Title
Fetal gene defects precipitate platelet-mediated pregnancy failure in factor V Leiden mothers.

Permalink
https://escholarship.org/uc/item/13n9b1tp

Journal
The Journal of experimental medicine, 204(5)

ISSN
0022-1007

Authors
Sood, Rashmi
Zogg, Mark
Westrick, Randal J
et al.

Publication Date
2007-05-01

DOI
10.1084/jem.20062566

Peer reviewed
Fetal gene defects precipitate platelet-mediated pregnancy failure in factor V Leiden mothers

Rashmi Sood, Mark Zogg, Randal J. Westrick, Yi-he Guo, Edward J. Kerschen, Guillermina Girardi, Jane E. Salmon, Shaun R. Coughlin, and Hartmut Weiler

We describe a mouse model of fetal loss in factor V Leiden (FvL) mothers in which fetal loss is triggered when the maternal prothrombotic state coincides with fetal gene defects that reduce activation of the protein C anticoagulant pathway within the placenta. Fetal loss is caused by disruption of placental morphogenesis at the stage of labyrinth layer formation and occurs in the absence of overt placental thrombosis, infarction, or perfusion defects. Platelet depletion or elimination of protease-activated receptor 4 (Par4) from the mother allows normal placentation and prevents fetal loss. These findings establish a cause-effect relationship for the observed epidemiologic association between maternal FvL status and fetal loss and identify fetal gene defects as risk modifiers of pregnancy failure in prothrombotic mothers. Pregnancy failure is mediated by Par4-dependent activation of maternal platelets at the fetomaternal interface and likely involves a pathogenic pathway independent of occlusive thrombosis. Our results further demonstrate that the interaction of two given thrombosis risk factors produces markedly disparate consequences on disease manifestation (i.e., thrombosis or pregnancy loss), depending on the vascular bed in which this interaction occurs.
thrombomodulin (Thbd) and the endothelial protein C receptor (Procr), demonstrate that the integrity of this pathway within the placenta is essential for the maintenance of pregnancy (14–16). Thbd- or Procr-knockout mice die in utero because of a placental malfunction that results from a lack of these receptors on zygote-derived trophoblast cells that line the passage of maternal circulation in the placenta. Importantly, fetal loss in these animal models occurs in the absence of maternal thrombophilia, and the relevance of these knockout models for fetal loss in thrombophilic mothers remains unclear.

In this paper, we test the hypothesis that the hemostatic balance in the placental vasculature is determined by the combination of maternal and fetal factors, which cooperatively regulate the activity of the coagulation system at the interface of maternal blood and fetal trophoblasts. We test and demonstrate this effect in a mouse model of pregnancy disorder in FvL mothers in which fetal loss is triggered by a combination of maternal and fetal prothrombotic defects. We exploit this model to identify risk modifiers of fetal loss associated with maternal FvL status and to characterize the pathogenic mechanism underlying pregnancy failure.

RESULTS

Development of an animal model of fetal loss associated with maternal thrombophilia

Two genetically altered strains of mice were used: mice with APC resistance caused by the FvL polymorphism (13) and Thbd Pro mice with a reduced ability to activate protein C zymogen (17). Both strains are viable in the homozygous state for the mutated allele and exhibit biochemical evidence of chronic, low-grade thrombin generation leading to enhanced fibrin deposition in multiple tissues but do not develop spontaneous thrombosis on a C57BL/6 genetic background. Homozygous FvQ and ThbdProPro mice exhibit normal fertility and fecundity (13, 17). These two strains of mice were intercrossed to produce FvQQThbdPro mice in which we could assess pregnancy outcome as a function of Thbd expression on fetal trophoblast cells.

Offspring of FvQQThbdPro+ intercrosses showed a complete absence of FvQQThbdProPro animals and a significant underrepresentation of FvQQThbdProPro+ pups (Table I, row 1). FvQQThbdPro+ females mated to ThbdProPro males, likewise, did not support intrauterine development of FvQQThbdProPro embryos (Table I, row 2). In contrast, in the reverse genetic cross (i.e., ThbdProPro females mated with FvQQThbdProPro males; Table I, row 3), viable FvQ+ThbdProPro+ pups were born (P = 0.009 compared with FvQQThbdProPro+ females mated to ThbdProPro males). Thus, FvQQThbdPro+ females do not support uterine development of FvQQThbdProPro embryos. Of note, viable FvQQThbdProPro offspring were obtained from intercrosses of FvQ+ThbdProPro+ animals (Table I, row 4), showing that compound homozygosity of FvL and TMPro alleles in the embryo is compatible with normal development. The compound homozygous animals did not develop thrombosis over a 1-yr observation period.

