SUPPLEMENTARY MATERIAL

A New Lycopodine-type Alkaloid from *Lycopodium japonicum*

Qian Yang, Yuquan Zhu, Wei Peng, Rui Zhan, and Yegao Chen*

School of Chemistry and Chemical Engineering, Yunnan Normal University, Chenggong New District, Kunming 650500, China

A new lycopodine-type alkaloid, 12β-hydroxy-acetylfawcettiine N-oxide (1), together with seven known analogues, acetyllycoposerramine M (2), lycopodine (3), lycoclavine (4), diphaldine A (5), lycoposerramine K (6), 11β-hydroxy-12-epilycodoline (7) and fawcettiine (8), were isolated from *Lycopodium japonicum*. Their structures were established by mass spectrometry and 1D and 2D NMR techniques. The isolated alkaloids were assayed for their inhibition activities against acetylcholinesterase, but no inhibitory activities for the compounds were detected.

Keywords: *Lycopodium japonicum*; Lycopodiaceae; lycopodine-type alkaloids

Corresponding author. Tel: 86-871-65941089; Email: ygchen48@126.com
Supporting information

Spectroscopic data of the known compounds 2-8.

Figure 2. Selected 2D NMR correlations of 1.

Original spectra of compound 1.

- ESI-MS
- HR-ESI-MS
- IR Spectrum
- UV Spectrum
- 1H NMR Spectrum (500 MHz, CDCl$_3$)
- 13C NMR Spectrum (125 MHz, CDCl$_3$)
- 1H-1H COSY Spectrum
- HSQC Spectrum
- HMBC Spectrum
- ROESY Spectrum
Spectroscopic data of the known compounds 2-8.

acetyllycoposerramine M (2)
Colorless solid; C\textsubscript{18}H\textsubscript{27}NO\textsubscript{3}; MW: 305; 1H-NMR (500 MHz, CDCl\textsubscript{3}) δH: 5.12 (m, H-11), 3.26 (m, H-1a), 3.24 (m, H-4), 0.77 (d, J = 6.5 Hz, H-16); 13C-NMR (125 MHz, CDCl\textsubscript{3}) δC: 214.0 (s, C-5), 169.9 (s, C-17), 72.1 (d, C-11), 58.7 (s, C-13), 46.9 (t, C-1), 46.5 (d, C-12), 45.2 (d, C-4), 44.2 (t, C-6), 44.1 (t, C-8), 43.6 (t, C-14), 41.9 (t, C-9), 34.9 (d, C-7), 30.8 (t, C-10), 25.2 (d, C-15), 22.6 (q, C-16), 21.7 (q, C-17), 19.8 (t, C-3), 19.1 (t, C-2).

lycopodine (3)
Colorless solid; C\textsubscript{16}H\textsubscript{25}NO; MW: 247; 1H-NMR (500 MHz, CDCl\textsubscript{3}) δH: 3.30 (td, 14.0, 3.5, H-9a), 3.07 (td, 12.0, 3.0, H-1a), 2.78 (d, 12.0, H-1b), 0.75 (d, 6.5, H-16); 13C-NMR (125 MHz, CDCl\textsubscript{3}) δC: 213.0 (s, C-5), 60.0 (s, C-13), 47.1 (t, C-9), 46.5 (t, C-1), 44.7 (d, C-12), 42.9 (t, C-6), 42.8(d, C-4), 42.7 (t, C-14), 42.3 (t, C-8), 36.6 (d, C-7), 25.8 (t, C-10), 25.2 (d, C-15), 24.9 (t, C-11), 22.7 (q, C-16), 19.3 (t, C-3), 18.6 (t, C-2).

lycoclavine (4)
Colorless solid; C\textsubscript{18}H\textsubscript{29}NO\textsubscript{3}; MW: 307; 1H-NMR (500 MHz, CDCl\textsubscript{3}) δH: 4.69 (s, H-5), 2.07 (s, H-18), 0.91 (d, 6.5, H-16); 13C-NMR (125 MHz, CDCl\textsubscript{3}) δC: 170.2 (s, C-17), 80.0 (d, C-5), 71.6 (d, C-6), 57.8 (s, C-13), 46.7 (t, C-1), 46.6 (t, C-9), 43.5 (d, C-12), 41.0 (d, C-7), 40.1 (t, C-14), 39.6 (t, C-8), 30.0 (d, C-4), 25.2 (t, C-10), 25.0 (t, C-11), 24.0 (d, C-15), 23.5 (q, C-16), 22.0 (t, C-3), 21.4 (q, C-18), 19.8 (t, C-2).

