Synthesis, characterisation and Electrochemical studies of transition metal CO(II) complexes of Mannich bases from newly synthesised Schiff bases ligand

Mahendra Pratap Singh

DOI: https://doi.org/10.22271/allresearch.2020.v6.i11a.7741

Abstract

The present study carried out by the preparation of Mannich base MB\textsubscript{1} and MB\textsubscript{2} ligand by the reduction of newly synthesized Schiff bases from furfuraldehyde with sulphacetamide/sulphanilamide, and their CO(II) metal complexes with preferred metal chloride/metal sulphate salt in ethanol with 2:1 molar ratio. All the complexes are found to be as colored solids. Which are characterized with the help of magnetic moment and electrochemical studies.

Keywords: Mannich bases, Schiff bases, transition metal complexes, electrochemical studies

Introduction

Many structure of hetrocycles having importance in drug design and synthesis is an important role in bioinorganic and medicinal chemistry. Compound containing hetrocyclic structures found to be high degree of binding affinity to biological system[1], and have been reported to consists pronounced pharmaceutical, analytical and industrial uses[2-3]. In past some decades, researchers have interest towards transition metal complexes of hetrocyclic aromatic Schiff bases bearing nitrogen, oxygen and sulphur donar atoms due to their therapeutic importance[4-5]. Metal complexes of amide moiety have been studied extensively recent years due to the selectivity and sensitivity of the Mannich base ligands towards various ions[6-11], and exhibit a variety of biological activities such as antibacterial, antifungal, anti T.B. activity, anti HIV activity, antiviral, antiulcer and antihypertensive[12-18]. The present studies have been completed by the reduction of Schiff base ligands through the reaction with heterocyclic compound like furfuraldehyde and sulphua drugs such as sulphacetamide /sulphanilamide in alcoholic solution.

Experimental

All of the used chemicals were analytical grade (Merch, BDH, S.D. Fine’s and Sisco chemicals). The other chemical and solvent were used after purification by distillation, and metal salts used, were as such. The elemental analysis of carbon hydrogen and nitrogen was done on at R.S.I.C, Chandigarh. Estimation of sulphur in ligand and complexes were determined by standard method[19], and estimation of halogen by volhard’s methods as ionized form as silver chloride[20] gravimetrically. The metal percentage in CO (II) metal complexes were determined by standard method[21-25], magnetic measurements of the prepared complexes were taken at room temperature on EG & G model 155 VSM at RSIC, IIT-madras, infrared spectra of ligand MB\textsubscript{1} and MB\textsubscript{2} and their chloro/sulphato complexes were studied on Perkin Elmer Spectrometer in the FT-IR region using KBr pellets at RSIC, Chandigarh and Alembic Ltd. Vadodara. Electronic spectra were recorded on ELISCO SL 171 Spectrophotometer by dissolving in (EtOH/DMF) at room temperature in, chemistry department, RBS College, Agra. Mass spectra of ligand MB\textsubscript{1} and MB\textsubscript{2} was carried out on MASPEC System (MSW/9629) using 200 °C intel temperature at RSIC, IIT-Madras.
Synthesis of Mannich base C13H14N2O5S (MB1)/C11H12N2O5S (MB2) Ligand
The above ligands were synthesised by refluxing sulphanilamide/sulphadimidine (10mmol, 2.14gms in 25 ml EtOH / 1.72gms in methanol) with furfural (10mmol,0.96 ml in 25 ml EtOH/Methanol respectively) on water bath for 3-4 hours with stirring. The obtained product, cooled at 0 °C and sodium borohydride (10mmol, 0.39 gm) added over a period of 1-2 hours and stirred over a period of two hours, slowly the temperature was raised to room temperature and put it for 14-15 hour for evaporating of the solvent and then recrystallised with ethanol /acetone and dried in an air, deep yellow/reddish yellow crystals of MB1 and MB2 ligand was obtained. Above ligand hae been synthesise on behalf of known methods [26-28]

The analytical and mass spectral data obtained for the ligand MB1/MB2 are representing below.

Analysis calculated for C13H14N2O5S/C11H12N2O5S
C 53.04/52.36, H 4.79/4.79, N 9.51/19.02, S10.89/12.70% Found; C 52.86/52.26, H 4.86/4.68, N9.48/19.13, S 10.96/12.74:Mass (m/z) 304/254, fragmented at m/e 57, 81, 100, 139, 165, 227, 250, 265, 295 and 304 with a higher peak at 193 for MB1, and the fragmented intensities at m/e 53, 65, 76, 96, 108, 130, 140, 156, 172, 174, 211, 224, 236, 252 and 254 with highest peak at 81 for MB2 ligand.

