Brassinosteroid functions in Arabidopsis seed development

Wen-Bo Jiang1 and Wen-Hui Lin2*

1Key Laboratory of Plant Resources; Institute of Botany; Chinese Academy of Sciences; Beijing, PR China; 2Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, PR China

Keywords: brassinosteroid, seed, ovule, endosperm, integument, embryo

Abbreviations: BR, brassinosteroid; SHBI, SHORT HYPOCOTYL UNDER BLUE1; IKU1, HAIKU1; MINI3, MINISEED3; IKU2, HAIKU2; AP2, APETALA2; AGL, AGAMOUS-LIKE; ARF2, AUXIN RESPONSE FACTOR2; TTG2, TRANSPARENT TESTA GLABRA2; TT16, TRANSPARENT TESTA 16; FIS2, FERTILIZATION INDEPENDENT SEED 2; FIE, FERTILIZATION INDEPENDENT ENDOSPERM; MEA, MEDEA; MS1, MULTICOPY SUPRESSOR OF IRA; SWN, SWINGER; MET1, METHYL TRANSFERASE; ANT, AINTEGUMENTA; RGE1, RETARDED GROWTH OF EMBRYO1; SUP, SUPERMAN; INO, INNER NO OUTER; SIN, SHORT INTEGUMENTS; BEL1, BELL; AG, AGAMOUS; HLL, HUELLENLOS; AP2, APETALA2; duf, dwarf; shk1-D, shrink1-dominant; brd2, brassinosteroid-deficient dwarf2; BR11, BRASSINOSTEROID INSENSITIVE1; AHK, ARABIDOPSIS HISTIDINE KINAS; CKI1, CYTOKININ INDEPENDENT 1; ats, aberrant testa shape; QTLs, quantitative trait loci

Seed development of flowering plant is a complicated process controlled by a signal network. Double fertilization generates 2 zygotic products (embryo and endosperm). Embryo gives rise to a daughter plant while endosperm provides nutrients for embryo during embryogenesis and germination. Seed coat differentiates from maternally derived integument and encloses embryo and endosperm. Seed size/mass and number comprise final seed yield, and seed shape also contributes to seed development and weight. Seed size is coordinated by communication among endosperm, embryo, and integument. Seed number determination is more complex to investigate and shows differences between monocot and eudicot. Total seed number depends on silique number and seed number per silique in Arabidopsis. Seed comes from fertilized ovule, hence the ovule number per flower determines the maximal seed number per silique. Early studies reported that engineering BR levels increased the yield of ovule and seed; however the molecular mechanism of BR regulation in seed development still remained unclear. Our recent studies demonstrated that BR regulated seed size, shape, and number by transcriptionally modulating specific seed developmental pathways. This review summarizes roles of BR in Arabidopsis seed development and gives clues for future application of BR in agricultural production.

Introduction

The molecular mechanisms of seed development are extensively studied, and many genes involved have been already identified. SHBI1, IKU12, MINI33, IKU23, AP24,6 and MADS-box transcription factors AGL61,7,8 AGL62,9 and AGL8010 mainly regulate endosperm development to affect seed size/weight. ARF211, TTG212, and TT1613 regulate integument development to affect seed development. FIS2, FIE, MEA, MS1, SWN14, and MET15 influence seed development by epigenetic regulation of endosperm development and paternal imprinting. ANT16 and RGE17 are involved in regulating embryo proliferation and affect seed development. Hormones play crucial roles in seed development,18 including auxins, cytokinins, gibberellins, and BR. Also many genes that take part in ovule development and regulate the seed number have been identified in Arabidopsis, such as SUP19, INO20, SIN1,21 SIN2,22 TSOS1,23 BEL121,24 AG,25 HLL26 ANT26, and AP2.24 Steroid hormone BR is required in seed development. Deficiency in BR synthesis and signal transduction pathway leads to severe phenotypes in reproductive development. Many excellent articles and reviews covered BR synthesis, signal transduction, and related plant growth and development. Here we briefly summarize our current understanding of BR functions and regulation mechanisms in Arabidopsis seed development.

