INTRODUCTION

Cantrell et al. (2011) reviewed unusual fungal niches of which most are considered extreme environments including Antarctic dry valleys, deep sea sediments, hydrothermal vents, microbial mats, and salters. All of these environments have been extensively studied for Eubacteria and Archaea, while a few studies have included Eukarya (Gunde-Cimerman et al., 2000, 2004; Edgerton, 1984; Awramik, 1984; Anderson et al., 1987; Casillas-Martínez et al., 2005; Gerdes, 2007). Mats can be considered for Eubacteria and Archaea, while a few studies have included Eukarya (Gunde-Cimerman et al., 2000, 2004; Edgerton, 1984; Awramik, 1984; Anderson et al., 1987; Casillas-Martínez et al., 2005; Gerdes, 2007). Mats can have included Eukarya (Gunde-Cimerman et al., 2000, 2004; Edgerton, 1984) extensively studied for Eubacteria and Archaea, while a few studies have included Eukarya (Gunde-Cimerman et al., 2000, 2004; Edgerton, 1984) extensively studied for Eubacteria and Archaea, while a few studies have included Eukarya (Gunde-Cimerman et al., 2000, 2004; Edgerton, 1984) extensively studied for Eubacteria and Archaea, while a few studies have included Eukarya (Gunde-Cimerman et al., 2000, 2004; Edgerton, 1984)

Microbial mats are self-sustained vertically laminated, organo-sedimentary structures developing on solid surfaces (Figure 1). These can be found in a wide variety of ecosystems from marine intertidal and subtidal zones, fresh water rivers and even extreme environments such as hypersaline ponds, evaporation salt pans, and hot springs (Avramik, 1984; Castenholtz, 1984; Anderson et al., 1987; Casillas-Martínez et al., 2005; Gerdes, 2007). Mats can be lithifying or non-lithifying, which means that when the precipitation of minerals exceeds dissolution they can convert loose sediments into rock. Stromatolites are microbial mats and one of the oldest fossils found on Earth dating to 3.4 billion years ago (Alwood et al., 2009). Mats have earned the name "complex biofilms" because their development on physical substrates also occurs as a sequence of processes. Fluctuating diel and seasonal physicochemical gradients characterize these organo-sedimentary ecosystems resulting in both stratified microenvironments that harbor specific microbial communities (Dupraz and Visscher, 2005; Visscher and Stolz, 2005).

There is a physical conditioning of the surface with the deposition of substances that attract and permit the adherence of bacteria. After initial colonization, the bacteria form a thin subsurface layer which thickens as they reproduce and new bacteria arrive, establishing a community that consists of multiple populations (Castenholtz, 1984; Atlas and Bartha, 1997). Primary production occurs in the uppermost layer that corresponds to the oxic zone, fueling heterotrophic activity in the entire mat. Oxygen concentration decreases with depth and the mat is anaerobic below 2 mm. The populations form a consortium as defined in (Paerl, 2000): several species or populations of microorganisms function in a coordinated, complementary fashion, so that production, growth, and nutrient cycling are enhanced over what a single species or population can achieve alone under similar environmental conditions.

Microbial mat communities have been arranged into approximately seven biogeochemical/trophic categories: (1) photolithoautotrophs (i.e., cyanobacteria); (2) aerobic (chemoorgano-) heterotrophs; (3) fermenters; (4) anaerobic heterotrophs (sulfate-reducing bacteria; SRB); (5) sulfate oxidizing bacteria (SOB); (6) anoxygenic photosynthetizers [i.e., purple and green (non) sulfur bacteria]; and (7) methanogens (van Gemerden, 1995; Dupraz and Visscher, 2005).

