The Glaucoma-associated Olfactomedin Domain of Myocilin Is a Novel Calcium Binding Protein

Rebecca K. Donegan, Shannon E. Hill, Katherine C. Turnage, Susan D. Orwig, and Raquel L. Lieberman

From the School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400

Background: Myocilin is an extracellular protein linked to glaucoma but is of unknown structure and function. Myocilin is a unique component of the trabecular meshwork linked to glaucoma. Myocilin is a protein found in the trabecular meshwork extracellular matrix tissue of the eye that plays a role in regulating intraocular pressure. Both wild-type and certain myocilin variants containing mutations in the olfactomedin (OLF) domain are linked to the optic neuropathy glaucoma. Because calcium ions are important biological cofactors that play numerous roles in extracellular matrix proteins, we examined the calcium binding properties of the myocilin OLF domain (myoc-OLF). Our study reveals an unprecedented high affinity calcium binding site within myoc-OLF. The calcium ion remains bound to wild-type OLF at neutral and acidic pH. A glaucoma-causing OLF variant, myoc-OLF(D380A), is calcium-depleted. Key differences in secondary and tertiary structure between myoc-OLF(D380A) and wild-type myoc-OLF, as well as limited access to chelators, indicate that the calcium binding site is largely buried in the interior of the protein. Analysis of six conserved aspartate or glutamate residues and an additional 18 disease-causing variants revealed two other candidate residues that may be involved in calcium coordination. Our finding expands our knowledge of calcium binding in extracellular matrix proteins; provides new clues into domain structure, function, and pathogenesis for myocilin; and offers insights into highly conserved, biomedically relevant OLF domains.

Results: The myoc-OLF domain contains a buried calcium ion ligated by Asp-380. The myocilin olfactomedin domain binds calcium with an unprecedented ligand arrangement. The presence of calcium within the OLF domain provides new clues into normal myocilin function, myocilin glaucoma pathogenesis, and biomedically important olfactomedin domains.

Conclusion: The myocilin olfactomedin domain binds calcium with an unprecedented ligand arrangement. Conclusion: The myocilin olfactomedin domain binds calcium with an unprecedented ligand arrangement. Conclusion: The myocilin olfactomedin domain binds calcium with an unprecedented ligand arrangement.
and molecular characterization of other OLF-containing proteins, such as amassin-1, a sea urchin protein involved in cell-cell adhesion of coelomocytes (17), gliomedin involved in nerve conduction within myelinating fibers (18), and olfactomedin-4, which has recently emerged as a factor in a variety of human disorders, including some cancers (19–21) and irritable bowel syndrome (22).

Based on the high calcium levels measured in ocular fluid (23, 24), similar to other ECM environments (25), we set out to investigate whether the OLF domain of myocilin harbors a calcium binding site. The presence of numerous highly conserved aspartates among OLF domains (Fig. 1) and interaction of myocilin with negatively charged glycosaminoglycans (14) further suggest a need for such charge stabilization. Although sequence gazing and bioinformatics approaches failed to identify any canonical calcium binding motifs, we experimentally identified and characterized an unprecedented, single, high affinity, calcium binding site within the OLF domain of myocilin. This site is likely prevalent among OLF domains. Our results suggest new roles for myocilin in the TM and possible contribution to the pathogenesis of glaucoma.

EXPERIMENTAL PROCEDURES

Expression and Purification—myo-OLF and variants were expressed using a modified pMAL-c4x plasmid encoding an N-terminal maltose binding protein (MBP) fusion (New England Biolabs) in Rosetta Gami 2 (DE3)pLysS (Novagen) cells, as described previously (26). Cells were grown at 37 °C in Superior Broth (US Biological) to an optical density at 600 nm of 0.6–0.8, cooled to 18 °C, induced with 0.5 mM isopropyl-β-D-thiogalactopyranoside and allowed to grow overnight (14–16 h). Cells were flash frozen with liquid nitrogen and stored at −80 °C. Cell pellets were lysed via French Press after suspension in amylase wash buffer (10 mM KH2PO4, 10 mM Na2HPO4, 200 mM NaCl, and 1 mM EDTA) containing Roche Complete EDTA-free Protease Inhibitor Mixture. Cellular debris was removed via ultracentrifugation (162,000 g for 45 min at 4 °C), and the supernatant was loaded onto a 20-ml column containing high flow amylose resin (New England Biolabs) equilibrated with amylose wash buffer. The MBP-OLF fusion protein was eluted using amylose wash buffer supplemented with 10 mM maltose. Elution fractions were concentrated using Amicon Ultra-15 centrifugal filtration devices and loaded onto a Superdex 75 prep grade column (GE Healthcare) equilibrated with gel filtration buffer (10 mM KH2PO4, 10 mM Na2HPO4, and 200 mM NaCl, pH 6.8). Fractions of MBP-OLF monomer were identified by SDS-PAGE analysis, pooled, and concentrated for further use or for protease cleavage. Cleavage of MBP-OLF was accomplished using Factor Xa (New England Biolabs or Roche Applied Science) incubated for 16–18 h in 50 mM Tris, pH 8, 100 mM NaCl, and 5 mM CaCl2 at 37 °C (wild-type) or room temperature (variants). Cleaved protein was loaded onto the amylose resin column to remove MBP and uncleaved fusion protein. Flow-through fractions containing cleaved myo-OLF and Factor Xa were concentrated and subjected to Superdex 75 prep grade column chromatography. Fractions containing cleaved, pure, myo-OLF were identified by SDS-PAGE, pooled, and concentrated for further use.

