The branching fraction of $\tau^- \to \pi^- K_s^0 K_s^0 (\pi^0)\nu_\tau$ decays

J. P. Lees, V. Poireau, and V. Tisserand
Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP),
Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France

J. Garra Tico and E. Grauges
Universitat de Barcelona, Facultat de Física, Departament ECM, E-08028 Barcelona, Spain

A. Palanoab
INFN Sezione di Baria; Dipartimento di Fisica, Università di Barib, I-70126 Bari, Italy

G. Eigen and B. Stugu
University of Bergen, Institute of Physics, N-5007 Bergen, Norway

D. N. Brown, L. T. Kerth, Yu. G. Kolomensky, and G. Lynch
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

H. Koch and T. Schroeder
Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

D. J. Asgeirsson, C. Hearty, T. S. Mattison, J. A. McKenna, and R. Y. So
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

A. Khan
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

V. E. Blinov, A. R. Buzykaev, V. P. Druzhinin, V. B. Golubev, E. A. Kravchenko, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, K. Yu. Todyshev, and A. N. Yushkov
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

M. Bondioli, D. Kirkby, A. J. Lankford, and M. Mandelkern
University of California at Irvine, Irvine, California 92697, USA

H. Atmacan, J. W. Gary, F. Liu, O. Long, and G. M. Vitug
University of California at Riverside, Riverside, California 92521, USA

C. Campagnari, T. M. Hong, D. Kovalskyi, J. D. Richman, and C. A. West
University of California at Santa Barbara, Santa Barbara, California 93106, USA

A. M. Eisner, J. Kroseberg, W. S. Lockman, A. J. Martinez, B. A. Schumm, and A. Seiden
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

D. S. Chao, C. H. Cheng, B. Echenard, K. T. Flood, D. G. Hitlin, P. Ongmongkolkul, F. C. Porter, and A. Y. Rakitin
California Institute of Technology, Pasadena, California 91125, USA

R. Andreassen, Z. Huard, B. T. Meadows, M. D. Sokoloff, and L. Sun
University of Cincinnati, Cincinnati, Ohio 45221, USA

P. C. Bloom, W. T. Ford, A. Gaz, U. Nauenberg, J. G. Smith, and S. R. Wagner
University of Colorado, Boulder, Colorado 80309, USA

R. Ayache and W. H. Toki
We present a study of $\tau^+ \rightarrow \pi^- K^0_S K^0_S (\pi^0)\nu_\tau$ and $\tau^- \rightarrow K^- K^0_S K^0_S (\pi^0)\nu_\tau$ decays using a dataset of 430 million τ lepton pairs, corresponding to an integrated luminosity of 468 fb$^{-1}$, collected with the BABAR detector at the PEP-II asymmetric energy e^+e^- storage rings. We measure branching fractions of (2.31 ± 0.04 ± 0.08) × 10$^{-4}$ and (1.60 ± 0.20 ± 0.22) × 10$^{-5}$ for the $\tau^- \rightarrow \pi^- K^0_S K^0_S \nu_\tau$ and $\tau^- \rightarrow \pi^- K^0_S K^0_S \pi^0 \nu_\tau$ decays, respectively. We find no evidence for $\tau^- \rightarrow K^- K^0_S K^0_S \nu_\tau$ and $\tau^- \rightarrow K^- K^0_S K^0_S \pi^0 \nu_\tau$ decays and place upper limits on the branching fractions of 6.3 × 10$^{-7}$ and 4.0 × 10$^{-7}$ at the 90% confidence level.

