coluna lombar é realizado somente entre os discos toracolombares, foram analisadas as medidas de distância foram analisadas na região situada entre o disco L4-L5, à veia ilíaca direita (vd) e esquerda (ve), artéria ilíaca direita (ad) e esquerda (ae), veia cava inferior (vc) e sua relação aos discos lombares.

1. Nível lombar (correspondência axial em relação a específico disco intervertebral ou corpo vertebral) no qual acontece a divisão/confliúência dos grandes vasos (Figura 1): Divisão da artéria abdominal (AAA); Conflutência da veia ilíaca comum esquerda (VCE) com a veia ilíaca comum direita (VCD).

2. Distância axial (“espaço areolar”: menor distância em milímetros entre dois referidos pontos) entre o bordo anterior da coluna lombar (corpo vertebral ou disco intervertebral) e os grandes vasos abdominais (Figura 2): AAA (Artéria Ilíaca Esquerda (AIe), Artéria Ilíaca Direita (AId)), Veia Cava Inferior (VCI), VCE, VCD.

3. Dimensões da coluna lombar (maior segmento em milímetros das referidas estruturas): Diâmetro anteroposterior do disco intervertebral ao nível axial médio do disco intervertebral; Diâmetro anteroposterior do corpo vertebral ao nível axial subpedicular do corpo vertebral.

4. Angulação da coluna lombar (em graus, ao nível sagital mediante) (Figura 3): Lordose segmentar (sLL): ângulo entre platô superior da vértebra superior do segmento e platô inferior da vértebra inferior do segmento; Lordose lombar global (gL): ângulo entre platô superior de L1 e platô inferior de L5.

Este trabalho obteve aprovação por Comitê de Ética em Pesquisa na Instituição em que foi desenvolvida e recebeu aval após aprovação sob numeração 0360/11.
Os testes estatísticos foram feitos usando o programa SPSS (versão 10.0, Chicago, IL) com valores de alfa igual a 0,05. Foram realizados testes t de Student, ANOVA e teste de correlação de Pearson.

RESULTADOS

Inicialmente, estudou-se o local da bifurcação/confluência dos grandes vasos segundo seu nível vertebral lombar, e os resultados encontram-se na Tabela 1. Quanto à bifurcação da aorta abdominal, foi observada uma distribuição normal variando desde o corpo vertebral de L3 até o corpo de L5, com 52% total de casos bifurcado ao nível do corpo vertebral L4, e proporções decrescentes nas posições mais craniais e caudais. A distribuição das ocorrências de confluência das veias ilíacas comuns foi concentrada entre L4 e L5.

Os resultados de distância entre os vasos e o aspecto anterior da coluna lombar (disco intervertebral ou corpo vertebral) são mostrados na Tabela 2. Os resultados em relação à veia cava inferior mostraram que o espaço areolar aumenta em direção cranial (p <0,001), partindo de uma média mínima de 0,6 mm (54% dos casos com 0 mm) ao nível de L4L5, e atingindo média de 8,4 mm ao nível do corpo vertebral de L2. Os valores referentes à aorta abdominal mostraram que ele atinge o menor valor médio (1,8 milímetros) ao nível do disco L3L4. Ao nível de L4L5 e de L4, a artéria ilíaca direita se situava em posição sobreposta e anterior à veia ilíaca comum direita em 58% e 88% dos casos, respectivamente. Em contraponto, a artéria ilíaca esquerda só se encontra sobreposta logo à frente da veia ilíaca comum esquerda em 9% dos casos na altura de L4L5, e em 6% na altura de L4. Ao nível de L3L4 e acima, não houve sobreposição dos vasos. Na Tabela 2, está mostrado um valor por grande vaso, e quando existia duas artérias ou duas veias, é mostrada a média entre os valores. Os dados dos vaso direitos ou esquerados seguem (mostrados em milímetros, média ± desvio padrão, intervalo de confiança 95%) ao nível do L4L5: Ale, 2,5 ± 2,4, 2,0-3,0; Ald, 4,8 ± 4,0, 4,0-5,6; VIce, 0,4 ± 0,7, 0,2-0,6; VICd 0,8 ± 0,9, 0,6-0,4; e ao nível de L4: Ale, 3,5 ± 1,8, 3,1-3,9; Ald, 6,9 ± 3,4, 6,1-7,7; VIce, 0,8 ± 1,0, 0,4-1,2; VICd 2,3 ± 1,6, 1,5-3,1.

