Text S1:

Congruence value (V_c): A measure to evaluate the similarity between two (phylogenetic) trees

Shamim Ahmed and Koichi Nishigaki

Calculation of the congruence value between tree-A and tree-B is described hereafter.

1. **Definitions of terms used here**

 The following terms were defined to determine the congruence value between two trees.

 - **Element**: Each species is considered as a single element (SE) in this study. When couples of single elements formed a cluster (group), they are termed as cluster-elements (CE).
 - **Cluster**: is a term given to a set of elements stemmed from a common root. A cluster can be composed of sub-clusters and single elements.
 - **Level**: A tree consists of different hierarchies of branches beginning from the bottom to the top level. The top level is identical to so-called “root”. In the definition adopted here, “level” is used to express the hierarchy of each element or cluster. A cluster positioned at level ℓ always contains one or more cluster(s) positioned at level ℓ-1 by definition.
 - **Sub-cluster**: A subset of a cluster consisting of more than or equal to two elements. A cluster of n elements has various kinds of sub-clusters, say, if $n = 5$; 5 kinds of 4-membered sub-clusters ($=^5C_4$), 10 kinds of 3-membered sub-clusters ($=^5C_3$), and 10 kinds of 2-membered sub-clusters ($=^5C_2$).
 - **Cluster matching score (CMS)**: A score to evaluate the congruence between two clusters, which take into account the number of corresponding elements and the level difference of cluster.
 - **Phylogenetic tree/Tree**: is a branching diagram showing the relationships of similarities or differences among various biological species (or elements) based on phenotypic and/or genotypic characteristics.
 - **Subject tree and Object tree**: When the congruence value between two trees is to be calculated, the trees are allotted as a subject tree and object one for the sake of convenience. If the tree-A is considered as the subject, then the tree-B will be treated as the object and vice versa.

2. **Procedures**

 Assigning matching clusters: In this study we assigned matching clusters (or sub-clusters) for relevant trees with a common cluster name based on the following criteria.

 Criterion 1. If all elements in a cluster belonging to the subject tree-A correspond to the elements of a particular cluster in the object tree, a same name is assigned to both of the clusters like C_X (see Panel 1b).
Criterion 2. If more than 50% elements of a cluster of the subject tree-A correspond to some of the elements of a single cluster belonging to the object tree B, a same yet discriminative name is assigned as C_X for the cluster of the subject tree and C_X' for the cluster belonging to the tree B.

Criterion 3. No name is given if ≤50% elements of a cluster of the subjective tree can find the corresponding elements in any cluster contained in the objective tree.

How to calculate cluster matching score (CMS):

For C_x cluster (criterion 1):

CMS is the number of elements at level $\ell-1$ contained in C_x cluster which is at level ℓ, i.e.,

$$CMS_{C_x} = \text{Number of elements in } C_x \text{ cluster} \quad (1)$$

If the cluster of interest contains the lower level elements than level $\ell-1$, then those elements are scored with the reduction rate γ;

$$\gamma = (1/2)^{(\ell-1) - \ell} = (1/2)^{(\ell-\ell)-1} = (1/2)^{\Delta \ell-1}$$

where ℓ, ℓ' and $\Delta \ell$ represent the level for the cluster of interest (of which CMS is calculated), level of the lower hierarchy cluster/element and the level difference, respectively.

Therefore, in such case, CMS will be expressed as follows;

$$CMS_{C_x} = \sum \text{each element in } C_x \text{ cluster} \times (1/2)^{\Delta \ell-1} \quad (2)$$

For C_x' cluster (criteria 2):

When a sub-cluster is involved, the following consideration is made to calculate the CMS:

As an m-membered sub-cluster within a cluster of n elements ($n \geq m$) can appear in the number of states S (only single and same level elements are considered);

$$S = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

One possible way to consider this number of degeneracy in the calculation of CMS of C_x' cluster is to divide by this number S:

$$CMS_{C_{x'}} = \frac{1}{S} \times \text{Number of elements of } C_x' \text{ cluster} \quad (3)$$

When a higher level cluster is assigned as C_x' which is composed of single and/or cluster elements positioned at level $\ell-1$ and/or lower than level $\ell-1$, in such cases CMS of C_x' cluster will be expressed as follows;

$$CMS_{C_{x'}} = \sum \text{each element in } C_x' \text{ cluster} \times (1/2)^{\Delta \ell-1} \quad (4)$$
Definition of Branch length and number: If a cluster positioned at level \(\ell \) and contains elements with a length more than 1 (\((\ell - (\ell-1)) = 1 \) unit, the branch length corresponding to the difference in the level), then the length of that particular branch (>1 length, marked as red in Panel 1c) will be considered as:

\[
\text{Branch length} = (1/2)^{\Delta \ell - 1} \text{ (unit),}
\]

where \(\Delta \ell \) represent the level difference of a branch. If the \(\Delta \ell > 4 \) of a branch, it has been ignored in this study for the convenience.