PACS numbers: 13.35.Dx, 14.60.Fg

The τ lepton can be used as a high-precision probe of the Standard Model (SM) and models of new physics. A recent BABAR paper, for example, presented a search for CP violation by measuring the decay-rate asymmetry of $\tau^- \rightarrow \pi^- K^0_S K^0_S (\pi^0)\nu_\tau$ decays [1]. One of the backgrounds in that analysis is $\tau^- \rightarrow \pi^- K^0_S K^0_S \nu_\tau$, which has a large uncertainty in the branching fraction [2]. The uncertainty in the background from $\tau^- \rightarrow \pi^- K^0_S K^0_S \nu_\tau$ decays was not a limitation of the decay-rate asymmetry measurement, but an improved measurement of the branching fraction and an understanding of the decay dynamics will be required for a future measurement at a high-luminosity B-factory.

This paper presents measurements of the branching fractions of $\tau^- \rightarrow \pi^- K^0_S K^0_S (\pi^0)\nu_\tau$ decays and the first search for $\tau^- \rightarrow K^- K^0_S K^0_S (\pi^0)\nu_\tau$ decays. In this work we use the $K^0_S \rightarrow \pi^+ \pi^- \nu_\tau$ decay mode. Here and throughout the paper, charge conjugation is implied.

Previously, ALEPH and CLEO measured the $\tau^- \rightarrow \pi^- K^0_S K^0_S \nu_\tau$ branching fraction to be $(2.6 \pm 1.0 \pm 0.5) \times 10^{-4}$ [3] and $(2.3 \pm 0.5 \pm 0.3) \times 10^{-4}$ [4], respectively. ALEPH set an upper limit on the $\tau^- \rightarrow \pi^- K^0_S K^0_S \pi^0 \nu_\tau$ branching fraction of 2×10^{-4} at the 95% confidence level [3].

The present analysis uses data recorded by the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider, operated at center-of-mass (CM) energies of 10.58 GeV and 10.54 GeV at the SLAC National Accelerator Laboratory. The BABAR detector is described in detail in Ref. [5]. In particular, charged particle momenta are measured with a five-layer double-sided silicon vertex tracker and a 40-layer drift chamber, both within a 1.5 T superconducting solenoidal magnet. Charged kaons and pions are
separated by ionization \(dE/dx\) measurements in the silicon vertex detector and the drift chamber in combination with an internally reflecting Cherenkov detector. An electromagnetic calorimeter made of thallium-doped cesium iodide crystals provides energy measurements for electrons and photons, and an instrumented flux return detector identifies muons. Based on an integrated luminosity of 468 fb\(^{-1}\), the data sample contains approximately 430 million \(\tau\)-pair events.

Simulated event samples are used to estimate the selection efficiency and purity of the data sample. The production of \(\tau\) pairs is simulated with the KK2F Monte Carlo (MC) event generator \([\ref{6}]\). Subsequent decays of the \(\tau\) lepton, continuum \(q\bar{q}\) events (where \(q = u, d, s, c\)), and final-state radiative effects are modeled with Tauola \([\ref{7}]\) and EvtGen \([\ref{8}]\), JETSET \([\ref{9}]\), and PHOTOS \([\ref{10}]\), respectively. Passage of the particles through the detector is simulated by Geant4 \([\ref{11}]\).

The \(\tau^{-} \rightarrow \pi^{-} K_{S}^{0} \nu_{\tau}\) decay is simulated with Tauola using \(\tau^{-} \rightarrow K^{-} K_{S}^{0} \nu_{\tau}\). The \(\tau^{-} \rightarrow \pi^{-} K_{S}^{0} K_{\pi}^{\pm} \nu_{\tau}\) decay is simulated with EvtGen using \(\tau^{-} \rightarrow K^{-} K_{\pi}^{\pm} \pi_{\nu_{\tau}}\) and \(\tau^{-} \rightarrow K^{*0} K_{\pi}^{\pm} \nu_{\tau}\). As we later show, the \(\pi^{-} K_{S}^{0} \nu_{\tau}\) and \(\pi^{-} K_{S}^{0} K_{\pi}^{\pm} \nu_{\tau}\) have a \(K^{*}(892)\) meson that is observed in the \(\pi^{0} K_{S}^{0}\) channel, and the \(\tau^{-} \rightarrow K^{*0} K_{\pi}^{+} \nu_{\tau}\) has a \(K^{*}(892)\) meson that is observed in \(\pi^{0} K_{S}^{0}\) channel.

