Synthesis and Structural Properties of Sm³⁺ doped Sodium Lithium zinc Lead Borate Glasses

Juniastel Rajagukguk, Rappel Situmorang, Budiman Nasution, Donna Helen Rajagukguk, Rr M I Retno Susilorini, Chayani S Sarumaha, Jakrapong Kaewkhao

Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Indonesia 20221
Department of Infrastructure and Environmental Engineering, Faculty of Environmental Science and Technology, Soegijapranata Catholic University, Semarang 50234, Central Java, Indonesia
Center of Excellence in Glass Technology and Materials Science, Rajabhat University, Nakhon Pathom, Thailand 73000

Abstract. Sodium lithium zinc-lead borate glasses co-activated with Sm³⁺ ion were prepared by melt and quenching method. The glass composition regarding to (65 – x)B₂O₃ : 5ZnO : 5Li₂O : 15 Na₂O : 10PbO : x Sm₂O₃ chemical formula is synthesized with x = 0.0; 0.05; 0.1; 0.5; 1.0; 2.0 and 4.0 mol.%. These samples which are labeled as Sm_0.0; Sm_0.05; Sm_0.1; Sm_0.5; Sm_1.0; Sm_2.0 and Sm_4.0 respectively. The structural characteristic was investigated and analyzed by using the FTIR and XRD. Moreover, physics properties such as molar weight, density, molar volume, refractive index, etc were calculated with the standard equations. From the measurement and calculation, the density was found to increase slightly by showing linear trends with Sm₂O₃ content in the glass network structure. It was happened due to the compactness level of glass structure and geometrical arrangement have modified in the glass network. The molar volume of the glass samples also gradually increases from 28.185 cm³/mol to 29.613 cm³/mol. From the FTIR and XRD analysis can be confirmed that the present samples are amorphous without the presence of the crystalline peak.

1. Introduction
The glass materials doped rare-earth (RE⁺) ions have been very interesting due to have broad application and potential in the design and development of photonic devices [1-3]. Commonly trivalent RE components have entirely stable discharges, because of the 4f electrons which are profoundly covered and henceforth all around protected from the external shells. This characteristic makes it suitable to integrate the RE components into different hosts with various cross-sections and still save the normal RE luminescence [4]. Host glass with low energy phonon was exactly had luminescence efficiency of RE⁺ ions [5-6]. Several famous research related to alkali-borate glasses utilization to improve optical and structural properties of glasses have been reported through the placement of several metal oxides into the glass network [7-9]. The intensity and sharpness of emission cross-section of RE-doped glasses enable the observer to investigate free atoms interaction in
a solid optical material with a kind degree of accuracy [10]. RE-doped glass formers especially inorganic borate with additional suitable modifiers were being studied. The compositions can be applied at several devices such as new lasing materials upconverters, light-emitting diodes (LEDs), fiber amplifiers, memory devices, fluorescent display, etc [11-12]. One of the most popular types of RE ions is the Samarium oxide (Sm$^{3+}$) ion due to its high density in optical storage devices, corrosion-free when doped into glasses, and is an essential component in a solid-state laser. Besides that, the Sm-doped Borate glasses system is capable to produce G_s→$H_{5/2}$, G_s→$H_{7/2}$, G_s→$H_{9/2}$, G_s→$H_{11/2}$ transitions with full red or orange color that used as solid-state lighting and display devices [12]. The red and orange luminescence from Sm$^{3+}$ clearly can be used in the cathode-ray tube (CRT) and plasma display. Glass material like borate oxide (B$_2$O$_3$) is suitable as a host matrix type due to high transparency, good thermal stability, low melting point and make a glass network to be stable [15]. Furthermore, zinc borate glasses were increasingly interesting because of their produced large stimulated emission cross-section and quantum efficiency [16].

In our previous studies on structural and spectroscopic properties of sodium-lead-zinc-lithium-borate glasses doped several RE ions among them are Neodymium [7]; Europium [8]; Erbium [7] and Dysprosium [17] have been reported. In the present work, we report the Sm$^{3+}$ doped borate glass system and the extended investigation is related to the optical properties of glasses system.

