RESEARCH ARTICLE

Prevalence of toxoplasmosis and genetic characterization of *Toxoplasma gondii* strains isolated in wild birds of prey and their relation with previously isolated strains from Turkey

Muhammet Karakavuk1, Duygu Aldemir2,3, Aurélien Mercier4, Esra Atalay Şahar1, Hüseyin Can5, Jean-Benjamin Murat4, Ömer Dündüren6, Şengül Can7, Hüseyin Gökhan Özdemir8, Aysu Değirmenci Döşkaya1, Bayram Pektaş6, Marie-Laure Dardé4, Adnan Yüksel Gürüz1, Mert Döşkaya1*.

1 Department of Parasitology, Ege University Faculty of Medicine, Bornova, İzmir, Turkey, 2 Department of Internal Medicine, Faculty of Veterinary Medicine, Uludag University Institute of Health Sciences, Gürkule Campus, NİlÜfe-Bursa, Turkey, 3 İzmir Wildlife Park, Municipality of İzmir, Sasali, Çiğli, İzmir, Turkey, 4 Centre National de Référence (CNR) Toxoplasmose/Toxoplasma Biological Resource Center (BRC), Centre Hospitalier-Universitaire Dupuytren and INSERM UMR 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges, France, 5 Department of Biology, Molecular Biology Section, Ege University Faculty of Science, Bornova, İzmir, Turkey, 6 The Protection and Development Union of İzmir Bird Paradise, Konak, İzmir, Turkey, 7 Computer Research and Application Center, Manisa Celal Bayar University, Muradiye, Manisa, Turkey, 8 İzmir Atatürk Training and Research Hospital, Department of Microbiology, Yeşilyurt, İzmir, Turkey

* mert.doskaya@ege.edu.tr

Abstract

Toxoplasma gondii is a protozoon parasite that causes congenital toxoplasmosis, as well as other serious clinical presentations, in immune compromised humans. Analyses of the prevalence and genotyping of strains from the definitive host and intermediate hosts will help to understanding the circulation of the different strains and elucidating the role of the genotype (s) in human toxoplasmosis. Turkey has a specific geographic location bridging Africa, Europe, and Asia. We hypothesized that *T. gondii* strains may have been transferred to Turkey from these continents via migratory birds or vice versa. The present study aimed to assess the prevalence of toxoplasmosis in wild birds of prey of İzmir and Manisa provinces as well as genetically characterize *T. gondii* strains from these wild birds to show the relation between bird strains and neighboring stray cats as well as human strains previously isolated in Turkey. Tissues obtained from 48 wild birds were investigated for the presence of *T. gondii* DNA and then bioassayed in mouse. Isolated strains were genotyped using 15 microsatellite markers. The prevalence of *T. gondii* DNA was found to be 89.6% (n: 43/48) in wild birds. Out of 43 positive samples, a total of 14 strains were genotyped by 15 microsatellite markers. Among them, eight were type II, three were type III and three were mixture of genotypes (two type II/II and one was II/III). These are the first data that showed the presence of *T. gondii* and types II and III genotypes in wild birds of Turkey. Moreover, Africa 1 was not detected. In addition, cluster analysis showed that *T. gondii* strains within type II and III lineage have close relation with strains previously isolated from stray cats in İzmir. Further
studies are required to isolate more strains from human cases, other intermediate hosts, and water sources to reveal this relation.

Introduction

Toxoplasma gondii is a protozoan parasite that causes congenital toxoplasmosis, as well as other serious clinical presentations in immune compromised humans. The parasite has also been recently linked to behavioral diseases in humans. *T. gondii* genotypes are being linked to some of these clinical presentations [1–5]. Strains are being classified into three major clonal lineages, types I, II, and III, and other additional lineages, as well as atypical and recombinant genotypes based on genetic polymorphism through the use of various molecular techniques [1–4, 6, 7]. Isolation and genotyping of strains from the definitive host felines, humans and other intermediate hosts will help better understand the circulation of the different strains both at a global and a local geographical scale. This may also help elucidate the role of the genotype(s) in human toxoplasmosis. Thus, genotyping *T. gondii* strains has utmost importance nowadays.

Certain genotypes predominate in specific geographic locations such as type II in Europe, [5], non-archetypal genotypes named Africa 1, 2, and 3 in addition to type II or III lineages in sub-Saharan Africa [3, 8, 9], type II and III strains in North Africa, the Middle East and the Arabic peninsula [10–12], the three major clonal lineages in addition to the predominant genotype, Chinese 1 in Asia [13–17], the three major lineages and recombinant strains in North and Central America, strains with high diversity in South America [18–20].

Our genotyping research started several years ago with the detection of Africa 1 genotype in two local congenital toxoplasmosis cases whose mothers lived in Turkey [21]. This was interesting since atypical Africa 1 genotype was only detected in animals and immunocompromised patients from sub-Saharan Africa [9, 21]. In our second research, we asked the question what were the prevalent genotypes in definitive host felines in Turkey. Twenty-two isolates were isolated from 100 deceased stray cats of Izmir, Turkey: 19 were type II (86.3%), two were type III (9%), and one was Africa 1 genotype (4.5%) [22]. Therefore, in addition to Africa 1, two major clonal lineages were also present in stray cats of Izmir.

Turkey has a specific geographic location bridging Africa, Europe, and Asia and *T. gondii* strains may have been transferred between these continents via stray cats or other animals, including migratory birds [22]. Izmir is the third biggest city in Turkey located close to the Western Anatolia and has a huge wild life park with bird sanctuary (Fig 1). Stray cats can easily enter the wild life park or bird sanctuary and get into close relation with local cats living in this area which can easily capture migratory birds or eat carcasses of them. Thus, this specific location aroused the following question: can the migratory wild birds of Izmir harbor the genotypes detected in humans and stray cats? and can there be more different strains in wild life of Izmir, Turkey? Therefore, the present study aimed to assess the prevalence of *Toxoplasma* infection, isolate and genetically characterize *T. gondii* strains in wild birds of prey of Izmir and Manisa provinces. In addition, clustering analyses was performed to show the relation of bird and neighboring cat strains isolated as well as human strains previously isolated in Turkey.
Materials and methods

Ethics statement

Experiments performed with animals were performed under the instructions and approval of the Institutional Animal Care and Use Committee (IACUC) of Ege University for animal ethical norms (Permit number: 2014–016).

During the experiments 6–8 week old female Swiss outbred mice, obtained from the BorNova Veterinary Control Institute Animal Production Facility were housed under standard and suitable conditions. Animals were checked for humane endpoints every day such as rapid weight loss (>~20% of gross body weight), inability to drink water or eat food, or loss of elasticity in skin indicative of dehydration. In any of these circumstances, we pre-euthanized the animals with ketamine hydrochloride (2 mg/kg) and 2% xylazine (3 mg/kg) and then euthanized with cervical dislocation.

Deceased birds were found in Izmir Bird Sanctuary (i.e. Izmir Bird Paradise) or brought to Izmir Wildlife Park Clinics from various districts of Izmir and Manisa provinces located in western Anatolia.

https://doi.org/10.1371/journal.pone.0196159.g001

Fig 1. The geographic distribution of 43 wild birds in Izmir and Manisa provinces and the distribution of genotypes detected. Locations of five wild birds were unknown. A possible route of migration appears in Gediz lowland between Izmir and Manisa provinces is represented by dotted lane. Gediz lowland is connected to Izmir Bird Sanctuary, a popular stop point for resident and migratory birds of prey. Green and blue stars represent type II and III lineages, respectively. Mix of two type II strains is represented by orange star. Mix of type II and III strains is represented by grey star.
Wild birds and sample collection

Wild birds were found in the İzmir Bird Sanctuary or brought to İzmir Wildlife Park Clinics from eight different districts of İzmir province (Çiğli, Konak, Bornova, Bergama, Kemalpaşa, Balçova, Karabağlar, and Seferihisar) and four different districts from Manisa province (Saruhanlı, Manisa, Turgutlu, Salihli) (Fig 1). The permission to collect samples were issued by Ministry of Forestry and Water Management, General Directorate of Nature Conservation and National Parks as well as Municipality of İzmir, İzmir Wildlife Park Branch Directorate. The sampling procedures were reviewed as part of obtaining the field permit.

