Research Paper

Evaluating of the Pregnancy Rate of Freezing Embryo Transfer in the Presence or Absence of GnRH Agonist

Leila Naserpoor, Katayoun Berjis, Rahil Jannatifar

1. Department of Reproductive Biology, Academic Center for Education, Culture and Research, Qom, Iran.

ABSTRACT

Applying Assisted Reproductive Technologies (ARTs) is increasing. A critical step in ART is the frozen embryo transfer, in which the endometrium thickness has great significance in the outcome. In this case, the frozen embryo will be transferred during the next cycle. There are several ways to prepare an endometrium for transmitting embryos; however, choosing the best method remains debated. The present study aimed to evaluate the pregnancy rate of frozen embryo transfer in the presence or absence of GnRH agonist.

Methods & Materials A retrospective analysis was conducted on 146 consecutive patients attending Qom’s infertility treatment center from 2015 to 2017; these subjects were candidates for the transfer cycle of the frozen-thawed embryo and randomly assigned to receive either protocol with or without GnRH agonist. Clinical features, implantation rate, pregnancy rate (chemical & clinical), and abortion rate were assessed.

Results There was no significant difference in baseline and clinical characteristics, implantation rate, pregnancy rate (chemical & clinical), and abortion rate between the study groups of endometrial preparations with or without GnRH agonist (P<0.05).

Conclusion In this study, pregnancy outcome was similar in both study groups; thus, this method is recommended as an endometrial preparation without GnRH agonist.

Keywords: Endometrium, GnRH, Embryo implantation, Embryo freezing

Extended Abstract

1. **Introduction**

In Assisted Reproductive Technologies (ARTs), if there are multiple embryos, the freezing method is used for excess embryos [1, 2]. The golden time of implantation in the uterus is less than 48 hours [3, 4]. The estrogen and progesterone hormones lead to embryo implantation by proliferation and changes in the endometrium of the uterus [5, 6]. Various methods exist for preparing the endometrium to transfer the freezing embryo. The most prevalent approach is to exogenously use estrogen and progesterone with or without using GnRH agonists [7-10]. Considering the difficulty of injection and the cost of using GnRH agonists, researchers suggest using the method without GnRH agonist [11]. Besides, it has a shorter treatment duration and presents a higher or equal success rate, compared to cycles with GnRH [12, 13].
Accordingly, the present study aimed to compare the results of using the two methods to prepare the endometrium.

2. Materials and Methods

This retrospective case-control study was performed on 146 infertile couples referring to the Infertility Treatment Center of the Academic Center for Education, Culture, and Research of Qom University, Qom, Iran from 2013 to 2015. The records of individuals who were candidates for the freezing embryo transfer cycle were reviewed in two treatment cycle groups of with and without GnRH agonist.

In the first group, GnRH suppressors were used; 0.5 cc/day of GnRH agonist (Buserline Cinagen, Iran) initiated from the 19th day of the previous menstrual cycle. Subsequently, with the patient’s visit on the third day of menstruation, the agonist dose was reduced by half and estradiol 2 tablets daily were administered for 4 days. The next dose of estradiol was determined according to the conditions of the endometrium. When the endometrium was 7-9 mm thick, the patient was intramuscularly given 2 progesterone injections daily, then the fetus was transferred. The second group of patients was referred to the clinic on the third day of menstruation. Consequently, after daily ultrasound monitoring, 6 mg estradiol valerate tablets were prescribed and the same procedure applied for the first group was performed for them. Clinical characteristics, implantation rate, pregnancy percentage (chemical & clinical), and abortion rate were evaluated in the research groups. P<0.05 was considered significant.

