Engineering ergothioneine production in Yarrowia lipolytica

van der Hoek, Steven A.; Rusnák, Matej; Jacobsen, Irene Hjorth; Martínez, José L.; Kell, Douglas B.; Borodina, Irina

Published in: FEBS Letters

Link to article, DOI: 10.1002/1873-3468.14239

Publication date: 2022

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
van der Hoek, S. A., Rusnák, M., Jacobsen, I. H., Martínez, J. L., Kell, D. B., & Borodina, I. (2022). Engineering ergothioneine production in Yarrowia lipolytica. FEBS Letters, 596(10), 1356-1364. https://doi.org/10.1002/1873-3468.14239
Engineering ergothioneine production in *Yarrowia lipolytica*

Steven A. van der Hoek¹, Matej Rusnák¹, Irene Hjorth Jacobsen², José L. Martínez², Douglas B. Kell¹,³, Irina Borodina¹,*

¹The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
²Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
³Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK

Correspondence: Irina Borodina, irbo@biosustain.dtu.dk, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs. Lyngby, Denmark

Keywords: Ergothioneine, nutraceutical, metabolic engineering, *Yarrowia lipolytica*, phosphate-limitation

Abbreviations: ERG ergothioneine SAM S-adenosylmethionine SC synthetic complete

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/1873-3468.14239

This article is protected by copyright. All rights reserved
Abstract
Ergothioneine is a naturally occurring antioxidant that has shown potential in ameliorating neurodegenerative and cardiovascular diseases. In this study, we investigated the potential of the Crabtree-negative, oleaginous yeast *Yarrowia lipolytica* as an alternative host for ergothioneine production. We expressed the biosynthetic enzymes *EGT1* from *Neurospora crassa* and *EGT2* from *Claviceps purpurea* to obtain 158 mg/L of ergothioneine in small-scale cultivation, with an additional copy of each gene improving the titer to 205 mg/L. The effect of phosphate limitation on ergothioneine production was studied, and finally, a phosphate-limited fed-batch fermentation in 1 L bioreactors yielded 1.63 ± 0.04 g/L ergothioneine in 220 hours, corresponding to an overall volumetric productivity of 7.41 mg L⁻¹ h⁻¹, showing that *Yarrowia lipolytica* is a promising host for ergothioneine production.
Introduction
The amino acid-derived nutraceutical ergothioneine (ERG) has recently gained much scientific interest for its potential application in preventing or treating neurodegenerative and cardiovascular diseases [1,2]. Current scientific understanding attributes its capacity in ameliorating disease to its potent antioxidant properties [3], as oxidative damage is commonly present in chronic, inflammatory diseases [4]. While ERG is ubiquitous in nature [5], it is only produced by fungi and bacteria. To date, no higher eukaryotes have been reported to biosynthesize ERG.

ERG is biosynthesized from the precursors histidine, cysteine, and S-adenosylmethionine (SAM) (Figure 1). In the fungal pathway, histidine is methylated three times by Egt1 to form hercynine before the same enzyme attaches cysteine to generate hercynylcysteine sulfoxide. The β-lyase enzyme Egt2 then dissociates ammonium pyruvate from the intermediate, and a subsequent reduction of the sulfur produces ERG. The bacterial pathway (Supplementary Figure 1) has the disadvantage of using five enzymes compared to two, and that ATP is used to form other pathway intermediates that include glutamate, which has to be cleaved off in later steps.

Both pathways have previously been used to produce ERG in cell factories (Table 1). *Aspergillus oryzae* produced 231 mg ERG/kg solid media after integrating multiple copies of the *EGT1* and *EGT2* genes of *Neurospora crassa* [6]. *E. coli* produced 24 mg/L ERG after expression of the *M. smegmatis egtBCDE* genes and the addition of amino acid precursors to the medium [7]. Further metabolic engineering for improved cysteine and SAM biosynthesis enhanced the production in *E. coli* to 1.3 g/L in 216 hours when precursors were fed to the cells [8]. Previously, we screened various combinations of fungal and bacterial ERG biosynthesis enzymes to find the optimal combination for ERG production in *Saccharomyces cerevisiae*. Two copies of the *N. crassa EGT1* and the *Claviceps purpurea EGT2* gene produced 598 mg/L ERG in an 84-hour fed-batch cultivation where additional amino acid precursors were fed to the cells [9].

