Osteoporosis afflicts millions of women worldwide, but is especially prevalent among female athletes. The stress of intense workouts places these female athletes at a greater risk than the general female population. Absence or suppression of menstruation in female athletes leads to a low peak bone mass and subsequently to the weakening of their bones. This domino effect, coupled with their participation in physical activities, greatly amplifies their susceptibility to stress fractures. Although intense workouts cannot be removed from the regimen of female athletes, increased awareness may prevent or lessen the effects of osteoporosis. Enlightening female athletes on the importance of screening and the methods of diagnosing and treating this condition is the focus of this review.

Abstract

Osteoporosis afflicts millions of women worldwide, but is especially prevalent among female athletes. The stress of intense workouts places these female athletes at a greater risk than the general female population. Absence or suppression of menstruation in female athletes leads to a low peak bone mass and subsequently to the weakening of their bones. This domino effect, coupled with their participation in physical activities, greatly amplifies their susceptibility to stress fractures. Although intense workouts cannot be removed from the regimen of female athletes, increased awareness may prevent or lessen the effects of osteoporosis. Enlightening female athletes on the importance of screening and the methods of diagnosing and treating this condition is the focus of this review.

Keywords: Bone; Bone Mass Density; Osteoporosis; Amenorrhea; Sports; Female Athletes.

Introduction

Osteoporosis is a condition that affects almost 10 per-cent of the total female population worldwide and is especially prevalent among female athletes. This dis-ease is characterized by a decrease in bone mass and density and enlargement of bone spaces producing po-rosity and fragility. With the number of women of all ages participating in physical activity steadily increas-ing, the relationship between osteoporosis and female athletes is a growing concern [1-4]. It is estimated that more than 6 million women now compete in strenuous exercise, worldwide. Despite the benefits of exercise, excessive and strenuous physical activity can have neg-ative effects on the reproductive and skeletal systems, leading to osteoporosis [5,6]

Anatomy And Physiology

The skeleton, comprised of bone attached with vari-ous connective tissues, provides the vehicle with which the body can perform its daily tasks. The skeletal sys-tem has many functions; it supports and maintains the framework of the body, aids in body movement, pro-tects internal vital organs, and acts as a mineral res-ervoir[7,8]. An integral part of the skeletal system is bone. Bone is a dynamic structure, composed of an organic framework embedded in an inorganic salt [7]. This organic framework is 80% cortical (compact) bone that provides rigidity and tensility; the strength and elasticity come from 20% of trabecular (cancellous) bones[7-11].

Bone is dynamically involved in a continuous process of for-mation and resorption, known as the bone re-modeling process [8,10,12,13]. This process is per-formed by bone remodeling units and basic multicel-lular units (BMU) [14]. There are two types of cells associated with bone - osteoclasts and osteoblasts. osteoclasts are involved with bone resorption, whereas osteoblasts are involved with bone formation. Bone remodeling is initiated by the osteoclast [15]. Osteo-clasts contain enzymes that infiltrate the bone surface.

When these enzymes are activated, they dissolve the bone surface, forming small erosion lacunae, which contain the osteocyte cells, releasing the inorganic salts [8,16]. Osteoblasts produce proteins of the bone ma-trix and regulate the rate of bone turnover and forma-tion. Osteoblasts secrete osteoid, the bone matrix [8,10,16] and osteogenin initiates and promotes osteo-genesis [16]. The newly formed matrix mineralizes in a span of three months, completing the bone formation process [8]. After reaching maximum bone mass, the bone remodeling process becomes uncoupled. This uncoupling process results in net loss of bone mass density which may lead to osteoporosis [15,17-20].

In female athletes, there is a higher incidence of osteo-porosis due to a lower rate of bone accretion, leading to a lower peak bone mass, particularly in athletes with delayed menarche [5]. Studies have reported a lower vertebral Bone Mass Density (BMD) among young amenorrheic athletes than among athletes with regular cycles [21].

Pathophysiology

Osteopenia is reduction in bone volume to below nor-mal levels...
due to inadequate replacement of bone lost to normal lysis. Hyperprolactinemia, excessive exercise, stress, undernutrition, and anorexia nervosa are all causes of functional acquired gonadotrophin releas-ing hormone (GnRH) deficiency and are associated with osteopenia [22]. The common pathophysiology observed in most cases is hypo-oestrogenism due to suppression of the GnRH pulse generator [1].

Irregular menstruations with anovulatory cycles or amenorrhea have negative effects on bone formation and total bone mass. They lead to a lack of estradiol and are associated with inadequate and unbalanced nutrition. This results in severe impairment of bone for-mation and a net loss of bone mass[23].

