COMBINATORICS OF LINE ARRANGEMENTS AND POLYNOMIAL VECTOR FIELDS

by

Benoît Guerville-Balle & Juan Viu-Sos

Abstract. — Let \mathcal{A} be a real line arrangement and $\mathcal{D}(\mathcal{A})$ the module of \mathcal{A}-derivations view as the set of polynomial vector fields which possess \mathcal{A} as an invariant set. We first characterize polynomial vector fields having an infinite number of invariant lines. Then we prove that the minimal degree of polynomial vector fields fixing only a finite set of lines in $\mathcal{D}(\mathcal{A})$ is not determined by the combinatorics of \mathcal{A}.

Résumé (Combinatoire des arrangements de droites et champs de vecteurs polynomiaux)

Soit \mathcal{A} un arrangement de droites réelles et $\mathcal{D}(\mathcal{A})$ le module des \mathcal{A}-dérivations vu comme l'ensemble des champs de vecteurs polynomiaux possédant \mathcal{A} comme ensemble invariant. Nous caractérisons tout d'abord les champs possédant une infinité de droites invariantes. Ensuite, nous démontrons que le degré minimal des éléments de $\mathcal{D}(\mathcal{A})$ laissant invariant uniquement un nombre fini de droites n'est pas déterminé par la combinatorique de \mathcal{A}.

Version française abrégée

Soit $\mathcal{A} = \{L_1, \ldots, L_n\}$ un arrangement de droites. On note $|\mathcal{A}| = n$ le nombre de droites de l’arrangement et $\text{Sing} \mathcal{A}$ l’ensemble des points singuliers de \mathcal{A}, i.e. les points d’intersection des droites. Pour toute droite $L \in \mathcal{A}$, on note $\alpha_L : \mathbb{R}^2 \to \mathbb{R}$ la forme affine associée telle que $L = \ker \alpha_L$ et $\mathcal{Q}(\mathcal{A}) = \prod_{L \in \mathcal{A}} \alpha_L$ son polynôme de définition. On note $\text{Der}_\mathbb{R}(\mathbb{R}[x, y])$ l’algèbre des \mathbb{R}-dérivations de $\mathbb{R}[x, y]$.

Definition 0.1. — Soit \mathcal{A} un arrangement de droites et $\mathcal{Q} = \mathcal{Q}(\mathcal{A}) \in \mathbb{R}[x, y]$ son polynôme de définition. On appelle module des \mathcal{A}-dérivations le $\mathbb{R}[x, y]$-module défini par $\mathcal{D}(\mathcal{A}) = \{ \chi \in \text{Der}_\mathbb{R}(\mathbb{R}[x, y]) \mid \chi \mathcal{Q} \in I_Q \}$, où I_Q est l’idéal engendré par \mathcal{Q}.

Ce module est introduit par H. Terao [6] comme un objet purement algébrique. Sachant que $\text{Der}_\mathbb{R}(\mathbb{R}[x, y])$ coïncide avec les champs de vecteurs polynomiaux du plan, nous donnons une interprétation dynamique de $\mathcal{D}(\mathcal{A})$: les éléments de $\mathcal{D}(\mathcal{A})$ correspondent aux champs de vecteurs du plan ayant \mathcal{A} comme ensemble invariant. C’est ce point de vue que nous utilisons par la suite.

Soit $\mathcal{C}(d)$ le \mathbb{R}-espace vectoriel des coefficients d’une paire de polynômes de degré plus petit que d. On a $\mathcal{C}(d) = \mathbb{R}^{(d+1)(d+2)/2} \oplus \mathbb{R}^{(d+1)(d+2)/2} \simeq \mathbb{R}^{(d+1)(d+2)}$.

2010 Mathematics Subject Classification. — 52C30, 34C07, 34C08.

Partially supported by ANR Project Interlow ANR-09-JCJC-0097-01.
Theorem 0.2 (Structure des champs de vecteurs). — Soit A un arrangement de droites. Pour tout $d \in \mathbb{N}$, l’ensemble $F_d(D(A))$ des champs polynômiaux de degré inférieur ou égal à d laissant A invariant est un sous-espace vectoriel de $\mathcal{C}(d)$.

