Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The impact of COVID-19 on antimicrobial stewardship programme implementation in hospitals – an exploration informed by the Consolidated Framework for Implementation Research

Nortan Hashad, Derek Stewart, Dhayaneethie Perumal, Najiba Abdul Razzaq, Antonella Pia Tonna

PII: S0195-6701(22)00259-6
DOI: https://doi.org/10.1016/j.jhin.2022.08.005
Reference: YJHIN 6736

To appear in: Journal of Hospital Infection

Received Date: 28 June 2022
Revised Date: 15 August 2022
Accepted Date: 15 August 2022

Please cite this article as: Hashad N, Stewart D, Perumal D, Razzaq NA, Tonna AP, The impact of COVID-19 on antimicrobial stewardship programme implementation in hospitals – an exploration informed by the Consolidated Framework for Implementation Research, Journal of Hospital Infection, https://doi.org/10.1016/j.jhin.2022.08.005.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd on behalf of The Healthcare Infection Society.
The impact of COVID-19 on antimicrobial stewardship programme implementation in hospitals – an exploration informed by the Consolidated Framework for Implementation Research

Authors

Nortan Hashad¹, ², Derek Stewart³, Dhayaneethie Perumal⁴, Najiba Abdul Razzaq⁵, Antonella Pia Tonna²

1. Pharmacy, Higher Colleges of Technology, Dubai, United Arab Emirates
2. Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
3. College of Pharmacy, QU Health, Qatar University, Doha, Qatar
4. Commission of Academic Accreditation, Ministry of Education, Abu Dhabi, United Arab Emirates
5. Emirates Health Services, Dubai, United Arab Emirates

Corresponding author

Dr. Antonella Pia Tonna
Senior Lecturer in Clinical Pharmacy
School of Pharmacy and Life Sciences
Robert Gordon University
The Sir Ian Wood Building
Garthdee Road
Aberdeen
UK
AB10 7GJ
a.tonna@rgu.ac.uk
+44 (0)1224 262578
Fax: NA
Structured summary

Introduction and objectives

The disruption of antimicrobial stewardship programmes (ASP) caused by Coronavirus disease 2019 (COVID-19) has been recognised but not explored in-depth. This study used a theoretical, qualitative approach to understand the impact of COVID-19 on ASP implementation in hospitals.

Methods

Semi-structured online interviews, informed by the Consolidated Framework for Implementation Research (CFIR) were conducted with ASP team members and non-members in hospitals. Participants were recruited via purposeful and snowball sampling with interviews video recorded, transcribed and independently analysed by two researchers based on mapping against CFIR constructs.

Results

Thirty-one interviews were conducted across 11 hospitals. The following themes were identified; (1) increased complexity of ASP implementation and changes in prescribing behaviour influenced by COVID-19, (2) adaptations, networking and cosmopolitanism to enhance integration of COVID-19 management into ASP services and (3) adaptations and networking to support continuity of the ASP implementation process. A disruption to pre-pandemic ASP activities was reported with complexity of COVID-19 overwhelming the healthcare system. ASP team members and services showed an ability to adapt and repurpose roles to respond to the pandemic. Interventions included developing national guidelines for treatment of COVID-19 patients and contributing to guideline management and monitoring. A gradual restoration of ASP activities was perceived. Technological adaptations and enhancements in networking were reported as positive impacts of the pandemic.
Conclusion

Despite the initial disruption of ASP implementation caused by the pandemic, successful adaptation and evolvement of ASP services reflects the high value and adaptability of ASP implementation in UAE hospitals.

Keywords: Antimicrobial stewardship, CFIR, Implementation, Qualitative, COVID-19
Introduction

The disruption caused by Coronavirus disease 2019 (COVID-19) on antimicrobial stewardship programmes (ASP) has been acknowledged but not explored in-depth [1,2]. Published research addressing the impact of COVID-19 on ASP implementation, is in the form of letters [3], commentaries [2-4] or short communications [5]. A literature search retrieved one United Kingdom (UK)-based survey of all antimicrobial leads in UK hospitals. Results identified short-term disruption of ASP activities including disregarding ASP team recommendations, interrupting ASP regular activities and logistical difficulties in conducting ASP team meetings and rounds [1]. This led to a negative impact on ASP outcomes, most concerning being a global surge in antimicrobial consumption associated with the management of COVID-19 patients and subsequent emerging antimicrobial resistance [2,6]. A meta-analysis estimates that more patients have been prescribed antibiotics that are likely to have been co-infected with a bacterial infection [6].

