Presenter: Nur Hidayati, S.Tr.AK. M.Kes
Proteolytic and Clot Lysis Activity Screening of Crude Proteases Extracted from Tissues and Bacterial Isolates of Holothuria Scabra

Nur Hidayati

MAGISTER SAINS LABORATORIUM MEDIS
UNIVERSITAS MUHAMMADIYAH SEMARANG
BAB I. PENDAHULUAN
Latar Belakang

WHO, Global Atlas on Cardiovascular Diseases Prevention and Control

Bangladesh
CVD = 17%
Diabetes = 3%
Kanker = 10%
Cedera = 9%
Pernafasan Kronik = 11%
PTM lainnya = 18%

Myanmar
CVD = 25%
Diabetes = 3%
Kanker = 11%
Cedera = 11%
Pernafasan Kronik = 9%
PTM lainnya = 11%

Nepal
CVD = 22%
Diabetes = 3%
Kanker = 8%
Cedera = 10%
Pernafasan Kronik = 13%
PTM lainnya = 14%

Indonesia
CVD = 37%
Diabetes = 6%
Kanker = 13%
Cedera = 7%
Pernafasan Kronik = 9%
PTM lainnya = 10%

Sri Lanka
CVD = 40%
Diabetes = 7%
Kanker = 10%
Cedera = 14%
Pernafasan Kronik = 8%
PTM lainnya = 10%

Thailand
CVD = 29%
Diabetes = 4%
Kanker = 17%
Cedera = 11%
Pernafasan Kronik = 9%
PTM lainnya = 12%

Costantino et al., 2016
J Physiol 594.8 (2016) pp 2061–2073
CVD & Trombosis

Patofisiologi:
Pembentukan gumpalan darah (trombus) oleh fibrin yang melekat pada dinding pembuluh darah yang berlebihan

Akumulasi Fibrin → aliran darah terganggu → penyumbatan pembuluh darah → otot jantung dan otak kekurangan → berakhir dengan kematian

Fibrin
Komponen protein utama trombus → dibentuk dari fibrinogen oleh trombin

Trombosis & Covid 19

Pada kasus infeksi akut Covid-19 yang saat ini menjadi pandemi dunia akibat infeksi virus Sars-Cov-2 terjadi trombosis (Levi et al., 2020).

Coagulation abnormalities and thrombosis in patients with COVID-19

May 11, 2020
https://doi.org/10.1016/S2352-3026(20)30145-9
Terapi CVD

1. Operasi untuk menghilangkan sumbatan

2. Obat (t-PA, streptokinase, urokinase) yang bekerja melisiskan fibrin
MASALAH DALAM PENGOBATAN TROMBOSIS

Urokinase, Plasminogen jaringan (t-PA), streptokinase, natokinase

Kelemahan obat:
- mahal,
- termolabil,
- spesifitas rendah,
- perdarahan gastrointestinal,
- reaksi alegi

Akhtaret et al., 2017; Nailufar et al., 2016
KEUNGGULAN BAKTERI SEBAGAI SUMBER PROTEASE

- Bernilai ekonomis
- Pertumbuhan lebih cepat
- Kondisi produksi tidak bergantung pada musim
- Aktivitas tinggi

Holothuria scabra kaya protein (substrat enzim protease)

Kandungan proteasenya juga tinggi

Spesies Tripang	Kadar Protein (max. % b/b)	Sumber
Holothuria scabra	76.64	Karnila et al., 2011
Actinopygama mauritiana	67.00	Haideret al., 2015
A. mauritiana	63.73	Wen et al., 2010
H. fuscogilva	58.21	Wen et al., 2010
H. fuscopunctata	50.48	Wen et al., 2010
S. Japonicus	48.10	Yu et al., 2015
H. Nobilis	42.54	Oedjoe, 2017
H. Atra	42.32	Oedjoe, 2017
H. Edulis	41.61	Oedjoe, 2017
H. Impatiens	39.94	Oedjoe, 2017

Katz et al., 2019
Fungsi Bakteri dalam Organ pencernaan tripang

1. Berperan dalam pencernaan makanan.
2. Proses degradasi
3. Proses regenerasi pada holothurian yang melibatkan enzim *serine, cysteine* dan *metallo-protease*
4. Menjadi mikroflora didalam usus.

(Lamash dan Dolmatov, 2013; Hatmanti dan Purwanti, 2011).

