Knowledge of infection prevention and control practices among health care workers caring for patients with suspected or confirmed COVID-19: a cross-sectional study

[version 1; peer review: 1 approved with reservations]

Eman H Elsebaie¹, Amany A Salem¹, Amal S Sedrak¹, Ahmed Ayad², Sahar A Ahmed³, Bassante A El Razik⁴, Noha M Abu bakr Elsaid ⁵

¹Public Health & Community Medicine Department, Cairo University, Faculty of Medicine, Cairo, Egypt
²Pathology Department, Icahn School of Medicine, Mount Sinai West/Morningside, New York, USA
³Internal Medicine Department, Cairo University, Cairo, Egypt
⁴Global Health, Global Health Institute, Heidelberg University, Heidelberg, Germany
⁵Public Health, Community, Environmental and Occupational Medicine Department, Suez Canal University, Faculty of Medicine, Ismailia, 41522, Egypt

Abstract

Background: The COVID-19 pandemic is increasing rapidly. Hospital acquired infections enhance local outbreaks, impacting the vulnerable populations. Infection prevention and control practices (IPC) refer to all the activities used to reduce the risk of infection spread. This study aims to estimate the proportion of health care workers (HCWs) who acquired SARS-CoV2 infection, and evaluate their knowledge to IPC and suggest recommendations to reduce the risk of SARS-CoV2 infection.

Methods: This is a cross-sectional study conducted in Egypt from June 8, 2020, till August 19, 2020. A purposive sample of 518 HCWs from different governorates was included in the study. HCWs filled a structured questionnaire developed by the World Health Organization on a Google Form and a printed copy. The questionnaire link was shared on social media forums including HCWs such as Facebook.

Results: The mean age of HCWs was 33±7 and 65% were males. The majority of health care workers were affiliated with the Ministry of Health and Population (62.5%), recruited from Cairo (52.4%), and were physicians (78.2%). About 11% of the HCWs had been infected with SARS-CoV2. Their mean knowledge percent score regarding IPC was 36.19 ± 11.26. The highest rate of infection was among those with little experience (p=0.002), and those worked inside Cairo (p=0.018). About 89% mentioned that the leading cause of infection with SARS-
CoV2 was the shortage in Personal Protective Equipment (PPE). About 42% recommended raising the awareness for the importance of IPC to decrease risk of infection.

Conclusions: HCWs had a low score of knowledge toward IPC. There was a considerable proportion of SARS-CoV2 infection among them. Lack of knowledge and shortage of PPE were the contributing factors. It is necessary to provide juniors with IPC training, and hospitals with sufficient PPE.

Keywords
Infection control, COVID-19 pandemic, health care workers, health care facilities

This article is included in the Disease Outbreaks gateway.

This article is included in the Coronavirus collection.
Introduction
A pandemic of SARS-CoV2 was proclaimed on March 11, 2020. As of March 26, 2020, more than 150 countries have registered more than half a million cases of COVID-19 globally. In all EU/EEA countries and the UK, the number of confirmed cases of COVID-19 is expanding, accounting for a growing share of the global cases.

Healthcare facilities associated infections is considered a serious public health problem. Nosocomial outbreaks accounts for a substantial share of local outbreaks, hurting elders and exposed populations disproportionately. Infection prevention and control practices (IPC) encompass all measures taken to limit the risk of infection spread. IPC practices could be clustered into two classes: standard precautions and transmission-based precautions. IPC practices are vital to protecting health systems' functioning and mitigating the effects on vulnerable communities.

According to the COVID-19 Situation Report by World Health Organization (WHO), 52 countries had identified a total of 22,073 health care workers (HCWs) had caught COVID-19. Among total cases, the median percentage of HCW infection was 10.04% (range 0–24.09%). HCWs had a median fatality rate of 0.8% (range 0–18.95%). Indonesia had the highest case fatality rate (18.95%), followed by Uzbekistan, Iran, and Egypt, which had a 6.52% case fatality rate. The United States had the lowest recorded case fatality rate, at 0.29%.

According to the Egyptian Medical Syndicate, since the outbreak of coronavirus in Egypt in mid-February, at least 68 frontline HCWs have died, and more than 400 have been confirmed positive, with a very high mortality rate of 15.8% which needs a clear justification by the health authorities.

IPC are considered a top priority for slowing infection transmission in healthcare facilities, reducing the demand for specialized healthcare, such as intensive care unit beds, protecting vulnerable groups, shielding healthcare workers, and finally preventing the spread of cases to other healthcare facilities and the general public.

