Bilayer Tablet of Atenolol and Simvastatin

M. B. Datir, D.D. Chechare, Bhagyashree Dhambore, Shaheen Ansari.
PRES’s College of Pharmacy, Chincholi, Sinnar, Nashilk.

ABSTRACT

Bilayer tablets are planned by way of one layer of drug for immediate release with the second layer designed to release drug later, either as a second dose or in an sustained release form. The bilayer tablets with two incompatible drugs can also be prepared by compressing separate layers of each drug so as to minimize area of contact between two layers of two API. To manufacture sufficient tablet formulation, definite necessities such as sufficient mechanical strength and desired drug release profile must be meet. At times, this may be difficult task for formulator to achieve these conditions especially in bilayer tablet formulation where double compression technique is involved, because of poor flow and compatibility characteristic of the drug which will result in capping and/or lamination. The compaction of a material involves both the compressibility and consolidation.

Keywords: Bilayer, Compression, Release, tablet

*Corresponding Author Email: dtirmahi0@gmail.com
Received 28 July 2020, Accepted 07 August 2020
INTRODUCTION

Nowadays various developed and developing countries are moving towards combination therapy for treatment of various diseases and disorders requiring long term therapy such as pain, high LDL, various cardiovascular diseases, hypertension and diabetes etc. The problem of dose dependent side effects is minimized by combination therapies and is advantageous over single dose therapy. Bi-layer tablets can be a primary option to avoid chemical incompatibilities between APIs by physical separation. Bi-layer tablet is suitable for sequential release of two drugs in combination, separate two incompatible substances and also for sustained release tablet in which one layer is immediate release as initial dose and second layer is maintenance dose. Bi-layer tablets are prepared with one layer of drug for immediate release with second layer design to release drug later as second dose or in an extended release or for both immediate release. Bi-layer tablets are tablet, made by compressing two different granulation feed into a die succession, one on top of another, in layers. Each layer comes from a separate feed frame with individual weight control. Rotary tablet press can be set up for two layers. Bi-layer tablets are composed of two layers of granulation compressed together. They have the appearance of a like sandwich because the edges of each layer are exposed. General concept of bi-layer tablet technology is shown in following figure 1.

Techniques for bilayer tablet24, 25, 26, 27

- OROS® push pulls Technology
- L-OROSTM Technology
- EN SO TROL Technology
- DUREDASTM Technology
- DUROS Technology

Rationale behind formulation of bi-layer tablet 1

- Two chemically incompatible active pharmaceutical ingredients (APIs) can be formulated in a bilayer formulation.
- Two APIs or the same API with different release profiles can be delivered as a single bilayer tablet. (e.g., One of immediate release and another extended release layer).
- Increased efficacy of the Active pharmaceutical components due to their synergistic effect.
- Combination of two or more APIs in a single bilayer tablet reduces the dosing unit burden thereby improving patient compliance

Challenges in bilayer tablet formulation
- Cross contamination between the two layers.
- Reduced production yield because of to prevent cross contamination, dust collection is required which leads to losses.
- Sufficient mechanical strength to maintain its integrity and individual layer weight control
- Large tablet size, which can impact the swallow ability of the unit dose

Advantages of bilayer tablet press with displacement monitoring
- Weight monitoring and control for accurate and independent weight control of the individual layers.
- Low compression force exerted on the first layer to avoid capping and separation of the two individual layers.
- Maximum prevention of cross-contamination between the two layers.
- Clear visual separation between the two layers and maximum yield.

Box-Behnken experimental design

The Box-Behnken experimental design, developed by Box and Behnken in 1980, is a useful method for developing second-order response surface models. The Box-Behnken design is based on the construction of balanced incomplete block designs and requires at least three levels for each factor. We will try to explain the structure of Box Behnken design with three-factors. In Box-Behnken experimental design, the level of one of the factors is fixed at the center level while combinations of all levels of the other factors are applied. The level of the factor C was fixed and then, the combinations of all levels of the factors A and B were applied and subsequently, the same procedures were performed for the factors B and A, respectively. The last column of the design matrix contains center point values.

The selection of optimal levels for control factors in a system is called parameter design. The system can be a process or a product. Those factors that are within our control are called control factors. Additionally, there is a second group of factors that cause most variation in the response variable. Those factors are called noise factors and are uncontrollable factors in the system. The uncontrollability of these factors increases the variation in the response variable. The objective of
robust parameter design is to create a design insensitive to the noise factors whose variation can not be eliminated or controlled. Noise factors are usually functions of environmental conditions. For example, the temperature and humidity of the room where the design is developed, if uncontrollable, are noise factors.

DRUG PROFILE

Atenolol (36), (37)	Simvastatin (36), (37)		
Parameters	**Description**	**Parameters**	**Description**
Structure		**Structure**	
Molecular weight	266.33	Molecular weight	418.56
Colour	White	Colour	White
Nature	Crystalline	Nature	Amorphous
Category	Antihypertensive Agent, Adrenergic beta-1 receptor, Antagonist.	Category	HMG-CoA Reductase inhibitor, Anti hyperlipidemic
Solubility	Freely soluble in methanol & slightly soluble in water.	Solubility	Soluble in ethanol, methanol and insoluble in water
Half-life (Hrs)	7-8	Half-life(Hrs)	2
Tmax (Hrs)	2-4	Tmax (Hrs)	4
Log p	0.57	Log p	4.68
pKa	14.03	pKa	14.91
BCS class	Class 3	BCS class	Class II
Dose(mg)	50-100	Dose(mg)	10-80
Melting point	158-160°C	Melting point	135-138°C
Marketed preparation	Asomex AT, Calock Plus, Tenormin.	Marketed preparation	Sivastin, Sinvacor, Lipex, Labistatin, Zocar.

List of Ingredients:

Sr No.	Ingredients
1	Atenolol
2	Simvastatin
3	HPMC K100 M
4	Ethyl cellulose
5	Croscarmillose sodium
6	Mannitol
7	PVP K30
8	Magnesium stearate
9	Talc
10	Ferric oxide red
11	Alcohol
12	Methanol
13	Sodium dihydrogen orthophosphate
14	Hydrochloric Acid
PREFORMULATION STUDY 65-68

Preformulation testing is the first step in rational development of dosage forms of a drug substance. Preformulation study is the process of optimizing the delivery of drug through determination of physicochemical properties of the new compound that could affect drug performance and development of an efficacious, stable and safe dosage form. It gives the information needed to define the nature of the drug substance and provide a framework for the drug combination with pharmaceutical excipients in the dosage form. Hence, Preformulation studies were performed for the obtained sample of drug for identification and compatibility determination.

Identification and characterization of drug (72)

Organoleptic characteristics

The organoleptic characteristics of atenolol and simvastatin such as colour, odour and taste were studied.

Melting point

FT-IR spectra

Determination of absorption maxima (λ_max) and preparation of calibration curves

The absorption maxima of drug Atenolol and Simvastatin was determined as follows:
The standard stock solution was prepared by dissolving 10 mg of Atenolol and Simvastatin in different solvents (0.1N HCl of pH 1.2 and phosphate buffer pH 6.8) to make final concentration of 100 μg/ml. Different aliquots were taken from these stock solutions and diluted with same buffer solution used for preparation of stock solution separately to prepare series of concentrations from 05-25μg/ml of Atenolol and 02-12μg/ml of Simvastatin. The λ_max of Atenolol and Simvastatin were found by UV spectrophotometry in different solvents (0.1N HCl of pH 1.2 and phosphate buffer pH 6.8) in the range of 200-400 nm.

