External Validation of the Surgical Outcome Risk Tool (Sort) In 3305 Abdominal Surgery Patients In The Independent Sector In The United Kingdom

Kathryn Oakland (kathryn.oakland@hcahealthcare.co.uk)
HCA Healthcare UK

Daria Cosentino
HCA Healthcare UK

Timothy Cross
HCA Healthcare UK

Cliff Bucknall
HCA Healthcare UK

Sina Dorudi
HCA Healthcare UK

David Walker
University College London

Research

Keywords: Pre-assessment, surgery, risk assessment, outcomes

DOI: https://doi.org/10.21203/rs.3.rs-61050/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Assessing risk of post-surgical mortality is a key component of pre-surgical planning. The Surgical Outcome Risk Tool (SORT) uses pre-operative variables to predict 30-day mortality. The aim of this study was to externally validate SORT in patients undergoing major abdominal surgery.

Methods

Data were collected from patients treated in five Independent hospitals in the United Kingdom. Individualised SORT scores were calculated and area under the receiver operating characteristic (AUROC) and precision-recall curves (PRC) plus 95% confidence intervals (CI) were drawn to test the ability of SORT to identify in-hospital death. Outcomes of patients with a SORT predicted risk of mortality of $\geq 5\%$ (high risk) were compared to those with a predicted risk of $< 5\%$ (standard risk).

Results

The study population comprised 3305 patients, mean age 51 years, 2783 (84.2%) underwent elective surgery most frequently involving the colon (24.6%), or liver, pancreas or gallbladder (18.2%). Overall 1551 (46.9%) patients were admitted to ICU and 29 (0.88%) died. The AUROC of SORT for discriminating patients at risk of death was 0.899 (95% CI 0.849 to 0.949) and the PRC 0.247. In total 72 (2.18%) patients were stratified as high risk. There were more unplanned ICU admissions and deaths in this group compared to the standard risk group (25.0% and 3.3%, versus 3.1% and 0.5%, respectively).

Conclusion

We externally validated SORT in a large population of abdominal surgery patients. SORT performed well in patients with lower risk profiles, but some patients that were predicted to be standard risk did experience adverse outcomes.

Introduction

In 2010 the National Confidential Enquiry into Patient Outcome and Death (NCEPOD) conducted a national review of care provided to high risk surgical patients. A key finding was the need for a UK-wide system that could reliably identify patients at high risk of mortality and morbidity. In 2018 the Royal College of Surgeons of England (RCS) formalised this, recommending that all adult patients admitted under the care of a general surgeon should have their risk of morbidity and mortality assessed and recorded. The RCS also recommended that high-risk surgical patients, defined as those with a predicted mortality of $\geq 5\%$, should receive timely surgery in the presence of a consultant surgeon, and should
immediately be admitted to critical care post-operatively. Prediction tools have been developed to quantify risk of death or morbidity, but have either not been designed to generate individualised risk profiles or require variables that are only available intra-operatively, limiting their use in the pre-operative setting.

Recently the Surgical Outcome Risk Tool (SORT) was developed with the aim of predicting 30-day mortality following surgery but as yet has not been fully externally validated. It comprises procedure code, operation severity, American Society of Anaesthesiologists’ physical status classification (ASA), clinical urgency, surgical site (thoracic, gastrointestinal or vascular surgery), cancer (active malignancy within the last 5 years) and age, all of which are available pre-operatively.

The aim of this study was to externally validate SORT in a large population of general surgical patients admitted to and treated in five independent hospitals in the United Kingdom (UK).

Methods

This study was conducted across five independent hospitals, operated by HCA Healthcare UK in London. All participating hospitals had a 24/7 level 3 intensive care unit (ICU), and on site access to interventional radiology and emergency theatres.

