Clinical and Radiologic Outcome of First Metatarsophalangeal Joint Arthrodesis Using a Human Allogeneic Cortical Bone Screw

Beatrice Hanslik-Schnabel, MD1, Daniel Flöry, MD2, Gudrun H. Borchert, PhD3,5,6, and Jakob E. Schanda, MD, PhD4,5,6

Abstract

Background: Different fixation techniques are established for first metatarsophalangeal joint (MTPJ) arthrodesis, including compression screws, plates, Kirschner wires, metal- and bioabsorbable screws as well as staples. The purpose of this study was to investigate and present first clinical and radiologic results using a novel human, allogeneic cortical bone screw for arthrodesis of the first MTPJ.

Methods: Arthrodesis of the first MTPJ was performed in 31 patients with hallux rigidus. Percentage union and time to union were the first outcomes; visual analog scale for pain, hallux valgus angle (HVA), intermetatarsal angle, and American Orthopaedic Foot & Ankle Society (AOFAS) hallux score were secondary outcomes.

Results: Median time to union was 89 days, and union was observed in all patients. There were 4 complications (2 osteolysis margin, 1 cystic brightening, and 1 severe swelling at the first follow-up) all of that resolved at last follow-up. Pain significantly decreased from visual analog scale 8.0 to 0.2 points (P < .0001). The HVA decreased from 30.4 to 10.2 degrees in the patient group with deformities. The total AOFAS score increased significantly from 48 to 87 (P < .0001).

Conclusion: Primary and revision arthrodesis of hallux rigidus with the human, allogeneic cortical bone screw reveals satisfying results similar to clinical and radiologic outcomes of other surgical techniques. Within 1 year, the human, allogeneic cortical bone screw is fully remodeled to host bone.

Level of Evidence: Level IV, retrospective case series without control group.

Keywords: hallux rigidus, first metatarsophalangeal joint, arthrodesis, allograft, human, allogeneic cortical bone screw, Shark Screw®, bone union
deminerlized bone matrix (DBM) consisting of a collagen scaffold and several growth factors, most importantly bone morphogenetic proteins, result in a high positive turnover.35 Thus, DBM can actively induce bone formation by its osteoinductive potential following endochondral ossification because of the recruitment of mesenchymal stem cells from bone.3,30 The safety of human allogeneic, sterilized bone transplants regarding disease transmission, biological tolerance, potential graft rejection, and alloosensitization is well known because allogeneic bone transplants (eg, bone chips, bone blocks) are widely used in regenerative, maxillofacial, and orthopaedic surgery.7,9,29 In the case of the human, allogeneic cortical bone screw, hardware removal is not necessary and biofilm development was not reported as described for titanium and stainless steel screws and plates.1,13,17,32 Because of similar stiffness26 of the human, allogeneic bone screw and the host bone, stress shielding and disuse atrophy can be avoided.27 The human, allogeneic cortical bone screw is remodelled to host bone,2 and because of its architecture, the presence of Haversian canals, transcortical vessels, and the lacunocanalicular system, it allows fluid and cell movement that is initiated by bone strain, guiding the bone remodeling process.10

The aim of this study was to present results of the human, allogeneic cortical bone screw used for primary and revision arthrodesis of the first MTPJ. Bone union with remodeling into the host bone was set as primary outcome. Secondary outcomes were the longitudinal investigation of the visual analog scale (VAS) pain score as well as the hallux valgus angle (HVA), the intermetatarsal angle (IMA), and the American Orthopaedic Foot & Ankle Society (AOFAS) hallux score.

Patients and Methods

A total of 31 patients were retrospectively evaluated following first MTPJ arthrodesis between 2016 and 2021 using the novel human, allogeneic cortical bone screw (Shark Screw®, Surgebright GmbH, Lichtenberg, Austria). The study was conducted in line with the Helsinki Declaration and was approved and supervised by the local ethics committee of the City of Vienna, Austria (EK 21-175-VK).

