Research Article

Global Existence and General Decay of Solutions for a Quasilinear System with Degenerate Damping Terms

Fatma Ekinci, Erhan Pişkin, Salah Mahmoud Boulaaras, and Ibrahim Mekawy

1Dicle University, Department of Mathematics, 21280 Diyarbakır, Turkey
2Department of Mathematics, College of Sciences and Arts, ArRas, Qassim University, Saudi Arabia
3Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Oran, 31000 Oran, Algeria

Correspondence should be addressed to Salah Mahmoud Boulaaras; s.boularas@qu.edu.sa

Received 12 May 2021; Accepted 21 June 2021; Published 30 June 2021

Academic Editor: Yuanfang Ru

Copyright © 2021 Fatma Ekinci et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work, we consider a quasilinear system of viscoelastic equations with degenerate damping, dispersion, and source terms under Dirichlet boundary condition. Under some restrictions on the initial datum and standard conditions on relaxation functions, we study global existence and general decay of solutions. The results obtained here are generalization of the previous recent work.

1. Introduction

Let Ω be a bounded domain with a sufficiently smooth boundary in $\mathbb{R}^n (n \geq 1)$. We investigate a quasilinear system

\[
\begin{align*}
|u_i|^{p_i}u_{tt} - \Delta u_i + \int_0^1 h_i(t-s)\Delta u_i(s)\,ds - \Delta u_i + \left(|u_i|^k + |v_i|^\theta\right)|u_i|^{\gamma_i-1}u_i &= f_1(u, v, x, t) \in \Omega \times (0, T), \\
|v_i|^{p_i}v_{tt} - \Delta v_i + \int_0^1 h_i(t-s)\Delta v_i(s)\,ds - \Delta v_i + \left(|v_i|^\beta + |u_i|^\rho\right)|v_i|^{\gamma_i-1}v_i &= f_2(u, v, x, t) \in \Omega \times (0, T), \\
\end{align*}
\]

\[(1)\]

where, $s \geq 1$, $\eta > 0$, $k, \theta, \rho \geq 0$, and $h_i(\cdot): \mathbb{R}^+ \rightarrow \mathbb{R}^+ (i = 1, 2)$ are positive relaxation functions which will be specified later. \((|\cdot|^k + |\cdot|^\theta)|\cdot|^{\gamma_i-1} \cdot\) and $-\Delta \cdot$ are the degenerate damping term and the dispersion term, respectively.

By taking

\[
\begin{align*}
f_1(u, v) &= a|u + v|^{(k+1)(u + v)} + b|u|^k|v|^{k+2}, \\
f_2(u, v) &= a|u + v|^{(\beta+1)(u + v)} + b|v|^\beta|u|^{\beta+2},
\end{align*}
\]

\[(2)\]
in which \(a > 0, b > 0 \), and

\[
1 < \kappa < +\infty \text{ if } n = 1, 2 \text{ and } 1 < \kappa \leq \frac{3 - n}{n - 2} \text{ if } n \geq 3. \quad (3)
\]

It is simple to show that

\[
uf_1(u, v) + vf_2(u, v) = 2(\kappa + 2)F(u, v), \forall (u, v) \in R^2, \quad (4)
\]

where

\[
F(u, v) = \frac{1}{2(\kappa + 2)} \left[a|u + v|^{2(\kappa + 2)} + 2b|uv|^{\kappa + 2} \right]. \quad (5)
\]

To motivate our problem (1), it can trace back to the initial boundary value problem for the single viscoelastic equation of the form

\[
|u_i|^m u_{tt} - \Delta u + \int_0^t h(t - s)\Delta u(s)ds - \Delta u_t + g(u, u_t) = f(u). \quad (6)
\]

This type problem appears a variety of mathematical models in applied science. For instance, in the theory of viscoelasticity, physics, and material science, problem (5) has been studied by various authors, and several results concerning blow-up and energy decay have been studied case \((\eta \geq 0) \). For example, Liu [1] studied a general decay of solutions case \(g(u, u_t) = 0 \). Messaoudi and Tatar [2] applied the potential well method to indicate the global existence and uniform decay of solutions \(g(u, u_t) = 0 \) instead of \(\Delta u_t \). Furthermore, the authors obtained a blow-up result for positive initial energy. Wu [3] studied a general decay of solution case \(g(u, u_t) = |u|^m u_t \). Later, Wu [4] studied the same problem case \(g(u, u_t) = u_t \) and discussed the decay rate of solution energy. Recently, Yang et al. [5] proved the existence of global solution and asymptotic stability result without restrictive conditions on the relaxation function at infinity case \(f(u) = \sigma(x, t) \partial W_t(t, x) \).

In case \(g(u, u_t) = 0 \) and without dispersion term, problem (5) has been investigated by Song [6], and the blow-up result for positive initial energy has been proved.

For a coupled system, He [7] investigated the following problem

\[
\begin{align*}
|u_i|^m u_{tt} - \Delta u + \int_0^t h_i(t - s)\Delta u(s)ds - \Delta u_t + |u_i|^r u_t = f_i(u, v), \\
|v_i|^n v_{tt} - \Delta v + \int_0^t h_i(t - s)\Delta v(s)ds - \Delta v_t + |v_i|^s v_t = f_i(u, v),
\end{align*}
\]

where \(\eta > 0, j, s \geq 2 \). The author proved general and optimal decay of solutions. Then, in [8], the author investigated the same problem without damping term and established a general decay of solutions. Furthermore, the author obtained a blow-up of solutions for negative initial energy. In addition, problem (1) with in case \(\eta = 0 \) and without dispersion term, Wu [9] proved a general decay of solutions. Later, Pişkin and Eksiçi [10] studied a general decay and blow-up of solutions with nonpositive initial energy for problem (1) case (Kirchhoff-type instead of \(\Delta u \) and without dispersion term).