Definition of congruence value \((V_c) \):

The definition of the congruence value is:

\[
V_c = \frac{\sum \text{CMS over trees A and B with trees A and B being subject and object, respectively} + \sum \text{CMS over trees A and B with trees A and B as objective and subjective, respectively}}}{2 \times \sum \text{Number of branches over trees A and B} }.
\]

where \(0 \leq V_c \leq 1 \) and

\(V_c' \) : \(V_c \) obtained after the coarse-graining of one partner of a pair of trees which is more finely structured. This can be done by bunching level different clusters under a bunching criterion such as compression of less than 15% height difference.

3. Case studies

3.1 Example 1 (pair of trees A and B):

Case \(\pi \) of Tree A as subject one;

In Panel 1a, all of the possible clusters to be named are indicated with the star symbol (*).

First of all, the most basic level clusters of the subject tree A (i.e., \(P_1 \) and \(P_2 \)) are subjected to the cluster matching examination against the clusters of the objective tree B. Since the possible clusters, \(P_1 \) and \(P_4 \), contain exactly the same elements (\(e_1 \) and \(e_2 \)), they are assigned to be the congruent clusters and named as \(C_1 \) (Panel 1b). On the contrary, \(P_2 \) in the subject tree A cannot find a corresponding cluster in the objective tree B and thus cannot be named (denoted as X in Panel 1b). Now, we can see the trees with clusters named as in Panel 1b. Next level 2...
cluster is dealt: i.e., P3, which has the elements of e3, e4 and C1 (cluster-element). When the possible cluster P3 is compared with the clusters in the objective tree B, P5 is an only possible candidate for the congruence cluster. Since the P3 cluster has the same elements, i.e., e3, e4 and C1, both P3 and P5 can be named with the same name, C2, as shown in Panel 1c.

Case (-π) of Tree B as subject one:

In the second session, the relationship of the subject and object is inversed for Trees A and B, rendering Tree A object and Tree B subject as in Panel 1d. Now, there are two (q1 and q2) and three (q3~q5) possible clusters in each tree.

Now, the most basic level cluster in the subjective tree B is q1 only. The q1 is examined to find its corresponding cluster in the objective tree A, providing with the corresponding one, i.e., q3 and thus assigned as C1 for both clusters.

Next, the higher level cluster q2 (here, it is the top level cluster) is subjected to the same examination using Panel 1e. The cluster q2 can find the corresponding matching cluster of q5 which also contains the same elements of e3, e4 and C1 as q2 cluster does. Therefore, q2 and q5 can be named with the same name, C2, as shown in Panel 1f. Let’s count Vc for all of the possible pairs.

CMS and the number of branches for the pair of Trees A and B:

For Case π (Panel 1c)

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Tree A (subject)	C1	e1, e2	2 (Eq. 1)	(1+1+1+1+1+1)
	C2	C1, e3, e4	(1+1+1+1+1+1)	6
Tree B (object)	C1	e1, e2	2 (Eq. 1)	(1+1+1+1+1+1)
	C2	C1, e3, e4	(1+1+1+1+1+1)	6
Total				8

For Case -π (Panel 1f)

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Tree B (subject)	C1	e1, e2	2 (Eq. 1)	(1+1+1+1+1+1)
	C2	C1, e3, e4	(1+1+1+1+1+1)	6
Tree A (object)	C1	e1, e2	2 (Eq. 1)	(1+1+1+1+1+1)
	C2	C1, e3, e4	(1+1+1+1+1+1)	6
Total				8

Congruence value (Vc):

\[V_c = \frac{(8+8)}{(2 \times 10)} = \frac{16}{20} = 0.8 \]
3.2 Example 2 (pair of Tree C and Tree D):

Case π of Tree C as subject one;

In Panel 2a, there are three (P$_1$−P$_3$) and two (P$_4$−P$_5$) possible corresponding clusters in this case.

In the first step, the most basic level clusters of the subject tree C (i.e., P$_1$ and P$_2$) are subjected to the cluster matching examination against the clusters of the objective tree D. P$_1$ of the subject tree contains two elements, e$_1$ and e$_3$, and P$_4$ of the object tree also contains e$_1$ and e$_3$ along with e$_2$ at the same cluster level. Therefore, P$_1$ & P$_4$ can be assigned as C$_1$ and C$_1^\prime$ based on criteria 2, respectively (Panel 2b). On the contrary, P$_2$ in the subject tree C cannot find a corresponding cluster in the objective tree D and thus cannot be named (denoted as X (extra naming) in Panel 2b).