Theorem 0.3 (Structure des arrangements de droites invariants)

Soit χ un champ de vecteurs polynomial fixé. L’ensemble $F_n(\chi)$ des arrangements à n droites laissés invariants par χ est une sous-variété algébrique de $(\mathbb{R}P^2)^n$.

L’étude d’un arrangement fixé par des dérivations nécessite de caractériser celles qui laissent invariant non seulement l’arrangement fixé mais aussi une infinité de droites. On considère la partition $D(A) = D^\infty(A) \sqcup D^f(A)$ où $D^f(A)$ (resp. $D^\infty(A)$) est le sous ensemble des éléments de $D(A)$ fixant seulement un nombre fini (resp. infini) de droites. On note $D^\infty_d(A) = D_d(A) \cap D^\infty(A)$ et $D^f_d(A) = D_d(A) \cap D^f(A)$, pour $d \in \mathbb{N}$.

Theorem 0.4. — Soit χ un champ de vecteurs polynomial fixant un ensemble infini de droites du plan, alors on est dans l’une des situations suivantes : (i) χ est le champ nul, (ii) χ est central, (iii) χ est parallèle.

Un élément important associé au module $D(A)$ est le degré minimal défini comme suit :

Definition 0.5. — On note $d_f(A)$ le plus petit entier d tel que $D^f_d(A)$ soit non vide.

L’étude de $d_f(A)$ est liée à la conjecture de Terao dans le cas réel. Cette conjecture affirme que la liberté du module des dérivations d’un arrangement A ne dépend que de sa combinatorie $L(A)$. Dans [3] on démontre que:

Theorem 0.6. — Le degré minimal $d_f(A)$ n’est pas déterminé par $L(A)$.

La démonstration est basée sur l’étude des arrangements de Pappus et de Ziegler. Précisément, la paire formée par les arrangements provenant des configurations $(9_3)_1$ et $(9_3)_2$ décrit dans [9] (appelés arrangements de Pappus et non-Pappus, respectivement) permet de montrer que $d_f(A)$ n’est pas déterminé par la combinatorie faible de A, i.e. le nombre de singularités de A et leurs multiplicités. À partir des arrangements de Ziegler [10], on montre l’indépendance de $d_f(A)$ par rapport à la combinatorie forte de A, i.e. $L(A)$.

1. Introduction

Let $A = \{L_1, \ldots, L_n\}$ be a real line arrangement in \mathbb{R}^2. Denote by $|A| = n$ the number of lines of the arrangement and by $\text{Sing } A$ the set of singular points of A, i.e. the intersection points between lines. We define by $L(A) = \{\emptyset \neq L_i \cap L_j \mid L_i, L_j \in A\} \cup A$ the intersection poset of A partially ordered by reverse inclusion of the subsets, which codifies the combinatorial data of A.

The influence of combinatorics of line arrangements over the properties of its realizations into different ambient spaces (as \mathbb{R}^2, \mathbb{C}^2, \mathbb{F}_2^2 and its projectives) was largely studied, e.g. [1], [5], [7]. A classical object is the module of A–derivations of a line arrangement A, denoted by $D(A)$ or the module of logarithmic 1–forms $\Omega^1(A)$ (see [3]).

In this note, we study the relation between A, the poset $L(A)$, and the module $D(A)$. Our approach is first to give a dynamical interpretation of $D(A)$ as the set of polynomial vector fields owning A as invariant set. Using this point of view, we are able to characterize the geometry of the set $D(A)$ (Theorem [3.1] and [3.2]). We introduce the notion of maximal
line arrangement for a given polynomial vector field, to characterize those having an infinite number of invariant lines (Theorem 4.5). Finally, we prove that the minimal degree \(d_f(\mathcal{A})\) of the elements in \(\mathcal{D}(\mathcal{A})\) fixing only a finite set of lines is not determined by the combinatorics of a line arrangement \(\mathcal{A}\) (Theorem 5.2). Related results on polynomial vector fields and lines arrangements can be found from a different point of view in [4] and [8].