Generation of myo-OLF Variants—Site-directed mutagenesis was accomplished using the QuickChange II® site-directed mutagenesis kit (Stratagene). Primers were designed using PrimerX and synthesized by MWG Operon (sequences not published previously (9, 26) appear in supplemental Table S1).
Ca\(^{2+}\) Binding Properties of the Myocilin OLF Domain

All mutated plasmid sequences were confirmed by DNA sequencing (MWG Operon). Protein expression and purification proceeded as above. The structural core of myoc-OLF (core-OLF), which lacks Asp-490, was generated by limited proteolysis as described previously (27).

Thermal Stability Assay—Changes in thermal stability were assessed by differential scanning fluorimetry (28), as modified by us previously for MBP-OLF (26, 27). Briefly, 30-μl reactions containing final concentrations of 1–3 μM myoc-OLF or MBP-OLF variants were diluted into buffer containing 10 mM Hepes, pH 7.5, 200 mM NaCl, and 5× Sypro Orange dye (Invitrogen). For MBP-OLF variants, 50 mM maltose was added to stabilize OLF variants were diluted into buffer containing 10 mM Hepes, pH 7.5, 150 mM NaCl, MgCl\(_2\), or Mg(OAc)\(_2\) at final concentrations of 1–3 μM, myoc-OLF(D380A), and MBP were purified as reported except EDTA was omitted from amylose wash buffer, and gel filtration buffer was chelated with Chelex (Sigma) resin. Duplicate independent reactions containing 8 μM wasthen measured under native and denaturing conditions. For MBP-OLF variants, 50 mM maltose was added to stabilize myoc-OLF(D380A) in gel filtration buffer, pH 7.2. For myoc-OLF at pH 4.6, purified protein was subjected to 3× concentration and dilution into 10 mM sodium acetate, 200 mM NaCl, pH 4.6, using an Amicon Ultra 15 centrifugal device. For thermal melts, protein samples were first diluted into 10 mM MES, pH 6.0, buffer and supplemented with 0 or 1 mM CaCl\(_2\) to a final concentration of 10–12 μM. No differences in secondary structure were observed between samples prepared in pH 6.0 or 7.2 (data not shown). Far-UV spectra were acquired at 4 or 20 °C with 30 averaged scans from 300 to 200 nm at a 500 nm min\(^{-1}\) scan rate, using a 0.1-cm cuvette. Far-UV melts were performed in duplicate utilizing a 1 °C min\(^{-1}\) increase in temperature from 5 to 95 °C. Ten scans from 300 to 200 nm at a 500-nm min\(^{-1}\) scan rate were averaged for each temperature. Data were blank-subtracted and converted to mean residue ellipticity \(\Theta = M_{res} \times \Theta_{obs}/10 \times d \times c\), where \(M_{res}=112.9\) is the mean residue mass calculated from the protein sequence; \(\Theta_{obs}\) is the observed ellipticity (degrees) at wavelength λ; \(d\) is the path length (cm); and \(c\) is the protein concentration (g/ml). The \(T_{m}\) was determined using mean residue ellipticity values recorded at 215 nm via Boltzmann Sigmoid analysis using Igor Pro.

Near-UV CD experiments were conducted with myoc-OLF at pH 7.2, at pH 4.6, and myoc-OLF(D380A) at pH 7.2 (40–50 μM protein concentration) prepared as described above. Scans were measured from 250 nm to 320 nm at a rate of 50 nm/min and a data pitch of 1 nm using a 0.1-cm cuvette. Each measurement was an average of 10 scans, converted to mean residue ellipticity.

Estimate of Ca\(^{2+}\) Dissociation Constant \(K_d\)—The \(K_d\) of Ca\(^{2+}\) for myoc-OLF was estimated with the binding constant macro in Origin (version 7) using data from differential scanning calorimetry (MicroCal VP-Capillary DSC) conducted at 15.4 μM protein concentration in gel filtration buffer. The unfolding transitions for both myoc-OLF and myoc-OLF(D380A) are not reversible but can be fit well to a non-two-state model (data not shown). Data from myoc-OLF(D380A) were used as an approximation for apo myoc-OLF (see “Results”). Relevant parameters: For myoc-OLF \(T_{m}=56.3^\circ C\),

