Mitochondrial Dynamics Related Genes -MFN1, MFN2 and DRP1 Polymorphisms are Associated with Risk of Lung Cancer

Xiaohua Liang1
Shengqiang Dang2

1Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, 710038, People’s Republic of China; 2Department of Oncology, Chang’an Hospital of Xi’an, Xi’an, Shaanxi, 710016, People’s Republic of China

Purpose: This study aimed to evaluate the associations between mitochondrial dynamics related genes -MFN1, MFN2 and DRP1 polymorphisms and risk of lung cancer.

Methods: Six polymorphisms of MFN1, MFN2 and DRP1 were genotyped in 600 cases and 600 controls using a MassARRAY platform.

Results: The MFN1 rs13098637-C and DRP1 rs879255689-A alleles were associated with an increased risk of lung cancer (p_rs13098637 = 0.004, p_rs879255689 = 0.005), while MFN2 rs4240897-A and rs2236058-G were related to a decreased risk of disease (p < 0.001). The rs13098637-TC/CC and rs879255689-GA/AA were determined as risk genotypes for lung cancer (p_rs13098637 = 0.014, p_rs879255689 = 0.013), whereas the rs4240897-GA/AA and rs2236058-GG were identified as protective genotypes against lung cancer risk (p < 0.001). Genetic model analysis showed that rs13098637 was correlated with an elevated risk of lung cancer in dominant and log-additive models (p_dominant = 0.007, p_log-additive = 0.004). Moreover, rs879255689 was associated with an increased risk of disease in all three models (p_dominant = 0.014, p_recessive = 0.028, p_log-additive = 0.005). In contrast, rs4240897 and rs2236058 were related to reduced risk of disease in all three models (rs4240897: p_all < 0.001; rs2236058: p_dominant = 0.008, p_recessive = 0.001, p_log-additive < 0.001). In addition, these associations were related to the smoking status and pathological type of lung cancer patients.

Conclusion: These results shed new light on the association between mitochondrial dynamics related genes and risk of lung cancer.

Keywords: lung cancer, gene polymorphisms, mitochondrial dynamics, MFN1, MFN2

Introduction

Lung cancer is the malignant tumor with the highest morbidity and mortality in the world.1 At present, it is believed that the interaction of genetic susceptibility, environmental factors, hormone levels and viral infections is the main pathogenic factor for lung cancer.2–4 Lung tissue damage caused by related pathogenic factors can lead to corresponding changes in genes, epigenetics and the entire transcriptome.5 And these changes will affect and gradually lead to the activation of abnormal molecular pathways and cell functions, which will cause precancerous lesions and further develop to lung cancer.6 In recent years, the targeted therapy of lung cancer has made great breakthroughs, but the 5-year survival rate of patients has only increased from 7% to 15%.7,8 The mechanism of the occurrence and development of lung cancer is complex and has not been fully elucidated so far. Therefore, there is an urgent need to explore the core molecules that regulate the
occurrence and development of lung cancer, and design a more effective strategy for early prevention and targeted treatment of the disease.

Mitochondria are highly dynamic organelles that are regulated by many members of the GTPases superfamily. Generally, mitochondria are connected to each other to form a network structure in cells, and continue to divide and fuse to maintain their normal structure; however, the mitochondrial homeostasis is disturbed in the case of disease. The genes involved in mitochondrial dynamics mainly include dynamin-related protein-1 (DRP1), mitochondrial fusion protein 1, 2 (MFN1, MFN2) and so on. At present, there have been a large number of reports on the role of mitochondrial division and fusion disorders in tumors. Rehman et al. found that the expression level of DRP1 in lung cancer tissues was significantly higher than that in adjacent tissues, while the expression level of MFN1 was significantly reduced in lung cancer tissues, and inhibition of DRP1 activity could significantly inhibit the growth rate of tumors in nude mice. Inoue-Yamauchi and Oda reported that inhibition of DRP1 can promote the release of cytochrome C and the apoptosis of colorectal cancer cells. In addition, Zhao et al. also found that the use of DRP1 inhibitors can significantly inhibit the invasion and metastasis of breast cancer cells. These results suggested that mitochondrial division and fusion disorder played an important role in the occurrence and development of tumors. However, to date, little information is found about the single nucleotide polymorphism (SNP) of mitochondrial dynamics related genes in cancer, especially in lung cancer.

Six tag SNPs in mitochondrial dynamics related genes MFN1, MFN2 and DRP1 were selected as candidate SNPs. Rs13098637 and rs3976523 in MFN1 have been investigated in patients with myopia, and the C allele of rs13098637 has been identified as risk allele for low to moderate myopia. Rs4240897 in MFN2 was associated with decreased risk of tuberculosis in a genome-wide association study. Moreover, MFN2-rs2236058-GG genotype was correlated with reduced risk of thoracic aortic dissection. In addition, rs879255685 and rs879255689 in DRP1 were missense variants and associated with developmental delay, refractory epilepsy and altered function of peroxisomes and mitochondria. In the present study, we genotyped these SNPs in lung cancer patients and healthy controls and evaluated the associations between the SNPs and risk of lung cancer.

