Research article

Efficacy of different protein descriptors in predicting protein functional families

Serene AK Ong¹, Hong Huang Lin¹, Yu Zong Chen¹, Ze Rong Li² and Zhiwei Cao*³

Address: ¹Department of Pharmacy, National University of Singapore, Blk S16, Level 8, 08-14, 3 Science Drive 2, Singapore 117543, Singapore, ²College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China and ³Shanghai Center for Bioinformatics Technology, 100, Qinzhou Road, Shanghai 200235 P.R. China

Email: Serene AK Ong - renes7@gmail.com; Hong Huang Lin - g0301167@nus.edu.sg; Yu Zong Chen - phacyz@nus.edu.sg; Ze Rong Li - lilaojiu@yahoo.com; Zhiwei Cao* - zwcao@scbit.org

* Corresponding author

Abstract

Background: Sequence-derived structural and physicochemical descriptors have frequently been used in machine learning prediction of protein functional families, thus there is a need to comparatively evaluate the effectiveness of these descriptor-sets by using the same method and parameter optimization algorithm, and to examine whether the combined use of these descriptor-sets help to improve predictive performance. Six individual descriptor-sets and four combination-sets were evaluated in support vector machines (SVM) prediction of six protein functional families.

Results: The performance of these descriptor-sets were ranked by Matthews correlation coefficient (MCC), and categorized into two groups based on their performance. While there is no overwhelmingly favourable choice of descriptor-sets, certain trends were found. The combination-sets tend to give slightly but consistently higher MCC values and thus overall best performance such that three out of four combination-sets show slightly better performance compared to one out of six individual descriptor-sets.

Conclusion: Our study suggests that currently used descriptor-sets are generally useful for classifying proteins and the prediction performance may be enhanced by exploring combinations of descriptors.

Background

Sequence-derived structural and physicochemical descriptors have frequently been used in machine learning prediction of protein structural and functional classes [1-5], protein-protein interactions [6-9], subcellular locations [10-16], peptides containing specific properties [17,18], microarray data [19] and protein secondary structure prediction [20]. These descriptors serve to represent and distinguish proteins or peptides of different structural, functional and interaction profiles by exploring their distinguished features in compositions, correlations, and distributions of the constituent amino acids and their structural and physicochemical properties [2,8,21,22]. There is thus a need to comparatively evaluate the effectiveness of these descriptor-sets for predicting different functional problems by using the same machine learning method and parameter optimization algorithm. Moreover, it is of interest to examine whether combined use of
these descriptor-sets help to improve predictive performance.

This work is intended to evaluate the effectiveness of a total of six individual descriptor-sets and four combination-sets (Table 1) in the prediction of several protein functional families by using support vector machine (SVM). Six sets of individual descriptors and three combination-sets have been separately utilized in machine learning prediction of different protein functional and structural properties, all of which have shown impressive predictive performances [22-24]. The six individual sets are amino acid compositions [23] (Set D1), dipeptide compositions [24] (Set D2), normalized Moreau-Broto autocorrelation [25,26] (Set D3), Moran autocorrelation [27] (Set D4), Geary autocorrelation [28] (Set D5), and the composition, transition and distribution of structural and physicochemical properties [2-6,8,17,29,30] (Set D6). The three combination-sets are quasi sequence order formed by weighted sums of amino acid compositions and physicochemical coupling correlations [10,11,18,31] (Set D7), pseudo amino acid composition (PseAA) formed by weighted sums of amino acid compositions and physicochemical square correlations [23,32] (Set D8), and combination of amino acid compositions and dipeptide compositions (Set D9) [24,33]. In this work, we also considered a fourth combination-set that combines descriptor-sets D1 through D8 (Set D10).

The protein functional families studied here include enzyme EC2.4 [34-37], G protein-coupled receptors [38-40], transporter TC8.A [41], chlorophyll [42], lipid synthesis proteins involved in lipid synthesis [43], and rRNA-binding proteins. These six protein families were selected for testing the descriptor-sets based on their functional diversity, sample size and the range of reported family member prediction accuracies [2]. The reported prediction accuracies for these families are generally lower than those of other families [3], which are ideal for critically evaluating the effectiveness of these descriptor-sets; having a lower accuracy should enable a better differentiation of the performance of the various classes. SVM was used as the machine learning method for predicting these functional families because it is a popular method that has consistently been shown better performances than other machine learning methods [44,45]. As this work is intended as a benchmarking study of the performance of various classes of descriptors, other than automatic optimization of results that is an integral part of the SVM programs, such as sigma value scanning, no further attempt was made to optimize the prediction performance of any descriptor class or of any dataset by manually tuning the parameters. Hence, prediction results reported in this paper might differ from those of reported studies.

EC2.4 includes glycosyltransferases that catalyze the synthesis of glycoconjugates and are involved in post-translational modification of proteins (glycosylation). Increased levels of glycosyltransferases have been found in disease states and inflammation [46,47]. TC8.A consists of auxiliary transport proteins that facilitate transport across membranes, which play regulatory and structural roles [48]. GPCR represents G-protein coupled receptors that transduce signals for inducing cellular responses, and members of GPCR are of great pharmacological importance, as 50–60% of approved drugs elicit their therapeut-ic effect by selectively addressing members of the GPCR family [49-52]. Chlorophyll proteins are essential for harvesting solar energy in photosynthetic antenna systems [53]. Lipid synthesis proteins play central roles in such processes as metabolism, and deficiencies or altered functioning of lipid binding proteins are associated with disease states such as obesity, diabetes, atherosclerosis, hyperlipidemia and insulin resistance [54]. rRNA-binding proteins play central roles in the post-transcriptional regulation of gene expression [55,56], and their binding capabilities are mediated by certain RNA binding domains and motifs [57-60].

Results and Discussion

The statistics of the six datasets are given in Table 2. Training and prediction statistics for each of the studied descriptor-sets are given in Table 3. Independent validation datasets were used to test the prediction accuracies. Among the 5-fold cross-validation test, independent dataset test and jackknife test, the jackknife is deemed the most rigorous [61]; however, it would have taken a lot of time to use SVM to conduct the jackknife test, thus as a compromise, here we adopted the independent dataset test. The program CDHIT [62-64] was used to remove redundancy at both 90% and 70% sequence identity so to avoid bias, subsequently, the datasets are tested again with the independent evaluation sets and the statistics are given in Table 4. It should be emphasized that the performance evaluation for the studied descriptor-sets are based only on the datasets studied in this work and the conclusions from this study might not be readily extended to other datasets.

