Application of double Laplace decomposition method to solve a singular one-dimensional pseudohyperbolic equation

Hassan Eltayeb¹, Said Mesloub¹ and Adem Kılıçman²

Abstract
In this work, the double Laplace decomposition method is applied to solve singular linear and nonlinear one-dimensional pseudohyperbolic equations. This method is based on double Laplace transform and decomposition methods. In addition, we prove the convergence of our method. This method is described and illustrated by some examples. These results show that the introduced method is highly accurate and easy to apply.

Keywords
Laplace transform, inverse double Laplace transform, singular pseudohyperbolic, single Laplace transform, decomposition methods and partial derivative

Introduction
The linear and nonlinear pseudohyperbolic equations are the important classes of evolution equations which have been developed in recent years, and there is an extensive application in chemistry, plasma physics, thermo-elasticity, and engineering. Many powerful methods have been developed to solve linear and nonlinear partial differential equations (PDEs), such as homotopy perturbation method,¹² combined Laplace transforms and decomposition method,³ the transformed rational function method which presents exact traveling wave solutions to nonlinear integro-differential equations has been studied in Ma and Lee,⁴ the bi-linear techniques⁵ which present multiple wave solutions to nonlinear differential equations, and the integral transform method.⁶⁻⁹ An auxiliary parameter method using Adomian polynomials and Laplace transformation have been powerfully combined¹⁰ to study the nonlinear differential equation. The one-dimensional nonlinear hyperbolic equation with Bessel operator is one of the fundamental nonlinear wave equations having many applications in science. The energy-integral method is used to handle nonlinear singular one-dimensional hyperbolic equation.¹¹ The convergence of Adomian’s method has been studied by several authors.¹²⁻¹⁸ In this article, we are concerned with the following problem

\[
\frac{\partial^2 u}{\partial t^2} - \frac{a}{x^m} \frac{\partial}{\partial x} \left(x^m \frac{\partial u}{\partial x} \right) - \frac{b}{x^m \partial t} \left(x^m \frac{\partial u}{\partial x} \right) - cx^2 \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = f(x, t)
\]

subject to the initial conditions

¹Department of Mathematics, College of Science, King Saud University, Riyadh, Saudi Arabia
²Department of Mathematics, Institute for Mathematical Research, Universiti Putra Malaysia, Serdang, Malaysia

Corresponding author:
Adem Kılıçman, Department of Mathematics, Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
Email: akilic@upm.edu.my

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
\[u(x,0) = f_1(x), \quad \frac{\partial u(x,0)}{\partial t} = f_2(x) \quad (2) \]

where \(a, b, c\) are constants and \((1/x^m)(\partial / \partial x)(x^m(\partial u / \partial x))\) is called Bessel’s operator and \(f\) is a known function, where \(m = 1, 2, 3, \ldots\). Equation (1) is described by the following cases:

Case 1. At \(b = 0\), the equation is called singular one-dimensional like-wave equation;

Case 2. At \(c = 0\), the equation is called singular one-dimensional pseudohyperbolic equation;

Case 3. At \(a = 0\), the equation is called singular one-dimensional pseudohyperbolic-like-wave equation;

Case 4. At \(a = 0\) and \(b = 0\), the equation is called nonlinear one-dimensional like-wave equation;

Case 5. At \(b = 0\) and \(c = 0\), the equation is called singular one-dimensional wave equation;

Case 6. At \(a = 0\) and \(c = 0\), the equation is called singular one-dimensional pseudo wave equation.

In the general case when \(a \neq 0, b \neq 0,\) and \(c \neq 0,\) equation (1) is called singular one-dimensional pseudohyperbolic-like-wave equation.

The aim of this article is to use the double Laplace transform and domain decomposition method to obtain approximate solutions with high accuracy for a singular one-dimensional pseudohyperbolic equation and a singular one-dimensional pseudohyperbolic-like-wave equation. In addition, one of the main aims of this article is to provide a sufficient condition of convergence of the series.

