Electronic Supplementary Information

Steps towards sustainable solid phase peptide synthesis: use and recovery of N-octyl pyrrolidone.

Giulia Martelli,¹ Paolo Cantelmi,¹ Alessandra Tolomelli,¹ Dario Corbisiero,¹ Alexia Mattellone,¹ Antonio Ricci,² Tommaso Fantoni,¹ Walter Cabri,¹ Federica Vacondio,³ Francesca Ferlenghi,³ Marco Mor³ and Lucia Ferrazzano¹

¹ Department of Chemistry Giacomo Ciamician Alma Mater Studiorum, University of Bologna Via Selmi,2 40136-BO, Italy
² Fresenius kabi iPsum via San Leonardo 23, 45010-RO, Italy
³ Department of Food and Drug Sciences University of Parma Parco Area delle Scienze 27/a, 43124-Parma, Italy

*Corresponding authors. E-mail: alessandra.tolomelli@unibo.it; walter.cabri@unibo.it

Table of Contents
In vitro metabolism of NOP ... S2
Solubility tests ... S17
Swelling tests .. S19
Coupling reactions in solution phase .. S21
Deprotection kinetic tests ... S28
SPPS of Aib-Enkephalin in Green Solvents S29
SPPS of linear Octreotide in Green Solvents S37
Green solvent mixtures ... S44
Recycling of linear Octreotide SPPS waste stream S44
In vitro metabolism of NOP

Table S1. NOP metabolites identified in rat and human liver microsomes by HPLC-HRMS

Compound ID	Formula	RT (min)	Ion	Observed mass (m/z)	Mass error (ppm)	Metabolic Reaction	% of Parent response	Found in
NOP	C₁₂H₂₃NO	5.56	[M+H]^+	198.1849	-1.8	--	100	HLM/RLM
M1	C₁₂H₂₁NO₂	3.19	[M+H]^+	212.1642	-1.6	+O – H2	83.5	HLM/RLM
M2	C₁₂H₂₁NO₂	2.36	[M+H]^+	212.1645	-0.2	+O – H2	6.0	HLM/RLM
M3	C₁₂H₂₁NO₂	2.44	[M+H]^+	212.1642	-1.5	+O – H2	3.4	HLM/RLM
M4	C₁₂H₂₁NO₂	2.51	[M+H]^+	212.1641	-2.0	+O – H2	7.7	HLM/RLM
M5	C₁₂H₂₁NO₂	2.56	[M+H]^+	212.1641	-2.3	+O – H2	5.0	HLM
M6	C₁₂H₂₃NO₂	3.16	[M+Na]^+	236.1615	-2.5	+O	8.1	HLM/RLM
M7	C₁₂H₂₃NO₂	3.24	[M+Na]^+	236.1616	-1.9	+O	17.1	HLM/RLM
M8	C₁₂H₂₃NO₂	3.28	[M+H]^+	212.1640	-2.7	+O – H2	6.3	HLM/RLM
M9	C₁₂H₂₃NO₂	4.40	[M+H]^+	214.1795	-3.0	+O	18.3	HLM/RLM
M10	C₁₂H₂₃NO₂	4.54	[M+H]^+	214.1796	-2.5	+O	28.9	HLM/RLM
M11	C₁₂H₂₃NO₂	4.75	[M+H]^+	214.1796	-2.7	+O	6.7	HLM
Figure S1. HPLC-HRMS trace of a RLM incubation of N-octyl pyrrolidone (NOP) at t=3h. Parent compound NOP and metabolites are reported together with their RT. At RT = 3.18 min, the most abundant metabolite (M1, with a mass shift of +14 with respect to NOP) and two minor metabolites (M6 and M7, with a mass shift of +16 with respect to NOP) co-elute. Extracted Ion Chromatograms (XIC) of co-eluting metabolites M1, M6 and M7 are reported in Figure S2.
Figure S2. Extracted Ion Chromatogram (XIC) of co-eluting metabolites M1, M6 and M7 in RLM at t=3h
Figure S3. Extracted Ion Chromatogram (XIC) of co-eluting metabolites M1, M6 and M7 in HLM at t=3h

- M6, 3.14
- M1, 3.19
- M7, 3.24
Figure S4. a. Low (upper) and high (lower) energy (HDMS2) mass spectra for metabolite M1 (RT = 3.18 min) in RLM (incubation time: t=3h)

Figure S4. b. Low (upper) and high (lower) energy (HDMS2) mass spectra for metabolite M1 (RT = 3.19 min) in HLM (incubation time: t=3h)
Figure S5. a. Low (upper) and high (lower) energy (HDMSE) mass spectra for metabolite M2 (RT = 2.35 min) in RLM (incubation time: t=3h)