Materials and Methods
Participants
The subjects of this study included 600 lung cancer patients and 600 controls. All participants were of Chinese Han ethnicity and were recruited at Tangdu hospital. The patients were diagnosed with lung cancer by histopathological examination of biopsy specimens. The control group included randomly selected healthy individuals with no history of cancer. All participants provided written informed consent. This study was approved by the ethics committee of the hospital (No. 201003–52) and carried out in accordance with the World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects.

Genotyping
Six SNPs in mitochondrial dynamics related genes MFN1, MFN2 and DRP1 were selected based on previous association studies. The minor allele frequencies (MAFs) of these SNPs are greater than 5% in East Asian populations according to the 1000 Genomes database. DNA was extracted using a QIAamp DNA Blood Midi Kit (QIAGEN, Germany). Primers were designed using Sequenom MassARRAY Assay Design 3.0 software. SNP genotyping was performed on Mass ARRAY iPLEX platform (Sequenom, San Diego, CA, USA).

Statistical Analysis
Statistical analysis was performed with SPSS package version 20.0 (SPSS, Chicago, IL, USA). MAFs of each SNP were checked for divergence from Hardy–Weinberg equilibrium (HWE). HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) was used to predict the potential functions of the SNPs. Allele and genotype frequencies in the cases and controls were evaluated using Chi-square tests. The association between SNPs and lung cancer risk was evaluated using SNPstats (https://www.snpstats.net/start.htm) and expressed by odds ratios (ORs) and 95% confidence intervals (CIs). Statistical significance was established when \(p < 0.05 \).

Results
The characteristics of the participants are presented in Table 1. The case group includes 384 males and 216 females, 381 smokers and 219 nonsmokers, with a mean age of 57.03 years; and the control group consists of 381 males and 219 females, 378 smokers and 222 nonsmokers,
with a mean age of 56.45 years. No significant difference was observed in the distribution of sex, age, or smoking status between the two groups (\(p > 0.05\)). In addition, The lung cancer cases consist of 278 adenocarcinoma patients, 187 squamous cell carcinoma patients, 110 small cell lung cancer patients and 25 other types of lung cancer cases.

The basic information for the candidate SNPs is listed in Table 2. The predicted function according to the HaploReg database showed that the four SNPs in \(MFN1\) and \(MFN2\) were involved in the regulation of the promoter or enhancer histone, changed motifs, and eQTL hits. Moreover, two SNPs in \(DRP1\) were missense variants and led to changed amino acids.

The MAFs of SNPs in cases and controls were described in Table 3. All of the SNPs were consistent with HWE (\(p > 0.05\)). Compared the MAFs of SNPs between cases and controls, we found that the minor allele \(C\) of \(MFN1\)-rs13098637 was associated with a 1.36-fold increased risk of lung cancer (95% CI: 1.106–1.691, \(p=0.004\)). In addition, the minor allele A of \(DRP1\)-rs879255689 was correlated with an 1.34-fold elevated risk of disease (95% CI: 1.094–1.662, \(p=0.005\)). In contrast, the minor alleles of \(MFN2\) rs4240897-A and rs2236058-G were related to a decreased risk of disease (rs4240897: OR=0.681, 95% CI: 0.572–0.812, \(p<0.001\); rs2236058: OR=0.718, 95% CI: 0.612–0.843, \(p<0.001\)).

The genotype frequencies of SNPs in cases and controls are shown in Table 4 and Figure 1. Compared with the wild genotype TT, the TC and CC genotypes of \(MFN1\)-rs13098637 were associated with 1.34-fold and 2.04-fold increased risk of lung cancer (\(p=0.014\)). Similarly, the GA and AA genotypes of \(DRP1\)-rs879255689 exhibited 1.28-fold and 2.30-fold elevated risk of disease (\(p=0.013\)). However, the GA and AA genotypes of \(MFN2\)-rs4240897 were determined to be protective genotypes with 0.71-fold and 0.42-fold reduced risk of lung cancer (\(p<0.001\)). In addition, the GG genotype of \(MFN2\)-rs2236058 was also found to be protective genotype against lung cancer risk (OR=0.52, 95% CI: 0.37–0.71, \(p<0.001\)).

The associations between SNPs and risk of disease were further evaluated under genetic models (Table 5). We found that the \(MFN1\)-rs13098637 was associated with an increased risk of lung cancer under dominant and log-additive models (\(p_{\text{dominant}}=0.007\), \(p_{\text{log-additive}}=0.004\)). Moreover, \(DRP1\)-rs879255689 was correlated with an elevated risk of disease in all three models (\(p_{\text{dominant}}=0.014\), \(p_{\text{recessive}}=0.028\), \(p_{\text{log-additive}}=0.005\)). In contrast, \(MFN2\) rs4240897 and rs2236058 were both related to reduced risk of disease in all three models.

