INTRODUCTION

Success of root canal treatment (RCT) depends on neutralizing infection in the entire root canal system through effective root canal preparation [1]. Determining the apical limit of this preparation has proved to be a matter of continuous debate, from which emerged different approaches to managing the apical segment of the root canal [2]. Apical patency as defined by the American Association of Endodontists is a technique intended to maintain the apical part of the root canal free of debris by repeatedly passing a patency file through the apical foramen [3]. Buchanan [4], who was the first to advocate this technique, described the patency file as “a small flexible K-file which passively moves 0.5-1 mm beyond the apical constriction, without widening it”. He went on to describe the patency technique, specifying that the gauge of the patency file should be smaller in diameter than the apical constriction (the narrowest part of the root canal coronal to the foramen) and recommended using an ISO standardized 0.06, 0.08, or 0.10 instrument [4].

The apical plug technique, on the other hand, limits instrumentation within working length of the root canal without using any patency file, and advocates the creation of a dentinal plug at the apical constriction to serve as a biological barrier [2], preventing the extrusion of remnants, irrigating solution, sealers and thermoplastic gutta-percha [5]. Supporters of this technique assume that the apical constriction is the point at
which the periodontium starts and any instrumentation beyond that is an over-extension that violates the biological integrity and healing of the periapical tissue [2]. Many authors have advocated conserving the soft tissue situated in what is considered the cemental part of the canal (between the apical constriction and major foramen) to promote deposition of newly-formed cementum and improve healing [6, 7]. Histologically, Ricucci and Langeland [8] showed that instrumentation limited to the apical constriction or 1 mm short reduced regional tissue damage, and claimed it would be more favorable to healing.

Adequate cleaning and shaping of the apical area of the root canal system has proved particularly challenging [9, 10]. During root canal instrumentation, pulpal tissue or dentin debris get impacted in the apical region causing canal blockage; a common complication which leads to inadequate root canal preparation due to files losing access to the full working length [11]. This scenario can be avoided if apical patency is maintained during canal instrumentation by introducing the patency file in an alternating manner between shaping files and irrigation steps.

OBJECTIVES

For long-term favorable prognosis, choices during the process of RCT should be guided by evidence-based decision-making. Thus, the aim of this review was to evaluate what has been discussed in the literature regarding apical patency in RCT and its influence on treatment outcome.

MATERIAL AND METHODS

A search of the literature was conducted via PubMed using the terms (apical patency) OR (patency file). The process of identifying and selecting the studies can be seen in (Figure 1). Articles published before the year 2000 and/or not in English were excluded, as well as case reports and reviews, with the exception of systematic reviews. Any difference in opinion regarding study inclusion was resolved between the reviewers (R.A. and R.B.) through discussion.

RESULTS

Of the 183 articles yielded by the search, 32 studies satisfied the inclusion criteria. Data from these studies involving the aim and main findings were obtained (Table 1).

APICAL PATENCY AND PAIN

Out of the included 32 studies, 8 discussed the association of apical patency with postoperative pain. Two randomized controlled trials each conducted on at least 300 patients with necrotic teeth and apical periodontitis, found that maintaining apical patency was associated with less postoperative pain compared to leaving the canals non-patent. Although no patients suffered from severe pain during the follow-up period, those in the non-patency group experienced more postoperative pain than patients in the patency group during the first 5 postoperative days [12, 13].

![FIGURE 1. PRISMA flowchart on study selection and inclusion](image-url)
TABLE 1. A summary of the included studies

