Ticagrelor versus clopidogrel in stent-assisted coil embolization of unruptured intracranial aneurysms

Shuo-Chi Chien1, Ching-Chang Chen1,2, Chun-Ting Chen1,2, Alvin Yi-Chou Wang1, Po-Chuan Hsieh1,2, Mun-Chun Yeap1, Zhuo-Hao Liu1, Yu-Chi Wang1 and Yu-Tse Liu1

Abstract

Background: Dual antiplatelet therapy is widely used for stent-assisted coil embolization (SACE) for unruptured intracranial aneurysms (UIAs) to prevent thromboembolic events (TEs). Compared to clopidogrel associated with aspirin, knowledge of the safety and efficacy of ticagrelor is lacking in large studies to date.

Methods: A retrospective cohort study was conducted from January 2016 to December 2018 with at least one year of follow-up in a single institution and systemic review.

Results: Altogether, 153 patients with UIA receiving SACE were separated into two groups: 113 patients receiving clopidogrel plus aspirin and 40 patients receiving ticagrelor plus aspirin. Acute in-stent thrombotic events were noted in two patients in the clopidogrel group (1.77%) and none in the ticagrelor group (0%). Additionally, one patient (0.88%) in the clopidogrel group had an early ischemic stroke (<3 months). Delayed ischemic stroke was noted in 6 patients (5.31%) in the clopidogrel group and 3 patients (7.50%) in the ticagrelor group. There were no major hemorrhagic events in either group. The two groups showed no significant differences with regard to ischemic stroke or hemorrhagic stroke.

Conclusion: Compared to the clopidogrel based regimen, ticagrelor can also reduce TEs without increasing bleeding tendency for SACE of UIAs. Ticagrelor combined with low-dose aspirin is a safe and effective alternative option for SACE.

Keywords

Ticagrelor, stent-assisted coiling, intracranial aneurysm, endovascular embolization, dual antiplatelets

Received 2 June 2021; final manuscript received September 15, 2021; accepted: 5 October 2021

Introduction

Endovascular techniques, especially stent-assisted coil embolization (SACE), have been widely applied in the treatment of unruptured intracranial aneurysms (UIAs).1–3 Coil embolization under stent protection not only increases the occlusion rate but also reduces aneurysm recurrence.2,4–9 However, thromboembolic events (TEs) remain the major complications after stent implantation.10–14 Clopidogrel associated with aspirin as the dual antiplatelet therapy (DAPT) has been the most common regimen and routinely used for prevention of TEs.15–17 Clopidogrel resistance is known to occur in up to 30–44% of the population, which depends on genetic predispositions, comorbidities, concomitant drug administration, age, race, and others.15–17 Because patients who are resistant to clopidogrel have a higher risk of TE,4,8,9 different antiplatelet agents have been proposed and substituted. DAPT with aspirin plus a P2Y12 receptor antagonist ticagrelor has been proven safe and efficacious and reduces the incidence of ischemic events compared to clopidogrel in acute coronary syndromes.18–20 The use of ticagrelor remains limited in the field of cerebrovascular diseases because of the lack of large clinical data for DAPT in SACE of UIA. Only a few studies have reported the results of ticagrelor use with flow diverter stents and neurologic procedures.21,22 Herein, we performed a comparative study to demonstrate the safety and efficacy of clopidogrel and ticagrelor against TE in aneurysms undergoing SACE.

1Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
2New Taipei Municipal Tu-Cheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan

Corresponding author:
Ching-Chang Chen, Department of Neurosurgery, Stroke Center, Neurointervention, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung Medical College and University, No. 5, Fusing Rd, Gueishan Taoyuan 333, Taiwan.

Email: jccchen130@gmail.com

© The Author(s) 2021
Methods

Study design

This retrospective cohort study was conducted between January 2016 and December 2018. We compared two consecutive groups of patients with UIAs treated by SACE with at least one year of follow-up. Ruptured aneurysms and aneurysms treated by surgical clipping, endovascular intervention without stents (simple coiling or balloon-assisted coiling), and flow diverters were excluded from this study. Patients who did not complete the full course of DAPT or were lost to follow-up were also excluded. Enterprise stents (Codman, Raynham, MA, USA) were used in all patients who underwent SACE. Informed consent was obtained from all patients after a detailed consultation that delineated the risks, benefits, and alternatives of the procedures as part of multidisciplinary neurosurgical and neurointerventional decision-making. The databases of all patients and endovascular procedures were retrospectively reviewed to identify the patients. All methods were performed in accordance with the ethical regulations. The study was approved by our institution (No. CMRPG3H0741) and by the Institutional Review Board (IRB no. 201800342B0).

