The Coannihilation Codex

Michael J. Baker

with

Joachim Brod, Sonia El Hedri, Anna Kaminska, Joachim Kopp, Jia Liu, Andrea Thamm, Maikel de Vries, Xiao-Ping Wang, Felix Yu, José Zurita

arXiv:1510.03434

JGU Mainz

Dark Matter 2016 - UCLA - 18 February 2016
Outline

1. Motivation
2. Classification of Simplified Models
3. LHC Phenomenology
Outline

1. Motivation
2. Classification of Simplified Models
3. LHC Phenomenology
Dark Matter

Begeman, Broeils & Sanders, 1991

\[\Omega_{\text{nb}m} h^2 = 0.1198 \pm 0.0026 \]
Dark Matter

Begeman, Broeils & Sanders, 1991

Planck, 2013

\[\Omega_{\text{b}m} h^2 = 0.1198 \pm 0.0026 \]
Dark Matter

Begeman

Viel, Becker, Bolton & Haehnelt, 2013
$\Omega_{\text{nbm}} h^2 = 0.1198 \pm 0.0026$
Theoretical Framework

- Dark Matter Effective Field Theories
- Dipole Interactions
- Contact Interactions

Less complete
Theoretical Framework

Less complete

- Dark Matter Effective Field Theories
- Dipole Interactions
- Contact Interactions

More complete

- Minimal Supersymmetric Standard Model
- Complete Dark Matter Models
- Universal Extra Dimensions
- Little Higgs

- The large energies accessible at the LHC call into question the momentum expansion of the dark sector, comparing LHC bounds to the limits following from direct and indirect detection.
- For each operator a single parameter encodes the information on all the heavy states on the "new-physics" scale Λ that suppresses the higher-dimensional operators. Since this is useful in the analysis of LHC Run I data, because it allows to derive stringent bounds.
- Simplified models are able to describe correctly the full kinematics of DM production interactions with the SM, as well as the DM particle itself. Unlike the DM-EFTs, models are characterized by the most important state mediating the DM particle.
- Toward simplified DM models (for early proposals see for example [17–22]). Such underlying the EFT approximation [6, 9–16], and we can expand our level of detail.

Abdallah et al., 1506.03116
The large energies accessible at the LHC call into question the momentum expansion of the dark sector, comparing LHC bounds to the limits following from direct and indirect DM searches is straightforward in the context of DM-EFTs. For each operator a single parameter encodes the information on all the heavy states on the “new-physics” scale Λ that suppresses the higher-dimensional operators. Since, this is useful in the analysis of LHC Run I data, because it allows to derive stringent bounds on the interactions with the SM, as well as the DM particle itself. Unlike the DM-EFTs, simplified models are characterized by the most important state mediating the DM particle toward simplified DM models (for early proposals see for example [17–22]). Such models are able to describe correctly the full kinematics of DM production at the LHC, because they resolve the EFT contact interactions into single-particle exchanges. This comes with the price that they typically involve not just one, but a handful of parameters that characterize the dark sector and its interactions.
Simplified Models

Much recent work on simplified models of DM, e.g.,

- Abdallah et al. 1506.03116,
- Abercrombie et al. 1507.00966,
- ...

Simple one particle freeze-out often leads to tensions, e.g., between relic density and direct/indirect constraints.

For some models this is not a good approximation.

Coannihilating models can relieve these tensions and/or give a better approximation.
Simplified Models

- Much recent work on simplified models of DM, e.g.,
 - Abdallah et al. 1506.03116,
 - Abercrombie et al. 1507.00966,
 - …

- Simple one particle freeze-out often leads to tensions, e.g., between relic density and direct/indirect constraints
 - For some models this is not a good approximation
 - Coannihilating models can relieve these tensions and/or give a better approximation
Motivation

Classification of Simplified Models

LHC Phenomenology

Simplified Models

- Much recent work on simplified models of DM, e.g.,
 - Abdallah et al. 1506.03116,
 - Abercrombie et al. 1507.00966,
 - …

- Simple one particle freeze-out often leads to tensions, e.g., between relic density and direct/indirect constraints

- For some models this is not a good approximation

- Coannihilating models can relieve these tensions and/or give a better approximation
Motivation

Classification of Simplified Models

LHC Phenomenology

Simplified Models

Much recent work on simplified models of DM, e.g.,
- Abdallah et al. 1506.03116,
- Abercrombie et al. 1507.00966,
- ...

