Manifestly duality-invariant interactions in diverse dimensions

Sergei M. Kuzenko

Department of Physics M013, The University of Western Australia
35 Stirling Highway, Perth W.A. 6009, Australia

Abstract

As an extension of the Ivanov-Zupnik approach to self-dual nonlinear electrodynamics in four dimensions [1,2], we reformulate U(1) duality-invariant nonlinear models for a gauge \((2p-1)\)-form in \(d = 4p\) dimensions as field theories with manifestly U(1) invariant self-interactions. This reformulation is suitable to generate arbitrary duality-invariant nonlinear systems including those with higher derivatives.
1 Introduction

As an extension of the seminal work by Gaillard and Zumino [3], the general formalism of duality-invariant models for nonlinear electrodynamics in four dimensions was developed in the mid-1990s [4–7]. The Gaillard-Zumino-Gibbons-Rasheed (GZGR) approach was generalised to off-shell $\mathcal{N} = 1$ and $\mathcal{N} = 2$ globally [8, 9] and locally [10, 11] supersymmetric theories. In particular, the first consistent perturbative scheme to construct the $\mathcal{N} = 2$ supersymmetric Born-Infeld action was given in [9] (this approach was further pursued in [12]). The GZGR formalism was also extended to higher dimensions [13–15].

Nonlinear electrodynamics with U(1) duality symmetry is described by a Lorentz invariant Lagrangian $L(F_{ab})$ which is a solution to the self-duality equation

$$\tilde{G}^{ab}G_{ab} + \tilde{F}^{ab}F_{ab} = 0 ,$$

where

$$\tilde{G}^{ab}(F) := \frac{1}{2} \epsilon^{abcd} G_{cd}(F) = 2 \frac{\partial L(F)}{\partial F_{ab}} .$$

In the case of theories with higher derivatives, this scheme is generalised in accordance with the two rules given in [8]. Firstly, the definition of \tilde{G} is replaced with

$$\tilde{G}^{ab}[F] = 2 \frac{\delta S[F]}{\delta F_{ab}} .$$

Secondly, the self-duality equation (1.1) is replaced with

$$\int d^4x \left(\tilde{G}^{ab}G_{ab} + \tilde{F}^{ab}F_{ab} \right) = 0 .$$

Duality-invariant theories with higher derivative theories naturally occur in $\mathcal{N} = 2$ supersymmetry [9]. Further aspects of duality-invariant theories with higher derivatives were studied in, e.g., [16–19].

Self-duality equation (1.1) is nonlinear, and therefore its general solutions are difficult to find. In the early 2000s, Ivanov and Zupnik [1, 2] proposed a reformulation of duality-invariant electrodynamics involving an auxiliary antisymmetric tensor V_{ab}, which is equivalent to a symmetric spinor $V_{\alpha\beta} = V_{\beta\alpha}$ and its conjugate $\bar{V}^{\dot{\alpha}\dot{\beta}}$. The new Lagrangian $L(F, V)$ is at most quadratic in the electromagnetic field strength F_{ab}, while the self-interaction is described by a nonlinear function of the auxiliary variables, $L_{\text{int}}(V_{ab})$,

$$L(F_{ab}, V_{ab}) = \frac{1}{4} F^{ab}F_{ab} + \frac{1}{2} V^{ab}V_{ab} - V^{ab}F_{ab} + L_{\text{int}}(V_{ab}) .$$

This approach was inspired by the structure on the $\mathcal{N} = 3$ supersymmetric Born-Infeld action proposed in [20].
The original theory \(L(F_{ab}) \) is obtained from \(L(F_{ab}, V_{ab}) \) by integrating out the auxiliary variables. In terms of \(L(F_{ab}, V_{ab}) \), the condition of U(1) duality invariance was shown \([1,2]\) to be equivalent to the requirement that the self-interaction

\[
L_{\text{int}}(V_{ab}) = L_{\text{int}}(\nu, \bar{\nu}) \ , \quad \nu := V^{\alpha\beta} V_{\alpha\beta} \tag{1.6}
\]
is invariant under linear U(1) transformations \(\nu \to e^{i\varphi} \nu \), with \(\varphi \in \mathbb{R} \), and thus

\[
L_{\text{int}}(\nu, \bar{\nu}) = f(\nu \bar{\nu}) \ ,
\]
where \(f \) is a real function of one real variable. The Ivanov-Zupnik (IZ) approach \([1,2]\) has been used by Novotný \([21]\) to establish the relation between helicity conservation for the tree-level scattering amplitudes and the electric-magnetic duality.