Although the data in the previous paragraph clearly demonstrate that ThbdProPro embryos are aborted in FvQQThbdProPro females but can survive in ThbdProProPro females, we noted partial fetal loss of ThbdProPro embryos in the latter, which is reflected in a lower frequency of this genotype than predicted by Mendelian inheritance (P = 0.003; Table I, row 3). Partial loss of ThbdProPro embryos was also observed when the ThbdProPro females were mated to ThbdProPro+ males (Table I, compare rows 5 and 6), demonstrating synergy between fetal and maternal Thbd deficiency in mediating fetal loss. To unequivocally demonstrate the effect of maternal FvL status on fetal loss in the absence of the ThbdPro mutation in the mother, we assessed the survival of ThbdProPro+ embryos in FvQQ mothers with normal Thbd expression. Significantly reduced numbers of FvQ+ThbdProPro+ mice were observed in the offspring of FvQQ females mated with ThbdProPro+ males (Table I, row 7), demonstrating the loss of ThbdProPro+ embryos in FvQQ mothers.

These results show that (a) fetal loss occurs in female mice with a latent prothrombotic state caused by homozygous status for either the FvQ or the ThbdPro allele; (b) the penetrance of fetal loss phenotype in these prothrombotic mothers is increased by reduced fetal Thbd function; and (c) the combination of the same risk factors within vascular compartments other than the placenta is compatible with normal development and hemostasis.

Table 1. Pregnancy outcome in FvL mothers

Female	Male	Genotype of offspring							
		FvQQ ThbdPro+	FvQQ ThbdProPro	FvQQ ThbdPro+ Pro	FvQQ ThbdProPro Pro	FvQQ ThbdProPro	FvQQ ThbdProPro	FvQQ ThbdProPro	FvQQ ThbdProPro
FvQQ ThbdPro+	FvQQ ThbdProPro	–	–	–	–	27	19	0	46
FvQQ ThbdPro+	FvQQ ThbdProPro	–	–	–	15	0	–	–	15
FvQQ ThbdPro+	FvQQ ThbdProPro	–	–	22	10	–	–	–	32
FvQQ ThbdPro+	FvQQ ThbdProPro	–	12	–	30	–	–	9	51
FvQQ ThbdPro+	FvQQ ThbdProPro	–	12	4	–	–	–	–	19
FvQQ ThbdPro+	FvQQ ThbdProPro	–	12	–	–	–	–	26	
FvQQ ThbdPro+	FvQQ ThbdProPro	–	–	41	22	–	–	–	63

p-values were calculated by χ² analysis using the expected numbers based on Mendelian inheritance. *, P < 0.0003; **, P < 0.04; †, P < 0.02. n, total number of pups analyzed.
mediated procoagulant activity expressed by trophoblast cells prevents the intrauterine loss of Thbd^{−/−}, as well as Procr^{−/−} embryos, suggesting that the level of tissue factor inhibition by T_{<s>fp</s>}i on trophoblast cells may be a critical modulator of the risk of fetal loss in prothrombotic mothers (15, 16). The combination of heterozygous T_{<s>fp</s>}i deficiency with homozgyous carrier status for the FvL mutation in the systemic vasculature causes fatal thrombosis shortly after birth in Fv^{QQ}T_{<s>fp</s>}i^{−/−} animals (18).

An analysis of crosses between T_{<s>fp</s>}i^{+/−} males and Fv^{QQ} females showed a trend of reduced survival of T_{<s>fp</s>}i^{+/−} embryos in Fv^{QQ} mothers (62 Fv^{QQ}T_{<s>fp</s>}i^{+/−} vs. 80 Fv^{QQ}T_{<s>fp</s>}i⁺⁺), but the skewing of genotype distribution did not reach statistical significance. No intrauterine loss of T_{<s>fp</s>}i^{−/−} embryos was observed in Fv^{QQ}Thbd_{<s>Pro</s>} mothers mated to T_{<s>fp</s>}i^{+/−} males (5 Fv^{QQ}Thbd_{<s>Pro</s>}^{++/−} vs. 6 Fv^{QQ}T_{<s>fp</s>}i^{+/−} and 7 Fv^{QQ}Thbd_{<s>Pro</s>}^{++/+}Thbd_{<s>Pro</s>}^{−/−} vs. 3 Fv^{QQ}Thbd_{<s>Pro</s>}^{++/+}Thbd_{<s>Pro</s>}^{−/+}; n = 21). In conclusion, reduced T_{<s>fp</s>}i expression at the blood–trophoblast interface within the placental vascular bed does not significantly increase the risk of pregnancy failure in FvL mothers.

