Formation of a Highly Stable Enzyme-(Primer-Template) Complex with Profoundly Diminished Catalytic Activity

Background: HIV-RT uses Mg$^{2+}$ for efficient nucleotide incorporation but is inhibited by other divalent cations. Results: Zn$^{2+}$ supports HIV-RT catalysis but with profoundly reduced kinetics. Conclusion: Zn$^{2+}$ inhibition is not due to catalysis blockage but to the formation of a highly stable, kinetically diminished complex. Significance: HIV-RT is inhibited by low Zn$^{2+}$ concentrations presenting an avenue for future drug research.

Several physiologically relevant cations including Ca$^{2+}$, Mn$^{2+}$, and Zn$^{2+}$ have been shown to inhibit HIV reverse transcriptase (RT), presumably by competitively displacing one or more Mg$^{2+}$ ions bound to RT. We analyzed the effects of Zn$^{2+}$ on reverse transcription and compared them to Ca$^{2+}$ and Mn$^{2+}$. Using nucleotide extension efficiency as a readout, Zn$^{2+}$ showed significant inhibition of reactions with 2 mM Mg$^{2+}$, even when present at only ~5 mM. Mn$^{2+}$ and Ca$^{2+}$ were also inhibitory but at higher concentrations. Both Mn$^{2+}$ and Zn$^{2+}$ (but not Ca$^{2+}$) supported RT incorporation in the absence of Mg$^{2+}$ with Mn$^{2+}$ being much more efficient. The maximum extension rates with Zn$^{2+}$, Mn$^{2+}$, and Mg$^{2+}$ were ~0.1, 1, and 3.5 nucleotides per second, respectively. Zinc supported optimal RNase H activity at ~25 μM, similar to the optimal for nucleotide addition in the presence of low dNTP concentrations. Surprisingly, processivity (average number of nucleotides incorporated in a single binding event with enzyme) during reverse transcription was comparable with Zn$^{2+}$ and Mg$^{2+}$, and single RT molecules were able to continue extension in the presence of Zn$^{2+}$ for several hours on the same template. Consistent with this result, the half-life for RT-Zn$^{2+}$-(primer-template) complexes was 220 ± 60 min and only 1.7 ± 1 min with Mg$^{2+}$, indicating ~130-fold more stable binding with Zn$^{2+}$. Essentially, the presence of Zn$^{2+}$ promotes the formation of a highly stable slowly progressing RT-(primer-template) complex.

Human immunodeficiency virus reverse transcriptase (HIV-RT) like other RTs, possess both nucleotide polymerization and ribonuclease H (RNase H, activity that degrades RNA which is part of an RNA-DNA hybrid) capabilities. Both activities require a divalent cation as an integral cofactor in the mechanism of catalysis (1, 2). Under physiological conditions Mg$^{2+}$ presumably functions as the cofactor, however other divalent cations (including Mn$^{2+}$, Ni$^{2+}$, and Cu$^{2+}$) can also be used for nucleotide catalysis (3). Some divalent cations, such as Pd$^{2+}$, Ca$^{2+}$, Mn$^{2+}$, and Zn$^{2+}$, have been shown to inhibit Mg$^{2+}$-dependent RT activity (3–7).

Magnesium binds to RT in the polymerase and RNase H domains where binding is coordinated by the acidic catalytic residues within the active sites. By analogy to other DNA polymerases, two Mg$^{2+}$ ions participate in polymerization via a universal “two metal ion” mechanism (reviewed in Ref. 8). The number of Mg$^{2+}$ ions bound at the RNase H active site is more controversial, as both one and two metal mechanisms have been proposed (reviewed in Ref. 9). In addition to the cation binding sites, other sites may also exist on the enzyme. For example, some reports suggest that as many as 21 Mg$^{2+}$ ions are bound to a single Escherichia coli DNA polymerase I molecule (10). The role, if any, of these additional cations is unclear.

Many enzymes require cation cofactors that play an intricate role in the mechanism of catalysis. In humans these typically include magnesium, calcium, iron, manganese, and zinc, cobalt, copper, selenium, and molybdenum. Note that calcium, though required to stimulate the activity of several enzymes, typically acts as an allosteric regulator involved in cell signaling rather than a cofactor in catalysis. Most enzymes that carry out catalysis on nucleic acids have evolved to use Mg$^{2+}$ as a primary cofactor. Although the majority of the ~10 mM Mg$^{2+}$ in cells is complexed with cellular components, the intracellular concentration of free available Mg$^{2+}$, typically reported to be around 2 mM or less, is still much greater than other divalent cations (11–15). Unlike Mg$^{2+}$, other cation cofactors are maintained at much lower levels in cells. The availability of these cations is carefully controlled by a combination of ion transporters, binding proteins that sequester the cations, and sequestration by cellular nucleotides and within specific cell organelles. For example, the concentration of free Zn$^{2+}$ in cells is in the low nm range despite a total concentration (free and bound) of ~0.1–0.5 mM and a plasma concentration of ~15 μM (12, 16–20). The tight regulation is required due to the ability of some cations to alter transcription and inhibit or alter the activity of several
enzymes. Zinc is particularly notable because it is important to many processes in cells and is a component of several proteins, particularly zinc finger containing proteins (16, 20, 21). In addition, Zn$^{2+}$ has recently been shown to modulate signal transduction, and like Ca$^{2+}$, serves a cellular second messenger role for specific processes (22, 23). Zinc is also a potent inhibitor of many enzymes, including several viral polymerases (5, 6, 18, 24–30). The mechanism of inhibition may take different forms including direct displacement of Mg$^{2+}$ due to higher affinity of Zn$^{2+}$ for the cation binding site, allosteric inhibition through binding to secondary sites on the enzyme, or more complex mechanisms that involve interactions with substrate or other cofactors (nucleotides or nucleic acids for example).

In this report we investigated the interaction of HIV-RT with Zn$^{2+}$ (as well as Mn$^{2+}$ and Ca$^{2+}$) to determine how it affects RT activity. The results showed that Zn$^{2+}$ supported both polymerase and RNase H activity at concentrations much lower than Mg$^{2+}$ and was a potent inhibitor of RT in the presence of Mg$^{2+}$. Surprisingly, the RT-Zn$^{2+}$-(primer-template) complex was much more stable than the same complex formed with Mg$^{2+}$. While rate of nucleotide incorporation was much slower. Overall Zn$^{2+}$ inhibits RT by forming what is essentially a "dead-end complex" that can remain bound to the primer-template for hours but has very slow incorporation kinetics. The possibility of using Zn$^{2+}$ or other cations as inhibitors of virus replication is discussed.