Coronaviruses are mostly believed to be transmitted via large respiratory droplets, getting in contact with infected fomites and breathing the aerosols generated during Aerosol Generation Procedures (AGPs). Aside from the protection by the different components of PPE, the virus' transmissibility at several stages of the disease remains uncertain. Consequently, attention should be applied when considering these elements. Except for AGPs, it is unknown if facial filtering piece (FFP) respirators offer the best protection against other coronaviruses and respiratory viruses such as influenza than surgical masks. As a result, a reasonable option would prioritize the use of Filtrating Face Piece (FFP2/3) respirators for therapeutic methods with a high risk of transmission, such as intensive care or AGPs.

COVID-19 spread among HCWs is exacerbated by a lack of awareness and knowledge of infection control measures among these workers. Therefore, applying preventive measures is the most critical intervention to control COVID-19 infection. HCWs display a greater risk of infection, as explained by their constant contact with patients. The Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) recently released recommendations for COVID-19 prevention and control among HCWs.

This study will estimate the proportion of SARS-CoV2 infection among HCWs at various health care facilities in Egypt, as well as assess healthcare workers’ knowledge toward IPC while taking care for suspected or confirmed COVID-19 patients, primarily in settings with wider community transmission, based on the facts mentioned above. Finally, this study will explore the association between infection prevention and control practices knowledge and the proportion of infection among HCWs.

The objectives of this study are:

1. To determine the proportion of SARS-CoV2 infection among the participating HCWs.
2. To assess knowledge of IPC among HCWs caring for suspected or confirmed COVID-19 cases.
3. To discover the relationship between HCWs’ knowledge and the proportion of SARS-CoV2 infection among them.
4. To suggest recommendations to reduce the risk of SARS-CoV2 infection among HCWs who care for confirmed or suspected COVID-19 cases.
Methods

Study design: We conducted a cross-sectional analytical study to assess the knowledge of HCWs to infection control practices caring for confirmed or suspected COVID-19 cases.

Sample size and technique: Purposive sample of 518 participants was targeted mainly through electronic data collection. The sample size was estimated based on evidence from a previous study assessing knowledge and practice of HCWs toward infection prevention and control practices conducted in 2018 due to lack of studies assessing the same issue in context with COVID-19 pandemic at the time of conducting our study.21 Considering the knowledge percent score as a primary outcome, Epi-calc 2000 (version 1.01) was used to calculate the sample size of this study. Assuming 80% power, a 0.05 level of significance, and an estimated proportion of 85%,21 the sample size was estimated to be 469 participants. After adding a non-response rate of 10%, so the estimated sample size was 516, but the final sample included 518 participants.

Study population and setting: The study was conducted on HCWs from different Egyptian governorates, affiliated with the Ministry of Health and Population (MOHP), academia, police/military hospitals, as well as freelancers.

Inclusion criteria: All HCWs’ categories, physicians, pharmacists, and nurses, who approved participating in the study, were recruited.

Exclusion criteria: Non-HCWs and who were not fluent in English or could not complete the questionnaire were excluded.

Data collection tool: Based on the tool developed by WHO,22 a self-administered structured questionnaire composed of 29 questions was designed. Questions were presented in the English language. The authors checked content and face validity. The questionnaire was piloted on 26 HCWs who were excluded from the analysis. No modification in the questionnaire was needed based on the pilot testing. The internal consistency of the study questionnaire was assessed by calculating the Cronbach alpha. The value was 0.75 for the knowledge section. No potential sources of bias had been facing the investigators since data collection was mainly based on the electronic method. HCWs were asked to submit their e-mail address at the end of the survey to avoid duplicate entries; duplicate entries with the same e-mail address were excluded before analysis, and the first entry was maintained.

An online data collection method was used in line with lockdown measures conducted in Egypt to achieve social distancing. An online Google form was created, and participants were invited to complete and submit it. The questionnaire link was shared on social media forums including HCWs such as Facebook, Twitter, and What’s App. 488 questionnaires were done as Google forms. About 32 copies of the questionnaire have been printed and disseminated to HCWs who worked at health care facilities that lacked internet connections through the help of two house officers and two residents in these health care facilities. Data were collected from June 8, 2020, till August 19, 2020 (No follow-up was done).

The questionnaire enclosed the following sections: (I) Socio-demographic characters and history of getting SARS-CoV2 infection: age, gender, affiliation, specialty, education, years of experience, place of work, attendance of any IPC courses and getting SARS-CoV2 infection diagnosed by the Polymerase Chain Reaction (PCR) test; (II) Knowledge section entailed knowledge questions covering the primary general information of infection prevention and control practices, specifically a) Applying standard precautions for all patients. b) Contact and droplet precautions, airborne precautions for aerosol-generating procedures, using environmental and engineering controls; (III) Two questions assessing HCWs’ opinions and attitudes about underlying causes for widespread SARS-CoV2 infections among HCWs and their suggestions for improving adherence to IPC, improving infection control situation and decreasing the risk of SARS-CoV2 infections among them by answering an open-ended question.