İzmir Wildlife Park and İzmir Bird Sanctuary are located in Çiğli district. Tissue (brain and heart) samples were collected from deceased birds (n: 48). The species of wild birds were composed of common buzzard (*Buteo buteo*) (n: 25), Eurasian sparrowhawk (*Accipiter nisus*) (n: 5), barn owl (*Tyto alba*) (n: 2), yellow-legged gull (*Larus michahellismichahellis*) (n: 2), Eurasian eagle-owl (*Bubo bubo*) (n: 2), thrush nightingale (*Luscinia luscinia*), wood pigeon (*Columba palumbus*), little owl (*Athene noctua*), Eurasian stone curlew (*Burhinus oedicnemus*), white stork (*Ciconia ciconia*), great cormorant (*Phalacrocorax carbo*), dalmatian pelican (*Pelecanus crispus*), greater flamingo (*Phoenicopterus roseus*), peregrine falcon (*Falco peregrinus*), black stork (*Ciconia nigra*), common kestrel (*Falco tinnunculus*), and little tern (*Sternula albifrons*) (Table 1).

Bioassay in mice

Bird tissue homogenates were prepared from the brain and heart tissues as described [9, 22]. Initially, 10 gr tissue in 125 ml 0.9% NaCl was homogenized using a blender (Waring, USA). Then, tissue homogenate was added to a 500 ml Erlenmeyer flask and after adding 0.5 gr trypsin to the homogenate, the flask was incubated at 37˚C with 120 rpm for 60 min using an incubator shaker (New Brunswick, USA). Next, the homogenate was filtered through sterile two layered gauze to 50 ml tubes and centrifuged at 910×g for 10 minutes. Thereafter, the supernatant was discarded and the pellet was washed two more times with 0.9% NaCl. After the last centrifugation, the pellet was resuspended with 5 ml 0.9% NaCl. A 500 μl aliquot was kept for DNA extraction and the remaining homogenate was incubated at 4˚C overnight with Penicillin (40 U/ml)/Streptomycin (40 μg/ml) and Gentamycin (40 μg/ml). Next day, ~700 μl homogenate was inoculated intraperitoneally to mice (3 mice/group). The mice were closely monitored for 40 days and sacrificed afterwards. The brains of mice were removed aseptically and homogenized using a 5 ml syringe and 2 ml 0.9% NaCl. *T. gondii* tissue cysts and DNA were investigated in brain homogenates of mice using phase contrast microscopy (Nikon, USA) and Real Time PCR, respectively. Live strains were cryopreserved with RPMI medium containing a final concentration of 10% FCS and 10% DMSO [24].

Real Time PCR

The presence of *T. gondii* DNA in wild birds or bioassayed mouse tissue samples were detected by Real Time PCR at the same day the tissue homogenate was prepared. Real Time PCR investigated *T. gondii* AF146527 gene as described [22, 25]. Isolation of DNA from the bird tissue or mouse brain homogenate was performed by QIAamp DNA mini kit (Qiagen, USA) according to the manufacturer’s protocol. During Real Time PCR, the primers were 5’-AGGCCGAGGGTGAGGATGA-3’ (18nt, TOX-SE forward primer) and 5’-TCGTCTCGTCTGGATCAGCAT-3’ (20nt, TOX-AS reverse primer) and the hybridization probes were 5’-GCCGGAAACATCTTCTCCCTCCCTCC-3’-FL (24nt, TOX FLU, labeled at the 3’ end with fluorescein) and 5’-640-CTCTCGTCCCTCCCAACCACG-3’ (22nt, TOX LCR labeled at the 5’ end with LC-Red 640) (IDT).

T. gondii strains isolated from wild birds and their relation with previous strains isolated from Turkey
No.	Name of the isolate	Name of the bird	Predator bird	Movement patterns	Location of the isolate	Cause of death	Real Time PCR CP_value (bird tissue) \(^{a,e}\)	Microscopy \(^f\) (mouse brain)	Live/Toxoplasma DNA extracts	Genotype
1	TgBirdTr_Izmir 1	Barn owl ((Tyto alba))	Pr	L	Ciğil (IWP)	Unknown Trauma (Fracture of wing)	27.47	N	DNA extract	Type III
2	TgBirdTr_Izmir 2	Yellow-legged gull (Larus michahellis)	Pr	PM (wintering in North Africa, European coast, south-west Asia)	Konak	Unknown Trauma (Fracture of wing)	30.01	N	DNA extract	Type II
3	-	Eurasian eagle-owl (Bubo bubo)	Pr	L	Kemalpaşa	Paralysis	31.62	N	DNA extract	-
4	-	Thrush nightingale (Luscinia luscinia)	-	M (wintering in Africa)	Konak	Diarrhea	30.87	N	DNA extract	-
5	-	Wood pigeon ((Columba palumbus))	-	M (wintering in Europe)	Konak	Diarrhea	32.58	N	DNA extract	-
6	TgBirdTr_Izmir 3	Yellow-legged gull (Larus michahellis)	Pr	PM (wintering in North Africa, European coast, south-west Asia)	Balçova	Trauma (Car crash)	33.76	P	Live	Type III
7	-	Little owl ((Athene noctua)	Pr	L	Ciğil (IBS)	Paralysis	35.28	N	DNA extract	-
8	-	Common buzzard ((Buteo buteo))	Pr	PM (wintering in Africa and Southern Asia)	Ciğil (IWP)	Paralysis	30.64	N	DNA extract	-
9	-	Eurasian Thick-knee, Stone Curlew ((Burhinus oedicnemus))	Pr (insects)	M (wintering in southern Europe, the Middle East and Africa)	Ciğil (Kãklç)	Paralysis	34.79	N	DNA extract	-
10	-	White stork ((Ciconia ciconia)	Pr (Fish, insects, reptiles etc.)	M (wintering in Africa)	Konak	Unknown Trauma (Fracture of wing and beak)	32.14	N	DNA extract	-
11	TgBirdTr_Izmir 4	Common buzzard ((Buteo buteo))	Pr	PM (wintering in Africa and Southern Asia)	Seferihisar	Unknown Trauma (Fracture of wing)	28.2	P	Live	Type II
12	-	Common buzzard ((Buteo buteo))	Pr	PM (wintering in Africa and Southern Asia)	Manisa (Muradiye)	Unknown Trauma (Fracture of wing)	29.96	N	DNA extract	-
13	-	Great cormorant ((Phalacrocorax carbo)	Pr (Fish)	PM (wintering in Africa, southern Asia, Australia)	Ciğil (IWP)	Poaching	29.05	P	Live	-
14	-	Common buzzard ((Buteo buteo))	Pr	PM (wintering in Africa and Southern Asia)	Manisa	Unknown Trauma (Fracture of wing)	26.16	N	DNA extract	-
15	TgBirdTr_Manisa 1	Common buzzard ((Buteo buteo))	Pr	PM (wintering in Africa and Southern Asia)	Manisa	Trauma (Fracture of leg)	25.32	N	DNA extract	Type III
16	TgBirdTr_Izmir 5	Barn owl ((Tyto alba))	Pr	L	Konak	Unknown Trauma (Fracture of wing)	25.47	P	Live	Type II
17	-	Common buzzard ((Buteo buteo))	Pr	PM (wintering in Africa and Southern Asia)	Kemalpaşa	Unknown Trauma (Fracture of wing)	29.9	N	DNA extract	-
18	-	Common buzzard ((Buteo buteo))	Pr	PM (wintering in Africa and Southern Asia)	Ciğil	Keratitis	30.86	N	DNA extract	-
19	-	Eurasian sparrowhawk ((Accipiter nisus))	Pr	PM (wintering in southern Europe, southern Asia, Africa)	Salihli	Unknown Trauma (Fracture of wing)	34.00	N	DNA extract	-

