Research Article

Construction for the Sequences of Q-Borderenergetic Graphs

Bo Deng,1,2,3,4 Caibing Chang,1 Haixing Zhao,2,3,4 and Kinkar Chandra Das1,5

1School of Mathematics and Statistics, Qinghai Normal University, Xining 810001, China
2Academy of Plateau Science and Sustainability, Xining 810016, China
3Key Laboratory of Tibetan Information Processing, Ministry of Education, Xining 810008, China
4Tibetan Intelligent Information Processing and Machine Translation Key Laboratory, Qinghai, Xining 810008, China
5Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea

Correspondence should be addressed to Kinkar Chandra Das; kinkardas2003@googlemail.com

Received 31 May 2020; Accepted 27 June 2020; Published 18 July 2020

Academic Editor: Jia-Bao Liu

Copyright © 2020 Bo Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This research intends to construct a signless Laplacian spectrum of the complement of any \(k \)-regular graph \(G \) with order \(n \). Through application of the join of two arbitrary graphs, a new class of \(Q \)-borderenergetic graphs is determined with proof. As indicated in the research, with a regular \(Q \)-borderenergetic graph, sequences of regular \(Q \)-borderenergetic graphs can be constructed. The procedures for such a construction are determined and demonstrated. Significantly, all the possible regular \(Q \)-borderenergetic graphs of order \(7 < n \leq 10 \) are determined.

1. Introduction

All graphs considered in this paper are simple, unweighted, and undirected. Let \(G \) be a graph of order \(n = |V (G)| \), where \(V (G) \) is the vertex set of \(G \). The complement of \(G \) is denoted by \(\overline{G} \). The complete graph of order \(n \) is denoted by \(K_n \). Denote the average vertex degree of \(G \) by \(\overline{d} \). The join of two graphs \(H_1 \) and \(H_2 \) is the graph \(H_1 \sqcup H_2 \) with the vertex set \(V (H_1) \sqcup V (H_2) \) and the edge set consisting of all the edges of \(H_1 \) and \(H_2 \) together with the edges joining each vertex of \(H_1 \) with every vertex of \(H_2 \). For details on graph theory and spectral graph theory; see [1–4].

Let \(A(G) \) and \(D(G) \) be the adjacency matrix and the diagonal matrix of the vertex degrees of \(G \), respectively. Then, \(L(G) = D(G) − A(G) \) and \(Q(G) = D(G) + A(G) \) are called the Laplacian matrix and the signless Laplacian matrix of \(G \), respectively. In particular, the signless Laplacian spectra of join of two regular graphs are already determined [5].

The energy \(E(G) \) of \(G \) is defined as the sum of the absolute value of the eigenvalues of its adjacency matrix \(A(G) \) [6, 7]. Let \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \) be the eigenvalues of \(A \). Then,

\[
E(G) = \sum_{i=1}^{n} |\lambda_i|.
\]

For additional information on graph energy and its applications in chemistry, we refer to [8–10]. The eigenvalues of the Laplacian matrix \(L(G) \) of graph \(G \) are denoted by \(\xi_1 \geq \xi_2 \geq \cdots \geq \xi_n = 0 \). The Laplacian energy [11] of \(G \) is defined as

\[
LE(G) = \sum_{i=1}^{n} |\xi_i - \overline{d}|.
\]

The eigenvalues of the signless Laplacian matrix \(Q \) of graph \(G \) are denoted by \(\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} \geq \mu_n \) which forms the signless Laplacian spectrum \(\text{Spec}_Q(G) \). The signless Laplacian energy of \(G \) [12] is defined as \(QE(G) = \sum_{i=1}^{n} |\mu_i - \overline{d}| \).

In 2015, Gong et al. [13] proposed the concept of borderenergetic graphs, namely graphs of order \(n \) satisfying \(E(G) = 2(n−1) \). The corresponding results on borderenergetic graphs can be seen in [14–17]. For the Laplacian energy of a graph \(G \), Tura [18] proposed the concept of L-borderenergetic graphs, that is, a graph \(G \) of order \(n \) is
L-borderenergetic if $LE(G) = LE(K_n) = 2(n-1)$. More results on L-borderenergetic graphs, we can refer to [18–22].