The performance of the ten descriptor-sets were ranked by the Matthews correlation coefficient (MCC) values of the respective SVM prediction of the six functional families, which are given in Table 5. The computed MCC scores for these descriptor-sets are in the range of 0.64~0.97 for all protein families studied. Accordingly, the performance of these descriptor-sets is categorized into two groups based on their MCC values: 'Exceptional' (≥0.85) and 'Good' (≤0.85). Moreover, these descriptor-sets are aligned in the order of their MCC values with "=" being of equal values and ">" indicating that one is better than the other. It is
Table 1: Protein descriptors commonly used for predicting protein functional families.

Sets	Descriptor-sets	No. of descriptor(s)	No. of components	Type	Physicochemical properties	Refs
D1	Amino acid composition	1	20	Sequence composition	Hydrophobicity scale, average flexibility index, polarizability parameter, free energy of amino acid solution in water, residue accessible surface area, amino acid residue volume, steric parameters, relative mutability	[23]
D2	Dipeptide composition	1	400	Sequence composition	Hydrophobicity scale, average flexibility index, polarizability parameter, free energy of amino acid solution in water, residue accessible surface area, amino acid residue volume, steric parameters, relative mutability	[24]
D3	Normalized Moreau – Broto autocorrelation	8	240	Correlation of physicochemical properties	Hydrophobicity scale, average flexibility index, polarizability parameter, free energy of amino acid solution in water, residue accessible surface area, amino acid residue volume, steric parameters, relative mutability	[25, 26]
D4	Moran autocorrelation	8	240	Correlation of physicochemical properties	Hydrophobicity scale, average flexibility index, polarizability parameter, free energy of amino acid solution in water, residue accessible surface area, amino acid residue volume, steric parameters, relative mutability	[27]
D5	Geary autocorrelation	8	240	Square correlation of physicochemical properties	Hydrophobicity scale, average flexibility index, polarizability parameter, free energy of amino acid solution in water, residue accessible surface area, amino acid residue volume, steric parameters, relative mutability	[28]
D6	Descriptors of composition, transition and distribution	21	147	Distribution and variation of physicochemical properties	Hydrophobicity, Van der Waals volume, polarity, polarizability, charge, secondary structures, solvent accessibility	[2-6, 8, 17, 29, 30]
D7	Quasi sequence order	4	160	Combination of sequence composition and correlation of physicochemical properties	Hydrophobicity, hydrophilicity, polarity, side-chain volume	[10, 11, 18, 31]
D8	Pseudo amino acid composition	3	298	Combination of sequence composition and square correlation of physicochemical properties	Hydrophobicity, hydrophilicity, side chain mass	[23, 32]
D9	Combination of amino acid and dipeptide composition	2	420	Combination of sequence compositions	Hydrophobicity, hydrophilicity, side chain mass	[23, 32]
D10	Combination of all eight sets of descriptors	54	1745	Combination of all sets	Hydrophobicity, hydrophilicity, side chain mass	[23, 32]

Table 2: Summary of datasets statistics, including size of training, testing and independent evaluation sets, and average sequence length.

Total	Training	Testing	Independent testing	Average sequence size					
P	N	P	N	P					
EC2.4	3304	14373	1382	5068	1022	5859	900	3446	460
GPCR	2819	21515	1580	7389	717	7333	522	6793	498
TC8.A	229	23096	94	7962	72	7962	63	7172	483
Chlorophyll	999	22997	356	7928	333	7928	310	7141	480
Lipid	2192	11537	850	5779	707	4483	635	1275	312
rRNA	5855	13770	2004	5246	1940	4953	1911	3571	376
Table 3: Dataset training statistics and prediction accuracies of six protein functional families. DS refers to descriptor set, where D1 = amino acid composition; D2 = dipeptide composition; D3 = Moreau-Broto autocorrelation; D4 = Moran autocorrelation; D5 = Geary autocorrelation; D6 = composition, transition and distribution descriptors; D7 = quasi sequence order; D8 = pseudo amino acid composition; D9 = combination of D1+D2; and D10 = combination of D1-D8. Predicted results given as TP (true positive), FN (false negative), TN (true negative), FP (false positive), Sen (sensitivity), Spec (specificity), Q (overall accuracy) and MCC (Matthews correlation coefficient).

Protein family	Descriptor set	Training set	Testing set	Independent evaluation set
	P N	P N	P N	Q(%) MCC
	TP FN TN FP TP FN TN FP Sen(%) Spec(%)			
EC2.4	D1 1249 2120 1154 1 9065 12 724 176 80.4 3244 202 94.1 91.3 0.74			
	D2 1319 2120 1080 5 8806 1 646 154 82.9 3349 97 97.2 94.1 0.80			
	D3 1105 1756 1295 4 9166 5 768 132 85.3 3394 52 98.5 95.8 0.87			
	D4 1239 2221 1161 4 8701 5 756 144 84.0 3365 81 97.7 94.8 0.84			
	D5 1242 2223 1160 2 8690 14 753 147 83.6 3391 55 98.4 95.4 0.85			
	D6 1214 2077 1145 4 8846 4 741 159 82.3 3383 63 98.2 94.9 0.84			
	D7 1293 2624 1072 39 8295 8 696 204 77.3 3270 176 94.9 91.3 0.73			
	D8 1226 3008 1177 1 7918 1 794 106 88.2 3387 59 98.3 96.2 0.88			
	D9 1275 2747 1129 0 8177 3 782 118 86.9 3367 79 97.7 95.5 0.86			
	D10 1228 3254 1176 0 7672 1 798 102 88.7 3397 49 98.6 96.5 0.89			
GPCR	D1 1590 7458 1847 1 14166 3 505 17 96.7 6735 58 99.1 99.0 0.93			
	D2 564 711 1728 3 14121 5 510 12 97.7 6737 56 99.2 99.1 0.93			
	D3 1169 4628 1122 4 10208 1 507 15 97.1 6737 56 99.2 99.0 0.93			
	D4 1257 4474 1037 1 10363 0 499 23 95.6 6745 48 99.3 99.0 0.93			
	D5 1290 4724 997 8 10113 0 494 28 94.6 6734 59 99.1 98.8 0.91			
	D6 757 2060 1536 2 12777 0 503 19 96.3 6742 51 99.2 99.0 0.93			
	D7 812 2950 1482 1 11887 0 495 27 94.8 6735 58 99.6 99.3 0.95			
	D8 653 2171 1644 0 12550 1 501 21 96.0 6769 24 99.7 99.4 0.95			
	D9 1590 7458 693 12 7322 57 512 10 98.1 6735 58 99.1 99.1 0.93			
	D10 672 2454 1625 0 12268 0 502 20 96.2 6757 36 99.5 99.2 0.94			
TC8.A	D1 118 2858 49 0 13121 0 36 27 57.1 1843 2 99.9 98.5 0.73			
	D2 116 1100 50 0 14824 0 41 22 65.1 1843 2 99.9 98.7 0.78			
	D3 94 7962 53 0 14501 0 42 21 66.7 1842 3 98.6 98.7 0.78			
	D4 94 7962 47 0 11250 0 37 26 58.7 1843 2 99.9 98.5 0.74			
	D5 94 7962 47 0 11137 0 37 26 58.7 1843 2 99.9 98.5 0.74			
	D6 94 7962 64 0 15283 0 44 19 69.8 1843 2 99.9 98.9 0.81			
	D7 94 7962 59 0 15045 0 43 20 68.3 1843 2 99.9 98.9 0.80			
	D8 103 943 63 0 14981 0 48 15 76.2 1843 2 99.9 99.1 0.85			
	D9 114 810 52 0 15114 0 41 22 65.1 1843 2 99.9 98.7 0.78			
	D10 102 1068 64 0 14856 0 48 15 76.2 1843 2 99.9 99.1 0.85			
Chlorophyll	D1 356 7928 166 0 14297 0 182 128 58.7 1587 11 99.3 92.7 0.71			
	D2 4540 934 248 1 7927 1 228 82 73.6 1595 3 99.8 95.6 0.83			
	D3 425 603 264 1 15253 0 246 64 79.4 1594 4 99.8 96.4 0.86			
	D4 415 574 273 1 15282 0 247 65 79.7 1597 1 99.9 96.6 0.87			
	D5 429 615 259 1 15240 1 233 77 75.2 1597 1 99.9 95.9 0.84			
	D6 482 946 202 5 14910 0 205 105 66.1 1597 1 99.9 94.4 0.79			
	D7 394 3337 210 85 12517 2 178 132 57.4 1597 1 99.9 93.0 0.73			
	D8 371 1421 317 1 14435 0 255 55 82.3 1593 5 99.7 96.9 0.88			
	D9 399 1273 289 1 14582 1 249 61 80.3 1591 7 99.6 96.4 0.86			
	D10 381 1753 307 1 14102 1 251 59 81.0 1594 4 99.8 96.7 0.88			
Lipid synthesis	D1 849 2026 705 3 8229 7 470 165 74.0 1218 57 95.5 88.4 0.73			
Table 3: Dataset training statistics and prediction accuracies of six protein functional families. DS refers to descriptor set, where D1 = amino acid composition; D2 = dipeptide composition; D3 = Moreau-Broto autocorrelation; D4 = Moran autocorrelation; D5 = Geary autocorrelation; D6 = composition, transition and distribution descriptors; D7 = quasi sequence order; D8 = pseudo amino acid composition; D9 = combination of D1+D2; and D10 = combination of D1-D8. Predicted results given as TP (true positive), FN (false negative), TN (true negative), FP (false positive), Sen (sensitivity), Spec (specificity), Q (overall accuracy) and MCC (Matthews correlation coefficient).

