Continuity properties of the data-to-solution map for the two-component higher order Camassa-Holm system

Feng Wang
School of Mathematics and Statistics, Xidian University, Xi’an 710071, PR China

Fengquan Li
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China

Abstract. This work studies the Cauchy problem of a two-component higher order Camassa-Holm system, which is well-posed in Sobolev spaces $H^s(\mathbb{R}) \times H^{s-2}(\mathbb{R})$, $s > \frac{7}{2}$ and its solution map is continuous. We show that the solution map is Hölder continuous in $H^s(\mathbb{R}) \times H^{s-2}(\mathbb{R})$ equipped with the $H^r(\mathbb{R}) \times H^{r-2}(\mathbb{R})$-topology for $1 \leq r < s$, and the Hölder exponent is expressed in terms of s and r.

Keywords: Two-component higher order Camassa-Holm system; Cauchy problem; Well-posedness; Hölder continuity.

AMS subject classifications (2000): 35G25, 35L05, 35B30.

1 Introduction

In this paper, we consider the Cauchy problem of the following two-component higher order Camassa-Holm system

\[
\begin{align*}
 m_t &= \alpha u_x - bu_x m - um_x - \kappa \rho \rho_x, \quad m = Au, \\
 \rho_t &= -u \rho_x - (b - 1)u_x \rho, \quad b \in \mathbb{R} \setminus \{1\}, \\
 \alpha_t &= 0,
\end{align*}
\]

(1.1)

where $Au = (1 - \partial_x^2)^\sigma u$ with $\sigma > 1$, and b, κ are real parameters. Eq. (1.1) was proposed by Escher and Lyons [16], in which they showed that the system corresponds to a metric induced geodesic flow on the infinite dimensional Lie group $\text{Diff}^\infty(S^1) \otimes C^\infty(S^1) \times \mathbb{R}$ and admits a global solution in $C^\infty([0, \infty); C^\infty(S^1) \oplus C^\infty(S^1))$ with smooth initial data in $C^\infty(S^1) \oplus C^\infty(S^1))$ when $b = 2$, where $\text{Diff}^\infty(S^1)$ denotes the group of orientation preserving diffeomorphisms of the circle and \otimes denotes an appropriate semi-direct product between the pair. Recently, He and Yin [22], Chen and Zhou [4] established the local well-posedness of (1.1) in Besov spaces. Zhou [38], Zhang and Li [37] investigated the local well-posedness, blow-up criteria and Gevrey regularity of the solutions to (1.1) with $\sigma = 2$. When $\rho \equiv 0$, $\alpha = 0$ and $b = 2$, (1.1) reduces to a Camassa-Holm equation...
with fractional order inertia operator, whose geometrical interpretation and local well-posedness can be seen in [12, 13, 22], and if we further assume \(2 \leq \sigma \in \mathbb{Z}_+\), (1.1) becomes a higher order Camassa-Holm equation derived as the Euler-Poincaré differential equation on the Bott-Virasoro group with respect to the \(H^\sigma\) metric [32].

For \(\sigma = 1\), (1.1) reduces to the following nonlinear system [11]

\[
\begin{align*}
 m_t &= \alpha u_x - bu_x m - um_x - \kappa \rho_x, \quad m = u - u_{xx}, \\
 \rho_t &= -u \rho_x - (b - 1)u_x \rho, \quad b \in \mathbb{R} \setminus \{1\},
\end{align*}
\]

(1.2)

which models the two-component shallow water waves with constant vorticity \(\alpha\). In [11], Escher et al. showed the local well-posedness of (1.2) under a geometrical framework, and studied the blow-up scenarios and global strong solutions of (1.2) on the circle. In [18], Guan et al. considered the Cauchy problem of (1.2) in the Besov space and showed that the solutions have exponential decay if the initial data has exponential decay. When \(\alpha = 0\), \(b = 2\) and \(\kappa = \pm 1\), (1.2) becomes the two-component Camassa-Holm system, which admits Lax pair and bi-Hamiltonian structure, and thus is completely integrable [3]. When \(\rho \equiv 0\) and \(\alpha = 0\), (1.2) reduces to a family of equations parameterised by \(b \neq 1\), the so-called \(b\)-family equation. In particular, when \(b = 2\) and \(b = 3\), the \(b\)-family equation respectively becomes the famous completely integrable Camassa-Holm equation [2] and Degasperis-Procesi equation [10], which were introduced to model the unidirectional propagation of shallow water waves over a flat bottom. The Cauchy problem for these equations have been well-studied both on the real line and on the circle, including the well-posedness, blow-up behavior, global existence, traveling wave solutions and so on, e.g. [1, 6–9, 14, 15, 17, 19–21, 24, 25, 28–30, 36] and the references therein.

The present paper is devoted to establishing the Hölder continuity of the data-to-solution map for system (1.1) with \(\sigma = 2\) in \(H^s(\mathbb{R}) \times H^{s-2}(\mathbb{R})\), \(s > \frac{7}{2}\), which provides more information about the stability of the solution map than the one given by Corollary 3.1.2 in [37]. We mention that Hölder continuity for the \(b\)-equation was proved on the line by Chen, Liu and Zhang in [5], and for other equations were showed in [23, 26, 31, 35]. To obtain the desired result, we need to extend the estimate of \(\|fg\|_{H^{s-\frac{1}{2}}(\mathbb{R})}\) for \(0 \leq r \leq 1\) in [23], commonly used in the previous works, to that of \(\|fg\|_{H^{s-k}(\mathbb{R})}\) for \(0 \leq r \leq k\) and \(k > 1\), which plays a key role in proving the main result.

The rest of the paper is organized as follows. In Section 2, the local well-posedness for (1.1) with \(\sigma = 2\) and initial data in \(H^s(\mathbb{R}) \times H^{s-2}(\mathbb{R})\), \(s > \frac{7}{2}\), is established, an explicit lower bound for the maximal existence time \(T\) and an estimate of the solution size are provided. The Hölder continuity of the data-to-solution map is showed in Section 3.

Throughout the paper, we denote by \(\|\cdot\|_X\) the norm of Banach space \(X\), \((\cdot, \cdot)\) the inner product of Hilbert space \(L^2(\mathbb{R})\), and ” \(\lesssim\) ” the inequality up to a positive constant.

2 Local well-posedness and estimate of the solution size

In this section, we will give the local well-posedness for Eq.(1.1) with \(\sigma = 2\), and provide an explicit lower bound for the maximal existence time and an estimate of the solution size.

