Quantum soft likelihood function based on ordered weighted average operator

Tianxiang Zhan · Yuanpeng He · Fuyuan Xiao

Received: date / Accepted: date

Abstract Quantum theory is the focus of current research. Likelihood functions are widely used in many fields. Because the classic likelihood functions are too strict for extreme data in practical applications, Yager proposed soft ordered weighted average (OWA) operator. In the quantum method, probability is represented by Euler’s function. How to establish a connection between quantum theory and OWA is also an open question. This article proposes OWA operator under quantum theory, and discusses the relationship between quantum soft OWA operator and classical soft OWA operator through some examples. Similar to other quantum models, this research has more extensive applications in quantum information.

Keywords Quantum theory · Soft likelihood function · OWA operator · Evidence theory · Data fusion

1 Introduction

In functional applications such as fuzzy sets, rough sets, Z-numbers, belief structures, D numbers, entropy function, and evidence theory, the analysis of unknown facts is crucial. Probability has been
thoroughly researched and widely applied in the area of uncertainty, including decision-making, estimation, and uncertainty measurement. The likelihood function is one of the most commonly used models in probability. When there is data available to describe the reasonableness of the parameter value, the likelihood function can be used. However, it is very strict in practical applications, because the original likelihood function composed of probability products is too strict to show the compatible probability of different evidences, because any low probability will greatly reduce the likelihood function. A typical soft likelihood function proposed by Yager is based on ordered weighted average (OWA) to solve this problem. OWA can avoid the problem of low-value lowering the likelihood function, and has played a huge role in the processing of uncertain information.

In the soft likelihood function, there are many operations involving the superposition of different probabilities. Through quantum theory, it is a good perspective to study the superposition effect. Quantum mechanics can consider the connection between different events. There are non-classical correlations between the physical properties of quantum systems, so that these quantities cannot be accurately obtained, but they exist as linear superposition state vectors. Based on the nature of quantum systems, quantum information has gradually developed and been used in many fields, such as reliability analysis, intelligent system, decision making and so on.

Quantum theory is a topic worthy of discussion, and it has applications in many fields such as cybersecurity, drug development, financial modeling, better batteries, traffic optimization, weather forecasting, and so on. Quantum probability theory has many similarities with the assumptions and methods of classical probability theory. In a sense, quantum probability is an extension of classical probability. Therefore, applying OWA to quantum mechanics can better analyze the superposition effect and strengthen the application of the likelihood function under quantum probability. This paper proposes OWA under quantum theory, which expands the application of soft likelihood function in quantum theory.

The structure of the paper is as follows. In the section 2, a brief introduction to the basic knowledge of OWA and Quantum Mass Function. The section 3 proposes Quantum soft likelihood function based on ordered weighted average operator. In the section 4, some numerical examples illustrate the calculation details. Section 5 summarizes the quantum soft likelihood function based on ordered weighted average operator.
2 Preliminaries

2.1 Original likelihood function

The definition of the likelihood function is the product of probabilities, calculated as follows:

\[\text{Prod} (i) = \prod_{k=1}^{i} p_k \]

(1)

where \(\text{Prod} (i) \) is likelihood function for probabilities \(p_k \) of events \(A_i \).

2.2 Quantum mass function

The quantum recognition framework and quantum mass function\cite{15} are defined as follows:

A frame of discernment indicates as \(X \), which is a set of mutually exclusive and collectively exhaustive events \(A_i \):

\[X = \{ A_1, A_2, A_3, ..., A_n \} \]

(2)

where the quantity of the events is \(n \). The power set of \(X \) is indicated as:

\[2X = \{ \emptyset, \{ A_1 \}, \{ A_1, A_2 \}, ..., X \} \]

(3)

where \(2X \) composed of \(2^n \) elements.

