What feeds on *Quercus ilex* L.? A biogeographical approach to studying trophic interactions in a Mediterranean keystone species

Juan Antonio Hernández-Agüero¹ | Ildefonso Ruiz-Tapiador² | Luis Cayuela¹

Abstract

Aim: Holm oak (*Quercus ilex* L.) is regarded as a keystone plant species. Trophic interactions may affect the distribution and abundance of phytophagous species, but the number of arthropod species that use holm oak as a food resource and their levels of host specificity are not yet known. Here, we aimed to quantify these species, their feeding strategies and conservation status, the taxonomic relatedness in each trophic guild and their degree of host specificity on holm oak.

Location: Our study covered the whole distribution area of *Q. ilex* in the central-western Mediterranean Basin.

Methods: We reviewed the existing literature and compiled information about all arthropod species that feed on *Q. ilex*, as well as their feeding strategies and conservation status. We also investigated the relationships between trophic guilds and the taxonomic relatedness of species, and assessed the degree of climatic niche overlap with holm oak.

Results: We found that 605 species feed on seven different parts of the holm oak plant (*i.e.* feeding strategies). More than 90% of these species lack a conservation status assessment, and eight are threatened by human activities, either as vulnerable, endangered or critically endangered. A significant phylogenetic relationship was found between taxonomic relatedness and groups of arthropods that feed on the same part of the plant (*i.e.* trophic guilds). Twenty per cent of the species had similar niches, thereby indicating the potentially high host dependence of these species.

Main conclusions: This study highlights the significance of a keystone tree species for arthropod conservation and the need for further research into the distribution and conservation status of arthropod species in Mediterranean holm oak woodlands.

Keywords

arthropod biodiversity, climatic niche, feeding strategy, IUCN red list, phytophagous species, trophic guild
The concept of keystone species was first proposed by Paine (1966) who suggested that certain species have impacts on many others, and often far more than those expected considering their biomass or abundance (Simberloff, 1998). Keystone species are distributed among various trophic guilds, including carnivores (Paine, 1969) [e.g. grey wolf (Canis lupus) or sea otter (Enhydra lutris) (Hale & Kropowski, 2018)], herbivores (Poelmann & Kessler, 2016) [e.g. white-tailed deer (Odocoileus virginianus) (Waller & Alverson, 1997) and long-spined sea urchin (Diadema antillarum) (Lessios et al., 2001)], detritivores [e.g. Marion flightless moth (Pringleophaga marioni) (Haupt et al., 2014)] and primary producers (Terborgh, 1986) [e.g. Azorella selago (Nyakatya & McGeoch, 2008) and saguaro (Carnegiea gigantea) (Drezner & Balling, 2008)].

Among primary producers, species such as Acacia peuce, Vachellia erioloba and Vachellia haematoxylon can be considered keystone species in arid or semi-arid ecosystems (Nano et al., 2012; Shadwell & February, 2017; Tews et al., 2004). Large isolated trees belonging to these species can ameliorate harsh climatic conditions (Joffre et al., 1999) and increase soil nutrient levels (Joffre & Rambal, 1993; Munzbergova & Ward, 2002), plant species richness (Guevara et al., 1992) and structural complexity, as well as provide habitats for animals (Manning et al., 2004). Other trees that are considered keystone species include Quercus douglasii, Sclerocarya birrea, Quercus griffithii, Schinziopython rautanenii, Corymbia calophylla and Populus tremula (Chidumayo, 2016; Helm & Witkowski, 2012; Kivinen et al., 2020; Paap et al., 2017; Rice et al., 1993; Singh et al., 2015). They provide resources (Messeder et al., 2020) and shelter to a large number of bird, mammal and insect species, some of which have a high degree of host specificity, that is specialization on host species used by phytophagous species (Ødegaard, 2004; Wardhaugh, Stork, & Edwards, 2013, 2014). Given the importance of these species for biological communities and considering the ongoing biodiversity crisis, conservation biology needs to devote more attention to identifying and conserving keystone species (Jordán, 2009).

