Case Report

Epilepsy and concomitant obsessive–compulsive disorder

Jacob S. Bird a,b,*, Emily Shah a, Paul Shotbolt a,b

a Institute of Psychiatry, Psychology and Neuroscience, 16 De Crespigny Park, Camberwell, London, SE5 8AB, United Kingdom of Great Britain and Northern Ireland
b South London and Maudsley NHS Trust, Maudsley Hospital, Denmark Hill, London SE5 8AZ, United Kingdom of Great Britain and Northern Ireland

Abstract

People with epilepsy (PWE) often suffer psychiatric symptoms which can impact them more than seizures. Affective and psychotic disorders are well recognized as occurring more frequently in PWE than the general population. Less is known about obsessive–compulsive disorder (OCD) in PWE, despite it being as disabling and distressing. We sought to explore the association between epilepsy and OCD with case reports by identifying ten PWE and concomitant OCD. Demographics, seizure classification, neurological, surgical, psychiatric and psychological treatment as well as quality of life were examined. A detailed analysis was performed for three of them, to explore the lived-experience of patients with the two conditions. This is followed by a discussion of how treatment for co-morbid epilepsy and OCD can be appropriately tailored to be patient specific and provide the greatest potential for improvement.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In 1890, Culerre first proposed an association between ‘onomatomania’ and epilepsy [1]. Later studies in the 1970s hinted at the emergence of obsessional traits as part of a specific behavioural syndrome in PWE [2]. In the general population, the prevalence of OCD is estimated to be around 2.3% [3]. This prevalence is considerably raised in general epilepsy clinics. Hamed et al. [4] reported that 39.7% of their patients had some obsessive-compulsive symptoms and 11.2% of people met DSM-IV criteria for OCD.

Temporal lobe epilepsy (TLE) is associated with a higher prevalence of OCD than other forms of epilepsy. Ertekin et al. [5] administered the Yale-Brown Obsessive Compulsive Scale [6] to groups of patients with generalized epilepsy and temporal lobe epilepsy. Obsessive–compulsive symptoms were significantly more disruptive for patients with TLE than other forms of epilepsy. This association stands to reason, given that our current understanding of the pathophysiology of OCD relies heavily upon the limbic system [7].

When a sample of TLE patients from a tertiary epilepsy clinic completed the Obsessive–Compulsive Inventory, 22% of those surveyed scored within the clinical range [8]. It is likely that this is an over-estimation due to the selection bias inherent in recruiting people with drug-resistant epilepsy. However, in a secondary care clinic, Monaco et al. [9] found that 14.5% of TLE patients had OCD. People with TLE also displayed more sub-clinical obsessive personality traits than patients with generalised seizures, supporting the role of the limbic system in both general obsessive tendencies and OCD. Of note, only one of these people had a previous diagnosis of OCD, suggesting it seriously under-recognised in epilepsy clinics.

Psychiatric comorbidity has been shown to have a greater impact on the quality of life than seizure-related factors [10], with some studies finding that the greatest contribution is made by anxiety levels [11]. Obsessive–compulsive symptoms have been shown to directly affect the quality of life in people with epilepsy, as well as exerting an indirect influence through seizure-control and depressive symptoms [12]. Certainly OCD is a debilitating disorder; Bobes et al. [13] found that these patients reported worse social, emotional and mental health functioning than those with depression, heroin dependency, haemodialysis, or kidney transplants.

Here, we report a case series of people living with both disorders in order to obtain a greater understanding of the relationship between the two.

2. Materials and methods

Prior to commencing, approval was gained from the Department of Clinical Effectiveness at King’s College Hospital, London (KCH) and the Clinical Audit Lead for Neurosciences at KCH. A non-consecutive, retrospective chart review was conducted for patients attending five epilepsy
Table 1
Clinical characteristics of patients with obsessive–compulsive disorder and epilepsy. CBZ = carbamazepine, SV = sodium valproate, LEV = levetiracetam, TPM = topiramate, LTG = lamotrigine, PGB = pregabalin, GBP = gabapentin, PHT = phenytoin, CLB = clobazam, PGB = phenobarbital, LCS = lacosamide, CLO = clonazepam, ZON = zonisamide, LOR = lorazepam, PMD = primidone, CBT = Cognitive Behavioural Therapy, SSRI = Selective Serotonin Re-uptake Inhibitor.

