Measurement of the CP Violation Parameter $\sin 2\phi_1$ in B^0_d Meson Decays

A. Abashian, K. Abe, I. Adachi, Byoung Sup Ahn, H. Aihara, M. Akatsu, G. Alimonti, K. Aoki, K. Asai, M. Asai, Y. Asano, T. Aso, V. Aulchenko, T. Aushev, A. M. Bakich, E. Banas, S. Behari, P. K. Behera, D. Beiline, A. Bondar, A. Bozek, T. E. Browder, B. C. K. Casey, P. Chang, Y. Chao, B. G. Cheon, S.-K. Choi, Y. Choi, J. Dragic, A. Drutskoy, S. Eidelman, Y. Enari, R. Enomoto, C. W. Everton, F. Fang, H. Fujii, K. Fujimoto, Y. Fujita, C. Fukunaga, M. Fukushima, A. Garmash, A. Gordon, K. Gotow, H. Guler, R. Guo, J. Haba, T. Haji, H. Hamasaki, K. Hanagaki, F. Handa, K. Hara, T. Haruyama, N. C. Hastings, K. Hayashi, H. Hayashii, M. Hazumi, E. M. Heenan, Y. Higashi, Y. Higashino, I. Higuchi, T. Higuchi, T. Hirai, H. Hirano, M. Hirose, T. Hojo, Y. Hoshi, K. Hoshina, W.-S. Hou, S.-C. Hsu, H.-C. Huang, Y.-C. Huang, S. Ichizawa, Y. Igarashi, T. Iijima, H. Ikeda, K. Ikeda, K. Inami, Y. Inoue, A. Ishikawa, H. Ishino, R. Itoh, G. Iwai, M. Iwai, M. Iwamoto, H. Iwasaki, Y. Iwasaki, D. J. Jackson, P. Jalocha, H. K. Jang, M. Jones, R. Kagan, H. Kakuno, J. Kaneko, J. H. Kang, J. S. Kang, P. Kapusta, K. Kasami, N. Katayama, H. Kawai, H. Kawai, M. Kawai, N. Kawamura, T. Kawasaki, H. Kichimi, D. W. Kim, Heejong Kim, H. J. Kim, Hyunwoo Kim, S. K. Kim, K. Kinoshita, S. Kobayashi, S. Koike, S. Koishi, Y. Kondo, H. Konishi, P. Krokovny, R. Kulasiri, S. Kumar, T. Kuniya, E. Kurihara, A. Kuzmin, Y.-J. Kwon, K. Kawai, N. Kawamura, T. Kawasaki, H. Kichimi, D. W. Kim, Heejong Kim, H. J. Kim, Hyunwoo Kim, S. K. Kim, K. Kinoshita, S. Kobayashi, S. Koike, S. Koishi, Y. Kondo, H. Konishi, P. Krokovny, R. Kulasiri, S. Kumar, T. Kuniya, E. Kurihara, A. Kuzmin, Y.-J. Kwon.
M. H. Lee, S. H. Lee, C. Leonidopoulos, H.-B. Li, R.-S. Lu, Y. Makida, A. Manabe, D. Marlow, T. Matsubara, T. Matsuda, S. Matsui, S. Matsumoto, T. Matsumoto, Y. Mikami, K. Misode, K. Miyabayashi, H. Miyake, H. Miyata, L. C. Moffitt, A. Mohapatra, G. R. Moloney, G. F. Moorhead, N. Morgan, S. Mori, T. Mori, A. Murakami, T. Nagamine, Y. Nagasaka, Y. Nagashima, T. Nakadaira, T. Nakamura, E. Nakano, M. Nakao, H. Nakazawa, J. W. Nam, S. Narita, Z. Natkaniec, K. Neichi, S. Nishida, O. Nitoh, S. Noguchi, T. Nozaki, S. Ogawa, T. Ohshima, Y. Ohshima, T. Okabe, T. Okazaki, S. Okuno, S. L. Olsen, W. Ostrowicz, H. Ozaki, P. Pakhlov, H. Palka, C. S. Park, C. W. Park, H. Park, L. S. Peak, M. Peters, L. E. Piilonen, E. Prebys, J. L. Rodriguez, N. Root, M. Rozanska, K. Rybicki, J. Ryuko, H. Sagawa, S. Saitoh, Y. Sakai, H. Sakamoto, H. Sakaue, M. Satapathy, N. Sato, A. Satpathy, S. Schrenk, S. Semenov, Y. Settai, M. E. Sevior, H. Shibuya, B. Shwartz, A. Sidorov, V. Sidorov, J.B. Singh, S. Stanić, A. Sugi, A. Sugiyama, K. Sumisawa, T. Sumiyoshi, J. Suzuki, J.-I. Suzuki, K. Suzuki, S. Suzuki, S. Y. Suzuki, S. K. Swain, H. Tajima, T. Takahashi, F. Takasaki, M. Takita, K. Tamai, N. Tamura, J. Tanaka, M. Tanaka, Y. Tanaka, G. N. Taylor, Y. Teramoto, M. Tomoto, T. Tomura, S. N. Tovey, K. Trabelsi, T. Tsuboyama, Y. Tsujita, T. Tsukamoto, T. Tsukamoto, S. Uehara, K. Ueno, N. Ujiie, Y. Unno, S. Uno, Y. Ushiroda, Y. Usov, S. E. Vahsen, G. Varner, K. E. Varvell, C. C. Wang, C. H. Wang, M.-Z. Wang, T. J. Wang, Y. Watanabe, E. Won, B. D. Yabsley, Y. Yamada, M. Yamaga, A. Yamaguchi, H. Yamaguchi, H. Yamamoto, T. Yamanaka, H. Yamaoka, Y. Yamaoka, Y. Yamashita, M. Yamauchi, S. Yanaka, M. Yokoyama, K. Yoshida, Y. Yusa, C. C. Zhang, H. W. Zhao, J. Zhang, Y. Zheng, V. Zhilich, and D. Žontar

