The *Herschel* Multi-tiered Extragalactic Survey: HerMES

S.J. Oliver,1† J. Bock,2,3 B. Altieri,4 A. Amblard,5 V. Arumugam,6 H. Aussel,7 T. Babbedge,8 A. Beelen,9 M. Béthermin,7,9 A. Blain,2 A. Boselli,10 C. Bridge,2 D. Brisbin,11 V. Buat,10 D. Burgarella,10 N. Castro-Rodriguez,12,13 A. Cava,14 P. Chanial,7 M. Cirasuolo,15 D.L. Clements,8 A. Conley,16 L. Conversi,4 A. Cooray,17 C.D. Dowell,2,3 E.N. Dubois,1 E. Dwek,18 S. Dye,19 S. Eales,20 D. Elbaz,7 D. Farrah,1 A. Feltre,21 P. Ferrero,12,13 N. Fiolet,22,9 M. Fox,8 A. Franceschini,21 W. Gear,20 E. Giovannoli,10 J. Glenn,23,16 Y. Gong,17 E.A. González Solares,24 M. Griffin,20 M. Halpern,25 M. Harwit,26 E. Hatziminaoglou,27 S. Heinis,10 P. Hurley,1 H.S. Hwang,7 A. Hyde,8 E. Ibar,15 O. Ilbert,10 K. Isaak,28 R.J. Ivison,15,6 G. Lagache,9 E. Le Floc’h,7 L. Levenson,2,3 B. Lo Faro,21 N. Lu,2,29 S. Madden,7 B. Maffei,30 G. Magdis,7 G. Mainetti,21 L. Marchetti,21 G. Marsden,25 J. Marshall,2,3 A.M.J. Mortier,8 H.T. Nguyen,3,2 B. O’Halloran,8 A. Omont,22 M.J. Page,31 P. Panuzzo,7 A. Papageorgiou,20 H. Patel,8 C.P. Pearson,32,33 I. Pérez-Fournon,12,13 M. Pohlen,20 J.I. Rawlings,31 G. Raymond,20 D. Rigopoulou,32,34 L. Riguccini,7 D. Rizzo,8 G. Rodighiero,21 I.G. Roseboom,1,6 M. Rowan-Robinson,8 M. Sánchez Portal,4 B. Schulz,2,29 Douglas Scott,25 N. Seymour,35,31 D.L. Shupe,2,29 A.J. Smith,1 J.A. Stevens,36 M. Symeonidis,31 M. Trichas,37 K.E. Tugwell,31 M. Vaccari,21 I. Valtchanov,4 J.D. Vieira,2 M. Viero,2 L. Vigroux,22 L. Wang,1 R. Ward,1 J. Wardlow,17 G. Wright,15 C.K. Xu,2,29 and M. Zemcov2,3

1Astronomy Centre, Dept. of Physics & Astronomy, University of Sussex, Brighton BN1 9QH, UK
2California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
3Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
4Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Cañada, 28691 Madrid, Spain
5NASA, Ames Research Center, Moffett Field, CA 94035, USA
6Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
7Laboratoire AIM-Paris-Saclay, CEA/DSM/IRfu - CNRS - Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette, France
8Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK
9Institut d’Astrophysique Spatiale (IAS), bât. 121, Université Paris-Sud 11 and CNRS (UMR 8617), 91405 Orsay, France
10Laboratoire d’Astrophysique de Marseille, OAMP, Université Aix-marseille, CNRS, 38 rue Frédéric Joliot-Curie, 13388 Marseille cedex 13, France
11Department of Astronomy, Space Science Building, Cornell University, Ithaca, NY, 14853-6801, USA
12Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife, Spain
13Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38205 La Laguna, Tenerife, Spain
14Departamento de Astrofísica, Facultad de CC. Físicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
15UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
16Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309, USA
17Dept. of Physics & Astronomy, University of California, Irvine, CA 92697, USA
18Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
19School of Physics and Astronomy, University of Nottingham, NG7 2RD, UK
20School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, UK
21Dipartimento di Astronomia, Università di Padova, vicolo Osservatorio, 3, 35122 Padova, Italy
22Institut d’Astrophysique de Paris, UMR 7095, CNRS, UPMC Univ Paris 06, 98bis boulevard Arago, F-75014 Paris, France
23Dept. of Astrophysical and Planetary Sciences, CASA 389-UCB, University of Colorado, Boulder, CO 80309, USA
24Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
25Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
26511 H street, SW, Washington, DC 20024-2725, USA
27ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany
The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling $\sim 380 \text{ deg}^2$. Fields range in size from 0.01 to $\sim 20 \text{ deg}^2$, using Herschel-SPIRE (at 250, 350 and 500 μm), and Herschel-PACS (at 100 and 160 μm), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution.

The survey will detect of order 100,000 galaxies at 5σ in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques.

This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.

Key words: surveys – infrared: galaxies – submillimetre: galaxies – galaxies: evolution

1 INTRODUCTION & SCIENCE GOALS

Understanding how galaxies form and evolve over cosmological time is a key goal in astrophysics. Over the last decade our understanding of the background cosmology has improved to such an extent (e.g. Spergel et al. 2003) that we think we have a reasonable understanding of the formation of structure in the underlying dark matter distribution (e.g. Springel et al. 2006). However, galaxy formation and evolution are driven by dissipative, non-linear processes within the potential wells of virialized dark matter halos which are much more complex physical processes which have defied full modelling. Observations play a critical role in constraining models of galaxy formation, the evolution of star-formation activity, and the various roles played by galaxy stellar mass, dark matter halo mass, and environment.

The central importance of far-infrared (FIR) and submillimetre (sub-mm) observations becomes clear when one realizes that the approximately half of all the luminous power (Puget et al. 1996; Fixsen et al. 1998; Lagache et al. 1999) which makes up the extra-galactic background radiation – power which originated from stars and active galactic nuclei (AGN) – was emitted at optical/ultraviolet wavelengths, absorbed by dust, and reradiated in the FIR/sub-mm. To form a complete picture of the evolution of galaxies, the optical regime alone cannot be used to fully trace the activity (e.g., the brightest sub-mm galaxy in the Hubble Deep Field is not even detected in the optical Dunlop et al. 2004). Furthermore, sub-mm observations provide a bridge in both wavelength and redshift between $z > 2$ Universe, primarily probed on the Rayleigh-Jeans side of the spectral energy distribution (SED) by ground based sub-mm telescopes, and the lower-z Universe, sampled on the Wein side of the SED by Spitzer.

FIR/sub-mm luminosity is thought to arise primarily from dust heated by the massive stars in star formation regions and so may be used as a direct estimate of star formation activity. Additional contributions are expected to arise from dusty tori surrounding AGN at shorter wavelengths, and there may be non-negligible contributions from the illumination of dust by evolved stars.

Previous surveys from space-based observatories: IRAS (e.g. Saunders 1990; Oliver et al. 1992); ISO (e.g. Elbaz...
et al. 1999; Oliver et al. 2002, and references therein); and Spitzer (e.g. Shupe et al. 2008; Frayer et al. 2009, and references therein); and at sub-mm wavelengths from the ground with: SCUBA at 850 μm (e.g. Eales et al. 1999; Hughes et al. 1998; Smail et al. 1997; Coppen et al. 2006), Bolocam (Misonou et al. 2005a, e.g.); SHARCII (e.g. Khan et al. 2007); MAMBO (e.g. Greve et al. 2008); LABOCA (e.g. Weiß et al. 2009); and AzTEN (e.g. Scott et al. 2010b), demonstrated strong evolution in galaxies at both mid-infrared (MIR) and FIR wavelengths. This evolution is attributed to a decline in the average star-formation density with time, and particularly a decline in the role of the more luminous infrared galaxies (LIRGs), which are thought to be the progenitors of massive galaxies today (e.g. Le Floc’h et al. 2005).

This strong evolution has been challenging for physical models of galaxy formation to reproduce. They find they must invoke drastic modifications, such as altering the initial mass function (e.g. Baugh et al. 2005), in order to match these observations as well as optical and near infrared constraints on the stellar mass today.

Using a different approach, phenomenological galaxy population models attempt to describe what is currently observed and also predict what we would expect for Herschel. Different groups use different combinations of galaxy populations to reproduce the observations; for example, Lagache et al. (2003, and Fig. 2) use two peaks of luminosity density at z ∼ 1 and z ∼ 2 to describe the data, which are not seen in other models. Such differences between the pre-Herschel models indicate the lack of constraint on the spectral energy distributions and redshift distributions.

The potential of sub-mm surveys has been demonstrated by the BLAST telescope (Devlin et al. 2009). BLAST was a balloon-borne telescope with a focal plane instrument based on the SPIRE (Griffin et al. 2010) photometer design and using similar detectors tailored to higher photon loading, and was a successful technical and scientific Pathfinder for SPIRE on Herschel, probing the wavelength regime where the SED of redshifted galaxies and the infrared background peak.

The Herschel Space Observatory (Pilbratt et al. 2010) is carrying out surveys of unprecedented size and depth, vastly improving the state of observations in this under-explored waveband. The imaging instruments SPIRE (Griffin et al. 2010) and PACS (Poglitsch et al. 2010), which together fully constrain the peak of the FIR/sub-mm background, allow us to thoroughly investigate the sources in the infrared background and characterise their total obscured emission (see e.g. Fig. 1).

The Herschel Multi-tiered Extra-galactic Survey (HerMES) is a Guareenteed Time Key Program on Herschel which will provide a legacy survey of high-redshift galaxies over the wavelengths at which the galaxies and infrared background peak. The majority of science goals require multi-wavelength support and the fields we have chosen are among the best in the sky for multi-wavelength coverage (see Section 4.2) maximising their legacy value.

