Implementation of the nonlinear programming algorithm when optimizing the final turning mode

To cite this article: M G Galkin and A S Smagin 2020 IOP Conf. Ser.: Mater. Sci. Eng. 862 032009

View the article online for updates and enhancements.
Implementation of the nonlinear programming algorithm when optimizing the final turning mode

M G Galkin and A S Smagin
Ural Federal University, 19, Mira street, Ekaterinburg 620000, Russia
E-mail: a.s.smagin@mail.ru

Abstract. For computer-aided multi-variant design of machining technologies, it is important to optimize the cutting parameters at the final pass in each technological operation. When carrying out designing procedures, there emerge problems relating to the algorithm of choosing the decision-making method, the objective function, and the regions of feasibility at final machining steps. Linear programming is time-consuming for multi-variant and multi-pass machining, if the algorithm is to be clear. It is known that when simulating the optimal metal-cutting process, the optimization criterion and the system of constraints are non-linear. Therefore, a computational algorithm can be made significantly more efficient if it is a non-linear algorithm based on Lagrange multipliers. Such approach to design helps simplify automating the computational algorithm for multi-pass single-tool machining with a precision cutting tool (a reamer). This is the method discussed herein.

1. Introduction
Selecting optimal cutting parameters is crucial for designing the machining process. It helps develop high-quality technological solutions. Large-scale application of this mechanism is limited due to the necessity of developing a complex mathematical model for the cutting process as well as due to the resource-intensiveness of the computational algorithm needed to design a large number of passes. Therefore, manual design is virtually impossible in such cases. Using a computer-aided computational algorithm makes the process more efficient, thus more practical.

Apparently, one may use different optimization criteria for such problems. The basic criteria consist in maximizing the performance or minimizing the cost of workpiece machining. Therefore, choosing the right objective function is an important prerequisite of solving any optimization-related problem [1], which particularly applies to choosing the cutting parameters for reaming both through-holes and blind holes.

Professor G.K. Goransky was among the first researchers to propose a method for mathematical modeling of this process. In his interpretation, the model was a system of linear equations and constraints written as inequalities. Besides, the model contained a linear estimating function. The inequality system and the estimating function were derived by logarithmizing the corresponding equations describing this non-linear cutting process. The spindle rotation speed and the cutter feed-per-rotation were the parameters to optimize. It is these parameters that minimize the labor-intensiveness of workpiece machining. He further sought to optimize the parameters by using a graphical algorithm to find the optimal node [1]. This process complicated the computational model and necessitated multiple hand-run interim calculations.
2. Mathematical model of the cutting process
This paper proposes optimizing the spindle rotation speed and the reamer feed. In this case, the mathematical model is determined by how the parameters to optimize are functionally related to the requirements that condition the constraints imposed by the system at each specific machining stage. In paper [2] by Prof. G.K. Goransky, it is proposed to refer to thirteen factors affecting the cutting process. However, in a real-world setting a mathematical model that describes finishing the holes pre-machined with a drill or a with a countersink might actually contain a lot less constraints for modeling the process.

If we similarly synthesize a model for elementary passes done by a drilling or a reaming machine, it is rational to analyze six constraints at max. These are: minimum spindle rotation speed 1, maximum spindle rotation speed 2, minimum reamer feed 3, actual reamer feed (depends on the hole size and the hardness of the workpiece material) 4, reamer durability 5, and machine engine power 6. These constraints are graphically shown in figure 1. The hatched area is the feasible region.

![Figure 1. Constraints for machining with a precision cutting tool.](image)

The graphic dependencies show that the objective function and the constraint system are non-linear. Therefore, the mathematical model is going to be a non-linear optimization problem, one of those soluble by constrained optimization [3]. This method can be analytically written as the well-known equation system (1) [4]:

\[
\begin{align*}
F &= f(x_i) \rightarrow \text{max(min)}; \\
q_j(x_i) &\leq a_j; \\
q_j(x_i) &\geq b_j; \\
z_i &\leq x_i \leq Z_i; \\
i = 1, n; j = 1, m.
\end{align*}
\]

where \(F \) – is the target function or optimization criterion; \(q_j(x_i) \leq a_j; q_j(x_i) \geq b_j \) – are constraints inter-variable dependencies.

