Biochemical composition, nutritional analysis and antioxidant activity of *Buchanania lanzan* Spreng fruits

Madhuri Suryawanshi, Vilas Patil, Varsha Jadhav (Rathod)*

Department of Botany, Shivaji University, Kolhapur-416004, Maharashtra, India

ABSTRACT

Buchanania lanzan Spreng belongs to the family Anacardiaceae. The primary focus of this study was to examine the phytochemical, proximate, antioxidant properties and GC-MS evaluation of unripe and ripe fruit of *B. lanzan* Spreng. The phytochemical studies showed that alkaloids, phenols, flavones, saponins, coumarins, glycosides and tannins are present in both ripe and unripe fruits. The proximate evaluation confirmed that crude fat (14.5%) and protein (6.37±0.09 g/100g) are high in ripening fruit. In unripe fruit crude fat (11.3%) and protein (4.11%) is less percent. The carotenoid (5.58 ± 0.5 mg/100g) and catalase (0.226±0.074 mg/100g) activity is higher in unripe fruit. The total polyphenol (6.4±0.8 mg/g/100g) and peroxidase (0.362±0.017 mg/100g) content shows greater activity in ripen fruit. In DPPH and FRAP highest activity showed in methanol extract of ripening and unripe fruit than the other solvent. GC-MS evaluation showed many bioactive compounds present in unripe and ripe fruit. It is concluded that nutritional and bioactive ability is high in ripe and unripe fruits of *B. lanzan*. The fruits of *B. lanzan* are a good source of nutrition and medicinally important.

KEYWORDS: Phytochemical, proximate, antioxidants, GC-MS analysis, ripe, unripe fruit, *Buchanania lanzan*.

INTRODUCTION

The *B. lanzan* is a well-known forest plant. It belongs to the family Anacardiaceae. It is commonly known as 'Chironji or Char' (Banerjee & Bandyopadhyay, 2015). This plant is wild and mostly found in the tropical deciduous forests, northern, western and central India (Siddiqui et al., 2016). The plant *B. lanzan* was first reported by Francis Hamilton, (1798) (Sharma, 2012). This tree is commonly known as the 'Almondette tree' in English (Rai et al., 2015). The tree is evergreen and moderate sized. The flowering starts in the month of November. The fruits mature in 4 to 5 months. Fruit becomes reddish black after ripening (Kumar et al., 2012). The charoli seeds are lentil-sized, somewhat smooth and have an almond like flavor and are eaten in crude or roasted form. All parts of this plant root, leaves, gum, bark and fruit have different medicinal properties (Khatoon et al., 2015). The seeds contain oil and protein. The seeds or kernels are nutritional and tasteful. The kernels of fruits are used as an ointment in skin diseases (Sharma, 2012). The oil extracted from Kernels is applied to skin diseases and is also used to remove spots and blemishes from the face. This plant is determined to possess cardio tonic, astringent and antioxidant activity (Mehta et al., 2011). In that plant many bioactive compounds are present which shows multiple biological effects such as antioxidant activity (Vyawaharkar & Mangaonkar, 2016). Plant seeds are used for tonic and expectorant. This plant is mostly used for traditional purposes (Sushma et al., 2013). The protective efficiency of this plant is depending on the Reactive Oxygen Species and availability of antioxidants (Mehta et al., 2009). The pulp of the fruit was not used yet. Therefore only the pulp of ripening and unripe fruit was used in phytochemicals, proximate, antioxidant and GC-MS analysis.

MATERIAL AND METHODS

Sample Collection and Extract Preparation

Buchanania lanzan Spreng fruits were collected from Bahirewadi village at Kolhapur District Figure 1. The collection was carried out during fruiting periods in the month of March 2016 to June 2018. The plants were identified with the help of available literature (flora) (Voucher No. MVS 002) (Yadav & Sardesai, 2002). The fresh fruits were washed completely until no other material remained. They were blotted when the moisture was completely absorbed, air dried and weighted to obtained fresh weight. Then the plants were put in paper envelope envelop and dried in the oven at 40°C until a constant weight was obtained.
the sample was ground to a fine powder by using an electric grinder and used for the analysis.

Preliminary Phytochemical Analysis

The powder of the plant material was used for physicochemical determination. Successive extractive was carried out by a Soxhlet extraction method using six different solvents petroleum ether, aqueous, chloroform, acetone, alcohol and methanol. Fluorescence investigation of the powder of *B. lanzan* in different chemical reagents was performed under visible light, short wavelength (245 nm) and long wavelength (265). The percentage yield of extract, preliminary phytochemical tests of the extract was performed using specific reagent by different methods of (Kokate et al., 1995; Kokate, 2002; Khandewal, 2005; Raman, 2006; Tripathi et al., 2016).