Protein family	% HSR	DS	P	N	Q (%)	MCC
EC2.4	90	D1				
		D2				
		D3				
		D4				
		D5				
		D6				
		D7				
		D8				
		D9				
		D10				
	70	D1				
		D2				
		D3				
		D4				
		D5				
		D6				
		D7				
		D8				
		D9				
		D10				

Table 4: Dataset statistics and prediction accuracies after homologous sequence removal (HSR) at 90% and 70% identity. DS refers to descriptor set, where D1 = amino acid composition; D2 = dipeptide composition; D3 = Moreau-Broto autocorrelation; D4 = Moran autocorrelation; D5 = Geary autocorrelation; D6 = composition, transition and distribution descriptors; D7 = quasi sequence order; D8 = pseudo amino acid composition; D9 = combination of D1+D2; and D10 = combination of D1-D8. Predicted results given as TP (true positive), FN (false negative), TN (true negative), FP (false positive), Sen (sensitivity), Spec (specificity), Q (overall accuracy) and MCC (Matthews correlation coefficient).

Protein family	% HSR	DS	P	N	Q (%)	MCC
	90	D1				
		D2				
		D3				
		D4				
		D5				
		D6				
		D7				
		D8				
		D9				
		D10				
	70	D1				
		D2				
		D3				
		D4				
		D5				
		D6				
		D7				
		D8				
		D9				
		D10				
Table 4: Dataset statistics and prediction accuracies after homologous sequences removal (HSR) at 90% and 70% identity. DS refers to descriptor set, where D1 = amino acid composition; D2 = dipeptide composition; D3 = Moreau-Broto autocorrelation; D4 = Moran autocorrelation; D5 = Geary autocorrelation; D6 = composition, transition and distribution descriptors; D7 = quasi sequence order; D8 = pseudo amino acid composition; D9 = combination of D1+D2; and D10 = combination of D1-D8. Predicted results given as TP (true positive), FN (false negative), TN (true negative), FP (false positive), Sen (sensitivity), Spec (specificity), Q (overall accuracy) and MCC (Matthews correlation coefficient). (Continued)

	DS								
		D8	D9	D10	D1	D2	D3	D4	D5
		551	520	554	391	395	393	381	391
		131	162	128	13	9	11	23	13
		80.8	76.3	81.2	96.8	97.8	95.3	94.3	98.2
		331	331	334	672	674	673	672	672
		61	78	48	58	38	48	59	51
		98.2	97.7	98.6	99.1	99.4	99.1	99.1	99.1
		95.3	94.1	95.7	99.0	99.4	99.1	98.9	99.1
		0.83	0.78	0.84	0.91	0.94	0.92	0.90	0.92

GPCR 90

D1	391	13	96.8	6724	58	99.1	99.0	0.91	
D2	395	9	97.8	6744	38	99.4	99.4	0.94	
D3	393	11	97.3	6726	56	99.2	99.1	0.92	
D4	386	18	95.5	6734	48	99.3	99.1	0.92	
D5	381	23	94.3	6723	59	99.1	98.9	0.90	
D6	391	13	96.8	6731	51	99.3	99.1	0.92	
D7	382	22	94.6	6685	97	98.6	98.3	0.86	
D8	387	17	95.8	6752	30	99.6	99.4	0.95	
D9	391	13	96.8	6752	30	99.6	99.4	0.94	
D10	388	16	96.0	6762	20	99.7	99.5	0.95	

TC8.A 90

D1	307	8	97.5	6695	58	99.1	99.1	0.90	
D2	309	6	98.1	6715	38	99.4	99.4	0.93	
D3	306	9	97.1	6697	56	99.2	99.1	0.90	
D4	301	14	95.6	6705	48	99.3	99.1	0.90	
D5	198	17	94.6	6694	59	99.1	98.9	0.88	
D6	307	8	97.5	6702	51	99.2	99.2	0.91	
D7	296	19	94.0	6656	97	98.6	98.4	0.83	
D8	301	14	95.6	6729	24	99.6	99.5	0.94	
D9	307	8	97.5	6723	30	99.6	99.5	0.94	
D10	302	13	95.9	6733	20	99.7	99.5	0.95	

