Comparative study of rosmarinic acid content in some plants of Labiatae family

Maryam Shekarchi, Homa Hajimehdipoor1,2, Soodabeh Saeidnia3, Ahmad Reza Gohari1, Morteza Pirali Hamedani4

Department of Research and Development, Food and Drug Laboratory Research Center and Food and Drug Control Laboratories, MOH and ME, 1Traditional Medicine and Materia Medica Research Center, and 2Department of Traditional Pharmacy, Faculty of Traditional Medicine, Shahid Beheshti University of Medical Sciences, 3Medicinal Plants Research Center, Faculty of Pharmacy and 4Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Submitted: 26-01-2011 Revised: 22-02-2011 Published: 28-02-2012

ABSTRACT

Background: Plants of Labiatae are used in traditional medicine and phytotherapy. Rosmarinic acid (RA) is a phenolic compound which is found in many genus of Labiatae and exhibits important biological activities. Materials and Methods: In this investigation, RA contents of 29 species of Labiatae named Salvia officinalis, Salvia limbata, Salvia virgata, Salvia hypoleuca, Salvia macrosiphon, Salvia choloroleuca, Melissa officinalis, Origanum vulgare, Lavandula angustifolia, Rosmarinus officinalis, Thymus daenensis, Thymus citriodorus, Thymus pubescens, Thymus vulgaris, Zataria multiflora, Mentha piperita, Mentha pulegium, Mentha longifolia, Mentha spicata, Mentha aquatica, Mentha crispa, Perovskia atriplicifolia, Zhumeria majdae, Satureja hortensis, Satureja khuzistanica, Satureja khuzistanica, Satureja atropatana, Satureja mutica and Satureja macrantha were determined by using high-performance liquid chromatographic method. Results: The results showed that RA content in different species of Labiatae was 0.0-58.5 mg g⁻¹ of dried plants. The highest amount of RA was found in Mentha species especially M. spicata. Conclusion: M. spicata can be considered as a new source of rosmarinic acid.

Key words: High-performance liquid chromatographic, Labiatae, Mentha spicata, rosmarinic acid

INTRODUCTION

Plants of Labiatae family have been used in traditional medicine for exhaustion, weakness, depression, memory enhancement, circulation improvement, strengthening of fragile blood vessels,[1] inflammation, infection,[2] indigestion and gastritis.[3] Researchers have proved that these plants are source of compounds with antioxidant,[4] anti-inflammatory,[5] anti-allergic,[6] anti-depression,[7] anti-hyperglycemic[8] and antimicrobial[9-11] properties. These activities are mostly related to their phenolic compounds content especially rosmarinic acid (RA), an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid [Figure 1][1] which was isolated for the first time from Rosmarinus officinalis L. leaves and later found in other species of Labiatae and Boraginaceae. RA has interesting properties which has led to a broad range of applications from food preservatives to cosmetics.[12] Different studies have shown that antioxidant activity of RA is more than vitamine E[13] or Trolox.[14] RA has been reported to have some biological activities in vitro such as antiviral properties[15] including anti-HIV-1,[16] antibacterial, antioxidant, anti-carcinogenic,[17] and anti-
Thymus vulgaris L., spicata of artemisoides carcinogenic[22,23] properties as well. This compound is also in food industries in different parts of Iran. Method. All of the plants are used as medicinal herbs or using High-performance liquid chromatographic (HPLC) the best source of RA in Labiatae plants which grow in demand and price of the plant.[25] Therefore, as the major source. This matter has caused to increase of the plant.

Nowadays, many products have been prepared from RA be found in many plants but usually rosemary plant is used as the major source. This compound has been reported to occur in several taxonomically non-related families of the plant kingdom, but it is found abundantly in Labiatae.[26] In this investigation, in order to mark the best source of RA in Labiatae plants which grow in Iran, RA contents of 29 plants have been determined by using High-performance liquid chromatographic (HPLC) method. All of the plants are used as medicinal herbs or in food industries in different parts of Iran.

