Multi-level Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities

Martin Hutzenthaler1 & Thomas Kruse1

1 Faculty of Mathematics, University of Duisburg-Essen, Germany

August 11, 2018

Abstract

Parabolic partial differential equations (PDEs) and backward stochastic differential equations (BSDEs) have a wide range of applications. In particular, high-dimensional PDEs with gradient-dependent nonlinearities appear often in the state-of-the-art pricing and hedging of financial derivatives. In this article we prove that semilinear heat equations with gradient-dependent nonlinearities can be approximated under suitable assumptions with computational complexity that grows polynomially both in the dimension and the reciprocal of the accuracy.

1 Introduction

Parabolic partial differential equations (PDEs) and backward stochastic differential equations (BSDEs) are key ingredients in a number of models in physics and financial engineering; see, e.g., the references in [4]. These applications often lead to stochastic optimization problems which result in a semilinear or quasilinear PDE with a nonlinearity depending on the gradient of the solution. Moreover these PDEs are high-dimensional if the financial derivative depends on a whole basket of underlyings. So it is important to approximate the solutions of such PDEs approximately at single space-time points (the full solution function is presumably hard to approximate in high dimensions; cf. Theorem 1 in Heinrich [6] for the elliptic case). The numerical analysis literature contains a multitude of approximation methods for parabolic PDEs and BSDEs; see the review in [4] and the recent article [2]. However, to the best of our knowledge, none of these methods except for the branching diffusion method fulfills the requirement that the computational complexity grows at most polynomially both in the dimension and in the reciprocal of the accuracy; see Section 6 in [4] for a detailed discussion. The branching diffusion method proposed in [7, 9, 8] meets this requirement. However, not only is this method only applicable to a special class of PDEs, it also requires the terminal/initial condition to be quite small (see Subsection 6.7 in [4] for a detailed discussion).

The recent article [3] proposes a family of approximation methods based on Picard approximations and multi-level Monte Carlo methods; see also [5] below. The simulation results in [1] suggest that these methods work satisfactory for 100-dimensional semilinear PDEs from applications. In addition Corollary 3.18 in [3] shows under suitable regularity assumptions on the exact solution for semilinear heat equations with gradient-independent nonlinearities that the computational complexity is bounded by $O(d\varepsilon^{-(4+\delta)})$ for any $\delta \in (0, \infty)$, where d is the dimensionality of the problem and $\varepsilon \in (0, \infty)$ is the prescribed accuracy. Generalizing the proof of Corollary 3.18 in [3] to the gradient-dependent case is nontrivial. In particular, we were not able to derive an inequality analogous to (56) in [3] involving a family of suitable seminorms to which one could apply a discrete Gronwall inequality.

So it remained an open problem to prove mathematically that semilinear PDEs with gradient-dependent nonlinearity and general terminal/initial condition can be approximated with a computational effort which grows at most polynomially both in the dimension and in the reciprocal of the prescribed accuracy. In this article we solve this problem for the first time. More precisely, Corollary 4.8 below shows under suitable regularity assumptions on the exact solution for semilinear heat equations with gradient-dependent nonlinearities that the computational complexity of the multi-level Picard approximations is bounded by $O(d\varepsilon^{-(4+\delta)})$ for any $\delta \in (0, \infty)$, where d is the dimensionality of the problem and $\varepsilon \in (0, \infty)$ is the prescribed accuracy.

The structure of this article is as follows. Subsection 1.1 gathers notation that we frequently use. In Section 2 we introduce the setting which we consider throughout this article and, in particular, the multilevel
Picard approximations with Gauß-Legendre quadrature rules given by \([3]\). The reason for choosing Gauß-Legendre quadrature rules is the very fast convergence in case of sufficiently smooth integrands; cf. Lemma \([4,3]\) below. Fast readers can then jump to Corollary \([4,8]\) which is the main result of this article. For the proof of Corollary \([4,8]\) we first derive the (recursive) bound \([5,1]\) for the global error and then iterate this inequality to obtain the (non-recursive) bound \([5,5]\) for the global error. Finally Lemma \([3,3]\) provides an upper bound for the iterated Gauß-Legendre integrals over inverse square roots appearing in \([5,5]\).

1.1 Notation

We denote by \(\langle \cdot, \cdot \rangle: (\cap n \in N(R^n \times R^n)) \rightarrow [0, \infty)\) the function that satisfies for all \(n \in N, v=(v_1, \ldots, v_n), w=(w_1, \ldots, w_n) \in R^n\) that \(\langle v, w \rangle = \sum_{i=1}^n v_i w_i\). For every \(p \in N\) we denote by \(\|\cdot\|_p: (\cap n \in N R^n) \rightarrow [0, \infty)\) and \(\|\cdot\|_\infty: \cap n \in N R^n) \rightarrow [0, \infty)\) the functions that satisfy for all \(n \in N, v=(v_1, \ldots, v_n)\) that \(\|v\|_p = [\sum_{i=1}^n |v_i|^p]^{1/p}\) and \(\|v\|_\infty = \max_{1 \leq i \leq n} |v_i|\). For every topological space \((E, \mathcal{E})\) we denote by \(\mathcal{B}(E)\) the Borel-sigma-algebra on \((E, \mathcal{E})\). For all measurable spaces \((A, \mathcal{A})\) and \((B, \mathcal{B})\) we denote by \(\mathcal{M}(A, B)\) the set of \(\mathcal{A}/\mathcal{B}\)-measurable functions from \(A\) to \(B\). For every probability space \((\Omega, \mathcal{F}, \mathbb{P})\) we denote by \(\|\cdot\|_{L^2(\mathbb{P}, R)}: \mathcal{M}(\Omega, \mathcal{F}(\mathbb{R})) \rightarrow [0, \infty)\) the function that satisfies for all \(X \in \mathcal{M}(\mathcal{A}, \mathcal{B}(\mathbb{R}))\) that \(\|X\|_{L^2(\mathbb{P}, \mathbb{R})} = \sqrt{\mathbb{E}[|X|^2]}\). We denote by \(\frac{\alpha}{\beta}, 0 \cdot \infty, 0^0, \sqrt{\infty}\) the extended real numbers given by \(\frac{\alpha}{\beta} = 0, 0 \cdot \infty = 0, 0^0 = 1, \sqrt{\infty} = \infty\). For every \(a \in (0, \infty)\) and every \(b \in R\) we denote by \(\alpha, \frac{\alpha}{\beta}, 0^{-a}, \frac{\alpha}{\beta} \cdot \infty, 0^{-a} = \infty, \frac{\alpha}{\beta} = \infty, \frac{\alpha}{\beta} = 0, 0^a = 0\). For every \(A \subseteq \mathbb{Z}, \alpha: A \rightarrow R,\) and \(k \in \mathbb{Z}\) we denote by \(\prod_{l=k} a(l)\) and \(\sum_{l=k} a(l)\) the real numbers given by \(\prod_{l=k} a(l) = 1\) and \(\sum_{l=k} a(l) = 0\).

2 Multi-level Picard approximations

Let \(T \in (0, \infty), d \in N, g \in C^2([0, T] \times R^d, R), \Theta = \cap n \in N R^n, L \in R^{d+1}, K \in R^d, \) let \((\Omega, \mathcal{F}, \mathbb{P}, (F_t)_{t \in [0, T]}\) be a stochastic basis, let \(W^\theta: [0, T] \times \Theta \rightarrow \mathbb{R}^d, \theta \in \Theta,\) be independent standard \((F_t)_{t \in [0, T]}\)-Brownian motions with continuous sample paths, let \(F: \mathcal{M}(\mathcal{B}([0, T] \times R^d), \mathcal{B}(R^{d+1})) \rightarrow \mathcal{M}(\mathcal{B}([0, T] \times R^d), \mathcal{B}(R^{d+1})), r \in [0, T], y \in R^d\) that

\[
|\langle F(u_1) - F(u_2) \rangle (r, y) \rangle | \leq \sum_{\nu=1}^{d-1} L_{\nu} |\langle u_1 (r, y) - u_2 (r, y) \rangle | ,
\]

let \(g: \mathbb{R}^d \rightarrow \mathbb{R}\) satisfy for all \(x, y \in \mathbb{R}^d\) that

\[
|g(x) - g(y)| \leq \sum_{\alpha=1}^{d} K_{\alpha} |\langle x - y \rangle | ,
\]

let \(u^\infty = (u^\infty(r, y))_{(r,y) \in [0,T] \times R^d} \in C^{1,2}([0, T] \times R^d, R)\) satisfy for all \(r \in (0, T), y \in R^d\) that \(u^\infty(T, y) = g(y)\) and

\[
\left(\frac{\partial}{\partial r} u^\infty \right)(r, y) + \frac{1}{2} (\Delta (y) u^\infty)(r, y) + (F((u^\infty, \nabla (y) u^\infty)))(r, y) = 0 ,
\]

let \(u^\infty \in C([0, T] \times R^d, R^{d+1})\) satisfy for all \(r \in [0, T], y \in R^d\) that \(u^\infty(r, y) = (u^\infty(r, y), \nabla (y) u^\infty(r, y))\), for every \(n \in N \) let \(\{c^n_{i}\}_{i \in \{1, \ldots, n\}} \subseteq [-1, 1]\) be the \(n\) distinct roots of the Legendre polynomial \([-1, 1] \ni x \mapsto \frac{1}{2n+1} 2^n \prod_{i=1}^{n} \left(\frac{2x-1}{2a} \right)^{c^n_i - a}\) \(\in R, q^n,\alpha, \beta, \in R\) be the function which satisfies for all \(t \in [\alpha, \beta]\) that

\[
q^n,\alpha, \beta, (0) (t) = \int_{\alpha}^{\beta} \left[\prod_{i \in \{1, \ldots, n\}} \left(\frac{2x - (a + \beta)}{2x - (a - \beta)} \right)^{c^n_i - a} \right] dx : (\alpha < \beta) \text{ and } (\frac{2x - (a + \beta)}{2x - (a - \beta)} \in \{c^n_1, \ldots, c^n_n\})
\]

: else,

let \(\{U^n_{\theta, M, Q} \}_{n, M, Q, \in N, \theta \in \Theta} \subseteq \mathcal{M}(\mathcal{B}([0, T] \times R^d) \otimes \mathcal{F}, \mathcal{B}(R \times R^{d}))\) satisfy for all \(n, M, Q \in N, \theta \in \Theta, (s, x) \in [0, T] \times R^d\) that \(U^n_{0, M, Q}(s, x) = 0\) and

\[
U^n_{n, M, Q}(s, x) = (g(x), 0) + \frac{1}{M^n} \sum_{i=1}^{M^n} \left(g(x + W^n_{\theta, (0,0), i}) - W^n_{\theta, (0,0), i} \right) - g(x) \left(\frac{W^n_{\theta, (0,0), i} - W^n_{\theta, (0,0), i}}{t-s} \right)
\]

\[
+ \sum_{l=0}^{n-1} \sum_{t \in (s, T)} g^n,\alpha, \beta, (\theta, l, t) |(s, x) = 0| \prod_{i=1}^{M^n} \left(F(U^n_{i, M, Q}, t) - \prod_{l=1}^{M^n} F(U^n_{i-1, M, Q}, t) \right) (t, x + W^n_{\theta, l, i}) - W^n_{\theta, l, i} \left(\frac{W^n_{\theta, l, i} - W^n_{\theta, l, i}}{t-s} \right) .
\]