Patient Number	Age (years)	Handedness	Epilepsy Onset Age (years)	Seizure Type	Current Medication	Previous Medication	Resective Surgery	Vagal Nerve Stimulator	Age of OCD Onset	Impact on ADL	Psychiatry Review	SSRI (mg)	Other seizure types and Disorders (including focal emotional aware)		
1	37	Left	22	Focal impaired awareness & Generalised tonic–clonic	CBZ	SV, LEV	No	No	26	Impaired relationships, Difficulty leaving home	Yes, ineffective	No	No	No	Post-ictal psychosis, without focal emotional aware seizures
2	40	–	6	Generalised tonic–clonic & Myoclonic	CBZ, TPM, LTG, PGB	LEV, GBP, PHT, CLB	No	Yes, ineffective	18	Difficulty sleeping	–	No	No	No	Post-ictal psychosis, without focal emotional aware seizures
3	28	Right	–	Focal impaired awareness & Focal to bilateral tonic–clonic	LEV, GBP	CBZ, SV, PHT, PHB	No	Yes, ineffective	26	Difficulty working	No	No	No	No	Post-ictal psychosis, without focal emotional aware seizures
4	55	Right	16	Focal impaired awareness	SV, CBZ, LCS, LEV, PGB	CBZ, LEV, PGB	No	Yes, ineffective	18	Unable to leave house to come to hospital	Yes	No	No	No	Post-ictal psychosis, without focal emotional aware seizures
5	45	Right	5	Focal to bilateral tonic–clonic	CBZ, LTG, PGB	CBZ, LEV, PGB	No	Yes, ineffective	20	Unable to work	No	No	No	No	Post-ictal psychosis, without focal emotional aware seizures
6	46	Left	18	Focal impaired awareness	SV, CBZ, LCS, LEV, PGB	CBZ, LEV, PGB	No	Yes, ineffective	20	Unable to work	No	No	No	No	Post-ictal psychosis, without focal emotional aware seizures
7	29	Right	4	Focal impaired awareness & Generalised tonic–clonic	CBZ, LCS, CLO, LEV, PGB	LTG, PGB	No	No	20	Unable to work	No	No	No	No	Post-ictal psychosis, without focal emotional aware seizures
8	49	Right	13	Generalised tonic–clonic	CBZ, LEV, GBP, LTG, PHT	ZNS, CBZ, LOR, PMD	No	No	20	Hospitalisation, unable to work	No	No	Yes	No	Post-ictal psychosis, without focal emotional aware seizures
9	40	Right	9	Focal impaired awareness & Focal to bilateral tonic–clonic	CBZ, LEV, GBP, LTG, PHT	ZNS, CBZ, LOR, PMD	No	No	28	Hospitalisation, suicidal ideation	No	No	No	No	Post-ictal psychosis, without focal emotional aware seizures
10	42	Right	20	No	No	No	No	No	No	No	No	No	No	No	Post-ictal psychosis, without focal emotional aware seizures
clins at KCH between 2012 and 2013. Of these, ten patients with complex or drug-resistant epilepsy were identified from the cohort who had also received a formal diagnosis of concomitant OCD. Clinical information was gathered about these individuals and the key characteristics of their disorders and management. Medical, psychiatric and surgical treatment was noted. A deeper case review was then performed for the three people with the most extensive clinical documentation in order to broaden our understanding.

3. Results

A summary of the clinical characteristics of the cohort can be found in Table 1.

3.1. Patient 6

Patient six is a 46 year-old, left-handed man with no family history of epilepsy or psychiatric disorder. At age 18, he was diagnosed with focal impaired awareness seizures and epilepsy. At age 26 he was diagnosed with OCD, although he could identify patterns of obsessional thinking preceding his epilepsy diagnosis by four years. His OCD is predominantly formed of obsessions. The focus of his ruminations centres on a fear of harming others. To combat the associated anxiety he checks through his memories to see if he has committed a crime. These thoughts are extremely distressing for him and have disrupted his personal relationships.

Histopathology from a right amygdalohippocampectomy at age 35 confirmed the presence of hippocampal sclerosis. Initially the surgery significantly reduced seizures, but over a course of years their frequency eventually returned to pre-operative levels. His OCD was treated with citalopram and specialist cognitive behavioral therapy, although he struggled to engage with this.

Cognitive Behavioural Therapy (CBT) is a psychotherapeutic intervention which enables people to develop tailored coping techniques focused on challenging negative cognitions, behaviors and emotions. It is most commonly delivered one to one between a qualified therapist and the patient at regular intervals for between 6 and 12 sessions over 2 or 3 months.

At 39 years old he had a second surgical procedure to extend his previous resection. This resulted in some improvement in both his seizures and obsessive thoughts. One year subsequent to surgery, both seizures and OCD worsened. He underwent an intensive four-day course of exposure and response prevention which reduced his ruminations by a third.

