Global myocardial strain assessment by different imaging modalities to predict outcomes after ST-elevation myocardial infarction: A systematic review

Abhishek Shetye, Sheraz A Nazir, Iain B Squire, Gerald P McCann

Abstract

AIM: To conduct a systematic review relating myocardial strain assessed by different imaging modalities for prognostication following ST-elevation myocardial infarction (STEMI).

METHODS: An online literature search was performed in PubMed and OVID® electronic databases to identify any studies that assessed global myocardial strain parameters using speckle-tracking echocardiography (STE) and/or cardiac magnetic resonance imaging (CMR) techniques [either myocardial tagging or feature tracking (FT) software] in an acute STEMI cohort (days 0-14 post-event) to predict prognosis [either development of major adverse cardiac events (MACE)] or adverse left ventricular (LV) remodelling at follow-up (≥ 6 mo for MACE, ≥ 3 mo for remodelling). Search was restricted to studies within the last 20 years. All studies that matched the pre-defined search criteria were reviewed and their results interpreted. Due to considerable heterogeneity between studies, meta-analysis was not performed.

RESULTS: A total of seven studies (n = 7) were identified that matched the search criteria. All studies used STE to evaluate strain parameters - five (n = 5) assessed global longitudinal strain (GLS) (n = 5), one assessed GLS rate (GLS-R) (n = 1) and one assessed both (n = 1). Three studies showed that GLS independently predicted the development of adverse LV remodelling by multivariate analysis - odds ratio between 1.19 (CI: 1.04-1.37, P < 0.05) and 10 (CI: 6.7-14, P < 0.001) depending on the study. Four studies showed that GLS predicted the development of MACE - hazard ratio (HR) between 1.1 (CI: 1-1.1, P = 0.006) and 2.34 (1.10-4.97, P < 0.05). One paper found that GLS-R could significantly predict MACE -
HR 18 (10-35, \(P < 0.001 \)) - whilst another showed it did not. GLS < -10.85% had sensitivity/specificity of 89.7%/91% respectively for predicting the development of remodelling whilst GLS < -13% could predict the development of MACE with sensitivity/specificity of 100%/89% respectively. No suitable studies were identified that assessed global strain by CMR tagging or FT techniques.

CONCLUSION: GLS measured acutely post-STEMI by STE is a predictor of poor prognosis. Further research is needed to show that this is true for CMR-based techniques.

Key words: Strain; Speckle tracking; Tagging; Feature tracking; Myocardial infarction; Major adverse cardiac events; Remodelling

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Global myocardial strain is an objective measure of cardiac function. It can be assessed using post-processing analysis on different imaging modalities such as speckle-tracking echocardiography (STE) and cardiac magnetic resonance imaging (CMR) - tagging and feature tracking. We performed a systematic review that showed global longitudinal strain (GLS) measured acutely by STE following ST-elevation myocardial infarction (STEMI) predicted clinical outcomes and adverse left ventricular remodelling, a surrogate marker of poor prognosis. No relevant studies were found for CMR techniques. GLS may refine risk stratification in the STEMI population but further work is needed to support this.

Shetye A, Nazir SA, Squire IB, McCann GP. Global myocardial strain assessment by different imaging modalities to predict outcomes after ST-elevation myocardial infarction: A systematic review. *World J Cardiol* 2015; 7(12): 948-960 Available from: URL: http://www.wjgnet.com/1949-8462/full/v7/i12/948.htm DOI: http://dx.doi.org/10.4330/wjc.v7.i12.948

INTRODUCTION

Ischaemic heart disease (IHD) presents a significant burden to healthcare services and is one of the leading causes of death worldwide[1]. Acute myocardial infarction (MI) results from spontaneous coronary artery occlusion due to thrombus formation as a result of plaque rupture and subsequent platelet aggregation - most commonly seen with the background of IHD[2]. ST-elevation myocardial infarction (STEMI) is an acute emergency that requires prompt reperfusion by either primary percutaneous coronary intervention (PPCI) or thrombolysis, ideally within two hours of symptom onset[3].

Timely reperfusion has led to a reduction in mortality from acute MI[4]. However, despite receiving current best therapy, a significant number of patients still develop complications post-MI that includes new-onset heart failure (HF) - 20.4% of patients develop HF on admission and 8.6% subsequently[5]. The incidence of HF has increased over the past few decades[6] and it is especially prevalent amongst the elderly[7]. Long-term mortality from HF still remains high, even with the best contemporary pharmacological and non-pharmacological interventions[8]. The increase in HF incidence may partly be a result of improved survival post-MI, albeit with greater morbidity in some survivors.

Outcomes after STEMI

Major adverse cardiac events: Major adverse cardiac events (MACE) are often used in cardiovascular studies as a measure of clinical outcomes after STEMI. It is an umbrella term that includes a variety of measures - including all-cause mortality, hospital readmission due to HF, recurrence of MI, need for revascularisation, and occurrence of stroke. Demographic features associated with poor outcomes post-STEMI include age[9], diabetes[11], hypertension[12], infarct location (i.e., anterior MI)[13], large infarct size (IS)[14] and presence of microvascular obstruction[15].

“Hard events” such as mortality are the best markers of outcome. However, these are relatively rare occurrences and so require a considerable sample size to demonstrate statistically significant association with a biomarker, or effects of intervention[16] and some authors believe that studies reporting these need to have a sample size of \(n > 1000 \) to be statistically robust[17]. Such large, multi-centre trials are challenging to conduct and need to be carried out over a considerable period of time in order to accrue the required sample sizes and numbers of events. Consequently, surrogate markers of poor outcome such as adverse left ventricular (LV) remodelling can be used in lieu of hard outcomes with much smaller sample sizes to achieve statistically significant results.

