A Molecular Basis for Stabilization of the von Hippel-Lindau (VHL)
Tumor Suppressor Protein by Components of the VHL Ubiquitin
Ligase*

Received for publication, April 8, 2002, and in revised form, June 4, 2002
Published, JBC Papers in Press, June 4, 2002, DOI 10.1074/jbc.M203344200

Takumi Kamura‡, Christopher S. Brower§§, Ronald C. Conaway§§*, and Joan W. Conaway§§‡‡‡

From the ‡Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan, the §Stowers Institute for Medical Research, Kansas City, Missouri 64110, the ¶Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, the **Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160, and the ¶¶California Institute of Technology, Pasadena, California 91125

The multiprotein von Hippel-Lindau (VHL) tumor suppressor (CBCVHL, Cul2-Elongin BC-VHL) and SCF (Skp1-Cul1/Cdc53-F-box protein) complexes are members of structurally related families of E3 ubiquitin ligases that use a heterodimeric module composed of a member of the Cullin protein family and the RING finger protein Rbx1 (ROC1/Hrt1) to activate ubiquitylation of target proteins by the E2 ubiquitin-conjugating enzymes Ubc5 and Cdc34. VHL and F-box proteins function as the substrate recruitment subunits of CBCVHL and SCF complexes, respectively. In cells, many F-box proteins are short lived and are proposed to be ubiquitylated by an autocatalytic mechanism and destroyed by the proteasome following assembly into SCF complexes. In contrast, the VHL protein is stabilized by interaction with the Elongin B and C subunits of CBCVHL in cells. In this report, we have presented direct biochemical evidence that unlike the F-box protein Cdc4, which is ubiquitylated in vitro by Cdc34 in the context of the SCF, the VHL protein is protected from Ubc5-catalyzed ubiquitylation following assembly into the CBCVHL complex. CBCVHL is continuously required for negative regulation of hypoxia-inducible transcription factors in normoxic cells and of SCF complexes, many of which function only transiently during the cell cycle or in response to cellular signals. Our findings provide a molecular basis for the different modes of cellular regulation of VHL and F-box proteins and are consistent with the known roles of CBCVHL.

Ubiquitylation and the subsequent proteasomal degradation of regulatory proteins control a large number of cellular processes, including cell cycle progression, transcription, and signal transduction. Ubiquitin-dependent protein degradation is an elaborate, multistage process that begins with enzymatic tagging of target proteins with a polyubiquitin chain and culminates with ubiquitin-dependent degradation of tagged proteins by the 26 S proteasome (1–4). In the first stage, the C terminus of ubiquitin is covalently bound through a thioester bond to the active site cysteine residue of an E1 ubiquitin-activating enzyme. Ubiquitin is then transferred from the E1 to an active site cysteine residue in one of a number of E2 ubiquitin-conjugating enzymes. Finally, in a reaction mediated by an E3 ubiquitin ligase, ubiquitin is conjugated directly via isopeptide bonds to ε-amino groups of lysines in the target protein and then to lysines in their ubiquityl moieties to complete synthesis of the polyubiquitin tag.

The E3 components of the ubiquitin pathway are responsible for recognizing and recruiting target proteins for polyubiquitylation. The E3 fall into two functional classes (3, 5). One class includes the homologous to E6-AP carboxyl terminus (HECT) domain proteins, which have an active site cysteine residue that receives ubiquitin from an E2 ubiquitin-conjugating enzyme and transfers it to target proteins. The other class includes the E3 that appear to activate ubiquitylation of target proteins at least in part by binding to both E2 ubiquitin-conjugating enzymes and target proteins and bringing them into close proximity. Among members of this class of E3s are the structurally related multiprotein SCF (Skp1-Cul1/Cdc53-F-box protein) and von Hippel-Lindau (VHL)1 tumor suppressor (CBCVHL or Cul2-Elongin BC-VHL) complexes, which use heterodimeric modules composed of a member of the Cullin protein family and the RING finger protein Rbx1 (also referred to as ROC1 or Hrt1) to activate ubiquitylation of target proteins by the E2 ubiquitin-conjugating enzymes Cdc34 and Ubc5 (6, 7).

SCF ubiquitin ligases include a member of the F-box family of proteins, which serve to recognize and recruit target proteins. F-box proteins are linked to a Cul1/Cdc53/Rbx1 module by the Skp1 adaptor protein that binds to a degenerate, ~40-amino acid sequence motif called the F-box, which is present in F-box proteins (8, 9). As a component of the CBCVHL ubiquitin ligase, the VHL tumor suppressor protein functions analogously to F-box proteins in the SCF complex to recruit target proteins for ubiquitylation (10–14). The VHL protein is linked to a Cul2/Rbx1 module by the ubiquitin-like Elongin B and Skp1-like Elongin C adaptor proteins. Elongins B and C form a stable subcomplex that binds to a short BC-box motif present in the VHL protein (15–17).

