Regulation and coordination of nuclear envelope and nuclear pore complex assembly

Michaela Clever,†1 Yasuhiro Mimura,1 Tomoko Funakoshi1,2 and Naoko Imamoto2,†

†Current affiliation: Göttingen University Medical School; Institute for Biochemistry and Molecular Cell Biology; Göttingen, Germany

Keywords: nuclear envelope, nuclear pore complex, inner nuclear membrane, nuclear reassembly, open mitosis, lamin, nucleoporin

Introduction

An overview of the nuclear envelope (NE). The nuclear envelope (NE) is the physical barrier between the cytoplasm and nucleoplasm. The NE is composed of two lipid bilayer membranes: the outer nuclear membrane (ONM), which is continuous with the endoplasmic reticulum (ER), and the inner nuclear membrane (INM), which contains a specific subset of more than 60 INM or NE transmembrane proteins.† The ONM and the INM, which are ~20–40 nm apart, fuse at places where the nuclear pore complex (NPC) is embedded. NPCs provide an aqueous channel for molecular exchange between the cytoplasm and nucleoplasm. The NPC is a large structure (60–125 MDa) with octahedral symmetry assembled by multicopies of ~30 different proteins called nucleoporins or Nups.†,6

Small molecules below ~30 kDa freely diffuse through the NPC, while larger molecules cannot pass the permeability barrier of the NPC, established by hydrophobic phenylalanine-glycine (FG) repeats of Nups (FG-Nups).5 For passage of larger molecules through the NPC, they must bind to nuclear transport carriers, such as importin β family members, p10/NTF2, TAP/NFX or Hikeshi that interact with FG-Nups and possess ability to translocate through NPCs (for reviews, see refs. 6–8).

The small GTPase Ran plays key roles in determining the directionality of nuclear transport, mediated by importin β family members, by regulating cargo binding and release.6,7 The GDP form of Ran is converted into the GTP form within the nucleus by chromatin bound Ran GAP-exchange factor (GAP) RCC1. The GTP form of Ran is converted into the GDP form by the Ran GAP-expressing proteins (GAP) RanGAP1 in the cytoplasm, thereby creating a steep RanGTP concentration gradient at the boundary of the NE. For the nuclear import, importins bind to their cargoes in the cytoplasm where RanGTP concentration is low, but dissociate from the bound cargos within the nucleus when RanGDP bind to importins. The nuclear export occurs in the opposite manner: exportins bind cargoes in the presence of RanGTP and forms a trimeric complex, but release them when RanGTP is converted into RanGDP.

In multicellular organisms, the nuclear lamina, a meshwork of type V intermediate filaments, A-type and B-type lamins, lies...
beneath the INM and maintains the nuclear shape and structure. Moreover, the nuclear lamina stays in contact with the cytoskeleton through its interaction with the highly conserved linker of nucleoskeleton and cytoskeleton (LINC) complex (see refs. 11–13). The LINC complex consists of KASH (Klarsicht, Anc-1 and Syne homology) and Sun1 and Unc-84 (SUN) proteins, which are membrane spanning proteins that localize at the ONM and INM, respectively. Sun proteins form dimers through their coiled-coiled domain and bind KASH proteins in the INM. On the other hand, lamin B is present at the C-termini.

At the ONM, KASH proteins interact either with actin filaments, microtubules, intermediate filaments or centrosomes via their cytoplasmic tail.

Besides the structural role, the nuclear lamina functions in gene stability and chromatin organization, which is associated with various human diseases, collectively called laminopathies.17–19

The fate of the nuclear envelope in mitosis. In the course of "open" mitosis, the NE disassembles, also referred to as nuclear envelope breakdown, and follows the fate described below:

In prophase, the permeability of the NE initially increases as NPC disassemble in a stepwise manner upon phosphorylation by mitotic kinases such as CDK1 and Neks.20 The nuclear membrane is then partially ruptured in a process assisted by microtubule-motor proteins, dynein and its regulator dynactin21 or membrane-bound until reformation of the NE in anaphase. Precursors of A-type lamins are modified in the same way but the last 5 amino acids are cleaved by the metalloprotease Zmpste24/FACE1, which renders mature A-type lamins membrane-unattached.22,23 Various human diseases like Emery-Dreifuss muscular dystrophy are related to A-type lamins and its interaction partners, but only a few diseases are known, which derive from B-type lamins.24–26

Early experiments tested the function of lamins during NE reformation in vitro with Xenopus laevis and Drosophila embryo extracts. X. laevis has three different B-type lamins (B1–B3), whereby lamin B3 is the most abundant one. Drosophila melanogaster expresses only one B-type lamin (lamin Dm0). Immunodepletion of B-type lamins from Drosophila embryo extracts inhibited vesicle attachment to chromatin27 and chromatin decondensation in nuclear assembly assays in Xenopus egg extracts.28 Further immunodepletion of Xenopus lamin B3 gave rise to fragile and small nuclei yet with a scaled nuclear membrane,29 which were devoid of a lamina and lost their ability for DNA replication.30 In an alternative approach, Lopez-Soler and colleagues used a C-terminal peptide of Xenopus lamin B3 that bound and inhibited the function of endogenous lamin B3 and disturbed nuclear membrane targeting to chromatin, NPC formation and lamin polymerization in vitro.31 Apparent contradictions of lamin B depletion in Xenopus or Drosophila extracts could be a result of cross-reactivity of the lamin antibodies, unspecific interactions of the lamin peptide or the inefficient removal of lamin B3 from extracts. In total, these results demonstrated a role of B-type lamin in establishment of a functional nucleus. In mammalian cells, recruitment of B-type lamin to mitotic chromosomes is critical for cell survival.32,33 However, it was reported, that B-type lamin is essential for organogenesis but not for differentiation of embryonic stem cells.34 Accumulating evidences indicate that lamins have a significant, physiological role during development in various organisms,35–38 as well as in senescence,39 which might be due to their function in the maintenance of the nuclear morphology and the interaction network with other proteins at the NE that involves signaling pathways.

