A Noisy Monte Carlo Algorithm

L. Lin\footnote{On leave from Department of Physics, National Chung Hsing University, Taichung 40227, Taiwan, ROC}, K.F. Liu, and J. Sloan\footnote{Present address: Spatial Technologies, Boulder, CO}

Dept. of Physics and Astronomy, Univ. of Kentucky, Lexington, KY 40506

Abstract

We propose a Monte Carlo algorithm to promote Kennedy and Kutti’s linear accept/reject algorithm which accommodates unbiased stochastic estimates of the probability to an exact one. This is achieved by adopting the Metropolis accept/reject steps for both the dynamical and noise configurations. We test it on the five state model and obtain desirable results even for the case with large noise. We also discuss its application to lattice QCD with stochastically estimated fermion determinants.

PACS numbers: 12.38.Gc, 13.40.Fn, 14.20.Dh
1 Introduction

Usually Monte Carlo algorithms require exact evaluation of the probability ratios in the accept/reject step. However, there are problems in physics which involve extensive quantities such as the fermion determinant which require V^3 steps to compute exactly. Thus the usual Monte Carlo algorithms for a large volume are not numerically applicable to such problems directly. To address this problem, Kennedy and Kuti [1] proposed a Monte Carlo algorithm which admits stochastically estimated transition probabilities as long as they are unbiased. This opens up the door to tackling problems when it is feasible to estimate the transition probabilities but intractable or impractical to calculate them exactly.

The acceptance probability (denoted as P_a from now on) in Kennedy-Kuti’s linear algorithm is

\[
P_a(U_1 \rightarrow U_2) = \begin{cases}
\lambda^+ + \lambda^- \langle e^{\Delta H} \rangle, & \text{if } f(U_1) > f(U_2), \\
\lambda^- + \lambda^+ \langle e^{\Delta H} \rangle, & \text{if } f(U_1) \leq f(U_2)
\end{cases}
\]

(1)

where λ^\pm are tunable real parameters ranging from 0 to 1, $\langle e^{\Delta H} \rangle$ denotes an unbiased estimator of the transition probability $e^{\Delta H}$ with $\Delta H = H(U_1) - H(U_2)$. U_1 denotes the old configuration and U_2 the new or proposed configuration. $f(U)$ is an observable of the configuration U adopted for ordering between U_1 and U_2. Detailed balance can be proven to be satisfied [1].

But there is a drawback with this linear algorithm. The probability P_a could lie outside the interval between 0 and 1 since it is estimated stochastically. Once the probability bound is violated, detailed balance is lost and systematic bias will show up. It is hoped that if the bound violation occurs rarely (e.g. once every million updates), the systematic bias might be small enough so that the expectation values of various quantities can still be correct within statistical errors [1].

Within the framework of the linear algorithm, there are at least three ways to reduce the probability of bound violation.

1. The choice of $\lambda^+ = 0.0$, $\lambda^- = 1/2$ in ref. [1] can be generalized to

\[
\lambda^+ = 0.0, \quad \lambda^- = \frac{1}{1 + \alpha}.
\]

(2)

With $\alpha > 1$, the allowed range of $\langle e^{\Delta H} \rangle$ is proportionally increased so that the probability of upper bound violation can be tamed, albeit at the expense of a lower acceptance rate.

2. One can choose a better ordering criterion to reduce the bound violation. When the ordering criterion is not correlated with ΔH, the upper bound is violated more frequently than the case in which the ΔH itself is used as the ordering criterion (i.e. $\Delta H \geq 0$ or < 0). However, one cannot calculate ΔH exactly – a premise for the problem; the best one can do is to estimate ΔH stochastically.
without bias. As long as it can be made reasonably close to the true value of ΔH, it can be used as the ordering criterion. This should greatly reduce the probability of upper-bound violation.

