A Polymer-Assisted Hydrothermal Approach to Titanium Dioxide Thin Films

Qianglu Lin, Yuling Li, Brian Patterson, Hongmei Luo*

Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003

*Corresponding author: Hongmei Luo, Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003; E-mail: hluo@nmsu.edu

Received Date: September 26, 2014 Accepted Date: November 11, 2014 Published Date: November 13, 2014

Citation: Hongmei Luo, et al. (2014) A Polymer-Assisted Hydrothermal Approach to Titanium Dioxide Thin Films. J Chem Proc Eng 1: 1-6.

Abstract

Epitaxial anatase TiO$_2$ thin films on LaAlO$_3$ (001) substrates are prepared by a novel polymer-assisted hydrothermal method. The titanium ions binding with ethylenediaminetetraacetic acid (EDTA) and polyethyleneimine (PEI) result in a homogeneous clear stable precursor solution followed by hydrothermal for thin film deposition. High resolution transmission electron microscopy analysis shows that the film has two layers with one densely deposits onto the substrate while the other contains nanopillars stacking onto the former layer. The phase, epitaxy, and film thickness can be controlled by metal precursor concentrations, pH, temperature, and reaction time. In addition, TiO$_2$ and SiO$_2$-embedded in TiO$_2$ composite films directly grown on Ni foam are investigated as anodes for lithium-ion battery application.

Introduction

Due to its numerous applications in a wide variety of fields, there has been intensive research on the growth of titanium dioxide (TiO$_2$) [1-21]. Several techniques have been applied to grow thin films, such as sputtering [12,13], pulsed-laser deposition [14,15], molecular beam epitaxy [16,17], electron-beam evaporation [18], and chemical vapor deposition [19,20]. However, high vacuum and high temperature of these processes have limited the potential application of films. Polymer-assisted deposition [21-23], sol-gel, hydrothermal and other solution approaches [7,24,25] have become more attractive alternatives for thin film deposition because of their low cost, large area, and low temperature fabrication [22].

Hydrothermal favors the formation of thicker thin films than other solution spin-coating methods. Liquid phase hydrothermal deposition has been applied to prepare epitaxial oxide thin film [24-27]. However, the precursor solution for thin film growth by hydrothermal was not clear solution and the films were formed by stacking oxide powders, which created voids inside the films. A variety of high quality epitaxial metal oxides and oxide nanocomposite thin films without voids can be grown by polymer-assisted deposition [21-23,28], where the metal-polymer solutions are clear and stable solutions, however, the thickness of resulted thin films is usually less than 100 nm even by controlling the solution concentration and multiple spin-coats. In this paper, we combine polymer-assisted deposition with hydrothermal method, named polymer-assisted hydrothermal, in order to achieve thicker films of metal oxides and oxide nanocomposites. We report dense epitaxial TiO$_2$ thin films and epitaxial SiO$_2$-TiO$_2$ composites grown on single crystal LaAlO$_3$ (LAO) (001) substrates. This method provides a safe and environmental friendly path for thin film deposition and avoids the use of fluoride ligand in the liquid phase deposition.

Since TiO$_2$ nanostuctures have been widely studied as anode material for lithium ion batteries [29-38], we further use nickel foam instead of single crystal LAO substrate in the polymer-assisted hydrothermal synthesis to prepare TiO$_2$ and SiO$_2$-TiO$_2$ composites for the anodes. Since nickel foam is a polycrystalline substrate, not single crystal substrate, therefore the films on nickel foam are polycrystalline films, not epitaxial films. This one-step binder-and-conductive carbon-free process makes the contact between TiO$_2$ and current collector (nickel foam) more stable and is expected to improve the battery performance.

Experimental

Synthesis of anatase TiO$_2$ thin film on LAO substrate

The titanium solution (0.5mL titanium tetrachloride was added dropwise into 3mL of 30 wt% hydrogen peroxide) was added to a solution containing 2g of 50 wt% polyethyleneimine (PEI), 1g of ethylenediaminetetraacetic acid (EDTA), and 40mL of deionized (DI) water to form a bright orange solution. During this process, the pH of the solution was maintained at 7.5. The as-prepared titanium precursor solution was transferred into a Teflon-lined autoclave and the final pH of the solution was adjusted by ammonium hydroxide or hydrogen chloride.
The LAO substrate was washed by a mixture of 50% of concentrated hydrogen chloride and 50% of hydrogen peroxide with sonication for 10min to remove contaminants on the substrate. Then the substrate was placed on the Teflon holder with its polished side facing down in a Teflon-lined stainless steel autoclave with 12mL precursor solution. The reaction temperature, time, pH, concentrations were examined to explore the optimum condition for epitaxial thin film deposition. Detailed reaction conditions are listed in Table 1. After the hydrothermal process, the films were washed with deionized water and dried at room temperature.