Setting \(\Lambda^{-1} := (1 - \partial_x^2)^{-2}\), the initial-value problem associated to Eq.(1.1) with \(\sigma = 2\) can be
rewritten in the following form:

\[
\begin{cases}
 u_t + uu_x + \partial_x \Lambda^{-4} \left(\frac{b}{2} u^2 + (3 - b) u_x^2 - \frac{b+5}{2} u_{xx} + (b - 5) u_x u_{xxx} + \frac{9}{2} \rho^2 - \alpha u \right) = 0, & t > 0, \ x \in \mathbb{R}, \\
 \rho_t + u \rho_x + (b - 1) u_x \rho = 0, & t > 0, \ x \in \mathbb{R}, \\
 u(0,x) = u_0(x), \ \rho(0,x) = \rho_0(x) & x \in \mathbb{R},
\end{cases}
\]

(2.1)

Applying the transport equation theory combined with the method of the Besov spaces, one may obtain the following local well-posedness result for system (2.1), more details can be seen in [37, 38].

Theorem 2.1. Given \((u_0, \rho_0) \in H^s(\mathbb{R}) \times H^{s-2}(\mathbb{R}), s > \frac{7}{2}\), there exist a maximal \(T = T(u_0, \rho_0) > 0\) and a unique solution \((u, \rho)\) to (2.1) such that

\[(u, \rho) \in C([0, T); H^s(\mathbb{R}) \times H^{s-2}(\mathbb{R})) \cap C^1([0, T); H^{s-1}(\mathbb{R}) \times H^{s-3}(\mathbb{R}))\]

Moreover, the solution depends continuously on the initial data, and \(T\) is independent of \(s\).

Next, we recall the following estimates which will be used later.

Lemma 2.1. (see [27]) If \(r > 0\), then \(H^r(\mathbb{R}) \cap L^\infty(\mathbb{R})\) is an algebra. Moreover,

\[\|fg\|_{H^r(\mathbb{R})} \leq c_r (\|f\|_{L^\infty(\mathbb{R})}\|g\|_{H^r(\mathbb{R})} + \|f\|_{H^r(\mathbb{R})}\|g\|_{L^\infty(\mathbb{R})}),\]

where \(c_r\) is a positive constant depending only on \(r\).

Lemma 2.2. (see [27]) If \(r > 0\), then

\[\|g[A^r; f] g\|_{L^2(\mathbb{R})} \leq c_r (\|\partial_x f\|_{L^\infty(\mathbb{R})}\|A^{r-1} g\|_{L^2(\mathbb{R})} + \|A^r f\|_{L^2(\mathbb{R})}\|g\|_{L^\infty(\mathbb{R})}),\]

where \(A^r = (1 - \partial_x^2)^{r/2}\) and \(c_r\) is a positive constant depending only on \(r\).

Lemma 2.3. (see [33]) If \(f \in H^s(\mathbb{R})\) with \(s > \frac{3}{2}\), then there exists a constant \(c > 0\) such that for any \(g \in L^2(\mathbb{R})\) we have

\[\| \partial_x g \|_{L^2(\mathbb{R})} \leq c \|g\|_{C^1(\mathbb{R})}, \]

in which for each \(\varepsilon \in (0, 1]\), the operator \(J_\varepsilon\) is the Friedrichs mollifier defined by

\[J_\varepsilon f(x) = j_\varepsilon * f(x),\]

where \(j_\varepsilon(x) = \frac{1}{\varepsilon^3} j(\frac{x}{\varepsilon})\) and \(j(x)\) is a nonnegative, even, smooth bump function supported in the interval \((-1, 1)\) such that \(\int_{\mathbb{R}} j(x) dx = 1\). For any \(f \in H^s(\mathbb{R})\) with \(s \geq 0\), we have \(J_\varepsilon f \to f\) in \(H^s(\mathbb{R})\) as \(\varepsilon \to 0\).

Theorem 2.2. Let \((u, \rho)\) be the solution of system (2.1) with initial data \((u_0, \rho_0) \in H^s(\mathbb{R}) \times H^{s-2}(\mathbb{R}), s > \frac{7}{2}\). Then, the maximal existence time \(T\) satisfies

\[T \geq T_0 := \frac{1}{2c_s} \ln(1 + \frac{1}{\|u_0\|_{H^s(\mathbb{R})} + \|\rho_0\|_{H^{s-2}(\mathbb{R})}}),\]
where c_s is a constant depending on s. Also, we have
\[
\|u\|_{H^{s}(\mathbb{R})} + \|\rho\|_{H^{s-2}(\mathbb{R})} \leq 2e^{c_s T_0} (\|u_0\|_{H^{s}(\mathbb{R})} + \|\rho_0\|_{H^{s-2}(\mathbb{R})}), \quad t \in [0, T_0].
\]

Proof. Note that the products $uu_x, u\rho_x$ only have the regularity of $H^{s-1}(\mathbb{R})$ and $H^{s-3}(\mathbb{R})$ when $(u, \rho) \in H^s(\mathbb{R}) \times H^{s-2}(\mathbb{R})$. To deal with this problem, we apply the operator J_ε to the system
\[
\begin{aligned}
& (J_\varepsilon u)_t + J_\varepsilon (uu_x) + \partial_x \Lambda^{-4} [\frac{b+5}{2} J_\varepsilon (u^2) + (3-b)J_\varepsilon (u_x^2)] \\
& - \frac{b+5}{2} J_\varepsilon (u_x^2) + (b-5)J_\varepsilon (u_x u_{xxx}) + \frac{\varepsilon}{2} J_\varepsilon (\rho^2) - \alpha J_\varepsilon u = 0,
\end{aligned}
\]

\[
\begin{aligned}
& (J_\varepsilon \rho)_t + J_\varepsilon (u\rho_x) + (b-1)J_\varepsilon (\rho u_x) = 0.
\end{aligned}
\]

Applying the operator $\Lambda^s = (1 - \partial_x^2)^{s/2}$ to the first equation of (2.2), then multiplying the resulting equation by $\Lambda^s J_\varepsilon u$ and integrating with respect to $x \in \mathbb{R}$, we obtain
\[
\begin{aligned}
& \frac{1}{2} \frac{d}{dt} \|J_\varepsilon u\|_{H^s(\mathbb{R})}^2 = - \langle \Lambda^s J_\varepsilon (uu_x), \Lambda^s J_\varepsilon u \rangle \\
& - \langle \Lambda^s J_\varepsilon u, \partial_x \Lambda^s \Lambda^{-4} [\frac{b+5}{2} J_\varepsilon (u^2) + (3-b)J_\varepsilon (u_x^2)] - \frac{b+5}{2} J_\varepsilon (u_x^2) + (b-5)J_\varepsilon (u_x u_{xxx}) + \frac{\varepsilon}{2} J_\varepsilon (\rho^2) - \alpha J_\varepsilon u \rangle.
\end{aligned}
\]

