L-citrulline production by metabolically engineered \textit{Corynebacterium glutamicum} from glucose and alternative carbon sources

Dorit Eberhardt, Jaide V K Jensen and Volker F Wendisch*

\textbf{Abstract}

L-citrulline plays an important role in human health and nutrition and is an intermediate of the L-arginine biosynthetic pathway. L-citrulline is a by-product of L-arginine production by \textit{Corynebacterium glutamicum}. In this study, \textit{C. glutamicum} was engineered for overproduction of L-citrulline as major product without L-arginine being produced as by-product. To this end, L-arginine biosynthesis was derepressed by deletion of the arginine repressor gene \textit{argR} and conversion of L-citrulline towards L-arginine was avoided by deletion of the argininosuccinate synthetase gene \textit{argG}. Moreover, to facilitate L-citrulline production the gene encoding a feedback resistant N-acetyl L-glutamate kinase \textit{argB} as well as the gene encoding L-ornithine carbamoylphosphate transferase \textit{argF} were overexpressed. The resulting strain accumulated 44.1 ± 0.5 mM L-citrulline from glucose minimal medium with a yield of 0.38 ± 0.01 g⋅g$^{-1}$ and a volumetric productivity of 0.32 ± 0.01 g⋅l$^{-1}$⋅h$^{-1}$. In addition, production of L-citrulline from the alternative carbon sources starch, xylose, and glucosamine could be demonstrated.

\textbf{Keywords:} \textit{Corynebacterium glutamicum}; L-citrulline; L-arginine; Alternative carbon sources; Starch; Xylose; Glucosamine; Metabolic engineering

\textbf{Introduction}

L-citrulline is a natural non-proteinogenic amino acid whose name is derived from watermelon \textit{Citrullus lanatus} (Wada 1930). In mammals it serves as a precursor for L-arginine. In contrast to the proteinogenic L-arginine, which is not transferred to the blood stream, when ingested, L-citrulline can be converted to L-arginine, which is then released by the kidney into the blood stream. It is applied in several medical approaches e.g. as a pharmaconutrient (Rimando and Perkins-Veazie 2005; Curis et al. 2005).

Currently, biocatalytic and fermentative methods to produce L-citrulline using \textit{Pseudomonas putida} (Kakimoto et al. 1971; Yamamoto et al. 1974) or \textit{Bacillus subtilis} strains exist (Okumura et al. 1966). Additionally, extraction processes from watermelon have been established (Fish 2012). L-citrulline is an intermediate of L-arginine biosynthesis and accumulates as a by-product of engineered L-arginine producing \textit{Corynebacterium glutamicum} strains (Ikeda et al. 2009; Schneider et al. 2011).

\textit{C. glutamicum} is a workhorse for amino acid production and is employed for the annual production of several million tons of L-glutamate and L-lysine (Wendisch 2014). \textit{C. glutamicum} has been engineered to produce a wide range of bioproducts, such as diamines, carotenoids, terpenes, proteins (Schneider and Wendisch 2010; Schneider et al. 2012; Heider et al. 2014a, b; Frohwitter et al. 2014; Kikuchi et al. 2009; Teramoto et al. 2011; An et al. 2013) and the L-glutamate family amino acids L-arginine, L-ornithine, and L-proline (Schneider et al. 2011; Ikeda et al. 2009; Georgi et al. 2005; Blombach et al. 2009; Jensen and Wendisch 2013). However, the production of L-citrulline as the only or major product has not been published yet.

Due to its natural ability to produce L-glutamate under several eliciting conditions, \textit{C. glutamicum} is a suitable producer of L-glutamate-derived products (Sato et al. 2008; Radmacher et al. 2005; Kim et al. 2009, 2010; Delaunay et al. 1999; Wendisch et al. 2014). L-ornithine is a non-proteinogenic glutamate-family amino acid and
an intermediate of L-arginine biosynthesis (Figure 1). An ornithine producer was obtained by deletion of \textit{argR}, the gene encoding the genetic repressor of the arginine biosynthesis operon, and \textit{argF} to prevent further processing of ornithine (Schneider et al. 2011). The production of L-proline from L-ornithine is possible by the heterologous overexpression of \textit{ocd} from \textit{Pseudomonas putida}, encoding ornithine cyclodeaminase (Jensen and Wendisch 2013). The diamine putrescine can be produced by overexpression of the \textit{Escherichia coli} gene \textit{speC}, which encodes ornithine decarboxylase (Schneider et al. 2012; Schneider and Wendisch 2010). As the arginine biosynthetic pathway is naturally regulated by feedback inhibition of N-acetylglutamate kinase (encoded by \textit{argB}) by arginine, the use of feedback resistant enzyme variants in combination with deletion of \textit{argR} has been described to overproduce L-arginine (Sakanyan et al. 1996; Ikeda et al. 2009; Schneider et al. 2011).

