A real-time PCR assay with improved specificity for detection and discrimination of all clinically relevant *Bordetella* species by the presence and distribution of three Insertion Sequence elements

Lieuwe Roorda¹, Johannes Buitenwerf¹, Jacobus M Ossewaarde¹,², Anneke van der Zee¹*

Abstract

Background: In Dutch laboratories molecular detection of *B. pertussis* and *B. parapertussis* is commonly based on insertion sequences *IS*₄₈₁ and *IS*₁₀₀₁, respectively. Both IS elements are more widely spread among *Bordetella* species. Both *Bordetella holmesii* and *B. bronchiseptica* can harbour *IS*₄₈₁. Also, *IS*₁₀₀₁ is found among *B. bronchiseptica*. *IS*₄₈₁, and *IS*₁₀₀₁ based PCR thus lacks specificity when used for detection of specific *Bordetella* spp.

Findings: We designed a PCR based on *IS*₁₀₀₂, another IS element that is present among *Bordetella* species, and exploited it as a template in combination with PCR for *IS*₄₈₁, and *IS*₁₀₀₁. In combining the PCRs for *IS*₄₈₁, *IS*₁₀₀₁, and *IS*₁₀₀₂, and including an inhibition control, we were able to detect and discriminate all clinically relevant *Bordetella* species.

Conclusions: We developed an improved PCR method for specific detection of *B. pertussis*, *B. parapertussis*, *B. holmesii*, and *B. bronchiseptica*.

Background

The genus *Bordetella* is comprised of 8 species, 4 of which are known to infect humans; *B. pertussis*, *B. parapertussis*, *B. holmesii*, and *B. bronchiseptica*. The most important cause for whooping cough is *B. pertussis*, followed by *B. parapertussis*. *Bordetella holmesii* was first described in 1995 [1], and has since been isolated from patients with a serious underlying disease [2-5]. *B. bronchiseptica* is usually restricted to animals but occasionally is isolated from immunocompromised patients [6,7].

A large number of PCR (polymerase chain reaction) assays have been described for detection of *Bordetella pertussis* and *B. parapertussis*, and more recently *B. holmesii* [8-14]. Most PCRs are based on detection of the insertion sequence elements *IS*₄₈₁, and *IS*₁₀₀₁, because they exist in multiple copies in the chromosome. A high copy number of PCR target, contributes to the sensitivity of detection. *IS*₄₈₁ (1053 bp) shows a high degree of homology between different members of *Bordetella* species of 96%. All *IS*₁₀₀₁ (1306 bp) sequences known in Genbank are 100% homologues, as is *IS*₁₀₀₂ (1040 bp). The degree of homology between *IS*₄₈₁, *IS*₁₀₀₁, and *IS*₁₀₀₂ is less than 5%.

The insertion sequences (IS) that are present in *Bordetella* spp., are distributed according to species and/or host specificity. For example, *IS*₁₀₀₁ is found in all *B. parapertussis*, but *IS*₁₀₀₂ is found only in *B. parapertussis* that infect humans and is absent from *B. parapertussis* sheep isolates [15]. *B. pertussis* harbors both *IS*₄₈₁ and *IS*₁₀₀₁ while some *B. bronchiseptica* strains may have either *IS*₄₈₁ or *IS*₁₀₀₁ [15]. *B. holmesii* only has *IS*₄₈₁.

Due to the distribution of *IS*₄₈₁, and *IS*₁₀₀₁, PCRs for *B. pertussis* and *B. parapertussis* lack specificity [16]. In recent years many newly developed PCRs were introduced with improved specificity but often with a compromise to sensitivity [11,13,14].

The aim of this study was to improve the specificity of PCR by including another IS element, *IS*₁₀₀₂, as target in PCR. *IS*₁₀₀₂, in addition to *IS*₄₈₁, and *IS*₁₀₀₁, which

* Correspondence: zeea@maasstadziekenhuis.nl
¹ Maasstad Laboratory, Molecular Diagnostics Unit, Maasstad Hospital, Olympiaweg 350, 3078HT Rotterdam, The Netherlands
Full list of author information is available at the end of the article

© 2011 Roorda et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
enables discrimination of *B. pertussis*, *B. holmesii*, *B. parapertussis*, and *B. bronchiseptica*.