(Continued)
Table 1. (Continued)

No	Name of the isolate	Name of the bird	Predator bird	Movement patterns	Location of the isolate	Cause of death	Real Time PCR CP$_{50}$ (bird tissue)	Microscopy	Live/Toxoplasmic DNA extracts	Genotype
20	-	Common buzzard (Buteo buteo)	Pr PM	Manisa	Unknown Trauma (Fracture of wing)	N - - -	23.89 N DNA extract	-		
21	-	Common buzzard (Buteo buteo)	Pr PM	Salihli	Unknown Trauma (Fracture of wing)	N - - -	23.31 N DNA extract	Mix (Type II/II)		
22	-	Eurasian sparrowhawk (Accipiter nisus)	Pr PM	Cığılgıli	Unknown Trauma (Fracture of leg)	24.25 N DNA extract	-			
23	-	Dalmatian pelican (Pelecanus crispus)	Pr (Fish)	Cığılgıli	Unknown Trauma (Fracture of leg)	24.81 N DNA extract	-			
24	TgBirdTr_Manisa 2	Common buzzard (Buteo buteo)	Pr PM	Turgutlu	Trauma (Car crash)	23.89 N DNA extract	Type II			
25	TgBirdTr_Izmir 6	Common buzzard (Buteo buteo)	Pr PM	Bergama	Unknown Trauma (Fracture of wing)	25.31 N DNA extract	Mix (Type II/II)			
26	-	Common buzzard (Buteo buteo)	Pr PM	Cığılgıli	Systemic infection	24.81 N DNA extract	-			
27	TgBirdTr_Manisa 3	Common buzzard (Buteo buteo)	Pr PM	Salihli	Keratitis	24.32 P Live	Type II			
28	-	Common buzzard (Buteo buteo)	Pr PM	Bornova	Unilateral Keratitis	24.81 N DNA extract	-			
29	-	Common buzzard (Buteo buteo)	Pr PM	-	Keratitis	25.81 N DNA extract	-			
30	-	Common buzzard (Buteo buteo)	Pr PM	-	Respiratory infection	25.87 N DNA extract	-			
31	TgBirdTr_Manisa 4	Eurasian eagle-owl (Bubo bubo)	Pr L	Salihli	Respiratory infection	24.86 N DNA extract	Mix (Type II/III)			
32	TgBirdTr_Manisa 5	Common buzzard (Buteo buteo)	Pr PM	Salihli	Keratitis	25.24 N DNA extract	Mix (Type II/II)			
33	TgBirdTr_Manisa 6	Common buzzard (Buteo buteo)	Pr PM	Salihli	Unknown Trauma (Fracture of wing)	24.77 N DNA extract	Type II			
34	-	Common buzzard (Buteo buteo)	Pr PM	Bergama	Keratitis	27.26 N DNA extract	-			
35	-	Eurasian sparrowhawk (Accipiter nisus)	Pr PM	Bornova	Keratoconjunctivitis	26.39 N DNA extract	-			
36	TgBirdTr_Manisa 7	Common buzzard (Buteo buteo)	Pr PM	Turgutlu	Hyphema	27.87 P Live	Type II			
37	-	Common buzzard (Buteo buteo)	Pr PM	Konak	Paralysis	27.60 N DNA extract	-			
38	-	Greater flamingo (Phoenicopterus roseus)	Pr (small invertebrates)	Konak	Electric shock	28.95 N DNA extract	-			

(Continued)
Quantification and melting curve analysis was performed by 1.5 LightCycler Real Time instrument using LightCycler software, Version 3.5 (Roche). The PCR reaction with a 20 μl final volume included 1x LightCycler Fast Start DNA Master HybProbe mix with 5 mM MgCl$_2$ (Roche), 5 μl purified DNA template or controls. The amplification reaction was performed as follows: 10 min initial denaturation step at 95˚C, followed by 50 cycles of 5 seconds at 95˚C, 10 seconds at 60˚C, and 15 seconds at 72˚C.

T. gondii genomic DNA serially 10-fold diluted ranging from 106 to 101 parasites/μl was used positive control and distilled water was used as negative control. In addition, melting curve analysis was performed as follows: 20 s denaturation step at 95˚C (temperature transition rate 20˚C/s) 20 s annealing step at 40˚C (temperature transition rate 20˚C/s) and an extension step that gradually increases the temperature to 85˚C with a temperature transition rate of 0.2˚C/s.

Table 1. (Continued)

No *a*	Name of the isolate b	Name of the bird	Predator bird	Movement patterns	Location of the isolate	Cause of death	Real Time PCR CP$_T$ value (bird tissue) d,e	Microscopy f (mouse brain)	Live/Toxoplastic DNA extracts	Genotype
39	-	Common buzzard (Buteo buteo)	Pr	Partially migratory (PM)	Saruhanlı	Diarrhea	27.59 N DNA extract	-	-	
40	-	Eurasian sparrowhawk (Accipiter nisus)	Pr	Partially migratory (PM)	Karabaklar	Respiratory infection	26.04 N DNA extract	-	-	
41	TgBirdTr_Izmir 7	Common buzzard (Buteo buteo)	Pr	Partially migratory (PM)	Konak	Paralysis	25.12 N DNA extract	Type II	-	
42	-	Eurasian sparrowhawk (Accipiter nisus)	Pr	Partially migratory (PM)	Saruhanlı	Respiratory infection	28.07 N DNA extract	-	-	
43	-	Peregrine falcon (Falco peregrinus)	Pr	Migratory (M)	Çiğli	Unknown Trauma (Fracture of wing)	31.83 N DNA extract	-	-	
44	-	Common kestrel (Falco tinnunculus)	Pr	Migratory (M)	Konak	Unknown Trauma (Fracture of wing)	N - - -	-		
45	-	Black stork (Ciconia nigra)	Pr (Fish, insects, reptiles etc.)	Migratory (M)	-	Unknown Trauma (Fracture of wing)	31.19 N DNA extract	-	-	
46	-	Common buzzard (Buteo buteo)	Pr	Migratory (M)	-	Poaching	32.17 N DNA extract	-	-	
47	-	Common buzzard (Buteo buteo)	Pr	Migratory (M)	-	Diarrhea	31.26 N DNA extract	-	-	
48	-	Little tern (Sternula albifrons)	Pr (Fish)	Migratory (M)	Çiğli (IBS)	Incoordination, loss of voluntary control	N - - -	-		

* a Samples are numbered according to the date they have arrived to the laboratory.

b The strains that could not be genotyped are not named.

c Migratory wild bird with local population.

d Real time PCR was used to detect *T. gondii* DNA in mouse brains and cat tissues.

e CP$_T$ (Crossing point threshold). The amount of DNA is high when the value is low.

f Microscopy detected the tissue cysts in mice brains.

