Screening effect of nucleon electric dipole moments in atomic system

Kota Yanase
Center for Nuclear Study, The University of Tokyo, Hongo Tokyo 113-0033, Japan
(Dated: August 11, 2020)

We examine the screening effect of nucleon electric dipole moments (EDMs) and the nuclear EDM in an atom. The interactions of the nucleon EDMs with the electrons and protons induce the atomic EDM that survives the screening thanks to the nuclear finite-size effect. Since the leading-order contribution vanishes for spin $\frac{1}{2}$ nuclei, we evaluate the next-to-leading order contribution in 199Hg. The numerical result implies a lower sensitivity of the atomic EDM on the neutron EDM in comparison with a previous calculation based on a simple expansion of the Schiff moment operator.

I. SCHIFF MOMENT

The observation of a permanent electric dipole moment (EDM) of an atom indicates the existence of parity (P) and time-reversal (T) violating interactions between constituent particles. The interaction of the atomic EDM with an external electric field causes an energy shift, which has been sought in experimental research \[1, 2\]. Although EDMs of electrons, nucleons, and the nucleus are independently coupled to the electric field, those contributions to the energy shift are partially canceled out by higher-order effects. For example, the EDM of a point-like nucleus is completely screened by the atomic EDM induced by the interaction of the nuclear EDM with surrounding electrons.

P, T-odd nucleon-nucleon (NN) interactions allow a finite-size nucleus to have a nuclear Schiff moment as well as the nuclear EDM. Since the atomic EDM generated by the Schiff moment survives the screening effect, atomic EDMs particularly of diamagnetic atoms are sensitive to P, T-odd NN interactions \[3–6\]. In this section we review the screening mechanism of the nuclear EDM induced by the P, T-odd meson-exchange NN interaction.

The Hamiltonian of an atomic system that conserves P and T symmetries is written as

$$H_{\text{atom}} = H_{\text{nucl}} + H_e,$$

$$H_e = T_e + V^{(eN)} + V^{(eN)}_{\text{even-odd}},$$

where H_{nucl} denotes P, T-even NN interactions. The electron kinetic term T_e and interactions between the electrons $V^{(eN)}$ are not relevant to the nuclear P, T violation of interest. The electric interaction between the nucleus and the electrons is

$$V^{(eN)} = -e^2 \sum_{i=1}^{Z} \sum_{a=1}^{Z} \frac{1}{r_i' - r_a},$$

where r_i' and r_a are the coordinates of the electrons and protons, respectively. If $r_i' > r_a$, each term can be expanded as

$$\frac{1}{|r_i' - r_a|} = \sum_{l=0}^{\infty} \frac{(-1)^l}{l!} \left(\frac{r_a \cdot \nabla}{r_i'} \right)^l \frac{1}{r_i'^l}.$$

The atomic Hamiltonian excludes the odd-l electron-nucleon (eN) interactions denoted by $V^{(eN)}_{\text{odd-odd}}$, which appear only if P and T symmetries are both violated in the nucleus. We treat $V^{(eN)}_{\text{odd-odd}}$ and P, T-odd interactions as perturbative interactions.

The nuclear ground state in the existence of the P, T-odd meson-exchange NN interaction $\bar{V}_{eN,NN}$ can be approximated as

$$\left| \psi_{\text{g.s.}}^{(N)} \right> = \left| \psi_{\text{g.s.}}^{(N)} \right> + \sum_{n} \frac{1}{E_{g.s.}^{(N)} - E_{n}^{(N)}} \left| \psi_{n}^{(N)} \right> \langle \psi_{n}^{(N)} | \bar{V}_{eN,NN} | \psi_{\text{g.s.}}^{(N)} \rangle,$$

where $E_{g.s.}^{(N)}$ and $E_{n}^{(N)}$ denote the energies in the ground state $\left| \psi_{\text{g.s.}}^{(N)} \right>$ and excited states $\left| \psi_{n}^{(N)} \right>$ of the nuclear Hamiltonian H_{nucl}, respectively. P, T-odd NN interactions induce the nuclear EDM defined by