The \(\tau\) pair is produced back-to-back in the \(e^{+} e^{-}\) CM frame. As a result, the decay products of the two \(\tau\) leptons can be separated from each other by dividing the event into two hemispheres – referred later as the “signal” hemisphere and the “tag” hemisphere – using the plane perpendicular to the event thrust axis \([\ref{12}]\). The event thrust axis is calculated using all charged particles and all photon candidates in the entire event.

We select events with one prompt track and two \(K_{S}^{0}\) \(\rightarrow \pi^{+} \pi^{-}\) candidates reconstructed in the signal hemisphere, and exactly one oppositely charged prompt track in the tag hemisphere. A prompt track is defined to be a track with its point of closest approach to the beam spot being less than 1.5 cm in the plane transverse to the \(e^{-}\) beam axis and less than 2.5 cm in the direction of the \(e^{-}\) beam axis. Tracks consistent with coming from a \(K_{S}^{0}\) or \(A\) decay, or from a \(\gamma\) conversion are not considered to be prompt tracks. The components of momentum transverse to the \(e^{-}\) beam axis for each of these two prompt tracks must be greater than 0.1 GeV/c in the laboratory frame. A \(K_{S}^{0}\) candidate is defined as a pair of oppositely charged pion candidates with an invariant mass between 0.475 and 0.525 GeV/c\(^2\) (see Fig.\([1]\)) further, the distance between the beam spot and the \(\pi^{+} \pi^{-}\) vertex must be at least three times its uncertainty (the di-pion pair will be referred to as the \(\pi^{0}\) candidate daughters).

The charged hadron must be identified as a charged pion or a charged kaon. The efficiency for selecting charged pions and kaons is approximately 95% and 90%, respectively. The probability of mis-identifying a charged pion (kaon) as a charged kaon (pion) is estimated to be 1% (5%).

The charged pion and kaon samples are divided into samples with zero and one \(\pi^{0}\) mesons. Events with two or more \(\pi^{0}\) mesons are rejected. The \(\pi^{0}\) candidate is reconstructed from two clusters of energy deposits in the electromagnetic calorimeter that have no associated tracks. The energy of each cluster is required to be greater than 0.115 GeV/c\(^2\) and 0.150 GeV/c\(^2\). The clusters in the electromagnetic calorimeter that are not associated with a \(\pi^{0}\) candidate are ignored in the analysis.

To reduce backgrounds from non-\(\tau\)-pair events, we require that the momentum of the charged particle in the tag hemisphere is less than 4 GeV/c in the CM frame and be identified as either an electron or a muon. For momenta above 1 GeV/c in the laboratory frame, electrons and muons are identified with efficiencies of approximately 92% and 70%, respectively \([\ref{13}]\). We also require the magnitude of the event thrust to be between 0.90 and 0.995.

The invariant mass of the charged hadron and the two \(K_{S}^{0}\) mesons is required to be less than 1.8 GeV/c\(^2\). For \(\tau^{-} \rightarrow \pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau}\) decays, we do not include the \(\pi^{0}\) in the mass calculation. The \(\pi^{-} K_{S}^{0} K_{S}^{0}\) invariant mass is shown in Figs. 2 and 3. The \(\pi^{-} K_{S}^{0} K_{S}^{0}\) invariant mass is also shown in Fig. 3. We also require that the pseudomass be less than 1.9 and 2.1 GeV/c\(^2\) for the \(\tau^{-} \rightarrow \pi^{-} K_{S}^{0} K_{S}^{0} \nu_{\tau}\) and \(\tau^{-} \rightarrow \pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau}\) samples, respectively (the \(\pi^{0}\) meson is included in the pseudomass calculation). The pseudomass is defined to be \(M_{\text{pseudo}} = \sqrt{M_{h}^{2} + 2\sqrt{(S - E_{h})}(E_{h} - P_{h})}\) where \(E_{h}\) and \(P_{h}\) are the energy and magnitude of the momentum of the hadronic final state in the laboratory frame \([\ref{14}]\).

