Evaluation of the Compaction of a No-Till Vertisol Field Using Methods of Cone Index and Pedotransfer Function in Semi-arid Context of Morocco

Al Masmoudi Yassine1,2, El Aissaoui Abdellah2 and Ibno Namr Khalid1
1. Laboratory of Geosciences and Environment Technics, Faculty of Science, Chouaib Doukkali University, El-Jadida 24000, Morocco
2. Laboratory of Agricultural Engineering, National Institute of Agricultural Research, Settat 26000, Morocco

Abstract: This study evaluated compaction level of a 15-year old no-till vertisol field crop (40.91% clay, 44.16% loam and 14.93% sand) having organic matter contents of 2.23% and 2.91% in 0-10 cm and 10-20 cm profiles, respectively. The bulk density ranged from 1.30 g/cm³ to 1.80 g/cm³ in the field boundaries, and from 1.01 g/cm³ to 1.40 g/cm³ in its center. The field showed a gradient of limestone from 3% to 13%. Measurements were done to evaluate soil strength (cone index) and soil plasticity (Atterberg limits). The soil strength showed different levels of compaction from 4.5 MPa to 16 MPa to distinct five spatial clusters in the field. The soil compactness was related to limestone gradient according the correlation found between the soil strength and limestone levels. The soil plasticity test showed occurrence of plastic limits when the moisture content decreased from 26% to 15% within 5 d interval. The Atterberg limits showed the importance of respecting intervention delays to avoid soil compaction due to its plasticity. A pedotransfer function was developed using soil parameters of texture, organic matter, bulk density, cohesion, internal friction angle and moisture content to compute its precompression stress. Results showed importance of compaction in the field extremities due to importance of machines/tools traffic without avoiding cropping interventions during soil plasticity state. The soil strength (as measured value) was correlated to precompression stress (as estimated values) to show the importance of using pedotransfer function as significant method to evaluate indirectly compactness or susceptibility to compaction of the studied vertisol.

Key words: Compaction, vertisol, strength, Atterberg limits, limestone, pedotransfer function.

Nomenclature

BD: Bulk density
OMC: Organic matter content
TOC: Total organic carbon
TL: Total limestone
Pc: Precompression stress
Ss: Soil strength
Atl: Atterberg limits
IDP: Inverse distance to a power
CV: Coefficient of variation
DD: Decimal degree

1. Introduction

Soil compaction is becoming a critical problem facing modern agriculture and impacts with its intensity and extent environment and food production [1]. It is also a main cause of the degraded 33 million hectares of lands in Europe [2], and about 4 million hectares in Western Australia [3]. Several authors [4-11] stated that compaction is an actual problem of many countries (Azerbaijan, Japan, Russia, France, China, Ethiopia, New Zealand and Australia). Heavy machine traffics, and tillage tools are the main sources of agricultural soil compaction, and its severity depends on soil texture and structure, BD, OMC, water content and TL [12-14]. Its dynamic is mainly influenced by soil moisture content [15, 16]. Vertisols have high yield potential and are dedicated to intensive crop production. They are among the most sensitive soils to compaction according to their high clay and water contents during agricultural operations.
The compactness can occur within cropping cycle and affect crop performance [17]. The vertisol can differently behave to compaction depending on its structure state and type of dominant clay [18]. Field crop losses were due to intensity of agricultural traffic and tillage practices [19-22]. In Ref. [23] the researchers stated that BDs of 1.37 g/cm³ and 1.66 g/cm³ in a 0-30 cm profile can be indication of non-compacted and compacted soils, respectively. The BD is frequently used to evaluate soil compactness [12]. Furthermore, Ss is widely used to indicate soil compaction as it reflects soil resistance to root penetration [11, 12, 24-26].

In Ref. [27] the authors showed that up to 90% of roots are observed in the class of penetration resistance below 3 MPa. Some authors [28-31] stated that adequate soil OMC can improve soil structure and its resilience to compaction with reference to shown decrease in BD and Ss. The soil moisture content strongly influences compaction sensitivity and its variation helps to identify liquid, plastic and solid states called ATL. These limits are of importance to show different soil behaviors with reference to its moisture content. Destain [32] studied effect of vertisol moisture content state using ATL and showed importance of respecting delay of introducing machines/tools in the field to avoid its compactness due to soil plasticity.

