RVL-BERT: Visual Relationship Detection with Visual-Linguistic Knowledge from Pre-trained Representations

Meng-Jiun Chiou, Roger Zimmermann, Jiashi Feng
National University of Singapore, Singapore
mengjiun.chiou@u.nus.edu, rogerz@comp.nus.edu.sg, elefjia@nus.edu.sg

Abstract
Visual relationship detection aims to reason over relationships among salient objects in images, which has drawn increasing attention over the past few years. Inspired by human reasoning mechanism, it is believed that external visual commonsense knowledge is beneficial for reasoning visual relationships of objects in images, which is however rarely considered in existing methods. In this paper, we propose a novel approach named Relational Visual-Linguistic Bidirectional Encoder Representations from Transformers (RVL-BERT), which performs relational reasoning with both visual and language commonsense knowledge learned via self-supervised pre-training with multimodal representations. RVL-BERT also uses an effective spatial module and a novel mask attention module to explicitly capture spatial information among the objects. Moreover, our model decouples object detection from visual relationship recognition by taking in object names directly, enabling it to be used on top of any object detection system. We show through quantitative and qualitative experiments that, with the transferred knowledge and novel modules, RVL-BERT surpasses previous state-of-the-art on two challenging visual relationship detection datasets. The source code will be publicly available soon.

Introduction
Visual relationship detection (VRD) aims to detect objects and classify triplets of subject-predicate-object in a query image. It is a very crucial task for enabling an intelligent system to understand the content of images, and has received much attention over the past few years (Lu et al. 2016, Dai, Zhang, and Lin 2017, Yin et al. 2018, Hung, Mallya, and Lazebnik 2019). VRD is beneficial to various downstream tasks including image captioning (Xu et al. 2019), visual question answering (Shi, Zhang, and Li 2019), image synthesis (Johnson, Gupta, and Fei-Fei 2018), image retrieval (Johnson et al. 2015), etc.

To enhance the performance of VRD systems, some recent works incorporate the external linguistic commonsense knowledge from structured knowledge bases (Gu et al. 2019), raw language corpora (Yu et al. 2017), etc., as priors, which has taken inspiration from human reasoning mechanism. For instance, for a relationship triplet case person-ride-bike as shown in Figure 1 with linguistic commonsense, the predicate ride is more accurate for describing the relationship of person and bike compared with other relational descriptions like on or above, which are rather abstract. In addition, we argue that the external visual commonsense knowledge is also beneficial to lifting detection performance of the VRD models, which is however rarely considered previously. Take the same person-ride-bike in Figure 1 as an example. If the pixels inside the bounding box of person are masked (zeroed) out, humans can still predict them as a person since we have seen many examples and have plenty of visual commonsense regarding such cases. This reasoning process would be helpful for VRD systems since it incorporates relationships of the basic visual elements; however, most previous approaches learn visual knowledge only from target datasets and neglect external visual commonsense knowledge in abundant unlabeled data. Inspired by the recent successful visual-linguistic pre-training methods (BERT-like models) (Li et al. 2019, Lu et al. 2019), we propose to exploit both linguistic and visual commonsense knowledge from Conceptual Captions (CC) (Sharma et al. 2018) — a large-scale dataset contain-
ing 3.3M images with coarsely-annotated descriptions (alttext) that were crawled from the web, to achieve boosted VRD performance. We first pretrain our backbone model (multimodal BERT) on CC with different pretext tasks to learn the visual and linguistic commonsense knowledge. Specifically, our model mines visual prior information via learning to predict labels for an image’s subregions that are randomly masked out. The model also considers linguistic commonsense knowledge through learning to predict randomly masked out words of sentences in image captions. The pretrained weights are then used to initialize the backbone model and trained together with other additional modules (detailed at below) on visual relationship datasets.

Besides visual and linguistic knowledge, spatial features are also important cues for reasoning over object relationships in images. For instance, for A-on-B, the bounding box (or its center point) of A is often above that of B. However, such spatial information is not explicitly considered in BERT-like visual-linguistic models (Su et al. 2020; Lu et al. 2019; Li et al. 2019). We thus design two additional modules to help our model better utilize such information: a mask attention module and a spatial Module. The former predicts soft attention maps of target objects, which are then used to enhance visual features by focusing on target regions while suppressing unrelated areas; the latter augments the final features with bounding boxes coordinates to explicitly take spatial information into account.