BR Plays Key Roles in Seed Size/Mass Regulation

The functions of BR in seed development have been demonstrated by studies of BR deficient and insensitive mutants of Arabidopsis, Oryza sativa, Pisum sativum, and Vicia faba. Arabidopsis BR deficient mutant dwf5 produces small seeds.27 Another Arabidopsis dwarf mutant shk1-D (overexpression of a P450 monoxygenase family gene CYP72C128) has lower endogenous BR level and produces general short organs and small seeds. Rice BR deficient mutant brd2 exhibits shortened and smaller

*Correspondence to: Wen-Hui Lin; Email: whlin@ibcas.ac.cn
Submitted: 07/20/13; Accepted: 07/27/13
Citation: Jiang W, Lin W. Brassinosteroid functions in Arabidopsis seed development. Plant Signaling & Behavior 2013; 8:e25928; http://dx.doi.org/10.4161/psb.25928

www.landesbioscience.com Plant Signaling & Behavior e25928-1
embryo development, decreased embryo cell size, number, and integument cell length. Our results are in accordance with the theory that final seed size depended on interactions among zygotic embryo and endosperm, maternally derived seed coat, and mother plant.11 We further analyzed the effects of BR synthesis and signaling in specific tissues on seed size determination, and deduced that BR produced by the embryo and endosperm contributed to the increased seed size.

SHB1, IKU1, MIN3, and IKU2 are reported to be positive regulators of seed size and act in the same pathway.1-3,36 We demonstrated they were positively regulated by BR and **SHB1, IKU1, and IKU2** were found as direct targets of BZR1,39 confirming ChIP results of Sun et al.37 Unlike MIN3, its interacting protein IKU12 is a direct target of BZR1. Genetic experiments showed these genes acted downstream of **DET2** and **BZR1** in seed size regulation. We proposed the model that BR regulated embryo and endosperm development to determine seed size through binding to **SHB1** promoter region by **BZR1**, consequently regulated the expression of **MIN3** and **IKU2**, or through **BZR1** binding to **IKU1**, which interacted with **MIN3** to regulate **MIN3** and **IKU2**, or alternatively through **BZR1** binding to the promoter of **IKU2** and regulates **IKU2**. BR regulates integuments, endosperm, and embryo development through **BZR1** binding to the **AP2** promoter, and then affects seed size. BR also modulates the integument development through **BZR1** binding to the promoter of **ARF2**. **BZR1**, activated by BR signal, stimulates the ovule development-related genes like **HLL, ANT**, and **AP2** indirectly or directly and regulate ovule number. Besides, **AP2** and **BZR1** possibly antagonize each other to participate in the ovule number determination process. BR affects the seed shape through regulating related genes in maternal tissues like integument (modified after Jiang et al.36 and Huang et al.39).

Figure 1. BR regulation model of seed development in Arabidopsis. BR regulates embryo and endosperm development to determine seed size through binding to the promoter region of **SHB1** by **BZR1**, which further regulates the expression of **MIN3** and **IKU2**, or through **BZR1** binding to the promoter region of **IKU1**, which interacts with **MIN3** to regulate **MIN3** and **IKU2**, or alternatively through **BZR1** binding to the promoter of **IKU2** and regulates **IKU2**. BR regulates integuments, endosperm, and embryo development through **BZR1** binding to the **AP2** promoter, and then affects seed size. BR also modulates the integument development through **BZR1** binding to the promoter of **ARF2**. **BZR1**, activated by BR signal, stimulates the ovule development-related genes like **HLL, ANT**, and **AP2** indirectly or directly and regulate ovule number. Besides, **AP2** and **BZR1** possibly antagonize each other to participate in the ovule number determination process. BR affects the seed shape through regulating related genes in maternal tissues like integument (modified after Jiang et al.36 and Huang et al.39).
was a target of BZR1, too, and negatively regulated by BR, and AP2 acted downstream of BZR1 and BR signal in regulating seed size (Fig. 1). Above all, we demonstrated that BR regulated seed size by expanding seed cavity and endosperm volume, promoting embryo development, and increasing embryo cell size, number, and integument cell length through transcriptionally modulating specific seed developmental pathways (Fig. 1).

BR Functions in Seed Shape Determination

Shape is an important seed trait. To date, there are a few reports mentioning seed shape regulation. *Arabidopsis* seed shape mutant *ats* is isolated from an ethyl methanesulfonate-treated population. Its length/width ratio is significantly lower than wild type. *ATS* functions in integument development and directly affects seed shape. A series of rice QTLs for grain shape are identified. Among them, GW3, GW6, and GS3 correlate with grain shape. MADS genes also contribute to seed shape. *Osmadi6–1* seeds seem to be more roundish than elliptical. However, the underlying mechanisms of seed shape determination are mostly unknown.