PROXIMATE ANALYSIS

Dry Matter and Moisture

The dry matter of a sample is the amount of material left after all water has been removed. The AOAC (1990) method was used to determine the substance’s dry matter and moisture content. Bowls were cleaned with soap, washed with water, and left in the oven overnight at 60 °C. The plates were then removed from the oven and placed in a desiccator to cool. 2 g of sample were burned in plates at 600 °C overnight. The following formula was used to calculate the dry matter and moisture. Dry matter (%) = (Weight of dish + Weight of dried sample) - Weight of dish/Weight of sample before drying x 100; Moisture content (%) = (Weight of fresh sample - Weight of dry sample)/Weight of fresh sample x 100

Total Ash

The AOAC (1990) technique was used to determine the ash content. For one hour, the crucible was placed in a muffle furnace at 600 °C. It was immediately transferred from the furnace to a desiccator, cooled to room temperature, and measured to minimize water absorption. 2g of dry powdered sample was placed in the crucible of a muffle furnace and heated to 600 °C for six hours. The crucible was placed in a desiccator after cooling to normal temperature. To avoid moisture absorption, the crucible was relocated as soon as possible. The following formula was used to calculate the ash percent. Ash (%) = Weight of Ash/Weight of Sample x 100

Crude Fiber

Sadasivam and Manikam (1992) developed a method for calculating plant crude fibre content. To remove fat content, 2g of dry material were treated with petroleum ether. The powdered plant was dried and taken for further examination. This two-gram dry powder was heated for 30 minutes in 200 ml of 0.255 N H₂SO₄ and bumping chips. The solution was then filtered through muslin cloth and rinsed with hot water until it was acid-free. The residue was then treated with 200 ml of 0.313 N NaOH and boiled for 30 minutes. After being filtered again through muslin cloth, it was rinsed with 25 ml boiling 1.25
percent H$_2$SO$_4$, three 50 ml amounts of water, and 25 ml alcohol. Removed the leftovers and placed them in an ashing plate that had been pre-weighed (W1 g). After that, it was set ablaze for 30 minutes at 600°C. It was reweighed after chilling in the desiccator (W3 g). The crude fiber proportion was calculated using the formula, Crude fiber content (%) = Loss in weight on ignition (W2 -W1) - (W3 -W1)/Weight of sample x 100

IV. Crude fat

Sadasivam and Manikam (1992) method was used to determine the crude fat content. In a thimble, 2 g of dry material were placed in the soxhlet apparatus. After placing the dry pre-weighed solvent flasks (‘a’ g) beneath the device and providing the required amount of petroleum ether, the condenser was connected. The sample was extracted for 16 hours at a temperature that resulted in 2-3 drips of condensate every hour. After the thimble was removed, the ether was kept in the instrument. A hot water bath was used to evaporate the excess ether in the solvent flask. It was then cooled before being weighed (‘b’ g). The following formula was used to calculate crude fat. Crude fat content (%) = (b - a)/Weight of sample×100

ANTIOXIDANT ANALYSIS

Total Polyphenols

The Folin and Denis (1915) method was used to determine the polyphenols. 0.5g of fresh plant material was pulverized in a mechanical mixer with a pinch of magnesium carbonate and extracted in 30 ml of 80 %acetone at 0 to 4°C in the dark. After that, the remnant was wiped adequately 2-3 times with 80 percent acetone. The ultimate volume of the generated filtrate was boosted to 100ml by using 80 % acetone. Then, to generate a volume of 35ml, 2ml of plant extract was mixed with 10 ml of 20% Na$_2$CO$_3$, and purified water. Then 2ml of Folin and Denis reagent was added to the mixture (100g sodium tungstate and 20g phosphomolybdic acid were dissolved in roughly 800 ml distilled water, 50 ml of 85 % phosphoric acid was added, and the mixture was refluxed for 2-5 hours). Finally, dilute the mixture to 50 ml with purified water. After the colour was generated, the absorbance was measured at 660 nm with a UV-VIS double beam spectrophotometer. A standard tannic acid solution was used to construct the standard polyphenol curve.

Catalase

A significantly modified Sadasivam and Manickam (1992) method was used to evaluate catalase activity. 500 mg fresh plant matter was homogenized in 10 ml 0.1 M phosphate buffer (pH7.0). After that, the extract was filtered through 4 layers of muslin cloth soaked in phosphate buffer, the filtrate was centrifuged at 10,000 rpm for 10 minutes at 0 to 4°C. The enzymes were then extracted from the supernatant. In the enzyme assay, 2 ml phosphate buffer (pH7.0), 1 ml 20 mm guaiacol, and 0.5 ml enzyme were utilized. The reaction was then started by adding 0.1 ml of 20 mm H$_2$O$_2$. Using a dual beam UV-VIS spectrophotometer and regular stirring of the reaction liquid with a glass rod, the change in optical density due to guaiacol oxidation was recorded per minute at 470 nm. The activity of the enzyme is then calculated as O. D. min$^{-1}$.mg$^{-1}$ protein. Ripe and unripened fruit powder was used for DPPH and FRAP assay. The extract was prepared in different solvents such as methanol, alcohol and aqueous. For both assays plant extract was prepared in mg/ml.

Peroxidase

Peroxidase activity was determined using the Maehly technique (1954). The enzyme was recovered by dissolving 0.5g of fresh plant material in 10 ml of 0.1 M phosphate buffer (pH-7.0). After filtering through four layers of muslin cloth soaked in phosphate buffer, the filtrate was centrifuged at 10,000 rpm for 10 minutes at 0 to 4°C. The enzymes were then extracted from the supernatant. In the enzyme assay, 2 ml phosphate buffer (pH-7.0), 1 ml 20 mm guaiacol, and 0.5 ml enzyme were utilized. The reaction was then started by adding 0.1 ml of 20 mm H$_2$O$_2$. Using a dual beam UV-VIS spectrophotometer and regular stirring of the reaction liquid with a glass rod, the change in optical density due to guaiacol oxidation was recorded per minute at 470 nm. The activity of the enzyme is then calculated as O. D. min$^{-1}$.mg$^{-1}$ protein. Ripe and unripened fruit powder was used for DPPH and FRAP assay. The extract was prepared in different solvents such as methanol, alcohol and aqueous. For both assays plant extract was prepared in mg/ml.

