Dushnik-Miller dimension of d-dimensional tilings with boxes

Mathew C. Francis1 and Daniel Gonçalves2

1 Indian Statistical Institute, Chennai Centre, India
2 LIRMM, Univ. de Montpellier & CNRS, France.

Abstract. Planar graphs are the graphs with Dushnik-Miller dimension at most three (W. Schnyder, Planar graphs and poset dimension, Order 5, 323-343, 1989). Consider the intersection graph of interior disjoint axis parallel rectangles in the plane. It is known that if at most three rectangles intersect on a point, then this intersection graph is planar, that is it has Dushnik-Miller dimension at most three. This paper aims at generalizing this from the plane to \mathbb{R}^d by considering tilings of \mathbb{R}^d with axis parallel boxes, where at most $d+1$ boxes intersect on a point. Such tilings induce simplicial complexes and we will show that those simplicial complexes have Dushnik-Miller dimension at most $d+1$.

1 Introduction

One can easily see that the intersection graph induced by a set of interior disjoint axis parallel rectangles, with at most three rectangles intersecting on a point, is a planar graph. C. Thomassen characterized those graphs \cite{thomassen} (See also \cite{thomassen2} for a combinatorial study of these representations). H. Zhang showed how such a representation (when it tiles a rectangle) also induces a Schnyder wood of the induced planar graph \cite{zhang}. Schnyder woods was the key structure that allowed W. Schnyder to prove that planar graphs are the graphs with Dushnik-Miller dimension at most three \cite{schnyder}. It is interesting to note that most planar graphs have Dushnik-Miller dimension equal to three. Indeed, a graph has Dushnik-Miller dimension at most two if and only if it is the subgraph of a path.

The main result of this paper is that the simplicial complexes induced by a wide family of tilings of \mathbb{R}^d with axis parallel boxes, have Dushnik-Miller dimension at most $d+1$. As most of these simplicial complexes have a d-face, there Dushnik-Miller dimension is exactly $d+1$. Definitions are provided in the following. Note that both, the objects (graphs or simplicial complexes) with Dushnik-Miller dimension greater than three \cite{dushnik}, and the systems of interior disjoint axis parallel boxes in \mathbb{R}^d \cite{goncalves}, are difficult to handle but are raising interest in the community. The proof of our result generalizes H. Zhang’s idea for constructing Schnyder woods in tilings of \mathbb{R}^2, and relies on some properties of tilings that are of independent interest. After providing a few basic definitions in Section 2 we present these properties in Section 3 and Section 4. We then prove our main result in Section 5. We then conclude with some open problems.
2 \(d\)-boxes

A \(d\)-box (or simply a box) is the Cartesian product of \(d\) closed intervals. The intervals of a \(d\)-box \(B\) are denoted \(B_1, \ldots, B_d\), that is \(B = B_1 \times \cdots \times B_d\). Similarly the coordinates of a point \(x \in \mathbb{R}^d\) are denoted \(x = (x_1, \ldots, x_d)\). The endpoints of an interval \(B_i\) are denoted \(B_i^-\) and \(B_i^+\) in such a way that \(B_i = [B_i^-, B_i^+]\). Such an interval is \textit{degenerate} if its endpoints coincide, that is if \(B_i^- = B_i^+\).

The \textit{dimension} \(\dim(B)\) of a \(d\)-box \(B\) is the number of non-degenerate intervals among \(\{B_1, \ldots, B_d\}\). For example, a 0-dimensional \(d\)-box is a point in \(\mathbb{R}^d\).

The \textit{interior} of a \((d')\)-dimensional box \(B\) is the open \((d')\)-dimensional box defined by the points \(p = (p_1, \ldots, p_d)\) such that \(B_i^- < p_i < B_i^+\) if \(B_i^- \neq B_i^+\) or such that \(p_i = B_i^- = B_i^+\) otherwise. The points of \(B\) that are not interior form the \textit{border} of \(B\). The border of \(B\) is the union of its sides. A \textit{side} of \(B\) is a \((d'-1)\)-dimensional box \(S(B, i, *) = [B_i^-, B_i^+] \times \cdots \times [B_d^-, B_d^+]\), for \(* \in \{-, +\}\), and some non-degenerate dimension \(i\) of \(B\) (i.e. such that \(B_i^- \neq B_i^+\)). Clearly, a box with dimension \(d'\) has \(2d'\) distinct sides. A \textit{corner} of \(B\) is a point \((x_1, x_2, \ldots, x_d)\) where each \(x_i\) is an endpoint of \(B_i\), that is either \(x_i = B_i^-\) or \(x_i = B_i^+\). Clearly, a box with dimension \(d'\) has \(2^{d'}\) corners.

The intersection \(A \cap B\) of two boxes is the box \((A_1 \cap B_1) \times \cdots \times (A_d \cap B_d)\). Two \(d\)-dimensional boxes are \textit{interior disjoint} if their interiors do not intersect, or equivalently if \(\dim(A \cap B) < d\).

\textbf{Definition 1.} A \(d\)-\textit{tiling} \(T\) is a collection of interior disjoint \(d\)-dimensional boxes contained in \([-1, +1]^d\) that tile \([-1, +1]^d\) (i.e. every point of \([-1, +1]^d\) belongs to at least one box of \(T\)).

Let us now define \(T_{ext} = \{T(i, *) : 1 \leq i \leq d, * \in \{-, +\}\}\), a set of \(2d\) \(d\)-dimensional boxes that tile \(\mathbb{R}^d \setminus [-1, +1]^d\).

\[
\begin{align*}
T(i, -)_j &= T(i, +)_j = [-1, +1] & \text{if } j < i \\
T(i, -)_j &= [-\infty, -1] & \text{if } j = i \\
T(i, +)_j &= [+1, +\infty] & \text{if } j = i \\
T(i, -)_j &= T(i, +)_j = [-\infty, +\infty] & \text{if } j > i
\end{align*}
\]

In particular,

\[
\begin{align*}
T(1, -) &= [-\infty, -1] \times [-\infty, +\infty] \times [-\infty, +\infty] \times \cdots \\
T(1, +) &= [+1, +\infty] \times [-\infty, +\infty] \times [-\infty, +\infty] \times \cdots \\
T(2, -) &= [-1, +1] \times [-\infty, -1] \times [-\infty, +\infty] \times \cdots \\
T(2, +) &= [-1, +1] \times [+1, +\infty] \times [-\infty, +\infty] \times \cdots \\
\vdots
\end{align*}
\]

Note that given a \(d\)-tiling \(T\), the set \(T \cup T_{ext}\) is a set of interior disjoint \(d\)-dimensional boxes that tile \(\mathbb{R}^d\). The set \(T_{ext}\) is needed to define \textit{proper} \(d\)-tilings in Section \ref{proper_tilings} and it is used in the following technical lemma.

