Electronic Supplementary Information

Timing matters: pre-assembly versus post-assembly functionalization of a polyoxovanadate–organic cuboid

Ji Guo, a Junrui Liu, b Yingcui Cui, a Chuanhong Liu, a Yangming Wang, a Mou Wang, a Danmeng Huang, a Guanying Chen, a Wei Wang, *b Debin Xia, a and Xikui Fang* a

a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. E-mail: xfang@hit.edu.cn

b CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences; Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China. E-mail: wangwei@fjirsm.ac.cn

Table of Contents

Materials and Syntheses .. S2

Instruments and Physical Measurements ... S3

Infrared spectra (Fig. S1) ... S4

Thermogravimetric analyses (Figs. S2–S4) .. S4

Adsorption of dye molecules (Figs. S5–S8) .. S6

1H and 31P NMR spectra of 1, 1’ and 2 (Figs. S9–S13) .. S9

ESI-MS spectra of 1 showing the steps of lossing each methyl radical (Fig. S14) .. S11

XPS spectra of 1, 1’ and 2 (Figs. S15–S17) ... S12

Additional NMR spectra (Figs. S18–S21) .. S13

Single-Crystal X-Ray Structure Determination .. S15

Crystal data for 1 (Table S1) .. S15

Crystal data for 1’ (Table S2) .. S16

Crystal data for 2 (Table S3) .. S17

The distances between adjacent SBUs and those between QPTC linkers (Fig. S22–S23) ... S18

The interior void space of 1, 1’ and 2 (Fig. S24) .. S19

The channel space between molecules in the packing diagrams of 1, 1’ and 2 (Fig. S25) ... S20

Bond Valence Sum (BVS) Calculations (Table S4–S7) .. S21

References .. S25
Materials and Syntheses

Materials: All reagents were from Innochem (Beijing), TCI Co., Sigma-Aldrich, Acros, and Fisher Chemical, and used without further purification. The synthesis of quaterphenyl-3,3’’,5,5’’’-tetracarboxylic acid (H₄QPTC) was conducted by following a reported procedure.⁵¹

\[\text{TMA}_{10}\{[\text{V}^{IV}_6\text{O}_6(\text{OCH}_3)_6(\text{SO}_4)]_8(\text{QPTC})_8[\text{V}^{V}_3\text{O}_3(\text{OH})_2(\text{H}_2\text{O})_3]_2\} \cdot 18\text{CH}_3\text{OH} \cdot 23\text{DMF} \]

(TMA₁₀⁻¹·18CH₃OH·23DMF):

VOSO₄·5H₂O (0.06 g, 0.24 mmol) and H₄QPTC (0.02 g, 0.04 mmol) were suspended in a 3 mL mixture of DMF:MeOH (1:2 v/v), then the mixture was placed in a Parr Teflon-lined stainless steel vessel and heated at 150 °C. After 3 days, green prismatic crystals were obtained (yield 0.02 g, 33.0% based on V). Elemental analysis, calcd.: C, 37.3%; H, 5.2%; N, 3.4%; S, 1.9%; V, 20.2%; found: C, 38.0%; H, 5.2%; N, 3.8%; S, 2.1%; V, 21.3%. IR (2% KBr pellet, 4000–400 cm⁻¹): 3447(br), 2926(w), 2819(w), 1615(w), 1574(s), 1488(w), 1438(w), 1381(w), 1223(w), 1073(w), 949(vs), 772(w), 721(w), 650(w), 575(w), 541(s).

\[\text{TMA}_{20}\{[\text{V}^{IV}_4\text{O}_6(\text{C}_6\text{H}_5\text{PO}_3)]_8(\text{QPTC})_8[\text{V}^{IV}_2\text{O}_2(\text{OCH}_3)_2]_2\} \cdot 17\text{CH}_3\text{OH} \cdot 6\text{DMF} \]

(TMA₂₀⁻¹·17CH₃OH·6DMF):

