Author’s Contribution
A – Study Design
B – Data Collection
C – Statistical Analysis
D – Data Interpretation
E – Manuscript Preparation
F – Literature Search
G – Funds Collection

Norbert Kowalik (A-F)

THE RELATIONSHIP BETWEEN FIELD TEST RESULTS MEASURING PHYSICAL FITNESS LEVELS IN OLYMPIC BOXING COMPETITORS AND THEIR ATHLETIC PERFORMANCE

ZWIĄZEK POMIĘDZY WYNIKAMI POLOWYCH TESTÓW WYDOLNOŚCI FIZYCZNEJ U ZAWODNIKÓW BOKSU OLIМPIJSKIEGO A WYNIKIEM SPORTOWYM

Key words: boxing, team, physical capacity, VO₂max, results in sport
Słowa kluczowe: boks, kadra, wydolność fizyczna, VO₂max, wyniki sportowe

Summary

Background. The aim of the study was to find physical discriminants in Polish senior league elite boxers

Material and methods. 13 competitors from the senior national team of average age and body mass participated in the study. The applied methods of assessment included FMS and CMJ tests, 3kg medicine ball throw and 1200m shuttle run.

Results. Statistical analysis of the studied biomechanical variables compared with the results of the Polish Senior Championships and the yearly rank list did not reveal any significant correlation.

Conclusions. The lack of a clear physical indicator may indicate that the determinants of success in sports depend on other competitors’ traits. On the other hand, the small sample size may be the reason of the lack of statistical significance. An adequate level of physical capacities may allow effective use of the athlete’s vast potential, however, it is not the only decisive factor affecting success in boxing.

Streszczenie

Wstęp. W pracy poszukiwano fizycznych wyróżników jakimi charakteryzowali się najbardziej utytułowani zawodnicy polskiej kadry narodowej seniorów.

Materiał i metody. 13 zawodników kadry narodowej seniorów w średnim wieku i masie ciała. Wykonano test FMS, CMJ, rzut piłką lekarską 3 kg, bieg wahadłowy 1200 m.

Wyniki. Analiza statystyczna badanych zmiennych biomechanicznych oraz wyników podczas Mistrzostw Polski Seniorów oraz roczną listą rankingową nie wykazała istotnej zależności.

Wnioski. Brak jednoznacznego fizycznego wskaźnika może świadczyć, iż determinantów sukcesu sportowego należy szukać także w innych cechach zawodnika. Z drugiej strony niewielka liczebność próby odpowiada za brak istotności statystycznej. Odpowiedni poziom zdolności fizycznych może pozwolić na efektywne wykorzystanie szerokiego potencjału sportowca, ale nie jest jedynym i decydującym czynnikiem wpływającym na sukces w boksie.
Amateur level boxing is one of the oldest full contact combat sports and is often described as “noble fight “using fists” [1] aimed at hitting the opponent without being hit back” [2]. It involves standing fist fight between two competitors of different weight categories [3], with blow being a key element. It is aimed at hurting the opponent, increasing tactical dominance and the score [4].

According to the international boxing association (3), boxing fight in senior male competitors is composed of 3-minute-long rounds with 1-minute rest between them. The Olympic-level boxing is characterized by interrupted intensive training sessions combined with moments of very high activity and a passive rest interval [5]. The aim of the study was a comparison of field test results in the National Men’s Senior Team with the results obtained by the study participants during Polish Senior Championship in 2019 and the yearly rank list made by the Polish Boxing Association, based on the results of yearly sport competitions. The search for success predictors in boxers revealed a correlation between the level of shoulder girdle muscle strength and the number of won fights [6]. Similar conclusions are presented by Lithuanian researchers [7] who have found the correlation between the level of aerobic capacity determinant and the national rank list. According to Smith [8], the properly developed aerobic capacity is the determinant of success.

Material and methods

13 competitors from the National Senior Team, participating in the training session held on 21-31.01.2019 at the Sports Center in Zakopane, were recruited for the study. The study was approved by the Bioethics Committee of the Institute of Sport and the participants were informed about the potential risk and benefits and signed their informed consent for participation in the research. The field strength-condition testing was performed during the first day of the meeting and preceded by a special warm up according to RAMP protocol [9]. FMS test was carried out prior to strength-condition tests and did not include a warm up according to the authors’ guidelines [10]. The following tests were performed: Functional Movement Screen test, CMJ—counter movement jump, medicine ball (3 kg) back throw using the right and left hand and 1200 m. shuttle run.

