Investigation of Synergism of Silver Nanoparticle and Erythromycin Inhibition and Detection of Exotoxin-A Gene in *Pseudomonas aeruginosa* Isolated from Burn Wounds Secretion

Danial Dehghan, Mahdi Fasihi-Ramandi, Ramezan Ali Taheri

1. Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
2. Molecular Biology Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
3. Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

ABSTRACT

Background: *Pseudomonas aeruginosa* infections are resistant to antimicrobial agents and produce toxic virulence factors such as exotoxin A. Studies have shown that some nanoparticle compounds and antibiotics have a synergistic effect. Therefore, the aim of this study was to investigate the synergistic effect of silver nanoparticles and erythromycin on antibiotic-resistant *P. aeruginosa*.

Materials & Methods: In this descriptive cross-sectional study, 40 cultured samples of burn wound secretions were taken from Imam Musa Kazem (PBUH) Burns Hospital in Isfahan, Iran. Diagnostic and differential tests were performed. Antibiogram was performed to obtain the bacterial resistance pattern and the exotoxin A gene was detected by PCR. The bacterial minimum inhibitory concentration (MIC) was then applied to the silver nanoparticles (shape and mean size) and erythromycin separately and a common mixture of both in 10 dilutions to investigate the synergistic effect.

Results & Conclusion: A number of 26 bacteria were strains of *P. aeruginosa*. Of samples, 25 (96.15%) had exotoxin A gene. All samples were sensitive to all erythromycin concentrations. The mean MIC of nanoparticles against bacteria was reported to be 2 μg/mL. A solution of 40 μg/mL erythromycin and 2 μg/mL nanoparticles was also considered as MIC solution. *Pseudomonas aeruginosa* is sensitive to erythromycin to very low concentrations of silver particles. But no synergistic effect between silver nanoparticles and erythromycin was reported for this bacterium. Based on PCR results and antibiotic resistance pattern, a significant number of the samples contained the exotoxin A gene and the use of erythromycin alone was not appropriate for treatment.

Keywords: Silver nanoparticles, *Pseudomonas aeruginosa*, Erythromycin, Minimum inhibitory concentration (MIC), Exotoxin A

Received: 2019/07/07; **Accepted:** 2020/08/17; **Published Online:** 2020/08/17

Corresponding Information: Ramezan Ali Taheri, Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

Copyright © 2020. This is an original open-access article distributed under the terms of the Creative Commons Attribution-noncommercial 4.0 International license which permits copy and redistribution of the material just in noncommercial usages with proper citation.

Introduction

Pseudomonas aeruginosa is a gram-negative, non-fermenting, opportunistic, and highly invasive bacillus with an increasing resistance to antimicrobials. It is the normal flora of the skin and intestines that causes respiratory, urinary tract, and gastrointestinal infections, keratitis, otitis, and bacteremia in patients with weakened immune systems (such as cancer, burns, AIDS, cystic fibrosis). These infections often cause death...
The antibiotic resistance of this bacterium is a major health problem that has increased the cost of treating this disease. Therefore, the limitations of treatment and complications of the disease are also rising (2).

P. aeruginosa pathogens include exotoxin A, exoenzyme S, phospholipase C, and pyocyanin (3). Exotoxin A is one of the main components of the type 2 secretion system that causes tissue necrosis and has a function similar to diphtheria toxin. The toxin inhibits protein synthesis by ADP-ribosylation of elongation factor 2 (4). Inhibition of this toxin reduces cell damage. Nowadays, various antimicrobials are known to prevent the growth of resistant bacteria and to eliminate resistance to antibiotics. Nanoparticles are a broad class of substances with antimicrobial properties. Silver nanoparticles (AgNPs) are best known for their high index of antimicrobial effects.

AgNPs are used for various purposes in medicine (5). They are used as a new antimicrobial agent for sterilization (6). They have high antimicrobial effects on various organisms (1, 7). These nanoparticles accumulate in the bacterial membrane and cause cavities, resulting in unstable cell membrane arrangement and increased permeability (8).

Studies have shown that AgNPs in most cases inhibit the formation of biofilms in *P. aeruginosa* and *Staphylococcus epidermidis*. This property can be used in medicine in the future (9). There are also several studies on the synergistic effect of AgNPs and antibiotics. Mirnejad et al. (2013) showed that streptomycin and AgNPs have a synergistic effect with each other (10, 11). Ahmadi et al. (2017) also showed the synergistic effect of tetracycline and AgNPs. They reported a synergistic relationship for wound healing and microbial inhibition (12).

The production of this material is economically valuable. The methods of synthesis of AgNPs have been reviewed and described according to recent studies and approaches which include the physical, photochemical, biological, and chemical approaches. Some examples of chemical approach include the synthesis of nanoparticles using aqueous polymers, the synthesis of AgNPs using low molecular weight compounds as a double dispersing agent, and the method of one-step synthesis of AgNPs-C sintered at temperature (2).

Clindamycin, erythromycin, and imipenem antibiotics are used to treat pseudomonas infections, but the resistance to them is increasing. Therefore, the most effective way to prevent increased resistance is to use alternative antimicrobials and combine other antimicrobials with antibiotics. In this study, first, the antibiotic resistance of erythromycin and AgNPs were evaluated, and then a test was designed to evaluate the synergistic effect of these two substances on clinical samples in vitro.

Materials and Methods

Sampling and Identification of Samples

The present descriptive cross-sectional study was conducted during December 2017 and June 2018. A total of 40 samples were extracted by simple random sampling from the wounds of burn patients admitted to Imam Musa Kazem Hospital in Isfahan, Iran. The samples were identified using standard biochemical and microbiological tests. Samples were first cultured on eosin methylene blue medium (Ibersco, Italy). Then, hot staining, catalase, oxidase, glucose, fermentation, oxidation, and TSI (Triple Sugar Iron) tests were used to diagnose *P. aeruginosa*. After identification, *P. aeruginosa* was stored in Tryptic Soy Broth medium (Merck, Germany) with 15% glycerol in a research laboratory at 4°C (13).

Preparation of nanoparticles

To prepare the nanoparticles, we added 640 µg of AgNPs into 10 mL of double distilled water, then used an ultrasonic device (Skymen/China) for two hours to homogenize the solution.

Determination of Minimum Inhibitory Concentration (MIC) of Erythromycin

The MIC of bacterial growth for erythromycin was determined by microdilution method. In this study, 100 µl of bacterial culture medium at a concentration of 0.5 McFarland was added in a ratio of one to ten to all wells except the first column. Then, in the first column, sterile culture medium and the highest inhibitory concentration without bacteria were used for the negative control group. In column 12, only the culture medium solution and 200 µl of bacteria without any inhibitors as a positive control were added.

MIC of Nanoparticles

The concentration of AgNPs was based on one-half by microdilution method. Therefore, dilution series was prepared in 96-well plates from 125-250-500-1000-2000-4000-8000-16000-32000-64000 ng/mL. The concentration of erythromycin was also determined as a half with a dilution series of 7.81-15.62-31.25-62.5-125-250-500-1000-2000-4000 ng/mL. The plates were then placed in an incubator at 37°C for 24 h to grow. Then, 0.5 McFarland turbidity was prepared from bacteria according to standard buffer (10⁰ C CFU/mL) (6).

Preparation of Nanoparticle Solution with Antibiotics

The solution of the purchased AgNPs was mixed with 40 µg of erythromycin; then the solution was homogenized using an ultrasonic device for two hours, and the solution was stored at ambient temperature.

MIC of Mixture of Nanoparticles and Antibiotics

Microdilution method was used to determine the MIC of bacterial growth against nanoparticles and antibiotics. Mixture of 100 µl AgNPs was poured from
the second column of the microplate into the third column, and then 100 µL of solution was poured from the second column into the fourth column, and this process continued until column eleven. Finally, dilution series was obtained from a mixture of AgNPs with antibiotics.

