Legumes: Model Plants for Sustainable Agriculture in Phosphorus and Iron Deficient Soils

M'sehli Wissal¹, Kallala Nadia², Mhadhbi Haythem¹

ABSTRACT

Nowadays, the agriculture’s target is to reach the amount of crop production that can cover the need to feed growing world population with the crucial challenge of respecting the environment. Several environmental constraints are limiting world agricultural production, mainly the preponderance of calcareous soils suffering from ferric and phosphoric deficiencies. In those soils, legumes were considered as an alternative solution to retrieve a fertile soil without the abusive use of chemical fertilizers. The ability to establish a symbiotic association with nitrogen-fixing soil bacteria is the way used by legumes to restore soil organic matter and to improve soil fertility. Legumes remain a source of healthy food while respecting the environment. This paper describes the importance of legumes for Fe and P deficient soils management through sustainable practices.

Key words: Deficient soils, Legumes, Sustainable agriculture, Tolerance.

According to the United Nations estimation, the human population will be reaching 9.7 billion by mid-century and 11.2 billion by century’s end (United Nations, 2015). Unfortunately, the same ascending slope was observed also for the world hunger. In this regard, the Food and Agriculture Organisation marks that hunger is increasing (World Health Organisation, 2019) which has a direct relationship with the depressed agricultural productivity in many countries especially the low-income ones. The agricultural productivity loss is attributed to many environmental factors including soil nutrient deficiencies (Reynolds et al., 2015). In fact, this environmental problem is widespread in calcareous soils that cover more than 30% from the surface of the earth (Taalab et al., 2019). In those soils, plant growth is often restricted by soil physico-chemical conditions (high pH values and bicarbonate concentrations) which causes a decrease in mineral nutrients bioavailability principally Fe (Briat et al., 2015) and P (Houssin et al., 2019). A common approach that is adopted to overcome Fe and P deficiencies of plants on calcareous soils and consequently improve human diet is the fertiliser applications. However, it was noted that the improper use of agro-chemicals causes environmental pollution and decreases the efficiency of nutrient use (Davydov et al., 2018). As an alternative to chemical fertilizers, legumes have a significant role in agriculture providing economic benefits and meeting human demand for protein particularly in developing countries. In fact, legumes have an important role in improving soil health in sustainable agriculture by improving nutritional status of soil. Through symbiosis with rhizobia bacteria, legumes fix atmospheric nitrogen, improve soil fertility and helps to control diseases and pests in cereals by the rotation culture (Naresh et al., 2019). In this short theoretical paper, we have provided an overview of the importance of legumes in overcoming P and Fe deficiencies in calcareous soils.

¹Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, 2050, Tunisia.
²Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia.

Corresponding Author: M’sehli Wissal, Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, 2050, Tunisia.
Email: wissal_msehli@yahoo.fr

How to cite this article: Wissal, M., Nadia, K. and Haythem, M., (2020). Legumes: Model Plants for Sustainable Agriculture in Phosphorus and Iron Deficient Soils. Agricultural Science Digest. 40(4): 445-447.

Submitted: 28-02-2020 Accepted: 20-06-2020 Published: 05-11-2020

Legumes tolerance to soil P deficiency

Soil P deficiency is a crucial limitation for agricultural productivity in developing countries which has led to an important use of chemical fertilizers applications. To avoid the negative impact of those fertilizers on the environment, several researchers have proposed the inclusion of legumes in P-deficient soils as an alternative solution to the application of fertilizers. In this context, research findings have revealed the effectiveness of legumes in calcareous soils suffering from P deficiency (Mitran et al., 2018). Accordingly, this efficiency contributes to the decrease in the use of fertilizers as well as the increase of soil fertility and health. Under P-limited conditions, legumes have evolved various adaptation mechanisms to tolerate P stress (Sulieman and Phan, 2015) that will contribute to a stimulation of the root’s extracellular acquisition of rhizosphere soil P or the optimization of its intracellular use efficiency (Vance et al., 2003). Morphological responses are summarized in the modification of the root architecture (root surface area, root length, cluster roots) which increased P uptake (M’sehli et al., 2012).
The most typical root responses of plants in increasing the solubilisation of soil P is the decrease in rhizosphere pH by the release of H+ and phosphatases acids to the rhizosphere (M’sehli et al., 2012). Enhancement of acid phosphatase activity (APases) under P starvation conditions has been demonstrated for N2-fixing legumes including Vicia faba (M’sehli et al., 2012), Lupinus albus and Glycine max (Hinsinger et al., 2011; Zogli et al., 2017). Studies in Vicia faba and Vicia sativa showed that P deficient plants increased both extracellular APases, which are involved in hydrolysis of soil’s various organic phosphate monoesters and intracellular enzymes acting in the remobilization of P from rich P components inside the plant cell (M’sehli et al., 2012).