Pedotransfer functions were used to evaluate spatial compaction at the small and large field scales by computing Pc [32-34]. The Pc computation requires knowledge of pedological (texture and organic matter), mechanical (BD, cohesion and internal friction angle), and hydraulics (available/no available water contents, porosity and hydraulic conductivity) parameters. Horn and Fleige [33, 34] correlated Pc to soil physical parameters as significant pedotransfer function to evaluate soil resistance to compaction at the farm and the regional levels. Soil physical proprieties (texture, structure and moisture content) are widely used for implementing pedotransfer functions [35-39]. Other researchers have characterized soil structure using density or others measurable variables such as permeability [36-38, 40-43]. D’or and Destain [44] classified Pc values into six ranges from very low (Pc < 30) to extremely high (Pc > 150) assigned to different levels of compaction. According to Håkansson and Lipiec [45], compaction of vertisols in Morocco is important soil knowledge that needs to be characterized. Despite the high production potential, vertisol needs adequate management [46] due to difficulty of operating it mechanically. The high moisture content induces clay swelling and intervention for tillage operations cannot be done within the period of liquid and plastic states [47].

This study aimed to evaluate compactness of a no-till vertisol field crop and find spatial correlation between compacted clusters and their physicochemical soil properties through development of a pedotransfer function linking Ss to Pc.

2. Materials and Methods

The experiment was undertaken in a vertisol field crop of 1 ha of 15 years historic of no-till practices. This field was situated in Chaouia region of Morocco (X: -7.6222, Y: 32.9556). Its soil physical parameters (OMC, BD and TL), Ss, plasticity (ATL) were evaluated using systematic sampling for each cluster of a 10 × 10 m² plot.

The OMC was measured by Walkley and Black method [48] based on the measurement of TOC (Eq. (1)):

\[
\text{OMC} (\%) = \text{TOC} (\%) \times 1.724
\]

TL was evaluated by Bernard Calcimeter Method and quantified by Eq. (2):

\[
\text{TL} = \frac{\Delta V \times (PT)}{M} \times 10^{-4}
\]

where: \(\Delta V\), \(PT\) and \(M\) are difference of volume, intersection pressure-temperature and mass of soil sample, respectively.

The Ss was measured by a cone index penetrometer (30°) equipped with a pressure sensor (BoschTM, \(P_{\text{max}}\))
= 250 bar) (Fig. 1). Data were acquired (sampling rate of 2 Hz) using an oscilloscope/ logger (Agilent U1604B) and transformed from volt to pressure based on a curve calibration (Fig. 2). The penetrometer was mounted on a tractor framework and driven by a 12 V DC electric motor with constant speed of 2.5 cm/s.

Vertisol plasticity was evaluated using the ATL method [49]. A hydraulic press (Figs. 3-5) was mounted and used for evaluating plastic limits with reference to standard (ASTMD 4318-17). Evaluation was based on 28 soil samples (seven treatments and four replicates). Each soil sample (269.26 cm³ of granules having less than 2 mm) was poured in a press cylinder and humidified by tap water (150 mL). Each sample was pressed up to 6 bar and evaluated for its Ss (cone index penetrometer) during the 1st, 2nd, 3rd, 4th, 5th, 10th and 15th days in order to show the strength response as a function of moisture content. The field data collected were performed using the spatial interpolation method of IDP and Surfer 13 software. The IDP is a robust method for data interpolation and map realization [50, 51].

Pedotransfer function protocol was based on the computation of Pc using the following equation [32]:

\[
P_c = 70.65X_1 - 0.5X_3 - 7.01(X_4)^{0.33} + 1.32X_3 - 1.08X_2 + 1.72X_6 + 1.05X_7 - 100.94
\]

(3)

Fig. 1 Protocol design for Ss measurement.

Fig. 2 Ss calibration curve (pressure vs. voltage).
Fig. 3 A scheme of hydraulic press used to evaluate response to compaction, at varying moisture content of soil samples.

Fig. 4 Hydraulic press calibration (pressure vs. voltage).

Fig. 5 Ss calibration curve (Ss vs. voltage).

where: X_1, X_2, X_3, X_4, X_5, X_6 and X_7 are the BD, available water content, no-available water content, hydraulic conductivity, OMC, cohesion and internal friction angle, respectively.

The regression linear method (JMP SAS software) was used to correlate between the Ss and limestone and between the Ss and the Pc.

3. Results and Discussion

3.1 Ss Assessment

Ss spatial distribution (Fig. 6) showed a significant compaction level in the boundaries limits of the field matrix. It is due to traffic importance and tractor turns. Results showed also an important compaction gradient
(from simple to quadruple) between upstream and the downstream sides of the field. The compaction gradient was related to importance of limestone distribution. In fact, comparison between Ss and limestone spatial distributions (Figs. 6 and 7) showed that both parameters were proportionally related. There

Fig. 6 Ss map based on cone penetrometer data represented by IDP method.

