Mass Spectrum of Three-Pion System in Kaluza-Klein Picture

A.A. Arkhipov

State Research Center “Institute for High Energy Physics”
142280 Protvino, Moscow Region, Russia

Abstract

In this note we present additional arguments in favour of Kaluza and Klein picture of the world. In fact, we show that formula (1) provided by Kaluza-Klein approach with the fundamental scale early calculated [1] gives an excellent description for the mass spectrum of three-pion system.

In our previous papers [1, 2] we have presented the arguments in favour of that the Kaluza-Klein picture of the world has been been observed in the experiments at very low energies where the nucleon-nucleon dynamics has been studied. In particular we have found that geniusly simple formula for KK excitations provided by Kaluza-Klein approach gives an excellent description for the mass spectrum of two-nucleon system. In article [3] we have presented additional arguments in favour of Kaluza and Klein picture of the world. In fact, we have shown that simple formula provided by Kaluza-Klein approach with the fundamental scale early calculated [1] gives an excellent description for the mass spectrum of two-pion system. Surely, this was quite an event and, certainly, this very nice fact encouraged us to continue the study of the other hadronic systems in this respect.

Taking this line we have performed an analysis of experimental data on mass spectrum of the resonance states of three-pion system and compared them with calculated values provided by Kaluza-Klein scenario. In this note we present the results of this analysis.

As in the previous cases let us build the Kaluza-Klein tower of KK excitations for three-pion system by the formula

\[M_{\pi^1\pi^2\pi^3} = \sqrt{m_{\pi^1}^2 + \frac{n_1^2}{R^2}} + \sqrt{m_{\pi^2}^2 + \frac{n_2^2}{R^2}} + \sqrt{m_{\pi^3}^2 + \frac{n_3^2}{R^2}}, \quad (n = 1, 2, 3, \ldots), \]

(1)

where \(\pi^i (i = 0, +, -) = \pi^0, \pi^+, \pi^- \) and \(R \) is the same fundamental scale calculated early from the analysis of nucleon-nucleon dynamics at low energies [1, 2]

\[\frac{1}{R} = 41.481 \text{ MeV} \quad \text{or} \quad R = 24.1 \text{ GeV}^{-1} = 4.75 \times 10^{-13} \text{ cm}. \]

(2)

Kaluza-Klein tower such built is shown in Table 1 where the comparison with experimentally observed mass spectrum of three-pion system is also presented.
Table 1: Kaluza-Klein tower of KK excitations of three-pion system and experimental data.

n	$M^{3\pi''}_n$ MeV	$M^{\pi\pm2\pi''}_n$ MeV	$M^{\pi\pm2\pi}_n$ MeV	$M^{3\pi\pm}_n$ MeV	$M^{3\pi}_{exp}$ MeV
1	423.62	428.02	432.42	436.81	\(\eta(0^{-+})[547]\)
2	475.30	479.23	483.17	487.10	
3	550.77	554.17	557.57	560.98	\(\eta'(0^{-+})[958]\)
4	641.68	644.60	647.53	650.46	
5	742.38	744.91	747.44	749.98	
6	849.40	851.61	853.83	856.05	
7	960.62	962.58	964.55	966.51	
8	1074.75	1076.51	1078.26	1080.02	
9	1190.95	1192.53	1194.12	1195.70	1194 ± 14
10	1308.66	1310.10	1311.55	1312.99	1311.3±1.6
11	1427.51	1428.84	1430.16	1431.49	1419 ± 31
12	1547.25	1548.47	1549.69	1550.91	
13	1667.68	1668.81	1669.94	1671.08	1667 ± 4
14	1788.65	1789.71	1790.76	1791.82	1801 ± 13
15	1910.07	1911.06	1912.05	1913.04	
16	2031.86	2032.79	2033.72	2034.65	2030 ± 50
17	2153.95	2154.83	2155.70	2156.58	2090 ± 30
18	2276.29	2277.12	2277.95	2278.78	
19	2398.85	2399.64	2400.43	2401.22	
20	2521.69	2522.35	2523.10	2523.85	
21	2644.50	2645.22	2645.93	2646.65	
22	2767.54	2768.23	2768.91	2769.59	
23	2890.71	2891.36	2892.02	2892.67	
24	3013.97	3014.60	3015.23	3015.86	
25	3137.33	3137.94	3138.54	3139.14	
26	3260.78	3261.36	3261.94	3262.52	
27	3384.29	3384.85	3385.41	3385.97	
28	3507.87	3508.41	3508.95	3509.49	
29	3631.51	3632.03	3632.55	3633.08	
30	3755.21	3755.71	3756.21	3756.72	
Table 2: $M_9(1191-1196)$–Storey.