Chlorophyll 90

D1	159	127	55.6	1594	8	99.5	92.9	0.70	
D2	205	81	71.7	1598	4	99.8	95.5	0.82	
D3	224	62	78.3	1599	3	99.8	96.6	0.86	
D4	222	64	77.6	1599	3	99.8	96.5	0.86	
D5	211	75	73.8	1598	4	99.8	95.8	0.83	
D6	182	104	63.6	1594	8	99.5	94.1	0.75	
D7	159	127	55.6	1595	9	99.4	92.8	0.69	
D8	233	53	81.5	1595	7	99.6	96.8	0.87	
D9	224	62	78.3	1594	8	99.5	96.3	0.85	
Table 4: Dataset statistics and prediction accuracies after homologous sequences removal (HSR) at 90% and 70% identity. DS refers to descriptor set, where D1 = amino acid composition; D2 = dipeptide composition; D3 = Moreau-Broto autocorrelation; D4 = Moran autocorrelation; D5 = Geary autocorrelation; D6 = composition, transition and distribution descriptors; D7 = quasi sequence order; D8 = pseudo amino acid composition; D9 = combination of D1+D2; and D10 = combination of D1-D8. Predicted results given as TP (true positive), FN (false negative), TN (true negative), FP (false positive), Sen (sensitivity), Spec (specificity), Q (overall accuracy) and MCC (Matthews correlation coefficient). (Continued)

DS	Lipid synthesis	rRNA binding						
	90%	70%						
	90%	70%						
D1	113	118	48.9	1578	5	99.5	93.1	0.65
D2	155	76	67.1	1582	3	99.8	96.5	0.84
D3	171	60	74.0	1583	3	99.8	96.5	0.84
D4	171	60	74.0	1583	4	99.8	95.9	0.81
D5	161	70	69.7	1582	4	99.8	95.9	0.81
D6	137	94	59.3	1578	8	99.5	94.4	0.72
D7	114	117	49.4	1575	11	99.3	93.0	0.64
D8	182	49	78.8	1579	7	99.6	96.9	0.85
D9	172	59	74.5	1578	8	99.5	96.3	0.82
D10	178	53	77.1	1581	5	99.7	96.8	0.85
D1	403	149	73.0	1213	59	95.4	88.6	0.72
D2	431	121	78.1	1256	16	98.7	92.5	0.81
D3	436	116	79.0	1268	4	99.7	93.4	0.84
D4	421	131	76.3	1270	2	99.8	92.7	0.83
D5	416	136	75.4	1270	2	99.8	92.4	0.82
D6	449	103	81.3	1269	3	99.8	94.2	0.86
D7	435	117	78.8	1269	3	99.8	93.4	0.84
D8	423	129	76.6	1269	3	99.8	93.4	0.84
D9	449	103	81.3	1265	7	99.9	92.9	0.83
D10	454	98	82.3	1265	7	99.5	94.2	0.86
D1	1407	91	93.9	3502	59	95.4	97.0	0.93
D2	1437	61	95.9	3510	51	98.6	97.8	0.95
D3	1403	95	93.7	3529	32	99.1	97.5	0.93
D4	1347	151	89.9	3491	70	98.0	95.6	0.89
D5	1347	151	89.9	3533	28	99.2	96.5	0.91
D6	1451	47	96.9	3537	24	99.3	98.6	0.97
D7	1358	140	90.7	3429	132	96.3	94.6	0.87
D8	1442	56	96.3	3531	30	99.2	98.3	0.96
D9	1436	62	95.9	3518	43	98.8	97.9	0.95
D10	1449	49	96.7	3537	24	99.3	98.6	0.97
D1	924	83	91.8	3454	59	98.3	97.0	0.93
D2	952	55	94.5	3463	50	98.6	97.7	0.93
D3	920	87	91.4	3483	30	99.2	97.4	0.92
D4	907	100	90.1	3444	69	98.0	96.3	0.89
D5	908	99	90.2	3485	28	99.2	97.2	0.92
D6	963	44	95.6	3493	20	99.4	98.6	0.96
D7	917	90	91.1	3382	131	96.3	95.1	0.86
D8	654	53	94.7	3435	29	99.2	98.2	0.95
D9	950	57	94.3	3471	42	98.8	97.8	0.94
D10	960	47	95.3	3490	23	99.4	98.5	0.96
noted that, as the differences of many of these MCC values are rather small, such alignment is likely superficial to some extent and may not best reflect the real ranking of performance. Overall, the performances of these descriptor-sets are not significantly different, there is no overwhelmingly preferred descriptor-set, and SVM prediction performance appears to be highly dependent on the dataset.

As shown in Table 3 and Table 4, for many of the studied datasets, the differences in prediction accuracies and MCC values between different descriptor-sets are small. In particular, for GPCR and rRNA binding proteins, the results of almost all descriptor-sets are in the ‘Exceptional’ category. Examining the range of MCC values of the descriptor-sets for each of the studied protein families (after removal of 70% homologous sequences), the differences between the largest and smallest MCC values are, in order of increasing magnitude: 0.10, 0.12, 0.14, 0.16, 0.21 and 0.21 for rRNA binding proteins, GPCR, TC8.A, lipid synthesis proteins, chlorophyll proteins and EC.2.4 families respectively. Given that a difference of 0.10 and 0.20 in MCC values translates to an approximate 4% and 7% difference in overall prediction accuracy, this separation is not large indeed.

Though the dataset is a more important determinant of prediction performance than the choice of descriptor class, a few general trends could be observed. Three out of four of the combination-sets tend to exhibit slightly but consistently higher MCC values for the protein families studied in this work. These sets are Sets D8, D9 and D10. In contrast, only one out of six individual sets, Set D6, tend to exhibit slightly but consistently higher MCC values for the protein families studied in this work. Therefore, statistically speaking, it appears that the use of combination-sets tend to give slightly better prediction performance than the use of individual-sets.

When each class was examined individually in this study, we find that the combination of amino acid composition and dipeptide composition (Set D9) tends to give consistently better results than that of the individual descriptor-sets (Set D1 and Set D2). It has been reported that one drawback of amino acid composition descriptors is that the same amino acid composition may correspond to diverse sequences as sequence order is lost [24,33]. This sequence order information can be partially covered by considering dipeptide composition (Set D2). On the other hand, dipeptide composition lacks information concerning the fraction of the individual residue in the sequence, thus, a combination-set is expected to give better prediction results [24,33,65,66].