EXPERIMENTAL PROCEDURES

Materials—The following reagent was obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: pNL4–3 from Dr. Malcolm Martin (31). PCR primers and primers used to prime templates in reverse transcription assays were obtained from Integrated DNA Technologies, Inc. The HIV-RT clone was a generous gift from Dr. Michael Parniak (University of Pittsburg). HIV-RT was purified to homogeneity on a 425-nt RNA template derived from a 420-nt second denaturing polyacrylamide gel, located by autoradiography and recovered as described above. This material was hybridized to a DNA oligonucleotide as described below. The sequence of the recovered RNA was: 5’-GGCGGAAUUCGAGCUCGGUACCCCGGGAUCCUCUAGAGUCCAGCUGCAGCGAUAGCAAGCU-3’.

5’-End-labeling of DNA Primers for Reverse Transcription and Off-rate Determinations, and RNA Template for RNase H Assays—The reverse DNA primer (see above), DNA primer for the binding half-life determination assays (33 nt: 5’-TCCGGGTTACCGAGCTGAATTCGCCCTATAG-3’), each at a 1:1 ratio (template:primer) of 33P[ATP]. The RNA template for the RNase H assays (see above) were 5’-end-labeled using T4 polynucleotide kinase and [γ-32P]ATP using the manufacturer’s protocol and supplied buffer. The material was run through a G-25 Sephadex column to remove excess ATP.

Nucleic Acid Hybridization—Hybrids were prepared by mixing RNA (425-nt product described above) and end-labeled DNA (reverse primer from above) for reverse transcription assays at an ~1:1.5 ratio (template:primer) of 3’ termini in buffer containing 50 mM Tris-HCl (pH 8), 80 mM KCl, and 1 mM DTT. For binding half-life determination assays the end-labeled 33-nt primer described above was hybridized to a 50-nt DNA (5’-TTGTAAATACGACTACTATAGGCGAATTCCGAGCTGTTACCGGCAAGC-3’) and for RNase H assays, the end-labeled 60-nt RNA was hybridized to a 23-nt DNA (5’-AGATCCCCGGTAACCCGATGC-3’), each at a 1:1 ratio. For all hybrids, the mixtures were heated to 65 °C for 5 min, and then cooled slowly to room temperature.

Reverse Transcriptase Primer Extension Assay—Hybridized primer-template was incubated in 21 µl of buffer containing 50 mM Tris-HCl (pH 8.0), 80 mM KCl, 1 mM DTT, 100 µM each
dNTP (final concentration, unless otherwise noted), 0.2 units/µl RNase inhibitor, and varying concentrations of ZnCl₂, MnCl₂, CaCl₂, or MgCl₂ (as indicated in legends). Following a 3 min pre-incubation at 37 °C, 4 µl of RT (final concentration of 25 nM) was added to begin extension. The final template concentration was 5 nM in the 25-µl reactions. The reactions were stopped by addition of 2× loading buffer (90% formamide, 10 mM EDTA (pH 8.0), and 0.025% bromphenol blue and xylene cyanol) at the indicated times. Samples were separated on 6 or 8% denaturing urea gels (7 M urea, 19:1 acrylamide:bis-acrylamide), dried, and imaged using a Fujifilm FLA-5100 or FLA-7000.

RNase H Assays—Hybridized RNA-DNA from above (25 nM final concentration) was incubated in 21 µl of buffer containing 50 mM Tris-HCl (pH 8.0), 80 mM KCl, 1 mM DTT, 0.2 units/µl RNase inhibitor, and various concentrations of MgCl₂ or ZnCl₂ (as indicated in the legend to Fig. 5). A 3-min preincubation at 37 °C was followed by addition of 4 µl of HIV-RT (10 nM final concentration), and incubation was continued for 5 min (unless otherwise indicated). Products were resolved on 10% denaturing gels as described below.

Asays to Determine RT-Substrate Binding Half-lives and Equilibrium Dissociation Constants (K_d)—Half-life and K_d determination assays for reactions with RT and ZnCl₂, MnCl₂, or MgCl₂ were performed as described previously (34). A DNA-DNA primer-template was used: primer: 5′-TCCCGCGGTA-CCGAGCTCGAATTTCCTATAG-3′; template: 5′-TTGTAATACGACTCAGTATAGGGCGAATTCGAGCTCGGT-ACCAGGGGATC-3′.

Processivity Assays—Processivity assays were conducted using the conditions stated above under “Reverse Transcriptase Primer Extension Assay” with the following modifications: 1) the volume of the preincubation reaction was 50 µl; 2) divalent cations and dNTPs were not included in the preincubation step; 3) RT (50 nM final concentration) was included in the preincubation step; 4) reactions were initiated by the addition of a 10 µl solution containing a divalent cation (final concentration 400 µM or 2 mM for ZnCl₂ and MgCl₂, resp.); dNTPs (final concentration 100 µM each) and poly(rA)-oligo(dT) (final concentration 0.4 µg/µl) in 50 mM Tris-HCl (pH 8), 80 mM KCl, 1 mM DTT. 5-µl aliquots were removed at the indicated times (Fig. 6), and reactions were terminated with 5 µl of 2× loading buffer (see above). Samples were run on a 6% denaturing gel as stated above. The addition of poly(rA)-oligo(dT) limits synthesis to preformed complexes of RT-(primer-template) and further limits synthesis to a single processive cycle (35). Poly(rA)-oligo(dT) used in the reactions was prepared by mixing oligo (dT₅₀) with poly(rA) at a 1:8 ratio (w/w) in 10 mM Tris-HCl (pH 7.5). The mixture was incubated for 10 min at 37 °C and slow cooled to room temperature.

Determination of Average Extension Rate—Average extension rates for reactions with 400 µM ZnCl₂ or 2 mM MgCl₂ were determined using results from the reverse transcription primer extension assays and the Fuji MultiGauge software (version 3.0) on the FLA-5100 or FLA-7000 and the molecular weight determination program. 30 and 1 min reaction times were used for ZnCl₂ and MgCl₂ reactions, respectively. At these time points, products had not reached the end of the template. The average extension rate was estimated by calculating the size in nts of each band on the gel (s) and subtracting the primer length (20 nt), then using the imager to determine the relative proportion (with the total being set to 1) of the total extended primers to which each band corresponded (y). The band’s contribution to the average extension rate can be represented by the following equation: (∑(s-20)×y)/t (Eq. 1).

