Magnesium is an essential ion for numerous physiological processes. MgtE is a Mg$^{2+}$ selective channel involved in the maintenance of intracellular Mg$^{2+}$ homeostasis, whose gating is regulated by intracellular Mg$^{2+}$ levels. Here, we report that ATP binds to MgtE, regulating its Mg$^{2+}$-dependent gating. Crystal structures of MgtE-ATP complex show that ATP binds to the intracellular CBS domain of MgtE. Functional studies support that ATP binding to MgtE enhances the intracellular domain affinity for Mg$^{2+}$ within physiological concentrations of this divalent cation, enabling MgtE to function as an in vivo Mg$^{2+}$ sensor. ATP dissociation from MgtE upregulates Mg$^{2+}$ influx at both high and low intracellular Mg$^{2+}$ concentrations. Using site-directed mutagenesis and structure based-electrophysiological and biochemical analyses, we identify key residues and main structural changes involved in the process. This work provides the molecular basis of ATP-dependent modulation of MgtE in Mg$^{2+}$ homeostasis.
Mg$^{2+}$ is the most abundant divalent cation in living organisms and an essential element for numerous physiological activities, such as catalysis by hundreds of enzymes, cell membrane stabilization, and ATP utilization. Accordingly, abnormalities in Mg$^{2+}$ homeostasis are associated with various diseases, including diabetes, obesity, and cardiovascular disease. Therefore, Mg$^{2+}$ homeostasis is a crucial mechanism for both eukaryotic and prokaryotic species, and Mg$^{2+}$ channels and transporters play a central role in Mg$^{2+}$ homeostasis.

MgtE is a widely distributed Mg$^{2+}$ channel in both prokaryotes and eukaryotes. The bacterial MgtE channels are highly selective for Mg$^{2+}$, and are involved in the maintenance of the intracellular Mg$^{2+}$ concentration. Likewise, the eukaryotic homologs of MgtE, the solute carrier 41 (SLC41) family proteins, also permeate Mg$^{2+}$ ions and are implicated in Mg$^{2+}$ homeostasis.

We previously reported the crystal structures of the full-length *Thermus thermophilus* MgtE (TmMgtE) in the presence of Mg$^{2+}$, its transmembrane domain in the presence of Mg$^{2+}$, and its cytosolic domain in the presence and absence of Mg$^{2+}$. The full-length structure in the presence of Mg$^{2+}$ revealed that MgtE forms a homodimer, consisting of five transmembrane helices, one plug helix, and the cytosolic region composed of the N-terminal domain and the tandemly repeated CBS domains. A comparative analysis of the Mg$^{2+}$-bound and Mg$^{2+}$-free cytosolic domain structures, together with molecular dynamic simulations, revealed that Mg$^{2+}$ binding to the cytosolic domain stabilizes the closed conformation of MgtE, suggesting a Mg$^{2+}$ homeostasis mechanism in which the MgtE cytosolic domain acts as a Mg$^{2+}$ sensor to regulate the Mg$^{2+}$ influx. Consistently, the subsequent electrophysiological analysis demonstrated that intracellular Mg$^{2+}$ binding to the MgtE cytosolic domain inhibited the channel opening of MgtE.

In addition, our results demonstrated that the open probability of MgtE in the absence of ATP in the bath solution increased from 0.2 to 10 mM, the open probability decreased (Fig. 2a, d). While the channel was still active in the presence of 5 mM Mg$^{2+}$ in the bath solution, almost no current was detected in the presence of 10 mM Mg$^{2+}$ (Fig. 2a, d). These results are consistent with the previous patch clamp analysis of MgtE, showing the intracellular Mg$^{2+}$-inhibition of the channel gating (Fig. 2a, d). Likewise, under the 3 mM ATP conditions, the open probability decreased as the [Mg$^{2+}$]$_{in}$ in the bath solution increased from 0.2 to 10 mM (Fig. 2b, d). However, in the presence of 3 mM ATP in the bath solution, the channel was completely inactivated at 3 mM [Mg$^{2+}$]$_{in}$, unlike the MgtE under the ATP-free conditions (Fig. 2a). Therefore, these results suggested that intracellular ATP binding to MgtE enhances the affinity of MgtE for intracellular Mg$^{2+}$ within the physiological range (~1 mM), which would allow the MgtE cytosolic domain to act as a Mg$^{2+}$ sensor in vivo.

