Comparison study of fault location on distribution network using PSCAD and DIgSILENT power factory by using matching approaches

Lilik J. Awalin¹, Tasnim², Tay Lea Tien³, Hadi Suyono⁴
¹²Universiti Kuala Lumpur, British Malaysian Institute, Malaysia
³Universiti Sains Malaysia, Malaysia
⁴Department of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya, Indonesia

Article Info
Article history:
Received Apr 2, 2019
Revised Jul 9, 2019
Accepted Aug 1, 2019

Keywords:
DIgSILENT power factory simulation software
Distribution network Fault location Matching approach PSCAD simulation program

ABSTRACT
This paper presents the comparative study between PSCAD and DIgSILENT in order to detect fault location on underground distribution network. If a fault occurs in the distribution network, it will generate the voltage dips and over current. It is possible to record the signal output in the primary substation. However, for the research purpose, some of the researcher may use different simulation program. The simulation program may have different performance to generate voltage and current signal when fault simulated. So, it is important to observe the performance of each simulation software. Due to every simulation software may have different advantages, this paper will observe the accuracy of fault distance calculation based on simulation data on the distribution model and when all types of fault are applied to the different simulation program, namely PSCAD and DIgSilen. The matching approach was adopted to calculate the fault distance. To observe the performance of the simulation program, the distance error calculation for every type of fault are compared. By using a matching approach, the PSCAD simulation program produces more accurate fault distance compare with DIgSILENT. However, it may contribute different result if different method and tested network applied.

Corresponding Author:
Lilik J. Awalin,
Universiti Kuala Lumpur, British Malaysian Institute,
Batu 8, Jalan Sungai Pusu 53100 Gombak, Selangor, Malaysia.
Email: lilik@unikl.edu.my

1. INTRODUCTION
The main objective of an electric power supply is to satisfy the customer requirements with a reasonable assurance of continuity and quality. In order to achieve the required, reliability of power distribution will achieve if normal condition always occurs in the distribution network. However, it is impossible to achieve due to so many factors such as environment or aging of the component which cause the fault. In order to maintain the reliability of the power supply, detection of fault is a very important part. Many researchers have been improved methods and also consider any simulation program to observe the pattern of voltage dips and current swell as reflected in the fault occurrence. In a power system, there are several software that's been used to simulate the power system network in terms of power load flow, short-circuit analysis, protection, reliability and harmonics/power quality.

Some simulation programs have emerged that can be used in research, specifically in the field of electric power. Several simulation programs such as DIgSILENT and PSCAD are simulation programs that are widely used in research. Previous research [1-20] had used PSCAD software and [21-26] utilize DIgSILENT to simulate fault current at Busbar and between subsection lines to estimate fault distance. When
Comparison study of fault location on distribution network using PSCAD and ...

(Lilik J. Awalin)

2. RESEARCH METHOD

Based on the overview of fault location methods, matching approach is one of the methods which claim able to produce the accurate result [3-6]. This method was utilizes voltage and current magnitude to calculate the fault distance. Its value is one of the impact of fault occurrence. A measurement that called data recorded device will measure voltage dips output signal because to fault at the measurement node. As mention it in introduction, matching approach is one of the linear method of fault distance estimation. The basic principle of fault distance formula is determined by assuming that the length between point \(p - q \) is the represent the cable which fault is assumed occur this line of cable. It can illustrate in Figure 1.

![Figure 1. Linier method of fault distance](image-url)
The calculation will be done by finding the shortest distance, \(d_k \), fault distance, \(d_f \), and actual length, \(F_d \).

\[
d_k = \left| \sin \theta_{BC} \times C \right| \quad (1)
\]

\[
d_f = \sqrt{A^2 - d_k^2} \quad (2)
\]

\[
F_d = \left| \frac{d_f \times l_p - q}{B} \right| / B \quad (3)
\]