As an example, if a 60-s reaction produced 4 extension product bands of sizes 30, 40, 60, and 80 nts that were of equal intensity then the average extension rate would be [(30–20) × 0.25 + (40 – 20) × 0.25 + (60 – 20) × 0.25 + (80 – 20) × 0.25]/60, which equals 32.5 nt/s.

Gel Electrophoresis—Denaturing polyacrylamide gels (19:1 acrylamide:bis-acrylamide, respectively), were prepared and subjected to electrophoresis as described (33).

RESULTS

Zn²⁺ Potently Inhibits HIV-RT Catalysis in the Presence of Mg²⁺—Although Zn²⁺ has been shown to inhibit HIV-RT activity, the mechanism and nature of the inhibition have not been investigated. To investigate this, primer-directed reverse transcription was performed using a 425-nt RNA template derived from the gag-pol region of the HIV genome primed with a 20-nt 5’T²³²P end-labeled DNA primer (Fig. 1A). Full extension of the primer to the end of the template produced a 425 nt DNA product (as indicated in Fig. 1B). In these experiments, reactions were performed using 100 µM of each dNTP. Control reactions performed in the absence of Mg²⁺ with ZnCl₂ (lanes 2 and 3; 1 and 30 min, resp.) and ZnSO₄ (lanes 4 and 5, 1 and 30 min, resp.) at 400 µM each showed synthesis with Zn²⁺ under optimal conditions (see Fig. 3). Both ZnCl₂ and ZnSO₄ gave comparable results, and the former was used for all other experiments. Other reactions were performed for 1 or 30 min (as indicated) with 2 mM MgCl₂ (optimal for extension rate (see Fig. 4) in the absence (O) or in the presence of increasing amounts of ZnCl₂. Even very small amounts of Zn²⁺ (0.5–2 µM, first 3 lanes following the Zn²⁺-free reaction) had a detectable effect on the rate of nucleotide addition (based on results with 1 min reactions) to the primer and a more dramatic effect was observed at 5 µM, even thought the ratio of Mg²⁺: Zn²⁺ was 400:1 at this concentration. Severe inhibition was observed between 25 and 800 µM Zn²⁺. Both the maximum length of extension products and the extent of RT pausing were altered in the presence of Zn²⁺ with the former decreasing and the latter increasing. Reactions performed for 30 min indicated that the inhibition caused by low amounts of Zn²⁺ (0.5–25 µM) did not prevent the production of fully extended products although the quantity of those products was reduced at the expense of more intense pausing. The profile of synthesis in the presence of 2 mM Mg²⁺ plus 400 µM Zn²⁺ compared to 400 µM Zn²⁺ alone (lanes 3 and 5) were similar, suggesting that these reactions were being driven almost solely by Zn²⁺.
Mechanism of HIV-RT Inhibition by Zinc

FIGURE 1. Reverse transcription with 2 mM Mg$^{2+}$ and increasing Zn$^{2+}$ concentrations. A, schematic representation of the primer-template used for assays. Numbers indicate size in nts. B, primers labeled at 5'-end were hybridized to the RNA template and reactions were performed in the presence of 2 mM MgCl$_2$ and increasing concentrations of ZnCl$_2$. Reactions were stopped after 1 min or 30 min as indicated and electrophoresed on a 8% denaturing gel. The concentration of ZnCl$_2$ in reactions was 0.5, 1, 2, 5, 25, 100, 400, 800 μM. Lane M, size marker in nts as indicated; lane 1, no enzyme; lane 2 and 3, 400 μM ZnCl$_2$ with no MgCl$_2$ for 1 and 30 min, resp.; lanes 4 and 5, 400 μM ZnSO$_4$ with no MgCl$_2$ for 1 and 30 min, resp.; lane Ø, 2 mM MgCl$_2$ with no ZnCl$_2$. Positions of the 20 nt primer and full extension products are indicated.

Zn$^{2+}$ Is a More Potent Inhibitor of HIV-RT than Ca$^{2+}$ and Mn$^{2+}$—Both Ca$^{2+}$ and Mn$^{2+}$ have also been shown to inhibit HIV-RT (see Introduction). These physiologically relevant divalent cations were compared with Zn$^{2+}$ in an inhibition assay in the presence of 2 mM Mg$^{2+}$ as described above but in 2 min reactions (Fig. 2). The Zn$^{2+}$, Ca$^{2+}$, and Mn$^{2+}$ were at 0, 7.8, 31, 125, 500, and 2000 μM. All three cations inhibited extension but Zn$^{2+}$ was much more potent than the other two. The length of the longest extended products had decreased by ~50% in the presence of just 7.8 μM Zn$^{2+}$ while ~500 μM Ca$^{2+}$ or Mn$^{2+}$ was required to observe the same inhibition. In general, inhibition of extension was accompanied by an increase in pausing rather than a decrease in the amount of total primers that were extended. At the higher concentrations some decrease in total primer extension was also observed. This was especially evident at 2000 μM in reactions with Zn$^{2+}$ and Mn$^{2+}$.

Zn$^{2+}$ Supports Nucleotide Addition by HIV-RT and the Optimal Concentration Is Dependent on dNTP Concentrations—Reactions performed in the absence of Mg$^{2+}$ showed that Zn$^{2+}$ supports RT synthesis at a highly reduced incorporation rate (Fig. 3). Even at 5 μM in these 30 min reactions some extension of the primer was observed at all dNTP concentrations, indicat-

FIGURE 2. Inhibition of reverse transcription with 2 mM Mg$^{2+}$ by increasing concentrations of Zn$^{2+}$, Ca$^{2+}$, and Mn$^{2+}$. Reactions were performed on the primer-template shown in Fig. 1A for 2 min with 2 mM MgCl$_2$ and increasing concentrations of the indicated divalent cation (all chloride salts) as follows: 7.8, 31, 125, 500, and 2000 μM. Lanes and markings are as indicated in Fig. 1B with the exception of the -E lane that corresponds to no enzyme added.

