Improvement of Power Factor by Input Filter and Ripple Reduction using Cuk Converter in Continuous Conduction Mode

Joseph K.D., Asha Elizabeth Daniel, A. Unnikrishnan

Abstract: The basic Converters like buck, boost and buckboost provide pulsed ripple currents either on input or output sides. A Cuk Converter has inductors on both input and output sides, thus produces continuous currents with reduced ripple. By extending the Cuk Converter to AC side with the support of additional rectifier circuit the power factor can be assessed. The significant concerns when utilizing DC-DC converters with AC source is large Total Harmonic Distortion (THD) and low power factor. A properly designed filter circuit on AC side reduces THD and improves the power factor. In this paper a Cuk Converter (CC) topology with rectifier and inductive, capacitive, inductive (LCL) filter is proposed to reduce THD and improve the power factor. The CC circuit is designed and analyzed to reduce ripple content of currents. The reduction in ripple on DC side in turn improves the sinusoidal shape of current on AC source side. The closed loop simulation of the proposed circuit is carried out using a systematically derived type III compensator. The proposed circuit is practically validated in closed loop using FPGA controller to confirm the simulated waveforms. The results substantiate the fact that the proposed circuit shrinks ripple on DC source side and reduces harmonics of AC source current. The reduction in harmonics decreases THD to a large extent and improves distortion factor, which enhances the power factor. Also the reduction in ripple trims down losses in the circuit and improves the output power, thus suitable for DC to DC conversions in power supplies for viz. electric vehicles, computers, battery chargers and televisions. The improvement in power factor reduces the power drawn from the source and hence the efficiency of the system is improved.

Keywords : Cuk Converter, Filter circuit, Harmonic distortion, Power factor improvement, Reduced ripple .

I. INTRODUCTION

Ripple current generated by basic DC-DC converters causes for harmonics and it increases Total Harmonic Distortion (THD) on AC side. The large amount of ripple on DC source current distorts the shape of AC source current and affects the quality of power adversely. Low ripple on source current has been an adequate requirement when these converters are largely utilized for various applications.

The buck converter is added with two winding transformer circuit and power conditioning circuit [1], [2] to reduce ripple on output voltage. The series connected capacitor decreases the ripple contents to zero. The cascaded SEPIC-buck converter [3] consists of two power conversion stages, which not only improves the voltage gain and but also reduces ripple content of source and output currents. A zero voltage switching with phase shift control technique [4] is used to reduce circulation current and the reduction in switching losses improves the efficiency. In these circuits the analysis and troubleshooting become complex due to versatile circuit with number of energy storage elements and switches. The high gain soft switching circuit [5] and multiplier circuit [6] are used with step-up converter to improve output voltage. The switches are operated by resonant zero voltage to trim-down the switching losses. The boost converter with parallel circuit [7] produces dual output voltages and reduces ripple content of the source current. The output losses are reduced in these circuits but challenging transient characteristics are instigated by switched capacitors. The LCL filter used in bidirectional DC-DC converter [8] reduces the current harmonics and controls soft switching of the devices.

The buckboost converter with switched capacitor logic [9] circuit trims down source current ripple irrespective of duty ratio for wide range of operations. The addition of complex capacitor - inductor circuit [10], [11] in buckboost converter, achieves high voltage gain compared to all basic converters. The continuous source current developed along with high voltage gain in buckboost –SEPIC circuit [12] eliminates large filtering requirement on Source AC side. Though the PWM switching scheme is easy in these circuits but the modelling and systematic analysis become complex. Cuk design with moving filter circuit in digital control law [13], bridgeless current sharing circuit [14], [15] is used to improve power factor to unity. The current control circuit smoothens the shape of input current. The gain of the Cuk design is increased by inserting additional boost circuit [16] as an interleaved inductor structure. The THD of the circuit is decreased by inserting diodes with Cuk design [17] in continuous mode, thus the power factor is improved. The even harmonics are addressed with the LCL filter circuit used with grid connected inverter [18] for renewable energy applications. The weight of the core is reduced in the design with delta connected yoke in three phase grid connected inverter [19] circuit using LCL filter. The harmonics in source current is reduced by controlled rectifier circuit [20] - [22] with help of LCL filter design. The complexity in the supplementary control and power circuit is increased, which leads to additional cost.