BR is involved in seed shape determination. *dwarf5* and *shk1–D* produce aberrantly shaped *Arabidopsis* seeds. *dwarf5* and *dwarf11* mutants bear small, round rice seeds that are shorter length but equal width to wild type. Rice *brd2* mutant also exhibits shortened grains. *Ik* mutant produces irregularly shaped pea seeds. Although BR has major effect on seed shape and BR effect cannot be recovered by other signals, the detailed mechanism of BR regulating seed shape is still unclear.

Our recent studies made progress in explaining the mechanism of seed shape regulation by BR. We found that the length to width ratio of seeds produced by BR-deficient and insensitive mutants was notably lower than that of wild type. The ratio of wild type rice seeds resembles the Golden Ratio of 1.61803399. Owing to the fact seeds come from fertilized ovules, we further analyzed ovule shape before pollination and found ovule shape of BR-deficient and insensitive mutants was normal. Thus we concluded BR regulated seed shape after fertilization. Furthermore, our results suggested that BR synthesis and signaling in the maternal tissues integument determined the seed shape (Fig. 1). The reciprocal crosses demonstrated that seeds shape was kept roundish when maternal tissue contained less BR or abnormal BR signal, even if BR level and signal have been rescued in embryo/endosperm and seed size/mass already restored. These results suggested that BR level in zygote determined the seed size/mass and had little effect on seed shape, which was consistent with the opinion that BR could not be transported through tissue boundary. Although *SHB1-MIN13-IKU2* pathway, *AP2*, and *ARF2* mediate the BR regulation of seed size/mass, the BR functions in seed shape determination is independent on these genes. Herein, the evidences we got suggested that mechanism of BR regulating seed shape was different from that for seed size. Furthermore, our studies indicated BR regulated distinct pathways in specific cell types to control seed size and shape. However, the detailed mechanism and unknown concerned genes of BR regulating seed shape (maybe a good model for studying BR transport), are worth further investigation in the future (Fig. 1).

BR is Involved in Seed Number Determination

There are several reports about seed number determination in flowering plants; however there is a significant lack of deeper insight into the mechanism of this regulation. First study describes the ectopic overexpression of a BR-biosynthetic gene *DWF4* in *Arabidopsis* transgenic plants results in increased seed yield due to a greater total seed number. Constitutive expression of *ZmDWF4* also increases the seed numbers. Enhancement of BR biosynthesis in transgenic rice enhances the grain yield due to more tillers and seeds and higher seed weight. These studies suggest that BR causes an increase of branches and silique number that leads to increased seed yield.

Due to the fact that many factors contribute to total seed number, we first focused on seed number per silique in *Arabidopsis*. The ovule number determines the maximal number of seeds in *Arabidopsis*. Many genes have been identified in each phase of ovule development. *INO* and *SUP* promote and suppress integument, and also affect the asymmetric form of integuments. *SIN1* and *SIN2* are required for cell division during integument development. *TOSI*, which encodes a nuclear protein, is required for the orientation of cell elongation and cytokinesis in integument development. *BEL1* and *AG* regulate integument identity. *HLL* and *ANT* both promote ovule primordial growth. Interestingly, *AP2* also affects early ovule formation.

Our recent studies showed the ovule or seed number per silique of *det2* and *br1–5* were significantly decreased, whereas *ber1–1D* contained obvious increased ovule and seed number. Thus we demonstrated that BR positively regulated ovule and seed number determination, and BR functioned in ovule number determination through BZR1 regulating *HLL, ANT*, and *AP2* transcription directly or indirectly (Fig. 1). *AP2* did not act downstream of BZR1 in ovule number determination, but functioned antagonistically with BZR1, which seemed to be different to seed size/mass regulation. The research of *Arabidopsis* seed number determination would provide opportunities for further use in yield enhancement of crops like *Brassica napus* and *Glycine max*.

Apart of ovule number, *Arabidopsis* seed number per silique determination is also affected by paternal tissues, fertilization, seed development, and other factors. These processes and their regulation will be worth further investigation. Total amount of seeds depends on seed number per silique and silique number, which reflects the meristem differentiation and maintenance from early stages of reproductive development. Although rice seed number determination differs from *Arabidopsis*, the signals in reproductive meristems required for seed number determination process in both monocot and eudicot may be conserved. How BR functions in reproductive meristem and affects flower, fruit, and seed number is an attractive field in future research.

