ISOMETRIC DEFORMATIONS OF THE $K^\frac{1}{4}$-FLOW TRANSLATORS IN \mathbb{R}^3
WITH HELICOIDAL SYMMETRY

HOJOO LEE

ABSTRACT. The height functions of $K^\frac{1}{4}$-flow translators in Euclidean space \mathbb{R}^3 solve the classical Monge-Ampère equation $f_{xx}f_{yy} - f_{xy}^2 = 1$. We explicitly and geometrically determine the moduli space of all helicoidal $K^\frac{1}{4}$-flow translators, which are generated from planar curves by the action of helicoidal groups.

1. MOTIVATION AND MAIN RESULTS

1.1. Introduction. The classical curve-shortening flow admits fruitful generalizations with intriguing applications. One of Huisken’s theorems guarantees that an analogue of the Gage-Hamilton’s shrinking-curves theorem in the plane also holds for the mean curvature flow in higher dimensional Euclidean spaces.

Andrews [2] proved Firey’s conjecture that convex surfaces evolving by the Gauss curvature flow become spherical. Chow [6] investigated the normal deformation by powers of the Gauss curvature, and Urbas [20] studied self-similar and translating solitons for the normal evolution by positive powers of the Gauss curvature.

We say that a surface Σ is a $K^\frac{1}{4}$-translator when we have the geometric condition

$$K_\Sigma = \cos^4(\theta_\Sigma).$$

The scalar function K_Σ denotes the Gaussian curvature and the third component $\cos(\theta_\Sigma) = n_\Sigma \cdot (0, 0, 1)$ of the unit normal n_Σ is called the angle function on Σ.

The $K^\frac{1}{4}$-translators in Euclidean space \mathbb{R}^3 are of significant geometrical interest. The convex graph $z = f(x, y)$ becomes a $K^\frac{1}{4}$-translator if and only if its height function f solves the classical Monge-Ampère equation

$$f_{xx}f_{yy} - f_{xy}^2 = 1.$$

Jörgens’ outstanding holomorphic resolution [13] says that, when $f_{xx}f_{yy} - f_{xy}^2 = 1$, the gradient graph (x, y, f_x, f_y) becomes a minimal surface in Euclidean space \mathbb{R}^4. The Hessian one equation is a special case of special Lagrangian equations [11], split special Lagrangian equations [12, 16, 17], and affine mean curvature equations [1, 4, 19]. Furthermore, its solutions induce flat surfaces in hyperbolic space \mathbb{H}^3 [18].
1.2. Isometric deformations of helicoidal $K^\frac{1}{4}$-translators.

Theorem 1 (Moduli space of $K^\frac{1}{4}$-translators with rotational & helicoidal symmetry).

(A) Any helicoidal $K^\frac{1}{4}$-translator Σ of pitch μ admits a one-parameter family of isometric helicoidal $K^\frac{1}{4}$-translators Σ^h with pitch h such that $\Sigma = \Sigma^\mu$ and that Σ^0 is rotational.

(B) The cylinder over a circle in the xy-plane is a rotational $K^\frac{1}{4}$-translator. Additionally, there exists a one-parameter family of $K^\frac{1}{4}$-translators H_c invariant under the rotation with z-axis.

The profile curve of rotational surface H_c is congruent to the graph $(U, 0, \Lambda_c(U))$, where the one-parameter family of height functions $\Lambda_c(U)$ is explicitly given by

$$\Lambda_c(U) = \begin{cases}
\frac{1}{2} \left[U \sqrt{U^2 + \kappa^2} + \kappa^2 \text{arcsinh} \left(\frac{U}{\kappa} \right) \right], & U > 0 \text{ (when } c = 1 + \kappa^2, \kappa > 0), \\
\frac{1}{2} U^2, & U \geq 0 \text{ (when } c = 1), \\
\frac{1}{2} \left[U \sqrt{U^2 - \kappa^2} - \kappa^2 \text{arccosh} \left(\frac{U}{\kappa} \right) \right], & U > \kappa \text{ (when } c = 1 - \kappa^2, \kappa > 0).
\end{cases}$$

(C) There exists a two-parameter family of helicoidal $K^\frac{1}{4}$-translators H^h_c and the geometric coordinates (U, t) on H^h_c satisfying the following conditions.

