THE GEOMETRIC STRUCTURE OF SYMPLECTIC CONTRACTION

JEREMY LANE

ABSTRACT. We show that the symplectic contraction map of Hilgert-Manon-Martens [1] – a symplectic version of Popov’s horospherical contraction – is simply the quotient of a Hamiltonian manifold \(M \) by a “stratified null foliation” that is determined by the group action and moment map. We also show that the quotient differential structure on the symplectic contraction of \(M \) supports a Poisson bracket. We end by proving a very general description of the topology of fibers of Gelfand-Zeitlin systems on multiplicity free Hamiltonian \(U(n) \) and \(SO(n) \) manifolds.

1. INTRODUCTION

Degenerations and their gradient-Hamiltonian flows are a major theme in recent studies of interactions between algebraic geometry, representation theory, and symplectic geometry. Although it can be difficult to precisely describe the gradient-Hamiltonian flow of a given degeneration – for the simple reason that the defining differential equation can be quite complicated – an improved understanding of this flow is desirable, since it often leads to interesting new results lying at the interface between algebraic and symplectic geometry (cf. [2, 3, 4, 5, 6]).

Recent work by Hilgert-Manon-Martens (HMM) provides an algebraic formula for the time-1 flow of Popov’s degeneration of a semi-projective variety equipped with an action by a connected complex reductive group \(G \) [7], to its horospherical contraction [1]. To this end, HMM define more generally, the symplectic contraction, \(M^{\text{sc}} \), of any Hamiltonian \(K \)-manifold \((M, \omega, \mu) \) (\(K \) compact, connected) and the symplectic contraction map, \(\Phi_M : M \to M^{\text{sc}} \). HMM prove that if \(M \) is semi-projective and \(G = K^\mathbb{C} \), then \(\Phi_M \) coincides with the time-1 flow of the gradient-Hamiltonian flow of Popov’s degeneration [1 Corollary 5.12].

Although a formula for \(\Phi_M \) – and thus, when everything is sufficiently algebraic, a formula for the time-1 flow of horospherical degeneration –
presents significant progress, both the definition of M^{sc} as a diagonal reduction of a product of symplectic imploded spaces, and the formula for Φ_M, are somewhat opaque from the perspective of symplectic geometry.

In this note we study the geometry of symplectic contraction in more detail. We observe that:

i) there is a naturally defined decomposition of any Hamiltonian K manifold M into coisotropic submanifolds (whose definition only depends on the action of K and the moment map),

ii) the quotient of M by the null foliation of these coisotropic submanifolds is isomorphic to M^{sc} (i.e. there is a stratification preserving $K \times T$ equivariant homeomorphism of the two spaces whose restriction to the symplectic strata is a symplectomorphism), and

iii) with this identification, $\Phi_M : M \to M^{sc}$ is simply the quotient map for the stratified null foliation of M.

In addition to demonstrating symplectic contraction as a natural geometric quotient of a Hamiltonian manifold, in many ways analogous to Marsden and Weinstein’s symplectic reduction and Guillemin-Jeffreys-Sjamaar’s symplectic implosion, this perspective has several immediate consequences. First, it is obvious that the restriction of the map Φ_M to the open dense piece of M is a symplectomorphism onto its image: the null foliation of a symplectic manifold is trivial! Second, from this perspective one observes that M^{sc} has a naturally defined Poisson algebra of smooth functions, which endows it with the structure of a symplectic stratified space in the sense of [8]. Finally, from this perspective we see that the symplectic contraction map (and in the algebraic case, the time-1 gradient-Hamiltonian flow of horospherical degeneration) is not just a continuous map that extends a smooth map on an open dense set: it is smooth in a stratified sense and Poisson in a differential sense.

In Section 2 and 3 we describe the results outlined above. In Section 4 we discuss this geometric perspective in relation to branching contraction (iterated symplectic contraction) and Gelfand-Zeitlin systems. In particular, we prove that the symplectic pieces of the branching contraction corresponding to a Gelfand-Zeitlin system (on an arbitrary multiplicity free $U(n)$ or $SO(n)$ manifold) are all toric manifolds (Theorem [25]). It follows from this fact that the fibers of Gelfand-Zeitlin systems can be described geometrically as iterated bundles of coisotropic homogeneous spaces over isotropic tori. This provides a more general version of results obtained for Gelfand-Zeitlin systems on $U(n)$ coadjoint orbits by [9], which only came to the attention of the author of this paper after completing this paper.
Acknowledgements: The author would like to thank Yael Karshon, Megumi Harada, Kuimars Kaveh, and Chris Manon for discussions and feedback. This work was supported by a NSERC PGSD award and NCCR SwissMAP of the Swiss National Science Foundation.

2. The “stratified null foliation” of a Hamiltonian K-manifold

Let K be a compact, connected Lie group with Lie algebra \mathfrak{k}. In this section we show that any Hamiltonian K-manifold (M, ω, μ) has a “stratified null foliation” determined by the action of K and the moment map μ and describe the quotient of M by this foliation. The stratified null foliation of M is closely related to its symplectic implosion and, as a result, this section is inspired by many ideas from [10].

If one fixes a maximal torus T and a positive Weyl chamber $\Delta \subseteq \mathfrak{t}^*$, there is a maximal slice for the coadjoint action of K at each stratum $\sigma \subseteq \Delta$ given by $S_\sigma := K_\sigma \cdot \text{star}(\sigma) \subseteq \mathfrak{k}^*$, where K_σ is the stabilizer subgroup of points in σ for the coadjoint action of K (cf. [10]). For a Hamiltonian K-manifold (M, ω, μ), let $M_\sigma := \mu^{-1}(S_\sigma)$ denote the symplectic cross-section of M at σ. We recall the symplectic cross-section theorem, as stated in [10, Theorem 2.5], which we will use below.

