Dissemination of quinolone resistant *Escherichia coli* in the Norwegian broiler and pig production chain, and possible persistence in the broiler production environment

Håkon Kaspersen*a, Camilla Sekse*a, Eve Zeyl Fiskebeck*a, Jannice Schau Slettemeåsa, Roger Simmb, Madelaine Norströma, Anne Margrete Urdahl*a, Karin Lagesen*a#

Norwegian Veterinary Institute, Oslo, Norway

Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway

Address correspondence to Karin Lagesen, karin.lagesen@vetinst.no

Keywords: QREC, AMR, quinolone, *E. coli*, livestock, wildlife

Abstract

In Norway, the use of quinolones in livestock populations is very low, and prophylactic use is prohibited. Despite this, quinolone resistant *E. coli* (QREC) are present at low levels in several animal species. The source of these QREC is unknown. The aim of this study was to characterize and compare QREC from different animal species to identify putative factors that may promote the occurrence of QREC. A total of 280 QREC isolates, from broilers, pigs, red foxes and wild birds, were whole genome sequenced and analysed. Well-known chromosomal and plasmid-mediated resistance mechanisms were identified. In addition, mutations in *marR*, *marA* and *rpoB* causing novel amino acid substitutions in their respective proteins were detected. Phylogenetic analyses were used to determine the relationships between the isolates. Quinolone resistance mechanism patterns appeared to follow sequence type groups. Similar QREC isolates with similar resistance mechanism patterns were detected from the samples, and further phylogenetic analysis indicated close evolutionary relationships between specific isolates from different sources. This suggests dissemination of highly similar QREC isolates between animal species, and also persistence of QREC strains within the broiler production chain. This highlights the importance of both control measures at the top of the production chain, as well as biosecurity measures to avoid further dissemination and persistence of QREC in these environments.
Significance of study

Since antimicrobial usage is low in Norwegian animal husbandry, Norway is an ideal country to study antimicrobial resistance in the absence of selective pressure from antimicrobial usage. In particular, the usage of quinolones is very low, which makes it possible to investigate the spread and development of quinolone resistance in natural environments. Comparing quinolone resistant *E. coli* (QREC) from livestock and wild animals in light of this low quinolone usage provides new insights into the development and dissemination of QREC in both natural- and production environments. With this information, preventive measures may be taken to prevent further dissemination within Norwegian livestock and between other animals, thus maintaining the favourable situation in Norway.

Introduction

Quinolones are broad-spectrum antimicrobial compounds that have been used to treat infections in both humans and animals all over the world, and are included in the highest priority group on the WHO’s list of critically important drugs for human medicine. Unfortunately, extensive use of quinolones has resulted in emergence of quinolone resistant bacteria. As part of a combined effort to manage the increasing problem of antimicrobial resistance, national and international surveillance programmes have been established to monitor the occurrence and spread of resistant bacteria, including quinolone resistant *Escherichia coli* (QREC) in livestock animals (1, 2). The overall occurrence of quinolone resistance among commensal *E. coli* from broilers and fattening pigs in Europe in 2016 and 2017 was 64.0% and 10.6%, respectively, although the occurrence varies considerably between countries (1, 3). These values were based on the epidemiological cut off (ECOFF) values for ciprofloxacin defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST, www.eucast.org). Similar resistance levels were reported for nalidixic acid. To our knowledge, no systematic surveillance has been done on wild animals at a European level.

The Norwegian monitoring programme for antimicrobial resistance in feed, food and animals (NORM-VET) has since 2000 monitored antimicrobial resistance in commensal *E. coli* from a range of animal species (4). In NORM-VET, antimicrobial susceptibility to a panel of substances, including quinolones, is determined by susceptibility testing randomly selected isolates using broth microdilution (4). In addition, a directly selective method for detecting QREC in samples from animals was introduced in 2014 (5). In Norway, the use of fluoroquinolones in livestock populations is very low (6), and prophylactic use is prohibited. This is reflected in a low occurrence of quinolone resistance among commensal *E. coli* as documented through NORM-VET reports. For example, the
overall occurrence of quinolone resistance among commensal *E. coli* from broilers, pigs, red foxes and wild birds during 2006-2017 was 1.8%, ranging from 0.3% in pigs, 1.24% in red foxes, 2.3% in wild birds, to 2.9% in broiler flocks (data retrieved from the NORM-VET database). QREC has nevertheless been detected with the selective method in a high proportion of samples from these animal species (5, 7, 8). The overall occurrence of QREC detected by selective screening performed in the years 2014 to 2017 among the previously mentioned animal species was 37.1%; ranging from 14.8% in red foxes, 20.4% in wild birds, 54.4% in pigs, to 79.2% in broilers (boot swab samples from broiler production breeder flocks were included in 2017). Although the number of positive samples from broilers seem higher than from pigs, it has to be taken into account that broiler samples are pooled samples of ten animals per flock, while pig samples are from individual animals representing the pig herd.

The broiler production system in Norway has a pyramidal structure with high levels of biosecurity. Grandparent eggs are imported from Scotland to Sweden before hatching. Eggs from these grandparent animals are then imported to Norway to become parent animals, whose day-old chickens are distributed to broiler farms across the country. In contrast, pig production in Norway is a purely domestic system with negligible import of live animals. Although the pig production also has a pyramidal structure, it has considerably more movement of animals between farms.

Quinolone resistance mechanisms in *E. coli* have been thoroughly characterized, and is for the most part mediated by chromosomal mutations in the quinolone resistance determining region (QRDR) of *gyrA*, *gyrB*, *parC* and/or *parE* (9). Mutations in several other chromosomally encoded regulatory genes (e.g. *marA*, *soxRS* and *robA*) or mutations in *rpoB* (RNA polymerase B) have also been implicated (10–13). Additionally, plasmid-mediated quinolone resistance (PMQR), such as the *qnr*-family of genes, *qepA*, *oqxAB*, and *aac(6')-Ib-cr*, have been described (14–17).

