Extended electrodynamics and SHP theory

L M. Hively1 and M Land2
1University of South Alabama, Mobile, Alabama 36688 USA
2Department of Computer Science, Hadassah College, 37 HaNeviim Street, Jerusalem
E-mail: martin@hac.ac.il

Abstract. This work shows incompleteness and inconsistency in classical electrodynamics (CED) and quantum electrodynamics (QED). Extended electrodynamics (EED) resolves these issues. Stueckelberg-Horwitz-Piron (SHP) theory is equivalent to EED with important implications.

1. Introduction

QED has been called “the ‘most correct’ scientific theory in history” [1], “the most accurate physical theory ever built” [2], and “the most successful physical theory” [3]. CED is the basis for QED and has its foundation in Feynman’s ‘proof’ [4] of Maxwell’s equations. Thus, CED and QED are considered complete and closed, needing no re-evaluation. However, the assumptions for Feynman’s proof are based on empirical results, rather than first-principles logic. Falsifiability [5] states that an empirical theory cannot be proved, but can be disproved by contrary test result(s). This work first examines CED and QED and finds incompleteness and inconsistencies, as follows.

The magnetic (B) and electric (E) fields can be written in terms of the scalar (Φ) and vector (A) potentials as [6]:

$$B = \nabla \times A$$

and

$$E = -\nabla \Phi - \frac{\partial A}{\partial t}.$$

B and E are invariant under the gauge transformation: $\Phi \rightarrow \Phi - \frac{\partial \eta}{\partial t}$ and $A \rightarrow A + \nabla \eta$, where η is the gauge function [7] that has an ∞-infinitude of choices. This transformation gauges away the irrotational component of A [8-9] (also called the curl-free, gradient-driven, or longitudinal component, A^L).

A^L has been measured in the micro-, meso-, and macro-scale domains over the full frequency spectrum. First, the Aharonov-Bohm effect (ABE) [10-11] involves a quantum particle (q = charge) that travels along a path (P) in a region with zero magnetic field ($B=0$) and $A^L \neq 0$. A quantum particle can traverse different paths simultaneously, causing a phase difference ($\Delta \phi = q \Phi_B / \hbar$) by placing a magnetic solenoid between the slits of a double-slit experiment. Here, \hbar is Planck’s constant divided by 2π; Φ_B is the magnetic flux enclosed by the particle’s path. Tests by Tonomura et al. [12] and Osakabe et al. [13] validated this prediction. The phase shift has also been observed in micrometer-sized metal rings [14-16], showing that electrons keep their phase coherence despite diffusion in mesoscopic samples. Second, Varma et al. [17-21] measured A^L over centimeters via a low-current electron beam that propagated linearly along a B-field. The current showed time-periodic variations with a linear change in A^L, contrary to the CED prediction. The Maxwell-Lodge effect (MLE) is a third observation of A^L. Oliver Lodge applied an alternating voltage to an iron-core, toroidal solenoid...
and measured a voltage in the secondary coil via $E = -\partial A/\partial t$, despite no magnetic field outside the primary coil. Blondel [22] and Rousseaux et al. [23] replicated Lodge’s experiment by a long solenoidal magnet that was encircled at its mid-plane by a secondary coil. An alternating current produced a magnetic field inside the solenoid, but no magnetic field outside the solenoid. A^L was time-varying both inside and outside the solenoid and parallel to the current. Daibo et al. [24-26] measured the MLE, using a coiled coil: a very long, flexible solenoid whose return-current wire ran through the coil’s center to create a pure vector potential with $B = 0$. The coiled-coil was wound around a hollow, (super)conducting cylinder (primary, also called the vector-potential transformer--VPT) and was driven with alternating current. Several secondary coils were passed through the hollow interior of the VPT. Path-independent voltages were measured in the secondary coils. These tests show that A^L exists, contrary to being gauged away by CED.

An irrotational vector potential has the form, $A^L = \nabla \alpha$. Non-zero A^L gives $B = \nabla \times A = \nabla \times \nabla \alpha = 0$ [27] and $E = -\nabla \Phi - \partial A/\partial t = -\nabla (\Phi + \partial \alpha/\partial t) = \nabla \epsilon \nabla \alpha$. Substitution of these expressions into Ampère’s law yields $\nabla \times B + \epsilon \mu \nabla \nabla \alpha = \epsilon \mu \nabla \nabla \alpha = \epsilon \mu \nabla \alpha$, showing that a longitudinal vector potential implies a longitudinal current of the form, $J^L = \epsilon \nabla \partial \partial / (\Phi - \partial \alpha/\partial t) = \nabla \kappa$. Here, ϵ and μ are the permittivity and permeability of the propagation medium (not necessarily vacuum); α, ϵ, and κ are appropriate space-time, scalar functions. The net result is [28]: $A^L = \nabla \alpha \Leftrightarrow J^L = \nabla \kappa \Leftrightarrow E = \nabla \epsilon \Leftrightarrow B = 0$. Thus, CED and QED do not properly describe A^L, E^L, and J^L, leading to an incomplete description of longitudinal effects.

The incompleteness of the previous paragraph has been validated by experiments. All living processes involve ion-concentration-gradient-driven currents (J^L) across cell membranes [29]. These currents are the basis for electro-physiological, medical diagnostics and treatments. For example, scalp brain-waves arise from irrotational currents [30]. Longitudinal currents (driven by E^L) also occur in atmospheric lightning [31] and microscopic arcs in tape peeling [32-33]. The 2010 test [33] measured an angular X-ray distribution that is bounded from below by ordinary Bremsstrahlung and bounded from above by polarizational Bremsstrahlung. Neither CED model predicts the 20% peak between emission angles of 80° to 100°.

The Aharonov-Bohm effect [10-11] also predicts a phase shift ($\Delta \varphi$) that arises from the scalar potential (Φ). Namely, $\Delta \varphi = -q \Phi t/h$ enables direct measurement of Φ for $E = 0$. Here, t is the time spent in the potential. Van Oudenaarden et al. [34] validated this prediction by quantum interference of electrons in metal rings with two tunnel junctions and a voltage difference between the two ring segments. These results demonstrate that A and Φ are independent, physically measureable fields, rather than mathematical conveniences, as commonly used in CED.