2
3 Preliminary results for Gauß-Legendre quadrature rules

Lemma 3.1 (Iterated Gauß-Legendre integration). Assume the setting in Section 2 and let \(Q \in \mathbb{N} \). Then it holds for all \(k \in \mathbb{N}, t_0 \in [0,T) \) that

\[
\sum_{t_1, \ldots, t_k \in \mathbb{R}, \atop t_0 < t_1 < \cdots < t_k < t_k < T} \left[\prod_{i=0}^{k-1} \frac{q^{Q,[t_i,T]}(t_{i+1})}{\sqrt{t_{i+1} - t_i}} \right] = (T - t_0)^{k/2} \prod_{i=0}^{k-1} \sum_{s \in \{0,1\}} q^{Q,[0,1]}(s) \frac{(1 - s)^{i/2}}{\sqrt{s}}.
\]

(6)

Proof of Lemma 3.1. First observe that for all \(t_0 \in [0,T) \) and \(s \in [0,1) \) with \(2s - 1 \in \{c_1^Q, c_2^Q, \ldots, c_k^Q\} \) the definition \(4 \) and the integral transformation theorem with the substitution \([t_0, T] \ni x \mapsto \frac{2x-1}{T-t_0} \in [0,1]\) prove that

\[
q^{Q,[t_0,T]}(s(T - t_0) + t_0) = \int_{t_0}^{T} \prod_{i \in \{1,\ldots,n\}, \atop c_i^Q \neq 2s-1} \frac{2x - (T-t_0)c_i^Q - (t_0 + T)}{(T-t_0)^2 - 2(t_0 + T)c_i^Q - (t_0 + T)} dx
\]

(7)

\[
= (T - t_0) \int_{0}^{1} \prod_{i \in \{1,\ldots,n\}, \atop c_i^Q \neq 2s-1} \frac{2y - c_i^Q - 1}{2s - c_i^Q - 1} dy
\]

\[
= (T - t_0) q^{Q,[0,1]}(s).
\]

This and \(5 \) show that for all \(t_0 \in [0,T) \) and \(s \in [0,1) \) it holds that

\[
q^{Q,[t_0,T]}(s(T - t_0) + t_0) = (T - t_0) q^{Q,[0,1]}(s).
\]

(8)

We prove \(6 \) by induction on \(k \in \mathbb{N} \). For the base case \(k = 1 \) observe that \(5 \) ensures that for all \(t_0 \in [0,T) \) it holds that

\[
\sum_{t_1 \in (t_0, T)} \frac{q^{Q,[t_0,T]}(t_1)}{\sqrt{t_1 - t_0}} = \sum_{s \in \{0,1\}} q^{Q,[t_0,T]}(s(T - t_0) + t_0) = (T - t_0)^{1/2} \sum_{s \in \{0,1\}} q^{Q,[0,1]}(s) \frac{(1 - s)^{1/2}}{\sqrt{s}}.
\]

(9)

This establishes \(6 \) in the base case \(k = 1 \). For the induction step \(\mathbb{N} \ni k \rightarrow k + 1 \in \mathbb{N} \) observe that the induction hypothesis implies that for all \(t_0 \in [0,T) \) it holds that

\[
\sum_{t_1, \ldots, t_k, t_{k+1} \in \mathbb{R}, \atop t_0 < t_1 < \cdots < t_k < t_{k+1} < T} \left[\prod_{i=0}^{k} \frac{q^{Q,[t_i,T]}(t_{i+1})}{\sqrt{t_{i+1} - t_i}} \right] = \sum_{t_1 \in (t_0,T)} q^{Q,[t_0,T]}(t_1) \left(T - t_1 \right)^{k/2} \prod_{i=0}^{k-1} \sum_{s \in \{0,1\}} q^{Q,[0,1]}(s) \frac{(1 - s)^{i/2}}{\sqrt{s}} \left(\frac{T - t_1}{\sqrt{T - t_0}} \right)^{1/2}
\]

\[
= \left\{ \sum_{t_1 \in (t_0, T)} q^{Q,[0,1]}(s) \frac{(1 - s)^{1/2}}{\sqrt{s}} \right\} \left\{ \sum_{t_1 \in (t_0, T)} q^{Q,[t_0,T]}(t_1) \frac{(T - t_1)^{1/2}}{\sqrt{T - t_0}} \right\}.
\]

(10)

This together with \(6 \) ensures that for all \(t_0 \in [0,T) \) it holds that

\[
\sum_{t_1, \ldots, t_k, t_{k+1} \in \mathbb{R}, \atop t_0 < t_1 < \cdots < t_k < t_{k+1} < T} \left[\prod_{i=0}^{k} \frac{q^{Q,[t_i,T]}(t_{i+1})}{\sqrt{t_{i+1} - t_i}} \right] = \left(T - t_0 \right)^{(k+1)/2} \prod_{i=0}^{k} \sum_{s \in \{0,1\}} q^{Q,[0,1]}(s) \frac{(1 - s)^{i/2}}{\sqrt{s}}.
\]

(11)
This finishes the induction step $N_0 \ni k \to k + 1 \in \mathbb{N}$. Induction hence establishes \(B \). The proof of Lemma 3.1 is thus completed.

Lemma 3.2. Assume the setting in Section 2 and let $Q \in \mathbb{N}$, $j \in \mathbb{N}_0$. Then it holds that

\[
\sum_{s \in \{0,1\}} q^{Q,\{0,1\}}(s) \frac{(1-s)^j}{\sqrt{s}} \leq \frac{\Gamma\left(\frac{1}{2}\right)\Gamma(j+1)}{\Gamma\left(j + \frac{1}{2}\right)}. \tag{12}
\]

Proof of Lemma 3.2. The Leibniz formula ensures that for all $\varepsilon \in (0, \infty)$, $s \in (0, 1)$ it holds that

\[
\frac{d^{2Q}}{ds^{2Q}} \frac{(1-s)^j}{\sqrt{s+\varepsilon}} = \sum_{k=0}^{2Q} \binom{2Q}{k} \left[\frac{d^{2Q-k}}{ds^{2Q-k}} \frac{1}{\sqrt{s+\varepsilon}} \right] \left[\frac{ds^k}{ds^k} (1-s)^j \right].
\]

This and \(B \) prove that for all $\varepsilon \in (0, \infty)$ it holds that

\[
\sum_{s \in \{0,1\}} q^{Q,\{0,1\}}(s) \frac{(1-s)^j}{\sqrt{s+\varepsilon}} \leq \int_0^1 \frac{(1-s)^j}{\sqrt{s+\varepsilon}} ds \leq \int_0^1 \frac{(1-s)^j}{\sqrt{s}} ds = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma(j+1)}{\Gamma\left(j + \frac{1}{2}\right)}. \tag{15}
\]

Letting $\varepsilon \to 0$ in \(E \) completes the proof of Lemma 3.2.

Lemma 3.3 (Upper bound for iterated Gauß-Legendre integration). Assume the setting in Section 2 and let $Q \in \mathbb{N}$. Then it holds for all $k \in \mathbb{N}$, $t_0 \in [0, T]$ that

\[
\sum_{t_i \leq \cdots \leq t_k, t_0 < t_1 < \cdots < t_k < T} \prod_{i=0}^{k-1} q^{Q,\{t_i\}}(t_{i+1}) \frac{1}{\sqrt{t_{i+1} - t_i}} \leq \frac{2((T-t_0)\pi)^{1/2}}{\Gamma\left(\frac{1}{2}\right)}.
\]

Proof of Lemma 3.3. Throughout this proof let $w : \mathbb{N} \to \mathbb{R}$ be the function that satisfies for all $k \in \mathbb{N}$ that $w(k) = \prod_{i=0}^{k-1} \frac{\Gamma\left(\frac{1}{2}i + 1\right)}{\Gamma\left(\frac{1}{2}\right)}$. First observe that for all $k \in \{2n : n \in \mathbb{N}\}$ it holds that

\[
\frac{\Gamma\left(\frac{1}{2}k + 1\right)\Gamma\left(\frac{1}{2} + 1\right)}{\Gamma\left(\frac{1}{2}\right)} = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2} + 1\right)\Gamma\left(\frac{1}{2} + \frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2} + \frac{1}{2}\right)} = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{2}} = 1.
\]

Moreover, the fact that $\Gamma : (0, \infty) \to (0, \infty)$ is logarithmically convex ensures that for all $k \in \{2n - 1 : n \in \mathbb{N}\}$ it holds that

\[
\frac{\Gamma\left(\frac{1}{2}k + 1\right)\Gamma\left(\frac{1}{2} + 1\right)}{\Gamma\left(\frac{1}{2}\right)} = \frac{\Gamma\left(\frac{1}{2} + 1\right)^2}{\Gamma\left(\frac{1}{2}\right)} \leq 1.
\]

This and \(G \) prove that for all $k \in \mathbb{N}$ it holds that

\[
\frac{\Gamma\left(\frac{1}{2}k + 1\right)\Gamma\left(\frac{1}{2} + 1\right)}{\Gamma\left(\frac{1}{2}\right)} \leq 1.
\]

Next we show that for all $k \in \mathbb{N}$ it holds that

\[
w(k) \leq \frac{2}{\Gamma\left(\frac{1}{2}\right)}.
\]

We prove \(H \) by induction on $k \in \mathbb{N}$. For the base case $k = 1$ we note that it holds that

\[
w(1) = \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)} = \frac{2}{\Gamma\left(\frac{1}{2}\right)}.
\]
This establishes (20) in the base case $k = 1$. For the induction step $N \ni k \to k + 1 \in N$ observe that the induction hypothesis and (19) show that

$$w(k + 1) = w(k) \frac{\Gamma\left(\frac{k}{2} + 1\right)}{\Gamma\left(\frac{k}{2} + \frac{3}{2}\right)} \leq \frac{2\Gamma\left(\frac{k}{2} + 1\right)}{\Gamma\left(\frac{k}{2} + \frac{3}{2}\right)} \leq \frac{2\Gamma\left(\frac{k+1}{2} + \frac{1}{2}\right)}{\Gamma\left(\frac{k+1}{2} + \frac{1}{2}\right)} \leq \frac{2\Gamma\left(\frac{k+1}{2} + \frac{1}{2}\right)}{\Gamma\left(\frac{k+1}{2} + \frac{1}{2}\right)} (22)$$

This finishes the induction step $N \ni k \to k + 1 \in N$. Induction hence establishes (20), Lemma 3.1, Lemma 3.2, and the facts that $\forall s \in (0, 1]: q^{2, [0,1]}(s) \geq 0$ (see, e.g., [1] Section 2.7]) and $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$, and (20) show that for all $k \in N$, $t_0 \in [0, T)$ it holds that

$$\sum_{t_1, \ldots, t_{k-1}, t_0 \in \mathbb{R}, \ t_0 < t_1 < \cdots < t_{k-1} < t_0 < t_k < T} \prod_{i=0}^{k-1} q^{2, [0,1]}(t_i) = (T - t_0)^{k/2} \prod_{i=0}^{k-1} \left[\sum_{s \in (0,1)} q^{2, [0,1]}(s) \left(1 - s^{1/2}\right) \right] \leq \frac{T - t_0)^{k/2} \prod_{i=0}^{k-1} \left[\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{3}{2}\right) + 1\right] \Gamma\left(\frac{1}{2} + \frac{3}{2}\right) \leq \frac{2(T - t_0)^{k/2} \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)} (23)$$

This completes the proof of Lemma 3.3.