In what follows next we use the fact that Λ^s and J_ε commute and that J_ε satisfies the properties
\[
(J_\varepsilon f, g) = (f, J_\varepsilon g) \quad \text{and} \quad \|J_\varepsilon u\|_{H^s(\mathbb{R})} \leq \|u\|_{H^s(\mathbb{R})}.
\]

Let us estimate the first term of the right hand side of (2.3).
\[
\begin{aligned}
& \langle \Lambda^s J_\varepsilon (uu_x), \Lambda^s J_\varepsilon u \rangle \\
& = \langle \Lambda^s (uu_x), J_\varepsilon \Lambda^s J_\varepsilon u \rangle \\
& = \langle \langle \Lambda^s, u \rangle u_x, J_\varepsilon \Lambda^s J_\varepsilon u \rangle + \langle u \Lambda^s u_x, J_\varepsilon \Lambda^s J_\varepsilon u \rangle \\
& = \langle \langle \Lambda^s, u \rangle u_x, J_\varepsilon \Lambda^s J_\varepsilon u \rangle + \langle J_\varepsilon u \partial_x \Lambda^s u, \Lambda^s J_\varepsilon u \rangle \\
& = \langle \langle \Lambda^s, u \rangle u_x, J_\varepsilon \Lambda^s J_\varepsilon u \rangle + \langle J_\varepsilon u \partial_x \Lambda^s u, \Lambda^s J_\varepsilon u \rangle + \langle u J_\varepsilon \partial_x \Lambda^s u, \Lambda^s J_\varepsilon u \rangle + \langle u J_\varepsilon \partial_x \Lambda^s u, \Lambda^s J_\varepsilon u \rangle \\
& \leq \|\Lambda^s u_x\|_{L^2(\mathbb{R})} \|J_\varepsilon \Lambda^s J_\varepsilon u\|_{L^2(\mathbb{R})} + \|J_\varepsilon u\partial_x \Lambda^s u\|_{L^2(\mathbb{R})} \|\Lambda^s J_\varepsilon u\|_{L^2(\mathbb{R})} \\
& \quad + \frac{1}{2} \|u \Lambda^s u_x \Lambda^s J_\varepsilon u\| \lesssim \|u\|^3_{H^s(\mathbb{R})},
\end{aligned}
\]

where we have used Lemma 2.2 with $r = s$ and Lemma 2.3. Furthermore, we estimate the second term of the right hand side of (2.3) in the following way
\[
\begin{aligned}
& \|\partial_x \Lambda^{-4} [\frac{b+5}{2} J_\varepsilon (u^2) + (3-b)J_\varepsilon (u_x^2)] - \frac{b+5}{2} J_\varepsilon (u_x^2) + (b-5)J_\varepsilon (u_x u_{xxx}) + \frac{\varepsilon}{2} J_\varepsilon (\rho^2) - \alpha J_\varepsilon u \|_{H^s(\mathbb{R})} \|u\|_{H^s(\mathbb{R})} \\
& \leq \|\partial_x \Lambda^{-4} [\frac{b+5}{2} J_\varepsilon (u^2) + (3-b)J_\varepsilon (u_x^2)] - \frac{b+5}{2} J_\varepsilon (u_x^2) + (b-5)J_\varepsilon (u_x u_{xxx}) + \frac{\varepsilon}{2} J_\varepsilon (\rho^2) - \alpha J_\varepsilon u \|_{H^s(\mathbb{R})} \|u\|_{H^s(\mathbb{R})} \\
& \lesssim \|u\|_{H^{s-3}(\mathbb{R})} + \|u_x\|_{H^{s-3}(\mathbb{R})} + \|u_{xxx}\|_{H^{s-3}(\mathbb{R})} + \|u_{xxx}\|_{H^{s-3}(\mathbb{R})} + \|u\|_{H^{s-3}(\mathbb{R})} \|u\|_{H^s(\mathbb{R})} \\
& \lesssim \|u\|^2_{H^s(\mathbb{R})} + \|\rho\|^2_{H^{s-2}(\mathbb{R})} + \|u\|_{H^s(\mathbb{R})} \|u\|_{H^s(\mathbb{R})},
\end{aligned}
\]

where we have used Lemma 2.1 with $r = s - 3$. Thus, we have
\[
\begin{aligned}
& \frac{1}{2} \frac{d}{dt} \|J_\varepsilon u\|^2_{H^s(\mathbb{R})} \lesssim (\|u\|^2_{H^s(\mathbb{R})} + \|\rho\|^2_{H^{s-2}(\mathbb{R})} + \|u\|_{H^s(\mathbb{R})}) \|u\|_{H^s(\mathbb{R})}.
\end{aligned}
\]