During NE reformation, recruitment of lamin B to mitotic chromosomes requires dephosphorylation by PP1. Steen et al.40 identified the PP1-substrate specifier AKAP (A-kinase anchoring protein) 149 as an integral membrane protein of the NE and ER and Lamins at the End of Mitosis

The role of lamins in NE reformation. In mammals, one class of lamins, the A-type lamins, is derived from LMNA gene locus, which expresses the two splice variants lamin A and lamin C. The other class of lamins is called B-type lamins, including three different proteins. Lamin B1 is encoded by the gene locus of LMNB1, and lamin B2 and B3 (B3 is only expressed in testis) are encoded by LMNB2 (reviewed by refs. 9, 10, 32 and 33). At least one form of B-type lamin is present in all cell types.

It was recently shown that lamin B and Nups also have important functional NE.31

During metaphase, most NE components are either dissolved or membrane-bound until reformation of the NE in anaphase. It was recently shown that lamin B and Nups also have important, mitotic functions.20,24

In late anaphase, NE reformation takes place on mitotic chromosomes, which serve as assembly platform for the highly controlled de novo assembly of NPCs in space and time and the reconstruction of the nuclear lamina as well as of the nuclear membrane, originating from the mitotic ER. Further, the compaction and structure of chromatin (condensed/decondensed) regulates binding of NE proteins and supports reformation of a functional NE.

Nups, lamins and some INM proteins localize on sister chromosomes in a mutually related manner, indicating that NPC assembly and reconstruction of other NE structures involving INM proteins and lamins are coordinated. However, the molecular basis for such coordination is still very poorly understood.

Recruitment of Nuclear Membrane Proteins

In the course of NE reformation, the NE initial stepwise disassembly is a result of cross-reactivity of the lamin antibodies, unspecific interactions of the lamin antibody or the inefficient removal of lamin B3 from extracts. In total, these results demonstrated a role of B-type lamin in establishment of a functional nucleus. In mammalian cells, recruitment of B-type lamin to mitotic chromosomes is critical for cell survival. However, it was reported, that B-type lamin is essential for organogenesis but not for differentiation of embryonic stem cells. Accumulating evidences indicate that lamins have a significant, physiological role during development in various organisms, as well as in senescence, which might be due to their function in the maintenance of the nuclear morphology and the interaction network with other proteins at the NE that involves signaling pathways.

During NE reformation, recruitment of lamin B to mitotic chromosomes requires dephosphorylation by PP1. Steen et al. identified the PP1-substrate specifier AKAP (A-kinase anchoring protein) 149 as an integral membrane protein of the NE and ER.
membrane. In HeLa cells, when association of AKAP149 with PP1 scaffolds is inhibited, phosphorylation of B-type lamins is abolished at the end of mitosis, while it had no effect on NE localization of A-type lamins or INM proteins such as emerin and LBR. The different effect of AKAP149 on localization of B-type lamins and A-type lamins suggests that their way of assembly at end of mitosis is not interdependent and is regulated differently. Live imaging and immunofluorescent staining demonstrated that reformation of the nuclear lamina in mammalian cells occurs later than reformation of the nuclear envelope. INM proteins, which have been studied in relation to their function in NE formation, are described below.

LBR: One of the best-studied INM proteins is the lamin B receptor (p58/LBR), which was initially identified from avian erythrocytes as lamin-binding protein. The N-terminus of human LBR extends into the nucleoplasm, whereas the C-terminal region of LBR contains eight predicted transmembrane segments with homology to the sterol reductase ERG24 (human TM7S2F2/DHRCL1). The N-terminus interacts with chromatin, and chromatin-binding proteins like heterochromatin binding protein (HP1), HAY5, histone H3/4, the nuclear transport receptor importin β and the nucleoporins Pom121 and ELYS/Me258.

There are two rare human diseases related with LBR: hydroxyectoderm calcification—moth-eaten (HEM)/Greenberg skeletal dysplasia and Pelger-Huët anomaly (PHA). The PHA syndrome, a hematological condition, induces hypoglobulination of nuclei in granulocytes and detachment of heterochromatin from the NE. HEM leads to abnormalities in skeletal growth and displays parallels to a deficiency of 3β-hydroxysterol Δ(7)-reductase, which implies that LBR has a role in cholesterol metabolism. Overexpression of Xenopus LBR in HeLa cells caused membrane overproduction and stack formation, suggesting a role of LBR in membrane growth. Whether LBR functions as sterol reductase is unclear and awaits in-depth investigation.

Multiple studies support the relevance of LBR for NE formation. LBR is required in vitro for nuclear membrane assembly in sea urchin (sea urchin homolog p56), rat hepatocytes or turkey erythrocyte extracts, and in Xenopus egg extract, depending on importin β and RanGTP. Depletion of LBLR in HeLa cells increased apoptotic marker caspase-3 in G1-phase and delayed NE formation in vivo. It was suggested that LBR plays a redundant function with other INM proteins (see next section).