For each of the 15 knowledge questions, a score of one point was assigned to the correct response, and a score of zero was assigned to the incorrect response. In the case of multiple-choice questions, choosing all the correct answers was scored 0 with the maximum score to be 15 (percent score = total score of every participant/15*100). Those attained ≥ 5.5 points (out of 15 points, the average for the score) were assigned as being knowledgeable, while those who attained < 5.5 points were assigned as being not knowledgeable.

Data analysis: The data were coded by two of the authors and exported on a data sheet prepared on Microsoft Excel program, version 2013. The data was analyzed using SPSS version 24. Simple descriptive statistics were used to create a
summary and simple frequency of quantitative data. The bivariate analysis was carried out and displayed in cross-tabulations, with proportions being compared using the chi-square and Fisher’s exact tests as needed. To compare normally distributed data, an independent T-test was performed. P-value < 0.05 was used as the significance level.

Ethics approval and consent to participate: The Faculty of Medicine’s ethical committee, Suez Canal University approved the study protocol (IRB number 4189-5-2020). Throughout the analysis, we protected participants’ identities by keeping the data of the participants confidential and asking participants to provide truthful answers. The participation was non-compensated and voluntary. We put the informed consent in the first part of the online and printed questionnaire, and if participants refused to give consent to participate, they had been unable to complete the form. Participants had to choose by checking a box if they agree or refuse to participate in the study and publishing their result. Therefore, completion of the questionnaire denoted participant’s agreement to participate in the study and publish their results.

Results
A total of 518 HCWs (65% males and 35% females) were included in this study. The Age range was (23 – 69) years, with a mean age of 33±7 years and median (IQR) years of experience 7 (4–10). The majority of the participants were affiliated with the Ministry of Health and Population (MOHP) with a total percentage of 62.5%; 22.4% participants were affiliated to academia; and 3.1% were working at military hospitals. Our study included participants from 21 Egyptian governorate, the highest recruitment was from Cairo (52.4%), Giza (16.2%), Dakahlia (5.8%), Kafr Elsheikh (5%), and Alexandria governorates (3.9%). The majority of the participants were physicians (405/78.2%), followed by pharmacists (52/10%), dentists (39/7.5%), nurses (18/3.5%) and technicians (40/8%). The level of education obtained by the participants mainly were Bachelor and Master’s degrees (35.5% and 32.4%, respectively), followed by a doctorate (15.1%), diplomas (10.4%), and obtained fellowships and higher institutes graduates (6.6%). The majority of our participants were entry-level physicians considered the frontline HCWs against the COVID-19 pandemic. Our participants’ seniority level was mostly residents (32.4%) followed by participants who were specialists (27%), which corresponds to entry-level physicians with fewer years of experience. The specialties of physicians who took part in this survey were primarily internal medicine physicians (10.8%), clinical and chemical pathologists (8.9%), followed by anesthesiologists (ICU) (8.5%), pediatric (6.6%) and radiologists (6.2%) of the sample.

Out of the 518 HCWs, those who have taken infection prevention control courses were 54.4%. About two-thirds of HCWs working in Cairo governorate were infected compared to only 33.3% of those working outside Cairo (P-value = 0.018; OR = 1.965; 95% CI:1.113-3.466). Regarding the years of experience, 76.7% of those working less than seven years were infected compared to 23.3% of those working more than seven years (P-value = 0.002; OR = 2.650; 95% CI:1.416-4.958). About 93% of the infected group reported the presence of infected HCWs in their working facilities compared to 80% among the non-infected group (P-value = 0.014; OR = 3.422; 95% CI: 1.209-9.690) (Table 1).

As regards IPC knowledge association with infection among HCWs, less than 2% (10 participants) preferred not to declare if they had SARS-CoV2 infection, so they were excluded from the analysis. Wearing appropriate PPE while cleaning soiled bleeding toils and linens from patients with COVID-19 was significantly associated with lower proportion of infection (P-value = 0.011; OR = 2.318; 95% CI:1.193-4.504). The knowledge about importance of wearing boots, impermeable aprons as routine PPE for HCWs caring for patients with suspected or confirmed COVID-19 was significantly associated with lower proportion of infection (P-value = 0.042; OR = 1.997; 95% CI:1.016-3.546). The attitude towards the importance of specialized or referral hospitals for patients with suspected or confirmed COVID-19 infection when hospitalization is needed was significantly associated with lower proportion of infection (P-value = 0.005; OR = 2.298; 95% CI:1.277-4.149) (Table 2). The knowledge score among HCWs was 5.43 ± 1.69 (percent score = 36.19 ± 11.26) (Table 3). The score was not significantly different between physicians and other HCWs among the study population (P-value = 0.824) (Table 4).