In Section 2 we define the survey. In Section 3 we described some of our goals and early results. In Section 4 we outline our expected data products and delivery time-scales before concluding in Section 5.

2 SURVEY DESIGN

Our survey is defined by Astronomical Observing Requests (AORs). For convenience we have grouped the AORs by sets, which in this paper are identified with numbers, e.g., ELAIS N2 SWIRE is #41. A summary of the AOR sets is given in Table 1. Details of the observing modes can be found in the Herschel observers’ manuals (available from http://herschel.esac.esa.int/Documentation.shtml).

Detector hits maps, which accurately define the coverage of the survey and should be used for any detailed planning of complementary surveys, are provided on our web site http://hermes.sussex.ac.uk. We also provide files which define the approximate boundaries of homogenous regions (e.g. as marked in Fig. 5). These survey definition products are updated as the survey progresses. Our sensitivities have been quoted using official mission values given in Table 3.

The current AORs which define our program can be retrieved from the Herschel Science Archive http://herschel.esac.esa.int/Science_Archive.shtml using HSpot and the proposal IDs SDP_silver_1 and KPGT_silver_1 and GT2_meriro_1.

Here we summarise the basis of our survey design.

2.1 Requirements

HerMES was designed to fulfil multiple objectives, which are outlined in Section 3. The Herschel bands can probe the peak of the far infrared spectral energy distributions of star forming galaxies and thus measure the infrared luminosity, L_{IR}, see Figure 1 and Table 2. Our primary criterion was to sample the (L_{IR}, z) plane of star-forming galaxies uniformly and with sufficient statistics to a redshift of 0 < z < 3. Specifically, we take a bin resolution of $\Delta \log L_{IR} \Delta z = 0.1$ (e.g. $\Delta \log L_{IR} = 0.5, \Delta z = 0.2$) and require 75 galaxies per bin to give 12 per cent accuracy (or 10 per cent accuracy when further divided into three sub-samples). This resolution corresponds to the scale of features in the luminosity density surface from the Lagache et al. (2003) model, for example. Using the model luminosity functions we can calculate the area needed to reach this goal for each luminosity and redshift. Each tier thus probes a given (L_{IR}, z) region bounded by the areal constraint and the flux limit (see Fig. 2). An optimized sampling over wavelength is achieved by combining HerMES with the PACS Evolutionary Probe survey (PEP, Lutz et al. 2011).

HerMES was thus designed to comprise a number of tiers of different depths and areas (Tables 5 and 7). HerMES samples the higher luminosity objects, which are bright

1 http://hermes.sussex.ac.uk. Hermes is also the Olympian messenger god, ruler of travellers, boundaries, weights and measures.

2 These maps and Table 1 gives coverage for SPIRE observations as counts of 250 μm detector samples per $6'' \times 6''$ pixel. This can be converted to a bolometer “exposure” time per pixel by dividing by the sampling frequencies of 18.6 Hz for SPIRE scanning at nominal and fast rates and 10 Hz for parallel mode. The hits in other arrays can be estimated by scaling by the numbers of detectors in the arrays (129, 88, 43) and the pixel sizes ($6'', 10'', 12''$).
Figure 2. Far infrared luminosity density in $\log_{10}(L/\text{L}_\odot h^{-3}\text{Mpc}^3\text{dex}^{-1})$ (grey-scale and contour diagram) as a function of far infrared luminosity (x-axis) and redshift (y-axes) – from the model of Lagache et al. 2003. The power of different survey elements to probe this space are indicated by overlays. Each panel shows survey elements at different wavelengths; reading left-to-right from the top they are 100, 160, 250, 350 and 500 μm. Surveys are deemed to properly sample the space if they can detect galaxies of these FIR luminosities at the 5-σ instrumental noise level and with more than 75 galaxies in bins of $\Delta \log L \Delta z = 0.1$. These two constraints are marked with dotted lines and are hatched. The different survey levels defined in Table 7 are shown with: Levels 2–4 – blue; Level 5 – red; Level 6 – magenta and HeLMS – green. Level-1 (cyan) does not have enough volume to satisfy the number of galaxies criterion and so only the instrumental noise limit is shown. The 5σ confusion noise levels (after 5σ clipping) from Berta et al. (2011, at 100 and 160μm) and Nguyen et al. (2010, at 250, 350 and 500μm) with yellow/black lines. Note the bimodal peaks at $z \sim 1$ and $z \sim 2.5$.
Table 1. Summary of the HerMES observations. The full set of Astronomical Observation Requests (AORs) are available through ESA’s Herschel Archive. We have grouped N_{AOR} observations of the same field at the same level made with the same mode and areal size into a ‘set’ (the number of AORs still to be scheduled after 2011 Dec 21 is indicated in parentheses). The first five columns in the Table give: the set identification number; the design level; the target name, the ‘set’ (the number of AORs still to be scheduled after 2011 Dec 21 is indicated in parentheses). The first five columns in the Table give: the set identification number; the design level; the target name, the number of repeats of the observing mode in the set. All our SPIRE nominal (30′′ s$^{-1}$) and fast mode (60′′ s$^{-1}$) (Sp. Nom. and Sp. Fast) observations include a scan in the nominal and orthogonal direction, so 1 repeat is 2 scans. For SPIRE observations that have been executed N_{samp} is the median number of bolometer samples per pixel in the 250 μm map (60′ × 60′ pixels). This can be converted to exposure time per pixel or to other bands as described in footnote 2. The σ gives the nominal area of region. θ is the roll angle with short-axis of that rectangle measured East of North. For SPIRE observations that have been executed Ω_{good} is the total area of pixels with any 250 μm coverage and Ω_{max} is the area of pixels where the number of bolometer samples per pixel in the 250 μm map is greater than $N_{samp}/2$. For PACS fields or unobserved SPIRE fields Ω_{nom} gives the nominal area of region. The final column indicates which observations are included in our data releases; observations marked SDP were released in our First Data Release. Set numbers #16 and #26 were removed from the programme.
but rare, in the wide shallow tiers, and the lower luminosity galaxies, which are faint but common and confused, in the deep narrow tiers. Our design has evolved during the mission but since our initial design had cluster observations (nominally deep, shallow and high-z) and six nominal levels from deep and narrow Level 1 to wide and shallow Level 6 and we will maintain those descriptions even though the depths have changed.

Confusion is a serious issue for Herschel and SPIRE in particular, and is an important driver in deciding survey depth (Table 5). To estimate the confusion level we assembled galaxy models (e.g. Lagache et al. 2003), compared them to existing survey data, and calculated the confusion limit using the criteria for source density of 30 beams per source and width of the sky intensity distribution. We employ a number of techniques to overcome the problem of confusion. It is those analyses which motivate the deepest tiers: the lensed clusters fields; and the fast scanned elements of the wide Level 5 tier.

An additional consideration is the volume of the survey needed for a representative sample of the Universe, to provide a sufficient range of environments, and enough independent regions to study clustering (e.g. Fig. 12). Examination of each of those requirements requires survey co-moving volumes of 10^5-10^7 Mpc3 or larger. E.g. the number density today of halos of dark matter mass $M_{DM}>10^{15}$ M$_\odot$ is around 10^{-6} h3Mpc$^{-3}$ (Mo & White 2002). This is identical to the co-moving number density of their progenitors i.e. $\sim 0.3-0.4$ deg$^{-2}$ for survey shells of $\Delta z = 0.1$. This provides additional motivation for fields of order 10s deg2 to provide statistical samples. Sampling variance would still be an issue if the smaller deeper levels were contiguous so we split these into a number of fields to enable us to reduce and estimate the sampling variance errors.

The SPIRE and PACS depths for the cluster observations were determined by the desire to ensure the detection of $z \sim 3$ sources in both the SPIRE 250 and PACS 100 μm channels.

2.2 Choice of Fields

In order to pursue multi-wavelength analyses, we have selected fields (Fig. 3, Table 5) which are among the most intensively observed at all wavelengths. These include: radio (VLA, WRST, GMRT, ATCA); sub-mm (SCUBA, Bolocam, AzTEC, MAMBO); mid and far infrared (Spitzer, ISO, AKARI); near-infrared (UKIRT, VISTA); optical (HST, Subaru SuprimeCam, CFHT MegaCam, KPNO Mosaic1, CTIO Mosaic2, INT WFC); UV (GALEX) and X-ray (XMM-Newton, Chandra). A description of ancillary data is given in Section 4.2. Extensive redshift and/or photometric redshift surveys are either available or underway for most of these fields.

An additional consideration was that the contamination from Galactic emission (or cirrus) should be minimal. The larger mirror means that this cirrus is less of a concern for extra-galactic surveys with Herschel than it was for Spitzer, as discussed in Oliver (2001). This means that our requirement for low-levels of cirrus are automatically satisfied by our criteria of good ancillary data, as illustrated in Fig. 3.

The defining criterion was coverage at mid/far infrared wavelengths not accessible to Herschel, or where Herschel is relatively inefficient due to its warm mirror. Specifically we required Spitzer MIPS coverage at 24 and 70 μm. At the time of design the one exception to this was the AKARI Deep Field South, which did not have Spitzer coverage but did have coverage at 65, 90, 140, and 160 μm from AKARI (Matsuura et al. 2010). However, this field has since been observed by Spitzer MIPS (Scott et al. 2010a). The HeLMS field, which was added in 2011 for studying large-scale structure and the bright end of the number counts, does not have ancillary data from Spitzer. However, being located on the SDSS Stripe 82 region, HeLMS does have ancillary coverage from many other facilities.