Now, we recall the following definitions which are given by previous studies.\(^{19-22}\) The double Laplace transform is defined as

\[L_x L_t [f(x,t)] = F(p,s) = \int_0^\infty \int_0^\infty e^{-pt} e^{-sx} f(x,t) dt dx \quad (3) \]

where \(x, t > 0\) and \(p, s\) are complex values, and further double Laplace transform of the first-order partial derivative is given by

\[L_x L_t \left[\frac{\partial u(x,t)}{\partial x} \right] = pU(p,s) - U(0,s). \quad (4) \]

Similarly, the double Laplace transform for second-order partial derivative with respect to \(x\) and \(t\) are defined as follows

\[L_x L_t \left[\frac{\partial^2 u(x,t)}{\partial^2 x} \right] = p^2 U(p,s) - pU(0,s) - \frac{\partial U(0,s)}{\partial x}, \]

\[L_x L_t \left[\frac{\partial^2 u(x,t)}{\partial t^2} \right] = s^2 U(p,s) - sU(0,s) - \frac{\partial U(0,s)}{\partial t}. \quad (5) \]

The following Lemma is used in this article.

Lemma 1. Double Laplace transform of the non-constant coefficient second-order partial derivative \(x^m(\partial^2 u / \partial t^2)\) and the function \(x^m f(x,t)\) are given by

\[L_x L_t \left(x^m \frac{\partial^2 u}{\partial t^2} \right) = (-1)^m \frac{d^m}{dp^m} \left[s^m L_x L_t (f(x,t)) \right] \]

and

\[L_x L_t (x^m f(x,t)) = (-1)^m \frac{d^m}{dp^m} \left[L_x L_t (f(x,t)) \right] \]

where \(r = 1, 2, 3, \ldots\)

One can prove this lemma using the definition of double Laplace transform in equations (3)–(5).

Singular one-dimensional pseudohyperbolic equation

To illustrate the basic idea of the modified double Laplace decomposition method, we assume that \(c = 0\) and \(m = 1\) in equation (1), we obtain the singular one-dimensional pseudohyperbolic equation

\[\frac{\partial^2 u}{\partial t^2} - a \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) - b \frac{\partial^2}{\partial x \partial t} \left(\frac{\partial u}{\partial x} \right) = f(x,t) \quad (8) \]

subject to

\[u(x,0) = f_1(x), \quad \frac{\partial u(x,0)}{\partial t} = f_2(x) \quad (9) \]

where the term \((1/x)(\partial / \partial x)(x(\partial u / \partial x))\) is Bessel operator. In the following theorem, we apply modified double Laplace decomposition methods.

Theorem 1. We claim that the solution of the singular one-dimensional pseudohyperbolic equation given in equation (8) is denoted by

\[u(x,t) = L_p^{-1} L_s^{-1} \left(\frac{F_1(p)}{s} \right) + L_p^{-1} L_s^{-1} \left(\frac{F_2(p)}{s^2} \right) \]

\[+ \frac{1}{s^2} \left[\int_0^p \left[\frac{dF(p,s)}{dp} \right] dp \right] \]

\[- L_p^{-1} L_s^{-1} \left[\frac{1}{s^2} \left[\int_0^p L_x L_t \left[\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \sum_{n=0}^{\infty} u_n \right) \right] dp \right] \right] \]

\[- L_p^{-1} L_s^{-1} \left[\frac{1}{s^2} \left[\int_0^p L_x L_t \left[\frac{\partial^2}{\partial x \partial t} \left(\frac{\partial}{\partial x} \sum_{n=0}^{\infty} u_n \right) \right] dp \right] \right] \quad (10) \]

where \(L_x L_t\) double Laplace transform with respect to \(x, t\) and \(L_p^{-1} L_s^{-1}\) double inverse Laplace transform with respect to \(p, s\), the function \(F(p,s), F_1(p),\) and \(F_2(p)\)
are Laplace transform of the functions $f(x,t)$, $f_1(x)$, and $f_2(x)$, respectively. Here, we provided double inverse Laplace transform with respect to p and s exist for each term in the right-hand side of equation (10).