The invariant mass distribution predicted by the MC for the hadronic final state particles and for their combinations do not perfectly describe the data. In particular, the peak of the \((\pi^{-} K_{S}^{0} K_{S}^{0})\) invariant mass distribution in the MC is found to peak approximately 5% lower than the peak observed in the data. To improve the modeling of the data we have weighted the \(\tau^{-} \rightarrow \pi^{-} K_{S}^{0} K_{S}^{0} \nu_{\tau}\) in Tauola using the Dalitz plot distribution for the \(\pi^{-} K_{S}^{0}\) invariant mass (shown for the data sample in Fig 2). The weighting function is from a two-dimensional (9 \times 9) matrix using \(M^{2}(\pi^{-} K_{S}^{0})\) with both \(\pi^{-} K_{S}^{0}\) combinations (the matrix is constructed to be symmetric). The weighted events are used in all the mass plots and we observe an improvement in the modeling of the data.

The branching fractions of the two charged pion modes are determined simultaneously to take into account the cross feed of each decay mode into the other sample. The branching fraction is

\[
B_{j} = \sum_{i} \epsilon_{j}^{-1} (N_{i}^{\text{data}} - N_{i}^{\text{bkgd}}) / (2N_{\tau\tau})
\]

where \(j\) represents the \(\tau^{-} \rightarrow \pi^{-} K_{S}^{0} K_{S}^{0} \nu_{\tau}\) and \(\tau^{-} \rightarrow \pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau}\) decay modes; \(i\) represents the \((\pi^{-} K_{S}^{0} K_{S}^{0})\) or \((\pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0})\) reconstruction modes; \(N_{i}^{\text{data}}\) and \(N_{i}^{\text{bkgd}}\) are the observed and background yields, respectively.
are the number of data and background events in the i-th data sample; ϵ_i^{-1} is the inverse of the selection efficiency matrix (ϵ_{ij} is the probability to select an event of type j with the selection criteria i); and $N_{\tau\tau}$ is the number of τ-pair candidates.

The columns in Table I give the number of data and background events for each reconstruction mode. Table I also gives the selection efficiency matrix, where the horizontal row gives the efficiency for selecting the true decay for each reconstructed mode. For example, the efficiency for selecting a true $\tau^+\to\pi^+K^0_SK^0\nu_\tau$ decay is $(4.93\pm0.02)\%$ and $(0.21\pm0.01)\%$ with the $(\pi^-K^0_SK^0)$ and $(\pi^-K^0_SK^0\pi^0)$ selection criteria, respectively.

We measure the $\tau^-\to\pi^-K^0_SK^0\nu_\tau$ and $\tau^-\to\pi^-K^0_SK^0\pi^0\nu_\tau$ branching fractions to be

\[
B(\tau^-\to\pi^-K^0_SK^0\nu_\tau) = (2.31\pm0.04\pm0.08) \times 10^{-4}
\]

\[
B(\tau^-\to\pi^-K^0_SK^0\pi^0\nu_\tau) = (1.60\pm0.20\pm0.22) \times 10^{-5}
\]

FIG. 1: The invariant mass of the two $K^0_S\to\pi^+\pi^-$ candidates in the $\tau^-\to\pi^-K^0_SK^0\nu_\tau$ (top) and $\tau^-\to\pi^-K^0_SK^0\pi^0\nu_\tau$ (bottom) samples after all selection criteria have been applied. The points are data and the histograms are the prediction of the Monte Carlo simulation. For both plots, the white histogram represents $\tau^-\to K^-K^0\nu_\tau$ decays, the blue and beige histogram shows the $\tau^-\to K^-K^0\pi^0\nu_\tau$ and $\tau^-\to K^-K^0\pi^0\nu_\tau$ decays, respectively. The red histogram is the $q\bar{q}$ background.