ing that Zn$^{2+}$ binds with high affinity to RT. The maximum rate of nucleotide incorporation was observed at 400 μM Zn$^{2+}$ when 100 μM equimolar dNTPs (400 μM total) were used. An assay performed with a homologous DNA template yielded the same optimal concentration and similar profile with respect to extension rate versus the concentration of Zn$^{2+}$ (data not shown). Because nucleotides can chelate divalent cations (36) and Zn$^{2+}$ catalyzed synthesis peaks at a low concentration, the optimal determined with higher dNTP concentration is unlikely to reflect the actual affinity of Zn$^{2+}$ for RT, as most Zn$^{2+}$ would be complexed with nucleotides under these conditions. Reactions performed with 10 or 1 μM dNTP concentrations were optimal at ~100 and ~25 μM Zn$^{2+}$, respectively. There was a decline in extension length with lower dNTP concentrations indicating that the Zn$^{2+}$ catalyzed reactions require high nucleotide concentrations to proceed at a maximal rate. Overall the results with the lowest dNTP concentration (1 μM) where very little Zn$^{2+}$ is sequestered indicated that HIV-RT has a very high affinity for Zn$^{2+}$. For comparison purposes, a titration with Mg$^{2+}$ and Mn$^{2+}$ (Ca$^{2+}$ showed no catalytic activity at any concentrations tested (data not shown)) at 100 μM dNTPs was conducted (3 min reactions in each case) (Fig. 4). Like Zn$^{2+}$, Mn$^{2+}$ showed optimal synthesis at a low concentration (~250 μM) indicating a very high affinity for RT as most of the free Mn$^{2+}$ would have been otherwise chelated under these conditions.
Mechanism of HIV-RT Inhibition by Zinc

This is consistent with previous results indicating that there is at least one high affinity binding site for Mn$^{2+}$ on RT (4). In contrast, Mg$^{2+}$ demonstrated a broad activity peak with an optimal at 2 mM. Some synthesis with Mn$^{2+}$ was observed all the way down to 3.9 μM while synthesis with Mg$^{2+}$ was first observed at 31 μM. At 2 mM Mg$^{2+}$ and 400 μM total dNTPs the free concentration of Mn$^{2+}$ in the reactions would be about ~1.6 mM (36) indicating a much higher concentration optimum than Zn$^{2+}$ or Mn$^{2+}$. These results are consistent with Zn$^{2+}$ showing strong inhibition of reactions with Mg$^{2+}$ even when present at concentrations that were ~100-fold lower than Mg$^{2+}$ (Figs. 1 and 2). Inhibition by Mn$^{2+}$ appeared less potent even though it apparently binds RT as tightly as Zn$^{2+}$. This probably resulted from the much more efficient synthesis of HIV-RT in the presence of Mn$^{2+}$ compared with Zn$^{2+}$. For example, the maximum extension rate for reactions performed under optimal conditions (100 μM dNTPs with 2 mM, 400 μM, and 250 μM divalent cation, for Mg$^{2+}$, Zn$^{2+}$, and Mn$^{2+}$, respectively) was determined by calculating the lengths of the longest products in reactions that had not proceeded to the end of the template, and dividing by the reaction time in seconds. Values of 3.5, 1, and 0.1 nt/s were determined for Mg$^{2+}$, Mn$^{2+}$, and Zn$^{2+}$, respectively.

Interactions of divalent cations with the structured heteropolymeric template may have played a role in the differential catalysis rates. To test this, extension rates for Mg$^{2+}$ and Zn$^{2+}$ were also measured on an unstructured oligo(dT)-primed poly(rA) template (see supplemental data). The maximum rate of nucleotide incorporation was ~25 nts/s and ~1 nt/s, with 2 mM Mg$^{2+}$ and 400 μM Zn$^{2+}$, respectively. Both rates are much faster than with the structured heteropolymeric template, as expected. However, Zn$^{2+}$ still leads to a much slower extension rate indicating that Zn$^{2+}$ interactions with RT, not with secondary structures, are the likely cause of the slow incorporation.

An additional control was also performed in these assays and is shown in lane 2 of Fig. 4 and lane 2 of Fig. 5B. In these assays RT was incubated with the substrate but divalent cation was omitted from the reactions. Depending on the purification procedures, small amounts of divalent cation can co-purify with enzymes. This could lead to low levels of activity in reactions performed in the absence of additional divalent cation. No activity was observed when divalent cation was omitted from the reactions indicating that both polymerase (Fig. 4) and RNase H (Fig. 5B) activity are dependent on the addition of divalent cation.

Zn$^{2+}$ Supports the RNase H Activity of HIV-RT at Concentrations Similar to Those Observed for Nucleotide Extension—An RNase H assay was performed for 5 min in the presence of various concentrations of Zn$^{2+}$ (Fig. 5B). These results were compared with 5 s reactions with 2 mM Mg$^{2+}$ (lane 4) to see initial cleavage events, and 5 min reactions (lane 5) to observe further processing. Optimal cleavage with Zn$^{2+}$ occurred at ~25 μM Zn$^{2+}$, comparable to the optimal observed for dNTP incorporation with low dNTP concentrations (Fig. 3). Both Zn$^{2+}$ and Mg$^{2+}$ yielded a similar cleavage profile indicating that cleavage specificity and position are the same for both cations. At higher Zn$^{2+}$ concentrations, cleavage was both

FIGURE 3. Reverse transcription with Zn$^{2+}$ alone and various dNTP concentrations. Reactions were performed on the primer-template shown in Fig. 1A for 30 min with increasing concentrations of ZnCl$_2$ as follows: 5, 10, 25, 100, 200, 400, 800, 1500, and 3000 μM. The concentration of each of the 4 equimolar dNTPs in the reactions is noted above the lanes. Lane M, refer to Fig. 18; lane 1, 30 min reaction with 2 mM MgCl$_2$ and 100 μM dNTPs; lane 2, reaction with no enzyme. Other markings are as indicated in Fig. 18.

FIGURE 4. Reverse transcription with various concentrations of Mg$^{2+}$ and Mn$^{2+}$. Reactions were performed on the primer-template shown in Fig. 1A for 3 min with 100 μM each dNTP and increasing concentrations of MgCl$_2$ or MnCl$_2$ as follows: 3.9, 7.8, 15.6, 31.3, 62.5, 125, 250, and 500 μM, followed by 1, 2, 4, 8, and 16 mM. Lane M, refer to Fig. 1B; lane 1, no enzyme; lane 2, enzyme without additional divalent cation. Lanes where optimal synthesis occurred are denoted on the figure with an arrow. Other markings are as indicated in Fig. 18.
Mechanism of HIV-RT Inhibition by Zinc

inhibited and shifted toward smaller products. This may have resulted from a change in the cleavage specificity or more rapid processing of initial cleavage products at higher concentrations.