Richard Feynman (1965 Nobel Prize in physics) made the following comment on page 128 of his book [35]: “The shell game that we play…is technically called ‘renormalization.’ But no matter how clever the word, it is what I would call a dippy process! Having to resort to hocus-pocus has prevented us from proving that the theory of quantum electrodynamics is mathematically self-consistent. … I suspect that renormalization is not mathematically legitimate.” Moreover, Dyson proved that all renormalized power-series, perturbation expansions in QED have zero-radius of convergence [36], making the results meaningless. Haag’s theorem [37] states that two Hilbert-space solutions can be unitarily inequivalent, requiring that a “proper” result be chosen from an \mathcal{N}_∞-infinitude of forms. Haag’s theorem is inapplicable [38] to the Stueckelberg Lagrangian [39], which is the basis for EED. These examples show the inconsistency and incompleteness of QED (a local field theory), arising from analogous issues in CED (also a local field theory). New physics is needed [40].

These theoretical and experimental results falsify both CED and QED. Section 2 describes EED that resolves the above incompleteness and inconsistencies. Section 3 shows that EED is equivalent to SHP theory. Section 4 presents our conclusions, including implications of the EED-SHP equivalence.
2. Extended Electrodynamics

A remarkably large literature exists on extended electrodynamics and related topics from 1932 to the present [28,39,41-86]. Woodside’s seminal work [56] showed that EED is provably unique, using retarded potential solutions in Minkowski 4-space. The resultant dynamical equations are:

\[
\begin{align*}
E &= -\nabla \Phi - \frac{\partial A}{\partial t}; \\
B &= \nabla \times A; \\
C &= \nabla \cdot A + \frac{1}{c^2} \frac{\partial \Phi}{\partial t}; \\
\nabla \times B - \frac{1}{c^2} \frac{\partial E}{\partial t} - \nabla C &= \mu J; \\
\nabla \cdot E + \frac{\partial C}{\partial t} &= \frac{\rho}{\varepsilon}.
\end{align*}
\]

Here, \(\rho\) is the electrical charge density; \(c, \varepsilon,\) and \(\mu\) are the speed of light, the permittivity, and permeability of the propagation medium, respectively (not necessarily vacuum). Eqs. (1)-(2) are equivalent to Faraday’s law and the no-magnetic-monopoles equation, respectively. Eq. (4) uniquely decomposes \(J\) into solenoidal (\(\nabla \times B\)) and irrotational (\(\nabla C\)) components, in accord with the Helmholtz theorem [6]. Eq. (6) is the Stueckelberg Lagrangian [39] without the Maxwell-Proca term. Eq. (6) implies [45] Eqs. (1)-(5) and vice versa [51-52].

The \(A\)-wave equation [7] is obtained [28,60] by replacing \(B, E,\) and \(C\) in Eq. (4) with Eqs. (1)-(3); noting that \(\nabla \times \nabla \times A = \nabla (\nabla \cdot A) - \nabla^2 A\) [27]; and using \(\partial \nabla C / \partial t - \nabla \partial C / \partial t = 0\). The usual \(B\)-wave equation [7] arises from the curl of Eq. (4); use of Faraday’s law; use of \(\nabla \times \nabla \times B = \nabla (\nabla \cdot B) - \nabla^2 B\) [27]; and noting \(\nabla \times C = 0\) [27]. The usual \(E\)-wave equation [87] comes from the curl of Faraday’s law; use of \(\nabla \times \nabla \times E = \nabla (\nabla \cdot E) - \nabla^2 E\) [27]; substitution for \(\nabla \times B\) from Eq. (4); substitution for \(\nabla \cdot E\) from Eq. (5); and use of \(\partial \nabla C / \partial t - \nabla \partial C / \partial t = 0\). The \(\Phi\)-wave equation [7] is obtained by substitution of \(E\) and \(C\) from Eqs. (1) and (3) into Eq. (5); and use of \(\partial \nabla \cdot A / \partial t - \nabla \partial A / \partial t = 0\). The noteworthy results are: (a) derivation of the wave equations for \(A\) and \(\Phi\) without a gauge condition; (b) \(A\) and \(\Phi\) as independent, physically measurable fields; (c) classical TEM waves, together with longitudinal components.

The CED form of Gauss’ law has a well-known, media-interface matching condition [6]:

\[
\varepsilon_2 E_{2n} - \varepsilon_1 E_{1o} = \rho_d.
\]

Substitution of the expression for \(E\) is terms of \(A\) and \(\Phi\) into Eq. (7) gives [28,60]:

\[
\varepsilon_2 \left(-\nabla \Phi - \frac{\partial A}{\partial t} \right)_{2n} - \varepsilon_1 \left(-\nabla \Phi - \frac{\partial A}{\partial t} \right)_{1n} = \rho_d.
\]

Here, the subscript, ‘\(n\)’, denotes the component normal to the media interface. The subscripts ‘1’ and ‘2’ identify the two media. The \(\Phi\)-wave equation also has a media-interface matching condition by taking a Gaussian pill box with the end faces parallel to the interface in regions 1 and 2. Noting that \(\nabla^2 \Phi = \nabla \cdot \nabla \Phi\), the divergence theorem in the limit of zero pill-box height yields:

\[
-\left(\varepsilon \nabla \Phi \right)_{2n} + \left(\varepsilon \nabla \Phi \right)_{1n} = \rho_d.
\]
The interface surface-charge density is ρ_A. Eqs. (8)-(9) are inconsistent under CED [28,60], and cannot be ascribed to writing the equations in terms of A and Φ, since B and E are gauge invariant [7]. EED resolves this inconsistency.

The CED form of Ampere’s law has a media-interface matching condition [6]:

$\mu_i B_{1t} - \mu_2 B_{2t} = \mu_i \left(\nabla \times A \right)_{1t} - \mu_2 \left(\nabla \times A \right)_{2t} = J_A$.