Given two intersecting boxes \(A\) and \(B\), if \(A_i \cap B_i\) is degenerate, then these two boxes are said to \textit{touch} in dimension \(i\).
Lemma 1. In a d-tiling \mathcal{T}, for any $A \in \mathcal{T}$ and any point $p \in A$. If $p_i = A_i^{-}$ (resp. $p_i = A_i^{+}$), there is a box $B \in \mathcal{T} \cup \mathcal{T}_{\text{ext}}$ such that $p \in A \cap B$, and such that A and B touch only in dimension i (i.e. such that $A_j \cap B_j$ is degenerate only for $j = i$). In particular, $\dim(A \cap B) = d - 1$.

Proof. Define $Z \subseteq \mathbb{R}$ to be the set of all distinct numbers that appear as a coordinate of some corner of some box in $\mathcal{T} \cup \mathcal{T}_{\text{ext}}$, i.e.,

$$Z = \bigcup_{B \in \mathcal{T} \cup \mathcal{T}_{\text{ext}}} \bigcup_{j \in \{1, \ldots, d\}} \{B_j^{-}, B_j^{+}\}$$

Choose a real number $\epsilon > 0$ such that $\epsilon < \min\{|a - b| : a, b \in Z, a \neq b\}$. We now choose a point $q \in \mathbb{R}^d$ such that for each $j \in \{1, \ldots, d\} \setminus \{i\}$, $q_j \in A_j$ and $q_i \notin A_i$. We also make sure that q is so close to p that any box B that contains q also contains p. This can be achieved by choosing q as follows.

$$q_j = \begin{cases} p_j - \epsilon & \text{if } j = i \text{ and } p_j = A_j^{-} \\ p_j + \epsilon & \text{if } j = i \text{ and } p_j = A_j^{+} \\ p_j & \text{if } A_j^{-} < p_j < A_j^{+} \\ p_j + \epsilon & \text{if } j \neq i \text{ and } p_j = A_j^{-} \\ p_j - \epsilon & \text{if } j \neq i \text{ and } p_j = A_j^{+} \end{cases}$$

Clearly, there is some box $B \in \mathcal{T} \cup \mathcal{T}_{\text{ext}}$ such that $q \in B$. Suppose that $p \notin B$, i.e., there exists some $j \in \{1, \ldots, d\}$ such that $p_j \notin B_j$. Then since $q_j \in B_j$, we have either $p_j < B_j^{-} \leq q_j$ or $q_j \leq B_j^{+} < p_j$. From the definition of q, we have that $p_j \in \{A_j^{+}, A_j^{-}\}$ (as otherwise $q_j = p_j$) and that $|p_j - q_j| = \epsilon$. This means that there exist distinct $a, b \in \{B_j^{+}, B_j^{-}, A_j^{+}, A_j^{-}\}$ such that $|a - b| \leq \epsilon$, which contradicts our choice of ϵ. Therefore, we conclude that $p \in B$, and so A and B intersect.

Actually for each $j \in \{1, \ldots, d\} \setminus \{i\}$, by construction $q_j \in A_j$ and $q_j \notin \{A_j^{+}, A_j^{-}\}$. As $\{p_j, q_j\} \subset A_j \cap B_j$, we thus have that $A_j \cap B_j$ is degenerate. As A and B intersect on a box of dimension $d' < d$, it must be the case that $A_i \cap B_j$ is degenerate. This completes the proof. \hfill \square

Let $\mathcal{H}^{(i)}_x$ denote the hyperplane defined by $\{p \in \mathbb{R}^d : p_i = x\}$. Given a d'-dimensional box B, let us denote $B^{(i)}_x$ the intersection between B and $\mathcal{H}^{(i)}_x$. Note that this intersection is either empty, or the box B itself (if $B_i = [x, x]$), or it is a $(d' - 1)$-dimensional box. Depending on the context, $B^{(i)}_x$ is considered as a box of \mathbb{R}^d, or of \mathbb{R}^{d-1} if we omit the i-th dimension. The hyperplane $\mathcal{H}^{(i)}_x$ is said to be generic w.r.t. a d-tiling \mathcal{T}, if for every $B \in \mathcal{T}$, $x \notin B^{-}_i$ and $x \neq B^{+}_i$. Given a d-tiling \mathcal{T}, let the intersection of \mathcal{T} and $\mathcal{H}^{(i)}_x$ be the set $\mathcal{T}^{(i)}_x = \{B^{(i)}_x : B \in \mathcal{T} \text{ with } B^{-}_i \leq x \leq B^{+}_i\}$. The following lemma indicates when $\mathcal{T}^{(i)}_x$ defines a $(d-1)$-tiling.

Lemma 2. For every d-tiling \mathcal{T}, and every hyperplane $\mathcal{H}^{(i)}_x$ that is generic w.r.t. \mathcal{T}, $\mathcal{T}^{(i)}_x$ is a $(d-1)$-tiling.
Proof. As the boxes in \mathcal{T} are d-dimensional, it is clear that $\mathcal{T}_{x}^{(i)}$ is a set of $(d-1)$-dimensional $(d-1)$-boxes (by omitting the i-th dimension). It is also clear that these boxes span $[-1, +1]^{d-1}$. What remains to prove is that these boxes are interior disjoint.

