Association of MTRR A66G polymorphism with cancer susceptibility: Evidence from 85 studies

Ping Wang1*, Sanqiang Li2*, Meilin Wang1, Jing He3*, Shoumin Xi1**

1. The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang 471023, Henan, China;
2. The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang 471023, Henan, China;
3. Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.

* These authors contributed equally to this work.

** Corresponding authors: Shoumin Xi, The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, No. 263 Kaiyuan Avenue, Luoyang 471023, Henan, China, Tel.: (+86-379) 64830346, Fax: (+86-379) 64830345, E-mail: xishoumin@haust.edu.cn; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, Tel./Fax: (+86-20) 38076560, E-mail: hejing198374@gmail.com.

© Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Received: 2016.08.29; Accepted: 2016.11.14; Published: 2017.01.15

Abstract

Methionine synthase reductase (MTRR) is a key regulatory enzyme involved in the folate metabolic pathway. Previous studies investigating the association of MTRR A66G polymorphism with cancer susceptibility reported inconclusive results. We performed the current meta-analysis to obtain a more precise estimation of the possible association. Published literatures were identified from PubMed, Embase and CBM databases up to October 2016. The strength of the association between the MTRR A66G polymorphism and cancer susceptibility was assessed using odds ratios (ORs) and the corresponding 95% confidence intervals (CIs). Eighty five published studies with 32,272 cases and 37,427 controls were included in this meta-analysis. Pooled results indicated that the MTRR A66G polymorphism was associated with an increased overall cancer risk (homozygous model: OR = 1.08, 95% CI = 1.02-1.15, \(P = 0.009 \); recessive model: OR = 1.06, 95% CI = 1.00-1.12, \(P < 0.001 \) and allele comparison: OR = 1.03, 95% CI = 1.00-1.06, \(P < 0.001 \)). Stratification analysis further indicated significant associations in head and neck cancer, Caucasians, Africans, and high quality studies. However, to avoid the “false-positive report”, the significant findings were assessed by the false-positive report probability (FPRP) test. Interestingly, the results of FPRP test revealed that the increased risk for MTRR A66G polymorphism among Africans need further validation due to the high probabilities of false-positive results. This meta-analysis suggests that the MTRR A66G polymorphism is associated with significantly increased cancer risk, a finding that needs to be confirmed in single large studies.

Key words: Methionine synthase reductase (MTRR); polymorphism; susceptibility; meta-analysis.

Introduction

Cancer remains the leading cause of death worldwide, with approximately 14.1 million new cancer cases and 8.2 million deaths occurring in 2012 according to the GLOBOCAN estimates [1]. It has been estimated that about one-third of cancers are attributable to diet and lifestyle [2], and a number of studies have reported a relationship between folate intake and cancer risk [3-5].

Folate plays an important role in one-carbon metabolism, and acts as a coenzyme in DNA methylation and synthesis [6]. Folate can provide the methyl group donor S-adenosylmethionine for many biological reactions. It also plays a critical role in the de novo synthesis of purines and thymidylate, which
are necessary for DNA replication and repair [7]. Abnormal folate metabolism can lead to the aberrant distribution of methyl groups and affect DNA biosynthesis and methylation, which is considered as a mechanism in the development of cancer [8].

Methionine synthase reductase (MTRR) is one of the key regulatory enzymes involved in the folate metabolic pathway. It can catalyze the regeneration of methyl cobalamin, which is a cofactor of methionine synthase (MTR) in the remethylation of homocysteine to methionine [9]. Because MTRR plays a vital role in maintaining the active state of MTR, genetic variation within the MTRR gene may be associated with cancer susceptibility. The MTRR gene is located on chromosome 5 at 5p15.2-p15.3, and the most common polymorphism is the substitution of isoleucine with methionine at position 22 (A66G; rs1801394). It has been suggested that the 66GG genotype is negatively correlated with plasma homocysteine levels [10]. A large number of studies have investigated the role of the MTRR A66G polymorphism and cancer risk [11-82], but the results remain controversial. Therefore, we conducted this updated meta-analysis from all eligible studies to derive a more precise estimation of this association.

Materials and methods

Search strategy

A comprehensive literature search was carried out in PubMed, Embase, and Chinese Biomedical (CBM) databases for all relevant articles using the following search terms: “MTRR or methionine synthase reductase or one-carbon metabolism”, “polymorphism or variant or variation” and “cancer or tumor or carcinoma or neoplasm” (the last search was updated on October 21, 2016). Review articles and references cited in the searched studies were examined manually to identify additional relevant articles. Only the most recent study or the one with most participants was included in the final meta-analysis if two or more studies overlapped.

Inclusion and exclusion criteria

The included studies met the following criteria: (1) case-control study design; (2) investigating the association between the MTRR A66G polymorphism and cancer risk; (3) providing detail information for calculating pooled odds ratios (ORs) and their 95% confidence intervals (CIs). Studies were excluded if one of the following existed: (1) not a case-control study; (2) duplicate publications; (3) without detail genotype frequencies; and (4) genotype frequencies in the controls departed from Hardy-Weinberg equilibrium (HWE).

Data extraction

Information was extracted from all eligible studies independently by two authors (Ping Wang and Meilin Wang) according to the inclusion and exclusion criteria listed above. Disagreement was resolved by discussion until consensus was reached. The following information was collected from each study: first author’s surname, year of publication, country of origin, ethnicity, cancer type, control source (hospital-based or population-based), genotyping methods, and numbers of cases and controls with the AA, AG and GG genotypes. Ethnicities were categorized as Asians, Caucasians, Africans or Mixed, which included individuals belonging to more than one ethnic group.