LBR is phosphorylated by several kinases such as a SR-specific kinase and cdc2. Tseng et al. demonstrated that the mitotic phosphorylation of hLBR on residue S71 and S86 by CDK1 hindered the premature attachment of the LBR-associated nuclear membrane to chromatin, from which they concluded that mitotic phosphorylation of hLBR is important for temporal control of NE assembly.

Nucleus 107

www.landesbioscience.com

Contribution of Nucleoporins to NE Formation

NPC structure. The basic molecular architecture of the NPC is well conserved among eukaryotes. Several Nups behave as subcomplexes throughout the cell cycle. Nups are divided into four groups based on their structural roles in the NPC structure (Fig. 1): transmembrane Nups, scaffold Nups, central Nups and peripheral Nups. In vertebrates, three transmembrane Nups, Pom112, BAF and the transmembrane Nups Ndc1 and Pom121 delayed reformation of a transport competent NE. Double depletion of the LBR and Lap2β enhanced the delay of NE formation, whereas exogenously expressed LBR or BAF rescued NE formation in Lap2β-depleted cells. Further, overexpression of each INM protein caused accelerated NE formation in contrast to overexpression of the OMM protein nesprin-3α, indicating that INM proteins and their interacting partners such as BAF have a redundant role in nuclear membrane recruitment.

LEMD domain-containing proteins. Another group of INM proteins, which interacts with lamins and is potentially involved in NE formation, are LEM (named after INM proteins Lap2, emerin, Man1) domain containing proteins. The LEM domain, formed by 40 aa of two parallel α-helices, is shared by non-related INM proteins, including emerin, isoforms of lamina-associated polypeptide (Lap)2 (α, β, γ, δ, ζ), Man1, Lem2, 3 and 4 and yet uncharacterized Lem5. The LEM domain is specifically recognized by the protein Barrier-to-Autointegration Factor (BAF). BAF, an A-Type Lamin binding protein, forms a dimer and displays DNA-looping activity, necessary for chromatin organization. The role of BAF in chromatin decondensation supports proper NE assembly. The chromatin-binding affinity of BAF is decreased after phosphorylation by VRK1 kinase upon mitotic entry. Recently, it was reported that C. elegans LEM4 protein LEM4-L and the human ortholog Lem4 inhibited the phosphorylation activity of VRK-1 in vitro and interacted with PP2A, indicating that Lem4 regulates the BAF kinase and the phosphatase that controls the function of BAF in chromatin binding and NE reformation. In U2OS cells, RNAi-induced depletion of the LBR, Lap2β, Man1, BAF and the transmembrane Nups Ndc1 and Pom121 delayed reformation of a transport competent NE. Double depletion of the LBR and Lap2β enhanced the delay of NE formation, whereas exogenously expressed LBR or BAF rescued NE formation in Lap2β-depleted cells. Further, overexpression of each INM protein caused accelerated NE formation in contrast to overexpression of the OMM protein nesprin-3α, indicating that INM proteins and their interacting partners such as BAF have a redundant role in nuclear membrane recruitment.
nucleoplasmic side.84,85 The permeability barrier and peripheral Nups are important for the function of the NPC in exchanging macromolecules.86

Two different models of NPC assembly in interphase and in mitosis. In metazoans, NPCs are assembled twice during cell cycle: during interphase and in postmitosis.87-90 It is proposed that interphase NPC formation has different preconditions from postmitotic NPC formation: it requires insertion of nucleoporins into sealed double nuclear membranes from both sides.90 For this, ONM and INM must fuse91 and the underlying nuclear lamina must locally restructure. Furthermore, the CDK activity is necessary for NPCs assembly during interphase, but not in post-mitosis.92 Recently, it was reported that Pom121 plays a critical role for early steps of interphase NPC assembly.93,94,95

Postmitotic NPC assembly occurs in a highly temporally and spatially ordered manner.96,97 There are two favored models. The pre-NPC model suggests that formation of a pre-pore structure takes place on chromatin prior to membrane attachment and fusion.97-99 In contrast, the NPC insertion model expects that NPCs are assembled into pre-existing double membranes during postmitosis, which is comparable to interphase NPC formation.