The aim of the present study was to compare QREC isolates originating from four different animal species (broilers, pigs, red foxes and wild birds), susceptibility tested within the framework of NORM-VET from 2006 to 2017. For these purposes, whole genome sequencing of the isolates and subsequent analyses were performed. The relationships between isolates were analysed by phylogenetic approaches with the intent to elucidate possible dissemination within and between animal species. In addition, genetic characterization of quinolone resistance and plasmid-mediated resistance toward other antimicrobials was performed.
Materials and Methods

Isolate selection

Isolates included in this study were collected in the NORM-VET programme from 2006 to 2017 (5–8, 18–24). Isolate metadata can be downloaded as described in Supplementary Section 3.1. In NORM-VET the procedure for isolation were either traditionally by plating faecal, caecal or boot swab samples on MacConkey agar (BD Biosciences, Le Pont de Claire, France), or selectively by plating on MacConkey agar with 0.06 mg/l ciprofloxacin (0.12 mg/l in 2014). For both methods, a random *E. coli* colony was selected from the plate and confirmed as *E. coli* either by citrate, indole and/or oxidase tests or by matrix-assisted laser desorption ionization time of flight (MALDI-TOF, Microflex, Bruker Daltonik GmbH). The selected isolate was then susceptibility tested by a broth microdilution assay (EUVSEC, SensiTitre®, TREK Diagnostics, LTD.), which include the quinolones ciprofloxacin and nalidixic acid. Isolates were classified as resistant if they grew on or above the ECOFF values for ciprofloxacin (R > 0.06 mg/l) and/or nalidixic acid (R > 16 mg/l) as defined by the EUCAST (ECOFF values as of 01.08.2019). In addition, all isolates were susceptibility tested for the following substances: tetracycline, ampicillin, sulfamethoxazole, trimethoprim, chloramphenicol, cefotaxime, ceftazidime, gentamicin, azithromycin, meropenem, colistin, and tigecycline. Azithromycin was excluded from further data analyses, as no ECOFF has not yet been defined for this compound. In the present study QREC isolates from two livestock species and two wild animal species, specifically broilers, pigs, wild birds, and red foxes were included. Broiler and pig isolates were chosen due to their relatively high number of samples positive for QREC by the selective screening compared to other Norwegian livestock species (25), as well as the number of available isolates. Isolates were grouped according to minimum inhibitory concentration (MIC) values for ciprofloxacin and nalidixic acid, and to the total number of antimicrobial substances they were resistant to based on the EUVSEC panel, resulting in 86 groups (Table S1). A random selection within each group was done, representing each animal species where available. This grouping ensured phenotypic diversity among the isolates. Year of isolation and geographical location data for each isolate was collected where available. The resulting data set was composed of 285 isolates, where 88 isolates were from broilers, 75 from pigs, 70 from wild birds, and 52 from red foxes. The overall occurrence of antimicrobial resistance among the isolates and per animal species included in this study is available in Table S2.
DNA extraction

Isolates stored at -80 °C were plated onto MacConkey agar with 0.06 mg/L ciprofloxacin to confirm resistance. DNA was extracted from colonies on the plate with the QIAmp DNA mini kit (Qiagen), according to the manufacturer’s instructions. DNA concentration was determined by the broad-range DNA Qubit assay (Qiagen), and DNA quality was assessed by the NanoDrop™ One spectrophotometer (Thermo Scientific). A Fragment Analyser™ Automated CE System instrument (FSV2-DE2-100, Advanced Analytical) and gel electrophoresis were used to determine DNA integrity.

Library preparation and sequencing

Quality controlled DNA (n = 212) was used for Nextera Flex (Illumina) library preparation and sequenced on two lanes in HiSeq 3000 (Illumina), spiked with PhiX for sequencing quality control, resulting in paired-end reads of 150 bp. The sequencing service was provided by the Norwegian Sequencing Centre (sequencing.uio.no). The remaining isolates were previously sequenced at the same facility with Nextera XT library preparation on HiSeq 2000 (n = 29) or HiSeq 2500 rapid run (n = 44), resulting in paired-end read lengths of 125 and 250 bp, respectively. For this last group, each sample was sequenced on two lanes, resulting in four fastq files per sample. Raw reads have been uploaded to ENA with the bioproject numbers PRJEB33043, PRJEB33046, and PRJEB33048.

Quality control and contaminant screening

Sequences were quality controlled using fastqc (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) version 0.11.7. Potential contaminants were screened for using Mash (26) version 1.1. A minimum identity value was set at 0.95. Bacterial species other than E. coli above this threshold were deemed a significant contaminant. This excluded four isolates from all further analyses due to contamination with Citrobacter or Enterobacter reads. See Supplementary Sections 3.2 and 3.3 for results.

Antimicrobial resistance gene identification and multi locus sequence typing

In total, 19 different plasmid-mediated and chromosomal genes associated with quinolone resistance were investigated (chromosomal genes: gyrA, gyrB, parC, parE, marR, marA, soxR, robA and rpoB. Plasmid-mediated genes: qnrA, qnrB, qnrC, qnrD, qnrS, qnrE, qnrVC, oqxAB, qepA, and aac(6’)-Ib-cr). The genes were selected based on their description in the literature as well as their presence in the antimicrobial resistance gene databases described below. Possible co-selection of antimicrobial resistance was investigated by including all additional plasmid-mediated genes related to other antimicrobial resistance types in the database used.
The genes *gyrA*, *gyrB*, *parC* and *parE* were screened for mutations in the QRDR (27). Specifically, the QRDR of *GyrA* is located between amino acid 67 and 106 (28). Based on alignments of QRDR from another study (27) to *E. coli* K12 versions of the genes, this region was in the other proteins defined to be between amino acid 333 and 481 for *GyrB*, between amino acid 51 and 170 for *ParC*, and between amino acid 366 and 523 for *ParE*. See Supplementary Section 3.4 for reference sequences.

The remaining chromosomal genes were investigated for mutations in the whole gene. Only mutations that lead to amino acid substitutions, hereafter called substitutions, were of interest. Only presence/absence was considered for plasmid-mediated genes. Phenotypic resistance patterns were compared to the genotype identified for each animal species.

Antimicrobial resistance gene detection and sequence type (ST) determination was done by analysing raw reads with *Antimicrobial resistance identification by assembly* (ARIBA) (29) version 2.12.1. Presence of plasmid-mediated genes was determined by comparing to the Resfinder (30) database (downloaded 4th of September 2018), while mutations in chromosomal genes were determined by comparing to the MegaRes (31) database (downloaded 4th of September 2018), see Supplementary Section 3.5 for reference sequences. An R script was used to extract the previously mentioned genes from the ARIBA results (https://tinyurl.com/y3f35mj2). Flags reported by ARIBA were used to quality check the reported variant or gene (Supplementary Section 3.6). Each novel substitution reported by ARIBA was verified by comparing to their subsequent assemblies.

STs were determined using the MLST scheme hosted by EnteroBase (32). Isolates with STs that were not possible to identify were uploaded to EnteroBase for manual identification (https://enterobase.warwick.ac.uk/).