F-box proteins, including mammalian Skp2 and Saccharomyces cerevisiae Cdc4, Grr1, and Met30, have recently been shown to be short lived proteins that are rapidly turned over with ubiquitin-dependent degradation by the proteasome when assembled into SCF complexes in cells (18–21). Based on these

* This work was supported in part by National Institutes of Health Grant R37 GM41628. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡‡ To whom correspondence should be addressed. Tel.: 816-926-4091; Fax: 816-926-2093; E-mail: jlc@stowers-institute.org.

1 The abbreviations used are: VHL, von Hippel-Lindau; GST, glutathione S-transferase; DTT, dithiothreitol; WT, wild type; HPLC, high pressure liquid chromatography; CBC, Cul2-Elongin BC; SCF, Skp1-Cul1/Cdc53-F-box.
findings, it has been proposed that these F-box proteins are ubiquitylated by an autocatalytic mechanism in the context of the SCF and, further, that rapid turnover of F-box proteins provides a mechanism for rapid assembly and disassembly of distinct SCF complexes required for timely responses of the cell to different cell cycle or environmental cues.

In contrast to these F-box proteins, the VHL tumor suppressor protein is long lived in cells. In addition, whereas F-box proteins are stabilized in cells by mutations that prevent them from binding Skp1 and assembling into SCF complexes, VHL is destabilized by mutations that interfere with its ability to bind Elongins C and B and assemble into CBCVHL (22). Notably, the hypoxia-inducible transcription factors HIF1α and HIF2α were recently shown to be targets of the CBCVHL ubiquitin ligase (10–14). HIF1α and HIF2α are continuously synthesized in cells grown under normoxic conditions but are rapidly ubiquitylated by the CBCVHL complex and degraded by the proteasome. Under hypoxic conditions (23–25) or in cells lacking a functional VHL gene (10, 26–28), HIF1α and HIF2α are stabilized and accumulate and activate expression of their target genes. Based on these findings, the longevity of the VHL protein in cells is likely to ensure that it can maintain close and continuous surveillance of hypoxia-inducible transcription factors, which may be activated at any time during the life of a cell.

In this report, we have investigated the molecular basis of the different modes of regulation of VHL and F-box proteins. We have demonstrated that unlike the F-box protein Cdc4, which is ubiquitylated in vitro by Cdc34 in the context of the SCF, the VHL protein is protected from ubiquitylation in the context of CBCVHL even though the RING finger protein Rbx1 is capable of directly targeting VHL for ubiquitylation when it is not assembled into the CBCVHL complex. Our findings provide a plausible model to explain the differential stabilities of VHL and F-box proteins, and they suggest that the longevity of the VHL tumor suppressor protein is regulated at least in part by the geometry of the CBCVHL complex through the spatial organization of its surface lysine residues.

EXPERIMENTAL PROCEDURES

Materials—Anti-VHL monoclonal antibody (lg32) was purchased from BD PharMingen. Anti-Cul2 and anti-Elongin C monoclonal antibodies were obtained from Transduction Laboratories. Anti-Myc monoclonal antibody (9E10) was from Boehringer Molecular Biochemicals. Anti-protein C monoclonal antibody (HPC4) was a generous gift from C. T. Esmon (Oklahoma Medical Research Foundation). Anti-T7 monoclonal antibody was purchased from Invitrogen. Anti-HSV monoclonal antibody was obtained from Novagen. Anti-Elongin B rabbit polyclonal antibody has been described (29).

Expression of Recombinant Proteins in Escherichia coli—Human Ubc5a, human Ubc3 containing an N-terminal His6 tag, S. cerevisiae Uba1 containing an N-terminal Myc tag and a C-terminal His6, S. cerevisiae Cdc3 containing an N-terminal His6 and mouse ubiquitin-K48R containing an N-terminal GST tag (GST-UbK48R) were described previously (13, 30, 31). Proteins were expressed in E. coli strain BL21 (DE3) and purified by Ni2+-agarose chromatography. After dialysis against 40 mM Hepes-NaOH (pH 7.9), 60 mM potassium acetate, 2 mM DTT, 1 mM MgCl2, 0.5 mM EDTA (pH 7.9), and 10% (v/v) glycerol, proteins were stored at −80 °C.