There has also been some positive impact of the pandemic on the delivery of healthcare reported, such as an accelerated development and reform including; adopting digital healthcare solutions, adapting the role of healthcare providers, closer collaboration between private and governmental sectors and expanding the remit of primary care and family medicine [7-9]. This rapid reform has also affected ASP activities, where efforts to resume ASP practices have been described through embracing technology to facilitate ASP meetings and rounds, upgrading existing electronic health systems, increasing use of procalcitonin to differentiate between viral and bacterial infection and increased adoption of outpatient parenteral antimicrobial therapy (OPAT) [1,5]. ASP team members have efficiently contributed to the pandemic relief effort through their roles in novel antiviral clinical trials, COVID-19 disease management guideline development, repurposing prospective audit and feedback, formulary restriction and pre-authorisation to support COVID-19 patients [2,10].
To date, studies addressing different aspects of the COVID-19 impact on the healthcare system in Gulf Cooperation Council (GCC) states (Saudi Arabia, Bahrain, Kuwait, United Arab Emirates (UAE), Oman and Qatar) have been published. These include the psychological impact on healthcare workers [11,12] and clinical characteristics and outcomes of COVID-19 patients [13]. However, none has addressed the impact of COVID-19 on ASP implementation in the GCC region.

This study aimed to gain a further understanding of ASP implementation in hospitals during the pandemic while also aiming to identify facilitators and barriers to ASP implementation.

Methods

Study design

A qualitative, semi-structured interview approach was adopted.

Setting

Data generation was conducted in five of the seven UAE Emirates; Abu Dhabi, Dubai, Sharjah, Fujairah and Ras Al Khaimah.

Inclusion and exclusion criteria

Recruitment aimed to include: (1) ASP team members who were expert implementation leaders and (2) non-ASP team members who were involved with prescribing of antimicrobial therapy such as physicians, nurses and pharmacists. Governmental and private hospitals, of different sizes and funding sources, across these various Emirates, which are governed by different health authorities, were included to ensure maximum variation sampling [14].
Sampling and sample size

Purposeful sampling of ASP team leaders within each hospital was initially adopted followed by snowballing whereby participants recommended ASP members or non-members who could effectively contribute to data generation. Sampling from each hospital continued until the point of data saturation with no new emerging themes within the adopted analytical framework.

Recruitment and data generation

Purposeful sampling commenced in June 2020 and continued for seven months. Emails to ASP leaders or hospital leaders that could identify their local ASP leader were initiated by one of the authors (NAR), who co-chairs the UAE National Committee for Antimicrobial Resistance. Signed informed consent was obtained prior to commencing interviews. Interviews were conducted online, on a day and time suitable to the participants, using Zoom®, Microsoft Teams® or Blackboard Collaborate®. Interviews were conducted in English, since it is commonly used among healthcare providers, by a trained qualitative researcher (NH) with pharmacy and academic expertise. Video-recorded interviews (approximately 45 – 60 minutes) were transcribed verbatim (NH), with participants offered the opportunity to review the transcripts to enhance credibility and dependability. Any identifiable data was removed prior to data analysis to protect participants’ confidentiality.

Interview schedule development

The interview schedule was developed based on a recent systematic review mapping hospital ASP in GCC states to international standards [15] and the Consolidated Framework for Implementation Research (CFIR) [16].
CFIR was used to provide comprehensive coverage of factors, which may impact ASP implementation. This is a meta-theoretical evaluation framework that has been successfully used and increasingly reported in healthcare as a guide to evaluate different contextual factors that can impact implementation as facilitators or barriers in the pre, during and post implementation phases [17-19]. It comprises 39 constructs distributed across five domains of intervention characteristics, outer setting, inner setting, individual characteristics and process [20]. The use of CFIR allows comprehensive coverage and understanding of various contextual factors that affect implementation and further reinforces the applicability of findings [16,21].

The interview guide was designed initially based on the interview guide tool provided by the CFIR Research Team [16], and re-worded to suit ASP implementation, including input from ASP experts such as a clinical pharmacist and internal medicine physician. In this study, CFIR has been holistically integrated in a meaningful way and has underpinned all stages of research including data generation, coding, analysis and reporting of results.

Following piloting of interviews with two ASP members and two non-ASP members, minor changes were made to the interview schedules hence pilot interviews were included in the final dataset. The interview schedule included questions addressing the impact of COVID-19 on ASP implementation mapped to different CFIR constructs. Items focused on: domain (I) - intervention characteristics (impact of COVID-19 on adaptation of ASP and complexity of implementation), domain (II) - outer setting (cosmopolitanism, external networking and influence of other hospitals, including guidelines to manage patients with COVID-19), domain (III) - inner setting (updating infrastructure such as the use of technology, new practices and guidelines, impact of COVID-19 on networking and communication, changes in implementation climate and relative priority, leadership support and readiness for implementation),
domain (IV) - characteristics of individuals (Knowledge and belief about ASP) and domain (V) - process (future planning including recovery of ASP following COVID-19, engaging healthcare providers, and ASP execution within the pandemic) (see supplementary material). Probes were added to allow in-depth exploration whenever required. A reduced version of the interview schedule was used for non-ASP members based on their level of involvement in ASP development and implementation (such as the likely lack of knowledge about intervention source, cost and future planning).

