HOMOTOPY PERTURBATION METHOD FOR PERISTALTIC TRANSPORT OF MHD NEWTONIAN FLUID IN AN INCLINED TAPERED ASYMMETRIC CHANNEL WITH THE IMPACT OF POROUS MEDIUM AND CONVECTIVE THERMAL AND CONCENTRATION

Hayat A. Ali¹, Mohammed R. Salman²

¹Department of Applied Science, University of Technology, Baghdad, Iraq
²Directorate General of Education in the Holy Governorate of Karbala, Karbala, Iraq

¹hayattadel17@yahoo.com, ²mawb1967@gmail.com

Corresponding Author: Mohammed R. Salman
Email: mawb1967@gmail.com

https://doi.org/10.26782/jmcms.2020.09.00010

Abstract

The peristaltic transport of MHD Newtonian fluid under the effect of Porous Medium in an inclined tapered asymmetric channel is analyzed mathematically. Convective Thermal and concentration is discussed. The governing equations, i.e. (continuity, motion, energy, and concentration) are simplified by using a long wavelength and small Reynolds number approximations into a system of non-linear differential equations which solved approximately with the help of Homotopy perturbation method for velocity, streamlines, temperature, and concentration. The impact of important, relevant parameters on the flow is discussed graphically. We noticed that the velocity curve and trapping phenomenon reduced by increasing the Hartman number the magnetic field parameter because of the existence of Lorentz force and increasing in ascending value of permeability parameter. Further, A reduction behavior of temperature and concentration profile is depicted with the higher value of the Biot number of heat and mass transfer.

Keywords: Newtonian fluid, Homotopy perturbation, Porous medium, Convective thermal.

I. Introduction

A process in which a progressive wave of sinusoidal along the walls of the tube / channel causing in the movement of its contents is known by Peristalsis. This mechanism can be seen in the movements of the small intestine, urine flow from the kidney to the bladder through the ureter, gastrointestinal, and in many other living

Hayat A. Ali et al
body glandular ducts. Furthermore, it gained great importance in industrial and engineering purposes like peristaltic pumps for fluid transport without internal moving parts such that mining slurries, wastewater slurries, sodium bromide and lime slurry pumping, finger and roller pumps, etc. Many researchers have investigated the peristaltic flow of Newtonian and non-Newtonian fluid in various flow geometries to see Refs. [VII, XIII, XV - XV].

Convective heat transfer is used by human and animal bodies to lose the heat generated by metabolic processes in the environment. The industrial applications include the thermal insulation, cooling of nuclear reactors, oil extraction and thermal energy storage. However, the constant thermal conductivity of the fluid condenses the mathematical difficulty of the temperature equation and the analytical solution can be achieved easily. Asghar et al. [XX] Gives a numerical study of heat transfer analysis for the peristaltic transport of viscoplastic fluid taken into consideration mixed convective boundary conditions. Also, Abbasi et al. [I] Describes the influence of an inclined magnetic field on the mixed convective peristaltic transport of Eyring-Prandtl and Sutterby fluid in an inclined channel. Sadia et al. [XVIII] modeled the peristaltic transport of third-grade nanofluid under the effect of thermal radiation and mixed convective. Ahmad et al. [III] gives a theoretical study of the mixed convection characteristics on the flow of Sutterby fluid in the squeezed channel. Paneza1 et al. [IV] Investigated the mixed convective impact on the magnetohydrodynamic heat transfer flow of Williamson fluid over a porous wedge. More studies in this aspect can be seen in refs. [II, V, VI, XII, XIX].

Discussed Muhammad et al.[VIII-XI, XIV] the effects in MHD Peristalsis of Pseudoplastic nanoFluid with Porous Medium in Tapered Channel, and also discussed Effects of MHD on Peristalsis Transport and Heat Transfer with Variables Viscosity in Porous Medium, also an Influence lesson of heat and mass transfer on inclined (MHD) peristaltic of pseudoplastic nanofluid through the porous medium with couple stress in an inclined asymmetric channel, also studied Analysis of Heat and Mass Transfer in a Tapered Asymmetric Channel During Peristaltic Transport of (Pseudoplastic Nanofluid) with Variable Viscosity Under the Effect of (MHD).

