COVID-19 coagulopathies: Human blood proteins mimic SARS-CoV-2 virus, vaccine proteins and bacterial co-infections inducing autoimmunity

Combinations of bacteria and SARS-CoV-2 synergize to induce autoantibodies targeting cardiolipin, cardiolipin-binding proteins, platelet factor 4, prothrombin, and coagulation factors.

Robert Root-Bernstein

Michigan State University, East Lansing, Michigan, USA

Correspondence
Robert Root-Bernstein, Michigan State University, East Lansing, MI 48824, USA
Email: rootbern@msu.edu

Abstract
Severe COVID-19 is often accompanied by coagulopathies such as thrombocytopenia and abnormal clotting. Rarely, such complications follow SARS-CoV-2 vaccination. The cause of these coagulopathies is unknown. It is hypothesized that coagulopathies accompanying SARS-CoV-2 infections and vaccinations result from bacterial co-infections that synergize with virus-induced autoimmunity due to antigenic mimicry of blood proteins by both bacterial and viral antigens. Coagulopathies occur mainly in severe COVID-19 characterized by bacterial co-infections with Streptococci, Staphylococci, Klebsiella, Escherichia coli, and Acinetobacter baumannii. These bacteria express unusually large numbers of antigens mimicking human blood antigens, as do both SARS-CoV-2 and adenoviruses. Bacteria mimic cardiolipin, prothrombin, albumin, and platelet factor 4 (PF4). SARS-CoV-2 mimics complement factors, Rh antigens, platelet phosphodiesterases, Factors IX and X, von Willebrand Factor (VWF), and VWF protease ADAMTS13. Adenoviruses mimic prothrombin and platelet factor 4. Bacterial prophylaxis, avoidance of vaccinating bacterially infected individuals, and antigen deletion for vaccines may reduce coagulopathy risk. Also see the video abstract here: https://youtu.be/zWDOsghrPg8

KEYWORDS
cardiolipin, coagulation factors, phosphodiesterase, platelet, streptococci, thrombocytopenia, thrombosis

INTRODUCTION
SARS-CoV-2 is a new coronavirus causing a pandemic accompanied by significant risk of mortality. While SARS-CoV-2 infections generally cause minor symptoms such as fever, headache, and muscle aches, dyspnea and temporary loss of smell and/or taste. Severe cases of COVID-19 can present with coagulopathies including viscous blood and microclotting, that can lead to impaired circulation, stroke or heart attack, respiratory complications, and other types of organ failure.[1–3] While mild cases of COVID-19 have no increased risk of coagulopathies,[4] coagulopathies are estimated to affect about 10% of hospitalized patients.[5] 25% of critically ill COVID-19 patients and up to 48% of those who end up in intensive care,[3,6–8] to affect the elderly more often than the young,[9] and to occur about ten times more frequently than among hospitalized influenza patients.[5,9,10] Such thrombotic complications are also seen rarely in people vaccinated against SARS-CoV-2.[5,11–13]
The cause of increased blood viscosity, microclotting, and thrombosis in COVID-19 is unknown. Possible contributors include genetics,[14] defects in the renin-angiotensin system,[15] defective platelet gene expression,[16] endothelitis,[17] or cytokine storm accompanied by inappropriate complement activation.[18] Vaccine-associated thrombosis may be linked to ethylenediaminetetraacetic acid (EDTA) preservative in the AstraZeneca formulation.[18] However, increasing evidence strongly supports an autoimmune pathogenesis for COVID-19-associated coagulopathies.[19,20]

Autoantibodies directed at phospholipids and phospholipid-binding proteins have been identified in the majority of COVID-19 patients affected by coagulopathies but rarely in mild cases,[21] these include lupus anticoagulant, antibodies against cardiolipin (CL), and antibodies against the cardiolipin-binding proteins phosphatidylycerine/prothrombin (Factor 2) and beta-2 glycoprotein I (β2GPI).[7,21–24] However, these antibodies are also found transiently in many COVID-19 patients who do not develop coagulopathies, calling their causal relationship into question,[25] a point of great significance to be discussed below. Autoantibodies against platelet factor 4 (PF4), a platelet activating factor that binds heparin (as well as bacterial antigens), have also been documented in thrombotic COVID-19 patients[26,27] as well as in vaccinees who have developed thrombotic thrombocytopenia[28,29] but, again, are found in many patients who do not have developed clinically-evident coagulopathies.[28,30] Severity of COVID-19 also correlates with significant alterations in the function and expression of a range of other clotting factors including significant increases in von Willebrand factor (VWF), Factors IX, X, and Xa, and significant decreases in ADAMTS13 (VWF-cleaving protease or VWFCP)[31–33] and autoantibodies against these proteins are found in some SARS-CoV-2 infected patients.[24] This range of autoantigen targets is a key point that any explanation of COVID-19 coagulopathies must address.

Hypothesis: COVID-19 coagulopathies are due to autoimmunity induced by virus-bacteria synergy

I propose that the autoimmune blood-related coagulopathies associated with SARS-CoV-2 infection are a result of two, synergistic phenomena: the first is molecular mimicry between SARS-CoV-2 proteins and human blood proteins; the second is immunological hyperactivation due to SARS-CoV-2 synergy with specific viral and/or bacterial co-infections. Both are necessary but neither is sufficient to induce autoimmune coagulopathies. SARS-CoV-2 mimicry of host blood proteins sets the stage for the potential production of antibodies capable of cross-reacting with host proteins. Such autoantibodies need not, however, progress to autoimmune disease. The fact that only severely ill COVID-19 patients develop coagulopathies[6–8] demonstrates that such molecular mimicry is not, in and of itself, sufficient to trigger autoimmune disease, which requires innate immune system hyperactivation. Co-infections may be necessary to create this hyperactivation and are common in severe COVID-19, most often involving bacteria, less frequently, viruses such as influenza and adenoviruses, or fungi. The bacteria that are most often found in severe COVID-19 cases include Streptococcus, Staphylococcus aureus or hemolyticus, Hemophilus influenzae or parainfluenzae, Klebsiella pneumoniae, Mycoplasma pneumoniae, Escherichia coli, Acinetobacter baumanii, and Pseudomonas aeruginosa (e.g.,[2,34–38]).

Additional hypothesis: Viral and bacterial mimicry of coagulation and complement proteins may directly alter function

Autoimmunity may not be the only factor at work in COVID-19-associated coagulopathies: viral and/or bacterial mimics may directly modify blood coagulation or platelet activation. For example, SARS-CoV-2 spike protein is structurally similar enough to some blood coagulation factors that Factors Xa and FIIa are able to cleave it, stimulating enhanced viral entry into susceptible cells.[39] The implications of this similarity for direct intervention by SARS-CoV-2 proteins or COVID-19-associated bacterial antigens by Factors Xa and FIIa have not yet been investigated and may extend to other blood protein mimics.

The purpose of this paper is to explore the range of similarities between human blood protein antigens and SARS-CoV-2 compared with other respiratory viruses such as influenza and adenoviruses, as well as the range of similarities between human blood proteins and bacteria highly associated with severe COVID-19 such as Streptococci, Staphylococci, E. coli, Pseudomonas, and Acinetobacter baumanii.

METHODS

Similarity search procedures

Two types of similarity searches were carried out to identify likely molecular mimics shared by SARS-CoV-2 proteins (accessed on 2 May 2021 from https://viralzone.expasy.org/8996) and human blood proteins. The first type of search utilized BLASTP (version 2.2.31+) on the www.expasy.org server. BLOSUM80 was used to identify the type of short, continuous sequences approximately 10–15 amino acids in length that are presented by Human Leukocyte Antigens (HLA) to T and B cells.[40,41] The E value was set to 1000; filter low complexity regions on; no gaps; 3000 best scoring and best alignments to show. Only matches that had a Waterman-Eggert score of at least 50, an E value of less than 1.0 and which contained a sequence of 10 amino acids in which at least six were identical, were counted as sufficiently similar to induce possible cross-reactive immunity; this criterion is based on substantial research demonstrating that sequences exhibiting this degree of similarity have a high probability of being cross-reactive under experimental conditions.[42–45] The second search method employed LALIGN (www.expasy.org) to do a deeper dive into the SARS-CoV-2 protein similarities identified by the BLAST searches. The search algorithm was set to BLOSUM80; gap penalty at -10.0; E value, 10; 20 best matches displayed. The control viruses were poliovirus type 1, coxsackievirus B3, hepatitis A virus,
TABLE 1 Summary table of LALIGN search results comparing human blood proteins with SARS-COV-2 proteins (https://viralzone.expasy.org/8996), poliovirus type 1 P03300; coxsackievirus B3 P03313; hepatitis A virus P0441; Rhinovirus 2 P04936; Adenovirus C5 complete genome https://www.ncbi.nlm.nih.gov/nuccore/AC_000008.1; and Influenza H1N1 (Wilson): H1N1 Matrix Protein P05777; H1N1 Hemagglutinin P03454; H1N1 PB2 P03427; H1N1 HDRP P03430; H1N1 Non-Struct. Q82506; H1N1 PAP P15659; H1N1 Nucleoprotein P15682

