GENUS 2 CURVES AND GENERALIZED THETA DIVISORS

SONIA BRIVIO, FILIPPO F. FAVALE

Abstract. In this paper we investigate generalized theta divisors Θ_r in the moduli spaces $\mathcal{U}_C(r, r)$ of semistable vector bundles on a curve C of genus 2. We provide a desingularization Φ of Θ_r in terms of a projective bundle $\pi : \mathbb{P}(V) \to \mathcal{U}_C(r - 1, r)$ which parametrizes extensions of stable vector bundles on the base by \mathcal{O}_C. Then, we study the composition of Φ with the well known theta map θ. We prove that, when it is restricted to the general fiber of π, we obtain a linear embedding.

Introduction

Theta divisors play a fundamental role in the study of moduli spaces of semistable vector bundles on curves. First of all, the classical notion of theta divisor of the Jacobian variety of a curve can be generalized to higher rank. Let C be a smooth, irreducible, complex, projective curve of genus g. The study of isomorphism classes of stable vector of fixed rank r and degree n goes back to Mumford. The compactification of this moduli space is denoted by $\mathcal{U}_C(r, n)$ and has been introduced by Seshadri. In the particular case when the degree is equal to $r(g - 1)$ it admits a natural Brill-Noether locus $\Theta_{r,L}$, which is said theta divisor of $\mathcal{U}_C(r, r(g - 1))$. Riemann’s singularity Theorem extends to Θ_r, see [Las91].

When we restrict our attention to semistable vector bundles of rank r and fixed determinant $L \in \text{Pic}^r_{g-1}(C)$, we have the moduli space $\mathcal{SU}_C(r, L)$ and a Brill-Noether locus $\Theta_{r,L}$ which is said theta divisor of $\mathcal{SU}_C(r, L)$. The line bundle associated to $\Theta_{r,L}$ is the ample generator \mathcal{L} of the Picard variety of $\mathcal{SU}_C(r, L)$, which is said the determinant line bundle, see [DN89].

For semistable vector bundles with integer slope, one can also introduce the notion of associated theta divisor. In particular for a stable $E \in \mathcal{SU}_C(r, L)$ with $L \in \text{Pic}^r_{g-1}(C)$ we have that the set

$$\{N \in \text{Pic}^0(C) \mid h^0(E \otimes N) \geq 1\}$$

is either all $\text{Pic}^0(C)$ or an effective divisor Θ_E which is said the theta divisor of E. Moreover the map which associates to each bundle E its theta divisor Θ_E defines a rational map

$$\theta : \mathcal{SU}_C(r, L) \dashrightarrow |r\Theta_M|,$$

where Θ_M is a translate of the canonical theta divisor of $\text{Pic}^{r-1}(C)$ and M is a line bundle such that $M^{\otimes r} = L$. Note that the indeterminacy locus of θ is given by the vector bundles which does not admit theta divisor.

Actually, this map is defined by the determinant line bundle \mathcal{L}, see [BNR89] and it has been studied by many authors. It has been completely described for $r = 2$ with the contributions of many authors. On the other hand, when $r \geq 3$, very little is known. In particular, the genus 2 case seems to be interesting. First of all, in this case we have that $\dim \mathcal{SU}_C(r, L) = \dim |r\Theta_M|$. For $r = 2$ it is proved in [NR69] that θ is an isomorphism, whereas, for $r = 3$ it is a double covering.
ramified along a sextic hypersurface (see [Ort05]). For \(r \geq 4 \) this is no longer a morphism, and it is generically finite and dominant, see [Bea06] and [BV07].

In this paper, using the theory of extensions of vector bundles, we give a birational description of \(\Theta_r \) as a projective bundle over the moduli space \(\mathcal{U}_C(r-1, r) \). Our first result is Theorem 2.5 which can be stated as follows:

Theorem. There exists a vector bundle \(\mathcal{V} \) on \(\mathcal{U}_C(r-1, r) \) of rank \(2r-1 \) whose fiber at the point \([F]\) is \(\text{Ext}^1(F, \mathcal{O}_C) \). Let \(\mathbb{P}(\mathcal{V}) \) be the associated projective bundle and \(\pi : \mathbb{P}(\mathcal{V}) \to \mathcal{U}_C(r-1, r) \) the natural projection. Then the map

\[
\Phi : \mathbb{P}(\mathcal{V}) \to \Theta_r
\]

sending \([v]\) to the vector bundle which is extension of \(\pi([v]) \) by \(\mathcal{O}_C \), is a birational morphism.

In particular, notice that this theorem gives a desingularization of \(\Theta_r \) as \(\mathbb{P}(\mathcal{V}) \) is smooth.

As a corollary of the above Theorem we have, (see 2.7), that \(\Theta_{r,L} \) is birational to a projective bundle over the moduli space \(\mathcal{SU}_C(r-1, L) \) for any \(r \geq 3 \). This has an interesting consequence (see Corollary 2.8):

Corollary. \(\Theta_{r,L} \) is a rational subvariety of \(\mathcal{SU}_C(r, L) \).

The proof of the Theorem and its corollaries can be found in Section 2.

The second result of this paper is contained in Section 3 and it involves the study of the restriction of \(\Phi \) to the general fiber \(\mathbb{P}_F = \pi^{-1}([F]) \) of \(\pi \) and its composition with the theta map. The main result of this section is Theorem 3.4 which can be stated as follows:

Theorem. For a general stable bundle \(F \in \mathcal{SU}_C(r-1, L) \) the map

\[
\theta \circ \Phi|_{\mathbb{P}_F} : \mathbb{P}_F \to |r\Theta_M|
\]

is a linear embedding.

In the proof we are actually more precise about the generality of \(F \): we describe explicitly a open subset of the moduli space \(\mathcal{SU}_C(r-1, L) \) where the above theorem holds. Let us stress that one of the key argument in the proof involves the very recent result about the stability of secant bundles [BD18].

1. **Background and known results**

In this section we recall some definitions and useful results about generalized Theta divisors, secant bundles and 2-symmetric product of curves that we will use in the following sections.

1.1. **Theta divisors.**

Let \(C \) be a smooth, irreducible, complex, projective curve of genus \(g = 2 \). For any \(r \geq 2 \) and for any \(n \in \mathbb{Z} \), let \(\mathcal{U}_C(r, n) \) denote the moduli space of semistable vector bundles on the curve \(C \) with rank \(r \) and degree \(n \). It is a normal, irreducible, projective variety of dimension \(r^2 + 1 \), whose points are \(S \)-equivalence classes of semistable vector bundles of rank \(r \) and degree \(n \); we recall that two vector bundles are said \(S \)-equivalent if they have isomorphic graduates, where the graduate \(gr(E) \) of \(E \) is the polystable bundle defined by a Jordan-Holder filtration of \(E \), see [Ses82] and [LeP97].

We denote by \(\mathcal{U}_C(r, n)^\ast \) the open subset corresponding to isomorphism classes of stable bundles. For \(r = 2 \) one has that \(\mathcal{U}_C(r, n) \) is smooth, whereas, for \(r \geq 3 \) one has

\[
\text{Sing}(\mathcal{U}_C(r, n)) = \mathcal{U}_C(r, n) \setminus \mathcal{U}_C(r, n)^\ast.
\]
Moreover, \(\mathcal{U}_C(r, n) \cong \mathcal{U}_C(r, n') \) whenever \(n' - n = kr \), with \(k \in \mathbb{Z} \), and \(\mathcal{U}_C(r, n) \) is a fine moduli space if and only if \((r, n) = 1 \).

For any line bundle \(L \in \text{Pic}^0(C) \), let \(SU_C(r, L) \) denote the moduli space of semistable vector bundles on \(C \) with rank \(r \) and fixed determinant \(L \). These moduli spaces are the fibres of the natural map \(\mathcal{U}_C(r, n) \to \text{Pic}^0(C) \) which associates to each vector bundle its determinant.

When \(n = r \), we consider the following Brill-Noether loci:

\[
\Theta_r = \{ [E] \in \mathcal{U}_C(r, r) \mid h^0(\text{gr}(E)) \geq 1 \},
\]

\[
\Theta_{r, L} = \{ [E] \in SU_C(r, L) \mid h^0(\text{gr}(E)) \geq 1 \},
\]

where \([E]\) denotes \(S\)-equivalence class of \(E \). Actually, \(\Theta_r \) (resp. \(\Theta_{r, L} \)) is an integral Cartier divisor which is said the theta divisor of \(\mathcal{U}_C(r, r) \) (resp. \(SU(r, L) \)), see [DN89]. The line bundle \(\mathcal{L} \) associated to \(\Theta_{r, L} \) is called the determinant bundle of \(SU_C(r, L) \) and it is the generator of its Picard variety. We denote by \(\Theta_{r}^* \subset \Theta_r \) the open subset of stable points. Let \([E] \in \Theta_{r}^* \), then the multiplicity of \(\Theta_r \) at the point \([E]\) is \(h^0(E) \), see [Las91]. This implies:

\[
\text{Sing}(\Theta_r^*) = \{ [E] \in \Theta_r^* | h^0(E) \geq 2 \}.
\]

For semistable vector bundles with integer slope we can introduce the notion of theta divisors as follows. Let \(E \) be a semistable vector bundle on \(C \) with integer slope \(m = \frac{\deg E}{r} \). The tensor product defines a morphism

\[
\mu: \mathcal{U}_C(r, rm) \times \text{Pic}^{1-m}(C) \to \mathcal{U}_C(r, r)
\]

sending \([E], N\) \(\to [E \otimes N] \).