Here, ‘t’ is the tangential field component at the media interface. The A-wave equation also has a matching condition by taking a Gaussian pill box with the end faces parallel to the interface in regions 1 and 2. Noting that $\nabla^2 A = \nabla \cdot \nabla A$, the divergence theorem in the limit of zero pill-box height gives:

$$-\left[\frac{(\mathbf{n} \cdot \nabla) A}{\mu} \right]_1 + \left[\frac{(\mathbf{n} \cdot \nabla) A}{\mu} \right]_2 = J_A.$$ \hspace{1cm} (11)

J_A is the surface-current parallel to the interface; \mathbf{n} is the unit vector normal to the interface. As before, the disparity between Eqs. (10)-(11) is not due to writing the equations in terms of A and Φ, since B and E are gauge invariant [7]. EED resolves this inconsistency.

A wave equation for C [28,60] arises from the divergence of Eq. (4); use $\varepsilon \mu (\partial / \partial t)$ on Eq. (5); noting $\nabla \cdot (\nabla \times B) = 0$ [27]; and summing of the results to yield:

$$\nabla^2 C - \frac{\partial^2 C}{\partial c^2 t^2} = -\mu \left(\frac{\partial \rho}{\partial t} + \nabla \cdot J \right).$$ \hspace{1cm} (12)

Eq. (12) is local in space and time. However, all experiments are performed over a finite spatio-temporal domain (Δx and ΔT), i.e., a spatio-temporal average. A long-time average of Eq. (12) gives $\partial \rho / \partial t + \nabla \cdot J = 0$, in accord with long-standing experiments that validate classical charge balance [88]. For example, the lower bound on electron lifetime for charge balance has been carefully measured as $\geq 6.6 \times 10^{28}$ years [89] (decay into two γ-rays, each at an energy of $me c^2 / 2 = 0.256$ MeV; $me =$ electron mass). Nevertheless, long-time charge conservation is not inconsistent with charge non-conservation over short-time scales, $\Delta T \leq \Delta t$, per the Heisenberg uncertainty relation, $\Delta E \Delta t \geq \hbar / 2$. Here, ΔE is the charged-quantum-fluctuation energy. Eq. (12) can be interpreted as charge non-conservation (particle-antiparticle fluctuations [PAPF]) driving C, and vice versa, not unlike energy-fluctuations driving mass-fluctuations in quantum theory and vice versa [28,60]. Equivalently, the right-hand-side (RHS) of Eq. (12) can be interpreted as PAPF over some non-local region (Δx), consistent with the Heisenberg uncertainty relation, $\Delta p \Delta x \geq \hbar / 2$. Here, Δp is the charged-quantum-fluctuation momentum over a non-local region, Δx. (While this interpretation is novel, it is consistent with PAPF according to the Heisenberg uncertainty principle.) Eq. (12) then predicts charge conservation on long time-scales (consistent with CED), and exchange of energy between C and PAPF for $\Delta T \leq \Delta t$. Validation of this prediction requires tests, consistent with the Heisenberg uncertainty relation. For example, a test could use the electron $[\Delta E$ (electron)]$=mc^2=0.511$ MeV] corresponding to $\Delta t \approx 6 \times 10^{-22}$ seconds. Such a test is feasible, because subzeptosecond dynamics have been measured [90].

A check of the scalar field (C) is needed. Specifically, C should be derivable as a non-zero field by substitution of the Green’s function solutions for A and Φ into Eq. (3), as follows.

$$C = \nabla \cdot \frac{\mu_0}{4\pi} \int \frac{J(x',t')d^3x'}{|x-x'|} + \varepsilon_o \mu_0 \frac{1}{4\pi \varepsilon_o} \int \frac{\rho(x',t')d^3x'}{|x-x'|}.$$ \hspace{1cm} (13)

The observer’s coordinates are unprimed and independent of the source coordinates (primed):

$$t' = t - \frac{|x - x'|}{c}.$$ \hspace{1cm} (14)

Eq. (15a) arises from interchange of the order of the derivatives in Eq. (13) with respect to x (observer frame), and integrals with respect to x' (source frame). Eq. (15b) cancels ε_o in the numerator and denominator of the second term in Eq. (15a), and groups the integrand inside the square brackets.
Here, the notation is $R = x - x'$, and $R = |R|$. Eq. (15c) applies the divergence operator $[27]$ to (J/R) and the partial-time derivative to ρ, since r is time independent. Eq. (15d) groups the two terms with a factor of $(1/R)$ inside the square brackets, and evaluates the gradient of $(1/R)$ $[27]$.

Eq. (15d) requires evaluation of the terms inside the square brackets via the chain rule:

$$\nabla \cdot \mathbf{J}(x',t') = \sum_{i=1}^{3} \frac{\partial J_i(x',t')}{\partial x_i'} = \sum_{i=1}^{3} \frac{\partial J_i(x',t')}{\partial t'} \frac{\partial t'}{\partial x_i'} = -\sum_{i=1}^{3} \frac{\partial J_i(x',t')}{\partial t'} \frac{2(x_i - x_i')}{2c|x - x'|} = -\frac{R}{cR} \frac{\partial \mathbf{J}(x',t')}{\partial t'};$$

$$\frac{\partial \rho(x',t')}{\partial t} = \frac{\partial \rho(x',t')}{\partial t'} \frac{\partial t'}{\partial t} = \frac{\partial \rho(x',t')}{\partial t'} \frac{t - |x - x'|}{c} = \frac{\partial \rho(x',t')}{\partial t'} \times 1.$$

