Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species.

In 1998, Carl Woese referred to the microbial world as the “sleeping giant” of biology (1). Almost two decades later, unprecedented attention to our microbial world has turned the fields of zoology (2) and botany (3) inward—toward an increased awareness and understanding of individual animals and plants as holobionts (4–6). The term “holobiont” denotes a host plus all of its microbial symbionts, including inconstant and constant members that are either vertically or horizontally transmitted or environmentally acquired; it was first coined in 1991 by Lynn Margulis (reviewed in reference 5). The ubiquity and importance of microbes in and on holobionts, including humans, are evident in studies of host development (7), immunity (8), metabolism (9–12), behavior (13, 14), speciation (15, 16), and numerous other processes. Host-microbe interactions provide the holobiont with disadvantages (17–19), such as increasing the risk of cancer (20), and advantages (7, 21–23), such as driving the evolution of resistance to parasites and pathogens (24–26), and among other things producing signal components (i.e., metabolites) used to recognize differences in potential mates (27, 28).

The newfound importance of diverse microbial communities in and on animals and plants led to the development of the hologenome theory of evolution (4, 29). The “hologenome” refers to all of the genomes of the host and its microbial symbionts, and the theory emphasizes that holobionts are a level of phenotypic selection in which many phenotypes are produced by the host and microbial members of the holobiont. This developing scientific framework distinguishes itself by placing importance not only on well-studied primary microbial symbionts and vertical microbial transmission but also on the vast diversity of host-associated microbes and horizontal microbial transmission. The key reason for aligning these different transmission modes and levels of complexity into an ecoevolutionary framework is that the community-level parameters among host and symbionts in the holobiont (e.g., community heritability, selection, and coinheritance) can be analyzed under a common set of concepts to the parameters that occur in the nuclear genome (6, 30).

As natural selection operates on variation in phenotypes, the hologenome theory’s most significant utility is that it reclassifies the target of “individual” selection for many animal and plant traits to the holobiont community. This claim is straightforward given the overwhelming influence of microbes on host traits (31–34). The question going forward is whether the response to this community-level selection is relevant to the biology of holobionts. In other words, can host-associated microbial communities be selected such that shifts in the microbial consortia over multiple generations are a response to selection on holobiont traits? Community selection at the holobiont level is shaped by genetic variation in the host and microbial species and covariance between hosts and their microbial consortia, the latter of which can be driven by (i) inheritance of the microbial community from parents to offspring (35, 36) and/or (ii) community heritability H^2C (30, 37). We recently summarized 10 foundational principles of the holobiont and hologenome concepts, aligned them with preexisting theories and frameworks in biology, and discussed critiques and questions to be answered by future research (6).

In the context of the widely accepted biological species concept (38, 39), the principles of holobionts and hologenomes offer an integrated paradigm for the study of the origin of species. The biological species concept operationally defines species as populations no longer capable of interbreeding. Reproductive isolation mechanisms that prevent interbreeding between holobiont populations are either prezygotic (occurring before fertilization) or postzygotic (occurring after fertilization). In the absence of reproductive isolation and population structure, unrestricted interbreeding between holobiont populations will homogenize populations of their genetic and microbial differences (6). While postzygotic isolation mechanisms include hybrid sterility or inviability, prezygotic isolation mechanisms can include biochemical mismatches between gametes and behavior mismatches between potential partners.

Symbionts can cause prezygotic reproductive isolation in two...
modes: broad sense and narrow sense (40). Broad-sense symbiont-induced reproductive isolation refers to divergence in host genes that result in a reproductive barrier because of selection on the host to accommodate microorganisms. In this case, loss or alteration of the symbiont does not have an impact on the capacity to interbreed; instead, host genetic divergence and reproductive isolation evolve in response to microbial symbiosis and cause isolation regardless of whether the hosts are germfree or not. Conversely, narrow-sense symbiont-induced reproductive isolation occurs when host-microbe or microbe-microbe associations result in a reproductive barrier, namely, one that can be ameliorated or removed via elimination of the microbes. Therefore, narrow-sense isolation can be experimentally validated if it is reversible under microbe-free rearing conditions and inducible with the reintroduction of microbes. Isolation barriers that require host and microbial components underpin hologenomic speciation (6, 16).

We recently synthesized the literature and concepts of various speciation mechanisms related to symbiosis, with notable attention to postzygotic isolation (40–42). While aspects of the microbiology of prezygotic isolation are less understood, seminal cases exist (43–45), and control of behavior by symbionts is an emerging area of widespread interest (14, 46, 47). Here we emphasize the patterns seen in these new and old analyses (Table 1) and highlight important and tractable questions about the microbiome, behavior, and speciation by symbiosis. For the purposes of this minireview, we refer to the microbiome as the community of microorganisms in and on a host.

SIGNALING AND MICROBIOME HOMOGENIZATION

Recognizing signals of species membership (48), gender (49), genetic relatedness (50), and colony or group membership (51) is relevant to choosing a mate. Visual (48), auditory (49), and chemosensory (52) signals can each be used to relay this information, with the latter being sometimes influenced by the microbiome in either “microbe-specific” or “microbe-assisted” ways. Both mechanisms involve the expression of chemosensory cues, but microbe-specific processes involve bacterium-derived products such as metabolites, while microbe-assisted mechanisms involve bacterial modulation of host-derived odorous products (Fig. 1).

The microbiome’s capacity to provide identity information used in mate choice may rely on products being an honest signal of holobiont group membership, requiring that many or all members of the group (i.e., gender, population, or species) contain appropriate microbial members that express equivalent signal profiles. Holobionts can be colonized by similar microbes via a number of different mechanisms, spanning behavioral similarities and contact with shared environmental sources (53, 54), similar ecological niches and diets (55–57), and host genetic effects (16, 58). Each of these mechanisms may explain a portion of the variation in the microbial communities of holobionts (40, 42, 59–61).

