Advances in Sensing, Response and Regulation Mechanism of Salt Tolerance in Rice

Kimberly S. Ponce 1,2*, Longbiao Guo 1,*, Yujia Leng 2,*, Lijun Meng 3 and Guoyou Ye 3,4

1 State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; kimsuazoponce@gmail.com
2 Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
3 CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; menglijun@caas.cn (L.M.); yeguoyou@caas.cn (G.Y.)
4 Strategic Innovation Platform, International Rice Research Institute, DAPO BOX 7777, Metro Manila 1301, Philippines

* Correspondence: yujialeng@yzu.edu.cn (Y.L.); guolongbiao@caas.cn (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)

Abstract: Soil salinity is a serious menace in rice production threatening global food security. Rice responses to salt stress involve a series of biological processes, including antioxidation, osmoregulation or osmoprotection, and ion homeostasis, which are regulated by different genes. Understanding these adaptive mechanisms and the key genes involved are crucial in developing highly salt-tolerant cultivars. In this review, we discuss the molecular mechanisms of salt tolerance in rice—from sensing to transcriptional regulation of key genes—based on the current knowledge. Furthermore, we highlight the functionally validated salt-responsive genes in rice.

Keywords: rice; salinity; sensing; signaling; transcription factors; osmoregulation; antioxidation; ion homeostasis

1. Background

Soil salinity is one of the most significant abiotic stresses hampering plant growth and development, which ultimately translates to reduced crop yield. Soil salinization is exacerbated by excessive use of chemical fertilizers and soil amendments, improper drainage, and seawater ingress. It is estimated that over 6% of the world’s total land area is salt affected, of which over 12 million hectares are irrigated lands posing a serious threat to irrigated agriculture [1].

Rice, being one of the most important staple crops in the world, is crucial for food security in many Asian countries. However, it is the most salt-sensitive cereal crop, with varying responses at different growth stages [2]. It is relatively salt-tolerant at the germination, active tillering, and maturity stages, whereas it is highly sensitive at the early seedling and reproductive stages [1]. Salt sensitivity during the seedling stage often translates to reduced stand density in salt-affected paddies [3]. Meanwhile, sensitivity during the reproductive stage results in yield reduction, as attributed to spikelet sterility [4,5]. Hence, understanding how rice responds to salt stress is crucial in developing rice cultivars that could withstand salt stress.

Salinity imposes two major stresses in rice, (i) osmotic stress, and (ii) ionic stress. Osmotic stress is characterized by hyperosmotic soil solution disrupting cell turgor, similar to drought’s effect. In contrast, ionic stress is characterized by altered Na+ and K+ concentrations inside the cell, disrupting many biological processes [1]. Both osmotic and ionic...
stresses are perceived by membrane-bound cytosolic sensors that relay the stress signals to secondary messengers. In turn, the secondary messengers activate the protein phosphorylation cascades required for signal transduction pathways to develop salt-tolerant adaptive traits. In general, osmotic stress triggers the plant for stomatal closure, inhibiting shoot elongation. This ultimately results in reduced overall shoot growth, and, to a lesser extent, reduced root growth [6]. Meanwhile, ionic stress inhibits enzyme activity and therefore disrupts many biological processes, such as nitrogen metabolism [7,8]. Excess uptake of Na\(^+\) ions changes the NH\(_4\)\(^+\) assimilation pathway, weakens the glutamate synthase pathway, and elevates the glutamate dehydrogenase pathway, impacting leaf senescence [8]. Thus, plants develop several adaptive mechanisms—namely, Na\(^+\) efflux from the roots to the rhizosphere, Na\(^+\) sequestration into the vacuole, and Na\(^+\) loading and unloading at the xylem—to avert the deleterious effect of Na\(^+\) ions in the cytosol. These mechanisms are mediated by several ion transporters coupled with H\(^+\)-pumps.

In the last decades, a large number of salt-responsive genes have been functionally validated in rice (Table 1). However, the overall gene regulatory network of rice responses to salt stress remains elusive. In this review, we aim to discuss the current research progress in gene regulatory networks involved in the development of salt tolerance adaptive mechanisms in rice. We also highlight the key genes involved in salt stress sensing, signaling, transcriptional regulation, and genes encoding downstream functional molecules.

Table 1. List of functionally validated candidate genes involved from sensing to development of salt tolerance adaptive mechanisms in rice.

Gene Name	Gene ID	Functional Annotation	Method of Validation	* Regulation Role	References
Osmosensing					
SIT1	LOC_Os02g42780	lectin receptor-type protein kinase	Knockdown Overexpression	–	[9]
Signaling					
OsCam1-1	LOC_Os03g20370	Calmodulin CAMK_CAMK_like.12—Ca\^{2+}/calmodulin-dependent protein kinase(CAMK) includes calcium/calmodulin dependent protein kinases	Overexpression	+	[10]
OsCPK4	LOC_Os02g03410	CAMK_CAMK_like.27—CAMK includes calcium/calmodulin dependent protein kinases	Knockdown Overexpression	+	[11]
OsCDPK7	LOC_Os04g49510	CAMK_CAMK_like.26—CAMK includes calcium/calmodulin dependent protein kinases	Overexpression	+	[12,13]
OsCPK12	LOC_Os04g47300	CAMK_CAMK_like.37—CAMK includes calcium/calmodulin dependent protein kinases	Overexpression	+	[14]
OsCPK21	LOC_Os08g42750	CAMK_CAMK_like.4—CAMK includes calcium/calmodulin dependent protein kinases	Overexpression	+	[15,16]
OsCIPK15	LOC_Os11g02240	CAMK_Nim1_like.4—CAMK includes calcium/calmodulin dependent protein kinases	Overexpression	+	[17]
OsCIPK31	LOC_Os03g20380	CAMK_Nim1_like.2—CAMK includes calcium/calmodulin dependent protein kinases	Mutant	+	[18]
OsMAPK5	LOC_Os03g17700	CGMC_MAPKCGMC_2_ERK.2—CGMC includes CDA, MAPK, GSK3, and CLKC kinases	Knockdown Overexpression	+	[19]
OsMAPK33	LOC_Os02g05480	CGMC_MAPKCMGC_2_SLT2y_ERK.1—including cytidine deaminase (CDA), glycogen synthase kinase 3 (GSK3), mitogen-activated protein kinase (MAPK), and CLKC kinases	Knockdown Overexpression	–	[20]
OsMKK1	LOC_Os06g05520	STE_MEK_ste7_MAP2K2.2—STE kinases	Knockdown	+	[21]
OsMKK6	LOC_Os01g32660	STE_MEK_ste11_MAP3K4—STE kinases	Overexpression	+	[22]
OsMaPKKK63	LOC_Os01g50370	STE_MEK_ste11_MAP3K4—STE kinases	Knockdown	–	[23]
Gene Name	Gene ID	Functional Annotation	Method of Validation	* Regulation Role	References
-----------	---------	-----------------------	----------------------	-------------------	------------
Transcriptional regulation					
OsDREB1A	LOC_Os09g35030	Dehydration-responsive element (DRE)-binding protein	Overexpression	+	[24]
OsDREB1D	LOC_Os06g06970	DRE-binding protein	Overexpression	+	[25]
OsDREB1F	LOC_Os01g73770	DRE-binding protein	Overexpression	+	[26]
OsDREB2A	LOC_Os01g07120	APETALA2 (AP2) domain containing protein	Overexpression	+	[27,28]
OsDREB2B	LOC_Os05g27930	AP2 domain containing protein	Overexpression	+	[29]
OsAP23	LOC_Os03g05590	AP2 domain containing protein	Overexpression	–	[30]
OsAP37	LOC_Os01g58420	AP2 domain containing protein	Overexpression	+	[31]
OsSTAP1	LOC_Os03g08470	APETALA2/ethylene-responsive transcription factor (AP2/ERF)-type	Overexpression	+	[32]
OsDREB6	LOC_Os09g20350	ERF transcription factor	Knockdown	+	[33]
SERF1	LOC_Os05g34730	ERF020 transcription factor	Knockdown	+	[34]
OsERF922	LOC_Os01g54970	Ethylene-responsive transcription factor 2	Overexpression	–	[35]
OsRAV2	LOC_Os01g04800	B3 DNA binding domain containing protein	Mutant	+	[36]
OsNAP	LOC_Os03g21060	No apical meristem (NAM) protein	Overexpression	+	[37]
ONAC022	LOC_Os01g04070	NAM protein	Overexpression	+	[38]
ONAC045	LOC_Os11g03370	NAM protein	Overexpression	+	[39]
ONAC063	LOC_Os08g33910	NAM protein	Overexpression	+	[40]
ONAC106	LOC_Os08g33670	NAM protein	Overexpression	+	[41]
OsNAC2	LOC_Os04g38720	NAM protein	Overexpression	+	[42,43]
OsNAC5	LOC_Os11g08210	NAM protein	Overexpression	+	[44,45]
OsNAC6/ SNAC2	LOC_Os01g66120	NAM protein	Overexpression	+	[46,47]
SNA1	LOC_Os03g60080	NAM, ATAF and CUC (NAC) domain-containing protein 67	Overexpression	+	[48]
OsNAC10	LOC_Os11g03300	NAC domain transcription factor	Overexpression	+	[49]
OsNAC41	LOC_Os01g04800	NAC domain transcription factor	Knockdown	+	[50]
OsMYB2	LOC_Os03g20090	Myeloblastosis (MYB) family transcription factor	Overexpression	+	[51]
OsMYB3R-2	LOC_Os01g6210	MYB family transcription factor	Overexpression	+	[52]
OsMYB41	LOC_Os01g74410	MYB family transcription factor	Overexpression	+	[53]
OsMPS	LOC_Os02g40530	MYB family transcription factor	Overexpression	+	[54]
OsMYB91	LOC_Os12g38400	MYB family transcription factor	Overexpression	+	[55]
OsMYBc	LOC_Os09g12770	Adenosine-thymine (AT) hook motif domain containing protein	Mutant	+	[56]
OsABF2	LOC_Os06g10880	Basic leucine-zipper (bZIP) transcription factor	Mutant	+	[57]
OsABIS	LOC_Os01g64000	bZIP transcription factor	Overexpression	–	[58]
OsZIP23	LOC_Os02g52780	bZIP transcription factor	Overexpression	+	[59]
OsZIP71	LOC_Os09g13570	Conservation peptide uORF-containing transcript	Overexpression	+	[60]
OsHRP1b	LOC_Os01g17260	Transcription factor	Overexpression	+	[61]
DST	LOC_Os03g57240	ZOS3-19—C2H2 zinc finger (ZF) protein	Mutant	–	[62]
OsTZF1	LOC_Os05g10670	ZF CCCH type family protein	Knockdown	+	[63]
ZFP179	LOC_Os01g62190	ZOS1-15—C2H2 ZF protein	Overexpression	+	[64]
ZFP182	LOC_Os03g60560	ZOS3-21—C2H2 ZF protein	Mutant	–	[65]
ZFP185	LOC_Os02g10200	ZF A20 and AN1 domain-containing protein	Knockdown	–	[66]
ZFP252	LOC_Os12g39400	ZOS12-09—C2H2 ZF protein	Knockdown	+	[67]
OsLOL5	LOC_Os01g42710	LSD1-like-type ZF protein	Overexpression	+	[68]
OrbHLH601	LOC_Os11g07310	Inducer of CBF expression 2	Overexpression	+	[69]
OsHLH6375	LOC_Os11g06640	Basic helix-loop-helix (bHLH)	Mutant	–	[70]
OsHex22	LOC_Os04g45810	Homeobox associated leucine zipper	Mutant	–	[71]
OsTF1L	LOC_Os08g19590	Homeobox domain containing protein	Knockdown	+	[72]
OsMADS25	LOC_Os04g23910	MADS-box family gene with MIKCC type-box	Overexpression	–	[73]
Table 1. Cont.

Gene Name	Gene ID	Functional Annotation	Method of Validation	* Regulation Role	References
OsWRKY45	LOC_Os05g25770	WRKY45	Knockdown; Overexpression	–	[74]
OsBADH1	LOC_Os04g39020	Aldehyde dehydrogenase	Knockdown; Overexpression	+	[75,76]
OsTPP1	LOC_Os02g44230	CPlorf22—conserved peptide uORF-containing transcript	Overexpression	[77]	
OsTPS1	LOC_Os05g44210	Trehalose-6-phosphate synthase	Overexpression	+	[78]
OsTPS8	LOC_Os08g34580	Trehalose-6-phosphate synthase	Mutant Overexpression	+	[79]
OsPIP1;1	LOC_Os02g44630	Aquaporin protein	Overexpression	+	[80,81]
OsPIP2;2	LOC_Os02g41860	Aquaporin protein	Overexpression	+	[80]
OsSRO1c	LOC_Os02g40240	Receptor kinase	Overexpression	+	[82]
OsSRO1c	LOC_Os03g12820	ATP8	Mutant Overexpression	+	[83]
OsCu/Zn-SOD	LOC_Os08g44770	Copper/zinc superoxide dismutase	Overexpression	+	[84]
OsMn-SOD	LOC_Os05g25850	Manganese superoxide dismutase	Overexpression	+	[85]
OsAPx1	LOC_Os03g17690	Cytosolic Ascorbate Peroxidase	Overexpression	+	[86]
OsAPx2	LOC_Os07g49400	Cytosolic Ascorbate Peroxidase encoding gene 1-8	Knockdown	+	[87]
OsGR3	LOC_Os07g28000	Glutathione reductase	Knockdown	+	[88]
OsGRX8	LOC_Os07g08840	Thioredoxin	Knockdown; Overexpression	–	[89]
OsGRX20	LOC_Os08g44400	Glutathione S-transferase	Knockdown; Overexpression	+	[91]
OsNHX1	LOC_Os07g47100	transporter, monovalent cation-proton antipporter-2 family	Overexpression	+	[92]
OsHAK1	LOC_Os04g32920	Potassium transporter	Mutant and overexpression	+	[93]
OsHAK5	LOC_Os04g39020	Potassium transporter	Overexpression	+	[94]
OsHAK16	LOC_Os03g37840	Potassium transporter	Overexpression	+	[95]
OsHAK21	LOC_Os03g37930	Potassium transporter	Overexpression	+	[96]

* + positive regulation; – negative regulation.