Yarrowia lipolytica is an oleaginous yeast capable of accumulating high amounts of storage lipids. In some wild-type strains, lipid content can reach 20-40% of dry weight, while in engineered strains lipid content can exceed 90% [10]. Lipid production requires cytosolic acetyl-CoA, malonyl-CoA,
and NADPH [11]. As these precursors are also required for isoprenoids, polyketides, and other metabolites, *Y. lipolytica* is also a promising cell factory for the production of such metabolites [11–15]. *Y. lipolytica* has been engineered for production of β-carotene [14], β-farnesene, limonene, valencene, squalene, 2,3-oxidosqualene [12], aromatic amino acids [15], and resveratrol [13]. Additionally, *Y. lipolytica* is used for the production of lipases, β-mannases, laccases, amylases, and proteases [16].

In contrast to *S. cerevisiae*, *Y. lipolytica* is a Crabtree-negative yeast, so it does not have an extensive overflow metabolism in the presence of sugar excess [17] and is therefore much easier to ferment at large scale. The aim of the current study was to explore *Y. lipolytica* as the host for the production of ERG.

Material and methods

Strains and chemicals

The *Yarrowia lipolytica* strain ST6512 [18] was used as the background strain for metabolic engineering. *Escherichia coli* DH5α was used for all cloning procedures, propagation, and storing of plasmids. Ergothioneine (catalog # E7521-25MG, ≥98% purity) was bought from Sigma-Aldrich. Synthetic genes were ordered through the GeneArt Gene Synthesis service of Thermo Fisher Scientific or the custom gene synthesis service of IDT. Sequencing results were obtained through Eurofins Genomics (Ebersberg, Germany) using their Mix2Seq kit.

Media

Mineral medium consisted of 20 g/L glucose, 7.5 g/L (NH₄)₂SO₄, 14.4 g/L KH₂PO₄, 0.5 g/L MgSO₄.7H₂O, 2 mL/L trace metal solution, and 1 mL/L vitamin solution, adjusted to pH 6.0 using 2 M NaOH. Mineral medium without phosphate was prepared using the same recipe, but KH₂PO₄ was substituted with the same concentration of MES hydrate. High glucose mineral medium without phosphate consisted of 50 g/L glucose, 20 g/L (NH₄)₂SO₄, 30 g/L MES hydrate, 1.25 g/L MgSO₄.7H₂O, 5 mL/L trace metal solution, and 2.5 mL/L vitamin solution, adjusted to pH 6.0 using 2 M NaOH.
Trace metal solution consisted of 4.5 g/L CaCl$_2$.2H$_2$O, 4.5 g/L ZnSO$_4$.7H$_2$O, 3 g/L FeSO$_4$.7H$_2$O, 1 g/L H$_3$BO$_3$, 1 g/L MnCl$_2$.4H$_2$O, 0.4 g/L Na$_2$MoO$_4$.2H$_2$O, 0.3 g/L CoCl$_2$.6H$_2$O, 0.1 g/L CuSO$_4$.5H$_2$O, 0.1 g/L KI, and 15 g/L EDTA. Vitamin solution consisted of 50 mg/L biotin, 200 mg/L p-aminobenzoic acid, 1 g/L nicotinic acid, 1 g/L calcium pantothenate, 1 g/L pyridoxine HCl, 1 g/L thiamine HCl, and 25 g/L myo-inositol.

Cloning

Strain construction for the integrations in *Y. lipolytica* was performed using the EasyCloneYALI method [18]. After transformation with plasmids, *E. coli* was grown on LB plates with 100 mg/L ampicillin. For the selection of *Y. lipolytica* strains after modification with Cas9 plus gRNA, YPD plates supplemented with 250 mg/L nourseothricin were used. Strains were checked for correct genetic modification by colony PCR. A list of the used genes, primers, biobricks, plasmids, and strains can be found in Supplementary Tables 1 through 6.

Small-scale cultivation conditions

For checking initial ERG production, a single colony of the respective strains was inoculated in 5 mL mineral medium in a 13 mL preculture tube and cultured two times overnight at 30 °C and 250 rpm. ERG production of the strains was tested in mineral medium by cultivating for 48 hours at 30 °C and 250 rpm. Precultures for phosphate-limited experiments were made by inoculating a single colony of ST10264 in 5 mL mineral medium without phosphate, supplemented with 0.04 g/L KH$_2$PO$_4$, and culturing the strain three times overnight at 30 °C and 250 rpm. The correlation of biomass to phosphate concentration was performed by inoculating strain ST10264 in mineral medium without phosphate with either 20 g/L glucose or 50 g/L glucose, supplemented with various concentrations of KH$_2$PO$_4$, at OD$_{600} = 0.1$ in 2 mL medium in 24 deep-well plates. The strain was then cultivated for 72 hours at 30 °C and 250 rpm. The OD$_{600}$ values were determined using the NanoPhotometer Pearl (Implen, Germany). Phosphate-limited ERG production was determined by inoculating 50 mL high glucose mineral medium without phosphate, supplemented with 0.04 g/L KH$_2$PO$_4$, in 250 mL baffled shake flask at OD$_{600} = 0.2$ using inoculum from phosphate-limited precultures. The strain was cultivated for 56 hours at 30 °C and 250 rpm.
HPLC analyses