The calibration curves were prepared as follows:
The standard stock solution was prepared by dissolving 10 mg of Atenolol and Simvastatin in different solvents (0.1N HCL of pH 1.2 and phosphate buffer pH 6.8) to make final concentration of 100 μg/ml. Different aliquots were taken from these stock solutions and diluted with same buffer solution used for preparation of stock solution separately to prepare series of concentrations from 05-25μg/ml of Atenolol and 02-12μg/ml of Simvastatin. The λ_max of Atenolol and Simvastatin were found by UV spectrophotometry in different solvents (0.1NHCl of pH 1.2 and phosphate buffer pH 6.8) in the range of 200-400 nm. The calibration curves were prepared by
plotting absorbance versus concentration of Atenolol and Simvastatin at practically found λ_{max} in 0.1N HCL of pH 1.2 and phosphate buffer pH 6.8.

DRUG –EXCIPIENT COMPATIBILITY STUDY (67, 68, 72)

The purpose of drug/excipients compatibility consideration and practical studies is to define, as quickly as possible, real and possible interactions between potential formulation excipients and the API. This is essential risk reduction exercise early in formulation development. The drug-excipient incompatibility can alter the stability and/or the bioavailability of drugs thereby, affecting its safety and/or efficacy. So, while formulating a dosage form, it is important that the excipient used in formulation should be physically and chemically compatible with drug material. Compatibility study was carried out both in presence and absence of moisture. The compatibility study was carried out at 55°C for 14 days with in hermetically sealed glass container of individual drug and Drug: Excipient (1:1). The procedure for compatibility study was as follows

Ratio of drug (Atenolol) and its mixture with excipients for compatibility testing

Physical mixture	Ratio (Drug: excipient)	Total weight (mg)
Drug	1	50
Drug+ Cros Carmellose	1 : 1	100
Drug+ Mannitol	1 : 1	100
Drug+ PVP K30	1 : 1	100
Drug+ Talc	20 : 1	52.5
Drug + Mag. Stearate	20 : 1	52.5

Ratio of drug (Simvastatin) and its mixture with excipients for compatibility testing

Physical mixture	Ratio (Drug: excipient)	Total weight (mg)
Drug	1	50
Drug+ Ethyl Cellulose	1 : 1	100
Drug+ HPMC K100 M	1 : 1	100
Drug+ Mannitol	1 : 1	100
Drug+ PVP K30	1 : 1	100
Drug + Talc	20 : 1	52.5
Drug + Mag. Stearate	20 : 1	52.5

FORMULATION AND DEVELOPMENT

Preliminary screening for bilayer tablets

Trials for selection of disintegrant

Trial I:

For the disintegrant screening following percent of the croscarmellose sodium used in the single layer of immediate release tablet of atenolol by the direct compression and wet granulation method. Following formula was used for the same,
Table 1: Trial batch I for selection of disintegrant

Sr No.	Ingredient Name	Quantity taken (mg)	Category
1	Atenolol (Drug)	50	API (Antihypertensive)
2	Croscarmellose Na	3.6	Superdisintegrants
3	PVP K30	9	Binder
4	Mannitol	q.s.to 120 mg	Filler
5	Talc	2	Lubricant
6	Mg. Stearate	7	Lubricant

For the above trial 8mm punch were selected and tablet were formulated by direct and wet granulation technique.

Trial II:

For the trial II 4, 6, 8 and 10 percent of the croscarmellose Na was used and tablet were formulated by the wet granulation method. Following formula was used for the same,

Table 2: Trial batch II for selection of disintegrant

Ingredients/Batch	F1 (mg)	F2 (mg)	F3 (mg)	F4 (mg)
Atenolol	50	50	50	50
Croscarmellose sodium	4.8 (4%)	7.2 (6%)	9.6 (8%)	12 (10%)
PVP K30	9	9	9	9
Mannitol	q.s.to 120	q.s.to 120	q.s.to 120	q.s.to 120
Talc	2	2	2	2
Mg. Stearate	7	7	7	7

For the above trial 8mm punch were selected and tablet were formulated by wet granulation technique.

Trials for selection of Polymers

Trial I:

For the polymer screening following percent of the Ethyl cellulose and HPMC K100 M used in the single layer of sustained release tablet of simvastatin by the dry and wet granulation method. The concentration of the HPMC K100 M in F1 to F6 batch were 20%, 10%, 20%, 0%, 35%, 20%. and Ethyl cellulose in F1 to F6 batch were 10%, 20%, 0%, 20%, 20%, 35% taken. Following formula was used for the same,

Table 3: Trial batch I for selection of polymers

Ingredient (mg) (180mg/tab)	F1	F2	F3	F4	F5	F6
Simvastatin	20	20	20	20	20	20
HPMC K100 M	36 (20%)	18 (10%)	36 (20%)	- (0%)	63 (35%)	36 (20%)
Ethyl Cellulose	18 (10%)	36 (20%)	- (0%)	36 (20%)	36 (20%)	63 (35%)
PVP K30	9	9	9	9	9	9
Mannitol	q.s.	q.s.	q.s.	q.s.	q.s.	q.s.
Talc	2	2	2	2	2	2
Mg. Stearate	7	7	7	7	7	7
For the above trial 8mm punch were selected and tablet were formulated by wet granulation technique. By the above formulation the F1 batch found to good result as per the sustained release criteria by the wet granulation method. So we try nearby polymer concentration trial batch.

Trial II:

For the polymer screening in Trial no. II following percent of the Ethyl cellulose and HPMC K100 M used in the single layer of sustained release tablet of simvastatin by the dry and wet granulation method. The concentration of the Ethyl cellulose in F1, A1 and A2 batch were 10%, 13% and 5% in both dry and wet granulation method. And HPMC K100 M in F1, A1 and A2 batch were 20%, 17% and 25% in both dry and wet granulation method taken. Following formula was used for the same.

Table 4: Trial batch II for selection of polymers

Ingredient (mg) /Batch (180 mg per Tab)	F1	A1	A2
Simvastatin	20	20	20
HPMC K100 M	36 (20%)	30.6 (17%)	45 (25%)
Ethyl Cellulose	18 (10%)	23.4 (13%)	9 (5%)
PVP K30	9	9	9
Mannitol	q.s. 180 mg	q.s. 180 mg	q.s. 180 mg
Talc	2	2	2
Mg. Stearate	7	7	7

For the above trial 8mm punch were selected and tablet were formulated by wet granulation technique.

Trials for bilayer tablet methodology

Trial I:

For the combine disintegrant and polymer release screening following percent of the croscarmellose sodium, Ethyl cellulose and HPMC K100 M used in the bilayer layer of immediate release and sustained release tablet of atenolol and simvastatin by the direct compression and wet granulation method. Following formula was used for the same in that Croscarmellose were used 6% and HPMC K100 M as a 20% and Ethyl cellulose as a 7.5%.

Formula for Atenolol

Sr No.	Ingredient Name	Quantity per Tab (mg)	Category
1	Atenolol (Drug)	50	API
2	Croscarmellose Na	7.2 (6%)	Disintegrant
3	PVP K30	6	Binder
4	Mannitol	q. s. up to 120 mg	Filler
5	Talc	4.8	Lubricant
6	Mg. Stearate	3.6	Lubricant
Formula for Simvastatin

Table 6: Trial batch for bilayer tablet methodology

Sr No.	Ingredient Name	Quantity per Tab (mg)	Category
1	Simvastatin	20	API
2	HPMC K100 M	30 (20%)	Polymer
3	Ethyl Cellulose	11.25 (7.5%)	Polymer
4	PVP K30	6	Binder
5	Mannitol	q.s. up to 150 mg	Filler
6	Talc	6	Lubricant
7	Mg. Stearate	4.5	Lubricant

For the above trial 8mm punch were selected and tablet were formulated by wet granulation and dry granulation technique.

