Study of first-order interface localization-delocalization transition in thin Ising-films using Wang-Landau sampling

B. J. Schulz and K. Binder
Institut für Physik, WA331, Johannes Gutenberg Universität, Staudinger Weg 7, D55099 Mainz, Germany

M. Müller
Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390
(Dated: August 24, 2018)

Using extensive Monte Carlo simulations, we study the interface localization-delocalization transition of a thin Ising film with antisymmetric competing walls for a set of parameters where the transition is strongly first-order. This is achieved by estimating the density of states (DOS) of the model by means of Wang-Landau sampling (WLS) in the space of energy, using both, single-spin-flip as well as N-fold way updates. From the DOS we calculate canonical averages related to the configurational energy, like the internal energy, the specific heat, as well as the free energy and the entropy. By sampling microcanonical averages during simulations we also compute thermodynamic quantities related to magnetization like the reduced fourth order cumulant of the order parameter.

We estimate the triple temperatures of infinitely large systems for three different film thicknesses via finite size scaling of the positions of the maxima of the specific heat, the minima of the cumulant and the equal weight criterion for the energy probability distribution. The wetting temperature of the semi-infinite system is computed with help of the Young equation. In the limit of large film thicknesses the triple temperatures are seen to converge towards the wetting temperature of the corresponding semi-infinite Ising model in accordance with standard capillary wave theory. We discuss the slowing down of WLS in energy space as observed for the larger film thicknesses and lateral linear dimensions. In case of WLS in the space of total magnetization we find evidence that the slowing down is reduced and can be attributed to persisting free energy barriers due to shape transitions.

I. INTRODUCTION

The restriction of the geometry of a condensed-matter system has fundamental impact on a phase transition. In a finite system, sharp phase transitions can no longer occur, since the free energy is then an analytic function of its independent variables and the transition is rounded off and shifted. A particular realization of a confined geometry in \(d = 3 \) dimensions, playing a pivotal role due to its fundamental importance in material science and technology, are thin films, infinitely extended in two directions but of finite thickness \(D \), where the transition is now not only shifted away from its bulk value, corresponding to \(D \to \infty \), but also changes its character from three-dimensional to two-dimensional. As an example we may consider here a fluid near a gas-liquid coexistence in the bulk, or similarly, an \((A,B)\) binary mixture or alloy near phase coexistence, confined between two parallel walls. Of particular interest is the case, where the two walls of the system prefer different phases, i.e., one wall favors high-density liquid (or \(A \)-particles), which is commonly termed “competing walls”. A generic model for such systems actually is the nearest neighbor Ising model in a thin film geometry where one now has two surfaces a distance \(D \) apart, on which magnetic surface fields \(H_1 = -H_D \) of opposite sign but equal magnitude act in order to mimic the competing walls (cf. Fig. 1). In addition one allows for a different interaction \(J_0 > 0 \) between nearest neighbors located in the surfaces, while nearest neighbors in the bulk interact with a coupling \(J > 0 \). The meaning of the magnetic surface fields becomes apparent, when reinterpretting the Ising Hamiltonian as a lattice gas for a fluid or a mixture, where Ising spins \(S_i = -1 \) or \(S_i = +1 \) now correspond to lattice sites \(i \) being empty or occupied, or being taken by an \(A \)-particle or a \(B \)-particle, respectively. Then, surface magnetic fields translate into chemical potentials, i.e., binding energies to the walls.

Remarkably, the transition that one encounters in the Ising film differs from the transition in the bulk system at \(T_{cb} \): For all finite thicknesses \(D \) of the film, the transition at \(T_{cb} \) is completely rounded off and no singular behavior shows up, despite the fact that the system is infinite in the other directions. Instead, one observes a transition at a lower temperature \(T_0(D) < T_{cb} \), at which the system changes from a state with a delocalized interface running parallel to the walls in the center of the film \((T_0(D) < T < T_{cb})\), to a twofold degenerate state \((T < T_0(D))\), where the interface is now localized near one of the two walls (cf. Fig. 1). Most interestingly, for \(D \to \infty \), the transition temperature \(T_0(D) \) of the interface localization-delocalization does not converge towards the bulk critical temperature \(T_{cb} \), but towards the wetting temperature \(T_{cw}(H_1) \) at which a macroscopically thick liquid layer (spins pointing upwards) wets the surface in the corresponding semi-
FIG. 1: (a) Thin film geometry with two free surfaces at \(n = 1 \) and \(n = D \) (shaded gray) on which magnetic surface fields \(H_1 \) and \(H_D \) act. Here, the surface at \(n = 1 \) favors spin up (+), while the surface at \(n = D \) favors spin down (−). Parallel to the \(L \times L \) surfaces, periodic boundary conditions are imposed. (b) Delocalized Interface. (c) Interface located at either of the two surfaces.

II. MODEL AND SIMULATION METHOD

We consider the Ising Hamiltonian on a cubic lattice in a \(L \times L \times D \) geometry (cf. Fig. 1(a)), where \(N = L^2 D \) is the total number of spins \(S_i \):

\[
\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i S_j - J_s \sum_{\langle i,j \rangle_s} S_i S_j - H \sum_i S_i - H_1 \sum_{i \in \text{surface } 1} S_i - H_D \sum_{i \in \text{surface } D} S_i.
\]

Here, the sum \(\langle i,j \rangle \) runs over all pairs of nearest neighbors where at least one spin is not located in one of the surfaces and the sum \(\langle i,j \rangle_s \) runs over all pairs of nearest neighbors with both spins located in one of the two surfaces. In this paper we study three different film thicknesses \(D = 6, 8, 12 \), and linear lateral dimensions ranging from \(L = 16 \) to \(L = 128 \) (for the two largest choices of \(D \) the minimal \(L \) is \(L = 32 \) and \(L = 48 \), respectively). We restrict ourselves here to antisymmetric surface fields \(H_1 = -H_D \) and bulk field, \(H = 0 \). By virtue of the symmetry there is an exact degeneracy of the phases where the interface is bound to either of the surfaces, and the triple point and the phase coexistence below \(T_0(D) \) occurs at \(H = 0 \). We do not study pre-wetting like phase coexistence for \(T > T_0(D) \) and \(H \neq 0 \). Specifically we choose \(H_1/J = 0.25 \) and \(J_s/J = 1.5 \). For these parameters the interface localization-delocalization transition is clearly first-order for all thicknesses \(D \). Already for a smaller surface-to-bulk coupling ratio \(J_s/J = 1.45 \), the transition turned out to be so strongly first order according to the study of Ferrenberg et. al, that lattices with \(D = 8 \) and \(L > 32 \) could not be equilibrated using a standard canonical heatbath algorithm. The reason for such difficulties can be seen directly from the canonical probability distribution, \(P_{L,D}(E) \), of the energy that develops two pronounced peaks at the transition point, corresponding to the coexisting ordered (−) and disordered phases (+) which are separated by a deep minimum \(P_{L,D}^{\text{min}}(E) \) corresponding to the mixed phase configurations (cf. Fig. 2). Here, one has additional interfaces in the system which cost an extra free energy \(\Delta F_{L,D} = \gamma DL \), where \(\gamma \) is of the order of the interface tension between the two oppositely oriented domains of spins. This yields \(P_{L,D}^{\text{min}}(E) \propto \exp(-\beta \Delta F_{L,D}) \), where \(\beta = 1/k_B T \) denotes the inverse temperature. Hence, any simulation technique which aims at sampling a canonical energy probability distribution \(\propto g(E) \exp(-E/k_B T) \) directly will become trapped in the phase in which the system was initially prepared and may practically never escape from there, even in case of relatively small systems.