Assembly, annotation and core gene analysis

Residual PhiX was removed with BBduk version 38.20 (https://jgi.doe.gov/data-and-tools/bbtools/) by mapping kmers to the PhiX genome (accession number NC_001422.1), using a k-mer size of 31. Trimomatic version 0.38 (33) was subsequently used to trim adapter sequences and low-quality nucleotides using a minimum length setting of 36 bp and a sliding window of 4:15, with the Trimomatic NexteraPE-PE adapter file. SPAdes (34) version 3.12.0 was used to assemble genomes with the settings “careful” and “coverage cutoff auto”. Both the paired and singleton reads from Trimmomatic were used. Assembly error correction was performed with Pilon (35) version 1.22 by mapping the trimmed reads back to the assembly with BWA mem version 0.7.17 (http://bio-bwa.sourceforge.net/). Prokka (36) version 1.13 was utilized for gene annotation, with the genus setting at “*Escherichia*”, species setting at “*coli*”, and kingdom setting as “Bacteria”. Five complete *E. coli* reference genomes were downloaded from the National Center for Biotechnology Information on May 7, 2020 by guest.
Pan-genome analysis was performed with Roary (37) version 3.12.0 using the MAFFT aligner. QUAST (38) version 4.6.3 was used to evaluate the assemblies, see Supplementary Section 3.7 for results. One isolate was excluded due to low assembly quality, in addition to the four previously mentioned which were removed due to contamination. The final data set was thus composed of 280 isolates, 87 of which were from broilers, 75 from pigs, 52 from red foxes, and 66 from wild birds.

Phylogenetic analysis

Snp-sites (39) version 2.4.1 was used to concatenate single nucleotide polymorphism (SNP) sites in the core gene alignment from Roary. The resulting SNP sites alignment was used to reconstruct a maximum likelihood (ML) tree with IQTree (40) version 1.6.8. Branch supports were obtained using the Ultrafast Bootstrap approximation (UFBoot) (41) with 1000 bootstrap replicates. ModelFinder (42) and ascertainment bias correction (ASC) (43) was used to determine the best fitted evolutionary model. ASC was used to avoid branch length overestimation due to the absence of invariant sites in our dataset. Annotation and tree visualization was done with ggtree (44). Snp-dists (https://github.com/tseemann/snp-dists) version 0.6.3 was used to identify the number of SNP differences between all isolates.

The phylogenetic tree was inspected to identify major clades with isolates showing low genetic divergence. To quantify the amount of genetic change, patristic distances were calculated from the total tree in R with the «distTips» function from the adephylo package (45). The patristic distance cutoff was set to 0.003 because it resulted in clades that predominantly contained isolates from a single ST (Figure S1). Clades deemed of interest were selected based on the presence of isolates from different animal species, or same animal species but from different geographic locations, resulting in six clades.

New phylogenetic trees were created for each of the six clades by first aligning the pilon-corrected assemblies using ParSNP (46) version 1.2 to identify the core genome SNPs for the isolates in each clade. Harvesttools (46) version 1.2 was used for format conversion, followed by Gubbins (47) version 2.3.2 to screen for and remove possible recombinant sequence from the core SNP multifasta alignment using the GTRGAMMA model with RaxML as the treebuilder. IQTree was subsequently used to generate a ML tree from the filtered polymorphic sites alignment using UFBoot and ModelFinder with ASC. SNP distances were calculated from the filtered polymorphic sites alignment from Gubbins with snp-dists. Additionally, the fraction of shared genome for isolate pairs differing with <20 SNPs was calculated with ParSNP. Isolates sharing >90% were regarded as clones and were further investigated to uncover possible dissemination.
Statistical analyses

Statistical analyses, figures and tables were generated with R version 3.6.1 (48).

Significance of differences between the observed and expected occurrence of resistance mechanisms between the four animal species were determined by χ² tests. Correlations between the presences of specific genes were calculated using a Pearson correlation test, with a significance level of 0.05.

Basic summary statistics were calculated on the SNP distances for isolates within each animal species, and for isolates within the selected clades. To determine whether isolates from one animal species clustered more closely than isolates within other animal species, the median of the minimum pairwise SNP distance for isolates belonging to the same animal species was calculated. To evaluate if isolates belonging to each host species were more aggregated in the tree, i.e. had shorter distance to another isolate from the same species than randomly expected, we performed a randomization test with 1000 permutations. The median minimum pairwise SNP distance for isolates belonging to the same animal species was calculated for each iteration. P-values were calculated on the basis of how many expected values from x iterations were below the observed values.

Non-metric multidimensional scaling (NMDS) was used to identify the distribution of quinolone resistance mechanisms within each major ST cluster based on presence (1) and absence (0) of quinolone resistance conferring substitutions and genes. Only isolates from the dominant STs were included (n > 9). Distances were calculated from the presence/absence data with the “dist” function using the method “binary”. The NMDS analysis was performed with the “metaMDS” function from the “vegan” package (49), with 200 random starts. A stressplot was calculated to determine how well the ordination represented the data (Figure S2).

Results

Quinolone resistance gene identification

Chromosomal genes

Mutations resulting in amino acid substitutions were detected in seven of the nine chromosomal genes investigated. In total, 229 of the 280 isolates had substitutions in the QRDR of GyrA, 43 isolates in ParC, and 29 isolates in ParE (Table 1). No mutations giving rise to substitutions in the QRDR of GyrB were detected. Six different substitutions were identified in GyrA and ParC, while seven were identified in ParE (Table S4). Isolates from broilers had the highest occurrence of substitutions in GyrA and ParE, while isolates from wild birds had the highest occurrence of
substitutions in ParC (Table 1). The most frequent substitutions in the respective proteins were S83L in GyrA, S80I in ParC, and D475E in ParE (Table S4). The S83L substitution in GyrA and the D475E substitution in ParE were most often identified in isolates from broilers (Table S5), while the S80I substitution in ParC was most often identified in isolates from wild birds. A total of 231 isolates had substitutions in the QRDR of at least one of GyrA, ParC or ParE. The most abundant combination of substitutions in the QRDR of GyrA, ParC and ParE was S83L in GyrA alone, found in 141 isolates. The S80I substitution in ParC was most often identified in isolates from wild birds.

A total of 231 isolates had substitutions in the QRDR of at least one of GyrA, ParC or ParE. The most abundant combination of substitutions in the QRDR of GyrA, ParC and ParE was S83L in GyrA alone, found in 141 isolates. The S80I substitution in ParC was most often identified in isolates from wild birds.