Moreover, our model is fairly flexible and can be placed on top of any object detection system. Previous VRD approaches are divided into two-stage and one-stage ones. Two-stage methods perform object detection followed by relationship classification, while one-stage methods combine them into one. We adopt two-stage design as it can be flexibly cascaded with different state-of-the-art object detectors.

We integrate all above designs into a novel VRD model, named Relational Visual-Linguistic Bidirectional Encoder Representations from Transformers (RVL-BERT). RVL-BERT makes use of the pre-trained visual-linguistic representations as the source of visual and language knowledge to facilitate the learning and reasoning process on the downstream VRD task. It also incorporates a novel mask attention module to actively focus on the object locations in the input images and a spatial module to capture spatial relationships more accurately. Moreover, RVL-BERT is flexible in that it can be placed on top of any object detection model. We show through extensive experiments that the commonsense knowledge and the additional spatial and mask attention module effectively improve the model performance, and our RVL-BERT achieves state-of-the-art results on two VRD datasets.

Related Work

Visual Relationship Detection

Visual relationship detection (VRD) is a task reasoning over the relationships between salient objects in the images. Recently, linguistic knowledge has been incorporated as guidance signals for the VRD systems. For instance, (Lu et al. 2016) proposed to detect objects and predicates individually with language priors and fuse them into a higher-level representation for classification. (Dai, Zhang, and Lin 2017) exploited statistical dependency between object categories and predicates to infer their subtle relationships. Going one step further, (Gu et al. 2019) proposed a dedicated module utilizing bi-directional Gated Recurrent Unit to encode external language knowledge and a Dynamic Memory Network (Kumar et al. 2016) to pick out the most relevant facts. However, none of these works consider external visual commonsense knowledge, which is also beneficial to relationship recognition. By contrast, we propose to exploit the abundant visual commonsense knowledge from multimodal Transformers (Vaswani et al. 2017) learned in pre-training tasks to facilitate the relationship detection in addition to the linguistic prior.

Recent one-stage methods achieve good performance by combining object detection and relationship classification. For example, (Xu et al. 2017) captured contextualized information between object proposals and relationships with graph neural networks, followed by classifying objects and relationships. (Hung, Mallya, and Lazebnik 2019) em- bedded entities and relationships in low-dimensional vector spaces and incorporated contextual information of the bounding boxes for simultaneous classification. However, these approaches suffer low flexibility in application as they require to re-train the whole model when migrating to state-of-the-art object detectors. In this work, based on BERT models (Devlin et al. 2019) we design a VRD model that is flexible by taking in objects directly.

Representation Pre-training

In the past few years, self-supervised learning which utilizes its own unlabeled data for supervision has been widely applied in representation pre-training. BERT, ELMo (Peters et al. 2018) and GPT-2 (Radford et al. 2019) are representative language models that perform self-supervised pre-training on various pretext tasks with either Transformer blocks or bidirectional LSTM. More recently, increasing attention has been drawn to multimodal (especially visual and linguistic) pre-training. Based on BERT, Visual-Linguistic BERT (VL-BERT) (Su et al. 2020) pre-trains a single stream of cross-modality transformer layers from not only image captioning datasets but also language corpora. It is trained on BooksCorpus (Zhu et al. 2015) and English Wikipedia in addition to Conceptual Captions (Sharma et al. 2018). We refer interested readers to (Su et al. 2020) for more details of VL-BERT.

In this work, we utilize both visual and linguistic commonsense knowledge learned in the pretext tasks. While VL-BERT can be applied to training VRD without much modification, we show experimentally that their model does not perform well due to lack of attention to spatial features. By contrast, we propose to enable knowledge transfer for boosting detection accuracy and use two novel modules to explicitly exploit spatial features.
Methodology
Revisiting BERT and VL-BERT

Let a sequence of N embeddings $x = \{x_1, x_2, ..., x_N\}$ be the features of input sentence words, which are the summation of token, segment and position embedding as defined in BERT (Devlin et al. 2019). The BERT model takes in x and utilizes a sequence of n multi-layer bidirectional Transformers (Vaswani et al. 2017) to learn contextual relations between words. Let the input feature at layer l denoted as x^{l+1}, the feature of x at layer $(l+1)$, denoted as x^{l+1}, is computed through a Transformer layer which consists of two sub-layers: 1) a multi-head self-attention layer plus a residual connection

$$\tilde{h}^{l+1} = \sum_{m=1}^{M} W^{l+1}_m \left\{ \sum_{j=1}^{N} A_{i,j}^m \cdot V^{l+1}_m x_j \right\},$$