N: negative; P: positive; Pr: Predator bird; L: Local bird; M: Migrating bird; IWP: Izmir Wildlife Park; IBS: Izmir Bird Sanctuary

https://doi.org/10.1371/journal.pone.0196159.t001
Genotyping analysis

To genotype the strains, 15 microsatellite markers (N61, B18, M33, M48, TUB2, N83, XI.1, N82, TgM-A, W35, IV.1, B17, N60, M102, AA) located on 11 different chromosomes of *T. gondii* were amplified using a single multiplex PCR assay as described [26]. Initially, 25 μl final volume reaction included 12.5 μl multiplex PCR master mix (Qiagen), 5 μl DNA extracted from mouse brain or bird tissues, and 15 sets of primers (5 pmol each).

The amplification reaction was performed as follows: initial denaturation step at 95˚C for 15 minutes, 35 cycles of 94˚C for 30 seconds, 61˚C for 3 minutes, and 72˚C for 30 seconds, and a final extension at 60˚C for 30 minutes. Next, PCR products were diluted 1/10 (mouse brain homogenate) or not diluted (bird tissue homogenate) using deionized formamide (Applied Biosystems). Then, 1 μl of diluted PCR product in deionized formamide was mixed with 0.5 μl DNA standard ROX 500 (Applied Biosystems) and 23.5 μl deionized formamide. Thereafter, the reaction mix was denatured at 95˚C for 5 min and electrophoresed using an automatic sequencer (ABI PRISM 3130xl; Applied Biosystems). Microsatellite sizes were assessed using GeneMapper analysis software (Version 4.0; Applied Biosystems). As control, 15 reference strains belonging to type I (VAND, ENT, GT1,), type II (PRU, Me49), and type III (VEG, NED), atypical strains of Africa (DPHT, GAB3-GAL-DOM002, GAB5-GAL-DOM001, GAB3-GAL-DOM014, CCH002-NIA, and GAB2-GAL-DOM002), South America (GUY-CAN-FAM001 and TgCatBr5) and Turkey (Ankara and Ege-1 strains) were analyzed in parallel with strains isolated in this study [3, 9, 22, 26–28].

Clustering analysis

A neighbor-joining tree containing bird strains isolated in İzmir and Manisa provinces of Turkey in addition to previously isolated strains from humans (Ankara and Ege-1), and stray cats in Turkey was constructed to quantify the extent of genetic distance between these strains and evaluate their position towards reference strains from different continents using Populations 1.2.30 (1999, Olivier Langella, CNRS UPR9034, http://bioinformatics.org/populations/). Trees were reconstructed using the Cavalli-Sforza and Edwards chord-distance estimator as described [29]. Thereafter, the analysis was repeated for 1000 bootstrap replicates in which loci were sampled with replacement. Unrooted trees were obtained with MEGA 6.05 software.

Statistical analysis

Data obtained during the study were analyzed using Prism 3.03 (GraphPad, San Diego, CA) and a two-tailed unpaired t test with 95% confidence interval was used to determine the significance between the *T. gondii* DNA detected and undetected birds.

Results

Isolated *T. gondii* strains

Among the 48 wild bird samples, Real Time PCR of tissue homogenates was positive in 43 wild bird tissue homogenates and the prevalence of toxoplasmosis was 89.6%. All PCR positive wild bird tissues were bioassayed in mice. Six live strains were obtained by bioassay. Location details of PCR positive wild birds are shown in Table 1 and locations of five birds were unknown (Table 1).

Microsatellite genotyping

Genotyping was performed on all PCR positive samples and lives strains. The success of genotyping was 32.5%, allowing to genotyping 14 strains over 43 positive DNA extracts. Among
them, 6 live strains were isolated by both bioassay and PCR and remaining 8 strains were only toxoplasma DNA extracts (Table 1).

Among the 14 strains, 9 strains were genotyped by microsatellite analysis (15/15 MS markers), 2 were genotyped with 14/15 MS markers, 1 with 9/15 MS markers, 1 with 8/15 MS markers, and 1 with only 6/15 MS markers. This allowed identifying 8 type II isolates and three type III isolates (Table 2). In addition two samples contained a mix of two type II strains and one was a mixture of type II and type III strains, as evidence by the presence of 2 peaks for some markers. Remaining 29 positive samples were Toxoplasma DNA extracts from wild bird tissue samples and could not be genotyped (Table 1). The 14 strains were designated as TgBirdTr_Izmir and TgBirdTr_Manisa (Table 1). The isolates from Izmir were named TgBirdTr_Izmir 1–7. The remaining 7 isolates from Manisa were named TgBirdTr_Manisa 1–7.

In Izmir Province, among the 11 wild birds investigated in Çiğli district, nine PCR positive samples were bioassayed and one type III strain was isolated (11.1%; 1/9) (TgBirdTr_Izmir 1). In Konak district of Izmir, among the nine wild bird samples, eight PCR positive samples were bioassayed and three type II strains (TgBirdTr_Izmir 2, 5 and 7) were isolated (37.5%; 3/8). A type III strain (TgBirdTr_Izmir 3) was isolated in Balçova and a type II strain (TgBirdTr_Izmir 4) was isolated in Seferihisar. Among the two samples analyzed in Bergama, one was a mixture of two type II strains (TgBirdTr_Izmir 6) (Fig 1, Table 1).

In Manisa province, among the six wild bird samples analyzed in Salihli District, five PCR positive samples were bioassayed and four strains were isolated (80%; 4/5) in which two were type II (TgBirdTr_Manisa 3 and 6) and one was a mixture of two type II strains (TgBirdTr_Manisa 5), and the remaining was a mixture of type II and III strains (TgBirdTr_Manisa 4). In Manisa central, among the four wild bird samples, three PCR positive samples were bioassayed and a type III strain (TgBirdTr_Manisa 1) was isolated. In Turgutlu, two samples were bioassayed and both were type II strains (TgBirdTr_Manisa 2 and 7).

TgBirdTr_Izmir 6 and TgBirdTr_Manisa 5 were a mix of two strains of genotype II. TgBirdTr_Manisa 4 was a mix of genotypes II and III. These mixture of strains may be due to authentic multiple infection.

Cluster analysis showed that among the type II and III T. gondii strains isolated from wild birds, there is no geographical or species structure when compared with cat strains. Strains isolated from wild birds in in Izmir have close relation with strains isolated from cats in Izmir such as TgBirdTr_Izmir 4 with TgCatTr_Izmir 7&9; TgBirdTr_Izmir 5 with TgCatTr_Izmir 18 (Table 2, Fig 2).

In Manisa province, TgBirdTr_Manisa 2 within type II lineage (have close relation with stray cat strain TgCatTr_Izmir 2, 21 &22. In type II lineage, TgBirdTr_Manisa 6 has close relation with TgCatTr_Izmir 12; TgBirdTr_Manisa 3 has close relation with TgCatTr_Izmir 6 (Table 2, Fig 2).

Wild bird strains within type III lineage which are TgBirdTr_Izmir 1&2 and TgBirdTr_Manisa 1 have close relation with each other and some relation with stray cat strains TgCatTr_Izmir 10 & 14 (Fig 2). Mixed strains and strains with an incomplete genotype (TgBirdTr_Manisa 7 and TgBirdTr_Izmir 2) were not included in the cluster analyses (Table 2, Fig 2).

