Rapid Thrombolysis Protocol: Results from a Before-and-after Study

Ankur Verma1, Shivani Sarda2, Sanjay Jaiswal3, Amit Batra4, Meghna Haldar5, Wasil R Sheikh6, Amit Visen7, Palak Khanna8, Rinkey Ahuja9, Abbas A Khatail0

ABSTRACT

Objective: Intravenous thrombolysis within 4.5 hours from time of onset has proven benefit in stroke. Universal standard for the door-to-needle (DTN) time is within 60 minutes from the time of arrival of patients to the emergency department. Our rapid thrombolysis protocol (RTPr) was developed with an aim to reduce the DTN time to a minimum by modifying our stroke post-intervention processes.

Materials and methods: This before-and-after study was conducted at a single center on patients who received intravenous thrombolysis in the emergency department. Consecutive patients who were thrombolysed using our RTPr (post-intervention group) were compared to the pre-intervention group who were thrombolysed before the implementation of the protocol. The primary outcomes were DTN time, time to recovery, and modified ranking score (mRS) on discharge. Secondary outcomes were mortality, symptomatic intracerebral hemorrhage, and hospital and intensive care unit length of stay.

Results: Seventy-four patients were enrolled in each group. Mean DTN time in pre- and post-intervention group was 56.15 minutes (95% CI 49.98–62.31) and 34.91 minutes (95% CI 29.64–40.17) (p < 0.001), respectively. In pre-intervention and post-intervention groups, 43.24% (95% CI 32.57–54.59) and 41.89% (95% CI 31.32–53.26) patients, respectively, showed neurological recovery in 24 hours. About 36.49% (95% CI 26.44–47.87) in post-intervention group and 54.05% (95% CI 42.78–64.93) in post-intervention group had discharge mRS 0–2.

Conclusion: The RTPr can be adapted by clinicians and hospitals to bring down the DTN times and improve outcomes for stroke patients.

Keywords: Ischemia, Rapid thrombolysis protocol, Stroke, Thrombolysis, Tissue plasminogen activator.

Indian Journal of Critical Care Medicine (2022): 10.5005/jp-journals-10071-24217

INTRODUCTION

Background

Strokes are the second leading cause of death and third leading cause of disability across the globe.1 About 1.9 million neurons are lost every minute that an ischemic stroke is left untreated.2 Most effective therapy for acute ischemic stroke (AIS) has been intravenous thrombolysis, either as the sole post-intervention or in combination with endovascular thrombectomy.3–5 It is recommended that thrombolysis should be initiated within 60 minutes from the time of arrival to the emergency.6,7 One in six patients has a better disability outcome and 1 in 35 has a worse outcome when treated with tissue plasminogen activator (TPA) within the 3–4.5-hour window period.8 Every minute saved in reducing the onset-to-needle time that has been shown to add 1.8 days of extra healthy life to stroke patients.9 We developed our RTPr to reduce our DTN times to the minimum possible to attempt to provide the maximum benefit to patients suffering from acute ischemic stroke. The aim of our study was to investigate the impact of our RTPr on DTN times for thrombolysis and correlate it with neurological recovery. We also aimed to study the incidence of complications like mortality and symptomatic intracerebral hemorrhage (sICH). Limited data can be found regarding the impact of a stroke protocol in India.

MATERIALS AND METHODS

Study Design

This was an electronic health records (EHRs)-based before-and-after study which was approved by our institutional ethics committee. Consecutive patients with acute stroke were enrolled into the study and divided into groups. The pre-intervention group comprised of the patients who had presented with acute stroke and were subsequently thrombolysed in the emergency department (ED) before our RTPr was implemented. The post-intervention group...
Rapid Thrombolysis Protocol

