Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Psychological health status in postpartum women during COVID-19 pandemic: A systematic review and meta-analysis

Shen Gao, Shaofei Su, Enjie Zhang, Ruixia Liu, Yue Zhang, Chengrong Wang, Jianhui Liu, Shuanghua Xie, Chenghong Yin, Wentao Yue

Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, China

ARTICLE INFO

Keywords:
Mental health status
Prevalence
Postpartum women
COVID-19
Meta-analysis

ABSTRACT

Background: This systematic review and meta-analysis pooled the prevalence of psychological symptoms during the COVID-19 pandemic and examined the effects of the pandemic on psychological health in postpartum women.

Methods: A systematic literature search and identification were performed in PubMed, EMBASE, Web of Science, and PsycINFO databases until June 16th, 2021. The fixed or random effect models to estimate the pooled prevalence of postpartum psychological symptoms during the COVID-19 pandemic and the odds ratio (OR) of COVID-19 for psychological symptoms.

Results: A total of 29 articles including 20,225 postpartum women during the COVID-19 pandemic and 8312 before the COVID-19 pandemic were identified. During the COVID-19 pandemic, the prevalence of postpartum depressive, anxiety, stress, and post-traumatic stress disorder symptoms were 26.7 % (95 % CI: 22.0–31.9 %), 33.8 % (95 % CI: 21.1–49.4 %), 55.0 % (95%CI: 27.9–79.5 %), and 33.7 % (95%CI: 19.6–51.5 %), respectively. The ORs of COVID-19 pandemic for postpartum depressive and anxiety symptoms were 1.54 (95 % CI: 1.00–2.36) and 2.56 (95%CI: 1.62–4.04). Subgroup analyses revealed that women with >6 weeks after delivery, younger than 35 years old, low income, less education and without breastfeeding experienced a higher risk of depressive or anxiety symptoms after delivery.

Limitations: Only a few of prospective studies were included, and significant but inevitable heterogeneities were found in some analyses.

Conclusion: A significantly higher proportion of postpartum women were suffered from psychological symptoms during COVID-19 pandemic, particularly in those with >6 weeks after delivery, younger than 35 years old, low income, less education and formula feeding.

1. Introduction

Postpartum women are considered to be at high risk for psychological disorders, such as depression and anxiety (Cantwell, 2021). A previous review concluded that nearly 20 % of postpartum women suffered from depressive symptoms in the first 3 months after delivery, and around one-third had not recovered beyond the first year after delivery (Howard et al., 2014). A recent meta-analysis indicated the prevalence of anxiety symptoms was 15 % among postpartum women, and anxiety was a common comorbidity of postpartum depressive disorders (Dennis et al., 2017). Maternal psychological disorders are a serious public health concern because they have adverse effects for mothers’ health (Abdollahi and Zarghami, 2018) and for babies’ behavioral, emotional, and cognitive development (Letourneau et al., 2012; Stein et al., 2014; Lebel et al., 2016; Feldman et al., 2009; Halligan et al., 2007).

Previous studies found that exposure to stressful events, such as pandemics, natural disasters, or adverse life incidents, could increase the risk for psychological disorders, particularly in postpartum women (Guintivano et al., 2018; Liu et al., 2012). The coronavirus disease 2019 (COVID-19) outbreak in 2020 rapidly became a worldwide pandemic, resulting in 239,437,517 confirmed cases and 4,879,235 deaths globally (World Health Organization, n.d.). A survey of >100 researchers reported that nearly 90 % agreed that COVID-19 could not be eliminated completely but would continue to circulate in the global population for...
years (Phillips, 2021). Given that COVID-19 is a long-term adverse event that affects every aspect of an individual's life, postpartum psychological disorders may be more frequent during the pandemic. Several studies have investigated the effect of COVID-19 on the mental health of postpartum women (Loret de Mola et al., 2021; Pariente et al., 2020; Racine et al., 2021; Silverman et al., 2020). However, these studies yielded conflicting results. To our knowledge, there has been no quantitative synthesis of available results for postpartum women. Although some systematic reviews and meta-analyses focused on the psychological effects of COVID-19 among pregnant women (Fan et al., 2021; Chmielewska et al., 2021; Hessami et al., 2020), evidence in postpartum women is lacking. Therefore, we performed this systematic review and meta-analysis to pool the prevalence for postpartum adverse psychological symptoms during the COVID-19 pandemic and examine the effects of the pandemic on the psychological health in postpartum women. Our results could provide new evidence for the prevention of postpartum psychological disorders.

2. Method

2.1. Search strategy

This review was registered with PROSPERO (CRD42022332382) and conducted based on the Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines (Stroup et al., 2000). Two researchers identified relevant studies independently in PubMed, EMBASE, Web of Science, and PsycINFO databases from their inception until June 16th, 2021. The following search strategies were performed: (pregnant OR breastfeeding OR postpartum OR pregnancy OR perinatal) AND (COVID-19 OR coronavirus OR 2019-nCoV OR SARS-CoV-2) AND (mental OR anxiety OR depression OR depressive OR insomnia OR Post-Traumatic OR sleep OR stress OR psychological OR psychology). In addition, other potentially relevant articles from reference lists and reviews were also considered. No language restrictions were applied. Endnote X9 program (Clarivate Analytics, Philadelphia, PA) was used for management of the studies.

2.2. Study selection criteria

A two-step selection program was performed. First, titles and abstracts of relevant studies were screened by two independent researchers. Studies that met the following criteria were excluded in this step: (1) only recruited prenatal women as study participants; (2) did not assess psychological health symptoms during COVID-19 pandemic; (3) qualitative studies; (4) reviews, letters, comments, or study protocols. Afterwards, full texts of studies identified by the first step were reviewed in the second step. An article was excluded in this step if: (1) the data for postpartum women were not reported separately; (2) psychological health symptoms were not screened by validated scales; (3) one reported mean score for psychological health symptoms instead of prevalence. The inconsistencies of the two researchers were resolved by discussing with another researcher.

2.3. Data extraction

Two reviewers independently used a predesigned standardized form to extract data from each included article in accordance with the MOOSE guidelines (Stroup et al., 2000). Relevant information included first author, year of publication, country of study, study design, study periods, sample size, time after delivery, survey method, prevalence of psychological health symptoms, assessment scales, and cut-offs.

2.4. Quality assessment

A 11-item checklist of Agency for Healthcare Research and Quality (AHRQ) was used to assess the methodological quality of included cross-sectional and case-control studies independently by two researchers (Rostom et al., 2004). Each item would be rated as “Yes”, “No” or “Unclear” and only “Yes” would be awarded 1 point in quality assessment. We considered a study scored over than 8 as a high-quality, 4 to 7
Table 1
Characteristics of studies included in the meta-analysis.