In the context of group living, humans in the same household (54, 62) and chimpanzees (63) or baboons (53) in the same social group have more similar microbial communities than nongroup members. Among several mammalian species, microbial community composition covaries with odoriferous secretions, and similarities are shared based on host age, sex, and reproductive status allowing for potential signaling and recognition of these traits (27, 64). In hyenas, there is less microbial community variation within species than between them, and clans have more-comparable microbial communities due to the marking and remarking of collective territory to signal clan ownership (64). In baboons, there is less microbiome variation within social groups than between them, and baboons involved in communal grooming behaviors share even more similarities (53). Insect populations such as termites can stabilize their gut microbiomes by way of trophallaxis, a behavior in which nestmates supply nutrients and microbes (e.g., cellulolytic microbes) to other colony members through fluids they excrete from their hindgut (65). However, Tung et al. appropriately note that “one of the most important unanswered questions is whether social network-mediated microbiome sharing produces net fitness benefits or costs for hosts” (53). From the perspective of the origin of species, it will be similarly important to determine whether fitness impacts of the microbiome in turn affect the evolution of group living and reproductive isolation. On one hand, socially shared microbiomes could drive the evolution of population-specific mating signals and ensuing behavioral isolation. On the other hand, they could fuse incipient species in sympathy that socially share bacterial communities responsible for mating signals.

Similarities in diet can also influence microbiome homogenization, particularly in the digestive tract. For instance, *Drosophila melanogaster* reared on similar food sources carry comparable microbial communities (43). Trophically similar ant species also share microbial species (66). In humans, gut microbiome variation in taxonomy and functions correlates with dietary variation (67), and alterations in human diet can rapidly and reproducibly change the structure of the microbiome (68, 69). Seasonal variation in the diet of wild howler monkeys is also correlated to shifts in the microbiome (70). Mediterranean fruit flies (71) and olive flies (72) acquire microbes from their food that increase clutch size and oviposition rate of females exposed to diets lacking essential amino acids (71, 72). Intriguingly, the sexual competitiveness of male Mediterranean fruit flies increases up to twofold with diets enriched with *Klebsiella oxytoca* versus a conventional diet (73).

Host genetics also affects microbial community assembly. In mice, there are 18 candidate loci for modulation and homeostatic maintenance of *Bacteroidetes*, *Firmicutes*, *Rikenellaceae*, and *Provetellaceae* in the gut (58, 74). Moreover, the presence of many rare bacterial groups in the gills of the Pacific oyster is correlated to genetic relatedness (75). Congruently, genetic variability in human immune-related pathways are associated with microbial profiles on several body sites, including various locations along the digestive tract (76), and a study of the largest twin cohort thus far examined members of the gut microbiome and found that the bacterial family *Christensenellaceae* has the highest heritability (*h*^2^ = 0.39) and associates closely with other heritable gut bacterial families (77). Human genetic background also influences the risk of developing gastric cancer caused by *Helicobacter pylori*, indicating that incompatibilities between hosts and symbionts can produce deleterious effects (20). Phyllosymbiosis, characterized by microbial community relationships that reflect host phylogeny (30), has also been reported in several cases. For instance, closely related *Nasonia* species that diverged roughly 400,000 years ago share more similar microbial communities than species pairs that diverged a million years ago (16, 40). Similar phyllosymbiotic patterns are observed in hydra (59), ants (60), and primates (61).

The overall complexity inherent in microbial community structures and processes may be problematic for animal holobionts seeking to interpret a vast array of signaling information. However, recognition and differentiation of these microbe-
Microbe-induced trait	Host species	Common name	Symbiont(s)	Behavior or reproductive outcome	Reference(s)
Host signal modification	*Drosophila bifasciata*	Fruit fly	Unknown	Assortative mating based on familiarity	149
	Drosophila subobscura	Fruit fly	Unknown	Assortative mating based on kinship	149
	Drosophila melanogaster *Mus musculus*	Fruit fly	*Lactobacillus plantarum*	Assortative mating based on diet	43, 82
		House mouse	Unknown gut bacteria	Species recognition	85
Bacterial metabolite production	*D. melanogaster*	Fruit fly	*Lactobacillus brevis, L. plantarum*	Assortative mating based on diet	28
	Reticulitermes speratus	Termite	Unknown gut bacteria	Exclusion of noncolony members	51
	Costelytra zealandica	Grass grub	Unknown bacteria in colleterial glands	Mate attraction	91
	Crocuta crocuta	Spotted hyena	Unknown bacteria in anal scent glands	Clan, age, sex, and reproductive status recognition	64
	Hyaena hyaena	Striped hyena	Unknown bacteria in anal scent glands	Clan, age, sex, and reproductive status recognition	64
	Meles meles	European badger	Unknown bacteria in anal scent glands	Possible mate discrimination	93
	Suricata suricatta	Meerkat	Unknown bacteria in anal scent glands	Group, age, and sex recognition	27
Odor production	*M. musculus*	House mouse	*Salmonella enterica*	Initial avoidance of infected males	86
	Homo sapiens	Human	Unknown	Attractiveness	101–103
Cytoplasmic incompatibility	*Drosophila paulistorum*	Fruit fly	Wolbachia	Assortment within semispecies	44
	D. recens and *D. subquinaria*	Fruit fly	Wolbachia in *D. recens*	Asymmetric mating isolation	112
	D. melanogaster *Nasonia giraudi* *Tetranychus urticae*	Fruit fly	Wolbachia	Increased mate discrimination	45
		Parasitoid wasp	Wolbachia	Decreased mate discrimination	117
		Two-spotted spider mite	Wolbachia	Uninfected females prefer uninfected males	113
Male killing	*Armadallidium vulgar*	Pill bug	Wolbachia	Reduce sperm count and female fertility	128
	D. melanogaster	Fruit fly	Spiroplasma poulsonii	Evolved suppressors to prevent male killing	125
	Acraea encedon *A. encedon*	Common Acraea butterfly	Wolbachia	Male mate choice	127
		Common Acraea butterfly	Wolbachia	Populations with high infection rates are not discriminatory	123
	Hypolimnas bolina *H. bolina*	Great eggyfly butterfly	Wolbachia	Reduced female fertility	126, 129
		Great eggyfly butterfly	Wolbachia	Evolved suppressor gene to prevent male killing	25
Feminization	*A. vulgare*	Pill bug	Wolbachia	Males reproductively female but masculine males prefer true females	133
	Eurema hecabe *Zygina privana*	Grass yellow butterfly	Wolbachia	Males reproductively female	130, 131
		Leafhopper	Wolbachia	Males reproductively female	132
Parthenogenesis	*Apoanagyrus diversicornis*	Mealybug parasite	Wolbachia	Females less attractive to males	145
	Asobara japonica *Leptopilina clavipes*	Parasitoid wasp	Wolbachia	Females less attractive to males	144
		Parasitoid wasp	Wolbachia	Reduction in male and female sexual traits and fertility	143, 147
	Muscidifurax uniraptor *Neochrysocharis formosa* *Galepsomyia fausta* *Franklinithrips vespiformis*	Parasitoid wasp	Wolbachia	Reduction in sexual traits	142
		Parasitoid wasp	Wolbachia	Female-biased sex ratio	139
		Parasitoid wasp	Unknown	Females not receptive	150
		Thrips	Wolbachia	Male sperm presumably do not fertilize female eggs	137
induced signals may be possible if a subset of the microbiome affects the production of the particular signal. Furthermore, it may also be challenging to disentangle social, environmental, and diet effects on microbial assemblages in natural populations (53). Nonetheless, the important theme among all of these cases is that there often appears to be less microbial community variation within holobiont groups/species than between them. This pattern, if sustained in natural populations, could facilitate the evolution of microbe-specific and/or microbe-assisted mating signals that promote recognition within populations or species and discrimination between them. Once this critical point is passed, speciation has commenced. There are parallels here with inclusive fitness theory, which posits that individuals can influence their own reproductive success or the reproductive success of other individuals with which they share genes (78, 79). If one follows the continuity from genes to microbial symbionts, then the inclusive fitness framework may also apply to holobionts in which specific microbial symbionts may influence their reproductive success by increasing the reproductive success of their hosts through microbe-specific and/or microbe-assisted mating. A case-by-case analysis of the reliance of the symbiont on the host for transmission (e.g., maternal, social, environmental transmission) will augment the relevance of this framework.