Tabela 1. Nível lombar da bifurcação/confluência dos grandes vasos.

Nível lombar	Artéria aorta abdominal	Veia cava inferior
L2L3	3,6 (2,1)	3,2 - 4,0
L2	3,2 (3,9)	2,7 - 9,1
L2L3	2,2 (2,1)	1,8 - 2,6
L3	3,4 (2,3)	3,0 - 3,8
L3L4	1,8 (1,9)	1,4 - 2,2
L4	4,6 (3,3)	4,0 - 5,2
L4L5	3,3 (3,3)	2,7 - 3,9

Valores são mostrados como médias e desvios padrões (porcentagem total).

Entre os discos lombares, o espaço areolar para a aorta abdominal não apresentou tendência de aumento ou diminuição (p=0,135). Porém, o espaço areolar da cava tornou-se maior no sentido cranial (p<0,001), e o espaço à frente dos discos foi menores quando do que ao espaço à frente dos corpos adjacentes (p<0,001).

Os resultados da dimensão anteroposterior máxima dos discos e vértebras são mostrados na Tabela 3. Na comparação pareada da dimensão do disco versus o corpo vertebral adjacente (ex. L4L5 versus L4), foi possível verificar que os discos são em média 11% maiores que as vértebras adjacentes (p=0,007). Os valores de diâmetro do disco AP foram superiores aos seus corpos vertebrais adjacentes, refletindo uma menor distância e espaço areolar existente, para os discos ao longo dos corpos vertebrais (p<0,001; Tabela 3 e Figura 4).

Nível lombar	Média (dp)	95% IC
L2	35 (3)	35 - 36
L2L3	39 (5)	38 - 40
L3	37 (5)	36 - 38
L3L4	40 (4)	39 - 41
L4	36 (4)	35 - 37
L4L5	41 (4)	40 - 42

Valores são mostrados em milímetros como média (desvio padrão), e os limites inferior e superior do intervalo de confiança 95%.

DISCUSSÃO

Devido à importância cirúrgica dos grandes vasos abdominais no acesso à coluna anterior, com base na avaliação de exames de ressonância nuclear magnética, o principal objetivo foi estudar a extensão e distribuição do espaço areolar entre os grandes vasos e a coluna lombar.

Tradicionalmente, um procedimento na coluna lombar anterior pela abordagem lateral transpsoas conta com a integridade do ligamento longitudinal anterior (LLA) como banda de tensão e barreira contra migração de dispositivo intersomatico. Sendo assim, de forma geral não exige manipulação na região anterior à coluna, onde se situam...
REFERÊNCIAS