Letting $\varepsilon \to 0$, we get
\[
\frac{d}{dt} \|u\|_{H^s(\mathbb{R})} \lesssim \|u\|^2_{H^s(\mathbb{R})} + \|\rho\|^2_{H^{s-2}(\mathbb{R})} + \|u\|_{H^s(\mathbb{R})}. \tag{2.4}
\]
Applying the operator $\Lambda^{s-2} = (1 - \partial^2_r)^{(s-2)/2}$ to the second equation of (2.3), then multiplying the resulting equation by $\Lambda^{s-2} J_r \rho$ and integrating with respect to $x \in \mathbb{R}$, we obtain
\[\frac{1}{2} \frac{d}{dt} \| J_r \rho \|_{H^{s-2}(\mathbb{R})}^2 = - (\Lambda^{s-2} J_r (u\rho_x), \Lambda^{s-2} J_r \rho) - (b - 1) (\Lambda^{s-2} J_r (\rho u_x), \Lambda^{s-2} J_r \rho) \]
\[= - (\Lambda^{s-2} (u\rho_x), J_r \Lambda^{s-2} J_r \rho) - (b - 1) (\Lambda^{s-2} (\rho u_x), J_r \Lambda^{s-2} J_r \rho) \]
\[= - (\Lambda^{s-2}, u|\rho_x| J_r \Lambda^{s-2} J_r \rho) - (|J_r, u|\Lambda^{s-2} \rho_x, \Lambda^{s-2} \rho \xi J_r \Lambda^{s-2} J_r \rho) - (u J_r \Lambda^{s-2} \rho_x, \Lambda^{s-2} J_r \rho) \]
\[- (b - 1) (\Lambda^{s-2}, \rho u_x), J_r \Lambda^{s-2} J_r \rho) - (b - 1) (|J_r, \rho|\Lambda^{s-2} \rho_x, \Lambda^{s-2} J_r \rho) \]
\[- (b - 1) (\rho J_r \Lambda^{s-2} u_x, \Lambda^{s-2} J_r \rho) \]
\[\lesssim \| \Lambda^{s-2}, u \rho_x \|_{L^2(\mathbb{R})} \| J_r \Lambda^{s-2} J_r \rho \|_{L^2(\mathbb{R})} + \| |J_r, u|\Lambda^{s-2} \rho_x \|_{L^2(\mathbb{R})} \| \Lambda^{s-2} \rho \|_{L^2(\mathbb{R})} \]
\[+ \| (u_x \Lambda^{s-2} J_r \rho, \Lambda^{s-2} J_r \rho) \|_{L^2(\mathbb{R})} + \| |J_r, \rho|\Lambda^{s-2} u_x \|_{L^2(\mathbb{R})} \| \Lambda^{s-2} \rho \|_{L^2(\mathbb{R})} \]
\[+ \| J_r \rho \Lambda^{s-2} u_x \|_{L^2(\mathbb{R})} \| \Lambda^{s-2} \rho \|_{L^2(\mathbb{R})} \| \Lambda^{s-2} \rho \|_{L^2(\mathbb{R})} \]
\[\lesssim \| u \|_{H^s(\mathbb{R})} \| \rho \|_{H^{s-2}(\mathbb{R})}^2, \]
where we have used Lemmas 2.2-2.3 and integrating by parts. Letting $\varepsilon \to 0$, we get
\[\frac{d}{dt} \| \rho \|_{H^{s-2}(\mathbb{R})} \lesssim \| \rho \|_{H^{s-2}(\mathbb{R})} \| u \|_{H^s(\mathbb{R})}. \quad (2.5) \]

Combining (2.4) and (2.5), we have
\[\frac{d}{dt} (\| u \|_{H^s(\mathbb{R})} + \| \rho \|_{H^{s-2}(\mathbb{R})}) \]
\[\lesssim \| u \|_{H^s(\mathbb{R})}^2 + \| \rho \|_{H^{s-2}(\mathbb{R})}^2 \| u \|_{H^s(\mathbb{R})} + \| \rho \|_{H^{s-2}(\mathbb{R})} \]
\[\leq (\| u \|_{H^s(\mathbb{R})} + \| \rho \|_{H^{s-2}(\mathbb{R})}^2)^2 + \| u \|_{H^s(\mathbb{R})} + \| \rho \|_{H^{s-2}(\mathbb{R})}. \]

Letting $y(t) = \| u \|_{H^s(\mathbb{R})} + \| \rho \|_{H^{s-2}(\mathbb{R})}$, then we get
\[- \frac{d(y^{-1} + 1)}{dt} \leq c_s (y^{-1} + 1), \quad y_0 := y(0) = \| u_0 \|_{H^s(\mathbb{R})} + \| \rho_0 \|_{H^{s-2}(\mathbb{R})}, \]
which implies that
\[y \leq \frac{1}{e^{-c_s t} (y_0^{-1} + 1) - 1}. \]
Setting
\[T_0 := \frac{1}{2c_s} \ln(1 + \frac{1}{\| u_0 \|_{H^s(\mathbb{R})} + \| \rho_0 \|_{H^{s-2}(\mathbb{R})}}), \]
we see from the above inequality that the solution (u, ρ) exists for $0 \leq t \leq T_0$ and satisfies a solution size bound
\[\| u \|_{H^s(\mathbb{R})} + \| \rho \|_{H^{s-2}(\mathbb{R})} \leq 2e^{c_s T_0} (\| u_0 \|_{H^s(\mathbb{R})} + \| \rho_0 \|_{H^{s-2}(\mathbb{R})}), \quad \forall 0 \leq t \leq T_0, \]
which completes the proof of the theorem. \qed

3 Hölder continuity

In this section, we will show that the solution map for system (2.1) is Hölder continuous in $H^s(\mathbb{R}) \times H^{s-2}(\mathbb{R})$, $s > \frac{7}{2}$, equipped with the $H^r(\mathbb{R}) \times H^{r-2}(\mathbb{R})$-topology for $1 \leq r < s$. Firstly,
we recall the following lemmas.

Lemma 3.1. (see [34]) If \(s > \frac{1}{2} \) and \(0 \leq \sigma + 1 \leq s \), then there exists a constant \(c > 0 \) such that
\[
\| \Lambda^s \partial_x f \|_{L^2(\mathbb{R})} \leq c \| f \|_{H^r(\mathbb{R})} \| v \|_{H^s(\mathbb{R})}.
\]

Lemma 3.2. (see [25]) If \(r > \frac{1}{2} \), then there exists a constant \(c_r > 0 \) depending only on \(r \) such that
\[
\| f g \|_{H^{r-1}(\mathbb{R})} \leq c_r \| f \|_{H^r(\mathbb{R})} \| g \|_{H^{r-1}(\mathbb{R})}.
\]

Lemma 3.2 gives the estimate of \(\| f g \|_{H^r(\mathbb{R})} \) for \(s > -\frac{1}{2} \), the other cases are provided in the following lemma.

Lemma 3.3. If \(0 \leq r \leq k \), \(j > \frac{1}{2} \) and \(j \geq k-r \) with \(k \in \mathbb{Z}_+ \), then there exists a constant \(c_{r,j,k} > 0 \) depending on \(r, j \) and \(k \) such that
\[
\| f g \|_{H^{r-k}(\mathbb{R})} \leq c_{r,j,k} \| f \|_{H^j(\mathbb{R})} \| g \|_{H^{r-k}(\mathbb{R})}.
\]