Hormones play an integral part on bone mass. Evi-dence suggests that the hypothalamic-pituitary-thyroid axis (HPT) and the hypothalamic-pituitary-ovarian (HPO) axis are physiologically related and act together in certain conditions. Specific thyroid hormones re-ceptors at the ovarian level may regulate reproductive function, along with estrogens at the higher levels of the HPT axis. Hyperthyroidism and hyperparathyroidism-roidism are also associated with bone loss. Hyper- and hypo-thyroidism can cause menstrual complications. Hyperthyroidism leads to oligomenorrhea, anovulatory cycles and bleeding, while hypothyroidism is mainly characterized by polymenorrhea, in mature women [24,25]. The hypothalamic-pituitary-gonadal axis is crucial for the function of the gonads. Other factors, such as catecholamines exert on-endocrine regulatory influences within the gonads. Catechola-mines can alter blood flow, steroidogenesis and gene expression, de-pending on the target cells[21,26]. Another hormone of major concern that is associated with exercise and which indirectly affects bone loss is oxytocin (Oxt). Oxt acts in the lumbar spinal cord and accentuates the reflex pressor (mean arterial pressure - MAP) and heart rate (HR) responses to static hindlimb contrac-tion. Endogenous Oxt modulates the exercise pres-sor reflex by its action on Oxt receptors in the lumbar spinal cord, which accentuates sensory nerve transmis-sion from skeletal muscle [27].

Etiology

Osteoporosis is multifactorial. Intrinsic risk factors in-clude ethni-city (Caucasian or Asian), a positive family history, gender, and certain medical disorders, includ-ing thyrotoxicosis, Type I diabetes, rheumatoid arthritis, and Cushing's syndrome. Stehman-Breen et.al., re-reported that black patients with end-stage renal disease (ESRD) have a greater BMD and are at a decreased risk for osteopenia compared with whites, independent of renal osteodystrophy. Physicians should consider os-teoporosis and the impact of race on BMD when con-sidering bone disease among patients with ESRD [28]. Late menarche, amenorrhea and early menopause are other intrinsic factors for osteoporosis [29]. Ex-trinsic or modifiable risk factors include estrogen and calcium de-ficiencies, a sedentary lifestyle, smoking, excessive alcohol intake [30], amount of salt intake [31] and cer-tain medical conditions [30].

Menstrual disturbances have been known to affect female ath-letes who are vegetarian. The basis for de-termining if vegetari-anism will have an impact on fe-male's energy imbalances asso-ciated with body-weight disturbances or exercise, psychosocial and cognitive factors, and dietary components must be evaluated. Some studies suggest that clinical menstrual problems may be more common in vegetarians. A prospective study found that subclinical problems were less common in weight-stable, healthy

vegetarian women. However, the sample does not represent all vegetar-ian women, and so the results cannot be generalized [32]. In one study investigating the pathogenesis of age-related osteoporosis in Chinese women with low calcium intakes, reported that age-related osteoporosis might be linked with inefficient intestinal calcium absorption and bone remodeling. The Chinese women were found to have potent intestinal calcium absorp-tion [33]. Cigarette smoking is linked to a variety of hormone-related disorders, both benign and malignant, due to its antiestrogenic effect [34]. Osteopenia can cause osteoporosis. A common cause of osteopenia is glucocorticoid administration[22,35]. It is known incidence of atraumatic fractures in patients receiving long term glucocorticoid therapy and is reported to be around 30%-50% [36-38]. Glucocorticoids decrease osteoblast activity and intesti-nal calcium absorption and may have effects on calcium regula-tory hormones [39,40].

Anticonvulsants reduce bone density through their ef-fects on vitamin D metabolism [41-43] and by directly affecting bone turnover [44-46]. Contrarily, Vitamin D is not a factor for pre-menopausal women who receive incidental sun exposure or con-sume fortified foods, but supplementation can be considered for others[47]. Other agents associated with causing osteoporosis are corticosteroids, thyroid hormone, antacids containing aluminum, heparin, cancer chemotherapy, tetra-cycline, ioniazid, and immu-nosuppressive agents. However, in contrast to osteopenia associated with estrogen defi-ciency, cortical bone mass is lost in the latter[10]. A hormonal imbalance in athletes leads to osteoporosis and increased incidence of fracture. Athletes have de-reased lev-els of sex hormones, which can cause phys-iological changes that can lead to bone loss [45,48].

Female athletes are at an increased risk for certain sports-related injuries involving the knee. The differ-ences in sports undertaken and the gender anatomy and structure can contribute to this risk. Baseline level of conditioning, lower extremity alignment, phys-iological laxity, pelvis width, tibial rotation and foot align-ment are all gender differences. Sports like gymnastics and cheerleading create a noncontact environment, but can cause severe knee injur-ies. In quick stop or cut sports, female athletes have an increased incidence of anterior cruciate ligament injury through noncontact mechanisms [47].