Tables

Table 1

Analysis of stabilization of myoc-OLF by divalent metal ions

Sample	\(T_m\) \(^{\circ C}\)	\(\Delta T_m\) \(^{\circ C}\)
Myoc-OLF	53.0 ± 0.5	
Myoc-OLF + 10 mM CaCl\(_2\)	59.6 ± 0.2	6.6
Myoc-OLF + 10 mM Ca(OAc)\(_2\)	60.0 ± 0.1	7.0
Myoc-OLF + 10 mM MgCl\(_2\)	52.8 ± 0.2	−0.2
Myoc-OLF + 10 mM Mg(OAc)\(_2\)	53.6 ± 0.5	0.6
Myoc-OLF, pH 4.6	48.9 ± 0.1	
Myoc-OLF, pH 4.6 + 10 mM CaCl\(_2\)	53.6 ± 0.1	

Table 2

Elemental analysis for Ca\(^{2+}\) by ICP-OES

Sample	Calcium:protein (per mol)
MBP-OLF as-isolated	0.81
EDTA-free MBP-OLF	0.96
MBP-OLF(D380A)	0.10
MBP	0.01

4 S. D. Orwig, P. V. Chi, Y. Du, S. E. Hill, K. C. Turnage, H. Fu, and R. L. Lieberman, submitted for publication.
RESULTS

Initial Identification of Ca$^{2+}$ in myoc-OLF—We previously examined the effects of metal ions on the stability of myoc-OLF, but aspects of experimental design excluded calcium ions (27). Reassessment of myoc-OLF stability with calcium ions in a compatible buffer revealed a clear, anion-independent increase in thermal stability, as measured by differential scanning fluorimetry (Table 1; see “Experimental Procedures”), a technique that reports ligand binding as an increase in thermal stability (28). This phenomenon is observed even in the case of a fully bound protein when the ligand only binds the folded state of the protein (31).

Given the fact that the typical purification procedure involves numerous hours of contact with buffers containing 1 mM EDTA ($K_M = 3.2 \times 10^{-8}$ M for Ca$^{2+}$ (32)), we expected the as-isolated MBP-OLF fusion protein to lack Ca$^{2+}$. However, elemental analysis by ICP-OES (Table 2) revealed significant levels of Ca$^{2+}$. Omission of EDTA from the purification procedure yielded nearly stoichiometric values consistent with a singly bound Ca$^{2+}$ ion to the monomeric MBP-OLF; Ca$^{2+}$ does not copurify with MBP (Table 2). When incubated with Quin-2, a fluorescent EGTA analog with $K_J = 2.9 \times 10^{-9}$ M (29), high fluorescence values indicative of Ca$^{2+}$ release from myoc-OLF were only detected under denaturing conditions (Fig. 2). To date, we have not been able to prepare a native form of apo myoc-OLF or fully reload myoc-OLF. Isothermal titration calorimetry using myoc-OLF reveals only nonspecific binding; no additional binding sites are apparent (supplemental Fig. S1).

Mutational Analysis of Carboxylic Acid-containing Residues as Ligands for Ca$^{2+}$ Reveals Asp-273 and Glaucoma-associated Asp-380—To deduce the metal binding residues in myoc-OLF, the tertiary structure observed in the aromatic region of myoc-OLF(D380A) is somewhat different from wild-type at pH 7.2. However, the spectrum overlays with wild-type myoc-OLF at pH 4.6 (Fig. 3B). Because myoc-OLF at pH 4.6 is a well folded (27), Ca$^{2+}$-stabilized protein (Table 1), the structural changes in myoc-OLF(D380A) that lead to ablation of Ca$^{2+}$ binding are due to the loss of coordination of Asp-380 to Ca$^{2+}$ and not a change in the structure of myoc-OLF or the Ca$^{2+}$ binding pocket.

Investigation of Ca$^{2+}$ Stabilization of 18 Other Disease-causing myoc-OLF Variants Reveals No Other Impaired Variants—Due to the documented participation of other polar residues or main chain-derived carbonyls in Ca$^{2+}$ binding (33), combined with the glucoma relevance of myoc-OLF(D380A), we looked at the extent of stabilization by Ca$^{2+}$ for 18 disease-causing OLF mutants (Table 3). With the exception of D380A, all of the disease-causing variants were stabilized by $+5.7\text{ to }-9.1$ °C in the presence of 10 mM Ca$^{2+}$; wild-type myoc-OLF is stabilized by 6.5 °C. Although the extent of stabilization varies somewhat, lack of calcium binding is not a general feature of disease-causing variants, and we were not able to statistically correlate initial T_m or position in the amino acid sequence with extent of stabilization. Thus, the remaining cryptic Ca$^{2+}$ coordination sphere likely involves some combination of other side chains not yet identified, main chain carbonyls, or water molecules.
Ca\(^{2+}\) Binding Properties of the Myocilin OLF Domain

a

b

c

FIGURE 3. Structural and stability comparison of myoc-OLF and myoc-OLF(D380A). Shown is a comparison of secondary structure from far-UV spectra (a) and tertiary structure from near-UV spectra (b) among wild-type myoc-OLF at pH 7.2, wild-type myoc-OLF at pH 4.6, and myoc-OLF(D380A) at pH 7.2. c, CD thermal melts for myoc-OLF and myoc-OLF(D380A) in MES pH 6.0, monitored at 215 nm in the presence and absence of exogenous Ca\(^{2+}\).

