Strategic fit: model development and fitness analysis of a manufacturing unit

Md. Habibur Rahman and Azizur Rahman

Department of Industrial Engineering and Management, Khulna University of Engineering & Technology, Khulna, Bangladesh

ABSTRACT

Though Bangladesh is one of the largest garments manufacturing country in the world and there happened revolutionary changes more than four decades ago, they couldn't achieve sustainable platform yet. The failure to achieve up to the requirement level for the competitive capabilities/manufacturing metrics is the common phenomenon for the manufacturers. Even there is an alarming issue that the manufacturers yet don't know how they are affected by these failures and also can't measure how much they are statistically fit. By being motivated from manufacturer's failure, we worked on a manufacturing unit of a garments industry where we aggregated manufacturing metrics and determined how the manufacturers are affected by the failure of these metrics. This research work will conclude by proposing few models with their mathematical and graphical explanation. By using these models, the manufacturers will be able to determine their strategic fitness, security level, and associated loss/penalty.

1. Introduction

The links among competitive strategy, manufacturing strategy, and performance are addressed by Vickery, Droge, and Markland (1993). Again, Porter (1996) claimed that a proper link between strategy and manufacturing operations is a key to developing sustainable competitive advantage. To cope with global competition and rapidly changing environment, organizations must formulate strategic plans that are consistent with their capabilities and manufacturing strategies (Tracey, Vonderembse, & Lim, 1999). Expanding global competition, rapidly changing markets and technology, and increasing complexity and uncertainty are creating a new competitive environment (Bayus, 1994). These changes are causing manufacturing firms to carefully examine a shift from industrial systems driven by efficiency to strategy-based manufacturing systems where success depends on high-quality products, better customized (Doll & Vonderembse, 1991; Goldhar, Jelinek, & Schlie, 1991; Hayes, Wheelwright, & Clark, 1988; McCutcheon, Raturi, & Meredith, 1994; Roth, 1996; Skinner, 1986). High quality, reliability, timely delivery, enhanced customer service, rapid new product
introduction, flexible systems, and efficient capital deployment are the primary sources of competitive advantages (Skinner, 1986).

Success depends on close and careful linkages between a firm’s manufacturing strategy and its overall strategy. These linkages help to guide decisions about how manufacturing technologies and strategies are applied, which achieve competitive capabilities and ultimately indicate how well firms will perform (Porter, 1996; Skinner, 1969). The design of manufacturing systems should focus on developing competitive capabilities that satisfy customer needs and improve performance (Ward, Leong, & Boyer, 1994).

Strategic fit means the meeting of the organizational external environment (requirements or demands to organization by buyers or customers) with their resources and capabilities (Amoako-Gyampah et al., 2008; da Silveira et al. 2010; Karim, Smith, Halgamuge, & Islam, 2008; Swink, Narasimhan, & Kim, 2005; Swink, Narasimhan, & Wang, 2007; Wagner, Grosse-Ruyken, & Erhun, 2012). This strategy executes the organizational capability and indicates how much the organization utilizes its resources and its capabilities (Anand et al., 2004; Brown, Squire, & Blackmon, 2007; Dubey, Gunasekaran, & Chakrabarty, 2015; Gonzalez, Quesada, & Mora-Monge, 2012; Gonzalez-Benito et al., 2014). In the case of a garment industry, the organizational performance is mostly depended on its manufacturing units (Chowdhury, Ali, & Rahman, 2006; Haider, 2007). The present situation of garments sectors requires more competitive capabilities and better performance. To compete with the competitive world, the manufacturers should know about manufacturing metrics, manufacturing fitness, and how these metrics affect manufacturing fitness. Strategic fit evaluates the current performance of an organization/industry. This is necessary to evaluate how the organization is capable to achieve its external demands. To evaluate these organizational capabilities, this paper developed few models of strategic fitness. For the evaluation of strategic fitness, we aggregated manufacturing metrics and worked on manufacturing unit 4 of Fakir Apparels Ltd. This unit has six manufacturing lines (16, 17, 18, 19, 20, and 21) and the management of this unit only deals with the orders of buyer TOM TAYLOR, WOOL WORTH, PRIMARK, H&M, C&A, and SOliver.

To determine strategic fitness, and to show the effect of manufacturing metrics on fitness, we fixed two goals/objectives and they are (a) strategic fitness, security level, and loss/penalty calculation of unit 4 and (b) their (strategic fitness, security level achievement, and loss/penalty) model development for a manufacturing unit of a garments industry. This article is organized into six sections for the completion of its objectives and the organization is background study and concept development of manufacturing fitness in Section 2, research methodology in Section 3, unit 4 result analysis in Section 4, development of strategic fit model in Section 5, and discussion and conclusion in Section 6.

2. Background study and concept development of manufacturing fitness

It is necessary to discuss in brief the previous literatures on the relevant topics prior to proceeding the concept of manufacturing fitness. There are many research articles on the ready-made garments (RMG) sectors related to performance factors where they showed how performance factors affect the manufacturing efficiency. Rahman & Amin (2016) analyzed that problems in a production line such as raw materials problems, accessories problems,
production-related problems (machine problems, order variation problems, sewing problems, etc.) decreased the efficiency of a production line where availability of materials (AM), order variation handling capability, and problem handling capability are considered as performance factors (manufacturing metrics) of a production line. Nuruzzaman (2013) showed that failure to due time shipment/late shipment is associated with loss/penalty. Wong, Boon-Itt, and Wong (2011) examined delivery, production cost, product quality, and production flexibility as four factors of operational performance and these factors reflect the four key capabilities of a local firm (Schmenner & Swink, 1998). From the production literature, internal integration of the performance factors enables better coordination of production capacity to improve production flexibility (Sawhney, 2006) and delivery performance (Droge, Jayaram, & Vickery, 2004). These theoretical arguments had been supported by numerous studies which demonstrate positive associations between internal integration and process efficiency (Saeed, Malhotra, & Grover, 2005; Swink et al., 2007), delivery performance, and quality performance (Swink et al., 2007). Tracey et al. (1999) considered quality of products, order fill rate (OF), order cycle time, order/shipment time, and delivery frequency as competitive capabilities during linking technology and strategy to create competitive capabilities and improve performance. Upton (1994) contends that firms must match with these manufacturing systems capabilities to their competitive priority in order to be successful. Brown et al. (2007) and Amoako-Gyampah et al. (2008) showed the contribution of manufacturing strategy and competitive strategy on firm’s manufacturing performance. Again, Porter (1996) claimed that a proper link between strategy and operations is a key to developing sustainable competitive advantage.

From the previous study, we can summarize that OF, quality perfection (QP), AM, problem handling/manufacturing flexibility, order variation handle (OVH), cost performance (CP), and shipment time/delivery time are the competitive capabilities/manufacturing metrics for a manufacturing unit. Previous studies also indicated contribution to manufacturing metrics is the firm’s performance, since firm’s performance is directly related to the performance of manufacturing metrics. Again, metrics performance fluctuates firm’s overall fitness (performance).

