Alternate Mid-Point Terrestrial Acidification Characterization Factors Considering Acid Strength

Anders S. G. Andrae*

Huawei Technologies Sweden AB, Skalholtsgatan 9, 16494 Kista, Sweden

Abstract: Current life cycle mid-point impact assessment practice uses several different mid-point indicators for terrestrial acidification (TA). More than a few methods use a mid-point category indicator of mole proton equivalents. The present research shows that the current mid-point TA indicators—the proton equivalent methods—are not precise as the acid strength is not considered. First, the inventory result for one million tonnes solid steel manufacturing output is calculated based on literature. Then the acidifying compounds—which can form acids—are identified. Then the following are proposed: formed acids, the number of protons formed, mole protons per gram acidifying compound and eventually the product of the acidity constant of acids formed and mole protons per gram acidifying compound. After, three different mid-point TA indicators are multiplied with the inventory result: i) the proton equivalents method excluding carbon dioxide, ii) the proton equivalents method including carbon dioxide, and finally iii) the proton equivalents/acidity constant method including carbon dioxide. The results show that the present acid strength based mid-point indicator for TA improves the understanding and can act as a sensitivity check of state-of-the-art mid-point TA results. Carbon dioxide emitted to air is insignificantly contributing to mid-point TA indicator results which are based on proton release and acid strength. Hydrogen chloride emitted to air is one of the main contributors to mid-point TA indicator results which are based on proton release and acid strength.

By using the acid strength as basis for the TA mid-point indicator, a more universal method for comparing the TA potential for gases is achieved. The next step is to clarify how acidity constant based mid-point TA indicators work with normalization of acidification such as distance to target methods and environmental cost accounting methods.

Keywords: Acids, Acidity constant, Hydrogen chloride, Hydrogen fluoride, Life cycle mid-point impact assessment, Mid-point indicator, Soil acidification.

1. INTRODUCTION

Life cycle assessment (LCA) is a standardized methodological framework for estimating and assessing some of the possible environmental and health impacts attributable to the life cycle of a product or technology, such as acidification, eutrophication, and acute and chronic health effects [1]. LCA offers a way to do model based estimations of environmental impacts. LCA is especially useful when one wants to estimate the probability of the environmental loadings of the next technology being lower than state-of-the-art. The mathematical framework for the linear attributional LCA model—until the normalization of the mid-point indicators—is well-known [2, 3], but is repeated from [3] for the sake of clarity in Eqs. 1 to 6:

\[
g = BA^{-1}f
\]

(1)

\[
g = \begin{pmatrix} g_1 \\ \vdots \\ g_i \\ \vdots \\ g_n \end{pmatrix} \quad \text{for } i = 1,2,\ldots,n
\]

(2)

\[
l_{i(j)} = g^T_i k_{i(j)} \quad \text{for } i = 1,2,\ldots,n
\]

(3)

\[
l_j = \sum_{i=1}^{n} l_{i(j)} \quad \text{for } j = 1,2,\ldots,q
\]

(4)

\[
l_j(w) = \frac{l_j}{w_j}
\]

(5)

\[
EB = \sum_{j=1}^{q} l_j(w)
\]

(6)

where

\[g = \text{vector of environmental loadings, e.g. shown in Table 5.}\]

\[B = \text{flow of environmental loadings, e.g. hydrogen fluoride in Table 2.}\]

\[A = \text{flow of products and materials, e.g. pig iron in Table 3.}\]

\[f = \text{demand vector, e.g. one million tonnes of solid steel in Table 5.}\]

\[f_u = \text{functional unit of } f\]

\[i = \text{environmental loading.}\]

\[i = \text{environmental impact category.}\]
Acidification is known as natural and anthropogenic acid deposition in rivers, lakes, soils, and oceans and as it could be an environmental problem, it is one of the most prominent mid-point impact categories in LCMPIA. Acidification is a mid-point category and base saturation in soil - expressed as molve proton equivalents - is a mid-point category indicator of Acidification. Very often so called sulfur dioxide equivalents [2] are used in mid-point TA instead of proton equivalents, e.g. in Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) which was developed to assist in impact assessment for sustainability metrics, LCA, industrial ecology, process design, and pollution prevention [5]. Clearly such sulfur dioxide equivalents have been developed from proton equivalents by normalizing all values to sulfur dioxide.

