Supporting Information

NMR Aerosolomics: A tool for analysis of polar compounds in atmospheric aerosols

Štěpán Horník1,2, Jan Sýkora1,*, Jaroslav Schwarz1 and Vladimír Ždímal1

1 Institute of Chemical Process Fundamentals, v.v.i., The Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic
2 Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
E-mail: sykora@icpf.cas.cz

Content

List of the compounds supplemented into the ChemomX database S2
Example of 1H NMR spectrum ... S3
Combining of the samples .. S4
Mass profiles of identified compounds .. S5
Spiking experiments .. S6
A compound assignment ... S7
Complementary analyses .. S9
Comparison of non-targeted and targeted multivariate statistical analysis S15
Statistically significant compounds .. S16
Table S1. List of the compounds supplemented into the ChemomX database.

Chenomx ID	Compound	M	CAS RN
100001	methanesulfonic acid	96.11	75-75-2
100002	trimesic acid	210.14	554-95-0
100004	dimethylsulfate	126.13	77-78-1
100005	isophthalic acid	166.13	121-91-5
100006	3,4-dihydrobenzoic acid	154.12	99-50-3
100007	3-hydroxybenzoic acid	138.12	99-06-9
100008	terephthalic acid	166.13	100-21-0
100009	4-hydroxybenzaldehyde	122.12	123-08-0
100010	syringaldehyde	182.17	134-96-3
100011	hydroxymethanesulfonic acid	96.10	6035-47-8
100012	4-oxopimelic acid	174.15	502-50-1
100013	1,2,4-benzenetetracarboxylic acid	210.14	528-44-9
100014	hydroxymalonic acid	120.06	80-69-3
100015	4-methylcatechol	124.14	452-86-8
100016	4-acetylbutyric acid	130.14	3128-06-1
100017	glyoxylic acid	74.04	298-12-4
100018	pyromellitic acid	254.15	89-05-4
100019	4-nitrophenol	139.11	100-02-7
100020	2-hexanone	180.16	591-78-6
100021	5-oxoazelaic acid	202.20	57822-06-7
100022	2-methylbutyric acid	102.13	116-53-0
100023	ethanesulfonic acid	110.13	594-45-6
100024	methanedisulfonic acid	176.17	503-40-2
100025	ethyl sulfate	126.13	540-82-9
100026	methanesulfonic acid	80.11	17696-73-0
100027	hydroxymethanesulfonic acid	112.11	870-72-4
100028	isethionic acid	126.13	107-36-8
100029	3-mercapto-1-propanesulfonic acid	156.22	49594-30-1
100030	cis-2-butene-1,4-diol	88.11	6117-80-2
100031	tricarballylic acid	176.12	99-14-9
100032	ribitol	152.15	488-81-3
100033	hexanoic acid	116.16	142-62-1
100034	ethylenediamine	60.10	107-15-3
100035	nitromethane	61.04	75-52-5
100036	diethylamine	73.14	109-89-7
100037	triethylamine	101.19	121-44-8
100038	nitropropane	89.09	108-03-2
100039	triethanolamine	149.19	102-71-6
100040	dipropylamine	101.19	142-84-7
100041	tripropylamine	143.27	102-69-2
100042	phthalimide	147.13	85-41-6
100043	3-hydroxy-1-propanesulfonic acid	140.16	15909-83-8
100044	mesaconic acid	130.10	498-24-8
100045	1,2-dihydroxy-1,2-ethanedisulfonic acid	222.19	18381-20-9
100046	2,5-furan dicarboxylic acid	156.09	3238-40-2
100047	xylitol	152.15	87-99-0
100048	heptanoic acid	130.18	111-14-8
100049	cis-pinonic acid	184.23	17879-35-5
Figure S1. 1H NMR spectrum of winter aerosol sample QB390 (PM$_{10}$, upper trace) and blank sample (lower trace).
Table S2. Combining of summer samples together according to similar weather conditions during sample collection.