The authors of this article are interested to determine this fluctuation of manufacturing fitness by determining strategic achievement compared to strategic capabilities with graphical representation (fit zone/unfit zone). A simple question ‘what is strategic fit zone/unfit zone?’ may arise at first. The zone that represents the requirement fulfillment/requirement achieved compared to its capabilities can be defined as fit zone and the remaining zone can be called as unfit zone. For an example, Figure 1 is the graphical representation of strategic fitness of a manufacturing unit, there are n manufacturing metrics and they are M1, M2, M3, M4,Mn. Each metric has a target which is determined by the management team according to their capabilities. Figure 1(a) shows strategic capabilities (targeted) and achievement, and Figure 1(b) shows the fit zone and unfit zone of that unit.

To calculate strategic fit this research selected, a manufacturing unit of Fakir Apparels Ltd. Organizational fitness depends on all units of an organization. Here, we selected only one unit (unit 4) and determined the fitness of this unit. In a similar way, it is possible to determine the fitness of all units of an organization/industry. From where, it is possible to determine the overall fitness of an organization/industry. If there are n manufacturing metrics of a manufacturing unit in an industry, strategic fitness can be determined by the following proposed equation.
This paper also compared this fitness to its security level/lowest tolerance level. Since the metrics are related with the manufacturing fitness, this means manufacturer’s profit/loss is related with the ups and downs of the metrics. For this reason, the manufacturers should strictly follow a security level for each metrics. The more metrics achievement above the security level, the more satisfactory fitness to the manufacturers. Below the security level, the metric will be associated with a loss/penalty from the strategic achievement. How much a manufacturing unit achieved the security level can be calculated easily by the following proposed equation.

\[
\text{Strategic fit} = \frac{\left(\sum_{i=1}^{n} A_p(b_i) \times W_m(i) \right)}{\left(\sum_{i=1}^{n} S_p(b_i) \times W_m(i) \right)} \times 100\% \\
= \left[\frac{\left(\sum_{i=1}^{n} \frac{M_i(\text{Strategic Achievement})}{M_i(\text{Strategic Capability})} \right)}{n} \right] \times 100\%.
\]

This paper also compared this fitness to its security level/lowest tolerance level. Since the metrics are related with the manufacturing fitness, this means manufacturer’s profit/loss is related with the ups and downs of the metrics. For this reason, the manufacturers should strictly follow a security level for each metrics. The more metrics achievement above the security level, the more satisfactory fitness to the manufacturers. Below the security level, the metric will be associated with a loss/penalty from the strategic achievement. How much a manufacturing unit achieved the security level can be calculated easily by the following proposed equation.

\[
\text{Security level} = \sum_{i=1}^{n} M_{\text{max}}(\text{Strategic point})_i \times S_L(i) \times W_m(i),
\]

\[
\text{Security level achievement} = \left[\frac{\left(\sum_{i=1}^{n} A_p(b_i) \times W_m(i) \right)}{\left(\sum_{i=1}^{n} M_{\text{max}}(\text{Strategic point})_i \times S_L(i) \times W_m(i) \right)} \right] \times 100\% .
\]

3. Research methodology

This section represents a methodology to calculate the strategic fitness of a manufacturing unit that is shown in Figure 2. This figure shows the sequence for the determination of manufacturing fitness, security level, and also associated loss/penalty of a manufacturing unit.
3.1. Aggregation of manufacturing metrics

This section aggregated the metrics for garments manufacturing industries based on the literature review that is shown in the first and second column of Table 1. The manufacturing capabilities vary depending on variation of order (Majukwa, Haddud, & Liu, 2016). Manufacturers set a strategic target based on the manufacturing capabilities. Again, strategic targets depend on their capabilities and previous experiences (Hayes & Pisano, 1996; Islam, Bagum, & Rashed, 2012). The manufacturing unit 4 also has the different capabilities, targets, and security level determined by the management team that are shown by the third, fourth, and fifth columns of Table 1.

3.2. Metrics weight calculation by Fuzzy AHP method

Fuzzy logic is a suitable method for simulating decision-making procedure. To proceed through Fuzzy AHP, 30 professional’s opinions (opinions of production managers of different garments industries) were collected through a questionnaire. The questionnaire was sent to more than 100 production managers of different garments industries through mailing and we received only 30 professional’s responses. Common linguistic terms were used in the questionnaire. To analyze their opinions, converting the qualitative terms into quantitative terms is required. It is not possible to make mathematical operations on linguistic values directly. This is why the linguistic scale must be converted into fuzzy scale. The triangular fuzzy conversion scale given in Table 2 adopted from Chang (1996) was used to evaluate the models of this paper.

The questionnaire added in appendix section (Appendix A) was provided to more than 100 professionals to get the comparison matrix (Table 3) which is the first step of the analysis built by taking the arithmetic mean of their evaluations.

\[
\text{Normalized weight matrix, } W = \begin{bmatrix}
 w_{OF} \\
 w_{QP} \\
 w_{AM} \\
 w_{PH} \\
 w_{OVH} \\
 w_{CP} \\
 w_{ST}
\end{bmatrix} = \begin{bmatrix}
 0.1895 \\
 0.1349 \\
 0.1571 \\
 0.1664 \\
 0.1416 \\
 0.0957 \\
 0.1148
\end{bmatrix}
\]

The matrix W shows OF, problem handling (PH), and AM have comparatively more weight among the seven manufacturing metrics. This (W) also indicates that these three metrics are
Table 1. Manufacturing matrices with strategic target.

Manufacturing metrics	Research articles	Manufacturing capabilities	Strategic target	Security level
Order fill rate (OF)	Wheel Wright (1984); Tracey et al. (1999); Majukwa et al. (2016)	Completely filled (100%)	Order filling target:	100% 100%
		Partially filled (80%-99%)		
		Partially filled (50%-79%)		
		Partially filled (<50%)		
		Failed to delivery		
Quality perfection (QP)	Noble (1995); Tracey et al. (1999); Ward and Duray (2000); Zhou et al. (2010)	High	Quality perfection fulfillment according to the buyer’s requirements:	100% 85%
		Moderate		
		Low		
Availability of materials (AM)	Haider, M. Z. (2007); Islam et al. (2012); Karmaker and Saha (2016).	Availability of all materials	Availability of materials to start the production of an order:	At least 90% At least 80%
		Not availability of all materials (<100%)		
Problem handling/manufacturing flexibility (PH)	Swamidass and Newell (1987); Gerwin (1993); Noble (1995); Hayes and Pisano (1996); Gupta and Lonial (1998)	High	Problem solving ability with high performance:	100% 100%
		Moderate		
		Low		
Order variation handle (OVH)	Wheel Wright (1984); Ward and Duray (2000); Majukwa et al. (2016); Zhou and Wu (2010)	High	Order variation handle ability with high performance:	At least 90% At least 80%
		Moderate		
		Low		
Cost performance (CP)	Swamidass and Newell (1987); Noble (1995); Hayes and Pisano (1996); Ward and Duray (2000); Zhou and Wu (2010)	High	Cost performance ability with high performance:	At least 95% At least 85%
		Moderate		
		Low		
Shipment time/delivery time (ST)	Swamidass and Newell (1987); Noble (1995); Tracey et al. (1999); Ward and Duray (2000)	Due time shipment	Due time shipment:	100% 100%
		Late shipment		
more important for a manufacturing unit. On the other hand, OVH, QP, shipment time (ST), and CP have comparatively lower weight. For the explanation of lower values of these metrics, the management replies that their performance is depended on the performance of OF, PH, and AM.