DPPH Radical Scavenging Activity

1,1- Diphenyl-2- Picrylhydrazyl (DPPH) was used for the free radical scavenging activity of the extract by using method

| Table 1: Powder behavior of fruit powder |
Number	Reagent	Colour / behavior	Inference
1	Powder as such	Orange brown	
2	Powder + 5% FeCl3	Dark green	Tannin present
3	Powder + Picric acid	Saffron yellow	Alkaloids present
4	Powder + 5% Iodine	Apple green	Starch present
5	Powder + 40% NaOH + Lead acetate	Chocolate Brown	Cysteine present
6	Powder + conc. HNO3 + Ammonia	Orange yellow	Xanthoprotein
8	Powder + 5%KOH	Rose wood red	Glycosides

| Table 2: Fluorescence study of powder with different chemical reagent in visible and U. V. Light of fruit powder |
Sr. No.	Powder with chemical reagent	Visible light wavelength	Short wavelength	Long wavelength
1	Powder as such	Olive green	Pear green	Black
2	Powder + D.W.	Olive green	Pear green	Slate grey
3	Powder + 1N NaOH in D.W.	Umber brown	Hunter green	Black
4	Powder + 1N NaOH in Alcohol	Brown	Hickory brown	Black
5	Powder + 10% HCl	Granola yellow	Forest green	Slate grey
6	Powder + conc. HCl	Moss green	Forest green	Slate grey
7	Powder + conc. HNO3	Olive green	Emerald green	Black
8	Powder + conc. H$_2$SO$_4$	Chocolate brown	Hunter green	Slate grey
9	Powder + Acetone	Moss green	Hunter green	Black
10	Powder +5%KOH	Moss green	Forest green	Black
11	Powder +5% Iodine	Moss green	Hunter green	Black
12	Powder +5% FeCl3	Moss green	Hunter green	Black
Wang et al. (1998). For DPPH assay 500 µl of plant extract was added in 2.5 ml methanol solution of DPPH (24 µg/ml DPPH). The reaction mixture was well agitated and kept in 30 minute. Control prepared in 0.5 ml methanol and 2.5 ml DPPH. Standard was used as ascorbic acid. The absorbance was read at 516 nm a U. V. Visible Spectrophotometer

Ferric Reducing Antioxidant Power Assay

0.1 ml plant extract add in 2.9 ml FRAP (Ferric reducing antioxidant power) reagent. FRAP reagent was freshly prepared by combining TPTZ solution: FeCl₃, solution: acetate buffer in 1:1:10. After reaction mixture incubates for 15 minute at 37°C. Method is described by Benzie & Strain et al., (1996). The results were expressed as ascorbic acid equivalent to antioxidant capacity.

GC-MS Analysis

The extraction was prepared in methanol by using the Soxhlet apparatus. The temperature was not enormously the boiling point of the respective solvent. The obtained extracts were filtered through Whatman No.-1 filter paper then concentrated by using an evaporator and the residual extracts were stored in the refrigerator at 4o C in small and air tight amber colour glass bottles. The GC-MS analysis was done using GCMS-TQ8050- Shimadzu (Japan). It has equipped with SH-Rxi-5 sil MS fused silica capillary column (0.25mm diameter and 0.25 mm thickness). Injection mode- split, Flow control mode – Pressure, Pressure- 75.2 kPa, linear velocity-4.14 cm/sec, Purge flow-3.0 ml/min and Spilt ratio(1.0). Helium gas (99.9%) was used as a carrier gas at constant flow rate. Identification of components is read on mass spectrum of GC-MS by using National Institute of Standard and Techniques NIST-08 LIB and WILEY-08. Gas Chromatography-Mass Spectrometry (GC-MS) analysis was carried out by using the method of Hema et al., (2010).

RESULTS AND DISCUSSION

Preliminary Phytochemical Analysis

The phytochemical investigation of fruit powder of Buchanania lanzan was done by utilizing diverse solvents for example chloroform, acetone, methanol, aqueous, petroleum ether and ethanol. In phytochemical evaluation some parameters were studied such as powder behavior, phytochemical screening, extractive values and fluorescence study. The fluorescent investigation is additionally valuable for some unrefined medications are assessed subjectively and it is an essential parameter of pharmacognostical evaluation (Gupta et al., 2006; Kokoski et al.,1958). The powder behavior, fluorescence study, extractive values and preliminary phytochemical screenings are tabulated in Tables 1-4 respectively. The extractive values were helpful in determining the soluble nature of a particular constituent in a particular solvent. The extractive yield is higher in alcohol and aqueous when compare with different solvents. According to the Table 4 in alcoholic extraction of phenols, flavones, tannins, coumarins, saponins and alkaloids are present in high quantity. Glycosides are absent in acetone, alcohol and methanol. The extraction of leaves of B. lanzan was prepared in different solvents and observed- steroid, flavonoid, phenol, glycosides and tannins are present in different solvents (Niratkener & Sailaja, 2014). In the present study the extractions of the pulp of B. lanzan show phenols, flavones, tannins, coumarins, saponins, alkaloids and glycosides. Phytochemical screening was useful to recognize the nature of the substance present in the various solvents (Pattmnaik et al., 2013). The preliminary phytochemical screening demonstrated the presences of phenols, flavones, tannins, coumarins, saponins, alkaloids and glycosides (Shoaib et al., 2017). The preliminary phytochemical screening is basic for distinguishing proof of the distinctive phytoconstituents present in plant material (Koparde & Magdum, 2017). It is valuable in finding the bioactive compound and is additionally useful in the acknowledgment and valuation of bioactive compounds (Jain et al., 2014).