$$d_{\text{nucl}} = \sum_{a=1}^{Z} e r_a,$$

where e is the elementary charge. The interaction of the nuclear EDM with an external electric field represented in Fig. 1(a) causes the energy shift given by

$$\Delta E_{a}(\bar{V}_{eN,NN}, q_{N}) = \langle \psi_{\text{g.s.}}^{(N)} | -d_{\text{nucl}} \cdot E_{\text{ext}} | \psi_{\text{g.s.}}^{(N)} \rangle.$$

This second-order effect of the P, T-odd meson-exchange NN interaction is completely screened if the nucleus is a point-like particle \[3, 4\].

P, T-odd NN interactions also induce the odd-l eN interactions, which violate P and T symmetries both in the nucleus and in the electron system. Thus, the P, T-odd meson-exchange NN interaction induces the atomic EDM defined by

$$d_{\text{atom}} = - \sum_{i=1}^{Z} e r_i',$$

where r_i' is the coordinate of the ith electron. The expression for the atomic EDM can be written as

$$d_{\text{atom}} = \sum_{a=1}^{Z} e r_a - \sum_{i=1}^{Z} e r_i',$$

where r_a is the coordinate of the ath proton. The expression for the atomic EDM can be written as

$$d_{\text{atom}} = \sum_{a=1}^{Z} e r_a - \sum_{i=1}^{Z} e r_i'.$$

The numerical result implies a lower sensitivity of the atomic EDM on the neutron EDM in comparison with a previous calculation based on a simple expansion of the Schiff moment operator.

\[yanase@cns.s.u-tokyo.ac.jp\]
which has a non-zero value only if P and T symmetries are both violated in the electron system.

The atomic EDM contributes to the energy shift in the third order of perturbation represented in Fig. 1(b) as

$$
\Delta E_3(\gamma_{NN}, qN, q_c) = \sum_m \frac{1}{E_m - E_m'} \left[\langle \bar{\psi}_{g.s.}(A) | \right]
$$

$$
\times \left[\bar{\psi}_{g.s.}(A) \right] - d_{\text{atom}} \cdot E_{\text{ext}} \left| \bar{\psi}_{m}(c) \right\rangle \left| V_{\text{odd-l}}(c) \right| \langle \bar{\psi}_{g.s.}(A) \rangle
$$

+ c.c.

The eigenstates of the atomic system are expressed except for the Clebsch-Gordan coefficients as

$$
\left| \bar{\psi}_{g.s.}(A) \right\rangle = \left| \nucl \right\rangle \otimes \left| e_{\text{NSM}}(c) \right\rangle,
$$

(10)

$$
\left| \bar{\psi}_{m}(A) \right\rangle = \left| \nucl \right\rangle \otimes \left| e_{\text{NSM}}(c) \right\rangle,
$$

(11)

where $\left| \psi_{g.s.}(c) \right\rangle$ and $\left| \psi_{m}(c) \right\rangle$ denote the ground state and excited states of the electron system described by H_e with the energies $E_{g.s.}^{(c)}$ and $E_{m}^{(c)}$, respectively.

The screening effect of the nuclear EDM is demonstrated by employing a Hermitian operator

$$
U_{\text{nucl}} = \frac{1}{Ze} d_{\text{nucl}} \sum_i Z_i \nabla_i^2,
$$

(12)

where

$$
\langle d_{\text{nucl}} \rangle = \left\langle \bar{\psi}_{g.s.}(A) \right| d_{\text{nucl}} \left| \bar{\psi}_{g.s.}(A) \right\rangle.
$$

(13)