The second step deals with the higher level cluster of subjective tree C, i.e., P$_3$, which has the elements of e$_2$, e$_4$ and C$_1$ (cluster-element). When the cluster P$_3$ is compared with the clusters in the objective tree D, P$_5$ is an only possible candidate for the congruence cluster. P$_5$ cluster is composed of elements, e$_2$, e$_4$ and C$_1^\prime$ and thus based on criteria 2, P$_3$ and P$_5$ can be named with the name C$_2$ and C$_2^\prime$, respectively as shown in Panel 2c.

Case (-π) of Tree D as subject one;

In the second session, the relationship of the subject and object is inversed, rendering the tree C object and the tree D subject as in Panel 2d. Now, there are two (q$_1$ and q$_2$) and three (q$_3$−q$_5$) possible clusters in each tree, respectively.

Then, the most basic level cluster in the subjective tree D is q$_1$ only, containing three elements, e$_1$, e$_2$ and e$_3$. The cluster q$_1$ is examined to find its corresponding cluster in the objective tree C and can find q$_3$ (containing two elements, e$_1$ and e$_3$), which is more than 50% of
the number of \(q_1 \) elements (three). Therefore, based on the assigning criteria 2, \(q_1 \) and \(q_3 \) can be assigned as \(C_1 \) and \(C_1' \), respectively (Panel 2e).

Next, the higher level cluster \(q_2 \) is subjected to the same examination using Panel 2e. The cluster \(q_2 \) (having the elements of \(C_1 \) and \(e_4 \)) has a chance for finding the corresponding matching cluster of \(q_5 \) which contains the elements of \(e_2 \), \(e_4 \) and \(C_1' \). In this case, \(e_4 \) representing as a common element for both trees and \(C_1' \) of object tree representing the more than 50% of \(C_1 \) cluster elements. Therefore, as a whole \(q_5 \) cluster has >50% elements of \(q_2 \) cluster of the subject tree and thus \(q_2 \) and \(q_5 \) can be assigned as \(C_2 \) and \(C_2' \), respectively (Panel 2f).

CMS and the number of branches for the pair of Trees C and D:

For Case \(\pi \) (Panel 2c)

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches	
Tree C (subject)	\(C_1 \)	\(e_1, e_3 \)	2 (Eq. 1)	\(1+1+1+1+1 \)	
	\(C_2 \)	\(C_1, e_2, e_4 \)	\(1+1.5+.5 = 2 \) (Eq. 2)	\(6 \)	
Tree D (object)	\(C_1' \)	2\((e_1, e_3) \) of 3 \((e_1, e_2, e_3) \)	2/3 (Eq. 3)	\(1+1+1+1+1.5 \)	
	\(C_2' \)	\(C_1', e_2, e_4 \)	1+5+.5 = 2 (Eq. 4)	\(4.5 \)	
Total				6.66	10.5

For Case (-\(\pi \)) (Panel 2f)

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches	
Tree D (subject)	\(C_1 \)	\(e_1, e_2, e_3 \)	3 (Eq. 1)	\(1+1+1+1+1.5 \)	
	\(C_2 \)	\(C_1, e_4 \)	\(1+1.5 = 1.5 \) (Eq. 2)	\(4.5 \)	
Tree C (object)	\(C_1' \)	2\((e_1, e_3) \) of 3 \((e_1, e_2, e_3) \)	0.66 (Eq. 3)	\(1+1+1+1+1+1 \)	
	\(C_2' \)	\(C_1', e_2, e_4 \)	1+5+.5 = 2 (Eq. 4)	\(6 \)	
Total				7.16	10.5

Congruence value \((V_c) \):

\[
V_c = (6.66 + 7.16)/(2 \times 10.5) = 13.82/20.5 = 0.65
\]

3.3 Example 3 (pair of Tree E and Tree F):

Case \(\pi \) of Tree E as subject one;

Example 3 (pair of Tree E and Tree F):

Case \(\pi \) of Tree E as subject one;
In panel 3a, there are five \((P_1 \sim P_5)\) and three \((P_6 \sim P_8)\) possible corresponding clusters in this case. Following the same algorithm as adopted in Cases 1 and 2, clusters \(C_1 \sim C_3\) and \(C_1', C_2'\) and \(C_3'\) can be assigned as shown in Panel 3b.

Case \((-\pi)\) of Tree F as subject one:

![Diagram of Tree F/Subject and Tree E/Object](image)

In the second session where the relationship of the subject and object is inversed, the named clusters \(C_1 \sim C_3\) and \(C_1', C_2'\) and \(C_3'\) can be assigned as shown in Panel 3d.