The holm oak, Quercus ilex (Linneo, 1753), is considered a keystone tree species in the central-western Mediterranean Basin (Carnicer et al., 2014; Pérez-Ramos et al., 2013; Sirami et al., 2008). Holm oak not only represents a dominant species in Mediterranean woodlands and maquis vegetation, but can also form mixed stands throughout its distributional range (de Rigo & Caudullo, 2016). Holm oak forests have been reported to harbour high biodiversity in several taxa, including ectomycorrhizal fungi (Richard et al., 2005),lichens (Loppi & Frati, 2004) and plants (Diaz et al., 1997; Ihaddaden et al., 2013). Similar to other Quercus species in Mediterranean ecosystems, holm oak is suffering from the effects of a disease produced by the invasive oomycete Phytophthora cinnamomi (Brasier, 1996), which may have been increasing mortality since the 1980s (de Sampaio e Paiva Camilo-Alves et al., 2013). Holm oak-dominated dehesas (“human-made” ecosystems characterized by a savanna-likephysiognomy used to maintain livestock and hunting activity, and to obtain other forest products) are also home to a large number of protected species (Diaz et al., 1997). In addition, holm oak may be an important trophic resource for various groups of organisms. In particular, Ruiz-Carbayo et al. (2017) identified 24 Lepidoptera species that feed on Q. ilex in Spain, and 86 saproxylic beetle species were reported to feed on holm oak trunks in France (Sirami et al., 2008). However, at present, it is not known how many arthropod species feed on Q. ilex, as well as the trophic guilds in which they are organized, or their host specificity.

It has been proposed that trophic guilds (i.e. a group of organisms with a similar feeding strategy) are phylogenetically conserved (Potapov et al., 2019). In arthropods, a relationship is expected between feeding strategies and taxonomy because feeding is known to be a significant driving force associated with evolutionary morphological changes (Maas et al., 2007). This relationship has been demonstrated in different families or orders of insects that preferentially feed on flowers, leaves, wood, fruits or sap, but mostly in tropical environments (Novotny et al., 2010; Wardhaugh, Stork, & Edwards, 2013, 2014). In addition, host specificity (i.e. the degree of host dependence) may affect the distribution of phytophagous insects, with highly specialized species exhibiting distributional ranges that are enclosed within the range of their host (Arnal et al., 2019; Du et al., 2020). In these cases, the climatic niche of the phytophagous species is expected to be constrained by that of the tree host. Host specificity has been shown to vary among arthropods with different feeding strategies ranging from the most specialized group comprising granivores to the least specialized group comprising root feeders (Novotny & Basset, 2005).

In this study, we aimed to review the importance of Q. ilex as a trophic resource for arthropods. In particular, our specific goals were as follows: (a) to quantify how many arthropod species feed on holm oak (Q. ilex L.), as well as assessing their feeding strategies and conservation status throughout its distributional range; (b) to investigate the relationships between trophic guilds and the taxonomic relatedness of species; and (c) to assess the degree of host specificity for phytophagous arthropod species that feed on holm oak by comparing their feeding strategies across climatic niches. We hypothesized that: (a) Q. ilex will provide food resources for a high number of arthropod species, thereby confirming its role as a keystone species; (b) closely related species will have similar feeding strategies compared with distantly related species in accordance with the “taxonomic signal” hypothesis (Potapov et al., 2019); and (c) host specificity will be widespread among arthropods that feed on holm oak, but higher for the most specialized feeding groups, such as acorn feeders. To the best of our knowledge, no previous studies have reviewed how many arthropod species feed on a keystone tree species in this much detail, and those that focused on investigations of trophic guilds were mostly conducted in tropical environments (Novotny et al., 2010; Wardhaugh et al., 2013, 2014). Trophic interactions are likely to fundamentally affect the distribution and abundance of organisms, so our results may provide a baseline and important insights regarding arthropod conservation in Mediterranean holm oak woodlands.
2 | MATERIALS AND METHODS

2.1 | Study species

Holm oak is a widespread tree or shrub, which has been historically managed as coppice forests or in pastures with large isolated trees (i.e., dehesas) where livestock feed on grass and acorns (Díaz et al., 1997). It can be found in the central-western part of the Mediterranean Basin from coastal zones to up to 1,800 m.a.s.l. in southern Spain or 2,900 m.a.s.l. in the High Atlas (Rigo & Caudullo, 2016). It is a shade-tolerant species and can grow in semi-arid to very humid climates.

Holm oak refers to two currently accepted species names comprising *Quercus ilex* L. and *Q. rotundifolia* Lam (Ferrer-Galego & Sáez, 2019). The latter is mostly distributed in the western Mediterranean, including the Iberian Peninsula and Morocco. There is a consensus that the morphological variation in these trees is very high and the taxonomic characters typically used to separate these two species (related to the shape, toughness and spinescence of the leaves) are extremely plastic, and thus of very limited value in taxonomy. Therefore, this complex was resolved at the subspecies level in the Iberian Flora (Castroviejo et al., 1990), where *Q. ilex* subsp. *ilex* L. is found in areas with a greater oceanic influence and *Q. ilex* subsp. *ballota* (Desf.) Samp. (*Q. rotundifolia*) is found in inland zones. Therefore, we use *Q. ilex* sensu lato to refer to either of these taxonomical interpretations at the species level (*Q. rotundifolia*) and/or the subspecies level (*Q. ilex* subsp. *ballota*).