Theorem 1 (The symplectic cross-section theorem). Let (M, ω, μ) be a Hamiltonian K-manifold. Then,

1. M_σ is a K_σ-invariant symplectic submanifold of M and the restriction of μ to M_σ is a moment map for the K_σ action.
2. The map $K \times M_\sigma \to M$ given by $(k, m) \mapsto k \cdot m$ induces a symplectomorphism $K \times K_\sigma \cdot M_\sigma \cong KM_\sigma$ (with respect to the symplectic structure on $K \times K_\sigma \cdot M_\sigma$ that will be described below) onto its image, which is open and dense in M.
3. If σ_{prin} is the principal stratum of Δ corresponding to (M, ω, μ), then $[K_{\sigma_{\text{prin}}}, K_{\sigma_{\text{prin}}}]$ acts trivially on $M_{\sigma_{\text{prin}}}$.

By part (1) of the symplectic cross-section theorem, the action of $K' = [K_\sigma, K_\sigma]$ on M_σ is Hamiltonian, generated by $p \circ \mu$ where $p : \mathfrak{t}_{\sigma}^* \to (\mathfrak{t}_{\sigma}^*)^*$ is the dual projection map. Following [10], observe that the zero level set of this moment map

$$(p \circ \mu)^{-1}(0) = \mu^{-1}(\sigma).$$

1. As a polyhedral cone, the positive Weyl chamber $\mathfrak{t}_{\sigma}^* = \Delta$ has a natural stratification by relative interiors of faces.

2. Recall that the principal stratum of Δ corresponding to a Hamiltonian K-manifold M is the unique stratum such that $\mu(M) \cap \sigma$ is dense in $\mu(M) \cap \Delta$.
It follows by [8, Theorem 2.1], that for every closed subgroup $H \leq K'$ the intersection of $(p \circ \mu)^{-1}(0)$ with the orbit-type stratum of H for the Hamiltonian action of K' on M is a coisotropic submanifold,

$$(p \circ \mu|_{M})(0) \cap M_{\sigma}(H) = \mu^{-1}(\sigma) \cap M_{\sigma}(H) \subseteq M$$

and, moreover, the leaves of the null foliation of this coisotropic submanifold equal the orbits of the action of K'. We denote this coisotropic submanifold $Q_{\sigma}(H)$ (note that $Q_{\sigma}(H)$ may have multiple connected components of varying dimension).

Define

$$(2)
W_{\sigma}(H) := K \cdot Q_{\sigma}(H).$$

Note that

$$W_{\sigma}(H) = \left\{ m \in \mu^{-1}(\Sigma_{\sigma}): \text{Stab}_{K'}_{\mu(m)}(m) \in (H) \right\}$$

where (H) denotes the conjugacy class of H in K. By part (2) of the symplectic cross-section theorem (cf. [11, Theorem 41.1])

$$W_{\sigma}(H) \cong K \times K_{\sigma} Q_{\sigma}(H) \subseteq K \times K_{\sigma} M_{\sigma} \cong (K \times \mathfrak{g}_{\sigma} \times M_{\sigma}) \sslash 0 K_{\sigma}$$

where the space on the right is equipped with the symplectic form $\Omega|_{K \times \mathfrak{g}_{\sigma} + \omega|_{M_{\sigma}}}$ and the reduction by K_{σ} is diagonal, generated by the moment map $\mu_{\mathcal{R}} + \mu|_{M_{\sigma}}$ (here Ω is the canonical symplectic form on $T^* K \cong K \times \mathfrak{k}^*$ and $\mu_{\mathcal{R}}(k, \lambda) = \lambda$ is the moment map for the cotangent lift of the right action of K on itself).

Proposition 3. Each $W_{\sigma}(H)$ is a coisotropic submanifold of M. For every $m \in W_{\sigma}(H)$, the leaf of the null foliation of $W_{\sigma}(H)$ through m equals the orbit $K'_{\mu(m)} \cdot m$.

Proof. We first show that for $q \in Q_{\sigma}(H)$, the leaf of the null foliation of $W_{\sigma}(H)$ through q equals the orbit $K'_{\mu(q)} \cdot q$.

Every element of $TqW_{\sigma}(H)$ can be represented by $Y + X$ for $Y \in \mathfrak{k}$ and $X \in TQ_{\sigma}(H)$. Every element of TqM_{σ} can be represented by $Y' + Z$ for $Y' \in \mathfrak{k}$ and $Z \in TM_{\sigma}$.

If for all $Y' \in \mathfrak{k}$,

$$0 = \omega_q(Y, Y' + Z) = \langle d\mu_q(Y' + Z), Y \rangle$$

then it must be true that $Y' + Z \in \ker(d\mu_q) \subseteq TqM_{\sigma}$, in which case $Y' + Z$ can be represented by $Z \in TqM_{\sigma}$.

If for all $X \in TqQ_{\sigma}(H)$,

$$0 = \omega_q(X, Z),$$

then it must be the case that $Z \in (TqQ_{\sigma}(H))^{\omega}$, which by [8, Theorem 2.1] equals $Tq(K'_{\sigma} \cdot q)$.

