Effect on lifespan of high yield non-myeloablating transplantation of bone marrow from young to old mice

Marina V. Kovina1*, Viktor A. Zuev2, German O. Kagarlitskiy3 and Yuriy M. Khodarovich3

1 A.N. Bach Institute of Biochemistry, Moscow, Russia
2 N.F. Gamaleya Institute for Epidemiology and Microbiology, Moscow, Russia
3 M.M. Shemyakin and Y.A. Ovchinnikov Bioorganic Chemistry Institute, Moscow, Russia

INTRODUCTION

It is presently held that many tissues of an adult organism are capable of regeneration (self-renewal) by means of resident or circulating stem cells (SCs). The self-renewal of tissues occurs continuously. In the heart of rats, for example, about 7% of the cells are replaced every month (Kajstura et al., 1996), whereas the renewal of blood and epithelial tissues proceeds much faster. The participation of not only local but also circulating SC in the renewal of tissues has been shown by numerous studies on sex-mismatched transplantation which was accompanied by significant lysozyme activity recovered in full or in part in all studied tissues. For the thymus gland, spleen, and BM the recovery was determined to be between 10 and 30%, and the chimerism of the thymus gland, spleen, and BM cells from healthy mice resulted in an increase of lifespan from 6 months to the control value of 2 years. The lysosomal activity was recovered in full or in part in all studied tissues. The participation of not only local but also circulating SC in the renewal of tissues has been shown by numerous studies on sex-mismatched transplantation which was accompanied by significant chimerism. In the next work of this series, the curing of a hereditary skin disease by BMT was shown; the chimerism of skin was determined to be between 10 and 30%, and the chimerism of the mucous epithelium of the gastrointestinal tract was 50% (Wagner et al., 2004).

Our previous in vitro studies have demonstrated that non-differentiated SC can indeed, under certain conditions, be effectively differentiated into the cell type corresponding to their cellular microenvironment (Kovina and Khodarovich, 2011). These findings may explain the previously found, and not enough accounted for, effectiveness of bone marrow transplantation (BMT) in treating not only hematologic diseases (Fanconi anemia; Gluckman et al., 1995) but also such systemic diseases as mucopolysaccharidosis and senile hearing impairment (Birkenmeier et al., 1991; Iwai et al., 2001; Corti et al., 2004; Willenbring et al., 2004).

Mucopolysaccharidosis is caused by a deficiency in enzymes required for degradation of glucosamines that are accumulated in lysosomes of many organs, thereby leading to dysfunction and reduction of lifespan. Transplantation of syngenic bone marrow (BM) SCs from healthy mice resulted in an increase of lifespan from 6 months to the control value of 2 years. The lysosomal activity was recovered in full or in part in all studied tissues. For the thymus gland, spleen, and BM the recovery was determined to be between 10 and 30%, and the chimerism of the mucous epithelium of the gastrointestinal tract was 50% (Wagner et al., 2004).

Nevertheless, it is still unclear whether such regeneration can retard the normal process of aging. The BMT methods employed before demanded a strong X-ray irradiation which negatively affected the lifespan of control animals (Birkenmeier et al., 1991). Though there are some life extension reports about myeloablating SC transplantation on mice (Shen et al., 2011), the usage of...
lethal irradiation cannot be recommended for human anti-aging therapy. In the present work, we report the influence upon lifespan of high yield non-myeloablating transplantation of BM from young mice to old mice.

MATERIALS AND METHODS

ISOLATION OF BONE MARROW
All animal experiments were conducted in accordance with the Guiding Principles in the Use of Animals in Toxicology (http://www.toxology.org) and were approved by Institutional Animal Care and Use Committee (IACUC). The donors of BM were C57BL/6 mice aged 6 weeks. The donors were sacrificed by cervical dislocation and sanitized with 70% ethanol. Isolation of BM was carried out as described (Colvin et al., 2004) with small variations. Firstly, the spine and skull were cut out and freed of surrounding tissues using sterile scalpel, scissors, and forceps. The caudal part of the spine was removed. The spine and skull bones were then minced with sterile pistil and mortar in 1–2 ml of cooled sterile Hank’s balanced salt solution (HBSS) buffer of the following composition: 0.44 mM potassium phosphate, 5.37 mM potassium chloride, 3.5 mM sodium chloride, 5.55 mM d-glucose. The mixture was filtered through four layers of a fine-mesh nylon-6 tissue, washed in fresh HBSS buffer and then centrifuged under mild conditions (50 g). The deposit was resuspended in 1 ml HBSS, the cells were counted in a Goryaev chamber and HBSS was added to a final concentration of 5 × 10^6 cells per ml. The overall number of isolated cells of various sizes and morphology was 3.5–4.5 × 10^6.