Fig. 7 TL map based on data analysis represented by IDP method.
is a potential effect of limestones proportion on compaction severity according to presence of limestone slab in the soil matrix. Referring to Laamel [52], susceptibility to compaction is relatively more important in a loamy soil than in a clay soil.

3.2 ATL

ATL showed that soil water content dynamic has an influence on its sensitivity to compaction within plasticity limits (Fig. 8). It is of importance to avoid machines traffic during soil plasticity period to overcome compaction problem. Furthermore, soil plasticity state can be evaluated with reference to soil moisture content in order to timely manage introduction of machines to avoid compaction of plastic soil. The soil plasticity can be used as a decision tool to predict compaction on the basis of soil water content dynamic.

Resistance to penetration of the compacted samples by the press was done using the cone index penetrometer. This resistance to penetration is represented as a function of the penetration depth and moisture content for each sample. Fig. 9 showed three ranges of low, high and medium resistance for depths of 0-3, 3-5 and 5-7 cm, respectively. According to the response of samples to penetration resistance, two distinct ranges of 0.2-0.5 MPa and 0.5-1 MPa were shown according to the press timing between the 1st and 15th days. Plasticity evolutions showed different s-shaped curves evolving with an increase in soil penetration resistance, as soil moisture content decreases.

3.3 Pc Evaluation

Pre-compression computation was done to evaluate susceptibility index of soil compaction indirectly [44]. In this study, computation of Pc based on physical parameters of the soil matrix showed three distinct classes of compaction (low, medium and high) (Fig. 10).

3.4 Pc vs. Ss Correlation (Pedotransfer Function)

Pre-compression stress and Ss were investigated by a pedotransfer function to evaluate soil susceptibility to compaction. In this regard, Table 1 showed that Pc and Ss are highly correlated with an R^2 of 90% in the boundaries and in the center of the field. This relationship provided means to assess response of soil

![Fig. 8 Soil sensitivity to compaction as a function of water content and ATL.](image-url)
to compaction using P_c as an indirect method that is pointed out by D’or and Destain [44], for both field and regional scales. The state of water content constitutes a determinant parameter to optimally manage timing for introducing machines in the field and avoiding traffic when soil is in its plastic state. The
Table 1 TL, Ss, Pc and parameters of the linear regression equations (soil Pc vs. Ss) of the five clusters and of the global equation (average of the five cluster).

Cluster	CaCO₃ (CV)	Ss (CV)	Pc (CV)	A (SE)	B (SE)	R-squared	SE equation
Field center	9.442 (0.1)	14.916 (1.5)	103.834 (2.58)	2.027 (0.27)	73.600 (4.14)	0.844	1.967
Field center	8.245 (0.1)	10.311 (0.9)	88.551 (1.44)	2.600 (0.30)	61.745 (3.49)	0.880	5.299
Field center	3.235 (0.1)	4.416 (0.2)	75.226 (1.11)	1.922 (0.24)	66.737 (1.27)	0.863	2.370
South field boundaries	12.946 (0.1)	15.829 (1.6)	102.004 (1.02)	3.020 (0.31)	54.192 (4.97)	0.904	2.325
North field boundaries	5.641 (0.1)	14.974 (1.5)	97.854 (1.94)	2.783 (0.26)	54.176 (4.03)	0.918	2.928
Global equation	2.452 (0.09)	63.855 (1.20)	0.926	3.784			

CV: coefficient of variation; SE, A and B represent standard error, slope parameter and intercept, respectively.

Pc pedotransfer function considers the soil water state represented by the potential within the range of field capacity and wilting points. According to positions of the clusters in the field, significant correlations between the limestone, Ss and Pc were shown (Table 1). Clusters having higher limestone concentration (clusters 1, 4 and 5) showed the highest values of Ss and Pc. The clusters 4 and 5 were in the boundary limits of the field that have the highest values of Ss and Pc, indicating in this way the importance of the compaction level. In fact, the field boundaries were often subjected to intensive traffic and machine turning. Data analysis showed a significant correlation between the Ss as measured values and the Pc as estimated value ($R^2 = 0.926$). A linear regression equation of the form [Ss (MPa) = 2.452 Pc (MPa) + 63.855] was found. This relationship can be used to predict an Ss through the computation of the Pc based on soil physical characteristics. Furthermore, Ss was correlated to limestone [Ss (MPa) = 0.645 × CaCO₃ % + 0.844, $R^2 = 0.822$]. Both equations showed the importance of evaluating soil compactness for a field matrix by referring to limestone as a direct indicator and Pc as an indirect indicator to have an index of soil susceptibility compaction.

