High velocity dispersion in a rare grand-design spiral galaxy at redshift $z = 2.18$

David R. Law¹, Alice E. Shapley², Charles C. Steidel³, Naveen A. Reddy⁴, Charlotte R. Christensen⁵ & Dawn K. Erb⁶

Although grand-design spiral galaxies are relatively common in the local Universe, only one has been spectroscopically confirmed to lie at redshift $z > 2$ (HDFX 28; $z = 2.011$); and it may prove to be a major merger that simply resembles a spiral in projection. The rarity of spirals has been explained as a result of disks being dynamically 'hot' at $z > 2$ (refs 2–5), which may instead favour the formation of commonly observed clumpy structures⁶–⁹. Alternatively, current instrumentation may simply not be sensitive enough to detect spiral structures comparable to those in the modern Universe¹¹. At $z < 2$, the velocity dispersion of disks decreases¹², and spiral galaxies are more numerous by $z \approx 1$ (refs 7, 13–15). Here we report observations of the grand-design spiral galaxy Q2343-BX442 at $z = 2.18$. Spectroscopy of ionized gas shows that the disk is dynamically hot, implying an uncertain origin for the spiral structure. The kinematics of the galaxy are consistent with a thick disk undergoing a minor merger, which can drive the formation of short-lived spiral structures¹⁶–¹⁸. A duty cycle of < 100 Myr for such tidally induced spiral structure in a hot massive disk is consistent with its rarity.

Using infrared imaging data from the Hubble Space Telescope Wide-Field Camera 3 (HST/WFC3), tracing rest-frame $\sim 5000\AA$ stellar continuum emission (details in Supplementary Information), we found that Q2343-BX442 (hereafter BX442) is well resolved, with a total luminous radius, R, of ~ 8 kpc, prominent spiral arms, a central nucleus, and a faint companion located 11 kpc away in projection to the northeast. These morphological characteristics (see summary in Table 1) led us to tentatively identify BX442 as a late-type Sc grand-design spiral galaxy. Strikingly, BX442 is the only object to display regular spiral morphology in a sample of 306 galaxies with similar imaging¹⁶ at roughly the same redshift. We used the Keck/OSIRIS spectrograph in concert with the laser-guide-star adaptive optics (LGSAO) system to obtain integral field spectroscopy of nebular Hα emission from ionized gas regions within BX442 at an angular resolution comparable to that of the HST imaging data ($

Figure 1 | Broadband and spectral emission-line morphology of BX442. a, b, HST/WFC3 F160W broadband morphology. In b, red lines show the locations of the northern (N), western (W) and eastern (E) spiral arms, core, and nearby satellite companion; green lines indicate the orientation of the best-fit inclined disk model (solid/dashed green lines represent opposite sides from the midplane); yellow lines represent the orientation of the long slit for previous Keck/NIRSPEC spectroscopy. The locations of these overlaid lines are defined visually; they are intended simply to guide the eye. (Alignment of individual images is discussed in Supplementary Information section 1.4.) c, Keck/OSIRIS Hα emission-line flux map, overlaid with the red lines from b. Blue arrow shows the location of a bright star-forming clump in the northern arm. A visual rejection criterion roughly corresponding to a requirement for a signal-to-noise ratio of > 3 (details in Supplementary Information) was used to mask low-flux pixels. The field of view in each panel (oriented with north up and east to the left) is 3×3 arcsec, corresponding to 25.3×25.3 kpc at the redshift of BX442. In each panel, the red dot shows the full-width at half-maximum (FWHM) of the observational point-spread function.

¹Dunlap Institute for Astronomy & Astrophysics, University of Toronto, 50 St George Street, Toronto M5S 3H4, Ontario, Canada. ²Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA. ³California Institute of Technology, MS 249-17, Pasadena, California 91125, USA. ⁴Department of Physics and Astronomy, University of California, Riverside, California 92521, USA. ⁵Steward Observatory, 933 North Cherry Ave, Tucson, Arizona 85721, USA. ⁶Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA.

©2012 Macmillan Publishers Limited. All rights reserved
per second, although there is no indication that the highest-Σ_{SFR} regions are the specific launching sites for galactic-scale outflows (see Supplementary Fig. 5), as recently proposed for a similar sample of galaxies.

Fitting a Gaussian profile to the Hα emission line at each location across the galaxy, we determined that the velocity profile of BX442 (Fig. 2) is consistent with the rotating disk hypothesis, and exhibits a smooth gradient of ± 150 km s$^{-1}$ along the morphological major axis, with flux-weighted mean velocity dispersion $\sigma_{\text{m}} = 66 \pm 6$ km s$^{-1}$ (after correcting for the instrumental resolution). The faint companion detected in the HST image is spectroscopically confirmed to lie within 100 km s$^{-1}$ of the systemic redshift of BX442, but does not follow the global rotational velocity field, and may therefore represent a merging dwarf galaxy with mass a few per cent of that of the primary (as determined from the rest-frame $\sim 5,000$-Å luminosity ratio). The velocity dispersion of the ionized gas in BX442 is highest in the spiral arms, and appears to peak at $\sigma = 113 \pm 14$ km s$^{-1}$ in a bright star-forming clump in the northern arm.