The above discussion shows that the IZ approach is a universal formalism to generate U(1) duality-invariant models for nonlinear electrodynamics. Some time ago, there was a revival of interest in duality-invariant dynamical systems \([17,22,23]\) inspired by the desire to achieve a better understanding of the UV properties of extended supergravity theories. The authors of \([22]\) have put forward the so-called “twisted self-duality constraint,” which was further advocated in \([17,23]\), as a systematic procedure to generate manifestly duality-invariant theories. However, these approaches have been demonstrated \([24]\) to be variants of the IZ scheme \([1,2]\) developed a decade earlier.

The IZ approach has been generalised to off-shell \(\mathcal{N} = 1 \) and \(\mathcal{N} = 2 \) globally and locally supersymmetric theories \([25,26]\). In this note we provide a generalisation of the approach to higher dimensions, \(d = 4p \). In even dimensions, \(d = 2n \), the maximal duality group for a system of \(k \) gauge \((n - 1)\)-forms depends on the dimension of spacetime. The duality group is U\((k)\) if \(n \) is even, and O\((k) \times O(k)\) if \(n \) is odd \([14]\) (see, e.g, section 8 of \([9]\) for a review). This is why we choose \(d = 4p \). The fact that the maximal duality group depends on the dimension of space-time was discussed in the mid-1980s \([27,28]\) and also in the late 1990s \([29,30]\).

2 New formulation

In Minkowski space of even dimension \(d = 4p \equiv 2n \), with \(p \) a positive integer, we consider a self-interacting theory of a gauge \((n - 1)\)-form \(A_{a_1...a_{n-1}} \) with the property that the Lagrangian, \(L = L(F) \), is a function of the field strengths \(F_{a_1...a_n} = n \partial_{[a_1} A_{a_2...a_n]} \)\footnote{We follow the notation and conventions of \([9]\).} We
assume that the theory possesses U(1) duality invariance. This means that the Lagrangian is a solution to the self-duality equation

$$\tilde{G}^{a_1...a_n}G_{a_1...a_n} + \tilde{F}^{a_1...a_n}F_{a_1...a_n} = 0 \ ,$$

(2.1)

where we have introduced

$$\tilde{G}^{a_1...a_n}(F) = n! \frac{\partial L(F)}{\partial F_{a_1...a_n}} \ .$$

(2.2)

As usual, the notation \tilde{F} is used for the Hodge dual of F,

$$\tilde{F}^{a_1...a_n} = \frac{1}{n!} \epsilon^{a_1...a_n b_1...b_n} F_{b_1...b_n} \ .$$

(2.3)

We now introduce a reformulation of the above theory. Along with the field strength $F_{a_1...a_n}$, our new Lagrangian $L(F, V)$ is defined to depend on an auxiliary rank-n antisymmetric tensor $V_{a_1...a_n}$ which is unconstrained. We choose $L(F, V)$ to have the form

$$L(F, V) = \frac{1}{n!} \left\{ \frac{1}{2} F \cdot F + V \cdot V - 2V \cdot F \right\} + L_{\text{int}}(V) \ ,$$

(2.4)

where we have denoted

$$V \cdot F := V^{a_1...a_n} F_{a_1...a_n} \ .$$

(2.5)

The last term in (2.4), $L_{\text{int}}(V)$, is at least quartic in $V^{a_1...a_n}$. It is assumed that the equation of motion for V,

$$\frac{\partial}{\partial V_{a_1...a_n}} L(F, V) = 0 \ ,$$

(2.6)

allows one to integrate out the auxiliary field V to result with $L(F)$.

It may be shown that the self-duality equation (2.1) is equivalent to the following condition on the self-interaction in (2.4)

$$\tilde{V}^{a_1...a_n} \frac{\partial}{\partial V_{a_1...a_n}} L_{\text{int}}(V) = 0 \ .$$

(2.7)

Introducing (anti) self-dual components of V,

$$V^{a_1...a_n}_\pm = \frac{1}{2} \left(V^{a_1...a_n} \pm i\tilde{V}^{a_1...a_n} \right) \ , \quad \tilde{V}_\pm = \mp iV_\pm \ , \quad V = V_+ + V_- \ ,$$

(2.8)

the above condition turns into

$$\left(V^{a_1...a_n}_+ \frac{\partial}{\partial V_{a_1...a_n}^+} - V^{a_1...a_n}_- \frac{\partial}{\partial V_{a_1...a_n}^-} \right) L_{\text{int}}(V_+, V_-) = 0 \ .$$

(2.9)
This means that $L_{\text{int}}(V_+, V_-)$ is invariant under U(1) phase transformations,

$$L_{\text{int}}(e^{i\varphi}V_+, e^{-i\varphi}V_-) = L_{\text{int}}(V_+, V_-), \quad \varphi \in \mathbb{R}.$$ \hspace{1cm} (2.10)

In four dimensions, the most general solution to this condition is given by eq. (1.7). Similar solutions exist in higher dimensions, $L_{\text{int}}(V_+, V_-) = f(V_+ V_+ V_- V_-)$, with $f(x)$ a real function of one variable. However more general self-interactions become possible beyond four dimensions.