Adverse LV remodelling: Adverse LV remodelling post-MI is thought to be the main process underpinning the development of HF and is defined as: “A change in size, shape and function of the heart resulting from cardiac load or injury”[18]. It is a complex process that progresses over a period of weeks to months post-infarct (Figure 1). Adverse LV remodelling post STEMI can be defined as either an increase in end-diastolic volume (EDV) of > 20% or end systolic volume (ESV) of > 15%, at follow-up compared to baseline. However, there is no consensus on which definition is better. Several cellular, extracellular, inflammatory, and neuro-hormonal pathways have been implicated to play a role in development of LV remodelling; these include neutrophils[19], macrophages[19], collagen fibres[20], various metallo-proteins[20] and activation of the sympathetic nervous system along with the renin-angiotensin-aldosterone system (RAAS)[17,18] amongst others. The exact role of...
these components has not yet been elucidated and there is still some controversy over the initial trigger of remodelling. There is good evidence to suggest that angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, and aldosterone antagonists attenuate the process of adverse remodelling by inhibiting RAAS.

Early identification of high-risk patients who are likely to undergo adverse LV remodelling may allow targeted therapeutic intervention in these patients to counteract remodelling processes. Parameters that reflect myocardial dysfunction can potentially be utilised to help identify such patients as cardiac function is often affected post-MI, which usually precedes development of overt HF.

LV dysfunction post-infarction
Traditionally, the systolic phase of the cardiac cycle is often used as a measure of LV function in a clinical setting. A region of myocardium affected by an infarct may have impaired contractility due to death of myocytes in that zone. Ejection fraction (EF) is the most commonly used method to assess systolic function and a reduced EF, commonly measured by echocardiography, is known to be associated with a poor outcome. However, EF is relatively insensitive to regional differences in myocardial function and has been shown to be a poor predictor of late myocardial dysfunction when measured acutely after reperfusion therapy.

Wall Motion Score Index (WMSI) has also been used in addition to EF but it has the inherent shortcoming of being a subjective measure based on the experience of the assessor. WMSI is based on either the 16-segment or the 17-segment model of the LV.

An infarct is also thought to affect LV compliance by increasing wall stiffness and hence reducing active relaxation of the myocardium - this can cause diastolic dysfunction. Recent evidence suggests that diastolic dysfunction post-MI measured by echocardiography confers a poor outcome.

The optimal marker of LV dysfunction would: (1) Be objective and “angle independent”; (2) Be sensitive to myocardial dysfunction early after an MI; (3) Offer an evaluation of both regional and global LV contractility; (4) Provides an assessment of both systolic and diastolic heart function; and (5) Be reproducible and easy to measure.

Myocardial strain
Strain is defined as the change in length of an object relative to its original length. In the heart, myocardial strain is a sensitive measure of contractility. Strain can be calculated at both the segmental and global level and in the three axes of myocardial contraction - circumferential, longitudinal and radial (Figure 2). Strain rate (SR) measures the change in strain for a given vector as a function of time and can also be assessed. Systolic and diastolic strain rates vary throughout the cardiac cycle (Figure 3).

Anatomically, myocardial fibres are orientated longitudinally in the sub-endocardium and circumferentially in the mid-myocardium. This suggests that longitudinal strain (LS) can provide a reflection of sub-endocardial function whilst circumferential strain can inform mid-myocardial function. Radial strain, whilst

Figure 1 Development of adverse left ventricular remodelling post-myocardial infarction in (A) long axis view and (B) short axis view. LA: Left atrium; LV: Left ventricle; RA: Right atrium; RV: Right ventricle.

Figure 2 Myocardial contraction in three vectors - circumferential, longitudinal and radial. LV: Left ventricle.

Figure 3 Strain and strain rate values as a function of time - peak systolic strain and peak early diastolic strain rate are annotated. PSS: Peak systolic strain; PEDSR: Peak early diastolic strain rate.
being potentially informative of myocardial contraction in the short axis, has been shown to have high intra- and inter-observer variability \cite{31} making it unsuitable for routine clinical practice. Peak systolic strain (PSS) is commonly used to assess myocardial contraction whilst peak early diastolic strain rate (PEDSR) is a marker of diastolic function \cite{32}. Consequently, strain/diastolic strain rate assessment provides a comprehensive evaluation of myocardial contractility and compliance.

Myocardial Strain/strain rates can be assessed by a number of different imaging modalities - most frequently by echocardiography, but also by cardiac magnetic resonance imaging (CMR).

Echocardiography

Tissue Doppler imaging can assess myocardial strain but this technique is extremely angle dependent and has been superseded by speckle tracking echocardiography (STE) \cite{33,34}. The ultrasonic images obtained by echocardiography consist of a large number of “speckles” which have individual properties \cite{35}. These “acoustic markers” \cite{34} can be identified and tracked as they move from one frame to the other throughout the cardiac cycle. Endocardial and epicardial borders are pre-defined by the operator and each speckle within this region of interest (ROI) is tracked. The tracking of such movement can be used to derive measures of strain \cite{36} and strain rate \cite{33}. STE is entirely a post-processing analysis. The only minor requirements are a short duration of breath holding by the patient so that respiratory motion does not affect the tracking of cardiac motion and a high frame rate to optimize temporal resolution.

Common echocardiographic imaging protocols include the acquisition of two-, four-chambered and three chamber views from which global LS (GLS) is derived (Figure 4). Short axis views allow circumferential and radial strain to be derived but it is difficult to accurately obtain global measures due to uncertainty of the imaging plane location.

STE-derived global strain parameters in the setting of an acute STEMI have shown good reproducibility - intra- and inter-observer variability of 0.92 and 0.85 by Intra-class Correlation Coefficient (ICC) respectively \cite{37}. Repeatability is a measure of the “variation in repeat measurements made on the same subject under identical conditions made within a short period of time over which the underlying value can be considered to be constant” \cite{38}. It is another method of establishing reliability. However, no studies to date have reported the repeatability of global strain measured by STE in acute STEMI.