Regarding all three genes combined, eight isolates had substitutions in GyrA, ParC and ParE. Considering the other chromosomal genes, 212 isolates had substitutions in MarR, 71 in SoxR, 48 in RpoB, and 34 in MarA. No substitutions were identified in RobA (Table 1). The most common substitutions in each gene were S127N in MarA, G103S combined with Y137H in MarR, E320D in RpoB, and T38S combined with G74R in SoxR (Table S6).

Substitutions in RpoB occurred significantly more often in isolates from broilers compared to pigs $\chi^2 (1, N = 163) = 10.95, p = 0.001$; and wild birds $\chi^2 (1, N = 153) = 5.73, p = 0.017$. Substitutions in MarA always accompanied substitutions in MarR.

PMQR genes

Plasmid-mediated quinolone resistance was identified in 59 of the 280 isolates, and only one PMQR gene type was found for each isolate. See Table 1 for presence of PMQR positive isolates in different animal species and the specific PMQR genes present. The occurrence of PMQR was significantly lower in isolates from broilers compared to pigs $\chi^2 (1, N = 163) = 15.78, p < 0.05$, red foxes $\chi^2 (1, N = 140) = 9.42, p = 0.002$, and wild birds $\chi^2 (1, N = 153) = 26.21, p < 0.05$. The most common identified PMQR genes were qnrS1 and qnrB19, identified in isolates from all animal species (Table 1). Isolates from pigs had a significantly higher occurrence of qnrB19 than isolates from broilers; $\chi^2 (1, N = 163) = 10.87, p = 0.001$ and red foxes; $\chi^2 (1, N = 127) = 3.91, p = 0.048$. The occurrence of qnrS1 was significantly higher in wild birds compared to isolates from broilers; $\chi^2 (1, N = 153) = 12.44, p < 0.05$ and pigs; $\chi^2 (1, N = 140) = 5.21, p = 0.022$. A strong negative correlation between the presence of qnr and substitutions in GyrA was observed ($-0.92, p < 0.05$); 49 of the 58 isolates carrying qnr did not have substitutions in the QRDR of either GyrA, ParC or ParE (Table S7).

Co-resistance
In total, the presence of 42 different genes encoding resistance towards gentamicin, cefotaxime, chloramphenicol, tetracycline, trimethoprim and sulfamethoxazole was identified (Table S8), in addition to the PMQR genes described above. Six genes did not have a corresponding antimicrobial compound in the panel of substances for which all the isolates had previously been tested, and were therefore not considered when comparing genotype to resistance phenotype. Except for a few cases, the genotype corresponded to the phenotype (Figure 1).

In the 59 PMQR positive isolates, \(qnr \) was observed as the only plasmid-mediated gene in 14 of the isolates (Table S9). Of these 14 isolates, 12 harboured \(qnrB19 \) and two harboured \(qnrS2 \). Among the 29 \(qnrS1 \) positive isolates, 22 harboured \(tetA \) and 21 harboured \(bla_{TEM-1B} \), while among the 21 \(qnrB19 \) positive isolates, only four isolates carried \(tetA \), and six carried both \(aph3\)-Ib and \(aph6\)-Id.

A significant positive correlation between the presence of \(qnrS1 \) and \(tetA \) \((0.36, n = 22)\), \(dfrrA14 \) \((0.31, n = 8)\), \(bla_{CTX-M-55} \) \((0.31, n = 3)\), \(bla_{TEM-1B} \) \((0.26, n = 21)\), \(floR \) \((0.22, n = 3)\), and \(aac(3')-Ild \) \((0.12, n = 3)\) was observed \((p < 0.05)\). For \(qnrB19 \), a significant positive correlation was identified with \(bla_{TEM-1A} \) \((0.14, p < 0.05)\), but the two genes were only observed together in one isolate. For the 221 PMQR negative isolates, 72 isolates had no identified plasmid-mediated resistance genes. Except for ParC, a negative correlation was observed between the presence of plasmid-mediated resistance genes and mutations in chromosomal genes (Figure S3).

Isolate diversity

In total, 83 unique STs were identified, with each animal species containing between 26 and 33 different STs. The most abundant STs were ST10 \((n = 38)\), ST162 \((n = 24)\), ST58 \((n = 20)\), ST355 \((n = 15)\), ST117 and ST155 \((n = 13)\). ST10 and ST155 isolates were identified in all animal species. ST162 isolates were identified in all but pigs, and ST58 isolates were identified in all but broilers. ST355 isolates were identified in broilers and red foxes, while ST117 isolates were identified in broilers and pigs (Figure 2). A total of 59 STs were only present in one animal species.

Based on the core gene SNP alignment, isolates from broilers had the lowest median minimum pairwise distance compared to the other animal species, indicating smaller differences between isolates from broilers than the other species (Table S10). The randomization test revealed that isolates from broilers aggregated more closely than isolates within other animal species \((p < 0.01, \text{Figure S4})\).

Six clades were selected for deeper phylogenetic analysis, as they contained isolates with low genetic divergence and were either from different animal species or the same animal species but
different geographic locations: Clade A (ST162 subclade A), Clade B (ST162 subclade B), Clade C (ST744), Clade D (ST10), Clade E (ST355) and Clade F (ST117) (clade selection shown in Figure S1). The trees for clades A, C, D and E had low bootstrap supports, and were not considered further since the topology within each clade was judged to be uncertain (Figure S5 – S8, respectively). Clade B (Figure 3) consisted of isolates from broilers, red foxes and wild birds, sampled in 2014 and 2016. This clade contained two pairs of isolates that were especially similar. The first pair consisted of one isolate from a broiler and one from a red fox, these had a SNP difference of 13. The host species originated from geographically distant locations, and were also sampled in different years. The two isolates shared >90% of their genome (Table 2). The second pair of isolates were from broilers in different locations in 2014. They had a SNP distance of 14 and shared >90% of their genome. Clade F (Figure 4) consisted of isolates from broilers and pigs, sampled in the years 2006, 2007, 2012, 2014 and 2015. All annotated isolate pairs in Figure 4 were from pigs sampled in 2015, and had a SNP distance of eight, three, and 11 to the other isolate in the same same pair. Two of these pairs shared >90% of their genome. These two isolate pairs were from the same county but not the same municipality, while in the third pair the isolates were from different counties. All pairs of isolates investigated had identical phenotypic and genotypic resistance patterns.

NMDS clustering of isolates based on presence/absence of quinolone resistance mechanisms in isolates from major ST groups showed that ST355, ST155, ST117, and ST162 were relatively homogenous in their distribution of quinolone resistance mechanisms, while ST10 and ST58 were not (Figure 5).