CMS and the number of branches for the pair of Trees E and F:

For Case \(\pi\) (Panel 3b)

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Tree E	\(C_1\)	\(e_1, e_2\)	2 (Eq. 1)	\(1+1+1+1+1+1\)
	\(C_2\)	\(e_5, e_6\)	2 (Eq. 1)	\(+1.5\)
	\(C_3\)	\(C_1, e_3, e_6, C_2\)	\(0.5+2.5+0.5 = 3.5\) (Eq. 2)	\(9.5\)
Tree F	\(C_1'\)	\(2(e_1, e_2)\) of 3 \((e_1, e_2, e_3)\)	2/3 (Eq. 3)	\(1+1+1+1+1+1+1\)
	\(C_2'\)	\(2(e_5, e_6)\) of 3 \((e_4, e_5, e_6)\)	2/3 (Eq. 3)	\(+1\)
	\(C_3'\)	\(C_1', e_3, C_2'\)	\(1+0.5+1=3\) (Eq. 4)	\(8\)
Total				**9.32**
No. of branches				**17.5**

For Case \((-\pi)\) (Panel 3d)

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Tree F	\(C_1\)	\(e_1, e_2, e_3\)	3 (Eq. 1)	\(1+1+1+1+1+1+1\)
	\(C_2\)	\(e_4, e_5, e_6\)	3 (Eq. 1)	\(+1\)
	\(C_3\)	\(C_1, C_2\)	1+1 = 2 (Eq. 2)	\(8\)
Tree E	\(C_1'\)	\(2(e_1, e_2)\) of 3 \((e_1, e_2, e_3)\)	2/3 (Eq. 3)	\(1+1+1+1+1+1+1\)
	\(C_2'\)	\(2(e_5, e_6)\) of 3 \((e_4, e_5, e_6)\)	2/3 (Eq. 3)	\(+1.5\)
	\(C_3'\)	\(C_1', e_3, C_2'\)	\(0.5+2.5+0.5 = 3.5\) (Eq. 4)	\(9.5\)
Total				**10.82**
No. of branches				**17.5**

Congruence value \((V_c)\):

\[
V_c = (9.32 + 10.82)/(2 \times 17.5) = 20.14/35 = 0.57
\]
3.4 Example 4 (pair of Tree G and Tree H):

Case \(\pi \) of Tree G as subject one;

Case (-\(\pi \)) of Tree H as subject one;

CMS and the number of branches for the pair of Trees G and H:

For Case \(\pi \) (Panel 4a)

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Tree G (subject)				
C_1	e_1, e_2		2 (Eq. 1)	
C_2	e_3, e_4		2 (Eq. 1)	
C_3	e_5, e_6		2 (Eq. 1)	
C_4	e_7, e_8		2 (Eq. 1)	
C_5	C_1, C_2		2 (Eq. 2)	
C_6	C_5, C_1		1+\(\pi \) = 1.5 (Eq. 2)	
C_7	C_6, C_4		1+0.25 = 1.25 (Eq. 2)	
Total				12.75

For Case (-\(\pi \)) (Panel 4b)

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Tree H (subject)				
C_1	e_1, e_2		2 (Eq. 1)	
C_2	e_3, e_4		2 (Eq. 1)	
C_3	e_5, e_6		2 (Eq. 1)	
C_4	e_7, e_8		2 (Eq. 1)	
C_5	C_1, C_2		2 (Eq. 2)	
C_6	C_5, C_1		1+\(\pi \) = 1.5 (Eq. 2)	
C_7	C_6, C_4		1+0.25 = 1.25 (Eq. 2)	
Total				12.75

Congruence value \(V_c \):

\[
V_c = \frac{(25.5 + 25.5)}{2 \times 25.5} = 1
\]
3.5 Example 5 (pair of Tree I and Tree J):

Case π of Tree I as subject one:

Panel 5a

Tree I/Subject	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
C_1	e_1, e_2	2 (Eq. 1)		
C_2	e_3, e_4, e_5	3 (Eq. 1)		
C_3	e_6, e_7, e_8	3 (Eq. 1)		
C_4	C_1, C_2	1+1=2 (Eq. 2)		11.5
C_5	C_2, C_3	1+0.5=1.5 (Eq. 2)		11.5

Total

17.32

For Case (-π) (Panel 5b)

Tree J/Object	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
C_1	e_1, e_2	2 (Eq. 1)		
C_2	2(e_3, e_4 of 3)	2/3 (Eq. 3)		10.37
C_3	2(e_6, e_7 of 3)	2/3 (Eq. 3)		10.37
C_4	C_1, C_2, e_5	5+5+0.25=1.25 (Eq. 4)		
C_5	C_4, C_3	1+0.25=1.25 (Eq. 4)		

Total

15.32

Congruence value (V_c):

$$V_c = (17.32 + 15.32)/(2 \times 21.87) = 32.64/43.74 = 0.74$$
3.6 Example 6 (pair of Tree K and Tree L):

Case \(\pi \) of Tree K as subject one;

Case \((-\pi)\) of Tree L as subject one;

CMS and the number of branches for the pair of Trees K and L:

For Case \(\pi \) (Panel 6a)

Based on criterion 3, no name is given as \(\leq 50\% \) elements of the subjective tree found the corresponding cluster contained in the objective tree.