3.3. Calculation for strategic fitness, security level achievement, and associated loss/penalty

3.3.1. Data collection

Table 4 is the summary of order details of unit 4 of Fakir Apparels Ltd. for six months from July to December of 2016. This shows there are due time production 29, late production 4, and late shipment 1 (in December). When the manufacturers fail to fill the order quantity by extending the production time more than two or three times, that results in late shipment. In September, November, and December, there are 1, 1, and 2 late productions, respectively. The management teams succeeded to achieve their production target by extending the production time once, that resulted in late production but not late shipment (September, November, and December). But another order in December resulted in late shipment.

3.3.2. Weight scale

To determine strategic manufacturing fit, it is necessary to develop a weight scale for the manufacturing metrics. Scale may vary for the case of manufacturing units of other industries. According to the manufacturer’s suggestions and explanations of unit 4 of Fakir Apparels Ltd., we developed a scale that ranges from 0 to 5. Their suggestions and explanations had been summarized in the below Table 5. This table also incorporates the views of researchers with manufacturer’s suggestions and explanations.

Linguistic scale	Triangular fuzzy scale	Triangular fuzzy reciprocal scale
Just equal	(1,1,1)	(1,1,1)
Equally important	(1/2,1,3/2)	(2/3,1,2)
Weakly more important	(1,3/2,2)	(1/2,2/3,1)
Strongly more important	(3/2,2,5/2)	(2/5,1/2,2/3)
Very strongly more important	(2,5/2,3)	(1/3,2/5,1/2)
Absolutely more important	(5/2,3,7/2)	(2/7,1/3,2/5)

Table 3. Integrated pairwise comparison between main criteria.

Criteria	OF	QP	AM	PH	OVH	CP	ST
OF	(1,1,1)	(0.75,1.25, 1.75)	(2.25, 2.75, 3.25)	(1, 1.5, 2)	(0.47, 0.63, 1.06)	(0.75, 1.25, 1.75)	(1.75, 2.25, 2.75)
QP	(1,1,1)	(0.75, 1.25, 0.5, 0.69, 1.17)	(1, 1.5, 2)	(1.25, 1.75, 2.25)	(0.45, 0.58, 0.83)		
AM	(1,1,1)	(1.75, 2.25, 2.75)	(0.37, 0.45, 0.58)	(0.75, 1.25, 1.75)	(2.25, 2.75, 3.25)		
PH	(1,1,1)	(1.75, 2.25, 2.75)	(0.37, 0.45, 0.58)	(0.75, 1.25, 1.75)	(1.75, 2.25, 2.75)		
OVH	(1,1,1)	(1.75, 2.25, 2.75)	(0.37, 0.45, 0.58)	(0.75, 1.25, 1.75)	(2.25, 2.75, 3.25)		
CP	(1,1,1)	(1.75, 2.25, 2.75)	(0.37, 0.45, 0.58)	(0.75, 1.25, 1.75)	(2.25, 2.75, 3.25)		
ST	(1,1,1)	(1,1,1)	(0.75, 1.25, 1.75)	(1.75, 2.25, 2.75)		(1,1,1)	
Table 4. Summary of order details from the month July to December.

Months	Due time production	More than 80\% material availability	More than 60\% material availability	Late production	Late shipment	Production stopped due to lack of raw materials	Order continued to the next month
July	5	1	1	1	5	1	5
August	6	1	1	1	3		3
September	5	1	1	1	5		5
October	4	1	1	2	5		5
November	6	1	1	6			
December	3	2	1	6			

Table 5. Weight scale set according to researcher and senior management explanation.

Manu. metrics	Manufacturing capabilities	Wd	Researcher and senior management explanation
OF	Completely filled (100\%)	5	Management prefers to give the most importance (5) when order is fulfilled in time since this helps for due time shipment. For this reason, they gave the most importance value (5) for due time shipment. Again, failure to due time production sometimes fails to due time shipment and this demands a great penalty/discount for the manufacturers (Roth & Miller, 1992; Rahman & Al Amin, 2016; Sampaio, Carvalho, & Fernandes, 2016; Mondal, Rahman, Sanoar Hosin, & Sarkar, 2017). Hence, they preferred to give no importance (0) for late order fill i.e. late production and late shipment.
	Partially filled (80%-99\%)	0	
	Partially filled (50%-79\%)		
	Partially filled (<50\%)		
	Failed to delivery		
ST	Due time shipment	5	
	Late shipment	0	
AM	Availability of all materials	5	Management preferred to give weight value (5) for availability of 100\% materials, (3) for availability of >80\% materials and (1) for availability of >60\% materials at the beginning of an order.
	Not availability of all materials (<100\%)	3	
		1	
QP	High	5	"Quality" or "quality performance" is a controversial construct for a variety of conceptual and empirical reasons (Soares, Soltani, & Liao, 2017) and the quality performance depends on quality management practices (Soltani & Wilkinson, 2010; Uluskan, Joines, & Godfrey, 2016) and better problem handling capabilities. The better problem solution helps the management for their industries for good quality control capabilities (Taylor, 1995; Gereffi, 1999; Bair & Gereffi, 2001; Sila, Ebrahimpour, & Birksklo, 2006; Azar, Kahamali, & Taghavi, 2010). For this reason, the management gave the maximum weight value (5) for good quality and good problem handling, moderate weight value (3) for moderate quality and moderate problem handling and poor weight value (1) for low quality and low problem handling.
	Moderate	3	
	Low	1	
PH	High	5	Management preferred to give maximum weight value (5) for good order variation. When management fails to solve order variation or show poor performance to solve order variation this causes the failure of order shipment and due time production (Roth & Miller, 1992; Masud, 2010; Mohan Kathuria, 2013; Nuruzzaman, 2013; Rahman & Al Amin, 2016; Mondal et al., 2017). Hence, they gave low weight value (1) for moderate order variation capabilities and no weight (0) for low order variation capabilities.
	Moderate	3	
	Low	1	
OVH	High	5	There is a great importance of cost performance for a manufacturing unit (Schmalensee, 1989; Arauz & Suzuki, 2004). The management preferred to give the maximum weight value (5) for the good or high cost performance, moderate weight value (1) for average cost performance and no weight value (0) for low cost performance. Because they think that the cost performance is directly related with the organizational profit.
	Moderate	1	
	Low	0	
Here,

\[
W_d = \text{Scaleweight}
\]

The manufacturer works for the achievement of most important value (5) by setting 100% strategic target so that they can achieve the maximum strategic point. For example, the manufacturers of unit 4 always tried to fulfill 100% order quantity (100% OF) by the due time so that they could achieve the maximum strategic point 165 (33 due time production*most important weight value, 5) for OF. But they failed 4 times that resulted 145 points. The partial production or interruption in the production sometimes stops a running production and compels for the next month production and this is a reason against strategic target (Biswas, 2015; Ferdousi, 2009; Rahman & Amin, 2016).