3. Usually it is ΔH that can be estimated without bias. Simple exponentiation of this estimator, i.e. $e^{\langle \Delta H \rangle}$ inevitably yields a bias. However, it is demonstrated by Bhanot and Kennedy [2] that an unbiased estimator $\langle e^{\Delta H} \rangle$ can be constructed via a series expansion of the exponential in terms of the powers of independent unbiased estimator $\langle \Delta H \rangle$. One can reduce the variance of the estimated acceptance probability by considering the variants of this series expansion. This will help reduce the probability of both the lower-bound and upper-bound violations. We tried several variants, the best turns out to be

$$\langle e^{\Delta H} \rangle \equiv \prod_{i=1}^{N} e^{x_i}, \quad (3)$$

where x_1, x_2, \ldots, x_N are identical, independent unbiased estimators of ΔH, and each e^x is estimated by the series expansion developed by Bhanot and Kennedy [2]:

$$\langle e^x \rangle = 1 + x_1(1 + \frac{1}{2}x_2(1 + \frac{1}{3}x_3(1 + \ldots))) \quad (4)$$

where the coefficients in the Taylor expansion are interpreted as probabilities. The procedure goes as follows. First, one sets $\langle e^x \rangle = 1 + x_1$. Then one adds x_1x_2 to $\langle e^x \rangle$ with probability $\frac{1}{2}$; otherwise one stops. If it is not stopped, one then continues to add $x_1x_2x_3$ to $\langle e^x \rangle$ with probability $\frac{1}{3}$, and so on. It is easy to prove [2] that the above estimator is unbiased. One can also calculate its variance which is

$$\text{Var}(\langle e^{\Delta H} \rangle) = \{e^{\frac{\Delta H^2}{N^2} + \delta^2} + 2(e^{\frac{\Delta H}{N}} - e^{\frac{\Delta H^2}{N^2} + \delta^2})(\frac{\Delta H/N}{\Delta H/N - (\Delta H^2 + \delta^2)/N^2})}^N - e^{2\Delta H} \quad (5)$$

where $\delta^2 = \Delta H^2 - \Delta H^2$ is the variance of ΔH from the noise estimate. It is smaller than those of the other variants of the series expansion we considered such as $e^{\frac{1}{N} \sum_{i=1}^{N} x_i}$ and $\frac{1}{N} \sum_{i=1}^{N} e^{x_i}$. It can be shown that only a finite number of terms are needed in actual calculations.

Although one can improve the performance of the linear algorithm with the above techniques, there are still problems inherent to the algorithm which are impossible to eradicate. First of all, if we assume that the estimator of the acceptance probability has a Gaussian distribution, then the long tails of the Gaussian distribution always exist. As a result, the probability bound violations will never be completely excluded. Secondly, the linear algorithm with a stochastic estimator is a volume-squared algorithm. Thus, in realistic simulations of problems such as lattice QCD with dynamical fermions, it would be very costly to estimate the fermion determinant with sufficient accuracy in order to put the probability bound violations under control. The volume dependence can be seen from the following consideration. Suppose we take the best estimator in Eq. (3) to calculate the acceptance probability, the variance is primarily
a function of δ^2/N when $\Delta H \simeq 0$, according to Eq. (5). If in addition δ^2/N is small, one can do an expansion and find that the variance goes like δ^2/N. Usually δ^2 is proportional to the volume or the size of the problem. Therefore, if one wants to keep the bound violations the same as the volume grows, one needs to have a larger N. Consequently, N grows as the volume V and the cost will be proportional to V^2 since the cost of the stochastic estimator itself is usually proportional to V, e.g. for a sparse matrix.

In order to completely remove any systematic bias coming from probability bound violations and to reduce the cost of simulation on large volumes, one needs to go beyond the linear algorithm. In this letter, we propose a new algorithm which will achieve these goals. We shall see that the new algorithm eliminates the upper bound violation and absorbs the negative sign of the lower bound violation into the observable. These are achieved by introducing auxiliary variables and going back to the Metropolis accept/reject criterion.

2 A Noisy Monte Carlo Algorithm

Let us consider a model with Hamiltonian $H(U)$ where U collectively denotes the dynamical variables of the system. The major ingredient of the new approach is to transform the noise for the stochastic estimator into stochastic variables. To this end, the stochastic series expansion in Eq. (4) is written in terms of an integral of the stochastic variables ξ.

$$e^{-H(U)} = \int [D\xi] P_\xi(\xi) f(U, \xi),$$

(6)

where $f(U, \xi)$ is an unbiased estimator of $e^{-H(U)}$ from the stochastic variable ξ and P_ξ is the probability distribution for ξ. Here, we use ξ as a collective symbol for all the stochastic variables.

Given this integral in Eq. (6), the partition function of the model can be written as

$$Z = \int [DU] e^{-H(U)}$$

$$= \int [DU][D\xi] P_\xi(\xi) f(U, \xi).$$

(7)

Originally, we have a configuration space of U. Now it is enlarged to (U, ξ) with the inclusion of the stochastic variable ξ. From now on, we shall specify a configuration or state in this enlarged space.