Proximate Analysis

B. lanzan fruit analysis shows potential nutritional significance. The fruits are rich source of protein, fat and fiber. These are easily available as instant energy source. Moisture content of the natural products decides quality and stability (Khatoon et al., 2015). The dry matter, moisture content, crude fat, ash, crude fiber and protein represent in Figure 2. The ash value gives an idea about the inorganic composition and other impurities (Tripathi et al., 2016). The protein (6.37%) estimated is high in ripening fruit as compare with unripening fruit. Moisture content (76.4 %) determination is very important because it directly affects the nutritional contents of the fruits. The moisture is highest in unripen fruit and the dry matter is high in ripen fruit. The ash (7.4%) values are important for qualitative standards and also useful in determining the authenticity and purity of the sample (Daffodi et al., 2015). The enlisted

Table 3: Extractive values of fruit powder

Extract	Colour	%Yield
Petroleum ether	Chocolate Brown	5.65
Aqueous	Chocolate Brown	50
Chloroform	Chocolate Brown	2.5
Acetone	Lemon Yellow	9
Alcohol	Chocolate Brown	41
Methanol	Chocolate Brown	10

Table 4: Preliminary phytochemical screening of fruit powder

Sr. No.	Content	Petroleum ether	Methanol	Chloroform	Acetone	Alcohol	Aqueous ether
1	Phenols	+++	+	+	++	+++	+++
2	Flavones	---	+	+	++	+++	+++
3	Tannins	+	++++	+++	+	++++	+++
4	Coumarins	+	+++	+++	+	+++	+++
5	Saponins	+	+	+	+	+	+++
6	Alkaloids	+	+++	+++	+++	+	+++
7	Glycosides	+	+++	+++	+++	+	+++
underutilized fruits, B. lanzan is one of them and according to Pal et al. seeds of B. lanzan are a potential source of protein (19.0g), fat (59.1g) and fiber (3.8 g) (Pal et al., 2019). The earlier study (Provide citation) has determine the nutritional value of seeds but in pulp of ripen fruit by addition of some parameter shows that nutritional value is fat (14.5%), protein (6.37±0.69 g/100gs), fiber (4.5%), ash (7.4%), dry matter (55%) and moisture (76.4%).

Antioxidant Analysis

Carotenoid and total polyphenol recorded in Table 5. The total polyphenol is high in ripening fruit as compare to unripen fruit and carotenoid is high in unripe fruit than the ripe fruit. The estimations of catalase and peroxidase are depicted in Table 5. The peroxidase is higher in ripen fruit (362±0.017). Catalase is a sufficient amount in unripe fruit with a value (0.226±0.074). Antioxidant reduces the oxidative stress which is caused by free radical (Banerjee & Bandyopadhyay, 2015). The fruits are wealthy in carotenoid and antioxidants. These lessen the danger of cardiovascular ailments. In photosynthesis assumes carotenoids provide pivotal job to give photo protective function. The quality of fruit is given via carotenoid (Omayma et al., 2013). The carotenoid value is high in unripening fruit than in ripen fruit. The DPPH and FRAP value recorded in Table 6. Unripen

Table 5: Antioxidant analysis

Content	Unripen (mg/100g)	Ripen (mg/100g)
Catalase	0.226±0.074	0.0121±0.006
Peroxidase	0.210±0.0060	3.62±0.017
Carotenoid	5.58±0.5	4.1±0.4
Total polyphenol	4.6±0.39	6.4±0.39

Table 6: Antioxidant activity in DPPH and FRAP

Content	Solvent	Ripened	Unripen
DPPH (%)	Methanol	46.24 ± 096.	74.76 ± 1.90
	Ethanol	32.50 ± 0.97	61.29 ± 0.20
	Aqueous	26.99 ± 0.32	36.78 ± 0.23
FRAP(mg/100g)	Methanol	168.31±1.96	172.95 ± 0.4
Ascorbic acid	Ethanol	156.83 ± 3.04	157.10 ± 0.98
equivalent	Aqueous	97.81 ± 3.94	152.73 ±3.94

Table 7: Total numbers of bioactive compounds screening out in ripen and unripen fruit of Buchanania lanzan by using GC-MS analysis