3.3.3. Calculation of strategic point and achieved point for OF, AM, and ST
Since AM has a direct effect on OF and ST (Rahman & Al Amin, 2016; Wagner et al., 2012), the failure of AM will cause the failure of OF and ST. From Table 6, due time OF failed 4 times and due time shipment failed 1 time due to insufficient AM (>80% even >60%) This is one of the causes of failure for the achievement of 100% strategic fit. The fall of strategic point for the metrics OF, AM, and ST had been calculated and shown in Table 6.

3.3.4. Calculation of strategic point and achieved point for QP, PH, OVH, and CP
The remaining four metrics (QP, PH, OVH, and CP) with their achievement level (high, moderate, and low) had been shown in Table 7. Since QP, PH, OVH, and CP are related to each other (Berg, Appelbaum, Bailey, & Kalleberg, 1996; Rahman & Al Amin, 2016; Wagner et al., 2012), it sometimes becomes very difficult for the manufacturers to achieve the highest weight value always for all of them.

Table 6. Calculation of strategic point and achieved point for OF, AM, and ST.

Manu. metrics	Manufacturing Capabilities	Weight	No. of orders	Strategic point	Achieved point	Total achieved point	Security level
Order fill rate (OF)	Due time order fill (due time production)	5	29	(33*5)*1.0	145	145*1.0	165*1.0
	Late order fill (late production)	0	4	0	0	0	0
Availability of materials (AM)	Availability of 100% materials at the beginning of order	5	29	(33*5)*.90	145	153*90	165*.80
	Availability of >80% materials at the beginning of order	3	2	148.5	6	137.7	132
	Availability of >60% materials at the beginning of order	1	2	2	2	2	2
Shipment time (ST)	Due time shipment	5	32	(33*5)*1.0	160	160*1.0	165*1.0
	Late shipment	0	1	165	0	160	165
When the manufacturers fail to handle order variation, they fail to achieve better quality and ultimately fails to achieve better CP (Wagner et al., 2012).

3.3.5. Fitness, security level achievement, and loss/penalty calculation of unit 4

Table 8 shows the aggregated strategic points, achieved points, and also security level for all manufacturing metrics. From this Table 8 and Figure 3, we can see that only one manufacturing metric (AM) is above the security level and others are below the security level. That means the manufacturers succeeded to maintain the security level for only one manufacturing metric (AM) during the production period from July to December 2016. Here, a total strategic point is 159.281 and total achieved point is 130.232, i.e., strategic fitness 130.232/159.281 = 81.76% and security level achievement 87.15% (130.232/149.435). We can visualize the strategic fit/unfit zone in Figure 4.

This result was shown to the manufacturers of unit 4 of Fakir Apparels Ltd. and they gave their positive consent to these results. From their positive consent, we inspired to develop a conceptual and mathematical model of strategic fit of a manufacturing unit. Section 5 shows a conceptual model and few mathematical models for the determination of manufacturing fitness.

Table 7. Calculation of strategic point and achieved point for QP, PH, OVH, and CP.

Manufacturing Metrics	QP	PH	OVH	CP
High	13	18	18	23
Mod.	19	13	12	10
Low	1	2	3	0

Scale value (weight)	13	19	1	18
Sum of achieved Point	123	131	102	125
Possible highest strategic point	165*1.0 = 165	165*1.0 = 165	165*1.0 = 165	165*1.0 = 165
Strategic point	165*1.0 = 165	165*1.0 = 165	165*0.90 = 148.5	165*0.95 = 156.75
Achieved point	123*1.0 = 123	131*1.0 = 131	102*0.90 = 91.8	125*0.95 = 118.75

Table 8. Calculation of strategic fit.

Types of point	OF	AM	ST	QP	PH	OVH	CP	Total point
Strategic point	165	148.5	165	165	165	148.5	156.75	1113.75
Achieved point	145	137.7	160	123	131	91.8	118.75	907.25
Security level	165	132	165	140.25	165	132	140.25	1139.25

Metrics weight	0.1895	0.1571	0.1148	0.1349	0.1664	0.1416	0.0957	
Strategic point	31.267	23.329	18.942	22.258	27.456	21.027	15.000	159.281
Achieved point	27.477	21.632	18.368	16.592	21.798	12.998	13.421	149.435
Point differences	3.79	1.697	0.574	5.666	5.658	8.029	3.636	29.049
Security level	31.267	20.737	18.942	18.919	27.456	18.691	13.421	149.435
Security level sustainability	Break	Sustain	Break	Break	Break	Break	Break	
Strategic fitness (SF)	130.232/159.281 = 0.8176	Security level achieved	130.232/149.435 = 0.8715					
i.e. 81.76%	Loss/penalty from achievement	(81.76–71.26)% = 10.50%						
Net achievement	0.8176*0.8715 = 71.26%							

(Ferdousi, 2009; Geršak, 2002). When the manufacturers fail to handle order variation, they fail to achieve better quality and ultimately fails to achieve better CP (Wagner et al., 2012).
4. Unit 4 result analysis

This paper focused on manufacturing unit 4 of Fakir Apparels Ltd. for the calculation its overall achievement such as strategic fitness, security level, security level achievement, net achievement, and loss/penalty. Table 9 shows the summary of overall achievement of this unit. Summarization results from Table 9 and Figure 5 make us clear that the overall achievement of unit 4 is not good. Only one metric is above the security level within seven metrics. That means the manufacturers faced loss/penalty for six metrics within seven metrics which demanded a big penalty for the manufacturers. The manufacturers are far behind

Table 9. Achievement summary for manufacturing unit 4.

Criteria	Metrics above security level	Metrics below security level	Strategic fit/unfit zone	Security level achievement	Net achievement	Loss/penalty
Achievement	1/7	6/7	81.76%	87.15%	71.26%	10.50%
(18.24%) from their strategic achievement, and the loss/penalty furthermore reduces their net achievement by 50%.

5. Development of strategic fit model

5.1. Conceptual model of strategic fitness

Previous sections show the details calculation of all processes to determine strategic fitness of a manufacturing unit. These calculations can be summarized and visualized by the following six stepped conceptual model represented by Figure 6.

5.2. Mathematical model of strategic fitness, security level achievement, and loss/penalty

Step 1 (Aggregating all the manufacturing metrics)

In this step, manufacturers have to aggregate all the manufacturing metrics for a manufacturing unit. This paper shows that there are seven \((n = 7)\) manufacturing metrics for a garments manufacturing industry and they are AM, OF, QP, PH, OVH, CP, and ST.

Step 2 (Set a weight scale for the metrics)

The manufacturers have to set a weight scale after aggregating the manufacturing metrics. The manufacturers of Fakir Apparels Ltd. preferred to set a scale ranging 0–5 and also preferred to give different values for different metrics based on their capabilities and metrics importance.

Step 3 (Calculation of strategic point and achieved point for each metric)

Strategic point,

\[
S_{p(b)i} = N \times Wd(\text{max}) \times \text{strategic target (}).
\]

Achieved point,
Step 1
Aggregating all the manufacturing metrics
n = 1, 2, 3, , n

Step 2
Developing a weight scale for these metrics
e.g. (0-3, 0-5, 0-7 etc.)