The next step is to address the lower probability-bound violation. One first observes that

$$f(U, \xi) = \text{sign}(f) |f(U, \xi)|.$$

(8)
Since \(\text{sign}(f) \), the sign of \(f \), is a state function, we can write the expectation value of the observable \(O \) as
\[
\langle O \rangle = \int [DU][D\xi] P_\xi(\xi) O(U) \text{sign}(f) |f(U, \xi)|/Z. \tag{9}
\]

After redefining the partition function to be
\[
Z = \int [DU][D\xi] P_\xi(\xi) |f(U, \xi)|, \tag{10}
\]
which is semi-positive definite, the expectation of \(O \) in Eq. (9) can be rewritten as
\[
\langle O \rangle = \langle O(U) \text{sign}(f) \rangle / \langle \text{sign}(f) \rangle. \tag{11}
\]

As we see, the sign of \(f(U, \xi) \) is not a part of the probability any more but a part in the observable. Notice that this reinterpretation is possible because the sign of \(f(U, \xi) \) is a state function which depends on the configuration of \(U \) and \(\xi \). We note that in the earlier linear accept/reject case in Eq. (1), the acceptance criterion depends on the transition probability \(\langle e^{\Delta H} \rangle = \langle e^{H(U_1) - H(U_2)} \rangle \) which cannot be factorized into a ratio of state functions such as \(\langle e^{H(U_1)} \rangle / \langle e^{H(U_2)} \rangle \). Consequently, the sign of the acceptance probability in the linear algorithm [1] cannot be swept into the observable as in Eq. (11).

It is clear then, to avoid the problem of lower probability-bound violation, the accept/reject criterion has to be factorizable into a ratio of the new and old probabilities so that the sign of the estimated \(f(U, \xi) \) can be absorbed into the observable. This leads us back to the Metropolis accept/reject criterion which incidentally cures the problem of upper probability-bound violation at the same time. It turns out two accept/reject steps are needed in general. The first one is to propose updating of \(U \) via some procedure while keeping the stochastic variables \(\xi \) fixed. The acceptance probability \(P_a \) is
\[
P_a(U_1, \xi \rightarrow U_2, \xi) = \min \left(1, \frac{|f(U_2, \xi)|}{|f(U_1, \xi)|} \right). \tag{12}
\]
The second accept/reject step involves the refreshing of the stochastic variables \(\xi \) according to the probability distribution \(P_\xi(\xi) \) while keeping \(U \) fixed. The acceptance probability is
\[
P_a(U, \xi_1 \rightarrow U, \xi_2) = \min \left(1, \frac{|f(U, \xi_2)|}{|f(U, \xi_1)|} \right). \tag{13}
\]
It is obvious that there is neither lower nor upper probability-bound violation in either of these two Metropolis accept/reject steps. Furthermore, it involves the ratios of separate state functions so that the sign of the stochastically estimated probability \(f(U, \xi) \) can be absorbed into the observable as in Eq. (11).

Detailed balance can be proven to be satisfied. For the first step which involves the updating \(U_1 \rightarrow U_2 \) with \(\xi = \text{fixed} \), one can show for the case \(|f(U_2, \xi)|/|f(U_1, \xi)| < 1 \)
\[
P_{\text{eq}}(U_1, \xi) P_\xi(U_1 \rightarrow U_2) P_a(U_1, \xi \rightarrow U_2, \xi)
\]
\[-P_{eq}(U_2, \xi) P_c(U_2 \rightarrow U_1) P_a(U_2, \xi \rightarrow U_1, \xi) \]
\[= P_\xi(\xi) |f(U_1, \xi)| P_c(U_1 \rightarrow U_2) \frac{|f(U_2, \xi)|}{|f(U_1, \xi)|} \]
- \[P_\xi(\xi) |f(U_2, \xi)| P_c(U_2 \rightarrow U_1) \]
- \[P_\xi(\xi) |f(U_2, \xi)| P_c(U_2 \rightarrow U_1) \]
\[-P_\xi(\xi) |f(U_2, \xi)| P_c(U_2 \rightarrow U_1) = 0. \tag{14}\]

where \(P_{eq}\) is the equilibrium distribution and \(P_c\) is the probability of choosing a candidate phase space configuration satisfying the reversibility condition
\[P_c(U_1 \rightarrow U_2) = P_c(U_2 \rightarrow U_1). \tag{15}\]