Procr, like T_{<s>fp</s>}i, is coexpressed with Thbd by fetal trophoblast cells (19) and facilitates Thbd-mediated activation of protein C. To examine whether reduced Procr expression by trophoblast cells causes pregnancy failure in FvL mothers, we used “low Procr” mice (i.e., homozygous Procr^{δδ}). These mice exhibit severely reduced Procr expression yet develop and reproduce normally (20). Fv^{QQ}Procr^{δδ} pups were significantly underrepresented in the offspring of Fv^{QQ}Procr^{δδ} females mated to Procr^{δδ} males (5 Fv^{QQ}Procr^{δδ} vs. 18 Fv^{QQ}Procr^{+δ}; n = 23; P < 0.007). In contrast, intercrosses of Fv^{QQ}Procr^{δδ} mice yielded normal frequencies of Fv^{QQ}Procr^{+δ} and Fv^{QQ}Procr^{−δ} pups (12 Fv^{QQ}Procr^{δδ} and 5 Fv^{QQ}Procr^{−δ}, and 4 Fv^{QQ}Procr^{+δ}; n = 21), which remained completely viable and normal as adults. Therefore, akin to the Thbd_{<s>Pro</s>} mutation, reduced fetal Procr expression increases the risk of pregnancy failure in homozygous FvL mothers, whereas the same interaction does not produce a thrombotic pathology within the systemic vasculature.

Placental pathology of pregnancy failure in FvL females

Progeny from Fv^{QQ}Thbd_{<s>Pro</s>} intercrosses were analyzed at E10.5, E12.5, and E17.5 to determine the time of pregnancy

Table II. Intrauterine survival of Thbd_{<s>Pro</s>}^{Pro} embryos in Fv^{QQ}Thbd_{<s>Pro</s>}⁺⁺ mothers

Breeding pairs	Genotype of embryos						
Female	Male	Stage of embryonic development	Fv^{QQ} Thbd⁺⁺	Fv^{QQ} Thbd^{Pro}	Fv^{QQ} Thbd^{Pro}	Fv^{QQ} Thbd^{Pro}	Fv^{QQ} Thbd_{<s>Pro</s>} n
E10.5	E10.5	10	23	2*	–	–	35
E12.5	E12.5	18	13*	1*	–	–	32
E17.5	E17.5	9	11	0*	–	–	20
E9.5	E9.5	–	–	–	5	7	12
E11.5	E11.5	–	–	12	0*	12	

p-values were calculated by χ² analysis using the expected numbers based on Mendelian inheritance. *P < 0.004. Embryos in advanced stages of degradation were excluded from the analysis. n, total number of pups analyzed.
failure and the associated pathology of FvQQThbdProPro embryos (Table II). Seven out of nine FvQQThbdProPro embryos were resorbed or severely developmentally retarded by E10.5; only one ThbdProPro embryo was present at E12.5, and none were at E17.5 (Table II). In timed pregnancies of FvQQThbdPro+ females mated to ThbdProPro males (Table II), FvQThbdProPro embryos were present in normal numbers at E9.5, but some of these were already smaller or delayed in developmental progress at this time (Fig. 1, a and b). By E11.5, all FvQThbdProPro embryos were in a stage of advanced decay (Fig. 1, c and d). These findings indicate that, in FvQQThbdPro+ mothers, ThbdProPro embryos exhibit growth defects as early as E9.5 and that fetal loss is observed as early as E10.5. Although some embryos appear normal at this time, eventually all ThbdProPro embryos in FvQQThbdPro+ mothers are eliminated before birth, and this occurs irrespective of the FvL status (homozygous or heterozygous) of the embryo. In contrast to ThbdProPro embryos, ThbdPro+ embryos are present in normal numbers and appearance at E10.5 but are under-represented at E12.5.

At E9.5, uteroplacental units corresponding to FvQ+ThbdProPro embryos tended to be smaller in comparison with littermate controls. Morphometric analysis of histological sections through these units showed a significantly higher decidual/placental ratio in units corresponding to apparently normal ThbdProPro embryos compared with ThbdPro+ and Thbd+/+ littermates, and this difference was more pronounced in units corresponding to retarded ThbdProPro embryos (Fig. 2 and Fig. 3, a and b). The smaller placental size could be attributed to a failure to form or expand the labyrinth layer of the placenta (Fig. 3, c–f). At E9.5, the placenta of all retarded ThbdProPro embryos (n = 8) had undergone chorioallantoic fusion, but the chorioallantoic surface had remained flat with little or no branching and an absence of fetal and maternal vessel in-growth, resulting in a distinct lack of a well-formed labyrinth layer. Of note, the same defect in labyrinth formation was also observed in three out of six placentas of apparently normal ThbdProPro embryos, indicating that the observed placental pathology precedes embryonic growth retardation. The placentas of other normal-appearing ThbdProPro embryos had begun branching morphogenesis to form a labyrinth and appeared similar to placentas of ThbdPro+ littermates. This observation, together with the observed survival of occasional ThbdProPro embryos to a late developmental stage (E12.5), suggests that the defect may be in progression rather than in the initiation of chorioallantoic morphogenesis.