Table 1: Rapid thrombolysis protocol (RTPr) versus previous protocol

RTPr	Previous protocol
EMS recognize stroke and inform emergency department (ED). Green corridor prepared.	No strict protocol regarding information to ED by EMS. No green corridor.
Family counseled regarding diagnosis, condition, and need for thrombolysis in the ambulance by EMS team.	No counseling done.
Stroke confirmed by triage nurse/emergency physician and stroke code announced.	Did not have a stroke code.
Vital signs noted, and patient shifted for computed tomography (CT) and magnetic resonance imaging (MRI). CT performed if clear neurological deficit and in window period. MRI (CT perfusion if contraindicated) performed if wake-up stroke, time of onset not known, or vague symptoms.	Patient taken to the ED and examined by the emergency physician. Neurologist called and patient seen by their team. Planned for radiology.
Family counseled regarding thrombolysis during CT/MRI and consent taken. All contraindications ruled out during radiology.	Patient shifted to CT/MRI as indicated.
Post-radiological investigation, stroke samples are collected, thrombolysis started and CT/MR angiography of neck and brain done.	Patient shifted back to ED. CT/MRI read and plan for thrombolysis made.
Patient shifted to ICU post-thrombolysis or cath laboratory if mechanical thrombectomy indicated.	Contraindications ruled out and patient thrombolysed after consent from family.
in deficit) as mentioned in the EHR. mRS at the time of discharge was collected from the EHR of the patients who underwent thrombolysis.

Outcomes
The primary outcomes were DTN time and neurological recovery. Neurological recovery was predefined as improvement of symptoms and NIHSS reduction by at least two points in ≤24 hours, >24 hours, or no recovery at all and mRS at the time of discharge. The predetermined secondary outcomes were mortality, sICH, and hospital and ICU LOS.

Primary Data Analysis
Statistical analysis was conducted using IBM SPSS version 22. Continuous variables were presented as mean and categorical variables as frequency and percentage. Multivariate analysis techniques have been used to determine the neurological recovery basis and the DTN time. Correlation between DTN time and related outcomes was calculated basis the Chi-square test. Other suitable statistical analysis methods were adopted to calculate the outcomes of the research study.

Results
The pre-intervention and post-intervention period recorded data for 74 patients each. Mean age of patients in pre-intervention stage was 62.18 years (95% CI 58.97–65.38), while in post-intervention, it was 63.58 years (95% CI 60.77–66.38). There were 82% males in the pre-intervention stage as compared to 62% males in the post-intervention stage. Table 2 enlists baseline characteristics of the patients in both the stages. In the pre-intervention group, one patient was on factor Xa inhibitor and two patients were on antiplatelet for their atrial fibrillation. In the post-intervention group, four patients were on factor Xa inhibitor and two were on anticoagulant for atrial fibrillation.

The mean DTN time was significantly reduced (p < 0.001) to 34.91 minutes (95% CI 29.64–40.17) in the post-intervention arm. In the post-intervention arm, 51.35% patients (95% CI 40.18–62.39) had DTN time of up to 30 minutes, while 17.57% patients (95% CI 10.56–27.77) underwent thrombolysis within 30 minutes of arrival in pre-intervention group. In pre-intervention group, 33.78% (95% CI 24.05–45.12) patients were thrombolysed within 45 minutes of arrival, while 28.38% (95% CI 19.37–39.52) patients were thrombolysed after 60 minutes of arrival. In post-intervention group, 81.08% patients (95% CI 70.71–88.38) were thrombolysed within 30 minutes of arrival in pre-intervention group. In pre-intervention group, 52.50% (95% CI 37.50–67.06) patients who had a discharge mRS of 0–2 were thrombolysed within 30 minutes, while 29.63% (95% CI 15.85–48.48) patients with mRS of 0–2 in the post-intervention group were thrombolysed within 30 minutes of arrival in post-intervention group. In pre-intervention group, 75% (95% CI 46.77–91.11) exhibited neurological recovery in 24 hours. Out of the patients who were thrombolysed within 30 minutes in pre-intervention group, 75% (95% CI 46.77–91.11) exhibited neurological recovery in 24 hours. Out of the patients who were thrombolysed within 30 minutes of arrival in post-intervention group, 48.65% (95% CI 33.45–64.11) patients showed neurological recovery in 24 hours. In the pre-intervention group, 21.62% (95% CI 13.77–32.27) patients had no neurological recovery at the time of discharge, while 25.68% patients (95% CI 17.10–36.65) in post-intervention group had no neurological recovery at the time of discharge. In pre-intervention group, 87.50% (95% CI 63.98–96.50) patients who had no neurological recovery had DTN of >30 minutes, while 43.75% patients (95% CI 23.10–66.82) had DTN of >60 minutes. In post-intervention group, 57.89% (95% CI 36.28–76.86) patients with no neurological recovery were thrombolysed after 30 minutes, while 15.79% patients (95% CI 5.52–37.57) had DTN of >60 minutes.

