Title: A Machine Learning model of the combination of normalized SD1 and SD2 indexes from 24h-Heart Rate Variability as a predictor of myocardial infarction

Antonio Carlos Silva-Filho1,2,4, Sara Raquel Dutra-Macêdo1,3, Adeilson Serra Mendes Vieira1,3, Cristiano Mostarda1,3

1 Laboratory of Cardiovascular Adaptations to Exercise, Universidade Federal do Maranhão, São Luís, Brazil
2 Doutorado da Rede Nordeste em Biotecnologia – RENORBIO, Universidade Federal do Maranhão, São Luís, Brazil
3 Programa de Pós-graduação em Saúde do Adulto, Universidade Federal do Maranhão, São Luís, Brazil
4 Faculdade Uninassau, São Luís, Brazil

Abstract

\textbf{Aim:} to evaluate the ability of the nonlinear 24-HRV as a predictor of MI using Machine Learning

\textbf{Methods:} The sample was composed of 218 patients divided into two groups (Healthy, n=128; MI n=90). The sample dataset is part of the Telemetric and Holter Electrocardiogram Warehouse (THEW) database, from the University of Rochester Medical Center. We used the most common ML algorithms for accuracy comparison with a setting of 10-fold cross-validation (briefly, Linear Regression, Linear Discriminant Analysis, \textit{k}-Nearest Neighbor, Random Forest, Supporting Vector Machine, Naïve Bayes, C 5.0 and Stochastic Gradient Boosting).

\textbf{Results:} The main findings of this study show that the combination of SD1\textsubscript{nu} + SD2\textsubscript{nu} has greater predictive power
for MI in comparison to other HRV indexes. **Conclusion:** The ML model using nonlinear HRV indexes showed to be more effective than the linear domain, evidenced through the application of ML, represented by a good precision of the Stochastic Gradient Boosting model.

Keywords: heart rate variability, machine learning, nonlinear domain, cardiovascular disease
Introduction

Myocardial infarction (MI) is the most common type of cardiovascular disease (CVD) and one of the leading causes of death in the world. After MI (1), local changes are observed in cardiac tissue, such as ventricular remodeling characterized by left ventricular dilation, changes in ventricular wall structure, increased muscle mass, and decreased cardiac function (2). Also, the autonomic nervous system imbalance is observed after MI systemic changes, with a marked increase in sympathetic modulation and reduction of vagal (parasympathetic) modulation (3).

The risk assessment of patients with MI is fundamental to identify and choose optimal therapeutic strategies to improve the outcome of each patient. The analysis of heart rate variability (HRV) has become a popular diagnostic tool in clinical practice to evaluate the modulation of the autonomic nervous system. HRV is the consecutive variation of the RR intervals of the electrocardiogram in a specific duration that correlates with the sympathetic, parasympathetic and, thereafter, sympathovagal balance (4,5). HRV analysis has been used for many years to measure autonomic modulation because of its simplicity, accuracy and non-invasive nature (6). However, the use of HRV for the diagnosis of acute myocardial infarction has not been evaluated.

Currently, the heart rate variability (HRV) study has become an important noninvasive diagnostic tool in cardiology to evaluate the activities of the ANS because it is a simple, reliable and non-invasive method of monitoring. In fact, over the past 40 years, HRV has been used to diagnose autonomic dysfunction and to quantify the associated risk in a variety of cardiac and noncardiac disorders (7,8). Particularly in patients with MI, HRV has been extensively studied and has been shown to have an important prognostic value (9).
The evaluation of the ANS through nonlinear measurements has been used to clarify the complexity of the data, being much closer to the human biodynamic system, which behaves in a nonlinear way (10,11). Therefore, several studies analyzed HRV through different methods of digital signal processing and statistical methods (12,13).

The evaluation of the ANS through nonlinear measurements has been used to clarify the complexity of the data, being much closer to the human biodynamic system, which behaves in a nonlinear way (10,11). Although some nonlinear measurements used in the analysis of autonomic modulation (AM) may be adequate using short-term series, they are generally dependent on long-term data series, as was the case with Shannon Entropy (14) and correlation dimension (15). Although there are many methods in the field of chaos (16), other methods may help to understand the complex field of HRV. In this context, chaotic global methods were formulated by Garner e Ling (17), who proposed a robust method of chaos analysis to investigate disease conditions and the evolution of therapeutic interventions.