PCR Test

To test and confirm the samples, the samples were cultured on Müller-Hinton agar medium. After 24 hours of heating, the main bacterial genome was isolated using a gene extraction kit from Sinaclon Company (Sinagen, Iran). For PCR, pairs of ETA primers with Forward 5'-GACAAGGCCCCTCAGCACG-3’ and Reverse 5'-CGCTGCGCCATTGCAGCGT-3’ primer sequences with a product length of 396 bp were used (14). Also, from Mastermix containing 2.5 µL of PCR buffer, 1 µL of MgCl2, 0.5 µL of dNTPs, 0.5 µL of taq polymerase enzyme (Sinaclon, Iran), along with 1 µL of each primer and 3 µL of template DNA of 25 µL was prepared and placed in the device. The PCR steps are listed in Table 1 to identify the ETA gene in *P. aeruginosa*. These steps were repeated 34 times. The results of amplification of the fragments were electrophoresed on 1% agarose gel and was observed after staining the gel using DNA safe stain. The standard strain used in this study is *P. aeruginosa* ATCC 27853 bought from the Microbial Bank of Iran.

| **Table 1.** Polymerase chain reaction conditions for exotoxin A gene amplification in *Pseudomonas aeruginosa* |
Time	**Temperature**	
First denaturation	5 min	95°C
Denaturation	1 min	95°C
Annealing	1 min	65.4°C
Extension	1 min	72°C
Final Extension	1 min	72°C

Results & Discussion

Results of MIC of Erythromycin

The results of MIC examination showed complete resistance to erythromycin. In this study, the growth of *P. aeruginosa* was not stopped in any of the cells and all the cells belonging to the inhibitory concentrations (2-11) had turbidity due to the growth of *P. aeruginosa*.

Results of MIC of AgNPs

The minimum inhibitory concentration of bacterial growth was 2000 µg/mL. In this study, turbidity due to the growth of *P. aeruginosa* was observed in cells with a concentration of less than 2000 µg/mL.

Results of Synergy of AgNPs and Erythromycin

Lack of growth was observed for synergistic results in cell number 7 (2000) and turbidity due to growth of *P. aeruginosa* was still observed in lower concentrations.

Results of exotoxin A Gene Prevalence

Out of 26 *P. aeruginosa* samples, 24 had exotoxin A gene. The prevalence of *P. aeruginosa* exotoxin A gene in this study was 96.15% of the total samples (Figure 1).
Mechanism of Antimicrobial Effect of AgNPs and Erythromycin

In the introduction section, we discussed the mechanism of nanoparticles that act on cell membranes. Erythromycin, which has a known mechanism of action on protein synthesis, is described in detail in Ketolide section of the chapter 28 of the Jawetz Medical Microbiology; it binds to the 50S component of ribosomes on 5S RNA, interfering with the formation of the initial complex of peptide chain synthesis.

In this study, the prevalence of exotoxin A and antibiotic resistance by microdilution method and the synergistic effect between AgNPs and erythromycin on bacterial inhibition were investigated. According to the findings, the MIC for AgNPs with a diameter of 20-100 nm against P. aeruginosa in well 7 was reported 2 μg/mL.

Also, erythromycin could not be used against P. aeruginosa and all strains obtained were resistant to this antibiotic. The suitable concentration of AgNPs to prevent the growth of P. aeruginosa was 2 μg/mL. In testing the antimicrobial effect of a mixture of antibiotics erythromycin and AgNPs against the growth of P. aeruginosa, this bacterium did not show growth in the well 7 at a concentration of 2 μg/mL.

The prevalence of P. aeruginosa exotoxin A gene in this study was 96.15% of the total samples. This toxin is one of the pathogens of this bacterium. This study showed that the predominant population of P. aeruginosa produces the secretion of exotoxin A burn wound. One of the important factors in the pathogenicity of P. aeruginosa is the production of exotoxin A, which causes serious health problems, and therefore, by performing a test for the presence or absence of this factor, more effective diagnosis and treatment can be performed.

Shinashal et al. conducted a study on the effect of silver and gentamicin on P. aeruginosa by disk diffusion method and found that the antimicrobial effect of AgNPs was better than that of gentamicin; 250 mg of gentamicin and 10 mg of AgNPs were reported (7). In the present study, the antimicrobial effect of AgNPs was reported 2 μg, which is less than that reported by Shinashal et al. The size of the nanoparticles is probably the reason for their increased antimicrobial properties.

Marck et al. (2014) studied the synergy of AgNPs and azithromycin against P. aeruginosa PA01 biofilm. In this study, AgNPs in the sizes of 10 nm, 20 nm, 40 nm, 60 nm, and 100 nm were used and each of these concentrations were mixed with 0.234 μg/mL, 0.625 μg/mL and 1.25 μg/mL, 2.5 μg/mL, and 7.5 μg/mL of aztreonam antibiotic, respectively; then the MIC was evaluated. The best concentration of AgNPs was reported to be 0.13 μg/mL for 10 μm and 0.500 μg/mL for 20 nm. AgNPs may also have a synergistic relationship with azithromycin against inhibition of P. aeruginosa (15). The results of this study were consistent with the present study.