Figure S5. b. Low (upper) and high (lower) energy (HDMSE) mass spectra for metabolite M2 (RT = 2.36 min) in HLM (incubation time: t=3h)
Figure S6. a. Low (upper) and high (lower) energy (HDMSE) mass spectra for metabolite M3 (RT = 2.44 min) in RLM (incubation time: t=3h)

Figure S6. b. Low energy mass spectrum for metabolite M3 (RT = 2.44 min) in HLM (incubation time: t=3h). Due to the low intensity of parent ion no high energy fragmentation was collected
Figure S7. a. Low (upper) and high (lower) energy (HDMSE) mass spectra for metabolite M4 (RT = 2.51 min) in RLM (incubation time: t=3h)

Figure S7. b. Low (upper) and high (lower) energy (HDMSE) mass spectra for metabolite M4 (RT = 2.51 min) in HLM (incubation time: t=3h)
Figure S8. Low energy mass spectrum for metabolite **M5** (RT = 2.56 min) in HLM (incubation time: t=3h). Due to the low intensity of parent ion, no high energy fragmentation was collected.
Figure S9. a. Low (upper) and high (lower) energy (HDMS^E) mass spectra for metabolite M6 (RT = 3.16 min) in RLM (incubation time: t=3h)

Figure S9. b. Low (upper) and high (lower) energy (HDMS^E) mass spectra for metabolite M6 (RT = 3.16 min) in HLM (incubation time: t=3h). Due to the low intensity of parent ion, no high energy fragmentation was collected
Figure S10. a. Low (upper) and high (lower) energy (HDMS$_E$) mass spectra for metabolite M7 (RT = 3.24 min) in RLM (incubation time: t=3h)

Figure S10. b. Low (upper) and high (lower) energy (HDMS$_E$) mass spectra for metabolite M7 (RT = 3.24 min) in HLM (incubation time: t=3h)
Figure S11. a. Low (upper) and high (lower) energy (HDMSE) mass spectra for metabolite M\textbf{8} (RT = 3.28 min) in RLM (incubation time: t=3h)

Figure S11. b. Low (upper) and high (lower) energy (HDMSE) mass spectra for metabolite M\textbf{8} (RT = 3.28 min) in HLM (incubation time: t=3h). Due to the low intensity of parent ion, no high energy fragmentation was collected
Figure S12. a. Low (upper) and high (lower) energy (HDMSE) mass spectra for metabolite M9 (RT = 4.40 min) in RLM (incubation time: t=3h)

Figure S12. b. Low (upper) and high (lower) energy (HDMSE) mass spectra for metabolite M9 (RT = 4.40 min) in HLM (incubation time: t=3h)
Figure S13. a. Low energy mass spectrum for metabolite M10 (RT = 4.53 min) in RLM (incubation time: t=3h). Due to the low intensity of parent ion, no high energy fragmentation was collected

Figure S13. b. Low (upper) and high (lower) energy (HDMS²) mass spectra for metabolite M10 (RT = 4.54 min) in HLM (incubation time: t=3h)
Figure S14. Low (upper) and high (lower) energy (HDMS²) mass spectra for metabolite M11 (RT = 4.75 min) in HLM (incubation time: t=3h). Due to the low intensity of parent ion, no high energy fragmentation was collected.

Figure S15. Low (upper) and high (lower) energy (HDMS²) mass spectra for metabolite parent compound NOP (RT = 5.55 min) in RLM (incubation time: t=3h)
Solubility tests

Table S2. Solubilization efficacy of Fmoc-AA(PG)-OH amino acids and coupling reagents mixtures in green solvents

Solvent	Mixture Fmoc-AA(PG)-OH + coupling reagents (A-E)				
Gly	+A	+B	+C	+D	+E
Ala	+A	+B	+C	+D	+E
Aib	+A	+B	+C	+D	+E
NOP	+A	+B	+C	+D	+E
NCP	+A	+B	+C	+D	+E
NBnP	+A	+B	+C	+D	+E

Solubilization monitored at 0.2 M concentration unless 0.1 M is specified.