II. Mathematical Formulation

We deal with the peristaltic motion of MHD an incompressible Newtonian viscous fluid through asymmetric inclined tapered channels with a porous medium taken inclined at an angle α to the horizontal axis and with a width ($d_1 + d_2$). The fluid reconsidered an electrically conducting under the normal applied magnetic force B_0. A small magnetic Reynolds number leads to neglect of the induced magnetic field. The generated sinusoidal waves along the wall of a channel that moves at the speed (c) take the following geometrical form

$$\bar{Y}_1 = \bar{H}_1(\bar{X}, \bar{t}) = d_1 + \dot{m}\bar{X} + b_1\cos \left[\frac{2\pi}{\lambda} (\bar{X} - c\bar{t}) \right]$$

$$\bar{Y}_2 = \bar{H}_2(\bar{X}, \bar{t}) = -d_2 - \dot{m}\bar{X} - b_2\cos \left[\frac{2\pi}{\lambda} (\bar{X} - c\bar{t}) + \phi \right]$$

\bar{Y}_1, \bar{Y}_2 are the upper and lower wall respectively, b_1, b_2 are the amplitudes of the lower and upper walls waves, $\dot{m} \ll 1$ the non-uniform parameter. $\phi \in [0, \pi]$ the phase

Hayat A. Ali et al
difference. \(\lambda \) is the length of the wave. Consider that when \(\phi = 0 \) approaches to symmetric channel with out of phase waves, and \(\phi = \pi \) describes in phase waves. As well as \(d_1, d_2, a, b, \phi \) satisfy condition such that the walls always parallel.

\[
b_1^2 + b_2^2 + b_1 b_2 \cos \phi \leq (d_1 + d_2)^2
\]

(3)

The fixed frame governing equation is described as bellows

\[
\frac{\partial \bar{u}}{\partial \bar{x}} + \frac{\partial \bar{v}}{\partial \bar{y}} = 0
\]

(4)

\[
\rho \left(\frac{\partial \bar{u}}{\partial \bar{t}} + \bar{u} \frac{\partial \bar{u}}{\partial \bar{x}} + \bar{v} \frac{\partial \bar{u}}{\partial \bar{y}} \right) = - \frac{\partial \bar{p}}{\partial \bar{x}} + \mu \left(\frac{\partial^2 \bar{u}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{u}}{\partial \bar{y}^2} \right) - \frac{\mu}{\kappa_0} \bar{U} - \bar{B} \frac{\partial^2 \bar{U}}{\partial \bar{y}^2}
\]

(5)

\[
\rho \left(\frac{\partial \bar{v}}{\partial \bar{t}} + \bar{u} \frac{\partial \bar{v}}{\partial \bar{x}} + \bar{v} \frac{\partial \bar{v}}{\partial \bar{y}} \right) = - \frac{\partial \bar{p}}{\partial \bar{y}} + \mu \left(\frac{\partial^2 \bar{v}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{v}}{\partial \bar{y}^2} \right) - \frac{\mu}{\kappa_0} \bar{V}
\]

(6)

\[
\rho \bar{C}_p \left(\frac{\partial \bar{T}}{\partial \bar{t}} + \bar{U} \frac{\partial \bar{T}}{\partial \bar{x}} + \bar{V} \frac{\partial \bar{T}}{\partial \bar{y}} \right) = \frac{\partial^2 \bar{C}_p}{\partial \bar{x}^2} + \frac{\partial^2 \bar{C}_p}{\partial \bar{y}^2} + \frac{\partial \bar{K}_T}{\partial \bar{t}} \left(\frac{\partial^2 \bar{T}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{T}}{\partial \bar{y}^2} \right)
\]

(7)

Identifying a wave frame \((\bar{x}, \bar{y})\) and the relationship to the fixed frame \((\bar{X}, \bar{Y}, \bar{t})\) by the expression

\[
\bar{x} = \bar{X} - c \bar{t}, \bar{y} = \bar{Y}, \bar{u} = \bar{U} - c, \bar{v} = \bar{V}, \bar{p}(\bar{x}) = \bar{P}(\bar{X}, \bar{t})
\]

(9)

And make use of the following dimensionless magnitudes

\[
\begin{align*}
x &= \frac{\bar{x}}{\lambda}, & y &= \frac{\bar{y}}{\delta}, & u &= \frac{\bar{u}}{c}, & v &= \frac{\bar{v}}{c}, & h_1 &= \frac{\bar{h}_1}{\bar{h}_1}, & h_2 &= \frac{\bar{h}_2}{\bar{h}_1}, & d &= \frac{\bar{d}}{\bar{d}_1}, & \delta &= \frac{\bar{d}_1}{\lambda}, \\
a &= \frac{b_1}{\bar{d}_1}, & b &= \frac{b_2}{\bar{d}_1}, & m &= \frac{\bar{m}}{\bar{d}_1}, & \sigma &= \frac{\bar{p}}{\bar{d}_1}, & \rho &= \frac{\bar{\rho}}{\bar{d}_1}, & \mu &= \frac{\bar{\mu}}{\bar{d}_1}, & Re &= \frac{\nu d_1}{\mu}, & \theta &= \frac{\nu d_1}{\lambda}, & \phi &= \frac{\eta d_1}{\lambda}, & Pr &= \frac{\nu d_1}{\mu}, & \beta &= \frac{\nu d_1}{\lambda}, & \gamma &= \frac{\nu d_1}{\mu}, & \chi &= \frac{\nu d_1}{\lambda}.
\end{align*}
\]