Molecular research has shown that there are many eukaryotic groups inhabiting these ecosystems including algae, ciliates, flagellates, fungi, and nematodes (Cantrell et al., 2006; Feazel et al., 2008). Recent studies in hypersaline cyanobacterial mats have revealed a potential to be used as indicators of elevated hurricane activity and their relation to climate change (Paerl et al., 2003). This study concludes that hypersaline mats have included Eukarya (Gunde-Cimerman et al., 2000, 2004; Edgerton, 1984; Awramik, 1984; Anderson et al., 1987; Casillas-Martínez et al., 2005; Gerdes, 2007).

Fungi were documented in tropical hypersaline microbial mats and their role in the degradation of complex carbohydrates (exopolymeric substance – EPS) was explored. Fungal diversity is higher during the wet season with Acremonium, Aspergillus, Cladosporium, and Penicillium among the more common genera. Diversity is also higher in the oxic layer and in young and transient mats. Enrichments with xanthan (a model EPS) show that without antibiotics (full community) degradation is faster than enrichments with anti-bacterial (fungal community) and antifungal (bacterial community) agents, suggesting that degradation is performed by a consortia of organisms (bacteria and fungi). The combined evidence from all experiments indicates that bacteria carried out approximately two-third of the xanthan degradation. The pattern of degradation is similar between seasons and layers but degradation is faster in enrichments from the wet season. The research suggests that fungi thrive in these hypersaline consortia and may participate in the carbon cycle through the degradation of complex carbohydrates.

Keywords: Caribbean, tropical, hypersaline, ITS region, EPS, Acremonium, Aspergillus, Cladosporium
mats can be excellent indicators of short- and long-term climate changes by studying the changes in CO2 sequestration, enhanced nutrient cycling, and diversification of the microbial communities. A wide variety of mats have been studied for their diversity and the potential of finding new organisms with useful capabilities (i.e., biotechnological applications). Some of the formations being investigated are in the Bahamas (Baumgartner et al., 2009), Guerrero Negro in Mexico (Speur et al., 2003; Ley et al., 2008), Yellowstone National Park (Ward et al., 1998), the Secovlje Salterns in Slovenia (Tkavc et al., 2011), the Iberian Peninsula of Spain (Esteve et al., 1992), Lagoa Vermelha in Brazil (Vascincoles et al., 2006), Sinai (Egypt; Teske et al., 1998), and Cabo Rojo in Puerto Rico (Cantrell et al., 2006; Cantrell and Baez-Felix, 2010). Using TRLF profiles and clone libraries of the ITS region, the fungal community of a mature microbial mat differs between seasons, being more diverse during the rainy season when salinity decreases and oxygen concentrations increase, and that fungal diversity decreases from top (oxic) to the bottom (anoxic) layers of the mat. A recent study using the same combination of methods shows that fungal communities differ between young and transient mats that form only during the rainy season versus mature and well-developed mats that are continuously inundated (Cantrell et al., 2013). Young and transient mats have greater diversity than mature and well-developed mats. So far, a total of 43 species of fungi have been identified from young and mature microbial mats in Puerto Rico, of which 18 are only known from clone libraries. Nine Aspergillus and three Cladosporium species are known only from cultural studies, with Aspergillus niger and Cladosporium dominicanum the more frequent species. Based on clone libraries of the ITS region, the fungal community is dominated by Arovenium strictum and Cladosporium halotolerans, which were not isolated in pure culture in this study (Figure 2).

Fungi decompose complex carbohydrates such as lignin, cellulose, and hemicellulose into simpler compounds (i.e., low molecular weight compounds) that are then used by other organisms, thus promoting nutrient recycling. Much investigation has been performed to understand the mechanisms by which fungi decompose complex matter in different terrestrial ecosystems such as tropical forests (Lodge et al., 1996; Green and Highley, 1997). Detritus decomposition is also well understood in coastal marine ecosystems (Fell and Master, 1980; Fell et al., 1984; Acvedo, 1987, 2001; Calzada, 1988; Schmit and Shearer, 2003; Nieves-Rivera, 2005; Kathiresan et al., 2011). Fungi play an important role in decomposing detritus in mangrove forests, including species of Alternaria, Aspergillus, Cladosporium, Cylindrocarpon, Cryptosoccus, Drechslera, Fusarium, Geotrichum, Gliocladium, Glaspergillus, Leptosphaeria, Nigrospora, Pestalotia, Phialocephala, Pichia, Rhodotorula, and Trichoderma which have been identified at various stages of leaf litter decomposition (Fell and Master, 1980; Fell et al., 1984; Acvedo, 1987, 2001; Calzada, 1988; Schmit and Shearer, 2003; Nieves-Rivera, 2005; Kathiresan et al., 2011).
The figure shows the percentage of each fungal species detected within the 225 clones.