Step 3
Calculate strategic point for each metrics, \(S_{p(b)l} = \frac{N \times Wd(max)}{C3} \times \text{strategic target(%)} \)
Calculate achieved point for each metrics, \(A_{p(b)l} = \{n1 \times Wd(ac) + n2 \times Wd(ac) + \ldots + nn \times Wd(ac)\} \times \text{strategic target(%)} \)

Multiplying strategic & achieved point by the metrics normalized weight \(W_m(l) \)

Step 4
Calculate strategic point for each metric,
\(S_{p(aT)} = \sum_{i=1}^{n} \frac{S_{p(b)l}}{W_m(l)} \)

Step 5
Calculate achieved point for each metric,
\(A_{p(aT)} = \sum_{i=1}^{n} \frac{A_{p(b)l}}{W_m(l)} \)

Total strategic point for all metrics,
\(S_{p(aT)} = \sum_{i=1}^{n} S_{p(b)l} \times W_m(l) \)

Total achieved point for all metrics,
\(A_{p(aT)} = \sum_{i=1}^{n} A_{p(b)l} \times W_m(l) \)

Step 6
Strategic fit (SF)
\(= \frac{A_{p(aT)}}{S_{p(aT)}} \times 100\%

Figure 6. Conceptual model of strategic fitness.

\[A_{p(b)l} = \{n1 \times Wd(ac) + n2 \times Wd(ac) + \ldots + nn \times Wd(ac)\} \times \text{strategic target(%)}, \]

where \(N = \text{Total number of orders and N = n1 + n2 + \ldots + nn} \)
\(Wd(max) = \text{maximum scale weight,} \)
\(Wd(ac) = \text{achieved scale weight.} \)

For an example, Strategic point for OF,
\(S_{p(b)l} = N \times Wd(max) \times \text{strategic target(%) } = 33 \times 5 \times 1.0 = 165. \)

And achieved point for OF,
\(A_{p(b)l} = \{n1 \times Wd(ac) + n2 \times Wd(ac) + \ldots + nn \times Wd(ac)\} \times \text{strategic target(%) } \\
= (29 \times 5 + 4 \times 0) \times 1.0 = 145. \)
The management can aggregate total strategic point and achieved point before multiplying by the metrics weight \((W_m)\).

Total strategic point,

\[
S_{p(bT)} = \sum_{i=n}^{i=1} S_{p(b)i}
\]

\[
= S_{p(b)1} + S_{p(b)2} + \ldots \ldots \ldots + S_{p(b)7}
\]

\[
= S_{p(b)AM} + S_{p(b)OF} + \ldots \ldots \ldots + S_{p(b)ST}.
\]

Total achieved point,

\[
A_{p(bT)} = \sum_{i=n}^{i=1} A_{p(b)i}
\]

\[
= A_{p(b)1} + A_{p(b)2} + \ldots \ldots \ldots + A_{p(b)7}
\]

\[
= A_{p(b)AM} + A_{p(b)OF} + \ldots \ldots \ldots + A_{p(b)ST}.
\]

Step 4 (Calculate strategic point and achieved point by multiplying, \(W_m\) for each metric)

In this step, strategic point and achieved point had been calculated by multiplying the strategic point and achieved point with its corresponding normalized weight \((W_m)\). Strategic point,

\[
S_{p(a)i} = S_{p(b)i} \times W_{m(i)}.
\]

Achieved point,

\[
A_{p(a)i} = A_{p(b)i} \times W_{m(i)}.
\]

For an example, strategic point for OF,

\[
S_{p(a)OF} = S_{p(b)OF} \times W_{m(OF)} = 165 \times 0.1895 = 31.267.
\]

Achieved point for OF,

\[
S_{p(a)OF} = S_{p(b)OF} \times W_{m(OF)} = 165 \times 0.1895 = 31.267.
\]

Step 5 (Aggregating the strategic point and achieved point for all metrics)

The strategic point and achieved point for the metric OF are 31.267 and 27.477, respectively. By the similar way, we can determine the strategic point and achieved point for all manufacturing metrics and this step aggregating these points for all manufacturing metrics.

Total strategic targeted point,

\[
S_{p(aT)} = \sum_{i=1}^{i=n} S_{p(b)i} \times W_{m(i)}.
\]
For unit 4, \[S_p(aT) = \sum_{i=1}^{7} S_p(b_i) \cdot W_m(i) = 159.281. \]

Total strategic achieved point,

\[A_p(aT) = \sum_{i=1}^{n} A_p(b_i) \cdot W_m(i), \]

For unit 4, \[S_p(aT) = \sum_{i=1}^{7} S_p(b_i) \cdot W_m(i) = 159.281. \]

Step 6 (Determination of strategic fitness)

From the aggregated values of total strategic point and achieved point, we can determine the strategic fitness of a manufacturing unit. For unit 4 of Fakir Apparels Ltd., total strategic point and achieved point are 159.281 and 130.232, respectively. The strategic fitness of the unit 4 can be determined by the following Equation (1).

\[
\text{Strategic fitness (SF)} = \left(\frac{A_p(aT)}{S_p(aT)} \right) \times 100\% \\
= \left(\frac{\sum_{i=1}^{n} A_p(b_i) \cdot W_m(i)}{\sum_{i=1}^{n} S_p(b_i) \cdot W_m(i)} \right) \times 100\% \\
\]

Again,

\[
SF = \left[\frac{\sum_{i=1}^{n} A_p(b_i) \cdot W_m(i)}{\sum_{i=1}^{n} S_p(b_i) \cdot W_m(i)} \right] \times 100\% = \left[\frac{\sum_{i=1}^{n} M_i(\text{Strategic Achievement})M_i(\text{Strategic Capability})}{n} \right] \times 100\% \\
= \frac{130.232}{159.281} \times 100\% = 81.76\%. \tag{1}
\]

Equation (1) is the mathematical model of manufacturing fitness that evaluates the fitness of a manufacturing unit. By using this model, we got 81.76% fitness for unit 4. The manufacturers also can evaluate security level and security level achievement by using the Equations (2) and (3), respectively.

\[
\text{Security level} = \sum_{i=1}^{n} M_{\text{max}}(\text{Strategic point})(i) \cdot S_L(i) \cdot W_m(i) \tag{2}
\]

For unit 4, \[\text{Security level} = \left[\sum_{i=1}^{7} M_{\text{max}}(\text{Strategic point})(i) \cdot S_L(i) \cdot W_m(i) \right] \]

\[= 149.435 \]
Security level achievement = \[\left(\frac{\sum_{i=1}^{n} A_{p(b)i} \times W_{m(i)}}{\sum_{i=1}^{n} M_{\max\text{(Strategic point)}(i)} \times S_{L(i)} \times W_{m(i)}} \right) \times 100\% \] (3)

For unit 4, Security level achievement = \[\left(\frac{\sum_{i=1}^{n} A_{p(b)i} \times W_{m(i)}}{\sum_{i=1}^{n} M_{\max\text{(Strategic point)}(i)} \times S_{L(i)} \times W_{m(i)}} \right) \times 100\% \]
= \[\frac{130.232}{149.435} = 87.15\% \]

where \(S_{L} = \) Security level(in percentage).