Discussion

In this study, the first aim was to show the presence of T. gondii DNA in wild birds of Izmir and Manisa provinces of Turkey. The prevalence of Toxoplasma infection was 89.6% in wild birds based on our molecular screening. A total of 14 strains were genotyped from 43 PCR positive wild birds; Among the 14 strains genotyped, 8 isolates were type II and three isolates were type III. In addition, two samples contained a mix of two type II strains and one was a
Table 2. Genotyping results with 15 microsatellite markers of the 11 strains isolated from wild birds of İzmir and Manisa provinces with 17 reference *T. gondii* strains.

ISOLATE (GENOTYPE)	Microsatellite marker (size; base pair)*
TgBirdTr_Manisa 1 (Type III)	B18 (156–170) M33 (165–173) TUB2 (287–291) XI1 (354–362) TgM-A (203–211) W35 (242–248) IV1 (272–282) B17 (334–366) M48 (209–243) M102 (164–196) N60 (132–157) N82 (105–145) AA (251–332) N61 (79–123) N83 (306–338)
TgBirdTr_Manisa 2 (Type II)	160 165 289 356 205 242 278 336 213 190 147 111 269 89 312
TgBirdTr_Manisa 3 (Type II)	158 169 289 356 207 242 274 336 227 172 140 111 279 87 310
TgBirdTr_Manisa 4 (mix of type III & II)	160 165 289 356 205 242 274 336 211/213 174 140/142 109 261/267 91 312
TgBirdTr_Manisa 5 (mix of two type II)	158 169 289 356 207 242 274 336 211 190 147 111 261/291 91 310
TgBirdTr_Manisa 6 (Type II)	158 169 289 356 207 242 274 336 233 178 149 111 261/267 91 310
TgBirdTr_Manisa 7 (Type II)	158 NA NA 289 NA 207 242 NA 336 NA 178 NA NA NA NA NA
TgBirdTr_Izmir 1 (Type III)	160 165 289 356 205 242 278 336 213 190 147 111 267 89 312
TgBirdTr_Izmir 2 (Type II)	158 NA 289 NA 207 242 274 336 NA 140 111 257 NA NA
TgBirdTr_Izmir 3 (Type III)	160 165 289 356 205 242 278 336 213 190 147 111 275 89 312
TgBirdTr_Izmir 4 (Type II)	158 169 289 356 207 242 274 336 229 178 140 117 263 83 310
TgBirdTr_Izmir 5 (Type II)	158 169 289 356 209 242 274 336 213 174 140 127 263 103 314
TgBirdTr_Izmir 6 (mix of two type II)	158 169 289 356 207 242 NA 336 213/221 174 NA NA NA NA NA
TgBirdTr_Izmir 7 (Type II)	158 169 289 356 207 242 274 336 NA 176 140 111 263 93 310
ANKARA (Africa 1)	160 165 291 354 205 248 274 342 227 166 147 111 295 91 310
EGE-1 (Africa 1)	160 165 291 354 205 248 274 342 227 166 149 111 289 91 310
DPHT (Africa 1)	160 165 291 354 205 248 274 342 225 166 147 111 271 89 306
GAB3-GAL-DOM014 (Africa 1)	160 165 291 354 205 248 274 342 229 166 142 111 271 95 306
GAB5-GAL-DOM001 (Africa 1)	160 165 291 354 205 248 274 342 231 166 149 111 277 87 306
GAB3-GAL-DOM002 (Africa 1)	160 165 291 354 205 248 274 342 223 166 147 111 269 89 306
CCH002-NIA (Africa 2)	160 165 289 354 205 248 274 336 225 166 145 111 273 89 308
GAB3-GAL-DOM002 (Africa 3)	160 165 291 354 205 248 274 342 223 166 142 111 277 97 310
ENT (Type I)	160 169 291 358 209 248 274 342 209 166 145 119 267 87 306
GT1 (Type I)	160 169 291 358 209 248 274 342 209 168 145 119 265 87 306
Me49 (Type II)	158 169 289 356 207 242 274 336 215 174 142 111 265 91 310
PRU (Type II)	158 169 289 356 207 242 274 336 209 176 142 117 265 123 310
NED (Type III)	160 165 289 356 205 242 278 336 209 190 147 111 267 91 312
VEG (Type III)	160 165 289 356 205 242 278 336 213 188 153 111 267 89 312
TgCatBr5 (Atypical)	160 165 291 356 205 242 278 362 237 174 140 111 265 89 314
VAND (Amazonian)	162 167 291 356 203 242 276 344 217 170 142 113 277 91 308
GUY-CAN-FAM001 (Caribbean 1)	162 165 291 356 205 242 278 342 213 164 142 109 265 87 312

NA: not amplified; Italic genotyping data represent two distinct peaks; * among the first 8 markers, a minimum of 5 markers allows identifying the strain type.

https://doi.org/10.1371 journal.pone.0196159.t002
mixture of type II and type III strain. These mix genotypes which may be due to authentic multiple infections. Nevertheless, these are the first data that show the presence of *T. gondii* and genotypes of *T. gondii* in wild birds of Turkey.

There are plenty of studies conducted in various wild birds to determine the presence of *T. gondii*, isolate *T. gondii* strains, genotype them and/or determine seroprevalence using serological and molecular techniques [30–52]. Using serological techniques, *T. gondii* antibodies were found in 21–83.3% of various wild birds [31–52]. Among these studies some of them also isolated and genotyped *T. gondii* strains.

In Brazil, the seroprevalence in Eared doves (*Zenaida auriculata*) was 22.3% and 12 *T. gondii* strains were isolated these doves [36]. In a study conducted in seropositive pigeons of Lisbon Portugal, genotyping of *T. gondii* was achieved in 70.7% (29/41) and of the isolates genotyped, 26 samples were type II, two were type III, and one strain was type I [37]. In Slovakia, a total of 10 birds from wild life were examined and the prevalence of *T. gondii* DNA was

Fig 2. Clustering analysis of 9 *T. gondii* strains isolated and genotyped in wild birds of Izmir and Manisa provinces as well as 17 reference *T. gondii* strains and 22 *T. gondii* strains previously isolated from stray cats of Izmir. Black lettered genotypes represent bird strains isolated in this study. Green lettered genotypes represent type II cat strains previously isolated from Izmir Province and the two type II reference strains (PRU and ME49). Dark blue lettered genotypes represent type III cat strains previously isolated from Izmir Province and the two type III reference strains (VEG and NED). Blue star represents migratory wild bird and black stars represent migratory wild bird with local population.

https://doi.org/10.1371/journal.pone.0196159.g002
40% in which type II and III strains were isolated [38]. In New Zeland, T. gondii was identified in kereru (Hemiphaga novaeseelandiae), North Island brown kiwi (Apteryx mantelli), and one North Island kaka (Nestor meridionalis) and atypical type II genotypes were detected in these birds [39]. In a study conducted in Iran, prevalence of T. gondii was determined in sparrows (Passer domesticus), pigeons (Columba livia) and starlings (Sturnus vulgaris) and T. gondii DNA was detected in 26.5% (n: 64), 6.9% (n:43), and 12.8% (n:39), respectively [41]. In China, T. gondii was investigated in 178 wild birds including Common pheasants (Phasianus colchicus), Tree sparrows (Passer montanus), House sparrows (Passer domesticus), Saxaul sparrows (Passer ammodendri), Cinnamon sparrow (Passer rutilans), and four of them were T. gondii DNA positive in which they were type I and II strains [42]. In the USA, the seropositivity rate in 632 Mute swans (Cygnus olor) was 8.5% and three strains were genotyped from seropositive 14 swans which were Type III and a new genotype [44]. In Colorado State of USA, 38 of 382 wild birds were seropositive (9.9%) and viable T. gondii was isolated from barn owl (Tyto alba), American kestrels (Falco sparverius), Ferruginous hawks (Buteo regalis), Rough-legged buzzard (Buteo lagopus), Swainson’s hawks (Buteo swainsoni), and Red-tailed hawks (Buteo jamaicensis) [45]. In France, T. gondii type II strain was isolated from common mallards (Anas platyrhynchos) [46]. T. gondii was also identified in various wild birds such as a Bald Eagle (Haliaeetus leucocephalus), bar-shouldered dove (Geopelia humeralis), Great Spotted Woodpecker (Dendrocopos major), Amazon Parrot (Amazona vinacea), red-shouldered hawk (Buteo lineatus), bald eagle (Haliaeetus leucocephalus) [48–52].