1 Aomori University, Aomori

2 Budker Institute of Nuclear Physics, Novosibirsk

3 Chiba University, Chiba
Number	Institution Name	Location
4	Chuo University, Tokyo	Tokyo
5	University of Cincinnati, Cincinnati OH	Cincinnati, OH
6	Gyeongsang National University, Chinju	Chinju
7	University of Hawaii, Honolulu HI	Honolulu, HI
8	High Energy Accelerator Research Organization (KEK), Tsukuba	Tsukuba
9	Hiroshima Institute of Technology, Hiroshima	Hiroshima
10	Institute for Cosmic Ray Research, University of Tokyo, Tokyo	Tokyo
11	Institute of High Energy Physics, Chinese Academy of Sciences, Beijing	Beijing
12	Institute for Theoretical and Experimental Physics, Moscow	Moscow
13	Kanagawa University, Yokohama	Yokohama
14	Korea University, Seoul	Seoul
15	H. Niewodniczanski Institute of Nuclear Physics, Krakow	Krakow
16	Kyoto University, Kyoto	Kyoto
17	University of Melbourne, Victoria	Melbourne, Victoria
18	Nagasaki Institute of Applied Science, Nagasaki	Nagasaki
19	Nagoya University, Nagoya	Nagoya
20	Nara Women’s University, Nara	Nara
21	National Kaohsiung Normal University, Kaohsiung	Kaohsiung
22	National Lien-Ho Institute of Technology, Miao Li	Miao Li
23	National Taiwan University, Taipei	Taipei
24	Nihon Dental College, Niigata	Niigata
25	Niigata University, Niigata	Niigata
26	Osaka City University, Osaka	Osaka
27	Osaka University, Osaka	Osaka
28	Panjab University, Chandigarh	Chandigarh
29	Princeton University, Princeton NJ	Princeton NJ
30	Saga University, Saga	Saga
31	Seoul National University, Seoul	Seoul
Abstract

We present a measurement of the Standard Model CP violation parameter $\sin 2\phi_1$ (also known as $\sin 2\beta$) based on a 10.5 fb$^{-1}$ data sample collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric e^+e^- collider. One neutral B meson is reconstructed in the $J/\psi K_S$, $\psi(2S)K_S$, $\chi_{c1}K_S$, $\eta_c K_S$, $J/\psi K_L$ or $J/\psi \pi^0$ CP-eigenstate decay channel and the flavor of the accompanying B meson is identified from its charged particle decay products. From the asymmetry in the distribution of the time interval between the two B-meson decay points, we determine $\sin 2\phi_1 = 0.58^{+0.32}_{-0.34}\text{(stat)}^{+0.09}_{-0.10}\text{(syst)}$.