In order to give an example for the strong metastability, Fig. 3 shows hysteresis-loops of the internal energy per spin \(\langle E \rangle \equiv \langle E \rangle/N \) which were recorded using a conventional Metropolis Monte Carlo algorithm for a system of size \(D = 12 \) and \(L = 48 \). The simulations were started in the disordered phase. In case cooling is per-

infinite system. Thus, the nature of the transition at finite \(D \) is seen to depend on the nature of the wetting transition in the underlying semi-infinite system. Upon enhancing the interaction \(J_s \) of spins in the surfaces with respect to the bulk interaction \(J \) one can tune the wetting transition and thus the interface transition for finite film thicknesses \(D \) to be of first order \(\mathbb{R} \), i.e., \(T_0(D) \equiv T_\text{tr}(D) \) is now a triple point where the three phases shown in Fig. 1(b)–(c) coexist. By reducing the film thickness one may then pass through a tricritical point where the order of the transition changes from first to second order \(\mathbb{R} \mathbb{R} \mathbb{R} \).

Our paper is arranged as follows: First, we briefly introduce the thin film Hamiltonian and give a description of the employed Wang-Landau sampling (WLS) which aims at sampling the density of states (DOS) directly. The slowing down of WLS for our model, encountered especially for large system sizes is discussed. With regard to these difficulties we then propose to split the DOS in a branch contributing to the ordered phase and one contributing to the disordered phase, which we normalize separately. We then present the thermodynamic quantities calculated from the DOS and compute the infinite lattice triple temperatures from the various finite size data. Finally, the wetting temperature of the semi-infinite system is determined via the Young equation and the convergence of the triple temperatures towards the wetting temperature for increasing film thickness is examined. We close with a brief discussion of our results.
formed too fast (open circles in Fig. 3) one reaches the ordered phase upon further cooling. Using a first two excited states at $\frac{E}{J} = 128$ and $\Delta e = 6$ and $\langle e \rangle = 10^3$, one reaches the ordered phase upon further cooling. Using a final modification factor f_i, which is reduced according to $f_{i+1} = \sqrt{\frac{f_i}{J}}$ in case the recorded energy histogram $H(E)$ is flat within some percentage ϵ of the average energy histogram, i.e., $H(E) \geq \epsilon \langle H(E') \rangle_{E'}$ for all E. $H(E)$ is then reset to zero and the procedure is repeated until a flat $H(E)$ is achieved using a final modification factor f_{final}. In practice one samples a logarithm of the DOS, i.e., $\log_{10} g(E)$ since $g(E)$ may become very large and modifying the DOS then corresponds to adding a small modification increment $\Delta e = 0$ in the Ising model. The almost free interface in the center of the film is caused by flipping a spin ν, surface ν; and ν denote sums over the nearest neighbor sites μ of site ν.

$$\frac{E}{J} = 6, L = 64, 96, 128$$

$$\frac{E}{J} = 8, L = 64, 96, 128$$

FIG. 2: Energy probability distributions $P_{L,D}$ at equal weight. The peak positions $e^{-1\left(\frac{E}{J}\right)}$ (indicated for $D = 6$ and $L = 128$) define the finite volume latent heats $\Delta e(L,D) = e^{-\left(\frac{E}{J}\right)} - e^{-1\left(\frac{E}{J}\right)}$. Arrows pointing on the energy axis indicate the interval I_{center}, Eq. (10), in case of $L = 128$ and $D = 6$.

For the reference values we have regarded the spins as noninteracting at $J \beta_{\text{ref}} = 0.00005$, i.e., $f(\beta_{\text{ref}}) = -\beta_{\text{ref}}^{-1} \ln 2$, while on the low temperature side the free energy was matched with a series expansion based on the first two excited states at $J \beta_{\text{ref}} = 1.10005$. The crossing point of both branches of the free energy then yields the transition point, which can be determined with an accuracy of 0.4%.

The result, that the correct location of the first order transition is not in the middle of the hysteresis loop but very close to its end at the high temperature side (dashed curve in Fig. 3) is very surprising at first sight. It should be noted however, that the hysteresis observed in Monte Carlo simulations has nothing to do with the “Maxwell equal area rule” of mean field theories, but is of kinetic origin. The almost free interface in the center of the film is very slowly relaxing and feels only a very weak potential from the walls, and thus is much more metastable than the state where the interface is tightly bound to one of the walls.

A. Wang-Landau Sampling

In order to avoid problems due to metastability and to further increase accuracy, we have decided to use Wang-Landau sampling (WLS) in order to compute thermodynamic quantities of the systems via estimating the density of states (DOS) of Hamiltonian \mathbf{H}. In WLS one accepts trial configurations with probability $\min(1, g(E)/g(E'))$, where $g(E)$ is the DOS and E and E' are the energies of the current and the proposed configuration, respectively. At each spin flip trial the DOS is modified $g(E') \rightarrow g(E) - f_i$ by means of a modification factor f_i, which is reduced according to $f_{i+1} = \sqrt{\frac{f_i}{J}}$ in case the recorded energy histogram $H(E)$ is flat within some percentage ϵ of the average energy histogram, i.e., $H(E) \geq \epsilon \langle H(E') \rangle_{E'}$. The implementation of the single-spin-flip WLS is straightforward and we refer the reader to Refs. 1, 14 and 15 for details. When considering systems with a large number of distinct energy levels it is useful to partition the entire energy range into adjacent subintervals in order to sample the DOS in a parallel fashion. For energy intervals that contain states with energy $\Delta E > 10^{-2}$ μ-fold way of Bortz et. al. [16, 17]. Here, the underlying idea is to partition all spins $S_\nu, \nu \in \{1, ..., N\}$ into M classes $c_\nu \in \{0, ..., M - 1\}$ according to the change in energy ΔE_{c_ν} caused by flipping a spin S_ν at site ν. Making explicit use of $H_1 = -H_D$ and $H = 0$ in the Ising Hamiltonian, we can evaluate ΔE_{c_ν} as follows:

$$\Delta E_{c_\nu} = \begin{cases} 2(J u_\nu + J s_\nu + H_1) S_\nu & \text{if } \nu \in \text{surf.1} \\ 2(J u_\nu + J s_\nu - H_1) S_\nu & \text{if } \nu \in \text{surf.2} \\ 2 J u_\nu S_\nu & \text{else,} \end{cases}$$

where S_ν is the spin value before it is overturned and u_ν and s_ν denote sums over the nearest neighbor sites $\mu(\nu)$ of site ν:

$$u_\nu = \begin{cases} \sum_{\mu(\nu)} S_\mu(\nu) & \text{if } \nu \notin \text{surf.} \\ \sum_{\mu(\nu) \notin \text{surf.}} \mu(\nu) \notin \text{surf.} & \text{if } \nu \in \text{surf.} \end{cases}$$
and

\[v_\nu = \begin{cases} 0 & \text{if } \nu \notin \text{surface} \\ \sum_{\mu(\nu) \in \text{surface}} S_\mu & \text{if } \nu \in \text{surface}, \end{cases} \]