2. Line arrangements and vector fields

For a line \(L \in \mathcal{A}\), consider \(\alpha_L : \mathbb{R}^2 \to \mathbb{R}\) an associated affine form such that \(L = \ker \alpha_L\). The defining polynomial of \(\mathcal{A}\) is given by \(\mathcal{Q}(\mathcal{A}) = \prod_{L \in \mathcal{A}} \alpha_L\). Let \(\text{Der}_\mathbb{R}(\mathbb{R}[x,y])\) be the algebra of \(\mathbb{R}\)-derivations of \(\mathbb{R}[x,y]\).

Definition 2.1. — Let \(\mathcal{A}\) be a line arrangement and \(\mathcal{Q} = \mathcal{Q}(\mathcal{A})\) its defining polynomial. The module \(\mathcal{Q}\)-derivations is the \(\mathbb{R}[x,y]\)-module defined by \(\mathcal{D}(\mathcal{A}) = \{ \chi \in \text{Der}_\mathbb{R}(\mathbb{R}[x,y]) \mid \chi \mathcal{Q} \in \mathcal{I}_\mathcal{Q} \}\), where \(\mathcal{I}_\mathcal{Q}\) is the ideal generated by \(\mathcal{Q}\).

Remark 2.2. — From the definition, it is easy to deduce the following characterization by lines \(\mathcal{D}(\mathcal{A}) = \bigcap_{L \in \mathcal{A}} \{ \chi \in \text{Der}_\mathbb{R}(\mathbb{R}[x,y]) \mid \chi \alpha_L \in \mathcal{I}_{\alpha_L} \}\), where \(\mathcal{I}_{\alpha_L}\) is the ideal generated by \(\alpha_L\).

As \(\text{Der}_\mathbb{R}(\mathbb{R}[x,y])\) coincide with polynomials vector fields on the plane, we obtain a dynamical interpretation of \(\mathcal{D}(\mathcal{A})\): the elements of \(\mathcal{D}(\mathcal{A})\) corresponds to the polynomial vector fields admitting \(\mathcal{A}\) as invariant set. In the case of real line arrangements, the required condition for derivations in \(\mathcal{D}(\mathcal{A})\) is equivalent to the definition of algebraic invariant set in complex dynamical systems: a complex algebraic curve \(\mathcal{C} = \{ f = 0 \}\) is invariant by a polynomial vector field \(\chi\) if there exists \(K \in \mathbb{C}[x,y]\) such that \(\chi f = Kf\) (see [2]). We use this point of view in the following.

3. Structure theorems

Let \(\text{Der}_\mathbb{R}(\mathbb{R}_d[x,y]) = \{ \chi = P \partial_x + Q \partial_y \mid \deg P, \deg Q \leq d \}\) and \(\mathcal{F}_d(\mathcal{D}(\mathcal{A})) = \mathcal{D}(\mathcal{A}) \cap \text{Der}_\mathbb{R}(\mathbb{R}_d[x,y])\), defining an ascending filtration of \(\mathcal{D}(\mathcal{A})\) by degree. We denote by \(\mathcal{D}_d(\mathcal{A}) = \mathcal{F}_d(\mathcal{D}(\mathcal{A})) \setminus \mathcal{F}_{d-1}(\mathcal{D}(\mathcal{A}))\) the set of polynomial vector fields of degree \(d\) fixing \(\mathcal{A}\). Consider \(\mathcal{C}(d)\) the \(\mathbb{R}\)-linear space of coefficients of a pair of polynomials of degree less than \(d\). We have \(\mathcal{C}(d) = \mathbb{R}^{(d+1)(d+2)/2} \oplus \mathbb{R}^{(d+1)(d+2)/2} \simeq \mathbb{R}^{(d+1)(d+2)/2}\).

Theorem 3.1 (Structure of polynomial vector fields). — Let \(\mathcal{A}\) be a line arrangement. For each \(d \in \mathbb{N}\), the set \(\mathcal{F}_d(\mathcal{D}(\mathcal{A}))\) is a vector sub-space of the set of coefficients \(\mathcal{C}(d)\).

Theorem 3.2 (Structure of fixed line arrangements). — Let \(\chi\) be a polynomial vector field. The set \(\mathcal{F}_n(\chi)\) of arrangements with \(n\) lines fixed by \(\chi\) is an algebraic sub-variety of \((\mathbb{R}P^2)^n\) (view as the set of the coefficients \(\alpha_i, \beta_i, \gamma_i\) defining the lines of \(\mathcal{A}\)).