MATERIALS AND METHODS

Plant material
Aerial parts of Salvia officinalis L., Salvia limbata C. A. Mey., Salvia virgata Jacq., Salvia hysopolea Benth., Salvia macrasiobon Boiss., Salvia chloroleuca Rech. f. and Aell., Melissa officinalis L., Origanum vulgare L., Lavandula angustifolia Mill., Rosmarinus officinalis L., Thymus daenensis Celak, Thymus citriodorous (Pers) Schreb., Thymus pubescens Boiss. and Kotschy ex Celak, Thymus vulgaris L., Zataria multiflora Boiss, Mentha piperita L., Mentha pulegium L., Mentha longifolia (L.) Huds., Mentha spicata L., Mentha aquatica L., Mentha crispa L., Perovskia artemisoides Boiss, Ziriseria majdae Rech., Satureja bortensis L., Satureja khouzistanica Jamzad, Satureja bachhariae Bunge, Satureja atropatana Bunge, Satureja mutica Fisch. and C. A. Mey., and Satureja macrantha C. A. Mey., were collected from their growing area of Iran [Table 1] during flowering stage in summer 2008. Herbarium specimens were kept at the Herbarium of the Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences.

Chemicals
Methanol (HPLC grade), 2-propanol (analytical grade), O-phosphoric acid (analytical grade) were purchased from Merck (Germany). The standard of rosmarinic acid was prepared from Aldrich (Germany). The water used in HPLC and for sample preparation was produced with a Purelab UHQ (ELGA) with a resistivity over 18 MΩ-cm.

RESULTS AND DISCUSSION

Several mobile phases including methanol, water, acetonitrile, 2-propanol, THF and TFA in different combinations were tested. Finally, it was found that a 0.085% O-phosphoric acid in water: 0.085% O-phosphoric acid in methanol (B), and 0.085% O-phosphoric acid in 2-propanol (C) in gradient mode [Table 1]. The flow rate, detection wavelength and sample injection volume were 1.0 ml min⁻¹, 330 nm, and 20 μl, respectively. The chromatographic peak of rosmarinic acid was confirmed by comparing the retention time and UV spectra with that of related to the reference standard. Quantization was performed by using calibration curve of rosmarinic acid.

Preparation of standard solutions
Stock standard solution was prepared accurately by weighing 10 mg of rosmarinic acid reference standard into 10 ml volumetric flask and dissolving in water: methanol: 2-propanol (each one contained 0.085% O-phosphoric acid) (80:10:10) with the aid of ultrasonic. Serial dilutions (1-150 μg/ml) were made from stock solution.

Sample preparation
Milled and powdered samples (200 mg) were accurately weighed into a 25-ml tube, and extracted with 25 ml of the same solvent system for preparing standard solutions, during 30 min by ultrasonic. The resulting mixture was centrifuged at 4500 r/min for 5 min, and the supernatant transferred to a 100-ml volumetric flask. The residual solid was extracted for two more times with 25 ml of the same solvent mixture by ultrasonic, and centrifuged as above. The supernatants were combined, and diluted to 100 ml with the same solvent mixture. Each sample was extracted three times and injected (three times) to HPLC for analysis.

| Table 1: Gradient time program for analysis of rosmarinic acid in Labiatae plants |
|-----------------|----------------|----------------|---------------|
| C (%) | B (%) | A (%) | Time (min) |
| 10 | 10 | 80 | 0 |
| 15 | 15 | 70 | 10 |
| 20 | 20 | 60 | 15 |
| 20 | 20 | 60 | 20 |

A: O-phosphoric acid in water; B: O-phosphoric acid in methanol; C: O-phosphoric acid in 2-propanol