Simple one particle freeze-out often leads to tensions, e.g., between relic density and direct/indirect constraints

For some models this is not a good approximation

Coannihilating models can relieve these tensions and/or give a better approximation
Our Goal

A complete classification of simplified coannihilation models
Our Goal

A complete classification of simplified coannihilation models

The Coannihilation Codex
Our Goal

A complete classification of simplified coannihilation models

The Coannihilation Codex

- A bottom-up framework for discovering dark matter at the LHC
- LHC phenomenology testing DM freeze-out
- Identify lesser studied models & searches
- In the event of a signal, gives a framework for the inverse problem
Outline

1. Motivation

2. Classification of Simplified Models

3. LHC Phenomenology
Assumptions

To complete a classification we need to make some assumptions

- DM is a thermal relic
- DM is a colourless, electrically neutral particle in $(1, N, \beta)$
- Coannihilation diagram is 2-to-2 via dimension four, tree-level couplings
- New particles have spin 0, 1/2 or 1
Assumptions

To complete a classification we need to make some assumptions

- DM is a thermal relic
- DM is a colourless, electrically neutral particle in \((1, N, \beta)\)
- Coannihilation diagram is 2-to-2 via dimension four, tree-level couplings
- New particles have spin 0, 1/2 or 1
Assumptions

To complete a classification we need to make some assumptions

- DM is a thermal relic
- DM is a colourless, electrically neutral particle in \((1, N, \beta)\)
- Coannihilation diagram is 2-to-2 via dimension four, tree-level couplings
- New particles have spin 0, 1/2 or 1
To complete a classification we need to make some assumptions

- DM is a thermal relic
- DM is a colourless, electrically neutral particle in \((1, N, \beta)\)
- Coannihilation diagram is 2-to-2 via dimension four, tree-level couplings
- New particles have spin 0, 1/2 or 1
To complete a classification we need to make some assumptions:

- DM is a thermal relic
- DM is a colourless, electrically neutral particle in $(1, N, \beta)$
- Coannihilation diagram is 2-to-2 via dimension four, tree-level couplings
- New particles have spin 0, 1/2 or 1
Coannihilation Diagrams

Motivation
Classification of Simplified Models
LHC Phenomenology

\[\text{X} \quad \text{SM}_2 \]
\[\text{DM} \quad \text{SM}_1 \]
\[\downarrow \]
\[\text{X} \quad \text{SM}_2 \]
\[\text{DM} \quad \text{SM}_1 \]
\[\text{X} \quad \text{SM}_2 \]
\[\text{DM} \quad \text{SM}_1 \]

\[\text{X} \quad \text{SM}_2 \]
\[\text{DM} \quad \text{SM}_1 \]
\[\text{X} \quad \text{SM}_2 \]
\[\text{DM} \quad \text{SM}_1 \]
Classification Procedure

- Work in unbroken $SU(2)_L \times U(1)_Y$
- Given SM field content, iterate over SM$_1$ and SM$_2$ to find all possible X using
 - Gauge invariance
 - Lorentz invariance
 - \mathbb{Z}_2 parity (to prevent DM decay)
- Then find all s-channel and t-channel mediators, using same restrictions and
 - Dimension four, tree-level couplings
 - Gauge bosons only couple through kinetic terms
Classification Procedure