Discussion

This study uses whole genome sequencing to characterize and compare a large number of QREC isolates from different animal species obtained through a monitoring programme on antimicrobial resistance in animals. Although there was a high diversity of STs among the isolates and animal species, we show that phylogenetically similar QREC isolates were shared both between animal species and between locations. Moreover, the genetic quinolone resistance determinants found in this study predominantly clustered within STs. Taking this clustering pattern into consideration, the phylogenetic structure indicate dissemination in the broiler and in the pig production chains, and potential persistence in the broiler production chain.
We detected some novel substitutions, one in MarR and two in MarA and RpoB, which to our knowledge have not been previously described. As it is outside the helix-turn-helix DNA binding motifs, the observed D118N substitution in MarR probably does not affect DNA binding directly (50). However, follow-up studies are needed to examine if these novel substitutions affect quinolone susceptibility. In addition, the observed co-occurrence of substitutions in MarA with substitutions in MarR and the significantly higher occurrence of substitutions in RpoB in broilers should be further investigated.

PMQR determinants were identified in 21.1% of the 280 selected isolates, with the highest occurrence of PMQR genes among the wild bird isolates (36.7%), and with qnrS1 being the most common determinant. The high occurrence of qnrS in wild birds is in concordance with previously published data (51, 52). A positive correlation was observed between qnrS1 and genes related to tetracycline, gentamicin, trimethoprim, chloramphenicol, ampicillin and cefotaxime resistance. Resistance to these antimicrobials has previously been associated with qnrS1 (53). qnrS1 have previously been identified on large conjugative plasmids harbouring bla TEM-1B and tetA (54, 55), which supports the significant positive correlations between qnrS1, bla TEM-1B and tetA. On the other hand, qnrB19 have been encoded on small, non-conjugative plasmids without any other resistance genes (56). In our data, only bla TEM-1A had a significant positive correlation with qnrB19, but were only observed together in a single isolate. Furthermore, most qnrB19 positive isolates harboured no other plasmid-mediated genes. These findings may suggest that we have two main types of plasmids in our isolates, one conjugative plasmid with qnrS1 and other resistance genes, and another non-conjugative plasmid with mostly only qnrB19. The presence of these plasmid types mainly appeared to cluster within sequence types. However, further studies characterizing the plasmids from these isolates are needed to confirm these findings, but are not performed here, as this was outside the scope of this study. The occurrence of PMQR in wild birds was noticeably higher than what has been reported in other studies (53, 57, 58). However, comparing to other studies is difficult due to differences in sampling and study design. For instance, the wild bird isolates selected in this study were not representative for the wild bird population in Norway as the sampling was performed in four regions only. These isolates can therefore not be regarded as epidemiologically unrelated. PMQR was only detected in four isolates from broilers. This low occurrence may be due to the high biosecurity in the broiler production, with little to no contact with the outside environment. The predominance of chromosomally encoded resistance indicates that PMQR play a minor role in the occurrence of QREC in the broiler production chain. In contrast, PMQR determinants were detected in 20 isolates from pigs, the most common one being qnrB19, indicating a higher occurrence of
PMQR among QREC in the Norwegian pig production environment. Further studies are needed to elucidate the origins of these plasmids.

An overall correspondence between genotype and phenotype was observed in our data, except for two isolates with decreased susceptibility toward cefotaxime. Further investigation using PointFinder (59) identified a mutation in the ampC promotor region in one of these isolates (data not shown), but the decreased susceptibility remains unexplained in the other isolate. Isolates harbouring qnr in addition to substitutions in GyrA were identified in four broiler isolates. Three of these had the same sequence type and contained qnrS1, indicating that the containing plasmids are being clonally disseminated. In contrast, only one qnr positive isolate each from pigs, red foxes and wild birds had substitutions in GyrA. Six out of seven of these isolates showed elevated MIC values above the clinical breakpoint for ciprofloxacin (1 – 16 mg/L) and nalidixic acid (64 – 256 mg/L), corresponding to an additive effect of multiple quinolone resistance mechanisms. High MIC values from such an additive effect is a common finding in regards to quinolone resistance in E. coli (60, 61). Such elevated MIC values were not observed for the rest of the qnr positive isolates, highlighting the need for chromosomal mutations to gain a high MIC value.

A strong negative correlation between the presence of qnr genes and substitutions in GyrA was observed, indicating that the two mechanisms rarely coincide. This may be explained by the hypothesized protective effect of qnr genes on the quinolone targets, which allows for other resistance mechanisms to be developed instead of mutations in the QRDR of these genes (62). The majority of isolates that carried qnr genes without substitutions in GyrA, ParC or ParE had substitutions in MarR, which may be a consequence of this protective effect. Negative correlations were also observed for most of the investigated chromosomal genes and the plasmid-mediated resistance genes, indicating that co-selection of these are not common in QREC from animal sources in Norway. However, further studies regarding plasmid characterization and co-resistance are needed to confirm these findings.

We identified a high diversity of STs, which has also been reported by others (53, 63, 64). Among these were STs previously associated with quinolone resistance, such as ST10, ST162, ST355 and ST349 (53, 65). Moreover, the results show that the distribution of resistance mechanisms was relatively homogenous within most STs, supporting a clonal distribution of these mechanisms. Isolates from broilers were overall more similar to eachother than the isolates from the other animal species, as shown in the core gene SNP tree and supported by the permutation test. This may be due to the centralized distribution of broilers, permitting dissemination of QREC isolates to the entire production chain. Although there is a centralized distribution of animals in the pig production as
well, such an overall similarity was not observed among the QREC isolates from pigs. However, we did identify two phylogenetically related pig isolates from geographically distant locations indicating that dissemination of QREC isolates in the pig production chain may occur. Persistence of antimicrobial resistant bacteria in broiler production environments, despite short production cycles, cleaning and disinfection between each flock is known from other studies (66, 67). Vertical dissemination of QREC and cephalosporin resistant *E. coli* to all levels of the broiler production pyramid have previously been described, both for QREC and cephalosporin-resistant *E. coli* (68–71) both in Norway and in neighboring countries. Our results, which show close phylogenetic relationships between QREC isolates from broilers, strengthen the hypothesis that dissemination within the broiler industry originate from imported breeding animals, as suggested by Börjesson et al. (68).

Isolates from red foxes had the highest SNP distances to other isolates within the same animal species. In a previous study, Mo *et al.* showed that the occurrence of QREC in red foxes was low in areas with low human population density and higher in areas with medium or high human population density (72). Mo *et al.* suggested that the red foxes in urban areas have been exposed to different kind of indirect human exposures. This could contribute to the high diversity observed among the red fox isolates.

