A log canonical threshold test

Alexander Rashkovskii

Abstract

In terms of log canonical threshold, we characterize plurisubharmonic functions with logarithmic asymptotical behaviour.

1 Introduction and statement of results

Let \(u \) be a plurisubharmonic function on a neighborhood of the origin of \(\mathbb{C}^n \). Its log canonical threshold at 0,

\[
c_u = \sup \{ c > 0 : e^{-c u} \in L^2_{\text{loc}}(0) \},
\]

is an important characteristic of asymptotical behavior of \(u \) at 0. The log canonical threshold \(c(\mathcal{I}) \) of a local ideal in \(\mathcal{I} \subset \mathcal{O}_0 \) can be defined as \(c_u \) for the function \(u = \log |F| \), where \(F = (F_1, \ldots, F_p) \) with \(\{F_j\} \) generators of \(\mathcal{I} \). (Surprisingly, the latter notion was introduced later than its plurisubharmonic counterpart.) For general results on log canonical thresholds, including their computation and applications, we refer to [9], [16], [17].

A classical result due to Skoda [22] states that

\[
c_u \geq \nu_u^{-1},
\]

where \(\nu_u \) is the Lelong number of \(u \) at 0. A more recent result is due to Demailly [8]: if 0 is an isolated point of \(u^{-1}(-\infty) \), then

\[
c_u \geq F_n(u) := n e_n(u)^{-1/n}.
\]

Here \(e_k(u) = (dd^c u)^k \wedge (dd^c \log |z|)^{n-k}(0) \) are the Lelong numbers of the currents \((dd^c u)^k \) at 0 for \(k = 1, \ldots, n \), and \(d = \partial + \bar{\partial} \), \(d^c = (\partial - \bar{\partial})/2\pi i \); note that \(e_1(u) = \nu_u \). This was extended by Zeriahi [23] to all plurisubharmonic functions with well-defined Monge-Ampère operator near 0.

In [19], inequality (2) was used to obtain the ‘intermediate’ bounds

\[
c_u \geq F_k(u) := k e_k(u)^{-1/k}, \quad 1 \leq k \leq l,
\]

\(l \) being the codimension of an analytic set \(A \) containing the unbounded locus \(L(u) \) of \(u \). None of the bounds for different values of \(k \) can be deduced from the others.

It is worth mentioning that relation (2) was proved in [8] on the base of a corresponding result for ideals [1] obtained in [6]:

\[
c(\mathcal{I}) \geq n e(\mathcal{I})^{-1/n},
\]

where \(e(\mathcal{I}) \) is the Hilbert-Samuel multiplicity of the (zero-dimensional) ideal \(\mathcal{I} \). Furthermore, it was shown in [6] that an equality in (4) holds if and only if the integral closure of \(\mathcal{I} \) is a

\[1\] A direct proof was given later in [2].
power of the maximal ideal \mathfrak{m}_0. Accordingly, the question of equality in (2) has been raised in [3], where it was conjectured that, similarly to the case of ideals, the extremal functions would be those with logarithmic singularity at 0.

The conjecture was proved in [20] where it was shown that

$$c_u = F_n(u)$$

if and only if the greenification g_u of u has the asymptotics $g_u(z) = e_1(u) \log |z| + O(1)$ as $z \to 0$. Here the function g_u is the upper semicontinuous regularization of the upper envelope of all negative plurisubharmonic functions v on a bounded neighborhood D of 0, such that $v \leq u + O(1)$ near 0, see [18]. Note that if $u = \log |F|$, then $g_u = u + O(1)$ [21, Prop. 5.1].

The equality situation in [1] (i.e., in (3) with $k = 1$) was first treated in [5] and [11] for the dimension $n = 2$: the functions satisfying $c_u = \nu_u^{-1}$ were proved in that case to be of the form $u = c \log |f| + v$, where f is an analytic function, regular at 0, and v is a plurisubharmonic function with zero Lelong number at 0. In a recent preprint [15], the result was extended to any n. This was achieved by a careful slicing technique reducing the general case to the aforementioned two-dimensional result. In addition, it used a regularization result for plurisubharmonic functions with keeping the log canonical threshold (see Lemma 1 below).