A Cuk converter consists of inductors on both input and output sides, which generate continuous current.
The reduced ripple current decreases the size of filtering requirement when the converter circuit extended to AC side. A Cuk Converter with LCL filter and rectifier circuit in closed loop along with type III compensator is proposed in this paper to reduce ripple on DC side and hence to enhance power factor on AC side.

II. CUK CONVERTER (CC) TOPOLOGY

The circuit of CC transfers DC input voltage to another DC with opposite polarity. The circuit diagram of practical CC is shown in Fig. 1. The energy transfer is based on storage of power in intermediate capacitor C1. The duty ratio of the switch S1 is varied to produce buck and boost output voltage. The circuit consists of inductors on both input and output sides, which reduces ripple content on DC source and output currents compared to all basic buck, boost and buck boost topologies. Reduction in ripple decreases associated conduction losses in the circuit and increases the output power. The CC topology produces negative output voltage and current, thus the output power is positive and hence the converter works in third quadrant.

Fig.1: Practical CC topology

III. PROPOSED CUK CONVERTER CIRCUIT WITH LCL FILTER AND RECTIFIER

The circuit of CC is extended AC side by adding rectifier and LCL filter to make analysis of THD and power factor. The proposed circuit of CC with LCL filter and rectifier is shown in Fig.2. The circuit is operated to develop constant output voltage against input line voltage and output load current variations using a designed type III compensator. The transfer function of the compensator is modelled in MATLAB for simulation and emulated in FPGA controller for hardware to provide constant output voltage in closed loop.

The continuous conduction mode of operation of the CC topology develops DC source current with low ripple which smoothens its shape. A symmetrical current is obtained on the AC side without filter circuit. The even harmonics are eliminated in the source current by the definition of Fourier analysis for symmetrical shape. The designed LCL filter inserted in the circuit improves the shape of AC source current more sinusoidal. The LCL filter is utilized also to reduce amplitude of odd harmonics and the THD, which improves distortion factor and hence the power factor.

Fig.2: Proposed diagram of CC with LCL filter and rectifier

The improvement in power factor decreases the power drawn from the AC source. Hence the rise in output power (explained in section II) and diminution in input power improves the efficiency to high.

A. Principle of Operation

The AC power is applied to the rectifier circuit through a LCL filter circuit. The rectified DC is connected to the input of the CC circuit. The converter circuit produces higher or lower output voltage compared to its input according to duty ratio in opposite polarity. The operation of CC circuit is explained in two intervals.

B. Interval 1: Switch S1 - ON Position

The circuit diagram in Fig.3 shows the CC with switch in ON position and diode in reverse bias. As the switch is closed the inductors L_a and L_b are charged and Capacitors C_1 and C_o1 are discharged. The stored energy in capacitor C_1 is transferred to load through the discharging path S1 and R_L. The ripple current through the DC source current is evaluated as follows.

From Fig. 3, assuming linear rise of inductor current, the ripple current through inductor L_a for the switching period T_S is given by (1).

\[
\Delta_{i1} = \frac{2\sqrt{2}V_{ac} \times d \times T_S}{L_a \pi} \tag{1}
\]

where \(V_{ac}\) and \(d\) respectively are input AC RMS voltage and duty ratio of switch. The ripple current can be controlled by varying ON time against constant input voltage.

C. Interval 2: Switch S1 - OFF Position

The circuit diagram in Fig.4 shows the CC with switch in OFF position. In this interval switch is opened, the inductors L_a and L_b are discharging and Capacitors C_1 and C_o1 are charging. The stored energy in the inductor L_a is transferred to energy storage capacitor C_1 and hence it is charging. The capacitor C_1 is charging through the diode.