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Tree K (subject)			(1+1+1+1+1)	= 5
Tree L (object)			(1+1+1+1+1+.5+.25+ .12) = 5.87	
Total				0.00

For Case \((-\pi)\) (Panel 6b)

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Tree L (subject)	\(C_1 \)	\(e_1, e_2 \)	2 (Eq. 1)	= 5.87
Tree L (subject)	\(C_2 \)	\(C_1, e_1 \)	1+.5=1.5 (Eq. 2)	
Tree L (subject)	\(C_3 \)	\(C_2, e_4 \)	1+.25=1.25 (Eq. 2)	
Tree L (subject)	\(C_4 \)	\(C_3, e_5 \)	1+.12=1.12 (Eq. 2)	
Tree K (object)	\(C_1 \)	\(2(e_1, e_2) \) of 5 \((e_1 \sim e_3)\)	.005 (Eq. 3)	5
Tree K (object)	\(C_2 \)	\(2 \) \((C_1, e_1)\) of 5	.005 (Eq. 3)	
Tree K (object)	\(C_3 \)	\(2 \) \((C_2, e_4)\) of 5	.005 (Eq. 3)	
Tree K (object)	\(C_4 \)	\(2 \) \((C_3, e_5)\) of 5	.005 (Eq. 3)	
Total			5.89	10.87

Congruence value \((V_c)\):

\[
V_c = (0.00 + 5.89)/(2 \times 10.87) = 5.89/21.74 = 0.27
\]
4. Application to the current study

4.1 Congruence value (V_c) between phenotype and 18S rDNA-based (Fig. 2c) trees:

Case π of phenotype-based tree as subject one;

Phenotype-based/Subject tree

18S rDNA-based (Fig. 2c)/Object tree
CMS and the number of branches for the pair of phenotype and 18S rDNA-based (Fig. 2c) trees:

For Case π;

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Phenotype-based tree (subject)	C_1	36a, 36c, 36d	3(Eq. 1)	=16.5
18S rDNA-based tree (object)	C_1'	2 (36c, 36d) of 3 (36 series)	2/3 (Eq. 3)	=17
Total				3.66

For Case ($-\pi$);

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
18S rDNA-based tree (Subject)				=17
C_1	9c, 9d		2 (Eq. 1)	
C_2	C_1, 9b	1+.5=1.5 (Eq. 2)		
C_3	C_a, 9e	1+.25 = 1.25 (Eq. 2)		
C_4	17e, 17d	.5+.5=1 (Eq. 2)		
C_5	C_a, 17f	1+.25=1.25 (Eq. 2)		
C_6	C_a, 17c	1+.12=1.12 (Eq. 2)		
C_7	36c, 36d	2 (Eq. 1)		
C_8	C_a, 36a	1+.5=1.5 (Eq. 2)		
C_9	C_a, C_b	.25+.12=.37 (Eq. 2)		
Phenotype-based tree (Object)				=16.5
C_1'	2 (9c, 9d) of 4 (9 series)	0.08 (Eq. 3)		
C_2'	9b, C_1'	0.08 (Eq. 3)		
C_3'	9e, C_2'	0.08 (Eq. 3)		
C_4'	17d, 17e	0.08 (Eq. 3)		
C_5'	17f, C_4'	0.08 (Eq. 3)		
C_6'	17c, C_3'	0.08 (Eq. 3)		
C_7'	36c, 36d	2/3 (Eq. 3)		
C_8'	36a, C_7'	2/3 (Eq. 3)		
C_9'	2 of 9 (9 &17series+15a)	<0.05 (Eq. 3)		
Total			13.79	

Congruence value (V_c):

$$V_c = (3.66 + 13.79)/(2 \times 33.5) = 17.45/67 = 0.26$$
4.2 Congruence value calculation between phenotype and 18S rDNA based (Fig. 2b) trees

Case π of phenotype-based tree as subject one;

Phenotype-based/Subject tree

18S rDNA-based (Fig. 2b)/Object tree
Case (-π) of 18S rDNA-based as subject one;

Congruence value \((V_c)\):

\[
V_c = 0 + 7.5/(2 \times 58) = 0.06
\]
4.3 Congruence value calculation between phenotype and GP-based (Fig. 3) trees.