Regarding HCWs opinions about the high proportion of infection among them, they reported that the primary cause was PPE shortage (88.8%) and the least cause was their misbelief in the effectiveness of PPE (8.1%) (Figure 1). As for further suggestions to improve the infection control situation, adherence to IPC and decreasing the risk of SARS-CoV2 infection among HCWs taking care of patients with suspected or confirmed COVID-19 cases: the highest proportion of HCWs (42%) recommended raising the awareness for the importance of IPC among HCWs, an equal proportion of HCWs (12.9%) suggested both providing a proper system for IPC with punishment for the non-adherent, and advising to perform frequent testing every two weeks for HCWs in isolation hospitals, while the lowest proportion of HCWs (3.2%) suggested depending on CT for diagnosis of SARS-CoV2 infection (Figure 2).

Discussion
The novel COVID-19 pandemic is the center of attention worldwide, causing a massive burden on economies, health care systems, and HCWs. The cumulative number of infected cases is over 83 million reported cases and over 1.8 million...
deaths globally since the pandemic started. In Egypt, the cumulative number of cases is over 148 thousand reported cases and over eight thousand deaths since the pandemic, with a case fatality rate of 5.5%. The infection rate among HCWs is 2.37% of the total confirmed cases, with a case fatality rate 6.52% with 244 tests per million.

HCWs displays amplified occupational risk of acquiring COVID-19 infection and higher mortality rates due to a shortage of PPE and inapplicable social distancing within the healthcare work environment. Evidence concerning the burden of COVID-19 infection in HCWs is still insufficient. Strengthening and applying infection control measures in all health facilities is crucial to limit the spread of COVID-19 infection among HCWs.

Here, our aim was to explore the proportion of SARS-CoV2 infection among HCWs in Egypt, to assess their knowledge of infection control practices, its relation with the proportion of SARS-CoV2 infection among them, and to suggest recommendations for decreasing the risk of SARS-CoV2 infection among HCWs caring for confirmed or suspected COVID-19 cases.

We found that 82.2% of respondents have reported having a colleague within their working facility tested positive for COVID-19. In contrast, around 11% of HCWs themselves were admitted because of testing positive for COVID-19. However, these percentages could be underestimated because COVID-19 infection causes many asymptomatic and subclinical cases. Compared to other studies in Egypt, showing the incidence of HCWs infection was 2.37%,

Table 1. The relation between socio-demographic characteristics and infection with SARS-CoV2 among the study population (n = 508).

Did you get a COVID-19 infection?	P-value	OR	95% CI					
Infected	N (60)	% (100)	N (448)	% (100)	Lower	upper		
Age								
≤ 32 years	12	20.0%	66	14.7%	0.288	1.447	.730	2.869
> 32 years	48	80.0%	382	85.3%				
Where do you work?								
Cairo	40	66.7%	226	50.4%	0.018*	1.965	1.113	3.466
Outside Cairo	20	33.3%	222	49.6%				
Years of experience								
≤ 7 years	46	76.7%	248	55.4%	0.002*	2.650	1.416	4.958
> 7 years	14	23.3%	200	44.6%				
Have you ever taken any infection control courses or certificates? (yes responses)	38	63.3%	238	53.1%	0.136	1.524	.873	2.660
Is there any health care worker in your facility tested positive for COVID-19? (yes responses)	56	93.3%	360	80.4%	0.014*	3.422	1.209	9.690
Affiliation								
Cairo university hospital	24	40.0%	114	25.4%	0.062			
Military/Police hospitals	2	3.3%	14	3.1%				
Ministry of Health and Population	28	46.7%	288	64.3%				
Private organization	6	10.0%	32	7.1%				
HCWs categories								
Physician	50	89.3%	347	77.4%	0.23			
Pharmacist	4	7.1%	48	10.7%				
Dentist	2	3.6%	35	7.8%				
Nurse	0	0%	18	4%				
Technician	0	0%	4	0.9%				

*Significant P-value (≤0.05).
**Chi-square test.