2.2 | Study area

Our study covered the whole distribution area of *Q. ilex* in the central-western Mediterranean Basin (Figure 1), which is considered a major biodiversity hotspot (Myers et al., 2000). This area is characterized by a Mediterranean climate, with mild wet winters and warm-to-hot, dry summers (Lionello et al., 2004), and high human usage during the last 300 human generations (~7,500 years). This human usage is mainly characterized by forest management, agriculture and livestock production, or landscape modification, which led to the disappearance of 85% of the potential forest area (Blondel, 2006).

2.3 | Literature search

To quantify how many arthropod species feed on *Q. ilex* and assess their feeding strategies and conservation status (goal 1), we conducted a literature search using Google Scholar, Dialnet, ResearchGate and Web of Science with pairwise combinations of the following two groups of keywords: “insect,” “invertebrate” and “arthropod,” and “Quercus ilex,” “Quercus rotundifolia,” “holm oak” and “evergreen oak,” in English and the equivalent French, Italian or Spanish terms. These languages are spoken in at least eight out of the 17 countries where the holm oak is found, and they cover more than 90% of its distribution area. We reviewed all papers retrieved from the literature search and excluded studies that did not specifically report trophic interactions between arthropod species and *Q. ilex* regardless of the region where the study was conducted. We did not include pollinators in this study because *Q. ilex* is an anemophilous species. In addition to the literature search, we: (a) examined all references in the selected publications; (b) browsed all articles published in “Boletín de Sanidad Vegetal y Plagas,” which is a Spanish journal published between 1975 and 2012 that focused on plant pest species, as well as all volumes of “Fauna Iberica” and “Faune de France” referring to terrestrial arthropods; and (c) reviewed all books available in the Rey Juan Carlos University (URJC), Madrid Autonomous University (UAM) and Madrid Polytechnic University (UPM) libraries covering aspects related to the feeding ecology of arthropod species in the Mediterranean region, including field guides. We annotated the parts of the plant consumed and geographical coordinates of the locations where arthropod species were recorded feeding on holm oak when available. We assumed that the identifications provided in the cited papers were correct without independent corroboration, although we checked for synonyms to avoid duplicating data. Finally, we conducted a search in the International Union for Nature Conservation (IUCN) Red List database (www.iucnredlist).

![FIGURE 1 Study area and distribution of Quercus ilex (in green) based on Beck et al. (2020). Red dots represent the locations of studies that reported trophic interactions between holm oak and arthropod species based on our literature search. Dots outside the distributional range of Quercus ilex represent interactions in ornamental holm oaks.](image)
org) to retrieve information about the conservation status of each species found in our literature search.

2.4 Investigating the relationships between trophic guilds and taxonomic relatedness

To investigate the relationships between trophic guilds and the taxonomic relatedness of species (goal 2), we conducted both phylogenetic and cluster analyses. We identified seven different feeding strategies: gall feeders (i.e. species that produce and feed via galls in leaves or stems), leaf feeders (including species that feed on both dead or living leaves and sprouts), wood feeders (including both xylophagous and saproxylic species that feed on trunks and stems), acorn feeders, sap feeders, root feeders and flower feeders.

We used the δ statistic (Borges et al., 2019) to test whether the feeding strategy was phylogenetically conserved. This metric measures the entropy contained in ancestral inferences in order to translate the principle of a phylogenetic signal into categorical data. Ancestral reconstructions using categorical data return the probability of each trait category occurring in each node (Borges et al., 2019).

The δ statistic can be any positive real number, where a higher value indicates that the degree of a phylogenetic signal is higher between a given trait and the phylogeny. We used the phylogenetic tree published by Chesters (2017) and pruned it to include the phytophagous species associated with Q. ilex for which we had trophic information. To test for the statistical significance of δ, we randomized the feeding strategies of arthropods across the phylogenetic tree tips 200 times and compared the measured δ statistic (δ_{obs}) with the simulated statistic (δ_{sim}) to calculate a p-value.

We then conducted hierarchical cluster analysis to analyse the similarities of the feeding strategies among genera and to establish trophic guilds. The proportions of taxa with each feeding strategy were estimated at the genus level. We only used those genera and feeding strategies with more than three species for the analysis. If a species had more than one feeding strategy, we counted that species several times rather than using fractional assignment. Clustering was performed using the Manhattan dissimilarity measure and Ward’s algorithm (Strauss & von Maltitz, 2017), and the optimal number of clusters was determined with the R package “factoextra” (Kassambara & Mundt, 2017) based on the k-means method with 999 bootstrap replicates (Monte Carlo resampling simulation).