Sample	Time (hours)	Temperature (°C)	pH	Concentration (mM)
A	6	200	7	20
B	9	200	7	20
C	12	200	7	20
D	24	200	7	20
E	24	150	7	20
F	24	200	7	20
G	24	200	4	20
H	24	200	7	20
I	24	200	10	20
J	24	200	7	20
K	24	200	7	200

Table 1: Reaction conditions for TiO$_2$/LaAlO$_3$ thin film deposition.

Synthesis of SiO$_2$-embedded in TiO$_2$ thin film on LAO substrate

The precursor solution was prepared by mixing different concentration of silica (The commercial Ludox silica nanoparticles with sizes around 10 nm bind to PEI, the concentration of silica is 460mM) with titanium solution. LAO substrates were placed into the Teflon-lined stainless steel autoclave as mentioned above for thin film deposition. For a complete deposition, the reaction conditions were controlled at 200°C for 24 h.

Characterization of thin films on LAO

The structures of the products were characterized by X-ray diffraction (XRD) with a Rigaku Miniflex II X-ray powder diffractometer with CuKα (λ=0.15406nm) radiation. A Hitachi High Technologies H-7650 transmission electron microscope (TEM) operated at 80kV, a Hitachi Model S-3400N Type II scanning electron microscope (SEM) and an atomic force microscope (AFM) were used to characterize the morphology and microstructure of samples. The composition of SiO$_2$-embedded in TiO$_2$ thin film was analyzed by energy dispersive X-ray spectroscopy (EDS).

Preparation and electrochemical performance of lithium-ion batteries

The nickel foam was used as the substrate to grow TiO$_2$ and SiO$_2$-TiO$_2$ films. The nickel foam was immersed in the titanium precursor solution with or without SiO$_2$ nanoparticles into an autoclave and treated at 200°C for 24h. To prepare the lithium ion battery, coin cells were assembled in an argon-filled dry glove box. Metal lithium was used as a counter electrode, whereas the electrolyte contained 1M LiPF$_6$ in a mixture of ethylene carbonate (EC) / dimethyl carbonate (DMC) with 1:1 volume ratio. Galvanostatic charge/discharge cycling performance were evaluated on an LAND Battery Tester CT2001A at a room temperature in a potential range of 0.005-3.00V (versus Li+ / Li) at different current densities.

Result and Discussion

Figure 1(a) shows the XRD θ-2θ scan of TiO$_2$ on LAO substrate by hydrothermal reaction. The preferential (004) diffraction peak from anatase TiO$_2$ indicates the thin film deposits on (001) LAO single crystal substrate with highly c-axis orientation. Figure 1 (b) shows the in-plane ϕ-scan between TiO$_2$ (101) and LAO (101), in which four peaks with 90° separation identifies the epitaxial nature of the film. The epitaxial relationship can be described as (001)TiO$_2$||[001]LAO and [101]TiO$_2$||[101]LAO.

Cross-section TEM images of TiO$_2$ thin film deposited on (001) LAO substrate at 200°C for 12 hours are shown in Figure 2. The film thickness is around 700nm. Two layers of TiO$_2$ nanostructure are observed with one densely deposits onto the LAO substrate while the other contains nanopillars stack-
Figure 2: Cross-section TEM images of TiO$_2$ thin film deposited on (001) LAO substrate. This interesting structure can be explained by the lattice mismatch between the thin film and the substrate. Since the lattice mismatch between LAO (a = 3.791 Å) and anatase TiO$_2$ (a = 3.7852 Å) is only -0.2%, there should be a small strain in the interface. As the film grows thicker, the film will maintain its own crystal structure rather than distorting itself for epitaxial growth, which cause the formation of nanopillar to release the epitaxial strain. Figure 3 shows the SEM image of the TiO$_2$ thin film surface, which confirms ordered nanopillar alignment.