A detailed discussion of the specific observations which were considered in the design of the fields is given in Appendix A

The deep and shallow cluster targets are well-studied strong lenses at modest redshift. They were selected in consultation with the PEP team – with HerMES carrying out the SPIRE observations and PEP the corresponding PACS observations. The high-z clusters were selected for environmental studies also in consultation with the PEP team.

2.3 Observing Modes

The mapping of Levels 1-4 (#1,11-19, 22, 23) is performed using SPIRE ‘Large Map’ mode. This mode is described in detail in the SPIRE Observers’ Manual. This is the default SPIRE observing mode for any field size larger than 4\times4$'$. In this mode maps are made by scanning the telescope because it eliminates off-beam confusion, allows measurement of extended emission, and increases observing efficiency for larger fields. Since our smallest blank field to be mapped (Level 1) is \sim16$'\times$16$'$, this mode was the natural choice for our program.

The SPIRE cluster observations were originally designed using the ‘Large Map’ mode covering a nominal field of 4\times4$'$ as this was the smallest map that could be made using scanning. Abell 2218, #1, was carried out in that mode. We moved to ‘Small Map’ mode (#2-10) in which the map is made by two short cross-scans with the telescope once that became available, as that was more efficient for small fields.

When building maps the telescope is scanned at an angle of 42.4$^\circ$ with respect to the Z axis of the arrays, (see Figure 3.1 and 3.3 of the SPIRE Observers’ manual, V2.4). This produces a fully-sampled map, despite the focal plane not being fully sampled. The offset between successive scans (or

Table 2. Basic band information for the different Herschel channels used by HerMES. Data is taken from SPIRE and PACS Observers’ Manuals V2.4/V2.3 (respectively).

Instrument	PACS	PACS	SPIRE	SPIRE	SPIRE
Filter name	Blue2	Red	PSW	PMW	PLW
Min λ [μm]	85	125	210	300	410
Max λ [μm]	125	210	290	400	610

3 The SPIRE Observers Manual is available from the Herschel Science Centre http://herschel.esac.esa.int/Docs/SPIRE/html/spire_om.html
scan ‘legs’) is 348", nearly the full projected array size (see Figure 3.2 of the SPIRE Observers’ manual, V2.4). SPIRE observations use two near-orthogonal default scan angles i.e. ±42.4°.

Multiple map repeats were required to integrate down to the flux limit in each level. These repeats were performed with as much cross-linking as possible (i.e. with similar numbers of scans in quasi-orthogonal directions), to enable mapping with the presence of low-frequency drifts and redundancy for the removal of any problematic scans. We used the nominal SPIRE scan rate of 30" s⁻¹ for these fields.

Where long observations had to be split we aimed to cover the whole field on separate occasions (rather than dividing the field and subsequently building a mosaic) to give redundancy and maximal cross-linking.

The Lockman SWIRE and CDFS SWIRE observations in Level 5 (#27 and 28) were motivated by the study of extragalactic background fluctuations.

These observations required the rapid scanning using

Figure 3. Map of dust emission from the Galaxy, with HerMES fields over-plotted. The image is the 100 µm, COBE-normalised, IRAS map of extended emission (Schlegel et al. 1998). The projection is Hammer-Aitoff in Galactic coordinates. The sky brightness is plotted on a false-colour logarithmic scale, with regions of very low Galactic emission appearing black and the Galactic plane yellow. In addition to the blank fields marked, HerMES has also observed 12 known clusters.

Figure 4. Maps of the number of bolometer samples per pixel of four deep SPIRE 250 µm observations. From left to right: Abell 2218 which was observed in SDP without dithering; Abell 2219 which was taken with dithering; GOODS-N (taken in SDP without dithering) and ECDFS with dithering. FITS files of all coverage maps are on http://hermes.sussex.ac.uk/ as will be new coverage maps as the data are taken.

scan ‘legs’) is 348", nearly the full projected array size (see Figure 3.2 of the SPIRE Observers’ manual, V2.4). SPIRE observations use two near-orthogonal default scan angles i.e. ±42.4°.

Multiple map repeats were required to integrate down to the flux limit in each level. These repeats were performed with as much cross-linking as possible (i.e. with similar numbers of scans in quasi-orthogonal directions), to enable mapping with the presence of low-frequency drifts and redundancy for the removal of any problematic scans. We used the nominal SPIRE scan rate of 30" s⁻¹ for these fields.

Where long observations had to be split we aimed to cover the whole field on separate occasions (rather than dividing the field and subsequently building a mosaic) to give redundancy and maximal cross-linking.

The Lockman SWIRE and CDFS SWIRE observations in Level 5 (#27 and 28) were motivated by the study of extragalactic background fluctuations.

These observations required the rapid scanning using
the SPIRE fast scan rate at 60′′s⁻¹ to minimize the effects of low-frequency drifts and increase redundancy. The scanning angles and scan leg offsets are the same as for the nominal scan rate.

The knee frequency is that at which the power of the correlated fluctuations (primarily from the thermal drifts) equates to the white noise. The design goal for the SPIRE detectors was for the knee to be at 30 mHz (with a requirement of 100 mHz) but the in-flight performance is much better and by using the thermometer signals to de-correlate the drifts knee frequencies of 1-3 mHz can be recovered (Griffin et al. 2010). The drift is correlated across the detector array (139 bolometers at short wavelengths) and so the effective knee frequency for maps is higher. Assuming the knee frequency to be 30 mHz thermal drift effects would impact on a spatial scale of 33′ (for the fast scan rate) compared to 17′ for the nominal scan rate.

Levels 5 and 6 (#29–41 and 22B) are being mapped with the SPIRE-PACS parallel mode. This mode is described in detail in the SPIRE-PACS Parallel Mode Observers’ Manual.4 Parallel mode maps the sky simultaneously with both instruments. The SPIRE detector sampling rate is reduced from 18.2 Hz to 10 Hz in this mode, which has a negligible impact when scanning in the slow (20′′s⁻¹) mode. The PACS instrument In the blue channel we used the PACS Blue2 85–125 μm filter (rather than the 60–85) for maximum sensitivity. We used the 20′′s⁻¹ scanning mode as the 60′′s⁻¹ mode was not suitable for PACS as the beam is degraded by up to 30 per cent (Poglitsch et al. 2010, and Table 4).

The parallel mode achieves the combined PACS and SPIRE sensitivities more efficiently for large areas than observations using each instrument in turn. Scan directions alternate between nominal and orthogonal for maximal cross-linking.

The Level 7, HeLMS, observations (#42) exploited the ability of the SPIRE to make long (20 deg) scans at the fast (60′′s⁻¹) scan rate. These were interleaved in a cross-like configuration to give duplicate coverage in a near-orthogonal direction. The resulting 270 deg² maps are thus optimised for studying fluctuations on the largest possible scale.

All PACS-only observations (Levels 3–4, #20, 21, 25, 26) were carried out using the scan mapping mode. This mode is described in detail in the PACS Observers’ Manual.5

The noise of the PACS bolometer/readout system has a strong 1/f component (Poglitsch et al. 2010) and observations need to be modulated on a time-scale of 1-5 Hz. We used the 20′′s⁻¹ scan rate in which the beam has FWHM ∼6.8′ or ∼11.3′ in the two bands we use (see Table 4), i.e. sources are modulated on ∼2-3 Hz time-scale. Faster scan rates (e.g. 60′′s⁻¹ in parallel mode) would have introduced significant beam smearing of around 30 per cent (Poglitsch et al. 2010, and Table 4).

We alternated orthogonal scan directions to minimise correlated noise, i.e. correlations arising from asymmetric transient detector responses to sky signal.

2.4 Dithering

Moving the array on successive scans so that different pixels or bolometers trace different parts of the sky (dithering) improves the quality of the data in a number of ways. Dither steps of more than one detector will reduce correlated noise arising when the same detector crosses the same patch of sky on a short timescale. Dithering on large scales will also increase uniformity by distributing dead/noisy pixels across the maps. Dithering at sub-detector scales can possibly lead to some improvement in resolution if the point spread function is not fully sampled and (in the case of SPIRE) further reducing the impact of the sparse filling of the focal plane.

For PACS-only observations we implemented a dithering pattern. For each scan we requested an offset with respect to our nominal target position with offsets defined on a grid with spacing (0′′, ±7.5′′, ±10.5′′). This provides sampling at sub-pixel and sub-array scales.

For SPIRE we modelled the scan pattern of good detectors and investigated dithering patterns that reduced the variation in sensitivity to point sources (for details see Appendix B). We found that for a given number of repeats, N, offsetting by a fraction 1/N of the scan leg separation between repeats was usually close to optimal. Exceptions to this would be cases where the resulting step size coincided with the projected bolometer spacing, however, none of our patterns resulted in that coincidence. This also provided a good de-correlation of the noise. The disadvantage of these large dither steps is that the coverage declines at the edges of the map. However, for our large maps this is not a major penalty. Since each SPIRE-only observation consisted of two scans one at each of the near-orthogonal SPIRE scan angles we set an offset in both directions at once. We arranged these offset pairs in a square pattern to minimise the edge effects. This dithering was not done for observations taken during the Science Demonstration Phase, but was implemented afterwards. The contrast in the coverage maps between dithering and not dithering can be seen in Fig. 4.

2.5 Sensitivity

To estimate the sensitivity of our survey design we use the Herschel Observation Planning Tool, HSPOT v5.1.1. For our survey scanning patterns we compute the 5σ instrument sensitivity (ignoring confusion noise). The HSPOT sensitivities are tabulated in Table 3 and their implications for Herschel surveys in Table 5.