No.	Study	Year	Study design	Sample size	Topic of influence	Findings
1.	Camões et al. [5]	2009	In-vitro	17 teeth	Extrusion of NaOCl with and without patency	Irrespective of maintaining irrigant extrusion occurred with and without maintaining apical patency
2.	Holland et al. [7]	2005	Animal study	40 dog teeth	Periapical healing and apical patency	Within the proposed experimental conditions, no apical patency had statistically better results than those with patency
3.	Ng et al. [9]	2011	Randomized clinical trials	1093 patients	Periapical healing after root canal treatment	Achievement of apical patency was found to be one of the factors that improve periapical healing
4.	Ng et al. [10]	2011	Randomized clinical trials	1093 patients	Tooth survival after root canal treatment	Achievement of apical patency was found to be one of the factors that reduced tooth loss
5.	Arora et al. [11]	2016	Randomized clinical trials	68 necrotic teeth with apical periodontitis	Postoperative pain	Apical patency had no significant influence on postoperative pain
6.	Arias et al. [12]	2009	Randomized clinical trials	300 necrotic teeth with apical periodontitis	Postoperative pain	Apical patency was associated with significantly less postoperative pain
7.	Yaylali et al. [13]	2018	Randomized clinical trials	320 necrotic teeth with apical periodontitis	Postoperative pain	Apical patency was associated with significantly less postoperative pain
8.	Arslan et al. [14]	2019	Randomized clinical trials	50 necrotic teeth with apical periodontitis	Postoperative pain	Apical patency did not increase the incidence of postoperative pain or flare-up rate in teeth with vital/nonvital pulp
					Periapical	Apical patency did not affect endodontic treatment outcomes
9.	Gang et al. [15]	2017	Randomized clinical trials	80 teeth	Postoperative pain	Apical patency did not increase the incidence of postoperative pain
10.	Sharaan and Aboul-Enein [16]	2012	Randomized clinical trials	80 teeth	Postoperative pain	Apical patency did not increase the incidence of postoperative pain
11.	Abdulrab et al. [17]	2018	Meta-analysis	4 Studies	Postoperative pain	Apical patency did not increase the incidence of postoperative pain
12.	Yaylali et al. [18]	2018	Systematic review	5 randomized clinical trials Total of 848 patients	Postoperative pain	Low to moderate evidence indicate that apical patency does not increase the incidence of postoperative pain or flare-up rate in teeth with vital/nonvital pulp
13.	Lopreite et al. [20]	2014	In-vitro	40 extracted teeth (single canals)	Canal transportation	There was no significant difference between using manual or rotary instruments to achieve apical patency Both produced some apical foramen deformation
14.	Goldberg and Massone [21]	2002	In-vitro	30 human maxillary lateral incisors	Canal transportation	Apical patency did not increase canal transportation in the apical 4 mm
15.	Gonzalez Sanchez et al. [22]	2010	In-vitro	102 human molars	Canal transportation	No transportation was found when size 10 stainless steel reamers were used for apical patency
16.	Tsesis et al. [23]	2008	Ex-vivo	40 extracted molars	Canal transportation Working length	Apical patency did not increase canal transportation in the apical 4 mm Apical patency was not associated with loss of working length
17.	Hasheminia et al. [24]	2013	Ex-vivo	70 mandibular first molars	Canal transportation	Patency files significantly decreased both apical transportation and canal straightening
No.	Study	Year	Study design	Sample size	Topic of influence	Findings
-----	-------	------	--------------	-------------	-----------------	----------
18.	Hasheminia and Ardestani [25]	2004	In-vitro	70 mandibular first molars	Canal transportation	Patency file in conjunction with passive step back techniques significantly reduced apical transportation
19.	Trierveiler Paiva et al. [26]	2018	In-vitro	40 teeth	Regaining apical patency using reciprocating files during retreatment	Reciprocating rotary files were more successful in regaining apical patency in single rooted canals
20.	Negishi et al. [27]	2005	In-vivo	57 patients	Endodontic failure and inaccessible apical constriction	Inaccessibility to the apical constriction increases the risk of root canal treatment failure particularly in teeth with preoperative periodical lesion
21.	Abdelsalam and Hashem [28]	2020	In-vitro	43 mandibular molars	Working length	Apical patency is essential for proper working length determination with apex locators
22.	Lambrianidis et al. [29]	2006	In-vitro	64 single-rooted teeth	Canal apical third removal of intra canal medicaments	Apical patency facilitated removal of calcium hydroxide/chlorhexidine medicaments in the apical third
23.	Vera et al. [30]	2011	In-vivo	40 teeth	Irrigant penetration in the apical third using patency and passive ultrasonic irrigation	Maintaining apical patency and then using passive ultrasonic activation improves the delivery of irrigants into the apical third of root canals
24.	Vera et al. [31]	2012	In-vivo	43 teeth	Apical patency and presence of irrigating solution in the apical 2 mm of large root canals	Significantly more canals had irrigant in the apical 2 mm when apical patency was maintained
25.	Vera et al. [32]	2012	In-vivo	71 teeth	Apical patency and gas bubbles during irrigation	Apical patency significantly leads to minimizing the presence of gas bubbles in the middle and cervical thirds during root canal preparation
26.	Lambrianidis et al. [35]	2001	In-vitro	33 maxillary incisors	Periapical extrusion	Without maintaining apical patency, greater extrusion occurred when the apical constriction remained intact compared to after its enlargement
27.	Kini et al. [37]	2015	In-vitro	50 teeth	Inoculation of periapical tissue with contaminated patency file	NaOCl in the canals prevented the inoculation of periapical tissue with bacteria contaminated patency files
28.	Izu et al. [38]	2004	In-vitro	28 teeth	Inoculation of periapical tissue with contaminated patency file	NaOCl was sufficient to kill microorganisms on the file
29.	Deonizio et al. [41]	2013	In-vitro	40 mandibular incisors	Amount of debris extrusion during retreatment	Apical patency did not influence the amount of extruded filling material during retreatment with Protaper Universal System
30.	Tinaz et al. [42]	2005	In-vitro	52 teeth	Periapical extrusion while manual vs. rotary instrumentation	Apical extrusion exists with apical patency technique whether canals are instrumented using K-files or rotary instrumentation with ProFile .04 taper
31.	Carpenter et al. [44]	2014	In-vitro	86 teeth	Regaining apical patency during retreatment of MTA containing sealer and gutta percha	Gutta percha solvents allowed regaining apical patency when retreatting canals filled with MTA containing sealer and gutta percha