diphaladine A (5)
Colorless oil; C\textsubscript{16}H\textsubscript{25}NO\textsubscript{4}; MW: 295; 1H-NMR (500 MHz, CDCl\textsubscript{3}) δH: 4.40 (dt, 12.0, 2.0, H-9a), 4.08 (s, H-11a), 3.90 (d, 10.0, H-4), 0.89 (d, 6.5, H-16). 13C-NMR (125 MHz, CDCl\textsubscript{3}) δC: 209.7 (s, C-5), 73.4 (s, C-13), 72.4 (s, C-12), 72.0 (s, C-11), 63.2 (t,
C-1), 55.7 (t, C-9), 48.6 (d, C-4), 45.1 (t, C-6), 40.4 (d, C-7), 36.9 (t, C-8), 30.2 (t, C-14), 26.5 (t, C-10), 24.7 (d, C-15), 22.4 (q, C-16), 21.5 (t, C-2), 17.5 (t, C-3).

lycoposerramine K (6)

Colorless solid; C_{16}H_{23}NO_2; MW: 261; ^1H-NMR (500 MHz, CDCl_3) δ_H: 5.73 (s, H-11), 3.85 (d, 2.5, H-6), 0.86 (d, 6.0, H-16); ^13C-NMR (125 MHz, CDCl_3) δ_C: 210.9 (s, C-5), 139.2 (s, C-12), 120.9 (d, C-11), 78.1 (d, C-6), 59.8 (s, C-13), 49.5 (d, C-4), 47.9 (d, C-7), 47.7 (t, C-1), 45.0 (t, C-9), 39.1 (t, C-8), 36.9 (t, C-14), 26.3 (t, C-10), 25.5 (d, C-15), 22.7 (t, C-2), 22.7 (q, C-16), 19.3 (t, C-3).

11β-hydroxy-12-epilycodoline (7)

Colorless solid; C_{16}H_{26}NO_3; MW: 280; ^1H-NMR (500 MHz, CDCl_3) δ_H: 2.86 (t, 12.5, H-4), 0.82 (d, 6.0, H-16). ^13C-NMR (125 MHz, CDCl_3) δ_C: 212.2 (s, C-5), 73.6 (d, C-11), 70.7 (s, C-12), 62.1 (s, C-13), 53.4 (d, C-4), 48.3 (t, C-1), 45.6 (t, C-6), 43.4 (t, C-9), 40.5 (d, C-7), 37.3 (t, C-8), 31.4 (t, C-10), 25.0 (t, C-14), 24.6 (t, C-2), 23.8 (d, C-15), 22.2 (q, C-16), 17.9 (t, C-3).

fawcettiine (8)

Colorless solid; C_{18}H_{29}NO_3; MW: 307; ^1H-NMR (500 MHz, CDCl_3) δ_H: 5.11 (s, H-5), 3.21 (t, 12, H-8), 1.43 (m, H-18), 1.08 (d, 6.5, H-16). ^13C-NMR (125 MHz, CDCl_3) δ_C: 170.4 (s, C-17), 78.7 (d, C-8), 69.5 (d, C-5), 55.0 (s, C-13), 47.4 (t, C-1), 46.7 (t, C-9), 43.2 (d, C-12), 41.3 (d, C-7), 41.0 (t, C-14), 31.9 (d, C-15), 31.2 (d, C-4), 25.9 (t, C-10), 24.3 (t, C-6), 24.2 (t, C-11), 22.6 (t, C-3), 21.5 (q, C-18), 20.8 (q, C-16), 19.8 (t, C-2).
Figure 2. Selected 2D NMR correlations of 1.
Original spectra of compound 1.

ESI-MS:
Original spectra of compound 1.

HR-ESI-MS:

--- End Of Report ---
IR Spectrum

Sample : NYQ-1 Frequency Range : 399.246 - 3996.32 Measured on : 21/09/2015
Technique : KBr 压片
Customer : 150921IR0 Resolution : 4
Zerofilling : 2
Instrument : Tensor27 Acquisition : Double Sided, Forward
Sample Scans : 16

Transmittance [%]

Wavenumber cm⁻¹
UV Spectrum

File Name: NYQ-1
Created: 15:34 15-09-16
Mode: Abs.
Scan Speed: Medium
Scan Time: 5.0
Step Interval: 0.2

Wavelength (nm)	Abs
203.60 | 0.1054
270.40 | 0.0148
1H NMR:
HSQC:
