A NOTE ON FRAGMENTABILITY AND WEAK-G_δ SETS.

V. P. FONF, R. J. SMITH, AND S. TROYANSKI

Abstract. In terms of fragmentability, we describe a new class of Banach spaces which do not contain weak-G_δ open bounded subsets. In particular, none of these spaces is isomorphic to a separable polyhedral space.

1. Introduction and Preliminaries

All Banach spaces under consideration in this note are assumed to be real and infinite-dimensional.

According to a well known theorem of Lindenstrauss and Phelps [LP], if X is a reflexive space then every closed convex and bounded body in X has uncountably many extreme points. The first named author has obtained different generalisations of this result. In particular, in [F1], it is proved that every infinite-dimensional Banach space X which is not c_0-saturated does not admit a countable boundary. Moreover, if X is not c_0-saturated then [F2]

(a) X does not contain an open, bounded weak-G_δ set.

In [F3] it is shown that if a separable space X does not contain c_0 then

(b) the polar A° of any closed convex and bounded body $A \subset X$ with $0 \in \text{int}A$ contains uncountably many w^*-exposed points.

Recall that a set $B \subseteq B_X^*$ is said to be a boundary for X if, for every $x \in X$, there is $f \in B$ such that $f(x) = ||x||$. Assume that $\{f_n\}_{n=1}^\infty$ is a countable boundary for X (the case: X is polyhedral [F4]), then

$$\text{int} B_X = \bigcap_{n=1}^\infty \{x \in X : f_n(x) < 1\}.$$

Thus $\text{int} B_X$ is an open, bounded weak-G_δ set. Next let $G \subset X$ be a bounded, convex, closed body and $0 \in \text{int}G$. A point $x \in \partial G$ is said to be smooth if the Minkowski functional p of G is Gâteaux differentiable at x. A point f of a subset

Date: December 2008.

Department of Mathematics, Ben Gurion University of the Negev, Beer-Sheva, Israel (fonf@cs.bgu.ac.il).

Institute of Mathematics of the AS CR, ˇZitná 25, CZ - 115 67 Praha 1, Czech Republic (smith@math.cas.cz).

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain (stroya@um.es).

V. P. Fonf was partially supported by the Spanish government, grant MEC SAB 2005-016. S. Troyanski was partially supported by the Center for Advanced Studies at Ben-Gurion University of the Negev.
A ⊂ X∗ of the dual space X∗ is said to be a w*-exposed point of A if there is x ∈ X such that f(x) > g(x) for every g ∈ A, g ≠ f. Moreover, we say that this x w*-exposes f. Let us recall also the following well known fact.

Fact 1. A point x ∈ G is smooth for G if and only if x w*-exposes some point f in the polar G° of G, with f(x) = 1.

In this note we describe (by means of special fragmentable sets) a new class K of Banach spaces X which have both properties (a) and (b) and which may be c₀-saturated.

Definition 2 (Namioka [N]). A set M in a Banach space X is said to be fragmentable if, for any subset A of M and any ε > 0, there is a weak open set V which meets A and diam(A ∩ V) < ε.

Additionally, a set M is dentable if, for any ε > 0, there is an open half space H which meets M and diam(A ∩ H) < ε. Clearly, if every subset of a set M is dentable then M is fragmentable. It is known that if M is a weakly compact subset of a Banach space, or a bounded subset of a dual space of an Asplund space, then every subset of M is dentable (see e.g. [B, p. 31, 60 and 91]).

We define the class K as follows.

Definition 3. A Banach space X belongs to K if X contains a non-empty fragmentable set M ⊂ int B_X satisfying the following condition

(*) for any ε > 0, any weak open set V and any x₀ ∈ V ∩ M, there is a finite sequence \{x_i\}_{i=1}^n ⊂ V ∩ M such that \|x_i - x_{i-1}\| < ε, i = 1, . . . , n, and \|x_n\| ≥ 1 - ε.