- Work in unbroken $SU(2)_L \times U(1)_Y$
- Given SM field content, iterate over SM$_1$ and SM$_2$ to find all possible X using
 - Gauge invariance
 - Lorentz invariance
 - \mathbb{Z}_2 parity (to prevent DM decay)
- Then find all s-channel and t-channel mediators, using same restrictions and
 - Dimension four, tree-level couplings
 - Gauge bosons only couple through kinetic terms
Classification Procedure

- Work in unbroken $SU(2)_L \times U(1)_Y$
- Given SM field content, iterate over SM$_1$ and SM$_2$ to find all possible X using
 - Gauge invariance
 - Lorentz invariance
 - \mathbb{Z}_2 parity (to prevent DM decay)
- Then find all s-channel and t-channel mediators, using same restrictions and
 - Dimension four, tree-level couplings
 - Gauge bosons only couple through kinetic terms
s-channel classification - sample

DM in $(1, N, \beta)$

ID	X	$\alpha + \beta$	M_s	Spin	$(SM_1 \ SM_2)$	SM$_3$	M-X-X
ST11		$\frac{7}{3}$	$(3, 2, \frac{7}{3})$	B	$(Q_L \ell_R), (u_R \overline{L_L})$		
ST12	$(3, N \pm 1, \alpha)$	$\frac{1}{3}$	$(3, 2, \frac{1}{3})$	B	$(d_R \overline{L_L}), (Q_L d_R), (u_R L_L)$		
ST13		$\frac{1}{3}$	$(3, 2, \frac{1}{3})$	F	$(u_R H), (d_R H) \ Q_L$		
ST14		$\frac{1}{3}$	$(3, 2, \frac{1}{3})$	F	$(d_R H) \ Q_L$		
ST15		$\frac{1}{3}$	$(3, 2, \frac{1}{3})$	B	$(Q_L u_R), (Q_L \ell_R), (d_R L_L)$		
ST16		$\frac{1}{3}$	$(3, 2, \frac{1}{3})$	F	$(d_R H) \ Q_L$		
ST17	$(3, N \pm 2, \alpha)$	$\frac{4}{3}$	$(3, 3, \frac{4}{3})$	B	$(Q_L \overline{L_L})$	$\sqrt{\alpha = -\frac{2}{3}}$	
ST18		$\frac{4}{3}$	$(3, 3, \frac{4}{3})$	F	$(Q_L H)$		
ST19		$\frac{4}{3}$	$(3, 3, \frac{4}{3})$	B	$(Q_L Q_L), (Q_L L_L)$	$\sqrt{\alpha = \frac{1}{3}}$	
ST20		$\frac{4}{3}$	$(3, 3, \frac{4}{3})$	F	$(Q_L H) \ Q_L$		

B:

- DM
- SM$_1$ SM$_2$ SM$_1$ SM$_2$

F:

- DM
- SM$_1$ SM$_2$ SM$_1$ SM$_2$
DM in (1, N, β)

ID	X	α + β	M_t	Spin	(SM₁ SM₂)	SM₃
TU26		0	(1, N ± 1, β − 1)	I	(HH†)	
TU27			(1, N ± 1, β + 1)	II	(LLH)	
TU28	(1, N ± 2, α)		(1, N ± 1, β − 1)	III	(HL₉)	
TU29			(3, N ± 1, β − 1)	IV	(QLQL)	
TU30			(1, N ± 1, β + 1)	IV	(L₉L₉)	
TU31		−2	(1, N ± 1, β + 1)	I	(H†H†)	
TU32			(1, N ± 1, β + 1)	II	(LLH†)	
TU33			(1, N ± 1, β + 1)	III	(H†L₉)	

Diagrams:

- **I:** $X \rightarrow M_t \rightarrow SM_2$
- **II:** $X \rightarrow M_t \rightarrow SM_2$
- **III:** $X \rightarrow M_t \rightarrow SM_2$
- **IV:** $X \rightarrow M_t \rightarrow SM_2$
Classification: hybrid models