Inclusion criteria were age between 18 and 85 years with radiologically certified hallux rigidus. Exclusion criteria were oncologic treatment in the past and chronic alcohol and drug abuse. In Austria, patients generally remain 3 days in total in the hospital, with 1 day each for admission, surgery, and discharge. Clinical follow-up included functional outcomes as well as the evaluation of pain using the VAS (0-10; 0 = no pain, 10 = highest pain) and the AOFAS hallux score (0-100; 0 = worst outcome, 100 = best outcome). Because of the arthrodesis, first MTPJ motion was not detected after surgery and AOFAS score could reach maximally 90 points. Radiologic outcomes included the longitudinal evaluation of the HVA and IMA. Furthermore, the optical density (measured in counts) of the human, allogeneic cortical bone screw in the host bone and of the surrounding host bone was measured on standard radiographs and evaluated in 4 time points: immediately after surgery and at time intervals of 3-6 months, 6-12 months, and after 12 months.

Surgical Procedure

In case of strong deformities, poor bone quality, big bone defect after slipping off using the cup and cone technique, or a primary Brandes surgery revealing a short stump of the proximal phalanx, 1 intramedullary Shark Screw® was used. In any other case, 2 crossed Shark Screws® were used (Figure 1).

A medio-dorsal skin incision was made and the first metatarsal head was exposed. Cartilage removal of the first MTPJ was performed with the appropriate cup and cone reamer. After removal of the reamers, the bone surfaces were freshened with a thin drill bit to enhance bone union. The metatarsal head and the proximal phalanx were pressed firmly against each other, and the joint was temporarily fixed with a 1.6-mm Kirschner wire to keep it stable. The correct position of the arthrodesis was checked using a stable sterile board. Coming from an imaginary midline, a 1.6-mm Kirschner wire (more torsion stability) was placed from proximal medial to distal lateral, dorsal, and a second 1.6-mm Kirschner wire from medial distal to proximal lateral plantar. One of the 1.6-mm Kirschner wires was exchanged for a 1.2-mm Kirschner wire because of the internal size of the reamer. The core hole was gradually reamed over the 1.2-mm Kirschner wire. Depending on the size of the bone, either two 4.0-mm or two 4.5-mm Shark Screws® were used. After cutting the threads and thoroughly rinsing the drill holes, the Shark Screws® were inserted without much resistance. After a fluoroscopy check, the protruding material was sawn off at bone level. Last, stepwise wound closure was performed (Figure 1).

Postoperative Protocol

After the foot was swollen down (3-5 days postoperatively), patients were fixed with a forefoot soft cast with inclusion of the big toe for a minimum of 6 weeks (Figure 1). No weightbearing on the foot was allowed for the first 4 weeks; in the remaining 2 weeks, increasing weightbearing on the foot was permitted in the cast.

Statistical Analysis

Descriptive statistics were used to present the demographic data. For the secondary outcome measures, paired Student t tests were performed. A P value <.05 was considered to be significant with a power >0.8. All statistical analyses were
performed using Origin Pro statistical software (OriginPro, version 2021b; OriginLab Corporation, Northampton, MA).

Results

Demographic data are presented in Table 1. In 10 cases, previously failed surgeries were documented (Austin osteotomy n=4; pseudarthrosis after metal plate arthrodesis n=2; basic resection Brandes n=2; Scarf osteotomy n=1; pseudarthrosis after metal screw fixation n=1). Eleven patients presented with deformities (HVA >20 degrees). In 26 cases, an osteosynthesis was performed with 2 crossed human, allogeneic cortical bone screw; in 5 patients, osteosynthesis was performed using 1 intramedullary human, allogeneic cortical bone screw (Table 2). One human, allogeneic cortical bone screw fractured during surgery because the surgeon tried to introduce the screw lower than the thread was prepared for; nevertheless, the screw was left in place because the arthrodesis was stable. Mean duration of surgery was 63±10 minutes and the median hospital stay of the patients was 3 days (3-28 days). Hospital days include 1 presurgery day with all the preparation for the surgery, the surgery day, and discharge 1 day after surgery. One patient had a hospital stay of 28 days because of an additional treatment of a diabetic

Table 1. Patient Data and Clinical Data (N = 31).