S.N.	% Area of Peak	Name of the compound	Molecular Formula	Molecular Weight	Ripen	Unripen
1.	0.60	cis-2-Nonene	C9H18	126	Present	Absent
2.	6.28	Tridecamonic acid	C19H39N0	297	Present	Absent
3.	14.11	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl	C6H8O4	144	Present	Present
4.	0.99	4H-Pyran-4-one, 3,5-dihydroxy-2-methyl-	C6H6O4	142	Present	Absent
5.	1.05	5-Acetoxyethyl-2-furaldehyde	C8H8O4	168	Present	Absent
6.	47.80	5-Hydroxy methyl furfural	C6H6O3	126	Present	Absent
7.	0.33	6-Acetyl-beta-d-mannose	C8H14O7	222	Present	Absent
8.	1.45	Pentanediolic acid, 2,2-dimethyl-, bis (1-methylpropyl) ester	C15H28O4	272	Present	Absent
9.	0.44	4-tert-Butylcyclohexyl methyl ethyl phosphonate	C13H27O3	262	Present	Absent
10.	0.65	Tetradecanoic acid	C14H28O2	228	Present	Present
11.	0.78	Hexadecanoic acid, methyl ester	C17H34O2	270	Present	Present
12.	5.70	n-Hexadecanoic acid	C16H32O2	256	Present	Present
13.	0.21	Methyl 10-trans,12-cis-octadecadienoate	C19H34O2	294	Present	Absent
14.	0.95	9-Octadecenoic acid, methyl ester, (E)100	C19H36O2	296	Present	Present
15.	1.30	Methyl stearate	C19H38O2	298	Present	Absent
16.	3.20	9-Octadecanoic acid, (E)-	C18H34O2	282	Present	Absent
17.	5.51	Octadecanoic acid	C18H36O2	284	Present	Present
18.	0.72	3-(pentadec-8-en-1-yl)phenol	C21H34O	302	Present	Present
19.	0.32	Phenol, 3-pentadecyl	C21H36O	304	Present	Present
20.	1.59	1,8,11,14-Heptadecatriene, (Z,Z,Z)	C17H28	232	Present	Absent
21.	1.62	(Z)-3-(Heptadec-10-en-1-yl)phenol	C23H38O	330	Present	Present
22.	1.58	3-((4Z,7Z)-Heptadeca-4,7-dien-1-yl)phenol	C23H36O	328	Present	Present
23.	0.07	1-Nonadecene	C19H38	266	Absent	Present
24.	0.08	Phthalic acid, butyl undecyl ester	C23H36O4	376	Absent	Present
25.	0.10	Methyl hexadec-9-enoate	C17H32O2	268	Absent	Present
26.	1.00	Linoleic acid ethyl ester	C20H36O2	308	Absent	Present
27.	9.53	Methyl 5,11,14,17-eicosatetraenoate	C21H34O2	318	Absent	Present
28.	2.58	3-Tridecyphenol	C19H32O	276	Absent	Present
fruit show highest activity than the ripen fruit. Plant extract was prepared in three different solvents such as methanol, alcohol and aqueous. As compare to other solvent in methanol extract of unripe and ripe fruit show more activity (74.76 ± 1.90 and 46.24 ± 0.96). In DPPH highest percentage inhibition was observed in methanol extract of unripe fruit and ripe fruit. But as compare to ripe and unripe fruit activity is highest in unripe fruit. In plant extract having antioxidant molecules they scavenge the radical against DPPH, color change purple to yellow and decrease the absorbance (Vyavaharkar & Mangaonkar, 2016). In DPPH methanol bark extract shows good scavenging activity (Siddiqui et al., 2014). Vyavaharkar and Mangaonkar were observed DPPH activity in alcoholic extract of B. lanzan seeds. They reported that in 500 µl alcoholic seed extract percentage inhibition is 20 % but in 500 µl alcoholic extract of pulp fruit percentage inhibition is 61.29%. The pulped fruit showed the best DPPH activity than the seeds of the plant (Vyavaharkar & Mangaonkar, 2015). In DPPH assay black gum extract shows percentage inhibition is 67.58% (Siddiqui et al., 2016). In unripe pulp fruit of B. lanzan shows the highest percentage inhibition 74.76% than the black gum extract of B. lanzan. In FRAP assay highest activity showed in methanol extract compare to other solvents in both ripen and unripe fruit.

GC-MS analysis

The GC-MS chromatogram of ripen and unripe fruits of *Buchanania lanzan* in Figures 3 and 4 demonstrates the presence of twenty three and eighteen phytochemical compounds in ripen and unripe fruits respectively. The retention time, molecular formula, molecular weight, percentage area and name of the compounds are organized in Table 7. The major phytochemical compounds and their biological activities are depicted in Table 8. 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, 5-Hydroxymethylfurfural, Tetradecanoic acid, Hexadecanoic acid, methyl ester, n-Hexadecanoic acid, 9-Octadecenoic acid, methyl ester, Octadecanoic acid, (Z)- 3-(pentadec-8-en-1-yl)phenol, (Z)- 3-(Heptadec-10-en-1-yl) phenol, 3-(4Z,7Z)- Heptadeca-4,7-dien-1-yl) phenol. These compounds were found in ripen and unripe fruits. The large percentage area of peak in ripen fruit is possessed by 5-Hydroxymethylfurfural (47.80 %) and in unripe fruit percentage area of peak is occupied by n-Hexadecanoic acid (46.44%). Li Wei et al., 2015 reported that in *Schisandra chinensis* biological activity of 5-Hydroxymethylfurfural is hepatoprotective and have antioxidant effects. In *Pistia stratiotes* n-Hexadecanoic acid shows that antioxidant, hypcholesterolemic, nematicide, anti-androgenic, hemolytic and flavors (Tyagi & Agarwal, 2017). Phthalic acid, butyl undecyl ester shows antimicrobial activity in plant *Cenchrus ciliaris* (Singariya et al., 2015). In *B. lanzan* more elevated amount of fatty acids are present such as Hexadecanoic acid, 9-Octadecanoic acid etc. (Bothara & Sing, 2011).

