The Long-Term Changes in Midday Photoinhibition in Rice (Oryza sativa L.) Growing under Fluctuating Soil Water Conditions

Kohtaro Iseki¹, Koki Homma¹, Takuya Irie¹, Tsuyoshi Endo² and Tatsuhiko Shiraiwa¹

 Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
 Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan)

Abstract: Rice crops growing under fluctuating soil water conditions in a rainfed field frequently experience severe photoinhibition at midday, potentially decreasing their biomass production. In this study, the long-term changes in midday photoinhibition in five rice cultivars growing under variable soil water conditions in a rainfed field were evaluated by determining the maximum quantum yield of photosystem II (Fv/Fm). Fv/Fm was generally lower under rainfed conditions than under flooded conditions at 65 – 75 days after sowing (DAS), but was similar under both conditions at 109 – 124 DAS. This mitigation of photoinhibition over time is likely an up-regulation of mechanisms to dissipate excess electrons, and an analysis of covariance showed that the degree of mitigation under the rainfed condition varied among the cultivars. Such genotypic differences in the long-term changes in Fv/Fm might be determined by the capacity of the cultivar to adapt to drought conditions.

Key words: Acclimation, Chlorophyll fluorescence, Photoinhibition, Rainfed, Rice.

Photosystem II (PSII) plays a crucial role in photosynthetic electron transport but is sensitive to photooxidative damage (Keren and Krieger-Liszkay, 2011), termed photoinhibition, and is typically estimated by the maximum quantum yield of PSII (Fv/Fm, a parameter of chlorophyll fluorescence). Photoinhibition, which is caused by an excess of light energy that is neither used for photosynthetic electron transport nor dissipated as heat, increases with the light intensity (Kato et al., 2003). Hikosaka et al. (2004) examined the effect of photoinhibition on photosynthesis and concluded that photoinhibition at any level of light intensity decreases the photosynthetic rate, and the photoinhibitory reduction of photosynthesis causes a significant reduction in the daily carbon gain (Werner et al., 2001).

On the other hand, photoinhibition is thought to be an energy control mechanism, whereby energy quenching in the photoinhibited PSII reaction centers contributes to the dissipation of excess energy (Horton and Ruban, 2005). This photoinhibitory energy dissipation in PSII limits the linear electron flow and helps maintain the downstream oxidation state, preventing more severe oxidative damage to photosystem I (Keren and Krieger-Liszkay, 2011).

The effect of photoinhibition with regard to plant productivity is still controversial. Some highly productive rice genotypes exhibit less photoinhibition (Wang et al., 2005; Kumagai et al., 2009), resulting in a high photosynthetic rate under favorable environmental conditions. In contrast, there is no evidence of the advantage of increased photoinhibition for higher productivity under field conditions.

Drought stress is one of the major constraints on rice production in rainfed cultivation systems. Under fluctuating soil water conditions, the stability of photosynthesis to a changing environment is important for biomass production. Under conditions of drought stress, decrease in the photosynthetic rate decreases the linear electron flow in the electron transport chain (ETC), causing an increase in excess light energy and accelerating the rate of photoinhibition (Murata et al., 2007). Many of the electron dissipation mechanisms that mitigate photoinhibition, such as photorespiration, cyclic electron flow, the water-water cycle and other alternative electron flow pathways, are up-regulated under drought stress (Biehler and Fock, 1996; Wingler et al., 1999; Golding and Johnson, 2003; Bartoli et al., 2005; Kohzuma et al., 2009). In addition, the dissipation of excess light energy as heat might also be up-regulated by structural changes in the light-harvesting complex (Horton and Ruban, 2005). Because field-grown crops are often exposed to long-term
drought that progresses slowly and is highly variable, photoinhibition under such drought conditions could be substantially altered by the long-term responses of the electron dissipation mechanisms to drought stress. Thus, the changes in photoinhibition in field settings must be analyzed quantitatively to examine the effects of long-term drought on photoinhibition.

In this study, five rice cultivars were grown under flooded and rainfed conditions, and the midday values of F_v/F_m were measured as an indicator of midday photoinhibition. The aim of this study was to assess the long-term changes in midday photoinhibition under the rainfed condition. As drought stress increased, we observed a mitigation response to photoinhibition, which we discuss in relation to the mechanism of adaptation to drought conditions.