Data analysis

All transcripts were inputted to NVivo® software [22] and data analysed thematically using the framework approach which comprises the following steps: transcribing, familiarising with interviews, developing an analytical framework (CFIR domains and constructs), coding, charting data to framework matrix and data interpretation [23]. CFIR domains and constructs were used deductively as an initial analytical framework for coding followed by inductive analysis based on emerging themes, identifying constructs that were facilitators or barriers to ASP implementation. Analysis was independently conducted by two researchers (NH and one other from AT, DS, DP) and disagreement resolved through discussion. Emerging themes were organised using Mind Manager® software to enhance visualisation and data analysis [24].

Ethical consideration

Ethical approval was obtained from; Robert Gordon University Research Ethics Committee (approval reference S186), Ministry of Health and Prevention (MOHAP) Research Ethics Committee (approval reference MOHAP/DXB-REC/JAANo.32/2019) and Abu Dhabi health services company (SEHA) – Research Ethics Committee (approval reference SEHA – 003). Private hospitals provided approval by email notification, without reference number.
Results

Seventeen hospitals were approached (11 governmental and six private) across UAE, 11 of which granted ethical approval, six were unresponsive with no specific pattern identified or reason for declining provided (Hospital demographics - Table I). Through purposeful sampling, 11 participants were identified as ASP leaders and were able to nominate another 29 (snowballing) who could contribute to data generation (see supplementary material for sampling strategy). Out of these 29, 21 agreed to participate and eight declined mainly due to lack of time or heavy workload. One of the 32 interviews was excluded due to recording failure. Participants were anonymised by providing identifiers based on their role description (Participants’ demographics, Table I).

The following three overarching themes were identified reflecting participants’ experience with ASP implementation during the COVID-19 pandemic; (1) increased complexity of ASP implementation and changes in prescribing behaviour influenced by COVID-19, (2) adaptations, networking and cosmopolitanism (external networking) to enhance integration of COVID-19 management in ASP services and (3) adaptations and networking to support continuity of the ASP implementation process. Within these overarching themes, participants described aspects that were mapped to multiple CFIR constructs and domains (see supplementary material). Details of the three overarching themes are presented in narrative below (CFIR constructs are emphasised in italics within the text). Themes, sub-themes along with corresponding illustrative verbatim are summarised in supplementary material.

Theme 1: Increased complexity of ASP implementation and resulting changes in prescribing behaviour influenced by COVID-19
Multiple CFIR constructs were identified within this theme, most prominent were complexity, relative priority, implementation climate, evaluation and reflection. Several ASP team members considered COVID-19 a major disrupting factor for ASP implementation due to increased complexity in maintaining ASP practices during the peak of the pandemic. The management of COVID-19 patients was perceived as highest priority for hospital leadership when compared to established pre-pandemic ASP activities. Consequently, this resulted in a change in implementation climate and the efforts of ASP team members were diverted to management of COVID-19 patients based on clinical patient needs. The majority of participants also felt that the sheer number of COVID-19 patients overwhelmed the healthcare system and diverted attention of healthcare providers away from pre-pandemic ASP activities. (Supplementary material, Quotes 1-5).

An ASP team member also noted a reduction in antibiotic sensitivity and an increased antimicrobial resistance while evaluating and reflecting on ASP implementation during the pandemic. Notably, plans for implementing new outcome measurements such as measuring antimicrobial consumption using Days of Therapy (DOT) were delayed due to the pandemic (Supplementary material, Quotes 6 and 7).

The impact of COVID-19 on antimicrobial prescribing behaviour and on prescribers’ decisions was evident where participants strongly endorsed the overwhelming increase of empirical antimicrobial prescribing for COVID-19 patients, especially when they presented with symptoms remarkably similar to septic shock. ASP team members also remarked on the fact that prescribers disregarded advice to de-escalate empirically prescribed antimicrobials (Supplementary material, Quote 8 and 9).

Several reasons were identified by participants for this sudden change in prescribers’ behaviour towards antimicrobial prescribing. Most prominent was their perception of physicians’ lack of knowledge at the
time about COVID-19, leading to indiscriminate prescribing due to concerns that secondary bacterial infection will develop (Supplementary material, Quote 10).

It was observed that physicians’ lack of understanding of this novel viral infection led to several conflicting recommendations at the start of the pandemic. According to ASP members, initial guidelines recommended antimicrobial use and this was viewed as a catalyst for increased empiric antimicrobial prescribing, again leading to changes in prescribing behaviour. Overall, patient needs including severity of illness, and the burden of COVID-19 infection on the patients were reported by many participants as a cause for prescribing antimicrobials without evidence of bacterial infection (Supplementary material, Quote 11 and 12).