2.6 Economies from nesting

We have designed our survey starting at the widest, shallower tier and building up the deeper tiers. Thus a small field tier nested within a shallower tier needs fewer repeats to reach the required depth. This improves the overall survey efficiency, because observations of small fields are relatively inefficient due to the overheads associated with telescope turn-arounds.

4 The SPIRE-PACS Parallel Mode Observers’ Manual is available from the Herschel Science Centre http://herschel.esac.esa.int/Docs/PMODE/html/parallelManual.html

5 The PACS Observers Manual is available from the Herschel Science Centre http://herschel.esac.esa.int/Docs/PACS/html/pacsManual.html
The current coverage of the nested fields around CDFS is illustrated in Fig. 6.

The nesting of fields is indicated in columns 5 and 6 in Table 5, and the sensitivities in Table 5 take this into account. E.g. UDS-HerMES at Level 3 (#21) includes 12 PACS scans from UDS Level 4 (#25), in addition to the 25 from Level 3, giving a total of 37 as well as 14 SPIRE nominal scans from UDS Level 4 (#23), four Parallel scans from XMM-VIDEO at Level 5 (#32) and two Parallel scans from Level 6 XMM-LSS SWIRE (#36).

2.7 Total Time

The total time allocated for HerMES is 909.3 hours. This comes from the Guaranteed Time awarded to the SPIRE instrument team (850 hr) one of the Herschel Mission Scientists (M. Harwit, 10 hr) and members of the Herschel Science Centre (B. Altieri, L. Conversi, M. Sanchez Portal and I. Valtchanov, 40hr). ESA also effectively contributed 9.3 hours as we agreed for our Abell 2218 observations in Science Demonstration Phase to be made public immediately and so were not charged for these observations.

2.8 Special requirements and constraints

The Herschel observatory is performing very close to specifications and our survey design is very similar to the one proposed. However, some changes and compromises have been made on the basis of post-launch experience.

Early in the mission there was a constraint that parallel mode observations could not exceed 2\(^{15}\) s, as this exceeded the limit of one software counter. Since each parallel mode observation was already a single-scan they were as shallow as could be done at that scan rate so this required us to split some of the Level 5 and 6 fields into smaller fields, compromising the uniformity of the data. The impact of this on the coverage for the XMM-LSS and Boötes fields is shown in Fig. 5. The planned AKARI deep field south (#41) and ELAIS S1 (#39) fields required only slightly more time than 2\(^{15}\) s, and so we chose to reduce the field size rather than split the field.

Where the orientation of the SPIRE data with respect to complementary data was particularly important we constrained the observations to align with them. Solar avoidance constraints meant that it was not possible to align the SPIRE observations of XMM-LSS SWIRE (#36) and COSMOS optimally with the Spitzer data and PEP data, respectively. For XMM-LSS SWIRE we observed a larger field containing the Spitzer data, while for COSMOS we observed a larger shallower field, COSMOS HerMES (#22B), containing the planned PEP PACS observations and a smaller deeper field (COSMOS, #22), which does not fully cover the PACS observations.

The Spitzer-SERVIS and VISTA-VIDEO surveys were approved after HerMES and designed with reference to HerMES. So, almost all the SERVIS and VIDEO fields were included in our Level 5 observations. However, the SERVIS and VIDEO field in ELAIS S1 was not quite within our planned observations, which were only at Level 6. We thus included additional deeper observations covering the SERVIS/VIDEO field (#39B).

Our initial Science Demonstration Phase (SDP) observations of Abell 2218 used ‘Large Map’ mode as this was the only way of doing scan mapping. We changed our deep cluster observations to the ‘Small Map’ mode once the mode was available.

The \(P(D)\) results of Glenn et al. (2010) successfully probed the number counts well below the confusion limit, reducing the motivation for exceptionally deep cluster observations. We have thus reduced the number of repeats.

Due to an error in entering the AOR one parallel observation scan of ELAIS S1 SWIRE (#39) was accidentally observed with the shorter wavelength 60–85 \(\mu\)m channel rather than the 85–125 \(\mu\)m channel.

The PACS sensitivity of 10 mJy (5–\(\sigma\) in 1 hr) in the 85–125 channel was significantly less than the pre-launch estimate (5.3 mJy, PACS Observers’ manual v1.1) and we removed our planned PACS observations of the VVDS field (#26).

To extend the fluctuation science goals and increase the Herschel discovery space for rare objects including gravitationally lensed systems, we added the HerMES Large-Mode Survey (HeLMS), a wide, SPIRE only, tier of 270 deg\(^2\) taking around 100 hours. This exploits the ability of SPIRE to cover wide areas close to the confusion limit. This additional level is indicated in Table 5.

Figure 6. Map of square root of number of effective number of bolometers samples per pixel for SPIRE 250\(\mu\)m blank field observations of the CDFS region, which includes our GOODS-S, ECDDFS and CDFS-SWIRE observations (#13,15,27,33). The parallel mode samples (#33) have been scaled by the relative sampling rates, 18.6/10, to give the effective number of samples they would have had if the observation had been carried out with SPIRE large-map mode with the same exposure time per pixel. A region of uniform coverage for each of the independent sets is marked with a rectangle. N.B. the total coverage drops off in the north-eastern corner of the largest rectangle (delimiting #33) due to the coverage coming from the boundaries of the large-map mode observations (#27) but is uniform in a coverage map built from #33 data alone.
Figure 5. Maps of the number of bolometer samples per pixel in SPIRE 250 µm blank field observations from Level 6. From the left they are XMM-LSS-SWIRE (#39), Boötes NWDFS (#37) taken early with conservative overlap) and FLS (#40, from SDP). All are parallel mode observations with a nominal coverage of two scans. Overlaps produce a maximum coverage of four scans in XMM-LSS-SWIRE and eight in Boötes.

Table 3. Point source sensitivities for different Herschel observing modes. Scan rates are given for each mode, we also tabulate the step size between successive scan legs (pre-determined for SPIRE and parallel mode but user-defined for PACS). In parallel mode the step size is different for maps built by scanning in each of the two “orthogonal” directions. 5-σ sensitivities in units of [mJy √N\text{scan}] for a single scan are estimated from the HSPOT v5.1.1. Modes below the line are not used by HerMES but by other Key Program surveys.

Mode	Rate [′′s⁻¹]	Step [′]	100	160	250	350	500
SPIRE	30	348	64	53	76		
SPIRE	60	348	91	75	108		
PACS	20	55	42	80			
Parallel	20	168/155	71	135	37	30	44
Parallel	60	168/155	122	232	63	53	75

Table 4. Beam sizes for different Herschel observing modes. Scan rates are given for each mode. The FWHM of the beams in units of [′'] are taken from SPIRE and PACS Observers’ Manuals V2.4/V2.3 (respectively). Where two values are given these are the major and minor axes, when the ellipticity is less than 15 per cent the geometric mean of the two is quoted. The SPIRE beam is not known to vary significantly with scan rate and only one value is given. Modes below the line are not used by HerMES but by other Key Program surveys.

Mode	Rate [′′s⁻¹]	Beam FWHM [′]	100	160	250	350	500
SPIRE	30/60	18.2	24.9	36.3			
PACS	20	6.8	11.4				
Parallel	20	6.8	11.4	18.2	24.9	36.3	
Parallel	60	7.0×12.7	11.6×15.7	18.2	24.9	36.3	

2.9 Observations

Our first observation was carried out on 12th September 2009. This was the first half of our SPIRE observations of Abell 2218 (#1) and the resulting map from all the data is shown in Fig. 7. This was part of the Herschel Science Demonstration Phase (SDP). Our SDP observations were designed to exercise most of the modes that were to be used in the full survey, and the SPIRE observations are described in Oliver et al. (2010b). This includes the observations of GOODS-N (#14) (Fig. 8). The SDP observations concluded on 25th October 2009; AORs are available under the proposal ID SDP_soliver_3.

The program is now being carried out as part of the Routine Phase (proposal ID KPGT_soliver_1) and is expected to be completed during 2011. The current ESA schedule is on herschel.esac.esa.int/observing/ScheduleReport.html and the observing log can be followed on herschel.esac.esa.int/observing/LogReport.html.

2.10 Comparison with other Herschel Surveys

HerMES was planned alongside the ‘PACS evolutionary Probe (PEP)’ survey (Proposal ID KPGT_dltuz_1, e.g. Lutz et al. 2011). Since then there have been a number of related Key Project surveys carried out in Open Time. There have also been a few surveys being undertaken in Open Time but not as Key Projects. These programmes are listed in Table 6.

The cumulative area of all major Herschel-SPIRE extragalactic Key Program surveys as a function of instrumental noise (taken from Table 5) and for the HerMES fields is shown in Fig. 9.

It is striking to compare the Herschel-SPIRE sub-millimetre surveys with previous sub-millimetre surveys. To do this we have explored the sensitivity of surveys to a canonical galaxy with a modified blackbody spectral energy distribution with emissivity, $\beta = 1.5$, and temperature $T = 35$ K. These are shown in Fig. 10.

3 EARLY AND ANTICIPATED SCIENCE

3.1 Confusion limits

An important consideration in design of HerMES was the impact of source confusion at SPIRE wavelengths, i.e. the limited ability to separate individual sources due to the resolution of the telescope and the number density of sources. We define confusion noise to be the standard deviation of the intrinsic variations in a map on the scale of the beam
at 100, 160, 250, 350 and 500 μm, listed before blank fields. The fields are ordered in increasing 250 μm calculated including data from shallower tiers as described in the text. Other surveys are treated independently. Cluster observations are scaled by 1.22, 0.85, 0.72, 0.97, 0.85 to obtain a consistent comparison with H-ATLAS. The sensitivity of HerMES observations have been matched the fluctuations in a map which at the 4-σ level were 0.11 deg2 to a 5-σ depth of 1.9 mJy.