The rest of the paper is arranged as follows: In Section 2, as preliminaries, we give necessary assumptions and lemmas that will be used later and local existence theorem without proof. In Section 3, we prove the global existence of solution. In the last section, we studied the general decay of solutions.

2. Preliminaries

We begin this section with some assumptions, notations, lemmas, and theorems. Denote the standard Sobolev-Poincare inequality [15]. Let \(q \) be a number with \(2 \leq q < \infty(n = 1, 2) \) or \(2 \leq q \leq 2n/(n - 2)(n \geq 3) \), and then there is a constant \(C_\alpha = C_\alpha(\Omega, q) \) such that

\[
\|u\|_q \leq C_\alpha \|\nabla u\| \quad \text{for } u \in H_0^1(\Omega). \quad (13)
\]

Now, we state the local existence theorem that can be established by combining arguments of [7, 10].

Theorem 2. Assume that (A1)-(A3) and (2) hold. Let \(u_0, v_0 \in H_0^1(\Omega) \) and \(u_1, v_1 \in L^2(\Omega) \) be given. Then, for some \(T > 0 \),
problem (1) has a unique local weak solution in the following class:

\[u, v \in C([0, T] ; H^2(\Omega) \cap H_0^1(\Omega)), \]
\[u_t \in C([0, T] ; H^2_0(\Omega)) \cap L^{2+1}(\Omega), \]
\[v_t \in C([0, T] ; H_0^1(\Omega)) \cap L^{2+1}(\Omega). \]

(14)

We define the energy function as follows:

\[E(t) = \frac{1}{\eta + 2} \left(\|u_t\|^2 + \|v_t\|^2 \right) + \frac{1}{2} \left(\int_0^t h_1(s) ds \right) \|u(t)\|^2 \]
\[+ \left(1 - \int_0^t h_1(s) ds \right) \|v(t)\|^2 \]
\[+ \left(1 - \int_0^t h_2(s) ds \right) \|\nabla u(t)\|^2 \]
\[+ \left(1 - \int_0^t h_2(s) ds \right) \|\nabla v(t)\|^2 \]
\[- \int_\Omega F(u, v) dx. \]

(15)

Also, we define

\[I(t) = \|u_t\|^2 + \|v_t\|^2 + \left(1 - \int_0^t h_1(s) ds \right) \|u(t)\|^2 \]
\[+ \left(1 - \int_0^t h_2(s) ds \right) \|v(t)\|^2 + (h_1 \circ \nabla u)(t) \]
\[+ (h_2 \circ \nabla v)(t) - 2(\kappa + 2) \int_\Omega F(u, v) dx, \]
\[J(t) = \frac{1}{2} \left(1 - \int_0^t h_1(s) ds \right) \|u_t\|^2 + \left(1 - \int_0^t h_2(s) ds \right) \|v_t\|^2 \]
\[- \frac{1}{2} \left(h_1 \circ \nabla u)(t) + (h_2 \circ \nabla v)(t) \right) \]
\[+ \|u_t\|^2 + \|v_t\|^2 - \int_\Omega F(u, v) dx. \]

(16)

By computation, we get

\[\frac{d}{dt} E(t) \leq \frac{1}{2} \left[(h_1 \circ \nabla u)(t) + (h_2 \circ \nabla v)(t) \right] \]
\[- \frac{1}{2} \left(h_1(t) \|u_t\|^2 + h_2(t) \|v_t\|^2 \right) \]
\[- \int_\Omega (|u|^k + |v|^k)|u_t|^r dx \]
\[- \int_\Omega (|u|^p + |v|^p)|v_t|^s dx \leq 0. \]

(17)

3. Global Existence

In this part, in order to state and prove the global existence of solution (1), we firstly give two lemmas.

Lemma 3 [16]. Assume that (4) holds. Then, there exist \(\rho > 0 \) such that for the solution \((u, v)\),

\[\|u + v\|^{2(\kappa + 1)} + 2 \|uv\|^{\kappa + 2} \leq \rho (l_1 \|u\|^2 + l_2 \|v\|^2)^{\kappa + 2}. \]

(18)

Lemma 4. Let \(u_0, v_0 \in H_0^1(\Omega) \), \(u_1, v_1 \in L^2(\Omega) \). Suppose that (A1)-(A3) hold. If

\[I(0) > 0 \text{ and } \beta = \rho \left(\frac{2(\kappa + 2)^{\kappa + 1} E(0)}{\kappa + 1} \right)^{\kappa + 1} < 1, \]

then

\[I(t) > 0, \forall t > 0. \]

Proof: We have \(I(0) > 0 \) and by continuity of \(I(t) \) about \(t \), there exist a maximal time \(t_m > 0 \) such that

\[I(t) \geq 0, \text{ on } t \in [0, t_m]. \]

(21)

Let \(t_0 \) be as follows:

\[\{ I(t_0) = 0 \text{ and } I(t) > 0, \forall 0 \leq t < t_0 \}. \]

(22)

By using (8), (9), and (A1), we get

\[J(t) = \frac{\kappa + 1}{2(\kappa + 2)} \left(\left(1 - \int_0^t h_1(s) ds \right) \|u(t)\|^2 \right) \]
\[+ \left(1 - \int_0^t h_2(s) ds \right) \|v(t)\|^2 + (h_1 \circ \nabla u)(t) \]
\[+ (h_2 \circ \nabla v)(t) + \|u_t\|^2 + \|v_t\|^2 \right) \]
\[\geq \frac{\kappa + 1}{2(\kappa + 2)} \left\{ l_1 \|u(t)\|^2 + l_2 \|v(t)\|^2 + (h_1 \circ \nabla u)(t) \]
\[+ (h_2 \circ \nabla v)(t) + \|u_t\|^2 + \|v_t\|^2 \right\}. \]

From (7) and (10), we have

\[l_1 \|u(t)\|^2 + l_2 \|v(t)\|^2 \]
\[\leq \frac{2(\kappa + 2)}{\kappa + 1} I(t) \leq \frac{2(\kappa + 2)}{\kappa + 1} E(t) \]
\[\leq \frac{2(\kappa + 2)}{\kappa + 1} E(0), \forall t \in [0, t_0]. \]