Machine learning methods, for example, are extremely powerful tools for classifying and predicting binary and/or multiclass heart disease. Many previous studies have attempted to automatically distinguish patients with a particular disease from patients with other diseases or healthy controls from machine learning methods (18). Thus, in this study, we intend to evaluate the ability of the nonlinear 24-HRV as a predictor of MI by comparing the area under the curve, sensitivity, and specificity and Cohen’s Kappa.
Materials and Methods

Sample

The sample was composed of 218 patients divided into two groups (Healthy, n=128; MI n=90). The sample dataset is part of the Telemetric and Holter Electrocardiogram Warehouse (THEW) database, from the University of Rochester Medical Center. After an official contact with the THEW coordinators, we downloaded and analyzed the data using the HRVanalysis software (7). The database E-HOL-03-0160-001 was composed of 93 24h-Holter recordings from subjects with MI. For the Healthy group, we used the E-HOL-03-0202-003 database of 130 24h-Holter recordings of healthy subjects.

Machine Learning (ML) models

The R software (19) was used for the ML models analysis, with the help of the packages caret, relaimpo and mlbench. First, the dataset was split into two groups for algorithm validation. The first part was composed of 80% of the data and was used as the asset for training the ML algorithms. The second part (the labeled remaining 20%) was used for the ML algorithm validation and accuracy evaluation. Then, we chose the most common ML algorithms for accuracy comparison with a setting of 10-fold cross-validation (briefly, Linear Regression, Linear Discriminant Analysis, k-Nearest Neighbor, Random Forest, Supporting Vector Machine, Naïve Bayes, C 5.0 and Stochastic Gradient Boosting).
Heart Rate Variability

An electrocardiogramas used to analyze HRV (Micromed Wincardio 600hz, Brasilia, Brazil). The spectrum resulting from the Fast Fourier Transform model is derived from all the data present from the signal recorded in a minimum of five minutes; the spectrum includes the entire signal variance irrespective of whether the frequency elements of the signals appear as special spectral peaks or as broadband power units.

We used the following HRV indexes: Total variance (ms2), mean of all RR intervals (ms), SDNN (ms, standard deviation of all normal to normal intervals), RMSSD (ms, root mean square of the successive differences of the normal to normal intervals), LF (ms2 and, normalized units, low-frequency spectral density), HF (ms2, and normalized units, high-frequency spectral density), LF/HF (ratio of low and high frequency domains). We also analyzed the Heart Rate Variability (HRV) in the turbulence, deceleration/acceleration capacity, and nonlinear domains.

Statistical analysis

The efficacy of the ML models was measured using the Accuracy and Cohen’s Kappa, an indicator of the level of false negatives and positives (20). Also, the Area Under de Receiver Operating Characteristic Curve (AUROC) was calculated alongside the sensitivity and specificity of the ML model. We also applied a Two-way ANOVA with a Tukey post-hoc test for the comparison between groups MI and Healthy in Table X. P <0.05 was considered significant.
Results

The overall autonomic characteristic of the sample is shown in Table 7, indicating a reduced autonomic modulation in the MI group, when compared to the Healthy group (p<0.05). Among all models and all classification, the one who demonstrated better accuracy and higher kappa values were the Stochastic Gradient Boosting model (Tables 1 to 5). Also, when taking the Stochastic Gradient Boosting alone, the combination of SD1nu + SD2nu performed better as a predictor of MI than Time, Frequency, Nonlinear domains, and Turbulence indexes (Table 6), with values close to 100%. This trend is confirmed even when comparing the combination of SD1nu + SD2nu with SD1nu or SD2nu alone, indicating a great capacity for predicting MI of these variables (Figure 1).

Table 7 shows the 24h, Day and Night HRV analysis of the MI and Healthy groups comparatively. Significant differences were found in the time, turbulence, deceleration/acceleration capacity, and nonlinear domains showing reduced overall cardiac autonomic modulation in the MI group in comparison to the Healthy group (Tukey’s p<0.05).
Discussion

The present study aimed to evaluate the ability of HRV indexes as predictors of MI using various ML classification algorithms. The main findings of this study show that the combination of SD1nu + SD2nu has greater predictive power for MI in comparison to other HRV indexes. To the best of our knowledge, this is first to evaluate data from 24-h ECG Holter using different models of the ML to verify the predictive potential of myocardial infarction by HRV indexes.