Figure 3: SEM image of anatase TiO$_2$ thin film on LAO substrate. It was found that Ti$^{4+}$ was stabilized below pH of 2.5 in the Ti-EDTA complex, and above pH, the Ti-EDTA complex tended to hydrolyze to colloidal TiO$_2$. Herein this experiment, by adding PEI into the precursor solution, no precipitates were detected in the solution with a wide range of pH from 1 to 10, which is a clear evidence that PEI served as binding regent to stabilize titanium complexes. Also, in the hydrothermal reaction, when the reactor was heated to 200°C, the pressure in autoclave increased significantly. Though the Ti-EDTA-PEI complex was very stable at ambient conditions, relative high temperatures and high pressures could accelerate the hydrolysis of titanium. Figure 4 shows the XRD patterns of TiO$_2$ thin film prepared in different reaction conditions. The thin film can be identified from the existence of anatase (004) peak in the XRD pattern. The hydrothermal reaction time varies from 6 to 24 h and the reaction temperature varies from 150 to 200°C. Thin film was not formed when the reaction time was less than 12 hours or reaction temperature was under 200°C. It can be seen that longer reaction time and higher reaction temperature increase the thickness of the TiO$_2$ thin film. Further increasing the growth time to 24h, the thickness of the thin film can reach 2.4μm, which is much thicker than epitaxial thin film prepared by traditional sol-gel spin-coating or dip-coating [22]. Compared with other reported hydrothermal to thin films [24-27], where the precursor solutions are not clear solution, this polymer-assisted hydrothermal method provides clear and table solution and has obvious advantages on obtaining films with varied thickness without repeating spin-coatings. Meanwhile, the influence of solution pH was also investigated. In acidic condition with pH at 4, no thin film was formed. It can be expected that strong acidic condition may induce severe and fast hydrolysis of titanium precursor, in which the nucleation of TiO$_2$ nanoparticles could be competitive to the thin film deposition. In neutral condition, the titanium precursor could mildly hydrolyze to deposit on the substrate. When the pH went up to 10, only part of the substrate was covered with TiO$_2$ thin film. The Ti-EDTA complex is very stable at this condition, which may weaken the attraction to PEI. As we expect, PEI could serve as template in the thin film formation, the hydrolysis process become unpredictable when the template effect is weaker. Besides, the precursor concentration effect was also investigated. When the concentration was 200 mM, no thin film was found on the substrate. The aforementioned nanoparticles nucleation may play an important role in the reaction process. At higher concentration, the hydrolyzed precursor can form more nuclei, which directly induced the formation of nanoparticles rather than thin film deposition.

Figure 4: XRD patterns of TiO$_2$/LAO in different reaction conditions shown in Table 1. SiO$_2$-embedded TiO$_2$ thin films were deposited on LAO substrates by using precursor solutions with different SiO$_2$ concentration to titanium concentration ratios. It is noted
that amorphous SiO$_2$ nanoparticles won’t affect the epitaxial growth of TiO$_2$ on LAO substrates [28], therefore, the SiO$_2$ nanoparticles embedded in TiO$_2$ films are still epitaxial. The energy dispersive X-ray spectroscopy (EDS) was carried on SiO$_2$-embedded TiO$_2$ thin films to analyze its composition. With a sample prepared from precursor solution in which the concentration of SiO$_2$ is approximately half of that of Ti$^{4+}$, the detected weight ratio of Si/Ti is 26.7%, corresponding to the atomic ratio of Si/Ti is 45.6%. The AFM images of pure and SiO$_2$-embedded TiO$_2$ thin film on LAO substrate are shown in Figure 5. As observed, the pure TiO$_2$ formed a uniform thin film on LAO substrate without any detectable microcracks, and the root-mean-square surface roughness is 16nm. With adding SiO$_2$, both of the grain size and roughness increase compared to those in pure TiO$_2$ thin films.

Figure 5: AFM images of TiO$_2$ thin film on LAO substrate. (a) without SiO$_2$ embedded; (b) with SiO$_2$ embedded.

TiO$_2$ directly grown on nickel foam was prepared by the same method for the anode of lithium ion batteries. This one-step synthesis method gives a convenient way to prepare anode materials. In addition, this binder-and-conductive carbon-free process made the contact between TiO$_2$ and current collector (nickel foam) more stable and improved the volumetric utilization efficiency [30]. Figure 6 shows the capacity as a function of cycle numbers at a current density of 100mA/g, which induced a large amount of structure disorders and defects supplying more spaces for insertion of Li ions [31]. Therefore, the Li$^+$ diffusion of SiO$_2$-embedded TiO$_2$ is much higher than that of pure TiO$_2$. In addition, the specific capacity of SiO$_2$-embedded TiO$_2$ increases slightly as cycle number increases. The structure defects caused by embedded SiO$_2$ make the crystal lattice unstable and therefore much easier to be influenced by the lattices around. As the charge-discharge processes go on, more TiO$_2$ were activated and involved in reaction. The electrochemical performance of SiO$_2$-embedded TiO$_2$ is much better than that of other nanostructured TiO$_2$. Mesoporous TiO$_2$-C nanospheres deliver a capacity of \sim170mAh/g at a current density of \sim96mA/g [33]. Nanostructures TiO$_2$-graphene hybrid has a capacity of \sim190mAh/g at a current density of 84mA/g and \sim160mAh/g at 168mA/g [37]. TiO$_2$ mesoporous nanocrystalline microspheres demonstrate capacities of 265, 234, 182, 175, and 156mAh/g at the discharge rates of 0.06, 0.12, 0.3, 0.6, and 1.2 C (1 C corresponds to 170mA/g) [34].