Here, our aim was to explore the proportion of SARS-CoV2 infection among HCWs in Egypt, to assess their knowledge of infection control practices, its relation with the proportion of SARS-CoV2 infection among them, and to suggest recommendations for decreasing the risk of SARS-CoV2 infection among HCWs caring for confirmed or suspected COVID-19 cases.
| 13-How can you clean soiled bedding, towels, and linens from patients with COVID-19?* |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Did you get a COVID-19 infection? | Infected | Not infected | P-value | OR | 95% CI |
| N(60) | % (100) | N(448) | % (100) | | Lower | upper |
| a-Wear appropriate PPE | 46 | 76.7% | 396 | 88.4% | 0.011* | 2.318 | 1.193 | 4.504 |
| b-Place soiled linen in a clearly labeled, leak-proof container | 29 | 48.3% | 225 | 50.2% | 0.783 | 1.079 | .629 | 1.849 |
| c-Wash and disinfect linen with warm water and detergent | 47 | 78.3% | 365 | 81.5% | 0.560 | 1.216 | .629 | 2.351 |
| d-If no washing machine, linen can be soaked in hot water and soap | 28 | 46.7% | 224 | 50.0% | 0.628 | 1.143 | .666 | 1.961 |
| e-If no hot water, soak linen in 0.05% chlorine for 30 min | 30 | 50.0% | 272 | 60.7% | 0.112 | 1.545 | .900 | 2.653 |
| 14-What are the recommendations regarding the disinfection of vehicles, goods, and products coming from COVID-19 affected countries? (No, recommendations) | 26 | 43.3% | 190 | 42.4% | 0.892 | .963 | .559 | 1.659 |

| 15-What PPE should be used by healthcare workers performing nasopharyngeal swab on patients with suspected or confirmed COVID-19?* |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Did you get a COVID-19 infection? | Infected | Not infected | P-value | OR | 95% CI |
| N(60) | % (100) | N(448) | % (100) | | Lower | upper |
| a-A clean, non-sterile gown | 48 | 80.0% | 383 | 85.5% | 0.265 | 1.473 | .743 | 2.922 |
| b-A medical mask | 56 | 93.3% | 419 | 93.5% | 0.954 | 1.032 | .350 | 3.045 |
| c-Eye goggles or face shield | 46 | 76.7% | 382 | 85.3% | 0.086 | 1.762 | .917 | 3.384 |
| d-Gloves | 50 | 83.3% | 393 | 87.7% | 0.339 | 1.429 | .685 | 2.981 |
| e-Procedure should be conducted in a separate room | 44 | 73.3% | 315 | 70.3% | 0.629 | .861 | .469 | 1.580 |
| f-Request the patients to cover their mouth with a medical mask or tissue | 34 | 56.7% | 240 | 53.6% | 0.651 | .882 | .512 | 1.519 |
| 16-Should blood centers routinely screen blood products for SARS-CoV2 virus? (Deferral of those with a suspected history of travel or close contact of a case) | 16 | 26.7% | 168 | 37.5% | 0.257 | |
| 17-Are boots, impermeable aprons, or coverall suits required as routine personal protective equipment (PE) for healthcare workers (HCW) caring for patients with suspected or confirmed COVID-19 infection? (yes response) | 44 | 73.3% | 376 | 83.9% | 0.042* | 1.997 | 1.016 | 3.546 |
| 18-Can disposable medical face masks be sterilized and reused? (yes response) | 8 | 13.3% | 68 | 15.2% | 0.707 | .860 | .391 | 1.890 |
| 19-Does WHO recommend contact and droplet precautions and not routine use of airborne precautions for healthcare workers providing care to patients with suspected/confirmed COVID-19 infection? (yes response) | 36 | 60.0% | 252 | 56.3% | 0.582 | 1.167 | .674 | 2.020 |
Table 2. Continued

Did you get a COVID-19 infection?	P-value	OR	95% CI					
Infected								
N (60)	% (100)	N (448)	% (100)	Lower	upper			
---	---	---	---	---	---			
20-Does WHO recommend routine wearing masks for healthy people during the COVID-19 outbreak? (yes response)								
54	90.0%	406	90.6%	0.876	.931	.378	2.293	
21-Can patients with suspected and confirmed COVID-19 infection be admitted in the same room? (yes response)								
10	16.7%	70	15.6%	0.835	1.080	.523	2.231	
22-Do patients with suspected or confirmed COVID-19 need to be hospitalized if they have a mild illness? (yes response)								
2	3.3%	22	4.9%	0.589	.668	.153	2.914	
23-Are specialized or referral hospitals required for patients with suspected or confirmed COVID-19 infection when hospitalization is needed? (yes response)								
40	66.7%	368	82.1%	0.005*	2.298	1.277	4.149	
24-What are the disinfectants recommended for environmental cleaning in healthcare facilities with suspected or confirmed COVID-19 infection?*								
a-Ethyl alcohol 70%	54	90.0%	414	92.4%	0.515	1.353	.543	3.371
b-Sodium hypochlorite at 0.5%	14	23.3%	200	44.6%	0.002*	2.650	1.416	4.958
c-Soapy water solution	34	56.7%	268	59.8%	0.640	1.139	.661	1.962
d-Chlorine	24	40.0%	174	38.8%	0.863	.953	.549	1.652
25-How long the COVID-19 can survive on a dry surface? (It depends on several factors including relative temperature, humidity, and surface type)								
a-24 hours	2	3.3%	22	4.9%				
b-3 days	2	3.3%	60	13.4%				
c-It depends on several factors including relative temperature, humidity, and surface type	56	93.3%	366	81.7%				
26-Is there a special procedure regarding waste produced by patients with suspected or confirmed COVID-19? (yes response)								
56	93.3%	408	91.1%	0.559	1.373	.473	3.982	
27-Are there special procedures for the management of bodies of persons who have died from COVID-19? (yes response)								
58	96.7%	400	89.3%	0.071	3.480	.824	14.703	