MICROBE-ASSISTED MODIFICATION OF MATING SIGNALS

A common, microbe-assisted modification involves manipulation of host signals (Fig. 1A). One seminal study found that *D. melanogaster* acquires more *Lactobacillus* when reared on starch than on a cornmeal-molasses-yeast mixture (43, 80). The increased *Lactobacillus* colonization correlates with an upregulation of 7,11-heptacosadiene, a cuticular hydrocarbon sex pheromone in the female fly, resulting in an ability to distinguish fly holobionts raised in the starch environment from those reared on the cornmeal-molasses-yeast substrate (43, 81). This microbe-assisted positive assortative mating is reproducible, reversible, and maintained for several dozen generations after diet homogenization (43, 82). Moreover, this diet-dependent homogamy appears to be directly mediated by different gut bacteria, as inoculation of germfree flies with *Lactobacillus* causes a significant increase in mating between flies reared on the different diets (43). Replication of these experiments found that inbred strains specifically followed this mating pattern (82). Moreover, another *D. melanogaster* study involving male mate choice and antibiotics revealed that female attractiveness is mediated by commensal microbes (83). These laboratory studies provide a critical model for how microbe-assisted modifications in a signaling pathway, ensuing behavioral changes, and mating assortment can potentiate behavioral isolation. Indeed, natural populations of *D. melanogaster* express positive assortative mating and differential signal production based on food sources (84), and a bacterial role in these instances should be explored.

Microbe-assisted signaling also occurs in laboratory mice (*Mus musculus*), in which bacterial conversion of dietary choline into trimethylamine (TMA) leads to attraction of mice while also repelling rats (85). Antibiotic treatment decreases TMA production, and genetic knockout of the mouse receptor for TMA leads to decreased attraction in mice (85). Antibiotic treatment and subsequent depletion of TMA in mice could in turn result in a decrease in repellence of rats (85), though this possibility has not yet been tested *in vivo*. Another study found that female mice are more attracted to males not infected with *Salmonella enterica* than to those that are, yet females mated multiply and equally in mating choice tests with the two types of males (86).

Mate preference based on infection status fits well with the Hamilton-Zuk hypothesis of parasite-mediated sexual selection, which posits that traits related to infection status can influence mating success (87). One seminal study showed that male jungle fowl infected with a parasitic roundworm produce less developed ornamentation and are less attractive to females (87). In house finches, male plumage brightness indicates their quality of brood-
care and is associated with resistance to the bacterial pathogen Mycoplasma gallisepticum (88). The Hamilton-Zuk hypothesis has been reviewed in detail (89).

MICROBE-SPECIFIC SIGNALS

Microbe-specific signals frequently involve the release of volatile microbial metabolites, often through excretions from specialized glands on the host’s body (Fig. 1B). Microbial volatiles can transmit information utilized for social signaling (13, 90) and interspecies mate recognition (85, 91). For example, beetles (91), termites (51), nematodes (92), hyenas (64), meerkats (27), and badgers (93) produce and recognize bacterial metabolites in communication that can modulate their behavior. In termites, fecal metabolites produced by intestinal bacteria (51) coat the termite body and hive walls to signal colony membership. Termite holobionts lacking colony-specific metabolite profiles are attacked and killed by the hive (51). In contrast, some beetles and mammalian species excrete bacterial metabolites from colostral and anal scent glands, respectively (27, 64, 91). For example, female grass grub beetles house bacteria within their colostral glands peripheral to the vagina that are used to attract males to mate (91).

An exciting area of research regarding microbe-specific bacterial signaling involves mammalian fermentation. The mammalian fermentation hypothesis (27, 64) states that fermentative bacteria within mammalian scent glands produce odoriferous metabolites involved in recognition. For example, hyena subcaudal scent pouches store bacteria that are mostly fermentative (64). When marking territory, hyenas deposit species-specific, bacterium-derived volatile fatty acids from this gland onto grass stalks (64). Bacterial metabolite secretions are more variable in the social hyena species, presumably because the complexity of signals from social species improves intraspecies identification (64). Alternatively, social hyenas may permissively transmit more diverse bacterial species leading to different metabolite profiles. Hyena microbiomes also covary with group membership, sex, and reproductive state (64). Similarly, bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership (27). In both cases, the signal diversity may allow animal holobionts to recognize diverse biotic characteristics.

Humans also carry bacteria related to odor production. Breath (94, 95), foot (96), and underarm (97) odor covary with oral and skin microbiomes, respectively. Many diseases (e.g., smallpox, bacterial vaginosis, syphilis, etc.) are associated with distinct odors, which have historically been used by physicians in diagnosis (98). Clothing made from different materials even carry different odor profiles based on material-specific bacterial colonization (99, 100). Male odor has been associated with women’s interpretation of a male’s attractiveness (101–103), possibly influencing their choice in a mate.