CMR

CMR is another non-invasive imaging modality and is an alternative method of imaging to echocardiography. CMR can be used in the diagnosis, risk-stratification, and prognosis of a number of cardiac disorders \cite{39,40}, including acute MI \cite{41-43}. Typically, strain is assessed on CMR using specialised myocardial tissue tagging sequences that involves the superimposition of horizontal and vertical lines on a cine image that appear in the form of a “grid” \cite{44}. These grids or “tags” are formed onto the tissue by changing the local magnetisation through the use of selective radiofrequency saturation pulses perpendicular to the plane of image acquisition \cite{45}. Tags deform along with the myocardium through the cardiac cycle and this deformation can be used to assess strain. Tagged images are commonly acquired using spatial modulation of magnetisation (SPAMM) \cite{46} and complementary SPAMM sequences \cite{47}. Post-processing analysis of tagged data can be performed using Harmonic phase analysis \cite{48} and local sine wave modelling \cite{49} and they have been shown to have good agreement \cite{50}. Tagging has been validated against other invasive methods of strain assessment such as sonomicrometry \cite{51} and has been used in a variety of animal models \cite{52-54}. Tagging-derived strain parameters have a good intra- and inter-observer variability - ICC of 0.8 for both - along with acceptable test-retest repeatability - ICC of 0.74 \cite{55}.

Tagging sequences however involve relatively long breath holds that may be difficult in the context of a recent STEMI. In addition, analysis is also labour-intensive and time-consuming \cite{56}. Tagging, particularly with SPAMM sequences, cannot reliably calculate diastolic strain as the tags fade after systole especially at the 1.5 T field strength \cite{45,57}. This can be overcome.

![Figure 4 Peak systolic strain calculated by speckle-tracking echocardiography. A: Segmental strain after definition of endocardial and epicardial contours; B: Graphical illustration of segmental peak systolic strain - normal values annotated by orange circle, impaired strain by arrowhead.](image-url)
by using a stronger magnetic field strength (3.0 T) and Steady State Free Precession (SSFP) sequences\(^{45}\). However, true reproducibility is poor at 3.0 T CMR\(^{58}\).
This may in part be due to the fact that by 3.0 T CMR images are also more susceptible to artefacts due to increase in inhomogeneity within the magnetic field\(^{59}\).

To overcome the issues of tagging, myocardial motion tracking through the cardiac cycle on routinely acquired cine SSFP sequences can be performed by means of the novel feature tracking (FT) software\(^{60}\). FT is analogous to STE - endocardial and epicardial borders are defined and then subsequently propagated through the cardiac cycle. The software tracks the motion of the defined ROI from one frame to the next - PSS and PEDSR can be derived from this motion\(^{60}\). FT has shown excellent reproducibility - intra- and inter-observer variability of 0.988 and 0.971 in terms of ICC\(^{61}\) - and acceptable test-retest repeatability - ICC of 0.77\(^{56}\) - for PSS. Additionally, PSS by FT can predict global recovery of LV function in terms of EF\(^{62}\).

Figure 5 illustrates a comparison of global circumferential strain (GCS) evaluation by tagging and FT.

Table 1 Advantages and disadvantages of speckle-tracking echocardiography vs cardiac magnetic resonance imaging

Advantages	Disadvantages
Cheaper than CMR scan	Cannot acquire SAX views easily - needed to calculate circumferential strain
Can be performed at the bedside	Cannot routinely obtain stress imaging as part of acquisition protocol
Short duration: 10-20 min for STE vs 45-60 min for CMR	Not possible to ascertain infarct size, oedema, microvascular obstruction
Significant contraindications for CMR - for example, pacemaker/ICD, brain aneurysmal clip, claustrophobia, eGFR < 30 mL./min per 1.73 m\(^2\) - vs almost none for STE	CMR has much higher spatial resolution than STE. Consequently, a greater percentage of images are analysable by CMR than STE

CMR: Cardiac magnetic resonance imaging; eGFR: Estimated glomerular filtration rate; ICD: Insertable cardioverter defibrillator; SAX: Short axis; STE: Speckle-tracking echocardiography.

Figure 5 Comparison of tagging (A and B) and feature tracking (C and D) for evaluation of global circumferential strain - normal peak systolic strain annotated by orange circle, impaired peak systolic strain by arrowhead.
STE and CMR techniques with good reproducibility and repeatability. We looked to review the literature for studies that evaluated the ability of global strain measured acutely post-STEMI by either STE or CMR to predict either MACE or development of adverse LV remodelling.

MATERIALS AND METHODS

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol.

Eligibility criteria

Table 2 highlights the eligibility criteria for the review. Studies were limited to acute STEMI patients to represent the setting of an acute MI - NSTEMI patients were excluded since the diagnosis is more complex, heterogeneous presentations and that their subsequent management is based on risk-stratification.

Type of characteristic	Acute STEMI	Global longitudinal and/or circumferential strain and/or strain rate - PSS or strain rate (PSS-R) or PEDSR	STE or cardiac MRI tagging or cardiac MRI FT	Days 0-14 post-STEMI	MACE or adverse LV remodelling	MACE ≥ 6 mo	Adverse LV remodelling >= 3 mo	Within the last 20 yr

STEMI: ST-elevation myocardial infarction; PSS: Peak systolic strain; PEDSR: Peak early diastolic strain rate; STE: Speckle-tracking echocardiography; FT: Feature tracking; MACE: Major adverse cardiac events; LV: Left ventricular; MRI: Magnetic resonance imaging.

STE and CMR techniques with good reproducibility and repeatability. We looked to review the literature for studies that evaluated the ability of global strain measured acutely post-STEMI by either STE or CMR to predict either MACE or development of adverse LV remodelling.

Search protocol

The literature search was performed in PubMed and OVID electronic databases. The final date on which the online search was performed was January 27th, 2015 (Table 3) for list of keywords used.