$$h^{l+1}_i = \text{LayerNorm}(x_i + \tilde{h}^{l+1}_i),$$

where $A_{i,j}^m \propto (Q^l x_i^l)^T (R^l x_j^l)$ represents a normalized dot product attention mechanism between the i-th and the j-th feature at the m-th layer and 2) a position-wise fully connected network plus a residual connection

$$\tilde{x}^{l+1}_i = W^{l+1}_2 \cdot \text{GELU}(W^{l+1}_1 h^{l+1}_i + b_1^{l+1}) + b_2^{l+1},$$

$$x^{l+1}_i = \text{LayerNorm}(h^{l+1}_i + \tilde{x}^{l+1}_i),$$

where GELU is an activation function named Gaussian Error Linear Unit (Hendrycks and Gimpel 2016). Note that Q (Query), K (Key), V (Value) are learnable embeddings for the attention mechanism, and W and b are learnable weights and biases respectively.

Based on BERT, VL-BERT (Su et al. 2020) adds O multi-layer Transformers to take in additional k visual features. The input embedding becomes $x = \{x_1, ..., x_N, x_{N+1}, ..., x_{N+O}\}$, which is computed by the summation of not only the token, segment and position embeddings but also an additional visual feature embedding which is generated from the bounding box of each corresponding word. The model is then pre-trained on two types of pretext tasks to learn the visual-linguistic knowledge: 1) masked language modeling with visual clues that predicts a randomly masked word in a sentence with image features, and 2) masked RoI classification with linguistic clues that predicts the category of a randomly masked region of interest (RoI) with linguistic information.

Overview of Proposed Model

Figure 2 shows the overall architecture of our proposed RVL-BERT. For the backbone BERT model, we adopt a 12-layer Transformer and initialize it with the pre-trained weights of VL-BERT for visual and linguistic commonsense knowledge. Compared with the original VL-BERT, RVL-BERT receives an extra answer segment for relationship prediction and incorporates a novel mask attention module that learns attention-guided visual feature embeddings and a spatial module that extracts spatial representation of subjects and objects. Let N, A and O denote the number of elements for the relationship linguistic segment, the answer segment, and the relationship visual segment, respectively. Our model consists of $N + A + O$ multi-layer Transformers, which takes in a sequence of linguistic and visual elements, including the output from the mask attention module, and learns the context of each element from all of its surrounding elements. For instance, as shown in Figure 2, to learn the representation of the linguistic element "goose", the model looks at not only the other linguistic elements (e.g., "to the right of", "window") but also all visual elements (e.g., "goose", "window"). Along with the multi-layer Transformers, the spatial module extracts the location information of subjects and objects using their bounding box coordinates. Finally, the output representation of the element in the answer segment, h_{so}, is augmented with the output of the spatial module C_{so}, followed by classification with a 2-layer fully connected network.

The input to the model can be divided into three groups by the type of segment, or four groups by the type of embedding. We explain our model below from the segment-view and the embedding-view, respectively.

Input Segments

For each input example, RVL-BERT receives a relationship linguistic segment, an answer segment, and a relationship visual segment as input.

a) Relationship linguistic segment (light blue elements in Figure 2) is the linguistic information in a triplet form subject-predicate-object, like the input form of SpatialSense dataset (Yang, Russakovsky, and Deng 2019), or a doublet form subject-object like the input in VRD dataset (Lu et al. 2016). Note that each term in the triplet or doublet may have more than one element, such as to the right of. This segment starts with a special element "[CLS]" that stands for classification and ends with a "[SEP]" that keeps different segments separated.

b) Answer segment (green elements in Figure 2) is designed for learning a representation of the whole input and has only special elements like "[MASK]" that is for visual relationship prediction and the same "[SEP]" as in the relationship linguistic segment.

c) Relationship visual segment (tangerine color elements in Figure 2) is the visual information of a relationship instance, also taking the form of triplets or doublets but with each component term corresponding to only one element even if its number of words of the corresponding label is greater than one.

Input Embeddings

There are four types of input embeddings: token embedding t, segment embedding s, position embedding p, and (attention-guided) visual feature embedding v. Among them, the attention-guided visual feature embedding is newly introduced while the others follow the original design of VL-BERT. We denote the input of RVL-BERT as $x = \{x_1, ..., x_N, x_{N+1}, ..., x_{N+A}, x_{N+A+1}, ..., x_{N+A+O}\}$, $\forall x_i: x_i = t_i + v_i + s_i + p_i$ where

\footnote{We follow the original VL-BERT to start a sentence with the "[CLS]" token, but we do not use it for classification purposes.}
Figure 2: Architecture illustration of proposed RVL-BERT for SpatialSense dataset (Yang, Russakovsky, and Deng 2019). It can be easily adapted for VRD dataset (Lu et al. 2016) by replacing triplets subject-predicate-object with doublets subject-object and performing predicate classification instead of binary classification on the output feature of “[MASK]”.