So far TA is the most common form of acidification included in LCA, however recently oceanic acidification was proposed [6]. The actual TA - the end-point TA - is generally caused by nitrogen oxides and sulfur dioxide [7]. However rainfall, root respiration, decomposition of organic matter, fertilizer use [8-10], and oxidative weathering also contribute to TA via free protons. The mechanism for TA in soils is that increased concentrations of protons and strong acid anions (e.g. Cl and NO\(_3\)) lead to increased rates of leaching of base exchangeable cations – such as Ca\(^{2+}\), Mg\(^{2+}\), K\(^{+}\) or Na\(^{+}\) - and to the associated acidification of soils. This causes the soil pH to fall below 7 which in turn increases the percentage of toxic - acid exchangeable cations - Al\(^{3+}\) and protons relative to other cations [11]. Moreover, it is well-known that carbon dioxide cause different sorts of acidification [12]. For example carbon dioxide has the ability to cause soil acidification via respiration of plant roots [13] and the gas should be included in the development of the next generation of mid-point TA methods due to the relatively large amounts emitted. Andrae [14] rudimentarily attempted to address the problem for aquatic acidification, but failing to recognize the acidity constants, proposed that carbon dioxide would dominate mid-point aquatic acidification. Current mid-point TA practices in LCMIA only include a very limited view of the soil acidification mechanism, namely the number of protons that can theoretically be released when an acidifying compound is hydrolyzed or oxidized. On this basis it is obviously possible to improve the current proton based mid-point TA indicator. This research will prove that the current methods are incorrect compared to the present proposal of introducing the acid strength - of the acid formed - into the model. Hydrogen fluoride is the strongest evidence of the limitation of current practice.

The acid dissociation constant, K\(_a\), (also known as acidity constant, or acid-ionization constant) is a quantitative dimensionless measure of the strength of an acid in solution – by which \(k_{i(j)}\) in equation 3 can be enhanced.

The new method for assessing midpoint TA is applied to a specific system of steel production processes in Italy [15].
The hypotheses for steel manufacturing described in literature are:

- Carbon dioxide is – if included - the main contributor to mid-point TA indicator results which are based solely on theoretical proton release.
- Hydrogen chloride emitted to air is insignificantly contributing to mid-point TA indicator results which are based solely on theoretical proton release.
- Carbon dioxide emitted to air is insignificantly contributing to mid-point TA indicator results which are based on proton release and acid strength.
- Hydrogen chloride emitted to air is the main contributor to mid-point TA indicator results which are based on proton release and acid strength.
- Adding the acid strength can improve those current TA mid-point indicators which are based on proton release.

2. MATERIALS AND METHODOLOGY

In this section it is explained which methods are used to obtain the results shown in section 3.

2.1. The Inventory of Acidifying Compounds from Steel Manufacturing

Solely based on Renzulli et al. [15] the following Tables 1-5 are derived. However, all input resources, emissions to water and soil, as well as and waste in

Table 1: Inventory (A) and (B) of Acidifying Compounds from Coke Production

Output Products	Allocation
Tar	13576
Ammonium Sulphide	5797
Purified coke gas	107002
Coke+coke dust	439583
Emissions to air	
Carbon dioxide	310133
Carbon monoxide	20
Nitrogen dioxide	634
Sulfur dioxide	818
Hydrogen cyanide	1

Table 1 shows the outputs from the coke ovens for the production of coke necessary for the production of one million tonnes of Steel.

Table 2 shows the input and outputs from the sintering furnace for the production of the sintered ore necessary for the production of one million tonnes of steel.