In vivo studies have shown that RA exhibit anti-allergic,[19,20] anti-thrombotic,[21] and anti-carcinogenic properties as well. This compound is also efficient against peroxidative damage to biomembranes.[24] Therefore, finding other plants containing high amount of RA is very important to introduce as new sources. This compound has been reported to occur in several taxonomically non-related families of the plant kingdom, but it is found abundantly in Labiatae.”[26] In this investigation, in order to mark the best source of RA in Labiatae plants which grow in Iran, RA contents of 29 plants have been determined by using High-performance liquid chromatographic (HPLC) method. All of the plants are used as medicinal herbs or in food industries in different parts of Iran.
After comparison between C₈ and C₁₈ columns, the best separation efficacy was obtained by using C₁₈ column. HPLC chromatogram of Mentha spicata sample and UV spectrum of RA in 11.16 min obtained from PDA detector have been shown in Figures 2 and 3, respectively. Comparison between purity threshold and purity angle reported in em-power software showed that the method is specific for rosmarinic acid and reported peak is completely separated from other interfering compounds. The linear relationship between detector response and different concentrations of rosmarinic acid (eight levels) was confirmed in range of 1-150 μg/ml with correlation coefficient of 0.9983 and equation of \(y = 45337x - 19410 \).

In order to obtain the best recovery and peak shape of rosmarinic acid, different solvents and extraction methods were examined. Methanol, methanol followed by CCl₄, methanol:water, methanol followed by hexane and water:methanol:2-propanol (each one contained 0.085% O-phosphoric acid) were used to investigate the effect of solvents on the RA extraction. Moreover, the effect of extraction time on the content of RA was studied (data was not shown). Finally, water:methanol:2-propanol (each one contained 0.085% O-phosphoric acid) (80:10:10) and ultrasonic for 30 min in three repeats were selected as the best parameters for RA extraction method.

The results showed that among analyzed plants belong to different genus of Labiatae family, the most RA contents were found in Mentha species. As it is observed in Table 2, all Mentha species contain RA in considerable concentration (19.3–58.5 mg g⁻¹) and M. spicata showed the highest amount of RA. Rosemary has been considered as a main source of RA in many countries[28] but the results demonstrated that the plant growing in Iran contains low RA concentration (7.2 mg g⁻¹) compare to other investigated plants. Therefore, other plants such as Salvia officinalis, Melissa officinalis, Thymus citriodorus, Perovskia artemisoides and especially Mentha spicata which is widespread in Iran and very easy to access can be used as a source of RA in pharmaceutical, food and cosmetic industries. As it has been shown in Table 2, no rosmarinic acid was detected in Thymus pubescens, Salvia chloroleuca and Zataria multiflora. Several investigations have been carried out in order to find new RA resources among plants. Achamlale et al.,[25] showed that RA contents in Zostera noltii and Z. marina samples varied from 2.2 to 18.0 mg g⁻¹ and 1.3–11.2 mg g⁻¹, respectively. They believed that the high RA content of these two sea-grasses is of interest for both cosmetic and herbal industries. Similar study has been performed on Melissa officinalis during different harvesting time. It has been shown that M. officinalis contained 39.1 mg g⁻¹ of RA during full flowering stage[28] which is almost similar to RA content of M. officinalis from Iran (36.5 mg g⁻¹). Another investigation on rosemary, sage, thyme, spearmint and lavender has proved that the plants contained 10.3, 10.4, 6.6, 10.7, and 2.0 mg g⁻¹ of RA, respectively.[1] RA contents of rosemary and lavender obtained in our study were almost similar to the previous study. Therefore, rosemary can not be considered as RA source in all countries. Since, RA content of a plant is known to depend considerably on extrinsic and intrinsic factors including soil and climatic conditions, plant ontogenesis phases, harvest and plant storage,[29,32] therefore, it is necessary to analyze the plants which are growing in each country for finding the best source of rosmarinic acid.