Using all descriptor-sets (Set D10) generally, but not always, gives the best result, which is consistent with the

Protein family	% HR	S*	Prediction performance	
EC2.4			**Exceptional > 0.85**	**Good = 0.85**
NR			D10 > D8 > D9 > D3	D5 > D4 = D6 > D2 > D1 > D7
90%			D10	D8 > D3 = D9 > D5 > D2 = D4 > D6 > D7 > D1
70%				D10 > D8 > D3 = D9 > D5 > D2 > D4 > D6 > D7 > D1
GPCR			D8 > D10 > D1 > D2 > D9 > D3 > D4 > D6 > D1 > D5 > D7	D9 > D5 > D2 > D6 > D1 > D7
NR				D8 > D10 > D9 > D7 > D2 = D3 = D4 = D5 > D9 > D1
90%				D8 > D10 > D6 > D2 > D7 > D9 > D3 > D4 > D5 > D1
70%				D8 > D10 > D6 > D2 > D7 > D9 > D3 > D4 > D5 > D1
TC8.A			D10 > D8 > D9 > D2 > D6 > D1 > D3 = D4 > D5	D7
NR				D8 = D10 > D6 > D7 > D2 = D3 = D4 = D5 > D9 > D1
90%				D8 = D10 > D6 > D2 > D7 > D9 > D3 > D4 > D5 > D1
70%				D8 = D10 > D6 > D2 > D7 > D9 > D3 > D4 > D5 > D1
Chlorophyll			D10 > D6	D7
NR				D7
90%				D7
70%				D7
Lipid synthesis			D10 > D6	D7
NR				D7
90%				D7
70%				D7
rRNA binding			D10 > D8 > D9 > D2 > D3 > D6 > D1 > D7 > D4 > D5	D5
NR				D5
90%				D5
70%				D5

*HSR: homologous sequence removed
NR: (homologous sequences) Not Removed
findings on the use of molecular descriptors for predicting compounds of specific properties. [67,68] For instance, Xue et al. found that feature selection methods are capable of reducing the noise generated by the use of overlapping and redundant molecular descriptors, and in some cases, improving the accuracy of SVM classification of pharmacokinetic behaviour of chemical agents [69]. In our study, for example, the three autocorrelation descriptor-sets (Sets D3, D4 and D5) all utilize the same physicochemical properties, only differing in the correlation algorithm. The use of all available descriptors likely results in the inclusion of partially redundant information, some of which may to some extent become noise that interferes with the prediction results or obscures relevant information. Based on the results of previous studies [69], it is possible that feature selection methods may be applied for selecting the optimal set of descriptors to improve prediction accuracy as well as computing efficiency for predicting protein functional families.

Conclusion
The effectiveness of ten protein descriptor-sets in six protein functional family prediction using SVM was evaluated. Corroborating with previous work done on chemical descriptors [67,68,70-76] and protein descriptors [4,21,30,32,35,43,77,78], we found that the descriptor-sets evaluated in this paper, which comprise some of the commonly used descriptors, generally return good results and do not differ significantly. In particular, the use of combination descriptor-sets tends to give slightly better prediction performance than the use of individual descriptor-sets. While there seems to be no preferred descriptor-set that could be utilized for all datasets as prediction results is highly dependent on datasets, the performance of protein classification may be enhanced by selection of optimal combinations of descriptors using established feature-selection methods [79,80]. Incorporation of appropriate sets of physicochemical properties not covered by some of the existing descriptor-sets may also help improving the prediction performance.

Methods

Datasets
The datasets were obtained from SwissProt [81], except for TC8.A, which was downloaded from Transport Classification Database (TCDB) [41]. These datasets were chosen for their functional diversity, sample size and the range of reported family member prediction accuracies. As SVM is essentially a statistical method, the datasets cannot be too small; yet it would also be convenient for the purposes of this study if they were not too large as to be unwieldy computationally. These downloaded datasets were used to construct the positive dataset for the corresponding SVM classification system. A negative dataset, representing non-class members, was generated by a well-established procedure [2,3,21,30] such that all proteins was grouped into domain families [82] in the PFAM database, and the representative proteins of these families unrelated to the protein family being studied were chosen as negative samples.

These proteins, positive and negative, were further divided into separate training, testing and independent evaluation sets by the following procedure: First, proteins were converted into descriptor vectors and then clustered using hierarchical clustering into groups in the structural and physicochemical feature space [83], where more homologous sequences will have shorter distances between them, and the largest separation between clusters was set to a ceiling of 20. One representative protein was randomly selected from each group to form a training set that is sufficiently diverse and broadly distributed in the feature space. Another protein within the group was randomly selected to form the testing set. The selected proteins from each group were further checked to ensure that they are distinguished from the proteins in other groups. The remaining proteins were then designated as the independent evaluation set, also checked to be at a reasonable level of diversity. Fragments, defined as smaller than 60 residues, were discarded. This selection process ensures that the training, testing and evaluation sets constructed are sufficiently diverse and broadly distributed in the feature space. Though an analysis of the ‘similar’ proteins in each cluster showed that the majority of the proteins in a cluster are quite non-homologous, the program CDHIT (Cluster Database at High Identity with Tolerance) [62-64] was further used after the SVM model was trained to remove redundancy at both 90% and 70% sequence identity, so as to avoid bias as far as possible. CDHIT removes homologous sequences by clustering the protein dataset at some user-defined sequence identity threshold, for example 90%, and then generating a database of only the cluster representatives, thus eliminating sequences with greater than 90% identity. The statistical details are given in Tables 2 and 3.

Algorithms for generating protein descriptors
Ten sets of commonly used composition and physicochemical descriptors were generated from the protein sequence (see Table 1). These descriptors can be computed via the PROFEAT server [22].

Amino acid composition (Set D1) is defined as the fraction of each amino acid type in a sequence

\[f(r) = \frac{N_r}{N}, \] (1)
where $r = 1, 2, ..., 20$, N_r is the number of amino acid of type r, and N is the length of the sequence. Dipeptide composition (Set D2) is defined as

$$f_r(r, s) = \frac{N_{rs}}{N - 1},$$

where $r, s = 1, 2, ..., 20$, N_{rs} is the number of dipeptides composed of amino acid types r and s.

Autocorrelation descriptors are a class of topological descriptors, also known as molecular connectivity indices, describe the level of correlation between two objects (protein or peptide sequences) in terms of their specific structural or physicochemical property [84], which are defined based on the distribution of amino acid properties along the sequence [85]. Eight amino acid properties are used for deriving the autocorrelation descriptors: hydrophobicity scale [86]; average flexibility index [87]; polarizability parameter [88]; free energy of amino acid solution in water [88]; residue accessible surface areas [89]; amino acid residue volumes [90]; steric parameters [91]; and relative mutability [92].