In addition, our results demonstrated that the open probabilities of MgtE in the absence of ATP in the bath solution were higher at both high- and low-intracellular Mg$^{2+}$ concentrations, as compared to those in the presence of 3 mM ATP (Fig. 2d), showing that the ATP dissociation promotes the Mg$^{2+}$ influx into the cells.

Structure of the MgtE–ATP complex

To gain further insights into the ATP-dependent modulation of the channel gating in MgtE, we determined the crystal structure of the full-length MgtE in complex with ATP at 3.6 Å resolution (Fig. 3a,b, Supplementary Figs. 2a, b and 3a and Table 1). The overall structure represents the closed conformation of the channel, and is essentially identical to the previously reported full-length structure, with a root mean squared deviation (RMSD) value of 0.38 Å for all Ca atoms (Fig. 3a). The electron density for Mg$^{2+}$ corresponds to the Mg$^{2+}$-binding sites (Mgl1–Mgl7) in the
Fig. 1 Effects of ATP and other nucleotides on MgtE. a Isothermal titration calorimetry (ITC) data of MgtE with ATP and other nucleotides. The data were obtained from MgtE with ATP, ADP, GTP, and ATP+Mg\(^{2+}\). The raw ITC data and the plots of injected heat for 20 automatic injections of 10 mM nucleotide solution into the sample cell containing the MgtE solution are shown. Measurements were repeated twice, and similar results were obtained. b, c Protease protection of MgtE by Mg\(^{2+}\) and nucleotides. The numbers on the left side indicate the molecular masses (in kilodaltons) of the markers. The details of the cleavage sites are described in Supplementary Fig. 1.
Consistent with the previous structure, the electron density for Mg7 is relatively weak, possibly indicating the weak affinity of the Mg7 site for Mg$^{2+}$. We also determined the crystal structure of the cytosolic domain of MgtE in complex with ATP at 3.0 Å resolution (Fig. 2c, d, Supplementary Fig. 2c, d and Table 1). The overall structure of the cytosolic domain is essentially identical to that in the full-length MgtE structure in complex with ATP, with an RMSD value of 0.9 Å for 230 Cα atoms.

Since the cytosolic domain structure was solved at a higher resolution, we describe the ATP binding by MgtE mainly based on the structure of the cytosolic domain of MgtE in complex with ATP.

ATP molecules are located proximal to the subunit interface between the N domain in one subunit and the CBS domain in the neighboring subunit (Fig. 3a). While we observed the binding of Mg$^{2+}$ ions to the cytosolic domain, as reported in the previous MgtE structures, the phosphate groups of ATP are 5.4 Å away from the closest Mg$^{2+}$ ion in the ATP-bound structure (Fig. 3b).

Therefore, ATP binding to MgtE may not be directly coupled with Mg$^{2+}$ binding.

The ATP molecule is exclusively recognized by the CBS domain (Fig. 3c, d). The adenine base of ATP is stabilized by three hydrogen bonds with the side chain of Asn203, and the main-chain carbonyl and amino groups of Val207, together with a π stacking interaction with Phe227 (Fig. 3d). To obtain structural insights into the base specificity of MgtE for ATP over GTP, we superimposed GTP onto ATP in the structure. In the superimposed model, the amino group of the guanine base clashes with the molecular surface of the ATP binding pocket, while there is no such steric hindrance between the adenine ring and MgtE (Supplementary Fig. 4).

The ribose moiety of ATP forms two hydrogen bonds with the side chain of Asp188 (Fig. 3d), while the α- and β-phosphates of ATP interact with the side chains of Tyr170 and Arg187, respectively (Fig. 3d). The phosphate groups of ATP adopt the extended conformation, and thus the three phosphate groups are exposed to the subunit interface between the N and CBS domains (Fig. 3c, d).
Notably, all of these residues involved in the ATP binding are highly conserved among the MgtE proteins, and this ATP binding motif is similarly conserved among the CBS domain-containing proteins, such as the human Cl- transporter ClC-5 (Supplementary Figs. 5 and 6).

Mechanism of ATP-dependent Mg\(^{2+}\) sensing by MgtE. To elucidate the molecular mechanism of the modulation of the MgtE channel gating by ATP, we conducted biochemical, electrophysiological, and genetic analyses with structure-based mutants of TtMgtE. We targeted the residues involved in the interactions with the phosphate groups (R187A, R187E), the ribose group (D188A), and the adenine ring (F227A).