ERG was quantified by HPLC, similar to our previous work [9]. The ERG extraction was performed similar to [19]. ERG concentrations were determined by taking a 1 mL sample of the cultivation broth and immediately boiling the sample at 94 °C for 10 minutes, with subsequent vortexing at 1600 rpm for 30 minutes using a DVX-2500 Multi-Tube Vortexer from VWR. The vortexed samples were centrifuged at 10,000 × g for 5 minutes, and the supernatant was taken and analyzed using HPLC. If storage was necessary, samples were stored at -20 °C. For HPLC analysis, the Dionex Ultimate 3000 HPLC system with the analysis software Chromeleon was used. Samples were run on a Cortecs UPLC T3 reversed-phase column (particle size 1.6 µm, pore size 120 Å, 2.1 × 150 mm). The flow rate was 0.3 mL/min, starting with 2.5 minutes of 0.1% formic acid, going up to 70% acetonitrile, 30% 0.1% formic acid at 3 minutes for 0.5 minutes, after which 100% 0.1% formic acid was run from minute 4 to 9. ERG was detected at a wavelength of 254 nm. For analysis of bioreactor samples, we additionally quantified glucose, ethanol, pyruvate, and acetate concentrations by HPLC as described [20].

Testing biomass accumulation during a phosphate-limited fed-batch fermentation in a bioreactor.

Batch phase medium consisted of 20 g/L glucose, 16 g/L (NH₄)₂SO₄, 15 g/L MES hydrate, 0.34 g/L KH₂PO₄, 2 g/L MgSO₄·7H₂O, 40 mg/L pyridoxine hydrochloride, 2 mL/L trace metal solution, and 1 mL/L vitamin solution. Feed medium consisted of 700 g/L glucose, 96 g/L (NH₄)₂SO₄, 15 g/L MES hydrate, 16 g/L MgSO₄·7H₂O, 0.5 g/L pyridoxine hydrochloride, 20 mL/L trace metal solution, and 10 mL/L vitamin solution.

A single colony from a YPD plate with ST10264 colonies was used to inoculate 5 mL of mineral medium with 20 g/L glucose but without phosphate, supplemented with 0.04 g/L KH₂PO₄ in a 13 mL preculture tube. The tube was incubated at 30 °C and 250 rpm two times overnight. 2 mL of this preculture was used to inoculated 98 mL mineral medium with 20 g/L glucose but without phosphate, supplemented with 0.04 g/L KH₂PO₄, in a 500 mL baffled shake flask. The shake flask was then incubated two times overnight at 30 °C and 250 rpm. The culture was centrifuged at 3,000 × g for 5 minutes, the supernatant was decanted, and the pellet was resuspended in 50 mL sterile MilliQ water.
The precultured cells were then used to inoculate 0.7 L batch phase medium in a single 1 L Sartorius bioreactor. The starting OD₆₀₀ was 0.2. The stirring rate was set at 800 rpm, the airflow was set at 0.5 SLPM, the temperature was kept at 30 °C, and pH was maintained at pH 5.0 using 2 M KOH and 2 M H₂SO₄. The stirring was controlled by the level of dissolved oxygen in the solution. If it dropped below 40%, the stirring was increased up to 1200 rpm. The feeding was started after 40 hours when all the glucose was consumed. The airflow was set to 1.0 SLPM during the feeding. The starting feed rate at 40 hours was 2.6 g/h (2.0 mL/h). At 64 hours, the feed rate was increased to 3.9 g/h (3.0 mL/h). At 76 hours, the feed rate was decreased to 3.3 g/h (2.5 mL/h). At 124 hours, the feed rate was decreased to 2.6 g/h (2.0 mL/h) until the feeding was stopped at 172 hours. Antifoam was added as necessary.

Phosphate-limited fed-batch fermentation in bioreactors

Batch phase medium consisted of 40 g/L glucose, 16 g/L (NH₄)₂SO₄, 0.83 g/L KH₂PO₄, 2 g/L MgSO₄.7H₂O, 40 mg/L pyridoxine hydrochloride, 4 mL/L trace metal solution and 2 mL/L vitamin solution. Feed medium consisted of 730 g/L glucose, 136 g/L (NH₄)₂SO₄, 16 g/L MgSO₄.7H₂O, 1 g/L pyridoxine hydrochloride, 20 mL/L trace metal solution, and 10 mL/L vitamin solution.

