Extending the Southern Shore of the Island of Inversion to ^{28}F

A. Revel, O. Sorlin, F. M. Marqués, Y. Kondo, J. Kahlib, T. Nakamura, N. A. Orr, F. Nowacki, J.-A. Tostevin, C.-X. Yuan, N. L. Achouri, H. Al Falou, L. A. Aumann, H. Baba, K. Boretzky, C. Caesar, D. Calvet, H. Chae, N. Chiga, A. Corsi, H. L. Crawford, F. Delaunay, A. Delbart, Q. Deshayes, Z. Dombrádi, C. A. Douma, Z. Elekes, P. Fallon, I. Gašparić, J.-M. Gheller, J. Gibelin, A. Gillibert, M. N. Harakeh, A. Hirayama, C.R. Hoffman, M. Holl, A. Horváth, Á. Horváth, J.-W. Hwang, T. Isobe, N. Kalantar-Nayestanaki, S. Kawase, S. Kim, K. Kisamori, T. Kobayashi, D. Körper, S. Koyama, I. Kuti, V. Lapoux, S. Lindberg, S. Masuoka, J. Mayer, K. Miki, T. Murakami, M. Najafi, K. Nakano, N. Nakatsuka, T. Nilsson, A. Obertelli, D. Oliveira Santos, H. Otsu, T. Ozaki, V. Panin, S. Paschalidis, D. Rossi, A.T. Saito, T. Saito, M. Sasano, H. Sato, Y. Satou, H. Scheit, F. Schindler, P. Schrock, M. Shikata, Y. Shimizu, H. Simon, D. Sohler, L. Stuhl, S. Takeuchi, M. Tanaka, M. Thoennessen, H. Törnqvist, Y. Togano, T. Tomai, J. Tsucheschnier, J. Tsubota, T. Uesaka, Z. Yang, M. Yasuda, and K. Yoneda

(SAMURAI21 collaboration)

1 Grand Accélérateur National d’Îons Lourds (GANIL), CEA/DRF-CNRS/IN2P3, 14076 Caen, France
2 LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 CAEN Cedex, France
3 Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
4 Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
5 RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
6 Université de Strasbourg, IPHC, 23 rue de Loess 67037 Strasbourg, France
7 CNRS, UMR7178, 67037 Strasbourg, France
8 Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
9 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
10 Lebanese University, Beirut, Lebanon
11 GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
12 Irfu, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
13 IBS, 55, Expo-ro, Yuseong-gu, Daejeon, Korea, 34126
14 Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
15 Institute of Nuclear Research, Atomki, 4001 Debrecen, Hungary
16 KVI-CART, University of Groningen, Zernikelaan 25, 9747 AA Groningen, The Netherlands
17 Ruder Bošković Institute, HR-10002 Zagreb, Croatia
18 Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
19 Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
20 Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
21 Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Fukuoka, 816-8580 Japan
22 Department of Physics, Tohoku University, Miyagi 980-8578, Japan
23 University of Tokyo, Tokyo 1130033, Japan
24 Institutionen för Fysik, Chalmers Tekniska Högskola, 412 96 Göteborg, Sweden
25 Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
26 Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany
27 National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
28 Department of Physics, Kyoto University, Kyoto 606-8502, Japan
29 Department of Physics, Osaka University, Osaka 560-0043, Japan

(Dated: April 3, 2020)

Detailed spectroscopy of the neutron-unbound nucleus ^{28}F has been performed for the first time following proton/neutron removal from $^{28}\text{Ne}/^{28}\text{F}$ beams at energies around 230 MeV/nucleon. The invariant-mass spectra were reconstructed for both the $^{27}\text{F}^*(ν)+n$ and $^{28}\text{F}^*(ν)+2n$ coincidences and revealed a series of well-defined resonances. A near-threshold state was observed in both reactions and is identified as the ^{28}F ground state, with $S_n(^{28}\text{F}) = -199(6)$ keV, while analysis of the $2n$ decay channel allowed a considerably improved $S_n(^{28}\text{F}) = 1620(60)$ keV to be deduced. In comparison with shell-model predictions and eikonal-model reaction calculations have allowed spin-parity assignments to be proposed for some of the lower-lying levels of ^{28}F. Importantly, in the case of the ground state, the reconstructed $^{27}\text{F}+n$ momentum distribution following neutron removal from ^{28}F indicates that...
Introduction.—The study of nuclei located at the neutron dripline, beyond which they are no longer bound with respect to neutron emission, has become possible due to significant technological developments in high-intensity neutron-rich beams and high-efficiency detection arrays [1]. Despite these advances, the neutron dripline is only accessible experimentally for light nuclei ($Z \lesssim 10$) [2], and even in this region it remains a theoretical challenge to predict it [23]. Models incorporating the effect of three-nucleon forces [4, 5] have led to a better reproduction of the dripline. However, the effect of the continuum, which can drastically change the shell structure [7, 8], is not taken into account except for lighter nuclei [1]. The comparison between the isotopic chains of carbon, nitrogen and oxygen on the one hand, and of fluorine on the other, is particularly interesting: the dripline is only accessible experimentally for light nuclei (high-intensity neutron-rich beams and high-efficiency detection arrays [3]). Despite these advances, the neutron dripline is only accessible experimentally for light nuclei ($Z \lesssim 10$) [2], and even in this region it remains a theoretical challenge to predict it [23]. Models incorporating the effect of three-nucleon forces [4, 5] have led to a better reproduction of the dripline. However, the effect of the continuum, which can drastically change the shell structure [7, 8], is not taken into account except for lighter nuclei [1]. The comparison between the isotopic chains of carbon, nitrogen and oxygen on the one hand, and of fluorine on the other, is particularly interesting: the dripline is located at $N = 16$ for the former, while the fluorine chain extends to $N = 22$ (31F [2]). The reason for this, however, is not fully understood.