(10)

In which \(Br, M, Re, \delta, \kappa, \sigma, Pr, u, c, m, D_f, S_r, \theta, S_C \) are the Brinkman number, Hartman number, number of Reynolds, the dimensionless number of waves, the permeability parameter, the dimensionless concentration, the Prandtl number, the kinematic viscosity, the Eckert number, the non-uniform parameter, Dufour number,

Hayat A. Ali et al
Soret number, the temperature and the Schmidt number. And define the relationship of stream function \(\psi(x, y) \) and the two velocity components \(u, v \) as:

\[
\begin{align*}
u &= \frac{\partial \psi}{\partial y}, \quad v = -\delta \frac{\partial \psi}{\partial x} \tag{11}
\end{align*}
\]

Adopting approximation of the low Re and long wavelength, the continuity equation is automatically satisfied and the rest flow equations (5)- (8) will be reduced into the dimensionless system

\[
\begin{align*}
-\frac{\partial p}{\partial x} + \frac{\partial^3 \psi}{\partial y^3} - (M^2 + \frac{1}{\kappa}) \left(\frac{\partial \psi}{\partial y} + 1 \right) &= 0 \tag{12} \\
\frac{\partial p}{\partial y} &= 0 \tag{13} \\
\frac{\partial^2 \theta}{\partial y^2} + Br \left(\frac{\partial^2 \psi}{\partial y^2} \right)^2 + D_P \frac{\partial^2 \sigma}{\partial y^2} + Br \left(M^2 + \frac{1}{\kappa} \right) \left(\frac{\partial \psi}{\partial y} + 1 \right)^2 &= 0 \tag{14} \\
\frac{1}{Sc} \frac{\partial^2 \sigma}{\partial y^2} + Sr \frac{\partial^2 \theta}{\partial y^2} &= 0 \tag{15}
\end{align*}
\]

Given the non-dimensional mean flow rates in fixed and wave frames respectively \(F, Q \) and their relation as

\[
Q = F + d + 1 \tag{16}
\]

In which

\[
F = \int_{h_2}^{h_1} \frac{\partial \psi}{\partial y} \, dy \tag{17}
\]

The dimensionless boundary conditions are:

- convective temperature condition

\[
- K \frac{\partial \theta}{\partial y} = E(T - T_w) \tag{18}
\]

- the convective concentration condition

\[
- D \frac{\partial C}{\partial y} = k_m (C - C_w) \tag{19}
\]

Where \(E \), signed to heat transfer coefficient at the walls in which \(E_1 \) at the upper wall and \(E_2 \) for the lower wall, \(T_w \) is the temperature of the walls, \(k_m \) is the mass transfer coefficient in which \((k_{m1}, k_{m2}) \) at the upper and lower wall respectively and \(C_w \) is the concentration at the walls.0

Also the other non-dimensional boundary conditions associated with this problem are derived as

\[
\begin{align*}
\psi &= \frac{F}{2}, \quad \psi_y = -1, \quad \theta_y + B_{11} \theta = 0, \quad \sigma_y + M_{12} \sigma = 0 \quad \text{at} \quad y = h_1 \\
\psi &= -\frac{F}{2}, \quad \psi_y = -1, \quad \theta_y - B_{12} (\theta - 1) = 0, \quad \sigma_y + M_{12} (\sigma - 1) = 0 \quad \text{at} \quad y = h_2 \tag{20}
\end{align*}
\]

Notice that

\[Hayat A. Ali et al\]
\[h_1(x, t) = 1 + m(x + t) + a\cos(2\pi x), \]
\[h_2(x, t) = -d - m(x + t) - b\cos(2\pi x + \phi), \]
\[B_{i1} = \frac{E_{i1} d_1}{K}, B_{i2} = \frac{E_{i2} d_1}{K}, M_{i1} = \frac{k_{m1} d_1}{D}, M_{i2} = \frac{k_{m2} d_1}{D} \]

(21)

Where \(B_{i1,2} \) is heat transfer Biot numbers, and \(M_{i1,2} \) is mass transfer Biot numbers.