(5)

This results in a number of \(M = 27 \) different classes. Within the context of \(N \)-fold way WLS the probability of any spin of a class \(i \) being overturned is then given by

\[P(\Delta E_i) = \frac{n(\mathcal{C}, \Delta E_i)}{N} p_{\mathcal{C} \rightarrow \mathcal{C}'} \quad i = 1, \ldots, M, \]

(6)

where \(n(\mathcal{C}, \Delta E_i) \) denotes the number of spins of configuration \(\mathcal{C} \) which belong to class \(i \) and \(p_{\mathcal{C} \rightarrow \mathcal{C}'} \) is given by

\[p_{\mathcal{C} \rightarrow \mathcal{C}'} = \begin{cases} \min \left(1, \frac{q(E_{C'})}{q(E_C)} \right) & \text{if } E_{C'} \in I_{\text{sub}} \\ 0 & \text{if } E_{C'} \notin I_{\text{sub}}, \end{cases} \]

(7)

where \(I_{\text{sub}} \) denotes the considered energy subinterval over which the DOS is sampled and \(E_{C'} = E_C + \Delta E_i \). Classes are now chosen as follows. Firstly, one computes the integrated probabilities for a spin flip within the first \(m \) classes:

\[Q_m = \sum_{i \leq m} P(\Delta E_i), \quad m = 1, \ldots, M \quad \text{and} \quad Q_0 = 0. \]

(8)

By generating a random number \(0 < r < Q_M \) one then finds the class \(m \) from which to flip a spin via the condition \(Q_{m-1} < r < Q_m \). The spin to be overturned is chosen from this class with equal probabilities, whereby \(\log_{10} g(E) \) and the energy histogram are now updated by means of the average lifetime \(\tau = 1/Q_M \). A detailed description of the algorithm was given in Ref. [10].

B. Normalization of the DOS

In order to estimate the DOS using WLS, the considered energy range

\[E/JN \in I = [E_{\text{ground}}/JN, 0.2], \]

(9)

where \(E_{\text{ground}} = -(3D - 5)J + 4J_0/JD \), is the twofold degenerated ground state energy, was partitioned into several adjacent subintervals each containing an order of \(10^2 \) to \(10^3 \) distinct energy levels, which were sampled on a Cray T3E in parallel fashion using mostly 64 processors at a time. The DOS obtained from these simulations was then matched at the edges and suitably normalized, which we will describe in detail below. For the system thicknesses \(D = 8 \) and \(D = 12 \), as well as for the largest choices of \(L \) in case of \(D = 6 \) (\(L = 96, 128 \)) only one run was performed over the entire energy range \([0, \infty) \) denoted as basis-run, whereas all further runs have been restricted to a smaller energy range

\[E/JN \in I_{\text{center}} = [E_1/JN, E_2/JN], \]

(10)

covering the mixed phase region in between the peaks of the doubly peaked energy distribution. As an illustration, \(I_{\text{center}} \) is marked in Fig. 8 by small arrows on the energy axis. Thus, the entire energy range \([0, \infty) \) is decomposed as \(I = I_{\text{left}} \cup I_{\text{center}} \cup I_{\text{right}} \), where we have \(I_{\text{left}} = [E_{\text{ground}}/JN, E_1/JN] \) and \(I_{\text{right}} = [E_2/JN, 0.2] \). Correspondingly, one obtains the density of states \(g(E) \) by joining \(g(E) \) estimated for the intervals \(I_{\text{left}} \) (taken from the basis run), \(I_{\text{center}} \), and \(I_{\text{right}} \) (again taken from basis run).

The single-spin-flip algorithm is more efficient in the regions covered by \(I_{\text{center}} \) which is due to the added ex-
and cal (Wang-Landau) ensemble for decreasing modification deviation for the larger system sizes, especially for small sizes L and D.

WLS only yields a relative density of states, hence available is the DOS over the range (9). As clear from the algorithm, the value in brackets states the standard deviation from the exact value with increasing width of the order $\Delta = 12$. The flatness parameter β_0), where the partition function $Z_\beta(0) = -0.693264$ was excluded from data analysis. Then one has $-\langle 1/N \rangle = Z_\beta(0) = -0.69307(9)$. Under run we have listed the number of independent simulations.

D	L	# runs	$\ln Z_{\beta=0}$	$\ln Z_{\beta=0}^{\text{rel}}$	$\ln Z_{\beta=0} - \ln Z_{\beta=0}^{\text{rel}}$	$\ln Z_{\beta=0}$
6	16	6	$-0.6932(5)$	-0.693147	0.0076%	
6	24	3	$-0.6931(4)$	-0.693147	0.0061%	
6	32	3	$-0.6932(3)$	-0.693147	0.0082%	
6	48	3	$-0.69318(5)$	-0.693147	0.0048%	
6	64	5	$-0.69311(6)$	-0.693147	0.0049%	
6	96	2	$-0.693112(2)$	-0.693147	0.0051%	
6	128	6	$-0.693144(9)$	-0.693147	0.0042%	
8	32	4	$-0.6930(2)$	-0.693147	0.021%	
8	48	2	$-0.69310(4)$	-0.693147	0.0075%	
8	64	3	$-0.69312(6)$	-0.693147	0.0038%	
8	96	1	-0.69301	-0.693147	0.020%	
8	128	1	-0.69304	-0.693147	0.015%	
12	48	3	$-0.69240(2)$	-0.693147	0.107%	
12	64	1	-0.692544	-0.693147	0.087%	
12	96	2	$-0.692686(3)$	-0.693147	0.067%	
12	128	10	$-0.69281(4)$	-0.693147	0.048%	

TABLE I: Logarithm of the partition function $-\langle 1/N \rangle \ln Z_{\beta=0}$ of a thin Ising film for different linear dimensions L and D, in case the density of states is normalized with respect to the ground state. The value in brackets states the standard deviation. The exact value and the deviations from the latter are listed in the last two columns, respectively. For $L = 32$ and $D = 8$ the run showing the largest deviation from the exact value $-\langle 1/N \rangle \ln Z_{\beta=0} = -0.693264$ was excluded from data analysis. Then one has $-\langle 1/N \rangle \ln Z_{\beta=0} = -0.69307(9)$. Under run we have listed the number of independent simulations.

The additional error which is introduced by this normalization procedure then depends on the contribution of the mixed phase configurations to the energy distribution (and the choice of E_{cut}). However, since these mixed phase configurations are exponentially suppressed at the transition point, the error is expected to be of the same order, and correspondingly the error due to the choice of E_{cut} as well. Note, that already for $L = 32$ and $D = 8$ the double Gaussian approximation to the energy probability distribution, which neglects any mixed phase contribution, provides a reasonably good approximation to the measured distribution, apart from small deviations in the tails (cf. Fig. [8]).