ID	X	$\alpha + \beta$	SM partner	Extensions
H1	$(1, N, \alpha)$	0	$B, W_i^N \geq 2$	SU1, SU3, TU1, TU4–TU8
H2		-2	ℓ_R	SU6, SU8, TU10, TU11
H3	$(1, N \pm 1, \alpha)$	-1	H^\dagger	SU10, TU18–TU23
H4	$(1, N \pm 1, \alpha)$	$-\frac{2}{3}$	L_L	SU11, TU16, TU17
H5	$(3, N, \alpha)$	$\frac{4}{3}$	u_R	ST3, ST5, TT3, TT4
H6	$(3, N \pm 1, \alpha)$	$-\frac{2}{3}$	d_R	ST7, ST9, TT10, TT11
H7	$(3, N \pm 1, \alpha)$	$\frac{1}{3}$	Q_L	ST14, TT28–TT31

7 models
Classification: s-channel

SU type - 17 models

ID	X	$\alpha + \beta$	M_x	Spin	(SM1, SM2)	SM3	M-X-X	
SU1	(1, N, α)	0	(1, 1, 0)	B	$\begin{pmatrix} d_R & \nu_R \\ \nu_L & \nu_L \end{pmatrix}$, (Q_L, Q_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	$B, W, N \geq 2$	✓
SU2	(1, N, α)	-1	(1, 2, -1)	B	$\begin{pmatrix} d_R & \nu_R \\ \nu_L & \nu_L \end{pmatrix}$, (Q_L, Q_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	$B, W, N \geq 2$	✓
SU3	(1, N, α)	-2	(1, 2, -2)	B	$\begin{pmatrix} d_R & \nu_R \\ \nu_L & \nu_L \end{pmatrix}$, (Q_L, Q_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = 0)
SU4	(1, N, α)	0	(1, 3, 0)	B	(Q_L, Q_L), (Q_L, L_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = ±1)
SU5	(1, N, α)	-2	(1, 3, -2)	B	(Q_L, Q_L), (Q_L, L_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = ±1)
SU6	(1, N, α)	0	(1, 3, 0)	B	(Q_L, Q_L), (Q_L, L_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = ±1)
SU7	(1, N, α)	-2	(1, 3, -2)	B	(Q_L, Q_L), (Q_L, L_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = ±1)
SU8	(1, N, α)	0	(1, 3, 0)	B	(Q_L, Q_L), (Q_L, L_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = ±1)
SU9	(1, N, α)	-2	(1, 3, -2)	B	(Q_L, Q_L), (Q_L, L_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = ±1)
SU10	(1, α)	0	(1, 3, 0)	B	(Q_L, Q_L), (Q_L, L_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = ±1)
SU11	(1, α)	-2	(1, 3, -2)	B	(Q_L, Q_L), (Q_L, L_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = ±1)

SO and SE type - 5 and 7 models

SU type - 20 models

ID	X	$\alpha + \beta$	M_x	Spin	(SM1, SM2)	SM3	M-X-X	
ST1	(1, N, α)	0	(1, 1, 0)	B	$\begin{pmatrix} d_R & \nu_R \\ \nu_L & \nu_L \end{pmatrix}$, (Q_L, Q_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = ±1)
ST2	(1, N, α)	-1	(1, 2, -1)	B	$\begin{pmatrix} d_R & \nu_R \\ \nu_L & \nu_L \end{pmatrix}$, (Q_L, Q_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = ±1)
ST3	(1, N, α)	-2	(1, 2, -2)	B	$\begin{pmatrix} d_R & \nu_R \\ \nu_L & \nu_L \end{pmatrix}$, (Q_L, Q_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = ±1)
ST4	(1, N, α)	0	(1, 3, 0)	B	(Q_L, Q_L), (Q_L, L_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = ±1)
ST5	(1, N, α)	-2	(1, 3, -2)	B	(Q_L, Q_L), (Q_L, L_L), (H, H^*)	$\ell_R, (L_L, L_L)$, $(H H^*)$	✓	(α = ±1)