It is known that this model (1) can be solved by using Lagrange multipliers [3]. This approach excludes logarithmizing the equations to subsequently write them as linear equations, which simplifies the computational algorithm. The above constraints applicable to machining with a precision cutting tool can be formalized as follows.
1. For the minimum spindle rotation speed:
\[n \geq n_{\text{min}} = c_1. \]

2. For the maximum spindle rotation speed:
\[n \leq n_{\text{max}} = c_2. \]

3. For the minimum reamer feed:
\[s \geq s_{\text{min}} = c_3. \]

4. For the operating reamer feed:
\[s_{\text{tab}} \leq f(d_{\text{hole}}, \sigma_b, z_{\text{num}}) = c_4. \]

5. For the necessary cutter durability:
\[n \cdot s^y \leq \frac{318 \cdot C_v \cdot D^{(q-1)}_v \cdot K_v}{T^m \cdot t^x} = c_5. \]

6. For the primary-motion engine power constraint:
\[n \cdot s^y \leq \left(\frac{19.5 \cdot 10^5 \cdot N_{\text{dv}} \cdot \eta}{C_p \cdot D_{\text{hole}} \cdot t^x} \right) = c_6. \]

The dependencies forming such inequalities are synthesized per the formulas described in papers [5], [6], [7], [8]. In equation (7), \(C_p \) and all the coefficients in the power value are adopted from the data for straight-turning tools [6].

It makes sense to assume the maximum feed per minute as the optimization criterion, which determines the minimum primary machining time for each ith surface. Thus, the three-parameter problem can be conditionally reduced to a two-parameter one. The cutting depth \(t \), a third cutting parameter, is constrained by the minimum stock to be removed.

Therefore, the objective function can be written as:
\[F = n \times s \to \max. \]

Substitute the system of constraints and the target function (8) in the dependency (1) to synthesize the following equation system:
\[\begin{cases}
 n \geq C_1; \\
 n \leq C_2; \\
 s \geq C_3; \\
 s_{\text{tab}} \leq C_4; \\
 n \cdot s^y \leq C_5; \\
 n \cdot s^y \leq C_6.
\end{cases} \]
3. MS Excel as a solver

This mathematical model can be efficiently solved by using the Visual Basic for Application programming environment built in the Ms Excel spreadsheet processor.

Leon Lasdon, University of Texas at Austin, and Allan Waren, Cleveland State University, were the first to implement a non-linear optimization algorithm using MS Excel [9], [10], [11]. Using VBA for this purpose helps simplify the code by using various ready-made applications for implementing this algorithm [12], [13].

To solve the problem, we have modeled a user dialog box to enter the source data and display the calculation results, see figure 2.

This dialog box visualizes source data input as kinematic machine parameters (Group 1), as parameters to be picked from the reamer feed database (Group 2), as the power parameters of the cutting process (Group 3), or as the kinematic parameters of the cutting process (Group 4). Group 5 implements a mechanism of choosing the optimal cutting-process parameters and feed-per-minute calculation to perform a pass.

At the second stage, we develop program code in the Visual Basic for Application programming environment [13]. It consists of three procedures. The first procedure, "start", visualizes the dialog box on the data input screen.

```
Sub start ()
    Sheets("deploy").Select
    DialogSheets("window_deploy").Show
    With DialogSheets("window_deploy")
        .DropDowns(1).RemoveAllItems
        .DropDowns(1).AddItem "10;15;20;25;30;45;60" – resistance
        .DropDowns(2).RemoveAllItems
    End With
End Sub
```

Figure 2. Blank dialog box for solving the optimization problem.
The second procedure, "poisk", assigns variable values from the dialog box and computes the constraints; the output is presented in the dialog box, see figure 2.

Sub poisk ()
With DialogSheets("window_deploy ")
 'assigning variables their values from the dialog box
 (stoi; dhole; nmin; nmax; smin; qv; yv; m; kv) = Val(.EditBoxes(i).Text)
 (nd; kpd; cp; x; y; lobr) = Val(.EditBoxes(i).Text)
 --
 'reamer feed selection and computation of constraints
 interv_dr = .DropDowns(3).Text
 mat = .DropDowns(2).Text
 vid_ob = .DropDowns(4).Text
 Cells(40, 4) = mat
 Cells(40, 5) = vid_ob
 Cells(40, 2) = interv_dr
 VPR(mat; R21C2:R38C7; interv_dr)
 so = Cells(41, 1) ' table-specified feed per reamer turn
 c5 = (318 * cv * dhole^ (qv - 1) * kv) / (stoi ^ m * t^xv)
 c6 = (1950000 * Ndv * kpd) / (cp * dhole * t^x)
 'parameter transfer to the optimization model
 Cells(9, 4) = nmin
 Cells(10, 4) = nmax
 Cells(12, 4) = smin
 Cells(13, 4) = c5
 Cells(14, 4) = c6
 .Labels(25).Text = c5
 .Labels(26).Text = c6
End With
End Sub

The third procedure, "Find_Root", performs non-linear programming of the optimization model and shows the objective-function value in Group 5 of the dialog box [12], [14].