Peluang memperoleh bakteri jenis baru yang berpeluang sebagai tromb
ENZIM PROTEASE FIBRINOLITIK

Melibatkan atom logam dalam proses katalisis

Memiliki residu serin pada sisi aktifnya

Metallo-protease

Protease serin

Mampu mendegradasi fibrin pada trombus
Manfaat Enzim Protease Fibrinolitik

Antitrombosis (Bordbar et al., 2011; Kumar et al., 2019)

MEKANISME
- Mendegradasi fibrin secara langsung
- Mampu mencegah penggumpalan darah, dengan melisiskan trombin dan meningkatkan aktivitas fibrinoplasma serta produksi t-PA22-24

Pentingnya penelitian ini --> Mencari sumber enzim protease fibrinolitik baru dari bakteri pada organ pencernaan Holothuria scabra

Peluang memperoleh enzim protease jenis baru/ bakteri jenis baru

Protease serin/Metalloprotease
No.	Terapi Fibrinolitik pada CVD	Sumber Enzim Fibrinolitik	Author’s	Country	
1	Infarkmiokard	Cordyceps militaris	Liu, et al. 2016	China	
2	Miokard akut infark, penyakit jantung iskemik, dan tekanan darah tinggi	Cheonggukjang	Jeong, et al. 2015	Korea	
3	Kardiovasuklar (trombosis) dan serebrovasuklar	Doenjang	Yao, et al. 2017	Korea	
4	Infark miokard akut, tekanan darah tinggi, jantung iskemik, dan stroke.	Jamur Pleurotus ostreatus	Liu, et al. 2014	Jepang	
5	Trombosis	Jamur food-grade, Neurospora sitophila	Liu, et al. 2016	China	
6	Stroke dan penyakitarterikerokoroner	Kimchi	Anh et al, 2014	Vietnam	
7	Infarkmiokardakut dan otakinfark	Cheonggukjang	Heo et al, 2013	Korea	
8	Emboliparai, mio-infarkkardial, trombosis vena dalam	Douchi	Zhang et al, 2013	China	
9	Miokard akut infark dial, penyakit jantung iskemik, vascular perifer penyakit, tekanan darah tinggi, dan stroke	Beras India	Vijayaraghavan and Vincent, 2014	India	
10	Serangan jantung, trombosis	Kedelai	Devaraj, 2018	India	
11	Trombus dan penyakit kardiovasukuler pembuluh darah	Chickpeas	Wei et al, 2011	China	
12	Thrombosis	Ikan Fermentasi	Prihanto et al, 2013	Indonesia	
13	Trombosis	natto-red bean	Chang et al, 2012	Taiwan	
14	Penyakit jantung dan stroke	Gembus	Afifah et al, 2014	Indonesia	
15	Hipertensi, infarkmiokard, penyakit jantung koroner, atau stenokardia	Douchi	Hu et al, 2019	China	
16	Thrombosis	Kotoransapi	Vijayaraghavan et al, 2016	USA	
No	Spesies	Penerapan	Sampel	Negara	Sumber, Tahun
----	--------------------------------	----------------------	--------	-------------	----------------------
1	Stenotrophomonassp.	Agen trombolisis	Oncom	Indonesia	Stephani et al., 2017
2	Bacillus sp.	Agen trombolisis	Beras	Saudi Arabia	Almalki et al., 2017
			Fermentasi		
3	B. subtilis	Agen trombolisis	Douchi	Cina	Hu et al., 2019
4	B. licheniformis	Agen trombolisis	Oncom	Indonesia	Nailufar et al., 2016
	B. cereus				
	Stenotrophomonas sp.				
5	B. Amyloliquefaciens	Agen trombolisis	Kedelai	India	Devaraj et al., 2018
6	B. amyloliquefaciens	Agen trombolisis	Doenjang	Korea	Yao et al., 2017
7	B. subtilis	Agen fibrinolitik	Jeotgal	Korea	Yao et al., 2017
RUMUSAN MASALAH

- Adakah enzim protease fibrinolitik dari jaringan tubuh maupun bakteri organ pencernaan teripang pasir (Holothuris scabra)
- Bagaimana karakteristik crude extract enzyme protease fibrinolitik dari jaringan dan bakteri pencernaan H. scabra pada sampel darah