(C1) The geometric meaning of the parameter h is that the surface H^h_c is invariant under the helicoidal motion with pitch h. The surface H^h_c is invariant under the one-parameter subgroup $\{S_T\}$ of the group of rigid motions of $\mathbb{R}^3 = \mathbb{C} \times \mathbb{R}$ given by

$$(\zeta, z) \in \mathbb{C} \times \mathbb{R} \mapsto S_T (\zeta, z) = (e^{iT} \zeta, hT + z) \in \mathbb{C} \times \mathbb{R}.$$

(C2) There exist the coordinates (U, t) on the helicoidal surface H^h_c such that its metric reads $I_{H^h_c} = (U^2 + c) \, dU^2 + U^2 dt^2$.

(C3) The geometric meaning of the parameter c is the property that the helicoidal surface H^h_c is isometric to the rotational surface $H^0_c = H_c$.

(C4) The geometric meaning of the coordinate U is the property that the function $\frac{1}{\sqrt{U^2 + c}}$ coincides with the angle function on the surface H^h_c up to a sign.

The statement (A) in Theorem 1 is inspired by the 1982 do Carmo-Dajczer theorem [5] that a surface of non-zero constant mean curvature is helicoidal if and only if it lies in the associate family [15] of a Delaunay’s rotational surface [8, 14] with the same constant mean curvature. In 1998, Haak [9] presented an alternative proof of the do Carmo-Dajczer theorem.

The mean curvature flow in \mathbb{R}^3 also admits the translating solitons with helicoidal symmetry. In 1994, Altschuler and Wu [3] showed the existence of the convex, rotational, entire graphical translator. In 2007, Clutterbuck, Schnürer and Schulze [7] constructed the bigraphical translator, which is also rotationally symmetric.

Open Problem. Prove or disprove that Halldorsson’s helicoidal translators [10] for the mean curvature flow admit the isometric deformation from rotational translators.

Acknowledgement. I would like to thank Miyuki Koiso for sending me the paper [14] and appreciate discussions with Matthias Weber.
2. Proof of Theorem 1

We first need to revisit Bour’s construction [5] with details to specify the behavior of the angle function on his isometric helicoidal surfaces.

Lemma 2 (Angle function on Bour’s helicoidal surfaces). Let Σ be a helicoidal surface with pitch vector µk = (0, 0, µ) and the generating curve γ = (R, 0, Λ) in the xz-plane, which admits the parametrization (u, θ) ↦→ (R cos θ, R sin θ, Λ + µθ), where u denotes a parameter of the generating curve γ. We then define the Bour coordinate transformation

(u, θ) ↦→ (s, t) = (s, θ + Θ),

via the relations

\[
\begin{align*}
 ds^2 &= dR^2 + \frac{R^2}{R^2 + \mu^2} d\Lambda^2, \\
 d\Theta &= \frac{\mu}{R^2 + \mu^2} d\Lambda,
\end{align*}
\]

and also introduce the Bour function U using the relation

\[U^2 = R^2 + \mu^2.\]

(A) The helicoidal surface Σ admits the reparametrization satisfying (A1), (A2), and (A3):

(s, t) ↦→ X(s, t) = (R cos (t − Θ), R (t − Θ), Λ + µ (t − Θ)).

(A1) Its first fundamental form reads \(I_\Sigma = ds^2 + U^2 dt^2\).