Female Athlete Triad

In 1992, the American College of Sports Medicine coined the term the female athlete triad, which de-scribes a serious, yet pre-ventable syndrome, compr-is-ing 3 interrelated components: (a) disordered eating, (b) amenorrhea, and (c) osteoporosis [49]. Young women are under great pressure to achieve or main-tain unrealistically low body weight in a short period of time. This is one of the underlying components of the female athlete triad. Adolescents and women training in sports, who emphasize on a low body weight, are at greater risk [50]. The symptoms of the triad and the severity of the disorder should be recognized by the physi-ian [2,51-54].

Amenorrhea And Osteoporosis

Amenorrhea is abnormal absence or suppression of menstrua-tion. It is a common problem for female athletes and may con-tribute to stress fractures and osteoporosis [55,56]. Amenorrhea decreases bone density at an age when bone formation should still be occurring. Failure to attain sufficient bone density during
the premenopausal years can result in insuffi-cient skeletal mass after menopause when the rate of bone loss exceeds that of bone formation. Primary and secondary amenorrhoea are two types of amenor-rhea. Primary amenorrhoea describes a state in which a female has not experienced menarche by either 16.5 years of age or within 2 years after the development of secondary sexual char-acteristics. Secondary amenorrhoea is associated with the absence of menstruation for greater than 6 months in a woman with pre-viously normal cycles [33].

There are many causes of amenorrhoea. The most common is physiologic amenorrhoea due to preg-nancy or nursing. Causes of primary amenorrhoea include anatomic abnormalities, gonadal fail-ure, and conditions of the hypothalamic-pituitary-ovarian (HPO) axis. Three important causes of secondary amenorrhoea are:

(1) Rigorous physical exercise, (2) anorexia nervosa, and (3) use of medroxyprogesterone acetate injection (Depo-Provera) [33]. A direct correlation between exercise and menstrual disorders has been established. However, the mechanism by which exercise disrupts reproductive function remains unknown. Studies have reported that low energy availability rather than inad-equate body fat or exercise stress most likely represents the mechanism by which exercise has a negative effect on the HPO axis in female athletes [57]. Pre-pubertal exercise may contribute to the prevention of osteo-porosis by increasing BMD; exercise during puberty is correlated with primary amenorrhoea and low peak BMD, and exercise after puberty is linked with second-ary amenorrhoea and bone loss [58]. Evidence suggests that exercise-related menstrual irregularities (ERMI) are produced by a disturbance of the hypo-thalmic gonadotrophin-releasing hormone oscillator. This dis-turbance may either be caused by either an insufficient estrogen or progesterone feedback or by an imbalance of opioid peptide and catecholamine activities medi-ated by GABA, corticotrophin-releasing hormone and insulin-like growth factor-1 [59]. Amenor-rheic female athletes are reported to have an increase in potential for lipid peroxidation after exercise. This might have a potential association with low levels of E2 [60].

Hypothalamic amenorrhoea (HA) is a type of secondary amenor-rhea which is frequently observed in women athletes and female anorexias [61]. Body weight, body composition, eating attitudes, and exercise are modula-tors of the gonadotropin axis [62]. It is a consequence of low dietary intake as observed in two conditions, anorexia nervosa, and intensive exercise. Prolonged mild dieting characterized by a fat restriction could interfere with gonadotro-pin secretion. However, the gonadotropin deficiency is partial and may be re-versible after improving diet and body composition [63]. HA is caused by many factors, such as an interruption in the release of GnRH, which indirectly causes a de-crease in the levels of estrogen and progesterone [64]. However, the mechanism by which stress alters GnRH secretion is not thoroughly understood [65]. Women affected by functional hypothalamic secondary amenor-rhea do not respond to stress as usual [66,67]. In diabetic female athletes, diabetes has also been linked to secondary hypogonado-trophic amenorrhoea. In amenorrhoeic women with insulin-de-pendent diabetes, a derangement in HPO axis has been proposed. In a study with GnRH, corticotrophin releasing hormone, meto-clopromide, and thyroid releasing hormone tests were performed in 15 diabetic women, 8 amenorrhe-ic (AD) and 7 eumenorrheic (ED). The AD women showed lower plasma levels of LH, FSH, prolactin, oestradiol, androstenedione and 17-hydroxyprogester-one than the ED women. The AD women also had a lower pro-lactin response TRH and metoclopromide, and lower ACTH and cortisol responses to CRH, rel-ative to the ED women [68]. This type of diabetes may involve mild chronic hypercortisolism that may affect metabolic control. Stress-induced activation of the hypothalamic-pituitary-adrenal axis would increase hypothalamic secretion of CRH, which in turn would inhibit GnRH secretion by increasing dopaminergic tonus, which consequently lead to hy-pogonadotrophic amenorrhoea [68].