T. gondii studies in birds carried out in Turkey are limited. The seroprevalence of T. gondii in pigeons (Columba livia livia) was 0.95% using Sabin Feldman dye test in Niğde province located in central Anatolia [53]. In Kayseri province located in central Anatolia, a total of 44 birds from wild life were examined with Sabin Feldman dye test and the seroprevalence of T. gondii was 40% [54]. In a study conducted in Hatay province located in southern Anatolia and Van province located in eastern Anatolia, T. gondii DNA was detected in seven wild avian species among 103 wild birds (6.79%), comprising 20 species [55].

Globally, the presence of T. gondii range between 21–83.3% in wild birds using serological analyses or PCR, and 89.6% in wild birds of prey of Izmir and Manisa provinces using PCR in this study. This high prevalence is possibly due to eating habits of wild birds which prey for intermediate hosts of T. gondii. Wild birds can also be infected by water sources contaminated with T. gondii oocysts or drinking seawater since T. gondii oocyst can sporulate and survive in seawater [56].

There were several causes of death in the group of wild birds analyzed in this study which were mostly trauma. In 16.7% of PCR positive wild birds, symptoms such as paralyses (n: 6) and incoordination of muscles (n: 1) were observed possibly suggestive of toxoplasmosis. Analyses of PCR positive wild birds revealed that 92.3% of them contained T. gondii DNA in their tissues. In the remaining 9 birds that are not predator or eat fish, insects, reptiles, and small invertebrates, the prevalence of T. gondii DNA was 88.9%. The Toxoplasma infection rate in both groups is pretty high. This can be anticipated for predator birds since they commonly feed with the rodent intermediate which can host of T. gondii. The high prevalence in other birds shows that oocysts may represent a significant source of contamination for them, via contaminated water or soil [56].

In this study, a total of 14 strains were genotyped from 43 PCR positive wild birds. Among these 14 strains genotyped, 8 isolates were type II, three isolates were type III, and in addition, two samples contained a mix of two type II strains and one was a mixture of type II and type III strain. Any African genotype was not detected. These findings can be analyzed in terms of migration specifications (local residents, partially migratory, and migratory). The prevalence
of *T. gondii* DNA in the migratory birds (n: 43) is 88.4% and 80% in the local resident wild bird group (n: 5). The *Toxoplasma* infection rate in both groups is again pretty high. Genotypes II and III infection were detected in both populations as could be expected from previous results obtained in cat population from Turkey [17, 22]. Genotype II and type III are highly prevalent in Europe, with more type III in southern Europe. They are also prevalent in Mediterranean countries [57].

Distance genetic tree that was built only with strains identified with at least 14 MS markers included nearly only strains isolated from migratory birds (except TgBirdTr_Izmir 1 & 5) and those were close to strains isolated from strain cats in Izmir. It may be hard to draw a conclusion that migratory birds have a role to disseminate *T. gondii* genotypes to stray cats based on these results. On the contrary, oocysts excreted in the environment by stray cats could be the direct or indirect source of contamination of wild birds.

Cluster analysis showed that *T. gondii* strains isolated from birds in İzmir and Manisa within type II and III lineage have close relation with strains isolated from cats in İzmir (Table 2, Fig 2). This could be due to the small distance between these areas. In addition, when we analyze the location of the PCR positive wild birds, a small motion area appears in Gediz lowland between İzmir and Manisa provinces (represented by dotted lane in Fig 1) possibly due to feeding habits of wild birds. This motion area is connected to İzmir Bird Sanctuary which is a popular stop point for resident and migratory birds of prey. Both type II and III strains are isolated in Çiğli district where the İzmir Bird Sanctuary is located and type II and III strains are also isolated on this route.

As Africa 1 was detected in a cat and two human cases previously, we expected to find it in migratory wild birds as an explanation of its presence in Turkey. This was not the case. This may be due to the inexistence of Africa 1 in the wild birds species included to this study or Africa 1 may have been transferred to Turkey via other routes such as rodents prevalent in trade ships. This could be an explanation of the absence of detection of African genotypes in our sampling. More sampling from different host species and areas would be needed to answer this question.

Conclusion

Overall, the two major clonal lineages (type II and III) have been isolated for the first time from wild birds in İzmir and Manisa provinces of Turkey. There can be a probable route of transmission between stray cats and wild birds of İzmir and Manisa based on cluster analyses. Further studies are required to isolate more strains from human cases, other intermediate hosts, and water sources to reveal this relation.

Acknowledgments

The authors would like to acknowledge *Toxoplasma* Biological Resource Center (BRC)/Centre National de Référence (CNR) Toxoplasmosis and their team for their efforts in genotyping the strains isolated in this study. Also we would like to acknowledge Mehmet Aykur, (DVM) for his help in drawing the map of İzmir and Manisa provinces.

Author Contributions

Conceptualization: Mert Doğanaya.

Data curation: Aurélien Mercier, Hüseyin Can, Jean-Benjamin Murat, Şengül Can, Aysu Değirmenci Doğanaya, Marie-Laure Dardé, Mert Doğanaya.
Formal analysis: Muhammet Karakavuk, Duygu Aldemir, Aurélien Mercier, Jean-Benjamin Murat, Şengül Can, Hüseyin Gökhan Özdemir, Aysu Değirmenci Döşkaya, Marie-Laure Dardé, Mert Döşkaya.

Funding acquisition: Adnan Yüksel Gürüz, Mert Döşkaya.

Investigation: Muhammet Karakavuk, Duygu Aldemir, Aurélien Mercier, Esra Atalay Şahar, Hüseyin Can, Jean-Benjamin Murat, Ömer Döndüren, Hüseyin Gökhan Özdemir, Aysu Değirmenci Döşkaya, Bayram Peptaş, Marie-Laure Dardé, Mert Döşkaya.

Methodology: Muhammet Karakavuk, Duygu Aldemir, Aurélien Mercier, Esra Atalay Şahar, Hüseyin Can, Jean-Benjamin Murat, Ömer Döndüren, Şengül Can, Hüseyin Gökhan Özdemir, Aysu Değirmenci Döşkaya, Bayram Peptaş, Marie-Laure Dardé, Adnan Yüksel Gürüz, Mert Döşkaya.

Project administration: Adnan Yüksel Gürüz, Mert Döşkaya.

Resources: Adnan Yüksel Gürüz, Mert Döşkaya.

Supervision: Adnan Yüksel Gürüz, Mert Döşkaya.

Validation: Mert Döşkaya.

Writing – original draft: Ömer Döndüren, Mert Döşkaya.

Writing – review & editing: Aurélien Mercier, Jean-Benjamin Murat, Marie-Laure Dardé, Adnan Yüksel Gürüz.