(A2) The parameters R, Λ, and Θ can be recovered from the Bour function U explicitly:

\[
\begin{align*}
 R^2 &= U^2 - \mu^2, \\
 d\Lambda^2 &= \frac{U^2}{(U^2 - \mu^2)^2} U^2 \left(1 - \left(\frac{dU}{ds}\right)^2\right) - h^2 \right) \, ds^2, \\
 d\Theta &= \frac{h}{U^2} d\Lambda.
\end{align*}
\]

(A3) The angle function \(n_3\) defined as the third component \(n \cdot k\) of the induced unit normal \(n = \frac{1}{\|X_s \times X_t\|} X_s \times X_t\) is also determined by the Bour function U.

\[n_3^2 = \left(\frac{dU}{ds}\right)^2.\]

(B) We construct a two-parameter family of helicoidal surfaces \(\Sigma^{\lambda,h}\) of pitch h by the patch

\[X^{\lambda,h}(s, t) = \left(\frac{R^{\lambda,h} \cos \left(\frac{t}{\lambda} - \Theta^{\lambda,h}\right)}{\lambda}, \frac{R^{\lambda,h} \sin \left(\frac{t}{\lambda} - \Theta^{\lambda,h}\right)}{\lambda}, \Lambda^{\lambda,h} + h \left(\frac{t}{\lambda} - \Theta^{\lambda,h}\right)\right),\]

where the geometric datum \((R^{\lambda,h}, \Lambda^{\lambda,h}, \Theta^{\lambda,h})\) is explicitly determined by the pair \((\lambda, h)\) of constants and the Bour function U(s) arising from the reparametrization X(s, t) of Σ

\[
\begin{align*}
 (R^{\lambda,h})^2 &= \lambda^2 U^2 - h^2, \\
 (d\Lambda^{\lambda,h})^2 &= \frac{\lambda^2 U^2}{(\lambda^2 U^2 - h^2)^2} \left(\lambda^2 U^2 \left(1 - \lambda^2 \left(\frac{dU}{ds}\right)^2\right) - h^2\right) \, ds^2, \\
 d\Theta^{\lambda,h} &= \frac{h}{\lambda U^2} d\Lambda^{\lambda,h}.
\end{align*}
\]
Then, the helicoidal surface $\Sigma^{\lambda, h}$ is isometric to the initial surface Σ, and its angle function $n_3^{\lambda, h} = n^{\lambda, h} \cdot k$ is determined by the Bour function U of the initial surface Σ.

$$\left(n_3^{\lambda, h} \right)^2 = \lambda^2 \left(\frac{dU}{ds} \right)^2.$$

(C) Furthermore, the helicoidal surface $\Sigma^{1, \mu}$ coincides with the initial surface Σ.

Proof. (A) The definitions of the Bour coordinate (s, t) and the Bour function U yield

$$I_\Sigma = (dR^2 + \frac{\mathcal{R}^2}{\mathcal{R}^2 + \mu^2} d\Lambda^2) + (\mathcal{R}^2 + \mu^2) d\theta^2 = \left(dR^2 + \frac{\mathcal{R}^2}{\mathcal{R}^2 + \mu^2} d\Lambda^2 \right) + (\mathcal{R}^2 + \mu^2) \left(d\theta + \frac{\mu}{\mathcal{R}^2 + \mu^2} d\Lambda \right)^2 = ds^2 + U^2 dt^2.$$

Noticing that the definition $U^2 = R^2 + \mu^2$ implies $d\mathcal{R}^2 = \frac{U^2}{R^2 - \mu^2} dU^2$, we can recover the function $\dot{\Lambda} = \frac{d\Lambda}{ds}$ from the Bour function $U(s)$ explicitly:

$$ds^2 = dR^2 + \frac{\mathcal{R}^2}{\mathcal{R}^2 + \mu^2} d\Lambda^2 = \frac{U^2}{U^2 - \mu^2} dU^2 + \frac{U^2 - \mu^2}{U^2} d\Lambda^2,$$

and

$$d\Lambda^2 = \frac{U^2}{U^2 - \mu^2} \left(ds^2 - \frac{U^2}{U^2 - \mu^2} dU^2 \right) = \frac{U^2}{(U^2 - \mu^2)^2} \left(U^2 \left(1 - \left(\frac{dU}{ds} \right)^2 \right) - h^2 \right) ds^2.$$

Adopting the symbol $' = \frac{d}{ds}$ again, we obtain

$$\mathbf{X}_s \times \mathbf{X}_t = \left(\mu \mathcal{R} \sin \theta - \mathcal{R} \dot{\Lambda} \cos \theta, -\mu \mathcal{R} \cos \theta - \mathcal{R} \dot{\Lambda} \sin \theta, \mathcal{R} \dot{\mathcal{R}} \right).$$