Representative examples of solubility of Fmoc-amino acids in pyrrolidones in presence of selected coupling reagent combinations

Figure S16. Fmoc-Aib-OH (1 eq) after 5 minutes stirring in 1 mL NOP (left), NCP (center) or NBnP (right) mixed with a) DIC/Oxyma Pure® (1 eq); b) HOBT/DIC (1 eq); c) COMU/DIPEA (1 eq)

Figure S17. Fmoc-Phe-OH (1 eq) after 5 minutes stirring in 1 mL NOP (left), NCP (center) or NBnP (right) mixed with a) DIC/Oxyma Pure® (1 eq); b) HOBT/DIC (1 eq); c) COMU/DIPEA (1 eq)
Figure S18. Fmoc-Cys(Trt)-OH (1 eq) after 5 minutes stirring in 1 mL NOP (left), NCP (center) or NBnP (right) alone (a) or mixed with b) DIC/Oxyma Pure® (1 eq); c) COMU/DIPEA (1 eq). In cases a) and c), the mixture in NBnP was further diluted to 0.1M to allow complete dissolution, as reported in the main text.
Swelling tests

Table S3. Physical parameters of resins evaluated for swelling tests

Resin	Bead size (μm)	Bead size (mesh)	Loading (mmol g⁻¹)	Cross-linking (%)
PS-Wang	75-150	100-200	1.1	1
PS-Trt-Cl	37-75	200-400	1.85	1
PS-RinkAmide	500-560	35-37	0.4-0.7	1
TG-Wang	90	170	0.20	-
TG-RinkAmide	100-200	75-150	0.23	-
CM-Wang	150-500	35-100	0.5-1.2	-
CM-RinkAmide	150-500	35-100	0.4-0.6	-

Table S4. Calculations of standard deviations for the swelling measurements of the reported resins

PS-Wang resin

	Swell 1	Swell 2	Swell 3	Swelling (mean value)	Standard deviation
DMF	5,6	5,5	5,6	5,6	0,05
NOP	5,4	5,6	5,6	5,5	0,09
NCP	5,1	5	5,2	5,1	0,08
NBnP	2,3	2,1	2,4	2,3	0,12
NBP	4,3	4,4	4,7	4,5	0,17
NOP/DMC 80:20	5,1	5,3	5,2	5,2	0,08
DMC	3,2	3,4	3,2	3,3	0,09

PS-Trt-Cl resin

	Swell 1	Swell 2	Swell 3	Swelling (mean value)	Standard deviation
DMF	3,1	3,3	3,3	3,2	0,12
NOP	3,4	3,5	3,2	3,4	0,12
NCP	3,5	3,6	3,6	3,6	0,05
NBnP	1,4	1,7	1,6	1,6	0,12
NBP	5	4,9	5	5,0	0,05
NOP/DMC 80:20	3,1	3,1	2,9	3,0	0,09
DMC	3,3	3,2	3,5	3,3	0,12

PS-Rink Amide resin

	Swell 1	Swell 2	Swell 3	Swelling (mean value)	Standard deviation
DMF	3,3	3	3,4	3,2	0,17
NOP	1,4	1,7	1,6	1,6	0,12
NCP	1,5	1,5	1,6	1,5	0,05
NBnP	1,5	1,7	1,6	1,6	0,08
NBP	2,1	2	2	2,0	0,05
	Swell 1	Swell 2	Swell 3	Swelling (mean value)	Standard deviation
----------------	---------	---------	---------	-----------------------	--------------------
TG-Wang resin					
DMF	6,2	5,8	6,1	6,0	0,17
NOP	1,7	1,6	1,8	1,7	0,08
NCP	2,3	2,6	2,5	2,5	0,12
NBnP	1,1	1,4	1,4	1,3	0,14
TG-Rink Amide					
DMF	6,3	6	6,4	6,2	0,17
NOP	4,2	4,5	4,1	4,3	0,17
NCP	3,3	3,4	3,4	3,4	0,05
NBnP	4,2	3,9	3,9	4,0	0,14
CM-Wang resin					
DMF	4,3	4,5	4,5	4,4	0,09
NOP	1,4	1,2	1,5	1,4	0,12
NCP	1,5	1,7	1,7	1,6	0,09
NBnP	1,6	1,4	1,5	1,5	0,08
CM-Rink Amide					
DMF	8,0	7,7	7,8	7,8	0,12
NOP	3,5	3,3	3,5	3,4	0,09
NCP	6,0	6,1	6,1	6,1	0,05
NBnP	6,7	6,9	6,6	6,7	0,12
Coupling reactions in solution phase
Chromatograms referred to selected entries of Table 6 (main text) are reported below. Peaks of target Z-Phg-Pro-NH$_2$, Z-D-Phg-Pro-NH$_2$ and starting Z-Phg-OH (if still present) are considered in the spectra.

