Multi-factor study of the effects of a trace amount of water vapor on the low concentration CO$_2$ capture by 5A zeolite particle

Hui Wanga, Ying Yinb, Jun-qiang Baia*, Shi-feng Wangc

aSchool of Aeronautics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
bMOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
cSchool of Engineering, Newcastle University, Newcastle, UK, NE1 7RU

*Corresponding Author: junqiang@nwpu.edu.cn

Table S1 L–J and particle charges of 5A zeolite and CO$_2$, N$_2$ and water molecule

(a) L–J parameters of 5A zeolite and CO$_2$, N$_2$ and water molecule

Atom	Atom	σ (Å)	ε / k_B (K)
O$_{\text{zeolite}}$	C$_{\text{CO}_2}$	3.193	29.116
O$_{\text{zeolite}}$	O$_{\text{CO}_2}$	3.067	23.433
Na	C$_{\text{CO}_2}$	2.827	66.778
Na	O$_{\text{CO}_2}$	2.707	54.762
Ca	C$_{\text{CO}_2}$	2.944	96.932
Ca	O$_{\text{CO}_2}$	2.833	77.152
Al	C$_{\text{CO}_2}$	3.366	32.215
Al	O$_{\text{CO}_2}$	3.246	25.323
Si	C$_{\text{CO}_2}$	3.620	49.754
Si	O$_{\text{CO}_2}$	3.494	38.900
C$_{\text{CO}_2}$	C$_{\text{CO}_2}$	2.757	28.129
O$_{\text{CO}_2}$	O$_{\text{CO}_2}$	3.033	80.507
O$_{\text{CO}_2}$	C$_{\text{CO}_2}$	2.895	47.588
O$_{\text{zeolite}}$	O$_{\text{TIP4P}}$	3.421	51.734
Al	O$_{\text{TIP4P}}$	3.613	56.948
Si	O$_{\text{TIP4P}}$	3.887	87.850
Ca	O$_{\text{TIP4P}}$	3.157	171.814
Na	O$_{\text{TIP4P}}$	3.024	119.146
O$_{\text{zeolite}}$	H$_{\text{TIP4P}}$	0	0
Al	H$_{\text{TIP4P}}$	0	0
Si	H$_{\text{TIP4P}}$	0	0
Ca	H$_{\text{TIP4P}}$	0	0
Na	H$_{\text{TIP4P}}$	0	0
O$_{\text{zeolite}}$	L$_{\text{TIP4P}}$	0	0
Al	L$_{\text{TIP4P}}$	0	0
Si	L$_{\text{TIP4P}}$	0	0
Ca	L$_{\text{TIP4P}}$	0	0
Na	L$_{\text{TIP4P}}$	0	0
O$_{\text{TIP4P}}$	O$_{\text{TIP4P}}$	3.154	78.021
L$_{\text{TIP4P}}$	O$_{\text{TIP4P}}$	0	0
Particle charges of 5A zeolite structure and CO$_2$ molecule

Atom	Si	Na	Al	O_zeolite	Ca	C_CO2	O_CO2
Charge(e)	2.2124	0.9887	2.0833	-1.298	1.7166	0.6512	-0.3256

Atom	O_TIP4P	H_TIP4P	L_TIP4P	N_N2	N_com
Charge(e)	0	0.52	-1.04	-0.4048	0.8096
Table S2 Simulation parameters

Property	Formula	values
Z	$Z^3 - \left(1 - \frac{bp}{RT}\right)Z^2 + \left(\frac{ap}{R^2T^2} - 3\frac{b^2p^2}{RT^2} - 2\frac{bp}{RT}\right)Z - \left(\frac{abp^3}{R^2T^2} - \frac{b^2p^2}{R^2T^2} - \frac{b^3p^3}{RT^2}\right) = 0$	–
a	$a = 0.45724 \frac{RT^2}{p_c} \left[1 + (0.37464 + 1.54226\omega - 0.26992\omega^3)(1 - T_c^{0.5})\right]^2$	–
b	$b = 0.07779 \frac{RT}{p_c}$	–
Λ	$\Lambda = \sqrt{\frac{h^2}{2\pi mkT}}$	$h = 6.626 \times 10^{-34}$ Js
		$m_{co2} = 7.307 \times 10^{-26}$ kg
		$m_{N_2} = 3.32 \times 10^{-27}$ kg

References

(1) D.Y. Peng and D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam. 1976, 15, 59-64.