In line with the pre-NPC model, it was proposed that ELYS/Mel28 is the very first Nup, which targets mitotic chromosomes via its chromatin-binding, AT-hook domain.100 ELYS/Mel28 recruits the subcomplex Nup107–160, followed by the transmembrane nucleoporin Pom121 that interacts with the Nup93–205 complex and Nup107–160 complex.101 Some members of the Nup107–160 complex such as Nup133 contain an ALPS motif, which senses and assists binding to membrane curvature.102 The vertebrate nucleoporin ELYS/Mel28, was identified as putative transcription factor during embryogenesis in mouse.104-106 Evidence accumulated, pointing out that the major function of ELYS/Mel28 in metazoans lies at the NPC. Depletion of ELYS/Mel28 blocks postmitotic NPC formation.107-110 ELYS/Mel28 directly interacts with the Nup107–160 complex, which forms the body of NPCs and is essential for NPC formation.99 It was recently demonstrated that ELYS/Mel28 and the Nup107–160 complex are involved in regulation of the CPC, composed of Survivin, Borealin, INCENP and Aurora B kinase. Depletion of Seh1, a component of the Nup107–160 complex, which is responsible for targeting the Nup107–160 complex to kinetochores, caused mislocalization of Survivin and Aurora B in mitosis and induced reduction of the active kinesin MKLP1, which is an Aurora B substrate and necessary for cytokinesis.111 Similarly, depletion of ELYS/Mel28 increased the number of cells with unresolved midbody structures.112 However, mechanisms of regulation of the CPC through ELYS/Mel28 and the Nup107–160 complex are unknown. Interestingly, depletion of the nuclear basket components Nup53 and Nup50 induced a delay in the Aurora B-mediated abscission checkpoint.113 Together, these
NE reformation through ELYS/Mel28 and other Nups. Beside the primary role of ELYS/Mel28 in postmitotic NPC formation, a function in NE formation was reported for C. elegans embryos, where reduction of MEL-28 inhibited formation of a functional NE, which had neither NPCs nor a lamina and was only partially sealed.109 In comparison, in vitro assembled nuclei from Xenopus egg extracts depleted of MEL-28 were smaller and devoid of NPCs but enclosed by a thin nuclear membrane.110 Interestingly, in HeLa cells, reduction of ELYS/Mel28 disturbed the recruitment and distribution of INM proteins.59 While LBR was dispersed upon ELYS/Mel28 depletion, core binding INM proteins such as emerin, BAF and Lap2α still targeted to chromosomes but were affected in their accumulation at the core region, implying a role for ELYS/Mel28 in the overall regulation of the NE architecture during postmitotic assembly.111

Other nucleoporins, which have an essential role in NE formation, are components of the Nup93–205 complex, Nup53,51,112 and Nup93, which as the transmembrane pore proteins Ndc1 and Pom121 inhibited NE formation.113 In Nup53-depleted Xenopus extracts, NE formation was completely inhibited.114 A truncated Nup53, which binds Nup155, in X. laevis, can restore NE formation in Nup53-depleted extracts.115 Comparably, in C. elegans, a mutated Nup53, where the mutation affects the Nup155-interacting region, demonstrated a similar defect in NE formation.116 These results indicated that the interaction of Nup53 and Nup155 is necessary for successful NE formation in C. elegans and X. laevis.117,118 Moreover, Nup53 knockout is lethal in mouse and mouse embryonic fibroblasts119,120 as well as the pore-free island, during interphase. A relation between the NPC and NE components is further supported by the observation that depletion of the LINC complex protein Sun1, which can be found at the pore-rich region, induced defects in interphase NPC assembly and led to NPC clustering.120,121 In HeLa cells, both NPC subdomains, the pore-rich region and the pore-free island, are established postmitotically in telophase (Fig. 2A and B), where they correspond to the chromosomal noncore region and to the chromosomal core region, respectively.122-124 The core region is the region on chromosomes next to the spindle pole and central spindle areas, whereas the noncore regions are the peripheral regions on chromosomes surrounding the core region. The uneven distribution of NE constituents can be traced back to asymmetric targeting of A- and B-type lamins and their interacting INM proteins to telophase chromosomes. Thereby, BAF recruits LEM domain containing proteins such as emerin and Lap2α to the core region.125-127 The majority of LEM domain containing proteins specifically binds A-type lamin and A-type lamin itself requires BAF for localization at the core region.128-130 In contrast, B-type lamins and interacting INM proteins as well as Nups bind to the noncore regions. It was proposed that the mitotic spindle facilitates recruitment of INM proteins to the core region as microtubule (MT) disturbing chemicals diminished accumulation of proteins at the core region.128-130

Formation of NE subdomains. In early interphase, NPCs and lamins are unevenly distributed in cultured mammalian cells, e.g., HeLa, U2OS and IMR90 cells.129,130 human prostate cancer cell line131 and in vivo in D. melanogaster.132 The NE region, at which the density of NPCs is high, is termed pore-rich region, in contrast to the NE region, which is devoid of NPCs, designated as pore-free island.133 Generally in human cells, the pore-rich region contains B-type lamin, Sun1, LBR and NPCs, whereas A-type lamin and binding partners such as emerin, Sun2 and BAF are accumulated at pore-free island.134-136 These structural differences disappear during cell-cycle progression from G1 to S, and all NE components are uniformly spaced at the NE in G2. Large pore-free islands were maintained in cells in which their interphase NPC formation and cell cycle progression was suppressed by a CDK inhibitor.137 This result indicated that CDK activity and consequently de novo NPC formation are necessary for the reduction of pore-free islands. Furthermore, CDK activity was required for the uniform distribution of NPCs as well as of LBR and B-type lamin, which are part of the pore-rich region. On the other hand, the de-accumulation of A-type lamin and emerin, however, was not dependent on CDK activity.138 These evidences strongly suggest that there is a relationship between NPC assembly and other NE components, especially INM proteins and lamins at the pore-rich region, during interphase. A relation between the NPC and NE components is further supported by the observation that depletion of the LINC complex protein Sun1, which can be found at the pore-rich region, induced defects in interphase NPC assembly and led to NPC clustering.120,121 In HeLa cells, both NE subdomains, the pore-rich region and the pore-free island, are established postmitotically in telophase (Fig. 2A and B), where they correspond to the chromosomal noncore region and to the chromosomal core region, respectively.122-124 The core region is the region on chromosomes next to the spindle pole and central spindle areas, whereas the noncore regions are the peripheral regions on chromosomes surrounding the core region. The uneven distribution of NE constituents can be traced back to asymmetric targeting of A- and B-type lamins and their interacting INM proteins to telophase chromosomes. Thereby, BAF recruits LEM domain containing proteins such as emerin and Lap2α to the core region.125-130 The majority of LEM domain containing proteins specifically binds A-type lamin and A-type lamin itself requires BAF for localization at the core region.128-130 In contrast, B-type lamins and interacting INM proteins as well as Nups bind to the noncore regions. It was proposed that the mitotic spindle facilitates recruitment of INM proteins to the core region as microtubule (MT) disturbing chemicals diminished accumulation of proteins at the core region.128-130