$t_i \in t, v_i \in v, s_i \in s, p_i \in p$.

a) **Token Embedding.** We transform each of the input words into a d-dimensional feature vector using WordPiece embeddings (Wu et al. 2016) comprising 30,000 distinct words. In this sense, our model is flexible since it can take in any object label with any combination of words available in WordPiece. Note that for those object/predicate names with more than one word, the exact same number of embeddings is used. For the i-th object/predicate name in an input image, we denote the token embedding as $t = \{t_1, ..., t_N, t_{N+1}, ..., t_{N+A}, t_{N+A+1}, ..., t_{N+A+O}\}$, $t_i \in \mathbb{R}^d$, where d is the dimension of the embedding. We utilize WordPiece embeddings for relationship triplets/doublets $\{t_2, ..., t_{N-1}\}$, and use special predefined tokens “[CLS]”, “[SEP]”, “[MASK]” and “[IMG]” for the other elements.

b) **Segment Embedding.** We use three types of learnable segment embeddings $s = \{s_1, ..., s_{N+A+O}\}, s_i \in \mathbb{R}^d$ to inform the model that there are three different segments: “A” for relationship linguistic segment, “B” for answer segment and “C” for relationship visual segment.

c) **Position Embedding.** Similar to segment embeddings, learnable position embeddings $p = \{p_1, ..., p_{N+A+O}\}, p_i \in \mathbb{R}^d$ are used to indicate the order of elements in the input sequence. Compared to the original VL-BERT where the position embeddings of the relationship visual segment are the same for each RoI, we use distinct embeddings as our RoIs are distinct and ordered.

d) **Visual Feature Embedding.** These embeddings are to inform the model of the internal visual knowledge of each input word. Given an input image and a set of RoIs, a ResNet-101 (He et al. 2016) is utilized to extract the feature map, which is prior to the output layer, followed by RoI Align (He et al. 2017) to produce fixed-size feature vectors $z = \{z_0, z_1, ..., z_K\}, z_i \in \mathbb{R}^d$ for K RoIs, where z_0 denotes the feature of the whole image. For triplet inputs, we additionally generate $K(K-1)$ features for all possible union bounding boxes: $u = \{u_1, ..., u_{K(K-1)}\}, u_i \in \mathbb{R}^d$. We denote the input visual feature embedding as $v = \{v_1, ..., v_N, v_{N+1}, ..., v_{N+A}, v_{N+A+1}, ..., v_{N+A+O}\}$, $v_i \in \mathbb{R}^d$. We let subject and object be s and o, with $s, o \in \{1, ..., K\}, s \neq o$, and let the union bounding box of s and o be $so \in \{1, ..., K(K-1)\}$.

For the relationship visual segment $\{v_{N+A}, ..., v_{N+A+O-1}\}$ (excluding the final special element), we use z_o as the features of subject s and object o in triplet inputs, and add another u_{so} in between in case of triplet inputs. For the special elements other than “[IMG]”, we follow VL-BERT to use the full image feature z_0. However, for the relationship linguistic segment $\{v_2, ..., v_{N-1}\}$ (excluding the first and final special elements), it is unreasonable to follow the original design to use the same, whole-image visual feature for all elements, since each object/predicate name in the relationship linguistic segment should correspond to different parts of the image. To better capture distinct visual information for the relationship linguistic segment, we propose a *mask attention module* to learn to generate attention-guided visual feature embeddings that give more weights to important (related) regions, which is detailed at below.
Mask Attention Module

An illustration of the mask attention module is shown in Figure 3. Denote the visual feature (the feature map before average pooling) used by the mask attention module as \(v_s \in \mathbb{R}^{d_c \times d_w \times d_h}\), where \(d_c, d_w, d_h\) stand for the dimension of the channel, width, and height, respectively. To generate the feature for an object \(s\) (e.g., goose in Figure 3), the mask attention module takes in and projects the visual feature \(v_s\) and the word embedding \(w_s\) into the same dimension using a standard CNN and a replication process, respectively

\[
\tilde{v}_s = \sigma(W_1^T v_s + b_1), \quad w_s = \text{Replication}(w_s),
\]