FIGURE 5. RNase H digestion with HIV-RT in the presence of varying concentrations of Zn$^{2+}$. A, schematic diagram of the primer-template. A 5'-labeled 60 nt RNA is hybridized to a 23 nt DNA primer. B, in order, control lanes refer to: 1) no enzyme, 2) enzyme without additional divalent cation, and 3) E. coli RNase H digestion of substrate. Lanes labeled 4 and 5 contain 2 mM MgCl$_2$ and no ZnCl$_2$. Lane 4 was digested for 5 s, all other lanes are 5-min digests. Zn$^{2+}$ concentrations were 2, 5, 10, 25, 100, 200, 400, 800, and 1200 µM. The concentration for optimal RNase H activity is noted with an arrow. Positions of uncut 60 nt RNA and cleavage products are indicated. Lane M, refer to Fig. 18.

FIGURE 6. HIV-RT processivity with Mg$^{2+}$ and Zn$^{2+}$. Extension with 2 mM MgCl$_2$ or 400 µM ZnCl$_2$ was performed with the primer-template in Fig. 1A and in the presence of a non-radiolabeled poly(rA)-oligo(dT) trap which limits primer extension to a single binding event between RT and the primer-template. Lane 1, no enzyme; lane 2, trap control: enzyme was mixed with the trap then incubated with primer-template in standard reaction conditions for 16 min or 4 h for Mg$^{2+}$ and Zn$^{2+}$ reactions, resp.; lane 3, primer extension in the absence of trap for 16 min or 4 h for Mg$^{2+}$ and Zn$^{2+}$ reactions, respectively. Time points for trap reactions with MgCl$_2$ were 30s, 1, 2, 4, 8, and 16 min, and for ZnCl$_2$, 15 and 30 min, followed by 1, 2, 3, and 4 h. Refer to Fig. 18 for other markings.

HIV-RT Forms a Very Stable Catalytically Competent Complex with Primer-Template in the Presence of Zn$^{2+}$ That Transverses the Template Slowly but Can Remain Associated for Hours—Because the extension rate of RT was ~35 times greater in the presence of Mg$^{2+}$ compared with Zn$^{2+}$ (see above), it was reasonable to assume that processivity (average numbers of nucleotides added to the primer in a single binding event between RT and the substrate) would be much greater with Mg$^{2+}$. Surprisingly, this was not the case. Reactions to test processivity were performed on the primer-template shown in Fig. 1A by pre-binding RT to the preformed primer-template then adding dNTPs and divalent cation along with an excess of poly(rA)-oligo(dT) to sequester enzymes that were not bound to or had dissociated from the primer-template. This limits synthesis to a single binding event between the enzyme and substrate (37). Reactions with 2 mM Mg$^{2+}$ (left panel, Fig. 6) showed the expected profile. Primers were extended at a maximum rate of ~3.5 nt/s with some extension products reaching the end of the 425 nt template by 2 min and more by 4 min. The extension profile of reactions performed for 8 and 16 min looked very similar to those performed for 4 min indicating that the single round of enzyme extension was essentially complete in 4 min. In contrast, the first time point shown for the reactions with 400 µM Zn$^{2+}$ was 15 min. In this case reactions proceeded at the expected ~0.1 nt/s and some products reached the end of the template by about 1 h. Fully extended products continued to accumulate even up to the final 4 h time point, although there was just a small increase between 3 and 4 h and those profiles looked very similar. It was remarkable that single enzyme molecules could stay associated with a single template for hours.

To test the stability of the enzyme-substrate complexes further, the half-life ($t_{1/2}$) of RT for binding to a DNA-DNA primer-
Mechanism of HIV-RT Inhibition by Zinc

template was determined in the presence of Zn$^{2+}$, Mn$^{2+}$, and Mg$^{2+}$ (Fig. 7A). This experiment required the use of DNA-DNA since off-rates in the presence of divalent cation cannot be easily measured with RNA-DNA except with RNase H mutant enzymes. Remarkably, complexes with Zn$^{2+}$ and Mn$^{2+}$ were \sim130 ($t_{1/2} = 220 \pm 60$ min) and \sim45 ($t_{1/2} = 77 \pm 1$ min) times more stable than those with Mg$^{2+}$ ($t_{1/2} = 1.7 \pm 1.0$ min). This is consistent with the ability of single enzyme molecules to remain bound to the template for such a long time in the processivity experiments (Fig. 6). Equilibrium binding constants (K_a) in the presence of Zn$^{2+}$ and Mg$^{2+}$ were also measured on the same primer-template (Fig. 7B). Consistent with the slower off-rate (k_{off}) for Zn$^{2+}$-RT complexes, the K_a was smaller in the presence of Zn$^{2+}$ versus Mg$^{2+}$ (0.79 \pm 0.13 versus 2.9 \pm 0.1 nm, respectively), indicating higher affinity binding with Zn$^{2+}$. However, the difference was only \sim3.5-fold as compared with the \sim130-fold difference for k_{off}. This indicates that Zn$^{2+}$ also lowers the on-rate (k_{on}) for RT. It is important to note that the dramatic differences in $t_{1/2}$ observed with DNA-DNA only provide a qualitative comparison between affinity differences that may occur during DNA synthesis on an RNA template or even a DNA template (see “Discussion”). Still the results clearly suggest that Zn$^{2+}$ and Mn$^{2+}$ lead to more stable RT-(primer-template) complexes in comparison to the natural divalent cation, Mg$^{2+}$.

Other Viral RTs from AMV and MuLV as Well As an RNase H HIV Mutant (HIV-RTE478Q) Can Also Use Zn$^{2+}$ for Nucleotide Incorporation—Nucleotide incorporation was also tested with three other RTs including an RNase H minus form of HIV-RT (HIV-RTE478Q) and two other viral RTs, AMV-, and MuLV-RT. Not only did all 3 RTs show activity, but peak activity occurred at \sim400 μM Zn$^{2+}$ in all cases (assay were with 400 μM total dNTPs). The similar results likely derive from common active site architecture in these closely related RTs.