Lemma 3.4 (Iterated sums). Let $n \in N$, $l_0 \in \{0, \ldots, n - 1\}$, and $j \in \{1, \ldots, n - l_0 - 1\}$. Then it holds that

$$\sum_{l_0, \ldots, l_j \in \mathbb{N}, \ l_0 < l_1 < \cdots < l_j < n} 1 = \binom{n - l_0 - 1}{j} (24)$$

Proof of Lemma 3.4. The natural number $\sum_{l_0, \ldots, l_j \in \mathbb{N}, \ l_0 < l_1 < \cdots < l_j < n}$ is the number of ways to choose a subset of size j elements from a set of $n - l_0 - 1$ elements. This completes the proof of Lemma 3.4.

Lemma 3.5 (Log-subadditivity). Let $d, p \in N$, $x, y \in \mathbb{R}^d$, and let $\| \cdot \| : \mathbb{R}^d \to [0, \infty)$ be a norm. Then $1 + \| x + y \|^p \leq 1 + \| x \|^p (1 + \| y \|^p)$.

Proof of Lemma 3.5. It holds that

$$1 + \| x + y \|^p \leq 1 + (\| x \| + \| y \|)^p = 1 + \sum_{k=0}^{p} \binom{p}{k} \| x \|^{p-k} \| y \|^k = 1 + \sum_{k=1}^{p} \binom{p}{k} \frac{\| x \|^{p-k}}{1 + \| x \|^p} \| y \|^k \leq (1 + \| x \|^p) \left(1 + \sum_{k=1}^{p} \binom{p}{k} \| y \|^k\right) = (1 + \| y \|)^p (1 + \| x \|^p) (25)$$

This completes the proof of Lemma 3.5.

4 Error analysis for multi-level Picard approximations with Gauß-Legendre quadrature rules

Lemma 4.1 (Approximations are integrable). Assume the setting in Section 3 let $p, M, Q \in N$ and assume for all $t \in [0, T]$ that

$$\sup_{x \in \mathbb{R}^d} \frac{|g(x)|}{1 + \| x \|^p} + \sup_{x \in \mathbb{R}^d} \frac{|\langle F(0) \rangle (t, x)|}{1 + \| x \|^p} < \infty (26)$$

Then

(i) for all $n \in \mathbb{N}_0$, $\theta \in \Theta$, $s \in [0, T)$, $\nu \in \{1, \ldots, d + 1\}$ it holds that

$$E \left[\sup_{x \in \mathbb{R}^d} \frac{|(U_{n, M, Q}^\theta(s, x))_{\nu}|}{1 + \| x \|^p} \right] < \infty (27)$$
(ii) for all \(n \in \mathbb{N}, \theta \in \Theta, s \in [0, T), t \in (s, T], x \in \mathbb{R}^d, \nu \in \{1, \ldots, d + 1\} \) it holds that

\[
E \left[\left(F(U_{0,n,M,Q}^\theta)(t, x + W_T^\theta - W_s^\theta) \left(1, \frac{W_T^\nu - W_s^\nu}{t-s} \right)_\nu \right) \right] < \infty,
\]

and

(iii) for all \(n \in \mathbb{N}, \theta \in \Theta, s \in [0, T), x \in \mathbb{R}^d \) it holds that

\[
E[U_{n,M,Q}^\theta(s, x)] = \mathbb{E}[g(x + W_T^\theta - W_s^\theta) \left(1, \frac{W_T^\nu - W_s^\nu}{t-s} \right)_\nu]
+ \mathbb{E} \left[\sum_{t \in (s, T)} \lambda_{q,s,T}(t) \left(F(U_{n-1,M,Q}^\theta)(t, x + W_T^\theta - W_s^\theta) \left(1, \frac{W_T^\nu - W_s^\nu}{t-s} \right)_\nu \right) \right].
\]

Proof of Lemma 4.7. We prove by induction on \(n \in \mathbb{N}_0 \). The induction base \(n = 0 \) is clear. For the induction step \(n_0 \ni n \to n + 1 \ni \mathbb{N} \), let \(n \in \mathbb{N}_0 \) and assume that (i) holds for \(n = 0, n = 1, \ldots, n = n \). The triangle inequality, Lemma 3.5 (2), and (11) ensure that for all \(\theta \in \Theta, s \in [0, T), \nu \in \{1, \ldots, d + 1\} \) it holds that

\[
E \left[\sup_{x \in \mathbb{R}^d} \left| \frac{U_{0,n+1,M,Q}^\theta(s, x)}{1 + ||x||_1} \right| \right] \leq \sup_{x \in \mathbb{R}^d} \left| \frac{g(x) \alpha}{1 + ||x||_1} \right| + \mathbb{E} \left[\sup_{x \in \mathbb{R}^d} \left| \frac{g(x + W_T^\theta - W_s^\theta) - g(x)}{1 + ||x||_1} \right| \left(1, \frac{W_T^\nu - W_s^\nu}{t-s} \right)_\nu \right]
+ \sum_{t \in (s, T)} \lambda_{q,s,T}(t) \mathbb{E} \left[\left(F(U_{0,n-1,M,Q}^\theta)(t, x + W_T^\theta - W_s^\theta) \left(1, \frac{W_T^\nu - W_s^\nu}{t-s} \right)_\nu \right) \right].
\]

The fact that for all \(l \in \mathbb{N}, \theta \in \Theta, s, t \in [0, T) \) the random variables \(U_{l,M,Q}^{(\theta,1,1)}(t, \cdot) - U_{l-1,M,Q}^{(\theta,1,1)}(t, \cdot) \) and \(W_t^{(\theta,1,1)} - W_s^{(\theta,1,1)} \) are independent proves that for all \(\theta \in \Theta, \nu \in \{1, \ldots, d + 1\}, l \in \mathbb{N}, s \in [0, T), t \in (s, T] \) it holds that

\[
E \left[\sup_{y \in \mathbb{R}^d} \left| \frac{U_{l,M,Q}^{(\theta,1,1)}(t, x - W_s^\theta) - U_{l-1,M,Q}^{(\theta,1,1)}(t, x)}{1 + ||y||_1} \right| \left(1, \frac{W_T^\nu - W_s^\nu}{t-s} \right)_\nu \right] = \mathbb{E} \left[\sup_{x \in \mathbb{R}^d} \left| \frac{U_{0,n+1,M,Q}^\theta(s, x)}{1 + ||x||_1} \right| \right] < \infty.
\]
This finishes the induction step \(N_0 \ni n \to n + 1 \in \mathbb{N} \). Induction hence establishes (iii). Next we note that the triangle inequality and (\ref{eq:triangle_ineq}) imply that for all \(\theta \in \Theta \), \(n \in \mathbb{N} \), \(s \in [0, T) \), \(t \in (s, T) \), \(x, \nu \in \mathbb{R}^d \), \(\nu \in \{1, \ldots, d + 1\} \) it holds that

\[
E \left[\left| (F(U^n_{n,M,Q}))(t, x + W^0_T - W^0_s) \left(1, \frac{W^0_t - W^0_s}{t - s} \right)_\nu \right| \right]
\leq E \left[\left| (F(0))(t, x + W^0_T - W^0_s) \left(1, \frac{W^0_t - W^0_s}{t - s} \right)_\nu \right| \right] + \sum_{i=1}^{d+1} L_{nu} E \left[\left| (U^n_{n,M,Q}) \left(t, x + W^0_T - W^0_s \right)_\nu \left(1, \frac{W^0_t - W^0_s}{t - s} \right)_\nu \right| \right]
\leq \left(\sup_{y \in \mathbb{R}^d} \frac{|(0)(t, y)|}{1 + \|y\|_1^p} \right) + \sum_{i=1}^{d+1} L_{nu} \sup_{y \in \mathbb{R}^d} \frac{|(U^n_{n,M,Q}(s,y))_\nu|}{1 + \|y\|_1^p} \left(1 + \|x + W^0_T - W^0_s\|_1^p \right) \left(1, \frac{W^0_t - W^0_s}{t - s} \right)_\nu \right) \right] . \tag{33}
\]

This, (26), and (i) prove (ii). Next we note that (5), (ii), the fact that (\ref{ito}), (ii), the fact that (\ref{pde}), imply that for all \(\theta \in \Theta \), \(n \in \mathbb{N} \), \(\theta \in \Theta \), \(s \in [0, T) \) it holds P-a.s. that

\[
E \left[(U^n_{n,M,Q}(s, x)) - E \left[g(x + W^0_T - W^0_s) \left(1, \frac{W^0_t - W^0_s}{t - s} \right)_\nu \right] \right]
= \sum_{t=0}^{n-1} \sum_{t \in (s, T)} q^{\theta, [s,T]}(t) E \left[(F(U^n_{l,M,Q}))(t, x + W^0_T - W^0_s) \left(1, \frac{W^0_t - W^0_s}{t - s} \right)_\nu \right] \right]
= E \left[\sum_{t \in (s, T)} q^{\theta, [s,T]}(t) \left(F(U^n_{n-1,M,Q}) \right)(t, x + W^0_T - W^0_s) \left(1, \frac{W^0_t - W^0_s}{t - s} \right)_\nu \right] . \tag{34}
\]

This establishes (iii). The proof of Lemma 4.1 is thus completed. \(\Box\)

Lemma 4.2 (Nonlinear Feynman-Kac formula & Bismut-Elworthy-Li formula). Assume the setting in Section \ref{section2} let \(p \in \mathbb{N} \) and assume that

\[
\sup_{(t, x) \in [0,T] \times \mathbb{R}^d} \frac{\|u^\infty(t, x)\|_1^p}{1 + \|x\|_1^p} + \sup_{(t, x) \in [0,T] \times \mathbb{R}^d} \frac{|F(0)(t, x)|}{1 + \|x\|_1^p} < \infty. \tag{35}
\]

Then

(i) for all \(s \in [0, T) \), \(x, \nu \in \mathbb{R}^d \) it holds that

\[
u^\infty(s, x) - E[g(x + W^0_T - W^0_s) \left(1, \frac{W^0_t - W^0_s}{t - s} \right)_\nu] = E \left[\int_s^T (F(u^\infty))(t, x + W^0_T - W^0_s) dt \right] \tag{36}
\]

and

(ii) for all \(s \in [0, T) \), \(x, \nu \in \mathbb{R}^d \) it holds that

\[
u^\infty(s, x) - E\left[g(x + W^0_T - W^0_s) \left(1, \frac{W^0_t - W^0_s}{t - s} \right)_\nu \right] = E \left[\int_s^T (F(u^\infty))(t, x + W^0_T - W^0_s) \left(1, \frac{W^0_t - W^0_s}{t - s} \right)_\nu \right] . \tag{37}
\]