Expression of Recombinant Proteins in Sf21 Insect Cells—Wild type human VHL and VHL mutants [K159R/K167R/K196R/VHL, (L158P)VHL, and (C162F)VHL, wild type human VHL and VHL mutant [L158P]VHL containing an N-terminal His6 tag (His-VHLWT and HisVHL.L158P)], human Cdc34, and mouse Ubc5a; human Elongin B containing an N-terminal His6 tag and a C-terminal HPC4 tag (His-HPC4ElonginB); mouse wild type Rbx1 and Rbx1 mutant [C94S/Rbx1 containing an N-terminal Myc tag (Myc-Rbx1WT and Myc-Rbx1C94S)]; S. cerevisiae Rbx1 containing N-terminal His6 and Myc tags (His-MycRbx1); S. cerevisiae Cdc4 containing N-terminal His6 and HSV tags (His-HSV-Cdc4); Cdc4Hic chimeric protein containing N-terminal His6 and FLAG tags; and human Elongin C were subcloned into pBacPAK5. Recombinant baculoviruses were generated with the BacPAK baculovirus expression system (CLONTECH). The baculoviruses encoding mouse Rbx1 containing N-terminal His6 and Myc tags, (His-Myc-Rbx1) (22), S. cerevisiae Cdc34 (32), and S. cerevisiae Skp1 containing three N-terminal FLAG tags (FLAG-Skp1) (34), have been described previously. SF21 cells were cultured in SF900 II serum-free medium with 5% fetal calf serum, penicillin (100 units/ml), and streptomycin (100 μg/ml) at 27 °C. SF21 cells were infected with the recombinant baculoviruses indicated in the figures. Sixty hours after infection, cells were collected and lysed in ice-cold buffer containing 40 mM Hepes-NaOH (pH 7.9), 150 mM NaCl, 1 mM DTT, 0.5% (v/v) Triton X-100, 10% (v/v) glycerol, 5 mM leupeptin, 5 μg/ml aprotinin, 5 μg/ml pepstatin A, and 5 μg/ml aprotinin. In some experiments, cells were resuspended in ice-cold buffer containing 40 mM Hespero-NaOH (pH 7.9), 150 mM NaCl, 20 mM imidazole (pH 7.9), 5 mM leupeptin, 5 μg/ml antipain, 5 μg/ml pepstatin A, and 5 μg/ml aprotinin and lysed by French press (1 inch piston, 16,000 psi cell pressure; American Instrument Company).

Purification of Recombinant CBC and SCF Complexes from SF21 Cell Lysates—SF21 cells were coinfected with the baculoviruses indicated in the figure legends. Cells were harvested and lysed using a French press as described above. After centrifugation at 10,000 × g for 20 min at 4 °C, the resulting supernatant was mixed with 1 ml of Ni2+-agarose preequilibrated in buffer containing 40 mM Hepes-NaOH (pH 7.9), 150 mM NaCl, and 20 mM imidazole (pH 7.9). After 2 h, the Ni2+-agarose was washed three times with the same buffer and packed into a 0.8-cm diameter column. The column was eluted stepwise with buffer containing 40 mM Hespero-NaOH (pH 7.9), 50 mM NaCl, 300 mM imidazole (pH 7.9), and 10% (v/v) glycerol. Peak fractions containing the recombinant proteins were diluted with 20 mM Tris-HCl (pH 7.9), 1% (v/v) glycerol, 1 mM DTT, and 0.5 mM EDTA and brought to a conductivity equivalent to that of the same buffer containing 40 mM KCl. Following centrifugation at 10,000 × g for 20 min at 4 °C, the resulting supernatant was applied to a TSK DEAE-NPR HPLC column (4.6 × 35 mm; Tosohaas) pre-equilibrated in buffer containing 40 mM Tris-HCl (pH 7.9), 40 mM KCl (1% (v/v) glycerol, 1 mM DTT, and 0.5 mM EDTA. The column was eluted at 0.2 ml/min with a 5-ml linear gradient from 0 to 550 mM KCl, and 0.2-ml fractions were collected.

Immunoprecipitations and Western Blotting—SF21 and 293T cells were harvested and lysed as described above. Cell lysates were incubated at 2 °C for 1 h with protein A-Sepharose and the antibodies indicated in the figure legends. Protein A-Sepharose was washed three times in buffer containing 40 mM Hespero-NaOH (pH 7.9), 150 mM NaCl, 1 mM DTT, 0.5 mM EDTA and brought to a conductivity equivalent to that of the same buffer containing 40 mM KCl. Immunoprecipitated proteins were separated by SDS-polyacrylamide gel electrophoresis, transferred to Hybond P membranes (Amersham Biosciences), and visualized by Western blotting with Supersignal West Pico chemiluminescent reagent (Pierce).