DISCUSSION

Like Ca$^{2+}$ and Mn$^{2+}$, previous reports have also shown that Zn$^{2+}$ inhibits HIV-RT nucleotide incorporation in the presence of Mg$^{2+}$ (see Introduction). The mechanism of inhibition has been best studied using Mn$^{2+}$. Bolton et al. (4) have proposed that Mn$^{2+}$ inhibits HIV-RT by binding with high affinity and displacing Mg$^{2+}$ at one of two proposed divalent cation binding sites near the polymerase active site. The authors propose that the two sites do not equally affect catalysis and the site that Mn$^{2+}$ binds tightly to is dominant. Therefore, even if the second site is occupied by Mg$^{2+}$, RT reverts to a Mn$^{2+}$ catalysis mode similar to what is observed in the presence of Mn$^{2+}$ alone. This mode is much less efficient with respect to the rate of incorporation. The model is supported by mutational analysis as well as the observance of two divalent cations in the polymerase domain of HIV-RT in some crystals (38). Interestingly, TY1 retrotransposon mutants that could overcome Mn$^{2+}$ inhibition mapped not to the polymerase but to the RNase H domain (39). This led the authors to propose a model where mutations in the RNase H domain could influence polymerization through allosteric effects. The fact that mutations in the polymerase domain conferring resistance were not found does not necessarily mean that this domain is uninvolved in the observed inhibition by Mn$^{2+}$. It is possible that mutations that alter Zn$^{2+}$ binding may have a severe impact on RT activity and are therefore not selected.

The model proposed for Mn$^{2+}$ is consistent with what was observed for Zn$^{2+}$ in the current experiments, although our findings do not necessarily support this model versus a simpler model where Zn$^{2+}$ or Mn$^{2+}$ (or even Ca$^{2+}$) simply displace Mg$^{2+}$ from one or more binding site in the polymerase domain that control catalysis. What was clear from the current results is that Zn$^{2+}$ is a more potent inhibitor of Mg$^{2+}$ catalysis than Mn$^{2+}$ or Ca$^{2+}$, as it is required at a lower concentration to inhibit extension (Fig. 2). This is probably not due to a higher affinity of Zn$^{2+}$ for RT as the optimal concentrations for Zn$^{2+}$ and Mn$^{2+}$ catalysis in the absence of Mg$^{2+}$ were comparable (\sim400 μM and 250 μM for Zn$^{2+}$ and Mn$^{2+}$, resp., in the presence of 400 μM total dNTPs). Primer extension in the presence of Mn$^{2+}$ was, however, much more efficient than with Zn$^{2+}$ (Figs. 1 and 4, note time difference in reactions). The ability of polymerases to use Mn$^{2+}$ in place of Mg$^{2+}$ in vitro has been well

FIGURE 7. A, representative plot of RT-(primer-template) complex binding stability in the presence of Mg$^{2+}$, Mn$^{2+}$, and Zn$^{2+}$. Half-lives are indicated with their respective curves. Results are an average of 3 exp. \pm standard deviations. B, representative plot of bound RT (nM, determined by extension) versus [HIV-RT] (nM) used to determine the K_a values in the presence of Zn$^{2+}$ or Mg$^{2+}$. Experiments were performed as described under “Experimental Procedures.”
Mechanism of HIV-RT Inhibition by Zinc

documented and some polymerases function as well or even better with Mn$^{2+}$, although it tends toward lower polymerase fidelity (8). Because experiments reported here essentially evaluated polymerization efficiency by the rate of extension and the length of the products that were produced, the greater inhibition of Mg$^{2+}$ catalysis by Zn$^{2+}$ probably resulted from Zn$^{2+}$ producing a more catalytically deficient enzyme. In contrast to Zn$^{2+}$ and Mn$^{2+}$, no catalysis was observed with Ca$^{2+}$, while the level of inhibition of Mg$^{2+}$ catalysis was similar to Mn$^{2+}$. The inability of RT to use Ca$^{2+}$ for catalysis is not surprising as it is not typically a cofactor in catalysis for enzymes (see Introduction). Specific properties of Ca$^{2+}$, which differ markedly from Mg$^{2+}$, make it a poor candidate for nucleotide catalysis by polymerases (discussed in Ref. 40). Ca$^{2+}$ is also known to inhibit other DNA polymerases (41) and has been used to help stabilize crystal structures of some polymerases by prevent catalysis during crystal formation. Some crystals made with Ca$^{2+}$ show this ion bound at the pol active site suggesting that it could inhibit polymerization by displacing Mg$^{2+}$. One polymerase, Sulfolobus solfataricus DNA polymerase, has been reported to be able to use Ca$^{2+}$ for nucleotide polymerization, though less efficiently than Mg$^{2+}$ (42).

Because RNase H catalyzed cleavage of the RNA-DNA hybrid was observed in the presence of Zn$^{2+}$ alone, it was clear that this cation can bind to the RNase H active site and stimulate cleavage in a manner similar to Mn$^{2+}$ (39). Also notable was the \sim10–25 μM Zn$^{2+}$ optimal for cleavage (Fig. 5), which was very close to the optimal concentration of Zn$^{2+}$ for polymerization in the presence of low (1 μM) concentrations of dNTPs (Fig. 3). This suggests that the affinity for Zn$^{2+}$ at the catalytic binding sites in the polymerase and RNase H domains are similar, and that Zn$^{2+}$ binds with greater affinity at these sites than Mg$^{2+}$ which requires much higher concentrations for optimal activity (Fig. 4). Interestingly, all the RTs that were tested including HIV, HIV-E478Q, AMV, and MIVL showed similar optimal Zn$^{2+}$ concentrations for nucleotide incorporation. This suggests that the active sites of these RTs have similar affinity for Zn$^{2+}$.

HIV-RT E478Q is a commonly used enzyme for studying polymerization properties in the absence of RNase H activity. The glutamic acid to glutamine mutation in the RNase H active site abrogates RNase H activity and also disrupts a divalent cation binding site in the RNase H domain. This enzyme has polymerization properties that essentially mimic wild type enzyme, although it does have altered binding characteristics to primer-template in the absence or at low concentrations of Mg$^{2+}$ (43, 44). Polymerization with HIV-RT E478Q occurred in the presence of Zn$^{2+}$ with a concentration optimum and profile that was similar to wild type RT (Fig. 8). Inhibition of catalysis in the presence of Mg$^{2+}$ by Zn$^{2+}$ essentially mimicked that in the wild type enzyme (data not shown). Overall the results suggest that the mutation in the RNase H domain had no effect and an allosteric interaction of the type reported for TY1 RT (see above) was not observed. It is important to note that although the E478Q mutation would presumably alter divalent cation binding in the RNase H domain, it is not clear how it would be changed and if the mutation would abrogate the binding of one or more cations. Therefore the results do not rule out potential allosteric interactions of the type proposed by others.