Towards a contradiction, suppose that A' and $B' \in T_{x}^{(i)}$ intersect on a $(d-1)$-dimensional $(d-1)$-box C'. Thus if A and B are the corresponding original boxes in \mathcal{T}, i.e. those such that $A' = A|_{x}^{(i)}$ and $B' = B|_{x}^{(i)}$, then $C' = A \cap B = \emptyset$ is non-empty and non-degenerate for each dimension j other than i. Moreover, $A \cap B$ is also non-empty as $x \in A \cap B$. As \mathcal{T} is a d-tiling, this means that $A \cap B$ is degenerate, or in other words, A and B touch in dimension i. This implies that $x = A_i^-$ or $x = A_i^+$, a contradiction to the fact that $\mathcal{H}_x^{(i)}$ is generic w.r.t. \mathcal{T}. \square

For any d-tiling \mathcal{T} and any hyperplane $\mathcal{H}_x^{(i)}$ that is generic w.r.t. \mathcal{T}, let us define $\mathcal{T}_x^{(i)-}$ and $\mathcal{T}_x^{(i)+}$ as the two parts obtained by cutting \mathcal{T} through $\mathcal{H}_x^{(i)}$. In order to obtain d-tilings, we prolong the sides on $\mathcal{H}_x^{(i)}$ towards $\mathcal{H}_{x+1}^{(i)}$, or towards $\mathcal{H}_{x-1}^{(i)}$. Formally, for any $B \in \mathcal{T}$, let $B|_{x}^{(i)-}$ and $B|_{x}^{(i)+}$ be the boxes $B_1 \times \ldots \times \alpha^- (B_i) \times \ldots \times B_d$ and $B_1 \times \ldots \times \alpha^+ (B_i) \times \ldots \times B_d$, where,

\[
\alpha^-(B_i) = \begin{cases}
\emptyset & \text{if } x \leq B_i^- \\
B_i & \text{if } B_i^+ < x \\
[B_i^-, +1] & \text{otherwise}
\end{cases}
\]

and

\[
\alpha^+(B_i) = \begin{cases}
\emptyset & \text{if } B_i^+ \leq x \\
B_i & \text{if } x < B_i^- \\
[-1, B_i^+] & \text{otherwise}
\end{cases}
\]

Now, let $\mathcal{T}_x^{(i)-}$ (resp. $\mathcal{T}_x^{(i)+}$) be the set of non-empty boxes of the form $B|_{x}^{(i)-}$ (resp. $B|_{x}^{(i)+}$) for each $B \in \mathcal{T}$. The following lemma is trivial.

Lemma 3. For every d-tiling \mathcal{T}, and every hyperplane $\mathcal{H}_x^{(i)}$ that is generic w.r.t. \mathcal{T}, both $\mathcal{T}_x^{(i)-}$ and $\mathcal{T}_x^{(i)+}$ are d-tilings.

3 Proper d-tilings

The boxes satisfy the Helly property. Indeed, given a set \mathcal{B} of pairwise intersecting boxes, the set $\bigcap_{B \in \mathcal{B}} B$ is a non-empty box. Graham-Pollak’s Theorem [8,12] asserts that to partition the edges of K_n into complete bipartite graphs, one needs at least $n-1$ such graphs. Using this theorem Zaks proved the following.

Lemma 4 (13 Zaks 1985). Consider a set \mathcal{B} of d-dimensional boxes that intersect, that is $\bigcap_{B \in \mathcal{B}} B \neq \emptyset$. If for every pair $A, B \in \mathcal{B}$, $\dim(A \cap B) = d-1$, then $|\mathcal{B}| \leq d + 1$.

We include a proof of this result for completeness.

Proof. Consider a point $x \in \bigcap_{B \in \mathcal{B}} B$. For any two boxes $A, B \in \mathcal{B}$, since $\dim(A \cap B) = d-1$, there exists exactly one dimension in which they touch. If this dimension is t, then $A_t \cap B_t = \{x_t\}$. As A_t and B_t are non-degenerate, we either have $A_t^+ = x_t = B_t^-$ or $B_t^+ = x_t = A_t^-$.

Let K be the complete graph with vertex set B. Now label each edge AB of K with t if A and B touch in dimension t. As every pair of boxes touch in exactly one dimension, this labeling defines an edge partition of K into d subgraphs G_1, \ldots, G_d. Let us now prove that every such graph G_i is a complete bipartite graph. The vertices A with an incident edge in G_t divide into two categories, those such that $x_t = A_t^-$ and those such that $x_t = A_t^+$. Any two boxes in the same category do not touch in dimension t, so these categories induce two independent sets in G_t. On the other hand, any two boxes in different categories do touch in dimension t, so they are adjacent in G_t.

So, by Graham-Pollak’s Theorem, $k \leq d + 1$. \Box

A d-tiling T is proper if every point $p \in \mathbb{R}^d$ is contained in at most $d + 1$ boxes of $T \cup T_{\text{ext}}$. Figure 1 provides two configurations that are forbidden in proper d-tilings.

![Fig. 1. (left) A configuration that can appear in a tiling of $[-1, +1]^3$. Here every point of $[-1, +1]^3$ belongs to at most 4 boxes of T, but it is not proper when considering T_{ext} as two points would belong to 5 boxes. (right) A configuration of 3-boxes pairwise intersecting on a 2-dimensional box. If this configuration was part of a 3-tiling there would be 5 boxes intersecting on a point, and thus it would not be proper.](image)

Lemma 5. In a proper d-tiling T, every pair of intersecting boxes intersect on a $(d-1)$-dimensional box.

Proof. We shall prove the following stronger statement:

(*) In a d-tiling T, if two boxes $A, B \in T \cup T_{\text{ext}}$ touch in more than one dimension, then there exists a point in $A \cap B$ that is contained in at least $d + 2$ boxes of $T \cup T_{\text{ext}}$.

For the sake of contradiction, consider two boxes A and B such that $\dim(A \cap B) = d - s$, with $s \geq 2$. Without loss of generality, we assume that these boxes touch in dimension i for $1 \leq i \leq s$. Furthermore, we assume that $A_t^+ = B_t^-$ and let us call p_i this value, for $1 \leq i \leq s$.

Clearly, \(A \) and \(B \) do not belong both to \(T_{\text{ext}} \). Furthermore, as any box of \(T \) is contained in \([-1, +1]^d\), it can touch a box of \(T_{\text{ext}} \) in at most one dimension. Therefore, we have that \(A \) and \(B \in T \).