Fig. 4: Proposed diagram of CC with LCL and rectifier when switch in OFF position
From Fig. 4, assuming linear fall of current, the ripple current through inductor \(L_a \) is given by (2),

\[
\Delta_{ia} = \frac{2\sqrt{2}v_{oc} - V_{c1} \times \pi}{L_a \pi} \times (1-d) \times T_s
\]

(2)

where \(V_{c1} \) is voltage across capacitor \(C_1 \). The ripple current depends on difference in voltage and \(\pi \) OFF time of the switch.

D. Output Voltage Equation

The output voltage equation of practical circuit of CC with rectifier can be derived by applying volt-second balance to energy storage inductors.

Applying volt-second balance to inductor \(L_a \) in Fig.3, Fig.4 and the \(V_{c1} \) is given by (3)

\[
V_{c1} = \frac{2\sqrt{2}V_{oc}}{\pi} - I_{a1}r_{a1} - I_{a2}r_{a2}(1-d)
\]

(3)

Also applying volt-second balance to inductor \(L_b \) in Fig.3, Fig.4 and the \(V_o \) is given by (4)

\[
V_o = -V_{c1}d + I_{b2}r_{b2} + I_{b1}r_{b1}d
\]

(4)

Substituting (3) in (4) and the output voltage is given by (5),

\[
V_o = -\left[\frac{d}{1-d}(V_g - I_{a1}r_{a1}) - (I_{a1} + I_{b2})r_{c1}d - I_{b2}r_{b2}\right]
\]

(5)

Thus it turns out that the output voltage can be varied by changing duty ratio of switch, by keeping input voltage constant.

IV. DESIGN OF COMPENSATOR

The stability of the closed loop system is verified by voltage mode control by designing a type III compensator. To design a compensator a state space averaged model [23] is constructed as given below,

\[
A = A_1 * d + A_2 * (1-d)
\]

\[
B = B_1 * d + B_2 * (1-d)
\]

\[
C = C_1 * d + C_2 * (1-d)
\]

where \(A_1, B_1, \) and \(C_1 \) are state matrices when the switch \(S_1 \) is in ON position in Fig.3. Similarly, \(A_2, B_2 \) and \(C_2 \) are also state matrices when the switch \(S_1 \) is in OFF position as in Fig.4. The matrices \(A, B \) and \(C \) are the averaged state space matrices. Applying small perturbations [24] bound to the steady state duty ratio \(d \) and the perturbed output voltage is given by (6),

\[
\dot{v}_o(s) = C(\tau I - A)^{-1}[A_1 - A_2]X \dot{d}(s)
\]

(6)

where \(v_o(s) \) and \(\dot{d}(s) \) are small ac variations of output voltage and duty ratio. The CC is designed [25] for 100W to realize practically and the component and parameter values are tabulated in Table I.

Component	\(L_a \)	\(L_b \)	\(C_1 \)	\(C_2 \)
Values	0.75mH	0.5mH	10 \(\mu \)F	10 \(\mu \)F
parameter	\(V_g \)	\(V_o \)	\(f_s \)	\(I_o \)
Values	20V	-50V	25kHz	-2A

The designed values of Table 1 are substituted in state matrices and they are further inserted in (6) to form the small signal transfer function for the converter. The plant transfer function for the 100W output, multiplied with the gain of the FPGA modulator, is given by (7),

\[
G(p) = \frac{18.2s^3 + 1.82 \times 10^5 s^2 - 3.5 \times 10^{11} s + 6.3 \times 10^{15}}{s^4 + 430s^3 + 3.2 \times 10^7 s^2 + 1.1 \times 10^9 s}
\]

(7)