Study selection

Figure 6 highlights the process of study selection. Initial electronic search yielded 1920 studies; 1330 remained after addition of relevant filters. The titles and abstracts of these studies were then screened to assess for eligibility for inclusion in the systematic review (Table 2). A majority of the studies were deemed inappropriate for inclusion based on the aforementioned criteria (n = 1310). The remaining 20 papers were further scrutinised by searching for and evaluating the full-text article. A further 13 studies were excluded - some did not actually assess strain at all (n = 4), some assessed torsion (n = 3), three had included NSTEMI patients and the rest did not have full-text articles available as they were presented as posters (n = 3). Consequently, no limitation placed on the management of the STEMI - both in terms of method of revascularisation (PPCI or thrombolysis) and success/failure. Strain parameters were restricted to peak systolic GCS and GLS and PEDSR in the same two vectors. Both segmental strain values and radial strain parameters were excluded since they both have been shown to have poor intra- and inter-observer variability. We limited the timeframe for the baseline scan to be 0-14 d post- to limit the effects of subsequent remodelling. The timeframe for outcome measures were ≥ 3 mo for adverse LV remodelling (since it is a dynamic process that takes months to fully develop). Minimum follow-up time for development of MACE was six months. We included studies that quoted either changes in EDV or ESV.

Figure 6 Flowchart illustrating the search for relevant studies. FT: Feature tracking; STE: Speckle-tracking echocardiography.

Table 2 Eligibility criteria for systematic review
there were seven studies that matched our inclusion criteria for the review.

RESULTS

Strain measured by STE

Seven STE-based studies that matched our inclusion criteria were found (Table 4) highlights studies that assessed global strain to predict adverse LV remodelling and Table 5 highlights studies that used global strain to predict MACE. Six studies reported peak systolic longitudinal strain parameters to predict outcomes - only one study used diastolic strain. All the patients were treated with PCI.

Multivariate analyses in all the studies have shown that peak systolic GLS can independently predict both adverse LV remodelling and MACE. Such analyses have shown that this is independent of factors such as age, diabetes, location of infarct, EF and WMSI. One study showed that global longitudinal SR (GLS-R) also had significant impact on prognosis\(^{[69]}\) - patients with impaired GLS-R, and GLS, were 18-times more likely to suffer from composite endpoint of mortality, readmission due to HF, revascularisation, or re-infarction. One study showed that a cut-off GLS > -12.5% (i.e., LV unable to contract more than 12.5% of its original length in the longitudinal vector) could predict development of remodelling - OR 1.19 (1.04-1.37), \(P < 0.05\), sensitivity/specificity of 69%/79%\(^{[70]}\). Another showed a cut-off of GLS = 10.85% - OR 0.39 (0.26-0.57), \(P < 0.01\), sensitivity/specificity of 89.7%/91.7%\(^{[71]}\). A cut-off for prediction of MACE ranged from GLS > -13% [HR = 2.34 (1.10-4.97), \(P < 0.05\), sensitivity/specificity of 100%/89%]\(^{[72]}\) to GLS > -9.55% [OR = 0.56 (0.34-0.91), \(P = 0.02\), sensitivity/specificity of 83.3/83.5%]\(^{[71]}\). PEDSR was only measured in one study\(^{[73]}\). There was no significant difference in PEDSR in between patients that reached clinical endpoints and those that did not.

Strain measured by CMR

There were no studies that used CMR-based strain measurement techniques - either tagging or FT - to predict outcomes post-STEMI that matched our eligibility criteria.

DISCUSSION

This systematic review has shown that certain strain parameters measured by STE - namely, GLS\(^{[70-72,74,75]}\) and GLS-R\(^{[69]}\) - are independent predictors of adverse outcomes post-STEMI. Impaired GLS can predict both clinical endpoints and adverse LV remodelling, a surrogate marker of poor prognosis. When combined with routine clinical functional parameters such as EF and WMSI, strain provides incremental value in the prognostication of STEMI patients.

However, studies that monitored “hard” events such as mortality could not match the large sample size of \(n > 1000\) that some authors believe is important for the evidence to be considered statistically robust\(^{[77]}\). Only one of the studies we assessed had such a large sample size - but the authors monitored remodelling and not “hard” events\(^{[76]}\).

Some of the studies that monitored MACE had only a small number of patients that had reached their defined endpoints. Despite this, they constructed models for multivariate analysis that included a large number of independent variables (in addition to GLS). It is believed that one variable should be added for every 10 events to ensure that the regression estimates have reasonable precision\(^{[79]}\). Therefore, all of these studies may have included an inappropriately high number of variables to assess independent predictors of clinical endpoints and the models are likely to suffer from overfitting.

PEDSR does not seem to provide any benefit at predicting these outcomes although has only been assessed in one study. Consequently, further studies are surely needed to determine if diastolic dysfunction has any role to play in prognostication after a STEMI\(^{[27]}\).

Data in this review is limited to GLS measured by STE. We cannot comment on whether GCS is of any added value or has similar predictive properties as GLS since no studies assessed these two parameters together.

Evidence suggests that GLS measured by STE is related to IS\(^{[31,27]}\). The question remains as to whether GLS provides additional information to IS in post-
STEMI prognostication and it can only be adequately answered using CMR. However, no studies were found that showed global strain measured by CMR could predict development of remodelling or MACE.

Limitations

We could rule out publication bias - unpublished data were not included as part of our review and could possibly affect our results, especially if it contradicted the seven studies that were assessed. We did not include three search results that were presented as posters since we could not access either the poster itself or the full-text articles associated with it. Regardless, we do not feel this exclusion would significantly affect the results of the review since the titles of all three posters stated that GLS could predict post-STEMI outcomes. There is outcome data available in strain measured by TDI but we decided to exclude it from our review since its major limitation of “angle dependence” has been superseded by STE.

Conclusion

Global longitudinal strain when measured by STE is an independent predictor of both adverse LV remodelling and MACE after STEMI and provides incremental prognostic value when combined with traditional LV functional parameters such as EF and WMSI. No such data exist for CMR, but this modality could inform us as to whether strain provides prognostic data in addition to IS.