| First author and Year | Country                  | Study design       | Study periods                                      | Sample size | Time after delivery | Outcomes and assessment scales |
|-----------------------|--------------------------|--------------------|----------------------------------------------------|-------------|---------------------|---------------------------------|
| Bo, 2021              | China                    | Cross-sectional   | 2020/2/22 to 2020/3/10 (during COVID-19)          | 391         | 1 week              | Depression (PHQ9 ≥ 5)           |
| Ceulemans, 2021       | 5 countries (Ireland, Norway, Switzerland, Netherlands, and United Kingdom) | Cross-sectional   | 2020/6/16 to 2020/7/14 (during COVID-19)          | 5134        | 3 months            | Depression (EPDS ≥ 13) and Anxiety (GAD7 ≥ 10) |
| Ceulemans, 2020       | Belgium                  | Cross-sectional   | After a few weeks of lockdown (during COVID-19)   | 3445        | N.A.                | Depression (EPDS ≥ 13) and Anxiety (GAD7 ≥ 10) |
| Guvenc, 2020          | Turkey                   | Cross-sectional   | 2020/5/5 to 2020/7 (during COVID-19)              | 212         | 4-6 weeks           | Depression (EPDS ≥ 13)          |
| Liang, 2020           | China                    | Cross-sectional   | 2020/3/30 to 2020/4/13 (during COVID-19)          | 864         | 6-12 weeks          | Depression (EPDS ≥ 10)          |
| Molgora, 2020         | Italy                    | Cross-sectional   | 2020/3/1 to 2020/5/3 (during COVID-19)            | 186         | 6 months            | Depression (EPDS ≥ 13), Anxiety (STAI ≥ 40) and PTSD (PPQ ≥ 19) |
| Oskovi-Kaplan, 2020   | Turkey                   | Cross-sectional   | 2020/6 (during COVID-19)                          | 223         | 2 days              | Depression (EPDS ≥ 13)          |
| Ostacoli, 2020        | Italian                  | Cross-sectional   | 2020/6/15 to 2020/6/29 (during COVID-19)          | 163         | 4 months            | Depression (EPDS ≥ 11) and PTSD (IES-R ≥ 24) |
| Spinola, 2020         | Italian                  | Cross-sectional   | 2020/5/11 to 2020/6/6 (during COVID-19)           | 243         | 1 year              | Depression (EPDS ≥ 13) and Anxiety (PSS > 28) |
| Stojanov, 2020        | Serbia                   | Cross-sectional   | 2020/3/29 to 2020/4/4 (during COVID-19)           | 108         | 1 year              | Depression (EPDS ≥ 10)          |
| Sun, 2020             | China                    | Cross-sectional   | 2019/12/31 to 2020/3/22 (during COVID-19)         | 2092        | 1 week              | Depression (EPDS ≥ 10)          |
| Zeng, 2020            | China                    | Cross-sectional   | 2020/3/25 to 2020/6/5 (during COVID-19)           | 109         | 1 week              | Depression (EPDS ≥ 13) and Anxiety (GAD7 ≥ 5) |
| An, 2020              | China                    | Cross-sectional   | 2020/5/13 to 2020/7/13 (during COVID-19)          | 209         | N.A.                | Depression (EPDS ≥ 10)          |
| Basu, 2020            | 64 counties              | Cross-sectional   | 2020/5/26 to 2020/6/13 (during COVID-19)          | 1182        | 6 months            | Depression (PHQ4 ≥ 6) and PTSD (IES-R ≥ 1.75) |
| Fallon, 2021          | United Kingdom           | Cross-sectional   | 2020/4/16 to 2020/5/15 (during COVID-19)          | 614         | 1 year              | Depression (EPDS ≥ 13) and Anxiety (STAI ≥ 40) |
| Suarez-Rico, 2021     | Mexico                   | Cross-sectional   | 2020/8/10 to 2020/9 (during COVID-19)             | 293         | 4-12 weeks          | Depression (EPDS ≥ 13), Anxiety (STAI ≥ 40) and Stress (PSS10 ≥ 14) |
| Chrzan-Dękos, 2021    | Poland                   | Case-control      | 2020/2/20 to 2020/3/30 (during COVID-19)          | 78          | 1 year              | Depression (EPDS ≥ 12)          |
| Hamami, 2020          | Israel                   | Case-control      | 2019/10/1 to 2019/11/10 (before COVID-19)         | 61          |                     |                                  |
| Hui, 2020             | China                    | Case-control      | 2020/5/1 to 2020/5/31 (during COVID-19)           | 79          | 3 days              | Depression (EPDS ≥ 10)          |
|                      |                          |                   | 2016/10/1 to 2017/4/1 (before COVID-19)           | 123         |                     |                                  |
| Mariito-Narvaez, 2021 | Spain                    | Case-control      | 2019/1/5 to 2020/4/30 (during COVID-19)           | 954         | 1 day               | Depression (EPDS ≥ 10)          |
| Pariente, 2020        | Israel                   | Case-control      | 2019/9/1 to 2020/3/1 (before COVID-19)            | 82          |                     |                                  |
| Silverman, 2020       | US                      | Case-control      | 2020/3/18 to 2020/4/29 (during COVID-19)          | 223         | 2 days              | Depression (EPDS ≥ 10)          |
| Suzuki, 2020          | Japan                    | Case-control      | 2016/11/1 to 2017/4/1 (before COVID-19)           | 123         |                     |                                  |
| Zanardo, 2020         | Italy                    | Case-control      | 2019/3/9 to 2019/4/11 (before COVID-19)           | 132         | 1 month             | Depression (EPDS ≥ 9)           |
| Boekhorst, 2021       | Netherlands              | Case-control      | 2019/3/8 to 2019/5/3 (before COVID-19)            | 91          | 2 days              | Depression (EPDS ≥ 13)          |
| Hiiragi, 2021         | Japan                    | Case-control      | 2019/1/7 to 2019/3/1 (before COVID-19)            | 101         |                     |                                  |
|                      |                          |                   | 2019/3/21 to 2019/3/31 (before COVID-19)          | 59          | 8-10 weeks          | Depression (EPDS ≥ 10)          |
|                      |                          |                   | 2019/3/28 to 2019/3/31 (before COVID-19)          | 250         | 4-5 weeks           | Depression (EPDS ≥ 9)           |

(continued on next page)
Table 1 (continued)

| First author and Year | Country | Study design | Study periods | Sample size | Time after delivery | Outcomes and assessment scales |
|-----------------------|---------|--------------|---------------|-------------|---------------------|--------------------------------|
| Lorentz, 2021         | Brazil  | Panel study  | 2019/3/1 to 2019/6/1 (before COVID-19) | 50          | 6 months            | Depression (EPDS ≥ 10) |
| Brazil                |         |              | 2020/5/1 to 2020/9/1 (during COVID-19) |             |                     |                                |
| Brazil                |         |              | 2019/11/1 to 2020/3/1 (before COVID-19) | 0 day       |                     |                                |
| Loret de Mola, 2021   | Brazil  | Panel study  | 2020/5/11 to 2020/7/20 (during COVID-19) | 1136        | >4.5 months         | Depression (EPDS ≥13), Anxiety (GAD7 ≥ 10) and Stress (IES ≥ 26) |
| Racine, 2021          | Canada  | Panel study  | 2020/5/20 to 2020/7/15 (during COVID-19) | 1333        | >9 years            | Depression (CES-D-10 ≥ 10) and Anxiety (STAI-SF ≥ 14) |
|                       |         |              | 2017/2/1 to 2019/10/1 (before COVID-19) | 2074        |                     |                                |

COVID-19, coronavirus disease 2019; PTSD, post-traumatic stress disorder; PHQ9, the 9-item Patient Health Questionnaire; EPDS, the Edinburgh Postnatal Depression scale; GAD7, the 7-item Generalized Anxiety Disorder scale; STAI, the State Trait Anxiety Inventory scale; PPQ, the Perinatal PTSD Questionnaire; IES-R, the Impact of Event Scale-Revised; FSS, the Perceived Stress Scale; PPQ4, the Patient Health Questionnaire-4; IES6, the Impact of Event Scale-6; PSS10, the 10-item Perceived Stress Scale; IES, the Impact of Event scale; CES-D-10, the 10-item Center for Epidemiological Studies Depression scale; STAI-SF, the 6-item short form of the Spielberger State-Trait Anxiety Inventory.

as a medium-quality, whereas <3 as a low-quality (Sun et al., 2020a). The quality of included panel studies was assessed by Newcastle-Ottawa-Scale (NOS) including 8 items (Wells et al., n.d.). We considered a panel study scored ≥7 as a high-quality study.

2.5. Statistical analysis

Quantitative meta-analysis was conducted for psychological health symptoms, which have relevant data reported in more than one study. The pooled prevalence with its 95% confidence interval (CI) for each adverse psychological symptom during the COVID-19 pandemic was estimated using logit-transformed prevalence rate and its standard error (SE) in each study and presented as forest plots. Subgroup analyses were performed based on several study-level characteristics including continent, study design, assessment scale, time after delivery, survey method and study quality. The association between risk factors and postpartum psychological symptoms during the COVID-19 pandemic was summarized using study-specific odds ratio (OR) with its 95% CI. The effects of COVID-19 pandemic on the postpartum depressive or anxiety symptoms were evaluated by the pooled OR with its 95%CI from studies provided data both before and during the COVID-19 pandemic. Subgroup analyses were also performed. The DerSimonian and Laird random effects model was selected for meta-analysis when statistical heterogeneity was detected using the p-value < 0.05 in Cochran Q test or the I² statistics > 50% (DerSimonian and Laird, 1986; Higgins et al., 2003). Otherwise, an inverse variance fixed effect model was adopted (Blettner et al., 1999). Publication bias was assessed using funnel plots and Egger’s test if >10 studies were available. R software (version 4.1.0) was used to perform all data analyses.