In Vitro Ubiquitylation Assay—To assay immunoprecipitated CBC and SCF complexes for their abilities to ubiquitylate the VHL protein, SF21 cells coinfected with the baculoviruses indicated in the figures were lysed with ice-cold buffer containing 40 mM Hespero-NaOH (pH 7.9), 150 mM NaCl, 1 mM DTT, 0.5% (v/v) Triton X-100, 10% (v/v) glycerol, 5 μg/ml leupeptin, 5 μg/ml antipain, 5 μg/ml pepstatin A, and 5 μg/ml aprotinin. After centrifugation at 10,000 × g for 20 min at 4 °C, the supernatants were immunoprecipitated with 2 μg of anti-VHL (lg32), anti-CDC4, or anti-HPC4 antibodies and 10 μl of protein A-Sepharose. The beads were mixed with ~50 ng of Ubc11, ~3 μg of GST-UbK48R, and either ~100 ng of hUbC5a or ~200 ng of ScCdC34 in a 20-μl reaction containing 40 mM Hespero-NaOH (pH 7.9), 60 mM potassium acetate, 2 mM DTT, 5 mM MgCl2, 0.5 mM EDTA (pH 7.9), 10% (v/v) glycerol, and 1.5 mM ATP. Reaction mixtures were incubated for 1 h at 26 °C.

To assay the abilities of purified recombinant CBC and SCF complexes to ubiquitylate VHL, Cdc4Hic, and Cdc4 proteins, aliquots of TSK DEAE-NPR HPLC column fractions indicated in the figures were mixed with ~50 ng of Uba1, ~3 μg of GST-UbK48R, and either ~100 ng of hUbC5a or ~200 ng of ScCdC34 in a 10-μl reaction containing 40 mM Hespero-NaOH (pH 7.9), 60 mM potassium acetate, 2 mM DTT, 5 mM MgCl2, 0.5 mM EDTA (pH 7.9), 10% (v/v) glycerol, and 1.5 mM ATP. Reaction mixtures were incubated for 1 h at 26 °C.

RESULTS AND DISCUSSION

The VHL Protein Is Protected from Ubiquitylation in the Context of the CBCVHL Complex—The observation that VHL is more stable in cells when it is associated with Elongins B and...
Stabilization of the VHL Tumor Suppressor Protein

To investigate further the requirement for Rbx1 in the formation of high molecular mass VHL-containing complexes, we compared VHL ubiquitylation in the presence of wild type Rbx1 and the Rbx1 mutant [C94S], which does not support activation of either Cdc34-dependent ubiquitylation of Cln2 by VHL or VHL-containing complexes was resistant to ubiquitylation (Fig. 1B, lanes 10 and 11).

Rbx1 Directs Ubiquitylation of VHL in the Absence of Elongins B and C—The results of the experiments described above argue that VHL ubiquitylation can be negatively regulated by its binding to Elongins B and C and/or by its assembly into complete CBCVHL complexes containing Cul2, Elongins B and C, and Rbx1. However, they provide no information about the mechanism of VHL ubiquitylation outside the context of CBCVHL. In the course of investigating interactions among subunits of the CBCVHL complex, we have observed that Rbx1 binds to VHL in the absence of exogenously expressed Cul2 and Elongins B and C (32), raising the possibility that Rbx1 might be capable of directly activating VHL ubiquitylation. To address this possibility, His8-tagged wild type VHL or His8-tagged [L158P]VHL were expressed in Sf21 insect cells alone, or in combination with Rbx1, Cul2, and Elongins B and C, or VHL-containing complexes were purified from cell lysates by consecutive Ni2+/H18528-agarose chromatography and TSK DEAE-NPR HPLC. As shown in the Coomassie Blue-stained SDS-polyacrylamide gel in Fig. 2A, wild type VHL could be purified as an approximately stoichiometric component of the complete CBCVHL complex. In addition, both wild type VHL and the [L158P]VHL mutant could be purified with approximately stoichiometric amounts of Rbx1 in the absence of exogenously expressed Cul2 and Elongins B and C.

Purified VHL and VHL-containing complexes were incubated with E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme Ub5a, ubiquitin (GST-UbK48R), and ATP. Reaction products were analyzed by Western blotting with anti-VHL antibody. As shown in Fig. 1B, maximal formation of the more slowly migrating VHL-GST-UbK48R conjugates was observed in reactions performed with VHL complexes immunoprecipitated from insect cells expressing wild type VHL, Cul2, and Rbx1 (lane 2). Formation of these more slowly migrating species was strongly inhibited by the presence of Elongins B and C (lanes 3 and 7) and was not observed in VHL immunoprecipitates from insect cells expressing the [K159R,K171R,K196R]VHL mutant (lanes 4 and 5). Further supporting the notion that binding of Elongins B and C to VHL blocks its ubiquitylation, VHL mutants [L158P]VHL and [C162F]VHL are more efficiently ubiquitylated than wild type VHL, even when present in VHL immunoprecipitates from cells expressing high levels of Elongins B and C (lanes 8 and 9). To confirm and extend these findings, wild type VHL, Cul2, Rbx1, Elongin C, and an epitope-tagged Elongin B (HPC4-EloB) were coexpressed in insect cells and coimmunopurified with anti-HPC4 monoclonal antibodies. This procedure ensured that all of the immunoprecipitated VHL protein was associated with Elongins B and C. As shown in Fig. 1A, lanes 10 and 11, anti-HPC4 immunoprecipitates contained all five subunits of the CBCVHL complex. Notably, the VHL protein contained in these Elongin B-containing complexes was resistant to ubiquitylation (Fig. 1B, lanes 10 and 11).