A single colony from a YPD plate with ST10264 colonies was used to inoculate 5 mL of mineral medium with 20 g/L glucose but without phosphate, supplemented with 0.04 g/L KH₂PO₄ in a 13 mL preculture tube. The tube was incubated at 30 °C and 250 rpm two times overnight. 2 mL of this preculture was used to inoculated 98 mL mineral medium with 20 g/L glucose but without phosphate, supplemented with 0.04 g/L KH₂PO₄, in a 500 mL baffled shake flask. The shake flask was then incubated two times overnight at 30 °C and 250 rpm. The culture was centrifuged at 3,000 × g for 5 minutes, the supernatant was decanted, and the pellet was resuspended in 50 mL sterile MilliQ water. The precultured cells were then used to inoculate 0.6 L batch phase medium in 1 L Sartorius bioreactors in triplicate. The starting OD₆₀₀ was 0.2. The temperature was kept at 30 °C, and pH was maintained at pH 5.0 using 2 M KOH. The dissolved oxygen level controlled a cascade for the stirring and airflow. If the dissolved oxygen level dropped below 40%, the stirring was first increased from 800 to a maximum of 1200 rpm, followed by the airflow from 1.0 SLPM to a maximum of 1.5 SLPM. The feeding was started after 40 hours when all the glucose was consumed. The starting feed rate at
40 hours was 2.6 g/h (2.0 mL/h). At 64 hours, the feed rate was increased to 3.3 g/h (2.5 mL/h). At 76 hours, the feed rate was increased to 4.0 g/h (3.0 mL/h). At 88 hours, the feed rate was increased to 4.7 g/h (3.5 mL/h). Finally, at 100 hours, the feed rate was increased to 5.3 g/h (4.0 mL/h) until the feeding was stopped at 160 hours. Antifoam was added as necessary.

Results & Discussion

Integration of the ergothioneine biosynthesis pathway

To implement ERG biosynthesis in *Y. lipolytica*, we chose the combination of enzymes that performed optimally in *S. cerevisiae*, viz. the *EGT1* gene from *N. crassa* (Genbank accession XP_956324.3) and the *EGT2* gene from *C. purpurea* (Genbank accession CCE33140.1) [9]. The genes were codon-optimized for *Y. lipolytica* expression and placed under the control of either TEFintron promoter or GPD promoter in the ST6512 strain. ST6512 is derived from *Y. lipolytica* W29 by integrating the *cas9* gene and knocking-out of the *ku70* gene to reduce the non-homologous end joining [18]. While both TEFintron and GPD promoters are strong constitutive promoters, TEFintron promoter is several-fold stronger [18]. The expression of a single copy of the pathway allowed *Y. lipolytica* to produce 141 or 158 mg/L ERG, depending on the promoter choice (Figure 2). The higher titer was obtained for the strain expressing NcEgt1 under the control of TEFintron promoter, which is in line with the results in *S. cerevisiae*, where an additional copy of *N. crassa EGT1* improved the production of ERG, but not an extra copy of *C. purpurea EGT2* [9]. Interestingly, these titers, obtained in a simple small-scale batch cultivation, were 3-fold higher than the titers obtained for an analogous *S. cerevisiae* strain cultivated in simulated fed-batch medium and 9-fold higher than *S. cerevisiae* titers in batch medium [9]. As the next step, we integrated another copy of both *EGT1* and *EGT2* genes to obtain strain ST10264, which produced 205 mg/L ERG (Figure 2). Comparatively, the ERG titer in *E. coli* expressing the bacterial pathway on high-copy number plasmids was approximately 22 mg/L [8]. These results show that *Y. lipolytica* is a suitable host for the production of ERG.

Phosphate limits biomass accumulation but not ergothioneine production in small-scale cultivations
Biomass concentration should be carefully considered for a successful fed-batch cultivation of the ERG-producing ST10264 strain. *Y. lipolytica* grows to cell densities as high as 80-120 g/L during fed-batch cultivation depending on the substrate, as evidenced in [13,21,22]. As the biosynthesis pathway for ERG requires oxygen, high cell density in fed-batch conditions can be disadvantageous for the production of ERG. The solution was to limit the final biomass by means other than the typical carbon limitation in fed-batch cultivations. Nitrogen limitation is often used in *Y. lipolytica* cultivations, but nitrogen limitation triggers downregulation of amino acid synthesis. The carbon flux is then redirected to lipid metabolism [23]. Since ERG is derived from the amino acids histidine and cysteine, and the amino-acid derived SAM, nitrogen limitation should not be used to limit the biomass concentration in fed-batch cultivation.