CONCLUSION

From the above results it is concluded that ripen and unripen fruit of *Buchanania lanzan* shows presence of the good amount of protein,
fat, ash and crude fiber. The fruits of B. lanzan is a better source of nutrition and antioxidant activity. The fluorescence study of the plant determine the quality and purity of plant material available in the market. The GC-MS analysis shows that 37 compounds present in fruits, which possess various bioactive properties such as antimicrobial, anticancer, antiinflammatory, antidiarrheal, and antiinflammatory etc. The preliminary phytochemical screening can be used to estimate the quality of the sample. Both the stages of fruits i. e. unripen and ripen are nutritionally and medicinally important.

REFERENCES

AOAC. (1990). Official Methods of analysis. Association of official analytical chemists. Washington DC.

Table 8: Biological activity of compound identified in methanolic extract of ripe and Unripe fruits of Buchanania lanzan

S.N	Name of the compound	Biological activity
1.	Tridemorph	Fungicide (Sirinivasulu and Rangaswamy, 2006)
2.	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl	Antifungal activity (Toeh Yi P et al., 2011), Antimicrobial, Anti-inflammatory (Meenakshi and Kalavathy, 2015).
3.	5-Hydroxymethylfurfural	Hepatoprotective and antioxidant effects (Li Wei et al., 2015).
4.	6-Acetyl-beta.-d-mannose	Antimicrobial agents (Ezekwe and Chikezie, 2017)
5.	Tetradecanoic acid	Antioxidant, cancer preventive, hypercholesterolemic, nematicide, lubricant, cosmetic (Gomathi and Elango, 2015).
6.	Hexadecanoic acid, methyl ester	Antioxidant, hypocholesterolemic, nematicide, pesticide, Anti-androgenic, flavor, hemolytic and 5-Alpha reductase inhibitor (Sudha et al., 2013).
7.	n-Hexadecanoic acid	Antioxidant, hypocholesterolemic, nematicide, Anti-androgenic, flavor, hemolytic (Tyagi and Agarwal, 2017).
8.	9-Octadecenoic acid, methyl ester, (E)100	Antioxidant, hypocholesterolemic, pesticide, Anti-androgenic, flavor, hemolytic, 5-Alpha reductase inhibitor (Rajeswari and Muthurulappen, 2015).
9.	Methyl stearate	Antidiarrheal, cytotoxic, anti proliferative (Arora and Kumar, 2018).
10.	Octadecanoic acid	5-Alpha reductase inhibitor, hypocholesterolemic, suppository, cosmetic, lubricant, surfactant and softening agent, perfumery, propiec (Meenakshi and Kalavathy, 2015).
11.	Phenol, 3-pentadecyl	Antidiarrheal property (Udobre et al., 2016).
12.	1-Nonadecene	Stronger radical scavenging effect (Marrufo et al., 2013).
13.	Phthalic acid, butyl undecyl ester	Antimicrobial activity (Singariya et al., 2015).
14.	Methyl hexadec-9-enoate	Antialoepec, Anti-androgenic, Antifibrinolytic, Nematicide, Pesticide (Kumar et al., 2012).

Arora, S., & Kumar, G. (2019). Phytochemical screening of root, stem and leaves of Cenchrus biflorus Roxb. Journal of Pharmacognosy and Phytochemistry, 7(1), 1445-1450.

Arora, S., Kumar, G., & Meena, S. (2017). Screening and evaluation of bioactive components of Cenchrus ciliaris L. by GC-MS analysis. International Research Journal of Pharmacy, 8(6), 69-76. https://doi.org/10.7897/2230-8407.08699

Banjeer, S., & Bandypadyay, A. (2015). Buchanania lanzan Spreng: A veritable storehouse of phytomedicines. Asian Journal of Pharmacological and Clinical Research, 8(5), 18-22.

Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76. https://doi.org/10.1016/0003-2697(96)00292

Bothara, S. B., & Sing, S. (2011). Fatty Acid Profile of Buchanania lanzan Spreng Seed Oil by Gas Chromatography - mass Spectrometry. Inventi Rapid: Pharm Ana and Qual Assur, 4, 241.

Daffodil, E. D., Lincy, M. P., & Mohan, V. R. (2015). Evaluation of Pharmacocomochemical characters and Antibacterial Activity of Buchanania lanzan Spr. OUTREACH - A Multi-Disciplinary Refereed Journal, 8, 206 – 215.

Eldashan, O. A., & Singab, A. N. B. (2013). Carotenoids. Journal of Pharmacognosy and Phytochemistry, 2(1), 225-234.

Ezekwe, S. A., & Chikezie, P. C. (2017). GC-MS analysis of aqueous extract of unripe fruit of Carica papaya. Journal of Nutrition & Food Sciences, 7(3), 602. https://doi.org/10.4172/2155-9600.1000602

Folin, O., & Denis, W. (1915). A colorimetric estimation of phenols (and phenolic) derivatives in urine. The Journal of Biological Chemistry, 22(3), 305-308.

Gomathi, R., & Elango, V. (2015). Identification of bioactive components and its biological activities of Evolvulus alsinoides Linn.–A GC-MS study. International Journal of Chemical Studies, 3(1), 41-44.

Gupta, M. K., Sharma, P. K., Ansari, S. H., & Lagarkha, R. (2006). Pharmacognoestical evaluation of Grewia asiatica fruits. International Journal of Plant Sciences, (12), 249-251.