TRANSPANTATION OF BONE MARROW
Bone marrow was transplanted to C57BL/6 mice aged 21.5 months. Pre-treatment of suspension of the cells included filtration through four layers of a fine-mesh nylon-6 tissue and addition of 3 U of heparin (Synthesis, Russia) per 2.5 × 10^7 cells in 0.5 ml HBSS to prevent occlusions of vessels with cellular material. The mixture was filtered through four layers of a fine-mesh nylon-6 tissue, washed in fresh HBSS buffer and then centrifuged under mild conditions (50 g). The deposit was resuspended in 1 ml HBSS, the cells were counted in a Goryaev chamber and HBSS was added to a final concentration of 5 × 10^7 cells per ml. The overall number of isolated cells of various sizes and morphology was 3.5–4.5 × 10^6.

RESULTS AND DISCUSSION

In the beginning, we selected conditions for massive transplantation of BM cells to mice. According to the idea of the experiment, we needed to inject about 150 million cells (3.5 × 10^7) to each animal, which amounts to nearly one-fourth of overall BM cells of an adult mouse. It turned out that after injection of a large volume (over 1 ml) or of a highly concentrated cell suspension (1–1.5 × 10^7/ml) most mice died within 2–10 min. Therefore, the following conditions of transplantation were chosen: the cells were injected in six portions of 2.5 × 10^7 cells in 0.5 ml at intervals of 8–16 h. An important factor for successful transplantation was the addition of 5 U of heparin per cell dose (2.5 × 10^7 cells in 0.5 ml) and a thorough filtration of the cells before injection; combining these two measures greatly reduced post-transplantation death of the animals.

The recipients of BM cells were C57BL/6 mice at the age of 21.5 months. Each of the 10 females received 1.5 × 10^7 cells obtained from 6-week-old males of the same line. In each case the quantity of live BM cells exceeded 90%, which was ascertained by counting cells stained with trypan blue in a Goryaev chamber. Two recipients were lost during transplantations, presumably from formation of thrombi in large vessels; they were excluded from the statistical analysis. The remaining eight mice were observed until their natural death in parallel to nine mice of the same age from a control group not exposed to transplantation. The gray line corresponding to the group of recipients is always above the black line of the control group.

Statistical analysis of the results was performed as described in Section "Materials and Methods." The Gompertz equation describes the experimental data sufficiently well, with the correlation coefficient 0.9. The best fit gave the following values of the mean total lifespan:

\[t_{50}^{\text{transpl}} = 25.1 \pm 0.1 \text{ months} \quad \text{and} \quad t_{50}^{\text{cntrl}} = 26.5 \pm 0.1 \text{ months} \]

Then, the mean residual lifespan, calculated from the beginning of the observations (age = 21.5 months), was 25.1–21.5 = 3.6 ± 0.1 months and 26.5–21.5 = 5.0 ± 0.1 months for the control and experimental groups, respectively, corresponding to a gain of 5.0–3.6 = 1.4 months (Figure 1). Hence, the BMT carried out using the described procedure resulted in a (1.4/3.6) × 100% = 39 ± 4% increase of the mean survival time counting from the moment of transplantation. While the overall lifespan extension is modest (100 × 1.4/3.6 = 6%), we discuss here only the post-transplantation extension (39%), since it properly reflects the
Data from the literature also suggest an effect of BMT on the lifespan of mice. For instance, an attempt was made in 2004 to extend the lifespan with syngenic radiation-free transplantation of 4–10 × 10⁶ BM cells from young donors (Kamminga et al., 2005). The effect was not large though (less than 10% of the survival increase), presumably because a relatively small number of cells were transplanted; the resulting chimerism of the BM was also quite modest (1–10%). However, very soon another research team managed to achieve 30–37% chimerism of young recipients after transplantation of 2 × 10⁶ BM cells without irradiation (Colvin et al., 2004), which is in a perfect agreement with the SC competition hypothesis (an adult mouse has a total of 6 × 10⁸ BM cells). The SC competition hypothesis predicts a still greater effectiveness of replacement of the aging recipient’s BM with young donor’s SCs, as the amount of SCs decreases sharply with age.