Recently, Tao and Hou [23] extended this concept to the signless Laplacian energy of a graph. If a graph has the same signless Laplacian energy as the complete graph K_n, i.e., $QE(G) = QE(K_n) = 2(n-1)$, then it is called Q-borderenergetic. In [23, 24], several classes of Q-borderenergetic graphs are constructed.

Moreover, in this paper, through using the joint of two graphs, we construct a new class of Q-borderenergetic graphs and present a procedure to find sequences of regular Q-borderenergetic graphs. Especially, all regular Q-borderenergetic graphs of order $7 < n \leq 10$ are presented. In addition, we obtain the signless Laplacian spectrum of the complement of any k-regular graph G of order n.

2. Construction on Q-Borderenergetic Graphs

At first, the signless Laplacian spectrum of the complement of any k-regular graph G with order n is given in Lemma 1. Denote the signless Laplacian matrix of G by \overline{Q}.

Lemma 1. Let G be a k-regular connected graph of order n. If $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$ are the eigenvalues of $Q(G)$, then the eigenvalues of $Q(\overline{G})$ are as follows:

$$2(n-1) - \mu_1 = 2(n-1-k) \geq n - 2 - \mu_2 \geq n - 2 - \mu_3 \geq \cdots \geq n - 2 - \mu_n.$$ \hspace{1cm} (3)

Proof. Note that the signless Laplacian matrix of the complement graph G' of G is written as

$$Q(\overline{G}) = [(n-1)I - D(G)] + (J - A(G) - I).$$

$$= (n-2)I + J - Q(G),$$ \hspace{1cm} (4)

where I is an identity matrix and J is the matrix with each of whose entries is equal to 1. Since G is k-regular, we have that $\mu_i = 2k$ with corresponding eigenvector $e = (1, 1, \ldots, 1)^T$. Let $x_1, \ldots, x_{n-1}, x_n$ be the eigenvectors of $Q(G)$ corresponding to the eigenvalues $\mu_2, \ldots, \mu_{n-1}, \mu_n$, respectively. Thus, we have $Q(\overline{G})x_i = \mu_ix_i, i = 2, \ldots, n$. Since $Q(G)$ is symmetric, all the eigenvectors $e, x_2, \ldots, x_{n-1}, x_n$ are orthogonal to each other. Thus, we obtain $e^T x_i = 0, i = 2, \ldots, n$. As J can be presented as

$$J = \begin{pmatrix} e^T \\ e^T \\ \vdots \\ e^T \end{pmatrix},$$ \hspace{1cm} (5)

it arrives at $Jx_i = 0, i = 2, \ldots, n$. Therefore,

$$Q(\overline{G})x_i = ((n-2)I + J - Q(G))x_i,$$

$$= (n-2)x_i + Jx_i - Q(G)x_i,$$

$$= (n-2 - \mu_i)x_i, i = 2, \ldots, n.$$ \hspace{1cm} (6)

Thus, $n - 2 - \mu_i$ is an eigenvalue with corresponding eigenvector x_i of $Q(\overline{G})$, where $i = 2, \ldots, n$. As \overline{G} is $(n-1-k)$-regular, $2(n-1-k)$ is an eigenvalue with corresponding eigenvector $e = (1, 1, 1)^T$.

Using Lemma 1, we obtain the signless Laplacian spectrum of the join of two special graphs in the following theorem.