2.5 Environmental niche analysis

To assess the degree of host specificity for phytophagous arthropod species that feed on holm oak (goal 3), we estimated the climatic niche of both the holm oak and each arthropod species found in the literature search and calculated their climatic niche overlap. To achieve this, we downloaded the geographical coordinates of all records available for Q. ilex and Q. rotundifolia and their phytophagous arthropod species from the Global Biodiversity Information Facility (GBIF) using the R package “rgbif” (Chamberlain et al., 2020). The downloaded data were curated using the R package “CoordinateCleaner” (Zizka et al., 2019), which removed (0, 0) coordinates, sea coordinates and incorrect geolocations, such as records allocated to the centroids of countries or institutions where specimens were stored (e.g. herbaria at botanical gardens or universities), country capitals and identical coordinates (Figure 2). In addition, coordinates were aggregated to the resolution of the climatic variables (2.5 arc min) to avoid overrepresentation of locally clustered species records.

The climatic niche of each arthropod species and the holm oak was calculated for the same area, which encompassed most of Europe (excluding the northernmost part), northern Africa and western Asia, (24°N–60°N/18°W–42°E; Figure 1), and it included the entire distribution of holm oak. We downloaded 19 climatic raster layers from the WorldClim database (Hijmans et al., 2005) with a resolution of 2.5 min. We conducted principal component analysis (PCA) with all climatic variables across the entire study area (bounded area shown in Figure 1) using the R package “ade4” (Dray & Dufour, 2007) based on the method proposed by Broennimann et al. (2012). The first two PCA axes were used to quantify the observed climatic niches of species by creating a bidimensional representation of the environmental variables based on the 2.5-arc-min grid cells with records of species occurrences (Figure 2). To accurately estimate the climatic niches of species, we only used those species present in at least 30 cells (Franklin, 2010; Supplementary Material 1), with a total of 294 species. We evaluated the climatic niche overlap between holm oak and its phytophagous species using the R package “ecospat” (Figure 2; Broennimann et al., 2020). We ran similarity analyses to test the overlap of two niches using the D metric proposed by Schoener (1968), which ranges between 0 (no overlap) and 1 (complete overlap). Based on this metric, a similarity test was conducted with function “ecospat.niche.similarity.test” in R (Broennimann et al., 2020) to determine which of the arthropod species distributions was explained by the holm oak distribution (a host dependence relationship) (Warren et al., 2008). This analysis was conducted based on the assumption that climate is the main driver of species distribution, although it is important to consider that other factors can also affect species distribution, including abiotic factors such as soils, or biotic factors such as predators or competitors (Gaston, 2003). This similarity test comprised a background test to assess whether two niches were more or less similar than expected by chance. A permutation approach (using 100 permutations) was employed to assess the significance of tests, where a p-value > .05 indicated that niches were no more similar than expected by chance (i.e. different). We considered that the host specificity of an arthropod species was holm oak when the similarity test between the host and phytophagous species obtained a value that differed significantly from that expected by chance (p-value < .05) (Figure 2). This approach has been used widely in previous studies of patterns of future species stability (Molina-Henao & Hopkins, 2019), predictions of suitability for...
invasive species (Beukema et al., 2018; Zemanova et al., 2018), spatial differentiation of subspecies (Ashrafzadeh et al., 2018), comparisons of climatic niches for species under present and future scenarios (Hamid et al., 2019), and assessing phytophagous species–host niche overlap (Arnal et al., 2019).

Finally, we fitted a generalized linear model with a beta error distribution to test for differences in Schoener’s D metric among feeding strategies in order to assess differences in host specificity between feeding guilds. This analysis was conducted with the R package “betareg” (Cribari-Neto & Zeileis, 2010).

3 | RESULTS

3.1 | Literature search

We identified 605 species from 342 genera, 90 families and eight arthropod orders (Table 1; Hernández-Agüero et al., 2021) based on 198 sources found during the two years of consult (Figure S2a), including research papers (69%, \(n = 136 \)) and books (31%, \(n = 62 \)) (Supplementary Material 2: Figure S2c), with 271 (44.8%) species cited in research papers, 269 (44.4%) in books, and 75 (12.3%) in both sources. (A list of the data sources is found in Appendix 1.) We found bibliographic information from 17 different countries, where the highest number of sources came from Spain, followed by France and Italy (Figure S2b), which corresponds to the countries with the largest holm oak distributions (Figure 1).