Figure 6: Cycle performance of pure and SiO$_2$-embedded TiO$_2$ at a current density of 100mA/g.

Conclusion

Pure and SiO$_2$-embedded epitaxial TiO$_2$ thin film on LAO substrates have been synthesized via a novel polymer-assisted hydrothermal approach. An interesting two-layer structure was found with well-aligned nanopillars to release the strain in epitaxial growth. The nanoparticles nucleation is shown to be a strong competitive process in the thin film growth, which could be suppressed by lowering the precursor concentration and adjusting the precursor solution to a neutral pH condition. With SiO$_2$ mixing, the grain size and roughness of the thin film increase. Moreover, this one-step hydrothermal synthesis process can be used to prepare anode materials for lithium ion batteries as well. This binder-and-conductive carbon-free process made the contact between anode material and current collector more stable and improved the volumetric utilization efficiency. Since EDTA and PEI can bind to most of the metal ions to produce stable complex, this polymer-assisted hydrothermal approach could be generalized to other metal oxide systems in epitaxial thin film synthesis and also in the preparation of polycrystalline anode materials for lithium ion batteries.
Acknowledgements
We acknowledge the support from NSF under Grant No. 1131290. The cross-sectional TEM images were taken by Prof. H. Wang in University of Texas A & M.

References
1) Reddy KM, Manorama SV, Reddy AR (2003) Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 78: 239-245.
2) Wang YQ, Hu GQ, Duan XF, Sun HL, Xue QK (2002) Microstructure and formation mechanism of titanium dioxide nanotubes, Chem Phys Lett 365: 427-431.
3) Yuan ZY, Su BL (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surf A: Physicochem and Engineer Aspects 241: 173-183.
4) Luo HM, Takata T, Lee Y, Zhao JF, Domen K, et al. (2004) Photocatalytic activity enhancing for titania thin film by co-doping with boron and chlorine. Chem Mater 16: 846-849.
5) Mu Q, Li Y, Wang H, Zhang Q (2012) Self-organized TiO2 nanorod arrays on glass substrate for self-cleaning antireflection coatings. J Colloid Interface Sci 365: 308-313.
6) Yu JC, Zhang, LZ, Zheng Z, Zhao JC (2003) Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem Mater 15: 2280-2286.
7) Lee AC, Lin RH, Yang CY, Lin MH, Wang WY (2008) Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol-gel method. Mater Chem Phys 109: 275-280.
8) Caruso RA, Schattka JH, Greiner A (2001) Titanium dioxide tubes from sol–gel coating of electrosyn polymer fibers. Adv Mater 13: 1577-1579.
9) Kawakita M, Kawakita J, Sakka Y (2010) Material properties controlling photocurrent on TiO2 aggregates with plane orientation for dye-sensitized solar cells. J Nanopart Research 12: 1621-2628.
10) O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353: 737-740.
11) Goh GKL, Chan KYS, Liu T (2011) Hydrothermal epitaxy of ferromagnetic cobalt doped titanium dioxide films at 120 degrees C. CrystEngComm 13: 524-529.
12) Lindgren T, Mwabora JM, Avendano E, Jonsson J, Hoel A, et al. (2003) Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J Phys Chem B 107: 5709-5716.
13) Lobi H, Hupertz M, Mergel D (1994) Nucleation and growth in TiO2 films prepared by sputtering and evaporation. Thin Solid Films 251: 72-79.
14) Murugesan S, Kuppusami P, Parvathavathini N, Mohandas E (2007) Pulsed laser deposition of anatase and rutile TiO2 thin films. Surf Coatings Technol 201: 7713-7719.
15) Suda Y, Kawasaki H, Ueda T, Oshihama T (2004) Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method, Thin Solid Films 453: 162-166.
16) Matsumoto Y, Murakami M, Hasegawa T, Fukushima T, Kawai M, et al. (2002) Structural control and combinatorial doping of titanium dioxide thin films by laser molecular beam epitaxy. Appl Surf Sci 189: 344-348.