Variant	Rationale	\(T_m\)	\(T_m + 10\) \(\text{mM CaCl}_2\)	\(\Delta T_m\)
myoc-OLF	Wild-type	53.0 ± 0.5	59.6 ± 0.2	6.6
myoc-OLF core	Identified structural core\(^a\)	49.7 ± 0.3	57.7 ± 0.1	8.1
MBP-OLF(G246R)	Disease-causing variant	42.5 ± 0.2	50.6 ± 0.0	8.1
MBP-OLF(G252R)	Disease-causing variant	43.0 ± 0.2	51.5 ± 0.2	8.5
MBP-OLF(R272G)	Disease-causing variant	41.0 ± 0.3	48.6 ± 0.1	7.6
MBP-OLF(D273A)	Carboxylate side chain?	21.7 ± 0.8	21.1 ± 0.7	-0.6
MBP-OLF(E323K)	Disease-causing variant	44.0 ± 0.5	50.3 ± 0.2	6.2
MBP-OLF(G364V)	Disease-causing variant	45.0 ± 0.4	51.9 ± 0.1	6.9
MBP-OLF(G367R)	Disease-causing variant	42.7 ± 0.1	50.9 ± 0.4	8.1
MBP-OLF(T377M)	Disease-causing variant	44.3 ± 0.3	50.6 ± 0.6	6.3
MBP-OLF(D378A)	Carboxylate side chain?	N/A	N/A	N/A\(^a\)
MBP-OLF(D380A)	Carboxylate side chain ligand? and disease causing variant	46.6 ± 0.3	45.1 ± 0.5	-1.5
MBP-OLF(D384A)	Carboxylate side chain ligand?	42.5 ± 0.7	53.6 ± 0.5	11.1
MBP-OLF(E385A)	Carboxylate side chain ligand?	39.7 ± 0.4	49.7 ± 0.3	10
MBP-OLF(A427E)	Disease-causing variant	34.2 ± 0.4	43.2 ± 0.1	9.0
MBP-OLF(A427T)	Disease-causing variant	41.5 ± 0.1	49.9 ± 0.1	8.4
MBP-OLF(A433R)	Disease-causing variant	48.3 ± 0.3	55.2 ± 0.4	6.9
MBP-OLF(Y437H)	Disease-causing variant	40.4 ± 0.4	49.4 ± 0.5	9.0
MBP-OLF(L477N)	Disease-causing variant	37.7 ± 0.8	46.8 ± 0.2	9.1
MBP-OLF(S480K)	Disease-causing variant	39.7 ± 0.2	48.2 ± 0.5	8.5
MBP-OLF(P481L)	Disease-causing variant	42.4 ± 0.2	48.1 ± 0.1	5.9
MBP-OLF(A499F)	Disease-causing variant	45.5 ± 0.4	51.2 ± 0.3	5.7
MBP-OLF(E902K)	Disease-causing variant	42.8 ± 0.1	50.4 ± 0.4	7.6

\(^{a}\) From Ref. 27.

\(^{b}\) Variant could not be purified in sufficient quantities in folded state for measurement.

Estimation of Ca**\(^{2+}\)** Dissociation Constant—Because a strictly apo wild-type myoc-OLF protein could not be prepared for direct calorimetric measurement of calcium binding, we estimated the dissociation constant from experimental \(T_m\) values obtained by differential scanning calorimetry, which are corroborated by CD (Fig. 3C) and differential scanning fluorimetry (Table 3), as well as experimental values for the enthalpy of Ca**\(^{2+}\)** binding at specific pH conditions (38), obtained by differential scanning calorimetry, which are corroborated by CD (Fig. 3).

Model for Ca**\(^{2+}\)** Binding Motif in myoc-OLF—On the basis of bioinformatics approaches, neither the popular D(D/N)DG sequence found among integrins, EF-hands, and \(\beta\)-blades (36, 37) nor the EGF-like motif DXD(Q/E)X\(_{14}\)(D/N) (38), is present in myoc-OLF. Thus, to gain additional structural insight, we probed the region of the myoc-OLF sequence containing Asp-380 (378–393) using HH-PRED (39) and Robetta (40), revealing as expected from CD, a high \(\beta\)-strand propensity. Although no structurally similar Ca**\(^{2+}\)** binding proteins were identified by HH-PRED, the Mg**\(^{2+}\)**-dependent \(\delta\)-alanine \(\delta\)-alanine ligase (Protein Data Bank code 1IOW) and a Zn**\(^{2+}\)**-dependent Haemophilus influenzae enzyme (Protein Data Bank code 1NO5) use a \(\delta\)-strand-embedded aspartate at a position equivalent to Asp-380 for metal ion binding. Thus, even though calcium binding sites are generally found within a loop region, the site in myoc-OLF may instead resemble one of these other metalloproteins. Notably, the sequence Gly-387–Tyr-392, which forms a predicted \(\beta\)-strand separate from that containing Asp-380, bears resemblance to the C-terminal region of \(\gamma\)-S-crystallin (Protein Data Bank code 1HA4), the cataract-associated lens protein. Although an equivalent aspartate...
to Asp-380 is not present in γS-crystallin, the βγ-crystallin superfamily does bind calcium (41) using consensus sequence (N/D)(N/D)X₆(S/T/S)₃ (42), which is also absent in myoc-OLF.