(24)

By (11) and (12), we infer that

\[2(\kappa + 2) \int_\Omega F(u(t_0), v(t_0)) dx \]
\[\leq \rho \left(l_1 \|u(t_0)\|^2 + l_2 \|v(t_0)\|^2 \right)^{\kappa + 2} \]
\[\leq \rho \left(\frac{2(\kappa + 2)^{\kappa + 1} E(0)}{\kappa + 1} \right)^{\kappa + 1} \left(l_1 \|u(t_0)\|^2 + l_2 \|v(t_0)\|^2 \right)^{\kappa + 2} \]
\[\leq \rho \left(l_1 \|u(t_0)\|^2 + l_2 \|v(t_0)\|^2 \right)^{\kappa + 2} \]
\[\leq \left(1 - \int_0^t h_1(s) ds \right) \|u(t)\|^2 + \left(1 - \int_0^t h_2(s) ds \right) \|v(t)\|^2. \]

(25)
Thus, from (8), we obtain
\[I(t_0) > 0, \]
which contradicts to (13). Thus, \(I(t) > 0 \) on \([0, T]\).

Theorem 5. Suppose that the conditions of Lemma 4 hold, then the solution (1) is bounded and global in time.

Proof. We have
\[
E(0) \geq E(t) = J(t) + \frac{1}{\eta + 2} \left(\|u_t\|_{L^2}^2 + \|v_t\|_{L^2}^2 \right)
\]
\[
\geq \frac{\kappa + 1}{2(\lambda + 2)} \left(l_1 \|\nabla u(t)\|^2 + l_2 \|\nabla v(t)\|^2 \right)
+ \|\nabla u_t\|^2 + \|\nabla v_t\|^2 + (h_1 \Phi u)(t)
+ (h_2 \Phi v)(t) \right) + \frac{1}{\eta + 2} \left(\|u_t\|_{L^2}^2 + \|v_t\|_{L^2}^2 \right).
\]

Thus,
\[
\|\nabla u(t)\|^2 + \|\nabla v(t)\|^2 + \|\nabla u_t\|^2 + \|\nabla v_t\|^2 \leq CE(0),
\]
where positive constant \(C \) depends only on \(\kappa, l_1, l_2 \). This implies that the solution of problem (1) is global in time.

4. General Decay of Solutions

This section is devoted to show the decay of solution (1). Set
\[
\Gamma(t) = ME(t) + \varepsilon \Phi(t) + F(t),
\]
where \(M \) and \(\varepsilon \) are positive constants and
\[
\Phi(t) = \delta_1(\frac{1}{\eta + 1} \int \|u_t\|_{L^2}^2 + \int \nabla u_t \nabla u dx + \int \nabla u \nabla u dx)
+ \delta_2(\frac{1}{\eta + 1} \int \|v_t\|_{L^2}^2 + \int \nabla v \nabla v dx)
\]
\[
+ \delta_3(\frac{1}{\eta + 1} \int \|u_t\|_{L^2}^2 + \int \nabla u \nabla u dx + \int \nabla u \nabla v dx).
\]

\[
F(t) = \delta_1(\int \Delta u - \frac{|u| \lambda}{\eta + 1} \int h_1 (t - s) \cdot (u(t) - u(s)) ds dx + \delta_2(\int \Delta v - \frac{|v| \lambda}{\eta + 1} \int h_2 (t - s) (v(t) - v(s)) ds dx).
\]

\[
(30)
\]

Lemma 6. For \(\varepsilon \) which is small enough while \(M \) is large enough, the relation
\[
\alpha_1 \Gamma(t) \leq E(t) \leq \alpha_2 \Gamma(t), \forall t \geq 0
\]
holds for two positive constants \(\alpha_1 \) and \(\alpha_2 \).

Proof. As references [1, 10], it can be show easily that \(\Gamma(t) \) and \(E(t) \) are equivalent in the sense that \(\alpha_1 \) and \(\alpha_2 \) are positive constants, depending on \(\varepsilon \) and \(M \).

Lemma 7 [3]. Assume that (12) holds. Let \((u, v)\) be the solution of problem (1). Then, for \(\sigma \geq 0 \), we get
\[
\Gamma(t) \leq -\xi_1 E(t) + \xi_2 (h_1 \Phi u)(t) + (h_2 \Phi v)(t), \quad t \geq t_0.
\]

\[
(34)
\]

Lemma 8 [16]. Let (A1)-(A3) hold. Assume that \(u_0, v_0 \in H_0^1(\Omega), \ u_t, v_t \in L^2(\Omega) \), be given and satisfying (12). Then, throughout the solution \((u, v)\) of (1), there exist two positive constants \(\beta_1 \) and \(\beta_2 \) such that for any \(\delta > 0 \) and for all \(t \geq 0 \),
\[
\int f_1(u, v) \int_0^t h_1(t - s) (u(t) - u(s)) ds dx \leq \beta_1 \delta (l_1 \|u\|^2 + l_2 \|v\|^2)
+ \frac{(1 - l_1) c_0^2 (h_1 \Phi u)(t)}{4 \delta},
\]
\[
(33)
\]

\[
\int f_2(u, v) \int_0^t h_2(t - s) (v(t) - v(s)) ds dx \leq \beta_2 \delta (l_1 \|u\|^2 + l_2 \|v\|^2)
+ \frac{(1 - l_2) c_0^2 (h_2 \Phi v)(t)}{4 \delta}.
\]

Lemma 9. Let \(u_0, v_0 \in H_0^1(\Omega), \ u_t, v_t \in L^2(\Omega) \), be given and satisfying (12). Suppose that (A1)-(A3) hold. Then, for each \(t_0 > 0 \), the functional \(\Gamma(t) \) verifies, throughout the solution of (1)
\[
\Gamma'(t) \leq -\xi_1 E(t) + \xi_2 (h_1 \Phi u)(t) + (h_2 \Phi v)(t), \quad t \geq t_0,
\]
where \(\xi_i > 0 \), \(i = 1, 2 \).