The crystals of complex 1 (0.02 g, 0.0015 mmol) and phenylphosphonic acid (0.002 g, 0.012 mmol) were suspended in a 3 mL mixture of DMF:MeOH (1:2 v/v), then the mixture was placed in a Parr Teflon-lined stainless steel vessel and heated at 150 °C. After 3 days, green prismatic crystals were obtained (yield 0.01 g, 50.9% based on V). Elemental analysis, calcd.: C, 41.6%; H, 5.5%; N, 2.7%; P, 1.9%; V, 19.8%; found: C, 39.8%; H, 5.8%; N, 2.7%; P, 2.2%; V, 21.0%. IR (2% KBr pellet, 4000–400 cm⁻¹): 3447(br), 3034(w), 2926(w), 2818(w), 1725(w), 1667(s), 1614 (s), 1573(s), 1487(w), 1438(s), 1419(s), 1381(w), 1226(w), 1072(s), 948(vs), 772(w), 721(w), 650(w), 563(w), 541(w).

\[\text{TMA}_{16}\{[\text{V}^{IV}_6\text{O}_6(\text{C}_6\text{H}_5\text{PO}_3)]_8(\text{QPTC})_2(\text{HQPTC})_4(\text{H}_2\text{QPTC})_2\} \cdot 15\text{CH}_3\text{OH} \cdot 13\text{DMF} \]

(TMA₁₆⁻²·15CH₃OH·13DMF):

VOSO₄·5H₂O (0.06 g, 0.24 mmol), H₄QPTC (0.02 g, 0.04 mmol) and phenylphosphonic acid (0.01 g, 0.06 mmol) were suspended in a 3 mL mixture of DMF:MeOH (1:2 v/v), then the mixture was placed in a Parr Teflon-lined stainless steel vessel and heated at 150 °C for 3 days. After slow cooling to room temperature, green plate crystals were obtained (yield 0.03 g, 45.6% based on V). Elemental analysis, calcd.: C, 42.2%; H, 5.5%; N, 3.1%; P, 1.9%; V, 18.6%; found: C, 43.1%; H, 5.9%; N, 3.2%; P, 1.9%; V, 17.8%. IR (2% KBr pellet, 4000–400 cm⁻¹): 3446(br), 3034(w), 2923(w), 2814(w), 1725(w), 1667 (s), 1613(w), 1573(s), 1488(w), 1443(w), 1417(w), 1380(w), 1317(w), 1246(w), 1134(w), 1070(vs), 947(vs), 764(w), 722(w), 564(vs).
Instruments and Physical Measurements

General: IR spectra (KBr pellets) were collected on a Thermo Nicolet Avatar 360 FTIR spectrophotometer. Atmosphere compensation (CO₂ and H₂O) and baseline corrections were carried out after spectrum collection. ¹H NMR spectra and ³¹P NMR were collected on a Bruker Avance III 400 MHz NMR instrument. For base-digestion NMR experiments, the MOP samples were dissolved in 1 M NaOD and aged for 2 days (or until the solution turned colorless, indicating complete oxidation of V(IV) to V(V)) before running NMR measurements. Elemental analyses were performed on a Vario EL III analyzer (for C, H, N) and Perkin-Elmer ICP–OES (for P, S, and V). The UV-visible spectra were recorded on a Perkin-Elmer Lambda 750 spectrophotometer. Thermal gravimetric analyses were measured with a TA Instruments SDT-Q600 thermal analysis system under N₂ flow with 10 °C/min heating. High-resolution mass spectra were obtained on a quadrupole-orbitrap mass spectrometer (QExactive, ThermoFisher Scientific). The mobile phase consisted of (A) Milli-Q water and (B) HPLC-grade acetonitrile. The HPLC-MS was operated with electrospray ionization in negative polarity mode. The solvent molecules, especially those between MOP cages, are highly disordered in the crystal structures. Therefore, the numbers of the solvent molecules (CH₃OH and DMF) were determined by TGA and elemental analyses.

