Prevalence of sarcopenia and associated factors in patients in hemodialysis

Prevalência de sarcopenia e fatores associados em pacientes em hemodiálise

Camila Ferreira Leal Nunes¹,* ¹, Tuane Rodrigues de Carvalho², Ricardo da Silva Duarte³, Ylka Anny Couto Oliveira Barboza², Maria Conceição Chaves de Lemos³, Claudia Porto Sabino Pinho¹,²

¹Pernambuco Cardiac Emergency Room Professor Luiz Tavares, University of Pernambuco (UFPE). Recife, Pernambuco, Brazil.
²Hospital das Clínicas de Pernambuco, Federal University of Pernambuco (UFPE). Recife, Pernambuco, Brazil.
³Department of Nutrition, Federal University of Pernambuco (UFPE). Recife, Pernambuco, Brazil.

Received on May 14, 2021, accepted on Oct 16, 2021, published on Dec 23, 2021

ABSTRACT

Objective: To assess the prevalence of sarcopenia and associated factors in patients with chronic kidney disease (CKD) undergoing hemodialysis (HD).

Methods: This cross-sectional study evaluated patients with CKD undergoing HD from January to October 2016 in two dialysis centers located in Recife, Pernambuco. For the diagnosis of sarcopenia, the criteria proposed by the 2019 European Consensus on Sarcopenia, which advocates low muscle strength as the main criterion, were considered. Demographic, clinical, anthropometric, and behavioral covariates were evaluated.

Results: 108 patients were included, with a mean age of 51.4 ± 17.0 years and homogeneous distribution between the sexes. Sarcopenia was present in 38.9% of the population, of which 69% had severe sarcopenia. A higher prevalence of sarcopenia was observed among men (60% vs. 17%; p < 0.001), in those without a partner (48.1% vs. 30.4%; p < 0.045), in smokers (50% vs. 30%; p < 0.034), with low weight (underweight 73.3%, eutrophic 33.9%, overweight 32.4%; p = 0.001) and those with normal albumin levels (47.5% vs. 28.6%; p = 0.045).

Conclusion: Approximately one in three nephropathic patients on hemodialysis presented sarcopenia and, among these, most had the severe form of this condition. Uremic sarcopenia was more prevalent in males, in individuals without partners, underweight, in smokers, and among those with normal albumin levels.

*Corresponding author:
Addr.: Rua Bacharel Severino Torres Galindo do Nascimento, nº 30 – Bairro Dois Unidos. Recife, PE, Brasil | CEP 52.160-836
Phone: +55 (81) 98308-9080
E-mail: milaferreiraleal@hotmail.com (Nunes CF)

This study was conducted at the Hospital das Clínicas de Pernambuco

https://doi.org/10.21876/rcshci.v11i4.1153

How to cite this article: Nunes CFL, Carvalho TR, Duarte RS, Barboza YACO, Lemos MCC, Pinho CPS. Prevalence of sarcopenia and associated factors in patients in hemodialysis. Rev Cienc Saude. 2021;11(4):XX-XX.
https://doi.org/10.21876/rcshci.v11i4.1153
2236-3785/© 2021 Revista Ciências em Saúde. This is an open-access article distributed under a CC BY-NC-SA licence. (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
INTRODUCTION

Sarcopenia is a progressive and generalized disorder of skeletal muscle (SM) associated with increased morbidity and adverse outcomes. Its diagnosis is established when evidence of low muscle strength is associated with reduced muscle mass. It is related to falls, fractures, physical disability, and poorer quality of life.

Despite its high prevalence in the elderly, sarcopenia is recognized as a syndrome that can occur at other stages of life, with many phenotypes that contribute to its occurrence, besides aging. Among these conditions, chronic kidney disease (CKD) is a significant risk factor for muscle tissue depletion due to the complexity of factors.

The term uremic sarcopenia (US) has been used to describe sarcopenia associated with CKD and is associated with a higher frequency of cardiovascular complications, increased morbidity and mortality, and a lower survival rate. Furthermore, sarcopenia increases the risk of hospitalization and care costs during hospitalization.

US can have different etiologies, such as immunological modifications, with an increase in inflammatory cytokines; protein-energy malnutrition; changes in the renin-angiotensin system; alterations in the balance of protein synthesis (increased proteolysis and reduced synthesis); uremic changes (metabolic acidosis, factors related to renal replacement therapy (RRT), dietary restriction); mechanical impairment (immobility, arthropathies, and recurrent hospitalizations); myocellular modifications (reduction in satellite cells, apoptosis, transformation and atrophy of muscle fibers); associated comorbidities (diabetes mellitus [DM], systemic arterial hypertension (SAH), cardiovascular diseases (CVD), advanced age) and hormonal alterations.

Some authors have reported a prevalence of sarcopenia ranging from 20% to 42.2% in elderly patients undergoing hemodialysis (HD). According to epidemiological studies of end-stage renal disease, the incidence of sarcopenia increases as renal function deteriorates and age progresses.

Despite sarcopenia being a topic that has been widely explored in recent decades, few investigations address this condition in CKD, especially at the national level, and adopt the updated criteria established in international consensuses. Therefore, this study assessed the prevalence of sarcopenia and associated factors in HD patients.

METHODS

This is a cross-sectional, observational study developed in two HD centers in Recife, Pernambuco (one public and one private), with data collection conducted from January to October 2016, involving adult and elderly patients with CKD in dialysis therapy.

The minimum sample size was calculated considering the total number of patients associated with the two HD centers during the study period (n = 180), a prevalence of sarcopenia of 33.7%, described in a study involving patients with terminal CKD5, standard error of 6% and a confidence interval of 95%, resulting in 103 participants. This number was increased by 10% to cover possible losses, totaling a final sample of 114 patients to be recruited.

Patients of both genders and over 18 years on HD for at least six months were included, in addition to being physically fit (not having limb amputation, physical disability, paraplegia, quadriplegia, or hemiparesis) and having cognitive conditions to perform the tests. Patients in the immediate postoperative period (seven days) of major surgeries, who presented anasarca or edema in the lower limbs that made it impossible to perform the tests and anthropometric evaluation, with a history of recent fracture (last two months), with liver disease or infected with the human immunodeficiency virus were excluded.

The diagnosis of sarcopenia was considered when the individual presented reduced strength and muscle mass. When these two conditions were present with poor physical performance, severe sarcopenia was considered, according to updated diagnostic criteria proposed by the current European Working Group on...
respectively; and two proximal electrodes over the wrist obtaining, in this case, greater reliability of the results the intra and extracellular spaces was reached, after the dialysis session. The water balance between the application of BIA in this study was performed 30 min taken after the HD session to minimize results resulting from common hydroelectrolytic changes in CKD. For the classification of nutritional status, the cutoff points of BMI proposed by the World Health Organization (WHO, 1997) for adults and the classification by Lipschitz (1994) for individuals over 60 years were adopted. AC was classified according to Blackburn and Thornton (1979). Regarding behavioral variables, smoking, alcohol consumption, and level of physical activity were evaluated. Smoking was classified as smoker, nonsmoker, and ex-smoker. In the assessment of alcohol consumption, information was dichotomized into ‘consumption’ and ‘not consumption’. To assess the level of physical activity, patients were classified as sedentary, intermediate, and active. A dichotomized classification into physical activity (active and intermediate) and non-practice (sedentary) was considered for analytical purposes.

Food consumption was assessed in a sub-sample of 57 patients, using a 24-hour dietary recall for three consecutive days (one day on the weekend). Calories and proteins were calculated using the NUTWIN 1.6 diet calculation program (2010). The average intake obtained from the three records was adopted, and, for diet adequacy, the protein caloric intake of 30-35 kcal/kg and 1.1-1.2 g/kg, respectively, were considered a reference.

The study protocol was approved by the Ethics Committee for Research of the Health Sciences Center of the Federal University of Pernambuco (CAAE: 51359415.8.0000.5208, decision no. 1,978,785). The execution of the study in human beings followed the Declaration of Helsinki and the recommendations of Resolution CNS/CONEP 466/2012. Data were analyzed using the SPSS statistical package (SPSS Inc., SPSS for Windows, v 13.0, Chicago, IL, USA). Descriptive analysis of variables was performed by calculating frequency distributions and measures of central tendency. Continuous variables were tested according to a normal distribution using the Kolmogorov-Smirnov test, and, as they presented a normal distribution, they were described as mean and standard deviation. The association between categorical variables was analyzed using Pearson’s chi-square test or Fisher’s exact test. For all tests, a significance level of p < 0.05 was adopted.