The intersection \(\mu^* \Theta_r \cdot ([E] \times \text{Pic}^{1-m}(C)) \) is either an effective divisor \(\Theta_E \) on \(\text{Pic}\^{1-m}(C) \) which is called the theta divisor of \(E \), or all \((E) \times \text{Pic}^{1-m}(C)) \), and in this case we will say that \(E \) does not admit theta divisor. For more details see [Real03].

Set theoretically we have

\[
\Theta_E = \{ N \in \text{Pic}^{1-m}(C) \mid h^0(\text{gr}(E) \otimes N) \geq 1 \}.
\]

For all \(L \in \text{Pic}^r(C) \) fixed we can choose a line bundle \(M \in \text{Pic}^m(C) \) such that \(L = M^\otimes r \). If \([E] \in SU_C(r, L)\), then \(\Theta_E \in [r \Theta_M] \) where

\[
\Theta_M = \{ N \in \text{Pic}^{1-m}(C) \mid h^0(M \otimes N) \geq 1 \}
\]

is a translate of the canonical theta divisor \(\Theta \subset \text{Pic}^{g-1}(C) \). This defines a rational map, which is said theta map of \(SU_C(r, L) \)

\[
(1) \quad SU_C(r, L) \dashrightarrow [r \Theta_M].
\]

As previously recalled \(\theta \) is the map induced by the determinant bundle \(\mathcal{L} \) and the points \([E]\) which do not admit theta divisor give the indeterminacy locus of \(\theta \). Moreover \(\theta \) is an isomorphism for \(r = 2 \), it is a double covering ramified along a sextic hypersurface for \(r = 3 \). For \(r \geq 4 \) it is no longer a morphism: it is generically finite and dominant.
1.2. 2-symmetric product of curves.

Let $C^{(2)}$ denote the 2-symmetric product of C, parametrizing effective divisors d of degree 2 on the curve C. It is well known that $C^{(2)}$ is a smooth projective surface, see [ACGH85]. It is the quotient of the product $C \times C$ by the action of the symmetric group S_2; we denote by

\[\pi: C \times C \to C^{(2)}, \quad \pi(x, y) = x + y, \]

the quotient map, which is a double covering of $C^{(2)}$, ramified along the diagonal $\Delta \subset C \times C$.

Let $N^1(C^{(2)})\mathbb{Z}$ be the Neron-Severi group of $C^{(2)}$, i.e. the quotient group of numerical equivalence classes of divisors on $C^{(2)}$. For any $p \in C$, let’s consider the embedding

\[i_p: C \to C^{(2)} \]

sending $q \to q + p$, we denote the image by $C + p$ and we denote by x its numerical class in $N^1(C^{(2)})\mathbb{Z}$. Let d_2 be the diagonal map

\[d_2: C \to C^{(2)} \]

sending $q \to 2q$. Then $d_2(C) = \pi(\Delta) \simeq C$, we denote by δ its numerical class in $N^1(C^{(2)})\mathbb{Z}$. Finally, let’s consider the Abel map

\[A: C^{(2)} \to \text{Pic}^2(C) \simeq J(C) \]

sending $p + q \to O_C(p + q)$. Since $g(C) = 2$, it is well known that actually $C^{(2)}$ is the blow up of $\text{Pic}^2(C)$ at ω_C with expectional divisor

\[E = \{ d \in C^{(2)} | O_C(d) \simeq \omega_C \} \simeq \mathbb{P}^1. \]

This implies that:

\[K_{C^{(2)}} = A^*(K_{\text{Pic}^2(C)}) + \mathcal{E} = \mathcal{E}, \]

since $K_{\text{Pic}^2(C)}$ is trivial.

Let $\Theta \subset J(C)$ be the theta divisor, its pull back $A^*(\Theta)$ is an effective divisor on $C^{(2)}$, we denote by θ its numerical class in $N^1(C^{(2)})\mathbb{Z}$. It is well known that $\delta = 2(3x - \theta)$, or, equivalently,

\[(2) \quad \theta = 3x - \frac{\delta}{2} \]

If C is a general curve of genus 2 then $N^1(C^{(2)})\mathbb{Z}$ is generated by the classes x and $\frac{\delta}{2}$ (see [ACGH85]). The Neron-Severi lattice is identified by the relations

\[x \cdot x = 1, \quad x \cdot \frac{\delta}{2} = 1, \quad \frac{\delta}{2} \cdot \frac{\delta}{2} = -1. \]

1.3. Secant bundles on 2-symmetric product of curves.

Let’s consider the universal effective divisor of degree 2 of C:

\[\mathcal{I}_2 = \{ (d, y) \in C^{(2)} \times C \mid y \in \text{Supp}(d) \}, \]

it is a smooth irreducible divisor on $C^{(2)} \times C$. Let ι be the embedding of \mathcal{I}_2 in $C^{(2)} \times C$, r_1 and r_2 be the natural projections of $C^{(2)} \times C$ onto factors and $q_i = r_i \circ \iota$ the restriction to \mathcal{I}_2 of r_i. Then q_1 is a surjective map of degree 2. Denote also with p_1 and p_2 the natural projections of $C \times C$ onto factors.

We have a natural isomorphism

\[\nu: C \times C \to \mathcal{I}_2, \quad (x, y) \to (x + y, y) \]
and, under this isomorphism, the map \(q_1: \mathcal{I}_2 \to C^{(2)} \) can be identified with the map \(\pi: C \times C \to C^{(2)} \). It is also easy to see that the map \(q_2 \), under the isomorphism \(\nu \), can be identified with the projection \(p_2 \). We have then a commutative diagram

![Diagram](image)

Now we will introduce the secant bundle \(\mathcal{F}_2(E) \) associated to a vector bundle \(E \) on \(C \) as well as some properties which will be useful in the sequel. For details one can see [Sch64] or the Ph.D. thesis of E. Mistretta for the secant bundles of line bundles. The general case is studied in [BD18].

Let \(E \) be a vector bundle of rank \(r \) on \(C \), we can associate to \(E \) a sheaf on \(C^{(2)} \) which is defined as

\[
\mathcal{F}_2(E) = q_1^*(q_2^*(E)).
\]

\(\mathcal{F}_2(E) \) is a vector bundles of rank \(2r \) which is called secant bundle associated to \(E \) on \(C^{(2)} \).

Let ’s consider the pull back of the secant bundle on \(C \times C \): \(\pi^*\mathcal{F}_2(E) \). Outside the diagonal \(\Delta \subset C \times C \) we have:

\[
\pi^*\mathcal{F}_2(E) \simeq p_1^*E \oplus p_2^*E.
\]

Actually, these bundles are related by the following exact sequence:

\[
0 \to \mathcal{F}_2(E) \to p_1^*E \oplus p_2^*E \to p_1^*(E)|_\Delta = p_2^*(E)|_\Delta \simeq E \to 0,
\]

where the last map sends \((u,v) \to u|_\Delta - v|_\Delta\).

Finally, from the exact sequence on \(C^{(2)} \times C \):

\[
0 \to \mathcal{O}_{C^{(2)} \times C}(-\mathcal{I}_2) \to \mathcal{O}_{C^{(2)} \times C} \to \iota_*\mathcal{O}_{\mathcal{I}_2} \to 0,
\]

tensoring with \(r_2^*(E) \) we get:

\[
0 \to r_2^*(E)(-\mathcal{I}_2) \to r_2^*(E) \to \iota_*(q_2^*(E)) \to 0,
\]

where, to simplify notations, we set \(r_2^*(E) \otimes \mathcal{O}_{C^{(2)} \times C}(-\mathcal{I}_2) = r_2^*(E)(-\mathcal{I}_2) \) and we have used the projection formula

\[
r_2^*(E) \otimes \iota_*\mathcal{O}_{\mathcal{I}_2} = \iota_*(\iota^*(r_2^*E) \otimes \mathcal{O}_{\mathcal{I}_2}) = \iota_*(q_2^*E).
\]

By applying \(r_1^* \), we get

\[
0 \to r_1^*(r_2^*(E)(-\mathcal{I}_2)) \to H^0(E) \otimes \mathcal{O}_{C^{(2)}} \to \mathcal{F}_2(E) \to
\]

\[
\to R^1r_1^*(r_2^*(E)(-\mathcal{I}_2)) \to H^1(E) \otimes \mathcal{O}_{C^{(2)}} \to \cdots
\]

since we have: \(r_1^*(\iota_*(q_2^*E)) = q_1^*q_2^*E = \mathcal{F}_2(E) \) and

\[
R^0r_1^*r_2^*E = H^0(E) \otimes \mathcal{O}_{C^{(2)}}.
\]
Moreover, by projection formula $H^0(C^{(2)}, \mathcal{F}_2(E)) \simeq H^0(C, E)$ and the map
\[H^0(E) \otimes O_{C^{(2)}} \to \mathcal{F}_2(E) \]
appearing in (5) is actually the evaluation map of global sections of the secant bundle; we will it denoted by ev. Notice that, if we have $h^1(E) = 0$, the exact sequence (5) becomes
\[0 \to r_1^*(r_2^*(E)(-\mathcal{I}_2)) \to H^0(E) \otimes O_{C^{(2)}} \overset{ev}{\to} \mathcal{F}_2(E) \to R^1r_1^*(r_2^*(E)(-\mathcal{I}_2)) \to 0 \]
We will call the exact sequence (5) (and its particular case (6)) the exact sequence induced by the evaluation map of the secant bundle.