The determination of counter ions (both their identities and numbers) in the three MOP compounds was based on collective evidence from single-crystal X-ray diffraction, NMR spectroscopy, TGA, and elemental analyses. Solvothermal decomposition of DMF solvents has been known to generate dimethylammonium (DMA⁺) and tetramethylammonium (TMA⁺) ions, depending on the reaction conditions and if other solvents such as CH₃OH are also present.²²,²³ In each of the MOP crystal structures, we have located multiple TMA⁺ counter ions. Solution NMR in DMSO-d₆, although no informative for identifying the ligand signals, can exclude the presence of DMA⁺ in the crystals as there is no peaks at 2.47 and 9.08 ppm (from internal DMA⁺Cl⁻ reference). The TMA⁺ signals, however, overlap with that of the methoxide groups on the \{V₆S/P\} SBUs (See Figs. S20 and S21). Thermal decomposition of TMA⁺ counterions in TGA occurs in the temperature range of 375–550 °C as a well-separated weight loss step, so its number can be accurately determined.

Single-crystal X-ray diffraction: The single-crystal X-ray diffraction data were collected using a Bruker D8 Quest X-ray diffractometer equipped with an Incoatec Microfocus Mo Source (λ = 0.71071 Å) and a PHOTON II CPAD detector. Suitable crystals were coated with Paratone N oil, suspended on a small fiber loop, and placed in a 173(2) K cooled nitrogen stream from Oxford Cryosystems Cryostream equipment. For all cases, the raw data were processed with the Bruker APEX3 software package. The data were solved by intrinsic phasing methods and the refinement was done by full-matrix least squares on \(F^2\) using SHELXL (2018/3). Hydrogen atoms on the organic linkers, terminal methoxyl groups, the interior organophosphonate units and the tetramethylammonium counter ions are place geometrically and refined using a riding model; FLAT and AFIX 66 restraints were used, if necessary, to treat the disordered phenyl groups on the phosphonates and organic linkers (QPTC). The SQUEEZE option of PLATON was used to model the contribution of disordered solvent molecules and counter ions to the reflection intensities.
Fig. S1. Comparison of the IR spectra of H₄QPTC, 1, 1’ and 2.

Fig. S2. Thermogravimetric analysis trace of 1. The weight loss of 4.1% between 30 and 80 °C is associated with the loss of c.a. 18 methanol molecules (calcd. 4.2%); the weight loss of 12.5% between 80 and 200 °C is associated with the loss of c.a. 23 N, N-dimethylformamide molecules (calcd. 12.3%).
Fig. S3. Thermogravimetric analysis trace of 1'. The weight loss of 4.1% between 30 and 80 °C is associated with the loss of c.a. 17 methanol molecules (calcd. 4.1%); the weight loss of 3.1% between 80 and 200 °C is associated with the loss of c.a. 6 N,N-dimethylformamide molecules (calcd. 3.2%).

Fig. S4. Thermogravimetric analysis trace of 2. The weight loss of 3.8% between 30 and 80 °C is associated with the loss of c.a. 15 methanol molecules (calcd. 3.7%); the weight loss of 7.0% between 80 and 200 °C is associated with the loss of c.a. 13 N,N-dimethylformamide molecules (calcd. 7.2%).
Fig. S5. The dye molecules that were used for absorption studies in this work.

Fig. S6. Adsorption of dye molecules by 1. Temporal evolution of the UV–Vis absorption spectra of MB⁺ (1.25×10⁻⁵ M, 4 mL, a), SD (1.25×10⁻⁴ M, 4 mL, b) and AO⁻ (6.25×10⁻⁵ M, 4 mL, c) in ethanol solution with 2 mg of compound 1. (d) Dye adsorption monitored through the decrease in absorbance at selected wavelengths (MB⁺: 652 nm; SD: 515 nm; AO⁻: 480 nm).
Fig. S7. Adsorption of dye molecules by 1’. Temporal evolution of the UV–Vis absorption spectra of MB$^-$ (1.25×10$^{-5}$ M, 4 mL, a), SD (1.25×10$^{-4}$ M, 4 mL, b) and AO$^-$ (6.25×10$^{-5}$ M, 4 mL, c) in ethanol solution with 2 mg of compound 1’. (d) Dye adsorption monitored through the decrease in absorbance at selected wavelengths (MB$^-$: 652 nm; SD: 515 nm; AO$^-$: 480 nm).
Fig. S8. Adsorption of dye molecules by 2. Temporal evolution of the UV–Vis absorption spectra of MB⁺ (1.25×10⁻⁵ M, 4 mL, a), SD (1.25×10⁻⁴ M, 4 mL, b) and AO⁻ (6.25×10⁻⁵ M, 4 mL, c) in ethanol solution with 2 mg of compound 2. (d) Dye adsorption monitored through the decrease in absorbance at selected wavelengths (MB⁺: 652 nm; SD: 515 nm; AO⁻: 480 nm).
Fig. S9. 1H NMR spectrum of a base-digested sample of 1 (400 MHz, NaOD/D$_2$O, 293 K).