Patient Population

We studied all insured adult patients who underwent elective and emergency major abdominal surgery in a HCA facility between 1st January 2013 and 30th September 2018. Major abdominal surgery was defined using the Clinical Coding and Schedule Development Group (CCSD) schedule of procedures, comprising 125 individual procedures within the following groups of codes: stomach, duodenum, small intestine, large intestine, rectum, repair of a major vessel, oesophagus, other abdominal organs and peritoneum (Appendix 1). If a patient had multiple procedures performed synchronously (with separate procedure codes) the most complex procedure code was used to calculate SORT. Procedure codes that were associated with a discrete hospital admission, were considered as separate cases.

Patients who were transferred to other hospitals (National Health Service, NHS, or other independent hospitals beyond HCA) were excluded from the analyses as it was not possible to collect data on their clinical outcomes after transfer. It was also not possible to determine why these patients were transferred to the NHS. Routine administrative data that are collected prospectively on patient demographics, surgical procedure, ASA and patient outcomes were used for this study. These data are collected automatically or by clinical or administrative staff and are entered directly into hospitals’ electronic health records. Post-operative ICU admission defined as level 2 or 3 care and was classified as planned or unplanned. These data were entered into the electronic health record by clinical staff at the point of admission to ICU. However for some patients it was not clear from the data whether the reason for ICU admission was due to clinical need or lack of ward capacity. These cases were handled as missing data.
in the analysis. Post-surgery ICU admission was limited to ICU admissions that occurred within seven
days of surgery. In cases of multiple ITU admissions during the same hospital episode of care, only the
first admission after surgery was considered.

The study proposal was reviewed by the hospitals’ Research Review Committee who deemed that ethical
approval was not required as no new data were collected, and the study involved no patient intervention.
The study was performed and reported in accordance with the TRIPOD statement.4

Applying SORT

SORT was calculated for each patient. SORT classifies the ‘procedure urgency’ variable using the
NCEPOD classification of interventions; immediate (within minutes of decision to operate), urgent (within
hours), expedited (within days) or elective (routine admission).5 However, the hospitals’ electronic
database defined this variable as only ‘elective’ or ‘unplanned’. Due to the nature of surgical cases in the
Independent sector, true ‘immediate’ cases would be extremely rare. It was not possible differentiate
‘urgent’ from ‘expedited’ so these variables were grouped together.

Study outcomes

The primary outcome of interest was all-cause in-hospital mortality. We used in-hospital death as
opposed to 30-day mortality as it was not possible to collect outcome data after hospital discharge. The
RCS defines ‘high-risk’ patients as those with a risk of death of ≥ 5%.2 The applicability of SORT
generated mortality predictions was tested by using each patients predicted risk to stratify need for ICU
admission. SORT generated predicted probabilities were used to classify patients as high or standard risk;
the high risk group was defined as patients with a SORT generated risk of 30 day mortality of ≥ 5% and
the standard risk group defined as those with a SORT generated risk of 30 day mortality of < 5%.

Statistical analysis

Continuous data are reported as mean and standard deviation (SD) or median and interquartile range
(IQR). An area under the receiver operator characteristic curve (AUROC) with 95% confidence intervals (CI)
was drawn to assess the ability of SORT to predict in-hospital mortality. As the dataset was imbalanced
in terms of a small number of in-hospital deaths, a precision-recall curve (PRC) was also drawn and the
area under the PRC (AUPRC) calculated. A PRC reduces the impact of a large population of ‘true negative’
cases in a dataset with few events of interest.6 The literature on calculating CI for a AUPRC are
controversial7 therefore 95% CI are not reported for this metric.