Fetal loss is not associated with placental thrombosis

Plasma levels of thrombin–antithrombin (TAT) complexes and D-dimer were only mildly altered in FVQQTMPro+ mice and were not predictive of pregnancy failure (respective values:

![Figure 2. Placental size of ThbdProPro embryos relative to controls.](image)

Each symbol represents a measurement from a single fetoplacental unit. All litters were analyzed at E9.5. Mean ratios and SDs are shown.

![Figure 3. Placental phenotype of ThbdProPro embryos and littermate controls in FvQQThbdPro+ mothers.](image)

Histological sections through placentas of ThbdPro+ (a, c, and e) and a phenotypically normal ThbdProPro (b, d, and f) embryo at E9.5. a and b show cytokeratin-expressing trophoblast cells (brown staining). The placenta of ThbdProPro embryos (stained area) is smaller than that of ThbdPro+ embryos. c and d are higher magnification images of hematoxylin and eosin-stained sections adjacent to a and b, respectively. e and f correspond to boxes in c and d, respectively. Dashed lines in c and d mark the border of the placenta and decidua, as determined by cytokeratin staining. ThbdPro+ placentas (c and e) have formed a labyrinth characterized by maternal (bright red enucleated maternal red blood cells; dashed arrows) and fetal (purple hematoxylin-stained nucleated fetal red blood cells; continuous arrow) blood spaces. The labyrinth is distinctly absent in the placentas of littermate ThbdProPro embryos (d and f). Bars, 0.1 mm.
TAT, 4.52 ± 2.07 vs. 4.8 ± 0.92 μgapparent/l [wild type vs. FvQQThbdPro+; mean ± SD; P = 0.74]; D-dimer, 7.95 ± 4.02 vs. 10.12 ± 3.47 μgapparent/l [mean ± SD; P = 0.28]). TAT levels of pregnant FvQQThbdPro+ animals at 9.5 days post coitum (dpc) were also similar to gestation stage–matched controls (respective values: 8.21 ± 2.44 vs. 8.46 ± 6.98 μgapparent/l [wild type vs. FvQQThbdPro+; mean ± SD; P = 0.95]). The numbers, sizes, location, and general appearance of thrombi were similar in uteroplacental units corresponding to Thbd+++, normal ThbdProPro, and retarded ThbdProPro embryos (Thbd++, 12 ± 12 clots; normal ThbdProPro, 13 ± 7 clots; retarded ThbdProPro, 7 ± 5 clots [all mean ± SD]). Thrombi identified by hematoxylin and eosin staining were validated by immunostaining with fibrin(ogen) and with p-selectin antibodies identifying platelet aggregates (Fig. 4). Spiral arteries within the decidua were free of thrombi in wild-type and mutant fetoplacental units (not depicted). To detect blood perfusion defects secondary to potential blood clots in vessels not included in our survey and to rule out other causes of impaired blood supply to the placenta, FITC-dextran was injected in the maternal circulation. The fluorescent tracer accumulated in the placenta of wild-type pregnancies in a characteristic ring-like structure formed by maternal blood in the labyrinth. Congruent with the developmental retardation and anatomical absence of labyrinth, this structure was absent in the placenta of ThbdProPro embryos (Fig. 5). FITC-dextran could, however, be readily visualized in decidual and placental blood spaces in FVQQThbdPro+ mothers irrespective of embryonic genotype. These data support the notion that fetal loss in the described mouse model cannot be attributed to occlusive thrombosis and impaired perfusion of the placenta.

Fetal loss in FvL mice is mediated by the protease-activated receptor 4 (Par4) on maternal platelets

We examined the role of platelets in the pregnancy disorder of FvL mothers by immunodepleting maternal platelets with anti-GP1bα antibodies. Platelet depletion initiated at E7.5 restored normal development of ThbdProPro embryos in FvQQThbdPro+ mothers mated to ThbdProPro males (13 ThbdPro+ and 18 ThbdProPro determined at E11.5 or later; n = 31 from four pregnancies). Treatment with nonimmune IgG did not prevent loss of ThbdProPro embryos (9 ThbdPro+ and 1 ThbdProPro;

Figure 4. Placental thrombosis in FvL mice. The number of placental thrombi was similar in placentas of wild-type and ThbdProPro embryos (see Results). Thrombi were identified on serial sections by hematoxylin and eosin staining (a, c, and e), and immunostaining with antifibrinogen antibodies (b) and anti–p-selectin antibodies (d and f). e and f are enlarged views of the boxed areas in c and d. Arrows indicate clots. Bars, 0.1 mm.