More recently he was implanted with a vagus nerve stimulator, which had limited success. There were attempts to increase his citalopram dose, however, he suffered with lethargy and it was reduced to his standard dose. He has had a third course of CBT but he struggled to implement these techniques without direct guidance.

Of note is the chronological relationship between his epilepsy and OCD. A synchronous improvement and decline in both conditions followed his ruminations by a third.

3.2. Patient 9

Patient nine is a 49 year-old right-handed male with no family history of epilepsy or psychiatric disorder. Aged six months he suffered a subarachnoid hemorrhage. The next year he was admitted for inpatient admission for treatment of psychosis. Soon after this admission he suffered a subarachnoid hemorrhage. The next year he was admitted for CBT treatment of his OCD which was having significant impacts on his life. His seizure control worsened at this point. At 39 years old, he had an eight-week period of hypomania following a severe generalized tonic-clonic seizure.

His seizures remain poorly controlled. Despite this, he is clear that it is the OCD that is most problematic for him. He has struggled to consistently use techniques learnt during CBT and manages his anxiety with lorazepam. He finds his OCD highly distressing and feels that it is a greater burden on his quality of life than his epilepsy.

3.3. Patient 10

Patient ten is a 42-year-old right-handed male with focal impaired awareness seizures and focal to tonic–clonic seizures, since the age of nine. Radiological investigation demonstrated right hippocampal sclerosis.

When he was in his mid-twenties, a family member died by suicide. He developed OCD aged 28. He experiences repeated intrusive and distressing thoughts that he will also die by suicide and has obsessional thoughts around certain colours and numbers. To reduce his anxiety, he engages in ritualised hand-washing behavior and avoids certain colored objects.

He was referred to Neuropsychiatry at the age of 33 when experiencing several psychotic episodes during periods of seizure freedom. His seizure frequency varied in the medium-term and his OCD symptoms worsened during periods of good seizure control. While his seizures were fairly stable he began CBT for OCD. There were some improvements but these lacked consistency as his ability to resist engaging in safety behaviours was impaired after a seizure.

At age 35, he went through another period of improved seizure control with an associated deterioration of his mental state. This leads to an inpatient admission for treatment of psychosis. Soon after this admission he suffered a subarachnoid hemorrhage. The next year he was admitted for CBT treatment of his OCD which was having significant impacts on his life. His seizure control worsened at this point. At 39 years old, he had an eight-week period of hypomania following a severe generalized tonic–clonic seizure.

His seizures remain poorly controlled. Despite this, he is clear that it is the OCD that is most problematic for him. He has struggled to consistently use techniques learnt during CBT and manages his anxiety with lorazepam. He finds his OCD highly distressing and feels that it is a greater burden on his quality of life than his epilepsy.

4. Discussion

The majority of patients in our case series suffered with TLE. This is likely due to the greater prevalence of OCD reported in this group. It may also be reflective of the fact that people with TLE are over-represented in tertiary epilepsy care.

In each of the expanded case reports, both the patient and treating doctor noted a relationship between severity of seizures and OCD symptoms.

There has been a drive to establish the neurobiological underpinnings of OCD [14, 15]. Some investigators suggest that there could be a shared mechanism with some forms of epilepsy, explaining the
increased coexistence of the two conditions. Kaplan [16] has previously reviewed the biological association. The temporary respite from OCD in one of our cases reflects surgical case reports demonstrating resolution of OCD following temporal lobectomy [17], and also its de novo occurrence [18]. As yet, there is no tailored intervention for OCD in people with epilepsy, despite the fact that epilepsy may have a bearing on the extent to which an individual is able to engage with the treatment. Success in CBT is dependent upon utilising strategies in–between sessions [19]. For those with on-going seizures, this would be greatly impeded. It may also affect their ability to attend regular weekly appointments. Many people with epilepsy face cognitive impairments from seizures, medications or surgery, which needs to be considered when working in the cognitive domain. This may also reduce the individual’s ability to use strategies in the long-term. It is advisable for the therapist carrying out the intervention to have an understanding of the different ways in which an individual’s epilepsy could affect therapy. Previous studies have found CBT designed for people with epilepsy experiencing anxiety or depression to be effective when delivered at both a group [20] or an individual level [21–23]. All of the three patients detailed above required repeated courses of psychological intervention.

For more severe and enduring forms of OCD, or if psychological intervention alone has not been effective, additional treatment with selective serotonin inhibitors (SSRIs) is recommended. The majority of patients in our series, seven out of ten, had tried at least one SSRI.