If $degE = n$, then the Chern character of $\mathcal{F}_2(E)$ is given by the following formula:
\[ch(\mathcal{F}_2(E)) = n(1 - e^{-x}) - r + r(3 + \theta)e^{-x}, \]
where x and θ are the numerical classes defined above. From this we can deduce the Chern classes of $\mathcal{F}_2(E)$:
\[c_1(\mathcal{F}_2(E)) = (n - 3r)x + r\theta, \]
\[c_2(\mathcal{F}_2(E)) = \frac{1}{2}(n - 3r)(n + r + 1) + r^2 + 2r. \]

We recall the following definition:

Definition 1.1. Let X be a smooth, irreducible, complex projective surface and let H be an ample divisor on X. For a torsion free sheaf E on X we define the slope of E with respect to H:
\[\mu_H(E) = \frac{c_1(E) \cdot H}{rk(E)}. \]
E is said semistable with respect to H if for any non zero proper subsheaf F of E we have $\mu_H(F) \leq \mu_H(E)$, it is said stable with respect to H if for any proper subsheaf F with $0 < rk(F) < rk(E)$ we have $\mu_H(F) < \mu_H(E)$.

For stability of secant bundles, we have the following result, see [BD18]:

Proposition 1.1. Let E be a semistable vector bundle on C with rank r and $deg(E) \geq r$, then $\mathcal{F}_2(E)$ is semistable with respect to the ample class x; if $deg(E) > r$ and E is stable, then $\mathcal{F}_2(E)$ is stable too with respect to the ample class x.

2. Description of Θ_r and $\Theta_{r,L}$.

In this section we will give a description of Θ_r (resp. $\Theta_{r,L}$) which gives a natural desingularization. Fix $r \geq 3$.

Lemma 2.1. Let E be a stable vector bundle with $[E] \in \Theta_r$, then there exists a vector bundle F such that E fit into the following exact sequence:
\[0 \to O_C \to E \to F \to 0, \]
with $[F] \in U_C(r - 1, r)$.

6
Proof. Since E is stable, $E \cong gr(E)$ and, as $[E] \in \Theta_r$, $h^0(E) \geq 1$. Let $s \in H^0(E)$ be a non zero global section, since E is stable of slope 1, s cannot be zero in any point of C, so it defines an injective map of sheaves
\[i_s : \mathcal{O}_C \rightarrow E \]
which induces the following exact sequence of vector bundles:
\[0 \rightarrow \mathcal{O}_C \rightarrow E \rightarrow F \rightarrow 0, \]
where the quotient F is a vector bundle of rank $r - 1$ and degree r. We will prove that F is semistable, hence $[F] \in \mathcal{U}_C(r - 1, r)$, which implies that it is also stable.

Let G be a non trivial destabilizing quotient of F of degree k and rank s with $1 \leq s \leq r - 2$. Since G is also a quotient of E, by stability of E we have
\[1 = \mu(E) < \mu(G) \leq \mu(F) = \frac{r}{r - 1}, \]
i.e.
\[1 < \frac{k}{s} \leq 1 + \frac{1}{r - 1}. \]
Hence we have
\[s < k \leq s + \frac{s}{r - 1} \]
which is impossible since $s < r - 1$.

A short exact sequence of vector bundles
\[0 \rightarrow G \rightarrow E \rightarrow F \rightarrow 0, \]
is say to be an extension of F by G, see [Ati57]. Recall that equivalence classes of extensions of F by G are parametrized by
\[H^1(\text{Hom}(F, G)) \simeq \text{Ext}^1(F, G); \]
where the extension corresponding to $0 \in \text{Ext}^1(F, G)$ is $G \oplus F$ and is called the trivial extension. Given $v \in \text{Ext}^1(F, G)$ we will denote by E_v the vector bundle which is the extension of F by G in the exact sequence corresponding to v. Moreover, if $v_2 = \lambda v_1$ for some $\lambda \in \mathbb{C}^*$, we have $E_{v_1} \simeq E_{v_2}$.
Lastly, recall that Ext^1 is a functorial construction so are well defined on isomorphism classes of vector bundles.

Lemma 2.2. Let $[F] \in \mathcal{U}_C(r - 1, r)$, then $\dim \text{Ext}^1(F, \mathcal{O}_C) = 2r - 1$.

Proof. We have: $\text{Ext}^1(F, \mathcal{O}_C) \simeq H^1(F^\vee) \simeq H^0(F \otimes \omega_C)^\vee$, so by Riemann-Roch theorem:
\[\chi_C(F \otimes \omega_C) = \deg(F \otimes \omega_C) + \text{rk}(F \otimes \omega_C)(1 - g(C)) = 2r - 1. \]
Finally, since $\mu(F \otimes \omega_C) = 3 + \frac{1}{r - 1} \geq 2g - 1 = 3$, then $h^1(F \otimes \omega_C) = 0$. \qed

Let F be a stable bundle, with $[F] \in \mathcal{U}_C(r - 1, r)$. The trivial extension $E_0 = \mathcal{O}_C \oplus F$ gives an unstable vector bundle. However, this is the only unstable extension of F by \mathcal{O}_C as proven in the following Lemma.

Lemma 2.3. Let $[F] \in \mathcal{U}_C(r - 1, r)$ and $v \in \text{Ext}^1(F, \mathcal{O}_C)$ be a non zero vector. Then E_v is a semistable vector bundle of rank r and degree r, moreover $[E_v] \in \Theta_r$.

Proof. By lemma 2.2 \(\dim \text{Ext}^1(F, \mathcal{O}_C) = 2r - 1 > 0 \), let \(v \in \text{Ext}^1(F, \mathcal{O}_C) \) be a non zero vector and denote by \(E_v \) the corresponding vector bundle. By construction we have an exact sequence of vector bundles

\[
0 \to \mathcal{O}_C \to E_v \to F \to 0
\]

from which we deduce that \(E_v \) has rank \(r \) and degree \(r \).

Assume that \(E_v \) is not semistable. Then there exists a proper subbundle \(G \) of \(E_v \) with \(\mu(G) > \mu(E_v) = 1 \). Denote with \(s \) and \(k \) respectively the rank and the degree of \(G \). Hence we have

\[
1 \leq s \leq r - 2 \quad k > s.
\]

Let \(\alpha \) be the composition of the inclusion \(G \hookrightarrow E_v \) with the surjection \(\varphi : E_v \to F \), let \(K = \ker \alpha \).

Then we have a commutative diagram

\[
\begin{array}{ccc}
0 & \to & 0 \\
\downarrow & & \downarrow \\
K & \xrightarrow{\alpha} & \text{Im}(\alpha) \\
\downarrow & & \downarrow \\
0 & \to & 0 \\
\end{array}
\quad
\begin{array}{ccc}
0 & \to & E_v \\
\downarrow & & \downarrow \\
\mathcal{O}_C & \xrightarrow{\varphi} & F \\
\end{array}
\quad
\begin{array}{cc}
0 & \to \\
\end{array}
\]

If \(K = 0 \) then \(G \) is a subsheaf of \(F \), which is stable, so

\[
\mu(G) = \frac{k}{s} < \mu(F) = 1 + \frac{1}{r - 1}
\]

and

\[
s < k < s + \frac{s}{r - 1},
\]

which is impossible as \(1 \leq s \leq r - 2 \). Hence we have that \(\alpha \) has non trivial kernel \(K \), which is a subsheaf of \(\mathcal{O}_C \), so \(K = \mathcal{O}_C(-A) \) for some divisor \(A \geq 0 \) with degree \(a \geq 0 \). Then \(\text{Im}(\alpha) \) is a subsheaf of \(F \), which is stable so:

\[
\frac{k + a}{s - 1} < 1 + \frac{1}{r - 1},
\]

hence we have

\[
s + a < k + a < s - 1 + \frac{s - 1}{r - 1}
\]

and

\[
a < -1 + \frac{s - 1}{r - 1}
\]

which is impossible as \(a \geq 0 \). This proves that \(E_v \) is semistable. Finally, note that \(h^0(E_v) \geq h^0(\mathcal{O}_C) = 1 \), so \([E] \in \Theta_r\). \(\square \)

We would like to study extensions of \(F \in \mathcal{U}_C(r - 1, r) \) by \(\mathcal{O}_C \) which give vector bundles of \(\Theta_r \setminus \Theta^*_r \). Note that if \(E_v \) is not stable, then there exists a proper subbundle \(S \) of \(E_v \) with slope 1. We will prove that any such \(S \) actually comes from a subsheaf of \(F \) of slope 1.

Let \([F] \in \mathcal{U}_C(r - 1, r)\), observe that any proper subsheaf \(S \) of \(F \) has slope \(\mu(S) \leq 1 \). Indeed, let \(s = \text{rk}(S) \leq r - 1 \), by stability of \(F \) we have

\[
\frac{\deg(S)}{s} < 1 + \frac{1}{r - 1}
\]

which implies \(\deg(S) < s + \frac{s}{r - 1} \), hence \(\deg(S) \leq s \). Assume that \(S \) is a subsheaf of slope 1. Then we are in one of the following cases:
A subsheaf S of F with slope 1 and rank $s \leq r - 2$ is a subbundle of F and it is said a maximal subbundle of F of rank s, see [LN83]. Note that any maximal subbundle S is semistable hence $[S] \in \mathcal{U}_C(s,s)$. We will denote by $\mathcal{M}_s(F)$ the set of maximal subbundles of F of rank s.