Concerning inequalities (3), it was shown in [19] that the only multi-circled plurisubharmonic functions $u(z) = u(|z_1|, \ldots, |z_n|)$ satisfying $c_u = F_l(u)$ are essentially of the form $c \max_{j \in J} \log |z_j|$ for an l-tuple $J \subset \{1, \ldots, n\}$. Here we address the question on equalities in the bounds (3) in the general case.

We present an approach that is different from that of [15] and which actually works also for the 'intermediate' equality situations. It is based on a recent result of Demailly and Pham Hoang Hiep [10]: if the complex Monge-Ampère operator $(dd^c u)^n$ is well defined near 0 and $e_1(u) > 0$, then

$$c_u \geq E_n(u) := \sum_{1 \leq j \leq n} \frac{e_{j-1}(u)}{e_j(u)},$$

where $e_0(u) = 1$. In particular, this implies (2) and sharpens, for the case of functions with well-defined Monge-Ampère operator, inequality (1). Moreover, it is this bound that was used in [20] to prove the conjecture from [5] on functions satisfying (5).

Given $1 < l \leq n$, let \mathcal{E}_l be the collection of all plurisubharmonic functions u whose unbounded loci $L(u)$ have zero $2(n - l - 1)$-dimensional Hausdorff measure. For such a function u, the currents $(dd^c u)^k$ are well defined for all $k \leq l$ [12]. In particular, $u \in \mathcal{E}_l$ if $L(u)$ lies in an analytic variety of codimension at least l. Furthermore, we set \mathcal{E}_1 to be just the collection of all plurisubharmonic functions near 0.

Let $c_u(z)$ denote the log canonical threshold of u at z and, similarly, let $e_k(u, z)$ denote the Lelong number of $(dd^c u)^k$ at z; in our notation, $c_u(0) = c_u$ and $e_k(u, 0) = e_k(u)$. As is known, the sets $\{z : c_u(z) \leq c\}$ are analytic for all $c > 0$. Our first result describes, in particular, regularity of such a set for $c = c_u$, provided $c_u = F_l(u)$.

For $u \in \mathcal{E}_l$ we set

$$E_k(u) = \sum_{1 \leq j \leq k} \frac{e_{j-1}(u)}{e_j(u)}, \quad k \leq l.$$
Theorem 1 Let \(u \in \mathcal{E}_l \) for some \(l \geq 1 \), and let \(e_1(u) > 0 \). Then

(i) \(c_u \geq E_k(u) \) for all \(k \leq l \);
(ii) \(c_u \geq F_k(u) \) for all \(k \leq l \);
(iii) if \(u \) satisfies \(c_u = F_k(u) \) for some \(k \leq l \), then \(k = l \) and there is a neighborhood \(V \) of the origin such that the set \(A = \{ z : c_u(z) \leq c_u \} \) is an \(l \)-codimensional manifold in \(V \).

Furthermore, \(A = \{ z : e_l(u, z) \geq e_l(u) \} \).

For \(l = 1 \), assertion (iii) re-proves the aforementioned result from [15]. Let \(A = \{ z_1 = 0 \} \), then the function \(u - c_u \log |z_1| \) is locally bounded from above near \(A \) and thus extends to a plurisubharmonic function \(v \); evidently, \(\nu_v = 0 \). On the other hand, all the functions \(u = c_u \log |z_1| + v \) with \(\nu_v = 0 \) satisfy \(c_u = \nu_u \).