Prediction of Ca²⁺ Binding Motifs in the OLF Domain Family—Finally, we broadened our scope beyond myocilin to include other OLF domain containing proteins to gain insight into whether calcium binding may be an inherent characteristic of such domains. Among myocilin orthologs, Asp-380 is located in a well conserved region of the OLF domain peppered with acidic residues that were subjected to mutagenesis in our study (see above). Expansion of sequence analysis to include 45 OLF homologs available in ProSite (43), combined with an evolutionary trace (44), reveals that all but one distant branch harbors an aspartate or glutamate at the equivalent position of 380 in myocilin (supplemental Fig. S2). Instead of aspartate, these distant relatives, the gliomedins, harbor asparagine, which is unlikely to be a ligand for calcium. Asp-273 is also highly conserved among the expanded list of OLF domains, with the only outliers in the same branch lacking a Asp-380. Asp-378 is far less conserved, being replaced with tyrosine, leucine, and phenylalanine. Thus, although many variants appear to have a well positioned aspartate for calcium binding, additional characterization of other OLF domains will be required to assess further generality.

DISCUSSION

We have identified a novel, high affinity Ca²⁺ site within the OLF domain of myocilin. The myoc-OLF Ca²⁺ binding site contains an unprecedented motif that includes Asp-380, also the site of a glaucoma-causing lesion. Of the 23 total myoc-OLF variants we investigated, including mutants of conserved aspartate/glutamate residues, as well as disease-causing mutants, only two additional candidate ligands emerged, namely, Asp-273 and Asp-378. However, neither position could be confirmed unambiguously due to the severely impaired biophysical properties of the resulting recombinant protein. The combination of low thermal stability of myoc-OLF(D273A) and its high level of conservation among orthologs at this position underscores the importance of this residue to the integrity of the OLF domain. This stability reduction is highly residue-specific; myoc-OLF(R272G), the adjacent disease variant, is a moderately stable protein that is stabilized by calcium. By comparison, although Asp-378 could hypothetically form part of the prevalent DXD Ca²⁺ binding loop found in EF-hands and β-blades, the remaining motif is absent. Asp-378 is not well conserved among OLF domains, and Asp-380 is predicted to be located within a β-strand, not a loop. The varied nature of calcium binding sites in proteins, which include not only oxygen-containing amino acid side chains but also main chain carbonyls, hydroxyl moieties, and water molecules for a total coordination number of 6–8 (45), may render the remaining Ca²⁺ coordination environment in myoc-OLF inaccessible by site-directed mutagenesis. At present, however, there is no OLF structure or high-confidence homology model for further insight.

Two of the major proposed functions of Ca²⁺ binding sites in ECM proteins are the enhancement of thermal stability and protection against proteolysis (25). In support of these roles, we previously observed resistance of myoc-OLF to protease treatment (27) and core-OLF is still stabilized by calcium. Unlike other known calcium-containing ECM proteins like osteonectin, in which the binding of calcium induces a large conformational change (46), wild-type myoc-OLF at pH 7.2, myoc-OLF at pH 4.6, and myoc-OLF(D380A) are stable proteins with highly similar structural features. Thus, although myoc-OLF at pH 7.2 is more stable than the D380A mutant to thermal denaturation, calcium is not absolutely required for OLF folding.

The estimated binding affinity of the myoc-OLF calcium site based on available thermodynamic parameters is also in line with Ca²⁺ equilibrium dissociation constants of other ECM proteins, which are usually in the micromolar range (2). However, myocilin is atypical in that the site is largely inaccessible to the strong chelators EDTA and Quin-2. This indicates that metallation likely occurs upon folding in the calcium-rich endoplasmic reticulum (47). Based on experimental measurements of millimolar levels of calcium ions in aqueous humor (23, 24), the myocilin OLF domain should be continually saturated with Ca²⁺ once trafficked to the TM. In addition to conferring stability, Ca²⁺ sites in ECM proteins play regulatory or signaling roles, for example, in response to local calcium ion gradients (2). The emerging picture appears true in proteins with a stabilizing, high affinity Ca²⁺ site, regardless of whether Ca²⁺ is bound within a single protein domain or at the interface between domains. Calcium ions may directly facilitate ligand interaction or membrane association, or stabilize a particular protein conformation so that it is primed for ligand binding or activated for catalysis (1). Full-length myocilin is a modular protein like other ECM proteins, but myocilin is unusual in that it has a coiled-coil for oligomerization instead of a repeated domain structure within a single polypeptide chain. The OLF domain behaves as a monomer in vitro (26, 27), and it has been suggested that the myocilin domain structure brings OLF domains in close proximity, albeit in an unknown configuration and for an unclear purpose. Even though all but one (48) of the interacting partners for myocilin identified to date appear to not require the OLF domain, our results hint at the possibility that these and other interactions may be calcium-dependent or require a transient calcium gradient. In support of this hypothesis, in the case of amassin, cell-cell interactions were found to be contingent upon the presence of calcium ions (49).