After setting $I_\Sigma := E ds^2 + 2 F ds dt + G dt^2 = ds^2 + U^2 dt^2$, we immediately see that

$$\| \mathbf{X}_s \times \mathbf{X}_t \|^2 = EG - F^2 = U^2.$$

It thus follows that

$$n_3^2 = \frac{(\mathcal{R} \dot{\mathcal{R}})^2}{U^2} = U^2 = \left(\frac{dU}{ds} \right)^2.$$

(B) We first show that the surface $\Sigma^{\lambda, h}$ is isometric to the initial surface Σ. Let us write

$$I_{\Sigma^{\lambda, h}} = E^{\lambda, h} ds^2 + 2 F^{\lambda, h} ds dt + G^{\lambda, h} dt^2.$$

Adopting the symbol $' = \frac{d}{ds}$ and using (2.1), we have

$$E^{\lambda, h} = \left(\mathcal{R}^{\lambda, h} \right)^2 + \mathcal{R}^2 \left(\dot{\Theta}^{\lambda, h} \right)^2 + \left(\dot{\Lambda}^{\lambda, h} - h \dot{\Theta}^{\lambda, h} \right)^2$$

$$= \left(\mathcal{R}^{\lambda, h} \right)^2 + \frac{\lambda^2 U^2 - h^2}{\lambda^2 U^2} \left(\dot{\Theta}^{\lambda, h} \right)^2$$

$$= \frac{\lambda^2 U^2 - h^2}{\lambda^2 U^2} + \frac{\lambda^2 U^2 - h^2}{\lambda^2 U^2} \cdot \frac{\lambda^2 U^2 \left(1 - \lambda^2 U^2 \right) - h^2}{(\lambda^2 U^2 - h^2)^2}$$

$$= 1.$$
We also deduce
\[F^{\lambda, h} = -\frac{1}{\lambda} \left[\left((\mathcal{R}^{\lambda, h})^2 + h^2 \right) \dot{\Theta} - h \dot{\Lambda} \right] = -\frac{1}{\lambda} \left[\lambda^2 U^2 \dot{\Theta} - h \dot{\Lambda} \right] = 0, \]
and
\[G^{\lambda, h} = \frac{1}{\lambda^2} \left[(\mathcal{R}^{\lambda, h})^2 + h^2 \right] = U^2. \]
Combining these, we meet
\[I_{\Sigma^{\lambda, h}} = E^{\lambda, h} ds^2 + 2F^{\lambda, h} ds dt + G^{\lambda, h} dt^2 = ds^2 + U^2 dt^2 = I_{\Sigma}. \]
Now, it remains to determine the angle function of the surface \(\Sigma^{\lambda, h} \). Adopting the new variable \(\theta = \frac{\lambda}{\lambda} - \Theta^{\lambda, h} \) for simplicity, we write
\[\mathbf{X}^{\lambda, h}_s \times \mathbf{X}^{\lambda, h}_t = \frac{1}{\lambda} \left(h R^{\lambda, h} \sin \theta - \mathcal{R}^{\lambda, h} \dot{\Lambda} \cos \theta, -h R^{\lambda, h} \cos \theta - \mathcal{R}^{\lambda, h} \dot{\Lambda} \sin \theta, \mathcal{R}^{\lambda, h} R^{\lambda, h} \right). \]
Taking account into this and the equality
\[\| \mathbf{X}^{\lambda, h}_s \times \mathbf{X}^{\lambda, h}_t \|^2 = E^{\lambda, h} G^{\lambda, h} - (F^{\lambda, h})^2 = U^2, \]
we meet
\[\left(n^{\lambda, h}_3 \right)^2 = \left(n^{\lambda, h} \cdot k \right)^2 = \frac{1}{U^2} \left(\frac{(R^{\lambda, h})(R^{\lambda, h})}{\lambda^2} \right)^2 = \lambda^2 \dot{U}^2 = \lambda^2 \left(\frac{dU}{ds} \right)^2. \]
(C) The datum \((R^{1, \mu}, \Lambda^{1, \mu}, \Theta^{1, \mu}) \) of \(\Sigma^{1, \mu} \) coincides with the datum \((R, \Lambda, \Theta) \) of \(\Sigma \). □

We briefly sketch the geometric ingredients in our construction in Theorem 1. For given a helicoidal \(K^h \)-translator, we prove that there exists a sub-family chosen from the two-parameter family of Bour’s isometric helicoidal surfaces, so that each member of this sub-family is a \(K^h \)-translator and that one member is rotationally symmetric.