With P deficiency, the concentration of phenols increases to improve the availability of the sparingly soluble soil P for plants (Bargaz et al., 2015). In Vicia faba, the exudation of phenolic compounds have been reported a higher concentrations in P-deficient plants (M’sehli et al., 2012). Likewise, it has been demonstrated that Lupines albus and Brassica napus released large amounts of phenolics into the rhizosphere in response to P deficiency (Makoi and Ndakidemi, 2007).

The maintenance of the P-homeostasis in nodules is considered as a main adaptive strategy for rhizobia-legume symbiosis under P starvation by increasing P allocation to nodules, formation of a strong P sink in nodules and direct P acquisition and remobilization (Bargaz et al., 2015).

Legumes tolerance to soil Fe deficiency

In the face of Fe deficiency, legumes have evolved adaptive strategies in order to increase Fe bioavailability (Bargaz et al., 2015). The main adaptive responses are the rhizosphere acidification by the activation of plasma membrane H+ ATPase, the stimulation of the reduction of Fe3+ to Fe2+ by a NADPH-dependent Fe (III)-chelate reductase (FCR) and the stimulation of root exudates (M’sehli et al., 2009). Several researches have described the genetic variability among legumes regarding their tolerance to Fe starvation. Su et al., (2018) assessed the genetic variability among 12 cultivars of peanut (Arachis hypogaea L.) in tolerance to iron deficiency based on spectral and photosynthetic parameters. In a complimentary study, M’sehli et al., (2011) have studied the tolerance of two lines of Medicago ciliaris (TN11.11 and TN8.7) to Fe deficiency and found that TN11.11 line has a potential to enhance revegetation in calcareous soils for pastoral use. In addition, Kallala et al. (2019) carried out a study in order to investigate the biodiversity within Medicago truncatula plants in response to Fe deficiency, to identify tolerant genotypes and to assess the main tolerance mechanisms. Based on biometric and physiological markers, those found a biodiversity among the 20 genotypes studied toward tolerance to iron deficiency. In the same way, M’sehli et al. (2012) have reported the higher Fe deficiency tolerance of Medicago ciliaris as compared to Medicago truncatula.

Legumes are distinguished by their ability to establish symbiotic associations with nitrogen-fixing bacteria and with arbuscular mycorrhizal to facilitate the acquisition of nutrients such as Fe. It has been demonstrated that symbiotic nitrogen fixation and ammonium assimilation induce soil acidification and therefore increase of Fe bioavailability (Pii et al., 2015). Kallala et al. (2019) showed that the inoculation of Medicago truncatula genotypes with two Sinorhizobium strains ameliorates the tolerance of Fe-deficient plants to Fe starvation. Theses authors stated also that both Sinorhizobium strains (TI17 and SI14) stimulates the antioxidant enzyme activities in Fe-deficient plants. In addition, rhizobia can also produce strain specific siderophores that can help overcome iron starvation (Bargaz et al., 2015).

CONCLUSION

In arid and semiarid regions, alkalinity is an important environmental constraint for nutrients bioavailability especially Fe and P, which leads to lower crop production. Factors that contribute to Fe and P deficiencies in calcareous soils are high pH values and bicarbonate concentrations. Improving crop production in such soils demand adoption of special management practices which aims to ensure sustainable agriculture that respects the environment. The introduction of legumes in calcareous soils sustain productive agriculture. Hence, it is primordial to select rhizobia strains and legumes genotypes with enhanced tolerance able to thrive under nutrient limiting conditionsand subsequently the use of these selected genotypes in crop rotation.

REFERENCES

Bargaz, A., Zaman-Allah, M., Farissi, M., Lazali, M., Drevon, J.J., Maougál, T.R., Carlsson, G. (2015). Physiological and molecular aspects of tolerance to environmental constraints in grain and forage legumes. International Journal of Molecular Sciences. 16: 18976-19008.

