A comparative biochemical investigation of the impeding effect of C1-oxidizing LPMOs on cellobiohydrolases

Received for publication, January 12, 2021, and in revised form, February 17, 2021 Published, Papers in Press, March 3, 2021, https://doi.org/10.1016/j.jbc.2021.100504

Malene Billeskov Keller 1, Silke Flindt Badino 1, Nanna Rojel 1, Trine Holst Sørensen 3, Jeppe Kari 1*, Brett McBrayer 1, Kim Borch 2, Benedikt M. Blossom 1,*, and Peter Westh 1,*

From the 1 Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark; 2 Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; 3 Novozymes A/S, Lyngby, Denmark; and 4 Novozymes, Inc, Davis, California, USA

Edited by Gerald Hart

Lytic polysaccharide monooxygenases (LPMOs) are known to act synergistically with glycoside hydrolases in industrial cellulolytic cocktails. However, a few studies have reported severe impeding effects of C1-oxidizing LPMOs on the activity of reducing-end cellobiohydrolases. The mechanism for this effect remains unknown, but it may have important implications as reducing-end cellobiohydrolases play a significant part of such cocktails. To elucidate whether the impeding effect is general for different reducing-end cellobiohydrolases and study the underlying mechanism, we conducted a comparative biochemical investigation of the cooperation between a C1-oxidizing LPMO from Thielavia terrestris and three reducing-end cellobiohydrolases; Trichoderma reesei (TrCel7A), T. terrestris (TtCel7A), and Myceliophthora heterothallica (MhCel7A). The enzymes were heterologously expressed in the same organism and thoroughly characterized biochemically. The data showed distinct differences in synergistic effects between the LPMO and the cellobiohydrolases; TrCel7A was severely impeded, TtCel7A was moderately impeded, while MhCel7A was slightly boosted by the LPMO. We investigated effects of C1-oxidations on cellulose chains on the activity of the cellobiohydrolases and found reduced activity against oxidized cellulose in steady-state and pre-steady-state experiments. The oxidations led to reduced maximal velocity of the cellobiohydrolases and reduced rates of substrate complexation. The extent of these effects differed for the cellobiohydrolases and scaled with the extent of the impeding effect observed in the synergy experiments. Based on these results, we suggest that C1-oxidized chain ends are poor attack sites for reducing-end cellobiohydrolases. The severity of the impeding effects varied considerably among the cellobiohydrolases, which may be relevant to consider for optimization of industrial cocktails.

*Saprotrophic fungi secrete an array of enzymes enabling the deconstruction of cellulose biomass. These enzymes usually work in synergy, meaning that they show higher activity when acting together compared with the sum of their activities when working separately. Synergy among cellulolytic enzymes is crucial for the degradation of lignocellulosic material in nature and in industrial settings such as in biorefineries that convert biomass into fuel and materials.

In the classical scheme for enzymatic cellulose degradation, cellulose is hydrolyzed by three main classes of glycoside hydrolases: exo-acting enzymes (cellobiohydrodrolases), endo-acting enzymes (endoglucanases), and β-glucosidases that catalyze the hydrolysis of soluble oligosaccharides to glucose. Recently, a new class of cellulose-active enzymes, lytic polysaccharide monooxygenases (LPMO) from Auxiliary Activity family 9 (AA9), were reported (1–6). In contrast to hydrolases, AA9s employ an oxidative mechanism to cleave cellulose chains while oxidizing one of the carbons in the scissile bond.

Preceding the elucidation of the catalytic mechanism, patents indicated that AA9s (at that time categorized as GH61) could boost the activity of glycoside hydrolases (7, 8), and today the ability of LPMOs to boost the efficiency of cellulase cocktails is widely recognized and LPMOs are crucial components of cellulolytic cocktails (2, 4, 6, 9–13). Several mechanisms of the synergistic cooperation between glycoside hydrolases and LPMOs have been proposed. LPMOs have been shown to bind to crystalline regions in the substrate and cause fibrillation of the cellulose chains, which is suggested to enhance the number of adsorption sites for glycoside hydrolases (14–18). Vermaas and colleagues studied the synergistic effect between LPMOs and cellobiohydrodrolases using molecular dynamics simulations and suggested that the main role of LPMOs is to create solvent-accessible ends for glycoside hydrolases (19). LPMOs have also been reported to enhance the processive mobility of cellobiohydrodrolases (15). Hu and colleagues reported that additions of LPMO increased the desorption of a reducing-end cellobiohydrodrolase and suggested that addition of AA9 may enhance the hydrolysis by releasing unproductively bound cellobiohydrodrolases (20).

In contrast to the common perception of synergistic effects between LPMOs and glycoside hydrolases, a few studies have reported pronounced impeding effects of C1-oxidizing LPMOs on the activity of GH7 (reducing end) cellobiohydrodrolases from Trichoderma spp. (17, 21–23). This may have important
Impeding effect of LPMOs on cellobiohydrolases

implications, as GH7 cellobiohydrolases make up a significant part of industrial cellulolytic cocktails (24). To elucidate whether the impeding effect of C1-oxidizing LPMOs is generic for GH7 cellobiohydrolases and to shed light on the mechanism behind the impeding effect, we have conducted a comparative biochemical study of the cooperation between a C1-oxidizing LPMO and three GH7 cellobiohydrolases. Bioinformatics has revealed that the distribution of AA9 varies considerably across species, from a few genes in Trichoderma spp. to 40 genes in other plant cell-wall-degrading fungi (25, 26). This may suggest that fungi employ different enzymatic strategies, which could be relevant to consider when investigating the cooperation between enzymes from different fungi. In light of this, we selected the cellobiohydrolases to represent hosts with varying numbers of putative AA9s in their genome: Trichoderma reesei, with 2 (26), Thielavia terrestris with 18, and Myceliophthora heterothallica with 22 (25, 27). The three cellobiohydrolases were heterogeneously expressed in the same expression organism and thoroughly characterized biochemically. The three cellobiohydrolases contain a C-terminal carbohydrate-binding module type 1 (CBM1) and share 56% sequence identity (TrCel7A and MhCel7A share 60% identity, TrCel7A and TtCel7A share 64% identity, and MhCel7A and TtCel7A share 78% identity). We investigated the synergistic effect between the LPMO and the cellobiohydrolases in terms of the degree of synergy (DS). In addition, we investigated how oxidations on cellulose chains influence the Michaelis–Menten kinetics, pre-steady-state kinetics, and rate of substrate complexation of the three cellobiohydrolases. These results contribute to our understanding of enzyme cooperation in cellulolytic cocktails and may be relevant for optimization of industrial cocktails with higher degrees of synergy.