Proof. By multiplying equation (8) by x and using the definition of partial derivatives of the double Laplace transform, single Laplace transform, and the Lemma 1 for equation (8), respectively, we get

$$
\frac{dU(p,s)}{dp} = \frac{1}{s} \frac{dF_1(p)}{dp} + \frac{1}{s^2} \frac{dF_2(p)}{dp} - \frac{1}{s^2} L_x L_t \left[\frac{dF(p,s)}{dp} \right] \, dp
$$

Applying the integral for both sides of equation (11) from 0 to p with respect to p, we have

$$
U(p,s) = \frac{F_1(p)}{s} + \frac{F_2(p)}{s^2} + \frac{1}{s^2} \int_0^p \left[\frac{dF(p,s)}{dp} \right] \, dp
$$

The next step in double Laplace decomposition method is representing the solution of singular one-dimensional pseudohyperbolic equation as $u(x,t)$ by the infinite series

$$
u(x,t) = \sum_{n=0}^{\infty} u_n(x,t)
$$

By applying double inverse Laplace transform for equation (12) and use equation (13), we obtain

$$
u(x,t) = L_p^{-1} L_s^{-1} \left(\frac{F_1(p)}{s} \right) + L_p^{-1} L_s^{-1} \left(\frac{F_2(p)}{s^2} \right) + L_p^{-1} L_s^{-1} \left[\frac{1}{s^2} \int_0^p \left[\frac{dF(p,s)}{dp} \right] \, dp \right]
$$

In particular, we have

$$
u_0 = - L_p^{-1} L_s^{-1} \left(\frac{F_1(p)}{s} \right) + L_p^{-1} L_s^{-1} \left(\frac{F_2(p)}{s^2} \right) + L_p^{-1} L_s^{-1} \left[\frac{1}{s^2} \int_0^p \left[\frac{dF(p,s)}{dp} \right] \, dp \right]
$$

and

$$
u_{n+1}(x,t) = - L_p^{-1} L_s^{-1} \left[\frac{1}{s^2} \int_0^p \left[\frac{dF(p,s)}{dp} \right] \, dp \right]
$$

By extending equation (8) as follows

$$
\frac{\partial^2 u}{\partial t^2} - a \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) - b \frac{\partial^2}{\partial x^2} \left(\frac{\partial u}{\partial x} \right) = f(x,t).
$$

On using the above theorem and Lemma 1, we have

$$
U(p,s) = \sum_{n=0}^{\infty} \left[\frac{(-1)^n p^n}{s} \int_0^p \frac{d^n F_1(p)}{dp^n} \, dp \right] + \sum_{n=0}^{\infty} \left[\frac{(-1)^n p^n}{s} \int_0^p \frac{d^n F_2(p)}{dp^n} \, dp \right] + \sum_{n=0}^{\infty} \left[\frac{(-1)^n p^n}{s} \int_0^p \frac{d^n F(p,s)}{dp^n} \, dp \right] + \ldots
$$

By taking double inverse Laplace transform for equation (18), we get

$$
u(x,t) = L_p^{-1} L_s^{-1} \left(\frac{(-1)^n p^n}{s} \int_0^p \frac{d^n F_1(p)}{dp^n} \, dp \right) + L_p^{-1} L_s^{-1} \left(\frac{(-1)^n p^n}{s} \int_0^p \frac{d^n F_2(p)}{dp^n} \, dp \right) + L_p^{-1} L_s^{-1} \left(\frac{(-1)^n p^n}{s} \int_0^p \frac{d^n F(p,s)}{dp^n} \, dp \right) + \ldots
$$

Then, the solution of equation (17) is given by
with respect to $\partial_t^4 u$, we have

$$u(x, t) = x^2 t + x^2 \sin t - x^2 t + 4 \sin t - 4t + 4 \cos t - 4$$

$$-L_p^{-1} L_s^{-1} \left(\frac{1}{x^2} \right) \left(\frac{\partial}{\partial x} \left(x \frac{\partial u}{\partial x} \right) + \frac{\partial^2}{\partial x \partial t} \left(x \frac{\partial u}{\partial x} \right) \right) dp \right)

(25)

Using equations (15) and (16), we get

$$u_0 = x^2 t + x^2 \sin t - x^2 t + 4 \sin t - 4t + 4 \cos t - 4$$

$$u_0 = -L_p^{-1} L_s^{-1} \left(\frac{1}{x^2} \right) \left(\frac{\partial}{\partial x} \left(x \frac{\partial u}{\partial x} \right) + \frac{\partial^2}{\partial x \partial t} \left(x \frac{\partial u}{\partial x} \right) \right) dp \right)

(26)