DAPT protocol and clinical follow-up

In total, 153 patients with 168 UIAs underwent SACE. We divided the patients into two groups: 113 patients receiving clopidogrel plus aspirin (clopidogrel group) and 40 patients receiving ticagrelor plus aspirin (ticagrelor group). All SACE procedures were performed by four experienced neurointerventionalists.

DAPT was administered 7 days before embolization. In the clopidogrel group, patients received a daily dose of 100 mg of aspirin and 75 mg of clopidogrel, administered orally. In the ticagrelor group, patients received a daily dose of 100 mg aspirin and ticagrelor 90 mg twice daily. All patients in both groups were admitted for preoperative surveys, including hemogram, prothrombin time (PT), partial thromboplastin time (PTT), international normalized ratio (INR), and platelet function test (closure time: Col/EPI and Col/ADP), chest X-ray, and electrocardiogram. SACE was performed in the angiography room. After the procedure, DAPT was continued for 3 months and then shifted to a single antiplatelet agent (aspirin) for at least 12 months. The patients were closely followed-up in the outpatient department. Follow-up imaging studies included digital subtraction angiography or magnetic resonance angiography performed after 1 year.

Outcome measurements

1. Baseline characteristics: We reviewed medical records and compared two groups with regard to age, sex, personal history, past history, aneurysm numbers, sizes, types, locations, laboratory data (including hemogram, PT, PTT, INR, and platelet function test [closure time: Col/EPI and Col/ADP]), chest X-ray, and electrocardiogram. SACE was performed in the angiography room. After the procedure, DAPT was continued for 3 months and then shifted to a single antiplatelet agent (aspirin) for at least 12 months. The patients were closely followed-up in the outpatient department. Follow-up imaging studies included digital subtraction angiography or magnetic resonance angiography performed after 1 year.

2. TEs: We measured the occurrence of TE and divided the events into acute stent thrombosis and early and delayed ischemic strokes. Early ischemic stroke includes all ischemic events, such as acute stent thrombosis, transient ischemic attack (TIA), and infarction, occurring within 3 months (covered by DAPT); delayed stroke occurred 3 months after embolization (covered by aspirin only).

3. Bleeding events: We measured the occurrence of bleeding events that were divided into major and
minor events. Major bleeding events include intracranial hemorrhage or gastrointestinal bleeding, which require invasive treatment. On the other hand, minor events include spontaneous skin ecchymosis, epistaxis, and hemorrhoid bleeding during DAPT.

Statistical analyses
Statistical analyses were performed using SPSS version 25.0 (IBM Corp., Armonk, NY, USA). Categorical variables are presented as values and percentages, and continuous variables are summarized as means and standard deviations. Baseline characteristics of all patients were assessed and compared between the two groups using the chi-square test or Fisher’s exact test for categorical variables and independent sample t-test for parametric variables. To assess and compare TEs or hemorrhagic complications between the two groups, we performed a subgroup analysis and percentage analysis with a binomial distribution. In all analyses, p values ≤ 0.05 were defined as statistically significant. Angiographic and clinical data were reviewed by noninterventionist authors, and the collected data were analyzed by a statistician.

Results
Baseline characteristics
Finally, we enrolled 153 patients who underwent SACE for grouping and retrospective analyses. Among these patients, 113 received clopidogrel plus aspirin (clopidogrel group) and 40 received ticagrelor plus aspirin (ticagrelor group). The baseline characteristics and past history are listed in Table 1. In the clopidogrel group, there were 49 men and 64 women; in the ticagrelor group, there were 12 men and 28 women. The average age was 54.45 vs. 56.39-years-old, respectively. There were no significant differences between the two groups. As for laboratory data, platelet count and platelet function tests were not significantly different between the two groups. Table 1 also shows the location of the 168 aneurysms in 153 patients. There was also no significant difference between the clopidogrel and ticagrelor groups.