Materials and Methods

1. Plant materials and growth conditions

Five rice (*Oryza sativa* L.) cultivars, including different germplasm groups, were used in the experiment. Asu is an indica-type landrace, B6144-MR-6-0-0 and Milyang23 are indica-type improved cultivars, and Khau-tan-chiem and Tima are tropical japonica-type landraces. Two adjacent paddy fields at the experimental field of Kyoto University in Japan were used in the experiment. Because the fields were carefully managed, differences in the chemical and physical properties between the two fields were expected to be negligible. One field was subjected to flooded conditions and the other to rainfed conditions. Seeds of each cultivar were sown on 30 April 2009 and transplanted at 20 and 28 days after sowing (DAS) into 2×2 m plots in each field at a density of 22.2 plants m$^{-2}$. Fertilizer was applied at a rate of 5-5-5 g m$^{-2}$ (N-P$_2$O$_5$-K$_2$O) to each field prior to transplanting. The flooded field was submerged in water throughout the experiment, whereas the rainfed field was irrigated immediately after transplanting to avoid transplanting damage but was not irrigated after that.

The volumetric soil water content (SWC) was measured using time-domain reflectometry (TDR) method described by Topp et al. (1980). Three parallel metal rods as the TDR probes (rod length of 30 cm) were vertically inserted into the soil, and the measurements were retrieved twice a week using a Tektronix 1502B cable tester (Tektronix Inc., Beaverton, OR, USA). The SWC value of the rainfed field remained relatively high (approximately 0.25 m3 m$^{-3}$) until approximately 100 DAS because of constant rainfall. However, precipitation was low after 100 DAS, and SWC decreased to 0.09 m3 m$^{-3}$ by 124 DAS (Fig. 1a). At approximately 120 DAS, leaf wilting and rolling were partially observed in some cultivars under the rainfed condition; and such damaged leaves were not used for any of the measurements described the following section.

The integral of incident solar radiation (MJ m$^{-2}$) was measured once an hour using a silicon pyranometer (LI200X-L, LI-COR Inc., Lincoln, NE, USA). Because photoinhibition is known to be severest at midday, the sum of radiation values from 1000 to 1400 was recorded as the midday solar radiation (S_m). There was a large day-to-day variation in S_m during the experimental period, as shown in Fig. 1b.

2. Chlorophyll fluorescence

F_v/F_m of the topmost fully expanded leaf of plants exposed to sunlight was measured using a portable Mini-PAM fluorometer (Heinz Walz GmbH, Effeltrich, Germany); five plants were randomly selected for replications of the measurement for each cultivar under both water conditions. The leaves were dark-adapted for 10 min prior to the measurement of F_v/F_m; the duration was decided according to previous studies (Murchie et al., 1999; Chen et al., 2003; Iseki et al., 2013) in which photoinhibition was evaluated for field-grown rice. The data collection was performed at midday (from 1000 to

![Fig. 1. Soil volumetric water content under the rainfed condition (a) and the midday solar radiation (S_m) (b) during the experimental period. The soil volumetric water content data represent the averages of six measurements in the rainfed field. The midday solar radiation is the daily integral of incident solar radiation at midday (from 1000 to 1400).](image-url)
1400) for a total of 15 days from 65 to 124 DAS. At 95 and 124 DAS, the light-adapted quantum yield of PSII (Φ_{PSII}) was also measured at a photosynthetic photon flux density (PPFD) of 1200 μmol m$^{-2}$ s$^{-1}$.

3. Photosynthetic rate and stomatal conductance
The net CO$_2$ gas exchange rate and stomatal conductance of the topmost fully expanded leaf of plants exposed to sunlight were measured using a portable photosynthesis system (LI-6400, LI-COR Inc., Lincoln, NE, USA); three plants were randomly selected from each cultivar under both water conditions for replications of the measurement. The measurements were performed at midday (from 1000 to 1400) on sunny days at approximately 100 and 120 DAS at 1200 μmol m$^{-2}$ s$^{-1}$ PPFD under the ambient air temperature and CO$_2$ conditions.

4. SPAD measurement
The chlorophyll content of the topmost fully expanded leaf of the plants was evaluated by using a hand-held chlorophyll meter (SPAD-502, Konica Minolta, Tokyo, Japan); five plants were randomly selected from each cultivar under both water conditions for replications of the measurement. The measurements were performed at the same time as the measurements of the photosynthetic rate at approximately 100 and 120 DAS.