We first performed the limited protease analysis of the MgtE mutants (Fig. 4a). While the results obtained with the D188A mutant were similar to those obtained with the wild type, the F227A mutant did not exhibit the band corresponding to the full-length protein under the 32 mM Mg\(^{2+}\) and 3 mM ATP conditions, unlike the wild type (Fig. 4a). This result suggested that the F227A mutant is unable to bind to ATP. Intriguingly, the R187A and R187E mutants exhibited the band corresponding to

Fig. 3 Overall structure and ATP binding site of MgtE. **a** Ribbon representation of the full-length MgtE structure in complex with ATP, viewed parallel to the membrane. The N domain, CBS domain, plug helix, and transmembrane helices in one subunit are colored blue, green, yellow, and red, respectively. ATP and Mg\(^{2+}\) are shown as sphere models. **b** Close-up view of the ATP binding site in the full-length structure. The dotted black line represents the minimum distance between the β-phosphate group of ATP and Mg\(^{2+}\) (5.4 Å). ATP is shown as a stick model. **c** Ribbon representation of the MgtE cytosolic domain structure in complex with ATP. **d** Close-up view of the ATP binding site in the MgtE cytosolic domain structure. Amino acid residues involved in ATP-binding are shown as stick models. Dotted black lines indicate the hydrogen bonds between MgtE and ATP.
the full-length protein under the 32 mM Mg\(^{2+}\) conditions even in the absence of ATP, whereas the wild type did not in the absence of ATP (Fig. 4a). In addition, the intensity of the band corresponding to the full-length protein in the R187A mutant is lacking the negative charge from the side chain of R187 may have a similar effect to that of the binding ATP with negatively charged phosphate groups.

To further investigate the roles of the adenine ring (F227A) and the phosphate group (R187E), we performed biochemical, electrophysiological, and genetic analyses of the F227A mutant and the R187E mutant. The injection of ATP into the F227A mutant solution showed no heat of binding by ITC (Fig. 4b), demonstrating that the F227A mutant lacks the ability to bind ATP, consistent with the limited protease analysis (Fig. 4a). The injection of ATP into the R187E mutant solution still showed the weaker binding to ATP, as compared to the binding of the wild type to ATP (Fig. 4b). Therefore, this result suggested that the side chain of Arg187 is involved in the recognition of the \(\gamma\)-phosphate group of ATP, but is not requisite for the ATP binding ability. Consistently, ADP, which lacks the \(\gamma\)-phosphate group, by the patch clamp analysis of MgtE under conditions with 0–10 mM [Mg\(^{2+}\)]\(_{i}\) and 5 mM ADP (Fig. 2). In the presence of 5 mM ADP in the bath solution, the channel was still active with 3 mM [Mg\(^{2+}\)]\(_{i}\), while the channel was completely inactivated with 5 mM [Mg\(^{2+}\)]\(_{i}\) (Fig. 2c). Therefore, ADP also enhances the affinity of MgtE for Mg\(^{2+}\), but has a smaller effect than that of ATP (Fig. 2), which is consistent with our hypothesis.

Furthermore, to test whether MgtE possesses ATPase activity, we performed an ATP hydrolysis assay (Supplementary Fig. 7). In the ATP hydrolysis assay, we did not detect ATPase activity with the wild type MgtE, as compared with apyrase, an ATP-diphosphohydrolase. In addition, the level of ATP hydrolysis activity of the wild type MgtE is the same as that of the F227A mutant, which lacks ATP binding activity (Supplementary Fig. 7). Accordingly, while ATP can bind to MgtE to modulate the channel gating, MgtE either lacks or has very low ATPase activity. This conclusion is also supported by the crystal structures of the MgtE–ATP complex, where the \(\gamma\)-phosphate group of ATP is clearly observed (Supplementary Fig. 2).

ATP-binding site contributes to cellular Mg\(^{2+}\) homeostasis. To characterize the significance of the ATP binding site in vivo, we conducted genetic analyses of ATP-binding site mutants (Fig. 6). Due to their similar coordination chemistry, Mg\(^{2+}\) channels/transporters also typically permeate Co\(^{2+}\) and Ni\(^{2+}\). Thus, the change in the sensitivities to Co\(^{2+}\) and Ni\(^{2+}\) has been employed to characterize the Mg\(^{2+}\) transport system. The increased sensitivities to Co\(^{2+}\) and Ni\(^{2+}\) indicate excess Co\(^{2+}\) and Ni\(^{2+}\) uptake, as they are toxic. The expression of MgtE in *E. coli* also enhances the susceptibility to Co\(^{2+}\) and Ni\(^{2+}\), by transporting these ions into cells. In particular, the expression of the cytosolic domain Mg\(^{2+}\)-binding site mutants in *E. coli* caused a strong dominant-negative effect on the growth in a Co\(^{2+}\)-containing media and a Ni\(^{2+}\)-containing media. These results suggested that the mutants exhibited hypersensitivities to Co\(^{2+}\) and Ni\(^{2+}\), and indirectly demonstrated the loss of the intracellular Mg\(^{2+}\)-dependent control of Mg\(^{2+}\) uptake by MgtE. Similarly, we conducted the Co\(^{2+}\) and Ni\(^{2+}\) sensitivity assays with the ATP binding site mutants of MgtE, to indirectly evaluate the effects of these mutations on the regulatory function of MgtE for Mg\(^{2+}\) homeostasis (Fig. 6).