Sarcopenia in Older People - EGWOSP2). Muscle strength was measured from the Hand Grip Strength (HGS), using a JAMAR brand digital dynamometer, with the tests applied in triplicate and considering the largest measurement obtained. The cutoff points adopted were those recommended by the current consensus, which establishes low muscle strength when HGS < 27 kg/f for men and < 16 kg/f for women.

An Electric Bioimpedance (BIA) was executed to obtain the muscle mass, using a portable Biodynamics model 310e, which applied a current of 800 μA, with a simple frequency of 50 kHz. The appendicular skeletal muscle mass (ASMM), suggested by the EWGSOP2, was obtained from the equation by Sergi et al.: ASMM (kg) = -3.964 + (0.227*RI) + (0.095*weight) + (1.384*gender) + (0.064*Xc). Where RI (resistance index) is obtained through the quotient of height in cm/resistance in ohms, Xc is reactance in ohms, and gender values of 1 for men and 0 for women are applied. Patients were positioned on the bed, in a supine position, with the head of the bed parallel to the floor, free of materials or metallic ornaments, the arms away from the trunk at an angle of approximately 30°, and the legs apart at an angle of approximately 45°. To start the procedure, the patient’s skin where the electrodes were fixed was sanitized with 70% alcohol, then two distal electrodes were placed on the dorsal surface of the hand and foot, on the right side of the body, close to the joints the phalanx-metacarpal and phalanx-metatarsus, respectively; and two proximal electrodes over the wrist prominence and between the medial and lateral malleolus of the lateral ankle.

Due to water disorders common in HD patients, the application of BIA in this study was performed 30 min after the dialysis session. The water balance between the intra and extracellular spaces was reached, obtaining, in this case, greater reliability of the results presented in the test.

The appendicular skeletal mass index (ASMI) was calculated as follows: ASMI = total ASMM/height (m)². Values ≤ 7.7 kg/m² in men and ≤ 5.62 kg/m² in women indicated low muscle mass.

Physical performance was measured using the 4 m walking speed test (WST) proposed by the International Academy on Nutrition and Aging (IANA), with the test being performed in triplicate and considering the mean of the three values. It was considered slow-motion when the speed was ≤ 0.8 m/s. This parameter was considered only to classify the severity of sarcopenia.

Sociodemographic, clinical, biochemical, anthropometric, and lifestyle variables were considered covariates. For socioeconomic and demographic characterization of the study population, information was collected regarding age (obtained in complete years and classified as adult or elderly if age < 60 years or ≥ 60 years, respectively), sex, marital status (with a partner and without a partner ) and race (self-reported by the respondent and classified as white, brown and black). Education (in years studied and categorized as ≤ 9 years of study and > 9 years), family income (dichotomized into ≥ or < 2 minimum wages ), and social class according to the Brazilian Association of Companies and Research (ABEP) were also included.

Among the clinical variables, the time in which the patient started HD therapy (dichotomically categorized as ≤ 34 months and > 34 months according to the median sample time), clinical diagnosis, and presence of comorbidities (diabetes mellitus and systemic arterial hypertension) were considered. Regarding biochemical variables, the following were included: hemoglobin (g/dL), albumin (g/dL), and total lymphocyte count (TLC). Anemia was considered when hemoglobin values were below 12 mg/dL for women and less than 13 mg/dL for men (WHO, 2011). Hypoalbuminemia was determined by an albumin value < 3.5 mg/dL. Low TLC, indicating malnutrition, was established when values were below 2,000 cells/mm³.

Anthropometric measurements and parameters were measured weight, height, body mass index (BMI), and arm circumference (AC). All measurements were taken after the HD session to minimize results resulting from common hydroelectrolytic changes in CKD. For the classification of nutritional status, the cutoff points of BMI proposed by the World Health Organization (WHO, 1997) for adults and the classification by Lipschitz (1994) for individuals over 60 years were adopted. AC was classified according to Blackburn and Thornton (1979).