![Figure 2: High-performance liquid chromatographic Chromatograms of (a) Mentha spicata extract and (b) rosmarinic acid standard solution](image-url)
CONCLUSION

RA is found in most of Labiatae plants growing in Iran and its concentration in some of its species such as Salvia officinalis, Melissa officinalis, Thymus citriodorus, Perovskia artemioides and Mentha spicata is considerable. These plants especially Mentha spicata can be used as RA resources in food, cosmetic and pharmaceutical industries instead of rosemary which contains low concentration of RA compare to other studied plants.

ACKNOWLEDGMENTS

This research has been supported by Tehran University of Medical Sciences and Health Services (Grant No. 87-04-56-7508).

REFERENCES

1. Wang H, Provan GJ, Hellilwell K. Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem 2004;87:307-11.

2. Vieira A. A comparison of traditional anti-inflammation and anti-infection medicinal plants with current evidence from biomedical research: Results from a regional study. Pharmacogn Res 2010;2:293-5.

3. Hajimehdipoor H, Shekarchi M, Khanavi M, Adib N, Amri M. A validated high performance liquid chromatography method for the analysis of thymol and carvacrol in Thymus vulgaris L. volatile oil. Pharmacogn Mag 2010;6:154-8.

4. Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 2001;49:5165-70.

5. Al-Sereiti MR, Abu-Amer KM, Sen P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 1999;37:124-30.

6. Ito H, Miyazaki T, Ono M, Sakurai H. Antiallergic activities of Rosmarinus officinalis, Salvia officinalis and Melissa officinalis. J Agric Food Chem 1998;46:1051-6.

7. Takeda H, Tsuji M, Matsumiya T, Kubo M. Identification of rosmarinic acid as a novel antidepressive substance in the herb Rosmarinus officinalis. Biol Pharm Bull 1998;21:124-30.

8. Kumar PM, Sasmal D, Mazumder PM. The antihyperglycemic activity of Satureja atropa (Labiatae) from northeast of Brazil. J Young Pharm 2010;2:190-4.

9. Shekarchi M, Bandegani A, Young Pharm 2009;1:210-2.

10. Peterson M, Simmonds MS. Rosmarinic acid. Phytochemistry 2004;65:745-7.

11. Nascimento EM, Rodrigues FF, Campos AR, Costa JG. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 2001;49:5165-70.

12. Jadavji A, Nazeri F, Shekarchi M, et al. Rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem 2004;87:307-11.

13. Lin YL, Chang Y, Kuo YH, Shiao MS. Anti-lipid-peroxidative effects of rosmarinic acid and caffeic acid in selected herbs. J Agric Food Chem 2001;49:5165-70.

14. Hajimehdipoor H, Shekarchi M, Khanavi M, Adib N, Amri M. A validated high performance liquid chromatography method for the analysis of thymol and carvacrol in Thymus vulgaris L. volatile oil. Pharmacogn Mag 2010;6:154-8.

15. Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 2001;49:5165-70.

16. Al-Sereiti MR, Abu-Amer KM, Sen P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 1999;37:124-30.

17. Takeda H, Tsuji M, Matsumiya T, Kubo M. Identification of rosmarinic acid as a novel antidepressive substance in the herb Rosmarinus officinalis. Biol Pharm Bull 1998;21:124-30.

18. Kumar PM, Sasmal D, Mazumder PM. The antihyperglycemic activity of Satureja atropa (Labiatae) from northeast of Brazil. J Young Pharm 2009;1:210-2.

19. Jadavji A, Nazeri F, Shekarchi M, et al. Rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem 2004;87:307-11.

20. Peterson M, Simmonds MS. Rosmarinic acid. Phytochemistry 2004;65:745-7.

21. Nascimento EM, Rodrigues FF, Campos AR, Costa JG. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 2001;49:5165-70.