Intriguingly, the R187E and F227A mutants also showed Co\(^{2+}\) and Ni\(^{2+}\) hypersensitivities similar to that of the Mg\(^{2+}\)-binding site mutant (\(\Delta N\)) (Fig. 6b), whereas the expression of these ATP-binding site mutants complemented the Mg\(^{2+}\) auxotrophic *E. coli* strain lacking the major set of genes encoding Mg\(^{2+}\) transporters (Fig. 6a). Therefore, these results indicated that the ATP-dependent modulation of MgtE is also important for MgtE to maintain the cellular Mg\(^{2+}\) homeostasis in vivo.
Discussion

In this work, we demonstrated that ATP binds to MgtE and modulates its Mg$^{2+}$-dependent channel gating (Figs. 1 and 2). The crystal structure of the MgtE–ATP complex and the structure-based mutational analysis revealed further structural and functional insights into the modulation mechanism of the MgtE channel gating by ATP (Figs. 3–7).

In the presence of ATP, the MgtE cytosolic domain exhibited higher affinity for Mg$^{2+}$ within a physiological range (Figs. 2b, d, and 7b), which would enable the MgtE cytosolic domain to act as a Mg$^{2+}$ sensor in vivo. These results provide an explanation for the huge discrepancy between the physiological intracellular Mg$^{2+}$ concentration and the previous electrophysiological analysis of the Mg$^{2+}$-dependent gating of MgtE.

In contrast, in the absence of ATP, the threshold of intracellular Mg$^{2+}$ for the channel inactivation was much higher than the physiological Mg$^{2+}$ concentration (Fig. 2). Instead, the dissociation of ATP from MgtE facilitated the Mg$^{2+}$ influx into cells, even at high concentrations of intracellular Mg$^{2+}$ (Figs. 2 and 7a). In other words, ATP switches the gating mode of MgtE from the Mg$^{2+}$ sensor mode (with ATP) to the upregulated mode (without ATP). Intriguingly, the cytosolic ATP level seemed to correlate with the cytosolic Mg$^{2+}$ level in bacteria and mammalian cells, and it is well known that Mg$^{2+}$ ion plays a vital role in ATP synthesis. In addition to ATP synthesis, Mg$^{2+}$ and ATP are functionally coupled in many physiological processes. Therefore, it is physiologically reasonable that MgtE exhibits higher channel activity in the absence of ATP.

Fig. 4 Biochemical analyses of the ATP-binding site mutants of MgtE. a Protease protection of the MgtE mutants by Mg$^{2+}$ and ATP. Protease protection of wild type MgtE by Mg$^{2+}$ and ATP is shown as a reference. The numbers on the left side indicate the molecular masses (in kilodaltons) of the markers. b ITC data of the F227A and R187E mutants with ATP. The raw ITC data and the plots of injected heat for 20 automatic injections of 10 mM nucleotide solution into the sample cell containing the MgtE solution are shown. Measurements were repeated twice, and similar results were obtained.
In addition to MgtE, multiple channels/transporters containing a CBS domain have been identified. In particular, the CIC Cl⁻ channels/transporters have been functionally and structurally well characterized, and nucleotide binding to the CBS domains of some CIC channels/transporters, such as CIC-1 and CIC-5, modulates their transport activities. In the full-length structures of the eukaryotic CIC channel/transporter, the latter part of the channel's cytosolic domain is inactivated upon intersubunit Mg²⁺ binding to the cytosolic domain. It is intriguing that the MgtE and CIC proteins, two distinct CBS domain-containing channels/transporters, possess these common features.

Our work also revealed the novel feature of MgtE, among the CBS-domain-containing channels/transporters, of the CBS domain of MgtE being modulated by Mg²⁺ binding to the cytosolic domain (Fig. 3), which undergoes a large structural change presumably upon the channel gating. Furthermore, as we observed in MgtE (Fig. 2), the number of phosphate groups in the nucleotides also plays an important role in the regulation of Arabidopsis thaliana CIC. It is intriguing that the MgtE and CIC proteins, two distinct CBS domain-containing channels/transporters, possess these common features.

