On the Bertini theorem in arbitrary characteristic

Zbigniew Jelonek

Abstract We give a simple direct proof of the Kleiman Bertini theorem in arbitrary characteristic. We also give a simple proof of Serre splitting theorem.

Keywords Bertini theorem · Serre splitting theorem

Mathematics Subject Classification (1991) 14 A

1 Introduction

Kleiman in the paper [4] proved Bertini theorem in arbitrary characteristic (Corollary 12 in [4]). Kleiman deduced this theorem from his general transversality theorem: if X is G-homogenous algebraic variety and Z, W are smooth varieties over X, then the fiber product of Z and a general translate gY over X is smooth. This theorem is valid in characteristic zero, however Kleiman shows that his result still works in positive characteristic, if we additionally assume that the action of the group G is sufficiently good (this assumption is satisfied for the action of the group $PGL(n)$ on the projective space \mathbb{P}^n) and that Z, W are unramified over X.

The aim of this note is to give a simple, direct proof of the Bertini Theorem in arbitrary characteristic. We also partially generalize our method to locally free sheafs of higher ranks (mainly for char $k = 0$). In particular we give a simple proof of the
fact that if a variety X is smooth and \mathcal{F} is a locally free sheaf on X, with sufficiently many sections, then a generic section of \mathcal{F} is transversal to X. As a Corollary we give a proof of the Atiyah–Serre Splitting Theorem (compare with [6], [1] and [5]).

2 Notations and definitions

We assume for simplicity, that the base field k is algebraically closed. Let X be algebraic variety and \mathcal{F} be a locally free sheaf on X of rank r. Take a section $s \in \Gamma(X, \mathcal{F})$. We describe a scheme of zeroes of $s^{-1}(0)$ in the following way: locally we can assume that $X = U$ is an affine variety and $\mathcal{F} = \mathcal{O}_U$ is trivial. Hence $s = (s_1, \ldots, s_r)$ where $s_i \in \Gamma(U, \mathcal{O}_U) = k[U]$. Then $s^{-1}(0)$ is given by the ideal $(s_1, \ldots, s_r) \subset k[U]$. We say that the section s is transversal to X if either $s^{-1}(0)$ is smooth and it has dimension $\dim X - r$ or $s^{-1}(0) = \emptyset$.

Let X, Y be smooth varieties and $f : X \to Y$ be a morphism. We say that f is unramified, if f separates infinitely near points of X, i.e., the mapping $d_x f : T_x X \to T_{f(x)} Y$ is a monomorphism for every closed point $x \in X$ (see [3], p. 15).

If X is an affine variety we will denote by $k[X]$ the ring $\Gamma(X, \mathcal{O}_X)$. If M is a $k[X]$ module then by M^\sim we denote the sheafification of M—see [2], Definition on the page 110.

3 Main result

Theorem 3.1 (Bertini theorem in arbitrary characteristic) Let X be a smooth algebraic variety of dimension d and let \mathcal{F} be an invertible sheaf on X. Assume that \mathcal{F} is generated by global sections $s_1, \ldots, s_r \in \Gamma(X, \mathcal{F})$. Assume that the morphism Φ from X to the projective space \mathbb{P}^{r-1} given by s_1, \ldots, s_r is unramified. Then there is a Zariski open non-empty subset $U \subset k^r$ such that for every $c = (c_1, \ldots, c_r) \in U$ the zero set of the section $s = \sum_{i=1}^r c_i s_i$ is smooth.

Proof Since X is quasi-compact we can assume that X is affine and the sheaf \mathcal{F} is trivial. Hence we can identify \mathcal{F} with \mathcal{O}_X and now $s_i : X \to k$ are regular functions. Additionally we can assume that $s_r \equiv 1$. Indeed, since s_1, \ldots, s_r generates \mathcal{F} we have that open (affine!) subsets $U_i := X \setminus \{s_i = 0\}$ cover X. Consequently we can assume that $s_r \neq 0$ in X. Take $s'_i = s_i/s_r$, $i = 1, \ldots, r$. If we prove our theorem for s'_i, then we automatically prove it also for originals s_i. Indeed, note that for a fixed $c = (c_1, \ldots, c_r) \in k^r$ the ideals $(\sum_{i=1}^r c_i s_i)$ and $(\sum_{i=1}^r c_i s'_i)$ are equal in $k[X]$. Moreover, we can assume that on X we have global local coordinates x_1, \ldots, x_d, i.e., the mapping $(x_1, \ldots, x_d) : X \to k^d$ is etale.

Let

$$V = \left\{(c, x) \in k^r \times X : c_r + \sum_{i=1}^{r-1} c_i s_i(x) = 0\right\}.$$

The variety V is smooth. Indeed, let (g_1, \ldots, g_r) be the set of generators of the ideal $I(V) \subset k[X][c_1, \ldots, c_r]$ and let $J(V)(c, x) = [\frac{\partial g_i}{\partial c_j}(c, x)]$, where $z =$

\[\odot \text{Springer} \]
(c_1, \ldots, c_r, x_1, \ldots, x_d) is a set of global local coordinates on k^r \times X. Let us note that a polynomial h = \sum_{i=1}^r c_i s_i(x) does belong to the ideal I(V). Now we see that rank J(V) \geq 1, because partial derivatives of h with respect to c_i form a matrix [s_i(x)]_{1 \leq i \leq r}, which has a rank 1. Hence dim T_{(c,x)} V \leq d + r - 1.