Synthesis of Metal Complexes
The cobalt chloride/cobalt sulphate (5mmol in 25 ml ethanol), was added slowly to a alcoholic solution of ligand MB1/MB2 (10mmol).The resulting mixture was stirred for half an hour and then refluxed for 2-3 hour on a water bath and then cooled the product and standing for evaporation slowly, washed and dried. The different colored crystals of different complexes with different metal salts and ligands in 1:2 metal ligand molar ratio, have been isolated and subjected to electrochemical studies.

Result and Discussion
All the complexes are soluble in ethanol, DMF and DMSO having low melting points. The analytical data reveals 1:2 metal: ligand stereochemistry for all these complexes. The analytical data is given in table-2

Table 1: Electronic Sepraltral studies of Cobalt (II) Complexes

Methods of Calculation	Observed and Calculated Transitions	B	10Dq	β %	ββ%	δV	δV%	v2-v1	v3/v1	Dq/B
Exptl	v1 17200	19800	808	19070	9150	8.93	700	3.82	11.06	
(a)	Fitted	Fitted	951	860	10655	9167	0.89	2650	20.54	
(b)	19850	Fitted	857	9150	0.88	12.0	-1372	10522	2.57	
(c)	6678	Fitted	19800	817200	954000	3.66	14.0			
(d)	8050	17200	19800	808	19070	9150	8.93	700	3.82	11.06
Exptl	17500	19850	859	9320	8.87	12.0	-155	13.23	0.036	
(a)	Fitted	Fitted	948	954	10730	9320	0.87	2681	3.00	
(b)	17068	Fitted	958	986	10780	9363	0.87	2681	3.00	
(c)	8182	Fitted	854	9320	0.87	12.0	-2	0.02	1.09	
(d)	17500	19850	854	9320	0.87	12.0	-2	0.02	1.09	
Exptl	17580	20030	853	9360	0.87	13.0	-155	13.23	0.036	
(a)	Fitted	19875	958	986	10780	9363	0.87	2681	3.00	
(b)	20261	Fitted	864	9363	0.88	12.0	-3	0.77	1.09	
(c)	8217	Fitted	864	9363	0.88	12.0	-3	0.77	1.09	
(d)	17580	20030	864	9363	0.88	12.0	-3	0.77	1.09	
Exptl	17700	19750	780	9400	0.80	20.0	-1240	6.69	12.96	
(a)	Fitted	18510	937	9400	0.96	14.0	1924	14.13	10335	2.40
(b)	20614	Fitted	840	9417	0.96	14.0	1924	14.13	10335	2.40
(c)	7365	Fitted	837	9400	0.96	14.0	1924	14.13	10335	2.40
(d)	17700	19750	780	9400	0.96	14.0	1924	14.13	10335	2.40
Table 2: Analytical estimations and magnetic moment value of the Mannich base complexes										

Metal Complexes	Colour	EFF (B.M.)	Analytical (%) found/Caled
CO (MB1):Cl2	Pinkish Brown	4.5	C% H% O% N% S% Cl% M%
	43.52	3.9	19.74
		7.84	8.88
		9.8	8.3
CO (MB1):SO4	Reddish Black	4.8	42.01
		3.8	25.78
		7.5	12.9
CO (MB2):Cl2	Yellowish Brown	4.75	41.64
		3.8	15.13
		8.83	10.11
CO (MB2):SO4	Reddish Brown	5.1	39.99
		3.71	24.22
		8.54	14.56
		8.8	

1. Magnetic Measurement
The present four CO (II) metal complexes show magnetic moment values in the range 4.5 to 5.1 B.M., Which is higher than the spin only value of 3.89 B.M. due to the orbital contribution. These complexes are expected to have octahedral geometry, can be explained on the basis of octahedral symmetry involving a high degree of orbital
contribution due to the three fold degeneracy of the $^4T_{1g}$ ground state.