2. Salt Stress Sensing

Stress sensing is the first event in plant response to any abiotic stresses, mounting an effective adaptive strategy. Under salt stress condition, it is presumed that osmotic and ionic stresses are perceived by membrane-bound cytosolic sensors that ultimately trigger early salt-stress signaling routes (Figure 1). However, the current knowledge of how rice sense salt stress is still limited and therefore remains an open question.
Salt sensing and signaling involved in rice responses to salt stress. Under high salinity, salt-induced osmotic stress begins, which is sensed by putative osmosensor OsHK3b, activated by OsHpt2. SIT1 also acts as a sensor via elevated kinase activity and induces reactive oxygen species (ROS) production and mitogen-activated protein kinase (MAPK) signaling. The activity of SIT1 is deactivated by the B’k-PP2A subunit. Later, ionic stress occurs and is sensed by an unknown Na+ sensor. The Na+ enters the mature epidermal cell through nonselective cation channel (NSCC), causing membrane depolarization, and is polarized by P-type ATPases. Excess salt triggers a spike in the concentration of cytosolic secondary messengers, including Ca2+, reactive oxygen species (ROS), and phosphatidic acid (PA). ROS triggers Ca2+ influx through the cyclic nucleotide-gated ion channel (CNGC), activated by an unknown molecule. Ca2+ not only decreases K+ efflux but also induces further ROS accumulation; thus, a positive feedback loop exists between Ca2+ and ROS. The cytosolic Ca2+ also induces vacuolar Ca2+ release and activates Ca2+-binding proteins, such as OsCIPK24-OsCBL4 complex. This complex, together with MAPK, activated by phosphatidic acid, upregulates the OsSOS1 to remove cytosolic Na+. The vacuolar OsNHX1 gene is activated by OsCPK21, whereas the V-type ATPase is activated by OsCIPK24, establishing a proton gradient and driving the activity of OsNHX1.

2.1. Osmosensing

Sensing salt-induced osmotic stress is crucial in early signaling cascades to develop salt tolerance adaptive traits, such as growth retardation, reduction in stomatal conductance, and high abscisic acid (ABA)accumulation. However, little is known about the genetics and physiology of how rice sense hyperosmotic stress.
The transmembrane-protein-receptors, such as histidine kinases and receptor-like kinases (RLKs), function in osmotic stress perception in rice. Histidine kinases perceive osmotic fluctuations and relay the signal to response regulators via phosphotransfer, which is mediated by histidine-containing phosphotransfer protein (Hpt) [101]. The first evidence of osmosensing function of histidine kinases was reported in Arabidopsis. The AtHK1, a histidine kinase encoding gene, interacts with AtHpt1 and functions as an osmosensor during both drought and salt stress [102,103]. The ortholog of AtHK1 in rice, OsHK3b, interacts with OsHpt2 and acts as a putative osmosensor [101,104]. However, functional evidence on its osmosensing role in rice is not yet reported.

The RLKs function in drought and salt stress sensing by transmitting signals to downstream signaling pathways [105]. The rice Salt Intolerance 1 (SIT1), a lectin RLK expressed mainly in root epidermal cells, acts as an upstream mediator of salt stress via elevated kinase activity [9]. Recently, Zhao et al. [106] reported that SIT1 phosphorylates B′κ at Ser402, which in turn promotes the assembly of B′κ-protein phosphatase 2A (B′κ-PP2A) holoenzyme. The B′κ-PP2A subunit positively regulates salt tolerance by deactivating the activity of SIT1 via dephosphorylation at the Thr515/516. SIT1 kinase activity in turn activates the mitogen-activated protein kinase (MAPK) 3 and MAPK 6 [9]. Thus, it could be pointed out that RLKs are important in MAPK cascade activation during osmotic stress. However, the relationship between the RLKs and MAPKs needs to be further elucidated.

Ca2+ permeable stress-gated cation channels (OSCA) also act as hyperosmotic stress sensors. The first evidence of the role of OSCA in osmosensing was reported in Arabidopsis with the characterization of OSCA1. The OSCA1 gene forms a hyperosmolality-gated Ca2+ permeable channel during osmotic stress, thereby increasing the cytosolic free Ca2+ concentration [107]. The rice genome consists of 11 OSCA genes, of which seven (OsOSCA1.1, OsOSCA1.2, OsOSCA2.1, OsOSCA2.4, OsOSCA2.5, OsOSCA3.1, and OsOSCA4.1) were upregulated during salt-induced osmotic stress and may function as an osmosensor [108]. However, the Ca2+ conducting function of the rice OSCA genes in response to hyperosmotic stress remains an open question.

2.2. Na+ Sensing

The molecular mechanism of Na+ transport in plants is well understood; however, Na+ sensing remains elusive. It has been reported that the ion transporters at the plasma membrane are potential Na+ sensors. For instance, the plasma membrane Na+/H+ antiporter SOS1 (Salt Overly Sensitive 1) is thought to be involved in Na+ sensing [109]. It was later proposed that only the long hydrophilic cytoplasmic tail of SOS1 could potentially sense Na+ ions [110]. However, no research experiments have been undertaken to support this hypothesis, and therefore it needs to be clarified. Moreover, it is unlikely that SOS1 functions as initial Na+ sensor since the SOS3/SOS2 complex regulates its activity. Na+ ions could also be sensed either extracellularly and intracellularly by membrane receptors and unknown cytosolic sensors, respectively [110]. In rice, it was suggested that the intracellular Na+ ions are sensed by an unknown cytosolic sensor based on the observed elevated levels of free cytosolic Ca2+ ions in salt stressed plants. Thus, more research is required to point out the identity of such cytosolic Na+ sensor [111].

3. Signal Transduction

During salt stress, plants transduce the early stress signals to different cellular machinery called signal transduction. In general, signal transduction starts right after stress sensing, followed by the synthesis of secondary signaling molecules, such as Ca2+ and reactive oxygen species (ROS) (Figure 1). The production of secondary signaling molecules modulates the cytosolic Ca2+ concentration that binds to different protein kinases, such as calmodulins (CaMs)/CaM-like (CML), calcium-dependent protein kinases (CDPKs), calcineurin B-like interacting protein kinases (CIPKs), and MAPKs. As these protein kinases lack enzymatic activity, they catalyze protein phosphorylation via a Ca2+-dependent man-
nier, resulting in protein conformational change. Thus, protein phosphorylation cascades mainly depend on the cytosolic Ca\(^{2+}\) concentration [112,113].

3.1. CaM/CML

CaM/CML proteins are important Ca\(^{2+}\) transducers in plant responses to abiotic stress [114,115]. In rice, five CaM-encoding genes—namely, OsCam1-1, OsCam1-2, OsCam1-3, OsCam2, and OsCam3—were identified [10]. Among these, OsCam1-1 is highly activated during salt stress. Yuenyong et al. [116] reported that the rice plants overexpressing OsCam1-1 affected differential expression of genes involved in signaling, hormone-mediated regulation, transcription, lipid metabolism, carbohydrate metabolism, photosynthesis, glycolysis, tricarboxylic acid cycle, and glyoxylate cycle during salt stress. This further suggests that a complex network of downstream cellular processes is involved in the CaM signal transduction pathway. CaM binds with other proteins and interacts with other signaling cascades, such as plant hormone signaling, during stress conditions. For instance, it binds either with MAPK or mitogen-activated protein kinase phosphatase (MKP) to regulate the MAPK cascades [117]. Recently, six novel proteins—namely, OsLRK5a, OsDCNL2, OsWD40-139, OsGDH1, OsCIP, and OsERD2—were identified as targets of OsCML16 in responses to salt stress through yeast hybridization and bimolecular fluorescence complementation assay. These target genes are involved in plant hormone signaling processes, including auxin and ABA [118]. Interestingly, both OsCaM1 and OsCML16 could bind with OsERD2 and thus could transduce Ca\(^{2+}\) via both CaM and CML proteins [118]. Although the functional role of OsERD2 in response to salt stress is still unknown, it is speculated that it plays a vital role in programmed cell death during innate immunity, similar with AtERD2 [119].

3.2. CDPK

CDPKs mediate downstream components of the Ca\(^{2+}\) signaling cascades by directly binding Ca\(^{2+}\) to CaM-like domain. In rice, a total of 29 CDPK genes have been identified [120]. Four rice CDPK genes—namely, OsCPK4, OsCDPK7, OsCPK12, and OsCPK21—were functionally validated and act as positive regulators of salt tolerance (Table 1). Overexpression of rice CDPKs upregulate expression of genes involved in lipid metabolism and the active oxygen detoxification system. For instance, overexpression of OsCPK4 upregulated the genes involved in oxidative stress and redox regulation [11]. Similarly, transgenic rice plants overexpressing OsCPK12 significantly enhanced the expression of genes encoding reactive oxygen species (ROS) scavenging enzymes, such as OsAPx2 and OsAPx8 [14]. OsCDPK7 positively regulates salt tolerance by regulating salt-stress responsive gene, rab16A [12,13]. Meanwhile, OsCPK21 enhances salt tolerance via regulation of ABA- and salt stress-inducible genes, such as Rabs21, OsNAC6, OsLEA3, OsP5CS, OsNHX1, and OsSOS1 [15]. Further study revealed that OsCPK21 regulates salt tolerance by phosphorylating OsGF14e/Os14-3-3 at the Tyr138 [16]. This was the first evidence of 14-3-3 protein-associated phosphorylation of CDPK in rice. Despite intensive work in studying the role of CDPKs in regulation of salt tolerance in rice, their role in different signaling cascades needs to be elucidated.

3.3. Calcineurin B-Like Protein (CBL)/CIPK

CBLs are plant-specific Ca\(^{2+}\) sensors that bind with CIPKs to relay perceived Ca\(^{2+}\) signal, thereby inducing downstream gene regulation for abiotic stress. The SOS3–SOS2 complex is the first evidence of CBL–CIPK interaction in plant responses to salt stress [121]. Homologues of SOS2 and SOS3 in rice, the OsCIPK24 and OsCBL4, have been cloned, which suggests that the SOS pathway also operates in rice responses to salt stress [122]. Further study revealed that OsCIPK24/OsSOS2, OsCBL4/OsSOS3, and OsSOS1 were highly upregulated in salt-tolerant rice cultivars when subjected to salt stress [123]. This suggests that the rice CBL4–CIPK24 complex, together with the Ca\(^{2+}\) signal, regulates ion homeostasis similar to *Arabidopsis*. Therefore, the SOS pathway is conserved in both dicots and monocots. Many other CBL and CIPK genes are involved in rice responses...
to salt stress based on transcriptome analysis [124,125]. However, only OsCIPK15 and OsCIPK31 have been functionally validated for their role in salt tolerance. Transgenic rice plants overexpressing OsCIPK15 showed enhanced salt tolerance with higher free proline and soluble sugar concentration [17]. Similarly, OsCIPK31 acts as a positive regulator of salt tolerance wherein the loss-of-function mutant oscipk31:Ds exhibited hypersensitive phenotype under saline condition [18].

3.4. MAPK

MAPK is considered the last component of the protein phosphorylation cascade in transducing Ca\(^{2+}\) ions in response to environmental stimulus. The MAPK signaling pathway activates different transcription factors (TFs) involved in the production and scavenging of ROS [126]. Three classes of MAPKs are found in plants; namely, MAPK kinase kinase (MKKK), MAPK kinase (MKK), and MAPK [127,128]. Rice has 15 MAPKs, 8 MKKs, and 75 MKKKs, of which a few are involved in salt stress response (Table 1) [129–131]. Overexpression and gene silencing validated the role of OsMAPK5 as a positive regulator of salt tolerance [19]. Further study showed that OsMAPK5 phosphorylates SERF1, a regulator of ROS signaling during initial response to salt stress [34]. Thus, OsMAPK5 plays an essential role in the ROS signaling pathway. In contrast, OsMAPK33 acts as a negative regulator and alters the expression of genes involved in Na\(^+\) transport [20]. OsMAPKKK63 also acts as a negative regulator of salt tolerance and interacts with OsMKK1 and OsMKK6 [23]. Both OsMKK1 and OsMKK6 are known mediators of rice responses to salt stress. Overexpression of OsMKK6 enhances salt tolerance by inducing MAPK substrate phosphorylation [22]. Similarly, OsMKK1 acts as a positive regulator with highly upregulated transcripts under saline conditions [21]. Moreover, yeast hybridization and in-vivo/vitro kinase assays revealed that OsMPK4 is the downstream target of OsMKK1. OsMPK4 is involved in the wounding signaling pathway in rice [132]. However, its functional role in salt tolerance is not well characterized.

4. Transcriptional Regulation

In the past centuries, numerous proteins were reported to play an important role in salt tolerance. Transcriptomic tools have further subdivided these proteins into two major classes, the functional and regulatory proteins. Functional proteins are those that directly function in protecting the plants from stress. These include ion transporters, antioxidant proteins, osmolytes, water channel proteins, heat shock proteins, and late embryogenesis abundant (LEA) proteins. On the contrary, regulatory proteins, such as transcription factors (TFs), are involved in regulating the complex network of signal transduction [133–136].