The other components are given by

$$u(x, t) = u_0 + u_1 + \cdots$$

It is obvious that self-canceling some terms appear between various components and connected by coming terms, we have

$$u(x, t) = u_0 + u_1 + \cdots$$

therefore, the exact solution is given by

$$u(x, t) = x^2 \sin t$$

Singular nonlinear one-dimensional pseudohyperbolic equation

In this section, we discuss the use of modified double Laplace to solve the singular one-dimensional pseudohyperbolic equation

$$\frac{\partial^2 u}{\partial t^2} - \frac{1}{x} \frac{\partial}{\partial x} \left(x \frac{\partial u}{\partial x} \right) - \frac{1}{x} \frac{\partial^2}{\partial x \partial t} \left(x \frac{\partial u}{\partial x} \right)$$

$$-a(x) \frac{\partial u}{\partial x} + u^2 = f(x, t)$$

(27)

subject to

$$u(x, 0) = f_1(x), \quad \frac{\partial u(x, 0)}{\partial t} = f_2(x)$$

(28)

where $\frac{1}{x}(\partial / \partial x)(x(\partial u / \partial x))$ is Bessel operator, and $f(x, t)$ and $a(x)$ are known functions. To obtain the solution of singular one-dimensional pseudohyperbolic equation (27), we apply our method as follows. Using the definition of partial derivatives of the double Laplace transform, single Laplace transform for equations (27) and (28), respectively and Lemma 1, we have
\[
\frac{dU(p,s)}{dp} = \frac{1}{s} \frac{dF_1(p)}{dp} + \frac{1}{s^2} \frac{dF_2(p)}{dp} + \frac{1}{s^3} L_p L_s \left[\frac{dF(p,s)}{dp} \right] \\
- \frac{1}{s^2} L_s L_t \left[\frac{\partial}{\partial x} \left(x \frac{\partial U}{\partial x} \right) \right] - \frac{1}{s^2} L_s L_t \left[\frac{\partial^2}{\partial x \partial t} \left(x \frac{\partial U}{\partial x} \right) \right] \\
- \frac{1}{s^3} L_s L_t \left[x \frac{\partial u(x)}{\partial x} \right] + \frac{1}{s^2} L_s L_t \left[xu^2 \right].
\]

By integrating both sides of equation (29) from 0 to \(p \) with respect to \(p \), we have

\[
U(p,s) = \frac{F_1(p)}{s} + \frac{F_2(p)}{s^2} + \frac{1}{s^3} \int_0^p \left(\frac{dF(p,s)}{dp} \right) dp \\
- \frac{1}{s^2} \int_0^p L_s L_t \left[\frac{\partial}{\partial x} \left(x \frac{\partial u}{\partial x} \right) \right] dp \\
- \frac{1}{s^2} \int_0^p L_s L_t \left[\frac{\partial^2}{\partial x \partial t} \left(x \frac{\partial u}{\partial x} \right) \right] dp \\
- \frac{1}{s^3} \int_0^p L_s L_t \left[x \frac{\partial u(x)}{\partial x} \right] dp + \frac{1}{s^2} \int_0^p L_s L_t \left[xu^2 \right] dp.
\]

The double Laplace Adomian decomposition method (DLADM) defines the solution of equation (27) as \(u(x, t) \) by the infinite series

\[
u(x, t) = \sum_{n=0}^{\infty} u_n(x, t).
\]

By applying double inverse Laplace transform for equation (30) and use equation (31) we get

\[
u(x, t) = L_p^{-1} L_s^{-1} \left[\frac{F_1(p)}{s} + \frac{F_2(p)}{s^2} \right] \\
+ \frac{1}{s^2} \int_0^p \left(\frac{dF(p,s)}{dp} \right) dp \\
- \frac{1}{s^2} \int_0^p L_s L_t \left[\frac{\partial}{\partial x} \left(x \frac{\partial u}{\partial x} \right) \right] dp \\
- \frac{1}{s^2} \int_0^p L_s L_t \left[\frac{\partial^2}{\partial x \partial t} \left(x \frac{\partial u}{\partial x} \right) \right] dp \\
- \frac{1}{s^3} \int_0^p L_s L_t \left[x \frac{\partial u(x)}{\partial x} \right] dp + \frac{1}{s^2} \int_0^p L_s L_t \left[xu^2 \right] dp.
\]