Results

In total 3357 patients were identified. After excluding patients who were transferred to the NHS (n = 43,
1.3%) or to other independent hospitals (n = 9, 0.3%) the study population included 3305 patients. The
mean age of patients was 51 years, the most frequent ASA grading was two (47.8%) and the majority of
cases were elective (84.2%). The most common sites of surgery were the colon (812/3305, 24.6%), liver,
pancreas and gallbladder (600/3305, 18.2%) and the rectum (376/3305, 11.4%, Table 1). In total there were 29 in-hospital deaths (0.88%). In comparison to patients who survived to discharge, patients who died were older, more likely to have cancer and other medical co-morbidities, had higher ASA scores and were more likely to be unplanned admissions to hospital.
	All patients	In-patient death	Survived to discharge
	N = 3305	N = 29	N = 3276
	N (%)	N (%)	N (%)
Mean age (SD)	51.09 (15.88)	66.48 (9.38)	50.95 (15.86)
Male Gender (M:F)	1592 (48.0)	18 (62.0)	1574 (48.0)
ASA			
1	1199 (36.3)	2 (6.9)	1197 (36.5)
2	1581 (47.8)	5 (17.2)	1576 (48.1)
3	477 (14.4)	13 (44.8)	464 (14.2)
≥ 4	48 (1.5)	9 (31.0)	39 (1.2)
Elective admission	2783 (84.2)	16 (55.2)	2767 (84.5)
Type of surgery			
Oesophagus	244 (7.38)	1 (3.5)	243 (7.42)
Stomach	310 (9.38)	0 (0.0)	310 (9.46)
Duodenum	34 (1.03)	0 (0.0)	34 (1.04)
Small intestine	189 (5.72)	2 (6.9)	187 (5.71)
Large intestine	812 (24.6)	4 (13.8)	808 (24.7)
Rectum	376 (11.4)	1 (3.45)	375 (11.4)
HPB	740 (22.4)	11 (37.9)	729 (22.3)
Other*			
Severity of procedure			
Intermediate	286 (8.65)	0 (0.0)	286 (8.73)
Major	1374 (41.6)	12 (41.4)	1362 (41.6)
Complex major/complex	1645 (49.8)	17 (58.6)	1628 (49.7)
Comorbidity	0.692 (1)	3.59 (1)	0.667 (1)
Mean Charlson Index (IQR)	330 (10.0)	15 (52.0)	315 (9.6)
Cancer (yes/no)			

*Other: laparotomy, retroperitoneal surgery, adhesiolysis, aortic surgery, adrenalectomy
The clinical performance of SORT

The observed and predicted mortality rates are shown in Table 2. For quantiles 1 to 4 the mean predicted mortality was < 0.2%, and there were no observed deaths in these groups. In quantiles 5 to 9, the mean predicted probability of death ranged from 0.21–4.19% (Fig. 1). Overall SORT under-predicted the number of deaths. Across the entire cohort of patients 29 patients died. SORT predicted 25 of these. On an individual case level, the SORT predicted risk of in-hospital mortality ranged from 0.13–43.81%.

Table 2

Quantile	N patients	Mean SORT predicted probability of in-hospital mortality (%)	Observed in-hospital deaths	Predicted in-hospital deaths N
1	368	0.129%	0 (0%)	0.47
2	367	0.129%	0 (0%)	0.47
3	367	0.156%	0 (0%)	0.57
4	367	0.188%	0 (0%)	0.69
5	368	0.213%	1 (0.03%)	0.78
6	367	0.370%	3 (0.09%)	1.36
7	367	0.617%	1 (0.03%)	2.27
8	367	0.829%	4 (0.12%)	3.04
9	367	4.193%	20 (0.61%)	15.39
Total	3305	0.758%	29 (0.88%)	25.1

The AUROC c-statistic for SORT was 0.899 (95% CI 0.849 to 0.949, Fig. 2) suggesting good discriminative ability. However, the area under the precision-recall curve for SORT was 0.247 suggesting that the large proportion of true negatives may have artificially improved the ROC curve.

The use of SORT to identify high risk patients

Overall 72/3305 (2.2%) patients had an individual predicted risk of post-operative in-hospital mortality of ≥ 5% and were therefore classified as high risk (Table 3). The remaining patients had SORT predicted mortalities of < 5% and were classified as standard risk. Patients in the high risk group were older, with higher Charlson Co-morbidity Indices and were more likely to have had emergency surgery in comparison to the standard risk group.
Table 3
Outcomes of patients stratified as ‘high risk’ by the Royal College of Surgeons recommendations

Predicted risk of 30 day mortality ≥ 5%	Predicted risk of 30 day mortality < 5%
Total n = 72	Total n = 3233
N (%)	N (%)