The external interaction of the nuclear EDM is transformed as

$$
\left\langle \bar{\psi}_{g.s.}(A) \right| - d_{\text{nucl}} \cdot E_{\text{ext}} \left| \bar{\psi}_{g.s.}(A) \right\rangle
$$

$$
= i\left\langle \bar{\psi}_{g.s.}(A) \right| U_{\text{nucl}} - d_{\text{atom}} \cdot E_{\text{ext}} \left| \bar{\psi}_{g.s.}(A) \right\rangle,
$$

(14)

and the interaction of the nuclear EDM with the electrons corresponding to the $l = 1$ component in Eq. (13) is also transformed as

$$
\left\langle \bar{\psi}_{m}(A) \right| V_{l=1} \left| \bar{\psi}_{g.s.}(A) \right\rangle
$$

$$
= i\left\langle \bar{\psi}_{m}(A) \right| U_{\text{nucl}} - d_{\text{atom}} \cdot E_{\text{ext}} \left| \bar{\psi}_{g.s.}(A) \right\rangle
$$

$$
- i\left\langle \bar{\psi}_{m}(A) \right| U_{\text{nucl}} - d_{\text{atom}} \cdot E_{\text{ext}} \left| \bar{\psi}_{g.s.}(A) \right\rangle.
$$

(15)

Although the same transformations are realized even if one adopts

$$
U_{\nucl}^i = \frac{1}{Ze} d_{\text{nucl}} \sum_i Z_i \nabla_i^2
$$

(16)

instead of U_{nucl}, the resulting nuclear moment is a more complicated two-body operator than the Schiff moment.

Using these transformations, one obtains

$$
\Delta E_3(\gamma_{NN}, qN, q_c) = -\Delta E_2(\gamma_{NN}, qN)
$$

$$
+ \sum_m \frac{1}{E_m - E_m'} \left[\left\langle \bar{\psi}_{g.s.}(A) \right| - d_{\text{atom}} \cdot E_{\text{ext}} \left| \bar{\psi}_{m}(c) \right\rangle \left\langle \bar{\psi}_{m}(c) \right| V_{\text{NSM}} \left| \psi_{m}(c) \right\rangle
$$

(17)

$$
+ c.c. \right].
$$

The first term cancels out the second-order effect. Considering $l \leq 3$, the remaining e^3 interaction violating P and T symmetries in the electron system is

$$
\left\langle \bar{\psi}_{m}(c) \right| V_{\text{NSM}} \left| \psi_{m}(c) \right\rangle
$$

$$
= \left\langle \bar{\psi}_{m}(c) \right| V_{l=3} \left| \psi_{m}(c) \right\rangle
$$

$$
- i\left\langle \bar{\psi}_{m}(c) \right| U_{\text{nucl}} \left| V_{l=2} \right| \left| \psi_{m}(c) \right\rangle
$$

$$
= \left\langle \bar{\psi}_{m}(c) \right| - 4\pi e \sum_i Z_i \nabla_i^2 \delta(r_i) \left| \psi_{m}(c) \right\rangle.
$$

(17)

Here, nuclear rank 3 operators are omitted because those interactions do not arise in nuclei with a spin of $\frac{1}{2}$ such as 129Xe, 199Hg, and 225Ra. The rank 1 tensor S_{short} is the expectation value of the nuclear Schiff moment, which is calculated by

$$
S_{\text{short}} = \sum_n \frac{1}{E_{g.s.} - E_{g.s.}'(N)} \left\langle \bar{\psi}_{g.s.}(N) \right| \frac{1}{E_{g.s.} - E_{g.s.}'(N)} \times \left| \psi_{g.s.}(N) \right\rangle \left| \psi_{g.s.}(N) \right\rangle.
$$

(19)

The Schiff moments of actinide nuclei would be enhanced thanks to octupole correlations and parity doubling of the ground states. It is expected from recent nuclear many-body calculations that the Schiff moment of 225Ra is greater than that of 199Hg by orders of magnitude, although the uncertainty is still large.
The explicit form of the Schiff moment operator is

\[S_k = \frac{1}{10} e \sum_{a=1}^{Z} \left[r_a^2 a_{k, a} + \frac{5}{3} r_{a, k} \langle r^2 \rangle_{\text{ch}} - \frac{4}{3} r_{a, j} \langle Q_{jk} \rangle_{\text{ch}} \right], \]