17) Österwalder J, Droubay T, Kaspar T, Williams J, Wang CM, et al. (2005) Growth of Cr-doped TiO2 films in the rutile and anatase structures by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films 484: 289-298.
18) Lotnyk A, Senz S, Hesse D (2007) Epitaxial growth of TiO2 thin films on SrTiO3, LaAlO3, and yttria-stabilized zirconia substrates by electron beam evaporation. Thin Solid Films 515: 3439-3447.
19) Sandell A, Anderson MP, Alfredsson Y, Johansson MKJ, Schnadt J, et al. (2002) Titanium dioxide thin-film growth on silicon (111) by chemical vapor deposition of titanium (IV) isopropoxide. J Appl Phys 92: 3381.
20) Nizard H, Kosinova ML, Fainer NI, Rumyantsev Yu M, Ayupov BM, et al. (2008) Deposition of titanium dioxide from TTIP by plasma enhanced and remote plasma enhanced chemical vapor deposition. Surf Coatings Technol 202: 4076-4085.
21) Jia QX, McCleskey TM, Burrell AK, Lin Y, Collis GE, et al. (2004) Polymer-assisted deposition of metal-oxide films. Nature Mater 3: 529-532.
22) Fei L, Naeemi M, Zou G, Luo HM (2013) Chemical solution deposition of epitaxial metal-oxide nanocomposite thin films. The Chem Record 13: 85-101.
23) Zou G, Zhao J, Luo HM, McCleskey TM, Burrell AK, et al. (2013) Polymer-assisted deposition: a chemical solution route for a wide range of materials growth. Chem Soc Rev 42: 439-449.
24) Hou RZ, Wu AY, Vilarinho PM (2009) Low-Temperature Hydrothermal Deposition of (Ba0.5Sr0.5)TiO3 Thin Films on Flexible Polymeric Substrates for Embedded Applications. Chem Mater 21: 1214–1222.
25) Chan KYS, Goh GKL (2009) Solution Epitaxy of TiO2 Thin Films, J Electrochem Soc 156: D231-D235.
26) Wang X, Chen L, Zhao J, Jin L, Li L (2008) Hydrothermal synthesis of thin films of barium titanate nanotube arrays. Integrated Ferroelectrics 99: 125–131.
27) Sun K, Wei W, Ding Y, Jing Y, Wang Z, et al. (2011) Crystalline ZnO thin film by hydrothermal growth. Chem Commun 47: 7776–7778.
28) Luo HM, Lin Y, Wang H, Baily SA, Lee JH, et al. (2008) Amorphous silica nanoparticles embedded in epitaxial SrTiO3 and CoFe2O4 matrices. Angew Chemie Int Ed 47: 5768-5771.
29) Jiang YF, Chen G, Xu X, Chen X, Deng S, et al. (2014) Direct growth of mesoporous anatase TiO2 on nickel foam by soft template method as binder-free anode for lithium-ion batteries. RSC Adv 4: 48938-48942.
30) Ryu WH, Nam DH, Ko YS, Kim RH, Kwon HS (2012) Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries. Electrochimica Acta 61: 19–24.
31) Fang H, Liu M, Wang D, Sun T, Guan D, et al. (2009) Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology 20: 225701.
32) Armstrong G, Armstrong AR, Bruce PG, Reale P, Scrosati B (2006) TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv Mater 18: 2597–2600.
33) Cao FF, Wu XL, Xin S, Guo YG, Wan LJ (2010) Facile synthesis of mesoporous TiO2-C nanosphere as an improved anode material for superior high rate 1.5 V rechargeable Li ion batteries containing LiFePO4-C cathode. J Phys Chem C 114: 10308–10313.
34) Wang J, Zhou Y, Hu Y, O’Hayre R, Shao Z (2011) Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. J Phys Chem C 115: 2529-2536.
35) Guo YG, Hu YS, Sigle W, Maier J (2007) Superior electrode performance of nanostructured mesoporous TiO$_2$ (anatase) through efficient hierarchical mixed conducting networks. Adv Mater 19: 2087-2091.

36) Yang MC, Lee YY, Xu B, Powers K, Meng YS (2012) TiO$_2$ flakes as anode materials for Li-ion-batteries. J Power Sources 207: 166-172.

37) Wang D, Choi D, Li J, Yang Z, Nie Z, et al. (2009) Self-assembled TiO$_2$–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3: 907-914.

38) Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4: 2682-2699.