Methods

*IS*1002 has not been exploited before as a template in PCR detection. We developed a specific *IS*1002 PCR (Table 1) to improve our ability to recognize the correct *Bordetella* species, and to combine it with *IS*481, and *IS*1001 specific PCRs. Addition of Phocine Herpes Virus (PhHV) as internal control acts to monitor the extraction as well as the efficiency of amplification [17].

We investigated standard laboratory strains of *Bordetella* (kindly provided by Dr. Frits Mooi and Kees Heuvelman, Laboratory for Vaccine Preventable Diseases, National Institute of Public Health and the Environment, Bilthoven, The Netherlands), which are shown in Table 2. Since detection of *B. pertussis* was of highest concern, we investigated the performance of the newly developed PCR on 100 clinical samples that were previously tested negative. To verify the specificity of the PCR we developed PCR on 100 clinical samples that were previously positive. To verify the specificity of the PCR we developed PCR on 100 clinical samples that were previously positive. To verify the specificity of the PCR we developed PCR on 100 clinical samples that were previously tested negative. To verify the specificity of the PCR we developed PCR on 100 clinical samples that were previously positive.

Table 2. Since detection of *B. pertussis* is of highest concern, we investigated the performance of the newly developed PCR on 100 clinical samples that were previously tested negative. To verify the specificity of the PCR we developed PCR on 100 clinical samples that were previously positive. To verify the specificity of the PCR we developed PCR on 100 clinical samples that were previously tested negative. To verify the specificity of the PCR we developed PCR on 100 clinical samples that were previously positive.

We investigated standard laboratory strains of *Bordetella* (kindly provided by Dr. Frits Mooi and Kees Heuvelman, Laboratory for Vaccine Preventable Diseases, National Institute of Public Health and the Environment, Bilthoven, The Netherlands), which are shown in Table 2. Since detection of *B. pertussis* is of highest concern, we investigated the performance of the newly developed PCR on 100 clinical samples that were previously tested negative. To verify the specificity of the PCR we developed PCR on 100 clinical samples that were previously positive. To verify the specificity of the PCR we developed PCR on 100 clinical samples that were previously tested negative. To verify the specificity of the PCR we developed PCR on 100 clinical samples that were previously positive. To verify the specificity of the PCR we developed PCR on 100 clinical samples that were previously tested negative. To verify the specificity of the PCR we developed PCR on 100 clinical samples that were previously positive.

Results

Evaluation of sensitivity

In order to evaluate the performance of the combination of all four PCRs in a multiplex format performed on standard laboratory strains (Table 2): *IS*481, *IS*1001, *IS*1002, and the internal control, we compared Ct values to each single PCR. No significant differences were found (not shown). Since *IS*481 is present with a much higher copy number in *B. pertussis* than *IS*1002 (approximately 200 and 10 copies, respectively), Ct values of *IS*481 were on average 3.7 lower compared to Ct values of *IS*1002 detection. Of a 10 CFU/ml dilution of *B. pertussis* cells both *IS*481 and *IS*1002 were positive with Ct values of respectively 30.6 and 34.4. The sensitivity of *B. parapertussis* detection was comparable with that using only *IS*1001 as target.

Evaluation of specificity

To evaluate the specificity of each *IS*-based PCR, laboratory strains of most known *Bordetella* species (with exception of *B. avium* and *B. trematum*; Table 2), were subjected to the *IS*-based PCRs. Results were as was expected (Table 2).

To investigate whether all targets were amplified with high fidelity, and would not confound the specificity of detection, we made serial dilutions and subjected these to PCR. With limiting concentrations of *B. pertussis* bacteria, detection of *IS*1002 is lost before detection of *IS*481, because of the difference in copy number.