(20)

where the charge mean values are defined by

\[\langle r^2 \rangle_{\text{ch}} = \frac{1}{Z} \sum_{n=1}^{Z} \langle \psi^{(N)}_{\text{g.s.}} | r_a^2 | \psi^{(N)}_{\text{g.s.}} \rangle \]

(21)

\[\langle Q_{jk} \rangle_{\text{ch}} = \frac{1}{Z} \sum_{n=1}^{Z} \langle \psi^{(N)}_{\text{g.s.}} | Q_{a, jk} | \psi^{(N)}_{\text{g.s.}} \rangle, \]

(22)

and

\[Q_a^{(2)} = \sqrt{\frac{3}{2}} [r_a \otimes r_a]^{(2)} \]

(23)

is the quadrupole moment of proton. Since the \(P, T \)-odd meson-exchange \(NN \) interaction is scalar, only the \(z \)-component \(S_z \) can have non-zero values. The third term of the Schiff moment operator (20) must vanish in spin \(\frac{1}{2} \) nuclei.

In conclusion of this section, the \(P, T \)-odd meson-exchange \(NN \) interaction induces the atomic EDM as well as the nuclear EDM. The energy shifts due to the interactions of the nuclear EDM and atomic EDM with an external electric field are partially canceled out each other. The remaining contribution is given by

\[\Delta E_2(\tilde{T}, N, q_N) = \sum_{n=1}^{A} \langle \psi^{(A)}_{\text{g.s.}} | -d_{\text{atom}} \cdot E_{\text{ext}} | \psi^{(A)}_{\text{g.s.}} \rangle \]

(24)

where the interaction of the Schiff moment with the electrons denoted by \(V_{\text{NSM}} \) induces the atomic EDM that survives the screening. The third-order process is illustrated in Fig. 2.

II. NUCLEON EDM

There are several attempts to identify the leading-order contribution of the nucleon EDM to the atomic EDM. In particular, the Schiff moment of \(^{199}\text{Hg}\) related to the nucleon EDM was computed in the random phase approximation (RPA). Using their result, an upper bound on the neutron EDM was evaluated from the experimental limit on the atomic EDM as \(d_n < 1.6 \times 10^{-26} \text{e} \cdot \text{cm} \). This constraint is competitive with the result of a recent direct measurement \(d_n < 1.8 \times 10^{-26} \text{e} \cdot \text{cm} \).

However, the RPA calculation is based on a simple expansion of the Schiff moment operator. That approach fails to explain the relation between the Schiff moment and nucleon EDM interactions. In this section we examine the screening effect of nucleon EDMs in an atom. The nuclear EDM interactions with the electrons induce the atomic EDM that causes the screening.

Figure 3(a) shows the nucleon EDM interaction with an external electric field, which contribute to the energy shift as

\[\Delta E_1(d_N) = \sum_{a=1}^{A} \langle \psi^{(A)}_{\text{g.s.}} | -d_a \cdot E_{\text{ext}} | \psi^{(A)}_{\text{g.s.}} \rangle, \]

(25)

where \(d_a \) denotes the nucleon EDMs. For a point-like nucleus, this first-order contribution is completely screened even if the nucleons are relativistic.