Fig. 1. The VHL protein is protected from ubiquitylation in the context of the CBCVHL complex. A, Sf21 insect cells were infected with baculoviruses encoding the indicated proteins. Anti-VHL (lg32, lanes 1–9) or anti-HPC4 (lanes 10 and 11) immunoprecipitates were subjected to 8 or 13% SDS-PAGE followed by Western blotting as described under “Experimental Procedures.” The antibodies used to probe immunoblots are indicated to the left of the gel images. B, complexes immunoprecipitated with anti-VHL (lg32, lanes 1–9) or antibodies against the HPC4 epitope tag on Elongin B (lanes 10 and 11) were assayed for their abilities to activate VHL ubiquitylation as described under “Experimental Procedures” (lower panels). HC, immunoglobulin heavy chain; IP, immunoprecipitate; WB, Western blot; Ub assay, ubiquitylation assay.

C (22) raised the possibility that the VHL protein might be protected from ubiquitylation and subsequent degradation by assembly into the CBCVHL complex. To address this possibility directly, Sf21 insect cells were infected with various combinations of baculoviruses encoding Cul2, Rbx1, Elongins B and C, and either wild type VHL, VHL mutant [K159R,K171R,K196R]VHL, which has no lysines and therefore cannot be ubiquitylated, or VHL mutants [L158P]VHL and [C162F]VHL, which exhibit substantially reduced affinities for Elongins B and C. We note that although Elongin C is capable of interacting with VHL in the absence of Elongin B, Elongins B and C were always coexpressed together in these experiments for the following reasons. (i) The binding of Elongin C to VHL is stabilized by Elongin B both in vitro and in cells (16, 35). (ii) Elongin C is stabilized and expressed to considerably higher levels in insect cells that also express Elongin B (data not shown). (iii) The detectable Elongin C is always found in association with Elongin B during biochemical purification of Elongin C-containing complexes (Ref. 36 and data not shown).

VHL-containing complexes were immunoprecipitated with an anti-VHL monoclonal antibody and tested for their susceptibility to VHL ubiquitylation. In these experiments, immunopurified complexes (Fig. 1A, lanes 1–9) were incubated with an E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme Ub5a, ubiquitin (GST-UbK48R), and ATP. Reaction products were analyzed by Western blotting with anti-VHL antibody. As shown in Fig. 1B, maximal formation of the more slowly migrating VHL-GST-UbK48R conjugates was observed in reactions performed with VHL complexes immunoprecipitated from insect cells expressing wild type VHL, Cul2, and Rbx1 (lane 2). Formation of these more slowly migrating species was strongly inhibited by the presence of Elongins B and C (lanes 3 and 7) and was not observed in VHL immunoprecipitates from insect cells expressing the [K159R,K171R,K196R]VHL mutant (lanes 4 and 5). Further supporting the notion that binding of Elongins B and C to VHL blocks its ubiquitylation, VHL mutants [L158P]VHL and [C162F]VHL are more efficiently ubiquitylated than wild type VHL, even when present in VHL immunoprecipitates from cells expressing high levels of Elongins B and C (lanes 8 and 9). To confirm and extend these findings, wild type VHL, Cul2, Rbx1, Elongin C, and an epitope-tagged Elongin B (HPC4-EloB) were coexpressed in insect cells and coimmunopurified with anti-HPC4 monoclonal antibodies. This procedure ensured that all of the immunoprecipitated VHL protein was associated with Elongins B and C. As shown in Fig. 1A, lanes 10 and 11, anti-HPC4 immunoprecipitates contained all five subunits of the CBCVHL complex. Notably, the VHL protein contained in these Elongin B-containing complexes was resistant to ubiquitylation (Fig. 1B, lanes 10 and 11).

Fig. 1. The VHL protein is protected from ubiquitylation in the context of the CBCVHL complex. A, Sf21 insect cells were infected with baculoviruses encoding the indicated proteins. Anti-VHL (lg32, lanes 1–9) or anti-HPC4 (lanes 10 and 11) immunoprecipitates were subjected to 8 or 13% SDS-PAGE followed by Western blotting as described under “Experimental Procedures.” The antibodies used to probe immunoblots are indicated to the left of the gel images. B, complexes immunoprecipitated with anti-VHL (lg32, lanes 1–9) or antibodies against the HPC4 epitope tag on Elongin B (lanes 10 and 11) were assayed for their abilities to activate VHL ubiquitylation as described under “Experimental Procedures” (lower panels). HC, immunoglobulin heavy chain; IP, immunoprecipitate; WB, Western blot; Ub assay, ubiquitylation assay.
SCF_{Cdc4} or Ubc12-dependent Rub1 modification of Cullin proteins (31). In these experiments, His₆-tagged VHL was coexpressed in insect cells with either Rbx1 or [C94S]Rbx1. The resulting complexes were purified from cell lysates by consecutive Ni²⁺-agarose and TSK-DEAE HPLC as described under “Experimental Procedures.” Purified VHL and VHL-containing complexes were subjected to 13% SDS-PAGE, and proteins were visualized by Coomassie Blue staining. B, the purified VHL and VHL-containing complexes shown in panel A were subjected to 13% SDS-PAGE and analyzed by Western blotting using the Ig32 anti-VHL monoclonal antibody. C, purified VHL and VHL-containing complexes shown in panel A were assayed as described under “Experimental Procedures” for their abilities to activate VHL ubiquitylation in the presence of ~100 ng of hUbc5a. Reaction products were subjected to 13% SDS-PAGE and analyzed by Western blotting using Ig32. The asterisk indicates the position of an unknown polypeptide recognized by Ig32.