He T. et al., in an experiment on the antibacterial effect and analysis of graphene-based AgNPs proteome on the pathogen P. aeruginosa, concluded that P. aeruginosa did not grow at 5 μg/mL in the first 7-9 hours but had a slight growth after 48 hours, which was considered as the MIC of bacterial growth inhibitor. It has also been reported that growth stopped at 20 μg/mL and this concentration was considered as the minimum lethal concentration (16). This concentration is consistent with the present study and shows that the antimicrobial effect of AgNPs on P. aeruginosa is positive.

Sondi et al. (2004) studied the effect of AgNPs as antimicrobial agents on Escherichia coli, as a gram-negative bacterial model. They found that AgNPs with a diameter of 12 nm and a concentration of 10 μg cm⁻³ were able to stop the growth of E. coli by 70% and they significantly reduced the growth at a concentration of 20 μg cm⁻³ and completely stopped the growth at a concentration of 50-60 μg cm⁻³ (8).

Kalishwaralal et al. (2010) showed that AgNPs inhibit biofilm formation by P. aeruginosa and S. epidermidis; AgNPs with a diameter of 50 nm were performed by well test method. The diameter of the inhibitory region of 100 nM AgNPs was reported 9.5±0.9 mm for P. aeruginosa and 12±1.2 mm for S. epidermidis; also, for blocking exopolysaccharide (Biofilm), 50 nM was reported for both bacteria (9). The results of the present study are also consistent with the results of the study by Kalishwaralal et al. Finally, it is recommended that this test be performed with other antibiotics.

Conclusion

Exotoxin A is one of the main pathogens of P. aeruginosa. The bacterium is sensitive to AgNPs that have effects on microbes. AgNPs can be used in a way that they are not harmful to host cells. P. aeruginosa is resistant to erythromycin and has no effect on it. Due to the fact that AgNPs and erythromycin were used together and there was no change in the inhibitory concentration, these two antimicrobials have no synergistic effect on this bacterium.

Acknowledgment

Thanks to guidance and advice from "Clinical Research Development Unit of Baqiyatallah Hospital".

Conflict of Interest

Authors declared no conflict of interests.
اثر سیندرم نام‌نوشته نقره و اریتروماپنیه‌ای درمان عمکری فسفولیپاز
و ردبای از اکزوتوکسین A جدا شده از ترشح زخم‌های سوختگی

دانال دهقان، مهدی فضیبی رامندی، رضا مدنی‌طاهری

1. کمیته تحقيقات دانشجویی دانشگاه علوم پزشکی بهبودی الله، تهران، ایران
2. مرکز تحقیقات بیولوژی مکمل، بروجرد که سیستم بیولوژی و سیستم‌های دانشگاه علوم پزشکی بهبودی الله، تهران، ایران
3. مرکز تحقیقات نانو بیوتکنولوژی دانشگاه علوم پزشکی بهبودی الله، تهران، ایران

مقدمه

سیستم ایمنی ضعیف، فرصت تبیین می‌شود که با مدنی مصرف قدرت تخمیر، فاکتورهای بیماری‌زا مانند اکزوتوکسین A، گلوکوژن، اکزوژن، و سیستم آنتی‌ژنیک بی‌کاری

پیشنهاد مسئول:

یسرام، دانشگاه علوم پزشکی بهبودی الله، تهران، ایران
ایمیل: taheri@bmsu.ac.ir

اطلاعات مقاله

تاریخچه مقاله
درباافت: ۱۴۰۲/۰۴
پذیرش: ۱۴۰۲/۰۷
انتشار آنلاین: ۱۴۰۳/۰۶/۰۵
موضوع:
نام بیونانوتکولوژی در بیشتر

چکیده

توزیع و اهمت: عفونت‌های سودوموناس اریتروپنیزا، مقاوم به اتی‌پوشین ممولا سخت درمان می‌شوند و

انتی‌پوشینهای مجددی برای درمان وجود دارد. مقاومت آن از اگزوتوکسین نسبت به عامل ضد میکرو‌بی‌ای در حال افزایش است و