![FIGURE 2 Workflow diagram illustrating the niche overlap analysis conducted in this study, data preparation and the possible outcomes in terms of similarity](image)

![TABLE 1 List of arthropod orders that feed on holm oak and families with the highest number of species. Numbers of species and their percentage relative to the total (605) are also presented for both orders (left) and families (right)](table)

Order	Most common families	Number of species	% of species
Coleoptera	Cerambycidae	72	11.86
	Curculionidae	50	8.24
	Chrysomelidae	42	7.24
	Buprestidae	35	5.77
Lepidoptera	Geometridae	27	4.45
	Erebidae	20	3.29
	Noctuidae	16	2.64
Hemiptera	Miridae	32	5.27
	Aphididae	22	3.62
Hymenoptera	Cynipidae	75	12.39
Trombidiiformes	Cynipidae	35	5.77
Diptera	12	1.98	
Psocoptera	2	0.33	
Blattodea	2	0.33	
TOTAL	605		
Among the 605 species found to feed on Q. ilex, 71 (11.73%) were included in the IUCN Red List with assessments conducted at the global (n = 11), European (n = 66) or Mediterranean geographical scope (n = 33) (Hernández-Agüero et al., 2021). At the global geographical scope, three species were identified as data deficient (DD), four as least concern (LC), two as near threatened (NT) and two as vulnerable (VU) (Table 2). At the European geographical scope, four species were identified as DD, 49 as LC, seven as NT, three as VU, two as endangered (EN) and one as critically endangered (CR). Finally, at the Mediterranean geographical scope, two species were identified as DD, 26 as LC, three as NT, one as EN and one as CR (Table 2).

3.2 | Feeding strategies

Among the 605 species included in this study, we obtained information about the feeding strategies of 527 species, where 42% fed on leaves (n = 222), 31% on wood (n = 164) and 13% on galls (n = 70), and 9% were sap feeders (n = 45). The remaining 5% of the species fed on flowers (n = 16), acorns (n = 10) and roots (n = 2). We found that 98% of the species fed only on one part of the Q. ilex plant, 1.3% on two parts and 0.5% on three or more parts. The pruned phylogenetic tree contained 205 out of the 527 species for which we obtained information about their feeding strategies (Figure 3). A strong phylogenetic signal was associated with feeding strategies (δ̄ = 1.582, δlim 95% confidence interval = 0.881–1.179, p-value = 0.005).

Based on the feeding strategies of the different genera, we identified six major clusters (trophic guilds) with Ward’s clustering algorithm. One of the two main partitions split into two clusters dominated by leaf feeders (Figure 4, purple and blue) in genera from Coleoptera (Cryptocephalus, Polydrusus, Rhynchites, Coeloides, Smaragdina, Pachyrachis, Lachnaia and Labidostomis), Lepidoptera (Catocala, Phyionoryctery, Eupithecia, Stigmella, Ectoedemia and Dryobotodes) and Hymenoptera (Pericolista). The second partition split into four clusters encompassing wood feeders in genera (Figure 4, green) in genera from Hemiptera (Myzocallis and Kerme); acorn feeders (Figure 4, brown) in genera from Trombidiformes (Aceteria), Lepidoptera (Cydia) and Coleoptera (Curculio); and gall feeders (Figure 4, pink) in genera from Hymenoptera (Plagiotochus, Andricus, Mesopolobus and Synergus) and Diptera (Contarinia). Flower feeders did not constitute a cluster but they were present in others.

3.3 | Environmental niche analysis

Records were available in the GBIF for 491 (80%) of the 605 arthropod species that feed on Q. ilex, but only 294 species had a sufficiently high number of records (n > 30, ~48%) to reliably estimate their environmental niche, with a range between 31 and 13,149 records, and a mean of 1,136 coordinates per species. The first and second principal components obtained by PCA explained 64.63% and 17.65% of the climatic variation, respectively. Only 53 (18.02%) of the species studied had similar climatic niches (p-value < .05) to Q. ilex (see Figure 5 for an example). All of the climatic niche analysis results are available in Supplementary Material 3.

Finally, we found no statistically significant differences in the degree of overlapping with the climate niche of holm oak among arthropod feeding strategies (p-value = 0.275).

Species	Global	European	Mediterranean
Alocerus moesiacus		NT	
Alocerus siculus		CR	CR
Bothrideres interstitialis			EN
Brachygonus megerlei			
Calchaenesthes sexmaculata	NT	EN	NT
Cerambyx cerdo	VU	NT	LC
Cerambyx dux		NT	LC
Cerambyx miles		NT	LC
Cerambyx welensi		NT	NT
Chlorophorus javieri		NT	NT
Lichenophanes varius		NT	
Nectalis ulmi		VU	
Pachyta iamed		VU	
Pedostrangalia revestita	VU	VU	
Stictoleptura oblongomaculata			EN

Abbreviations: CR, critically endangered; EN, endangered; NT, near threatened; VU, vulnerable.