Substitution of Eqs. (16a)-(16b) into Eq. (15) then yields Eq. (17a), which can recast as Eq. (17b):

$$C = \frac{\mu_0}{4\pi} \int d^3x' \left[\frac{1}{R} \left(\mathbf{E} \cdot \frac{\partial \mathbf{J}(x',t')}{\partial t'} - \mathbf{E} \cdot \frac{\partial \mathbf{J}(x',t')}{\partial t'} - \frac{\partial \mathbf{J}(x',t')}{\partial t'} \frac{\partial \mathbf{J}(x',t')}{\partial t'} \right) \cdot \mathbf{R} \right] \frac{R}{R^2};$$

$$= \frac{\mu_0}{4\pi} \int d^3x' \left[\frac{1}{R} \left(\mathbf{E} \cdot \frac{\partial \mathbf{J}(x',t')}{\partial t'} - \mathbf{E} \cdot \frac{\partial \mathbf{J}(x',t')}{\partial t'} - \frac{\partial \mathbf{J}(x',t')}{\partial t'} \frac{\partial \mathbf{J}(x',t')}{\partial t'} \right) \cdot \mathbf{R} \right] \frac{R}{R^2}.$$

Consequently, the term usually set to zero as the Lorenz gauge ($C=0$) is in fact non-zero, presenting a major inconsistency for CED. EED resolves this inconsistency as discussed above.

EED predicts that a scalar-longitudinal wave (SLW, also called the longitudinal-scalar wave or the electroscalar wave) can be obtained from the irrotational form of Eq. (4) in spherical coordinates:

$$-\frac{1}{c^2} \frac{\partial \mathbf{E}^L}{\partial t} - \nabla C = \mu \mathbf{J}^L.$$

The RHS of Eq. (15) is zero on classical time scales, resulting in a lowest-order solution of [7]:

$$C = \frac{C_o \exp[j(kr - \omega t)]}{r}.$$

C_o is the scalar field amplitude; $j = \sqrt{-1}$; the wave number k is $(2\pi/\lambda)$ for a wavelength (λ); $\omega = 2\pi f$ for a frequency (f); and r is the spherical radius. $C(r\to\infty)\to 0$ is the boundary condition for Eq. (19), which is trivially satisfied. The energy density of the C-field is $(C^2/2\mu)$ $[28,60]$, yielding a constant total energy, $4\pi r^2 (C^2/2\mu)$, through a spherical boundary around a source in arbitrary media, as required. The corresponding electric field solution is $[28,60]$:

$$\mathbf{E}^L = \frac{\mathbf{E}_s \exp[j(kr - \omega t)]}{r}.$$

Here, \mathbf{E}_s is the longitudinal (radial in spherical coordinates for a monopolar source) E-field amplitude. As before, $\mathbf{E}'(r\to\infty)\to 0$ is satisfied, and the \mathbf{E}-field energy density through a spherical boundary
around a source is constant, $4\pi r^2 \left(\varepsilon E^2/2 \right)$. Substitution of Eqs. (19)-(20) into Eq. (18) yields the SLW impedance (Z), using $J^t=\sigma \varepsilon E^t$ with $[91] \sigma=\varepsilon_o \varepsilon \omega$, and $\varepsilon=\varepsilon_o (\varepsilon'-j \varepsilon'')$ [28,60]:

$$Z = \frac{\mu_0}{C / \mu_o \mu'} \left[\frac{1}{\varepsilon_o} \right] 1 - \frac{1}{1 - \tan(\delta^o)}.$$

(21)

Here, ε_o and μ_o are the free-space permittivity and permeability, respectively; ε' and μ' are the relative permittivity and permeability respectively (not necessarily vacuum); $\tan(\delta^o)=\varepsilon''/\varepsilon'$. The time-averaged SLW power (P_{OUT}) from a monopolar antenna is isotropic and attenuates as r^{-2} [28,60]:

$$P_{OUT} = \frac{I^2 \mu}{2(4\pi r)^2} \sqrt{\frac{\mu}{\varepsilon}}.$$

(22)

The wave equations for A, C, E, and Φ are time-reversal invariant, so a SLW transmitter can act as a receiver [28,60] with $\mu=\mu_o (\mu'-j \mu'')$. EED [28] predicts that the SLW is unconstrained by the skin effect, because no magnetic field exists to generate dissipative eddy currents in electrical conductors. Preliminary experimental results [28] are consistent the EED predictions: r^{-2} free-space attenuation and propagation through thousands of skin-depths of solid copper using standard electronic instrumentation. CED cannot explain these test results.

3. Correspondence between EED and the pre-Maxwell equations in SHP

In the Stueckelberg-Horwitz-Piron formalism (SHP) [92,93], the position of a classical (non-quantum) event in spacetime is a function of an external chronological parameter τ

$$x(\tau) = (t(\tau), x(\tau))$$

(23)

where τ plays a role similar to that of time t in non-relativistic Newtonian mechanics. Just as classical Maxwell fields are functions of position x and time t, SHP fields and potentials are functions of spacetime position $x = (t, x)$ and τ. SHP electrodynamics is found by defining five potentials

$$a(x, \tau) = (a^0, a, a^5)$$

(24)

that in order to exploit the classical gauge invariance of the free particle Lagrangian (addition of a total τ-derivative), and produce the field strengths

$$e = -\frac{1}{c} \frac{\partial a}{\partial t} - \nabla a^0$$

$$\epsilon = \frac{1}{c^2} \frac{\partial a}{\partial \tau} + \nabla a^5$$

$$b = \nabla \times a$$

$$\epsilon^0 = \frac{1}{c} \frac{\partial a^0}{\partial t} + \frac{1}{c} \frac{\partial a^5}{\partial t}$$

(25)

where $\sigma = \pm 1$ depending on larger symmetry considerations, and $c_5 < c$ is a speed, so that $c_5 \tau$ is analogous to $c t$. The 3-vector e and scalar e^0 are new field strengths arising from the τ-dependence of the 4-vector potential and existence of the fifth potential a^5. These field strengths are invariant under the τ-dependent gauge transformations

$$a^0(x, \tau) \rightarrow a^0(x, \tau) - \frac{1}{c} \frac{\partial a^0}{\partial \tau} \Lambda(x, \tau)$$

$$a(x, \tau) \rightarrow a(x, \tau) + \nabla \Lambda(x, \tau)$$

$$a^5(x, \tau) \rightarrow a^5(x, \tau) + \sigma \frac{1}{c} \frac{\partial a^5}{\partial \tau} \Lambda(x, \tau)$$

(26)

and it is convenient to choose the gauge
which generalizes the Lorenz condition.

