STABILITY OF TRAVELLING WAVES IN
STOCHASTIC NAGUMO EQUATIONS

WILHELM STANNAT

Abstract. Stability of travelling waves for the Nagumo equation on the whole line is proven using a new approach via functional inequalities and an implicitly defined phase adaption. The approach can be carried over to obtain the stability of travelling wave solutions in the case of the stochastic Nagumo equation as well. The noise term considered is of multiplicative type with trace-class covariance.

1. Introduction

The purpose of this paper is to introduce a new approach to the study of (local) stability of travelling waves and pulses in excitable media that is in particular well-suited for stochastic perturbations. We are interested in the classical equations modelling the propagation of the action potential travelling along the axon of a neuron. As a starting point in this paper we consider the Nagumo equation on the real line (cf. [11]) perturbed by stochastic forcing terms. We make particular use of the explicit knowledge of the travelling waves in this case. However, our approach will be robust w.r.t. small perturbations in the coefficients.

Since the spectral considerations, employed in the classical stability analysis of nerve axon equations (cf. [4, 6, 7] and the recent monograph [3]) are not easy to carry over to the stochastic case, we look for a path-wise stability analysis in the sense of the classical Lyapunov approach to the stability of dynamical systems. A first novelty of the paper is the introduction of an additional dynamics of gradient type that adapts a given solution of the stochastic Nagumo equation to the correct phase of the travelling wave. This explicitly given phase adaption, which is in addition easy to implement numerically, is the analogue of the phase conditions introduced as algebraic constraints in the classical stability analysis (see in particular [6]). As a second novelty in this paper, we replace the usual spectral considerations, applied to the Schrödinger operator, obtained as linearization of the underlying dynamics along a given travelling wave, by functional inequalities of Poincare type. Our
hope is that the latter method will be generalizable also to general systems of reaction diffusion type because it only uses partial information of the travelling wave solutions. Certainly, it is well suited for stochastic perturbations as demonstrated in this paper. An additional advantage is that, in contrast to the usual spectral considerations, our approach allows explicit quantitative estimates, both, in the deterministic and in the stochastic case and sensitivity considerations w.r.t. the coefficients.

The paper is organized as follows: In Section 2 we first present our new approach in the case of the deterministic Nagumo equation, to demonstrate the main arguments in a somewhat easier setting. The analogue to the usual spectral considerations of the Schrödinger operator associated with the linearization along a travelling wave is contained in Theorem 2.3. Our result obtained on the spectral gap is optimal (see Proposition 4.3). Theorem 2.6 then contains our main result on the local stability of travelling wave solutions. In Section 3 we consider the Nagumo equation perturbed with multiplicative noise. Combining our stability analysis of Section 2 with a careful analysis of the stochastic perturbation, we obtain in Theorem 3.1 the stochastic analogue of our local stability result in the deterministic case. Our identification of the implicitly defined phase allows to rigorously set up a stochastic differential equation for the speed of the wave front and thus gives rise to the correct decomposition of the stochastic dynamics into the travelling wave and random fluctuations. Work in progress to generalize the approach to the stochastic neural fields equations considered in [1].

In addition to the new approach to the stability analysis via functional inequalities we also would like to mention that the type of stochastic Nagumo equations considered in this paper are also new in comparison with the models of spatially extended neurons subject to noise studied numerically and analytically by Tuckwell and Jost in [13, 14] and also by Lord and Thümmler in [10]. In order to ensure existence and uniqueness of a solution to our stochastic partial differential equation we use the variational approach to stochastic evolution equations as presented in monograph [12] with recent extensions presented in [9]. In particular, we make use of the Itô formula, that can be obtained for the Hilbert space norm of the variational solution. The implied semimartingale decomposition can then be used to apply the one-dimensional (time-dependent) Itô formula to any smooth transformation of the Hilbert norm.

2. The deterministic case

Consider the Nagumo equation

\[\partial_t v(t, x) = \nu \partial_{xx}^2 v(t, x) + bf(v(t, x)) \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R} \]
on the real line, with ν, $b > 0$ and
\[f(v) = v(1 - v)(v - a) \quad a \in (0, 1) . \]
The equation is obtained from the well-known Fitz-Hugh Nagumo system
\begin{align*}
\partial_t v(t, x) &= \nu \partial^2_{xx} v(t, x) + bf(v(t, x)) - w(t, x) + I \\
\partial_t w(t, x) &= \varepsilon (v(t, x) - \gamma w(t, x)) \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R}
\end{align*}
by letting $\varepsilon \downarrow 0$, i.e., setting the recovery variable w constant, and further equal to the input current I. It is well-known that for parameters in the exitable region, the Fitz-Hugh Nagumo system admits a travelling pulse solution modelling signal propagation along the axon of a single neuron. The analogue for the Nagumo equation is a travelling wave front $v(t, x) = v^{TW}(x + ct)$, where
\begin{equation}
(3) \quad v^{TW}(x) = \left(1 + \exp \left(-\sqrt{\frac{b}{2\nu}}x\right)\right)^{-1}
\end{equation}
moving to $-\infty$ at constant speed $c = \sqrt{2\nu b \left(\frac{1}{2} - a\right)}$ (cf. [2]). We are interested in the local stability of this wave front in the function space $H = L^2(\mathbb{R})$.

Before we can state a precise definition of stability, we need to introduce first our concept of a solution that we are working with. To simplify notations in the following we write $v^{TW}(t) = v^{TW}(\cdot + ct)$. Next (formally) decompose the function $v(t, \cdot) = u(t, \cdot) + v^{TW}(t)$ w.r.t. the travelling wave. The resulting equation for u is then given by
\begin{equation}
(4) \quad \partial_t u(t, x) = \nu \partial^2_{xx} u(t, x) + b \left(f(u(t, x) + v^{TW}(t)) - f(v^{TW}(t))\right)
\end{equation}
$(t, x) \in \mathbb{R}_+ \times \mathbb{R}$.

For the precise definition of the Laplacian ∂^2_{xx} we need to introduce the Sobolev space $V = H^{1,2}(\mathbb{R})$ of order 1, equipped with the usual norm $\|u\|^2_V := \int (\partial_x u)^2 \, dx + \|u\|_{H^{1,2}}^2$. Clearly, $V \hookrightarrow H$ densely and continuously. Identifying H with its dual H' we obtain the embeddings $V \hookrightarrow H \equiv H' \hookrightarrow V'$. Recall that w.r.t. this embedding the dualization $\langle f, u \rangle_V$ between $f \in V'$ and $u \in V$ reduces to $\langle f, u \rangle_V = \langle f, v \rangle_H = \int f u \, dx$, i.e. the scalar product in H in the case where $f \in H$. The Laplacian ∂^2_{xx} then induces a linear continuous mapping $\Delta : V \to V'$, since $\langle \Delta u, v \rangle_V = -\int \partial_x u \partial_x v \, dx \leq \|u\|_V \|v\|_V$.

The nonlinear term
\begin{equation}
(5) \quad G(t, u) := f(u(t, x) + v^{TW}(t)) - f(v^{TW}(t))
\end{equation}
in equation (1) can be realized as a continuous mapping
\[G(\cdot, \cdot) : [0, \infty] \times V \to V' \]
that is Lipschitz w.r.t. the second variable on bounded subsets of V with Lipschitz constant independent of t. Indeed, due to the elementary estimate $\|u\|_\infty \leq \|u\|_V$, the Taylor representation
\[
G(t, u) = f(u + v^{TW}(t)) - f(v^{TW}(t)) = f'(v^{TW}(t))u + \frac{1}{2}f''(v^{TW}(t))u^2 + \frac{1}{6}f'''(v^{TW}(t))u^3
\]
and uniform bounds on $\|f^{(k)}(v^{TW}(t))\|_\infty$, $k = 1, 2, 3$, we have for $w \in V$ that
\[
\langle G(t, u), w \rangle \leq \int |f(u + v^{TW}(t)) - f(v^{TW}(t))| |w| \, dx
\leq c_1 \|u\|_V (1 + \|u\|^2_H) \|w\|_V,
\]

hence
\[
\|G(t, u)\|_V \leq c_1 \|u\|_V (1 + \|u\|^2_H)
\]
and
\[
\langle G(t, u_1) - G(t, u_2), w \rangle \leq \int |f(u_1 + v^{TW}(t)) - f(u_2 + v^{TW}(t))| |w| \, dx
\leq c_2 (1 + \|u_1\|^2_V + \|u_2\|^2_V) \|u_1 - u_2\|_H \|w\|_V
\]
so that
\[
\|G(t, u_1) - G(t, u_2)\|_V \leq c_2 (1 + \|u_1\|^2_V + \|u_2\|^2_V) \|u_1 - u_2\|_H
\]
for finite constants c_1 and c_2 depending on $f_{[0,1]}$ only.