In the fluorine chain, the odd neutron-number 28,30F isotopes are unbound, as they lack the extra binding energy provided by pairing. Christian et al. [10] found that 28F is unbound by 220(50) keV, and based on the agreement with the predictions of USDA/USDB shell-model calculations 28F was placed outside the “Island of Inversion” (IoI) [11]. This means that the ground state of 28F could be described by a particle-hole configuration ($\pi 0d_{5/2} \otimes \nu 0d_{5/2}^{1/2}$) with respect to an unbound core of 28O, forming a multiplet of $J^z = 1^+ - 4^+$ states in 26F [12, 13]. On the other hand, the relatively low energies of the first excited states in 28F were below the 26F gap, and the $\pi 0d_{5/2} \otimes \nu 1p_{3/2}$ coupling, should appear at low energy.

The location of the dripline in fluorine at $N = 22$ suggests a profound change in shell structure around doubly-magic 24O [15–17]. A direct experimental signature of these changes can be found in the evolution of the energies of the $3/2^+$, $7/2^-$ and $3/2^-$ states, arising from the neutron $0d_{3/2}$, $0f_{7/2}$ and $1p_{3/2}$ orbits, in the $N = 17$ isotones from $Z = 14$ to 10 (Fig. 3 of [18]). In 31Si, the spacing between the ground $3/2^+$ and the $7/2^-$ states, which is linked to the size of the $N = 20$ gap, is 3.2 MeV, and the $3/2^-$ state lies 0.5 MeV above the $7/2^-$. In 27F, the $3/2^- - 7/2^-$ gap is reduced to 2 MeV, and the $3/2^-$ level moves below the $7/2^-$ state, only 0.8 MeV above the $3/2^+$ g.s. [19, 21]. In 29Ne, the $3/2^-$ intruder state becomes the ground state [22]. This migration of levels has been suggested to be due to the hierarchy of the $p-n$ forces present above 24O [15], and in particular to the central and tensor components 23 [22].

This Letter reports on the first detailed spectroscopic study of 28F, which has been carried out using proton and neutron removal from high-energy 29Ne and 29F beams, respectively. In the former reaction, the 29Ne neutron configuration will remain unchanged and negative-parity states are expected to be populated at low energy in 28F through the removal of a $0d_{5/2}$ proton. Neutron removal, however, can lead to both positive- and negative-parity levels in 28F depending on the degree to which intruder (2$p2h$ and beyond) configurations are present in 29F. This study was possible owing to the high luminosity provided by a thick liquid H$_2$ target and the relatively intense secondary beams, coupled with state-of-the-art arrays for the detection of the high-energy neutrons and charged fragments and of the de-excitation γ-rays. The results indicate that 28F, and most probably 29F, lie within the IoI, and also suggest that 29O is not doubly magic.

Experimental setup.—The experiment was performed at the Radioactive Isotope Beam Factory (RIBF) of the RIKEN Nishina Center. Secondary beams of 29Ne (~ 8.1 kHz, 228 MeV/nucleon) and 29F (~ 90 Hz, 235 MeV/nucleon) were produced by fragmentation of a 345 MeV/nucleon 48Ca beam (500 pA) on a 15-mm-thick Be target, and prepared using the BigRIPS fragment separator [24–27]. Secondary beam particles were identified via their energy loss and time of flight as measured using thin plastic scintillators, and tracked on to the object point of the SAMURAI spectrometer [28] using two sets of multi-wire drift chambers, where the MINOS target [29] was located. The latter consisted of a 15cm-thick liquid-hydrogen cell surrounded by a time-projection chamber, that allowed the reconstruction of the reaction vertex with a precision of 3 mm (sigma) in the beam direction using the intersection between the trajectory of the incoming beam and the measured track(s) of the outgoing proton(s) for the (p, pn) and $(p, 2p)$ reactions. The DALI2 NaI array [30] surrounded the target for the detection of the in-flight de-excitation of fragments (with an efficiency of $\varepsilon_r \sim 15\%$ at 1 MeV).