For $m = k \cdot q$, the result follows since K acts by symplectomorphisms:

the leaf of the null foliation of $W_{\sigma,(H)}$ through $k \cdot q$ is the set

$$k \cdot (K_{\sigma}' \cdot q) = (kK_{\sigma}'k^{-1}) \cdot (k \cdot q) = K_{\mu(m)}' \cdot m.$$

Since $W_{\sigma,(H)}$ is coisotropic, there is a quotient map

$$\pi: W_{\sigma,(H)} \to W_{\sigma,(H)}/\sim$$

defined by the null foliation of $W_{\sigma,(H)}$. However, unlike the situation of symplectic reduction, the leaves of this null foliation do not equal the orbits of a compact group action. Instead, observe the following obvious identifications,

$$(K \times_{K_{\sigma}} Q_{\sigma,(H)}/\sim) \cong \text{Homeo} K \times_{K_{\sigma}} (Q_{\sigma,(H)}/K_{\sigma}') \cong \text{Diff} K/K_{\sigma}' \times Z_{\sigma} (Q_{\sigma,(H)}/K_{\sigma}') .$$

Under the homeomorphism on the left, the quotient map $W_{\sigma,(H)} \to W_{\sigma,(H)}/\sim$ is identified with the smooth submersion

$$K \times_{K_{\sigma}} Q_{\sigma,(H)} \to K \times_{K_{\sigma}} (Q_{\sigma,(H)}/K_{\sigma}'), (k,q) \mapsto (k,[q]).$$

Thus we conclude the following (cf. [11, Theorem 25.2]).

Proposition 5. The quotient of each $W_{\sigma,(H)}$ by its null foliation is a smooth manifold equipped with a symplectic form, which we denote $\tilde{\omega}$, defined by the property that

$$\pi^* \tilde{\omega} = \omega|_{W_{\sigma,(H)}} .$$

Combining the results above, we have decomposed M as a disjoint union

$$M = \bigcup_{\sigma \subseteq \Delta} \bigcup_{H \leq K_{\sigma}'} W_{\sigma,(H)}$$

such that each $W_{\sigma,(H)}$ is a smooth, coisotropic submanifold of M, invariant under the action of K. We define an equivalence relation on M by $m \sim m'$ if m,m' are contained in the same leaf of the null foliation of one of the pieces $W_{\sigma,(H)}$. We call this the stratified null foliation of (M,ω,μ).

The quotient of M by the stratified null foliation is a topological space with a decomposition into pieces that are smooth symplectic manifolds:

$$M/\sim = \bigcup_{\sigma \subseteq \Delta} \bigcup_{H \leq K_{\sigma}'} W_{\sigma,(H)}/\sim .$$

Although it is not a manifold, M/\sim has a naturally defined algebra of functions (the quotient differential structure),

$$C^\infty(M/\sim) := \{ f \in C(M/\sim) : \pi^* f \in C^\infty(M) \}$$

where $\pi: M \to M/\sim$ is the quotient map and $C^\infty(M)^\sim \subseteq C^\infty(M)$ is the subalgebra of smooth functions on M that are locally constant on leaves of
the stratified null foliation. The inclusion maps \(\iota: W_{\sigma(H)/\sim} \to M/\sim \) are smooth in the differential sense: for all \(f \in C^\infty(M/\sim) \),
\[
\pi^*(\iota^* f) = (\pi^* f)|_{W_{\sigma(H)}}
\]
so \(\iota^* f \in C^\infty(W_{\sigma(H)/\sim}) \).

Proposition 6. The bracket on \(C^\infty(M/\sim) \) defined by the equation
\[
\pi^* \{ f, g \}_{M/\sim} = \{ \pi^* f, \pi^* g \}_M
\]
is a Poisson bracket. Moreover, the inclusion maps \(\iota: W_{\sigma(H)/\sim} \to M/\sim \) are Poisson with respect to \(\{ \cdot, \cdot \}_{M/\sim} \) and the natural symplectic structure on each symplectic piece, \(W_{\sigma(H)/\sim} \).

Remark 7. This proposition shows that one may alternately view \(\{ \cdot, \cdot \}_{M/\sim} \) as defined point-wise on \(M/\sim \) by the symplectic structure on each symplectic piece.

Proof. To show that \(\{ \cdot, \cdot \}_{M/\sim} \) is a Poisson bracket on \(C^\infty(M/\sim) \), we simply must show that \(C^\infty(M) \) is a Poisson subalgebra of \(C^\infty(M) \) (and therefore \(\{ \cdot, \cdot \}_{M/\sim} \) is well-defined).

Let \(f, g \in C^\infty(M) \) and let \(W \) be one of the coisotropic submanifolds of \(M \) as defined in (2). Since \(f \) and \(g \) are constant on the leaves of the null foliation of \(W \), we have that for all \(\mathbf{X}, \mathbf{Y} \in T_wW \),
\[
\omega(\mathbf{X}_f, \mathbf{Y}) = df(\mathbf{Y}) = L_{\mathbf{Y}} f = 0
\]
and similarly for \(g \). Thus \(\mathbf{X}_f, \mathbf{X}_g \in (TW)^\omega = TW \).

Thus, for \(\mathbf{Y} \in T_wW \), we have that
\[
L_{\mathbf{Y}} \{ f, g \}_M = L_{\mathbf{Y}} \omega(\mathbf{X}_f, \mathbf{X}_g)
= L_{\mathbf{Y}} d(\omega(\mathbf{X}_f, \mathbf{X}_g))
= L_{\mathbf{Y}} \iota^* \mathbf{X}_f \iota^* \mathbf{X}_g \omega
= \omega([\mathbf{X}_f, \mathbf{X}_g], \mathbf{Y})
\]
which equals 0 since \([\mathbf{X}_f, \mathbf{X}_g] \in TW \). Thus \(\{ f, g \}_M \in C^\infty(M) \). Additionally, one sees that \(fg \in C^\infty(M) \), so \(C^\infty(M) \) is a Poisson subalgebra.

To see that the inclusions of the symplectic pieces are Poisson, it is sufficient to observe that for all \(f, g \in C^\infty(M) \),
\[
\pi^* \iota^* \{ f, g \}_{M/\sim} = \{ \pi^* f, \pi^* g \}_M|_{W_{\sigma(H)}} = \pi^* \{ \iota^* f, \iota^* g \}_{W_{\sigma(H)/\sim}}.
\]
See [13] Theorem 25.3].