\textit{C. glutamicum} can utilize a variety of carbon sources. In contrast to many other microorganisms used in biotechnology, simultaneous utilization of carbon sources e.g. present in mixtures such as lignocellulosic hydrolysates is a hallmark of \textit{C. glutamicum} (Blombach and Seibold 2010; Meiswinkel et al. 2013a, b). The natural substrate spectrum of \textit{C. glutamicum} includes monosaccharides, disaccharides, and organic acids as well as alcohols (Blombach and Seibold 2010; Arndt and Eikmanns 2008; Peters-Wendisch et al. 1998; Jolkver et al. 2009; Sasaki et al. 2011). To allow access to alternative carbon sources, \textit{C. glutamicum} has also been engineered for utilization of glycerol, pentoses, and amino sugars as well as polysaccharides (Schneider et al. 2011; Rittmann et al. 2008; Seibold et al. 2006; Uhide et al. 2013; Gopinath et al. 2011; Matano et al. 2014).

One aim to reduce production cost is the use of complex sugar substrates for the production of biotechnological products. As an example of using a polymeric raw material without decomposition to its monomeric compounds e.g. by enzyme treatment, soluble starch could be used as a carbon source for the production of L-lysine and organic acids by engineered \textit{C. glutamicum}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{L-arginine pathway in \textit{C. glutamicum} (modified from (Wendisch et al. 2014)). \textit{gdh}: L-glutamate dehydrogenase, \textit{cg3035}: anaplerotic N-acetyl-L-glutamate synthase, \textit{argJ}: L-ornithine N-acetyltransferase, \textit{argB}: N-acetyl-L-glutamate kinase; \textit{argC}: N-acetyl-gamma-glutamyl-phosphate reductase; \textit{argD}: acetyl-L-ornithine aminotransferase; \textit{argE}: acetyl-L-ornithine deacetylase; \textit{argF}: L-ornithine carbamoyltransferase; \textit{argG}: argininosuccinate synthetase; \textit{argH}: argininosuccinate lyase. Oxoglutarate is an intermediate of the central carbon metabolism.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Biomass formation by various \textit{C. glutamicum} strains. The cultivation was performed in CGXII minimal medium containing 20 g L-1 glucose, 1 mM IPTG, 750 μM L-arginine and 25 μg L-1 kanamycin. \textit{OD}_{600} was determined of CIT0(pVWEx1) (open squares), CIT0(pVWEx1-argF) (gray circles) and CIT0 (pVWEx1-argFB) (black diamonds). Values and error bars represent the mean and the standard error of triplicates.}
\end{figure}
growth experiments, CGXII minimal medium (Eggeling and Reyes 2005) was used for *C. glutamicum*. Growth was followed by measuring the optical density at 600 nm using a V-1200 Spectrophotometer (VWR, Radnor, PA, USA). An OD$_{600}$ of 1 corresponds approximately to an estimated cell dry weight of 0.25 g/L.

When necessary, the growth medium was supplemented with kanamycin (25 μg mL$^{-1}$), spectinomycin (100 μg mL$^{-1}$), tetracycline (10 μg mL$^{-1}$), isopropyl β-D-1-thiogalactopyranoside (IPTG) (1 mM) and L-arginine (750 μM). The growth behavior and L-citrulline production of recombinant *C. glutamicum* strains were analyzed in 50 ml baffled flasks. Briefly, a 50 mL BHI (37 g L$^{-1}$) seed culture was inoculated from an agar plate and grown overnight. The cells were harvested by centrifugation (4,000 × g, 10 min) and washed twice with CGXII minimal medium lacking ant, and then incubated in fresh CGXII minimal medium containing a given concentration of carbon source and necessary supplements, was inoculated to an optical density of 1.0. Detailed information on the carbon source concentrations employed are given in the Results chapter.