Proof. By applying (18) and Eq.(1) and getting \(\delta_i = 1(i = 1, 2) \) in (18), we have
\[
\Phi'(t) \leq \frac{1}{\eta + 1} \left(\|u_t\|_{L^2}^2 + \|v_t\|_{L^2}^2 \right) - \|\nabla u\|^2 - \|\nabla v\|^2
\]
By exploiting Young's inequality and Hölder's inequality, Sobolev-Poincare inequality, (A3), and (15) for $\beta_1 > 0$, one has

\[
\int_{\Omega} |u|^{k+1}|u_i|^{j+1} dx \\
\quad \leq \left(\int_{\Omega} |u|^k |u_i|^{j+1} dx \right)^{k+1} \left(\int_{\Omega} |u_i|^{j+1} dx \right)^{j+1} \\
\quad \leq \frac{j^2 \beta_1^{j+1}}{j+1} \int_{\Omega} |u|^k |u_i|^{j+1} dx + \frac{j \beta_1^{j+1} C_1^{k+1} \lambda_{j+1/2}^2}{j+1} \|u\|^{k+1} \\
\quad + \frac{j \beta_1^{j+1} C_1^{k+1} \lambda_{j+1/2}^2}{j+1} \left(\frac{1}{j+1} \right) \left(\|u\|^2 \right),
\]

where

\[\lambda_1 = \frac{2(\kappa + 2)\mathcal{E}(0)}{l_2(\kappa + 1)}, \quad \lambda_2 = \frac{2(l_2(\kappa + 1))}{\lambda_1(\kappa + 1)}.\]

By inserting (27) and (28) into (26), we have

\[
\int_{\Omega} u \left| u_i^k + |v_i|^l \right| u_i |u_i|^{j-1} dx \\
\quad \leq \frac{2 j j^{j+1}}{j+1} \int_{\Omega} |u|^k \left| u_i |u_i|^{j+1} dx \right. \\
\quad + \frac{j \beta_1^{j+1} C_1^{k+1} \lambda_{j+1/2}^2}{j+1} \left(\|u\|^2 \right) + \frac{j \beta_1^{j+1} C_1^{k+1} \lambda_{j+1/2}^2}{j+1} \left(\|u\|^2 \right),
\]

(42)
Similarly, for $\beta_2 > 0$, we have

\[
\int_{\Omega} \nu (|v|^\theta + |u|^\rho) v_i |v|^\eta 1 \, dx \\
\leq \frac{2s\beta_2^{s+11s}}{s+1} \int_{\Omega} \left(|v|^\theta + |u|^\rho \right) |v|^\eta 1 \, dx \\
+ \frac{\beta_2^{s+1} C_2^2 \chi_1^{p-1}}{2(s+1)} \left(\|\nabla v\|^2 \right) + \frac{\beta_2^{s+1}}{s+1} \\
\cdot \left(C_2^{s+1} \chi_2^{(\theta s+1)/2} + \frac{C_2^{s+2} \chi_2}{2} \right) \|\nabla v\|^2.
\]

(43)

Thus, inserting (24) and (25) and (29) and (30) into (22), we obtain

\[
\Phi'(t) \leq \frac{1}{\eta + 1} \left(\|u_t\|_{\eta + 2}^{\eta + 2} + \|v_t\|_{\eta + 2}^{\eta + 2} \right) - a_1 \|\nabla u\|^2 \\
- a_2 \|\nabla v\|^2 + 2(\kappa + 2) \int_{\Omega} F(u, v) \, dx + \|v_t\|^2 \\
+ \|\nabla v_t\|^2 + \frac{1}{2} (1 + (1/\gamma_1))(1 - l_1) (h_1 \circ \nabla u)(t) \\
+ \frac{1}{2} (1 + (1/\gamma_2))(1 - l_2) (h_2 \circ \nabla v)(t) \\
+ \frac{2j \beta_1^{j+1}}{j + 1} \int_{\Omega} \left(|u|^k + |v|^l \right) u_t |v|^j 1 \, dx \\
+ \frac{2s\beta_2^{s+11s}}{s+1} \int_{\Omega} \left(|v|^\theta + |u|^\rho \right) |v|^\eta 1 \, dx,
\]

(44)

where

\[
a_1 = \frac{1}{2} - \frac{(1 + \gamma_1)(1 - l_1)}{2} - \beta_1^{j+1} \\
\cdot \left(C_2^{s+1} \chi_1^{(\theta s+1)/2} + \frac{C_2^{s+2} \chi_1}{2} \right) - \beta_2^{s+1} C_2^2 \chi_1^{p-1} \\
\cdot \frac{2(s+1)}{2(j+1)},
\]

\[
a_2 = \frac{1}{2} - \frac{(1 + \gamma_2)(1 - l_2)}{2} - \beta_2^{s+1} \\
\cdot \left(C_2^{s+1} \chi_2^{(\theta s+1)/2} + \frac{C_2^{s+2} \chi_2}{2} \right) - \beta_2^{j+1} C_2^2 \chi_2^{p-1} \\
\cdot \frac{2(s+1)}{2(j+1)}.
\]

(45)

At this moment, choosing $\gamma_1 = l_1/1 - l_1, \gamma_2 = l_2/1 - l_2$, and picking β_1 and β_2 small enough such that

\[
\frac{\beta_1^{j+1}}{j + 1} \left(C_2^{s+1} \chi_1^{(\theta s+1)/2} + \frac{C_2^{s+2} \chi_1}{2} \right) + \frac{\beta_2^{s+1}}{s+1} C_2^2 \chi_1^{p-1} \\
\triangleq \frac{l_1}{4},
\]

\[
\frac{\beta_2^{s+1}}{s+1} \left(C_2^{s+1} \chi_2^{(\theta s+1)/2} + \frac{C_2^{s+2} \chi_2}{2} \right) + \frac{\beta_2^{s+1}}{s+1} C_2^2 \chi_2^{p-1} \\
\triangleq \frac{l_2}{4}.
\]