Since the manufacturers couldn’t achieve 149.435 point, they couldn’t achieve 100% security level. They only achieved 87.15% security level. This lack of security level decreases the strategic achievement. From the below Equation (4), manufacturers of unit 4 acquired only 71.26% achievement. The penalty due to lack of security level achievement can also be calculated by using Equation (5).

Net achieved = \(SF \times \) Security level achievement
= \[\left(\frac{\sum_{i=1}^{n} A_{p(b)i} \times W_{m(i)}}{\sum_{i=1}^{n} S_{p(b)i} \times W_{m(i)}} \right) \times \left[\frac{\sum_{i=1}^{n} A_{p(b)i} \times W_{m(i)}}{\sum_{i=1}^{n} M_{\max\text{(Strategic point)}(i)} \times S_{L(i)} \times W_{m(i)}} \right] \times 100\% \]
= 81.76% \times 87.15%
= 71.26%.

Loss or penalty = Net loss from achieved revenue

\[\left(\frac{\sum_{i=1}^{n} A_{p(b)i} \times W_{m(i)}}{\sum_{i=1}^{n} S_{p(b)i} \times W_{m(i)}} \right) \times \left[\frac{\sum_{i=1}^{n} A_{p(b)i} \times W_{m(i)}}{\sum_{i=1}^{n} M_{\max\text{(Strategic point)}(i)} \times S_{L(i)} \times W_{m(i)}} \right] \times 100\% \]
= 81.76% – 71.26% = 10.50%
(4)

6. Discussion and conclusion

One of the main contributions to this research work is aggregated of manufacturing metrics/competitive strategies those had been used in the previous researches separately. For example, Amoako-Gyampah and Acquaah (2008) examined the relationship between manufacturing strategy and competitive strategy and their influence on firm performance. They also found significant and positive relationships between competitive strategy and the manufacturing strategies of cost, delivery, flexibility, and quality. The findings also indicate that quality is the only manufacturing strategy component that influences performance. Their results further showed that although competitive strategy does not directly affect firm performance, it does so indirectly through quality. Gupta and Somers (1996) showed the effect of manufacturing flexibility on
organizational performance. Strategic flexibility supports the adaptive use of resources (Zhou & Wu, 2010), and thus, the ability to quickly respond to dynamically changing environments (Nadkarni & Narayanan, 2007; Schreyögg & Sydow, 2010). Chang, Yang, Cheng, and Sheu (2003) investigated the practice of manufacturing flexibility in small-and medium-sized firms. Swink et al. (2007) aggregated four types of strategies and showed the effect on manufacturing plant performance and their results provide implications for manufacturing managers who seek to design integration policies and associated resource deployments. Anand et al. (2004) & Kortmann, Gelhard, Zimmermann, and Piller (2014) showed the results of fit, flexibility, and performance in manufacturing to cope with the dynamic environment. Goyal, Netessine, and Randall (2012) found the relationship between flexibility and demand correlation. Kazan, Özer, and Çetin (2006) found the effect of quality and cost flexibility on financial performance. Vickery et al. (1993), found covariance between competitive strategy and production competence with business performance. In their study of firms in the textile industry, Williams, D’Souza, Rosenfeldt, and Kassaee (1995) found a relationship between competitive strategy and manufacturing strategy and also between manufacturing strategy and performance. Gupta and Lonial (1998) linked among business strategy, manufacturing strategy, and organizational performance.

Here, this research has focused on fitness of a manufacturing unit, and for this purpose, we aggregated all the manufacturing metrics. It is already clear to us that manufacturing fitness is depended on its associated all metrics. From the results of unit 4, fall of metrics reduces the fitness gradually. For this reason, they achieved only 81.76% fitness. Besides this, six metrics within seven failed to achieve the security level and this demanded a big loss/penalty (10.50%) which was deducted from their achievement. That resulted only 71.26% achievement for the manufacturers. So, this makes us clear that the manufacturing fitness fell due to the fall of its metrics, and this proved that manufacturing fitness is depended on its metrics. This achievement will fluctuate by the fluctuation of its metrics achievements. Now we can give this message to the manufacturers that they have to emphasize on the achievement of each manufacturing metric to prevent this fall of achievement. We also uncovered a new concept strategic fit with mathematical and graphical explanation in the field of manufacturing industries that covers strategic fitness, security level, and loss/penalty of a manufacturing unit. We hope this will create an inspiration among the manufacturers to find out those causes by which the metrics are far below the security level and also the strategic targeted level. This will also create an awareness among them to take corrective actions and preventive solutions against these adverse balances to meet the maximum fitness.

Finally, this paper creates a scope of further research to develop the fitness model for the units of other manufacturing industries like manufacturing units of plastic industries/furniture industries/food and beverage industries, etc., based on their manufacturing strategies and metrics. And the limitation of this paper is the effect of unusual issues like political violence, ups and downs of global/national economic, social value changing, and technology changing had not been considered. Further developments are being in our ongoing research to clarify the problem using statistical technique and to generalize the model covering cross-country and cross-industrial quantitative research.
Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Md. Habibur Rahman http://orcid.org/0000-0003-3860-3678
Azizur Rahman http://orcid.org/0000-0001-5732-037X

References

Amoako-Gyampah, K., & Acquaah, M. (2008). Manufacturing strategy, competitive strategy and firm performance: An empirical study in a developing economy environment. International Journal of Production Economics, 111(2), 575–592.

Anand, G., & Ward, P. T. (2004). Fit, flexibility and performance in manufacturing: Coping with dynamic environments. Production and Operations Management, 13(4), 369–385.

Arauz, R., & Suzuki, H. (2004). ISO 9000 performance in Japanese industries. Total Quality Management & Business Excellence, 15(1), 3–33.

Azar, A., Kahrani, R. A., & Taghavi, A. (2010). Relationship between supply chain quality management practices and their effects on organisational performance. Singapore Management Review, 32(1), 45–69.

Bair, J., & Gereffi, G. (2001). Local clusters in global chains: The causes and consequences of export dynamism in Torreon’s blue jeans industry. World Development, 29(11), 1885–1903.

Bayus, B. L. (1994). Are product life cycles really getting shorter? Journal of Product Innovation Management: An International Publication of the Product Development & Management Association, 11(4), 300–308.

Berg, P., Appelbaum, E., Bailey, T., & Kalleberg, A. L. (1996). The performance effects of modular production in the apparel industry. Industrial Relations: A Journal of Economy and Society, 35(3), 356–373.

Biswas, S. (2015). Challenges of Internationalisation for The SMEs of Bangladesh: A study on Readymade Garments (RMG) Sector.

Brown, S., Squire, B., & Blackmon, K. (2007). The contribution of manufacturing strategy involvement and alignment to world-class manufacturing performance. International Journal of Operations & Production Management, 27(3), 282–302.

Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655.

Chang, S. C., Yang, C. L., Cheng, H. C., & Sheu, C. (2003). Manufacturing flexibility and business strategy: An empirical study of small and medium sized firms. International Journal of Production Economics, 83(1), 13–26.