Material i metody

W badaniu wzięło udział 13 zawodników kadry narodowej seniorów biorących udział w zgrupowaniu szkoleniowym 21-31.01.2019 r. w Centrum Ośrodka Sportowym w Zakopanem. Badanie zazakceptowało Komisja Etyczna przy Instytucie Sportu, a badani zostali poinformowani o potencjalnym ryzyku i korzyściach, dając ustną zgodę na swój udział w badaniach. Polowe próby siłowo-kondycyjne wykonano pierwszego dnia zgrupowania poprzedzając je ogólną rozgrzewką według protokołu RAMP [9]. Test FMS zrealizowany był przed próbami siłowo-kondycyjnymi i został wykonany bez rozgrzewki według wytycznych autorów [10]. Wykonano następujące próbki: test Functional Movement Screen, CMJ — counter movement jump, rzut piłką lekarską 3 kg z tylnej lewej i prawej ręki, bieg wahadlowy 1200 m.
performance. Each workout pattern was performed thrice. The best attempt was assessed. The participants wore sport clothes and non-boxing flat shoes.

3 kg medicine ball throw
The test was performed according to the protocol described below:
The competitor placed a 3 kg medicine ball close to the chin, assuming the natural boxer’s position, and his positions and movements corresponded to these of the right and the left arm. Each boxer was instructed to quickly turn his body from the proximal to distal part with their elbows in full extension before throwing the ball. Next, the participant performed quick rotation and threw the ball with one hand as far as possible without raising his feet from the floor and the result depended on how far the ball touched the floor. Each of them performed 3 trials with the right and the left hand respectively. The intervals between the tests were 30 second long. The best result was assessed.

Shuttle 1200 m run test [13,14]
The participants start running at the start line and run 20 meters forward, next they return to the start line, then run 40 m forward and return to the start line end; finally, they run 60 m forward and return to the start line. They repeat this sequence five times, running as fast as possible, covering the total of 1200 meters without a break. During this test each participant had to touch each line with his foot and the foot was closely monitored by a member of the research team during the entire running period. The participants were additionally verbally motivated to run with the highest possible speed. They performed maximal effort from the start to the end of running. The final time of covering the 1200 m distance during shuttle run is reflected by the equations below:

Equation for competitors with lower body mass:

\[
\text{MAS (m/s)} = \frac{1200}{(\text{time in seconds} - 20.3)}
\]

Based on MAS, the VO_{2\text{max}} value was calculated:

\[
\text{VO}_{2\text{max}} = ((3.23 \times \text{MAS (km/h)}) + 0.123) [15].
\]

Results

MBTR. The significant coefficient of correlation between the two variables, namely MBTL and MBTR, indicates a marked symmetry of the dynamic force, also called maximum instantaneous power. A slightly better result obtained for MBTR is due to the fact that all the participants were right-handed. Therefore, the studied level of this executive function was higher. Interestingly, a statistically significant correlation was found between MBTR values and body mass, which is a logical consequence of the fact that the in competitors with higher body mass the values correspon-

CMAJ / Counter movement jump test
Apple Iphone camcorder and MyJump 2 application were used during vertical jump performance [11, 12]. Three trials were performed with 30-second intervals and the best result was assessed.

CMAJ / Counter movement jump test
Do pomiarów wysokości podczas dosięgano wykorzystano kamerę Apple Iphone 7 + i aplikację MyJump 2 [11,12]. Wykonano 3 próby z 30 sekundowymi przerwami, oceniony został najlepszy wynik.