C. Shape transitions

In Ref. [18], Neuhaus and Hager addressed the severe problem of slowing down in simulations of first-order transitions in the multicanonical ensemble. This was exemplified by studying the two-dimensional Ising model
on $L \times L$ square lattices (periodic boundary conditions) below the critical bulk temperature on the whole magnetization interval $[-L^2, L^2]$ whereby the sampling of configurations with magnetization $M = \sum_i S_i$ was biased with the inverse probability distribution of the magnetization $g^{-1}(M)$. Specifically, it was found in Ref. 18 that these simulations suffered from a slowing down due to a discontinuous droplet-to-strip transition \cite{20}, i.e., $\tau \propto \exp(2R\sigma L)$, where τ is the tunneling-time between droplet and strip configurations, σ is the interfacial tension, and R was measured to be $R = 0.121(14)$. Note, that one has $R \approx 1$ for non-multicanonical simulations.

Of course, one needs a fairly good approximation to $g(M)$, in order to sample the considered Hamiltonian in the multicanonical ensemble. Within the framework of WLS one may therefore simulate the system at a certain inverse temperature β of interest by employing the flipping probability (single-spin-flip Metropolis)

$$p_{C \rightarrow C'} = \min \left[1, \frac{g(M_C)}{g(M_{C'})} \exp(-\beta \Delta E_{C' - C}) \right], \quad (13)$$

for the transition from the state C to the state C'. Each time a state with magnetization M is visited, one updates $g(M)$ according to $g(M) \rightarrow g(M) \cdot f_i$ in complete analogy to the case where $g(E)$ is used. Once this procedure has rendered $g(M)$ accurate enough, one makes a production run, where $g(M)$ is not altered anymore. Thermodynamic quantities can then be obtained by reweighting to the canonical ensemble.

For the first order interface transitions in thin Ising-films as studied here, we have found evidence, that geometrical transitions in the ensemble realized by Wang-Landau sampling in the space of magnetization, indeed hamper the simulations. While this poses no problem for the smaller systems like $D = 8$ and $L = 32$ where WLS using $g(M)$ yields very good results (cf. Fig. 5), we observe pronounced effects for the largest considered system size. This is shown in Fig. 5(b) where part of a time series is depicted which was recorded for $D = 12$ and $L = 128$ during WLS sampling in the space of total magnetization. (Note also that the slowing down is more severe in case WLS using $g(E)$ is employed for the same system size as obvious from Fig. 4.) The simulation was restricted to the interval $m = M/N \in [-0.55949, -0.45776]$ after monitoring the time series of m for a much larger interval $m \in [-0.91553, 0.10173]$ where Δs_i decreased from $5.0 \cdot 10^{-3}$ to $7.629 \cdot 10^{-8}$ over a simulation time of $1.632 \cdot 10^7$ MCS at $J/k_B T = 0.249719$. The distribution $g(M)$ was then further iterated on the interval $m \in [-0.55949, -0.45776]$ where Δs_i was refined from $1.0 \cdot 10^{-5}$ to $1.953 \cdot 10^{-8}$ within $7.27 \cdot 10^6$ MCS and finally held fixed such that the depicted time series could be recorded. Configurations were thereby monitored along the estimated position of the barrier $m \approx -103000/N = -0.523885$. Fig. 5(a) and (c) show snapshots of the two possible coexisting structures which are the three-dimensional analogs (in the presence of a surface) to the droplet and strip shapes as studied in Ref. 12. In case Wang-Landau sampling is performed in energy space, the governing mechanism of the slowing down is not determined by now. From the joint energy-order parameter distribution (Fig. 4) however, recorded for Wang-Landau sampling in the space of energy, one can at least conclude that one suffers from the fact that the ordered and the disordered phase are not distinctly separated in energy, as can be seen by inspecting the
FIG. 6: Joint energy-order parameter distribution as obtained from WLS in the space of energy for a system size of $D = 6$ and $L = 16$. The distribution was recorded using a fixed DOS $g(E)$, which was taken from an usual adaptive WLS.

FIG. 7: Logarithm of the energy density of states $\log_{10}(g(E))$ for thicknesses $D = 6, 8, 12$ and linear dimensions $L = 48, \ldots, 128$. Smaller choices for L (in case of $D = 6$ and $D = 8$) are omitted in order to preserve clarity. Also indicated is the region where E_{cut}, appearing in Eq. (11), is typically located. Here, both branches of the density of states g^{-} and g^{+}, are joined ($D = 8, 12$). In case of $D = 6$, $g(E)$ was normalized solely with respect to the ground state degeneracy.

distribution of magnetization (along lines of constant energy) which shows a noticeable three-peak structure for a range of energies e/J. Further studies are clearly necessary in order to clarify whether there are connections to droplet related phenomena.

III. SIMULATION RESULTS

A. Thermodynamic Quantities

From the simulated DOS, as depicted in Fig. 7 we have calculated the first and second moment of the energy per spin

$$\langle e^n \rangle = \frac{1}{NZ(\beta)} \sum_E E^n g(E) \exp(-\beta E),$$

and the specific heat

$$c = \frac{N}{k_BT} \left(\langle e^2 \rangle - \langle e \rangle^2 \right).$$

Furthermore, important quantities like the free energy per spin can be directly computed

$$f = -\frac{1}{N\beta} \ln Z(\beta) = -\frac{1}{N\beta} \ln \left[\sum_E g(E) e^{-\beta E} \right],$$

and the entropy per spin can be obtained from the internal energy (14) and the free energy (16)

$$s = \frac{\langle e \rangle - f}{T}.$$

By measuring microcanonical averages $\langle \cdot \rangle_E$ during the last stage of a one-dimensional random walk in energy space, where $g(E)$ is updated with the smallest increment Δs_{final} we can also compute canonical averages of the order parameter (and higher moments)

$$\langle |m|^n \rangle = \frac{1}{N} \sum_E \langle |m|^n \rangle_E g(E) e^{-\beta E}.$$

i.e.,

$$\langle |m|^n \rangle = \frac{\sum_E \langle |m|^n \rangle_E g(E) e^{-\beta E}}{\sum_E g(E) e^{-\beta E}}.$$

Thus quantities like the finite lattice susceptibility χ

$$\chi = \frac{N}{k_BT} \langle (m^2) - \langle |m| \rangle^2 \rangle,$$

as well as the fourth order cumulant U_4 on which we concentrate in the following and which is defined as

$$U_4 = 1 - \frac{\langle m^4 \rangle}{3\langle m^2 \rangle^2},$$

become accessible.

The distinctive feature of first-order phase transitions are phase coexistence and metastability. For the interface localization-delocalization transition considered here, this is reflected by jump discontinuities in the internal energy $\langle e \rangle$ as well as the (absolute) magnetization $\langle |m| \rangle$ per site, which are depicted in Figs. 9 and 10, respectively, and also by hysteresis effects encountered when heating and cooling the system as exemplified in Fig. 3. Considering the internal energy (Fig. 9) for fixed D and varying linear dimension L, one can clearly see that one actually does not observe discontinuous jumps
FIG. 8: Panel (a) shows the double Gaussian approximation to the energy probability distribution $P_{L,D}(e)$ for the system of size $L = 32$ and $D = 8$ at the finite volume transition point ($\beta_{\text{tr}}(L, D) = 0.247255(10)$) as obtained from WLS in the space of magnetization (single-spin-flip) by reweighting back to the canonical ensemble. Panel (b) shows the corresponding full joint energy-order parameter distribution $P_{L,D}(e, m)$, while (c) shows the projection onto the magnetization axis.