Conclusions and Perspectives

The economic potentiality of BR in agricultural production was recognized as early as the 1980s, and the ability of exogenous BR to increase yield was shown in a variety of plant species. Combining previous reports and our results, we conclude that
BR has crucial function in seed development, including seed size, mass, shape, and number determination. The regulation mechanisms of BR in these processes are independent and different from each other.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References
1. Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, Ni M. SHORT HYPOCOTYL UNDER BLUE/LIGHT associates with MINISEED3 and HAUK2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell 2009; 21:106-17; PMID:19141706; http://dx.doi.org/10.1105/tpc.108.064972
2. Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F, Peacock WJ, Dennis ES, Luo M. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant J 2010; 63:670-9; PMID:20545893; http://dx.doi.org/10.1111/j.1365-313X.2010.04271.x
3. Lem M, Dennis BS, Berger F, Peacock WJ, Chaudhury A, MINISEED3 (MIN3), a WRKY family gene, and HAUK2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci U S A 2005; 102:17531-6; PMID:16293693; http://dx.doi.org/10.1073/pnas.0508181102
4. Ohno MA, Floyd SK, Fischer RL, Goldberg RB, Harada JJ. Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 2009; 22:277-89; PMID:19330449; http://dx.doi.org/10.1007/s00497-009-0161-6
5. Jirufski KD, Omidiyar PK, Gee Z, Okamuro JK. Control of seed mass and seed yield by the floral homoeotic gene APETALA2. Proc Natl Acad Sci U S A 2005; 102:517-22; PMID:15708974; http://dx.doi.org/10.1073/pnas.0409831102
6. Ohno MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ. Control of seed mass by APETALA2. Proc Natl Acad Sci U S A 2005; 102:3123-8; PMID:15708976; http://dx.doi.org/10.1073/pnas.0408581102
7. Steffen JG, Kang I-H, Porterfield MF, Lloyd A, Drews GN. AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiol 2008; 148:259-68; PMID:18599873; http://dx.doi.org/10.1104/pp.107.1088988
8. Steffen JG, Kang I-H, Porterfield MF, Lloyd A, Drews GN. The AGL61/MADS domain protein regulates cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 2005; 17:52-60; PMID:15598800; http://dx.doi.org/10.1105/tpc.104.027316
9. Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins T, Tescari M. RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, regulates abaxial-adaxial patterning in Arabidopsis thaliana. Development 1999; 126:3205-15; PMID:10485745
10. Garcia D, Fitt Gerald JN, Berger F. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 2005; 17:52-60; PMID:15598800; http://dx.doi.org/10.1105/tpc.104.027316
11. Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins T, Tescari M. RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, regulates abaxial-adaxial patterning in Arabidopsis thaliana. Development 1999; 126:3205-15; PMID:10485745
12. Nei N, Debeaujon I, Jond C, Stewart AJ, Jenkins T. RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, regulates abaxial-adaxial patterning in Arabidopsis thaliana. Development 1999; 126:3205-15; PMID:10485745
13. Pien S, Grossniklaus U. Polycomb group and trithorax group proteins in Arabidopsis. Biochim Biophys Acta 2007; 1771:786-803; PMID:17250579
14. Xiao W, Brown BC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL. Regulation of seed size by hypomethylation of maternal and paternal genomes. Plant Physiol 2006; 142:1160-8; PMID:17012404; http://dx.doi.org/10.1104/pp.105.074457
15. Minakami Y, Fischer RL. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci U S A 2000; 97:942-7; PMID:10369184; http://dx.doi.org/10.1073/pnas.97.2.942
16. Kondou Y, Nakazawa M, Kawashima M, Ichikawa T, Yoshizumi T, Suzuki K, Ichikawa A, Koshi T, Matsui R, Muro S, et al. RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control embryo growth. Plant Physiol 2008; 147:1924-35; PMID:18567831; http://dx.doi.org/10.1104/pp.108.118364
17. Sun X, Shantharaj D, Kang X, Ni M. Transcriptional and hormonal signaling control of Arabidopsis seed development. Curr Opin Plant Biol 2010; 13:611-20; PMID:20757768; http://dx.doi.org/10.1016/j.pbi.2010.08.009
18. Gaiser JC, Robinson-Beers K, Gasser CS. The Arabidopsis SUPERMAN gene mediates asymmetric growth of the outer integum of ovules. Plant Cell 1999; 7:333-45; PMID:12242379
19. Villanueva JM, Broadbent DJ, Blancac A, Meiser RJ, Schneitz K, Gasser CS. INNER NO OUTER regulates abaxial-adaxial patterning in Arabidopsis ovules. Genes Dev 1999; 13:3160-9; PMID:10601041; http://dx.doi.org/10.1101/gad.13.23.3160
20. Robinson-Beers K, Pruitte RJ, Gasser CS. Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell 1992; 4:1237-49; PMID:12297633
21. Broadbent J, Baker SC, Gasser CS. SHORT INTEGUMENTS 2 promotes growth during Arabidopsis reductive development. Genetics 1998; 150:411-23; PMID:9725513
22. Modrusan Z, Reiser L, Feldmann KA, Fischer RL, Haughn GW. Hormonal homeostasis in Arabidopsis. Plant Cell 1994; 6:335-49; PMID:12244239
23. Western TL, Haughn GW, BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana. Plant J 1999; 18:329-36; PMID:10377998; http://dx.doi.org/10.1111/j.1365-313X.1999.00448X