Figure S19. Chromatogram of Z-Phg-Pro-NH$_2$, liquid phase synthesis in DMF with COMU/DIPEA

Product	Rt (min)	Area (%)
Z-Phg-Pro-NH$_2$	18.208	99.0
Z-D-Phg-Pro-NH$_2$	18.965	0.9
Z-Phg-OH	23.988	0.1
Figure S20. Chromatogram of Z-Phg-Pro-NH₂, liquid phase synthesis in DMF with HOBt/DIC

![Chromatogram of Z-Phg-Pro-NH₂](image)

Product	Rt (min)	Area (%)
Z-Phg-Pro-NH₂	18.213	73.9
Z-D-Phg-Pro-NH₂	18.973	11.3
Z-Phg-OH	24.039	14.8

Figure S21. Chromatogram of Z-D-Phg-Pro-NH₂, liquid phase synthesis in DMF with DIC/OxymaPure®

![Chromatogram of Z-D-Phg-Pro-NH₂](image)

Product	Rt (min)	Area (%)
Z-Phg-Pro-NH₂	18.182	1.2
Z-D-Phg-Pro-NH₂	18.937	76.5
Z-Phg-OH	24.454	22.2
Figure S22. Chromatogram of Z-Phg-Pro-NH₂, liquid phase synthesis in NOP with DIC/OxymaPure®

Product	Rt (min)	Area (%)
Z-Phg-Pro-NH₂	18.203	93.7
Z-D-Phg-Pro-NH₂	18.974	0.9
Z-Phg-OH	24.321	5.3

Figure S23. Chromatogram of Z-Phg-Pro-NH₂, liquid phase synthesis in NOP with COMU/DIPEA

Product	Rt (min)	Area (%)
Z-Phg-Pro-NH₂	18.208	99.0
Z-D-Phg-Pro-NH₂	18.965	0.9
Z-Phg-OH	23.988	0.1
Figure S24. Chromatogram of Z-Phg-Pro-NH$_2$, liquid phase synthesis in NOP with PyBOP/HOBt/DIPEA

![Chromatogram of Z-Phg-Pro-NH$_2$, liquid phase synthesis in NOP with PyBOP/HOBt/DIPEA](image1)

Product	Rt (min)	Area (%)
Z-Phg-Pro-NH$_2$	18.363	69.7
Z-D-Phg-Pro-NH$_2$	19.146	21.2
Z-Phg-OH	24.539	9.1

Figure S25. Chromatogram of Z-Phg-Pro-NH$_2$, liquid phase synthesis in NCP with DIC/OxymaPure®

![Chromatogram of Z-Phg-Pro-NH$_2$, liquid phase synthesis in NCP with DIC/OxymaPure®](image2)

Product	Rt (min)	Area (%)
Z-Phg-Pro-NH$_2$	18.211	95.1
Z-D-Phg-Pro-NH$_2$	18.980	1.1
Z-Phg-OH	24.386	3.8
Figure S26. Chromatogram of Z-Phg-Pro-NH$_2$, liquid phase synthesis in NCP with PyBOP/HOBt/DIPEA

Product	Rt (min)	Area (%)
Z-Phg-Pro-NH$_2$	18.366	60.9
Z-D-Phg-Pro-NH$_2$	19.150	19.0
Z-Phg-OH	24.539	20.1

Figure S27. Chromatogram of Z-Phg-Pro-NH$_2$, liquid phase synthesis in NCP with PyOxyma/DIPEA

Product	Rt (min)	Area (%)
Z-Phg-Pro-NH$_2$	18.351	81.1
Z-D-Phg-Pro-NH$_2$	19.137	1.9
Z-Phg-OH	23.865	16.9
Figure S28. Chromatogram of Z-Phg-Pro-NH₂, liquid phase synthesis in NBnP with PyBOP/HOBt/DIPEA

Product	Rt (min)	Area (%)
Z-Phg-Pro-NH₂	18.638	67.8
Z-D-Phg-Pro-NH₂	19.500	32.2

Figure S29. Chromatogram of Z-Phg-Pro-NH₂, liquid phase synthesis in NBnP with PyOxyma/DIPEA

Product	Rt (min)	Area (%)
Z-Phg-Pro-NH₂	18.635	99.3
Z-D-Phg-Pro-NH₂	19.495	0.7
Figure S30. Chromatogram of Z-Phg-Pro-NH$_2$, liquid phase synthesis in NBnP with HOBr/DIC

![Chromatogram](image)

Product	Rt (min)	Area (%)
Z-Phg-Pro-NH$_2$	18.622	89.9
Z-D-Phg-Pro-NH$_2$	19.480	10.1
Deprotection kinetic tests
Deprotection kinetic tests in all investigated pyrrolidones revealed complete Fmoc removal in 2 minutes. A selected example in NOP is reported below.

