A meta-analysis comparing efficiency of limb-salvage surgery vs amputation on patients with osteosarcoma treated with neoadjuvant chemotherapy

Mohamed A Abdelgawad1 | Della G T Parambi1 | Mohammed M. Ghoneim2 | Nasser Hadal Alotaibi3 | Abdulaziz Ibrahim Alzarea3 | Ahmed HM Hassan4 | Mohamed E.A. Abdelrahim5

1Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
2Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
3Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
4Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), Sadat City, Egypt
5Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt

Abstract
Osteogenic sarcoma is the central malignant bone neoplasm affecting the bones of arms and legs and rarely the soft tissues outside the bones. Historically, amputation was the chief surgical technique; currently, the popular standard is limb salvage surgery (LSS), although both procedures’ effect on 5-year-event survival, 5-year disease-free survival rates (DFS) and the local recurrence is uncertain. Therefore, this meta-study aimed to establish the relationship between the effect of LSS and amputation in subjects with osteogenic carcinoma. A systematic survey till January 2021 to know the effect of LSS vs amputation with subjects treated with neoadjuvant chemotherapy was conducted. Clinical studies were identified with 9760 subjects with osteosarcoma of the extremities at the beginning of the trial; 7095 of them were managed with limb salvage surgery and 2611 with amputation. This study tried to compare the effects of LSS vs amputation in subjects with osteogenic sarcoma in the extremities. The dichotomous method in statistical analysis was used as a tool for establishing odds ratio (OR) at a confidence interval of 95% (CI) to assess the efficiency of LSS and amputees with osteosarcoma of the extremities with a fixed or random-effect model. Although patients with osteosarcoma of the extremities managed with LSS were significantly related to a higher local recurrence rate than those treated with amputation, they were also associated with higher 5-year overall survival (OS) than amputation. Patients showed no significant difference in a 5-year DFS rate between LSS vs amputation. The
subjects who have undergone LSS for osteosarcoma of the extremities may have a higher risk of local recurrence than amputees. However, LSS may increase 5-year OS compared to amputees. These results depict that local recurrence of osteosarcoma does not influence survival rate. However, more studies are needed to validate this finding.

KEYWORDS

5-year disease-free survival rate, 5-year overall survival, amputation, limb salvage surgery, osteosarcoma

Key Messages

- Osteosarcoma is the main malignant bone neoplasm influencing the long bones. Amputation was the chief surgical technique; currently, the gold standard is limb salvage surgery (LSS)
- LSS in subjects with osteosarcoma of the extremities may increase the risk of local recurrence rate compared to the amputation
- LSS in subjects with osteosarcoma of the extremities may increase 5-year overall survival compared to the amputation
- These results suggest that local recurrence does not influence survival. However, more studies are needed to validate this finding.

BACKGROUND

Osteogenic sarcoma or osteosarcoma is the commonest primary kind of bone malignancy that affects adolescents and children's mesenchymal tissue. It often originates in the metaphysis of long bones mostly in the proximal tibia, distal femur, and humerus. It is rarely occurring as its incidence is less than 0.001% of children under 19 years' old and represents about 3%–5% of childhood tumours. The peak prevalence of osteosarcoma occurs through early puberty and late in the 60 years and occurs more in males than females. Approximately, 10%–20% of osteosarcoma patients are diagnosed with metastasis mostly represented as pulmonary metastasis but also may occur in bone, lymph node, or other soft-tissue lesions. The occurrence of metastasis is an alarming indicator of poor prognosis.