1980; Fell et al., 1984; Schmit and Sheafer, 2005; Kathiresan et al., 2011). Acevedo (2001) studied the potential role of marine fungi in biotransformation of polycyclic aromatic hydrocarbons. González et al. (2003) reported species of arenicolous fungi for Cuba, including species of *Arenariomyces* and *Corollospora*. Burgaud et al. (2010) reported yeast species belonging to *Candida*, *Cryptococcus*, *Debaromyces*, *Hortaea*, *Sphaerotheca*, *Pichia*, and *Rhodotorula* from hydrothermal vents. In this paper, we explore microbial mats as an unusual niche for fungi analyzing their potential role in degradation of exopolymeric substances (EPS) which are complex carbohydrates found in these ecosystems.

**MATERIALS AND METHODS**

Since fungi play an important environmental function as degraders of complex carbohydrates, the role of fungi in the degradation of EPS and, the communities and individuals carrying out the process was evaluated by Duval-Pérez (2010). Two experiments were performed using xanthan gum and different antibiotics to inhibit certain members of the microbial community. The first experiment was conducted with samples from the dry season and two treatments (full community – no antibiotics and fungal community – four antibacterial agents). The second experiment was conducted with samples from the wet season and three treatments (full community – no antibiotics, bacterial community – antifungal agent and fungal community – four antibacterial agents). Samples were obtained from a mature microbial mat that was producing large quantities of EPS visible as an orange slime over the surface of the mat during the dry season (Figure 1). Samples were retrieved by cutting 10 cm × 10 cm squares and dividing it into two layers (top 0–1 mm and bottom 2–20 mm). Mat slurries were prepared from 10 g of each of the mat layers homogenized in 90 ml of a 5% NaCl solution. Duplicate enrichment cultures were prepared by mixing 10 ml of mat slurry with 90 ml of medium (site sea water, 0.1% yeast extract, and 0.25% xanthan gum). Three treatments were monitored: full community (no antibiotics), bacterial community (antifungal *Lamisil™*, 0.1 mg/ml) and fungal community (a mixture of four antibacterial – streptomycin, 1 mg/ml; kanamycin, 0.5 mg/ml; penicillin, 1 mg/ml; and chloramphenicol, 0.1 mg/ml). Cultures were incubated in flasks on a shaker to provide sufficient oxygen at 30°C to mimic the natural temperature conditions. Samples from enrichments were taken weekly to analyze for xanthan concentration for a total of 10 weeks. Xanthan concentration was analyzed using the phenol-sulfuric acid assay in which the glycosidic bond is hydrolyzed releasing a reduced sugar that reacts with phenol to form a yellow pigment that can be detected with a spectrophotometer (Spectronic™Genesys 20 Vis, from Thermo Fisher Scientific; Waltham, MA, USA) at 490 nm (Dubois et al., 1956;
Independent t-test and one-way ANOVA were performed to test the statistical significance between the season, layers, and treatments.