Characteristic	Mean ± SD (Range) or No.
Age, [years]	66.23 ± 10.28 (42-82)
BMI, [kg/m²]	25.72 ± 3.50 (19.5-35.3)
Gender, male/female	7/24
Smoking, yes/no	4/27
Left/right	11/20
Working contract, yes/no	14/17
Osteoporosis medication, yes/no	6/25

Abbreviation: BMI, body mass index.
ulceration on the first metatarsal bone with intravenous antibiotic therapy (Table 2). Mean follow-up was 11 ± 4 months. One patient requested a reoperation because the correction was too much (3 degrees valgus after surgery, patient requested 5-8 degrees valgus for cosmetic reasons). Bone union (Table 2) was observed as early as 40 days after surgery but was achieved in all patients at a median time of 89 days. At the first follow-up, 1 patient showed severe swelling. Lightening margins were recorded in 2 patients at first and second follow-up, which disappeared at later follow-up. Temporal dynamics and cystic brightening were observed in 1 patient. There were no pathologic signs at the last follow-up radiographs. Because of the COVID-19 pandemic situation, some patients omitted follow-up visits at scheduled times; thus, the range of bony union is very large (40-500 days) because bone union could only be detected with actual radiographs when patients were present for the visit. VAS pain score significantly improved after surgery (black line, $P < .001$; Table 2). The total AOFAS score significantly improved after surgery (black line, $P < .001$; Table 3, Figure 2).

Average presurgical HVA (Table 4) in patients with deformity was 30 degrees, which improved significantly to 10 degrees ($P = .001$) after surgery. For the hallux rigidus patients without deformity, the HVA improved from 12 to 7 degrees ($P < .001$; Table 4), and IMA also improved significantly in both groups. At last follow-up, there was no change in the HVA and IMA in comparison to just after surgery (Table 4).

A hallux rigidus patient without deformities treated with 2 crossed Shark Screws® using the cup and cone technique is presented in Figure 3A-E. The integration of the crossed human, allogeneic cortical bone screws is well visible, after 12 months (Figure 3E); only a faint line of the human, allogeneic cortical bone screw is visible.

A Weil osteotomy on second-fourth metatarsal and a proximal interphalangeal arthrodesis on the second toe, additionally to the hallux rigidus arthrodesis treated with 1 intramedullary screw using the cup and cone technique, is shown in Figure 4A-D. The human, allogeneic cortical bone screw was placed intramedullary. Six months after surgery, all screws are already well integrated into the bone (Figure 4D).

A diabetic patient with a severe ulceration and hallux rigidus on the first MTPJ is presented in Figures 5A-D and 6A-E. The treatment of the ulceration as well as of the severe

Table 2. Data of Surgery and Rehabilitation.

| Surgery, primary/secondary, n | 21/10 |
| Arthrodesis of First MTPJ, with 2 crossed Shark Screws® / 1 intramedullary Shark Screw®, n | 26/5 |

Shark Screw® used
- Cut 4.0 mm 2×
- Cut 4.0 and 4.5 mm 12
- Cut 4.5 mm 2×
- Diver 5.0 mm 5

Screw fracture during surgery, n
- 1

Duration of surgery, min, mean ± SD (range) 63 ± 10 (45-90)

Duration of hospital stay, wk (n=14)
- Mean ± SD (range) 4.5 ± 4.5 (3-28)
- Median 3

Follow-up, mo
- Mean ± SD (range) 11 ± 4 (5-20)

Bone union, d
- Mean ± SD (range) 115.6 ± 97.3 (40-500)
- Median 89

VAS pain score, mean ± SD
- Presurgery, n=31 8.00 ± 1.00
- 3 wk postsurgery, n=30 1.17 ± 0.84
- 3 mo postsurgery, n=26 0.42 ± 0.81
- 6 mo postsurgery, n=20 0.10 ± 0.45
- 1 y postsurgery, n=26 0.15 ± 0.37

Abbreviations: MTPJ, metatarsophalangeal joint; VAS, visual analog scale.

*1 patient received additional antibiotic therapy to treat diabetic ulceration (hospital stay 28 days).

*Overcorrection; 3 degrees was corrected to 8 degrees.

*Some patients omitted follow-up visits because of the COVID-19 pandemic situation.