The dramatic increase (>100-fold) in the stability of RT-Zn$^{2+}$-(primer-template) compared with RT-Mg$^{2+}$-(primer-template) complexes was surprising. Importantly, the method for measuring dissociation did not directly reflect dissociation that occurs during active DNA synthesis. No dNTPs were present and the polymerase was not cycling thorough the various phases of nucleotide incorporation (primer-template binding, nucleotide binding, catalysis, and translocation, then dissociation). Each of these phases may have different dissociation rates. Reports have also shown that binding of RT to nucleotides can stabilize binding (45). Finally, DNA-DNA primer-templates were used in the off-rate experiments as RNA-DNA cannot be used since it is degraded by RNase H activity in the presence of divalent cation. Experiments have shown that in the presence of Mg$^{2+}$, HIV-RT binds more stably to both RNA-DNA and DNA-DNA (43), so the results may under-represent the stability of Mg$^{2+}$ complexes. Processivity measurements can be used as an indicator of dissociation during active synthesis although they cannot be used to directly calculate a dissociation rate. The processivity is dependent on several factors including the sequence/structure and type (RNA or DNA) of nucleic acid used, as well as the polymerase dissociation and incorporation rates. Processivity was greater in the presence of Mg$^{2+}$ than with Zn$^{2+}$ as the average length of extended products was clearly greater with Mg$^{2+}$, but the difference was relatively small considering that RT incorporated nucleotides about 35 times more rapidly in the presence of Mg$^{2+}$. This large difference in incorporation rate is compensated by very stable binding in the presence of Zn$^{2+}$. With
Mechanism of HIV-RT Inhibition by Zinc

Zn\(^{2+}\), RT molecules were able to remain bound to the primer-template for hours even though nucleotides were being added to the primer at a maximal rate of ~1 every 10 s and at an average rate that was much less than this (see "Results" and Fig. 7). This essentially means that polymerases stalled for long periods of time after each nucleotide addition but did not dissociate from the template. In contrast, extension with Mg\(^{2+}\) was essentially complete after 4 min as paused products remained stable and the level of fully extended primers did not change beyond this time point. Overall the processivity experiment supports the results from the off-rate experiments and indicates that the RT-Zn\(^{2+}\)–(primer-template) complex is extremely stable. The reason for this high stability is unclear. Differing affects of the divalent cations on the template structure cannot be ignored as contributing factors and also the lower concentration of divalent cation that was used in the Zn\(^{2+}\) versus Mg\(^{2+}\) experiments may have had some effect. Still, these would not be expected to account for the greater than 100-fold difference in off-rates. Interestingly, RT-Mn\(^{2+}\)–(primer-template) complexes were also more stable than those formed with Mg\(^{2+}\), though to a lesser extent (Fig. 7). Likewise, Mn\(^{2+}\) also reduced the rate of nucleotide incorporation, again to a lesser extent than Zn\(^{2+}\). This brings about the possibility that these cations may stabilize a particular confirmation of RT that is conducive to tight binding but not fast incorporation kinetics, or that they stabilize a tight binding confirmation and slower catalysis occurs because of relatively poor chemistry compared with Mg\(^{2+}\) (8). For example, they could promote the “productive” versus “nonproductive” RT confirmation postulated by Whörl et al. (46), the former of which is proposed to be more stable.

In conclusion, Zn\(^{2+}\) inhibits HIV-RT synthesis not by directly stopping catalysis, but by forming a highly stable complex that has very slow incorporation kinetics. The RT-Zn\(^{2+}\)–(primer-template) complex can be thought of as a “dead-end complex” since it ties up RT-potentially for hours, in a complex that is from a kinetic perspective, minimally productive. HIV-RT apparently has higher affinity for Zn\(^{2+}\) (and Mn\(^{2+}\) and Ca\(^{2+}\) also) than Mg\(^{2+}\) at one or more of the divalent cation binding sites. Therefore, relatively low concentrations of Zn\(^{2+}\) can inhibit RT extension in the presence of much higher concentrations of Mg\(^{2+}\). Since Zn\(^{2+}\) has relatively low toxicity (47) and can inhibit RT extension at low concentrations (just a few \(\mu\)M was required to slow extension in the presence of 2 mM Mg\(^{2+}\); Fig. 1), it could, at least in theory, be useful for slowing viral replication and zinc-based compounds present an opportunity to exploit a weakness in HIV that might present a novel avenue for future drug development. However the possibility of using supplements or natural minerals including Zn\(^{2+}\) must be approached with caution. Even though Zn\(^{2+}\) can inhibit RT at low \(\mu\)M concentrations that are lower than the level of total Zn\(^{2+}\) in cells and plasma, they are still ~2–3 orders of magnitude greater than the level of free available Zn\(^{2+}\) in cells (see Introduction). In addition, obtaining low \(\mu\)M levels inside cells would likely require much higher levels in the bloodstream unless there was a specific delivery mechanism. Finally, \(\mu\)M concentrations of free Zn\(^{2+}\) in cells would almost certainly have profound effects on the transcription of specific genes, the oxidation state of cells, and general heath (see Introduction and Ref. 47). Despite these hurdles, the work described in this report could help set the stage for further investigations with other cations or cation combinations that may be more specific for HIV-RT.

Acknowledgments—We thank Dr. Stuart LeGrice of the HIV Drug Resistance Program for HIV-RT\(^{478-80}\), Dr. Michael Parniak of the University of Pittsburg for the wild HIV-RT clone, and Dr. Malcolm Martin and the NIH AIDS Research and Reference Reagent Program for plasmid pNL4-3.