The beam-velocity reaction products were detected in the forward direction using the SAMURAI setup, including the NEBULA [31] and NeuLAND demonstrator [32] neutron arrays, placed respectively some 14 and 11 m downstream of the target. The SAMURAI superconducting dipole magnet [33], with a central field of 2.9 T and a vacuum chamber equipped with thin exit windows [34], provided for the momentum analysis of the charged fragments. Their trajectories and magnetic rigidity were de-
FIG. 1: Left: relative-energy spectra of the 27F+n system populated from the reactions (a) 29Ne(−1p) and (b) 29F(−1n). Right: same for the 28F+2n system populated from (e) 29Ne(−1p) and (f) 29F(−1n). The fit in red corresponds to a sum of resonances (blue, with the resonance energy in keV) plus a non-resonant distribution (dashed black). Center: same as left, obtained in coincidence with the 915 keV excited state of 27F (after background subtraction) populated from (c) 29Ne(−1p) and (d) 29F(−1n). The energy axis E on the top right is given with respect to $S_n(^{28}$F), and orange dots mark resonances in coincidence with the corresponding fragment γ-rays (see Fig. 2).

determined using drift chambers at the entrance and exit of the magnet [28]. This information, combined with the energy loss and time of flight measured using a 24-element plastic scintillator hodoscope, provided the identification of the projectile-like fragments. The neutron momenta were derived from the time of flight, with respect to a thin plastic start detector positioned just upstream of the target, and the hit position as measured using the NEBULA and NeuLAND arrays [33], with efficiencies of $\varepsilon_n \sim 50\%$ and $\varepsilon_{nn} \sim 10\%$ for decay energies of 0–3 MeV.

Energy spectra.— The relative energy (E_{rel}) of the unbound 28F system was reconstructed from the momenta of the 26,27F fragments and neutron(s) [33]. The 28F+n spectra for both reactions are shown on the left of Fig. 1. The resolution is considerably improved compared to previous studies of neutron-unbound systems [10, 36], owing to the high-granularity NeuLAND array as well as the MINOS target. The resolution of $E_{rel}(^{27}$F+n) varied as $\text{FWHM} \sim 0.18 E_{rel}^{0.63}$ MeV. In order to deduce the character of resonances in 29F, the spectra were described using single-level R-matrix line-shapes [37], which were used as the input for a complete simulation of the setup (including the beam characteristics, the reaction, and the detector resolutions and acceptances), combined with a non-resonant component obtained from event-mixing [38, 39] and from the simulation of independent fragments and neutrons, respectively for the two- and three-body spectra. The results of the fit are listed on the figure and summarized in Ref. [40].

The energy spectra of Fig. 1a,b, from the 29Ne(−1p) and 29F(−1n) reactions, exhibit a lowest-lying resonance with a width of $\Gamma = 180(40)$ keV at respectively 204(16) and 198(6) keV above threshold, without any coincident γ-ray. The weighted mean, 199(6) keV, provides therefore a determination of the g.s. energy of 29F (S_n). This is compatible with the less precise value of 220(50) keV from Ref. [10] using the 29Ne(−1p) reaction. As shown in Fig. 1a, we observe a second peak in the (−1p) channel at 363(17) keV, which is in coincidence with the 915(12) keV transition (inset of Fig. 1b) from the decay of the excited state of 27F [14]. As such, the resonance lies at the sum energy of 1278(21) keV above threshold. As this value matches the energy of the fourth peak at 1280(30) keV, we propose that the 1280 keV state, populated in 29Ne(−1p), decays both to the ground and first-excited states of 27F, with corresponding branching ratios of 60% and 40%. The 2810 keV resonance is also observed in coincidence with the 915 keV γ-ray. It is thus placed at an energy of 3725 keV (Fig. 2). Three other resonances identified in Fig. 1a at 940, 1840 and 3660 keV are also placed in Fig. 2.

The spectrum of Fig. 1b, obtained from 29F(−1n) displays three clear resonances, including the g.s. (see above). The resonance at 996(13) keV does not fully match the 940(20) keV observed in the (−1p) reaction. We thus propose that they correspond to two different states, as shown in Fig. 2. Given the uncertainties, the 1880(80) and 1840(30) keV resonances observed in both reactions can correspond to the same state. If we require a coincidence with the 915 keV γ-ray of
one can see in Fig. 1(d) the two resonances at 406(28) and 3180(260) keV plus an additional structure at 1200(80) keV, corresponding therefore respectively to levels at 1321, 4095 and 2115 keV (Fig. 1). Note that the 406(28) keV resonance overlaps with that at 363(17) keV, which was proposed to decay in competition with the 1280(30) keV transition in the (−1p) channel with similar intensities. However, as the fit of the (−1n) data does not allow the placement of a 1280(30) keV resonance with the required intensity, we propose that the 363(17) and 406(28) keV transitions come from the decay of different states located respectively at 1280 and 1321 keV. Finally a resonance is placed at 3980 keV.

Resonances in 28F decaying by 2n emission have been identified after applying cross-talk rejection conditions to the 20F+2n events. As can be seen in Fig. 1(e,f), the lowest-lying peak produced in both the (−1p) and (−1n) reactions has compatible energies of respectively $E_{rel} = 245(32)$ and $227(88)$ keV. The states observed in the 2n decay correspond to excitation energies of $E_{rel} + S_{n}(27F)$, when referenced to the 28F g.s., or to an excitation energy of $E_{rel} + S_{2n}(28F)$. According to AME2016 [42], the uncertainty on $S_n(27F) = 1270(410)$ keV is large, which also influences the present determination of $S_{2n}(28F)$, making the placement of the resonances very uncertain.