Figure S31. Chromatogram of Fmoc-Phe-OH deprotection in NOP at t=0 (before base addition)

Legend: Piperidine = peak at 3.257 min; Fmoc-Phe-OH = peak at 15.273 min; NOP = peak at 16.536 min

Figure S32. Chromatogram of Fmoc-Phe-OH deprotection in NOP at t=2 minutes

Legend: Piperidine = peak at 3.250 min; H-Phe-OH = peak at 6.558 min; DBF-piperidine adduct = peak at 11.029 min; NOP = peak at 16.476 min; dibenzofulvene (DBF) = peak at 17.704 min
SPPS of Aib-Enkephalin in Green Solvents

Figure S33. Chromatogram of Aib-Enkephalin pentapeptide, manual SPPS in NOP on PS-Wang resin

Peptide	Rt (min)	RRT	Area (%)
Des-Phe	15.680	0.74	1.5
Aib-Enkephalin	21.233	1.00	97.7
Des-Aib	22.180	1.04	0.8

Figure S34. Chromatogram of Aib-Enkephalin pentapeptide, manual SPPS in NOP on PS-Trt-Cl resin

Peptide	Rt (min)	RRT	Area (%)
Aib-Enkephalin	20.604	1.00	97.4
Des-Aib	21.693	1.04	1.0
Des-Aib+tBu+TFA	22.252	1.08	1.6
Figure S35. Chromatogram of Aib-Enkephalin pentapeptide, manual SPPS in NCP on PS-Wang resin

Peptide	Rt (min)	RRT	Area (%)
Des-Aib-Tyr	17.219	0.80	1.0
Aib-Enkephalin	21.550	1.00	80.9
Des-Aib	22.337	1.04	10.5
Aib-Enkephalin+TFA	26.366	1.23	7.6

Figure S36. Chromatogram of Aib-Enkephalin pentapeptide, manual SPPS in NCP on PS-Trt-Cl resin
Peptide	Rt (min)	RRT	Area (%)
Des-Phe-Aib	13.998	0.68	4.8
Des-Phe	15.663	0.76	1.1
Aib-Enkephalin	20.587	1.00	88.9
Des-Aib	21.649	1.04	5.2

Figure S37. Chromatogram of Aib-Enkephalin pentapeptide, manual SPPS in NBP on PS-Wang resin

Peptide	Rt (min)	RRT	Area (%)
Aib-Enkephalin	20.837	1.00	89.7
Des-Aib	21.743	1.04	6.3
Des-Aib+Bu+TFA	22.458	1.08	2.6
Aib-Enkephalin+TFA	25.791	1.23	1.4
Figure S38. Chromatogram of Aib-Enkephalin pentapeptide, manual SPPS in NBP on PS-Trt-Cl resin

Peptide	Rt (min)	RRT	Area (%)
Aib-Enkephalin	20.959	1.00	91.6
Des-Aib	21.834	1.04	6.4
Des-Aib+tBu+TFA	22.236	1.06	2.0

Figure S39. Chromatogram of Aib-Enkephalin pentapeptide, manual SPPS in DMF on PS-Wang resin

Peptide	Rt (min)	RRT	Area (%)
Aib-Enkephalin	20.670	1.00	84.0
Des-Aib	21.535	1.04	14.2
Aib-Enkephalin+TFA	25.756	1.23	1.8
Figure S40. Chromatogram of Aib-Enkephalin pentapeptide, manual SPPS in DMF on PS-Trt-Cl resin

Peptide	Rt (min)	RRT	Area (%)
Aib-Enkephalin	20.735	1.00	88.1
Des-Aib	21.567	1.04	11.9

Figure S41. Mass spectrum of H₂N-Tyr-Aib-Aib-Phe-Leu-COOH (Aib-Enkephalin)
Figure S42. Mass spectrum of $\text{H}_2\text{N-Tyr-Aib-Aib-Phe-Leu-COOH} + \text{TFA}$ (Aib-Enkephalin+TFA)

Figure S43. Mass spectrum of $\text{H}_2\text{N-Tyr-Aib-Phe-Leu-COOH}$ (des-Aib)
Figure S44. Mass spectrum of H$_2$N-Tyr-Aib-Phe-Leu-COOH+tBu+TFA (des-Aib+tBu+TFA)