The second-order effect represented in Fig. 3(b) is given by

\[\Delta E_2(d_N, q_e) = \sum_{m} \frac{1}{E^{(e)}_{\text{g.s.}} - E^{(e)}_{\text{m}}} \times \langle \psi^{(A)}_{\text{g.s.}} | -d_{\text{atom}} \cdot E_{\text{ext}} | \psi^{(A)}_{\text{m}} \rangle | V_{\text{NSM}} | \psi^{(A)}_{\text{g.s.}} \rangle + c.c., \]

(26)

where the atomic EDM is induced by the nucleon EDM interaction with the electrons:

\[\tilde{V}(e \vec{r}) = -e \sum_{i=1}^{Z} \sum_{a=1}^{A} \frac{d_a \cdot (r_i - r_a)}{|r_i - r_a|^3}. \]

(27)

The multipole expansion of each term is given by

\[\frac{d_a \cdot (r_i - r_a)}{|r_i - r_a|^3} = \sum_{l=0}^{\infty} (-1)^l \frac{l!}{r_i^{2l+3}} \langle r_a \cdot \nabla_i \rangle L^{(l)} d_a \cdot r_i^l. \]

(28)
The ground state and excited states of the atomic Hamiltonian H_{atom} without P, T-odd interactions are expressed as
\begin{align}
|\psi^{(A)}_m\rangle &= |\psi^{(N)}_{\text{g.s.}}\rangle \otimes |\psi^{(e)}_{m \text{g.s.}}\rangle, \quad (29) \\
|\psi^{(A)}_m\rangle &= |\psi^{(N)}_{\text{g.s.}}\rangle \otimes |\psi^{(e)}_{m \text{g.s.}}\rangle, \quad (30)
\end{align}
respectively.

We introduce a Hermitian operator
\begin{equation}
U_N = i \frac{1}{Z e} \sum_{i=1}^{Z} \sum_{a=1}^{A} \langle d_a \cdot \nabla_i \rangle',
\end{equation}
where in contrast to $\langle d_{\text{nuc}} \rangle$ in Eq. (12),
\begin{equation}
\langle d_{a} \rangle = \langle \psi^{(N)}_{\text{g.s.}} \rangle |d_{a}\rangle |\psi^{(N)}_{\text{g.s.}}\rangle
\end{equation}
is the expectation value in the ground state of H_{nuc}. The nucleon EDM interactions are transformed as
\begin{equation}
\sum_{a=1}^{A} \langle \psi^{(A)}_{\text{g.s.}} \rangle | -d_{a} \cdot E_{\text{ext}} \rangle |\psi^{(A)}_{\text{g.s.}}\rangle = i \langle \psi^{(A)}_{\text{g.s.}} \rangle \left[U_{N}, -d_{\text{atom}} \cdot E_{\text{ext}} \right] |\psi^{(A)}_{\text{g.s.}}\rangle,
\end{equation}
and
\begin{align}
\langle \psi^{(A)}_{m} | V_{\text{LO}}^{(N)} | \psi^{(A)}_{\text{g.s.}}\rangle &= i \langle \psi^{(A)}_{m} | \left[U_{N}, V_{\text{LO}}^{(eN)} \right] | \psi^{(A)}_{\text{g.s.}}\rangle \\
&= i \langle \psi^{(A)}_{m} | \left[U_{N}, H_{e} \right] | \psi^{(A)}_{\text{g.s.}}\rangle \\
&= i \langle \psi^{(A)}_{m} | \left[U_{N}, V_{\text{LO}}^{(eN)} \right] | \psi^{(A)}_{\text{g.s.}}\rangle \\
&- i \langle \psi^{(A)}_{m} | \left[U_{N}, V_{\text{LO}}^{(eN)} \right] | \psi^{(A)}_{\text{g.s.}}\rangle \\
&- i \langle \psi^{(A)}_{m} | \left[U_{N}, V_{\text{LO}}^{(eN)} \right] | \psi^{(A)}_{\text{g.s.}}\rangle \
\end{align}
If the nucleus is a point-like particle, where the eN interactions with $l \geq 2$ are absent, one obtains
\begin{equation}
\Delta E_{2}(d_{N}, q_{e}) = -\Delta E_{1}(d_{N}),
\end{equation}
which indicates the complete screening of the nucleon EDMs.