Materials and methods

Microorganisms and growth conditions

Microorganisms and plasmids used in this study are listed in Table 1. *E. coli* DH5α was used for gene cloning. *C. glutamicum* and *E. coli* strains were routinely grown in lysogeny broth (LB) (10 g L$^{-1}$ tryptone, 5 g L$^{-1}$ yeast extract, 10 g L$^{-1}$ sodium chloride) in 500-mL baffled flasks on a rotary shaker (120 rpm) at 30°C or 37°C. For molecular genetic techniques

Standard methods such as restriction digestions, and ligation were carried out as described elsewhere (Sambrook and Russell 2012). Digested DNA was purified by using the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany).

Table 1 Strains and plasmids used in this study

Microorganisms and growth conditions	Materials and methods	Molecular genetic techniques
E. coli		
DH5α	F'-thi-1 endA1 hsdR17(r− m−) supE44 ΔlacU169(Δ80lacZΔM15) recA1 gyrA96 relA1	(Hanahan 1983)
C. glutamicum		
MB001	ATCC 13032 with in-frame deletion of prophages CGP1 (cg1507-cg1524), CGP2 (cg1746-cg1752), and CGP3 (cg1890-cg2071)	(Baumgart et al. 2013)
CIT0	MB001 with ΔargF, ΔargG, ΔargR	This study
GT1	CIT0 carrying the pVWEx-argFBΔ4 vector	This study
Plasmids		
pEKEx3	Specκ, P$_{lac}$, lacIf	(Sansen et al. 2005)
pVWEx1	KanR, P$_{lac}$, lacIf	(Peters-Wendisch et al. 2001)
pEC-XT99A	TetR, P$_{lac}$, lacIf	(Kirchner and Tauch 2003)
pK19ΔargFR	KanR, pk19mobacsacB with the deletion construct of genes argFR	(Schneider et al. 2011)
pK19ΔargG	KanR, pk19mobacsacB with the deletion construct of genes argG	This study
pEKEx3-argBΔ4	Specκ, pEKEx3 carrying argB from *C. glutamicum* ATCC 13032 with amino acid exchanges A49/V54/V	(Schneider et al. 2011)
pVWEx1-argF	KanR, pVWEx1 carrying argF from *C. glutamicum* ATCC 13032	This study
pVWEx1-argG	KanR, pVWEx1 carrying argF and argG from *C. glutamicum* ATCC 13032	This study
pVWEx1-argFΔ4	KanR, pVWEx1 carrying argF from *C. glutamicum* ATCC 13032 and argBΔ4 from pEKEx3-argBΔ4	This study
pEKEx3-nagB	Specκ, pEKEx3 carrying nagB from *C. glutamicum* ATCC 13032	(Uhde et al. 2013)
pEKEx3-xylAB	Specκ, pEKEx3 carrying xylA from *Xanthomonas campestris* XCC1758 and xylB from *C. glutamicum* ATCC 13032	(Meiswinkel et al. 2013a)
pAMY	TetR, pEC-XT99A carrying amy from Streptomyces griseus IMRU 3570	(Seibold et al. 2006)
E. coli cells were transformed by heat shock (Sambrook and Russell 2012) and C. glutamicum cells were transformed by electroporation (Eggeling and Reyes 2005). Isolation of genomic DNA was performed as previously described (Jensen and Wendisch 2013). Chromosomal changes in C. glutamicum were performed as described elsewhere (Eggeling and Reyes 2005).