Our main result is the following

Theorem 4. If X ∈ K then X does not contain open bounded w-Gδ sets. Moreover, if X ∈ K is separable and G is a convex bounded open set then the set of all smooth points of clG cannot be covered by a countable union of weak closed sets which does not meet G. In particular, if 0 ∈ G then the set w*-exp G° is uncountable.

The following corollary complements the main result from [F3].

Corollary 5. Assume that a separable Banach space X contains a subspace with the Radon-Nikodým property (e.g. reflexive or l₁). If F ⊂ X is a bounded closed convex body with 0 ∈ int F then the set w*-exp F° is uncountable.

Hitherto, there were no c₀-saturated Banach spaces known to satisfy the conclusions of Theorem 4. Despite the fact that the proof of Theorem 4 uses some ideas from [F3], we give examples of c₀-saturated Banach spaces which admit sets satisfying the hypotheses of Theorem 4.

2. **Proof of Theorem 4**

The proof of the following fact is standard.
Fact 6. Let K be a weak compact subset of a weak open subset V of a Banach space X. Then there is a non-empty weak open neighbourhood W of the origin such that $K + W \subset V$.

The following rather technical proposition will be our main tool.

Proposition 7. Let G be an open bounded subset of a Banach space X and assume $0 \in K \subset G$, where K is compact. Put $G_K = \{ x \in X : x + K \subset G \}$. Assume that M is a non-empty fragmentable subset of $\text{cl}G_K$, such that for any weak open set U with $U \cap M \neq \emptyset$, for any weak closed subset E with $E \cap G = \emptyset$, and for any $\varepsilon > 0$, there is $y \in M \cap U$ such that $(y + K) \cap E = \emptyset$ and $d(y, \partial G_K) < \varepsilon$. Then, for any w-F_σ set F with $F \cap G = \emptyset$, there is $x \in X$ such that $x + K \subset \text{cl}G$, $(x + K) \cap F = \emptyset$, and $(x + K) \cap \partial G \neq \emptyset$.

Proof. Let $F = \bigcup_{n=1}^\infty F_n$, where $\{F_n\}$ is an increasing sequence of weak closed sets. Set $F_0 = \emptyset$ and let $\{\varepsilon_n\}_{n=0}^\infty$ be a sequence of positive numbers tending to 0, where $\varepsilon_0 > \text{diam}(G_K)$. We construct a sequence $\{x_n\}_{n=0}^\infty \subset M$ and decreasing sequences of w-open sets $\{U_n\}_{n=0}^\infty$ and $\{V_n\}_{n=0}^\infty$ with the following properties

1. $x_n \in U_n$ and $x_n + K \subset V_n$;
2. w-$\text{cl}V_n \cap F_n = \emptyset$;
3. $\text{diam}(U_n \cap M) < \varepsilon_n$;
4. $d(x_n, \partial G_K) < \varepsilon_n$

for all n. To begin, let $x_0 \in M$ be arbitrary and $U_0 = V_0 = X$. Assume we have constructed x_n, U_n and V_n. By Fact 6 we can take a weak open neighbourhood W of x_n such that $W + K \subset V_n$. Since $x_n \in U_n \cap W \cap M$ and M is fragmentable, there exists weak open $U_{n+1} \subset W \cap U_n$ such that $U_{n+1} \cap M$ is non-empty and $\text{diam}(U_{n+1} \cap M) < \varepsilon_{n+1}$. From our hypothesis, there exists $x_{n+1} \in U_{n+1} \cap M$ with the property that $(x_{n+1} + K) \cap F_{n+1} = \emptyset$. Since $x_{n+1} + K \subset U_{n+1} + K \subset W + K \subset V_n$ and $x_{n+1} + K \subset X \setminus F_{n+1}$, again by Fact 6 we can pick a weak open neighbourhood W' of x_{n+1}, satisfying w-$\text{cl}W' + K \subset V_n \setminus F_{n+1}$. Define $V_{n+1} = W' + K$ to complete the construction.