Detailed balance for the second step which invokes the updating \(\xi_1 \rightarrow \xi_2\) with \(U\) fixed can be similarly proved. For the case \(|f(U_2, \xi)|/|f(U_1, \xi)| < 1\), we have
\[-P_{eq}(U, \xi_1) P_c(\xi_1 \rightarrow \xi_2) P_a(U, \xi_1 \rightarrow U, \xi_2) \]
\[-P_{eq}(U, \xi_2) P_c(\xi_2 \rightarrow \xi_1) P_a(U, \xi_2 \rightarrow U, \xi_1) \]
\[= P_\xi(\xi_1) |f(U, \xi_1)| P_\xi(\xi_2) \frac{|f(U, \xi_2)|}{|f(U, \xi_1)|} - P_\xi(\xi_2) |f(U, \xi_2)| P_\xi(\xi_1) \]
\[= 0. \tag{16}\]

Therefore, this new algorithm does preserve detailed balance and is completely unbiased.

We have tested this noisy Monte Carlo (NMC) on a 5-state model which is the same used in the linear algorithm [1] for demonstration. Here, \(P_c(U_1 \rightarrow U_2) = \frac{1}{5}\) and we use Gaussian noise to mimic the effects of the noise in the linear algorithm and the stochastic variables \(\xi\) in NMC. We calculate the average energy with the linear algorithm and the NMC. Some data are presented in Table 1. Each data point is obtained with a sample of one million configurations. The exact value for the average energy is 0.180086.

We first note that as long as the variance of the noise is less than or equal to 0.06, the statistical errors of both the NMC and linear algorithm stay the same and the results are correct within two \(\sigma\). To the extend that the majority of the numerical effort in a model is spent in the stochastic estimation of the probability, this admits the possibility of a good deal of saving through the reduction of the number of noise configurations, since a poorer estimate of the probability with less accuracy works just as well. As the variance becomes larger than 0.06, the systematic bias of the linear algorithm sets in and eventually becomes intolerable, while there is no systematic bias in the NMC results. In fact, we observe that the NMC result is correct even when the percentage of negative probability reaches as high as 44%, although the statistical fluctuation becomes larger due to the fact that the negative sign appears more frequently. We should remark that the Metropolis acceptance rate is about 92% for the smallest noise variance. It decreases to 85% when the variance is 0.1 and it drops eventually to 78% for the largest variance 50.0. Thus, there is no serious degrading in the acceptance rate when the variance of the noise increases.
Table 1: Data for the average energy obtained by NMC and the linear algorithm [1]. They are obtained with a sample size of one million configurations each. \(\text{Var} \) is the variance of the noise estimator for \(e^{-H} \) in NMC and \(e^{\Delta H} \) in the linear algorithm. \(\alpha \) in Eq. (2) is set to 1.0 in the latter case. Negative Sign denotes the percentage of times when the sign of the estimated probability is negative in NMC. Low/High Vio. denotes the percentage of times when the low/high probability-bound is violated in the linear algorithm. The exact average energy is 0.180086.

\(\text{Var} \)	NMC	Negative Sign	Linear	Low Vio.	High Vio.
0.001	0.17994(14)	0%	0.18024(14)	0%	0%
0.002	0.18016(14)	0%	0.17994(14)	0%	0%
0.005	0.18017(14)	0%	0.17985(14)	0%	0%
0.008	0.17993(14)	0%	0.17997(14)	0%	0%
0.01	0.18008(14)	0%	0.17991(14)	0%	0%
0.06	0.17992(14)	0.008%	0.17984(14)	0.001%	0.007%
0.1	0.17989(14)	0.1%	0.17964(14)	0.1%	0.3%
0.2	0.18015(15)	1.6%	0.18110(13)	1%	1%
0.5	0.1800(3)	5%	0.1829(1)	3%	4%
1.0	0.1798(4)	12%	0.1860(1)	6%	7%
5.0	0.1795(6)	28%	0.1931(1)	13%	13%
6.5	0.1801(5)	30%	0.1933(1)	13%	14%
10.0	0.1799(9)	38%	-	-	-
15.0	0.1798(9)	38%	-	-	-
20.0	0.1803(11)	39%	-	-	-
30.0	0.1800(13)	41%	-	-	-
50.0	0.1794(17)	44%	-	-	-