VIRUS	TOT	CL	SerAlb	C1q	C3	C4	C5	PDE2-5	RhA-D	F2	VWF	F IX	F10	ADTS13	B2GP	CD55	PF4
P03300	22	0	0	2	3	0	2	0	0	7	0	0	2	0	2	4	0
P03313	24	0	0	3	1	6	2	3	0	3	2	1	1	0	2	0	2
P0441	23	0	3	2	2	0	0	2	2	2	3	2	0	1	1	2	1
P04936	34	0	3	1	2	3	2	4	5	0	5	0	0	2	2	4	1
P08174	66	0	1	3	10*	5	1	6	3	7	6	5	6	9*	3	0	1
P08175	36.2	0	1.5	1.8	1.8	3.2	2.0	3.4	2.7	2.4	4.3	1.5	1.5	1.6	2.0	0.9	0.8
P02768	169	0	6	2	11	8	6	42	32	9	15	7	7	12	3	6	2
P00734	57	0	2	1	1	3	5	16	15	5	1	1	0	2	1	2	2
P01024	30	0	0	3	1	0	9	6	3	3	2	1	2	0	0	0	0
P00742	10	0	2	0	1	0	0	2	0	0	1	0	2	0	0	0	0
P02776	4	0	0	0	0	0	0	2	1	0	0	1	0	0	0	0	0
P02745	13	0	1	0	2	1	1	1	3	0	2	1	0	0	1	0	0
P02749	13	0	1	0	2	1	1	1	3	0	2	1	0	0	1	0	0
P01031	13	0	1	1	1	0	3	0	3	1	0	2	0	1	0	1	0
P00740	17	0	0	0	1	2	0	3	4	0	2	1	2	0	1	1	0
P02745	13	0	1	0	0	0	0	2	1	0	0	1	0	0	0	0	0
P00742	4	0	0	0	1	0	0	0	0	0	2	1	0	0	0	0	0
P02776	5	0	1	0	0	0	0	2	1	0	0	0	1	0	0	0	0
P02749	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

These viral proteins were compared with the following human proteins: Ser Alb = serum albumin P02768; # PDE = Platelet phosphodiesterase: PDE2 O95551; PDE2a O00408; PDE3a Q92484; PDE3b Q13370; PDE5a Q76074; * Rh = Rhesus blood types: Rhesus A Q02094; Rhesus B Q9H310; Rhesus C Q9UBD6; Rhesus CE P18577; Rhesus D Q02161; & C = Complement; C1q P02745; C3 P01024; C4 P0CL4; C5 P01031; F2 = prothrombin (Factor 2) P00734; VWF = von Willebrand Factor P04725; F IX = Factor IX P00740; Factor X P00742; ADAMTS13 (von Willebrand factor-cleaving protease or VWFCP) Q76LX8; & β2GP (beta-2 glycoprotein I) P02749; CD55/DAP P08174; PF4 (platelet factor 4) P02776; CL = cardiolipin, & = P0DTD1 (Replicase 1ab) overlaps P0DTC1 (Replicase 1a), so only additional (1b) protein matches are recorded. # = number; > = greater than; * = not counted in averages because significantly out of range of other data points. Out-of-range data were defined as being values at least three times the value of the averages of the other values for that protein. Underlined, numbers are at least five times the average for those proteins.

rhinovirus 2, adenovirus 5, and influenza virus H1N1 (Wilson). UniProt accession numbers for the viruses and for the human blood proteins, as well as a list of the blood proteins, are provided in the TABLE captions. As with the BLAST searches, and for the same reasons, the LALIGN results were further culled for sequences with E < 1, Waterman-Eggert score >45 and sequence similarity having a region containing at least six out of ten identities. The number of matches simultaneously satisfying the E value, Waterman-Eggert, and 6-of-10 criteria were tabulated (Table 1) and representative matches provided (Figure 1).

The same BLAST protocol described above was employed to analyze possible bacterial similarities to human blood proteins. Each blood protein listed above was used as a search string against the entire
FIGURE 1 Selected similarities between SARS-CoV-2 proteins and human blood proteins. **WE** = Waterman-Eggert; lines represent identical amino acids in the compared sequences while colons represent amino acid similarities. Blood protein abbreviations can be found in the caption to Table 1.
TABLE 2 Paired T-test statistics for Table 1 data

Paired T-test	Poliovirus type 1	Coxsackie B3	Hepatitis A	Rhinovirus C	Influenza H1N1	Adeno-virus 5	Virus Average
Coxsackie B3	t = 1.6653,						
	P = 0.12						
Hepatitis A	t = 0.2215,						
	P = 0.83						
Rhinovirus C	t = 2.9245,						
	P = 0.01						
Influenza H1N1	t = 2.6687,						
	P = 0.02						
Adenovirus 5	t = 2.0368,						
	P = 0.05						
Virus Average	t = 3.8000,						
	P = 0.002						

SARS-CoV-2

SARS-CoV-2	t = 8.9314,	t = 6.7729,	t = 7.7645,	t = 7.2111,	t = 6.0688,	t = 2.4551,	t = 7.8312,
	P < 0.0001	P < 0.0001	P < 0.0001	P < 0.0001	P < 0.0001	P < 0.0001	P < 0.0001

To satisfy p = 0.05 after a Bonferroni correction for the 28 pairwise comparisons made in this Table, the p value must be <0.002; to satisfy p = 0.01, the corrected value must be <0.0005. Of the control comparisons, only polio as compared with the virus average is statistically significant after correction. All SARS-CoV-2 comparisons with other viruses and the virus average are highly statistically significant by satisfying a Bonferroni-corrected P value of <0.002 (T > 3.75). Significant results are highlighted in bold.

UniprotKB bacterial database. The results were then screened for the presence of bacteria associated with COVID-19 (see Introduction): Acinetobacter baumannii, E. coli, H. influenzae and parainfluenzae, Klebsiella, M. pneumoniae, Mycobacteria (tuberculosis as well as atypical forms), Paeruginosa, S. aureus, and pathogenic or commensal streptococci. The results were, as above, screened for significance using the criterion of six identities in a sequence of 10 amino acids.

Cardiolipin could not be searched using either BLAST or LALIGN since it is not a protein but its presence in each bacterium was determined from existing experimental literature.\(^{36,47}\)

Statistics

Statistics were applied to the tabulated LALIGN results using a paired T-test to explore pairwise comparisons between each class of virus-human protein combination and every other (https://www.graphpad.com/quickcalcs/ttest2/). Since all possible (28) permutations of the results were explored, a Bonferroni correction was applied to the resulting p values (https://www.easycalculation.com/statistics/bonferroni-correction-calculator.php). To satisfy \(p = 0.05 \) after a Bonferroni correction, the uncorrected \(p \) value had to be \(<0.0024 \) (\(T > 3.75 \)) and to satisfy \(p = 0.01 \), the uncorrected value had to be \(<0.0005 \).

RESULTS

SARS-CoV-2 mimicry of human blood proteins

Table 1 displays the LALIGN results comparing each viral protein with the human blood-related proteins. One hundred and sixty-nine matches that satisfied the criteria laid out in the Methods (briefly, a WE score over 50, E less than 1.0, and at least six amino acid identities in a sequence of 10) were found between SARS-CoV-2 proteins and the human blood and serum proteins. The SARS-CoV-2 total compared with an average of 26 matches for poliovirus type 1, coxsackievirus B3, hepatitis A virus, and rhinovirus C – a six point five-fold difference – and an average of about 66 matches for the adenovirus 5 and Influenza virus H1N1 (Wilson) pair – a three-fold difference. In short, SARS-CoV-2 incorporates many times the number of human blood mimics than any other respiratory virus. Two SARS-CoV-2 proteins accounted for the majority of these matches: the replicase 1a (PODTC1) and spike protein (PODTC2); these matches occurred more than six times as frequently as in any of the control viruses. The spike protein (PODTC2) displays as many similarities to human blood proteins as does the entire proteome of the average virus while replicase 1a exhibits as many similarities as the entire proteome of adenovirus 5 and influenza virus H1N1.

The statistical significance of differences in incidence of human blood protein in Table 1 was evaluated using a paired T-test with a Bonferroni correction (Table 2). SARS-CoV-2 exhibits antigenic mimicry with human blood proteins at a rate statistically significantly greater than the control virus average and from each of the viruses individually except adenovirus 5. Of the control comparisons, only polio, adenovirus, and influenza virus differed significantly from the virus average and also differed significantly from each other. The remaining control comparisons were statistically non-significant compared with each other and with the virus average.