TABLE 2 List of species evaluated under the IUCN Red List criteria at different geographical scopes (global, European and Mediterranean), excluding the data deficient (DD) and least concern (LC) categories.
Based on our literature analysis, we found more than 600 species that feed on holm oak (Q. ilex). More than 90% of the species lack a conservation status assessment, where only 71 of the species were found in the IUCN Red List, with 56 in the DD category. Among the other 15 species, eight species are threatened by extinction at either global, European or Mediterranean geographical scopes. Most of the species feed on leaves, wood, sap or galls, and about 20% of the arthropod species were found to have niche similarity to holm oak, but we detected no differences in niche overlap between feeding strategies.

4.1 | Arthropod species that feed on holm oak

Tropical tree species can sustain a high number of arthropod species. For example, the number of phytophagous Coleoptera species...
found on *Brosimum utile* in tropical forests across the Neotropics was estimated as ca. 900 (Ødegaard, 2004), which contrasts with the 250 Coleoptera species found in our study. However, the amounts of species are much lower in temperate ecosystems. For example, based on a literature review, it was proposed that two oak species in the UK can support ca. 300 insect herbivore species (Southwood, 1961). However, in the present study, we found that over twice that amount of species feed at least partially on *Q. ilex*, thereby indicating a high level of biodiversity, at least compared with other oak species in temperate ecosystems. This number should not be treated as the actual amount because many species have yet to be formally described and catalogued (Whittaker et al., 2005), while others may have not been observed feeding on holm oak and/or reported in the scientific literature, and finally, our knowledge of the global, regional and even local distributions of many taxa, particularly arthropods, is far from being complete (Lomolino, 2004). In addition,
it should be noted that each arthropod species that feeds on holm oak can easily attract an average of 5–15 parasitoids and predators (Price, 2002), and thus, the number of arthropod species indirectly supported by holm oak woodlands might potentially range between 3,650 and 9,750 based on current figures for known taxa. This estimate only considers direct and indirect trophic interactions, and it could be higher if we consider species that use holm oak for shelter. *Q. ilex* is also known to be suitable for the establishment of other non-arthropod species, including lichens (Loppi & Frati, 2004), fungi (Richard et al., 2005) and vertebrates (Díaz et al., 1997). Overall, our results support the role of holm oak as a keystone tree species in Mediterranean ecosystems, as shown in previous studies (Carnicer et al., 2014; Pérez-Ramos et al., 2013; Sirami et al., 2008).

4.2 Is there a relationship between the degree of feeding strategies and taxonomic relatedness of species?

Our results indicated a relationship between the feeding strategies and taxonomic relatedness of species, and this is in agreement with the "taxonomic signal" hypothesis, which suggests that closely related species have more similar species’ traits compared with distantly related species (Potapov et al., 2019). However, our results indicated some variability in the phylogenetic composition of some trophic guilds, especially between acorn feeders, possibly as a response to strong trophic competition within taxonomically related species only allowing the coexistence of some phytophagous species, that is only 10 species in our study. This can be explained by the "limiting similarity" hypothesis (Potapov et al., 2019). Thus, many taxonomic groups seem to have developed specialized feeding strategies, such as Buprestidae, Cerambycidae and Cynipidae, whereas others have not, including Curculionidae.

The two trophic guilds of leaf feeders mostly comprised genera from Coleoptera and Lepidoptera, as well as one genus from Hymenoptera (Figure 4). These results are similar to those obtained by Novotny et al. (2010) in tropical forests, although they also found a substantial number of Orthoptera and Phasmatodea species with the leaf-feeding strategy, whereas these orders were not found to feed on holm oak. The trophic guild dominated by wood feeders in our study mostly comprised genera from Coleoptera in a similar manner to previous studies conducted in tropical forests (Novotny et al., 2010; Wardhaugh et al., 2013). The use of wood as a food resource appeared to be dominated by this order of insects. Indeed, dehesas (the most representative holm oak ecosystem) are considered a key ecosystem for saproxylic feeders (Ramírez-Hernández et al., 2014), and this might explain why we detected a disproportionate number of species that feed on this resource (wood) compared with other holm oak plant parts. In addition, the wood obtained from holm oak is economically important and much research has been conducted to minimize the economic losses caused by insect pests during its production. The trophic guild dominated by sap feeders entirely comprised Hemiptera species. A previous study also found that Hemiptera species are the most important sap feeders in tropical forests (Novotny et al., 2010), probably due to the highly specialized structures that they have evolved to obtain this resource (Goodchild, 1966). In contrast to our findings for other trophic guilds, the guild dominated by acorn feeders did not exhibit a taxonomic clustering pattern. The number of species that feed on this resource was relatively low and most belonged to three genera. The gall feeder trophic guild is extensive on holm oak (see references by Nieves-Aldrey in Hernández-Agüero et al., 2021), and we found that it mainly comprised genera from Cynipidae, a highly specialized family in the production of galls. Flower feeders did not constitute a trophic guild. Root feeders were not considered in our analysis due to the low number of species found, and the lack of literature regarding this trophic guild might have led to underestimation of the proportion of species that use this resource. However, it has been shown that this trophic guild has the lowest level of host specificity (Novotny & Basset, 2005).