Note also that the sum $\nu \Delta u + bG(t, u)$ satisfies the (global) monotonicity condition
\[
\langle \nu \Delta u_1 + bG(t, u_1) - \nu \Delta u_2 - bG(t, u_2), u_1 - u_2 \rangle \leq b\eta \|u_1 - u_2\|^2_H
\]
where $\eta = \sup_{\xi \in \mathbb{R}} f'(\xi) = \frac{1-\nu+\nu^2}{3}$, since $(f(s) - f(t))(s-t) \leq \eta(s-t)^2$ for all $s,t \in \mathbb{R}$, and the coercivity condition
\[
\langle \nu \Delta u + bG(t, u), u \rangle \leq -\nu \|u\|^2_V + (b\eta + \nu)\|u\|^2_H
\]
since $f(s)s = (f(s) - f(0))(s-0) \leq \eta s^2$ for all $s \in \mathbb{R}$.

It is now standard (see, e.g. Theorem 1.1 in [1]) to deduce for all $u_0 \in H$ and all finite times T existence and uniqueness of a variational solution $u \in L^\infty(0, T; H) \cap L^2([0, T]; V)$ satisfying the integral equation
\[
u u(t) = u_0 + \int_0^t \nu \Delta u(s, \cdot) + bG(u(s) + v^{TW}(s)) - b f(v^{TW}(s)) \, ds
\]
associated with [4]. Clearly, we may consider this solution u as a solution on the whole time axes $t \geq 0.$
The integral \(\int_0^t \nu \Delta u(s) \, ds \) appearing in the integral equation (10) is well-defined as a Bochner integral in \(L^2(\mathbb{R}; V') \), since due to (6)

\[
\int_0^t \| \Delta u(s) \|^2_V + \| f(u(s) + v^{TW}(s)) - f(v^{TW}(s)) \|^2_V \, ds \\
\leq c \int_0^t \| u(s) \|^2_V \, ds \left(1 + \sup_{t \in [0, T]} \| u(t) \|^4_H \right) < \infty
\]

for all \(t \geq 0 \). In particular, the mapping \(t \mapsto u(t), [0, \infty) \rightarrow V' \), is differentiable with differential

\[
\frac{du(t)}{dt} = \nu \Delta u(t) + bG(t, u(t)) - f(v^{TW}(t)) \in V'
\]

and therefore also locally Lipschitz.

Definition 2.1. The travelling wave solution \(v^{TW} \) is called locally asymptotically stable in \(H \) if there exists \(\delta > 0 \) such that for initial condition \(v_0 \) with \(v_0 - v^{TW} \in H \) and \(\| v_0 - v^{TW} \|_H \leq \delta \) the (unique variational) solution \(u(t, x) \) to (4) satisfies

\[
\lim_{t \to \infty} \| v(t, \cdot) - v^{TW}(t + t_0) \|_H = 0
\]

for some (phase) \(t_0 \in \mathbb{R} \).

The stability of travelling wave fronts for the Nagumo equation has been studied in many papers as a prototype example for metastability. The mathematical analysis of stability properties of \(v^{TW} \) faces two major difficulties. The first one is the obvious fact that the reaction term \(f(u) \) in the equation (1) is not strictly dissipative in the sense that

\[
\langle \nu \partial_{xx} v_1 + b f(v_1) - \nu \partial_{xx} v_2 - b f(v_2), v_1 - v_2 \rangle \leq -\kappa_* \| v_1 - v_2 \|_H^2
\]

for some \(\kappa_* > 0 \), or equivalently, the associated potential \(F(v) = \int_{v_0}^v f(t) \, dt \) is not uniformly strictly convex, but a double-well potential. This remains true if we fix \(v_2 \) to be equal to the travelling wave \(v^{TW} \) or any of its spatial translates \(v^{TW}(\cdot - y) \). A first naive calculation, exploiting the coercivity condition (9), only yields the following a priori estimate.

Lemma 2.2. Let \(u \in L^\infty([0, T]; H) \cap L^2([0, T]; V) \) be the unique solution of (4). Then

\[
\| u(t) \|_H^2 \leq e^{2b\eta t} \| u_0 \|_H^2 \quad \forall t \in [0, T].
\]

Proof. The coercivity condition (9) implies that

\[
\frac{d}{dt} \| u(t) \|_H^2 = 2 \langle \nu \Delta u(t) + bG(t, u(t)), u(t) \rangle \\
\leq 2b\eta \| u(t) \|_H^2 \quad t \in [0, T].
\]
Integrating up the last inequality w.r.t. t yields the desired inequality. □

However, restricting u to the orthogonal component of the derivative $\partial_x v^{TW}$ of the travelling wave solution, i.e. $\int u\partial_x v^{TW} \, dx = 0$, we have the following local dissipativity estimate according to the following

Theorem 2.3. Let

$$\kappa^* = \frac{2}{5} \nu b (a \wedge (1 - a)) \quad \text{and} \quad C^* = 6(\nu + b).$$

Then

$$\langle \nu \partial_s^2 u + b(f'(v^{TW})u, u) \leq -\kappa^* \|u\|_V^2 + C^* \langle u, \partial_x v^{TW} \rangle^2$$

for all $u \in V$.

The proof of the Theorem is postponed to Section 4.

The second difficulty in the mathematical analysis of the stability properties of v^{TW} is to identify the correct phase-shift of $v^{TW}(t + t_0)$ to which to compare the given solution v of (1). To this end we introduce an auxiliary ordinary differential equation of gradient descent type associated with the minimization of the distance between v and the set $\mathcal{N} = \{v^{TW}(\cdot + C) \mid C \in \mathbb{R}\}$ of all phase-shifted travelling waves. More precisely, given a solution v to the Nagumo equation (1) with initial condition v_0 satisfying $v_0 - v^{TW} \in H^{1,2}(\mathbb{R})$, and given any relaxation rate $m > 0$ (that will be specified later) we consider the ordinary differential equation

\begin{equation}
\dot{C}(t) = \frac{-m}{\partial_x v^{TW}(v_0 - v^{TW}(\cdot + C(t) + ct) - v(t, \cdot))_H}
\end{equation}

$C(0) = 0$.

The next proposition states that the ordinary differential equation is well-posed.

Proposition 2.4. Let $v = u + v^{TW}(t)$ be a solution to (1) with $u \in L^\infty([0, T]; H) \cap L^2([0, T]; V)$. Then

$B(t, C) = \langle \partial_x v^{TW}(\cdot + C + ct), v^{TW}(\cdot + C + ct) - v(t, \cdot) \rangle_H$

is continuous in $(t, C) \in [0, T] \times \mathbb{R}$, and Lipschitz continuous w.r.t. C with Lipschitz constant independent of t.

Proof. Using the representation

$B(t, C) = \langle \partial_x v^{TW}(\cdot + C + ct), v^{TW}(\cdot + C + ct) - v^{TW}(t) \rangle_H + \langle \partial_x v^{TW}(\cdot + C + ct), v^{TW}(\cdot + ct) - v(t, \cdot) \rangle_H$

the continuity of B follows from the continuity of $(t, C) \mapsto \partial_x v^{TW}(\cdot + C + ct)$ as a mapping with values in V, the continuity of $(t, C) \mapsto v^{TW}(\cdot + C + ct) - v^{TW}(t)$ as a mapping with values in V' and the
(Lipschitz) continuity of \(t \mapsto v(t, \cdot) - v^{TW}(t) \) as a mapping with values in \(V' \).