Therefore, it was investigated if the biomass of strain ST10264 could be limited by the phosphate concentration instead (Supplementary Figure 2). Phosphate is typically used to buffer the medium, so we used 2-(N-morpholino)ethanesulfonic acid (MES) hydrate for pH buffering instead. We tested two glucose concentrations (20 or 50 g/L) and different KH$_2$PO$_4$ concentrations (0-0.3 g/L) for cellular growth in 24-deep-well plates (Supplementary Figure 2). In parallel, we cultivated the same strain in shake flasks with 0.04 g/L KH$_2$PO$_4$ and 50 g/L glucose to determine if ERG would be produced after the strain stopped growing. Indeed, while the OD$_{600}$ increased by only ca. 30% in the second half of cultivation, ERG concentration doubled during the same period (Figure 3B). These experiments indicated that phosphate limitation is a viable strategy for ERG fermentation.

Producing ergothioneine using phosphate-limited fed-batch fermentation

When limiting the biomass using the phosphate concentration in 24-deep-well plates, the OD$_{600}$ values increased by 4-5 units per 0.01 g/L KH$_2$PO$_4$ in the KH$_2$PO$_4$ concentration range of 0.01 g/L to 0.08 g/L (Supplementary Figure 2), corresponding to an increase of ca 0.48-0.60 g/L cell dry weight (CDW) per 0.01 g/L KH$_2$PO$_4$. We then designed an initial fermentation experiment to confirm that the KH$_2$PO$_4$ concentration limited the biomass to the same level in a bioreactor. Therefore, we added 0.24 g/L KH$_2$PO$_4$ per 1 L final volume of fed-batch cultivation in a bioreactor, meaning that 0.34 g/L KH$_2$PO$_4$ was added to the starting volume of 0.7 L, to reach 15-20 g/L CDW during the fermentation. The results of this experimental phosphate-limited fed-batch fermentation in a single bioreactor are...
shown in Supplementary Figure 2. After the initial batch phase of 40 hours, the glucose feeding was started at a rate of 1.4 g/h (2.0 mL/h feed solution) and was adjusted throughout the fermentation to ensure that the added glucose was not entirely consumed by the cells. The strain produced ERG throughout the fed-batch fermentation, with the highest productivity of 10.07 mg L\(^{-1}\) h\(^{-1}\) ERG when phosphate was not limiting the growth. However, when phosphate became limiting, the productivity dropped to 2.77 mg L\(^{-1}\) h\(^{-1}\) ERG. Curiously, strain ST10264 reached 32-33 g/L CDW already at 76 hours, and the biomass concentration did not increase until 100 hours. Even though the biomass concentration was higher than the aimed 15-20 g/L CDW, the dissolved oxygen level did not drop below 40%, meaning no oxygen limitation was observed. Therefore, 60 mg KH\(_2\)PO\(_4\) was added to the bioreactor at 100 hours to study its effect on biomass concentration, and the additional KH\(_2\)PO\(_4\) increased the CDW of ST10264 to 40 g/L. Furthermore, the productivity increased to 5.01-6.59 mg L\(^{-1}\) h\(^{-1}\) ERG upon addition of potassium phosphate, as calculated using either the lower ERG titers or higher ERG titers between 136 and 208 hours. Surprisingly, the strain generated approximately 1.33 g/L CDW per 0.01 g/L KH\(_2\)PO\(_4\), more than double the level of biomass compared to the experiment in 24-deep-well plates.