The salient theme among the aforementioned cases is that host-associated microbes frequently emit odors, and sometimes this microbe-specific chemosensory information can affect mate choice. Reciprocally, ample evidence shows that chemical signals mediate sexual isolation (104), and a full understanding of whether these signals are traceable to host-associated microbes is worthy of serious attention. Germfree experiments and microbial inoculations should be a prerequisite for such studies; otherwise, they risk missing the significance of microbes in chemosensory speciation (104). Additional behaviors involved in speciation, such as habitat choice and pollinator attraction, are also likely to be influenced by microbe-specific products. Indeed, classic model systems of speciation await further experimentation in this light. For example, food-specific odors on apples and hawthorn translate directly into pre-mating isolation of incipient host races of fruit flies of the genus Rhagoletis (105). Furthermore, the fruit fly Drosophila sechellia exclusively reproduces on the ripe fruit of Morinda citrifolia, which is toxic to other phylogenetically related Drosophila species, including D. melanogaster and D. simulans. Some of the volatile compounds involved in these interactions, such as isoamyl acetate, have been associated with fermentative bacteria like Lactobacillus plantarum (106), suggesting that food-based pre-mating isolation may be related to bacterial associations with the food source, though this requires further study.

In summary, new challenges necessitate the concerted effort of scientists of diverse backgrounds to explore questions at the boundaries of many biological disciplines and to develop the tools to untangle and interpret this intricate web of interactions. Critical topics to be explored in the future include determining the microbial role in animal mate choice, quantifying the extent to which microbe-induced mating assortment impacts the origin of species, and identifying the mechanisms involved in these interactions.

ENDOSYMBIONTS AND MATE CHOICE

Wolbachia, Spiroplasma, Rickettsia, Cardinium, and several other endosymbiotic bacteria can change animal sex ratios and sex determination mechanisms to increase their maternal transmission and thus frequency in the host population from one generation to the next. Notably, these reproductive alterations affect mate choice (107), and here we highlight a few prominent examples and discuss how endosymbiotic bacteria can influence behavioral isolation and the origin of species.

Cytoplasmic incompatibility. Wolbachia bacteria are the most well-studied reproductive distorters (108, 109) and are estimated to infect approximately 40% of all arthropod species (110). Across the major insect orders, Wolbachia cause cytoplasmic incompatibility (CI), a phenomenon in which Wolbachia-modified sperm from infected males leads to postfertilization embryonic lethality in eggs from uninfected females or from females infected with a different strain of Wolbachia, but not in eggs from infected females (111).

In this context, Wolbachia-induced CI can promote the evolution of mate discrimination between populations or species because females can be selected to avoid males that they are not compatible with (Fig. 2C). Among closely related species of mushroom-feeding flies, Wolbachia-infected Drosophila recens and uninfected Drosophila subquinaria contact each other and interspecifically mate in their sympatric range in eastern Canada. However, gene flow between them in either cross direction is severely reduced due to the complementary action of CI and behavioral isolation. Wolbachia-induced CI appears to be the agent for evolution of behavioral isolation, as asymmetric mate discrimination occurs in flies from the zones of sympathy but not in flies from the allopatric ranges (112). A similar pattern of Wolbachia-induced mate discrimination occurs among strains of the two-spotted spider mite, Tetranychus urticae (113) and D. melanogaster cage populations (45). Moreover, discrimination between particular semispecies of Drosophila paulistorum is associated with their Wolbachia infections (44). In cases where host populations or species harbor different Wolbachia infections that are bidirectionally
incompatible, for example in different *Nasonia* species that exist sympatrically (114, 115), reciprocal mate discrimination has evolved (114, 116). In contrast to these examples, interspecific mate discrimination in *Nasonia giraulti* is diminished when non-native transfections of *Wolbachia* spread throughout the whole body, including to the brain, suggesting that *Wolbachia* can also inhibit preexisting mate discrimination (117). These cases reveal, to various degrees, that *Wolbachia* can be causal to the evolution of assortative mating within and between species. Indeed, population genetic theory demonstrates that mate choice alleles spread quicker in populations or species with CI than those with nuclear incompatibilities (118). This is primarily due to the dominance of these *Wolbachia*-induced incompatibilities, since CI causes F1 inviability, while nuclear incompatibility alleles are typically expressed in the F2 hybrids due to the recessive nature of hybrid incompatibility alleles.

Male killing. Male killing is the most common form of endosymbiont-induced sex ratio manipulation and can occur during embryonic (119, 120) or larval (121, 122) development. The effect of male killing is to increase the number of female hosts in a population, thereby increasing endosymbiont transmission rates. To prevent complete fixation of females and population extinction (123), selection can favor hosts to (i) suppress male killing via genes that reduce *Wolbachia* densities or functions (25, 124–126) or (ii) electively choose mates whereby uninfected males preferentially mate with uninfected females (127, 128). If mate choice evolves as a behavioral adaptation to avoid male killing, it could begin to splinter infected and uninfected populations and initiate the first steps of the speciation process (Fig. 2A). One significant caveat in this conceptual model is that the infected population will go extinct without uninfected males to mate with. Thus, if mate preference based on infection status was complete, it would cause speciation between the infected and uninfected populations, resulting in the immediate extinction of the infected population that requires uninfected males to reproduce. We term this phenomena “behavioral extinction” (Fig. 2).

Wolbachia-induced male killing can reach a state of equilibrium, as suggested by their long-term maintenance in natural populations of butterflies (129). Discriminatory males occasionally mate with infected females, allowing the infection to remain in
the population (127), and eventually, an equilibrium is reached (129). However, in some cases, the infection rate is high (>95%), and male preference for uninfected females has not been identified (123). It is not known what mechanisms are involved in preventing male killing from reaching fixation in these situations.

Feminization. Feminization, or the conversion of genetic males to morphological and functional females, has similar evolutionary consequences to male killing (Fig. 2B). This process occurs in many different arthropod species, including butterflies (130, 131), leafhoppers (132), and wood louse (133). Resistance to these effects in the pill bug *Armadillidium vulgare* has evolved in the form of feminization suppressors and male preference for uninfected females. Males that mate with infected females produce feminized males (24, 134). Ultimately, a female-biased sex ratio in feminized wood louse populations results in an increase in male mate choice, male mating multiplicity, and sperm depletion. In the context of sperm depletion, initial mating encounters are normal, but upon increased mating frequency, males provide less sperm to subsequent females. Moreover, infected females are curiously less fertile at lower sperm densities, possibly because they are less efficient at utilizing small quantities of sperm (128). Insufficient sperm utilization and slight differences in infected female courtship behaviors can result in male preference for uninfected females within the population (133). Just as with male killing, assortative mating within infected and uninfected populations may initiate the early stages of speciation and lead to behavioral extinction (Fig. 2).