The reduction in HRV after MI is a major risk factor for arrhythmias and death (21). The responses found through HRV indexes may reflect an imbalance between the sympathetic and vagal (parasympathetic) modulation, allowing the prediction of infarcted individuals (21,22). Reduced R-R intervals, reduced time domain indexes (RMSSD, SDNN, and SDANN), increased frequency domain indexes (VLF, LFnu e LF/HF), and the reduction in the complexity of nonlinear methods (SD1, SD2 e ApEn) are correlated with cardiac pathologies such as MI (23–25).

Gyu Lee et al. (2007) (26) found that the combination of linear and nonlinear analysis of HRV demonstrated a greater prediction capacity of coronary artery diseases including MI. In corroboration, a study by Poddar and colleagues (2015) (27) presented better precision and sensitivity in the prediction of MI among other coronary diseases using a combined approach of HRV form that using the indexes alone.

Our data showed that the combination of SD1nu + SD2nu was more effective in predicting the MI than other commonly used HRV domains, such as time and frequency domains (Table 7). The time and frequency domains of HRV have been extensively studied in the last decades and have both strong experimental and clinical data pointing to its usefulness in the clinical practice (28–30). However, recent studies have been pointing out limitations of time and frequency domain
methods, such as high susceptibility to noise and stationarity (30,31). To overcome these barriers, nonlinear methods have been studied and are now well understood as representatives of the autonomic modulation (21,32).

Recent studies using ML models with HRV indexes as predictors of MI have shown limitations such as short-term recordings, use of a single ML model (mostly Supporting Vector Machine) and small sample size (18,27). These limitations stop us from making general assumptions of the prediction power of HRV for MI. Our study used a large sample of 24h-Holter recording through different ML models, thus improving the prediction power.

We found that the use of the HRV tool predicts MI, besides it is a non-invasive method, which does not generate discomfort or pain to the patients, being able to be widely used. Concomitant to this, ML models have been widely used in the medical field to assist in the prediction of diseases such as MI since it is a tool with low cost, easy access, and great applicability. In this way, they can aid in the diagnosis and subsequent treatment of cardiac events such as MI.

HRV indexes are predictors of MI, but in the present study, surprisingly, the nonlinear domain indexes SD1nu + SD2nu proved to be more effective than the linear domain, evidenced through the application of ML, represented by a good precision of the Stochastic Gradient Boosting model.
References

1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: Heart disease and stroke statistics-2016 update: A Report from the American Heart Association. Circulation. 2016 Jan;133(4):447–54.

2. Grans CF, Feriani DJ, Abssamra MEV, Rocha LY, Carrozzi NM, Mostarda C, et al. Resistance training after myocardial infarction in rats: Its role on cardiac and autonomic function. Arq Bras Cardiol. 2014;

3. Rodrigues B, Santana AA, Santamarina AB, Oyama LM, Caperuto ÉC, De Souza CT, et al. Role of training and detraining on inflammatory and metabolic profile in infarcted rats: Influences of cardiovascular autonomic nervous system. Mediators Inflamm. 2014 Jun;2014:207131.

4. Bagher-Ebadian H, Jafari-Khouzani K, Mitsias PD, Lu M, Soltanian-Zadeh H, Chopp M, et al. Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke. He Y, editor. PLoS One. 2011 Aug;6(8):e22626.

5. Livne M, Boldsen JK, Mikkelsen IK, Fiebach JB, Sobesky J, Mouridsen K. Boosted tree model reforms multimodal magnetic resonance imaging infarct prediction in acute stroke. Stroke. 2018;49(4):912–8.

6. Kidwell CS I M, Max Wintermark M, Deidre A. De Silva, MD Timothy J. Schaewe, DSc Reza Jahan M, Sidney Starkman M, Tudor Jovin M, Jason Hom M, et al. Multiparametric MRI and CT Models of Infarct Core and Favorable Penumbral Imaging Patterns in Acute Ischemic Stroke. Stroke. 2013;44(1):73–9.
7. Pichot V, Roche F, Celle S, Barthélémy J-C, Chouchou F. HRVanalysis: A Free Software for Analyzing Cardiac Autonomic Activity. Front Physiol. 2016;

8. Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: Updated systematic review and meta-analysis. The Lancet. 2016.

9. Huikuri H V., Stein PK. Heart rate variability in risk stratification of cardiac patients. Prog Cardiovasc Dis. 2013;

10. Turri-Silva N, Garner DM, Moosavi SH, Ricci-Vitor AL, Christofaro DGD, Netto Junior J, et al. Effects of resistance training protocols on nonlinear analysis of heart rate variability in metabolic syndrome. Brazilian J Med Biol Res. 2018;

11. Francesco B, Maria Grazia B, Emanuele G, Valentina F, Sara C, Chiara F, et al. Linear and nonlinear heart rate variability indexes in clinical practice. Computational and Mathematical Methods in Medicine. 2012.