Results

Synergistic effects between the cellobiohydrolases and the AA9

The activity of the LPMO, TtAA9, and the three cellobiohydrolases, TrCel7A, TtCel7A, and MhCel7A, was assessed in 3-h experiments with varying enzyme concentrations from 0 to 1 μM. The activity of the cellobiohydrolases in combination with TtAA9 was also assessed from 3-h experiments with varying enzyme ratios and a constant total enzyme concentration of 1 μM. After the reaction, β-glucosidase was added to the supernatant to hydrolyze the soluble products to glucose. Figure 1, A–C illustrate the activity of the
cellulbiohydrolase (blue), the AA9 (red), and the combined cellulbiohydrolase and AA9 (purple). The concentration of cellulbiohydrolase is increasing from left to right, whereas the concentration of AA9 is increasing from right to left. The sum of the individual activities of the cellulbiohydrolase and the AA9 is represented with a dotted line and black diamonds. Figure 1D illustrates the degree of synergy, that is, the activity of the mixture of the two enzymes ($A_{Cel7A + AA9}$) divided by the sum of their individual activities ($A_{Cel7A} + A_{AA9}$).

\[
DS = \frac{A_{Cel7A + AA9}}{A_{Cel7A} + A_{AA9}}
\]

A DS >1 indicates that the components act synergistically, while DS <1 indicates impediment. Negative synergy (DS <1) or impediment was observed for the combination of $TrCel7A + AA9$ with DS between 0.5 and 0.8. The data in Figure 1A show that the activity of the mixture ($TrCel7A + AA9$) at the lowest ratio of AA9 to Cel7A (10%:90%) resulted in 35% less glucose than that of 100% $TrCel7A$, indicating a pronounced impeding effect.

The combination $TrCel7A + AA9$ also showed impediment, although to a lesser extent than for $TrCel7A + AA9$, with DS varying from 0.7 to 1. At the lowest ratio of AA9 to Cel7A (10%:90%), the DS was approximately 1, suggesting additivity. A different pattern was observed for the combination $MhCel7A + AA9$, for which the DS varied between 1 and 1.2, indicating no synergy or slight synergy.

Activity of cellulbiohydrolases against oxidized cellulose

To investigate the origin of the impeding effect between the cellulbiohydrolases and the LPMO, we chemically oxidized the cellulose substrate at the C1-position on the chain ends (the reducing ends) in phosphoric acid swollen cellulose (PASC) to mimic LPMO-induced oxidations. The cellulose substrate at the C1-position on the chain ends (the reducing ends) were oxidized in a redox reaction in which Cu(II) is insoluble reducing ends in phosphoric acid swollen cellulose (PASC) was oxidized to aldonic acids. A control experiment in which cellobiose was incubated with the Cu(II)-BCA reaction mixture verified that the oxidation method did not introduce chain breakage (Fig. S1), which is in line with the results of previous studies (28, 29). As described in Materials and Methods, the level of oxidation was determined by two approaches. The level of oxidation of the reducing ends was determined to be 39.8 ± 0.3% by the first approach and 33.0 ± 0.5% by the second.

Figure 2 shows the specific activity of the three cellulbiohydrolases against varying loads of PASC and oxidized PASC analyzed with respect to the Michaelis–Menten equation,

\[
\nu = \frac{V_{max}S_o}{K_m + S_o}
\]

where ν is the steady-state rate, and S_o is the initial substrate load in g/L. The results show that the maximal rate at substrate saturation, V_{max}, and the Michaelis–Menten constant, K_m, were lower on oxidized cellulose compared with non-oxidized cellulose. For $TrCel7A$, V_{max} and K_m were approximately 30% and 40% lower, respectively, on oxidized PASC compared with the nonoxidized PASC. The effect was less pronounced for $TrCel7A$ and $MhCel7A$, for which V_{max} was approximately 15% lower on the oxidized substrate, and K_m was approximately 15% and 25% lower on the oxidized substrate, respectively. The parameters are listed in Table 1.

We also studied the effect of substrate oxidation in experiments with low substrate load and varying enzyme concentration until saturation, that is, so-called inverse Michaelis–Menten experiments (30) (Fig. S2). Under these conditions, the activity against the two substrates was almost identical for all three cellulbiohydrolyses.

The effect of substrate oxidation was further studied in realtime measurements of the progress curves using a CDH biosensor (31). The data in Figure 3 show the cellobiose formation of each of the cellulbiohydrolyses within the first 5 min of the reaction. The results showed that the activity of all three cellulbiohydrolyses was lower on the oxidized cellulose than on the nonoxidized cellulose. The rates of cellobiose accumulation between 100 and 300s, derived as the slope of linear regressions, were 14 ± 0.7, 10 ± 0.5, and 7 ± 0.4 % lower on the oxidized cellulose than on the nonoxidized cellulose for $TrCel7A$, $MhCel7A$, and $MhCel7A$, respectively.

The effect of the substrate oxidation on the activity of the cellulbiohydrolyses was further studied by analyzing the product profiles of the cellulases on the two substrates. As cellobiose is the main product of processive hydrolysis, whereas

![Figure 2. Michaelis–Menten curves. Specific rate of $TrCel7A$, $TtCel7A$, and $MhCel7A$ against varying loads of PASC (black squares) or oxidized PASC (red circles) for 1 h experiments. Symbols are averages of triplicate measurements, and error bars represent standard deviations (SD). Lines are best fit of the Michaelis–Menten equation (Equation 2).](image-url)
glucose and cellotriose are primary products released at initial hydrolysis events, processivity can be assessed as the ratio of cellobiose/(glucose + cellotriose) (32–34). Using this approach, we found similar processivity numbers for TrCel7A and MhCel7A on the two substrates, whereas the processivity number of TrCel7A was approximately 12% lower on oxidized cellulose compared with the nonoxidized cellulose (Fig. S3). The processivity numbers, n, are listed in Table 1.

Rate of complexation and decomposition of the cellobiohydrolases on PASC and oxidized PASC

The effect of substrate oxidation on the activity of the three cellobiohydrolases was further investigated by a fluorescence-based method that detects ligand–enzyme complexation (35). The substrate-binding tunnel of cellobiohydrolases is decorated with tryptophan residues that interact with the cellulose chain (36). The intrinsic fluorescence signal of these tryptophan residues will increase upon cellulose binding (37, 38). The increase in signal is likely a result of dequenching as water molecules are removed from the indole side chains as the cellulose chain is bound in the substrate-binding tunnel.