In quantum frame of discernment, the quantum mass function \(m \) is defined as follows:

\[m (A) = ae^{bi} \]

(4)

where the mass function satisfies:

\[|m (A)| = a^2 \]

(5)

\[|m (\emptyset)| = 0 \]

(6)

\[\sum_{A \subseteq X} |m (A)| = 1 \]

(7)

2.3 Ordered weighted average operator

The OWA operator was first proposed by Yager to create a likelihood function\cite{13,15}, and then combine multiple probabilities to play a role in data fusion. The OWA operator is an \(n \)-dimensional vector to one-dimensional mapping, which is defined as follows:

\[OWA (A_1, A_2, ..., A_n) = \sum_{j=1}^{n} \omega_j B_j \]

(8)
\[\sum_{j=1}^{n} \omega_j = 1 \quad (9) \]

where \(B_j \) is \(j \)th largest elements in \(\{A_1, A_2, ..., A_n\} \). The two characterization methods related to OWA operators are attitude characteristics and dispersion, so the weighted variable \(\omega_j \) could be defined as follows:

\[\omega_j = \left(\frac{i}{n} \right)^{(1-\alpha)/\alpha} - \left(\frac{i-1}{n} \right)^{(1-\alpha)/\alpha} \quad (10) \]

where \(\alpha \) is the degree of optimism expected. The smaller the \(\alpha \), the more pessimistic, \(\alpha = 0.5 \) represents a neutral position.

3 Quantum ordered weighted average operator

In this section, a new likelihood function is proposed based on the OWA operator in quantum theory. Compared with the traditional OWA operator, the quantum OWA operator takes into account the superposition effect between events. Classic OWA is a special case of quantum OWA.

3.1 Limitations of existing OWA operands

The classic probability does not take into account the angle between the two probabilities. For calculations, the classic probability is a scalar, as shown in the Fig.1 below:

![Fig. 1: The classical probability \(P_1 \) (blue vector), \(P_2 \) (yellow vector) has no angle](image)

The classical probability can be regarded as a special vector with a constant angle of 0. Compared with quantum probability, classical probability does not have the ability to express an angle, and quantum probability can express an angle, as shown in the Fig.2:

In this case, the classical OWA operator is difficult to deal with quantum probability.
3.2 Quantum ordered weighted average operator

The quantum OWA operator defines the likelihood function of a new quantum theory. The classic OWA operator needs to sort the existing probabilities according to the magnitude of the probability, and assign different weights according to the order of magnitude. The quantum probability is not a scalar, and in most cases, it is impossible to directly compare the magnitude of the value. In the quantum probability comparison, the method of comparing the module length is adopted, which is consistent with the comparison method of classical probability. The quantum OWA operator is defined as follows.

A set of mutually exclusive and collectively exhaustive events indicates as follows:

\[X = \{ A_1, A_2, ..., A_n \} \] (11)

The quantum probability of \(A_i \) is expressed as:

\[p_q (A_i) = ae^{	heta i} \] (12)

where \(\theta \) is the angle. According to Euler formula, the quantum probability \(p (A) \) can be written in the following form:

\[p_q (A) = ae^{	heta i} = a \cos (\theta) + i \sin (\theta) \] (13)

Then the modulus length of quantum probability is calculated as follows:

\[|p_q (A)| = \sqrt{a^2 \cos^2 (\theta) + \sin^2 (\theta)} = \sqrt{a^2} = a \] (14)
The set X arranged in descending order according to the quantum probability modulus length is expressed as:

$$X = \{ A'_1, A'_2, ..., A'_n \}$$ (15)

where A'_i is the i-th largest events in the set X. So the quantum OWA operator is calculated as follows:

$$QOWA (A_1, A_2, ..., A_n) = \sum_{i=1}^{n} \omega_i A'_i = \sum_{i=1}^{n} \left(\left(\frac{i}{n} \right)^{\frac{1}{\alpha}} - \left(\frac{i-1}{n} \right)^{\frac{1}{\alpha}} \right) \cdot a'_i e^{i \theta}$$ (16)

3.3 Compatibility of Quantum ordered weighted average operator

When the quantum probability of all events of the quantum OWA operator is 0, the quantum probability of event A is calculated as follows:

$$p_q (A) = a (\cos (\theta) + i \sin (\theta)) = a$$ (17)

$$|p_q (A)| = \sqrt{a^2 \cdot (\cos^2 (0) + \sin^2 (0))} = \sqrt{a^2} = a$$ (18)

where the quantum ordered weighted average operator is calculated as follows:

$$QOWA (A_1, A_2, ..., A_n) = \sum_{i=1}^{n} \omega_i A'_i = \sum_{i=1}^{n} \left(\left(\frac{i}{n} \right)^{\frac{1}{\alpha}} - \left(\frac{i-1}{n} \right)^{\frac{1}{\alpha}} \right) \cdot a'_i$$ (19)