For the proof of the Lipschitz property w.r.t. \(C \) note that
\[
B(t, C_1) - B(t, C_2)
= \langle \partial_{x}v^{TW}(\cdot + C_1 + ct) - \partial_{x}v^{TW}(\cdot + C_2 + ct), v^{TW}(\cdot + ct) - v(t, \cdot) \rangle_H
+ \langle \partial_{x}v^{TW}(\cdot + C_1 + ct), v^{TW}(\cdot + C_1 + ct) - v^{TW}(\cdot + ct) \rangle_H
- \langle \partial_{x}v^{TW}(\cdot + C_2 + ct), v^{TW}(\cdot + C_2 + ct) - v^{TW}(\cdot + ct) \rangle_H
= I + II + III, \text{ say.}
\]

We next assume w.l.o.g. \(C_1 \leq C_2 \). According to the explicit representation (3) it follows that
\[
|v^{TW}(x + C_1 + ct) - v^{TW}(x + C_2 + ct)|
= \sqrt{\frac{b}{2\nu}} \int_{C_1}^{C_2} \exp(-\sqrt{\frac{b}{2\nu}}(x + \xi + ct)) \frac{d\xi}{(1 + \exp(-\sqrt{\frac{b}{2\nu}}(x + \xi + ct)))^2}
= \sqrt{\frac{b}{2\nu}} \int_{C_1}^{C_2} \exp(-\sqrt{\frac{b}{2\nu}}(x + \xi + ct))v^{TW}(x + \xi + ct)^2 d\xi,
\]
so that we can further estimate
\[
|II + III| = \left| \langle \partial_{x}v^{TW}(\cdot + ct), v^{TW}(\cdot + ct) - v^{TW}(\cdot - C_1 + ct) \rangle_H \right|
- \left| \langle \partial_{x}v^{TW}(\cdot + ct), v^{TW}(\cdot + ct) - v^{TW}(\cdot - C_2 + ct) \rangle_H \right|
= \left| \langle \partial_{x}v^{TW}(\cdot + ct), v^{TW}(\cdot - C_1 + ct) - v^{TW}(\cdot - C_2 + ct) \rangle_H \right|
\leq \| \partial_{x}v^{TW}(\cdot + ct) \|_H
\cdot \sqrt{\frac{b}{2\nu}} \int_{C_1}^{C_2} \| \exp(-\sqrt{\frac{b}{2\nu}}(\cdot + \xi + ct))v^{TW}(\cdot + \xi + ct)^2 \|_H d\xi
\leq \text{const} \cdot |C_1 - C_2|.
\]

Similarly, using
\[
|\partial_{xx}^{2}v^{TW}(x)| \leq 3\sqrt{\frac{b}{2\nu}} |\partial_{x}v^{TW}(x)|
\]
\[
|I| \leq \int_{C_1}^{C_2} \int_{\mathbb{R}} |\partial_{xx}^{2}v^{TW}(x + \xi + ct) u(t, x)| dx d\xi
\leq 3\sqrt{\frac{b}{2\nu}} \int_{C_1}^{C_2} \| \partial_{x}v^{TW}(\cdot + \xi + ct) \|_H u(t) \|_H d\xi
\leq 3\sqrt{\frac{b}{2\nu}} |C_1 - C_2| \sup_{t \in [0,T]} \| u(t) \|_H.
\]
Inserting (13) and (14) into (12) yields the desired assertion. □

According to the last Proposition the function C defined by (11) is well-defined. As already indicated, C will adapt to the correct phase of the v if we choose $m \geq C_*$ (cf. Theorem 2.3) and our aim is to prove in the following that the difference

$$(15) \quad \tilde{u}(t) := u(t) + v^{TW}(t) - v^{TW}(\cdot + C(t) + ct) = v(t) - v^{TW}(\cdot + C(t) + ct)$$

converges to zero as $t \to \infty$ if the initial condition $u_0 = v_0 - v^{TW}$ is sufficiently small in the H-norm. In the next Proposition we first identify the resulting evolution equation for \tilde{u}.

Proposition 2.5. Let $u = v - v^{TW}(t) \in L^\infty([0, T]; H) \cap L^2([0, T]; V)$ be a solution of (11) and let \tilde{u} be defined by (15). Then $\tilde{u} \in L^\infty([0, T]; H) \cap L^2([0, T]; V)$ again and \tilde{u} satisfies the evolution equation

$$(16) \quad \frac{d}{dt}(\tilde{u}) = \nu \Delta \tilde{u}(t) + bG(t, \tilde{u}(t)) - \tilde{C}(t) \partial_x v^{TW}(\cdot + C(t) + ct)$$

$$= \nu \Delta \tilde{u}(t) + bG(t, \tilde{u}(t)) - m(\partial_x v^{TW}(\cdot + C(t) + ct), \tilde{u}(t)) \partial_x v^{TW}(\cdot + C(t) + ct)$$

with

$$\tilde{G}(t, u) = f(u + v^{TW}(\cdot + C(t) + ct)) - f(v^{TW}(\cdot + C(t) + ct)).$$

In particular,

$$\frac{1}{2} \frac{d}{dt} \| \tilde{u}(t) \|_H^2 = -\nu \| \partial_x u(t) \|_H^2 + b(\tilde{G}(t, \tilde{u}(t)), \tilde{u}(t))$$

$$- m(\partial_x v^{TW}(\cdot + C(t) + ct), \tilde{u}(t))^2.$$

The proof of the Proposition is an immediate consequence of the properties of v^{TW} and the equations (11) and (11).

As usual we will now consider the linearization of the mapping $\tilde{G}(t, u)$ around zero. To simplify notations, let $\tilde{v}^{TW}(t) := v^{TW}(\cdot + C(t) + ct)$. Then we can write

$$(17) \quad \tilde{G}(t, u) = f'(\tilde{v}^{TW}(t))u + \tilde{R}(t, u)$$

where

$$\tilde{R}(t, u) = f(u + \tilde{v}^{TW}(t)) - f(\tilde{v}^{TW}) - f'(\tilde{v}^{TW}(t))u$$

$$= \frac{1}{2} f^{(2)}(\tilde{v}^{TW}(t))u^2 + \frac{1}{6} f^{(3)}(\tilde{v}^{TW}(t))u^3$$

satisfies the estimates

$$(18) \quad \langle \tilde{R}(t, u), u \rangle \leq (4 + a) \| u \|_H^2 \| u \|_V \leq (4 + a) \| u \|_H \| u \|_V^2$$

and

$$(19) \quad \| \tilde{R}(t, u) \|_V \leq (4 + a) \| u \|_H^2 (1 + \| u \|_V)$$
2.1. Main result in the deterministic case.

Theorem 2.6. Recall the definition of κ_s and C_s in Theorem 2.3. If the initial condition $v_0 = u_0 + v^{TW}$ is close to v^{TW} in the sense that

$$\|u_0\|_H < \delta \frac{\kappa_s}{b(4 + a)}$$

for some $\delta < 1$ and $v(t) = u(t) + v^{TW}(t)$, where $u(t)$ is the unique solution of (11), then

$$\|v(t) - v^{TW}(\cdot + C(t) + ct)\|_H \leq e^{-(1-\delta)\kappa_s t}\|v_0 - v^{TW}\|_H.$$

Here, $C(t)$ is the solution of (11) with $m \geq C_s$.