We shall prove \((*)\) by induction on \(d-s \). As the base case, we shall show that it is true when \(d-s = 0 \). We claim that the point \(p = (p_1, \ldots, p_d) \) is contained in at least \(d+2 \) boxes. By Lemma 1 there is a box \(H^{(i)} \neq A \) in \(T \cup T_{\text{ext}} \) such that \(H^{(i)} \) touches \(A \) only in dimension \(i \) and contains the point \(p \).

As \(H^{(i)} \) touches \(A \) only in dimension \(i \), all these boxes are distinct. Furthermore, as \(\dim(A \cap H^{(i)}) = d-1 \), each \(H^{(i)} \) is different from \(B \). So, together with \(A \) and \(B \) they form a collection of \(d+2 \) boxes that contain the point \(p \).

We consider now the case \(d-s > 0 \). As \(A \cap B \) is proper, we assume without loss of generality that \(B^-_d < A^+_d \leq B^+_d \). For an arbitrarily small \(\epsilon > 0 \), we have that no box of \(T \) has \(x = A^+_d - \epsilon \) as an endpoint of its \(d\text{st} \) interval.

By Lemma 2, \(T^{(d)}_x \) is a \((d-1)\)-tiling. Note that this tiling contains \(A \) and \(B \), and that those still touch in \(s \geq 2 \) dimensions. Therefore, by the induction hypothesis, there exists a point \(p' = (p'_1, \ldots, p'_{d-1}) \) that is contained in at least \(d+1 \) of these \((d-1)\)-boxes and also such that \(p' \in A \cap B \). Let these \((d-1)\)-boxes be \(A, B, H^{(1)}, \ldots, H^{(d-1)} \). Coming back to \(\mathbb{R}^d \), the point \(p = (p'_1, \ldots, p'_{d-1}, A^+_d) \) is contained in \(A \cap B \cap H^{(1)} \cap \cdots \cap H^{(d-1)} \). By Lemma 1 there exists a box \(F \) that contains the point \(p \) and touches \(A \) in dimension \(d \). This means that \(F^-_d = A^+_d > x \), therefore \(F \notin \{A, B, H^{(1)}, \ldots, H^{(d-1)}\} \). The point \(p \) is thus contained in \(d+2 \) distinct boxes. This concludes the proof of the lemma.

Lemma 4 and Lemma 5 imply the following.

Theorem 1. A \(d \text{-tiling} \) is proper if and only if for any two intersecting boxes \(A,B \) we have \(\dim(A \cap B) = d-1 \).

Lemma 6 also allows us to prove the following improvement of Lemma 2.

Lemma 6. For every proper \(d \)-tiling \(T \), and every hyperplane \(H_x^{(i)} \) that is generic w.r.t. \(T \), \(T^{(i)}_x \) is a proper \((d-1)\)-tiling.

Proof. By Lemma 2, \(T^{(i)}_x \) is a \((d-1)\)-tiling. It remains to prove that it is proper. For any pair of intersecting boxes \(A^{(i)}_x \) and \(B^{(i)}_x \), Theorem 1 implies that the original boxes \(A, B \in T \) touch in exactly one dimension. As \(x \) is not an endpoint of \(A_i \) or \(B_i \), this dimension cannot be \(i \). So the boxes \(A^{(i)}_x \) and \(B^{(i)}_x \) touch in exactly one dimension. By Theorem 1 this implies that \(T^{(i)}_x \) is proper.

Theorem 1 provides us a simple proof for the following strengthening of Lemma 3.

Lemma 7. For every proper \(d \)-tiling \(T \), and every hyperplane \(H_x^{(i)} \) that is generic w.r.t. \(T \), both \(T^{(i)}_x^- \) and \(T^{(i)}_x^+ \) are proper \(d \)-tilings.
Proof. By Theorem 1, we can suppose towards a contradiction that there are two boxes A and B of $\mathcal{T}|_{x}^{(i)-}\mathcal{T}_{ext}$ intersecting on a d'-dimensional box for some $d' < d - 1$. Clearly, A and B cannot belong to \mathcal{T}_{ext} both. If $A \in \mathcal{T}|_{x}^{(i)-}$ and $B \in \mathcal{T}_{ext}$, say that $B = T(i, \ast)$ for some $i \in \{1, \ldots, d\}$ and $\ast \in \{-, +\}$, then as $A_j \subseteq [-1, +1] \subseteq B_j$ for all $j \neq i$ we have that $d' = d - 1$, a contradiction. Finally if both A and B belong to $\mathcal{T}|_{x}^{(i)-}$, and if they respectively come from A' and B' of \mathcal{T}, then we have that $A_j \cap B_j = A'_j \cap B'_j$ for all $j \neq i$. Furthermore, by construction $A_i \cap B_i$ is a non-degenerate interval if and only if $A'_i \cap B'_i$ is non-degenerate. Thus $A' \cap B'$ is also d'-dimensional, a contradiction. \qed

Lemma 5 now allows us to strengthen Theorem 1 as follows.

Theorem 2. A d-tiling is proper, if and only if for any set \mathcal{B} of pairwise intersecting boxes we have $\dim(\cap_{B \in \mathcal{B}} B) = d + 1 - |\mathcal{B}|$.

Proof. Theorem 1 clearly implies that this condition is sufficient. Let us then prove that this condition is necessary. We have to prove that in a proper d-tiling, for any set \mathcal{B} of pairwise intersecting boxes we have $\dim(\cap_{B \in \mathcal{B}} B) = d + 1 - |\mathcal{B}|$.

Let $k = |\mathcal{B}|$. By Lemma 4 we know that $1 \leq k \leq d + 1$. We already know that the implication holds for $k = 1$ or $k = 2$. For the remaining cases we proceed by induction on the pair (d, k). That is, we assume the theorem holds for (d', k') (k' pairwise intersecting boxes in a proper d'-tiling) with $d' < d$ or with $d' = d$ and $k' < k$.

Consider any set \mathcal{B} of k pairwise intersecting boxes, and let $I = \cap_{B \in \mathcal{B}} B$.