The change in fluorescence was recorded in samples with each of the three cellobiohydrolases after the injection of substrate. These experiments were repeated with varying loads of cellulose and oxidized cellulose. Figure 4 shows the fraction of TrCel7A (similar data for MhCel7A and TrCel7A can be found in Fig. S4) in an enzyme–substrate complex as a function of time after injection of substrate. The fraction of enzymes in a substrate complex, Φ, threaded was calculated based on the increment in the fluorescence signal at saturation (where $E_0 \approx [ES]$), F_{max} as,

$$\Phi_{\text{threaded}} = \frac{[ES]}{E_0} = \frac{F_x}{F_{\text{max}}}$$

(3)

where F_x is the increment in signal in an experiment with a given cellulose load (35).

The curves were fitted to exponential functions of the type $F_x(t) = F_{eq}(1 - e^{-kt})$, where $F_x(t)$ is the real-time fluorescence signal, and F_{eq} is the equilibrium fluorescence signal, i.e., the plateau level for each substrate load.

The method has a dead time of a few hundred milliseconds (35), and this interval was thus ignored in the data analysis. The method allows for simple determination of the on-rate, v_{on} as the initial slope of the fluorescence signal. The initial slopes were determined as the mathematical derivative of the fitted exponential functions for $t \rightarrow 0$.

The interpretation of the data is based on the assumption that the substrate oxidation does not affect the fluorescence signal of the enzyme–substrate complex. A previous study has shown that the tryptophan at residue 38 (W38) makes a substantial contribution to the increase in fluorescence signal for TrCel7A (35). This residue is situated in the middle of the catalytic tunnel of Cel7A, approximately 20–25 Å from the reducing end. Thus, we assume that the increase in fluorescent signal upon substrate binding is independent of the oxidation and instead represents the number of substrate-bound tryptophan residues, in particular W38.

The data in Figure 5 show initial rates of complexation, v_{on}/E_0, for TrCel7A, TrCel7A, and MhCel7A on PASC and oxidized PASC as a function of substrate load. The results show that v_{on}/E_0 scaled linearly with the substrate load. It follows that the on-rate constants, k_{on}, can be assessed as the slope of the best-fit line to the experimental data. It directly appears from Figure 5 that the on-rate constants were lower on the oxidized cellulose compared with the nonoxidized cellulose for all three cellobiohydrolases. The on-rate constant k_{on} of TrCel7A, TrCel7A, and MhCel7A was approximately 20%, 15%, and 10% lower on the oxidized substrate compared with the nonoxidized substrate, respectively.

The dissociation constant, K_d, was determined as the half-saturation constant of a plot of the fluorescence equilibrium (F_{eq}) against the substrate load as described elsewhere (Fig. S5) (35). Finally, the off-rate constant k_{off} could be derived from the relationship $K_d = k_{off}/k_{on}$. The parameters of the three cellobiohydrolases on oxidized and nonoxidized PASC are listed in Table 1.

The standard error on the derived parameter, K_d, and hence k_{off} was relatively high compared with the difference between the obtained parameters. For this reason, we cannot draw any clear conclusions based on these parameters. However, no systematic trend k_{off} was detected for the two substrates.

The results in Figures 2–5 showed that C1-oxidations affected the activity and rate of complexation of the cellobiohydrolases to different degrees. To investigate if these differences could be related to the frequency of endolytic attacks, we studied the activity of the three cellobiohydrolases on azurine-cross-linked cellulose. The results in Figure 6 show the activity of the three cellobiohydrolases and an endoglucanase TrCel7B for comparison against azurine-cross-linked cellulose. As expected, the endoglucanase showed much higher activity (240-fold) on this substrate than the cellobiohydrolases. The results revealed only moderate differences between the three cellobiohydrolases, with the lowest activity observed for TrCel7A.

Table 1

Parameters from Michaelis–Menten experiments, processivity experiments, and real-time measurement of complexation

Cel7A	Substrate	V_{max}/E_0 (s$^{-1}$)	K_M (g L$^{-1}$)	n	k_{on} (L/g s$^{-1}$)	K_d (gL$^{-1}$) $\times 10^3$	k_{off} (s$^{-1}$) $\times 10^3$
TrCel7A	PASC	0.47 ± 0.02	1.11 ± 0.15	9.5	1.97 ± 0.07	33.33 ± 5.52	65.76 ± 11.17
	Oxidized PASC	0.32 ± 0.01	0.65 ± 0.07	8.4	1.53 ± 0.04	37.99 ± 3.60	58.12 ± 5.72
TrCel7A	PASC	1.10 ± 0.02	0.26 ± 0.03	15.7	1.55 ± 0.03	20.29 ± 2.13	31.45 ± 3.36
	Oxidized PASC	0.92 ± 0.02	0.19 ± 0.02	15.8	1.31 ± 0.02	24.56 ± 3.75	32.12 ± 4.94
MhCel7A	PASC	1.94 ± 0.06	0.65 ± 0.08	10.7	1.85 ± 0.06	24.43 ± 2.59	45.17 ± 5.04
	Oxidized PASC	1.65 ± 0.05	0.58 ± 0.08	10.1	1.67 ± 0.01	35.08 ± 2.58	58.55 ± 4.33
while \(\text{TrCel7A} \) and \(\text{MhCel7A} \) showed similar activities against azurine-cross-linked cellulose.

Discussion

While the boosting effect of LPMOs is well documented on cellulase cocktails, pronounced impeding effects have been reported between C1-oxidizing LPMOs and reducing end-cellobiohydrolases from *Trichoderma* spp. (17, 21–23). This may be of high industrial relevance as GH7 cellobiohydrolases are often the most prevalent members of fungal cellulolytic cocktails (24). The mechanism for the impeding effect has never been investigated, but different interpretations have been put forward. Current suggestions that could explain the impeding effect are: enzyme–enzyme competition for sites (17), enzymes blocking the activity of each other, oxidative inactivation (21, 39), and inability or reduced ability of the cellobiohydrolases to attack C1-oxidized cellulose chain ends (22, 23). In this present study, we investigated the mechanism behind this undesirable effect. Furthermore, we investigated whether the impeding effect of C1-oxidizing AA9s is limited to a few cellobiohydrolases or is generic for GH7 cellobiohydrolases. The three cellobiohydrolases from *T. reesei*, *M. heterothallica*, and *T. terrestris* were heterogeneously expressed in the same host organism and thoroughly characterized biochemically. The synergistic effect between the LPMO and the cellobiohydrolyses was systematically investigated in terms of their degree of synergy (DS). Furthermore, we investigated the effect of oxidations on the substrate on the Michaelis–Menten kinetics, pre-steady-state kinetics, and rate of substrate complexation of the three cellobiohydrolyses.