FIG. 9: Internal energy $\langle e \rangle$ for different linear dimensions L and film thicknesses D. Estimates for the inverse temperature $J\beta_{\text{tr}}(D) = J/k_B T_{\text{tr}}(D)$ of the triple point are indicated by arrows. The horizontal solid lines mark the value $(e^+ + 2e^-)/3$ where the curves are expected to cross. In (b) the data obtained from WLS using $g(M)$ ($D = 8$ and $L = 32$) is plotted for comparison. Here, $g(E)$ for $D = 8$ and $L = 32$ was normalized solely with respect to the ground state. Within the inverse temperature range displayed in the inset of (a), the average relative errors in $\langle e \rangle$ for $D = 6$ amount to 0.17%, 0.54%, 0.55%, 0.42%, and 0.45% for $L = 16, \ldots, 128$, respectively. For $D = 8$ and $L = 32$ the average error amounts to 0.18% in the range $0.2455 \leq J/k_B T \leq 0.2485$, when using $g(M)$ while it is 1.0% within the same range when using $g(E)$. Note, that for $D = 8$ and $L = 96, 128$, as well as for $D = 12$ and $L = 64$ the DOS was determined only once, hence no error bars are displayed.

of the quantities in question but a continuous behavior that sharpens to the asserted step-like behavior with increasing linear system size L. This rounding is related to the fact that a true phase transition can only occur in the thermodynamic limit, where in equilibrium, approaching the transition temperature from above, the energy of the system discontinuously jumps from e^+ (interface in the center of the film) to e^- (interface tightly bound to the wall), while for a finite volume the system may jump back and forth between the latter states and the observed equilibrium behavior is thus continuous in temperature. The rounding of the transition in finite systems can also be observed for the specific heat c depicted in Fig. 11 which exhibits narrow peaks that are remnants of the δ-function singularities one would get when differentiating the discontinuous energy in the infinite volume limit. Apart from the finite size rounding, one can see that the positions of the maxima of c and the minimum of the fourth order cumulant U_4 (Fig. 12) are systematically shifted towards higher β-values for increasing linear dimension L.

From the crossings of the energy curves for different linear dimensions L, one can get a first idea about the achieved accuracy for the different film thicknesses D, because they should cross to a very good approximation in the
This is related to the fact that for the thicknesses $D = 12$ and $L = 128$, one can estimate, that a relative error in the density of states $g(E)$ of the order $\sim 10^{-1}$ (referring to the results for the 50×50 2D Ising model in Ref. [16] this seems to be a reasonable assumption), in the narrow region corresponding to the peak of the ordered phase of the energy probability distribution, can result in a displacement $\Delta \beta$ of the peak position β_{max} of the specific heat and also of the step location of the internal energy, which is approximately of the order $\Delta \beta / \beta_{\text{max}} \sim 10^{-1}$. In case of $D = 12$ and $L = 48$, a relative deviation of this order could already be caused by a relative error in $g(E)$ which is of the order $\sim 10^{-2}$ in the above region. These considerations comply well with the observed scatter.

B. Finite size scaling

When one deals with second order phase transitions, the characteristic feature is a divergent spatial correlation length ξ at the transition point β_t (where one observes fluctuations on all length scales) implying power-law singularities in thermodynamic functions such as the correlation length, magnetization, specific heat and susceptibility. This is in sharp contrast to a first order transition where the correlation length in the coexisting pure phases remains finite and concerning finite size scaling, we thus restrict ourselves here to $D = 6$, where we have reliable error estimates.

Exponential corrections to the crossing points are presumably much smaller than the scatter in the energy crossings for $D \geq 8$ and one may therefore conclude that the deviations in the crossings for $D \geq 8$ are not due to corrections to scaling, but reveal the actual error in the density of states for this region. This is also the case for the other quantities like the specific heat for example (Fig. 11(b)-(c)). Thus, the analysis of the systems with larger thicknesses $D = 8$ and $D = 12$ is certainly more difficult and less accurate.

One can however roughly estimate the order of magnitude of the latter uncontrolled error, which also serves to support the above picture. For example, from the density of states of the largest system $(D = 12$ and $L = 128$), one can estimate, that a relative error in the density of states $g(E)$ of the order $\sim 10^{-1}$ (referring to the results for the 50×50 2D Ising model in Ref. [16] this seems to be a reasonable assumption), in the narrow region corresponding to the peak of the ordered phase of the energy probability distribution, can result in a displacement $\Delta \beta$ of the peak position β_{max} of the specific heat and also of the step location of the internal energy, which is approximately of the order $\Delta \beta / \beta_{\text{max}} \sim 10^{-1}$. In case of $D = 12$ and $L = 48$, a relative deviation of this order could already be caused by a relative error in $g(E)$ which is of the order $\sim 10^{-2}$ in the above region. These considerations comply well with the observed scatter.

FIG. 10: Average absolute magnetization per spin $\langle |m| \rangle$ of a thin Ising film for different linear dimensions L and film thicknesses D. Within the inverse temperature range displayed in the inset of (a), the average relative errors in $\langle |m| \rangle$ for $D = 6$ amount to 1.0%, 5.2%, 6.3%, 6.1%, and 9.3% for $L = 16, \ldots, 128$, respectively.

Point [21]

$$\langle \beta_t(D), (e^+ + 2e^-)/3, \rangle$$

where $\beta_t(D)$ is the infinite system transition point. Hence, the crossing points for different L

$$\langle e(\beta_{\text{cross}}, L, D) \rangle = \langle e(\beta_{\text{cross}}, L', D) \rangle,$$

actually provide an estimator for the infinite system transition temperature, which is expected to deviate from $\beta_t(D)$ only by an amount exponentially small in system size [21]. As can be seen from the inset of Fig. 10(a) in case of $D = 6$, the various crossings are indeed scattered in a narrow region around the extrapolated infinite volume transition point for $L \geq 32$. For smaller values of L exponential corrections still make a noticeable contribution. For the larger thicknesses $D \geq 8$ the region where the energy curves cross is noticeably larger. Particularly, one obtains that the errors resulting from averaging over different runs are too small to fully account for the deviations (excluding $L = 32$ for which $g(M)$ was employed). This is related to the fact that for the thicknesses $D = 8$ and $D = 12$ only a single run was performed over the entire energy range [10] while further runs were restricted to the mixed phase region in between the peaks, because the slowing down, as described in the preceding subsection, was not foreseen. When one uses the normalization condition [11], the proper strategy would certainly be to enhance the simulational effort in the pure phases, down to the ground state and up to $E = 0$, since the reference density of states is known for $T = 0$ and $\beta = 0$. This is necessary, in order to minimize the accumulation of errors in the density of states, since the Wang-Landau method and similar adaptive algorithms, do in general not exhibit an error distribution that is flat in energy [10]. Hence, for $D = 8$ (excluding the simulation using $g(M)$) and $D = 12$, we believe the true errors to be larger than the error bars displayed in Figs. 10(b)-(c), 12(b), 11(b)-(c) and when quantitatively referring to errors of the thermodynamic quantities, we thus restrict ourselves here to $D = 6$, where we have reliable error estimates.