At this time, since the angles of all quantum probabilities are 0, the quantum probability can be regarded as a classical probability, so the OWA operator is calculated as follows:

$$OWA (A_1, A_2, ..., A_n) = \sum_{i=1}^{n} \omega_i A'_i = \sum_{i=1}^{n} \left(\left(\frac{i}{n} \right)^{\frac{1}{\alpha}} - \left(\frac{i-1}{n} \right)^{\frac{1}{\alpha}} \right) \cdot a'_i$$ (20)

$$OWA (A_1, A_2, ..., A_n) = QOWA (A_1, A_2, ..., A_n)$$ (21)

It can be seen that the results of the quantum OWA operator and the classical OWA operator are consistent. Quantum QOWA is an extended form of OWA. When the quantum probability angle of all events is 0, QOWA degenerates into classic OWA.

The algorithm shows steps to obtain quantum soft likelihood function based on ordered weighted average operator as follows:
Algorithm 1 Quantum soft likelihood function based on ordered weighted average operator

Input: A frame of discernment X

Output: Soft likelihood function P

1. Compute the products of quantum probabilities
2. Compute the weights of each event
3. Combine the weighted probability

4 The computation of quantum soft likelihood function based on ordered weighted average operator

There is an assumption that there are 5 ($n = 5$) sources of evidence. It supposed that suspect A whose probability with the seven sources of evidence is:

$$E = \{ p_1 = 0.3 - 0.7i, p_2 = 0.4 - 0.9i, p_3 = 0.5 + 0.3i, p_4 = 0.6 + 0.8i, p_5 = 0.2 + 0.5i \}$$ (22)

$$|p| \leq 1$$ (23)

The modulus length of each quantum probability is easy to calculate and show in the Tab.1:

Probability	Modulus length
p_1	0.7616
p_2	0.9849
p_3	0.5831
p_4	1
p_5	0.5385

Table 1: The modulus length of each quantum probability

According to the modulus length of each probability, the order of each probability is shown in Tab.2:

Order	Probability
1	p_4
2	p_2
3	p_1
4	p_3
5	p_5

Table 2: The order of each quantum probability
4.1 Step 1: Compute the product of quantum probabilities

Since the product of all probabilities is the original form of the likelihood function, it’s important to measure the split product of ordered probabilities first, then merge them with the aggregation operator to soften the likelihood function to get the probability product seen as follows:

\[
\text{Prod}(1) = (0.6 + 0.8i) = 0.6 + 0.8i
\]
\[
\text{Prod}(2) = (0.6 + 0.8i)(0.4 - 0.9i) = 0.96 - 0.22i
\]
\[
\text{Prod}(3) = (0.6 + 0.8i)(0.4 - 0.9i)(0.3 - 0.7i) = 0.134 - 0.738i
\]
\[
\text{Prod}(4) = (0.6 + 0.8i)(0.4 - 0.9i)(0.3 - 0.7i)(0.5 + 0.3i) = 0.2884 - 0.3288i
\]
\[
\text{Prod}(5) = (0.6 + 0.8i)(0.4 - 0.9i)(0.3 - 0.7i)(0.5 + 0.3i)(0.2 + 0.5i) = 0.2221 + 0.0784i
\]

4.2 Step 2: Compute the weights of each event

According to the definition of \(\omega_i \) in Section 2, for different degrees of optimism, each group of \(\omega_i \) values is different. Here take \(\alpha = 0.2 \) (relatively pessimistic), \(\alpha = 0.5 \) (neutral) and \(\alpha = 0.8 \) (relatively optimistic) as examples to calculate \(\omega_i \), and the results are shown in Tab.3:

\(\omega_i \)	\(\alpha = 0.2 \)	\(\alpha = 0.5 \)	\(\alpha = 0.8 \)
\(\omega_1 \)	0.0016	0.2	0.6687
\(\omega_2 \)	0.024	0.2	0.1265
\(\omega_3 \)	0.104	0.2	0.0848
\(\omega_4 \)	0.28	0.2	0.0656
\(\omega_5 \)	0.5904	0.2	0.0543