The bode plot of the transfer function investigated to check the stability of the plant, which is shown in Fig. 5. The phase margin of the plant CC is very low and gain margin is negative. So in order to make the closed loop system stable, suitably investigated different type of compensators. Finally, a type III compensator is designed and tested in frequency domain. The compensator transfer function is converted to discrete z-domain with a sampling time of 20 nano seconds to use with digital controllers. The converted transfer function in z-domain is given by (8).

\[
G_c(z) = \frac{0.004z^2 - 0.008z + 0.004}{z^3 - 3z^2 + 3z + 1}
\]

(8)

The convolution plant and compensator transfer function, both in z-domain yields compensated overall transfer function. The bode plot of the overall transfer function in closed loop system is plotted and shown in Fig.6.
Improvement of Power Factor using Input Filter and Ripple Reduction by Cuk Converter in Continuous Conduction Mode

VI. SIMULATION RESULTS

The simulation of the circuit of CC with rectifier and LCL filter in closed loop is carried out with the designed filter values and the values of components as in Table 1. The simulation has carried out to produce a DC output of 100W with an AC input voltage of 22V. The output voltage is compared with the reference value and error is processed in type III compensator to generate DC control signal. The PWM is produced by comparing control signal with triangular carrier signal and the switch S is triggered.

The Fig. 7 shows DC output voltage and its derived DC input voltage waveform. The output voltage observed as -50V for a DC input of 20V which is derived from AC source of 22V. The output voltage has a ripple of 0.3V, which is 0.6% only. Also the output current has the same amount of ripple only.

The DC source and output current waveforms are shown in Fig. 8. The DC current drawn from the AC source is 5.4V at 20V DC input to produce an output voltage of -50V at -2A. The efficiency at rated load is evaluated as 93%. The DC input current ripple is 0.8A which is 15% of the input current. The selection of inductor L controls the ripple content on source current. The ripple content on source current is less compared to basic converter topologies.

Fig.8: DC input and output current waveforms, I_g=5.4A, I_o=-2A, I_(g rip)=0.8A.

The closed loop operation of the converter provide constant output response irrespective line and load transients, as the converter is regulating output voltage. The line transient is shown in Fig. 9.
An input Dc voltage variation from 16V to 24V is applied at 50ms. The output voltage changes in response to changes of input. The error is processed in type III compensator and it produces control voltage to regulate output to -50V. The output voltage settles before 60ms with a settling time less than 10 ms.

Similarly load current change is applied to observe the output voltage variations and Fig. 10 shows load transient waveform. The load current is varied from -1A to -2A at 50ms

The output voltage responds to the change; the feedback system works abruptly. The voltage settles to -50V after a small dip and rise with a settling time less than 10 ms.

The power factor is measured by observing AC source current and voltage waveforms. The AC source voltage, AC source current, power factor and THD are plotted in Fig. 11. The input AC side voltage and current are measured for a rated load current of -2A at the output in continuous conduction mode of inductor current, which is shown in Fig. 11 (a). The line voltage and line current coincides at zero crossing and the also the line current is symmetrical about time axis. So the even harmonics are absent by the definition of Fourier analysis. Only odd harmonics are present, which are eliminated by LCL filter circuit. The THD of the line current is 3% as shown in Fig. 11(b). The THD measured is very low, the line current is sinusoidal, thus the distortion factor and displacement power factor are high. Hence the power factor measured is high, which is equal to 0.98. The input power factor is high and hence the power drawn from the source is low.

VII. EXPERIMENTAL VALIDATION

The closed loop block diagram for practical validation is shown in Fig. 12. The output voltage is scaled down by potential divider circuit and applied to ADC of FPGA controller. The digital response is compared with reference value and error is processed in the type III compensator, which is emulated in XILINX tool of FPGA controller. The compensator output is compared with modelled triangular repetitive signal and the PWM is generated with the controlled duty ratio.