Table 4 All studies that have used speckle-tracking echocardiography-based strain to predict adverse left ventricular remodelling

Ref.	Age (yr)	Sample size (male)	Baseline ejection fraction (%)	Timeframe baseline scan	Timeframe follow-up scan(s)	Definition of adverse remodelling	Other parameters in multivariate model	Results	Limitations
Bochenek et al [70]	59.6 ± 10.3	66 (53)	49.7 ± 9.2	4-6 d post-infarct	3 mo	EDV > 20%	Diabetes, Anterior MI, Leuk. Count		Only longitudinal strain measured. Too many variables in multivariate analysis
Joyce et al [74]	60 ± 12	1041 (792)	47.0 ± 9.0	2 d post-PPCI	3 and 6 mo	EDV > 20%	Male sex, LAD infarct, Max. Trop, ST-elevation max pre-PCI	GLS > -15% can predict remodelling at 3 and 6 mo vs GLS < -15% (both P < 0.001); OR = 6.7 (2.8-11) for 3 mo; OR = 10 (6.7-14) for 6 mo	Only longitudinal strain measured; Prognostic data divided categorically - i.e., GLS > -15% or < -15%; Excluded patients with re-infarction before follow-up and cardiogenic shock - could potentially have been used as another endpoint
Cong et al [71]	59.9 ± 11.6	127 (103)	51.8 ± 5.1	1 d post-PPCI	6-9 mo	ESV > 15%	Anterior MI, Time to reperfusion, Sum ST before PCI, Sum ST post-PPCI, Raised CK-MB/Trops, Baseline ESV/EF	41 patients developed remodelling; GLS predicted remodelling - OR = 0.39 (0.26-0.57), P < 0.01; GLS = -10.85% had sensitivity/specificity of 89.7%/91.7% respectively by ROC to predict remodelling	Only longitudinal strain measured; Too many variables in the multivariate analysis

AUC: Area under curve; **CK**: Creatine kinase; **EDV**: End diastolic volume; **ESV**: End systolic volume; **GLS**: Global longitudinal strain; **LAD**: Left anterior descending; **LV**: Left ventricle; **OR**: Odds ratio; **PPCI**: Primary percutaneous coronary intervention; **ROC**: Receiver operator characteristic; **WMSI**: Wall motion score index; **∑ST**: Sum of ST-elevation.
Ref.	Age (yr)	Sample size (male)	Baseline ejection fraction (%)	Timeframe	Follow-up period	Outcome measures	Other parameters in multivariate model	Results	Limitations
Antoni et al[69]	60 ± 12	799 (517)	46.0 ± 8.0	2 d post-PPCI	21 ± 13 mo	GLS and/or GL-strain rate to predict Major Adverse Cardiac Events	Age (A)	179 patients reached one or more endpoints; GLS independent predictor of all-cause mortality - HR = 1.2 (1.1-1.3), \(P = 0.002 \); GLS-R independent predictor of B endpoints - HR = 22 (11-48), \(P < 0.001 \); Both GLS and GLS-R independent predictors of combined A and B endpoints - HR = 1.1 (1-1.1, \(P = 0.006 \)) and 18 (10-35, \(P < 0.001 \)) respectively	Sample size \(n < 1000 \) - potentially not large enough to predict "hard" events like mortality; Only longitudinal strain measured; SR analysis feasible in only 89% of segments
Shanks et al[73]	59.7 ± 11.6	371 (288)	45.2 ± 8.0	2 d post-PPCI	17.3 ± 12.2 mo	GL-PEDSR to predict: Mortality; Reinfarction; Revascularisation	EF (A/B)	Combined clinical endpoints occurred in 84 patients; GL-PEDSR does not predict clinical outcomes	Sample size potentially too small to assess "hard" endpoint such as mortality; No measure of GLS; Only longitudinal parameters obtained Very small sample size; Only longitudinal strain measured; Too many variables in multivariate analysis
Woo et al[72]	64.4	98 (65)	52.6 ± 12.0	Pre-PPCI and 3 d post-PPCI	13.1 ± 3.8 mo	GLS to predict: Mortality; Reinfarction; WMSI (follow-up)	Initial Trop EF (baseline)	7 patients developed endpoints; Pre-PPCI GLS predictor of outcomes - HR = 1.41 (1.01-1.98), \(P < 0.05 \); Post-PPCI GLS more likely to predict outcomes - HR = 2.34 (1.30-4.97), \(P < 0.05 \); Pre-PPCI GLS < 14% had sensitivity/specifcity of 85%/75% respectively - post-PPCI GLS < 13% of 100%/89%	Very small sample size; Only longitudinal strain measured; Too many variables in multivariate analysis
Munk et al[78]	63.1	576 (446)	50.0 ± 10.0 (without 1 d post-PPCI) 24 (IQ range 13-61) mo	13 ± 12.0 (with composite end point)	GLS to predict: Mortality/reinfarction/stroke/hospitalisation for HF; Crude mortality	EF WMSI ESV-index separately and in combination with each other	162 patients experienced composite endpoints; GLS alone predicted outcomes within 1 yr post-MI - HR = 1.2 (1.12-1.29), \(P < 0.01 \); GLS alone could not predict outcomes later than 1 yr post-MI	GLS could only be obtained in 74% of 57% patients - 26% excluded due to poor image quality (no difference in event rates, however); Only longitudinal strain measured	
Cong et al[71]	59.9 ± 11.6	127 (103)	51.8 ± 5.1	1 d post-PPCI	16.9 ± 1.6 mo	GLS to predict: Mortality; Development of HF	Anterior MI Sum of ST before PPCI Sum of ST post-PPCI Raised CK-MB/Trops Baseline ESV/EF WMSI	GLS predicted outcomes - OR = 0.56 (0.34-0.91), \(P = 0.02 \); GLS > -9.55% had sensitivity/specifcity of 83%/83.5% respectively	Sample size could potentially be too small to significantly predict "hard" events such as mortality

CK: Creatine kinase; ESV: End systolic volume; GRS: Global longitudinal strain; HF: Heart failure; OR: Odds ratio; HR: Hazard ratio; HTN: Hypertension; IQ: Inter-quartile range; MR: Mitral regurgitation; PEDSR: Peak early diastolic strain rate; PPCI: Primary percutaneous coronary intervention; TIMI: Thrombolysis in myocardial infarction; WMSI: Wall motion score index; \(\Sigma ST \): Sum of ST-elevation; MI: Myocardial infarction.
myocardial deformation parameters (such as global strain) by tracking the motion of “speckles” from one frame to another through the cardiac cycle; Tagging is a post-processing CMR-based software that evaluates strain on tagged sequences - examples of such sequences include spatial modulation of magnetisation (SPAMM) and complementary SPAMM; FT is a post-processing software that assesses strain on cine steady-state free precession images, a type of sequence that is routinely acquired during a clinical CMR scan.