Our one-parameter family of \(K^h \)-translators admits the parametrizations by so called the Bour coordinate \((s, t) \) and the Bour function \(U = U(s) \). The trick to obtain the explicit construction in (C3) is to perform the coordinate transformation \(s \mapsto U \) to have the geometric coordinate \((U, t)\) on our one-parameter family of \(K^h \)-translators.

Lemma 3 (Existence of helicoidal \(K^h \)-translators of pitch \(h \)). Let \(h \) be a given constant. Then, any non-cylindrical helicoidal \(K^h \)-translator with pitch \(h \) admits the parametrization
\[(U, t) \mapsto (\mathcal{R}(U) \cos (t - \Theta(U)), \mathcal{R}(U) \sin (t - \Theta(U)), \Lambda(U) + h(t - \Theta(U))), \]
where the geometric datum \((\mathcal{R}(U), \Lambda(U), \Theta(U)) \) can be obtained from the relation
\[(R^2) = U^2 - h^2, \]
\[\left(\frac{d\lambda}{dU} \right)^2 = \frac{U^2}{(U^2 - h^2)^2} \left[U^4 + (c - 1 - h^2) U^2 - h^2 c \right], \]
\[\left(\frac{d\phi}{dU} \right)^2 = \frac{h^2}{U^2(U^2 - h^2)^2} \left[U^4 + (c - 1 - h^2) U^2 - h^2 c \right], \]
where \(c \in \mathbb{R} \) is a constant.
Proof. Taking \(\lambda = 1 \) in Lemma 2, we construct a helicoidal surface \(\Sigma \) with pitch \(h \):

\[
(s, t) \mapsto X^{1,h}(s, t) = (R \cos (t - \Theta), R \sin (t - \Theta), \Lambda + h(t - \Theta)),
\]
where the geometric datum \((R, \Lambda, \Theta) = (R(s), \Lambda(s), \Theta(s))\) is given by the relation

\[
\begin{align*}
R^2 &= U^2 - h^2, \\
(d\Lambda)^2 &= U^2 \left(1 - \left(\frac{dU}{ds}\right)^2\right)^2 - h^2 ds^2, \\
(d\Theta) &= \frac{h}{U^2} d\Lambda.
\end{align*}
\]

The key point is to take the Bour function \(U \) as the new parameter on our helicoidal surface \(\Sigma \). According to Lemma 2 again, we see that the induced metric on \(\Sigma \) reads

\[
I_{\Sigma} = ds^2 + U^2 dt^2,
\]
that its Gaussian curvature \(\tilde{K} \) is equal to \(\tilde{K} = -\frac{1}{U} \frac{d^2 U}{ds^2} \), and that its angle function reads \(n_3^2 = \left(\frac{dU}{ds}\right)^4 \). Thus, the condition that the helicoidal surface \(\Sigma \) becomes a \(K^4 \)-translator implies that \(\tilde{K} = n_3^4 \), which means the ordinary differential equation

\[
-\frac{1}{U} \frac{d^2 U}{ds^2} = \left(\frac{dU}{ds}\right)^4.
\]

In the case when \(\frac{dU}{ds} \) vanishes locally, our surface \(\Sigma \) becomes the cylinder over a circle in the \(xy \)-plane. When \(\frac{dU}{ds} \) does not vanish, we are able to make a coordinate transformation \(s \mapsto U \) and can rewrite the above ODE as

\[
0 = \frac{d}{ds} \left(\frac{1}{\left(\frac{dU}{ds}\right)^2} - U^2\right).
\]