Mean discharge mRS in pre-intervention and post-intervention groups was 2.69 (95% CI 2.36–3.01) and 2.5 (95% CI 2.11–2.88), respectively. At discharge, 36.49% (OR 3.54, 95% CI 26.44–47.87) in the pre-intervention group had an mRS of 0–2, while 54.05% (OR 1.11, 95% CI 42.78–64.93) in the post-intervention arm had an mRS of 0–2. In the post-intervention group, 52.50% (95% CI 37.50–67.06) patients who had a discharge mRS of 0–2 were thrombolysed within 30 minutes, while 29.63% (95% CI 15.85–48.48) patients with mRS of 0–2 in the pre-intervention group were thrombolysed within 30 minutes.

Three patients (4.05%, 95% CI 1.39–11.25) suffered mortality in pre-intervention group, while two patients (2.70%, 95% CI 0.74–9.33) had mortality in post-intervention group. One patient in each group suffered sICH.

![Fig. 1: Patients thrombolysed in various time intervals—pre-intervention versus post-intervention group](image-url)
Mean ICU LOS was 4.71 days (95% CI 3.66–5.75) and 4.74 days (95% CI 3.73–6.10) in pre-intervention and post-intervention groups, respectively. Average hospital LOS was 9.42 days (95% CI 7.60–11.23) and 10.15 days (95% CI 7.99–12.30) in pre-intervention and post-intervention arms, respectively. In pre-intervention group, 10.81% (95% CI 5.58–19.91) of patients underwent endovascular mechanical thrombectomy (EVT), while 9.46% (95% CI 4.66–18.26) of patients underwent thrombectomy in the post-intervention group. Reasons for prolonged DTN of >60 minutes in post-intervention group are listed in Table 3. All outcomes are tabulated in Table 4.

DISCUSSION

It is well known that the benefit of intravenous thrombolysis in acute stroke is time-dependent. A DTN time of ≤60 minutes is the internationally recognized guideline. Studies have shown that despite guidelines, only one in three stroke patients receive intravenous thrombolysis. There have been strategies implemented in different healthcare settings across the world to shorten DTN times well below the recommended 60 minutes. Heikkilä et al. demonstrated that the DTN time could be brought down to a median time of 20 minutes. Similarly, Zinkstok et al. brought down the average DTN time to less than 30 minutes after implementing their ABC protocol. Our study found that by using our protocol, the mean DTN time was reduced by 22 minutes with the fastest DTN being 6 minutes. Reducing the DTN times have been shown to improve outcomes (mRS ≤2) in more patients than otherwise. In our study, more patients were discharged with an mRS of 0–2, when the RTPr was used. Patients who received thrombolysis within 30 minutes had a higher probability of a favorable outcome (mRS ≤2) at discharge than those thrombolysed beyond 30 minutes. Kim et al., in their study, did not find any changes in the mRS of patients discharged, but DTN times were significantly reduced. There was no difference in the number of patients who had neurological recovery within 24 hours of thrombolysis between the two groups. But, in both the groups, majority of patients who had neurological recovery within 24 hours had a DTN ≤30 minutes. On the other hand, most of the patients who did not have neurological recovery were thrombolysed beyond 30 minutes. There was no statistical difference in the ICU and hospital LOS and incidence of sICH in both the groups. Traditionally, the onset of symptom to treatment time was 3 hours. This window has now been extended up to 4.5 hours. The European Cooperative Acute Stroke Study (ECASS) group demonstrated in their study that intravenous alteplase can be safely administered to patients with an extended window period of 4.5 hours. In our study, the median onset-to-treatment times was reduced from 150 to 113.5 minutes.

About 10.81 and 9.46% patients in the pre-intervention and post-intervention groups, respectively, underwent endovascular mechanical thrombectomy post-thrombolysis. Studies have shown EVT in addition to thrombolysis to have beneficial effects on patients when onset-to-treatment times are minimized. Through multiple randomized controlled trials, it has been established that the combination of medical thrombolysis and EVT for large vessel occlusions is a superior treatment regimen as compared to thrombolysis alone when initiated within 6 hours of symptom onset. Patients who go to sleep with no neurological symptoms and wake up with deficits pose a unique dilemma in the management strategies. The “wake-up strokes” have an incidence rate of about 15–25% of all AIS patients. Recent studies have established that the window period for EVT can be extended up to 16–24 hours. The selection is based on imaging which shows a salvageable penumbra or a mismatch between neurological deficit and size of infarct. This is beneficial for patients who suffer from “wake-up” strokes and may not be a candidate for thrombolytic therapy.