LPMO–cellobiohydrolases synergy

The data in Figure 1 show that the synergistic effect between the LPMO and each of the three GH7 cellobiohydrolases varied

Figure 3. Real-time recording of hydrolytic activity against PASC and oxidized PASC. Cellobiose production of 100 nM \(\text{TrCel7A} \) (left graph), \(\text{TrCel7A} \) (middle graph), and \(\text{MhCel7A} \) (right graph) against 1 g/L PASC (black squares) or oxidized PASC (red circles) plotted against time. The experiments were performed in triplicates, and each symbol represents a replicate measurement.

Figure 4. Real-time fluorescence data for the complexation of phosphoric acid swollen cellulose (PASC) and oxidized PASC. A, real-time fluorescence data for the complexation of various loads of PASC (left) and oxidized PASC (right) of \(\text{TrCel7A} \) represented as the fraction of threaded enzymes, \(\Phi_{\text{threaded}} \) against time. The lines represent the best fit to an exponential function of the type, \(F_t(t) = F_{\text{eq}}(1 - e^{-kt}) \). B. Enlargements of the data from 0 to 20 s, as indicated by the dotted boxes in A.
Impeding effect of LPMOs on cellobiohydrolases

Figure 5. Initial rate of complexation as a function of substrate load. Initial rate of complexation V_{cat}/E_0 of TrCel7A, TtCel7A, and MhCel7A, derived from the time course experiments as shown for TrCel7A in Figure 4 (and in Fig. S4 for MhCel7A and TtCel7A), plotted as a function of the load of PASC (black squares) or oxidized PASC (red circles). Error bars represent standard deviations (SD). The lines represent best fit of linear regressions, and the slope of each regression signifies the on-rate constant, k_{on}.

noticeably. Neutral or slight synergistic effects were observed for the pair MhCel7A+TrIAA9 with DS values of 1–1.2. In contrast, impeding effects were observed for the pairs TrCel7A+TrAA9 and TtCel7A+TtAA9. The pair TrCel7A+TrAA9 showed pronounced impeding effects at all Cel7A:TrAA9 ratios tested with DS values in the range 0.5–0.8. This is similar to DS values previously published for the same enzyme pair (22). The impeding effect was less pronounced for the pair TtCel7A+TtAA9 with DS values of 0.7–1.

Previous reports of impeding effects between C1-oxidizing LPMOs and cellobiohydrolases are based on experimental data with GH7 cellobiohydrolases from Trichoderma spp. (17, 21–23). The data in Figure 1 show that the impeding effect between GH7 cellobiohydrolases and C1-oxidizing LPMOs is not limited to cellobiohydrolases from the AA9 poor Trichoderma spp. and that impeding effects may also occur when both the C1-oxidizing LPMO and the GH7 cellobiohydrolase are from the same organism as for the pair TrCel7A and TrAA9.

Cellulbiohydrolase activity against oxidized cellulose

To investigate the mechanism behind the impeding effect, we studied how chemical cellulose oxidation at the C1-position affected the kinetics of cellobiohydrolases. We performed Michaelis–Menten experiments (Fig. 2), i.e., experiments with low enzyme concentration and varying substrate loads until saturation and inverse Michaelis–Menten experiments (30) (Fig. S2), i.e., experiments with low substrate load and varying enzyme concentrations until saturation. Furthermore, we studied the cellobiose formation in real-time pre-steady-state measurements (Fig. 3). The data in Figures 2 and 3 consistently showed that the activity of the cellobiohydrolases, assessed as the maximal velocity or the cellobiose production, was lower on the oxidized substrate than on the nonoxidized substrate. In contrast to the results of the Michaelis–Menten experiments and the pre-steady-state measurements, we observed almost identical inverse Michaelis–Menten curves on the oxidized substrate compared with that on the nonoxidized substrate (Fig. S2). When comparing the decrease in V_{max}/E_0 and the decrease in cellobiose production after 5 min contact time (Fig. 3), we see that the impeding effect of the cellulose oxidation scaled with the synergy results from Figure 1. TrCel7A, the cellobiohydrolase that showed the most pronounced impeding effect with the LPMO (DS ~ 0.5–0.8 in Fig. 1), was also the cellobiohydrolase that was most negatively affected by the chemical oxidation. Furthermore, MhCel7A that showed no or slight synergy with the LPMO was least affected by the oxidations. The scaling between these independent experiments is interesting since they were made in the presence or absence of LPMOs, applying two different cellulose substrates (Avicel or PASC) and timescales. This is an indication that the impeding effect of C1-oxidizing LPMOs on the activity of GH7 cellobiohydrolases is related to the LPMO-induced oxidations on the substrate and not to the presence of the LPMO itself. Hence, we propose that C1-oxidizing LPMOs create poor attack sites for the cellobiohydrolase. Kinetic investigation of three cellobiohydrolases shows that the magnitude of the impeding effect differs but arises from a lower complexation rate. We cannot rule out other effects such as enzyme–enzyme competition for sites, enzymes blocking the activity of each other, or inactivation by LPMO generated H_2O_2, but our result shows that decreased
Impeding effect of LPMOs on cellobiohydrolases

Based on molecular dynamics simulation, LPMOs have been suggested to synergize with glycoside hydrolases by creating more solvent-accessible ends for glycoside hydrolases (19). The results in Figure 1 do not suggest a synergistic effect between reducing-end cellobiohydrolases and C1-oxidizing LPMOs, and the reduction in k_{on} on oxidized cellulose compared with nonoxidized cellulose indicates that the oxidized ends are poor attack sites for GH7 cellobiohydrolases. The oxidative activity of C1-oxidizing LPMOs thus effectiveness reduces the amount of available good stack sites for reducing-end cellobiohydrolases.

Previous studies have shown that cellobiohydrolases may initiate hydrolysis internally in cellulose strands and hence use an endo-processive mode of action (49, 52, 53). As the extent of the impeding effect of C1-oxidations differed for the three cellobiohydrolases, one may speculate that the cellobiohydrolases differ in their propensity for endo-lytic attacks and hence may be more or less affected by changes to the chain ends. The results in Figure 6 showed that all three cellobiohydroxylases had low activity against the endo-cellulase specific substrate, AZCL-HE-cellulose. The data showed only moderate differences in AZCL-HE-cellulose activity of the three cellobiohydroxylases, which did not correlate with the degree of the impeding effect. This suggests that the extent to which the cellobiohydroxylases were impeded by the oxidations could not be explained by differences in potential auxiliary endo-lytic activity.