Peer-review
The article is interesting, well-written and supported by updated references.

REFERENCES

1. **Lozano R**, **Naghavi M**, **Foreman K**, **Lim S**, ** Shibuya K**, **Aboyans V**, **Abraham J**, **Adair T**, **Aggarwal R**, **Ahin SY**, **Alvarado M**, **Anderson HR**, **Anderson LM**, **Andrews KG**, **Atkinson C**, **Baddour LM**, **Barker-Collo S**, **Bartels DH**, **Bell ML**, **Benjamin EJ**, **Bennett D**, **Bhatia K**, **Bikbov B**, **Bin Abdulhak A**, **Birbeck G**, **Blyth F**, **Bolliger I**, **Bousifou S**, **Bucello C**, **Burch M**, **Burney P**, **Carapetis J**, **Chen H**, **Chou D**, **Chugh SS**, **Coffeng LE**, **Colan SD**, **Colquhoun S**, **Colson KE**, **Condron J**, **Connor MD**, **Cooper LT**, **Corriere M**, **Cortiavin M**, **de Vacaro KC**, **Couser W**, **Cowie BC**, **Criqui MH**, **Cross M**, **Dahbdukac KA**, **Dahodwala N**, **De Leo D**, **Degenhardt L**, **Delossantos A**, **Demenberg J**, **Des Jarlais DC**, **Dharmaratne SD**, **Dorsey ER**, **Driscoll T**, **Duber H**, **Ebel ER**, **Erwin PJ**, **Espindola P**, **Ezzati M**, **Feigin V**, **Flaxman AD**, **Forouzanfar MH**, **Fowkes FG**, **Franklin R**, **Fransen M**, **Freeman MK**, **Gabriel SE**, **Gakidou E**, **Gaspari F**, **Gilliam RF**, **Gonzalez-Medina D**, **Halasa YA**, **Haring D**, **Harriss JE**, **Haymoeller R**, **Haj RJ**, **Hoen B**, **Hotze PJ**, **Hoy D**, **Jacobson KH**, **James SL**, **Jasrasaria R**, **Jayaraman S**, **Johns D**, **Kariheevi K**, **Kassebaum N**, **Keren A**, **Khoo JP**, **Knowlton LM**, **Kobusingye O**, **Koranteng A**, **Kramsnarurthi L**, **Lipnick M**, **Lipshtuhl SE**, **Ohno SL**, **Maewijiano J**, **MacIntyre MF**, **Mallinger L**, **March L**, **Marks GB**, **Marks R**, **Matsumori A**, **Matazopoulos R**, **Mayosi BM**, **McAultry JH**, **McDermott MM**, **McGrath J**, **Mensah GA**, **Merriman TR**, **Michaud C**, **Miller M**, **Miller TR**, **Mock C**, **Mocumbi AO**, **Mokdad AA**, **Moran A**, **Mulholland K**, **Nair MN**, **Naldi L**, **Narayan KM**, **Nasseri K**, **Norman P**, **O’Donnell M**, **Omer SB**, **Ortblad K**, **Osborne R**, **Ozgediz D**, **Pahari B**, **Pandian JD**, **Rivero AP**, **Padilla RP**, **Perez-Ruiz F**, **Perico N**, **Phillips D**, **Pierce K**, **Pope CA**, **Porriini E**, **Pournmalek F**, **Raju M**, **Ranganathan D**, **Rehm JT**, **Rein DB**, **Remuzzi G**, **Rivara FP**, **Roberts T**, **De León FR**, **Rosenfeld LC**, **Rushton L**, **Sacco RL**, **Salonon JA**, **Sampson U**, **Sanman E**, **Schwebel DC**, **Segui-Gomez M**, **Shepard DS**, **Singh D**, **Singleton J**, **Sliwa K**, **Smith E**, **Steer A**, **Taylor JA**, **Thomas B**, **Tleyjeh IM**, **Tomwin JA**, **Tuelens T**, **Undurraga EA**, **Venkatsubramanian N**, **Vijayakumar L**, **Vos T**, **Wagner GR**, **Wang M**, **Wang W**, **Watt K**, **Weinstein MA**, **Weintraub R**, **Wilkinson JD**, **Woolf AD**, **Wulf S**, **Yeh PH**, **Yip P**, **Zabetian A**, **Zheng ZJ**, **Lopez AD**, **Murray CJ**, **Almazroa MA**, **Mensih ZA**, **Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.** *Lancet* 2012, 380, 2095-2128 [PMID: 22346506 DOI: 10.1016/S0140-6736(12)61728-0]

2. **Kumar P**, **Clark M**. Acute Coronary Syndromes - Cardiovascular Disease. Kumar and Clark’s Clinical Medicine. 8th ed. Elsevier, 2012: 733-740

3. **Steg PG**, **James SK**, **Atar D**, **Badano LP**, **Blomström-Lundqvist C**, **Borger MA**, **Di Mario C**, **Dickstein K**, **Ducroq C**, **Fernandez-Aviles F**, **Gershlick AH**, **Gianuazzo P**, **Halvorsen S**, **Huber K**, **Juni P**, **Kastrati A**, **Knuuti J**, **Linden M**, **Mahaffey KW**, **Valgimigli M**, **van’t Hof A**, **Widimsky P**, **Zahger D**. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. *Eur Heart J* 2012; 33: 2569-2619 [PMID: 22924216 DOI: 10.1093/eurheartj/ehs215]