J Stoma 2021, 74, 1
The majority of the studies, however, found no significant difference, as far as postoperative pain was concerned, concluding that apical patency was not associated with an increase in the incidence of postoperative pain [11, 14-18]. One randomized controlled clinical trial [11] conducted on necrotic mandibular molars with apical periodontitis found that while postoperative pain scores and number of analgesic doses taken to achieve pain relief were less in the patency group, it was not statistically significant. Maintaining apical patency did not increase postoperative pain whether a single-visit or two-visit RCT procedure was used. However, apical patency significantly reduced pain scores that were observed 24 hours postoperatively [11]. These findings could not be generalized to cases of vital teeth without apical periodontitis, as the trial was limited to necrotic teeth with apical periodontitis. In 2018, a meta-analysis and systematic review of randomized clinical trials exploring the influence of apical patency on pain associated with RCT [17, 18] concluded that the evidence – although of low to moderate quality – suggested that apical patency does not increase the incidence of postoperative pain associated with RCT or flare-up rate in cases of both vital or necrotic teeth.

APICAL PATENCY AND FORAMEN TRANSPORTATION

Transportation of the apical foramen during root canal instrumentation may result in incomplete removal of debris and jeopardize the outcome of the RCT [19]. Lopreite et al. [20] conducted an in-vitro study in 2014 on sound teeth recently extracted for orthodontic reasons, to evaluate preservation of the original shape of the apical foramen when patency is performed using either manual or nickel-titanium rotary instrumentation. The roots were examined at ×100 magnification, photographed, and mapped using image managing software. Using both rotary and manual instrumentation to establish apical patency in single straight canals showed foramen deformation in some, but not the majority of cases [20].

In regards to transportation in the apical 4 mm of curved canals, other in-vitro studies concluded that apical patency was not associated with transportation [21-23] specifically, when a size 08 stainless steel K-Flex file or a size 10 reamer were used. Furthermore, a couple of studies even reported that apical patency reduced the degree of apical transportation and curve straightening [24, 25].