(46)

Consequently, (31) yields

\[
\Phi'(t) \leq \frac{1}{\eta + 1} \left(\|u_t\|_{\eta + 2}^{\eta + 2} + \|v_t\|_{\eta + 2}^{\eta + 2} \right) - \frac{l_1}{4} \|\nabla u\|^2 \\
- \frac{l_2}{4} \|\nabla v\|^2 + 2(\kappa + 2) \int_{\Omega} F(u, v) \, dx \\
+ \frac{1 - \frac{1}{2l_1}}{l_1} (h_1 \circ \nabla u)(t) + \frac{1 - \frac{1}{2l_2}}{l_2} (h_2 \circ \nabla v)(t) + \|v_t\|^2 \\
+ \|\nabla v_t\|^2 + \frac{2j \beta_1^{j+1}}{j + 1} \int_{\Omega} \left(|u|^k + |v|^l \right) u_t |v|^j 1 \, dx \\
+ \frac{2s\beta_2^{s+11s}}{s+1} \int_{\Omega} \left(|v|^\theta + |u|^\rho \right) |v|^\eta 1 \, dx.
\]

(47)

In order to estimate the $F'(t)$, we set

\[
F_1(t) = \int_{\Omega} \left(\Delta u_t - \frac{1}{\eta + 1} |u_t|^\eta u_t \right) h_1(t - s) (u_t - u(s)) \, ds dx,
\]

(48)

Then, by using equations (1), we have

\[
F_1'(t) = - \int_{\Omega} \left(\int_0^t h_1(t - s) \nabla u(s) \, ds \right) \\
\cdot \left(\int_0^t h_1(t - s) (\nabla u(t) - \nabla u(s)) \, ds \right) dx \\
+ \int_{\Omega} \left(|u|^k + |v|^l \right) u_t |v|^j 1 \, dx + \frac{1}{\eta + 1} \int_{\Omega} |u_t|^\eta u_t \\
\cdot (u_t - u(s)) \, ds dx + \int_{\Omega} \nabla u_t \left(\int_0^t h_1(t - s) \right) dx \\
\cdot (\nabla u(t) - \nabla u(s)) \, ds dx - \int_{\Omega} \nabla u_t \left(\int_0^t h_1(t - s) \right) dx \\
\cdot (\nabla u(t) - \nabla u(s)) \, ds dx - \frac{1}{\eta + 1} \int_{\Omega} |u_t|^\eta u_t \\
\cdot \left(\int_0^t h_1(t - s) (u_t - u(s)) \, ds \right) dx \\
\cdot \int_0^t f_1(u, v) \left(\int_0^t h_1(t - s) (u_t - u(s)) \, ds \right) dx \\
- \frac{1}{\eta + 1} \left(\int_0^t h_1(s) \|u_t\|_{\eta + 2}^{\eta + 2} - \left(\int_0^t h_1(s) \right) \|\nabla u_t\|^2. \right.
\]

(49)

For the first term of (33), by applying (A1), Hölder’s inequality, and Young’s inequality, we deduce
\[
\left| \int_{\Omega} \left(\int_0^t h_1(t-s) \nabla u(s)ds \right) \left(\int_0^t h_1(t-s) \nabla u(t) - \nabla u(s) \right) ds \right| dx \\
\leq \delta \int_{\Omega} \left(\int_0^t h_1(t-s) \nabla u(s)ds \right)^2 dx \\
+ \frac{1}{4\delta} \int_{\Omega} \left(\int_0^t h_1(t-s) \nabla u(t) - \nabla u(s)ds \right)^2 dx \\
\leq \delta \int_{\Omega} \left[\int_0^t h_1(t-s) |\nabla u(s) - \nabla u(t)| + |\nabla u(t)| ds \right] dx \\
+ \frac{1}{4\delta} \left(\int_0^t h_1(s) ds \right) (h_1 \circ \nabla u)(t) \leq 2\delta (1 - l_1)^2 \|\nabla u\|^2 \\
+ \left(2\delta + \frac{1}{4\delta} \right) (1 - l_1) (h_1 \circ \nabla u)(t), \forall \delta > 0.
\]

Then, in order to estimate the following term, we separate such that

\[
\left| \int_{\Omega} \left([u]^k + [v]^l \right) |u|_{\beta I}^j u \int_0^t h_1(t-s)(u(t) - u(s)) ds \right| dx \\
= I_1 + I_2,
\]

where

\[
I_1 = \int_{\Omega} [u]^k [u]_{\beta I}^j u \int_0^t h_1(t-s)(u(t) - u(s)) ds dx, \\
I_2 = \int_{\Omega} [v]^l [u]_{\beta I}^j u \int_0^t h_1(t-s)(u(t) - u(s)) ds dx.
\]