In perfect agreement with this prediction, the chimerism of old recipients in the above-mentioned study (Kamminga et al., 2005) was 10– to 20-fold greater than chimerism found in younger recipients (3–10 vs. 0.5–1%). Therefore, when the amount of donor cells is increased 10–20 times (from 5–10 × 10⁶ to 1–2 × 10⁷) one may expect an almost complete replacement of the aged BM with that from the donor. Thus, our results which demonstrate a significant effect of BMT on mice survival may be explained as solely by a blood renewal effect (for example, immune boosting effect or increased blood oxygenic capacity), as well as by large number of transplanted cells incorporated in the solid organs and differentiated into the surrounding tissue, thus renewing it. The last conclusion is supported by the results of our previous work on contact differentiation in vitro, where we achieved nearly 100% differentiation of SCs into endotheliocytes after seeding them into a primary endothelial culture (Kovina and Khodarovich, 2011).

In our work, we used a slightly different source of BM as it is obtained traditionally—spine and scull instead of femurs. Spine and scull together contain the majority (63%) of total body BM cells, according to Colvin et al. (2004). Besides, BM from spine and scull has a twice higher percentage of high proliferative colony-forming cells, than femurs (Colvin et al., 2004). So, it must have a higher potential to renew old tissues than femur’s BM. Finely, spine and scull are easily cleaned from surrounding tissues. Thus, in order to recover the maximal amount of active BM within minimal time, we decided to use only spine and scull as BM sources. A quantitative assessment of the degree of post-transplantation chimerism and its correlations with lifespan on a larger quantity of animals with variations in both: the sources of circulating SC and the lines of recipients will be the next stage of our work. A success along these lines will allow developing approaches for therapy for not only a number of hereditary diseases but also for retardation of the aging process in general.

ACKNOWLEDGMENTS

We would like to express our gratitude to our colleagues from the University of Texas, Health Science Center at Houston, to Drs Paul Simmons and Nathalie Brouard for their valuable consultations, and to Drs Wetsel and Ferid Murad for the help in designing and accomplishing this project.

"fgene-04-00144" — 2013/8/6 — 10:38 — page 3 — #3
REFERENCES

Anisimov, V. N., Semenchenko, A. V., and Yudin, A. I. (2003). Insulin and longevity: antidiabetic biguanides as geroprotectors. Biogerontology 4, 297–307. doi: 10.1023/A:1026939183133

Bekireva, E. M., Baran, J. E., Vogl, C. A., Rele, J. W., Sh; B. S., and Geyton, B., et al. (1991). Increased life span and correction of metabolic defects in mouse macrophages with deletion type VII II after embryonic bone marrow transplantation. Blood 78, 3081–3092.

Calvino, G. A., Lambert, J. F., Abedi, M., Colvin, G. A., and Lambert, J. F., et al. (2004). Marrow marrow chimerism and the concept of stem cell competition: geographic and quantitative determinants in stem cell biology. Leukemia 18, 575–583. doi: 10.1038/sj.leu.2402698

Corti, S., Locatelli, F., Donadio, C., Gattini, M., Papadimitriou, D., Stranzer, A., et al. (2004). Wild-type bone marrow cells ameliorate the phenotype of SOD1(G93A) ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain 127, 2318–2332. doi: 10.1093/brain/awh273

Dibari, J. M., Kim, H. I., Mota, P. L., Barone, R. J., and Spindler, S. R. (2004). Temporal linkage between the phenotypic and genomic responses to caloric restriction. Proc. Nati. Acad. Sci. U.S.A. 101, 12248–12253. doi: 10.1073/pnas.0305392101

Gerdin, L. A., and Gerdin, N. S. (2001). “Relevance of theory of aging and longevity,” in Handbook of the Biology of Aging, 4th Edn, ed J. E. Masoro and S. N. Austad (San Diego, CA: Academic Press), 3–42.