*P < .0001 vs presurgery.
hallux rigidus (after refreshing the surfaces of the joint) was performed simultaneously. The healing of the ulceration was obtained within 10 weeks (Figure 5D). The bony healing was obvious 12 months after surgery (Figure 6D), and the bone screws were nearly invisible after 20 months (Figure 6E). Bone density was evaluated radiographically (Figure 7). Four months after surgery, the density of the human, allogeneic cortical bone screw was not significantly different from the host bone, and after 17 months the optical density was similar to the host bone, with 2732 ± 435 and 2594 ± 366 for the human, allogeneic cortical bone screw and the host bone, respectively.

Discussion

The novel human, allogeneic cortical bone screw (Shark Screw®) shows promising results for arthrodesis of the first MTPJ in patients with hallux rigidus and ensures a stable...

Table 3. AOFAS Hallux Score Details. a
AOFAS

Pain (0-40)
Function (0-10)
Footwear (0-10)
MTP joint motion (0-10) (dorsiflexion + plantarflexion)
IP joint motion (plantarflexion) (0-5)
MTP-IP stability (0-5)
Callus
Axial position (0-15)
Total score (0-100)

Abbreviations: AOFAS, American Orthopaedic Foot & Ankle Society hallux score; IP, interphalangeal; MTP, metatarsophalangeal.

a Values are mean ± SD (range). MTP joint motion is not possible anymore because of arthrodesis. AFOAS total score of 90 is the maximal achieved score postsurgery because of arthrodesis of the first MTP.

b P < .05, c P < .01, d P < .001, e P < .0001 vs presurgery.

Table 4. Hallux Valgus Angle and Intermetatarsal Angle. a

	Presurgery, degrees, mean ± SD	1-2 d Postsurgery, degrees, mean ± SD	1 y Postsurgery, degrees, mean ± SD
Hallux valgus angle (HRV, n=11)	30.4 ± 7.3	10.2 ± 6.6 b	11.0 ± 6.6
Hallux valgus angle (HR, n=20)	12.3 ± 5.3	6.6 ± 5.4 c	6.0 ± 4.6
Intermetatarsal angle (HRV, n=11)	14.4 ± 5.3	8.5 ± 4.5 d	9.6 ± 3.6
Intermetatarsal angle (HR, n=20)	8.2 ± 2.9	6.1 ± 1.7 e	7.7 ± 2.3

a HR, hallux rigidus patients without valgus deformity (HVA < 20 degrees, presurgery); HRV, hallux rigidus patients with valgus deformity (HVA > 20 degrees, presurgery).
b P = .00132, c P = .00019, d P = .00032, e P < .0001 vs presurgery.
Foot & Ankle Orthopaedics

osteointegration, regardless of previously performed surgeries, with a low rate of complication and without the need of hardware removal or donor site morbidity. The remodeling of the human, allogeneic cortical bone crew into the host bone is nearly completed after 1 year. Additionally, the HMA and IMA were significantly reduced in all patients and did not change over time.

Demineralized allografts such as DBM are discussed to have a high osteoinductive potential because of the better accessibility of bone morphogenetic proteins resulting from the demineralization. On the other hand, the osteoinductive capacity of bone grafts is not only dependent on bone morphogenetic proteins but also related to the presence of soluble minerals such as calcium and phosphate. Therefore, bone allografts, such as the human, allogeneic cortical bone screw, do actually have an even higher osteoinductive potential compared with DBM. Because of its physiological bony architecture, the human, allogeneic cortical bone screw allows bone regeneration, vascularization, and migration of cells of the immune system into the human, allogeneic cortical bone screw in a short time. The measurement of the optical density confirmed the subjective impression on the radiographs that the human, allogeneic cortical bone screw is remodeled to host bone over time. Others have shown that

Figure 3. A hallux rigidus patient without deformities treated with 2 crossed Shark Screws® using the cup and cone technique: (A) presurgery and (B) 6 weeks, (C) 4 months, (D) 7 months, and (E) 12 months postsurgery. The integration of the crossed human, allogeneic cortical bone screws is well visible; after 12 months, only a faint line of the human, allogeneic cortical bone screw is visible.