Remark 8. If \(\sigma_{\text{prin}} \) is the principal stratum of \(\Delta \) corresponding to \((M, \omega, \mu) \). By part (3) of the symplectic cross-section theorem, the action of \(K'_{\sigma_{\text{prin}}} \) on \(\mu^{-1}(\sigma_{\text{prin}}) \) is trivial, so \(W_{\sigma_{\text{prin}}(K'_{\sigma_{\text{prin}}})} = K \cdot \mu^{-1}(\sigma_{\text{prin}}) \). Since this is an
open subset of M, its null foliation is trivial, so the restriction of π is a symplectomorphism onto its image.

2.1. The $K \times T$ action on M/\sim. Since the leaves of the equivalence relation \sim are invariant under the action of K and μ is constant on these leaves, both the action of K and the map μ descend to M/\sim to define a continuous function $\tilde{\mu}$ and a continuous action of K. In terms of the diffeomorphism $W_{\omega,(H)/\sim} \cong K \times K_\sigma (Q_{\sigma,(H)}/K'_\sigma)$, we have

$$k \cdot (k', [q]) = (kk', [q]) \quad \text{and} \quad \tilde{\mu}(k, [q]) = k\mu(q).$$

As observed in [10], the action of T on M leaves $\mu^{-1}(\Delta)$ invariant and (since T normalizes each K'_σ) descends to a continuous action of T on $\mu^{-1}(\Delta)/\sim$. This extends by K-equivariance to a continuous action of T on M/\sim defined by the formula

$$t * (k, [q]) = (k, t \cdot [q]) = (kttk^{-1}k, [q]) = (kttk^{-1} \cdot (k, [q])$$

which commutes with the action of K. Note that the action of T on $\mu^{-1}(\Delta)$ does not, in general, extend to M by K-equivariance.

It follows from the identifications established in the next section that the restriction of this $K \times T$ action to each symplectic piece of M/\sim is Hamiltonian, generated by the map $(\tilde{\mu}, s \circ \tilde{\mu})$ where $s : \mathfrak{t}^* \to \Delta$ is the sweeping map of Thimm’s trick (see [1] for details).

3. Symplectic contraction

In [1], HMM define the symplectic contraction of a connected Hamiltonian K-manifold (M, ω, μ) as the topological space

$$M^{sc} := (EM \times E_L T^* K) \sslash_0 T$$

where T is a choice of maximal torus of K, EM is the symplectic implosion of (M, ω, μ) with respect to a choice of positive Weyl chamber $\Delta \subseteq \mathfrak{t}^*$, and $E_L T^* K$ is the symplectic implosion of $T^* K$ with respect to the cotangent lift of the left action of K on itself and the opposite Weyl chamber $-\Delta$ (see [1] [10] for definitions). This choice of $E_L T^* K$ is isomorphic to $E_R T^* K$ taken with respect to $-\Delta$ via the symplectic involution of $T^* K$, $(k, \lambda) \mapsto (k^{-1}, -k\lambda)$, and thus we can rewrite the definition above as

$$M^{sc} := (EM \times E_R T^* K) \sslash_0 T.$$

The definition with $E_R T^* K$ is preferable since $EM \times E_R T^* K$ decomposes nicely into smooth pieces diffeomorphic to

$$(Q_{\sigma,(H)}/K'_\sigma) \times K / K'_\sigma \times (-\sigma),$$

where $Q_{\sigma,(H)}/K'_\sigma$ is the same as in the proof of Proposition 3 equipped with symplectic form $\tilde{\omega} + \tilde{\Omega}$ (cf. [10]).
The “symplectic reduction” by T is taken with respect to the diagonal action of T on $EM \times E_R T^* K$ generated on symplectic strata by the moment map $\mu + \mu_{R,T}$ (or, equivalently, the diagonal action of T on $EM \times E_L T^* K$ generated by $\mu + \mu_{L,T}$). With respect to the description of the symplectic pieces given above, this moment map is explicitly given by the formula

$$(\mu + \mu_{R,T})([q], kK'_\sigma, \lambda) = \mu(q) + \lambda.$$

The diagonal action of T is given explicitly by the formula

$$t \cdot ([q], kK'_\sigma, \lambda) = ([t \cdot q], kt^{-1}K'_\sigma, t\lambda).$$

Combining the facts above, one sees that the symplectic pieces of M^{sc} are diffeomorphic to

$$(Q_{\sigma,(H)}/K'_\sigma) \times_T K/K'_\sigma.$$

We record some topological facts about symplectic contraction.

Proposition 9. M^{sc} is Hausdorff, second countable, locally compact, and connected.

Proof. Since $\mu + \mu_{R,T}$ is continuous, the level set $(\mu + \mu_{R,T})^{-1}(0)$ is closed in $EM \times E_R T^* K$. By [10, Theorem 2.3] this implies that the level set is Hausdorff, locally compact, and second countable.

The action of the compact group T on the level set $(\mu + \mu_{R,T})^{-1}(0)$ is continuous, so the quotient map is open. Thus M^{sc} is locally compact and second countable. Furthermore, any quotient of any locally compact Hausdorff space by a proper group action is Hausdorff, so M^{sc} is Hausdorff.

Finally, HMM prove that the symplectic contraction map $\Phi_M : M \to M^{sc}$ is continuous and surjective (see Proposition 11 below), thus M^{sc} is connected.