In conclusion, our analyses have revealed the molecular basis for the ATP-dependent modulation of MgtE for Mg²⁺ homeostasis, and thus provided the missing link between the cytosolic ATP and Mg²⁺ levels in the regulation of Mg²⁺ channels.

Methods

Purification and crystallization. The full-length Thermus thermophilus MgtE (TmMgtE) was overexpressed in Escherichia coli C41 (DE3) cells and solubilized with n-dodecyl-β-maltoside (DDM), as described previously. After ultracentrifugation, the solubilized supernatant was applied to a Ni-NTA (Qiagen) column pre-equilibrated with buffer A containing 0.25% (w/v) n-nonyl-β-D-thiomaltoside (NTM) and 50 mM imidazole, and eluted with buffer A containing 0.25% (w/v) NTM and 300 mM imidazole. The eluted MgtE fractions were pooled, concentrated with an Amicon Ultra 50 K filter (Millipore), and then applied to a Superdex 200 10/300 size-exclusion column (GE Healthcare), equilibrated with buffer B (20 mM HEPES, pH 7.0, 150 mM NaCl, 0.1 M HEPES, pH 7.4). Before cryocooling, the crystals were transferred into a cryoprotectant solution containing 9% PEG 4000, 0.2 M MgCl₂, 0.05 M MES, pH 6.5. The cryoprotectant solution was prepared by adding 10 mM ATP, 0.2 M MgCl₂, and 0.1 M HEPES, pH 7.4. The crystals were obtained by vapor diffusion over a solution containing 3% PEG 400, 0.2 M MgCl₂, and 0.05 M MES, pH 6.5. Before cryocooling, the crystals were transferred into a cryoprotectant solution containing 10 mM ATP, 9% PEG 400, 0.2 M MgCl₂, 0.05 M MES, pH 6.5, and 30% (w/v) PEG 400. The cytosolic domain (1–275) of MgtE was overexpressed in Escherichia coli C41 (DE3) and purified, as described previously. The purified protein was concentrated to ~12 mg/ml, using an Amicon Ultra 50 K filter. After concentration, the protein was mixed with a 1/10 volume of buffer B containing 100 mM ATP, and incubated at 4°C for 1 h. The crystal was obtained by vapor diffusion over a solution containing 9% PEG 4000, 0.2 M MgCl₂, and 0.05 M MES, pH 6.5. Before cryocooling, the crystals were transferred into a cryoprotectant solution containing 10 mM ATP, 9% PEG 4000, 0.2 M MgCl₂, 0.05 M MES, pH 6.5, and 30% (w/v) PEG 400. The cytosolic domain (1–275) of MgtE was overexpressed in Escherichia coli C41 (DE3) and purified, as described previously. The purified protein was concentrated to ~15 mg/ml, and was mixed with 1/10 volume of the gel filtration buffer containing 100 mM ATP at 4°C for 1 h. The crystals were obtained by vapor diffusion over a solution containing 20–22% PEG 400, 0.2 M MgCl₂, and 0.1 M HEPES, pH 7.4. Before cryocooling, the crystals were transferred into a cryoprotectant solution containing 10 mM ATP, 33% PEG 400, 0.2 M MgCl₂, and 0.1 M HEPES, pH 7.4.

Data collection and structure determination. All data sets were collected at the SPring-8 BL41XU (Hyogo, Japan). The data sets were processed with the XDS programs. The phases of the full-length MgtE–ATP complex and the cytosolic domain of the MgtE–ATP complex were obtained by molecular replacement with the CCP4 suite programs, using the previously determined structures of the full-length MgtE (PDB: 2ZY9) and the cytosolic domain of MgtE (PDB: 2YYV) as the search models.

Fig. 5 Patch clamp analyses of ATP-binding site mutants of MgtE. a, b Representative current traces recorded at −120 mV from a single membrane patch at 0.2 mM of Mg²⁺, with or without ATP, by the MgtE mutants F227A and R187E. The open probabilities were determined at different [Mg²⁺]ᵢ with or without ATP with the MgtE mutants F227A and R187E. (Bars represent ±SEM, n = 5 for each condition.)
the search models, respectively. The models were subsequently improved through iterative cycles of manual building with COOT44 and refinement with the program PHENIX45. The structure refinement statistics are summarized in Table 1. Molecular graphics were illustrated with CueMoI (http://www.cuemol.org).