Proof. Let $\tilde{u}(t) := v(t) - \tilde{v}^{TW}(t)$ be as in (15). Then Proposition 2.5 and (18) imply that

$$\frac{1}{2} \frac{d}{dt}\|\tilde{u}(t)\|_H^2 = \langle \nu \Delta \tilde{u}(t) + b f'(\tilde{v}^{TW}(t))\tilde{u}(t), \tilde{u}(t) \rangle + b(\tilde{R}(t, \tilde{u}(t)), \tilde{u}(t)) - m \left((\partial_x \tilde{v}^{TW}(t), \tilde{u}(t)) \right)^2$$

$$\leq \langle \nu \Delta \tilde{u}(t) + b f'(\tilde{v}^{TW}(t))\tilde{u}(t), \tilde{u}(t) \rangle + b(4 + a)\|\tilde{u}(t)\|_H\|\tilde{u}(t)\|_V^2 - m \left((\partial_x \tilde{v}^{TW}(t), \tilde{u}(t)) \right)^2.$$

Using translation invariance of $\nu \Delta$ and $\int (\partial_x u)^2 \, dx$, Theorem 2.3 yields the estimate

$$\langle \nu \Delta \tilde{u}(t) + b f'(\tilde{v}^{TW}(t))\tilde{u}(t), \tilde{u}(t) \rangle$$

$$\leq -\kappa_s\|\tilde{u}(t)\|_V^2 + C_s \left(\int \tilde{u}(t)\partial_x \tilde{v}^{TW} \, dx \right)^2.$$ \hfill (21)

Inserting (21) into (20) yields that

$$\frac{1}{2} \frac{d}{dt}\|\tilde{u}(t)\|_H^2 \leq -\kappa_s\|\tilde{u}(t)\|_V^2 + b(4 + a)\|\tilde{u}(t)\|_H\|\tilde{u}(t)\|_V^2.$$

In the next step we define the stopping time

$$T := \inf \left\{ t \geq 0 \mid \|\tilde{u}(t)\|_H \geq \delta \frac{\kappa_s}{b(4 + a)} \right\}$$

with the usual convention $\inf \emptyset = \infty$. Continuity of $t \mapsto \|\tilde{u}(t)\|_H$ implies that $T > 0$ since $\|u_0\|_H < \delta \frac{\kappa_s}{b(4 + a)}$. For $t < T$ note that

$$\frac{1}{2} \frac{d}{dt}\|\tilde{u}(t)\|_H^2 \leq -(1-\delta)\kappa_s\|\tilde{u}(t)\|_V^2 \leq -(1-\delta)\kappa_s\|\tilde{u}(t)\|_H^2$$

Similar to the classical stability analysis of the Nagumo equation we now use the information on the spectrum of the Schrödinger operator $\nu \Delta u + b f'(v^{TW}) u$ contained in Theorem 2.3 with the above localization to obtain the first local stability result.
which implies that
\[\| \tilde{u}(t) \|_H^2 \leq e^{-2(1-\delta)\kappa_\ast t} \| u_0 \|_H^2 \]
for \(t < T \). Suppose now that \(T < \infty \). Then continuity of \(t \mapsto \| \tilde{u}(t) \|_H \) implies on the one hand that \(\| \tilde{u}(T) \|_H = \delta \kappa_\ast \) and on the other hand, using the last inequality,
\[\| \tilde{u}(T) \|_H = \lim_{t \uparrow T} \| \tilde{u}(t) \|_H \leq e^{-(1-\delta)\kappa_\ast T} \| u_0 \|_H < \delta \kappa_\ast \]
which is a contradiction. Consequently, \(T = \infty \) and thus
\[\| \tilde{u}(t) \|_H \leq e^{-(1-\delta)\kappa_\ast t} \| u_0 \|_H \quad \forall t \geq 0 \]
which implies the assertion. \(\square \)

3. Stochastic stability

We now turn to the stochastic Nagumo equation
\[dv(t) = \left[\nu \partial_x^2 v(t) + bf(v(t)) \right] dt + \sigma(v(t)) dW^Q(t) \]
where \(\sigma : \mathbb{R} \to \mathbb{R} \) and \(W^Q = (W^Q(t))_{t \geq 0} \) is a \(Q \)-Wiener process on \(H \) defined on some underlying filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}(t))_{t \geq 0}, P)\). We make the following two assumptions:
\[\sigma \text{ is Lipschitz continuous and } \sigma(0) = \sigma(1) = 0 . \]
Denote with \(\text{Lip}_\sigma \) its Lipschitz constant. As the covariance operator \(Q \) is of trace class, positive semi-definite and symmetric, it has a positive semi-definite square root \(\sqrt{Q} \) of Hilbert-Schmidt type. If we denote the representing integral kernel with \(k_{\sqrt{Q}}(x, y) \in L^2(\mathbb{R}^2) \) we assume that
\[M_{\sqrt{Q}} := \sup_{x \in \mathbb{R}} \int k_{\sqrt{Q}}(x, y)^2 dy < \infty . \]
The theory of Wiener processes on Hilbert spaces and associated stochastic evolution equations can be found in the monograph \[12\].

As in the deterministic case we will give the equation a rigorous meaning by decomposing \(v(t) = u(t) + v^{TW}(t) \) w.r.t. the (deterministic) travelling wave \[3\]. The stochastic evolution equation for \(u \) is then given by
\[du(t) = \left[\nu \Delta u(t) + bG(t, u(t)) \right] dt + \Sigma(t, u(t)) dW(t) \]
where the nonlinear term \(G \) is as in \[5\],
\[\Sigma(t, u) h := \sigma \left(u + v^{TW}(t) \right) \sqrt{Q} h , \quad u, h \in H , \]
is a continuous mapping
\[\Sigma(\cdot, \cdot) : [0, \infty) \times H \to L_2(H) \]
(where \(L_2(H) \) is the space of Hilbert-Schmidt operators on \(H \)) and \(W = (W(t))_{t \geq 0} \) now denotes a cylindrical Wiener process on \(H \). Note
that the two conditions (23) and (24) now imply, as we show below, that

\[
\|\Sigma(t, u_1) - \Sigma(t, u_2)\|^2_{L_2(H)} \leq \text{Lip}_\sigma^2 M_{\sqrt{Q}} \|u_1 - u_2\|^2_H
\]

and

\[
\|\Sigma(t, u)\|^2_{L_2(H)} \leq 2 \text{Lip}_\sigma^2 M_{\sqrt{Q}} (\|u\|^2_H + \|v^{TW} \wedge (1 - v^{TW})\|^2_H).
\]

Indeed, note that the assumption on \(\sqrt{Q}\) implies for any complete orthonormal system \((e_n)_{n \geq 1}\) of \(H\) that

\[
\|\Sigma(t, u_1) - \Sigma(t, u_2)\|^2_{L_2(H)} = \sum_{n=1}^{\infty} \int \left((\sigma(u_1 + v^{TW}(t)) - \sigma(u_2 + v^{TW}(t))) \sqrt{Q} e_n \right)^2 \, dx
\]

\[
\leq \left(\sup_x \sum_{n=1}^{\infty} \sqrt{Q} e_n(x)^2 \right) \int (\sigma(u_1 + v^{TW}(t)) - \sigma(u_2 + v^{TW}(t)))^2 \, dx
\]

\[
\leq M_{\sqrt{Q}} \text{Lip}_\sigma^2 \|u_1 - u_2\|^2_H
\]

hence the Lipschitz continuity of \(\Sigma\) in the Hilbert-Schmidt norm (27) follows. Similarly, using the pointwise inequality

\[
|\sigma(u(x) + v^{TW}(t, x))| \leq \text{Lip}_\sigma (|u(x) + v^{TW}(t, x)| 1_{v^{TW}(t, x) \leq \frac{1}{2}} + |1 - (u(x) + v^{TW}(t, x))| 1_{v^{TW}(t, x) > \frac{1}{2}})
\]

\[
\leq \text{Lip}_\sigma (|u(x)| + |v^{TW}(t, x)| \wedge |1 - v^{TW}(t, x)|)
\]

we obtain that

\[
\|\Sigma(t, u)\|^2_{L_2(H)} = \sum_{n=1}^{\infty} \int \left(\sigma(u + v^{TW}(t)) \sqrt{Q} e_n \right)^2 \, dx
\]

\[
\leq \left(\sup_x \sum_{n=1}^{\infty} \sqrt{Q} e_n(x)^2 \right) \int \sigma(u + v^{TW}(t))^2 \, dx
\]

\[
\leq 2 M_{\sqrt{Q}} \text{Lip}_\sigma^2 (\|u\|^2_H + \|v^{TW}(t) \wedge (1 - v^{TW}(t))\|^2_H)
\]

\[
= 2 M_{\sqrt{Q}} \text{Lip}_\sigma^2 (\|u\|^2_H + \|v^{TW} \wedge (1 - v^{TW})\|^2_H)
\]

hence (28) follows.