Although currently there is no experimental evidence for calcium involvement in biomechanical stress response in the TM, it is well known that calcium is associated with muscle contraction, cell shape, and adhesion, by altering myosin interaction with actin (50). Relevant to the myocilin system, mechanical stress of TM cells leads to rearrangements of actin filaments (51) and elevated levels of myocilin mRNA (52). Myocilin has also been proposed to interact directly with actin via its coiled-coil (15). This syllogism suggests that myocilin could be sensitive to shear and/or other biomechanical stress via a calcium-dependent mechanism. Alternatively, myocilin may play a part in the regulation of TM calcification. Genes associated with calcification are abundantly expressed in the TM. Although the details of calcification and/or prevention in the TM and their physiological or pathological role(s) are still unknown (53),
myocilin mutants can alter the expression of calcification genes (54), suggesting interplay is possible.

In sum, the new knowledge of a calcium site in myoc-OLF opens a completely new context in which to probe the biological and pathogenic roles of myocilin. Additional characterization of the OLF domain in the context of full-length myocilin, calcium fluxes, and mechanical stress in the TM should both yield new functional insights for myocilin and contribute to our still poor comprehension of the role of Ca2+ in the anterior segment of the eye.

Acknowledgments—We thank Dana Freeman for assistance in cell growth and Anton Petrov, Chad Bernier, and C. Ross Ether for helpful discussions.

