A similar replacement of the active subset is not apparent in the dentate gyrus, which suggests that the change in the CA3 code is triggered by direct projections from entorhinal grid cells to the CA3 (32).

Pattern separation in the dentate gyrus is thus different from separation processes in the cerebellum (10, 11), where signals from the brain stem spread out on a layer of granule cells whose cell numbers exceed those of the input layer by a factor of several million. The number of granule cells in the dentate gyrus and pyramidal cells in the CA3 only marginally outnumber the projection neurons from layer II of the entorhinal cortex [in the rat, 1,000,000, 300,000 and 200,000, respectively (15, 35, 36)], which suggests that the same hippocampal cells must participate in many representations even when the population activity is sparse (13, 14). In such networks, orthogonalization of coincidence patterns may be more effective.

The decorrelated firing of the dentate cells contrasts with the invariant discharge structure of grid cells upstream in the medial entorhinal cortex (30–32) (Fig. 4). The reduction in spatiotemporal coincidence could be derived from the lateral entorhinal cortex, but not by a straightforward relay mechanism, because cells in this area do not exhibit reliable place modulation (37). It is thus likely that many of the underlying computations take place within the dentate gyrus itself. The use of a dedicated neuronal population for orthogonalization of small differences in input to the CA fields enables the hippocampal network to encode the full variety of experience in a more diversified manner than what could be accomplished with attractor networks alone.

References and Notes
1. B. L. McNaughton, L. Nadel, in Neuroscience and Connectionist Theory, M. A. Glick and D. E. Rumelhart, Eds. (Lawrence Erlbaum, Hillsdale, NJ, 1989), pp. 1–63.
2. A. Treves, E. T. Rollis, Hippocampus 2, 189 (1992).
3. R. C. O'Reilly, J. L. McClelland, Hippocampus 4, 661 (1994).
4. P. E. Gilbert, R. P. Keiner, I. Lee, Hippocampus 11, 626 (2001).
5. D. Marr, Philos. Trans. R. Soc. Lond. B Biol. Sci. 262, 23 (1971).
6. M. E. Hasselmo, E. Schnell, E. Barkai, J. Neurosci. 15, 5249 (1995).
7. M. Tsodyks, Hippocampus 9, 481 (1999).
8. K. Nakazawa et al., Science 297, 211 (2002).
9. I. Lee, D. Yoganarasimha, G. Rao, J. J. Knierim, Nature 430, 456 (2004).
10. D. Mart, J. Physiol. 202, 437 (1969).
11. J. Albis, Math. Biosci. 10, 25 (1971).
12. P. Chaderton, T. W. Margrie, M. Hauser, Nature 428, 856 (2004).
13. M. W. Jung, B. L. McNaughton, Hippocampus 3, 165 (1993).
14. M. K. Chawla et al., Hippocampus 15, 579 (2005).
15. D. G. Amaral, N. Ishizuka, B. Claiborne, Prog. Brain Res. 83, 1 (1990).
16. J. O'Keefe, J. Drostovsky, Brain Res. 34, 171 (1971).
17. R. U. Muller, J. L. Kubie, J. B. Ranck Jr., J. Neurosci. 7, 1935 (1987).
18. R. U. Muller, J. L. Kubie, J. Neurosci. 7, 1951 (1987).
19. G. J. Quirk, R. U. Muller, J. L. Kubie, J. Neurosci. 10, 2008 (1990).
20. E. Bostock, R. U. Muller, J. L. Kubie, Hippocampus 1, 193 (1991).
21. E. J. Markus et al., J. Neurosci. 15, 7079 (1995).
22. C. Lever, T. Willis, F. Cacucci, N. Burgess, J. O'Keefe, Nature 416, 90 (2002).