When \(l > 1 \), there are functions \(u \) such that \(\{ z : c_u(z) \leq c_u \} \) is an \(l \)-codimensional manifold, but \(c_u > F_l(u) \). Indeed, let us take \(u(z_1, z_2, z_3) = \max\{ \log |z_1|, 2 \log |z_2| \} \in \mathcal{E}_2 \). Then \(A = \{ z \in \mathbb{C}^n : c_u(z) \leq c_u \} = \{ z_1 = z_2 = 0 \} \), while \(F_2(u) = \sqrt{2} < 3/2 = c_u \). (Note that \(c_u = E_2(u) \) in this case.)

Furthermore, the same example shows that the equality \((dd^c u)^2 = \delta^2 \) \([z_1 = z_2 = 0] \) does not imply \(u = \delta \log |(z_1, z_2)| + v \) with plurisubharmonic \(v \) and \(\nu_v = 0 \).

Therefore, in the higher dimensional situation we need to deduce a more precise information on asymptotical behavior of \(u \) near \(A \). By analogy with the case \(l = n \), it is tempting to make the following conjecture.

Let \(u \in \mathcal{E}_l \), then

\[
c_u = F_l(u)
\]

if and only if, for a choice of coordinates \(z = (z', z'') \in \mathbb{C}^l \times \mathbb{C}^{n-l} \), the greenification \(g_u \) of \(u \) near 0 satisfies

\[
g_u = e_1(u) \log |z'| + O(1) \text{ as } z \to 0.
\]

The 'if' direction is obvious in view of \(c_u = c_{g_u} \) [20] and the trivial fact \(c_{\log |z'|} = l \), however the reverse statement might be difficult to prove even in the case \(l = 1 \) because that would imply non-existence of a plurisubharmonic function \(\phi \) with \(e_1(\phi) = 0 \) and \(e_n(\phi) > 0 \), which is a known open problem. Namely, let such a function \(\phi \) exist, and set \(u = \phi + \log |z_1| \). Then

\[
1 = \nu_u \leq c_u \leq e_{\log |z_1|} = 1.
\]

On the other hand, for \(D = \mathbb{D}^n \), \(g_u = g_\phi + \log |z_1| \) and the relation \(e_n(\phi) > 0 \) implies \(g_\phi \neq 0 \) and thus \(\lim \inf (g_u - \log |z_1|) = -\infty \) when \(z \to 0 \).

What we can prove is the following, slightly weaker statement.

Theorem 2 If \(u \in \mathcal{E}_l \) satisfies \((\star)\), then \(e_k(u) = e_1(u)^k \) for all \(k \leq l \) and, for a choice of coordinates \(z = (z', z'') \in \mathbb{C}^l \times \mathbb{C}^{n-l} \), the function \(u \) satisfies \(u \leq e_1(u) \log |z'| + O(1) \) near 0, while the greenification \(g_{u_N} \) of \(u_N = \max\{u, N \log |z|\} \) with any \(N \geq e_1(u) \) satisfies

\[
g_{u_N} = \max\{e_1(u) \log |z'|, N \log |z''|\} + O(1), \quad z \to 0.
\]
Let us fix a neighborhood $D \subset V$ of 0 to be the product of unit balls in \mathbb{C}^l and \mathbb{C}^{n-l} and consider the greenifications with respect to D. Then the functions g_{u_N} are equal to max$\{e_1(u) \log |z'|, N \log |z''|\}$ and they converge, as $N \to \infty$, to $e_1(u) \log |z'| \geq g_u$.

Denote, for any bounded neighborhood D of 0 and any u plurisubharmonic in D,

$$\tilde{g}_u = \lim_{N \to \infty} g_{u_N},$$

where $u_N = \max\{u, N \log |z|\}$. Evidently, $\tilde{g}_u \geq g_u$.

Theorem 3 Let $u \in \mathcal{E}_1$ be such that $\tilde{g}_u = g_u$. Then it satisfies (10) if and only if, for a choice of coordinates $z = (z', z'') \in \mathbb{C}^l \times \mathbb{C}^{n-l}$, $g_\alpha = e_1(u) \log |z'| + O(1)$ as $z \to 0$.