Safety
In total, there were 12 TEs (7.84%) noted in our study, including 9 patients in the clopidogrel group and 3 patients in the ticagrelor group (Table 2). Two patients in the clopidogrel group had acute in-stent thrombosis (1.77%). No acute in-stent thrombosis occurred in the ticagrelor group. Only one patient (0.88%) had an early ischemic stroke that occurred within 3 months in the clopidogrel group (a total of 3 patients, 2.65%, with an early stroke); none occurred in the ticagrelor group. The locations of the stent deployment in the three patients who had early ischemic stroke were all in the internal carotid artery. Delayed ischemic stroke occurred in nine patients (5.88%), including six patients (5.31%) in the clopidogrel group and three patients (7.50%) in the ticagrelor group. In the Plavix group, five of six ischemic events were mild (TIA or self-expressed short-term weakness). Only one patient had image-proven cerebral infarction and occurred 2 days after abdominal hernia surgery. One patient was noted to have delayed infarction and hemorrhagic transformation in the ticagrelor group. Major hemorrhagic events did not occur in either group (Table 3). Minor bleeding, such as skin ecchymosis, epistaxis, and hemorrhoid bleeding, occurred in 13 patients (8.50%), including nine patients (7.96%) in the clopidogrel group and four patients (10%) in the ticagrelor group. There were no significant differences between the two groups with regard to TE (early: p = 0.236; total: p = 0.215) or hemorrhagic events (p = 0.744).

Discussion
Over time, dealing with thromboembolic complications related to neuroendovascular procedures, since the first detachable coil was introduced in 1991, has remained a challenge. Finding better antiplatelet medications could make these procedures safer and allow

Table 2. Thromboembolic events after embolization.

Procedure no.
Acute in stent thrombosis
Early ischemic stroke (<3 months)*
Delay ischemic stroke (>3 months)
Total ischemic stroke

*Include the acute in stent thrombosis.

Table 3. Bleeding complications in stent-assisted coiling embolizations.

Patients no.
Major bleeding
Minor bleeding
Spontaneous skin ecchymosis
Epistaxis
Hemorrhoids bleeding
Total bleeding events

(8.50%)
neurointerventionalists to use longer coiling and stents with confidence. Routinely, aspirin plus clopidogrel as DAPT has been used for the prevention of TEs. However, a previous study indicated that antiplatelet resistance to clopidogrel might be related to a high incidence of TE.14–16 The effectiveness of ticagrelor in preventing thromboembolic complications for endovascular procedures has been proven in patients with coronary disease patients.18–20 Therefore, ticagrelor might be an alternative prophylactic medication, and we hope that it can replace clopidogrel. To the best of our knowledge, the use of ticagrelor in neurovascular procedures was first published in 2014. Hanel et al. prescribed the use of ticagrelor in 18 patients who were non-responders to clopidogrel and underwent neurointerventional procedures. All patients showed immediate platelet inhibition after a loading dose of 180 mg ticagrelor administered orally, with no adverse effects. Ticagrelor offers an effective alternative to clopidogrel non-responders.22,24 Narata et al. published a retrospective single-center study of 154 consecutive patients with unruptured aneurysms in 2019. This study compared aspirin plus ticagrelor between flow diverters and stent-assisted coiling. In total, 41 patients underwent stent-assisted coiling. Nine patients (5.8%) presented with symptomatic neurological complications post-stenting (three ischemic and six hemorrhagic).21 According to these two studies, ticagrelor has adequate potency to prevent TE in SACE and is not inferior to clopidogrel. It may be a safer alternative option if the patient has a poor response to clopidogrel, but the number of cases remains small.

In the literature, ticagrelor was prescribed to patients who presented with TE risk factors. Risk factors for TE after neuro-intervention of UIA were proposed and explained in all studies. In terms of patient demographics and past history, TE occurred more frequently in patients with vascular status associated with old age, diabetes, dyslipidemia, and previous stroke. In aneurysm characteristics, increased TE was noted in the treatment of wide-neck and/or large aneurysms, which may be due to more complex techniques and longer procedure times. In our current study, platelet function testing was not statistically different between the two groups according to preoperative laboratory data. On the other hand, the P2Y12 reaction unit value and ticagrelor prescription were neither routinely checked nor covered by national health insurance, which causes socioeconomic burden. Therefore, it is difficult to set a randomized control group to select patients who have received the protocol. But we tried to equally choose patients who had received the ticagrelor protocol in the current study. Otherwise, patients with a history of allergy to clopidogrel were also prescribed ticagrelor.