*Significant P-value (≤0.05).
**Chi-square test.
Table 3. Parameters of knowledge score of IPC practices among the study population.

	Mean	Standard Deviation	Minimum	Maximum
Score	5.43	1.69	1.00	12.00
Percent Score	36.19	11.26	6.67	80.00

Table 4. Comparison of knowledge score of IPC practices between physicians and other HCWs.

	Physicians and other HCWs	N	Mean	Std. Deviation	P value
Score	Physicians	405	5.4420	1.69878	0.824
	Others	112	5.4018	1.65197	

*Significant P-value (<0.05).
**T-independent test.

Figure 1. Percent distribution of HCWs opinions regarding the high proportion of infection among HCWs in Egypt (n = 518).

Figure 2. Percent distribution of HCWs recommendations to decrease the risk of SARS-CoV2 infection (n = 62).
11%, and 13.5\%^{10,26,27} \text{ respectively. Another cross-sectional study in New York City}^{23} \text{ reported a 19.4\% infection rate. Furthermore, 4.3\% was estimated in a cross-sectional study in a hospital in Muscat, Oman}^{28} \text{ and 30.35\% in a study in Mexico.}^{24}

We found that HCWs infection rate was significantly higher in Cairo governorate (P-value = 0.018, OR = 1.965); it could be due to the highest population distribution, or that this governorate has specialized fever hospitals which were more exposed to infection burden on its health care systems. Also, a higher infection rate was found among workers with \(\leq\)7 years of experience (P-value = 0.002, OR = 2.650) which may be due to lack of experience and higher workload for junior physicians than senior ones. This goes in agreement with Vindrola et al.25 However, the infection rate did not differ significantly with age. Among those who were \(\leq\)32 years, 20\% were infected, and 14.7\% were not infected by COVID-19 (P-value = 0.288). As regards the affiliation, the highest proportion of infection was among those affiliated to MOHP (46.7\%), but the result was not statistically significant, this might be due to unpreparedness for such a pandemic, higher flow rate of patients with a shortage of PPE compared to military/police hospitals (3.3\%) (P-value = 0.062), and this goes following Papoutsi et al.10 Regarding HCWs categories, there was no statistically significant difference between them regarding the proportion of SARS-CoV2 infection (p = 0.23). This may be explained by the fact that all HCWs were responsible for the fight against COVID-19 due to lack of health care personal, increased workload and the huge number of cases during the wave. This was contradictory to a recent systematic review that reported the most frequently affected personnel were nurses and non-emergency wards during screening.25

Regarding the knowledge, although 54.4\% of our participants took infection control courses, their mean knowledge percent score was 36.19 \pm 11.26, which is surprisingly low. It could be due to poor course content or not following the courses by proper practice. Therefore, they did not retain much information.

We noticed that the non-infected group of respondents got higher percentages of correct answers and significantly higher percent to the choice “wear PPE” to the question “How to clean soiled bedding, towels, and linens from patients with COVID-19” (P-value = 0.011, OR = 2.318). For the question “wearing PPE in the form of boots, impermeable aprons, or coverall suits while dealing with suspected or confirmed COVID-19 infection patients” (P-value = 0.042, OR = 1.997) while “knowing that specialized or referral hospitals required for suspected or confirmed COVID-19 patients when hospitalization is needed” (P-value = 0.05, OR = 2.298) and with the choice of “using sodium hypochlorite at 0.5\% for cleaning the environment” (P-value = 0.002, OR = 2.650). These findings showed an inverse association between IPC knowledge and proportion of COVID-19 infection that was statistically significant, this was in accordance with recent studies.29-32

Regarding the HCWs’ opinions about the high proportion of infection among them in Egypt, they thought this could be due to shortage of PPE (88.8\%) inconsistent with recent studies,9,25,33 work overload (84.2\%) in agreement with recent studies22 and lack of knowledge on how to use PPE as estimated by Houghton systematic review,5,33 and the HCWs recommended raising the awareness for the importance of IPC (41.9\%).