Regarding behavioral variables, smoking, alcohol consumption, and level of physical activity were evaluated. Smoking was classified as smoker, nonsmoker, and ex-smoker. In the assessment of alcohol consumption, information was dichotomized into ‘consumption’ and ‘not consumption’. To assess the level of physical activity, patients were classified as sedentary, intermediate, and active. A dichotomized classification into physical activity (active and intermediate) and non-practice (sedentary) was considered for analytical purposes.
RESULTS

After eliminating losses due to lack of response or inconsistency of information, 108 patients on HD were evaluated, with a mean age of 51.4 ± 17.0 years, and homogeneous distribution between the sexes.

Table 1 shows the sociodemographic, clinical, and behavioral characteristics of the study population. The prevalence of diabetes mellitus and systemic arterial hypertension was 87% and 20.6%, respectively. There was a high proportion of individuals from a low social class (74.1%) and education (63.9%). Most individuals were sedentary (82.4%), 44.4% were smokers, and 41.7% reported drinking alcohol.

As for nutritional variables, 13.9% of individuals were classified as underweight according to BMI. When analyzing malnutrition according to AC and TLC, percentages of 55.6% and 59.3% were found, respectively. The prevalence of anemia was 89.8%, and hypoalbuminemia was found in 45.4% of those evaluated. It was observed that more than 80% of the population had inadequate caloric and protein intake related to nutritional recommendations for patients on HD (Table 2).

It was shown that 38.9% of the patients were sarcopenic and, of these, 69% were severely sarcopenic. There was a reduction in HGS and ASMI of 49.1% and 64.8%, respectively. A reduction in SM was found in 62% of the group (Table 2).

As shown in Table 3, the highest prevalence of sarcopenia was observed among men (60% vs. 17%; p < 0.001), in patients without a partner (48.1% vs. 30.4%; p < 0.034), and who were smokers (50% vs. 30%; p < 0.034). Additionally, sarcopenia was higher among patients who were classified as underweight (underweight 73.3%, eutrophic 33.9%, overweight 32.4%; p = 0.001) according to BMI and in those with levels of normal albumin (47.5% vs. 28.6%; p = 0.045) (Table 4).

DISCUSSION

The high prevalence of sarcopenia revealed in our data (38.9%) corroborates the results described by Bataille et al., who reported a prevalence of 31.5% in patients with nephropathies on HD23, adopting the diagnostic criteria of the EWGSOP (2010). However, Ren et al. reported only 13.7% of sarcopenia in adult patients who received maintenance HD for a period greater than or equal to six months3. The differences in the percentages of sarcopenia can be attributed to the diagnostic criteria adopted and the characteristics of the population. No investigation has yet been found on sarcopenia in HD patients who have adopted the diagnostic definition proposed by the current European Consensus, which advocates muscle strength as the main criterion1.

The high risk of sarcopenia in HD patients is multifactorial, related to frailty and dependence, and compromised quality of life24. Kim et al. reported that sarcopenia is a prevalent and significant predictor of mortality and development of cardiovascular events in HD patients. Recently, the effect of sarcopenia on adverse long-term clinical outcomes has become more evident, with sarcopenia being recognized as an important marker of poor prognosis in various populations25.

In this context, uremic sarcopenia is associated with higher morbidity, including susceptibility to fractures, higher frequency of coronary events, lower survival, and higher mortality26. Therefore, patients on RRT must be systematically screened for the presence of sarcopenia.