1. Papadoulas S, Konstantinou D, Kourea HP, Kritikos N, Haftouras N, Tsalakis JA. Vascular injury complicating lumbar disc surgery: A systematic review. Eur J Vasc Endovasc Surg. 2002;24(3):189-95.
2. Billinghurst J, Alkamia BA. Extreme lateral interbody fusion - XLIF. Current Orthopaedic Practice. 2009;20(3):238-51.
3. Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2008;8(4):435-43.
4. Amaral R, Oliveira L, Coutinho T, Castro C, Coutinho E, Pimenta L. Opción minima/novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435-43.
5. Akbarnia BA, Mundis GM Jr, Moazzaz P, Kabirian N, Bagheri R, Eastlack RK, Pawelek JB. Anterior column realignment (ACR) for focal kyphotic spinal deformity using a lateral transposas approach and ALL release. J Spinal Disord Tech. 2014;27(1):29-39.
6. Baghdadi YM, Larson AN, Dekutoski MB, Cui Q, Sebastian AS, Armitage BM, Nassr A. Sagittal balance and spinopelvic parameters after lateral lumbar interbody fusion for degenerative scoliosis: a case-control study. Spine (Phila Pa 1976). 2014;39(3):E166-73.
7. Deukmedjian et al. 2011;10(3):239–43.
8. Alkamia BA, Mundis GM Jr, Moazzaz P, Kabirian N, Bagheri R, Eastlack RK, Pawelek JB. Anterior column realignment (ACR) for focal kyphotic spinal deformity using a lateral transposas approach and ALL release. J Spinal Disord Tech. 2014;27(1):29-39.
9. Baghdadi YM, Larson AN, Dekutoski MB, Cui Q, Sebastian AS, Armitage BM, Nassr A. Sagittal balance and spinopelvic parameters after lateral lumbar interbody fusion for degenerative scoliosis: a case-control study. Spine (Phila Pa 1976). 2014;39(3):E166-73.

CONCLUSÃO

Apesar de pequeno, existe espaço entre os grandes vasos e a coluna lombar, sendo ele especialmente estreito em sua porção distal. Portanto, através de um acesso lateral é teoricamente factível achar o plano entre estas estruturas, a fim de proteger os vasos e manipular o complexo anterior do disco e LLA. Precaução e investigação completa da posição anatômica dos vasos são indispensáveis para o planejamento e verificação de variantes anatômicas.