Table 2: Inventory (A) and (B) of Acidifying Compounds from Sinter Manufacturing

Output Products	Allocation
Sinter	1162792
Input Materials/fuels	
Coke+coke dust	55262
Emissions to air	
Carbon dioxide	245724
Carbon monoxide	344
Nitrogen dioxide	1040
Sulfur dioxide	1617
Zinc	2
Hydrogen chloride	1
Hydrogen fluoride	54

Table 3 shows the outputs from the blast furnace for the production the pig iron required for the production of one million tonnes of steel.

Table 3: Inventory (A) and (B) of Acidifying Compounds from Pig iron Manufacturing

Output Products	Allocation
Pig iron	991085
Electricity (turbo expanded)	18529
Input Materials/fuels	
BF slag	339444
Purified BF gas	1463753
Emissions to air	
Carbon dioxide	551845
Carbon monoxide	32
Nitrogen dioxide	599
Sulfur dioxide	1320
Table 4 shows output from the Blast Oxygen Furnace for the production of one million tonnes of steel.

Table 4: Inventory (\(\alpha\)) and (\(\beta\)) of Acidifying Compounds from Solid Steel Slabs Manufacturing

Output Products	Allocation
Solid steel	1000000 tonnes 100

Emissions to air

Substance	Unit	Total
Carbon dioxide	tonnes	50873
Carbon monoxide	tonnes	80
Hydrogen fluoride	tonnes	1

Table 5 shows the inventory result (\(\varphi\)) when Tables 1 to 4 are linked to produce (\(\gamma\)) one million tonnes of solid steel slabs.

- Only direct emissions are included in the analysis, i.e. one ton hydrogen chloride emitted to air from the sintering furnace.
- No secondary life cycle inventory databases are used to estimate the emissions from input of raw materials and electricity.
- No allocations are done of the environmental loadings between the outputs from the coke oven and the blast furnace in Tables 1 and 3, respectively. That is 100% of the environmental loadings are allocated to “coke+coke dust” and Pig iron, respectively.

Table 5: Inventory Result (\(\varphi\)) Summary for (\(\gamma\)) one Million Tonnes solid Steel Slabs Manufacturing Output

Substance (Acidifying Compound, C), Emission to air (\(\varphi\))	Compartment	Unit	Total
Carbon dioxide	Air	tonnes	887430
Carbon monoxide	Air	tonnes	458
Hydrogen chloride	Air	tonnes	1
Hydrogen cyanide	Air	tonnes	0.125
Hydrogen fluoride	Air	tonnes	55
Nitrogen dioxide	Air	tonnes	1718
Sulfur dioxide	Air	tonnes	3039
Output (\(\gamma\))			1000000

These assumptions mainly explain why the \(I_j\) results in Table 2 in [15] are much different than in the present

Table 6: Acids formed, Protons formed, Molar Masses, Acidity Constants of Included Acidifying Compounds

Acidifying compound (C)	Acid formed (D) via hydrolysis or oxidation	Protons formed	Molar mass of C (g/mole)	mmol protons/g C, \(k_{i(j)}\)	Acidity constants (K_a of D)	\([mmol protons/g C] \times [K_a of D] \times k_{i(j)}\) (new characterization factors)
Carbon dioxide	\(\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3\)	2	44	45.45	4.40\times10^{-7}	2.00\times10^{-5}
Hydrogen chloride	\(\text{HCl} + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{Cl}^-\)	1	36.46	27.43	1.30\times10^{-6}	3.57\times10^{-7}
Hydrogen cyanide	\(2 \text{HCN} + 6 \text{H}_2\text{O} \rightarrow 2 \text{CH}_4 + 2 \text{NH}_3 + 3 \text{O}_2\)	1	27.02	37.01	2.4\times10^{-1}	8.88\times10^{-3}
Hydrogen fluoride	\(\text{HF} + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{F}^-\)	1	20	50.00	6.60\times10^{-5}	3.30\times10^{-2}
Nitrogen dioxide	\(3 \text{NO}_2 + \text{H}_2\text{O} \rightarrow 2 \text{HNO}_3 + \text{NO}\)	1	46.055	21.71	2.4\times10^{-1}	5.21\times10^{-3}
Sulfur dioxide	\(\text{SO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_3\) or \(2\text{SO}_2 + \text{O}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{H}_2\text{SO}_4\)	2	64.06	31.22	1.3\times10^{-2} (H_2SO_3) and 4.06\times10^{-1} (H_2SO_3) or 3.12\times10^{-2} (H_2SO_4)	4.06\times10^{-1} (H_2SO_3) or 3.12\times10^{-2} (H_2SO_4)
article, e.g. Acidification 1.34×10^7 mol protons in [15] and here the comparable 1.35×10^6 (Table 8 column 2).