where the first error is statistical and the second is systematic. The statistical correlation parameter for the two measurements is found to be -0.21. The results have been corrected for the $K^0_S\to\pi^+\pi^-$ branching fraction $[2]$. The systematic uncertainties (see Table I) are divided into the selection efficiency, background, and common systematic components. The uncertainties on the elements of the efficiency matrix only include the errors specific to that decay and selection criteria. Uncertainties that are common to all matrix elements are included in the common systematic errors.

The efficiency for selecting $\tau^-\to\pi^-K^0_SK^0\nu_\tau$ events is found to be $(4.93\pm0.02)\%$ and $(0.21\pm0.01)\%$ for the samples with zero and one π^0 candidate, respectively. The uncertainty on the first efficiency is from the MC statistical error. The uncertainty on the second efficiency also includes the MC statistical error and an error that takes into account the uncertainty for selecting a π^0 meson in $\tau^-\to\pi^-K^0_SK^0\nu_\tau$ decays. The uncertainty for identifying a π^0 is estimated to be 6% and is determined by comparing the number of $\tau^-\to\pi^-K^0_SK^0\nu_\tau$ decays that have two neutral clusters in the data and MC samples where the invariant mass of the two neutral clusters must not be near the π^0 mass.

The efficiency for selecting $\tau^-\to\pi^-K^0_SK^0\pi^0\nu_\tau$ events is found to be $(3.04\pm0.10)\%$ and $(2.65\pm0.09)\%$ for the samples with zero and one π^0 candidate, respectively. The uncertainties include the MC statistical error and an uncertainty for the π^0 identification. The uncertainty for identifying a π^0 meson is estimated to be 3% based on studies involving a variety of data and MC control samples. We observe that the efficiency for selecting $\tau^-\to\pi^-K^0_SK^0\pi^0\nu_\tau$ decays with and without a π^0 is approximately equal, and hence we assign a 3% uncertainty on the efficiency for selecting $\tau^-\to\pi^-K^0_SK^0\pi^0\nu_\tau$ decays without reconstructing the π^0 meson.

The background in the charged pion modes is predicted by the MC simulation to be entirely from $e^+e^-\to q\bar{q}$ events. The background in the charged kaon modes is cross-feed from the charged pion modes where a charged pion is mis-identified as the charged kaon. The background in the charged pion sample is confirmed with data and MC simulation control samples. The control samples are created using the nominal selection criteria except that the invariant mass and pseudomass requirements are reversed to eliminate the τ-pair events and enhance $q\bar{q}$ events. The ratio of selected events in the data to MC control samples is found to be consistent with unity within 15% for both $\tau^-\to\pi^-K^0_SK^0\nu_\tau$ and $\tau^-\to\pi^-K^0_SK^0\pi^0\nu_\tau$ samples. The 15% value is added to the MC statistical uncertainty of the number of background events.

A number of systematic uncertainties are common to both the $\tau^-\to\pi^-K^0_SK^0\nu_\tau$ and $\tau^-\to\pi^-K^0_SK^0\pi^0\nu_\tau$ branching fractions measurements. They can be categorized into two components: tracking and particle identification reconstruction uncertainties, and topological se-
The red histogram is the theoretical prediction for the \(\rightarrow K^0\nu\ell\) resonance \((892)\) system, and the \((\pi^+K^-\pi^0)\) and \((K^-\pi^+\pi^-\pi^0)\) invariant mass distributions for events that pass the \(\rightarrow K^0\nu\) selection criteria. There are two entries per event in the Dalitz plot. The points are data and the histograms are the prediction of the Monte Carlo simulation. The signal decays are represented by the white histogram (\(\rightarrow K^+K^-\pi^0\)). The beige histogram shows the \(\rightarrow K^+K^-\pi^0\nu\) and \(\rightarrow K^+K^-\pi^+\pi^-\pi^0\nu\) decays. The red histogram is the \(q\bar{q}\) background. The mass plots use \(\rightarrow K^0\nu\) events that have been weighted based on the Dalitz plot distributions in the top left plot.