Proof. The proof can be done by adapting analogous methods as in [23], in which they only considered the case \(k = 1 \). For the reader’s convenience, we provide the arguments with obvious modifications. Similar as the proof of Lemma 3 on \(\mathbb{R} \) in [23], we can obtain
\[
\| f g \|_{H^{r-k}(\mathbb{R})}^2 = \int_{\mathbb{R}} (1 + \xi^2)^{r-k} | \int_{\mathbb{R}} \hat{f}(\eta) \hat{g}(\xi - \eta) d\eta |^2 d\xi
\]
\[
= \int_{\mathbb{R}} (1 + \xi^2)^{r-k} | \int_{\mathbb{R}} (1 + \eta^2)^{\frac{j}{2}} \hat{f}(\eta) \cdot (1 + \eta^2)^{-\frac{j}{2}} \hat{g}(\xi - \eta) d\eta |^2 d\xi
\]
\[
\leq \| f \|_{H^j(\mathbb{R})}^2 \| \hat{g}(\eta) \|_{L^2}^2 \int_{\mathbb{R}} (1 + \xi^2)^{r-k} (1 + (\xi - \eta)^2)^{-j} d\xi d\eta,
\]
in which we have applied the Cauchy-Schwartz inequality in \(\eta \), a change of variables, and changed the order of summation. To get the desired result, it is sufficient to show that there exists a constant \(c_{r,j,k} > 0 \) such that
\[
\int_{\mathbb{R}} (1 + \xi^2)^{r-k} (1 + (\xi - \eta)^2)^{-j} d\xi \leq c_{r,j,k} (1 + \eta^2)^{r-k}.
\]
In fact, we can check the inequality under the conditions \(j > \frac{1}{2} \) and \(j \geq k-r \), the main difference with proof of Lemma 5 in [23] is replacing the discussions on \(\frac{1}{2} < r \leq 1 \) (\(0 \leq r < \frac{1}{2}, r = \frac{1}{2} \), respectively) by \(k - \frac{1}{2} < r \leq k \) (\(0 \leq r < k - \frac{1}{2}, r = k - \frac{1}{2} \), respectively) for the cases \(\xi \in [\frac{1}{2}, \eta] \) and \(\xi \in [\eta, \frac{3}{2}] \).

Remark 3.1. Lemma 3.3 is more general than (iii) of Proposition 2.4 in [21] when considering the Sobolev norm of \(f g \) with negative index, since it covers the case \(j = k-r \) here.

Theorem 3.1. Assume \(s > \frac{1}{2} \) and \(1 \leq r < s \). Then the solution map for system (2.1) is Hölder continuous with exponent
\[
\beta = \begin{cases}
1, & \text{if } 1 \leq r \leq s - 1 \text{ and } s + r \geq 5, \\
\frac{2s-3}{s-r}, & \text{if } \frac{5}{2} < s < 4 \text{ and } 1 \leq r \leq 5 - s, \\
s - r, & \text{if } s - 1 < r < s \end{cases}
\]
as a map from $B(0, h) := \{(u, \rho) \in H^s(\mathbb{R}) \times H^{s-2}(\mathbb{R}) : \|u\|_{H^s(\mathbb{R})} + \|\rho\|_{H^{s-2}(\mathbb{R})} \leq h\}$ with $H^s(\mathbb{R}) \times H^{s-2}(\mathbb{R})$-norm to $C([0, T_0]; H^r(\mathbb{R}) \times H^{r-2}(\mathbb{R}))$, where $T_0 > 0$ is defined as in Theorem 2.2. More precisely, we have

$$\|\|(u(t), \rho(t)) - (v(t), \theta(t))\|_{C([0, T_0]; H^r(\mathbb{R}) \times H^{r-2}(\mathbb{R}))} \leq c\|(u(0), \rho(0)) - (v(0), \theta(0))\|_{H^r(\mathbb{R}) \times H^{r-2}(\mathbb{R})}^\beta,$$

for all $(u(0), \rho(0)), (v(0), \theta(0)) \in B(0, h)$ and $(u(t), \rho(t)), (v(t), \theta(t))$ the solutions corresponding to the initial data $(u(0), \rho(0)), (v(0), \theta(0))$, respectively. The constant c depends on s, r, T_0 and h.

Proof. Define $w = u - v$ and $\eta = \rho - \theta$, then (w, η) satisfies that

$$\begin{cases}
 w_t + \partial_x \left(\frac{1}{2} w(u + v) + \partial_x \Lambda^{-4} \frac{3}{2} w(u + v) + (3 - b)w_x(u_x + v_x) - \frac{4 + 5}{2} w_{xx}(u_{xx} + v_{xx}) \right) \\
 + (b - 5)w_x u_{xxx} + (b - 5)v_x w_{xxx} + \frac{5}{2} \eta(\rho + \theta) - \alpha w = 0, \quad t > 0, \ x \in \mathbb{R}, \\
 \eta_t + w \partial_x \eta = -(b - 1)(w_x \rho + v_x \eta), \quad t > 0, \ x \in \mathbb{R}, \\
 w(0, x) = u_0 - v_0, \ \eta(0, x) = \rho_0 - \theta_0, \ \ x \in \mathbb{R}.
\end{cases} \tag{3.1}$$

(i) We first consider the case $1 \leq r \leq s - 1$ and $r + s \geq 5$, where $s > \frac{5}{2}$. Applying Λ^r to the first equation of (3.1), then multiplying both sides by $\Lambda^r w$ and integrating over \mathbb{R} with respect to x, we get

$$\frac{1}{2} \frac{d}{dt} \|w\|_{H^r(\mathbb{R})}^2 = - (\Lambda^r \partial_x (\frac{1}{2} w(u + v)), \Lambda^r w)
\quad - (\Lambda^r \partial_x \Lambda^{-4} \frac{3}{2} w(u + v) + (3 - b)w_x(u_x + v_x) - \frac{4 + 5}{2} w_{xx}(u_{xx} + v_{xx})
\quad + (b - 5)w_x u_{xxx} + (b - 5)v_x w_{xxx} + \frac{5}{2} \eta(\rho + \theta) - \alpha w, \Lambda^r w)
\quad := E_1 + E_2.$$

To get the desired result, we need to estimate E_1 and E_2.