Acknowledgments
We thank Dr Frantisek Baluska for kindly inviting this review, and Ms Ivana Jerentsikova (University of Nottingham) for language editing. The concerned research work was supported by the National Basic Research Program of China (Grant 2014CB943404 and 2009CB945103).

For language editing. The concerned research work was supported by the National Basic Research Program of China (Grant 2014CB943404 and 2009CB945103).
37. Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 2010; 19:765-77; PMID:20704725; http://dx.doi.org/10.1016/j.devcel.2010.10.010

38. Adamski NM, Anastasiou E, Eriksson S, O’Neill CM, Lenhardt M. Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proc Natl Acad Sci U S A 2009; 106:20115-20; PMID:19892740

39. Leon-Kloosterziel KM, Keijzer CJ, Koornneef M. A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell 1994; 6:385-92; PMID:12244241

40. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q, GS1, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 2006; 112:1164-71; PMID:16453152; http://dx.doi.org/10.1007/s00122-006-0218-1

41. Guo L, Ma L, Jiang H, Zeng D, Hu J, Wu L, Gao Z, Zhang Q, Qian Q. Genetic analysis and fine mapping of two genes for grain shape and weight in rice. J Integr Plant Biol 2009; 51:45-51; PMID:19166493; http://dx.doi.org/10.1111/j.1744-7909.2008.00793.x

42. Zhang J, Nalamilli BR, Majahid H, Peng Z, OsMADS6 plays an essential role in endosperm nutrient accumulation and is subject to epigenetic regulation in rice (Oryza sativa). Plant J 2010; 64:604-17; PMID:20882505; http://dx.doi.org/10.1111/j.1365-313X.2010.04394.x

43. Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci U S A 1999; 96:10284-9; PMID:10468600; http://dx.doi.org/10.1073/pnas.96.18.10284

44. Cervantes E, Javier Martín J, Ardanuy R, de Diego JG, Tocino Á. Modeling the Arabidopsis seed shape by a cardioid: efficacy of the adjustment with a scale change with factor equal to the Golden Ratio and analysis of seed shape in ethylene mutants. J Plant Physiol 2010; 167:408-10; PMID:19880215; http://dx.doi.org/10.1016/j.jplph.2009.09.013

45. Symons GM, Reid JB. brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol 2004; 135:2196-206; PMID:15299131; http://dx.doi.org/10.1104/pp.104.043034

46. Gendron JM, Liu JS, Fan M, Bai MY, Wnekel S, Springer PS, Barton MK, Wang ZY. brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proc Natl Acad Sci U S A 2012; 109:21352-7; PMID:23213257; http://dx.doi.org/10.1073/pnas.1210799110

47. Choe S, Fujisaka S, Noguchi T, Takatsu K, Yoshida S, Feldmann KA. Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 2001; 26:573-82; PMID:11489171; http://dx.doi.org/10.1046/j.1365-313x.2001.01055.x

48. Liu T, Zhang J, Wang M, Wang Z, Li G, Qu L, Wang G. Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.). Plant Cell Rep 2007; 26:2093-9; PMID:17668219; http://dx.doi.org/10.1007/s00299-007-0418-4

49. Hauser BA, He JQ, Park SO, Gasser CS. TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development 2000; 127:2219-26; PMID:10769245

50. Huang HY, Jiang WB, Hu YW, Wu P, Zhu JY, Liang WQ, Wang ZY, Lin WH. BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1. Mol Plant 2013; 6:456-60; PMID:22914576; http://dx.doi.org/10.1093/mp/ssw070