U: X uncoloured

T: X $SU(3)$ triplet

O: $SU(3)$ octet

E: $SU(3)$ exotic

Motivation

Classification of Simplified Models

LHC Phenomenology
ID	X	α + β	M_α	Spin (SM1, SM2)	SM_3
TU1	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}
TU2	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}
TU5	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}
TU6	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}
TU9	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}
TU10	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}
TU13	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}
TU16	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}
TU19	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}
TU22	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}
TU25	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}
TU28	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}
TU31	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}
TU34	(1, N, α)	0	(1, N ± 1, β + 2)	IV (QLQL)	B, W_1^{N 2/3}

Classification: t-channel

TU type - 33 models

TT type - 52 models

ID	X	α + β	M_α	Spin (SM1, SM2)	SM_3
TO1	(8, N, α)	0	(3, N ± 1, β + 1)	IV (QLQL)	B, W_1^{N 2/3}
TO2	(8, N, α)	0	(3, N ± 1, β + 1)	IV (QLQL)	B, W_1^{N 2/3}
TO3	(8, N, α)	0	(3, N ± 1, β + 1)	IV (QLQL)	B, W_1^{N 2/3}
TO4	(8, N, α)	0	(3, N ± 1, β + 1)	IV (QLQL)	B, W_1^{N 2/3}
TO5	(8, N, α)	0	(3, N ± 1, β + 1)	IV (QLQL)	B, W_1^{N 2/3}
TO6	(8, N, α)	0	(3, N ± 1, β + 1)	IV (QLQL)	B, W_1^{N 2/3}
TO7	(8, N, α)	0	(3, N ± 1, β + 1)	IV (QLQL)	B, W_1^{N 2/3}
TO8	(8, N, α)	0	(3, N ± 1, β + 1)	IV (QLQL)	B, W_1^{N 2/3}
TO9	(8, N, α)	0	(3, N ± 1, β + 1)	IV (QLQL)	B, W_1^{N 2/3}
TO10	(8, N, α)	0	(3, N ± 1, β + 1)	IV (QLQL)	B, W_1^{N 2/3}

TO and TE type - 10 and 10 models

Classification of Simplified Models

TU type - 33 models

TT type - 52 models
Complete Classification

We have written down all possible simplified models of 2-to-2 coannihilating dark matter!
We have written down all possible simplified models of 2-to-2 coannihilating dark matter!
Outline

1. Motivation

2. Classification of Simplified Models

3. LHC Phenomenology
Production: s-channel

\[\bar{q}q \rightarrow \bar{X}, \bar{M} \]

\[\bar{q}q \rightarrow \bar{X}, \bar{M} \]

\[q\bar{q} \rightarrow \bar{X}, \bar{M}, \bar{DM} \]

\[q\bar{q} \rightarrow \bar{X}, \bar{M}, \bar{DM} \]

\[\bar{q}q \rightarrow \gamma/Z \]

\[\bar{q}q \rightarrow \gamma/Z \]

\[q\bar{q} \rightarrow \bar{X}, \bar{M}, D\bar{M} \]

\[q\bar{q} \rightarrow \bar{X}, \bar{M}, D\bar{M} \]

\[q\rightarrow FJ \]

\[q\rightarrow FJ \]

\[q\rightarrow SM \]

\[q\rightarrow SM \]
Production: s-channel
Decay: s-channel

\[X_s \rightarrow \text{DM} \]
\[M_s \rightarrow \text{SM}_1 + \text{soft} \]
\[M_s \rightarrow \text{SM}_2 \]

\[X_s \rightarrow \text{DM} \]
\[M_s \rightarrow \text{SM}_1 + \text{soft} \]
\[M_s \rightarrow \text{SM}_2 \]

\[\vec{E}_T \]

\[X_s \rightarrow \text{DM} \]
\[M_s \rightarrow \text{SM}_1 \]
\[M_s \rightarrow \text{SM}_2 \]

\[\vec{E}_T \]
\[+ \]
\[\text{soft} \]
Decay: s-channel

\[
\begin{align*}
X_s & \rightarrow_{\text{DM}} \text{SM}_1 \\
M_s & \rightarrow_{\text{soft}} \text{SM}_2
\end{align*}
\]

\[
\begin{align*}
\text{Resonance} & \rightarrow_{\overline{E}_T} + \\
\text{soft} &
\end{align*}
\]
Motivation
Classification of Simplified Models
LHC Phenomenology