Examples of the SARS-CoV-2 protein-human protein matches are provided in Figure 1, which includes additional statistical measures (Waterman-Eggert or WE scores as well as E values). WE scores above 50 and E values below 1.0 are generally considered to be statistically significant.
TABLE 3 Selected similarities between COVID-19-associated bacterial proteins and human blood proteins and summarized SARS-CoV-2 and adenovirus data from Table 1

Bacterial species	TOTCAT	CL	SerAlb	C1q	C3	C4	C5	PDE2-5	RhA-D	F2	VWF	F IX	FX	ADAMTS13	β2GP	CD55	PF4
Acinetobacter	7	x	X														
Chlamydia	1																
Clostridium	3																
Escherichia coli	7	x	X	x													
Hemophilus	2																
Klebsiella	4	x				x											
Mycobacterium	3																
Mycoplasma	1																
Pseudomonas	3																
Staphylococci	4	x		x													
Streptococci	8	x															
SARS-CoV-2	11																
Spike Protein	5																
Adenovirus	3																

The following human proteins were compared to the entire UniProtKB bacterial protein database using BLAST 2.1: Ser Alb = serum albumin P02768; # PDE = phosphodiesterase: PDE2 O95551; PDE2a 000408; PDE3a Q92484; PDE3b Q13370; PDE5a Q76074; Rh = Rhesus blood types; Rhesus A Q02094; Rhesus B Q9H310; Rhesus C Q9UBLD6; Rhesus CE P18577; Rhesus D Q02161; C = Complement: C1q P02745; C3 P01024; C4 POC014; C5 P01031; F2 = prothrombin (Factor 2) P00734; VWF = von Willebrand Factor P04275; F IX = Factor IX P00740.; Factor X P00742; ADAMTS13 (von Willebrand factor-cleaving protease or VWFCP) Q766X8; β2GP = beta-2 glycoprotein I P02749; CD55/DAF (decay accelerating factor) P08174; PF4 (platelet factor 4) P02776; CL = cardiolipin.

significant when the E value for the search has been set at 1000, as it was here. The largest group of similarities (Table 1) involves similarities between the SARS-CoV-2 Replicase 1a or spike protein and platelet phosphodiesterases or Rh blood group proteins. Additional matches above the statistical virus average occur between these two SARS-CoV-2 proteins and complement C3, C4, and C5 and prothrombin. The overall SARS-CoV-2 proteome exhibits significantly increased (three-fold or more) similarities to serum albumin, clotting factors, platelet phosphodiesterases, Rh blood group proteins, prothrombin, VWF, Factor IX, Factor Xa, ADAMTS13, and CD55/DAF.

Notably, adenovirus 5, which is used as a vector for the SARS-CoV-2 spike protein in the AstraZeneca COVID-19 vaccine, also has an unusually large number of similarities to some human blood proteins, including complement factor C5, various phosphodiesterases, prothrombin, and especially platelet factor 4 (Table 1). More than 20 sequences (the limit that LALIGN can identify) within the adenovirus proteome match prothrombin (Figure 2).

Influenza A virus H1N1 exhibits an unusually large number of similarities to complement factor C3 and to ADAMTS13 (Table 1).

Overall, both influenza and adenoviruses have significantly more similarities with human blood proteins than do rhinoviruses, coxsackieviruses, polioviruses, or hepatitis A viruses or the overall virus average. Both viruses, however, display significantly fewer similarities than does SARS-CoV-2.

COVID-19-associated bacteria mimicry of human blood proteins

While pairwise similarity searches between the viruses and human blood proteins were performed using LALIGN, bacteria have thousands of proteins making such pairwise impossibly laborious, so BLAST was used instead. Thus, the bacteria results are not directly comparable to the virus results. Rather than investigating how many distinct bacterial proteins matched human blood proteins, Table 3 displays instead only whether any particular bacterial species displayed at least one significant similarity that satisfied the stringent criteria employed (a Waterman-Eggert score above 50 and at least six amino acid identities in a 10 amino acid sequence).

As can be seen from Table 3, only some of the bacteria identified as co-infections of SARS-CoV-2 display significant similarities with human blood proteins. Staphylococci, E. coli, and A. baumannii each exhibited similarities to six or seven classes of blood proteins, including serum albumin, VWF, prothrombin, beta-2-glycoprotein I, CD55/DAF, and platelet factor 4. Some of these similarities are illustrated in Figure 3. Figure 3 also displays two sets of extraordinary similarities, one between A. baumannii and complement factor 4 (C4), and the other between both S. pneumoniae and E. coli with complement factor C1q, which repeats dozens of times within the protein.

Staphylococci (pyogenes and aureus species) and Klebsiella (pneumoniae and michiganiensis) each displayed similarities with three classes
FIGURE 2 Selected similarities between adenovirus 5 ("ADENO") and human blood proteins. WE = Waterman-Eggert; lines represent identical amino acids in the compared sequences while colons represent amino acid similarities. Blood protein abbreviations can be found in the caption to Table 1.
FIGURE 3 Selected BLAST similarities between COVID-19-associated bacterial proteins and human blood proteins. WE is Waterman-Eggert score; + represents amino acid similarity. Protein abbreviations can be found in the caption to Table 1.
of human blood proteins (Table 3 and Figure 3), while \textit{P. aeruginosa}, \textit{Mycoplasma} \textit{(tuberculosis and avium)}, and \textit{Clostridium} (perfringens, clostridioforme, and difficile) displayed similarities to only two classes; \textit{Haemophilus influenzae} exhibited only one class, and \textit{Chlamydia pneumonia} and Mycoplasma species, none. Some bacteria associated with COVID-19 are therefore significantly more likely to mimic human blood proteins than others and therefore to participate as possible inducers of autoimmune coagulopathies in the presence of SARS-CoV-2.

Note that all the bacteria listed in Table 3 are known to incorporate cardiolipin in their cell membranes\(^{[46,47]}\) and therefore to have an antigenic mimic to human cardiolipin. No virus is known to do so (Table 1). Since anti-cardiolipin antibodies are found in COVID-19 coagulopathy patients, but rarely in mild and asymptomatic patients (see Introduction), the presence of anti-cardiolipin antibodies is strong evidence for bacterial coinfections in COVID-19 coagulopathies.

DISCUSSION

SARS-CoV-2 proteins contain extraordinarily large numbers of blood protein mimics

SARS-CoV-2 proteins contain an extraordinarily large number of antigens that mimic human blood proteins compared with any of the other viruses (mostly respiratory) that were examined. While mimicry between proteins does not translate directly into increased risk of autoimmune disease (an important fact that will be discussed further below), the unusual number of such similarities certainly increases the probability of inducing cross-reactive antibodies – in this case, up to six times the probability of such cross-reactivity occurring following other virus infections. This result correlates well with the fact that hospitalized SARS-CoV-2-infected patients are about 10 times more likely to develop coagulopathies than are hospitalized influenza patients\(^{[5,10–12]}\).

The most common SARS-CoV-2 similarities with blood proteins involved the virus spike protein and replicase 1a protein and these displayed numerous similarities to platelet phosphodiesterases and Rhesus blood antigens as well as prothrombin and VWF (Tables 1 and 2). The nucleoprotein and membrane protein also displayed an unusually large number of blood proteins similarities.

The unexpectedly large number of antigenic similarities between SARS-CoV-2 proteins and blood proteins discovered in this study provides two possible mechanisms by which SARS-CoV-2 may cause blood coagulation. One is to induce antibodies against SARS-CoV-2 proteins that cross-react with red blood cells (RBC), platelet proteins and serum albumin resulting in thickening of blood, microclotting, and/or thrombosis. The other is by directly participating in blood coagulation pathways, either as agonists or antagonists. Antibodies against SARS-CoV-2 proteins, particularly the replicase 1ab (PODTC1 and PODTD1), spike protein (PODTC2), membrane protein (PODTC5), and nucleoprotein (PODTC9), have a significant probability of being cross-reactive with complement factors C3, C4, and C5 (but not C1q), all Rhesus antigens and platelet phosphodiesterases 2, 3, and 5 (Table 1 and Figure 1). It is also possible that the mimicry between SARS-CoV-2 proteins and complement factors, VWF and Factor IX might result in direct viral stimulation of inappropriate blood clotting or, alternatively, to idiopathic thrombocytopenia resulting from SARS-CoV-2 protein interference in the blood clotting pathway. Each of these possibilities will be dissected further below.

The observed antigenic similarities make sense as triggers of SARS-CoV-2-induced blood clotting in terms of the observed pathology. Phosphodiesterases would make targets of both RBC and platelets. While phosphodiesterases 2, 3, and 5 are generally characterized as being intracellular proteins within platelets (e.g.,\(^{[48]}\)) and erythrocytes (e.g.,\(^{[49]}\)), phosphodiesterases have been found to be incorporated into lipid rafts and cellular membranes and may therefore present antibody-accessible epitopes not only on RBC and platelets but also smooth and cardiac muscle (e.g.,\(^{[50]}\)).