PACS numbers:11.30.Er,12.15.Hh,13.25.Hw

(submitted to Phys. Rev. Lett.) Typeset using REVTEX
In the Standard Model (SM), CP violation arises from a complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix $[1]$. In particular, the SM predicts a CP violating asymmetry in the time-dependent rates for B^0_d and \bar{B}^0_d decays to a common CP eigenstate, f_{CP}, without theoretical ambiguity due to strong interactions $[2]$:

$$A(t) \equiv \frac{\Gamma(B^0_d \rightarrow f_{CP}) - \Gamma(B^0_d \rightarrow \bar{f}_{CP})}{\Gamma(B^0_d \rightarrow f_{CP}) + \Gamma(B^0_d \rightarrow \bar{f}_{CP})} = -\xi_f \sin 2\phi_1 \sin \Delta m_d t,$$

where $\Gamma(B^0_d \rightarrow f_{CP})$ is the decay rate for a B^0_d to f_{CP} at a proper time t after production, ξ_f is the CP-eigenvalue of f_{CP}, Δm_d is the mass difference between the two B^0_d mass eigenstates, and ϕ_1 is one of the three internal angles of the CKM Unitarity Triangle, defined as $\phi_1 \equiv \pi - \arg \left(\frac{-V^*_{td}V_{ud}}{V^*_{td}V_{ud}} \right)$ $[3]$.

In this Letter, we report a measurement of $\sin 2\phi_1$ using $B^0_d \bar{B}^0_d$ meson pairs produced at the $\Upsilon(4S)$ resonance, where the two mesons remain in a coherent p-wave state until one of them decays. The decay of one of the B mesons to a self-tagging state, f_{tag}, i.e. a final state that distinguishes between B^0_d and \bar{B}^0_d, at time t_{tag} projects the accompanying meson onto the opposite b-flavor at that time; this meson decays to f_{CP} at time t_{CP}. The CP violation manifests itself as an asymmetry $A(\Delta t)$, where Δt is the proper time interval $\Delta t \equiv t_{CP} - t_{tag}$.

The data sample corresponds to an integrated luminosity of 10.5 fb$^{-1}$ collected with the Belle detector $[4]$ at the KEKB asymmetric e^+e^- (3.5 on 8 GeV) collider $[5]$. At KEKB, the $\Upsilon(4S)$ is produced with a Lorentz boost of $\beta\gamma = 0.425$ along the electron beam direction (z direction). Because the B^0_d and \bar{B}^0_d mesons are nearly at rest in the $\Upsilon(4S)$ center of mass system (cms), Δt can be determined from the z distance between the f_{CP} and f_{tag} decay vertices, $\Delta z \equiv z_{CP} - z_{tag}$, as $\Delta t \simeq \Delta z / \beta\gamma c$.

The Belle detector consists of a three-layer silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of 1188 aerogel Čerenkov counters (ACC), 128 time-of-flight (TOF) scintillation counters, and an electromagnetic calorimeter containing 8736 CsI(Tl) crystals (ECL) all located inside a 3.4-m-diameter superconducting solenoid that generates a 1.5 T magnetic field. The transverse momentum resolution for charged tracks is $(\sigma_{p_t}/p_t)^2 = (0.0019p_t)^2 + (0.0034)^2$, where p_t is in GeV/c, and the impact parameter resolutions for $p = 1$ GeV/c tracks at normal incidence are $\sigma_{r\phi} \simeq \sigma_z = 55 \mu m$. Specific ionization (dE/dx) measurements in the CDC ($\sigma_{dE/dx} = 6.9\%$ for minimum ionizing pions), TOF flight-time measurements ($\sigma_{TOF} = 95$ ps), and the response of the ACC provide K^\pm identification with an efficiency of $\sim 85\%$ and a charged pion fake rate of $\sim 10\%$ for all momenta up to 3.5 GeV/c. Photons are identified as ECL showers that have a minimum energy of 20 MeV and are not matched to a charged track. The photon energy resolution is $(\sigma_E/E)^2 = (0.013)^2 + (0.0007/E)^2 + (0.008/E^{1/4})^2$, where E is in GeV. Electron identification is based on a combination of CDC dE/dx information, the ACC response, and the position relative to the extrapolated track, shape and energy deposit of the associated ECL shower. The efficiency is greater than 90% and the hadron fake rate is $\sim 0.3\%$ for $p > 1$ GeV/c. An iron flux-return yoke outside the solenoid, comprised of 14 layers of 4.7-cm-thick iron plates interleaved with a system of resistive plate counters (KLM), provides muon identification with an efficiency greater than 90% and a hadron fake rate less than 2% for $p > 1$ GeV/c. The KLM is used in conjunction with the ECL to detect K_L mesons; the angular resolution of the K_L direction measurement ranges between 1.5$^\circ$ and 3$^\circ$.
We reconstruct B_d^0 decays to the following CP eigenstates: $J/\psi K_S$, $\psi(2S)K_S$, $\chi_{c1}K_S$, η_cK_S for $\xi_f = -1$ and $J/\psi \pi^0$, $J/\psi K_L$ for $\xi_f = +1$. The J/ψ and $\psi(2S)$ mesons are reconstructed via their decays to $\ell^+\ell^-$ ($\ell = \mu, e$). The $\psi(2S)$ is also reconstructed via its $J/\psi \pi^+\pi^-$ decay, the χ_{c1} via its $J/\psi \gamma$ decay, and the η_c via its $K^+K^-\pi^0$ and $K_S(\pi^+\pi^-)K^-\pi^+$ decays.