Case π of Phenotype-based tree as subject one;

Phenotype-based/Subject tree

GP-based/Object tree
Case (−π) of GP-based tree as subject one;

GP-based/Subject tree

Phenotype-based/Object tree

9a C. japonica
9e P. milnei
9c O. albistylum *
9b O. viridicostus *
9d P. flavescens *
10a B. germanica
19a B. irregulariterdentatum *
15a O. gibba *
17f T. japonica *
17d E. japonicus *
17e O. japonica *
17a A. cinerea
17f T. japonica *
31a P. japonica *
38a B. diversus *
28a A. dohrni
28c P. cossota *
28b B. ferruginea
28d T. japonensis
33a A. scolymus
33b C. hylas
36a C. chinense *
36c P. japonica *
36d S. quadricolor *
36b G. laevistriatus

9a Colopteryx japonica
9b Onychogomphus viridicostus
9c Orthetrum albistylum
9d Pantala flavescens
9e Planaeschna milnei
10a Blatella germanica
15a Oxya gibba
17a Acrida cinerea
17b Atractomorpha lata
17c Conocephalus chinensis
17d Eusphingonotus japonicus
17e Oxya japonica
17f Tetrix japonica Haan
19a Baculum irregulariterdentatum
28a Agriphodus dohrni
28b Bothrogonia ferruginea
28c Plautia cossota
28d Tanna japonensis
31a Panorpa japonica
33a Anthocaris scolymus
33b Cephonodes hylas
36a Campalita chinense
36b Geotrupes laevistriatus
36c Popillia japonica
36d Schwerzierum quadrivittatum
38a B. irregulariterdentatum
CMS and the number of branches for the pair of phenotype and GP-based (Fig. 3) trees:

For Case π;

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Phenotype-based tree (subject)	C_1	33a, 33b	2 (Eq. 1)	=28.5
GP-based tree (object)	C_1	33a, 33b	2 (Eq. 1)	=41.5
Total				4 70

For Case (-π);

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Phenotype-based tree (object)	C_1'	2 (9a, 9e) of 5 (9 series)	<0.05 (Eq. 3)	28.5
C_2'	9c, C_1'	<0.05 (Eq. 4)		
C_3'	2 (9b, 9d) of 5 (9 series)	<0.05 (Eq. 3)		
C_4'	C_2', C_3'	<0.05 (Eq. 3)		
C_5'	2 (17b, 17c) of 6 (17 series)	<0.05 (Eq. 3)		
C_6'	2 (17d, 17e) of 6 (17 series)	<0.05 (Eq. 3)		
C_7'	2 (17a, 17f) of 6 (17 series)	<0.05 (Eq. 3)		
C_8'	C_5', C_6'	<0.05 (Eq. 2)		
C_9'	2 (28a, 28c) of 4 (28 series)	<0.05 (Eq. 3)		
C_{10}'	2 (28b, 28d) of 4 (28 series)	<0.05 (Eq. 3)		
C_{11}'	C_9', C_{10}'	<0.05 (Eq. 3)		
C_{12}	33a, 33b	2 (Eq. 1)		
C_{13}'	2 (36c, 36d) of 4 (36 series)	<0.05 (Eq. 3)		
C_{14}'	36a, C_{13}'	<0.05 (Eq. 3)		
C_{15}'	36b, C_{14}'	<0.05 (Eq. 3)		
Total				29.75 70

Congruence value (V_c):

$$V_c = \frac{(4 + 29.75)}{(2 \times 70)} = \frac{33.75}{140} = 0.24$$
4.4 Congruence value (V') between phenotype and 18S rDNA-based (Fig. 2c) trees after the coarse-graining process:

Case π of Phenotype-based tree as subject one;

Case (-π) of 18S rDNA-based as subject one;
CMS and the number of branches for the pair of phenotype and 18S rDNA-based (Fig. 2c) trees:

For Case π;

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Phenotype-based tree (Subject)	C_1	9b, 9c, 9d, 9e	4 (Eq. 1)	=16.5
	C_2	17c, 17d, 17e, 17f	4 (Eq. 1)	
	C_3	36a, 36c, 36d	3 (Eq. 1)	
	C_4	C_1, C_2, C_3, 15a, 19a, 28c, 31a, 28a	5.5 (Eq. 2)	
18S rDNA-based tree (Object)	C_1	9e, 9b, 9c, 9d	4 (Eq. 1)	=20.5
	C_2'	17f, 17e, 17d	$\frac{3}{4}=0.75$ (Eq. 3)	
	C_3	36a, 36c, 36d	3 (Eq. 1)	
	C_4'	C_1, 17e, C_2, 28c, 38a, C_3	$0.25+0.12+0.12+0.12+0.25$ =1.11	
Total				25.36