Construction of strains and plasmids

The deletion of ΔargFR in MB001 was performed by using pK19mobsacBΔargFR. Afterwards argG was deleted by using pK19mobsacBΔargG to obtain CIT0. pK19mobsacBΔargG contains the up- and downstream regions of argG in the ΔargFR strain. The plasmid was constructed by amplifying the upstream region with argG_up_f (CTTGaattcAGAGCTGGCCAAGCATG) and argG_up_r (agaggccatggctccttacagcttacagcttacagcttacag) and the downstream region with argG_down_f (agactgcttagctgtgcttg
argBfr encoding feedback-resistant N-acetyl L-glutamate kinase (NAGK, EC 2.7.2.8). When grown in minimal medium with 2% glucose and 0.75 mM L-arginine C. glutamicum CIT0(pVWEx1-argF) grew to a higher OD than CIT0(pVWEx1) (Figure 2) and did not accumulate notable concentrations of L-citrulline. As opposed to CIT0 (pVWEx1), CIT0(pVWEx1-argF) did not produce L-ornithine (Figure 3). By contrast, the combined overexpression of argF and argBfr entailed L-citrulline production and the respective strain was named CIT1. C. glutamicum CIT1 accumulated 44.1 ± 0.5 mM L-citrulline in minimal medium with 2% glucose (Figure 4).

When comparing the growth of C. glutamicum CIT0 (pVWEx1) to that of CIT0(pVWEx1-argF), similar growth rates (0.37 ± 0.01 h⁻¹ and 0.35 ± 0.04 h⁻¹, respectively) were obtained, whereas L-citrulline formation by CIT0 (pVWEx1-argF) was accompanied by a reduced growth rate (0.15 ± 0.01 h⁻¹) (Figure 1). Moreover, the final OD₆₀₀ of CIT0(pVWEx1-argFbr) was 20 ± 1 as compared to an OD₆₀₀ of 26 ± 1 of CIT0(pVWEx1). By contrast, C. glutamicum CIT0(pVWEx1-argF) grew to a higher biomass concentration with a final OD₆₀₀ of 35 ± 1. As shown in Figure 3, the lower growth rates of CIT0(pVWEx1) and CIT0(pVWEx1-argFbr) correlated inversely with the formation of the respective amino acids L-ornithine and L-citrulline, whereas C. glutamicum CIT0(pVWEx1-argF) reaches a higher final biomass and neither produces L-ornithine nor L-citrulline.

Production of L-citrulline from alternative carbon sources

Due to the high demand of biotechnological processes of using complex sugar substrates derived from raw materials and industrial wastes, the L-citrulline producer strain CIT1 was enabled to utilize the alternative carbon sources starch (as an example of a high molecular weight carbohydrate), xylose, and glucosamine (as an example of a carbohydrates, derived from forestry and food industrial wastes).

To enable C. glutamicum CIT1 to consume starch, the gene amyA from Streptomyces griseus was overexpressed. The combined overexpression of xylA from Xanthomonas campestris and endogenous xylB allowed the utilization of xylose by C. glutamicum CIT1. The endogenous nagB was overexpressed ectopically to facilitate the consumption of glucosamine. The resulting strains were tested for growth and L-citrulline production.

When cultured in CGXII medium supplemented 0.75 mM L-arginine all strains engineered for alternative carbon source consumption grew with their respective substrate (Table 1). The empty vector carrying strain CIT1(pEKEx3) neither grew in xylose or glucosamine minimal medium nor consumed these substrates. By contrast, the recombinant strain CIT1(pEKEx3-xylAB) grew in xylose minimal medium with a growth rate of 0.03 ± 0.01 h⁻¹ and reached a final OD₆₀₀ of 6 ± 1. In glucosamine minimal medium, C. glutamicum CIT1(pEKEx3-nagB) grew to a final OD₆₀₀ of 3 ± 1 with a growth rate of 0.02 ± 0.01 h⁻¹. In minimal medium containing 1% starch and 0.25% glucose as carbon sources, the empty vector harbouring strain CIT1(pEC-XT99A) formed roughly one third of the biomass as compared to C. glutamicum CIT1(pAmy). Growth of CIT1(pEC-XT99A) was slower (growth rate of 0.10 ± 0.01 h⁻¹) than that of CIT1(pAmy) (growth rate of 0.21 ± 0.01 h⁻¹). While strain CIT1(pEC-
XT99A) only utilized glucose, but not starch, CIT1(pAmy) was able to consume both, glucose and starch.

The strains engineered for utilization of xylose and glucosamine, respectively, also produced L-citrulline from these carbon sources (Figure 5). C. glutamicum CIT1(pEKEx3-nagB) accumulated 2.6 ± 0.3 mM L-citrulline which corresponds to a yield of 0.045 ± 0.002 g/g since glucosamine was utilized completely. Similarly, after complete utilization of xylose by C. glutamicum CIT1(pEKEx3-xylAB) 6.4 ± 0.1 mM L-citrulline accumulated corresponding to a yield of 0.075 ± 0.001 g per g xylose.