2. Electronic Spectral Studies

CO (II) forms a great variety of structural environment, due to this, the electronic structure, thus the spectral and magnetic properties of the ion, are extremely varied. The beautiful pink to red brown color of octahedral coordinated oxygen ligated CO (II), as distinguished from the blue color of tetrahedrally ligated CO (II) is well known to every chemist. In present study, we will going to discuss the electronic spectra of CO (II) complexes of Mannich base ligand MB$_2$/MB$_3$ in detail. The electronic spectra of isolated CO (II) complexes showed the presence of these bands given in table-1. Which may be assigned to the transition $^4T_{1g} \rightarrow ^2T_{2g}$ (F) (v_1), $^4T_{1g} \rightarrow ^2A_{1g}$ (v$_2$) and $^4T_{1g} \rightarrow (P)$ (v$_3$), in order to increasing energy. The increased intensity of these bands indicate some tetragonal distortion and the possession of the bands closely resemble with the spectra of the other distorted octahedral CO (II) complexes [44]. The crystal field splitting energy (10Dq) and Racah interelecronic parameter (B) for the present CO (II) complexes were calculated by using the following equation [29]. The value of transitions v$_1$, v$_2$ and v$_3$ may be obtained by using Konig’s equation [30].

The spectral data and values of various ligand field parameters such as v$_1$, v$_2$, v$_3$, B,C,F,2, 4, 10Dq, f, h, β, β%, v$_3$/v$_1$ and v$_3$/v$_2$ are given in table-3, and significance of these parameters is given in literature [31-34]. The value of above mentioned parameters are in close agreement with the reported value for CO (II) complexes, having distorted octahedral geometry. In present study, we will report the results of the mean and exact spin-pairing energy of the newly prepared four CO (II) complexes with octahedral geometry [35-40] by using following equation for d7 ion.

$$\Pi = 4B + 4C - 60B^2/10Dq + X$$

Where, X = -4.5 B – 5 Dq ± $\frac{1}{2}$ (225 B2 + 100 Dq2 + 180 Dq2.B)/12

In fact, in d7 configuration 4T$_{1g}$ (5$_g$ e2$_g$) mixes with three different 2Eg terms according to this exact spin pairing energies (Π) can be calculated with the help of following equation.

$$\Pi = 4B + 4C$$

$$\Pi / B = 0.3594 \gamma + 0.5051$$

The value of Π and Π /B for the newly prepared CO (II) complexes are given in table-3

3-Infrared Spectral Studies:

Important IR frequencies and their tentative assignamm should be given in table- 4. The, Mannich base ligand MB$_3$ shows the IR spectrum band at 3380 cm$^{-1}$ characteristic of streaching vibration of vN-H of –CH$_2$-NH$_2$ group. These bands have shifted in the spectra of both chloro / sulphato complexes, showing the involvement of nitrogen of this group in complexation. The new bands at 540-541 cm$^{-1}$ are assigned to v (M-N) stretching [41-42] indicating the coordination through nitrogen with CO (II) ion. A stretching band observed at 1268 cm$^{-1}$ due to v(C-O-C) of heterocyclic furan ring in the above ligand and band appeared at 1230-1244 cm$^{-1}$ in both complexes, suggestive of the coordination of oxygen atom of v(C-O-C) with cobalt metal ion. The low frequency bands appeared at 682-681 cm$^{-1}$ due to v (M-O) also suggest [43] the coordination through furyl oxygen. Another band appeared at 1708-1703 cm$^{-1}$ in ligand and also in the complexes at the same position due to vCO-NH-group, indicating the noninvolvement in coordination.

The new band appeared at 310 cm$^{-1}$ and 339 cm$^{-1}$ in complexation due to v(M-Cl) and v(M-S) stretching modes respectively. The appeared band at 1090 cm$^{-1}$ and 627 cm$^{-1}$ in sulphato complex [CO (MB$_2$)$_2$SO$_4$], may be assigned sulphate moeity in complexation. The IR spectra of CO (II) complexes indicate nature through furfuryl oxygen and methylamine nitrogen sites. The IR spectra of ligand MB$_2$ shows the band at 3350 cm$^{-1}$ assigned to the νN-H frequency. This band get shifted to higher frequencies in the IR spectra of complexes thereby, indicating the involvement of nitrogen of –CH$_2$-NH$-$ group in bonding with metal. The strong band appeared at 3269 cm$^{-1}$, may be due to –SO$_2$-N$-$H- group to vN-H. In the present complexes, this band is disappeared, indicating the participation of nitrogen in coordination. The coordination of nitrogen is also confirmed by the presence of a low frequency band at (542-540 cm$^{-1}$) [41-42] assigned to vM-N stretching. The ligand observed a band at 1040 cm$^{-1}$ may be assigned to vC-O-C group of heterocyclic furan ring. On complexation, this band is undisturbed, indicating noninvolvement of oxygen in coordination. Absorption due to the sulphato group in CO (II) complex [CO (MB$_2$)$_2$SO$_4$] observed at 1097 cm$^{-1}$ and 620 cm$^{-1}$ indicating the coordination through sulphate ion. The other IR band in complexes [CO (MB$_2$)$_2$Cl$_2$] and [CO (MB$_2$)$_2$SO$_4$] observed at 320 cm$^{-1}$ and 370 cm$^{-1}$ suggests the vM-Cl and vM-S modes respectively. The above information indicate that the ligand behaves as bidentate with NN sites respectively.