The nonlinear operators can be defined as follows

\[
u_0(x, t) = L_p^{-1} L_s^{-1} \left[\frac{F_1(p)}{s} + \frac{F_2(p)}{s^2} \right] \\
+ \frac{1}{s^2} \int_0^p \left(\frac{dF(p,s)}{dp} \right) dp.
\]
where N_1 and N_2 are defined in equation (33). By calculating the terms u_0, u_1, ... we obtain the solution as

$$u(x, t) = u_0 + u_1 + \cdots$$

To illustrate the modified double Laplace decomposition method for solving the singular nonlinear one-dimensional pseudohyperbolic equation, we let $g(x) = x^2$, $a = 8$, $h(x) = x/2$, and $f(u) = 0$ in equation (27), hence we have the following example.

Example 2. Consider the following nonlinear singular one-dimensional pseudohyperbolic equation

$$\frac{\partial^2 u}{\partial t^2} - \frac{1}{x} \frac{\partial}{\partial x} \left(x \frac{\partial u}{\partial x} \right) - \frac{1}{x} \frac{\partial^2}{\partial x \partial t} \left(x \frac{\partial u}{\partial x} \right) - \frac{x}{2} \frac{\partial u}{\partial x} + u^2 = x^2 e^{-t}$$

subject to

$$u(x, 0) = x^2, \quad \frac{\partial u(x, 0)}{\partial t} = -x^2$$

Using the modified double Laplace decomposition methods for equations (40) and (41) and applying equation (37), we have

$$u(x, t) = x^2 e^{-t} - L^{-1}_p L^{-1}_s$$

$$\left[\frac{1}{x^2} \int_0^p L_s L_t \left[(xu)_x + (xu)_xt + \frac{x}{2} u_x u - xu^2 \right] dp \right]$$

By applying equations (38) and (39), we get

$$u_0 = x^2 e^{-t}$$

$$u_1 = -L^{-1}_p L^{-1}_s$$

$$\left[\frac{1}{x^2} \int_0^p L_s L_t \left[(xu)_x + (xu)_xt + \frac{x}{2} u_x u - xu^2 \right] dp \right]$$

$$u_1 = -L^{-1}_p L^{-1}_s$$

$$\left[\frac{1}{x^2} \int_0^p L_s L_t \left[4xe^{-t} - 4xe^{-t} + x^2 e^{-2t} - x^2 e^{-2t} \right] dp \right] = 0$$

The other components are zeros

$$u(x, t) = u_0 + u_1 + \cdots$$

Therefore, the exact solution is given by

$$u(x, t) = x^2 e^{-t}.$$

Convergence analysis of the method

In this section, we will discuss the convergence analysis of the modified double Laplace decomposition methods for the singular nonlinear one-dimensional pseudohyperbolic equation which is given by

$$\frac{\partial^2 u}{\partial t^2} = \frac{1}{x} \frac{\partial}{\partial x} \left(x \frac{\partial u}{\partial x} \right) + \frac{1}{x} \frac{\partial^2}{\partial x \partial t} \left(x \frac{\partial u}{\partial x} \right) + \frac{x}{2} \frac{\partial u}{\partial x} + f(u)$$

for all $u, v \in H$. We define H as $H = L^2_p((a, b) \times [0, T])$, where $a < 0$ and

$$u : (a, b) \times [0, T] \to \mathbb{R} \times \mathbb{R}, \text{ with } ||u||_H^2 = \int_Q \left(xu^2(x, t) dxdt \right)$$

where $Q = (a, b) \times [0, T]$ and

$$H = \left\{ (u, v) : (a, b) \times 0, T \right\}, \text{ with }$$

$$L^{-1}_p L^{-1}_s \left[\frac{1}{x^2} \int_0^p L_s L_t [u(x, t)](p, s) dp \right] (x, t) < \infty$$

Such that the solution satisfies the final condition $u(x, T) = 0$. Multiplying both sides of equation (43) by x and writing the equation in the operator form

$$L(u) = \frac{\partial^2 u}{\partial t^2} = \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial x \partial t}$$

$$+ x \frac{\partial u}{\partial x} + xu \frac{\partial u}{\partial x} + xf(u)$$

For L hemicontinuous operator, consider the following hypotheses:

1. (H1) $(L(u) - L(v), u - v) \geq k ||u - v||^2$; $k > 0, \forall u, v \in H.$

2. (H2) whatever may be $M > 0$, there exist a constant $C(M) > 0$ such that for $u, v \in H$ with $||u|| \leq M, ||v|| \leq M$ we have

$$(L(u) - L(v), w) \leq C(M) ||u - v|| ||w||$$

for every $w \in H$. In the next Theorem, we follow the literature.15,23–25
Theorem 2 (Sufficient condition of convergence). The Modified double Laplace decomposition methods applied to the nonlinear singular one-dimensional pseudohyperbolic equation (44) with homogeneous initial condition converges toward a solution.

Proof. To verify the convergence hypotheses (H1) for equation (44), we use the definition of our operator L, and we have the following form

\[
L(u) - L(v) = \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial x} \right) + \left(\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 v}{\partial x^2} \right) + \left(\frac{1}{2} \frac{\partial^2 u}{\partial x^2} - \frac{1}{2} \frac{\partial^2 v}{\partial x^2} \right) + x(f(u) - f(v))
\]

\[
= \frac{\partial}{\partial x}(u - v) + x \frac{\partial^2 u}{\partial x^2}(u - v) + \frac{\partial^2}{\partial x^2} \frac{\partial}{\partial x}(u - v) + x(f(u) - f(v))
\]

\[
= \frac{\partial}{\partial x}(u - v) + \frac{\partial^3}{\partial x^3}(u - v) + \frac{1}{2} x \frac{\partial}{\partial x} (u^2 - v^2) + x(f(u) - f(v))
\]

therefore

\[
(L(u) - L(v), u - v) = \left(\frac{\partial}{\partial x}(u - v), u - v \right)
\]

\[
+ \left(\frac{\partial^2}{\partial x^2}(u - v), u - v \right)
\]

\[
+ \left(\frac{\partial^3}{\partial x^3}(u - v), u - v \right)
\]

\[
+ \left(\frac{1}{2} x \frac{\partial}{\partial x} (u^2 - v^2), u - v \right)
\]

\[
+ \left(x(f(u) - f(v)), u - v \right)
\]

Since $\frac{\partial}{\partial x}$ and $\frac{\partial^2}{\partial x^2}$ are differential operators in H, there exists numbers α, β, θ, ζ, and η such that

\[
\left(\frac{\partial}{\partial x}(u - v), u - v \right) \geq \alpha \| u - v \|^2
\]

(46)

where $\| x \| \leq a$, using Cauchy Schwartz inequality

\[
- \left(\frac{\partial^2}{\partial x^2}(u - v), u - v \right) \leq \| x \| \| \frac{\partial^2}{\partial x^2}(u - v) \| \| u - v \|
\]

\[
\leq a\beta \| u - v \|^2 \iff
\]

\[
\left(\frac{\partial^2}{\partial x^2}(u - v), u - v \right) \geq -a\beta \| u - v \|^2
\]

(47)

\[
- \left(\frac{\partial}{\partial x}(u - v), u - v \right) \leq \| \frac{\partial}{\partial x}(u - v) \| \| u - v \|
\]

\[
\leq \eta \| u - v \|^2 \iff
\]

\[
\left(\frac{\partial}{\partial x}(u - v), u - v \right) \geq -\eta \| u - v \|^2
\]

(48)

\[
- \left(\frac{\partial^3}{\partial x^3}(u - v), u - v \right) \leq \| x \| \| \frac{\partial^3}{\partial x^3}(u - v) \| \| u - v \|
\]

\[
\leq a\zeta \| u - v \|^2 \iff
\]

\[
\left(\frac{\partial^3}{\partial x^3}(u - v), u - v \right) \geq -a\zeta \| u - v \|^2
\]

(49)

\[
- \left(\frac{1}{2} x \frac{\partial}{\partial x} (u^2 - v^2), u - v \right) \leq \frac{1}{2} \| x \| \| \frac{\partial}{\partial x} (u^2 - v^2) \| \| u - v \|
\]

\[
\leq \frac{1}{2} a\theta \| (u^2 - v^2) \| \| u - v \|
\]

\[
\leq \frac{1}{2} a\theta \| u + v \| \| u - v \| \| u - v \|^2 \iff
\]

\[
\left(\frac{1}{2} x \frac{\partial}{\partial x} (u^2 - v^2), u - v \right) \geq -a\theta M \| u - v \|^2
\]