Theorem 1. Let G_1 be a k-regular graph on n vertices and G_2 be an empty graph on $n-k$ vertices. If $2k = \mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$ are the signless Laplacian eigenvalues of G_1, then the signless Laplacian eigenvalues of $G_1 \cup G_2$ are

$$n - k + \mu_3, n - k + \mu_3, \ldots, n - k + \mu_n, n(n-k-1), k, 2n.$$ \hspace{1cm} (7)

Proof. Note that the join of G_1 and G_2 can also be expressed with

$$G_1 \cup G_2 = G_1 \cup \overline{G_2}.$$ \hspace{1cm} (8)

Since $2k = \mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$ and 0^{n-k} are the signless Laplacian eigenvalues of G_1 and G_2, respectively, by Lemma 1, we have that the signless Laplacian spectra of $\overline{G_1}$ and $\overline{G_2}$ are as follows:

$$\{n - 2 - \mu_1, n - 2 - \mu_2, \ldots, n - 2 - \mu_n\},$$

$$\{n - k - 2(n-k-1), k, 2n\}.$$ \hspace{1cm} (9)

Thus, the set of the signless Laplacian eigenvalues of $\overline{G_1} \cup \overline{G_2}$ is composed of the above two sets. Using Lemma 1, we obtain the signless Laplacian eigenvalues of $G_1 \cup G_2$ as follows:

$$n - k + \mu_3, n - k + \mu_3, \ldots, n - k + \mu_n, n(n-k-1), k, 2n.$$ \hspace{1cm} (10)

Using Theorem 1, from any k-regular Q-borderenergetic graph, we can construct a new class of Q-borderenergetic graphs in the following theorem.

Theorem 2. Let G be a k-regular Q-borderenergetic graph with n vertices. Then $GVK_{-k,n}$ is Q-borderenergetic.

Proof. Let $2k = \mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$ be the signless Laplacian eigenvalues of G. Since G is Q-borderenergetic, then we have

$$\sum_{i=1}^{n} |\mu_i - k| = 2n - 2.$$ \hspace{1cm} (11)

Let $p = n - k$. By Theorem 1, the Q-spectrum of GVK_{p} is

$$\text{Spec}_{Q}(GVK_{p}) = \{p + \mu_3, p + \mu_3, \ldots, p + \mu_n, n, n, n, n, k, 2n\}.$$ \hspace{1cm} (12)

Since $p = n - k$, the average degree \overline{d} of graph GVK_{-p} is

$$\overline{d} = \frac{nk + 2np}{n + p} = \frac{nk + 2n(n-k)}{n + n - k} = n.$$ \hspace{1cm} (13)
By the definition of signless Laplacian energy of a graph with (11), we have

\[
QE(G\vee K_P) = \sum_{i=1}^{n} |\mu_i - k| + |n - n| (n - k - 1) \\
+ |k - n| + |2n - n| \\
= \sum_{i=1}^{n} |\mu_i - k| - |\mu_i - k| + n - k + n \\
= (2n - 2) - (2k - k) + n - k + n = 2(2n - k - 1).
\]

Since \(|V(G\vee K_P)| = 2n - k\), from the above result, we conclude that \(G\vee K_P\) is \(Q\) borderenergetic. □

3. Sequences of \(Q\)-Borderenergetic Graphs

In this section, by using Theorem 2 repeatedly, an infinite sequence of \(Q\)-borderenergetic graphs is constructed. Let \(G^{(0)}\) be any \(k\)-regular \(Q\)-borderenergetic graph with \(n\) vertices. Consider an infinite sequence \(H\) of graphs, i.e., \(H = \{G^{(0)}, G^{(1)}, \ldots, G^{(s)}, \ldots\}\) such that

\[
G^{(1)} = G^{(0)} \vee K_{n-k}, G^{(2)} = G^{(1)} \vee K_{n-k}, \ldots, G^{(s)} = G^{(s-1)} \vee K_{n-k}, \ldots
\]

One can easily see that graph \(G^{(s)}(s = 1, 2, \ldots)\) is of orders \(n + s(n - k)\) and \(n + (s - 1)(n - k)\)-regular. And the signless Laplacian spectrum of \(G^{(0)}\) is given in the following lemma.