5. Shoot dry weight
The total shoot was sampled at 70 DAS and at the heading stage of each cultivar (approximately 120 DAS); four typical plants were sampled for each cultivar under both water conditions. The shoot materials were dried at 80°C for 72 hr, and the total shoot biomass was calculated by multiplying the biomass per plant by planting density and expressed as g m$^{-2}$.

6. Analysis of covariance (ANCOVA)
A dataset of 75 measurements of midday F_v/F_m values (5 cultivars for 15 d), each of which was an average of 5 replications, was analyzed. The effects of cultivar, DAS and Sm on the long-term changes in the midday F_v/F_m value in each field treatment (flooded or rainfed) were estimated by an ANCOVA using the model below (Equation 1); DAS and Sm are covariance components. The ANCOVA was performed using the statistical software SAS version 9.3 (SAS Institute Inc., Cary, NC, USA).

\[
\text{Midday } F_v/F_m = \text{Cultivar} + \text{DAS} + S_m + \text{Cultivar} \times \text{DAS} + \text{Cultivar} \times S_m
\]

Results
The leaf chlorophyll content (SPAD value) and total shoot biomass during the experiment are shown in Table 1. The average values of SPAD under the rainfed condition were higher than under the flooded condition at both 100 and 120 DAS (Table 1), but the differences were not significant. Only the B6144-MR-6-0-0 cultivar showed a lower SPAD value under the rainfed condition than the flooded condition. The values of the SPAD value were not much different between 100 and 120 DAS in all of the cultivars. The average values of the shoot biomass at 70 DAS and the heading stage were not significantly changed by the soil water conditions, but they tended to be slightly higher under the rainfed condition than the flooded condition, where the cultivar B6144-MR-6-0-0 exhibited larger shoot biomass under the rainfed condition than the flooded condition throughout the experimental period.

At approximately 100 DAS, stomatal conductance (Fig. 2a) and photosynthetic rate (Fig. 2b) were lower under the rainfed condition than the flooded condition, even though SWC was relatively high (more than 20%) (Fig. 1a). The values of Φ_{PSII} in the same period were similar in both field conditions, except for genotype

Cultivar	SPAD 100 DAS	SPAD 120 DAS	Total shoot biomass 70 DAS	Total shoot biomass Heading stage
	Flooded	Rainfed	Flooded	Rainfed
Asu	315.9	336.8	1101.3	1012.8
B6144-MR-6-0-0	174.2	290.7	916.8	1171.3
Khau tan chiem	251.1	182.2	803.3	952.3
Milyang23	181.8	124.2	814.5	852.6
Tima	197.3	211.7	1112.4	1171.3
Average	224.1	229.1	949.7	1080.7

ANOVA Cultivar ** ns ns ns ns ns
Water condition ns ns ns ns ns

1) The panicles did not emerge in Tima under the rainfed conditions. The total shoot biomass of Tima at 188 DAS was 1414.7 g m$^{-2}$.

** indicates significant difference at $P < 0.01$, and ns indicates not significant.
B6144-MR-6-0-0 in which Φ_{PSII} decreased under the rainfed condition (Fig. 2c). At approximately 120 DAS, SWC decreased greatly (less than 10%) (Fig. 1a), and the stomatal conductance (Fig. 2d) and photosynthetic rate (Fig. 2e) also decreased markedly under the rainfed condition. The values of Φ_{PSII} tended to decrease under the rainfed condition, but the difference was small and not significant (Fig. 2f). In comparison with the other cultivars, Khau-tan-chiem showed the lowest Φ_{PSII} values under both field conditions at approximately 120 DAS.

Under the flooded condition, the values of the midday F_v/F_m were nearly the same until approximately 100 DAS, but decreased slightly at approximately 120 DAS in all cultivars (Fig. 3a). In contrast, under the rainfed condition, the midday F_v/F_m tended to increase with increasing DAS from 65 to 97 DAS, and reached the same level under the flooded condition approximately 120 DAS in all cultivars (Fig. 3b), even though SWC was markedly decreased. Because changes in F_v/F_m are mainly driven by solar radiation, the relationship between the midday F_v/F_m and S_m values was examined for three temporal periods. The midday F_v/F_m in the five cultivars were analyzed separately for three periods: early (65 – 75 DAS), middle (84 – 97 DAS) and late (109 – 124 DAS). As expected, the relationship between S_m and midday F_v/F_m did not vary with the period under the flooded condition (Fig. 4a). In contrast, the midday F_v/F_m relative to S_m under the rainfed condition tended to be higher in the late period compared with the early and middle periods (Fig. 4b).