Bieg wahadłowy 1200 m [13,14]
Uczestnicy rozpoczynają od linii podstawowej i biegną 20 metrów do przodu, wracają do linii podstawowej, następnie biegną 40 metrów do przodu i wracają do linii podstawowej, a na koniec biegną 60 metrów do przodu i wracają do linii podstawowej. Powtarzają tę sekwencję pięć razy, biegną jak najszybciej jest to możliwe, obejmując łącznie 1200 metrów bez przerwy, pokonując wyznaczony odcinek w największej możliwej prędkości. Każdy uczestnik testu musiał dotykać każdej linii stopą, a jego stopa była ścisłe monitorowana przez członka zespołu badawczego przez cały czas trwania biegu. Zawodnicy byli dodatkowo motywowani słownie, aby biegli w najszybszym możliwym tempie. Zawodnicy wykonywali maksymalnie intensywny wysiłek od startu do zakończenia testu. Końcowy czas pokonania dystansu 1200 m podczas biegu wahadłowego ulega następującym równaniom:

Równanie dla sportowców o mniejszej masie ciała:

\[
\text{MAS (m/s)} = \frac{1200}{(\text{czas w sekundach} - 20.3)}
\]

Na podstawie MAS został obliczony VO_{2\text{max}}:

\[
\text{VO}_{2\text{max}} = ((3.23 \times \text{MAS (km/h)}) + 0.123) [15].
\]

Wyniki

MBTR. Znaczący współczynnik korelacji dla dwóch zmiennych, MBTL i MBTR wskazuje na znaczną symetrię siły dynamicznej zwanej też maksymalną mocą chwilową. Nieznacznie lepszy średni wynik dla MBTR wynika z faktu, że wszyscy badani byli praworęczni. Z tego powodu badany poziom tej funkcji egzekucyjnej był wyższy. Co ciekawe wartości MBTR znaczenie dodatkowo korelowały z masą ciała, co jest logiczną konsekwencją faktu, że zawodnicy o większej masie ciała dysponują większą siłą dynamiczną. Korelacja statystycznie nieznamienna pomiędzy masą ciała a MBTL

Kowalik N. Związek między wynikami testów wydolnościowych a wynikiem sportowym u bokserów

219
dining to dynamic power are higher. A statistically insignificant correlation between body mass and MBTL (r=0.393) may suggest that for the non-dominant limb, the extent of using dynamic force in the reported trial is not very high and, to some extent, depends on other, still unknown factors. The remaining values of correlation coefficients are statistically insignificant, although they reflect a defined and expected trend in causation. The lack of statistical significance is due to the small sample size. Despite of this fact, the values of the studied variables reflect motor ability levels in boxers.

Discussion

No significant correlation was found between FMS test results and the results on the rank list. Functional assessment using FMS may be a helpful tool for and experienced coach in the development of individual strength and conditioning training, however, the results obtained in the reported study, as well as the results obtained by other researchers, clearly illustrate its limited ability to predict sport results [16].

The lack of correlation between CMJ values and the rank list cannot confirm the conclusions presented by [1], albeit, due to the research period or the small sample size, the results obtained in this study are insufficient to present definite conclusions.

The results of upper limb strength measurement have not confirmed the earlier researchers' conclusions, however, the studied parameter of upper limb strength, defined as explosive strength corresponding to the competitor's blow force [17] can be used as a field test of blow strength, which is postulated by Wilson [18].

Wydolność aerobowa (VO2max) w seniorach wynosi w zakresie od 57,5 do 69,0 ml-kg⁻¹-min⁻¹ [8] zawodnicy średnio wykazali VO2max na poziomie 60,87 ml-kg⁻¹-min⁻¹ co jest przewidywalnym wynikiem wśród wysoko wykwalifikowanych boxerów. Uzyskana wydolność fizycznej na tym poziomie może potwierdzić badania Smitha [8], że wydolność lęgowa jest prawdopodobnym wstępnym warunkiem sukcesu, gdyż w grupie badanej znajdowali się najbardziej utylizowani zawodnicy na poziomie krajowym. Jednakże, aby jednoznacznie potwierdzić tę tezę należałoby

Zmienna Variable	Średnia Means	SD	CMJ (cm)	MBTL (m)	MBTR (m)	MAS (m/sec)	VO2max ml.·kg⁻¹·min⁻¹	FMS (points)	BM (kg)	PoRL (points)
CMJ	43.69	4.64	1	0.456	0.482	0.384	0.398	-0.221	0.283	-0.140
MPL	8.84	1.04	1	0.644	0.083	0.091	0.171	0.393	-0.414	
MPR	9.89	1.23	1	0.370	0.379	-0.075	0.578	-0.342		
MAS	5.24	0.32	1	0.990		-0.215	-0.005	0.138		
VO2max	60.88	4.08	1		-0.150	-0.039	0.142			
FMS	17.38	1.50	1		-0.140	0.208				
BM	75.23	12.34	1			0.009				
NoRL	4.15	3.26				1				