As the determination of the starch concentration by HPLC was not possible, residual starch content was assayed by the use of Lugols solution. However, as it is known that overexpression of amyA in C. glutamicum results in high molecular mass degradation products of starch, which remain in the medium and are not detectable by Lugols solution (Seibold et al. 2006), the L-citrulline concentration was measured until no change in OD$_{600}$, starch content and L-citrulline concentration was observed. The starch utilizing strain CIT1(pAmy) was able to produce 11.9 ± 0.5 mM L-citrulline which corresponds to a yield of 0.167 g/g.
Discussion

C. glutamicum was engineered to accumulate L-citrulline as major product, both from glucose as well as from the alternative carbon sources starch, glucosamine and xylose.

Feedback insensitive N-acetyl L-glutamate kinase (encoded by argB^{br}; (A9VVM54V)) was required for production of L-citrulline since CIT0(pVWEx1-argF^{fr}) did not produce L-citrulline, while CIT0(pVWEx1-argF^{br}) produced L-citrulline. It is unlikely that addition of L-arginine to CIT0(pVWEx1-argF^{fr}) inhibited generation of L-ornithine, a precursor of L-citrulline, because strain CIT0(pVWEx1) produced L-ornithine when supplemented with L-arginine. However, it is possible that intracellular L-citrulline affects arginine biosynthesis. As overexpression of argB^{br} entailed L-citrulline formation, we assume that L-citrulline inhibits the NAGK of *C. glutamicum*, but this has not yet been described. As expected due to its structural similarity to L-arginine, L-citrulline inhibits NAGK of other microorganisms (Farago and Denes 1967; Haas and Leisinger 1975). In *Chlamydomonas reinhardtii*, NAGK is inhibited by several L-arginine structure analogs, including L-citrulline, however, inhibition was less pronounced than L-arginine inhibition (Farago and Denes 1967). NAGK from *Pseudomonas aeruginosa* lost two thirds of its activity in the presence of 2.5 mM L-citrulline which was claimed to be too weak under physiologic conditions (Haas and Leisinger 1975). However, it is conceivable that inhibition of NAGK by L-citrulline may play a role in recombinant *C. glutamicum* strains engineered for L-citrulline production, thus, possibly explaining the finding that L-citrulline production required overexpression argB^{br} encoding NAGK feedback resistant to L-arginine. Commensurate with this notion, simultaneous production of L-arginine and L-citrulline resulted from argB^{br} overexpression in a ΔargR background (Ikeda et al. 2009). In this argB^{br} overexpressing strain, the ratio of L-citrulline to L-arginine was higher than by classically obtained strains, which solely contain native argB (Ikeda et al. 2009). Currently, it remains to be studied if L-citrulline inhibits NAGK from *C. glutamicum* and if (some) variants feed-back resistant to L-arginine are also desensitized to L-citrulline.

Notably, about two fold more L-citrulline (about 7.7 g/L) was produced by strain CIT1 than L-ornithine was produced (about 3.3 g/L) by the isogenic strain CIT0 (pVWEx1). Both, overexpression of argF and argB^{br} may have contributed to this effect. It is more likely that argB^{br} is responsible as L-arginine supplementation may have limited flux in the arginine biosynthesis pathway of strain CIT0(pVWEx1) especially in the beginning of the cultivation. In *C. glutamicum* CIT1, only feedback-resistant NAGK is present and additionally a gene dosage effect due ectopic overexpression of argB^{br} might have contributed to increase L-citrulline production.

Glucose, glucosamine, xylose, and starch were shown to be suitable substrates for the production of L-citrulline. Strain construction was based on previously established engineering strategies (Seibold et al. 2006; Uhde et al. 2013; Meiswinkel et al. 2013a; Gopinath et al. 2011). The achieved L-citrulline concentrations on these substrates were lower than with glucose as carbon source. However, L-citrulline production from xylose (6.44 ± 0.12 mM) by CIT1(pEKEx3-xyLA^{br}) was lower, but in a similar range as production of L-ornithine (19.6 ± 1.9 mM) and putrescine (15.1 ± 1.2 mM), respectively, from the same xylose concentration by the respective recombinant *C. glutamicum* strains (Meiswinkel et al. 2013a). Similarly, product yields with glucosamine as carbon source were lower for L-citrulline (0.067 g/g) than for putrescine (0.112 g/g) (Uhde et al. 2013). Unexpectedly and hitherto not understood, the growth rate (0.02 ± 0.01 h⁻¹) and, thus, productivity by CIT1(pEKEx3-nagB^{fr}) were very low. By contrast, a putrescine producing strain carrying pEKEx3-nagB showed only a slightly decreased growth rate (Uhde et al. 2013).