References
1. Weiss LM, Kim K. Toxoplasma gondii, The Model Apicomplexan: Perspectives and Methods. Great Britain: Elsevier Ltd; 2007.
2. Dardé ML. Toxoplasma gondii, “new” genotypes and virulence. Parasite. 2008; 15(3):366–71. https://doi.org/10.1051/parasite:200815336 PMID: 18814708
3. Ajzenberg D, Yera H, Marty P, Paris L, Dalle F, Menotti J, et al. Genotype of 88 Toxoplasma gondii isolates associated with toxoplasmosis in immunocompromised patients and correlation with clinical findings. J Infect Dis. 2009; 199(8):1155–1167. https://doi.org/10.1086/597477 PMID: 19265484
4. Delhaes L, Ajzenberg D, Sicot B, Bourgeot P, Dardé ML, Dei-Cas E, et al. Severe congenital toxoplasmosis due to a Toxoplasma gondii strain with an atypical genotype: case report and review. Prenat Diagn. 2010; 30(9):902–905. https://doi.org/10.1002/pd.2563 PMID: 20582922
5. Ajzenberg D, Cogne N, Paris L, Bessières MH, Thuilliez P, Filisetti D, et al. Genotype of 86 Toxoplasma gondii isolates associated with human congenital toxoplasmosis, and correlation with clinical findings. J Infect Dis. 2002; 186(5):684–689. https://doi.org/10.1086/342663 PMID: 12195356
6. Lorenzi H, Khan A, Behnke MS, Namavivam S, Swapna LS, Hadjiyousif M, et al. Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nat Commun. 2016; 7:10147. https://doi.org/10.1038/ncomms10147 PMID: 26738725
7. Shwab EK, Zhu XQ, Majumdar D, Pena HF, Gennari SM, Dubey JP, et al. Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology. 2014; 141(4):453–461. https://doi.org/10.1017/S0031182013001844 PMID: 24477076
8. Bontelli IL, Hall N, Ashelford KE, Dubey JP, Boyle JP, Lindh J, et al. Whole genome sequencing of a natural recombinant Toxoplasma gondii strain reveals chromosome sorting and local allelic variants. Genome Biol. 2009; 10(5):R53. https://doi.org/10.1186/gb-2009-10-5-r53 PMID: 19457243
9. Mercier A, Devillard S, Ngoubangoye B, Bonnabau H, Barfils AL, Durand P, et al. Additional haplogroups of Toxoplasma gondii out of Africa: population structure and mouse-virulence of strains from Gabon. PLoS Negl Trop Dis. 2010; 4(11):e676. https://doi.org/10.1371/journal.pntd.0000676 PMID: 21072237
10. Ai-Kappany YM, Rajendran C, Abu-Elwafa SA, Hiliali M, Su C, Dubey JP. Genetic diversity of Toxoplasma gondii isolates in Egyptian feral cats reveals new genotypes. J Parasitol. 2010; 96(6):1112–1114. https://doi.org/10.1645/GE-2608.1 PMID: 21158618
11. Dubey JP, Pas A, Rajendran C, Kwok OC, Ferreira LR, Martins J, et al. Toxoplasmosis in Sand cats (Felis margarita) and other species in the Breeding Centre for Endangered Arabian Wildlife in the United Arab Emirates and Al Wabra Wildlife Preservation, the State of Qatar. Vet Parasitol. 2010; 172(3-4):195-203. https://doi.org/10.1016/j.vetpar.2010.05.013 PMID: 20570441

12. Saliant H, Weingram T, Spira DT, Eizenberg T. An outbreak of Toxoplasmosis amongst squirrel monkeys in an Israeli monkey colony. Vet Parasitol. 2009; 159(1):24-29. https://doi.org/10.1016/j.vetpar.2008.10.011 PMID: 19019554

13. Wang L, Chen H, Liu D, Huo X, Gao J, Song X, et al. Genotypes and Mouse Virulence of Toxoplasma gondii Isolates from Animals and Humans in China. PLoS One. 2013; 8(1):e53483. https://doi.org/10.1371/journal.pone.0053483 PMID: 23308233

14. Zhou Y, Zhang H, Cao J, Gong H, Zhou J. Isolation and genotyping of Toxoplasma gondii from domestic rabbits in China to reveal the prevalence of type III strains. Vet Parasitol. 2013; 193(1-3):270-276. PMID: 23261088

15. Dubey JP, Huong LT, Lawson BW, Subekti P, Cabaj W, et al. Seroprevalence and isolation of Toxoplasma gondii from free-range chickens in Ghana, Indonesia, Italy, Poland, and Vietnam. J Parasitol. 2008; 94(1):68-71. https://doi.org/10.1645/GE-1362.1 PMID: 18372623

16. Zia-All N, Fazaieel, Khoramizadeh M, Ajzenberg D, Dardé M, Keshavarz-Valian H. Isolation and molecular characterization of Toxoplasma gondii strains from different hosts in Iran. Parasitol Res. 2007; 101(1):111-115. https://doi.org/10.1007/s00436-007-0461-7 PMID: 17333278

17. Chaichan P, Mercier A, Galal L, Mahitthikorn A, Ariey F, Morand S, et al. Geographical distribution of Toxoplasma gondii genotypes in Asia: A link with neighboring continents. Infect Genet Evol. 2017; 53:227-238. https://doi.org/10.1016/j.meegid.2017.06.002 PMID: 28583667

18. Khan A, Dubey JP, Su C, Sibley L, Ajioka JW, Rosenthal BM. Genetic analyses of atypical Toxoplasma gondii strains reveal a fourth clonal lineage in North America. Int J Parasitol. 2011; 41(6):645-655. https://doi.org/10.1016/j.ijpara.2011.01.005 PMID: 21320505

19. Rajendran C, Su C, Dubey JP. Molecular genotyping of Toxoplasma gondii from Central and South America revealed high diversity within and between populations. Infect Genet Evol. 2012; 12(2):359-368. https://doi.org/10.1016/j.meegid.2011.12.010 PMID: 22226702

20. Pena HF, Gennari SM, Dubey JP, Su C. Population structure and mouse-virulence of Toxoplasma gondii in Brazil. Int J Parasitol. 2008; 38(5):561-569. PMID: 17963770

21. Doğşkaya M, Caner A, Ajzenberg D, Değerimenci A, Dardé ML, Can H, et al. Isolation of Toxoplasma gondii strains similar to Africa 1 genotype in Turkey. Parasitol Int. 2013; 62(5):471-474. https://doi.org/10.1016/j.parint.2013.06.008 PMID: 23811201

22. Can H, Doğşkaya M, Ajzenberg D, Özdemir HG, Caner A, İz SG, et al. Genetic characterization of Toxoplasma gondii isolates and toxoplasmosis seroprevalence in stray cats of İzmir, Turkey. PLoS One. 2014; 9(8):e104930. https://doi.org/10.1371/journal.pone.0104930 eCollection 2014. PMID: 25127360