Fig. S10. 1H NMR spectrum of a base-digested sample of $1'$ (400 MHz, NaOD/D$_2$O, 293 K)
Fig. S11. 1H NMR spectrum of a base-digested sample of 2 (400 MHz, NaOD/D$_2$O, 293 K)

Fig. S12. 31P NMR spectrum of a base-digested sample of 1' (400 MHz, NaOD/D$_2$O, 293 K)
Fig. S13. 31P NMR spectrum of a base-digested sample of 2 (400 MHz, NaOD/D$_2$O, 293 K)

Fig. S14. Mass spectrum of compound 1 in the m/z range of 1352–1364 (8–charge state); each adjacent envelope of peaks differs by that of a methyl radical (15 Da), indicating the methoxide ligands on the hexavanadate SBUs are fairly labile.
Fig. S15. XPS spectrum (left) of 1 and the region (right) for V 2p$_{1/2}$ and V 2p$_{3/2}$ peaks.

Fig. S16. XPS spectrum (left) of 1′ and the region (right) for V 2p$_{1/2}$ and V 2p$_{3/2}$ peaks.

Fig. S17. XPS spectrum (left) of 2 and the region (right) for V 2p$_{1/2}$ and V 2p$_{3/2}$ peaks.
Fig. S18. 1H NMR (left) and 31P NMR (right) spectra of a base-digested sample of the crystalline product after attempting to post-functionalize MOP 1 with biphenyl-4-phosphonic acid (400 MHz, NaOD/D$_2$O, 293 K). The results confirmed that no sulfate ions in its $\{V_6S\}$ SBUs was replaced by phosphonates, and the product was still MOP 1.

Fig. S19. 1H NMR (left) and 31P NMR (right) spectra of a base-digested sample of the crystalline product after attempting to post-functionalize MOP 1 with p-terphenyl-4-phosphonic acid (400 MHz, NaOD/D$_2$O, 293 K). The results confirmed that no sulfate ions in its $\{V_6S\}$ SBUs was replaced by phosphonates, and the product was still MOP 1.
Fig. S20. Solution 1H NMR of compound 1 dissolved in d$_6$-DMSO.

Fig. S21. Solution 1H NMR of compound 1 dissolved in d$_6$-DMSO, with added TMA$^+$Cl$^-$ and DMA$^+$Cl$^-$, as references for identifying counter ions.
Single-Crystal X-Ray Structure Determination

Table S1. Crystal data and structure refinement for 1 (CCDC deposit number: 2144006).

	1
Empirical formula	C_{42}H_{697}N_{33}O_{27}S_{8}V_{54}
Formula weight	13620.33
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	\(a = 20.5891(17) \text{ Å, } a = 113.872(2)^\circ\)
	\(b = 28.609(2) \text{ Å, } \beta = 92.142(2)^\circ\)
	\(c = 33.168(3) \text{ Å, } \gamma = 103.627(2)^\circ\)
Volume	17168(2) Å³
Z	1
Density (calculated)	1.317 Mg/m³
Absorption coefficient	0.803 mm⁻¹
\(F(000)\)	7020
Crystal size	0.600 x 0.600 x 0.300 mm³
Theta range for data collection	2.141 to 26.433°
Index ranges	\(-25 <= h <= 25, -35 <= k <= 35, -41 <= l <= 41\)
Reflections collected	236288
Independent reflections	70399 [R(int) = 0.0986]
Completeness to \(\theta = 25.242^\circ\)	99.8%
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on \(F^2\)
Data / restraints / parameters	70399 / 71 / 1728
Goodness-of-fit on \(F^2\)	1.052
Final \(R\) indices [\(I > 2\sigma(I)\)]	\(R_1 = 0.1495, wR_2 = 0.3398\)
\(R\) indices (all data)	\(R_1 = 0.2529, wR_2 = 0.4042\)
Largest diff. peak and hole	1.667 and -3.731 e.Å⁻³