Date	T_{max} [°C]	T_{min} [°C]	Rainfall [mm]	Solar radiation [h]	Particle size [μm]	Code	Blending (label)
25.06.2008	30.0	13.0	10.1	7.8	10	Q6143	1 (Q6143)
01.07.2008	27.0	10.2	0	15.3	2.5	Q6149	2 (B6149)
07.07.2008	20.0	13.0	2	2.8	2.5*	QB153	3 (QB153)
07.07.2008	20.0	13.0	2	2.8	10*	Q6155	4 (QB6155)
13.07.2008	15.4	11.0	12.7	0	2.5	Q6157	5 (QB6157)
19.07.2008	23.7	12.8	0	4.3	2.5	Q6161	3 (QB6153)
19.07.2008	23.7	12.8	0	4.3	10	Q6163	6 (QB6163)
25.07.2008	27.6	14.6	20.3	5.2	2.5	Q6165	7 (QB6165)
25.07.2008	27.6	14.6	20.3	5.2	10	Q6167	8 (QB6167)
31.07.2008	30.0	14.4	0	11.0	2.5	Q6169	9 (QB6169)
31.07.2008	30.0	14.4	0	11.0	10	Q6171	8 (QB6171)
06.08.2008	25.6	10.8	0	12.3	2.5	Q6173	2 (QB6149)
06.08.2008	25.6	10.8	0	12.3	10	Q6174	10 (QB6175)
12.08.2008	28.8	16.0	1.2	3.5	2.5	Q6177	9 (QB6169)
18.08.2008	28.7	14.0	7.8	11.8	2.5	Q6181	7 (QB6156)
24.08.2008	20.4	7.8	0.2	2.8	10	Q6187	4 (QB6155)
30.08.2008	23.1	8.6	0	8.4	2.5	Q6189	3 (QB6153)
30.08.2008	23.1	8.6	0	8.4	10	Q6191	6 (QB6163)
05.09.2008	25.7	14.0	0.2	5.3	10	Q6193	10 (QB6175)
05.09.2008	25.7	14.0	0.2	5.3	2.5	Q6195	2 (QB6149)

*misclassified samples according to particle size

Table S3. Combining of winter samples together according to similar weather conditions during sample collection.

Date	T_{max} [°C]	T_{min} [°C]	Rainfall [mm]	Snowfall [cm]	Solar radiation [h]	Particle size [μm]	Code	Blending (label)							
06.11.2008	8.2	5.6	0	0	0	2.5	Q8140	1 (Q8140)							
28.11.2008	1.2	-1.5	0	0	0.1	1.7	Q8176	2 (Q8176)							
28.11.2008	1.2	-1.5	0	0	1.7	10	Q8178	3 (Q8178)							
03.01.2009	-3.6	-12.6	0	1	7.2	2.5	Q8180	4 (Q8180)							
03.01.2009	-3.6	-12.6	0	1	7.2	10	Q8182	5 (Q8182)							
09.01.2009	-9.0	-11.4	0	6	0	2.5	Q8184	4 (Q8180)							
15.01.2009	0.4	-7.5	0	5	0	2.5	Q8188	4 (Q8180)							
15.01.2009	0.4	-7.5	0	5	0	10	Q8190	6 (Q8190)							
15.01.2009	0.4	-7.5	0	5	0	10	Q8449	6 (Q8190)							
21.01.2009	1.0	-1.2	0.7	0	0	2.5	Q8192	7 (Q8192)							
21.01.2009	1.0	-1.2	0.7	0	0	10	Q8194	8 (Q8194)							
21.01.2009	1.0	-1.2	0.7	0	0	10	Q8451	8 (Q8194)							
27.01.2009	2.0	-1.1	0	0	0	2.5	Q8407	7 (Q8192)							
08.02.2009	2.0	-2.0	0	0	0.4	2.5	Q8515	7 (Q8192)							
04.03.2009	7.0	2.0	0	0	0	2.5	Q8531	9 (Q8531)							
10.03.2009	6.0	0.9	5.5	0	1.7	2.5	Q8535	9 (Q8531)							
16.03.2009	8.6	3.7	0.5	0	1.0	2.5	Q8539	10 (Q8539)							
16.03.2009	8.6	3.7	0.5	0	1.0	10	Q8541	11 (Q8541)							
22.03.2009	6.6	-0.4	0	0	1.0	2.5	Q8543	10 (Q8539)							
28.03.2009	14.3	3.4	0.2	0	1.6	10	Q8561	11 (Q8541)							
Compound	S4.1	S4.2	S4.3	S4.4	S4.5	S4.6	S4.7	S4.8	S4.9	S5.1	S5.2	S5.3	S5.4	S5.5	S5.6
-----------------------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------
Sulfocyanate acid	0.0757	0.0333	0.0097	0.0738	0.0612	0.0305	0.0694	0.0610	0.0564	0.0263	0.0351	0.0103	0.0105	0.0089	0.0252
2-Hydroxybenzenesulfonic acid	0.0647	0.0333	0.0097	0.0738	0.0612	0.0305	0.0694	0.0610	0.0564	0.0263	0.0351	0.0103	0.0105	0.0089	0.0252
Hydroxylized benzenesulfonic acid	0.0717	0.0361	0.0165	0.0905	0.0785	0.0384	0.0762	0.0797	0.0732	0.0303	0.0391	0.0131	0.0135	0.0121	0.0309
Sulfocyanate acid	0.0305	0.0222	0.0097	0.0738	0.0612	0.0305	0.0694	0.0610	0.0564	0.0263	0.0351	0.0103	0.0105	0.0089	0.0252
2-Hydroxybenzenesulfonic acid	0.0647	0.0333	0.0097	0.0738	0.0612	0.0305	0.0694	0.0610	0.0564	0.0263	0.0351	0.0103	0.0105	0.0089	0.0252
Hydroxylized benzenesulfonic acid	0.0717	0.0361	0.0165	0.0905	0.0785	0.0384	0.0762	0.0797	0.0732	0.0303	0.0391	0.0131	0.0135	0.0121	0.0309
Sulfocyanate acid	0.0305	0.0222	0.0097	0.0738	0.0612	0.0305	0.0694	0.0610	0.0564	0.0263	0.0351	0.0103	0.0105	0.0089	0.0252
2-Hydroxybenzenesulfonic acid	0.0647	0.0333	0.0097	0.0738	0.0612	0.0305	0.0694	0.0610	0.0564	0.0263	0.0351	0.0103	0.0105	0.0089	0.0252
Hydroxylized benzenesulfonic acid	0.0717	0.0361	0.0165	0.0905	0.0785	0.0384	0.0762	0.0797	0.0732	0.0303	0.0391	0.0131	0.0135	0.0121	0.0309