D
where \(c \) denotes the infinite-lattice specific heat. Since one has phase coexistence at a first-order transition, the probability distribution of the energy will be double peaked at the transition point \(\beta_{tr}(D) = 1/k_B T_{tr}(D) \), where \(\langle e \rangle \) jumps from \(e^- \) (low energy phases, interface at one of the two walls) to \(e^+ \) (single high energy phase, interface centered in the middle of the film), i.e., the free energy branches \(f^\pm \) intersect at a finite angle in the infinite system, as can be seen from Fig. 13(a), when inspecting the curves around the transition point (cf. also Fig 3(b)) It is essentially this non-analyticity in the free energy, which gives rise to the discontinuous behavior of the internal energy. In a finite system however, the free energy remains differentiable and the intersection is rounded.

Hence, at the transition point, \(P_{L,D}(e) \) is a superposition of two Gaussians centered at \(\langle e \rangle = e^\pm \), while slightly away from the transition at \(T = T_{tr} + \Delta T \) they are centered at energies \(e^\pm + c^\pm \Delta T \), where \(c^\pm \) are the specific heats in the disordered (+) and ordered phases.
\[P_{L,D}(e) = A \left[\frac{a^+}{\sqrt{c^+}} \exp \left[-\frac{(e - (e^+ + e^- + \Delta T))^2}{2k_B T^2 c^+} \right] \right] + \frac{a^-}{\sqrt{c^-}} \exp \left[-\frac{(e - (e^- + e^+ - \Delta T))^2}{2k_B T^2 c^-} \right], \]

where the weights \(a^\pm \) are given by
\[a^\pm = q^\pm \exp \left[\pm \frac{f^+ - f^-}{2k_B T} L^2 D \right], \]
and \(A \) reads
\[A = \exp \left[\frac{(f^+ + f^-)}{2k_B T} L^2 D \right] \sqrt{\frac{L^2 D}{2\pi k_B T^2}}. \]

Since we have a single high energy phase and two low energy ordered phases we set \(q^+ = 1 \) and \(q^- \equiv q = 2 \) in the following. At the transition all phases have equal weight \(q \) such that the area under the peak at \(e^- \) is \(q \) times the area under the peak at \(e^+ \) which is satisfied by Eq. (25). Within the framework of the Ansatz (25) one then proceeds by calculating the energy moments as usual via (22)

\[\langle e^n \rangle = \frac{\int \text{d}e e^n P_{L,D}(e')}{\int \text{d}e' P_{L,D}(e')} . \]

Computing then \(\langle e \rangle \) at the transition point by means of Eq. (28) we obtain
\[\langle e \rangle = \frac{e^+ + qe^-}{1 + q}, \]

(horizontal lines in Fig. 4), which is exact, apart from exponential corrections due to mixed phase contributions which are neglected in the double Gaussian approximation. Upon using the fluctuation relation (15) or \(c = (\langle e \rangle)/dT \) in conjunction with Eq. (28) one can calculate the specific heat to leading order
\[c = \frac{a^+ c^+ + a^- c^-}{a^+ + a^-} + \frac{[e^+ - e^- + (e^+ - e^-)\Delta T]^2}{(a^+ + a^-)^2} \frac{a^+ a^-}{k_B T^2} L^2 D \]

which is seen to take its maximum for \(a^+ = a^- \) in Eq. (25). The position of the latter is thereby shifted away from the infinite lattices transition temperature by an amount of
\[\Delta T = T_{c\text{max}}(D,L) - T_{\text{tr}}(D) = k_B T_{\text{tr}} \frac{\ln q}{\Delta c D L^2}, \]

and the height of the peak is found to be
\[c_{\text{max}} = \frac{e^+ + e^-}{2} + \frac{\Delta e^2 D}{4k_B T_{\text{tr}}^2} L^2, \]

Gaussians is then weighted by Boltzmann factors of the corresponding free energies \(f^\pm \), and one thus arrives at
\[\beta_{c\text{max}}(D,L) = \beta_{\text{tr}}(D) - \frac{\ln 2}{\Delta c D L^2}. \]

Thus, the inverse transition temperature \(\beta_{c\text{max}}(D) \) at which the specific heat peaks, provides a definition for a finite-lattice (pseudo) transition temperature from which the infinite-lattice transition temperature can be estimated via finite size scaling, i.e., by extrapolating \(L \rightarrow \infty \).

A similar argumentation applies to the distribution of the order parameter \(P_{L,D}(m) \) yielding the same scaling behavior for the susceptibility \(\chi \), i.e.

\[\beta_{\chi\text{max}}(D,L) = \beta_{\text{tr}}(D) \propto (L^2 D)^{-1}, \]

and one can show that the fourth order cumulant \(U_4 \) (Fig. 12) takes a minimum value at an inverse temperature \(\beta_{U_4\text{min}}(D,L) \) which is again shifted

\[\beta_{U_4\text{min}}(D,L) - \beta_{\text{tr}}(D) \propto (L^2 D)^{-1}, \]

while the minimum \(U_4^{\text{min}} \) obeys
\[U_4^{\text{min}} \propto -L^2 D. \]

Furthermore it was shown (22) that the shift in the crossing points of the cumulants for different system sizes is proportional to \(N^{-2} \), which is negligibly small on the scale of \(N = L^2 D \).

Fig. 14(b) now shows the maximum values of the response functions \(c_{\text{max}}, \chi_{\text{max}}, \) and the minimum \(U_4^{\text{min}} \) of the cumulant as function of \(1/L^2 \) for the three different thicknesses \(D = 6,8,12 \). As can be seen from the plots, the data comply well with the behavior predicted by expressions (32), (33) and (34). Considering the fourth order cumulant \(U_4 \) in case of \(D = 6 \), one observes that sub-leading corrections to scaling are still present for the smaller linear dimensions \(L \), but the expected linear behavior in \(L^2 \) is born out for the three largest choices of \(L \).

The definition for the finite lattice transition temperature considered so far, e.g. Eq. (34), involve leading order corrections of \(1/L^2 \). An alternative definition of the transition temperature which has the additional benefit that
the latter corrections are absent was given in Ref. \[26\]. Here, it is utilized that at the infinite-lattice transition point \(\beta_{\text{tr}}(D)\) all phases coexist which implies that the sum of the weights of the \(q\) ordered phases equals \(q\) times the weight of the disordered phase, i.e.,

\[
R(\beta_{\text{ew}}, L, D) \equiv \frac{\sum_{e \leq e_{\text{cut}}} P_{L,D}(e, \beta_{\text{ew}})}{\sum_{e > e_{\text{cut}}} P_{L,D}(e, \beta_{\text{ew}})} = q, \tag{38}
\]

where \(P_{L,D}(e)\) is the (finite-size) energy probability distribution, and \(\beta_{\text{ew}}(D, L)\) differs from \(\beta_{\text{tr}}(D)\) only by corrections exponentially small in system size. The energy \(e_{\text{cut}}\) appearing in Eq. (38) is taken to be the internal energy at the temperature where the specific heat is maximal \[24\].