Historically, osteogenic sarcoma was managed with amputations to control the gross disease with survival rates of 20%–30%, while recently, it was clarified that the best management plan for osteogenic sarcoma is the introduction of neoadjuvant systemic chemotherapy followed by a surgical procedure to remove the malignant regions and adjuvant chemotherapy, that has improved the survival rate to 70%–80%. Whereas most of the cases who underwent surgical elimination of osteosarcomas alone with no chemotherapy died within a year of diagnosis as the lung became metastasized with a median time of 10 months, providing a comparatively rapid endpoint for surgery. However, chemotherapy alone cannot be taken as a treatment methodology to cure this rare and noticeable malignancy. Nowadays, the best line of treatment for osteogenic sarcomas is enough cycles of chemotherapeutic drugs like doxorubicin, cisplatin, and methotrexate followed by surgical removal of tumour. Low-grade osteosarcomas are treated by surgical excision. The 2 major surgical techniques adopted are LSS and amputation. The LSS intends to remove the malignancy and any tumour cells at the healthy tissue margins, but amputation is recommended if this cannot be treated. Amputation is adapted as a technique with instant and violent elimination of all the parts of bone diseased with osteogenic sarcoma for subjects with a pathologic fracture. The location and size of the tumour, extra-medullary extension, existence of metastasis, preliminary tumour necrosis, age and skeletal development are the selection criteria for the type of surgery.

Nowadays, LSS with neoadjuvant chemotherapy is the preferred option for osteosarcoma management by most surgeons. Present techniques to manage osteogenic sarcoma were successful with 5-year overall survival (OS) rate between 70% and 80%. Conflict persists about the best surgical technique, as many factors may influence survival rate, for example, the degree of tumour necrosis, the disease-free margins after surgery metastasis at diagnosis, the vessels and nerve invasion. The goal of our meta-study aimed to compare the effectiveness of using LSS vs performing amputation to manage patients suffering from osteosarcoma of the extremities in terms of 5-year OS, 5-year disease-free survival (DFS) and local recurrence rate.
2 | METHODOLOGY

2.1 | Study protocol

This meta-analysis is organised according to the epidemiology statement, following the established methodology in (PROSPERO) (Number 252443).

2.2 | Eligibility criteria

Our search was narrowed to related studies released in English versions, and inclusion criteria were not restricted by study type or size. While studies with no correlation have been exempted, for example, editorials, perspectives, letters, and commentary (Figure 1 exhibit the mode of analysis).

The articles were classified and incorporated into this meta-analysis when

1. It is a retrospective or a prospective randomised controlled trial
2. Subjects were diagnosed with osteosarcoma of the extremities
3. The intervention program was amputation or LSS with neoadjuvant chemotherapy
4. The study compared the effect of LSS vs amputees in subjects diagnosed with osteosarcoma of the extremities on different variables like 5-year OS and/or 5-year DFS and/or local recurrence rate.

The following exclusion criteria were adopted among the intervention groups

1. Articles that did not compare or assess the effect of LSS vs amputation.
2. Studies with types of bone malignancy other than osteogenic sarcoma and also non-human subjects.
3. Studies that did not have a focus on the duration of the study
4. Secondary amputees after LSS or for complications
5. Population managed without surgical procedures and/or neoadjuvant chemotherapy.

2.3 | Study selection

We performed a systematic search of MEDLINE/ PubMed, Google Scholar, Embase, OVID and Cochrane Library till January 2021. Medical subject terms and related words selected were osteosarcomas, LSS, amputation, 5-year DFS rate, 5-year OS and local recurrence rate,
using the Boolean operators (OR, AND) as shown in Table 1.

2.4 Identification

PICOS principle was the protocol for the search strategy and asserted the critical elements of PICOS as P for (population) with osteosarcoma of the extremities; I for (intervention/exposure) as LSS or amputation; C for (comparison) was limited to show the efficacy of LSS vs amputees with osteosarcoma of the extremities on different variables and O for (outcome). Outcomes in the protocol were the 5-year OS rate, 5-year DFS rate and the local recurrence rate of the disease.

Selected studies were pooled in EndNote X7.5 version 2016 software to exclude duplicates. Additionally, a thorough screening on the studies’ titles and also the abstracts was done to erase any data that showed no correlation regarding the effect of using LSS vs performing amputation in subjects with osteosarcoma of the extremities. Related pieces of information were collected from the remaining studies.