Estimate E_1. By using Lemma 3.1, integrating by parts and the Sobolev embedding theorem $H^r(\mathbb{R}) \hookrightarrow L^\infty(\mathbb{R})$ for $r > \frac{5}{2}$, we have

$$\|w\|_{H^r(\mathbb{R})} \leq \|u + v\|_{H^s(\mathbb{R})} \|w\|_{H^r(\mathbb{R})}.$$

Estimate E_2. It is easy to show that

$$|E_2| = | - (\Lambda^r \partial_x \Lambda^{-4} \frac{3}{2} w(u + v) + (3 - b)w_x(u_x + v_x) - \frac{4 + 5}{2} w_{xx}(u_{xx} + v_{xx})
\quad + (b - 5)w_x u_{xxx} + (b - 5)v_x w_{xxx} + \frac{5}{2} \eta(\rho + \theta) - \alpha w, \Lambda^r w)|
\leq \|\partial_x \Lambda^{-4} \frac{3}{2} w(u + v) + (3 - b)w_x(u_x + v_x) - \frac{4 + 5}{2} w_{xx}(u_{xx} + v_{xx})
\quad + (b - 5)w_x u_{xxx} + (b - 5)v_x w_{xxx} + \frac{5}{2} \eta(\rho + \theta) - \alpha w\|_{H^r(\mathbb{R})} \|w\|_{H^r(\mathbb{R})}.$$
Using integrating by parts, we have
\[
\|\partial_r A^{-1}\left(\frac{b}{2}w(u + v) + (3 - b)w_x(u_x + v_x) - \frac{b+5}{2}w_{xx}(u_{xx} + v_{xx})\right)
+ (b - 5)v_xw_{xxx} + (b - 5)v_xw_{xxx} + \frac{b}{2}\eta(\rho + \theta) - \alpha w\|_{H^{1}(\mathcal{R})}
= \|\partial_r A^{-1}\left(\frac{b}{2}w(u + v) + (3 - b)w_x(u_x + v_x) + w_{xx}(\frac{5-b}{2}u_{xx} - \frac{b+5}{2}v_{xx})\right)
+ (b - 5)v_xw_{xxx} + \frac{b}{2}\eta(\rho + \theta) - \alpha w\|_{H^{1}(\mathcal{R})}
\lesssim \|w(u + v)\|_{H^{r-\gamma}(\mathcal{R})} + \|w_x(u_x + v_x)\|_{H^{r-\gamma}(\mathcal{R})} + \|w_{xx}(u_{xx} + v_{xx})\|_{H^{r-\gamma}(\mathcal{R})}
+ \|v_xw_{xxx}\|_{H^{r-\gamma}(\mathcal{R})} + \|\eta(\rho + \theta)\|_{H^{r-\gamma}(\mathcal{R})} + \|w\|_{H^{r-\gamma}(\mathcal{R})} + \|w_{xx}u_{xx}\|_{H^{r-\gamma}(\mathcal{R})}
:= F_1 + F_2.
\]

For F_1, if $r > \frac{\gamma}{2}$, we have
\[
F_1 \lesssim \|u\|_{H^{r-\gamma}(\mathcal{R})} \|u + v\|_{H^{r-\gamma}(\mathcal{R})} + \|w_x\|_{H^{r-\gamma}(\mathcal{R})} \|u_x + v_x\|_{H^{r-\gamma}(\mathcal{R})} + \|w_{xx}\|_{H^{r-\gamma}(\mathcal{R})} \|u_{xx} + v_{xx}\|_{H^{r-\gamma}(\mathcal{R})}
+ \|\eta\|_{H^{r-\gamma}(\mathcal{R})} \|\rho + \theta\|_{H^{r-\gamma}(\mathcal{R})} + \|w\|_{H^{r-\gamma}(\mathcal{R})}
\lesssim \|w\|_{H^{r}(\mathcal{R})} (\|u\|_{H^{r}(\mathcal{R})} + \|v\|_{H^{r}(\mathcal{R})} + 1) + \|\eta\|_{H^{r}(\mathcal{R})} (\|\rho\|_{H^{r}(\mathcal{R})} + \|\theta\|_{H^{r}(\mathcal{R})})
\]
by using Lemma 3.2 and the fact $r \leq s - 1$.

For $1 \leq r \leq \frac{\gamma}{2}$, applying Lemma 3.3 with $k = 3$ to the term F_1, we have
\[
F_1 \lesssim \|w\|_{H^{r-\gamma}(\mathcal{R})} \|u + v\|_{H^{r}(\mathcal{R})} + \|w_x\|_{H^{r-\gamma}(\mathcal{R})} \|u_x + v_x\|_{H^{r}(\mathcal{R})} + \|w_{xx}\|_{H^{r-\gamma}(\mathcal{R})} \|u_{xx} + v_{xx}\|_{H^{r}(\mathcal{R})}
+ \|w_{xxx}\|_{H^{r-\gamma}(\mathcal{R})} \|v_x\|_{H^{r}(\mathcal{R})} + \|\theta\|_{H^{r}(\mathcal{R})} + \|w\|_{H^{r-\gamma}(\mathcal{R})}
\lesssim \|w\|_{H^{r}(\mathcal{R})} (\|u\|_{H^{r}(\mathcal{R})} + \|v\|_{H^{r}(\mathcal{R})} + 1) + \|\eta\|_{H^{r}(\mathcal{R})} (\|\rho\|_{H^{r}(\mathcal{R})} + \|\theta\|_{H^{r}(\mathcal{R})})
\]
where j satisfies $j > \frac{1}{2}$ and $j \geq 3 - r$. Since $s \geq 5 - r$, we can take $j = s - 2$, and then
\[
F_1 \lesssim \|w\|_{H^{r}(\mathcal{R})} (\|u\|_{H^{r}(\mathcal{R})} + \|v\|_{H^{r}(\mathcal{R})} + 1) + \|\eta\|_{H^{r}(\mathcal{R})} (\|\rho\|_{H^{r}(\mathcal{R})} + \|\theta\|_{H^{r}(\mathcal{R})}).
\]

For F_2, if $r > \frac{\gamma}{2}$, we have
\[
F_2 \lesssim \|w_x\|_{H^{r-\gamma}(\mathcal{R})} \|u_{xx}\|_{H^{r-\gamma}(\mathcal{R})} \leq \|w\|_{H^{r}(\mathcal{R})} \|u\|_{H^{r}(\mathcal{R})},
\]
by using Lemma 3.2 and the fact $r \leq s - 1$.