As for the results of hemorrhagic events and adverse events, we used minor bleeding events to describe ecchymosis, epistaxis, or hemorrhoids. However, some patients complained of gastralgia, constipation, nausea, vomiting, or dizziness. In our opinion, these are adverse events that are related to antiplatelet usage and affect patient compliance. For further evaluation of the TE associated with dual antiplatelet therapy in SACE, we conducted a literature review. We searched PubMed using the terms “stent-assisted coil embolization and intracranial aneurysm.” We limited our search to articles published between January 1, 2013 and December 31, 2019. In total, 21 studies (shown in Table 4) were selected for analysis.7–9,12,21,24–38 Studies with ruptured aneurysms or endovascular procedures without stenting were excluded. Aspirin plus clopidogrel was used in most of the studies (20 studies, 95.2%). Two studies used ticagrelor, and three studies used prasugrel. In total, TE rates ranged from 0 to 22.22% in SACE, with an average of approximately 9.94%. Compared to our results, the early thromboembolic event rate was 2.65%. Our findings revealed good results, but still fell within the average range of previously published papers. In the limited literature, the rate of ischemic stroke after ticagrelor therapy was only 0–1.9% (excluding the flow diverter). Although there was no statistically significant difference between clopidogrel and ticagrelor, ticagrelor may tend to have stronger potency in terms of reducing acute TE when compared with clopidogrel. This trend has also been observed in other studies. However, there are some disadvantages regarding the clinical use of ticagrelor, including the cost of medication and patient compliance (for twice a day doses).39

Limitations

This study has some limitations. First, there were relatively fewer cases in the cohort study, and the effects of other variables may have been underestimated. First, the location and vessel size of stent deployment may affect the incidence of thrombus formation. In all three patients who had an early ischemic stroke, stent delivery occurred in the internal carotid artery. Otherwise, the therapeutic vessels between the two groups showed no obvious difference in distribution. By comparing these two groups, there were fewer cases of adverse events in the ticagrelor group. In addition, because of the clinically lower thromboembolic risk, the P2Y12 reaction unit value was not routinely evaluated and not covered by national health insurance. Therefore, the true percentage of clopidogrel resistance remains unknown. However, in the two groups, because there were no differences between pre-stenting platelet function and random selection of the two groups, the bias might have been reduced. In order to create clinical guidelines, a prospective randomized controlled study is warranted to validate the effectiveness and safety of clopidogrel and ticagrelor for the treatment of intracranial aneurysms.

Conclusion

According to our study, ticagrelor plus aspirin is a safe and effective dual antiplatelet therapy. Compared to a clopidogrel-based regimen, ticagrelor can also reduce TEs without increasing the bleeding rate for stent-assisted coiling embolization of UIAs. Ticagrelor plus aspirin is an
alternative treatment option. Further large studies are warranted to validate the results and render SACE much safer.

Ethics approval and consent to participate
The study was a retrospective review. Informed consent was obtained from all patients after a detailed consultation that delineated the risks, benefits, and alternatives of the procedures, as part of multidisciplinary neurosurgical and neurointerventional decision-making. All methods were pledged to perform in accordance with the ethical regulations. The study was approved by the institutional review board (201800342B0) by Chang Gung Memorial Hospital, Linkou Medical Center.

Consent for publication
All images or clinical details in the study are presented anonymously.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Table 4. Systemic review of antiplatelets regiment for stent in treatment of intracerebral aneurysms.
Study

Hwang et al. 2013⁷
Kono et al. 2013²⁵
Hwang et al. 2014⁶⁶
Matsumoto et al. 2016⁵⁸
Takigawa et al. 2014⁶⁷
Hong et al. 2016²⁸
Starke et al. 2015²⁷
Song et al. 2015²⁹
Matsumoto et al. 2015³⁰
Ha et al. 2016³¹
Kim et al. 2016³⁸
Bechan et al. 2016⁹
Park et al. 2016³²
Song and Shin 2017⁹³
Sedat et al. 2017³⁶
Choi et al. 2018³⁵
Kim et al. 2018³⁶
Soize et al. 2019³⁷
Hanel et al. 2016³⁸
Narata et al. 2019³¹
Current study

SACE: stent assisted coiling embolization; N/A: no mention in the article.
Early TE: thromboembolic events <3 months or under dual antiplatelets (include in stent thrombosis).
Include SACE, flow diverter, double catheters, etc.
DRT: drug resistant therapy, no detail in the article.
Group for Clopidogrel resistance.
Include carotid stent, intra-, extra-cranial stents, and flow diverter.
Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Chang Gung Memorial Hospital, Linkou (grant number CMRPG3H0741).