4. **Volmink JA**, **Newton JN**, **Hicks NR**, **Sleight P**, ** Fowler GH**, **Neil HA**. Coronary event and case fatality rates in an English population: results of the Oxford myocardial infarction incidence study. The Oxford Myocardial Infarction Incidence Study Group. *Heart* 1998; 80: 40-44 [PMID: 9764057]
Post-infarction inflammation and left ventricular remodeling, Shimbo D, Baggett C, Liu X, Crow R, Abraham ET, Eitel I, Desch S, Fuernau G, Lurz P, Stiermaier T, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pelikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005; 18: 1440-1463 [DOI: 16376782 DOI: 10.1016/j.echo.2005.10.005]

Cerqueira MD, Weissman NJ, Dilisizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002; 105: 539-542 [PMID: 11815441]

Moller JE, Pelikka PA, Hallis GS, Oh JK. Prognostic importance of diastolic function and filling pressure in patients with acute myocardial infarction. Circulation 2006; 114: 438-444 [PMID: 16880341 DOI: 10.1161/CIRCULATIONAHA.105.601005]

Ersbøll M, Andersen MJ, Valeur N, Mogensen UM, Fahkri Y, Thune JJ, Moller JE, Hassager C, Søgaard P, Kaber L. Early diastolic strain rate in relation to systolic and diastolic function and prognosis in acute myocardial infarction: a two-dimensional speckle-tracking study. Eur Heart J 2013; 34: 648-656 [PMID: 23713080 DOI: 10.1093/eurheartj/eht179]

Moller JE, Egstrup K, Kaber L, Poulsen SH, Nyvad O, Torp-Pedersen C. Prognostic importance of systolic and diastolic function after acute myocardial infarction. Am Heart J 2003; 145: 147-153 [PMID: 12511667 DOI: 10.1067/mhj.2003.46]

Zwanenburg JMJ. Mapping Asynchrony of Circumferential Shortening in the Human Heart with High Temporal Resolution MRI Tagging. Amsterdam: Vrije University, 2005

Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH. Left ventricular fibre architecture in man. Br Heart J 1981; 45: 248-263 [PMID: 7008815]

Leischik R, Dvorak B, Hensel K. Intraobserver and interobserver reproducibility for radial, circumferential and longitudinal strain echocardiography. Open Cardiovasc Med J 2014; 8: 102-109 [PMID: 25356089 DOI: 10.2174/1874240410401010109]

Khan JN, Wilnott EG, Leggate M, Singh A, Yates T, Nimmo M, Khunti K, Horsfield MA, Biglands J, Clarysse P, Croisille P, Davies M, McCann GP. Subendocardial diastolic dysfunction in young adults with Type 2 diabetes mellitus: a multiparametric contrast-enhanced cardiovascular magnetic resonance pilot study assessing potential mechanisms. Eur Heart J Cardiovasc Imaging 2014; 15: 1263-1269 [PMID: 24970723 DOI: 10.1093/ehjci/jeu121]

Feigenbaum H, Mastorri R, Sawada S. A practical approach to using strain echocardiography to evaluate the left ventricle. Circ J 2012; 76: 1550-1555 [PMID: 22789972]

Gorcsan J, Tanaka H. Echocardiographic assessment of myocardial scar. J Am Coll Cardiol 2011; 58: 1401-1413 [PMID: 21939821 DOI: 10.1016/j.jacc.2011.06.038]

Feigenbaum H, Armstrong W, Ryan T. Physics of Echocardiography. Feigenbaum's Echocardiography. London: Lippincott Williams and Wilkins, 2005: 12

Flachskampf FA, Schmid M, Rost C, Achenbach S, DeMaria AN, Daniel WG. Cardiac imaging after myocardial infarction. Eur Heart J 2011; 32: 272-283 [PMID: 21163851 DOI: 10.1093/eurheartj/ehq446]

Sjøli B, Ørn S, Grenne B, Ihlen H, Edvardsen T, Brunvand H. Diagnostic capability and reproducibility of strain by Doppler and by speckle tracking in patients with acute myocardial infarction. JACC Cardiac Imaging 2009; 2: 24-33 [PMID: 19356529 DOI: 10.1016/j.jcmg.2008.09.001]
Strain to predict outcomes in STEMI

Shetye A et al. Strain to predict outcomes in STEMI

Radial 2007; 42: 204-210 [PMID: 17287651 DOI: 10.1097/01. rli.0000255646.58831.4b]

54 Croisille P, Moore CC, Judi RM, Lima JA, Arai A, McVeigh ER, Becker LC, Zerhouni EA. Differentiation of viable and nonviable myocardium by the use of three-dimensional tagged MRI in 2-day-old reperfused canine infarcts. Circulation 1999; 99: 284-291 [PMID: 9892596 DOI: 10.1161/01.CIR.99.2.284]

55 Donekal S, Ambale-Venkatesh B, Berkowitz S, Wu CO, Choi EY, Fernandes V, Yan R, Harouni AA, Bluemke DA, Lima JA. Inter-study reproducibility of cardiovascular magnetic resonance tagging. J Cardiovasc Magn Reson 2013; 15: 37 [PMID: 23663535 DOI: 10.1186/1532-429X-15-37]

56 Mortan G, Schuster A, Jogiya R, Kuty S, Beerbaum P, Nagel E. Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking. J Cardiovasc Magn Reson 2012; 14: 43 [PMID: 22721175 DOI: 10.1186/1532-429X-14-43]

57 Jeung MY, Germain P, Croisille P, El ghannoudi S, Roy C, Gangi A. Myocardial tagging with MR imaging: overview of normal and pathologic findings. Radiographics 2012; 32: 1381-1398 [PMID: 22977026 DOI: 10.1148/rg.325115098]

54 Croisille P, Moore CC, Judi RM, Lima JA, Arai A, McVeigh ER, Becker LC, Zerhouni EA. Differentiation of viable and nonviable myocardium by the use of three-dimensional tagged MRI in 2-day-old reperfused canine infarcts. Circulation 1999; 99: 284-291 [PMID: 9892596 DOI: 10.1161/01.CIR.99.2.284]