Parthenogenesis. Microbe-induced parthenogenesis is common among haplodiploid arthropods such as wasps, mites, and thrips (135–137), wherein unfertilized eggs become females (138, 139). As we previously discussed (140), parthenogenesis-induced speciation by endosymbiotic bacteria falls neatly with the biological species concept because parthenogenesis can sever gene flow and cause the evolution of reproductive isolation between sexual and asexual populations. Microbe-induced parthenogenesis does not necessarily exclude the sexual capability of parthenogenetic females, but instead it removes the necessity of sexual reproduction and can potentially drive divergence in sexual behaviors and mate choice (141). Speciation therefore commences between sexual and asexual populations under two models: (i) sexual degeneration and (ii) relaxed sexual selection (140) (Fig. 2D).

The sexual degeneration model posits that the asexual population becomes incompetent to engage in sexual interactions due to mutational accumulation and thus trait degeneration, while the sexual population remains otherwise the same (140). In this case, parthenogenetic lineages accumulate mutations in genes involved in sexual reproduction. Traits subject to mutational meltdown may span secondary sexual characteristics, fertilization, mating behavior, and signal production, among other traits (142–144). For instance, long-term *Wolbachia*-induced parthenogenesis in mealybugs and some parasitoid wasps prevents females from attracting mates or properly expressing sexual behaviors (144, 145). Similarly, in primarily asexual populations, male courtship behavior and sexual functionality are often impaired (142, 146, 147). The accrual of these mutations prevents sexual reproduction, thus causing the parthenogenetic population to become “locked in” to an asexual lifestyle. While this model is an attractive hypothesis for the onset of reproductive isolation between asexual and sexual populations, it is not always easily distinguishable from the alternative relaxed sexual selection model (140). In this model, the sexual population diverges by evolving new or altered mating factors (e.g., courtship sequence, signals, etc.), while the asexual population does not degrade, but rather stays the same and thus can no longer mate with individuals from the diverging sexual population (140).

CONCLUSIONS

Over the past decade, biology has stood vis-à-vis with what Carl Woese referred to as the “sleeping giant” of biology—the microbial world (1). During this period of groundbreaking research, a new vision for the increasing importance of microbiology in many subdisciplines of the life sciences has emerged. As such, studies of animal and plant speciation that do not account for the microbial world are incomplete. We currently know that microbes are involved in a multitude of host processes spanning behavior, metabolite production, reproduction, and immunity. Each of these processes can in theory or in practice cause mating assortment and commence population divergence, the evolution of reproductive isolation, and thus speciation. Understanding the contributions of microbes to behavior and speciation will require concerted efforts and exchanges among these biological disciplines, namely, ones that embrace the recent “unified microbiome” proposal to merge disciplinary boundaries (148).

ACKNOWLEDGMENTS

J.D.S. thanks Laci J. Baker for moral support during the writing process and Daniel LePage and Edward van Opstal for critique on figures. We also thank two anonymous reviewers for their critical feedback on the manuscript.

Any opinions, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

FUNDING INFORMATION

This work, including the efforts of Seth R. Bordenstein, was funded by National Science Foundation (NSF) (IOS 1456778 and DEB 1046149).

REFERENCES

1. Woese CR. 1998. Default taxonomy: Ernst Mayr’s view of the microbial world. Proc Natl Acad Sci U S A 95:11043–11046. http://dx.doi.org/10.1073/pnas.95.19.11043.
2. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukuami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealon K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernigreen JJ. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–3236. http://dx.doi.org/10.1073/pnas.1218525110.
3. Turner TR, James EK, Poole PS. 2013. The plant microbiome. Genome Biol 14:209. http://dx.doi.org/10.1186/gb-2013-14-6-209.
4. Zilber-Rosenberg I, Rosenberg E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735. http://dx.doi.org/10.1111/j.1574-6976.2008.00123.x.
5. Gilbert SF, Sapp J, Tauber AI. 2012. A symbiotic view of life: we have never been individuals. Q Rev Biol 87:325–341. http://dx.doi.org/10.1086/668166.
6. Bordenstein SR, Theis KR. 2015. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:e1002226. http://dx.doi.org/10.1371/journal.pbio.1002226.
7. McFall-Ngai M, Heath-Heckman EA, Gillette AA, Peyer SM, Harvie EA. 2012. The secret languages of coevolved symbioses: insights from the *Euprymna scolopes-Vibrio fischeri* symbiosis. Semin Immunol 24:3–8. http://dx.doi.org/10.1016/j.smim.2011.11.006.
8. Lee YK, Mazmanian SK. 2010. Has the microbiota played a critical role
in the evolution of the adaptive immune system? Science 330: 1768–1773. http://dx.doi.org/10.1126/science.1195568.

9. McCutcheon JP, Von Dohlen CD. 2011. An interdependent metabolic patchwork in the nested symbiosis of mycangia. Curr Biol 21: 1366–1372. http://dx.doi.org/10.1016/j.cub.2011.06.051.

10. Nicholson JK, Holmes E, Kirross J, Burcelin R, Gibson G, Jia W, Pettersson S. 2012. Host-gut microbiota metabolic interactions. Science 336:1262–1267. http://dx.doi.org/10.1126/science.1238313.

11. Kamra DN. 2005. Rumen microbial ecosystem. Curr Sci 89:124–135.

12. Taylor MW, Radax R, Steger D, Wagner M. 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347. http://dx.doi.org/10.1128/MMBR.00040-06.

13. Archie EA, Theis KR. 2011. Animal behaviour meets microbial ecology. Anim Behav 82:425–436. http://dx.doi.org/10.1016/j.anbehav.2011.05.029.

14. Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB. 2012. Animal behavior and the microbiome. Science 338:198–199. http://dx.doi.org/10.1126/science.1227412.

15. Wang J, Kalyan S, Steck N, Turner LM, Harr B, Künzel S, Vallier M, Häsler R, Franke A, Oberg H-I, Ibrahim SM, Grass GA, Kabelitz D, Baines JF. 2015. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate holobionte. Nat Commun 6649:60.

16. Brucker RM, Bordenstein SR. 2013. The holobiontic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341:667–670. http://dx.doi.org/10.1126/science.1240659.