A subsheaf S of F of slope 1 and rank $r - 1$ is obtained by an elementary transformation of F at a point $p \in C$, i.e. it fits into an exact sequence as follows:

$$0 \to S \to F \to \mathbb{C}_p \to 0.$$

More precisely, let’s denote with F_p the fiber of F in p, all the elementary transformations of F at p are parametrized by $\mathbb{P}(\text{Hom}(F_p, \mathbb{C}))$. In fact, for any non zero form $\gamma \in \text{Hom}(F_p, \mathbb{C})$, by composing it with the restriction map $F \to F_p$, we obtain a surjective morphism $F \to \mathbb{C}_p$ and then an exact sequence

$$0 \to G_\gamma \to F \to \mathbb{C}_p \to 0,$$

where G_γ is actually a vector bundle which is obtained by the elementary transformation of F at p defined by γ. Finally, $G_{\gamma_1} \simeq G_{\gamma_2}$ if and only if $[\gamma_1] = [\gamma_2]$ in $\mathbb{P}(\text{Hom}(F_p, \mathbb{C}))$, see [Mar82] and [Bri17].

We have the following result:

Proposition 2.1. Let $[F] \in \mathcal{U}_C(r-1,r)$, $v \in \text{Ext}^1(F, \mathcal{O}_C)$ a non zero vector and E_v the extension of F defined by v. If G is a proper subbundle of E_v of slope 1, then G is semistable and satisfies one of the following conditions:

- G is a maximal subbundle of F and $1 \leq \text{rk}(G) \leq r - 2$;
- G has rank $r - 1$ and it is obtained by an elementary transformation of F.

Proof. Let $s = \text{rk}(G) = \text{deg}(G)$. As in the proof of Lemma 2.1 we can construct a commutative diagram

$$0 \to K \to G \to \text{Im}(\alpha) \to 0$$

$$0 \to \mathcal{O}_C \to E_v \to F \to 0$$

form which we obtain that either $K = 0$ of $K = \mathcal{O}_C(-A)$ with $A \geq 0$. In the second case, let a be the degree of A. As in the proof of Lemma 2.1 we have that the slope of $\text{Im}(\alpha)$ satisfies

$$\mu(\text{Im}(\alpha)) = \frac{s + a}{s - 1} < 1 + \frac{1}{r - 1}$$

which gives a contradiction

$$0 \leq a < -1 + \frac{s - 1}{r - 1}.$$

So can assume that $K = 0$, so $\alpha: G \to F$ is an injective map of sheaves, we denote by Q the quotient.

If $s = r - 1$ we have that Q is a torsion sheaf of degree 1, i.e. a skyscraper sheaf over a point with the only non trivial fiber of dimension 1. Hence G is obtained by an elementary transformation of F at a point $p \in C$.

If $s \leq r - 2$, we claim that α is an injective map of vector bundles. On the contrary, if G is not a subbundle, then Q is not locally free, so there exists a subbundle $G_f \subset F$ containing $\alpha(G)$, with $\text{rk}(G_f) = \text{rk}(G)$ and $\text{deg}(G_f) = \text{deg}G + b$, $b \geq 0$:

\[
\begin{array}{cccc}
0 & 0 & 0 & \\
& G & G_f & \\
& & \alpha & \\
& O_C & E & F & 0 \\
& & & & Q_f & Q \\
& & & & 0 & 0
\end{array}
\]

Then, as F is stable, we have:

$$
\mu(G_f) = \frac{s + b}{s} = 1 + \frac{b}{s} < 1 + \frac{1}{r - 1} = \mu(F),
$$

hence

$$
0 \leq b < \frac{s}{r - 1}
$$

which implies $b = 0$.

Finally, note that G is semistable. In fact, since $\mu(G) = \mu(E)$, a subsheaf of G destabilizing G would be a subsheaf destabilizing E.

For the proof see [NR69].

The above lemma allows us to prove the following result:

Proposition 2.2. Let $[F] \in \mathcal{U}_C(r - 1, r)$. Then:
Let G_γ be the elementary transformation of F at $p \in C$ defined by $[\gamma] \in \mathbb{P}(F_p^\vee)$, there exists a unique $[v] \in \mathbb{P}(\text{Ext}^1(F, \mathcal{O}_C))$ such that the inclusion $G_\gamma \hookrightarrow F$ can be lifted to E_v.

Let S be a maximal subbundle of F of rank s and $\iota : S \hookrightarrow F$ the inclusion, then the set of classes $[v]$ which extend ι is a linear subspace of $\mathbb{P}(\text{Ext}^1(F, \mathcal{O}_C))$ of dimension $2r - 2s - 2$.

In particular, for any maximal subbundle of F and for any elementary transformation, we obtain at least an extension of F which is in $\Theta_r \setminus \Theta^\ast_r$.

Proof. Let’s start with the case of elementary transformation. We are looking for the extensions of F by \mathcal{O}_C such that there exists a lift $\iota : G_\gamma \to E_v$ such that the diagram

\[
\begin{array}{ccc}
0 & \to & \mathcal{O}_C \otimes_{\mathbb{P}^1} E_v \to F \to 0 \\
\downarrow & & \downarrow \phi_v \\
0 & \to & \mathcal{O}_C \to \mathcal{O}_C(p) \to \mathbb{C}_p \to 0
\end{array}
\]

commutes. By Lemma 2.4, there exists $\tilde{\iota}$ if and only if the class of the extension E_v lives in the image of $H^1(\iota^\ast)$ in the diagram

\[
\begin{array}{cccc}
\text{Hom}(F, \mathcal{O}_C) & \to & \text{Hom}(F, E_v) & \to \text{Hom}(F, F) \to \text{Ext}^1(F, \mathcal{O}_C) \\
\phi_v^\ast & \downarrow \iota^\ast & \delta_v & \downarrow H^1(\iota^\ast) \\
\text{Hom}(G_\gamma, \mathcal{O}_C) & \to & \text{Hom}(G_\gamma, E_v) & \to \text{Hom}(G_\gamma, F) \to \text{Ext}^1(G_\gamma, \mathcal{O}_C)
\end{array}
\]

If we apply the functor $\text{Hom}(-, \mathcal{O}_C)$ to the vertical exact sequence we obtain the exact sequence

\[0 \to F^\vee \to G_\gamma^\vee \to \mathbb{C}_p \to 0\]

from which we obtain

\[\cdots \to H^1(F^\vee) \to H^1(G_\gamma^\vee) \to 0.\]

In particular, the map $H^1(\iota^\ast)$ is surjective so its kernel has dimension

\[
\dim(\ker(H^1(\iota^\ast))) = \text{ext}^1(F, \mathcal{O}_C) - \text{ext}^1(G_\gamma, \mathcal{O}_C) =
\]

\[
h^0(F \otimes \omega_C) - h^0(G_\gamma \otimes \omega_C) = 2r - 1 - 2(r - 1) = 1.
\]

Hence there exist only one possible extension which extend ι.

Let S be a maximal subbundle of F of rank $s, 1 \leq s \leq r - 2$, and let $\iota : S \to F$ the inclusion. By Lemma 2.4, we have that the set of $[v]$ which extends ι lifts is $\mathbb{P}(\ker(H^1(\iota^\ast)))$. As in the previous case, one can verify that $H^1(\iota^\ast)$ is surjective and

\[
\dim(\ker(H^1(\iota^\ast))) = \text{ext}^1(F, \mathcal{O}_C) - \text{ext}^1(S, \mathcal{O}_C) =
\]

\[
h^0(F \otimes \omega_C) - h^0(S \otimes \omega_C) = 2r - 1 - 2(s) = 2r - 2s - 1.
\]

\[\square\]
The above properties of extensions allow us to give the following description of theta divisor of $U_C(r, r)$:

Theorem 2.5. There exists a vector bundle V on $U_C(r-1, r)$ of rank $2r - 1$ whose fiber at the point $[F] \in U_C(r-1, r)$ is $\text{Ext}^1(F, O_C)$. Let $\mathbb{P}(V)$ be the associated projective bundle and $\pi : \mathbb{P}(V) \to U_C(r-1, r)$ the natural projection. Then, the map

$$\Phi : \mathbb{P}(V) \to \Theta_r$$

sending $[v]$ to $[E_v]$, where E_v is the extension of $\pi([v])$ by O_C defined by v, is a birational morphism.