| Table 1 — Sociodemographic, clinical and behavioral characteristics of patients with chronic kidney disease undergoing hemodialysis, linked to two dialysis services in the city of Recife/PE, Brazil (N = 108). |
|---|---|---|
| **Variável** | **n** | **%** |
| **Sex** | | |
| Masculine | 53 | 49.5 |
| Feminine | 55 | 50.5 |
| **Age (years)** | | |
| Adult (<60) | 66 | 61.1 |
| Elderly (≥60) | 42 | 38.9 |
| **Marital Status** | | |
| With partner | 56 | 51.9 |
| No partner | 52 | 48.1 |
| **Race** | | |
| White | 22 | 20.6 |
| Black | 49 | 45.8 |
| Brown | 36 | 33.6 |
| **Schooling** | | |
| ≤ 9 years | 69 | 63.9 |
| > 9 years | 39 | 36.1 |
| **Income (minimum-wages)** | | |
| ≤ 2 | 89 | 85.6 |
| > 2 | 15 | 14.4 |
| **Social class (ABEP)** | | |
| Class A | 0 | 0 |
| Class B e C | 28 | 25.9 |
| Class D e E | 80 | 74.1 |
| **SAH** | 22 | 20.6 |
| **Diabetes mellitus** | 94 | 87.0 |
| **Hemodialysis duration** | | |
| ≤ 34 months | 54 | 50.0 |
| > 34 months | 54 | 50.0 |
| **Physical activity** | | |
| Yes | 19 | 17.6 |
| No | 89 | 82.4 |
| **Alcohol consumption** | | |
| Yes | 45 | 41.7 |
| No | 63 | 58.3 |
| **Smoking status** | | |
| Non-smoking | 49 | 45.4 |
| Smoking | 48 | 44.4 |
| Ex smoker | 11 | 10.2 |

ABEP: Brazilian Association of Research Companies. SAH: systemic arterial hypertension.
Table 2 — Nutritional variables and sarcopenia in patients with chronic kidney disease undergoing hemodialysis, linked to two dialysis services in the city of Recife/PE, Brazil (N = 108).

| Variable                        | n  | %  |
|---------------------------------|----|----|
| Body Mass Index                 |    |    |
| Low weight                      | 15 | 13.9|
| Eutrophy                        | 56 | 51.9|
| Overweight                      | 37 | 34.3|
| Arm Circumference               |    |    |
| Malnutrition                    | 60 | 55.6|
| Eutrophy                        | 39 | 36.1|
| Overweight                      | 9  | 8.3 |
| Total Lymphocyte Count          |    |    |
| Malnutrition                    | 64 | 59.3|
| Normal (>2,000 cells/mm³)       | 44 | 40.7|
| Low albumin                     | 49 | 45.4|
| Anemia                          | 97 | 89.8|
| Caloric intake                  |    |    |
| Proper (30-35 kcal/kg)          | 7  | 12.3|
| Low or high (>30 ou >35 kcal/kg)| 50 | 87.8|
| Protein intake                  |    |    |
| Proper (1,1-1,2g/kg)            | 9  | 15.8|
| Low or high (<1,1g ou >1,2/kg)  | 48 | 84.2|
| Sarcopenia                      | 42 | 38.9|
| Severe sarcopenia               | 29 | 69.0|
| Low HGS†                        | 53 | 49.1|
| Low ASM‡                        | 70 | 64.8|
| Low walking speed               | 67 | 62.0|

HGS: handgrip strength, ASM: appendicular skeletal muscle mass index. * according to WHO classification18 for adults and Lipschitz29 for > 60 years. †as classified by Blackburn and Thorton20: albumin < 3.5 mg/dL, anemia if hemoglobin < 12 mg/dL for women and < 13 mg/dL for men. ¶HGS < 27 kg/f for men and < 16 kg/f for women. ¶¶ASM ≤ 7.7 kg/m² in men and ≤ 5.62 kg/m² in women. §speed < 0.8 m/s.

Recent studies have characterized sarcopenia as a predictor of hospitalization and mortality and its association with worse clinical and nutritional conditions in elderly patients undergoing dialysis27. Similar data were reported by Kim et al. (2019) when they demonstrated that the reduction in muscle strength coexisting with the reduction in lean mass was associated with an increased risk of mortality from all causes and cardiovascular events in HD patients25.

The higher prevalence of sarcopenia among men (3.5 times higher) is a result that corroborates previous evidence. Janssen et al.28 have shown more accentuated decreases in muscle mass and strength during aging in men compared to women. They reported a prevalence of sarcopenia in the elderly of 31% for women and 64% for men26. This is because men have more significant muscle loss resulting from a decline in growth hormone, insulin-related growth factor (IGF-1), and testosterone. Also, they would have a worse adaptation to muscle loss than females29. Giglio et al., in a study conducted with elderly individuals (> 60 years) on HD, also described a higher prevalence of sarcopenia in men (83.9%) than women (16.1%)27.