TFs are key proteins that bind with cis-elements in the promoter of target genes, thereby modulating the rate of gene expression in the downstream signaling cascades in response to different environmental cues. A large number of TFs have been identified in rice, with 2025 TFs in Oryza sativa spp. indica and 2384 in spp. japonica [137]. In recent years, many TFs along with their interacting proteins have been implicated in rice responses to salt stress and regulate a series of signaling pathways (Table 1). Most of these are members of APETALA2/ethylene responsive-factor (AP2/ERF), NAC (NAM, ATAF, and CUC) proteins, myeloblastosis (MYB), basic leucine-zipper (bZIP) type proteins, zinc finger (ZF) and basic helix-loop-helix (bHLH) TFs that regulate many salt stress-responsive genes either through an ABA-dependent or -independent manner (Figure 2). Thus, understanding how TFs, along with their interacting proteins, regulate a network of signaling pathways and their downstream genes is crucial in elucidating the salt tolerance mechanisms of rice.
Figure 2. Transcriptional regulation involved in activating salt stress-responsive genes in rice. The transcriptional regulation occurs via abscisic acid (ABA)-dependent and -independent pathway, whereby transcription factors (TFs) bind with their corresponding cis-regulatory element. The APETALA2/ethylene responsive factor (AP2/ERF) and NAC (NAM, ATAF, and CUC) TFs operate in an ABA-independent pathway. NAC TFs regulate other TFs, such as dehydration responsive element-binding (DREB), myeloblastosis (MYB), and basic leucine-zipper (bZIP). The MYB, bZIP, zinc finger (ZF), basic-helix-loop-helix (bHLH), DREB, and other TFs are involved in the ABA-dependent pathway.

4.1. APETALA2/Ethylene Responsive Factor (AP2/ERF) Regulation

AP2/ERF-type TFs are characterized by the presence of an AP2 DNA-binding domain of approximately 60 amino acids. In rice, at least 163 AP2/ERF TFs have been identified. This TF family is further subdivided into four subfamilies: the AP2, dehydration responsive element-binding (DREB), ERF, and related to ABI3 and VP1 (RAV) proteins [138]. Among these, DREB is widely involved in rice responses to salt stress, though a few AP2-, ERF-, and RAV-type TFs regulate salt tolerance (Table 1).

DREB binds to the dehydration-responsive element/c-repeat (DRE/CRT) cis-elements in the promoter region of stress-responsive genes. DREBs have been isolated in several crops, and their overexpression enhances tolerance to different abiotic stresses, including salinity [139]. Rice DREB1 genes enhance salinity tolerance by regulating osmoprotection, as evident in rice and Arabidopsis DREB1 overexpression plants [25, 26, 140, 141]. For instance, OsDREB1A targets two dehydrin genes [24]. Dehydrins protect plasma membrane from damage during drought- or salt-induced osmotic stress [142]. Moreover, the level of proline and soluble sugars, which are important for osmotic adjustment, significantly increased in DREB1 overexpression plants [140, 143]. DREB genes mainly work in the ABA-independent pathway; however, some also participate in the ABA-dependent pathway, as exemplified by OsDREB1F. Transcript profiling in OsDREB1F overexpression lines showed expression of ABA-dependent genes, rd29B and RAB18 [26]. DREB2-type genes also act as positive regulators of salt tolerance. Overexpression of OsDREB2A and OsDREB2B in both rice and Arabidopsis improved salt tolerance [24, 27–29]. Another DREB gene, OsDREB6, classified as an A-6 type of DREB TF positively regulates salt tolerance. Transgenic rice plants overexpressing OsDREB6 showed high levels of proline, soluble sugars, and catalase. Conversely, the levels of these enzymes were significantly reduced in RNAi plants [33]. This suggests that DREB genes mainly enhance salt tolerance by regulating genes responsible for osmoprotection and antioxidation. Similar to DREB, other TFs in the AP2/ERF family enhance salt tolerance by regulating several downstream genes involved in osmotic stress and antioxidant defense system. For instance, SERF1 gene regulates ROS-dependent signaling as an initial response to salt stress [34]. Recently, Wang et al. [32] demonstrated that OsSTAP1, an AP2/ERF-type TF, positively regulates salt tolerance by activating genes encoding antioxidant enzymes (OsPOD1, OsPOD72, GSTT3) and aquaporin gene (NIP2-1).
Unlike most of AP2/ERF-type TFs, OsERF922 and OsAP23 act as negative regulators and downregulate the expression of defense-related genes [30,35].

4.2. NAC Regulation

NAC proteins are a plant-specific gene family that regulate both ABA-independent and ABA-dependent inducible genes [144]. Several studies have been carried out to understand the role of rice NAC genes in response to abiotic stimulus, including salinity. Most functionally characterized rice NAC proteins act as positive regulators of salt tolerance (Table 1). SNAC1, the first stress-related NAC type TF characterized in rice, enhances both drought and salt tolerance [48]. Transcriptome analysis of transgenic plants overexpressing NAC proteins showed upregulation of many stress-inducible genes. For instance, OsNAC2, OsNAC5, ONAC022, and ONAC106 target OsLEA3 [38,41,44]; OsSNAP targets several stress-related genes, including OsPP2C06/OsABT2, OsPP2C09, OsPP2C68, and OsSalt [37]; and OsNAC2 targets genes involved in osmoprotection (OsP5CS1), antioxidation (OsCOX11), K⁺-efflux channel genes (OsGORK and OsSKOR), and ABA-inducible genes (OsNCED1 and OsNCED3) [42,43]. NAC TFs also regulate other stress-related TFs. For instance, OsSNAP induces the expression of OsDREB1A and OsMYB2 [37]. ONAC106 binds with the promoter of OsNAC5, OsDREB2A, and OsbZIP23 TF genes [41]. Similarly, ONAC022 targets OsDREB2a and OsbZIP23 (Hong et al. 2016).

4.3. MYB Regulation

MYB proteins are one of the richest TF families in plants, representing at least 155 genes in rice. It is considered as an active player in plant development, secondary metabolism, cell differentiation, organ morphogenesis, and response to both biotic and abiotic stresses [145,146]. These TFs mainly participate in the ABA-dependent pathway, upregulating a number of stress-responsive genes. For example, expression of OsMPS, an R2R3 type MYB TF, is significantly induced by ABA and regulates several expansin and glucanase genes [54]. Transcriptome analysis of transgenic rice plants overexpressing OsMYB48-1 upregulates ABA biosynthesis genes (OsNCED4 and OsNCED5), early signaling genes (OsPP2C68 and OsRK1), and late responsive genes (RAB21, OsLEA3, RAB16C, and RAB16D) [53]. Similarly, OsMYB2 targets OsLEA3 and OsRab16A [51]. MYB TFs also regulate the expression of some transporter genes. For example, OsMYBc binds with the AAANATNY motif in the promoter of OsHKT1;1, thereby upregulating its expression [56]. Other rice MYB TFs involved in the regulation of salt tolerance are presented in Table 1.

4.4. bZIP Regulation

bZIP TFs are composed of a highly conserved basic region and a leucine zipper domain of about 60 to 80 amino acids in length. Several rice bZIP TFs are involved in transcriptional activation of several stress-responsive genes, most of which participate in the ABA-dependent pathway (Table 1). Overexpression of OsbZIP71 upregulates several genes that encode ion antiporters (OsCLC-1, OsNHX1, OsHKT6 and OsVHA-B) and ROS scavenging (OsCAT). Interestingly, OsbZIP71 directly binds to the promoter of OsNHX1, an Na⁺/H⁺ antiporter gene involved in vacuolar compartmentation of Na⁺ ions [60]. OsbZIP23 acts as a key player in salt tolerance by upregulating osmotic stress-inducible genes, such as dehydrins and LEA proteins [59]. OsHBP1b, also categorized under the bZIP TF family, could enhance salt tolerance by activating the genes involved in antioxidant defense system [61]. It is worth noting that OsHBP1b is localized within the Saltol quantitative trait locus (QTL) region, hence an important salt tolerance gene. Moreover, comparative transcript profiling showed that OsHBP1b is highly expressed in popular salt-tolerant rice cultivar Pokkali [147]. Meanwhile, OsABI5 acts as a negative regulator changing the expression of many salt stress-responsive genes. OsABI5 significantly downregulates the expression of OsHKT1;5/SKC1 and upregulates Salt gene [58]. Transcriptomic analysis showed that many other bZIP TFs play an important role in rice responses to salt stress. However, their regulatory roles have not been functionally studied. Taken to-
gether, bZIP TFs mainly regulate salt tolerance via the active oxygen detoxification and ion homeostasis pathways.

4.5. ZF Regulation

ZF proteins are comprised of conserved motifs with cystine (Cys) and histidine (His) residues. These motifs are classified according to the number and order of Cys and His. [148]. Several studies have shown their function in transcriptional activation of several biological processes involved in plant responses to environmental stimulus. Under salt stress conditions, ZF TFs regulate the expression of genes associated with ROS scavenging via ABA-independent and ABA-dependent pathways to reduce oxidative damage. The ZFP179, ZFP182, and ZFP252 act as positive regulators of salt tolerance. These ZF TFs transcriptionally activate the OsDREB1A, OsLEA3, OsPC5CS, and OsProT genes that are involved in the synthesis of osmolytes, such as proline and soluble sugars [64,65,67]. Conversely, drought and salt tolerance (DST) and ZFP185 act as negative regulators and downregulate several ABA-inducible genes, such as Prx24 [62,66]. Meanwhile, OsLOL5, an LSD1-like-type ZF is involved in transcriptional activation of OsAPX2, OsCAT, and OsCu/Zn-SOD [68]. Thus, ZF TFs play an essential role in the ROS signaling pathway.

4.6. bHLH Regulation

bHLH TFs widely exist in eukaryotic organisms and contain a conserved basic region and a helix-loop-helix (HLH) domain [149]. These TFs play an essential role in several abiotic stress tolerance, wherein several bHLH TF genes have been functionally validated. Concerning salt tolerance, only a few were functionally validated. Three previously reported bHLH TFs enhance salt tolerance in rice by activating ion transporters genes. For instance, OsbHLH035 enhances salt tolerance by activating Na\(^+\) transporter genes, OsHKT1;3 and OsHKT1;5/SKC1, which are involved in Na\(^+\) loading and unloading [70]. OrbHLH001 enhances Na\(^+\) efflux and K\(^+\) influx under salt stress by activating OsAKT1 [69]. Meanwhile, OsbHLH062 acts as transcriptional activator of OsHAK21 in response to salt stress [150]. The bHLH TFs therefore regulate salt tolerance via the ion homeostasis pathway. Moreover, these TFs activate gene expression through their interaction with the specific E-box motif in the promoter of the target gene [69,141,151].

4.7. Other TFs Involved in Salt Tolerance

In addition to the TFs previously discussed, many other TF families play an essential role in reprogramming transcriptome during salt stress. The homeodomain-leucine zipper (HD-Zip) TF family is also important for salt tolerance, such as Oshox22 and OsTF1L. Oshox22 acts a negative regulator of salt tolerance and is upstream to OsbZIP23 [71]. OsTF1L positively regulates salt tolerance mainly by regulating genes involved in stomatal closure and lignin biosynthesis [72].

Apart from OsbZIP71, previously discussed, several TFs belonging to different families regulate the expression of the OsNHX1 transporter gene. The OsNIN-like4 and OsPCF2, a nodule inception (NIN) and teosinte branched 1/cycloidea/proliferating cell (TCP) proteins, respectively, act as transcriptional activators of OsNHX1. Conversely, OsCPP5 and OsNIN-like2 act as repressors [152]. OsMADS25, a MADS-box TF gene, acts as positive regulator by upregulating the expression of genes involved in the ROS detoxification system [73]. Meanwhile, the WRKY-type TF, OsWRKY45, negatively regulates salt tolerance [74].

5. Salt Tolerance Adaptive Mechanisms

Several adaptive mechanisms have been observed in plant responses to salt stress. In rice, osmoregulation, stomatal closure, and development of antioxidant enzymes are the immediate responses during salt stress. This is later followed by Na\(^+\) exclusion and sequestration upon uptake of toxic Na\(^+\) ions. The tissue specific localization of genes that regulate salt tolerance adaptive traits in rice is presented in Figure 3.
Immediate responses during salt stress. This is later followed by Na\(^+\) exclusion and sequestration upon uptake of toxic Na\(^+\) ions. The tissue specific localization of genes that regulate salt tolerance adaptive traits in rice is presented in Figure 3.

Figure 3. Rice salt tolerance adaptive mechanisms. In the leaf, (a) stomatal closure mediated either by DST or SNAC1 is the initial response of rice to salinity. Salt stress downregulates DST which interacts with DCA1 and activates OsPrx24 and LP2. Conversely, SNAC1 is upregulated, activating the OsSRO1c. These downstream genes mediate stomatal closure via H\(_2\)O\(_2\) inhibition. (b,c) Na\(^+\) content in the leaf cytoplasm is controlled by vacuolar sequestration, xylem unloading, and phloem loading. Excess Na\(^+\) is sequestered into the vacuole via OsNHX1 coupled with H\(^+\)-pump and OsVP1, a vacuolar-type H\(^+\)-pyrophosphatase encoding gene. Na\(^+\) unloading at the xylem and Na\(^+\) loading at the phloem are mediated by OsHKT1;4 and OsHKT1;1, respectively. In the root, (d) Na\(^+\) is loaded at the xylem through nonselective cation channel (NSCC) and OsSOS1 coupled with H\(^+\)-pump. Conversely, OsHKT1;5 unloads the Na\(^+\) ions from the xylem and shuttles them back to the parenchyma cells. Apart from Na\(^+\), K\(^+\) influx occurs mediated by OsHAK21, thereby increasing the K\(^+\)/Na\(^+\) ratio. (e) Enhanced suberin deposition in the root exodermis and endodermis also inhibits Na\(^+\) influx to the stele. Similarly, it blocks water transport out of the stele. (f) The plasma membrane-bound OsPIP2;2 gene increases hydraulic conductivity in the root endodermis, allowing water uptake. (g) Na\(^+\) enters the root epidermis via NSCC and is shuttled back to the external medium via the OsSOS1 coupled with H\(^+\)-pump.
5.1. Osmoprotection and Osmoregulation

Cell dehydration due to low osmotic potential of soil water is the immediate effect of salt stress. Under such a situation, plants (1) synthesize compatible solutes, known as osmolytes, to maintain cell turgor and (2) activate water channel aquaporins that regulate water uptake.