OPTIMIZATION

Statistical experiment design (56), (73)

A three-level, three-factor Box Behnken design of response surface methodology was employed for the formulation optimization using statistical software, Design expert version 9.0.1 (Stat-Ease Inc., Minneapolis, MN). Three components ie. Disintegrant, two polymers were screened from preliminary experimental work and used for optimization study as independent variables. These components tested at three different concentrations. Total 17 formulations including 5 replicates of central points were prepared to investigate the influence of screened three excipients on disintegration time for immediate release and polymer release for sustained release tablet of bilayer tablet.

Experimental response values were analyzed by multiple linear regressions to calculate the polynomial equations. Adjusted R² (R²adj) values were calculated to evaluate the polynomial fits. The F-statistic was used to identify statistically significant terms. Significant effects were evaluated by the analysis of variance at p < 0.05. Less significant regression coefficients were progressively eliminated to maximize the R² adjusted parameter. The best fitting mathematical model was selected based on the comparisons of several statistical parameters including the coefficient of variation (CV), the multiple correlation coefficient (R²); adjusted multiple correlation coefficient (adjusted R²); and the predicted residual sum of square (PRESS), proved by design expert software.

Table 7: Box-Behnken experimental design for three variables (56)

Run	Variable 1	Variable 2	Variable 3
1	-1	-1	0
2	+1	-1	0
3	-1	+1	0
4	+1	+1	0
Table 8: Levels of independent variable used for experiment

Independent Variable	Lowest level (-1)	Middle level (0)	Highest level (+1)
Croscarmellose Sodium (%)	4	6	8
Ethyl Cellulose (%)	5	7.5	10
HPMC K100 M (%)	15	20	25

Table 9: Formulation runs as per DOE with used variables

F. no.	Croscarmellose Sodium (%)	Ethyl Cellulose (%)	HPMC K100 M (%)	Total wt. (mg)
1	4	5	20	270
2	8	5	20	270
3	4	10	20	270
4	8	10	20	270
5	4	7.5	15	270
6	8	7.5	15	270
7	4	7.5	25	270
8	8	7.5	25	270
9	6	5	15	270
10	6	10	15	270
11	6	5	25	270
12	6	10	25	270
13	6	7.5	20	270
14	6	7.5	20	270
15	6	7.5	20	270
16	6	7.5	20	270
17	6	7.5	20	270

Responses obtained from the reduced equation, an equation containing only statistically significant terms, are used for drawing response surface plots to visualize the impact of changing variables. The optimum point may be identified from the plot and replicate trials may be run to verify the prediction of optimum response.
Box Behnken model gives the optimized formula which could be used to form better Bilayer tablet of atenolol and simvastatin. It was used to make 30 tablet batch of optimized formula and evaluated for various parameters.

Final formulation of bilayer tablets

Purpose – Formulation, development and optimization of bilayer tablet of atenolol immediate release and simvastatin sustained release tablet.

Formulation

After the design and development of technique, final formulation of bilayer tablet was prepared. The formulation of bilayer tablet of atenolol and simvastatin was prepared in the following manner.

Immediate release:

Immediate release layer of atenolol was prepared by wet granulation method. In that we taken Atenolol-50 mg, PVP K30-5%, Zink oxide red-0.15%, Mg.Stearate-3%, Talc-4% and Mannitol as a filler constant only variation takes place in Croscarmellose sodium.

Sifting- All ingredient i.e. Atenolol, croscarmellose sodium, mannitol, PVP K30, Zinc oxide Red, talc and Mg. Stearate were sifted through #60 mesh separately.

Blending- Mix geometrically atenolol, croscarmellose sodium, mannitol and PVP K30 for about 15 min in mortar pestle.

Granulation- To this mixture mix ethanol as granulating vehicle. Formulation of wet mass and pass through sieve #20 and dried at room temperature.

Lubrication- The above granules were lubricated with Mg. Stearate and talc for 3 min.

Sustained Release:

Sustained release layer of Simvastatin was prepared by wet granulation method. In that we taken Simvastatin-20 mg, PVP K30-5%, Mg.Stearate-3%, Talc-4% constant and Mannitol as a filler, variation takes place in HPMC K100 M and Ethyl cellulose.

Sifting- All ingredient i.e. Simvastatin, Ethyl Cellulose, HPMC K100 M, mannitol, PVP K30, talc and Mg. Stearate were sifted through #60 mesh separately.

Blending- Mix geometrically Simvastatin, Ethyl Cellulose, HPMC K100 M, mannitol and PVP K30 for about 15 min in mortar pestle.

Granulation- To this mixture mix ethanol as granulating vehicle. Formulation of wet mass and pass through sieve #20 and dried at room temperature.

Lubrication- The above granules were lubricated with Mg. Stearate and talc for 3 min.

Bilayer tablet formulation:
Bilayer tablet were prepared by combining immediate and sustained release layer. For the preparation of dual component formulation, the die of the tablet machine was filled manually with the weighted amount of the sustained release layer component. Then sustained release component was compressed lightly by using 8 station rotary tablet compression machine ie. JMD-4-8, Jaguar and the immediate release granules were added and on upper side add pre compressed low hardness sustained release tablet. The dual component compressed tablet system were prepared by wet granulation technique.

Process parameter:

Punch size: 8mm diameter, Flat round shape.

Tablet wt: Total weight 270 mg

Sustained release layer-150 mg,

Immediate release layer-120 mg.

EVALUATION STUDY

Table 10: Evaluation parameters
Pre compression study
Angle of Repose
Bulk density
Tapped density
Carr’s compressibility index
Hausner’s ratio

Dissolution test of bilayer tablet

Dissolution test of bilayer tablet of atenolol and simvastatin was performed by using Dissolution apparatus of Electrolab, in that we taken pH 1.2 medium for first 2 hrs and then 6.8 phosphate buffers (by addition of 50ml of 2M Dibasic Sodium Phosphate) medium. The dissolution study was carried out for about 12 hrs at 37.5 ºC and 50 rpm by using USP type 2 apparatus. 5 ml sample were withdraw from dissolution medium at every 5 min interval up to 45 min and sink condition were maintained for the immediate release layer. After that 5 ml sample withdraw per hour and sink condition were maintained for sustained release layer in between the same the medium converted 1.2 pH to 6.8 pH phosphate buffer after two sampling. Samples were diluted to with respective phosphate buffer of 1.2 and 6.8 pH. Its absorbance was measured on UV spectrophotometer. Drug release was calculated and results were note down.
RESULTS AND DISCUSSION

PREFORMULATION STUDY

Identification and characterization of drug

Organoleptic characteristics

The organoleptic characteristics of Atenolol and Simvastatin such as colour, odor, and taste were studied. Colour of drug was found to be yellow. Taste of the drug was identified simply by taste sensation on tongue drug was found to be bitter in taste.

