German Investigations on Morbidity and Mortality of Workers Exposed to Vinyl Chloride

by H. Weber,* W. Reinl,* and E. Greiser†

Two studies on mortality and morbidity of workers exposed to vinyl chloride monomer (VCM) which have been carried out on behalf of the Ministry of Labour, Health and Social Affairs on Northrhine-Westphalia are reported.

Vinyl Chloride Mortality Study

The aims of this study were to determine standardized mortality ratios (SMR) for male workers exposed to VCM, using the mortality rates of the West German male population as reference, to study the SMRs of a cohort of workers of the chemical industry comparable concerning age distribution and observation period but not exposed to VCM and to determine the SMR of a cohort of workers in PVC-processing plants.

The study was designed as a historic cohort study, covering the period from the beginning of the VCM- and PVC-production in all of the German plants till the end of 1974.

Table 1 shows the main characteristics of the three cohorts investigated. Only Germans and Austrians were included in data analysis because of insufficient mortality data on various foreign nationals employed in German factories. To determine the mortality rates of Austrians, West German rates were used. To calculate expectations of total mortality, the mortality rates of the adequate years have been used. To calculate expectations of specific causes of death for all years before 1968, the rates of 1968 have been used; for the following years the rates of the corresponding years. Following the procedure applied by Tabershaw (1), weighting of observed cases of specific causes of death according to unknown causes of death has been done with weighting factors calculated separately for three observation periods (up to 1959, 1960-1969, 1970-1974) as well as for six age groups. In all of the cohorts, follow-up rates have been near or above 90%. The percentage of causes of death that could not be investigated due to loss or deletion of death certificates varied from 7.3% to 13.1%. To calculate age-standardized mortality ratios of specific causes of death, weighting has been done according to the procedure used by Tabershaw and Gaffey (1) to compensate for unknown or unidentified causes of death.

Table 2 displays total mortality as well as some of the relevant specific causes of death. It can be observed that the otherwise observed “healthy worker effect” cannot be demonstrated in the German cohorts exposed to VCM or employed in PVC-processing plants.

In the VCM cohort there are significant elevations of SMR of malignancies of the lymphatic and hematopoietic tissues (ICM 200-209), and of malignancies of the GI tract (ICD 150-159). The latter is due to the paramount elevation of SMR of tumors of the liver (ICD 155).

It must be noted that there is a modest elevation of SMR of tumors of the liver also in the cohort not exposed to VCM nor employed in PVC-processing plants. No obvious explanation for this observation can be offered. In addition elevated SMRs for ischemic heart disease (ICD 410-414) can be found in all of the three cohorts. Due to methodological
shortcomings of the study no assessment of cardiovascular risk factors has been made. Therefore these results are of minor interest.

When subdividing the VCM-exposed cohort according to time of exposure there is a clear-cut increase of the SMR of liver tumors with time (Table 3). This seems to be highly suggestive of a time-response pattern. As it has been impossible to determine concentrations of VCM retrospectively due to technological and methodological problems, no dose-response pattern can be established. However time of exposure seems to be the best available guess for dose.

Subclassification according to observation period

Table 1. Characteristics of study cohorts.

	Group I, VCM/PVC production	Group II, reference group	Group III, PVC processing
Population (Germans + Austrians)	7.021	4.910	4.007
Man years	73.734	76.029	52.896
Follow-up completed till 12/31/74, % deceased	93.2	89.8	92.1
Observed	414	417	360
Expected	435	533	380
Unknown causes of death			
No.	30	47	47
%	7.3	11.3	13.1
Total mortality (SMR)	95	78	95
Foreigners (excluding Austrians)	882	711	1.454
Deceased	6	6	10

Table 2. Standardized mortality ratios.

ICD 8	Cause of death	VCM/PVC production	Reference group	PVC processing			
	Obs.	SMR	Obs.	SMR	Obs.	SMR	
140-199	All malignant tumors	94	112	83	83	62	65
200-209	Malignant tumors of organs	79	103	77	83	60	89
150-159	Malignant tumors of GI tract and peritoneum	15	214a	6	77	2	34
155	Malignant tumors of the liver	45	149b	27	71	15	56
191	Malignant tumors of the brain	12	1523b	4	401a	3	434
410	Acute myocardial	91	127a	115	131a	96	158b
800-949	Accidents	66	114	83	120	69	143b

*Beyond 95% confidence interval (2).

bBeyond 99% confidence interval (2).

Table 3. Standardized mortality ratios by duration of exposure.

ICD 8	Cause of death	< 12	13-16	61-120	> 121				
	Obs.	SMR	Obs.	SMR	Obs.	SMR			
Total mortality	53	98	138	102	93	87	130	96	
140-199	Malignant tumors of organs	6	74	20	88	22	116	31	115
200-209	Malignancies of lymphatic and hematopoetic tissues	1	92	4	186	5	287	5	249
150-159	Malignant tumors of GI tract and peritoneum	3	101	12	135	13	173	17	158
155	Malignant tumors of the liver	0	-	2	874a	3	1525b	7	2528b
191	Malignant tumors of the brain	0	-	0	-	1	350	1	275

Environmental Health Perspectives
Table 4. Standardized mortality ratios by period of observation.