The SHP field equations (pre-Maxwell equations) in 3-vector and scalar form are

\[
\begin{align*}
\nabla \cdot \mathbf{e} - \frac{1}{c^2} \frac{\partial \mathbf{e}}{\partial \tau} &= e^0 \\
\nabla \times \mathbf{b} - \frac{1}{c} \frac{\partial \mathbf{e}}{\partial \tau} - \frac{1}{c^2} \frac{\partial \mathbf{e}}{\partial \tau} &= \mathbf{e} \\
\n\nabla \cdot \mathbf{e} + \frac{\partial e^0}{\partial \tau} &= e^j \frac{\partial \mathbf{e}}{\partial \tau} - \mathbf{b} \\
\n\nabla \cdot \mathbf{b} &= 0 \\
\n\nabla \mathbf{e} + \frac{\partial e^0}{\partial \tau} &= \mathbf{e}^j \mathbf{b} \\
\n\n
\nabla e^0 + \frac{1}{c} \frac{\partial e^0}{\partial \tau} + \frac{1}{c^2} \frac{\partial e^0}{\partial \tau} &= 0
\end{align*}
\]

which can be put into correspondence with extended electrodynamics (EED) in the following way. We define

\[
C = \frac{1}{c} \frac{\partial \mathbf{a}^0}{\partial \tau} + \nabla \cdot \mathbf{a}^0 (x, \tau)
\]

as in EED so that

\[
C = -\frac{1}{c^2} \frac{\partial \mathbf{a}^s}{\partial \tau}
\]

follows from the Lorenz condition (27). We now take the 4-vector potential to be \(\tau\)-independent

\[
\begin{align*}
\mathbf{a}^0 (x, \tau) &= \mathbf{A}^0 (x) \\
\mathbf{a} (x, \tau) &= \mathbf{A} (x)
\end{align*}
\]

so that the pre-Maxwell \(\mathbf{e}\) and \(\mathbf{b}\) fields behave like Maxwell \(\mathbf{E}\) and \(\mathbf{B}\) fields

\[
\begin{align*}
\mathbf{e} (x, \tau) &= -\frac{1}{c} \frac{\partial \mathbf{a}^0 (x, \tau)}{\partial \tau} - \nabla \mathbf{a}^0 (x, \tau) = -\frac{1}{c} \frac{\partial \mathbf{A} (x)}{\partial \tau} - \nabla \mathbf{A}^0 (x) = \mathbf{E} (x) \\
\mathbf{b} (x, \tau) &= \nabla \times \mathbf{a} (x, \tau) = \nabla \times \mathbf{A} (x) = \mathbf{B} (x)
\end{align*}
\]

as is also the case in EED. With these conditions, the scalar field strength reduces to:

\[
\begin{align*}
e^0 &= \frac{\sigma}{c} \frac{1}{c} \frac{\partial \mathbf{A}^0}{\partial \tau} + \frac{1}{c^2} \frac{\partial \mathbf{a}^s}{\partial \tau} - \frac{1}{c} \frac{\partial \mathbf{A}^s}{\partial \tau} \\
\frac{\partial e^0}{\partial \tau} &= \frac{1}{c} \frac{\partial \mathbf{a}^s}{\partial \tau} + \frac{1}{c} \frac{\partial \mathbf{a}^s}{\partial \tau} - \frac{1}{c^2} \frac{\partial \mathbf{a}^s}{\partial \tau} = -\frac{1}{c} \frac{\partial \mathbf{C}}{\partial \tau}
\end{align*}
\]

and similarly

\[
\begin{align*}
\mathbf{e} &= \sigma \frac{1}{c^2} \frac{\partial \mathbf{a}^0}{\partial \tau} - \nabla \mathbf{a}^s - \nabla \mathbf{a}^s \\
\frac{1}{c^2} \frac{\partial \mathbf{a}^s}{\partial \tau} &= -\frac{1}{c^2} \frac{\partial \mathbf{a}^s}{\partial \tau} - \nabla \mathbf{a}^s - \nabla \mathbf{a}^s
\end{align*}
\]

(34)
The four homogeneous pre-Maxwell equations now take the form
\[\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \rightarrow \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \]
(35)
and
\[\nabla \cdot \mathbf{b} = 0 \rightarrow \nabla \cdot \mathbf{B} = 0 \]
so that we may ignore equations (36) because they vanish identically given the field definitions. The first inhomogeneous pre-Maxwell equation becomes
\[\nabla \cdot \mathbf{e} - \frac{1}{c} \frac{\partial \mathbf{e}}{\partial \tau} = \mathbf{e} \mathbf{f}^0 \rightarrow \nabla \cdot \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{C}}{\partial t} = \mathbf{e} \mathbf{f}^0 \]
(37)
reproducing the Gauss law in EED. The second inhomogeneous pre-Maxwell equation becomes
\[\nabla \times \mathbf{b} - \frac{1}{c} \frac{\partial \mathbf{e}}{\partial t} - \frac{1}{c} \frac{\partial \mathbf{e}}{\partial \tau} = \mathbf{e} \mathbf{j} \rightarrow \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} - \nabla \mathbf{C} = \mathbf{e} \mathbf{j} \]
(38)
reproducing the corresponding expression in EED. The third inhomogeneous pre-Maxwell equation becomes a wave equation for the fifth potential
\[\nabla \cdot \mathbf{e} + \frac{1}{c} \frac{\partial \mathbf{e}}{\partial t} = -\nabla^2 \mathbf{a}^5 + \frac{1}{c^2} \frac{\partial^2 \mathbf{a}^5}{\partial t^2} = \mathbf{e} \mathbf{j}^5 (x, \tau) \]
(39)
which can be solved as a Liénard-Wiechert potential from the current \(j^5 \) as
\[\mathbf{a}^5 (x, \tau) = \frac{1}{4\pi} \int \frac{d^3 \mathbf{x}^\prime}{|\mathbf{x} - \mathbf{x}^\prime|} \left[t - \frac{|\mathbf{x} - \mathbf{x}^\prime|}{c}, \mathbf{x}^\prime, \tau \right] \]
(40)
leading to a determination of \(\mathbf{C} \) as
\[\mathbf{C} = -\frac{\partial \mathbf{a}^5 (x, \tau)}{\partial \tau}. \]
(41)
Alternatively, one can specify the field \(\mathbf{C} \) and interpret the RHS of (39) as an effective current.