Limited Proteolysis. The full-length WT and mutant MgtE proteins were prepared as described above. The 9 µl reaction-premix contained 4 µl of the full-length MgtE (2 mg/ml), 1 µl of 0–32 mM MgCl\textsubscript{2}, and either 1 µl of gel filtration buffer and 3 µl 10 mM ATP pH 7.0 (ATP+) or 4 µl of gel filtration buffer. After an incubation at 4 °C for 1 h, 1 µl of 16 µg/ml trypsin was added to each reaction-premix, and the reactions proceeded at 4 °C for 17 h. After the addition of 10 µl of SDS-PAGE sample buffer, the samples were boiled and immediately subjected to SDS-PAGE on 12.5% gels.

Isothermal titration calorimetry analysis. The binding of ATP and other nucleotides to MgtE and its mutants was measured using a MicroCal ITC 2000 microcalorimeter (GE Healthcare) at 20 °C. The full-length MgtE and its mutants were purified as described above. The peak fractions from the gel filtration were collected and diluted to 0.06–0.09 mM as a monomer (3–4 mg/ml) with the gel filtration buffer. The ligand solutions used for titration were prepared by adding ATP to the gel filtration buffer. The ligand solutions were shaken gently on an orbital mixer for three hours at 4 °C. After this procedure, the sample was ready for patch clamping. The pipette buffer contained 210 mM N-methyl-D-glucamine, 90 mM MgCl\textsubscript{2}, and 5 mM HEPES (pH 7.2). The bath buffer contained 300 mM N-methyl-D-glucamine and 5 mM HEPES (pH 7.2). The data were acquired at ~120 mV at a sampling rate of 20 kHz with a 5-kHz filter, using an AxoPatch 700B amplifier in conjunction with the pClamp 10 software (Axon Instruments). Mg2+ binding to the MgtE cytosolic domain reportedly inhibited the channel opening completely, at concentrations over 10 mM. Accordingly, in this experiment, only the MgtE protein oriented with the cytosolic domain facing toward the bath solution side contributes to the current recording of MgtE, and the MgtE with the opposite orientation does not contribute to the current recording, since all tested pipette solutions included 90 mM MgCl\textsubscript{2}. Multiple channel openings were occasionally observed, and ATP had essentially same effect on the MgtE activity in such recordings as well.

Patch clamp analysis. The giant unilamellar vesicles (GUVs) reconstituted with the target protein (protein:lipid = 1:1000, wt:wt; lipid, azolectin (Sigma)) were prepared by a modified sucrose method46. First, 200 µl of a 25 mg/ml solution of azolectin in chloroform was dried in a glass test tube under a stream of N\textsubscript{2} while rotating the tube, to produce a homogeneous dried lipid film. Subsequently, 1 ml of 0.4 M sucrose was placed at the bottom of the tube, and the solution was incubated at 50 °C for 1–2 h until the lipid was resuspended. After supercooling the solution to room temperature, the purified proteins were added to achieve the desired protein-to-lipid ratio. The glass tube containing the protein–lipid solution was shaken gently on an orbital mixer for three hours at 4 °C. After this procedure, the sample was ready for patch clamping. The pipette buffer contained 210 mM N-methyl-D-glucamine, 90 mM MgCl\textsubscript{2}, and 5 mM HEPES (pH 7.2). The bath buffer contained 300 mM N-methyl-D-glucamine and 5 mM HEPES (pH 7.2). The data were acquired at ~120 mV at a sampling rate of 20 kHz with a 5-kHz filter, using an AxoPatch 700B amplifier in conjunction with the pClamp 10 software (Axon Instruments). Mg2+ binding to the MgtE cytosolic domain reportedly inhibited the channel opening completely, at concentrations over 10 mM. Accordingly, in this experiment, only the MgtE protein oriented with the cytosolic domain facing toward the bath solution side contributes to the current recording of MgtE, and the MgtE with the opposite orientation does not contribute to the current recording, since all tested pipette solutions included 90 mM MgCl\textsubscript{2}. Multiple channel openings were occasionally observed, and ATP had essentially same effect on the MgtE activity in such recordings as well.