The absence of association with age was also different from what is commonly found in the literature3,27. Sarcopenia is a condition inherent to the aging process, in which there is a progressive loss of SM mass, with a decrease in the number and size of type II fibers and a parallel decrease in muscle strength and endurance28.

Not having a partner increased the prevalence of sarcopenia by more than 50%. This result corroborates the findings reported by Wang et al., who demonstrated an association between marital status and sarcopenia, indicating that married adults had a lower risk of this outcome. A possible justification for this finding is that the presence of a partner, especially in middle age for old age, has protective effects on health and mortality through the provision and reception of mutual care31.

Socioeconomic status was not associated with sarcopenia, which does not corroborate previous data. Dorosty et al., in a study conducted with 654 elderly people (> 60 years old), observed a significant association between lower socioeconomic status and sarcopenia. Additionally, it was also observed that, in low-income people, the prevalence of pre-sarcopenia and sarcopenia was higher compared to middle-income groups, and in high-income elderly, the prevalence of these conditions was lower than in both groups32.

In this study, being a smoker was a risk factor for sarcopenia, increasing its prevalence by more than 50%. Confortin et al.33 found that, for women, starting to smoke and remaining with the habit was associated with greater chances of sarcopenia. For men, no association was found between smoking and sarcopenia. Szulc et al., evaluating 845 men aged between 45 and 85 years, observed that smoking was a risk factor for developing sarcopenia in elderly men34. The same were observed by Castillo et al.35 and Lee et al.36, who reported smoking as a reversible risk factor for sarcopenia, where stopping the habit was associated with better outcomes.

This relationship can be explained by the fact that smoking causes degradation of SM proteins37 with a direct effect on muscle function38. The sarcopenic effect of smoking is related to a substantial decline in muscle mass and strength, leading to functional decline and loss of independence39.

The higher prevalence of sarcopenia among malnourished HD patients supports the hypothesis that patients with worse nutritional status are more likely to develop sarcopenia. Giglio et al. identified similar data, reporting lower BMI values in sarcopenic patients27. Isoyama et al.40 and Bataille et al.23 also found an association between the loss of muscle mass and lower BMI. It cannot be overlooked that almost 30% of overweight individuals also had sarcopenia, configuring sarcopenic obesity. This finding reinforces the need for this condition to be evaluated in HD patients, regardless of their nutritional status.

Another critical finding is that patients with normal albumin levels had a higher prevalence of sarcopenia. This finding does not corroborate previous data26 since hypoalbuminemia is associated with low muscle mass23,40, and this is one of the diagnostic criteria for sarcopenia.
Table 3 — Sociodemographic, clinical and behavioral factors associated with sarcopenia in patients with chronic kidney disease undergoing hemodialysis, linked to two dialysis services in the city of Recife/PE, Brazil (N = 108).