We consider first that $\dim(I) > 0$, and we assume without loss of generality that I is non-degenerate in dimension d. Let x be a value in the interior of I_d, and such that x is not an endpoint of A_d, for any box $A \in \mathcal{T}$. By Lemma 6 $\mathcal{T}|_{x}^{(d)}$ is a proper $(d - 1)$-tiling. In this tiling, \mathcal{B} is also a set of k pairwise intersecting boxes, which intersect on $I|_{x}^{(d)}$. By induction on $(d - 1, k)$ we have that $\dim(I|_{x}^{(d)}) = d - k$, and thus that $\dim(I) = d + 1 - k$.

We now consider that $\dim(I) = 0$ and that $k \leq d$ (if $k = d + 1$ we are fine). Consider any $B \in \mathcal{B}$, and let $J = \cap_{B \in \mathcal{B} \setminus B} H$. By induction hypothesis $\dim(J) = d + 2 - k \geq 2$, and without loss of generality we consider that J is non-degenerate in dimension i and only if $1 \leq i \leq \dim(J)$. As $I = B \cap J$ we have that $\dim(B \cap J) = 0$ and we can assume without loss of generality that $B_i^+ = J_i^-$ for every $i \in \{1, \ldots, \dim(J)\}$. Let us also denote by p the point where B and J intersect.

Claim. For every $i \in \{1, \ldots, \dim(J)\}$ there is a box F of $(\mathcal{T} \cup \mathcal{T}_{ext}) \setminus \mathcal{B}$ such that $p \in F$, such that $\dim(F \cap J) = \dim(J) - 1 = d + 1 - k$, and such that $F_i \cap J_i$ is degenerate.

For each $i \in \{1, \ldots, \dim(J)\}$, if $J_i^- = p_i$ it is because some box $A \in \mathcal{B} \setminus B$ is such that $A_i^- = p_i$. Let q be an interior point of $J|_{p_i}^{(i)}$ that is arbitrarily close to p (thus every box containing q also contains p). By Lemma 1, there is a box $F \in \mathcal{T} \cup \mathcal{T}_{ext}$ such that $q \in A \cap F$, and such that A and F touch only in
dimension i. As $F_i^+ = p_i$, we have that $F_i \cap J_i = [p_i, p_i]$ is degenerate while for every $j \in \{1, \ldots, \dim(J)\} \setminus \{i\}$ as $q_j \in F_i \cap J_i = F_i \cap H \in B \setminus B$ the interval $F_i \cap J_i$ is non-degenerate. We thus have that $\dim(F \cap J) = \dim(J) - 1 \geq 1$. As $\dim(B \cap J) = 0$ we have that $F \neq B$, and as $J \not\subset F$, $F \not\in B \setminus B$. So this box F does not belong to B.

Claim. There are $\dim(J)$ such boxes F.

If a box F is such that $F_i \cap J_i$ is degenerate for two distinct values in $\{1, \ldots, \dim(J)\}$ then $\dim(F \cap J) \leq \dim(J) - 2$, and so F does not verify the previous claim. So for each value $i \in \{1, \ldots, \dim(J)\}$ there is a distinct box F fulfilling the previous claim.

The theorem now follows from the fact that all the k boxes of B and all the $\dim(J) = d + 2 - k$ boxes F intersect at p, contradicting the fact that T is proper. □

4 Separations

Let us now define an equivalence relation \sim on the set of sides of $T \cup T_{ext}$. The relation \sim is the transitive closure of the relation linking two sides if and only if they intersect on a $(d - 1)$-dimensional box. If the boxes A and B touch in dimension i, then $S(A, i, *)$ and $S(B, i, *^{-1})$ intersect on a $(d - 1)$-dimensional box, for some $* \in \{-1, +1\}$. A separation is then defined as the union of all the boxes of some equivalence class of \sim. Note that a separation is a finite union of $(d - 1)$-dimensional boxes that are degenerate in the same dimension. If this dimension is i, by extension we say that this separation is degenerated in dimension i.

Lemma 8. Any separation S of a proper d-tiling T is a $(d - 1)$-dimensional box.

Proof. This clearly holds for $d \leq 2$, we thus assume that $d \geq 3$. Consider a separation S that is degenerated in dimension i. By induction on d we obtain that for any $j \in \{1, \ldots, d\} \setminus \{i\}$ and any $x \in [-1, +1]$ $S_{[x]}^{(j)}$ is either empty, or it is a box. Indeed, for every generic $H_{[x]}^{(j)}$, $S_{[x]}^{(j)}$ is either empty, or it is a separation of $T_{[x]}^{(i)}$.

Let us first prove the lemma for $d = 3$. If S is not a 2-dimensional box it has a $3\pi/2$ angle at some point p. It is clear that two boxes are necessary below (resp. above) p with respect to the dimension i to form the separation S, while the remaining $\pi/2$ angle at p has to be covered by another (at least) fifth box, contradicting the fact that T is proper.

For $d \geq 4$, the lemma follows from the following claim (considering $S \subseteq H_{[x]}^{(i)} \simeq \mathbb{R}^{d-1}$).

Claim. Consider a connected set $S \subset \mathbb{R}^d$ with $d \geq 3$, that is a finite union of d-dimensional boxes. If for any $i \in \{1, \ldots, d\}$ and any $x \in [-1, +1]$ we have that $S_{[x]}^{(i)}$ is either empty or a box, then S is a box.
Towards a contradiction suppose that S is not a box. In such case for some dimension $i \in \{1, \ldots, d\}$, and for some values $x, x' \in (-1, 1)$ the sets $S_{i}^{(i)}$ and $S_{i}^{(i)}$ are two boxes that differ (at least) on their jth interval for some $j \neq i$. Thus following a curve going from $S_{j}^{(i)}$ to $S_{j}^{(i)}$ one goes through a point $p \in \mathbb{R}^d$ with the following property: For any sufficiently small ϵ, the sets $S_{i}^{(i)}$ and $S_{i}^{(i)}$ are two boxes that differ (at least) on their jth interval for some $j \neq i$ and, as S is a finite union of boxes, these boxes respectively contain the points p and $p' = (p_1, \ldots, p_{i-1}, p_i + \epsilon, p_{i+1}, \ldots, p_d)$. As their jth interval differ, we can assume that for some $y \in (-1, 1)$ we have that $q = (p_1, \ldots, p_{i-1}, p_j - 1, y, p_{j+1}, \ldots, p_d) \in S_{i}^{(i)}$ and that $q' = (p_1, \ldots, p_{i-1}, p_j + 1, y, p_{j+1}, \ldots, p_d) \notin S_{i}^{(i)}$. This implies that for any $k \neq i, j$, the set $S_{i}^{(k)}$ contains exactly three of the aforementioned four points, contradicting the fact that it is a box.