These two Theorems are easily deduced from the following Proposition:

Proposition 3.3 (Invariant line). — Let \(L\) be a line of \(\mathbb{R}^2\) defined by the equation \(\alpha x + \beta y + \gamma = 0\), and let \(\chi = P(x,y)\partial_x + Q(x,y)\partial_y\) be a polynomial vector field on \(\mathbb{R}^2\). The line \(L\) is invariant for \(\chi\) if and only if: (i) \(\beta = 0\) and \(P(-\gamma/\alpha, y) = 0\), (ii) \(\beta \neq 0\) and \(\alpha P(\beta y, -\alpha y + \gamma/\beta) + \beta Q(\beta y, -\alpha y + \gamma/\beta) = 0\).
4. Polynomial vectors fields admitting a finite/infinite number of invariant lines

In order to characterize efficiently line arrangements as invariant sets of a vector field, we distinguish them according to finiteness requirements over the set of its invariant lines.

4.1. Finiteness of families of fixed lines. — The first step is to obtain conditions on the finiteness of the family of invariant lines. This leads us to the notion of maximal line arrangement fixed by a polynomial vector field.

Definition 4.1. — Let χ be a polynomial vector field in the plane. We said that a line arrangement A is maximal fixed by χ if for any line $L \subset \mathbb{R}^2$ invariant by χ, then $L \in A$.

Trivial examples of polynomial vector fields in the plane which do not possess a maximal line arrangement are: the null vector field, the “central” vector field $\chi_c = x \partial_x + y \partial_y$ or the “parallel” vector field $\chi_p = (x + 1)\partial_y$. In Theorem 4.4 we prove that derivations which do not admit a maximal fixed arrangement are essentially of these kind.

Definition 4.2. — We said that χ fixes only a finite (resp. an infinite) set of lines if there exists (resp. does not exist) a maximal arrangement fixed by χ.

Let A be a line arrangement, we consider the partition $D(A) = D^\infty(A) \sqcup D^f(A)$ where $D^f(A)$ (resp. $D^\infty(A)$) is the subset of elements in $D(A)$ fixing only a finite (resp. infinite) set of lines. We define $D^\infty_d(A) = D_d(A) \cap D^\infty(A)$ and $D^f_d(A) = D_d(A) \cap D^f(A)$, for $d \in \mathbb{N}$.

Definition 4.3. — A vector field χ is said to be: (i) central if there is a point $(x_0, y_0) \in \mathbb{R}^2$ such that all the vectors $(x-x_0, y-y_0)$ and $(P(x, y), Q(x, y))$ are collinear, (ii) parallel if there is a vector v such that for all $(x, y) \in \mathbb{R}^2$, the vectors $(P(x, y), Q(x, y))$ and v are collinear.

Let $m(A)$ be the maximal multiplicity of singular points of a line arrangement A, and let $p(A)$ be the maximal number of parallel lines of A.

Theorem 4.4. — If $d < \max(m(A) - 1, p(A))$ then $D_d(A) = D^\infty_d(A)$.

Proof. — We decompose this proof in two cases.

First, suppose $d+1 < m(A)$. Up to an affine deformation, we may assume that the singular point P of multiplicity $d+2$ of A is the origin, and that no one of these lines are vertical (i.e. $x = 0$). Let $y = \alpha_i x$ be the $d+2$ lines passing by point P. Proposition 3.3 implies that for all $i \in \{1, \ldots, d+2\}$ we have

$$\alpha_i P(y, -\alpha_i y) + Q(y, -\alpha_i y) = \sum_{n=0}^{d} \left(\sum_{j=0}^{n} \left(\alpha_i a_{n-j,j} + b_{n-j,j} \right)(-\alpha_i)^j \right)y^n = 0,$$