REFERENCES

1. Evenäs, J., Malmendal, A., and Forsén, S. (1998) Calcium. Curr. Opin. Chem. Biol. 2, 317–323
2. Maurer, P., and Hohenester, E. (1997) Structural and functional aspects of calcium binding in extracellular matrix proteins. Matrix Biol. 15, 569–580
3. Zhang, K., Zhang, L., and Weinreb, R. N. (2012) Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma. Nat. Rev. Drug Discov. 11, 541–559
4. McLaughlin, C. W., Karl, M. O., Zellhuber-McMillan, S., Wang, Z., Do, C. W., Leung, C. T., Li, A., Stone, R. A., Macknight, A. D., and Civan, M. M. (2008) Electron probe X-ray microanalysis of intact pathway for human aqueous humor outflow. Am. J. Physiol. Cell Physiol. 295, C1083–1091
5. Polansky, J. R., Fauss, D. J., Chen, P., Chen, H., Lütjen-Drecoll, E., Johnson, D., Kurtz, R. M., Ma, Z. D., Bloom, E., and Nguyen, T. D. (1997) Cellular pharmacology and molecular biology of the trabecular meshwork inducible glucocorticoid response gene product. Ophthalmologica 211, 126–139
6. Carbone, M. A., Ayroles, J. F., Yamamoto, A., Morozova, T. V., West, S. A., Magwire, M. R., Mackay, T. F., and Anholt, R. R. (2009) Overexpression of myocilin in the Drosophila eye activates the unfolded protein response: implications for glaucoma. PLoS One 4, e4216
7. Clark, A. F., and Wordinger, R. J. (2009) The role of steroids in outflow resistance. Exp. Eye Res. 88, 752–759
8. Resch, Z. T., and Fauth, M. P. (2009) Glaucoma-associated myocilin: a better understanding but much more to learn. Exp. Eye Res. 88, 704–712
9. Burns, J. N., Turnage, K. C., Walker, C. A., and Lieberman, R. L. (2011) The stability of myocilin olfactomedin domain variants provides new insight into glaucoma as a protein misfolding disorder. Biochemistry 50, 5824–5833
10. Orwig, S. D., Perry, C. W., Kim, L. Y., Turnage, K. C., Zhang, R., Vollrath, D., Schmidt-Krey, I., and Lieberman, R. L. (2012) Amyloid fibril formation by the glaucoma-associated olfactomedin domain of myocilin. J. Mol. Biol. 421, 242–255
11. Fauth, M. P., and Johnson, D. H. (2001) Characterization of myocilin-olfactomedin interactions. Invest. Ophthalmol. Vis. Sci. 42, 2324–2331
12. Fauth, M. P., Vrabel, A. M., and Johnson, D. H. (2006) The identification of myocilin-associated proteins in the human trabecular meshwork. Exp. Eye Res. 82, 1046–1052
13. Goldwich, A., Scholz, M., and Tanou, E. R. (2009) Myocilin promotes substrate adhesion, spreading and formation of focal contacts in podocytes and mesangial cells. Histochem. Cell Biol. 131, 167–180
14. Peters, D. M., Herbert, K., Biddick, B., and Peterson, J. A. (2005) Myocilin binding to Hep II domain of fibronectin inhibits cell spreading and incorporation of paxillin into focal adhesions. Exp. Cell Res. 303, 218–228
15. Wentz-Hunter, K., Ueda, J., and Yue, B. Y. (2002) Protein interactions with myocilin. Invest. Ophthalmol. Vis. Sci. 43, 176–182
16. Tomarev, S. I., and Nakaya, N. (2009) Olfactomedin domain-containing proteins: possible mechanisms of action and functions in normal development and pathology. Mol. Neurobiol. 40, 122–138
17. Hillier, B. J., and Vacquier, V. D. (2007) Structural features and functional domains of amasin-1, a cell-binding olfactomedin protein. Biochem. Cell Biol. 85, 552–562
18. Labasque, M., Devaux, J. L., Lévéque, C., and Fairey-Sarrailh, C. (2011) Fibronectin type III-like domains of neurofascin-186 protein mediate gliomedin binding and its clustering at the developing nodes of Ranvier. J. Biol. Chem. 286, 42426–42434
19. Yu, L., Wang, L., and Chen, S. (2011) Olfactomedin 4, a novel marker for the differentiation and progression of gastrointestinal cancers. Neoplasma 58, 9–13
20. Kobayashi, D., Koshida, S., Moriai, R., Tsuji, N., and Watanabe, N. (2007) Olfactomedin 4 promotes S-phase transition in proliferation of pancreatic cancer cells. Cancer Sci. 98, 334–340
21. Liu, R. H., Yang, M. H., Xiang, H., Bao, L. M., Yang, H. A., Yue, L. W., Jiang, X., Ang, N., Wu, L. Y., and Huang, Y. (2012) Depletion of OLFM4 gene inhibits cell growth and increases sensitization to hydrogen peroxide and tumor necrosis factor-α induced apoptosis in gastric cancer cells. J. Biomed. Sci. 19, 38
22. Gersemann, M., Becker, S., Nuding, S., Antoni, L., Ott, G., Fritz, P., Oue, N., Yasui, W., Wehkamp, J., and Stange, E. F. (2012) Olfactomedin-4 is a glycoprotein secreted into mucus in active IBD. J. Crohns Colitis 6, 425–434
23. Cruciani, F., Moramarco, A., Antonelli, B., Mollo, R., Balacco-Gabrieli, C., Costantini, S., Ciarialli, L., Giordano, R., Sepe, A., Damore, E., and Valeri, M. (2004) Evaluation of five elements in lenses and aqueous humour of experimental rabbits after induced opacity. J. Trace Elem. Med. Biol. 18, 141–147
24. Ringvold, A., Sagen, E., Bjerve, K. S., and Polling, I. (1988) The calcium and magnesium content of the human lens and aqueous humor. A study in patients with hypocalcemic and senile cataract. Acta Ophthalmol. (Copenh.) 66, 153–156
25. Maurer, P., Hohenester, E., and Engel, J. (1996) Extracellular calcium-binding proteins. Curr. Opin. Cell Biol. 8, 609–617
26. Burns, J. N., Orwig, S. D., Harris, J. L., Watkins, J. D., Vollrath, D., and Lieberman, R. L. (2010) Rescue of glaucoma-causing mutant myocilin thermal stability by chemical chaperones. ACS Chem. Biol. 5, 477–487
27. Orwig, S. D., and Lieberman, R. L. (2011) Biophysical characterization of the olfactomedin domain of myocilin, an extracellular matrix protein implicated in inherited forms of glaucoma. PLoS One 6, e16347
28. Niesen, F. H., Berglund, H., and Vedadi, M. (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221
29. Bryant, D. T. (1985) Quin 2: the dissociation constants of its Ca2+ and Mg2+ complexes and its use in a fluorimetric method for determining the dissociation of Ca2+-protein complexes. Biochem. J. 226, 613–616
30. Pei, J., and Grishin, N. V. (2007) PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics 23, 802–808
31. Sanchez-Ruiz, J. M. (2007) Ligand effects on protein thermodynamic stability. Biophys. Chem. 126, 43–49
32. Smith, P. D., Liesegang, G. W., Berger, R. L., Czerlinski, G., and Podolsky, R. J. (1984) A stopped-flow investigation of calcium ion binding by ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetic acid. Anal. Biochem. 143, 188–195
33. Fidock, E., and Moore, G. R. (2001) Structural characteristics of protein binding sites for calcium and lanthanide ions. J. Biol. Inorg. Chem. 6, 479–489
34. Brahm, S., and Brahm, J. (1980) Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J. Mol. Biol. 138, 149–178
35. Morisset, J. D., and Broomfield, C. A. (1971) Active site spin-labeled chymotrypsin. Guanidine hydrochloride denaturation studies using electron paramagnetic resonance and circular dichroism. J. Am. Chem. Soc. 93, 7297–7304
36. Rigden, D. J., and Galperin, M. Y. (2004) The DxDxDG motif for calcium binding: multiple structural contexts and implications for evolution. J. Mol. Biol. 343, 971–984
37. Rigden, D. J., Woodhead, D. D., Wong, P. W., and Galperin, M. Y. (2011)
New structural and functional contexts of the Dx(DN)xDG linear motif: insights into evolution of calcium-binding proteins. *PLoS One* **6**, e21507