Menstrual disturbances in women can have critical effects on the skeletal system. At the lumbar spine, menstrual disturbances are associated with premature bone loss or failure to reach peak bone mass, while appendicular sites is less affected. Trabeicular bone is observed to be more sensitive to hormonal stimuli and less re-sponsible to mechanical loading than corti-cal bone [69]. There have been studies, which show menstrual dysfunction was related to musculoskeletal injuries in women distance runners [70] and ballet dancers, with a prevalence of up to 66% [71]. In addition, half of the athletes were classified as being at risk for developing eating disorders [71]. However, studies show that the BMD of former amenorrhoeic athletes normalizes following several years of normal menses or use of oral contraceptives, if early interven-tion is taken [72].

Leptin

Leptin, the product of the obesity gene, is produced in several organs additional to white adipose tissue, in-cluding brown fat, and the placenta and fetal tissues. It is a 16-kDa adipocyte-se-creted protein whose serum levels reflects the amount of energy stores and is influenced by short-term energy imbalance as well as cy-tokines and hormones. It binds to specific receptors, alter-ing the expression of hypothalamic neuropeptides that regulate neuroendocrine function as well as energy intake and expenditure. Evidence suggests that leptin may send information to the brain for LHRC secre-tion and activation of the hypothalamic-pituitary-gonal axis [73]. Leptin may stimulate release of GnRH from the hypothalamus and of gonadotrophins from the pituitary [74]. However, effects of mild dieting on bone mineral density likely suggests an estrogen-inde-pendent mechanism for bone loss, and involves some of the metabolic hormones altered through amenor-rhea. These hormones play a vital role in modulating bone turnover and bone mineral density [75].

Leptin modulates the secretion of LH, but not the se-cretion of GnRH-LH [69]. Initiation of puberty in animals and humans has been correlated with rising leptin levels. Normal leptin levels are integral to the maintenance of menstrual cycles and normal re-productive function. Circadian and ultradian variations of leptin levels are associated with minute-to-minute vari-ations of LH and estradiol in normal women [73], the functions involving: inhibit-ing food intake, stimulation of energy expenditure, and signaling within the repro-ductive system [76,77].

Women who were anorexic or who participated in strenuous ex-cercise experienced a decrease in leptin levels in response to star-vation. Consequently, this re-sulted in a decrease in estradiol lev-els and amenorrhoea [75]. Leptin levels in females with anorexia nervosa are low and are related to BMI. However, leptin levels in particular female athletes were even more decreased through the amount of low fat storage [78]. Further studies have assessed the relationship of decreased leptin levels with other hormonal abnormalities in anorexia nervosa and reported that leptin is a necessary, but not essential factor, for the resumption of menses in anorexia nervosa patients [79].
Diagnosis

Osteoporosis in female athletes is usually diagnosed incidentally when examining x-rays for an initial fracture.

On X-rays, radiolucency may indicate osteoporosis [10,80] of the appendicular skeleton, portraying cortical thinning and the loss of trabecular bone, especially in the femoral neck. In order for a standard X-ray to detect osteoporosis, 25% to 30% of the bone mineral content must be already lost [10,81].

Blood and urine content can also be measured for de-tecting osteoporosis. Bone resorption markers that are released into the bloodstream are excreted into the urine. Markers for bone formation are measured in the serum. Examples include hydroxyproline, calcium, phosphorous, and cyclic AMP. BMD can be measured through invasive or noninvasive methods. Invasive methods include a bone biopsy taken from the iliac crest [82,83] and a histometry which determines the degree of bone mineralization, the quantity and struc-ture of the trabecular bone, the number of active bone cells, and the rates of bone formation and resorption. Double tetracycline-labeled bone biopsies are helpful in evaluating patients with suspected osteomalacia or renal osteodystrophy before interventions, such as sur-gical parathyroidectomy [84]. Noninvasive methods, such as plain radiographs [10,81-83,85], radiogrammetry [81,83], single photon absorptiometry [81,82], dual photon absorptiometry [81,83,85-87], computed tomography [83,85], quantitative digital radiography [88], nuclear scanning of total body calcium and reten-tion of Tc [87]. Tc-labeled pyrophosphate are used. An other very important test is height [89]. It should be measured accurately by a stadiometer. If the difference between how tall the patient perceives to be and the measured amount is greater than 1.5-inches, there is a strong probability that the patient has had an asympto-matic vertebral compression fracture. Vertebral com-pression fractures are predictive and diagnostic of fu-ture fractures [84].

Osteoporosis in women athletes can only be detected incidentally [90]. However, there are certain signs and symptoms that phy-sicians should be aware of. More athletes competing in leanness sports were classified as being at risk of the female athlete triad compared with athletes competing in non-leanness sports [56,91]. Likewise, the Russell's sign should be observed. This sign consists of skin lesions, consisting of abra-sions, small lacerations, and callosities on the dorsum of the hand overlying the meta-carpophalangeal and interphalangeal joints. These are caused by repeated contact of the incisors with the hand while inducing vomiting. Recognizing this sign can have profound ef-fects on the patient's musculoskeletal system and gen-er-al health [53,92].