Decay: s-channel

\[X_s \rightarrow \text{DM} \quad \text{SM}_1 \quad \left\{ \begin{array}{c} \ell_T \\ + \\ \text{soft} \end{array} \right\} \]

\[M_s \rightarrow \text{SM}_1 \quad \text{SM}_2 \quad \left\{ \begin{array}{c} \text{Resonance} \end{array} \right\} \]

\[M_s \rightarrow \text{DM} \quad \text{DM} \quad \text{SM}_1 \quad \left\{ \begin{array}{c} \ell_T \\ + \\ \text{soft} \end{array} \right\} \]
Generic Signatures: s-channel

- **Mono-Y** (Y=jet, photon, Z,...) + \not{E}_T from DM DM, XX,...
 - classic signature

- Single and Double Resonances from M and MM
 - ATLAS/CMS Exotics

- Mono-Y + \not{E}_T + soft from XX,MM,...
 - has been motivated, no searches yet

- **Resonance** + \not{E}_T + soft from MM
 - new signature to explore!
Generic Signatures: s-channel

- **Mono-Y** (Y=jet, photon, Z, . . .) + \not{E}_T from DM DM, XX, . . .
 - classic signature

- **Single and Double Resonances** from M and MM
 - ATLAS/CMS Exotics

- **Mono-Y** + \not{E}_T + soft from XX, MM, . . .
 - has been motivated, no searches yet

- **Resonance** + \not{E}_T + soft from MM
 - new signature to explore!
Generic Signatures: s-channel

- **Mono-Y** (Y=jet, photon, Z, \ldots) + $\not{E_T}$ from DM DM, XX,\ldots
 - classic signature
- **Single and Double Resonances** from M and MM
 - ATLAS/CMS Exotics
- **Mono-Y** + $\not{E_T}$ + **soft** from XX,MM,\ldots
 - has been motivated, no searches yet
- **Resonance** + $\not{E_T}$ + **soft** from MM
 - new signature to explore!
Generic Signatures: s-channel

- **Mono-Y** (Y=jet, photon, Z,...) + E_T from DM DM, XX,...
 - classic signature
- **Single and Double Resonances** from M and MM
 - ATLAS/CMS Exotics
- **Mono-Y + E_T + soft** from XX,MM,...
 - has been motivated, no searches yet
- **Resonance + E_T + soft** from MM
 - new signature to explore!
| \(pp \to \cdots\) | Prod. via | Signatures | Search |
|------------------|-----------|-------------|--------|
| DM + DM + ISR | gauge int. or SM\(_1\) \(\in p\) for \(t\)-channel | mono-\(Y + E_T\) | [55,56,62,63,104] |
| \(X \to SM[SM,SM]^{\text{mix}}\) DM | gauge int. or SM\(_2\) \(\in p\) for \(t\)-channel | mono-\(Y + E_T\) | [55,56,62,63,104] |
| DM + X \(\to SM[SM,SM]^{\text{mix}}\) DM + ISR | (SM\(_1\), SM\(_2\)) \(\in p\) | mono-\(Y + E_T\); mono-\(Y + E_T + \leq 4\) SM | Partial coverage [105] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) | 2 resonances | [106-112] |
| DM + X \(\to SM[SM,SM]^{\text{mix}}\) DM | resonance + \(E_T\); resonance + \(E_T + \leq 2\) SM | No search |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 4\) SM | [113-124] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) | 1 resonance | [125-146] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 2\) SM | [120-122,124] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 3\) SM | [104,147-153] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 6\) SM | [113,141,120-124] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 8\) SM | [116-118,159-163] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 1\) SM | [55,56,62,63] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 3\) SM | [104,149] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 5\) SM | [113,114,116-124] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 7\) SM | [159-161,164] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 9\) SM | [114,120-124] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 10\) SM | [152,153,156-158] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 12\) SM | [114,120-124] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 14\) SM | [152,153,156-158] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 16\) SM | [114,120-124] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 18\) SM | [152,153,156-158] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 20\) SM | [114,120-124] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 22\) SM | [152,153,156-158] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 24\) SM | [114,120-124] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 26\) SM | [152,153,156-158] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 28\) SM | [114,120-124] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 30\) SM | [152,153,156-158] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 32\) SM | [114,120-124] |
| DM + M \(\to SM[SM,SM]^{\text{mix}}\) DM | \(E_T + \leq 34\) SM | [152,153,156-158] |
Signature Table: Excerpt