HMM define the symplectic contraction map $\Phi_M : M \to M^{sc}$ by the formula

$$m \mapsto [hm, (h, \mu(m))] \in (EM \times E_L T^* K) /_0 T$$

where $h \in K$ such that $h\mu(m) \in \Delta$. HMM note that this map is well defined and K-equivariant:

$$\Phi_M(k\cdot m) = [(hk^{-1})km, (hk^{-1}, \mu(km))] = [(hm, (hk^{-1}, k\mu(m))] = R_k \Phi_M(m)$$

where the K action on M^{sc} descends from the right K action on $E_L T^* K$. Using the symplectic involution above, and writing $m = k \cdot q$ for $q \in \mu^{-1}(\Delta)$, the map Φ_M can be written equivalently as

$$k \cdot q \mapsto [q, (k, -\mu(q))] \in (EM \times E_R T^* K) /_0 T$$

in which case K-equivariance is with respect the descended left K action on $E_R T^* K$. HMM prove two main facts:
Proposition 11. \[\Phi_M\] is continuous, proper, and surjective.

Proposition 12. \[\Phi_M\] The restriction of \(\Phi_M\) to the open dense set \(\mu^{-1}(\Sigma_{\sigma_{\text{prin}}})\) is a symplectomorphism onto its image.

We observe that, combined with Proposition 9, Proposition 11 immediately implies the following.

Corollary 13. \(\Phi_M\) is a quotient map.\(^3\)

Proof. Since \(\Phi_M\) is proper and \(M^{sc}\) is locally compact, \(\Phi_M\) is closed. It follows since \(\Phi_M\) is surjective that it is a quotient map. \(\square\)

We can use the definition of \(\Phi_M\) to describe its fibres. For \(k \in K'_{\mu(m)} \) and \(h \in K\) such that \(hk \cdot m \in \Delta\),
\[
\Phi_M(k \cdot m) = [hk \cdot m, (h, \mu(k \cdot m))]
\sim [(hk^{-1}h^{-1})hk \cdot m, (h, \mu(m))]
= [h \cdot m, (h, \mu(m))]
= \Phi_M(m)
\]
so \(\Phi_M\) is constant on the leaves of the stratified null foliation of \(M\). Conversely, if \(\Phi_M(m) = \Phi_M(m')\) then \(\exists g_1, g_2 \in K'_{\sigma}, t \in T\) such that
\[
(tg_1hm, (tg_2h, \mu(m))) = (h'm', (h', \mu(m'))).
\]
This implies that
\[
\mu(m) = \mu(m'), tg_2h = h', \text{ and } h^{-1}g_2^{-1}g_1hm = m'
\]
which implies that \(m\) and \(m'\) lie in the same leaf of the stratified null foliation of \(M\). Thus we conclude by Proposition 3 that,

Proposition 14. The fibres of \(\Phi_M\) coincide with the leaves of the stratified null foliation of \(M\).

Thus, by Corollary 13, there exists a homeomorphism \(\psi\) such that the diagram
\[
\begin{array}{ccc}
M/\sim & \xrightarrow{\pi} & M \\
\Phi_M & \downarrow{\psi} & \leftarrow M^{sc}
\end{array}
\]

\(^3\)Recall, a continuous map \(f : X \to Y\) is a quotient map if it is surjective and a subset \(U \subseteq Y\) is open iff \(f^{-1}(U)\) is open.
commutes. Since π and Φ_M are both K-equivariant, ψ is also equivariant (in fact it is $K \times T$ equivariant). This homeomorphism preserves the decompositions of the spaces M^{sc} and M/\sim into pieces indexed by $\sigma \subseteq \Delta$ and $H \leq K_\sigma$. Moreover, the restriction of ψ to each piece respects its smooth and symplectic structures:

Proposition 16. The restriction of ψ to each symplectic piece $W_{\sigma,(H)}/\sim$ is a symplectomorphism onto its image (the corresponding symplectic piece in M^{sc}).

Proof. We have already seen that, considering $W_{\sigma,(H)}/\sim$ with its quotient smooth structure, we have diffeomorphisms

$$W_{\sigma,(H)}/\sim \cong K \times K_\sigma (Q_{\sigma,(H)}/K_\sigma) \cong (Q_{\sigma,(H)}/K_\sigma) \times K/K_\sigma \times (-\sigma) \parallel_0 T$$

given by the maps

$$\pi(k \cdot q) \mapsto [k, q] \mapsto q, (k, -\mu(q))$$

Since $\Phi_M(k \cdot q) = [q, (k, -\mu(q))]$ (cf. equation (10)), we see that this composition of maps equals the restriction of ψ to $W_{\sigma,(H)}/\sim$.

To see that the restriction of ψ to $W_{\sigma,(H)}/\sim$ is a symplectomorphism, it is sufficient to show that

$$\pi^* \psi^* (\tilde{\omega} \vert_{Q_{\sigma,(H)}} + \tilde{\Omega} \vert_{K \times \mathfrak{e}_\sigma}) = \Phi_M^* (\tilde{\omega} \vert_{Q_{\sigma,(H)}} + \tilde{\Omega} \vert_{K \times \mathfrak{e}_\sigma}) = \omega \vert_{W_{\sigma,(H)}}$$

at a point $q \in Q_{\sigma,(H)}$. Here $\tilde{\Omega} \vert_{K \times \mathfrak{e}_\sigma}$ is the symplectic form on the symplectic quotient $K/K_\sigma \times (-\sigma) \cong (K \times \mathfrak{g}_{-\sigma}) \parallel_0 K_\sigma$ (cf. [10, p. 162]). The result then follows by $\tilde{\omega}$-equivariance of ψ.