Figure 4. Hallux rigidus patient treated with 1 intramedullary Shark Screw® (5 × 35 mm) using the cup and cone technique for first metatarsophalangeal arthrodesis additional to second-fourth Weil osteotomies and second proximal interphalangeal arthrodesis with Shark Screw® at 3.5 mm: (A) presurgery, (B) just after surgery, and (C) 3 months and (D) 6 months postsurgery; the screws are already well integrated into the bone.
the human, allogeneic cortical bone screw has haversian canals that allow fluid movement and ingrowth of blood vessels into the human, allogeneic cortical bone screw as early as 10 weeks postsurgery.\(^2\) This triggers the bone remodeling process.\(^{10}\) Blocking the osteoclast function, for example, by using metal screws thereby limits transcortical vessel formation and remodeling.\(^{10}\) Histologic analysis of an explanted part of a human, allogeneic cortical bone screw with surrounding host bone revealed vascularization of the graft, with newly formed compact lamellar bone exactly fitting to the implant, plump osteoblasts with osteoid production, and osteocytes within the lacunae of the graft.\(^2\) The human, allogeneic cortical bone screw is a safe alternative to other implants. The provider of the human cortical allograft (DIZG gGmbH) did not record any transmission of diseases over all the years of its activity. The allograft avoids the building of biofilm, as observed when using stainless steel or titanium screws and plates.\(^{1,13,17,32}\)

The complication rate is high after hallux rigidus correction and is reported as high as 28\%, depending on the technique and the material used.\(^{15,34}\) In our case series, complications were recorded in 4 patients during early follow-up, which all resolved at last follow-up. None of our patients presented numbness, elevation of the hallux off the

Figure 5. Clinical results of the diabetic patient treated with antibiotic therapy and arthrodesis after refreshing the surfaces of the joint of the hallux rigidus at the same time: (A) 1 week after surgery, (B) 2 weeks after surgery, (C) 6 weeks after surgery, and (D) 10 weeks after surgery; the ulceration was completely healed.

Figure 6. Radiologic results of the diabetic patient in whom union was observed 160 days after surgery: (A) presurgery, (B) postsurgery, (C) 6 weeks postsurgery, (D) 12 months postsurgery, and (E) 20 months postsurgery; the human, allogeneic cortical bone screws are nearly invisible.
ground, or metatarsalgia as reported elsewhere. Stress fractures were not observed in our cohort. Possible complications of first MTPJ arthrodesis include, in addition to general surgical complications, above all insufficient or missing osseous development (pseudarthrosis), as well as pain and irritation caused by the implant. Nevertheless, revision surgery is necessary in 4% to 15% of the patients. In our cohort, 1 patient requested revision because of an overcorrection.

The union rate obtained (100%) is similar to other studies, but lower fusion rates are reported too, for the arthrodesis of the first MTPJ (81%-99%). Tobacco use increased the time to union by 10 days in our study, but because there were only 4 smokers in the patient cohort, it did not reach statistical significance. Median time to union was 89 days (13 weeks) in our patient cohort, which is lower than that reported by Kaufmann (8 months) or Massimi et al (21 weeks). Latif et al described a time to union of 6-8 weeks for 75% of the patients and bony union in all patients after 12-16 weeks, which is similar to our results. Roukis described 64 days as mean time to union. Hodel et al described 6-8 weeks for 75% of the patients and bony union in all patients after 12-16 weeks.

HVA and IMA were significantly reduced after surgery (from 30 to 10 degrees and from 14 to 8.5 degrees for HVA and IMA pre- and postoperative, respectively) and did not change over time. These results are similar to other studies for HVA. IMA was reported as 11 to 12 degrees by other authors. Hodel et al described an HVA of 11 to 15 degrees postoperatively and that positioning of the arthrodesis angle is crucial for optimal bone-to-bone contact, allowing bony healing. VAS pain score decreased significantly after surgery (vs postsurgical values; vs the density of the host bone just after surgery.