Where:

\[
\theta_{BC} = \cos^{-1} \left(\frac{B^2 + C^2 - A^2}{2 \times B \times C} \right) \quad (3.5)
\]

\[
A = \sqrt{(\theta_p \text{ (dbase)} - \theta_F \text{ (meas)}^2 + (V_F \text{ (meas)} - V_P \text{ (dbase)})^2}
\]

\[
B = \sqrt{(\theta_p \text{ (dbase)} - \theta_q \text{ (dbase)}^2 + (V_q \text{ (meas)} - V_P \text{ (dbase)})^2}
\]

\[
C = \sqrt{(\theta_F \text{ (dbase)} - \theta_q \text{ (meas)}^2 + (V_q \text{ (meas)} - V_F \text{ (dbase)})^2}
\]

\(l_p-q \) is the length of cable (Km).

The advantage of PSCAD software is able to simulate the dynamic condition of electrical current and voltage during the fault occurrence, such as single phase to ground fault, line to line fault, double line to ground fault and three phase fault. PSCAD provide many models of the components which support to conduct the research, such as PI model of cable, transformer, FFT (Fast Fourier Transform), digital operation, kind of relay and some of electric machines, etc [15]. It consist of two parts which are the basic framework and the user-defined module. The basic framework are components in the library which have the basic function such as power supply, transformer, line or cable, and measurement element. The user-defined consist of the arc grounded model, the ground fault model [20]. Parameters of the tested network are collected such as type of cable, length of cable, load data for each node and input from source and transformer. The source in the system that will be used in this research study is 132kV with frequency 50Hz. Then the voltage will be stepping down to 11kV. A transformer is connected in delta-Wye connection. After that, the parameter value then was inserted into the DIgSILENT simulation software to execute for short circuit analysis. All of the type of fault is injected into the line and Busbar. Then, calculated using matching approach method will be done to obtain the accuracy of fault distance and then compared with the calculation result based on data from PSCAD. Flowchart of the Working Research is shown in Figure 2.

![Flowchart of the Working Research](image)

Figure 2. Flowchart of the Working Research

3. OVERVIEW OF TESTED NETWORK

The tested network, shown in Figure 3, consist of 132kV source and one unit scale down transformer 132kV to 11 kV. The distribution network has 19 loads/nodes which is divided in 3 branches. Single line diagram is presented to describe the tested network. Measurement node were placed close with the transformer or call as primary substation. The actual line are three-phase underground distribution system. The fault simulated on each section or between feeder to feeder points.

Indonesian J Elec Eng & Comp Sci, Vol. 17, No. 1, January 2020 : 78-85
Based on the actual data from Tenaga Nasional Berhad Malaysia, the tested network then was constructed in PSCAD and DIgSILENT software as shown in Figure 4 and Figure 5 respectively. It will to run the short circuit simulation at every line between two nodes. In the PSCAD simulation program. The length of line which have different impedance line values are represent non homogeneous distribution network.

Figure 3. Tested Network

Figure 4. The tested network in PSCAD

Figure 5. The tested network in DIgSILENT
4. RESULTS AND ANALYSIS
In this section, discussions and analysis on accuracy of fault distance will also be explained. The results will cover for each type of fault namely, single line to ground fault, double line fault, double line to ground fault, and three phase to ground fault. The accuracy of fault distance are calculated by considering the differences between the actual fault distance simulated in PSCAD and DIgSILENT and obtain result of fault distance calculation. The the differences result are devided by the total length length of cable. The accuracy of fault distance were simulated at the midpoint for every section.

4.1. Comparison of fault distance based on PSCAD and DIgSILENT simulation Program
A comparison of accuracy based on simulation results from PSCAD and DIgSILENT is discussed in this section. The obtained result from estimation fault distance error for single line to ground fault, line to line fault, double line to ground fault, and three phase fault from both software are presented in the graph. The blue line in the graph represented the values of fault distance error based on PSCAD simulation program. And the red of the dotted line in the Figure 6-8 represented accuracy of fault considering DIgSILENT.