Quality assessment

Quality assessment was performed by two authors independently according to the criteria as described previously [83]. Quality scores of studies ranged from 0 (lowest) to 15 (highest), and the studies were categorized into high quality (scores > 9) and low quality (scores ≤ 9).

Statistical analysis

The strength of association between the MTRR A66G polymorphism and cancer risk was assessed by calculating the ORs with the corresponding 95% CIs. The pooled ORs of 5 comparison models were calculated: homozygous model (GG vs. AA), heterozygous model (AG vs. AA), recessive model (GG vs. (AA + AG)), dominant model [(GG +AG) vs. AA] as well as an allele comparison (G vs. A). The Chi square-based Q-test was used to check heterogeneity between studies. A P value greater than 0.1 for the Q-test indicated the homogeneity among studies, in which case the fixed-effects model (the Mantel-Haenszel method) [84] was adopted. Otherwise, the random-effects model (the DerSimonian and Laird method) [85] was applied. Data were stratified by cancer type (if one cancer type was represented by fewer than two studies, it was merged into the “other cancers” group), ethnicity (Asians, Caucasians, Africans or Mixed), source of control (hospital-based studies and population-based studies), and quality scores (≤ 9 and > 9). Potential publication bias was estimated using Begg’s funnel plot [86] and Egger’s linear regression test [87]. Sensitivity analysis was carried out to evaluate the effect of each individual study on the pooled ORs by excluding studies one-by-one and recalculating the ORs and 95% CIs.

For significant results found in the present meta-analysis, the false-positive report probability (FPRP) was used to evaluate positive associations. We
calculated FPRP with 0.2 as a threshold and assigned a prior probability of 0.1 to detect an OR of 0.67/1.50 (protective/risk effects) for an association with genotypes under investigation. FPRP values < 0.2 were considered as noteworthy associations [88]. All the statistical tests were performed with STATA version 12.0 (Stata Corporation, College Station, TX). All the P values were two-sided, and P < 0.05 was considered statistically significant.

Results

Study characteristics

As shown in Figure 1, a total of 381 published records were identified from PubMed, Embase and CBM by using the search terms described above. By checking the reference lists, we identified 29 additional publications. After screening the abstracts and texts, only 96 publications met the crude inclusion criteria and were selected for further assessment. Among them, five were excluded for containing survival data only [89-93], seven lacked detailed data for further analysis [94-100], eleven deviated from HWE [101-111] and one was a case-only study [112]. Ultimately, 72 publications [11-82] were included in the final meta-analysis (Table 1).

Table 1. Characteristics of studies included in the meta-analysis.

Surname [ref]	Year	Country	Ethnicity	Cancer type	Control method	Genotype method	Case	Control	MAF	HWE	Score
Le Marchand [11]	2002	USA	Asian	Colorectal	PCR-RFLP	AA 148, AG 81, GG 26	AA 193, AG 40, GG 39	0.29	0.374	11	
Le Marchand [11]	2002	USA	Caucasian	Colorectal	PCR-RFLP	AA 26, AG 81, GG 26	AA 45, AG 6, GG 39	0.48	0.865	10	
Le Marchand [11]	2002	USA	Mixed	Colorectal	PCR-RFLP	AA 30, AG 34, GG 12	AA 40, AG 38, GG 9	0.32	0.995	9	
Stolzenberg-Solomon [12]	2003	China	Asian	Esophagus	PCR-RFLP	AA 50, AG 63, GG 16	AA 186, AG 179, GG 33	0.31	0.268	14	
Stolzenberg-Solomon [12]	2003	China	Asian	Gastric	Real-time PCR	AA 43, AG 37, GG 10	AA 186, AG 179, GG 33	0.31	0.268	13	
Gemmati [13]	2004	Italy	Caucasian	ALL	PCR-RFLP	AA 28, AG 58, GG 23	AA 59, AG 122, GG 76	0.47	0.457	10	
Gemmati [13]	2004	Italy	Caucasian	NHL	PCR-RFLP	AA 51, AG 106, GG 43	AA 59, AG 122, GG 76	0.47	0.457	10	
Otani [14]	2005	Japan	Asian	Colorectal	Taqman	AA 58, AG 44, GG 5	AA 128, AG 82, GG 14	0.25	0.858	8	
Shi [15]	2005	USA	Caucasian	Lung	PCR-RFLP	AA 162, AG 503, GG 370	AA 231, AG 542, GG 375	0.44	0.168	11	
Zhang [16]	2005	USA	Caucasian	Head and neck	PCR-RFLP	AA 114, AG 376, GG 231	AA 276, AG 589, GG 369	0.46	0.161	11	
Chen [17]	2006	China	Asian	Colorectal	PCR-RFLP	AA 32, AG 107, GG 253	AA 89, AG 253, GG NA	NA	NA	9	
Koushik [18]	2006	USA	Mixed	Colorectal	Taqman	AA 82, AG 159, GG 116	AA 163, AG 399, GG 245	0.45	0.981	14	