22. Jadavji A, Nazeri F, Shekarchi M, et al. Rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem 2004;87:307-11.

23. Peterson M, Simmonds MS. Rosmarinic acid. Phytochemistry 2004;65:745-7.
23. Osakabe N, Yasuda A, Natsume M, Yoshikawa T. Rosmarinic acid induces melanogenesis.
22. Lee J, Kim Y, Park D. Rosmarinic acid induces melanogenesis.
21. Zou ZW, Xu LN, Tian JY. Antithrombotic and antiplatelet effects of rosmarinic acid in an experimental mouse model of human encephalitis. Antimicrob Agents Chemother 2007;51:3367-70.
19. Makino T, Furuta A, Fujii H, Nakagawa T, Wakushima H, et al. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett 2004;219:271-80.
18. Parnham MJ, Kesselring K. Rosmarinic acid. Drugs Future 1985;10:756-7.
17. Huang SS, Zheng RL. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett 2004;219:271-80.
16. Hooker CW, Lott WB, Harrich D. Inhibitors of human immunodeficiency virus type 1 reverse transcriptase target distinct phases of early reverse transcription. J Virol 2001;75:3095-104.
15. Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A. Anti-inflammatory effects of rosmarinic acid on the production of inflammatory mediators in LPS-stimulated RAW 264.7 cells. J Inflamm 2005;2:15.
14. Lu Y, Foo LY. Polyphenolics of Salvia-A review. Phytochemistry 2002;75:197-202.
13. Lee J, Kim YS, Park D. Rosmarinic acid induces melanogenesis.
12. Lee J, Kim YS, Park D. Rosmarinic acid induces melanogenesis through protein kinase A activation signalling. Biochem Pharmacol 2007;74:960-8.
11. Lee J, Kim YS, Park D. Rosmarinic acid induces melanogenesis through protein kinase A activation signalling. Biochem Pharmacol 2007;74:960-8.
10. Lee J, Kim YS, Park D. Rosmarinic acid induces melanogenesis through protein kinase A activation signalling. Biochem Pharmacol 2007;74:960-8.
9. Lee J, Kim YS, Park D. Rosmarinic acid induces melanogenesis through protein kinase A activation signalling. Biochem Pharmacol 2007;74:960-8.
8. Lee J, Kim YS, Park D. Rosmarinic acid induces melanogenesis through protein kinase A activation signalling. Biochem Pharmacol 2007;74:960-8.
7. Lee J, Kim YS, Park D. Rosmarinic acid induces melanogenesis through protein kinase A activation signalling. Biochem Pharmacol 2007;74:960-8.
6. Hooker CW, Lott WB, Harrich D. Inhibitors of human immunodeficiency virus type 1 reverse transcriptase target distinct phases of early reverse transcription. J Virol 2001;75:3095-104.
5. Makino T, Furuta A, Fujii H, Nakagawa T, Wakushima H, et al. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett 2004;219:271-80.
4. Hooker CW, Lott WB, Harrich D. Inhibitors of human immunodeficiency virus type 1 reverse transcriptase target distinct phases of early reverse transcription. J Virol 2001;75:3095-104.
3. Lee J, Kim YS, Park D. Rosmarinic acid induces melanogenesis through protein kinase A activation signalling. Biochem Pharmacol 2007;74:960-8.
2. Lee J, Kim YS, Park D. Rosmarinic acid induces melanogenesis through protein kinase A activation signalling. Biochem Pharmacol 2007;74:960-8.
1. Hooker CW, Lott WB, Harrich D. Inhibitors of human immunodeficiency virus type 1 reverse transcriptase target distinct phases of early reverse transcription. J Virol 2001;75:3095-104.

Cite this article as: Shekarchi M, Hajimehdipoor H, Saeidnia S, Gohari AR, Hamedani MP. Comparative study of rosmarinic acid content in some plants of Labiatae family. Phcog Mag 2012;8:37-41.

Source of Support: Tehran University of Medical Sciences and Health Services (Grant No. 87-04-56-7508), Conflict of Interest: None declared.