By Hölder’s inequality, Young’s inequality, (15), and (21), we get

\[
|I_1| \leq \left(\int_{\Omega} [u]^k [u]_{\beta I}^j \right)^{1/\beta} \left(\int_{\Omega} [u]^k \left(\int_0^t h_1(t-s) ds \right)^{j+1} \right)^{1/\beta+1} dx \\
\leq \delta_{k,\beta I}^{1/\beta+1} \int_{\Omega} [u]^k [v]^l \left| u \right|_{\beta I}^j dx + \delta_{\beta I}^{1/\beta+1} \delta \left(\delta + 1 + \frac{\delta_{\beta I}^{1/\beta+1}}{2} \right) \left(\int_{\Omega} [u]^k \right) \left(\int_0^t h_1(t-s) ds \right)^{2(j+1)} dx \\
\leq \delta_{k,\beta I}^{1/\beta+1} \int_{\Omega} [u]^k [v]^l \left| u \right|_{\beta I}^j dx + \frac{\delta}{\beta I} \int_{\Omega} \left(\int_0^t h_1(t-s)(u(t) - u(s)) ds \right)^{2(j+1)} dx \\
\leq \frac{c_{\delta I}^{2(j+1)(2)} (2\Delta I I)^j (1 - l_1)^2 j_1}{2} \left(h_1 \circ \nabla u \right)(t)
\]

\[
|I_2| \leq \delta_{k,\beta I}^{1/\beta+1} \int_{\Omega} [u]^k [v]^l \left| u \right|_{\beta I}^j dx + \frac{\delta}{\beta I} \int_{\Omega} \left(\int_0^t h_1(t-s)(u(t) - u(s)) ds \right)^{2(j+1)} dx \\
\leq \frac{c_{\delta I}^{2(j+1)(2)} (2\Delta I I)^j (1 - l_1)^2 j_1}{2} \left(h_1 \circ \nabla u \right)(t).
\]

From (A1) assumption, Hölder’s inequality, and Young’s inequality, we get

\[
\left| \int_{\Omega} \nabla u(t) \int_0^t h_1(t-s)(\nabla u(t) - \nabla u(s)) ds \right| dx \\
\leq \delta \|\nabla u\|^2 + \frac{1}{4\delta} (h_1 \circ \nabla u)(t).
\]

In order to estimate the forth term, we use Young’s inequality, Sobolev-Poincare inequality, Hölder’s inequality, and (A1) assumption

\[
\left| \int_{\Omega} \nabla u(t) \int_0^t h_1(t-s)(\nabla u(t) - \nabla u(s)) ds \right| dx \\
\leq \delta \|\nabla u\|^2 - \frac{h_1(0)}{4\delta} (h_1 \circ \nabla u)(t).
\]

Combining these estimates (34)-(40) and (33) becomes

\[
F_1(t) \leq \left(2\delta + \frac{1}{\delta} (1 - l_1) + \frac{\delta_{k,\beta I}^{1/\beta+1}(2\Delta I I)^j (1 - l_1)^2 j_1}{j + 1} \right) \\
\cdot \left(h_1 \circ \nabla u \right)(t) + \frac{\delta}{\beta I} \left(\delta + \frac{\delta_{\beta I}^{1/\beta+1}}{2} \right) \left(\int_{\Omega} [u]^k \right) \left(\int_0^t h_1(t-s) ds \right)^{2(j+1)} dx \\
\leq \frac{c_{\delta I}^{2(j+1)(2)} (2\Delta I I)^j (1 - l_1)^2 j_1}{2} \left(h_1 \circ \nabla u \right)(t) + \frac{\delta}{\beta I} \left(\delta + \frac{\delta_{\beta I}^{1/\beta+1}}{2} \right) \left(\int_{\Omega} [u]^k \right) \left(\int_0^t h_1(t-s) ds \right)^{2(j+1)} dx \\
- \int_{\Omega} \left(h_1(t) ds \right) \left| \nabla u(t) \right| dx - \frac{1}{\beta I} \left(\int_{\Omega} [u]^k \right) \left(\int_0^t h_1(t-s) ds \right)^{2(j+1)} dx \\
+ \frac{c_{\delta I}^{2(j+1)(2)} (2\Delta I I)^j (1 - l_1)^2 j_1}{2} \left(h_1 \circ \nabla u \right)(t).
\]

Similarly, let

\[
F_2(t) = \left(\int_{\Omega} \nabla v - \frac{1}{\beta I} \left(\int_{\Omega} [v]^k \right) \right) \left(h_2(t-s)(v(t) - v(s)) ds \right) dx,
\]

\[
F_3(t) = \left(\int_{\Omega} \nabla s - \frac{1}{\beta I} \left(\int_{\Omega} [s]^k \right) \right) \left(h_3(t-s)(s(t) - s(s)) ds \right) dx.
\]
then

\[
F'_2(t) \leq \left[2\delta + \frac{1}{2\delta} \right] (1 - l_2) + \frac{\delta^{s_1 + j + 2s_2}(2\chi_2)^s(1 - l_2)^{2s_1 + 1}}{s + 1} \\
\cdot (h_2 \circ \nabla v)(t) + \left(\delta + 2\delta(1 - l_2)^2 + \frac{\delta^{s_1 + j + 2s_2}}{s + 1/2} \delta^{s_1 - 1} \right) \\
\cdot \|\nabla v\|^2 + \frac{\delta^{s_1 + j + 2s_2}}{s + 1/2} \chi_1 \|\nabla v\|^2 - \frac{h_2(0)}{4\delta} \left(1 + c^2 \right) \\
\cdot \left(h_2 \circ \nabla v \right)(t) + \left(\delta + \frac{\delta^{s_1 + j + 2s_2}}{\eta + 1} \right) \left(\frac{2(\kappa + 2)E(0)}{\kappa + 1} \right)^{\eta} \\
- \int_0^t h_2(s) ds \|\nabla v\|^2 + \frac{2\delta^{s_1 + j + 2s_2}}{s + 1} \int_{\Omega} \left(|v|^\theta + |u|^\theta \right) \\
\cdot \|v\|^2_{L^2} - \frac{1}{\eta + 1} \left(\int_0^t h_2(s) ds \right) \|v\|^2_{L^2},
\]

(58)

Since the function \(h_i \) (\(i = 1, 2 \)) is positive, then for any \(t_0 > 0 \),

\[
\int_0^t h_2(s) ds \geq \int_0^{t_0} h_2(s) ds = h_2(0) \geq h_3 > 0, \forall t \geq t_0.
\]

(59)