A role for Rh factors as a determinant of COVID-19 coagulopathies is also strongly suggested by the large number of SARS-CoV-2 similarities revealed by this study. Rh proteins are involved in ammonia transport and regulation in both erythrocytes and in the kidneys of mammals\(^{[51,52]}\) and distant evolutionary relatives of these transporters are present in the cell membranes of all bacteria\(^{[52]}\). In several large studies, Rh-negative individuals (particularly type O-negative) have substantially lower risk of severe COVID-19 than do Rh-positive individuals, after controlling for other risk factors\(^{[54–57]}\) though three studies found no significant difference in COVID-19 susceptibility associated with Rh status\(^{[58–60]}\). SARS-CoV-2 mimicry of Rh antigens and their glycosylations may camouflage SARS-CoV-2 from immune surveillance since glycans like those that N-glycosylate position 37 in Rh proteins function as T-cell checkpoints\(^{[61]}\). Should tolerance to Rh antigens be broken, however, the resulting immunity induced by SARS-CoV-2 would be likely to cross-react with erythrocytes, inducing an autoimmune response. The bacteria listed in Table 3 may stimulate tolerance abrogation because all express a V8 proteinase\(^{[62]}\) that directly cleaves Rh proteins at position 34, just to the N-terminal side of the N-glycosylation position\(^{[63]}\). This cleavage is likely to result in the production of unusual proteolytic fragments with higher-than-normal antigenicity. Because Rh proteins are involved in ammonia transport and regulation, autoimmunity directed at Rh proteins should adversely affect not only erythrocytes but also kidney function\(^{[51,52]}\), the latter problem occurring in up to 25% of severely ill COVID-19 patients concurrent with coagulopathies\(^{[64,65]}\).

Probable roles of bacteria in triggering COVID-19 coagulopathies

Similarities between SARS-CoV-2 proteins and human blood proteins do not account for some of the key autoantibodies observed in COVID-19 patients with coagulopathies including anti-phospholipid antibodies observed in most coagulopathy patients\(^{[7,21–24]}\). Cardiolipin is a diphosphatidylglycerol lipid found in human mitochondrial membranes, including those of RBC, but as such it is a “hidden antigen” unlikely to trigger autoimmunity directly. Cardiolipin is not present
in any known virus but is almost ubiquitous in the cell membranes of all the bacteria associated with severe COVID-19. Additionally, cardioliopin antibodies have been found to activate the formation of NETs, neutrophil extracellular traps, which are often considered to be diagnostic for the presence of bacterial infection and which were highly associated with onset of thrombocytopenia even before COVID-19. NETs — webs of chromatin, microbial proteins, and oxidant enzymes — are released in response to bacterial infections — stimulating cytokine release. Cytokine over-production, and oxidant enzymes are released in response to bacterial infections. Interpretations of these develop coagulopathies and also why SARS-CoV-2 vaccines (to be discussed in “Implications of bacterial and viral coinfections for understanding vaccine-induced coagulopathies”) often induce autoantibodies but rarely autoimmune disease. Mimicry may frequently induce autoantibody production but rarely leads to overt autoimmune disease or, alternatively, mimics may be perceived by the immune system as “self” antigens resulting in T cell tolerance. The difficulty with this explanation is that it leaves open why such tolerance should occur in the majority of people but not in the minority that develop coagulopathies.

Why have these results not been reported before? Relationship of results to previous studies

The results of the current study differ from some previous ones. Dotan et al. searched previously for SARS-CoV-2 similarities to human proteins but identified none of those listed in this paper. This difference is due to their using a different search algorithm that limited results to sequential heptapeptide identities thereby missing the significant mimics reported here. On the other hand, Greinacher et al. have previously reported similarities between platelet factor 4/heparin and the SARS-CoV-2 spike protein but found experimentally that these spike protein regions were not recognized by PF4 antibodies nor did antibodies against the spike protein recognize PF4 peptides. None of the Greinacher et al., similarities are among those reported here, however. Once again, methodology may matter.

Finally, it is important to emphasize that no one has previously explored COVID-19-associated bacteria for human-blood protein similarities, which may provide the most important clues as to the origins of coagulopathies in COVID-19.

Interpreting the results in terms of different autoimmune disease theories

The major question these results leave unresolved is why the abundance of autoantigen-inducing targets presented by SARS-CoV-2 proteins and its associated bacterial co-infections fail to result in autoimmune complications such as microclotting or thrombocytopenia in all, or at least the majority of, individuals infected with these microbes. The obvious conclusion, which has been reached previously in studies of other autoimmune diseases, is that molecular mimicry may be necessary to induce auto-reactive B and T cells but is clearly not sufficient to induce autoimmune disease. This point is essential for understanding how many hospitalized COVID-19 patients are found transiently to express anti-phospholipid antibodies (aPL), anti-PL4, b2GPI, and other blood cell antibodies but only a fraction of these develop coagulopathies and also why SARS-CoV-2 vaccines (to be discussed in “Implications of bacterial and viral coinfections for understanding vaccine-induced coagulopathies”) often induce autoantibodies but rarely autoimmune disease. Mimicry may frequently induce autoantibody production but rarely leads to overt autoimmune disease or, alternatively, mimics may be perceived by the immune system as “self” antigens resulting in T cell tolerance. The difficulty with this explanation is that it leaves open why such tolerance should occur in the majority of people but not in the minority that develop coagulopathies.

Two other theories of autoimmune disease may explain how autoimmunity develops into autoimmune disease in this minority of cases. One is the bystander activation theory which proposes a non-specific secondary infection or adjuvant causes hyper-activation of the innate immune system, preventing the development of tolerance in T-cells, thereby setting the stage for autoimmune disease when molecular mimicry is present. Certainly, one result of bacterial co-infections of SARS-CoV-2 is dramatically up-regulated Toll-like receptor (TLR) activation. Briefly, bacterial antigens primarily activate TLRs 1, 2, and 4 while viral antigens primarily activate TLRs 3, 7, 8, and/or 9 and the many of these viral and bacterial pathways are synergistic, producing cytokine overproduction (reviewed in).

The complementary antigen theory also suggests that SARS-CoV-2 requires a co-infection to hyper-stimulate innate immunity and break tolerance to molecular mimics but differs from the bystander theory in presupposing that the co-infection must also express antigens that mimic the target tissue and are complementary to the viral ones. Because the viral and bacterial antigens are molecularly complementary, the resulting immune responses will also be molecularly complementary resulting effectively in idioype-anti-idioype antibody pairs that will form circulating immune complexes (CIC) that stimulate cytokine production. Platelet activating CIC are found in all severely ill COVID-19 patients but not mild cases. Notably, neither molecular mimicry theory nor bystander theory predicts the formation of CIC. Complementary antibody bodies will, in turn, target molecularly complementary host antigens of which many examples exist in Tables 1 and 2. For example, both beta-2-glycoprotein I and phosphatidylserine/prothrombin (Factor 2) bind to cardiolipin; cardiolipin can be provided by any of the bacteria listed in Table 3, while SARS-CoV-2 can provide antigenic mimics to both β2GPI and Factor 2 (Table 1 and Figure 1). Thus, SARS-CoV-2 could synergize with any of the bacteria to trigger autoimmunity directed at these antigenic pairs. Another example of complementary antigens consists of PF4 binding to VWF producing an antigenic complex that induces thrombus formation. Streptococcus,
Staphylococcus, Klebsiella, and E. coli all express PF4 mimics, while SARS-CoV-2 is a source of VWF mimics (Table 3), potentially producing an antigenic complex mimicking the PF4-heparin complex responsible for heparin-induced thrombocytopenia (HIT). A very important implication of the complementary antigen theory is that SARS-CoV-2 is not sufficient to induce coagulopathies and there are likely to be multiple molecular targets involved in coagulopathy pathogenesis.

Implications of bacterial and viral coinfections for understanding vaccine-induced coagulopathies

Vaccine-related coagulopathies may also be explained by molecular mimicry combined with either bystander activation or complementary antigens. The mRNA-based vaccines (Pfizer-Biontech and Moderna) and the AstraZeneca and Johnson-and-Johnson adenovirus-based vaccines all employ the SARS-CoV-2 spike protein as their main antigen. The spike protein (Table 1) is particularly rich in PDE and Rh mimics and also expresses mimics of VWF and prothrombin and other blood proteins. Adenovirus 5, which is used in the AstraZeneca vaccine, is particularly rich in PDE, prothrombin, and PF4 mimics. Additionally, adenoviruses bind to coxsackie and adenovirus receptors (CXAR) on both red blood cells and platelets cause the release of VWF from endothelial cells, and the virus can bind directly to Factors IX and X. Thus, intravenous delivery of adenovirus vectors and adenovirus pneumonia are both highly associated with thrombocytopenia. While intramuscular injection of replication-impaired adenovirus vectors is presumably much safer than intravenous delivery or actively replicating virus, direct adenoviral interactions with coagulation-related proteins and cells may be important in understanding vaccine-associated coagulopathy risks.

