An ACCL which is not a CRCL

Colm Ó Dúnlaing

Mathematics, Trinity College, Dublin 2, Ireland

December 3, 2014

Abstract

It is fairly easy to show that every regular set is an almost-confluent congruential language (ACCL), and it is known [3] that every regular set is a Church-Rosser congruential language (CRCL). Whether there exists an ACCL, which is not a CRCL, seems to remain an open question. In this note we present one such ACCL.

1 Introduction

\(\Sigma^*\) denotes the set of ‘strings’ over an alphabet \(\Sigma\) — \(\Sigma\) can be any finite set; strings over \(\Sigma\) are finite sequences drawn from \(\Sigma\). \(\Sigma^*\) is a monoid (with identity \(\lambda\), the empty string) under string concatenation. The length of a string \(x\) is denoted \(|x|\) (\(|\lambda| = 0\)). If \(x \in \Sigma^*\) and \(a \in \Sigma\) then

\[|x|_a\]

is the number of occurrences of \(a\) in \(x\), so

\[\sum_{a \in \Sigma} |x|_a = |x|.

(1.1) Definition A Thue system over a finite alphabet \(\Sigma\) is a set of ordered pairs \((u, w)\) of strings in \(\Sigma^*\). In this note only finite Thue systems are considered.

If \(T\) is a Thue system, then we call the pairs \((u, w)\) in \(T\) its rules, sometimes written \(\leftrightarrow T\).

A congruence on \(\Sigma^*\) (or any semigroup) is an equivalence relation \(\equiv\) such that for all \(u, v, x, y \in \Sigma^*\),

\[x \equiv y \implies uxv \equiv uyw\]

The equivalence classes can be multiplied and thus there is a quotient monoid

\[\Sigma^* / \equiv\]

If \(\equiv\) is a congruence and \(x\) a string, we write

\[[x]_\equiv\]

for the congruence class of \(x\) modulo \(\equiv\).

*e-mail: odunlain@maths.tcd.ie. Mathematics department website: http://www.maths.tcd.ie.
Given \(x, y \in \Sigma^*\), we write

\[x \leftrightarrow_T y\]

if there exist strings \(t, u, v, w\), such that \(x = tuv\), \(y = twv\), and either \((u, w) \in T\) or \((w, u) \in T\).

This relation is symmetric, and its reflexive transitive closure

\[\leftrightarrow^*\]

is a congruence on \(\Sigma^*\). The notation for congruence class is simplified as follows.

\[[x]_T = (\text{def}) \ [x]_{\leftrightarrow^*_T}.

Emphasis is placed on the relative lengths of strings in rules of \(T\).

If \(x \leftrightarrow_T y\) and in addition \(|x| > |y|\), \(|x| \geq |y|\), or \(|x| = |y|\), respectively, write

\[x \rightarrow_T y, \quad \text{or} \quad x \leftrightarrow_T y, \quad \text{or} \quad x \sqsubseteq_T y,\]

respectively.

Since the relation \(\leftrightarrow_T\) is symmetric, we can assume that for any \((u, w) \in T\),

\[|u| \geq |w|\]

(1.2) Definition When \(x = tuv \rightarrow_T twv = y\), so \(|u| > |w|\), we call \(u\) the redex and \(w\) the reduct.

(1.3) Definition A Thue system \(T\) is, respectively, (i) Church-Rosser, (ii) almost confluent, (iii) preperfect, (see [1]), if whenever \(x \leftrightarrow^*_T y\),

(i) there exists a string \(z\) such that \(x \rightarrow^*_T z\) and \(y \rightarrow^*_T z\);

(ii) there exist strings \(z_1\) and \(z_2\) such that \(x \rightarrow^*_T z_1\), \(y \rightarrow^*_T z_2\), and \(z_1 \sqsubseteq^*_T z_2\);

(iii) there exists a string \(z\) such that \(x \rightarrow^*_T z\) and \(y \rightarrow^*_T z\).

(1.4) Definition If \(T\) is a Church-Rosser Thue system, then for any string \(x\), every string \(y\) in \([x]_T\) reduces (modulo \(T\)) to the same irreducible string; we call this string

\(\text{irr}_T(x)\).

The word problem for Church-Rosser systems is in linear time, and for the other two kinds it is PSPACE complete; testing for the Church-Rosser property is tractable; testing for almost confluence is in PSPACE; it is undecidable whether a Thue system is preperfect [1].