We constructed a three-dimensional inclined disk model (details in Supplementary Information) that accounts for observational effects such as the delivered point-spread function, and determined that BX442 is consistent (reduced $\chi^2 = 2.3$) with being a rotating disk inclined at 42 ± 10° to the line of sight, with an inclination-corrected circular velocity $V_c = 234_{-20}^{+29}$ km s$^{-1}$ at the outer edge of the disk ($R \approx 8$ kpc). As inferred from our best-fit model, the vertical velocity dispersion of the disk is $\sigma_z = 71$ km s$^{-1}$ ($V_c/\sigma_z \approx 3$), indicating that the system is geometrically thick, with a scale height $h_z = \sigma_z^2/(2\pi G M) = 0.7$ kpc, comparable to those of similarly massive systems studied in the literature.

Contrary to expectations, our observations of BX442 indicate both that dynamically hot $z \approx 2$ disk galaxies can form spiral structure, and that such structure can easily be detected with current-generation instruments such as HST/WFC3. Indeed, despite its high velocity dispersion, the surface density of BX442 is sufficiently high that the Toomre parameter $Q \approx 1$ throughout most of the disk (details in Supplementary Information), suggesting that BX442 is susceptible to spontaneous formation of spiral structure. Galaxies with physical properties similar to those of BX442 are not remarkably uncommon at $z \approx 2$; large samples of galaxies with similar physical characteristics have been studied using high-angular-resolution imaging, integral-field spectroscopy, or both. In particular, 27 galaxies in the recent morphology survey from which BX442 was drawn have stellar masses within a factor of two of its mass, 10 of which also have similar half-light radii, star-formation rates, dust contents and stellar population ages. None of these other systems has clear spiral structure, indicating either that the triggering mechanism is relatively rare or that the duty cycle of the spiral pattern is extremely short.

Perhaps the most obvious distinction of BX442 is that it appears to be experiencing a close-passage minor merger, which numerical simulations and theoretical calculations suggest can be a natural means of producing grand-design spiral patterns in galactic disks, even for mass ratios as modest as a few per cent17. Indeed, many of the best known grand-design spiral galaxies in the nearby Universe (for example, M51, M81 and M101) are observed to have nearby companions, and small satellites such as the Sagittarius dwarf galaxy may even be partly responsible for producing spiral patterns in our own Milky Way galaxy28. We test the plausibility of the merger-induced hypothesis by comparing BX442 to a $z \approx 2$ model galaxy selected from a set of extremely high-resolution N-body smoothed particle hydrodynamic simulations (details in Supplementary Information). Although the model disk spontaneously forms flocculent spiral structure in isolation, the lifetime of grand-design spiral patterns induced by the merging companion is generally less than half a rotation period (that is, ≤ 100 Myr, or $\Delta z \leq 0.08$ for BX442).

Such a mechanism may therefore naturally explain why visible spiral structure at $z \approx 2$ is so rare: not only must a galaxy be sufficiently massive to have stabilized the formation of an extended disk30, but this disk must then be perturbed by a merging satellite sufficiently massive and properly oriented to excite an observable grand-design spiral structure.

Figure 2 | Kinematic velocity and velocity-dispersion maps of BX442. a, d, Observed relative velocity (a) and velocity dispersion (d) (uncorrected for instrumental resolution), recovered from fitting Gaussian emission-line profiles to the Hα emission in each spatial pixel. The total integration time was 13 h, with a point-spread function (PSF) width of 0.25 arcsec (corresponding to ≈ 2 kpc at the redshift of BX442). b, e, Best-fit inclined-disk models of the relative velocity (b) and velocity dispersion (e), after convolution with the observational PSF and Keck/OSIRIS spectral resolution. c, f, Residuals after subtraction of the best-fit models from the observed velocity (c) and velocity dispersion (f) fields. The residual values are given in units of the observational uncertainty: 1σ corresponds to 17 km s$^{-1}$ for the line-of-sight velocity, and to 14 km s$^{-1}$ for the line-of-sight velocity dispersion. Black lines indicating the spiral disk structure are overlaid from Fig. 1b; these lines indicate that the kinematic centre of BX442 is offset from the apparent nucleus of the continuum flux by ≈ 2 kpc, owing in part to the uncertainty in image registration between the HST/WFC3 and Keck/OSIRIS data (see discussion in Supplementary Information). Red dots show the FWHM of the observational point-spread function.

©2012 Macmillan Publishers Limited. All rights reserved
pattern. Further, this spiral must be observed in the narrow window of time for which its strength is at a maximum, and must be oriented sufficiently close to face-on that the pattern is recognizable.

Received 2 January; accepted 22 May 2012.