The effect of DAS on the midday F_v/F_m was analyzed using an ANCOVA (Table 2). The statistical model expressed in Equation (1) was significant for both field treatments, and the effects of cultivar and S_m on the midday F_v/F_m were all significant at the probability level of
0.05 in both field treatments, while the effect of DAS was significant only under the rainfed condition. Remarkably, a higher F value was observed for the S_m parameter under the flooded condition, whereas the S_m and DAS parameters under the rainfed condition both exhibited higher F values than the other parameters. The significant interaction between cultivar and DAS under the rainfed condition indicated that there was genotypic variation in the effect of DAS on the midday F_v/F_m. The DAS parameter was positive in all cultivars in the model for the estimation of midday F_v/F_m under the rainfed condition (Table 3), indicating that increasing DAS increased the midday F_v/F_m under the rainfed condition, regardless of cultivar. In contrast, the DAS parameter showed both positive and negative values in the model for the flooded condition, but the absolute values were smaller than those obtained under the rainfed condition. Among the five cultivars, the value of the DAS parameter under the rainfed condition was the highest in the cultivar Khau-tan-chiem, indicating that this cultivar displayed the largest DAS-dependent increase in midday F_v/F_m. Khau-tan-chiem also showed the highest value of the DAS parameter under

![Fig. 3. Long-term changes in the midday F_v/F_m in five rice cultivars under flooded (a) and rainfed (b) conditions. Each data point represents a day value in each cultivar and is an average of five replications (n = 5).](image)

![Fig. 4. Relationships between the midday F_v/F_m and midday solar radiation under flooded (a) and rainfed (b) conditions. Each data point represents a day value in each cultivar and is an average of five replications (n = 5). All the data for the midday F_v/F_m are divided into the early (65 – 75 DAS), middle (84 – 97 DAS) and late (109 – 124 DAS) periods of the experiment. Each period included between 3 and 6 measurement days.](image)

Model	Flooded F value	Probability	Rainfed F value	Probability
Model	5.3	< 0.001	8.1	< 0.001
Cultivar	4.6	0.003	3.2	0.020
DAS	2.7	ns	40.4	< 0.001
S_m	46.6	< 0.001	38.3	< 0.001
Cultivar × DAS	1.7	ns	2.6	0.043
Cultivar × S_m	0.1	ns	0.5	ns

The total number of data points is 75 (n = 75) for each field treatment.
The days after sowing (DAS) and the midday solar radiation (S_m) were covariate components.
ns indicates not significant.
In this study, the midday F_v/F_m during the early period was lower under the rainfed condition than under the flooded condition (Figs. 3 and 4). A decrease in the photosynthetic rate caused by the lower stomatal conductance might induce an increase in excess light energy and photoinhibition and cause a decrease in midday F_v/F_m. The higher SPAD value under the rainfed condition (Table 1) might be another reason for the lower F_v/F_m, since a high ratio of chlorophyll content to Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) content induces excess energy, thus increasing photoinhibition (Kumagai et al., 2007).

Although photoinhibition was severer under the rainfed condition than under the flooded condition (Figs. 3 and 4), it tended to decrease slightly in the late period (Figs. 3a and 4a). The high vapor pressure deficit caused by the low precipitation and high solar radiation might decrease stomatal conductance and photosynthesis (Figs. 2d and 2e), thus increasing photoinhibition. The midday F_v/F_m under the rainfed condition increased with increasing DAS (Figs. 3b and 4b), even though the soil water deficiency increased during the same period (Fig. 1a). The positive effect of DAS on F_v/F_m in all 5 cultivars under the rainfed condition was confirmed by the ANCOVA results (Table 3). The increase in the midday F_v/F_m was observed only under the rainfed condition, suggesting that the increased midday F_v/F_m was an effect of long-term soil water deficiency.