$pp \rightarrow \ldots$	Prod. via	Signatures	Search
$\begin{cases} M_s (\rightarrow [SM_1 \ SM_2]^{\text{res}}) \\ M_s (\rightarrow [SM_1 \ SM_2]^{\text{res}}) \end{cases}$	gauge int.	2 resonances	[106-112]
$\begin{cases} M_s (\rightarrow [SM_1 \ SM_2]^{\text{res}}) \\ M_s (\rightarrow DM + X (\rightarrow SM_1^{\text{soft}} SM_2^{\text{soft}} DM)) \end{cases}$		resonance + E_T	No search
$\begin{cases} M_s (\rightarrow DM + X (\rightarrow SM_1^{\text{soft}} SM_2^{\text{soft}} DM)) \\ M_s (\rightarrow DM + X (\rightarrow SM_1^{\text{soft}} SM_2^{\text{soft}} DM)) \end{cases}$		resonance + $E_T + \leq 2$ SM	No search
$M_s (\rightarrow [SM_1 \ SM_2]^{\text{res}})$	$(SM_1 \ SM_2) \in p$	1 resonance	[125-146]
$M_s (\rightarrow DM + X (\rightarrow SM_1^{\text{soft}} SM_2^{\text{soft}} DM))$		$E_T + \leq 2$ SM	[120-122, 124]
$SM_{1,2} + M_s (\rightarrow [SM_1 \ SM_2]^{\text{res}})$	$SM_{2,1} \in p$	1 resonance + 1 SM	Partial coverage [154,155]
$\begin{cases} SM_{1,2} \\ M_s (\rightarrow DM + X (\rightarrow SM_1^{\text{soft}} SM_2^{\text{soft}} DM)) \end{cases}$		$E_T + 1 \leq 3$ SM	[114,120-124]

Note: The table entries are simplified for the purpose of this example. The actual table contains more detailed information and references.
Example - ST11

ID	X	$\alpha + \beta$	M_s	Spin	$(SM_1 \ SM_2)$	SM$_3$	M-X-X
ST11	$(3, N \pm 1, \alpha)$	$\frac{7}{3}$	$(3, 2, \frac{7}{3})$	B	$(Q_L \ell_R), (u_R \bar{L}_L)$		

DM in $(1, N, \beta)$

Field	Rep.	Spin and mass assignment
DM	$(1,1,0)$	Majorana fermion
X	$(3,2,7/3)$	Dirac fermion
M	$(3,2,7/3)$	Scalar
Example - ST11

ID	X	$\alpha + \beta$	M_s	Spin	$(SM_1 \ SM_2)$	SM_3	M-X-X
ST11	$(3, N \pm 1, \alpha)$	$\frac{7}{3}$	$(3, 2, \frac{7}{3})$	B	$(QL\ell_R), (u_R\ell_L)$		