In summary, the EED field structure can be described as the most general configuration of SHP fields in which the \(\mathbf{E} \) and \(\mathbf{B} \) fields are \(\tau \)-independent and behave like Maxwell fields. This is, of course, a very important case in electromagnetism.

4. Conclusions
This work shows that CED and QED are inconsistent and incomplete. Specifically, EED and QED gauge away the longitudinal components [8.9] of \(\mathbf{A}, \mathbf{E}, \) and \(\mathbf{J} \); experiments have measured these longitudinal components at the quantum-, meso-, and macroscopic scales [12-26, 29-34]. Moreover, EED gives inconsistent media-interface-matching conditions, Eqs. (8)-(11). EED and QED assume that the scalar field \((\mathbf{C}) \) in Eq. (3) is zero (the Lorenz gauge), when a rigorous derivation proves that \(\mathbf{C} \)
is a non-zero, dynamical field. CED cannot explain the scalar-longitudinal wave, which propagates through thousands of skin-depths of solid copper [28]. EED corrects these issues by including the longitudinal fields, while leaving the transverse components unchanged.

References

[1] Nature (editorial) 2017 Beautiful Bond Nature 547 257-258
[2] Duplantier B, and Jolicoeur T 1982 Short range flaws Nature 356 24
[3] Bailin D 1976 Gauge field theory Nature 260, 736
[4] Dyson FJ 1990 Feynman’s proof of the Maxwell equations Am. J. Phys. 58 209-211
[5] Popper K 2003 Objective Knowledge: An Evolutionary Approach Oxford University Press New York USA
[6] Griffiths DJ 2007 Introduction to Electrodynamics Prentice-Hall publ. New Delhi India
[7] Jackson JD 1962 Classical Electrodynamics John Wiley & Sons, Inc. New York USA
[8] Duval C, Horvathy PA, and Palla L 1994 Conformal properties of Chern-Simons vortices in external fields Phys. Rev. D 50 6658-61
[9] Zhang PM, Gibbons GW, and Horvathy PA 2012 Kohn’s theorem and Newton-Hooke symmetry for Hill’s equations Phys. Rev. D 85, 045031
[10] Ehrenberg W and Siday RE 1949 The refractive index in electron optics and the principles of dynamics Proc Phys. Soc. (London) B62 8
[11] Aharonov Y and Bohm D 1959 Significance of electromagnetic potentials in the quantum theory Phys. Rev. 115 485-491
[12] Tonomura A, Osakabe N, Matsuda T, Kawasaki T, Endo J, Yano S and Yamada H 1986 Evidence for the Aharonov-Bohm effect with magnetic field completely shielded from electron wave Phys. Rev. Lett. 56 792-795
[13] Osakabe N, Matsuda T, Kawasaki T, Endo J, Tonomura A, Yano S and Yamada H 1986 Experimental confirmation of Aharonov-Bohm effect using a toroidal magnetic field confined by a superconductor Phys. Rev. A 34 815-822
[14] Webb RA, Washburn S, Umbach CP and Laibowitz RB 1985 Observation of h/e Aharonov-Bohm oscillations in normal-metal rings Phys. Rev. Lett. 54, 2696-2699
[15] Chandrasekhar V, Rooks MJ, Wind S and Prober DE 1985 Observation of Aharonov-Bohm electron interference effects with periods h/e and h/2e in individual micron-size, normal-metal rings Phys. Rev. Lett. 55 1610-1613
[16] Datta S, Melloch MR, Bandyopadhyay S, Noren R, Vaziri M, Miller M and Reifenberger R 1985 Novel interference Effects between Parallel Quantum Wells Phys. Rev. Lett. 55 2344-2347
[17] Varma RK 2012 Curl-free vector potential observation on the macroscale for charged particles in a magnetic field compared with that on the micro-scale: The Aharonov-Bohm effect Phys. Scr. 86 045009
[18] Varma RK 2010 Observability of the effects of curl-free magnetic vector potential on the macroscopic and the nature of the 'transition amplitude wave’ Pramana J. Phys. 74 491–511
[19] Varma RK 2012 “From hunches to surprises—Discovering macro-scale quantum phenomena in charged particle dynamics Current Sci. 103 497-511
[20] Varma RK 2007 Quantum manifestation of systems on the macro-scale—The concept of transition state and transition amplitude wave Pramana J. Phys. 68 901-911
[21] Varma RK, Punithavelu AM and Banerjee SB 2002 Observation of matter wave beat phenomena in the macrodomain for electrons moving along a magnetic field Phys. Rev. E 65 026503
[22] Blondel A 1914 Sur l’énoncé le plus général des lois de l’induction Compt. Rend. Acad. Sci. 159 674–679
[23] Rousseaux G, Kofinan R and Minazzoli O 2008 The Maxwell-Lodge effect: Significance of electromagnetic potentials in the classical theory Eur. Phys. J.D. 49 249–256
[24] Daibo M, Oshima S, Sasaki Y and Sugiyama K 2013 Vector Potential Coil and Transformer IEEE Trans. Magn. 51 100604
[25] Daibo M and Oshima S 2018 Vector Potential Generation Device, Vector Potential Transformer, Shield Permeation Device, Non-Contact Space Electric Field Generation Device, Null Circuit, and Structure for Vector Potential Generation Device U.S. Patent 10,037,840
[26] Daibo M, Oshima S, Sasaki Y and Sugiyama K 2016 Vector-potential transformer with a superconducting secondary coil and superconducting magnetic shield IEEE Trans. Appl. Supercond. 26 0500904
[27] Danese AE 1965 Advanced Calculus (Vol. I); Allyn & Bacon Inc., Boston, MA, USA
[28] Hively LM and Loebel AS 2019 Classical and extended electrodynamics Phys. Essays 32 112-126
[29] Szabo I, Sodderman M, Leanza L, Zoratti M and Gulbins E 2011 “Single-point mutations of a lysine residue change function of Bax and Bel-xL expressed in Bax- and Bak-less mouse embryonic fibroblasts: novel insights into the molecular mechanisms of Bax-induced apoptosis,” Cell Death Differ. 18 427-438