Note: underlined compounds have adjusted P-value <0.01 after Benjamini-Hochberg correction.
Spiking experiments

The spiking experiments were performed during revision process of the manuscript on editor’s request in order to confirm the presence of new compounds in aerosol samples. For this purpose, all samples of winter aerosol were merged into one sample. The original summer samples were not available any more, therefore, different samples which were collected at the same location in 2016 were merged and used in these experiments. Approximately one third of the sample was used for spiking \(^1\)H NMR experiments and the rest of the sample was used for analysis by complementary techniques (see below). The spiking experiments were performed at 500 MHz NMR spectrometer. The \(^1\)H NMR spectra were recorded before and after addition of a solution containing approx. 0.01 mM of compound standards. Figures S2-S3 show a comparison of relevant parts of the original and spiked spectra for 10 compounds. The spiking experiments were performed only for assigned compounds that have not been identified in atmospheric aerosol samples before, namely 2-hydroxyisobutyric, 2-oxoisocaproic, 3-hydroxyisovaleric, 4,6-dioxoheptanoic, glucaric and hydroxymethanesulfonic acids. The spiking experiments confirmed three of these compounds - 2-hydroxyisobutyric, 3-hydroxyisovaleric and 4,6-dioxoheptanoic acids, other three compounds were not confirmed due to low concentration. Moreover, four compounds were proposed to be present in atmospheric aerosols by several studies, but have not yet been identified, specifically trimethylglycine, methanesulfinic acid, propylene glycol and imidazole. First three compounds were confirmed by the spiking experiments, whereas the signals of imidazole disappeared from the original aerosol sample analyzed due to hydrogen-deuterium exchange.

![Spiking experiments](image)

Figure S2. \(^1\)H NMR spectrum before (a) and after (b) spiking experiment in the sample of summer aerosol.
Figure S3. 1H NMR spectrum before (a) and after (b) spiking experiment in the sample of winter aerosol.