Briat, J.F., Dubos, C., Gaymard, F. (2015). Iron nutrition, biomass production and plant production quality. Trends in Plant Science. 20: 33-40.

Davydov, R., Sokolov, M., Mogland, W., Glinshtkin, A., Markaryan, A. (2018). The application of pesticides and mineral fertilizers in agriculture. MATEC Web of Conferences.

Hinsinger, P., Betencourt, E., Bernard, L., Brauman, A., Plassard, C., Shen, J., Tang, X., Zhang, F. (2011) P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant physiology. 156: 1078-1086.

Houssin, D., Latali, M., Rebour, N.Y., Gérard, F. (2019). Phosphorus acquisition processes in the field: study of faba bean cultivated on calcareous soils in Algeria. Archives of Agronomy and Soil Science. 66: 168-181.

Kallala, N., M’sehli, W., Jellali, N., Batmini, M., Badri, M., Nouairi, I., Mhadjibi, H. (2019). Biodiversity within Medicago truncatula genotypes toward response to iron deficiency: Investigation of main tolerance mechanisms. Plant Species Biology. 34: 95-109.

M’sehliBouftira, W., Jellali, N., Zorrig, W., Rabhi, M., Abdelly, C., Gharsali, M. (2012). Responses of two forage legumes
M’sehli, W., Dell’Orto, M., Donnini, S., De Nizi, P., Zocchi, G., Abdelly, C., Gharsalli, M. (2009). Variability of metabolic responses and antioxidant defence in two lines of *Medicago ciliaris* to Fe deficiency. *Plant and Soil*. 320: 219-230.

M’sehli, W., Jaleli, K., Kallala, N., Mhadhbi, H. (2018). Relationship between phosphorus deficiency tolerance and root/rhizosphere management in *Vicia faba* and *Vicia sativa*. *Journal of Animal and Plant Sciences*. 37(2): 6019-6032.

M’sehli, W., Jelali, N., Dell’Orto, M., Abdelly, C., Zocchi, G., Gharsalli, M. (2011). Responses of two lines of *Medicago ciliaris* to Fe deficiency under saline conditions. *Plant Growth Regulation*. 64(3): 221-230.

Makoi, J.H.J.R. and Ndakidemi, P.A. (2007). Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. *African Journal of Biotechnology*. 6(12): 1358-1368.

Mitran, T., Meena, R.S., Lal, R., Layek, J., Kumar, S., Datta, R. (2018). Role of soil phosphorus on legume production. In book: Legumes for Soil Health and Sustainable Management, Editors: Ram Swaroop Meena, Anup Das, G.S. Yadav, Rattan Lal. Publisher: Springer.

Naresh, R.K., Dhaliwal, S.S., Mayank, C., Chandra, M. S., Kumar, A. (2019). Legumes: An Option to enhance Productivity and Soil Health Sustainability. A chapter. Advances in Agronomy. 7: 95-110.

Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., Crecchio, C. (2015). Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. *Biology and Fertility Soils*. 51: 403-415.

Reynolds, T.W., Waddington, S.R. Anderson, C.L., Chew, A., True, Z., Cullen, A. (2015). Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. *Food Science*. 7: 795-822.

Su, Y., Zhang, Z., Su, G., Liu, J., Liu, C., Shi, G. (2012). Genotypic differences in spectral and photosynthetic response of peanut to iron deficiency. *Journal of Plant Nutrition*. 38: 145-160.

Sulaiman, S. and Phan, L.S. (2015). Phosphorus homeostasis in legume nodule as an adaptive strategy to phosphorus deficiency. *Plant Science*. 239: 36-43.

Taalab, A.S., Ageeb, G.W., Siam, H.S., Mahmoud, A. (2019). Some characteristics of Calcareous soils. A review. *Middle East Journal of Agriculture Research*. 8(1): 96-105.

United Nations (2015). World populations prospects, the 2015 revision. *Vance, C.P., Uhde-Stone, C., Allan, D.L. (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a non-renewable resource. New phytologist*. 157(3): 423-447.

World Health Organisation (2019). World hunger is still not going down after three years and obesity is still grown-UN reports.

Zogli, P., Pingault, L., Libault, M. (2017). Physiological and molecular mechanisms and adaptations strategies in soybean (*Glycine max*) under phosphate deficiency. In: *Legume Nitrogen Fixation in Soils with Low Phosphorus Availability: Adaptation and Regulatory Implication* pp. 219-242.