(1.5) Definition A language \(L\) is congruential if there exists a congruence \(\equiv\) and a finite set of strings

\[x_1, x_2, \ldots, x_n, \quad \text{such that} \quad L = [x_1]_{\equiv} \cup [x_2]_{\equiv} \cup \ldots \cup [x_n]_{\equiv}\]

If the congruence is generated by a Thue system, i.e., it is \(\leftrightarrow_T\) for some finite Thue system \(T\), and \(T\) is, respectively, Church-Rosser, or almost confluent, or preperfect, then \(L\) is a Church-Rosser, or almost confluent, or preperfect congruential language: CRCL, ACCL, or PPCL.
An interesting and old result is that every regular set is an ACCL. It can be shown as follows: if \(L \) is a regular set then there exists a finite monoid \(M \) and a homomorphism from \(\Sigma^* \) to \(M \) such that \(L \) is a union of \(h^{-1}(g) \) for suitable \(g \) in \(M \). But this partition
\[
\{h^{-1}(g) : g \in M\}
\]
can also be realised by a finite almost-confluent system, namely: let \(N \) be the maximal length of minimal strings in this partition (a string is minimal if whenever \(x \leftrightarrow_T y, |x| \leq |y| \)). Then the system
\[
S = \{(x, y) : x, y \in \Sigma^*, |x| \leq N + 1, x \leftrightarrow_T y, y \text{ minimal}\}
\]
is almost confluent and its congruence classes coincide with the inverse images \(h^{-1}(g) \), as required.

A long-standing open problem was whether every regular set is a CRCL: it was settled in the affirmative a few years ago [3].

That left open the unlikely possibility that every ACCL is a CRCL. This note shows the contrary.

The analysis in this paper is simple and direct. In fact, the problem is not susceptible to more sophisticated methods. As noted in [4], Kolmogorov-complexity-based analyses showing palindromes not to be Church-Rosser also shows them not to be almost confluent. Indeed, in [4] we were only able to show that they are ‘preperfect languages’.

All Church-Rosser monoids are \(\text{FP}_\infty \) [5,2]. On the other hand, if one inspects the group furnished by Squier [5], which is not \(\text{FP}_3 \), it has an obvious presentation as a monoid, but the presentation again turns out to be preperfect rather than almost confluent.

Book’s reduction machine [1] can be used with almost-confluent Thue systems, from which it is follows that ACCLs are linear time recognisable. The word problem for an almost confluent Thue system is PSPACE-complete, but (as is easy to show) if the system presents a group then the word problem is linear time. So there are few complexity-based arguments separating ACCLs from CRCLs.

2 An ACCL which is not a CRCL

We shall introduce an almost confluent Thue system over a 4-letter alphabet \(\Sigma = \{a, b, c, d\} \), and an involution
\[
a \mapsto c \mapsto a, \quad b \mapsto d \mapsto b
\]
or
\[
\overline{a} = c, \overline{c} = a, \overline{b} = d, \overline{d} = b.
\]

Any string in \(\Sigma^* \) can and will be written using \(a, b, \overline{a}, \overline{b} \).

\begin{definition}
We call \(a, b \) positive and \(c, d \) (i.e., \(\overline{a}, \overline{b} \)) negative.

Given a string \(x \) over \(a, b, \overline{a}, \overline{b} \),
\[
|x|_{\text{pos}} = |x|_a + |x|_b, \quad |x|_{\text{neg}} = |x|_{\overline{a}} + |x|_{\overline{b}}
\]
the number of occurrences of positive and negative letters in \(x \).
\end{definition}

\footnote{Church-Rosser languages are a much richer class of languages than Church-Rosser congruential.}
Let \(h : \Sigma^* \rightarrow \mathbb{Z} \) (the additive group of integers) denote the following map:

\[
h(x) = |x|_{\text{pos}} - |x|_{\text{neg}}.
\]

This is a homomorphism, and

\[
a \mapsto 1, \quad b \mapsto 1, \quad a \mapsto -1, \quad b \mapsto -1.
\]

Let \(S \) be the Thue system

\[
aa \rightarrow \lambda, \quad \overline{a}a \rightarrow \lambda, \quad a\overline{b} \rightarrow \lambda, \quad b\overline{a} \rightarrow \lambda, \quad \overline{a}b \rightarrow \lambda, \quad \overline{b}a \rightarrow \lambda, \quad a \overline{b} \rightarrow \lambda, \quad b \overline{a} \rightarrow \lambda.
\]

The map \(h \) preserves both sides of each rule in \(S \), and therefore induces a homomorphism

\[
\Sigma^*/\xrightarrow{\sim} S \rightarrow \mathbb{Z}.
\]

For the rest of this paper, we assume that strings are written in terms of \(a, b, \overline{a}, \overline{b} \).