For J/ψ and $\psi(2S) \rightarrow \ell^+\ell^-$ decays, we use oppositely charged track pairs where both tracks are positively identified as leptons. For the $B_d^0 \rightarrow J/\psi K_S(\pi^+\pi^-)$ mode, the requirement for one of the tracks is relaxed: a track with an ECL energy deposit consistent with a minimum ionizing particle is accepted as a muon and a track that satisfies either the dE/dx or the ECL shower energy requirements as an electron. For e^+e^- pairs, we include the four-momentum of every photon detected within 0.05 radians of the original e^+ or e^- direction in the invariant mass calculation. Nevertheless a radiative tail remains and we accept pairs in the asymmetric invariant mass interval between -12.5σ and $+3\sigma$ of $M_{J/\psi}$ or $M_{\psi(2S)}$, where $\sigma = 12$ MeV/c2 is the mass resolution. The $\mu^+\mu^-$ radiative tail is smaller; we select pairs within -5σ and $+3\sigma$ of $M_{J/\psi}$ or $M_{\psi(2S)}$. Candidate $K_S \rightarrow \pi^+\pi^-$ decays are oppositely charged track pairs that have an invariant mass within $\pm 4\sigma$ of the K^0 mass ($\sigma \simeq 4$ MeV/c2). For the $J/\psi K_S$ final state, $K_S \rightarrow \pi^0\pi^0$ decays are also used. For $\pi^0\pi^0$ candidates, we try all combinations where there are two $\gamma\gamma$ pairs with an invariant mass between 80 and 150 MeV/c2, assuming they originate from the center of the run-dependent average interaction point (IP). We minimize the sum of the χ^2 values from constrained fits of each pair to the π^0 mass with γ directions determined by varying the decay point along the K_S flight path, which is taken as the line from the IP to the energy-weighted center of the four showers. We select combinations with a $\pi^0\pi^0$ invariant mass within $\sim \pm 3\sigma$ of M_{K^0}, where $\sigma \simeq 9.3$ MeV/c2. For the $J/\psi \pi^0$ mode, we use a minimum γ energy of 100 MeV and select $\gamma\gamma$ pairs with an invariant mass within $\pm 3\sigma$ of $M_{\gamma\gamma}$, where $\sigma \simeq 4.9$ MeV/c2.

We isolate reconstructed B meson decays using the energy difference $\Delta E \equiv E_{B}^{\text{cms}} - E_{\text{beam}}^{\text{cms}}$ and the beam-energy constrained mass $M_{bc} \equiv \sqrt{(E_{\text{beam}}^{\text{cms}})^2 - (p_{B}^{\text{cms}})^2}$, where $E_{\text{beam}}^{\text{cms}}$ is the cms beam energy, and E_{B}^{cms} and p_{B}^{cms} are the cms energy and momentum of the B candidate. Figure 2 shows the M_{bc} distribution for all channels combined (other than $J/\psi K_L$) after a ΔE selection that varies from ± 25 MeV to ± 100 MeV (corresponding to $\sim \pm 3\sigma$), depending on the mode. The B meson signal region is defined as $5.270 < M_{bc} < 5.290$ GeV/c2; the M_{bc} resolution is 3.0 MeV/c2. Table 1 lists the numbers of observed events (N_{ev}) and the background (N_{bgd}) determined by extrapolating the event rate in the non-signal ΔE vs. M_{bc} region into the signal region.