2.5 Screening

Subject-related and study-related data characteristics were considered for the collection and classification of

Database	Search strategy
PubMed	#1 "osteosarcoma"[MeSH Terms] OR “limb salvage surgery”[All Fields] OR “amputation”[All Fields]
	#2 “5-year overall survival”[MeSH Terms] OR “osteosarcoma”[All Fields] OR “5-year disease free survival rate”[All Fields] OR “local recurrence rate”[All Fields]
	#3 #1 AND #2
Embase	‘osteosarcoma’/exp OR LSS/exp OR amputation
	#2 ‘5-year OS/exp’ OR “ICBG”/exp OR “5-year DFS rate” OR ‘local recurrence rate’
	#3 #1 AND #2
Cochrane library	(osteosarcoma):ti,ab,kw OR (limb salvage surgery): ti,ab,kw (Word variations have been searched)
	#2 (amputation):ti,ab,kw OR (5-year overall survival):ti,ab,kw OR (5-year disease free survival rate): ti,ab,kw OR (local recurrence rate): ti,ab,kw (Word variations have been searched)
	#3 #1 AND #2

TABLE 2 Levels of risk of bias counted in the assessment criteria

Level of risk	Extend of meeting the criteria
Low	If all quality parameters are met
Moderate	If one of the quality parameters is not met/or partially met
High	If one of the quality parameters is not met/not included

Note: A reexamination of the original article addressed for its any inconsistencies.
always stratified, and in sub-group analysis, a P-value <0.05 was reported statistically significant. The Egger regression test is used quantitatively and qualitatively to assess the publication bias (if $P \geq 0.05$) by inspecting funnel plots of the logarithm of ORs vs their standard errors.18 The entire P-values were appeared two-tailed. The statistical analysis and graphs are done by ‘Reviewer manager version 5.3’ (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark).

RESULTS

The primary literature revealed a total of 2332 case studies, but 16 studies (between the year 1992 and the year 2020) were only fulfilled the study’s inclusion criteria.20–35 These 16 trials included 9760 patients with osteogenic sarcoma of the extremities at the beginning of the trial; 7095 were managed with LSS and 2611 were amputees. All studies evaluated the effect of LSS vs amputation with osteosarcoma of the extremities. The

Table 3

Study	Country	Total	Limb-salvage surgery	Amputation	Years of follow-up
Tsuchiya, 199220	Japan	254	107	147	1980–1985
Sluga, 199921	Austria	130	84	46	1977–1990
Bacci, 200222	Italy	570	465	95	1983–1995
Grimer, 200223	UK	202	154	48	1988–1998
Shih, 200524	Taiwan	88	71	15	1991–2000
Samardziski, 200925	North Macedonia	30	27	3	2000–2005
Schrager, 201126	USA	890	590	300	1988–2007
Wu, 201227	China	58	43	15	1992–2002
Deng, 201528	Philippines	95	59	36	Not stated
Kamal, 201629	Indonesia	79	37	42	1995–2014
Faisham, 201730	Malaysia	163	80	41	2005–2010
Han, 201731	China	79	52	27	2000–2015
Zhang, 201732	China	112	72	40	2006–2012
Fujiwara, 201933	UK	226	173	53	2007–2015
Qi, 202035	China	3363	2447	916	1975–2016
Evans, 202034	USA	3421	2634	787	2004–2015
Total		9760	7095	2611	

Figure 2

A Forest plot illustration: A comparative effect of limb salvage surgery and amputation in subjects on 5-year old survival with osteosarcoma of the extremities
data analysed from the 16 selected studies are depicted in Table 3. Among those, 15 studies represented data confined to 5-year OS, I² stratified to the local recurrence rate, whereas seven studies belong to the 5-year DFS rate.

Management using LSS was significantly related to higher 5-year OS (OR, 1.85; 95% CI, 1.46–2.35, P < 0.001) with moderate heterogeneity (I² = 69%) and local recurrence rate (OR, 2.51; 95% CI, 1.52–4.12, P < 0.001) with I² = 43% (low heterogeneity) compared to amputation as shown in Figures 2 and 3. However, no remarkable variation was observed between using LSS and performing amputation in subjects with osteogenic carcinoma of the extremities in a 5-year DFS rate (OR, 1.10; 95% CI, 0.49–2.4, P = 0.82) with moderate heterogeneity (I² = 65%) as illustrated in Figure 4.

No publication bias (P = 0.86) was detected when the quantitative measurement was conducted using the Egger regression test and examination of the funnel plot. There was, however, low methodological quality observed in selected randomised control trials. No articles had selective reporting or incomplete data, which proved that selected articles devoid of selective reporting bias.