Treatment

Athletes with amenorrhea and who develop fractures easily should be screened for osteoporosis. Treatments include calcium supple-mentation, salmon calcitonin, estrogen, vitamin D, anabolic ster-oids, diphospho-nates, fluoride, and coherence therapy. The National Institutes of Health Consensus conference recom-mended 1.5-g of elemental calcium with vitamin D (400-IU per day) for all postmenopausal women [93]. Women older than 65 should take 1.5-g of elemental calcium with 800-g of vitamin D daily [94,95]. The FDA has approved a nasal spray form of salmon calcitonin. The dose is 200-IU per day in one nostril [96]. Calcitonin has been reported to increase bone mass by 5%-20% [97,98]. It should be used for women who are 5 years postmenopausal, have low bone density and are unwilling to take estrogen. Estrogen replace-ment therapy reduces the rate of bone turnover and inhibits bone re-sorption [99,100]. When prescribed judiciously, many female ath-letes will benefit from the use of estrogen [101]. Raloxifene was approved by the FDA as a selective estrogen receptor modulator. Raloxifene acts as an estrogen agonist in some tissues and an estrogen antagonist in others. 2 years of treatment with raloxifene, at a dose of 60-mg per day, has shown to increase BMD in postmenopausal women. Clinical studies show that estrogen and estrogen-androgen re-placement therapies both prevent the de-velopment of osteoporosis, as determined by bone mineral densi-ty determinations and bone marker analyses. By adding androgen to hormone replacement therapy, bone loss may be prevented and bone formation may be stimu-lated-lated [102,103]. Biphosphonates can also be used. Bi-phosphonates are pyrophosphate analogues, in which a carbon has replaced the oxygen in P-O-P, resulting in a P-C-P structure [104]. These are powerful inhibi-tors of bone resorption. Biphosphonates reduce the absorption activity of osteoclasts or enhance the os-teoforming activity of osteoblasts. Biphosphonates create a positive balance of the remodeling cycle, and increase the density of bone mass, lessening the inci-dences of bone fractures [105]. Alendronate is the only biphosphonate that is approved by the FDA, having the ability to reduce the in-cidence of fractures [93]. 5-mg of alendronate should be taken to prevent osteo-porosis and 10-mg should be taken to treat osteopo-sis [95]. Alendronate at 10-mg per day increased BMD at the spine by 6%-8% and at the hip by 4%-6% over a 3 year period, according to studies of postmenopausal women. Stimulators of bone formation include sodi-um fluoride, calcitrol, PTH, growth hormone, growth factors, prostaglandin, strontium salts and ana-bolic steroids [106]. PTH prevents bone loss from the prox-imal femur and total body and increases lumbar spinal BMD in young women with GnRH induced estrogen deficiency [107].

For treatment of secondary forms of osteoporosis, such as ster-oid-induced osteoporosis, alendronate has been approved in the US [84] and etidronate has been approved in the UK and Canada [106]. Exercise is an-other effective treatment and several stud-ies with post-menopausal women show modest increases in bone mineral in response to training. It has been suggested that train-ing can be used to improve effects on BMD in postmenopausal females. Bone geometry and mass dis-tribution can be changed as a result of training or hor-monal replacement therapy, thereby improving bone strength and reducing fracture risk. Training contin-ues to stimulate increases in bone diameter throughout the lifes-pan. These types of exercise stimulate increases in bone diameter, diminish the risk of fractures by me-chanically counteracting the thinning of bones, and increases bone porosity [108,109]. How-ev-er, there is no agreement on the quantity, frequency and type of exercise [110,111]. Weight-bearing exercise is recom-mended three times per week for one-half hour each [109,112]. It should be noted that the patient must commit to the exercise, in order to sustain BMD al-ready gained [96].

Discussion

It is important that women participate in sports and develop skills that promote lifelong athletic participa-tion. However, when one engages in strenuous exer-cise, serious complications can arise. Disorders, such as amenorrhea, eating disorders and osteopo-rois, are common complications that can occur in female ath-letes [113]. Proper screening, diagnosis and treatment should be accommodated to promote a healthy life-style. More research is needed in the area of female athletes and osteoporosis. Howev-
References

[1] Constantini, N.W., and Warren, M.P. (1994). Special problems of the female athlete. Baillieres Clin Rheumatol 8, 199-219.

[2] Forsberg, S., and Lock, J. (2006). The relationship between perfectionism, eating disorders and athletes: a review. Minerva Pediatr 58, 525-536.

[3] Troy, K., Hoch, A.Z., and Stavrakos, J.E. (2006). Awareness and comfort in treating the Female Athlete Triad: are we failing our ath-letes? WMJ 105, 21-24.