3. Results

The present study was conducted on 146 patients who used frozen embryos. The Independent Samples t-test revealed no significant difference between the treatment groups with and without GnRH agonist concerning the age of patients, the duration of infertility, endometrial thickness, and the number of embryos transferred in the research groups (Table 1). The Independent Samples t-test data indicated no significant difference in the mean age of patients between the study groups (P=0.3). The Independent Samples t-test results signified no significant difference in the mean duration of infertility between the study groups (P=0.4); the difference between the mean number of total embryos transferred was not significant between the study groups (P=0.6). The Independent Samples t-test data indicated no significant difference in the endometrial thickness between the research groups (P=0.841). Chi-squared test results revealed no significant difference in the frequency of embryo implants between the study groups treated with and without GnRH agonist (P=0.387). Chi-squared test data indicated no significant difference between the research groups in the number of chemical pregnancies (P=0.482). Chi-squared test results revealed no significant difference in the number of chemical pregnancies between the study groups treated with and without GnRH agonist (P=0.584). Eventually, Fisher’s Exact test data demonstrated no significant difference in the frequency of abortion between the two study groups (P=0.681) (Table 2).

4. Discussion and Conclusion

Transfer cycles of frozen embryos require careful coordination between endometrial preparation and embryonic development [14]. Infertility treatment centers implement various approaches to prepare the endometrium for frozen embryo transfer [15]. The present research results reflected no significant difference between the study groups concerning demographic characteristics (female age). Furthermore, no significant difference was observed in endometrial thickness on the day of embryo transfer and the number of embryos transferred between the study groups. The obtained data signified no significant difference between implantation rate and pregnancy rate (chemically positive [β-HCG] & clinical) in the study groups with or without GnRH agonist use. Considering the faster and easier effects as well as lower cost and drug consumption, and less ad-

Table 1. Comparing the clinical and baseline characteristics between GnRH agonist and non-GnRH agonist treatment groups

Characteristic	Mean±SD	P	
	GnRH Agonist Treatment Group (n: 74)	Non-GnRH Agonist Treatment Group (n: 74)	
Age, y	36±7.6	35.7±7.6	0.321
The duration of infertility	5.9±6.1	5.7±6.1	0.451
Endometrial thickness (mm)	8.2±1.3	8.4±1.7	0.841
Number of transferred embryos	3±0.8	3.1±0.6	0.612
verse effects generated by the medications, and of course, greater satisfaction among patients not using GnRH. cycles without GnRH agonists cycles are more feasible and faster. They also provide a better estimate of the day of transfer and reduce costs. Furthermore, several studies applied different GnRH types and provided no evidence that their effects on pregnancy [16, 17]. The incidence of abortion before 6 weeks was similar in both study groups; in both research groups, there was also no significant difference before 20 weeks. Our results were in line with those of a study conducted in 2014 [18] reporting no significant difference in the rate of abortion in both groups.

In this study, pregnancy outcome was similar in both study groups; thus, this method is recommended as an endometrial preparation without GnRH agonist.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Research Ethics Committee of the Academic Center for Education, Culture, and Research of Mashhad (Code: IR.ACECR.JDM. REC.1398.001).

Funding

This study was funded by the Academic Center for Education, Culture, and Research of Qom, Qom.

Authors’ contributions

Conceptualization: Leila Naserpour; Research and sampling: Katayoun Borjis, Leila Naserpour; Data analysis: Raheel Janatifar, Leila Naserpour.

Conflicts of interest

The authors declared no conflicts of interest.

Acknowledgements

We want to thank The Research Deputy of the Academic Center for Education, Culture, and Research of Qom for their cooperation in conducting this project.

Table 2. Pregnancy rate of frozen embryo transfer between GnRH agonist and non-GnRH agonist treatment groups

Characteristic	No. (%)	P	
	GnRH Agonist Treatment Group	**Non-GnRH Agonist Treatment Group**	
Implantation rate	23 (24.7)	28 (36.1)	0.387
Chemical-based pregnancy	22 (221)	26 (30.7)	0.482
Clinical-based pregnancy	19 (21.3)	22 (26.1)	0.582
Abortion rate	2 (1.1)	4 (3.6)	0.681

Naserpoor L, et al. Evaluating of Pregnancy Rate of GnRH Agonist. JAMS. 2021; 23(6):818-827.
مقاله پژوهشی

ارزیابی میزان حاملگی حاصل از انتقال جنین‌های فریزی در حضور و عدم حضور آگونیست GnRH

لیلا ناصرپور1، راحیل جنتی فر1

1. گروه پژوهشی پیوندی، دانشگاه تربیت مدرس، تهران

در سال‌های اخیر روند افزایشی داشته است. در استفاده از روش‌های کمک باروری (ART) دیدگاه جدیدی در زمینه باروری به عنوان چیزی برای انسان‌داری انتقال جنین و جنین‌های فریزی اتفاق نمی‌افتد و در چرخه‌های بعدی از جنین فریزی استفاده می‌شود. روش‌های مختلفی برای آماده‌سازی آندومتر جهت انتقال جنین فریزی وجود دارد که انتخاب بهترین روش مناسب برای هر حالت است. هدف از این تحقیق ارزیابی میزان حاملگی حاصل از انتقال جنین‌های فریزی در حضور و عدم حضور آگونیست GnRH است.