Candidate $B_d^0 \rightarrow J/\psi K_L$ decays are selected by requiring the observed K_L direction to be within 45° from the direction expected for a two-body decay (ignoring the B_d^0 cms motion). We reduce the background by means of a likelihood quantity that depends on the J/ψ cms momentum, the angle between the K_L and its nearest-neighbor charged track, the charged track multiplicity, and the kinematics that obtain when the event is reconstructed assuming a $B^+ \rightarrow J/\psi K^{*+}(K_L\pi^+)$ hypothesis. In addition, we remove events that are reconstructed as $B_d^0 \rightarrow J/\psi K_S$, $J/\psi K^{*0}(K^+\pi^-, K_S\pi^0)$, $B^+ \rightarrow J/\psi K^+$, or $J/\psi K^{*+}(K^+\pi^0 K_S\pi^+)$. Figure 2 shows the p_{B}^{cms} distribution, calculated for a $B_d^0 \rightarrow J/\psi K_L$ two-body decay hypothesis, for the surviving events. The histograms in the figure are the results of a fit to the signal and background distributions, where the shapes are derived from Monte Carlo simulations (MC) [4], and the normalizations are allowed to vary. Among the total of
131 entries in the $0.2 < p_T^{\text{c.m.s.}} < 0.45$ GeV/c signal region, the fit finds 77 $J/\psi K_L$ events.

The leptons and charged pions and kaons among the tracks that are not associated with f_{CP} are used to identify the flavor of the accompanying B meson. Tracks are selected in several categories that distinguish the b-flavor by the track’s charge: high momentum leptons from $b \to c \ell^+ \nu$, lower momentum leptons from $c \to s \ell^+ \nu$, charged kaons from $b \to c \to s$, high momentum pions from decays of the type $B_d^0 \to D^{(*)} \pi^+$, and slow pions from $D^{(*)} \to D^{0} \pi^-$. For each track in one of these categories, we use the MC to determine the relative probability that it originates from a B_d^0 or \bar{B}_d^0 as a function of its charge, CMS momentum and polar angle, particle-identification probability, and other kinematic and event shape quantities. We combine the results from the different track categories (taking into account correlations for the case of multiple inputs) to determine a b-flavor q, where $q = +1$ when f_{tag} is more likely to be a B_d^0 and -1 for a \bar{B}_d^0. We use the MC to evaluate an event-by-event flavor-tagging dilution factor, r, which ranges from $r = 0$ for no flavor discrimination to $r = 1$ for perfect flavor assignment. We only use r to categorize the event.

For the CP asymmetry analysis, we use the data to correct for wrong-flavor assignments.

The probabilities for an incorrect flavor assignment, w_l ($l = 1, 6$), are measured directly from the data for six r intervals using a sample of exclusively reconstructed, self-tagged $B_d^0 \to D^{(*)} \ell^+ \nu$, $D^{(*)} \pi^+$, and $D^{*} \rho^+$ decays. The b-flavor of the accompanying B meson is assigned according to the above-described flavor-tagging algorithm, and values of w_l are determined from the amplitudes of the time-dependent $B_d^0 - \bar{B}_d^0$ mixing oscillations [8]:

$$N_{\text{OF}} - N_{\text{SF}}(N_{\text{OF}} + N_{\text{SF}}) = (1 - 2w_l) \cos(\Delta m_d \Delta t).$$

Here N_{OF} and N_{SF} are the numbers of opposite and same flavor events. Table I lists the resulting w_l values together with the fraction of the events (f_l) in each r interval. All events in Table I fall in one of the six r intervals. The total effective tagging efficiency is

$$\sum f_l (1 - 2w_l)^2 = 0.270_{-0.022}^{+0.021},$$

where the error includes both statistical and systematic uncertainties, in good agreement with the MC result of 0.274. We check for a possible bias in the flavor tagging by measuring the effective tagging efficiency for B_d^0 and \bar{B}_d^0 self-tagged samples separately, and for different Δt intervals. We find no statistically significant difference.