Conclusion

In metazoans, the overall NE architecture is established during postmitotic formation of the NE. The NE reformation requires the reassembly of the NPCs embedded into a sealed nuclear membrane, which is formed from the mitotic ER and reorganized into an ONM and INM, as well as the assembly of the nuclear meshwork of A- and B-type lamins. The coordinated sequence of reassembly during the end of mitosis poses an organizational challenge, which must be overcome to ensure the successful
Figure 2. For figure legend, see page 111.
steady and dynamic interactions at the interphase NE. Tackling mitotic roles must be examined in more detail. Nups are required earlier than in anaphase, although their presence throughout mitosis and regulate mitotic progression. Therefore, the structural or serve as scaffold for specialized chromatin in interphase changes facilitate NE subdomain formation is still an open question. Vice versa, NE subdomains could change the chromatin structure or serve as scaffold for specialized chromatin in interphase, which needs to be addressed.

Besides roles in NE reformation, Nups play important roles throughout mitosis and regulate mitotic progression. Therefore, Nups are required earlier than in anaphase, although their presence throughout mitosis and regulate mitotic progression. Therefore, the structural or serve as scaffold for specialized chromatin in interphase changes facilitate NE subdomain formation is still an open question. Vice versa, NE subdomains could change the chromatin structure or serve as scaffold for specialized chromatin in interphase, which needs to be addressed.

The interplay of NE proteins during mitosis provides a basis for steady and dynamic interactions at the interphase NE. Tackling open questions about postmitotic NE reformation will give deeper insights into the control and organization of the concerted, molecular assembly of a stable NE structure in interphase, which is capable of molecular transport, signaling and chromatin regulation.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
This work was supported by RIKEN Special Funding and funding awarded to N.I. by the Japan Society for the Promotion of Science (JSPS) through the Funding Program for Next Generation World-Leading Researchers (NEXT Program), initiated by the Council for Science and Technology Policy (CSTP). M.C. thanks the RIKEN Joint Graduate School Program, International Association (JPA) and the Dorothea Schlierl Fellowship for support.

References
1. Wiles KL, Berg JM. The nuclear envelope at a glance. J Cell Sci 2011; 124:2019-21. doi:10.1242/jcs.059831.
2. Worman HJ. The nuclear envelope: structure and relation to cytoplasmic membranes. J Histochem Cytochem 1995; 43:127-78. PMID:19322549; http://dx.doi.org/10.1177/237-91.
3. Brain MR, Schmitz D, Longworth JC, Hotta H, Yamamoto T, Hotta K. Novel nuclear import pathway mediated by Hikeshi. Proc Natl Acad Sci U S A 2003; 100:1139-44. doi:10.1073/pnas.0332015100. PubMed:12550968; http://dx.doi.org/10.1073/pnas.0332015100.
4. Guertin DA. Coordination of NPC and Nucleoporins: NPC, Nuclear Pores, and Nuclear Envelope Integrity. J Cell Biochem 2001; 81:367-74. doi:10.1002/jcb.10107. PubMed:11233583; http://dx.doi.org/10.1002/jcb.10107.
5. Staniura CS, Trotman JP, Lotz MJ, de Kóger V. Lamin A/C is required for nuclear envelope formation and homeostasis. Proc Natl Acad Sci U S A 2006; 103:18701-6. doi:10.1073/pnas.0607082103. PubMed:17005035; http://dx.doi.org/10.1073/pnas.0607082103.
6. Moure N, Behny R, Francois M, van der Maarel S, Parent D, Colas J, Chatellier L, et al. Membrane birth and death: a novel nuclear import receptor mediated by Ikubos. J Virol 2012; 86:1120-9. doi:10.1128/JVI.02778-11. PubMed:22245528; http://dx.doi.org/10.1128/JVI.02778-11.
7. Staniura CS, Trotman JP, Lotz MJ, de Kóger V. Lamin A/C is required for nuclear envelope formation and homeostasis. Proc Natl Acad Sci U S A 2006; 103:18701-6. doi:10.1073/pnas.0607082103. PubMed:17005035; http://dx.doi.org/10.1073/pnas.0607082103.
8. Itoh M, Otani R, Tada H, Itoh M, Takahashi Y, Matsuda M, et al. A novel inner nuclear membrane protein, Lamin A/C, is required for nuclear envelope formation and homeostasis. J Cell Sci 2002; 115:1120-9. doi:10.1242/jcs.001323.
9. Hofmann FD, Brain MR, Schmitz D, Shortaker DR, Spass TF. Nuclear lamina building blocks and their role in nuclear-envelope breakdown. Genes Dev 2004; 18:533-47. doi:10.1101/gad.118788.3. PubMed:14748223; http://dx.doi.org/10.1101/gad.118788.3.
10. Dohra T, Adam SA, Tanimoto M, Hayashi T, Goldman RD. Nuclear lamina. Cold Spring Harb Perspect Biol 2010; 2:a000947. doi:10.1101/cshperspect.a000947. PubMed:20602448; http://dx.doi.org/10.1101/cshperspect.a000947.
11. Starr DA, Friell H. NPC-1. Interactions between nuclear pore and the cytoskeleton are mediated by SUMO-KASH nuclear-envelope bridges. Annu Rev Genet 2010; 44:261-84. doi:10.1146/annurev-genet-010309-123537. PubMed:20707227; http://dx.doi.org/10.1146/annurev-genet-010309-123537.
12. Itoh R, Komuro H, Itoh M, Kitajima M, et al. The core region in telophase (HeLa cell): red, LB (CPC) that contains Aurora B kinase, the phosphorylation gradient is disrupted, which causes an aberrant distribution of core region proteins, including A-type lamins and their binding partners and also disturbs cytokinesis. RanGTP-gradient is established throughout cell cycle by chromosome-bound RCC1. S-Nups, scaffold Nups; P-Nups, peripheral Nups, NPC, nuclear pore complex. (B) Left, photograph showing core region and noncore region in telophase (HeLa cell): red, LB; green, emerin; blue, ELSY/Max28. Right, photographs of the nuclear surface of early G1 HeLa cells shows IF staining of emerin (upper picture), which accumulated at pore-free sites and IF staining of NPCs (lower picture). Pore-free sites originate from the mitotic core regions, whereas pore-rich regions derive from mitotic noncore regions as depicted in the scheme.
Lamin activity is essential for nuclear envelope assembly. EMBO J 2000; 19:2929-38; PMID:10991596; http://dx.doi.org/10.1093/emboj/19.13.2929.