4. Conclusions

Computation of Pc was based on equation and soil parameters of the field. The Ss data (measured values) were correlated to CaCO₃ (%) (measured values) and Pc (computed values) using a linear regression method. The use of the pedotransfer function of the Pc helped to evaluate soil susceptibility to compaction as an indirect method. However, the importance of CaCO₃ (%) gradient in the field and its correlation to the Ss showed that it is possible to use limestone as a direct indicator to evaluate the soil compactness and/or its susceptibility to compaction.

5. Future Work

The study showed that it is possible to assess the soil susceptibility to compaction using Pc as indirect method according to its correlation to Ss used as direct method for measuring compactness. It is of importance to upscale this method for a regional level.

References

[1] Durán Zuazo, V. H., and Rodriguez Pleguezuelo, C. R. 2008. “Soil-Erosion and Runoff Prevention by Plant Covers: A Review.” Agron. Sustain Dev. 28: 65-86.
[2] Akker, J. J. H., and Canarache, A. 2001. “Two European Concerted Actions on Subsoil Compaction.” Land Use and Land Development 42: 15-22.
[3] Carder, J., and Grasby, J. 1986. A Framework for Regional Soil Conservation Treatments in the Medium and Low Rainfall Agricultural District. Department of Agriculture, Western Australia, Research Report 1/86, 120.
[4] Aliev, K. 2001. “Current Problems with Regard to Mechanization and Greening of Farming in Azerbaijan.” International Agricultural Journal 5: 57-61.
[5] Ohtomo, K., and Tan, C. C. A. 2001. “Direct Measurement of Soil Deformation Using the Bead-Grid Method.” J. Agric. Eng. Res. 78: 325-32.
[6] Bondarev, A. G., and Kuznetsova, I. V. 1999. “The Degradation of Physical Properties of Soils in Russia and Ways to Minimize It.” Soil Science 9: 1126-31.

[7] Tardieu, F. 1994. “Growth and Functioning of Roots and of Root Systems Subjected to Soil Compaction: Towards a System with Multiple Signalling.” Soil Tillage Res. 30: 217-43.

[8] Suhayda, C. G., Yin, L. G., Redmann, R. E., and Li, J. D. 1997. “Gypsum Amendment Improves Native Grass Establishment on Saline-Alkali Soils in Northeast China.” Soil Use and Management 13: 43-7.

[9] Mwendera, E. J., and Saleem, M. A. M. 1997. “Hydrologic Response to Cattle Grazing in the Ethiopian Highlands.” Agric. Ecosyst. Environ. 64: 33-41.

[10] Russell, J. R., BetterIDGE, K., Costall, D. A., and Mackay, A. D. 2001. “Cattle Treading Effects on Sediment Loss and Water Infiltration.” J. Range Manage. 54: 184-90.

[11] Hamza, M. A., and Anderson, W. K. 2003. “Responses of Soil Properties and Grain Yields to Deep Ripping and Gypsum Application in a Compacted Loamy Sand Soil Contrasted with a Sandy Clay Loam Soil in Western Australia.” Aust. J. Agric. Res. 54: 273-82.

[12] Panayiotopoulos, K. P., Papadopoulou, C. P., and Hatjiioannidou, A. 1994. “Compaction and Penetration Resistance of an Alfisol and Entisol and Their Influence on Root Growth of Maize Seedlings.” Soil Tillage Res. 31: 323-37.

[13] Raper, R. L., Reeves, D. W., and Burt, E. C. 1998. “Using In-Row Subsoiling to Minimize Soil Compaction Caused by Traffic.” J. Cotton Sci. 2: 130-5.

[14] Mosaddeghi, M. R., Hajabbasi, M. A., Hemmat, A., and Afyuni, M. 2000. “Soil Compactibility as Affected by Soil Moisture Content and Farmyard Manure in Central Iran.” Soil Tillage Res. 55: 87-97.

[15] Soane, B., and Van Ooijerkerk, C. 1995. “Implications of Soil Compaction in Crop Production for the Quality of the Environment.” Soil Till Res. 35: 5-22.