Fortunately, the development of thrombotic thrombocytopenia and other coagulopathies following COVID-19 vaccination is rare despite a significant rate of autoantibody production against blood proteins. Transient but significant titers of anti-PF4 antibodies were found in 5.6% of BNT162β (the Pfizer-Biontech mRNA vaccine) and around 8.0% of ChAdOx1 nCoV-19 (the AstraZeneca adenovirus 5-based vaccine) in several studies and low-titer antibodies in 67% of vaccinees in another AstraZeneca vaccine study. No one in these studies developed clinically overt coagulopathies, again emphasizing the point that molecular mimicry may induce autoantibodies without inducing autoimmune disease and making antibody positivity studies of limited value in predicting complications. However, these transient anti-PF4 antibodies could result in sub-clinical interference with blood clotting by blocking PF4’s antigen of heparin, thereby resulting in some SARS-CoV-2 vaccinees experiencing longer blood-clotting times, developing blood blisters or bruises more easily, and causing some women to experience unusually heavy and early menstrual periods. Clinically evident coagulopathy following vaccination does involve PF4 antibodies producing a heparin-induced thrombocytopenia (HIT)-like syndrome characterized by activation of platelet aggregation but in the absence of previous exposure to heparin. Current evidence suggests that mRNA-based vaccines provoke autoimmune reactions less often than adenovirus-vectorized vaccines as predictable from the many adenovirus-PF4 mimics listed Table 1 and Figure 2. The rarity of these complications, however, argues once again that molecular mimicry is not sufficient to induce vaccine-associated coagulopathies which may require concomitant bacterial co-infections or other causes of hyperactivation of innate immunity in vaccinees.

Direct interference in coagulopathy pathways by SARS-CoV-2 blood protein mimics

Molecular mimics may also interfere directly with coagulation pathways. For example, C1q binds to C4 and C2b binds to C5 in the complement pathway; prothrombin binds to Factor Xa; VWF binds to Factors VIII, and Factor VIII interacts with IX and X. Various combinations of viruses and bacteria might directly interfere in all of these pathways (Tables 1 and 2).

Additionally, all group A streptococci, E. coli, M. pneumonia, and S. aureus express a plasminogen (plasmin) receptor (glyceraldehyde-3-phosphate dehydrogenase) on their cell membranes that binds up serum plasminogen, blocking plasminogen’s conversion to plasmin and its fibrinolytic activity. Thus, these bacteria may participate both in the induction of coagulopathies and by actively preventing fibrinolysis. Notably, plasminogen levels, and consequently plasmin levels, increase significantly in COVID-19 patients experiencing thrombosis, resulting in facilitated production of the fibrin-breakdown product, D-Dimer, which characterizes such cases.

Proposed experimental and clinical tests of the hypotheses

In sum, it is proposed that coagulopathies following SARS-CoV-2 infection or vaccination are due to viral proteins expressing antigenic mimics of human blood proteins that require either a generalized bystander activation or a specific complementary activation by a bacterial (or possibly viral) co-infection to break self-tolerance and induce autoimmune disease. Some SARS-CoV-2 proteins may also interfere directly with coagulation processes through such mimics. The hypotheses proposed here are experimentally testable in many complementary ways. Animals susceptible to SARS-CoV-2, such as the Syrian Gold Hamster, might be infected with both the virus and a group A streptococcus, Staphylococcus, A. baumannii, or other bacteria and viruses listed here as potential blood protein mimics, with the prediction that the combinations, but not the individual agents, will induce coagulopathies. The potential for bacterial or viral infections to stimulate coagulopathies when present at the time of SARS-CoV-2 vaccination can be tested similarly. Direct interference with coagulation by SARS-CoV-2 mimics of blood proteins can be tested by introducing the appropriate SARS-CoV-2 proteins, or the peptide mimics illustrated in Figures 1–3, intravenously into an appropriate animal model or adding them to freshly drawn human blood, where their presence should
alter coagulation parameters. The coagulant effects of SARS-CoV-2 antibodies might be tested similarly, both alone and in combination with bacterial, adenovirus or influenza antibodies that cross-react with blood protein mimics. Once again, it is predicted that SARS-CoV-2 antibodies combined with bacterial or viral antibodies from the mimics identified here will result in the induction of coagulopathies. The detailed mechanisms might be tested by using such microbial antibodies to determine whether they bind to the particular human blood protein mimics identified here. Conversely, anti-PF4, anti-cardiolipin, and other autoantibodies isolated from human COVID-19 coagulopathy patients, or raised against purified proteins in rodents, may be tested for binding to the SARS-CoV-2 proteins using enzyme-linked immunoassay techniques, Western blots or similar immunological techniques. A final implication of the results reported here is that some SARS-CoV-2 antigens are complementary to some bacterial antigens so that polyclonal antibodies against SARS-CoV-2 may precipitate (by acting like anti-idiotypes) the polyclonal antibodies against COVID-19-associated bacteria; such complementarity has previously been demonstrated for influenza A virus and Hib bacterial antigens as well as their antibodies.[143]

CONCLUSIONS: TESTING AND PREVENTING COVID-19 AUTOIMMUNITY AND MAKING VACCINES SAFER

If the hypotheses proposed here are valid, then several important diagnostic and therapeutic conclusions follow. One is that hospitalized patients need to be screened for potential bacterial or viral infections that might trigger coagulopathies. Sites of co-infection such as gastrointestinal, bladder, kidney, and gums should be considered in addition to blood stream and respiratory system.[120–123] Because SARS-CoV-2 might synergize with a variety of co-infections, there will be no single cause for coagulopathies and therefore no single treatment that is optimal for all patients; the particular spectrum of autoantibodies needs to be determined. However, steroids along with either intravenous immunoglobulins[124,125] or plasmapheresis[126,127] are each effective treatments for COVID-19-associated coagulopathies (additional evidence that these are autoimmune in origin). Vaccination against SARS-CoV-2 as well as against recognized co-infections such as Streptococci, Haemophilus, and influenza virus should decrease risk of coagulopathies by preventing bystander or complementary co-infections, just as they decrease risk of severe COVID-19 in general.[128–136] Additionally, the results reported here may provide insight into the causes of menstruation alterations reported by some women following SARS-CoV-2 vaccination.[112] Finally, the present work has implications for future SARS-CoV-2 vaccine design, implying that whole virus SARS-CoV-2 vaccines may present an extraordinary risk of inducing coagulopathies compared with the mRNA, peptide, or subunit vaccines because of the very large number of blood protein mimics present; however removing molecular mimicry regions from SARS-CoV-2 mRNAs, proteins and their virus vectors may significantly improve vaccine safety.

ACKNOWLEDGMENTS

None.

CONFLICT OF INTEREST

None.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID

Robert Root-Bernstein https://orcid.org/0000-0002-3298-9306

REFERENCES

1. Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Su, Z., Zhang, Y., Chen, H., & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 395, 1054–1062.
2. Zhang, J.-J., Dong, X., Cao, Y.-Y., Yuan, Y.-D., Yang, Y.-B., Yan, Y.-Q., Akdis, C. A., & Gao, Y. D. (2020). Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy, 75, 1730–1741.
3. Connors, J. M., & Levy, J. H. (2020). COVID-19 and its implications for thrombosis and anticoagulation. Blood, 135(23), 2033–2040.
4. Lund, L. C., Hallas, J., Nielsen, H., Koch, A., Mogensen, S. H., & Brun, N. C. Christiansen, C. F., Thomsen, R. W., Pottegård, A. (2021). Postacute effects of SARS-CoV-2 infection in individuals not requiring hospital admission: A Danish population-based cohort study. The Lancet Infectious Diseases, 21(10), 1373–1382.
5. Taquet, M., Husain, M., Geddes, J. R., Luciano, S., & Harrison, P. J. (2021). Cerebral venous thrombosis and portal vein thrombosis: A retrospective cohort study of 537,913 COVID-19 cases. Clinical Medicine, 39, 101061.
6. Abou-Ismail, M. Y., Diamond, A., Kapoor, S., Arafah, Y., & Nayak, L. (2020). The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thrombosis Research, 194, 101–115.
7. Taha, M., & Samavati, L. (2021). Antiphospholipid antibodies in COVID-19: A meta-analysis and systematic review. RMD Open, 7(2), e001580.
8. Najim, M., Rahhal, A., Khir, F., Aljundi, A. H., Abu Yousef, S., Ibrahim, F., Amer, A., Mohamed, A. S., Saleh, S., Alfaridi, D., Mahfouz, A., Alyafei, S., Howady, F., Khatib, M., & Alemadi, S. A. (2021). Prevalence and clinical significance of antiphospholipid antibodies in patients with coronavirus disease 2019 admitted to intensive care units: A prospective observational study. Rheumatology International, 41(7), 1243–1252.
9. Bhattacharjee, S., & Banerjee, M. (2020). Immune thrombocytopenia secondary to COVID-19: A systematic review. SN Comprehensive Clinical Medicine, (19), 1–11.
10. Burkhard-Koren, N. M., Haberecker, M., Maccio, U., Ruschitzka, F., Schuepbach, R. A., Zinkernagel, A. S., Hardmeier, T., Varga, Z., & Moch, H. (2021). Higher prevalence of pulmonary macrothrombi in SARS-CoV-2 than in influenza A: Autopsy results from ‘Spanish flu’ 1918/1919 in Switzerland to Coronavirus disease 2019. Journal of Pathology: Clinical Research, 7(2), 135–143.
11. Nicolai, L., Leunig, A., Brambs, S., Kaiser, R., Joppich, M., Hoffknecht, M. L., Gold, C., Engel, A., Polewka, V., Muenchhoff, M., Hellmuth, J. C., Ruhle, A., Ledderose, S., Weinberger, T., Schulz, H., Scherer, C., Rudelius, M., Zoller, M., Keppler, O. T., … Stark, K. (2021). Vasculature neutrophil inflammation and immunothrombosis distinguish severe COVID-19 from influenza pneumonia. Journal of Thrombosis and Haemostasis, 19(2), 574–581.
24. Grobler, C., Maphumulo, S. C., Grobbelaar, L. M., Bredenkamp, J. C., Zuo, Y., Estes, S. K., Ali, R. A., Gandhi, A. A., Yalavarthi, S., Shi, H., Sule, Xiao, M., Zhang, Y., Zhang, S., Qin, X., Xia, P., Cao, W., Jiang, W., Chen, Dotan, A., & Shoenfeld, Y. (2021). Perspectives on vaccine induced thrombomicroangiopathy and microvascular immun thrombosis. *Clinical Chimica Acta*, 507, 167–173.