(50)

According to Cauchy Schwartz inequality, where $\sigma > 0$ as f is Lipschitzian function, we have

\[
-x(f(u) - f(v), u - v) \leq \| x \| \| f(u) - f(v) \| \| u - v \|
\]

\[
\leq a\| f(u) - f(v) \| \| u - v \|
\]

\[
\leq a\sigma \| u - v \|^2 \iff
\]

\[
(x(f(u) - f(v)), u - v) \geq -a\sigma \| u - v \|^2
\]

(51)

Substituting equations (46)-(51) into equation (45) gives

\[
(L(u) - L(v), u - v) \geq (\alpha - a\beta - \eta - a\zeta - a\theta M - a\sigma) \| u - v \|^2
\]

\[
\| u - v \|^2 (L(u) - L(v), u - v) \geq k \| u - v \|^2
\]

So, the hypothesis (H1) holds, where

\[
k = \alpha - a\beta - \eta - a\zeta - a\theta M - a\sigma > 0
\]

Now we verify the convergence hypotheses (H2) for the operator $L(u)$. For every $M > 0$, there exist a constant $C(M) > 0$ such that for $u, v \in H$ with $\| u \| \leq M$, $\| v \| \leq M$

\[
(L(u) - L(v), u - v) \leq C(M) \| u - v \| \| w \|
\]
for every $w \in H$. For that we have
\[
(L(u) - L(v), u - v) = \left(\frac{\partial}{\partial x} (u - v), w \right) + \left(x \frac{\partial^2}{\partial x^2} (u - v), w \right) + \left(\frac{\partial^2}{\partial x \partial t} (u - v), w \right) + \left(x \frac{\partial^3}{\partial x^3 \partial t} (u - v), w \right) + \frac{1}{2} \left(\frac{\partial}{\partial x} (u^2 - v^2), w \right) + (xf(u) - f(v), w)
\]
(52)

There exist numbers $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$, and σ_1 such that, using the Schwartz inequality and the fact that u and v are bounded, we obtain
\[
\left(\frac{\partial}{\partial x} (u - v), w \right) \leq \alpha_1 \|u - v\| \|w\|,
\left(x \frac{\partial^2}{\partial x^2} (u - v), w \right) \leq a \alpha_2 \|u - v\| \|w\|,
\left(\frac{\partial^2}{\partial x \partial t} (u - v), w \right) \leq \beta_1 \|u - v\| \|w\|,
\left(x \frac{\partial^3}{\partial x^3 \partial t} (u - v), w \right) \leq a \beta_2 \|u - v\| \|w\|,
\frac{1}{2} \left(\frac{\partial}{\partial x} (u^2 - v^2), w \right) \leq \frac{1}{2} \alpha_3 \|u + v\| \|u - v\| \|w\| \leq a \sigma_1
\]
where $\|x\| \leq a$. We also have
\[
(L(u) - L(v), w) \leq (\alpha_1 + a \alpha_2 + \beta_1 + a \beta_2 + a \alpha_3 + a \sigma_1) \|u - v\| \|w\| = C(M) \|u - v\| \|w\|
\]
where
\[
C(M) = \alpha_1 + a \alpha_2 + \beta_1 + a \beta_2 + a \alpha_3 + a \sigma_1
\]
and therefore (H2) holds.

Conclusion

In this article, we proposed modified double Laplace decomposition methods to solve singular one-dimensional linear and nonlinear pseudohyperbolic equations. The efficiency and accuracy of the present scheme are validated through examples. This method can be applied to many complicated linear and nonlinear PDEs and also for system of PDEs and does not require linearization.

Acknowledgements

The authors would like to thank the referees for valuable suggestions and comments, which helped the authors to improve this article substantially. All authors jointly worked on deriving the results and approved the final revised manuscript.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding of this research through the Research Group Project number RGP-117.