The dimensionless expression of pressure rise per wavelength is given as

\[\Delta p_\lambda = \int_0^{2\pi} \frac{\partial p}{\partial x} dx \]

(22)

III. Perturbation Technique for Problem Solution

Equations (12), (14), and (15) are non-linear systems, hence they are difficult to be solved. Employing a perturbation technique for a small magnitude of Brinkman number \(Br \) to solve these equations we get

\[\psi = \psi_0 + Br\psi_1 + \cdots \]

(23)

\[\theta = \theta_0 + Br\theta_1 + \cdots \]

(24)

\[F = F_0 + BrF_1 + \cdots \]

(25)

\[\sigma = \sigma_0 + Br\sigma_1 + \cdots \]

(26)

Substitute the above equations into Eqs. (12), (14), and (15), the following system obtained:

III.i. System of \(Br^0 \)

The governing equations of zero order are derived as below

\[\frac{\partial^4 \psi_0}{\partial y^4} - \left(M^2 + \frac{1}{\kappa} \right) \frac{\partial^2 \psi_0}{\partial y^2} = 0 \]

(27)

\[\frac{\partial^2 \theta_0}{\partial y^2} = 0 \]

(28)

\[\frac{1}{Sc} \frac{\partial^2 \sigma_0}{\partial y^2} + Sr \frac{\partial^2 \theta_0}{\partial y^2} = 0 \]

(29)

Coupled with the boundary conditions

\[\psi_0 = \frac{r_0}{2}, \quad \frac{\partial \psi_0}{\partial y} = -1, \quad \frac{\partial \psi_0}{\partial y} + B_{i1} \theta_0 = 0, \]

\[\frac{\partial \sigma_0}{\partial y} + M_{i1} \sigma_0 = 0 \quad \text{at} \quad y = h_1 \quad \text{and} \]

\[\psi_0 = -\frac{r_0}{2}, \quad \frac{\partial \psi_0}{\partial y} = -1, \quad \frac{\partial \sigma_0}{\partial y} + B_{i2} (\theta_0 - 1) = 0, \]

\[\frac{\partial \sigma_0}{\partial y} + M_{i2}(\sigma_0 - 1) = 0 \quad \text{at} \quad y = h_2 \]

(30)

Solving Eqs.(27)-(29), with the given boundary conditions Eq.(30), the final form for \(\psi_0, \theta_0 \) are

\[\frac{h_1(x, t) = 1 + m(x + t) + a\cos(2\pi x), \]
\[h_2(x, t) = -d - m(x + t) - b\cos(2\pi x + \phi), \]
\[B_{i1} = \frac{E_{i1} d_1}{K}, B_{i2} = \frac{E_{i2} d_1}{K}, M_{i1} = \frac{k_{m1} d_1}{D}, M_{i2} = \frac{k_{m2} d_1}{D} \]

Hayat A. Ali et al
Hayat velocity is seen at notice profile within ascending magnitude of Hartman number transfer rate, and trapping phenomenon.

IV. boundary conditions and some mathematical calculations.

\[\psi_0 = c_3 + yc_4 + \frac{e^{-yN_1}}{N_1^2} \]
\[\theta_0 = r_1 + yr_2 \]
\[\sigma_0 = -ScSr \theta_0 \]

Where \(N_1 = \left(M^2 + \frac{1}{\kappa} \right)^{1/2} \)

III.ii. System of \(Br \)

The first order governing equations with the suitable boundary conditions is

\[\frac{\partial^4 \psi_1}{\partial y^4} - \left(M^2 + \frac{1}{\kappa} \right) \frac{\partial^2 \psi_1}{\partial y^2} = 0 \]
\[\frac{\partial^2 \theta_1}{\partial y^2} - \frac{\partial^2}{\partial y^2} + D_f Pr \frac{\partial^2 \sigma_1}{\partial y^2} + \left(M^2 + \frac{1}{\kappa} \right) \left(\frac{\partial \psi_0}{\partial y} + 1 \right)^2 = 0 \]
\[\frac{1}{Sc} \frac{\partial^2 \sigma_1}{\partial y^2} + Sr \frac{\partial^2 \theta_1}{\partial y^2} = 0 \]

\[\psi_1 = \frac{r_1}{2}, \quad \frac{\partial \psi_1}{\partial y} = 0, \quad \frac{\partial \sigma_1}{\partial y} + B_{i1} \theta_1 = 0, \quad \frac{\partial \psi_1}{\partial y} + M_{i1} \sigma_1 = 0 \quad \text{at} \: y = h_1 \} \]
\[\psi_1 = \frac{r_1}{2}, \quad \frac{\partial \psi_1}{\partial y} = 0, \quad \frac{\partial \sigma_1}{\partial y} + B_{i2} \theta_1 = 0, \quad \frac{\partial \psi_1}{\partial y} + M_{i2} \sigma_1 = 0 \quad \text{at} \: y = h_2 \} \]