Table 1 The Basic Information of the Participants

Characteristics	Case (n=600)	Control (n=600)	\(\chi^2/t\)	\(p\)
Gender (%)				
Male	384 (64.0)	381 (63.5)	0.032	0.858
Female	216 (36.0)	219 (36.5)		
Age				
Mean ±SD	57.03±10.54	56.45±10.64	0.674	0.344
Smoking (%)				
Yes	381 (63.5)	378 (63.0)	0.032	0.858
No	219 (36.5)	222 (37.0)		
Pathological types				
AC	278 (46.3)	278 (46.3)		
SCC	187 (31.2)	187 (31.2)		
SCLC	110 (18.3)	110 (18.3)		
Others	25 (4.2)	25 (4.2)		

Abbreviations: AC, adenocarcinoma; SCC, squamous cell carcinoma; SCLC, small cell lung cancer.

Table 2 Basic Information and Predicted Functions of Candidate SNPs

SNP	Gene	Chromosome	Position	Allele	Role	Predicted Functions
rs13098637	MFN1	3	179375026	T>C	Intron	Promoter histone mark, motifs changed, eQTL hits
rs3976523	MFN1	3	179381391	A>C	Intron	Motifs changed, eQTL hits
rs4240897	MFN2	1	11982698	G>A	Intron	Enhancer histone mark, motifs changed, eQTL hits
rs2236058	MFN2	1	12002304	C>G	Intron	Enhancer histone mark, motifs changed, eQTL hits
rs879255685	DRP1	12	32731019	G>A	Missense Variant	Gly362Asp
rs879255689	DRP1	12	32722602	G>A	Missense Variant	Gly379Lys

Abbreviations: SNP, single nucleotide polymorphism; eQTL, expression quantitative trait locus.
Stratified analysis was carried out in the aspect of smoking status (Table 6) and pathological type of lung cancer (Table 7). We found that MFN1-rs13098637 was associated with risk of lung cancer in both smokers and nonsmokers; while DRP1-rs879255689 was only related to risk of disease in nonsmokers (p<0.05). Moreover, MFN2-rs4240897 was correlated with declining risk of disease in both smokers and nonsmokers, while MFN2-rs2236058 was only significant in smokers (p<0.05). In addition, MFN1-rs13098637 was associated with increased risk of adenocarcinoma and small cell lung cancer, and DRP1-rs879255689 was related to elevated risk of squamous cell carcinoma and small cell lung cancer (p<0.05). In contrast, MFN2-rs4240897 was protective variant for all three types of lung cancer (p<0.05). However, MFN2-rs2236058 was not significant in any types of disease, which may due to the limited sample size.

Discussion

Abnormal division and fusion of mitochondria not only lead to altered morphology and function but also closely

Table 3 The MAF and HWE of Candidate SNPs Between Lung Cancer Cases and Healthy Controls

SNP	Gene	MAF-Cases	MAF-Controls	HWE p	OR (95% CI)	p
rs13098637	MFN1	0.20	0.15	0.87	1.368 (1.106–1.691)	0.004*
rs3976523	MFN1	0.36	0.33	0.78	1.138 (0.962–1.347)	0.132
rs4240897	MFN2	0.26	0.34	0.93	0.681 (0.572–0.812)	<0.001*
rs2236058	MFN2	0.45	0.53	0.41	0.718 (0.612–0.843)	<0.001*
rs879255685	DRP1	0.20	0.18	0.10	1.107 (0.904–1.357)	0.325
rs879255689	DRP1	0.20	0.16	0.44	1.348 (1.094–1.662)	0.005*

Note: *p < 0.05 indicates statistical significance.

Abbreviations: SNP, single nucleotide polymorphism; MAF, minor allele frequency; HWE, Hardy–Weinberg equilibrium.

Table 4 Genotype Frequency Distributions Between Lung Cancer Cases and Healthy Controls

SNP	Genotype	Control	Case	OR (95% CI)	p	
rs13098637	T/T	430 (71.7%)	387 (64.5%)	1	0.014*	
	T/C	157 (26.2%)	189 (31.5%)	1.34 (1.04–1.73)	0.132	
	C/C	13 (2.2%)	24 (4%)	2.04 (1.02–4.06)	<0.001*	
rs3976523	A/A	269 (44.8%)	243 (40.5%)	1	0.300	
	A/C	268 (44.7%)	285 (47.5%)	1.18 (0.92–1.50)	0.262	
	C/C	63 (10.5%)	72 (12%)	1.26 (0.86–1.85)	<0.001*	
rs4240897	G/G	257 (42.8%)	321 (53.5%)	1	0.014*	
	G/A	273 (45.5%)	242 (40.3%)	0.71 (0.56–0.90)	0.42	
	A/A	70 (11.7%)	37 (6.2%)	0.42 (0.27–0.64)	<0.001*	
rs2236058	C/C	138 (23%)	179 (29.8%)	1	0.014*	
	C/G	289 (48.2%)	306 (51%)	1.0 (0.82–1.36)	0.52	
	G/G	173 (28.8%)	115 (19.2%)	1	0.014*	
rs879255685	G/G	393 (65.5%)	386 (64.3%)	1	0.45	
	G/A	193 (32.2%)	188 (31.3%)	1	0.98 (0.89–3.72)	0.140
	A/A	14 (2.3%)	26 (4.3%)	1	1.91 (0.77–1.26)	0.013*
rs879255689	G/G	421 (70.2%)	381 (63.5%)	1	2.30 (1.14–4.65)	0.013*
	G/A	167 (27.8%)	194 (32.3%)	1	1.28 (1.01–1.65)	0.013*
	A/A	12 (2%)	25 (4.2%)	1	1.28 (1.01–1.65)	0.013*

Note: *p < 0.05 indicates statistical significance.

Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
related to the occurrence and development of diseases and tumors.21,22 In this study, we genotyped six SNPs in three mitochondrial dynamics related genes \textit{MFN1}, \textit{MFN2} and \textit{DRP1}, in a case-control cohort and found that two SNPs (\textit{MFN1}-rs13098637 and \textit{DRP1}-rs879255689) associated with an increased risk of lung cancer and two SNPs (\textit{MFN2} rs4240897 and rs2236058) associated with a reduced risk of the disease.

\textit{MFN1} gene is located at chromosome 3 q25-26, with a molecular weight of 84kDa and consists of 742 amino acid. \textit{MFN1} is located in the outer mitochondrial membrane, and its N-terminus and C-terminus are both exposed to the cytoplasm. There is a GTPase domain at its N-terminus, which participates in the oligomerization of mitochondrial fusion-related proteins and promotes the fusion of adjacent mitochondrial outer membranes.23 Moreover, \textit{MFN1} is also involved in many physiological functions such as maintaining the number of healthy mitochondria in the cell and reducing the content of intracellular ROS.24 Li et al found that \textit{MFN1} was lowly expressed in osteosarcoma tissue and related to the poor prognosis, and overexpression of \textit{MFN1} can lead to osteosarcoma cell cycle arrest, inhibit cell proliferation and promote apoptosis.25 Zhao et al reported that knockdown of \textit{MFN1} in breast cancer cell lines can lead to mitochondrial fragmentation and promote breast cancer cell metastasis, while overexpression of \textit{MFN1} can inhibit the formation of lamellipodia in breast cancer cells and reduce the recruitment of mitochondria to the lamina area.14 Huang et al demonstrated that the ratio of \textit{DRP1}/\textit{MFN1} was significantly up-regulated in liver cancer tissues, with increased mitochondrial division and decreased fusion, thereby promoting mitochondrial autophagy and inhibiting mitochondrial-dependent apoptosis, and ultimately promoting the proliferation and growth of liver cancer cells.26 In this study, we identified that the minor allele C of \textit{MFN1}-rs13098637 was associated with an increased risk of lung cancer, suggesting that rs13098637 polymorphism may have an influence on the development of lung cancer via disturbing the mitochondrial homeostasis in the human body.

\textit{MFN2} gene is located at chromosome 1 and it has 80\% similar protein sequence with \textit{MFN1}. \textit{MFN2} is also an outer mitochondrial membrane GTPase and involved in mitochondrial dynamics and function. In addition, \textit{MFN2} could affects the interaction between endoplasmic reticulum (ER) and mitochondria and ER stress response, which is distinct from \textit{MFN1}.27 Abnormal expression of \textit{MFN2} has been associated with variable types of disease, including Alzheimer’s disease, Parkinson’s disease, obesity, diabetes/insulin resistance, and cardiomyopathy.27 In addition, previous studies have shown that \textit{MFN2} expression was downregulated in lung, liver, colorectal and breast cancers.12,13,28,29 The decreased \textit{MFN2} levels affected the mitochondrial fragmentation, and the mitochondrial fragmentation was proven to be a protective factor against Ca2+-dependent apoptosis.30 In our study, we identified that \textit{MFN2} rs4240897 and rs2236058 polymorphisms associated with decreased risk of lung cancer, which is consistent with previous association study on tuberculosis and thoracic aortic dissection,16,17 respectively. However, the underlying molecular mechanism is still need to be investigated in further study.

\textit{DRP1} gene is located at chromosome 12 and encodes the most important mitochondrial fission related protein. \textit{DRP1} is also a cytosolic GTPase, which can be recruited to the outer mitochondrial membrane and exert its function.31
Mitochondrial fission is critical for tissue development and function, and organelle Ca2+ homeostasis and cell apoptotic signaling.30,32 Therefore, DRP1 has been widely involved in the development of variable types of diseases and cancers. Yu et al reported that the expression of DRP1 was significantly upregulated in lung cancer tissues and associated with poor prognosis of patients.33 Hu et al revealed that ROS-mediating CaMKII/DRP1 signaling played a crucial role in the regulation of mitochondrial fission and apoptosis in triple-negative breast cancer cells.34 Moreover, Deng et al found that the anti-tumor effect of baicalein in lung cancer depended on the DRP1-mediated mitochondrial fission to a large extent.35 In addition, Liang et al demonstrated that DRP1 was upregulated in pancreatic cancer and let to more mitochondrial fission and enhanced aerobic glycolysis, which resulting in cancer cell growth and metastasis.36 In the present study, we identified that DRP1-rs879255689 was related to elevated risk of lung cancer. Rs879255689 is a missense variant and led to Gly379Lys, therefore, we speculated that this variant may change the mitochondrial fission and dynamics of lung cancer patients and participant in the development of the disease.