Due to all point sources. We planned our survey with reference to several number count models (Lagache et al. 2003; Le Borgne et al. 2009; Franceschini et al. 2010; Pearson & Khan 2009; Xu et al. 2003). We used these models to estimate the fluctuations in a map which at the 4-σ level were 1.6 \pm 0.9, 10.6 \pm 3.1, 26.3 \pm 6.3, 32.5 \pm 7.5 and 30.0 \pm 7.5 mJy at 100, 160, 250, 350 and 500 μm respectively. The uncertainties come from the scatter between models. The SPIRE confusion noise estimates compare very favourably with the fluctuations in our maps as calculated by Nguyen et al. (2010) with 5-σ depth of 1.9 mJy.

Confusion noise estimates compare very favourably with the fluctuations in our maps as calculated by Nguyen et al. (2010) with 5-σ depth of 1.9 mJy.

![Table 5](image-url)

Table 5. HerMES survey with sensitivities in the context of other survey programmes being undertaken by Herschel. The “observations” columns refer to the AOR set number of Table 1 for HerMES, or for other Key Programmes we use: “E” for Egami cluster programme, “G” for GOODS-H, “P” for PEP, “A” for H-ATLAS and “S” for SPT (see Table 6). The sensitivities are estimated consistently using HSPOT v5.1.1. These are single pixel sensitivities and ignore the benefits of matched filters, particularly for unconfused fields, e.g. PACS 270 mJy at 250, 350 and 500 μm, respectively after cutting maps at 5-σ level were 1.6 \pm 0.9, 10.6 \pm 3.1, 26.3 \pm 6.3, 32.5 \pm 7.5 and 30.0 \pm 7.5 mJy at 100, 160, 250, 350 and 500 μm respectively. The uncertainties come from the scatter between models. The SPIRE confusion noise estimates compare very favourably with the fluctuations in our maps as calculated by Nguyen et al. (2010) with 5-σ depth of 1.9 mJy.

Confusion noise estimates compare very favourably with the fluctuations in our maps as calculated by Nguyen et al. (2010) with 5-σ depth of 1.9 mJy.

Due to all point sources. We planned our survey with reference to several number count models (Lagache et al. 2003; Le Borgne et al. 2009; Franceschini et al. 2010; Pearson & Khan 2009; Xu et al. 2003). We used these models to estimate the fluctuations in a map which at the 4-σ level were 1.6 \pm 0.9, 10.6 \pm 3.1, 26.3 \pm 6.3, 32.5 \pm 7.5 and 30.0 \pm 7.5 mJy at 100, 160, 250, 350 and 500 μm respectively. The uncertainties come from the scatter between models. The SPIRE confusion noise estimates compare very favourably with the fluctuations in our maps as calculated by Nguyen et al. (2010) with 5-σ depth of 1.9 mJy.
Figure 7. Three colour Herschel-SPIRE image of the central $4' \times 4'$ of the galaxy cluster Abell 2218. The left-most panels show the single band images of the cluster, while the central panel shows a three colour image generated by resampling the single band images and their flux scalings to a common pixelization. The centre of the cluster is marked with the cross hairs and a $1'$ bar is shown for scaling; north is toward the top of the page. The orange object to the south-east and white object to the south-west of the cluster are images of the multiply imaged sub-mm source studied in detail by e.g. Kneib et al. (2004); this source has been identified to lie at $z = 2.516$ though due to the complex mass structure of this cluster each image is magnified by a different amount. In the SPIRE bands this source’s integrated flux densities are measured to be $\{170, 197, 231\}$ mJy, corresponding to background flux densities of $\{11.7, 13.5, 15.4\}$ mJy. The varying colour of the images suggests that different regions of the source galaxy are being imaged to different points in the map. In addition, the known $z = 4.04$ sub-mm source is seen as the pink object just to the east of the cross hairs (Knudsen et al. 2009). The other objects scattered through the image are more typical $z \sim 1$ sources with SEDs peaking shortward of 250 μm.

Call	Title	Proposal ID	Time [hr]	Reference
Key GT	Herschel Extragalactic Multi-tiered Survey (HerMES)	KPGT_poliver_1	806	this paper
Key GT	PACS evolutionary Probe (PEP)	KPGT_llutz_1	655	Lutz et al. 2011
Key OT	The Cluster Lensing Survey	KPOE_eegami_1	292	Egami et al. 2010
Key OT	The Herschel Astrophysical Terahertz Large Area Survey’ (H-ATLAS)	KPOE_seales01_2	600	Eales et al. 2010a
Key OT	The Great Observatories Origins Deep Survey (H-GOODS)	KPOE_delbaz_1	363	Eales et al.
OT1	The Herschel-AKARI NEP Deep Survey	OT1_serje01_1	74	Serjeant et al.
OT1	A deep PACS survey of AKARI-Deep field south’	OT1_takagi_1	35	Takagi et al.
OT1	SPIRE Snapshot Survey of Massive Galaxy Clusters	OT1_eegami	27	Egami et al. 2010
OT1	Measuring the Epoch of Reionization	OT1_carls01_3	79	Carlstrom et al.
GT2	HerMES Large Mode Survey	GT2_mviero_1	103	Viero et al. & this paper

Table 6. Herschel blank field and cluster lens surveys carried out as Key Programmes or ordinary programmes under Guaranteed Time (GT) or Open Time (OT).
We planned for the survey to have a substantial area (providing SDSS-like volumes) at the confusion limit, but with some regions well below the confusion limit in very well studied fields, to exploit techniques for mitigating confusion using high signal-to-noise data.
For this analysis we use galaxies detected in the Herschel infrared luminosity function and subsequently the bolometric energy function. Our primary goal has been to determine the total far infrared luminosity of galaxies over the redshift range $0 < z < 3$. We have already determined our first measurements of the local luminosity functions at 250, 350 and 500 μm to-gether with a total infrared (8–1000 μm) function, finding a local luminosity density of $1.3^{+0.5}_{-0.2} \times 10^{8} L_{\odot} \text{Mpc}^{-3}$ (Vaccari et al. 2010) and showing that the 250 μm function evolves strongly to $z \sim 1$ (Eales et al. 2010b), similarly to earlier studies at shorter wavelengths. Future analysis (in preparation) will study wider areas with more and better ancillary data and extend these results to higher luminosities, higher redshifts and model the relative contribution of AGN and star-formation to the bolometric emission, as well as exploring the relation between the infrared luminosities and the stellar properties probed at optical, NIR and UV wavelengths.

3.2 Science above the confusion limit

3.2.1 Direct determination of the total far infrared luminosity function and its evolution

Our primary goal has been to determine the total far infrared luminosity function and subsequently the bolometric luminosity of galaxies over the redshift range $0 < z < 3$. For this analysis we use galaxies detected in the Herschel images combined with extensive multi-wavelength data to determine photo-zs where spectroscopic redshifts are not yet available.

Our first results on exploration of the full far infrared SED are given by Elbaz et al. (2010); Rowan-Robinson et al. (2010); Hwang et al. (2010) and Chapman et al. (2010). Elbaz et al. (2010) combined photometry from PACS (from the PEP program) and SPIRE (from HerMES). We found that the total far infrared luminosity estimated from extrapolations of Spitzer 24 μm data agreed well with direct measurements from Herschel at lower redshift but underestimated the power at higher redshifts (as also seen by Nordon et al. 2010). In that work the longer wavelength (SPIRE) band measurements departed from the model SEDs at lower redshift. This was explored further by (Rowan-Robinson et al. 2010), showing that the SPIRE results for some galaxies could be explained with a cold dust component not normally included in canonical templates. Indeed, when simply characterising the SEDs by their effective dust temperature we have shown that the SPIRE detected galaxies cover a broad range of temperatures (Hwang et al. 2010; Magdis et al. 2010) and thus capture warm objects like the ‘Optically Faint Radio Galaxies’ missed by ground-based sub-millimetre surveys (Chapman et al. 2010).

We have already determined our first measurements of the local luminosity functions at 250, 350 and 500 μm together with a total infrared (8–1000 μm) function, finding a local luminosity density of $1.3^{+0.5}_{-0.2} \times 10^{8} L_{\odot} \text{Mpc}^{-3}$ (Vaccari et al. 2010) and showing that the 250 μm function evolves strongly to $z \sim 1$ (Eales et al. 2010b), similarly to earlier studies at shorter wavelengths. Future analysis (in preparation) will study wider areas with more and better ancillary data and extend these results to higher luminosities, higher redshifts and model the relative contribution of AGN and star-formation to the bolometric emission, as well as exploring the relation between the infrared luminosities and the stellar properties probed at optical, NIR and UV wavelengths.

3.2.2 Star-formation and environment

Environment on various scales plays an important role in the process of galaxy formation. Perhaps the most striking observational evidence is that clusters today have a much higher fraction of early-type galaxies than is found in the field. Likewise the successful physical models of galaxy formation predict a very strong co-evolution between galaxies and dark-matter halos.