	Predicted risk of 30 day mortality ≥ 5%	Predicted risk of 30 day mortality < 5%
Mean age (SD)	69.72 (15.83)	50.67 (15.63)
Mean Charlson Index (IQR)	2.24 (2)	0.658 (1)
Elective surgery	11 (15.3%)	2772 (85.7%)
Type of surgery:		
Oesophagus	2 (2.78%)	308 (9.53%)
Stomach	2 (2.78%)	32 (1.0%)
Duodenum	4 (5.56%)	185 (5.72%)
Small intestine	19 (26.4%)	793 (24.5%)
Large intestine	8 (11.1%)	368 (11.4%)
Rectum	9 (12.5%)	591 (18.3%)
HPB	28 (38.9%)*	712 (22.0%)
Other		
ICU admission:		
Planned	36 (52.9%)	1180 (39.1%)
Unplanned	17 (25.0%)	101 (3.3%)
Missing	4	213

Median length of hospital stay (IQR) 18.34 (19.4) 5.27 (7.09)

In-hospital death 13 (18.1%) 16 (0.50%)

In-hospital death within 30 days 13 (18.1%) 8 (0.25%)

*‘Other’ surgery with a predicted risk of mortality of ≥ 5%: omentectomy, adhesiolysis, laparotomy (including for post-operative complications), excision of retroperitoneal tumour

In the high risk group 57/72 (79%) patients were admitted to ICU post-operatively. In the standard risk group 1494/3233 (46%) patients were admitted to ICU. There were more unplanned ICU admissions in the high risk group (17/68, 25.0%, missing data in four admissions) but there were also 101/3020 (3.34%,
missing data in 213 admissions) unplanned ICU admission in the standard risk group. Within the high risk group there were an additional 15 patients who were managed without post-operative ICU admission.

In the standard risk group there were 16 deaths, although in comparison to patients stratified as high risk, significantly fewer patients died (16/3233, 0.49% versus 13/72, 18%, respectively). The median length of stay of high-risk patients was 18 days, in comparison to 5 days for the predicted standard-risk group.

Discussion

In this large external validation study examining the performance of SORT in patients undergoing abdominal surgery, we found that SORT accurately predicted risk of post-operative death. It performed particularly well in low risk patients, but under-predicted the risk of death in patients who were stratified as the highest risk. When SORT was used to identify patients at risk of adverse outcome, only 2.2% of the study population were identified as being high risk. In this high risk group 25% patients had unplanned ICU admissions. These may have been avoidable if SORT was used to risk assess patients pre-operatively.

SORT was originally developed in 11,219 non-cardiac surgical patients\(^3\) identified in the NCEPOD enquiry titled ‘Knowing the Risk’.\(^1\) Its authors successfully validated it in a separate population of 5569 non-cardiac patients, with an AUROC of 0.91.\(^3\) There were 87 deaths by 30 days in this validation cohort, but SORT predicted only 73.\(^3\) The present study shows a similar trend; there were 29 deaths, but SORT predicted 25.

Several further external validation studies have assessed the ability of SORT to predict 30-day mortality, although none in a mixed population of abdominal surgery patients. Wong et al calculated SORT for 475 hepatectomies, reporting an AUROC of 0.82, however SORT over-predicted the number of deaths, particularly in patients with the lowest risk profiles.\(^8\) Oliver et al assessed SORT in a mixed population of 1936 elective orthopaedic and general surgery procedures reporting an AUROC of 0.85.\(^9\) Like the present study, both of these studies reported low mortality rates (0.3% and 1.7%, respectively) and therefore contained a high proportion of true negatives, which may have led to an over-estimation of the performance of SORT. Marufu et al assessed the performance of SORT in a population of hip fracture patients, who had a higher rate of death (5%). In this more balanced population SORT did not perform as effectively, with an AUROC of only 0.70.\(^10\)