Recommendations
We recommend strengthening policies for applying IPC with proper supervision and providing junior physicians with mandatory IPC training. Besides, extending the surveillance within the facilities for early detection of infected workers and isolation of cases will minimize transmission risk. It was also supplying hospitals with sufficient PPE. It is crucial to consider the years of experience of workers while dealing with COVID-19 patients.

Strength of the study
- The study included representatives from all health care workers’ classes (physicians, pharmacists, dentists, and nurses), as well as physicians from different specialties (clinical pathologists, pediatric, radiologists, ophthalmologists, anesthesiologists, and internal medicine physicians).
- Up to our knowledge, this is one of the earliest papers examining infection prevention and control practices among HCWs caring for patients with suspected or confirmed COVID-19 during the pandemic peak in Egypt.

Limitations of this study
- Even though the study included different occupational classes, their distribution was not equal.
- Although the study included HCWs from 21 Egyptian governorate and from almost all central Egyptian governorates (Cairo, Giza, Dakahlia, Kafr Elsheikh, and Alexandria governorates), further studies will be in need on a larger scale including all Egyptian governorates using a probability sample.
Conclusion

We concluded that HCWs had low score of knowledge of infection prevention and control practices. There was a considerable proportion of SARS-CoV2 infection among HCWs in Egypt, especially among those working in Cairo governorate with experience less than seven years; due to lack of knowledge about IPC measures and shortage of PPE in their working facilities.

Data availability

Underlying data

Dryad: Knowledge and attitude of Infection prevention and control practices among health care workers caring for their working facilities.

This project contains the following underlying data.

- Dataset (xlsx)

Data are available under a CC0 1.0 Universal (CC0 1.0) Public Domain Dedication license.

References

1. World Health Organization: WHO Director-General’s opening remarks at the media briefing on COVID-19e March 11 2020. Geneva: WHO; 2020. [Last accessed April 2020].
2. European Centre for Disease Prevention and Control (ECDC): Infection prevention and control for COVID-19 in healthcare settings 2020 [updated 12 March 2020]; cited 26 March 2020.
3. European Centre for Disease Prevention and Control (ECDC): COVID-19 (cited 8 March 2020).
4. World Health Organization (WHO): Coronavirus disease (COVID-19) outbreak 2020.
5. Allegranzi B, Bagheri Nejad S, Combescure C, et al.: Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet (London,England). 2011; 377(9761): 228–241.
6. World Health Organization (WHO): Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020 [cited 1 March2020].
7. World Health Organization: Practical guidelines for infection control in health care facilities. SEARO Regional Publication No. 41 Manila: WHO Regional Office for the Western Pacific; 2004. [Last accessed on 2017 May 26] Reference Source
8. Istituto Superiore di Sanita’ (ISS): Sorveglianza Integrata COVID-19 in Italia 2020. [Updated 26 March 2020; cited 26 March 2020].
9. World Health Organization: Coronavirus disease (COVID-19) situation reports. Date last accessed: 17 April 2020. Date last updated: 1 June 2020 Reference Source
10. Pappoutsi E, Giannakoulis VG, Ntella V, et al.: Global burden of COVID-19 pandemic on healthcare workers. Elife Open Res. 2020 Apr; 6(2).
11. Egyptian statistics. Retrieved May 2, 2020.
12. Retrieved June 15, 2020.
13. Rothe C, Schunk M, Sothmann P, et al.: transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020.
14. Ong SWX, Tan YK, Chia PY, et al.: Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020.
15. Smith JD, MacDougall CC, Johnstone CRA, et al.: Effectiveness of N95 respirators versus surgical masks in protecting healthcare workers from acute respiratory infection: a systematic review and meta-analysis. Cmaj. 2016; 188(8): 567-574.
16. Tran K, Cimon K, Severn M, et al.: Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One. 2012; 7(4): e35797.
17. Li R, Pei S, Chen B, et al.: Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science. 2020. eabb3221.
18. Wu Z, McGoogan JM: Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the chinese center for disease control and prevention. JAMA. 2020. Reference Source
19. World Health Organization 2020: Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected: interim guidance. January 2020. [accessed 2020-02-12] Reference Source
20. Centers for Disease Control and Prevention: Update and interim guidelines on outbreak of 2019 Novel coronavirus (2019-nCoV). 2019. [accessed 2020-02-12] Reference Source
21. Desta M, Ayenew T, Sitotaw N, et al.: Knowledge, practice and associated factors of infection prevention among healthcare workers in Debre Markos referral hospital, Northwest Ethiopia. BMC Health Serv Res. 2018; 18(1): 465. Published 2018 Jun 18.
22. WHO Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected: Interim guidance 25 January 2020. Reference Source
23. Stock Ariel D, Bader Edward R, Cezayirli P, et al.: Eskandar Emad: COVID-19 Infection Among Healthcare Workers: Serological Findings Supporting Routine Testing. Front Med VOLUME=7,2020. Reference Source