3. Results

3.1. Literature search

Fig. 1 presents a flowchart of the study selection process. Overall, 679 relevant references were identified in the literature search, and 634 studies were excluded through screening of titles and abstracts. This left 45 papers for full-text screening, of which 16 were excluded: data for postpartum women were not reported separately in nine studies (Li et al., 2021; Masters et al., 2021; Perzow et al., 2021; Wang et al., 2021; Liu et al., 2021; Stepowicz et al., 2020; Xue et al., 2021; Chaves et al., 2022; Farewell et al., 2020); psychological health symptoms were not screened by validated scales in three studies (Dib et al., 2020; Ollivier et al., 2021; Jafree et al., 2021), and four studies reported the mean score for psychological health symptoms instead of prevalence (Mayopoulos et al., 2021; McFarland et al., 2021; Shayeganfard et al., 2020; Fernandes et al., 2021). Finally, 29 articles were included in the meta-analysis (Loret de Mola et al., 2021; Pareinte et al., 2020; Racine et al., 2021; Silverman et al., 2020; An et al., 2021; Basu et al., 2021; Bo et al., 2020; Boekhorst et al., 2021; Ceulemans et al., 2021; Ceulemans et al., 2020; Chrzan-Dętkos et al., 2021; Fallon et al., 2021; Guvenc et al., 2021; Hamami et al., 2020; Hiiragi et al., 2021; Hui et al., 2021; Liang et al., 2020; Lorentz et al., 2020; Maríno-Narvaez et al., 2021; Molgora and Accordini, 2020; Oskovi-Kaplan et al., 2021; Ostacoli et al., 2020; Spinola et al., 2020; Stojanov et al., 2021; Suárez-Rico et al., 2021; Sun et al., 2020b; Suzuki, 2022; Zanardo et al., 2020; Zeng et al., 2020).

3.2. Study characteristics

Details of the 29 included studies are shown in Table 1. These 29 studies involved 20,225 postpartum women during the COVID-19 pandemic and 8312 postpartum women before the COVID-19 pandemic. There were two multinational studies that recruited participants from five and 64 countries, respectively (Basu et al., 2021; Ceulemans et al., 2021). The remaining 27 studies were conducted in 16 different countries over four continents (Loret de Mola et al., 2021; Pareinte et al., 2020; Racine et al., 2021; Silverman et al., 2020; An et al., 2021; Bo et al., 2020; Boekhorst et al., 2021; Ceulemans et al., 2020; Chrzan-Dętkos et al., 2021; Fallon et al., 2021; Guvenc et al., 2021; Hamami et al., 2020; Hiiragi et al., 2021; Hui et al., 2021; Liang et al., 2020; Lorentz et al., 2020; Maríno-Narvaez et al., 2021; Molgora and Accordini, 2020; Oskovi-Kaplan et al., 2021; Ostacoli et al., 2020; Spinola et al., 2020; Stojanov et al., 2021; Suárez-Rico et al., 2021; Sun et al., 2020b; Suzuki, 2022; Zanardo et al., 2020; Zeng et al., 2020).

There were 16 cross-sectional studies that reported prevalence rates of psychological health symptoms during the COVID-19 pandemic (An et al., 2021; Basu et al., 2021; Bo et al., 2020; Ceulemans et al., 2021; Ceulemans et al., 2020; Fallon et al., 2021; Guvenc et al., 2021; Liang et al., 2020; Molgora and Accordini, 2020; Oskovi-Kaplan et al., 2021; Ostacoli et al., 2020; Spinola et al., 2020; Stojanov et al., 2021; Suárez-Rico et al., 2021; Sun et al., 2020b; Suzuki, 2022; Zanardo et al., 2020; Zeng et al., 2020). The remaining 10 case-control studies (Pareinte et al., 2020; Silverman et al., 2020; Boekhorst et al., 2021; Chrzan-Dętkos et al., 2021; Hamami et al., 2020; Hiiragi et al., 2021; Maríno-Narvaez et al., 2021; Suzuki, 2022; Zanardo et al., 2020) and three panel studies (Loret de Mola et al., 2021; Racine et al., 2021; Lorentz et al., 2020) compared the differences in the risk for psychological health symptoms before and during the COVID-19 pandemic. The total sample size ranged from 50 to
5134 postpartum women from 0 days to >9 years after delivery. All 29 studies reported rates of postpartum depressive symptoms, with the Edinburgh Postnatal Depression scale (EPDS) (cut-off points from 9 to 13) used in 25 studies (Loret de Mola et al., 2021; Pariente et al., 2020; Silverman et al., 2020; An et al., 2021; Boekhorst et al., 2021; Ceulemans et al., 2021; Ceulemans et al., 2020; Chrzan-Dętkoś et al., 2021; Fallon et al., 2021; Guvenc et al., 2021; Hamami et al., 2020; Hiiragi et al., 2021; Hui et al., 2021; Liang et al., 2020; Lorentz et al., 2020; Maríno-Narvaez et al., 2021; Molgora and Accordini, 2020; Oskovi-Kaplan et al., 2021; Ostacoli et al., 2020; Spinola et al., 2020; Stojanov et al., 2021; Sun, 2020; Zeng, 2020; An, 2020; Basu, 2020; Fallon, 2021; Suarez-Rico, 2021; Chrzanz-Dętkoś, 2021; Hamami, 2020; Hui, 2020; Marino-Narvaez, 2021; Pariente, 2020; Silverman, 2020; Suzuki, 2020; Zanardo, 2020; Boekhorst, 2021; Hiiragi, 2021).

Table 2
The methodological quality of the included studies.

| Author, year | Source of information | Inclusion/exclusion criteria | Time period for identity | Subjects consecutive | Evaluators masked | Quality assurance assessments | Patient exclusions | Confounding assessed/controlled | Missing data | Response rates | Follow-up | Total |
|--------------|-----------------------|------------------------------|--------------------------|----------------------|------------------|-------------------------------|-------------------|-----------------------------------|--------------|---------------|-----------|-------|
| Cross-sectional and case-control studies |
| Bo, 2021     | Yes                   | Yes                          | No                       | No                   | Yes               | Yes                           | No                | No                               | No           | No            | No        | 6     |
| Ceulemans, 2021 | Yes         | Yes                          | No                       | No                   | Yes               | Yes                           | No                | Yes                              | No           | No            | No        | 7     |
| Ceulemans, 2020 | Yes         | No                           | No                       | No                   | Yes               | No                            | No                | No                               | No           | No            | No        | 2     |
| Guvenc, 2020  | Yes                   | Yes                          | No                       | No                   | Yes               | Yes                           | No                | Yes                              | No           | No            | No        | 6     |
| Liang, 2020   | Yes                   | Yes                          | No                       | No                   | Yes               | Yes                           | Yes               | Yes                              | No           | No            | No        | 9     |
| Molgora, 2020 | Yes                   | Yes                          | No                       | No                   | Yes               | Yes                           | Yes               | Yes                              | No           | No            | No        | 7     |
| Osman-Kaplan, 2020 | Yes     | Yes                          | No                       | No                   | Yes               | Yes                           | No                | Yes                              | No           | No            | No        | 7     |
| Ostacoli, 2020 | Yes                   | Yes                          | Yes                      | No                   | Yes               | Yes                           | Yes               | Yes                              | No           | No            | No        | 9     |
| Spinola, 2020 | Yes                   | Yes                          | Yes                      | No                   | Yes               | Yes                           | No                | No                               | No           | No            | No        | 6     |
| Stojanov, 2020 | Yes                   | Yes                          | Yes                      | No                   | Yes               | Yes                           | No                | No                               | No           | No            | No        | 6     |
| Sun, 2020     | Yes                   | Yes                          | Yes                      | No                   | Yes               | No                            | Yes               | No                               | No           | No            | No        | 6     |
| Zeng, 2020    | Yes                   | Yes                          | Yes                      | No                   | Yes               | No                            | Yes               | Yes                              | No           | No            | No        | 8     |
| An, 2020      | Yes                   | Yes                          | Yes                      | No                   | Yes               | Yes                           | Yes               | Yes                              | No           | No            | No        | 9     |
| Basu, 2020    | Yes                   | Yes                          | No                       | Yes                  | Yes               | Yes                           | Yes               | Yes                              | No           | No            | No        | 6     |
| Fallon, 2021  | Yes                   | Yes                          | No                       | No                   | Yes               | Unclear                       | Yes               | Yes                              | No           | No            | No        | 6     |
| Suárez-Rico, 2021 | Yes     | Yes                          | No                       | No                   | Yes               | Yes                           | No                | Yes                              | No           | No            | No        | 7     |
| Chrzanz-Dętkoś, 2021 | Yes | Yes                          | Yes                      | No                   | Yes               | No                            | Yes               | Yes                              | No           | No            | No        | 5     |
| Hamami, 2020  | Yes                   | Yes                          | Yes                      | Unclear              | No                 | Yes                           | Yes               | Yes                              | No           | No            | No        | 7     |
| Hui, 2020     | Yes                   | Yes                          | Yes                      | Yes                  | No                 | Yes                           | Yes               | No                               | Yes          | Yes           | Yes       | 8     |
| Marino-Narvaez, 2021 | Yes | Yes                          | Yes                      | No                   | Yes               | No                            | No                | Yes                              | No           | No            | No        | 5     |
| Pariente, 2020 | Yes                   | Yes                          | Yes                      | No                   | Yes               | No                            | Yes               | No                               | No           | No            | No        | 6     |
| Silverman, 2020 | Yes                   | Yes                          | Yes                      | No                   | Yes               | No                            | No                | No                               | No           | No            | No        | 5     |
| Suzuki, 2020  | Yes                   | Yes                          | Yes                      | No                   | Yes               | No                            | No                | Yes                              | No           | No            | No        | 7     |
| Zanardo, 2020 | Yes                   | Yes                          | Yes                      | No                   | Yes               | Yes                           | Yes               | Yes                              | Yes          | Yes           | Yes       | 9     |
| Boekhorst, 2021 | Yes                   | Yes                          | Unclear                  | No                   | Yes               | Yes                           | Yes               | Yes                              | Yes          | No            | No        | 8     |
| Hiiragi, 2021 | Yes                   | Yes                          | Unclear                  | No                   | Yes               | Yes                           | Yes               | Yes                              | Yes          | No            | No        | 8     |