http://www.jcancer.org
Authors	Year	Country	Tumor Type	Method	Case Numbers
Liu [70]	2013	USA	Mixed Colorectal	PCR-RFLP	342
Morita [71]	2013	Japan	Asian Colorectal	PCR-RFLP	342
Tomita [72]	2013	Brazil	Mixed Cervical	Allele-specific	70
Lisowska [22]	2007	Poland	Caucasian Breast	PCR-RFLP	388
Moore [23]	2007	Spain	Caucasian Bladder	Illumina	267
Petra [24]	2007	Slovenia	Colorectal ALL	PCR-RFLP	15
Suzuki [25]	2007	Japan	Asian Head and neck	PCR-RFLP	108
Suzuki [26]	2007	Japan	Asian Lung	Taqman	113
Zhang [27]	2008	Poland	Caucasian Gastric	Taqman	56
Bethke [28]	2008	Multi-center	Caucasian Brain	Illumina	534
Gra [29]	2008	Russia	Caucasian ALL	PCR-based bioclp	109
Gra [29]	2008	Russia	Caucasian AML	PCR-based bioclp	26
Gra [30]	2008	Russia	Caucasian NHL	PCR-based bioclp	16
Gra [30]	2008	Russia	Caucasian CLL	PCR-based bioclp	20
Ikeda [31]	2008	Japan	Asian Colorectal	MassARRAY	51
Ikeda [31]	2008	Japan	Asian Gastric	MassARRAY	83
Kim [32]	2008	Korea	Asian NHL	PCR-RFLP	292
Kwak [33]	2008	Korea	Asian Liver	PCR-RFLP	40
Lima [34]	2008	Brazil	Mixed Multiple myeloma	PCR-RFLP	32
Marchal [35]	2008	Spain	Caucasian Prostate	Real-time PCR	38
Mir [36]	2008	India	Asian Breast	PCR-RFLP	1
Steck [37]	2008	USA	African Colorectal	Taqman	116
Steck [37]	2008	USA	Caucasian Colorectal	Taqman	53
Suzuki [38]	2008	Japan	Asian Breast	Taqman	205
Suzuki [39]	2008	Japan	Asian Pancreatic	Taqman	78
Theodoratou [40]	2008	Scotland	Caucasian Colorectal	MassARRAY	200
de Jonge [41]	2009	Netherlands	Caucasian ALL	Real-time PCR	59
Kim [42]	2009	Korea	Asian ALL	PCR-RFLP	38
Kim [42]	2009	Korea	Asian AML	PCR-RFLP	195
Kim [42]	2009	Korea	Asian CML	PCR-RFLP	73
Rouissi [43]	2009	Tunisia	African Bladder	PCR-RFLP	59
Burcos [44]	2010	Romania	Caucasian Breast	PCR-RFLP	0
Burcos [44]	2010	Romania	Caucasian Colorectal	PCR-RFLP	11
Cai [45]	2010	China	Asian Prostate	PCR-RFLP	111
Eussen [46]	2010	Multi-center	Caucasian Gastric	MALDI-TOF MS	58
Sangrajan [47]	2010	Thailand	Asian Breast	Taqman	295
Tong [48]	2010	Korea	Asian Cervical	Multiplexed PCR	137
Wettergren [49]	2010	Sweden	Colorectal	Real-time PCR	22
Curtis [50]	2011	USA	Mixed Colorectal	Illumina	193
Guimaraes [51]	2011	Brazil	Mixed Colorectal	PCR-RFLP	26
Jokic [52]	2011	Croatia	Caucasian Colorectal	Taqman	53
Metayer [53]	2011	USA	Mixed ALL	Illumina	133
Mostowska [54]	2011	Poland	Caucasian Cervical	HRM	44
Pardini [55]	2011	Czech	Caucasian Colorectal	Taqman	113
te Winkel [56]	2011	Netherlands	Caucasian ALL	Real-time PCR	17
Webb [57]	2011	Australia	Mixed Ovarian	MassARRAY	584
Weiner [58]	2011	Russia	Caucasian NHL	Real-time PCR	26
Yang [59]	2011	China	Asian ALL	Real-time PCR	180
Amigou [60]	2012	France	Caucasian ALL	Illumina	112
Galbiatti [61]	2012	Brazil	Mixed Head and neck	Real-time PCR	69
Lajin [62]	2012	Syria	Caucasian Breast	ARMS-PCR	40
Pavlik [63]	2012	Poland	Mixed Ovarian	HRM	47
Weber [64]	2012	Russia	Caucasian Breast	Real-time PCR	162
Yoo [65]	2012	Korea	Asian Gastric	MassARRAY	655
Yoshimitsu [66]	2012	Japan	Asian Colorectal	PCR-RFLP	281
Yuan [67]	2012	China	Asian Gastric	MassARRAY	27
Chen [68]	2013	China	Asian Cervical	PCR-RFLP	50
Jackson [69]	2013	Jamaica	African Prostate	Taqman	111
Liu [70]	2013	USA	Mixed Colorectal	Illumina	264
Morita [71]	2013	Japan	Asian Colorectal	PCR-RFLP	342
Tomita [72]	2013	Brazil	Mixed Cervical	70	
Controls were matched for age, sex and ethnicity in considered as high quality (quality score > 9). Population-based and 33 were hospital-based. Of all the studies, 52 were than two studies. There were 37 studies on Asians, 32 on Africans. Of all the studies, 52 were on Asians, 32 on Africans. Of all the studies, 52 were non-Hodgkin lymphoma (NHL) [13, 30, 32, 58, 78], four each on cervical cancer [48, 54, 68, 72] and liver cancer [33, 74, 75, 81], three each on prostate cancer [35, 45, 69], head and neck cancer [16, 25, 61] and brain cancer [28, 73, 77], and “other cancers” with no more than two studies. There were 37 studies on Asians, 32 studies on Caucasians, 13 studies on mixed ethnicities and three on Africans. Of all the studies, 52 were population-based and 33 were hospital-based. Furthermore, 37 studies were considered as low quality (quality score ≤ 9), and 48 studies (56.5%) were considered as high quality (quality score > 9). Controls were matched for age, sex and ethnicity in most studies.