A d-tiling \mathcal{T} is said in general position if it does not contain two coplanar separations, that is two separations belonging to the same hyperplane $\mathcal{H}_x^{(i)}$.

Lemma 9. Any proper d-tiling \mathcal{T} can be slightly perturbed to obtain an equivalent one \mathcal{T}' that is in general position. Here equivalent means that the elements of \mathcal{T} and \mathcal{T}' are in bijection and that two boxes of $\mathcal{T} \cup \mathcal{T}_{ext}$ touch in dimension i if and only if the corresponding two boxes of $\mathcal{T}' \cup \mathcal{T}_{ext}$ touch in dimension i.

Proof. First note that two coplanar separations do not intersect. Otherwise, if two such separations S and S' would intersect at some point p, then there would be a box A below S (with respect to i) that would contain p and a box B above S' (with respect to i) that would also contain p. As A and B intersect they should intersect on a $(d-1)$-dimensional box, but as this intersection is degenerated in dimension i then $S(A, i, +) \sim S(B, i, -)$, contradicting the fact that they belong to distinct equivalence classes.

Let us now proceed by induction on the number of separations that are coplanar with another separation. Consider such a separation S that is degenerated in dimension i. For any box A below S (resp. B above S) with respect to dimension i, replace $A_i = [A_i^-, A_i^+]$ with $[A_i^-, A_i^+ + \epsilon]$ (resp. replace $B_i = [B_i^-, B_i^+]$ with $[B_i^- + \epsilon, B_i^+]$). It is clear that for a sufficiently small ϵ any two boxes intersect and touch on a dimension $j \neq i$ in $\mathcal{T} \cup \mathcal{T}_{ext}$ if and only if they did in $\mathcal{T} \cup \mathcal{T}_{ext}$. The intersections degenerated in dimension i either remained the same, either were simply translated (for those belonging to S). As we have now one separation less that is coplanar with another separation, we are done.

5 Simplicial complexes and Dushnik-Miller dimension

Given a d-tiling \mathcal{T}, the simplicial complex $\mathcal{S}(\mathcal{T})$ **induced** by \mathcal{T} is defined as follows. Let \mathcal{T} be the vertex set of $\mathcal{S}(\mathcal{T})$ and let a set $F \subseteq \mathcal{T}$ be a face of $\mathcal{S}(\mathcal{T})$ if and only if the elements of F intersect, that is if $\bigcap_{B \in F} B \neq \emptyset$. From this definition, it is clear that if $F \subseteq \mathcal{T}$ is a face of $\mathcal{S}(\mathcal{T})$, any subset of F is also a face of $\mathcal{S}(\mathcal{T})$. So $\mathcal{S}(\mathcal{T})$ is indeed a simplicial complex.
The Dushnik-Miller dimension of a simplicial complex S, denoted by $\dim_{DM}(S)$, is the minimum integer k such that there exist k linear orders $<_{1}, \ldots, <_{k}$ on V, where V is the vertex set of S, such that for every face F of S and for every vertex $u \in V$, there exists some i such that $\forall v \in F, v \leq_{i} u$. Such set of orders is said to be a realizer of S. Note that if T has p pairwise intersecting boxes, $S(T)$ has a face F of size p (usually such face is said to have dimension $p - 1$), and this implies that $\dim_{DM}(S(T)) \geq p$. Indeed, every vertex $v \in F$ has to be greater than the other vertices of F in some order. This shows why Theorem 3 is tight in most cases.

Definition 2. Given a proper d-tiling T, let $\overrightarrow{G}(T)$ be the digraph with vertex set T and with an arc AB if and only if there exist points $a \in A$ and $b \in B$ such that $b_{i} < a_{i}$ for all $i \in \{1, \ldots, d\}$. Note that this is equivalent as saying that $\overrightarrow{G}(T)$ has an arc AB if and only if $B_{i}^{-} < A_{i}^{+}$ for all $i \in \{1, \ldots, d\}$.

Lemma 10. For any proper d-tiling T, the digraph $\overrightarrow{G}(T)$ is acyclic.

Proof. We proceed by induction on d and on the size of T. The lemma clearly hold for $d = 1$ or for $|T| = 1$, and we thus focus on the induction step. We thus consider any proper d-tiling T with $d > 1$ and $|T| > 1$, and we assume that the lemma holds for any d'-tiling with $d' < d$, and for any d-tiling with less boxes than T. By Lemma 9 we also assume that T is in general position.

Let X be the unique box of T containing the point $(-1, \ldots, -1)$. It is clear that X is a sink in $\overrightarrow{G}(T)$, so it suffices to show that $\overrightarrow{G}(T) \setminus X$ is acyclic. In the following we show this by constructing a proper d-tiling T' with one box less than T and such that $\overrightarrow{G}(T) \setminus X$ is a subgraph of $\overrightarrow{G}(T')$. The digraph $\overrightarrow{G}(T')$ being acyclic by induction hypothesis, so is its subgraph $\overrightarrow{G}(T) \setminus X$.

Claim. There exists an $i \in \{1, \ldots, d\}$ and a box $Y \in T$ such that $X_{i}^{+} = Y_{i}^{-}$, and such that $X_{j}^{+} = Y_{j}^{+}$ for all $j \neq i$.