4 | DISCUSSION

Over the past 5 decades, the rate of OS of osteosarcoma patients has been considerably improved, in particular, after the introduction of different neoadjuvant systemic chemotherapy and advances in surgical procedures. However, there is still a controversy about the effect of different surgical procedures (LSS and amputation) on survival and local recurrence rates. Our meta-analysis assessed the efficiency of using LSS vs performing amputation after administration of neoadjuvant chemotherapy in individuals diagnosed with osteogenic sarcoma of the extremities in terms of local recurrence rate, 5-year OS and 5-year DFS.
LSS showed a significantly higher local recurrence rate than amputation. However, LSS was significantly associated with higher 5-year OS than amputation. The study illustrates that no distinct difference was found between using LSS and performing amputation to manage subjects diagnosed with osteosarcoma of the extremities in a 5-year DFS rate. The P-value of this insignificant difference was very high ($P = 0.82$), which will be unaffected by the inclusion of more trials. This insignificance in the 5-year DFS rate between the two groups might have occurred because they have undergone radical surgery of their osteosarcoma with neoadjuvant chemotherapy to manage the possible metastasis.

This meta-analysis contained only 16 selected studies that can be regarded as low sample size; therefore, outcomes must be done with caution, suggesting more studies relating the effect of LSS and amputees with osteosarcoma of the extremities to validate these findings. The reasons for these findings are multi-factorial, and the survival of subjects with osteogenic sarcoma has ameliorated through the last 50 years due to treatment by neoadjuvant chemotherapy and the improvements adopted in operative procedures.

Han et al. in their meta-analysis, which included eleven studies, discovered that the LSS arm has a greater 5-year survival rate vs the amputee's arm, although there were no significant differences in the 2-year survival rate between the arms. Another systematic review illustrated nearly equivalent survival rates between the 2 surgical options, but that LSS had greater rates of local recurrence than amputation. A recent report by Bacci et al. proved that LSS will decrease the surgical margins but could increase the frequency of local recurrence. The study suggested that subjects with local recurrence could have shallow results with a five-year survival. Since local recurrence was predicted to be higher with the use of LSS, the margins performed an amputation is typically be radical. The above study emphasises that LSS could cause insufficient surgical margins, enhanced local recurrence and worse survival.

DFS rates in osteosarcoma participants were supposed to be improved with the great evolution with the recent diagnostic and therapeutic facilities, but in our meta-analysis, we found there are not any significant differences in DFS rates between the 2 surgical options (LSS vs amputation). Two studies by Sluga et al. and Bacci et al. published in 1999 and 2002 reported that DFS was significantly higher with the use of LSS vs amputation.

Previous meta-analysis studies showed that subjects with LSS or amputation and those who did not receive preoperative chemotherapy followed similar 5-year survival. This present meta-analysis incorporated subjects that were only managed with preoperative neoadjuvant chemotherapy. This neo-adjuvant chemotherapy may have intensified DFS rates in patients with osteosarcoma. Also, different stages in patients with two techniques might have influenced the results; however, this was not covered well in the chosen studies. More research and analysis are required to envisage the parameters like age, ethnicity, the impact of different neoadjuvant chemotherapy, prognosis between the two groups and differentiation in stages. And none of the studies answered these factors affected the studies.

4.1 Limitation of the study

The stratified data did not examine factors like ethnicity, age, differentiation in stages, the possible effects of various neoadjuvant chemotherapy and prognosis between the two groups because no studies adjusted or outlined these factors.

The sample size for meta-analysis was limited to 16 randomised control trials; six studies among them were small, less than 100. Also, the selection and type of surgical treatment criteria were not fully explored, as subjects who received amputation may have suffered from large-sized tumours.

5 CONCLUSIONS

Performing LSS in subjects with osteosarcoma of the extremities may increase the risk of local recurrence rate compared to amputation. However, LSS may increase 5-year OS vs amputation. These data illustrate that local recurrence does not have any influence on survival. However, the outcomes analysis was done with caution as the present meta-analysis included only 16 studies. To validate the above findings, more studies must be offered to relate the effect of using LSS vs performing amputation in subjects with osteosarcoma of the extremities.