There are many ways of determining the role of environment observationally: one can directly examine the galaxy properties (e.g. the SFR distribution functions) in different environments; one can explore the environments of galaxies in different luminosity classes; one can use the clustering of particular galaxy populations to infer the mass of the dark matter halos in which they are located, to relate these to their present-day descendants; or one can directly use the structure in the maps to constrain such models. All these methods have the same basic requirement, a volume sufficiently large to sample enough of the environments of interest, and sufficiently deep to constrain the populations of interest. A simulation in Fig. 13 shows that we could discriminate different halo mass hosts for different sub-classes of galaxies and compare the clustering of the FIR galaxies with quasars from optical studies.

First results on the clustering of HerMES galaxies were given by Cooray et al. (2010), indicating that the HerMES
sources with $S_{250} > 30\, \text{mJy}$ (at $z \sim 2$) were in dark matter halos with masses above $(5 \pm 4) \times 10^{12} \, \text{M}_\odot$.

Clustering can also be used in other ways. A recent cross-correlation analysis indicates that there is a correlation between HerMES sources at $z \sim 2$ and foreground galaxies from SDSS at $z \sim 0.2$ and SWIRE at $z \sim 0.4$ (Wang et al. 2011). While some of this signal can be attributed to the intrinsic correlation of galaxies in the overlapping tails of the redshift distributions, there is clear evidence for a signal arising from the amplification of the HerMES source fluxes by lensing from foreground galaxies.

3.2.3 Extreme galaxies

Rare objects provide challenges for theories and may expose important but transitory phases in the life-cycle of galaxies. The very wide surveys, in particular, will discover many exotic objects, which are prime targets for ALMA. Galaxies with extremely high star formation rates would be difficult to explain with some models of galaxy formation. Limited area sub-millimetre surveys have already discovered small samples of galaxies with very high star formation rates $\gtrsim 1000 \, \text{M}_\odot \, \text{yr}^{-1}$ e.g., SMM J02399-0136 (Ivison et al. 1998), GN20 (Daddi et al. 2009; Borys et al. 2003) and MIPS J142824.0+352619 (Borys et al. 2006). By mapping large areas at the wavelengths where re-emission from star formation peaks, we will be able to quantify the number density of systems of $\sim 1000 \, \text{M}_\odot \, \text{yr}^{-1}$ and determine whether there are any systems with even higher star formation rates. Even individual examples of such systems would be important as extreme astrophysical laboratories and would provide fruitful targets for new facilities, especially ALMA.

A primary search tool will be the SPIRE colours. Searches have already revealed many galaxies (Schulz et al. 2010) with very red colours $S_{250}/S_{350} < 0.8$ and with flux densities above 50 mJy. These may be a mix of intrinsically cool galaxies at lower redshift, and galaxies at high redshift, including some that are lensed by foreground galaxies.

3.2.4 Lensed Systems

Lensed systems are interesting because, although lensing is a rare phenomenon, they provide a magnified view of more common, relatively normal, but distant galaxies, which can then be easily studied. An example of a lensed source found in early HerMES data is HERMES J105751.1+573027, a $z = 2.957$ galaxy multiply lensed by a foreground group of galaxies. Coupled with a lensing model derived from high-resolution observations (Gavazzi et al. 2011), the magnification and large image separation allowed us to investigate the continuum SED from the optical to far-IR (Conley et al. 2011), as well as model the CO line excitation (Scott et al. 2011) and study the gas dynamics (Riechers et al. 2011).

3.3 Science below the confusion limit

The deepest observations at SPIRE wavelengths suffer substantial confusion noise due to faint unresolved galaxies, and are limited in their ability to define true luminosities, SEDs and physical conditions within the most active galaxies during the peak epoch of galaxy formation at redshift $z \sim 2$. We will investigate and employ super-resolution techniques, e.g., CLEAN (Högbohm 1974) or matched filtering (Chapin et al. 2011). However, as argued in Oliver (2001), we expect the gains from blind image deconvolution techniques to be modest except at the very highest signal-to-noise ratios.

One approach to combat the problem is to study isolated sources as we have discussed in Elbaz et al. (2010); Brisbin et al. (2010) and Schulz et al. (2010), however, we are pursuing many other mitigating techniques.

3.3.1 Ultra-deep far-infrared galaxy surveys from imaging of rich clusters of galaxies

Rich clusters can be used as tools to mitigate this effect, allowing high-redshift galaxy formation to be investigated by the gravitational magnification of the primordial galaxies behind the cluster. This has been demonstrated at relevant wavelengths by Smail et al. (2002), Cowie et al. (2002), Metcalfe et al. (2003), Chary et al. (2005) and Swinbank et al. (2010).

Gravitational lensing brightens and separates the images of all background galaxies within 1–2″ of the core of the cluster (e.g., Kneib et al. 2004), making individual background galaxies easier to detect. This also allows the sources of up to about 50 per cent of the otherwise confused and unresolved background radiation to be identified with specific galaxies.

The selected clusters have some of the best archival data available, including deep HST ACS/NICMOS images, ultra-deep μJy radio imaging, deep mid-IR imaging from Spitzer, and X-ray images from Chandra/XMM-Newton. The mass and magnification profiles are known accurately, from extensive spectroscopy of multiply-lensed images (Kneib et al. 1993).
Our observations of 10 clusters will provide about 180 sources that will allow us to quantify the space density of the faintest Herschel galaxies with 10 per cent accuracy. Two clusters (Abell 2218 and Abell 1689) were believed, in advance, to be relatively free of bright lensed galaxies. This was intentional as these were originally intended for very deep observations in order to detect of order 10 even fainter lensed sources (to determine the counts of Herschel galaxies at the 5-mJy detection level, reaching well below the blank-field confusion limit) so we wanted to avoid confusion from known lensed galaxies. Following modification to our program in the light of analysis of in-flight data only Abell 2218 was observed deeper than the others. The results from our SDP cluster observation of Abell 2218 clearly demonstrate that we can detect high redshift lensed galaxies, see Fig. 7.

3.3.2 Multi-colour 1-point fluctuation analysis below the confusion limit

Analysis of the fluctuations in the cosmic IR background radiation provides unique information on sources too faint to be detected individually (see, e.g. Maloney et al. 2005b; Patanchon et al. 2009). Our Level 2 and Level 3 fields allow us to analyze the fluctuation distribution down to flux densities of 2–3 mJy, where much of the background was expected to be resolved. By analyzing the fluctuations in all three SPIRE wavebands, we can obtain statistical information on SEDs. This multi-colour P(D) analysis provides a powerful method for distinguishing different number count models, thereby constraining the redshifts and emission properties of the source population (Fig. 14). This requires very precise characterization of the instrument noise for optimal analysis.

We undertook a mono-chromatic fluctuation analysis using three fields from our SDP data. With that analysis (Glenn et al. 2010) we reached a depth of 2 mJy beam$^{-1}$, significantly deeper than any previous analysis at these wavelengths. Modelling this distribution with parameterized number counts confirmed the results from resolved sources (Oliver et al. 2010b) and was in disagreement with previous models. The fits accounted for 64, 60, and 43 per cent of the far-infrared background at 250, 350 and 500 µm, respectively.

3.3.3 Average SEDs of galaxies contributing to the infrared background

Prior information from shorter wavelength (e.g., 24 µm with MIPS) can be used to infer the statistical properties (such as source density or SEDs) at longer wavelengths. A more promising route to super-resolution results is to use prior information on the positions of sources from higher resolution data at other wavelengths. This has been demonstrated with HerMES data in Roseboom et al. (2010) achieving robust results for source fluxes down to $S_{250} \approx 10$ mJy.

A related technique is ‘stacking’, which averages the signal from many similar prior sources. In the absence of significant correlations the confusion variance would then reduce in proportion to the number of prior sources in the ‘stack’. Stacking has been successfully applied to Spitzer MIPS data; Dole et al. (2006) stacked more than 19,000 24 µm galaxies to find the contributions of the mid-IR galaxies to the far-IR background (70 and 160 µm). With this technique, they gained up to one order of magnitude in depth in the far-IR. It appears that a large fraction of the 24 µm sources can be statistically detected at longer wavelengths (e.g. Marsden et al. 2009). Such an analysis applied to Herschel will allow us to extend galaxy SEDs to the FIR/sub-mm to quantify the contribution of different populations to the background (e.g. Dye et al. 2007; Wang et al. 2006), or to explore the star-formation properties as a function of redshift and stellar mass (e.g. Oliver et al. 2010a). Such procedures might use Spitzer 24 µm catalogues and/or the PACS catalogue. This type of analysis is critically dependent on the quality and depth of the ancillary data, and further motivates our choice of very well studied extra-galactic fields. An example of this approach is shown in Fig. 15.

Stacking has already been used in some of our analysis (e.g. Ivison et al. 2010; Rigopoulou et al. 2010) and our first results analysing the contribution of various prior populations to the background through stacking will be presented by Vieira et al. (2011).

3.3.4 Extragalactic Correlations Fluctuations

A comprehensive fluctuations analysis is an essential complement to the aspects of our survey allowing us to inves-
tigate the majority population of objects, those below the Herschel confusion limit. Using the two shallowest tiers of the survey, we can specifically target non-linear clustering on angular scales $< 10'$, virtually inaccessible to Planck, and where SPIRE is not susceptible to low frequency drifts. The clustering of undetected sources produces fluctuations on larger spatial scales (Amblard & Cooray 2007; Haiman & Knox 2000; Knox et al. 2001) which are expected to be brighter (Scott & White 1999) than Poisson fluctuations on spatial scales $> 1'$. On large angular scales, background fluctuations measure the linear clustering bias of infrared galaxies in dark matter halos. On small angular scales, fluctuations measure the non-linear clustering within individual dark matter halos, and the physics governing how FIR galaxies form within a halo as captured by the occupation number β. This halo approach (e.g. Cooray & Sheth 2002) will allow us to compare the results of a Herschel fluctuations survey with studies at other wavelengths, to obtain a consistent picture of galaxy clustering and evolution. Finally, this fluctuation survey is designed to complement surveys by Planck on larger angular scales.