An arbitrary element of $T_qW_{\sigma,(H)}$ can be written as $X + Y$ where $X \in T_qQ_{\sigma,(H)}$ and Y is the image of $Y \in \mathfrak{t}$ at q under the Lie algebra action. One computes that

$$(d\Phi_M)_q(X + Y) = (\pi_*(X), Y, -d\mu_q(X))$$

where we write Y to mean $Y + \mathfrak{t}'_q \in \mathfrak{t}/\mathfrak{t}' = T_e(K/K'_\sigma)$. For $X, X' \in T_qQ_{\sigma,(H)}$ and $Y, Y' \in \mathfrak{t}$, we compute

$$\Phi_M^* (\tilde{\omega} \vert_{Q_{\sigma,(H)}} + \tilde{\Omega} \vert_{K \times \mathfrak{e}_\sigma}) \bigg|_{(X + Y, X', Y')} = \omega_q(X + Y, X', Y')$$

where

$$\omega_q(X + Y, X', Y') = \omega_q(X, X') + \omega_q(Y, Y') + \omega_q(X, Y') + \omega_q(Y, X')$$

and

$$\omega_q(X, X') = \omega_q(X, X') + \omega_q(Y, Y') + \omega_q(Y, X') + \omega_q(Y, Y')$$

for $X, X' \in T_qQ_{\sigma,(H)}$ and $Y, Y' \in \mathfrak{t}$. The result then follows by $\tilde{\omega}$-equivariance of ψ. Thus we have shown that ψ is a symplectomorphism.
where in the penultimate equality we have used Hamilton’s equation and the fact that \(\mu \) is Poisson. Thus the restriction of \(\psi \) to \(W_{\sigma, (H)}/\sim \) is a symplectomorphism.

The homeomorphism \(\psi \), along with the algebra \(C^\infty(M/\sim) \) defined in Section 2, shows that \(M^{sc} \) is endowed with a naturally defined algebra of smooth functions equipped with a Poisson bracket. This was not evident from the algebraic definition of HMM via symplectic implosion. Indeed, the symplectic implosion of a Hamiltonian \(K \)-manifold \((M, \omega, \mu)\) is not naturally a symplectic stratified space in the sense of [8] (cf. the comment in [10] on page 167). We end this section with the following observation.

Theorem 17. The symplectic contraction of a Hamiltonian \(K \)-manifold \((M, \omega, \mu)\) is a stratified space in the sense of [8]; the decomposition of \(M^{sc} \) into symplectic pieces satisfies the following conditions.

1. (locally finite) Every point in \(M^{sc} \) has a neighbourhood which intersects finitely many of the symplectic strata.
2. (frontier condition) If for two symplectic strata \(X \) and \(Y \), \(X \cap \overline{Y} \neq \emptyset \), then \(X \subseteq \overline{Y} \).
3. (local normal triviality) Every point in \(M^{sc} \) has a neighbourhood homeomorphic to a cone over a lower dimensional stratified space.

Moreover, \(M^{sc} \) is a symplectic stratified space in the sense of [8]; the smooth structure \(C^\infty(M^{sc}) \) defined above satisfies the following conditions.

a) The strata are symplectic manifolds.
b) \(C^\infty(M^{sc}) \) is a Poisson algebra.
c) The inclusions of the strata are smooth Poisson maps.

Proof. Conditions i)-iii) follow from the corresponding facts for symplectic imploided spaces [10] by HMM’s definition of \(M^{sc} \) as a reduction of imploided spaces. Conditions a)-c) follow by Propositions [6] and [10].

4. Fibers of Gelfand-Zeitlin systems

In this section, we apply our geometric perspective to describe the fibers of Gelfand-Zeitlin systems, which – as was observed in [1] – can be constructed via contraction.

Given a Hamiltonian \(K_n \)-manifold \((M, \omega, \mu)\), and a chain of group homomorphisms,

\[
K_1 \xrightarrow{\phi_2} K_2 \xrightarrow{\phi_3} \cdots \xrightarrow{\phi_n} K_n,
\]

where the \(K_i \) are connected, compact Lie groups with maximal tori \(T_i \), we obtain a chain of contraction maps

\[
M \xrightarrow{\Phi_n} M_n \xrightarrow{\Phi_{n-1}} \cdots \xrightarrow{\Phi_1} M_1
\]
in the following way. First, by performing symplectic contraction with respect to the K_n action on M, we get a symplectic contraction map Φ_n from M to the Hamiltonian $K_n \times T_n$-space M_n. M_n stratifies into symplectic manifolds equipped with a Hamiltonian $K_{n-1} \times T_n$ action coming from the homomorphism $\phi_n: K_{n-1} \to K_n$. Second, we take the quotient of M_n by simultaneously performing symplectic contraction of all the symplectic strata of M_n with respect to the K_{n-1} action (note that since T_n is abelian, this is the same as the symplectic contraction with respect to the $K_{n-1} \times T_n$ action). This results in a continuous map $\Phi_{n-1}: M_n \to M_{n-1}$, generated by a moment map $\tilde{\mu}$ such that the following diagram

\begin{equation}
\begin{array}{c}
M \\
\downarrow \mu \\
\Phi \\
\downarrow \tilde{\mu} \\
\mathfrak{k}^* \\
\end{array} \quad \begin{array}{c}
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\end{array} \begin{array}{c}
M_1 \\
\downarrow \mu \\
\Phi \\
\downarrow \tilde{\mu} \\
\mathfrak{k}_1^* \times \cdots \times \mathfrak{k}_n^* \\
\end{array}
\end{equation}

commutes, where F is the Gelfand-Zeitlin system on \mathfrak{k}^* constructed from the chain of groups \([1]\) as in \([11]\) and $\Phi = \Phi_1 \circ \cdots \circ \Phi_n$. The space M_1 is the branching contraction space considered by HMM in \([1]\).

Following work by \([12]\) and others on collective integrable systems, Guillemin and Sternberg observed in \([13, 14]\) that given a multiplicity free Hamiltonian K manifold for $K = U(n)$ or $SO(n)$, the Gelfand-Zeitlin system constructed from a chain of subgroups \([20]\)

$$
U(1) \leq \cdots \leq U(n) \text{ or } SO(2) \leq \cdots \leq SO(n)
$$

defines a completely integrable torus action on the open dense subset of M where the Gelfand-Zeitlin functions are smooth.