The predictive ability of risk stratification tools is frequently assessed using AUROCs and the c-statistic. However in populations where the outcome of interest is infrequent, such as the low mortality rate seen in the present study, AUROCs may over-estimate the performance of the model. This is due to impact of a large proportion of patients without the event (true negatives) in the calculation of specificity. In imbalanced populations the more appropriate analysis may be the PRC, where true negatives do not feature in the calculation of precision (positive predicted value) or recall (sensitivity).\(^6\) The present study is the first to assess the performance of SORT using PRC as well as a ROC curve, finding that the
performance of SORT was significantly poorer. This was notable in patients with the highest risk profiles, where SORT under-quantified their risk. In lower risk patients SORT performed well though. Arguably risk prediction tools in these patients are more useful than in patients with higher risk profiles, as the latter as will have risk factors for poor outcome, such as advanced age, complex co-morbidity or emergency surgery which are readily identified by clinicians.

Several other tools have been designed to predict post-operative morbidity and mortality, such as ASA and the Portsmouth Physiological and Operative Severity Score for Mortality and Morbidity (P-POSSUM). In an external validation study of 5569 patients, SORT was superior to ASA at predicting mortality, although both performed well (AUROCs of 0.91 and 0.87, respectively). ASA is a population based tool defining physical status not operative risk, and although widely used, misclassifications are common particularly amongst patients with multiple co-morbidities. The performance of SORT is yet to be compared to that of P-POSSUM. A limitation of P-POSSUM is that it requires laboratory data, a chest radiograph and electrocardiogram, making it more difficult to calculate than SORT.

Once risk prediction is established as being accurate, the next question is regarding the discrete level of risk that qualifies a patient as 'high risk'. The RCS recommend using a predicted risk of death of $\geq 5\%$ to identify high risk patients. This represents a departure from previous guidance that categorised patients as high risk if they had a predicted risk of death of $\geq 10\%$. The present study is the first to assess ICU utilisation following the new recommendation of a threshold of 5%, and the first to use SORT to stratify patients. We demonstrate that lowering the threshold to 5% does not generate large volumes of new post-operative ICU admissions; only 2.2% of the study population met the criteria for direct ICU admission, and most of these had already been recognised as requiring post-operative ICU care. This group of additional ICU admissions represents only 0.45% of the study population. Of note, 25% of the high-risk group had unplanned ICU admissions. These patients represent a sub-group of high risk patients that could have been identified pre-operatively by SORT and electively admitted to ICU. However, there were also patients in the high risk group who were managed without ICU admission, and conversely patients in the standard risk group that had unplanned ICU admissions or died in hospital. In the standard risk group there were 16 deaths, suggesting that using a predicted mortality of 5% may yet be too high to safely identify all patients at risk of death.

Historically post-operative ICU admission has been thought to be of benefit as it permits rapid recognition and treatment of life-threatening post-operative complications. A study of 572,598 general surgical procedures found that a patient who receives post-operative ward-based care but then requires unplanned ICU admission has twice the risk of 30 day mortality. In elective surgery a recent study of 44,814 patients found no association between direct admission to ICU following surgery and in-hospital mortality however. These findings may be explained by advances in surgical and anaesthetic techniques that have reduced the physiological disturbance caused by surgery and therefore reduced the impact of ICU-based care. In the present study half of the patients in the standard risk group were admitted to ICU post-operatively. Given the acuity of the surgical procedures this is not an unexpected
finding, but in the future a proportion of these patients may be eligible to receive critical care interventions, such as telemetry or vasopressors, outside of the traditional ICU.

Within the standard risk group 3.3% of patients had an unplanned ICU admission. These patients would not have been identified if risk stratification was restricted to SORT and the 5% mortality threshold. It is therefore important to highlight that risk tools serve to aid, as opposed to replace clinical judgement. None of the previously described scores have been directly compared to clinical opinion, but when assessing pre-operative risk, guidelines recommend that risk tools are used in conjunction with surgical judgement. In keeping with this, the American College of Surgeons National Surgical Quality Improvement Programme risk tool has an in-built option to allow surgeons to modify risk calculations if they deem necessary.