The tracking and particle identification reconstruction uncertainties include the uncertainty on the track reconstruction efficiency (0.5%). They also include the uncertainties on the efficiencies of the particle identification algorithms: lepton identification (combined electron and muon) (1.6%), charged pion particle identification (0.5%), and \(K^0\) identification (1.8% for two \(K^0\)). The particle identification algorithms used in this work are based on standard \(BaBar\) routines and the uncertainties are determined using control data and MC samples [3, 13]. The uncertainty on the efficiency for selecting \(\pi^0\) mesons is included in the elements of the selection efficiency matrix.

The topological selection uncertainties include a 2% uncertainty associated with the topological selection criteria that impose requirements that the prompt tracks be associated the primary vertex. Also included is the uncertainty in the product of the luminosity multiplied by the \(e^+e^-\rightarrow e^+e^-\) cross section (1%). The weighting of the invariant mass distribution for the \(\rightarrow K^0\nu\) MC decays does not change the number of events and, hence, does not alter the measured branching fractions.

In Fig. 2 we plot the \((\pi^-K^0S\nu)\), \((\pi^-K^0\pi^0\nu)\), and \((K^0\pi^0\nu)\) invariant mass distributions. The contribution of the \(K^0(892)\) resonance \((K^+\rightarrow K^0\nu)\) is observed in the \((\pi^-K^0)\) invariant mass plot and the Dalitz plot in Fig. 2.

The \(\rightarrow \pi^-K^0\nu\) branching fraction is in good agreement with the previous measurements of \(2.6 \pm 1.0 \pm 0.5 \times 10^{-4}\) [3] and \((2.3 \pm 0.5 \pm 0.3) \times 10^{-4}\) [4]. The theoretical prediction for the \(\rightarrow \pi^-K^0\nu\) branching fraction is \(4.8 \times 10^{-4}\) [10]. Decays involving a pion and two kaon mesons can have contributions from both axial and vector currents at the same time, and the vector contribution for \(\rightarrow \pi^-K^0\nu\) is estimated to be \(1.4 \times 10^{-4}\).

Assuming isospin symmetry [17] and using other measurements, we can estimate the \(\rightarrow \pi^-K^0\nu\) branching fraction. The \(\rightarrow \pi^-K^0\nu\) and \(\rightarrow \pi^-K^+\nu\) branching fractions are equal if isospin is an exact symmetry (the \(\rightarrow \pi^-K^0\nu\) and \(\rightarrow \pi^-K^0\nu\) branching fractions are also equal). Hence
and almost entirely due to cross feed of track is required to be a kaon. The numbers of events in Table 1 include the constraint that the values be positive numbers. If we do not in-

Table 1: Results for the charged pion decays. The background events are primarily $q\bar{q}$ events.

Decay mode	$\tau^- \to \pi^- K^0_S K^0_L \nu_\tau$	$\tau^- \to \pi^- K^0_S \pi^0 \nu_\tau$
Events		
Data	4985	4985
Estimated background	98 ± 17	35 ± 7
Selection efficiency	0.008	0.12
Background	0.004	0.04
Common systematics	0.034	0.03
Total	0.035	0.13

$B(\tau^- \to \pi^- K^0_S K^0_L \nu_\tau) = B(\tau^- \to \pi^- K^+ K^- \nu_\tau) - 2B(\tau^- \to \pi^- K^0_S K^0_L \nu_\tau)$ and we obtain

$B(\tau^- \to \pi^- K^0_S K^0_L \nu_\tau) = (9.8 \pm 0.5) \times 10^{-4}$

where $B(\tau^- \to \pi^- K^+ K^- \nu_\tau) = (14.4 \pm 0.4) \times 10^{-4}$ based on measurements from BABAR [18] and Belle [19]. The prediction is in good agreement with the branching fraction measured by ALEPH of $(10.1 \pm 2.3 \pm 1.3) \times 10^{-4}$ [3].