Figure 5. Assessment of decidual and placental vascular patency by FITC-dextran infusion. Whole-mount (a and b) and sections (c–f) of decidual-placental units corresponding to a wild-type embryo in a wild-type mother (a, c, and e) and a FvQQThbdProPro embryo in a FvQQThbdPro+ mother (b, d, and f) are shown. From the fetal aspect of the placenta, a characteristic ring of maternal placental vasculature, marked by FITC-dextran, is observed in wild-type pregnancies but not in placenta of FvQQThbdPro+ mother (a, c, d, and f). Decidual and placental regions in both types of pregnancies are perfused with FITC-dextran (c and d). Hematoxylin and eosin–stained sections adjacent to c and d are shown in e and f. Arrows show maternal blood spaces in the placenta. Bars, 1 mm.
n = 10 from three pregnancies; P = 0.011 indicates a significant difference from the numbers expected by Mendelian inheritance. We observed that loss of ThbdProPro embryos could not be prevented when platelet depletion was initiated at E9.5 (17 ThbdProPro and 2 ThbdProPro; n = 19 from four pregnancies; P = 0.0006 indicates a significant difference from the numbers expected by Mendelian inheritance). These data demonstrate that maternal platelets mediate fetal loss of ThbdProPro mice in FvQQ ThbdPro+ mothers and suggest that the initial platelet-mediated insult to the placenta occurs as early as E7.5.

Par4 is required for thrombin-mediated activation of mouse platelets. Using triallelic crosses, we generated FvQQPar4−/−ThbdPro+ animals to assess the role of Par4 in mediating pregnancy disorder. FvQQPar4−/−ThbdPro+ females mated with ThbdProPro males produced viable FvQQPar4−/−ThbdProPro term embryos (15 ThbdProPro and 15 ThbdProPro; n = 30) that resembled their ThbdPro+ littermates in appearance and size. These data demonstrate that maternal Par4 deficiency overcomes the developmental block of ThbdProPro embryos in FvQQThbdPro+ mothers.

DISCUSSION

Our findings reveal several new aspects of the association between maternal thrombophilia and fetal loss. First, it lends direct experimental support to the notion that the FvL carrier status of the mother increases the risk of pregnancy failure, thereby establishing a cause–effect relationship for the epidemiologic association. Second, it demonstrates that hemostatic regulators on fetal trophoblast cells are dominant risk modifiers of fetal loss in FvL carriers. Thbd and Procr, allelic variants of which are suspected risk modifiers in human thrombophilia (21–25), are experimentally validated in the current mouse model as modulators of pregnancy success in FvL mothers. The experimental demonstration of a synergistic adverse effect of maternal and fetal prothrombotic mutations in causing pregnancy failure has direct implications for the risk stratification of patient populations. It also validates the approach taken in the “NOHA first” study (26), which systematically includes analysis of the paternal (in lieu of the fetal) genome to more accurately interpret the epidemiologic association between maternal thrombophilia and fetal loss. Third, it establishes a novel and unique animal model of fetal loss associated with maternal inherited thrombophilia. Using this animal model, we have identified the Par4 receptor on maternal platelets as a key component of the pathogenic mechanism underlying fetal loss in FvL mice and have determined that, at least in mice, fetal loss occurs in the absence of overt thrombosis. The relevance of our observations for human FvL carriers remains to be determined.

Based on placental pathology, the pathogenesis of FvL-associated fetal loss in mice appears distinct from the complement–driven mechanism operating in fetal loss induced by antiphospholipid antibodies (27). Consistent with this notion, platelet depletion did not ameliorate fetal loss in the antiphospholipid model, and anti-C5 antibody treatment was insufficient to rescue fetal loss in the FvL model (unpublished data).

In striking contrast to fetal loss caused by reduced function or expression of Thbd or Procr on trophoblast cells in FvL mothers, the combination of the same risk factors does not cause acute thrombosis in the systemic vasculature. The reverse is true for Tfpi, where lethal thrombosis ensues when heterozygous Tfpi deficiency is combined with FvL homozygosity in the same animal (18) but is inconsequential with respect to pregnancy outcome. The absence of a measurable consequence of embryonic Tfpi heterozygosity on pregnancy outcome in FvL mothers may reflect a substantial contribution of maternally derived plasma Tfpi in local hemostasis at the fetomaternal interface. Collectively, these observations demonstrate a marked discrepancy of consequences (i.e., thrombosis vs. pregnancy loss) triggered by the interaction of thrombosis risk factors in different vascular beds and suggest that the effect of a given risk modifier on venous or arterial thrombosis is not necessarily predictive of pregnancy outcome.