C. glutamicum strains carrying pAMY co-utilized starch with glucose (Seibold et al. 2006). Substrate co-utilization is observed with *C. glutamicum* WT as well as recombinant strains for almost all mixtures of carbon sources (Blombach and Seibold 2010). A L-lysine producing strain carrying pAMY showed increased biomass formation by addition of 10 g/L starch to 10 g/L glucose, whereas L-lysine production increased only upon addition of higher starch concentrations (Seibold et al. 2006).

In this study, the additional presence of starch increased the growth rate of CIT1 (from 0.15 to 0.21 h⁻¹) as well as L-citrulline production. Production of L-citrulline by CIT1(pAMY) from a starch glucose mixture was higher (11.95 ± 0.48 mM) than that by the empty vector carrying control strain (4.83 ± 0.4 mM) demonstrating that starch contributed to production of L-citrulline. It has to be noted that starch cannot be utilized completely by *C. glutamicum* strains overexpressing the α-amylase gene amyA because high-molecular-weight carbohydrates are generated from starch and remain unutilized in the medium (Seibold et al. 2006).

Taken together, production of L-citrulline as major product from glucose, starch, glucosamine, and xylose by recombinant *C. glutamicum* strains was achieved.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

DE designed experiments, performed experiments, analysed results and drafted the manuscript. JKKJ designed experiments, performed experiments and analysed results. VFW coordinated the study, designed experiments, analysed results and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgment

This work was partially supported by the Bundesministerium für Bildung und Forschung (BMBF, grant: no. 0316017) and by the program ZIM (grant: no. 61738).
using Corynebacterium glutamicum. Regulation of carbon metabolism in Corynebacterium glutamicum. In: Burkovskii A (ed) Corynebacteria: genomics and molecular biology. Caister Academic Press, Wymondham, UK, pp 155–182

Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, Beekwilder J, Wendisch VF (2014b) An improved temperature triggered process for l-lysine and l-arginine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 98(10):4355–4368, doi:10.1007/s00253-014-5969-8

Ikeda M, Mitsuhashi S, Tanaka K, Hayash M (2009) Reengineering of a Corynebacterium glutamicum l-arginine and l-lysine producer. Appl Environ Microbiol 75(6):1635–1641, doi:10.1128/AEM.01155-08

Jolker E, Ewer D, Ballan S, Kramer R, Eikmanns BJ, Marin K (2009) Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J Bacteriol 191(3):940–948, doi:10.1128/JB.01155-08

Kakimoto T, Shibatani T, Nishimura N, Chibata I (1971) Enzymatic production of L-citrulline by Pseudomonas putida. Appl Microbiol 22(6):992–999

Kikuchi Y, Itaya H, Date M, Matsu K, Wu LF (2009) TatABC overexpression improves Corynebacterium glutamicum Tat-dependent protein secretion. Appl Environ Microbiol 75(3):603–607, doi:10.1128/AEM.01874-08

Kim J, Hirasawa T, Sato Y, Nagahisa K, Furusawa C, Shimizu H (2009) Effect of odhA overexpression and odhA antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 81(6):1097–1106, doi:10.1007/s00253-008-1743-4

Kim J, Fukuoka H, Hirasawa T, Nagai K, Wachi M, Shimizu H (2010) Requirement of de novo synthesis of the Odh protein in penicillin-induced glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 86(3):911–920, doi:10.1007/s00253-009-2360-6

Kirchner O, Tauch A (2003) Tools for genetic engineering in the amino acid-producing bacteria Corynebacterium glutamicum. J Biotechnol 104(1–3):287–299