*\(R_1 = \Sigma |F_o| - |F_c|/\Sigma |F_o|, wR_2 = [\Sigma w(F_o^2 - F_c^2)^2]/[\Sigma w(F_o^2)]^{1/2}\)
Table S2. Crystal data and structure refinement for 1' (CCDC deposit number: 2144007).

Property	Value
Empirical formula	C_{463}H_{730}N_{26}O_{239}P_{8}V_{52}
Formula weight	13381.33
Temperature	220(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	
\(a\) = 26.268(2) Å	\(\alpha = 87.768(2)^\circ\).
\(b\) = 27.835(2) Å	\(\beta = 71.483(2)^\circ\).
\(c\) = 30.643(3) Å	\(\gamma = 69.654(2)^\circ\).
Volume	19856(3) Å
Z	1
Density (calculated)	1.119 Mg/m³
Absorption coefficient	0.663 mm\(^{-1}\)
\(F(000)\)	6918
Crystal size	0.530 x 0.510 x 0.330 mm\(^3\)
Theta range for data collection	1.868 to 22.054°
Index ranges	\(-27\leq h\leq 27, -29\leq k\leq 29, -32\leq l\leq 32\)
Reflections collected	339784
Independent reflections	48833 [R(int) = 0.1721]
Completeness to \(\theta = 22.054^\circ\)	99.5%
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on \(F^2\)
Data / restraints / parameters	48833 / 26 / 1895
Goodness-of-fit on \(F^2\)	1.010
Final \(R\) indices \([I>2\sigma(I)]\)	\(R_1 = 0.1133, wR_2 = 0.2957\)
\(R\) indices (all data)	\(R_1 = 0.2064, wR_2 = 0.3927\)
Largest diff. peak and hole	1.133 and \(-0.622\) e.Å\(^{-3}\)

*R_1 = \Sigma||F_o|| - |F_c||/\Sigma|F_o|, wR_2 = [\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]]^{1/2}
Table S3. Crystal data and structure refinement for 2 (CCDC deposit number: 2144008).

Property	Value
Empirical formula	C_{462}H_{719}N_{29}O_{236}P_{8}V_{48}
Formula weight	13148.50
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	a = 45.210(2) Å, α = 90°, b = 27.4006(14) Å, β = 113.9190(10)°, c = 55.215(4) Å, γ = 90°.
Volume	62525(6) Å³
Z	4
Density (calculated)	1.397 Mg/m³
Absorption coefficient	0.786 mm⁻¹
F(000)	27224
Crystal size	0.450 x 0.350 x 0.320 mm³
Theta range for data collection	2.194 to 21.556°
Index ranges	-46<=h<=46, -28<=k<=28, -49<=l<=56
Reflections collected	172105
Independent reflections	35874 [R(int) = 0.0507]
Completeness to θ = 21.556°	99.1%
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	35874 / 52 / 1261
Goodness-of-fit on F²	1.051
Final R indices [I>2σ(I)]	R₁ = 0.1445, wR₂ = 0.4306
R indices (all data)	R₁ = 0.1828, wR₂ = 0.4952
Largest diff. peak and hole	1.973 and -1.596 e.Å⁻³

*R₁ = Σ||F₀| - |Fᵣ||/Σ|F₀|, wR₂ = [Σ[w(Fᵣ² − F₀²)]²]/Σ[w(F₀²)]²]¹/²
Fig. S22. The distances between adjacent hexavanadate clusters (S/P⋯S/P separations, in Å) and those between adjacent QPTC linkers in 1(a) and 1'(b); the distances between adjacent hexavanadate clusters in 1 (c); and pi-pi stacking interactions between the phenyl rings of the phosphonate functional groups in 1'(d).
Fig. S23. (a) The distances between adjacent hexavanadate clusters (P···P separations) in 2; (b) pi-pi stacking interactions between the phenyl rings of the phosphonate functional groups in 2.