Choi Y, Kim Y, Lee S, Kim J, et al. Essential roles for lamin B receptor and its regulation at the end of mitosis. EMBO J 2009; 28:33281-93; PMID:20576617; http://dx.doi.org/10.1038/emboj.2009.335.

Goldberg MW, Jenkins H, Allen TP, et al. Nuclear envelope formation and targeting membrane vesicles to chromatin during nuclear envelope assembly. J Cell Biol 2004; 165:1159-74; PMID:15181914; http://dx.doi.org/10.1083/jcb.200308091.

Ma Y, Cai S, Lv Q, Jiao J, Wang Q, et al. Requirement for lamin B receptor and its regulation at the end of mitosis: implications on cell survival and nuclear envelope integrity in G1 phase. J Biol Chem 2009; 284:33281-93; PMID:20576617; http://dx.doi.org/10.1038/emboj.2009.335.

Collas P. AKAP149 is a novel PP1 specifier required for nuclear envelope assembly. EMBO J 2000; 19:2929-38; PMID:10991596; http://dx.doi.org/10.1093/emboj/19.13.2929.

Georgatos SD. The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. J Cell Biol 1996; 135:1199-210; PMID:9182656; http://dx.doi.org/10.1083/jcb.135.5.1199.

Shimi T, Bae J, Park J, Hori T, et al. Nuclear transport and passengers: conducting cell division. Nat Rev Mol Cell Biol 2008; 9:464-77; PMID:18478030; http://dx.doi.org/10.1038/nrm2426.

Walther TC, Askjaer P, Collas P, et al. Inner nuclear membrane protein EMAP-I associates with lamin B receptor. EMBO J 2005; 24:578-90; PMID:15565159; http://dx.doi.org/10.1038/sj.emboj.7600604.

Clarke PR, Zhang C. Spatial and temporal coordination of nuclear envelope assembly events: from spindle to nuclear pore assembly. J Cell Biol 2009; 186:183-91; PMID:19620630; http://dx.doi.org/10.1083/jcb.200901106.

Skalne C, Liu F, Weimer HH. Characterization of the human gene encoding LBR, an integral protein of the nuclear envelope inner membrane, J Biol Chem 1999; 274:13711-20; PMCID:1045513; http://dx.doi.org/10.1074/jbc.131025.1.

Georgatos SD. The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. EMBO J 2000; 19:2929-38; PMID:10991596; http://dx.doi.org/10.1093/emboj/19.13.2929.

Liu J, Rohr-Bahntke A, Kranner D, Trojan M, Spur J, Peker K, et al. Essential roles for Carboxylterminus alanine mutants in nuclear organization. Cell Biol 2007; 8:798-812; PMID:17848966; http://dx.doi.org/10.1083/jcb.200901106.

Lopez-Soler RI, Moir RD, Squire JA, et al. Evidence from cell-free egg extracts. J Cell Sci 1995; 109:1775-85; PMID:11448990; http://dx.doi.org/10.1083/jcb.119.1.17.

Goldman RD. A role for nuclear lamins in meiotic maturation. J Cell Sci 1996; 109:1775-85; PMID:11448990; http://dx.doi.org/10.1083/jcb.119.1.17.

Ohsugi M, Adachi K, Horai R, Kakuta S, Sato M, et al. Lamins B receptor are required for proper organogenesis but not by embryonic stem cells. Science 2006; 311:1887-93; PMID:16543417; http://dx.doi.org/10.1126/science.1121222.