Proof of Lemma 4.2 First note that the triangle inequality, (\ref{eq:triangle_ineq}), and (\ref{eq:triangle_ineq}) ensure that

\[
\sup_{(t, x) \in [0,T] \times \mathbb{R}^d} \frac{|(F(u^\infty))(t, x)|}{1 + \|x\|_1^p} \leq \sup_{(t, x) \in [0,T] \times \mathbb{R}^d} \frac{|F(0)(t, x)|}{1 + \|x\|_1^p} + \sup_{(t, x) \in [0,T] \times \mathbb{R}^d} \frac{\sum_{\nu=1}^{d+1} L_{\nu} (u^\infty(t, x))_\nu}{1 + \|x\|_1^p} < \infty. \tag{38}
\]

Itô's formula and the PDE (\ref{pde}) imply that for all \(s \in [0, T] \), \(t \in [s, T] \), \(x, \nu \in \mathbb{R}^d \) it holds P-a.s. that

\[
u^\infty(t, x + W^0_T - W^0_s) = u^\infty(s, x)
= \int_s^t \left(\frac{\partial}{\partial r} u^\infty + \frac{1}{2} \Delta_y u^\infty \right)(r, x + W^0_r - W^0_s) dr + \int_s^t \langle (\nabla_y u^\infty)(r, x + W^0_r - W^0_s), dW^0_r \rangle
= -\int_s^t (F(u^\infty))(r, x + W^0_r - W^0_s) dr + \int_s^t \langle (\nabla_y u^\infty)(r, x + W^0_r - W^0_s), dW^0_r \rangle . \tag{39}
\]

This, (\ref{eq:triangle_ineq}), and (\ref{eq:triangle_ineq}) show that for all \(s \in [0, T] \), \(x, \nu \in \mathbb{R}^d \) it holds that \(E \left[\sup_{r \in [s, T]} \int_s^r \langle (\nabla_y u^\infty)(r, x + W^0_r - W^0_s), dW^0_r \rangle \right] < \infty \). This ensures that \(E \left[\int_s^T \langle (\nabla_y u^\infty)(t, x + W^0_T - W^0_s), dW^0_T \rangle \right] = 0 \). This and (39) prove for all \(s \in [0, T] \), \(x, \nu \in \mathbb{R}^d \) that

\[
u^\infty(s, x) - E[g(x + W^0_T - W^0_s)] = u^\infty(s, x) - E[u^\infty(T, x + W^0_T - W^0_s)] = E \left[\int_s^T (F(u^\infty))(t, x + W^0_T - W^0_s) dt \right] . \tag{40}
\]
This proves (i). Next, the Bismut-Elworthy-Li formula (see, e.g., [5, Proposition 3.2]) together with (35) show that for all \(i \in \{1, \ldots, d\}, \; s \in [0, T), \; x \in \mathbb{R}^d\) it holds that
\[
\frac{\partial}{\partial x_i} \mathbb{E}[g(x + W^0_t - W^0_s)] = \mathbb{E}\left[g(x + W^0_t - W^0_s) \frac{W^0_{t-s}}{t-s}\right].
\] (41)
Moreover, the Bismut-Elworthy-Li formula (see, e.g., [5, Proposition 3.2]) together with (38) demonstrate that
\[
\mathbb{E}\left[(F(u^\infty))(t, x + W^0_{t-s}) \frac{W^0_{t-s}}{t-s}\right].
\] (42)
This and (35) ensure that for all \(i \in \{1, \ldots, d\}, \; s \in [0, T), \; x \in \mathbb{R}^d\) it holds that
\[
\frac{\partial}{\partial x_i} \int_s^T \mathbb{E}\left[(F(u^\infty))(t, x + W^0_{t-s}) \frac{W^0_{t-s}}{t-s}\right] dt = \int_s^T \mathbb{E}\left[(F(u^\infty))(t, x + W^0_{t-s}) \frac{W^0_{t-s}}{t-s}\right] dt.
\] (43)
Combining this, Fubini’s theorem, (35), and (41) shows that for all \(s \in [0, T), \; x \in \mathbb{R}^d\) it holds that
\[
u^\infty(s, x) - \mathbb{E}\left[g(x + W^0_T - W^0_s) \frac{W^0_{T-s}}{T-s}\right] = \mathbb{E}\left[\int_s^T (F(u^\infty))(t, x + W^0_{t-s}) \frac{W^0_{t-s}}{t-s}\right] dt.
\] (44)
This proves (ii). The proof of Lemma 4.3 is thus completed. \(\square\)

Lemma 4.3 (Recursive bound for global error). Assume the setting in Section 2 let \(p, M, Q \in \mathbb{N}, \) assume that
\[
\sup_{(t, x) \in [0, T) \times \mathbb{R}^d} \left\|u^\infty(t, x)\right\|_1 + \sup_{(t, x) \in [0, T) \times \mathbb{R}^d} \left\|F(0)(t, x)\right\|_1 < \infty,
\] (45)
and let \(\varepsilon : [0, T] \times \mathbb{R}^d \rightarrow [0, \infty)^{d+1}\) be the function that satisfies for all \(s \in [0, T), \; x \in \mathbb{R}^d, \; \nu \in \{1, \ldots, d+1\}\) that
\[
(\varepsilon(s, x))_\nu = \left|\mathbb{E}\left[\sum_{t \in (s, T]} q^{T, \nu}(t)(F(u^\infty)(t, x + W^0_{t-s})) \frac{W^0_{t-s}}{t-s}\right] - g(x + W^0_T - W^0_s) \frac{W^0_{T-s}}{T-s}\right| dt\right|.
\] (46)
Then for all \(n, k \in \mathbb{N}, \; (t_0, x) \in [0, T) \times \mathbb{R}^d, \; \nu_0 \in \{1, \ldots, d+1\}\) it holds that
\[
\left\|\left(U_{n,M,Q}(t_0, x) - u^\infty(t_0, x)\right)_{\nu_0}\right\|_{L^2(\mathbb{R})} \leq \sum_{j=0}^{k-1} \sum_{(t_1, \ldots, t_j) \in \mathbb{N}, \; t_1, \ldots, t_{j+1} \in \mathbb{R}, \; t_i < \cdots < t_{j+1} \leq T} \sum_{\nu_1, \ldots, \nu_j \in \{1, \ldots, d+1\}} \frac{2^j}{\sqrt{n^{j-1}}} \left\{ \sum_{j=1}^{j} L_{\nu_0} q^{T, \nu}(t_1, x) \right\}
\] (47)
Proof of Lemma 4.3. We note that (35) and (41) ensure that the function \(\varepsilon\) is well-defined. First, we analyze the Monte Carlo error. Independence, Items (i) and (ii) of Lemma 4.1 and (35) imply that for all \(m \in \mathbb{N}, \; x \in \mathbb{R}^d,\)
\(s \in [0, T], \nu \in \{1, \ldots, d + 1\} \) it holds that

\[
\begin{align*}
\text{Var} \left(\left(U_{m,M,Q}^0(s,x) \right)_\nu \right) &= \frac{1}{M^m} \text{Var} \left(\left(g(x + W_T^0 - W_s^0) - g(x) \right) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right) \\
+ \sum_{l=0}^{m-1} \frac{1}{M^{m-l}} \text{Var} \left(\sum_{t \in (s,T)} q^{Q,[s,T]}(t) \left(F(U_{l-1,M,Q}^0(t,x + W_t^0 - W_s^0)) - \mathbb{I}_N(t) F(U_{l-1,M,Q}) \right) (t, x + W_t^0 - W_s^0) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right) \\
&\leq \frac{1}{M^m} \mathbb{E} \left[\left(g(x + W_T^0 - W_s^0) - g(x) \right) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right]^2 \\
+ \sum_{l=0}^{m-1} \frac{1}{M^{m-l}} \mathbb{E} \left[\sum_{t \in (s,T)} q^{Q,[s,T]}(t) \left(F(U_{l-1,M,Q}^0(t,x + W_t^0 - W_s^0)) - \mathbb{I}_N(t) F(U_{l-1,M,Q}) \right) (t, x + W_t^0 - W_s^0) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right]^2.
\end{align*}
\]

(48)

Combining this, the triangle inequality, and (1) yields that for all \(m \in \mathbb{N}, x \in \mathbb{R}^d, s \in [0, T], \nu \in \{1, \ldots, d + 1\} \) it holds that

\[
\left\| \left(U_{m,M,Q}^0(s,x) - \mathbb{E} \left[U_{m,M,Q}^0(s,x) \right] \right)_\nu \right\|_{L^2(\mathbb{P}; \mathbb{R})} = \left(\text{Var} \left(\left(U_{m,M,Q}^0(s,x) \right)_\nu \right) \right)^{1/2} \\
\leq \frac{1}{M^m} \left\| \left(g(x + W_T^0 - W_s^0) - g(x) \right) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right\|_{L^2(\mathbb{P}; \mathbb{R})} \\
+ \sum_{l=0}^{m-1} \frac{1}{M^{m-l}} \left\| \sum_{t \in (s,T)} q^{Q,[s,T]}(t) \left(F(U_{l-1,M,Q}^0(t,x + W_t^0 - W_s^0)) - \mathbb{I}_N(t) F(U_{l-1,M,Q}) \right) (t, x + W_t^0 - W_s^0) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right\|_{L^2(\mathbb{P}; \mathbb{R})} \\
\leq \frac{1}{M^m} \left\| \left(g(x + W_T^0 - W_s^0) - g(x) \right) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right\|_{L^2(\mathbb{P}; \mathbb{R})} \\
+ \sum_{l=0}^{m-1} \frac{1}{M^{m-l}} \sum_{t \in (s,T)} q^{Q,[s,T]}(t) \left\| \left(F(0)(t,x + W_t^0 - W_s^0) - W_s^0 \right) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right\|_{L^2(\mathbb{P}; \mathbb{R})} \\
+ \sum_{l=0}^{m-1} \frac{1}{M^{m-l}} \left\| \sum_{t \in (s,T)} q^{Q,[s,T]}(t) \left(\left(U_{l-1,M,Q}^0(t,x + W_t^0 - W_s^0) - \mathbb{I}_N(t) F(U_{l-1,M,Q}) \right) (t, x + W_t^0 - W_s^0) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right) \right\|_{L^2(\mathbb{P}; \mathbb{R})}.
\]

(49)