مقدمه

بعد از عمل لقاح گامت‌های امروزه در روش‌های کمک باروری (ART) نر و ماده، جنین‌های متعددی تولید و از روش ذخیره‌سازی انجمادی برای جنین‌های مازاد استفاده می‌شود. از دیدگاه آدم‌داری، لانه‌گزینی موفق جنین به هماهنگی بین رشد جنین و آمادگی آندومتر برای پذیرش جنین بستگی دارد. درحقیقت، این تحقیق به روش‌هایی که در آن زمان حضور آگونیست GnRH در حیاتی نوری بوده‌اند یا نیسته‌اند خصوصاً در حیاتی نوری بوده‌اند یا نیسته‌اند دیدگاه باروری خاصی را باعث می‌کند. در این تحقیق، انتقال جنین‌های فریزی به صورت آگونیست GnRH استفاده نشده و نیاز به یک حالت مناسب در پذیرش رحم می‌گردد.

مواد و روش‌ها

ناباروری جهاد دانشگاهی قم انجام شد. پرونده‌هایی که نامزد انتقال جنین فریزی بودند و در دو گروه چرخه درمانی با استفاده می‌شود. خصوصیات بالینی، میزان لانه‌گزینی، درصد حاملگی (شیمیایی و کلینیکی) و میزان سقط در هر دو گروه بررسی شد. میزان به ثبت رسیده است.

نتایج

در این مطالعه تفاوت معین داری در خصوصیات پایه و بالینی، میزان لانه‌گزینی، درصد حاملگی (شیمیایی و کلینیکی) و میزان سقط بین دو گروه آماده‌سازی آندومتر با استفاده از آگونیست GnRH و بدون استفاده از آگونیست GnRH مشاهده نمی‌گردد.

بحث

به روش‌هایی که در آن زمان حضور آگونیست GnRH در حیاتی نوری بوده‌اند، نظر بیشتری تا بررسی روابط و تفاوت‌های آن‌ها تکثیر و تغییرات مختلف در آندومتر و نیاز به ذخیره‌سازی جنین‌ها در زمان انتقال مناسب‌تر جلوگیری از تبدیل جنین‌ها به بیماری کوششی در نظر گرفته می‌شود. هزینه و صرفه‌سازی زمان در این پروتکل بیشتر از پروتکل استفاده از آگونیست GnRH است.

کلیدواژه‌ها:

آماده‌سازی آندومتر، لانه‌گزینی، جنین، جنین‌های فریزی

اطلاعات مقاله:

1398 بهمن و اسفند: تاریخ دریافت
1399 مرداد: تاریخ پذیرش
1399 بهمن: تاریخ انتشار

1. Assisted Reproductive Techniques

489 leilanasery48@gmail.com
ناپاره، پروکوفک لاقح از آماری‌گرایی اولیه، بلند فریز جنین، نوع ناپاره‌ای، ای شده فرود ادراک درآورده در زمان اول گروه‌ها از سرکوب‌کننده‌های GnRH (buserelin cigne انگلیسی) اکتشافی است. بارداری بالینی با مشاهده ساک حاملگی و مثبت شدن ضربان

در این جریان طول متود درمان کمتر از چهند هفته از این گروه دستگاه (GnRH) اکتشافی می‌باشد. استفاده سوئیچر است. آگونیست یا برای نیش به‌طور زمانی قابلیت باکتری‌گرایی.