The vertex positions for the f_{CP} and f_{tag} decays are reconstructed using tracks that have at least one 3-dimensional coordinate determined from associated $r\phi$ and z hits in the same SVD layer plus one or more additional z hits in other SVD layers. Each vertex position is required to be consistent with the IP profile smeared in the $r\phi$ plane by the B meson decay length. (The IP size, determined run-by-run, is typically $\sigma_x \simeq 100$ μm, $\sigma_y \simeq 5$ μm and $\sigma_z \simeq 3$ mm.) The f_{CP} vertex is determined using lepton tracks from the J/ψ or $\psi(2S)$ decays, or prompt tracks from η_c decays. The f_{tag} vertex is determined from tracks not assigned to f_{CP} with additional requirements of $\delta r < 0.5$ mm, $\delta z < 1.8$ mm and $\sigma_{\delta z} < 0.5$ mm, where δr and δz are the distances of the closest approach to the f_{CP} vertex in the $r\phi$ plane and the z direction, respectively, and $\sigma_{\delta z}$ is the calculated error of δz. Tracks that form a K_S are removed. The MC indicates that the average z_{CP} resolution is 75 μm (rms); the z_{tag} resolution is worse (140 μm) because of the lower average momentum of the f_{tag} decay products and the smearing caused by secondary tracks from charmed meson decays.

The resolution function $R(\Delta t)$ for the proper time interval is parameterized as a sum of two Gaussian components: a main component due to the SVD vertex resolution, charmed meson lifetimes and the effect of the CMS motion of the B mesons, plus a tail component.
caused by poorly reconstructed tracks. The means ($\mu_{\text{main}}, \mu_{\text{tail}}$) and widths ($\sigma_{\text{main}}, \sigma_{\text{tail}}$) of the Gaussians are calculated event-by-event from the f_{CP} and f_{tag} vertex fit error matrices; average values are $\mu_{\text{main}} = -0.09$ ps, $\mu_{\text{tail}} = -0.78$ ps and $\sigma_{\text{main}} = 1.54$ ps, $\sigma_{\text{tail}} = 3.78$ ps. The negative values of the means are due to secondary tracks from charmed mesons. The relative fraction of the main Gaussian is determined to be 0.982 ± 0.007 from a study of $B_d^0 \rightarrow D^{*+} \ell^+ \nu$ events. The reliability of the Δt determination and $R(\Delta t)$ parameterization is confirmed by lifetime measurements of the neutral and charged B mesons [8] that use the same procedures and are in good agreement with the world average values [10].

We determine $\sin 2\phi_1$ from an unbinned maximum-likelihood fit to the observed Δt distributions. The probability density function (pdf) expected for the signal distribution is given by

$$P_{\text{sig}}(\Delta t, q, w_l, \xi_f) = \frac{e^{-|\Delta t|/\tau_{\text{bd}}}}{2 \tau_{\text{bd}}^{\xi_f}} \{1 - \xi_f q (1 - 2w_l) \sin 2\phi_1 \sin(\Delta m_d \Delta t)\},$$

where we fix the B_d^0 lifetime and mass difference at their world average values [10]. The pdf used for background events is $P_{\text{bkg}}(\Delta t) = f_{\tau} e^{-|\Delta t|/\tau_{\text{bkg}}} / 2 \tau_{\text{bkg}} + (1 - f_{\tau}) \delta(\Delta t)$, where f_{τ} is the fraction of the background component with an effective lifetime τ_{bkg} and $\delta(\Delta t)$ is the Dirac delta function. For all f_{CP} modes except $J/\psi K_L$, we find $f_{\tau} = 0.10^{+0.11}_{-0.05}$ and $\tau_{\text{bkg}} = 1.75^{+1.15}_{-0.82}$ ps using events in background-dominated regions of ΔE vs. M_{bc}. The $J/\psi K_L$ background is dominated by $B \rightarrow J/\psi X$ decays, where some final states are CP eigenstates and need special treatment. A MC study shows that the background contribution from the $\xi_f = -1$ sources $J/\psi K_S, \psi(2S)K_S$ and $\chi_{c1}K_S$ is 7.9%, while that from the $\xi_f = +1 \psi(2S)K_L$ and $\chi_{c1}K_L$ modes is 7.0%. Thus, the effects on the CP asymmetry from these states nearly cancel. The remaining dominant CP mode, $J/\psi K^*(K_L\pi^0)$, which accounts for 19% of the total background, is taken to be a 73/27 mixture of $\xi_f = -1$ and $+1$, respectively, based on our measurement of the J/ψ polarization in the $B_d^0 \rightarrow J/\psi K^{*0}(K_S\pi^0)$ decay [11]. For the $J/\psi K^*(K_L\pi^0)$ background pdf we use P_{sig} with effective CP eigenvalue $\xi_f = -0.46^{+1.46}_{-0.54}$, where the error has been expanded to include all possible values. For the non-CP background modes we use P_{bkg} with $f_{\tau} = 1$ and $\tau_{\text{bkg}} = \tau_B$.