Table 3: Reason for prolonged (>60 minutes) door-to-needle (DTN) time in the post-intervention group

Reason for prolonged DTN time >60 minutes	Post-intervention group (n = 11)
Unstable patients requiring stabilization	2 (18.2)
Delayed decision by physician	1 (9.1)
Delayed consent from family	2 (18.2)
Unclear symptoms	4 (36.3)
Wait for coagulation profile	1 (9.1)
Asymptomatic patient who developed symptoms after arrival to ED	1 (9.1)

Table 4: Study outcomes

	Pre-intervention (95% CI)	Post-intervention (95% CI)
Mean DTN (minutes)	56.15 (49.98–62.31)	34.91 (29.64–40.17)
Mean onset-to-needle time (minutes)	150.14 (136.09–164.18)	123.11 (108.62–137.59)
DTN ≤30 minutes (%)	17.57 (10.56–27.77)	51.35 (40.18–62.39)
DTN ≤45 minutes (%)	33.78 (24.05–45.12)	81.08 (70.71–88.38)
DTN >60 minutes (%)	28.38 (19.37–39.52)	9.46 (4.66–18.26)
Neurological recovery ≤24 hours (%)	43.24 (32.57–54.59)	41.89 (31.32–53.26)
No recovery (%)	21.62 (13.77–32.27)	25.68 (17.10–36.65)
Mean mRS at discharge	2.69 (2.36–3.01)	2.5 (2.11–2.88)
Patients with mRS 0–2 at discharge (%)	36.49 (26.44–47.87)	54.05 (42.78–64.93)
Patients with mRS 0–2 thrombolysed ≤30 minutes (%)	29.63 (15.85–48.48)	52.50 (37.50–67.06)
Mortality (%)	4.05 (1.39–11.25)	2.70 (0.74–9.33)
sICH (%)	1.35 (0.24–7.83)	1.35 (0.24–7.83)
Mean ICU LOS (days)	4.71 (3.66–5.75)	4.74 (3.73–6.10)
Mean hospital LOS (days)	9.42 (7.60–11.23)	10.15 (7.99–12.30)
“Stroke codes” globally have shown to maximize the number of patients receiving thrombolysis and shortening the DTN times.13,22–26 Our protocol incorporated the code stroke concept and factored in the EMS, triage nurse/physician, ancillary specialties, and administration. Since the lead was with the ED, all staff members were educated and trained regarding importance of stroke, early initiation, and ownership of the patient. Radiology department was primed that code stroke patients would be the top priority and no other patient should be taken into the scanner before the stroke patient. Work space optimization, education, training, cooperation, reorganizing processes, and protocols can help improve the capacity efficiency of the ED to provide the best standard of care to patients suffering from acute ischemic strokes.27–29 We took all these factors into consideration while preparing our protocol.

Limitations
The major limitation of our study was the sample size. Our electronic health records were introduced in 2017 and the RTPr in 2018. Thus, we had only few electronic records of patients before the implementation of RTPr. To avoid confounding, we selected the same number of consecutive patients who were thrombolysed post the implementation of our protocol. If we would have taken all the patients thrombolysed since our new protocol, the results may have been different. Another limitation was that this was a single center study and our protocol will need validation in bigger multicentric studies. Since our study was quasi-experimental, there was risk of unidentified confounding and bias.

Conclusion
In our study, we found that patients who were thrombolysed within 30 minutes had better and favorable outcomes. We recommend clinicians to aspire to achieve a DTN of ≤30 minutes than the much accepted 60 minutes for acute stroke patients. The RTPr brings down the DTN time substantially for patients of acute ischemic stroke safely. This study showed better outcomes for patients who were thrombolysed using our protocol. The RTPr is a useful tool which can be adapted to bring down the DTN time and improve outcomes for stroke patients. We do recommend larger multicentric studies to validate the RTPr.