Hence its first integral is explicitly given by, for some constant \(c \in \mathbb{R} \),

\[
ds^2 = (U^2 + c) dU^2.
\]

We now can employ this to perform the coordinate transformation \((s, t) \mapsto (U, t)\) on \(\Sigma \). Rewriting (2.3) in terms of the new variable \(U \) gives indeed the relation in (2.2). \(\square \)

Proof of Theorem 1. We first prove (B). Taking \(h = 0 \) in Lemma 3, we see that any rotational \(K^4 \)-translators admits the patch

\[
(U, t) \mapsto (R(U) \cos (t - \Theta(U)), R(U) \sin (t - \Theta(U)), \Lambda(U) + h(t - \Theta(U))),
\]
where the geometric datum \((R(U), \Lambda(U), \Theta(U))\) satisfies the relation

\[
\begin{align*}
(R(U))^2 &= U^2, \\
\left(\frac{d\Lambda}{dU}\right)^2 &= U^2 + (c - 1), \\
\left(\frac{d\Theta}{dU}\right)^2 &= 0
\end{align*}
\]
for some constant \(c \in \mathbb{R} \). The condition that the helicoidal surface \(\Sigma \) becomes a \(K^4 \)-translator implies the ordinary differential equation

\[
-\frac{1}{U} \frac{d^2 U}{ds^2} = \left(\frac{dU}{ds}\right)^4.
\]
When \(\frac{dU}{ds} \) vanishes locally, our surface \(\Sigma \) becomes the cylinder over a circle in the \(xy \)-plane. In the case when \(\frac{dU}{ds} \) does not vanish, we can introduce a coordinate transformation \(s \mapsto U \). Since \(\frac{d\Theta}{dU} \) vanishes, without loss of generality, after a translation of the coordinate \(t \), we may take \(\Theta = 0 \) in the above patch as follows

\[
(U, t) \mapsto (U \cos t, U \sin t, \Lambda(U)).
\]

As in the proof of Lemma 3, \(\Lambda(U) \) solves the ordinary differential equation

\[
\frac{d\Lambda}{dU} = \pm \sqrt{U^2 + (c - 1)}.
\]

Considering the sign of the constant \(c - 1 \), we meet the explicit solution \(\Lambda_c(U) = \Lambda(U) \) (up to the sign) as follows.

\[
\Lambda(U) = \begin{cases}
\frac{1}{2} \left[U \sqrt{U^2 + \kappa^2} + \kappa^2 \arcsinh \left(\frac{U}{\kappa} \right) \right] & \text{(when } c = 1 + \kappa^2, \ \kappa > 0) \\
\frac{1}{2} U^2 & \text{(when } c = 1) \\
\frac{1}{2} \left[U \sqrt{U^2 - \kappa^2} - \kappa^2 \text{arccosh} \left(\frac{U}{\kappa} \right) \right] & \text{(when } c = 1 - \kappa^2, \ \kappa > 0)
\end{cases}
\]

We next prove (A). Using Lemma 2, we see that, for a given helicoidal \(K^\frac{4}{3} \)-translator \(\Sigma \), we are able to introduce the Bour coordinate \((s, t) \) and the Bour function \(U(s) \) on the surface \(\Sigma \) so that \(I_\Sigma = ds^2 + U(s)^2 dt^2 \). The condition that \(\Sigma \) is a \(K^\frac{4}{3} \)-translator says

\[
- \frac{1}{U} \frac{d^2U}{ds^2} = \left(\frac{dU}{ds} \right)^4,
\]

just as we saw in the proof of Lemma 3. Next, by Lemma 2 again, we can associate a one-parameter family of isometric helicoidal surfaces \(\Sigma^h \) satisfying that \(I_{\Sigma^h} = I_\Sigma \), that \(\Sigma = \Sigma^h \), and that the angle function on \(\Sigma^h \) coincide with the one on \(\Sigma \). Hence, as we saw in the proof of Lemma 3, the above ordinary differential equation in (2.4) guarantees that any helicoidal surface \(\Sigma^h \) becomes indeed a \(K^\frac{4}{3} \)-translator.