The photo of hardware implementation is shown in Fig. 13. The source, CC board, LA55P current sensor board, XILINX Spartan – 3AN FPGA Altium Nano Board, DSO, meters etc. are shown in the Fig. 13.
The output voltage and input voltage are measured using 100 MHz DSO and is shown in Fig. 14. A DC voltage of 20V is applied to CC and the output voltage is measured in closed loop is -41V. The ripple on output voltage is very low and is 1V.

The DC voltage source current and output current are shown in Fig. 15. The source current is 4.62A measured on DC side and load current = -2.25A, at -41V and the source current is observed as RMS value of 2.73A. The AC source current is symmetrical about independent axis.

The THD of the source current is shown in Fig. 18. It can be observed that all even harmonics are absent due to symmetry of the waveform, which corroborate with mathematical Fourier analysis. Hence the symmetrical source current has only odd harmonics and the THD is measured as 6.1%. Low value of THD indicates that the power factor is high, which reduces the power drawn AC source.

The AC source current measured using power quality analyzer against an input source voltage of 22V RMS. The load current measured is -1.3A, at -41V and the source current is observed as RMS value of 2.73A. The AC source current is symmetrical about independent axis.

The THD of the source current is shown in Fig. 18. It can be observed that all even harmonics are absent due to symmetry of the waveform, which corroborate with mathematical Fourier analysis. Hence the symmetrical source current has only odd harmonics and the THD is measured as 6.1%. Low value of THD indicates that the power factor is high, which reduces the power drawn AC source.
The results observed from practical validation are tabulated in Table 2. It has been observed that the proposed circuit of CC with LCL filter and rectifier reduces THD considerably and smoothen the shape of AC source current. Thus the circuit is suitable for the applications like power supplies for viz. electric vehicles, TV and computers.

Table II. Experimental results of CC with LCL filter and rectifier

Parameter	Values
AC Input Voltage	22V
DC Output Voltage	-41 V
AC Source current	2.73A
DC load current	-1.3A
THD	6.1%

VIII. CONCLUSION

The Cuk Converter (CC) circuit consists inductors on both input and output sides, which reduces ripple current on both sides. The converter with reduced ripple current is a real candidate for power supply applications. The CC circuit is connected to rectifier board to extend the measurements to AC side. The uncontrolled rectifier with CC design provide low power factor, hence a LCL filter is designed in the proposed circuit for power factor correction. A Cuk Converter with LCL filter and rectifier circuit is proposed in this paper to improve the power factor. The reduction in ripple current decreases the conduction losses in the circuit, hence the output power is increased. The low ripple current in CC topology improves the shape of DC side source current, which in turn shapes the AC source current more sinusoidal. The symmetrical current on source side is having only odd harmonics, which are eliminated in the circuit by the accurate design of LCL filter. The reduction of harmonics reduces THD and hence improves the power factor. The power drawn from the source is decreased by the improvement of power factor, which enhances efficiency. The CC topology with LCL filter and rectifier is simulated to confirm the analytical outcomes. Also the circuit is validated practically using FPGA controller to confirm the simulated results.