Meta-analysis results

The main results of the meta-analysis are shown in Table 2 and Figure 2. Pooled analysis indicated a significant association between the MTRR A66G polymorphism and cancer risk (homozygous: OR = 1.08, 95% CI = 1.02-1.15, P = 0.009; recessive: OR = 1.06, 95% CI = 1.00-1.12, P < 0.001 and allele comparison: OR = 1.03, 95% CI = 1.00-1.06, P < 0.001). In the subgroup analysis, statistically significant associations were found for head and neck cancer (homozygous: OR = 1.49, 95% CI = 1.17-1.89, P = 0.076; dominant: OR = 1.30, 95% CI = 1.03-1.64, P = 0.143 and allele comparison: OR = 1.17, 95% CI = 1.04-1.31, P = 0.560), Caucasians (homozygous: OR = 1.09, 95% CI = 1.00-1.19, P = 0.077; dominant: OR = 1.08, 95% CI = 1.00-1.17, P = 0.045 and allele comparison: OR = 1.05, 95% CI = 1.01-1.09, P = 0.193), Africans (homozygous: OR = 1.52, 95% CI = 1.00-2.32, P = 0.577 and allele comparison: OR = 1.23, 95% CI = 1.01-1.49, P = 0.474) and high quality studies (homozygous: OR = 1.07, 95% CI = 1.00-1.15, P = 0.005 and recessive: OR = 1.06, 95% CI = 1.01-1.11, P = 0.262).

Heterogeneity and sensitivity analysis

Substantial heterogeneity was detected among all studies of the MTRR A66G polymorphism and overall cancer risk (homozygous: P = 0.009; heterozygous: P = 0.007; dominant: P = 0.001; recessive: P < 0.001 and allele comparison: P < 0.001). Therefore, the random-effects model was applied to generate wider CIs. Leave-one-out sensitivity analysis was performed and the results suggested the pooled ORs were not influenced by omitting any single study (data not shown).

Publication bias

As shown by the relative symmetric funnel plot (Figure 3) and Egger’s test, no evidence of publication bias was found in the current analysis under any of the models (homozygous: P = 0.913; heterozygous: P = 0.551; dominant: P = 0.510; recessive: P = 0.666 and allele comparison: P = 0.560).

Of the 72 publications, two publications [11, 37] with different ethnic groups were separated as five independent studies and eight publications [12, 13, 29-31, 42, 44, 74] with different cancer types were also treated as 18 independent studies. For those studies [12, 13, 21, 25, 26, 29, 30, 32, 38, 39, 42, 50, 54, 63, 70, 74] with the same control group, the control numbers were calculated once in the total number. Overall, 72 publications including 85 studies of 32,272 cases and 37,427 controls were included in the final meta-analysis. Of the 85 studies, 20 studies focused on colorectal cancer [11, 14, 17, 18, 20, 31, 37, 40, 44, 49-52, 55, 66, 70, 71], ten on breast cancer [19, 22, 36, 38, 44, 47, 62, 64, 76, 82], nine on acute lymphoblastic leukemia (ALL) [13, 24, 29, 41, 42, 53, 56, 59, 60], eight on gastric cancer [12, 27, 31, 46, 65, 67, 74, 79], five on non-Hodgkin lymphoma (NHL) [13, 30, 32, 58, 78], four each on cervical cancer [48, 54, 68, 72] and liver cancer [33, 74, 75, 81], three each on prostate cancer [35, 45, 69], head and neck cancer [16, 25, 61] and brain cancer [28, 73, 77], and “other cancers” with no more than two studies. There were 37 studies on Asians, 32 studies on Caucasians, 13 studies on mixed ethnicities and three on Africans. Of all the studies, 52 were population-based and 33 were hospital-based. Furthermore, 37 studies were considered as low quality (quality score ≤ 9), and 48 studies (56.5%) were considered as high quality (quality score > 9). Controls were matched for age, sex and ethnicity in most studies.

Year	Country	Ethnicity	Site	Method	PCR	MTRR A66G Polymorphism	OR (95% CI)	P Value
2013	China	Asian	Brain	Taqman	PCR-RFLP	209 269 122 225 282 93	0.39 0.765	12
2014	China	Asian	Gastric	Taqman	PCR-RFLP	119 63 9 204 149 25	0.26 0.752	12
2014	China	Asian	Liver	Taqman	PCR-RFLP	114 64 13 204 149 25	0.26 0.752	11
2014	China	Asian	Esophagus	Taqman	PCR-RFLP	117 74 10 204 149 25	0.26 0.752	12
2014	China	Asian	Liver	Taqman	PCR-RFLP	103 86 16 112 73 15	0.26 0.520	6
2015	USA	Caucasian	Breast	Illumina	PCR-RFLP	158 318 140 165 321 138	0.48 0.442	14
2015	Australia	Mixed	Brain	MassARRAY	PCR-RFLP	80 148 90 102 264 175	0.43 0.890	11
2015	Multi-center	Asian	NHL	MassARRAY	PCR-RFLP	178 153 41 353 306 63	0.30 0.774	10
2016	Korea	Asian	Gastric	Affymetrix	PCR-RFLP	136 111 23 295 211 35	0.26 0.739	10
2016	Japan	Pancreatic	Breast	Dynamic Array	PCR-RFLP	167 157 36 206 158 36	0.29 0.473	11
2016	Brazil	Mixed	Liver	Real-time PCR	PCR-RFLP	12 50 9 105 179 72	0.45 0.787	8

MAF, minor allele frequency; HB: hospital-based; PB: population-based; NA, not applicable; PCR-RFLP: polymorphism chain reaction restriction fragment length polymorphism; MALDI-TOF MS: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; HRM: high resolution melt; ARMS-PCR: amplification refractory mutation system-PCR; ALL: acute lymphoblastic leukemia; NHL: non-Hodgkin’s lymphoma; AML: acute myelogenous leukemia; CML: chronic myelogenous leukemia; CLL: chronic lymphocytic leukemia.