Gludeman, E., Auschberg, A. D., Heslot, M. M., Schoenacki, K. A., Ash, B. C., Bertoin, M. M., et al. (1995). Bone marrow transplantation for Fanconi anemia. Blood 86, 2466–2462. doi: 10.1182/blood.V86.9.2466

Goodall, S. W., Kahn, I. P., MacMillan, M. L., Ramirez, N. K., and Wagner, J. E. (2000). Successful hematopoietic stem cell transplantation for Fanconi anemia from an unrelated HLA-genotype-identical sibling selected using preimplantation genetic diagnosis. Blood 100, 1145–1151. doi: 10.1182/blood-2000-02-0587

Hernig, G. L., Chai, L., and Krause, D. S. (2010). Plasticity of marrow-derived stem cells. Blood 115, 3489–3495. doi: 10.1182/blood-2010-05-29684

Hosoi, H., Lee, S., Inaba, M., Suzuki, K., Tomoda, K., Yamashita, T., et al. (2010). Prevention of accelerated preobesity by bone marrow transplantation in senescence-accelerated mice. Bone Marrow Transplant. 38, 325–328. doi: 10.1038/sj.bmt.1705532

Kasture, J., Cheng, W., Sarangapani, R., Xu, X., Su, K., Nishara, J. A., et al. (1996). Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol. 271, H1215–H1228.

Karmiranta, I. M., van Os, R., Aujema, A., Neuh, E. I., Wasing, E., Dorji, B., et al. (2005). Impaired hematopoietic stem cell functioning after serial transplantation and during normal aging. Stem Cells 23, 85–92. doi: 10.1002/stemc.2004-0066

Kierspel, M., Katz, R. L., Khausna, A., Rufook, A. C., Rendon, G., Albistri, M., et al. (2002). Hepatocyes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N. Engl. J. Med. 346, 738–746. doi: 10.1056/NEJMoa1401012

Kovina, M. V., and Khodorovitch, Y. M. (2011). “Effective differentiation of embryonic stem cells into endothelial-icocytes by the method of long-term co-cultivation with the primary cell cultures,” in Stem GIs and Regenerative Medicine, ed. V. A. Tkachuk (Moscow: MAMs Press), 199–202.

Kwek, J., Tan, Y. T., Dimaco, N. M., Long, M. A., Sun, X., and Tang, L. (2011). Transplantation of mesenchymal stem cells from young donors delay aging in mice. Sci. Rep. 1, 167. doi: 10.1038/srep00147

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676. doi: 10.1016/j.cell.2006.07.024

Thiele, I., Varias, E., Wickenhauser, C., Kramerick, H. M., Metz, K. A., and Beden, D. W. (2004). Regeneration of heart muscle tissue: quantification of chimeric cardiomycocytes and endothelial cells following transplantation. Heart. 88 suppl. II, 201–209.

Wagner, J. E., Ishida-Yamamoto, A., McGrath, J. A., Horlicky, M., Kuma, D. R., Woolley, D. J., et al. (2010). Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N. Engl. J. Med. 362, 629–639. doi: 10.1056/NEJMoa0907510

Wang, Y., Chen, J., Hu, J. L., Wei, X. X., Qin, D., Gao, J., et al. (2011). Reprogramming of mouse and human somatic cells by high-performance engineered factors. EMBO Rep. 12, 573–578. doi: 10.1038/embor.2011.11

Wilding, H., Ralby, A. S., Forest, M., Alkari, Y., Durnell, C., Olson, S., et al. (2004). Myelinogenic cells are sufficient for therapeutic cell fusion in liver. Nat. Med. 10, 744–748. doi: 10.1038/nm1062

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 01 November 2012; accepted: 13 July 2013; published online: 07 August 2013.

Copyright © 2013 Kovina, Zuev, Kagarlitsky and Khodorovitch. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the original publication in this journal are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with those terms.