The data presented here showed that oxidations led to reduced activity of all the cellobiohydroxylases and that two out of three cellobiohydroxylases were significantly impeded by the LPMO while one was unaffected or slightly boosted by the LPMO. This suggests that the well-known promoting effect of C1-oxidizing LPMOs on cellulolytic cocktails (2, 54) is not due to a direct promotion of the turnover of GH7 cellobiohydroxylases. This is in line with the results of a recent study from our lab in which we suggested that the favorable effect of the LPMO predominantly reflected direct activation of endoglucanases and not the generation of new attack sites for cellobiohydroxylases (23). We imagine that these results may be relevant for optimization of cellulolytic cocktails.

Detailed biochemical analyses of the cooperation between a C1-oxidizing LPMO and three GH7 cellobiohydroxylases from different fungi revealed distinct differences in synergistic effects between the LPMO and the three cellobiohydroxylases. One out of three cellobiohydroxylases was severely impeded, one...
Impeding effect of LPMOs on cellobiohydrolases

was moderately impeded, while the last was unaffected or slightly boosted by the LPMO.

Our results showed that the impeding effect is attributable to the introduction of oxidations on the cellulose surface, which reduced the maximal velocity and rate of substrate complexation of the cellobiohydrolases. The activity of C1-oxidizing LPMOs is thus effectively reducing the amount of available good attack sites for cellobiohydrolases. The severity of these effects varied considerably among the cellobiohydrolases, which may be relevant to consider when optimizing LPMO-enriched cellulolytic cocktails.

Experimental procedures

Enzymes

T. terrestris AA9E (*TtAA9*, previously *TtGH61E*) was provided as broth from Novozymes (Denmark) and purified and copper loaded as described elsewhere (55). *T. reesei* Cel7A (*TrCel7A*), *M. heterothallica* Cel7A (*MhCel7A*), and *T. reesei* Cel7A (*TtCel7A*) were expressed in *Aspergillus oryzae* as described elsewhere (56). *TrCel7A* and *MhCel7A* were purified from the fermentation broths by hydrophobic interaction chromatography followed by ion-exchange chromatography on an AKTA system (GE Healthcare) as described elsewhere (57). *TtCel7A* was purified by hydrophobic interaction chromatography as for *TrCel7A* and *MhCel7A*, followed by size-exclusion chromatography on a HiLoad Superdex 75 pg column (GE Healthcare) equilibrated with 25 mM MES, pH 6.0. Next, the sample was purified by ion-exchange chromatography on a 26 ml SOURCE 15S column equilibrated with 50 mM acetate buffer pH 3. The sample was eluted with a linear gradient from 100 to 200 mM sodium chloride for 1.5 column volumes followed by 1.5 column volumes of 300 mM sodium chloride. The samples were purified to apparent homogeneity on a NuPAGE 4–12% Bis-Tris SDS-PAGE (Fig. S6). The enzyme concentrations were determined based on UV absorption and theoretical extinction coefficients (58) of 86,760 M⁻¹ cm⁻¹ (*TrCel7A*), 88,250 M⁻¹ cm⁻¹ (*MhCel7A*), 94,780 M⁻¹ cm⁻¹ (*TtCel7A*), *TtAA9E* M⁻¹ cm⁻¹ (58,120). *Aspergillus niger* β-glucosidase was purchased from Megazyme.

Substrates

Avicel PH101 (Sigma-Aldrich) was washed four times in MilliQ water and three times in 50 mM acetate buffer pH 5.0 (henceforth called standard buffer). Phosphoric acid swollen cellulose (PASC) was produced from Avicel PH101 (Sigma-Aldrich) as described previously (59). The PASC suspension was divided into two stocks; one was washed three times in standard buffer and resuspended in standard buffer, this stock is referred to as PASC, the other stock was treated with CuSO₄ as described below and referred to as oxidized PASC.

Oxidation of insoluble reducing ends in PASC by Cu(II)

The reducing ends in PASC were oxidized with CuSO₄ as described elsewhere (41). In short, 17 g/L PASC was incubated with 2.8 mM CuSO₄, 46 mM bichinchoninic acid (BCA), and 170 mM Na₂CO₃ in 100 ml suspension. The mixture was incubated at room temperature in an orbital shaker at 5 rpm for 30 days. Hereafter a sample was kept for quantification of the oxidation level, and the PASC was washed ten times in 2 L water and three times in standard buffer using a vacuum pump and resuspended in standard buffer. To verify that the oxidation method solely oxidized the C1-position of the glucose moieties and that it did not introduce chain breakages, samples of 500 μM cellotetraose were incubated 30 days at room temperature with 2.8 mM CuSO₄, 46 mM BCA, and 170 mM Na₂CO₃. The products were analyzed as described below for the PASC preparation and by high-performance anion exchange chromatography with a pulsed amperometric detection (HPEAC-PAD) as described elsewhere (60).

Quantification of the level of oxidation

When PASC was mixed with CuSO₄, BCA, and Na₂CO₃, a violet color of the Cu(I)BCA₂ complex developed, which could be detected at 560 nm. This indicated that Cu(II) was reduced to Cu(I) while the reducing ends in the cellulose were oxidized (61). The level of oxidation was determined by colorimetric quantification of Cu(I)BCA₂ in the presence of L-serine by two approaches: (1) by quantifying Cu(I)BCA₂ in the supernatant of the sample, and (2) by quantifying the remaining reducing ends in the PASC and comparing with a nontreated sample. For both approaches, samples of 500 μl oxidized PASC and 500 μl noxidized PASC were used. The samples were centrifuged, and 200 μl supernatant was used to quantify Cu(I)BCA₂ as described elsewhere (61), and the pellet was kept for quantification of remaining reducing ends. (1) The concentration of glucose-equivalent reducing ends was quantified based on a linear calibration curve with six concentrations of glucose in the range of 0–0.125 mM. The quantification of the level of oxidation was based on the theoretical amount of reducing ends in a nontreated PASC sample. This was estimated using an average degree of polymerization (DP) of Avicel of 218 (62), as 1/218 of the anhydroglucosyl units. (2) The pellets were washed 20 times with 1 ml MilliQ water by centrifugation and resuspension. The concentration of insoluble reducing ends was quantified as described elsewhere (61). A calibration curve with varying loads of PASC was linear in the range 0–5 g/L. Using this data, we plotted the measured concentration of reducing ends as a function of the theoretical concentration of reducing ends as described above and found a slope of 0.92, indicating that the method could be used to estimate the number of insoluble reducing ends. The samples were diluted ten times in MilliQ water to reach 1.7 g/L. The level of oxidation was determined from the difference in reducing ends in the nontreated sample and the reducing ends in the Cu(II) treated sample. All experiments were performed in triplicates.