Fig. S24. The inner void space of 1(a), 1'(b) and 2(c); cavity volumes were calculated by the 3V program.57
Fig. S25. Crystal packing diagrams of 1, 1’, and 2 showing the space (in orange) between the MOP molecules, which may be accessed by guests such as MB dye molecules. The void spaces (without counter ions and solvents) between MOP molecules are calculated to be 49.6%, 53.0%, and 38.0% of the cell volumes for 1, 1’, and 2, respectively. (Calculation and drawing were done with CCDC Mercury 2021.2.0. Probe radius, 1.2 Å; grid spacing 0.7 Å; contact surface.)
Bond Valence Sum (BVS) Calculations:

For determination of the oxidation states of metal centers and the protonation states of oxygen sites, BVS calculations were carried out using the method of I. D. Brown. The r_o values were taken from the literature for calculations performed on V.

Table S4. BVS calculations for V sites in 1.

Vanadium Atoms	BVS	Assigned Oxidation States		
	V(III)	V(IV)	V(V)	
V1	3.791	**3.934**	4.387	IV
V2	3.909	**4.066**	4.523	IV
V3	3.741	**3.885**	4.329	IV
V4	3.898	**4.046**	4.510	IV
V5	3.915	**4.061**	4.530	IV
V6	3.821	**3.962**	4.422	IV
V7	3.792	**3.940**	4.388	IV
V8	3.816	**3.968**	4.415	IV
V9	3.849	**3.989**	4.454	IV
V10	3.888	**4.031**	4.499	IV
V11	3.986	**4.138**	4.613	IV
V12	3.932	**4.075**	4.550	IV
V13	3.863	**4.007**	4.470	IV
V14	3.784	**3.938**	4.379	IV
V15	3.747	**3.893**	4.336	IV
V16	3.840	**3.991**	4.443	IV
V17	3.744	**3.884**	4.333	IV
V18	3.786	**3.932**	4.381	IV
V19	3.917	**4.066**	4.532	IV
V20	3.759	**3.907**	4.350	IV
V21	3.879	**4.023**	4.489	IV
V22	3.833	**3.979**	4.436	IV
V23	3.714	**3.863**	4.298	IV
V24	3.845	**3.990**	4.449	IV
V25	4.131	4.316	**4.780**	V
V26	4.279	4.486	**4.952**	V
V27	4.104	4.269	**4.749**	V
Table S5. BVS calculations for V sites in 1’.

Vanadium Atoms	BVS	Assigned Oxidation States		
	V(III)	V(IV)	V(V)	
V1	3.975	4.118	4.600	IV
V2	3.767	3.911	4.359	IV
V3	3.913	4.063	4.528	IV
V4	3.745	3.898	4.334	IV
V5	3.851	4.000	4.456	IV
V6	3.788	3.940	4.384	IV
V7	3.875	4.019	4.483	IV
V8	3.770	3.911	4.362	IV
V9	3.888	4.044	4.499	IV
V10	3.909	4.051	4.523	IV
V11	3.793	3.947	4.389	IV
V12	3.777	3.925	4.370	IV
V13	3.818	3.962	4.418	IV
V14	3.800	3.949	4.397	IV
V15	3.851	4.005	4.456	IV
V16	3.968	4.112	4.591	IV
V17	3.802	3.948	4.399	IV
V18	3.799	3.951	4.396	IV
V19	3.711	3.860	4.294	IV
V20	3.815	3.961	4.415	IV
V21	3.876	4.024	4.486	IV
V22	3.786	3.939	4.381	IV
V23	3.783	3.923	4.377	IV
V24	3.879	4.034	4.489	IV
V25	3.826	3.962	4.428	IV
V26	3.792	3.922	4.388	IV
Table S6. BVS calculations for V sites in 2.