[16] Hamza, M. A., and Anderson, W. K. 2005. “Soil Compaction in Cropping Systems: A Review of the Nature, Causes and Possible Solutions.” Soil and Tillage Res. 82: 121-45.

[17] Radford, B. J., Bridge, B. J., Davis, R. J., McGarry, D., Pillai, U. P., Rickman, J. F., Walsh, P. A., and Yule, D. E. 2000. “Changes in the Properties of Vertisol and Responses of Wheat after Compaction with Harvester Traffic.” Soil Tillage Res. 54: 155-70.

[18] So, H. B., and Cull, P. 1984. “Effect on Soil Compaction on Cotton Growth in the Emerald Irrigation Area.” The Australian Cotton Grower (May-July): 52-7.

[19] Alakukku, L. 1996. “Persistence of Soil Compaction Due to High Axle Load Traffic I. Short-Term Effect on the Properties of Clay and Organic Soils.” Soil Tillage Res. 37: 211-22.

[20] Radford, B. J., Yule, D. F., McGarry, D., and Playford, C. 2007. “Amelioration of Soil Compaction Can Take 5 Years on a Vertisol under No Till in the Semi-arid Subtropics.” Soil and Tillage Research 97: 249-55.

[21] Honsson, I., and Reeder, R. C. 1994. “Subsoil Compaction by Vehicles with High Axle Load-Extent, Persistence and Crop Response.” Soil Tillage Res. 29 (2-3): 277-304.

[22] Filipovic, D., Husnjak, S., Kosutic, S., and Gospodaric, Z. 2006. “Effects of Tillage Systems on Compaction and Crop Yield of Albic Luvisol in Croatia.” J. Terramechanics 43: 177-89.

[23] Herbaubs, J., El Bayad, J., and Gruber, W. 1996. “Influence of Logging Traffic on the Hydromorphic Degradation of Acid Forest Soils Developed on Loessic Loam in Middle Belgium.” Forest Ecol Manag 87: 193-207.

[24] Taylor, H. M. 1971. “Effect of Soil Strength on Seedling Emergence, Root Growth and Crop Yield. Compaction of Agricultural Soils.” American Society of Agricultural Engineering 292-305.

[25] Mason, E. G., Cullen, A. W. J., and Rijkse, W. C. 1988. “Growth of Two Pinus radiata Stock Types on Ripped and Ripped/Bedded Plots at Karioi Forest.” N. Zeal. J. Forestry Sci. 18: 287-96.

[26] Hamza, M. A., and Anderson, W. K. 2001. “Effect of Competition between Gypsum, Potassium, Iron and Sulphur on Lupin.” In The 2nd Australia-New Zealand Conference on Environmental Geotechnics, 95-7.

[27] Sinnett, D., Morgan, G., Williams, M., and Hutchings, T. 2008. “Soil Penetration Resistance and Tree Root Development.” Soil Use Manage 24: 273-80.

[28] Cochrane, H. R., and Aylmore, L. A. G. 1994. “The Effects of Plant Roots on Soil Structure.” In The 3rd Triennial Conference Soils, 207-12.

[29] Thomas, G. W., Haszler, G. R., and Blevins, R. I. 1996. “The Effect of Organic Matter and Tillage on Maximum Compaction of Soils Using the Proctor Test.” Soil Sci. 161: 502-8.

[30] Sparovek, G., Lambais, M. R., Silva, A. P., and Tormena, C. A. 1999. “Earthworm (Pontoconex corethurus) and Organic Matter Effects on the Reclamation of an Eroded Oxisol.” Pedobiologia 43: 698-704.

[31] Carter, M. R. 2002. “Soil Quality for Sustainable Land Management: Organic Matter and Aggregation Interactions That Maintain Soil Functions.” Agronomy J. 94: 38-47.

[32] Destain, M. F. 2013. “The Compaction of the Soils in Wallonia.” Department of Sciences and Technologies of Wallonia. Department of Sciences and Technologies of Wallonia (GemblouxAgro-Bio Tech) 2 passages of the departures 5030 Gembloux. Evaluating the Compaction of a No-Till Vertisol Field Using Methods of Cone Index and Pedotransfer Function in Semi-arid Context of Morocco.
Evaluation of the Compaction of a No-Till Vertisol Field Using Methods of Cone Index and Pedotransfer Function in Semi-arid Context of Morocco

[33] Horn, R., and Fleige, H. 2003. “A Method for Assessing the Impact of Load on Mechanical Stability and on Physical Properties of Soils.” *Soil and Tillage Research* 73: 89-99.