A compound assignment and its quantification in Chenomx

The spectrum of QB167 summer sample was chosen for presentation of compound assignment using Chenomx software. The first trace in Figure S8 shows the assignment of arabitol (blue) and mannitol (red). The isolated signals of both compounds are well recognized guiding the compound identification and the concentration of compound is then derived according to the best fit of all signals. Next two traces show glucose (red) versus the already assigned pattern (blue). Levoglucosan (red) on the fourth trace shows three isolated signals used for compound identification and the rest of the fitted signals in the crowded region. The fifth trace shows hydroxyacetone (left, red) with one isolated signal and one in the shoulder of another signal, while phthalate (right, red) represents a diluted compound. In this case, the spectrum fit provides more accurate concentration than a plain signal integration. Trehalose on the sixth trace is another example of compounds suffering from severe signal overlap. Cis-pinonic acid on seventh and eighth trace is another example of compound with two isolated signals and a severe signal overlap of the rest of the molecule.
Figure S4. The assignment and compound fitting in the Chenomx software; 1) mannitol (red) and arabitol (blue), 2) and 3) glucose (red), 4) levoglucosan (red), 5) hydroxyacetone (left-red), phthalic acid (right-red), 6) trehalose (red), 7) and 8) cis-pinonic acid (red).
Complementary analyses

Ion chromatography

The content of anions, cations and carbohydrates in merged summer and winter aerosol samples were analyzed by ion chromatography (Dionex 5000 system). An IonPac AS11-HC 2 x 250 mm column was used for anions using concentration gradient of hydroxide eluent, IonPac CS18 2 x 250 mm for cations using methanesulfonic acid solution as an eluent. Both anion and cation set-up lines were equipped with electrochemical suppressors. External calibration was done provided using NIST traceable calibration solutions. Carbohydrate analysis was performed on Thermo Scientific ICS5000+ system (former Dionex) equipped with High pressure anion exclusion chromatography with pulsed amperometric detection (HPAE PAD). The filtered solution was analyzed using Dionex CarboPac MA1 4x250mm + guard 4x50mm column, NaOH gradient, ICS-5000+ ED detector in PAD mode with disposable gold electrode.

Gas chromatography – mass spectrometry

Samples for GC-MS analysis were derivatized by silylation. A lyophilized sample was silylated by N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) in a pyridine/heptane mixture at 75°C for 2 hours. The reaction mixture was then subjected to GC-MS (HP 5973, Hewlett Packard). The compound separation was achieved by interaction with the standard DB-5MS stationary phase. The compound identification was based on its elution time and ion fragmentation.

2D NMR spectroscopy

COSY spectra of merged summer and winter aerosol samples were measured using a Varian Inova 500 MHz spectrometer equipped with the Ultra Shim System II. A 5 mm probe with inner 1H coil for maximum sensitivity was used for the experiment. The residual solvent signal is suppressed by presaturation. COSY spectra were acquired at 25°C with 1 s presaturation, 0.2 s acquisition, 1 s relaxation delay, 6 kHz spectral width and 400 accumulation scans per 256 increments. Total experimental time was 36 hours (Figures S5 and S6).

A HSQC spectrum of merged winter sample was collected on Bruker Advance III HD 600 MHz instrument equipped with a cryo-probe using hsqcetgp experiment at the Institute of Organic Chemistry and Biochemistry in Prague. The spectrum was acquired at 25°C with, 0.08 s acquisition, 1.5 s relaxation delay, 6.6 kHz (1H) and 30 kHz (13C) spectral width and 128 accumulation scans per 256 increments. Total experimental time was 15 hours (Figure S7).

A comparison of chemical composition in summer and winter aerosol sample obtained by different methods is summarized in Table S5.

Table S5. An overview of chemical composition of aerosol samples obtained by different methods.