12. De Chazal P, Reilly RB. A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng. 2006;

13. J. O, K. K, M. B, U.K.H. W, D. B, H. I, et al. Evolution of cardiac autonomic nervous activity indices in patients presenting with transient left ventricular apical ballooning. PACE - Pacing and Clinical Electrophysiology. 2009.

14. Shannon CE. A Mathematical Theory of Communication. Bell Syst Tech J. 1948;

15. Skinner JE, Carpeggiani C, Landisman CE, Fulton KW. Correlation dimension of heartbeat intervals is reduced in conscious pigs by myocardial ischemia. Circ Res. 1991;

16. Seely AJE, Macklem PT. Complex systems and the technology of variability analysis. Critical care (London, England). 2004.
17. Garner DM, Ling BWK. Measuring and locating zones of chaos and irregularity. J Syst Sci Complex. 2014;
18. Song T, Qu XF, Zhang YT, Cao W, Han BH, Li Y, et al. Usefulness of the heart-rate variability complex for predicting cardiac mortality after acute myocardial infarction. BMC Cardiovasc Disord. 2014;
19. R Development Core Team R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2011.
20. Cohen J. A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas. 1960;
21. Brateanu A. Heart rate variability after myocardial infarction: what we know and what we still need to find out. Curr Med Res Opin. 2015 Oct;31(10):1855–60.
22. Poulsen SH, Jensen SE, Møller JE, Egstrup K. Prognostic value of left ventricular diastolic function and association with heart rate variability after a first acute myocardial infarction. Heart. 2001;
23. Carpeggiani C, L’Abbate A, Landi P, Michelassi C, Raciti M, Macerata A, et al. Early assessment of heart rate variability is predictive of in-hospital death and major complications after acute myocardial infarction. Int J Cardiol. 2004 Sep;96(3):361–8.
24. MÄKIKALLIO TH, SeppÄNEN T, NIEMELÄ M, AIRAKSINEN KEJ, TULPPO M, HUIKURI H V. Abnormalities in Beat to Beat Complexity of Heart Rate Dynamics in Patients With a Previous Myocardial Infarction. J Am Coll Cardiol. 1996 Oct;28(4):1005–11.
25. Kunz VC, Boraes EN, Coelho RC, Gubolino LA, Martins LEB, Silva E. Linear and nonlinear analysis of heart rate variability in healthy subjects and after acute myocardial infarction in patients. Brazilian J Med Biol Res. 2012 May;45(5):450–8.
26. Lee HG, Noh KY, Ryu KH. Mining Biosignal Data: Coronary Artery Disease Diagnosis Using Linear and Nonlinear Features of HRV. In: Emerging Technologies in Knowledge Discovery and Data Mining. 2007. p. 218–28.

27. Poddar MG, Kumar V, Sharma YP. Automated diagnosis of coronary artery diseased patients by heart rate variability analysis using linear and non-linear methods. J Med Eng Technol. 2015 Aug;39(6):331–41.

28. La Rovere MT, Pinna GD, Maestri R, Mortara A, Capomolla S, Febo O, et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation. 2003;107(4):565–70.

29. Thayer JF, Yamamoto SS, Brosschet JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Vol. 141, International Journal of Cardiology. 2010. p. 122–31.

30. Variability HR. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043–65.

31. K. Udhayakumar R, Karmakar C, Palaniswami M. Understanding Irregularity Characteristics of Short-term HRV Signals using Sample Entropy Profile. IEEE Transactions on Biomedical Engineering. 2018;

32. Guzzetti S, Borroni E, Garbelli PE, Ceriani E, Della Bella P, Montano N, et al. Symbolic dynamics of heart rate variability: A probe to investigate cardiac autonomic modulation. Circulation. 2005;112(4):465–70.
Table 1. Combined 24-hour’s time domain indexes and its predictions powers according to different models