We now consider the equation (25) w.r.t. the same triple \(V \hookrightarrow H \equiv H' \hookrightarrow V'\) as in Section 2. Due to the properties (9), (7), (8) and (11), we can deduce from Theorem 1.1. in [9] for all finite \(T\) and all (deterministic) initial conditions \(u_0 \in H\) the existence and uniqueness of a solution \((u(t))_{t \in [0, T]}\) of (25) satisfying the moment estimate

\[
E \left(\sup_{t \in [0, T]} \|u(t)\|^2_H + \int_0^T \|u(t)\|^2_V \, dt \right) < \infty
\]
which implies in particular that \(u \in L^\infty([0, T]; H) \cap L^2([0, T]; V) \) \(\text{P.a.s.} \). As a consequence we can apply Proposition 2.4 to a typical trajectory \(u(\cdot)(\omega) \) to obtain a unique solution \(C(\cdot)(\omega) \) of equation (11). It is also clear that the resulting stochastic process \((C(t))_{t \geq 0} \) is \((\mathcal{F}_t)_{t \geq 0} \)-adapted, since \((u(t))_{t \geq 0} \) is. We will assume as in the deterministic case that the relaxation rate \(m \) is sufficiently large, i.e., \(m > C_* \).

Similar to the deterministic case we now define the stochastic process
\[
\tilde{u}(t) = u(t) + v^{TW}(t) - v^{TW}(\cdot + C(t) + ct) = v(t) - \tilde{v}^{TW}(t)
\]
which is \((\mathcal{F}_t)_{t \geq 0} \)-adapted too and satisfies the stochastic evolution equation
\[
d\tilde{u}(t) = \left[\nu \Delta \tilde{u}(t) + b\tilde{G}(t, \tilde{u}(t)) - \dot{\tilde{C}}(t) \partial_x \tilde{v}^{TW}(t) \right] dt + \tilde{\Sigma}(t, \tilde{u}(t)) \, dW(t)
\]
where
\[
\tilde{G}(t, u) = f(u + \tilde{v}^{TW}(t)) - f(\tilde{v}^{TW}(t)), \tilde{\Sigma}(t, u) = \Sigma(t, u + \tilde{v}^{TW}(t))
\]
and the moment estimates
\[
E \left(\sup_{t \in [0, T]} \| \tilde{u}(t) \|_H^2 + \int_0^T \| \tilde{u}(t) \|_V^2 \, dt \right) < \infty.
\]

Due to [12], Theorem 4.2.5, we have the Ito-formula
\[
\| \tilde{u} \|_H^2(t) = \| \tilde{u}(0) \|_H^2 + \int_0^t 2(\nu \Delta \tilde{u}(s) + \tilde{G}(s, \tilde{u}(s)) - \dot{\tilde{C}}(s) \partial_x \tilde{v}^{TW}(s), \tilde{u}(s)) + \| \tilde{\Sigma}(s, \tilde{u}(s)) \|_{L^2(H)}^2 \, ds + \tilde{M}_t
\]
with
\[
\tilde{M}_t = 2 \int_0^t \langle \tilde{u}(s), \tilde{\Sigma}(s, \tilde{u}(s)) \rangle \, dW(s).
\]

It follows from the above representation that \(\| \tilde{u}(t) \|_H^2 \) is a (scalar-valued) continuous local semimartingale, in particular we have also the (one-dimensional) time-dependent Ito-formula
\[
\varphi(t, \| \tilde{u}(t) \|_H^2) = \int_0^t \partial_t \varphi(s, \| \tilde{u}(s) \|_H^2) + 2\partial_x \varphi(s, \| \tilde{u}(s) \|_H^2) \langle \nu \Delta \tilde{u}(s) + b\tilde{G}(s, \tilde{u}(s)) - \dot{\tilde{C}}(s) \partial_x \tilde{v}^{TW}(s), \tilde{u}(s) \rangle + \partial_x \varphi(s, \| \tilde{u}(s) \|_H^2) \| \tilde{\Sigma}(s, \tilde{u}(s)) \|_{L^2(H)}^2 ds + \int_0^t \partial_x \varphi(s, \| \tilde{u}(s) \|_H^2) \, d\tilde{M}_s
\]
for any \(\varphi \in C^{1,2}([0, T] \times \mathbb{R}_+) \). Here, \(\tilde{\Sigma}^*(s, u) \) denotes the adjoint operator of \(\Sigma(s, u) \).
Theorem 3.1. Recall the definition of κ_s and C_\ast in Theorem 2.8 and assume that $M_{\sqrt{\sigma}} \operatorname{Lip}_\sigma^2 \leq \frac{\kappa_s}{2}$. Let $v_0 = u_0 + v^{TW}$. Let $v(t) = u(t) + v^{TW}(t)$, where $u(t)$ is the unique solution of the stochastic evolution equation (31) and $\tilde{u}(t) = u(t) + v^{TW}(t) - \tilde{v}^{TW}(t)$. Let

$$T := \inf \{ t \geq 0 \mid \| \tilde{u}(t) \|_H > c_s \}, \quad c_s = \frac{\kappa_s}{2b(4 + a)},$$

with the usual convention $\inf \emptyset = \infty$. Then

$$P(T < \infty) \leq \frac{1}{c_s^2} \left(\| \tilde{u}(0) \|_H^2 + \frac{4M_{\sqrt{\sigma}} \operatorname{Lip}_\sigma^2}{\kappa_s} \| v^{TW} \wedge (1 - v^{TW}) \|_H^2 \right)$$

Proof. Similar to the proof of Theorem 2.6 we have the following inequality

$$\langle \nu \Delta \tilde{u}(t) + b \tilde{G}(t, \tilde{u}(t)) - \tilde{C}(t) \partial_x \tilde{v}^{TW}(t), \tilde{u}(t) \rangle \leq -\kappa_s \| \tilde{u}(t) \|_V^2 + b(4 + a) \| \tilde{u}(t) \|_H \| \tilde{u}(t) \|_V^2.$$

In particular,

$$\langle \nu \Delta \tilde{u}(t) + b \tilde{G}(t, \tilde{u}(t)) - \tilde{C}(t) \partial_x \tilde{v}^{TW}(t), \tilde{u}(t) \rangle \leq -\frac{\kappa_s}{2} \| \tilde{u}(t) \|_V^2$$

for $t \leq T$, where T is as in (31). Since also

$$\| \tilde{\Sigma}(\tilde{u}(t)) \|_{L_2(H)}^2 \leq 2M_{\sqrt{\sigma}} \operatorname{Lip}_\sigma^2 \left(\| \tilde{u}(t) \|_H^2 + \| v^{TW} \wedge (1 - v^{TW}) \|_H^2 \right) \leq \frac{\kappa_s}{2} \| \tilde{u}(t) \|_H^2 + 2M_{\sqrt{\sigma}} \operatorname{Lip}_\sigma^2 \| v^{TW} \wedge (1 - v^{TW}) \|_H^2,$$

it follows that

$$2\langle \nu \Delta \tilde{u}(t) + b \tilde{G}(t, \tilde{u}(t)) - \tilde{C}(t) \partial_x \tilde{v}^{TW}(t), \tilde{u}(t) \rangle + \| \tilde{\Sigma}(t, \tilde{u}(t)) \|_{L_2(H)}^2 \leq -\frac{\kappa_s}{2} \| \tilde{u}(t) \|_V^2 + 2M_{\sqrt{\sigma}} \operatorname{Lip}_\sigma^2 \| v^{TW} \wedge (1 - v^{TW}) \|_H^2.$$

Applying Ito’s formula (30) to $e^{\frac{\nu}{2} t} x$, (32) implies for $t < T$ that

$$e^{\frac{\nu}{2} t} \| \tilde{u}(t) \|_H^2 \leq \| \tilde{u}(0) \|_H^2 + \frac{4M_{\sqrt{\sigma}} \operatorname{Lip}_\sigma^2}{\kappa_s} \left(e^{\frac{\nu}{2} t} - 1 \right) \| v^{TW} \wedge (1 - v^{TW}) \|_H^2 + \int_0^t e^{\frac{\nu}{2} s} d\tilde{M}_s.$$