Other causes identified by participants included difficulties in obtaining a microbial culture from COVID-19 patients leading to unnecessary empiric antimicrobial prescribing as well as fear of blame in case of patient deterioration, reflecting changes in prescribing behaviour (Supplementary material, Quote 13 and 14).

Despite the above reports of perceived high levels of empiric antimicrobial prescribing, there were other observed effects on antimicrobial consumption reported such as decline of antimicrobial consumption for surgical antimicrobial prophylaxis as suggested by some participants, due to cancelling of elective surgeries at the peak of the pandemic. Antimicrobial prescribing for neonates was perceived to not be influenced by the COVID-19 pandemic, due to strict isolation procedure of neonates from COVID-19 positive mothers (Supplementary material, Quote 15 and 16).
Theme 2: Adaptations, networking and cosmopolitanism (external networking) to enhance integration of COVID-19 management in ASP services

CFIR constructs identified within this theme included; *adaptability, networking and communication* and *cosmopolitanism*. Participants reported that COVID-19 was a major detractor from pre-pandemic ASP implementation. They also noted that the existing ASP structures showed capacity for *adaptability* and were repurposed to support COVID-19 relief efforts in various ways. Participants referred to the valuable contribution of ASP members in developing UAE national guidelines for management of COVID-19 patients supported by continuous meetings and consultation processes with external parties (ASP and infectious diseases experts), demonstrating *cosmopolitanism*. Furthermore, participants highlighted the important role of ASP members in *networking* and dissemination of national and hospital guidelines for management of COVID-19 patients to other hospital healthcare providers. This was based on their previous established work practice in developing and disseminating antimicrobial management guidelines as part of pre-pandemic ASP activities (Supplementary material, Quotes 17 and 18).

According to majority of ASP team members, the role of ASP team members changed compared to pre-pandemic to accommodate COVID-19 management. This role in the continuous management and monitoring of COVID-19 patients was evident throughout the interviews. Participants confirmed ASP team members’ prioritising adherence to national guidelines for management of COVID-19 patients, monitoring dose optimisation and screening for drug-drug interactions, as part of their ASP duties (Supplementary material, Quote 19).

Theme 3: Adaptations and networking to support continuity of ASP implementation process
CFIR constructs included adaptability, networking and communication, access to knowledge and information, and cosmopolitanism. Efforts to sustain and maintain ASP routine pre-pandemic activities during the pandemic were highlighted by many ASP team members. Adaptability was evident with regular face-to-face meetings being moved to online to facilitate networking and communication allowing continuity of ASP implementation. ASP team members described overwhelming numbers of patients and work overload as a hurdle to conducting regular meetings and added to the perceived complexity of maintaining previously established ASP activities during the pandemic (Supplementary material, Quotes 20).

Attempts made at adapting communication to maintain networks, that were well established pre-pandemic, were emphasized and involved the use of WhatsApp© to support conducting medical rounds. These were, however, perceived to be less effective than usual daily rounds. Participants described efforts to support maintenance of pre-pandemic ASP activities including adapting the reporting infrastructure, for example, adopting digital systems with evolution of paper forms to online pre-authorization forms to facilitate antimicrobial authorisation (Supplementary material, Quote 21 and 22).

In an effort to reduce broad-spectrum antibiotic misuse, another participant highlighted successful restriction of the use of broad-spectrum antimicrobials for COVID-19 patients based on patient needs (Supplementary material, Quote 23).

Physicians participants showed a desire to resume previously established ASP activities and this was perceived by ASP team members to be an endorsement of the importance of ASP implementation within the hospitals and physicians’ knowledge and beliefs about ASP. ASP team members considered
restoration to pre-pandemic level of ASP implementation a future priority at the time (Supplementary material, Quote 24 and 25).

Many ASP team members observed a gradual decline in antimicrobial consumption and this was perceived as evidence of success in restoration of pre-pandemic ASP activities. Multiple participants perceived that change in prescribing behaviour was due to increased access to knowledge and information about the pathophysiology of COVID-19 and antimicrobial requirements. According to those participants, this was gained through educational and awareness activities internationally and nationally as well as the contribution of ASP members to the management of COVID-19 patients. Notably, subsequent changes in the national guidelines for the management of COVID-19 patients to recommend less use of antimicrobials in COVID-19 patients supported the downward trend in antimicrobial prescribing, as perceived by some ASP members (Supplementary material, Quote 26 and 27).

CFIR constructs identified as barriers or facilitators mapped to themes and sub-themes with some illustrative quotes are illustrated in Table II.

Discussion

Statement of key findings

Participants overwhelmingly perceived pre-pandemic ASP activities to be greatly disrupted by the complexity of COVID-19 together with the acute patient needs and lack of resources. These were viewed as putting an extreme strain on the healthcare system. ASP team members showed an ability to adapt and repurpose roles, responsibilities and processes. Interventions reported included developing national guidelines for management of COVID-19 patients and contributing to guideline management and monitoring by acting as a reference point. A gradual restoration to routine pre-pandemic ASP practices
was perceived by participants, where enhancements of networking and technological adaptations were identified.