Figure S45. Mass spectrum of H$_2$N-Tyr-Aib-Aib-Leu-COOH (des-Phe)
Figure S46. Mass spectrum of H$_2$N-Aib-Phe-Leu-COOH (des-Aib-Tyr)

Figure S47. Mass spectrum of H$_2$N-Tyr-Aib-Leu-COOH (des-Phe-Aib)
SPPS of linear Octreotide in Green Solvents

Figure S48. Chromatogram of linear Octreotide, manual SPPS in DMF

Peptide	Rt (min)	RRT	Area (%)
Cyclized Octreotide N,O shift	16.075	0.83	1.4
Cyclized Octreotide	17.093	0.88	5.8
Linear Octreotide + CO$_2$	18.573	0.97	5.1
Linear Octreotide	19.314	1.00	76.8
Linear Octreotide + tBu	22.140	1.14	9.0
Linear Octreotide + tBu$_2$	24.459	1.26	1.9
Figure S49. Chromatogram of linear Octreotide, manual SPPS in NBP

Peptide	Rt (min)	RRT	Area (%)
Cyclized Octreotide	17.037	0.88	2.4
Linear Octreotide N,O-shift 1	17.735	0.92	0.7
Linear Octreotide N,O-shift 2	18.258	0.95	4.2
Linear Octreotide+CO₂	18.896	0.97	4.8
Linear Octreotide	19.371	1.00	77.7
Linear Octreotide+tBu	21.993	1.14	7.2
Linear Octreotide+tBu₂	23.891	1.26	3.0
Figure S50. Chromatogram of linear Octreotide, manual SPPS in NOP

![Chromatogram](image)

Peptide	Rt (min)	RRT	Area (%)
Cyclized Octreotide	16.772	0.88	0.7
Linear Octreotide N,O-shift 1	17.578	0.92	1.0
Linear Octreotide N,O-shift 2	18.145	0.95	5.2
Linear Octreotide	19.019	1.00	77.6
Linear Octreotide+tBu	21.827	1.14	11.7
Linear Octreotide+tBu2	23.996	1.26	3.8
Figure S51. Chromatogram of linear Octreotide, manual SPPS in NOP/DMC 80:20

Peptide	Rt (min)	RRT	Area (%)
Linear Octreotide N,O-shift 1	18.170	0.92	1.4
Linear Octreotide N,O-shift 2	18.668	0.95	2.4
Linear Octreotide+CO2	19.232	0.97	21.6
Linear Octreotide+CO2	19.742	1.00	65.1
Linear Octreotide+Boc	21.707	1.10	1.7
Linear Octreotide+tBu	22.261	1.14	5.2
Linear Octreotide+tBu2	23.348	1.18	0.8
Linear Octreotide+tBu2	24.164	1.26	1.8
Figure S52. Chromatogram of linear Octreotide, automated SPPS in NOP/DMC 80:20

Peptide	Rt (min)	RRT	Area (%)
Linear Octreotide N,O-shift 2	18.240	0.95	2.0
Linear Octreotide	19.428	1.00	86.0
Linear Octreotide+tBu	22.051	1.14	10.0
Linear Octreotide+tBu2	24.046	1.26	2.0

Figure S53. Mass spectrum of linear Octreotide
Figure S54. Mass spectrum of linear Octreotide+CO$_2$

Figure S55. Mass spectrum of linear Octreotide+tBu
Figure S56. Mass spectrum of linear Octreotide+Boc

Figure S57. Mass spectrum of cyclic Octreotide
Green solvent mixtures

The viscosity was determined according to the following relation:\[^1\]

\[
\text{Viscosity} = \frac{\text{shear stress}}{\text{shear rate}}
\]

Table S5. NOP/DMC mixtures viscosity measurements at 25°C and relative plot at different ratios

V% NOP	V% DMC	Viscosity (mPa·s 25°C)
100	0	6,6
98,3	1,7	6,2
96,4	3,6	5,6
94,5	5,5	5,3
92,1	7,9	4,9
89,9	10,1	4,7
87,6	12,4	4,5
85	15,0	4,2
82,1	17,9	4
78,9	21,1	3,9
70,2	29,8	3,3
0	100	0,59

Recycling of linear Octreotide SPPS waste stream

Five cases of linear Octreotide are compared, in order to determine the PMI of each process: i) conventional synthesis in DMF; ii) green synthesis in NOP; iii) green synthesis in NOP/DMC 80:20; iv) green synthesis in NOP with recycling of NOP (85%) and piperidine (95%); v) green synthesis in NOP/DMC 80:20 with recycling of NOP (85%), DMC (95%) and piperidine (95%).