REFERENCES

1. A. Ayacht, D. K. Saini, T. Salviaterra and M. K. Kazimierzczuk, "Analysis, design, and performance evaluation of zero-voltage-ripple buck dc–dc converter," IET Power Electronics, Vol. 12, No. 5, 2019, pp. 994-1001.
2. C. Olalla, C. Carrejo, R. Leyva, C. Alonso, and B. Estibals," Digital QFT robust control of DC–DC current mode converters," Springer Electr. Eng., Vol. 95, No. 1, pp. 21-31, 2013.
3. Rodrigues de Oliveira, A. Silva de Morais and F. L. Tofolii, “Single-switch, integrated DC–DC converter for high-voltage step-down applications,” IET Power Electronics, Vol. 12, No. 8, 2019, pp. 1880-1890.
4. N.A. Ahmed and J.Y. Madlouh, “High frequency full bridge isolated DC - DC converter for fuel cell power generation systems,” Springer Electr. Eng., Vol.100, No.1, pp. 239-251, 2018.
5. S. Lee and H. Do, "High-efficiency soft-switching step-up DC–DC converter derived from a synchronous boost converter," IET Power Electronics, Vol. 12, No. 7, 2019, pp. 1662-1669.
6. J.C.R.Caro, J.C.M.Maldonado, A.V.Gonzalez, F.B.Carabajal, J.M.R.Arruondo, and J.R.R.Agborne, "DC–DC Multiplier Boost Converter with Resonant Switching," Elsevier Electric Power Systems Research, Vol.119, 2015, pp. 83-90.
7. S. Rezayi, H. Imam-Eini, M. Hamzeh, S. Bacha and S. Farzamkia, “Dual-output DC/DC boost converter for bipolar DC microgrids,” IET Renewable Power Generation, Vol. 13, 2019, No. 8, pp. 1402-1410.
8. A. K. Rathore, D. R. Patil, and D. Srinivasan, "Non-isolated bidirectional Soft-Switching Current-Fed LCL Resonant DC/DC Converter to Interface Energy Storage in DC Microgrid," IEEE Trans.Ind.Appl, Vol. 52, No.2, 2016, pp. 1711-1722.
9. M. Veerachary and V. Khubchandani, "Analysis, Design, and Control of Switching Capacitor Based Buck–Boost Converter," IEEE Transactions on Industry Applications, Vol. 55, No. 3, 2019, pp. 2845-2857.
10. M. R. Banaei and H. A. F. Bonah, "A Novel Structure for Single-Switch Nonisolated Transformerless Buck–Boost DC–DC Converter," IEEE Transactions on Industrial Electronics, Vol. 64, No. 1, 2017, pp. 198-205.
11. S. A. Gorji, A. Mostaan, H. Tran My and M. Ektesabi, “Non-isolated buck–boost dc–dc converter with quadratic voltage gain ratio,” IET Power Electronics, Vol. 12, No. 6, 2019, pp. 1425-1433.
12. M. R. Banaei and S. G. Sani, "Analysis and Implementation of a New SEPIC-Based Single-Switch Buck–Boost DC–DC Converter with Continuous Input Current," IEEE Transactions on Power Electronics, Vol. 33, No. 12, 2018, pp. 10317-10329.
13. S. Dian, X. Wen, X. Deng and S. Zhang, “Digital control of isolated Cuk power factor correction converter under wide range of load variation,” IET Power Electronics, Vol. 8, No. 1, 2015, pp. 142-150.
14. H. Yang, H. Chiang and C. Chen, “Implementation of Bridgeless Cuk Power Factor Corrector with Positive Output Voltage,” IEEE Transactions on Industry Applications, Vol. 51, No. 4, 2015, pp. 3325-3333.
15. Y. Liu, Y. Sun and M. Su, "A Control Method for Bridgeless Cuk/Sepic PFC Rectifier to Achieve Power Decoupling," IEEE Transactions on Industrial Electronics, Vol. 64, No. 9, 2017, pp. 7272-7276.
16. P. Karimian and A. Nahavandi, "Design and analysis of a new structure of non-isolated DC–DC cuk–boost converter with high voltage gain," IET Power Electronics, Vol. 12, No. 3, 2019, pp. 530-540.
17. M. Bodetto, A. Marcos-Pastor, A. El Aroudi, A. Cid-Pastor and E. Vidal-Iliarte, “Modified Cuk converter for high-performance power factor correction applications,” IET Power Electronics, Vol. 8, No. 10, 2015, pp. 2058-2064.
18. S.Eren, M.Pahlevani, A.Bakhshai, and P.Jain, An Adaptive Droop DC-Bus Voltage Controller for a Grid-Connected Voltage Source Inverter With LCL Filter, IEEE Trans. Power Elect., Vol. 30, No. 2., 2015, pp. 547-560.
19. Y. Liu, K.Y. See, KJ. Tseng, R.Simanjorang, and J.S. Lai, “Magnetic Integration of Three-Phase LCL Filter With Delta-Yoke Composite Core,” IEEE Trans. Power Elect., Vol. 32, No.5, 2017, pp. 3835-3843.
20. C.Felkowsik and A. Sikorski, “Finite Control Set Model Predictive Control for Grid-Connected AC–DC Converters, With LCL Filter,” IEEE Trans. Ind.Elect., Vol. 65, No.4, 2018, pp. 2844-2852.
21. A. Kouchaki and M. Nymand, “Analytical Design of Passive LCL Filter for Three-Phase Two-Level Power Factor Correction Rectifiers,” IEEE Trans. Power Elect., Vol. 33, No.4, 2018, pp. 3012–3022