24. Antonio-Villa NE, Bello-Chavolla OY, Vargas-Vazquez A, et al.: Assessing the burden of COVID-19 amongst healthcare workers in Mexico City: A data-driven call to action. medRxiv. 2020.07.02.20145169. Publisher Full Text

25. Vindrola-Padros C, Andrews L, Dowrick A, et al.: Perceptions and experiences of healthcare workers during the COVID-19 pandemic in the UK. BMJ Open. 2020; 10: e040503. Publisher Full Text

26. Mostafa AS, Abdalbaky A, Fouda EM, et al.: Practical approach to COVID-19: An Egyptian pediatric consensus. Egypt Pediatric Association Gaz. 2020; 68: 28. Publisher Full Text | Free Full Text

27. Kassem AM, Talaat H, Shawky S, et al.: SARS-CoV-2 infection among healthcare workers of a gastroenterological service in a tertiary care facility. Arab J Gastroenterol. The Official Publication of the Pan-arab Association of Gastroenterology. 2020 Sep; 21(3): 151–155. PubMed Abstract | Publisher Full Text | Free Full Text

28. Al Maskari Z, Al Blushi A, Khamis F, et al.: Characteristics of healthcare workers infected with COVID-19: A cross-sectional observational study. Int J Infectious Dis. 2021; 102: 1201-9712. PubMed Abstract | Publisher Full Text | Free Full Text

29. Lai X, Wang X, Yang Q, et al.: Will healthcare workers improve infection prevention and control behaviors as COVID-19 risk emerges and increases, in China? Antimicrob Resist Infect Control. 2020; 9: 83. Publisher Full Text

30. WHO: About the Infection Prevention and Control Course Series. Last accessed January 2021. Reference Source

31. Assefa J, Diress G, Adane S: Infection prevention knowledge, practice, and its associated factors among healthcare providers in primary healthcare unit of Wogdie District, Northeast Ethiopia, 2019: a cross-sectional study. Antimicrob Resist Infect Control. 2020; 9: 136. Publisher Full Text

32. Ejeh FE, Saidu AS, Owoicho S, et al.: Knowledge, attitude, and practice among healthcare workers towards COVID-19 outbreak in Nigeria. Heliyon. 2020; 6(11): e05557. 2405-8440. Publisher Full Text

33. Houghton C, Meskell P, Delaney H, et al.: Barriers and facilitators to healthcare workers’ adherence with infection prevention and control (IPC) guidelines for respiratory infectious diseases: a rapid qualitative evidence synthesis. Cochrane Database Syst Rev. 2020; 4: CD013382. PubMed Abstract | Publisher Full Text | Free Full Text

34. Elsebaie EH, et al.: Knowledge and attitude of infection prevention and control practices among health care workers caring for patients with suspected or confirmed COVID-19. Dryad, Dataset. 2021. Publisher Full Text
Open Peer Review

Reviewer comments:
- The title is not reflecting the study objectives or the results as the title is knowledge of IC practice and the analysis focused on knowledge according to Covid-19 infection.
- Sample size was calculated according to knowledge of infection control measures in general not Covid-19. A pilot study could be done to calculate relevant sample size.

Methods:

Study tool:
- A self-administered structured questionnaire composed of 29 questions, however the knowledge score was 15 items. The tool needs detailed description for included sections in the questionnaire (number of questions in each section).

Stat analysis paragraph:
- How were the quantitative variables described with simple frequency?

Results:

General comment:
- The sentences used for describing variables are too long; it would be better to summarize these variables, for example "Have you ever taken any infection control courses or certificates?" (Yes responses).

Received previous IC courses;
- The first objective is not highlighted in the results. Please demonstrate that in your results.
Table (1-2):
- Using reference category for polytomous variables and calculation of OR and 95% CI is recommended.
- The interpretation of total knowledge score was not used in tables.
- The score ≤ 5 & >5 can be associated with different demographics, occupational and infection statuses.
- Weak presentation of data in tables 3 and 4.
- Comparison of total knowledge score in infected and non-infected can be done (Tables 3 and 4).
- How did the authors describe that there is a high proportion of infection although the percentage of infected HCWs is 11.6%?

Fig 1:
1. Provide a proper system for IPC with punishment for the...incomplete variable in figure (please complete the sentence).
2. HCWs recommendations to decrease the risk of SARS-CoV2 infection: How is the recommendation to depend on CT in diagnosis? The recommendation is related to CT in diagnosis (Fig 2).

Decision: major revision is required.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Occupational medicine & Environmental health

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com