Proof. Let \mathcal{P} be a universal bundle on $U_C(r-1, r)$, i.e. \mathcal{P} is a vector bundle on $C \times U_C(r-1, r)$ such that $\mathcal{P}|_{C \times [F]} \simeq F$ for any $[F] \in U_C(r-1, r)$. Let p_1 and p_2 denote the projections of $C \times U_C(r-1, r)$ onto factors. Consider on $C \times U_C(r-1, r)$ the vector bundle $p_1^*(O_C)$, note that $p_1^*(O_C)|_{C \times [F]} \simeq O_C$, for any $[F] \in U_C(r-1, r)$. Let consider on $U_C(r-1, r)$ the first direct image of the sheaf $\mathcal{H}om(\mathcal{P}, p_1^*(O_C))$, i.e. the sheaf

$$(12) \quad V = R^1 p_2_* \mathcal{H}om(\mathcal{P}, p_1^*(O_C)).$$

For any $[F] \in U_C(r-1, r)$ we have

$$V|_{[F]} = H^1(C, \mathcal{H}om(\mathcal{P}, p_1^*(O_C))|_{C \times [F]}) = H^1(C, \mathcal{H}om(F, O_C)) = \text{Ext}^1(F, O_C)$$

which, by lemma 2.2 has dimension $2r - 1$. Hence we can conclude that V is a vector bundle on $U_C(r-1, r)$ of rank $2r - 1$ whose fibre at $[F]$ is actually $\text{Ext}^1(F, O_C)$. Let’s consider the projective bundle associated to V and the natural projection map

$$\pi : \mathbb{P}(V) \to U_C(r-1, r).$$

Note that for any $[F] \in U_C(r-1, r)$ we have:

$$H^0(C, \mathcal{H}om(\mathcal{P}, p_1^*(O_C))|_{C \times [F]}) = H^0(C, \mathcal{H}om(F, O_C)) = H^0(C, F^*) = 0,$$

since F is stable with positive slope. Then by [NR69 Proposition 3.1], there exists a vector bundle E on $C \times V$ such that for any point $v \in V$ the restriction $E|_{C \times v}$ is naturally identified with the extension E_v of F by O_C defined by $v \in \text{Ext}^1(F, O_C)$ which, by lemma 2.3 is semistable and has sections, unless $v = 0$. Denote by V_0 the zero section of the vector bundle V, i.e. the locus parametrizing trivial extensions by O_C. Then $V \setminus V_0$ parametrize a family of semistable extensions of elements in $U_C(r-1, r)$ by O_C. This implies that the map sending $v \in V \setminus V_0$ to $[E_v]$ is a morphism. Moreover this induces a morphism

$$\Phi : \mathbb{P}(V) \to \Theta_r$$

sending $[v] \in \mathbb{P}(\text{Ext}^1(F, O_C))$ to $[E_v]$.

Note that we have:

$$\dim \mathbb{P}(V) = \dim U_C(r-1, r) + 2r - 2 = (r-1)^2 + 1 + 2r - 2 = r^2 = \dim \Theta_r.$$
Theorem 2.5 we have seen that the fiber of \(\Phi \) over a stable point \([E]\) with \(h^0(E) = 1 \) is a single point. For stable points it is possible to say something similar:

Lemma 2.6. Let \([E] \in \Theta_r^s\), there is a bijective morphism

\[
\nu: \mathbb{P}(H^0(E)) \to \Phi^{-1}(E).
\]

Proof. Let \(s \in H^0(E) \) be a non zero global section of \(E \). As in the proof of lemma 2.1, \(s \) induces an exact sequence of vector bundles:

\[
0 \to \mathcal{O}_C \to E \to F_s \to 0,
\]

where \(F_s \) is stable, \([F_s] \in \mathcal{U}_C(r-1, r)\) and \(E \) is the extension of \(F_s \) by a non zero vector \(v_s \in \text{Ext}^1(F_s, \mathcal{O}_C) \). By tensoring 13 with \(F_s^* \) and taking cohomology, since \(h^0(F_s^*) = h^0(F_s^* \otimes E) = 0 \), we get:

\[
0 \to H^0(F_s^* \otimes F_s) \to H^1(F_s^*) \to H^1(F_s^* \otimes E) \to H^1(F_s^* \otimes F_s) \to 0,
\]

from which we see that \(\langle v_s \rangle \) is the kernel of \(\lambda_s \).

So we have a natural map:

\[
H^0(E) \setminus \{0\} \to \mathbb{P}(V)
\]

sending a non zero global section \(s \in H^0(E) \) to \([v_s]\). Let \(s \) and \(s' \) be non zero global sections such that \(s' = \lambda s \), with \(\lambda \in C^* \). As in the proof of Theorem 2.5 it turns out that \(v_{s'} = \lambda v_s \) in \(\text{Ext}^1(F, \mathcal{O}_C) \). So we have a map:

\[
\nu: \mathbb{P}(H^0(E)) \to \mathbb{P}(V)
\]

sending \([s] \to [v_s]\), whose image is actually \(\Phi^{-1}(E) \).

We claim that this map is a morphism. Let \(\mathbb{P}^n = \mathbb{P}(H^0(E)) \), with \(n \geq 1 \), one can prove that there exists a vector bundle \(Q \) on \(\mathbb{P}^n \times C \) of rank \(r-1 \) such that \(Q_{[s]} \simeq F_s \). Hence we have a morphism \(\sigma: \mathbb{P}^n \to \mathcal{U}_C(r-1, r) \), sending \([s] \to [F_s] \), and a vector bundle \(\sigma^* V \) on \(\mathbb{P}^n \). Finally, there exists a vector bundle \(G \) on \(\mathbb{P}^n \) with \(G_{[s]} = H^1(F_s^* \otimes E) \) and a map of vector bundles:

\[
\lambda: \sigma^*(V) \to G,
\]

where \(\lambda_{[s]} \) is the map appearing in 13. Since \(\langle v_s \rangle = \ker \lambda_s \), this implies the claim.

To conclude the proof, we show that \(\nu \) is injective. Let \(s_1 \) and \(s_2 \) be global sections and assume that \([v_{s_1}] = [v_{s_2}]\). Then \(s_1 \) and \(s_2 \) defines two exact sequences which gives two extensions which multiples one of the other. Then, there exists an isomorphism \(\sigma \) of \(E \) such that the diagram

\[
\begin{array}{cccccc}
0 & \to & \mathcal{O}_C & \xrightarrow{s_1} & E & \xrightarrow{\sigma} & F & \to & 0 \\
\downarrow{id} & & \downarrow{\lambda id} & & \downarrow{\lambda id} & & & & \\
0 & \to & \mathcal{O}_C & \xrightarrow{s_2} & E & \xrightarrow{\sigma} & F & \to & 0
\end{array}
\]
is commutative. But E is stable, so $\sigma = \lambda \text{id}$. Then, clearly, $\sigma_1 = \lambda \sigma_2$.

Let $L \in \text{Pic}^r(C)$ and $SU_C(r - 1, L)$ be the moduli space of stable vector bundles with determinant L. As we have seen, $SU_C(r - 1, L)$ can be seen as a subvariety of $U_C(r - 1, r)$. Let V be the vector bundle on $U_C(r - 1, r)$ defined in the proof of Theorem 2.5. Let V_L denote the restriction of V to $SU_C(r - 1, L)$. We will denote with $\pi : \mathbb{P}(V_L) \to SU_C(r - 1, L)$ the projection map. Then, with the same arguments of the proof of Theorem 2.5 we have the following:

Corollary 2.7. Fix $L \in \text{Pic}^r(C)$. The map

$$\Phi_L : \mathbb{P}(V_L) \to \Theta_{r,L}$$

sending $[v]$ to the extension $[E_v]$ of $\pi([v])$ by O_C defined by v, is a birational morphism.

As $\gcd(r, r - 1) = 1$ we have that $SU_C(r - 1, L)$ is a rational variety (see [New75, KS99]). Hence, as a consequence of our theorem we have also this interesting corollary:

Corollary 2.8. For any $L \in \text{Pic}^r(C)$, $\Theta_{r,L}$ is a rational subvariety of $SU_C(r,l)$.

3. General fibers of π and θ map

In this section, we would restrict the morphism Φ to extensions of a general vector bundle $[F] \in U_C(r - 1, r)$. First of all we will deduce some properties of general elements of $U_C(r - 1, r)$.

For any vector bundle F, let $M_1(F^*)$ be the set of maximal line subbundles of F^*. Note that, if $[F] \in U_C(r - 1, r)$, then maximal line subbundles of F^* are exactly the line subbundles of degree $r - 2$.

Proposition 3.1. Let $r \geq 3$, a general $[F] \in U_C(r - 1, r)$ satisfies the following properties:

1. if $r \geq 4$, F does not admit maximal subbundles of rank $s \leq r - 3$;
2. F admits finitely many maximal subbundles of rank $r - 2$;
3. we have $M_{r-2}(F) \simeq M_1(F^*)$.

Proof. For any $1 \leq s \leq r - 2$ let’s consider the following locus:

$$T_s = \{ [F] \in U_C(r - 1, r) \mid \exists S \hookrightarrow F \text{ with } \text{deg}(S) = \text{rk}(S) = s \}.$$

The set T_s is locally closed, irreducible of dimension

$$\dim T_s = (r - 1)^2 + 1 + s(r - s + 2),$$

see [LN02, RT99]. If $r \geq 4$ and $s \leq r - 3$, then $\dim T_s < \dim U_C(r - 1, r)$, which proves (1).

2. Let $r \geq 3$ and $s = r - 2$. Then actually $T_{r-2} = U_C(r - 1, r)$ and a general $[F] \in U_C(r - 1, r)$ has finitely many maximal subbundles of rank $r - 2$, see [LN02, RT99] for the general case and [LN83] for $r = 3$, where actually the property holds for any $[F] \in U_C(2,3)$.

3. Let $[F] \in U_C(r - 1, r)$ be a general element and $[S] \in M_{r-2}(F)$, then S is semistable and we have an exact sequence

$$0 \to S \to F \to Q \to 0$$

with $Q \in \text{Pic}^2(C)$. Moreover S and Q are general in their moduli spaces as in [LN02]. This implies that $\text{Hom}(F,Q) \simeq \mathbb{C}$. In fact, by taking the dual of the above sequence and tensoring with Q we obtain

$$0 \to Q^* \otimes Q \to F^* \otimes Q \to S^* \otimes Q \to 0.$$
and, passing to cohomology we get
\[0 \rightarrow H^0(O_C) \rightarrow H^0(F^* \otimes Q) \rightarrow H^0(S^* \otimes Q) \rightarrow \cdots. \]

Since \(S \) and \(Q \) are general \(h^0(S^* \otimes Q) = 0 \) and we can conclude
\[\text{Hom}(F,Q) \simeq H^0(F^* \otimes Q) \simeq H^0(O_C) = \mathbb{C}. \]

We have a natural map \(q: M_{r-2}(F) \rightarrow M_1(F^*) \) sending \(S \) to \(Q^* \). The map \(q \) is surjective as any maximal line subbundle \(Q^* \rightarrow F^* \) gives a surjective map \(\phi: F \rightarrow Q \) whose kernel is a maximal subbundle \(S \) of \(F \). The map is also injective. Indeed, assume that \([S_1]\) and \([S_2]\) are maximal subbundles such that \(q(S_1) = q(S_2) = Q^* \). Then \(S_1 = \ker \phi_1 \) and \(S_2 = \ker \phi_2 \), with \(\phi_1 \in \text{Hom}(F,Q) \simeq \mathbb{C} \). This implies that \(\phi_2 = \rho \phi_1 \), \(\rho \in \mathbb{C}^* \), hence \(S_1 \simeq S_2 \).