Interestingly, we identified phylogenetically related ST162 isolates with the same resistance mechanism patterns shared between a broiler and a red fox from geographically distant locations. One plausible explanation to this is a combination of distribution of similar isolates through the broiler production chain and that the red fox for instance came in contact with the isolate through broiler fecal matter used to fertilize crop fields. The two isolates in question were from different years, which may indicate persistence of QREC in the broiler production environment. Although dissemination from red foxes to broilers cannot be ruled out, the opposite direction is more likely due to the biosecurity measures in broiler production facilities.

To summarize, this study revealed high diversity in the QREC population in the four studied animal species. Nevertheless, QREC isolates that were phylogenetically related were found, both within and between host species. The phylogenetic structure also revealed that the quinolone resistance mechanisms are mostly clonal. While the origins of quinolone resistance in these populations remains unclear, these results indicate that QREC isolates in a livestock production chain may be disseminated down through the production pyramid. This highlights the importance of biosecurity focused control measures at the top of the production chain to prevent dissemination and persistence of QREC and PMQR in these environments.
This study was funded by the Research Fund for Agriculture, and the Food Industry (NFR project 255383 and 244140).

The sequencing service was provided by the Norwegian Sequencing Centre (www.sequencing.uio.no), a national technology platform hosted by the University of Oslo and supported by the "Functional Genomics" and "Infrastructure" programs of the Research Council of Norway and the Southeastern Regional Health Authorities.

This work was performed on the Abel Cluster, owned by the University of Oslo and Uninett/Sigma2, and operated by the Department for Research Computing at USIT, the University of Oslo IT-department. http://www.hpc.uio.no/.

The authors thank Hildegunn Viljugrein at the Norwegian Veterinary Institute for statistical assistance.

Conflicts of interest

None to declare

ABBREVIATIONS

ECOFF – Epidemiological cut-off
E. coli – Escherichia coli
EUCAST – European committee of antimicrobial susceptibility testing
MLST – Multi locus sequence typing
ML – Maximum likelihood
PMQR – Plasmid-mediated quinolone resistance
QRDR – Quinolone resistance determining region
QREC – Quinolone resistant Escherichia coli
ST – Sequence type
REFERENCES

1. EFSA, ECDC. 2019. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017.

2. WHO. 2018. Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation. World Health Organization, Geneva.

3. EFSA, ECDC. 2018. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016.

4. NVI. 2019. NORM-VET reports, URL: https://www.vetinst.no/en/surveillance-programmes/norm-norm-vet-report.

5. NORM/NORM-VET 2014. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Norwegian Veterinary Institute/University Hospital of North Norway, Tromsø/Oslo. ISSN:1502-2307 (print)/1890-9965 (electronic).

6. NORM/NORM-VET 2017. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Norwegian Veterinary Institute/University Hospital of North Norway, Tromsø/Oslo. ISSN:1502-2307 (print)/1890-9965 (electronic).

7. NORM/NORM-VET. 2015. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Norwegian Veterinary Institute/University Hospital of North Norway, Tromsø/Oslo. ISSN:1502-2307 (print)/1890-9965 (electronic).

8. NORM/NORM-VET. 2016. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Norwegian Veterinary Institute/University Hospital of North Norway, Tromsø/Oslo. ISSN:1502-2307 (print)/1890-9965 (electronic).
9. Hooper DC, Jacoby GA. 2015. Mechanisms of drug resistance: Quinolone resistance. Annals of the New York Academy of Sciences 1354:12–31.

10. Oethinger M, Podglajen I, Kern W V., Levy SB. 1998. Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrobial agents and chemotherapy 42:2089–94.

11. White DG, Goldman JD, Demple B, Levy SB. 1997. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. Journal of bacteriology 179:6122–6.

12. Amábile-Cuevas CF, Demple B. 1991. Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. Nucleic Acids Research 19:4479–4484.

13. Pietsch F, Bergman JM, Brandis G, Marcusson LL, Zorzet A, Huseby DL, Hughes D. 2017. Ciprofloxacin selects for RNA polymerase mutations with pleiotropic antibiotic resistance effects. Journal of Antimicrobial Chemotherapy 72:75–84.

14. Tran JH, Jacoby GA, Hooper DC. 2005. Interaction of the Plasmid-Encoded Quinolone Resistance Protein QnrA with Escherichia coli Topoisomerase IV. Antimicrobial Agents and Chemotherapy 49:3050–3052.

15. Robicsek A, Strahilevitz J, Jacoby G a, Macielag M, Abbanat D, Hye Park C, Bush K, Hooper DC. 2006. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nature Medicine 12:83–88.

16. Hansen LH, Jensen LB, Sørensen HI, Sørensen SJ. 2007. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. Journal of Antimicrobial Chemotherapy 60:145–147.
17. Yamane K, Wachino J-i., Suzuki S, Kimura K, Shibata N, Kato H, Shibayama K, Konda T, Arakawa Y. 2007. New Plasmid-Mediated Fluoroquinolone Efflux Pump, QepA, Found in an *Escherichia coli* Clinical Isolate. Antimicrobial Agents and Chemotherapy 51:3354–3360.
24. NORM/NORM-VET. 2013. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. Norwegian Veterinary Institute/University Hospital of North Norway, Tromsø/Oslo. ISSN:1502-2307 (print)/1890-9965 (electronic).

25. Kaspersen H, Urdahl AM, Simm R, Slettemeås JS, Lagesen K, Norstrøm M. 2018. Occurrence of quinolone resistant *E. coli* originating from different animal species in Norway. Veterinary Microbiology 217:25–31.

26. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biology 17:132.

27. P.A. JG, J.E. G de los R, A. RM, P. de PR, R. GA. 2004. Molecular basis of quinolone resistance in *Escherichia coli* from wild birds. Canadian Journal of Veterinary Research 68:229–231.

28. Yoshida H, Bogaki M, Nakamura M, Yamanaka LM, Nakamura S. 1991. Quinolone resistance-determining region in the DNA gyrase *gyrA* gene of *Escherichia coli*. Antimicrobial Agents and Chemotherapy 35:1647–1650.

29. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J, Keane JA, Harris SR. 2017. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microbial Genomics 3.

30. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen M V. 2012. Identification of acquired antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy 67:2640–2644.

31. Lakin SM, Dean C, Noyes NR, Dettenwanger A, Ross AS, Doster E, Rovira P, Abdö Z, Jones KL, Ruiz J, Belk KE, Morley PS, Boucher C. 2017. MEGARes: An antimicrobial resistance database for high throughput sequencing. Nucleic Acids Research 45:D574–D580.
32. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H, Achtman M. 2006. Sex and virulence in *Escherichia coli*: an evolutionary perspective. *Molecular Microbiology* 60:1136–1151.

33. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 30:2114–2120.

34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin A V., Sirotkin A V., Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. *Journal of Computational Biology* 19:455–477.

35. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. *PLoS ONE* 9:e112963.

36. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30:2068–2069.

37. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. *Bioinformatics* 31:3691–3693.

38. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. *Bioinformatics* 29:1072–1075.

39. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, Harris SR. 2016. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. *Microbial Genomics* 2:1–5.
40. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution 32:268–274.

41. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution 35:518–522.

42. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14:587–589.

43. Lewis PO. 2001. A Likelihood Approach to Estimating Phylogeny from Discrete Morphological Character Data. Systematic Biology 50:913–925.

44. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. 2017. Ggtree: a package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8:28–36.

45. Jombart T, Balloux F, Dray S. 2010. adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics 26:1907–1909.

46. Treangen TJ, Ondov BD, Koren S, Phillippy AM. 2014. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biology 15:524.

47. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris SR. 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Research 43:e15–e15.

48. RCoreTeam. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
49. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2019. vegan: Community Ecology Package.

50. Alekshun MN, Kim YS, Levy SB. 2002. Mutational analysis of MarR, the negative regulator of marRAB expression in Escherichia coli, suggests the presence of two regions required for DNA binding. Molecular Microbiology 35:1394–1404.

51. Oh J-Y, Kwon Y-K, Tamang MD, Jang H-K, Jeong O-M, Lee H-S, Kang M-S. 2016. Plasmid-Mediated Quinolone Resistance in Escherichia coli Isolates from Wild Birds and Chickens in South Korea. Microbial Drug Resistance 22:69–79.

52. Literak I, Dolejska M, Janoszowska D, Hrusakova J, Meissner W, Ryska H, Bzoma S, Cizek A. 2010. Antibiotic-Resistant Escherichia coli Bacteria, Including Strains with Genes Encoding the Extended-Spectrum Beta-Lactamase and QnrS, in Waterbirds on the Baltic Sea Coast of Poland. Applied and Environmental Microbiology 76:8126–8134.

53. Jamborova I, Dolejska M, Vojtech J, Guenther S, Uricariu R, Drozdowska J, Papousek I, Pasekova K, Meissner W, Hordowski J, Cizek A, Literak I. 2015. Plasmid-Mediated Resistance to Cephalosporins and Fluoroquinolones in Various Escherichia coli Sequence Types Isolated from Rooks Wintering in Europe. Applied and Environmental Microbiology 81:648–657.

54. Slettemeås JS, Sunde M, Ulstad CR, Norström M, Wester AL, Urdahl AM. 2019. Occurrence and characterization of quinolone resistant Escherichia coli from Norwegian turkey meat and complete sequence of an IncX1 plasmid encoding qnrS1. PLoS One 14.

55. Dolejska M, Villa L, Hasman H, Hansen I, Carattoli A. 2013. Characterization of IncN plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli and Salmonella from animals, the environment and humans. Journal of Antimicrobial Chemotherapy 68:333–339.
56. Soares FB, Camargo CH, Cunha MPV, de Almeida EA, Bertani AM de J, de Carvalho E, de Paiva JB, Fernandes SA, Tiba-Casas MR. 2019. Subtyping of plasmid-mediated quinolone resistance among Salmonella serotypes by whole genome sequencing. Diagnostic Microbiology and Infectious Disease 94:403–406.

57. Janecko N, Halova D, Jamborova I, Papousek I, Masarikova M, Dolejska M, Literak I. 2018. Occurrence of plasmid-mediated quinolone resistance genes in Escherichia coli and Klebsiella spp. recovered from Corvus brachyrhynchos and Corvus corax roosting in Canada. Letters in Applied Microbiology 67:130–135.

58. Veldman K, van Tulden P, Kant A, Testerink J, Mevius D. 2013. Characteristics of Cefotaxime-Resistant Escherichia coli from Wild Birds in The Netherlands. Applied and Environmental Microbiology 79:7556–7561.

59. CGE. 2019. PointFinder, URL: https://bitbucket.org/genomicepidemiology/pointfinder/src/master/.

60. Martinez-Martinez L. 2003. Interaction of plasmid and host quinolone resistance. Journal of Antimicrobial Chemotherapy 51:1037–1039.

61. Rodriguez-Martinez JM, Velasco C, Garcia I, Cano ME, Martinez-Martinez L, Pascual A. 2007. Mutant Prevention Concentrations of Fluoroquinolones for Enterobacteriaceae Expressing the Plasmid-Carried Quinolone Resistance Determinant qnrA1. Antimicrobial Agents and Chemotherapy 51:2236–2239.

62. Cesaro A, Bettoni RRD, Lascols C, Merens A, Soussy CJ, Cambau E. 2008. Low selection of topoisomerase mutants from strains of Escherichia coli harbouring plasmid-borne qnr genes. Journal of Antimicrobial Chemotherapy 61:1007–1015.
63. Ciccozzi M, Giufrè M, Accogli M, Lo Presti A, Graziani C, Cella E, Cerquetti M. 2013. Phylogenetic analysis of multidrug-resistant *Escherichia coli* clones isolated from humans and poultry. New Microbiologica 36:385–394.

64. Manges AR, Harel J, Masson L, Edens TJ, Portt A, Reid-Smith RJ, Zhanel GG, Kropinski AM, Boerlin P. 2015. Multilocus Sequence Typing and Virulence Gene Profiles Associated with *Escherichia coli* from Human and Animal Sources. Foodborne Pathogens and Disease 12:302–310.

65. Myrenås M, Slettemeås JS, Thorsteinsdottir TR, Bengtsson B, Börjesson S, Nilsson O, Landén A, Sunde M. 2018. Clonal spread of *Escherichia coli* resistant to cephalosporins and quinolones in the Nordic broiler production. Veterinary Microbiology 213:123–128.

66. Mo SS, Kristoffersen AB, Sunde M, Nødtvedt A, Norström M. 2016. Risk factors for occurrence of cephalosporin-resistant *Escherichia coli* in Norwegian broiler flocks. Preventive Veterinary Medicine 130:112–118.

67. Davies R, Wales A. 2019. Antimicrobial Resistance on Farms: A Review Including Biosecurity and the Potential Role of Disinfectants in Resistance Selection. Comprehensive Reviews in Food Science and Food Safety 1541-4337.12438.