For a finite-size nucleus, the eN interaction
\begin{equation}
\tilde{V}^{(eN)}_{\text{LO}} = \tilde{V}^{(eN)}_{l=2} - i \left[U_{N}, V_{l=2}^{(eN)} \right]
\end{equation}
can induce the atomic EDM that survives the screening. The remaining contribution is given by
\begin{equation}
\Delta E_{1}(d_{N}) + \Delta E_{2}(d_{N}, q_{e}) = \sum_{m} \frac{1}{E_{m} - E_{m}^{(e)}} \times \langle \psi^{(A)}_{\text{g.s.}} | -d_{\text{atom}} \cdot E_{\text{ext}} | \psi^{(A)}_{\text{g.s.}}\rangle + \text{c.c.}
\end{equation}
The leading-order eN interaction defined by Eq. (36) is explicitly written as
\begin{equation}
\tilde{V}^{(eN)}_{\text{LO}} = -\sqrt{15} e \sum_{i=1}^{A} \sum_{a=1}^{A} \left[Q_{n}^{(2)} \otimes d_{a}^{(3)} \right] \cdot Q_{a}^{(3)}
\end{equation}
and
\begin{equation}
Q_{a}^{(3)} = \sqrt{\frac{5}{2}} \left[r_{i}^{a} \otimes r_{i}^{a} \right]^{(2)} \cdot r_{i}^{a}
\end{equation}
is the octupole moment of electron. Since this interaction vanishes for the 199Hg nucleus with a spin of $\frac{1}{2}$, we should consider up to the third-order effect.

III. THIRD-ORDER EFFECT OF NUCLEON EDM

The nuclear EDM is also induced by the nucleon EDM interaction with the protons
\begin{equation}
\tilde{V}^{(N\bar{N})} = e d_{p} \sum_{a \neq b}^{Z} \sum_{b=1}^{Z} \sum_{a=1}^{A} | \sigma_{a} \cdot (r_{b} - r_{a}) |^{3},
\end{equation}
The energy shift due to the external interaction of the nuclear EDM, which is represented in Fig. 4(a), is given by
\begin{equation}
\Delta E_{2}(d_{N}, q_{N}) = \langle \tilde{V}^{(N\bar{N})}_{\text{g.s.}} \rangle - d_{\text{nuc}} \cdot E_{\text{ext}} \langle \tilde{V}^{(N\bar{N})}_{\text{g.s.}} \rangle,
\end{equation}
where
\begin{equation}
| \tilde{V}^{(N\bar{N})}_{\text{g.s.}} \rangle = | \psi^{(N\bar{N})}_{\text{g.s.}} \rangle
\end{equation}
It was claimed in Ref. [17] that this contribution is completely screened by the third-order effect of the nucleon EDM interaction, which is represented in Fig. 4(b). However, they considered the eN interactions only up to $l = 1$ in the multipole expansions. In order to closely examine the screening effect of the EDM of a finite-size nucleus, we consider the eN interactions with $l \leq 3$. The third-order effect is given by

$$
\Delta E_3(d_N, q_N, q_e) = \sum_m \frac{1}{E^{(e)}_{g.s.} - E^{(e)}_m}
\times \langle \psi^{(A)}_{g.s.} | - \boldsymbol{d}_{\text{atom}} \cdot \boldsymbol{E}_{\text{ext}} | \psi^{(A)}_m \rangle \langle \psi^{(N)}_m \rangle \langle \tilde{\psi}^{(e)}_{g.s.} | \tilde{\psi}^{(e)}_m \rangle + c.c. ,
$$

where $|\tilde{\psi}^{(A)}_{g.s.}\rangle = |\tilde{\psi}^{(N)}_{g.s.}\rangle \otimes |\tilde{\psi}^{(e)}_{g.s.}\rangle$.

\[\text{FIG. 4. (a) The second-order and (b) third-order effects of the nucleon EDM interaction with the protons.} \]