Lemma 3.2. For any \(r \geq 3 \) and \(|F| \in \mathcal{U}_C(r-1,r) \), let \(\text{ev} \) be the evaluation map of the secant bundle \(F_2(F \otimes \omega_C) \). If \(M_1(F^*) \) is finite, then \(\text{ev} \) is generically surjective and its degeneracy locus \(Z \) is the following:
\[Z = \{ d \in C^{(2)} \mid O_C(-d) \in M_1(F^*) \}. \]

Moreover, \(Z \simeq M_1(F^*) \) if and only if \(h^0(F) = 1 \); if \(h^0(F) \geq 2 \) then \(Z = \mathcal{E} \cup Z' \), where \(\mathcal{E} = \{ \omega_C \} \) (see Section 7) and \(Z' \) is a finite set.

Proof. As we have seen in section 11, \(F_2(F \otimes \omega_C) \) is a vector bundle of rank \(2r-2 \) on \(C^{(2)} \) and \(H^0(C^{(2)}, F_2(F \otimes \omega_C)) \simeq H^0(C,F \otimes \omega_C) \). Recall that the evaluation map of the secant bundle of \(F \otimes \omega_C \) is the map
\[\text{ev}: H^0(F \otimes \omega_C) \otimes O_{C^{(2)}} \rightarrow F_2(F \otimes \omega_C) \]
and is such that, for any \(d \in C^{(2)} \), \(\text{ev}_d \) can be identified with the restriction map
\[H^0(F \otimes \omega_C) \rightarrow (F \otimes \omega_C)_d, \quad s \mapsto s|_d. \]

Observe that
\[H^1(F \otimes \omega_C(-d)) \simeq H^0(F^* \otimes O_C(d))^* \simeq \text{Hom}(F, O_C(d))^*. \]

Note that for any \(d \in C^{(2)} \) we have:
\[\text{coker}(\text{ev}_d) \simeq H^1(F \otimes \omega_C(-d)), \]
hence \(\text{ev}_d \) is not surjective if and only if \(\text{Hom}(F, O_C(d)) \neq 0 \), that is \(O_C(-d) \) is a maximal line subbundle of \(F^* \). If \(F \) has finitely many maximal line subbundles we can conclude that \(\text{ev} \) is generically surjective and its degeneracy locus is the following:
\[Z = \{ d \in C^{(2)} \mid \text{rk}(\text{ev}_d) < 2r-2 \} = \{ d \in C^{(2)} \mid O_C(-d) \in M_1(F^*) \}. \]

Let \(a: C^{(2)} \rightarrow \text{Pic}^{-2}(C) \) be the map sending \(d \rightarrow O_C(-d) \), \(a \) is the composition of \(A: C^{(2)} \rightarrow \text{Pic}^2(C) \) sending \(d \) to \(O_C(d) \) with the isomorphism \(\sigma: \text{Pic}^2(C) \rightarrow \text{Pic}^{-2}(C) \) sending \(Q \rightarrow Q^* \). Then \(Z = a^{-1}(M_1(F^*)) \). Note that
\[Z \simeq M_1(F^*) \iff \omega_C^{-1} \notin M_1(F^*) \iff h^0(F) = 1 \]
If \(h^0(F) \geq 2 \), then \(\mathcal{E} = \{ \omega_C \} \subset Z \) and this concludes the proof.

Remark 3.1. Under the hypothesis of Lemma 3.2, the evaluation map fit into an exact sequence
\[0 \rightarrow M \rightarrow H^0(F \otimes \omega_C) \otimes O_{C^{(2)}} \rightarrow F_2(F \otimes \omega_C) \rightarrow T \rightarrow 0, \]
where \(M \) is a line bundle and \(\text{Supp}(T) = Z \).
Let \([F] \in \mathcal{U}_C(r - 1, r)\) be a general vector bundle, by proposition 3.1, \(\mathcal{M}_1(F^*) \simeq \mathcal{M}_{r-2}(F)\) is a finite set, moreover \(\text{Hom}(F, O_C(d)) \simeq \mathbb{C}\) when \(O_C(-d) \in \mathcal{M}_1(F^*)\). Finally, being \([F]\) general, we have \(h^0(F) = 1\) and this implies

\[Z \simeq \mathcal{M}_1(F^*). \]

Taking the dual sequence of \([\mathcal{L}]\) we have:

\[0 \to \mathcal{F}_2(F \otimes \omega_C)^* \to H^0(F \otimes \omega_C)^* \otimes O_{C(2)} \to M^* \otimes J_Z \to 0, \]

and computing Chern classes we obtain:

\[c_1(M^*) = c_1(\mathcal{F}_2(F \otimes \omega_C)), \]

\[c_1(\mathcal{F}_2(F \otimes \omega_C)^*)c_1(M^*) + c_2(\mathcal{F}_2(F \otimes \omega_C)^*) + l(Z) = 0, \]

from which we deduce:

\[l(Z) = c_1(\mathcal{F}_2(F \otimes \omega_C))^2 - c_2(\mathcal{F}_2(F \otimes \omega_C)). \]

We have:

\[c_1(\mathcal{F}_2(F \otimes \omega_C)) = x + (r - 1)\theta, \quad c_2(\mathcal{F}_2(F \otimes \omega_C)) = r^2 + 2r - 2, \]

so we obtain:

\[l(Z) = (r - 1)^2. \]

This gives the cardinality of \(\mathcal{M}_{r-2}(F)\) and of \(\mathcal{M}_1(F^*)\). This formula actually holds also for \(F \in \mathcal{U}_C(r, d)\), see \([\text{Ghi}81, \text{Lan}85]\) for \(r = 3\) and \([\text{OT}02, \text{Oxb}00]\) for \(r \geq 4\).

The stability properties of the secant bundles allow us to prove the following.

Proposition 3.3. Let \(r \geq 3\) and \([F] \in \mathcal{U}_C(r - 1, r)\) with \(h^0(F) \leq 2\). If \(\mathcal{M}_1(F^*)\) is finite, then every non trivial extension of \(F\) by \(O_C\) gives a vector bundle which admits theta divisor.

Proof. Let \(E\) be an extension of \(F\) by \(O_C\) which does not admit theta divisor. Hence

\[0 \to O_C \to E \to F \to 0, \]

and, by tensoring with \(\omega_C\) we obtain

\[0 \to \omega_C \to \tilde{E} \xrightarrow{\psi} \tilde{F} \to 0, \]

where, to simplify the notations, we have set \(\tilde{E} = E \otimes \omega_C\) and \(\tilde{F} = F \otimes \omega_C\). Note that \(\tilde{E}\) does not admit theta divisor too, hence

\[\{l \in \text{Pic}^{-2}(C) | h^0(\tilde{E} \otimes l) \geq 1\} = \text{Pic}^{-2}(C). \]

This implies that \(\forall d \in C(2)\) we have \(h^0(\tilde{E} \otimes O_C(-d)) \geq 1\) too. Let’s consider the cohomology exact sequence induced by the exact sequence \([\mathcal{L}]\)

\[0 \to H^0(\omega_C) \to H^0(\tilde{E}) \xrightarrow{\psi_0} H^0(\tilde{F}) \to H^1(\omega_C) \to 0, \]

where we have used \(h^1(\tilde{E}) = 0\) as \(\mu(\tilde{E}) = 3 \geq 2\). Let’s consider the subspace of \(H^0(\tilde{F})\) given by the image of \(\psi_0\), i.e.

\[V = \psi_0(H^0(\tilde{E})). \]

In particular \(\dim V = h^0(\tilde{F}) - 1 = 2r - 2\) so \(V\) is an hypersplane.

Claim: For any \(d \in C(2) \setminus \mathcal{E}\) we have \(V \cap H^0(\tilde{F} \otimes O_C(-d)) \neq 0\).

In fact, by tensoring the exact sequence \([\mathcal{L}]\) with \(O_C(-d)\) we have:

\[0 \to \omega_C \otimes O_C(-d) \to \tilde{E} \otimes O_C(-d) \to \tilde{F} \otimes O_C(-d) \to 0, \]

for a general \(d \in C(2)\), then passing to cohomology we obtain the inclusion:

\[0 \to H^0(\tilde{E} \otimes O_C(-d)) \to H^0(\tilde{F} \otimes O_C(-d)). \]
which implies the claim since \(h^0(\tilde{E} \otimes O_C(-d)) \neq 0 \).