**RESULTS**

The results obtained from the first experiment with samples from the dry season show that xanthan degradation is gradual and constant throughout the 10 weeks in both treatments and layers (Figure 3). Enrichments from the full community from the top layer showed a gradual decrease of xanthan concentration during the first 3 weeks with a gradual increase during the next 4 weeks. This observation can be due to the presence of EPS producing microorganisms in the enrichment. After the seventh week, xanthan concentration decreases and by week 9, 90% of the xanthan is degraded. In enrichments from the bottom layer this drastic increase is not observed and by week 8, 92% of the xanthan is degraded. On the other hand, enrichments from the fungal community showed a similar pattern as the full community but less degradation of xanthan is observed. Only 55% of the xanthan is degraded by week 9 and 8 in the top and bottom layers, respectively (Figure 3). Differences between layers are only suggestive (t-test, p = 0.06) but there are significant differences between the treatments (t-test, p = 0.032).

Since more degradation was observed in the full versus the fungal communities, a second experiment was performed to include a third treatment to inhibit the fungal community and in which the bacterial community was favored. The experiment was done with samples from the wet season. The results show that xanthan degradation is very fast in the top layer with 90, 78, and 64% degradation in the first week in full, bacterial, and fungal community, respectively (Figure 4). The process is delayed by a week in the bottom layer. The same pattern of increasing and decreasing xanthan concentration through time was observed particularly in the enrichment for the fungal community. Significant differences were observed between treatments (one-way ANOVA, p = 0.001) but not between layers (t-test, p = 0.21). Significant differences were observed between the seasons (t-test, p = 0.0001). Degradation of xanthan is faster in the enrichments from the wet season in all treatments. This can be an indication that in the dry season the consumption of EPS is slower to maintain protection from external factors, or that the microbial community present during this season does not have the capacity to degrade these compounds.

The combined evidence from all experiments indicates that bacteria carried out approximately two-thirds of the xanthan degradation. Fungi, however, contribute to the process because degradation is always faster in the enrichments in which the full community is active. The degradation process is not restricted to one layer but occurs throughout the entire microbial mat, which coincides with studies that confirm that EPS concentration decreases with depth and that one of the main factors for this degradation is microbial activity (Green and Highley, 1997; Braissant et al., 2009).

Pichia guilliermondii and Penicillium sp. were two fungal isolates obtained in the fungal enrichment cultures (Duval-Pérez, 2010). Also, TRFLP profiles of the fungal ITS region shows that there are phylotypes that are stimulated in the fungal enrichments which are not seen in the full community and these phylotypes change through time (Duval-Pérez, 2010). Unexpected EPS quantities were observed during the experiment in some of the samples and some of the reasons could be analytical error, the xanthan molecules being affected by external factors such as temperature or more likely, that EPS was produced by the microbial community in the enrichments.

**DISCUSSION**

Microbial mats are characterized by a high production of EPS by microbial communities (Decho, 1990, 2000; Braissant et al., 2009). Independent t-test and one-way ANOVA were performed to test the statistical significance between the season, layers, and treatments.
The EPS provides a cohesive matrix that protects the microbial community from "hostile" environmental conditions (including high UV and salinity) enabling optimal growth, exchange of genetic material, and intra- and interspecies communication. EPS also provides protection from desiccation, a direct effect of solar radiation, and higher production is observed in dry seasons (Sutherland, 2001; Czaczyk and Myszka, 2007; Decho, 2010). Xanthan gum is a model, highly stable EPS that is produced by Xanthomonas campestris (Jansson et al., 1975; Holzwarth, 1976; Melton et al., 1976; Sutherland, 1997). Xanthan gum degrading enzymes have been isolated from a salt tolerant Bacillus sp., a Corynebacterium sp. and Paenibacillus alginolyticus, a soil isolate (Cadmus, 1982; Sutherland, 1982, 1984, 1987; Hou et al., 1986; Ruisensers et al., 1999). Some fungal cellases have also been shown to hydrolyze xanthan under restricted conditions (Rinaudo and Milas, 1980; Sutherland, 1984, 1987). The degradation of EPS is believed to contribute in the mineralization of CaCO3 (Redd et al., 2000; Dupraz and Visscher, 2005; Erocle, 2007), a very important process in global biogeochemical cycles, and the formation of stromatolites and other microbialites, which represent the oldest evidence of life on Earth (Awramik, 1984; Allwood et al., 2009). However, no organism capable of degrading EPS has been isolated from a microbial mat, although several studies have shown that EPS are readily utilized by the heterotrophic community of a variety of microbial mats, including those in Puerto Rico (Visscher et al., 1998, 1999, 2002, 2010; Decho et al., 2005; Braissant et al., 2009). Also, no other studies have looked at the degradation of EPS using microbial mats slurries and different antibiotic agents as the one presented here.