CONFLITOS DE INTERESSE

O autor LP tem conflitos de interesse com a empresa NuVasive, LLC: consultor, royalties e ações. Os outros autores não apresentam conflitos de interesse.
1. Kang BU, Lee SH, Jeon SH, Park JD, Maeng DH, Choi YG, Tsang YS. An evaluation of vascular anatomy for minilaparoscopic anterior L4-L5 procedures. J Neurosurg Spine. 2006;5(8):508-13.
2. Vaccaro AR, Kepler CK, Rhim JA, Suzuki H, Ratliff JK, Harrop JS, et al. Anatomical relationships of the major blood vessels to the lower lumbar intervertebral discs: analysis based on magnetic resonance imaging of patients in the prone position. J Bone Joint Surg Am. 2012;94(12):1088-94.
3. Guerin P, Obied I, Gille O, Bourgli A, Luc S, Pointillart V, et al. Safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: a morphometric study. Surg Radiol Anat. 2011;33(8):665-71. 21394202.
4. Deukmedjian AR, Le Tu, Dakwar E, Martinez CR, Uribe JS. Movement of abdominal structures on magnetic resonance imaging during positioning changes related to lateral lumbar spine surgery: a morphometric study. Clinical article. J Neurosurg Spine. 2012;16(8):615-23.
5. Delascota LA, Radcliff K, Sonagli MA, Miller L. Aberrant iliac artery: far lateral lumbosacral surgical anatomy. Orthopedics. 2012;35(2):e294-7.
6. Postacchini R, Cinotti G, Postacchini F. Injury to major abdominal vessels during posterior lumbar interbody fusion. A case report and review of the literature. Spine J. 2013;13(1):e7-11.
7. Assina R, Majmundar NJ, Herschman Y, Heary RF. First report of major vascular injury due to lateral transpsoas approach leading to fatality. J Neurosurg Spine. 2014;21(4):794-8.
8. Kepler CK, Bogner EA, Herzog RJ, Huang RC. Anatomy of the psoas muscle and lumbar plexus with respect to the surgical approach for lateral transpsoas interbody fusion. Eur Spine J. 2011;20(4):550-6.
9. Uribe JS, Arredondo N, Dakwar E, Vale FL. Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine. 2010;13(2):260-6.
10. Motto T, Kikutchi S, Konno S, Yaginuma H. An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine (Phila Pa 1976). 2003;28(6):423-8.
11. Benglis DM, Vanni S, Levi AD. An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine. 2009;10(2):139-44.
12. Regev GJ, Chen L, Dhawan M, Lee YP, Garfin SR, Kim CW. Morphometric analysis of the ventral nerve roots and retroperitoneal vessels with respect to the minimally invasive lateral approach in normal and deformed spines. Spine (Phila Pa 1976). 2009;34(12):1330-5.
13. Smith WD, Youssef JA, Christian G, Serrano S, Hyde JA. Lumbarized sacrum as a relative contraindication for lateral transpsoas interbody fusion at L5-S. J Spinal Disord Tech. 2012;25(5):285-91.
14. Davis TT, Bae HW, Mok JM, Rasoul A, Delamarter RB. Lumbar plexus anatomy within the psoas muscle: implications for the transpsoas lateral approach to the L4-L5 disc. J Bone Joint Surg Am. 2011;93(18):1492-2.
15. Uribe JS, Smith DA, Dakwar E, Baaj AA, Mundis GM, Turner AW, et al.Lordosis restoration after anterior longitudinal ligament release and placement of lateral hyperlordotic interbody cages during the minimally invasive lateral transpsoas approach: a radiographic study in cadavers. J Neurosurg Spine. 2012;17(5):476-85.
16. Marchi L, Oliveira L, Amaral R, Castro C, Coutinho T, Coutinho E, et al. Anterior elongation as a minimally invasive alternative for sagittal imbalance-a case series. JSS J. 2012;8(2):122-7.
17. Chitniki M, Jabaji M, Steele RD. The anatomic relationship of the aortic bifurcation to the lumbar vertebrae: a MRI study. Surg Radiol Anat. 2002;24(3):309-12.
18. Lakshayapakorn K, Siriprapak Y. Anatomical variations of the position of the aortic bifurcation, iliacus junction and iliac veins in relation to the lumbar vertebrae. J Med Assoc Thai. 2008;91(10):1564-70.
19. Lee CH, Seo SK, Cho YC, Shin HJ, Park JH, Jeon HJ, et al. Using MRI to evaluate anatomic significance of aortic bifurcation, right renal artery, and conus medullaris when locating lumbar vertebral segments. AJR Am J Roentgenol. 2004;182(5):329-300.
20. Arslan M, Cömert A, Açaır H, Özdemir M, Ehan A, Tekdemir I, et al. Neurovascular structures adjacent to the lumbar intervertebral discs: an anatomical study of their morphology and relationships. J Neurosurg Spine. 2011;14(5):630-8.
21. Anda S, Askhus S, Skaaanes KO, Sande E, Schrader H. Anterior perforations in lumbar discectomies. A report of four cases of vascular complications and a CT study of the prevertebral lumbar anatomy. Spine (Phila Pa 1976). 1991;16(11):54-60.
22. Döpplü M, Iğ M, Pehlivann M, Yıldız KH. Nightmare of lumbar disc surgery: iliac artery injury. Clin Neurol Neurosurg. 2006;108(2):174-7.
23. Prabhakar H, Bhatia PK, Desh M, Chaturvedi A. Rupture of aorta and inferior vena cava during lumbar disc surgery. Acta Neurochir (Wien). 2005;147(3):327-9.
24. Castelli AE, Goldstein LA, Chan DP. Lumbosacral transitional vertebral and their relationship with lumbar extradural defects. Spine (Phila Pa 1976). 1984;9(5):493-5.
25. Hahn PY, Strobel JJ, Hahn FJ. Verification of lumbosacral segments on MR images: identification of transitional vertebral. Radiology. 1992;182(2):580-1.
26. Elster AD. Bertolotti’s syndrome revisited. Transitional vertebral of the lumbar spine. Spine (Phila Pa 1976). 1989;14(12):1373-7.