* Chen [17], Calbiatti [61] and Jackson [69] were only calculated for the dominant model.
* Gra [29] and Tong [48] were only calculated for the recessive model.
* Mir [36] and Burcos [44] (breast cancer) were only calculated for the recessive model and allele comparison, and the number of AA genotype was zero.
FPRP test results

The significant associations were investigated using the FPRP test and the results were shown in Table 3. For a prior probability of 0.1, the FPRP value was 0.128 for the MTRR A66G polymorphism with an increased cancer risk under the homozygous model, and positive associations were also found in head and neck cancer (homozygous: FPRP = 0.017 and allele comparison: FPRP = 0.055), Caucasians (allele comparison: FPRP = 0.087) and high score studies (recessive: FPRP = 0.106). However, no positive association was found between the MTRR A66G polymorphism and cancer risk in Africans.

Variables	No. of studies	Sample size (case/controls)	Homozygous	Heterozygous	Recessive	Dominant	Allele comparison	
			OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	
All	85	32,272/37,427	1.08 (1.02-1.15)	0.009 (0.97-1.06)	0.007 (1.00-1.12)	<0.001 (1.00-1.06)	<0.001	
Cancer type								
Colorectal	20	8,057/10,465	1.09 (0.96-1.25)	0.051 (0.95-1.16)	0.030 (0.97-1.11)	0.462 (0.97-1.19)	0.006 (1.05-1.12)	0.007
Breast	10	6,048/5,872	1.08 (0.96-1.21)	0.488 (0.89-1.11)	0.131 (0.98-1.22)	0.001 (0.94-1.11)	0.362 (1.01-2.11)	0.018
ALL	9	1,893/3,770	0.90 (0.72-1.13)	0.228 (0.76-1.03)	0.367 (0.89-1.14)	0.013 (0.78-1.02)	0.472 (0.93-1.05)	0.547
Gastric	8	2,756/2,504	0.96 (0.72-1.29)	0.054 (0.80-1.12)	0.159 (0.82-1.27)	0.109 (0.78-1.14)	0.041 (0.97-1.84)	0.010
NHL	5	1,357/1,674	1.00 (0.74-1.35)	0.126 (0.84-1.11)	0.998 (0.74-1.33)	0.053 (0.89-1.13)	0.911 (0.89-1.11)	0.295
Cervical	4	579/805	1.22 (0.80-1.86)	0.968 (0.78-1.46)	0.011 (0.85-1.45)	0.335 (0.89-1.14)	0.292 (1.08-1.43)	0.478
Liver	4	561/757	1.19 (0.79-1.78)	0.600 (0.84-2.10)	0.011 (0.65-1.45)	0.335 (0.89-1.14)	1.29 (0.86-1.94)	0.022
Brain	3	2,554/2,789	1.05 (0.72-1.52)	0.099 (0.79-1.21)	0.187 (0.84-1.40)	0.234 (0.77-1.27)	0.011 (0.88-1.38)	0.151
Head and neck	3	1,223/1,700	1.49 (1.17-1.89)	0.768 (0.79-1.94)	0.025 (1.15-1.38)	0.346 (1.03-1.64)	0.143 (1.06-1.1)	0.560
Prostate	3	594/627	1.05 (0.65-1.71)	0.798 (0.82-1.52)	0.260 (0.64-1.44)	0.689 (1.07-1.40)	0.099 (1.04-1.27)	0.718
Other cancers	16	6,650/6,464	1.14 (1.01-1.28)	0.282 (0.94-1.10)	0.011 (0.91-1.10)	0.533 (1.00-1.11)	0.211 (1.06-1.00)	0.340
Ethnicity								
Asian	37	11,829/13,248	1.11 (0.98-1.24)	0.080 (0.92-1.05)	0.063 (0.97-1.22)	0.006 (1.01-1.05)	0.057 (1.02-1.98)	0.001
Caucasian	32	13,351/16,506	1.09 (1.00-1.19)	0.077 (0.99-1.16)	0.008 (1.03-1.09)	0.144 (1.08-1.10)	0.074 (1.04-1.05)	0.193
African	3	619/716	1.52 (1.00-2.32)	0.577 (0.92-1.60)	0.553 (1.36-2.02)	0.751 (1.21-1.51)	0.624 (1.23-1.49)	0.474
Mixed	13	6,473/6,957	1.01 (0.88-1.15)	0.084 (0.86-1.06)	0.184 (1.12-1.32)	<0.001 (1.00-1.10)	0.075 (1.01-0.94)	0.088
Source of control								
PB	52	21,300/24,134	1.06 (0.99-1.14)	0.087 (0.94-1.04)	0.304 (0.99-1.11)	0.037 (1.01-1.06)	0.135 (1.02-0.99)	0.075
HB	33	10,972/13,293	1.12 (0.99-1.26)	0.019 (0.97-1.16)	0.002 (1.07-1.41)	<0.001 (1.08-1.18)	0.001 (1.04-0.86)	<0.001
Score								
Low	37	6,610/9,768	1.13 (0.99-1.29)	0.265 (0.96-1.16)	0.144 (0.90-1.24)	0.000 (0.98-1.17)	0.299 (1.05-0.98)	0.042
High	48	25,662/27,659	1.07 (1.00-1.15)	0.005 (0.95-1.05)	0.010 (1.06-1.1)	0.262 (1.07-1.08)	<0.001 (1.02-0.99)	0.001

Het, heterogeneity; ALL, acute lymphoblastic leukemia; NHL, non-Hodgkin’s lymphoma; PB, population based; HB, hospital based.