However, we first note that the two low-energy resonances are, as for the 1840 and 1880 keV resonances in the $^{27\text{F}}+\text{n}$ decay, produced in both reactions. Second, they have compatible intrinsic widths [10], independent of the decay mode. Third, the ratios between the 245 and 1840 keV resonances in (−1p), and the 227 and 1880 keV resonances in (−1n), are the same (∼10%). This suggests that they all originate from a single state at ∼1860 keV, that decays both by 1n and 2n emission. Excellent agreement between the 1n and 2n decay spectra is obtained using $S_n(27F) = 1620(60)$ keV and $S_{2n}(28F) = 1420(60)$ keV, the latter being deduced from the present determination of $S_n(28F)$. A summary of all the levels identified is reported in Fig. 2.

Momentum distributions.—In the (−1n) reaction, the reconstructed momentum distribution of the $^{27\text{F}}+\text{n}$ system allows the orbital angular momentum of the removed neutron to be deduced [14]. The transverse-momentum distribution corresponding to the feeding of the 28F g.s. is fitted in Fig. 3(a) with eikonal-model calculations [15,16] using a combination of $\ell = 1, 3$ components. This choice of negative-parity ℓ values is guided by the fact that the g.s. is also produced in the $^{29}\text{Ne}(−1\text{n})$ reaction, which, as discussed earlier, is expected to lead to negative-parity states at low E_{rel}. The fit, which gives a spectroscopic factor of $C^2S = 0.40(6)$, is dominated by the $\ell = 1$ component (70%), meaning that the g.s. of 28F is mainly composed of an intruder p-wave component.

The momentum distribution of the resonance at 406 keV, Fig. 3(b), is obtained after gating on the 915 keV γ-ray transition. It is well reproduced by a pure $\ell = 2$ component, meaning that the parity of the 1321 keV state is positive, with $C^2S = 0.012(4)$. In order to account for its highly favored 1n decay through the $1/2^+$ excited state of 27F, rather than to the $5/2^+$ g.s. despite the higher energy available, we propose that it has $J^\pi = 1^+$. Indeed, this would result in an $\ell = 0$ neutron decay to the excited state, as opposed to an $\ell = 2$ decay to the ground state. Other (higher) spin values would not account for such a unique behavior. For the resonance at 996 keV, the momentum distribution, Fig. 3(c), is very well reproduced by an admixture of $\ell = 2$ (72%) and $\ell = 0$ (28%), making it another candidate for a positive-parity state, with $C^2S = 0.30(4)$.

As for the (−1p) reaction, the four most populated states, with energies 204, 940, 1280 and 1840 keV, all display momentum distributions compatible with $\ell = 2$ proton removal from the $d_{5/2}$ orbital, with C^2S of respectively 0.20(3), 0.46(7), 0.50(8) and 0.22(4), summing up to about 1.4, as compared to the maximal expected occupancy of 2 for the $d_{5/2}$ orbital in 29Ne.

Shell-model calculations.—These have been performed using the $sdpf-u$-mix interaction [14] in order to predict the energy, J^π (Fig. 2 right) and C^2S values of negative- and positive-parity states in 28F. In order to assess the sensitivity to the level scheme, the $sdpf-mu$ interaction [53] has also been used. The $sdpf-u$-mix interaction has been refined in order to reproduce the observed 3/2− and 7/2− level crossing and location of the pf intruder
orbits in 27Ne, 29Mg and 31Si, and the dripline at 31F.

Both calculations predict about 15 negative- and positive-parity states below 2 MeV, demonstrating that the normal and intruder configurations in 28F are very close in energy. The first 10 states have relatively pure configurations (60–80%) mostly originating from the proton 0d$_{5/2}$ and neutron 0d$_{3/2}$ and 1p$_{3/2}$ orbits, with the exception of the 5– and 6– levels that arise from a neutron in the 0f$_{7/2}$ orbit. The π0d$_{5/2}$ ⊗ ν1p$_{3/2}$ and π0d$_{5/2}$ ⊗ ν0d$_{3/2}$ couplings lead to a multiplet of $J = 1–4$ states with negative and positive parity, respectively.

The calculations predict that four negative-parity states $J^\pi = (4, 2, 1, 3)^-$ are mainly populated in the ($-1p$) reaction with dominant $\ell = 1$ components and C^2S values of 0.75, 0.44, 0.35 and 0.19, in rather good agreement with experiment. We thus think we have populated this multiplet of states. Among them, a $J^\pi = 4^-$ g.s. is predicted by both calculations, with Γ of about 180 keV, in agreement with experiment. Using similar arguments, the 940 keV state is proposed to be $J^\pi = 2^-$. The 1^- level is predicted to decay both to the ground (5/2$^+$) and first-excited (1/2$^+$) states of 27F with $\ell = 1$, and could correspond to the state identified at 1280 keV. As it has the highest energy in both calculations, the 1840-keV resonance is tentatively assigned as $J^\pi = 3^-$. In the ($-1n$) reaction, the 4^- g.s. is calculated to be the most populated among other negative-parity states with $C^2S = 0.36$, coming mostly (90%) from an $\ell = 1$ removal, to be compared with $C^2S = 0.40(6)$, with 79% of $\ell = 1$ fraction. As for the positive-parity states, produced only in the ($-1n$) reaction, both the $sd|pf-u-mix$ interaction predicts the lowest state as $J^\pi = 3^+$ with $C^2S = 0.54$, in reasonable agreement with the 996 keV state with $C^2S = 0.30(4)$. The 1^+ state is predicted to decay principally to the first excited state of 27F with $\ell = 0$, making the 1321 keV state a good $J^\pi = 1^+$ candidate. The calculated C^2S value of the 1^+ state, 0.31, is however much larger than experiment.