Panel studies

| Author, Year | Representativeness of the exposed cohort | Selection of unexposed cohort | Assessment of exposure | Absence of outcome at start of study | Comparability | Outcome assessment | Follow-up period | Adequacy of follow-up | Total |
|--------------|----------------------------------------|-------------------------------|------------------------|-------------------------------------|---------------|--------------------|-------------------|-----------------------|-------|
| Lorentz, 2021 | –                                      | 1                             | 1                      | 1                                   | 2             | –                  | 1                 | 1                     | 7     |
| Loret de Mola, 2021 | –                                   | 1                             | 1                      | 1                                   | 2             | –                  | 1                 | 1                     | 7     |
| Racine, 2021   | 1                                      | 1                             | 1                      | 1                                   | 2             | –                  | 1                 | 1                     | 8     |
Suárez-Rico et al., 2021; Sun et al., 2020b; Suzuki, 2022; Zanardo et al., 2020; Zeng et al., 2020). The other three studies used the 9-item Patient Health Questionnaire (PHQ9), the Patient Health Questionnaire-4 (PHQ4), and the 10-item Center for Epidemiological Studies Depression scale (CES-D-10) with cut-off points of 5, 6, and 10, respectively (Racine et al., 2021; Basu et al., 2021; Bo et al., 2020). Nine studies reported the prevalence of postpartum anxiety using the 7-item Generalized Anxiety Disorder scale (GAD7), the Perceived Stress Scale (PSS), the State Trait Anxiety Inventory scale (STAI), or the 6-item short form of the Spielberger State-Trait Anxiety Inventory (STAI-SF) (Loret de Mola et al., 2021; Racine et al., 2021; Ceulemans et al., 2021; Ceulemans et al., 2020; Fallon et al., 2021; Molgora and Accordini, 2020; Spinola et al., 2020; Suárez-Rico et al., 2021; Zeng et al., 2020). In addition, the prevalence of postpartum stress and post-traumatic stress disorder (PTSD) symptoms were reported by two (Loret de Mola et al., 2021; Suárez-Rico et al., 2021) and three studies (Basu et al., 2021; Molgora and Accordini, 2020; Ostacoli et al., 2020), respectively. The methodological quality scores for the included studies are shown in Table 2, and the pooled prevalence rates of depressive symptoms in women whose postpartum duration was ≤6 weeks was 21.7% (95% CI: 16.5%–28.1%) and that in women >6 weeks after delivery was 32.3% (95% CI: 24.8%–40.8%) (Fig. 3E). Among the 11 high-quality studies, the pooled postpartum depressive symptom rate was 26.7% (95% CI: 20.4%–34.1%), which was similar to that among moderate-quality studies (27.9%, 95% CI: 21.6%–35.4%). Only one low-quality study reported the prevalence rate of postpartum depression (13.0%, 95% CI: 11.9%–14.2%) (Fig. 3F). Summary risk estimates of associations between risk factors and postpartum depression during the COVID-19 pandemic are shown in Table 3. Both lower income (OR = 1.28, 95% CI: 1.06–1.54) and formula feeding (OR = 1.58, 95% CI: 1.21–2.07) significantly increased the risk for postpartum depression. Similar but borderline significant associations were found for maternal age <35 years (OR = 1.18, 95% CI: 0.93–1.50) and an education below a high school degree (OR = 1.13, 95% CI: 0.92–1.39). Employment, first pregnancy (OR = 1.22, 95% CI: 0.74–2.01), and cesarean delivery (OR = 0.96, 95% CI: 0.76–1.21) did not show any association with postpartum depression.