Skróty/abbreviations:	
CMJ – pionowy wyskok z miejsca /counter movement jump/	
MBTL – rzuć piłką lekarską, lewa strona/ medicine ball throw, left side	
MBTR – rzuć piłką lekarską prawa strona / medicine ball throw, right side	
MAS – maksymalna prędkość aerobowa /maximal aerobic speed	
FMS – wynik testu FMS/ Functional Movement Screen score	
BM – masa ciała /body mass, PoRL – miejsce na liście rankingowej / Place on the rank list	

Kowalik N. Relationship between fitness test results and athletic performance in boxers

Tab. 1. Descriptive statistics for biophysical variables and Pearson’s correlation coefficients. Data obtained for senior male boxers

Tab. 1. Statystyka opisowa zmiennych biofizycznych oraz współczynnik korelacji Pearsona. Dane uzyskane w grupie mężczyzn, zawodników w kategorii seniorów

(r=0.393) może sugerować, że dla kończyny niedominującej stopień wykorzystania siły dynamicznej w tej próbie nie jest zbyt wysoki i w jakimś stopniu zależy też od innych nieznanych czynników. Pozostałe wartości współczynników korelacji nie są statystycznie znaczne, chociaż pokazują określony i spodziewany trend w związkach przyczynowych. Za brak statystycznej istotności odpowiada mała liczność badanej próbki. Mimo to badane wartości zmiennych ukazują motoryczne możliwości bokserów.

Dyskusja

Nie wykazano związku pomiędzy wynikiem FMS a listą rankingową. Ocena funkcjonalna z wykorzystaniem FMS może być pomocnym narzędziem dla doświadczonego trenera przy programowaniu indywidualnego treningu siłowo-kondy Đếnjnego, jednakże wyniki badań autorów jak i innych publikacji jasno ilustrują jego ograniczoną zdolność do przewidywania wyników sportowych [16].

The lack of correlation between CMJ values and the rank list cannot confirm the conclusions presented by [1], although, due to the research period or the small sample size, the results obtained in this study are insufficient to present definite conclusions.

The results of upper limb strength measurement have not confirmed the earlier researchers’ conclusions, however, the studied parameter of upper limb strength, defined as explosive strength corresponding to the competitor’s blow force [17] can be used as a field test of blow strength, which is postulated by Wilson [18].

Wydolność aerobowa (VO2max) w seniorach wynosi w zakresie od 57.5 to 69 ml·kg⁻¹·min⁻¹ [8] zawodnicy średnio wykazali VO2max na poziomie 60.87 ml·kg⁻¹·min⁻¹ co jest przewidywalnym wynikiem wśród wysoko wykwalifikowanych boxerów. Uzyskane wydolności fizycznej na tym poziomie może potwierdzić badania Smitha [8], że wydolność lęgowa jest prawdopodobnym wstępnym warunkiem sukcesu, gdyż w grupie badanej znajdowali się najbardziej utylizowani zawodnicy na poziomie krajowym. Jednakże, aby jednoznacznie potwierdzić tę tezę należałoby...
Conclusions

1. It seems that in all the studied competitors the level of aerobic capacity was sufficient to successfully compete on the domestic arena, allowing benefiting from the advantages related to technical-tactical preparation, experience or personality features and suggesting the trend in further research.

2. The lack of a clear physical indicator may show that the obtained results indicate that success in sport highly depends on other, non-physical parameters.

3. 3 kg medicine ball throw seems to be a useful field test of potential blow force in boxers and contact combat sports. The increasingly wider application and publication of research outcome will allow the researchers to develop standardized norms.

Wnioski

1. Wydaje się, iż wszyscy badani zawodnicy dysponowali wystarczającym poziomem wydolności towarzyszącej, aby skutecznie rywalizować na arenie krajowej, a jej odpowiedni poziom pozwala na wykorzystanie atutów związanych z przygotowaniem techniczno-taktycznym, doświadczeniem czy cechami osobowościowymi i może to być obszar dalszych badań.