Taking expectations we obtain

$$E \left(\| \tilde{u}(t \wedge T) \|_H^2 \right) \leq \| \tilde{u}(0) \|_H^2 + \frac{4M_{\sqrt{\sigma}} \operatorname{Lip}_\sigma^2}{\kappa_s} \| v^{TW} \wedge (1 - v^{TW}) \|_H^2$$

and thus in the limit $t \uparrow \infty$

$$c_s^2 P(T < \infty) = E \left(\| \tilde{u}(T) \|_{L_2(H)}^2 \right) \leq \lim_{t \uparrow \infty} E \left(\| \tilde{u}(t \wedge T) \|_H^2 \right) \leq \| \tilde{u}(0) \|_H^2 + \frac{4M_{\sqrt{\sigma}} \operatorname{Lip}_\sigma^2}{\kappa_s} \| v^{TW} \wedge (1 - v^{TW}) \|_H^2,$$

which implies the assertion. \qed
Remark 3.2. The theorem establishes a global bound on the error between the solution v of the stochastic Nagumo equation (22) and the phase-shifted travelling wave $v^{TW}(\cdot + ct + C(t))$ on the set $T = \infty$. The probability that T is infinite depends on two parameters, one is the initial error $\|\tilde{u}(0)\| = \|v - v^{TW}\|$ and the other component depends on the covariance operator of the noise term. In particular, the smaller the noise amplitude in the sense that Lip_x and/or $M_{\sqrt{Q}}$ are small, the smaller the probability for T being finite. In this sense the stochastic process $C(t) + ct$ gives the correct speed of the wave front and we will use the associated random ordinary differential equation in future work to study rigorously its statistical properties.

4. Proof of Theorem 2.3

The proof of Theorem 2.3 requires a number of preliminary results. To simplify notations in the following we simply write v instead of v^{TW} in the whole section. Let $w(x) = v_x = kv(1 - v)(x) = k\frac{e^{-kx} - 1 - e^{-kx}}{1 + e^{-kx}}$ with $k = \sqrt{\frac{b}{2\nu}}$.

Proposition 4.1. Let $u \in C^1_c(\mathbb{R})$ and write $u = hw$. Then
\[
\langle \nu u_{xx} + bf'(v)u, u \rangle \leq -2a \land (1 - a) \nu \int h_x^2 w^2 dx + 6|1 - 2a|\nu \langle h, w^2 \rangle^2.
\]

Proof. First note that
\[
\nu u_{xx} + bf'(v)u = \left(\nu h_{xx} + 2\nu \frac{w_x}{w} h_x + c \frac{w_x^2}{w} h \right) w
\]
because
\[
\nu w_{xx} + bf'(v)w = cw_x.
\]
Integrating against $u\,dx = hw\,dx$ yields
\[
\langle \nu u_{xx} + bf'(v)u, u \rangle = \int \left(\nu h_{xx} + 2\nu \frac{w_x}{w} h_x \right) hw^2 dx + c \int h^2 w_x w \,dx
\]
\[
= -\nu \int h_x^2 w^2 \,dx + c \int h^2 w_x w \,dx.
\]
We will prove in Lemma 4.2 below that
\[
\left| \int h^2 w_x w \,dx \right| \leq \frac{1}{k} \int h_x^2 w^2 \,dx + \frac{6}{k} \left(\int hw^2 \,dx \right)^2.
\]
Using $c = \sqrt{2\nu b(1 - a)} = k(1 - 2a)\nu$, we conclude that
\[
\langle \nu \Delta u + bf'(v)u, u \rangle \leq -2a \land (1 - a) \nu \int h_x^2 w^2 \,dx + 6|1 - 2a|\nu \left(\int hw^2 \,dx \right)^2.
\]
This proves the assertion. □
The following Lemma has been used in the previous proof.

Lemma 4.2. Let \(h \in C^1_b(\mathbb{R}) \). Then
\[
\left\| h^2 w_x w \right\| \leq \frac{1}{k} \int h^2 x^2 w + \frac{6}{k} \left(\int h^2 w dx \right)^2.
\]

The proof of the Lemma requires additional information on functional inequalities satisfied by the gradient form \(\int h^2 x^2 w dx \), which will be provided in Proposition 4.3 and in Lemma 4.5 first:

Proposition 4.3. The following inequality
\[
\int h^2 w^2 dx \leq \frac{4}{3k^2} \int h^2 x^2 w + \frac{6}{k} \left(\int h^2 w dx \right)^2
\]
holds for all \(h \in C^1_b(\mathbb{R}) \). Here, the constant \(\frac{4}{3k^2} \) is the best possible.

Proof. We will first show that
\[
\int (h - h(0))^2 w^2 dx \leq \frac{4}{3k^2} \int h^2 x^2 w dx.
\]
To this end we will split up the estimate w.r.t. \(x \geq 0 \) (resp. \(x \leq 0 \)) and show that
\[
\int_0^\infty (h - h(0))^2 w^2 dx \leq \frac{4}{3k^2} \int_0^\infty h^2 x^2 w dx
\]
and
\[
\int_{-\infty}^0 (h - h(0))^2 w^2 dx \leq \frac{4}{3k^2} \int_{-\infty}^0 h^2 x^2 w dx
\]
Indeed note that for \(x \geq 0 \), using
\[
(h(x) - h(0))^2 = \left(\int_0^x h_x(s) \, ds \right)^2 \leq \int_0^x w^{-\frac{1}{2}}(s) \, ds \int_0^x h_x^2 w^{\frac{1}{2}} \, ds
\]
\[
= -\frac{2}{k^2} w_x w^{-\frac{1}{2}}(x) \int_0^x h_x^2 w^{\frac{1}{2}} \, ds
\]
since
\[
\frac{d}{dx} \left(w_x w^{-\frac{1}{2}} \right) = k \frac{d}{dx} \left((1 - 2v) w^{-\frac{1}{2}} \right) = k \frac{d}{dx} \left((1 - 2v) w^{-\frac{1}{2}} \right)
\]
\[
= kw^{-\frac{1}{2}} \left(-2w - \frac{k}{2}(1 - 2v)^2 \right) = -\frac{k^2}{2} w^{-\frac{1}{2}}.
\]
Integrating the last inequality against \(w^2 dx \) we obtain that
\[
\int_0^\infty (h - h(0))^2 w^2 dx \leq -\frac{2}{k^2} \int_0^\infty h_x^2(s) w^{\frac{1}{2}}(s) \int_0^\infty w_x(x) w^{\frac{1}{2}}(x) \, dx \, ds
\]
\[
= \frac{4}{3k^2} \int_0^\infty h_x^2(s) w^2(s) \, ds
\]
which gives (35).
For the proof of (36) note that \(w^2(-x) = w^2(x) \), so that (35) implies (36). Clearly, combining (35) and (36) implies (34). For the final step of the proof of inequality (33) let us consider the probability measure
\[
\mu(dx) := Z^{-1} w^2 dx,
\]
where
\[
Z = \int w^2 dx = k \int v(1-v)v_x dx = k \int_0^1 v(1-v) dv = \frac{k}{6}
\]
is the normalizing constant. Then
\[
\int h^2(x) \mu(dx) = \text{Var}_\mu(h) + \left(\int h d\mu \right)^2
\leq Z^{-1} \int (h-h(0))^2 w^2 dx + \left(\int h d\mu \right)^2
\leq Z^{-1} \frac{4}{3k^2} \int (\partial_x h)^2 w^2 dx + \left(\int h d\mu \right)^2
\]
which implies the desired inequality.