2. Method
The Sm$^{3+}$-doped sodium-lead-zinc-lithium-borate glasses with Sample composition of (65 – x)B$_2$O$_3$: 5ZnO : 5Li$_2$O : 15Na$_2$O : 10PbO : x Sm$_2$O$_3$ (where x = 0.0; 0.05; 0.1; 0.5; 1.0; 2.0 and 4.0 mol.%) were prepared by melted and quenched method with the chemical reagents purity more than 99.99 % in 20 g batches. The glass samples were labelled with the following codes Sm_0.0; Sm_0.05; Sm_0.1; Sm_0.5; Sm_1.0; Sm_2.0; Sm_4.0 code respectively. The nomenclature of chemical compounds and details composition were showed in Table 1. After composed and mixture in crucible alumina, the powdered sample was melted in a furnace at 1100°C and held on 3 h. The pouring process was done on stainless steel and extended to the annealing process at 500°C for 3 h. Then, the furnace was decreased to room temperature. Glasses sample were cut and polished in dimensions size of 20 x 10 x 5 mm3. The structural properties were investigated by using X-Ray Diffractometer (XRD) and Fourier Transform Infrared (FTIR) respectively. Moreover, physics properties were calculated with a kind equation such as molar weight, density, molar volume, refractive index, etc.

Table 1. The initial and details composition of doped sodium-lead-zinc-lithium-borate glasses

No	Glass initial	B$_2$O$_3$ (mol%)	Na$_2$O (mol%)	PbO (mol%)	ZnO (mol%)	Li$_2$O (mol%)	Sm$_2$O$_3$ (mol%)
1	Sm_0.0	65.00	15.0	10.0	5.0	5.0	-
2	Sm_0.05	64.95	15.0	10.0	5.0	5.0	0.05
3	Sm_0.1	64.90	15.0	10.0	5.0	5.0	0.10
4	Sm_0.5	64.50	15.0	10.0	5.0	5.0	0.50
5	Sm_1.0	64.00	15.0	10.0	5.0	5.0	1.00
6	Sm_2.0	63.00	15.0	10.0	5.0	5.0	2.00
7	Sm_4.0	61.00	15.0	10.0	5.0	5.0	4.00

3. Results and Discussion
3.1. Glasses Display
The appearance of six glass samples after a cut and polished treatment were displayed in Figure 1. The glasses take placed on millimeter paper and photographed to see the transparency level of samples. Figure 1 can be seen that the light yellow color dominates the glasses color and appears to high transparency. The sample is placed on millimeter paper and photographed to see the level of transparency. Glass with 0.05 mol% label was seen most transparency and is almost clear. This sample has almost the same transparency with the un-doped sample as the previously reported [7-10]. The addition of a small amount of Sm$^{3+}$ ion to the glasses system can be increasing the color change of the sample towards orange. This phenomenon is seen starting from 0.10 mol% to 4.00 mol% sample. As we have known that the Sm$^{3+}$ ion has a characteristic color leading to a bright orange color [18-20].

![Figure 1: The view of Sm$^{3+}$ doped sodium-lead-zinc-lithium-borate glasses with varied concentration dopant from 0.05 mol% to 4.00 mol%.](image)

3.2. Physical Properties
The Physical Properties such as molar weight, density, molar volume internuclear distance as well as field strength and optical band gap of Sm$^{3+}$ doped borate glasses were displayed in Table 2. From Table 2 can be seen that the Sm$^{3+}$ ion concentrations are varied and affect the others parameters like polaron radius (r_{p}). As we known that the ion concentration number will be increased with the addition of Sm$^{3+}$ concentration however will decrease the polaron radius. The same trend also happened at internuclear distance r, where the highest value was achieved for Sm_0.05 and the lower for Sm_4.0.

Physical properties	Glass samples					
	Sm 0.05	Sm 0.1	Sm 0.5	Sm 1.0	Sm 2.0	Sm 4.0
Molar weight, M (g)	82.573	82.713	83.829	85.224	88.015	93.597
Density, ρ (g/cm3)	2.930	2.933	2.941	2.968	3.048	3.161
Molar volume, M_V (cm3/mol)	28.185	28.198	28.508	28.717	28.875	29.613
Thickness (cm)	0.285	0.315	0.340	0.305	0.335	0.310
Ion concentration, N (x1022 ion/cm3)	0.107	0.214	1.056	2.097	4.171	8.134
Polaron radius, r_{p} (Å) x10$^{-8}$	3.942	3.129	1.836	1.461	1.162	0.930
Internuclear distance, r_{n} (Å)x10$^{-8}$	9.782	7.765	4.558	3.626	2.883	2.308
Field strength, F (x1017 cm$^{-2}$)	0.399	0.633	1.838	2.904	4.593	7.169
Refractive index, n	1.573	1.585	1.609	1.599	1.610	1.608
Optical band gap (indirect), $E_{G}(eV)$	3.27	3.35	3.37	3.38	3.39	3.49
Optical band gap (direct), $E_{G}(eV)$	3.77	3.70	3.80	3.79	3.46	3.78
Dielectric constant, ε	2.474	2.511	2.59	2.555	2.591	2.584
Molar refractivity, R_{m} (cm$^{-3}$)	9.285	9.446	9.873	9.804	10.009	10.233
Polarizability of oxide ions, α_{o} (x10$^{-24}$ cm3)	3.683	3.747	3.916	3.889	3.970	4.059
Metallization criteria, M	0.671	0.665	0.654	0.659	0.653	0.654
Reflection loss, R (%)	4.597	5.117	5.451	5.305	5.46	5.428