* The number of controls was only calculated once if the same controls were used.
Figure 2. Forest plot for overall cancer risk associated with the MTRR A66G polymorphism by a recessive model. For each study, the estimated OR and its 95% CI are plotted with a box and a horizontal line. △, pooled ORs and its 95% CIs.
Figure 3. Funnel plot for the MTRR A66G polymorphism and cancer risk by a recessive model.

Table 3. False-positive report probability values for associations between cancer risk and genotypes of MTRR A66G polymorphism.

Genotype	Crude OR (95% CI)	P-value *	Statistical Power *	Prior probability	0.25	0.1	0.01	0.001	0.0001
All patients									
Homozygous	1.08 (1.02-1.15)	0.016	1.00	0.047	0.128	0.618	0.942	0.994	
Recessive	1.06 (1.00-1.12)	0.038	1.00	0.102	0.255	0.790	0.974	0.997	
Allele comparison	1.03 (1.00-1.06)	0.044	1.00	0.116	0.282	0.812	0.978	0.998	
Cancer type-head and neck cancer									
Homozygous	1.49 (1.17-1.89)	0.001	0.522	0.006	0.017	0.161	0.660	0.951	
Dominant	1.30 (1.03-1.64)	0.027	0.886	0.083	0.214	0.750	0.968	0.997	
Allele comparison	1.17 (1.04-1.31)	0.006	1.00	0.019	0.055	0.391	0.886	0.985	
Ethnicity-Caucasian									
Homozygous	1.09 (1.00-1.19)	0.054	1.00	0.140	0.328	0.843	0.982	0.998	
Dominant	1.08 (1.00-1.17)	0.059	1.00	0.151	0.349	0.885	0.983	0.998	
Allele comparison	1.05 (1.01-1.09)	0.010	1.00	0.031	0.087	0.511	0.913	0.991	
Ethnicity-African									
Homozygous	1.52 (1.02-2.32)	0.052	0.476	0.248	0.497	0.916	0.991	0.999	
Allele comparison	1.23 (1.01-1.49)	0.034	0.979	0.095	0.240	0.777	0.972	0.997	
Score-high									
Homozygous	1.07 (1.00-1.15)	0.066	1.00	0.165	0.372	0.867	0.985	0.998	
Recessive	1.06 (1.01-1.11)	0.013	1.00	0.038	0.106	0.567	0.930	0.992	

*Chi-square test was used to calculate the genotype frequency distributions.

*Statistical power was calculated using the number of observations in the subgroup and the OR and P values in this table.

Discussion

Folate is a critical coenzyme in DNA synthesis, and the maintenance of methylation, and folate deficiency has been reported to be associated with various human malignancies [113, 114]. MTRR plays a key role in folate-dependent homocysteine remethylation and is required in the regulation of MTR activity. The A66G polymorphism is one of the most common polymorphisms in the MTRR gene, which was first reported in 1998 [115], and the variant enzyme has reduced affinity for MTR [116]. The reported associations between the MTRR A66G polymorphism and cancer susceptibility are inconsistent due to the small sample sizes in individual studies, ethnic differences and research methodology.

Our present study represents an updated comprehensive meta-analysis of the association between the MTRR A66G polymorphism and cancer risk and included 85 studies with 32,272 cases and 37,427 controls. The results revealed that the MTRR A66G polymorphism was significantly associated
with an increased overall cancer risk. In the subgroup analysis, the association was more evident for head and neck cancer, Caucasians, Africans and high quality studies. However, the results for Africans need further validation due to the high probability of false-positive reports. Furthermore, no potential publication bias was detected by the funnel plot and Egger’s regression test, indicating the robustness of the results in this study.

One previous meta-analysis focused on the MTRR A66G polymorphism and overall cancer risk. In the meta-analysis by Han et al. [117], which included 35 studies with 18,661 cases and 27,678 controls, an increased overall cancer risk was observed only under the allele comparison and homozygous model. In the subgroup analysis, significantly increased risks were found in Asians. We found this polymorphism to be associated with an increased overall risk also under the recessive model and increased cancer risks in head and neck cancer, Caucasians and Africans, but not in Asians, which were different from the previous meta-analysis; this result presumably occurred because our analysis was based on a much larger sample size, thereby increasing the statistical power. In the subgroup analysis by cancer type, we did not find any significant association between the MTRR A66G polymorphism and colorectal cancer in any comparison models, a finding that was inconsistent with previous meta-analyses [6, 118]. The discrepancy occurred because, in the current study, we added many newly published studies and even included several Chinese publications, allowing the more precise detection of an association.

Large and well-designed studies with “statistically significant” results for genetic variants turned out to be false-positive findings [119, 120]. Thus, we used the FPRP test to investigate positive associations in the current meta-analysis. Interestingly, the FPRP test results showed that the MTRR A66G polymorphism could actually increase cancer susceptibility. In the subgroup analysis, the FPRP test indicated that the MTRR A66G polymorphism increased cancer susceptibility in head and neck cancer, Caucasians and high score studies. The significant association with Africans in the present meta-analysis was false positive, which may due to the limited sample size.