where \(\text{Replication}(\cdot)\) replicates the input vector of size \(d\) into the feature map of dimension \(d \times d_w \times d_h\). The above is followed by element-wise addition to fuse the features, two convolutional layers as well as a re-scaling process to generate the attention mask \(m_s\)

\[
m_s = \sigma(W_2^T (\tilde{v}_s + w_s) + b_2), \quad m_s = \text{Norm}(W_3^T m_s + m_3),
\]

where \(\text{Norm}(\cdot)\) applied to each element is defined by \(\text{Norm}(x_i) = \frac{x_i - \min(x)}{\max(x) - \min(x)}\). Note that in the above equations all of the \(W\)’s and \(b\)’s are learnable weights and biases of the convolutional layers, respectively. The attention-guided visual feature \(v_s^{\text{att}}\) is then obtained by performing Hadamard product between the visual feature and the attention mask: \(v_s^{\text{att}} = v_s \odot m_s\). Finally, \(v_s^{\text{att}}\) is pooled into \(v_s^{\text{att}} \in \mathbb{R}^d\) to be used in \(\{v_2, \ldots, v_{N-1}\}\).

To learn to predict the attention masks, we train the module against the Mean Squared Error (MSE loss) between the mask \(m_s\) and the resized ground truth mask \(b_s\) consisting of all ones inside the bounding box and outside all zeros:

\[
\mathcal{L}_{\text{mask}} = \frac{1}{d_w d_h} \sum_{i=1}^{d_w} \sum_{j=1}^{d_h} (m_s^{ij} - b_s^{ij})^2,
\]

where \(d_w, d_h\) denote the width and length of the attention mask.

Spatial Module

The spatial module aims to augment the output representation with spatial knowledge by paying attention to bounding box coordinates. See the top part of Figure 2 for its pipeline.

Let \((x_i^0, y_i^0), (x_i^1, y_i^1)\) denote the top-left and bottom-right coordinates of a bounding box of an object \(i\) of an input image, and let \(w, h\) be the width and height of the image. The 4-dimensional normalized coordinate of an object \(i\) is defined by \(c_i = (x_i^0/w, y_i^0/h, x_i^1/w, y_i^1/h)\). The spatial module takes in coordinate vectors of a subject \(s\) and an object \(o\), and encodes them using linear layers followed by element-wise addition fusion and a two-layer, fully-connected layer

\[
\hat{C}_{so} = \sigma(W_4 C_s + b_4) + \sigma(W_5 C_o + b_5),
\]

\[
C_{so} = W_7 \sigma(W_6 \hat{C}_{so} + b_6) + b_7. \tag{11}
\]

The output feature \(C_{so}\) is then concatenated with the multimodal feature \(h_{so}\) to produce \(f_{so}\) for answer classification:

\[
f_{so} = [C_{so}; h_{so}]. \tag{12}
\]

Experiments

Implementation

We use the original pre-trained weights of the backbone model VL-BERT, and randomly initialize the final two fully connected layers and the newly proposed modules (i.e., mask attention module and spatial module). During training, we find our model empirically gives the best performance when freezing the parameters of the backbone model and training on the newly introduced modules. We thus get a lightweight model compared to the original VL-BERT as the number of trainable parameters is reduced by around 96%, i.e., down from 161.5M to 6.9M and from 160.9M to 6.4M when trained on the SpatialSense dataset (Yang, Russakovsky, and Deng 2019) and the VRD dataset (Lu et al. 2016), respectively. Please refer to appendix for more implementation details.

Datasets

We first ablate our proposed model on VRD dataset (Lu et al. 2016), which is the most widely used benchmark. For comparison with previous methods, we also evaluate on SpatialSense (Yang, Russakovsky, and Deng 2019) dataset. Compared with Visual Genome (VG) dataset (Krishna et al. 2017), SpatialSense suffers less from the dataset language bias problem, which is considered a distractor for performance evaluation — in VG, the visual relationship can be
Table 1: Ablation results for different losses of mask attention module and ways of feature combination. .3, .5 and .7 denote different α values in $f_{so} = \alpha C_{so} + (1 - \alpha)h_{so}$.

MAM Loss	Feature Combination	Recall@50
BCE	.3 .5 .7 concat	53.50
✓	✓	55.55
✓	✓	55.19

“guessed” even without looking at the input image (Zellers et al. 2018; Chen et al. 2019). Please refer to appendix for more details about datasets used in our experiments.