| Variable            | Sarcopenia n (%) | Without Sarcopenia n (%) | p-value* |
|---------------------|------------------|--------------------------|----------|
| **Sex**             |                  |                          |          |
| Male                | 33 (60,0)        | 22 (40,0)                | <0,001   |
| Female              | 9 (17,0)         | 44 (83,0)                |          |
| **Age**             |                  |                          |          |
| Adult               | 21 (31,8)        | 45 (68,2)                | 0,059    |
| Elderly             | 21 (50,0)        | 21 (50,0)                |          |
| **Marital status**  |                  |                          |          |
| With partner        | 17 (30,4)        | 39 (69,6)                | 0,045    |
| No partner          | 25 (48,1)        | 27 (51,9)                |          |
| **Race**            |                  |                          |          |
| White               | 10 (45,5)        | 12 (54,5)                | 0,437    |
| Black               | 16 (32,7)        | 33 (67,3)                |          |
| Brown               | 16 (44,4)        | 20 (55,6)                |          |
| **Schooling**       |                  |                          |          |
| ≤ 9 years           | 29 (42,0)        | 40 (58,0)                | 0,373    |
| > 9 years           | 13 (33,3)        | 22 (66,7)                |          |
| **Income**          |                  |                          |          |
| ≤ 2 MW              | 33 (37,1)        | 56 (62,9)                | 0,480    |
| > 2 MW              | 7 (46,7)         | 8 (53,3)                 |          |
| **ABEP**            |                  |                          |          |
| Class B and C       | 13 (46,4)        | 15 (53,6)                | 0,342    |
| Class D and E       | 29 (36,3)        | 51 (63,8)                |          |
| **SAH**             |                  |                          |          |
| 9 (40,9)            | 13 (59,1)        | 0,779                    |
| **DM**              |                  |                          |          |
| 35 (37,2)           | 59 (62,8)        | 0,535                    |
| **HD start time**   |                  |                          |          |
| ≤ 34 months         | 24 (44,4)        | 30 (55,6)                | 0,236    |
| > 34 months         | 18 (33,3)        | 36 (66,7)                |          |
| **Physical activity**|                 |                          |          |
| Yes                 | 7 (36,8)         | 12 (63,2)                | 0,840    |
| No                  | 35 (39,3)        | 54 (60,7)                |          |
| **Alcohol consumption**|              |                          |          |
| Yes                 | 18 (40,0)        | 27 (60,0)                | 0,841    |
| No                  | 24 (38,1)        | 39 (61,9)                |          |
| **Smoking status**  |                  |                          |          |
| No smoking and ex-smoker | 18 (30,0)  | 42 (70,0)                | 0,034    |
| Smoking             | 24 (50,0)        | 24 (50,0)                |          |

*Pearson chi-square. MW: minimum wage, ABEP: association brazilian of research companies, SAH: systemic arterial hypertension, DM: diabetes mellitus, HD: hemodialysis

The lack of association of sarcopenia with food consumption was also an unexpected observation, considering the importance of protein intake to preserve muscle mass. Few studies in the literature assess the best protein-energy recommendations for patients with uremic sarcopenia on RRT and materials that address whether it is plausible to consider the same recommendations for non-sarcopenic patients.

Some limitations must be considered when interpreting our data. First, the cross-sectional design is not suitable for establishing cause-and-effect relationships. Furthermore, because individuals were recruited from only two dialysis centers, care must be taken to generalize the results. Despite this, it should be considered that this is one of the first studies to evaluate the criteria currently proposed for the diagnosis of sarcopenia and will serve to compare future studies.

**CONCLUSION**

Approximately one in three nephropathic patients undergoing dialysis therapy presented sarcopenia, and among these, most had the severe form of this condition, evidencing the notable vulnerability to which this group of individuals is exposed. Uremic sarcopenia was more
prevalent in males, in individuals without partners, in malnourished individuals, in smokers, and among those with normal albumin levels.

Further studies need to be conducted in patients on RRT considering current diagnostic criteria. Additionally, listing the main factors that increase the risk of this condition will help guide preventive measures against muscle mass impairment.

REFERENCES

1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. https://doi.org/10.1093/ageing/afy169 PMid:30312372 PMCid:PMC6322506

2. Fahal Ibrahim H. Uraemic sarcopenia: aetiology and implications. Nephrol Dial Transplant. 2014;29(9):1655-65. https://doi.org/10.1093/ndt/gft070 PMid:23625972

3. Ren H, Gong D, Jia F, Xu B, Liu Z. Sarcopenia in patients undergoing maintenance hemodialysis: incidence rate, risk factors and its effect on survival risk. Ren Fail. 2016;38(3):364-71. https://doi.org/10.3109/0886022X.2015.1132173 PMid:26738817

4. Hotta C, Hiraki K, Wakamiya A, Otobe Y, Watanabe S, Izawa KP, et al. Relation of physical function and physical activity to sarcopenia in hemodialysis patients: A preliminary study. Int J Cardiol. 2015;191:198-200. https://doi.org/10.1016/j.ijcard.2015.05.005 PMid:25974194

5. Kim JC, Shapiro BB, Zhang M, Li Y, Porszasz J, Bross R, et al. Daily physical activity and physical function in adult maintenance hemodialysis patients. J Cachexia Sarcopenia Muscle. 2014;5(3):209-20. https://doi.org/10.1007/s13539-014-0131-4 PMid:24777474 PMCid:PMC4159490