Table 5 Association Between SNPs and Risk of Lung Cancer in Genetic Models

SNP	Model	Genotype	Control	Case	OR (95% CI)	p	
rs13098637	Dominant	T/T	430 (71.7%)	387 (64.5%)	I	1.40 (1.09–1.78)	0.007*
		T/C	170 (28.3%)	213 (35.5%)	I	1.87 (0.94–3.70)	0.068
		T/T-T/C	587 (97.8%)	576 (96%)	I	1.37 (1.11–1.70)	0.004*
		C/C	13 (2.2%)	24 (4%)			
	Log-additive	—	—	—			
rs3976523	Dominant	A/A	269 (44.8%)	243 (40.5%)	I	1.19 (0.95–1.50)	0.130
		A/C	331 (55.2%)	357 (59.5%)	I	1.16 (0.81–1.67)	0.410
		A/A-A/C	537 (89.5%)	528 (88%)	I	1.14 (0.96–1.35)	0.130
	Log-additive	—	—	—	—	—	
rs4240897	Dominant	G/G	257 (42.8%)	321 (53.5%)	I	0.65 (0.52–0.82)	<0.001*
		G/A	343 (57.2%)	279 (46.5%)	I	0.49 (0.32–0.75)	<0.001*
		G/G-G/A	530 (88.3%)	563 (93.8%)	I	0.67 (0.56–0.80)	<0.001*
	Log-additive	—	—	—	—	—	
rs2236058	Dominant	C/C	138 (23%)	179 (29.8%)	I	0.71 (0.54–0.91)	<0.001*
		C/G	462 (77%)	421 (70.2%)	I	0.59 (0.45–0.77)	<0.001*
		C/C-G/G	427 (71.2%)	485 (80.8%)	I	0.72 (0.61–0.85)	<0.001*
	Log-additive	—	—	—	—	—	
rs879255685	Dominant	G/G	393 (65.5%)	386 (64.3%)	I	1.05 (0.83–1.33)	0.680
		G/A	207 (34.5%)	214 (35.7%)	I	1.92 (0.99–3.72)	0.048*
		G/G-G/A	586 (97.7%)	574 (95.7%)	I	1.11 (0.90–1.36)	0.320
	Log-additive	—	—	—	—	—	
rs879255689	Dominant	G/G	421 (70.2%)	381 (63.5%)	I	1.35 (1.06–1.72)	0.014*
		G/A	179 (29.8%)	219 (36.5%)	I	2.14 (1.06–4.30)	0.028*
		G/G-G/A	588 (98%)	575 (95.8%)	I	1.36 (1.10–1.68)	0.005*
	Log-additive	—	—	—	—	—	

Note: *p < 0.05 indicates statistical significance.

Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
To assess the interaction between SNPs and smoking and the associations in different types of lung cancer, we performed a stratification analysis. We found that MFN1-rs13098637 and MFN2-rs4240897 have associations with risk of lung cancer in both smokers and nonsmokers, suggesting that these polymorphisms have strong relationships with risk of disease. However, the MFN2-rs2236058 was only significant in smokers, suggesting that rs2236058 polymorphisms may have interaction with smoking. In addition, MFN1-rs13098637 and DRP1-rs879255689 was related to different types of lung cancer, which further demonstrated that different types of cancer can be caused by different mechanisms.

To sum up, we found that MFN1-rs13098637 and DRP1-rs879255689 polymorphisms were associated with an increased risk of lung cancer, while MFN2 rs4240897 and rs2236058 were protective variants against the risk of the disease. Our results shed new light on the association between mitochondrial dynamics related genes and risk of lung cancer.

Table 6: Association Between SNPs and Risk of Lung Cancer in Smokers and Nonsmokers