Fig. 2. Rbx1-dependent ubiquitylation of chromatographically purified VHL. A, the indicated recombinant proteins were expressed in SF21 cells and purified by Ni²⁺-agarose and TSK-DEAE HPLC as described under “Experimental Procedures.” Purified VHL and VHL-containing complexes were subjected to 13% SDS-PAGE, and proteins were visualized by Coomassie Blue staining. B, the purified VHL and VHL-containing complexes shown in panel A were subjected to 13% SDS-PAGE and analyzed by Western blotting using the Ig32 anti-VHL monoclonal antibody. C, purified VHL and VHL-containing complexes shown in panel A were assayed as described under “Experimental Procedures” for their abilities to activate VHL ubiquitylation in the presence of ~100 ng of hUbc5a. Reaction products were subjected to 13% SDS-PAGE and analyzed by Western blotting using Ig32. The asterisk indicates the position of an unknown polypeptide recognized by Ig32.

SCF_{Cdc4} complexes or Ubc12-dependent Rub1 modification of Cullin proteins (31). In these experiments, His₆-tagged VHL was coexpressed in insect cells with either Rbx1 or [C94S]Rbx1. The resulting complexes were purified from cell lysates by consecutive Ni²⁺-agarose chromatography and TSK DEAE-NPR HPLC. As shown in Fig. 3A, approximately stoichiometric amounts of both wild type and mutant Rbx1 copurified with the VHL protein. In addition, high molecular mass VHL-GST-Ub_{K48R}^{Kissat} conjugates were formed only in the presence of wild type Rbx1 (Fig. 3, B and C), indicating that VHL ubiquitylation depends on the presence of functional Rbx1.

The F-box Protein Cdc4 Can Be Ubiquitylated in the Context of the SCF_{Cdc4} Complex—The S. cerevisiae F-box protein Cdc4 is rapidly ubiquitylated and degraded by the proteasome in cells (18, 19). Based on the observations that (i) Cdc4 turnover depends upon its ability to interact with the SCF components Skp1 and Cdc53, and (ii) Cdc4 is stabilized when cells containing a temperature-sensitive Skp1 mutant are grown at the non-permissive temperature, it has been proposed that Cdc4 can be ubiquitylated in the context of an SCF_{Cdc4} complex (18, 19). However, direct evidence in support of this model has not been reported. To test this possibility, we asked whether a recombinant SCF_{Cdc4} complex, expressed in and purified from SF21 insect cells, is capable of promoting Cdc4 ubiquitylation. N-terminal His₆- and HSV-tagged Cdc4 (His-HSV-Cdc4), S. cerevisiae Cdc53, N-terminal FLAG-tagged S. cerevisiae Skp1 (FLAG-Skp1), and N-terminal His₆- and Myc-tagged S. cerevisiae Rbx1 (His-Myc-Sklrbx) were coexpressed in SF21 insect cells and purified from cell lysates by consecutive Ni²⁺-agarose chromatography and TSK DEAE-NPR HPLC. The purified SCF_{Cdc4} complexes are shown in Fig. 4A, left panel. As shown in Fig. 4A, right panel, high molecular mass Cdc4-GST-Ub_{K48R}^{Kissat} conjugates appeared in a time-dependent manner following incubation of the purified SCF_{Cdc4} complexes with E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme Cdc34, GST-Ub_{K48R}^{Kissat}, and ATP.

Although these results strongly suggested that Cdc4 can be ubiquitylated in the context of the SCF_{Cdc4} complex, it was possible that the ubiquitylated Cdc4 in these reactions was not actually a component of SCF complexes but rather represented contaminating free Cdc4 in the purified SCF_{Cdc4} fraction. To prepare SCF_{Cdc4} complexes free of contaminating Cdc4, SCF subunits were coexpressed in insect cells and immunoprecipitated from cell lysates with antibodies recognizing the FLAG epitope on Skp1 (Fig. 4B, left panel). Immunoprecipitated complexes were then incubated with E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme Cdc34, GST-Ub_{K48R}^{Kissat},...
and ATP. As shown in Fig. 4B (right panel), similar to the results obtained with chromatographically purified SCF_{Cdc4} complexes, high molecular mass Cdc4-GST_{K48R} conjugates were also formed in the presence of immunoprecipitated complexes. Thus, unlike the VHL protein in the CBC_{VHL} complex, the Cdc4 protein can be ubiquitylated in the context of the SCF_{Cdc4} complex.