From the conditions above, it follows that $\{x_n\}$ is a Cauchy sequence. Let $x = \lim_{n \to \infty} x_n$. We have $x + K \subset \bigcap_{n=0}^\infty w$-$\text{cl}V_n$ and $x \in \partial G_K$. Hence $x + K \subset \text{cl}G$ and $(x + K) \cap F = \emptyset$. Since K is a compact set and $x \in \partial G_K$, it follows that $(x + K) \cap \partial G \neq \emptyset$. The proof is complete.

Recall that a Banach space X is called polyhedral [K] if the unit ball of any of its finite-dimensional subspace is a polytope. It was proved in [F4] that a separable polyhedral space admits a countable boundary. The next assertion shows that fragmentable subsets of the unit sphere of a separable polyhedral space are quite small.

Corollary 8. Let G be an open bounded subset of a Banach space X, and let $M \subset \partial G$ be a fragmentable set such that for any weak open set U with $U \cap M \neq \emptyset$, and for any weak closed set F with $F \cap G = \emptyset$, we have $(U \cap M) \setminus F \neq \emptyset$. Then G is not a weak G_δ set. In particular, if X is polyhedral then, for every fragmentable
set \(M \subset S_X \), there is a weak open set \(U \) which meets \(M \) and a finite number of hyperplanes \(\{H_i\}_{i=1}^m \) in \(X \), such that \(U \cap M \subset \bigcup_{i=1}^m H_i \).

Proof. We can assume that \(0 \in G \). If we put \(K = \{0\} \) and apply Proposition \(7 \) we see that \(G \) is not a weak \(G_\delta \) set. If \(X \) is polyhedral then \([F4]\) it has a countable boundary and hence there is a sequence of hyperplanes \(\{H_i\}_{i=1}^\infty \) in \(X \) with \(S_X \subset \bigcup_{i=1}^\infty H_i \). Setting \(F_n = \bigcup_{i=1}^n H_i \) for \(n \geq 1 \), using the proof of Proposition \(7 \) we find a weak open set \(U \) and \(m \in \mathbb{N} \) such that \((M \cap U) \setminus F_m = \emptyset \) and \(M \cap U \neq \emptyset \).

\[\blacksquare \]

Proof of Theorem \(4 \). Let \(M \subset X \) be as in Definition \(3 \). It will help to assume that \(0 \in M \). If necessary, this can be done by replacing \(M \) with the set

\[\left(\frac{M - z}{1 - ||z||} \right) \cap \text{int}B_X \]

where \(z \in M \) is arbitrary. Assume that \(G \subset X \) is an open bounded set and \(0 \in K \subset G \), with \(K \) a compact set which we specify later. We will check the conditions of Proposition \(7 \). First of all \(0 \in M \cap G_K \). Now let \(G_K, U, E, \) and \(\varepsilon > 0 \), be as in Proposition \(7 \). Pick \(x_0 \in U \cap M \cap G_K \) and by using the condition (*), find \(\{x_i\}_{i=1}^n \subset U \cap M \) with \(||x_i - x_{i-1}|| < \varepsilon, \ i = 1, \ldots, n, \ ||x_n|| \geq 1 - \varepsilon \). Assume that \(x_n \in M \cap G_K \). Then since \(||x_n|| \geq 1 - \varepsilon \) and \(x_n \in M \cap G_K \subset G_K \subset G \subset B_X \), it follows that \(d(x_n, \partial G) < \varepsilon \). If \(x_n \not\in M \cap G_K \) then there is \(m < n \) with \(x_m \in M \cap G_K \) and \(x_{m+1} \not\in M \cap G_K \). Since \(||x_m - x_{m+1}|| < \varepsilon \), it follows that \(d(x_m, \partial G_K) < \varepsilon \). Set \(y = x_m \) if \(x_n \not\in M \cap G_K \), and \(y = x_n \) otherwise. Hence \(d(y, \partial G_K) < \varepsilon \). Since \(y \in M \cap G_K \subset G_K \) we get that \(y \in G \). Having in mind that \(E \cap G = \emptyset \), we get \((y + K) \cap E = \emptyset \).