3.3. Postpartum psychological health during the COVID-19 pandemic

3.3.1. Postpartum depressive symptoms

The rate of postpartum depressive symptoms during the COVID-19 pandemic was evaluated in 29 studies and ranged from 8.5% to 74.4%. The pooled prevalence of postpartum depressive symptoms was 26.7% (95% CI: 22.0%–31.9%), as shown in Fig. 2A. Results from subgroup analyses are shown in Fig. 3. Ten studies were performed in Asia and the prevalence of postpartum depressive symptoms in these studies was 23.2% (95% CI: 17.1%–30.7%). Thirteen studies provided data from Europe with a pooled prevalence of depressive symptoms of 28.0% (95% CI: 19.7%–38.1%). The three studies conducted in North America and two studies conducted in South America reported pooled prevalence rates of 27.3% (95% CI: 16.5%–41.8%) and 32.7% (95% CI: 24.1%–42.6%), respectively (Fig. 3A). The pooled prevalence rates of depressive symptoms in cross-sectional, case-control, and panel studies were 28.0% (95% CI: 21.4%–35.7%), 22.3% (95% CI: 14.8%–32.1%), and 33.2% (95% CI: 28.3%–38.6%), respectively (Fig. 3B). Twenty-six studies used the EPDS to assess postpartum depression, and the pooled prevalence was 26.1% (95% CI: 21.0%–32.0%). The studies that used the CES-D-10, PHQ4, and PHQ9 reported postpartum depression rates of 35.2% (95% CI: 32.7%–37.8%), 30.7% (95% CI: 28.1%–33.4%), and 27.6% (95% CI: 23.4%–31.9%), respectively (Fig. 3C). The prevalence of postpartum depressive symptoms in studies that used an online survey was 32.3% (95% CI: 26.0%–39.2%), which was higher than the prevalence in non-online survey studies (16.3%, 95% CI: 13.4%–19.7%) (Fig. 3D). Data for time after delivery were available for 26 studies. The pooled prevalence rate of depressive symptoms in women whose postpartum duration was ≤6 weeks was 21.7% (95% CI: 16.5%–28.1%) and that in women >6 weeks after delivery was 32.3% (95% CI: 24.8%–40.8%) (Fig. 3E). Among the 11 high-quality studies, the pooled postpartum depressive symptom rate was 26.7% (95% CI: 20.4%–34.1%), which was similar to that among moderate-quality studies (27.9%, 95% CI: 21.6%–35.4%). Only one low-quality study reported the prevalence rate of postpartum depression (13.0%, 95% CI: 11.9%–14.2%) (Fig. 3F). Summary risk estimates of associations between risk factors and postpartum depression during the COVID-19 pandemic are shown in Table 3. Both lower income (OR = 1.28, 95% CI: 1.06–1.54) and formula feeding (OR = 1.58, 95% CI: 1.21–2.07) significantly increased the risk for postpartum depression. Similar but borderline significant associations were found for maternal age <35 years (OR = 1.18, 95% CI: 0.93–1.50) and an education below a high school degree (OR = 1.13, 95% CI: 0.92–1.39). Employment, first pregnancy (OR = 1.22, 95% CI: 0.74–2.01), and cesarean delivery (OR = 0.96, 95% CI: 0.76–1.21) did not show any association with postpartum depression.
Fig. 3. Subgroup analysis of the prevalence of postpartum depressive symptoms during the COVID-19 pandemic by (A) continent, (B) study design, (C) assessment scale, (D) time after delivery, (E) survey method, (F) study quality. Abbreviations: CES-D-10, the 10-item Center for Epidemiological Studies Depression scale; EPDS, the Edinburgh Postnatal Depression scale; PHQ4, the Patient Health Questionnaire-4; PHQ9, the 9-item Patient Health Questionnaire.
did not use online survey and reported a prevalence of anxiety symptoms of 31.2 % (95%CI: 23.2 %–40.5 %) (Fig. 3D). Seven studies included women >6 weeks after delivery. The pooled prevalence for anxiety symptoms of these seven studies was 38.0 % (95%CI: 21.4 %–58.0 %), which was higher than that in women <6 weeks after delivery reported in one study (31.2 %, 95%CI: 23.2 %–40.5 %) (Fig. 3E). Among the three high-quality studies, the pooled rate of anxiety symptoms was 29.1 % (95%CI: 24.8 %–33.8 %), which was lower than that among the five moderate-quality studies (42.2 %, 95%CI: 15.6 %–74.3 %) (Fig. 3F). Risk factor analyses were not performed because of the limited number of original studies.

### 3.3.3. Prevalence of postpartum stress and PTSD

The pooled prevalence of postpartum stress was 55.0 % (95%CI: 27.9 %–79.5 %) and that of PTSD was 33.7 % (95%CI: 19.6 %–51.5 %), as reported in two and three studies, respectively (Fig. 2C and D). Subgroup and risk factor analyses were not performed for stress and PTSD in postpartum women because of the limited number of original studies.

### 3.4. Effects of COVID-19 pandemic on postpartum depressive and anxiety symptoms

#### 3.4.1. postpartum depressive symptom

Thirteen studies reported the difference in postpartum depression prevalence rates before and during the COVID-19 pandemic. As shown in Fig. 5A, the pooled OR for postpartum depression during the COVID-19 pandemic was 1.54 (95 % CI: 1.00–2.36). Subgroup analyses are shown in Fig. 6. Pooled analyses by continents revealed that the risk for postpartum depression during the COVID-19 pandemic was significantly increased in Europe (OR = 1.95, 95%CI: 1.32–2.87) and South America (OR = 4.32, 95%CI: 1.21–15.41) compared with Asia (OR = 0.94, 95%CI: 0.63–1.41) and North America (OR = 1.41, 95%CI: 0.50–3.94) (Fig. 6A). The pooled OR during the COVID-19 pandemic in case-control studies was 1.15 (95 % CI: 0.85–1.56), which was lower than that in panel studies (OR = 3.47, 95 % CI: 1.34–8.95) (Fig. 6B). Nearly all studies (12 of 13) adopted the EPDS to assess postpartum depression, with a more challenging and complex environment during the COVID-19 pandemic compared with before the pandemic. With increasing time after delivery, mothers and babies need activities outside the home. The conflict between outdoor needs and quarantine measures may contribute to the increased prevalence of postpartum psychological disorders during the COVID-19 pandemic (Zanardo et al., 2020).

Second, we found a higher risk for postpartum depression in mothers who were younger than 35 years compared with older mothers. Similar findings were consistent with a previous study involving perinatal women (Basu et al., 2021), which suggested that new mothers faced tremendous social, biological, and psychological changes, making them more susceptible to negative emotions than the general population (Kolakowsky-Hayner et al., 2021; Vesga-Lopez et al., 2008).

Several socio-demographic risk factors for postpartum psychological disorders during the COVID-19 pandemic were identified in the present study. First, we found that the prevalence of postpartum depressive and anxiety symptoms was higher in women >6 weeks after delivery, whereas the prevalence was lower in the first 6 weeks of the postpartum period. The results of previous literature on the peak period for postpartum mental disorders are inconsistent. Some studies indicated that the prevalence of postpartum depression was higher during the first 3 months after delivery (Cooper et al., 1988). However, longitudinal research showed that depressive symptoms persisted for >1 year after delivery (Woolhouse et al., 2015). Evidence from a randomized controlled trial also revealed that the risk for postpartum depression increased 6 weeks after delivery and lasted to 3 months after delivery (Sangsawang et al., 2022). It is important to note that new mothers faced a more challenging and complex environment during the COVID-19 pandemic compared with before the pandemic. With increasing time after delivery, more mothers and babies need activities outside the home. The conflict between outdoor needs and quarantine measures may contribute to the increased prevalence of postpartum psychological disorders during the COVID-19 pandemic (Zanardo et al., 2020).

#### 3.4.2. Postpartum anxiety symptoms

Only two studies reported the difference in postpartum anxiety symptoms before and during the COVID-19 pandemic, and the pooled OR during the COVID-19 pandemic was 2.56 (95%CI: 1.62–4.04) (Fig. 5B). A subgroup analysis was not conducted because of the limited number of studies.

#### 3.5. Publication bias

The funnel plot and Egger’s test revealed there was no significant publication bias in the prevalence of postpartum depressive symptoms (Fig. 7).

### 4. Discussion

To our knowledge, this systematic review and meta-analysis of 29 studies is the first to identify an association between COVID-19 pandemic and psychological health symptoms in postpartum women. The results of our analyses revealed that a high proportion of postpartum women suffered from psychological symptoms during the COVID-19 pandemic, with this prevalence significantly higher than before COVID-19 pandemic. Women >6 weeks after delivery, younger than 35 years, with a low income, with less education, and that used formula feeding had a higher risk for psychological disorders after delivery.

In our systematic review and meta-analysis, we found that the prevalence of postpartum depressive, anxiety, stress, and PTSD symptoms during the COVID-19 pandemic was 26.7 %, 33.8 %, 55.0 %, and 33.7 %, respectively, which were similar to previous meta-analyses of mental health among perinatal women during the COVID-19 pandemic (Shorey et al., 2021; Yan et al., 2020). In addition, the results of the present study showed that compared with the general population, postpartum women faced a higher risk for psychological disorders during the COVID-19 pandemic (Krishnamoorthy et al., 2020). These findings were consistent with a previous study involving perinatal women (Basu et al., 2021), which suggested that new mothers faced tremendous social, biological, and psychological changes, making them more susceptible to negative emotions than the general population (Kolakowsky-Hayner et al., 2021; Vesga-Lopez et al., 2008).

#### Table 3

Summary risk estimates of association between risk factors and postpartum depression during the COVID-19 pandemic.

| Risk factors                      | Studies, N | Summary OR (95% CI) | Heterogeneity I², % | p-value |
|----------------------------------|------------|---------------------|---------------------|---------|
| Maternal age < 35 years          | 3          | 1.18 (0.93–1.50)    | 0                   | 0.504   |
| Employment                       | 4          | 1.20 (0.71–2.02)    | 81.9                | <0.05   |
| Under high school degree         | 5          | 1.13 (0.92–1.39)    | 0                   | 0.779   |
| Lower income level               | 4          | 1.28 (1.06–1.54)    | 0                   | 0.811   |
| First pregnancy                  | 2          | 1.22 (0.74–2.01)    | 56.1                | 0.131   |
| Cesarean section                 | 4          | 0.96 (0.76–1.21)    | 0                   | 0.763   |
| Formula feeding                  | 2          | 1.58 (1.21–2.07)    | 41.8                | 0.190   |

N, number; OR, odds ratio; CI, confidence interval.