In particular, this is true for $u = \alpha \log |F| + O(1)$, where F is a holomorphic mapping, $F(0) = 0$. Moreover, in this case we also have $u = e_1(u) \log |z'| + O(1)$.

The statement on $\alpha \log |F|$ can be reformulated in algebraic terms as follows. Let \mathcal{I} be an ideal of the local ring \mathcal{O}_0, and let $V(\mathcal{I})$ be its variety: $V(\mathcal{I}) = \{z : f(z) = 0 \forall f \in \mathcal{I}\}$. If $\text{codim}_0 V(\mathcal{I}) \geq k$, then the mixed Rees’ multiplicity $e_k(\mathcal{I}, m_0)$ of k copies of \mathcal{I} and $n-k$ copies of the maximal ideal m_0 is well defined [4]. If $k = n$, then, as shown in [8], the Hilbert-Samuel multiplicity $e(\mathcal{I})$ of \mathcal{I} equals $e_n(u)$, where, as before, $u = \log |F|$ for generators $\{F_p\}$ of \mathcal{I}. By the polarization formula, $e_k(\mathcal{I}, m_0) = e_k(u)$ for all k; by a limit transition, this holds true for all $k \leq l$ if $\text{codim}_0 V(\mathcal{I}) = l$.

Bounds [3] specify for this case as

$$c(\mathcal{I}) \geq k e_k(\mathcal{I}, m_0)^{-1/k}, \quad 1 \leq k \leq l;$$

from Theorems [1] and [3] we thus derive

Corollary 1 If $\text{codim}_0 V(\mathcal{I}) = l$ and $c(\mathcal{I}) = k e_k(\mathcal{I}, m_0)^{-1/k}$ for some $k \leq l$, then $k = l$, $V(\mathcal{I})$ is an l-codimensional hypersurface, regular at 0, and there exists an ideal n_0 generated by coordinate (smooth transversal) germs $f_1, \ldots, f_l \in \mathcal{O}_0$ such that $\mathcal{I} = n_0^s$ for some $s \in \mathbb{Z}_+$.

2 Proofs

In what follows, we will use the mentioned regularization result by Qi’an Guan and Xiangyu Zhou. Note that its proof rests on the strong openness conjecture from [9], proved in [13] and [14], see also [3].

Lemma 1 [15] Prop. 2.1 Let u be a plurisubharmonic function near the origin, $\sigma_u = 1$. Then there exists a plurisubharmonic function $\tilde{u} \geq u$ on a neighborhood of 0 such that $e^{-2u} - e^{-2\tilde{u}}$ is integrable on V and \tilde{u} is locally bounded on $V \setminus \{z : c_u(z) \leq 1\}$.

We will also refer to the following uniqueness theorem.

Lemma 2 ([18] Lem. 6.3 and [20] Lem. 1.1) If u and v are two plurisubharmonic functions with isolated singularity at 0, such that $u \leq v + O(1)$ near 0 and $e_n(u) = e_n(v)$, then their greenifications coincide.

\footnote{For the general case of non-isolated singularities, see [1] Thm. 3.7}
Proof of Theorem 1. Since all the functionals \(u \mapsto c_\nu, E_k(u), F_k(u) \) are positive homogeneous of degree \(-1\), we can assume \(c_\nu = 1 \).

Let \(\tilde{u} \) be the function from Lemma \([1]\) Its unbounded locus \(L(\tilde{u}) \) is contained in the analytic variety \(A = \{ z : c_\nu(z) \leq 1 \} \). Since \(A \subset L(u) \) and \(u \in \mathcal{E}_l \), \(\operatorname{codim} A \geq l \).

For \(\tilde{u} \), statement (i) is proved in [20 Thm. 1.4]. Note that the relation \(u \leq \tilde{u} \) implies \(e_k(u) \geq e_k(\tilde{u}) \) for all \(k \leq l \) and thus \(E_l(u) \leq E_l(\tilde{u}) \) \([10]\). Since \(c_\nu = c_{\tilde{u}} \), this gives us (i).