1. Dawson, S. et al. Optical and near-infrared spectroscopy of a high-redshift hard X-ray-emitting spiral galaxy. Astron. J. 125, 1236–1246 (2003).
2. Genzel, R. et al. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang. Nature 442, 786–789 (2006).
3. Law, D. R. et al. Integral field spectroscopy of high-redshift star-forming galaxies with laser-guided adaptive optics: evidence for dispersion-dominated kinematics. Astrophys. J. 669, 929–946 (2007).
4. Förster Schreiber, N. M. et al. The SINS survey: SINFONI integral field spectroscopy of redshifted z ~ 2 star-forming galaxies. Astrophys. J. 706, 1364–1428 (2009).
5. Law, D. R. et al. The kiloparsec-scale kinematics of high-redshift star-forming galaxies. Astrophys. J. 697, 2057–2082 (2009).
6. Conselice, C. J., Blackburne, J. A. & Papovich, C. The luminosity, stellar mass, and number density evolution of field galaxies of known morphology from z ~ 0.5 to 3. Astrophys. J. 620, 564–583 (2005).
7. Elmegreen, D. M., Elmegreen, B. G., Rubin, D. S. & Schaffer, M. A. Galaxy morphologies in the Hubble Ultra Deep Field: dominance of linear structures at the detection limit. Astrophys. J. 631, 85–100 (2005).
8. Law, D. R. et al. The physical nature of rest-UV galaxy morphology during the peak epoch of galaxy formation. Astrophys. J. 656, 1–26 (2007).
9. Bournaud, F. & Elmegreen, B. G. Unstable disks at high redshift: evidence for smooth accretion in galaxy formation. Astrophys. J. 694, L158–L161 (2009).
10. Law, D. R. et al. An HST/WFC3-IR morphological survey of galaxies at z ~ 1.5–3.6: I. Survey description and morphological properties of star forming galaxies. Astrophys. J. 745, 85–122 (2012).
11. Conselice, C. J. et al. The tumultuous formation of the Hubble sequence at z > 1 examined with HST/Wide-Field Camera-3 observations of the Hubble Ultra Deep Field. Mon. Not. R. Astron. Soc. 417, 2770–2788 (2011).
12. Wright, S. A. et al. Dynamics of galactic disks and mergers at z ~ 1.6: spatially resolved spectroscopy with Keck Laser Guide Star Adaptive Optics. Astrophys. J. 699, 421–440 (2009).

See Supplementary Information for details. SFRsed and SFRw are star-formation rates derived from stellar population modelling and inversion of the Schmidt–Kennicutt law, respectively.

* Decomposing the central nucleus from the surrounding disk using a model of the HST/WFC3 point-spread function indicates that the nuclear emission region contributes ~10% of the total rest-frame ~1,000 Å continuum flux, and has a small redshift radial profile index n = 4 and a half-light radius r = 1.5 kpc, consistent with galactic bulges in nearby disk galaxies.

† Fourier phase-profile analysis of the spiral arms indicates substantial power in the m = 2 and m = 3 symmetry modes, corresponding to a three-armed spiral pattern (in which one arm is foreshortened by the inclination to the line of sight) with opening pitch angle $\alpha = 37^\circ \pm 6^\circ$.

‡ Spiral arm/interarm surface brightness differentiation, in AB magnitudes per square arcsecond.

Table 1 | Physical characteristics of Bx442

Characteristic	Value
Right ascension (J2000)	23 h 46 m 19.35 s +12° 48' 00.0"
Declination (J2000)	2.1765 ± 0.0001
Redshift*	6.175 ± 1.000 Myr
Lookback time	2 \times 10^{10} M_{\odot}
Stellar mass	5.2 \times 10^{37} M_{\odot} yr^{-1}
Gas mass	45 M_{\odot} yr^{-1}
Age	1,100 ± 100 Myr
SFRsed	10%
Inclination	42 ± 10°
Pitch angle‡	37 ± 6°
Spiral arm contrast‡	1 AB arcsec^{-2}
Circular velocity	25–29 km s^{-1}
Optical radius	8 kpc
Velocity dispersion	71 ± 1 km s^{-1}
Hubble type	Sc

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements D.R.L and C.C.S have been supported by grant GO-11694 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. A.E.S acknowledges support from the David and Lucile Packard Foundation. C.R.C acknowledges support from the US National Science Foundation through grant AST-1009452. D.R.L appreciates discussions with J. Taylor, R. Abraham, J. Dubinski, F. Governato and A. Brooks, and thanks M. Peeples for help in obtaining the Keck/OSIRIS data. Author Contributions D.R.L performed the morphological analysis of the Hubble Space Telescope data and wrote the main manuscript text. The Keck/OSIRIS data were obtained by D.R.L and A.E.S., and analysed by D.R.L with extensive input from A.E.S. and C.C.S. N.A.R. provided the Keck/LRIS spectra, Spitzer/MIPS photometry and stellar population modelling code, C.R.C. contributed the hydrodynamic galaxy simulations, and D.K.E. provided the Keck/NIRSPEC spectra. All authors reviewed, discussed and commented on the manuscript.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to D.R.L (drlaw@di.utoronto.ca).