(OR = 2.26, 95 % CI: 1.30–3.91), but this association was not found in the six moderate-quality studies (OR = 0.95, 95%CI: 0.62–1.48) (Fig. 6F). Among the seven high-quality studies, the risk for postpartum depression during the COVID-19 pandemic was significantly increased (OR = 2.26, 95 % CI: 1.30–3.91), but this association was not found in the six moderate-quality studies (OR = 0.95, 95%CI: 0.62–1.48) (Fig. 6F).
results were also found in other studies that showed older postpartum or pregnant women were less likely to experience anxiety and depression regardless of timing (i.e., before or during the COVID-19 pandemic) (Fan et al., 2021; Alshikh Ahmad et al., 2021). A previous study suggested that the median age-of-onset for mental disorders ranged from late teens through the early 20s before the COVID-19 pandemic (Kessler et al., 2007). In addition, the high risk for postpartum psychological disorders in younger mothers may be attributable to the lack of experience in caring new babies and relieving negative emotion.

Third, lower income or education level, rather than unemployment, was significantly associated with a higher prevalence of postpartum depression. The evidence before the COVID-19 pandemic revealed that lower income level was a risk factor for postpartum psychological disorders (Alshikh Ahmad et al., 2021; Zhao and Zhang, 2020). Furthermore, a previous study showed that around half of families experienced joblessness or income disruption during the COVID-19 pandemic (Racine et al., 2021). Therefore, financial pressure from raising newborns may be more severe, resulting in a higher prevalence of postpartum psychological disorders during the COVID-19 pandemic (Li et al., 2020a). Furthermore, people with a lower education level may have less capabilities to obtain, interpret, and update information about the disease than people with a higher education level, which may increase postpartum women’s worries about the pandemic, and therefore affect postpartum mental health (Alshikh Ahmad et al., 2021). Interestingly,

Fig. 4. Subgroup analysis of the prevalence of postpartum anxiety symptoms during the COVID-19 pandemic by (A) continent, (B) study design, (C) assessment scale, (D) time after delivery, (E) survey method, (F) study quality. Abbreviations: GAD7, the 7-item Generalized Anxiety Disorder scale; PSS, the Perceived Stress Scale; STAI, the State Trait Anxiety Inventory scale; STAI-SF, the 6-item short form of the Spielberger State-Trait Anxiety Inventory.

| Study | Events | Total | Proportion | 95% CI | Weight |
|-------|--------|-------|------------|--------|--------|
| Chinese | Cordova, 2020 | 482 | 3449 | 0.140 (0.128, 0.152) | 11.2% |
| European | Cordova, 2020 | 482 | 3449 | 0.140 (0.128, 0.152) | 11.2% |
| Nordic | Cordova, 2020 | 482 | 3449 | 0.140 (0.128, 0.152) | 11.2% |
| Sub-Saharan | Cordova, 2020 | 482 | 3449 | 0.140 (0.128, 0.152) | 11.2% |
| Asian | Cordova, 2020 | 482 | 3449 | 0.140 (0.128, 0.152) | 11.2% |
| North American | Cordova, 2020 | 482 | 3449 | 0.140 (0.128, 0.152) | 11.2% |
| Latin American | Cordova, 2020 | 482 | 3449 | 0.140 (0.128, 0.152) | 11.2% |
| Sub-Saharan | Cordova, 2020 | 482 | 3449 | 0.140 (0.128, 0.152) | 11.2% |
| Middle Eastern | Cordova, 2020 | 482 | 3449 | 0.140 (0.128, 0.152) | 11.2% |

S. Gao et al. | Journal of Affective Disorders 319 (2022) 99–111

107

107
employment did not significantly decrease postpartum depressive symptoms in our meta-analysis. Having to give up growth opportunities such as attending meetings or travelling for work, as well as making special leave arrangements may increase job uncertainty, which could lead to negative emotions among employees during infectious disease outbreaks (Brooks et al., 2020). This may counteract the benefits from employment, such as increases in income or social interactions, and explain the insignificant association between employment and postpartum psychological disorders during the COVID-19 pandemic (Guintiavino et al., 2018).

Fourth, mothers that used formula feeding had an increased risk for postpartum depression during the COVID-19 pandemic. This finding was consistent with most previous studies both before and during the COVID-19 pandemic (Ceulemans et al., 2021; Haga et al., 2012). For formula feeding may decrease the protective effects of a satisfactory mother-infant relationship and increase economic pressure, thereby raising the risk for postpartum psychological disorders during the COVID-19 pandemic.

Before the COVID-19 pandemic, nearly 20% of postpartum women suffered from depression or anxiety (Howard et al., 2014; Dennis et al., 2017), which was significantly lower than the prevalence during the COVID-19 pandemic. Evidence from pregnant women and the general population also revealed that the COVID-19 outbreak significantly increased the risk for negative emotions or psychological symptoms, which was consistent with our finding among postpartum women (Yan et al., 2020; Ayaz et al., 2020; Yuan et al., 2020; Li et al., 2020b). We found that the COVID-19 pandemic significantly increased the risk for postpartum psychological disorders: the pooled ORs during the COVID-19 pandemic for postpartum depressive and anxiety symptoms were 1.54 (95% CI: 1.00–2.36) and 2.56 (95%CI: 1.62–4.04), respectively, and women with >6 weeks after delivery were more sensitive to the negative effects of the COVID-19 pandemic. Numerous risk factors increased during the COVID-19 pandemic, such as medical inconvenience, fear of being infected by the COVID-19, lack of social support, financial stress, and prenatal psychological disorders, which may explain its negative effects on postpartum psychological health (Payne and Maguire, 2019).

Subgroup analyses in the present study showed that women from Asian countries had a lower risk for psychological disorders after delivery compared with women from other countries. This was consistent with the results of a previous meta-analysis among pregnant women in which Europe had the highest prevalence of anxiety or depressive symptoms, followed by Asia and North America (Shorey et al., 2021). An international cross-sectional study among perinatal women revealed that after adjusting for various risk factors, the prevalence of anxiety, depression, and PTSD in other regions were 1.5 to 3 times significantly higher than that in Asia during the COVID-19 pandemic (Basu et al., 2021). A meta-analysis involving people at high risk for COVID-19 infection, namely medical workers, also showed that participants in Asian countries had a low prevalence of adverse psychological symptoms during the pandemic (Olaya et al., 2021). Given that the severity of the COVID-19 pandemic and control measures differed among countries, more international studies are needed to examine region-specific effects of the COVID-19 pandemic on postpartum psychological health. Our subgroup analyses showed that the pooled prevalence of postpartum psychological symptoms was higher in studies that used online surveys, which indicated that the survey method may influence the performance on self-reported scales of psychological health.

To our knowledge, this study is the first to pool the prevalence of postpartum depressive, anxiety, stress, and PTSD symptoms during the COVID-19 pandemic and estimate the effects of the pandemic on the psychological health of postpartum women. In addition, postpartum women that were >6 weeks after delivery, younger than 35 years, with a low income, with less education, and that used formula feeding were more susceptible to the effects of the COVID-19 pandemic on psychological health. These findings could provide comprehensive new evidence to prevent postpartum psychological disorders during the COVID-19 pandemic. Our study had some limitations. First, significant but
inevitable heterogeneities were found in some analyses. To reduce the effect of heterogeneities on the meta-analyses, random-effect modelling and subgroup analyses were performed to estimate the pooled prevalence and ORs for postpartum psychological symptoms. Second, most included studies were cross-sectional or non-concurrent case-control design without multivariate analyses, and <50% were assessed as high quality. The main reasons for non-ideal quality of original studies were consecutive subjects, evaluators masked, missing data, and follow-up period. Although we found that the risk for psychological symptoms in postpartum women was significantly increased during the COVID-19 pandemic, we cannot conclude that the COVID-19 pandemic was the main cause of postpartum psychological disorders. However, subgroup analyses revealed that the prevalence and risk for postpartum psychological symptoms in high-quality or panel studies were consistent with the pooled analyses. More prospective studies are needed to confirm the

**Fig. 6.** Subgroup analysis of the odds ratio of the COVID-19 pandemic for postpartum depressive symptoms by (A) continent, (B) study design, (C) assessment scale, (D) time after delivery, (E) survey method, (F) study quality. Abbreviations: CES-D-10, the 10-item Center for Epidemiological Studies Depression scale; EPDS, the Edinburgh Postnatal Depression scale.