| Table 3: Electronic Spectral Data and Computed Values of Spectral Parameters for CO (II) Complexes |
|---|---|---|---|
S. No.	**Spectral Data and Parameters**	**CO (MB$_2$)$_2$Cl$_2$**	**CO (MB$_2$)$_2$SO$_4$**
1	Observed Spin Allowed Transitions (cm$^{-1}$)	v$_1$ 8050	8180
		v$_2$ 17200	17500
		v$_3$ 19800	19850
2	Racah Parameters from Numerical Fitting (cm$^{-1}$)	B 857	854
		C 1726	1732
		f2 1103.55	1110
3	Slater Condon Parameters (cm$^{-1}$)	f4 49.31	51.2
4	Crystal Field Parameters from Numerical Fitting (cm$^{-1}$)	10D$_q$ 9150	9320
5	Crystal Field and nephelauxetic Parameters for the ligands used	f 1016.66	1035.55
Table 4: Infrared Spectra Data (in cm⁻¹) of Mannich Bases and their CO (II) Metal Complexes

S. N.	Ligand/Complex	ν-CH₂-NH	ν-CO-NH	ν-asymmetric SO₂	ν-symmetric SO₂	ν-CO-C	ν-N-M	ν-M-O	νCl	νM-S	
1	MB₁	3380b	1705w	1334m	-	1150m	1268s	-	-	-	
	CO(MB₁)Cl₂	3392b	1706m	1324m	-	1154s	1230m	541s	682m	310w	
	CO(MB₁)SO₄	3422m	1706s	1323s	-	1153m	1244m	540w	681s	-	339m
2	MB₂	3350b	-	1339w	3269w	1152s	1047m	-	-	-	
	CO(MB₂)Cl₂	3407b	-	1338b	-	1152m	1043m	542s	320m	-	
	CO(MB₂)SO₄	3384b	-	1336b	-	1153m	1040w	540w	-	370w	