It now remains to show (C). The statement (C1) is obvious by the construction in Lemma 3. Next, the equality \(ds^2 = (U^2 + c) dU^2 \) proved in Lemma 3 implies that the induced metric of the helicoidal surface constructed in Lemma 3 reads

\[
ds^2 + U^2 dt^2 = (U^2 + c) dU^2 + U^2 dt^2,
\]

(which implies (C2) and (C3)), and that the angle function is given by, up to a sign,

\[
\frac{dU}{ds} = \frac{1}{\frac{ds}{dU}} = \frac{1}{\sqrt{U^2 + c}},
\]

which is (C4). This complete the proof of our description of the moduli space of helicoidal \(K^\frac{4}{3} \)-translators in Theorem 1. \(\square \)
REFERENCES

[1] B. Andrews, *Contraction of convex hypersurfaces by their affine normal*, J. Differential Geom. 43 (1996), no.2, 207–230.

[2] B. Andrews, *Gauss curvature flow: the fate of the rolling stones*, Invent. Math, 138 (1999) no. 1, 151–161.

[3] S. J. Altschuler and L. F. Wu, *Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle*, Calc. Var. Partial Differential Equations, 2 (1994), no. 1, 101–111.

[4] E. Calabi, *Hypersurfaces with maximal affinely invariant area*, Amer. J. Math. 104 (1982), no. 1, 91–126.

[5] M. P. do Carmo and M. Dajczer, *Helicoidal surfaces with constant mean curvature*, Thoku Math. J. (2), 34 (1982), no. 3, 425–435.

[6] B. Chow, *Deforming convex hypersurfaces by the nth root of the Gaussian curvature*, J. Differential Geom. 22 (1985), no 1, 117–138.

[7] J. Clutterbuck, O. C. Schnürer and F. Schulze, *Stability of translating solutions to mean curvature flow*, Calc. Var. Partial Differential Equations, 29 (2007), no. 3, 281–293.

[8] J. Eells, *The surfaces of Delaunay*, Math. Intelligencer, 9 (1987), no. 1, 53–57.

[9] G. Haak, *On a theorem by do Carmo and Dajczer*, Proc. Amer. Math. Soc. 126 (1998), no. 5, 1547–1548.

[10] H. P. Halldorsson, *Helicoidal surfaces rotating / translating under the mean curvature flow*, to appear in Geom. Dedicata, arXiv:1106.4583v2.

[11] R. Harvey and H. Lawson, Jr. *Calibrated Geometries*, Acta Math. 148 (1982), 47–157.

[12] R. Harvey and H. Lawson, Jr. *Split Special Lagrangian Geometry*, arXiv:1007.0450.

[13] K. Jörgens, *Über Die Lösungen der Differentialgleichung rt – s² = 1*, Math. Ann. 127 (1954), 130–134.

[14] M. Koiso, *The Delaunay surfaces*, Bull. Kyoto Univ. Ed. Ser. B, no. 97, (2000), 13–33.

[15] H. B. Lawson, *Complete minimal surfaces in S^3*, Ann. of Math. (2), 92 (1970), 335–374.

[16] H. Lee, *Minimal surface systems, maximal surface systems, and special Lagrangian equations*, to appear in Trans. Amer. Math. Soc. arXiv:1204.0244.

[17] J. Mealy, *Volume maximization in semi-riemannian manifolds*, Indiana Univ. Math. J. 40 (1991), 793–814.

[18] M. Spivak, *A comprehensive introduction to differential geometry. Vol. IV. Second edition*. Publish or Perish, Inc., Wilmington, Del., 1979.

[19] N. Trudinger and X-J. Wang, *The affine Plateau problem*, J. Amer. Math. Soc. 18 (2005), no. 2, 253–289.

[20] J. Urbas, *Complete noncompact self-similar solutions of Gauss curvature flows. I. Positive powers*, Math. Ann. 311 (1998), no. 2, 251–274.

DEPARTMENT OF GEOMETRY AND TOPOLOGY, UNIVERSITY OF GRANADA, GRANADA, SPAIN.

E-mail address: ultrametric@gmail.com