For any point $p \in \mathbb{R}^{d}$, any $\epsilon > 0$, and any box B, the set $\mathcal{P}(p, \epsilon)$ of 2^{d} points $(p_{1} + \epsilon_{1}, \ldots, p_{d} + \epsilon_{d})$, for $\epsilon_{i} \in \{-\epsilon, +\epsilon\}^{d}$, intersect B on a number of points that is a power of two. Furthermore, when ϵ is sufficiently small, all the boxes of T intersecting $\mathcal{P}(p, \epsilon)$ contain the point p (and thus intersect each other), and any point of $\mathcal{P}(p, \epsilon)$ belongs to exactly one box. Thus for the point p defined by $p_{i} = X_{i}^{+}$, and for a sufficiently small $\epsilon > 0$, the box X contains exactly one point of $\mathcal{P}(p, \epsilon)$. But as $|\mathcal{P}(p, \epsilon)|$ is even, there is (at least) one other box in T that contains exactly one point of $\mathcal{P}(p, \epsilon)$, let us denote Y this box. Since X and Y intersect on a $(d - 1)$-dimensional box, let us denote i the dimension where they touch, and note that $X_{i}^{-} = Y_{i}^{-}$, and that $X_{j}^{+} = Y_{j}^{+}$ for all $j \neq i$, otherwise Y would intersect $\mathcal{P}(p, \epsilon)$ on more points.

Claim. For any box $B \in T$ touching X in dimension i we have that its side $S(B, i, -)$ is contained in X’s side $S(X, i, +)$.
The previous claim implies that for each $j \neq i$ there exists a separation containing $S(X, j, +)$ and $S(Y, j, +)$. By Lemma 9 such separation contains the box $[-1, X_i^+] \times \cdots \times [-1, X_{i+1}^+] \times [-1, X_i^+ + \epsilon] \times [-1, X_{i+1}^+ + \epsilon] \times \cdots \times [-1, X_j^+]$. If some box $B \in T$ touching X in dimension i has its side $S(B, i, -)$ not contained in X’s side, for example because $S(B, i, -) \subseteq S(X, i, +)$, then some interior point of $S(B, i, -)$ is also in the interior of $S(X, j, +)$, a contradiction.

We thus define T' from $T \setminus X$ in the following way:

- For any box $B \in T \setminus X$ touching X in dimension i we define a box B' in T' by setting $B'_i = [-1, B_i^+]$ and $B'_j = B_j$ for $j \neq i$.
- Any other box $B \in T \setminus X$ is contained in T'. In this context this box is denoted B'.

Claim. T' is a proper d-tiling.

Every box $B' \in T'$ contains the corresponding box $B \in T \setminus X$ so if there is a point $p' \in [-1, +1]^d$ not covered by T', it is a point of X. But by construction this would imply that the point p, defined by $p_i = X_i^+ + \epsilon$ and $p_j = p_j'$ for any $j \neq i$, is not covered by T, a contradiction. One can similarly prove that the boxes of T' are interior disjoint. T' is thus a d-tiling. It remains to prove that it is a proper one. Towards a contradiction, assume that there exist two intersecting boxes $A, B' \in T'$ that touch in at least two dimensions. As $A \subseteq A'$ and $B \subseteq B'$ the boxes A and B do not intersect. This implies that one of these boxes, say A, touches X in dimension i while the other, B, touches X in a dimension $j \neq i$. This implies that A' and B' touch in dimension j and in another dimension $k \in \{1, \ldots, d\} \setminus \{i, j\}$. We thus either have that $A_k^+ = A_k'^+ = B_k^- = B_k'$ or that $B_k^+ = B_k'^+ = A_k^- = A_k'$. Whatever the case we denote x this value, and as both A_k and B_k intersect X_k in more than one point, we have that $-1 < x < A_k^+$. As T is in general position, it admits a separation S such that $S_k = [x, x]$ containing a point in the interior of $S(X, i, +)$ (as it is bordered by A) and a point in the interior of $S(X, j, +)$ (as it is bordered by B). As S is a box it thus contains a point in X’s interior, a contradiction.

As any box $B \in T \setminus X$ is contained in the corresponding box $B' \in T'$, for any arc $AB \in \overline{G}(T) \setminus X$ we have that $B_i^- \leq B_i^+ < A_i^+ = A_i'^+$ for all $i \in \{1, \ldots, d\}$, and thus there is an arc $A'B' \in \overline{G}(T')$. This concludes the proof of the lemma.

Theorem 3. Given a proper d-tiling T, we have that $\dim_{\text{DM}}(S(T)) \leq d + 1$.

Proof. Consider the orders $(\leq_1, \ldots, \leq_{d+1})$ defined as follows. If two distinct boxes $A, B \in T$ are such that $B_i^- < A_i^+$ for all $1 \leq i \leq d$, then $A <_{d+1} B$. By Lemma 10 the transitive closure of this relation is antisymmetric. In the following let $<_{d+1}$ be any of its linear extensions. For $<_i$ with $1 \leq i \leq d$, given two boxes $A, B \in T$, $A <_i B$ if and only if $A_i^- < B_i^-$, or if $A_i^- = B_i^-$ and $A <_{d+1} B$. Those relations are clearly total orders.
Let us now prove that \(\{<1,\ldots,<_{d+1}\} \) is a realizer of \(S(T) \). To do so, we prove that for any point \(p \) and any box \(B \in T \), that the set \(A(p) \) of boxes containing \(p \) is dominated by \(B \) in some order \(<_i \). By extension of notation, in such case we say that \(A(p) <_i B \). Note that \(B \) verifies one of the following cases:

1. \(p_i < B^-_i \) for some \(1 \leq i \leq d \),
2. \(B^-_i < p_i \) for all \(1 \leq i \leq d \), or
3. \(B^-_i = p_i \) for all \(i \in I \), for some non-empty set \(I \subseteq \{1,\ldots,d\} \), and \(B^-_i < p_i \), otherwise.

In case (1), as \(A^-_i \leq p_i < B^-_i \) for all \(A \in A(p) \), then \(A <_i B \) for all \(A \in A(p) \), that is \(A(p) <_i B \).

In case (2), as \(B^-_i < p_i \leq A^+_j \) for all \(A \in A(p) \) and all \(1 \leq i \leq d \), then \(A(p) <_{i+1} B \).