This and the triangle inequality ensure that for all \(m \in \mathbb{N}, x \in \mathbb{R}^d, s \in [0, T], \nu \in \{1, \ldots, d + 1\} \) it holds that

\[
\left\| \left(U_{m,M,Q}^0(s,x) - \mathbb{E} \left[U_{m,M,Q}^0(s,x) \right] \right)_\nu \right\|_{L^2(\mathbb{P}; \mathbb{R})} \\
\leq \frac{1}{M^m} \left\| \left(g(x + W_T^0 - W_s^0) - g(x) \right) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right\|_{L^2(\mathbb{P}; \mathbb{R})} \\
+ \sum_{l=0}^{m-1} \frac{1}{M^{m-l}} \sum_{t \in (s,T)} q^{Q,[s,T]}(t) \left\| \left(F(0)(t,x + W_t^0 - W_s^0) - W_s^0 \right) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right\|_{L^2(\mathbb{P}; \mathbb{R})} \\
+ \sum_{l=0}^{m-1} \frac{1}{M^{m-l}} \left\| \sum_{t \in (s,T)} q^{Q,[s,T]}(t) \left(\left(U_{l-1,M,Q}^0(t,x + W_t^0 - W_s^0) - \mathbb{I}_N(t) F(U_{l-1,M,Q}) \right) (t, x + W_t^0 - W_s^0) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right) \right\|_{L^2(\mathbb{P}; \mathbb{R})} \\
= \frac{1}{M^m} \left\| \left(g(x + W_T^0 - W_s^0) - g(x) \right) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right\|_{L^2(\mathbb{P}; \mathbb{R})} \\
+ \sum_{l=0}^{m-1} \frac{1}{M^{m-l}} \sum_{t \in (s,T)} q^{Q,[s,T]}(t) \left\| \left(F(0)(t,x + W_t^0 - W_s^0) - W_s^0 \right) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right\|_{L^2(\mathbb{P}; \mathbb{R})} \\
+ \sum_{l=0}^{m-1} \frac{1}{M^{m-l}} \left\| \sum_{t \in (s,T)} q^{Q,[s,T]}(t) \left(\left(U_{l-1,M,Q}^0(t,x + W_t^0 - W_s^0) - \mathbb{I}_N(t) F(U_{l-1,M,Q}) \right) (t, x + W_t^0 - W_s^0) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right)_\nu \right) \right\|_{L^2(\mathbb{P}; \mathbb{R})}.
\]

(50)

Next we analyze the time discretization error. Item (iii) of Lemma 3 ensures that for all \(m \in \mathbb{N}, s \in [0, T), x \in \mathbb{R}^d \) it holds that

\[
\mathbb{E} \left[U_{m,M,Q}^0(s,x) - g(x + W_T^0 - W_s^0) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right) \right] \\
= \mathbb{E} \left[\sum_{t \in (s,T)} q^{Q,[s,T]}(t) \left(F(U_{m-1,M,Q}) \right)(t, x + W_t^0 - W_s^0) \left(1, \frac{W_T^0 - W_s^0}{t-s} \right) \right].
\]

(51)
Item (ii) of Lemma 4.2 proves that for all \(s \in [0, T) \), \(x \in \mathbb{R}^d \) it holds that

\[
u_{s}(x) \sim \mathbb{E} \left[g(x + W_T - W_s) \left(1, \frac{W_T - W_s}{T-s} \right) \right] = \mathbb{E} \left[\int_s^T (F(u^\infty))(t, x + W_t^0 - W_s^0) \left(1, \frac{W_t^0 - W_s^0}{t-s} \right) \ dt \right].
\] (52)

This, along with the triangle inequality, and Jensen’s inequality show for all \(m \in \mathbb{N} \), \(s \in [0, T) \), \(x \in \mathbb{R}^d \), \(\nu \in \{1, \ldots, d+1\} \) that

\[
\left| \mathbb{E}[U_{m,M,Q}(s,x) - u^\infty(s,x)] \right| \leq \mathbb{E} \left[\sum_{i \in (s,T)} q_{s,T}^i(t) |(F(U_{m-1,M,Q}^0))(t, x + W_t^0 - W_s^0)\left(1, \frac{W_t^0 - W_s^0}{t-s} \right) - \mathcal{F}(u^\infty)|(t, x + W_t^0 - W_s^0)\left(1, \frac{W_t^0 - W_s^0}{t-s} \right)\| \right|.
\] (53)

In the next step we combine the established bounds for the Monte Carlo error and for the time discretization error to obtain a bound for the global error. More formally, observe that (52) and (53) ensure that for all \(m \in \mathbb{N} \), \(s \in [0, T) \), \(x \in \mathbb{R}^d \), \(\nu \in \{1, \ldots, d+1\} \) it holds that

\[
\| (U_{m,M,Q}(s,x) - u^\infty(s,x)) \|_{L^2(\mathcal{P}; \mathbb{R})} \leq \left(\| (U_{m,M,Q}(s,x) - \mathbb{E}[U_{m,M,Q}(s,x)]) \|_{L^2(\mathcal{P}; \mathbb{R})} + \| \mathbb{E}[U_{m,M,Q}(s,x)] - u^\infty(s,x) \| \right)
\]

\[
\leq \frac{1}{\sqrt{M}} \left(\left\| (g(x + W_T^0 - W_s^0) - g(x)) \left(1, \frac{W_T^0 - W_s^0}{T-s} \right) \|_{L^2(\mathcal{P}; \mathbb{R})} + \sum_{i \in (s,T)} q_{s,T}^i(t) \left\| |(F(U_{m-1,M,Q}^0))(t, x + W_t^0 - W_s^0)\left(1, \frac{W_t^0 - W_s^0}{t-s} \right) - \mathcal{F}(u^\infty)|(t, x + W_t^0 - W_s^0)\left(1, \frac{W_t^0 - W_s^0}{t-s} \right)\| \right\| \right).
\] (54)
We prove (47) by induction on \(k \in \mathbb{N} \). The base case \(k = 1 \) follows immediately from (53). For the induction step \(\mathbb{N} \ni k \to k + 1 \in \mathbb{N} \) let \(k \in \mathbb{N} \) and assume that (47) holds for \(k \). Inequality (52) and independence of \((U_{0,m,M,Q})_{m \in \mathbb{N}_0}\) and \(W^n\) yield that for all \(m \in \mathbb{N}, t_1, \ldots, t_{k} \in \mathbb{R}, x \in \mathbb{R}^d, \nu_0, \ldots, \nu_{k} \in \{1, \ldots, d + 1\} \) with \(t_0 < t_1 < \ldots < t_{k} < T \) it holds that

\[
\left\| \left((U_{t_k,M,Q} - u^\infty) (t_k, x + W^o_{t_k} - W^o_{t_0}) \right) \nu_0 \prod_{i=1}^k \left(\frac{1, W^o_{t_i} - W^o_{t_{i-1}}} {t_i - t_{i-1}} \right) \nu_{i-1} \right\|_{L^2(\mathbb{P}; \mathbb{R})} \\
= \left(\mathbb{E} \left[\left(\left\| (U_{t_k,M,Q} - u^\infty) (t_k, z) \right\|^2_{L^2(\mathbb{P}; \mathbb{R})} \right|_{z = x + W^o_{t_k} - W^o_{t_0}} \prod_{i=1}^k \left(\frac{1, W^o_{t_i} - W^o_{t_{i-1}}} {t_i - t_{i-1}} \right) \nu_{i-1} \right]^2 \right)^{\frac{1}{2}} \\
\leq \left(\mathbb{E} \left[\left\| (U_{t_k,M,Q} - u^\infty) (t_k, x + W^o_{t_k} - W^o_{t_0}) \right\|^2_{L^2(\mathbb{P}; \mathbb{R})} \prod_{i=1}^k \left(\frac{1, W^o_{t_i} - W^o_{t_{i-1}}} {t_i - t_{i-1}} \right) \nu_{i-1} \right] \right)^{\frac{1}{2}} \\
+ \frac{1}{\sqrt{M}} \left(\sum_{t_{k+1} \in (t_k, T)} q^{[t_k, T]} (t_{k+1}) \left\| (U_{t_{k+1},M,Q} - u^\infty) (t_{k+1}, x + W^o_{t_{k+1}} - W^o_{t_0}) \right\|_{L^2(\mathbb{P}; \mathbb{R})} \sum_{i=1}^{k+1} \left(\frac{1, W^o_{t_i} - W^o_{t_{i-1}}} {t_i - t_{i-1}} \right) \nu_{i-1} \right) \\
+ \frac{1}{\sqrt{M}} \left(\sum_{t_{k+1} \in (t_k, T)} q^{[t_k, T]} (t_{k+1}) \left\| (U_{t_{k+1},M,Q} - u^\infty) (t_{k+1}, x + W^o_{t_{k+1}} - W^o_{t_0}) \right\|_{L^2(\mathbb{P}; \mathbb{R})} \sum_{i=1}^{k+1} \left(\frac{1, W^o_{t_i} - W^o_{t_{i-1}}} {t_i - t_{i-1}} \right) \nu_{i-1} \right) \\
+ \sum_{l_0=1}^{m-1} \sum_{t_{k+1} \in (t_k, T)} q^{[t_k, T]} (t_{k+1}) \left(\sum_{i=1}^{d+1} \left(\frac{1, W^o_{t_i} - W^o_{t_{i-1}}} {t_i - t_{i-1}} \right) \nu_{i-1} \right) \left\| (U_{t_{k+1},M,Q} - u^\infty) (t_{k+1}, x + W^o_{t_{k+1}} - W^o_{t_0}) \right\|_{L^2(\mathbb{P}; \mathbb{R})} \sum_{i=1}^{k+1} \left(\frac{1, W^o_{t_i} - W^o_{t_{i-1}}} {t_i - t_{i-1}} \right) \nu_{i-1} \right) .
\]

This and the induction hypothesis complete the induction step \(\mathbb{N} \ni k \to k + 1 \in \mathbb{N} \). Induction hence establishes (47). This finishes the proof of Lemma 13. \(\square \)

Theorem 4.4 (Global approximation error). Assume the setting in Section 2, let \(p, n, Q \in \mathbb{N}, M \in \mathbb{N} \cap [2, \infty), \nu_0 \in \{1, \ldots, d+1\}, (t_0, x) \in [0, T) \times \mathbb{R}^d \), assume that

\[
\sup_{(t,z) \in [0,T] \times \mathbb{R}^d} \left\| \frac{u^\infty(t,z)} {1 + \left\| z \right\|^\beta} \right\|_1 + \sup_{(t,z) \in [0,T] \times \mathbb{R}^d} \left\| \frac{|F(0)(t,z)|} {1 + \left\| z \right\|^\beta} \right\|_1 < \infty,
\]

let \(C \in [0, \infty) \) be the real number given by

\[
C = 2(\sqrt{T - t_0} + 1)\sqrt{(T - t_0)}\pi \left(||L||_1 + 1 \right) + 1,
\]

and let \(\varepsilon : [0,T] \times \mathbb{R}^d \to [0, \infty)^{d+1} \) be the function that satisfies for all \(s \in [0, T] \), \(y \in \mathbb{R}^d \), \(\nu \in \{1, \ldots, d+1\} \) that

\[
(\varepsilon(s,y))_{\nu} = \mathbb{E} \left[\sum_{t \in (s,T]} q^{[s,T]} (t) (1, W^o_{t_\nu}) (1, W^o_{t_{\nu+1} - s}) \int_{s}^{T} \frac{|F(u^\infty)(t, y + W^o_{t_{\nu+1} - s})|} {1 + \left\| y + W^o_{t_{\nu+1} - s} \right\|^\beta} dt \right].
\]