17. Morgan JAW. 2005. Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739. http://dx.doi.org/10.1093/jxb/eri205.

18. Polin S, Simon J-C, Outreman Y. 2014. An ecological cost associated with protective symbionts of aphids. Ecol Evol 4:826–830. http://dx.doi.org/10.1002/ece3.991.

19. Nougué O, Gallet R, Chevin L-M, Lenormand T. 2015. niche limits of symbiotic gut microbiota constrain the salinity tolerance of brine shrimp. Am Nat 186:390–403. http://dx.doi.org/10.1086/672370.

20. Kodaman N, Pazos A, Schneider BG, Piazzuelo MB, Mera R, Sobota RS, Sicinlsi LA, Sahler CI, Romero-Gallo J, de Sablet T, Harder RH, Bravo LE, Peek RM, Wilson KT, Cover TL, Williams SM, Correa P. 2014. Human and Helicobacter pylori coevolution shapes the risk of gastric disease. Proc Natl Acad Sci U S A 111:1455–1460. http://dx.doi.org/10.1073/pnas.1318093111.

21. Teixeira I, Ferreira A, Ashburner M. 2008. The bacterial symbiont Wolbachia induces resistance to viral infections in Drosophila melanogaster. PLoS Biol 6:2. http://dx.doi.org/10.1371/journal.pbio.1000002.

22. Round JD, Mazmanian SK. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323. http://dx.doi.org/10.1038/nri2515.

23. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Archie EA, Theis KR. 2014. Gut microbiota and kin recognition. Front Genet 5:282. http://dx.doi.org/10.3389/fgene.2014.00282.

24. Shuster SM, Lonsdorf EV, Wimp GM, Bailey JK, Whitham TG. 2006. Community heterogeneity measures the evolutionary consequences of direct genetic effects on community structure. Evolution 60:991–1003. http://dx.doi.org/10.1554/05-2806.0.

25. Dobzhansky T, Dobzhansky TG. 1937. Genetics and the origin of species. Columbia University Press, New York, NY. http://dx.doi.org/10.1093/journal.pone.0051269.

26. Mayr E. 1942. Systematics and the origin of species, from the viewpoint of a zoologist. Harvard University Press, Cambridge, MA.

27. Brucker RM, Bordenstein SR. 2012. Speciation by symbiosis. Trends Ecol Evol 27:443–451. http://dx.doi.org/10.1016/j.tree.2012.03.011.

28. Brucker RM, Bordenstein SR. 2012. In vitro cultivation of the hymenoptera genetic model, Nasonia. PLoS One 7:e51269. http://dx.doi.org/10.1371/journal.pone.0051269.

29. Miller WJ, Ehrman L, Schneider D. 2010. Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLoS Pathog 6:e1001214. http://dx.doi.org/10.1371/journal.ppat.1001214.

30. Kourakis K, Pavlides C, Werneg JH, Bourtzi K, Alahiotis SN. 2006. Influence of antibiotic treatment and Wolbachia curbing on sexual isolation among Drosophila melanogaster cage populations. Evolution:60:87–96. http://dx.doi.org/10.1111/j.1438-3900.2006.tb01084.x.

31. Sampson TR, Mazmanian SK. 2015. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17: 356–376. http://dx.doi.org/10.1016/j.chom.2015.04.011.

32. O’Mahony SM, Clarke G, Dinan TG, Cryan JF. Early-life adversity and brain development: is the microbiome a missing piece of the puzzle? Neurosciience http://dx.doi.org/10.1016/j.neuroscience.2015.09.068.

33. Carlson AD, Copeland J, Raderman R, Bulloch AGM. 1976. Role of interferon-like intervals in a firefly courtship (Photinus madermus). Anim Behav 24:786–792. http://dx.doi.org/10.1016/S0003-4727(80)80009-7.

34. Cator LJ, Arthur BJ, Harrington LC, Hoy RR. 2009. Harmonic convergence in the love songs of the dunggie vector mosquito. Science 323:1077–1079. http://dx.doi.org/10.1126/science.1166541.

35. Lizek A, McKay R, Lewis Z. 2013. Gut microbiota and kin recognition. Trends Ecol Evol 28:325–326. http://dx.doi.org/10.1016/j.tree.2012.10.013.

36. Matsuura K. 2001. Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92:20–26. http://dx.doi.org/10.1034/j.1600-0706.2001.920103.x.

37. De Cock R, Matthews E. 2005. Sexual communication by pheromones in a firefly, Phasopsaus hentiupeus (Coleoptera: Lampyridae). Anim Behav 70:807–818. http://dx.doi.org/10.1016/j.anbehav.2005.01.011.

38. Tung J, Barreiro LB, Burns MB, Greiner J-C, Lynch J, Grienese LE, Altman J, Alberts SC, Blekman R, Archie EA. 2013. Social networks
role for parasites? Science 218:384–387. http://dx.doi.org/10.1126/science.7123328.

88. Hill GE, Farmer KL. 2005. Carotenoid-based plumage coloration predicts resistance to a novel parasite in the house finch, Naturwissenschaften 92:30–34. http://dx.doi.org/10.1007/s00114-004-0582-0.

89. Balenger SL, Zuk M. 2014. Testing the Hamilton-Zuk hypothesis: past, present, and future. Integr Comp Biol 54:601–613. http://dx.doi.org/10.1093/icb/icu059.

90. Evenzna VO, Williams AE. 2014. Microbes and animal olfactory communication: where do we go from here? Bioessays 36:847–854. http://dx.doi.org/10.1002/bies.201400016.

91. Leal WS. 1998. Chemical ecology of phytophagous scarab beetles. Annu Rev Entomol 43:39–61. http://dx.doi.org/10.1146/annurev.en.43.110198.093950.

92. Meisel JD, Pandian M, Schroeder FC, Kim DH. 2008. Asymmetrical reinforcement and Wolbachia in Drosophila. PLoS Biol 6:e325. http://dx.doi.org/10.1371/journal.pbio.0040325.

93. Sin YW, Buesching CD, Burke T, Macdonald DW. 2012. Molecular characterization of the microbiotal community in the subcutaneous gland secretion of the European badger (Meles meles). FEMS Microbiol Ecol 81:684–659. http://dx.doi.org/10.1111/j.1574-6941.2012.01396.x.

94. Pianotti R, Pitts G. 1978. Effects of an antisepsis mouthwash on odorogenic microbes in the human gingival crevice. J Dent Res 57:175–179. http://dx.doi.org/10.1177/0022034580570020201.

