Information on longevity is key to the understanding of population biology of a species (Healy et al. 2014) and is being collected by researchers across taxa (Cutler 1979; Wilkinson & South 2002; De Magalhaes & Costa 2009; Gonzalez-Lagos et al. 2010; Tidiere et al. 2016). Longevity data of wildlife can be collected through long-term monitoring programs (Smith et al. 2017), but is often difficult to apply to rare and elusive species, such as small carnivores. Alternatively, longevity data can also be collected both from dead animals by using cementum annuli to estimate the age of death (Kamler & Macdonald 2006) and from species held in captivity, although it is well-known that captive animals generally live longer than those in the wild (Ricklefs & Cadena 2007; Tidiere et al. 2016).

Within the Felidae there is a consistent bias in the scientific community to study larger species rather than smaller ones (Brodie 2009; Macdonald et al. 2010; Anile & Devillard 2015, 2018), and hence scientific data on life history traits for smaller species are lacking. Given the aforementioned constraints, knowledge of longevity of small carnivores in the wild is rare. To our knowledge, the only longevity study of European Wildcats is that of Hartmann (2005) in Switzerland, where captive animals attained 12–16 years of age. Here we report our recent finding of a European Wildcat recaptured by camera traps after nine years on Mt. Etna in Sicily, Italy.

Our study area was located on Mt. Etna in Sicily, Italy (Fig. 1A), the highest active volcano in Europe and a World Heritage Site by UNESCO in 2013 (UNESCO World Heritage Center 2019). Extensive descriptions of our study area are reported elsewhere (Anile et al. 2014, 2019).

We have been using camera traps to survey the Wildcat population on Mt. Etna since 2006 (Anile et al. 2009, 2010, 2012a,b, 2014, 2019). Extensive details about the methods and materials used in the surveys related to the present study are reported in Anile et al. (2012b) (Fig. 1B) and in Anile et al. (2019). With respect to the methods reported in Anile et al. (2019), the 2018 survey was conducted from 30 May 2018 to 14 November 2018, with fewer cameras (n = 76 across seven line transects) and with a reduced trap-days effort (n = 1,985) due to the reduced availability of camera traps (Fig. 1B).

In the first photograph dated 26 May 2009 (Image
1A) this Wildcat was clearly identifiable by the absence of the typical black-tipped tail of the European Wildcat (Ragni & Possenti 1996); its tail showed only a clear white ring (Image 1B). In addition, the shape of the dorsal stripe aided to confirm its recapture. During the same survey, two additional photographs of this individual were obtained at two other camera stations. Collectively, three photographs at three neighbouring camera stations were recorded. During the camera trapping survey conducted in 2018, this individual Wildcat was recaptured on 10 June 2018 at one camera station (Image 1C), relatively near to where it was captured during the 2009 survey. The mean distance from the other camera stations where it was previously recorded was 960m. The time between the first and last photograph was 3,302 days (9.04 years). Hence, the likely minimum age of this individual at the time of recapture must have been at least 10 years.

Camera trapping has greatly increased our scientific knowledge on many cat species worldwide. Indeed, many central topics for the proper management of Felidae have been investigated, such as population density estimation (Anile et al. 2014), habitat selection (Lesmeister et al. 2015; Anile et al. 2019), population dynamics (Karanth et al. 2006; Sharma et al. 2014; Duangchantrasiri et al. 2015; Majumder et al. 2017), and
adult sex ratio (Anile & Devillard 2018). Furthermore, recent years have seen an increased collaboration among researchers for sharing camera trapping data, and hence the investigation of ecological patterns at larger scales, i.e., across study areas (Steenweg et al. 2017; Davis et al. 2018; Khwaja et al. 2019).

The Wildcat population dwelling on Mt. Etna has been extensively (n = 41 individuals from 2010–2018) screened for detecting hybridization with Domestic Cats Felis catus, but no evidence of hybridization has been detected in this population (Mattucci et al. 2013; Anile et al. 2014, 2019). Hence, we consider more likely that a matulation occurred at the end of the tail, which was also shorter than the normal size, ~30cm, that caused the loss of the black tip, rather than considering this anomaly in the typical Wildcat marking system pattern due to hybridization.