Ethical Approval

The study was conducted in line with the Helsinki Declaration and was approved and supervised by the local ethics committee of the City of Vienna, Austria (EK 21-175-VK, on September 10, 2021).
Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. ICMJE forms for all authors are available online.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Gudrun H. Borchert, PhD, https://orcid.org/0000-0002-0634-4352

References
1. Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M. Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br. 1996;78(4):647-651.
2. Brcic I, Pastl K, Plank H, et al. Incorporation of an allogeneic cortical bone graft following arthrodesis of the first metatarsophalangeal joint in a patient with hallux rigidus. Life (Basel). 2021;11(6):473. doi:10.3390/life11060473
3. Burchardt H. The biology of bone graft repair. Clin Orbit Relat Res. 1983;174:28-42.
4. Chraim M, Bock P, Alrabai HM, Trnka HJ. Long-term outcomes of first metatarsophalangeal joint fusion in the treatment of severe hallux rigidus. Int Orthop. 2016;40(11):2401-2408. doi:10.1007/s00264-016-3277-1
5. Köster MC, Köster ME, Montgomery F. Hallux rigidus - osteoarthrosis of the first MTP-joint. Surgical and patient-reported results from Swefoot. Foot Ankle Surg. 2021;27(5):555-558. doi:10.1016/j.fas.2020.07.008
6. Da Cunha RJ, MacMahon A, Jones MT, et al. Return to sports and physical activities after first metatarsophalangeal joint arthrodesis in young patients. Foot Ankle Int. 2019;40(7):745-752. doi:10.1177/107110071982799
7. Delloye C, Cornu O, Druez V, Barbier O. Bone allografts: what can they offer and what they cannot. J Bone Joint Surg Br. 2007;89(5):574-579. doi:10.1302/0301-620x.89b5.19039
8. Fuhrmann R, Pilukat T. [Arthrodesis of the first metatarsophalangeal joint]. Oper Orthop Traumatol. 2012;24(6):513-526. doi:10.1007/s00064-012-0218-z
9. Gomes KU, Carlini JL, Biron C, Rapoport A, Dedivitis RA. Use of allogeneic bone graft in maxillary reconstruction for installation of dental implants. J Oral Maxillofac Surg. 2008;66(11):2335-2338. doi:10.1016/j.joms.2008.06.006
10. Grüneboom A, Hawwari I, Weidner D, et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab. 2019;1(2):236-250. doi:10.1038/s42255-018-0016-5
11. Gupta S, Masud S. Long term results of the Toefit-Plus replacement for first metatarsophalangeal joint arthritis. Foot (Edinb). 2017;31:67-71. doi:10.1016/j.foot.2017.04.006
12. Habibovic P, de Groot K. Osteoinductive biomaterials—properties and relevance in bone repair. J Tissue Eng Regen Med. 2007;1(1):25-32. doi:10.1002/term.5
13. Harris LG, Meredith DO, Eschbach L, Richards RG. Staphylococcus aureus adhesion to standard micro-rough and electropolished implant materials. J Mater Sci Mater Med. 2007;18(6):1151-1156. doi:10.1007/s10856-007-0143-0
14. Ho B, Baumhauer J. Hallux rigidus. EORTC Open Rev. 2017;2(1):13-20. doi:10.1302/2058-5241.2.160031
15. Hodel S, Viehöfer A, Wirth S. Minimally invasive arthrodesis of the first metatarsophalangeal joint: a systematic literature review. Foot Ankle Surg. 2020;26(6):601-606. doi:10.1016/j.fas.2019.09.001
16. Huber T, Hofstätter SG, Fiala R, Hartenbach F, Breuer R, Rath B. The application of an allogeneic bone screw for stabilization of a modified chevron osteotomy: a prospective analysis. J Clin Med. 2022;11(5):1384.
17. Jastifer JR, Gustafson PA, Silva LF, Noffsinger S, Coughlin MJ. Nitinol, stainless steel, and titanium kirschner wire durability. Foot Ankle Spec. 2021;14(4):317-323. doi:10.1016/j.fas.2019.09.005
18. Kaufmann G. Minimally invasive arthroscopic-assisted arthrodesis of the first metatarsophalangeal joint. Article in German. Oper Orthop Traumatol. 2021;33(6):465-470. doi:10.1007/s00064-021-00743-6
19. Kitaoka HB, Alexander JJ, Adelaar RS, Nunley JA, Myerson MS, Sanders M. Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int. 1994;15(7):349-353. doi:10.1177/10711007940150701
20. Łaźi A, Vahabi S, Ghods S, Torshabi M. In vitro effect of mineralized and demineralized bone allografts on proliferation and differentiation of MG-63 osteoblast-like cells. Cell Tissue Bank. 2016;17(1):91-104. doi:10.1007/s10561-015-9516-7
21. Latif A, Dhinsa BS, Lau B, Abbasian A. First metatarsophalangeal fusion using joint specific dorsal plate with interfragmentary screw augmentation: clinical and radiological outcomes. Foot Ankle Surg. 2019;25(2):132-136. doi:10.1016/j.fas.2017.09.005
22. Massimi S, Caravelli S, Fuiano M, Pungetti C, Mosca M, Zaffagnini S. Management of high-grade hallux rigidus: a narrative review of the literature. Musculoskelet Surg. 2020;104(3):237-243. doi:10.1007/s12306-020-00646-y
23. McNeil DS, Baumhauer JF, Glazebrook MA. Evidence-based analysis of the efficacy for operative treatment of hallux rigidus. Foot Ankle Int. 2013;34(1):15-32. doi:10.1177/1071100712460220
24. Moran TE, Sequeira S, Cooper MT, Park J. A retrospective analysis of outcomes from foot and ankle arthrodesis and open reduction and internal fixation using cellular bone allograft augmentation. Foot Ankle Spec. 2020;1071100712460220
25. Nakajima K. Sliding oblique metatarsal osteotomy fixed with a K-wire without cheilectomy for hallux rigidus. J Foot Ankle Surg. 2022;61(2):279-285. doi:10.1053/j.jfas.2021.07.022
26. Obwegeser JA. Absorbable and bioconvertible osteosynthesis materials in maxillofacial surgery. Article in German. Mund Kiefer Gesichtschir. 1998;2(6):288-308. doi:10.1007/s100060050077
27. Pastl K, Schimetta W. The application of an allogeneic bone screw for osteosynthesis in hand and foot surgery: a case series. Arch Orthop Trauma Surg. April 8, 2021. doi:10.1007/s00402-021-03880-6
28. Prat D, Haghverdian BA, Pridgen EM, et al. High complication rates following revision first metatarsophalangeal joint arthrodesis: a retrospective analysis of 79 cases. *Arch Orthop Trauma Surg.* January 29, 2022. doi:10.1007/s00402-022-04342-3