To notice, piperidine involved in the formation of DBF-piperidine adduct was subtracted from the total recoverable piperidine volume.

SPPS of linear Octreotide was conducted applying always the same protocol, as reported in the Experimental Section (main text), apart from the employed solvent. In all five cases the total SPPS solvent consumption is considered to be the same, according to the protocol reported in the Experimental Section (main text). When the mixture NOP/DMC 80:20 was used, the ratio between the two solvents was maintained along all the synthetic steps.

The scale of the linear Octreotide SPPS was 0.22 mmol in all cases. The amount of the crude obtained was considered to be the same in all five cases (0.204 g), based on the amount of crude linear Octreotide isolated using the SPPS in NOP.
Stream of deprotection waste (including washings) and stream of coupling waste (including resin swelling and washings) were collected and distilled separately (see Experimental Section).

PMI calculation for linear Octreotide SPPS

Process Mass Intensity (PMI)$^\text{ii}$ is defined as the ratio between the total mass of materials and the mass of the isolated product and was calculated according to the following equation:

$$PMI = \frac{\sum \text{mass of materials}}{\text{mass of isolated product}}$$

Specifically, mass of materials includes:

- Starting materials: Fmoc-AA-OH, DIC, Oxyma Pure®, resin, cleavage cocktail (TFA+scavengers)
- Solvents (DMF or NOP or NOP/DMC 80:20, DCM for pre-cleavage resin washings and Et₂O for crude peptide precipitation)
- Base (piperidine)

Mass of starting materials, base, DCM and Et₂O are unvaried for all SPPS (Table S6), independently from the used solvent, while total mass of the used solvent (DMF or NOP or NOP/DMC 80:20) slightly varies according to their different densities (Table S7).

Total mass of materials employed in cases i), ii) and iv) (without recycling) is reported in Table S8.

Table S6. Overview of starting materials, base, DCM and Et₂O that are unvaried for all SPPS (independently from the used solvent) and their total mass

Material	MW (g/mol)	d (g/mL)	eq	mmol	Volume (mL)	Mass (g)	repetitions	Total mass (g)
Fmoc-Thr(tBu)-ol-Trt-PS resin			1	0,22	0,2	0,2	1	0,2
Coupling								
Fmoc-Cys(Trt)-OH	585,71		3	0,66	0,39	3	1	1,16
Fmoc-Thr(tBu)-OH	397,43		3	0,66	0,26	1	1	0,26
Fmoc-Lys(Boc)-OH	468,54		3	0,66	0,31	1	1	0,31
Fmoc-D-Trp(Boc)-OH	526,28		3	0,66	0,35	1	1	0,35
Fmoc-Phe-OH	387,43		3	0,66	0,26	1	1	0,26
Fmoc-D-Phe-OH	387,43		3	0,66	0,26	1	1	0,26
OxymaPure	142,11		3	0,66	0,09	8	8	0,75
DIC	126,2	0,815	3	0,66	0,08	8	8	0,67
Deprotection								
Piperidine	85,15	0,862	0,6	0,52	16	8	16	8,28
Cleavage and precipitation								
TFA	114,02	1,489	5,75	8,56	1	8,56		
TIPS	158,36	0,773	0,125	0,10	1	0,10		
H₂O	18,02	0,997	0,125	0,12	1	0,12		
DCM	84,93	1,325	2	2,65	3	7,95		
Et₂O	102,17	0,725	25	18,13	1	18,13		
Table S7. Overview of the solvents used for SPPS with DMF, NOP and NOP/DMC 80:20 and their total mass for each SPPS

	MW (g/mol)	d (g/mL)	eq	mmol	Volume (mL)	Mass (g)	repetitions	Total mass (g)
DMF								
DMF swelling	73,09	0,944						1,89
DMF couplings	73,09	0,944						18,88
DMF washings after couplings	73,09	0,944						29,74
DMF deprotection	73,09	0,944						18,12
DMF washings after deprotection	73,09	0,944						33,98
NOP								
NOP swelling	197,32	0,92						1,84
NOP couplings	197,32	0,92						18,40
NOP washings after couplings	197,32	0,92						28,98
NOP deprotection	197,32	0,92						17,66
NOP washings after deprotection	197,32	0,92						33,12
NOP/DMC 80:20								
NOP swelling	197,32	0,92						1,47
NOP couplings	197,32	0,92						14,72
NOP washings after couplings	197,32	0,92						23,18
DMC swelling	90,08	1,07						0,24
DMC couplings	90,08	1,07						0,2568
DMC washings after couplings	90,08	1,07						4,11
DMC deprotection	90,08	1,07						7,70
DMC washings after deprotection	90,08	1,07						