First measurements of correlated fluctuations from clustered infrared galaxies at sub-mm wavelengths have been detected by (Lagache et al. 2007; Grossan & Smoot 2007; Viero et al. 2009; Hall et al. 2010; Dunkley et al. 2010; Hajian et al. 2011). Our first results (Amblard et al. 2011) have extended these findings at arcminute scales by measuring the non-linear 1-halo component for the first time. Modelling suggests that at 350 μm 90 per cent of the background intensity is generated by faint galaxies at $z > 1$ in dark matter halos with a minimum mass of $\log[M_{\text{min}}/M_\odot] = 11.5^{+0.7}_{-0.2}$, in agreement with BLAST (Viero et al. 2009).

3.4 Additional Science Enabled by HerMES

We expect to detect over 100,000 sources in our survey. The scientific themes explored in sections 3.2 and 3.3 will be dramatically extended and improved with the samples available now and the full sample once complete. Here we mention briefly a very few other science topics that might be addressed by us or others using such a large survey.

The FIR colours of the Herschel sources can help addressing the question of how much of the energy production comes from accretion (AGN) and how much from star formation. First results on an SDSS sample of AGN (Hatziminaoglou et al. 2010) find that one third are detected by SPIRE, with the long wavelength colours indistinguishable from star forming galaxies. Modelling of the full SED required the combined contribution of both AGN and starburst components, with the former dominating the emission at the MIR wavelengths and the latter contributing mostly to the FIR wavelengths. This suggests that SPIRE detects the star formation in AGN, with little contamination from any dusty torus, offering high hopes for disentangling nuclear and star formation activity.

The wealth of data in these fields mean we can explore the FIR properties of many known samples. Our first results on Lyman break galaxies have already shown that we can detect U-band dropout sources with stacking (Rigopoulou et al. 2010) and FUV drop-out sources individually (Burgarella et al. 2011). We have also shown that galaxies selected on the basis of the Spitzer IRAC colours probe a wide range of FIR temperatures (Magdis et al. 2010).

We will compare the FIR measure of star-formation with other tracers. In collaboration with the PEP team we examined the well-known FIR radio correlation in GOODS-
N (Ivison et al. 2010). Exploring q_{IR}, i.e. the logarithmic ratio of the rest-frame $8 -1000 \mu$m flux and the 1.4-GHz flux density, there is no evidence that q_α changes significantly for the whole sample: $q_\gamma \propto (1+z)^\gamma$, where $\gamma = -0.04 \pm 0.03$ at $z = 0 - 2$, although if the small volume at $z < 0.5$ is removed we find $\gamma = -0.26 \pm 0.07$. HerMES will create a complete data set to understand the global relationship between FIR and optical galaxies, the effect of dust attenuation in optical/UV populations, and phenomena in individual galaxies. First results comparing HerMES and GALEX (Buat et al. 2010) confirm that total infrared luminosity accounts for 90 per cent of the total star formation rate, though this reduces to 70 per cent when considering the lower star formation rate systems ($M_\star < 1M_\odot$).

These ancillary data can also be used to investigate the detailed properties of the FIR galaxies, e.g. their morphology. One study has explored galaxies with morphological classifications at $2 < z < 3$ and shows that the mean SFR for the spheroidal galaxies is about a factor of three lower than for the disk like galaxies (Cava et al. 2010).

Observations of the rich clusters – the densest known regions of the Universe – yield information about their astrophysics and history via the Sunyaev-Zel’dovic (SZ) effect (Birkinshaw 1999; Carlstrom et al. 2002), which dominates the extended several-arcmin-scale emission of clusters at wavelengths longer than about 500 μm. The SZ effect arises from inverse Compton scattering of cosmic microwave background photons by hot ($1-10$ keV) gas in the intracluster medium. We intend to combine SPIRE and Planck data to measure the SZ effect and the sub-millimetre foregrounds, SPIRE data will enable us to separate out Galactic dust, cluster and background galaxies, the thermal SZ effect and the effects of relativistic electrons.

4 DATA PRODUCTS

4.1 SPIRE catalogues

As an illustration of the kind of data products that HerMES will produce we show an approximation to the SPIRE 250μm survey areas and depths in Table 7 (together with H-ATLAS and GOODS-H). We indicate an estimate of the numbers of sources (Oliver et al. 2010b) and fluctuation analyses (Glenn et al. 2010, N_{Glenn}) and from our raw number counts in fields that we have at these depths, extracted as described in (Smith et al. 2011, N_{cat}).

Table 7. Projected SPIRE survey results for the 250μm band. This table simplifies the survey giving approximate instrumental noises in 4 tiers (L1 includes GOODS-N). The 5σ confusion noise from Nguyen et al. (2010) is 29 mJy, approximately the Level 6 depth. Numbers of 250μm sources are estimated from: a count model (Valiante et al. 2009, N_{Val}); our $P(D)$ analysis (Glenn et al. 2010, N_{Glenn}) and from our raw number counts in fields that we have at these depths, extracted as described in (Smith et al. 2011, N_{cat}).

Levels	Area [deg2]	$5\sigma_{250}$ [mJy]	N_{Val} [103]	N_{Glenn} [103]	N_{cat} [103]
PACS Ul	0.012				
Level 1	0.15	4	2.2	2.0 \pm 0.1	—
Levels 2-4	6.0	10	17	22.4 \pm 0.9	52
Level 5	37	15	53	73.6 \pm 2.3	30
Level 6	52	26	20	28.1 \pm 0.6	30
H-ATLAS	570	45	76	90.6 \pm 2.9	115
Level 7 (HeLMS)	270	64	130		24

Table 8. Estimates of depth required to detect SPIRE galaxies at various other wavelengths. The estimates are based on the mock catalogues of Xu et al. (2003) cut to have $S_{250} > 30$mJy. We tabulate the depth at which a given percentage of the catalogue would be detected.

Band Units	UV(0.2Å) [AB]	R [AB]	I [AB]	K [AB]	3.6μm [μJy]	24μm [μJy]	70μm [mJy]	850μm [mJy]	21 cm [μJy]
Band	10%	50%	90%	10%	50%	90%	10%	50%	90%
UV(0.2Å) [AB]	22.0	28.3	33.7	20	23	30	18	22	30
R [AB]	18.6	22.5	25.2	17	19	23	16	18	22
I [AB]	18.1	21.5	23.6	17	19	21	16	18	20
K [AB]	17.2	19.5	20.8	16	18	20	15	17	19
3.6μm [μJy]	380	90	30	38	9	30	37	9	30
24μm [μJy]	3000	880	220	3000	880	220	3000	880	220
70μm [mJy]	42	13	4.7	42	13	4.7	42	13	4.7
850μm [mJy]	6.8	2.3	1.1	6.8	2.3	1.1	6.8	2.3	1.1
21 cm [μJy]	330	100	50	330	100	50	330	100	50

4.2 Ancillary Data

4.2.1 Required Ancillary data

To estimate the required ancillary data we have examined our first cross-identified catalogues (Roseboom et al. 2010). These are lists with photometry at the positions of known 24μm galaxies and thus are not a complete description of the Herschel populations; however they are approximately 90 per cent complete.

In Fig. 17 we show the number of sources as a function of 250μm flux and i or K_s band magnitude.

4.2.2 Available Ancillary data

The survey fields are very well studied and it is outside the scope of this paper to provide a complete description of all the many ancillary data that are available in these fields. A more detailed description of the ancillary data will be provided by Vaccari et al. (in prep.). Our intention is to homogenise and make publicly available all ancillary/complementary data in our final data release.

4.2.3 Deliverable data products

Our intended data products are summarised in Table 9. The Herschel source catalogues from SPIRE and PACS data (SCAT and PCAT respectively) will consist of the usual independent lists where sources are selected from data at one wavelength without reference to any other. Associated with these catalogues will be validation analyses, including completeness, reliability and the information necessary to construct selection functions for standard scientific analysis. In addition these products will include fluxes estimated for
Name	Description	Minimum Parameters
SCAT	SPIRE Source Catalogues	Positions, Fluxes, errors, SNRs, etc.
SMAP	SPIRE Maps	Maps of flux, noise and coverage
PCAT	PACS Source Catalogues	Positions, Fluxes, errors, SNRs, etc.
PMAP	PACS maps	Maps of flux, noise and coverage
SPCAT	SPIRE/PACS band-merged catalogues	Positions, Fluxes, errors, SNRs, etc.
CLUS	Catalogues & Maps for Clusters	As above for maps and catalogues
XID	Cross identifications with selected homogenous catalogues at other wavelengths.	Fluxes, errors, SNRs, positions, positional offsets

Maps from SPIRE and PACS data (SMAP and PMAP respectively) will be suitable for extended source analysis, fluctuation analysis etc. Our first SMAP products are described by Levenson et al. (2010).

4.2.4 Other Data Products

We expect to produce additional data products as an output of the pursuit of our science goals. These will include maps and catalogues of sources from data acquired at other facilities (optical, near-IR, radio etc.). It will also include value-added products where observed data have been used to model other properties of the catalogued objects, such as photometric redshift, luminosity or spectral class. It is impossible to define a complete list of such products at this stage. We will make these available to the community on a best-efforts basis.

4.2.5 Simulated data

In order to plan our surveys and simulate our expectations we have compiled and homogenised mock catalogues from these and other models, which are publicly available via hermes.sussex.ac.uk/. These and other simulations will be made available on a best-efforts basis through this site.