We further observe that the variance of the NMC result does not grow as fast as the variance of the noise. For example, the variance of the noise changes by a factor of 833 from 0.06, where the probability-bound violation starts to show up in the linear algorithm, to 50.0. But the variance of the NMC result is only increased by a factor of \((0.0017/0.00014)^2 = 147\). Thus, if one wants to use the linear algorithm to reach the same result as that of NMC and restricts to configurations without probability-bound violations, it would need 833 times the noise configurations to perform the stochastic estimation in order to bring the noise variance from 50.0 down to 0.06 but 147 times less statistics in the Monte Carlo sample. In the case where the majority of the computer time is consumed in the stochastic estimation, it appears that NMC can be more economical than the linear algorithm.
3 Lattice QCD with Fermion Determinant

One immediate application of NMC is lattice QCD with dynamical fermions. The action is composed of two parts – the pure gauge action \(S_g(U) \) and a fermion action \(S_F(U) = -\text{Tr} \ln M(U) \). Both are functionals of the gauge link variables \(U \). Considering the Hybrid Monte Carlo [3] approach with explicit \(\text{Tr} \ln M \) for the fermion action, we first enlarge the phase space from \((U) \) to \((U, p) \) where \(p \) denotes the conjugate momentum of \(U \). The partition function is

\[
Z = \int [DU][Dp] e^{-H(U,p)}
\]

where \(H(U,p) = p^2/2 + S_g(U) + S_F(U) \). To apply NMC, we introduce stochastic variables to estimate the fermion determinant

\[
det M(U) = e^{\text{Tr} \ln M} = \int [D\xi] P_\xi(\xi) f(U, \xi)
\]

where \(f(U, \xi) \) will be given later. The partition function is then

\[
Z = \int [DU][Dp][D\xi] P_\xi(\xi) e^{-H_G(U,p)} f(U, \xi),
\]

where \(H_G = p^2/2 + S_g \). In the Hybrid Monte Carlo, the configuration \((U, p) \) is updated with molecular dynamics. In this case, the probability of choosing a candidate configuration is \(P_c(U_1, p_1 \rightarrow U_2, p_2) = \delta[(U_2, p_2) - (U_1(\tau), p_1(\tau))] \) where \(U_1(\tau) \) and \(p_1(\tau) \) are the evolved values at the end of the molecular dynamics trajectory after \(\tau \) steps. Using the reversibility condition

\[
P_c(U_1, p_1 \rightarrow U_2, p_2) = P_c(U_2, -p_2 \rightarrow U_1, -p_1),
\]

one can again prove detailed balance with two corresponding Metropolis steps as in Eqs. (12) and (13).

To find out the explicit form of \(f(U, \xi) \), we note that the fermion determinant can be calculated stochastically as a random walk process [2]

\[
e^{\text{Tr} \ln M} = 1 + \text{Tr} \ln M(1 + \frac{\text{Tr} \ln M}{2}(1 + \frac{\text{Tr} \ln M}{3}(...)))
\]

as described in Eq. [4]. This can be expressed in the following integral

\[
e^{\text{Tr} \ln M} = \int \prod_{i=1}^{\infty} d\eta_i P_\eta(\eta_i) \int_0^1 \prod_{n=2}^{\infty} d\rho_n
\]

\[[1 + \eta_1^\dagger \ln M\eta_1(1 + \theta(\rho_2 - \frac{1}{2})\eta_2^\dagger \ln M\eta_2(1 + \theta(\rho_3 - \frac{2}{3})\eta_3^\dagger \ln M\eta_3(...)],
\]