ICD 8	Cause of death	Obs.	SMR	Obs.	SMR	Obs.	SMR	Obs.	SMR	Total	SMR
140–199	Malignant tumors	12	160	29	84	194	103	414	95		
200–209	Malignancies of lymphatic and hematopoetic tissues	1	147	9	275b	5	168	15	214b		
150–159	Malignant tumors of GI tract and peritoneum	8	270a	13	94	24	177b	45	149a		
155	Malignant tumors of the liver	1	1282	3	834a	8	2264b	12	1523b		
191	Malignant tumors of the brain	1	557	0	-	1	223	2	162		

*Beyond 95% confidence interval.

*Beyond 99% confidence interval.

Table 5. Standardized mortality ratios by age.

ICD 8	Cause of death	< 24	25–34	35–44	45–54	55–64	> 65	Total	SMR	Obs.	SMR				
Total mortality		10	68	45	111	65	104	90	101	105	80	90	103	414	95
140–199	Malignant tumors of organs	0	-	4	141	13	188b	19	141	22	76	21	100	79	103
200–209	Malignancies of lymphatic and hematopoetic tissues	0	-	2	194	4	303	4	264	3	162	2	197	15	214b
150–159	Malignant tumors of GI tract and peritoneum	0	-	3	397	10	365b	10	145	10	89	12	140	45	149b
155	Malignant tumors of the liver	0	-	0	-	6	686b	0	-	3	934b	3	1664b	12	1523b
191	Malignant tumors of the brain	0	-	0	-	0	-	1	254	1	362	0	-	2	162

*Beyond 95% confidence interval.

*Beyond 99% confidence interval.

Table 6. Groups for subdivision of laboratory examinations.

Group	Specification
A-I	VCM/PVC production
A-II	PVC processing
B-I	VCM/PVC production and PVC processing, work capacity loss < 20%
B-II	VCM/PVC production and PVC processing, work capacity loss > 20%
C-I	Germans and Austrians
C-II	Foreigners (Excl. Austrians)
D-I	Plants with high morbidity
D-II	Plants with low morbidity

Table 7. Bromsulfalein retention.

	VCM/PVC Production	PVC Processing	Total
Retention normal	26	21	47
Retention abnormal	44	10	54
Total	70	31	101

*Chi square = 8.09 (p < 1%).

Table 8. Bromsulfalein retention.

	Germans and Austrians	Foreigners	Total
Retention normal	17	30	47
Retention abnormal	33	21	55
Total	50	51	101

*Chi square = 6.25 (p < 2.5%).

Table 9. Bromsulfalein retention.

	Work capacity loss < 20%	Work capacity loss > 20%	Total
Retention normal	41	6	47
Retention abnormal	32	22	54
Total	73	28	101

*Chi square = 9.81 (p < 1%).

October 1981
(Table 4) reveals a rather inconsistent pattern: malignancies of the lymphatic tissues (ICD 200-209) are significantly elevated in the sixties only, whereas SMRs for tumors of the liver increase till the end of the study period. This might be referred to different latency periods for both kinds of malignancies, but other causes might likewise have contributed to these results. However, it has to be reported that the number of angiosarcomas confirmed histologically in the Federal Republic of Germany in patients previously exposed to VCM has actually come to 17 in contrast to mere 4 at the endpoint of the mortality study (12/31/1974).

The distribution of SMRs by age (Table 5) demonstrates an obvious susceptibility of males aged 35-44 for malignancies in general as well as for malignancies of the liver.

The data base for the German morbidity study consists of all of the reports of suspected cases of occupational disease due to VCM or PVC production or PVC processing. The reference population for these reports has to be defined as the total
working population in 1974 in the above mentioned branches, i.e., 6,500 workers in VCM or PVC production and 42,800 workers in PVC processing (as given by the German Association of Plastic Producing Industries). Till the end of 1974, 269 reports of suspected cases of occupational disease had been received. As there has been no consistent set of examinations performed on each of the cases, numbers of observations for various variables analyzed vary according to examination method performed. Insofar as the results of this study are of much lower validity than those of the mortality study, one should regard them as hints for further investigations.

Four attempts to subclassify observation on the 269 cases have been undertaken (Table 6). Only those results showing significant differences when applying t-tests or chi-square tests are so classified. Amazingly none of the more sensitive lab examinations of liver functions showed a marked difference in all of the subclassifications besides bromsulfalein retention. In this instance there is a significant difference when subdividing by VCM/PVC production versus processing (Table 7), as well as by nationality (Table 8) and most pronounced when subdividing by extent of work capacity loss (Table 9). This latter result, however, must be expected when an effect of exposure on liver function is anticipated. An impairment of the excretory liver function is suggested by elevated total bilirubin values in the subgroup with work capacity loss greater than 20% (Fig. 1). There seems to be an impaired glucose tolerance in this group, although observed in a small subsample only (Fig. 2), as well as a lower number of reticulocytes (Fig. 3). The thromocyte count in both groups was the same. These results, however, lead to no sensible interpretation, as all results attempts failed to standardize the methods applied for thrombocyte counts by various laboratories.

REFERENCES
1. Tabershaw, I. R., and Gaffey, W. R. Mortality study of workers in the manufacture of vinyl chloride and its polymers. J. Occup. Med. 16: 509-518 (1974).
2. Bailar, J. C. Significance factors for the ratio of a Poisson variable to its expectation. Biometrics 20: 639-643 (1964).