Quantitative analysis of the bands in the SDS-PAGE gel. The intensities of the bands in the SDS-PAGE gel were quantified using the ImageJ software47. Each band in the SDS-PAGE gel was selected manually, and the intensity peak was obtained and integrated using the “magic wand” tool in ImageJ. In the limited proteolysis experiment (Fig. 4), the relative intensity of the full-length band of the R187E mutant was 0.57, as compared to that of the R187E mutant.
E. coli in vivo assays. In the magnesium requirement growth complementation assays, the Mg^{2+}-auxotrophic strain (BW25113 ΔmgtA ΔcorA ΔahiD DE3) was transformed with the plasmids, and transformants were obtained on LB (+50 µg/ml kanamycin) plates supplemented with 100 mM MgSO_4. Each of the transformant colonies was streaked on LB plates and incubated at 37 °C overnight. In the Ni/Co sensitivity assays, the wild type strain (W3110 DE3) was transformed with the plasmids, and transformants were obtained on LB (+50 µg/ml kanamycin) plates. Each of the transformant colonies was then streaked on an LB (+50 µg/ml kanamycin) plate, as well as plates supplemented with NiCl_2 and CoCl_2 at the indicated concentrations, and incubated at 37 °C overnight. Both assay experiments were performed in the presence of 20 µM IPTG, for optimal MgtE expression.

ATP hydrolysis assay. ATP hydrolysis assays were performed using the malachite green method. The malachite green dye solution, containing 36 ml of 0.045% malachite green, 12 ml of 4.2% ammonium molybdate, and 1 ml of 1% Triton X-100, was freshly prepared on the day of the experiment. The assays were performed in a final reaction mixture consisting of the basal buffer (20 mM HEPES-NaOH (pH 7.0), 20 mM MgCl_2, 150 mM NaCl, 0.05% DDM) and 2 mM ATP, with and without 1.25 µM Mg^2+ or apyrase proteins. To initiate the reaction, 7.5 µl of ATP was added to 367.5 µl of the pre-reaction mixture. The reaction was performed at RT for 1 h. Afterwards, 800 µl of the malachite green dye solution, 50 µl of the basal buffer, 50 µl of each reaction mixture and 100 µl of 34% citric acid were mixed, and then the absorbance was measured at 660 nm. The absorbance standard curve for inorganic phosphate was established with standard H_3PO_4 solutions.

Data availability. The atomic coordinates and structure factors for the full-length MgtE in complex with ATP and the MgtE cytosolic domain in complex with ATP have been deposited in the Protein Data Bank. The accession codes 5S9H and 5X9G, respectively. All other data are available from the corresponding authors upon reasonable request.

Fig. 7 Proposed functional role of intracellular ATP in the Mg^{2+}-dependent gating of MgtE. A cartoon model of the proposed mechanism. The coloring scheme is the same as in Fig. 2. The brown arrows indicate the Mg^{2+} influx into the cells. Without ATP binding to the cytosolic domain, MgtE still opens when the intracellular Mg^{2+} concentration (Mg^{2+}_i) is above the physiological range (1–2 mM), and closes only at very high [Mg^{2+}_i] (5–10 mM) a. With ATP bound to the cytosolic domain, MgtE closes when the intracellular Mg^{2+} concentration is above the physiological range (1–2 mM) b. The orange arrows indicate the ATP-dependent attraction of Mg^{2+} to the cytosolic domain.