The prediction is in good agreement with the branching fraction measured by ALEPH of $(10.1 \pm 2.3 \pm 1.3) \times 10^{-4}$ [3]. The background events are primarily $q\bar{q}$ events. The normalizations of the two modes are varied with the constraint that the values be positive numbers. If we do not include the $\tau^- \to K^0_S \pi^- \nu_\tau$ decay, then we observe a disagreement between the data and MC samples in the lower-mass and higher-mass regions of the $M(\pi^- K^0_S)$ and $M(\pi^0 K^0_S)$ distributions, respectively, in Fig. [3].

The same criteria are used to select $\tau^- \to K^- K^0_S K^0_L \nu_\tau$ and $\tau^- \to K^- K^0_S \pi^0 \nu_\tau$ decays except that the charged track is required to be a kaon. The numbers of events are given in Table 1 and found to be consistent with the estimated background prediction. The background is almost entirely due to cross feed of $\tau^- \to \pi^- K^0_S K^0_S \nu_\tau$ and $\tau^- \to \pi^- K^0_S K^0_S \pi^0 \nu_\tau$ decays and very little background from $q\bar{q}$ events. The branching fractions are determined for each channel independently and used to place upper limits on the branching fractions of $B(\tau^- \to K^- K^0_S K^0_S \nu_\tau) < 6.3 \times 10^{-7}$ and $B(\tau^- \to K^- K^0_S \pi^0 \nu_\tau) < 4.0 \times 10^{-7}$ at the 90% confidence level.

The $\tau^- \to K^- K^0_S \nu_\tau$ and $\tau^- \to K^- K^0_S K^0_S \nu_\tau$ branching fractions are also predicted to be equal assuming isospin symmetry. The $\tau^- \to K^- K^0_S \nu_\tau$ branching fraction is $(2.1 \pm 0.8) \times 10^{-5}$ [2] based on measurements from BABAR [18] and Belle [19]. BABAR finds that a $\tau^- \to K^- \phi \nu_\tau$ contribution can account for all of the $\tau^- \to K^- K^0_S K^0_S \nu_\tau$ decays. This suggests that the $\tau^- \to K^- K^0_S K^0_S \nu_\tau$ and consequently, the $\tau^- \to K^- K^0_S \pi^0 \nu_\tau$ branching fractions should be small in the limit of isospin symmetry.

In summary, we have measured the branching fractions of $B(\tau^- \to K^- K^0_S K^0_S \nu_\tau)$, $B(\tau^- \to K^- K^0_S \pi^0 \nu_\tau)$, and $B(\tau^- \to K^- K^0_S K^0_S \nu_\tau)$ to be $(2.31 \pm 0.04 \pm 0.08) \times 10^{-4}$ and $(1.60 \pm 0.20 \pm 0.22) \times 10^{-5}$, respectively. The $\tau^- \to K^- K^0_S \nu_\tau$ and $\tau^- \to K^- K^0_S \pi^0 \nu_\tau$ decays can be modeled using $\tau^- \to K^+ K^- \nu_\tau$, and $\tau^- \to K^* K^0 \pi^- \nu_\tau$ and $\tau^- \to K^0 K^0 \pi^- \nu_\tau$ decays, respectively. The $\tau^- \to K^- K^0_S \nu_\tau$ branching fraction is a significant improvement on the previous measurements and the $\tau^- \to K^- K^0_S K^0_S \nu_\tau$ branching fraction is the first measurement. In addition, we place the first upper limits on the branching fractions of 6.3×10^{-7} and 4.0×10^{-7} on the $\tau^- \to K^- K^0_S K^0_S \nu_\tau$ and $\tau^- \to K^- K^0_S \pi^0 \nu_\tau$ decay modes at the 90% confidence level.