4.3 Does environmental niche overlap occur between holm oak and phytophagous arthropods?

Among the 294 species considered for niche analysis, we found that 53 (18.02%) exhibited niche similarity to holm oak. Niche similarity indicates climatically driven species co-occurrence patterns that might be caused by different underlying ecological processes. For example, some of the arthropod species that exhibited niche similarity to holm oak might depend entirely on this resource because they have developed specificity for this host as a resource, for example *Satyrium esculi* or *Plagiotochus quercusilicis*. In contrast to our expectations, no differences in niche overlap were detected between feeding strategies, although this pattern might have been obscured by: (a) the lack of relevant data for specific trophic guilds such as root feeders, which typically exhibit less host specificity (Novotny & Basset, 2005); and (b) the possible influence of microhabitats on arthropods niches, which could not be accurately depicted with the spatial resolution of the WorldClim climatic layers used in this study.

4.4 Prospects for arthropod conservation

Quercus ilex is currently threatened by the invasive fungal species *Phytophthora cinnamomi* (Brasier, 1996; de Sampaio e Paiva Camilo-Alves et al., 2013), drought-induced tree mortality (Gea-Izquierdo et al., 2011), lack of regeneration (Plieninger et al., 2010; Pulido & Díaz, 2005) and land use changes (de Rigo & Caudullo, 2016). These threats have reduced the distribution of holm oak to ca. 22% of its potential distribution, at least in the Iberian Peninsula (Felícísimo et al., 2012). Thus, our results highlight the vulnerability of arthropod species that feed on this keystone species, particularly for species with small geographical ranges or population sizes. However,
details are lacking regarding basic aspects of the ecology of most arthropod species, such as where a species is found, which contrasts sharply with other groups such as mammals, birds, reptiles and plants (Cardoso et al., 2011). Thus, insufficient data were available to reliably describe the distributional ranges of more than 50% of the arthropod species. The lack of information was even more obvious when we considered the conservation status of the arthropod species because conservation status assessments were not available for over 90% of the species. Among the 71 species with full conservation assessments, 15 were threatened by extinction at global, European or Mediterranean geographical scopes, and thus, it is reasonable to assume that the number of threatened arthropod species was vastly underestimated in our study (Cardoso et al., 2020).

5 | CONCLUSIONS

Holm oak supports a huge number of arthropod species, thereby supporting its role as a keystone species in Mediterranean woodlands. In general, closely related species have similar feeding strategies compared with distantly related species, which supports the “taxonomic signal” hypothesis (Potapov et al., 2019). Finally, we found a moderate degree of host specificity among arthropods that feed on holm oak (ca. 20% of the species), and contrary to our expectations, we did not identify higher host specificity in the most specialized feeding groups. Overall, this study provides novel insights and offers a quantitative approach to identify keystone species important for conservation purposes, particularly in the current context of ongoing biodiversity crisis. However, further research is needed in many aspects of arthropod ecology, including the distributional ranges of species, degree of habitat specialization, population sizes and network analysis. Many arthropod species that thrive in holm oak woodlands might be at risk of extinction, and they could become extinct in the near future if the current threats to holm oak persist.

ACKNOWLEDGEMENTS

This study was financially supported by project PCIN-2016-150 (GILES) from the Spanish Government and REMEDINAL TE-CM (S2018/EMT-4338) from Comunidad de Madrid. During the development of this study, J.A.H. was supported by a 2-year Ph.D. grant from the Community of Madrid Government. We would like to thank the Universidad Rey Juan Carlos, Universidad Autónoma de Madrid and the ETSIAAB of the Universidad Politécnica de Madrid libraries for giving us access to many useful references, as well as Pedro del Estal Padillo for his support and guidance during the literature search and Mario Díaz for his comments on an earlier version of the manuscript. We would also like to acknowledge Neftali Sillero and Márcia Barbosa for their help with environmental niche analysis, as well as Inés Alonso-Crespo for providing computer equipment to conduct environmental niche analyses, and especially for the drawings of some of our study species. Duncan E. Jackson conducted an English-language editing of the paper.