Lu X, Xiao AA, Miller K, Zhang C, Hao H, et al. Spatial and temporal coordination of nuclear envelope assembly by phosphorylation of lamin B receptor. EMBO J 1997; 16:1003-16; PMID:9182656; http://dx.doi.org/10.1093/emboj/16.5.1003.

Burr F, Maxeiner S, Bellitsch K, Chang M, Mao H, Rau CM, et al. Mouse B-type lamins are required for sperm organogenesis in granulocytes (Oliveri-Haas strain). Nat Genet 2004; 36:1339-43; PMID:19021552; http://dx.doi.org/10.1038/ng1355.

Collins DJ, Johnson ST, Fil褒ese R, et al. Nuclear lamins B and C are required for the mitotic exit and nuclear envelope assembly in sea urchin sperm. J Cell Sci 2006; 119:3169-80; PMID:16549298; http://dx.doi.org/10.1242/jcs.034842.

Shi Y, Yang T, Liu J, Li J, et al. A lamin B receptor-like integral membrane protein. J Biol Chem 2001; 276:11647-54; PMID:11297552; http://dx.doi.org/10.1074/jbc.M010552200.

Stevenson KD. Nuclear lamina function during meiotic prophase. Dev Biol 2008; 313:139-49; PMID:18522952; http://dx.doi.org/10.1016/j.ydbio.2008.01.017.

Bailly B, Stevenson KD. The lamin nuclear envelope mutant in Drosophila. Nat Rev Mol Cell Biol 2009; 10:23-35; PMID:19110457; http://dx.doi.org/10.1038/nrm2622.

Fischer S, Meinhardt M, Squire J, et al. The lamin B receptor mediated nuclear envelope assembly by phosphorylation of lamin B receptor. J Biol Chem 2001; 276:11647-54; PMID:11297552; http://dx.doi.org/10.1074/jbc.M010552200.
Hoelz A, Debler EW. Insights into lamin-interacting proteins. Int Rev Cytol. 2007; 261:1-46; PMID:17560279; http://dx.doi.org/10.1016/S0074-7696(07)61001-8.

Furukawa K, Sugiyama S, Oka Y, Ishioka Y, Nabeshima T, Taga T. Targeted disruption of the mouse ELYS gene leads to embryonic death at postimplantation development. Genes Dev. 2006; 20:183-93; PMID:16487119; http://dx.doi.org/10.1101/gad.405906.

Mitchell JM, Manfredi J, Captiano J, Kaspar U, Westwick JP.Putin(2): links two essential subcomplexes of the nuclear pore complex to the membrane. J Cell Biol. 2010; 190:505-23; PMID:20287416; http://dx.doi.org/10.1083/jcb.201002097.

Deka D, Cauda JF, Guinée R, Bossuyt T, Schwarze T, Avrameas S. A general ubiquitous phenylethanolamine N-methyltransferase for modulating membrane functions. Nat Struct Mol Biol. 2007; 14:36-46; PMID:17351286; http://dx.doi.org/10.1038/nsmb1334.

Skoko D, Kmetics B, Nolubi I, Kermics N, Asztalos S, Tóth P. Targeted disruption of the mouse ELYS gene results in embryonic death at postimplantation development. Genes Dev. 2006; 20:183-93; PMID:16487119; http://dx.doi.org/10.1101/gad.405906.

Galj V, Atadja P, Fraser SJ, Lorenzo-Iglesias C, Matta PM. MEL14, a novel nucleoporin and kinesin-like protein essential for nuclear-membrane assembly in C elegans. Curr Biol. 2006; 16:74-86; PMID:16366714; http://dx.doi.org/10.1016/j.cub.2006.06.047.

Rausch J, Orlova JV, Shum Z, Biggs S, Forbes D. ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc Natl Acad Sci U S A 2005; 102:327-32; PMID:15742578; http://dx.doi.org/10.1073/pnas.0504772102.

Furukawa K, Nolubi I, Kermics N, Asztalos S, Tóth P. Targeted disruption of the mouse ELYS gene results in embryonic death at postimplantation development. Genes Dev. 2006; 20:183-93; PMID:16487119; http://dx.doi.org/10.1101/gad.405906.

Galj V, Atadja P, Fraser SJ, Lorenzo-Iglesias C, Matta PM. MEL14, a novel nucleoporin and kinesin-like protein essential for nuclear-membrane assembly in C elegans. Curr Biol. 2006; 16:74-86; PMID:16366714; http://dx.doi.org/10.1016/j.cub.2006.06.047.

Rausch J, Orlova JV, Shum Z, Biggs S, Forbes D. ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc Natl Acad Sci U S A 2005; 102:327-32; PMID:15742578; http://dx.doi.org/10.1073/pnas.0504772102.

Furukawa K, Nolubi I, Kermics N, Asztalos S, Tóth P. Targeted disruption of the mouse ELYS gene results in embryonic death at postimplantation development. Genes Dev. 2006; 20:183-93; PMID:16487119; http://dx.doi.org/10.1101/gad.405906.
114. Buszczak K, Chen X, Iantosca AK, Wagner N, Saiki N. The Nup155-mediated organization of inner nuclear membrane proteins is independent of Nup155 anchoring to the instant nuclear pore complex. J Cell Sci. 2012; 125:614-8; PMID:22731855. http://dx.doi.org/10.1242/jcs.109869.

115. Bolten E, Khuda-ED, Annes C, Audley A, Aliqu P. Early embryonic requirement for nucleoporin Nup153/Nup35 in nuclear assembly. Dev Biol 2009; 327:379-409; PMID:19144844. http://dx.doi.org/10.1016/j.ydbio.2008.12.024.