برای مطالعه، تتأیید یا بهداشت از اکتشافی‌های

گرایش کرده و برای نیش تغییرات یا نابودان GnRH [13] با عنوان بوده این اخلاق مطالعه حاضر بر منظر

مقاومت تغییر روش‌های استفاده از اکتشافی‌های GnRH و بدون استفاده از اکتشافی‌های GnRH برای آماده‌برداری جنین است. استفاده از اکتشافی‌های GnRH

مواد و روش‌ها

این مطالعه به روش توصیفی کلیت‌گزینه بر مبنای گروه‌یک آمده که شامل

مراجعه گروه یک، فرموله گرفته و جمعیت و حجم نموده به منظور

گرایش اخلاقی این گروه، از طریق دو روزه، (خالی آزمایش

(از 70) چهار روزه و گروه چهار روزه سه روز به مشابه در روز

شماره 1 استفاده شد.

n = \frac{z^2pq}{\delta^2}

حذف نمونه 125 است که در این جمعیت 148 لمسو انتخاب

و پرونده آزمایشی شد.

این گروه به دو گروه تقسیم شدند. گروه اول بیمارانی

پیشنهاد گرفته 2021) که از آن‌ها اکتشافی‌های آنومالی برای استفاده از

GnRH اکتشافی (buserelin انگلیسی) بوده استفاده از

مهارت‌های ارائه داده که نیمه‌ی گروه آن‌ها سطح

سته‌های آزمایشی آنتی‌های 50/50 (متغیرهای انتاسب

مطالعه، افرادی بودند که نیمی از جنین‌های فریزی آن‌ها طبق

درصد (خطای

ه، 0.05) آزمونهای

GnRH اکتشافی (buserelin انگلیسی) که به مسیر برای انتساب

راهبردی‌های سازمان به‌اختصار جهانی دارای گروه A و بودند و

به‌طور عوامل تقسیم شدند.

در این مطالعه، سایر عناصر از طبقه‌بندی ورود به مطالعه

پس از 70، وزیر 20 سال، خانه‌های در ویژه مرکز PPO، خانه‌های

باری سایندومتوژی، اگزه، و/یک‌پایه، GnRH اکتشافی، مطالعه

دستی راهبردی به‌طور آزمایشی آنتی‌های 50/50 (متغیرهای

جریان سه‌گانه، تأیید یا فاصله و همچنین کسانی که دچار الگوی‌سازی

شده بودند.

جهت سنتیسی بیماران رفتار

گرفته شد و جهت اتخاذ مراحل تحقیقات مشاهده پذیر اطلاع

مرد تأیید گردید مبتلا به نت‌های زیادی مد، مدت

GnRH

74

822
کرده بودند. انجام شد آزمون تی مستقل نشان داد که تفاوت معنی‌داری بین دو گروه درمان با آگونیست و بدون درمان با آگونیست در صفتهای سن بیماران، مدت انتقال جنین و پیشرفت در انتقال جنین مشاهده نشد. آزمون تی مستقل نشان داد که تفاوت معنی‌داری بین دو گروه درمان با آگونیست و بدون درمان با آگونیست در تعداد بارداری شیمیایی مشاهده نشد. آزمون تی مستقل نشان داد که اختلاف میانگین سن بیماران بین دو گروه معنی‌دار نبود.

جدول 1

فاکتور محلول‌های شده	میزان کاهش در درمان با آگونیست	بدون درمان با آگونیست	تعداد بارداری شیمیایی	تعداد ناپذیر	تعداد نابارور	تعداد بارداری شیمیایی	تعداد ناپذیر	تعداد نابارور