Table.11 Organoleptic properties of Atenolol and Simvastatin

Organoleptic Properties	Standard	Observation
Colour	White Crystalline	White Crystalline
Odour	Odourless	Odourless
Taste	Bitter	Bitter

Melting point

Melting point of drug Atenolol and Simvastatin was determined by capillary method. The temp at which drug goes in the liquid state was consider as a melting point of Atenolol and Simvastatin. Practically it was found that drug get melts at 160 °c and 138 °c respectively. Reported melting point of the drug Atenolol and Simvastatin is 158-160°c and 135-138°c respectively.

FT-IR spectra

FT-IR spectra of Atenolol were taken on IR spectrophotometer by simply placing small amount of drug in powder form on selenium bromide crystal. In a spectra peak for carbonyl group(c=о group) was seen at 1631.34 cm\(^{-1}\) and peak for nitrile group (C-H) was found at a 1407.40 cm\(^{-1}\). FT-IR spectra of Atenolol was found as follows,
Table 12: IR ranges and functional group present Atenolol

Functional group	Type of vibration	Frequency (cm\(^{-1}\))	
		Standard	Observed
O-H	Stretching	3550-3200	3343.66
N-H	Stretching	3200-2800	3158.39
C-H Methyl	Stretching	3000-2840	2957.26
C=O(Amines)	Stretching	1680-1630	1631.33
C-H	Bending	1450-1375	1407.40

FT-IR spectra of Simvastatin were taken on IR spectrophotometer by simply placing small amount of drug in powder form on selenium bromide crystal. In a spectra peak for ester group (c=o group) was seen at 1706.96 cm\(^{-1}\) and peak for lactone group (C-O-C) was found at a 1260.31 cm\(^{-1}\). FT-IR spectra of Simvastatin was found as follows

Table 13: IR ranges and functional group present in Simvastatin

Functional group	Type of vibration	Frequency (cm\(^{-1}\))	
		Standard	Observed
O-H	Stretching	3550-3200	3544.02
C-H methyl	Stretching	3000-2840	2929.11
C=O ester	Stretching	1725-1705	1706.96
Lactone-C-O-C	Stretching	1310-1250	1260.31
C-O	Stretching	1085-1000	1020.19

Determination of absorption maxima (\(\lambda_{\max}\)) and calibration curve plot

The absorption maxima (\(\lambda_{\max}\)) of drug Atenolol

The absorption maxima (\(\lambda_{\max}\)) of drug Atenolol in 0.1 N HCl and 6.8 pH buffer, when scanned from 400 nm to 200 nm was found to be 224 nm practically. Theoretically absorption maxima (\(\lambda_{\max}\)) in 0.1 N HCl and 6.8 pH buffer are 226 nm.
The absorption maxima (λ_{max}) of drug Simvastatin

The absorption maxima (λ_{max}) of drug Simvastatin in 0.1 N HCl and 6.8 pH buffer, when scanned from 400 nm to 200 nm was found to be 238.50 nm practically. Theoretically absorption maxima (λ_{max}) in 0.1 N HCl and 6.8 pH buffer is 238.0 nm.
Figure: Absorption spectrum of Simvastatin in 0.1 N HCl (pH- 1.2)

Figure: Absorption spectrum of Simvastatin in phosphate buffer (pH- 6.8)

Calibration curves for drug Atenolol

The drugs used in the treatment of hypertension have to pass through gastric and intestinal fluid. Hence it was necessary to study the release study of atenolol in gastric fluid of pH 1.2 along with intestinal fluid of pH 6.8. In order to study their release study the calibration curves for atenolol in HCl of pH 1.2 and phosphate buffer of pH 6.8 were developed.
Table 14: Absorption table of Atenolol in different buffer solutions

Concentration (µg/ml)	Absorbance 0.1N HCl (1.2 pH)	Absorbance 6.8 pH Buffer
5	0.197	0.098
10	0.401	0.213
15	0.613	0.315
20	0.828	0.438
25	1.04	0.572

The calibration curve for atenolol in 0.1 N HCl and 6.8 pH buffers was prepared by plotting absorbance versus concentration at practically obtained λmax 224 nm. Calibration curve was plotted in triplicate manner. Concentration ranges selected were of 5, 10, 15, 20, 25µg/ml. The calibration curve of atenolol in 0.1 N HCl of pH 1.2 and 6.8 pH buffer was found as follows:

Figure: Calibration curve for Atenolol in 0.1 N HCl

\[y = 0.0412x \]
\[R^2 = 0.9985 \]

Figure: Calibration curve for Atenolol in 6.8 pH buffer

\[y = 0.0221x \]
\[R^2 = 0.9936 \]
Calibration curves for drug simvastatin

The drugs used in the treatment of Anti hyperlipidemic have to pass through gastric and intestinal fluid. Hence it was necessary to study the release study of simvastatin in gastric fluid of pH 1.2 and intestinal fluid of pH 6.8. In order to study their release study the calibration curves for simvastatin in HCl of pH 1.2 and phosphate buffer of pH 6.8 were developed.

Table 15: Absorption table of Simvastatin in different buffer solutions

Concentration (µg/ml)	Absorbance 0.1N HCl (1.2 pH)	6.8 pH Buffer
2	0.103	0.179
4	0.204	0.349
6	0.328	0.528
8	0.411	0.701
10	0.531	0.912

The calibration curve for simvastatin in 0.1 N HCl and 6.8 pH buffer was prepared by plotting absorbance versus concentration at practically obtained λ_{max} 238.50 nm. Calibration curve was plotted in triplicate manner. Concentration ranges selected were of 2, 4, 6, 8, 10µg/ml. The calibration curve of simvastatin in 0.1 N HCl of pH 1.2 and 6.8 pH buffer was found as follows,
COMPATIBILITY STUDY

Physical and chemical Compatibility study was carried out both in presence and absence of moisture at 55º C in hot air oven for 14 days. The drug-excipients mixtures were observed for physical incompatibilities such as colour change, liquefaction, caking, and Gas formation and chemical incompatibilities with the help of FT-IR study. The results obtained at each day in presence and absence of moisture were given in following table-

Table 16: Compatibility study of drug (Atenolol) excipients mixture (without moisture)

Drug + Excipient	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Croscarmellose sodium	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mannitol	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PVP K30	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Talc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mag. Stearate	-	-	-	-	-	-	-	-	-	-	-	-	-	-

No change (-); caking (#); liquefaction- (*); gas formation- (¥)

Table 17: Compatibility study of drug (Atenolol) excipient mixture (with moisture)

Drug + Excipient	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Croscarmellose sodium	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mannitol	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PVP K30	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Talc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mag. Stearate	-	-	-	-	-	-	-	-	-	-	-	-	-	-

No change (-); caking (#); liquefaction- (*); gas formation- (¥)

Table 18: Compatibility study of drug (Simvastatin) excipient mixture (without moisture)

Drug + Excipient	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ethyl Cellulose	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HPMC K 100 M	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mannitol	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PVP K30	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Talc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mag. Stearate	-	-	-	-	-	-	-	-	-	-	-	-	-	-

No change (-); caking (#); liquefaction- (*); gas formation- (¥)

Table 19: Compatibility study of drug (Simvastatin) excipient mixture (with moisture)

Drug + Excipient	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ethyl Cellulose	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HPMC K100 M	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mannitol	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PVP K30	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Talc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mag. Stearate	-	-	-	-	-	-	-	-	-	-	-	-	-	-

No change (-); caking (#); liquefaction- (*); gas formation- (¥)
FORMULATION DEVELOPMENT

Trials for selection of disintegrant

Initially formulas of tablets were set by varying concentration of disintegrant i.e. croscarmellose sodium.