Case (3) is more intricate. Towards a contradiction we suppose that \(A(p) \not<_i B \) for all \(1 \leq i \leq d + 1 \). Let \(I \subseteq \{1,\ldots,d\} \) be the non-empty set such that \(B^-_i = p_i \) if and only if \(i \in I \). Consider the directed graph \(D \) with vertex set \(I \) and which contains an arc \((i,j)\) if and only if there exists a box \(A \in A(p) \) such that \(A^-_i = p_i \) and \(A^+_j = p_j \). Note that as every box is \(d \)-dimensional \(D \) has no loop \((i,i)\).

Claim. Every vertex in \(D \) has at least one outgoing arc.

For any \(i \in I \), as \(A(p) \not<_i B \), there exists at least one box \(A \in A(p) \) such that \(B <_i A \). By definition of \(<_i \) this box is such that \(A^-_i = p_i \) (as \(p_i = B^-_i \leq A^-_i \leq p_i \)) and such that \(B <_{i+1} A \). As \(A \not<_{i+1} B \) there exists a \(j \in \{1,\ldots,d\} \) such that \(A^+_j \leq B^-_j \), but as \(B^-_j \leq p_j \leq A^+_j \), we have \(A^+_j = p_j = B^-_j \). Thus \(j \in I \) and \(D \) has an arc \((i,j)\).

Thus \(D \) is not acyclic and we can consider a circuit of minimum length \(C = (i_0,\ldots,i_k) \) in \(D \), with \(k \geq 1 \). For every \(j \in \{0,\ldots,k\} \) let \(A(j) \) be a box of \(A(p) \) such that \(A(j)^{i_j} = p_{i_j} \) and \(A(j)^{i_{j+1}} = p_{i_{j+1}} \) (where \(j + 1 \) is understood modulo \(k + 1 \)).

Claim. All the \(k + 1 \) boxes \(A(j) \) are distinct.

Towards a contradiction, consider there exists two distinct values \(j \) and \(j' \) such that \(A(j) \) and \(A(j') \) are identical. Let us call \(A \) this box. By definition of \(A(j) \) and \(A(j') \), this box \(A \) is such that \(A^-_{i_j} = p_{i_j} \), \(A^+_{i_{j+1}} = p_{i_{j+1}} \). Thus there is an arc from \(i_j \) to \(i_{j+1} \), contradicting the minimality of \(C \).

Note that the intersection of these \(k + 1 \) boxes is degenerate in dimensions \(i_j \) for \(0 \leq j \leq k \). Thus these \(k + 1 \) boxes intersect in a box of dimension at most \(d - k - 1 \). This contradicts Theorem 2 and concludes the proof of the theorem.

\[\square \]

6 Conclusion

It would be appreciable to deal with contact system of boxes instead of \(d \)-tilings, that is to deal with sets of interior disjoint \(d \)-dimensional boxes not necessarily spanning \([-1,+1]^d\) or \(\mathbb{R}^d \). For this purpose, we conjecture the following.
Conjecture 1. A set C of d-dimensional boxes in $[-1,+1]^d$ is a subset of a proper d-tiling T if and only if every set $B \subset C$ of pairwise intersecting boxes is such that $\dim(\bigcap_{B \in B} B) = d + 1 - |B|$.

Thomassen [11] (see also [6]) characterized the intersection graphs of proper 2-tilings, exactly as the strict subgraphs of the 4-connected planar triangulations. The 4-connected planar triangulations are those where every triangle bounds a face. A simplicial complex has the Helly property if every clique in its skeleton is a face of the simplicial complex. As the simplicial complexes defined by d-tilings have the Helly property, we conjecture the following:

Conjecture 2. A simplicial complex S is such that $S = S(T \cup T_{ext})$ for some proper d-tiling T, if and only if S is a triangulation of the d-dimensional octahedron with the Helly property and with Dushnik-Miller dimension $d + 1$.

Similarly, is it possible to generalize the fact that bipartite planar graphs are the intersection graphs of non-intersecting and axis parallel segments in the plane [5]?

Acknowledgments The second author thanks É. Fusy for explaining him the construction in [14] defining a Schnyder wood from a 2-tiling. This was crucial for obtaining this result.

References

1. A. Asinowski and T. Mansour, Separable d-Permutations and Guillotine Partitions. Annals of Combinatorics 14(1): 17–43, 2010.
2. W. Evans, S. Felsner, S.G. Kobourov, and T. Ueckerdt, Graphs admitting d-realizers: spanning-tree-decompositions and box-representations. Proc. of EuroCG ’14.
3. S. Felsner and M.C. Francis, Contact representations of planar graphs with cubes. Proc. of SoCG ’11, 315–320, 2011.
4. S. Felsner and S. Kappes, Orthogonal Surfaces and Their CP-Orders. Order 25: 19-47, 2008.
5. H. de Fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid. Combinatorica 10(1): 41–51, 1990.
6. É. Fusy, Transversal structures on triangulations: A combinatorial study and straight-line drawings. Discrete Math. 309(7), 1870–1894, 2009.
7. D. Gonçalves, and L. Isenmann, Dushnik-Miller dimension of TD-Delaunay complexes. EuroGC ’17, 2017.
8. R.L. Graham, and H.O. Pollak, On embedding graphs in squashed cubes. Graph theory and applications, Lecture Notes in Math. 303: 99–110, 1972.
9. P. Ossona de Mendez, Geometric realization of simplicial complexes. Proc. of Graph Drawing ’99, LNCS 1731: 323–332, 1999.
10. W. Schnyder, Planar graphs and poset dimension. Order 5: 323–343, 1989.
11. C. Thomassen, Plane representations of graphs. Progress in graph theory (Bondy and Murty, eds.), 336-342, 1984.
12. H. Tverberg, On the decomposition of K_n into complete bipartite graphs. *J. Graph Theory*, 6: 493–494, 1982.
13. J. Zaks, How Does a Complete Graph Split into Bipartite Graphs and How are Neighborly Cubes Arranged? *Amer. Math. Monthly*, 92(8): 568–571, 1985.
14. H. Zhang, Planar Polyline Drawings via Graph Transformations. *Algorithmica*, 57: 381–397, 2010.