Assertion (ii) follows from (i) by the arithmetic-geometric mean theorem.

To prove (iii), we first note that (i) implies \(c_\nu \geq E_l(u) > E_k(u) \geq F_k(u) \) for any \(k < l \), so we cannot have \(c_\nu = F_k(u) \) unless \(k = l \).

Next, if the analytic variety \(A \) has codimension \(m > l \), then \(\tilde{u} \in \mathcal{E}_m \), so \(c_\nu = c_{\tilde{u}} \geq E_m(\tilde{u}) > E_l(\tilde{u}) \geq E_l(u) \geq F_l(u) \), which contradicts the assumption, so \(\operatorname{codim} A = l \).

Now we prove that \(0 \) is a regular point of the variety \(A \). By Siu’s representation formula, \((dd^c u)_l = \sum p_j[A_j] + R \) on a neighborhood \(V \) of \(0 \), where \(p_j > 0 \), \([A_j] \) are integration currents along \(l \)-codimensional analytic varieties containing \(0 \), and \(R \) is a closed positive current such that for any \(a > 0 \) the analytic variety \(\{ z \in V : \nu(R, z) \geq a \} \) has codimension strictly greater than \(l \). If \(\nu(R, 0) > 0 \), then for almost all points \(z \in A \) we have \(e_l(u, z) < e_l(u) \). This implies, by (ii), \(c_{\nu}(z) > c_{\nu} \) for all such points \(z \), which is impossible. The same argument shows that the collection \(\{ A_j \} \) consists of at most one variety and \(0 \) is its regular point. \(\square \)

Proof of Theorem 2. By the arithmetic-geometric mean theorem, the condition \(c_\nu = F_l(u) \) implies, in view of the inequality \(c_\nu \geq E_l(u) \), the relations

\[
e_k(u) = \frac{e_{k-1}(u)}{e_k(u)} \frac{e_{j-1}(u)}{e_j(u)}
\]

for any \(k, j \leq l \), which gives us \(e_k(u) = [e_1(u)]^k \) for all \(k \leq l \).

Since relation (7) for \(e_1(u) = 0 \) is obvious (in this case \(g_{u_N} = 0 \)), we can assume \(e_1(u) = 1 \).

Note that for any \(z \), we have \(e_k(u, z) \geq [e_1(u, z)]^k \). As follows from the proof of (iii), the relation \(c_\nu = F_l(u) \) implies then, on a neighborhood \(V \) of \(0 \),

\[
A \cap V = \{ z \in V : c_\nu(z) \leq 1 \} = \{ z \in V : F_l(u, z) \leq 1 \} = \{ z \in V : e_k(u, z) \geq 1 \}
\]

for all \(k \leq l \). Moreover, we have \(e_k(u, z) = e_1(u, z))^k \) for almost all \(z \in A \cap V \).

Let us choose, according to Theorem \([1]\) a coordinate system such that \(A \cap V = \{ z \in V : z_k = 0, 1 \leq k \leq l \} \). Denote \(\nu(z) = \log |z'|, z = (z', z'') \in \mathbb{C}^l \times \mathbb{C}^{n-l} \), then \(A \cap V = \{ z : e_k(u, z) \geq e_k(u, z) \} \), with equalities almost everywhere.

In particular, we have \(u(z) \leq \log |z - (0, \zeta''')| + C(\zeta''') \) as \(z \to (0, \zeta''') \) for all \(z \in \mathbb{C}^n \) and \(\zeta'''' \in \mathbb{C}^{n-l} \) that are close enough to \(0 \). Assuming \(u(z) \leq 0 \) for all \(z \) with \(\max |z_k| < 2 \), we get \(u(z) \leq \log |z - (0, \zeta''')| \) for all \(z \in V \) and \(\zeta'''' \in \mathbb{C}^{n-l} \) with \((0, \zeta''') \in V \). By choosing \(\zeta'''' = z'''' \) this gives us \(u(z) \leq v(z) \) on \(V \).