These autocorrelation properties are normalized and standardized such that

$$P'_r = \frac{P_r - \bar{P}}{\sigma},$$

where \bar{P} is the average value of a particular property of the 20 amino acids. \bar{P} and σ are given by

$$\bar{P} = \frac{\sum_{i=1}^{20} P_i}{20},$$

and

$$\sigma = \sqrt{\frac{1}{20} \sum_{r=1}^{20} (P_r - \bar{P})^2}.$$

Moreau-Broto autocorrelation descriptors (Set D3) [84,93] are defined as

$$AC(d) = \sum_{i=1}^{N-d} P_i P_{i+d},$$

where $d = 1, 2, ..., 30$ is the lag of the autocorrelation, and P_i and P_{i+d} are the properties of the amino acid at positions i and $i+d$ respectively. After applying normalization, we get

$$ATS(d) = \frac{AC(d)}{N - d}.$$

Moran autocorrelation descriptors (Set D4) [94] are calculated as

$$I(d) = \frac{1}{N - d} \sum_{i=1}^{N-d} (P_i - \bar{P})(P_{i+d} - \bar{P}) - \frac{1}{N} \sum_{i=1}^{N} (P_i - \bar{P})^2,$$

where d, P_i and P_{i+d} are defined in the same way as that for Moreau-Broto autocorrelation and \bar{P} is the average of the considered property P along the sequence:

$$\bar{P} = \frac{\sum_{i=1}^{N} P_i}{N}.$$

Geary autocorrelation descriptors (Set D5) [95] are written as

$$C(d) = \frac{1}{2(N - d)} \sum_{i=1}^{N-d} (P_i - P_{i+d})^2 - \frac{1}{N - 1} \sum_{i=1}^{N} (P_i - \bar{P})^2,$$

where d, \bar{P}, P_i, and P_{i+d} are defined as above. Comparing the three autocorrelation descriptors: while Moreau-Broto autocorrelation uses the property values as the basis for measurement, Moran autocorrelation utilizes property deviations from the average values, and Geary utilizes the square-difference of property values instead of vector-products (of property values or deviations). The Moran and Geary autocorrelation descriptors measure spatial autocorrelation, which is the correlation of a variable with itself through space.

The descriptors in Set D6 comprise of the composition (C), transition (T) and distribution (D) features of seven structural or physicochemical properties along a protein or peptide sequence [5,29]. The seven physicochemical properties [2,5,29] are hydrophobicity; normalized Van der Waals volume; polarity; polarizability; charge; secondary structures; and solvent accessibility. For each of these properties, the amino acids are divided into three groups such that those in a particular group are regarded to have approximately the same property. For instance, residues can be divided into hydrophobic (CVLIMFW), neutral (GASTPHY), and polar (RKEDQN) groups. C is defined as
the number of residues with that particular property divided by the total number of residues in a protein sequence. T characterizes the percent frequency with which residues with a particular property is followed by residues of a different property. D measures the chain length within which the first, 25%, 50%, 75% and 100% of the amino acids with a particular property are located respectively. There are 21 elements representing these three descriptors: 3 for C, 3 for T and 15 for D, and the protein feature vector is constructed by sequentially combining the 21 elements for all of these properties and the 20 residues, resulting in a total of 188 dimensions.

The quasi-sequence order descriptors (Set D7) [96] are derived from both the Schneider-Wrede physicochemical distance matrix [10,18,97] and the Grantham chemical distance matrix [31], between each pair of the 20 amino acids. The physicochemical properties computed include hydrophobicity, hydrophilicity, polarity, and side-chain volume. Similar to the descriptors in Set D6, sequence order descriptors can also be used for representing amino acid distribution patterns of a specific physicochemical property along a protein or peptide sequence [18,31]. For a protein chain of N amino acid residues $R_{1}R_{2}...R_{N}$, the sequence order effect can be approximately reflected through a set of sequence order coupling numbers

$$\tau_{d} = \sum_{i=1}^{N-d} (d_{i,i+d})^2,$$

(11)

where τ_d is the dth rank sequence order coupling number ($d = 1, 2, ..., 30$) that reflects the coupling mode between all of the most contiguous residues along a protein sequence, and $d_{i,i+d}$ is the distance between the two amino acids at position i and $i+d$. For each amino acid type, the type 1 quasi sequence order descriptor can be defined as

$$X_{f} = \frac{f_{r}}{\sum_{r=1}^{20} f_{r} + w \sum_{d=1}^{30} \tau_{d}},$$

(12)

where $r = 1, 2, ..., 20$, f_{r} is the normalized occurrence of amino acid type i and w is a weighting factor ($w = 0.1$). The type 2 quasi sequence order is defined as

$$X_{d} = \frac{w \tau_{d-20}}{\sum_{r=1}^{20} f_{r} + w \sum_{d=1}^{30} \tau_{d}},$$

(13)

where $d = 21, 22, ..., 50$. The combination of these two equations gives us a vector that describes a protein: the first 20 components reflect the effect of the amino acid composition, while the components from 21 to 50 reflect the effect of sequence order.

Similar to the quasi-sequence order descriptor, the pseudo amino acid descriptor (Set D8) is made up of a 50-dimensional vector in which the first 20 components reflect the effect of the amino acid composition and the remaining 30 components reflect the effect of sequence order, only now, the coupling number τ_{d} is now replaced by the sequence order correlation factor θ_j [32]. The set of sequence order correlated factors is defined as follows:

$$\theta_{\lambda} = \frac{1}{N-\lambda} \sum_{i=1}^{l-\lambda} \theta (R_{i}, R_{i+\lambda}),$$

(14)

where θ_j is the first-tier correlation factor that reflects the sequence order correlation between all of the λ-most contiguous residues along a protein chain ($\lambda = 1,..,30$) and N is the number of amino acid residues. $\Theta(R_{i}, R_{j})$ is the correlation factor and is given by

$$\Theta(R_{i}, R_{j}) = \frac{1}{2} \left\{ \left[H_{1}(R_{i}) - H_{1}(R_{j}) \right]^2 + \left[H_{2}(R_{i}) - H_{2}(R_{j}) \right]^2 + \left[M(R_{i}) - M(R_{j}) \right]^2 \right\},$$

(15)

where $H_{1}(R_{i})$, $H_{2}(R_{i})$ and $M(R_{i})$ are the hydrophobicity [98], hydrophilicity [99] and side-chain mass of amino acid R_{i} respectively. Before being substituted in the above equation, the various physicochemical properties $P(i)$ are subjected to a standard conversion,

$$P(i) = \frac{P^{0}(i) - \sum_{i=1}^{20} P^{0}(i)}{\sqrt{\sum_{i=1}^{20} \left(P^{0}(i) - \frac{P^{0}(i)}{20} \right)^2}}$$

(16)

This sequence order correlation definition [Eqs. (14), (15)] introduce more correlation factors of physicochemical effects as compared to the coupling number [Eq. (11)], and has shown to be an improvement on the way sequence order effect information is represented [32,35,100]. Thus, for each amino acid type, the first part of the vector is defined as

$$X_{r} = \frac{f_{r}}{\sum_{r=1}^{20} f_{r} + w \sum_{d=1}^{30} \theta_{j}},$$

(17)

where $r = 1, 2, ..., 20$, f_{r} is the normalized occurrence of amino acid type i and w is a weighting factor ($w = 0.1$), and the second part is defined as
The discriminant function of the hyperplane is defined as:

\[X_d = \frac{w \theta_d - 20}{\sum_{r=1}^{20} f_r + \sum_{d=1}^{30} \theta_d} \]