The first positive-parity states are predicted too low in energy, which could be explained by effects of the continuum (not taken into account explicitly in the present calculations) that change the effective two-body matrix elements [13, 14] and induce lingering of the $\ell = 1$ states compared to $\ell = 2$ [5]. Another feature that could be related to the effects of the continuum, discussed in Ref. [7], as an apparent reduction of pairing, is the damping of the $|S_n(N) - S_n(N + 1)|$ amplitude when approaching the dripline. While these amplitudes are correctly reproduced in lighter ($N \leq 16$) fluorine isotopes by the present calculations, our experimental $S_n(27F) - S_n(28F)$ value of 1.82(6) MeV is significantly smaller than the predicted 2.8 MeV.

Conclusions.— In summary, detailed spectroscopy of 28F has been undertaken using nucleon removal from secondary beams of 29F and 29Ne, with statistics orders of magnitude higher than the previous study and unprecedented energy resolution. This was made possible through the unique combination of a thick liquid target and state-of-the-art arrays for the detection of high-energy neutrons and charged fragments, as well as deexcitation γ-rays. They proved essential to cope with the high density of states in 28F and allowed the identification of the $1n$ and $2n$ decay modes, including transitions to bound excited states of 26,27F. In addition to making comparisons with shell-model calculations, the 28F transverse-momentum distributions following neutron removal, combined with eikonal-model calculations, allowed the ℓ configuration of the removed neutron to be deduced.

The 28F g.s. resonance was unambiguously identified, with $S_n(28F) = -199(6)$ keV. It has a negative parity with an $\ell = 1$ content of about 80%, which places 28F inside the IoI. Based on the comparison to shell-model calculations of the decay patterns, resonance widths and C^2S values, we propose that the multiplet of $J^\pi = (1–4)^-$ states originating from the π0d$_{5/2}$ ⊗ ν1p$_{3/2}$ configuration has been identified. The first positive-parity resonance (3^+) is proposed at 996 keV, about 560 keV higher than shell-model predictions. A candidate for a $J^\pi = 1^+$ resonance is proposed at 1321 keV. As opposed to 28F, that has well-identified positive-parity states from $p-n$ configurations above a doubly-magic 24O core, 28F displays mixed negative- and positive-parity states, with the negative-parity states being more bound. These features strongly suggest that $N = 20$ magicity is not restored at 28O. Moreover, the single-neutron removal, including the strong $\ell = 1$ feeding of the negative-parity 28F g.s., supports the suggestion, based on mass measurements, that 29F also lies within the IoI [57].

Finally, we propose a very precise value of $S_n(27F) = 1620(60)$ keV, as compared to the tabulated value of 1270(410) keV, which combined with $S_n(28F) = -199(6)$ keV leads to a reduced oscillation in the S_n values of about 35% at the dripline, as compared to shell-
model calculations. This damping in the oscillations has also been recently observed in the boron isotopic chain \[39\], suggesting that a reduced pairing force may be a generic feature of dripline nuclei.

We thank M. Ploszajczak for fruitful discussions, and the accelerator staff of the RIKEN Nishina Center for their efforts in delivering the intense \(^{48}\)Ca beam. N.L.A., F.D., J.G., F.M.M. and N.A.O. acknowledge partial support from the Franco-Japanese LIA-International Associated Laboratory for Nuclear Structure Problems as well as the French ANR-14-CE33-0022-02 EXPAND. J.A.T. acknowledges support from the Science and Technology Facilities Council (U.K.) grant No. ST/L005743/1. I.G. was supported by HIC for FAIR and Croatian Science Foundation under projects No. 1257 and 7194. Z.D., Z.E. and D.S. were supported by projects No. GINOP-2.3.3-15-2016-00034 and K128947, and I.K. by project No. PD 124717. J.K. acknowledges support from RIKEN BNL Research Center and the accelerator staff of the RIKEN Nishina Center for high-energy physics. This project was funded in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project-ID 279384907, SFB 1245, and the GSI-TU Darmstadt cooperation agreement.