From the results of this trial fermentation, we estimated that a biomass concentration of approximately 60 g/L CDW would not cause oxygen limitation issues. Hence, we added 0.5 g KH\(_2\)PO\(_4\) per 1 L of the final volume of fed-batch cultivation in bioreactors, equivalent to 0.83 g/L KH\(_2\)PO\(_4\) in the starting volume of 0.6 L. After inoculation at OD\(_{600}\) = 0.2, the cells were grown for 40 hours in the batch phase to accumulate enough biomass to start feeding. The dissolved oxygen level was controlled through a cascade of stirring (800-1200 rpm) and airflow (1.0-1.5 SLPM). The feeding was started after the batch phase concluded at 2.6 g/h (2.0 mL/h) and kept at that level for 24 hours. After that, the feed rate was increased by 0.65 g/h (0.5 mL/h) every 12 hours until glucose started accumulating in the medium. The feed rate reached a maximum of 5.3 g/h (4.0 mL/h) between 100 and 160 hours, after which the feeding was stopped. Figure 4 details the results of the phosphate-limited fed-batch fermentation in 1 L bioreactors performed in triplicate. Overall, strain ST10264 produced 1637 ± 41 mg/L ERG after 220 hours, out of which 26% was extracellular and 74% was intracellular. The overall productivity was 7.41 ± 0.19 mg L\(^{-1}\) h\(^{-1}\) ERG.
Both the overall titer and productivity were higher than obtained with *E. coli*, which produced 1.3 g/L ERG with a productivity of 6.02 mg L\(^{-1}\) h\(^{-1}\) [8], and *S. cerevisiae* producing 598 mg/L ERG at a rate of 7.12 mg L\(^{-1}\) h\(^{-1}\) [9]. However, ERG yield was highest at 16.36 mg L\(^{-1}\) h\(^{-1}\) until 100 hours, when phosphate became limiting, and glucose started accumulating in the medium. After phosphate became limiting, the ERG titers remained approximately the same between 100 and 160 hours, while the volume inside the bioreactor increased at a rate of 4.0 mL/h. The overall productivity at 100 hours was 12.73 mg L\(^{-1}\) h\(^{-1}\), which dropped to 8.03 mg L\(^{-1}\) h\(^{-1}\) at 160 hours. Thus, we estimated the productivity between 100 and 160 hours to be 4.70 mg L\(^{-1}\) h\(^{-1}\) to account for the volume increase in this timeframe. After the feeding stopped and excess glucose was consumed by the cells, the ERG titer increased from 1285 mg/L to 1637 mg/L between 160 and 220 hours, showing a productivity of 5.87 mg L\(^{-1}\) h\(^{-1}\) in this period.

The final biomass concentration of the fermentation was 60.6 g/L CDW, close to the target of 60 g/L CDW of the experimental design. However, the biomass concentration was 45-46 g/L CDW until 196 hours. The lower than expected biomass concentration until 196 hours could have been caused by increased use of phosphate for general metabolite production in the early fed-batch phase, as the ERG productivity until 100 hours was 16.36 mg L\(^{-1}\) h\(^{-1}\), compared to 10.07 mg L\(^{-1}\) h\(^{-1}\) in the early fed-batch phase of the fermentation with a lower amount of phosphate. The sudden increase in biomass concentration occurred when excess glucose in the medium reached below 10 g/L glucose and became limiting. We hypothesize that the lower glucose concentration initiated a change in metabolism that allowed the generation of additional biomass.

The production of ERG by *Y. lipolytica* had another notable advantage over *E. coli* and *S. cerevisiae*. In both the *E. coli* and the *S. cerevisiae* studies, the fermentations were supplemented with additional amino acid precursors to improve titers (Table 1) [8,9]. Furthermore, *E. coli* was additionally supplemented with ammonium ferric citrate. The fermentation media used here only contained an additional 1 g/L pyridoxine, a co-factor for the CpEgt2 enzyme. Pyridoxine was supplemented to the media in the *E. coli* and *S. cerevisiae* studies at 10 g/L and 0.5 g/L, respectively [8,9]. Thus, using *Y. lipolytica* as a host also improved the cost-effectiveness of ERG production.
In conclusion, we integrated the ERG biosynthesis pathway into oleaginous yeast *Y. lipolytica*. Phosphate limitation was a viable strategy to limit biomass accumulation in the bioreactors. ERG titer reached 1.63 ± 0.04 g/L after 220 hours of fermentation in mineral medium with glucose as the only carbon source.

Acknowledgements
The authors thank Tina Johansen and Pablo Torres Montero for technical help with bioreactors.

Data availability
The data that supports the findings of this study are available in Figure 1 through 4 and the supplementary material of this article.

Author contributions
IB and DBK conceived the study; IB and JLM supervised the study; SAH, IHJ, and JLM designed the experiments; SAH, IHJ, and MR performed the experiments and data analysis; SAH and IB wrote the manuscript; SAH, IB, DBK, IHJ, and JLM reviewed and revised the manuscript; IB and JLM provided resources for the study; IB acquired funding for the study.

Funding
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 757384), from the Novo Nordisk Foundation (grant agreement No NNF20OC0060809 and No NNF20CC0035580), and from the Proof of Concept (PoC) Fund of the Technical University of Denmark.

Conflict of interest statement
SH, DBK & IB are named inventors on a European Patent application covering parts of the work described above.