ACKNOWLEDGEMENTS

This work was funded by the Deanship of Scientific Research at Jouf University under grant No (DSR-2021-01-0310).

DATA AVAILABILITY STATEMENT

The datasets examined during the present study are obtainable from the corresponding author on reasonable request.
REFERENCES

1. Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. *Ontologist*. 2004; 9(4):422-441.

2. Anderson ME. Update on survival in osteosarcoma. *Orthopedic Clin*. 2016;47(1):283-292.

3. Mirabello L, Troisi RJ, Savage SA. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. *Int J Cancer*. 2009;125(1):229-234.

4. Moore DD, Luu HH. Orthopaedic Oncology. In: Peabody TD, Attar S, eds. *Osteosarcoma*. Cham, Switzerland: Springer International; 2014:65-92.

5. Luette A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment—where do we stand? A state of the art review. *Cancer Treat Rev*. 2014;40(4):523-532.

6. Friedman MA, Carter SK. The therapy of osteogenic sarcoma: current status and thoughts for the future. *J Surg Oncol*. 1972; 4(5–6):482-510.

7. Yamamoto Y, Kanzaki R, Kanou T, et al. Long-term outcomes and prognostic factors of pulmonary metastasectomy for osteosarcoma and soft tissue sarcoma. *Int J Clin Oncol*. 2019;24(7):863-870.

8. Sweetnam R, Knoweldien J, Seddon H. Bone sarcoma: treatment by irradiation, amputation, or a combination of the two. *Br Med J*. 1971;2(5758):363-367.

9. Ramanujan V, Krishnamurthy A, Venkataramani K, Kumar C. Pulmonary metastasectomy in primary extremity osteosarcoma: choosing wisely, along with a brief review of literature. *Indian J Cancer*. 2020;57(2):172-181.

10. Harrison DJ, Geller DS, Gill JD, Lewis VO, Gorlick R. Current and future therapeutic approaches for osteosarcoma. *Expert Rev Anticancer Ther*. 2018;18(18):39-50.

11. Isakoff MS, Bielack SS, Meltzer P, Gorlick R. Osteosarcoma: current treatment and a collaborative pathway to success. *J Clin Oncol*. 2015;33(27):3029-3035.

12. Papakonstantinou E, Stamatooulos A, I Athanasiadis D, et al. Limb-salvage surgery offers better five-year survival rate than amputation in patients with limb osteosarcoma treated with neoadjuvant chemotherapy. *A systematic review and meta-analysis. J bone Oncol*. 2020;25:100319.

13. He X, Gao Z, Xu H, Zhang Z, Fu P. A meta-analysis of randomized control trials of surgical methods with osteosarcoma outcomes. *J Orthop Surg Res*. 2017;12(1):1-6.

14. Godley K, Watts A, Robb J. Pathological femoral fracture caused by primary bone tumour: a population-based study. *Scott Med J*. 2011;56(1):5-9.

15. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. *JAMA*. 2000;283(15):2008-2012.

16. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ*. 2003;327(7414):557-560.

17. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *J Clin Epidemiol*. 2009;62(10):e1-e34.

18. Gupta A, Das A, Majumder K, et al. Obesity is independently associated with increased risk of hepatocellular cancer-related mortality: a systematic review and meta-analysis. *Am J Clin Oncol*. 2018;41(9):874-881.

19. Higgins JP et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. *BMJ*. 2011;343:d5928.

20. Tsujiya H, Tomita K. T.-y. Intergroup. Prognosis of osteosarcoma treated by limb-salvage surgery: the ten-year intergroup study in Japan. *Jpn J Clin Oncol*. 1992;22(5):347-353.

21. Sluga M, Windhager R, Lang S, Heinzl H, Bielack S, Kozt R. Local and systemic control after ablative and limb sparing surgery in patients with osteosarcoma. *Clin Orthop Relat Res*. 1999;358:120-127.

22. Bacci G, Ferrari S, Lari S, et al. Osteosarcoma of the limb: amputation or limb salvage in patients treated by neoadjuvant chemotherapy. *J Bone Joint Surg*. British Volume. 2002;84(1):88-92.