We now show that, in general, if this construction yields a completely integrable system on an open dense subset of M, then the action of $T_1 \times \cdots \times T_n$ on each symplectic piece of M_1, is completely integrable.

Lemma 21. If (M, ω, μ) is a multiplicity free Hamiltonian K manifold with connected fibers, then the action of the maximal torus T on each of the symplectic pieces $Q_{\sigma(H)}/K'_\sigma \subseteq EM$ is completely integrable.

Proof. The action of K on M is multiplicity free iff the reduced spaces $M/\lambda K$ are points for all λ (cf. \([15]\) Proposition A.1). By \([10]\) Theorem
3.4], for $\lambda \in \sigma \subseteq \Delta$,

$$M \sslash \lambda K \cong EM \sslash \lambda T = \left(\bigcup_{H \leq K'_\sigma} Q_{\sigma,(H)}/K'_\sigma \right) \sslash \lambda T$$

is therefore a point. It follows that the action of T on each symplectic piece $Q_{\sigma,(H)}/K'_\sigma$ is multiplicity free, or, in other words, completely integrable. \[\square \]

Proposition 22. Let (M,ω,μ) be a multiplicity free Hamiltonian K manifold with connected fibers, and let M^{sc} be its symplectic contraction. Suppose that $S \leq K$ is a connected Lie subgroup such that the action of S on every K coadjoint orbit is multiplicity free. Then, every symplectic stratum of M^{sc} is a multiplicity free Hamiltonian $S \times T$ manifold.

Proof. Every symplectic piece of M^{sc} is of the form $K \times K_\sigma \left(Q_{\sigma,(H)}/K'_\sigma \right)$. We want to show that the symplectic reduced spaces

$$\left(K \times K_\sigma \left(Q_{\sigma,(H)}/K'_\sigma \right) \right) \sslash (\xi,\lambda) S \times T$$

are all points. By reduction in stages [8], this space is isomorphic to

$$(K \times K_\sigma \left(Q_{\sigma,(H)}/K'_\sigma \right) \sslash \lambda T) \sslash \xi S$$

By Lemma 21, the symplectic reduction $\left(Q_{\sigma,(H)}/K'_\sigma \right) \sslash \lambda T$ is a point. It follows that

$$K \times K_\sigma \left(Q_{\sigma,(H)}/K'_\sigma \right) \sslash \lambda T = K \times K_\sigma \{\ast\} \cong K/K_\sigma.$$

The Hamiltonian action of K on $K \times K_\sigma \left(Q_{\sigma,(H)}/K'_\sigma \right)$ commutes with the action of T, so it descends to the symplectic quotient. By K-equivariance, and the line above, the moment map for the action of K on K/K_σ is a symplectomorphism onto the K coadjoint orbit through λ, so

$$K \times K_\sigma \left(Q_{\sigma,(H)}/K'_\sigma \right) \sslash \lambda T \cong K \cdot \lambda.$$

By our assumption that all K coadjoint orbits are multiplicity free Hamiltonian S manifolds, we conclude that the space

$$\left(K \times K_\sigma \left(Q_{\sigma,(H)}/K'_\sigma \right) \sslash \lambda T \right) \sslash \xi S = \{\ast\},$$

thus $K \times K_\sigma \left(Q_{\sigma,(H)}/\sim \right)$ is a multiplicity free $S \times T$ manifold. \[\square \]

We require the following fact (cf. [14]).

Lemma 24. Every $U(n)$ coadjoint orbit is a multiplicity free $U(n-1)$ manifold for any embedding of $U(n-1)$ as a subgroup of $U(n)$. Respectively, every $SO(n)$ coadjoint orbit is a multiplicity free $SO(n-1)$ manifold for any embedding of $SO(n-1)$ as a subgroup.
With these results in hand, we can conclude the following: every symplectic piece of the iterated symplectic contraction M_1 corresponding to a Gelfand-Zeitlin system is a toric manifold.

Theorem 25. Suppose (M, ω, μ) is a multiplicity free Hamiltonian $U(n)$ or $SO(n)$ manifold. Let M_1 be the space constructed from M by iterated symplectic contraction as in (18), using one of the chains (20). Then the action of $T = T_1 \times \cdots \times T_n$ on every symplectic piece of M_1 is completely integrable.

Proof. We apply Proposition 22 at each stage of the iterated symplectic contraction for the case of $K = U(n)$ (the proof for $K = SO(n)$ is identical).

First, by Proposition 22 and Lemma 24 we have that the symplectic pieces of M_n are multiplicity free Hamiltonian $U(n-1) \times T_n$ manifolds.

If we apply Proposition 22 and Lemma 24 again, to the symplectic pieces of M_n, it follows that the symplectic pieces of M_{n-1} are multiplicity free $U(n-2) \times T_{n-1} \times T_n$ manifolds (note that we perform symplectic contraction with respect to the action of $U(n-1) \times T_n$, the maximal torus of which is $T_{n-1} \times T_n$, the result is identical to performing symplectic contraction with respect to the $U(n-1)$ action, except that this way the extra T_n action descends as part of the construction).

Repeating this process, we finally have that the symplectic pieces of M_1 are multiplicity free $T_1 \times T_2 \times \cdots \times T_n$ manifolds (note that since $U(1) = T_1$, the last symplectic contraction map Φ_1 is trivial, so $M_2 = M_1$). In other words, the torus action on each symplectic piece is completely integrable. □

This result allows us to give a very general description of the fibers of Gelfand-Zeitlin systems, similar to that of [9].