[34] Horn, R. 2005. “SIDASS Project Part 5: Prediction of Mechanical Strength of Arable Soils and Its Effects on Physical Properties at Various Map Scales.” *Soil and Tillage Research* 82: 47-56.

[35] Gupta, S. C., and Larson, W. E. 1982. “Predicting Soil Mechanical Behaviour during Tillage.” In *Predicting Tillage Effects on Soil Physical Properties and Processes*. Madison: American Society of Agronomy, 151-78.

[36] Imhoff, S., Da Saliva, A. P., and Fallow, D. 2004. “Susceptibility to Compaction, Load Support Capacity and Soil Compressibility of Hapludox.” *Soil Sci. Soc. Am. J.* 68: 17-24.

[37] Lebert, M., and Horn, R. 1991. “A Method to Predict the Mechanical Strength of Agricultural Soils.” *Soil and Tillage Research* 19: 275-86.

[38] McBride, R. A. 1989. “Estimation of Density-Moisture-Stress Functions from Uniaxial Compression of Unsaturated, Structured Soils.” *Soil and Tillage Research* 13: 383-97.

[39] Smith, C. W., Johnston, M. A., and Lorentz, S. 1997. “Assessing the Compaction Susceptibility of South African Forestry Soils, Soil Properties Affecting Compactability and Compressibility.” *Soil and Tillage Research* 43: 335-54.

[40] Alexandrou, A., and Earl, R. 1998. “The Relationship among the Pre-compaction Stress, Volumetric Water Content and Initial Bulk Density of Soil.” *Journal of Agricultural Engineering Research* 71: 75-80.

[41] Canarache, A., Horn, R., and Colibas, I. 2000. “Compressibility of Soils in a Long-Term Field Experiment with Intensive Deep Ripping in Romania.” *Soil and Tillage Research* 56: 185-96.

[42] Rücknagel, J., Hofmann, B., Paul, R., Christen, O., and Hülsergen, K. J. 2007. “Estimating Precompression Stress of Structured Soils on the Basis of Aggregate Density and Dry Bulk Density.” *Soil and Tillage Research* 92: 213-20.

[43] Salire, E. V., Hammel, J. E., and Hardcastle, J. H. 1994. “Compression of Intact Subsoils under Short-Duration Loading.” *Soil and Tillage Research* 31: 235-48.

[44] D’or, D., and Destain, M.-F. 2014. “Toward a Tool Aimed to Quantify Soil Compaction Risks at a Regional Scale: Application to Wallonia (Belgium).” *Soil and Tillage Research* 144: 3-71.

[45] Häkansson, I., and Lipiec, J. 2000. “A Review of the Usefulness of Relative Bulk Density Values in Studies of Soil Structure and Compaction.” *Soil Till Res.* 53: 71-85.

[46] Moussadek, R., Laghrour, M., Mrabet, R., Van Ranst, E., Badraoui, M., and Mekkaoui, M. 2017. “Morocco’s Vertisol Characterization (Tirs).” *Journal of Materials and Environmental Science* 8: 3932-42.

[47] Kovda, I., Goryachkin, S., Lebedeva, M., Chizhikova, N., Kulikov, A., and Badmaev, N. 2017. “Vertic Soils and Vertisols in Cryogenic Environments of Southern Siberia, Russia.” *Geoderma* 288: 184-95.

[48] Walkley, A., and Black, A. I. 1934. “An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method.” *Soil Science* 37 (1): 29-38.

[49] Kirchhof, G. H. B. S. 2000. “Compaction on Vertisols: Can It Be Predicted?” University of Queensland, Department of Agriculture, Brisbane. Qld 4074, Australia.

[50] Parkish, R., Irmak, A. R., and Maidment, D. R. 2002. “Geostatistical Analyst, Spatial Interpolation Methods.” Center for Research in Water Resources, University of Texas at Austin.

[51] Jin, L., and Andrew, D. H. 2008. “A Review of Spatial Interpolation Methods for Environmental Scientists.” Department of Resources, Energy and Tourism, Geoscience Australia, Canberra, Australia, GPO Box 378.

[52] Laamel, H. 1982. *Study of the Validity of Simple Methods for the Determination of the Parameters Characterizing the Interventions of Agricultural Implements on the Ground (Penetrometer, Scissometer, Infilrometer).* Final project report, section of Agricultural Machinery, Agronomic and Veterinary Institute Hassan II (IAV) BP6202, Rabat Morocco.