116. Hawrylyk-Gara LA, Shibata EK, Wiesnack BW. Yeastmate Nup55 interacts with the nuclear lamina and is required for the assembly of a Nup153-containing complex. Mol Biol Cell 2009; 19:2382-94; PMID:19732212. http://dx.doi.org/10.1091/mbc.E08-10-0849.

117. Antoni W, Parisi M, Santachi R, Wiesnack BW, Maraj PW. Nup153 is required for nuclear envelope and nuclear pore complex assembly. Mol Biol Cell 2008; 19:755-62; PMID:18292896. http://dx.doi.org/10.1091/mbc.E08-08-0630.

118. Antoni W, Parisi M, Maraj PW. The integral membrane nucleoporin nup35 functions to link nuclear pore complex assembly and nuclear envelope formation. Mol Cell Biol 2005; 17:33-42; PMID:16297759. http://dx.doi.org/10.1091/mbc.e04-10-0857.

119. Mandel J, Göttinger S, Hawrylyk-Gara LA, Paris M, Mull M, Galy V; et al. The conserved transmembrane nucleoporin NDC1 is required for nuclear pore complex assembly in somatic cells. Mol Cell Biol 2006; 26:105-10; PMID:16488473. http://dx.doi.org/10.1091/mbc.e05-02-0053.

120. Zhang X, Chen S, Yee S, Chakrabarti S, Zhang T, Ke T; et al. Mutation in nuclear pore component NUP153 leads to atrial fibrillation and early sudden cardiac death. Cell 2008; 135:1017-27; PMID:19070573. http://dx.doi.org/10.1016/j.cell.2008.10.022.

121. Funakoshi T, Masubuchi K, Yokota K, Sagano S, Jinnoke F, Inoue E; et al. The distinct domains of SUN1 proteins require the formation of nuclear pore complex. HEM Lett 2007; 58:493-416; PMID:17906973. http://dx.doi.org/10.1016/j.hleb.2007.09.021.

122. Haraguchi T, Koujin T, Hayakawa T, Kaneda T, Tsutsumi C, Imamoto N; et al. Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J Cell Sci 2000; 113:779-94; PMID:10671368.

123. Haraguchi T, Kojidani T, Koujin T, Shimi T, Osakada H, Mori C; et al. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J Cell Sci 2008; 121:2540-54; PMID:18628300. http://dx.doi.org/10.1242/jcs.033597.

124. Dechat T, Gajewski A, Korbei B, Gerlich D, Daigle N, Haraguchi T; et al. LAP2alpha and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J Cell Sci 2004; 117:6117-28; PMID:15546916. http://dx.doi.org/10.1242/jcs.01529.

125. Helfand BT, Wang Y, Pfleghaar K, Shimi T, Taimen P, Shumaker DK; et al. Chromosomal regions associated with prostate cancer risk localize to lamin B-deficient microdomains and exhibit reduced gene transcription. J Pathol 2012; 226:735-45; PMID:22025297. http://dx.doi.org/10.1002/path.3033.

126. Furukawa K, Ueha K, Tanimura TA, Toda S, Onoda S, Horiege T; et al. A-type and B-type lamins initiate layer assembly at distinct areas of the nuclear envelopes in living cells. Exp Cell Res 2009; 315:1181-99; PMID:19210986. http://dx.doi.org/10.1016/j.yexcr.2008.12.024.

127. Liu Q, Patel N, Memb Th, Dioga M, Crip M, Hadari D; et al. Functional association of Sun1 with nuclear pore complexes. J Cell Biol 2007; 178:785-98; PMID:17724119. http://dx.doi.org/10.1083/jcb.200704108.

128. Zhang X, Chen S, Yoo S, Chakrabarti S, Zhang T, Ke T; et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 2008; 135:1017-27; PMID:19070573. http://dx.doi.org/10.1016/j.cell.2008.10.022.

129. Okawa K, Masaehima K, Yahata K, Sugano S, Imamoto F, Imamoto N. Two distinct human POM121 genes: requirement for the formation of nuclear pore complexes. FEBS Lett 2007; 581:4910-6; PMID:17900573. http://dx.doi.org/10.1016/j.febslet.2007.09.021.

130. Maeshima K, Yahata K, Sasaki Y, Nakatomi R, Tachibana T, Hashikawa T; et al. Cell-cycle-dependent dynamics of nuclear pores: pore-free islands and lamins. J Cell Sci 2006; 119:4442-51; PMID:17074834. http://dx.doi.org/10.1242/jcs.03207.

131. Shimi T, Pfleghaar K, Kojima SI, Pack CG, Solovei I, Goldman AE; et al. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 2008; 22:3409-21; PMID:19141474. http://dx.doi.org/10.1101/gad.1735208.

132. Shimi T, Pfleghaar K, Kojima SI, Pack CG, Solovei I, Goldman AE; et al. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 2008; 22:3409-21; PMID:19141474. http://dx.doi.org/10.1101/gad.1735208.

133. Helfand BT, Wang Y, Pfleghaar K, Shimi T, Taimen P, Shumaker DK; et al. Chromosomal regions associated with prostate cancer risk localize to lamin B-deficient microdomains and exhibit reduced gene transcription. J Pathol 2012; 226:735-45; PMID:22025297. http://dx.doi.org/10.1002/path.3033.