Table 3: The order of each initial likelihood function values

4.3 Step 3: Combine the weighted probability

The weighted calculation of the weight and the original likelihood function is the proposed quantum soft likelihood function. For three different degrees of optimism, the proposed quantum soft likelihood function values are shown in Tab.4:

For different degrees of optimism, calculate the likelihood function of different degrees of optimism with 0.05 as the step size, see Tab.5:

Likehood is displayed in three-dimensional coordinates as shown in Fig.3, where \((r, i)\) represents quantum probability, and \(\alpha\) represents optimistic attitudinal character.
Quantum soft likelihood function based on ordered weighted average operator

\(\alpha = 0.2 \)	\(\alpha = 0.5 \)	\(\alpha = 0.8 \)
Likelihood	0.2498-0.1266i	0.4409-0.0817i
	0.565+0.4273i	

Table 4: Likelihood function values in example optimistic attitudinal character

\(\alpha \)	Likelihood
0.05	0.2231+0.0725i
0.1	0.2297+0.0198i
0.15	0.2369-0.0563i
0.2	0.2498-0.1266i
0.25	0.2728-0.1771i
0.3	0.3036-0.2028i
0.35	0.3387-0.2033i
0.4	0.3745-0.1811i
0.45	0.4089-0.1391i
0.5	0.4409-0.0817i
0.55	0.4695-0.0121i
0.6	0.4948+0.0663i
0.65	0.5166+0.1515i
0.7	0.5355+0.2412i
0.75	0.5515+0.3334i
0.8	0.565+0.4273i
0.85	0.5765+0.5214i
0.9	0.586+0.6154i
0.95	0.5937+0.7083i

Table 5: Likelihood function values in different optimistic attitudinal character

Fig. 3: Three-dimensional likelihood map
4.4 Analysis

The quantum OWA operator can be seen as an extension of the classic OWA operator. In the above example, the quantum OWA soft-likelihood function is compatible with the framework of the classic OWA soft-likelihood function. Quantum OWA is an extension of classic OWA, and classic OWA is a special case of quantum OWA. This article defines the calculation method of the soft likelihood function of OWA in the quantum domain for the first time, and expands the use of OWA operators.

5 Conclusion

A Quantum soft likelihood function based on ordered weighted average operator is proposed. The Quantum soft likelihood function based on ordered weighted average operator takes advantage of the OWA operator to complete the calculation of the quantum likelihood function, and considers the degree of support between the probabilities in the aggregation process. In short, the soft likelihood function proposed in this paper has broad application prospects in practical applications under uncertain environments.

Acknowledgment

The authors greatly appreciate the reviewers’ suggestions and the editor’s encouragement. This research is supported by the National Natural Science Foundation of China (No.62003280).

Declarations

Conflict of interest There is no conflict of interest.
Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