25. Favaloro, E. J., Henry, B. M., & Lippi, G. (2021). The complicated relationship of heparin-induced thrombocytopenia and platelet factor 4 antibodies with COVID-19. *International Journal of Laboratory Hematology*, 43(4), 547–558.

26. Dragonetti, D., Guarini, G., & Pizzuti, M. (2020). Detection of anti-heparin-PF4 complex antibodies in COVID-19 patients on heparin therapy. *Blood Transfus*, 18(4), 328.

27. Brodard, J., Kremer Hovinga, J. A., Fontana, P., Studd, J. D., Gruel, Y., & Greinacher, A. (2021). COVID-19 patients often show high-titer non-platelet-activating anti-PF4/heparin IgG antibodies. *Journal of Thrombosis and Haemostasis*, 19(5), 1294–1298.

28. Greinacher, A., Thiele, T., Warkentin, T. E., Weisser, K., Kyrlie, P. A., & Eichinger, S. (2021). Thrombotic thrombocytopenia after ChAdOx1 nCoV-19 vaccination. *New England Journal of Medicine*, 384(22), 2092–2101. https://doi.org/10.1056/NEJMoa2104840

29. Scully, M., Singh, D., Lown, R., Poles, A., Solomon, T., Levi, M., Goldblatt, D., Koutouek, P., Thomas, W., & Lester, W. (2021). Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. *New England Journal of Medicine*, 384(23), 2202–2211. https://doi.org/10.1056/NEJMoa2105385

30. Favaloro, E. J., Henry, B. M., & Lippi, G. (2021). The complications related to heparin-induced thrombocytopenia and platelet factor 4 antibodies with COVID-19. *International Journal of Laboratory Hematology*, 43(4), 547–558.

31. Friedman, G. H., Streiff, M. B., Connors, J. M., & Piazza, G. (2020). The potential role of coagulation factor Xa in the pathophysiology of COVID-19: A role for anticoagulants as multimodal therapeutic agents. *Thromb, 4(4), e288–e299.

32. Mancini, I., Baronciani, L., Antoni, A., Colpani, P., Bignolli, M., Cozzi, G., Novembrino, B., Boscolo Anzoletti, M., De Zan, V., Pagliari, M. T., Guaittieriotti, R., Aliberti, S., Panigada, M., Grasselli, G., Blasi, F., & Pevyand, F. (2021). The ADAMTS13-von Willebrand factor axis in COVID-19 patients. *Journal of Thrombosis and Haemostasis*, 19(2), 513–521.

33. Mir, T. H. (2021). Thrombotic microangiopathy (aHUS/iTTP) reported in COVID-19 patients: The virus alone or an ominous gathering of mechanisms and etiologies? *Critical Reviews in Oncology/Hematology*, 162, 103347.

34. Fontana, C., Favaro, M., Minelli, S., Bossa, M. C., & Altieri, A. (2021). Co-infections observed in SARS-CoV-2 positive patients using a rapid diagnostic test. *Scientific Reports*, 11(1), 16355.

35. Rawson, T. M., Moore, L. S. P., Zhu, N., Ranganathan, N., Skolimowska, K., Gilchrist, M., Satta, G., Cooke, G., & Holmes, A. (2020). Bacterial and fungal coinfection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. *Clinical Infections Diseases*, 71(9), 2459–2468. https://doi.org/10.1093/cid/ciaa530

36. Foschi, C., Zignoli, A., Gaibani, P., Vocale, C., Rossini, G., Laffer, S., Liberatore, A., Turello, G., Lazzarotto, T., & Ambretti, S. (2021). Respiratory bacterial co-infections in intensive care unit-hospitalized COVID-19 patients: Conventional culture vs BioFire FilmArray pneumonia Plus panel. *Journal of Microbiological Methods*, 186, 106259.

37. Elabbadi, A., Turpin, M., Gerotzlias, G. T., Teuler, M., Voiriot, G., & Fartoukh, M. (2021). Bacterial coinfection in critically ill COVID-19 patients with severe pneumonia. *Infect, Jan 3, 1–4.

38. Liu, G. S., Li, H., Zhao, S. C., Lu, R. J., Niu, P. H., & Tan, W. J. (2019). Viral and bacterial etiology of acute febrile respiratory syndrome among patients in Qingshui County, China. *Biomedical and Environmental Sciences*, 32, 438–445.

39. Kastenhuber, E. R., Jaimes, J. A., Johnson, J. L., Mercadante, M., Mueckls, F., Weisblum, Y., Bram, Y., Schwartz, R. E., Whitaker, G. R., & Cantley, L. C. (2021). Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. *bioRxiv*, 1:2021.03.31.437960.

40. Powell, P. D., DeMartini, J. C., Azari, P., Stargell, L. A., Cordain, L., & Tucker, A. (2000). Evolutionary stable strategy: A test for theories of retroviral pathology which are based upon the concept of molecular mimicry. *Journal of Theoretical Biology*, 202(3), 213–229.

41. Rudensky, A., Preston-Hurlburt, P., Hong, S. C., Barlow, A., & Janeway, C. A., Jr. (1991). Sequence analysis of peptides bound to MHC class II molecules. *Nature*, 353(6345), 622–627.
54. Niles, J. K., Karnes, H. E., Dlott, J. S., & Kaufman, H. W. (2021). Association between ABO/Rh blood groups and COVID-19 vulnerability and serious illness. *International Journal of Environmental Research and Public Health*, 18(1), 276.

55. Abdollahi, A., Mahmoudi-Aliabadi, M., Mehtarth, V., Jafarzadeh, B., & Salehi, M. (2020). The novel coronavirus SARS-CoV-2 vulnerability association with ABO/Rh blood types. *Iranian Journal of Pathology*, 15(3), 156–160.

56. El-Shity, N. A., El-Hamamsy, M., Alahmadi, A. A., Eid, B. G., Neamatallah, T., Almukaddem, H. S., Arab, R. A., Fadlaladdeen, K. A., Al-Sulami, K. A., Bhahswan, S. M., Ali, S. S., Harakeh, S., & Badr-Eldin, S. M. (2021). The impact of ABO blood Grouping on COVID-19 vulnerability and seriousness: A retrospective cross-sectional controlled study among the Arab community. *International Journal of Environmental Research and Public Health*, 18(1), 276.

57. Coluk, Y., Hızlı, O., Gunaydın, S., Yıldırım, G., Baysal, E., & Özgen Hergül, G. (2021). Association of blood subgroups with PCR test positivity and lung involvement in patients with COVID-19. *Cureus*, 13(12), e14172.

58. Ray, J. G., Schull, M. J., Vermeulen, M. J., & Park, A. L. (2020). The role of neutrophil extracellular traps in sepsis. *Frontiers in Veterinary Science*, 7, 291.

59. Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y., & Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. *Science*, 303(5663), 1532–1535.

60. Root-Bernstein, R. (2021). Innate receptor activation patterns involving TLR and NLR synergisms in COVID-19. *International Journal of Environmental Research and Public Health*, 18(1), 276.

61. Pereira, M. S., Alves, I., Vicente, M., Campar, A., Silva, M. C., Padrão, N. A., Pinto, V., Fernandes Dias, Â. A. M., & Pinho, S. S. (2018). Glycans as key checkpoints of T cell activity and function. *Frontiers in Immunology*, 9, 2754. https://doi.org/10.3389/fimmu.2018.02754

62. Prasad, L., Leduc, Y., Hayakawa, K., & Delbaere, L. T. (2004). The structure of a universally employed enzyme: V8 protease from *Staphylococcus aureus*. *Acta Crystallographica. Section D: Biological Crystallography*, 60(Pt 2), 256–259.