Trial I:

For the disintegrant screening following percent of the croscarmellose sodium used in the single layer of immediate release tablet of atenolol by the direct compression and wet granulation method. Following formula was used for the same,

Sr No.	Ingredient Name	Quantity taken (mg)
1	Atenolol (Drug)	50
2	Croscarmellose Na	3.6
3	PVP K30	9
4	Mannitol	q.s.up to 120 mg
5	Talc	2
6	Mg. Stearate	7

Table 20: Trial batch I for selection of disintegrant

Significance:

- Croscarmellose were used as main disintegrant agent and one batch were prepared and evaluated their effects on disintegration time of tablet.
- By the above tablet formulation the DT and drug release was not achieved in the immediate release criteria.
- Formula containing 3% of the croscarmellose sodium.
- The average DT recorded as 4.30min.

Trial II:

For the trial II 4, 6, 8 and 10 percent of the croscarmellose Na was used and tablet were formulated by the wet granulation method. Following formula was used for the same,

Ingredients/Batch	F1 (mg)	F2 (mg)	F3 (mg)	F4 (mg)
Atenolol	50	50	50	50
Croscarmellose sodium	4.8 (4%)	7.2 (6%)	9.6 (8%)	12 (10%)
PVP K30	9	9	9	9
Mannitol	q.s.to 120	q.s.to 120	q.s.to 120	q.s.to 120
Talc	2	2	2	2
Mg. Stearate	7	7	7	7

Table 21: Trial batch II for selection of disintegrant

Significance:

- Four different concentrations were taken of croscarmellose sodium as disintegrant i.e.4%, 6%, 8% and 10%.
• 4% croscarmellose sodium shows 4min average DT. Hence this conc. Not achieved the actual DT as per immediate release criteria.
• 6% croscarmellose sodium shows up to 3 min average DT. So this batch considered for the next optimization batch formulas.
• Also 8% of croscarmellose sodium shows DT within limits ie. average time shows 2.10 min. So this batch also considered for the optimization formula.
• In 10% of croscarmellose sodium concentration DT shows within limits but having problem of friability, so this concentration were not considered for next trials.
• By the above formulation the DT were achieved in the 6 and 8% concentration of the croscarmellose sodium.

Trials for selection of polymers

Trial I:
For the polymer screening following percent of the Ethyl cellulose and HPMC K100 M used in the single layer of sustained release tablet of simvastatin by the dry and wet granulation method. The concentration of the HPMC K100 M in F1 to F6 batch were 20%, 10%, 20%,0%, 35%, 20%. and Ethyl cellulose in F1 to F6 batch were 10%, 20%, 0%, 20%, 20%, 35% taken. Following formula was used for the same,

Ingredient (mg) (180 mg/tab)	F1	F2	F3	F4	F5	F6
Simvastatin	20	20	20	20	20	20
HPMC K100 M	36(20%)	18(10%)	36(20%)	-0%	63(35%)	36(20%)
Ethyl Cellulose	18(10%)	36(20%)	-0%	36(20%)	36(20%)	6(35%)
PVP K30	9	9	9	9	9	9
Mannitol	q. s.	q. s.	q. s.	q. s.	q. s.	q. s.
Talc	2	2	2	2	2	2
Mg. Stearate	7	7	7	7	7	7

Significance:
• Six different batches having different concentrations were taken.
• In the F1 batch best result was found and matches with sustained release criteria ie.Q3 (30-40%), Q6 (70-80%) and Q9 (90-100).
• But in F2 batch there was higher concentration of the Ethyl cellulose so the release was decrease ie.25% in 12 hrs.
• In F3 batch there was only 20% HPMC so the release was found to be very quick and 100% release was found to be in 7 hrs.
In F4 batch there was only 20% Ethyl cellulose so the release was found to be very low and found to be only 15% in 12 hrs.

Also in F5 and F6 batch there was higher concentration of Ethyl cellulose ie.20% and HPMC ie.35% so the release was found to be low so,

By the above formulation the **F1 batch** found to best result as per the sustained release criteria by the **wet granulation method**.

Trial II:

For the polymer screening in Trial no. II following percent of the Ethyl cellulose and HPMC K100 M used in the single layer of sustained release tablet of simvastatin by the dry and wet granulation method. The concentration of the Ethyl cellulose in F1, A1 and A2 batch were **10%**, **13%** and **5%** in both dry and wet granulation method. And HPMC K100 M in F1, A1 and A2 batch were **20%**, **17%** and **25%** in both dry and wet granulation method taken. Following formula was used for the same,

Ingredient (mg) / Batch	F1	A1	A2
Simvastatin	20	20	20
HPMC K100 M	36	30.6	45
Ethyl Cellulose	18	23.4	9
PVP K30	9	9	9
Mannitol	q. s. 180 mg	q. s. 180 mg	q. s. 180 mg
Talc	2	2	2
Mg. Stearate	7	7	7

Significance:

- As per the previous trial F1 batch was found to best and this batch shows best result in this trial also.
- But the A1 batch shows low result due to higher concentration of 13 % Ethyl cellulose.
- In A2 batch the release shows to be slight decrease but it was best result.
- By the above formulation the **F1 and A2** batch found to best result as per the sustained release criteria by the **wet granulation method**.
- Hence we conclude that the concentration of **Ethyl cellulose** is not useful above the **10%** of the total formula and also below **5%** is not useful for the sustained release criteria. So we use that level in our optimization for the ethyl cellulose.
- And also for the HPMC K100 M we conclude that the maximum concentration level for the same is **25%** is beneficial in optimization formula and the lower level is the **15%** for gaining the sustained release criteria.
Trials for bilayer tablet methodology

Trial I:

For the combined disintegrant and polymer release screening following percent of the croscarmellose sodium, Ethyl cellulose and HPMC K100 M used in the bilayer layer of immediate release and sustained release tablet of atenolol and simvastatin by the direct compression and wet granulation method. Following formula was used for the same

Formula for Atenolol

Table 24: Trial batch for selection of methodology

Sr No.	Ingredient Name	Quantity per Tab (mg)	Category
1	Atenolol	50	API
2	Croscarmellose sodium	7.2 (6%)	Disintegrant
3	PVP K30	6	Binder
4	Mannitol	q.s.120mg	Filler
5	Talc	4.8	Lubricant
6	Mg. Stearate	3.6	Lubricant

Formula for Simvastatin

Table 25: Trial for bilayer tablet methodology

Sr No.	Ingredient Name	Quantity per Tab (mg)	Category
1	Simvastatin	20	API
2	HPMC K100 M	30 (20%)	Polymer
3	Ethyl Cellulose	11.25 (7.5%)	Polymer
4	PVP K30	6	Binder
5	Mannitol	q.s.up to 150 mg	Filler
6	Talc	6	Lubricant
7	Mg. Stearate	4.5	Lubricant

Significance:

- In above formulation 6% of croscarmellose sodium, 7.5% of Ethyl cellulose and 20% of HPMC K100 M was used and shows best result as per the immediate and sustained release criteria shown in USP.
- By the above formulation trial the batch found to best result as per the immediate and sustained release criteria by the wet granulation method.
- But by the dry granulation capping problem observed, and both layer not stick properly. So we can’t use dry granulation technique for further research.
- Another problems like capping, mottling, lamination and cracking were observed and solve by concern remedies in another trials of placebo.
Hence we conclude that the concentration of Ethyl cellulose is not useful above the 10% of the total formula and also below 5% is not useful for the sustained release criteria. So we use that level in our optimization for the ethyl cellulose.