95. Morita M, Wang H-L. 2001. Association between oral malodor and adult periodontitis: a review. J Clin Periodontol 28:813–819. http://dx.doi.org/10.1034/j.1600-065x.2001.00189.x.

96. Stevens D, Cornmell R, Taylor D, Grimsaw SG, Biazanska S, Arnold DS, Fernstard SJ, Smith AM, Heaney LM, Reynolds JC, Thomas CL, Harker M. 2015. Spatial variations in the microbiotal community structure and diversity of the human foot is associated with the production of odorous volatiles. FEMS Microbiol Ecol 91:1–11. http://dx.doi.org/10.1093/femsec/fiu018.

97. James AG, Austin CJ, Cox DS, Taylor D, Grimshaw SG, Cornmell R, Taylor D, Grimshaw SG, Biazanska S, Arnold DS, Fernstard SJ, Smith AM, Heaney LM, Reynolds JC, Thomas CL, Harker M. 2015. Spatial variations in the microbiotal community structure and diversity of the human foot is associated with the production of odorous volatiles. FEMS Microbiol Ecol 91:1–11. http://dx.doi.org/10.1093/femsec/fiu018.

98. Penn D, Potts WK. 1998. Chemical signals and parasitism-mediated sexual selection. Trends Ecol Evol 13:391–396. http://dx.doi.org/10.1016/S0169-5347(98)01473-6.

99. Tsuchiya Y, Ohta J, Ishida Y, Morisaki H. 2008. Male killing can select for dominance male odour: effects of menstrual cycle and relationship status. Biol Lett 4:161–164. http://dx.doi.org/10.1098/rsbl.2008.0013.

100. Chafee ME, Zecher CN, Gourley ML, Schmidt VT, Chen JH, Bordenstein SR, O’Hara FP, Werren JH. 2007. The effect of Wolbachia infection on genotypic microbes in the human gingival crevice. J Dent Res 86:347–354. http://dx.doi.org/10.1177/0022034507083145.

101. Sota K, Kasahara N, Sanada A, Miura K, Saitou H, Hoshi Y. 2006. Asymmetrical reinforcement and Wolbachia in Drosophila. PLoS Biol 4:e325. http://dx.doi.org/10.1371/journal.pbio.0040325.

102. Kageyama D, Narita S, Watanabe M. 2012. Insect sex determination manipulated by their endosymbionts: incidences, mechanisms and implications. Insects 3:161–199. http://dx.doi.org/10.3390/insects30100161.

103. Bug B, Hammerstein P. 2012. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7:e38544. http://dx.doi.org/10.1371/journal.pone.0038544.

104. Cunnane CL, Harker M. 2001. Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409:707–710. http://dx.doi.org/10.1038/35055543.

105. Tschosch A, Yamamura N, Werren JH. 2005. Bidirectional cytoplasmic incompatibility and the stable coexistence of two Wolbachia strains in parapatric host populations. J Theor Biol 235:265–274. http://dx.doi.org/10.1016/j.jtbi.2005.01.008.

106. Chafee ME, Zecher CN, Gourley ML, Schmidt VT, Chen JH, Bordenstein SR, Clark ME, Bordenstein SR. 2011. Decoupling of host-symbiotic–phage coadaptations following transfer between insect species. Genetics 187:203–215. http://dx.doi.org/10.1534/genetics.111.120675.

107. Tschosch A, Hammerstein P, Werren JH. 2005. The effect of Wolbachia versus genetic incompatibilities on reinforcement and speciation. Evol Ecol 19:597–619. http://dx.doi.org/10.1007/s10686-005-9082-x.

108. Hurst LD, Pomiankowski A. 2011. The importance of cytoplasmic male killing elements in natural populations of the two-spot ladybird, Adalia bipunctata (Linnaeus) (Coleoptera: Coccinellidae). Biol J Linn Soc 94:195–202.

109. Elsangy S, Majerus MEN, Hundleby J-L. 2011. The value of an egg-resource reallocation in ladybirds (Coleoptera: Coccinellidae) infected with male-killing bacteria. J Evol Biol 24:2164–2172. http://dx.doi.org/10.1111/j.1420-9101.2011.02346.x.

110. Elsangy S, Majerus MEN, Hundleby J-L. 2011. The value of an egg-resource reallocation in ladybirds (Coleoptera: Coccinellidae) infected with male-killing bacteria. J Evol Biol 24:2164–2172. http://dx.doi.org/10.1111/j.1420-9101.2011.02346.x.

111. Hurst LD, Pomiankowski A. 1991. Causes of sex ratio bias may account for unisexual sterility in hybrids: a new explanation of Haldane’s rule and related phenomena. Genetics 128:841–858.

112. Nakanishi K, Hoshino M, Nakai M, Kunimi Y. 2008. Novel RNA sequences associated with late male killing in Homona magnanima. Proc Biol Sci 275:1249–1254. http://dx.doi.org/10.1098/rspb.2008.0013.

113. Jiggins FM, Randerson JP, Hurst GDD, Majerus MEN. 2002. How can sex ratio distorters reach extreme prevalences? Male-killing Wolbachia are not suppressed and have near-perfect vertical transmission efficiency in Acraea encedon. Evolution 56:2290–2295. http://dx.doi.org/10.1111/j.1004-8802.2002.tb00152.x.

114. Gilliland GD, Dahnsevick IE, Becker PB. 2004. Lifting a chromosome: dosage compensation in Drosophila melanogaster. FEBS Lett 567:8–14. http://dx.doi.org/10.1016/j.febslet.2004.03.110.

115. Veneti Z, Bentley JK, Koana T, Braig HR, Hurst GDD. 2005. A functional dosage compensation complex required for male killing in Drosophila. Science 307:1461–1463. http://dx.doi.org/10.1126/science.1107182.

116. Charlat S, Reuter M, Dyson EA, Hornett EA, Duplouy A, Davies N, Roderick GK, Wodell N, Hurst GDD. 2007. Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity. Curr Biol 17:273–277. http://dx.doi.org/10.1016/j.cub.2006.11.068.

117. Randerson JP, Jiggins FM, Hurst LD. 2000. Male killing can select for male mate choice: a novel solution to the paradox of thelek. Proc Biol Sci 267:867–874. http://dx.doi.org/10.1098/rspb.2000.1083.