63. Eyers, S. A., Ridgwell, K., Mawby, W. J., & Tanner, M. J. (1994). Topology and organization of human Rh (rh) blood group-related polypeptides. *Journal of Biological Chemistry*, 269(9), 6417–6423.

64. Gabarre, P., Dumas, G., Dupont, T., Darmon, M., Azoulay, E., & Zafrani, L. (2020). Acute kidney injury in critically ill patients with COVID-19. *Intensive Care Medicine*, 46(7), 1339–1348.

65. Molina Barragan, A. M., Pardo, E., Galichon, P., Hantala, N., Giani-nazzi, A. C., Darrivere, L., Tsai, E. S., Garnier, M., Bonnet, F., Fieux, F., & Verdorn, F. (2021). SARS-CoV-2 renal impairment in critical care: An observational study of 42 Cases (Kidney COVID). *Journal of Clinical Medicine*, 10(8), 1571.

66. Kimball, A. S., Obi, A. T., Diaz, J. A., & Henke, P. K. (2016). The emerging role of NETS in venous thrombosis and immunothrombosis. *Frontiers in Immunology*, 7, 236.

67. Li, R. H. L., & Tablin, F. (2018). A comparative review of neutrophil extracellular traps in sepsis. *Frontiers in Veterinary Science*, 5, 291.

68. Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y., & Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. *Science*, 303(5663), 1532–1535.

69. Root-Bernstein, R. (2021). Innate receptor activation patterns involving TLR and NLR synergisms in COVID-19. *Annual Review of Immunology*. 18, 276.

70. Vargas-Vargas, M., & Cortés-Rojo, C. (2020). Ferritin levels and COVID-19. *Revista Panamericana de Salud Pública*, 44, e72. 10.26633/ rpsp.2020.72

71. Gonçalves, J. M. F., Pérez, J. M. H., Sorenson, M. A., Pérez, A. L. W., De La Rosa, E. M. R., Castilla, J. L. T., Pérez, D. D., & Ramallo-Fariña, Y. (2020). Biomarkers of acute respiratory distress syndrome in adults hospitalised for severe SARS-CoV-2 infection in Tenerife Island, Spain. *BMJ Case Reports*. 13, 1–7.

72. Terpos, E., Ntanasis-Stathopoulos, I., Elalamy, I., Kastritis, E., Sergentanis, T. N., Politou, M., Psaltoupolou, T., Gerotziasfas, G., & Dimopoulou, M. A. (2020). Hematological findings and complications of COVID-19. *American Journal of Hematology*, 95, 834–847.

73. Tan, C., Huang, Y., Shi, F., Tan, K., Ma, Q., Chen, Y., Jiang, X., & Li, X. (2020). C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. *Journal of Medical Virol*, 92, 856–862.
74. Zhu, X., Ge, Y., Wu, T., Zhao, K., Chen, Y., Wu, B., Zhu, F., Zhu, B., & Cui, L. (2020). Co-infection with respiratory pathogens among COVID-2019 cases. Virus Research, 285, 198005.

75. Lavoiget, C.-E., Network, A. T. C., Le Borgne, P., Chabrier, S., Bidoire, J., Slimani, H., Chevrot-Lavoiget, J., Lefebvre, F., Jebri, R., Sengler, L., Bilbault, P., & the CREMS network (2019). White blood cell count and eosinopenia as valuable tools for the diagnosis of bacterial infections in the ED. European Journal of Clinical Microbiology & Infectious Diseases, 38, 1523–1532.

76. Root-Bernstein, R., & Couturier, J. (2006). Antigenic complementarity in the origins of autoimmunity: A general theory illustrated with a case study of idiopathic thrombocytopenia purpura. Clinical and Developmental Immunology, 13, 49–65.

77. Loof, T. G., Deicke, C., & Medina, E. (2014). The role of coagulation/fibrinolysis during Streptococcus pyogenes infection. Frontiers in Cellular and Infection Microbiology, 4, 128.

78. Perrotta, F., & Perrini, M. P. (2021). Successful treatment of Klebsiella pneumoniae NDM sepsis and intestinal decontamination with Cefazidime/Avibactam plus Aztreonam combination in a patient with TTP complicated by SARS-CoV-2 nosocomial infection. Medicina (Kaunas, Lithuania), 57(5), 424.

79. Rokkam, V. R. P., Kutti Sridharan, G., Vegunta, R., Vegunta, R., Boregowda, U., & Mohan, B. P. (2021). Clostridium difficile and COVID-19: Novel risk factors for acute portal vein thrombosis. Case Reports in Vascular Medicine. 2021, 882638.

80. Khanna, S., & Kraft, C. S. (2021). The interplay of SARS-CoV-2 and Clostridiodes difficile infection. Future Microbiol, 16, 439–443.

81. Litjohs, J. F., Leclerc, M., Chochois, C., Monsallier, J. M., Ramakers, M., Auvray, M., & Merouani, K. (2020). High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. Journal of Thrombosis and Haemostasis, 18(7), 1743–1746.

82. Di Micco, P., Imparato, M., Lufrano, G., Iannuzzo, D., Fontanella, L., Improta, L., Poggiano, M. R., Salzano, C., Rodolico, A., & Fontanella, A. (2021). Resolution of disseminated intravascular coagulation in a patient with COVID-19 and associated sepsis-induced neutropenia. Medicina (Kaunas, Lithuania), 57(2), 106.

83. Rose, N. R., & Mackay, I. R. (2000). Molecular mimicry: A critical look at exemplary instances in human diseases. Cellular and Molecular Life Sciences, 57, 542–551.

84. Fujinami, R. S., von Herrath, M. G., Christen, U., & Whitten, J. L. (2006). Molecular mimicry, bystander activation, or viral persistence: Infections and autoimmune disease. Clinical Microbiology Reviews, 19, 80.

85. Root-Bernstein, R., & Fairweather, D. (2014). Complexities in the relationship between infection and autoimmunity. Current Allergy and Asthma Reports, 14(1), 407.

86. Root-Bernstein, R., & Fairweather, D. (2015). Unresolved issues in theories of autoimmunity using myocarditis as a framework. Journal of Theoretical Biology, 375, 101–123.

87. Pascoliini, S., Vannini, A., Deleondari, G., Ciordinik, M., Sensoli, A., Carletti, L., Veronesi, L., Ricci, C., Proestori, A., Mazzanti, L., Grondona, A., Silvestri, T., Zanuso, S., Mazzolini, M., Lalanne, C., Quarneti, C., Fusconi, M., Giostra, F., Granito, A., ... Muratori, P. (2021). COVID-19 and immunological dysregulation: Can autoantibodies be useful? Clinical & Translational Science, 14(2), 502–508.

88. Foret, T., Dufrost, V., Salomon Du Mont, L., Costa, P., Lefevre, B., Lacolley, P., Regnault, V., Zuly, S., & Wahl, D. (2021). Systematic review of antiphospholipid antibodies in COVID-19 patients: Culprits or bystanders? Current Rheumatology Reports, 23(8), 65.

89. von Herrath, M. G., Fujinami, R. S., & Whitten, J. L. (2003). Microorganisms and autoimmunity: Making the barren field fertile? Nature Reviews Microbiology, 1, 151–157.

90. McCoy, L., Tsunoda, I., & Fujinami, R. S. (2006). Multiple sclerosis and virus induced immune responses: Autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity, 39, 9–19.

91. Root-Bernstein, R. (2020). Synergistic activation of toll-like receptors by complementary antigens as a facilitator of autoimmune disease and mediators of sex hormone-associated susceptibility. Review, theory and novel predictions. International Journal of Molecular Sciences, 21(13), 4645; https://doi.org/10.3390/ijms21134645

92. Root-Bernstein, R. (2007). Antigenic complementarity in the induction of autoimmunity: A general theory and review. Autoimmunity Reviews, 6(5), 272–277.

93. Root-Bernstein, R. (2015). How to make a non-antigenic protein (auto) antigenic: Molecular complementarity alters antigen processing and activates adaptive-innate immunity synergy. Anti-Cancer Agents in Medicinal Chemistry, 15(10), 1242–1259.

94. Westall, F. C., & Root-Bernstein, R. (1986). Cause and prevention of postinfectious and postvaccinal neuropsychoses in light of a new theory of autoimmunity. Lancet, 2(8501), 251–252.

95. Nazy, I., Jevtic, S. D., Moore, J. C., Huynh, A., Smith, J. W., Kelton, J. G., & Arnold, D. M. (2021). Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia. Journal of Thrombosis and Haemostasis, 19(5), 1342–1347.

96. Cristiano, A., Fortunato, V., Cherubini, F., Bernardini, S., & Nuccetelli, M. (2021). Anti-phospholipid antibodies and immune complexes in COVID-19 patients: A putative role in disease course for anti-annexin-V antibodies. Clinical Rheumatology, 19, 1–7.