It is worth pointing out that an infinitesimal U(1) duality transformation

$$\delta \begin{pmatrix} G \\ F \end{pmatrix} = \begin{pmatrix} 0 & -\lambda \\ \lambda & 0 \end{pmatrix} \begin{pmatrix} G \\ F \end{pmatrix}$$ \hspace{1cm} (2.11a)

leads to the following transformation of V

$$\delta V = \lambda \tilde{V}.$$ \hspace{1cm} (2.11b)

Equation (2.7) tells us that $L_{\text{int}}(V)$ duality invariant.

There are several interesting generalisations of the construction described. They include (i) coupling to gravity; (ii) coupling to a dilaton with enhanced SL(2, \mathbb{R}) duality; (iii) duality-invariant systems with higher derivatives; and (iv) U(k) duality-invariant systems of k gauge ($2p - 1$)-forms in $d = 4p$ dimensions.

Recently, U(1) duality-invariant theories of a gauge ($2p - 1$)-form in $d = 4p$ dimensions have been described [31] within the Pasti-Sorokin-Tonin approach [32, 33]. It was argued in [31] that the approach of [32, 33] is the most efficient method to determine all possible manifestly U(1) duality invariant self-interactions provided Lorentz invariance is kept manifest. Our analysis has provided an alternative formalism.

Acknowledgements:
I am grateful to Stefan Theisen for useful comments. This work is supported in part by the Australian Research Council, project No. DP160103633.

References

[1] E. A. Ivanov and B. M. Zupnik, “New representation for Lagrangians of self-dual nonlinear electrodynamics,” hep-th/0202203.

It is worth pointing out that in four dimensions a hybrid formulation has been developed [34] which combines the powerful features of the IZ approach with those advocated in [32, 33].
[2] E. A. Ivanov and B. M. Zupnik, “New approach to nonlinear electrodynamics: Dualities as symmetries of interaction,” Phys. Atom. Nucl. 67, 2188 (2004) [Yad. Fiz. 67, 2212 (2004)] [hep-th/0303192].

[3] M. K. Gaillard and B. Zumino, “Duality rotations for interacting fields,” Nucl. Phys. B193, 221 (1981).

[4] G. W. Gibbons and D. A. Rasheed, “Electric-magnetic duality rotations in nonlinear electrodynamics,” Nucl. Phys. B454, 185 (1995) [arXiv:hep-th/9506035].

[5] G. W. Gibbons and D. A. Rasheed, “SL(2,R) invariance of non-linear electrodynamics coupled to an axion and a dilaton,” Phys. Lett. B365, 46 (1996) [hep-th/9509141].

[6] M. K. Gaillard and B. Zumino, “Self-duality in nonlinear electromagnetism,” in Supersymmetry and Quantum Field Theory, J. Wess and V. P. Akulov (Eds.), Springer Verlag, 1998, p. 121 [arXiv:hep-th/9705220].

[7] M. K. Gaillard and B. Zumino, “Nonlinear electromagnetic self-duality and Legendre transformations,” in Duality and Supersymmetric Theories, D. I. Olive and P. C. West eds., Cambridge University Press, 1999, p. 33 [hep-th/9712103].

[8] S. M. Kuzenko and S. Theisen, “Supersymmetric duality rotations,” JHEP 0003, 034 (2000) [arXiv:hep-th/0001068].

[9] S. M. Kuzenko and S. Theisen, “Nonlinear self-duality and supersymmetry,” Fortsch. Phys. 49, 273 (2001) [arXiv:hep-th/0007231].

[10] S. M. Kuzenko and S. A. McCarthy, “Nonlinear self-duality and supergravity,” JHEP 0302, 038 (2003) [hep-th/0212039].

[11] S. M. Kuzenko, “Nonlinear self-duality in N=2 supergravity,” JHEP 1206, 012 (2012) [arXiv:1202.0126 [hep-th]].

[12] J. Broedel, J. J. M. Carrasco, S. Ferrara, R. Kallosh and R. Roiban, “N=2 supersymmetry and U(1)-duality,” Phys. Rev. D 85, 125036 (2012) [arXiv:1202.0014 [hep-th]].