SNP	Model	Genotype	Smokers			Nonsmokers		p		
			OR (95% CI)	p	OR (95% CI)	p				
rs13098637	Dominant	T/T	1 0.028*	1 0.130	1.41 (1.04–1.93)	0.980	1.36 (0.91–2.02)	0.004*	5.06 (1.42–18.03)	0.026*
	Recessive	T/C-C/C	1.41 (1.04–1.93)	0.980	1.36 (0.91–2.02)	5.06 (1.42–18.03)	0.026*			
		T/T-T/C	1.41 (1.04–1.93)	0.980	1.36 (0.91–2.02)	5.06 (1.42–18.03)	0.026*			
		C/C	1.31 (1.00–1.72)	0.052	1.31 (1.00–1.72)	0.052	1.31 (1.00–1.72)	0.052		
rs3976523	Dominant	A/A	1 0.320	1 0.230	1.16 (0.87–1.54)	0.520	1.26 (0.87–1.84)	0.550		
	Recessive	A/A-A/C	1.16 (0.87–1.54)	0.520	1.26 (0.87–1.84)	0.550				
		C/C	1.17 (0.73–1.87)	0.290	1.17 (0.73–1.87)	0.290				
		—	1.12 (0.90–1.40)	0.290	1.12 (0.90–1.40)	0.290				
rs4240897	Dominant	G/G	1 0.014*	1 0.004*	0.70 (0.52–0.93)	0.039*	0.57 (0.39–0.84)	0.002*		
	Recessive	G/G-G/A	0.70 (0.52–0.93)	0.039*	0.57 (0.39–0.84)	0.002*				
		A/A	0.60 (0.37–0.98)	0.005*	0.60 (0.37–0.98)	0.005*				
		—	0.73 (0.59–0.91)	0.005*	0.73 (0.59–0.91)	0.005*				
rs2236058	Dominant	C/C	1 0.420	1 0.180	0.88 (0.64–1.20)	0.124*	1.40 (0.99–3.11)	0.550		
	Recessive	C/G-C/G	0.88 (0.64–1.20)	0.124*	1.40 (0.99–3.11)	0.550				
		G/G	0.65 (0.46–0.91)	0.049*	0.65 (0.46–0.91)	0.049*				
		—	0.82 (0.67–0.99)	0.049*	0.82 (0.67–0.99)	0.049*				
rs879255685	Dominant	G/G	1 0.930	1 0.052	1.01 (0.75–1.36)	0.680	1.13 (0.76–1.68)	0.550		
	Recessive	G/A-A/A	1.01 (0.75–1.36)	0.680	1.13 (0.76–1.68)	0.550				
		G/G-G/A	1.19 (0.51–2.80)	0.840	1.19 (0.51–2.80)	0.840				
		A/A	1.03 (0.79–1.34)	0.840	1.03 (0.79–1.34)	0.840				
rs879255689	Dominant	G/G	1 0.110	1 0.042*	1.28 (0.95–1.72)	0.100	1.52 (1.01–2.30)	0.140		
	Recessive	G/A-G/A	1.28 (0.95–1.72)	0.100	1.52 (1.01–2.30)	0.140				
		A/A	2.20 (0.83–5.85)	0.056	2.20 (0.83–5.85)	0.056				
		—	1.30 (0.99–1.70)	0.056	1.30 (0.99–1.70)	0.056				

Note: *p < 0.05 indicates statistical significance.
Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
Table 7: Association Between SNPs and Risk of Adenocarcinoma, Squamous Cell Carcinoma and Small Cell Lung Cancer

SNP	Model	Genotype	Adenocarcinoma OR (95% CI) p	Squamous Cell Carcinoma OR (95% CI) p	Small Cell Lung Cancer OR (95% CI) p
rs13098637	Dominant	T/T	1.44 (1.06–1.95) 0.019*	1.28 (0.90–1.83) 0.180	1.78 (1.16–2.71) 0.009*
		T/C-C/C	2.41 (1.11–5.25) 0.006*	1.23 (0.90–1.69) 0.2	1.63 (0.52–5.13) 0.420
		T/T-T/C			
		C/C	1.44 (1.11–1.87) 0.006*	1.23 (0.90–1.69) 0.2	1.62 (1.13–2.33) 0.011*
		—			
rs3976523	Dominant	A/A	1.31 (0.98–1.75) 0.071	1.38 (0.98–1.94) 0.066	1.66 (1.04–1.00) 0.047
		A/C-C/C	0.80 (0.56–1.28) 0.000*	0.81 (0.56–1.28) 0.014	1.23 (0.66–2.29) 0.520
		A/A-A/C	0.70 (0.56–0.86) 0.000*	0.68 (0.52–0.89) 0.004*	1.23 (0.45–0.88) 0.066*
		C/C	1.19 (0.96–1.47) 0.120	1.21 (0.94–1.56) 0.140	0.83 (0.60–1.13) 0.230
		—			
rs4240897	Dominant	G/G	0.69 (0.52–0.92) 0.011*	0.69 (0.49–0.96) 0.029*	0.60 (0.40–0.91) 0.015*
		G/A-A/A	0.50 (0.28–0.86) 0.009*	0.41 (0.20–0.82) 0.006*	0.45 (0.19–1.05) 0.053
		G/G-G/A	0.70 (0.56–0.88) 0.000*	0.68 (0.52–0.89) 0.004*	0.63 (0.45–0.88) 0.006*
		A/A	1.84 (0.89–2.62) 0.150	1.41 (0.95–2.10) 0.082	2.96 (1.76–4.53) 0.008
		—			
rs2236058	Dominant	C/C	1.46 (0.65–2.02) 0.054	1.27 (0.87–1.84) 0.072	1.43 (0.91–2.26) 0.130
		C/C-G/G	1.44 (0.77–1.77) 0.054	1.24 (0.98–1.56) 0.072	1.45 (0.78–1.94) 0.052
		G/G	1.46 (0.65–2.02) 0.054	1.27 (0.87–1.84) 0.072	1.43 (0.91–2.26) 0.130
		—			
rs879255685	Dominant	G/G-A/A	1.08 (0.80–1.46) 0.610	1.03 (0.73–1.46) 0.860	1.05 (0.71–1.55) 0.720
		G/G-G/A	1.38 (0.59–3.25) 0.470	3.13 (0.94–7.01) 0.172	1.91 (0.67–5.44) 0.250
		A/A	1.10 (0.84–1.43) 0.500	1.18 (0.88–1.59) 0.280	1.14 (0.79–1.65) 0.490
		—			
rs879255689	Dominant	G/G	1.21 (0.89–1.65) 0.230	1.50 (1.06–2.12) 0.023*	1.55 (1.02–2.36) 0.045*
		G/G-A/A	1.71 (0.72–4.03) 0.230	2.21 (1.03–4.80) 0.120	3.46 (1.32–9.08) 0.018*
		A/A	1.22 (0.93–1.60) 0.150	1.48 (1.09–2.01) 0.013*	1.60 (1.12–2.29) 0.011*
		—			