Then it holds that

\[
\left(\left\| U_{t_0,M,Q}(t_0, x) - u^\infty(t_0, x) \right\|_{L^1(\mathbb{P}; \mathbb{R})} \right)_{\nu_0} \leq \frac{2C^\alpha n^{\alpha - 1} M} {\sqrt{M} n^\beta} \left(\sup_{(t,z) \in [t_0,T] \times \mathbb{R}^d} \left| \frac{|F(0)(t,z)|} {1 + \left\| z \right\|^\beta} \right| \right) + \sup_{(t,z) \in [t_0,T] \times \mathbb{R}^d} \left\| u^\infty(t,z) \right\|_\infty + \max \{ \sqrt{T - t_0}, \sqrt{3} \} ||K||_1 \\
+ (14(4C)^{n-1} + 1) \left(\sup_{(t,z) \in [t_0,T] \times \mathbb{R}^d} \left\| \varepsilon(t,z) \right\|_\infty \right).
\]

(59)
Proof of Theorem 4.4. Lemma 4.3 implies that

\[\left\| \left(U_{n,M,Q}^{0}(t_0,x) - u^{\infty}(t_0,x) \right)_{\nu} \right\|_{L^2(\mathbb{P};\mathbb{R})} \leq \sum_{j=0}^{n-1} \sum_{i_0 < \cdots < i_j \in \mathbb{N}_0, \, i_0, \cdots, i_j \in \mathbb{R}, \, \nu_0, \cdots, \nu_j+1 \in \{1, \ldots, d+1\}} \sum_{t_1 < \cdots < t_{j+1} < \nu_0 t_0 < \cdots < t_j < t_{j+1} \leq T} \prod_{i=1}^{j} L_{i,\nu} q^{Q,|t_{i-1},T|}(t_i) \]

\[\cdot \left\{ \left[\| (t_{j+1}) (t_j + 1) \right] \left[\sup_{(t,z) \in [t_0,T] \times \mathbb{R}^d} |(x(t,z))| \right] j \prod_{i=1}^{j} \left(1, \frac{W_{t_i}^{0} - W_{t_{i-1}}^{0}}{t_i - t_{i-1}} \right)_{\nu_i-1} \right\}^{1/2} \left\| q^{Q,|t_{j+1}|}(t_{j+1}) \right\|_{L^2(\mathbb{P};\mathbb{R})} \]

\[+ \frac{d}{\nu} \left(k_1 \left(\frac{W_{t_j}^{0} - W_{t_{j-1}}^{0}}{t_j - t_{j-1}} \right)_{\nu_j-1} \right) \prod_{i=1}^{j} \left(1, \frac{W_{t_i}^{0} - W_{t_{i-1}}^{0}}{t_i - t_{i-1}} \right)_{\nu_i-1} \right\}^{1/2} \left\| q^{Q,|t_{j+1}|}(t_{j+1}) \sup_{(t,z) \in [t_0,T] \times \mathbb{R}^d} \left| (F(0) (t,z)) \right| \right\|_{L^2(\mathbb{P};\mathbb{R})} \]

\[+ \frac{L_{t_{j+1},t} q^{Q,|t_{j+1}|}(t_{j+1}) \sup_{(t,z) \in [t_0,T] \times \mathbb{R}^d} \left| (u^{\infty}(t,z))_{\nu_{j+1}} \right| \prod_{i=1}^{j+1} \left(1, \frac{W_{t_i}^{0} - W_{t_{i-1}}^{0}}{t_i - t_{i-1}} \right)_{\nu_i-1} \right\}^{1/2} \left\| q^{Q,|t_{j+1}|}(t_{j+1}) \sup_{(t,z) \in [t_0,T] \times \mathbb{R}^d} \left| (u^{\infty}(t,z))_{\nu_{j+1}} \right| \right\|_{L^2(\mathbb{P};\mathbb{R})} \]
This and (63) show that
\[
\left\| \left(U_{n,M,Q}^{0}(t_0,x) - u^\infty(t_0,x) \right) \right\|_{L^2(\mathbb{P};\mathbb{R})} \\
\leq \left[\sup_{(t,z) \in [t_0,T] \times \mathbb{R}^d} (\varepsilon(t,z))_{\mathcal{V}_0} + \max_{t \in [t_0,T]} \left\| K \right\|_{\mathcal{V}_0} \right] \sum_{t_1 \in (t_0,T)} q^Q_{t_0,T}(t_1) \left(1 - \frac{W_{t_1}^{0}-W_{t_0}^{0}}{t_1-t_0} \right)_{\mathcal{V}_0} \left\| L_{t_1} \right\|_{L^2(\mathbb{P};\mathbb{R})} + \sum_{t_1 \in (t_0,T)} q^Q_{t_0,T}(t_1) \left(1 - \frac{W_{t_1}^{0}-W_{t_0}^{0}}{t_1-t_0} \right)_{\mathcal{V}_0} \left\| \frac{\mathbb{I}}{L_{t_1}} \right\|_{L^2(\mathbb{P};\mathbb{R})} + \sum_{t_1 \in (t_0,T)} q^Q_{t_0,T}(t_1) \left(1 - \frac{W_{t_1}^{0}-W_{t_0}^{0}}{t_1-t_0} \right)_{\mathcal{V}_0} \left\| L_{t_1} \right\|_{L^2(\mathbb{P};\mathbb{R})} \right].
\]

For all \(j \in \mathbb{N}, \nu_0, \ldots, \nu_{j-1} \in \{1, \ldots, d+1\} \), and \(t_1, \ldots, t_j \in \mathbb{R} \) satisfying \(t_0 < t_1 < \ldots < t_j < T \) it holds that
\[
\prod_{i=1}^{j} \left(1 - \frac{W_{t_i}^{0}-W_{t_{i-1}}^{0}}{t_i-t_{i-1}} \right)_{\mathcal{V}_{\nu_{i-1}}} \leq \left(\sqrt{T-t_0} + 1 \right) \prod_{i=1}^{j} \frac{1}{t_i-t_{i-1}}.
\]

This and (65) ensure that
\[
\left\| \left(U_{n,M,Q}^{0}(t_0,x) - u^\infty(t_0,x) \right) \right\|_{L^2(\mathbb{P};\mathbb{R})} \\
\leq \left[\sup_{(t,z) \in [t_0,T] \times \mathbb{R}^d} (\varepsilon(t,z))_{\mathcal{V}_0} + \max_{t \in [t_0,T]} \left\| K \right\|_{\mathcal{V}_0} \right] \sum_{t_1 \in (t_0,T)} q^Q_{t_0,T}(t_1) \left(1 - \frac{W_{t_1}^{0}-W_{t_0}^{0}}{t_1-t_0} \right)_{\mathcal{V}_0} \left\| L_{t_1} \right\|_{L^2(\mathbb{P};\mathbb{R})} + \sum_{t_1 \in (t_0,T)} q^Q_{t_0,T}(t_1) \left(1 - \frac{W_{t_1}^{0}-W_{t_0}^{0}}{t_1-t_0} \right)_{\mathcal{V}_0} \left\| \frac{\mathbb{I}}{L_{t_1}} \right\|_{L^2(\mathbb{P};\mathbb{R})} + \sum_{t_1 \in (t_0,T)} q^Q_{t_0,T}(t_1) \left(1 - \frac{W_{t_1}^{0}-W_{t_0}^{0}}{t_1-t_0} \right)_{\mathcal{V}_0} \left\| L_{t_1} \right\|_{L^2(\mathbb{P};\mathbb{R})} \right].
\]
Observe that for all $j \in \mathbb{N}$ it holds that

\[
\left[\sum_{\nu_1, \ldots, \nu_j \in \{1, \ldots, d+1\}} \prod_{i=1}^{j} L_{\nu_i} \right] = \|L\|_1^j. \tag{66}
\]

This, Lemma 3.4, and the definition (57) of C imply that

\[
\left\| \left(U_{n,M,Q}(t_0, x) - u^\infty(t_0, x) \right)_{t_0} \right\|_{L^2(\mathbb{P}; \mathbb{R})}
\leq \left[\sup_{(t,z) \in \{0\} \times \mathbb{R}^d} \varepsilon(t,z) \right]_{t_0} + \max_{\nu \neq 0} \left(\sqrt{T-t_0} \right) \|K\|_{\text{max}}^{\nu}
+ 2\sqrt{T-t_0} \|L\|_{1} \sup_{(t,z) \in \{0\} \times \mathbb{R}^d} \|u^\infty(t,z)\|_{\infty}
+ \sum_{j=1}^{n-1} \sum_{l_1 < \cdots < l_j \leq n} \frac{(C \sqrt{M})^j}{\Gamma(\frac{j}{2})} \sum_{l=1}^{\nu_j} \sqrt{M} \left(n - l - 1 \right) \left(j - 1 \right)
+ 2\left[\sup_{(t,z) \in \{0\} \times \mathbb{R}^d} \|K\|_{\text{max}} \right] \left(\sqrt{T-t_0} \right) \sup_{(t,z) \in \{0\} \times \mathbb{R}^d} \|u^\infty(t,z)\|_{\infty}
+ 2\left[\sup_{(t,z) \in \{0\} \times \mathbb{R}^d} \|K\|_{\text{max}} \right] \left(\sqrt{T-t_0} \right) \sup_{(t,z) \in \{0\} \times \mathbb{R}^d} \|u^\infty(t,z)\|_{\infty} \right]. \tag{67}
\]

This, Lemma 3.4, and the definition (57) of C show that

\[
\left\| \left(U_{n,M,Q}(t_0, x) - u^\infty(t_0, x) \right)_{t_0} \right\|_{L^2(\mathbb{P}; \mathbb{R})}
\leq \left[\sup_{(t,z) \in \{0\} \times \mathbb{R}^d} \varepsilon(t,z) \right]_{t_0} + \max_{\nu \neq 0} \left(\sqrt{T-t_0} \right) \|K\|_{\text{max}}^{\nu} \left(\left\| \sup_{(t,z) \in \{0\} \times \mathbb{R}^d} \|u^\infty(t,z)\|_{\infty} \right\|_{\infty} \right)^{\nu}
+ \sum_{j=1}^{n-1} \frac{(C \sqrt{M})^j}{\Gamma(\frac{j}{2})} \sum_{l=1}^{\nu_j} \sqrt{M} \left(n - l - 1 \right) \left(j - 1 \right)
+ 2\left[\sup_{(t,z) \in \{0\} \times \mathbb{R}^d} \|K\|_{\text{max}} \right] \left(\sqrt{T-t_0} \right) \sup_{(t,z) \in \{0\} \times \mathbb{R}^d} \|u^\infty(t,z)\|_{\infty}
+ 2\left[\sup_{(t,z) \in \{0\} \times \mathbb{R}^d} \|K\|_{\text{max}} \right] \left(\sqrt{T-t_0} \right) \sup_{(t,z) \in \{0\} \times \mathbb{R}^d} \|u^\infty(t,z)\|_{\infty} \right]. \tag{68}
\]