**Fig. 7.** Funnel plot for the prevalence of postpartum depressive symptoms.
effect of the COVID-19 pandemic on postpartum psychological health. Third, the prevalence of postpartum insomnia during the COVID-19 pandemic was unable to be pooled because it was reported by only one study. More studies could focus on postpartum sleep disorders during the COVID-19 pandemic to clarify this point. Fourth, most online-survey-based studies were performed among women >6 weeks after delivery who experienced higher risk for postpartum psychological symptoms during the COVID-19 pandemic, indicating that potential selection bias may exist in the original studies.

In conclusion, our study found that a significantly higher proportion of postpartum women suffered from symptoms of psychological disorders during the COVID-19 pandemic compared with before the pandemic. More attention and preventive measures should be adopted to improve psychological health in postpartum women, particularly for those >6 weeks after delivery, younger than 35 years, with a low income, with less education, and that use formula feeding.

Funding

This work was supported by the National Key Research and Development Program of China (2016YFC1000101).

CRediT authorship contribution statement

Wentao Yue and Chenghong Yin initiated and designed the research. Sheng Gao, Shaofei Su and Enjie Zhang searched and identified literatures. Enjie Zhang, Ruxia Liu, Yue Zhang and Chengrong Wang performed data extraction. Jianhui Liu and Shuanghua Xie assessed the quality of included studies. Sheng Gao and Shaofei Su performed meta-analyses. Sheng Gao and Shaofei Su wrote the first draft of the manuscript. Wentao Yue and Chenghong Yin contributed to manuscript revision and supervision. All authors contributed to manuscript final version approval.

Conflict of Interest

All the authors declared no potential competing interests with respect to the research, authorship, and/or publication in this paper.

Acknowledgements

No.

References

Abdollahi, F., Zarghami, M., 2018. Effect of postpartum depression on women's mental and physical health four years after childbirth. East Mediterr. Health J. 24 (10), 1003–1009.
Alikhah Ahmad, H., Alkhath, A., Luo, J., 2021. Prevalence and risk factors of postpartum depression in the Middle East: a systematic review and meta-analysis. BMC Pregnancy Childbirth 21 (1), 542.
An, R., Chen, X., Wu, Y., et al., 2021. A survey of postpartum depression and health care needs among Chinese postpartum women during the pandemic of COVID-19. Arch. Psychiatr. Nurs. 35 (2), 172–177.
Ayar, R., Hocaoglu, M., Gunay, T., et al., 2020. Anxiety and depression symptoms in the same pregnant women before and during the COVID-19 pandemic. J. Perinat. Med. 48 (9), 965–970.
Basu, A., Kim, H.H., Basaldua, R., et al., 2021. A cross-national study of factors associated with women's perinatal mental health and wellbeing during the COVID-19 pandemic. PLoS One 16 (4), e0249780.
Blettner, M., Sauerbrei, W., Schleshofer, B., et al., 1999. Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int. J. Epidemiol. 28 (1), 1–9.
Bo, H.X., Yang, Y., Chen, J., et al., 2020. Prevalence of depressive symptoms among pregnant and postpartum women in China during the COVID-19 pandemic. Psychosom. Med. 83 (4), 345–350.
Boekhorst, M., Muskens, L., Hulsbosch, L.P., et al., 2021. The COVID-19 outbreak increases maternal stress during pregnancy, but not the risk for postpartum depression. Arch. Womens Ment. Health 24 (6), 1027–1041.
Brooks, S.K., Weston, D., Greenberg, N., 2020. Psychological impact of infectious disease outbreaks on pregnant women: rapid evidence review. Public Health 189, 26–36.
Cantwell, R., 2021. Mental disorder in pregnancy and the early postpartum. Anaesthesia 76 (Suppl. 4), 76–85.
Ceulemans, M., Hompes, T., Foulon, V., 2020. Mental health status of pregnant and breastfeeding women during the COVID-19 pandemic: a call for action. Int. J. Gynaecol. Obstet. 153 (1), 146–147.
Ceulemans, M., Foulon, V., Ngo, E., et al., 2021. Mental health status of pregnant and breastfeeding women during the COVID-19 pandemic: A multinational cross-sectional study. Acta Obstet. Gynecol. Scand. 100 (7), 1219–1220.
Chere, C., Marchena, C., Palacios, E., et al., 2022. Effects of the COVID-19 pandemic on perinatal mental health in Spain: positive and negative outcomes. Women Birth 35 (3), 254–261.
Chmielewska, B., Barranti, L., Townsend, R., et al., 2021. Effects of the COVID-19 pandemic on maternal and perinatal outcomes: a systematic review and meta-analysis. Lancet Glob. Health 9 (6), e759–e772.
Chrzan-Dečkos, M., Walczak-Kozłowska, T., Lipowska, M., 2021. The need for additional mental health support for women in the postpartum period in the times of epidemic pressure. BMC Pregnancy Childbirth 21 (1), 114.
Cooper, P.J., Campbell, E.A., Day, A., et al., 1988. Non-psychotic psychiatric disorder after childbirth. A prospective study of prevalence, incidence, course and nature. Br. J. Psychiatry 152, 799–806.
Dennis, C.L., Fahah-Hassani, K., Shiri, R., 2017. Prevalence of antenatal and postnatal anxiety: systematic review and meta-analysis. Br. J. Psychiatry 210 (5), 315–323.
Dersimonian, R., Laird, N., 1986. Meta-analysis in clinical trials. Control. Clin. Trials 7 (3), 177–188.
Dib, S., Rougeaux, E., Vázquez-Vázquez, A., et al., 2020. Maternal mental health and coping during the COVID-19 lockdown in the UK: data from the COVID-19 new mum study. Int. J. Gynaecol. Obstet. 151 (3), 407–414.
Fellon, V., Davies, S.M., Silverio, S.A., et al., 2021. Psychosocial experiences of postnatal women during the COVID-19 pandemic. A UK-wide study of prevalence rates and risk factors for clinically relevant depression and anxiety. J. Psychiatr. Res. 136, 157–166.
Fan, S., Gunn, J., Cao, L., et al., 2021. Psychological effects caused by COVID-19 pandemic on pregnant women: a systematic review with meta-analysis. Asian J. Psychiatr. 56, 102533.
Farewell, C.V., Jewell, J., Walls, J., et al., 2020. A mixed-methods pilot study of perinatal risk and resilience during COVID-19. J. Prim. Care Community Health 11, 2150327020940074.
Feldman, R., Granat, A., Pariente, C., et al., 2009. Maternal depression and anxiety across the postpartum year and infant social engagement, fear regulation, and stress reactivity. J. Am. Acad. Child Adolesc. Psychiatry 48 (9), 919–927.
Fernandes, D.V., Canavarro, M.C., Moreira, H., 2021. Postpartum during COVID-19 pandemic: Portuguese mothers’ mental health, mindful parenting, and mother-infant bonding. J. Clin. Psychol. 77 (9), 997–2010.
Giuntivano, J., Manack, T., Melzer-Brody, S., 2019. Predictors of postpartum depression: a comprehensive review of the last decade of evidence. Clin. Obstet. Gynecol. 61 (3), 591–603.
Guvven, G., Yesilceci, I., Ozcakeci, F., et al., 2021. Anxiety, depression, and knowledge level in postpartum women during the COVID-19 pandemic. Perspect. Psychiatr. Care 57 (3), 1449–1458.
Haga, S.M., Ullenberg, P., Slinning, K., et al., 2012. A longitudinal study of postpartum depressive symptoms: multilevel growth curve analyses of emotion regulation strategies, breastfeeding self-efficacy, and social support. Arch. Womens Ment. Health 15 (3), 175–184.
Halligan, S.L., Murray, L., Martins, C., et al., 2007. Maternal depression and psychiatric outcomes in adolescent offspring: a 13-year longitudinal study. J. Affect. Disord. 97 (1–3), 145–154.
Hamami, H., Sheiner, E., Wainstock, T., et al., 2020. The association between delivery during the COVID-19 pandemic and immediate postpartum maternal cognitive function. J. Clin. Med. 9 (11), 3727.
Hessami, K., Romanelli, C., Chiruzzo, M., et al., 2020. COVID-19 pandemic and maternal mental health: a systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 1–8.
Higgins, J.P., Thompson, S.G., Deeks, J.J., et al., 2003. Measuring inconsistency in meta-analyses. DerSimonian, R., Laird, N., 1986. Meta-analysis in clinical trials. Control. Clin. Trials 7 (3), 177–188.
Hui, P.W., Ma, G., Seto, M.T.Y., et al., 2021. Effect of COVID-19 on delivery plans and maternal depression scores of pregnant women. Hong Kong Med. J. 27 (2), 113–117.
Jafree, S.R., Momina, A., Muazzam, A., et al., 2021. Factors affecting delivery health anxiety: systematic review and meta-analysis. Br. J. Psychiatry 210 (5), 315–323.
Letourneau, N.L., Dennis, C.L., Benzie, K., et al., 2012. Postpartum depression is a family affair: addressing the impact on mothers, fathers, and children. Issues Ment. Health Nurs. 33 (7), 445–457.