where \(P_\eta(\eta_i) \) is the probability distribution for the stochastic variable \(\eta_i \). It can be the Gaussian noise or the \(Z_2 \) noise \((P_\eta(\eta_i) = \delta(|\eta_i| - 1) \) in this case). The latter is preferred since it has the minimum variance [4]. \(\rho_n \) is a stochastic variable with
uniform distribution between 0 and 1. This sequence terminates stochastically in finite time and only the seeds from the pseudo-random number generator need to be stored in practice. Comparing this to Eq. (18), the function $f(U, \eta, \rho)$ (Note the ξ in Eq. (18) is represented by two stochastic variables η and ρ here) is represented by the part of the integrand between the the square brackets in Eq. (22). One can then use the efficient Padé-Z$_2$ algorithm [5] to calculate the $\eta \ln M\eta_i$ in Eq. (22). All the techniques for reducing the variance of the estimator without bias developed before [5] can be applied here. It is learned that after the unbiased subtraction, the error on the stochastic estimation of the $Tr \ln M$ difference between two fermion matrices at the beginning and end of the molecular dynamics trajectory for an $8^3 \times 12$ lattice with Wilson fermion at $\beta = 6.0$ and $\kappa = 0.154$ can be reduced from 12.0 down to 0.49 with a mere 100 noise configurations [5]. This implies a 49% error on the determinant ratio and makes the application of the noisy Monte Carlo algorithm rather promising.

Finally, there is a practical concern that $Tr \ln M$ can be large so that it takes a large statistics to have a reliable estimate of $e^{Tr \ln M}$ from the series expansion in Eq. (22). In general, for the Taylor expansion $e^x = \sum x^n/n!$, the series will start to converge when $x^n/n! > x^{n+1}/(n+1)!$. This happens at $n = x$. For the case $x = 100$, this implies that one needs to have more than 100! stochastic configurations in the Monte Carlo integration in Eq. (22) in order to have a convergent estimate. Even then, the error bar will be very large. To avoid this difficulty, one can implement the following strategy. First one note that since the Metropolis accept/reject involves the ratio of exponentials, one can subtract a universal number x_0 from the exponent x in the Taylor expansion without affecting the ratio. Second one can use the trick in Eq. (3) to diminish the value of the exponent. In other words, one can replace e^x with $(e^{(x-x_0)/N})^N$ to satisfy $|x - x_0|/N < 1$. The best choice for x_0 is \bar{x}, the mean of x. In this case, the variance in Eq. (3) becomes $e^{\bar{x}^2/N} - 1$. Comparing with Eq. (3), one can verify that it is smaller than the case without \bar{x} subtraction by $e^{2\bar{x}}$. We should mention that this is not an issue in the Kennedy-Kuti algorithm where the accept/reject criterion involves the transition probability $e^{\Delta H} = e^{H(U_1) - H(U_2)}$ not the ratio of probabilities as in the Metropolis criterion.

4 Summary and Discussion

In summary, the new noisy Monte Carlo algorithm proposed here is free from the problem of probability-bound violations which afflicts the linear accept/reject algorithm, especially when the variance of the noise is large. The upper-bound violation is avoided by going back to the Metropolis accept/reject. The lower-bound violation problem is tackled by grouping the sign of the estimated probability with the observable. With the probability-bound violation problem solved, NMC is a bona fide unbiased stochastic algorithm as demonstrated in the 5-state model. Furthermore, it is shown in the 5-state model that it is not necessary to have an extremely small variance in the stochastic estimation. With the encouraging results from the Padé-Z$_2$ estimation of the $Tr \ln M$ [3], one has a reasonable hope that the V^2 dependence of
NMC will be tamed with a smaller prefactor. We will apply NMC to the dynamical fermion updating in QCD and compare it to the HMC with pseudo-fermions [6].

5 Acknowledgment

The authors would like to thank A. Kennedy for stimulating discussions and for helping clarify the Metropolis steps. This work is partially supported by the U.S. DOE grant DE-FG05-84ER40154. Lee Lin wishes to thank NSC of the Republic of China for support under the contract number 36083F. He is also grateful to members of Department of Physics and Astronomy of University of Kentucky for the hospitality extended to him during his stay in Lexington, Kentucky. Keh-Fei Liu wishes to thank the National Center for Theoretical Sciences, Hsinchu, Taiwan for the invitation to visit their Center where this work is finished.

References

[1] A.D. Kennedy, J. Kuti, Phys. Rev. Lett. 54 (1985) 2473.
[2] G. Bhanot, A. D. Kennedy, Phys. Lett. 157B (1985) 70.
[3] S. Duane, A. D. Kennedy, B. J. Pendleton, D. Roweth, Phys. Lett. B195 (1987) 216.
[4] S. J. Dong and K. F. Liu, Phys. Lett. B 328, 130 (1994).
[5] C. Thron, S. J. Dong, K. F. Liu, H. P. Ying, Phys. Rev. D57 (1998) 1642.
[6] S. J. Dong, L. Lin, K. F. Liu, and J. Sloan, work in progress.