We interpreted the DAS parameter as representing the response of midday photoinhibition to the long-term drought in the rainfed field. One cause of this response is thought to be drought acclimation: stress-induced osmotic adjustment mitigates leaf dehydration as drought acclimation, helping to sustain photosynthetic rates and PSII activity (Conroy et al., 1988; Chaves et al., 2009). However, in the late period of the experiment, the midday F_v/F_m under the rainfed condition was as high as that under the flooded condition (Figs. 3 and 4), even though the stomatal conductance and photosynthetic rate had greatly decreased (Figs. 2d and 2e). Furthermore, the values of SPAD under the rainfed condition at approximately 120 DAS were not largely different from that under the flooded condition (Table 1). Accordingly, we suggest that the mitigation of midday photoinhibition was caused not only by mechanisms of dehydration tolerance, such as osmotic adjustment, but also by an acclimation response of electron dissipation mechanisms in the electron transport chain (ETC).

Cultivar (a$_c$)	DAS (a$_{D}$)	S_m (a$_{S}$)		
Flooded (× 10$^{-3}$)	Rainfed (× 10$^{-3}$)	Flooded (× 10$^{-3}$)	Rainfed (× 10$^{-3}$)	
Asu	0.79	0.62	−0.1	1.4
B6144-MR-6-0-0	0.78	0.66	0.1	1.0
Khau tan chiem	0.76	0.58	0.4	2.2
Milyang23	0.84	0.70	−0.4	0.9
Tima	0.80	0.70	−0.1	0.9

The total number of data points is 75 (n = 75) for each field condition. The days after sowing (DAS) and the midday solar radiation (S$_m$) were covariate components. Midday F_v/F_m is expressed by the following equation with parameters a$_c$, a$_D$, and a$_S$, for each cultivar under each condition: Midday F_v/F_m = a$_c$ + a$_D$ DAS + a$_S$ S$_m$.
sink occurred through which excess light energy was mitigated, such that the midday photoinhibition was also mitigated. The activation of electron dissipation mechanisms is affected by the redox status of ETC (Walters, 2005; Oelze et al., 2008). The reductive state of ETC under the flooded condition in the early period, which caused lower Fv/Fm, may have induced the mitigation of photoinhibition in the late period.

In the ANCOVA model for the flooded condition, no interaction was found between the cultivar parameter and DAS or Sm, suggesting that the cultivar parameter represents genotypic differences in physiological traits that can influence Fv/Fm but is not affected by DAS or Sm. In previous studies, the genotypic variation in photoinhibition sensitivity in rice was explained by differences in antioxidant capacity and electron dissipation (Jiao and Ji, 2001; Kumagai et al., 2010). These antioxidant and electron dissipation mechanisms compete with carbon fixation processes for absorbed light energy and can potentially decrease plant growth (Raven, 2011). The cultivar parameter for Khau-tan-chiem exhibited the lowest value among the five cultivars under the flooded condition, but the DAS parameter under the flooded condition was the highest in this cultivar. The adaptive change to the midday Fv/Fm may have contributed to the small differences in shoot biomass between the two field conditions at the heading stage (Table 1).

Khau-tan-chiem also showed a positive value for the DAS parameter under the flooded condition, and an increase in the midday Fv/Fm under this condition may have been caused by the increase in heat dissipation via such a mechanism as non-photochemical quenching. The lower values of Fv/Fm in Khau-tan-chiem at approximately 120 DAS (Fig. 2f) might be the result of the increase in heat dissipation due to the decrease in photosynthetic rate under the flooded condition during the late period. Therefore, regardless of the water condition, photoinhibitory energy dissipation is likely partially replaced by other energy and electron control mechanisms as a response to the long-term condition of photosynthesis reduction. The long-term response of Fv/Fm under the flooded condition may be determined by the drought adaptation capacity of the plant.

Acknowledgements

We sincerely thank Prof. Kawashima of Graduate School of Agriculture, Kyoto University for providing the field meteorological data.

References

Bartoli, C.G., Gomez, F., Gergoff, G., Guiamet, J.J. and Puntarulo, S. 2005. Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. J. Exp. Bot. 56: 1209-1276.

Biehler, K. and Fock, H. 1996. Evidence for the contribution of Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol. 112: 265-272.

Chaves, M.M., Flexas, J. and Pinheiro, C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 105: 551-560.

Chen, Y., Murchie, E.H., Hubbart, S., Horton, P. and Peng, S. 2003. Effects of season-dependent irradiance levels and nitrogen-deficiency on photosynthesis and photoinhibition in field-grown rice (Oryza sativa). Physiol. Plant. 117: 343-351.