Let \(ev: H^0(\tilde{F}) \otimes O_{C^{(2)}} \rightarrow \mathcal{F}_2(\tilde{F}) \) be the evaluation map of the secant bundle associated to \(\tilde{F} \) and consider its restriction to \(V \otimes O_{C^{(2)}} \). We have a diagramm as follows:

\[
\begin{array}{ccccccccc}
0 & \rightarrow & \ker(ev_V)^c & \rightarrow & V \otimes O_{C^{(2)}} & \xrightarrow{ev_V} & \text{im}(ev_V) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & M & \rightarrow & H^0(\tilde{F}) \otimes O_{C^{(2)}} & \xrightarrow{ev} & \mathcal{F}_2(\tilde{F}) & \rightarrow & T & \rightarrow & 0 \\
\end{array}
\]

where \(M \) is a line bundle, \(T \) has support on \(Z \) as in Lemma \[3.2\]. For any \(d \in C^{(2)} \) we have that the stalk of \(\ker(ev_V) \) at \(d \) is

\[
\ker(ev_V)_d = \ker \left((ev_V)_d : V \otimes O_d \rightarrow \mathcal{F}_2(\tilde{F})_d \right) = H^0(\tilde{F} \otimes O_C(-d)) \cap V.
\]

Notice that, as a consequence of the claim,

\[
\dim \left(H^0(\tilde{F} \otimes O_C(-d)) \cap V \right) \geq 1
\]

for any non canonical divisor \(d \). Hence \(\ker(ev_V) \) is a torsion free sheaf of rank 1. For all \(d \in C^{(2)} \setminus Z \) we have \(h^0(\tilde{F} \otimes O_C(-d)) = 1 \), hence, for these points, we have

\[
\ker(ev_V)_d = H^0(\tilde{F} \otimes O_C(-d))
\]

In particular, as \(M \) and \(\ker(ev_V) \) coincide outside \(Z \), we have that the support of \(Q \) is contained in \(Z \).

In order to conclude the proof we will use the stability property of the secant bundle. With this aim, recall that, as seen in \[3.2\], \(c_1(\mathcal{F}(\tilde{F})) = x + (r - 1)\theta \) and thus, \(c_1(\mathcal{F}(\tilde{F})) \cdot x = 2r - 1 \). In particular, if \(H \) is an ample divisor with numerical class \(x \) we have

\[
(20) \quad \mu_H(\mathcal{F}(\tilde{F})) = \frac{2r - 1}{2r - 2}.
\]

We will distinguish two cases depending on the value of \(h^1(F) \).

Assume that \(h^0(F) = 1 \). In this case \(Z \simeq \mathcal{M}_1(F^*) \) is a finite set (see Lemma \[3.2\]). The support of \(T \) is finite too so we have

\[
c_1(\text{im}(ev_V)) = -c_1(\ker(ev_V)) = -c_1(M) = c_1(\mathcal{F}_2(\tilde{F})).
\]

Hence, we can conclude that \(\text{im}(ev_V) \) is a proper subsheaf of the secant bundle with rank \(2r - 3 \) and with the same first Chern class. Hence

\[
(21) \quad \mu_H(\text{im}(ev_V)) = \frac{c_1(\text{im}(ev_V)) \cdot x}{2r - 3} = \frac{x \cdot (x + (r - 1)\theta)}{2r - 3} = \frac{2r - 1}{2r - 3},
\]

but this contradicts Proposition \[1.1\]. This conclude this case.

Assume that \(h^0(F) = 2 \). In this case \(Z = \mathcal{E} \cup Z' \) with \(Z' \) of dimension 0 as proven in Lemma \[3.2\]. Recall that the numerical class of \(\mathcal{E} \) in \(C^{(2)} \) is \(\theta - x \) (see Section \[1\]). Observe that \(\text{Supp}(T) = \mathcal{E} \cup Z' \) and for any \(d \in \mathcal{E} \) we have: \(\dim T_d = 1 \). From the exact sequence of the evaluation map of the secant bundle we obtain:

\[
c_1(M) = \mathcal{E} - c_1(\mathcal{F}_2(\tilde{F})).
\]

Since \(\text{Supp}(Q) \subset Z \), we distinguish two cases depending to its dimension.
(a) If \(\dim \text{Supp}(Q) = 0 \), then we have
\[
\chi_1(\text{im}(ev_V)) = -\chi_1(\ker(ev_V)) = -\chi_1(M),
\]
hence \(\chi_1(\text{im}(ev_V)) = \chi_1(\ker(ev_V)) = -\chi_1(M) \).

(22) \[
\mu_H(\text{im}(ev_V)) = \frac{x \cdot (2x + (r - 2)\theta)}{2r - 3} = \frac{2r - 2}{2r - 3}.
\]
But this is impossible since the secant bundle is semistable by Proposition 1.1.

(b) If \(\dim \text{Supp}(Q) = 1 \), since \(\text{Supp}(Q) \subset Z \) and \(\mathfrak{E} \) is irreducible, then \(\text{Supp}(Q) = \mathfrak{E} \cup Z' \), with \(Z' \) finite or empty. Observe that for any \(d \in \mathfrak{E} \) we have: \(\dim Q_d = 1 \). So we have
\[
\chi_1(\text{im}(ev_V)) = -\chi_1(\ker(ev_V)) = -\chi_1(M) + \mathfrak{E},
\]
hence \(\chi_1(\text{im}(ev_V)) = \chi_1(F_2(\tilde{F})) \) and we can conclude as above. □

Fix a line bundle \(L = M \otimes r \), with \(M \in \text{Pic}^1(C) \). Let \([F] \in \mathcal{SU}_C(r - 1, L) \), we consider the fibre of the projective bundle \(\pi: P(V) \to \mathcal{U}_C(r - 1, r) \) at \([F] \):
\[
P_F = \mathbb{P}(\text{Ext}^1(F, \mathcal{O}_C)) = \pi^{-1}([F]) \cong \mathbb{P}^{2r-2},
\]
and the restriction of the morphism \(\Phi \) to \(P_F \):
(23) \[
\Phi_F = \Phi|_{P_F}: P_F \to \Theta_{r,L}.
\]
By Corollary 2.7 the map \(\Phi_L: P(V_L) \to \Theta_{r,L} \) is a birational morphism. Then, there exists a non empty open subset \(U \subset \Theta_{r,L} \) such that
\[
\Phi_L|_{\Phi_L^{-1}(U)}: \Phi_L^{-1}(U) \to U
\]
is an isomorphism. Hence, for general \(F \in \mathcal{SU}_C(r - 1, L) \) the intersection \(\Phi^{-1}(U) \cap P_F \) is a non empty open subset of \(P_F \) and \(\Phi_F: P_F \to \Theta_{r,L} \) is a birational morphism onto its image.

Recall that
(24) \[
\mathcal{SU}_C(r, L) \dashrightarrow \theta \to |r\Theta_M|.
\]
is the rational map which sends \([E]\) to \(\Theta_E \). Note that if \(F \) is generic then, by Proposition 3.3, we have that \(\theta \) is defined in each element of \(\text{im}(\Phi_F) \) so it make sense to study the composition of \(\Phi_F \) with \(\theta \) which is then a morphism:

\[
\begin{array}{ccc}
P_F & \xrightarrow{\Phi_F} & \Theta_{r,L} \\
\downarrow & & \downarrow \theta \\
\theta \circ \Phi_F & \to & |r\Theta_M|
\end{array}
\]

We have the following result:

Theorem 3.4. For a general stable bundle \(F \in \mathcal{SU}_C(r - 1, L) \) the map
\[
\theta \circ \Phi_F: P_F \to |r\Theta_M|
\]
is a linear embedding.
Proof. As previously noted, as F is generic we have that

$$
\Phi_F: \mathbb{P}_F \rightarrow \Theta_{r,L}
$$

is a birational morphism onto its image and that the composition $\theta \circ \Phi_F$ is a morphism by proposition 3.3. We recall that θ is defined by the determinat line bundle $\mathcal{L} \in \text{Pic}^0(SU_C(r, L))$. For simplicity, we set $\mathbb{P}^N = |r\Theta_M|$.

In order to prove that, for F general, $\theta \circ \Phi_F$ is a linear embedding, first of all we will prove that $(\theta \circ \Phi_F)^*(\mathcal{O}_{\mathbb{P}^N}(1)) \simeq \mathcal{O}_{\mathbb{P}_F}(1)$.

For any $\xi \in \text{Pic}^0(C)$ the locus

$$
D_\xi = \{[E] \in SU_C(r, L)^s : h^0(E \otimes \xi) \geq 1\}
$$

is an effective divisor in $SU_C(r, L)$ and $\mathcal{O}_{SU_C(r, L)}(D_\xi) \simeq \mathcal{L}$, see [DN89].

Note that

$$
(\theta \circ \Phi_F)^*(\mathcal{O}_{\mathbb{P}^N}(1)) = \Phi_F^*(\mathcal{O}_{\mathbb{P}_F}(1)) = \Phi_F^*(\mathcal{L}|_{\Theta_{r,L}}) = \Phi_F^*(\mathcal{O}_{\Theta_{r,L}}(D_\xi)).
$$

Moreover, one can verify that for general $E \in \Theta_{r,L}$ there exists an irreducible reduced divisor D_ξ passing through E such that E is a smooth point of the intersection $D_\xi \cap \Theta_{r,L}$. This implies that for general F the pull back $\Phi_F^*(D_\xi)$ is a reduced divisor.