(18)

Support Vector Machines (SVM)

As the SVM algorithms have been extensively described in the literature [2,3,101], only a brief description is given here. In the case of a linear SVM, a hyperplane that separates two different classes of feature vectors with a maximum margin is constructed. One class represents positive samples, for example EC2.4 proteins, and the other the negative samples. This hyperplane is constructed by finding a vector \(w \) and a parameter \(b \) that minimizes \(||w||^2 \) that satisfies the following conditions: \(w \cdot x_i + b \geq 1 \), for \(y_i = 1 \) (positive class) and \(w \cdot x_i + b \leq -1 \), for \(y_i = -1 \) (negative class). Here \(x_i \) is a feature vector, \(y_i \) is the group index, \(w \) is a vector normal to the hyperplane, \(\frac{|b|}{||w||} \) is the perpendicular distance from the hyperplane to the origin, and \(||w||^2 \) is the Euclidean norm of \(w \). In the case of a nonlinear SVM, feature vectors are projected into a high dimensional feature space by using a kernel function such as

\[K(x_i, x_j) = e^{-\frac{||x_i - x_j||^2}{2\sigma^2}} \].

The linear SVM procedure is then applied to the feature vectors in this feature space. After the determination of \(w \) and \(b \), a given vector \(x \) can be classified by using \(\text{sign} \ (w \cdot x + b) \), a positive or negative value indicating that the vector \(x \) belongs to the positive or negative class respectively.

As a discriminative method, the performance of SVM classification can be accessed by measuring the true positive \(TP \) (correctly predicted positive samples), false negative \(FN \) (positive samples incorrectly predicted as negative), true negative \(TN \) (correctly predicted negative samples), and false positive \(FP \) (negative samples incorrectly predicted as positive) [4,102,103]. As the numbers of positive and negative samples are imbalanced, the positive prediction accuracy or sensitivity \(Q_p = TP/(TP+FN) \) and negative prediction accuracy or specificity \(Q_n = TN/(TN+FP) \) [101] are also introduced. The overall accuracy is defined as \(Q = (TP+TN)/(TP+FN+TN+FP) \). However, in some cases, \(Q \), \(Q_p \), and \(Q_n \) are insufficient to provide a complete assessment of the performance of a discriminative method [102,104]. Thus the Matthews correlation coefficient (MCC) was used in this work to evaluate the randomness of the prediction:

\[MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP+FN)(TP+FP)(TN+FP)(TN+FN)}} \]

(19)

where MCC \(\in [-1,1] \), with a negative value indicating disagreement of the prediction and a positive value indicating agreement. A zero value means the prediction is completely random. The MCC utilizes all four basic elements of the accuracy and it provides a better summary of the prediction performance than the overall accuracy.

Authors’ contributions

SAK generated the datasets, carried out the calculations and drafted the manuscript, HH generated the datasets and participated in the design of the study, ZR updated the descriptor generation program to calculate PseAA descriptors (ZR wrote the original descriptor generation program, introduced in previous works), YZ conceived of the study and corrected the manuscript, and YZ and ZW oversaw the design and coordination of this work and provided invaluable advice. All authors read and approved the final manuscript.

References

1. Karchin R, Kaprlish K, Haussler D: Classifying G-protein coupled receptors with support vector machines. Bioinformatics 2002, 18:147-159.
2. Cai CZ, Han LY, Ji ZL, Chen X, Chen YZ: SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res 2003, 31:3692-3697.
3. Cai CZ, Han LY, Ji ZL, Chen YZ: Enzyme family classification by support vector machines. Proteins 2004, 55:66-76.
4. Han LY, Cai CZ, Lo SL, Chung MC, Chen YZ: Prediction of RNA-binding proteins from primary sequence by a support vector machine approach. RNA 2004, 10:355-368.
5. Dubchak I, Muchnick I, Mayor C, Dralyuk I, Kim SH: Recognition of a protein fold in the context of the Structural Classification of Proteins (SCOP) classification. Proteins 1999, 35:401-407.
6. Bock JR, Gough DA: Predicting protein–protein interactions from primary structure. Bioinformatics 2001, 17:455-460.
7. Bock JR, Gough DA: Whole-proteome interaction mining. Bioinformatics 2003, 19:125-134.
8. Lo SL, Cai CZ, Chen YZ, Chung MC: Effect of training datasets on support vector machine prediction of protein-protein interactions. Proteomics 2005, 5:876-884.
9. Chou KC, Cai YD: Predicting protein-protein interactions from sequences in a hybridization space. J Proteome Res 2006, 5:316-322.
10. Chou KC: Prediction of protein subcellular localizations by incorporating quasi-sequence-order effect. Biochem Biophys Res Commun 2000, 278:477-483.
11. Chou KC, Cai YD: Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem Biophys Res Commun 2004, 320:1236-1239.
12. Chou KC, Shen HB: Hum-PLoc: A novel ensemble classifier for predicting human protein subcellular localization. Biochem Biophys Res Commun 2006, 347:150-157.
13. Chou KC, Shen HB: Large-scale plant protein subcellular location prediction. J Cell Biochem 2006, 100(3):665-678.
14. Bhasin M, Garg A, Raghava GP: PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005, 21(10):2522-2524.
15. Guo J, Lin Y, Liu Xj: GNBSL: a new integrative system to predict the subcellular location for Gram-negative bacteria proteins. Proteins 2006, 61(4):999-1050.

16. Guo J, Lin Y: TSSub: eukaryotic protein subcellular localization by extracting features from profiles. Bioinformatics 2006, 22(14):1784-1785.

17. Cai J, Han LY, Lin HH, Zhang HL, Tang ZQ, Zheng Cj, Cao ZW, Chen YZ: Prediction of G-protein binding peptides of flexible lengths from sequence-derived structural and physicochemical properties. Mol Immunol 2007, 44:866-877.

18. Schneider G, Wrede P: The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptide cleavage site. Biophys J 1994, 66:355-344.

19. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M Jr, Haussler D: Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 2000, 97(1):262-267.

20. Ward JJ, McGuffin LJ, Buxton BF, Jones DT: Secondary structure prediction with support vector machines. Bioinformatics 2003, 19(13):1650-1655.

21. Han LY, Cai CZ, Ji ZL, Cao ZW, Cui J, Chen YZ: Predicting functional family of novel enzymes irrespective of sequence similarity: a statistical learning approach. Nuclei Acid Res 2004, 32:6437-6444.