Conroy, J.P., Virgona, J.M., Smillie, R.M. and Barlow, E.W. 1988. Influence of drought acclimation and CO2 enrichment on osmotic adjustment and chlorophyll a fluorescence of sunflower during drought. Plant Physiol. 86: 1108-1115.

Golding, A.J. and Johnson, G.N. 2003. Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218: 107-114.

Hikosaka, K., Kato, M.C. and Hirose, T. 2004. Photosynthetic rates and partitioning of absorbed light energy in photoinhibited leaves. Physiol. Plant. 121: 699-708.

Horton, P. and Ruban, A. 2005. Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J. Exp. Bot. 56: 365-373.

Iseki, K., Homma, K., Shiraiwa, T., Jongdee, B. and Mekwatanakarn, P. 2013. Genotypic variation of photosystem II photoinhibition and energy partitioning in relation to photosynthetic adaptability to mild soil water deficiency of rice cultivation in northeast Thailand. Field Crops Res. 144: 154-161.

Jiao, D. and Ji, B. 2001. Photoinhibition in indica and japonica subspecies of rice (Oryza sativa) and their reciprocal F1 hybrids. Aust. J. Plant Physiol. 28: 299-306.

Kato, M.C., Hikosaka, K., Hirotsu, N., Makino, A. and Hirose, T. 2003. The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoactivation in photosystem II. Plant Cell Physiol. 44: 318-325.

Keren, N. and Krieger-Liszkay, A. 2011. Photoinhibition: molecular mechanisms and physiological significance. Physiol. Plant. 142: 1-5.

Kohzuma, K., Cruz, J.A., Akashi, K., Hoshiyasu, S., Nakajima Munekage, Y., Yokota, A. and Kramer, D.M. 2009. The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ. 32: 209-219.

Kumagai, E., Araki, T. and Kubota, F. 2007. Effects of nitrogen supply restriction on gas exchange and photosystem 2 function in flag leaves of a traditional low-yield cultivar and a recently improved high-yield cultivar of rice (Oryza sativa L.). Photosynthetica 45: 489-495.

Kumagai, E., Araki, T. and Kubota, F. 2009. Characteristics of gas exchange and chlorophyll fluorescence during senescence of flag leaf in different rice (Oryza sativa L.) cultivars grown under nitrogen-deficient condition. Plant Prod. Sci. 12: 285-292.

Kumagai, E., Araki, T. and Ueno, O. 2010. Comparison of susceptibility to photoinhibition and energy partitioning of absorbed light in photosystem II in flag leaves of two rice (Oryza sativa L.) cultivars that differ in their responses to nitrogen-deficiency. Plant Prod. Sci. 13: 11-20.

Miyake, C., Amako, K., Shiraishi, N. and Sugimoto, T. 2009.
Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system—relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark. *Plant Cell Physiol.* 50: 730-743.
Murata, N., Takahashi, S., Nishiyama, Y. and Allakhverdiev, S.I. 2007. Photoinhibition of photosystem II under environmental stress. *Biochim. Biophys. Acta* 1767: 414-421.
Murchie, E.H., Chen, Y.-Z., Hubbart, S., Peng, S. and Horton, P. 1999. Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice. *Plant Physiol.* 119: 553-564.
Oelze, M.-L., Kandlbinder, A. and Dietz, K.-J. 2008. Redox regulation and overreduction control in the photosynthesizing cell: complexity in redox regulatory networks. *Biochim. Biophys. Acta* 1780: 1261-1272.
Raven, J. 2011. The cost of photoinhibition. *Physiol. Plant.* 142: 87-104.
Topp, G.C., Davis, J.L. and Annan, A.P. 1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. *Water Resour. Res.* 16: 574-582.
Walters R.G. 2005. Towards an understanding of photosynthetic acclimation. *J. Exp. Bot.* 56: 435-447.
Wang, Q.A., Lu, C.M. and Zhang, Q.D. 2005. Midday photoinhibition of two newly developed super-rice hybrids. *Photosynthetica* 43: 277-281.
Werner, C., Ryel, R.J., Correia, O. and Beyschlag, W. 2001. Effects of photoinhibition on whole-plant carbon gain assessed with a photosynthesis model. *Plant Cell Environ.* 24: 27-40.
Wingler, A., Quick, W.P., Bungard, R.A., Bailey, K.J., Lea, P.J. and Leegood, R.C. 1999. The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. *Plant Cell Physiol.* 42: 362-373.