Received: 31 August 2016 Accepted: 26 May 2017
Published online: 27 July 2017

References
1. Hartwig, A. Role of magnesium in genomic stability. Mutat. Res. Mol. Mech. Mutagen 475, 113–121 (2001).
2. Cowan, J. A. Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals 15, 225–235 (2002).
3. Alexander, R. T., Hoenderop, J. G. & Bindels, R. J. Molecular determinants of magnesium homeostasis: insights from human disease. J. Am. Soc. Nephrol. 19, 1451–1458 (2008).
4. Groisman, E. A. et al. Bacterial Mg^{2+} homeostasis, transport, and virulence. Annu. Rev. Genet. 47, 625–646 (2013).
5. Romani, A. M. P. Cellular magnesium homeostasis. Arch. Biochem. Biophys. 512, 1–23 (2011).
6. Moomaw, A. S. & Maguire, M. E. The unique nature of mg^{2+} channels. Physiology 23, 275–285 (2008).
7. Dann, C. E. et al. Structure and mechanism of a metal-sensing regulatory RNA. Cell 130, 878–892 (2007).
8. Hattori, M. et al. Mg^{2+}-dependent gating of bacterial MgtE channel underlies Mg^{2+} homeostasis. EMBO J. 28, 3602–3612 (2009).
9. Sahni, J., Nelson, B. & Scharenberg, A. M. SLC41A2 encodes a plasma-membrane Mg^{2+} transporter. Biochem. J. 401, 505–513 (2007).
10. Sahni, J. & Scharenberg, A. M. The SLC41 family of MgtE-like magnesium transporters. Mol. Aspects Med. 34, 620–628 (2013).
11. Goitain, A. & Quamme, G. A. Functional characterization of human SLC41A1, a Mg^{2+} transporter with similarity to prokaryotic MgtE Mg^{2+}transporters. Physiol. Genomics 21, 337–342 (2005).
12. Mandt, T., Song, Y., Scharenberg, A. M. & Sahni, J. SLC41A1 MgtE transport is regulated via Mg^{2+}-dependent endosomal recycling.
through its N-terminal cytoplastic domain. Biochem. J. 439, 129–139 (2016).
13. Kolisiek, M. et al. Substitution p.A350V in Na+/Mg2+ exchanger SLC41A1, potentially associated with Parkinson’s disease, is a gain-of-function mutation. PLoS ONE 8, e71096 (2013).
14. Chan, K. H. K. et al. Genetic variations in magnesium-related ion channels may affect diabetes risk among African American and Hispanic American women. J. Appl. Physiol. 115, 418–425 (2013).
15. Hurd, T. W. et al. Mutation of the Mg2+ transporter SLC41A1 results in a nephropathissis-like phenotype. J. Am. Soc. Nephrol. 24, 967–977 (2013).
16. Hattori, M., Tanaka, Y., Fukui, S., Ishitani, R. & Nureki, O. Crystal structure of the Mg2+ Mg2+ transporter. Nature 448, 1072–1075 (2007).
17. Takeda, H. et al. Structural basis for ion selectivity revealed by high-resolution crystal structure of Mg2+ channel MgtE. Nat. Commun. 5, 5374 (2014).
18. Ishitani, R. et al. Mg2+-sensing mechanism of Mg2+ transporter MgtE probed by molecular dynamics study. Proc. Natl Acad. Sci. USA 105, 15393–15398 (2008).
19. Wolf, F. I. & Cittadini, A. Chemistry and biochemistry of magnesium. Mol. Aspects Med. 24, S1–S36 (2003).
20. Meyer, S., Savaresi, S., Forster, I. C. & Dutzler, R. Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5. Nat. Struct. Mol. Biol. 14, 60–67 (2007).
21. Scott, J. W. et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113, 2741–2748 (2004).
22. Beis, I. & Newsholme, E. A. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J. 152, 23–32 (1975).
23. Pontes, M. H., Lee, J.-E., Choi, J. & Grosman, E. A. Salmonella promotes virulence by repressing cellulose production. J. Bacteriol. 183, 6040–6043 (2001).
24. Payandeh, J. & Pai, E. F. A structural basis for Mg2+ homeostasis and the CorA magnesium transporter MgtE. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 63, 678–681 (2007).
25. Kabsch, W. XDS. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 125–132 (2010).
26. downstream analysis trials of MgtE with giant Vacuoles. J. Am. Soc. Nephrol. 25, 4878–4889 (2014).
27. Moore, F. A. & Evtushenko, O. A. & Avaeva, S. M. A maltol green material in this article are included in the article the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
28. Boulanger, B. & Nishizawa, T. & Kasuya, G. & the Nureki lab members, especially Tomohiro Nishizawa and Go Kasuya (University of Tokyo), for critical comments on the manuscript, the beam-line staff at BL41XU of SPring-8 (Harima, Japan) for technical assistance during data collection, and Prof. Ye Yu (Shanghai Jiao Tong University) for the initial patch clamp recording trials of MgtE with HEK293 cells. The diffraction experiments were performed at SPring-8 BL41XU. This work was supported by funds from the Ministry of Science and Technology of China (2016YFA0502800) to M.H. and Z.Y., and the National Natural Science Foundation of China (projects 31570183, 31570838, and 31650110469), the Platform for Drug Discovery, Informatics and Structural Life Science of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), JSPS KAKENHI (Grant Nos. 242277004, 16H06294, 25291011), the first program, PRESTO, a grant-in-aid for JSPS Fellows, and a grant from the Young 1000 Talent Program (2015) to Z.Y. and M.H. Additional support was provided to Z.Y. by The Program for Professor of Special Appointment (Eastern Scholar of Shanghai, TP2014008) and The Shanghai Rising-Star Program (Q4A1400800).
29. Competing interests: The authors declare no competing financial interests.
30. Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/.
31. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author contributions A.T. expressed and purified Mg2+ and its mutants for crystallization, and determined the structures with assistance from H.T., R.I., and M.H. A.T. performed the limited pro-