22. Li ZR, Lin HH, Han LY, Jiang L, Chen X, Chen YZ: PROFPEAT: A web server for computing structural and physicochemical features of approaches and peptides from amino acid sequence. Nuclei Acid Res 2006, 34(Web Server issue):W32-37.

23. Chou KC, Cai YD: Prediction of membrane protein types by incorporating amphipathic effects. J Chem Inf Model 2005, 45(2):407-413.

24. Cao QB, Wang ZZ, Yan C, Du YH: Prediction of protein subcellular location using a combined feature of sequence. FEBS Lett 2005, 579(16):3444-3448.

25. Feng ZP, Zhang CT: Prediction of membrane protein types based on the hydrophobic index of amino acids. J Protein Chem 2000, 19:226-227.

26. Lin Z, Pan XM: Accurate prediction of protein secondary structural content. J Protein Chem 2001, 20:217-220.

27. Horne DS: Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. Biopolymers 1988, 27:451-477.

28. Sokal RR, Thomson BA: Population structure inferred by local spatial autocorrelation: an example from an Amerindian tribal population. Am J Phys Anthropol 2006, 129:121-131.

29. Dubchak I, I M, Holbrook SR, Kim SH: Prediction of protein folding class using global description of amino acid sequence. Proc Natl Acad Sci USA 1995, 92:8700-8704.

30. Lin HH, Han LY, Cai CZ, Ji ZL, Chen YZ: Prediction of transporter family from protein sequence by support vector machine approach. Proteins 2006, 62(1):238-247.

31. Grantham R: Amino acid difference formula to help explain protein evolution. Science 1974, 185:862-864.

32. Chou KC: Prediction of protein cellular attributes using pseudo amino acid composition. Proteins: Structure Function and Genetics 2001, 43:246-255.

33. Bhasin M, Raghava GP: Classification of nuclear receptors based on amino acid composition and dipeptide composition. J Biol Chem 2004, 279:23362-23366.

34. NC-IUBMB Enzyme Nomenclature. San Diego, California, Academic Press Inc 1992.

35. Chou KC: Using amphipathic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 2005, 21:10-19.

36. Chou KC, Cai YD: Predicting enzyme family class in a hybridization space. Protein Sci 2004, 13:2857-2863.

37. Chou KC, Efrood DW: Prediction of enzyme family classes. J Proteome Res 2003, 2:183-190.

38. Chou KC: Prediction of G-protein-coupled receptor classes. J Proteome Res 2005, 4:1413-1418.

39. Chou KC, Efrood DW: Bioinformatic analysis of G-protein-coupled receptors. J Proteome Res 2002, 1:429-433.

40. Bhasin M, Raghava GP: GPCRpred: an SVM-based method for prediction of families and subfamilies of G-protein coupled receptors. Nuclei Acid Res 2004, 32(Web Server issue):W383-389.

41. Saier MHJ, Tran CV, Barabote RD: TCDB: the Transporter Classification Database for membrane transport protein analyses and information. In Nucleic Acid Res Volume 34. Issue Database issue Saier Lab Bioinformatics Group: 2006:D181-D186.

42. Suzuki JT, Bollivar DW, Bauer CE: Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet 1997, 31:61-89.

43. Lin HH, Han LY, Zhang HL, Zheng Cj, Xie B, Chen YZ: Prediction of the functional class of lipid binding proteins from sequence-derived properties irrespective of sequence similarity. J Lipid Res 2006, 47:824-831.

44. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M Jr, Haussler D: Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 2000, 97(1):262-267.

45. Burbridge R, Trotter M, Buxton B, Holden S: Drug design by membrane binding learning as facilitator vector machines for pharmacological data analysis. Comput Chem 2001, 25(5):327-337.

46. Baenziger JU: Protein-specific glycosyltransferase: how and why do they do it? FASEB J 1994, 8(13):1019-1025.

47. Kapitonov D, Tu RK: Conserved domains of glycosyltransferases. Glycobiology 2003, 13:541-551.

48. Busch W, Saier MHJ: The Transporter Classification (TC) system. Crit Rev Biochem Mol Biol 2002, 37(5):287-337.

49. Drens J: Genomic sciences and the medicine of tomorrow. Nat Biotechnol 1996, 14(11):1516-1518.

50. Gueretmann TB, Nurnberg B, Schultz G: Receptors and G proteins as primary components of transmembrane signal transduction. Part 1. G-protein-coupled receptors: structure and function. J Mol Med 1995, 73(2):51-63.

51. Muller G: Towards 3D structures of G protein-coupled receptors: a multidisciplinary approach. Curr Med Chem 2000, 7(9):861-888.

52. Paulson JC, Colley KJ: Glycosyltransferase. J Biol Chem 1989, 264(30):17645-17616.

53. Beale SI, Weinstein JD: Biochemistry and regulation of photosynthetic pigment formation in plants and algae. In Biosynthesis of Tryptophylroses Edited by: Jordan PM. Amstamder , Elsevier; 1991:155-235.

54. Glatz JF, Luiken JJ, van Bilsen M, van der Vusse GJ: Cellular lipid binding proteins as facilitators and regulators of lipid metabolism. Mol Cell Biochem 2002, 239:3-7.

55. Burd CG, Dreyfuss G: Conserved structures and diversity of functions of RNA-binding proteins. Science 1994, 265:615-621.

56. Kiledjian M, Burd CG, Portman OS, Gorlich M, Dreyfuss G: Structure and function of the GRP78 proteins. In RNA-Protein Interactions: Frontiers in Molecular Biology Edited by: Nagai K, Mattaj IW, Oxford , IRL Press; 1994:124-147.

57. Draper DE: Themes in RNA-protein recognition. J Mol Biol 1999, 293:255-270.

58. Fierro-Monti I, Mathews MB: Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem Sci 2000, 25:241-246.

59. Peculis BA: RNA-binding proteins: If it looks like a sn(o)RNA. Curr Biol 2000, 10:R916-R918.

60. Perez-Canadiillas JM, Varani JG: Recent advances in RNA-protein recognition. Curr Opin Struct Biol 2001, 11:53-58.

61. Chou KC, Zhang CT: Prediction of protein structural classes. Crit Rev Biochem Mol Biol 1995, 30(4):275-349.

62. Li WZ, Godzik A: Co-hit: a fast program for clustering and comparing large sets of proteins or nucleotide sequences. Bioinformatics 2006, 22:1658-1659.

63. Li WZ, Jaroszewski L, Godzik A: Clustering of highly homologous sequences to reduce the size of large protein database. Bioinformatics 2001, 17:128-137.

64. Li WZ, Jaroszewski L, Godzik A: Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics 2002, 18:77-82.

65. Garg A, Bhasin M, Raghava GP: Support vector machine-based method for subcellular localization of human proteins using amino acid compositions, their order, and similarity search. J Biol Chem 2005, 280(15):14427014432.

66. Bhasin M, Raghava GP: ELSPred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide com-