38. Handford, P. A., Mayhew, M., Baron, M., Winship, P. R., Campbell, I. D., and Brownlee, G. G. (1991) Key residues involved in calcium-binding motifs in EGF-like domains. *Nature* **351**, 164–167

39. Remmert, M., Biegert, A., Hauser, A., and Söding, J. (2012) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. *Nat. Methods* **9**, 173–175

40. Thompson, J., and Baker, D. (2011) Incorporation of evolutionary information into Rosetta comparative modeling. *Proteins* **79**, 2380–2388

41. Rajini, B., Shridas, P., Sundari, C. S., Muralidhar, D., Chandani, S., Thomas, F., and Sharma, Y. (2001) Calcium binding properties of \(\beta \)-\(\gamma \)-crystallin: calcium ion binds at the Greek key \(\beta \)-\(\gamma \)-crystallin fold. *J. Biol. Chem.* **276**, 38464–38471

42. Aravind, P., Mishra, A., Suman, S. K., Jobby, M. K., Sankaranarayanan, R., and Sharma, Y. (2009) The \(\beta \)-\(\gamma \)-crystallin superfamily contains a universal motif for binding calcium. *Biochemistry* **48**, 12180–12190

43. Sigrist, C. J., Cerutti, L., de Castro, E., Langendijk-Genevaux, P. S., Bulliard, V., Bairoch, A., and Hulo, N. (2010) PROSITE, a protein domain database for functional characterization and annotation. *Nucleic Acids Res.* **38**, D161–166

44. Innis, C. A., Shi, J., and Blundell, T. L. (2000) Evolutionary trace analysis of TGF-\(\beta \) and related growth factors: implications for site-directed mutagenesis. *Protein Eng.* **13**, 839–847

45. Dudev, T., and Lim, C. (2003) Principles governing Mg, Ca, and Zn binding and selectivity in proteins. *Chem. Rev.* **103**, 773–788

46. Maurer, P., Hohenadl, C., Hohenester, E., Göhring, W., Timpl, R., and Engel, J. (1995) The C-terminal portion of BM-40 (SPARC/osteonectin) is an autonomously folding and crystallisable domain that binds calcium and collagen IV. *J. Mol. Biol.* **253**, 347–357

47. Meldolesi, J., and Pozzan, T. (1998) The endoplasmic reticulum Ca\(^{2+}\) store: a view from the lumen. *Trends Biochem. Sci.* **23**, 10–14

48. Joe, M. K., Sohn, S., Choi, Y. R., Park, H., and Kee, C. (2005) Identification of flotillin-1 as a protein interacting with myocilin: implications for the pathogenesis of primary open-angle glaucoma. *Biochem. Biophys. Res. Commun.* **336**, 1201–1206

49. Hillier, B. I., and Vacquier, V. D. (2003) Amassin, an olfactomedin protein, mediates the massive intercellular adhesion of sea urchin coelomocytes. *J. Cell Biol.* **160**, 597–604

50. Clapham, D. E. (2007) Calcium signaling. *Cell* **131**, 1047–1058

51. Tumminia, S. J., Mitton, K. P., Arora, J., Zelenka, P., Epstein, D. L., and Russell, P. (1998) Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells. *Invest. Ophthalmol. Vis. Sci.* **39**, 1361–1371

52. Tamm, E. R., Russell, P., Epstein, D. L., Johnson, D. H., and Piatigorsky, J. (1999) Modulation of myocilin/TIGR expression in human trabecular meshwork. *Invest. Ophthalmol. Vis. Sci.* **40**, 2577–2582

53. Borrás, T., and Comes, N. (2009) Evidence for a calcification process in the trabecular meshwork. *Exp. Eye Res.* **88**, 738–746

54. Kennedy, K. D., AnithaChristy, S. A., Buie, L. K., and Borrás, T. (2012) Cystatin a, a potential common link for mutant myocilin causative glaucoma. *PLoS One* **7**, e36301
The Glaucoma-associated Olfactomedin Domain of Myocilin Is a Novel Calcium Binding Protein
Rebecca K. Donegan, Shannon E. Hill, Katherine C. Turnage, Susan D. Orwig and Raquel L. Lieberman

J. Biol. Chem. 2012, 287:43370-43377.
doi: 10.1074/jbc.M112.408906 originally published online November 5, 2012

Access the most updated version of this article at doi: 10.1074/jbc.M112.408906

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2012/11/05/M112.408906.DC1

This article cites 54 references, 8 of which can be accessed free at
http://www.jbc.org/content/287/52/43370.full.html#ref-list-1