On the other hand dim V = d + r - 1 and consequently we have the equality dim T_{(c,x)} V = d + r - n = dim V.

Consider the projection:

\[q : V \ni (c, x) \mapsto c \in k^r. \]

We show that for generic c \in k^r the mapping q is smooth on the set q^{-1}(U_c), where U_c is suitable neighborhood of c.

Indeed, let us compute the tangent space at (c, x). It is given by the equation

\[dc_r + \sum_{i=1}^{r-1} s_i(x) dc_i + \sum_j \left(\sum_{i=1}^{r-1} c_i \frac{\partial s_i(x)}{\partial x_j} \right) dx_j. \]

Let us note that rank \left[\frac{\partial s_i(x)}{\partial x_j} \right]_{1 \leq i \leq r-1, 1 \leq j \leq d} = d. Indeed the mapping \Phi : X \ni x \mapsto (s_1(x), \ldots, s_{r-1}(x)) \in k^{r-1} is unramified.

Put \(L_c := \{ x \in X : \sum_{i=1}^{r-1} c_i \frac{\partial s_i(x)}{\partial x_j} = 0, j = 1, \ldots, d \}. \) Let us note that the mapping q is not a submersion in a neighborhood of q^{-1}(c) a exactly if \(L_c \neq \emptyset. \) We show that the set \(S := \{ c \in k^r : L_c \neq \emptyset \} \) is a constructible subset of k^r of dimension less than r.

Indeed, let \(W = \{ (c', x) \in k^{r-1} \times X : \sum_{i=1}^{r-1} c_i \frac{\partial s_i(x)}{\partial x_j} = 0, j = 1, \ldots, d \}. \) Let \(\pi : W \ni (c', x) \mapsto x \in X. \) Let us note that the fiber of \(\pi \) is a linear subspace of k^{r-1} of dimension r - 1 - d (as a kernel of a suitable linear mapping). Hence dim W \leq r - 1.

Let \(W' = \{ (c, x) \in V : \sum_{i=1}^{r-1} c_i \frac{\partial s_i(x)}{\partial x_j} = 0, j = 1, \ldots, d \}. \) We have a surjective mapping

\[s : W \ni (c', x) \mapsto \left(\left(c', -\sum_{i=1}^{r-1} c_i s_i(x) \right), x \right) \in W'. \]

Since \(S = \rho(W'), \) where \(\rho : W' \ni (c', x) \mapsto c \in k^r \) and dim W = dim s(W) = dim W' we have dim cl(S) \leq r - 1.

This means that the projection \(q : V \ni x \mapsto k^r \) is a submersion outside a proper algebraic subset \(\overline{S} \subset k^r. \) In particular the zero set of a generic section \(s = \sum_{i=1}^r c_i s_i \) is smooth.

Using a similar method we can generalize this result to higher dimension. As a Corollary we obtain Atiyah-Serre Spliting Theorem.

Theorem 3.2 Let \(X \) be an algebraic variety of dimension d and let \(\mathcal{F} \) be a locally-free sheaf on X of rank n. Assume that \(\mathcal{F} \) is generated by global sections \(s_1, \ldots, s_r \in \Gamma(X, \mathcal{F}). \) Then there is a Zariski open non-empty subset \(U \subset k^r \) such that for every
c = (c_1, \ldots, c_r) \in U the zero set of the section \(s = \sum_{i=1}^{r} c_i s_i \) is either empty or it has dimension \(d - n \). Moreover, if \(\text{char } k = 0 \) and \(X \) is smooth, then a generic section \(s = \sum_{i=1}^{r} c_i s_i \) is transversal to \(X \).

Proof Since \(X \) is quasi-compact we can assume that \(X \) is affine and the sheaf \(\mathcal{F} \) is trivial, i.e., we can identify a global local coordinates \(x_1, \ldots, x_d \). Hence \(s_i = (s_{i1}, \ldots, s_{in}) : X \to k^n \) are regular mappings. Let

\[
V = \left\{ (c, x) \in k^r \times X : \sum_{i=1}^{r} c_i s_i(x) = 0 \right\}.
\]

Let us note that \(\dim V = r + d - n \), where \(d = \dim X \). Indeed, we have a surjection \(\pi : V \ni (c, x) \to x \in X \). Any fiber of \(\pi \) is a linear subspace of \(k^r \) of dimension \(r - n \); it is a kernel of surjective linear mapping \(F_x : k^r \ni c \to \sum_{i=1}^{r} c_i s_i(x) \in E^n_x \), where \(E^n = X \times k^n \) is a trivial vector bundle of rank \(n \). Consequently \(\dim V = \dim X + r - n = d + r - n \). Now consider the second projection:

\[
q : V \ni (c, x) \to c \in k^r.
\]

If it is dominated then the generic fiber has dimension \(\dim V - \dim k^r = d + r - n - r = d - n \), otherwise the generic fiber is empty.