VRD The VRD dataset consists of 5,000 images with 37,993 visual relationships. For VRD dataset, the task named Predicate Detection/Classification measures the accuracy of predicate prediction given ground truth classes and bounding boxes of subjects and objects independent of the object detection accuracy. Following (Lu et al. 2016; Zhang et al. 2017a), we use Recall@K, or the fraction of ground truth relations that are recalled in the top K candidates. K is usually set as 50 or 100 in the literature.

SpatialSense SpatialSense is a visual relationship dataset especially designed for reducing dataset bias by asking annotators to pick relations that are difficult to “guess” given only object names and spatial cues. It contains 17,498 visual relationships in 11,569 images. Nine spatial relationships are defined: above, behind, in, in front of, next to, on, to the left of, to the right of, and under. The task on SpatialSense is binary classification on given visual relationship triplets of images, namely judging if a triplet subject-predicate-object holds for the input image. Since in SpatialSense the number of examples of “True” equals that of “False”, the classification accuracy can be used as a fair measure.

Ablation Study Results

Training Objective for Mask Attention Module We first compare performance difference between training the mask attention module (MAM) against MSE loss or binary cross entropy (BCE) loss. The first two rows of Table 1 show that MSE outperforms BCE by relative 3.8% on Recall@50. We also observe that training with BCE is relatively unstable as it prone to gradient explosion under the same setting.

Feature Combination We also experiment with different ways of feature combination, namely, element-wise addition and concatenation of the features. To perform the experiments, we modify Eqn. 12 as $f_{so} = \alpha C_{so} + (1 - \alpha)h_{so}$, and we experiment with different α values (.3, .5 and .7). The last five rows of Table 1 show that concatenation performs slightly better than addition under all α values.

Module Effectiveness We ablate the training strategy and the modules in our model to study their effectiveness. VL indicates that the RVL-BERT utilizes the external multimodal knowledge learned in the pretext tasks via weight initialization. Spatial (S) means the spatial module, while Mask Att. (M) stands for the mask attention module. Table 2 shows that each module effectively helps boost the performance. The visual-linguistic commonsense knowledge lifts the Basic model by 12% (or absolute 5%) of Recall@50 on VRD dataset, while the spatial module further boosts the model by more than 23% (or absolute 10%). As the effect of the mask attention module is not significant on the VRD dataset (0.2% improvement), we also experiment on the SpatialSense dataset (Overall Accuracy) and find the mask attention module provide a relative 1% boost of accuracy.

Quantitative Results on VRD Dataset

We conduct experiments on VRD dataset to compare our method with existing approaches. Visual Phrase (Sadeghi and Farhadi 2011) represents visual relationships as visual phrases and learns appearance vectors for each category for classification. Joint CNN (Lu et al. 2016) classifies the objects and predicates using only visual features from bounding boxes. VTransE (Zhang et al. 2017a) projects objects and predicates into a low-dimensional space and models visual relationships as a vector translation. PPR-FCN (Zhang et al. 2017b) uses fully convolutional layers to perform relationship detection. Language Priors (Lu et al. 2016) utilizes individual detectors for objects and predicates and combines the results for classification. Zoom-Net (Yin et al. 2017a) combines the results for classification and the results of relationship detection.

Table 2: Ablation results of each module on VRD dataset (Recall@50) and SpatialSense dataset (Overall Acc.) VL: Visual-Linguistic Knowledge. S: Spatial. M: Mask Att.

Model	VL	Spatial	Mask Att.	R@50	Acc.
Basic	40.22	55.4			
+VL	45.06	61.8			
+VL+S	55.45	71.6			
+VL+S+M	55.55	72.3			

Table 3: Performance comparison with existing models on VRD dataset. Results of previous methods are extracted from (Lu et al. 2016) and respective papers.
Table 4: Classification accuracy comparison on the test split of SpatialSense dataset. Bold font represents the highest accuracy; underline means the second highest. Results of existing methods are extracted from (Yang, Russakovsky, and Deng 2019).