فاکتورهای بیماری یا نیاز مشخصی ندارند. آنارکطیدی از اکزوتوکسین A، سودوموناس اریتروپنیزا، اریترومایسین، سودوموناس آئروژنوزا بهترین

مواد و روش کار: در این مطالعه، ۴۰ نمونه از سلول ترشح زخم‌های سوختگی با سویا ترشح که با این تیکه

تشخیص و ارتقاء استاندارد ۳۴ نمونه از سودوموناس آئروژنوزا جدید قرار گرفت. و ۲۰ نمونه از اکزوتوکسین

مقاتل بی‌کاری با عامل اکزوژنیک شد. سپس این مخلوط ناحیه ترشح فصول گردید. از آن پس از

کلید واژگان: از اکزوتوکسین A، اکزوژنیک، سودوموناس آئروژنوزا، سودوموناس اریتروپنیزا

کمیابی، بی‌کاری، اتی‌پوشین

کی‌یاراد: مجله میکرو‌بی‌این‌پزشکی ایران، دانش‌های پزشکی ایران

مجله میکروب‌شناسی پزشکی ایران

Majallah-i mikrub/shināsī-ī pizishkāt-ī Iran.
از محلول باکتری با کدورت نیم مک فارلند می‌تواند تهیه شود. محلول به درون تمام جامه‌های میکروپلیت به جز ستون اول ریخته شد. در سه ستون اول نیم، کدورت منفی ایجاد شد که از محلول چست ابرنت و آب بدون چست تهیه شد. محلول چست و باکتری بدون هیچ ماده مهاری به عنوان کدورت منفی به مقدار 1/4 میلی لیتر شد. در ادامه سریال نتایج نمونه‌های دست‌رسی به دمای 37 درجه سانتی‌گراد برای نفرات دیگر محدودیت به مقدار 1/2 ساعت قرار داده شد. تعادل نسبی محصول 25 مک فارلند استفاده شد. (6)

آزمون PCR برای بررسی وجود اژکتوکسین A

از نمونه‌های که بر اساس تست‌های استاندارد، به عنوان سودوموناس آئروژینزاس در نظر گرفته شده بود، بر روی محلول مولکول از هیئتون اکثر کشت می‌کردند. بعد از 24 ساعت گرم‌کاری، استخراج با کت استخراج زن در سیکل‌کننده (سنایکول) ایران انجام شد. سپس از آزمایشی Zir (برابرها) انجام شد. استفاده شد. مشخصات برآم‌ها شامل

Forward 5'-GACAAACGCTCCACATCACCAGC-3'
Reverse 5'-CGCTGGCCCATTCGCTCCAGCGCT-3'

با تولید محصول 1386bp گزارش گردیده. همچنین از مسترایکس

MgCl2 250 میکرولیتر، dNTPs 250 میکرولیتر، Taq 1 میکرولیتر، PCR

با طول محصول 750 میکرولیتر

و PCR با ژن استخراج Zn در سودوموناس آئروژینزاس در جدول یکی از این به عمل می‌آمد. است. در ادامه و جدول اژکتوکسین A، روی کروموم باکتری با روش تشخیصی نانوذره نقره و استفاده شد.

روش پژوهش

نمونه‌گیری

در این مطالعه مقطعی - تصویفی کوتاه، تعداد 40 نمونه از ترشح زخم بیماران سوختگی به روش تصادفی ساده جدای شد. نمونه‌ها با استفاده از مشابهی و افزایش میکروپلیوت بررسی شدند. در این مطالعه از ترشح اژکتوکسین A استفاده می‌شود. سپس برای تشخیص سودوموناس آئروژینزاس از تست‌های رنگ‌آمیزی گرو، کاتاز، اکسیداز، تست گلوکز، تست یکسکیاسنز و تست TSI (triple sugar iron) استفاده شد. سودوموناس آئروژینزاس سپس از شناسایی، توسط محلول کشت استعدادی و جلسات 15/18 به آزمایشگاه میکروپلیوتی منتقل شد. (8)

تعیین حداقل غلظت مهار کدنگی برای نانوذره.