For $1 \leq r \leq \frac{3}{2}$, applying Lemma 3.3 with $k = 2$ to the term F_2, we have
\[
F_2 \lesssim \|w_x\|_{H^{r-\gamma}(\mathcal{R})} \|u_{xx}\|_{H^{r-\gamma}(\mathcal{R})} \leq \|w\|_{H^{r-\gamma}(\mathcal{R})} \|u\|_{H^{r+2}(\mathcal{R})},
\]
where l satisfies $l > \frac{1}{2}$ and $l \geq 2 - r$. Since $s \geq 5 - r$, we can take $l = s - 3$, and then
\[
F_2 \lesssim \|w\|_{H^{r}(\mathcal{R})} \|u\|_{H^{r}(\mathcal{R})}.
\]
Thus,
\[
\frac{5}{2} \|w\|_{H^{r}(\mathcal{R})} \|w\|_{H^{r}(\mathcal{R})} \lesssim \|w\|_{H^{r}(\mathcal{R})} (\|u\|_{H^{r}(\mathcal{R})} + \|v\|_{H^{r}(\mathcal{R})} + 1)
+ \|w\|_{H^{r}(\mathcal{R})} \|\eta\|_{H^{r}(\mathcal{R})} (\|\rho\|_{H^{r}(\mathcal{R})} + \|\theta\|_{H^{r}(\mathcal{R})}).
\]
On the other hand, applying Λ^{-2} to the second equation of (3.1), then multiplying both sides by $\Lambda^{-2}\eta$ and integrating over \mathbb{R} with respect to x, we get

$$\frac{1}{2} \frac{d}{dt} \| \eta \|^2_{H^{-2}(\mathbb{R})} = - (\Lambda^{-2} (u\eta_x), \Lambda^{-2} \eta) - (\Lambda^{-2} (u\theta_x), \Lambda^{-2} \eta) - (b-1) (\Lambda^{-2} (w_x \rho + v_x \eta), \Lambda^{-2} \eta)
$$

By Lemma 3.1, we know

$$\| [\Lambda^{-2} \partial_x, u] \eta \|_{L^2(\mathbb{R})} \leq \| u \|_{H^r(\mathbb{R})} \| \eta \|_{H^{-2}(\mathbb{R})}.$$

If $r > \frac{3}{2}$, by Lemma 3.2, we have

$$\| u \|_{H^r(\mathbb{R})} \| \theta \|_{H^{-3}(\mathbb{R})} \leq \| u\theta_x - u_x \eta \|_{H^{-2}(\mathbb{R})} + \| w_x \rho + v_x \eta \|_{H^{-2}(\mathbb{R})} + \| u_x \|_{H^r(\mathbb{R})} \| \eta \|_{H^{-2}(\mathbb{R})} + \| u \|_{H^r(\mathbb{R})} \| \theta \|_{H^{-3}(\mathbb{R})} + \| \rho \|_{H^{r-2}(\mathbb{R})} + \| \eta \|_{H^{r-2}(\mathbb{R})} \| u \|_{H^r(\mathbb{R})} + \| v \|_{H^r(\mathbb{R})}.$$

If $1 \leq r \leq \frac{3}{2}$, similar to (3.2), we have

$$\| u \|_{H^r(\mathbb{R})} \| \theta \|_{H^{-3}(\mathbb{R})} \leq \| u \|_{H^r(\mathbb{R})} \| \theta \|_{H^{-2}(\mathbb{R})} + \| w_x \rho + v_x \eta \|_{H^{r-2}(\mathbb{R})} + \| u \|_{H^r(\mathbb{R})} \| \theta \|_{H^{-3}(\mathbb{R})} + \| \rho \|_{H^{r-2}(\mathbb{R})} + \| \eta \|_{H^{r-2}(\mathbb{R})} \| u \|_{H^r(\mathbb{R})} + \| v \|_{H^r(\mathbb{R})}.$$

Moreover, it is easy to get

$$\| u \|_{L^\infty(\mathbb{R})} \| \Lambda^{-2} \eta \|_{L^2(\mathbb{R})} \leq \| u \|_{H^r(\mathbb{R})} \| \eta \|_{H^{-2}(\mathbb{R})}.$$

Thus, we have

$$\frac{1}{2} \frac{d}{dt} \| \eta \|^2_{H^{-2}(\mathbb{R})} \leq \| w \|_{H^r(\mathbb{R})} \| \eta \|_{H^{-2}(\mathbb{R})} \| \theta \|_{H^{-2}(\mathbb{R})} + \| \rho \|_{H^{r-2}(\mathbb{R})} + \| \eta \|_{H^{r-2}(\mathbb{R})} \| u \|_{H^r(\mathbb{R})} + \| v \|_{H^r(\mathbb{R})}.$$

Combing (3.3) and (3.4), and using the solution size estimate in Theorem 2.2, we get

$$\| w \|_{H^r(\mathbb{R})} + \| \eta \|_{H^{-2}(\mathbb{R})} \leq C T_0 (\| u \|_{H^r(\mathbb{R})} + \| \rho \|_{H^{r-2}(\mathbb{R})}),$$

(3.5)
where \(C \) is a constant depending on \(s, r, T_0 \) and \(h \).

(iii) Next, we consider the case \(\frac{7}{2} < s < 4 \) and \(1 \leq r \leq 5 - s \). By the condition \(r \leq 5 - s \) and (3.5), we have

\[
\|w\|_{H^r(\Omega)} + \|\eta\|_{H^{s-r}(\Omega)} \leq \|w\|_{H^{s-r}(\Omega)} + \|\eta\|_{H^{s-r}(\Omega)} \leq C_\beta \left(\|w_0\|_{H^{s-r}(\Omega)} + \|\eta_0\|_{H^{s-r}(\Omega)} \right).
\]

Using interpolation inequalities, we obtain

\[
\|w_0\|_{H^{s-r}(\Omega)} + \|\eta_0\|_{H^{s-r}(\Omega)} \leq \left(\|w_0\|_{H^{s-r}(\Omega)} + \|\eta_0\|_{H^{s-r}(\Omega)} \right) \leq \left(\|w_0\|_{H^{s-r}(\Omega)} + \|\eta_0\|_{H^{s-r}(\Omega)} \right)^{2-r}.\]

Thus, we get

\[
\|w\|_{H^r(\Omega)} + \|\eta\|_{H^{s-r}(\Omega)} \leq \left(\|w_0\|_{H^r(\Omega)} + \|\eta_0\|_{H^{s-r}(\Omega)} \right)^{2-r}.\]

(iii) Now we consider the case \(s - 1 < r < s \), where \(s > \frac{7}{2} \). Using interpolation inequalities, we obtain

\[
\|w\|_{H^r(\Omega)} + \|\eta\|_{H^{s-r}(\Omega)} \leq \left(\|w\|_{H^{s-r}(\Omega)} + \|\eta\|_{H^{s-r}(\Omega)} \right)^{s-r} \leq \left(\|w\|_{H^{s-r}(\Omega)} + \|\eta\|_{H^{s-r}(\Omega)} \right)^{s-r}.\]

By applying inequality (3.5), we have

\[
\|w\|_{H^{s-r}(\Omega)} + \|\eta\|_{H^{s-r}(\Omega)} \leq C_\beta \left(\|w_0\|_{H^{s-r}(\Omega)} + \|\eta_0\|_{H^{s-r}(\Omega)} \right)\]