5.1.1. Osmolytes

Several osmolytes, such as trehalose and glycine betaine (GB), have been proven effective in preventing cellular dehydration during salt stress [153]. Thus, exogenous application of osmolytes has been utilized to enhance salt tolerance in rice [154–157]. However, very few studies have been conducted to characterize osmolyte encoding genes for their role in salt tolerance.

The two key enzymes in trehalose biosynthesis, trehalose-6-phosphate phosphatase (TPP) and trehalose-6-phosphate synthase (TPS), are involved in rice responses to salinity. The OsTPP1, OsTPS1, and OsTPS8 positively regulate salt tolerance by increasing the accumulation of trehalose and proline in rice overexpression plants [77–79].

GB is also an important osmolyte under salt stress that prevents lipid peroxidation [158]. Additionally, accumulation of high GB enhances photosynthetic activity [159]. The OsBADH1, a major gene involved in converting betaine aldehyde to GB, plays an important role in salt tolerance. This gene prevents oxidative damage, protects chlorophyll degradation, and ultimately prevents leaf senescence during salt stress [75]. Moreover, RNAi-directed knockdown of OsBADH1 enhances the production of ROS, causing lipid peroxidation [76]. Thus, the gene acts as a positive regulator of salt tolerance.

5.1.2. Water Channel Aquaporins

Plant aquaporins also play a significant role in osmoregulation. Aquaporins are membrane-localized channels that are mainly involved in water transport and homeostasis [160,161]. Rice has 33 aquaporins, few of which regulate root hydraulic conductivity under saline condition [162]. Overexpression of OsPIP1;1 and OsPIP2;2, plasma membrane intrinsic proteins (PIPs) family genes in Arabidopsis, enhanced salt tolerance by maintaining water homeostasis [80]. Likewise, rice overexpressing OsPIP1;1 increased root hydraulic conductivity under salt stress [81]. Rice aquaporins might be coordinately orchestrated in maintaining water homeostasis based on their organ-specific transcript expression. Transcript of OsPIP2 genes were highly expressed in the roots; thus, it could be the predominant gene regulating water uptake in the roots (Figure 3f). Conversely, the OsPIP1 gene transcript was the highest in the leaves, suggesting its role in leaf water transport [80]. Apart from the PIP genes, several tonoplast intrinsic protein (TIP) genes also play an important role in salt-induced osmotic stress [163].

5.2. Stomatal Closure

Stomatal closure is the initial response of plants under salinity and is controlled by both ABA and ROS signaling [164]. DST mainly regulates salt tolerance via stomatal closure under salt-induced osmotic stress. Further study revealed that a leucine-rich repeat (LRR)-RLK gene, LP2, required for stomatal closure is downstream to DST [82]. Interestingly, DST interacts with DST co-activator 1 (DCA1) and regulates the expression of OsPrx24, a gene encoding H$_2$O$_2$ scavenger [165]. Meanwhile, OsSRO1c, expressed in the guard cells and a downstream gene target of SNACT TF, also regulates stomatal closure under both drought- and salt-induced osmotic stress (Figure 3a). Overexpression of OsSRO1c in rice plants showed enhanced stomatal closure and maintained H$_2$O$_2$ homeostasis under salt stress. Conversely, knockdown mutants showed high sensitivity to osmotic stress [83].

5.3. Antioxidation

ROS synthesis is important in different signaling and physiological processes. However, overproduction of ROS is deleterious to different cellular components, such as pro-
teins, nucleic acids, and membrane lipids. Thus, plants synthesize ROS scavenging enzymes to maintain redox homeostasis [126,166]. In this section, we discuss genes encoding ROS scavenging enzymes that are involved in rice responses to salt stress.

5.3.1. Superoxide Dismutase (SOD)

SODs catalyze the first step in the reactive-oxygen scavenging system by dismutation of the highly toxic O_2^{-} to H_2O_2. Thus, it is considered the most effective intracellular antioxidant enzyme. Rice has three distinct types of SOD isoforms that are differentiated according to the metals they contain, either Cu/Zn, Mn, or Fe. The activity of these SODs is associated with specific subcellular localization: Mn-SOD is located in both mitochondria and peroxisomes; Fe-SOD is located in the chloroplasts; and Cu/Zn-SOD is located in the chloroplasts, cytosol, and peroxisome [167]. The expression of genes encoding these SOD isoforms is highly influenced by salt stress and is activated by ZF-type TFs, as discussed in Section 4.5. Mishra et al. [168] reported that the increase in SOD activity of salt-tolerant rice cultivar CSR27 exposed to salinity was directly related to the upregulation of Cu/Zn-SOD encoding genes. Similar results were reported by Rossatto et al. [169], who observed upregulation of five Cu/Zn isoforms (OsCu/Zn-SOD, OsCu/Zn-SOD2, OsCu/Zn-SOD3, OsCu/Zn-SOD4, OsCu/Zn-SODCc1) under salt stress. Moreover, the rice plants overexpressing chloroplastic OsCu/Zn-SOD showed less salt-induced oxidative damage owing to higher ROS detoxification [84]. Upregulation of OsMn-SOD was also observed in rice subjected to salt stress. Tanaka et al. [85] reported that overexpression of OsMn-SOD in the chloroplasts significantly increased SOD activity and therefore enhanced salt tolerance. Similar results were observed in other plants such as wheat and tall fescue [170,171]. Conversely, salinity downregulates the expression of OsFe-SOD, thereby reducing the total SOD activity [172]. This suggests that Cu/Zn-SOD and Mn-SOD isoforms play vital roles in ROS detoxification system during stress condition.

5.3.2. Catalase (CAT)

CATs are strong antioxidant enzymes primarily located in the peroxisome that directly catalyze the conversion of H_2O_2 to water and oxygen [173,174]. Thus, it is indispensable in the ROS detoxification system. Cloning and characterization of the rice CAT genes predicted three isoforms; namely, OsCatA, OsCatB, and OsCatC [175]. These genes are transcriptionally activated by bZIP- and ZF-type TFs, as described in Sections 4.4 and 4.5. RLK is also involved in transcriptional activation of CAT genes. For instance, the salt tolerance receptor-like cytoplasmic kinase 1 (STRK1) activates OsCatC via phosphorylation at the Tyr120 [176]. Several environmental factors, such as salinity, affect expression of CAT genes. Under saline condition, elevated levels of CAT activity were observed in salt-tolerant rice cultivars [177]. Interestingly, high OsCatB and OsCatC activity was observed in salt-tolerant plants grown under salt stress [178]. A similar result was reported by Wutipraditkul et al. [179], who observed an inhibitory effect of OsCatC in response to salt stress.

5.3.3. Ascorbate Peroxidase (APX)

APXs, which exist in compartment-specific isoforms, have a higher affinity for H_2O_2 than CATs. Thus, they detoxify even at very low H_2O_2 concentrations. Rice has eight APX encoding genes: the cytosolic isoforms OsAPx1 and OsAPx2; the peroxisome isoforms Os-APx3 and OsAPx4; and the chloroplastic isoforms OsAPx5, OsAPx6, OsAPx7, and OsAPx8. The OsAPx6 isofrom is also localized in the mitochondria [180]. All these APX encoding genes, except OsAPx3 and OsAPx5, were upregulated in rice under salt stress [178,181]. Overexpression of OsAPx2 showed very high APX activity, thereby enhancing salt tolerance in rice [87]. Likewise, overexpression of either OsAPx1 or OsAPx2 exhibited high tolerance to salt stress in Arabidopsis; however, OsAPx2 confers better tolerance than OsAPx1 [86]. Further study revealed that silencing both OsAPx1 and OsAPx2 genes in rice resulted in normal growth and development under salt stress. This is attributed to the upregulation
of CAT and APX genes [182,183]. Thus, deficiency of APXs is compensated by other antioxidant enzymes.

5.3.4. Glutathione Reductase (GR)

GRs are flavoprotein oxidoreductases and are important components of the ascorbate (AsA)-glutathione (GSH) cycle [184]. Rice has three GR isoforms: OsGR1, located in the cytosol; and OsGR2 and OsGR3, located in both mitochondria and chloroplasts [185]. These rice GRs have been implicated for their role in different abiotic stimuli, including salinity. Salt stress enhances the expression of OsGR2 and OsGR3 via the ROS detoxification system [185–187]. Further study demonstrated that OsGR3, primarily expressed in the roots, positively regulates salt tolerance [88].

5.3.5. Thioredoxin (TRX) and Glutaredoxin (GRX)

TRXs and glutaredoxin (GRX) are key players in redox regulation, therefore considered as redox-sensing compounds. TRX are reduced by TRX reductase, whereas GRX utilizes glutathione as a cofactor in the ROS scavenging system [188]. The rice genome has 30 and 48 genes encoding TRX and GRX, respectively. However, only a few have been functionally validated for their role in salinity tolerance [189,190]. For instance, Os-TRXh1/OsTRX23 negatively regulates salt tolerance. RNAi-directed knockdown of this gene resulted in salt sensitivity, possibly due to its inhibitory activity on stress-activated MAPKs [89,191]. OsTRXh1/OsTRX23 also inhibits the kinase activity of OsMPK3 and OsMPK6 [192]. Meanwhile, OsGRX8 and OsGRX20 positively regulate salt tolerance by restraining the accumulation of O$_2$– radicals [90,91].

5.4. Na$^+$ Exclusion and Sequestration

Na$^+$ ions are the major toxic element taken up by the plant during salt stress. Maintaining low levels of toxic Na$^+$ ions in the cytosol, either through Na$^+$ exclusion or sequestration, is the most effective strategy to avert the deleterious effects of salinity. Glycophytes, such as rice, exclude Na$^+$ from the shoot either by (i) Na$^+$ efflux from roots to the rhizosphere, (ii) Na$^+$ loading and unloading at the xylem, or (iii) vacuolar Na$^+$ compartmentation.

5.4.1. Na$^+$ Efflux

The efflux of Na$^+$ ions across the root plasma membrane into the external medium is poorly understood. Nevertheless, it is central to the Na$^+$ exclusion mechanisms in plants [1]. To date, only SOS1, coupled with H$^+$-ATPases, is the major Na$^+$ efflux transporter that has been genetically characterized in plants [110,193]. The rice SOS1 ortholog (OsSOS1) is expressed in epidermal cells at the root cap and in cells around the xylem similar with Arabidopsis AtSOS1 [194]. The OsSOS1 activity, catalyzed by Na$^+$/H$^+$ exchange at the plasma membrane, could suppress Na$^+$ sensitivity of yeast mutant lacking the Na$^+$ efflux system, thus reducing the net cellular Na$^+$ concentration. Similarly, OsSOS1 complementation in Arabidopsis mutant sos1-1 reduced growth defect in both saline and non-saline conditions [122]. Further study demonstrated that rice sos1 loss-of-function mutant displayed very high root Na$^+$ uptake and impaired Na$^+$ loading into the xylem [95]. Thus, OsSOS1 plays a critical role in Na$^+$ efflux from root epidermal cells to the rhizosphere.

5.4.2. Na$^+$ Loading and Unloading

Na$^+$ loading and unloading at the xylem is regulated by high-affinity K$^+$ transporters (HKTs). HKTs are among the most well characterized Na$^+$ and/or K$^+$ plant transporters identified in several plants and play a central role in salt tolerance [195,196]. Two HKTs are highlighted in a proposed two-staged Na$^+$ exclusion mechanism, whereby the (i) OsHKT1;5/SKC1 mediates root-to-shoot Na$^+$ transfer and (ii) OsHKT1;4 mediates leaf sheath-to-blade Na$^+$ transfer. The Na$^+$ ions entering the root xylem via nonselective cation channel (NSCC) are shuttled back to the parenchyma via OsHKT1;5/SKC1 (Figure 3d). Meanwhile, OsHKT1;4 not only functions in Na$^+$ unloading to the leaf sheath, but also
to the stem during the reproductive stage [197]. Further study revealed that OsHKT1;4 is involved in leaf Na\(^+\) exclusion via Na\(^+\) unloading at the xylem (Figure 3c). The mutant line overexpressing OsHKT1;4 showed salt sensitivity owing to very high root Na\(^+\) uptake [93]. Thus, a coordinated balance in root and shoot Na\(^+\) exclusion is essential to achieve salt tolerance. Another HKT1 gene, OsHKT1;1, transcriptionally activated by OsMYBc as previously discussed, is also reported to regulate Na\(^+\) exclusion, possibly through both Na\(^+\) unloading from the xylem and Na\(^+\) loading into the phloem (Figure 3c). The Na\(^+\) loaded into the phloem is hypothesized to be recirculated from shoots to roots or from young leaves to old leaves, thereby reducing salt injury in newly emerging leaf [56]. Moreover, it was demonstrated that OsHKT1;1 is a positive regulator of salt tolerance that mediates Na\(^+\) exclusion from the shoot [92]. Recent studies have shown that there are eight and four transcript variations of HKT1 genes with different lengths in O. sativa spp. indica and spp. japonica, respectively. These eight transcript variations in O. sativa spp. indica show different expression levels and transport activities under salt treatment, which suggests the existence of different transport mechanisms [198].