مریحترمایس و محلول مور دو

در این پژوهش مقدار 100 میلی لیتر محلول مور و دو محلول مور هینتون (مک، آلمان) به صورت سودوموناس آئروژینزاس به تناسب یک به دو
در این مطالعه کوتاه، تعداد ۲۶ سویه سودوموناس آئروژینوزا از ۴۰ نمونه مشکوک، شناسایی شد و تمام نمونه‌ها برای وجود زن اگزوتوکسین A، از آزمایش‌های با میکرودلیشن بهره‌برداری گردید. نتایج این پژوهش نشان داد جمعیت غالب سودوموناس آئروژینوزا اگزوتوکسین A را تولید بر در این مطالعه، زن اگزوتوکسین A سودوموناس آئروژینوزا در ۹۶/۱۵ درصد (۵۵ نمونه) مشاهده شد که نتیجه نشان می‌دهد این باکتری در ناحیه مطالعه رخ داده و می‌تواند نشانگر از فاکتورهای بیماری‌زا و مانگ‌زا بیماری‌ها باشد. در پوشش نشان داد جمعیت غالب سودوموناس آئروژینوزا اگزوتوکسین A را تولید می‌کند و باعث افزایش مقاومت است. نتیجه کمترین غلظت مهاری برای اریترومایسین، غلظت ۲۰۰۰ ng/mL بود. نتیجه گزارش شد. بر طبق یافته‌ها در این پژوهش، با کمک مقدار غلظت‌های مهاری در چاهک ۶ با غلظت ۲۰۰۰ ng/mL، نانوذرات نقره کمترین مقادیر غلظت مهاری بر علیه باکتری سودوموناس آئروژینوزا را داشتند. نتیجه‌گیری این پژوهش نشان داد که نانوذرات نقره برای مقاومت باکتری‌ای مانند سودوموناس آئروژینوزا در پوشش از فاکتورهای بیماری‌زا و مانگ‌زا بیماری‌ها باشد.
دانال دهنکان و همکاران | بررسی سینرژیسم مهارکننده نانوذره نقره و اریترومایسین...

می‌کردند. تولید این تокسین، باعث بروز مشکلات جدی در سلسله سلامت می‌شود. لذا با انجام تست مولکولی برای تشخیص وجود چنین عامل تولیدکننده این تокسین، در صورت وجود آن، تشخیص و درمان می‌باشد. با دوکری بهتری انجام شده و برنامه درمانی موثرتری را در نظر گرفته شود.

مطالعات دیگری نیز در زمینه هم‌افزایی آنتی‌بیوتیکها و نانوذرات برای درمان سودوموناس آئروژینوزا انجام شده است. در تحقیقی که Shinashal درباره هم‌افزایی نانوذره نقره و صحنه‌بندین‌رژ سودوموناس آئروژینوزا بر روی سرطان کریتی انجام داد، مشخص شد که قدرت تولید نانوذره نقره و نانوذره اریترومایسین با استفاده از ژن‌های ساختاری نانوذره نقره که در جنگ‌بازی‌سازی تعداد ۲۵۰ می‌گرم و نانوذره نقره ۱۰ میلی‌گرم گزارش شد (۶). در مطالعه حاضر نیز اثر ضد میکروبی نانوذرات نقره بیشتر از اثر ضد میکروبی آنتی‌بیوتیک گزارش شد.

در مقاله دیگری که Habash و همکارانش در سال ۲۰۱۴ درباره بررسی سینرژیسم نانوذزات نقره و آزیترومایسین بر علیه بیوفیلم سودوموناس آئروژینوزا PAO1 ارائه دادند مشخص شد که نانو ذرات نقره به تنهایی باعث مهار این باکتری شده است و همچنین نانوذرات نقره با استفاده از آنتی‌بیوتیک گزارش شد (۱۱). در این مطالعه نیز نشان داده شد که هم‌افزایی نانوذره نقره با استفاده از میکروبی داشت، باعث اهم‌افزایی با آنتی‌بیوتیک نواحی داشته باشد. در مطالعه دیگری که Sondi و همکارانش در سال ۲۰۱۴ با عنوان He T و همکارانش در سال ۲۰۱۴ با عنوان He T تأثیر آنتی‌بیوتیک‌ها و نانوذرات نانوذره نقره بر پایه گرافن بر روی باکتری سودوموناس آئروژینوزا ارائه شد و مشخص گردید که نانوذره نقره بر پایه گرافن قدرت کشندگی بالایی عليه این باکتری داشتند (۱۲).