Vanadium Atoms	BVS	Assigned Oxidation States		
	V(III)	V(IV)	V(V)	
V1	3.822	**3.969**	4.422	IV
V2	3.748	**3.895**	4.337	IV
V3	3.868	**4.013**	4.476	IV
V4	3.746	**3.896**	4.335	IV
V5	3.724	**3.864**	4.309	IV
V6	3.835	**3.983**	4.437	IV
V7	3.725	**3.885**	4.310	IV
V8	3.704	**3.845**	4.286	IV
V9	3.867	**4.022**	4.475	IV
V10	4.111	**4.263**	4.757	IV
V11	3.839	**3.986**	4.443	IV
V12	3.706	**3.850**	4.288	IV
V13	3.784	**3.920**	4.378	IV
V14	3.779	**3.923**	4.373	IV
V15	3.841	**4.005**	4.445	IV
V16	3.759	**3.902**	4.349	IV
V17	3.900	**4.044**	4.513	IV
V18	3.817	**3.958**	4.417	IV
V19	3.749	**3.898**	4.338	IV
V20	3.737	**3.888**	4.325	IV
V21	3.826	**3.972**	4.427	IV
V22	3.795	**3.943**	4.391	IV
V23	3.803	**3.958**	4.401	IV
V24	3.761	**3.903**	4.352	IV
Table S7. BVS calculations for selected oxygen atoms in 1, 1’, and 2.

Compounds	Selected Oxygen Atoms	BVS	Assigned Protonation Levels
I	O109	2.153	O
	O110	0.337	H₂O
	O111	0.617	H₂O
	O112	1.214	OH
	O113	1.552	O
	O114	1.802	O
	O115	0.958	OH
	O116	0.633	H₂O
1’	O105	2.000	O
	O106	2.150	O
	O107	1.561	O
	O108	1.539	O
References:

S1 X. Lin, I. Telepeni, A. J. Blake, A. Daily, C. M. Brown, J. M. Simmons, M. Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, P. Hubberstey, N. R. Champness and M. Schroder, J. Am. Chem. Soc. 2009, 131, 2159–2171.

S2 (a) Y.-T. Zhang, X.-L. Wang, S.-B. Li, Y.-R. Gong, B.-Q. Song, K.-Z. Shao and Z.-M. Su, Chem. Commun., 2016, 52, 9632–9635; (b) Y.-T. Zhang, S.-B. Li, X.-L. Wang, Y.-R. Gong, K.-Z. Shao and Z.-M. Su, Dalton Trans., 2016, 45, 14898–14901; (c) Y.-R. Gong, W.-C. Chen, L. Zhao, K.-Z. Shao, X.-L. Wang and Z.-M. Su, Dalton Trans., 2018, 47, 12979–12983; (d) Y. Gong, Y. Zhang, C. Qin, C. Sun, X. Wang and Z. Su, Angew. Chem., Int. Ed., 2019, 58, 780–784; (e) Y. Gong, C. Qin, Y. Zhang, C. Sun, Q. Pan, X. Wang and Z. Su, Angew. Chem., Int. Ed. 2020, 59, 22034–22038.

S3 (a) X. Hang, B. Liu, X. Zhu, S. Wang, H. Han, W. Liao, Y. Liu and C. Hu, J. Am. Chem. Soc., 2016, 138, 2969–2972; (b) J.-Q. Liu, J. Wu, J. Wang, L. Lu, C. Daiguebonne, G. Calvez, O. Guillou, H. Sakiyama, N. S. Weng and M. Zeller, RSC Adv., 2014, 4, 20605–20611.

S4 G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3–8.

S5 G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112–122.

S6 A. L. Spek, Acta Crystallogr. 2015, C71, 9–18.

S7 N. R. Voss and M. Gerstein, Nucleic Acids Res, 2010, 38, W555–W562.

S8 I. D. Brown and D. Altermatt, Acta Crystallogr. Sect. B, 1985, 41, 244–247.

S9 W. Liu and H. H. Thorp, Inorg. Chem. 1993, 32, 4102–4105.