Hence, we conclude from (17), (10), (32), (41), and (42) that

\[
\Gamma'(t) \leq -\frac{1}{\eta + 1} (h_3 - \varepsilon) \left(\|u\|^2_{L^2} + \|v\|^2_{L^2} \right) - \left(h_3 - \varepsilon - \delta \right) \\
- \frac{\delta^{s_1 + j + 2s_2}}{\eta + 1} \left(\frac{2(\kappa + 2)E(0)}{\kappa + 1} \right)^{\eta} \left(\|\nabla u\|^2 + \|\nabla v\|^2 \right) \\
- \left(\frac{\epsilon}{4}\right) \left(\frac{\epsilon}{4} - c_2 \right) \|\nabla u\|^2 - \left(\frac{\epsilon}{4} - c_3 \right) \|\nabla v\|^2 \\
+ \left(\frac{\epsilon}{2} - c_4 \right) (h_2 \circ \nabla u)(t) + \left(\frac{\epsilon}{2} - c_5 \right) (h_2 \circ \nabla v)(t) \\
\cdot (h_2 \circ \nabla v)(t) + 2\varepsilon(\kappa + 2) \int_{\Omega} F(u, v) dx \\
\left[\left(\frac{\epsilon}{4} - c_2 \right) \|\nabla u\|^2 - \left(\frac{\epsilon}{4} - c_3 \right) \|\nabla v\|^2 \right] \\
\left[\left(\frac{\epsilon}{2} - c_4 \right) (h_2 \circ \nabla u)(t) + \left(\frac{\epsilon}{2} - c_5 \right) (h_2 \circ \nabla v)(t) \right] \\
\cdot (h_2 \circ \nabla v)(t) + 2\varepsilon(\kappa + 2) \int_{\Omega} F(u, v) dx + \frac{2\beta_{s_1 + j + 2s_2}}{s + 1} (\varepsilon + 1 - \delta) \\
\cdot \int_{\Omega} \left(|v|^\theta + |u|^\theta \right) \left| u \right|^{s_1 + 1} dx + \frac{2\beta_{s_1 + j + 2s_2}}{s + 1} (\varepsilon + 1 - \delta) \\
\int_{\Omega} \left(|v|^\theta + |u|^\theta \right) |v|^{s_1 + 1} dx.
\]

(60)

We obtain

\[
\Gamma'(t) \leq -\frac{1}{\eta + 1} (h_3 - \varepsilon) \left(\|u\|^2_{L^2} + \|v\|^2_{L^2} \right) - \left(h_3 - \varepsilon - \delta \right) \\
- \frac{\delta^{s_1 + j + 2s_2}}{\eta + 1} \left(\frac{2(\kappa + 2)E(0)}{\kappa + 1} \right)^{\eta} \left(\|\nabla u\|^2 + \|\nabla v\|^2 \right) \\
- \left(\frac{\epsilon}{4}\right) \left(\frac{\epsilon}{4} - c_2 \right) \|\nabla u\|^2 - \left(\frac{\epsilon}{4} - c_3 \right) \|\nabla v\|^2 \\
+ \left(\frac{\epsilon}{2} - c_4 \right) (h_2 \circ \nabla u)(t) + \left(\frac{\epsilon}{2} - c_5 \right) (h_2 \circ \nabla v)(t) \\
\cdot (h_2 \circ \nabla v)(t) + 2\varepsilon(\kappa + 2) \int_{\Omega} F(u, v) dx + \frac{2\beta_{s_1 + j + 2s_2}}{s + 1} (\varepsilon + 1 - \delta) \\
\cdot \int_{\Omega} \left(|v|^\theta + |u|^\theta \right) \left| u \right|^{s_1 + 1} dx + \frac{2\beta_{s_1 + j + 2s_2}}{s + 1} (\varepsilon + 1 - \delta) \\
\int_{\Omega} \left(|v|^\theta + |u|^\theta \right) |v|^{s_1 + 1} dx.
\]

(62)

At this point, we choose \(\varepsilon \) and \(\delta \) which are small enough, and we have

\[
h_3 - \varepsilon - \delta - \frac{\delta^{s_1 + j + 2s_2}}{\eta + 1} \left(\frac{2(\kappa + 2)E(0)}{\kappa + 1} \right)^{\eta} > 0,
\]

(63)
Further, we pick ε so small and
\begin{equation}
\frac{2\beta^{s-1/j}}{j+1} (\varepsilon + 1) - M < 0, \quad \frac{2\beta^{s-1/s}}{s+1} (\varepsilon + 1) - M < 0.
\end{equation}

Once δ is fixed, we choose M that is sufficiently large so that
\begin{equation}
M - \frac{h_1(0)}{4\delta} \left(\frac{\varepsilon^2}{\eta + 1} + 1 \right) \geq 0, \quad M - \frac{h_2(0)}{4\delta} \left(\frac{\varepsilon^2}{\eta + 1} + 1 \right) \geq 0.
\end{equation}

(65)

Consequently, for all $t \geq t_0$, we reach at
\begin{equation}
I'(t) \leq -\varepsilon_1 E(t) + \varepsilon_2 \left((h_1 \circ \nabla u)(t) + (h_2 \circ \nabla v)(t) \right),
\end{equation}

where there are positive constants $\xi_i, i = 1, 2$.

Now, we are ready to state our stability result.

Theorem 10. Suppose that (4) and (A1)-(A3) hold, and that $(u_0, u_1) \in H^1_0(\Omega) \times L^2(\Omega)$ and $(v_0, v_1) \in H^1_0(\Omega) \times L^2(\Omega)$ satisfy $E(0) < E_1$ and
\begin{equation}
(l_1\|\nabla u_0\|^2 + l_2\|\nabla v_0\|^2)^{1/2} < \alpha_s.
\end{equation}

(67)

Then for each, the energy of (1) satisfies
\begin{equation}
E(t) \leq K e^{-\tilde{\delta}t} \delta(t), t \geq t_0,
\end{equation}

(68)

where $\delta(t) = \min \{ \delta_1(t), \delta_2(t) \}$ and K and k are positive constants.