118. Rigaud T, Moreau J. 2004. A cost of Wolbachia-induced sex reversal and female-biased sex ratios: decrease in female fertility after sperm depletion
in a terrestrial isopod. Proc Biol Sci 271:1941–1946. http://dx.doi.org/10.1098/rspb.2004.2804.

129. Dyson EA, Hurst GDD. 2004. Persistence of an extreme sex-ratio bias in a natural population. Proc Natl Acad Sci U S A 101:6520–6523. http://dx.doi.org/10.1073/pnas.0304068101.

130. Hiroki M, Tagami Y, Miura K, Kato Y. 2004. Multiple infection with Wolbachia inducing different reproductive manipulations in the butterfly Eurema hecabe. Proc Biol Sci 271:1751–1755. http://dx.doi.org/10.1098/rspb.2004.2769.

131. Narita S, Kageyama D, Nomura M, Fukatsu T. 2007. Unexpected mechanism of symbiont-induced reversal of insect sex: feminizing Wolbachia continuously acts on the butterfly Eurema hecabe during larval development. Appl Environ Microbiol 73:4332–4341. http://dx.doi.org/10.1128/AEM.00145-07.

132. Negri I, Pellecchia M, Mazzoglio PJ, Patetta A, Alma A. 2006. Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/X0 sex-determination system. Proc Biol Sci 273:2409–2416. http://dx.doi.org/10.1098/rspb.2006.3592.

133. Moreau J, Bertin A, Caubet Y, Rigaud T. 2001. Sexual selection in an isopod with Wolbachia-induced sex reversal: males prefer real females. J Evol Biol 14:388–394. http://dx.doi.org/10.1046/j.1420-9101.2001.00292.x.

134. Rigaud T, Juchault P. 1992. Genetic control of the vertical transmission of a cytoplasmic sex factor in Armandiaadium vulgare Latr. (Crustacea, Oniscidea). Heredity 68:47–52. http://dx.doi.org/10.1038/hdy;1992.6.

135. Stouthamer R, Breeuwer JA, Hurst GD. 1999. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102. http://dx.doi.org/10.1146/annurev.micro.53.1.71.

136. Stouthamer R. 1997. Wolbachia-induced parthenogenesis. Oxford University Press, Oxford, United Kingdom.

137. Arakaki N, Miyoshi T, Noda H. 2001. Wolbachia-mediated parthenogenesis in the predatory thrips Frankliniathrips vespiformis (Thysanoptera: Insecta). Proc R Soc B Biol Sci 268:1011–1016. http://dx.doi.org/10.1098/rspb.2001.1628.

138. Dunn AM, Hatcher MJ, Terry RS, Tofts C. 1995. Evolutionary ecology of vertically transmitted parasites: transovarial transmission of a microsporidian sex ratio distorfer in Gammarus duebeni. Parasitology 111:591. http://dx.doi.org/10.1017/S00311824990075843.

139. Adachi-Hagimori T, Miura K, Stouthamer R. 2008. A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera. Proc Biol Sci 275:2667–2673. http://dx.doi.org/10.1098/rspb.2008.0792.

140. Bordenstein SR. 2003. Symbiosis and the origin of life, p 283–304. In Bourteis K, Miller T (ed), Insect symbiosis. CRC Press, New York, NY.

141. Stouthamer R, Luck RF, Hamilton WD. 1990. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proc Natl Acad Sci U S A 87:2424–2427. http://dx.doi.org/10.1073/pnas.87.7.2424.

142. Gottlieb Y, Zchori-Fein E. 2001. Irreversible thelytokous reproduction in Muscidifurcas uniraptor. Entomol Exp Appl 100:271–278. http://dx.doi.org/10.1046/j.1570-7458.2001.00874.x.

143. Kraaijeveld K, Franco P, Reumer BM, van Alphen JJ, Jacques J. 2009. Effects of parthenogenesis and geographic isolation on female sexual traits in a parasitoid wasp. Evolution 63:3085–3096. http://dx.doi.org/10.1111/j.1558-5646.2009.00798.x.

144. Kremer N, Charif D, Henri H, Bataille M, Prévost G, Kraaijeveld K, Vavr F. 2009. A new case of Wolbachia dependence in the genus Asobara: evidence for parthenogenesis induction in Asobara japonica. Heredity 103:248–256. http://dx.doi.org/10.1038/hdy.2009.63.

145. Pijls JWAM, van Steenbergen HJ, van Alphen JJM. 1996. Asexuality cured: the relations and differences between sexual and asexual Apoanagyrus diversicornis. Heredity 76:506–513. http://dx.doi.org/10.1038/hdy.1996.73.

146. Zchori-Fein E, Faktor O, Zeidan M, Gottlieb Y, Czosnek H, Rosen D. 1995. Parthenogenesis-inducing microorganisms in Aphytis (Hymenoptera: Aphelinidae). Insect Mol Biol 4:173–178. http://dx.doi.org/10.1111/j.1365-2363.1995.tb0023.x.

147. Pannebakker BA, Schillo NS, Boskamp GJF, Dekker L, Van Dooren TJM, Beukeboom LW, Zwaan BJ, Brakefeld PM, Van Alphen JJM. 2005. Sexual functionality of Leptopilina clavipes (Hymenoptera: Figitidae) after reversing Wolbachia-induced parthenogenesis. J Evol Biol 18:1019–1028. http://dx.doi.org/10.1111/j.1420-9101.2005.00898.x.

148. Alivisatos AP, Blaser MJ, Brodie EL, Chun M, Dansel JL, Donohue TJ, Dorrestein PC, Gilbert JA, Green JL, Knight R, Maxon ME, Miller JP, Pollard KS, Ruby EG, Taha SA, Unified Microbiome Initiative Consortium. 2015. A unified initiative to harness Earth’s microbiomes. Science 350:507–508. http://dx.doi.org/10.1126/science.aac480.

149. Lewis Z, Heys C, Prescott M, Lizé A. 2014. You are what you eat: gut microbiota determines kin recognition in Drosophila. Gut Microbes 5:451–453. http://dx.doi.org/10.1002/gmic.29153.

150. Argov Y, Gottlieb Y, Amin-Spector SS, Zchori-Fein E. 2000. Possible symbiont induced thelytoky in Galeopsymyza fausta, a parasitoid of the citrus leafminer Phyllocnistis citrella. Phytoparasitica 28:212–218. http://dx.doi.org/10.1007/BF02981799.