22. S. Sen, K. Yenduri and P. Sensarma, "Step-by-step design and control of LCL filter based three phase grid-connected inverter," IEEE International Conference on Industrial Technology (ICIT), Busan, 2014, pp. 503–508.

23. R. W. Erickson and D. Maksimovic, “Fundamentals of Power Electronics,” 2nd edition, Newyork, Kluwer Academic Publishers, 2001, pp.213 – 221.

24. N. Mohan, T. M Undeland, and W. P Robbins, “Power Electronics: Converters, Applications and Design,” Media Enhanced 3rd ed, Singapore, John Wiley and sons Inc., 2003, pp. 322 – 336.

25. D. W. Hart, “Power Electronics,” 8th reprint, Indian Edition, McGraw Hill Education (India) Private Ltd., 2011, pp. 226 – 230.

26. A. M. Rahimi, P. Parto, and P. Asadi, (2016, Feb. 20), "Compensator Design Procedure for Buck Converter with Voltage-Mode Error Amplifier," Application Note, AN-1162, International rectifier, Available: www.irf.com/Type III A Compensator.

AUTHORS PROFILE

Joseph K.D. received his M.Tech. (Power Electronics and Drives) from National Institute of Technology, Warangal, India, in 2008 and B.Tech. (Electrical and Electronics Engineering) from Government Engineering College, Thrissur under University of Calicut, India in 1996. He has been working as Assistant Professor in Department of Electrical Engineering, Government Engineering College, Thrissur, APJ Abdul Kalam Technological University, Directorate of Technical Education, Kerala, India. He is currently doing research towards Ph.D degree in Electrical Engineering from School of Engineering, Cochin University of Science And Technology, Cochin, India. His research interest includes power electronic converters, inverters, electrical machines and drives. He has presented and published several papers in international conferences and journals.

Asha Elizabeth Daniel is graduated in Electrical Engineering from the University of Calicut, Kerala, India. She has obtained her M.Tech and Doctoral degrees from Indian Institute of Technology (IIT), Mumbai, India in 1995 and 2006 respectively. Currently she is working as Professor in School of Engineering, Cochin University of Science and Technology, Kerala, India. She has an excellent teaching experience of 31 years in academics. Her researches are in fields of linear electronics, analog communications, modern communications, electrical machines, converters, inverters and drives. She has presented several papers in international conferences. Also she has published several papers in international and national journals.

A. Unnikrishnan has received the B.Sc. (Engg.) degree from Regional Engineering College, Calicut and the Master’s degree from Indian Institute of Technology Kanpur. He has received Ph.D. degree from the Indian Institute of Science, Bangalore, India in 1978. He was associate Director (retired) and outstanding scientist from Naval Physical and Oceanographic Laboratory, Defense Research and Development Organization, Cochin, Kerala, India. His current research interest includes Signal Information Processing, Sonar Signal Processing, Machine learning, Image Processing, Soft Computing, Model based Signal processing, System identification, Control of Electrical machines, Data mining Sonar Technology and Power Electronic converters. He has received award for scientific advisor from Indian navy for his outstanding contributions and dedications towards work. He has sixty-nine publications in national and international level.