Although we conducted a comprehensive literature search and included the latest studies on the MTRR A66G polymorphism and cancer risk, some possible limitations in this meta-analysis should be addressed. First, the number of cases in the individual studies was small (<1000) in all but eight studies [15, 19, 22, 23, 28, 57, 65, 70]; this limitation may affect the investigation of the real association. Second, our results were based on unadjusted estimates, so the estimates were relatively imprecise. Third, the effects of gene-gene, and gene-environment interactions were not evaluated due to the lack of original data, which may affect cancer risk. Fourth, in the subgroup analysis, only three studies were carried out in Africans, which may lead to relatively weak power to detect the real association. Finally, only studies published in English and Chinese were included, so we may have missed publications in other languages.

In conclusion, we performed this updated meta-analysis with the latest published studies and obtained a more precise estimation of the association between the MTRR A66G polymorphism and cancer risk. However, it is necessary to conduct well-designed prospective studies with larger sample sizes to verify our findings.

Acknowledgements

This work was supported by the Key Scientific and Technological Project of Henan province (Grant No. 162102310413) and the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2014T70836).

Competing Interests

The authors have declared that no competing interest exists.

References

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65: 87-108.
2. Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc. 2008; 67: 253-256.
3. Sangojwini MA, Allen N, Cuesto E, Roddam AW, Key TJ. Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer. 2005; 113: 825-828.
4. Lajous M, Lazzano-Ponce E, Hernandez-Avila M, Willett W, Romieu I. Folate, vitamin B6, and vitamin B12 intake and the risk of breast cancer among Mexican women. Cancer Epidemiol Biomarkers Prev. 2006; 15: 443-448.
5. Shen H, Wei Q, Pillow PC, Amos CI, Hong WK, Spitz MR. Dietary folate intake and lung cancer risk in former smokers a case-control analysis. Cancer Epidemiol Biomarkers Prev. 2003; 12: 980-986.
6. Zhou D, Mei Q, Luo H, Tang B, Yu P. The polymorphisms in methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer. Int J Biol Sci. 2012; 8: 819-830.
7. Kim YI. Methylenetetrahydrofolate reductase polymorphisms, folate, and cancer risk: a paradigm of gene-nutrient interactions in carcinogenesis. Nutr Rev. 2000; 58: 205-209.
8. Stempak JM, Sohn KJ, Chiang EP, Shane B, Kim YL. Cell and stage of transformation-specific effects of folate deficiency on methionine cycle intermediates and DNA methylation in an in vitro model. Carcinogenesis. 2005; 26: 981-990.
9. Fang DH, Ji Q, Fan CH, An Q, Li J. Methionine synthase reductase A66G polymorphism and leukemia risk: evidence from published studies. Leuk Lymphoma. 2014; 55: 1910-1914.
10. Gaughan DJ, Kluijtmans LA, Barbaux S, McMaster D, Young IJ, Yarnell JW, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001; 157: 451-456.
Cetnarskyj R, Barnetson

34.
31.
30.
26.
25.
27.
17.
19.
18.
21.
27.
12.
11.
15.
14.

Carcinoma in a Korean population. Anticancer Res. 2008; 28: 2807-2811.

reductase (MTRR) gene polymorphisms as risk factors for hepatocellular

susceptibility genes: a case-control study on gastric and colorectal cancers in

Screening of 214 single nucleotide polymorphisms in 44 candidate cancer

al. Polymorphisms in xenobiotic-metabolizing genes and the risk of chronic

acute leukemia. Mol Biol. 2008; 42: 214-225.

1195-1202.

Bethke L, Webb E, Murray A, Schoemaker M, Feychting M, Lonner S, et al. Functional polymorphisms in folate metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. Int J Cancer. 2007; 120: 2452-2458.

Botta C, Sado T, Yamashita D, Sato T, Ohtani A, et al. Gastrointestinal polyps and colorectal adenoma in the one-carbon metabolic pathway and risk of colorectal adenoma in the Nurses' Health Study. Carcinogenesis. 2007; 28: 1510-1519.

Kim HN, Kim YK, Lee IK, Lee JJ, Yang DH, Park KS, et al. Polymorphisms involved in the folate metabolizing pathway and risk of multiple myeloma. Leukemia Res. 2007; 31: 798-801.

Hazra A, Wu K, Kraft P, Fuchs CS, Giovannucci EL, Hunter DJ. Twenty-four non-synonymous polymorphisms in the one-carbon metabolic pathway and risk of colorectal adenoma in the Nurses' Health Study. Carcinogenesis. 2007; 28: 1510-1519.

Kim HN, Kim YK, Lee IK, Lee JJ, Yang DH, Park KS, et al. Polymorphisms involved in the folate metabolizing pathway and risk of multiple myeloma. Leukemia Res. 2007; 31: 798-801.

Lissovska J, Gaudet MM, Brinton LA, Chanock SJ, Peplonska B, Welch R, et al. Genetic polymorphisms in the one-carbon metabolism pathway and breast cancer risk: A population-based case-control study and meta-analyses. Int J Cancer. 2007; 120: 2696-2703.

Moore LE, Malats N, Rothman AJ, Kogevinas M, Knekt P, et al. Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. Int J Cancer. 2007; 120: 2452-2458.

Petra BG, Janez J, Vita D. Gene-gene interactions in the folate metabolism pathway influence the risk for acute lymphoblastic leukemia in children. Leuk Lymphoma. 2008; 49: 786-792.