Model	Overall	above	behind	in	in front of	next to	on	to the left of	to the right of	under
L-baseline	60.1	60.4	62.0	54.4	55.1	56.8	63.2	51.7	54.1	70.3
PPR-FCN	66.3	61.5	65.2	70.4	64.2	53.4	72.0	69.1	71.9	59.3
ViP-CNN	67.2	55.6	68.1	66.0	62.7	62.3	72.5	69.7	73.3	66.6
Weakly	67.5	59.0	67.1	69.8	57.8	**65.7**	75.6	56.7	69.2	66.2
S-baseline	68.8	58.0	66.9	70.7	63.1	62.0	76.0	66.3	**74.7**	67.9
VTransE	69.4	61.5	69.7	67.8	64.9	57.7	76.2	64.6	68.5	76.9
L+S-baseline	71.1	61.1	67.5	69.2	66.2	64.8	77.9	**69.7**	**74.7**	**77.2**
DR-Net	71.3	**62.8**	**72.2**	69.8	66.9	59.9	**79.4**	63.5	66.4	75.9
RVL-BERT	**72.3**	62.5	70.3	**71.9**	**70.2**	65.1	78.5	68.0	74.0	75.5
Human Perf.	94.6	90.0	96.3	95.0	95.8	94.5	95.7	88.8	93.2	94.1

Table 3 shows the performance comparison on the VRD dataset. It can be seen that our RVL-BERT surpasses all the other methods in terms of both Recall@50 and Recall@100 and achieves slightly higher recall than the current state-of-the-art (UVTransE).

Quantitative Results on SpatialSense Dataset

We compare our model with various recent methods, including some methods that have been compared in the VRD experiments. Note that L-baseline, S-baseline and L+S-baseline are baselines in (Yang, Russakovsky, and Deng 2019) taking in simple language and/or spatial features and classifying with fully-connected layers. ViP-CNN (Li et al. 2017) utilizes a phrase-guided message passing structure to model relationship triplets. DR-Net (Dai, Zhang, and Lin 2017) exploits statistical dependency between object classes and predicates. The Human Performance result is extracted from (Yang, Russakovsky, and Deng 2019) for reference.

Table 4 shows that our full model outperforms all these existing approaches in terms of the overall accuracy and obtains the highest or second-highest accuracy for seven out of the nine relationships (excluding to the left of and under).

Qualitative Results of Mask Attention Module

The mask attention module aims to teach the model to learn and predict the attention maps emphasizing the locations of the given object labels. To study its effectiveness, we visualize the attention maps in Figure 4. The predicted attention maps show that the model is actively looking at the area where the object lies in, showing that it has successfully learned to predict the spatial location with only the object label and the whole image. Please refer to appendix for more visualization results on SpatialSense and VRD dataset.

Conclusion

In this paper, we proposed a novel visual relationship detection system named RVL-BERT, which exploits visual commonsense knowledge in addition to linguistic knowledge learned during self-supervised pre-training. A novel mask attention module is designed to help the model learn to capture the distinct spatial information and a spatial module is utilized to emphasize the bounding box coordinates. Our RVL-BERT is flexible in the sense that it can be solely used for predicate classification or cascaded with any state-
of-the-art object detector. We have shown that it outperforms the previous state-of-the-art with both quantitative and qualitative experiments on two visual relationship detection datasets.

References

Chen, T.; Yu, W.; Chen, R.; and Lin, L. 2019. Knowledge-embedded routing network for scene graph generation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6163–6171.

Dai, B.; Zhang, Y.; and Lin, D. 2017. Detecting visual relationships with deep relational networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3076–3086.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186. Minneapolis, Minnesota: Association for Computational Linguistics. doi:10.18653/v1/N19-1423.

Gu, J.; Zhao, H.; Lin, Z.; Li, S.; Cai, J.; and Ling, M. 2019. Scene graph generation with external knowledge and image reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1969–1978.

He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, 2961–2969.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778.

Hendrycks, D.; and Gimpel, K. 2016. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415.

Hung, Z.-S.; Mallya, A.; and Lazebnik, S. 2019. Union Visual Translation Embedding for Visual Relationship Detection and Scene Graph Generation. arXiv preprint arXiv:1905.11624.

Jae Hwang, S.; Ravi, S. N.; Tao, Z.; Kim, H. J.; Collins, M. D.; and Singh, V. 2018. Tensorize, factorize and regularize: Robust visual relationship learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1014–1023.

Johnson, J.; Gupta, A.; and Fei-Fei, L. 2018. Image generation from scene graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1219–1228.

Johnson, J.; Krishna, R.; Stark, M.; Li, L.-J.; Shamma, D.; Bernstein, M.; and Fei-Fei, L. 2015. Image retrieval using scene graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3668–3678.

Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.; Kravitz, J.; Chen, S.; Kalantidis, Y.; Li, L.-J.; Shamma, D. A.; et al. 2017. Visual genome: Connecting language and vision using crowdsourced dense image annotations. International Journal of Computer Vision 123(1): 32–73.