97. Mazzitelli, I., Bleichmar, L., Muriñaga, M. G., Piscalovsky, A., Labato, M., Chiaradia, V., & Finocchi, P. et al. (2021). IgG immune complexes may contribute to neutrophil activation in the course of severe COVID-19. Journal of Infectious Diseases, 2:Jlab174. https://doi.org/10.1093/infdis/jia174

98. Johnston, I., Sarkar, A., Hayes, V., Koma, G. T., Arepally, G. M., Chen, J., Chung, D. W., López, J. A., Cines, D. B., Rauova, L., & Poncz, M. (2020). Recognition of PF4-VWF complexes by heparin-induced thrombocytopenia antibodies contributes to thrombus propagation. Blood, 135(15), 1270–1280.

99. Krauel, K., Pötschke, C., Weber, C., Kessler, W., Fürlö, B., Ittermann, T., Maier, S., Hammerschmidt, S., Bröker, B. M., & Greinacher, A. (2011). Platelet factor 4 binds to bacteria, [corrected] inducing antibodies cross-reacting with the major antigen in heparin-induced thrombocytopenia. Blood, 117(4), 1370–1378.

100. Brandt, S., Krauel, K., Jaax, M., Renné, T., Helm, C. A., Hammerschmidt, S., Delcea, M., & Greinacher, A. (2015). Polyphosphates form antigenic complexes with platelet factor 4 (PF4) and enhance PF4-binding to bacteria. Thrombosis and Haemostasis, 114(6), 1189–1198.

101. Othman, M., Labelle, A., Mazzetti, I., Elbaratni, H. S., & Lillicrap, D. (2007). Adenovirus-induced thrombocytopenia: The role of von Willebrand factor and P-selectin in mediating accelerated platelet clearance. Blood, 109(7), 2832–2839.

102. Shirley, J. L., de Jong, Y. P., Terhorst, C., & Herzog, R. W. (2020). Immune responses to viral gene therapy vectors. Molecular Therapy, 28(3), 709–722.

103. Jonsson, M. I., Lenman, E. A., Frängsmyr, L., Nyberg, C., Abdullahi, M., & Arnberg, N. (2009). Coagulation factors IX and X enhance binding and infection of adenovirus types 5 and 31 in human epithelial cells. Journal of Virology, 83(8), 3816–3825.

104. Hofherr, S. E., Mok, H., Gushiken, F. C., Lopez, J. A., & Barry, M. A. (2007). Polyethylene glycol modification of adenovirus reduces platelet activation, endothelial cell activation, and thrombocyte-penia. Human Gene Therapy, 18(9), 837–848.

105. Raddi, N., Vigant, F., Wagner-Ballon, O., Giraudier, S., Custers, J., Hemmi, S., & Benihoud, K. (2016). Pseudotyping serotype 5 adenovirus with the fiber from other serotypes uncovers a key role of the fiber protein in adenovirus 5-induced thrombocytopenia. Human Gene Therapy, 27(2), 193–201.
106. Kim, S. J., Kim, K., Park, S. B., Hong, D. J., & Jhun, B. W. (2015). Outcomes of early administration of cidofovir in non-immunocompromised patients with severe adenovirus pneumonia. PLoS ONE, 10(4), e0122642.

107. Platon, S., Bartlett, A., MacCallum, P., Makris, M., McDonald, V., Singh, D., Scully, M., & Pavord, S. (2021). Evaluation of laboratory assays for anti-platelet factor 4 antibodies after ChAdOx1 nCoV-19 vaccination. Journal of Thrombosis and Haemostasis, 19(8), 2007. https://doi.org/10.1111/jth.15362

108. Sørvoll, I. H., Horvei, K. D., Ernstsen, S. L., Laegreid, I. J., Lund, S., Granli, R. H., Olsen, M. K., Jacobsen, H. K., Eriksson, A., Halstensen, A. M., Tjønnfjord, E., Ghanima, W., & Ahlen, M. T. (2021). An observational study to identify the prevalence of thrombocytopenia and anti-PF4/polyanion antibodies in Norwegian health care workers after COVID-19 vaccination. Journal of Thrombosis and Haemostasis, 19(7), 1813. https://doi.org/10.1111/jth.15352

109. Thiele, T., Ulm, L., Holtfreter, S., Schönborn, L., Kuhn, S. O., Scheer, C., Warkentin, T. E., Bröker, B., Becker, K., Aurich, K., Selleng, K., Hübner, N. O., & Greinacher, A. (2021). Frequency of positive anti-PF4/polyanion antibody tests after COVID-19 vaccination with ChAdOx1 nCoV-19 and BNT162b2. Blood, blood.2021012217.138(4), 299.

110. Terpos, E., Politou, M., Ntanasis-Stathopoulos, I., Karalis, V., Merkouri, E., Fotiou, D., Gavriatopoulou, M., Malandrakis, P., Kastritis, E., Trougakos, I. P., & Dimopoulos, M. A. (2021). High prevalence of anti-PF4 antibodies following ChAdOx1 nCoV-19 (AZD1222) vaccination even in the absence of thrombocytopenic events. Vaccines (Basel), 9(7), 712.

111. Favaloro, E. J. (2021). Laboratory testing for suspected COVID-19 vaccine-induced (immune) thrombocytopenia. International Journal of Laboratory Hematology, 43(4), 559–570.

112. Hunter, P. R. (2021). Thrombosis after covid-19 vaccination. British Medical Journal (Clinical Research Edition), 373, n958. https://doi.org/10.1136/bmj.n958

113. von Hundelshausen, P., Lorenz, R., Siess, W., & Weber, C. (2021). Vaccine-induced immune thrombocytopenia (VITT): Targeting pathomechanisms with Bruton tyrosine kinase inhibitors. Thrombosis and Haemostasis, https://doi.org/10.1055-a-1481-3039

114. Thaler, J., Ay, C., Gleikner, K. V., Hauswirth, A. W., Caccioppo, F., Jürgen, G., Quehenberger, P., Pabinger, I., & Knöbl, P. (2021). Successful treatment of vaccine-induced prothrombotic immune thrombocytopenia (VIPIT). Journal of Thrombosis and Haemostasis, 19(7), 1819. https://doi.org/10.1111/jth.15346

115. Althaus, K., Möller, P., Uzun, G., Singh, A., Beck, A., Bettag, M., Bösmüller, H., Gauthoff, M., Dorn, F., Petzold, G. C., Henkes, H., Heyne, N., Jumaa, H., Kreiser, K., Limpach, C., Luz, B., Maschke, M., Müller, J. A., Münch, J., ... Sachs, U. (2021). Antibody-mediated procoagulant platelet defects in SARS-CoV-2 vaccination associated immune thrombotic thrombocytopenia. Haematologica, 106(8), 2170–2179. https://doi.org/10.3324/haematol.2021.279000

116. Watad, A., De Marco, G., Mahajna, H., Druyan, A., Eltity, M., Hijazi, N., Haddad, A., Elias, M., Zisman, D., Naffa, M. E., Brodavka, M., Cohen, Y., Abu-Much, A., Abu Elhija, M., Bridgewood, C., Lanevitz, P., Molorian, J., Braagazi, N. L., Marzo-Ortega, H.,...McGonagle, D. (2021). Immune-mediated disease flares or new-onset disease in 27 subjects following mRNA/DNA SARS-CoV-2 vaccination. Vaccines (Basel), 9(5), 435.

117. Winram, S. B., & Lottenberg, R. (1996). The plasmid-binding protein Plr of group A streptococci is identified as glyceraldehyde-3-phosphate dehydrogenase. Microbiology (Reading), 142 (Pt 8), 2311–2320.

118. Kopeckova, M., Pavkova, I., & Stulik, J. (2020). Diverse localization and protein binding abilities of glyceraldehyde-3-phosphate dehydrogenase in pathogenic bacteria: The key to its multifunctionality? Frontiers in Cellular and Infection Microbiology, 10, 89.
134. Pawlowski, C., Puranik, A., Bandi, H., Venkatakrishnan, A. J., Agarwal, V., Kennedy, R., O’Horo, J. C., Gores, G. J., Williams, A. W., Halamka, J., Badley, A. D., & Soundararajan, V. (2021). Exploratory analysis of immunization records highlights decreased SARS-CoV-2 rates in individuals with recent non-COVID-19 vaccinations. Scientific Reports, 11(1), 4741.

135. Taghioff, S. M., Slavin, B. R., Holton, T., & Singh, D. (2021). Examining the potential benefits of the influenza vaccine against SARS-CoV-2: A retrospective cohort analysis of 74,754 patients. PLoS ONE, 16(8), e0255541.

136. Yang, M. J., Rooks, B. J., Le, T. T., Santiago, I. O. 3rd, Diamond, J., Dorsey, N. L., & Mainous, A. G., 3rd. (2021). Influenza vaccination and hospitalizations among COVID-19 infected adults. The Journal of the American Board of Family Medicine, 34(Suppl), S179–S182.

How to cite this article: Root-Bernstein, R. (2021). COVID-19 Coagulopathies: Human Blood Proteins Mimic SARS-CoV-2 Virus, Vaccine Proteins and Bacterial Co-Infections Inducing Autoimmunity. BioEssays, 43, e2100158. https://doi.org/10.1002/bies.202100158