Proof. Multiplying (46) by $\delta(t)$, we get
\begin{equation}
\delta(t) I'(t) \leq -\varepsilon_1 \delta(t) E(t) + \varepsilon_2 \delta(t) \left[(h_1 \circ \nabla u)(t) + (h_2 \circ \nabla v)(t) \right].
\end{equation}

(69)

Applying (A2) and $\delta(t) = \min \{ \delta_1(t), \delta_2(t) \}$ and since $-\left[(h_1^1 \circ \nabla u)(t) + (h_2^1 \circ \nabla v)(t) \right] \leq -2E'(t)$ by (10), we obtain
\begin{equation}
\delta(t) I'(t) \leq -\varepsilon_1 \delta(t) E(t) - \varepsilon_2 \delta(t) \left[(h_1^1 \circ \nabla u)(t) + (h_2^1 \circ \nabla v)(t) \right]
\end{equation}

\begin{equation}
\leq -\varepsilon_1 \delta(t) E(t) - 2\varepsilon_2 E'(t), \forall t \geq t_0.
\end{equation}

(70)

That is
\begin{equation}
G'(t) \leq -c_5 \delta(t) E(t) \leq -k \tilde{\delta}(t) G(t), \forall t \geq t_0.
\end{equation}

(71)

And here, $G(t) = \delta(t) I(t) + CE(t)$ is equivalent to $E(t)$ due to (20), and k is a positive constant. A simple integration of (50) leads to
\begin{equation}
G(t) \leq G(t_0) e^{-\tilde{\delta}(\sigma) t}, \forall t \geq t_0.
\end{equation}

(72)

This completes the proof.

5. Conclusion

As far as we know, there have not been any global existences and general decay results in the literature known for quasilinear viscoelastic equations with degenerate damping terms. Our work extends the works for some quasilinear viscoelastic equations treated in the literature to the quasilinear viscoelastic equation with degenerate damping terms.

Data Availability

No data were used to support the study.

Disclosure

Title for this paper “Global existence and general decay of solutions for a quasilinear system with degenerate damping terms” has been submitted in “Conference Proceeding of 9th International Eurasian Conference on Mathematical Sciences and Applications.”

Conflicts of Interest

The authors declare that they have no competing interests.

Acknowledgments

The authors would like to thank the handling editor and the referees for their relevant remarks and corrections in order to improve the final version.

References

[1] W. Liu, “General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source,” *Nonlinear Analysis*, vol. 73, no. 6, pp. 1890–1904, 2010.

[2] S. A. Messaoudi and N. E. Tatar, “Global existence and uniform stability of solutions for a quasilinear viscoelastic problem,” *Mathematical Methods in the Applied Sciences*, vol. 30, no. 6, pp. 665–680, 2007.

[3] S. T. Wu, “General decay of solutions for a viscoelastic equation with nonlinear damping and source terms,” *Acta Mathematica Scientia*, vol. 318, pp. 1436–1448, 2011.

[4] S. T. Wu, “General decay of energy for a viscoelastic equation with damping and source terms,” *Taiwanese Journal of Mathematics*, vol. 16, no. 1, pp. 113–128, 2012.

[5] H. Yang, S. Fang, F. Liang, and M. Li, “A general stability result for second order stochastic quasilinear evolution equations with memory,” *Boundary Value Problems*, vol. 62, 16 pages, 2020.

[6] H. Song, “Global nonexistence of positive initial energy solutions for a viscoelastic wave equation,” *Nonlinear Analysis*, vol. 125, pp. 260–269, 2015.

[7] L. He, “On decay and blow-up of solutions for a system of equations,” *Applicable Analysis*, pp. 1–29, 2019.
[8] L. He, “On decay of solutions for a system of coupled viscoelastic equations,” *Acta Applicandae Mathematicae*, vol. 167, no. 1, pp. 171–198, 2020.

[9] S. T. Wu, “General decay of solutions for a nonlinear system of viscoelastic wave equations with degenerate damping and source terms,” *Journal of Mathematical Analysis and Applications*, vol. 406, no. 1, pp. 34–48, 2013.

[10] E. Pişkin and F. Ekinci, “General decay and blowup of solutions for coupled viscoelastic equation of Kirchhoff type with degenerate damping terms,” *Mathematical Methods in the Applied Sciences*, vol. 42, no. 16, pp. 5468–5488, 2019.

[11] S. Liu, H. Zhang, and Q. Hu, “Exponential growth of solutions for nonlinear coupled viscoelastic wave equations with degenerate nonlocal damping and source terms,” *Chinese Quarterly Journal of Mathematics*, 2021.

[12] E. Pişkin and F. Ekinci, “Blow up of solutions for a coupled Kirchhoff-type equations with degenerate damping terms,” *Applications and Applied Mathematics: An International Journal (AAM)*, vol. 14, no. 2, pp. 942–956, 2019.

[13] E. Pişkin, F. Ekinci, and K. Zennir, “Local existence and blow-up of solutions for coupled viscoelastic wave equations with degenerate damping terms,” *Theoretical and Applied Mechanics*, vol. 47, no. 1, pp. 123–154, 2020.

[14] F. Yazid, D. Ouchenane, and K. Zennir, “Global nonexistence of solutions to system of Klein-Gordon equations with degenerate damping and strong source terms in viscoelasticity,” *Babes-Bolyai, Mathematica*, 2021.

[15] R. A. Adams and J. J. F. Fournier, *Sobolev Spaces*, Academic Press, New York, 2003.

[16] B. Said-Houari, S. A. Messaoudi, and A. Guesmia, “General decay of solutions of a nonlinear system of viscoelastic wave equations,” *NoDEA*, vol. 18, pp. 659–684, 2011.

[17] S. A. Messaoudi and N. E. Tatar, “Uniform stabilization of solutions of a nonlinear system of viscoelastic equations,” *Applicable Analysis*, vol. 87, no. 3, pp. 247–263, 2008.