$R(I^G J^P C)$	M_R MeV	Γ_R MeV	Reaction	Collab.
$h_1(0^{-1+})$	1190 ± 60	320 ± 50	$\pi p \to 3\pi n$	SPEC 81
$\pi(1^{-0}+)$	1190 ± 30	440 ± 80	$\pi^+ Z \to Z3\pi$	SPEC 84
$a_1(1^{-1+})$	1194 ± 14	462 ± 56	$\tau^+ \to \pi^+\pi^+\pi^-\nu$	MRK 86
$\omega(1^{-1+})$	1208 ± 15	430 ± 50	$pp \to pp\pi^+\pi^-\pi^0$	OMEG 90

Table 3: $M_{10}(1309-1313)$–Storey.

$R(I^G J^P C)$	M_R MeV	Γ_R MeV	Reaction	Collab.
$\pi(1^{-0}−)$	1342 ± 20	220 ± 70	$\pi^- p \to p3\pi$	OMEG 81
$a_1(1^{-1+})$	1280 ± 30	300 ± 50	$\pi^- p \to p3\pi$	CNTR 81
$\omega(1^{-1+})$	1285 – 1331	619–814	$\tau^- \to \nu_\tau[3\pi]^-$	CLEO 99
$\omega_2(1^{-2+})$	1317 ± 3	120 ± 10	$pp \to pp\pi^+\pi^-\pi^0$	WA102 98
	1311.3±1.6	103.0±6.0	$\pi^- p \to \pi^+\pi^-\pi^0 n$	VES 96
	1310 ± 5	120 ± 10	$pp \to pp\pi^+\pi^-\pi^0$	OMEG 90
	1317 ± 2	96 ± 9	$\pi^- p \to 3\pi p$	SPEC 80
	1318 ± 7	112 ± 18	$\pi^+ n \to p(3\pi)^0$	DBC 75
	1305 ± 14	120 ± 40	$\gamma p \to \eta\pi^+\pi^-\pi^-$	SHF 93
	1310 ± 2	97 ± 5	$\pi^- p \to 3\pi p$	OMEG 81
	1306 ± 4	79 ± 12	$\pi^+ p \to 3\pi p$	HBC 70

We have used Review of Particle Physics [4] where the experimental data on mass spectrum of the resonance states of three-pion system have been extracted from. Again we see from Table 1 that there is a quite remarkable correspondence of the calculated KK excitations for three-pion system with the experimentally observed mass spectrum of three-pion resonance states, which we consider as an additional strong evidence of Kaluza-Klein picture of the world.

Some known experimental information concerning the experimentally observed mass spectrum of three-pion system is collected in separate tables: Table 2 – Table 8. Certainly, here we have a much more poor experimental data set compared to the case of two-pion system. Nevertheless we can learn from these tables a few remarkable facts as well.

First of all, as it was mentioned in our previous paper [3], many different three-pion resonances with the different quantum numbers may occupy one and the same storey in KK tower. This is a peculiarity of the systematics provided by Kaluza-Klein picture.

Table 4: $M_{11}(1428-1432)$–Storey.

$R(I^G J^P C)$	M_R MeV	Γ_R MeV	Reaction	Collab.
$\omega(0^{-1--})$	1400^{+100}_{-200}	187 ± 15	$e^+e^- \to \pi^+\pi^-\pi^0$	RVUE 98
	1419 ± 31	174 ± 59	$e^+e^- \to \rho\pi$	DM2 92
Table 5: \(M_{13}(1668 - 1671)\)-Storey.