[4] Andreoli, A., Celi, M., Volpe, S.L., Sorge, R., and Tarantino, U. (2012). Long-term effect of exercise on bone mineral density and body composition in post-menopausal ex-elite athletes: a retrospective-study. European journal of clinical nutrition 66, 69-74.

[5] Warren, M.P., and Steinh. A.L. (1999). Exercise and female adolescent-ence: effects on the reproductive and skeletal systems. J Am Med Womens Assoc 54, 115-120, 138.

[6] Peeters, G., Brown, W., and Burton, N. (2013). Physical Activity Context Preferences in People with Arthritis and Osteoporosis. Journal of physical activity & health.

[7] Adams, M. ed. (1990). The Skeletal System (New York: The Benja-min/Publications Co).

[8] Arnaud (1985). Mineral and bone homeostasis. In Textbook of Medicine. (Philadelphia: WB Saunders Co), pp. 1415-1423.

[9] Ganong, L.H. (1963). Review of Medical Physiology. Lange Medical Publications.

[10] Silverberg, S.J., and Lindsay, R. (1987). Postmenopausal osteoporosis. Med Clin North Am 71, 41-57.

[11] Barr, S.I. (1999). Vegetarianism and menstrual cycle disturbances: is there an association? Am J Clin Nutr 70, 540S-554S.

[12] Cui, L., Li, T., Liu, Y., Zhou, L., Li, P., Xu, B., Huang, L., Chen, Y., Liu, Y., Tian, X., et al. (2012). Salvianolic acid B prevents bone loss in prednisone-treated rats through stimulation of osteogenesis and bone marrow angiogenesis. PloS one 7, e34647.

[13] Dietrich, J.W., and Duffield, R. (1980). Effects of diphenylhydantoine on bone cell populations. Clin Orthop Relat Res, 227-244.

[14] Hamed, S.A. (2011). Influences of bone and mineral metabolism in epilepsy. Expert opinion on drug safety 10, 265-280.

[15] Dent, C.E., Richens, A., Rowe, D.J., and Stamp, T.C. (1970). Osteomalacia with long-term anticonvulsant therapy in epilepsy. Br Med J 4, 69-72.

[16] Hahn, T., Scharp, C.R., Richardson, C.A., Halstead, L.R., Kahn, A.J., and Teitelbaum, S.L. (1978). Interaction of diphenylhydantoin (phenytoin) and phenobarbital with hormonal mediation of fetal rat bone resorption in vitro. J Clin Invest 62, 406-414.

[17] Valimaki, M.J., Tiihonen, M., Laitinen, K., Tahhtela, R., Kalkkainen, M., Lamberg-Allardt, C., Makela, P., and Tunninen, R. (1994). Bone mineral density measured by dual-energy x-ray absorptiometry and novel markers of bone formation and resorption in patients on anti-epileptic drugs. J Bone Miner Res 9, 631-637.

[18] Hanzd, S.A. (2011). Influences of bone and mineral metabolism in epilepsy. Expert opinion on drug safety 10, 265-280.

[19] Teitz, C.C., Hu, S.S., and Arendt, E.A. (1997). The Female Athlete: Evaluation and Treatment of Sports-Related Problems. J Am Acad Orthop Surg, 5, 87-96.

[20] Tudor-Locke, C., and McGill, R.S. (2000). Factors related to variation in premenopausal bone mineral status: a health promotion approach. Osteoporos Int 11, 1-24.

[21] Short, J.W., Pedowitz, R.A., Strong, J.A., and Speer, K.P. (1995). The evaluation of pelvic injury in the female athlete. Sports Med 20, 422-428.

[22] Aizenstirnoudaki, I., and Papadimitriou, D. (2010). Pathophysiology of bone loss in the female athlete. Annals of the New York Acad-emy of Sciences 1205, 45-50.

[23] West, R.V. (1998). The female athlete. The triad of disordered eating, amenorrhoea and osteoporosis. Sports Med 26, 63-71.

[24] Otis, C.L., Drinkwater, B., Johnson, M., Loucks, A., and Wilmore, J. (1997). American College of Sports Medicine position stand. The Female Athlete Triad. Med Sci Sports Exerc 29, 9, i-ix. Anderson, J.M. (1999). The female athlete triad: disordered eating, amenorrhea, and osteoporosis. Conn Med 63, 647-652.

[25] De La Torre, D.M., and Snell, J.B. (2005). Use of the preparticipation physical examination in screening for the female athlete triad among high school athletes. J Sch Nurs 21, 340-347.

[26] Feingold, D., and Hame, S.J. (2006). Female athlete triad and stress frac-tures. Orthop Clin North Am 37, 575-583.

[27] Mayerhofer, A., Frungrieri, M.B., Bulling, A., and Fritz, S. (1999). Sources and function of neuronal signalling molecules in the go-nads. Medicina (B Aires) 59, 542-545.