	1D NMR	2D NMR	GC-MS	IC	Spiking																							
2,3-Dihydroxy-2-methylpropanoic acid	✔	✔																										
2-Hydroxybutyric acid	✔	✔																										
2-Hydroxyglutaric acid	✔		✔																									
2-Hydroxysobutyric acid	✔	✔		✔																								
2-Methylglutaric acid	✔	✔																										
2-Oxoglutaric acid	✔	✔																										
3,4-Dihydroxybenzoic acid	✔	✔																										
3-Hydroxybenzoic acid	✔	✔																										
3-Hydroxybutyric acid	✔	✔																										
3-Hydroxyisovaleric acid	✔	✔																										
3-Hydroxypropanoic acid	✔	✔																										
4,6-Dioxoheptanoic acid	✔	✔																										
4-Hydroxybutyric acid	✔	✔																										
Chemical Name	Presence	Notes																										
-----------------------------------	----------	-------																										
4-Oxopimelic acid	✓																											
Acetamide**	✓																											
Acetic acid	✓	✓																										
Acetoacetic acid**	✓																											
Adipic acid	✓	✓																										
Alanine	✓	✓																										
Arabitol	✓	✓																										
Azelaic acid	✓																											
Benzoic acid	✓																											
Butyric acid**	✓																											
Capric acid	✓																											
Caprylic acid	✓																											
cis-Pinonic acid*	✓																											
Citraconic acid	✓																											
Diethylyamine	✓	✓																										
Dimethyl sulfate**	✓																											
Dimethyl sulfone**	✓																											
Dimethylamine*	✓																											
D-Threitol	✓	✓																										
Erythritol	✓	✓																										
Ethanol	✓	✓																										
Ethanolamine	✓	✓																										
Ethyl sulfate**	✓																											
Ethylene glycol**	✓																											
Ethylenediamine**	✓																											
Formic acid	✓	✓																										
Fructose	✓	✓																										
Fructose	✓	✓																										
Fumaric acid	✓	✓																										
Galactosan	✓																											
Galactose	✓																											
Glucitol	✓	✓																										
Glucose	✓	✓																										
Glutaric acid	✓	✓																										
Glyceric acid	✓																											
Glycerol	✓	✓																										
Glycine	✓	✓																										
Glycolic acid	✓	✓																										
Glyoxylic acid**	✓																											
Heptanoic acid	✓																											
Hexanoic acid**	✓																											
Hydroxyacetone**	✓																											
Hydroxymalonic acid**	✓																											
Hydroxymethanesulfonic acid*	✓																											
Imidazole*	✓																											
Inositol	✓	✓																										
Isopropanol	✓	✓																										
Lactic acid	✓	✓																										
Lactose**	✓																											
Chemical Name	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
-----------------------------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---		
Levoglucosan	✓	✓	✓	✓	✓																							
Levulinic acid	✓	✓																										
Maleic acid	✓	✓																										
Malic acid	✓	✓																										
Malonic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Mannitol	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Mannosan	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Mannose	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Methanesulfinic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Methanesulfonic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Methanol**	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Methylamine*	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Methylmalonic acid**	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Methylsuccinic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
N,N-Dimethylformamide**	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Nonanoic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Oxalic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Phthalic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Pimelic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Propionic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Propylene glycol	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Pyromellitic acid**	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Pyruvic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Sebacic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Suberic acid**	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Succinic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Sucrose	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Syringic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Tartaric acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Terephthalic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Tetramethylammonium	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Trehalose	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Tricarballylic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Triethylamine	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Trimethylamine	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Trimethylglycine	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Valeric acid**	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Vanillic acid	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Xylose	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	

*Identification based on available literature

**Tentative assignment based just on precise chemical shift in 1H NMR spectrum.
Figure S5. COSY spectrum of summer aerosol sample.
Figure S6. COSY spectrum of winter aerosol sample.
Figure S7. HSQC spectrum of winter aerosol sample.
Figure S8. The comparison of multivariate statistical analysis in summer aerosol samples; non-targeted analysis (left) and targeted analysis (right).

Figure S9. The comparison of multivariate statistical analysis in winter aerosol samples; non-targeted analysis (left) and targeted analysis (right).

Figure S10. The comparison of multivariate statistical analysis in all aerosol samples; non-targeted analysis (left) and targeted analysis (right).
Table S6. List of statistically significant compounds identified by the Wilcoxon rank-sum test.

Compound	Adjusted P-values from Wilcoxon test
2-Hydroxyisobutyric acid	0.00630
3-Hydroxyisovaleric acid	0.00293
4,6-Dioxyoheptanoic acid	0.01098
Adipic acid	0.00151
Arabinol	0.01098
Azelaic acid	0.00078
Butyric acid	0.00741
cis-Pinonic acid	0.00293
Dimethylamine	0.00030
Formic acid	0.00293
Glucitol	0.00054
Glucose	0.01006
Glutaric acid	0.00394
Glycerol	0.01082
Hydroxyacetone	0.00630
Imidazole	0.00293
Levoglucosan	0.00030
Malonic acid	0.00748
Mannitol	0.00630
Methanesulfonic acid	0.00630
Methanesulfonic acid	0.00078
Methylsuccinic acid	0.00293
Phthalic acid	0.00989
Pimelic acid	0.00030
Propionic acid	0.00920
Sebacic acid	0.00045
Suberic acid	0.00151
Terephthalic acid	0.00920
Trehalose	0.01098
Trimethylglycine	0.03894
Valeric acid	0.00293

Note: underlined compounds have adjusted P-value <0.01 after Benjamini-Hochberg correction.