Note: *p < 0.05 indicates statistical significance.

Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.

Acknowledgments

We are grateful to the patients and control subjects for their participation in this study.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. *CA Cancer J Clin*. 2019;69(1):7–34. doi:10.3322/caac.21551
2. Malhotra J, Malvezzi M, Negri E, La Vecchia C, Boffetta P. Risk factors for lung cancer worldwide. *Eur Respir J*. 2016;48(3):889–902. doi:10.1183/13993003.00359-2016
3. Argirion I, Weinstein SJ, Männistö S, Albanes D, Mondul AM. Serum insulin, glucose, indices of insulin resistance, and risk of lung cancer. *Cancer Epidemiol Biomarkers Prev*. 2017;26(10):1519–1524. doi:10.1158/1055-9965.EPI-17-0293
4. Belluomini L, Caldart A, Avancini A, et al. Infections and immunotherapy in lung cancer: a bad relationship? *Int J Mol Sci*. 2020;22(1):42. doi:10.3390/ijms22010042
5. Yoshida K, Gowers KHC, Lee-Six H, et al. Tobacco smoking and somatic mutations in human bronchial epithelium. *Nature*. 2020;578(7794):266–272. doi:10.1038/s41586-020-1961-1
6. Lagiedo M, Sikora J, Kaczmarek M. Damage-associated molecular patterns in the course of lung cancer—a review. *Scand J Immunol*. 2020;82(2):95–101. doi:10.1111/sji.12308
7. Yi L, Zhang W, Zhang H, et al. Systematic review and meta-analysis of the benefit of celecoxib in treating advanced non-small-cell lung cancer. *Drug Des Devel Ther*. 2018;12:2455–2466. doi:10.2147/DDDT.S169627
8. Zhang L. Short- and long-term outcomes in elderly patients with locally advanced non-small-cell lung cancer treated using video-assisted thoracic surgery lobectomy. *Ther Clin Risk Manag.* 2018;14:2213–2220. doi:10.2147/TCRM.S175846

9. van der Blik AM, Shen Q, Kawaijiri S. Mechanisms of mitochondrial fission and fusion. *Cold Spring Harbor Perspect Biol.* 2013;5(6):a011072. doi:10.1101/cshperspect.a011072

10. Xie LL, Shi F, Tan Z, Li Y, Bode AM, Cao Y. Mitochondrial network structure homeostasis and cell death. *Cancer Sci.* 2018;109 (12):3686–3694. doi:10.1111/cas.13380

11. Dettner SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. *Nat Rev Mol Cell Biol.* 2007;8(11):870–879. doi:10.1038/nrm2275

12. Rehman J, Zhang HJ, Toth PT, et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. *FASEB J.* 2012;26(5):2175–2186. doi:10.1096/fj.11-196543

13. Inoue-Yamauchi A, Oda H. Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells. *Biochem Biophys Res Commun.* 2012;421(1):81–85. doi:10.1016/j.bbrc.2012.03.118

14. Zhao J, Zhang J, Yu M, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. *Oncogene.* 2013;32(40):4814–4824. doi:10.1038/onc.2012.494

15. Zou YC, Lei HJ, Wang Y, Xu S. Correlation between polymorphisms in the MFN1 gene and myopia in Chinese population. *Int J Ophthalmol.* 2015;8(6):1126–1130. doi:10.3980/j.issn.2222-3959.2015.06.08

16. Qi H, Zhang YB, Sun L, et al. Discovery of susceptibility loci associated with tuberculosis in Han Chinese. *Hum Mol Genet.* 2017;26(23):4752–4763. doi:10.1093/hmg/ddx365