Synergy experiments

The activity of each cellobiohydrolase (*TrCel7A*, *TtCel7A*, or *MhCel7A*) and *TtAA9* was assessed alone and in combinations (*Cel7A + *TtAA9*). In experiments with mixtures of
Cel7A and AA9, the total enzyme concentration was 1 μM, while the ratio of the two components was varied systematically. In experiments with only Cel7A or TrAA9, the enzyme concentration varied from 0 to 1 μM. All samples were incubated with 10 g/L Avicel, 1 mM ascorbic acid in 50 mM acetate buffer at pH 5 in 96-well plates in a Thermomixer C (Eppendorf) at 50 °C, 1100 rpm, for 3 h. Hereafter, the plates were centrifuged at 3000g for 3 min, and 50 μl supernatant was mixed with 1.7 U/ml β-glucosidase from A. niger (Megazyme) in a total volume of 150 μl. The samples were incubated at 50 °C, 300 rpm, for 20 h. Hereafter, 65 μl sample was transferred to a PCR plate, and the concentration of reducing sugars was determined using the p-hydroxybenzoic acid hydrazide (PAHBAH) assay as described earlier (63). The concentration of reducing sugars was determined based on linear calibration curves with eight different concentrations of glucose in the range 0–1 mM in standard buffer, which was included in each plate.

Michaelis–Menten assay

Samples of varying loads of PASC or oxidized PASC in the range 0–8 g/L and 100 mM celllobiohydrolase (TrCel7A, TrCel7A, or MhCel7A) were incubated in 96-well plates in a Thermomixer C (Eppendorf) at 50 °C, 1100 rpm, for 1 h. Hereafter, the plates were centrifuged at 2000g for 3 min, and 65 μl supernatant was transferred to a PCR plate. The concentration of reducing sugars was determined using the PAHBAH assay as described earlier (63). The concentration of reducing sugars was determined based on linear calibration curves with eight different concentrations of glucose in the range 0–1 mM in standard buffer, which were included in each plate.

Product profile

Samples of 4 g/L PASC or oxidized PASC and 100 nM celllobiohydrolase (TrCel7A, TrCel7A, or MhCel7A) in a final volume of 250 μl were incubated in 96-well plates in a Thermomixer C (Eppendorf) at 50 °C, 1100 rpm, for 1 h. Hereafter, the plates were centrifuged at 2000g for 3 min, and 100 μl supernatant was mixed with 200 μl 0.1 M NaOH. The samples were analyzed by HPAEC on an ICS5000 system equipped with a pulsed amperometric detector (PAD) (Dionex), a CarboPac PA1 guard column (4 × 50 mm), and an analytical CarboPac PA1 column (4 × 250 mm). The analysis was eluted at 1.3 ml min⁻¹ at 30 °C, and the initial condition was 100% 0.1 M NaOH (eluent A). A linear gradient was applied, increasing the proportion of eluent B (0.5 M NaOAc in 0.1 M NaOH) to 15% B after 7.5 min. A steep linear gradient was applied to reach 85% B after 7.75 min. Hereafter, a linear gradient was applied to reach initial conditions after 8 min. These conditions were kept for 4.5 min. The products were assigned based on standard solutions containing glucose, cellobiose, and cello-oligomers with a degree of polymerization (DP) up to four (Megazyme) and oxidized standards generated by base-catalyzed oxidation of the native cello-oligomers with iodine as described elsewhere (60).

Impeding effect of LPMOs on celllobiohydrolases

Biosensor measurements

Real-time measurements were performed with a celllobiose dehydrogenase (CDH) biosensor. The biosensors were prepared as described previously (31). The measurements were performed with 1 g/L PASC or oxidized PASC and addition of 100 nM TrCel7A, TrCel7A, or MhCel7A in a final volume of 4 ml.

Real-time measurement of complexation

Measurements of complexation were conducted in a Jasco FP-8200 spectrofluorometer equipped with a custom-made injection inlet to the quartz cuvette and a thermostat set to 25 °C and magnetic stirrer (Jasco STR-811) as described earlier (35).

The method relies on changes in the fluorescence emission at 328 nm when celllobiohydrolases bind the substrate. The fluorescence signal was monitored (excitation 295 nm, emission 328 nm) from 2 ml of 250 mM celllobiohydrolase with vigorous stirring. After 5 s, the signal was stable, and 100 μl PASC or oxidized PASC was added with a syringe, and the changes in fluorescence were recorded over 200 s. Hereafter a full spectrum (excitation 295 nm, emission 310–500 nm) was recorded. These two experiments were repeated with six different loads of PASC and oxidized PASC (in the range 7.5 mg/L-200 mg/L) for each of the three celllobiohydrolases. Full spectra (excitation 295 nm, emission 310–500 nm) were also recorded with bovine serum albumin (BSA) with all the tested substrate loads (both PASC and oxidized PASC) as controls to assess the loss in emission associated with light scattering from the substrates as described earlier (35). The loss of emission was identical for the two substrates (Fig. S7).

Activity against AZCL-HE-cellulose

Endolytic activity was determined using the insoluble substrate azurine-cross-linked cellulose (AZCL-HE-Cellulose) (Megazyme). The substrate load was 3 g/L, and the enzyme concentrations were 5 μM for the celllobiohydrolases and 0.1 μM for the endoglucanase. The samples were incubated in a 96-well plate in a Thermomixer C (Eppendorf) at 50 °C, 1100 rpm, for 2 h. Hereafter the plate was centrifuged, and 100 μl supernatant was transferred to a 96-well plate, and the absorbance was measured at 595 nm.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supporting information.

Supporting information—This article contains supporting information.

Acknowledgments—This study was funded by the Innovation Fund, Denmark (grant numbers: 7043-00016B and 5150-00020B), the Novo Nordisk Foundation (grant numbers: NNF15OC0016606, NNFSA170028392, and NNF16OC0021832), and the Carlsberg Foundation.
Impeding effect of LPMOs on celllobiohydrolases

Author contributions—M. B. K., S. F. B., B. M. B., and P. W. Conceptualization. M. B. K., S. F. B., T. H. S., and N. R. Investigation. M. B. K., J. K., and P. W. Formal analysis. M. B. K., S. F. B., N. R., J. K., and P. W. Methodology. M. B. K. Writing—original draft. S. F. B., J. K., B. M. B. Writing-review, and editing. S. F. B., B. M. B., K. B., and P. W. Supervision. B. B. Validation. K. B. Resources. B. M. B., K. B., and P. W. Project administration.