Table S8. Total mass of materials employed for SPPS without recycling

	DMF	NOP	NOP/DMC 80:20
∑ starting materials\(^a\) (g)	13,0	13,0	13,0
∑ solvents\(^b\) (g)	128,7	126,1	131,4
∑ base (g)	8,3	8,3	8,3
Total (g)	150,0	147,4	152,7

\(^a\)Starting materials include Fmoc-AA-OH, DIC, Oxyma Pure\(^\circ\), resin, cleavage cocktail (TFA+scavengers)
\(^b\)Solvents include DCM for pre-cleavage resin washings and Et\(_2\)O for crude peptide precipitation
When solvents (NOP or NOP/DMC 80:20) and base (piperidine) were recycled (cases iii and v), final PMI was calculated by subtracting the mass of recovery materials from the mass of used materials.

\[
PMI \text{ (for SPPS with recycling)} = \frac{\sum \text{mass of materials} - \sum \text{mass of recovered materials}}{\text{mass of isolated product}}
\]

Table S9 depicts the amount of total recovered mass of NOP or NOP/DMC 80:20 and piperidine when the recycling approach was employed. PMI calculations for all SPPS (cases i-v) are reported in Table 9 in the main body text and in Table S10.

Table S9. Total mass of solvents (NOP or NOP/DMC 80:20) and piperidine employed for SPPS and their recovered mass

SPPS solvent	NOP	NOP/DMC 80:20
\(\sum \) NOP (g)	100,0	80,0
\(\sum \) NOP recycled (g)	85,0	68,0
\(\sum \) DMC (g)	-	25,3
\(\sum \) DMC recycled (g)	-	24,0
\(\sum \) base (g)	8,28	8,3
\(\sum \) base recycled (g)	7,72	7,72
Total solvents + base recycled (g)	**92,7**	**99,7**

Table S10. PMI for linear Octreotide SPPS processes

SPPS solvents	DMF	NOP	NOP* + recycling	NOP/DMC 80:20	NOP/DMC 80:20 + recycling
\(\sum \) starting materials\(^a\) (g)	13.0	13.0	13.0	13.0	13.0
\(\sum \) solvents\(^b\) (g)	128.7	126.1	41.1	131.4	39.3
\(\sum \) base (g)	8.3	8.3	0.6	8.3	0.6
PMI\(^c\)	735	722	268	748	256

\(^a\) Starting materials include Fmoc-AA-OH, DIC, Oxyma Pure\(^c\), resin, cleavage cocktail (TFA + scavengers)

\(^b\) Solvents include DCM for pre-cleavage resin washing and Et\(_2\)O for crude peptide precipitation

\(^c\) PMI = \(\sum m\) (starting materials) + \(\sum m\) (solvents) + \(\sum m\) (base) / \(m\) (crude linear Octreotide product)

Purities of distilled NOP, DMC (from coupling stream waste), piperidine or DMC/piperidine mixture was assessed > 95% from \(^1\)H NMR (Figures S58-59). Recovered NOP, DMC and piperidine was reused as such.
Figure S58. 1H NMR spectrum (400 MHz, CDCl$_3$) of NOP recovered from distillation processes

1H NMR (400 MHz, CDCl$_3$) δ (ppm) 3.35 (t, $J = 7.0$ Hz, 2H), 3.24 (t, $J = 7.4$ Hz, 2H), 2.36 (t, $J = 8.1$ Hz, 2H), 2.04 – 1.93 (m, 2H), 1.54 – 1.43 (m, 2H), 1.18 – 1.30 (m, 10H), 0.86 (t, $J = 6.8$ Hz, 3H).
Figure S59. 1H NMR spectrum (400 MHz, CDCl$_3$) of piperidine/DMC mixture recovered from distillation process of deprotection waste stream of linear Octreotide SPPS in NOP/DMC

1H NMR (400 MHz, CDCl$_3$) δ (ppm) DMC: 3.75 (s, 6H); piperidine: 2.76 (s, 4H), 1.50 (s, 6H). DMC and piperidine are in a 1:0.86 V/V ratio corresponding to 1:0.75 mol/mol ratio.
G. Schramm, A practical approach to Rheology and Rheometry 2nd Edition by Gebruder HAAKE GmbH, 2000, p.15

E. R. Monteith, P. Mampuys, L. Summerton, J. H. Clark, B. U. W. Maes, C. R. McElroy, Green Chem., 2020, 22, 123.