ORCID ID
Ching-Chang Chen https://orcid.org/0000-0001-6816-3963

Supplemental Material
Supplemental material for this article is available online.

References
1. Johnston SC, Zhao S, Dudley RA, et al. Treatment of unruptured cerebral aneurysms in California. Stroke 2001; 32: 597–605.
2. Hwang JS, Hyun MK, Lee HJ, et al. Endovascular coil versus neurosurgical clipping in patients with unruptured intracranial aneurysm: a systematic review. BMC Neurol 2013; 12: 99.
3. Birski M, Walea C, Gaca W, et al. Clipping versus coil for intracranial aneurysms. Neuroi Neurochir Pol 2014; 48: 122–129.
4. Akpek S, Arat A, Morsi H, et al. Self-expandable stent-assisted coil embolization of wide-necked intracranial aneurysms: a single-center experience. AJNR Am J Neuroradiol 2005; 26: 1223–1231.
5. Lee YJ, Kim DJ, Suh SH, et al. Stent-assisted coil embolization of intracranial wide-necked aneurysms. Neuroradiology 2005; 47: 680–689.
6. Biondi A, Janardhan V, Katz JM, et al. Neuroform stent-assisted coil embolization of wide-neck intracranial aneurysms: strategies in stent deployment and midterm follow-up. Neurosurgery 2007; 61: 460–468. ; discussion 468–9.
7. Hwang SK, Hwang G, Bang JS, et al. Endovascular enterprise stent-assisted coil embolization for wide-necked unruptured intracranial aneurysms. J Clin Neurosci 2013; 20: 1276–1279.
8. Hong Y, Wang YJ, Deng Z, et al. Stent-assisted coil embolizing versus coil embolization in treatment of intracranial aneurysm: a systematic review and meta-analysis. PLoS One 2014; 9: e82311.
9. Bechkan RS, Sprengers ME, Majoe CB, et al. Stent-assisted coil embolization of intracranial aneurysms: complications in acutely ruptured versus unruptured aneurysms. AJNR Am J Neuroradiol 2016; 37: 502–507.
10. Qureshi AI, Luft AR, Sharma M, et al. Prevention and treatment of thromboembolic and ischemic complications associated with endovascular procedures: part II: clinical aspects and recommendations. Neurosurgery 2000; 46: 1360–1375.; discussion 1375–6.
11. Derdeyn CP, Cross 3rd DT, Moran CJ, brown GW, pilgrim TK, diringer MN., et al. Postprocedure ischemic events after treatment of intracranial aneurysms with Guglielmi detachable coils. J Neurosurg 2002; 96: 837–843.
12. Takigawa T, Suzuki K, Sugiura Y, et al. Thromboembolic events associated with single balloon-, double balloon-, and stent-assisted coil embolization of asymptomatic unruptured cerebral aneurysms: evaluation with diffusion-weighted MR imaging. Neuroradiology 2014; 56: 1079–1086.
13. Brooks NP, Turk AS, Niemann DB, et al. Frequency of thromboembolic events associated with endovascular aneurysm treatment: retrospective case series. J Neurosurg 2008; 108: 1095–1100.
14. Altay T, Kang HI, Woo HH, et al. Thromboembolic events associated with endovascular treatment of cerebral aneurysms. J Neurointerv Surg 2011; 3: 147–150.
15. Gurbel PA and Bliden KP. Interpretation of platelet inhibition by clopidogrel and the effect of non-responders. J Thromb Haemost 2003; 1: 1318–1319.
16. Srinivas NR. Genetic CYP2C19 polymorphism dependent non-responders to clopidogrel therapy--does structural design, dosing and induction strategies have a role to play? Eur J Drug Metab Pharmacokinet 2009; 34: 147–150.
17. Cuisset T, Quilici J, Cohen W, et al. Usefulness of high clopidogrel maintenance dose according to CYP2C19 genotypes in clopidogrel low responders undergoing coronary stenting for non ST elevation acute coronary syndrome. Am J Cardiol 2011; 108: 760–765.
18. Cattaneo M. Ticagrelor versus clopidogrel in acute coronary syndromes. N Engl J Med 2009; 361: 2386.; author reply 2387–8.
19. Gurbel PA, Bliden KP, Butler K, et al. Randomized double-blind assessment of the ONSET and OFFSET of the antiplatelet effects of ticagrelor versus clopidogrel in patients with stable coronary artery disease: the ONSET/OFFSET study. Circulation 2009; 120: 2577–2585.
20. Cannon CP, Harrington RA, James S, et al. Comparison of ticagrelor with clopidogrel in patients with a planned invasive strategy for acute coronary syndromes (PLATO): a randomised double-blind study. Lancet 2010: 375: 283–293.
21. Narata AP, Amelot A, Bibi R, et al. Dual antiplatelet therapy combining aspirin and ticagrelor for intracranial stenting procedures: a retrospective single center study of 154 consecutive patients with unruptured aneurysms. Neurosurgery 2019; 84: 77–83.
22. Borchert RJ, Simonato D, Hickman CR, et al. P2y12 inhibitors for the neurointerventional Interv Neuroradiol 2021; 15910199211015042.
23. Guglielmi G, Vinuela F, Dion J, et al. Electrothrombosis of saccular aneurysms via endovascular approach. Part 2: preliminary clinical experience. J Neurosurg 1991; 75: 8–14.
24. Hanel RA, Taussky P, Dixon T, et al. Safety and efficacy of ticagrelor versus clopidogrel in patients with a planned invasive strategy for acute coronary syndromes (PLATO): a randomised double-blind study. Lancet 2010: 375: 283–293.
25. Hanel RA, Taussky P, Dixon T, et al. Safety and efficacy of ticagrelor versus clopidogrel in patients with a planned invasive strategy for acute coronary syndromes (PLATO): a randomised double-blind study. Lancet 2010: 375: 283–293.
stent-assisted embolization of unruptured intracranial aneurysms. *Clin Neurol Neurosurg* 2015; 135: 73–78.