which is equivalent to the system of $(d+2)(d+1)$ equations defined, for all $n \in \{0, \ldots, d\}$ and $i \in \{1, \ldots, d+1\}$, by $E_{q(n,j)} : \sum_{j=0}^{n} \left(\alpha_i a_{n-j,j} + b_{n-j,j} \right)(-\alpha_i)^j = 0$. We regroup them in $d+1$ systems S_n formed by the $d+2$ equations (indexed by i). These equations are polynomial of degree $n + 1$ in α_i. We denote by c_k the coefficient of α^k, that is $c_0 = b_{n,0}$, $c_n = a_{0,n}$ and $c_k = a_{k,n-k} - b_{k-1,n-k+1}$ for $k \in \{1, n-1\}$. If we restrict the system S_n to their $n+2$ first equations, then we remark that the square system in c_k obtained is in fact a Vandermonde system. Since all the α_i are distinct then the system admits a unique solution.
\(c_k = 0\). This implies that \(a_{0,n} = 0, b_{n,0} = 0\) and \(a_{k,d-k} = b_{k-1,d-k+1}\) for \(k \in \{1, d\}\). Thus we have \(yP(x, y) = xQ(x, y)\), which is a central vector field.

In a second case, assume that \(d < p(\mathcal{A})\) thus \(\mathcal{A}\) has at least \(d + 1\) parallel lines. Then, without loss of generality, we may assume that these lines are vertical. By Proposition 3.3 for any fixed \(y\), \(P(x, y) = 0\) for \(d + 1\) distinct values of \(x\), since \(P\) is a polynomial of degree smaller than \(d\). Then \(P(x, y) = 0\) and \(\chi\) fixes all the vertical lines.

4.2. Structure of \(D^\infty(\mathcal{A})\). — In this subsection, we give a characterization of polynomial vector fields fixing an infinity of lines, that is:

Theorem 4.5. — Let \(\chi\) be a polynomial vector field fixing an infinity of lines, then we are in one of the following cases: (i) \(\chi\) is null, (ii) \(\chi\) is central, (iii) \(\chi\) is parallel.

The proof is based on the following lemma, about the number of singular points in an arrangement with a countable infinity of lines.

Lemma 4.6. — Let \(\mathcal{A}_\infty = \{L_1, L_2, L_3, \ldots\}\) be an infinite collection of different lines in the plane, then we have \(\# \text{Sing}(\mathcal{A}_\infty) \in \{0, 1, \infty\}\).

Proof of Theorem 4.5. — Let \(P(x, y)\) and \(Q(x, y)\) be such that \(\chi = P\partial_x + Q\partial_y\). We define \(\mathcal{A}_\infty = \{L_1, L_2, L_3, \ldots\}\) the set (or a subset) of the lines fixed by \(\chi\), and we denoted by \(\alpha_i\) the equation of \(L_i\). Up to now, we assume that we are not in the first case (i.e. \((P, Q) \neq (0, 0))\). The vector field \(\chi\) fixes only a finite number of lines of \(\mathcal{A}_\infty\) point by point. Indeed, \(L_i\) is fixed point by point by \(\chi\) if and only if \(\alpha_i \mid P\) and \(\alpha_i \mid Q\). Since \(P\) and \(Q\) are polynomials then they have finite degree, thus only a finite number of \(\alpha_i\) can divide them. Assume that these lines are \(L_1, \ldots, L_k\). Denote by \(\chi' = P'\partial_x + Q'\partial_y\) the derivation of components \(P' = P/(\alpha_1 \cdots \alpha_k)\) and \(Q' = Q/(\alpha_1 \cdots \alpha_k)\). It is clear that \(\chi\) and \(\chi'\) are collinear vector fields. Thus, if \(\chi'\) is central (resp. parallel) then \(\chi\) is central (resp. parallel). By construction, the set of points fixed by \(\chi'\) (i.e. the common zeros of \(P'\) and \(Q'\)) contain the intersection points of \(\mathcal{A}'_\infty = \mathcal{A} \setminus \{L_1, \ldots, L_k\}\). By Lemma 4.6 we have 3 possible cases: (i) \(\# \text{Sing}(\mathcal{A}'_\infty) = 0\), then all the lines of \(\mathcal{A}'_\infty\) are parallel. By the second part of the proof of Theorem 4.4, \(\chi'\) is a parallel vector field. (ii) \(\# \text{Sing}(\mathcal{A}'_\infty) = 1\), then all the lines of \(\mathcal{A}'_\infty\) are concurrent. By the first part of the proof of Theorem 4.4, \(\chi'\) is a central vector field. (iii) \(\# \text{Sing}(\mathcal{A}'_\infty) = \infty\), then the polynomial \(P'\) and \(Q'\) have an infinity of zero. Which is impossible since \(P'\) and \(Q'\) are non both null.