TUJUAN UMUM PENELITIAN

- Mengetahui adanya aktivitas enzim protease fibrinolitik secara in vitro dari jaringan tubuh dan bakteri pada organ pencernaan H. scabra yang memenuhi karakteristik sebagai agen anti trombosis

TUJUAN KHUSUS PENELITIAN

- 1. Mendapat crude extract enzim protease dari jaringan H. scabra
- 2. Mengisolasi dan memurnikan koloni bakteri penghasil protease fibrinolitik dari organ pencernaan H. scabra
- 3. Melakukan uji aktivitas ekstrak kasar (crude extract) enzim dari jaringan H. scabra dan dari bakteri protease fibrinolitik pada organ pencernaan H. scabra
- 4. Mendapatkan enzim protease berkarakteristik fibrinolitik in vitro dari jaringan dan bakteri organ pencernaan H. scabra.

MANFAAT PENELITIAN: Peluang mendapatkan sumber baru enzim protease fibrinolitik dan bakteri penghasil protease fibrinolitik baru bagian dari kekayaan alam Indonesia
Characterization of protease activity from the digestive tract and tentacles of *Isostichopus fuscus* sea cucumber

AC Hernández-Sámano¹, X Guzmán-García², R García-Barrientos³, F Ascencio-Valle⁴, A Sierra-Beltrán⁴, I Guerrero-Lagarreta¹

¹Biotechnology Department, Universidad Autónoma Metropolitana, 09340 Mexico City, Mexico

Bacterial Proteases as Thrombolytics and Fibrinolytics

Taqiyah Akhtar¹, Md. Mozammel Hoq² and Md. Abdul Mazid¹

¹Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka-1000, Bangladesh

Diversity and function of aerobic culturable bacteria in the intestine of the sea cucumber *Holothuria leucospilota*

Xiaochi Zhang,¹ Tomomi Nakahara,¹ Masayuki Miyazaki,² Yuichi Nogi,² Shigeto Taniyama,³ Osamu Arakawa,³ Tetsushi Inoue,³ and Toshiaki Kudo³*

Samano et al., 2017

Akhtar et al., 2017

Zhang et al., 2012
BAB IV. METODE PENELITIAN

Jenis Penelitian

Deskriptif analitik eksperimental dengan desain pre-test dan post-test yang didukung studi pustaka

Tempat dan Waktu Penelitian

1. Laboratorium Mikrobiologi Universitas Muhammadiyah Semarang
2. Laboratorium Bioteknologi Kementrian Kelautan dan Perikanan Jakarta

Waktu Penelitian: Bulan Juni – September 2020

Variabel Penelitian

Variabel bebas: Crude Ekstrak enzim protease jaringan dan bakteri organ pencernaan *H. scabra*.

Variabel terikat:
1. Aktivitas enzim protease fibrinolitik dari orgn dan bakteri organ pencernaan *H. scabra*
2. Nilai parameter uji trombolitik pada sampel darah hasil perlakuan dengan ekstrak enzim tersebut.
Metode Penelitian
Aktifitas iringan *H. scabra*

1. *H. Scabra* cuci bersih, Bedah pisahkan organ pencernaan, bagi 3 bagian, blender sampai halus
2. Buat *crude ekstrak enzim*
3. Lakukan Prosedur aktifitas *crude ekstrak enzim dengan 2 perlakuan*:
 - *Di fortexs dan tanpa fortexs*
4. Ukur aktifitas *crude ekstrak enzim dengan photometer*
Table 1. Activity of crude protease extracted from *H. scabra* tissues with tyrosine as standard

No.	Treatment	Absorbance at 600 nm* (average)	Relative activity (U/mL)			
		Tentacle	Ventral	Posterior	Control (tyrosine)	
1	Vortex	0.0791	0.0759	0.0850	0.0994	-1505.1170
2	No vortex	0.0754	0.0897	0.0881	0.0539	3103.3041

*Measurement was performed in 6 repetitions
Metode Penelitian

Isolasi dan skrening bakteri penghasil enzim protease fibrinolitik

Ditimbang seberat 7g + garam steril 0,210g + gula aren steril 0,210g dimasukkan botol steril tutup rapat. difermentasi selama 72 jam (3 hari) pada suhu 25 °C