29. Pruss A, Perka C, Degenhardt P, et al. Clinical efficacy and compatibility of allogeneic avital tissue transplants sterilized with a peracetic acid/ethanol mixture. *Cell Tissue Bank.* 2002;3(4):235-243. doi:10.1023/a:1024697515420

30. Reddi AH, Anderson WA. Collagenous bone matrix-induced endochondral ossification hemopoiesis. *J Cell Biol.* 1976;69(3):557-572. doi:10.1083/jcb.69.3.557

31. Roukis TS. Nonunion after arthrodesis of the first metatarsal-phalangeal joint: a systematic review. *J Foot Ankle Surg.* 2011;50(6):710-713. doi:10.1053/j.jfas.2011.06.012

32. Schlegel U, Perren SM. Surgical aspects of infection involving osteosynthesis implants: implant design and resistance to local infection. *Injury.* 2006;37(suppl 2):S67-S73. doi:10.1016/j.injury.2006.04.011

33. Sherman AE, Mehta MP, Nayak R, et al. Biologic augmentation of tibiototalcanalcal arthrodesis with allogeneic bone block is associated with high rates of fusion. *Foot Ankle Int.* 2022;43(3):353-362. doi:10.1177/10711007211041336

34. Stevens J, de Bot R, Hermus JPS, van Rhijn LW, Witlox AM. Clinical outcome following total joint replacement and arthrodesis for hallux rigidus: a systematic review. *JBJS Rev.* 2017;5(11):e2. doi:10.2106/jbjs.Rvw.17.00032

35. Urist MR. Bone: formation by autoinduction. *Science.* 1965;150(3698):893-899. doi:10.1126/science.150.3698.893

36. Wood RA, Mealey BL. Histologic comparison of healing after tooth extraction with ridge preservation using mineralized versus demineralized freeze-dried bone allograft. *J Periodontol.* 2012;83(3):329-336. doi:10.1902/jop.2011.110270

37. Yee G, Lau J. Current concepts review: hallux rigidus. *Foot Ankle Int.* 2008;29(6):637-646. doi:10.3113/fai.2008.0637