The screening mechanism of $\Delta E_2(d_N, q_N)$ is similar to the case of $\Delta E_2(\gamma_{NN}, q_N)$, which is caused by the P, T-odd meson-exchange NN interaction. As discussed in Sec. I, the screening effect of the nuclear EDM is incomplete because the atomic EDM induced by the Schiff moment survives the screening. The same discussion can be applied to the nuclear EDM induced by the nucleon EDM interaction. Thus, the total Schiff moment is given by

$$
S = S_{\text{short}} + S_{\text{long}}
$$

where

$$
S_{\text{long}} = \sum_n \frac{1}{E^{(N)}_{g.s.} - E^{(N)}_n}
\times \langle \psi^{(N)}_{g.s.} | S | \psi^{(N)}_n \rangle \langle \psi^{(N)}_n \rangle \langle \tilde{\psi}^{(N)}_{g.s.} | \tilde{\psi}^{(N)}_n \rangle + c.c. ,
$$

The Schiff moment related to the neutron EDM was calculated as $S_2 = 1.9d_n[\text{fm}^2]$ in a previous study [13]. Our result implies that the 199Hg atomic EDM is less sensitive to the neutron EDM. It should be noted that S_{long} is a different quantity from S_2, which was derived from a simple expansion of the Schiff moment operator.

IV. SUMMARY

We have discussed the screening effect of electric dipole moments (EDMs) of nucleons and the atomic nucleus in an atom. In order to derive the leading-order contributions that survive the screening, we have incorporated the nucleon EDM interactions with an external electric field, the electrons, and the protons in the theory as perturbative interactions. This approach leads to a natural extension of the nuclear Schiff moment to include the effect of the nucleon EDM. The Schiff moment of 199Hg due to the neutron EDM has been evaluated in the independent particle model. Our result shows a lower sensitivity of the 199Hg atomic EDM on the neutron EDM than the previous RPA calculation [13]. On the other hand, it implies that the atomic EDM is relatively more sensitive to the P, T-odd meson-exchange NN interaction.

ACKNOWLEDGMENTS

This research was supported by MEXT as “Program for Promoting Researches on the Supercomputer Fugaku” (Simulation for basic science: from fundamental laws of particles to creation of nuclei) and JICFuS. We used the shell-model code KSHELL [18] to obtain the nuclear wave function of 199Hg in the independent particle model. We acknowledge Noritaka Shimizu for helpful discussions.

[1] I. B. Khriplovich and S. Lamoreaux, *CP violation without strangeness: Electric dipole moments of particles, atoms, and molecules* (Springer-Verlag, Berlin, Heidelberg, 1997).

[2] T. E. Chupp, P. Fierlinger, M. J. Ramsey-Musolf, and J. T. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Reviews of Modern Physics 91, 015001 (2019).
[3] L. I. Schiff, Measurability of nuclear electric dipole moments, Phys. Rev. 132, 2194 (1963).

[4] O. P. Sushkov, V. V. Flambaum, and I. B. Khriplovich, Possibility of investigating P- and T-odd nuclear forces in atomic and molecular experiments, Zh. Eksp. Teor. Fiz. 87, 1521 (1984).

[5] V. Spevak, N. Auerbach, and V. V. Flambaum, Enhanced T-odd, P-odd electromagnetic moments in reflection asymmetric nuclei, Phys. Rev. C 56, 1357 (1997).

[6] C.-P. Liu, M. J. Ramirez-Musolf, W. C. Haxton, R. G. E. Timmermans, and A. E. L. Dieperink, Atomic electric dipole moments: The Schiff theorem and its corrections, Phys. Rev. C 76, 035503 (2007).

[7] R. A. Sen’kov, N. Auerbach, V. V. Flambaum, and V. G. Zelevinsky, Reexamination of the Schiff theorem, Phys. Rev. A 77, 014101 (2008).