References

1. Abbasbandy S. Iterated He’s homotopy perturbation method for quadratic Riccati differential equation. *Appl Math Comput* 2006; 175: 581–589.
2. Sadighi A and Ganji DD. Solution of the generalized nonlinear Boussinesq equation using homotopy perturbation and variational iteration methods. *Int J Nonlin Sci Num* 2007; 8: 435–443.
3. Babolian E, Biazar J and Vahidi AR. A new computational method for Laplace transforms by decomposition method. *Appl Math Comput* 2004; 150: 841–846.
4. Ma W-X and Lee J-H. A transformed rational function method and exact solutions to the 3 + 1dimensional Jimbo–Miwa equation. *Chaos Soliton Fract* 2009; 42: 1356–1363.
5. Ma W-X. Bilinear equations, Bell polynomials and linear superposition principle. *J Phys Conf Ser* 2013; 411: 12021.
6. Liang X, Gao F, Gao YN, et al. Applications of a novel integral transform to partial differential equations. *J Nonlinear Sci Appl* 2017; 10: 528–534.
7. Yang X-J. A new integral transform method for solving steady heat-transfer problem. *Therm Sci* 2016; 20: 639–642.
8. Yang X-J. A new integral transform operator for solving the heat-diffusion problem. *Appl Math Lett* 2017; 64: 193–197.
9. Yang X-J. A new integral transform with an application in heat-transfer problem. *Therm Sci* 2016; 20: 677–681.
10. Khan Y, Vázquez-Leal H and Faraz N. An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations. *Appl Math Model* 2013; 37: 2702–2708.
11. Bouziani A. On initial boundary value problem with Dirichlet integral condition for a hyperbolic equation with Bessel operator. *J Appl Math* 2003; 10: 87–902.
12. Abbaoui K and Cherruault Y. Convergence of Adomian’s method applied to differential equations. *Comput Math Appl* 1994; 28: 103–109.
13. Abbaoui K and Cherruault Y. Convergence of Adomian’s method applied to nonlinear equations. *Math Comput Model* 1994; 20: 69–73.
14. Abbaoui K, Cherruault Y and Seng V. Practical formulae for the calculus of multivariable Adomian polynomials. *Math Comput Model* 1995; 22: 89–93.

15. Atangana A and Noutchie SCO. On multi-Laplace transform for solving nonlinear partial differential equations with mixed derivatives. *Math Probl Eng* 2014; 2014: 267843-1–267843-9.

16. Eltayeb H, Kılıçman A and Mesloub S. Application of the double Laplace Adomian decomposition method for solving linear singular one dimensional thermo-elasticity coupled system. *J Nonlinear Sci Appl* 2017; 10: 278–289.

17. Eltayeb Gadain H and Bachar I. On a nonlinear singular one-dimensional parabolic equation and double Laplace decomposition method. *Adv Mech Eng* 2017; 9: 1–7.

18. Gadain HE. Application of double Laplace decomposition method for solving singular one dimensional system of hyperbolic equations. *J Nonlinear Sci Appl* 2017; 10: 111–121.

19. Moura CAD. A linear uncoupling numerical scheme for the nonlinear coupled thermodynamics equations. In: Pereyra V and Reinoze A (eds) *Lecture notes in mathematics*, vol. 1005. Berlin: Springer, 1983, pp.204–211.

20. Kılıçman A and Eltayeb H. A note on defining singular integral as distribution and partial differential equation with convolution term. *Math Comput Model* 2009; 49: 327–336.

21. Eltayeb H and Kılıçman A. A note on solutions of wave, Laplace’s and heat equations with convolution terms by using double Laplace transform. *Appl Math Lett* 2008; 21: 324–329.

22. Kılıçman A and Gadain HE. On the applications of Laplace and Sumudu transforms. *J Frankl Inst* 2010; 347: 848–862.

23. Hashim I, Noorani MSM and Said Al-Hadidi MR. Solving the generalized Burgers–Huxley equation using the Adomian decomposition method. *Math Comput Model* 2006; 43: 1404–1411.

24. Kaya D and Inan IE. A convergence analysis of the ADM and an application. *Appl Math Comput* 2005; 161: 1015–1025.

25. Kaya D and Inan IE. A numerical application of the decomposition method for the combined KdV–MKdV equation. *Appl Math Comput* 2005; 168: 915–926.