Observe that if ξ is such that if $h^1(F \otimes \xi) \geq 1$ (this happens, for example, if $\xi = 0$), then any extension E_v of F has sections:

$$
h^0(E_v \otimes \xi) = h^1(F \otimes \xi) \geq 1.
$$

In particular this implies that $\Phi_F(\mathbb{P}_F) \subset D_\xi$. On the other hand this does not happen for ξ general and we are also able to be more precise about this. Indeed, let $\xi \in \text{Pic}^0(C)$, then there exists an effective divisor $d \in C^{(2)}$ such that $\xi = \omega_C(-d)$. We have that $h^1(F \otimes \xi) \geq 1$ if and only $d \in Z$, where Z is defined in Lemma 3.2. Moreover, we can assume that Z is finite by Proposition 3.2 as F is generic. From now on we will assume that $d \notin |\omega_C|$ and $d \notin Z$. We can consider the locus

$$
H_\xi = \{[v] \in \mathbb{P}_F | h^0(E_v \otimes \xi) \geq 1\}.
$$

We will prove that H_ξ is an hyperplane in \mathbb{P}_F and $\Phi_F^*(D_\xi) = H_\xi$.

From the exact sequence

$$
0 \rightarrow \xi \rightarrow E_v \otimes \xi \rightarrow F \otimes \xi \rightarrow 0,
$$

passing to cohomology, since $h^0(\xi) = 0$ we have

$$
0 \rightarrow h^0(E_v \otimes \xi) \rightarrow h^0(F \otimes \xi) \rightarrow \cdots
$$

from which we deduce that $[v] \in H_\xi$ if and only if there exists a non zero global section of $H^0(F \otimes \xi)$ which is in the image of $h^0(E_v \otimes \xi)$. Since $d \notin Z$, then $h^0(F \otimes \xi) = 1$, let’s denote by s a generator of $H^0(F \otimes \xi)$.

Claim: if ξ is general, we can assume that the zero locus $Z(s)$ of s is actually empty. This can be seen as follows. By stability of $F \otimes \xi$ we have that $Z(s)$ has degree at most 1. Suppose that $Z(s) = x$, with $x \in C$. Then we would have an injective map $O_C(x) \hookrightarrow F \otimes \xi$ of vector bundles which gives us $\xi^{-1}(x) \in \mathcal{M}_1(F)$. Since F is general, if $r \geq 4$ then $\mathcal{M}_1(F)$ is empty by Proposition 3.1 so the zero locus of s is indeed empty. If $r = 3$, then

$$
\mathcal{M}_1(F) = \{T_1, \ldots, T_m\}
$$

is finite. For each $i \in \{1, \ldots, m\}$ consider the locus

$$
T_{F,i} = \{\xi \in \text{Pic}^0(C) | \exists x \in C : \xi^{-1}(x) = T_i\}.
$$
This is a closed subset of $\text{Pic}^0(C)$ of dimension 1. Indeed, $T_{F,i}$ is the image, under the embedding $\mu_i : C \to \text{Pic}^0(C)$ which send x to $T_i(-x)$. Hence the claim follows by choosing ξ outside the divisor $\bigcup_{i=1}^m T_{F,i}$.

As consequence of the claim, we have that s induces an exact sequence of vector bundles

$$0 \longrightarrow \mathcal{O}_C \xrightarrow{\iota_*} F \otimes \xi \longrightarrow Q \longrightarrow 0.$$

Observe that $[v] \in H_\xi$ if and only if $\iota_* s$ can be lifted to a map $\tilde{\iota}_s : \mathcal{O}_C \to E \otimes \xi$. Then, by Lemma 2.4 we have that H_ξ is actually the projectivization of the kernel of the following map:

$$H^1(\iota_*^s) : H^1(\text{Hom}(F \otimes \xi, \xi)) \to H^1(\text{Hom}(\mathcal{O}_C, \xi))$$

which proves that H_ξ is an hyperplane as $H^1(\iota_*^s)$ is surjective and

$$H^1(\text{Hom}(\mathcal{O}_C, \xi)) \simeq H^1(\xi) \simeq \mathbb{C}.$$

Note that we have the inclusion $\Phi_F^*(D_\xi) \subseteq H_\xi$. Since both are effective divisors and H_ξ is irreducible we can conclude that they have the same support. Finally, since $\Phi_F^*(D_\xi)$ is reduced, then they are the same divisor. In particular, as claimed, we have

$$\Phi_F^*(\mathcal{O}_{\Theta}(\mathcal{L})) = \mathcal{O}_{\mathbb{P}(\mathcal{L})}(1).$$

In order to conclude we simply need to observe that the map is induced by the full linear system $|\mathcal{O}_{\mathbb{P}(\mathcal{L})}(1)|$. But this easily follows from the fact that $\theta \circ \Phi_F$ is a morphism. Hence $\theta \circ \Phi_F$ is a linear embedding and the Theorem is proved.

Remark 3.3. The above Theorem implies that $\Phi_F^*(\mathcal{L})$ is a unisecant line bundle on the projective bundle $\mathbb{P}(\mathcal{V}_L)$.

References

[Ati57] M. F. Atiyah, *Complex analytic connections in fibre bundles*, Trans. Amer. Math. Soc. **85**, (1957), 181–207.

[ACGH85] E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, *Geometry of Algebraic curves, I*, Springer verlag, Berlin (1985).

[Bea03] A. Beauville, *Some stable vector bundles with reducible theta divisors*, Man. Math. **110** (2003), 343-349.

[Bea06] A. Beauville, *Vector bundles and the theta functions on curves of genus 2 and 3*, Amer. J. of Math. **128**(n3), (2006), 607–618.

[BD18] S. Basu, K. Dan, *Stability of secant bundles on the second symmetric power of curves*, Arch. Math. (Basel) **110**, (2018), 245–249.

[BNR89] A. Beauville, M. S. Narasimhan, S. Ramanan, *Spectral curves and the generalised theta divisor*, J. Reine angew. Math. **398**(1989), 169–178.

[Bri17] S. Brivio, *Families of vector bundles and linear systems of theta divisors*, Inter. J. Math. **28**, n 6, (2017), 1750039 (16 pages).

[BV07] S. Brivio, A. Verra, *The Brill Noether curve of a stable vector bundle on a genus two curve*, in ”Algebraic Cycles and Motives”, London Math. Soc. LNS **344**, v 2, (2007), ed. J. Nagel, C. Peters, Cambridge Univ. Press.

[DN89] I. M. Drezet, M. S. Narasimhan, *Groupe de Picard des variétés de modules de fibrés semi-stable sur les courbes algébriques*, Invent. Math. **97**(1989), 53–94.

[Ghi81] F. Ghione, *Quelques résultats de Corrado Segre sur les surfaces réglées*, Math. Ann. **255**, (1981), 77–96.

[KS99] A. King, A. Schofield, *Rationality of moduli of vector bundles on curves*, Indag. Math. (N.S.) **10**. 4, (1999), 519–535.

[Las91] Y. Laszlo, *Un théorème de Riemann pour les diviseurs thêta sur les espaces de modules de fibrés stables sur une courbe*, Duke Math. J. **64**, (1991), pp. 333-347.
[LeP97] J. Le Potier, *Lectures on vector bundles*, Cambridge Univ. Press, (1997).

[Lan85] H. Lange, *Hohere Sekantenvarietaten und Vektorbündel auf Kurven*, Manuscripta Math. **52** (1985), 63–80.

[LN83] H. Lange and M.S. Narasimhan, *Maximal subbundles of rank two vector bundles on curves*, Math. Ann. **266**, (1983) 55–72

[LN02] H. Lange and P.E. Newstead, *Maximal subbundles and Gromov-Witten invariants*, A tribute to C. S. Seshadri (Chennai, 2002), Trends Math., Birkhäuser Basel, (2003) 310–322

[Mar82] M. Maruyama, *Elementary transformations in the theory of algebraic vector bundles*, Lecture Notes Math. **961**, (1982) 241–266.

[NR69] M.S. Narasimhan, S. Ramanan, *Moduli of vector bundles on a compact Riemann Surface*, Ann. of Math. **89**(2), (1969), 14–51.

[New75] P.E. Newstead, *Rationality of moduli spaces of stable bundles*, Math. Ann., **215**, (1975) 251–268

[OT02] C. Okonek and A. Teleman, *Gauge theoretical equivariant Gromov-Witten invariants and the full Seiberg-Witten invariants of ruled surfaces*, Comm. Math. Phys. **227** 3, (2002) 551–585

[Ort05] A. Ortega, *On the moduli space of rank 3 vector bundles on a genus 2 curve and the Cable cubic*, J. Alg. Geom. **14**, (2005), 327–356.

[Oxb00] W. M. Oxbury, *Varieties of maximal line subbundles*, Math. Proc. Cambridge Phil. Soc. **129** (2000), 9–18.

[RT99] B. Russo and M. Teixidor i Bigas, *On a Conjecture of Lange*, J. Alg. Geom. **8** (1999), 483-496.

[Sch64] R. L. E. Schwarzenberger, *The secant bundle of a projective variety*, Proc. London Math. Soc. (3), **14** (1964), 369–384.

[Seg89] C. Segre, *Recherches générales sur les courbes et les surfaces réglées algébriques II*, Math. Ann. **34** (1889), 1–25.

[Ses82] C.S. Seshadri, *Fibrés vectoriels sur les courbes algébriques*, Astérisque, **96** (1992).

(Sonia Brivio) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MILANO-BICOCCA, VIA ROBERTO COZZI, 55, 20125 MILANO (MI)

E-mail address: sonia.brivio@unimib.it

(Filippo F. Favale) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MILANO-BICOCCA, VIA ROBERTO COZZI, 55, 20125 MILANO (MI)

E-mail address: filippo.favale@unimib.it