23. Grimer R, Taminiu A, Cannon S. Surgical outcomes in osteosarcoma. *J Bone Joint Surg*. British Volume. 2002;84(3):395-400.

24. Shih H, Shih L. Resection arthrodesis of the knee for osteosarcoma: an alternative when mobile joint reconstruction is not feasible. *Chang Gung Med J*. 2005;28(6):411-420.

25. Samardziski M, Zafriski G, Tolevska C, Zafirova-Ivanovska B, Kostadinova-Kunovska S, Kalician-Markovska M. Limb-sparing in patients with non-metastatic high-grade osteosarcoma. *J BUON*. 2009;14:63-69.

26. Schrager J, Patzer RE, Mink PJ, Ward KC, Goodman M. Survival outcomes of pediatric osteosarcoma and Ewing’s sarcoma: a comparison of surgery type within the SEER database, 1988-2007. *J Registry Manag*. 2011;38(3):153-161.

27. Wu X, Cai ZD, Chen ZR, Yao ZJ, Zhang GJ. A preliminary evaluation of limb salvage surgery for osteosarcoma around knee joint. *PLoS ONE*. 2012;7(3):e33492.

28. Deng Z-P, Ding Y, Puri A, et al. The surgical treatment and outcome of nonmetastatic extremity osteosarcoma with pathological fractures. *Chin Med J*. 2015;128(19):2605-2608.

29. Kamal AF, Widyawarman H, Husodo K, Hutagalung EU, Rajabto W. Clinical outcome and survival of osteosarcoma patients in Cipto Mangunkusumo hospital: limb salvage surgery vs amputation. *Acta Med Indonesa*. 2016;48(3):175-183.

30. Faisham WI, Mat Saad AZ, Alsigh LN, et al. Prognostic factors and survival rate of osteosarcoma: a single-institution study. *Asia Pac J Clin Oncol*. 2017;13(2):e104-e110.

31. Han K, Dang P, BIan N, et al. Is limb salvage with microwave-induced hyperthermia better than amputation for osteosarcoma of the distal tibia? *Clin Orthop Relat Res*. 2017;475(6):1668-1677.

32. Zhang Y, He Z, Li Y, et al. Selection of surgical methods in the treatment of upper tibia osteosarcoma and prognostic analysis. *Oncol Res Treat*. 2017;40(9):528-532.

33. Fujiwara T, Medellin MR, Sambri A, et al. Preoperative surgical risk stratification in osteosarcoma based on the proximity to the major vessels. *Bone Joint J*. 2019;101-B(8):1024-1031.

34. Evans DR, Lazarides A, Visgauss JD, et al. Impact of limb salvage versus amputation on overall survival in patients with osteosarcoma of the extremities: an update in the modern era using the National Cancer Database available at Research Square. https://doi.org/10.21203/rs.3.rs-18262/v1

35. Qi L, Ren X, Liu Z, et al. Predictors and survival of patients with osteosarcoma after limb salvage vs amputation: a population-based analysis with propensity score matching. *World J Surg*. 2020;44:1-10.
36. Han G, Bi WZ, Xu M, Jia JP, Wang Y. Amputation vs limb-salvage surgery in patients with osteosarcoma: a meta-analysis. *World J Surg*. 2016;40(8):2016-2027.

37. Jauregui JJ, Nadarajah V, Munn J, et al. Limb salvage vs amputation in conventional appendicular osteosarcoma: a systematic review. *Indian J Surg Oncol*. 2018;9(2):232-240.

38. Mavrogenis AF, Abati CN, Romagnoli C, Ruggieri P. Similar survival but better function for patients after limb salvage vs amputation for distal tibia osteosarcoma. *Clin Orthop Relat Res*. 2012;470(6):1735-1748.

How to cite this article: Abdelgawad MA, Parambi DGT, Ghoneim MM, et al. A meta-analysis comparing efficiency of limb-salvage surgery vs amputation on patients with osteosarcoma treated with neoadjuvant chemotherapy. *Int Wound J*. 2022;19(7):1616-1624. doi: [10.1111/iwj.13758](https://doi.org/10.1111/iwj.13758)