Strengths and weaknesses

To the best of our knowledge, this research is the first qualitative, theoretical exploration of the impact of COVID-19 on ASP implementation. The use of qualitative methodology generated rich data, which allowed in-depth exploration of participants’ perspective. The inclusion of maximum variation sampling and observing data saturation enhanced the rigour of findings. CFIR underpinned data generation, analysis and reporting which identified contextual factors impacted by COVID-19 and functioned as barriers or facilitators to ASP implementation. It also helped to identify CFIR constructs that impacted implementation outcomes/effectiveness such as antimicrobial consumption, prescribing broad-spectrum antimicrobials and acceptance of ASP team recommendations. One of the challenges associated with CFIR use which has been described in the literature is the presence of constructs that do not match emerging themes [25]. To overcome this challenge and to ensure inclusion of emerging themes not associated with CFIR constructs, inductive and deductive analysis were both employed. The main limitation of this study is that data were generated in UAE, which can affect transferability of data to other countries, yet detailed description of study context has been provided to allow readers to examine potential transferability to their own setting.

Interpretation of key findings

A UK based survey investigated the negative and positive impact of COVID-19 on ASP activities across hospitals [1]. Similar to our study, positive outcomes were increased adoption of technology, while negative outcomes included; interruption of ASP rounds, meetings and a decline in acceptance of ASP
team recommendations. Additionally, an increased reliance on procalcitonin testing and OPAT were reported [1], areas that were not discussed in our study.

Few CFIR constructs were identified as barriers to continuity of ASP activities during the pandemic. These were primarily complexity of the interventions, prescribing behaviour, implementation climate as well as complex patient needs and resources. ASP is a complex intervention that requires participation of individuals from multiple levels and its implementation was already challenged by multiple factors including lack of policies, limited funding, need for training and less time dedicated to ASP activities [26,27]. COVID-19 has added to this complexity given the strained healthcare system due to the pandemic being a higher priority, increasing urgency and an over-burdened healthcare task force. Within this implementation climate, changes in prescribing behaviour, led to increased empiric prescribing of broad-spectrum antimicrobial for viral infections as perceived by our study participants.

Increased empirical use of broad-spectrum antimicrobials in COVID-19 patients has been associated in the literature with causes such as lack of knowledge of COVID-19, complex pathophysiology, possibility of secondary bacterial infection and severity of illness [28]. A survey, investigating cause of antimicrobial prescribing for COVID-19 patients in Italian hospitals, identified patient related clinical and radiological findings, worsening of symptoms, intensive care admission and tracheal intubation as causes for increased empiric prescribing of broad spectrum antimicrobials as a result of COVID-19 [29]. Our study further explored the impact of the pandemic on prescribing behaviour, where fear of consequences, rapid changes in the international and national guidelines for management of COVID-19 leading to confusion and a lack of clear understanding of the disease all of which caused increased empiric prescribing as perceived by our study participants.
Ongoing research and surveillance data are expected to explore the impact of COVID-19 pandemic on other ASP outcomes such as changes to antimicrobial resistance pattern, *Clostridioides difficile* infection rates and a potential increased use of anti-fungal agents secondary to increased broad-spectrum antimicrobial usage.

Adaptability, networking and communication along with cosmopolitanism, and knowledge and belief of the importance of ASP were the constructs that emerged in our study as collectively strengthening and supporting the repurposing process of ASP personnel, processes and infrastructure, which reinforced alteration of previously discussed barriers. The literature has also discussed the adaptability capacity within ASP in response to COVID-19 where processes such as prospective audit and feedback, pre-authorisation and formulary restriction, were all employed to guide and monitor the use of novel antiviral agents, in addition to the established role of optimising the use of antimicrobials [30,31]. Further roles have been identified in the literature in response to COVID-19, which did not emerge in our study, such as ASP members’ roles in clinical trials of novel antivirals, vaccination and dealing with drug shortages [2]. Our research has clearly identified the complementary effect of cosmopolitanism with networking and communication, where networking between ASP team members and hospital healthcare providers as well as co-ordination with ASP members and healthcare leaders in different hospitals supported the rapid response and development of COVID-19 specific management guidelines. Years of experience, knowledge and the reputation of ASP, as a successful initiative to control the use of antimicrobials, facilitated this transition of role and added to the impact of ASP during the pandemic.

Further research
Operating in COVID-19 pandemic is the new reality and this triggered rapid developments in healthcare delivery and implementation of services. As such, future research should be directed towards exploring successful ASP activities that can help foster and support this novel and accelerated development.