5. Minimal degree and combinatorics

Definition 5.1. — We denote by \(d_f(\mathcal{A})\) the minimal integer \(d\) such that \(D_d^f(\mathcal{A})\) is not empty.

The study of the number \(d_f(\mathcal{A})\) is related with the study of the Terao’s conjecture in real space, which asks about the influence of combinatorics on the module of derivations of an arrangement when this one is free. In [3] we prove that, in general:

Theorem 5.2. — The minimal degree \(d_f(\mathcal{A})\) is not determined by \(L(\mathcal{A})\).

The proof is composed of two parts. First, we give a purely combinatorial bound for which module of derivations is composed, up to a certain degree, only by derivations fixing a finite family of lines.
Theorem 5.3. — Let \(A \) be an arrangement. For all \(0 < d < \min(|A| - m(A) + 1, |A| - p(A)) \), the sets \(D_d(A) \) and \(D^f_d(A) \) are equal.

Then, we present two explicit counterexamples of line arrangements. As a first pair, we consider the configurations \((9_3)_1\) and \((9_3)_2\) realized in [9], called the Pappus and non-Pappus arrangements and denoted by \(P_1 \) and \(P_2 \) respectively. Both arrangements have the same weak combinatorics (i.e. they share the same number of singularities for each multiplicity).

We know that \(D_4(P_1) \neq 0 \) and \(D_4(P_2) = 0 \), but the previous theorem implies that \(D_4(P_i) = D^f_4(P_i) \) (for \(i = 1, 2 \)) and thus \(d_f(P_1) \neq d_f(P_2) \). The second pair correspond to Ziegler’s arrangement \(Z_1 \) and a small deformation \(Z_2 \), with same strong combinatorics, i.e. \(L(Z_1) \simeq L(Z_2) \). In its paper [10], Ziegler proves that \(D_5(Z_1) \neq 0 \) and \(D_5(Z_2) = 0 \), but the previous theorem implies that \(D_5(Z_i) = D^f_5(Z_i) \) (for \(i = 1, 2 \)) and thus \(d_f(Z_1) \neq d_f(Z_2) \).

Acknowledgements

The authors would like to thank J. Cresson, for the original idea of this paper and all the very helpful discussions and comments. Thanks also to J. Vallès for all his explications about the Terao’s conjecture.

References

[1] Arnold, Vladimir I. *The cohomology ring of the group of dyed braids*. Mat. Zametki, 5:227–231, 1969.

[2] Dumortier, Freddy and Llibre, Jaume and Artés, Joan C. *Qualitative Theory of Planar Differential Systems*. Universitext, Springer, 2006.

[3] Guerville-Ballé, Benoît and Viu-Sos, Juan. *Combinatorics of line arrangements and polynomial vector fields*. In preparation.

[4] Artés, Joan C. and Grünbaum, Branko and Llibre, Jaume. *On the number of invariant straight lines for polynomial differential systems*, volume 184 of Pacific J. Math., 2:207–230 (1998).

[5] Orlik, Peter and Solomon, Louis. *Combinatorics and topology of complements of hyperplanes*, volume 56 of Invent. Math., 2:167–189 (1980).

[6] Orlik, Peter and Terao, Hiroaki. *Arrangements of hyperplanes*, volume 300 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1992.

[7] Rybnikov, Grigori. *On the fundamental group of the complement of a complex hyperplane arrangement*, volume 45 of Funktsional. Anal. i Prilozhen., 2:71–85 (2011).

[8] Sch控minck, Dana and Vulpe, Nicolae. *Planar quadratic differential systems with invariant straight lines of total multiplicity four*, volume 68 of Nonlinear Anal., no. 4:681–715 (2008).

[9] Suciu, Alexander I. *Fundamental groups of line arrangements: enumerative aspects*. (English summary) Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), 43–79, Contemp. Math., 276, Amer. Math. Soc., Providence, RI, 2001.

[10] Ziegler, Günter M. *Combinatorial construction of logarithmic differential forms*. Adv. Math. 76 (1989), no. 1, 116–154. 32C40 (05B35)