Mortality is not the only outcome of importance to clinicians and patients. Prediction of complications and morbidity that allows accurate discussion of risk during surgical consent and pre-operative optimisation would also be of value and is a key area for further research. The creators of SORT have developed the SORT morbidity model, which they have validated in a mixed population of 527 elective surgery patients. It is yet to be further externally validated.

This study uses data collected from patients treated in five independent hospitals in the UK, a sector of healthcare that is traditionally thought to deliver simple treatments to stable patients. When comparing the demographics of this population to that of a contemporaneous NHS population of 16,788 surgical patients there are important similarities. High ASA classifications were common (ASA 3 and 4 were found in 19.9% and 2.7%, respectively in the NHS study, and 14.4% and 1.5%, respectively, in the present study) and the majority of patients were undergoing major or complex-major operations (32.7% and 34.2% patients, respectively in the NHS study and 41.6% and 49.8%, respectively, in the present study). The mortality rate was also similar (1.8% in the NHS study and 0.88% in the present study) and comparable to reported rates of 1.4 to 1.9% in other large NHS-based population studies of surgical patients.

There are some important limitations to the present study. SORT was initially developed to predict 30-day mortality, but the present study was limited to in-hospital death as we were unable to collect data on patient outcomes after discharge. We also unable to capture the outcomes of patients who were transferred to the NHS or other healthcare providers. However, these cases represented only 1.6% of the study population. In some cases we were unable to determine the rationale for post-operative ICU admission so these cases were excluded from this sub-analysis. In the remaining cases we assumed that ICU admissions categorised as unplanned were categorised using clinical need. However a proportion of these may represent elective admissions where the operating surgeon has failed to book a bed, and were not truly unplanned admissions. It was not possible to sub-classify procedure urgency beyond elective or unplanned, so we were unable to identify which patients were truly ‘expedited’ or ‘emergency’ procedures. This may mean that true ‘emergency procedures’ are under-represented in the study population, leading to under-estimation of ICU capacity needed to implement the 5% risk threshold. It may also mean the
performance of SORT described in the present study is not as good as could be if all variations of procedure urgency were included.

In summary this large study externally validates SORT in a population of patients undergoing major abdominal surgery. SORT performed particularly well in patients with low risk profiles, but under-predicted the number of deaths in patients with the highest risk. When SORT was used to identify patients with a predicted post-surgery mortality of $\geq 5\%$ and therefore requiring direct ICU admission some patients who were stratified as standard risk ultimately required unplanned ICU admission. However, SORT did identify high risk patients who had unplanned ICU admissions, demonstrating the value of using SORT in conjunction with clinical judgement.

Declarations

Ethics approval and consent to participate

The study proposal was reviewed by the hospitals’ Research Review Committee who deemed that ethical approval was not required as no new data were collected, and the study involved no patient intervention.

Consent for publication

Not applicable

Availability of data and materials

The datasets generated and/or analysed during the current study are not publicly available due as they contain commercially sensitive information but are available from the corresponding author on reasonable request.

Competing interests

KO, DC, TC and CB are employees of HCA Healthcare UK. SD and DW receive fees from HCA Healthcare UK for advisory services.

Funding

None

Funding sources:

None

Authors' contributions
KO and DW developed the concept, TC and DC collected and analysed the data, KO wrote the paper, CB, SD and DW critically revised the manuscript.

References

1. National Confidential Enquiry into Patient Outcomes and Death. Knowing the Risk: a review of the peri-operative care of surgical patients. 2011. https://www.ncepod.org.uk/2011poc.html.

2. Royal College of Surgeons of England
 The high-risk general surgical patient: raising the standard
 Royal College of Surgeons of England. The high-risk general surgical patient: raising the standard. 2018. https://www.surgeons.org/media/25768745/rcs-report-the-high-risk-general-surgical-patient-raising-the-standard-december-2018.pdf.

3. Protopapa KL, Simpson JC, Smith NC, et al. Development and validation of the Surgical Outcome Risk Tool (SORT). Br J Surg. 2014;101(13):1774–83.

4. Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ (Clinical research ed. 2015;350:g7594.

5. National Confidential Enquiry into Patient Outcomes and Death. The NCEPOD Classification of Intervention. 2015. https://www.ncepod.org.uk/classification.html.

6. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS one. 2015;10(3):e0118432.

7. Boyd K, EKH, Page CD. Area under the Precision-Recall Curve: Point Estimates and Confidence Intervals.. Machine Learning and Knowledge Discovery in Databases ECML PKDD 2013 Lecture Notes in Computer Science 2013;8190:Springer, Berlin, Heidelberg.

8. Wong GTC, Ang WC, Wong TCL, et al. Surgical Outcome Risk Tool (SORT) validation in hepatectomy. Anaesthesia. 2017;72(10):1287–89.

9. Oliver CMMS. SORTED? External Validation of the Surgical Outcome Risk Tool (SORT) in a Mixed Cohort of 1936 Patients Undergoing Elective Surgical Procedures. Anaesthesiology Annual Meeting 2015.

10. Marufu TC, White SM, Griffiths R, et al. Prediction of 30-day mortality after hip fracture surgery by the Nottingham Hip Fracture Score and the Surgical Outcome Risk Tool. Anaesthesia. 2016;71(5):515–21.

11. American Society of Anaesthesiologists. ASA Physical Status Classification System. 2014. https://www.asahq.org/standards-and-guidelines/asa-physical-status-classification-system.

12. Prytherch DR, Whiteley MS, Higgins B, et al. POSSUM and Portsmouth POSSUM for predicting mortality. Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity. Br J Surg. 1998;85(9):1217–20.
13. Helkin A, Jain SV, Gruessner A, et al. Impact of ASA score misclassification on NSQIP predicted mortality: a retrospective analysis. Perioperative medicine (London England). 2017;6:23.

14. Royal College of Surgeons of England
 The Higher Risk General Surgical Patient: Towards Improved Care for a Forgotten Group
 Royal College of Surgeons of England. The Higher Risk General Surgical Patient: Towards Improved Care for a Forgotten Group. 2011. https://www.rcseng.ac.uk/library-and-publications/rcs-publications/docs/the-higher-risk-general-surgical-patient/.

15. Gillies MA, Harrison EM, Pearse RM, et al. Intensive care utilization and outcomes after high-risk surgery in Scotland: a population-based cohort study. Br J Anaesth. 2017;118(1):123–31.

16. Kahan BC, Koulenti D, Arvaniti K, et al. Critical care admission following elective surgery was not associated with survival benefit: prospective analysis of data from 27 countries. Intensive care medicine. 2017;43(7):971–79.

17. Wong DJN, Popham S, Wilson AM, et al. Postoperative critical care and high-acuity care provision in the United Kingdom, Australia, and New Zealand. Br J Anaesth. 2019;122(4):460–69.

18. Bilimoria KY, Liu Y, Paruch JL, et al. Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons. J Am Coll Surg. 2013;217(5):833–42.e1-3.

19. Wong DJN, Oliver CM, Moonesinghe SR. Predicting postoperative morbidity in adult elective surgical patients using the Surgical Outcome Risk Tool (SORT). Br J Anaesth. 2017;119(1):95–105.

20. Abbott TEF, Fowler AJ, Dobbs TD, et al. Frequency of surgical treatment and related hospital procedures in the UK: a national ecological study using hospital episode statistics. Br J Anaesth. 2017;119(2):249–57.

21. Pearse RM, Harrison DA, James P, et al. Identification and characterisation of the high-risk surgical population in the United Kingdom. Critical care (London, England) 2006;10(3):R81.

Figures
Observed versus predicted 30-day mortality at varying levels of risk

Figure 1
Figure 2

predictive ability of SORT to discriminate patients at risk of in-hospital mortality, 2a: AUROC for SORT for the prediction of in-hospital mortality, 2b: Precision-Recall curve for SORT for the prediction of in-hospital mortality.