![Figure 6. Estimation error of fault distance for SLGF](image)

The estimation error of fault distance for Single Line to Ground Fault is shows in Figure 6. The obtain result of fault occurs in section 4&5 and 7&8 is having good performance in PSCAD and DIgSILENT software since the section is short distance. The length of the cable for section 4&5 is 0.14km while section 7&8 is 0.2km. The worse performance of fault distance calculation is obtained in section 4&14 and 3&4 for both simulation programs. Both sections were chosen to represent long cable in each subsection which have real length are 1.29km and 1.25km respectively.

![Figure 7. Estimation error of fault distance for LLF](image)

All fault distance calculation result for Line to Line Fault represented in Figure 7. It can be seen that the highest values of estimation error are between section 3&4 while the lowest is between section 4&5. The
fault distance error in the PSCAD software for section 3&4 is 3.0417095%, while for section 4&5 is 0.396686%. It shows some difference value from DiGSIENT software which is 6.370873% for section 3&4 and 0.406551% for section 4&5. From the graph, the other sections obtained slightly similar result for fault distance error when line to line fault occur in the tested network. The error obtained is higher because the section has the longest cable between the node 3 and 4 which is 1.25km.

![Figure 8. Estimation error of fault distance for DLGF](image)

Figure 8 illustrates the estimation error fault distance for Double Line to Ground Fault. The result shows that the percentage error of fault distance in DiGSIENT occurs in line 4&14 is the highest since the cable between line 4&14 is the length which is 1.29km. Meanwhile, in PSCAD software shows that the highest fault distance error happens at line 3&4 where it also has the longest cable lie between node 3 and 4 which is 1.25km. In case the blue line doesn’t appear, it due to the result based on DiGSIENT and PSCAD are same. When the double line to ground fault occur, the shortest fault distance error will happen in line 4&5. This is because the line has very short cable compare to the other subsection in the tested network.

Figure 9 shows that the result obtained from PSCAD and DiGSIENT for three phase to ground fault. It can be seen that PSCAD and DiGSIENT did not have so much different when the three phases to ground fault occur. From the Figure 9, it can be seen that the highest fault distance error occur at line 3&4 and 4&14. Both lines have the longest cables in the tested distribution network. It shows that the percentage error is having effect mostly on the length of cable which have the long distance from the substation.

![Figure 9. Fault distance error for each section for three phases to ground fault](image)

Generally, most of the percentage of fault distance error is less than 5%. It is mean that the error for both simulation software is acceptable. Based on length of line/cable of the tested network, the longer length will obtain a higher error while the shorter length will obtain less error. To be compared from both software, DiGSIENT obtained small value of error than PSCAD. Thus, DiGSIENT software is more accurate than PSCAD.
5. CONCLUSION

This paper was addressed the comparative study on fault distance calculations by using different simulation program namely, PSCAD and DiGSIILENT. Based on voltage and current which generated by PSCAD and DiGSIILENT simulation program, the values submitted to the formulation of fault distance. The formulation from matching approach was adopted to calculate the fault distance. The obtain result shows that the performance of the percentage error of fault distance by using PSCAD and DiGSIILENT are acceptable. However, the accuracy of fault distance for every type of fault has a different result. The percentage error from DiGSIILENT gives smaller value than PSCAD for SLGF, DLGF and three phases to Ground Fault. However, different performance of accuracy is shown for LLF. In this type of fault, consideration of PSCAD simulation program generates better accuracy than DiGSIILENT. Generally, this work have been successfully generate various accuracy of fault distance based on different simulation program namely PSCAD and DiGSIILENT.

ACKNOWLEDGEMENTS

The authors would like to express appreciation for the support from the Universiti Kuala Lumpur, British Malaysian Institute through research grant of UniKL/CoRI/str17073.

REFERENCES

[1] Awalin, L. J., et al. "A Novel of Fault Localization Method to Determine Fault Distance for Single Line to Ground Fault in the Distribution Network." Applied Mechanics and Materials, Vol. 785, Trans Tech Publications, 2015.