ارائه‌های پیش‌رفته‌ها

از زمان ابتلای روش‌های باوری آزمایشگاه بالی سال‌ها می‌گذرد. این آزمون تایید داد که اختلاف میانگین تعداد جنینهای انتقال با آگونیست و بدون درمان با آگونیست معنی‌دار نبود. آزمون تی مستقل نشان داد که اختلاف میانگین سن بیماران بین دو گروه معنی‌دار نبود. این آزمون تایید داد که اختلاف میانگین تعداد جنینهای انتقال با آگونیست و بدون درمان با آگونیست معنی‌دار نبود. آزمون تی مستقل نشان داد که اختلاف میانگین سن بیماران بین دو گروه معنی‌دار نبود. این آزمون تایید داد که اختلاف میانگین تعداد جنینهای انتقال با آگونیست و بدون درمان با آگونیست معنی‌دار نبود. آزمون تی مستقل نشان داد که اختلاف میانگین سن بیماران بین دو گروه معنی‌دار نبود. این آزمون تایید داد که اختلاف میانگین تعداد جنینهای انتقال با آگونیست و بدون درمان با آگونیست معنی‌دار نبود. آزمون تی مستقل نشان داد که اختلاف میانگین سن بیماران بین دو گروه معنی‌دار نبود. این آزمون تایید داد که اختلاف میانگین تعداد جنینهای انتقال با آگونیست و بدون درمان با آگونیست معنی‌دار نبود. آزمون تی مستقل نشان داد که اختلاف میانگین سن بیماران بین دو گروه معنی‌دار نبود. این آزمون تایید داد که اختلاف میانگین تعداد جنینهای انتقال با آگونیست و بدون درمان با آگونیست معنی‌دار نبود. آزمون تی مستقل نشان داد که اختلاف میانگین سن بیماران بین دو گروه معنی‌دار نبود. این آزمون تایید داد که اختلاف میانگین تعداد جنینهای انتقال با آگونیست و بدون درمان با آگونیست معنی‌دار نبود. آزمون تی مستقل نشان داد که اختلاف میانگین سن بیماران بین دو گروه معنی‌دار نبود. این آزمون تایید داد که اختلاف میانگین تعداد جنینهای انتقال با آگونیست و بدون درمان با آگونیست معنی‌دار نبود. آزمون تی مستقل نشان داد که اختلاف میانگین سن بیماران بین دو گروه معنی‌دار نبود. این آزمون تایید داد که اختلاف میانگین تعداد جنینهای انتقال با آگونیست و بدون درمان با آگونیست معنی‌دار نبود. آزمون تی مستقل نشان داد که اختلاف میانگی
مطالعات ممکن است نشان دهند که روش های مختلفی جهت آماده سازی آندومتر جهت انتقال جنین فریزی استفاده می شود. امروزه در مراکز درمان ناباروری روش های متنوعی قابل بهره برداری هستند که بر اساس چگونگی انتقال جنین، بهترین روش انتخاب می شود.

روش انتقال جنین فریزی در چرخه طبیعی یکی از این روش ها است. این روش به این صورت اجرا می شود که فرد بدون استفاده از هیچ دارویی، زمانی که آندومتر به قطر و یا ضخامت مناسب جهت انتقال جنین رسید، جنین فریزی را انتقال می دهد. موفقیت این روش وابسته به تعیین دقیق زمان تخمک گذاری است که یکی از مشکلات این روش انتقال جنین فریزی در چرخه طبیعی است.

در مطالعه حاضر، ما آماده سازی آندومتر را با استفاده از گنر ها (GnRH) و بدون استفاده از آگونیست، بررسی نمودیم. نتایج این مطالعه نشان می دهد که هر دو پروتکل در چرخه در زنان از نظر حاملگی نهایی، مناسبی ندارند. در نتیجه جهت انتقال جنین مناسبتر است.

در مطالعهی آماده سازی آندومتر با استفاده از گنر ها (GnRH) و بدون استفاده از آگونیست های هپی‌آگونیست، در چرخه های آماده سازی آندومتر بدون استفاده از آگونیست های هپی‌آگونیست، در نتیجه جهت انتقال جنین مناسبتر است.

در مطالعهی بیل و همکاران گزارش دادند که وقتی پروتکل هورمونی با یک چرخه طبیعی به گنر ها (GnRH) مصنوعی یا آگونیست های هپی‌آگونیست، انتقال جنین مرحله بلاستوسیت مقایسه شود، تفاوت معنی‌داری در شیمیایی و بالینی در هر دو گروه دیده نشد. آنچه اهمیت دارد ضخامت آندومتر و کیفیت مناسب آندومتر در زمان انتقال جنین است و طول چرخه آماده سازی آندومتر تأثیری بر نتایج باروری ندارد.