Solving the above differential equation and with the aid of the given boundary conditions the approximate solution will take the form

\[\psi_1 = c_7 + yc_8 + \frac{e^{-yN_1}}{N_1^2} \]
\[\theta_1 = r_3 + yr_4 + \frac{1}{1 + D_f PrScSr} \left(\frac{(c_4 + Br c_2)^2 e^{-2yN_1}}{2N_1^2} + \frac{(c_4 + Br c_2)^2 e^{-2yN_1}}{2N_1^2} \right) \]
\[+ \frac{1}{2} \frac{1 + c_4 + Br c_2)^2 e^{-2yN_1}}{N_1^2} \]
\[\sigma_1 = -ScSr \theta_1 \]

In which

\(c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, r_1, r_2, r_3, r_4 \) will be computed by applying the associated boundary conditions and some mathematical calculations.

IV. Graphical Result and Discussions

In this part of the work, we examine the impact of various flow parameters on velocity profile, pressure gradient, temperature distribution, pressure rise, heat transfer rate, and trapping phenomenon. Fig.1(a) shows mixed behavior for velocity profile within ascending magnitude of Hartman number \(M \), furthermore, we can notice the mixed relation toward the upper and lower walls whereas a reduction in velocity is seen at the center of the channel. The effect of a porous parameter \(\kappa \) on the Hayat A. Ali et al
velocity profile has reversed trends with Hartman number M in impact, i.e., the velocity magnitude speeding up toward the central part of the channel while a hampering of fluid motion is noticed toward the walls see Fig. 1(b). From Fig. 2(a) we elucidate that the velocity is a decreasing function of the phase difference parameter ϕ. Fig. 2(b) highlight the increment of axial velocity value for a larger value of the upper wall amplitude parameter a. Fig. 3(a) recorded the effect of Hartman number M on the temperature distribution versus the axial coordinate (y), the temperature shows a super fast behavior when the Hartman number M becomes larger. Opposite to the last result, Fig. 3(b) shown an enhancement of permeability parameter k decreasing the temperature profile $\theta(y)$. It is depicted that the impact of Biot number Bi_1 on the upper wall is significant and it decreasing effect on $\theta(y)$, we noted that the temperature curve minimized along the whole channel as the Biot- number Bi_1 enhances see Fig. 4(a). However, Fig. 4(b) sketched an opposite proportion of Prantle number caused an increment in the temperature of the fluid.

The heat transfers coefficient at the upper wall $Z(x) = \frac{\partial h_1}{\partial x} \frac{\partial \theta}{\partial y}|_{y=h_1}$ is exhibited an oscillatory behavior along the peristaltic waves across the channel walls. It is found from Figs. 5(a) and 6(a),(b) that the absolute value of $Z(x)$ shows a mixed response upon larger value of Brinkman number Br, , Soret number Sr and the Schmidt number Sc. We can detect creasing in $Z(x)$ at the lower wall for ($0 \leq x \leq 0.45$) of the channel while its rate decreases toward the upper wall for ($0.5 \leq x \leq 1$). However, Fig. 5(b) show a reverse result on $Z(x)$ due to rise in permeability parameter k.

The relationship between dimensionless flow rate Q and numerically determined pressure rise per wavelength ΔP_1 is analyzed graphically for M, k, Br and b through Figs. 7-8. The figures show a linear function with Q as well as three distinct regions identified, a peristalsis pumping for ($\Delta P_1 > 0, Q > 0$), augmented pumping or co-pumping for ($\Delta P_1 < 0, Q > 0$) and free pumping ($\Delta P_1 = 0$). From Fig. 7(a) we elucidate the impact of a Hartman number M on peristalsis pumping for $\Delta P_1 > 0$ is an increasing function while its variation reverse the augmented pumping ($\Delta P_1 < 0, Q > 0$) for region ($0 \leq Q \leq 1$) is depicted. However, the peristalsis region reduces for higher values of permeability parameter k whereas the impact is opposite for the case of co-pumping [see Fig. 7(b)]. The ΔP_1 variation depending on variation of Brinkman number Br drown in Fig. 8(a), the figure shows that ΔP_1 is remain unchanged, i.e. it is independent on Br. Fig. 8(b) demonstrate that the peristalsis pumping increases while co-pumping rate enhances for ($0 \leq Q \leq 1$) when the lower wall amplitude ratio b trend to increase.