[1] T. Nakamura et al., Prog. Part. Nucl. Phys. 97, 53 (2017).
[2] D.S. Ahn et al., Phys. Rev. Lett. 123, 212501 (2019).
[3] J. Erler et al., Nature (London) 486, 509 (2012).
[4] T. Otsuka et al., Phys. Rev. Lett. 105, 032501 (2010).
[5] A. Cipollone, C. Barbieri and P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013).
[6] A. Ekström et al., Phys. Rev. Lett. 110, 192502 (2013).
[7] N. Michel et al., Acta Physica Polonica B35, 1249 (2004).
[8] B.P. Kay, C.R. Hoffman and A.O. Machiavelli, Phys. Rev. Lett. 119, 182502 (2017).
[9] A. Calci et al., Phys. Rev. Lett. 117, 242501 (2016).
[10] G. Christian et al., Phys. Rev. Lett. 108, 032502 (2012).
[11] W. Warburton, J.A. Becker and B.A. Brown, Phys. Rev. C 41, 1147 (1990).
[12] A. Lepailleur et al., Phys. Rev. Lett. 110, 082502 (2013).
[13] M. Vandebruck et al., Phys. Rev. C 96, 054305 (2017).
[14] P. Doornenbal et al., Phys. Rev. C 95, 041301 (2017).
[15] C.R. Hoffman et al., Phys. Lett. B 672, 17 (2009).
[16] R. Kanungo et al., Phys. Rev. Lett. 102, 152501 (2009).
[17] K. Tshoo et al., Phys. Rev. Lett. 109, 022501 (2012).
[18] O. Sorlin, Eur. Phys. J. Web of conferences 66, 01016 (2014).
[19] J.R. Terry et al., Phys. Lett. B 640, 186 (2006).
[20] A. Obertelli et al., Phys. Lett. B 633, 33 (2006).
[21] S.M. Brown et al., Phys. Rev. C 79, 0143010 (2009).
[22] N. Kobayashi et al., Phys. Rev. C 93, 014613 (2016).
[23] Y. Utsuno et al., Phys. Rev. C 66, 054315 (1999).
[24] T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005).
[25] N.A. Smirnova et al., Phys. Rev. C 86, 034314 (2012).
[26] T. Kubo, Nucl. Instum. Meth. Phys. Res. B 204, 97 (2003).
[27] T. Ohnishi et al., J. Phys. Soc. Jpn. 79, 073201 (2010).
[28] T. Kobayashi et al., Nucl. Instum. Meth. Phys. Res. B 317, 294 (2013).
[29] A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014).
[30] S. Takeuchi et al., Nucl. Instum. Meth. Phys. Res. A 763, 596 (2014).
[31] T. Nakamura and Y. Kondo, Nucl. Instum. Meth. Phys. Res. B 376, 1 (2015).
[32] Technical report for the design, construction and commissioning of NeuLAND, https://edms.cern.ch/ui/file/1865739/2/TDR_R3B_NeuLAND_publication.pdf
[33] H. Sato et al., IEEE Trans. Applied Superconductivity 23, 4500308 (2013).
[34] Y. Shimizu et al., Nucl. Instum. Meth. Phys. Res. B 317, 739 (2013).
[35] Y. Kondo, T. Tomai and T. Nakamura, Nucl. Instum. Meth. Phys. Res. B 463, 173 (2020).
[36] Y. Kondo et al., Phys. Rev. Lett. 116, 102503 (2016).
[37] A. M. Lane and R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958).
[38] G. Randisi et al., Phys. Rev. C 89, 034320 (2014).
[39] S. Leblond et al., Phys. Rev. Lett. 121, 262502 (2018).
[40] See Supplemental Material [url to be added] for the energies and widths obtained from the fits of \(^{28}\)F (Table S1 and Table S2).
[41] T. Nakamura and Y. Kondo, Nucl. Instum. Meth. Phys. Res. B 376, 156 (2016).
[42] W.J. Huang et al., Chinese Physics C 41, 030002 (2017).
[43] See Supplemental Material [url to be added] for the experimental decay schemes of \(^{28}\)F in Fig. S1.
[44] P.G. Hansen and J.A. Tostevin, Direct Reactions With Exotic Nuclei, Annu. Rev. Nucl. Part. Sci. 53, 219 (2003).
[45] J.A. Tostevin, Nucl. Phys. A 682, 320 (2001).
[46] See Supplemental Material [url to be added] for details on the proton target considerations in the direct nucleon removal model calculations, which include Refs. 47-53.
[47] J.S. Al-Khalili and J.A. Tostevin, Phys. Rev. C 57, 1846 (1998).
[48] S.K. Charagi and S.K. Gupta, Phys. Rev. C 41, 1610 (1990).
[49] L. Ray, Phys. Rev. C 20, 1857 (1979).
[50] B. Abu-Ibrahim et al., Phys. Rev. C 77, 034607 (2008).
[51] B.A. Brown, Phys. Rev. C 58, 220 (1998).
[52] B.A. Brown, S. Typel, and W.A. Richter, Phys. Rev. C 65, 014612 (2002).
[53] W.A. Richter and B.A. Brown, Phys. Rev. C 67, 034317 (2003).
[54] E. Caurier, F. Nowacki and A. Poves, Phys. Rev. C 77, 034607 (2008).
[55] I. Stefan et al., Phys. Rev. C 90, 014307 (2014).
[56] L. Gaufroy et al., Phys. Rev. Lett. 109, 202503 (2012).
Supplemental Material for
“Extending the Southern Shore of the Island of Inversion to 28F”