Hema, R., Kumaravel, S., Gomathi, S., & Sivasubramaniam, C. (2010). Gas Chromatography-Mass Spectroscopic analysis of Lawsonia inermis leaves. Life Science Journal, 7(4), 48-50.

Jain P, Singh S K, Sharma H P and Basri F . (2014). Phytochemical screening and antifungal activity of Carica papaya leaves. International Journal of Chemical Studies, 3(1), 41-44.

Khatoon, N., Gupta, R. K., & Tyagi, Y. K. (2016). Nutraceutical potential and screening and antifungal activity of Helicteres isora fruits. International Journal of Traditional Knowledge, 7(1), 144-150.

Kirk, J. T., & Allen, R. L. (1965). Dependence of chloroplast pigment absorption spectrum on wavelength. Journal of the American Chemical Society, 87, 3441-3447.

Kokate, C. K. (2002). Practical pharmacognocny techniques and experiments. (pp.138-161), Pune: Nirali Prakashan.

Khanewal, K. R. (2005). Practical pharmacognocny techniques and experiments. (pp.138-161), Pune: Nirali Prakashan.

Khotoo, N., Gupta, R. K., & Tyagi, Y. K. (2016). Nutraceutical potential and phytochemical screening of Buchanania lanzan, an underutilized exotic Indian nut and its use as a source of functional food. Journal of Pharmacognosy and Phytochemistry, 4(1), 87-94.

Kirk, J. T., & Allen, R. L. (1965). Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochemical and biophysical research communications, 21(6), 523-530. https://doi.org/10.1016/0006-291X(68)90516-4

Kokate, C. K. (2002). Practical pharmacognocny. (pp. 107-129). Pune: Vallabh Prakashan.

Kokate, C. K., Purohit, A. B, & Gokhale, S. B. (1995). Methods of crude drug evaluation pharmacognocny. (pp. 88-99), Pune: Nirali Prakashan.

Kokoski, C. J., Kokoski, R. J., & Salma, F. J. (1958). Fluorescence of chlorophyll. American Pharmaceutical Association, 45(10), 715-717. https://doi.org/10.1007/s12209-006-00010-y

Koparde, A. A., & Magdum, C. M. (2017). Phytochemical studies and pharmacognoestical evaluation of Zingiber cassumunar Roxb. Asian Journal of Pharmacological and Clinical Research, 10(10), 129-135. https://doi.org/10.22159/ajpcr.2017.v10i10.20004

Kumar, J., Vengaiah, P. C., Sivastav, P. P, & Bhowmick, P. K. (2012). Chloroform (Bucharania lanzan) processing, present practices and scope. Indian Journal of Traditional Knowledge, 11(1), 202, 204.

Kumar, N. R., Reddy, J. S., Gopikrishna, G., & Solomon, K. A. (2012). GC-MS determination of bioactive constituents of Cyca beddomei cones. International Journal of Pharma and Bio Sciences, 3(3), 344-350.

Li, W., Qu, X. N., Han, Y., Zheng, S. W., Wang, J., & Wang, Y. P. (2015). Ameliorative effects of 5-Hydroxymethyl-2-furfural (5-HMF) from Schinendandra chinensis on alcoholic liver oxidative injury in mice. International journal of molecular sciences, 16(2), 2446-2457. https://
Suryawanshi et al.

Maehly, A. C. (1964). Methods in biochemical analysis. D. Glick (Ed.). Interscience Publishers Inc. New York. 386-85.

Marrufo, T., Nazzaro, F., Mancini, E., Fratianne, F., Coppola, R., De Martino, L., Agostinho, A. B., & De Feo, V. (2013). Chemical composition and biological activity of the essential oil from leaves of Moringa oleifera Lamm. cultivated in Mozambique. Molecules, 18(9), 10989–11000. https://doi.org/10.3390/molecules180910989

Meenakshi, S., & Kalavathy, S. (2015). Analysis of bioactive compounds in antimicrobial formulation using GC-MS and FTIR techniques. International Journal of Biochemistry and Biophysics, 5, 20-24.

Mehta, S. K., Nayeeem, N., B Bains, N. (2011). Adaptogenic activity of methanolic extract of Buchanania lanzan Spreng., leaves an experimental study in rat model. Der Pharmacica Sinica, 2, 107-112.

Mehta, S. K., Swarupananda, M., & Jaiprakash, B. (2009). Comparative anti-oxidant activity studies of Buchanania lanzan methanic extract. Biomedical and Pharmacology Journal, 2(2), 441-444.

Niratkar, C., & Sailaja, D. (2014). Preliminary phytochemical screening and evaluation of antimicrobial activity of Buchanania lanzan (Chironji) from Chhattisgarh. World Journal of Pharmaceutical Research, 3(9), 514-522.

Pal, R., Abrol, G., Singh, A. K., Punetha, S., Sharma, P., & Panday, A. K. (2019). Nutritional and medicinal value of underutilized fruits. American Student Government Association, 3(1), 16-22.