1. Abellan, C., Pruneri, V.: The future of cybersecurity is quantum. IEEE Spectrum 55(7), 30–35 (2018)
2. Abellán, J., Mantas, C.J., Castellano, J.G.: A random forest approach using imprecise probabilities. Knowledge-Based Systems 134, 72–84 (2017)
3. Bashir, Z., Mahnaz, S., Abbas Malik, M.G.: Conflict resolution using game theory and rough sets. International Journal of Intelligent Systems 36(1), 237–259 (2021)
4. Cao, Y., Romero, J., Aspuru-Guzik, A.: Potential of quantum computing for drug discovery. IBM Journal of Research and Development 62(6), 6–1 (2018)
5. Castelluccio, M.: Quantum fintech. Strategic Finance 102(7), 55–56 (2021)
6. Cui, H., Liu, Q., Zhang, J., Kang, B.: An improved deng entropy and its application in pattern recognition. IEEE Access 7, 18284–18292 (2019)
7. Dai, J., Deng, Y.: A New Method to Predict the Interference Effect in Quantum-Like Bayesian Networks. Soft Computing 24(14), 10287–10294 (2020). DOI {10.1007/s00500-020-04693-2}
8. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. In: Classic works of the Dempster-Shafer theory of belief functions, pp. 57–72. Springer (2008)
9. Deng, Y.: Deng entropy. Chaos, Solitons & Fractals 91, 549–553 (2016)
10. Denning, D.E.: Is quantum computing a cybersecurity threat? American Scientist 107(2), 83–85 (2019)
11. Dong, J., Lu, Y.: Infinite wall in the fractional quantum mechanics. Journal of Mathematical Physics 62(3), 032104 (2021)
12. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of General System 17(2-3), 191–209 (1990)
13. Fei, L., Deng, Y., Hu, Y.: De-vikor: A new multi-criteria decision-making method for supplier selection. International Journal of Fuzzy Systems 21(1), 157–175 (2019)
14. Fei, L., Wang, H., Chen, L., Deng, Y.: A new vector valued similarity measure for intuitionistic fuzzy sets based on owa operators. Iranian Journal of Fuzzy Systems 16(3), 113–126 (2019)
15. Gao, X., Deng, Y.: Quantum model of mass function. International Journal of Intelligent Systems 35(2), 267–282 (2020)
16. Gao, X., Pan, L., Deng, Y.: Quantum Pythagorean Fuzzy Evidence Theory (QPFET): A Negation of Quantum Mass Function View. IEEE Transactions on Fuzzy Systems p. 10.1109/TFUZZ.2021.3057993 (2021)
17. Garg, H.: A new generalized pythagorean fuzzy information aggregation using einstein operations and its application to decision making. International Journal of Intelligent Systems 31(9), 886–920 (2016)
18. Grant, E., Humble, T.S., Stump, B.: Benchmarking quantum annealing controls with portfolio optimization. Physical Review Applied 15(1), 014012 (2021)
19. Gao, Y., Lei, X., Wang, Q.: Capacity coordination planning of isolated microgrid and battery swapping station based on the quantum behavior particle swarm optimization algorithm. International Transactions on Electrical Energy Systems 31(3), e12804 (2021)
20. Han, Y., Deng, Y.: A novel matrix game with payoffs of maxitive belief structure. International Journal of Intelligent Systems 34(4), 690–706 (2019)
21. He, Y., Xiao, F.: Conflicting management of evidence combination from the point of improvement of basic probability assignment. International Journal of Intelligent Systems 36(5), 1914–1942 (2021). DOI https://doi.org/10.1002/int.22366
22. Jiao, W., Su, Q., Ge, J., Dong, S., Wang, D., Zhang, M., Ding, S., Du, G., Xu, B.: Mo2c quantum dots decorated ultrathin carbon nanosheets self-assembled into nanoflowers toward highly catalytic cathodes for li-o2 batteries. Materials Research Bulletin 133, 111020 (2021)
23. Kang, B., Deng, Y., Hewage, K., Sadiq, R.: A method of measuring uncertainty for z-number. IEEE Transactions on Fuzzy Systems 27(4), 731–738 (2018)
24. Kou, W., Lv, R., Zuo, S., Yang, Z., Huang, J., Wu, W., Wang, J.: Hybridizing polymer electrolyte with poly (ethylene glycol) grafted polymer-like quantum dots for all-solid-state lithium batteries. Journal of Membrane Science 618, 118702 (2021)
25. Lai, J.W., Cheong, K.H.: Parrondo’s paradox from classical to quantum: A review. Nonlinear Dynamics 100(1), 849–861 (2020)
26. Lam, Y.H., Abramov, Y., Ananthula, R.S., Elward, J.M., Hilden, L.R., Nilsson Lill, S.O., Norrby, P.O., Ramirez, A., Sherer, E.C., Mustakis, J., et al.: Applications of quantum chemistry in pharmaceutical process development: Current state and opportunities. Organic Process Research & Development 24(8), 1496–1507 (2020)