A. Revel,1 O. Sorlin,1 F.M. Marqués,2 Y. Kondo,3 J. Kahlbow,4,5 T. Nakamura,3 N.A. Orr,2 F. Nowacki,6,7 J.A. Tostevin,8 C.X. Yuan,9 N.L. Achouri,2 H. Al Falou,10 L. Atar,2 T. Aumann,4,11 H. Baba,5 K. Boretzky,11 C. Caesar,4,11 D. Calvet,12 H. Chae,13 N. Chiga,5 A. Corsi,12 H. L. Crawford,14 F. Delannay,2 A. Delbart,12 Q. Deshayes,2 Z. Dombrádi,15 C. A. Douma,16 Z. Elekes,17 I. Gašparić,17,5 J.-M. Gheller,12 J. Gibelin,2 A. Gillibert,12 M. N. Harakeh,11,16 W. He,5 A. Hirayama,3 C.R. Hoffman,18 M. Holl,11 A. Horvat,11 A. Horváth,19 J.W. Hwang,20 T. Isobe,5 N. Kalantar-Nayestanaki,16 S. Kawase,21 S. Kim,20 K. Kisamori,5 T. Kobayashi,22 D. Körper,11 S. Koyama,23 I. Kuti,15 V. Lapoux,12 S. Lindberg,24 S. Masuoka,25 J. Mayer,26 K. Miki,27 T. Murakami,28 M. Najafi,16 K. Nakano,21 N. Nakatsuka,28 T. Nilsson,24 A. Obertelli,12 F. de Oliveira Santos,1 H. Otsu,5 T. Ozaki,3 V. Panin,5 S. Paschalidis,4 D. Rossi,4 A.T. Saito,3 T. Saito,23 M. Sasano,5 H. Sato,5 Y. Satou,20 H. Scheit,4 F. Schindler,4 P. Schrock,25 M. Shikata,3 Y. Shimizu,5 H. Simon,11 D. Sohler,15 L. Stuhl,5 S. Takeuchi,3 M. Tanaka,29 M. Thoennessen,27 H. Törnqvist,4 Y. Togano,3 T. Tomai,3 J. Tscheuschner,4 J. Tsubota,3 T. Uesaka,5 Z. Yang,5 M. Yasuda,3 and K. Yoneda5 (SAMURAI21 collaboration)

1Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Bed Henri Becquerel, 14076 Caen, France
2LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 CAEN Cedex, France
3Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
4Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
5RIKEN Nishina Center, Hiroshima 2-1, Wako, Saitama 351-0198, Japan
6Université de Strasbourg, IPHC, 23 rue de Loess 67037 Strasbourg, France
7CNRS, UMR7178, 67037 Strasbourg, France
8Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
9Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhubai 519082, China
10Lebanese University, Beirut, Lebanon
11GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
12Irfu, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
13IBS, 55, Expo-ro, Yuseong-gu, Daejeon, Korea, 34126
14Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
15Institute of Nuclear Research, Atomiik, 4001 Debrecen, Hungary
16KVI-CART, University of Groningen, Zerniklaan 25, 9747 AA Groningen, The Netherlands
17Ruder Bošković Institute, HR-10002 Zagreb, Croatia
18Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
19Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
20Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
21Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Fukuoka, 816-8580 Japan
22Department of Physics, Tokohu University, Miyagi 980-8578, Japan
23University of Tokyo, Tokyo 1130033, Japan
24Institutionen för Fysik, Chalmers Tekniska Högskola, 412 96 Göteborg, Sweden
25Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
26Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany
27National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
28Department of Physics, Kyoto University, Kyoto 606-8502, Japan
29Department of Physics, Osaka University, Osaka 560-0043, Japan

(Dated: April 3, 2020)

PACS numbers:

TABLE WITH ENERGIES AND WIDTHS

Tab. S1 contains the resonance energies and widths obtained from the fit of the 27F+n Erel spectra (Fig. 1 of the paper) populated from 29Ne(−1p) and 29F(−1n) reactions, using a non-resonant component and a set of respectively seven and six Breit-Wigner line shapes with an energy-dependent width. Tab. S2 contains the same

...
information but from the fit of the $^{26}\text{F}+n+n$ spectra, using respectively five and four Breit-Wigner line shapes.

DECAY SCHEME

The different resonances observed in this work, as well as their identified decay patterns, are displayed in Fig. S1. We were not only able to obtain a precise spectroscopy of ^{28}F populated from two different reactions, but also to identify the way those resonances decayed. This is essential in order to determine their structure, that is related to the different decay channels they couple to. However, it is important to keep in mind that ^{28}F has a known 4^+ isomeric state at around 643 keV (see Ref. [12] of the paper). Even if populated, it would not be observed in our experiment owing to its long lifetime of about 2.2 ms. This could have an impact on our proposed level scheme, if some resonances observed in the $^{26}\text{F}+2n$ system were decaying to this isomer rather than the ground state.

PROTON TARGET CONSIDERATIONS

The direct nucleon-removal calculations used are similar to those for reactions on light nuclear targets (see Ref. [44,45] of the paper), using the eikonal (forward scattering) and sudden (fast collision) approximations to the reaction dynamics and shell-model spectroscopic factors. For reactions on a composite light nucleus (e.g. C, Be) the complex interaction between the removed nucleon and the target means that inelastic breakup (or stripping) is the dominant removal mechanism. However, on a proton target the interaction between the struck nucleon and the proton, and the corresponding S-matrix, describe the nucleon-nucleon (NN) system. Since at the collision energies of interest these NN collisions are entirely elastic, the removal cross section is now determined only by the elastic breakup (or diffraction dissociation) mechanism (see Ref. [45] of the paper).