C. Transition temperatures

Now, we can extract the infinite volume transition point \(\beta_{\text{tr}}(D)\) from the finite size data, i.e., as Eqs. (38) and (39) suggests by fitting the peak positions for fixed \(D\) to

\[
\beta_{\text{max}, \min}(D, L) = \beta_{\text{max}, \min}(D, \infty) + \frac{a}{L^2}, \tag{39}
\]

where \(\beta_{\text{max}, \min}(D, L)\) stands for the location of the maximum of the specific heat \(\beta_{\text{ew}}(D, L)\) and the location of the minimum \(\beta_{\text{upin}}(D, L)\) of the fourth order cumulant at finite \(L\), while \(\beta_{\text{max}, \min}(D, \infty)\) denotes the infinite volume limit \((L \to \infty)\) of the corresponding inverse temperatures, which is an estimate of the infinite system transition point \(\beta_{\text{tr}}(D)\). Alternatively, we have also employed the finite volume estimator \(\beta_{\text{ew}}(D, L)\) of the transition point, as defined by the condition (38).
Table II: Estimates for the latent heats $\Delta c(D)$ and the inverse transition temperatures of the first order interface localization-delocalization transition for different film thicknesses D. $\beta_{\text{max}}(D, \infty)$ and $\beta_{\text{LP}}(D, \infty)$ are the estimates of the transition point $\beta_{tr}(D)$ originating from an extrapolation of peak positions as described in the text, while $\beta_{tr}(D, \infty)$ denotes the estimate from the equal weight rule 13. The final estimate of the inverse temperature $\beta_{tr}(D)$ of the triple point is stated in the last column.

D	$\Delta c(D)/J$	$\beta_{\text{max}}(D)$	$\beta_{\text{LP}}(D)$	$\beta_{\text{tr}}(D)$	$\beta_{\text{tr}}(D, \infty)$
6	0.261(6)	0.24082(2)	0.24709(3)	0.24082(4)	0.24709(3)
8	0.300(2)	0.24726(3)	0.24716(7)	0.24725(2)	0.24716(7)
12	0.236(3)	0.25115(4)	0.25109(4)	0.25117(2)	0.25109(4)

In order to determine the wetting temperature $\beta_w = \lim_{D \to \infty} \beta_{tr}(D)$ of the semi-infinite system, we have studied Hamiltonian 11 with $D = 12$ and $L = 48$ along the branch of positive bulk-magnetization at the inverse temperature $\beta = 0.251$ near the expected location of the wetting temperature $\beta_w(H_1)$. We have performed simulations for five different sets of surface fields (symmetric, i.e., $H_1 = H_D$), namely $H_1/J = -0.25, -0.125, 0, 0.125$, and 0.25, utilizing a conventional Metropolis algorithm in order to measure the surface magnetization $\langle m_1 \rangle = \langle \sum_{i \in \text{surface}} s_i \rangle / N$ using up to 10^7 MCS for averaging. This selection of surface fields allows one to reweight to all fields in the range $[-0.25J, 0.25J]$ for a range of inverse temperatures $J/\beta \in [0.249, 0.253]$. Note, that the metastability is strong enough (cf. Fig. 8) that the system remains in the ordered phase (initially all spins up) even for $H_1/J = -0.25$. According to the Young equation 24, the walls are wet by spin down, if the difference $\Delta \sigma_w$ between the surface free energy of the wall with respect to a positively magnetized bulk σ_{w+} and the surface free energy against a negatively magnetized bulk σ_{w-} exceeds the interfacial tension σ of the 3D Ising-model 25 at an infinite distance from the wall.

$$\Delta \sigma_w = \sigma_{w+} - \sigma_{w-} > \sigma$$ \hspace{1cm} (41)

By symmetry $\sigma_{w-}(H_1)$ equals $\sigma_{w+}(H_1)$, i.e., the free energy cost of a wall favoring spin up with respect to a positively magnetized bulk. Thus we can perform a polynomial fit to HP $\Delta \sigma_w$ appearing in the Young equation 11. The position of the crossing point yields the wetting temperature $J/\beta_w(H_1) = J/k_B T_w(H_1) = 0.25212(5)$.

![Image](https://example.com/image.png)
thermodynamic integration \[30\]
\[
\Delta \sigma_w = \sigma_{w+}(-H_1) - \sigma_{w+}(H_1)
= \int^{H_1}_{-H_1} dH_1' \langle m_1(H_1') \rangle_\beta, \quad H_1 = 0.25J
\] (42)
and determine the wetting temperature \(\beta_w(H_1)\) by the condition \(\Delta \sigma_w = \sigma\), which yields \(J\beta_w(H_1) = 0.25212(5)\) as depicted in Fig. 15(a).

Describing the semi-infinite system by means of the wetting film thickness \(l\) leads to the effective interface potential \(\[5\]
\[
V_{\text{eff}}(l) = a \exp(-\kappa l) - b \exp(-2\kappa l) + c \exp(-3\kappa l),
\] (43)
which has the meaning of a free energy cost when placing a (flat) interface at distance \(l\) from the wall. Upon minimizing \(V_{\text{eff}}(l)\) with respect to \(l\) one finds the equilibrium position of the interface. Eq. (43) includes only the lowest powers of \(\exp(-\kappa l)\) which are necessary to describe a first order wetting transition in the semi-infinite system. The coefficient \(a\) explicitly depends on temperature, while the temperature dependence of \(b\) and \(c\) is neglected \((c > 0\) in the following) \[37\]. All coefficients have the same magnitude as the interfacial tension between bulk phases and one finds a first order wetting transition for \(b > 0\) at \(a_w = b^2/4c\), where the interface jumps discontinuously into the bulk \(\[2\] \[31\]. Now, for a film one has an additional contribution from the second wall and the effective potential potential reads \[32\]
\[
\Delta V_{\text{eff, film}}(l) = V_{\text{eff}}(l) + V_{\text{eff}}(D - l) - 2V_{\text{eff}}(D/2)
= c \left[\tilde{m}^2(\tilde{m}^2 - r)^2 + t\tilde{m}^2 \right],
\] (44)
with
\[
r = \frac{b - 6c \exp(-\kappa D/2)}{2c},
\] (45)
and
\[
t = \frac{a - a_w - b \exp(-\kappa D/2)}{c}.
\] (46)

In Eq. (44) we have utilized the auxiliary variable
\[
\tilde{m} = 2 \exp(-\kappa D/2) \{ \cosh[\kappa (l - D/2)] - 1 \}
= \{ \exp(-\kappa D/4) \kappa (l - D/2) \}^2
+ \text{higher orders of } |l - D/2|.
\] (47)
In the film, \(r > 0\) gives rise to first order interface localization-delocalization transitions and \(t = 0\) then denotes the triple temperature. Hence, for large \(D\) we have from Eq. (46)
\[
a_{\text{tr}} = a_{\text{wet}} + b \exp(-\kappa D/2),
\] (48)
i.e., the triple temperature differs from the wetting temperature only by a term exponentially small in \(\kappa D/2\) and is larger than the wetting temperature \((b > 0)\). Within mean field theory \(\kappa\) would have to be identified with the inverse bulk correlation length \(\xi_b\) \[3\]. However, from the two-field Hamiltonian approach developed in Ref. \[33\] we know that \(\kappa/2\) has to be replaced by
\[
\kappa/2 = \frac{1}{2\xi_b} - \theta = 1 + \omega_{\text{eff}}/2,
\] (49)
where \(\omega_{\text{eff}}\) is the effective wetting parameter which becomes \(\lim_{T \to T_+} \omega_{\text{eff}} = k_b T/\pi \xi_b^2\) upon lowering the temperature \(T\) towards the wetting temperature \(T_w\) \[34\]. From a simple exponential fit of the form \((48)\) we get \(\kappa/2 = 0.440(8)\). (Note, that this has to be regarded as an effective value since we neglect any temperature dependence of \(\kappa\) within our range of triple temperatures \(\beta_{\text{tr}}(D)\)). Evaluating now \(\theta\) at \(T_w/T_{cb} = 0.88\) where we employ \(\xi_b \sim 0.88 \[28\]\), yields \(\theta \sim 1.3\), which is compatible with the values extracted for \(\theta\) by Parry et al. \[34\] and clearly differs from the value \(\theta = 1\) expected from mean-field theory. Of course, making more quantitative statements would require data from additional film thicknesses \(D\), but the above considerations clearly indicate that our data nicely supports the asserted functional dependence of \(\beta_{\text{tr}}(D)\) on \(D\), i.e., Eq. (48).