The Figs. 9-10 display the variation of the concentration profile for different values M_{i1} mass transfer Biot- number, Dufour number D_f, Schmidt number Sc, and permeability parameter k. Reduction concentration profile $\sigma(y)$ was attributed due to rise in M_{i1} value [see Fig. 9(a)]. The influence of D_f And Sc on $\sigma(y)$ (are illustrated Figs. 9(b)- (0) a). Higher values of D_f And Sc resulted in reduce of $\sigma(y)$, whereas Fig. 10(b) shows the opposite of the aforementioned, where the concentration profile $\sigma(y)$ increases with an enhances of permeability parameter k.

Hayat A. Ali et al
A phenomenon of the closed bolus that splitting the streamlines as it moves along the channel walls is called trapping. Figs. 11-14 exhibit the variation of streamlines pattern for different values of M, k, $∅$, Br and m. Fig.11 indicate that the trapping bolus decline in size when Hartman number M trends to increase. Variation in permeability parameter k on streamlines is interpreted via Fig.12 which depict an increasing in bolus magnitude. Fig.13 illustrates the impact of phase difference $∅$ parameter on the trapped bolus. We noted that for $∅ = 0$ symmetric channels the size of the trapped bolus is uniform and expanded along the channel wall, but for $∅ = π$ we observed that the trapped bolus shrink in size and then they merge along the upper wall. From Fig.14 we do not manifest any significant effect for the Brinkman number on the size/number of bolus or the number of enclosing streamlines.

Fig.1: Velocity profile for different values of (a) Hartman number M (b) permeability parameter k and for fixed values of the parameters $\{∅ = π/6, a = 0.5, b = 0.3, d = 1, Br = 0.02, m = 0.1, Q = 0.8, x = 2, t = 2\}$.

Fig.2: Velocity profile for different values of (a) phase difference parameter $∅$ (b) upper wall parameter a and for fixed values of the parameters $\{M = 1, k = 0.3, b = 0.3, d = 1, Br = 0.02, m = 0.1, Q = 0.8, x = 2, t = 2\}$.
Fig. 3: Temperature profile $\theta(y)$ for different values of (a) Hartman number M (b) permeability parameter k and for fixed values of the parameters $\{\phi = \pi/2, a = 0.4, b = 0.2, d = 1, Br = 0.1, m = 0.05, Q = 0.5, Pr = 1, Sc = 0.1, Sr = 0.4, B_{i1} = 1.3, B_{i2} = 0.3, D_r = 0.1, x = 2, t = 3\}$.

Fig. 4: Temperature profile $\theta(y)$ for different values of (a) Biot number B_{i1} (b) Prantl number Pr and for fixed values of the parameters $\{\phi = \pi/2, a = 0.4, b = 0.2, d = 1, Br = 0.1, m = 0.05, Q = 0.5, Sc = 0.1, Sr = 0.4, k = 0.1, M = 0.3, B_{i2} = 0.3, Br = 0.1, x = 2, t = 2\}$.

Hayat A. Ali et al
Fig. 5: Heat transfer coefficient of variation of (a) Brinkman number Br (b) permeability parameter k and for fixed values of the parameters $\{\phi = \pi/2, a = 0.3, b = 0.4, d = 0.8, B_{11} = 1.3, m = 0.1, Q = 0.8, Df = 1, Pr = 1, Sc = 1, Sr = 0.4, M = 0.1, B_{12} = 0.5, y = 0.5, t = 1\}$.

Fig. 6: Heat transfer coefficient of variation of (a) short number Sr (b) Schmidt number Sc and for fixed values of the parameters $\{\phi = \pi/2, a = 0.3, b = 0.4, d = 0.8, B_{11} = 1.3, m = 0.2, Q = 0.8, Df = 3, Br = 0.1, Pr = 1, M = 0.6, B_{12} = 0.5, k = 0.3, y = 0.5, t = 1\}$.
Fig. 7: pressure rise for variation of (a) Hartman number M (b) permeability parameter k and for fixed values of the parameters $\{\phi = \pi, a = 0.2, b = 0.9, d = 0.5, m = 0.1, Br = 0.1, x = 1, y = 1, t = 2\}$.

Fig. 8: pressure rise for variation of (a) Brinkman number Br (b) upper wall amplitude parameter b and for fixed values of the parameters $\{\phi = \pi, a = 0.2, d = 0.5, m = 0.1, k = 0.1, M = 0.1, x = 1, y = 1, t = 2\}$.

Fig. 9: Concentration profile for variation of (a) Boit number M_{i1} (b) Dufour number Df and for fixed values of the parameters $\{\phi = \pi/2, a = 0.3, b = 0.5, d = 0.2, m = 0.1, k = 0.3, M = 0.1, Pr = 1, Sc = 0.2, Sr = 0.3, M_{i2} = 2, Br = 0.1, x = 2, t = 2\}$.