Pittenger et al. [24, 25] outline convergent strands of evidence from genetics, animal models, neuroimaging and neurochemical investigation, which implicate glutamate dysregulation in the cortical–striatal–thalamic circuits as underlying the pathophysiology of OCD. Of particular relevance for people with comorbid epilepsy and OCD is research using the glutamate-modulating drugs topiramate [26–29] and lamotrigine [30–32], in addition to usual SSRIs, for the treatment of refractory OCD in people without epilepsy. The effectiveness of these medications for those with both epilepsy and OCD may represent a promising avenue for further investigation.

One other psychopharmacological point of note would be the role of anti-seizure medications in association with the emergence or exacerbation of OCD in those susceptible, where it was previously at a sub-clinical level. Much has been written on levetiracetam in this regard – a common hypnotic that can also be used in the long-term. It is advisable for the therapist carrying out the intervention to have an understanding of the different ways in which an individual’s epilepsy could affect therapy. Previous studies have found CBT designed for people with epilepsy experiencing anxiety or depression to be effective when delivered at both a group [20] or an individual level [21–23]. All of the three patients detailed above required repeated courses of psychological intervention.

Conclusion

Our case series has hopefully outlined the clinical characteristics of people with epilepsy and OCD. As the relationship between these two conditions is yet to be fully elucidated, and given the impact on people’s quality of life, there is clearly a need for future research. To this end, prospective studies examining the relationship between epilepsy type, seizure frequency, chronicity and OCD symptomatology are required.

Declarations of interest

None.

References

[1] Tuke DH. Imperative ideas. Brain 1894;17.
[2] Waxman SG, Geschwind N. The interictal behaviour syndrome of temporal lobe epilepsy. Arch Gen Psychiatry 1957;6:1580–6.
[3] Ruscio AM, Stein DJ, Chiu WT, Kessler RC. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry 2010;15:53–63. https://doi.org/10.1038/mp.2008.94.
[4] Hamed SA, Eltergy YM, Abd-Elhalamez HA. Psychopathological and peripheral levels of neurobiological correlates of obsessive–compulsive symptoms in patients with epilepsy: a hospital-based study. Epilepsy Behav 2013;27:409–15. https://doi.org/10.1016/j.yebeh.2013.01.022.
[5] Ertürk BA, Kalpakçioğlu IB, Ertok E, Gürses C, Behebtü N, Göküşür E, et al. A comparative study of obsessive–compulsive disorder and other psychiatric comorbidities in patients with temporal lobe epilepsy and idiopathic generalized epilepsy. Epilepsy Behav 2009;14:634–9. https://doi.org/10.1016/j.yebeh.2009.01.016.
[6] Goodman WK, Price LH, Raunnen SA, Mazure C, Fleischmann RL, Hill CL, et al. The Yale–Brown obsessive compulsive scale. Arch Gen Psychiatry 1989;46:1006. https://doi.org/10.1001/archpsyc.1989.01810110048007.
[7] Saxena S, Rauch SL. Functional neuroimaging and the neuroanatomy of obsessive–compulsive disorder. Psychol Med North Am 2000;23:363–86. https://doi.org/10.1016/S0005-7967(02)00025-6.
[8] Macrodimitris S, Sherman EMS, Forde S, Tellez-Zenteno JF, Metcalfe A, Hernandez-Ronquillo L, et al. Psychiatric outcomes of epilepsy surgery: a systematic review. Epilepsia 2011;52:880–90. https://doi.org/10.1111/j.1528-1167.2011.03014.x.
[9] Monaco F, Cavanna A, Magli E, Barbagali D, CollinaTeglia D, Cantello R, et al. Obsessio

None.
[32] Uzun O. Lamotrigine as an augmentation agent in treatment-resistant obsessive-compulsive disorder: a case report. J Psychopharmacol 2010;24:425–7. https://doi.org/10.1177/0269881108098809.

[33] French J, Edrich P, Cramer JA. A systematic review of the safety profile of levetiracetam: a new antiepileptic drug. Epilepsy Res 2001;47:77–90.

[34] White JR, Walczak TS, Leppik J, et al. Discontinuation of levetiracetam because of behavioral side effects: a case control study. Neurology 2003;61:1218–21.

[35] Lahiner DM, Ettinger AB, Fakhoury TA, Chung SS, Shneker B, Tatum IV WO, et al. Effects of lamotrigine compared with levetiracetam on anger, hostility, and total mood in patients with partial epilepsy. Epilepsia 2009;50:434–42. https://doi.org/10.1111/j.1528-1167.2008.01792.x.