The placental abnormalities of embryos with reduced Thbd activity carried by FvL mothers and those associated with Thbd-null embryos (15) share characteristic features suggestive of a common underlying pathogenic mechanism. Both occur in the absence of overt thrombosis. Embryos with reduced Thbd activity in FvL mothers can be rescued by platelet depletion at E7.5 but not at E9.5, indicating that the pathogenic insult has already occurred by E9.5. Growth retardation of Thbd-null embryos is observed as early as E8.5, suggesting a similar time of pathogenic insult. In both cases, placental morphogenesis is disrupted at the time of labyrinth layer formation. The combined results from the analysis of fetal loss in these two models suggest that the expression of tissue factor on placental trophoblast cells provides a constitutive procoagulant stimulus in the placental vascular bed (15, 19). The protein C anticoagulant pathway sustained by expression of Thbd and Procr on trophoblast cells appears to be necessary to suppress this stimulus. Localized disruption of this pathway at the fetomaternal interface—either caused by the complete lack of Thbd or Procr from trophoblast cells or a combination of fetal and maternal risk factors—permits amplification of the coagulation reaction and formation of activated clotting factors, including thrombin. We find that platelets and Par4 are critical mediators of placental failure. The impairment of placental growth and morphogenesis is therefore caused by a process similar to the initial tissue factor– and thrombin-dependent stages of arterial thrombosis, likely involving platelet activation, but does not require thrombotic occlusion. Possible explanations for the lack of occlusive thrombi in the setting of an active coagulation cascade include inhibition of ADP-driven platelet aggregation caused by abundant expression of ecto-ATPase/CD39 on the trophoblast cell surface (19).

The nature of the mechanism by which activation of maternal platelets causes pregnancy failure is unknown, but the possibility that platelet-released factors negatively influence
placental development or function is an obvious candidate. Peptide mediators with (anti)angiogenic activity have been suggested to alter trophoblast function and contribute to the etiology of pregnancy disorders such as preclampsia (28–30). Of note, platelets have been shown to adhere to endovascular trophoblasts within the lumen of spiral arteries in normal pregnancy (30), indicating that the recruitment of platelets to the fetomaternal interface is a physiological process that links platelet function to the regulation of placental development.

It is noteworthy that fetal loss in FvL animals occurs in the absence of overt thrombosis in the mother’s systemic vasculature and is caused by a highly localized defect precipitated by the fetal genotype, which affects individual placent al beds. Local dysregulation of the protein C anticoagulant pathway at the fetomaternal interface alone (Thbd$^{-/-}$ embryos) is also sufficient to cause fetal loss in a mother with near-normal hemostatic function (Thbd$^{+/+}$ mothers) (15). Complete disruption of the protein C pathway (\leq3% of protein C), on the other hand, is accompanied by active thrombotic disease, consumptive coagulopathy, and a severe proinflammatory phenotype (31). These animals suffer fetal genotype-independent early pregnancy loss (E6.5) with a markedly different disease etiology caused by the pronounced secondary effects of acute protein C deficiency in the mother. Increasing maternal protein C to 18% of wild-type levels overcomes systemic thrombosis and inflammation and restores normal pregnancies (31).

In summary, we have presented animal models of placental malfunction and fetal loss secondary to inherited defects in the protein C anticoagulant pathway, including a clinically relevant gene defect (FvL) in the mother. The loss of Thbd$^{Pro\alpha}$ embryos in FvL mothers correlates with the early fetal loss observed in women with the Leiden mutation. We also observed a partial loss of embryos with a heterozygous defect in Thbd function (Thbd$^{Pro\alpha+}$) later in pregnancy (around E12.5, correlating with Leiden-associated late fetal loss in women) that we did not characterize further in this study. The early fetal loss in FvL mice is preceded by disrupted placental growth and morphogenesis during developmental events that lead to the formation of a functional labyrinth and is mediated through a platelet and Par4 receptor–driven mechanism but does not involve formation of occlusive thrombi in the placenta. The described animal model of thrombophilia–associated fetal loss provides an opportunity to test the efficacy of antithrombotic treatments and, possibly, of antiplatelet treatments targeting the recruitment and activation of platelets in the placental vascular bed.

MATERIALS AND METHODS

Mice. Animal experiments were conducted according to standards and procedures approved by the Animal Care and Use Committee of the Medical College of Wisconsin. Fv Leiden (provided by D. Ginsburg, University of Michigan, Ann Arbor, MI), Thbd$^{Pro\alpha}$ (provided by F. Castellino, University of Notre Dame, Notre Dame, IN), and TFPI$^{+/−}$ (provided by G. Broze, Washington University School of Medicine, Saint Louis, MO) mice have been previously described (13, 17, 20, 32). These mice were maintained on C57BL/6 genetic background.