For Case (-π);

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
18S rDNA-based tree (Subject)	C_1	9c, 9b, 9c, 9d	4 (Eq. 1)	=20.5
	C_2	17f, 17e, 17d, 15a	4 (Eq. 1)	
	C_3	C_2, 17c	$1+0.5=1.5$ (Eq. 2)	
	C_4	36a, 36c, 36d	4 (Eq. 1)	
	C_5	C_3, C_1	$1+0.5=1.5$ (Eq. 2)	
	C_6	C_5, C_4, 28c, 38a	$1+0.25+0.12=1.49$	
Phenotype-based tree (Object)	C_1	9b, 9c, 9d, 9e	4 (Eq. 1)	=16.5
	C_2'	17f, 17e, 17d	$\frac{3}{4}=0.75$ (Eq. 3)	
	C_3'	C_2', 17c	<0.05	
	C_4	36a, 36c, 36d	3 (Eq. 1)	
	C_5'	C_1, C_3'	$1+1=2$ (Eq. 4)	
	C_6'	C_5', C_4, 19a, 28c, 31a	$1+1+0.5+0.5=3.5$	
Total				28.74

Congruence value (V_c'):

$$V_c' = \frac{(25.36 + 28.74)/(2 \times 37)}{54/74} = 0.73$$
4.5 Congruence value (V'_c) between phenotype and 18S rDNA-based (Fig. 2b) trees after the coarse-graining process:

Case π of Phenotype-based tree as subject one:

Phenotype-based/Subject tree

18S rDNA-based (Fig. 2b)/Object tree
Case (–π) of 18S rDNA-based as subject one;

18S rDNA-based (Fig. 2b)/Subject tree

Phenotype-based/Object tree
CMS and the number of branches for the pair of phenotype and 18S rDNA-based (Fig. 2c) trees:

For Case π:

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Phenotype-based tree (Subject)	C_1	9a, 9b, 9c, 9d, 9e	5 (Eq. 1)	=28.5
	C_2	36a, 36b, 36c, 36d	4 (Eq. 1)	
18S rDNA-based tree (Object)	C_1'	9a, 9b, 9c, 9d	5/4=0.8 (Eq. 3)	=29.87
	C_2'	36a, 36c, 36d	¾=0.75 (Eq. 3)	
Total			**10.55**	**58.37**

For Case (π):

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
18S rDNA-based tree (Subject)	C_1	9a, 9b, 28a, 9c, 9d	5 (Eq. 1)	=29.87
	C_2	36a, 36c, 36d	3 (Eq. 1)	
	C_3	17e, 17a	2 (Eq. 1)	
Phenotype-based tree (Object)	C_1'	9a, 9b, 9c, 9d	4/5=0.8 (Eq. 3)	=28.5
	C_2'	36a, 36c, 36d	¾=0.75 (Eq. 3)	
	C_3'	17e, 17a	<0.05	
Total			**11.55**	**58.37**

Congruence value (V_c'):

$$V_c' = \frac{(10.55 + 11.55)}{(2 \times 58.37)} = \frac{22.1}{116.7} = 0.19$$
4.6 Congruence value (V') between phenotype and GP-based (Fig. 3) trees after the coarse-graining process:

Case π of Phenotype-based tree as subject one;

Phenotype-based/Subject tree

GP-based/Object tree

Coarse-graining of tree structure by bunching the level differences less than 15%

C1
C2
C3
C4
C5
C6

C1'
C2'
C3'
C4'
C5'
C6'

9a. C. japonica
9b. P. millef
9c. O. albizyram
9d. O. violaceus
9e. P. flavescens
9f. B. germanica
9g. O. gibba
10a. T. japonica
10b. E. japonicus
10c. P. japonica
10d. S. quadricolle
10e. C. chinense
10f. P. crossota

1a. Calopteryx japonica
1b. Orthogomphus viridicus
1c. Orthetrum albistylum
1d. Pantala flavaeans
1e. Planaecora minne
1f. Blaegella germanica
1g. Oyama gibba
1h. Aciida cinae
1i. Atractosepha lata
1j. Conoephalus chinensis
1k. Eupherginaeus japonicus
1l. Oega japonica
1m. Tetix japonica Haan
1n. Baculium Irvingianidentatum
1o. Apoiphasopus dolhmi
1p. Bithragnia fyrus
1q. Planta crosota
1r. Tonni japonensis
1s. Panorpa japonica
1t. Antocharos scolyms
1u. Capronides hylas
1v. Campilia chinense
1w. Geopitrupes leavistriatus
1x. Papilio japonica
1y. Schorasmium quadricolle
1z. Bombus diversus