Lemma 2. Let \(G^{(0)}\) be a \(k\)-regular \(Q\)-borderenergetic graph of order \(n\) with signless Laplacian eigenvalues \(2k = \mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} \geq \mu_n\). Then for any \(G^{(s)} \in H\) \((s \geq 1)\), the signless Laplacian spectrum of \(G^{(s)}\) is the following:

\[
\operatorname{Spec}_Q(G^{(s)}) = \left(\begin{array}{c}
\mu_2 + s(n - k), \mu_3 + s(n - k), \ldots, \mu_n + s(n - k), n + (s - 1)(n - k), \ldots, n + (s - 1)(n - k), \\
n + (s - 2)(n - k), 2n + 2(s - 1)(n - k) \end{array} \right)
\]

Proof. We prove this lemma by mathematical induction on \(s\). For \(s = 1\), by Theorem 2, (16) holds. We now assume that the result holds for \(s = t\). Then we have

\[
\operatorname{Spec}_Q(G^{(t)}) = \left(\begin{array}{c}
\mu_2 + t(n - k), \mu_3 + t(n - k), \ldots, \mu_n + t(n - k), n + (t - 1)(n - k), \ldots, n + (t - 1)(n - k), \\
n + (t - 2)(n - k), 2n + 2(t - 1)(n - k) \end{array} \right)
\]

Now, we have \(G^{(t+1)} = G^t \vee K_{n-k}\). By Theorem 1, we obtain

\[
\operatorname{Spec}_Q(G^{(t+1)}) = \left(\begin{array}{c}
\mu_2 + (t + 1)(n - k), \mu_3 + (t + 1)(n - k), \ldots, \mu_n + (t + 1)(n - k), n + t(n - k), \ldots, n + t(n - k), \\
n + (t - 1)(n - k), 2n + 2t(n - k) \end{array} \right)
\]
Proof. Obviously, the average degree of G is k. The former equality holds by Lemma 4. Moreover,
\[
\text{QE}(G) = \sum_{i=1}^{n} |\mu_i - k| = \sum_{i=1}^{n} |k + \lambda_i - k| = \text{E}(G).
\]
(20)

This completes the proof of the theorem.

For a k-regular graph of order n, if G is borderenergetic, then G is Q-borderenergetic and L-borderenergetic. In [13], Gong et al. found all the borderenergetic graphs with order $7 \leq n \leq 9$. Bearing in mind that there are no noncomplete borderenergetic graphs with order $n < 7$. Furthermore, Li et al. [17] searched for the borderenergetic graphs of order 10. Thus, we can find all the regular Q or L-borderenergetic graph of order n, $7 \leq n \leq 10$ (Figure 1). Denote the i-th k-regular Q-borderenergetic graph of order n by $G_{n,k}$.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Q-borderenergetic_graphs.png}
\caption{The regular Q-borderenergetic graphs (a) $G_{8,5}^{1}$, (b) $G_{6,4}^{2}$, (c) $G_{9,4}^{3}$, (d) $G_{10,7}^{4}$, (e) $G_{10,6}^{5}$, and (f) $G_{10,6}^{6}$.}
\end{figure}

\section*{Data Availability}

The data, cited from the paper [17], used to support the findings of this study are included within the article.

Proof. Since the graph $G^{(i)}$ is $n + (s - 1)(n - k)$-regular with order $n + s(n - k)$, by Lemma 2 and the definition of signless Laplacian energy, we have

\[
\text{QE}(G^{(i)}) = \sum_{i=1}^{n} |\mu_i + s(n - k) - n - (s - 1)(n - k)| + s(n - k - 1)[n + (s - 1)(n - k) - n - (s - 1)(n - k)]
+ s[n + (s - 2)(n - k) - n - (s - 1)(n - k)] + 2(n + (s - 1)(n - k)) - n - (s - 1)(n - k)
\]
\[
= 2n - 2 - |\mu_1 - k| + |s(n - k) + (n + (s - 1)(n - k))| = 2n - 2 - |\mu_1 - k| + n + (2s - 1)(n - k)
\]
(19)

\section*{Conflicts of Interest}

The authors declare that they have no conflicts of interest.

\section*{Acknowledgments}

This study was supported by the NSFQH (No. 2018-ZJ-925Q); NSFC (No. 11701311); and NSFGD (No. 2016A030310307).