Microbial mats can be considered relatively simple ecosystems based on the different guilds present but molecular-based studies have shown that mats contain an extremely complex and unique assemblage of microorganisms that interact to produce a highly productive ecosystem surpassing rain forests (Visscher and Stolz, 2005; Baumgartner et al., 2009; Ley et al., 2006). Molecular studies also indicate that eukaryotic organisms (i.e., algae, ciliates, flagellates, fungi, and nematodes) are often present in these ecosystems (Cantrell et al., 2006; Feazel et al., 2008; Cantrell and Báez-Félix, 2010). In this paper, evidence of the diversity and potential role of fungi has been presented. A combination of techniques has been used to document fungal diversity in tropical hypersaline microbial mats. All the techniques were able to detect active and non-active fungal species. Cultural techniques favor fast growing fungi and can obscure the detection of slow growers.
Some of the fungi detected may not be true inhabitants of micro-
bial mats, but instead may represent propagules that arrived 
with wind-blown material or with rain. The fungal diversity 
DNA usually yields more phylotypes but some groups might 
not be detected due to biases in DNA extraction, PCR or cloning 
(Arnold et al., 2007).

Microbial mats are ecosystems where a high recycling of nutri-
ents is observed. The fungal community in the mats utilize organic 
compounds that are produced within the mat (such as EPS) or that are 
allochthonous (produced elsewhere). The evidence presented 
showed that most of the xenarthan degradation is done by the 
bacterial community, though the fungal community may aid in 
the transformation of xenanth by partially degrading the molecule
(Bianca et al., 1984, 1987). We showed 
that mats produce more and degrades less EPS in the dry sea-
son than in the wet season, presumably to maintain protection, 
which is more important during the dry season. The lower diversity 
and degradation capabilities of the fungal community in the mats 
could be attributed to low fungal biomass in the samples, absence 
of natural conditions or DNA extraction and PCR biases 
(Arnold et al., 2007).

ACKNOWLEDGMENTS

We would like to thank the students Manuel Acvedo, Héctor 
Amorés, Claribel Báez-Félix, and Manuel Soler who helped 
during the development of the research. Our special appreciation 
goes to Dr. D. Jean Lodge for reviewing the article and helping with 
statistical analysis and Dr. Juan C. Sosa Varela for his valuable con-
tribution to the statistical analysis. We thank the National Science 
Foundation, Career Advancement Award (NSF MCB 0718500) for 
their support.

REFERENCES

Acvedo, C. T. (1997). Frogg mar-
ines de arena, medusa y mangla de 
La Parguera, Puerto Rico: Master 
thesis, University of Puerto Rico at 
Humacao.

Acvedo, C. T. (2001). Marine Fungi 
in Puerto Rico: Ecology and Bioe-
nergization. Ph.D. thesis, Uni-
versity of Puerto Rico at Rio 
Piedras.

Alexander, E., Stock, A., Breiter, H. 
W., Robinou, A., Bremer, J., Vali-
mer, M. M., et al. (2009). Microbial 
ecology in the hypersaline toxic 
L’Africante deep-sea basin. Environ. 
Microbiol. 12, 3033–41.

Allen, M. A., Geh, F., Burns, B. P., 
and Neilan, B. A. (2009). Bacte-
rial diversity and eukaryotic diversity 
of smooth and pustular microbial 
mat communities in the hypersaline 
lagoon of Shark Bay. Geology 7, 
82–85.