The Wildcat we recaptured after nine years was surely not a kitten at the time of the first capture, hence we think that 10 years is the minimum reasonable age estimation for this individual. This age estimate still lies at the lower range when compared to ages of captive Wildcats ranging from 12–16 years studied by Hartmann (2005).

Long-term camera trapping studies have been conducted on Tigers Panthera tigris and Ocelots Leopardus pardalis, however, the maximum ages attained were not reported (Karanth et al. 2006; Duangchantrasiri et al. 2015; Majumder et al. 2017; Satter et al. 2019). On the contrary, Harmsen et al. (2017) reported a maximum age of 14 and 13 years for male and female Jaguars Panthera onca, respectively. When comparing the maximum age we recorded with the few other longevity records of cat species from the wild (Hunter 2015), we note that our estimate is considerably high, but still within the range of those reported for the species, especially when considering the small body mass (3.7–4.9 kg; Johnson et al. 2017) of the European Wildcat.

The longevity of an individual European Wildcat might be influenced to some extent by local circumstances, e.g., absence of natural predators and widespread refuges as in our study area. In general, longevity is also shaped by ecological traits such as body mass (Healy et al. 2014), with larger species living longer than smaller ones. Long-term monitoring using camera traps can help understand patterns, which cannot be detected when using a small window in time, but this would require a more sustainable support from funding agencies as the costs involved with this kind of studies are certainly higher than surveys running over a shorter period.

References

Anile, S. & S. Devillard (2015). Study design and body mass influence RAs from camera trap studies: evidence from the Felidae. Animal Conservation 19(1): 35–45. https://doi.org/10.1111/acv.12214

Anile, S. & S. Devillard (2018). Camera-trapping provides insights into adult sex ratio variability in felids. Mammal Review 48(3): 168–179. https://doi.org/10.1111/mam.12120

Anile, S., B. Ragni, E. Randi, F. Mattucci & F. Rovero (2014). Wildcat population density on the Etna volcano, Italy: a comparison of density estimation methods. Journal of Zoology 293(4): 252–261. https://doi.org/10.1111/jzo.12141

Anile, S., C. Arrabbito, M.V. Mazzamuto, D. Scornavacca & B. Ragni (2012a). A non-invasive monitoring on European Wildcat (Felis silvestris silvestris) in Sicily using hair trapping and camera trapping: does scented lure work? Hystrix Italian Journal of Mammalogy 23(2): 45–50. https://doi.org/10.4404/hystrix-23.2-4657

Anile, S., C. Amico & B. Ragni (2012b). Population density estimation of the European Wildcat (Felis silvestris) in Sicily using camera trapping. Wildlife Biology in Practice 8(1): 1–12. https://doi.org/10.2461/wbp.2012.8.1

Anile, S., L. Bizzarri & B. Ragni (2009). Camera trapping the European Wildcat (Felis silvestris silvestris) in Sicily (southern Italy): preliminary results. Hystrix: Italian Journal of Mammalogy 20(1): 55–60. https://doi.org/10.4404/hystrix-20.1-4433

Anile, S., L. Bizzarri & B. Ragni (2010). Estimation of European Wildcat population size in Sicily (Italy) using camera trapping and capture-recapture analyses. Italian Journal of Zoology 77(2): 241–246. https://doi.org/10.1080/11250000903419731

Anile, S., S. Devillard, B. Ragni, F. Rovero, F. Mattucci & M. Lo Valvo (2019). Habitat fragmentation and anthropogenic factors affect Wildcat (Felis silvestris silvestris) occupancy and detectability on Mt. Etna. Wildlife Biology 2019(1): 1–13. https://doi.org/10.2981/wlb.00561

Brodie, J.F. (2009). Is research effort allocated efficiently for conservation? Felidae as a global case study. Biodiversity Conservation 18: 2927–2939. https://doi.org/10.1007/s10531-009-9617-3

Cutler, R.G. (1979). Evolution of longevity in ungulates and carnivores. Gerontology 25: 69–86.