References
1 Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA & Kell DB (2020) The biology of ergothioneine, an antioxidant nutraceutical. *Nutr Res Rev*, 1–28.

2 Cheah IK & Halliwell B (2021) Ergothioneine, recent developments. *Redox Biol*, 101868.

3 Halliwell B, Cheah IK & Tang RMY (2018) Ergothioneine - a dietderived antioxidant with therapeutic potential. *FEBS Lett*.

4 Kell DB & Pretorius E (2018) No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. *Biol Rev 93*, 1518–1557.

5 Melville DB (1959) Ergothioneine. *Vitam Horm 17*, 155–204.

6 Takusagawa S, Satoh Y, Ohtsu I & Dairi T (2019) Ergothioneine production with *Aspergillus oryzae*. *Biosci Biotechnol Biochem 83*, 181–184.

7 Osawa R, Kamide T, Satoh Y, Kawano Y, Ohtsu I & Dairi T (2018) Heterologous and high production of ergothioneine in *Escherichia coli*. *J Agric Food Chem 66*, 1191–1196.

8 Tanaka N, Kawano Y, Satoh Y, Dairi T & Ohtsu I (2019) Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in *Escherichia coli*. *Sci Rep 9*, 1895.

9 van der Hoek SA, Darbani B, Zugaj KE, Prabhala BK, Biron MB, Randelovic M, Medina JB, Kell DB & Borodina I (2019) Engineering the yeast *Saccharomyces cerevisiae* for the production of L- (+)-ergothioneine. *Front Bioeng Biotechnol 7*.

10 Lazar Z, Liu N & Stephanopoulos G (2018) Holistic approaches in lipid production by *Yarrowia lipolytica*. *Trends Biotechnol 36*, 1157–1170.

11 Abdel-Mawgoud AM, Markham KA, Palmer CM, Liu N, Stephanopoulos G & Alper HS (2018) Metabolic engineering in the host *Yarrowia lipolytica*. *Metab Eng 50*, 192–208.

12 Arnesen JA, Kildegaard KR, Cernuda Pastor M, Jayachandran S, Kristensen M & Borodina I (2020) *Yarrowia lipolytica* strains engineered for the production of terpenoids. *Front Bioeng Biotechnol 8*.

13 Sáez-Sáez J, Wang G, Marella ER, Sudarsan S, Cernuda Pastor M & Borodina I (2020) Engineering the oleaginous yeast *Yarrowia lipolytica* for high-level resveratrol production. *Metab Eng 62*, 51–61.

14 Larroude M, Celinska E, Back A, Thomas S, Nicaud JM & Ledesma-Amaro R (2018) A synthetic biology approach to transform *Yarrowia lipolytica* into a competitive biotechnological producer
of β-carotene. *Biotechnol Bioeng* **115**, 464–472.

15 Larroude M, Nicaud JM & Rossignol T (2020) *Yarrowia lipolytica* chassis strains engineered to produce aromatic amino acids via the shikimate pathway. *Microb Biotechnol*, 1751-7915.13745.

16 Madzak C (2015) *Yarrowia lipolytica*: recent achievements in heterologous protein expression and pathway engineering. *Appl Microbiol Biotechnol* **99**, 4559–4577.

17 Christen S & Sauer U (2011) Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics. *FEMS Yeast Res* **11**, 263–272.

18 Holkenbrink C, Dam MI, Kildegaard KR, Beder J, Dahlin J, Doménech Belda D & Borodina I (2018) EasyCloneYALI: CRISPR/Cas9-based synthetic toolbox for engineering of the yeast *Yarrowia lipolytica*. *Biotechnol J* **13**, 1700543.

19 Alamgir KM, Masuda S, Fujitani Y, Fukuda F & Tani A (2015) Production of ergothioneine by *Methylobacterium* species. *Front Microbiol* **6**.

20 Borodina I, Kildegaard KR, Jensen NB, Blicher TH, Maury J, Sherstyk S, Schneider K, Lamosa P, Herrgård MJ, Rosenstand I, Öberg F, Forster J & Nielsen J (2015) Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in *Saccharomyces cerevisiae* via β-alanine. *Metab Eng* **27**, 57–64.

21 Marella ER, Dahlin J, Dam MI, ter Horst J, Christensen HB, Sudarsan S, Wang G, Holkenbrink C & Borodina I (2020) A single-host fermentation process for the production of flavor lactones from non-hydroxylated fatty acids. *Metab Eng* **61**, 427–436.