Suzuki T, Matsuo K, Hirose K, Hiroaki A, Kawase T, Watanabe M, et al. One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis. 2008; 29: 356-362.

Suzuki T, Matsuo K, Sawaki A, Mizuno N, Hiroaki A, Kawase T, et al. Alcohol drinking and one-carbon metabolism-related gene polymorphisms on risk of colorectal cancer. Carcinogenesis. 2008; 29: 275-281.

Together with the above-mentioned papers, the following new studies were also published in this issue:

Chen K, Song L, Jin MJ, Fan CH, Jiang QT, Yu WP. [Association between genetic polymorphisms in folate metabolic enzyme genes and colorectal cancer: a nested case-control study]. Zhonghua Zhong Liu Za Zhi. 2008; 28: 429-432.

Koushik A, Kraft P, Fuchs CS, Hankinson SE, Willett WC, Giovannucci EL, et al. Folate polymorphisms in genes involved in the one-carbon metabolism pathway and associations with colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2006; 15: 2408-2417.

Suzuki T, Matsuo K, Hirose K, Hiroaki A, Kawase T, Watanabe M, et al. One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis. 2008; 29: 356-362.

Suzuki T, Matsuo K, Sawaki A, Mizuno N, Hiroaki A, Kawase T, et al. Alcohol drinking and one-carbon metabolism-related gene polymorphisms on risk of colorectal cancer. Carcinogenesis. 2008; 29: 275-281.

Suzuki T, Matsuo K, Sawaki A, Mizuno N, Hiroaki A, Kawase T, et al. Alcohol drinking and one-carbon metabolism-related gene polymorphisms on risk of colorectal cancer. Carcinogenesis. 2008; 29: 275-281.

Chen K, Song L, Jin MJ, Fan CH, Jiang QT, Yu WP. [Association between genetic polymorphisms in folate metabolic enzyme genes and colorectal cancer: a nested case-control study]. Zhonghua Zhong Liu Za Zhi. 2008; 28: 429-432.

Koushik A, Kraft P, Fuchs CS, Hankinson SE, Willett WC, Giovannucci EL, et al. Folate polymorphisms in genes involved in the one-carbon metabolism pathway and associations with colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2006; 15: 2408-2417.

Suzuki T, Matsuo K, Hirose K, Hiroaki A, Kawase T, Watanabe M, et al. One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis. 2008; 29: 356-362.

Suzuki T, Matsuo K, Sawaki A, Mizuno N, Hiroaki A, Kawase T, et al. Alcohol drinking and one-carbon metabolism-related gene polymorphisms on risk of colorectal cancer. Carcinogenesis. 2008; 29: 275-281.
60. Journal of Cancer

64. 63.

61. 69.

62. 70.

67. 68.

68. 72.

69. 23.

72. 76.

70. 56.

73. 69.

75. 42.

76. 46.

71. 29.

77. 31.

72. 34.

78. 21.

79. 25.

73. 10.

80. 27.

74. 32.

81. 29.

75. 33.

82. 30.

76. 34.

83. 31.

77. 35.

84. 32.

78. 36.

85. 33.

79. 37.

86. 34.

80. 35.

87. 36.
(A2756G) and MTRR (A66G) genes associated with pathological characteristics of prostate cancer in the Ecuadorian population. Am J Med Sci. 2013; 346: 447-454.

110. Wu X, Zou T, Cao N, Ni J, Yu W, Tao Z, et al. Plasma homocysteine levels and genetic polymorphisms in folate metabolism are associated with breast cancer risk in Chinese women. Hered Cancer Clin Pract. 2013; 12: 1198-1206.

111. López-Cortés A, Echeverría C, Oña-Cisneros F, Sánchez ME, Herrera C, Cabrera-Andrade A, et al. Breast cancer risk associated with gene expression and genotype polymorphisms of the folate-metabolizing MTHFR gene: a case-control study in a high altitude Ecuadorian mestizo population. Tumor Biol. 2015; 36: 6451-6461.

112. Hubner RA, Muer KR, Liu JF, Sellick GS, Logan RF, Grainge M, et al. Folate metabolism polymorphisms influence risk of colorectal adenoma recurrence. Cancer Epidemiol Biomarkers Prev. 2006; 15: 1607-1613.

113. Kim YI. Folate and colorectal cancer: An evidence-based critical review. Mol Nutr Food Res. 2007; 51: 267-292.

114. Yang Q, Bostick RM, Friedman J, Flanders WD. Serum folate and cancer mortality among US adults: findings from the Third National Health and Nutritional Examination Survey linked mortality file. Cancer Epidemiol Biomarkers Prev. 2009; 18: 1439-1447.

115. Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, et al. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci U S A. 1998; 95: 3059-3064.

116. Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, et al. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab. 1999; 67: 317-323.

117. Han D, Shen C, Meng X, Bai J, Chen F, Yu Y, et al. Methionine synthase reductase A66G polymorphism contributes to tumor susceptibility: evidence from 35 case-control studies. Mol Biol Rep. 2012; 39: 805-816.

118. Wu PP, Tang RN, An L. A meta-analysis of MTRR A66G polymorphism and colorectal cancer susceptibility. J Biomed Biotechnol. 2015; 20: 918-922.

119. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulouioannidis DG. Replication validity of genetic association studies. Nat Genet. 2001; 29: 306-309.

120. Colhoun HM, Mckegue PM, Davey SC. Problems of reporting genetic associations with complex outcomes. Lancet. 2003; 361: 865-872.

http://www.jcancer.org