[28] Stebbins, C.L., and Ortiz-Acevedo, A. (1994). The exercise pres-sor reflex is attenuated by intrathecal oxytocin. Am J Physiol 267, R909-915.

[29] Strehman-Breen, C.O., Sherrard, D., Walker, A., Sadler, R., Alem, A., and Lindberg, J. (1999). Racial differences in bone mineral density and bone loss among end-stage renal disease patients. Am J Kidney Dis 33, 941-946.

[30] McGill, C. (1997). Secondary amenorrhea leading to osteoporosis: inci-dence and prevention. Nurse Pract 32, 31-35, 48 passim.

[31] Albers, M.M. (1990). Osteoporosis: a health issue for women. Health Care Women World 11, 19-11.

[32] Burger, H., Grobbee, D.E., and Druke, T. (2000). Osteoporosis and salt intake. Nutr Metab Cardiovasc Dis 10, 46-53.

[33] Barr, S.I. (1999). Vegetarianism and menstrual cycle disturbances: is there an association? Am J Clin Nutr 70, 540S-554S.

[34] Kung, A.W., Luk, K.D., Chu, L.W., and Chiu, P.K. (1998). Age-related osteo-porosis in Chinese: an evaluation of the response of intestinal calcium absorption and calcitropic hormones to dietary calcium deprivation. Am J Clin Nutr 68, 1291-1297.

[35] Spangler, J.G. (1999). Smoking and hormone-related disorders. Prim Care 26, 499-511.

[36] Cui, L., Li, T., Liu, Y., Zhou, L., Li, P., Xu, B., Huang, L., Chen, Y., Liu, Y., Tian, X., et al. (2012). Salvianolic acid B prevents bone loss in prednisone-treated rats through stimulation of osteogenesis and bone marrow angiogenesis. PloS one 7, e34647.

[37] Adinoff, A.D., and Hollister, J.R. (1983). Steroid-induced fractures and hypothyroidism compared to women without thyroid disease. J Clin Endocrinol Metab 84, 1775-1783.
[56]. Weinstein, Y., and Weinstein, A. (2012). [Energy balance, body com-posi-
tion and the female athlete triad syndrome]. Harfuneh 151, 97-101, 127, 126.

[57]. Thong, E.S., and Graham, T.E. (1999). Leptin and reproduction: is it a criti-
cal link between adipose tissue, nutrition, and reproduction? J Appl
Physiol 24, 317-336.

[58]. Bass, S., Pearce, G., Bradney, M., Hendrich, E., Delmas, P.D., Hard-ing, A.,
and Seeman, E. (1998). Exercise before puberty may confer residual benefits
in bone density in adulthood: studies in active pre-pubertal and retired fe-
male gymnasts. J Bone Miner Res 13, 500-507.

[59]. De Cree, C. (1999). Sex steroid metabolism and menstrual irregu-larities in
the exercising female. A review. Sports Med 25, 369-406.

[60]. Ayres, S., Baer, J., and Subiah, M.T. (1998). Exercised-induced in-crease in
lipid peroxidation parameters in amnenorrheic female ath-letes. Fertil Steril
69, 73-77.

[61]. Mikkahl, B.L. (1992). Reduction of risk factors for osteoporosis among ado-
lescents and young adults. Issues Compel Nurs 15, 277-280.

[62]. Bringler, J., Lefebvre, P., and Renard, E. (1999). [Nutritional hypog-
on-adism]. Rev Prat 49, 1291-1296.

[63]. Couzinet, B., Young, J., Brailly, S., Le Bouc, Y., Chanson, P., and Schaion,
G. (1999). Functional hypothalamic amenorrhea: a par-tial and reversible
gonadotrophin deficiency of nutritional origin. Clin Endocrinol (Oxf) 50,
229-235.

[64]. Hergenroeder, A.C. (1995). Bone mineralization, hypothalamic amenor-
rea, and sex steroid therapy in female adolescents and young adults. J Pedi-
atr 126, 683-689.

[65]. Meczekalski, B., Tonetti, A., Monteleone, P., Bernardi, F., Luisi, M., Stomati,
A., Hergenroeder, A.C. (1995). Bone mineralization, hypothalamic amenor-
rea, and in elite gymnasts with anorexia athletica. Int J Sports Med 20, 451-456.

[66]. De Souza, M.J., and Williams, N.I. (2005). Beyond hypoestrogenism in
women endurance runners with menstrual dysfunction have prolonged in-
ternalization at menopause. Int J Obes Relat Metab Disord 23 Suppl 1, 22-28.

[67]. Mikhail, B.I. (1992). Reduction of risk factors for osteoporosis among ado-
lescents and young adults. Issues Compel Nurs 15, 277-280.

[68]. Thong, E.S., and Graham, T.E. (1999). Leptin and reproduction: is it a criti-
cal link between adipose tissue, nutrition, and reproduction? J Appl
Physiol 24, 317-336.