\(R(I^GJ^{PC})\)	\(M_R\) MeV	\(\Gamma_R\) MeV	Reaction	Collab.
\(\omega(0^{-1}--)\)	1670 ± 20	160 ± 20	\(\gamma p \rightarrow 3\pi X\)	OMEG 83
	1679 ± 34	99 ± 49	\(e^+e^- \rightarrow 3\pi\)	FRAM 80
	1652 ± 17	42 ± 17	\(e^+e^- \rightarrow 3\pi\)	OSPK 79
\(\omega_3(0^{-3}--)\)	1665.3±5.2	149±19	\(\pi^- p \rightarrow \pi^+\pi^-\pi^0n\)	VES 96
	1673 ± 12	173 ± 16	\(\pi^+ p \rightarrow \Delta 3\pi\)	HBC 78
	1650 ± 12	253 ± 39	\(\pi^- p \rightarrow N3\pi\)	OMEG 78
	1669 ± 11	173 ± 28	\(\pi^+ p \rightarrow \Delta^{++}3\pi\)	HBC 75
	1678 ± 14	167 ± 40	\(\pi^+ n \rightarrow p3\pi^0\)	DBC 74
	1679 ± 13	155 ± 40	\(\pi^+ n \rightarrow p3\pi^0\)	DBC 71
	1670 ± 20	100 ± 40	\(\pi^+ n \rightarrow p3\pi^0\)	DBC 69
\(\pi_2(1^{-2}+)\)	1667 ± 4	168 ± 10	AVERAGE	PDG 00
	1676 ± 6	260 ± 20	\(\pi^- p \rightarrow 3\pi p\)	OMEG 81
	1657 ± 14	219 ± 20	\(\pi p \rightarrow 3\pi X\)	SPEC 80
	1662 ± 10	285 ± 60	\(\pi^+ p \rightarrow p3\pi\)	HBC 77
	1672 ± 3.5	259 ± 11	AVERAGE	PDG 00

Table 6: \(M_{14}(1789 - 1792)\)-Storey.

\(R(I^GJ^{PC})\)	\(M_R\) MeV	\(\Gamma_R\) MeV	Reaction	Collab.
\(a_2(1^{-2}++)\)	1752±21±4	150±110±34	\(\gamma\gamma \rightarrow \pi^+\pi^-\pi^0\)	L3 97
\(X(1^{-?}++)\)	1763±20	192±60	\(\gamma p \rightarrow n\pi^+\pi^-\pi^-\)	SHF 91
	1787±18	118±60	\(\gamma p \rightarrow (p\pi^+)(\pi^+\pi^-\pi^-)\)	SHF 91
\(\pi(1^{-0}+)\)	1776±13	155±40	AVERAGE	PDG 00
	1775±7	190±15	\(\pi^- A \rightarrow \pi^+\pi^-\pi^-A\)	VES 95
	1770 ± 30	310 ± 50	\(\pi^- A \rightarrow 3\pi A\)	SPEC 82
	1801 ± 13	210 ± 15	AVERAGE	PDG 00

It is especially pleased for us to emphasize that the experimental measurement of the \(a_2\) meson mass made by Protvino VES Collaboration 5 with the best world precision

\[M(a_2) = 1311.3 \pm 1.6\text{(stat)} \pm 3.0\text{(syst)} \text{MeV} \]

is in excellent agreement with the theoretically calculated value

\[M_{\pi^+\pi^-\pi^0} = 1311.55 \text{MeV}. \]

The same is true for the \(\omega_3\) meson where the theoretically calculated mass of KK excitation in \(3\pi^0\) system \(M_{13}^{\omega_3} = 1667.68 \text{MeV}\) is in a very good agreement with PDG AVERAGE value \(M(\omega_3) = 1667 \pm 4 \text{MeV}\). Moreover, it is very interesting to point out that theoretical calculation of KK excitations in \(\rho\pi\) system by the formula

\[M_n^{\rho\pi} = \sqrt{m_\rho^2 + \frac{n^2}{R^2}} + \sqrt{m_\pi^2 + \frac{n^2}{R^2}}, \quad (n = 1, 2, 3, \ldots), \quad (3) \]
where we use $m_\rho = 769.3 \text{MeV}$ for the ρ meson mass from [4], gives $M_{10}^{\rho \pi^0} = 1310.28 \text{MeV}$ and $M_{10}^{\rho \pi^\pm} = 1311.67 \text{MeV}$ which accurately agree with the experimental measurement of the a_2 meson mass provided by VES Collaboration. This means that a_2 meson may manifest itself as a configuration of $\rho \pi$ system in the main, and this is a very nontrivial fact. For example, that statement is not true for the ω_3 meson.

Of course, it would be very desirable to state new experiments to search a further justification of the systematics provided by Kaluza and Klein picture of the world, e.g. to fill the empty cells in Table 1. We believe that this is a quite promising subject of the investigations in particle and nuclear physics.

References

[1] A.A. Arkhipov, hep-ph/0208215 (2002); preprint IHEP 2002-43, Protvino, 2002, available at http://dbserv.ihep.su/~pubs/prep2002/ps/2002-43.pdf

[2] A.A. Arkhipov, hep-ph/0302164 (2003).

[3] A.A. Arkhipov, hep-ph/0302213 (2003).

[4] D.E. Groom et al., Review of Particle Physics, Eur. Phys. J. C15, 401-487 (2000).

[5] D.V. Amelin et al., Zeit. Phys. C70, 71 (1996).