REFERENCES

1. Herschhorn, A., and Hizi, A. (2010) Cell Mol. Life Sci. 67, 2717–2747
2. Goff, S. P. (1990) J. Acquir. Immune Defic. Syndr. 3, 817–831
3. Filler, A. G., and Lever, A. M. (1997) AIDS Res. Hum. Retroviruses 13, 291–299
4. Bolton, E. C., Mildvan, A. S., and Boeke, J. D. (2002) Mol. Cell 9, 879–889
5. Levinson, W., Faras, A., Woodson, B., Jackson, J., and Bishop, J. M. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 164–168
6. Palan, P. R., and Eidinoff, M. L. (1978) Mol. Cell Biochem. 21, 67–69
7. Tan, C. K., Zhang, J., Li, Z. Y., Tarpley, W. G., Downey, K. M., and So, A. G. (1991) Biochemistry 30, 2651–2655
8. Johnson, K. A. (2010) Biochim. Biophys. Acta 1804, 1041–1048
9. Schultz, S. J., and Champoux, J. J. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 15224–15229
10. Mullen, G. P., Serpersu, E. H., Ferrin, L. J., Loeb, L. A., and Mildvan, A. S. (1990) J. Biol. Chem. 265, 14327–14334
11. Maguire, M. E., and Cowan, J. A. (2002) Biochem. Pharmacol. 63, 203–210
12. Slaby, I., Lind, B., and Holmgren, A. (1984) J. Biol. Chem. 259, 1450–1455
13. Brewer, G. J., Aster, J. C., Knutsen, C. A., and Kruckeberg, W. C. (1979) J. Biol. Chem. 254, 11671–11676
14. Delva, P., Pastori, C., Degan, M., Montesi, G., and Lechi, A. (2004) J. Membr. Biol. 199, 163–171
15. Wang, S., McDonnell, E. H., Sedor, F. A., and Toftfatto, J. G. (2002) Arch. Pathol. Lab. Med. 126, 947–950
16. Cousins, R. J., Liuzzi, J. P., and Lichten, L. A. (2006) J. Biol. Chem. 281, 24085–24089
17. Yamashita, S., Kaisho, T., Akira, S., Murakami, M., and Hirano, T. (2006) J. Cell Biochem. 95, 1817–1831
18. Honscheid, A., Dubben, S., Kinkler, K., Rink, L., and Haase, H. (2010) J. Leukoc. Biol. 87, 833–844
19. Honscheid, A., Dubben, S., Rink, L., and Haase, H. (2011) J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2010.10.007
20. Valentine, L. B., and Falchuk, K. H. (1993) Physiol. Rev. 73, 79–118
21. Eide, D. J. (2006) Biochim. Biophys. Acta 1763, 711–722
22. Bloom, J. E. (1992) Annu. Rev. Biochem. 61, 897–946
23. Kitamura, H., Morikawa, H., Kamon, H., Iguchi, M., Hojyo, S., Fukuda, T., Yamashita, S., Kaisho, T., Akira, S., Murakami, M., and Hirano, T. (2006) Nat. Immunol. 7, 971–977
24. Yamaseki, S., Sakata-Sogawa, K., Hasegawa, A., Suzuki, T., Kabu, K., Sato, E., Kurotasaki, T., Yamashita, S., Tokunaga, M., Nishida, K., and Hirano, T. (2007) J. Cell Biol. 177, 677–685
25. Brewer, G. J., Aster, J. C., Knutsen, C. A., and Krueckberg, W. C. (1979) Am. J. Hematol. 7, 53–60
26. Fridlender, B., Chejanovsky, N., and Becker, Y. (1978) Virology 84, 551–554
27. Iouz, Z., Kaidanovich, O., Guvirtz, D., and Eldar-Finkelman, H. (2002) Biochem. Biophys. Res. Commun. 295, 102–106
28. Slaby, I., Lind, B., and Holmgren, A. (1984) Biochem. Biophys. Res. Commun. 122, 1410–1417
29. te Velthuis, A. J., van den Worm, S. H., Sims, A. C., Baric, R. S., Snijder, E. J., and van Hemert, M. J. (2010) PLoS Pathog. 6, e1000176
30. Walthier, U. I., Wathier, B., Walthier, S. C., Mückter, H., and Forth, W. (2000) In Vitro. Mol. Toxicol. 13, 145–152
31. Adachi, A., Gendelman, H. E., Koenig, S., Folks, T., Willey, R., Rabson, A., and Martin, M. A. (1986) J. Virol. 59, 284–291
32. Hou, E. W., Prasad, R., Beard, W. A., and Wilson, S. H. (2004) Protein. Expr. Purif. 34, 75–86
Mechanism of HIV-RT Inhibition by Zinc

33. Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
34. Olimpo, J. T., and DeStefano, J. J. (2010) Nucleic Acids Res. 38, 4426–4435
35. DeStefano, J. J., Buiser, R. G., Mallaber, L. M., Myers, T. W., Bambara, R. A., and Fay, P. J. (1991) J. Biol. Chem. 266, 7423–7431
36. Goldschmidt, V., Didierjean, J., Ehresmann, B., Ehresmann, C., Isel, C., and Marquet, R. (2006) Nucleic Acids Res. 34, 42–52
37. DeStefano, J. J., Buiser, R. G., Mallaber, L. M., Fay, P. J., and Bambara, R. A. (1992) Biochim. Biophys. Acta 1131, 270–280
38. Huang, H., Chopra, R., Verdine, G. L., and Harrison, S. C. (1998) Science 282, 1669–1675
39. Yarrington, R. M., Chen, J., Bolton, E. C., and Boeke, J. D. (2007) J. Virol. 81, 9004–9012
40. Wang, M., Lee, H. R., and Konigsberg, W. (2009) Biochemistry 48, 2075–2086
41. Pelletier, H., Sawaya, M. R., Wolfe, W., Wilson, S. H., and Kraut, J. (1996) Biochemistry 35, 12762–12777
42. Irimia, A., Zang, H., Loukachevitch, L. V., Eoff, R. L., Guengerich, F. P., and Egli, M. (2006) Biochemistry 45, 5949–5956
43. Cristofaro, J. V., Rausch, J. W., Le Grice, S. F., and DeStefano, J. J. (2002) Biochemistry 41, 10968–10975
44. Schatz, O., Cromme, F. V., Grüninger-Leitch, F., and Le Grice, S. F. (1989) FEBS Lett. 257, 311–314
45. Tong, W., Lu, C. D., Sharma, S. K., Matsuura, S., So, A. G., and Scott, W. A. (1997) Biochemistry 36, 5749–5757
46. Wöhr, B. M., Krebs, R., Goody, R. S., and Restle, T. (1999) J. Mol. Biol. 292, 333–344
47. Plum, L. M., Rink, L., and Haase, H. (2010) Int. J. Environ. Res. Public Health 7, 1342–1365