Pattnaik, A., Sarkar, R., Sharma, A., Yadav, K. K., Kumar, A., Roy, P., Mazumder, A., Karmorkar, S., & Sen, T. (2013). Pharmacological studies on Buchanania lanzan Spreng.A focus on wound healing with particular reference to anti-biofilm properties. Asian Pacific Journal of Tropical Biomedicine, 3(12), 967-974. https://doi.org/10.1016/S2221-1691(13)60187-2

Rai, P. K., Sharma, D. R., & Sharma, A. (2015). Buchanania lanzan is a pharmacognostic miracle herb. Research Journal of Pharmacognosy and Phytochemistry, 7(3), 182-186. https://doi.org/10.1016/S2221-1691(13)60187-2

Rajeswari, B., & Muthurulappan, S. (2015). GC-MS analysis of bioactive components from the ethanolic leaf extract of Fluggea leucopyrus wild. International Journal of Pharmaceutical Sciences Review and Research, 33(1), 270-273.

Raman, N. (2008). Phytochemical techniques. (1st Eds.), New Delhi, India: New India Publishing Agency.

Sadashivam, S., & Manikam, A. (1992). Biochemical method for agricultural sciences. (pp.105). New Delhi, India: Willey Eastern Ltd.

Sharma, A. (2012). Scientific harvesting for quality seed collection of Buchanania lanzan Spreng for its conservation and sustainable management-case study of Chhindwara. Madhya Pradesh, India. International Journal of Bio-Science and Bio-Technology, 4, 65-74.

Shoaib, A., Siddiqui, H. H., Badrudddeen, B., Rizvi, A., & Dixit, R. K. (2017). Physicochemical phytochemical and high-performance thin layer chromatography analysis of the root barks of Onosma echidni. Asian Journal of Pharmaceutical and Clinical Research, 10(10), 196-199. https://doi.org/10.22159/ajpcr.2017.v10i10.20064

Shrivivasulu, M., & Rangaswamy, V. (2006). Activities of invertase and cellulase as influenced by the application of Tridemorph and Captan to groundnut (Arachis hypogea) soil. African Journal of Biotechnology, 5(2), 175-180.

Siddiqui, M. Z., Chowdhury, A. R., & Prasad, N. (2014). Buchanania lanzan: a species of enormous potentials. World Journal of Pharmaceutical Sciences, 2(4), 374-379.

Siddiqui, M. Z., Chowdhury, A. R., & Prasad, N. (2016). Evaluation of phytochemicals, physico-chemical properties and antioxidant activity in gum exudates of Buchanania lanzan. Proceedings of the National Academy of Sciences, India - Section B: Biological Sciences, 86(4), 1691-1722.

Singariya, P., Mourya, K. K., & Kumar, P. (2015). Gas chromatography – mass spectrometric analysis of acetone extract of Cenchrus ciliaris (Dhaman grass). International Journal of Science and Nature, 6, 652-661.

Sudha, T., Chidambarampillai, S., & Mohan, V. R. (2013). GC-MS analysis of bioactive components of aerial part of Fluggea leucopyrus wild. (Euphorbiaceae). Journal of Applied Pharmaceutical Science, 3, 126-130. https://doi.org/10.7324/JAPS.2013.3624

Sushma, N., Smitha, P. V., Gopal, Y. V., Vinay, R., Reddy, N. S., Mohan, M., & Raju, B. (2013). Antidiabetic, antihyperlipidemic and antioxidant activities of Buchanania lanzan Spreng methanol leaf extract in streptozotocin induced types I and II diabetic rats. Tropical Journal of Pharmaceutical Research, 12, 221-226. https://doi.org/10.4314/ tjr.v12i2.14

Teoh, Y.P., Don, M. M., & Ujang, S. (2011). Media selection for mycelia growth, antifungal activity against wood-degrading fungi and GC-MS study by Pycnoporus sanguineus. Bio resources. 6, 2719-2731. https://doi.org/10.15376/biores.6.3.2719-2731

Trease, G. E., & Evans, W. C. (1985). Pharmacognocy (12th Eds.), English language book society. Bailliere Tindall, London.

Tripathi, M. K., Kumar, A., Mishra, M. C., & Singh, R. (2016). Preliminary phytochemical investigation and pharmacognostic study of seeds of Buchanania lanzan Spreng. Journal of the Indian Botanical Society, 95, 246-255.

Tyagi, T., & Agarwal, M. (2017). Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic leaf extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms. Journal of Pharmacognosy and Phytochemistry, 6, 195-206.

Udobre, A. S., Udoh, A. E., Etim, E. T., Unnoh, U. F., & Johnson, E. C. (2016). GC-MS analysis of six bioactive compounds isolated from the ethanol leaf extract of Andrographis paniculata (Acanthaceae), Chemistry Research Journal, 1, 6-10.

Vyawaharkar, R. Y., & Mangaonkar, S. S. (2015). Determination of antioxidant potential of Buchanania lanzan Spreng (Chironji) seed extracts. International Journal of Advanced Pharmaceutical Sciences, 6, 2964-2967.

Vyawaharkar, R. Y., & Mangaonkar, S. S. (2016). Extraction of flavonoids from Buchanania lanzan Spreng seeds by supercritical fluid extraction and determination of their antioxidant activity. International Journal of Pharmacy and Pharmaceutical Sciences, 8(1), 353-358.

Wang, M., Li, J., Rangarajan, M., Shao, Y., LaVoie, E. J., Huang, T-C., & Ho, C-T. (1998). Antioxidant phenolic compounds from Sage (Salvia officinalis). Journal of Agricultural and Food Chemistry, 46, 4899-4873. https://doi.org/10.1021/jf980614b

Yadav, S. R., & Sardesai, M. M. (2002) Flora of Kolhapur District. Shivaji University, Kolhapur.