Table 1 DNA sequences of primers and probes directed against three IS elements and the internal control Phocine Herpes Virus (PhHV)

Template	Primer/probe (label)	Sequence (5’-3’)
*IS*481	Forward primer	GCGGAGTGAACACCCATAAG
	Reverse primer	GCGGTCATATTGGTGGCACCAT
	Probe (FAM)	CGATTGAGCCTTCCTAGTG-MGB
*IS*1001	Forward primer	AATGGCTGCAAGCCACCA
	Reverse primer	CCGAGGCCGTTTCTAGGT
	Probe (VIC)	ACATAGACCGTGCAGAG-MGB
*IS*1002	Forward primer	CTAGGGTGCCGCTTCTGAGAAC
	Reverse primer (CYS)	CATCGGCCATTTTGGCACCATC
	Probe (NED)	TTTTATGTGTCGCCACCA-MGB

Table 2 Results of PCRs for detection of *IS*481, *IS*1001, and *IS*1002, and the interpretation for identification of clinically relevant *Bordetella* species

Bordetella subspecies*	*IS*481	*IS*1001	*IS*1002
pertussis	+	-	+
parapertussis	-	+	+
holmesii	+	-	-
bronchiseptica	-	+	-
petrii	-	-	identification not possible
hinzii	-	-	identification not possible

Strains were kindly provided by Dr. Frits Mooi and Kees Heuvelman, Laboratory for Vaccine Preventable Diseases, National Institute of Public Health and the Environment, Bilthoven, The Netherlands.
To ensure specificity and to assess a cut-off Ct value for *B. pertussis*, 100 previously positive clinical samples were subjected to PCR. Only when Ct values of *IS481 >37, IS1002* was negative (2% of 100 samples). Thus, a cut-off of Ct 35 should be taken for *IS481*. In 20 respiratory tract samples suspect for other pathogens, no *Bordetella* positives were found. With *B. parapertussis* PCR detection, similar Ct values of *IS1001* and *IS1002* were found, and hence no cut-off Ct values are necessary for *IS1001*, and *IS1002*.

Quality assessment

In addition, the multiplex IS-based PCR was evaluated using the External Quality Assessment Programme of *Bordetella pertussis* from the Quality Control for Molecular Diagnostics (QCMD, Glasgow, UK). The QCMD panel of samples consisted of 5 *B. pertussis* in a range of concentrations, 1 *B. parapertussis*, 1 *B. holmesii*, 2 *B. bronchiseptica*, 1 *B. hinzii*, 1 Haemophilus influenzae, and 1 negative sample. Using our newly developed PCR we correctly identified *B. pertussis* even in the lowest concentration of 10 CFU/ml, and *B. parapertussis*. *B. holmesii* and one *IS481* containing *B. bronchiseptica* were recognized correctly and not as *B. pertussis*. *Haemophilus influenzae* did not cross react with any of the targeted IS elements.

Discussion

In this study we included *IS1002* as target in PCR based detection of *Bordetella*, in addition to *IS481* and *IS1001*, which is the commonly used PCR in The Netherlands. We aimed to improve the specificity of PCR because the addition of *IS1002* enables the discrimination of *B. pertussis*, *B. parapertussis*, *B. holmesii*, and *B. bronchiseptica*.

In the final report of QCMD (Pierard, D., O. Soetens, and G. leven. *Bordetella pertussis* (BPDNA09) EQA Pilot Study, February 2010. QCMD, Glasgow UK.), a high degree of false positivity was observed for detection of *B. pertussis*. It appeared that more than 80% of laboratories contributing to the study used a PCR that is based on *IS481* and this accounts for the large proportion of false positive results. Indeed, *IS481* positive samples could either be positive for *B. pertussis*, *B. holmesii*, or *B. bronchiseptica*. Here, we have shown that in our PCR assay these organisms can be discriminated from one another. There are however some limitations. In a previous study [15] it was shown that *IS481* is very rarely found among *B. bronchiseptica* (1% of strains), in contrast to *IS1001* that was found in approximately 50% of the studied strain collection. Consequently, approximately 50% of *B. bronchiseptica* carry no known IS elements and thus cannot be detected by IS-based PCR. *B. bronchiseptica* strains that contain a copy of *IS481* cannot be discriminated from *B. holmesii* using IS-based PCRs. If PCR presents a single *IS481* positive signal, one might re-investigate the sample using the *B. holmesii* specific PCR targeting the recA gene that was described earlier [18] to discriminate from *B. bronchiseptica*.