Reports

Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment

Vincent Jacques,1 E Wu,1,2 Frédéric Grosshans,1 François Teussart,1 Philippe Grangier,3 Alain Aspect,3 Jean-François Roch3,4

Wave-particle duality is strikingly illustrated by Wheeler’s delayed-choice gedanken experiment, where the configuration of a two-path interferometer is chosen after a single-photon pulse has entered it: Either the interferometer is closed (that is, the two paths are recombined) and the interference is observed, or the interferometer remains open and the path followed by the photon is measured. We report an almost ideal realization of that gedanken experiment with single photons allowing unambiguous which-way measurements. The choice between open and closed configurations, made by a quantum random number generator, is relativistically separated from the entry of the photon into the interferometer.

Young’s double-slit experiment, realized with particles sent one at a time through an interferometer, is at the heart of quantum mechanics (1). The striking feature is that the phenomenon of interference, interpreted as a wave following two paths simultaneously, is incompatible with our common-sense representation of a particle following one route or the other but not both. Several single-photon interference experiments (2–6) have confirmed the wave-particle duality of the light field. To understand their meaning, consider the single-photon interference experiment sketched in Fig. 1. In the closed interferometer configuration, a single-photon pulse is split by a first beamsplitter BSinput of a Mach-Zehnder interferometer and travels through it until a second beamsplitter BSoutput recombines the two interfering arms. When the phase shift Φ between the two arms is varied, interference appears as a modulation of the detection probabilities at output ports 1 and 2, respectively, as cos2 Φ and sin2 Φ. This result is the one expected for a wave, and as Wheeler pointed out, “[this] is evidence … that each ar-

1Laboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan, UMR CNRS 8537, 94235 Cachan, France. 2Key Laboratory of Optical and Magnetic Resonance Spectroscopy, East China Normal University, 200062 Shanghai, China. 3Laboratoire Charles Fabry de l’Institut d’Optique, Campus Polytechnique, UMR CNRS 8501, 91279 Palaiseau, France. 4To whom correspondence should be addressed. E-mail: roch@physique.ens-cachan.fr
riving light quantum has arrived by both routes” (7). If BS_{output} is removed (the open configuration), each detector D₁ or D₂ on the output ports is then associated with a given path of the interferometer, and, provided one uses true single-photon light pulses, “[either] one counter goes off, or the other. Thus the photon has traveled only one route” (7). Such an experiment supports Bohr’s statement that the behavior of a quantum system is determined by the type of measurement performed on it (8). Moreover, it is clear that for the two complementary measurements considered here, the corresponding experimental settings are mutually exclusive; that is, BS_{output} cannot be simultaneously present and absent.

In experiments where the choice between the two settings is made long in advance, one could reconcile Bohr’s complementarity with Einstein’s local conception of the physical reality. Indeed, when the photon enters the interferometer, it could have received some “hidden information” on the chosen experimental configuration and could then adjust its behavior accordingly (9). To rule out that too-naïve interpretation of quantum mechanical complementarity, Wheeler proposed the “delayed-choice” gedanken experiment in which the choice of which property will be observed is made after the photon has passed BS_{input}: “Thus one decides the photon shall have come by one route or by both routes after it has already done its travel” (7).

Since Wheeler’s proposal, several delayed-choice experiments have been reported (10–15). However, none of them fully followed the original scheme, which required the use of the single-particle quantum state as well as relativistic space-like separation between the choice of interferometer configuration and the entry of the particle into the interferometer. We report the realization of such a delayed-choice experiment in a scheme close to the ideal original proposal (Fig. 1). The choice to insert or remove BS_{output} is randomly decided through the use of a quantum random number generator (QRNG). The QRNG is located close to BS_{output} and is far enough from the input so that no information about the choice can reach the photon before it passes through BS_{input}.

Our single-photon source, previously developed for quantum key distribution (16, 17), is based on the pulsed, optically excited photoluminescence of a single nitrogen-vacancy (N-V) color center in a diamond nanocrystal (18). At the single-emitter level, these photoluminescent centers, which can be individually addressed with the use of confocal microscopy (19), have shown unsurpassed efficiency and photo-stability at room temperature (20, 21). In addition, it is possible to obtain single photons with a well-defined polarization (16, 22).