Allhoff, A. C., Géning, J., P. Knoll, 
A. H., Burch, I. W., Anderson, M. 
S., Coleman, M. L., et al. (2009). Controls on development and diver-
sity of Early Archean stromatolites. 
Proc. Natl. Acad. Sci. U.S.A. 106, 
9548–9553.

Anderson, C. L., Tamir, T. A., and 
Ward, D. M. (1987). Formation and fate 
of fermentation products in hot spring 
cyanobacterial mats. Appl. Environ. 
Microbiol. 55, 2349–2352.

Arnold, A. E., Henik, D. A., Elise, 
R. L., Luttons, F., and Vidalopulos, 
R. (2007). Diversity and phylogenetic 
affinities of foliar fungal endophytes 
in lobster pastas prepared by culturing 
and environmental PCR. Mycol. Res. 111, 
185–206.

Austin, R. M., and Bartha, B. (1997). 
Microbial Ecology: Fundamental and 
Applications. Redwood City, CA: Ben-
jamin Cummings.

Azam, F. (1988). “Ancient strom-
atolites and microbial mats,” in Micro-
bial Mats. Stroma- 
толиты, ed. A. C. Starr, R. W. Cato-
nesth, and H. O. Halverson (New York, NY: Alan R. Liss Inc.), 1–22.

Beaumier, L. K., Spear, J. R., Buckley, 
D. H., From, R. B., Reul, P. P., 
Dugan, C., et al. (2009). Microbial diver-
sity of external microbial mats on the 
Hibbitt Bar Cay, Bahaman. Environ. 
Microbiol. 11, 2710–2729.

Braissant, O., Decho, A. W., Dugan, C., 
Guzik, C., Prunk, K. M., and Viss-
cher, P. T. (2007). Exopolymer sub-
stances of sulfate-reducing bacteria 
interacts with calcium at alkaline 
ph levels: role in formation of 
carbonates. Geobiology 5, 401–417.

Braissant, O., Decho, A. W., Prunk, 
K. M., Gallagher, K., Guzik, C., 
Dugan, C., Dugan, P., and Visscher, 
P. T. (2009). Characteristics 
and turnover of extracellular poly-
saccharides in a hypersaline micro-
bial mat. FEMS Microbiol. Ecol. 67, 
295–305.

Burgaud, G., Arnet, D., Durand, 
L., Cambon-Bonarisa, M. A., and 
Barbry, G. (2010). Marine cultur-
able yeasts in deep-sea hydrothermal 
vent systems: richness and associ-
ation with fauna. FEMS Microbiol. 
Ecol. 71, 121–135.

Calange, C. M. (2008). El hongos 
de las comunidades microbio- 
leras. PhD thesis, University of Puerto 
Rico at Humacao.

Cammack, R. (2002). Exopolymer 
substances of a microbial mat within 
a marine stromatolite. Geobiology 
20, 399–410.

Cantrell, S. A., and Báez-Félix, C. 
(2010). Fungal molecular diversity 
of a Puerto Rican subsurface hyper-
saline microbial mat. FEMS Ecol. 
342, 403–415.

Cantrell, S. A., Thave, R., Gande-
Cimentan, N., Zale, P., Acvedo, 
M., and Báez-Félix, C. (2011). Fungal communities of young and mature 
hyperhaline microbial mats. Mycol-
ogy (in press).

Cantrell, S. A., Casillas-Martínez, L., 
and Molina, M. (2016). Char-
acterization of fungi from hyper-
saline environments of solar salterns 
using molecular and biologi-
cal techniques. Mycol. Res. 110, 
962–973.

Cantrell, S. A., Dianou, J. C., Fall, 
J., Gande-Cimentan, N., and Zale, 
P. (2011). Unusal fungal richness 
Microbiol. 110, 1161–1174.

Casillas-Martínez, L., González, M. L., 
Fuentes-Figueroa, Z., Cantor, C. M., 
Nieves-Méndez, D., Hernández, C., 
et al. (2005). Community structure, 
gerarchical characteristics and min-
erology of hyperhaline microbial mat, 
Cabo Rojo, PR. Geomicrobiol. J. 22, 
269–283.