The performance of our assay may fail if clinical samples might contain more than one Bordetella species. However, after more than 15 years of experience with PCR detection of *B. pertussis* (*IS481*) and *B. parapertussis* (*IS1001*), we did not find more than one Bordetella species present in clinical specimens.

During the evaluation, we sometimes observed a weak positive signal for *IS481* (Ct > 37) from *B. hinzii*, although high concentrations of this organism were negative in PCR. This may indicate that *B. hinzii* might contain an *IS481*-like sequence that does not exactly match our PCR. As *B. hinzii* is solely confined to birds, this finding will not confound PCR based on *IS481*, *IS1001* and *IS1002* for detection and discrimination of the clinically relevant *Bordetella* species.

Conclusions

In conclusion, we have developed a real time PCR with improved specificity for detection and discrimination of all clinically relevant *Bordetella* species.

References

1. Weyant RS, Hollis DG, Weaver RE, Amin MF, Steigerwalt AG, O’Connor SP, Whitney AM, Daneshvar MI, Moss CW, Brenner DJ. *Bordetella holmesii* sp. nov., a new gram-negative species associated with septicemia. J Clin Microbid 1995, 33(1):1-7.
2. Dorbeerke C, Licht C, Körber F, Plum G, Haefs C, Hoppe B, Seifert H: Community-acquired pneumonia due to *Bordetella holmesii* in a patient with frequently relapsing nephrotic syndrome. J Infect Dis 2007, 54(4):205-5.
3. Greig JR, Gunda SS, Khan JTC. *Bordetella holmesii* bacteraemia in an individual on haemodialysis. Scand J Infect Dis 2001, 33(9):716-7.
4. McCavit TL, Grube S, Revell P, Quinn CT: *Bordetella holmesii* bacteremia in sickle cell disease. *Pediatr Blood Cancer* 2008, 51(6):814-6.

5. Shepard CW, Daneshvar MI, Kaisar RW, Ashford DA, Lonsday D, Patel JB, Morey RE, Jordan JG, Weyant RS, Fischer M: *Bordetella holmesii* bacteremia: a newly recognized clinical entity among asplenic patients. *Clin Infect Dis* 2004, 38(6):799-804.

6. Won KB, Ha GY, Kim JS, Kang HJ, Tak WT, Lee JH: Relapsing Peritonitis Caused by *Bordetella bronchiseptica* in Continuous Ambulatory Peritoneal Dialysis Patient: A Case Report. *J Korean Med Sci* 2009, 24(Suppl):S215-8.

7. Woolfrey BF, Moody JA: Human Infections associated with *Bordetella bronchiseptica*. *Clin Microbiol Rev* 4:243-255.

8. Probert WS, Ely J, Schrader K, Atwell J, Nossoff A, Kwan S: Identification and Evaluation of New Target Sequences for Specific Detection of *Bordetella pertussis* by Real-Time PCR. *J Clin Microbiol* 2008, 46(10):31228-3231.

9. Vielemeyer O, Crouch JY, Edberg SC, Howe JG: Identification of *Bordetella pertussis* in a Critically Ill Human Immunodeficiency Virus-Infected Patient by Direct Genotypical Analysis of Gram-Stained Material and Discrimination from *B. holmesii* by Using a Unique recA Gene Restriction Enzyme Site. *J Clin Microbiol* 2004, 42(2):847-849.

10. Niesters HG: Quantitation of viral load using real-time amplification techniques. *Methods* 25:419-429.

11. Antila M, He Q, de Jong C, Aarts I, Verbakel H, Bruijnsten S, Keller S, Haanperä M, Maäkinen J, Eerola E, Viljanen MK, Mertsola J, van der Zee A: *Bordetella holmesii* DNA is not detected in nasopharyngeal swabs from Finnish and Dutch patients with suspected pertussis. *J Med Microbiol* 2006, 55:1043-51.

Cite this article as: Roorda et al: A real-time PCR assay with improved specificity for detection and discrimination of all clinically relevant *Bordetella* species by the presence and distribution of three Insertion Sequence elements. *BMC Research Notes* 2011 4:11.