It holds for all $r \in [0, \infty)$ that

\[
\sum_{j=0}^{n-1} \frac{r^j}{\Gamma(\frac{j+1}{2})} \leq \frac{r}{\sqrt{\pi}} + \sum_{j=1}^{n-1} \frac{r^j}{\Gamma(\frac{j+1}{2})} = \frac{r}{\sqrt{\pi}} + \sum_{l=0}^{\nu_1-1} \frac{r^{2l-1}}{\Gamma(l)} + \sum_{l=0}^{\nu_2-1} \frac{r^{2l+1}}{\Gamma(l)}
\leq \frac{r}{\sqrt{\pi}} + r(r+1)e^{r^2}. \tag{69}
\]
Note that it holds for all \(j \in \{0, \ldots, n-1\} \) that \(\binom{n-1}{j} \leq \sum_{k=0}^{n-1} \binom{n-1}{k} = 2^{n-1} \). This and (69) ensure that
\[
\sum_{j=0}^{n-1} \left(\frac{C \sqrt{M}}{\Gamma\left(\frac{1}{2}\right)} \right)^{\binom{n-1}{j}} \leq (2C)^{n-1} \sum_{j=0}^{n-1} \frac{\sqrt{M}^{j}}{\Gamma\left(\frac{j+1}{2}\right)} \leq (2C)^{n-1} \left(\frac{\sqrt{M}}{\Gamma\left(\frac{1}{2}\right)} + \sqrt{M}(\sqrt{M} + 1)e^{M} \right)
\leq 3(2C)^{n-1} Me^{M}
\]
and that
\[
\sum_{j=1}^{n-1} \left(\frac{C \sqrt{M}}{\Gamma\left(\frac{1}{2}\right)} \right)^{\binom{n-1}{j}} \leq (2C)^{n-1} \sqrt{M} \sum_{j=0}^{n-1} \frac{\sqrt{M}^{j}}{\Gamma\left(\frac{j+1}{2}\right)} \leq 3(2C)^{n-1} \sqrt{M} e^{M}
\]
For all \(j \in \{1, \ldots, n-1\} \) it holds that
\[
\sum_{l=1}^{n-j} \sqrt{M}^{n-l-1} \binom{n-l-1}{j-1} \leq \sqrt{M} \sum_{l=j-1}^{n-1} \left(\frac{1}{\sqrt{M}} \right)^{l} \binom{l}{j-1}
= \frac{\sqrt{M}^{n-j} \left(\frac{1}{\sqrt{M}} \right)^{j-1}}{1 - \frac{1}{\sqrt{M}}}
\leq \frac{\sqrt{M}^{n-j}}{1 - \frac{1}{\sqrt{M}}}
\]
This together with (69) ensures that
\[
\sum_{j=1}^{n-1} \left(\frac{C \sqrt{M}}{\Gamma\left(\frac{1}{2}\right)} \right)^{\binom{n-1}{j}} \sum_{l=1}^{n-j} \sqrt{M}^{n-l-1} \binom{n-l-1}{j-1} \leq \sqrt{M} \sum_{j=1}^{n-1} \frac{\sqrt{M}^{j}}{\Gamma\left(\frac{j+1}{2}\right)} \leq \sqrt{M} \sum_{j=1}^{n-1} \frac{1}{\Gamma\left(\frac{j}{2}\right)} \leq (4C)^{n-1} \sqrt{M}^{n} \left(\frac{1}{\sqrt{M}} + 2e \right) \leq 7(4C)^{n-1} \sqrt{M}^{n}
\]
Combining (88), (70), (71), and (73) proves that
\[
\left\| \left(U_{0,M,Q}(t_{0}, x) - u^{\infty}(t_{0}, x) \right)_{t_{0}} \right\|_{L^{2}(\mathbb{R}^{d})}
\leq \left[\sup_{(t_{0}, \xi) \in [0, T] \times \mathbb{R}^{d}} \left(\varepsilon(t_{0}, \xi) \right) \right] + \max \left\{ \sqrt{T - t_{0}, \sqrt{3}} \right\} \frac{\|K\|_{1}}{\sqrt{M}}
+ \frac{3C^{n-1}e^{M}}{\sqrt{M}^{n-1}} \left[\sup_{(t_{0}, \xi) \in [0, T] \times \mathbb{R}^{d}} \|u^{\infty}(t_{0}, \xi)\|_{\infty} \right] + \left(14(4C)^{n-1} \right) \left(1 + \sup_{(t_{0}, \xi) \in [0, T] \times \mathbb{R}^{d}} \|\varepsilon(t_{0}, \xi)\|_{\infty} \right)
+ \frac{6(2C)^{n-1}e^{K} \max \left\{ \sqrt{T - t_{0}, \sqrt{3}} \right\} \|K\|_{1}}{\sqrt{M}^{n-1}}
\leq \frac{7C^{n-1}e^{M}}{\sqrt{M}^{n-1}} \left[\sup_{(t_{0}, \xi) \in [0, T] \times \mathbb{R}^{d}} \|u^{\infty}(t_{0}, \xi)\|_{\infty} \right] + \left(14(4C)^{n-1} \right) \left(1 + \sup_{(t_{0}, \xi) \in [0, T] \times \mathbb{R}^{d}} \|\varepsilon(t_{0}, \xi)\|_{\infty} \right)
+ \frac{6(2C)^{n-1}e^{K} \max \left\{ \sqrt{T - t_{0}, \sqrt{3}} \right\} \|K\|_{1}}{\sqrt{M}^{n-1}}
\leq \frac{7C^{n-1}e^{M}}{\sqrt{M}^{n-1}} \left[\sup_{(t_{0}, \xi) \in [0, T] \times \mathbb{R}^{d}} \|u^{\infty}(t_{0}, \xi)\|_{\infty} \right] + \left(14(4C)^{n-1} \right) \left(1 + \sup_{(t_{0}, \xi) \in [0, T] \times \mathbb{R}^{d}} \|\varepsilon(t_{0}, \xi)\|_{\infty} \right)
\]
This completes the proof of Theorem 4.4
\[\square\]

Lemma 4.5 (Quadrature error). Assume the setting in Section 4, let \(p, Q \in \mathbb{N}, x \in \mathbb{R}^{d}, s \in [0, T] \), and assume that \(u^{\infty} \in C^{\infty}([0, T] \times \mathbb{R}^{d}, \mathbb{R}) \) and for all \(k \in \mathbb{N}_{0} \) that
\[
\sup_{(t, y) \in [0, T] \times \mathbb{R}^{d}} \left| \left(\frac{d^{k}}{dt} + \frac{1}{2} \Delta_{y} \right)^{k} u^{\infty}(t, y) \right| \leq C^{k} \left(1 + \frac{1}{2} \Delta_{y} \right)^{k} u^{\infty}(t, y) < \infty.
\]

Then there exists \(\xi \in [s, T]^{d+1} \) such that for all \(\nu \in \{1, \ldots, d+1\} \) it holds that
\[
E \left[\sum_{t \in [s, T]} q^{Q,s} F(t) \left(F(u^{\infty}) \right)(t, x + W_{t-s}^{0,0}) \left(1, \frac{1}{W_{t-s}^{0,0}} \right) - F(t) \left(F(u^{\infty}) \right)(t, x + W_{t-s}^{0,0}) \left(1, \frac{1}{W_{t-s}^{0,0}} \right) dt \right]
= (\nabla_{x}, \xi) \left[\left(\frac{d^{k}}{dt} + \frac{1}{2} \Delta_{y} \right)^{2Q+1} u^{\infty}(t, \xi, x + W_{t-s}^{0,0}) \right] \left[\frac{q_{Q}^{*}(T-s)^{Q+1}}{(2Q+1)(2Q)!} \right]
\]
Proof of Lemma \[\text{4.5}\] Observe that \[\text{15}\] and the dominated convergence theorem ensure that for every \(k \in \mathbb{N}_0\) it holds that the function

\([s, T] \ni t \mapsto \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right)^k u^\infty \right] (t, x + W_t^0 - W_s^0) \in \mathbb{R} \)

(77)
is continuous. The assumption that \(u^\infty \in C^\infty \left([0, T] \times \mathbb{R}^d, \mathbb{R} \right) \) and Itô’s formula imply that for all \(t \in [s, T] \), \(k \in \mathbb{N} \) it holds \(\mathbb{P}\text{-a.s.} \) that

\[
\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right)^k u^\infty \big|_{t=s} = \int_s^t \left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right)^{k+1} u^\infty \, dv + \int_s^t \left((\nabla_y \left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right)^k u^\infty \right) (v, x + W_v^0 - W_s^0) \, dW_v^0.
\]

(78)
This and \(\text{15} \) show that for all \(k \in \mathbb{N} \) it holds that \(\mathbb{E} \left[\sup_{t \in [s, T]} \left| \int_s^t \left((\nabla_y \left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right)^k u^\infty \right) (v, x + W_v^0 - W_s^0) \, dW_v^0 \right| \right] < \infty \). This implies that for all \(t \in [s, T] \), \(k \in \mathbb{N} \) it holds that \(\mathbb{E} \left[\int_s^t \left((\nabla_y \left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right)^k u^\infty \right) (v, x + W_v^0 - W_s^0) \, dW_v^0 \right] = 0 \). This, \(\text{15} \), and Fubini’s theorem show that for all \(t \in [s, T] \), \(k \in \mathbb{N} \) it holds that

\[
\mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right)^k u^\infty \right] (t, x + W_t^0 - W_s^0) - \left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right)^k u^\infty \big|_{t=s} \int_s^t \mathbb{E} \left[(\nabla_y \left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right)^k u^\infty \right] (v, x + W_v^0 - W_s^0) \, dW_v^0.
\]

(79)
Equation \(\text{19} \) (with \(k = 1 \)) together with \(\text{20} \) (with \(k = 2 \)) implies that the function \([s, T] \ni t \mapsto \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right)^k u^\infty \right] (t, x + W_t^0 - W_s^0) \) is continuously differentiable. Induction, \(\text{20} \), and \(\text{21} \) prove that it holds that the function \([s, T] \ni t \mapsto \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right)^k u^\infty \right] (t, x + W_t^0 - W_s^0) \in \mathbb{R} \) is infinitely often differentiable. This, induction, and \(\text{21} \) demonstrate that for all \(k \in \mathbb{N}, t \in [s, T] \) it holds that

\[
\frac{\partial}{\partial t} \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right)^k u^\infty \right] (t, x + W_t^0 - W_s^0) = \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right)^{k+1} u^\infty \right] (t, x + W_t^0 - W_s^0).
\]

(80)
Equation \(\text{3} \) and the error representation for the Gauß-Legendre quadrature rule (see, e.g., \[\text{1}\] Display (2.7.12)) imply that there exists a real number \(\xi_1 \in [s, T] \) such that

\[
\sum_{t \in [s, T]} q^{Q, [s, T]}(t) \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right) u^\infty \right] (t, x + W_t^0 - W_s^0) - \int_s^T \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right) u^\infty \right] (t, x + W_t^0 - W_s^0) \, dt
\]

(81)

\[
= \int_s^T \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right) u^\infty \right] (t, x + W_t^0 - W_s^0) \, dt - \sum_{t \in [s, T]} q^{Q, [s, T]}(t) \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right) u^\infty \right] (t, x + W_t^0 - W_s^0)
\]

\[
= \left(\frac{\partial}{\partial t} \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right) u^\infty \right] (\xi_1, x + W_{\xi_1}^0 - W_s^0) \right) \frac{(Q^{[s, T]}(t-s)^{2q+1})_{t=\xi_1}}{(2q+1)!!(2q)!}
\]