Now assume to contrary that \(G \) is a weak \(G_\delta \) set. Put \(F = X \setminus G \). Then \(F \) is a weak \(F_\sigma \) set and by Proposition \(7 \) there is \(x \in X \) such that \(x + K \subset \text{cl}G \), \((x + K) \cap \partial G = \emptyset \), and \((x + K) \cap \partial G \neq \emptyset \), contradicting \(\partial G \subset F \).

The proof of the second part of the theorem uses an idea from the proof of \([F3, \text{Theorem 2}]\). Given a separable Banach space \(X \) and a convex, bounded open set \(G \) with \(0 \in G \), we let \(K = T(B(\ell_2)) \), where \(T: \ell_2 \rightarrow X \) is a linear, compact operator with dense range, and chosen so that \(K \) is contained in the interior of \(G \). If \(F \) is a weak \(F_\sigma \) set with \(F \cap G = \emptyset \) then by Proposition \(7 \) we obtain \(x \in \text{cl}G \) satisfying

\[x + K \subset \text{cl}G, \ (x + K) \cap \partial G = \emptyset, \ (x + K) \cap \partial G \cap F = \emptyset. \]

Now assume to the contrary that \(w^*\text{-exp} \ G^\circ \) is countable. Then by Fact \(1 \) the set \(\text{sm}(\text{cl}G) \) of all smooth points of \(\text{cl}G \) is \(w - F_\sigma \). Put \(F = \text{sm}(\text{cl}G) \) and apply (2.1).

We get a point \(z \in (x + K) \cap (\partial G \setminus F) \). However by using that \(K = T(B(\ell_2)) \) and \(\text{cl}\text{span}K = X \) it is easy to see that \(z \in F \), a contradiction. The proof is complete.

\[\blacksquare \]
3. Examples

Let X be a Banach space with a normalized shrinking basis $\{e_i\}$, such that there is a sequence of numbers $\{t_i\}$, $\lim_i t_i = 0$, with two further properties:

(a) $\sup_n ||\sum_{i=1}^n t_i e_i|| = \infty$;
(b) for any subsequence $\{t_{i_k}\}$ such that $\sup_n ||\sum_{k=1}^n t_{i_k} e_{i_k}|| < \infty$, the series $\sum_{k=1}^\infty t_{i_k} e_{i_k}$ converges.

We show there exists a relatively weakly compact subset $M \subset B_X$, satisfying condition (*) of Theorem [4].

Let $\{e_i^*\}$ be the biorthogonal sequence for $\{e_i\}$ and

$$P_n x = \sum_{i=1}^n e_i^*(x) e_i, \quad x \in X, \quad n = 1, 2, \ldots$$

Denote

$$M = \{x = \sum_{i \in \sigma} t_i e_i : \sigma \subset \mathbb{N}, ||\sigma|| < \infty, ||P_n x|| \leq 1, \quad n = 1, 2, \ldots\}.$$

Now pick $x_0 = \sum_{i \in \sigma_0} t_i e_i \in M$, $||x_0|| < 1 - \varepsilon$, and a weak open set V containing x_0. Find $\delta > 0$ and $m \in \mathbb{N}$ such that

$$x_0 \in U = \{u \in X : |e_i^*(x_0 - u)| < \delta : i = 1, \ldots, m\} \subset V.$$

Given $\varepsilon > 0$, find $l \in \mathbb{N}$ such that $|t_i| < \varepsilon$ for $i > l$. Denote $i_0 = \max \sigma$ and pick $j > \max \{i_0, l, m\}$. Set

$$x_{k+1} = x_0 + \sum_{i=j}^{j+k} t_i e_i, \quad k = 0, 1, \ldots$$

Clearly, $\{x_k\} \subset U$, $||x_k - x_{k+1}|| < \varepsilon$, $k = 0, 1, \ldots$, and $\lim_k ||x_k|| = \infty$. Let n be the minimal index for which $||x_n|| < 1$ and $||x_{n+1}|| \geq 1$. Then $||x_k|| < 1$, $x_k \in M$, $k = 1, \ldots, n$, and $||x_n|| \geq ||x_{n+1}|| - ||x_n - x_{n+1}|| > 1 - \varepsilon$.