Conclusion

Despite the initial disruption of ASP implementation given the complexity of the intervention, due to the pandemic, successful restoration and evolvement of ASP services reflects the high value and adaptability of ASP implementation in UAE hospitals. This value further motivates for investment in such programmes to ensure readiness for future pandemics and to keep pace with global accelerated developments in healthcare systems.

Acknowledgment

We would like to thank members of the UAE National Sub-committee for Antimicrobial Stewardship for their support for data generation and participants’ enrolment.

Conflict of interest statement

No conflict of interest to declare

Funding sources

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References
[1] Ashiru-Oredope D, Kerr F, Hughes S, Urch J, Lanzman M, Yau T, et al. Assessing the Impact of COVID-19 on Antimicrobial Stewardship Activities/Programs in the United Kingdom. Antibiotics (Basel) 2021;10:1–13. https://doi.org/10.3390/ANTIBIOTICS10020110.

[2] Pierce J, Stevens MP. COVID-19 and antimicrobial stewardship: lessons learned, best practices, and future implications. Int J Infect Dis 2021;113:103–8. https://doi.org/10.1016/J.IJID.2021.10.001.

[3] Martin E, Philbin M, Hughes G, Bergin C, Fe Talento A. Antimicrobial stewardship challenges and innovative initiatives in the acute hospital setting during the COVID-19 pandemic. Journal of Antimicrobial Chemotherapy 2021;76:272–5. https://doi.org/10.1093/JAC/DKAA400.

[4] Shin DH, Kang M, Song KH, Jung J, Kim ES, Kim H bin. A call for antimicrobial stewardship in patients with COVID-19: a nationwide cohort study in Korea. Clin Microbiol Infect 2021;27:653–5. https://doi.org/10.1016/J.CMI.2020.10.024.

[5] Davis MW, McManus D, Koff A, Jaszczeru GR, Malinis M, dela Cruz C, et al. Repurposing antimicrobial stewardship tools in the electronic medical record for the management of COVID-19 patients. Infect Control Hosp Epidemiol 2020;41:1335–7. https://doi.org/10.1017/ICE.2020.281.

[6] Langford BJ, So M, Raybardhan S, Leung V, Soucy JR, Westwood D, Daneman N, et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 2021;27(4):520-531. http://doi:10.1016/j.cmi.2020.12.018.

[7] Stucky CH, Brown WJ, Stucky MG. COVID 19: An unprecedented opportunity for nurse practitioners to reform healthcare and advocate for permanent full practice authority. Nurs Forum (Auckl) 2021;56:222–7. https://doi.org/10.1111/NUF.12515.

[8] Bhaduri S. Post-COVID healthcare reform in India: What to expect? J Family Med Prim Care 2020;9:5427. https://doi.org/10.4103/JFMPC.JFMPC_1548_20.

[9] Geyman JP. Beyond the COVID-19 Pandemic: The Urgent Need to Expand Primary Care and Family Medicine. Fam Med 2021;53:48–53. https://doi.org/10.22454/FAMMED.2021.709555.

[10] Borek AJ, Maitland K, McLeod M, Campbell A, Hayhoe B, Butler CC, et al. Impact of the COVID-19 Pandemic on Community Antibiotic Prescribing and Stewardship: A Qualitative Interview Study
with General Practitioners in England. Antibiotics (Basel) 2021;10.
https://doi.org/10.3390/ANTIBIOTICS10121531.

[11] Ajab S, Ádam B, Hammadi M al, Bastaki N al, al Junaibi M, al Zubaidi A, et al. Occupational Health of Frontline Healthcare Workers in the United Arab Emirates during the COVID-19 Pandemic: A Snapshot of Summer 2020. Int J Environ Res Public Health 2021;18.
https://doi.org/10.3390/IJERPH182111410.

[12] Alwaqdani N, Amer HA, Alwaqdani R, AlMansour F, Alzoman HA, Saadallah A, et al. Psychological Impact of COVID-19 Pandemic on Healthcare Workers in Riyadh, Saudi Arabia: Perceived Stress Scale Measures. Journal of Epidemiology and Global Health 2021;11:377–88.
https://doi.org/10.1007/s44197-021-00014-4.

[13] Ismail K, Bensasi H, Taha A, Nazir A, Abdelkhalek M, Mohamed W, et al. Characteristics and outcome of critically ill patients with coronavirus disease-2019 (COVID-19) pneumonia admitted to a tertiary care center in the United Arab Emirates during the first wave of the SARS-CoV-2 pandemic. A retrospective analysis. PLoS One 2021;16.
https://doi.org/10.1371/JOURNAL.PONE.0251687.

[14] Moser A, Korstjens I. Series: Practical guidance to qualitative research. Part 3: Sampling, data collection and analysis. Eur J Gen Pract 2018;24:9–18.
https://doi.org/10.1080/13814788.2017.1375091.