23. The International Union for Conservation of Nature and Natural Resources (IUCN) Red List of Threatened Species. Accession date: 22.03.2018. http://www.iucnredlist.org/
31. Tidy A, Fangelero S, Dubey JP, Cardoso L, Lopes AP. Seropidemiology and risk assessment of Toxoplasma gondii infection in captive wild birds and mammals in two zoos in the North of Portugal. Vet Parasitol. 2017; 235:47–52. PMID: 28215867
32. Gennari SM, Niemeyer C, Soares HS, Musso CM, Siqueira GC, Catão-Dias JL, et al. Seroprevalence of Toxoplasma gondii in seabirds from Abrolhos Archipelago, Brazil. Vet Parasitol. 2016a; 226:50–2. PMID: 27514883
33. Gennari SM, Niemeyer C, Catão-Dias JL, Soares HS, Acosta IC, Dias RA, et al. Survey of Toxoplasma gondii antibodies in Magellanic Penguins (Spheniscus Magellanicus Forster, 1781). J Zoo Wildl Med. 2016b; 47(1):364–6. https://doi.org/10.1638/2015-0103.1 PMID: 27010304
34. Work TM, Verma SK, Su C, Medeiros J, Kaiakapu T, Kwok OC, et al. Toxoplasma gondii antibody prevalence and two new genotypes of the parasite in endangered Hawaiian geese (nene: Branta sandvicensis). J Wildl Dis. 2016; 52(2):253–257. https://doi.org/10.7589/2015-09-235 PMID: 26967138
35. Straub MH, Kelly TR, Rideout BA, Eng C, Wynne J, Braun J, et al. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California. PLoS One. 2015; 10(11):e0143018. https://doi.org/10.1371/journal.pone.0143018 eCollection 2015. PMID: 26607555
36. Barros LD, Taroda A, Zulpo DL, Cunha IA, Sammi AS, Cardim ST, et al. Genetic characterization of Toxoplasma gondii isolates from eared doves (Zenaida auriculata) in Brazil. Rev Bras Parasitol Vet. 2014; 23(4):443–448. https://doi.org/10.1590/S1984-296120140407 PMID: 25517521
37. Vilares A, Gargaté MJ, Ferreira I, Martins S, Júlio C, Waap H, et al. Isolation and molecular characterization of Toxoplasma gondii isolated from pigeons and stray cats in Lisbon, Portugal. Vet Parasitol. 2014; 205(3–4):506–511. https://doi.org/10.1016/j.vetpar.2014.08.006 PMID: 25195193
38. Turčeková Z, Hurníková Z, Spíšák F, Miterpáková M, Chovancová B. Toxoplasma gondii in protected wildlife in the Tatra National Park (TANAP), Slovakia. Ann Agric Environ Med. 2014; 21(2):235–238. https://doi.org/10.5604/1232-1966.1108582 PMID: 24997967
39. Howe L, Hunter S, Burrows E, Roe W. Four cases of fatal toxoplasmosis in three species of endemic New Zealand birds. Avian Dis. 2014; 58(1):171–175. https://doi.org/10.1637/10625-080413-Case.1 PMID: 24758132
40. Gennari SM, Oguzewalska M, Soares HS, Saraiva DG, Pinter A, Labruna MB, et al. Occurrence of Toxoplasma gondii antibodies in birds from the Atlantic Forest, state of São Paulo, Brazil. Vet Parasitol. 2014; 200(1–2):193–197. https://doi.org/10.1016/j.vetpar.2013.10.003 PMID: 24332961
41. Khadmavatian S, Saki J, Yousefi E, Abdizadeh R. Detection and genotyping of Toxoplasma gondii strains isolated from birds in the southwest of Iran. Br Poult Sci. 2013; 54(1):76–80. https://doi.org/10.1080/00079458.2013.763899 PMID: 23444856
42. Huang SY, Cong W, Zhou P, Zhou DH, Wu SM, Xu MJ, et al. First report of genotyping of Toxoplasma gondii isolates from wild birds in China. J Parasitol. 2012; 98(3):681–682. https://doi.org/10.1645/GE-3038.1 PMID: 22263675
43. Cabezon O, Garcia-Bocanegra I, Molina-Lopez R, Marco I, Blanco JM, Hoffe U, et al. Seropositivity and risk factors associated with Toxoplasma gondii infection in wild birds from Spain. PLoS One. 2011; 6(12):e29549. https://doi.org/10.1371/journal.pone.0029549 PMID: 22216311
44. Dubey JP, Choudhary S, Kwok OC, Ferreira LR, Oliveira S, Verma SK, et al. Isolation and genetic characterization of Toxoplasma gondii from mute swan (Cygnus olor) from the USA. Vet Parasitol. 2013; 195(1–2):42–46. PMID: 23394800
45. Dubey JP, Felix TA, Kwok OC. Serological and parasitological prevalence of Toxoplasma gondii in wild birds from Colorado. J Parasitol. 2010; 96(5):937–939. https://doi.org/10.1645/GE-2501.1 PMID: 20950101
46. Aubert D, Ajzenberg D, Richomme C, Gilot-Fromont E, Terrier ME, de Gevigney C, et al. Molecular and biological characteristics of Toxoplasma gondii isolates from wildlife in France. Vet Parasitol. 2010; 171(3–4):346–349. https://doi.org/10.1016/j.vetpar.2010.03.033 PMID: 20417034
47. Utekar I, Hejlicek K, Nezval J, Folk C. Incidence of Toxoplasma gondii in populations of wild birds in the Czech Republic. Avian Pathol. 1992; 21(4):659–665. https://doi.org/10.1080/03079459208418887 PMID: 18670984
48. Szabo KA, Mense MG, Lipscomb TP, Felix KJ, Dubey JP. Fatal toxoplasmosis in a bald eagle (Haliaeetus leucocephalus). J Parasitol. 2004; 90(4):907–908. https://doi.org/10.1645/GE-270R PMID: 15357102
49. Rigoulet J, Hennache A, Lagourette P, George C, Longeart L, Le Net JL, et al. Toxoplasmosis in a bar-shouldered dove (Geopelia humeralis) from the Zoo of Cleres, France. Parasite. 2014; 21:62. https://doi.org/10.1051/parasite/2014062 PMID: 25407506
50. Jokelainen P, Vikøren T. Acute fatal toxoplasmosis in a Great Spotted Woodpecker (Dendrocopos major). J Wildl Dis. 2014; 50(1):117–120. https://doi.org/10.7589/2013-03-057 PMID: 24171576
51. Ferreira FC Jr, Donatti RV, Marques MV, Ecco R, Preis IS, Shivaprasad HL, et al. Fatal toxoplasmosis in a vinaceous Amazon parrot (Amazona vinacea). Avian Dis. 2012; 56(4):774–777. https://doi.org/10.1637/10063-011912-Case.1 PMID: 23397856

52. Yu L, Shen J, Su C, Sundermann CA. Genetic characterization of Toxoplasma gondii in wildlife from Alabama, USA. Parasitol Res. 2013; 112(3):1333–1336. https://doi.org/10.1007/s00436-012-3187-0 PMID: 23160892

53. Karatepe M, Kılıç S, Karatepe B, Babür C. Prevalence of Toxoplasma gondii antibodies in domestic (Columba livia domestica) and wild (Columba livia livia) pigeons in Niğde region, Turkey. Türkiye Parazitol Derg. 2011; 35(1):23–26. https://doi.org/10.5152/tpd.2011.06 PMID: 21618187

54. İnci A, Babür C, Çam Y, İca A. Investigation of Seropositivity of Toxoplasma gondii (Nicolle and Manceaux, 1908) in some Prey Birds. F U Sağlık Bil Derg. 2002; 16(2):177–179.

55. Muz MN, Kılınc O, İşler CT, Altuğ E, Karakavuk M. Molecular diagnosis of Toxoplasma gondii and Neospora caninum in brain tissues of some wild birds. Kafkas Universitesi Veteriner Fakültesi Dergisi. 2014; 21(2), 173–178.

56. Lindsay DS, Collins MV, Mitchell SM, Cole RA, Flick GJ, Wetch CN, et al. Sporulation and survival of Toxoplasma gondii oocysts in seawater. J Eukaryot Microbiol. 2003; 50 Suppl:687–8.

57. Galal L, Ajzenberg D, Hamidović A, Durieux MF, Dardé ML, Mercier A. Toxoplasma and Africa: One Parasite, Two Opposite Population Structures. Trends Parasitol. 2018; 34(2):140–154. https://doi.org/10.1016/j.pt.2017.10.010 PMID: 29174610