The Practically, density parameters ρ (g/cm3) were measured by using the Archimede’s principle with water used as the immersion liquid. Moreover, the density and molar volume trends have been obtained and shown in Figure 2. As shown in Figure 2 both of molar volume and density were started
from below values 28.185 cm/mol and 2.930 g/cm3 respectively. The density was increased slightly by showing linear trends with Sm$_2$O$_3$ content in the glass network structure. It was happened due to the compactness level of glass structure and geometrical arrangement have modified in glass network [18]. With the increasing of Sm$^3+$ concentration, the molar volume of the glass samples gradually increases from 28.185 cm/mol to 29.613 cm/mol. The change in the borate network from Sm$_{0.05}$ to Sm$_{1.0}$ causes the molar volume to increase slightly. However, it has been increased drastically from Sm$_{1.0}$ to Sm$_{4.0}$ glasses when doped for the higher content of Sm$^3+$. The addition of Sm$^3+$ contents to borate glass might cause several changes in the glass network, as a result, is the molar volume showing an increment trend [2,19].

![Figure 2. Molar volume and density pattern of Sm$^3+$ doped sodium-lead-zinc-lithium-borate glasses](image)

3.3. Structural Properties

The interpretation of Fourier Transform Infrared Spectrum (FTIR) has been carried out with the presumption that B – O bonds are the constituent of the B.O. glass structure. The FTIR spectra of the Sm$^3+$ doped sodium-lead-zinc-lithium-borate glasses are recorded from 650 to 4000 cm$^{-1}$ as shown in Figure 3. All the studied glass samples shows the active modes characteristic of borate network vibrations. The borate network is generally built up from the coordination dividing of BO$_4$ tetrahedral units [20]. The units of BO$_4$ tetrahedral were made network features in the glass structure that always has a negative charge ([BO$_4$]$^-$) [20]. The transmission bands of present glasses are clear at three fundamental bands. The first band occurs between 650 and 834 cm$^{-1}$ reflects to the B-O-B bending vibrations of borate ion various in BO$_3$ triangles units. The second transmittance at 850-1200 cm$^{-1}$ band corresponds to the B-O stretching of BO$_4$ tetrahedral units. Moreover, the third transmittance broad band centered at 1200 – 1500 cm$^{-1}$ corresponds to the vibration of asymmetric stretching of the borate ion in BO$_3$ triangles units [21].
The X-ray diffraction spectra were recorded in the theta range of 10 to 80 degrees for Sm3+ doped sodium-lead-zinc-lithium-borate glasses is shown in Figure 4. The diffraction pattern for six glass samples shows two broad humps at around $2\theta = 27^\circ$ and 43°. Generally, the XRD spectrum as shown in Figure 4 were not appear diffraction or crystallization peaks which confirms the amorphous nature for all glass samples. Based on this investigation, the same pattern also obtained with our previous report for some rare-earth dopant [18-20].

4. Conclusion

Transparent glasses based on Samarium oxide (Sm\textsubscript{2}O\textsubscript{3}) doped sodium-lead-zinc-lithium-borate have been successfully prepared by melt and quenching principle. The chemical composition of $(65 - x)\text{B}_2\text{O}_3 : 5\text{ZnO} : 5\text{Li}_2\text{O} : 15\text{Na}_2\text{O} : 10\text{PbO} : x\text{Sm}_2\text{O}_3$ with $x = 0.0; 0.05; 0.1; 0.5; 1.0; 2.0$ and 4.0 mol.\%
were cut, polished and characterized to observe physical and structural properties. The density as a part of physical parameters was found to increase slightly by showing linear trends with Sm₂O₃ content in the glass network structure. It was happened due to the compactness level of glass structure and geometrical arrangement have modified in the glass network. The molar volume of the glass samples also gradually increases from 28.185 cm/mol to 29.613 cm/mol. From the FTIR and XRD analysis can be confirmed that the present samples are an amorphous nature without the presence of the crystalline peak.