Davis, C.L., L.N. Rich, Z.J. Farris, M.J. Kelly, M.S. Di Bittetti, Y. Di Blanco, S. Albanesi, M.S. Farhadinia, N. Gholikhani, S. Hamel, B.J. Harmsen, C. Wultsch, M.D. Kane, Q. Martins, A.J. Murphy, R. Steenweg, S. Sunarto, A. Taktehrani, K. Thapa, J.M. Tucker, J. Whittington, F.A. Widodo, N.G. Yoccoz & D.A.W. Miller (2018). Ecological correlates of the spatial co-occurrence of sympatric mammalian carnivores worldwide. Ecology Letters 21(9): 1401–1412. https://doi.org/10.1111/ele.13124

De Magalhaes, J.P. & J. Costa (2009). A database of vertebrate longevity records and their relation to other life-history traits. Journal of Evolutionary Biology 22: 1770–1774. https://doi.org/10.1111/j.1420-9101.2009.01783.x

Duangchantrasiri, S., M. Umponjan, S. Simcharoen, A. Pattanavibool, S. Chaiwattana, S. Maneerat, N.S. Kumar, D. Devcharan Jathanna, A. Srivaths and K.U. Karanth (2015). Dynamics of a low-density Tiger population in Southeast Asia in the context of improved law enforcement. Biological Conservation 30(3): 639–648. https://doi.org/10.1016/j.biocon.12655

Gonzalez-Lagos, C., D. Sol & S.M. Reader (2010). Large-brained mammals live longer. Journal of Evolutionary Biology 23: 1064–1074. https://doi.org/10.1111/j.1420-9101.2010.01976.x

Harmen, B.J., R.J. Foster, E. Sanchez, C.E. Gutierrez-Gonzalez, S.C. Silver, L.E.T. Ostro, M.J. Kelly, E. Kay & H. Quigley (2017). Long term monitoring of Jaguars in the Cockskymb Basin Wildlife Sanctuary, Belize. Implications for camera trap studies of carnivores. PLoS ONE 12(6): e0179505. https://doi.org/10.1371/journal.pone.0179505

Hartmann, M. (2005). Reproduction and behaviour of European Wildcats in species-specific enclosures, 13pp. In: Herrmann, M.
Macdonald, D.W. & A.J. Loveridge (eds.). Symposium: Biology and conservation of the European Wildcat (Felis silvestris silvestris), Germany, January 21st–23rd 2005. Ökolog, Parlow, Germany, 44p.

Healy, K., T. Guillerme, S. Finlay, A. Kane, S.B.A. Kelly, D. McClean, D.J. Kelly, I. Donohue, A.L. Jackson & N. Cooper (2014). Ecology and mode-of-life explain lifespan variation in birds and mammals. Proceedings of the Royal Society B 281: 20140298. http://doi.org/10.1098/rspb.2014.0298

Hunter, L. (Ed.) (2015). Wild Cats of the World. Bloomsbury, London, New York, 240pp.

Johnson, P.J., M.J. Noonan, A.C. Kitchener, L.A. Harrington, C. Newman & D.W. Macdonald (2017). Rensing cats and dogs: feeding ecology and fecundity trends explain variation in the allometry of sexual size dimorphism. Royal Society Open Science 4(6): 170453. http://doi.org/10.1098/rsos.170453

Kamler, J.F. & D.W. Macdonald (2006). Longevity of a wild Bat-eared Fox. South African Journal of Wildlife Research 36(2): 199–200.

Karanth, K.U., J.D. Nichols, N.S. Kumar & J.E. Hines (2006). Assessing Tiger population dynamics using photographic capture-recapture sampling. Ecology 87(11): 2925–2937. http://doi.org/10.1890/0012-9658(2006)87[2925:ATPDUP]2.0.CO.2

Khwaja, H., C. Buchan, O.R. Wearn, L. Bahaa-el-din, D. Bantlin, H. Lesmeister, D.B., C.K. Nielsen, E.M. Schauber & E.C. Hellgreen (2016). Genetic structure of Wildcat (Felis silvestris) populations in Italy. Ecology and Evolution 3: 2443–2458. https://doi.org/10.1002/ece3.569

Ragni, B. & M. Possenti (1996). Variability of coat-colour and markings system in Felis silvestris. Italian Journal of Zoology 63: 285–292.