Casteño, D. R. (1984). “Composi-
tion of hot spring microbial mats: a 
summary,” in Microbial Mats. Stroma-
atolites, ed. E. Cohen, R. W. Cato-
nesth, and H. O. Halverson (New 
York, NY: Alan R. Liss Inc.), 
111–119.

Czapczyk, K., and Myrck, K. (2007). 
Biosynthesis of extracellular poly-
saccharide substances (EPS) and its 
role in microbial biofilm formation. 
Phil. J. Environ. Sci. 16, 799–806.

Decho, A. W. (1995). Microbial 
exopolymer secretions in ocean envi-
ronment: their role(s) in food webs 
and marine processes. Oceanogr. Mar. 
Biol. Ann. Rev. 28, 73–154.

Decho, A. W. (2000). “Exopoly-
mer-stabilized microenvironments as a struc-
turing agent for microbial activities,” in Microbial Solids, ed. B. Rul-
ingbier (Berlin: Springer Verlag), 
9–15.

Decho, A. W. (2010). Overview of 
biopolymer-induced mineralization: 
what goes on in biofilms? Ecol. 
Eng. 36, 135–144.

Decho, A. W., Viscich, P. T., and Reid, B. 
P. (2005). Production and cycling of 
natural microbial exopolymers (EPS) 
within a marine stromatolite. Palae-
ogeogr. Palaeoclimatol. Palaeoecol. 219, 
71–86.

Dohns, M., Gilles, K., Hamilton, T., 
Roberts, P., and Smith, E. (1996). 
Colorimetric method for determina-
tion of sugars and related substances. 
Anal. Chem. 28, 350–355.

Dupraz, C., and Visscher, P. T. (2003). 
Microbial lithification in modern 
marine microstromatolites and hyper-
saline mats. FEMS Microbiol. 135, 
429–438.

Dural-Pérez, L. (2005). EPS Depara-
lications of Microorganisms from 
Hypersaline Marine Microbial Mats. 
Master thesis, Universidad del Turabo, 
Gurabo.

Edgcomb, V. P., Skok, D. T., Tsou, A., 
de Vera Gomez, A., and Sogin, M. 
L. (2002). Benthic eukaryotic diver-
sity in the Guantans basin hydrother-
mal vent environment. Proc. Natl. 
Acad. Sci. U.S.A. 99, 7658–7662.

Erofeev, C. (2007). Bacterially induced 
mineralization of calcium carbonate: 
the role of exopolymeric substances and 
capsules. Microbiol. Microecol. 15, 42–50.

Frontiers in Microbiology | Extreme Microbiology
April 2013 | Volume 3 | Article 424 | 6
April 2013 | Volume 3 | Article 424

Gunde-Cimerman, N., Zalar, P., Hoog, S., and Plemenitaš, A. (2000). “Megalohaline microbial mats in hypersaline lakes: a new diversity and tropical forest functioning,” in Bioremediation and Ecosystem Processes in Tropical Forests, eds G. H. Orians, D. R. and J. H. Croghan (Berlin: Springer-Verlag), 69–100.

Melton, L. D., Mindt, L., and Rees, A. (2011). Microbial extracellular polysaccharide from Xanthomonas campestris of the extracellular polysaccharide of the black yeasts. 

Appl. Environ. Microbiol. 77, 385–395.

Cantrell SA and Duval-Pérez Fungi in microbial mats

Soil Biol. Biochem. 38, 3107–3112.

Frontiers in Microbiology. doi: 10.3389/fmicb.2012.00424

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 August 2012; accepted: 27 November 2012; published: 07 April 2013.

Copyright © 2013 Cantrell and Duval-Pérez. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited with any copyright notices concerning any third-party graphics etc.

www.frontiern.org

April 2013 | Volume 3 | Article 424

Fungi in microbial mats

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 August 2012; accepted: 27 November 2012; published: 07 April 2013.