References
[1] Rao, V. R. and C. Jayasankar 2019 Spectroscopic investigations on multi-channel visible and NIR emission of Sm³⁺-doped alkali-alkaline earth fluoro phosphate glasses Optical Materials 91 7-16.
[2] Rajagukguk J, Chaiphaksa W, Kaewkhao J, Hidayat R, Fitrilawati F 2019 Photopumped laser diode continuous wave for optical gain determination of Nd: YVO₄ and Nd: YAG crystal medium Journal of Metals, Materials and Minerals Mar 29 1
[3] Mohan, S., et al. 2017 Structural and luminescence properties of samarium doped lead alumino borate glasses Optical Materials 73 223-233
[4] Kashif, I., et al. 2017 Structural and optical properties of lithium tetraborate glasses containing chromium and neodymium oxide Materials Research Bulletin 89 273-279.
[5] Othman, H., et al. 2017 Structural and optical investigation of undoped and Sm³⁺-doped lead oxyfluoroborate glasses Materials Research Bulletin 89 210-216.
[6] Prabhu, N. S., et al. 2019 Physical, structural and optical properties of Sm³⁺-doped lithium zinc alumino borate glasses Journal of Non-Crystalline Solids 515 116-124.
[7] Rajagukguk, J., et al. 2016 Structural and optical properties of Nd³⁺-doped Na₂O-PbO-ZnO-Li₂O-B₂O₃ glasses system Key Engineering Materials, Trans Tech Publ.
[8] Rajagukguk, J., et al. 2016 Structural and optical characteristics of Eu³⁺ ions in sodium-lead-zinc-lithium-borate glass system Journal of Molecular Structure 1121 180-187.
[9] Susilorini RM, Hardjasaputra H, Tudjono S, Hapsari G, Wahyu SR, Hadikusumo G, Sucipto J. 2014 The advantage of natural polymer modified mortar with seaweed: green construction material innovation for sustainable concrete Procedia Engineering 95 419-25.
[10] Rajagukguk, J., et al. 2019 Structural and spectroscopic properties of Er³⁺ doped sodium lithium borate glasses Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 223 117342.
[11] Rao, B. V., et al. 2017 Concentration quenching effects in samarium doped zinc phosphate glasses for visible applications International Journal of Pure and Applied Physics 13(3) 301-316.
[12] Wagh, A., et al. 2018 The effect of 1.25 MeV γ rays on Sm³⁺-doped lead fluoroborate glasses for reddish orange laser and radiation shielding applications Journal of Luminescence 199 87-108.
[13] Luwarasirikul, N., & Kaewkhao, J. 2017 Science Direct Spectroscopic properties and Judd-Ofelt analysis of Sm³⁺ ions in barium sodium borate glasses. Materials Today: Proceedings vol 4 p 6224–6233
[14] Rajagukguk J, Sinaga B, Sihombing E, Djomal M, Kaewkhao J. Emission cross section and optical gain of 1.06 mm laser Nd³⁺ doped borate glasses. Materials Today: Proceedings. 2018 Jan 1;5(7):14998-5003.
[15] Sudhakar, K. S. V, Reddy, M. S., Rao, L. S., & Veeraiah, N. Ā. 2008 Influence of modifier oxide on spectroscopic and thermoluminescence characteristics of Sm³⁺ ion in antimony borate glass system 128 1791–1798
[16] Balakrishna, a., Rajesh, D., & Ratnakaram, Y. C. (2013). Structural and optical properties of Nd³⁺ in lithium fluoro-borate glass with relevant modifier oxides. Optical Materials 35 (12) 2670–2676
[17] Rani, P. R., Venkateswarlu, M., Mahamuda, S., Swapna, K., Deopa, N., Rao, A. S., & Prakash, G. V. 2019 Structural, absorption and photoluminescence studies of Sm $^{3+}$ ions doped barium lead alumino fluoro borate glasses for optoelectronic device applications. *Materials Research Bulletin, 110* 159–168.

[18] Rao, T. G. V. M., Kumar, A. R., Neeraja, K., Veeraiah, N., & Reddy, M. R. 2014 Optical and structural investigation of Dy$^{3+}$–Nd$^{3+}$ co-doped in magnesium lead borosilicate glasses. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 118* 744-751.

[19] Rajagukguk, J., Situmorang, R., Djamal, M., Rajaramakrishna, R., Kaewkhao, J., & Minh, P. H. 2019 Structural, spectroscopic and optical gain of Nd$^{3+}$ doped fluorophosphate glasses for solid state laser application. *Journal of Luminescence 216* 116738.

[20] Rajagukguk J, Djamal M, Hidayat R, Aminuddin A, Ruangtaweep Y, Kaewkhao J. Optical Properties of Nd$^{3+}$ Doped Phosphate Glasses at $4F_{3/2}$–$4I_{11/2}$ Hypersensitive Transitions. The *Journal of pure and applied chemistry research*. 2016;5(03):148-56.

[21] Mariselvam, K., Kumar, R. A., & Suresh, K. 2018 Physica B: Condensed Matter Optical properties of Nd 3+ doped barium lithium fluoro borate glasses for near-infrared (NIR) emission. *Physica B: Physics of Condensed Matter 534* 68–75.