APICAL PATENCY AND ACCURACY OF WORKING LENGTH

It has been reported that a short root canal preparation increases the risk of RCT failure by 5.3 folds, especially in teeth having a periapical lesion [26, 27]. Tsless et al. [23] found that maintaining apical patency did not influence loss of working length in curved canals. Recently, however, a study in 2020, examining the influence of apical patency on the accuracy of two different kinds of apex locators concluded that it is essential for reliable working length determination using apex locators to maintain a patent apex [28].

APICAL PATENCY AND CANAL CLEANLINESS

The primary purpose of apical patency is to ensure that the patent canal is clean apically [22]. As a result of the anatomical complexity of the root canal system, it is not possible to clean the whole surface of the root canal using shaping files alone, which establishes the indispensible role of irrigation in root canal preparation. Using radiopaque solution, an in-vivo study determined whether the use of patency was associated with more irrigating solution in the canal apical third after using passive ultrasonic activation [29]. Canals were irrigated with a radiopaque contrast and apical patency was achieved using a size 10 K-file, extended 1 mm beyond the working length. The digital images revealed there were significantly more patent canals with irrigant in the apical third compared to the non-patent canals. The study concluded that apical patency combined with passive ultrasonic activation enhances the transmission of irrigants into the apical third of root canals [30]. A similar study arrived at the same conclusion in regards to irrigant delivery to the apical area of large root canals [31]. Vera et al. [32] also examined the effect of apical patency on the gas bubbles located within the canal coronal and middle thirds which restrict irrigant flow during canal preparation. Irrigation using sodium hypochlorite (NaOCl) with a contrast medium revealed that maintaining apical patency significantly minimized the gas bubbles in large canals.

The incomplete removal of intracanal medications, such as calcium hydroxide, can adversely affect the properties of some root canal filling materials thus influencing RCT outcome [33]. In-vivo studies reported a statistically significant association between the efficient removal of calcium hydroxide or chlorohexidine and the combined use of patency file and irrigation [29].

APICAL PATENCY AND BIOLOGICAL CONSIDERATIONS

Apical patency creates an open passage to the apical foramen, clear from infection-containing debris (dentin chips or pulp tissue). There are those who view this with concern due to the possibility of bacterial extrusion [34, 35], and its subsequent influence on treatment outcome in the light of studies – although rare – that have reported root canal failure due to bacteria found in the periapical area [36]. Two in-vitro studies explored this possibility and reported that when using a patency file in canals filled with NaOCl, this prevented the inoculation of periapical tissue with bacteria [37, 38]. How-
ever, in these studies, the files were contaminated with only *Streptococcus sanguis* which does not reflect the diverse bacterial population found in root canals undergoing endodontic treatment, and which may include more resistant bacterial strains [36].

APICAL PATENCY AND EXTRUSION

Extrusion of debris and irrigant solutions beyond the foramen is associated with periapical inflammation and delayed healing of apical periodontitis [39, 40]. One in-vitro study examining apical extrusion found no statistical difference in the amount of extrusion beyond both intact and small-sized apical foramina whether patency files of different sizes were used or not [5]. Deonizio et al. [41] arrived at a similar conclusion, showing that apical patency does not impact the amount of extruded filling material during root canal retreatment. Paradoxically, Lambriniidis et al. [35] reported that more extrusion occurred with an intact apical constriction compared to when it was enlarged. They related these findings to the probable creation of an apical plug due to not performing apical patency in their study. While Tinaz et al. [42] showed that apical extrusion of material increased using larger diameter patency files.

APICAL PATENCY AND OVERALL TREATMENT SUCCESS

Two randomized controlled clinical studies exploring factors associated with tooth survival and periapical healing following RCT [9, 10] reported that maintaining apical patency is one of the important factors positively impacting periapical healing and tooth survival after RCT. Negishi et al. [27] reported an increase in failure risk with an inaccessible apical constriction especially in teeth with periapical lesions. On the other hand, a recently published randomized clinical trial evaluating the effect of maintaining apical patency on healing of periapical lesions associated with necrotic teeth, demonstrated that success was similar in both patency and non-patency groups [14].