And also for the HPMC K100 M we conclude that the maximum concentration level for the same is 25% is beneficial in optimization formula and the lower level is the 15% for gaining the sustained release criteria.

OPTIMIZATION

The purpose of this trial was to determine the optimum level of three selected excipients by using Box Behnken experimental design.

Pre compression characterization

All the batches were found to have good flow property. All the formulations were shown reproducible result in terms of flow property of powders.

Table 26: Pre compression characteristics of formulations for Atenolol
Batch No.

IR1
IR2
IR3

Table 27: Pre compression characteristics of formulations for Simvastatin.
Batch No.

SR1
SR2
SR3
SR4
SR5
SR6
SR7
SR8
SR9

Post compression characterization

For the 17 batches all the evaluation parameters was carried out. Hardness was sufficient to pass the friability test. There was no sign of lamination during friability test. The weight variation test was also passed by all the 17 batches.

Table 28: Post compression characteristics of formulations
Batch No.

F1
F2
Drug release profile

The result of dissolution study of formulations F1 to F17 was showed in the following table.

Table 29: Dissolution profile of formulations

Batch No.	Conc. Of IR at Time (Q3,Q6,Q9)					
	15 min	30 min	45 min	3 hrs	6 hrs	9 hrs
F1	25.46	56.13	86.62	34.59	79.13	92.45
F2	31.14	69.15	98.56	35.10	78.00	98.62
F3	22.76	48.45	87.45	25.20	54.82	76.52
F4	37.49	67.25	99.58	25.79	57.45	73.42
F5	23.16	49.25	85.15	36.85	69.56	91.24
F6	32.76	71.85	98.12	37.49	79.12	89.91
F7	25.35	57.89	86.19	22.98	62.45	86.73
F8	33.96	70.12	99.74	20.12	63.23	81.59
F9	30.56	61.23	91.71	46.11	85.12	99.31
F10	32.35	59.66	93.56	25.51	64.67	84.24
F11	29.45	57.78	93.89	23.56	69.36	78.56
F12	27.56	59.39	93.45	21.22	48.48	68.45
F13	28.39	62.36	92.18	27.56	74.87	89.49
F14	31.35	65.87	93.45	28.51	75.61	90.11
F15	27.56	61.86	93.70	28.23	73.12	86.26
F16	32.45	56.89	93.10	28.67	73.18	89.10
F17	21.75	55.45	92.81	29.31	74.45	90.19
From the set target variables, the software calculates and predicts the formula which achieved the set target as near as possible. Optimize formula was showed in the following table.

Table 30: Formula for optimized batch of Atenolol

Sr. No.	Ingredients	Quantity (mg)
1	Atenolol	50
2	Croscarmellose sodium	7.4
3	PVP K30	6
4	Mannitol	q. s. up to 120 mg
5	Talc	4.8
6	Mg. Stearate	3.6
	Total wt.	**120**

Table 31: Formula for optimized batch of Simvastatin

Sr. No.	Ingredients	Quantity (mg)
1	Simvastatin	20
2	HPMC K100 M	8.02
3	Ethyl Cellulose	30
4	PVP K30	6
5	Mannitol	q.s. up to 150 mg
6	Talc	6
7	Mg. Stearate	4.5
	Total wt.	**150**
EVALUATION OF OPTIMIZED FORMULA BATCH

Pre compression study

Table 32: Pre compression characteristics for atenolol optimized formulation

Flow properties	Optimize Batch	Mean ± S.D. (n=3)		
	A1	A2	A3	
Bulk density (g/cm³)	32.00	32.20	32.00	32.06±0.115
Tapped density (g/cm³)	29.70	30.10	29.50	29.76±0.305
Compressibility (%)	7.18	6.52	7.81	7.17±0.645
Angle of repose (θ)	15.20	15.00	16.40	15.50±0.521

Table 33: Pre compression characteristics for simvastatin optimized formulation

Flow properties	Optimize Batch	Mean ± S.D. (n=3)		
	A1	A2	A3	
Bulk density (g/cm³)	35.10	35.60	36.20	35.50±0.130
Tapped density (g/cm³)	30.80	31.20	32.10	31.4±0.240
Compressibility (%)	6.52	6.82	7.45	6.84±0.530
Angle of repose (θ)	16.10	15.70	16.50	15.50±0.498

Post compression study

General appearance

The general appearance of a tablet, its visual identity and overall “elegance” is essential for consumer acceptance. Includes in are tablet’s size, shape, colour, presence or absence of an odour, taste, surface texture, physical flaws and consistency.

Table 34: Post compression characteristics for optimized formulation

Parameters	Optimize Batch	Mean ± S.D. (n=3)		
	A1	A2	A3	
Avg. Tablet wt. (mg)	270.50	271.20	269.70	270.40±0.90
Thickness (mm)	4.35	4.40	4.38	4.37±0.09
Hardness (kg/cm²)	7.50	8.10	7.90	7.80±0.15
Friability (%)	0.85	0.60	0.75	0.78±0.45
% CU (Atenolol)	98.65	97.86	99.56	98.69±0.012
%CU (Simvastatin)	97.86	96.85	98.86	97.85±0.015

(CU- Content Uniformity)

Drug release profile

Dissolution study showed that all the three formulations percentage drug release more than 95% in 45 min for immediate release layer and in 9 hrs for sustained release layer. The result of dissolution study of formulations A1 to A3 was shown in following table.

Table 35: Drug release of optimized formulation

Time	Percent Drug release (%DR)	Mean ±SD (n=3)		
	A1	A2	A3	
% CDR of Atenolol				
15 min	31.24	33.15	36.76	33.71
30 min	70.14	68.45	72.98	70.52
45 min	96.24	98.73	97.80	97.59
SUMMARY AND CONCLUSION

Bi-layer tablet is suitable for sequential release of two or one drugs in combination. The aim of present study work is the design and development of bilayer tablet of Atenolol and Simvastatin. The drugs candidate selected for bilayer tablet as it is having one of antihypertensive and another is anti hyperlipidemics in action. By formulating bilayer tablet combination of two APIs i.e. Atenolol and Simvastatin having two different actions reduces the dosing unit burden there by improving patient compliance.
Hypertension and dyslipidemia are conditions that coexist on a regular basis. In a recent study utilizing data from the third National Health and Nutrition Examination Survey (NHANES III), it was estimated that almost 15% of US adults (representing approximately 30 million persons) have both hypertension and dyslipidemia. It was also shown that more than 60% of patients with hypertension also have dyslipidemia; conversely, approximately 50% of patients with dyslipidemia have hypertension. Hypertension and hypercholesterolemia are the two leading risk factors for heart disease, which is the leading cause of death worldwide. So we formulated the new design of combination therapy for the same as above.

Conclusions drawn from the investigation are summarized below,

- IR spectra revealed that, the drug sample was pure.
- There was no interaction between excipients and drug. Excipients selected for bilayer tablet compatible with atenolol and simvastatin. The IR analysis indicates that there was no drug-excipient interaction.
- From preliminary screening of three excipients croscarmellose sodium, ethyl cellulose and HPMC selected according to their contribution in the formulations by studying release pattern as per immediate and sustained release criteria.
- Response surface method (RSM) can be successfully utilized for optimization of the batches. The selected independent variables disintegrant and polymers have significant effect on the dependent variable such as release concentration.
- From RSM it was predicted that,
 - If the amount of disintegrant i.e. croscarmellose sodium was increased then the drug release concentration also increases.
 - If the amount of ethyl cellulose was increases the release concentration decreases and also hardness increases.
 - If the amount of HPMC was increases up to high level release decreases and not obey the sustained release criteria, but the center point of the level obey the criteria.
 - According to point prediction study optimum concentration levels of the formulation composition of croscarmellose sodium (7.4mg), ethyl cellulose (8.02mg) and HPMC K100 M (30mg) was found to fulfill the maximum requirement of an optimum release concentration as per target variables.
 - Pre compression and post compression characterization of optimized batch was done and all the parameters pass the standards.
• The *in-vitro* dissolution study shows the drug release of immediate release layer 93.80 to 98.73% in 45 minutes and 95.42 to 98.62% of sustained release layer in 9 hrs.