To account for the observation that Cdc4, a target recruitment subunit of the SCF complex, can be ubiquitylated in the context of SCF_{Cdc4} (whereas VHL, a CBC target recruitment subunit, is protected from ubiquitylation in the context of the SCF_{Cdc4} complex), we considered the possibility that CBC complexes, high molecular mass Cdc4-GST_{K48R} conjugates were formed in a time-dependent manner following incubation of the purified CBC-Cdc4_{VHL} chimera with E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme Ub_{5a}, GST-Ub_{K48R}, and ATP, indicating that the Cdc4_{VHL} chimera can be ubiquitylated in the context of the CBC-Cdc4_{VHL} complex. Thus, the resistance of VHL to ubiquitylation in the context of the CBC_{VHL} complex does not reflect an inherent inability of CBC complexes to ubiquitylate their target recruitment subunits, and therefore resistance to ubiquitylation must be a property of the VHL protein itself.

Summary and Perspective—In this report we have investigated the molecular basis of the different modes of regulation of the VHL tumor suppressor protein as the target recruitment subunit of the CBC_{VHL} ubiquitin ligase and of F-box proteins as target recruitment subunits of the structurally related SCF ubiquitin ligases. Our findings provide a plausible model to explain the different stabilities of the VHL and of F-box proteins in cells. Unlike the F-box proteins Cdc4, Grr1, and Met30, which can be ubiquitylated in the context of the SCF and degraded by the proteasome, the VHL protein is resistant to ubiquitylation in the context of the CBC_{VHL} complex, thus accounting at least in part for its long half-life in cells and consistent with its continuous requirement in negative regulation of the levels of hypoxia-inducible transcription factors throughout all phases of the cell cycle. Our observation that the Cdc4_{VHL} chimera can be ubiquitylated in the context of the CBC-Cdc4_{VHL} complex suggests that the resistance of VHL to ubiquitylation in the CBC_{VHL} complex is not an intrinsic property of the CBC complex conferred by one or more of its Cul2, Rbx1, and Elongin B and C subunits but instead is a property of the VHL protein regulated by the geometry of the CBC_{VHL} complex. The human VHL protein contains three lysine residues that are found in its C-terminal a-domain (37) at positions 159, 171, and 196 and that are potential ubiquitylation sites. The lysine at position 159, which is located within the Elongin
BC binding site and is hydrogen-bonded to Asn-108 of Elongin C, would be predicted to be protected from ubiquitylation by interaction of VHL with Elongins B and C. The lysines at positions 171 and 196 lie on exposed surfaces of VHL within the VHL-Elongin B complex. Whether Cul2 and Rbx1 physically block access of the E2 to Lys-171 and -196 or whether some other aspect(s) of the geometry of the complex prevents their ubiquitylation awaits structural studies of the intact CBC/VHL complex. Interestingly, in recent experiments we have observed that, although the E2 ubiquitin-conjugating enzymes Ubc5 and Cdc34 can both be activated to synthesize polyubiquitylated peptides, the overall geometry of lysines on the surface of target proteins is likely to contribute to regulation of their ubiquitylation by CBC and SCF ubiquitin ligases. Experiments are underway to decipher the rules governing the choice of surface lysines by different E2 enzymes and should shed light on this mode of regulation.

Acknowledgments—We thank A. Weissman (National Institutes of Health) for cDNA encoding hUbc5a, J. W. Harper and S. Elledge (Baylor) for baculoviruses encoding Cdc53 and Skp1, and F. Barnett for help with preparation of the figures.