Models	Accuracy	Cohen’s Kappa	AUROC	Sensitivity	Specificity
Linear Regression	0.93	**0.86**	0.96	**0.91**	**0.94**
Linear Discriminant Analysis	0.92	0.83	**0.98**	0.88	0.93
k-Nearest Neighbor	0.82	0.61	0.75	0.42	0.88
Random Forest	0.93	0.86	0.98	0.90	0.92
Supporting Vector Machine	0.89	0.76	0.94	0.79	0.90
Naïve Bayes	0.84	0.66	0.90	0.81	0.87
C 5.0	0.92	0.83	**0.98**	**0.91**	**0.94**
Stochastic Gradient Boosting	**0.95**	**0.89**	**0.98**	0.89	0.93

Table 2. Combined 24-hours frequency domain indexes and its predictions powers according to different models

Models	Accuracy	Cohen’s Kappa	AUROC	Sensitivity	Specificity
Linear Regression	0.83	0.66	0.91	0.87	0.80
Linear Discriminant Analysis	0.82	0.65	0.89	**0.88**	0.74
k-Nearest Neighbor	0.78	0.55	0.91	0.73	0.85
Random Forest	0.87	0.73	0.90	0.85	0.81
Supporting Vector Machine	0.80	0.59	0.91	0.81	0.83
Naïve Bayes	0.82	0.64	0.90	**0.88**	0.75
C 5.0	**0.88**	**0.74**	**0.94**	0.86	**0.86**
Stochastic Gradient Boosting	**0.88**	**0.74**	**0.94**	**0.86**	**0.86**

Table 3. Combined 24-hours nonlinear domain indexes and its predictions powers according to different models

Models	Accuracy	Cohen’s Kappa	AUROC	Sensitivity	Specificity
Linear Regression	0.89	0.76	0.92	0.85	0.91
Linear Discriminant Analysis	0.90	0.79	0.94	0.88	0.91
k-Nearest Neighbor	0.89	0.77	**0.97**	0.92	0.91
Random Forest	0.94	0.87	**0.97**	0.93	0.93
Supporting Vector Machine	0.91	0.82	**0.97**	0.86	0.91
Naïve Bayes	0.85	0.69	0.95	0.85	0.85
C 5.0	0.94	0.87	0.95	0.89	0.93
Stochastic Gradient Boosting	**0.95**	**0.88**	0.96	**0.94**	**0.94**
Table 4. Combined 24-hour’s turbulence indexes and its predictions powers according to different models

Models	Accuracy	Cohen’s Kappa	AUROC	Sensitivity	Specificity
Linear Regression	0.82	0.52	0.86	0.64	0.88
Linear Discriminant Analysis	0.83	0.55	0.85	0.71	0.87
k-Nearest Neighbor	0.83	0.53	0.89	0.63	0.94
Random Forest	0.84	0.56	0.88	0.6	0.91
Supporting Vector Machine	**0.88**	0.65	0.84	0.57	**0.96**
Naïve Bayes	0.84	0.59	0.86	**0.78**	0.85
C 5.0	0.87	**0.62**	**0.88**	0.58	0.92
Stochastic Gradient Boosting	0.87	0.61	0.85	0.6	0.92

Table 5. Combined 24-hour’s SD1nu + SD2nu and its predictions powers according to different models

Models	Accuracy	Cohen’s Kappa	AUROC	Sensitivity	Specificity
Linear Regression	0.95	0.89	**0.98**	0.94	0.95
Linear Discriminant Analysis	**0.96**	**0.91**	0.97	**0.99**	0.92
k-Nearest Neighbor	0.95	0.9	0.97	0.92	0.93
Random Forest	0.94	0.88	0.97	0.98	0.95
Supporting Vector Machine	**0.96**	**0.91**	0.96	0.92	0.93
Naïve Bayes	0.94	0.89	**0.98**	0.95	0.94
C 5.0	**0.96**	**0.91**	0.97	0.95	0.93
Stochastic Gradient Boosting	**0.96**	**0.91**	0.97	0.96	**0.96**

Table 6. Performance of different predictors according to the Stochastic Gradient Boosting model

Stochastic Gradient Boosting model	Accuracy	Cohen’s Kappa	AUROC	Sensitivity	Specificity
Time domain	0.95	0.89	0.98	0.89	0.93
Frequency domain	0.88	0.74	0.94	0.86	0.86
Nonlinear domain	0.95	0.88	0.96	0.94	0.94
Turbulence indexes	0.87	0.61	0.85	0.6	0.92
SD1nu + SD2nu	**0.96**	**0.91**	**0.97**	**0.96**	**0.96**
Figure 1. Receiver Operator Characteristic curve plot of SD1nu and SD2nu performances
Table 7. Overall autonomic modulation of both groups