2. Brak jednoznacznego fizycznego wskaźnika może świadczyć, iż uzyskane wyniki wskazują, że sukces sportowy zawodnika w dużej mierze zależy od innych, nie fizycznych parametrów zawodnika.

3. Rzut 3 kg piłką lekarską wydaje się być użytecznym terenowym testem sprawdzającym potencjalną siłę ciosu zawodników boksu oraz kontaktowych sportów walki. Coraz szersze stosowanie oraz publikacja badań pozwolą na opracowanie standardizowanych norm.

References / Piśmiennictwo

1. Chaabène H, Tabben M, Mkaouer B, et al. Amateur boxing: physical and physiological attributes. Sports Med. 2015; 45(3): 337-52.

2. Davis P, Wittekind A, Beneke R. Amateur boxing: activity profile of winners and losers. International Journal of Sports Physiology and Performance 2013; 8(1): 84-92.

3. AIBA International Boxing Association. Technical & Competition Rules. Available online: https://www.aiba.org/aiba-technical-competitionrules/ (Accessed on 1 April 2018).

4. Lenetsky S, Harris NP, Brughelli M. Assessment and Contributors of Punching Forces in Combat Sports Athletes: Implications for Strength and Conditioning. Strength and Conditioning Journal 2013; 35(2): 1-7.

5. Davis P, Wittekind A, Beneke R. Amateur boxing: activity profile of winners and losers. International Journal of Sports Physiology and Performance 2013; 8(1): 84-92.

6. Tasiopoulos I, Tripolitsiotis A, Dimitrios S, et al. The greater the number of wins the greater the peak torque levels of shoulder internal rotators power of dominant hand in boxing. Journal Biology of Exercise 2015; 11(1): 65-7.

7. Bruzas V, Stasialis A, Cepulenas A, et al. Aerobic Capacity is Correlated with the Ranking of Boxers. Perceptual and Motor Skills 2014; 119(1): 50-8.
8. Smith M. S. Physiological profile of senior and junior England international amateur boxers. Journal of sports science & medicine 2006; 5(CSSI): 74-89.
9. Jeffreys I. Warm up revisited the ‘ramp’ method of optimising performance preparation. Professional Strength and Conditioning 2007; 6: 12-8.
10. Cook G. Movement: Functional Movement Systems 2010: Screening, Assessment, and Corrective Strategies. Santa Cruz: On Target Publications; 2010.
11. Haynes T, Bishop C, Antrobus M, et al. The validity and reliability of the My Jump 2 app for measuring the reactive strength index and drop jump performance. The Journal of sports medicine and physical fitness 2018; 59. 10. 23736/S0022-4707.18.08195-1
12. Balsalobre-Fernández C, Glaister M, Lockey R. The validity and reliability of an iPhone app for measuring vertical jump performance. Journal of Sports Sciences 2015.
13. Kelly V, Brew D. The reliability of the 1.2 km shuttle run test for inter-mittent sport athletes. J. Aust. Strength Cond. 2014; 22(5): 127-31.
14. Kelly V, Wood A. The correlation between the 30-15 in-termittent fitness test and anovel test of running performance. ASCA International Conference on Applied Strength and Conditioning 2013, Surfers Paradise, Australia, 9-11 No-vember.
15. Berthon P, Fellmann N, Bedu M, et al. A 5-min running field test as a measurement of maximal aerobic velocity. European journal of applied physiology and occupational physiology 1997; 75(3): 233-8.
16. Kraus K, Schütz E, Taylor W, et al. Efficacy of the functional movement screen: a review. Journal of strength and conditioning research 2014; 28(12): 3571-84.
17. Obmiński Z, Borkowski L, Sikorski W. The shot put performance as a marker of explosive strength in polish amateur boxers. A pilot study. Archives of Budo 2011; 7: 173-7.
18. Wilson DC, Ruddock A, Ranchordas MK, et al. Physical profile of junior and senior amateur boxers. Journal of Physical Education and Sport 2020; 20(6): 3452-9.
19. Piepiora P. Assessment of Personality Traits Influencing the Performance of Men in Team Sports in Terms of the Big Five. Frontiers in Psychology 2021; 12.10.3389/fpsyg.2021.679724.
20. Ashker SE. Technical and tactical aspects that differentiate winning and losing performances in boxing. International Journal of Performance Analysis in Sport 2011; 11: 356-64.