The pdfs are convolved with $R(\Delta t)$ to determine the likelihood value for each event as a function of $\sin 2\phi_1$:

$$L_i = \int \{f_{\text{sig}} P_{\text{sig}}(\Delta t', q, w_l, \xi_f) + (1 - f_{\text{sig}}) P_{\text{bkg}}(\Delta t')\} R(\Delta t - \Delta t') d\Delta t',$$

where f_{sig} is the probability that the event is signal, calculated as a function of p_B^{rms} for $J/\psi K_L$ and of ΔE and M_{bc} for other modes. The most probable $\sin 2\phi_1$ is the value that maximizes the likelihood function $L = \prod_i L_i$, where the product is over all events. We performed a blind analysis: the fitting algorithms were developed and finalized using a flavor-tagging routine that does not divulge the sign of q. The sign of q was then turned on and the application of the fit to all the events listed in Table 3 produces the result $\sin 2\phi_1 = 0.58^{+0.32}_{-0.34} \pm 0.09$, where the first error is statistical and the second systematic. The systematic errors are dominated by the uncertainties in w_l (± 0.05) and the $J/\psi K_L$ background (± 0.05). Separate fits to the $\xi_f = -1$ and $\xi_f = +1$ event samples give $0.82^{+0.36}_{-0.41}$ and $0.10^{+0.57}_{-0.60}$, respectively [12]. Figure 3(a) shows $-2 \ln(L/L_{\text{max}})$ as a function of $\sin 2\phi_1$ for the $\xi_f = -1$ and $\xi_f = +1$ modes separately and for both modes combined. Figure 3(b) shows the
asymmetry obtained by performing the fit to events in Δt bins separately, together with a curve that represents $\sin 2\phi_1 \sin(\Delta m_d \Delta t)$ for $\sin 2\phi_1 = 0.58$.

We check for a possible fit bias by applying the same fit to non-CP eigenstate modes: $B^0_d \to D(*)^- \pi^+$, $D^{*-} \rho^+$, $J/\psi K^{*0}(K^+\pi^-)$, and $D^{*-} \ell^+\nu$, where “$\sin 2\phi_1$” should be zero, and the charged mode $B^+ \to J/\psi K^+$. For all the modes combined we find 0.065 ± 0.075, consistent with a null asymmetry.

We have presented a measurement of the Standard Model CP violation parameter $\sin 2\phi_1$ based on a 10.5 fb^{-1} data sample collected at the $\Upsilon(4S)$:

$$\sin 2\phi_1 = 0.58^{+0.32}_{-0.34}\text{(stat)}^{+0.09}_{-0.10}\text{(syst)}.$$

The probability of observing $\sin 2\phi_1 > 0.58$ if the true value is zero is 4.9%. Our measurement is more precise than the previous measurements [13] and consistent with SM constraints [14].

We wish to thank the KEKB accelerator group for the excellent operation. We acknowledge support from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Industry, Science and Resources; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea and the SRC program of the Korea Science and Engineering Foundation; the Polish State Committee for Scientific Research under contract No.2P03B 17017; the Ministry of Science and Technology of Russian Federation; the National Science Council and the Ministry of Education of Taiwan; the Japan-Taiwan Cooperative Program of the Interchange Association; and the U.S. Department of Energy.
REFERENCES