The delayed-choice scheme is implemented as follows. Linearly polarized single photons are sent by a polarization beamsplitter BS_{input} through an interferometer (length 48 m) with two spatially separated paths associated with orthogonal S and P polarizations (Fig. 2). The movable output beamsplitter BS_{output} consists of the combination of a half-wave plate, a polarization beamsplitter BS′, an electro-optical modulator (EOM) with its optical axis oriented at 22.5° from input polarizations, and a Wollaston prism. The two beams of the interferometer, which are spatially separated and orthogonally polarized, are first overlapped by BS′ but can still be unambiguously identified by their polarization. Then, the choice between the two interferometer configurations, closed or open, is realized with the EOM, which can be switched between two different configurations within 40 ns by means of a homebuilt fast driver (16): Either no voltage is applied to the EOM, or its half-wave voltage V_{1/2} is applied to it. In the first case, the situation corresponds to the removal of BS_{output} and the two paths remain uncombined (open configuration). Because the original S and P polarizations of the two paths are oriented along prism polarization eigenstates, each “click” of one detector D₁ or D₂ placed on the output ports is associated with a specific path (path 1 or path 2, respectively). When the V_{1/2} voltage is applied, the EOM is equivalent to a half-wave plate that rotates the input polarizations by an angle of 45°. The prism then recombines the two rotated polarizations that have traveled along different optical paths, and interference appears on the two output ports. We then have the closed interferometer configuration (22).

To ensure the relativistic space-like separation between the choice of the interferometer configuration and the passage of the photon at BS_{input}, we configured the EOM switching process to be randomly decided in real time by the QRNG located close to the output of the interferometer (48 m from BS_{input}). The random number is generated by sampling the amplified shot noise of a white-light beam. Shot noise is an intrinsic quantum random process, and its value at a given time cannot be predicted (23). The timing of the experiment ensures the required relativistic space-like separation (22). Then, no information about the interferometer configuration choice can reach the photon before it enters the interferometer.

The single-photon behavior was first tested using the two output detectors feeding single and
coincidence counters with BS\text{output} removed (open configuration). We used an approach similar to the one described in (2) and (6). Consider a run corresponding to N_0 trigger pulses applied to the emitter, with N_1 counts detected in path 1 of the interferometer by D1, N_2 counts detected in path 2 by D2, and N_c detected coincidences corresponding to joint photodetections on D1 and D2 (Fig. 2). Any description in which light is treated as a classical wave, such as the semiclassical theory with quantized photodetectors (24), predicts that the numbers of counts should obey the inequality

$$\alpha = \frac{N_c}{N_1 \times N_2} \geq 1 \quad (1)$$

Violation of this inequality thus gives a quantitative criterion that characterizes nonclassical behavior. For a single-photon wavepacket, quantum optics predicts perfect anticorrelation (i.e., $\alpha = 0$) in agreement with the intuitive image that a single particle cannot be detected simultaneously in the two paths of the interferometer (2). We measured $\alpha = 0.12 \pm 0.01$, hence we are indeed close to the pure single-photon regime. The nonideal value of the α parameter is due to residual background photoluminescence of the diamond sample and to the two-phonon Raman scattering line, which both produce uncorrelated counts detected in path 2 by D2, and N_c detected coincidences corresponding to joint photodetections on D1 and D2 (Fig. 2). An unavoidable effect on what we have a right to say about the already past history of that photon" (7). Once more, we find that nature behaves in agreement with the predictions of quantum mechanics even in surprising situations where a tension with relativity seems to appear (29).