68. Börjesson S, Guillard T, Landén A, Bengtsson B, Nilsson O, Landen A, Bengtsson B, Nilsson O, Landén A, Bengtsson B, Nilsson O. 2015. Introduction of quinolone resistant *Escherichia coli* to Swedish broiler population by imported breeding animals. Veterinary Microbiology 194:74–78.

69. Agersø Y, Jensen JD, Hasman H, Pedersen K. 2014. Spread of extended spectrum cephalosporinase-producing *Escherichia coli* clones and plasmids from parent animals to broilers and to broiler meat in a production without use of cephalosporins. Foodborne Pathogens and Disease 11:740–746.
70. Nilsson O, Börjesson S, Landén A, Bengtsson B. 2014. Vertical transmission of *Escherichia coli* carrying plasmid-mediated AmpC (pAmpC) through the broiler production pyramid. Journal of Antimicrobial Chemotherapy 69:1497–1500.

71. Mo SS, Norström M, Slettemeås JS, Løvland A, Urdahl AM, Sunde M. 2014. Emergence of AmpC-producing *Escherichia coli* in the broiler production chain in a country with a low antimicrobial usage profile. Veterinary Microbiology 171:315–320.

72. Mo SS, Urdahl AM, Madslien K, Sunde M, Nesse LL, Slettemeås JS, Norström M. 2018. What does the fox say? Monitoring antimicrobial resistance in the environment using wild red foxes as an indicator. PLOS ONE 13:e0198019.
Figure 1: Phenotypic and genotypic resistance patterns for all plasmid-mediated resistance genes and gyrA, parC and parE. The top plot represents the number of isolates per group. The middle plot represents presence/absence of plasmid-mediated genes and chromosomal mutations (below the horizontal line). The bottom plot represents the phenotype of the respective gene/mutation combination. Meropenem and colistin were excluded as resistance was not observed among any isolates, and cefazidime was excluded as cephalosporin resistance was already represented by cefotaxime. Tigecycline was excluded due to almost no resistance observed among the isolates. Colours represent animal species and resistance phenotypes. TMP = trimethoprim, TET = tetracycline, SMX = sulfamethoxazole, CHL = chloramphenicol, GEN = gentamicin, CTX = cefotaxime, AMP = ampicillin, NAL = nalidixic acid, CIP = ciprofloxacin. The genes in the middle plot are grouped based on gene family: \(dfrA = dfrA1, dfrA5, dfrA8, dfrA12, dfrA14, \) and \(dfrA17. \) \(tet = tetA, tetB, \) and \(tetD. sul = sul1 - 3. \) \(aph = aph3\alpha, aph3\beta, \) and \(aph6\beta. aadA = aadA1, aadA2, aadA5, aadA12, aadA13, \) and \(aadA22. AAC(3)-II = AAC(3)-Ila \) and \(AAC(3)-Ild. \) \(bla_{TEM} = bla_{TEM-1A} - bla_{TEM-1C} - bla_{SHV} = bla_{SHV-2} \) and \(bla_{SHV-12}. \) \(bla_{CTX-M} = bla_{CTX-M-1}, \) \(bla_{CTX-M-15}, \) \(bla_{CTX-M-32}, \) and \(bla_{CTX-M-55} - qnr = qnrA1, qnrB19, qnrS1, qnrS2, \) and \(qnrS4. \)
Figure 2: Maximum likelihood core gene SNP tree of all isolates. Branch supports (Ultra Fast bootstrap approximation) are denoted as black or white nodes. The colored tips on the tree denote animal species of origin, and the tip labels the sequence type from the MLST typing scheme hosted by Enterobase. The coloring on the outer rings denote presence/absence of mutations leading to amino acid substitutions in chromosomal genes (purple) and presence/absence of plasmid-mediated genes (orange). The tree was generated with IQTree from SNPs in core genes from Roary aligned with MAFFT. Evolutionary model: GTR+F+ASC+R9. The tree is midpoint rooted for better visualization.
Figure 3: Maximum likelihood core genome tree of Clade B, containing ten ST162 isolates. Tip labels denote the location of the isolate by county-municipality. Core genome SNPs were called with ParSNP, recombinant sites removed with Gubbins, and the tree was generated with IQTree. Evolutionary model: TiMe+ASC+R2. Shared genome among all isolates: 86%. The highly similar isolates from wild birds in this tree (location 8-18, 2016) were disregarded as they were from the same sample; one isolated by the traditional method and the other by the selective method.
Figure 4: Maximum likelihood core genome SNP tree of Clade F, containing both ST117 (n = 13) and ST8720 (n = 1, from 2012) isolates. Tip labels denote the location of the isolate by county-municipality. Core genome SNPs were called with ParSNP, recombinant sites removed with Gubbins, and the tree was generated with IQTree. Evolutionary model: K3P+ASC+G4. Shared genome among all isolates: 83.6%.
Figure 5: Non-metric multidimensional scaling (NMDS) analysis of presence/absence of quinolone resistance mechanisms, both plasmid-mediated and chromosomal. The colors denote sequence types. The points are jittered for easier interpretation.
Table 1: Number of isolates with mutations leading to amino acid substitutions in included chromosomal genes and presence/absence of plasmid-mediated genes per animal species. The percentage is relative to the total number of isolates (280).

Type	Gene	Broiler n = 87	Pig n = 75	Red fox n = 52	Wild bird n = 66	Sum n = 280	Percent
Chromosomal	gyrA	87	56	42	44	229	81.8
	gyrB	0	0	0	0	0	0
	marA	19	2	7	6	34	12.1
	marR	66	52	40	54	212	75.7
	parC	8	9	10	16	43	15.4
	parE	14	5	3	7	29	10.4
	robA	0	0	0	0	0	0
	soxR	25	6	9	8	48	17.1
Plasmid-mediated	qepA4	0	0	0	1	1	0.4
	qnrA1	0	0	1	0	1	0.4
	qnrB19	1	11	2	7	21	7.5
	qnrS1	3	6	6	14	29	10.4
	qnrS2	0	3	1	2	6	2.1
	qnrS4	0	0	1	0	1	0.4
ST	Isolate	No. of SNPs	Fraction similar genome	Source	Year	Location	
----	---------	-------------	-------------------------	----------	------	----------	
162	1	13	90.8%	Red fox	2016	1-50	
	2			Broiler	2014	11-42	
117	1	14	90.9%	Broiler	2014	11-21	
	2			Broiler	2014	13-46	
1	3		95.4%	Pig	2015	11-29	
2				Pig	2015	3-11	
1	8		74.1%	Pig	2015	8-16	
2				Pig	2015	8-41	
1	11		91.0%	Pig	2015	8-44	
2				Pig	2015	8-41	