[30] de Peralta Menendez RG and Andino S 2015 Electrical neuroimaging with irrotational sources Comput. Math.Meth. Med. 2015, 801037

[31] Wang L, Guo Z., Zhao Q, Li H, Li Q and Wu X 2019 Research of atmospheric electric field characteristics in the process of lightning in time and frequency domain 2019 International Conference on Meteorology Observations (ICMO), Chengdu, China pp. 1-4.

[32] Camara CG, Escobar JV, Hird JR and Puttermann SJ 2008 Correlation between nanosecond x-ray flashes and stick-slip friction in peeling tape Nature 455 1089-1092

[33] Constable E, Horvat J and Lewis RA 2010 Mechanisms of x-ray emission from peeling of adhesive tape Appl. Phys. Lett. 97 131502

[34] Van Oudenaarden A, Devoret MH, Nazarov YuV and Mooij JE 1998 Magneto-electric Aharonov–Bohm effect in metal rings Nature 391 768-770

[35] Feynman R 1985 QED—The Strange Theory of Light and Matter Princeton University Press Princeton NJ USA

[36] Dyson FJ 1952 Divergence of perturbation theory in quantum electrodynamics Phys. Rev. 85 631-632

[37] Earman J and Fraser D 2006 Haag’s theorem and its implications for the foundations of quantum field theory Erkenntnis 64 305-344 (2006); http://philsci-archive.pitt.edu/2673/1/earmanfraserfinalrevd.pdf (accessed 23Dec2020).

[38] Seidewitz E 2017 Avoiding Haag’s Theorem with Parameterized Quantum Field Theory Found. Phys. 47 355-374

[39] Stueckelberg ECG 1938 Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kräfte Helv. Phys. Acta 11 225–244

[40] Ellis J 2012 The need for new physics Nature 481 24

[41] Fock V and Podolsky E 1932 On the quantization of electro-magnetic waves and the interaction of charges Reprinted in Fock, V.A. Selected Work—Quantum Mechanics and Quantum Field Theory; Faddeev LD, Khalbfn LA and Komarov IV, Ed.; Chapman & Hall/CRC: New York, NY, USA, 2004; pp. 225–241.

[42] Dirac PAM, Fock VA and Podolsky B 1932 On quantum electrodynamics Reprinted in Fock, V.A. Selected Work—Quantum Mechanics and Quantum Field Theory; Faddeev LD, Khalbfn LA and Komarov IV Ed.; Chapman & Hall/CRC: New York, NY, USA, 2004, pp. 243–255.

[43] Omura T 1956 A new formulation on the electromagnetic field Prog. Theor. Phys. 16, 684-685

[44] Milner SR 1960 The classical field theory of matter and electricity I: An approach from first principles Phil. Trans. Royal Soc. A London 53 185–204

[45] Aharonov Y and Bohm D 1963 Further discussion of the role of electromagnetic potentials in the quantum theory Phys. Rev. 30 1625–1631

[46] Alicki R 1978 Generalised electrodynamics J. Phys. A Math. Gen. 11 1807–1813

[47] Cornille P 1990 On the propagation of inhomogeneous waves J. Phys. D App. Phys. 23 129-135

[48] Cornille P 1994 An electromagnetic wave approach to matter and radiation J. Electromagn. Waves Appl. 8 1425-1442

[49] Williamson JG and Van der Mark MB 1997 Is the electron a photon with toroidal topology? Ann. Foundation L. de Broglie 22 133-160

[50] Munz C-D, Ones P, Schneider R, Sonnendrucker E, and Voss U 1999 Maxwell’s equations when the charge conservation is not satisfied C.R. Acad. Sci. Paris 328 431-436

[51] Woodside DA 1999 Uniqueness theorems for classical four-vector fields in Euclidean and Minkowski spaces J. Math. Phys. 40 4911-4943

[52] Woodside DA 2000 Classical four-vector fields in the longitudinal gauge,” J. Math. Phys. 41 4622-4653

[53] Van Vlaenderen K 2001 Generalization of classical electrodynamics to admit a scalar field and longitudinal waves,” Hadron. J. 24 609–628

[54] Van Vlaenderen K and Waser A 2003 A generalization of classical electrodynamics for the prediction of scalar field effects arXiv:physics/0305098

[55] Jack PM 2003 Physical space as a quaternion structure, I.; Maxwell’s equations. A brief note arXiv:math-ph/0307038v1
[56] Woodside DA 2009 Three-vector and scalar field identities and uniqueness theorems in Euclidean and Minkowski spaces *Am. J. Phys.* **77** 438-446

[57] Arbab AI and Satti ZA 2009 On the generalized Maxwell’s equations and their prediction of the electroscalar wave *Prog. Phys.* **2** 8–13

[58] Donev S and Tashkova M 2010 Linear connection interpretation of extended electrodynamics,” In *Proceedings of the 11th International Conference Geometry, Integrability and Quantization, Varna, Bulgaria, 5–10 June 2009; Mladenov, I.M., Vilasi, G., Yoshioka, A., Eds.; Avangard Prima Publishing: Sofia, Bulgaria, 2010; pp. 119–126.