REFERENCES
1. Hochstrasser, M. (1995) Curr. Opin. Cell Biol. 7, 215–223
2. Hochstrasser, M. (1996) Annu. Rev. Genet. 30, 405–439
3. Herskko, A., and Ciechanover, A. (1998) Annu. Rev. Biochem. 67, 425–479
4. Pickart, C. (2001) Annu. Rev. Biochem. 70, 563–593
5. Joazeiro, C. A. P., and Weissman, A. M. (2000) Cell 102, 549–552
6. Deshaies, R. J. (1999) Annu. Rev. Cell Dev. Biol. 15, 435–467
7. Tyers, M., and Jorgenson, P. (2000) Curr. Opin. Genet. Dev. 10, 54–64
8. Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J. W., and Elledge, S. J. (1999) Cell 96, 263–274
9. Patton, E. E., Willems, A. R., and Tyers, M. (1998) Trends Genet. 14, 236–243
10. Maxwell, P. H., Wiggan, M. S., Chang, G. W., Clifford, S. C., Vaux, D. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Mahler, E. R., and Ratcliffe, P. J. (1999) Nature 399, 271–275
11. Cockman, M. E., Masson, N., Mole, D. R., Jaakkola, P., Chang, G. W., Clifford, S. C., Mahler, E. R., Pugh, C. W., Ratcliffe, P. J., and Maxwell, P. H. (2000) J. Biol. Chem. 275, 25733–25741
12. Ohl, M., Park, C. W., Ivan, M., Hoffman, M. A., Kim, T. Y., Huang, L. E., Pavletich, N., Chau, V., and Kaelin, W. G. (2000) Nat. Cell Biol. 2, 423–427
13. Kamura, T., Sato, S., Iwai, K., Czyzyk-Krzeszewska, M. F., Conaway, R. C., and Conaway, J. W. (2000) Science 288, 10430–10435
14. Tanimoto, K., Makino, Y., Pereira, T., and Poellinger, L. (2000) EMBO J. 19, 4298–4309
15. Kibel, A., Iliopoulos, O., Decaprio, J. A., and Kaelin, W. G. (1995) Science 269, 1444–1446
16. Duan, D. R., Pause, A., Burgess, W. H., Aso, T., Shen, D. Y. T., Garrett, K. P., Conaway, R. C., Conaway, J. W., Linehan, W. M., and Klausner, R. D. (1995) Science 269, 1402–1406
17. Kishida, T., Stucke, T. M., Chen, F., Lerman, M. I., and Zbar, B. (1995) Cancer Res. 55, 4544–4548
18. Galan, J.-M., and Peter, M. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 9124–9129
19. Zhou, P., and Howley, P. M. (1998) Mol. Cell 2, 571–580
20. Mathias, N., Johnson, S., Byers, B., and Bubbi, M. (1999) Mol. Cell. Biol. 19, 1759–1767
21. Wirbelauer, C., Sutter, H., Blondel, M., Getzinger, M., Peter, M., Reymond, F., and Krek, W. (2000) EMBO J. 19, 5362–5375
22. Schonfeld, A. R., Davidowitz, E. J., and Burk, R. D. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 8507–8512
23. Huang, L. E., Arany, Z., Livingston, D. M., and Bunn, H. F. (1996) J. Biol. Chem. 271, 32253–32259
24. Salceda, S., and Caro, J. (1997) J. Biol. Chem. 272, 22642–22647
25. Huang, L. E., Gu, J., Schau, M., and Bunn, H. F. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 7987–7992
26. Iliopoulos, O., Levy, A. P., Jiang, C., Kaelin, W. G., and Goldberg, M. A. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 10595–10599
27. Gnarra, J. R., Zhou, S., Merrill, M. J., Wagner, J. R., Krumm, A., Paparissi- liou, E., Oldfield, E. H., Klausner, R. D., and Linehan, W. M. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 10589–10594
28. Siemeste, G., Weindel, K., Mohs, K., Barleon, B., Martiny-Baron, G., and Marone, D. (1996) Cancer Res. 56, 2299–2301
29. Garrett, K. P., Aso, T., Bradsher, J. N., Foundling, S. I., Lane, W. S., Conaway, R. C., and Conaway, J. W. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7172–7176
30. Iwai, K., Yanamaka, K., Kamura, T., Minato, N., Conaway, R. C., Conaway, J. W., Klausner, R. D., and Pause, A. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 12436–12441
31. Kamura, T., Conrad, M. N., Yan, Q., Conaway, R. C., and Conaway, J. W. (1999) Gene Dev. 13, 2928–2933
32. Kamura, T., Koepp, D. M., Conrad, M. N., Skowrya, D., Moreland, R. J., Iliopoulos, O., Lane, W. S., Kaelin, W. G., Elledge, S. J., Conaway, R. C., Harris, J. W., and Conaway, J. W. (1999) Science 284, 657–661
33. Willems, A. R., Lankner, S., Patton, E. E., Craig, K. L., Nason, T. F., Mathias, M., Kohayashi, R., Wittenburg, C., and Tyers, M. (1996) Cell 86, 453–463
34. Skowrya, D., Craig, K. L., Tyers, M., Elledge, S. J., and Harper, J. W. (1997) Cell 91, 209–219
35. Pause, A., Peterson, B., Schaffar, G., Stearman, R., and Klausner, R. D. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 9533–9538
36. Kamura, T., Sato, S., Haspe, D., Liu, L., Kaelin, W. G., Conaway, R. C., and Conaway, J. W. (1998) Genes Dev. 12, 3872–3881
37. Stebbins, C. E., Kaelin, W. G., and Pavletich, N. P. (1999) Science 284, 455–461