17. Han J, Liu J, Zhou Q, Nie S, Liu J, Wen S. Single nucleotide polymorphisms (SNPs) genotyping reveals that MFN2 polymorphisms are associated with thoracic aortic dissection in Han Chinese population. *Med Sci Monit.* 2019;25:2419–2428. doi:10.12695/MSM.915272

18. Chang CR, Manliando CM, Arnaudt D, et al. A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. *J Biol Chem.* 2010;285(42):32494–32503. doi:10.1074/jbc.M110.142430

19. Vanstone JR, Smith AM, McBride S, et al. DNM1L-related mitochondrial fission defect presenting as refractory epilepsy. *Eur J Hum Genet.* 2016;24(7):1084–1088. doi:10.1038/ejhg.2015.243

20. Choo YH, Robak LA, Xia F, et al. Missense variants in the middle domain of DNM1L in cases of infantile encephalopathy after peroxisomomal and mitochondria when assayed in Drosophila. *Hum Mol Genet.* 2016;25(9):1846–1856. doi:10.1093/hmg/ddw059

21. Chan DC. Mitochondrial dynamics and its involvement in disease. *Annu Rev Pathol.* 2020;15:235–259. doi:10.1146/annurev-pathmed-012419-032711

22. Chen H, Chan DC. Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. *Cell Metab.* 2017;26(1):39–48. doi:10.1016/j.cmet.2017.05.016

23. Zorzano A, Liesa M, Sebastian D, Segales J, Palacin M. Mitochondrial fusion proteins: dual regulators of morphology and metabolism. *Semin Cell Dev Biol.* 2010;21(6):566–574. doi:10.1016/j.semcdb.2010.01.002

24. Ishihara N, Ota H, Oka T, Mihara K. Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals. *Antioxid Redox Signal.* 2013;19(4):389–399. doi:10.1089/ars.2012.4830

25. Li X, Wang FS, Wu ZY, Lin JL, Lan WB, Lin JH. MicroRNA-19b targets Mfn1 to inhibit Mfn1-induced apoptosis in osteosarcoma cells. *Neoplasma.* 2014;61(3):265–273. doi:10.4149/neop_2014_034

26. Huang Q, Cao H, Zhan L, et al. Mitochondrial fission forms a positive feedback loop with cytosolic calcium signaling pathway to promote autophagy in hepatocellular carcinoma cells. *Cancer Lett.* 2017;403:108–118. doi:10.1016/j.canlet.2017.05.034

27. Filardi R, Pendin D, Pizzo P. Mitofusin 2: from functions to disease. *Cell Death Dis.* 2018;9(3):330. doi:10.1038/s41419-017-0023-6

28. Wang W, Lu J, Zhu F, et al. Pro-apoptotic and anti-proliferative effects of mitofusin-2 via Bax signaling in hepatocellular carcinoma cells. *Med Oncol.* 2012;29(1):70–76. doi:10.1007/s12032-010-0797-9

29. Cheng X, Zhou D, Wei J, Lin J. Cell-cycle arrest at G2/M and proliferation inhibition by adenosinexpressed mitofusin-2 gene in human colorectal cancer cell lines. *Neoplasma.* 2013;60(6):620–626. doi:10.4149/neop_2013_080

30. Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R. Drp-1-dependent division of the mitochondrial network blocks intragranellar Ca2+ waves and protects against Ca2+-mediated apoptosis. *Mol Cell.* 2004;16(1):59–68. doi:10.1016/S1097-2765(04)009.026

31. Smirnova E, Griparic L, Shurland DL, van der Blik AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. *Mol Biol Cell.* 2001;12(8):2245–2256. doi:10.1091/mbc.12.8.2245

32. Favaro G, Romanello V, Varanita T, et al. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. *Nat Commun.* 2019;10(1):2576. doi:10.1038/s41467-019-10226-9

33. Yu L, Xiao Z, Tu H, Tong B, Chen S. The expression and prognostic significance of Drp1 in lung cancer: a bioinformatics analysis and immunohistochemistry. *Medicine (Baltimore).* 2019;98(48):e18228. doi:10.1097/MD.00000000000018228

34. Hu J, Zhang Y, Jiang X, et al. ROS-mediated activation and mitochondrial translocation of CaMKII contributes to Drp1-dependent mitochondrial fission and apoptosis in triple-negative breast cancer cells by isorhamnetin and chloroquine. *J Exp Clin Cancer Res.* 2019;38(1):225. doi:10.1186/s13046-019-1204-1

35. Deng X, Liu J, Liu L, Sun X, Huang J, Dong J. Drp1-mediated mitochondrial fission contributes to baicalein-induced apoptosis and autophagy in lung cancer via activation of AMPK signaling pathway. *Int J Biol Sci.* 2020;16(8):1403–1416. doi:10.7150/ijbs.41768

36. Liang J, Yang Y, Bai L, Li F, Li E. DRP1 upregulation promotes pancreatic cancer growth and metastasis through increased aerobic glycolysis. *J Gastroenterol Hepatol.* 2020;35(5):885–895. doi:10.1111/jgh.14912