Next we show that M is relatively weakly compact. Given a sequence $\{y_l\} \subset M$, we have finite $\sigma_l \subset \mathbb{N}$ such that $y_l = \sum_{i \in \sigma_l} t_i e_i$ and $\sup_n ||P_n y_l|| \leq 1$ for each n and l. By taking a subsequence, we can find $\sigma \subset \mathbb{N}$ such that $\lim_l \sigma_l = \sigma$ in the pointwise topology of the power set of \mathbb{N}. We enumerate σ as a strictly increasing sequence $\{i_k\}$. Clearly $\lim_l P_{i_k} y_l = \sum_{k=1}^\infty t_{i_k} e_{i_k}$ for each n, so by (b), $y = \sum_{k=1}^\infty t_{i_k} e_{i_k}$ converges in X. Since $\{e_i\}$ is shrinking, it is evident that $w\text{-}\lim y_l = y$.

Example 9. There is a separable Banach space X with shrinking basis which is c_0-saturated but does not contain a bounded, open weak-G_δ set. Moreover, for any equivalent norm $|||\cdot|||$ on X, the set $\exp B_{(X, |||\cdot|||)}$ is uncountable.

Indeed, in [4] a non-degenerate Orlicz function M is constructed such that there is a sequence $\{t_i\}$, $\lim_i t_i = 0$, with

$$\sup_i \frac{M(K t_i)}{M(t_i)} < \infty,$$
for any $K > 0$, and
\[
\alpha_M = \sup \{ q : \sup_{0 < \lambda, t \leq 1} \frac{M(\lambda t)}{M(\lambda) t^q} < \infty \} = \infty.
\]

From \cite[p. 143]{LT}, it follows that the space h_M is c_0-saturated. By repeating some of the t_i if necessary, we may assume that $\sum_i M(t_i) = \infty$. Then the unit vector basis $\{ e_i \}$ of h_M and the sequence $\{ t_i \}$ satisfy the conditions (a) and (b). Let us mention that in \cite{L}, it is shown that such h_M has no countable boundary for any equivalent norm.

References

[B] R. Bourgin, Geometric aspects of convex sets with the Radon-Nikodým property, Lecture Notes in Mathematics 993, Springer-Verlag, Berlin 1983.

[F1] V. P. Fonf, On one property of Lindenstrauss-Phelps spaces, *Funct. Anal. Appl.* 13 (1979) 66–67 (translation from Russian).

[F2] V. P. Fonf, Boundedly complete basic sequences, c_0-subspaces, and injections of Banach spaces, *Israel. J. Math.* 89 (1995) 173–188.

[F3] V. P. Fonf, On exposed and smooth points of convex bodies in Banach spaces, *Bull. London Math. Soc.* 28 (1996) 51–58.

[F4] V. P. Fonf, Polyhedral Banach spaces, *Math. Notes Acad. Sci. USSR* 30 (1981), 809–813 (translated from Russian).

[FLP] V.P. Fonf, J. Lindenstrauss, R.R. Phelps, Infinite Dimensional Convexity, 599–670, *Handbook of the Geometry of Banach Spaces*, Vol.1, Edited by W.B. Johnson and J. Lindenstrauss, Elsevier Science, 2001.

[K] V. Klee, Polyhedral sections of convex bodies, *Acta Math.* 103, (1960), 243–267.

[L] D. H. Leung, Some isomorphically polyhedral Orlicz sequence spaces, *Israel J. Math.* 87 (1994), 117–128.

[LP] J. Lindenstrauss, R. Phelps, Extreme point properties of convex bodies in reflexive Banach spaces, *Israel. J. Math.* 6 (1968), 39–48.

[LT] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces I. Springer-Verlag, Berlin-New York, 1977.

[N] I. Namioka, Radon-Nikodým compact spaces and fragmentability, *Mathematika* 34 (1987), 258–281.