References and Notes

1. R. P. Feynman, R. B. Leighton, M. L. Sands, *Lectures on Physics* (Addison-Wesley, Reading, MA, 1965).
2. P. Grangier, G. Roger, A. Aspect, *Europhys. Lett.* 1, 173 (1986).
3. F. Jelezko, A. Volkmer, I. Popa, K. K. Rebane, J. Wrachtrup, *Phys. Rev. A* 67, 041802 (2003).
4. A. Zeilinger, G. Weihs, T. Jennewein, M. Aspelmeyer, *Nature* 433, 230 (2005).
5. T. Aichele, U. Herzog, M. Schlotz, O. Benson, *AP Conf. Proc.* 750, 35 (2005).
6. V. Jacques et al., *Eur. Phys. J. D* 35, 561 (2005).
7. J. A. Wheeler, in *Quantum Theory and Measurement*, J. A. Wheeler, W. H. Zurek, Eds. (Princeton Univ. Press, Princeton, NJ, 1989), pp. 82–213.
8. N. Bohr, in *Quantum Theory and Measurement*, J. A. Wheeler, W. H. Zurek, Eds. (Princeton Univ. Press, Princeton, NJ, 1984), pp. 9–49.
9. G. Greenstein, A. G. Zajonc, *The Quantum Challenge* (Jones and Bartlett, Sudbury, MA, 1997).
10. C. O. Alley, G. G. Jacobowicz, W. C. Wiegens, in *Proceedings of the Second International Symposium on the Foundations of Quantum Mechanics*, H. Naranj, Ed. (Physics Society of Japan, Tokyo, 1987), pp. 36–47.
11. T. Hellmut, H. Walters, A. G. Zajonc, W. Schleich, *Phys. Rev. A* 72, 2533 (2001).
12. J. Baldzuhn, E. Mahler, W. Martienssen, *Z. Phys. B* 77, 347 (1989).
13. B. J. Lawton Daku et al., *Phys. Rev. A* 54, 5042 (1996).
14. Y.-H. Kim, R. Yu, S. P. Kulik, Y. Shih, M. O. Scully, *Phys. Rev. Lett.* 84, 1 (2000).
15. T. Kawat et al., *Nucl. Inst. Methods A* 410, 259 (1998).
16. A. Beveratos et al., *Phys. Rev. Lett.* 89, 187901 (2002).
17. R. Allèae et al., *N. J. Phys.* 6, 92 (2004).
18. A. Beveratos et al., *Eur. Phys. J. D* 18, 191 (2002).
19. A. Gruber et al., *Science* 276, 1202 (1997).
20. C. Kurtzetter, S. Mayer, P. Zeh, W. Innefuchter, *Phys. Rev. Lett.* 85, 290 (2000).
21. R. Brau, A. Beveratos, J.-P. Poizat, P. Grangier, *Opt. Lett.* 25, 1294 (2000).
22. See supporting material on Science Online.
23. H.-A. Bachor, T. C. Ralph, *A Guide to Experiments in Quantum Optics* (Wiley-VCH, Weinheim, Germany, 2004).
24. W. E. Lamb, M. O. Scully, in *Polarization, Matière et Rayonnement*, Volume in Honour of A. Kastler (Presses Universitaires de France, Paris, 1969), pp. 363–369.
25. P. Grangier, thesis, Institut d’Optique et Université Paris 11 (1986); available at http://tel.ccdf.cnrs.fr/telecom-00009436.
26. B.-G. Englert, *Phys. Rev. Lett.* 77, 2154 (1996).
27. S. Durr, T. Nonn, G. Rempe, *Phys. Rev. Lett.* 81, 5705 (1998).
28. P. D. Schwindt, P. G. Kwiat, B.-G. Englert, *Phys. Rev. A* 60, 4283 (1999).
29. J. S. Bell, *Speakable and Unspeakable in Quantum Mechanics* (Cambridge Univ. Press, Cambridge, 1987).
30. We thank A. Clouqueur and A. Villing for the realization of the electronics of the experiment, J.-P. Madrange for the mechanical realization of the interferometer, and A. Bowsy, L. Jacobowicz, and D. Chaouat for their constant help and many enlightening discussions.

Supporting Online Material

www.sciencemag.org/cgi/content/full/315/5814/966/DC1

Materials and Methods

Figs. S1 to S4

13 October 2006; accepted 3 January 2007 10.1126/science.1136303