[13] Y. Tanii, Introduction to supergravities in diverse dimensions, hep-th/9802138.

[14] M. Araki and Y. Tanii, “Duality symmetries in non-linear gauge theories,” Int. J. Mod. Phys. A14, 1139 (1999) [hep-th/9808029].

[15] P. Aschieri, D. Brace, B. Morariu and B. Zumino, “Nonlinear self-duality in even dimensions,” Nucl. Phys. B 574, 551 (2000) [hep-th/9909021].

[16] P. Aschieri, S. Ferrara and B. Zumino, “Duality rotations in nonlinear electrodynamics and in extended supergravity,” Riv. Nuovo Cim. 31, 625 (2008) [arXiv:0807.4039 [hep-th]].

[17] W. Chemissany, R. Kallosh and T. Ortin, “Born-Infeld with higher derivatives,” Phys. Rev. D 85, 046002 (2012) [arXiv:1112.0332 [hep-th]].

[18] P. Aschieri and S. Ferrara, “ Constitutive relations and Schroedinger’s formulation of nonlinear electromagnetic theories,” JHEP 1305, 087 (2013) [arXiv:1302.4737 [hep-th]].
[19] P. Aschieri, S. Ferrara and S. Theisen, “Constitutive relations, off shell duality rotations and the hypergeometric form of Born-Infeld theory,” Springer Proc. Phys. 153, 23 (2014) [arXiv:1310.2803 [hep-th]].

[20] E. A. Ivanov and B. M. Zupnik, “N=3 supersymmetric Born-Infeld theory,” Nucl. Phys. B 618, 3 (2001) [hep-th/0110074].

[21] J. Novotný, “Self-duality, helicity conservation and normal ordering in nonlinear QED,” Phys. Rev. D 98, no. 8, 085015 (2018) [arXiv:1806.02167 [hep-th]].

[22] G. Bossard and H. Nicolai, “Counterterms vs. dualities,” JHEP 1108, 074 (2011) [arXiv:1105.1273 [hep-th]].

[23] J. J. M. Carrasco, R. Kallosh and R. Roiban, “Covariant procedures for perturbative non-linear deformation of duality-invariant theories,” Phys. Rev. D 85, 025007 (2012) [arXiv:1108.4390 [hep-th]].

[24] E. A. Ivanov and B. M. Zupnik, “Bispinor auxiliary fields in duality-invariant electrodynamics revisited,” Phys. Rev. D 87, no. 6, 065023 (2013) [arXiv:1212.6637 [hep-th]].

[25] S. M. Kuzenko, “Duality rotations in supersymmetric nonlinear electrodynamics revisited,” JHEP 1303, 153 (2013) [arXiv:1301.5194 [hep-th]].

[26] E. Ivanov, O. Lechtenfeld and B. Zupnik, “Auxiliary superfields in N=1 supersymmetric self-dual electrodynamics,” JHEP 1305, 133 (2013) [arXiv:1303.5962 [hep-th]].

[27] Y. Tanii, “N=8 supergravity in six dimensions,” Phys. Lett. B145, 197 (1984).

[28] S. Cecotti, S. Ferrara and L. Girardello, “Hidden Non-compact Symmetries In String Theory,” Nucl. Phys. B308, 436 (1988).

[29] E. Cremmer, B. Julia, H. Li and C. N. Pope, “Dualisation of dualities. I,” Nucl. Phys. B523, 73 (1998) [hep-th/9710119].

[30] E. Cremmer, B. Julia, H. Li and C. N. Pope, “Dualisation of dualities. II: Twisted self-duality of doubled fields and superdualities,” Nucl. Phys. B535, 242 (1998) [hep-th/9806106].

[31] G. Buratti, K. Lechner and L. Melotti, “Duality invariant self-interactions of abelian p-forms in arbitrary dimensions,” [arXiv:1906.07094 [hep-th]].

[32] P. Pasti, D. P. Sorokin and M. Tonin, “Duality symmetric actions with manifest space-time symmetries,” Phys. Rev. D 52, 4277 (1995) [hep-th/9506109].

[33] P. Pasti, D. Sorokin and M. Tonin, “Covariant actions for models with nonlinear twisted self-duality,” Phys. Rev. D 86, 045013 (2012) [arXiv:1205.4243 [hep-th]].

[34] E. A. Ivanov, A. J. Nurmagambetov and B. M. Zupnik, “Unifying the PST and the auxiliary tensor field formulations of 4D self-duality,” Phys. Lett. B 731, 298 (2014) [arXiv:1401.7834 [hep-th]].