Only an animal model study examining periapical healing after RCT with or without apical patency in dogs [7], found significant healing in the non-patency group. It was argued that there was an absence of pathogenic bacteria in that study, which explained the decreased outcome being associated with patency, due to mechanical irritation of the periapical tissues.

Achieving apical patency was also cited as a criterion of efficacy in root canal retreatment procedures [26, 43, 44].

CONCLUSIONS

Clinical studies directly investigating the influence of apical patency on RCT outcome are limited. In-vitro and in-vivo studies evaluating amount of extrusion, canal cleanliness, and shaping examined this influence indirectly. According to the available literature, there is little evidence to contraindicate the use of apical patency or suggest it has a negative effect on RCT outcome. However, more evidence of high quality is required to confirm this.

ACKNOWLEDGMENT

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

CONFLICT OF INTEREST

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

1. Bergenholtz G. Assessment of treatment failure in endodontic therapy. J Oral Rehabil 2016; 43: 753-758.
2. Simon S, Machtou P, Adams N, Tomson P, Lumley P. Apical limit and working length in endodontics. Dent Update 2009; 36: 146-153.
3. American Association of Endodontists. Glossary of endodontic terms 2016. Gloss Endod Terms 2015; 9: 43.
4. Buchanan LS. Management of the curved root canal. J Calif Dent Assoc 1989; 17: 18-27.
5. Camões ICG, Salles MR, Fernando MVM, Freitas LF, Gomes CC. Relationship between the size of patency file and apical extrusion of sodium hypochlorite. Indian J Dent Res 2009; 20: 426-430.
6. Ricucci D, Lin LM, Spängberg LSW. Wound healing of apical tissues after root canal therapy: a long-term clinical, radiographic, and histopathologic observation study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 609-621.
7. Holland R, Sant’ Anna A, De Souza V, et al. Influence of apical patency and filling material on healing process of dogs’ teeth with vital pulp after root canal therapy. Braz Dent J 2005; 16: 9-16.
8. Ricucci D, Langeland K. Apical limit of root canal instrumentation and obturation, part 1. Literature review. Int Endod J 1998; 31: 384-393.
9. Ng YL, Mann V, Gulabivala K. A prospective study of the factors affecting outcomes of nonsurgical root canal treatment: part 1: periapical health. Int Endod J 2011; 44: 583-609.
10. Ng YL, Mann V, Gulabivala K. A prospective study of the factors affecting outcomes of nonsurgical root canal treatment: Part 2: tooth survival. Int Endod J 2011; 44: 610-625.
11. Arora M, Sangwan P, Tewari S, Duhan J. Effect of maintaining apical patency on endodontic pain in posterior teeth with pulp necrosis and apical periodontitis: a randomized controlled trial. Int Endod J 2016; 49: 317-324.
12. Arias A, Arahal M, Hidalgo JJ, de la Macorra JC. Relationship between postendodontic pain, tooth diagnostic factors, and apical patency. J Endod 2009; 35: 189-192.
13. Yavuz IE, Kurnaz S, Tunca YM. Maintaining apical patency does not increase postoperative pain in molars with necrotic pulp and apical periodontitis: a randomized controlled trial. J Endod 2018; 44: 335-340.
14. Arslan H, Yildiz ED, Topçuoğlu HS, Tepecik E, Ayaz N. Success of maintaining apical patency in teeth with periapical lesion: a randomized clinical study. Quintessence Int (Berl) 2019; 50: 686-693.
15. Garg N, Sharma S, Chhabra A, Dogra A, Bhatia R, Thakur S. Clinical evaluation of maintenance of apical patency in postendodontic treatment: an in vivo study. Endodontology 2017; 29: 115-119.

16. Sharaa ME, Aboul-Enein NM. Relationship between post-preparation pain and apical patency: a randomized clinical trial. Gulf Med J 2012; 1: 96-101.