Let \(u_N = \max \{ u, N \log |z| \} \) and \(v_N = \max \{ v, N \log |z| \} \). Then \(u_N \leq v_N \), while for \(N \geq 1 \) we get, by Demailly’s comparison theorem for the Lelong numbers \([7]\),

\[
e_n(u_N) \leq (dd^c u)_l \wedge (dd^c N \log |z|)^{n-l}(0) = N^{n-l} e_l(u) = N^{n-l} = e_n(v_N).
\]
By Lemma 2 \(g_{uN} = g_{vN} \). \(\square \)

Proof of Theorem 3. The only part to prove is the one concerning \(u = \alpha \log |F| + O(1) \); we assume \(\alpha = 1 \). As follows from Theorem 2, one can choose coordinates such that the zero set \(Z_F \) of \(F \) is \(\{ z : z' = 0 \} \cap V \subset \{ 0 \} \times \mathbb{C}^{n-I} \). Observe that for such a function \(u \) we have \(e_k(u, z) = e_1(u)^k \) for all \(z \in Z_F \) near 0.

Let \(I \) be the ideal generated by the components of the mapping \(F \). Then, as mentioned in Section 1, \(e_l(u) \) equals \(e_l(I, m_0) \), the mixed multiplicity of \(l \) copies of the ideal \(I \) and \(n-l \) copies of the maximal ideal \(m_0 \). By [4, Prop. 2.9], \(e_l(I, m_0) \) can be computed as the multiplicity \(e(J) \) of the ideal \(J \) generated by generic functions \(\Psi_1, \ldots, \Psi_l \in I \) and \(\xi_1, \ldots, \xi_{n-l} \in m_0 \). Since \(e(J) = e_l(w) \), where \(w = \log |\Psi| \), we have \(e_l(u) = e_l(w) \).

Let now \(v = e_1(u) \log |z'| \), \(w_N = \max \{ w, N \log |z'| \} \), and \(v_N = \max \{ v, N \log |z''| \} \). Since \(w \leq \log |F| + O(1) \), we have from Theorem 2 the inequality \(w \leq v + O(1) \) and thus \(w_N \leq v_N + O(1) \). Note that the mapping \(\Psi \) satisfies the Lojasiewicz inequality \(|\Psi_0(z)| \geq |z'|^M \) near 0 for some \(M > 0 \). Therefore, for sufficiently big \(N \) we have \(w_N = w'_N = \max \{ w, N \log |z| \} \).

Then, as in the proof of Theorem 2 we compute

\[
e_n(w_N) = e_n(w'_N) - (dd^c w')^l (dd^c N \log |z|)^{n-l}(0) = N^{n-l} e_l(w) = N^{n-l} e_l(u) = e_n(v_N),
\]

which, by Lemma 2 implies \(g_{w_N} = g_{v_N} \) for the greenifications on a bounded neighborhood \(D \) of 0.

We can assume \(D = \{ |z'| < 1 \} \times \{ |z''| < 1 \} \), then \(g_{v_N} = v_N \), while \(g_{w_N} \leq w_N \) because the latter function is maximal on \(D \) and nonnegative on \(\partial D \). Letting \(N \to \infty \) we get \(w \geq v \).

Since \(w \leq u + O(1) \), we have, in particular, \(u \geq v + O(1) \), which, in view of Theorem 2 completes the proof. \(\square \)

References

[1] P. Ahag, U. Cegrell, R. Czyź, Phâm Hoàng Hiếp, *Monge-Ampère measures on pluripolar sets*, J. Math. Pures Appl. (9) 92 (2009), no. 6, 613–627.

[2] P. Ahag, U. Cegrell, S. Kołodziej, H.H. Pham, A. Zeriahi, *Partial pluricomplex energy and integrability exponents of plurisubharmonic functions*, Adv. Math. 222 (2009), no. 6, 2036–2058.