Dikultur pada media Fibrin plate
Inkubasi 3-5 hari 37° C

Diwarnai lugol 5%

Amati dan ukur zona bening

Dikultur pada media Susu Skim Agar. Inkubasi 24 jam 37° C

Amati dan ukur zona bening

Pengecatan Gram

Amati morfologi koloni dengan karakteristik yang berbeda

Di tanam pada media *nutrien agar* dari tanpa pengenceran, 10⁻¹ sampai 10⁻⁵

Lakukan purifikasi di media NA inkubasi 24 jam 37° C sampai mendapat koloni murni (3x)

Inkubasi 24 jam 37° C
Pembuatan **crude ekstrak enzim**

Bakteri yang memiliki aktivitas proteolitik

Skim milk broth

Skim Milk Borth: (pepton 5 g/L, beef extract 1,5 g/L, yeast extract 1,5 g/L, sodium chloride 35 g/L, dan kasein 10 g/L)

Centrifuge suhu 40 C 3000 rpm 10 menit

Gunakan untuk uji trombolisis

crude ekstrak enzim
Uji Aktifitas Trombolisis

Masukkan darah 600 µl dalam microtube biarkan selama 30 menit sampai benar-benar menggumpal.

Sentrifugasi sampel 3000 rpm selama 10 menit.

Serum diambil sampai benar-benar habis.

Tambahkan gumpalan darah dengan:
1. Blangko negatif + aquades 100 µl
2. Blangko positif + nattokinase 100 µl
3. Masing-masing sampel + crude ekstrak enzim 100 µl
4. Inkubasi 37° C selama 90 menit

Prosentase bekuan lisis = Selisih berat sebelum dan sesudah perlakuan

Berat sebelum perlakuan

X100%

Timbang berat gumpalan awal

Dhamodharan et al., 2019; Prasad et al., 2006; Qingqin et al., 2013; Inayah, 2015
HASIL PENELITIAN

Isolasi bakteri dari produk fermentasi organ pencernaan teripang pasir

Dihasilkan 12 isolat murni

1) HSFI-1 5) HSFI-5 9) HSFI-9
2) HSFI-2 6) HSFI-6 10) HSFI-10
3) HSFI-3 7) HSFI-7 11) HSFI-11
4) HSFI-4 8) HSFI-8 12) HSFI-12

Uji proteolitik pada media Skim Milk Agar

Hasil pengukuran index proteolitik (2 Isolat HFSI-1 dan HSFI-7 tidak membentuk zona bening)

1) HSFI-1 = 0.00 5) HSFI-5 = 1.13 9) HSFI-9 = 0.37
2) HSFI-2 = 0.38 6) HSFI-6 = 0.65 10) HSFI-10 = 0.55
3) HSFI-3 = 3.76 7) HSFT-7 = 0.00 11) HSFI-11 = 0.78
4) HSFI-4 = 0.78 8) HSFI-8 = 0.64 12) HSFI-12 = 0.71

Sebanyak 10 isolat bakteri

Dikultur media Skim Milk

Isolasi crude

Uji trombolisis

Prosentasi lisis bekuan darah (%)

1) HSFT-1 = 26.06 4) HSFT-4 = 62.03 7) HSFT-7 = 7.78 10) HSFT-10 = 12.47
2) HSFI-2 = 5.24 5) HSFI-5 = 84.71 8) HSFI-8 = 31.28
3) HSFT-3 = 19.30 6) HSFT-6 = 32.94 9) HSFT-9 = 46.70

Uji Fibrinolitik

Indeks Fibrinolitik
HSFI-3 = 11.6; HSFI-4 = 4.0
HSFT-5 = 7.0; HSFI-6 = 3.0
HASIL PENELITIAN

Isolasi bakteri dari produk fermentasi organ pencernaan *H. scabra*

1) HSFI-1
2) HSFI-2
3) HSFI-3
4) HSFI-4
5) HSFI-5
6) HSFI-6
7) HSFI-7
8) HSFI-8
9) HSFI-9
10) HSFI-10
11) HSFI-11
12) HSFI-12