Chowdhury, M. A. M., Ali, M. M., & Rahman, R. (2006). WTO, post-MFA era and the Bangladesh RMG sector: An assessment of performance and challenges. South Asian Journal of Management, 13(1), 76.

Da Silveira, G. J., Sousa, R. S., & Pieter van Donk, D. (2010). Paradigms of choice in manufacturing strategy: Exploring performance relationships of fit, best practices, and capability-based approaches. International Journal of Operations & Production Management, 30(12), 1219–1245.

Doll, W. J., & Vonderembse, M. A. (1991). The evolution of manufacturing systems: Towards the post-industrial enterprise. Omega, 19(3), 401–411.

Droge, C., Jayaram, J., & Vickery, S. K. (2004). The effects of internal versus external integration practices on time-based performance and overall firm performance. Journal of Operations Management, 22(6), 557–573.
Dubey, R., Gunasekaran, A., & Chakrabarty, A. (2015). World-class sustainable manufacturing: Framework and a performance measurement system. *International Journal of Production Research, 53*(17), 5207–5223.

Ferdousi, F. (2009). An investigation of manufacturing performance improvement through lean production: A study on Bangladeshi garment firms. *International Journal of Business and Management, 4*(9), 106.

Gereffi, G. (1999). International trade and industrial upgrading in the apparel commodity chain. *Journal of International Economics, 48*(1), 37–70.

Geršák, J. (2002). Development of the system for qualitative prediction of garments appearance quality. *International Journal of Clothing Science and Technology, 14*(3/4), 169–180.

Gerwin, D. (1993). Manufacturing flexibility: A strategic perspective. *Management Science, 39*(4), 395–410.

Goldhar, J. D., Jelinek, M., & Schlie, T. W. (1991). Competitive advantage in manufacturing through information technology. *International Journal of Technology Management, 162–180.

Gonzalez, M. E., Quesada, G., & Mora-Monge, C. (2012). An international study on manufacturing competitive priorities. *Journal of Management Policy and Practice, 13*(3), 116.

Gonzalez-Benito, J., & Lannelongue, G. (2014). An integrated approach to explain the manufacturing function’s contribution to business performance. *International Journal of Operations & Production Management, 34*(9), 1126–1152.

Goyal, M., Netessine, S., & Randall, T. (2012). Deployment of manufacturing flexibility: An empirical analysis of the North American automotive industry.

Gupta, Y. P., & Lonial, S. C. (1998). Exploring linkages between manufacturing strategy, business strategy, and organizational strategy. *Production and Operations Management, 7*(3), 243–264.

Gupta, Y. P., & Somers, T. M. (1996). Business strategy, manufacturing flexibility, and organizational performance relationships: A path analysis approach. *Production and Operations Management, 5*(3), 204–233.

Haider, M. Z. (2007). Competitiveness of the Bangladesh ready-made garment industry in major international markets. *Asia-Pacific Trade and Investment Review, 3*(1), 3–27.

Hayes, R. H., & Pisano, G. P. (1996). Manufacturing strategy: At the intersection of two paradigm shifts. *Production and Operations Management, 5*(1), 25–41.

Hayes, R. H., Wheelwright, S. C., & Clark, K. B. (1988). *Dynamic manufacturing: Creating the learning organization.* Simon and Schuster.

Islam, M. A., Bagum, M. N., & Rashed, C. A. A. (2012). Operational disturbances and their impact on the manufacturing business-an empirical study in the RMG sector of Bangladesh. *International Journal of Research in Management & Technology, 2*(2), 184–191.

Karim, M. A., Smith, A. J. R., Halgamuge, S. K., & Islam, M. M. (2008). A comparative study of manufacturing practices and performance variables. *International Journal of Production Economics, 112*(2), 841–859.

Karmaker, C. L., & Saha, M. (2016). A case study on constraints affecting the productivity of readymade garment (RMG) industry in Bangladesh. *International Journal of Managing Value and Supply Chains (IJMVSC), 7*(3), 69–78.

Kazan, H., Özer, G., & Çetin, A. T. (2006). Insights from research The effect of manufacturing strategies on. *Measuring Business Excellence, 10*(1).

Kortmann, S., Gelhard, C., Zimmermann, C., & Piller, F. T. (2014). Linking strategic flexibility and operational efficiency: The mediating role of ambidextrous operational capabilities. *Journal of Operations Management, 32*(7–8), 475–490.

Majukwa, D., Haddud, A., & Liu, S. (2016). Operations management impact on achieving strategic fit: A case from the retail sector in Zimbabwe. *Cogent Business & Management, 3*(1), 1189478.

Masud, J. P. (2010). *Study on implementation of lean manufacturing tools and techniques in the RMG industry.*

McCutcheon, D. M., Raturi, A. S., & Meredith, J. R. (1994). The customization-responsiveness squeeze. *MIT Sloan Management Review, 35*(2), 89.
Mohan Kathuria, L. (2013). Analyzing competitiveness of clothing export sector of India and Bangladesh: Dynamic revealed comparative advantage approach. *Competitiveness Review: An International Business Journal, 23*(2), 131–157.

Mondal, P. K., Rahman, M. H., Sanoar Hosin, M., & Sarkar, P. (2017). An AHP based approach to identify and eliminate most severe risks of the internal supply chain of ready made garments (RMG) Industries: A case study. *International Journal of Economics, Finance and Management Sciences, 5*(3), 168–172.

Nadkarni, S., & Narayanan, V. K. (2007). Strategic schemas, strategic flexibility, and firm performance: The moderating role of industry clockspeed. *Strategic Management Journal, 28* (3), 243–270.

Noble, M. A. (1995). Manufacturing strategy: Testing the cumulative model in a multiple country context. *Decision Sciences, 26*(5), 693–721.

Nuruzzaman, M. (2013). *Improving competitiveness of readymade garment (RMG) industry of Bangladesh—Analysis of supply chains* (Doctoral dissertation, Curtin University).

Porter, M. E. (1996). What is strategy? *Harvard Business Review, 74*(6), 61–78.

Rahman, M. H., & Al Amin, M. (2016). An empirical analysis of the effective factors of the production efficiency in the garments sector of Bangladesh. *European Journal of Advances in Engineering and Technology, 3*(3), 30–36.

Roth, A. V. (1996). Achieving strategic agility through economies of knowledge. *Planning Review, 24*(2), 30–36.

Roth, A. V., & Miller, J. G. (1992). Success factors in manufacturing. *Business Horizons, 35*(4), 73–81.

Saeed, K. A., Malhotra, M. K., & Grover, V. (2005). Examining the impact of interorganizational systems on process efficiency and sourcing leverage in buyer–Supplier dyads. *Decision Sciences, 36*(3), 365–396.

Sampaio, P., Carvalho, M. S., & Fernandes, A. C. (2016). Quality and supply chain management: Integration challenges and impacts. *International Journal of Quality & Reliability Management, 33*, 4.

Sawhney, R. (2006). Interplay between uncertainty and flexibility across the value-chain: Towards a transformation model of manufacturing flexibility. *Journal of Operations Management, 24*(5), 476–493.

Schmalensee, R. (1989). Inter-industry studies of structure and performance. *Handbook of Industrial Organization, 2*, 951–1009.