Histology. Embryonic development was assessed from dpc, assuming midday of plug as 0.5 dpc, and as previously described (15). Dissections were performed, and pictures of embryos were taken under a microscope (SMZ-U; Nikon) equipped with a color camera (SPOT Insight; Diagnostic Instruments) and SPOT software (version 3.2.4; Diagnostic Instruments). 7-μm serial sections of formalin-fixed (Sigma-Aldrich), paraffin-embedded tissues were stained with hematoxylin and eosin for general morphology, identification of thrombi, and morphometric analysis. Thrombi were validated by immunostaining with antibodies that recognize fibrinogen (DakoCyto-ination) and p-selectin (Santa Cruz Biotechnology, Inc.). Immunostaining with antibodies against cytokeratin (DakoCytometry) was done after antigen retrieval with 40 μg/ml proteinase K in 10 mM Tris, pH 7.5, at 37°C for 30 min. ImageJ software (version 1.36b; National Institutes of Health) was used for morphometric analysis. Sizes of the decidua and placenta were measured on every 30th section, and the totals were used to arrive at decidua/placenta ratio.

Perfusion studies and TAT and D-dimer measurements. Placental perfusion was examined by injecting pregnant females with 100 μl of 25 mg/ml FITC-labeled dextran (mol wt 200 × 103; Sigma-Aldrich) via the tail vein at 9.5 dpc. After 15 min, the uteroplacental units were dissected under a microscope (SterEO Discovery.V12 PentaFluar S; Carl Zeiss Micro-Imaging, Inc.) equipped with a GFP filter cube (excitation, BP470/40; emission, BP525/50) and a camera (AxioCam MR.c5; Carl Zeiss MicroImaging, Inc.). The fetal aspect of the placenta was photographed using Axiovision software (version 4.5; Carl Zeiss MicroImaging, Inc.). The uteroplacental units were embedded in tissue-freeze medium (Triangle Biomedical Sciences) and flash frozen in a dry ice–ethanol bath. Serial sections of the frozen units were examined and photographed under a microscope (Eclipse TE2000; Nikon) equipped with a camera (Photometrics CoolSNAP ES; Roper Scientific, Inc.) using Metamorph software (version 6.2r6; Universal Imaging Corp.). D-dimer and TAT levels were measured as previously described (33).

Platelet depletions. For platelet depletion, a mixture of anti-GPIbα monoclonal antibodies (34) or polyclonal nonimmune IgG (control; R300 or C301, Enmed Analytics) was injected via the tail vein at 4 μg/g body weight. Anti-GPⅡbα antibodies depleted 95% of the platelets within 1 h, as counted manually and with an automated cell counter (ABX Diagnostics). Injections were repeated on the fourth day.

Statistical analysis. The significance of survival differences between groups was determined using the χ2 analysis. The Student’s t test (two-tailed with unequal variance) was used for all other statistical analysis. P < 0.05 was considered significant.

R. Sood conceptually designed, executed, and interpreted experiments and wrote the manuscript; M. Zogg maintained the animal colonies; R.J. Westrick contributed to the analysis of TFPI-deficient mice; Y.-h. Guo contributed to embryo analysis from FvLeiden$^{Pro\alpha+}$ intercrosses; E.J. Kershchen generated Procr$^{−/−}$ animals; G. Girardi; J.E. Salmon, and S.R. Coughlin provided critical reagents and assisted in writing the manuscript; and H. Weiler conceptually designed and performed experiments and wrote the manuscript.

We thank Barbara Fleming for preparing histological sections, Dr. Francis Castellino for making endothelial Procr−/− mice available, Dr. George Broze for TFPI−/− mice, Dr. Lynette Sholl for critiquing the manuscript, and Dr. David Ginsburg for providing FvL mice and for critiquing the manuscript.

This work was supported by grants HL60635 (to H. Weiler); HL44907 and HL65590 (to S.R. Coughlin); and AI055007 (to J.E. Salmon and G. Girardi), as well as an American Heart Association predoctoral fellowship (to R.J. Westrick).

The authors have no conflicting financial interests.

Submitted: 6 December 2006
Accepted: 21 March 2007
REFERENCES

1. Dudding, T.E., and J. Attia. 2004. The association between adverse pregnancy outcome and maternal factor V Leiden genotype: a meta-analysis. Thromb. Haemost. 91:700–711.

2. Rey, E., S.R. Kahn, M. David, and I. Shrier. 2003. Thrombophilic disorders and fetal loss: a meta-analysis. Lancet. 361:901–908.