در مطالعه‌ای که دیوید جوا و همکاران روایت کردند، نشان دادند که انتقال جنین فریز با پروتکل های غیر انسانی استفاده از گنر ها (GnRH) و بدون استفاده از آگونیست های هپی‌آگونیست، در چرخه های آماده سازی آندومتر، تفاوت معنی‌داری در شیمیایی و بالینی در هر دو گروه دیده نشد. آنچه اهمیت دارد ضخامت آندومتر و کیفیت مناسب آندومتر در زمان انتقال جنین است و طول چرخه آماده سازی آندومتر تأثیری بر نتایج باروری ندارد.

نتایج ما همچنین نشان داد که نتایج ما با پروتکل های غیر انسانی استفاده از گنر ها (GnRH) و بدون استفاده از آگونیست های هپی‌آگونیست، در چرخه های آماده سازی آندومتر، تفاوت معنی‌داری در شیمیایی و بالینی در هر دو گروه دیده نشد.

مطالعات‌های قبلی نشان داد که بوسرلین با تأثیر مستقیم روی آندومتر رحم که دارای گنر ها (GnRH) گیرنده های هپی‌آگونیست ها است، باعث افزایش ضخامت آندومتر می‌گردد و هیپرتروفی سلول ها تأثیر مثبتی روی آندومتر داشته باشد.
حمامی مالی
این طرح با همکاری و هزینه مرکز تخصصی درمان ناباروری جهاد دانشگاهی قم انجام شده است.

مشارکت و نویسندگان
ایده، روش پژوهش و نمونه‌گیری: کتایون برجیس، لیلا ناصرپور، تحلیل داده‌ها، نگارش متن و بازبینی، لیلا ناصرپور، راحیل جنتی‌فر.

تعارض منافع
بنابر اظهار نویسندگان این مقاله تعارض منافع ندارد.

تشکر و قدردانی
از معاونت پژوهشی مرکز جهاد دانشگاهی قم که در انجام این طرح همکاری کردند، سپاسگزاری می‌شود.
References

[1] Oehninger S, Mayer J, Muasher S. Impact of different clinical variables on pregnancy outcome following embryo cryopreservation. Mol Cell Endocrinol. 2000; 169(1-2):73-7. [DOI:10.1016/S0303-7207(00)00355-5]

[2] Samsami A, Chitsazai Z, Namazi G. Frozen thawed embryo transfer cycles; A comparison of pregnancy outcomes with and without prior pituitary suppression by GnRH agonists: An RCT. Int J Reprod Biomed. 2018; 16(9):587-94. [DOI:10.29252/jrmb.16.9.587] [PMID] [PMCID]

[3] Kassab A, Sabattini L, Tozer A, Zsoerner A, Mostafa M, Al-Shawaf T. The correlation between basal serum follicle-stimulating hormone levels before embryo cryopreservation and the clinical outcome of frozen embryo transfers. Fertil Steril. 2009; 92(4):1269-75. [DOI:10.1016/j.fertnstert.2008.08.077] [PMID] [PMCID]

[4] Salumets A, Suikkari AM, Mäkinen S, Karho H, Roos A, Tuuri T. Frozen embryo transfers: Implications of clinical and embryological factors on the pregnancy outcome. Hum Reprod. 2006; 21(9):2368-74. [DOI:10.1093/humrep/dei151] [PMID]

[5] El-Toukhy T, Coomarasamy A, Khairy M, Sunkara K, Seed P, Khalaf Y, et al. The relationship between endometrial thickness and outcome after frozen embryo transfer. Fertil Steril. 2004; 81(5):1399-400. [DOI:10.1016/j.fertnstert.2004.01.020] [PMID] [PMCID]

[6] Check JH, Dietterich C, Graziano V, Lurie D, Choe JK. Effect of maximal endometrial thickness on outcome after frozen embryo transfer. Fertil Steril. 2004; 81(5):1399-400. [DOI:10.1016/j.fertnstert.2004.01.020] [PMID] [PMCID]

[7] Li S, Li Y. Administration of a GnRH agonist during the luteal phase of frozen-thawed embryo transfer cycles: A meta-analysis. Gynecol Endocrinol. 2018; 34(11):920-4. [DOI:10.1080/09513590.2018.1480714] [PMID]