27. Li, D., Deng, Y., Cheong, K.H.: Multisource basic probability assignment fusion based on information quality. International Journal of Intelligent Systems 36(4), 1851–1875 (2021)
28. Li, H., Cai, R.: An improved expression for information quality of basic probability assignment and its application in target recognition. Soft Computing pp. 1–10 (2021)
29. Martin, A., Candelas, B., Rodríguez-Rozas, Á., Martín-Guerrero, J.D., Chen, X., Lamata, L., Orús, R., Solano, E., Sanz, M.: Toward pricing financial derivatives with an ibm quantum computer. Physical Review Research 3(1), 013167 (2021)
30. Meng, D., Li, Y., Zhu, S.P., Lv, G., Correia, J., de Jesus, A.: An enhanced reliability index method and its application in reliability-based collaborative design and optimization. Mathematical Problems in Engineering 2019 (2019)
31. Mosca, M.: Cybersecurity in an era with quantum computers: will we be ready? IEEE Security & Privacy 16(5), 38–41 (2018)
32. Qiao, J.: On (io, o)-fuzzy rough sets based on overlap functions. International Journal of Approximate Reasoning 132, 26–48 (2021)
33. Shafer, G.: Dempster–shafer theory. Encyclopedia of artificial intelligence 1, 330–331 (1992)
34. Song, X., Qin, B., Xiao, F.: Fr-kde: A hybrid fuzzy rule-based information fusion method with its application in biomedical classification. International Journal of Fuzzy Systems pp. 1–13 (2020)
35. Sun, R., Deng, Y.: A new method to identify incomplete frame of discernment in evidence theory. IEEE Access 7, 15547–15555 (2019)
36. Tao, R., Xiao, F.: A gmdcm approach with linguistic z-numbers based on topsis and choquet integral considering risk preference. Journal of Intelligent & Fuzzy Systems (Preprint), 1–14 (2020)
37. Wang, C., Tan, Z.X., Ye, Y., Wang, L., Cheong, K.H., Xie, N.g.: A rumor spreading model based on information entropy. Scientific reports 7(1), 1–14 (2017)
38. Wang, J., Li, H., Yang, H., Wang, Y.: Intelligent multivariable air-quality forecasting system based on feature selection and modified evolving interval type-2 quantum fuzzy neural network. Environmental Pollution 274, 116429 (2021)
39. Wang, X., Song, Y.: Uncertainty measure in evidence theory with its applications. Applied Intelligence 48(7), 1672–1688 (2018)
40. Xiao, F.: A novel multi-criteria decision making method for assessing health-care waste treatment technologies based on d numbers. Engineering Applications of Artificial Intelligence 71, 216–225 (2018)
41. Xiao, F.: A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems. IEEE Transactions on Systems, Man, and Cybernetics: Systems (2019)
42. Xiao, F.: A multiple-criteria decision-making method based on d numbers and belief entropy. International Journal of Fuzzy Systems 21(4), 1144–1153 (2019)
43. Yager, R.R.: Families of owa operators. Fuzzy sets and systems 59(2), 125–148 (1993)
44. Yager, R.R.: Fuzzy rule bases with generalized belief structure inputs. Engineering Applications of Artificial Intelligence 72, 93–98 (2018)
45. Zadeh, L.A.: A note on z-numbers. Information Sciences 181(14), 2923–2932 (2011)
46. Zhang, D., Wang, J., Fan, H., Zhang, T., Gao, J., Yang, P.: New method of traffic flow forecasting based on quantum particle swarm optimization strategy for intelligent transportation system. International Journal of Communication Systems 34(1), e4647 (2021)
47. Zhao, J., Deng, Y.: Performer selection in human reliability analysis: D numbers approach. International Journal of Computers Communications & Control 14(3), 437–452 (2019)
48. Zhou, M., Liu, X.B., Chen, Y.W., Yang, J.B.: Evidential reasoning rule for madm with both weights and reliabilities in group decision making. Knowledge-Based Systems 143, 142–161 (2018)
49. Zhou, M., Liu, X.B., Yang, J.B., Chen, Y.W., Wu, J.: Evidential reasoning approach with multiple kinds of attributes and entropy-based weight assignment. Knowledge-Based Systems 163, 358–375 (2019)
50. Zhou, T., Huang, D., Cai, Z.: Quantum mechanical methods for drug design. Current topics in medicinal chemistry 10(1), 33–45 (2010)
51. Zimmermann, H.J.: An application-oriented view of modeling uncertainty. European Journal of operational research 122(2), 190–198 (2000)