Hayat A. Ali et al
Fig.10: Concentration profile for variation of (a) Schmidt number Sc (b) permeability parameter k and for fixed values of the parameters $\{\phi = \pi/2, a = 0.3, b = 0.5, d = 0.2, m = 0.1, Sr = 0.3, M = 0.1, Pr = 1, Df = 0.2, Br = 0.1, M_{12} = 2, M_{11} = 0.3, x = 2, t = 2\}$.

Fig.11: Streamlines for multiple magnitude of Hartman number $M = \{0.5, 0.9\}$ with fixed value parameters $\{\phi = \pi/4, a = 0.3, b = 0.4, d = 0.5, Br = 0.02, m = 0.15, Q = 0.3, k = 0.3, t = 2\}$.

Hayat A. Ali et al
Fig. 12: Streamlines for multiple magnitude of permeability parameter $k = \{.3, 0.5\}$ with fixed value parameters $\{\phi = \pi/4, a = 0.3, b = 0.4, d = 0.5, Br = 0.02, m = 0.15, Q = 0.3, M = 1, t = 2\}$.

Fig. 13: Streamlines for the multiple magnitude of the phase difference parameter $\phi = \{0, \pi\}$ with fixed values parameters $\{k = 0.3, a = 0.3, b = 0.4, d = 0.5, Br = 0.02, m = 0.15, Q = 0.3, M = 1, t = 2\}$.

Hayat A. Ali et al
V. Conclusions

In this paper a mathematical analysis of the peristaltic flow of Newtonian viscous fluid with the presence of a magnetic field and porous medium as moving through the inclined tapered asymmetric channel. Convective thermal and concentration is addressed as boundary conditions. The governing equations are simplified into a set of non-linear ordinary differential equations by considering the assumption of long wavelength and low-Reynolds number, yet by using the homotopy perturbation method this system has been solved. Significant main observations of the present analysis are summarized as follows:

i. Velocity profile reveals mixed behavior, i.e. (the situation in the middle of the channel reverses with the result in the walls) against Hartman number H and permeability parameter k, furthermore they show opposite behavior on $u(y)$

ii. The temperature distribution $\theta(y)$ and the concentration $\sigma(y)$ profile show a parabolic behavior.

iii. A mixed response is seen on $\theta(y)$ and $\sigma(y)$ profile for higher value of both heat and mass transfer Biot numbers B_{11} and M_{11} respectively.

iv. Absolute value of heat transfer rate has an oscillatory nature, i.e. it strengthens in regions and decays in other regions along the channel wall with increment of Br, Sr, and Sc values.

v. The pressure rise per wavelength Δp_{2} and trapped bolus are independent on Br.

Fig. 14: Streamlines for the multiple magnitude of Brinkman number $Br = \{0.2, 0.3\}$ with fixed values parameters $\{\phi = \pi/4, \alpha = 0.3, b = 0.4, d = 0.5, m = 0.15, k = 0.3, Q = 0.3, M = 1, t = 2\}$.
vi. The peristaltic flow pumping increases with H while it reduces as κ enhances, the impact is totally opposite for augmented pumping.

vii. The streamlines straightly depends phase difference parameter. We noted that for ($\phi = 0$ symmetric channel) the trapped bolus form is uniform and but for ($\phi = \pi$) we observed that the trapped bolus diminishes in magnitude/number and they merge along the upper wall.

viii. The influences of H and κ on the velocity profile and the formation of a circulating bolus are opposite.

Conflict of Interest:
There is no conflict of interest regarding this article.

References
I. Abbasi, F.M; Hayat, T. and ALsaedi, A. "Effects of inclined magnetic field and Joule heating in mixed convective peristaltic transport of non-Newtonian fluids". Bulletin of the Polish Academy of Sciences, Technical Sciences, 63(2), 501-514 (2015).

II. Abdul Gaffar. S; Ramachandra Prasad. V and Keshava Reddy. E. "Non-Newtonian thermal convection of eyring-powell fluid from an isothermal sphere with biot number effects". Int. J. Industrial Mathematics, 8(2), Article ID IJIM-00694, 16 pages (2016).

III. Ahmad, S.; Farooq, M.; Javed. M. and Anjum. A. "Double stratification effect in chemically reactive squeezed Stuterby fluid flow with thermal radiation and mixed convection". J. Result in Physics, 8,1250-1259 (2018).

IV. Amina Panezai1; Abdul Rehman1; Naveed Sheikh; Saleem Iqbal ; Israr Ahmed ; Manzoor Iqbal and Muhammad Zulfiqar. "Mixed Convective Magnetohydrodynamic Heat Transfer Flow of Williamson Fluid Over a Porous Wedge". American Journal of Mathematical and Computer Modelling, 4(3), 66-73 (2019).