22 Xua P, Qiao K, Ahn WS & Stephanopoulos G (2016) Engineering *Yarrowia lipolytica* as a platform for synthesis of drop-in transportation fuels and oleochemicals. *Proc Natl Acad Sci U S A* **113**, 10848–10853.

23 Kerkhoven EJ, Pomraning KR, Baker SE & Nielsen J (2016) Regulation of amino-acid metabolism controls flux to lipid accumulation in *Yarrowia lipolytica*. *npj Syst Biol Appl* **2**, 16005.
Figure legends:

Figure 1: The fungal biosynthesis pathway of ergothioneine. SAM = S-adenosylmethionine, SAH = S-adenosylhomocysteine, [O] = oxidation.

Table 1: Ergothioneine production using engineered microbial cell factories.

Host organism	Genetic engineering	Ergothioneine production	Medium	Cultivation conditions	Reference
Aspergillus oryzae	Multicopy integration of EGT1 and EGT2 genes from Neurospora crassa under the amyB promoter.	231.0 ± 1.1 mg/kg solid medium in 120 hours.	Solid medium containing Nanatsuboshi rice and adenine.	50 mL petri dish at 30° C.	[1]
Escherichia coli	BW25113 parent strain (high l-Cys producer), expression of egtBCDE genes from Mycobacterium smegmatis under the tac promoter on high-copy, episomal plasmids.	24 ± 4 mg/L in 72 hours.	M9Y medium supplemented with l-His, l-Met, ferric sulfate, and sodium thiosulfate. Induction with IPTG.	50 mL medium in 200 mL Erlenmeyer flask at 30° C and 200 rpm.	[2]
Escherichia coli	BW25113 parent strain (high l-Cys producer), expression of egtABCDE genes from M. smegmatis under the tac promoter, and expression of	1311 ± 275 mg/L in 216 hours.	Batch phase – Medium containing glucose, salts, tryptone, yeast extract, l-Met, and ammonium ferric citrate. Fed-batch phase –	Fed-batch fermentation in a 3 L jar fermenter from Sanki Seiki, 30° C	[3]
Saccharomyces cerevisiae CEN.PK113-7D parent strain, integration of two copies of the **EGT1** gene of *N. crassa* and the **EGT2** gene of *Claviceps purpurea* under the **TEF1** promoter.	598 ± 18 mg/L in 84 hours.	Batch phase – 0.5 L Mineral medium supplemented with L-Arg, L-His, L-Met, and pyridoxine. Fed-batch phase – 0.5 L feeding medium contained 415 g/L glucose, salts, vitamins, trace metals, L-Arg, L-His, L-Met, and pyridoxine. Fed-batch fermentation in 1 L Sartorius bioreactors, 30° C and 500 rpm, aeration 0.5 L/min, pH 5.0.	[4]		
Yarrowia lipolytica W29 strain with integrated Cas9 and deletion of **ku70**, integration of two copies of the **EGT1** gene of *N. crassa* and the **EGT2** gene of *C. purpurea* under the control of the **TEFintron** and the **GPD** promoter.	1.63 ± 0.04 g/L in 220 hours.	Batch phase – 0.5 L mineral medium supplemented with pyridoxine. Fed-batch phase – 0.5 L feeding medium containing 730 g/L glucose, salts, vitamins, trace metals, pyridoxine. Fed-batch fermentation in 1 L Sartorius bioreactors, 30° C and 800-1200 rpm, aeration 0.5-1.0 L/min, pH 5.0.	This study		
Figure 2: Ergothioneine production titers of engineered \textit{Y. lipolytica} strains (n = 3, error bars signify s.d.). The \textit{NcEGT1} and \textit{CpEGT2} genes were integrated in single copies under different promoters, or in two copies. A two-tailed Student’s t-test was used to determine if the difference was significant between the control strain ST6512 and the strain with the integrated ergothioneine biosynthesis pathway (\(*\ast\ast\ast p\text{-value} < 0.0005\)).
Figure 3: The effect of phosphate limitation on the growth and production of the ergothioneine-producing *Y. lipolytica* strain ST10264 when cultivated in 250 mL baffled shake flasks in medium containing 0.04 g/L KH$_2$PO$_4$ ($n = 3$, error bars signify s.d.).
Figure 4: Phosphate-limited fed-batch fermentation of ST10264 in 1 L bioreactors. The total, extracellular and intracellular ergothioneine levels are represented by lines with circular markers. The amount of glucose that was fed to the strain, used by the strain and left in the reactor is represented by lines with triangular markers. The cell dry weight is represented by a line with square markers. Average values and standard deviations are presented in the graph (n = 3, error bars signify s.d.). CDW = cell dry weight.