12 Isolate Bakteri di Uji aktivitas proteolitik pada media *Skim Milk Agar*

Hasil pengukuran indeks proteolitik

1) HSFI-1 = 0.00
2) HSFI-2 = 0.38
3) HSFI-3 = 3.76
4) HSFI-4 = 0.78
5) HSFI-5 = 1.13
6) HSFI-6 = 0.65
7) HSFI-7 = 0.00
8) HSFI-8 = 0.64
9) HSFI-9 = 0.37
10) HSFI-10 = 0.55
11) HSFI-11 = 0.78
12) HSFI-12 = 0.71

aktivitas proteolitik terbaik:
1. HSFI-3 = 3.76
2. HSFI-5 = 1.13
3. HSFI-4 = 0.78
4. HSFI-11 = 0.78

Sebanyak 10 isolat bakteri proteolitik Dikultur media *Skim Milk Broth*

Isolasi crude enzim

Uji aktivitas trombolitik
HASIL PENELITIAN

Prosentasi lisis bekuan darah (%)

1)	HSFI-2	=	26.06
2)	HSFI-3	=	5.24
3)	HSFI-4	=	19.30
4)	**HSFI-5**	=	**62.03**
5)	HSFI-6	=	32.94
6)	HSFI-8	=	84.72
7)	HSFI-9	=	7.78
8)	HSFI-10	=	31.28
9)	HSFI-11	=	46.70
10)	HSFI-12	=	12.47

Lima isolat denga aktifitas trombolitik tinggi dilakukan validasi dengan pengulangan 7x

Indeks Fibrinolitik

- HSFI-3 = 11.6
- HSFI-4 = 4.0
- HSFI-5 = 7.0
- HSFI-6 = 3.0

Table

Kode	Microtube	Tabung		
uang	Nattokinase	HSFI-5	Nattokinase	HSFI-5
1	48.39	60.44	87.22	79.67
2	63.16	81.13	82.30	86.94
3	78.39	74.44	79.20	81.44
4	64.41	70.32	80.20	83.37
5	63.15	64.41	77.30	83.08
6	60.36	64.93	78.70	72.50
7	64.26	62.04	80.40	69.24

Rerata

- 63.16
- 68.24
- 80.76
- 79.46
| No. | Kode Isolat | Bentuk | Tepi | Ukuran (mm) | Warna | Elevasi | Konsistensi | Karakteristik Koloni pada Pewarnaan Gram |
|-----|-------------|----------|---------|-------------|-------|------------|--------------|---|
| 1 | HSFI-1 | circular | entire | 1 | cream | convex | halus | Coccus Gram-negatif bergerombol |
| 2 | HSFI-2 | circular | undulat | 8 | putih | umbonat | halus | Basil berspora Gram-positif berderet |
| 3 | HSFI-3 | circular | entire | 3 | cream | Raised | halus | Basil Gram-positif berderet |
| 4 | HSFI-4 | irregular| undulate| 5 | cream | convex | halus | Basil berspora Gram-positif berderet |
| 5 | HSFI-5 | filamentous | foliform | 8 | putih | crateriform | kasar | Basil Gram-positif berderet |
| 6 | HSFI-6 | irregular| undulate| 5 | cream | convex | halus | Basil berspora Gram-positif bergerombol |
| 7 | HSFI-7 | circular | entire | 1 | putih | convex | halus | Coccus Gram-negatif bergerombol |
| 8 | HSFI-8 | circular | entire | 4 | cream | convex | halus | Basil Gram-positif berderet |
| 9 | HSFI-9 | circular | entire | 8 | cream | umbonat | halus | Basil berspora Gram-positif bergerombol |
| 10 | HSFI-10 | circular | entire | 2 | cream | convex | halus | Basil Gram-positif berderet |
| 11 | HSFI-11 | circular | entire | 4 | cream | convex | halus | Basil Gram-negatif bergerombol |
| 12 | HSFI-12 | circular | entire | 4 | cream | convex | halus | Basil Gram-positif berderet |

Ket : HSFI (Holothuria scabra fermentation intestine)
KODE	ISOLAT	Hari ke 1	Hari ke 2	Hari ke 3	Hari ke 4	Hari ke 5	Hari ke 6	Hari ke 7	Rata-rata
HFSI-1	0	0	0	0	0	0	0	0	0
HFSI -2	0.17	0.30	0.47	0.47	0.50	0.40	0.34	0.38	
HFSI -3	1.40	1.33	4.11	5.00	4.83	5.00	4.66	3.76	
HFSI -4	0.33	0.69	0.83	1.10	0.64	1.00	0.87	0.78	
HFSI -5	1.25	1.10	1.09	0.96	1.07	1.19	1.27	1.13	
HFSI -6	0.75	0.47	0.50	0.65	0.72	0.67	0.80	0.65	
HFSI-7	0	0	0.00	0	0	0	0.00	0	
HFSI -8	0.29	0.28	0.67	0.60	1.00	0.88	0.79	0.64	
HFSI -9	0.45	0.27	0.25	0.42	0.45	0.41	0.40	0.37	
HFSI -10	0.22	0.35	0.65	0.68	0.64	0.51	0.82	0.55	
HFSI -11	1.00	0.45	0.52	0.72	0.93	1.03	0.86	0.78	
HFSI -12	0.70	0.47	0.65	0.81	0.83	0.85	0.67	0.71	