5.4.3. Vacuolar Na\(^+\) Sequestration

Few rice cultivars with high Na\(^+\) concentrations in the leaves were found to perform well under saline condition. This is mainly due to the active compartmentation of Na\(^+\) ions into the vacuole, also known as tissue tolerance, mediated by the tonoplast localized Na\(^+\)/H\(^+\) antiporters (NHX) and energized by a proton motive force (Figure 3b) [193]. This mechanism allows the plant to use Na\(^+\) ions in maintaining cell turgor, and hence continuous plant growth under salt [199,200]. Additionally, vacuolar Na\(^+\) sequestration maintains cytosolic alkalinity and vacuolar acidity. Maintaining low vacuolar pH is essential since acidity allows the vacuole to isolate and break down misfolded proteins [201]. This phenomenon was only observed in salt-tolerant rice cultivars, such as Pokkali [111].

Four vacuolar NHX genes—namely, OsNHX1, OsNHX2, OsNHX3, and OsNHX5—were identified in rice mediating cytosolic Na\(^+\) sequestration into the vacuole [202]. Further study revealed that overexpression of OsNHX1 enhanced tissue tolerance and is regulated by OsbZIP71 TF [60,96,203]. Very high transcripts of these NHX genes in either flag leaf or panicle has also been observed [202]. This suggests their potential role in enhancing salt tolerance at the reproductive stage.

Functional characterization of vacuolar-type H\(^+\)-pyrophosphatase (H\(^+\)-PPase) also showed enhanced salt tolerance. H\(^+\)-PPase is the main driving force for Na\(^+\) transport from the cytoplasm to the vacuole (Figure 3b). Overexpression of H\(^+\)-PPase encoding genes in different plants significantly enhanced salt tolerance [204–206]. In rice, overexpression of OsVP1, a H\(^+\)-PPase encoding gene, resulted in less serious Na\(^+\) toxicity under salt stress. Moreover, double overexpression of OsNHX1 and OsVP1 conferred better salt tolerance [96]. This is possibly due to the higher electrochemical gradient brought by OsVP1 overexpression, thereby promoting higher activity of OsNHX1 (Figure 3b). Interestingly, a similar result has been found in simultaneous expression of SsNHX1 from Suaeda salsa and AVP1 from Arabidopsis in rice [206].

5.5. Suberin Deposition

Suberin deposition is essential in blocking apoplastic leakage of Na\(^+\) ions into the stele, resulting in low concentration of Na\(^+\) ions that can be transported into the shoot (Figure 3e). In rice, a few studies have reported the role of suberin in salt tolerance. Enhancing suberin in the form of silicon has significantly reduced the root-to-shoot Na\(^+\) uptake by preventing apoplastic Na\(^+\) transport across the root [207]. Interestingly, the popular salt-tolerant rice, Pokkali, showed higher suberin deposition compared with the salt-sensitive cultivar IR20 [208]. However, the gene regulatory network involved in suberin deposition and salt tolerance in rice is not well understood. The OsTPS8, involved in trehalose biosynthesis, was also reported to enhance salt tolerance, mainly by enhancing suberin deposition [79].
5.6. \(K^+ \) Uptake

Cytosolic \(K^+ \) concentration has emerged as an important aspect of a plant’s adaptability to salt stress, wherein high \(K^+ \) concentration directly relates to salt tolerance. Four high-affinity \(K^+ \) transporter (HAK) genes—namely, \(OsHAK1 \), \(OsHAK5 \), \(OsHAK16 \), and \(OsHAK21 \)—play crucial roles in \(K^+ \) homeostasis under stress conditions [97–100]. Interestingly, differences in spatial expression were observed among these HAK genes. \(\beta \)-glucoronidase (GUS) staining assay showed that \(OsHAK1 \), \(OsHAK5 \), and \(OsHAK16 \) were mainly expressed in the root epidermis [97,98,100]. Conversely, \(OsHAK21 \) was mainly expressed in the root xylem parenchyma [99]. Thus, \(OsHAK21 \) is likely the predominant gene mediating \(K^+ \) influx in the xylem (Figure 3d).

6. Conclusions and Perspectives

Soil salinity, apart from drought and flooding, is a serious menace afflicting global rice production. Being the staple crop of half of the world’s population, developing salt-tolerant rice varieties is crucial, requiring a better overview on molecular and physiological responses to salt stress. Rice responds to salinity through different biological processes, starting with salt stress sensing. Sensing is mediated by different sensors. The sensors relay stress signals to secondary messengers that activate protein phosphorylation cascades and finally the transcriptional regulation of stress-responsive genes via abscisic acid (ABA)-independent/ABA-dependent pathways. Rice response to salt stress also involves several signaling components, transcription factors, and functional genes that directly mediate osmoregulation, antioxidation, and ion homeostasis. Despite the characterization of these genes, understanding the molecular mechanism of rice responses to salt stress remains a great challenge. Over the last few decades, remarkable progress in understanding the genomics-physiology of salinity tolerance in plants has taken place. Several genes have been identified to confer salt tolerance in rice; however, most were achieved through a reverse genetics approach. Thus, a large number of genes need to be identified via forward genetics. The current understanding of the molecular responses of rice to salt stress from sensing and signaling up to the development of adaptive tolerance mechanisms is still obscure and requires further research. In particular, identification of upstream pathways and the molecular mechanisms involved in salt stress sensing is crucial to clearly disentangle the osmotic and \(Na^+ \) stress responses in rice. To date, only the role of ABA signaling in rice responses to salt stress is widely studied. The crosstalk between signaling pathways and of other hormones, including auxin, gibberellic acid, jasmonic acid, and ethylene, is still not clear and needs further investigation. Studying the epigenetic regulations of salt tolerance in rice is another important field to dissect. Epigenetic mechanisms control the expression of stress-responsive genes in response to internal and environmental cues. Thus, epigenomic variations may provide a useful resource of DNA methylomes that can be used to better understand the complex salt tolerance mechanisms in rice.

Author Contributions: Y.L. and K.S.P. proposed the concept; K.S.P. drafted the manuscript; L.M. and G.Y. participated in the data collection; Y.L. and L.G. revised and finalized the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China (Grant No. 31801337), Agricultural Variety Improvement Project of Shandong Province (Grant No. 2019LZGC003), and Dapeng District Industry Development Special Funds (Grant No. KY20180217).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare that they have no competing interests.
Abbreviations

Abbreviation	Description
AP2/ERF	APETALA2/ethylene responsive factor
APXAT	Ascorbate peroxidase/Adenosine-thymine
bHLH	Basic-helix-loop-helix
BzipCAMK	Basic leucine-zipper/Ca^2+/calmodulin-dependent protein kinase
CAT	Catalase
CBLCD1A	Calcineurin B-like protein/Cytidine deaminase
CDPK	Calcium-dependent protein kinase
CIPK	CBL-interacting protein kinase
CaM	Calmodulin
CML	Calmodulin-like protein
CPP	Cysteine-rich poly comb-like protein
DRE/CRT	Dehydration-responsive element/c-repeat
DST	Drought and salt tolerance
DCA1	DST co-activator 1
GB	Glycine betaine
GRGUS	Glutathione reductaseβ-glucoronidase
HAK	High-affinity potassium transporter
HD-Zip	Homeodomain-leucine zipper
HKT	High-affinity K^+ transporter
HpT	Histidine-containing phosphotransfer protein
LEA	Late embryogenesis abundant
LRR-RLK	Leucine-rich repeat-receptor-like kinase
MAPK	Mitogen-activated protein kinase
MKK	MAPK kinase
MKKK	MKK kinase
MKP	Mitogen-activated protein kinase phosphatase
MYB	Myeloblastosis
NAC	NAM, ATAF and CUC
NAM	No apical meristem
NHX	Na^+ / H^+ antiporter
NIN	Nodule inception
OSCA	Ca^2+ permeable stress-gated cation channels
PA	Phosphatidic acid
PIPQTL	Plasma membrane intrinsic protein/Quantitative trait locus
RAV	Related to ABI3 and VPI
RLK	Receptor-like kinase
ROS	Reactive oxygen species
SIT	Salt intolerance
SOD	Superoxide dismutase
SOS	Salt overly sensitive
TCP	Teosinte branched 1/cycloidea/proliferating cell
TF	Transcription factor
TIP	Tonoplast intrinsic
TPS	Trehalose-6-phosphate phosphatase
TPP	Trehalose-6-phosphate synthase
TRX	Thioredoxin
VP	Vacuolar-type H^+ -pyrophosphatase
ZF	Zinc finger

References

1. Munns, R.; Tester, M. Mechanisms of salinity tolerance. *Annu. Rev. Plant Biol.* 2008, 59, 651–681. [CrossRef]
2. Zeng, L.; Shannon, M.C.; Grieve, C.M. Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. *Euphytica* 2002, 127, 235–245. [CrossRef]
3. Lutts, S.; Kinet, J.M.; Bouharmont, J. Effects of salt stress on growth mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (*Oryza sativa* L.) cultivars differing in salinity resistance. *Plant Growth Regul.* 1996, 19, 207–218. [CrossRef]
4. Cui, H.; Takeoka, Y.; Wada, T. Effect of sodium chloride on the panicle and spikelet morphogenesis in rice. *Jpn. J. Crop. Sci.* **1995**, *64*, 593–600. [CrossRef]

5. Khatun, S.; Flowers, T.J. Effects of salinity on seed set in rice. *Plant Cell. Environ.* **1995**, *18*, 61–67. [CrossRef]

6. Munns, R. Genes and salt tolerance: Bringing them together. *New Phytol.* **2005**, *167*, 645–663. [CrossRef]

7. Tester, M.; Davenport, R.J. Na⁺ tolerance and Na⁺ transport in higher plants. *Ann. Bot.* **2003**, *91*, 503–527. [CrossRef]

8. Wang, H.; Zhang, M.; Guo, R.; Shi, D.; Liu, B.; Lin, X.; Yang, C. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (*Oryza sativa* L.). *BMC Plant Biol.* **2012**, *12*, 194. [CrossRef]

9. Li, C.H.; Wang, G.; Zhao, J.L.; Zhang, L.Q.; Ai, L.F.; Han, Y.F.; Sun, D.Y.; Zhang, S.W.; Sun, Y. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. *Plant Cell* **2014**, *26*, 2538–2553. [CrossRef]

10. Boonburapong, B.; Buaboocha, T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. *BMC Plant Biol.* **2007**, *7*, 4. [CrossRef]

11. Campo, S.; Baldrich, P.; Messegue, J.; Lalanne, E.; Coca, M.; San Segundo, B. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. *Plant Physiol.* **2014**, *165*, 688–704. [CrossRef]

12. Saijo, Y.; Hata, S.; Kyozuka, J.; Shimamoto, S.; Izui, K. Over-expression of a single Ca²⁺-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. *Plant J.* **2000**, *23*, 319–327. [CrossRef]

13. Saijo, Y.; Kinoshita, N.; Ishiyama, K.; Hata, S.; Kyozuka, J.; Hayakawa, T.; Nakamura, T.; Shimamoto, K.; Yamaya, T.; Izui, K. A Ca²⁺-dependent protein kinase that endows rice plants with cold- and salt-stress tolerance functions in vascular bundles. *Plant Cell Physiol.* **2001**, *42*, 1228–1233. [CrossRef]

14. Asano, T.; Hayashi, N.; Kobayashi, M.; Aoki, N.; Miyao, A.; Mitsuhashi, I.; Ichikawa, H.; Komatsu, S.; Hirochika HKikuchi, S.; Ohsugi, R. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. *Plant J. Cell. Mol. Biol.* **2011**, *69*, 26–36. [CrossRef] [PubMed]

15. Asano, T.; Hakata, M.; Nakamura, H.; Aoki, N.; Ichikawa, H.; Komatsu, S.; Hirochika, H.; Kikuchi, S.; Ohsugi, R. Functional characterisation of OsCPK21 a calcium-dependent protein kinase that confers salt tolerance in rice. *Plant Mol. Biol.* **2011**, *75*, 179–191. [CrossRef] [PubMed]

16. Chen, Y.X.; Zhou, X.J.; Chang, S.; Chu, Z.L.; Wang, H.M.; Han, S.C.; Wang, Y.D. Calcium-dependent protein kinase 21 phosphor-ylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. *Biochem. Biophys. Res. Commun.* **2017**, *4*, 1450–1456. [CrossRef]

17. Xiang, Y.; Huang, Y.M.; Xiong, L.Z. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. *Plant Physiol. 2007*, *144*, 1416–1428. [CrossRef] [PubMed]

18. Piao, H.L.; Xuan, Y.H.; Park, S.H.; Je, B.I.I.; Park, S.J.; Park, S.H.; Kim, C.H.; Huang, J.; Wang, G.K.; Kim, M.J.; et al. OsCIPK31 a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. *Mol. Cells* **2010**, *30*, 19–27. [CrossRef] [PubMed]

19. Xiong, L.Z.; Yang, Y.N. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. *Plant Cell* **2003**, *15*, 745–759. [CrossRef] [PubMed]

20. Lee, S.K.; Kim, B.G.; Kwon, T.R.; Jeong, M.J.; Park, S.R.; Lee, J.W.; Byun, M.O.; Kwon, H.B.; Matthews, B.F.; Hong, C.B.; et al. Overexpression of the mitogen-activated protein kinase gene *OsMAPK32* enhances sensitivity to salt stress in rice (*Oryza sativa* L.). *J. Biosci.* **2011**, *36*, 139–151. [CrossRef] [PubMed]

21. Wang, F.Z.; Jing, W.; Zhang, W.H. The mitogen-activated protein kinase cascade MKK1–MPK4 mediates salt signaling in rice. *Plant Sci.* **2014**, *227*, 181–189. [CrossRef]

22. Kumar, K.; Sinha, A.K. Overexpression of constitutively active mitogen activated protein kinase kinase 6 enhances tolerance to salt stress in rice. *Rice* **2013**, *6*, 25. [CrossRef] [PubMed]

23. Na, Y.J.; Choi, H.K.; Park, M.Y.; Choi, S.W.; Yo, K.T.X.; Jeon, J.S.; Kim, S.Y. OsMAPKKK63 is involved in salt stress response and seed dormancy control. *Plant Signal Behav.* **2019**, *14*, 1–6. [CrossRef] [PubMed]