(82)
Equation \(\text{3} \), the Bismut-Elworthy-Li formula (see, e.g., \[\text{5}\] Proposition 3.2)) and the error representation for the Gauß-Legendre quadrature rule (see, e.g., \[\text{1}\] Display (2.7.12)) imply for all \(i \in \{1, \ldots, d\} \) that there exists a real number \(\xi_{i+1} \in [s, T] \) such that

\[
\sum_{t \in [s, T]} q^{Q, [s, T]}(t) \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right) u^\infty \right] (t, x + W_t^0 - W_s^0) \left(\frac{W_{t_i}^0 - W_{t_i}^0}{s_{t_i}^0} \right) \right] - \int_s^T \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right) u^\infty \right] (t, x + W_t^0 - W_s^0) \left(\frac{W_{t_i}^0 - W_{t_i}^0}{s_{t_i}^0} \right) \, ds
\]

\[
= \sum_{t \in [s, T]} q^{Q, [s, T]}(t) \frac{\partial}{\partial t} \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right) u^\infty \right] (t, x + W_t^0 - W_s^0) - \int_s^T \frac{\partial}{\partial t} \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right) u^\infty \right] (t, x + W_t^0 - W_s^0) \, dt
\]

\[
= \left(\frac{\partial}{\partial t} \mathbb{E} \left[\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_p \right) u^\infty \right] (\xi_1, x + W_{\xi_1}^0 - W_s^0) \right) \frac{(Q^{[s, T]}(T-s)^{2q+1})_{t=\xi_1}}{(2q+1)!!(2q)!}
\]

(82)
This and \(\text{51} \) prove \(\text{70} \). This completes the proof of Lemma \[\text{4.3}\].
Then it holds that
\[
\left\| \left(\mathbf{U}_{n,M,Q}(t_0,x) - u^\infty(t_0,x) \right) \right\|_{L^2(\mathbb{R}^d)}
\leq \frac{7\alpha^n - 1}{\sqrt{\alpha^{n-\delta}}} M \left(\left\| (F(0))(t,z) \right\|_{(0)} + \left\| u^\infty(t,z) \right\|_{(0)} \right) + \max \left\{ \sqrt{T - t_0}, \sqrt{3} \right\} \| K \|_{1}
\]
\[
+ \left(\frac{14(4C)^{n-1} + 1}{Q^{2Q+1}} \sup_{k \in \mathbb{N}} \sup_{(z,t) \in [t_0,T] \times \mathbb{R}^d} \left\| (1, \nabla_y) \left(\left(\frac{\partial}{\partial t} + \frac{1}{2} \Delta_y \right)^{b+Q+1} u^\infty \right)(t,z) \right\|_{(0)} \right).
\]

The proof of Corollary 4.6 is thus completed. □

This proves [51]. The proof of Corollary 4.6 is thus completed.

The following corollary (Corollary 4.7) specializes Corollary 4.3 to the special case \(n = M = Q \) and \(\alpha = \frac{1}{4} \). For the choice of \(\alpha \) note that the terms \(\sqrt{M^{-\alpha}} \) and \(Q^{-2\alpha} \) in the case \(n = M = Q \in \mathbb{N} \cap [2, \infty) \) are equal if and only if \(\alpha = \frac{1}{4} \).
Corollary 4.7. Assume the setting in Section 2 assume that \(u^\infty \in C^\infty([0, T] \times \mathbb{R}^d, \mathbb{R}) \), let \(n \in \mathbb{N} \cap [2, \infty) \), \(\nu_0 \in \{1, \ldots, d+1\} \), \((t_0, x) \in [0, T) \times \mathbb{R}^d \), and let \(C \in [0, \infty) \) be the real number given by

\[
C = 2(\sqrt{T - t_0} + 1)\sqrt{T - t_0}\pi (\|L\|_1 + 1) + 1.
\]

Then it holds that

\[
\left\| \left(U_{n,n,n}^0(t_0, x) - u^\infty(t_0, x) \right)_{\nu_0} \right\|_{L^2(F; \mathbb{R})}
\leq \frac{2\nu_0^{\infty - 1}c_{\nu_0}}{\sqrt{n} - \sigma}
\left(\sup_{(t, z) \in [0, T] \times \mathbb{R}^d} |F(0)(t, z)| + \sup_{(t, z) \in [0, T] \times \mathbb{R}^d} \|u^\infty(t, z)\|_\infty \right)
+ \sup_{k \in \mathbb{N}} \sup_{(t, z) \in [0, T] \times \mathbb{R}^d} \left(\frac{\partial}{\partial y} \left(\frac{1}{\sqrt{n}} \sum \Delta_y \right) \right)^{k+1} \frac{|u^\infty(t, z)|}{(k)!^{1/4}}.
\]

The following main result of this article (Corollary 4.8) proves that if the constant \(\nu_0 \) is finite, then the computational complexity (here measured in terms of the number of scalar normal random variables and in terms of function evaluations of \(f \) and \(g \)) is bounded by \(O(d\varepsilon^{-(4+\delta)}) \) for any \(\delta \in (0, \infty) \) where \(d \) is the dimensionality of the problem and \(\varepsilon \in (0, \infty) \) is the prescribed accuracy.

Corollary 4.8 (Computational complexity in terms of global error). Assume the setting in Subsection 2, assume that \(u^\infty \in C^\infty([0, T] \times \mathbb{R}^d, \mathbb{R}) \), let \(\delta \in (0, \infty) \), let \(C \in [0, \infty) \) be the extended real number given by

\[
C = \left(\sup_{(t, z) \in [0, T] \times \mathbb{R}^d} |F(0)(t, z)| + \sup_{(t, z) \in [0, T] \times \mathbb{R}^d} \|u^\infty(t, z)\|_\infty \right) + \frac{\max \{ \sqrt{T - t_0}, \sqrt{3} \} \|K\|_1}{(4+\delta)}
\]

assume that \(C < \infty \), let \((R_{n,M,Q})_{n,M,Q} \subseteq \mathbb{N}_0 \) be natural numbers which satisfy for all \(n, M, Q \in \mathbb{N} \) that \(R_{n,M,Q} = 0 \) and

\[
R_{n,M,Q} \leq dM^n + \sum_{l=0}^{n-1} \left[QM^{n-l}(d + R_{l,M,Q} + R_{l-1,M,Q}) \right]
\]

(for every \(N \in \mathbb{N} \) we think of \(R_{n,M,Q} \) as the number of realizations of a scalar standard normal random variable required to compute one realization of the random variable \(U_{n,M,Q}^0(0, 0): \Omega \rightarrow \mathbb{R} \)), and let \((F_{n,M,Q})_{n,M,Q} \subseteq \mathbb{N}_0 \) be natural numbers which satisfy for all \(n, M, Q \in \mathbb{N} \) that \(F_{n,M,Q} = 0 \) and

\[
F_{n,M,Q} \leq dM^n + \sum_{l=0}^{n-1} \left[QM^{n-l}(1 + F_{l,M,Q} + R_{l,M,Q} + R_{l-1,M,Q}) \right]
\]

(for every \(N \in \mathbb{N} \) we think of \(F_{n,M,Q} \) as the number of function evaluations of \(f \) and \(g \) required to compute one realization of the random variable \(U_{n,M,Q}^0(0, 0): \Omega \rightarrow \mathbb{R} \)) Then it holds for all \(N \in \mathbb{N} \) that

\[
R_{n,n,M,Q} + F_{n,n,M,Q} \leq dL \left[\left(\sup_{(t, z) \in [0, T] \times \mathbb{R}^d} \max_{\nu \in \{1, \ldots, d+1\}} \left\| \left(U_{0,n,n,n}^0(t, x) - u^\infty(t, x) \right)_{\nu} \right\|_{L^2(F; \mathbb{R})} \right)^{-\frac{1}{4+\delta}} \sum_{n \in \mathbb{N}} \left(24(T + 1) \right)^{3(4+\delta)n} \left(\|L\|_1 + 1 \right)^{(4+\delta)n} \sqrt{n}^{-\delta n} < \infty.
\]

Proof of Corollary 4.8. Lemma 3.15 and Lemma 3.16 in 2 imply that for all \(N \in \mathbb{N} \) it holds that \(R_{n,n,M,Q} \leq 8dN^{2N} \) and \(F_{n,n,M,Q} \leq 8N^{2N} \). This and Corollary 4.7 yield for all \(N \in \mathbb{N} \) that

\[
\left(R_{n,n,M,Q} + F_{n,n,M,Q} \right) \leq 8(d + 1)N^{2N} \left(\frac{72(2\sqrt{T + 1}) \sqrt{T}\pi (\|L\|_1 + 1)^{\frac{1}{2}} + (14(8\sqrt{T + 1}) \sqrt{T}\pi (\|L\|_1 + 1)^{\frac{1}{2}} + 1)T^{2N} + 1}{\sqrt{n}^{\delta n}} \right)^{\frac{1}{4+\delta}} C
\]

\[
\leq 8(d + 1)N^{2N} \left(\frac{(24(T + 1))^{3N} (\|L\|_1 + 1)^N \sqrt{n}^{-N}}{(4+\delta)n} \right) \leq 16d \left(\frac{(24(T + 1))^{3(4+\delta)n} (\|L\|_1 + 1)^{(4+\delta)n} \sqrt{n}^{-\delta n}}{n} \right).
\]

The right-hand side of (95) is clearly finite. This finishes the proof of Corollary 4.8. \(\square \)
Acknowledgement

This project has been partially supported by the Deutsche Forschungsgesellschaft (DFG) via RTG 2131 High-dimensional Phenomena in Probability – Fluctuations and Discontinuity and via research grant HU 1889/6-1.

References

[1] Davis, P. J., and Rabinowitz, P. Methods of numerical integration. Courier Corporation, 2007.
[2] E, W., Han, J., and Jentzen, A. Deap learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. arXiv:1706.03295 (2017).
[3] E, W., Hutzenthaler, M., Jentzen, A., and Kruse, T. Linear scaling algorithms for solving high-dimensional nonlinear parabolic differential equations. arXiv:1607.03295 (2016).
[4] E, W., Hutzenthaler, M., Jentzen, A., and Kruse, T. On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations. arXiv:1708.03223 (2017).
[5] Fournié, E., Lasry, J.-M., Lebuchoux, J., Lions, P.-L., and Touzi, N. Applications of Malliavin calculus to Monte Carlo methods in finance. Finance and Stochastics 3, 4 (Aug 1999), 391–412.
[6] Heinrich, S. The randomized information complexity of elliptic PDE. J. Complexity 22, 2 (2006), 220–249.
[7] Henry-Labordère, P. Counterparty risk valuation: a marked branching diffusion approach. arXiv:1203.2369 (2012), 17 pages.
[8] Henry-Labordère, P., Oudjane, N., Tan, X., Touzi, N., and Warin, X. Branching diffusion representation of semilinear PDEs and Monte Carlo approximation. arXiv preprint arXiv:1603.01727 (2016).
[9] Henry-Labordère, P., Tan, X., and Touzi, N. A numerical algorithm for a class of BSDEs via the branching process. Stochastic Process. Appl. 124, 2 (2014), 1112–1140.
[10] Robbins, H. A remark on Stirling’s formula. The American Mathematical Monthly 62, 1 (1955), 26–29.