55 Donekal S, Ambale-Venkatesh B, Berkowitz S, Wu CO, Choi EY, Fernandes V, Yan R, Harouni AA, Bluemke DA, Lima JA. Inter-study reproducibility of cardiovascular magnetic resonance tagging. J Cardiovasc Magn Reson 2013; 15: 37 [PMID: 23663535 DOI: 10.1186/1532-429X-15-37]

56 Mortan G, Schuster A, Jogiya R, Kuty S, Beerbaum P, Nagel E. Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking. J Cardiovasc Magn Reson 2012; 14: 43 [PMID: 22721175 DOI: 10.1186/1532-429X-14-43]

57 Jeung MY, Germain P, Croisille P, El ghannoudi S, Roy C, Gangi A. Myocardial tagging with MR imaging: overview of normal and pathologic findings. Radiographics 2012; 32: 1381-1398 [PMID: 22977026 DOI: 10.1148/rg.325115098]
Shetye A et al. Strain to predict outcomes in STEMI

19622511

67 Braunwald E, Antman EM, Beasley JW, Califf RM, Cheitlin MD, Hochman JS, Jones RH, Kereiakes D, Kupersmith J, Levin TN, Pepine CJ, Schaeffer JW, Smith EE, Steward DE, Theroux P, Gibbons RJ, Alpert JS, Eagle KA, Faxon DP, Fuster V, Gardiner TJ, Gregoratos G, Russell RO, Smith SC. ACC/AHA guidelines for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction: executive summary and recommendations. A report of the American College of Cardiology/American Heart Association task force on practice guidelines (committee on the management of patients with unstable angina). Circulation 2000; 102: 1193-1209 [PMID: 10973852]

68 Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM, Antoniucci D. Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 2002; 106: 2351-2357 [PMID: 12403666]

69 Antoni ML, Molliema SA, Delgado V, Atary JZ, Borleffs CJ, Boersma E, Holman ER, van der Wall EE, Schalij MJ, Bax JJ. Prognostic importance of strain and strain rate after acute myocardial infarction. Eur Heart J 2010; 31: 1640-1647 [PMID: 20423918 DOI: 10.1093/eurheartj/ehq105]

70 Bochenek T, Wita K, Tabor Z, Grabka M, Krzych L, Wróbel W, Berger-Kucza A, Elżbieciak M, Doruchowska A, Gluza MT. Value of speckle-tracking echocardiography for prediction of left ventricular remodeling in patients with ST-elevation myocardial infarction treated by primary percutaneous intervention. J Am Soc Echocardiogr 2011; 24: 1342-1348 [PMID: 22000785 DOI: 10.1016/j.echo.2011.09.003]

71 Cong T, Sun Y, Shang Z, Wang K, Su D, Zhong L, Zhang S, Yang Y. Prognostic Value of Speckle Tracking Echocardiography in Patients with ST-Elevation Myocardial Infarction Treated with Late Percutaneous Intervention. Echocardiography 2015; 32: 1384-1391 [PMID: 25471825 DOI: 10.1111/echo.12864]

72 Woo JS, Kim WS, Yu TK, Ha SJ, Kim SY, Bae JH, Kim KS. Prognostic value of serial global longitudinal strain measured by two-dimensional speckle tracking echocardiography in patients with ST-segment elevation myocardial infarction. Am J Cardiol 2011; 108: 340-347 [PMID: 21600544 DOI: 10.1016/j.amjcard.2011.03.052]

73 Shanks M, Ng AC, van de Veire NR, Antoni ML, Bertini M, Delgado V, Nucifora G, Holman ER, Choy JB, Leung DY, Schalij MJ, Bax JJ. Incremental prognostic value of novel left ventricular diastolic indexes for prediction of clinical outcome in patients with ST-elevation myocardial infarction. Am J Cardiol 2010; 105: 592-597 [PMID: 20185002 DOI: 10.1016/j.amjcard.2009.10.039]

74 Joyce E, Hoogslog GE, Leong DP, Debonnaire P, Katsanos S, Boden H, Schalij MJ, Marsan NA, Bax JJ, Delgado V. Association between left ventricular global longitudinal strain and adverse left ventricular dilatation after ST-segment-elevation myocardial infarction. Circ Cardiovasc Imaging 2014; 7: 74-81 [PMID: 24186962 DOI: 10.1161/CIRCIMAGING.113.000982]

75 Munk K, Andersen NH, Nielsen SS, Bibby BM, Botker HE, Nielsen TT, Poulsen SH. Global longitudinal strain by speckle tracking for infarct size estimation. Eur J Echocardiogr 2011; 12: 156-165 [PMID: 21131657 DOI: 10.1093/ejechocard/jeq168]

76 Campbell MJ, Machin D, Wolters SJ. Medical Statistics - A Textbook for The Health Sciences. 4th ed. John Wiley and Sons Ltd, 2007: 331

77 Gjesdal O, Helle-Valle T, Hopp E, Lunde K, Vaaland J, Aakhus S, Smith HJ, Ihlen H, Edvardsen T. Noninvasive separation of large, medium, and small myocardial infarcts in survivors of reperfused ST-elevation myocardial infarction: a comprehensive tissue Doppler and speckle-tracking echocardiography study. Circ Cardiovasc Imaging 2008; 1: 189-196; 2 p following 196 [PMID: 19808542 DOI: 10.1161/CIRCIMAGING.108.784900]

78 Munk K, Andersen NH, Terkelsen CJ, Bibby BM, Johnsen SP, Botker HE, Nielsen TT, Poulsen SH. Global left ventricular systolic strain for early risk assessment in patients with acute myocardial infarction treated with primary percutaneous intervention. J Am Soc Echocardiogr 2012; 25: 644-651 [PMID: 22406163 DOI: 10.1016/j.echo.2012.02.003]

P- Reviewer: Biondi-Zoccai G, Tadic M S- Editor: Ji FF L- Editor: A E- Editor: Liu SQ