Kumar, A.; Irsoy, O.; Ondruska, P.; Iyyer, M.; Bradbury, J.; Gulrajani, I.; Zhong, V.; Paulus, R.; and Socher, R. 2016. Ask me anything: Dynamic memory networks for natural language processing. In International Conference on Machine Learning, 1378–1387.

Li, L. H.; Yatskar, M.; Yin, D.; Hsieh, C.-J.; and Chang, K.-W. 2019. VisualBERT: A Simple and Performant Baseline for Vision and Language. arXiv preprint arXiv:1908.03557.

Li, Y.; Ouyang, W.; Wang, X.; and Tang, X. 2017. ViP-CNN: Visual Phrase Guided Convolutional Neural Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Lu, C.; Krishna, R.; Bernstein, M.; and Fei-Fei, L. 2016. Visual relationship detection with language priors. In European Conference on Computer Vision, 852–869. Springer.

Lu, J.; Batra, D.; Parikh, D.; and Lee, S. 2019. ViLBERT: Pretraining Task-Agnostic Vision-linguistic Representations for Vision-and-Language Tasks. In Advances in Neural Information Processing Systems 32, 13–23. Curran Associates, Inc.

Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; and Zettlemoyer, L. 2018. Deep Contextualized Word Representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2227–2237. New Orleans, Louisiana: Association for Computational Linguistics. doi: 10.18653/v1/N18-1202.

Peyre, J.; Sivic, J.; Laptev, I.; and Schmid, C. 2017. Weakly-supervised learning of visual relations. In Proceedings of the IEEE International Conference on Computer Vision, 5179–5188.

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and Sutskever, I. 2019. Language models are unsupervised multitask learners. OpenAI Blog 1(8): 9.

Sadeghi, M. A.; and Farhadi, A. 2011. Recognition using visual phrases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1745–1752. IEEE.

Sharma, P.; Ding, N.; Goodman, S.; and Soricut, R. 2018. Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2556–2565.

Shi, J.; Zhang, H.; and Li, J. 2019. Explainable and explicit visual reasoning over scene graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 8376–8384.

Su, W.; Zhu, X.; Cao, Y.; Li, B.; Lu, L.; Wei, F.; and Dai, J. 2020. VL-BERT: Pre-training of Generic Visual-Linguistic Representations. In International Conference on Learning Representations.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention is all you need. In Advances in neural information processing systems, 5998–6008.

Wu, Y.; Schuster, M.; Chen, Z.; Le, Q. V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. 2016. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

Xu, D.; Zhu, Y.; Choy, C. B.; and Fei-Fei, L. 2017. Scene graph generation by iterative message passing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5410–5419.

Xu, N.; Liu, A.-A.; Liu, J.; Nie, W.; and Su, Y. 2019. Scene graph captioner: Image captioning based on structural visual representation. Journal of Visual Communication and Image Representation 58: 477 – 485. ISSN 1047-3203. doi:https://doi.org/10.1016/j.jvcir.2018.12.027. URL http://www.sciencedirect.com/science/article/pii/S1047320318303535

Yang, K.; Russakovsky, O.; and Deng, J. 2019. SpatialSense: An Adversarially Crowdsourced Benchmark for Spatial Relation Recognition. In Proceedings of the IEEE International Conference on Computer Vision.

Yin, G.; Sheng, L.; Liu, B.; Yu, N.; Wang, X.; Shao, J.; and Change Loy, C. 2018. Zoom-net: Mining deep feature interactions for visual relationship recognition. In Proceedings of the European Conference on Computer Vision, 322–338.

Yu, R.; Li, A.; Morariu, V. I.; and Davis, L. S. 2017. Visual relationship detection with internal and external linguistic knowledge distillation. In Proceedings of the IEEE International Conference on Computer Vision, 1974–1982.

Zellers, R.; Yatskar, M.; Thomson, S.; and Choi, Y. 2018. Neural motifs: Scene graph parsing with global context. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5831–5840.

Zhang, H.; Kyaw, Z.; Chang, S.-F.; and Chua, T.-S. 2017a. Visual translation embedding network for visual relation detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5532–5540.

Zhang, H.; Kyaw, Z.; Yu, J.; and Chang, S.-F. 2017b. Ppr-fcn: Weakly supervised visual relation detection via parallel pairwise r-fcn. In Proceedings of the IEEE International Conference on Computer Vision, 4233–4241.

Zhu, Y.; Kiros, R.; Zemel, R.; Salakhutdinov, R.; Urtasun, R.; Torralba, A.; and Fidler, S. 2015. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In Proceedings of the IEEE International Conference on Computer Vision, 19–27.