Li, X., Lu, P., Hu, L., et al., 2020. Factors associated with mental health results among workers with income losses exposed to COVID-19 in China. Int. J. Environ. Res. Public Health 17 (15), 5627.

Li, S., Wang, Y., Xue, J., et al., 2020. The impact of COVID-19 epidemic declaration on psychological consequences: a study on active Weibo users. Int. J. Environ. Res. Public Health 17 (6), 2032.

Li, C., Hao, L., Wang, R., et al., 2021. The prevalence and risk factors of depression in prenatal and postnatal women in China with the outbreak of Coronavirus disease 2019. J. Affect. Disord. 282, 1203–1209.

Li, X., Erdei, C., Mittal, L., 2021. Risk factors for depression, anxiety, and PTSD symptoms in perinatal women during the COVID-19 pandemic. Psychiatry Res. 295, 113552.

Lorentz, M.S., Chagas, L.B., Perez, A.V., et al., 2020. Correlation between depressive symptoms and sexual dysfunction in postpartum women during the COVID-19 pandemic. Eur. J. Obstet. Gynecol. Reprod. Biol. 258, 162–167.

Loret de Mola, C., Martin-Silva, T., Carpena, M.X., et al., 2021. Maternal mental health before and during the COVID-19 pandemic in the 2019 Rio Grande birth cohort. Br. J. Psychiatry 20 (4), 402–406.

Mariño-Narváez, C., Puertas-Gonzalez, J.A., Romero-Gonzalez, B., et al., 2021. Giving birth during the COVID-19 pandemic: the impact on birth satisfaction and postpartum depression. Int. J. Gynaecol. Obstet. 153 (1), 85–88.

Mayopoulos, G.A., Ein-Dor, T., Dishy, G.A., et al., 2021. COVID-19 is associated with traumatic childbirth and subsequent mother-infant bonding problems. J. Affect. Disord. 282, 122–125.

McFarland, M.J., McFarland, C.A.S., Hill, T.D., et al., 2021. Postpartum depressive symptoms during the beginning of the COVID-19 pandemic: an examination of population birth data from Central New Jersey. Matern. Child Health J. 25 (3), 353–359.

Morlora, S., Accordini, M., 2020. Motherhood in the time of coronavirus: the impact of the pandemic emergency on expectant and postpartum women’s psychological well-being. Front. Psychol. 11, 567155.

Oliva, R., Perez-Moreno, M., Bueno-Noitiol, J., et al., 2021. Prevalence of depression among healthcare workers during the COVID-19 outbreak: a systematic review and meta-analysis. J. Clin. Med. 10 (15), 4366.

Reid, M.R., Firth-Cozens, J., 2004. Celiac disease. Sep. Available at:. Agency for Healthcare Research and Quality (US), Rockville (MD) https://www.ncbi.nlm.nih.gov/books/NBK35156/.

Rostom, A., Dube, C., Crannen, A., 2004. Celiac disease. Sep. Available at: Agency for Healthcare Research and Quality (US), Rockville (MD) https://www.ncbi.nlm.nih.gov/books/NBK35156/.

Sangsawang, B., Deoires, W., Hengudomshub, F., et al., 2022. Effectiveness of psychosocial support provided by midwives and family on preventing postpartum depression among first-time adolescent mothers at 3-month follow-up: a randomised controlled trial. J. Clin. Nurs. 31 (5–6), 689-702.

Shayganfarid, M., Mahdavi, F., Haghhighi, M., et al., 2020. Health anxiety predicts postponing or cancelling routine medical health care appointments among women in perinatal stage during the COVID-19 lockdown. Int. J. Environ. Res. Public Health 17 (21), 8272.

Shorey, S.Y., Ng, E.D., Chee, C.Y.L., 2021. Anxiety and depressive symptoms of women in the perinatal period during the COVID-19 pandemic: A systematic review and meta-analysis. Scand. J. Public Health 49 (7), 750–740.

Silverman, M.E., Burgos, L., Rodriguez, Z.L., et al., 2020. Postpartum mood among universally screened high and low socioeconomic status patients during COVID-19 social restrictions in New York City. Sci. Rep. 10 (1), 22380.

Spinola, O., Liotti, M., Speranza, A.M., et al., 2020. Effects of COVID-19 epidemic lockdown on postpartum depressive symptoms in a sample of Italian mothers. Front. Psychiatry 11, 589916.

Stein, A., Pearson, R.M., Goodman, S.H., et al., 2014. Effects of perinatal mental disorders on the fetus and child. Lancet 384 (9956), 1800-1819.

Stepovicki, A., Wencka, B., Bienkiewicz, J., et al., 2020. Stress and anxiety levels in pregnant and post-partum women during the COVID-19 pandemic. Int. J. Environ. Res. Public Health 17 (24).

Stojanov, J., Stankovic, M., Zicke, O., et al., 2021. The risk for nonpsychotic postpartum mood and anxiety disorders during the COVID-19 pandemic. Int. J. Psychiatry Med. 56 (4), 228–239.

Stroup, D.F., Berlin, J.A., Morton, S.C., et al., 2000. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283 (15), 2008–2012.

Suárez-Rico, B.V., Estrada-Gutierrez, G., Sánchez-Martínez, M., et al., 2021. Prevalence of depression, anxiety, and perceived stress in postpartum Mexican women during the COVID-19 lockdown. Int. J. Environ. Res. Public Health 18 (9), 4627.

Sun, F., Zha, J., Tao, H., et al., 2020. A systematic review involving 11,187 participants evaluating the impact of COVID-19 on anxiety and depression in pregnant women. J. Psychosom. Obstet. Gynecol. 1–9.

Sun, G., Wang, Q., Lin, Y., et al., 2020. Perinatal depression of exposed maternal women in the COVID-19 pandemic in Wuhan China. Front. Psychiatry 11, 551812.

Suzuki, S., 2022. Psychological status of postpartum women under the COVID-19 pandemic in Japan. Matern. Fetal Neonatal Med. 35 (9), 1798–1800.

Vega-Lopez, O., Blanco, C., Keyes, K., et al., 2008. Psychiatric disorders in pregnant and postpartum women in the United States. Arch. Gen. Psychiatry 65 (7), 805–815.

Wang, J., Zhou, Y., Qian, W., et al., 2021. Maternal insomnia during the COVID-19 pandemic: associations with depression and anxiety. Soc. Psychiatry Psychiatr. Epidemiol. 1–9.

Wells, G., Shea, B., O’Connell, D. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available at: http://www.ohri.ca/programs/clinical_epidemiology/ctmguides/nos.pdf.

Woollhouse, H., Garrland, D., Mensch, F., et al., 2015. Maternal depression from early pregnancy to 4 years postpartum in a prospective pregnancy cohort study: implications for primary health care. BJOG 122 (3), 312–321.

World Health Organization. WHO Coronavirus (COVID-19) dashboard. Available at https://www.who.int/.