• It is concluded that a combination of different polymers concentration levels and hardness of tablet are important for making bilayer tablet of atenolol and simvastatin without any special apparatus.

REFERENCES

1. A Abebe, I Akseli, O Sprockel, N Kottala, A Cuiti. Review of bilayer tablet technology. International Journal of Pharmaceutics. 461 (2014) 549–558.

2. M Moneghini, A Carcano, G Zingone, B Perissutti. Studies in dissolution enhancement of atenolol. Part I. International Journal of Pharmaceutics. 175 (1998) 177 188.

3. G Bolhuis, K Zuurman, G Wierik. Improvement of dissolution of poorly soluble drugs by solid deposition on a super disintegrant II. The choice of super disintegrants and effect of granulation. European Journal of Pharmaceutical Sciences, 5 (1997) 63-63.

4. S Goud P Anna Balaji. Design and evaluation of Bilayerd tablets of Simvastatin. International Journal of Pharmacy and Analytical Research. Vol-3 Issue-1 Mar-2004 ISSN:2320-2831.

5. G Huffman. Which statin is the best choice for which patient ? American Family Physician 2002 Mar 15;65 (6):1211-1215.

6. Chong et al. Clinically relevant differences between the statins: implications for therapeutic selection .American Journal of Medicine. 201:111; 390-400.

7. D Hulisz. Which statin is right for my patient ? Medscape Multispecialty, Aug 2007.

8. G Sigurdsson, S Haraldsdottir, T Melberg, M Tikkanen, T Miettinen, K Kristianson. Simvastatin compared to fluvastatin in the reduction of serum lipids and apolipoproteins in patients in with ischaemic heart disease and moderate hypercholesterolaemia. Pubmed. Acta cardiol. 1998:53(1):7-14.

9. A Kapoor, R Sharma, P Sharma, P Gupta. BCS classification system :Benchmark for solubility and permeability. Indo American Journal of Pharmaceutical Research. Vol 4, Issue 04, 2014, ISSN:2231-6876.

10. S Aggarwal, N Syan, P mathur. Bilayer tablet technology-Opening new ways in drug delivery system: An overview. International Journal of Research in Pharmaceutical and Biomedical Sciences. Vol.4 (1) Mar 2013.ISSN:2229-3701.
11. S Dey, S Dutta, B Mazumder, Formulation and evaluation of floating matrix tablet of atenolol for gastroretentive drug delivery. International Journal of Pharmaceutical Sciences. Vol-4 Suppl-3, 433-437 ISSN:0975-1491.

12. S Bhagat, A Sakhare, Formulation and evaluation of simvastatin solid dispersion tablets. International Journal of Science and Research, Vol-3 Issue-8, Aug 2014. ISSN:2319-7064.

13. Y Kawabata, K Wada, N Nakatani, S Yamada, S Onoue, Formulation design for poorly water soluble drugs based on bio pharmaceutics classification system: Basic approaches and practical applications. International Journal of Pharmaceutics. 420 (2011) 1-10.

14. F Kesisoglou, I Xie, K Manser, Y Wu. Suitability of a minipig model in assessing clinical bioperformance of matrix and multiparticulate extended release formulations for a BCS class III drug development candidate. Pharmaceutics, Drug Delivery and Pharmaceutical Technology. 12 Dec 2013.

15. W He, Y Li, R Zhang, Z Wu, L Yin. Gastro floating bilayer tablets for the sustained release of metformin and immediate release of pioglitazone: Preparation and in vitro/in vivo evaluation. International Journal of Pharmaceutics 476 (2014) 223-231.

16. S Dey, B Mazumder, S Chattopadhyay, M Das, S Sinha. Polymers derived from Xanthomonas campesteris and Cyamopsis tetragonolobus used as retardant materials for the formulation of sustained release floating matrix tablet of atenolol. International Journal of Biological Macromolecules 65 (2014) 346-356.

17. R Pradhan, Y Kim, S Chang, J Kim. Preparation and evaluation of once daily sustained release coated tablets of tolterodine-L-tartarate. International journal of Pharmaceutics 460 (2014) 205-211.

18. M Shergill, M Patel, S khan, A Bashir, C Conville. Development and characterization of sustained release solid dispersion oral tablets containing the poorly water soluble drug disulfiram. International Journal of Pharmaceutics 497 (2016) 3-11.

19. G Corti, M Cirrri, F Maestrelli, N Mennini, P Mura. Sustained release matrix tablets of metformin hydrochloride in combination with triacetyl B-cyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics 68 (2008) 303-309.

20. I Sayed, A Rahman, M Gamal. I Mahrous, M El-Badry. Preparation and comparative evaluation of sustained release metoclopramide hydrochloride matrix tablets. Saudi Pharmaceutical Journal (2009) 17, 283-288.

21. A Bose, T Wong, N Singh. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release
kinetics. Saudi Pharmaceutical Journal. (2013) 21, 201-213.

22. L Sun, W Zhang, X Liu, J Sun. Preparation and evaluation of sustained release azithromycin tablets in vitro and in vivo. Asian Journal of Pharmaceutical Sciences 9 (2014) 155-161.

23. C Gupta, G Kishore, J Ratna. Development and evaluation of aceclofenac matrix tablets using polyethylene oxides as sustained release polymers. Journal of Pharmacy Research 6 (2013) 249-254.

24. R Ghosh, Md. A Haque, T Paul, A Bhuiyan, I Dewan. Bilayered Tablet Technology: An Overview. World Journal of Pharmaceutical Research. 01 June 2014, 150-163.

25. M Din, S Din and P Tarkeshwar, P Shukla. An Overview on Bilayered Tablet Technology. American-Eurasian Journal of Scientific Research 9 (1): 06-15, 2014.

26. S Devtalu, A Patil, M Bari, Dr. S Barhate. A Review on Novel Approach – Bilayer Tablet Technology. International Journal of Pharmaceutical Sciences Review and Research. 21(1), Jul – Aug 2013, 46-52.

27. C Gopinath, V Bindu, M Nischala. An Overview on Bilayered Tablet Technology. Journal of Global Trends in Pharmaceutical Sciences. Volume 4, Issue 2, April-June 2013, 1077-1085.

28. D Sica. Fixed dose combination therapy-Is it time for this approach to hypertension and dyslipidemia management. The Journal of Clinical Hypertension. Vol VI, April 2004, 164-167

29. M Kumar, M Babu. Design and evaluation of fast dissolving tablets containing diclofenac sodium using fenugreek gum as a natural superdisintegrant. Asian Pacific Journal of Tropical Biomedicine 2014; 4 (suppl 1) 5329-5334.

30. P Desai, C Liew, P Heng. Review of disintegrants and the disintegration phenomena. Journal of Pharmaceutical Sciences. Xxx (2016) 1-11.