Schmenner, R. W., & Swink, M. L. (1998). On theory in operations management. *Journal of Operations Management, 17*(1), 97–113.

Schreyögg, G., & Sydow, J. (2010). Crossroads—Organizing for fluidity? Dilemmas of new organizational forms. *Organization Science, 21*(6), 1251–1262.

Sila, I., Ebrahimpour, M., & Birkholz, C. (2006). Quality in supply chains: An empirical analysis. *Supply Chain Management: An International Journal, 11*(6), 491–502.

Skinner, W. (1969). Manufacturing—missing link in corporate strategy. *Harvard Business Review, 47*(3), 136–145.

Skinner, W. (1986). The productivity paradox. *Management Review, 75*(9), 41–45.

Soares, A., Soltani, E., & Liao, Y. Y. (2017). The influence of supply chain quality management practices on quality performance: An empirical investigation. *Supply Chain Management: An International Journal, 22*(2), 122–144.

Soltani, E., & Wilkinson, A. (2010). Stuck in the middle with you: The effects of incongruency of senior and middle managers’ orientations on TQM programmes. *International Journal of Operations & Production Management, 30*(4), 365–397.

Swamidass, P. M., & Newell, W. T. (1987). Manufacturing strategy, environmental uncertainty and performance: A path analytic model. *Management Science, 33*(4), 509–524.

Swink, M., Narasimhan, R., & Kim, S. W. (2005). Manufacturing practices and strategy integration: Effects on cost efficiency, flexibility, and market-based performance. *Decision Sciences, 36* (3), 427–457.
Swink, M., Narasimhan, R., & Wang, C. (2007). Managing beyond the factory walls: Effects of four types of strategic integration on manufacturing plant performance. *Journal of Operations Management, 25*(1), 148–164.

Taylor, W. A. (1995). Organizational differences in ISO 9000 implementation practices. *International Journal of Quality & Reliability Management, 12*(7), 10–27.

Tracey, M., Vonderembse, M. A., & Lim, J. S. (1999). Manufacturing technology and strategy formulation: Keys to enhancing competitiveness and improving performance. *Journal of Operations Management, 17*(4), 411–428.

Uluskan, M., Joines, J. A., & Godfrey, A. B. (2016). Comprehensive insight into supplier quality and the impact of quality strategies of suppliers on outsourcing decisions. *Supply Chain Management: An International Journal, 21*(1), 92–102.

Upton, D. M. (1994). The management of manufacturing flexibility. *California Management Review, 36*(2), 72–89.

Vickery, S. K., Droge, C., & Markland, R. E. (1993). Production competence and business strategy: Do they affect business performance? *Decision Sciences, 24*(2), 435–456.

Wagner, S. M., Grosse-Ruyken, P. T., & Erhun, F. (2012). The link between supply chain fit and financial performance of the firm. *Journal of Operations Management, 30*(4), 340–353.

Ward, P. T., & Duray, R. (2000). Manufacturing strategy in context: Environment, competitive strategy and manufacturing strategy. *Journal of Operations Management, 18*(2), 123–138.

Ward, P. T., Leong, G. K., & Boyer, K. K. (1994). Manufacturing proactiveness and performance. *Decision Sciences, 25*(3), 337–358.

Wheelwright, S. C. (1984). Manufacturing strategy: Defining the missing link. *Strategic Management Journal, 5*(1), 77–91.

Williams, F. P., D’Souza, D. E., Rosenfeldt, M. E., & Kassaei, M. (1995). Manufacturing strategy, business strategy and firm performance in a mature industry. *Journal of Operations Management, 13*(1), 19–33.

Wong, C. Y., Boon-Itt, S., & Wong, C. W. (2011). The contingency effects of environmental uncertainty on the relationship between supply chain integration and operational performance. *Journal of Operations Management, 29*(6), 604–615.

Zhou, K. Z., & Wu, F. (2010). Technological capability, strategic flexibility, and product innovation. *Strategic Management Journal, 31*(5), 547–561.

Appendix A. Questionnaire forms used to facilitate comparisons of manufacturing metrics

QUESTIONNAIRE

Read the following questions and put the check marks (√) during comparison between two metrics. If you prefer that the left-sided metric is more important compared to right-sided metric, put the check mark at the left side of ‘Equal’ importance under the preference level that you prefer. Again, if you prefer that the right-sided metric is more important compared to left-sided metric, put the check mark at the right side of ‘Equal’ importance under the preference level that you prefer.

QUESTIONS

With respect to the overall goal ‘prioritization of the manufacturing metrics’,

Q1. How important is *order fill rate (OF)* when it is compared with *quality perfection (QP)*?

Q2. How important is *order fill rate (OF)* when it is compared with *availability of materials (AM)*?

Q3. How important is *order fill rate (OF)* when it is compared with *problem handling (PH)*?

Q4. How important is *order fill rate (OF)* when it is compared with *order variation handle (OVH)*?

Q5. How important is *order fill rate (OF)* when it is compared with *cost performance (CP)*?

Q6. How important is *order fill rate (OF)* when it is compared with *shipment time (ST)*?
Q7. How important is quality perfection (QP) when it is compared with availability of materials (AM)?
Q8. How important is quality perfection (QP) when it is compared with problem handling (PH)?
Q9. How important is quality perfection (QP) when it is compared with order variation handle (OVH)?
Q10. How important is quality perfection (QP) when it is compared with cost performance (CP)?
Q11. How important is quality perfection (QP) when it is compared with shipment time (ST)?
Q12. How important is availability of materials (AM) when it is compared with problem handling (PH)?
Q13. How important is availability of materials (AM) when it is compared with order variation handle (OVH)?
Q14. How important is availability of materials (AM) when it is compared with cost performance (CP)?
Q15. How important is availability of materials (AM) when it is compared with shipment time (ST)?
Q16. How important is problem handling (PH) when it is compared with order variation handle (OVH)?
Q17. How important is problem handling (PH) when it is compared with cost performance (CP)?
Q18. How important is problem handling (PH) when it is compared with shipment time (ST)?
Q19. How important is order variation handle (OVH) when it is compared with cost performance (CP)?
Q20. How important is order variation handle (OVH) when it is compared with shipment time (ST)?
Q21. How important is cost performance (CP) when it is compared with shipment time (ST)?
Table A1. Comparisons among the metrics.

Questions	Metrics	Absolutely more important	Very strongly more important	Strongly more important	Weakly more important	Equally important	Just equal	Equally important	Weakly more important	Strongly more important	Very strongly more important	Absolutely more important
Q1	OF	QP										
Q2	OF	QP										
Q3	OF	PH										
Q4	OF	OVH										
Q5	OF	CP										
Q6	OF	CP										
Q7	QP	AM										
Q8	QP	PH										
Q9	QP	OVH										
Q10	QP	CP										
Q11	QP	ST										
Q12	AM	PH										
Q13	AM	OVH										
Q14	AM	CP										
Q15	AM	ST										
Q16	PH	CP										
Q17	PH	ST										
Q18	PH	CP										
Q19	OVH	CP										
Q20	OVH	ST										
Q21	CP	ST										