2.2 Rationale for Proton Equivalents/Acidity Constant Method

Table 6 shows the major assumptions for the mid-point TA parameters used in the present research.

Table 7: pKa of Acids Formed

Acidiﬁying compound (C)	Acid formed (D) via hydrolysis or oxidation	Acidity constants (pK_a) of D	[mmol protons/g C] × [pK_a of D], k_i(j)
Carbon dioxide	H_2CO_3	6.35	289
Hydrogen chloride	H_2O^+ + Cl^-	-6.11	-167
Hydrogen cyanide	HNO_3	-1.38	-51
Hydrogen fluoride	H_2O^+ + F^-	3.18	159
Nitrogen dioxide	HNO_2	-1.38	-30
Sulfur dioxide	H_2SO_3	1.88	59
Sulfur dioxide	H_2SO_4	-3	-93.7

The acidity constant (pK_a) of H_2CO_3 might be 3.76 at 25 °C [13].

The most similar method - to the present proton equivalents method excluding carbon dioxide - is BEES is a software tool developed by the National Institute of Standards and Technology in the United States [16]. BEES characterization factors k_i(j) are often included in popular LCA software. BEES expresses column five in Table 6 as "grams of hydrogen with the same potential acidifying effect as one gram of inventory flow".

3. RESULTS

Here follows a concise and precise description of the results. Tables 8 and 9 show a summary of the different mid-point TA indicators when (Tables 6 and 7) values are multiplied with the inventory result (Table 5).

Table 8 (columns 2 and 3) shows the awkward conclusion that hydrogen fluoride is more contributing to mid-point TA than hydrogen chloride. It also shows (columns 3 and 5) that if carbon dioxide is treated as hydrogen fluoride, it will dominate the mid-point TA results for steel manufacturing. The proposed ideal method (K_a normalization in column 4) solves the problems in a logical way. In the discussion it will be further elaborated what is the meaning of the results.

Tables 8 and 9 show that for the proton equivalents method excluding carbon dioxide (column 2) the trend is very similar to existing mid-point TA indicator results in which sulfur dioxide and nitrogen dioxide – with few exceptions – always dominate regardless of whether proton equivalents or sulfur dioxide equivalents is used.

Table 8: Absolute Results per f_i for new Impact Assessment Methods for Terrestrial Acidification Applied to Solid Steel Manufacturing

Acidifying compound (C)	The proton equivalents method excluding carbon dioxide, mmol proton equivalents	The proton equivalents method including carbon dioxide, mmol proton equivalents	The proton equivalents/acidity constant method (K_a) including carbon dioxide, mmol proton equivalents	The proton equivalents/acidity constant method (pK_a) including carbon dioxide, mmol proton equivalents
Carbon dioxide	0	4.03×10^{13}	1.77×10^7	2.56×10^{14}
Hydrogen chloride	2.74×10^7	4.65×10^7	3.57×10^{13}	-5.14×10^{10}
Hydrogen cyanide	4.65×10^6	4.65×10^6	1.12×10^0	-1.68×10^0
Hydrogen fluoride	2.75×10^9	2.75×10^9	1.82×10^8	-6.42×10^8
Nitrogen dioxide	3.73×10^{10}	3.73×10^{10}	8.95×10^11	8.59×10^3
Sulfur dioxide (H_2SO_3)	9.49×10^{10}	9.49×10^{10}	1.23×10^9	1.79×10^{11}
Sulfur dioxide (H_2SO_4)	9.49×10^{10}	9.49×10^{10}	9.49×10^13	-2.85×10^{11}
TOTAL (with (H_2SO_3))	1.35×10^{11}	4.05×10^{13}	3.66×10^{13}	2.57×10^{14}
TOTAL (with (H_2SO_4))	1.35×10^{11}	4.05×10^{13}	1.31×10^{14}	2.56×10^{14}
DISCUSSION