Acknowledgments

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on
FIG. 3: The $(\pi^- K^0 S K^0 S)^*$, $(\pi^- K^0 S K^0 S \pi^0)$, $(\pi^- K^0 S K^0 S)^*$, and $(\pi^0 K^0 S K^0 S)$ invariant mass distributions that pass the $\tau^- \rightarrow \pi^- K^0 S K^0 S \nu_{\tau}$ selection criteria. The points are data and the histograms are the predictions of the Monte Carlo simulation. The two signal channels are shown in the white $(\tau^- \rightarrow K^*^- K^0 \pi^0 \nu_{\tau})$ and beige $(\tau^- \rightarrow K^*0 K^0 \pi^- \nu_{\tau})$ histograms. The dark blue histogram is $\tau^- \rightarrow \pi^- K^0 S K^0 S \nu_{\tau}$ decays. The red histogram is the $q\bar{q}$ background. The mass plots use $\tau^- \rightarrow \pi^- K^0 S K^0 S \nu_{\tau}$ events that have been weighted based on the Dalitz plot distributions shown in the Fig. 2.

TABLE II: Results for the charged kaon decays. The background events are primarily $q\bar{q}$ events.

Decay mode	$\tau^- \rightarrow K^- K^0 S K^0 S \nu_{\tau}$	$\tau^- \rightarrow K^- K^0 S K^0 S \pi^0 \nu_{\tau}$
Branching fraction	$(1.9 \pm 3.0 \pm 0.3) \times 10^{-7}$	$(1.5 \pm 1.8 \pm 0.1) \times 10^{-7}$
Limit (90% C.L.)	6.3×10^{-7}	4.0×10^{-7}
Events	23	1
Data		
Estimated background	20.0 \pm 0.5	0.15 \pm 0.02
Selection efficiency	(3.85 \pm 0.04)$\%$	(1.37 \pm 0.03)$\%$

dung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union).
and the A. P. Sloan Foundation (USA).

[1] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 85, 031102 (2012).
[2] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[3] R. Barate et al. (ALEPH Collaboration), Eur. Phys. Jour. C 4, 29 (1998).
[4] T. E. Coan et al. (CLEO Collaboration), Phys. Rev. D 53, 6037 (1996).
[5] B. Aubert et al. (BABAR Collaboration), Nucl. Instr. Methods Phys. Res., Sect. A 479, 1 (2002).
[6] S. Jadach, B. F. L. Ward, and Z. Wąs, Comput. Phys. Commun. 130, 260 (2000).
[7] S. Jadach, Z. Wąs, R.Decker, and J.Kühn, Comput. Phys. Commun. 76, 361 (1993).
[8] D. J. Lange, Nucl. Instr. Methods Phys. Res., Sect. A 462, 152 (2001).
[9] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).
[10] E. Barberio and Z. Wąs, Comput. Phys. Commun. 79, 291 (1994).
[11] S. Agostinelli et al. (Geant4 Collaboration), Nucl. Instr. Methods Phys. Res., Sect. A 506, 250 (2003).
[12] S. Brandt et al., Phys. Lett. 12, 57 (1964); E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
[13] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 81, 111101(R) (2010).
[14] A. Stahl, Springer Tracts in Modern Physics, Volume 160 (2000).
[15] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 021603 (2007).
[16] M. Finkemeier and E. Mirkes, Z. Phys. C 69, 243 (1996); M. Finkemeier, J.Kühn and E. Mirkes, Nucl. Phys. B Proc. Suppl. 55, 169 (1997).
[17] A. Rouge, Z. Phys. C 70, 65 (1996).
[18] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 100, 011801 (2008).
[19] M. J Lee et al. (Belle Collaboration), Phys. Rev. D 81, 113007 (2010).