30. Matsumoto Y, Iko M, Tsutsumi M, et al. The safety and efficacy of triple antiplatelet therapy after intracranial stent-assisted coil embolization. *J Stroke Cerebrovasc Dis* 2015; 24: 1513–1519.

31. Ha EJ, Cho WS, Kim JE, et al. Prophylactic antiplatelet medication in endovascular treatment of intracranial aneurysms: low-dose prasugrel versus clopidogrel. *AJNR Am J Neuroradiol* 2016; 37: 2060–2065.

32. Park JC, Lee DH, Kim JK, et al. Microembolism after endovascular coiling of unruptured cerebral aneurysms: incidence and risk factors. *J Neurosurg* 2016; 124: 777–783.

33. Song J and Shin YS. Antiplatelet drug resistance did not increase the thromboembolic events after stent-assisted coiling of unruptured intracranial aneurysm: a single center experience of 99 cases. *Neurrol Sci* 2017; 38: 879–885.

34. Sedat J, Chau Y, Gaudart J, et al. Prasugrel versus clopidogrel in stent-assisted coil embolization of unruptured intracranial aneurysms. *Interv Neuroradiol* 2017; 23: 52–59.

35. Choi HH, Lee JJ, Cho YD, et al. Antiplatelet premedication for stent-assisted coil embolization of intracranial aneurysms: low-dose prasugrel vs clopidogrel. *Neurosurgery* 2018; 83: 981–988.

36. Kim MS, Park ES, Park JB, et al. Clopidogrel response variability in unruptured intracranial aneurysm patients treated with stent-assisted endovascular coil embolization: is follow-up clopidogrel response test necessary? *J Korean Neurosurg Soc* 2018; 61: 201–211.

37. Soize S, Foussier C, Manceau PF, et al. Comparison of two preventive dual antiplatelet regimens for unruptured intracranial aneurysm embolization with flow diverter/disrupter: a matched-cohort study comparing clopidogrel with ticagrelor. *J Neuroradiol* 2019; 46: 378–383.

38. Kim MS, Jo KI, Yeon JY, et al. Safety and efficacy of antiplatelet response assay and drug adjustment in coil embolization: a propensity score analysis. *Neuroradiology* 2016; 58: 1125–1134.

39. Husted S and van Giezen JJ. Ticagrelor: the first reversibly binding oral P2Y12 receptor antagonist *Cardiovasc Ther* 2009; 27: 259–274.