IV. CONCLUSION

We have studied the interface localization-delocalization transition in a thin Ising-film \(\[1\]\) for a choice of parameters, where the transition is pronounced first order for all studied thicknesses \(D = 6, 8,\) and \(12\). Checking for the correct behavior of the logarithm of the partition function \(\ln Z\) which should converge to \(N \ln 2\) as \(\beta \to 0\), we find reasonable agreement for \(D = 6\) within error bars (cf. Table \(\[1\]\)). In contrast, for \(D > 6\) we see rather clear deviations from the expected value with relative deviations up to \(10^{-3}\). We attribute this behavior to a slowing down encountered in the flat energy-histogram ensemble. Difficulties also arise, when one considers to sample a flat magnetization distribution, although simulation results suggest that the slowing down is less severe. Here, we find evidence for a discontinuous shape transition, as studied by Neuhaus and Hager \[18\]. For the larger thicknesses \((D > 6)\) we therefore suggest to employ an additional reference for the disordered phase (total number of states), in order to get the proper relative weight between the coexisting phases, thus correcting for the lack of tunneling events, in the late stages of the algorithm. The triple temperatures \(\beta_{\text{tr}}(D)\) of the interface localization-delocalization transition can then be determined with a relative accuracy of the order \(10^{-4}\) while the relative error in the latent heats is of the order \(10^{-2}\). The triple temperatures are seen to differ from the wetting temperature of the semi-infinite system by a term exponentially small in film thickness \(D\) as predicted by the sharp-kink approximation to the capillary wave Hamiltonian, provided the length scale
κ is identified with the results of Parry and co-workers, i.e., Eq. (49).

When one compares the present results based on Wang-Landau sampling [13, 14, 15, 16] to the first study of first order interface localization-delocalization transitions [8] where simple Metropolis and heatbath Monte Carlo algorithms were used, a major improvement of accuracy is clearly seen. On the other hand, the systematic problems due to entropic barriers described in our work show that it would be problematic to apply the Wang-Landau algorithm to larger systems than used here. Note, that the largest sizes used by us, $128 \times 128 \times 12 \sim 1.97 \cdot 10^5$ Ising spins, distinctly exceed the sizes analyzed in most previous applications of this algorithm [13, 14, 15, 16].

Acknowledgments

This work was supported in part by the Deutsche Forschungsgemeinschaft under grants No Bi314/17 and Tr6/c4. Helpful and stimulating discussions with D. P. Landau and P. Virnau are gratefully acknowledged. We thank NIC Jülich and HLR Stuttgart for a grant of computer time at the CRAY-T3E supercomputer.

[1] A. O. Parry and R. Evans, Phys. Rev. Lett. 64, 439 (1990).
[2] M. R. Swift, A. L. Owczarek, and J. O. Indekeu, Europhys. Lett. 14, 475 (1991).
[3] J. O. Indekeu, A. L. Owczarek, and M. R. Swift, Phys. Rev. Lett. 66, 2174 (1991).
[4] A. O. Parry and R. Evans, Phys. Rev. Lett. 66, 2175 (1991).
[5] A. O. Parry and R. Evans, Phys. A 181, 250 (1992).
[6] K. Binder, D. P. Landau, and A. M. Ferrenberg, Phys. Rev. Lett. 74, 298 (1995).
[7] K. Binder, D. P. Landau, and A. M. Ferrenberg, Phys. Rev. E 51, 2823 (1995).
[8] A. M. Ferrenberg, D. P. Landau, and K. Binder, Phys. Rev. E 58, 3353 (1998).
[9] M. Müller, E. V. Albano, and K. Binder, Phys. Rev. E 62, 5281 (2000).
[10] M. Hasenbusch and K. Pinn, J. Phys. A 30, 63 (1997).
[11] K. Binder, Z. Phys. B 45, 61 (1981).
[12] R. Liebmann, Z. Phys. B 45, 243 (1982).
[13] F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
[14] F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001).
[15] B. J. Schulz, K. Binder, M. Müller, and D. P. Landau, Phys. Rev. E 67, 067102 (2003).
[16] B. J. Schulz, K. Binder, and M. Müller, Int. J. Mod. Phys. C 13, 477 (2002).
[17] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys. 17, 10 (1975).
[18] T. Neuhaus and S. Hager, J. Stat. Phys. 113, 47 (2003).
[19] B. A. Berg and U. Hansmann, Phys. Rev. B 47, 497 (1993).
[20] K.-T. Leung and R. K. P. Zia, J. Phys. A 23, 4593 (1990).
[21] C. Borgs, R. Kotecky, and S. Miracle-Sole, J. Stat. Phys. 62, 529 (1991).
[22] M. M. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B 34, 1841 (1986).
[23] C. Borgs and K. Kotecky, J. Stat. Phys. 61, 79 (1990).
[24] C. Borgs and J. Z. Imbrie, Commun. Math. Phys. 123, 305 (1989).
[25] K. Vollmayer, J. D. Reger, M. Scheucher, and K. Binder, Z. Phys. B 91, 113 (1993).
[26] C. Borgs and W. Janke, Phys. Rev. Lett. 68, 1738 (1992).
[27] A. Billoire, T. Neuhaus, and B. Berg, Nucl. Phys. B 413, 795 (1994).
[28] M. Hasenbusch and K. Pinn, Phys. A 203, 189 (1994).
[29] T. Young, Philos. Trans. R. Soc. London A 305, 65 (1805).
[30] M. Müller and K. Binder, Macromolecules 31, 8323 (1998).
[31] M. Müller, K. Binder, and E. V. Albano, Phys. A 279, 188 (2000).
[32] M. Müller and K. Binder, Phys. Rev. E 63, 021602 (2001).
[33] A. O. Parry and C. J. Boulter, Physica A 218, 109 (1995).
[34] A. O. Parry, C. J. Boulter, and P. S. Swain, Phys. Rev. E 52, 5768 (1995).
[35] S. Trebst, D. A. Huse, and M. Troyer, cond-mat/0401195.
[36] Recently, an adaptive algorithm was proposed which aims at maximizing the number of round trips between both edges of an energy interval which has the additional benefit of exhibiting a flat error distribution.
[37] The description of the interface in terms of the effective interface potential V_{eff} follows from the sharp-kink approximation to the capillary wave Hamiltonian $H_{\text{eff}} = \int d\rho (\sigma/2)(\nabla)^2 + V_{\text{eff}}(\rho)$ where fluctuations of the local interface position are neglected.