[3] B. Berndtsson, *The openness conjecture for plurisubharmonic functions*, preprint http://arxiv.org/abs/1305.5781.

[4] C. Bivià-Ausina, *Joint reductions of monomial ideals and multiplicity of complex analytic maps*, Math. Res. Lett. 15 (2008), no. 2, 389–407.

[5] M. Blel and S.K. Mimouni, *Singularités et intégrabilité des fonctions plurisousharmoniques*, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 2, 319–351.

[6] T. de Fernex, L. Ein, M. Mustaţă, *Multiplicities and log canonical threshold*, J. Algebraic Geom. 13 (2004), no. 3, 603–615.

[7] J.-P. Demailly, *Monge-Ampère operators, Lelong numbers and intersection theory*, Complex Analysis and Geometry (Univ. Series in Math.), ed. by V. Ancona and A. Silva, Plenum Press, New York 1993, 115–193.
[8] J.-P. Demailly, *Estimates on Monge-Ampère operators derived from a local algebra inequality*, Complex Analysis and Digital Geometry. Proceedings from the Kiselmanfest, 2006, ed. by M. Passare. Uppsala University, 2009, 131–143.

[9] J.-P. Demailly and J. Kollár, *Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds*, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 525–556.

[10] J.-P. Demailly and Pham Hoang Hiep, *A sharp lower bound for the log canonical threshold*, Acta Math. 212 (2014), no. 1, 1–9.

[11] C. Favre and M. Jonsson, *Valuations and multiplier ideals*, J. Amer. Math. Soc. 18 (2005), no. 3, 655–684.

[12] J.E. Fornaess and N. Sibony, *Oka’s inequality for currents and applications*, Math. Ann. 301 (1995), no. 3, 399-419.

[13] Qi’an Guan, Xiangyu Zhou, *Strong openness conjecture for plurisubharmonic functions*, preprint http://arxiv.org/abs/1311.3781

[14] Qi’an Guan, Xiangyu Zhou, *Strong openness conjecture and related problems for plurisubharmonic functions*, preprint http://arxiv.org/abs/1403.7247

[15] Qi’an Guan, Xiangyu Zhou, *Classification of multiplier ideal sheaf with Lelong number one weight*, preprint http://arxiv.org/abs/1411.6737

[16] R. Lazarsfeld, *A short course on multiplier ideals*. Analytic and algebraic geometry, 451–494, IAS/Park City Math. Ser., 17, Amer. Math. Soc., Providence, RI, 2010.

[17] M. Mustaţă, *IMPANGA lecture notes on log canonical thresholds*. EMS Ser. Congr. Rep., Contributions to algebraic geometry, 407–442, Eur. Math. Soc., Zürich, 2012.

[18] A. Rashkovskii, *Relative types and extremal problems for plurisubharmonic functions*, Int. Math. Res. Not., 2006, Art. ID 76283, 26 pp.

[19] A. Rashkovskii, *Multi-circled singularities, Lelong numbers, and integrability index*, J. Geom. Anal. 23 (2013), no. 4, 1976–1992.

[20] A. Rashkovskii, *Extremal cases for the log canonical threshold*, C. R. Acad. Sci. Paris, Ser. I, 353 (2015), 21–24.

[21] A. Rashkovskii and R. Sigurdsson, *Green functions with singularities along complex spaces*, Internat. J. Math. 16 (2005), no. 4, 333–355.

[22] H. Skoda, *Sous-ensembles analytiques d’ordre fini ou infini dans C^n*, Bull. Soc. Math. France 100 (1972), 353–408.

[23] A. Zeriahi, *Appendix: A stronger version of Demailly’s estimate on Monge-Ampère operators*, Complex Analysis and Digital Geometry. Proceedings from the Kiselmanfest, 2006, ed. by M. Passare. Uppsala University, 2009, 144–146.

Tek/Nat, University of Stavanger, 4036 Stavanger, Norway

E-MAIL: alexander.rashkovskii@uis.no