Conflicts of interest—The authors declare the following conflicts of interest: Nanna Rojel, Trine H. Sørensen, Kim Borch, and Brett McBrayer work for Novozymes A/S, a major manufacturer of industrial enzymes.

Abbreviations—The abbreviations used are: AA, auxiliary activity; BCA, bicinchoninic acid; CDH, cellobiose dehydrogenase; DP, degree of polymerization; DS, degree of synergy; GH, glycoside hydrolyase; HPAEC-PAD, high-performance anion-exchange chromatography with pulsed amperometric detection; LPMO, lytic polysaccharide monoxygenase; PAHBAH, p-hydroxybenzoic acid hydrazide; PASC, phosphoric acid swollen cellulose.

References
1. Vaaje-Kolstad, G., Westereng, B., Horn, S. J., Liu, Z., Zhai, H., Serlie, M., and Eijssink, V. G. H. (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219–222
2. Harris, P. V., Xu, F., Kreel, N. E., Kang, C., and Fukuyama, S. (2014) New role of enzymes in improving the adsorption/desorption of hydrolytic cellulase enzymes. Green. Chem. 16, 6329–6336
3. Zhou, H., Li, T., Yu, Z., Ju, J., Zhang, H., Tan, H., Li, K., and Yin, H. (2019) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monoxygenases. J. Am. Chem. Soc. 141, 889–892
4. Forsberg, Z., Vaaje-Kolstad, G., Westereng, B., Bunsæ, A. C., Stenstrøm, Y., Mackenzie, A., Serlie, M., Horn, S. J., and Eijssink, V. G. H. (2011) Cleavage of cellulose by a cbb3 protein. Protein Sci. 20, 1479–1483
5. Quinlan, R. J., Arackian, M. D., Lo Leggio, L., Otten, H., Poulsen, P. C., Johansen, K. S., Krogh, K. B. R. M., Jorgensen, C. I., Toborg, M., Anthonsen, A., Tryfona, T., Walter, C. P., Dupree, P., Xu, F., Davies, G. I., et al. (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl. Acad. Sci. U. S. A. 108, 15079–15084
6. Horn, S. J., Vaaje-Kolstad, G., Westereng, B., and Eijssink, V. G. (2012) Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels. 5, 45
7. Brown, K., Harris, P., Zaretsky, E., Re, E., Vlasenko, E., McFarland, K., and Lopez de Leon, A. (August 18, 2005) Polypeptides having cellulytic enhancing activity and polynucleotides encoding same, WIPO patent WO 2005074677
8. Dotson, W. D., Greenier, J., and Ding, H. (January 5, 2006) Polypeptides having cellulytic enhancing activity and polynucleotides encoding same, US patent 20060005279
9. Cannella, D., Hsieh, C.-W. C., Felby, C., and Jørgensen, H. (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol. Biofuels. 5, 26
10. Müller, G., Várnai, A., Johansen, K. J., Eijssink, V. G. H., and Horn, S. J. (2015) Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnol. Biofuels. 8, 187
11. Johansen, K. S. (2016) Discovery and industrial applications of lytic polysaccharide mono-oxygenases. Biochem. Soc. Trans. 44, 143–149
12. Harris, P. V., Xu, F., Kreel, N. E., Kang, C., and Fukuyama, S. (2014) New enzyme insights drive advances in commercial ethanol production. Curr. Opin. Chem. Biol. 19, 162–170
13. Beeson, W. T., Yu, V. V., Span, E. A., Phillips, C. M., and Marletta, M. A. (2015) Cellulose degradation by polysaccharide monoxygenases. Annu. Rev. Biochem. 84, 923–946
14. Villares, A., Moreau, C., Benatti-Granier, C., Garajova, S., Foucat, L., Falourd, X., Saake, B., Berrin, J. G., and Cathala, B. (2017) Lytic polysaccharide monoxygenases disrupt the cellulose fibers structure. Sci. Rep. 7, 40262
15. Ebinger, M., Sattelkow, J., Ganner, T., Plank, H., and Nidetzky, B. (2017) Single-molecule study of oxidative enzymatic deconstruction of cellulose. Nat. Commun. 8, 894
16. Song, B., Li, B., Wang, X., Shen, W., Park, S., Collings, C., Feng, A., Smith, S. I., Walton, J. D., and Ding, S.-Y. Y. (2018) Real-time imaging reveals that lytic polysaccharide monoxygenase promotes cellulase activity by increasing cellulase accessibility. Biotechnol. Biofuels. 11, 41
17. Ebinger, M., Ganner, T., Bubner, P., Rosker, P., Kracher, D., Haltrich, D., Ludwig, R., Plank, H., and Nidetzky, B. (2014) Cellulase surface degradation by a lytic polysaccharide mono-oxygenase and its effect on cellulase hydrolytic efficiency. J. Biol. Chem. 289, 35929–35938
18. Moreau, C., Tapin-Lingua, S., Griesel, S., Gimbert, I., Le Gall, S., Meyer, V., Petit-Conil, M., Berrin, J. G., Cathala, B., and Villares, A. (2019) Lytic polysaccharide monoxygenases (LPMOs) facilitate cellulose nanofibril production. Biotechnol. Biofuels. 12, 13–17
19. Vermaas, J. V., Crowley, M. F., Beckham, G. T., and Payne, C. M. (2015) Effects of lytic polysaccharide monoxygenase oxidation on cellulose structure and binding of oxidized cellulase oligomers to cellulases. J. Phys. Chem. B. 119, 6129–6143
20. Hu, J., Pribowo, A., and Saddler, J. N. (2016) Oxidative cleavage of some cellulotic substrates by auxiliary activity (AA) family 9 enzymes influences the adsorption/desorption of hydrolytic cellulase enzymes. Green. Chem. 18, 6329–6336
21. Zhou, H., Li, T., Yu, Z., Ju, J., Zhang, H., Tan, H., Li, K., and Yin, H. (2019) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monoxygenases. J. Am. Chem. Soc. 141, 889–892
22. McBrayer work for Novozymes A/S, a major manufacturer of interest: Nanna Røjel, Trine H. Sørensen, Kim Borch, and Brett McBrayer work for Novozymes A/S, a major manufacturer of industrial enzymes.
33. Nakamura, A., Watanabe, H., Ishida, T., Uchihashi, T., Wada, M., Ando, T., Igarashi, K., and Samejima, M. (2014) Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose. J. Am. Chem. Soc. 136, 4584–4592
34. Wilson, D. B., and Kostylev, M. (2012) Cellulase processivity. Methods Mol. Biol. 908, 93–99
35. Røjel, N., Kari, J., Sørensen, T. H., Badino, S. F., Morth, J. P., Schaller, K., Christensen, S. J., Krogh, K. B. R. M., Spodsberg, N., Borch, K., and Westh, P. (2016) Inter-domain synergism is required for efficient feeding of cellulose chain into active site of cellobiohydrolase Cel7A. J. Biol. Chem. 291, 26013–26023
36. Jung, J., Sethi, A., Gaiotto, T., Han, J. J., Jeoh, T., Gnanakaran, S., and Goodwin, P. M. (2013) Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging. J. Biol. Chem. 288, 24164–24172
37. Jalak, J., and Väljamäe, P. (2010) Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol. Bioeng. 106, 871–883
38. Praestgaard, E., Elmerdahl, J., Murphy, L., Nymand, S., McFarland, K. C., Borch, K., and Westh, P. (2011) A kinetic model for the burst phase of processive cellulases. FEBS J. 278, 1547–1560
39. Xu, F., Ding, H., and Tejirian, A. (2009) Detrimental effect of cellulose oxidation on cellulose hydrolysis by cellulase. Enzyme Microb. Technol. 45, 203–209
40. Yang, J., Tu, M., Xia, C., Keller, B., Huang, Y., and Sun, F. F. (2019) Effect of Fenton pretreatment on C1 and C6 oxidation of cellulose and its enzymatic hydrolyzability. ACS Sustain. Chem. Eng. 7, 7071–7079
41. Christensen, S. J., Krogh, K. B. R. M., Spodsberg, N., Borch, K., and Westh, P. (2019) A biochemical comparison of fungal GH6 cellobiohydrolase variants and polynucleotides encoding same. FEBS J. 286, 32459–32468
42. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423
43. Wood, T. M. (1988) Preparation of crystalline, amorphous, and dyed cellulose substrates. Methods Enzymol. 160, 19–25
44. Kato, Y., Habu, N., Yamaguchi, J., Kobayashi, Y., Shibata, I., Isogai, A., and Samejima, M. (2014) Trafics jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 343, 1279–1282
45. Kuryas, M., and Väljamäe, P. (2011) Processivity of cellobiohydrolases is limited by the substrate. J. Biol. Chem. 286, 169–177
46. Kuri, J., Olsen, L., Borch, K., Cruys-Bagger, N., Jensen, K., and Westh, P. (2014) Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity. J. Biol. Chem. 289, 32459–32468
47. Kuri, J., Olsen, L., Borch, K., Cruys-Bagger, N., Jensen, K., and Westh, P. (2014) Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity. J. Biol. Chem. 289, 32459–32468
48. Wood, T. M. (1988) Preparation of crystalline, amorphous, and dyed cellulose substrates. Methods Enzymol. 160, 19–25
49. Kuri, J., Olsen, L., Borch, K., Cruys-Bagger, N., Jensen, K., and Westh, P. (2014) Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity. J. Biol. Chem. 289, 32459–32468
50. Kuri, J., Olsen, L., Borch, K., Cruys-Bagger, N., Jensen, K., and Westh, P. (2014) Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity. J. Biol. Chem. 289, 32459–32468