One of the most striking examples which shows the unrealistic rating of acidifying substances - in every current mid-point TA method in LCMPNA - is hydrogen fluoride (whenever included such as in BEES and TRACI methodologies). As shown in Table 6, 50 mmol protons are released per gram hydrogen fluoride released into soils, making hydrogen fluoride the strongest acidifying compound of those released in the steel manufacturing processes studied [15] in the present research. The effect of hydrogen fluoride – 55 tonnes - also explains why the present baseline result (Table 8 column 2) is higher than Table 2 in [15] despite that the scope is much smaller than analyzed by Renzulli et al. [15]. Evidently, the hydrogen fluoride anion is very weak compared to e.g. the hydrogen chloride anion, nonetheless this is neglected in current mid-point TA methods.

The hydrogen carbonate anion is also very weak which logically will make carbon dioxide an insignificant contributor to mid-point TA. End-point TA is obviously totally different and experiments - as well as measurements - have to be conducted to reveal the real potential [13]. Mid-point TA is just a relative scoring which is used nonchalantly by LCA practitioners.

Using K_a - which is unit less - as weighting factor for mid-point TA K_{ij} gives a relative scale of positive numbers.

Using pK_a numbers ($pK_a = -\log(K_a)$) - instead of K_a - would render negative pK_a numbers for $K_a>0$, such as -6.11 for hydrogen chloride, and positive pK_a numbers for $K_a<0$, such as 6.35 for dihydrogen carbonate (Table 7). The logarithmization gives numerical values (mmol protons per gram acidifying compound released) close to current midpoint TA proton based methods. However, pK_a based methods would conclude that carbon dioxide is the only important acidifying compound in TA (Table 9). This is a similar conclusion as the one that is obtained when carbon dioxide is included in current proton release based methods.

Anyway, the present mid-point TA indicator results - which are based on theoretical proton release and acid strength - are not suitable for end-point normalization as the numbers possibly would scale acidification much higher than its actual contribution to the overall environmental cost. Apart from the situation when sulfur dioxide mainly forms H_2SO_4 instead of H_2SO_3, hydrogen chloride is greatly emphasized with the present proton equivalents/acidity constant method (K_a) for mid-points. The common knowledge is that hydrogen chloride is somewhat important for mid-point TA while not being at the significance of sulfur dioxide and nitrogen oxides, for most process systems.

As a sensitivity check for carbon dioxide, K_a 1.73×10\(^{-4}\) (pKa 3.76) [13] is used. This leads to 7×10\(^{9}\) mmol proton equivalents for the preferred proton equivalents/acidity constant method (K_a) – instead of the baseline 1.77×10\(^{7}\) in Table 8. The score for carbon dioxide becomes almost six times higher than for sulfur dioxide (forming H_2SO_3), but still cannot change any conclusions being just 0.02% of the total score 3.66×10\(^{13}\) (Table 8). When sulfur dioxide instead forms H_2SO_4, the share of 7×10\(^{9}\) mmol proton equivalents for carbon dioxide will be just 0.005% of 1.32×10\(^{14}\) (Table 8).