(2.2) Definition Given a string \(x = a_1 a_2 \ldots a_k \), the string \(\tilde{x} \) is defined as

\[
\tilde{x} = \overline{a}_k \overline{a}_{k-1} \ldots \overline{a}_1.
\]

Clearly \(h(x\tilde{x}) = 0 \) and \([x\tilde{x}]_S = [\tilde{x}x]_S = [\lambda]_S\).

(2.3) Definition A string \(x \) is mixed if it contains both positive (\(a \) or \(b \)) and negative (\(\overline{a} \) or \(\overline{b} \)) letters. Else it is unmixed. Unmixed strings can be empty, positive, or negative, in the obvious sense.

If \(x \) is mixed, then it contains an adjacent pair of positive and negative letters which can be reduced (modulo \(S \)). Thus mixed strings are reducible. Unmixed strings are irreducible.

Thus every string \(x \) can be reduced to a positive or negative string. If \(x \) is positive then \(h(x) = |x| \).

If \(x \) is negative then \(h(x) = -|x| \).

(2.4) Lemma If \(x \) and \(y \) are both positive strings, or both negative, and \(|x| = |y|\), then \(x \xrightarrow{\sim} S y \).

(2.5) Corollary \(S \) is almost confluent and \(h \) induces an isomorphism of \(\Sigma^*/\xrightarrow{\sim} S \) with \(\mathbb{Z} \).

Proof. Suppose \(h(x) = h(y) \).

Reduce \(x \) and \(y \) (modulo \(S \)) to irreducible strings \(x' \) and \(y' \). Then \(h(x') = h(x) = h(y) = h(y') \), and \(x' \) and \(y' \) are unmixed.

If \(h(x) = 0 \), then \(x' = y' = \lambda \). If \(h(x) > 0 \), then \(x' \) and \(y' \) are entirely positive, \(|x'| = |y'|\), and \(x' \xrightarrow{\sim} S y' \).

Similarly if \(h(x) < 0 \).

We have shown that if \(h(x) = h(y) \) then there exist irreducible strings \(x' \) and \(y' \) such that \(x \xrightarrow{\sim} S x' \), \(y \xrightarrow{\sim} S y' \), and \(x' \xrightarrow{\sim} S y' \).
In particular, \(x \leftrightarrow_S y \). Conversely, as has been noted, if \(x \leftrightarrow_S y \) then \(h(x) = h(y) \): \(h \) induces an isomorphism of \(\Sigma^* / \leftrightarrow_S \) with its image, \(\mathbb{Z} \).

Finally, if \(x \leftrightarrow_S y \), then \(h(x) = h(y) \), so there exist strings \(x', y' \) so

\[
\begin{align*}
x \mathrel{\leftrightarrow_S} x' & \mathrel{\leftrightarrow_S} y' \mathrel{\leftrightarrow_S} y
\end{align*}
\]

so \(S \) is almost confluent. \(\blacksquare \)

(2.6) **Definition**

\[L = [\lambda]_S = h^{-1}(0). \]

This is our candidate for a non-CRCL.

(2.7) **Corollary** \(L \) is an ACCL. \(\blacksquare \)

(2.8) **Theorem** \(L \) is not a CRCL.

We prove this by contradiction. Otherwise there exists a Church-Rosser Thue system \(T \) and a list of irreducible strings

\[u_1, \ldots, u_n \]

in \(L \) such that

(2.9)

\[L = [\lambda]_S = [u_1]_T \cup \ldots \cup [u_n]_T \]

or equivalently

\[x \in L \iff \text{irr}_T(x) \in \{u_1, \ldots, u_n\}. \]

Associated with \(T \) and the strings \(u_j \), we define the following constants:

(2.10) **Definition**

\[Q = \max_{(\ell, r) \in T} |\ell| \quad \text{and} \quad R = \max_{1 \leq j \leq n} |u_j|_{\text{neg}}. \]

\(Q \) is the maximum length of redexes in \(T \).

(2.11) **Lemma** If such a Thue system \(T \) exists, then \(T \) refines \(S \) (in the sense that \(x \mathrel{\leftrightarrow_T} y \implies x \mathrel{\leftrightarrow_S} y \)).

Proof. It is enough to show that whenever

\[x \rightarrow_T y, \]

\[[x]_S = [y]_S. \] Clearly

\[x \bar{x} \rightarrow_T y \bar{x} \]

But \(x \bar{x} \in [\lambda]_S \), which is a union of congruence class modulo \(T \), so \(y \bar{x} \in [\lambda]_S \). Then \([y \bar{x}]_S = [\lambda x]_S = [x]_S \). But \([y \lambda\bar{x}]_S = [y\lambda]_S = [y]_S \), so \([x]_S = [y]_S \), as required. \(\blacksquare \)

(2.12) **Corollary** If \(x \) is unmixed, then \(x \) is irreducible (modulo \(T \)).
Proof: x is irreducible (modulo S) and T refines S.