[15] Hashad N, Perumal D, Stewart D, Tonna AP. Mapping hospital antimicrobial stewardship programmes in the Gulf Cooperation Council states against international standards: a systematic review. J Hosp Infect 2020;106:404–18. https://doi.org/10.1016/J.JHIN.2020.09.004.

[16] The Consolidated Framework for Implementation Research – Technical Assistance for users of the CFIR framework. https://cfirguide.org/ (accessed June 18, 2022).

[17] Brook J, McGraw C. Multidisciplinary perspectives: Application of the Consolidated Framework for Implementation Research to evaluate a health coaching initiative. Health Soc Care Community 2018;26:e386–95. https://doi.org/10.1111/HSC.12536.
[18] Holden CA, Turnbull D, Frank OR, Olver I. General practice perspectives on a bowel cancer screening quality improvement intervention using the Consolidated Framework for Implementation Research. Public Health Res Pract 2021;31. https://doi.org/10.17061/PHRP30452016.

[19] O’Riordan F, Shiely F, Byrne S, Fleming A. A qualitative process evaluation of the introduction of procalcitonin testing as an antimicrobial stewardship intervention. Int J Clin Pharm 2021;43:532–40. https://doi.org/10.1007/S11096-020-01159-1.

[20] Damschroder LJ, Aron DC, Keith RE, Kirsh SR, Alexander JA, Lowery JC. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci 2009;4. https://doi.org/10.1186/1748-5908-4-50.

[21] Kirk MA, Kelley C, Yankey N, Birken SA, Abadie B, Damschroder L. A systematic review of the use of the Consolidated Framework for Implementation Research. Implementation Science 2016;11. https://doi.org/10.1186/s13012-016-0437-z.

[22] Learn More About Data Analysis Software | NVivo. https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/about/nvivo (accessed June 18, 2022).

[23] Ritchie J, Lewis J, McNaughton Nicholls C, Ormston R. Qualitative research practice: a guide for social science students and researchers. Los Angeles: SAGE; 2014.

[24] Mind Mapping Software by MindManager | MindManager https://www.mindmanager.com/en/?link=wm (accessed June 18, 2022).

[25] Hill JN, Locatelli SM, Bokhour BG, Fix GM, Solomon J, Mueller N, et al. Evaluating broad-scale system change using the Consolidated Framework for Implementation Research: challenges and strategies to overcome them. BMC Res Notes 2018;11. https://doi.org/10.1186/S13104-018-3650-9.

[26] Baraka MA, Alsultan H, Alsalam T, Alaithan H, Islam MA, Alasseri AA. Health care providers’ perceptions regarding antimicrobial stewardship programs (AMS) implementation-facilitators and challenges: a cross-sectional study in the Eastern province of Saudi Arabia. Ann Clin Microbiol Antimicrob 2019;18. https://doi.org/10.1186/S12941-019-0325-X.
[27] Mathew P, Ranjalkar J, Chandy SJ. Challenges in Implementing Antimicrobial Stewardship Programmes at Secondary Level Hospitals in India: An Exploratory Study. Front Public Health 2020;8. https://doi.org/10.3389/FPUBH.2020.493904.

[28] Owoicho O, Tapela K, Djomkam Zune AL, Nghochuzie NN, Isawumi A, Mosi L. Suboptimal antimicrobial stewardship in the COVID-19 era: is humanity staring at a postantibiotic future? Future Microbiol 2021;16:919–25. https://doi.org/10.2217/FMB-2021-0008.

[29] Colaneri M, Valsecchi P, Vecchia M, di Filippo A, Zuccaro V, Seminari E, et al. What prompts clinicians to start antibiotic treatment in COVID-19 patients? An Italian web survey helps us to understand where the doubts lie. J Glob Antimicrob Resist 2021;26:74–6. https://doi.org/10.1016/J.JGAR.2021.05.014.

[30] Mazdeyasna H, Nori P, Patel P, Doll M, Godbout E, Lee K, et al. Antimicrobial Stewardship at the Core of COVID-19 Response Efforts: Implications for Sustaining and Building Programs. Curr Infect Dis Rep 2020;22. https://doi.org/10.1007/S11908-020-00734-X.

[31] Huttner BD, Catho G, Pano-Pardo JR, Pulcini C, Schouten J. COVID-19: don’t neglect antimicrobial stewardship principles! Clin Microbiol Infect 2020;26:808–10. https://doi.org/10.1016/J.CMI.2020.04.024.
Table I. Participating hospitals’ characteristics (n = 11) and participants’ (n = 31) demographics

Hospitals’ characteristics	Number of hospital (n)
Location (Emirate)	
Abu Dhabi	4
Dubai	3
Sharjah	2
Fujairah	1
Ras Al khaimah	1
Governing local health authority	
Department of Health – Abu Dhabi	4
Dubai health authority – Dubai	3
Ministry of Health and Prevention – Northern Emirates	4
Hospital funding	
Governmental	8
Private	3
Bed capacity	
< 100	2
100 – 300	6
> 300	3