V. Asha, S. K and Sunitha, G. "Mixed Convection Peristaltic Flow of a Eyring-Powell Nanofluid with Magnetic Field in a Non-Uniform Channe"l, Journal of Applied Mathematics and Computation (JAMC), 2(8), 332-344 (2018).

VI. Hayat.T; Naseema Aslam; Ijaz. M; Imran Khan. M. and Alsaeedi. A."MHD peristaltic motion of Johnson – Segalman fluid in an inclined channel subject to radiative flux and convective boundary conditions". Computer Method and Program in Biomedicine, 180, (2019).
VII. Mekheimer. Kh. S; Abd elmaboud. Y. "The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus" Application of an endoscope, Physics Letters A, 372, 1657-1665 (2008).

VIII. Mohammed R. Salman and Ahmed M. Abdulhadi "Soret and Dufour effects in MHD peristalsis of pseudoplastic nano fluid with porous medium in tapered channel" International Journal of Science and Research, Volume 6 Issue 12,1939-1951(2017).

IX. Mohammed R. Salman and Ahmed M. Abdulhadi "Effects of MHD on peristalsis transport and heat transfer with variables viscosity in porous medium" International Journal of Science and Research, Volume 7 Issue 2,612-623(2018).

X. Mohammed R. Salman and Ahmed M. Abdulhadi "Influence of heat and mass transfer on inclined (MHD) peristaltic of pseudoplastic nanofluid through the porous medium with couple stress in an inclined asymmetric channel" The Sixth Scientific Conference “Renewable Energy and its Applications” IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1032 (2018) 012043 doi:10.1088/1742-6596/1032/1/012043(2018)

XI. Mohammed R. Salman and Ahmed M. Abdulhadi "Analysis of heat and mass transfer in a tapered asymmetric channel during peristaltic transport of (pseudoplastic nanofluid) with variable viscosity under the effect of (MHD)" Journal of AL-Qadisiyah for computer science and mathematics, Vol.10 No.3,80-96 (2018)

XII. Nabil T. Eldabe and Galal M. Moatimid. "Mixed convective peristaltic flow of Eyring-Prandtl fluid with chemical reaction and variable electrical conductivity in a tapered asymmetric channel". Heat Transfer- Asian Res.,48,1946-1962, DOI: 10.1002/htj.21466, (2019).

XIII. Nadeem, S; Noreen Sher Akbar and Hameed, M. "Peristaltic transport and heat transfer of a MHD Newtonian fluid with variable viscosity". Int. J. Numer. Meth. Fluids, 63,1375–1393 (2010).

XIV. Nuhad S.A. and Ali A. Z."Semi-primary $R_Γ$-submodule of multiplication $R_Γ$-submodules", Journal of mechanics of continua and mathematical sciences,vol.-15, No.-2, pp 1-9 ISSN (Print) 0973-8975(2020).

XV. Obaid Ullah Mehmood; Ayesha Aleem Qureshi; Humaira Yasmin; Salah Uddin."Thermo-mechanical analysis of non Newtonian peristaltic mechanism: Modified heat flux model". https://doi.org/10.1016/j.physa.2019.124014.

XVI. Ramesh, K; and Devakar, M "Effects of Heat and Mass Transfer on the Peristaltic Transport of MHD Couple Stress Fluid through Porous Medium in a Vertical Asymmetric Channel". Hindawi Publishing Corporation, Journal of Fluids, V. 2015, Article ID 163832, 19 pages,(2015).
XVII. Safia Akram; Emad H. Aly; Farkhanada Afzal and Sohail Nadeem. "Effect of the Variable Viscosity on the Peristaltic Flow of Newtonian Fluid Coated with Magnetic Field: Application of Adomian Decomposition Method for Endoscope" Coatings, 9(8), 524 (2019); https://doi.org/10.3390/coatings9080524.

XVIII. Sadia Ayub; Hayat. H; Asghar. S and Ahmad. B. "Thermal radiation impact in mixed convective peristaltic flow of third grade nanofluid”. Journal of Results in Physics,7,3687-3695,(2017).

XIX. Tasawar. Hayat, Javaria. Akrama, Ahmed Alsaedib, Hina Zahira, Endoscopy effect in mixed convective peristalsis of Powell-Eyring nanofluid, Journal of Molecular Liquids, 254,47-54 (2018).

XX. Zaheer Asghar and Nasir Ali."Mixed convective heat transfer analysis for the peristaltic transport of viscoplastic fluid: Perturbation and numerical study" AIP Advances 9, 095001 (2019); https://doi.org/10.1063/1.5118846.

Hayat A. Ali et al

141