References
1. Rajiv D, Suman S, Sonnane SK, Shrivastava SK. Pharmacological heterocyclic Scaffolds: A Review. Advantages in Biological Research 2011;5(3):120-144.
2. Mounika K, Pragathi A, Gyanakumari C. Synthesis, Characterisation and Biological activity of a Sciff base derived from 3-ethoxy salicylaldehyde and 2-amino-benzoic acid and its transition metal complexes, Journal of Scientific Research 2010;2(3):513-524.
3. Neelakanthan MA, Essakiammal M, Mariappa SS, Dharmaraja J, Jayekumar T. Synthesis, Characterisation and biological activities of some Sciff base metal complexes, Indian J Pharm Sci 2010;72(2):216-222.
4. Valverde MG, Torroba T. Sulphur Nitrogen Heterocyclic Molecules 2005;10:318-320.
5. Shridhar SK, Ramesh A. Synthesis and Pharmacological activities of Hydrazones. Sciff and Mannich basee of isatin derivatives. Bio Pharm Bull 2001;24:1149-1152.
6. Yogeshwary SD. Synthesis Pyrazinimide Mannich bases and its Anti-T.B. Properties. Pharm Med. Chem Res Lab, BITS Pilani, 2006.
7. Pandey SN, Shriram D. Synthesis, Antibacterial, Antifungal and Anti-HIV activity of Sciff base and Mannich bases derived from Isatin derivatives, Eur J Pharm Sci 1999;9:25-31.
8. Joshi S, Khosla D. In vitro Study of Some medicinaly Important Mannich bases derived from Antitubercular Agent, Bio-org and Med Chem 2004;12:571-576.
9. Rajesh H, Bahekar. Synthesis and Biological Evaluation of Indomethacine Conjugates with Salicylamide and its Mannich bases, Indian Drugs 1998;35(10):648-651.
10. Sarika A. Mixed Ligand Complexes of Fe (III) Containing Pseudoaldehydes, Nitosyl and Some Mannich bases, Transition Metal Chemistry 2007;32(6):816-821.
11. Raman N, Esthar S, Thangaraja C. J Chem Sci 2004;116(4):209.
12. Chodosh LA, Fire A, Samuels M, Sharp PA, 5, 6-dichloro-1-beta-Dibofuranosyl Benzimidazole Inhibits transcription elongation by RNA polymerase II in-vitro. J Bio Chem 1989;264(4):2250-2257.
13. Welage I, Berardi R. Evaluation of omeperazole, lansoprazole, pantoprazole and rabeprazole in the treatment of acid related diseases, J Am pharm Assoc 2000;41(1):52-62.
14. Billups SJ, Carter BL, Mibfradil. A new class of calcium-channel antagonists. The Annals of Pharmacotherapy 1998;32(6):559-571.
15. Mohamad JA, Ahlam JA, Ahmed JA. Synthesis and Structural studies of new Mannich base ligands and their metal complexes, Transition Metal Chemistry 2008;3(7):925-930.
16. Maurya RC, Mishra DD, Jaiswal SK, Mukherjee S. Synthesis and Characterisation of Some novel cyanonitrosyl complexes of chromium (I) with Mannich bases, aromatic aldehyde oximes and syn-phenyl-2-pyridylketoxime, Transition Metal Chemistry 1992;17(5):381-383.
17. Sathy D, Kumaran JS, Jayachandramani N. Transition Metal Complexes of N-(1-piperidinosalicylic) acetamide and their biological Activity. Research Journal of Pharmaceutical, biological and chemical sciences.2012;3(2):905.
18. Sabastiyan A, Yosuva SM. Synthesis, characterization and antimicrobial activity of 2-(dimethylaminomethyl) isoindoline-1,3-dione and its CO (II) and Ni (II) complexes. Advances in Applied Science Research 2012;3(1):45-50.
19. Tradwell FP. "Analytical Chemistry", John Wiley and Sons Inc, London 1968.
20. Vogel AI. "A Text Book of Quantitative Analysis", 3rd ed. Longmans, London 1961.
21. Weicher FJ. "Organic Analytical Reagents", D. Von Nostrand (New York) 1965.
22. Weicher FJ. "The Analytical Use of EDTA", D. Von Nostrand (New York) 1965.
23. Kalthif JM, Erving PI. "Treatise on Analytical Chemistry", 2nd ed. Interscience, New York, 1963.
24. Wathrich K. Halv Chem Acta 1965;48:779.
25. Flasuke H. Micro Chem Acta. 1954; 5:361.
26. Patel P, Bhattacharya PK. Indian J Chem 1993;32(A):506.
27. Sakurai T, Nakahara A. Inorg Chim Acta 1981;55:157.
28. Rao CP, Shridhara A, Rao PV, Verghese MB, Rissanen K, Kolehmainen E et al. J Chem Soc, Dalton Trans 1998; 23:83.
29. Verma HS, Pal A, Saxena RC, Katiyar AK. J Indian Chem Soc 1983; 60:83.
30. Koning E, Inorg Chem. 1971; 10:2632. J Inorg Nucl Chem 1972; 34:1173.
31. Lever ABP. J Chem Soc 1967:A:2041.
32. Koning E. "Structure and Bonding" 1975; 9:175.
33. Allen GC, Warren KD. "Structure and Bonding" 1971;9:49.

34. Stanley JG, Inorg J. Nucl Chem 1956;2:1

35. Griffith JS, Inorg J. Nucl Chem 1956;2(1):229.

36. Drago RS. "Physical Methods in Chemistry", 2nd ed. Saunders, Philadelphia 1977.

37. Orgel JE. J. Chem Phys 1955;23:1819.

38. Griffith JS. "The theory of Transition Metal Ions", Cambridge Univ. Press 1961.

39. Jorgenson CK. Adv. Chem Phys 1963;5:33.

40. Koning E, Schlafer HL. Z Physik Chem. 1962; 34:355.

41. Nakemato S. "Infrared Spectra of Inorganic and Coordination Compounds", Wiley Interscience, New York 1970.

42. Ferraro JR. "Low Frequency Vibrations of Inorganic and Coordination Compounds", Plenum, New York 1971.

43. Nakamoto K. "Infrared Spectra of Inorganic and Coordination Compounds," Wiley Interscience, New York 1975, 2.

44. EI-Sonavati AZ, EI-Bindary AA, Mabrouk, EI-Sayed M. Trans Met Chem 1992;17(1):66.