Theorem 26. Suppose (M, ω, μ) is a connected Hamiltonian $U(n)$ or $SO(n)$ manifold with μ proper, equipped with a completely integrable Gelfand-Zeitlin system constructed as above. Then the fibers of the Gelfand-Zeitlin system are the total spaces of sequences of fiber bundles

\[(27) \quad E_n \rightarrow E_{n-1} \rightarrow \cdots \rightarrow E_2 \rightarrow E_1 = L \]

where L is an isotropic torus contained in symplectic piece of M_1 and the each

$$K_{k-1}/H_{k-1} \rightarrow E_k \rightarrow E_{k-1}$$

is a fiber bundle of homogeneous spaces.

Proof. If the Gelfand-Zeitlin construction yields an integrable system, then (M, ω, μ) is a multiplicity free Hamiltonian manifold [14], so we are in the setting of Theorem 25. If μ is proper, then $F \circ \mu$ is proper, so by [16, Theorem 1] the fibers of $F \circ \mu$ are all connected. Since the maps Φ_k are
all surjective (they are quotient maps), and the diagram (19) commutes, it follows that the fibers of \(\tilde{\mu} \) are connected.

- Since (19) commutes, the fibers of the Gelfand-Zeitlin system \(F \circ \mu \) equal the fibers of the composition \(\tilde{\mu} \circ \Phi \).
- Since the torus actions generated by \(\tilde{\mu} \) on the symplectic pieces of \(M_1 \) are completely integrable, the fibers of the restriction of \(\tilde{\mu} \) to any symplectic piece of \(M_1 \) are isotropic tori.
- Since the fibers of \(\tilde{\mu} \) are connected, the intersection of any fiber of \(\tilde{\mu} \) with a symplectic piece of \(M_1 \) is closed in the symplectic piece, and the symplectic pieces of \(M_1 \) are locally closed in \(M_1 \), each fiber of \(\tilde{\mu} \) is contained in a single symplectic piece of \(M_1 \).
- At each stage of the iterated symplectic contraction, the pre-image under \(\Phi_k \) of a submanifold \(N \) of a symplectic piece of \(M_k \) indexed by \(\sigma \subseteq \Delta_k \) and \((H) \) is a coisotropic fiber bundle over \(N \) whose fibers are the homogeneous spaces \(K_k/H_k \).

\[\square \]

Remark 28. Let \(M = \mathcal{O}_\lambda \) be a \(U(n) \) coadjoint orbit and consider the Hamiltonian action of \(U(n) \) generated by the inclusion \(\iota: \mathcal{O}_\lambda \to u(n)^* \). The fibers of Gelfand-Zeitlin systems on \(M \) were studied extensively by Cho-Kim-Oh [9] who prove a more detailed result analogous to Theorem 26. Cho-Kim-Oh show that – in this specific case, \(M = \mathcal{O}_\lambda \) – the only fibers occurring in the bundles \(E_k \to E_{k-1} \) of (27) are points or odd-dimensional spheres. Moreover – in this specific case – they show that the fibers of the Gelfand-Zeitlin system are all isotropic.

References

[1] Joachim Hilgert, Christopher Manon, and Johan Martens. Contraction of Hamiltonian \(K \)-spaces. International Mathematics Research Notices, 2016.
[2] T. Nishinou, Y. Nohara, and K. Ueda. Toric degenerations of Gelfand-Cetlin systems and potential functions. Adv. math., 224(2), 2010.
[3] Megumi Harada and Kuimars Kaveh. Integrable systems, toric degenerations and Okounkov bodies. Inventiones mathematicae, 2015.
[4] Iva Halacheva and Milena Pabiniak. The Gromov width of coadjoint orbits of the symplectic group. arXiv:1601.02825.
[5] Xin Fang, Peter Littelmann, and Milena Pabiniak. Simplices in Newton-Okounkov bodies and the Gromov width of coadjoint orbits. arXiv:1607.01163.
[6] Kuimars Kaveh. Toric degenerations and symplectic geometry of smooth projective varieties. arXiv:1508.00316.
[7] V. L. Popov. Contractions of actions of reductive algebraic groups. Mat. Sb. (N.S.), 130(172)(3):310–334, 431, 1986.
[8] Reyer Sjamaar and Eugene Lerman. Stratified symplectic spaces and reduction. Ann. of Math. (2), 134(2):375–422, 1991.
[9] Yunhyung Cho, Yoosik Kim, and Yong-Geun Oh. Lagrangian fibers of Gelfand-Cetlin systems. arXiv:1704.07213.

[10] V. Guillemin, L. Jeffrey, and R. Sjamaar. Symplectic implosion. *Transformation Groups*, 7(2):155–184, 2002.

[11] V. Guillemin and S. Sternberg. *Symplectic techniques in physics*. Cambridge University Press, Cambridge, 1984.

[12] Anton Thimm. Integrable geodesic flows on homogeneous spaces. *Ergodic Theory Dynamical Systems*, 1(4), 1981.

[13] V. Guillemin and S. Sternberg. The Gelfand-Cetlin system and quantization of the complex flag manifolds. *J. Funct. Anal.*, 52(1):106–128, 1983.

[14] V. Guillemin and S. Sternberg. On collective complete integrability according to the method of Thimm. *Ergodic Theory Dynam. Systems*, 3(2):219–230, 1983.

[15] Chris Woodward. Multiplicity-free Hamiltonian actions need not be Kähler. *Inventiones Mathematicae*, 131(2):311–319, 1998.

[16] Jeremy Lane. Convexity and Thimm’s trick. *Transformation Groups*, 2017.

Dept. of Mathematics, Université de Genève, 2-4 rue du Lièvre, Case postale 64 1211 Genève 4, Switzerland

E-mail address: jeremy.lane@unige.ch