Hasil Penelitian

Uji Aktifitas proteolitik
Hasil Uji Aktifitas Trombolisis Isolat HSFI-5 dengan Microtube dan Tabung

Kode ulang	Microtube	Tabung		
	Nattokinase	HSFI-5	Nattokinase	HSFI-5
1	48.39	60.44	87.22	79.67
2	63.16	81.13	82.30	86.94
3	78.39	74.44	79.20	81.44
4	64.41	70.32	80.20	83.37
5	63.15	64.41	77.30	83.08
6	60.36	64.93	78.70	72.50
7	64.26	62.04	80.40	69.24
Rerata	63.16	68.24	80.76	79.46
Simpulan

1. Hasil pengukuran aktifitas *crude ekstrak enzim* dari jaringan *H.scabra* dengan cara vortex tidak didapatkan aktifitas, sedangkan tanpa perlakuan vortex didapatkan aktifitas 3103,3041 U/mL

2. Dari sampel organ pencernaan *H. scabra*, diperoleh 4 isolat bakteri yang mempunyai aktivitas proteolitik, trombolitik dan fibrinolitik yaitu HSFI-3, HSFI-4, HSFI-5 dan HSFI-6. Dari keempat isolat tersebut, isolat HFSI-5 adalah penghasil enzim protease fibrinolitik dengan aktivitas trombolisis tertinggi
ARTIFITIAS ENZIM PROTEASE FIBRINOLITIK JARINGAN TISSUE PASIR (ANTECUBITAL FOLLICULAR) SEBAGAI AGEN ANTITROMBOSIS PADA PATIEN VASCULAR DISEASE

LEMBAGA ILMU PENGETAHUAN INDONESIA
BALAI BIO INDUSTRI LAUT
JL. RAYA SENGIGI, TELUK KODEK, DESA MALAKA KEC. PEMENANG
KAB. LOMBOK UTARA - NTB83352
www.bioindustriaut.lipi.go.id
This is to certify that

Nur Hidayati

has contributed as

Oral Presenter

with presentation title

Potential of Fibrinolytic Protease Enzymes from Tissue of Sand Sea Cucumber (Holothuria scabra) as Thrombolysis Agent

in **The 11th International Conference on Global Resource Conservation**

Synergizing Knowledge for Post 2020 Global Biodiversity Network

Malang, July 28, 2020

Prof. Dr. Ir. Nuhfil Hanani A.R., M.S.
Rector of Universitas Brawijaya

Muridah Afiyanti, S.P., Ph.D.
Conference Chairperson
Letter Of Accepted
Annual Conference On Health And Food Science Technology

Dear Stalis Norma Ethica from Universitas Muhammadiyah Semarang

The review processes for Annual Conference On Health And Food Science Technology organized by Online Conference Host By PT Kresna Acitya Nusantara Mediatama has been completed. The conference reviewed by international experts.

The conference reviewed by international experts. Based on the recommendations of the reviewers and the Technical Program Committees, we are pleased to inform you that your paper entitled Blood Clot Lysis Activities Of Crude Proteases Extracted From Tissue And Bacterial Isolates Of Holothuria Scabra (file link: https://achost.kresnanusantara.com/repository/Abstrak_3e671a47eee0c1537dd314ea8d53746d.pdf) has been ACCEPTED for publication and oral presentation.
You are cordially invited to present the paper at Annual Conference On Health And Food Science Technology to be held on 2020-11-25, Kresna Nusantara Zoom Webinar.

With the package conference have been selected is: PRESENTER

For the most updated information on the conference, please check the conference website. achost.kresnanusantara.com or email to kresnanusantara@relawanjurnal.id.

Warm regards,

Conference Committee