3. Kovalesky, G., C.R. Gracia, J.A. Berlin, M.D. Sammel, and K.T. Barnhart. 2004. Evaluation of the association between hereditary thrombophilias and recurrent pregnancy loss: a meta-analysis. Arch. Intern. Med. 164:558–563.

4. Mousa, H.A., and Z. Alfirevic. 2000. Do placental lesions reflect thrombophilic state in women with adverse pregnancy outcome? Hum. Reprod. 15:1830–1833.

5. Sikkema, J.M., A. Franz, H.W. Bruurse, N.G. van der Wijk, H.W. de Valk, and P.G. Nikkels. 2002. Placental pathology in early onset pre-eclampsia and intra-uterine growth restriction in women with and without thrombophilia. Placenta. 23:337–342.

6. Brenner, B., R. Hofmann, H. Carp, M. Dutlitsky, and J. Younis. 2005. Efficacy and safety of two doses of enoxaparin in women with thrombophilia and recurrent pregnancy loss: the LIVE-ENOX study. J. Thromb. Haemost. 3:227–232.

7. Gris, J.C., E. Mercier, I. Quere, G. Lavigne-Lisalde, E. Cochery-Nouvellon, M. Hoffet, S. Ripart-Neveu, M.L. Tailland, M. Dauzat, and P. Mares. 2004. Low-molecular-weight heparin versus low-dose aspirin in women with one fetal loss and a constitutional thrombophilic disorder. Blood. 103:3695–3699.

8. Carp, H., M. Dolitzky, and A. Inbal. 2003. Thromboprophylaxis improves the live birth rate in women with consecutive recurrent miscarriages and hereditary thrombophilia. J. Thromb. Haemost. 1:433–438.

9. Sanson, B.J., A.W. Lensing, M.H. Prins, J.S. Ginsberg, Z.S. Barkagan, I. Dudding, T.E., and J. Attia. 2004. The association between adverse pregnancy outcome and maternal factor V Leiden genotype: a meta-analysis. Thromb. Haemost. 91:700–711.

10. Le Flem, L., V. Picard, J. Emmerich, S. Gandrille, J.N. Fiessinger, M. Dauzat, E. Lavenne-Pardonge, B. Brenner, M. Dulitzky, J.D. Nielsen, Z. Boda, and S. Ripart-Neveu. 2005. Factor V Leiden and prothrombin G20210A polymorphisms as risk factors for miscarriage during a first intended pregnancy: the matched case-control ‘NOHA first’ study. J. Thromb. Haemost. 3:2178–2184.

11. Girardi, G., J. Berman, P. Redecha, L. Spruce, J.M.Thorburn, D. Kraus, T.J. Hoffmann, P. Catsal, M.C. Caroll, R.A. Wetsel, et al. 2003. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J. Clin. Invest. 112:1644–1654.

12. Zhou, Y., M. McMaster, K. Woo, M. Janatpour, P. Y. J. Karpanen, K. Alitalo, C. Damsky, and S.J. Fisher. 2002. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelet syndrome. Am. J. Pathol. 160:1405–1423.

13. Ma, L.D. Hoffenberg, and J.L. Wallace. 2001. Thrombin-induced platelet endostatin release is blocked by a proteinase activated receptor-4 (PAR-4) antagonist. Br. J. Pharmacol. 134:701–704.

14. Sato, Y., H. Fujiiwa, B.X. Zeng, T. Higuchi, S. Yoshioka, and S. Fujii. 2005. Platelet-derived soluble factors induce human extravillous trophoblast migration and differentiation: platelets are a possible regulator of trophoblast infiltration into maternal spiral arteries. Blood. 106:428–435.

15. Lay, A.J., Z. Liang, E.D. Rosen, and F.J. Castellino. 2005. Mice with a severe deficiency in protein C display prothrombotic and proinflammatory and thrombotic, and compromised maternal reproductive capacities. J. Clin. Invest. 115:1552–1561.

16. Huang, Z.F., and S. Higuchi. 1997. Tissue factor pathway inhibitor gene disruption produces intrauterine lethality in mice. Blood. 90:944–951.

17. Aiach, and M. Alhenc-Gelas. 2005. Factor V Leiden and prothrombin G20210A polymorphisms as risk factors for miscarriage during a first intended pregnancy: the matched case-control ‘NOHA first’ study. J. Thromb. Haemost. 3:2178–2184.

18. Bergmeier, W., K. Rackebrandt, W. Schroder, H. Zirngibl, and B. Nieswandt. 2000. Structural and functional characterization of the mouse von Willebrand factor receptor GPIb-IX with novel monoclonal antibodies. Blood. 95:886–893.