(3.6)

Also, using the solution size estimate in Theorem 2.2, we get

\[
\|w\|_{H^r(\Omega)} + \|\eta\|_{H^{s-r}(\Omega)} \leq \left(\|w\|_{H^{s-r}(\Omega)} + \|\rho\|_{H^{s-r}(\Omega)} \right)^{s-r} \leq 2C_\beta \left(\|w_0\|_{H^r(\Omega)} + \|\rho_0\|_{H^{s-r}(\Omega)} \right)\]

(3.7)

Combining (3.6), (3.7) and (3.8) gives

\[
\|w\|_{H^r(\Omega)} + \|\eta\|_{H^{s-r}(\Omega)} \leq \left(\|w_0\|_{H^r(\Omega)} + \|\eta_0\|_{H^{s-r}(\Omega)} \right)^{s-r}.\]

This completes the proof of Theorem 3.1.

\[\square\]

Remark 3.2. If \(\rho \equiv 0 \), then the condition \(1 \leq r < s \) in Theorem 3.1 can be extended to \(0 \leq r < s \), and the exponent \(\beta \) is defined as follows

\[
\beta = \begin{cases}
1, & \text{if } 0 \leq r \leq s - 1 \text{ and } s + r \geq 5, \\
\frac{2s-5}{s-r}, & \text{if } \frac{7}{2} < s < 5 \text{ and } 0 \leq r \leq 5 - s, \\
|s - r|, & \text{if } s - 1 < r < s.
\end{cases}
\]

Acknowledgments

Wang’s work is supported by the Fundamental Research Funds for the Central Universities. Li’s work is supported by the NSFC (No:11571057).
References

[1] A. Bressan, A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl. 5 (2007) 1–27.

[2] R. Camassa, D.D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993) 1661–1664.

[3] M. Chen, S. Liu, Y. Zhang, A 2-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys. 7 (2006) 1–15.

[4] R. Chen, S. Zhou, Well-posedness and persistence properties for two-component higher order Camassa-Holm systems with fractional inertia operator, Nonlinear Anal.: RWA 33 (2017) 121–138.

[5] R.M. Chen, Y. Liu, P. Zhang, The Hölder continuity of the solution map to the b-family equation in weak topology, Math. Ann. 357 (2013) 1245–1289.

[6] A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181 (1998) 229–243.

[7] A. Constantin, J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa 26 (1998) 303–328.

[8] A. Constantin, H.P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999) 949–982.

[9] A. Constantin, L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys. 211 (2000) 45–61.

[10] A. Degasperis, M. Procesi, Asymptotic integrability, Symmetry and Perturbation Theory, World Scientific, Singapore, 1999, pp. 23–37.

[11] J. Escher, D. Henry, B. Kolev, T. Lyons, Two-component equations modelling water waves with constant vorticity, Ann. Mat. Pura Appl. 195 (2016) 249–271.

[12] J. Escher, B. Kolev, Geodesic completeness for Sobolev H^s-metrics on the diffeomorphism group of the circle, J. Evol. Equ. 14 (2014) 949–968.

[13] J. Escher, B. Kolev, Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle, J. Geom. Mech. 6 (2014) 335–372.

[14] J. Escher, O. Lechtenfeld, Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst. 19 (2007) 493–513.

[15] J. Escher, Y. Liu, Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal. 241 (2006) 457–485.

[16] J. Escher, T. Lyons, Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach, J. Geom. Mech. 7 (2015) 281–293.

[17] J. Escher, Z. Yin, Well-posedness, blow-up phenomena, and global solutions for the b-equation, J. Reine Angew. Math. 624 (2008) 51–80.
[18] C. Guan, H. He, Z. Yin, Well-posedness, blow-up phenomena and persistence properties for a two-component water wave system, Nonlinear Anal.: RWA 25 (2015) 219–237.

[19] C. Guan, Z. Yin, Global existence and blow-up phenomena for an integrable two component Camassa-Holm shallow water system, J. Diff. Equ. 248 (2010) 2003–2014.

[20] C. Guan, Z. Yin, Global weak solutions for a two-component Camassa-Holm shallow water system, J. Funct. Anal. 260 (2011) 1132–1154.

[21] G. Gui, Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal. 258 (2010) 4251–4278.

[22] H. He, Z. Yin, On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators, Discrete Contin. Dyn. Syst. 37 (2017) 1509–1537.

[23] A. Himonas, J. Holmes, Hölder continuity of the solution map for the Novikov equation, J. Math. Phys. 54 (2013) 1–11.

[24] A. Himonas, G. Misiolek, C. Kenig, Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys. 271 (2007) 511–522.

[25] A. Himonas, C. Kenig, G. Misiolek, Non-uniform dependence for the periodic CH equation, Comm. Partial Differential Equations 35 (2010) 1145–1162.

[26] J. Holmes, Continuity properties of the data-to-solution map for the generalized Camassa-Holm equation, J. Math. Anal. Appl. 417 (2014) 635–642.

[27] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988) 203–208.

[28] J. Lenells, Traveling wave solutions of the Camassa-Holm equation, J. Diff. Equ. 217 (2005) 393–430.

[29] J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation, J. Math. Anal. Appl. 306 (2005) 72–82.

[30] Y. Li, P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Diff. Equ. 162 (2000) 27–63.

[31] G. Lv, X. Wang, Hölder continuity on μ-b equation, Nonlinear Anal. 102 (2014) 30–35.

[32] R. McLachlan, X. Zhang, Well-posedness of a modified Camassa-Holm equations, J. Diff. Equ. 246 (2009) 3241–3259.

[33] M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston (1991)

[34] M. Taylor, Commutator estimates, Proc. Amer. Math. Soc. 131 (2003) 1501–1507.

[35] F. Wang, F. Li, Q. Chen, On the Cauchy problem for a weakly dissipative generalized μ-Hunter-Saxton equation, Monatsh. Math. 181 (2016) 715–744.

[36] Z. Xin, P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math. 53 (2000) 1411–1433.
[37] L. Zhang, X. Li, The local well-posedness, blow-up criteria and Gevrey regularity of solutions for a two-component high-order Camassa-Holm system, Nonlinear Anal.: RWA 35 (2017) 414–440.

[38] S. Zhou, Well-posedness, blow-up phenomena and analyticity for a two-component higher order Camassa-Holm system, Math. Nachr. (2018) 1–25. https://doi.org/10.1002/mana.201600469