Citation: Cantrell SA and Duval-Pérez Fungi in microbial mats

Soil Biol. Biochem. 38, 3107–3112.

Frontiers in Microbiology. doi: 10.3389/fmicb.2012.00424

Copyright © 2013 Cantrell and Duval-Pérez. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited with any copyright notices concerning any third-party graphics etc.

www.frontiern.org

April 2013 | Volume 3 | Article 424

Fungi in microbial mats

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 August 2012; accepted: 27 November 2012; published: 07 April 2013.

Citation: Cantrell SA and Duval-Pérez Fungi in microbial mats

Soil Biol. Biochem. 38, 3107–3112.

Frontiers in Microbiology. doi: 10.3389/fmicb.2012.00424

Copyright © 2013 Cantrell and Duval-Pérez. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited with any copyright notices concerning any third-party graphics etc.

www.frontiern.org

April 2013 | Volume 3 | Article 424

Fungi in microbial mats

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 August 2012; accepted: 27 November 2012; published: 07 April 2013.

Citation: Cantrell SA and Duval-Pérez Fungi in microbial mats

Soil Biol. Biochem. 38, 3107–3112.

Frontiers in Microbiology. doi: 10.3389/fmicb.2012.00424

Copyright © 2013 Cantrell and Duval-Pérez. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited with any copyright notices concerning any third-party graphics etc.

www.frontiern.org

April 2013 | Volume 3 | Article 424

Fungi in microbial mats

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 August 2012; accepted: 27 November 2012; published: 07 April 2013.

Citation: Cantrell SA and Duval-Pérez Fungi in microbial mats

Soil Biol. Biochem. 38, 3107–3112.

Frontiers in Microbiology. doi: 10.3389/fmicb.2012.00424

Copyright © 2013 Cantrell and Duval-Pérez. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited with any copyright notices concerning any third-party graphics etc.

www.frontiern.org

April 2013 | Volume 3 | Article 424

Fungi in microbial mats

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 August 2012; accepted: 27 November 2012; published: 07 April 2013.

Citation: Cantrell SA and Duval-Pérez Fungi in microbial mats

Soil Biol. Biochem. 38, 3107–3112.

Frontiers in Microbiology. doi: 10.3389/fmicb.2012.00424

Copyright © 2013 Cantrell and Duval-Pérez. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited with any copyright notices concerning any third-party graphics etc.

www.frontiern.org

April 2013 | Volume 3 | Article 424

Fungi in microbial mats

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 August 2012; accepted: 27 November 2012; published: 07 April 2013.

Citation: Cantrell SA and Duval-Pérez Fungi in microbial mats

Soil Biol. Biochem. 38, 3107–3112.

Frontiers in Microbiology. doi: 10.3389/fmicb.2012.00424

Copyright © 2013 Cantrell and Duval-Pérez. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited with any copyright notices concerning any third-party graphics etc.

www.frontiern.org

April 2013 | Volume 3 | Article 424

Fungi in microbial mats

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 August 2012; accepted: 27 November 2012; published: 07 April 2013.

Citation: Cantrell SA and Duval-Pérez Fungi in microbial mats

Soil Biol. Biochem. 38, 3107–3112.

Frontiers in Microbiology. doi: 10.3389/fmicb.2012.00424

Copyright © 2013 Cantrell and Duval-Pérez. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited with any copyright notices concerning any third-party graphics etc.

www.frontiern.org

April 2013 | Volume 3 | Article 424

Fungi in microbial mats

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 August 2012; accepted: 27 November 2012; published: 07 April 2013.

Citation: Cantrell SA and Duval-Pérez Fungi in microbial mats

Soil Biol. Biochem. 38, 3107–3112.

Frontiers in Microbiology. doi: 10.3389/fmicb.2012.00424

Copyright © 2013 Cantrell and Duval-Pérez. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited with any copyright notices concerning any third-party graphics etc.