Orcid
Ankur Verma https://orcid.org/0000-0001-9524-9164
Shivani Sarda https://orcid.org/0000-0002-5526-3778
Sanjay Jaiswal https://orcid.org/0000-0001-5333-8230
Amit Batra https://orcid.org/0000-0003-4962-6090
Meghna Haldar https://orcid.org/0000-0001-8639-0510
Wasil R Sheikh https://orcid.org/0000-0001-8479-7632
Amit Vihan https://orcid.org/0000-0001-5705-266X
Palak Khanna https://orcid.org/0000-0002-0360-7006
Rinkey Ahuja https://orcid.org/0000-0002-3009-5173
Abbas A Khaiti https://orcid.org/0000-0001-8697-0742

References
1. Johnson W, Onuma O, Owolabi M, Sachdev S. Stroke: a global response is needed. Bull World Health Organ 2016;94:634–634A. DOI: 10.2471/BLT.16.181636.
2. Saver JL. Time is brain–quantified. Stroke 2006;37(1):263–266. DOI: 10.1161/01.STR.0000196957.55928.ab.
3. Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 2014;29(7):CD000213. DOI: 10.1002/14651858.CD000213.pub3.
4. Goyal M, Menon BK, van Zwan WH, Dippel DWJ, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016;387(10029):1723–1731. DOI: 10.1016/S0140-6736(16)00163-X.
5. Chugh C. Acute ischemic stroke: management approach. Indian J Crit Care Med 2019;23(Suppl. 2):S140–S146. DOI: 10.5005/jp-journals-0071-23192.
6. Fonarow GC, Smith EE, Saver JL, Reeves MJ, Hernandez AF, Peterson ED, et al. Improving door-to-needle times in acute ischemic stroke. Stroke 2011;42(10):2983–2988. DOI: 10.1161/STROKEAHA.111.621342.
7. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, et al. Stroke Thrombolysis Trials’ Collaborative Group. Effect of post-intervention delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 2014;384(9958):1929–1935. DOI: 10.1016/S0140-6736(14)60584-5.
8. Saver JL, Gormeën J, Grotta J, Liebeskind D, Lutsep H, Schwamm L, et al. Number needed to treat to benefit and to harm for intravenous tissue plasminogen activator therapy in the 3- to 4.5-hour window: joint outcome table analysis of the ECASS 3 trial. Stroke 2009;40(7):2433–2437. DOI: 10.1161/STROKEAHA.108.543561.
9. Meretoja A, Keshkharan M, Saver JL, Tatllisumak T, Parsons MW, Kaste M, et al. Stroke thrombolysis: save a minute, save a day. Stroke 2014;45(4):1053–1058. DOI: 10.1161/STROKEAHA.113.002910.
10. Mayza M, Egido JA, Ford GA, Lees KR, Mikulik R, Toni D, et al. SITS Investigators. Predicting the risk of symptomatic intracerebral hemorrhage in stroke treated with intravenous alteplase: safe Implementation of Treatments in Stroke (SITS) symptomatic intracerebral hemorrhage risk score. Stroke 2012;43(6):1524–1531. DOI: 10.1161/STROKEAHA.111.645415. [Erratum in: Stroke 2012;43(9):e102. PMID: 22442178].
11. Zinkstok SM, Beenen LF, Luite JS, Majoe CB, Nederkorn PJ, Roys YB. Thrombolysis inn stroke within 30 minutes: results of the Acute Brain Care Intervention Study. PLoS One 2011;6(10):e266668. DOI: 10.1371/journal.pone.0166668.
12. Powars WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. American Heart Association Stroke Council. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2018;49(3):e46–e110. DOI: 10.1161/STR.0000000000000158. [Erratum in: Stroke 2018;49(3):e138. Erratum in: Stroke 2018. PMID: 2936734].
13. Heikälä I, Kuusisto H, Holmberg M, Palomäki A. Fast protocol for treating acute ischemic stroke by emergency physicians. Ann Emerg Med 2019;73(2):105–112. DOI: 10.1016/j.annemergmed.2018.07.019.
14. Chen CH, Tang SC, Tsai LK, Hsieh MJ, Yeh SJ, Huang KY, et al. Stroke code improves intravenous thrombolysis administration in acute ischemic stroke. PLoS One 2014;9(8):e104862. DOI: 10.1371/journal.pone.0140862.
15. Kim SK, Lee SY, Bae HJ, Lee YS, Kim SY, Kang MJ, et al. Pre-hospital notification reduced the door-to-needle time for iv t-PA in acute ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Cochrane Database Syst Rev 2014;29(7):CD000213. DOI: 10.1002/14651858.CD000213.pub3.
16. Kim SK, Lee SY, Bae HJ, Lee YS, Kim SY, Kang MJ, et al. Pre-hospital notification reduced the door-to-needle time for iv t-PA in acute ischaemic stroke. Eur J Neurol 2009;16(12):1331–1335. DOI: 10.1111/j.1468-1331.2009.02762.x.
17. Tawil SE, Muir KW. Thrombolysis and thrombectomy for acute ischaemic stroke. Cln Med (Lond) 2017;17(2):161–165. DOI: 10.7861/clinmedicine.17-2-161.
18. Hacke W, Kaste M, Bluhmki E, Brockman Z, Dávalos A, Guidetti D, et al. ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute ischaemic stroke. N Engl J Med 2008;359(13):1317–1329. DOI: 10.1056/NEJMoa0804656.
19. Campbell BC, Mitchell PJ, Kleinig T, Dewey HM, Churilov L, Yassi N, et al. EXTEND-IA Investigators. Endovascular therapy for...
ischemic stroke with perfusion-imaging selection. N Engl J Med 2015;372(11):1009–1018. DOI: 10.1056/NEJMoa1414792.