24. Dubouzet, J.G.; Sakuma, Y.; Ito, Y.; Kasuga, M.; Dubouzet, E.G.; Miura, S.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. *OsDREB* genes in rice (*Oryza sativa* L), encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. *Plant J.* **2003**, *33*, 751–763. [CrossRef]

25. Zhang, Y.; Chen, C.; Jin, X.F.; Xiong, A.S.; Peng, R.H.; Hong, Y.H.; Yao, Q.H.; Chen, J.M.; Chen, J.M. Expression of a rice DREB1 gene, *OsDREB1D*, enhances cold tolerance in transgenic *Arabidopsis*. *BMB Rep.* **2009**, *42*, 486–492. [CrossRef]

26. Wang, Q.; Guan, Y.; Wu, Y.; Chen, H.; Chen, F.; Chu, C. Overexpression of a rice *OsDREB1F* gene increases salt drought and low temperature tolerance in both *Arabidopsis* and rice. *Plant Mol. Biol.* **2008**, *67*, 589–602. [CrossRef]

27. Cui, M.; Zhang, W.; Zhang, Q.; Xu, Z.; Zhu, Z.; Duan, F.; Wu, R. Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. *Plant Physiol. Biochem.* **2011**, *49*, 1384–1391. [CrossRef]

28. Mallikarjuna, G.; Mallikarjuna, K.; Reddy, M.K.; Kaul, T. Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (*Oryza sativa* L.). *Biotechnol. Lett.* **2011**, *33*, 1689–1697. [CrossRef]

29. Matsukura, S.; Mizoi, J.; Yoshida, T.; Todaka, D.; Ito, Y.; Maruyama, K.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Comprehensive analysis of rice *DREB2*-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. *Mol. Genet. Genom.* **2010**, *283*, 185–196. [CrossRef] [PubMed]
30. Zhuang, J.; Jiang, H.H.; Wang, F.; Peng, R.H.; Yao, Q.H.; Xiong, A.S. A Rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenic Arabidopsis. *Plant Mol. Biol. Rep.* 2013, 31, 1336–1345. [CrossRef]

31. Oh, S.J.; Kim, Y.S.; Kwon, C.W.; Park, H.K.; Jeong, J.S.; Kim, J.K. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. *Plant Physiol.* 2009, 150, 1368–1379. [CrossRef]

32. Wang, Y.X.; Wang, J.; Zhao, X.Q.; Yang, S.; Huang, L.Y.; Du, F.P.; Li, Z.K.; Zhao, X.Q.; Fu, B.Y.; Wang, W. Overexpression of the transcription factor gene OsSTAP1 improves salt tolerance in rice. *Rice* 2020, 50, 1–12. [CrossRef]

33. Ke, Y.G.; Yang, Z.J.; Yu, S.W.; Li, T.F.; Wu, J.H.; Gao, H.; Fu, Y.P.; Luo, L.J. Characterization of OsDREB6 responsive to osmotic and cold stresses in rice. *J. Plant Biol.* 2014, 57, 150–161. [CrossRef] [PubMed]

34. Schmidt, R.; Mieulet, D.; Hubberten, H.M.; Obata, T.; Hoefgen, R.; Fernie, A.R.; Fisahn, J.; San Segundo, B.; Guiderdoni, E.; Schippers, J.H.M.; et al. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. *Plant Cell* 2013, 25, 2115–2131. [CrossRef] [PubMed]

35. Liu, Y.B.; Chen, X.J.; Liu, J.Q.; Ye, J.C.; Guo, Z.J. The rice ERF transcription factor OsERF922 negatively regulates resistance to *Magnaporthe oryzae* and salt tolerance. *J. Exp. Bot.* 2012, 63, 3899–3911. [CrossRef] [PubMed]

36. Duan, Y.B.; Li, J.; Qin, R.Y.; Xu, R.F.; Li, H.; Yang, Y.C.; Ma, H.; Li, L.; Weng, P.C.; Yang, J.B. Identification of a regulatory element leading to salt sensitivity in rice. *Plant Physiol.* 2010, 153, 169–181. [CrossRef] [PubMed]

37. Nakashima, K.; Tran, L.S.P.; Nguyen, D.V.; Fujita, M.; Maruyama, K.; Todaka, D.; Ito, Y.; Hayashi, N.; Shinozaki, K.; Yamaguchi-Shinozaki, K.; Nakashima, K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress responses. *Front. Plant Sci.* 2016, 7, 4. [CrossRef] [PubMed]

38. Jeong, J.S.; Kim, Y.K.; Baek, K.H.; Jung, H.; Ha, S.H.; Choi, Y.D.; Kim, M.; Reuzeau, C.; Kim, J.K. Root-specific expression of *OsNAC10* improves drought tolerance and grain yield in rice under field drought conditions. *Plant Physiol.* 2010, 153, 185–197. [CrossRef]

39. Wang, B.; Zhong, Z.H.; Hang, H.H.; Wang, X.; Liu, B.L.; Yang, L.J.; Han, X.Y.; Yu, D.S.; Zheng, X.L.; Wang, C.G.; et al. Targeted mutagenesis of NAC transcription factor gene *OsNAC01* leading to salt sensitivity in rice. *Rice* 2019, 26, 98–108. [CrossRef]

40. Yang, A.; Dai, X.Y.; Zhang, W.H. A 2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. *J. Exp. Bot.* 2012, 63, 2541–2556. [CrossRef]

41. Dai, X.; Xu, Y.; Ma, Q.; Xu, W.; Wang, T.; Xue, Y.; Chong, K. Overexpression of an R182R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. *Plant Physiol.* 2007, 143, 1739–1751. [CrossRef] [PubMed]

42. Xiong, H.Y.; Li, J.J.; Liu, P.L.; Duan, J.Z.; Zhao, Y.; Guo, X.; Li, Y.; Zhang, H.L.; Ali, J.; Li, Z.C. Overexpression of *OsMYB48-1* a novel MYB-related transcription factor enhances drought and salinity tolerance in rice. *PLoS ONE* 2014, 9, e92913. [CrossRef] [PubMed]

43. Schmidt, R.; Schippers, J.H.M.; Mieulet, D.; Obata, T.; Fernie, A.R.; Guiderdoni, E.; Mueller-Roeber, B. MULTIPASS, a rice 2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways. *Plant J.* 2013, 76, 258–273. [CrossRef]
55. Zhu, N.; Cheng, S.F.; Liu, X.Y.; Du, H.; Dai, M.Q.; Zhou, D.X.; Yang, W.J.; Zhao, Y. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. *Plant Sci.* 2015, 236, 146–156. [CrossRef] [PubMed]
56. Wang, R.; Jing, W.; Xiao, L.Y.; Jin, Y.K.; Shen, L.K.; Zhang, W.H. The rice High-Affinity Potassium Transporter1 is involved in salt tolerance and regulated by an MYB-type transcription factor. *Plant Physiol.* 2015, 168, 1076–1090. [CrossRef]
57. Hossain, M.A.; Cho, J.; Han, M.; Ahn, C.H.; Jeon, J.S.; An, G.; Park, P.B. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. *J. Plant Physiol.* 2010, 167, 1512–1520. [CrossRef]
58. Zou, M.J.; Guan, Y.C.; Ren, H.B.; Zhang, F.; Chen, F. A bZIP transcription factor, OsABF5, is involved in rice fertility and stress tolerance. *Plant Mol. Biol.* 2008, 66, 675–683. [CrossRef]
59. Du, H.; Ye, H.Y.; Xiong, L.Z. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. *Plant Physiol.* 2009, 148, 1938–1952. [CrossRef]
60. Liu, C.T.; Mao, B.G.; Ou, S.J.; Wang, W.; Liu, L.C.; Wu, Y.B.; Chu, C.C.; Wang, X.P. OsbZIP71, a bZIP transcription factor, confers stress tolerance in rice and results in the activation of stress responsive genes. *Planta* 2010, 228, 191–201. [CrossRef] [PubMed]
61. Liu, C.T.; Mao, B.G.; Ou, S.J.; Wang, W.; Liu, L.C.; Wu, Y.B.; Chu, C.C.; Wang, X.P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. *Plant Physiol.* 2011, 156, 1336–1349. [CrossRef] [PubMed]
102. Tran, L.S.P.; Urao, T.; Qin, F.; Maruyama, K.; Kakimoto, T.; Shonozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of Nongpiur, R.; Soni, P.; Karan, R.; Singla-Pareek, S.L.; Pareek, A. Histidine kinases in plants.

99. Feng, H.M.; Tang, Q.; Cai, J.; Xu, B.C.; Xu, G.H.; Yu, L. Rice OsHAK16 functions in potassium uptake and translocation in shoot maintaining potassium homeostasis and salt tolerance. Plant Physiol. 2014, 166, 945–959. [CrossRef] [PubMed]

98. Yang, T.Y.; Zhang, S.; Hu, Y.B.; Wu, F.C.; Hu, Q.D.; Chen, G.; Cai, J.; Wu, T.; Moran, N.; Yu, L.; et al. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol. 2014, 161, 4046–4056. [CrossRef] [PubMed]

97. Chen, G.; Hu, Q.; Luo, L.; Yang, T.; Zhang, S.; Hu, Y.; Xu, G. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell. Environ. 2009, 32, 2747–2765. [CrossRef] [PubMed]

96. Liu, S.P.; Zheng, L.Q.; Xue, Y.H.; Zhang, Q.; Wang, L.; Shuo, H.X. Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. J. Plant Biol. 2010, 53, 444–452. [CrossRef] [PubMed]

95. El Mahi, H.; Périz-Hormaeche, J.; De Luca, A.; Villalta, I.; Espartero, J.; Gómez-Arjona, F.; Fernández, J.L.; Bundó, M.; Mendoza, I.; Mieulet, D.; et al. Critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiol. 2011, 154, 1046–1065. [CrossRef] [PubMed]

94. Oda, Y.; Kobayashi, N.I.; Tano, K.; Ma, J.F.; Itou, Y.; Katsuhara, M.; Itou, T.; Horie, T. T-DNA tagging-based gain-of-function of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice (Oryza sativa) for root sodium content. PLoS Genet. 2017, 13, e1006823. [CrossRef] [PubMed]

93. Oda, Y.; Kobayashi, N.I.; Tano, K.; Ma, J.F.; Itou, Y.; Katsuhara, M.; Itou, T.; Horie, T. T-DNA tagging-based gain-of-function of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice (Oryza sativa) for root sodium content. PLoS Genet. 2017, 13, e1006823. [CrossRef] [PubMed]

92. Campbell, M.T.; Bandillo, N.; Razzaq, F.; Shiblawi, A.; Sharma, S.; Liu, K.; Schmitz, A.J.; Zhang, C.; Vérí, A.A.; Lorenz, A.J.; et al. Allelic variants of OsHAK16 modulate the expression of cytokinin receptor histidine kinases in response to abscisic acid drought and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. USA 2007, 104, 20623–20628. [CrossRef] [PubMed]

91. Nongpiur, R.; Soni, P.; Karan, R.; Singla-Pareek, S.L.; Pareek, A. Histidine kinases in plants. Plant Signal Behav. 2012, 7, 1230–1237. [CrossRef] [PubMed]

90. Sharma, R.; Priya, P.; Jain, M. Modified expression of an auxin-responsive rice CC-type glutaredoxin gene affects multiple abiotic stress responses. J. Exp. Bot. 2007, 58, 269–280. [CrossRef] [PubMed]

89. Wu, T.M.; Lin, W.R.; Kao, Y.T.; Hsu, Y.T.; Yeh, C.H.; Hong, C.Y.; Kao, C.H. Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. Plant Mol. Biol. 2013, 82, 379–390. [CrossRef] [PubMed]

88. Wu, T.M.; Lin, W.R.; Kao, Y.T.; Hsu, Y.T.; Yeh, C.H.; Hong, C.Y.; Kao, C.H. Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. Plant Mol. Biol. 2013, 82, 379–390. [CrossRef] [PubMed]

87. You, J.; Zong, W.; Li, X.K.; Ning, J.; Hu, H.H.; Li, X.H.; Xiao, J.H.; Xiong, L.Z. Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS ONE 2013, 8, e57472. [CrossRef] [PubMed]

86. Zhang, Z.G.; Zhang, Q.A.; Wu, J.X.; Zheng, X.; Zheng, S.; Sun, X.H.; Qiu, Q.S.; Lu, T.G. Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS ONE 2013, 8, e57472. [CrossRef] [PubMed]

85. Tanaka, Y.; Hibino, T.; Tanaka, A.; Kishitani, S.; Takabe, T.; Yokota, S.; Takabe, T. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci. 1999, 148, 131–138. [CrossRef] [PubMed]

84. Guan, Q.; Liao, X.; He, M.; Li, X.; Wang, Z.; Ma, H.; Yu, S.; Liu, S. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci. 2002, 159, 191–199. [CrossRef] [PubMed]

83. You, J.; Zong, W.; Li, X.K.; Ning, J.; Hu, H.H.; Li, X.H.; Xiao, J.H.; Xiong, L.Z. Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS ONE 2013, 8, e57472. [CrossRef] [PubMed]

82. Wu, F.Q.; Sheng, P.K.; Tan, J.J.; Chen, X.L.; Lu, G.W.; Ma, W.W.; Heng, Y.Q.; Lin, Q.B.; Zhu, S.S.; Wang, J.L.; et al. Plasma membrane receptor-like kinase leaf panicle 2 acts downstream of the DROUGHT AND SALT TOLERANCE transcription factor to regulate drought sensitivity in rice. J. Exp. Bot. 2015, 66, 271–281. [CrossRef] [PubMed]