Moreover, if \(X \) is smooth over \(k \), then \(V \) is smooth. Indeed, let \((g_1, \ldots, g_r) \) be the set of generators of the ideal \(I(V) \subset k[X][c_1, \ldots, c_r] \) and let \(J(V)(c, x) = [\frac{\partial g_i}{\partial x_j}(c, x)] \), where \(z = (c_1, \ldots, c_r, x_1, \ldots, x_d) \) is a set of global local coordinates on \(k^r \times X \). Let us note that polynomials \(h_j = \sum_{i=1}^{r} c_i s_{ij}(x) \) does belong to the ideal \(I(V) \). Now we see that rank \(J(V) \geq n \), because partial derivatives of \(h_j \) with respect to \(c_i \) form a matrix \([s_{ij}(x)]_{1 \leq i \leq r, 1 \leq j \leq n} \), which has a rank \(n \). Hence \(\dim T_{(c, x)} V \leq d - r - n \). On the other hand \(\dim V = d + r - n \) and consequently we have the equality \(\dim T_{(c, x)} V = d + r - n = \dim V \). If additionally \(\text{char } k = 0 \), then the generic fiber is also smooth (generic smoothness—see [2], Corollary 10.7, p. 272).

Corollary 3.3 (Atiyah–Serre Splitting Theorem) *Let \(X \) be an algebraic variety of dimension \(d \) and let \(\mathcal{F} \) be a locally free sheaf on \(X \) of rank \(n \). Assume that \(\mathcal{F} \) is generated by global sections \(s_1, \ldots, s_r \in \Gamma(X, \mathcal{F}) \). If \(n > d \) then \(\mathcal{F} \) contains a trivial subsheaf \(\mathcal{A} \subset \mathcal{F} \) of rank \(n - d \).*

Proof Indeed, by induction we can find \(n - d \) linearly independent sections \(t_j = \sum_{i=1}^{r} c_{ji} s_i \) (note that the quotient sheaf of \(\mathcal{F} \) is generated by the same sections (or rather their classes) as \(\mathcal{F} \)).

In particular if we assume that \(X \) is affine we have the Serre result in a classical form:

Corollary 3.4 (Serre splitting theorem) *Let \(X \) be an affine algebraic variety of dimension \(d \) and let \(\mathcal{F} \) be a locally free sheaf on \(X \) of rank \(n \). If \(n > d \) then \(\mathcal{F} \) contains a locally free subsheaf \(\mathcal{F}' \) of rank \(d \) such that

\[
\mathcal{F} = \mathcal{F}' \oplus \mathcal{O}_X^{n-d}.
\]
Proof. From the previous statement we know that $O_X^{n-d} \subset \mathcal{F}$. Take $\mathcal{F}' = \mathcal{F}/O_X^{n-d}$. It is easy to see that \mathcal{F}' is also locally free sheaf of rank d. Moreover we have a short exact sequence

$$0 \to O_X^{n-d} \to \mathcal{F} \to \mathcal{F}' \to 0.$$

This gives the following exact sequence

$$0 \to \Gamma(X, O_X^{n-d}) \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}') \to H^1(X, O_X^{n-d}) = 0.$$

Since $k[X]$ modules $\Gamma(X, O_X^{n-d})$, $\Gamma(X, \mathcal{F})$, $\Gamma(X, \mathcal{F}')$ are projective (it is true locally hence also globally!) we have

$$\Gamma(X, \mathcal{F}) = \Gamma(X, \mathcal{F}') \oplus \Gamma(X, O_X^{n-d}).$$

Finally

$$\Gamma(X, \mathcal{F})^\sim = \Gamma(X, \mathcal{F}')^\sim \oplus \Gamma(X, O_X^{n-d})^\sim,$$

and we have

$$\mathcal{F} = \mathcal{F}' \oplus O_X^{n-d}$$

(see [2], Prop. 5.1, p. 110). □

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Atiyah, M.F.: Vector bundles over an elliptic curve. Proc. Lond. Math. Soc. 7, 414–452 (1957)
2. Hartshorne, R.: Algebraic Geometry. Springer, New York (1987)
3. Hartshorne, R.: Ample Subvarieties of Algebraic Varieties. Springer, Berlin (1986)
4. Kleiman, S.L.: The transversality of a general translate. Compositio Math. 28, 287–297 (1974)
5. Kleiman, S.L.: Geometry of grasmannians and applications to splitting bundles and smoothing cycles. Publ. Math. IHES 36, 281–297 (1969)
6. Serre, J.P.: Modules projectifs et espaces fibrés a fibre vectorielle. Sem. Dubreil-Pisot, vol. 2, Paris (1957/1958)