4.2.6 Data Release Schedule

Early Data Release: EDR

Our first data release was proposed to be in time for the second open call for *Herschel* proposals (OT2). This was before the Science Demonstration Phase (SDP) release rules were established and when OT2 was expected to be earlier. In fact our SDP Early Data Release was made on 2010 July 1. This meant it was in time for OT1 (due on 2010 July 22). This data release is described in Smith et al. (2011) and, as we proposed, it was restricted to SPIRE high signal-to-noise sources in order to be as reliable as possible. It included maps from our Abell 2218 observation (#1) and 250 μm catalogues limited at $S_{250} > 100$ mJy for all our SDP fields (FLS#40, GOODS-N #14, Lockman-SWIRE #28, Lockman-North #19).

A second Early Data Release EDR2 was made on 2011 September 19 which included bright source catalogues similar to those for EDR but for the DR1 fields (see Table 1.).
Data Release 1: DR1

An extensive Data Release (DR1) of maps and catalogues will be made on 2012 March 27. DR1 will include data from the SDP observations and all SPIRE observations completed by 2010 May 1 (A2219 #7, MS0451.6-0305 #3, ECDFS #15, XMM-LSS #36, EGS HerMES #29, Groth Strip #17, Boötes #37, ADFS #38, ELAIS N1 HerMES #31). All products will be accompanied by documentation in the form of papers in refereed journals.

Data Release 2: DR2

DR2 will occur at the end of the mission. This will include all our deliverable data products and ancillary data in their final form.

4.3 Archival Value and Data Access

As our observations are in all the most well-studied survey fields, the legacy value is enormous. We fully expect a rich data-base, leading to abundant science beyond the resources of our team. In addition to any ESA data releases (herschel.esac.esa.int) our data will be released through the Herschel Database in Marseille, HeDaM (bedam.oamp.fr/HerMES). The information system design and its implementation are developed under the STTools middleware interface provided by the CNES (vds.cnes.fr/sitools/). The data (images and catalogues) are accessible in various formats (fits files, VOTable, ascii) and accessible through Virtual Observatory Tools. Advanced searches, cross correlated data and the corresponding images are also implemented, including visualization facilities like ALADIN (http://aladin.u-strasbg.fr/) and TOPCAT (http://www.star.bris.ac.uk/~mbt/topcat/).

5 DISCUSSION AND CONCLUSION

We have presented the Herschel Multi-Tiered Extra-galactic Survey (HerMES). This survey builds on the legacy of existing FIR and sub-mm surveys. It will provide a census of star-formation activity over the wavelengths where the obscured star-formation peaks and over representative volumes (and thus environments) of the Universe at different epochs. It is being carried out in some of the best studied extra-galactic fields on the sky, which is invaluable for the interpretation of the data both technically, by enabling accurate identifications and reducing the impact of confusion noise, and scientifically, by allowing exploration of the physical processes manifest at different wavelengths. We have provided the description and rationale of the survey design. We also described the data products we plan to deliver and their schedule.

Our first results from the Science Demonstration Phase data have fully demonstrated the promise of the full survey. We have quantified the confusion noise at SPIRE wavelengths (Nguyen et al. 2010), $\sigma_{250} = 29.0 \pm 1.5 \text{ mJy}$, finding it to be very similar to what was anticipated. This confusion is challenging to deal with (e.g. Brisbin et al. 2010) but we are exploring sophisticated techniques to deal with this (e.g. through prior positional information, Roseboom et al. 2010) and using $P(D)$ analysis have already probed to 4 mJy and accounted for 64 per cent of the background at 250 μm (Glenn et al. 2010). It seems that previous phenomenological galaxy populations need revision (Oliver et al. 2010b; Glenn et al. 2010) and we now anticipate that we will be able to catalogue over 100,000 galaxies with $> 5\sigma$ detections at 250 μm. The galaxies appear to be the luminous actively star-forming galaxies we expected (e.g. Elbaz et al. 2010) with a strongly evolving luminosity function (Vaccari et al. 2010; Eales et al. 2010b). Also, as expected, SPIRE probes a wide range of effective temperatures, including warm galaxies and those cooler galaxies typically seen by sub-mm surveys (Hwang et al. 2010; Magdis et al. 2010; Chapman et al. 2010; Roseboom et al. 2011). A clue to the problems that the phenomenological models have may lie in the hints of the presence of cooler than expected dust in some galaxies (Rowan-Robinson et al. 2010; Schulz et al. 2010). We also see evidence for sources being magnified through gravitational lensing by foreground galaxies in the field (Schulz et al. 2010; Wang et al. 2011; Conley et al. 2011), and in targeted clusters. These magnified galaxies provide a window to study intrinsically lower luminosity galaxies at higher redshifts. We have identified strong clustering of SPIRE galaxies (e.g. Cooray et al. 2010; Amblard et al. 2011), indicating that these luminous systems lie in massive dark matter halos and implying they are the progenitors of galaxies in rich groups and clusters today, i.e. elliptical galaxies.

HerMES will constitute a lasting legacy to the community, providing an essential complement to multi-wavelength surveys in the same fields and providing targets for follow-up using many facilities, e.g. ALMA. The results are expected to provide an important benchmark for theoretical models of galaxy evolution for the foreseeable future.

ACKNOWLEDGEMENTS

We acknowledge support from the UK Science and Technology Facilities Council [grant number ST/F002858/1] and [grant number ST/I000976/1] HCSS / HSpot / HIPE are joint developments by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia.

SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); LAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MINECO (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA).

REFERENCES

Amblard A., Cooray A., 2007, ApJ, 670, 903
Amblard A., et al., 2011, Nature, 470, 510
Aretxaga I., et al., 2011, ArXiv e-prints
Austermann J. E., et al., 2010, MNRAS, 401, 160
APPENDIX A: DETAILED RATIONAL FOR DEFINITION OF EACH SURVEY REGION

Our deepest tier, Level 1 (#13), covers the GOODS-S region which is one of the two deepest Spitzer fields (Dickinson et al. 2003).

The other GOODS field, GOODS-N, is covered by one of our Level 2 observations (#14), though our observations are substantially wider. The boundaries of our other Level 2 field, the Extended Chandra Deep Field South field (ECDFS, #15), is defined by the deep FIDEL coverage (Dickinson & FIDEL team 2007).

Our Extended Groth Strip (EGS) field at Level 3 (#17) is also defined to match the FIDEL boundaries. The Lockman-East field at Level 3 (#18, #18B) covers Spitzer guaranteed time program data (#18) and the Spitzer Legacy program of Egami et al. (#18B). Those deep sets (#13, 14, 15, 17 and 18) were all co-ordinated with the PACS evolutionary Probe (PEP, Lutz et al. 2011) team. The Lockman-North field at Level 3 (#19, 20) covers the deep Spitzer field defined e.g. in Owen & Morrison (2008).

The UDS field at Level 4 (#23) is defined by the Spitzer SpUDS observations (Dunlop et al. 2007) and we observe this field at Level 3 (#21) with PACS. The Spitzer COSMOS field is observed in #22 and #22B, though our principal definition was the PEP observation of this field (discussed more in Section 2.8). The VVDS field at Level 4 (#24, 26) is not defined by Spitzer observations but by the optical spectroscopic survey of Le Fèvre et al. (2005).

The Level 5 and 6 fields CDFS SWIRE, Lockman SWIRE, XMM-LSS SWIRE, ELAIS N1 SWIRE, ELAIS N2 SWIRE (#27, 28, 34-36, 39 and 41) are defined by the SWIRE fields (Lonsdale et al. 2003) – those fields based in turn on the European Large Area Survey, ELAIS, (Oliver et al. 2000); the XMM-LSS Survey (Pierre et al. 2006) and flanking the Chandra Deep Field South (Giacconi et al. 2001) and various Lockman Hole fields (Lockman et al. 1986)]. The Boötes NDWFS field at Level 6 (#37) is defined by the Spitzer Guaranteed time survey (Jannuzi & Dey 1999). The FLS field Level 6 (#40) is defined by the Extragalactic part of the Spitzer First Look Survey (Fadda et al. 2006) and is commonly referred to now as XFLS. The AKARI deep field south (AFDS, #38) is defined with reference to the Spitzer (Scott et al. 2010a; Clements et al. 2011) and BLAST observations (but see Section 2.8). The Level 5 observations in #29, 30, 31, 32, 39B lie within or include other fields but the bounding regions are new (hence labelled ‘HerMES’ or VIDEO) and have been planned with the expectation of subsequent follow-up with the SCUBA-2 Cosmology Legacy Survey (Dunlop et al. 2010), the Spitzer SERVS survey (Lacy & SERVS team 2009) and the VISTA-VIDEO survey (Bonfield et al. 2011). The fields #29, 32 and 39B were jointly defined in co-ordination with VISTA-VIDEO who fixed the final field location.
For simplicity we set where $\theta_{\text{max}} = 348''$ when the projected bolometer spacing were in phase. Random offsets (d) were invariably worst. The raw variation with no dithers ($N = 1$) was 12, 15, 10 per cent for PSW, PMW and PLW respectively, this declined rapidly to about 3 per cent by $N = 3$ and was < 1 per cent for $N > 16$.

A penalty for dithering with these large steps is that the ramp down in coverage at the edges of the map is more gradual, i.e. less area at the full coverage with more area at low coverage. When designing offsets in both scan directions we chose pairs of offsets tracing a square to reduce the impact of this ramp-down and this strategy is included in the SPIRE Observers’ Manual.