Sub Find_Root ()
 'non-linear optimization module running
 SolverOk
 SetCell:= Cells(i, j), MaxMinVal:= 1, ValueOf:= 0, ByChange:= Range("B3:C3")
 SolverSolve True
End Sub.
In this procedure, the standard SolverOk function, an MS Excel object-model application, solves the problem of programming the objective function and the constraint system non-linearly.

The function is structured as follows:

\[
\text{SolverOk} (\text{SetCell}, \text{MaxMinVal}, \text{ValueOf}, \text{ByChange})
\]

Syntax of the dependency (10) is described as follows:

1) \text{SetCell} specifies the target cell in the Ms Excel object model.
2) \text{MaxMinVal} specifies that at the maximum objective-value function, the output is 1; at the minimum value, the output is 2; at a specific value, the output is 3.
3) \text{ValueOf} determines the value to which the objective-function value is further compared. If the previous parameter, \text{MaxMinVal}, equals 1 or 2, \text{ValueOf} equals zero.
4) \text{ByChange} specifies a cell range in the Ms Excel object model, where the optimal parameter values are to be found.

4. The practical implementation

Consider reaming a 45-steel workpiece as a case for this method. The machined surface is 20 mm in diameter, 30 mm long, the tool will endure 30 minutes, the machining operation is finishing. Reaming is done by means of a 2H125/1 vertical drilling machine.

Figure 3 shows the dialog box with the solution of this problem for optimal spindle rotation speed, optimum feed per rotation and feed per minute.

The dialog box in the figure shows that the optimum spindle rotation is 184 rpm, the optimum feed is – 0.88 mm/rotation or – 161.7 mm/min. With a machining length of 30 mm, the primary machining time equals 0.185 min. These parameters can be fixed in the machining chart.

![Figure 3. Optimization solution dialog box.](image-url)
5. Conclusion
This computational model enables the user not only to optimize the machining parameters in a specified region, but also to considerably reduce the design time. Optimizing the cutting parameters for each pass in a multi-pass machining process is a fairly labor-intensive procedure.

References
[1] Shoup T 1979 A practical guide to computer methods for engineers (Prentice-Hall) p 255
[2] Goransky G 1963 Computer calculation of cutting regimes (BSSR State Publ., Minsk) p 192
[3] Bertsekas D 1987 Constrained optimization and Lagrange multiplier methods (Academic Press) p 395
[4] Tsirlin A 2015 Optimization methods for engineers (Direct-Media Publ, Moscow) p 214
[5] Guzeyev V, Batuye V and Surkov I 2005 Cutting regimes for turning and drilling-milling-and-boring machines with numerical control (Mashinostroyeniye, Moscow) p 368
[6] Kosilova A and Meshcheryakov R 1986 Spravochnik teknologa-mashinostroitelya vol 2 (Mashinostroenie Publ., Moscow) p 496
[7] Kosilova A and Meshcheryakov R 2001 Spravochnik teknologa-mashinostroitelya vol 2 (Mashinostroenie Publ., Moscow) p 949
[8] Matalin A A 2008 Mechanical engineering technologies (Mashinostroyeniye: Izd-vo Lan) p 512
[9] Lasdon L 1970 Optimization theory for Lange System (Macmillan, New York) p 523
[10] Busch-Vishnias J Pang and Lasdon L 2000 Optical sensor design using nonlinear programming Engineering Optimization
[11] Gajulapalli R and Lasdon L 2000 Computational experience with a safeguarded barrier algorithm for sparse nonlinear programming Journal of Computational Optimization and Applications
[12] Korchak S N, Koshin A A, Rakovich A G and Sinitsyn B I 1988 Computer-aided design systems for processes, tools, and cutters (Mashinostroyeniye) p 352
[13] Komyagin V 1996 Programming in Excel on Visual Basic (Radio i svyaz’ Publ., Moscow) p 320
[14] Kuritsky B Ya 1997 Searching for optimal solutions in Excel (St. Petersburg: BHV - St. Petersburg) p 384