Mataroa C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Kramer R, Wendisch VF, Selbold GM (2014) Engineering of Corynebacterium glutamicum for growth and L-lysine and L-tyrosine production from L-tyrosine, diaminopimelic acid, and glucose. Appl Microbiol Biotechnol 98(12):5633–5643, doi:10.1007/s00253-014-5676-9

Meiswinkel TM, Joppijn V, Lindner SN, Nampoothiri KM, Wendisch VF (2013a) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of L-lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6(2):131–140, doi:10.1111/j.1751-7915.2012.12044.x

Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF (2013b) Crude glycerol-based production of L-cysteine and putrescine by Corynebacterium glutamicum. Bioresour Technol 145:254–258, doi:10.1016/j.biortech.2013.02.053

Okamura S, Shibuya M, Shimpacki K, Teru S, Noboru K (1966) Method of producing L-citrulline by bacterial fermentation. US 3287794 A

Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ (1998) Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyruvate carboxylase gene. Microbiology 144(Pt 4):915–927

Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3(2):295–300

Radmacher M, Stanssen BC, Besa GS, Alderwick LJ, Maughan WN, Hollweg L, Sahm H, Wendisch VF, Eikmanns J (2005) Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum. Microbiology 151(Pt 5):1359–1368

Rimando AM, Perkins-Veazie PM (2005) Determination of citrulline in watermelon rind. J Chromatogr A 1078(2):196–200

Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glyceral utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74(20):6216–6222, doi:10.1128/AEM.00963-08

Sakanyan V, Petrosyan M, Lecoq M, Boyen A, Legrain C, Demaille M, Hallet JN, Glansdoff N (1996) Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology 142(Pt 1):99–108

Sambrook J, Russell D (2012) Molecular cloning. A laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

Sasaki M, Teramato H, Imai M, Yukawa H (2011) Identification of mannosate uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannosate and glucose. Appl Microbiol Biotechnol 89(18):1905–1916, doi:10.1007/s00253-010-3002-8

Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M (2008) Distinct roles of two anaeroplastic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum. J Biosci Bioeng 106(1):51–58

Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88(4):859–868, doi:10.1007/s00253-010-2778-x

Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinoxylan by recombinant Corynebacterium glutamicum. J Biotechnol 154(2–3):191–198, doi:10.1016/j.jbiotec.2010.07.009
Schneider J, Eberhardt D, Wendisch VF (2012) Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol 95(1):169–178, doi:10.1007/s00253-012-3956-9

Seibold G, Auchtner M, Berens S, Kalmowski J, Eikmanns BJ (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124(2):381–391

Stansen C, Uy D, Dehauay S, Eggeling L, Goergen JL, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71(10):5920–5928

Tateno T, Fukuda H, Kondo A (2007) Production of L-lysine from starch by Corynebacterium glutamicum displaying alpha-amylose on its cell surface. Appl Microbiol Biotechnol 74(6):1213–1220, doi:10.1007/s00253-006-0766-y

Teramoto H, Watanabe K, Suzuki N, Inui M, Yuka H (2011) High yield secretion of heterologous proteins in Corynebacterium glutamicum using its own Tat-type signal sequence. Appl Microbiol Biotechnol 91(3):677–687, doi:10.1007/s00253-011-3281-8

Tsuge Y, Tateno T, Sasaki K, Hasunuma T, Tanaka T, Kondo A (2013) Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions. AMB Express 3(1):72, doi:10.1186/2191-0855-3-72

Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K (2013) Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol Biotechnol 97(4):1679–1687, doi:10.1007/s00253-012-4313-8

Wada M (1930) Über Citrullin, eine neue Aminosäure im Presssaft der Wassermelone, Citrullus vulgaris Schrad. Biochem Z 224:420–429

Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30C:51–58, doi:10.1016/j.copbio.2014.05.004

Wendisch VF, Eberhardt D, Herbst M, Jensen JVK (2014) Amino acids and nucleotides. In: Bicas J (ed) Biotechnological production of natural ingredients for food industry. Bentham eBooks.

Yamamoto K, Sato T, Tosa T, Chibata I (1974) Continuous production of L-citrulline by immobilized Pseudomonas putida cells. Biotechnol Bioeng 16(12):1589–1599, doi:10.1002/bit.260161203

doi:10.1186/s13568-014-0085-0

Cite this article as: Eberhardt et al.: L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express 2014 4:85.