81. Liu, C.W.; Fukumoto, T.; Matsumoto, T.; Gena, P.; Frascaria, D.; Kaneko, T.; Katsuhara, M.; Zhong, S.H.; Sun, X.L.; Zhu, Y.M.; et al. Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination. Plant Physiol. Biochem. 2013, 63, 151–158. [CrossRef] [PubMed]

80. Guo, L.; Wang, Z.Y.; Lin, H.; Cui, W.E.; Chen, J.; Liu, M.; Chen, Z.L.; Qu, L.J.; Gu, H. Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res. 2006, 16, 277–286. [CrossRef] [PubMed]

79. El Mahi, H.; Périz-Hormaeche, J.; De Luca, A.; Villalta, I.; Espartero, J.; Gómez-Arjona, F.; Fernández, J.L.; Bundó, M.; Mendoza, I.; Mieulet, D.; et al. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiol. 2013, 161, 569–583. [CrossRef] [PubMed]

78. Campbell, M.T.; Bandillo, N.; Razzaq, F.; Shiblawi, A.; Sharma, S.; Liu, K.; Schmitz, A.J.; Zhang, C.; Vérí, A.A.; Lorenz, A.J.; et al. Allelic variants of OsHAK16 modulate the expression of cytokinin receptor histidine kinases in response to abscisic acid drought and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. USA 2007, 104, 20623–20628. [CrossRef] [PubMed]

77. Vishal, B.; Krishnamurthy, P.; Ramamoorthy, R.; Kumar, P.P. OsTPS8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition. New Phytol. 2018, 221, 1369–1386. [CrossRef] [PubMed]
103. Kumar, M.N.; Jane, W.N.; Verslues, P.E. Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response. Plant Physiol. 2013, 161, 942–953. [CrossRef]

104. Kushwaha, H.R.; Singla-Pareek, S.L.; Pareek, A. Putative osmosensor–OsHK3b–a histidine kinase protein from rice shows high structural conservation with its ortholog AtHK1 from Arabidopsis. J. Biolom. Struct. Dyn. 2014, 32, 1318–1332. [CrossRef]

105. Ozakabe, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.S.P. Sensing the environment: Key roles of membrane-localized kinases in plant perception and response to abiotic stress. J. Exp. Bot. 2013, 64, 445–458. [CrossRef]

106. Zhao, J.L.; Zhang, L.Q.; Liu, N.; Xu, S.L.; Yue, Z.L.; Zhang, L.L.; Deng, Z.P.; Burlingame, A.L.; Sun, D.Y.; Wang, Z.Y.; et al. Mutual regulation of receptor-like kinase SIT1 and B’-PP2A shapes the early response of rice to salt stress. Plant Cell 2019, 31, 2131–2151. [CrossRef]

107. Yuan, F.; Yang, H.; Xue, Y.; Kong, D.; Ye, R.; Li, C.; Zhang, J.; Theprungsirikul, L.; Shrift, T.; Krichilsky, B. OSCA1 mediates osmotic-stress-evoked Ca²⁺ increases vital for osmosensing in Arabidopsis. Nature 2014, 514, 367–371. [CrossRef] [PubMed]

108. Li, Y.S.; Yuan, F.; Wen, Z.H.; Li, Y.H.; Wang, F.; Zhu, T.; Zhou, W.Q.; Jin, X.; Wang, Y.D.; Zhao, H.P.; et al. Genome-wide survey and expression analysis of the OSCA gene family in rice. BMC Plant Biol. 2015, 15, 261. [CrossRef] [PubMed]

109. Shi, H.Z.; Ishitani, M.; Kim, C.S.; Zhu, J.K. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na⁺/H⁺ antiporter. Proc. Natl. Acad. Sci. USA 2000, 97, 6896–6901. [CrossRef]

110. Zhu, J.K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003, 6, 441–445. [CrossRef]

111. Kader, M.A.; Lindberg, S.; Seidel, T.; Golldack, D.; Yemelyanov, V. Sodium sensing induces different changes in free cytosolic calcium concentration and pH in salt-tolerant and -sensitive rice (Oryza sativa) cultivars. Physiol. Plantarum. 2007, 130, 99–111. [CrossRef]

112. Apel, K.; Hirt, H. Reactive oxygen species: Metabolism oxidative stress and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [CrossRef]

113. Batistic, O.; Kudla, J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Plant 2004, 219, 915–924. [CrossRef] [PubMed]

114. Bouché, N.; Yellin, A.; Snedded, W.A.; Fromm, H. Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Sci. 2005, 56, 435–456. [CrossRef] [PubMed]

115. Zeng, H.Q.; Xu, L.Q.; Singh, A.; Wang, H.Z.; Du, L.Q.; Pooovaiah, B.W. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front. Plant Sci. 2015, 6, 600. [CrossRef]

116. Yuenyong, W.; Chinpongpanich, A.; Comai, L.; Chadchawan, S.; Buaboocha, T. Downstream components of the calmodulin signaling pathway in the rice salt stress response revealed by transcriptome profiling and target identification. BMC Plant Biol. 2018, 18, 335. [CrossRef] [PubMed]

117. Katou, S.; Kuroda, K.; Seo, S.; Yanagawa, Y.; Tsuge, T.; Yamazaki, M.; Miyao, A.; Hirochika, H.; Ohashi, Y. A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. Plant Cell. Physiol. 2007, 48, 332–344. [CrossRef]

118. Yang, J.; Liu, S.; Ji, L.X.; Tang, X.Y.; Zhu, Y.S.; Xie, G.S. Identification of novel OsCML16 target proteins and differential expression analysis under abiotic stresses in rice. J. Plant Physiol. 2020, 249, 153–165. [CrossRef] [PubMed]

119. Xu, G.Y.; Li, S.Z.; Xie, K.; Zhang, Q.; Wang, Y.; Tang, Y.; Hong, Y.G.; He, C.Y.; Liu, Y.L. Plant ERD2-like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity. Plant J. 2012, 72, 57–69. [CrossRef]

120. Asano, T.; Tanaka, N.; Yang, G.X.; Hayashi, N.; Komatsu, S. Genome-wide Identification of the Rice Calcium-dependent Protein Kinase and its Closely Related Kinase Gene Families: Comprehensive Analysis of the CDPKs Gene Family in Rice. Plant Cell. Physiol. 2005, 46, 356–366. [CrossRef]

121. Huang, S.L.; Jiang, S.F.; Liang, J.S.; Chen, M. Roles of plant CBL-CIPK systems in abiotic stress responses. Turk. J. Bot. 2019, 43, 271–280. [CrossRef]

122. Martinez-Atienza, J.; Jiang, X.; Garcia-deblas, B.; Mendoza, I.; Zhu, J.K.; Pardo, J.M.; Quintero, F.J. Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 2007, 143, 1001–1012. [CrossRef]

123. Yang, C.W.; Zhang, T.Y.; Wang, H.; Zhao, N.; Liu, B. Heritable alteration in salt tolerance in rice induced by introgression from wild rice (Zizania latifolia). Rice 2012, 5, 36. [CrossRef] [PubMed]

124. Kanwar, P.; Sanyal, S.K.; Tokas, I.; Yadav, A.K.; Pandey, A.; Kapoor, S.; Pandey, G.K. Comprehensive structural interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice. Cell Calcium 2014, 56, 81–95. [CrossRef]

125. Chen, X.; Gu, Z.; Liu, F.; Ma, B.; Zhang, H. Molecular analysis of rice CIPKs Involved in both biotic and abiotic stress responses. Rice Sci. 2016, 18, 1–9. [CrossRef]

126. Mittler, R.; Vandenauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [CrossRef] [PubMed]

127. Rohila, J.S.; Yang, Y. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J. Integr. Plant Biol. 2007, 49, 751–759. [CrossRef]

128. Rodriguez, M.C.; Petersen, M.; Mundy, J. Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 2010, 61, 621–649. [CrossRef]
129. MAPK Group. Mitogen-activated protein kinase cascades in plants: A new nomenclature. *Trends Plant Sci.* 2002, 7, 301–308. [CrossRef]

130. Sinha, A.K.; Jaggi, M.; Raghirum, B.; Tuteja, N. Mitogen-activated protein kinase signalling in plants under abiotic stress. *Plant Signal Behav.* 2011, 16, 196–203. [CrossRef]

131. Kumar, K.; Wankhede, D.P.; Sinha, A.K. Signal convergence through the lenses of MAP kinases: Paradigms of stress and hormone signaling in plants. *Front. Biol.* 2013, 8, 109–118. [CrossRef]

132. Yoo, S.J.; Kim, S.H.; Kim, M.J.; Ryu, C.M.; Kim, Y.C.; Cho, B.H.; Yang, K.Y. Involvement of the OsMKK4-OsMPK1 cascade and its downstream transcription factor OsWRKY53 in the wounding response in rice. *Plant Path.* J. 2014, 30, 168–177. [CrossRef] [PubMed]

133. Bohnert, H.J.; Ayoubi, P.; Borchert, C.; Bressan, R.A.; Burnap, R.L.; Cushman, J.C.; Deyholos MFischer RGalbraith, D.W.; Hasegawa, P.M.; Jenks, M.; Kawasaki, M.; et al. A genomics approach towards salt stress tolerance. *Plant Physiol. Biochem.* 2001, 39, 295–311. [CrossRef]

134. Zhu, J.K. Plant salt tolerance. *Trends Plant Sci.* 2001, 6, 66–71. [CrossRef]

135. Seki, M.; Narusaka, M.; Abe, H.; Kasuga, M.; Yamaguchi-Shinozaki, K.; Carninci, P.; Hayashizaki, Y.; Shinozaki, K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. *Plant Cell* 2001, 13, 61–72. [CrossRef]

136. Seki, M.; Ishida, J.; Narusaka, M.; Fujita, M.; Nanjo, T.; Umezawa, T.; Kamiya, A.; Nakajima, M.; Enju, A.; Sakurai, T.; et al. Monitoring the expression pattern of 7000 Arabidopsis genes under ABA treatments by using a full-length cDNA microarray. *Plant J.* 2020, 2, 282–291. [CrossRef]

137. Gao, G.; Zhong, Y.F.; Guo, A.; Zhu, Q.; Tang, W.; Zheng, W. DRTF: A database of rice transcription factors. *Bioinformatics* 2006, 22, 1286–1287. [CrossRef]

138. Feng, J.X.; Liu, D.; Pan, Y.; Gong, W.; Ma, L.G.; Luo, J.C.; Deng, X.W.; Zhu, Y. An annotation update via cDNA sequence analysis and comprehensive profiling of developmental hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. *Plant Mol. Biol.* 2005, 59, 853–868. [CrossRef]

139. Agarwal, P.K.; Gupta, K.; Lopato, S.; Agarwal, P. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. *J. Exp. Bot.* 2017, 68, 2135–2148. [CrossRef]

140. Ito, Y.; Katsuura, K.; Maruyama, K.; Taji, T.; Kobayashi, M.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. *Plant Cell. Physiol.* 2006, 47, 141–153. [CrossRef]

141. Chen, J.Q.; Meng, X.P.; Zhang, Y.; Xia, M.; Wang, X.P. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. *Biotechnol. Lett.* 2008, 30, 2191–2198. [CrossRef]

142. Danyluk, J.; Perron, A.; Houde, M.; Limin, A.; Fowler, B.; Benhamou, N.; Sarhan, F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. *Plant Physiol.* 1998, 10, 623–638. [CrossRef]

143. Khan, M.S. The role of DREB transcription factors in abiotic stress tolerance of plants. *Agric. Environ. Biotechnol.* 2011, 25, 2433–2442. [CrossRef]

144. Puranik, S.; Sahu, P.P.; Srivastava, P.S.; Prasad, M. NAC proteins: Regulation and role in stress tolerance. *Trends Plant Sci.* 2007, 12, 369–381. [CrossRef]

145. Li, C.N.; Ng, C.K.Y.; Fan, L.M. MYB transcription factors active players in abiotic stress signaling. *Environ. Exp. Bot.* 2015, 114, 80–91. [CrossRef]

146. Li, J.; Han, G.; Sun, C.; Sui, N. Research advances of MYB transcription factors in plant stress resistance and breeding. *Trends Plant Sci.* 2019, 14, 1–9. [CrossRef] [PubMed]

147. Lakra, N.; Nutan, K.K.; Das, P.; Anwar KSingla-Pareek, S.L.; Pareek, A. A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. *J. Plant Physiol.* 2015, 176, 46–46. [CrossRef] [PubMed]

148. Li, W.T.; He, M.; Wang, J.; Wang, Y.P. Zinc finger protein (ZFP) in plants-A review. *Plant Omics J.* 2013, 6, 474–480. [CrossRef]

149. Murre, C.; Bain, G.; Dijk, M.A.V.; Engels, A.; Furnari, B.A.; Massari, M.E.; Matthews, J.R.; Quong, M.W.; Rivera, R.R.; Stuever, M.H. Structure and function of helix–loop–helix proteins. *BBA Biomembr.* 1994, 1218, 129–135. [CrossRef]

150. Wu, H.; Ye, H.Y.; Yao, R.F.; Zhang, T.; Xiong, L.Z. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. *Plant Sci.* 2015, 232, 1–12. [CrossRef]

151. Sun, X.; Wang, Y.; Sui, N. Transcriptional regulation of bHLH during plant response to stress. *Biochem. Biophys. Res. Commun.* 2018, 503, 397–401. [CrossRef] [PubMed]

152. Almeida, D.M.; Gregorio, G.; Oliveira, M.M.; Saibo, N.J.M. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. *Plant Mol. Biol.* 2017, 93, 61–77. [CrossRef] [PubMed]

153. Rontein, D.; Basset, G.; Hanson, A.D. Metabolic engineering of osmoprotectant accumulation in plants. *Metab. Eng.* 2002, 4, 49–56. [CrossRef] [PubMed]

154. Abdallah, M.M.S.; Abdelgawad, Z.A.; El-Bassiuni, H.M.S. Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. *South Afr. J. Bot.* 2016, 103, 275–282. [CrossRef]