[2] Girgis, Adly A., Christopher M. Fallon, and David L. Lubkeman. "A fault location technique for rural distribution feeders." IEEE Transactions on Industry Applications 29.6 (1993): 1170-1175

[3] Mokhlis, H., et al. "A comprehensive fault location estimation using voltage sag profile for non-homogenous distribution networks." International Review of Electrical Engineering 5.5 (2010): 2310-2316.

[4] Mokhlis, H., et al. "Fault location estimation method by considering measurement error for distribution networks." International Transactions on Electrical Energy Systems 24.9 (2014): 1244-1262.

[5] Li, Haiyu, Ahmad S. Mokhar, and Nick Jenkins. "Automatic fault location on distribution network using voltage sags measurements." CIRED 2005-18th International Conference and Exhibition on Electricity Distribution. IET, 2005

[6] Awalin, Lilik Jamilatul, Hazlie Mokhlis, and A. H. A. Halim. "Improved fault location on distribution network based on multiple measurements of voltage sags pattern." 2012 IEEE International Conference on Power and Energy (PECon). IEEE, 2012.

[7] R. H. R. Salim, M. Filomena, A. D. Rezende Caiño de Oliveira, K. Bretas, A. S., "Extended Fault-Location Formulation for Power Distribution Systems," Power Delivery,IEEE Transactions on, vol. 24, pp. 508-516, 2009.

[8] H. X. Fengling, Yu. Al-Dabbagh, M. Yi, Wang, "Locating Phase-to-Ground Short-Circuit Faults on Radial Distribution Lines," Industrial Electronics, IEEE Transactions on, vol. 54, pp. 1581-1590, 2007

[9] Mustapha, Abdul Hadi Bin Mustapha, et al. "Fault location identification of double circuit transmission line using discrete wavelet transform, Indonesian Journal of Electrical Engineering and Computer Science (IJEECS) 15.3 (2019): 1356-1365.

[10] Hashim, Mimi Nurzilah, Muhammad Khussairi Osman, Mohammad Nizam Ibrahim, Ahmad FaridAbidin, and Ahmad Asri Abd Samat. "A comparison study of learning algorithms for estimating fault location." Indonesian Journal of Electrical Engineering and Computer Science (IJEECS) i 6 (2017): 464-472.

[11] H. K. K. Abolfazl Jalilvand, Hadi Fotoohabadi, "High Impedance Fault Detection Using Duffing Oscillator and FIR Filter," International Review of Electrical Engineering, vol. 5.p, 10, 2010.

[12] Hashim, Mimi Nurzilah, Muhammad Khussairi Osman, Mohammad Nizam Ibrahim, Ahmad FaridAbidin, and Ahmad Asri Abd Samat. "A comparison study of learning algorithms for estimating fault location." Indonesian Journal of Electrical Engineering and Computer Science (IJEECS) 6 (2017): 464-472.

[13] Karupiah, S., et al. "Prediction of overcurrent relay miscoordination time using artificial neural network." Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)14.1 (2019): 319-326

[14] DiGSIILENT Power Factory, Version 14.1 User's manual online edition. Gomaringen, Germany,2011.

[15] Monitiba HVDC Research Centre "PSCAD/EMTDC: Electromagnetic Transients Program Including DC Systems, 1994.

[16] Awalin, Lilik Jamilatul, Hazlie Mokhlis, and AH Abu Bakar. "Recent developments in fault location methods for distribution networks." Przegląd Elektrotechniczny 88, no. 12 A (2012): 206-212.

[17] Saha, Murari Mohan, et al. "Review of fault location techniques for distribution systems." Power systems and communications infrastructures for the future, Beijing (2002).

[18] Goh, Hui Hwang, Sy yi Sim, Mohammad Amirul Hafiz Mohamed, Abdul Khairi Abdul Rahman, Chin Wan Ling, Qing Shi Chua, and Kai Chen Goh. "Fault Location Techniques in Electrical Power System: A Review." Indonesian Journal of Electrical Engineering and Computer Science (IJEECS) 8, no. 1 (2017): 206-212.
Comparison study of fault location on distribution network using PSCAD and ... (Lilik J. Awalin)