31. C Ferrero, N Munoz, M Velasco, A Munoz-Ruiz, R Jimenez-Castellanos. Disintegrating efficiency of croscarmellose sodium in a direct compression formulation. International Journal of Pharmaceutics 147 (1997) 11-21.

32. A Elbary, A Ali, H Aboud. Enhanced dissolution of meloxicam from orodispersible tablets prepared by different methods. Bulletin of Faculty of Pharmacy, Cairo University (2012) 50, 89-97.

33. H Patel, H Patel, M Gohel, S Tiwari. Dissolution rate improvement of Telmisartan through modified MCC pellets using 3^2 full factorial design. Saudi Pharmaceutical Journal (2015)
34. S Singh, D Shah. Development and characterization of mouth dissolving tablet of zolmitriptan. Asian Pacific Journal of Tropical diseases (2012) S457-S464.

35. R Rowe, P Sheskey and S Owen. Handbook of pharmaceutical excipients, fifth edition, published by the pharmaceutical press, London, UK, (2006).

36. www.uspbpep.com, Pharmacopeia online, Drug, pharmaceutical analysis.

37. www.drugbank.com. Simvastatin and Atenolol.

38. M Kakdiya, V Kakdiya, D Madiya. Q-Absorbance ratio spectrophotometric method for the simultaneous estimation of paracetamol and propyphenazone in their combined pharmaceutical dosage form. Pharmatutor. Vol 2, Issue 5 ISSN 2347-7881.

39. N Magdy, M Ayad. Two smart spectrometric methods for the simultaneous estimation of simvastatin and ezetimibe in combined dosage form. Spectrochimica Acta Part A: molecular and Biomolecular Spectroscopy. 137 (2015) 685-691.

40. N Lamie. Simultaneous determination of binary mixture of amlodipine besylate and atenolol based on dual wavelengths. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 149 (2015) 201-207.

41. dx.doi.org/10.14227/DT200213p61. Dissolution technologies, may 2013 question and answers.

42. I Sayed. A Rahman, G Mahrous, M EI-Badry. Preparation and comparative evaluation of sustained release metoclopramide hydrochloride matrix tablets. Saudi pharmaceutical Journal (2009) 17, 283-288.

43. S Karuppih. Analytical method development for dissolution release of finished solid oral dosage form. International Journal of Current Pharmaceutical Research. Vol4, issue2, 2012.ISSN-0975-7066.

44. A Sonje, A Yadav, A Chandra, D Jain. Formulation and evaluation of immediate release tablet of antihypertensive drugs according to BCS system. International Journal of Therapeutic Application. Vol-7, 2012, 18-24.

45. J Wang, H Wen, D Desai. Lubrication in tablet formulation. European Journal of Pharmaceutics and Biopharmaceutics. 75 (2010) 1-15.

46. X Wan, P Ma, X Zhang. A promising choice in hypertension treatment: Fixed dose combination. Asian journal of Pharmaceutical Sciences. 9 (2014) 1-7.

47. P Nilawar, V Wankhade, D Badnag. An emerging trend on bilayer tablets. International Journal of Pharmacy and Pharmaceutical Sciences Research. 2013; 3(1): 15-21.ISSN:2249-0337.
48. A Astolfi. Optimization an introduction. Sept-2006.
49. C Reichal, M Rao. Anti-diabetic drugs and fixed dose combination therapy. Research and Reviews: Journal of Pharmacy and Pharmaceutical Sciences. Vol 3, Issue 4, Des-2014.ISSN-2322-0112.
50. D Bourne. Route of drug administration. PHAR 7633 Chapter 7. Des-2014.
51. https://en.wikipedia.org/wiki/Combination_drug.
52. B Reddy, A Karunakar. Biopharmaceutical classification system: A regulatory approach. Dx.doi.org/10.14227/DT180111P31.
53. P Verma, A Thakur, K Deshmukh, Dr. A Jha, S Verma. Route of drug administration. International Journal of Pharmaceutical Studies and Research. Vol I, Issue I, Sep-2010, 54-59.ISSN 2229-4619.
54. P Reddy, D Rao, R Kumar. Bilayer technology- An emerging trend: A review. International Journal of Research and Development in Pharmacy and Life Sciences. April-May 2013, 2 (3), 404-411.
55. Pharmaceutical Forum. Vol 35(5), Sep-Oct2009.
56. M Tekindal, H Bayrak, B Ozkaya, Y Genc. Box-Behnken experimental design an factorial experiments: The importance of bread for nutrition and health. Turkish Journal of Field Crops. 2012, 17(2): 115-123.
57. Dr. P Sahoo. Pharmaceutical technology. Oct-2007, 1-3.
58. L Benet. The role of BCS (Biopharmaceutical classification system) and BDDCS (Biopharmaceutics drug disposition classification system) in drug development. Journal of Pharmaceutical Sciences. Jan 2013, Vol 102, Issue 1, 34-42.
59. L Novakova, D Satinsky, P Solich. HPLC methods for the determination of simvastatin and atrovastatin. Trends in Analytical Chemistry. Vol 27, No.4, 2008.
60. L Wang, M Asgharnejad. Second-derivative UV spectrometric determination of simvastatin in its tablet dosage form. Journal of Pharmaceutical and Biomedical Analysis. 21 (2000) 1243-1248.
61. P Tandale, D Joshi, R Gaud. Formulation and evaluation of extended release solid dispersion containing simvastatin. Asian Journal of Biomedical and Pharmaceutical Sciences. 1 (3) 2011, 13-19. ISSN 2249-622X.
62. http://homepage.ntlworld.com/bhandari/Imperial/Atenolol/Spectroscopy.htm.
63. M Devabhaktuni, S Bangalore. Fixed combination of amlodipine and atrovastatin in cardiovascular risk management: patient perspectives. Jun 2009; 5: 377-387.
64. G Eri, M Naik, Y Padma, M Ramana, M Madhu, C Gopinath. Novel FT-IR spectroscopic method for the quantitation of atenolol in bulk and tablet formulations. Journal of Global Trends in Pharmaceutical Sciences. 2014, Vol 5(3): 1750-1755.

65. M Aulton, Pharmaceutics: The Science of Dosage Form Design, Churchill Livingstone, 2nd Edition, 113-137.

66. L Lachman, H Liberman. The Theory and Practice of industrial pharmacy, CBS publishers and distributors, special Indian edition 2009,171-195.

67. J Carstensen, H Liberman, L Lachman, J Sshwartz, Pharmaceutical dosage form: Tablets, Mercel Dekker, New York, 2005: 1-69.

68. S Niazi. Handbook of preformulation, Informa healthcare, (2007), 241-276.

69. K Kotta, M Reddy, R Kishore. Formulation and evaluation of bilayer matrix tablet of Pioglitazone HCl Metformin HCL USP 15 MG and 500 MG. Asian Journal of Pharmaceutical and Clinical Research. Vol 6, Suppl 3, 2013

70. A Balaji, S Goud. Design and evaluation of bilayered tablets of simvastatin. International Journal of Pharmacy and Analytical Research. Vol 3, Issue 1, 2014.

71. D Pavia, L Lampman, S kriz, M Vyvyan. Spectroscopy, Indian edition, cengage learning, 38-40.

72. Indian pharmacopoeia 2010, six edition, Ministry of Health and family welfare, The Indian Pharmacopeia commission, Ghaziabad.

73. S Dhiman, S Verma. Optimization of melt-in-mouth tablets of levocetirizine dihydrochloride using response surface methodology. Int J Pharma Sci 4(1), (2011), 176-184.