This required NN S-matrix for the system formed by the removed nucleon and the proton target is written $S_{jp}(b)$, with j the species of the removed nucleon, $j = n, p$. The NN scattering operator, a function of the NN impact parameter b, is conventionally written [1]:

$$S_{jp}(b) = 1 - \Gamma_{jp}(b)$$

(1)

where Γ_{jp}, called the NN profile function, is parameterized as:

$$\Gamma_{jp}(b) = \frac{\sigma_{jp}}{2\pi}(i + \alpha_{jp})g_2(\beta_{jp}, b)$$

(2)

Here $g_2(b)$, a normalized 2D Gaussian form factor:

$$g_2(\beta, b) = \frac{1}{2\pi\beta} \exp(-b^2/2\beta)$$

(3)

approximates the finite range of the NN interactions. The σ_{jp} are the np and pp total cross sections, calculated here from the Charagi and Gupta parameterization of the experimental NN data [2] at the mid-target energy. The parameters α_{jp}, the ratios of the real to the imaginary parts of the NN forward-scattering amplitudes, are interpolated from the tabulation of Ray [3].

For the associated range parameters, β_{jp}, as in Ref. [4], we require that the total and total elastic cross sections derived from the S_{jp} are equal, since the NN scattering is entirely elastic, giving:

$$\beta_{jp} = \frac{\sigma_{jp}(1 + \alpha_{jp}^2)}{16\pi}$$

(4)

The remaining dynamical input, the eikonal S-matrix that describes the interaction of the mass $A - 1$ reaction residue with the proton target, is computed in the optical limit (or tp folding approximation) to the proton-residue optical potential with the above NN parameters. This potential and S-matrix includes effects of the size and asymmetry of the reaction residue through its point-neutron and proton densities, approximated using spherical Skyrme SkX Hartree-Fock (HF) calculations [2]. Such calculations have been shown to provide a very good global description of the root mean squared sizes [2] and

$^{28}\text{Ne}(p,2p)^{28}\text{F}$	$^{28}\text{F}(p,pn)^{28}\text{F}$
E_γ (keV)	E_γ (keV)
Γ (keV)	Γ (keV)
204 ± 16	180 ± 140
198 ± 6	180 ± 40
940 ± 20	150 ± 50
996 ± 13	190 ± 50
1278 ± 21	110 ± 70
$*1321\pm31$	50^+_{-20}
$*1280\pm30$	170 ± 90
1880 ± 80	10^+20
1840 ± 30	170 ± 90
$*2115\pm81$	200 ± 120
3660 ± 100	660 ± 260
3980 ± 260	700 ± 600
$*3725\pm370$	470^+_{-70}
$*4095\pm270$	320^+_{-70}

Table S1: Energies and widths obtained from the fit of the $E_{\gamma,\text{rel}}$ spectra for the $^{27}\text{F}+n$ system populated from $^{28}\text{Ne}(-1p)$ and $^{28}\text{F}(-1n)$ reactions. Energies are given with respect to $S_{3n}(28\text{F})$. The resonances extracted from the spectra in coincidence with a γ-ray in ^{27}F are marked with the symbol *.

$^{26}\text{Ne}(p,2p)^{26}\text{F}$	$^{26}\text{F}(p,pn)^{26}\text{F}$
E_γ (keV)	E_γ (keV)
Γ (keV)	Γ (keV)
245 ± 32	130 ± 98
227 ± 88	6^+310
1130 ± 70	960 ± 30
1422 ± 89	821 ± 290
1984 ± 50	100^+_{-10}
2103 ± 120	767 ± 440
2024 ± 52	580 ± 160
4300 ± 170	2900 ± 330
$*2137\pm43$	500 ± 200
2420 ± 240	980 ± 490

Table S2: Same as Tab. S1 but for the $^{26}\text{F}+2n$ system. Energies are given with respect to $S_{3n}(26\text{F})$. The symbol * refers here to coincidences with a γ-ray in ^{26}F.
FIG. S1: The detailed decay scheme of the different states observed in 28F, populated from 29Ne and 29F, is shown in the top and bottom panels, respectively. The widths of the levels correspond to the uncertainty on their centroid value, while the placement of the levels marked with a filled orange circle is derived from their observed coincidence with a γ-ray in the 27F or 26F spectra from the 1n or 2n emission, respectively. The level scheme of 28F has been divided into two regions (left and right) for better clarity.

radial forms of the matter and charge [7] distributions of both stable and neutron-proton asymmetric nuclei.

[1] J.S. Al-Khalili and J.A. Tostevin, Phys. Rev. C 57, 1846 (1998).
[2] S.K. Charagi and S.K. Gupta, Phys. Rev. C 41, 1610
(1990).
[3] L. Ray, Phys. Rev. C 20, 1857 (1979).
[4] B. Abu-Ibrahim et al., Phys. Rev. C 77, 034607 (2008).
[5] B.A. Brown, Phys. Rev. C 58, 220 (1998).
[6] B.A. Brown, S. Typel, and W.A. Richter, Phys. Rev. C 65, 014612 (2002).
[7] W.A. Richter and B.A. Brown, Phys. Rev. C 67, 034317 (2003).