DM in $(1, N, \beta)$

Field	Rep.	Spin and mass assignment
DM	$(1,1,0)$	Majorana fermion
X	$(3,2,7/3)$	Dirac fermion
M	$(3,2,7/3)$	Scalar
Example - ST11

Field	Rep.	Spin and mass assignment
DM	(1,1,0)	Majorana fermion
X	(3,2,7/3)	Dirac fermion
M	(3,2,7/3)	Scalar

\[
\mathcal{L} \supset \mathcal{L}_{\text{kin}} + y_D \bar{X} M \text{DM} + y_Q \bar{Q}_L M \ell_R + y_{Lu} \bar{L}_L M^c u_R + \text{h.c.}
\]
Example - ST11

Field	Rep.	Spin and mass assignment
DM	(1,1,0)	Majorana fermion
X	(3,2,7/3)	Dirac fermion
M	(3,2,7/3)	Scalar

\[\mathcal{L} \supset \mathcal{L}_{\text{kin}} + y_D \bar{X} M DM + y_Q \bar{Q}_L M \ell_R + y_{L_d} \bar{L}_L M^c u_R + h.c. \]
Example - ST11

Field	Rep.	Spin and mass assignment
DM	(1,1,0)	Majorana fermion
X	(3,2,7/3)	Dirac fermion
M	(3,2,7/3)	Scalar

\[
\mathcal{L} \supset \mathcal{L}_{\text{kin}} + y_D \overline{X} M \overline{\text{DM}} + y_Q \overline{Q}_L M \ell_R + y_{Lu} \overline{L}_L M^c u_R + \text{h.c.}
\]
Example - ST11

\[\mathcal{L} \supset \mathcal{L}_{\text{kin}} + y_D \bar{X} M DM \]
\[+ y_Q \bar{Q}_L M_R + y_L \bar{L}_L M^c u_R + h.c. \]

- Strong production
- Lepton-jet resonance + \mathcal{E}_T + soft lepton & jet
- No dedicated LHC search
Example - ST11

\[\mathcal{L} \supset \mathcal{L}_{\text{kin}} + y_D \bar{X} M DM + y_Q \ell Q L M \ell_R + y_L u \bar{L} M c u_R + h.c. \]

- Strong production
- Lepton-jet resonance + E_T + soft lepton & jet
- No dedicated LHC search
Example - ST11

\[\mathcal{L} \supset \mathcal{L}_{\text{kin}} + y_D \bar{X} \, M \, DM + y_Q \bar{Q} L M \ell_R + y_{Lu} \bar{L} L M^c u_R + h.c. \]

- Strong production
- Lepton-jet resonance + \mathbf{E}_T + soft lepton & jet
- No dedicated LHC search
Summary

- Coannihilation Codex gives a complete list of simplified models of coannihilation
- Guaranteed kinetic & coannihilation vertices → signatures
- Classify signatures of a wide range of models
 - Identify new signatures
 - Identify interesting models, e.g., leptoquarks and DM
- Huge number of DM models
 - collider signatures
 - direct and indirect detection
 - precision tests
 - flavour bounds
 - cosmology
 - ...
ST11 - Constraints from New Searches

\[\Delta = 0.1, \quad \text{Br}(\text{LQ} \rightarrow lq)|_{m_{\text{DM}}=0} = 0.5 \]

\[
\begin{align*}
XX+j \quad (\text{Mixed}) \quad [13 \, \text{TeV}] \\
XX+j \quad (\text{Leptons}) \quad [13 \, \text{TeV}] \\
XX+j \quad (\text{Leptons}) \quad [13 \, \text{TeV}] \\
XX+j \quad (\text{Monojet}) \quad [8 \, \text{TeV}] \\
XX+j \quad (\text{Monojet}) \quad [8 \, \text{TeV}] \\
\end{align*}
\]

\[
\begin{align*}
(p_{T}(l) > 10 \, \text{GeV}) \\
(p_{T}(l) > 25 \, \text{GeV}) \\
\end{align*}
\]

Relic Density + APV (3\(\sigma\) allowed)