نتیجه‌گیری

یکی از عوامل اصلی بیماری‌زا سودوموناس آئروژینوزا اگزوتکسین است که توسط این باکتری تولید و در ایجاد تاثیر به عنوان آنتی‌بیوتیک نپرده‌کننده و موقت بوده و این آنتی‌بیوتیک نپرده‌کننده با استفاده شد و تغییر در کاهش غلظت میکرو‌به زمانی نگهداری و وجود نداشت. این دو ماده ضد میکرو‌به زمانی Nodis Saiti, Natsuki T, Hashimoto Y. A review of silver nanoparticles: synthesis methods, properties and applications. Int. J. Mater. Sci. Appl. 2015;4(5):325-32. [DOI:10.11648/j.ijmsa.20150405.17]

Reference

1. Sharma BK, Saha A, Rahaman L, Bhattacharjee S, Tribedi P. Silver inhibits the biofilm formation of Pseudomonas aeruginosa. Adv Microbiol. 2015 Sep 7;5(10):677. [DOI:10.4236/aim.2015.510070]
3. Lee VT, Smith RS, Tümmler B, Lory S. Activities of Pseudomonas aeruginosa effectors secreted by the Type III secretion system in vitro and during infection. Infect Immun. 2005 Mar;73(3):1695-705. [DOI:10.1128/IAI.73.3.1695-1705.2005] [PMID] [PMCID]

4. Kaszab E, Szoboszlay S, Dobolyi C, Hájn J, Pék N, Kriszt B. Antibiotic resistance profiles and virulence markers of Pseudomonas aeruginosa strains isolated from composts. Bioresour Technol. 2011 Jan;102(2):1543-8. [DOI:10.1016/j.biortech.2010.08.027] [PMID]

5. Seshadri S, Prakash A, Kowshik M. Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8. Bull Mater Sci. 2012 Dec;35(7):1201-5. [DOI:10.1007/s12034-012-0417-0]

6. Shinashal RZ. The effect of Silver nanoparticles in the treatment of Pseudomonas aeruginosa infections. J Pharmaceut Sci Res. 2019;11(1):58-60.

7. Ahmadi M, Adibhesami M. The effect of silver nanoparticles on wounds contaminated with pseudomonas aeruginosa in mice: An experimental study.IJPR. 2017;16(2):661.

8. Nasiri A, Gharebagh RA, Nojoumi SA, Akbarizadeh M, Harirchi S, Arefnezhad M et al. Evaluation of the antimicrobial activity of silver nanoparticles on antibiotic-resistant Pseudomonas aeruginosa. IJBMS. 2016 Jun 29;21(1):25-8. [DOI:10.15171/ijbms.2016.06]

9. Yousefi-Avarvand A, Khashei R, Ebrahim-Saraie HS, Emami A, Zomorodian K, Motamedifar M. The frequency of exotoxin A and exoenzymes S and U genes among clinical isolates of Pseudomonas aeruginosa in Shiraz. IJMCM. 2015;4(3):167.

10. Salas-Orozco M, Niño-Martínez N, Martínez-Castañón GA, Méndez FT, Jasso ME, Ruiz F. Mechanisms of Resistance to Silver Nanoparticles in Endodontic Bacteria: A Literature Review. J Nanomater. 2019;2019. [DOI:10.1155/2019/7630316]

11. Habash MB, Park AJ, Vis EC, Harris RJ, Khursigara CM. Synergy of silver nanoparticles and aztreonam against Pseudomonas aeruginosa PAO1 biofilms. Antimicrob Agents Chemother. 2014 Oct 1;58(10):5818-30. [DOI:10.1128/AAC.03170-14] [PMID] [PMCID]

12. He T, Liu H, Zhou Y, Yang J, Cheng X, Shi H. Antibacterial effect and proteomic analysis of graphene-based silver nanoparticles on a pathogenic bacterium Pseudomonas aeruginosa. Biometals. 2014 Aug 1;27(4):673-82. [DOI:10.1007/s10527-014-9756-1] [PMID]

13. Soni I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004 Jul 1;275(1):177-82. [DOI:10.1016/j.jcis.2004.02.012] [PMID]

14. Kalishwaralal K, BarathManiKanth S, Pandian SR, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces. 2010 Sep 1;79(2):340-4. [DOI:10.1016/j.colsurfb.2010.04.014] [PMID]