(2.13) **Lemma** Suppose that $xy \rightarrow_T z$ where y is unmixed (and $|z| \geq Q$). Then z can be factored as xy' where y' is unmixed and $|y'| > |y| - Q$ \((\ref{eq:2.10})\).

Proof. The redex in xy cannot be entirely in y since y is irreducible. Therefore the redex is in xs where $|s| < Q$ (possibly $s = \lambda$). Setting $xy = xsy'$, y' is a suffix of z, y' is unmixed, and $|y'| > |y| - Q$.

(2.14) **Lemma** Suppose $x \rightarrow_T y$. Then $|x|_{\text{pos}} > |y|_{\text{pos}}$ and $|x|_{\text{neg}} > |y|_{\text{neg}}$.

Proof Since $h(x) = h(y)$, $|x|_{\text{neg}} - |y|_{\text{neg}} = |x|_{\text{pos}} - |y|_{\text{pos}}$, so the number of positive and negative letters is reduced by the same amount, namely, $(|x| - |y|)/2$.

(2.15) **Corollary** For any positive integer k, if y is positive of length $QR + k$ \((\ref{eq:2.10})\), then for $1 \leq i \leq n$,

$$y \quad \text{and} \quad \text{irr}_T(u_iy)$$

agree on their rightmost k letters.

Proof. Lemma \((\ref{eq:2.13})\) can be extended inductively so that if u_iy is reduced t times, then the reduced string agrees with y on their rightmost $|y| - tQ$ letters. By Lemma \((\ref{eq:2.14})\), u_iy can be reduced at most $|u_iy|_{\text{neg}}$ times. But $|u_iy|_{\text{neg}} = |u_i|_{\text{neg}}$ and $|u_i|_{\text{neg}} \leq R$, so y and $\text{irr}_T(u_iy)$ agree on their rightmost $|y| - QR$ letters; and $|y| - QR = k$.

Proof of Theorem \((\ref{eq:2.3})\) Let $k = \lceil \log_2(n+1) \rceil$ and let x be a positive string of length $QR + k$. For any positive string y of the same length as x, $x \overset{*}{\leftrightarrow}_S y$.

Let $u_i = \text{irr}_T(x\hat{x})$ (noting that $x\hat{x} \in L$). For any positive string y with $|y| = |x|$, $x\overset{\lambda}{\leftrightarrow}_S y$ so $\hat{x}\hat{x}\overset{\lambda}{\leftrightarrow}_S \hat{x}y$. But $\hat{x}\hat{x}\overset{\lambda}{\leftrightarrow}_S L$ and $\text{irr}_T(\hat{x}y) = u_j$ for some j. Therefore $[\hat{x}y]_T = [u_j]_T$ and $[x\hat{x}\hat{x}]_T = [zu_j]_T$. But $u_i = \text{irr}_T(x\hat{x})$, so, for every positive y with $|y| = |x|$,

$$[u_iy]_T = [zu_j]_T$$

(2.16)

for some j. Let $\{y_q\}$ be an enumeration of all positive strings y of length $|x|$ which agree with x on their first QR letters. There are 2^k such strings. By Corollary \((\ref{eq:2.15})\) for each string y_q,

$$y_q \quad \text{and} \quad \text{irr}_T(u_iy_q)$$

agree on their rightmost k letters. The irreducible strings belong to different congruence classes. Therefore there are at least 2^k congruence classes fitting the left-hand side of equation \((\ref{eq:2.16})\) and there are at most n classes matching the right-hand side. Since $2^k > n$, we have a contradiction: L is not a CRCL.

3 Acknowledgement

The author is grateful to Friedrich Otto for some corrections and helpful suggestions.
4 References

1. Ronald V. Book and Friedrich Otto (1993). String-rewriting systems. Springer texts and monographs in computer science.

2. Daniel E. Cohen (1997). String rewriting and homology of monoids. Math. Structures in Computer Science 7:3, 207–240.

3. Volker Diekert, Manfred Kufleitner, Klaus Reinhardt, and Tobias Walter (2012). Regular languages are Church-Rosser congruential. Proc. 39th. ICALP II, Springer LNCS 7392, 177–188.

4. Colm Ó Dúnlaing and Natalie Schluter (2010). A shorter proof that palindromes are not a Church-Rosser language, with extensions to almost-confluent and preperfect Thue systems. Theoretical Computer Science 411, 677–690.

5. Craig C. Squier (1987). Word problems and a homological finiteness condition for monoids. J. Pure and Applied Algebra 49, 201–217.