19. Rubin MN, Barrett KM. What to do with wake-up stroke. Neurohospitalist 2015;5(3):161–172. DOI: 10.1177/1941874415576204.

20. Casetta I, Fainardi E, Saia V, Pracucci G, Padrini M, Renieri L, et al. Italian Registry of Endovascular Treatment in Acute Stroke. Endovascular thrombectomy for acute ischemic stroke beyond 6 hours from onset: a real-world experience. Stroke 2020;51(7):2051–2057. DOI: 10.1161/STROKEAHA.119.027974.

21. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. DAWN Trial Investigators. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 2018;378(1):11–21. DOI: 10.1056/NEJMoai1706442.

22. Gurav SK, Zirpe KG, Wadia RS, Naniwadekar A, Pote PU, Tungenwar A, et al. Impact of “Stroke Code”–rapid response team: an attempt to improve intravenous thrombolysis rate and to shorten door-to-needle time in acute ischemic stroke. Indian J Crit Care Med 2018;22(4):243–248. DOI: 10.4103/ijccm.IJCCM_504_17.

23. Gomez CR, Malkoff MD, Sauer CM, Tulyapronchote R, Burch CM, Banet GA. Code stroke. An attempt to shorten inhospital therapeutic delays. Stroke 1994;25(10):1920–1923. DOI: 10.1161/01.str.25.10.1920.

24. Kassardjian CD, Willems JD, Skrabka K, Nisenbaum R, Barnaby J, Kostyrko P, et al. In-patient code stroke: a quality improvement strategy to overcome knowledge-to-action gaps in response time. Stroke 2017;48(8):2176–2183. DOI: 10.1161/STROKEAHA.117.017622.

25. Lehtonen H, Lukkarinen T, Kämäräinen V, Rautava VP, Parviainen P, Palomäki A. Improving emergency department capacity efficiency. Signa Vitae 2016;12(51):52–57. DOI: 10.22514/SV121.102016.9.

26. Kankaanpää M, Raitakari M, Muukkonen L, Gustafsson S, Heitto M, Palomäki A, et al. Use of point-of-care testing and early assessment model reduces length of stay for ambulatory patients in an emergency department. Scand J Trauma Resusc Emerg Med 2016;24(1):125. DOI: 10.1186/s13049-016-0319-z.

27. Rautava VP, Palomäki E, Innamaa T, Perttu M, Lehto P, Palomäki A. Improvement in selfreported confidence in nurses’ professional skills in the emergency department. Scand J Trauma Resusc Emerg Med 2013;21:16. DOI: 10.1186/1757-7241-21-16.

28. Liang Z, Ren L, Wang T, Hu H, Li W, Wang Y, et al. Effective management of patients with acute ischemic stroke based on lean production on thrombolytic flow optimization. Australas Phys Eng Sci Med 2016;39(4):987–996. DOI: 10.1007/s13246-016-0442-1.