Acidifying compound (C)	The proton equivalents method excluding carbon dioxide, Share of total result, %	The proton equivalents method including carbon dioxide, Share of total result, %	The proton equivalents/acidity constant method (K_a) including carbon dioxide, Share of total result, %, with H_2SO_3 and H_2SO_4 as D for SO2	The proton equivalents/acidity constant method (pK_a) including carbon dioxide, Share of total result, %
Carbon dioxide	0	99.7	$4.85\times10^{-5} / 1.35\times10^{-5}$	99.9
Hydrogen chloride	0.0203	6.78×10\(^5\)	97.5 / 27.1	-6.54×10\(^5\)
Hydrogen cyanide	0.00345	1.15×10\(^5\)	3.05×10\(^{-4}\) / 8.49×10\(^{-5}\)	-2.5×10\(^6\)
Hydrogen fluoride	2.04	0.0068	4.96×10\(^{-4}\) / 1.38×10\(^{-5}\)	0.00341
Nitrogen dioxide	27.6	0.0922	2.45 / 0.68	-0.02
Sulfur dioxide (H_2SO_3)	70.3	0.235	3.37×10\(^3\)	0.0698
Sulfur dioxide (H_2SO_4)	70.3	0.235	72.2	-0.111
%	100	100	100	100
Commonly overall mid-point indicators \((I_j)\) are normalized in order to arrive at a single indicator such as \(EB\). It is familiar that sulfur dioxide equivalents can be normalized.

Can \(K_{IR}\) based methods for mid-point TA interplay with 'distance to target' weighting methods? If not, they would be rather limited. Lin et al. [17] proposed weighting of several different \(I_j\) including acidification expressed in sulfur dioxide equivalents for nitrogen oxides and sulfur dioxide. It would be straight-forward to apply the proposed methods to country level if used consistently.

CONCLUSIONS

The conclusions for steel manufacturing are:

- Carbon dioxide is – if included - the main contributor to mid-point TA indicator results which are based solely on theoretical proton release.

- Hydrogen chloride emitted to air is insignificantly contributing to mid-point TA indicator results which are based solely on theoretical proton release.

- Carbon dioxide emitted to air is insignificantly contributing to mid-point TA indicator results which are based on proton release and acid strength.

- Hydrogen chloride emitted to air is one of the main contributors to mid-point TA indicator results which are based on proton release and acid strength.

- The relative importance of hydrogen chloride in mid-point TA indicator results which are based on proton release and acid strength is determined by the shares of the acids \(H_2SO_3\) and \(H_2SO_4\) resulting from sulfur dioxide emissions.

- Using the acid strength with the characterization factors can improve those current mid-point TA indicators which are based on proton release.

The present research has proven that there is a precision problem with current mid-point indicators for TA which are solely based on theoretical proton release. It is concluded that hydrogen chloride emitted to air is heavily underestimated in mid-point indicators for TA for steel manufacturing.

NEXT STEPS

The relative results might look very different for other process systems that the one analyzed in the present research. For example a process system absent of hydrogen chloride emissions will have different conclusions than the present system. The next step is to clarify how acidity constant based mid-point TA indicators work with normalization of acidification such as distance to target methods. It is also worthwhile to hypothesize on whether the present mid-point TA method has any implications for end-point TA applied by environmental cost methods. Moreover, it is not evident why carbon dioxide soil acidification is not yet included in mid-point and end-point impact assessment methods.

ACKNOWLEDGMENTS

Anonymous reviewers are greatly appreciated for comments, which improved this paper.

CONFLICTS OF INTEREST

The author declares no conflict of interest. The views of this paper is the authors own and not those of the company.

REFERENCES

[1] Andrae ASG. Global life cycle impact assessments of material shifts: the example of a lead-free electronics industry, Springer-Verlag London Limited, London, United Kingdom, 2010; pp 24.

[2] Huijbregts MA, Schöpp, W, Verkuijlen, E, Heijungs R, Reijnders L. Spatially explicit characterization of acidifying and eutrophying air pollution in life-cycle assessment. J Ind Ecol 2000; 4(3): 75-92. https://doi.org/10.1162/108819800300106393

[3] Takahashi K, Dobibiga B, Takeda T, Furuyama T, Fujita T. Assessing different recycling options for plastic wastes from discarded mobile phones in the context of LCA. Res Process 2007; 54(1): 29-34. https://doi.org/10.4144/rpsj.54.29

[4] Andrae ASG. Comparative screening life cycle impact assessment of renewable and fossil power supply for a radio base station site. Int J Green Technol 2015; 1: 258-67.