6. Sharma D, Hawkins M, Abramowitz MK. Association of sarcopenia with eGFR and misclassification of obesity in adults with CKD in the United States. Clin J Am Soc Nephrol. 2014;9(12):2079-88. https://doi.org/10.2215/CJN.02140214 PMid:25392147 PMcid:PMc24255396

7. Kim JK, Choi SR, Choi MJ, Kim SG, Lee YK, Noh JW, et al. Prevalence of and factors associated with sarcopenia in elderly patients with end-stage renal disease. Clin Nutr. 2014;33(1):64-8. https://doi.org/10.1016/j.clnu.2013.04.002 PMid:23631844

8. Lauretani F, Russo CS, Bandinelli S, Benedetta B, Cavazzini C, Iorio AD, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95(5):1851-60. https://doi.org/10.1152/japplphysiol.01062.2003 PMid:1455665

9. Sergi G, Rui M, Veronese N, Bolzetta F, Berton L, Carraro S, et al. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living caucasian older adults. Clin Nutrition. 2015;34(4):667-73. https://doi.org/10.1016/j.clnu.2014.07.010 PMid:25103151

10. Kyle UG, Bosauesi I, Lorenzo ADD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis-part I: review of principles and methods. Clin Nutr. 2004;23(5):1226-

Table 4 — Nutritional factors associated with sarcopenia in patients with chronic kidney disease undergoing hemodialysis, linked to two dialysis services in the city of Recife/PE, Brazil (N = 108).

| Variable                  | Sarcopenia | Without Sarcopenia | p-value |
|---------------------------|------------|--------------------|---------|
| Body Mass Index           |            |                    |         |
| Low weight                | 11 (73,3)  | 4 (26,7)           | 0,013   |
| Eutrophy                  | 19 (33,9)  | 37 (66,1)          |         |
| Overweight                | 12 (32,4)  | 25 (67,6)          |         |
| Arm Circumference†        |            |                    |         |
| Malnutrition              | 27 (45,0)  | 33 (55,0)          | 0,286   |
| Eutrophy                  | 13 (33,3)  | 26 (66,7)          |         |
| Overweight                | 2 (22,2)   | 7 (77,8)           |         |
| Total Lymphocyte Count    |            |                    |         |
| Malnutrition              | 25 (39,1)  | 39 (60,9)          | 0,847   |
| Normal (> 2.000/mm³)      | 16 (37,2)  | 27 (62,8)          |         |
| Albumin                   |            |                    |         |
| Low†                      | 14 (28,6)  | 35 (71,4)          | 0,045   |
| Normal                    | 28 (47,5)  | 31 (52,5)          |         |
| Hemoglobin                |            |                    |         |
| Anemia‡                   | 39 (40,2)  | 58 (59,8)          | 0,404   |
| Normal                    | 3 (27,3)   | 8 (72,7)           |         |
| Caloric intake            |            |                    |         |
| Proper (30 – 35 kcal/kg)  | 1 (14,3)   | 6 (85,7)           | 0,186   |
| Low or high (< 30 ou > 35 kcal/kg) | 20 (40,0) | 30 (60,0)        |         |
| Protein intake            |            |                    |         |
| Proper (1,1 – 1,2 g/kg)   | 4 (44,4)   | 5 (55,6)           | 0,606   |
| Low or high (< 1,1 g/Kg ou > 1,2 g/kg) | 17 (35,4) | 31 (64,6)        |         |

*According to WHO classification for adults and Lipschitz for > 60 years. † as classified by Blackburn and Thorton. ‡albumin < 3.5 mg/dL. anemia if hemoglobin < 12 mg/dL for women and < 13 mg/dL for men.
Conflicts of interest: No conflicts of interest declared concerning the publication of this article.

Indications about the contributions of each author:
Conception and design of the study: CFLN, CPSP, TRC
Analysis and interpretation of data: CFLN, CPSP
Data collection: TRC, RSD, Yacob
Writing of the manuscript: CFLN
Critical revision of the text: CPSP, MCCL
Final approval of the manuscript*: CFLN, CPSP, TRC, MCCL, RSD, Yacob
Statistical analysis: CPSP
Overall responsibility: CPSP

*All authors have read and approved of the final version of the article submitted to Rev Cienc Saude.

Funding information: Not applicable.