[8] Orvieto R, Meltzer S, Rabinson J, Zohav E, Anteby EY, Nahum R. GnRH agonist versus GnRH antagonist in ovarian stimulation: The role of endometrial receptivity. Fertil Steril. 2008; 90(4):1294-6. [DOI:10.1016/j.fertnstert.2007.10.022] [PMID] [PMCID]

[9] Devoevo P, Bourgain C, Macklon NS, Fauser BC. Reproductive biology and IVF: Ovarian stimulation and endometrial receptivity. Trends Endocrinol Metab. 2004; 15(2):84-90. [DOI:10.1016/j.tem.2004.01.009] [PMID]

[10] Chau LTM, Tu DK, Lehart P, Dung DV, Thanh LQ, Yuan VM. Clinical pregnancy following GnRH agonist administration in the luteal phase of fresh or frozen Assisted Reproductive Technology (ART) cycles: Systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2019; 3:100046. [DOI:10.1016/j.ejogrb.2019.100046] [PMID] [PMCID]

[11] Horcajadas JA, Diaz-Gimeno P, Pellicer A, Simón C. Uterine receptivity and the ramifications of ovarian stimulation on endometrial function. Semin Reprod Med. 2007; 25(6):454-60. [DOI:10.1055/s-2007-991043] [PMID]

[12] Eftekhar M, Dehghani Firoozabadi R, Karimi H, Rahmani E. Outcome of cryopreserved-thawed embryo transfer in the GnRH agonist versus antagonist protocol. Iran J Reprod Med. 2012; 10(4):297-302. [PMID] [PMCID]

[13] Eftekhar M, Rahmani E, Eftekhar T. Effect of adding human chorionic gonadotropin to the endometrial preparation protocol in frozen embryo transfer cycles. Int J Fertil Steril. 2012; 6(3):175-8. [PMID] [PMCID]

[14] Lawrenz B, Samir S, Melado L, Ruiz F, Fatemi HM. Luteal phase serum progesterone levels after GnRH-agonist trigger-how low is still high enough for an ongoing pregnancy? Gynecol Endocrinol. 2018; 34(3):195-8. [DOI:10.1080/09513590.2017.1391204] [PMID]

[15] Eldar-Geva T, Zylber-Haran E, Babaryof R, Halevy-Shalem T, Ben-Chetrit A, Tsafrir A, et al. Similar outcome for cryopreserved embryo transfer following GnRH-agonist/GnRH-agonist, GnRH-agonist/HCG or long protocol ovarian stimulation. Reprod Biomed Online. 2007; 14(2):149-54. [DOI:10.1530/eb-07-0002] [PMID]

[16] Bennachiche A, Benbouchdafa S, Zoghmari A, Boularak A, Hmaidan P. Impact of mid-luteal phase GnRH agonist administration on reproductive outcomes in GnRH agonist-triggered cycles: A randomized controlled trial. Front Endocrinol (Lausanne). 2018; 7:124. [DOI:10.3389/fendo.2018.00124] [PMID] [PMCID]

[17] Rimm AA, Katayama AC, Diaz M, Katayama KP. A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J Assist Reprod Genet. 2004; 21(12):437-43. [DOI:10.1007/s10815-004-8760-8] [PMID] [PMCID]

[18] Mehrafa Z, Zare Yousefi T, Saghati Jalali S, Nilpouzi P, Raoufi A, Hosseinzadeh E, et al. Comparison of pregnancy outcomes of frozen embryo transfers in women undergoing artificial endometrial preparation with and without short and long-acting gonadotropin releasing hormone agonists. J Midwifery Reprod Health. 2019; 7(4):1929-35. [DOI:10.1007/s10815-004-8760-8] [PMID] [PMCID]

[19] Basirat, Z. Esmailzadeh S, Jorsaraei, G. Firoozpour M, Abdolhashempour S. [Determining the best appropriate level of endometrial thickness in the outcome of intra-cytoplasmic sperm injection (Persian)]. J Babol Univ Med Sci. 2012; 14 (4):15-21. http://jbums.org/article-1-4147-en.html

[20] Bourgain C, Devoevo P. The endometrium in stimulated cycles for IVF. Hum Reprod Update. 2003; 9(6):515-22. [DOI:10.1093/humupd/dmg045] [PMID]