36a. C. chinense
36b. P. japonica
36c. S. quadricolle
36d. G. leavistriatus

28a. A. dohri
28b. P. crosota
28c. B. fyrus
28d. T. japonensis
28e. A. scolyms
28f. C. hylas

31a. P. japonica
31b. D. diversus
31c. A. cinae
31d. O. gibba
31e. C. chinens
31f. O. albizyram
31g. O. violaceus
31h. P. flavescens
31i. B. germanica

36c. P. japonica
36d. S. quadricolle
36e. G. leavistriatus

17a. A. cinae
17b. A. lata
17c. C. chinens
17d. E. japonicus
17e. O. japonica
17f. T. japonica
17g. O. gibba
17h. P. japonica
17i. D. diversus
17j. B. germanica
17k. O. albizyram
17l. O. violaceus
17m. P. flavescens
17n. B. germanica
17o. O. gibba
17p. T. japonica
17q. O. albizyram
17r. O. violaceus
17s. P. flavescens
17t. B. germanica
17u. O. gibba
Case (−π) of GP-based as subject one;

Coarse-graining of tree structure by bunching the level differences less than 15%
CMS and the number of branches for the pair of phenotype and GP-based (Fig. 3) trees:

For Case π;

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
Phenotype-based	C_1	9a, 9b, 9c, 9d, 9e	5 (Eq. 1)	28.5
tree (Subject)	C_2	17a, 17b, 17c, 17d, 17e, 17f	6 (Eq. 1)	
	C_3	28a, 28b, 28c, 28d	4 (Eq. 1)	
	C_4	33a, 33b	2 (Eq. 1)	
	C_5	36a, 36b, 36c, 36d	4 (Eq. 1)	
	C_6	$C_1, 10a, 15a, C_2, 19a, C_3, 31a, C_4, C_5, 38a, 1+.5+1+1+.5+1+.5+1+.5$	5=7.5	
GP-based tree	C_1	9a, 9b, 9c, 9d, 9e	5 (Eq. 1)	36.12
(Object)	C_2'	17b, 17c, 17d, 17e	4/30=0.13 (Eq. 3)	
	C_3	28a, 28b, 28c, 28d	4 (Eq. 1)	
	C_4	33a, 33b	2 (Eq. 1)	
	C_5	36a, 36b, 36c, 36d	4 (Eq. 1)	
	C_6'	$C_1, 10a, 19a, 15a, C_2', 17a, 17f, 31a, 38a, C_3, C_4, C_5$	<.05+/-.05........	
Total				43.63
				64.62

For Case (-π);

Tree name	Assigned cluster	Elements	CMS (Eq. adopted)	No. of branches
GP-based tree	C_1	9a, 9b, 9c, 9d, 9e	5 (Eq. 1)	36.12
(Subject)	C_2	17b, 17c, 17d, 17e	4 (Eq. 1)	
	C_3	17a, 17f, 31a	3 (Eq. 1)	
	C_4	28a, 28b, 28c, 28d	4 (Eq. 1)	
	C_5	33a, 33b	2 (Eq. 1)	
	C_6	36a, 36c, 36d, 36b	4 (Eq. 1)	
	C_7	$C_3, 15a$	1+.5=1.5 (Eq. 2)	
	C_8	$C_1, 10a, 19a, C_7, C_2, C_3, 38a, C_4, C_5, C_6$	~1.0 (Eq. 2)	
Phenotype-based	C_1	9a, 9b, 9c, 9d, 9e	5 (Eq. 1)	28.5
tree (Object)	C_2'	17b, 17c, 17d, 17e	4/30=0.13 (Eq. 3)	
	C_3'	17a, 17f	<0.05	
	C_4	28a, 28b, 28c, 28d	4 (Eq. 1)	
	C_5	33a, 33b	2 (Eq. 1)	
	C_6'	$C_1, 10a, 15a, C_7$, C_3', C_7', C_4, C_5, C_6, 38a, 1+.5+1+1+1+1+.5+1+.5+1+.5=8.5		
Total				47.13
				64.62

Congruence value ($V_{c'}$):

$$V_{c'} = (43.63 + 47.13)/(2 \times 64.62) = 91.8/129 = 0.71$$
Summary findings of the current study:

Trees	V_c	V_c'
Phenotype vs 18S rDNA-based tree (Fig. 2b, 26 samples)	0.06	0.19
Phenotype vs 18S rDNA-based tree (Fig. 2c, 16 samples)	0.26	0.73
Phenotype vs GP-based tree (Fig. 3)	0.24	0.71