Ricklefs, R.E. & C.D. Cadena (2007). Lifespan is unrelated to investment in reproduction in populations of mammals and birds in captivity. Ecology Letters 10: 867-875. https://doi.org/10.1111/j.1465-0248.2007.01085.x

Satter, C.B., B.C. Augustine, B.J. Hammsen, R.J. Foster, E.E. Sanchez, C. Wulitsch, M. Davis & M.J. Kelly (2019). Long-term monitoring of Ocelot densities in Belize. Journal of Wildlife Management 83(2): 283–294. https://doi.org/10.1002/jwmg.21598

Sharma, K., R. Bayraksmitsh, L. Tumursukh, O. Johansons, P. Sevger, T. McCarthy & C. Mishra (2014). Vigorous dynamics underlie a stable population of the endangered Snow Leopard Panthera uncia in Tost mountains, south Gobi, Mongolia. PLoS ONE 9(7): e101319. https://doi.org/10.1371/journal.pone.0101319

Smith, J.E., K.D.S. Lehmann, T.M. Montgomery, E.D. Strauss & K.E. Holekamp (2017). Insights from long-term field studies of mammalian carnivores. Journal of Mammalogy 98(3): 631–641. https://doi.org/10.1093/jmammal/gvw194

Steenweg, R., M. Hebblewhite, R. Kays, J. Ahumada, J.T. Fisher, C. Burton, S.E. Townsend, C. Carbone, J.M. Rowcliffe, J. Whittington, J. Brodie, J.A. Royle, A. Switalski, A.P. Clevenger, N. Heim & L.N. Rich (2017). Scaling-up camera traps: monitoring the planet’s biodiversity with networks of remote sensors. Frontiers in Ecology and Environment 15(1): 26–34. https://doi.org/10.1002/fee.1448

Tidiere, M., J.M. Gaillard, V. Berger, D.W.H. Muller, L.B. Lackey, O. Burton, S.E. Townsend, C. Carbone, J.M. Rowcliffe, J. Whittington, J. Brodie, J.A. Royle, A. Switalski, A.P. Clevenger, N. Heim & L.N. Rich (2017). Scaling-up camera traps: monitoring the planet’s biodiversity with networks of remote sensors. Frontiers in Ecology and Environment 15(1): 26–34. https://doi.org/10.1002/fee.1448

Tidiere, M., J.M. Gaillard, V. Berger, D.W.H. Muller, L.B. Lackey, O. Gimenez, M. Clauss & J.F. Lemaitre (2016). Comparative analyses of longevity and senescence reveal variable survival benefits of living in zoos across mammals. Scientific Reports 6: 3631. https://doi.org/10.1038/srep36312

UNESCO World Heritage Center (2019). United Nations World Heritage List: Mount Etna. Electronic version at https://whc.unesco.org/en/list/1427 accessed on 6 January 2020.

Wilkinson, G.S. & J.M. South (2002). Life history, ecology and longevity in bats. Aging Cell 1: 124–131

Majumder, A., Q. Qureshi, K. Sankar & A. Kumar (2017). Long-term monitoring of a Bengal Tiger (Panthera tigris tigris) population in a human-dominated landscape of central India. European Journal of Wildlife Research 63(1): 1–11. https://doi.org/10.1007/s10344-016-1070-5

Mattucci, F. R. Oliveira, L. Bizzarri, F. Vercillo, S. Anile, B. Ragni, L. Lapini, A. Sforzi, P.C. Alves, L.A. Lyons & E. Randi (2013). Genetic structure of Wildcat (Felis silvestris) populations in Italy. Ecology and Evolution 3: 2443–2458. https://doi.org/10.1002/ece3.569