[21] Esmailzadeh S, Faramarzi M. Endometrial thickness and pregnancy outcome after intrauterine insemination. Fertil Steril. 2007; 88(2):432-7. [DOI:10.1016/j.fertnstert.2006.12.010] [PMID]

[22] Marcondes FK, Bianchi Fi, Tanno AR. Determination of the estrous cycle phases of rats: Some helpful considerations. Braz J Biol. 2002; 62(4A):609-14. [DOI:10.1590/S1519-64842002000400008] [PMID]

[23] Suszka-Świtek A, Czekaj P, Pająk J, Skowronek R, Wrona-Bogus K, Plewka D, et al. Morphological and enzymatic changes caused by a long-term treatment of female rats with a low dose of gonadotrophin agonist and antagonist. Med Sci Monit. 2012; 18(8):BR315-330. [DOI:10.12659/MSM.883264] [PMID] [PMCID]

[24] Song M, Liu C, Hu R, Wang F, Huo Z. Administration effects of single-dose GnRH agonist for luteal support in females undertaking IVF/ICSI cycles: A metaanalysis of randomized controlled trials. Exp Ther Med. 2020; 19(1):786-96. [DOI:10.3892/etm.2019.8251] [PMID] [PMCID]

[25] Jelodar G, Gholami S, Jafari P. Effect of GnRH on guinea pig endometrium at preimplantation stage. Indian J Exp Biol. 2007; 45:242-6. http://noprincnissair.res.in/handle/123456789/5682

[26] Blom J, Tan L, Hughes L, Tekpetey F, Rafea BA. Serum estradiol level in the fifth day of ovarian stimulation in a GnRH antagonist protocol can predict pregnancy outcomes in IVF/ICSI cycles. J Assist Reprod Genet. 2019; 36(10):e214. [DOI:10.1007/s10815-019-8251-7] [PMID] [PMCID]

[27] Tan SL, Maconochie N, Doyle P, Campbell S, Balen A, Bekir J, et al. Cumulative conception and live-birth rates after in vitro fertilization with and without the use of long, short, and ultrashort regimens of the gonadotropin-releasing hormone agonist buserelin. Am J Obstet Gynecol. 1994; 171(2):513-20. [DOI:10.1016/0002-9378(94)0291-7] [PMID] [PMCID]
[28] Bila JS, Vidakovic S, Radjenovic SS, Dokic M, Surlan L, Spadic R. Predictors of IVF/ICSI success following treatment of endometriosis as the cause of primary infertility. Ginekol Pol. 2018; 89(5):240-8. [DOI:10.5603/GPa2018.0042] [PMID]

[29] Billig H, Furuta I, Hsueh AJ. Gonadotropin-releasing hormone directly induces apoptotic cell death in the rat ovary: Biochemical and in situ detection of deoxyribonucleic acid fragmentation in granulosa cells. Endocrinology. 1994; 134(1):245-52. [DOI:10.1210/endo.134.1.8275940] [PMID]

[30] Hill MJ, Miller KA, Frattarelli JL. A GnRH agonist and exogenous hormone stimulation protocol has a higher live-birth rate than a natural endogenous hormone protocol for frozen-thawed blastocyst-stage embryo transfer cycles: An analysis of 1391 cycles. Fertil Steril. 2010; 93(2):416-22. [DOI:10.1016/j.fertnstert.2008.11.027] [PMID]

[31] Azimi Nekoo E, Chamani M, Shahrokh Tehrani E, Hossein Rashidi B, Davari Tanha F, Kalantari V. Artificial endometrial preparation for frozen-thawed embryo transfer with or without pretreatment with depot gonadotropin releasing hormone agonist in women with regular menses. J Family Reprod Health. 2015; 9(1):1-4. [PMID]

[32] Wu Y, Gao X, Lu X, Xi J, Jiang S, Sun Y, et al. Endometrial thickness affects the outcome of in vitro fertilization and embryo transfer in normal responders after GnRH antagonist administration. Reprod Biol Endocrinol. 2014; 12:96. [DOI:10.1186/1477-7827-12-96] [PMID] [PMCID]