Impeding effect of LPMOs on cellobiohydrolases

33. Nakamura, A., Watanabe, H., Ishida, T., Uchihashi, T., Wada, M., Ando, T., Igarashi, K., and Samejima, M. (2014) Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose. J. Am. Chem. Soc. 136, 4584–4592
34. Wilson, D. B., and Kostylev, M. (2012) Cellulase processivity. Methods Mol. Biol. 908, 93–99
35. Rejel, N., Kari, J., Sørensen, T. H., Badino, S. F., Morth, J. P., Schaller, K., Cavaleiro, A. M., Borch, K., and Westh, P. (2020) Substrate binding in the processive cellulase Cel7A: Transition state of complexation and roles of conserved tryptophan residues. J. Biol. Chem. 295, 1454–1463
36. Divine, C., Stålhberg, J., Teeri, T. T., and Jones, T. A. (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesi. J. Mol. Biol. 275, 309–325
37. Boer, H., and Koivula, A. (2003) The relationship between thermal stability and pH optimum studied with wild-type and mutant Trichoderma reesi cellobiohydrolase Cel7A. Eur. J. Biochem. 270, 841–848
38. Xu, Y. B., Qing, S. Y., and Pelli, G. (1997) Intrinsic fluorescence in endoglucanase and cellobiohydrolase from Trichoderma pseudokinigii S-38: Effects of pH, quenching agents, and ligand binding. J. Protein Chem. 16, 681–688
39. Scott, B. R., Huang, H. Z., Frickman, J., Halvorsen, R., and Johansen, K. S. (2016) Catalase improves saccharification of lignocellulose by reducing lytic polysaccharide monoxygenase-associated enzyme inactivation. Biotechnol. Lett. 38, 425–434
40. Kato, Y., Habu, N., Yamaguchi, J., Kobayashi, Y., Shibata, I., Isogai, A., and Samejima, M. (2002) Biodegradation of β-1,4-linked polyglucuronic acid (celluronic acid). Cellulose 9, 75–81
41. Xu, F., Ding, H., and Tejirian, A. (2009) Detrimental effect of cellulose oxidation on cellulose hydrolysis by cellulase. Enzyme Microb. Technol. 45, 203–209
42. Yang, J., Tu, M., Xia, C., Keller, B., Huang, Y., and Sun, F. F. (2019) Effect of Fenton pretreatment on C1 and C6 oxidation of cellulose and its enzymatic hydrolyzability. ACS Sustain. Chem. Eng. 7, 7071–7079
43. Christensen, S. J., Krogh, K. B. R. M., Spodsberg, N., Borch, K., and Westh, P. (2019) A biochemical comparison of fungal GH6 cellobiohydrolases. Biochem. J. 476, 2157–2172
44. Kont, R., Kari, J., Borch, K., Westh, P., and Väljamäe, P. (2016) Inter-domain synergism is required for efficient feeding of cellulose chain into active site of cellobiohydrolase Cel7A. J. Biol. Chem. 291, 26013–26023
45. Jung, J., Sethi, A., Gaiotto, T., Han, J. J., Jeoh, T., Gnanakaran, S., and Goodwin, P. M. (2013) Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging. J. Biol. Chem. 288, 24164–24172
46. Jalak, J., and Väljamäe, P. (2010) Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol. Bioeng. 106, 871–883
47. Praestgaard, E., Elmerdahl, J., Murphy, L., Nymand, S., McFarland, K. C., Borch, K., and Westh, P. (2011) A kinetic model for the burst phase of processive cellulases. FEBS J. 278, 1547–1560