\section*{References}

[1] J. A. Bondy and U. S. R. Murty, *Graph Theory*, GTM 244, Springer, Berlin, Germany, 2008.
[2] D. Cvetković, M. Doob, and H. Sachs, *Spectra of Graphs: Theory and Application*, Academic Press, New York, NY, USA, 1980.
[3] J.-B. Liu, X.-F. Pan, F.-T. Hu, and F.-F. Hu, "Asymptotic Laplacian-energy-like invariant of lattices," *Applied Mathematics and Computation*, vol. 253, pp. 205–214, 2015.
[4] J.-B. Liu, J. Zhao, and Z.-Q. Cai, "On the generalized adjacency, Laplacian and signless Laplacian spectra of the weighted edge corona networks," *Physica A: Statistical Mechanics and Its Applications*, vol. 540, Article ID 123073, 2020.
[5] X. Liu and P. Lu, "Signless Laplacian spectral characterization of some joins," *The Electronic Journal of Linear Algebra*, vol. 30, 2015.
[6] I. Gutman, "Acyclic systems with extremal Huckel π-electron energy," *Theoretica Chimica Acta*, vol. 45, no. 2, pp. 79–87, 1977.
[7] I. Gutman, "The energy of a graph," *Ber. Math. Statist. Sekt. Forschungsges. Graz*, vol. 103, pp. 1–22, 1978.
[8] I. Gutman, X. Li, and J. Zhang, "Graph energy," in *Analysis of Complex Networks. From Biology to Linguistics*, M. Dehmer
and F. Emmert-Streib, Eds., Wiley-VCH, Weinheim, Germany, pp. 145–174, 2009.
[9] X. Li, Y. Shi, and I. Gutman, Graph Energy, Springer, New York, NY, USA, 2012.
[10] B. Zhou, “Energy of a graph,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 51, pp. 111–118, 2004.
[11] I. Gutman and B. Zhou, “Laplacian energy of a graph,” Linear Algebra and Its Applications, vol. 414, no. 1, pp. 29–37, 2006.
[12] D. Cvetkovic and S. Simic, “Towards a spectral theory of graphs based on the signless Laplacian, I,” Publications de l’Institut Mathematique, vol. 85, no. 99, pp. 19–33, 2009.
[13] S. Gong, X. Li, G. Xu, I. Gutman, and B. Furtula, “Borderenergetic graphs,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 74, pp. 321–332, 2015.
[14] B. Deng, X. Li, and I. Gutman, “More on borderenergetic graphs,” Linear Algebra and Its Applications, vol. 497, pp. 199–208, 2016.
[15] Y. Hou and Q. Tao, “Borderenergetic threshold graphs,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 75, pp. 253–262, 2016.
[16] X. Li, M. Wei, and X. Zhu, “Borderenergetic graphs with small maximum or large minimum degrees,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 77, pp. 25–36, 2016.
[17] X. Li, M. Wei, and S. Gong, “A computer search for the borderenergetic graphs of order 10,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 77, pp. 333–342, 2015.
[18] F. Tura, “L-borderenergetic graphs,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 77, pp. 37–44, 2017.
[19] B. Deng, X. Li, and J. Wang, “Further results on L-borderenergetic graphs,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 77, pp. 607–616, 2017.
[20] B. Deng and X. Li, “More on L-borderenergetic graphs,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 77, pp. 115–127, 2017.
[21] L. Lu and Q. Huang, “On the existence of non-complete L-borderenergetic graphs,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 77, pp. 625–634, 2017.
[22] Q. Tao and Y. Hou, “A computer search for the L-borderenergetic graphs,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 77, pp. 595–606, 2017.
[23] Q. Tao and Y. Hou, “Q-borderenergetic graphs,” AKCE International Journal of Graphs and Combinatorics, 2018, In press.
[24] B. Deng, X. Li, and Y. Li, “(Signless) Laplacian borderenergetic graphs and the join of graphs,” MATCH Communications in Mathematical and in Computer Chemistry, vol. 80, pp. 449–457, 2018.