[1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] A.B. Carter and A.I. Sanda, Phys. Rev. D23, 1567 (1981); I.I. Bigi and A.I. Sanda, Nucl. Phys. B193, 85 (1981).
[3] H. Quinn and A.I. Sanda, Eur. Phys. Jour. C15, 626 (2000). (Some papers refer to this angle as β.)
[4] K. Abe et al. (Belle Collab.), The Belle Detector, KEK Report 2000-4, to be published in Nucl. Instrum. Methods.
[5] KEKB B Factory Design Report, KEK Report 95-1, 1995, unpublished.
[6] Throughout this Letter, when a mode is quoted the inclusion of the charge conjugate mode is implied.
[7] We use the QQ B meson decay event generator developed by the CLEO collaboration ([http://www.lns.cornell.edu public/CLEO/soft/QQ] and GEANT3 for the detector simulation; CERN Program Library Long Writeup W5013, CERN, 1993.
[8] J. Suzuki (Belle Collab.), Determination of $B^0 - \bar{B}^0$ Mixing from The Time Evolution of Dilepton and $B^0 \rightarrow D^{(*)-} \ell^+\nu$ Events at Belle, Proceedings of the 30th International Conference on High Energy Physics, July 2000, Osaka.
[9] H. Tajima (Belle Collab.), Measurement of Heavy Meson Lifetimes with Belle, ibid.
[10] D.E. Groom et al. (PDG), Eur. Phys. Jour. C15, 1 (2000).
[11] Belle Collab., Measurement of Polarization of J/ψ in $B^0 \rightarrow J/\psi + K^{*0}$ and $B^+ \rightarrow J/\psi + K^{*+}$ Decays, Contributed paper (#285) to the 30th International Conference on High Energy Physics, July 2000, Osaka. This result agrees within errors with those of C.P. Jessop et al. (CLEO Collab.), Phys. Rev. Lett. 79, 4533 (1997) and T. Affolder et al. (CDF Collab.), Phys. Rev. Lett. 85, 4668 (2000).
[12] A fit to only the $B^0_d \rightarrow J/\psi K_S (\pi^+\pi^-)$ events gives a $\sin 2\phi_1$ value of $1.21^{+0.40}_{-0.47}$; a fit to only the non-$J/\psi K_S \xi = -1$ modes gives $-0.05^{+0.76}_{-0.74}$. Separate fits to the $q = +1$ and $q = -1$ event samples give $\sin 2\phi_1$ values of $0.40^{+0.47}_{-0.49}$ and $0.73^{+0.41}_{-0.46}$, respectively.
[13] K. Ackerstaff et al. (OPAL Collab.), Eur. Phys. Jour. C5, 379 (1998); T. Affolder et al. (CDF Collab.), Phys. Rev. D61 072005 (2000); and R. Barate et al. (ALEPH Collab.), Phys. Lett. B492, 259 (2000).
[14] For example: S. Mele, Phys. Rev. D59, 113011 (1999).
TABLE I. The numbers of CP eigenstate events

Mode	N_{ev}	N_{bkgd}
$J/\psi(\ell^+\ell^-)K_S(\pi^+\pi^-)$	123	3.7
$J/\psi(\ell^+\ell^-)K_S(\pi^0\pi^0)$	19	2.5
$\psi(2S)(\ell^+\ell^-)K_S(\pi^+\pi^-)$	13	0.3
$\psi(2S)(J/\psi\pi^+\pi^-)K_S(\pi^+\pi^-)$	11	0.3
$\chi_{c1}(\gamma J/\psi)K_S(\pi^+\pi^-)$	3	0.5
$\eta_c(K^+K^-\pi^0)K_S(\pi^+\pi^-)$	10	2.4
$\eta_c(K_SK^+\pi^-)K_S(\pi^+\pi^-)$	5	0.4
$J/\psi(\ell^+\ell^-)\pi^0$	10	0.9
Sub-total	194	11
$J/\psi(\ell^+\ell^-)K_L$	131	54

TABLE II. Experimentally determined event fractions (f_l) and incorrect flavor assignment probabilities (w_l) for each r interval.

l	r	f_l	w_l
1	0.000 – 0.250	0.393 ± 0.014	0.470 +0.037 -0.035
2	0.250 – 0.500	0.154 ± 0.007	0.336 +0.039 -0.042
3	0.500 – 0.625	0.092 ± 0.005	0.286 +0.037 -0.035
4	0.625 – 0.750	0.100 ± 0.005	0.210 +0.033 -0.031
5	0.750 – 0.875	0.121 ± 0.006	0.098 +0.028 -0.026
6	0.875 – 1.000	0.134 ± 0.006	0.020 +0.023 -0.019

FIG. 1. The beam-constrained mass distribution for all decay modes combined (other than $B_d^0 \rightarrow J/\psi K_L$). The shaded area is the estimated background. The dashed lines indicate the signal region.
FIG. 2. The p_B^{cms} distribution for $B_d^0 \rightarrow J/\psi K_L$ candidates with the results of the fit. The solid line is the signal plus background; the shaded area is background only. The dashed lines indicate the signal region.
FIG. 3. (a) Values of $-2\ln(L/L_{max})$ vs. $\sin 2\phi_1$ for the $\xi_f = -1$ and +1 modes separately and for both modes combined. (b) The asymmetry obtained from separate fits to each Δt bin; the curve is the result of the global fit ($\sin 2\phi_1 = 0.58$).