[59] Jimenez JC and Maroto AL 2011 Cosmological magnetic fields from inflation in extended electromagnetism *Phys. Rev. D* **83** 023514

[60] Hively LM and Gaikos GC 2012 Toward a more complete electrodynamic theory *Int. J. Signals Imaging Syst. Eng.* **5** 3–10

[61] Williamson JG 2012 “Fermions from bosons and the origin of the exclusion principle. *Proc. MENDEL 2012* https://www.researchgate.net/profile/John_Williamson5/publication/286708466_Fermions_from_bosons_and_the_origin_of_the_exclusion_principle/links/5e9301f74585150839d69b0b/Fermions-from-bosons-and-the-origin-of-the-exclusion-principle.pdf (accessed 15Dec2020)

[62] Milton KA, Abalo EK, Parashar P, Pourtolami N and Wagner J 2013 PT-symmetric quantum electrodynamics and unitarity *Phil. Trans. Royal Soc. A* **371** 20120057

[63] Saa D 2015 An Alternative to Classical Electromagnetic Theory ResearchGate preprint.: http://dx.doi.org/10.13140/RG.2.2.16250.75208 (accessed on 15 Dec 2020).

[64] Williamson JG 2015 The nature of the photon and electron In *The Nature of Light: What are Photons VI. ; Roychoudhuri C, Kracklauer A and Raedt HD, Eds.; SPIE: Bellingham, WA, USA

[65] Hively LM 2016 Methods and Apparatus for Generation and Detection of a Scalar Longitudinal Electromagnetic Wave U.S. Patent 9,306,527

[66] Modanese G 2016 A new formulation of Aharonov-Bohm generalized electrodynamics In Proceedings of the 10th International Symp. Honouring Mathematical Physicist Jean-Pierre Vigier, PortoNovo, Italy World Scientific Publ., Singapore

[67] Modanese G Electromagnetic coupling of strongly non-local quantum mechanics *Physica B Condensed Matter* **524** 81–84

[68] Modanese G 2017 Generalized Maxwell equations and charge conservation censorship *Mod. Phys. Lett. B* **31** 1750052

[69] Hoher C and Modanese G 2017 Enhanced induction into distant coils by YBCO and silicon-graphite electrodes under large current pulses *Phys. Essays* **30** 435-441

[70] Modanese G 2017 Oscillating dipole with fractional quantum source in Aharonov-Bohm electrodynamics *Results Phys.* **7** 480–481

[71] Islamov GG and Tomilin AK 2017 Spectral problem in a generalized theory of electromagnetic waves In *Proceedings of the 2017 Progress in Electromagnetics Research Symposium–Spring (PIERS), St. Petersburg, Russia

[72] Banduric R 2017 *New Electrodynamics*; Displacement Field Technologies: Aurora, CO, USA

[73] Celani F, di Tommaso A and Vassallo G 2017 Maxwell’s equations and Occam’s razor *J. Condens. Matter Nucl. Sci.* **25** 1–29

[74] El-Nabulsi RA 2018 On nonlocal complex Maxwell equations and wave motion in electrodynamics and dielectric media *Opt. Quant. Electron.* **50** 170

[75] Modanese G 2018 Covariant formulation of Aharonov-Bohm electrodynamics and its application to coherent tunneling In *Unified Field Mechanics II: Formulations and Empirical Tests World Scientific publ. Singapore pp. 268–272.

[76] Modanese G 2018 Time in quantum mechanics and the local non-conservation of the probability current *Mathematics* **6**, 155

[77] Muller L and Szabo RJ 2018 Extended quantum field theory, index theory, and the parity anomaly *Commun. Math. Phys.* **362** 1049–1109
[78] Arbab AI 2018 The modified electromagnetism and the emergent of longitudinal wave arXiv/abs/physics.gen-phys/1403.2687.
[79] El-Nabulsi RA 2019 Fourth-order Ginzburg-Landau differential equation a la Fisher-Kolmogorov and its implications in superconductivity Physica C 567 1353545
[80] Williamson JG 2019 A new linear theory of light and matter IOP Conf. Series: J. Phys. Conf. Ser. 1251, 012050
[81] Saa D A 2019 Reformulation of electromagnetism and relativity theory ResearchGate preprint; http://dx.doi.org/10.13140/RG.2.2.14167.52640 (accessed on 15 Dec 2020)
[82] Modanese G 2019 High-frequency electromagnetic emission from non-local wavefunctions Appl. Sci. 9 1982
[83] Modanese G 2019 Design for a test for the electromagnetic coupling of non-local wave functions Results Phys. 12 1056-1061
[84] Modanese G 2019 Metrics with zero and almost-zero Einstein action in quantum gravity Symmetry 1288
[85] Keller O and Hively LM 2019 Electrodynamics in curved space-time: Free space longitudinal wave propagation Phys. Essays. 32 282-291
[86] Keller O and Hively LM 2019 Ohmura’s extended electrodynamics: longitudinal aspects in general relativity J. Phys. Commun. 3, 115002
[87] Lorrain P and Corson DR 1970 Electromagnetic Fields and Waves 2nd ed. W.H. Freeman and Co. publ., San Francisco, USA
[88] Okun LB 1989 Tests of electric charge conservation and the Pauli Principle Sov. Phys. Usp. 32 543-547
[89] Agostini M, Appel S, Bellinik G, Benziger J, Bickd D, Bonfinij G, Bravoq D, Caccianigak B, Calapricen, F, Caminata, A, et al. 2015 Test of electric charge conservation with borexino Phys. Rev. Lett. 115 231802
[90] Jedele A, McIntosh AB, Hagel K, Huang M, Heilborn L, Kohley Z, May LW, McCleskey E, Youngs M, Zarrella A and Yennello SJ 2017 Characterizing neutron-proton equilibration in nuclear reactions with subzeptosecond resolution Phys. Rev. Lett. 118 062501
[91] Ramo S, Whinnery JR, and van Duzer T 1967 Fields and waves in communication electronics, pp. 332ff John Wiley & Sons, New York, USA
[92] Saad D, Horwitz L and Arshansky R 1989 Found. Phys. 19 11251149
[93] Land M and Horwitz LP 2020 Relativistic Classical Mechanics and Electrodynamics, Morgan & Claypool Publishers