155. Bhusan, D.; Das, D.K.; Hossain, M.; Murata, Y.; Hoque, M.A. Improvement of salt tolerance in rice (Oryza sativa L.) by increasing antioxidant defense systems using exogenous application of proline. *Aust. J. Crop. Sci.* 2016, 10, 50–56.
156. Demiral, T.; Türkan, I. Exogenous glycine betaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ. Exp. Bot. 2005, 56, 72–79. [CrossRef]

157. Harinasut, P.; Tsutsumi, K.; Takabe, T.; Nomura, M.; Takabe, T.; Kishitani, S. Exogenous glycinebetaine accumulation and increased salt-tolerance in rice seedlings. Biosci. Biotech. Bioch. 1996, 60, 366–368. [CrossRef]

158. Wang, Q.; Ding, T.; Zuo, J.; Gao, L.; Fan, L. Amelioration of postharvest chilling injury in sweet pepper by glycine betaine. Postharvest Biol. Technol. 2016, 112, 114–120. [CrossRef]

159. Chen, T.H.H.; Murata, N. Glycine betaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant Cell. Environ. 2010, 34, 1–20. [CrossRef]

160. Chaumont, F.; Tyerman, S.D. Aquaporins: Highly regulated channels controlling plant water relations. Plant Physiol. 2014, 164, 1600–1618. [CrossRef]

161. Maurel, C.; Boursiac, Y.; Luu, D.T.; Santoni, V.; Shahzad, Z.; Verdoucq, L. Aquaporins in plants. Physiol. Rev. 2015, 95, 1321–1358. [CrossRef] [PubMed]

162. Sakurai, J.; Ishikawa, F.; Yamaguchi, T.; Uemura, M.; Maeshima, M. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell. Physiol. 2005, 46, 1568–1577. [CrossRef] [PubMed]

163. Kawasaki, S.; Borchert, C.; Deyholos, M.; Wang, H.; Brazille, S.; Kawai, K.; Galbraith, D.; Bohnert, H.J. Gene expression profiles of Arabidopsis mutants as stress-mimic models. Environ. Exp. Bot. 2002, 53, 1331–1341. [CrossRef]

164. Cui, L.G.; Shan, J.X.; Shi, M.; Gao, J.P.; Lin, H.X. DCA1 acts as a transcriptional co-activator of DST and contributes to drought and salt tolerance in rice. Plant Cell 2001, 13, 889–905. [CrossRef]

165. Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Int. J. Mol. Sci. 2010, 11, 1121–1140. [CrossRef] [PubMed]

166. Rossatto, T.; do Amaral, M.N.; Benitz, L.C.; Vighi, I.L.; Braga, E.J.B.; Júnior, A.M.D.; Maia, M.A.C.; Pinto, L.D. Gene expression and activity of antioxidant enzymes in rice plants, cv. BR5 AG, under saline stress. Physiol. Mol. Biol. Plants 2017, 23, 865–875. [CrossRef] [PubMed]

167. Lee, S.H.; Ahsan, N.; Lee, K.W.; Kim, D.H.; Lee, D.G.; Kwak, S.S. Simultaneous overexpression of both Cu/Zn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J. Plant Physiol. 2007, 164, 1626–1638. [CrossRef]

168. Mishra, P.; Bhoomika, K.; Dubey, R.S. Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 2013, 250, 3–19. [CrossRef]

169. Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002, 53, 1331–1341. [CrossRef]

170. Cheng, Y.W.; Kong, X.W.; Wang, N.; Wang, T.T.; Chen, J.; Shi, Z.Q. Thymol confers tolerance to salt stress by activating anti-oxidative defense and modulating Na+ homeostasis in rice root. Ecotoxicol. Environ. Saf. 2020, 188, 109894. [CrossRef] [PubMed]

171. Wang, Y.; Ying, Y.; Chen, J.; Wang, X. Transgenic Arabidopsis, overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci. 2004, 167, 671–677. [CrossRef]

172. Zhou, Y.B.; Liu, C.; Tang, D.Y.; Yan, L.; Wang, D.; Yang, Y.Z.; Gui, J.S.; Zhao, X.Y.; Li, L.G.; Tang, X.D.; et al. The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. Plant Cell 2018, 30, 1100–1118. [CrossRef]

173. Kibria, M.G.; Hossain, M.; Murata, Y.; Hoque, M.A. Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Sci. 2017, 24, 155–162. [CrossRef]

174. Wutipraditkul, N.; Boonkomrat, S.; Buaboocha, T. Cloning and characterization of catalases from rice, Oryza sativa L. Biosci Biotechnol Biochem 2011, 75, 1900–1906. [CrossRef]

175. Teixeira, F.K.; Menezes-Benvente, L.; Margis, R.; Margis-Pinheiro, M. Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: Inferences from the rice genome. J. Mol. Evol. 2004, 59, 761–770. [CrossRef]

176. Hong, C.Y.; Hsu, Y.T.; Tsai, Y.C.; Kao, C.H. Expression of Ascorbate Peroxidase 8 in roots of rice (Oryza sativa L) seedlings in response to NaCl. J. Exp. Bot. 2007, 58, 3273–3283. [CrossRef]

177. Bonifacio, A.; Martins, M.O.; Ribeiro, C.V.; Fontenele, A.V.; Carvalho, E.E.; Margis-Pinheiro, M.; Silveira, J.G. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant Cell. Environ. 2011, 34, 1705–1722. [CrossRef]
183. Rosa, S.B.; Caverzan, A.; Teixeira, F.K.; Lazzarotto, F.; Silveira, J.A.G.; Ferreira-Silva, S.L.; Abreu-Neto, J.; Margis, R.; Margis-Pinheiro, M. Cytosolic APx knockdown indicates an ambiguous redox response in rice. *Phytochem* 2010, 71, 548–558. [CrossRef]

184. Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. *Annu. Rev. Plant Physiol.* 1998, 49, 249–279. [CrossRef] [PubMed]

185. Wu, T.M.; Lin, W.R.; Kao, C.H.; Hong, C.Y. Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice. *Plant Mol. Biol.* 2015, 87, 555–564. [CrossRef] [PubMed]

186. Hong, C.Y.; Chao, Y.Y.; Yang, M.Y.; Cheng, S.Y.; Cho, S.C.; Kao, C.H. NaCl-induced expression of glutathione reductase in roots of rice (*Oryza sativa L.*) seedlings is mediated through hydrogen peroxide but not abscisic acid. *Plant Soil* 2009, 320, 103–115. [CrossRef]

187. Tsai, Y.C.; Hong, Y.C.; Kiu, L.F.; Kao, C.H. Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. *J. Plant Physiol.* 2005, 162, 291–299. [CrossRef] [PubMed]

188. Holmgren, A. Thioredoxin and glutaredoxin systems. *J. Biol. Chem.* 1989, 264, 13963–13966. [CrossRef]

189. Horie, T.; Yoshida, K.; Nakayama, H.; Yamada, K.; Oiki, S.; Shinmyo, A. Two types of HKT transporters with different properties in rice (*Oryza sativa L.*). *Planta* 2010, 233, 273–2738. [CrossRef] [PubMed]

190. Garg, R.; Jhanwar, S.; Tyagi, A.K.; Jain, M. Genome-wide survey and expression analysis suggest diverse roles of glutaredoxin gene family members during development and response to various stimuli in rice. *DNA Res.* 2010, 17, 353–367. [CrossRef]

191. Garciadeblas, B.; Senn, M.E.; Banuelos, M.A.; Rodriguez-Navarro, A. Sodium transport and HKT transporters: The rice model. *Crit. Rev. Plant Sci.* 2009, 28, 139–151. [CrossRef]

192. Gaxiola, R.A.; Li, J.S.; Uddurrarga, S.; Dang, L.M.; Allen, G.J.; Alper, S.L.; Fink, G.R. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. *Proc. Natl. Acad. Sci. USA* 2005, 98, 11444–11449. [CrossRef]

193. Zhao, F.Y.; Zhang, X.J.; Li, P.H.; Zhao, Y.X.; Zhang, H. Co-expression of the *Suauca salsa* SnNHX1 and *Arabidopsis* AVP1 confer greater salt tolerance to transgenic rice than the single *SnNHX1*. *Mol. Breed.* 2006, 17, 341–353. [CrossRef]

194. Gong, H.J.; Randall, D.P.; Flowers, T.J. Silicon deposition in the root reduces sodium uptake in rice (*Oryza sativa L.*) seedlings by reducing bypass flow. *Plant Cell. Environ.* 2006, 29, 1273–433. [CrossRef]

195. Krishnamurthy, P.; Ranathunge, K.; Franke, R.; Prakash, H.S.; Schreiber, L.; Mathew, M.K. The role of root apoplastic transport barriers in salt tolerance of rice (*Oryza sativa L.*). *Planta* 2009, 230, 119–134. [CrossRef] [PubMed]

196. Brini, F.; Hanin, M.; Mezghani, I.; Berkowitz, G.A.; Masmou, K. Overexpression of wheat Na+/H+ antiporter TNHX1 and H⁺-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in *Arabidopsis thaliana* plants. *J. Exp. Bot.* 2007, 58, 301–308. [CrossRef] [PubMed]

197. Amin, U.S.M.; Biswas, S.; Elias, S.M.; Razzak, Z.A.; Hanif, M.; Seraj, Z.I. Enhanced stress tolerance conferred by the single *SnNHX1* gene compared to 19 kb coding region with 5’ UTR in transgenic *Oryza sativa* L. (*O*. *sativa*) seedlings by *SnNHX1*. *Int. J. Mol. Sci.* 2010, 11, 2254–2268. [CrossRef] [PubMed]

198. Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. *Annu. Rev. Plant Physiol.* 1998, 49, 249–279. [CrossRef] [PubMed]

199. Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. *Annu. Rev. Plant Physiol.* 1998, 49, 249–279. [CrossRef] [PubMed]

200. Fukuda, A.; Nakamura, A.; Hara, N.; Toki, S.; Tanaka, Y. Molecular and functional analyses of rice NHX-type Na⁺/H⁺ antiporter genes. *Planta* 2011, 233, 175–188. [CrossRef]

201. Suzuki, K.; Yamaji, N.; Costa, A.; Okuma, E.; Kobayashi, N.I.; Kashiwagi, T.; Katsuhara, M.; Wang, C.; Tanoi, K.; Murata, Y.; et al. OsHKT1;4-mediated Na⁺ transport in stems contributes to Na⁺ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. *BMC Plant Biol.* 2016, 16, 22. [CrossRef]

202. Kader, M.A.; Lindberg, S. Cytosolic calcium and pH signaling in plants under salinity stress. *Plant Signal Behav.* 2011, 16, 1884–1899. [CrossRef] [PubMed]

203. Rosa, S.B.; Caverzan, A.; Teixeira, F.K.; Lazzarotto, F.; Silveira, J.A.G.; Ferreira-Silva, S.L.; Abreu-Neto, J.; Margis, R.; Margis-Pinheiro, M. Cytosolic APx knockdown indicates an ambiguous redox response in rice. *Phytochem* 2010, 71, 548–558. [CrossRef]

204. Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. *Annu. Rev. Plant Physiol.* 1998, 49, 249–279. [CrossRef] [PubMed]

205. Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. *Annu. Rev. Plant Physiol.* 1998, 49, 249–279. [CrossRef] [PubMed]

206. Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. *Annu. Rev. Plant Physiol.* 1998, 49, 249–279. [CrossRef] [PubMed]

207. Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. *Annu. Rev. Plant Physiol.* 1998, 49, 249–279. [CrossRef] [PubMed]

208. Horie, T.; Yoshida, K.; Nakayama, H.; Yamada, K.; Oiki, S.; Shimnoy, A. Two types of HKT transporters with different properties of Na⁺ and K⁺ transport in *Oryza sativa*. *Plant J.* 2001, 27, 129–138. [CrossRef]

209. Suzuki, K.; Yamaji, N.; Costa, A.; Okuma, E.; Kobayashi, N.I.; Kashiwagi, T.; Katsuhara, M.; Wang, C.; Tanoi, K.; Murata, Y.; et al. Enhanced stress tolerance conferred by the single *SnNHX1* gene compared to 19 kb coding region with 5’ UTR in transgenic *Oryza sativa* L. (*O*. *sativa*) seedlings by *SnNHX1*. *Int. J. Mol. Sci.* 2010, 11, 2254–2268. [CrossRef] [PubMed]

210. Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. *Annu. Rev. Plant Physiol.* 1998, 49, 249–279. [CrossRef] [PubMed]

211. Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. *Annu. Rev. Plant Physiol.* 1998, 49, 249–279. [CrossRef] [PubMed]

212. Gaxiola, R.A.; Li, J.S.; Uddurrarga, S.; Dang, L.M.; Allen, G.J.; Alper, S.L.; Fink, G.R. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. *Proc. Natl. Acad. Sci. USA* 2005, 98, 11444–11449. [CrossRef]

213. Zhao, F.Y.; Zhang, X.J.; Li, P.H.; Zhao, Y.X.; Zhang, H. Co-expression of the *Suauca salsa* SnNHX1 and *Arabidopsis* AVP1 confer greater salt tolerance to transgenic rice than the single *SnNHX1*. *Mol. Breed.* 2006, 17, 341–353. [CrossRef]

214. Gong, H.J.; Randall, D.P.; Flowers, T.J. Silicon deposition in the root reduces sodium uptake in rice (*Oryza sativa L.*) seedlings by reducing bypass flow. *Plant Cell. Environ.* 2006, 29, 1273–433. [CrossRef]

215. Krishnamurthy, P.; Ranathunge, K.; Franke, R.; Prakash, H.S.; Schreiber, L.; Mathew, M.K. The role of root apoplastic transport barriers in salt tolerance of rice (*Oryza sativa L.*) *Planta* 2009, 230, 119–134. [CrossRef] [PubMed]