To see that the constant \(\frac{4}{3k^2} \) is the best possible one, consider the function \(h_0(x) = v_2x - \frac{1}{2} \). Clearly, \(\int h_0 w^2 dx = \int v_2x v_2 dx = 0 \),
\[
\int h_0^2 w^2 dx = \int v_2x v_2^{-1} dx = k^2 \int (1-2v)^2 v_x dx
= k^2 \int_0^1 (1-2v)^2 dv = \frac{k^2}{3}
\]
and due to (37) \(h_{0,x} = -\frac{k^2}{2} v_2^{-\frac{1}{2}} \), hence
\[
\int h_{0,x}^2 w^2 dx = \frac{k^4}{4} \int v_x dx = \frac{k^4}{4} \int_0^1 dv = \frac{k^4}{4}.
\]
Combining all these equalities yields
\[
\int h_0^2 w^2 dx = \frac{4}{3k^2} \int h_{0,x}^2 w^2 dx + \frac{6}{k} \left(\int h_0 w^2 dx \right)^2.
\]
Hence, if \(\kappa \) denotes the minimal constant for which the inequality
\[
\int h^2 w^2 dx \leq \kappa \int h_x^2 w^2 dx
\]
holds for any \(h \in C^1_b(\mathbb{R}) \) with \(\int h w^2 dx = 0 \), it follows by approximation of \(h_0 \) and its derivative in \(L^2(w^2 dx) \) with functions in \(C^1_b(\mathbb{R}) \) that the same inequality also holds for \(h_0 \) which implies \(\kappa \geq \frac{k^4}{3k^2} \). \(\square \)

The Poincaré inequality proven above will be only sufficient to control the lower order term \(c \int h^2 w_x w dx \) if the wave speed \(c \) is sufficiently small which means that \(a \) is sufficiently close to \(\frac{1}{2} \). For small \(a \) however, we will need an additional information provided by inequalities contained in the following two lemmas:
Lemma 4.4. Let $h \in C^1_b(\mathbb{R}_+)$. Then

$$
\int_0^\infty h^2 w^2 \, dx \leq \frac{1}{k^2} \int_0^\infty h_x^2 w^2 \, dx + \frac{12}{k} \left(\int_0^\infty hw^2 \, dx \right)^2 .
$$

Proof. Let $v_* = \frac{1}{2} + \frac{1}{\sqrt{3}}$ be the unique solution $v_* \in (\frac{1}{2}, 1)$ of $6v_* (1 - v_*) = 1$ and let $x_* := v^{-1}(v_*) > 0$. We will now first show that

$$
\int_{x_*}^\infty (h - h(x_*))^2 w^2 \, dx \leq \frac{1}{k^2} \int_{x_*}^\infty h_x^2 w^2 \, dx
$$

and

$$
\int_0^{x_*} (h(x) - h)^2 w^2 \, dx \leq \frac{1}{k^2} \int_0^{x_*} h_x^2 w^2 \, dx .
$$

For the proof of both inequalities note that

$v_{xxx} = k^2 (1 - 6v(1 - v)) v_x$

and

$$
\frac{d}{dx} \left(\frac{1 - 6v(1 - v)}{v_x} \right) = -\frac{v_{xx}}{v_x^2} .
$$

It follows for $x \geq x_*$ that

$$(h(x) - h(x_*))^2 = \left(\int_{x_*}^x h_x(s) \, ds \right)^2$$

$$\leq \int_{x_*}^x h_x^2(s) \left(-\frac{v_x^2}{v_{xx}} \right) (s) \, ds \int_{x_*}^x \frac{v_{xx}}{v_x^2}(s) \, ds$$

$$= \int_{x_*}^x h_x^2(s) \left(-\frac{v_x^2}{v_{xx}} \right) (s) \cdot 1 - 6v(1 - v)(x) \frac{v_x(x)}{v_x(x)} .$$

Integrating the last inequality against $w^2 \, dx$ yields

$$
\int_{x_*}^\infty (h(x) - h(x_*))^2 w^2(x) \, dx$$

$$\leq \int_{x_*}^\infty h_x^2(s) \left(-\frac{v_x^2}{v_{xx}}(s) \right) \int_s^\infty (1 - 6v(1 - v)(x)) \, v_x(x) \, dx \, ds$$

$$= \frac{1}{k^2} \int_{x_*}^\infty h_x^2(s) \left(-\frac{v_x^2}{v_{xx}}(s) \right) (s) (-v_{xx}(s)) \, ds = \frac{1}{k^2} \int_{x_*}^\infty h_x^2 w^2 \, ds .$$

Similarly, for $x \leq x_*$

$$(h(x_*) - h(x))^2 \leq \int_x^{x_*} h_x^2(s) \left(-\frac{v_x^2}{v_{xx}}(s) \right) (s) \, ds \cdot \frac{6v(1 - v)(x) - 1}{v_x(x)}$$

$$\leq \int_x^{x_*} h_x^2(s) \left(-\frac{v_x^2}{v_{xx}}(s) \right) (s) \cdot \frac{1}{k^2} \, ds .$$
and integrating the last inequality against $w^2 \, dx$ again yields
\[
\int_0^{x^*} (h(x) - h(x^*))^2 \, w^2(x) \, dx \\
\leq \int_0^{x^*} h_x^2(s) \left(-\frac{v_x}{v_{xx}} \right) (s) \int_0^s (6v(1 - v)(x) - 1) \, v_x(x) \, dx \, ds \\
= \frac{1}{k^2} \int_0^{x^*} h_x^2 w^2 \, ds .
\]

Combining (39) and (40) we obtain the inequality
\[
(41) \quad \int_0^\infty (h(x) - h(x^*))^2 \, w^2(x) \, dx \leq \frac{1}{k^2} \int_0^\infty h_x^2 w^2 \, dx .
\]

For the final step let us consider the probability measure $\mu(dx) := Z^{-1} w^2 \, dx$ on \mathbb{R}_+, where
\[
Z = \int_0^\infty w^2 \, dx = k \int_0^\infty v(1 - v) v_x \, dx = k \int_{\frac{1}{2}}^1 v(1 - v) \, dv = \frac{k}{12}
\]
is a normalizing constant. Then (41) implies
\[
\int_0^\infty h^2(x) \, \mu(dx) = \text{Var} \, \mu(h) + \left(\int_0^\infty h \, d\mu \right)^2 \\
\leq Z^{-1} \int_0^\infty (h - h(x^*))^2 \, w^2 \, dx + \left(\int_0^\infty h \, d\mu \right)^2 \\
\leq Z^{-1} \frac{1}{k^2} \int_0^\infty (\partial_x h)^2 \, w^2 \, dx + \left(\int_0^\infty h \, d\mu \right)^2
\]
which implies the assertion
\[
\int_0^\infty h^2 w^2 \, dx \leq \frac{1}{k^2} \int_0^\infty h_x^2 w^2 \, dx + \frac{12}{k} \left(\int_0^\infty hw^2 \, dx \right)^2 .
\]

\[\square\]

Lemma 4.5. Let $h \in C^1_b(\mathbb{R}_+)$ be such that $h(0) = 0$. Then
\[
(42) \quad \int_0^\infty h^2_x w^2 \, dx \leq \int_0^\infty h_x^2 w^2 \, dx .
\]

Proof. For the proof of the inequality note that
\[
\frac{d}{dx} \left(-\frac{v_{xx}}{v_x^2} \right) = k^2 \frac{1 - 2v(1 - v)}{v(1 - v)} = \frac{k^2}{w}(1 - 2v(1 - v)) .
\]
It follows for \(x \geq 0 \) that
\[
h(x)^2 = \left(\int_0^x h_x \, ds \right)^2 \\
\leq \int_0^x h_x^2 k^2 (1 - 2v(1 - v)) \, ds \int_0^x \frac{k(1 - 2v(1 - v))}{v(1 - v)} \, ds \\
= \int_0^x h_x^2 \frac{w}{k^2 (1 - 2v(1 - v))} \, ds \left(-\frac{w_x}{w^2} (x) \right).
\]
Integrating the last inequality against \(w^2 \, dx \) yields
\[
\int_0^\infty h^2 w^2 \, dx \leq \int_0^\infty h_x^2 \frac{w}{k^2 (1 - 2v(1 - v))} \int_s^\infty \left(-\frac{w_x}{w^2} \right) w_x^2 \, dx \, ds \\
= \int_0^\infty h_x^2 w_s^2 \, ds
\]
using
\[
- \int_s^\infty \frac{w_x}{w^2} w_x^2 \, dx - \int_s^\infty \frac{w_x^3}{w^2} \, dx = k^3 \int_s^\infty (1 - 2v)^3 w \, dx \\
= k^3 \int_{v(s)}^1 (1 - 2v)^3 \, dv = k^3 \left(1 - (1 - 2v(s))^4 \right) \\
= k^3 v(1 - v)(1 - 2v(1 - v)).
\]

Due to symmetry the previous lemma also implies that
\[
\int_{-\infty}^0 h^2 w_x^2 \, dx \leq \int_{-\infty}^0 h_x^2 w^2 \, dx
\]
for \(h \in C^1_b(\mathbb{R}) \) with \(h(0) = 0 \), hence
\[
(43) \quad \int_{-\infty}^\infty (h - h(0))^2 w_x^2 \, dx \leq \int_{-\infty}^\infty h_x^2 w^2 \, dx
\]
for \(h \in C^1_b(\mathbb{R}) \).