Participants’ demographics	Number of participants (n)
Participant’s role description	
Clinical pharmacist	6
Clinical microbiologist	2
General practitioner	1
Intensive care unit consultant	3
Infectious diseases physician	3
Internist	1
Nephrologist	2
Nurse	3
Pharmacist	4
Quality officer	2
Surgeon	4
ASP team member	23
No	8
Gender	
Male	15
Female	16
Age (years)	
21 – 30	3
31 – 40	7
41 – 50	10
51 – 60	10
> 60	1
Country of last qualification related to profession	
Egypt	8
India	4
Iran	1
Country	Count
-------------------------------	-------
Iraq	1
Jordan	1
Lebanon	1
Saudi Arabia	1
United Arab Emirates	2
United Kingdom	8
United States of America	4

Years of experience at current hospital

Experience Range	Count
< 1	1
1 – 5	10
6 – 10	8
11 – 20	10
> 20	2
Table II. CFIR constructs identified as facilitators or barriers for ASP practice under the influence of COVID-19 pandemic mapped to their corresponding themes and sub-themes

Impact on ASP practice	CFIR Domain	CFIR Construct	Corresponding overarching theme	Corresponding subtheme	Illustrative quotes
Facilitators	Intervention characteristics	Adaptability	Theme (2)	Adaptations for ASP activities to include management of COVID-19 patients	“... [the] Antibiotic Stewardship Committee follow the adherence of the physicians to this guideline and also the clinical pharmacist provide daily rounds for the critical care cases and the ICU [Intensive care unit].” [Clinical pharmacist 6]
			Theme (3)	Adaptation of networking to facilitate continuity of ASP implementation during the pandemic	“…, everybody trying to work virtually to reduce contact with others, even our rounds, we used to do rounds, it's virtual rounds, we will do it through WhatsApp©.” [Clinical pharmacist 1]
			Theme (3)	Adaptation of pre-authorisation forms to facilitate continuity of ASP implementation during the pandemic	“First we have this pre-authorisation form.... during the COVID-19 time we change this form from paper form to electronic and it is sent through the email.” [Nephrologist 1]
Outer setting	Cosmopolitanism	Theme (3)	Cosmopolitanism and networking to support building national COVID-19 management guidelines	“Experience with ASP and having structure and having consultations and having meetings with different stakeholders really allowed us [to help in building national guidelines for COVID-19], a lot of the infectious disease people are clinical pharmacist and are actually quite solid.” [Clinical pharmacist 2]	
Inner setting	Network and communication	Theme (3)	Cosmopolitanism and networking to support building national COVID-19 management guidelines	“Many virtual conferences and virtual lectures released online at the national level and even in the international level. This help to change the mind of the physician that no need for all these antibiotics for management of COVID-19.” [Clinical pharmacist 6]	
	Access to knowledge and information	Theme (3)	Gradual decline in antimicrobial prescribing		
Characteristics of individuals	Knowledge and belief about the intervention	Theme (3)	Desire to re-establish ASP implementation	“So, my aim now is at least to go back to the level we were before and to continue the educational activities and to continue talking to our doctors of course.” [Intensive care unit consultant 2]	
-------------------------------	--	-----------	--	---	
Intervention characteristics	Complexity	Theme (1)	Disruption of ASP implementation	“I think we were not really looking at the ASP too much at this time, when we were in the peak, we were just like overwhelmed. Everybody is overwhelmed.” [Internist 1]	
		Theme (1)	Delay in ASP plans under the impact of COVID-19	“….., DOT [Days of therapy] we started actually before COVID-19 then you know during the COVID-19, there were some delay in that one. But we will come back to it soon.” [Clinical pharmacist 1]	
		Theme (1)	Changes in antimicrobial resistance patterns	“We make a very big change, especially in the multidrug resistant organism. We have [had] very big improvement but due to this pandemic we start accepting medical cases [not surgical only cases as before the pandemic] … And we start noticing the increase of certain resistance to beta lactams.” [Quality officer 1]	
Outer setting	Patient needs and resources	Theme (1)	Seriousness of illness of COVID-19 patients	“Sometimes we are using an antibiotic without evidence of bacterial infection. Just for the seriousness of the case [COVID-19 patient].” [Nephrologist 1]	
Inner setting	Implementation climate	Theme (1)	Changes in antimicrobial prescribing behaviour	“We saw a lot of doctors who were just if a patient comes with COVID-19 they would start a lot of empirical antibiotics.” [Clinical pharmacist 5]	
	Relative priority	Theme (1)	Change in priority under the impact of COVID-19 pandemic	“We haven’t been doing the ASP rounds like we used to again in terms of prioritisation, in terms of how much of your percentage [of workload] is down to ASP.” [Clinical pharmacist 2]	