[69]. Epstein, S., and Goodman, G.R. (1999). Improved strategies for diagnosis
and treatment of osteoporosis. Menopause 6, 242-250.

[70]. Davis, S. (1999). Hormone replacement therapy. Indications, ben-efits
and risks. Aust Fam Physician 28, 437-445.

[71]. Wiren, K.M., Zhang, X.W., Olson, D.A., Turner, R.T., and Iwan-iec,
U.T. (2012). Androgen prevents hypogonadal bone loss via in-hibition of
osteoclast formation. J Bone Miner Res 19, 265-270.

[72]. Reginster, J.Y. (1993). Calcitonin for prevention and treatment of osteopo-
rosis. Am J Med 95, 44S-47S.

[73]. Taintor, M.S., and Van Poznak, C.H. (2013). Poren-tial implications of adjuvant endocrine therapy for the oral health of postmeno-
pausal women with breast cancer. Breast cancer re-search and treatment 137,
23-32.

[74]. Keen, A.D., and Drinkwater, B.L. (1997). Irreversible bone loss in former
amenorrheic athletes: energy deficiency as a contributing factor for bone loss.
Adv Nutr Res 24, 409-464.

[75]. Gooden, E.L., and Su, S.J. (2013). Combined effect of soy isoflavones and vitamin D3 on
bone loss in ovariectomized rats. Nutrition 29, 250-257.

[76]. Davis, S. (1999). Hormone replacement therapy. Indications, ben-efits
and risks. Aust Fam Physician 28, 437-445.

[77]. Peiffer, J.E. (2004). Randomized trial of effect of alendronate
management of osteoporosis. Am J Med 116, 376S-379S.

[78]. Josse, R., Kendler, D.L., Lentle, B., Olszynski, W., Ste-Marie, L.G., et al.
(2003). American Association of Clinical Endocri-nologists medical
consensus of an expert panel representing the Ameri-can Society for Bone
and Mineral Research (ASBMR), the Interna-tional Society for Clinical
Densitometry (ISCD), and the National Osteoporosis Foundation (NOF). J
Bone Miner Res 23, 159-165.

[79]. Miller, P.D. (1999). Management of osteoporosis. Dis Mon 45, 21-54.

[80]. Heath, H., 3rd (1983). Progress against osteoporosis. Ann Intern Med
98, 691-705.

[81]. Gunnes, M., Lehmann, E.H., Mellstrom, D., and Johnell, O. (1996). The
female link between adipose tissue, nutrition, and reproduction? Can J Appl
Pract 9, 544-564.

[82]. Torstevik, M.T., and Sundgot-Borgen, J. (2005). The female athlete triad ex-
ists in both elite athletes and controls. Med Sci Sports Exerc 37, 1449-1459.

[83]. Mikhail, B.I. (1992). Reduction of risk factors for osteoporosis among ado-
lescents and young adults. Issues Compel Nurs 15, 277-280.

[84]. Miller, P.D. (1999). Management of osteoporosis. Dis Mon 45, 21-54.

[85]. Heath, H., 3rd (1983). Progress against osteoporosis. Ann Intern Med
98, 691-705.

[86]. Suominen, H. (2006). Muscle training for bone strength. Aging Clin
Crown Dis 12, 49-70.

[87]. Adachi, J.D., Bensen, W.G., Brown, J., Hanley, D., Hodsman, A.,
and Bohles, H. (1999). Hypoleptinaemia in patients with anorexia nervosa
Fundamental aspects. Int J Obes Relat Metab Disord 23 Suppl 1, 22-28.
without external loading on bone metabolism and balance in postmeno-
pausal women with osteoporosis. Rheumatology interna-
tional 33, 291-298.
[110]. Bravo, G., Gauthier, P., Roy, P.M., Payette, H., Gaulin, P., Harvey,
M., Peloquin, L., and Dubois, M.E. (1996). Impact of a 12-month exercise
program on the physical and psychological health of osteo-
penic women. J Am Geriatr Soc 44, 756-762.
[111]. Chesnut, C.H., 3rd (1993). Bone mass and exercise. Am J Med 95,
34S-36S.
[112]. Mosti, M.P., Kachler, N., Stunes, A.K., Hoff, J., and Syversen, U.
(2013). Maximal strength training in postmenopausal women with osteopo-
rosis or osteopenia. Journal of strength and conditioning research / National
Strength & Conditioning Association.
[113]. Wang, H.L., Tai, M.K., Hung, H.M., and Chen, C.H. (2013). Unique
symptoms at midlife of women with osteoporosis and cardiovascu-
lar disease in Taiwan. Menopause 20, 315-321.
[114]. Gidwani, G.P. (1999). Amenorrhea in the athlete. Adolesc Med 10,
275-290, vii.