[8] J. S. M. Ginges and V. V. Flambaum, Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles, Physics Reports 397, 63 (2004).

[9] J. Engel, M. Bender, J. Dobaczewski, J. H. de Jesus, and P. Odratzowsky, Time-reversal violating Schiff moment of 225Ra, Phys. Rev. C 68, 025501 (2003).

[10] J. Dobaczewski and J. Engel, Nuclear Time-Reversal Violation and the Schiff Moment of 225Ra, Phys. Rev. Lett. 94, 232502 (2005).

[11] J. Dobaczewski, J. Engel, M. Kortelainen, and P. Becker, Correlating Schiff moments in the light actinides with octupole moments, Phys. Rev. Lett. 121, 232501 (2018).

[12] K. Yanase and N. Shimizu, Large-scale shell-model calculations of nuclear Schiff moments of 129Xe and 199Hg, arXiv preprint arXiv:2006.15142 (2020).

[13] V. F. Dmitriev and R. A. Sen’kov, Schiff moment of the mercury nucleus and the proton dipole moment, Phys. Rev. Lett. 91, 212303 (2003).

[14] B. Graner, Y. Chen, E. G. Lindahl, and B. R. Heckel, Reduced limit on the permanent electric dipole moment of 199Hg, Phys. Rev. Lett. 116, 161601 (2016). Erratum: Reduced limit on the permanent electric dipole moment of 199Hg [Phys. Rev. Lett. 116, 161601 (2016)], Phys. Rev. Lett. 119, 119901 (2017).

[15] C. Abel, S. Afach, N. J. Ayres, C. A. Baker, G. Ban, G. Biron, K. Bodek, V. Bondar, M. Burghoff, E. Chanel, Z. Chowdhuri, P.-J. Chiu, B. Clement, C. B. Crawford, M. Daum, S. Emmenegger, L. Ferraris-Bouchez, M. Fertl, P. Flaux, B. Franke, A. Fratangelo, P. Geltenbort, K. Green, W. C. Griffith, M. van der Grinten, Z. D. Grujić, P. G. Harris, L. Hayen, W. Heil, R. Hennecke, V. Hélaine, N. Hild, Z. Hodge, M. Horras, P. Iaydjiev, S. N. Ivanov, M. Kasprzak, Y. Kermadíc, K. Kirch, A. Knecht, P. Knowles, H.-C. Koch, P. A. Koss, S. Komplosch, A. Kozela, A. Kraft, J. Krempeł, M. Kuźniak, B. Lauss, T. Lefort, Y. Lemière, A. Leredde, P. Mohanmurthy, A. M廷cheidhivili, M. Musgrave, O. Naviliat-Cuncic, D. Pais, F. M. Piegsa, E. Pierre, G. Pignol, C. Plonka-Spehr, P. N. Prashanth, G. Quéméner, M. Rawlik, D. Rebreyend, I. Rienäcker, D. Rieß, S. Rocchia, G. Rogel, D. Rozpedzik, A. Schnabel, P. Schmidt-Wellenburg, N. Severijns, D. Shiers, R. Tavakoli Dinani, J. A. Thorne, R. Virot, J. Voigt, A. Weis, E. Wursten, G. Wyszynski, J. Zejma, J. Zemner, and G. Zsigmond, Measurement of the permanent electric dipole moment of the neutron, Phys. Rev. Lett. 124, 081803 (2020).

[16] C.-P. Liu and J. Engel, Schiff screening of relativistic nucleon electric-dipole moments by electrons, Phys. Rev. C 76, 025501 (2007).

[17] S. Oshima, T. Fujita, and T. Asaga, Nuclear electric dipole moment with relativistic effects in Xe and Hg atoms, Phys. Rev. C 75, 035501 (2007).

[18] N. Shimizu, T. Mizusaki, Y. Utsuno, and Y. Tsunoda, Thick-repeat block Lanczos method for large-scale shell-model calculations, Computer Physics Communications 244, 372 (2019).