	Healthy (n=128)	Myocardial infarction (n=90)												
	24h	Day	Night	24h	Day	Night								
	Mean	SD												
Time domain														
Mean RR (ms)	790.92	101.52	733.54*	93.12	934.25*	94.94	870.40†	127.84	854.85†	198.27	898.84	211.59		
Mean HR (bpm)	77.12	9.98	83.11*	10.56	105.75*	10.23	70.43†	10.43	71.73†	16.64	68.33	16.11		
pcNN20 (%)	40.06	16.25	34.62	16.25	53.67*	19.26	28.05†	16.85	27.09†	17.78	31.05†	18.55		
pcNN30 (%)	27.47	15.20	22.39	14.27	40.30*	20.56	15.76†	13.56	15.24†	14.15	17.44†	14.64		
pcNN50 (%)	14.36	11.61	10.63	9.87	23.94*	18.79	6.58†	8.73	6.58†	9.40	6.77†	8.74		
SDNN (ms²)	157.78	47.51	123.04*	41.84	129.93*	46.83	94.39†	143.83	76.98†	28.07	66.92†	24.95		
RMSSD (ms²)	38.62	18.66	32.33	16.03	50.20	27.41	41.11	137.98	26.63	18.62	26.62	16.05		
SDANN (ms²)	142.99	54.74	104.65	57.11	92.20	38.02	127.15	602.03	61.80	23.36	46.95	20.65		
SDNNIDX (ms²)	67.90	22.28	64.27	21.07	75.36	28.12	52.82	110.72	41.27†	16.29	41.99†	15.49		
Total power (ms²)	1715.33	1586.06	4163.78	2603.03	5815.03	4038.51	1112237.03	10510855.3	1757.52	1439.82	1814.43	1239.58		
VLF (ms²)	2629.77	1798.17	2298.41	1471.01	3270.90	2340.21	224403.18	2118248.78	1039.18	829.52	1127.80	746.23		
LF (ms²)	1248.20	745.96	1154.39	703.34	1437.10	968.93	16682.25	154756.07	381.71	3531.13	388.20	349.87		
HF (ms²)	513.30	467.72	348.82	338.54	758.74	731.45	2653.18	23667.39	167.71	257.61	164.70	207.55		
LF (nu)	-	-	79.02	8.29	65.95	12.13	-	-	72.56	18.84	70.96†	21.16		
HF (nu)	-	-	20.98	8.29	34.05*	12.13	-	-	27.44†	14.42	29.04†	15.01		
LF/HF	-	-	6.72	3.82	3.87*	2.80	-	-	5.39†	3.98	5.39†	4.47		
Nonlinear domain														
Centroid (ms)	794.10	102.19	737.47	94.59	936.65*	143.64	874.65†	153.36	858.52†	214.56	912.73	262.25		
SD1 (ms)	26.62	12.80	22.22	10.86	35.03*	19.10	18.31†	10.54	18.19	11.69	19.18†	11.25		
SD2 (ms)	215.71	66.15	167.14*	53.51	175.26*	64.19	110.13†	33.81	104.97†	34.65	94.66†	41.21		
SD1/SD2	0.12	0.04	0.13	0.04	0.20*	0.07	0.17†	0.09	0.17†	0.10	0.21†§	0.12		
SD1 (nu)	3.29	1.37	2.96	1.25	3.62*	1.60	2.08†	1.14	2.09†	1.27	2.09†	1.17		
SD2 (nu)	27.00	6.79	22.53*	6.03	18.60*	5.86	12.62†	3.66	12.27†	3.91	10.38†	4.48		
Largest Lyapunov Exp.	0.33	0.11	0.31	0.10	0.40*	0.15	0.25†	0.15	0.23	0.10	0.24†	0.10		
Turbulence indexes														
Number of VPC’s	7.12	41.63	-	-	-	-	-	-	55.51†	102.70	-	-	-	
Turbulence onset	-0.42	2.30	-	-	-	-	0.36†	2.52	-	-	-	-		
Turbulence slope	4.85	8.62	-	-	-	-	3.93	4.34	-	-	-	-		
Acceleration capacity	-8.47	2.14	-	-	-	-	-5.43†	2.09	-	-	-	-		
Deceleration capacity	7.44	1.68	-	-	-	-	5.20†	1.86	-	-	-	-		

* <0.05 versus 24h in Healthy group; ¥ between day and night in Healthy group; # <0.05 versus 24h in MI group; § between day and night in MI group; † <0.05 between Healthy and MI groups