We can now turn back to the proof of Lemma 4.2.

Proof. (of Lemma 4.2) Let us denote with \(\tilde{h}(x) = \frac{1}{2} (h(x) + h(-x)) \) (resp. \(\hat{h}(x) = \frac{1}{2} (h(x) - h(-x)) \)) the even (resp. odd) part of \(h \). Then
\[
\left| \int_\mathbb{R} h^2 w_x w \, dx \right| = \left| \int_\mathbb{R} (\tilde{h} + \hat{h})^2 w_x w \, dx \right| = 2 \left| \int_\mathbb{R} \tilde{h} \hat{h} w_x w \, dx \right| \\
\leq k \int_\mathbb{R} \tilde{h}^2 w^2 \, dx + \frac{1}{k} \int_\mathbb{R} \hat{h}^2 w_x^2 \, dx
\]
using \(\int_{\mathbb{R}} \tilde{h}^2 w x dx = \int_{\mathbb{R}} \tilde{h}^2 w x dx = 0 \). The previous Lemma \[4.5\] and \(\int_{\mathbb{R}} \tilde{h} w^2 dx = \frac{1}{2} \int_{\mathbb{R}} hw^2 dx \) imply that
\[
\int \tilde{h}^2 w^2 dx = 2 \int_0^\infty \tilde{h}^2 w^2 dx \leq \frac{2}{k^2} \int_0^\infty \tilde{h} w^2 dx + \frac{24}{k} \left(\int_0^\infty \tilde{h} w^2 dx \right)^2.
\]

Similarly, equation (43) and \(\hat{h}(0) = 0 \) imply that
\[
\int \hat{h}^2 w^2 dx \leq \int \hat{h}_x^2 w^2 dx.
\]

Inserting (45) and (46) into (44) yields
\[
\left| \int h^2 x w dx \right| \leq \frac{1}{k^2} \int (\tilde{h}_x^2 + \hat{h}_x^2) w^2 dx + \frac{6}{k} \left(\int h w^2 dx \right)^2.
\]

Lemma 4.6. Let \(u \in C^1_c(\mathbb{R}) \) and write \(u = hw \). Then
\[
\int u_x^2 dx + \int u^2 dx \leq q_1 \int h_x^2 w^2 dx + q_2 \langle u, v_x \rangle^2
\]
with
\[
q_1 := 5 \left(1 + \frac{\nu}{b} \right) \quad \text{and} \quad q_2 := 18 \sqrt{\frac{2}{\nu b}} (\nu + b).
\]

Proof. Clearly,
\[
\nu \int u_x^2 dx = \nu \int h_x^2 w^2 dx + 2\nu \int h_x hw_x w dx + \nu \int w_x h_x^2 dx
\]
\[
= \nu \int h_x^2 w^2 dx - \nu \int h^2 w_x x w dx.
\]

Using the fact that
\[-\nu w_{xx} = bf'(v)w - cw_x \leq (b\eta + ck) w\]
and the obvious estimate \(ck = b \left(\frac{1}{2} - a \right) \leq b \), we obtain that
\[
\nu \int u_x^2 dx \leq \nu \int h_x^2 w^2 dx + b(\eta + 1) \int h^2 w^2 dx.
\]

Using the Poincaré inequality (33) again, as well as \(q := \nu + b(\eta + 1) \) we arrive at
\[
\nu \int u^2 + u_x^2 dx \leq \left(\nu + q \frac{4}{3k^2} \right) \int h_x^2 w^2 dx + q \frac{12}{k} \langle u, w \rangle^2.
\]
which implies the desired inequality, using the inequalities
\[
\nu + q \frac{4}{3k^2} = \nu + (\nu + b(\eta + 1)) \frac{8\nu}{3b} \leq \nu 5 \left(1 + \frac{\nu}{b}\right)
\]
and
\[
q \frac{12}{k} = (\nu + b(\eta + 1))12 \sqrt{2\nu} \leq \nu 18 \sqrt{2\nu b(\nu + b)}.
\]

\[\square\]

Proof. (of Theorem 2.3) First let \(u \in C^1_c(\mathbb{R})\). Then Proposition 4.1 implies the estimate
\[
\langle \nu \Delta u + bf'(v)u, u \rangle \leq -2a \wedge (1 - a)\nu \int h_x^2 w^2 dx + 6|1 - 2a|\nu \langle u, v_x \rangle^2.
\]
Combining the last estimate with the previous Lemma 4.6 we obtain that
\[
\langle \nu \Delta u + bf'(v)u, u \rangle \leq -2a \wedge (1 - a)\nu \left\| u \right\|_V^2
\]
\[
+ \left(6|1 - 2a|\nu + 2a \wedge (1 - a)\nu \frac{q_2}{q_1}\right) \langle u, v_x \rangle^2
\]
\[
\leq -\frac{2}{5} \frac{\nu b}{\nu + b} a \wedge (1 - a) \left\| u \right\|_V^2
\]
\[
+ \left(6|1 - 2a|\nu + 2a \wedge (1 - a)\sqrt{2b\nu}\right) \langle u, v_x \rangle^2
\]
\[
\leq -\frac{2}{5} \frac{\nu b}{\nu + b} a \wedge (1 - a) \left\| u \right\|_V^2 + 6(\nu + b) \langle u, v_x \rangle^2.
\]
This implies Theorem 2.3 with
\[\kappa_* = \frac{2}{5} \frac{\nu b}{\nu + b} a\]
and
\[C_* = 6(\nu + b).
\]
For general \(u \in V\) we deduce the desired estimate by standard approximation of \(u\) with \(C^1_c\)-functions in the V-norm. \[\square\]

Acknowledgement This work is supported by the BMBF, FKZ 01GQ1001B.

References

[1] Bressloff, P.C., Webber, M.A., Front Propagation in stochastic neural fields, SIAM J. Appl. Dyn. Syst., 2012, to appear.
[2] Chen, Z.X., Guo, G.Y., Analytic solutions of the Nagumo equation, IMA J. Appl. Math., Vol. 48, 107–115, 1992.
[3] Ermentrout, G.B., Terman, D.H., Mathematical Foundations of Neuroscience, Springer, Berlin, 2010.
[4] Evans, J.W., Nerve axon equation III: Stability of the nerve impulse, Indiana Univ. Mat. J., Vol. 22, 577–594, 1972.
[5] Hadeler, K.P., Rothe, F., Travelling Fronts in Nonlinear Diffusion Equations, J. Math. Biol., Vol. 2, 251–263, 1975.
[6] Henry, D., Geometric theory of semilinear parabolic equations, LNM Vol. 840, Springer-Verlag, Berlin, 1981.
[7] Jones, C.K.R.T., Stability of the traveling wave solution of the FitzHugh-Nagumo equations, Trans A.M.S., Vol. 286, 431–469, 1984.
[8] Karatzas, I., Schreve, S.E., Brownian Motion and Stochastic Calculus, Springer, Berlin, 1991.
[9] Liu, W., Röckner, M., SPDE in Hilbert space with locally monotone coefficients, J. Funct. Anal., Vol. 295, 2902–2922, 2010.
[10] Lord, G.J., Thümmler, V., Computing Stochastic Travelling Waves, SIAM Journal of Scientific Computation, Vol. 34, 24–43, 2012.
[11] Nagumo, S.A.J., Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proceedings of the IRE, Vol. 50, 2061–2070, 1962.
[12] Prevot, C., Röckner, M., A Concise course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, Vol. 1905, Springer, Berlin, 2007.
[13] Tuckwell, H.C., Jost, J., Weak noise in neurons may powerfully inhibit the generation of repetitive spiking but not its propagation, PLoS Comput. Biol., Vol. 6, 13 pp, 2010.
[14] Tuckwell, H.C., Jost, J., The effect of various spatial distributions of weak noise on rhythmic spiking, J. Comput. Neurosci., Vol 30, 361–371, 2011.