[5] Ryberg M, Vieira MD, Zgola M, Bare J, Rosenbaum RK. Updated US and Canadian normalization factors for TRACI 2.1. Clean Technol Environ Policy 2014; 16: 329-39. https://doi.org/10.1007/s10098-013-0629-z

[6] Bach V, Möller F, Finogenova N, Emara Y, Finkbeiner M. Characterization model to assess ocean acidification within life cycle assessment. Int J Life Cycle Assess 2016; 21(10): 1463-72. https://doi.org/10.1007/s11367-016-1121-x

[7] Roy PO, Azevedo LB, Margini M, van Zelm R, Deschênes L, Huijbregts MA. Characterization factors for terrestrial acidification at the global scale: A systematic analysis of spatial variability and uncertainty. Sci Total Environ 2014; 500-501: 270-76. https://doi.org/10.1016/j.scitotenv.2014.08.099
[8] Malhi SS, Harapiak JT, Nyborg M, Gill KS. 2000. Effects of long-term applications of various nitrogen sources on chemical soil properties and composition of bromegrass hay. J Plant Nut 2000; 23(7): 903-12. https://doi.org/10.1080/01904160009382069

[9] Chien SH, Collamer DJ, Gearhart MM. The effect of different ammonical nitrogen sources on soil acidification. Soil Sci 2008; 173(8): 544-51. https://doi.org/10.1097/SS.0b013e31817d9d17

[10] Schroder JL, Zhang H, Girma K, Raun WR, Penn CJ, Payton ME. Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Sci Soc Am J 2011; 75(3): 957-64. https://doi.org/10.2136/sssaj2010.0187

[11] Driscoll CT, Lawrence GB, Bulger AJ, Butler TJ, Cronan CS, Edgar C, Lambert KF, Likens GE, Stoddard JL, Weathers KC. Acidic Deposition in the Northeastern United States: Sources and Inputs, Ecosystem Effects, and Management Strategies: The effects of acidic deposition in the northeastern United States include the acidification of soil and water, which stresses terrestrial and aquatic biota. BioScience 2001; 51 (3): 180-198. https://doi.org/10.1641/0006-3568(2001)051[0180:ADINTU]2.0.CO;2

[12] Fistarol GO, Farias M, Salomon PS. Viability of using flue gases as carbon source for microalgae cultivation. Int J Green Technol 2016; 2: 13-19. https://doi.org/10.30634/2414-2077.2016.02.2

[13] Oh NH, Richter Jr DD. Soil acidification induced by elevated atmospheric CO2. Glob Change Biol 2004; 10(11): 1936-46. https://doi.org/10.1111/j.1365-2486.2004.00864.x

[14] Andrae ASG. The effect of revised characterization indices for N2O and CO2 in life cycle assessment of optical fiber networks-The case of ozone depletion and aquatic acidification. J Green Eng 2012; 3: 12-32.

[15] Renzulli PA, Notarnicola B, Tassielli G, Arcese G, Di Capua R. Life cycle assessment of steel produced in an Italian integrated steel mill. Sustainability 2016; 8: 719. https://doi.org/10.3390/su8080719

[16] Lippiatt BC. BEES 2.0 Building for Environmental and Economic Sustainability: Technical Manual and User Guide (No. NIST Interagency/Internal Report (NISTIR)-6520). 2000; pp. 12-13.

[17] Lin M, Zhang S, Chen Y. Distance-to-target weighting in life cycle impact assessment based on Chinese Environmental Policy for the Period 1995-2005. Int J Life Cycle Assess 2005; 10(6): 393-98. https://doi.org/10.1065/lca2004.10.185

Received on 13-12-2018 Accepted on 14-1-2019 Published on 26-1-2019

DOI: http://dx.doi.org/10.30634/2414-2077.2019.05.01

© 2019 Anders S. G. Andrae; International Journal of Green Technology. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.