17. Abdurrahman, A. Rodríguez C, Al-maweri SA, Halboub E, Alqahtabi AY, Alhaddawy H. Effect of apical patency on postoperative pain: a meta-analysis. Int Endod J 2018; 44: 1467-1473.

18. Yalalci IE, Demirci GK, Kuruz S, Celik G, Kaya BU, Tunca YM. Does maintaining apical patency during instrumentation increase postoperative pain or flare-up rate after nonsurgical root canal treatment? A systematic review of randomized controlled trials. J Endod 2018; 44: 1228-1236.

19. López FU, Travessas JAC, Fachin E, Fontanella V, Grecca F. Apical transportation: two assessment methods. Aust Endod J 2009; 35: 85-88.

20. Lopreite G, Basilaki I, Romero M, Hecht P. Evaluation of apical foramen deformation produced by manual and mechanized patency maneuvers. Acta Odontol Latinoam 2014; 27: 77-81.

21. Goldberg F, Massone EI. Patency file and apical transportation: an in vitro study. J Endod 2002; 28: 510-511.

22. Gonzalez Sanchez JA, Duran-Sindreu F, Albuquerque Matos M, et al. Apical transportation created using three different patency instruments. Int Endod J 2010; 43: 560-564.

23. Tsésis I, Amidor B, Tamse A, Kfir A. The effect of maintaining apical patency on canal transportation. Int Endod J 2008; 41: 431-435.

24. Hasheminia SM, Farhadi N, Shokranen A. Effect of patency file on transportation and curve straightening in canal preparation with ProTaper system. ISRN Dent 2013; 2013: 704027.

25. Hasheminia M, Ardestani M. The effect of using patency file on apical transportation in canals prepared with passive step back technique. J Res Med Sci 2004; 9: 210-215.

26. Trierveiler Paiva RC, Solda C, Vendramini F, Vanni R, Baldissarrelli Marco F, Fornari VJ. Regaining apical patency with manual and reciprocating instrumentation during retreatment. Iran Endod J 2018; 13: 351-355.

27. Negishi J, Kawanami M, Ogami E. Risk analysis of failure of root canal treatment for teeth with inaccessible apical constriction. J Dent 2005; 33: 399-404.

28. Abdelsalam N, Hashem N. Impact of apical patency on accuracy of electronic apex locators: in vitro study. J Endod 2020; 46: 509-514.

29. Lambrianidis T, Kosti E, Boutsoukius C, Mazinis M. Removal efficacy of various calcium hydroxide/chlorhexidine medicaments from the root canal. Int Endod J 2006; 39: 55-61.

30. Vera J, Arias A, Romero M. Effect of maintaining apical patency on irrigant penetration into the apical third of root canals when using passive ultrasonic irrigation: an in vivo study. J Endod 2011; 37: 1276-1278.

31. Vera J, Hernández EM, Romero M, Arias A, Van Der Sluis LWM. Effect of maintaining apical patency on irrigant penetration into the apical two millimeters of large root canals: an in vivo study. J Endod 2012; 38: 1340-1343.

32. Vera J, Arias A, Romero M. Dynamic movement of intracanal gas bubbles during cleaning and shaping procedures: the effect of maintaining apical patency on their presence in the middle and cervical thirds of human root canals – an in vivo study. J Endod 2012; 38: 200-203.

33. Ghobrial S, Boldari B, Yaghhoohnajad F, Meraji N. Effect of intracanal calcium hydroxide remnants on the push-out bond strength of two endodontic sealers. Iran Endod J Spring 2017; 12: 168-172.

34. Torabinejad M, Walton R. Endodontics: Principles and Practice. Chapter 15. 4th ed. Saunders; 2008.

35. Lambrianidis T, Tosounidou E, Tsoanopoulou M. The effect of maintaining apical patency on periapical extrusion. J Endod 2001; 27: 696-698.

36. Naaz PNR. On the causes of persistent apical periodontitis: a review. Int Endod J 2006; 39: 249-281.