CONFLICTS OF INTEREST

The authors confirm to not have any interest conflicts.

PEER REVIEW

The peer review history for this article is available at https://pubons.com/pubon/10.1111/ddi.13413.

DATA AVAILABILITY STATEMENT

All of the data and R scripts used in this study are available at Dryad (Hernández-Agüero et al., 2021): https://doi.org/10.5061/dryad.r2280gbdg.

ORCID

Juan Antonio Hernández-Agüero https://orcid.org/0000-0001-6584-5774
Ildefonso Ruiz-Tapiador https://orcid.org/0000-0001-9546-5393
Luis Cayuela https://orcid.org/0000-0003-3562-2662

REFERENCES

Arnal, P., Coeur d’Acier, A., Favret, C., Godefroid, M., Qiao, G. X., Jousselin, E., & Sánchez, A. (2019). The evolution of climate tolerance in conifer-feeding aphids in relation to their host’s climatic niche. Ecology and Evolution, 9, 11657–11671. https://doi.org/10.1002/ece3.5652
Ashrafzadeh, M. R., Khosravi, R., Ahmadi, M., & Kaboli, M. (2018). Landscape heterogeneity and ecological niche isolation shape the distribution of spatial genetic variation in Iranian brown bears, Ursus arctos (Carnivora: Ursidae). Mammalian Biology, 93, 64–75. https://doi.org/10.1016/j.mambio.2018.08.007
Beck, P. S. A., Caudullo, G., Mauri, A., de Rigo, D., Houston-Durrant, T., & San-Miguel-Ayanz, J. (2020). Tree species distribution data and maps for Europe. EUR 30148 EN. Publications Office of the European Union. https://doi.org/10.2760/489485
Beukema, W., Martel, A., Nguyen, T. T., Goka, K., Chmeller, D. S., Yuan, Z., Laking, A. E., Nguyen, T. Q., Lin, C. F., Shelton, J., Loyau, A., & Pasmans, F. (2018). Environmental context and differences between native and invasive observed niches of Batrachochytrium salamandrivorans affect invasion risk assessments in the Western Palearctic. Diversity and Distributions, 24, 1788–1801. https://doi.org/10.1111/ddi.12795
Blondel, J. (2006). The ‘Design’ of Mediterranean Landscapes: A Millennial Story of Humans and Ecological Systems during the Historic Period. Human Ecology, 34, 713–729. https://doi.org/10.1007/s10745-006-9030-4
Borges, R., Machado, J. P., Gomes, C., Rocha, A. P., & Antunes, A. (2019). Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics, 35(11), 1862–1869. https://doi.org/10.1093/bioinformatics/bty800
Brasier, C. M. (1996). Phytophthora cinnamomii and oak decline in southern Europe. Environmental constraints including climate change. Annals of Forest Science, 53(2–3), 347–358.
Broennimann, O. D., Cola, V. & Guisan, A. (2020). ecospat: Spatial Ecology Miscellaneous Methods. R package version 3.1. https://cran.r-project.org/web/packages/ecospat
Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellisser, L., Yoccoz, N. G., Thuiller, W., Fortin, M. J., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x

DATA AVAILABILITY STATEMENT

All of the data and R scripts used in this study are available at Dryad (Hernández-Agüero et al., 2021): https://doi.org/10.5061/dryad.r2280gbdg.
Cardoso, P., Barton, P. S., Birkhofer, K., Chichorro, F., Deacon, C., Fartmann, T., Fukushima, C. S., Gaiger, R., Habel, J. C., Hallmann, C. A., Hill, M. J., Hochkirch, A., Kwak, M. L., Mammola, S. J., Noriega, J. A., Orfinger, A. B., Pedraza, F., Pryke, J. S., Roque, F.,... Samways, M. J. (2020). Scientists' warning to humanity on insect extinctions. *Bioscience*, 67, 290-299.

Carnicer, J., Coll, M., Pons, X., Ninyerola, M., Vayreda, J., & Peñuelas, J. (2014). Large-scale recruitment limitation in Mediterranean pines: the role of Quercus ilex and forest successional advance as key regional drivers. *Global Ecology and Biogeography*, 23, 371-384.

Castroviejo, S., Aedo, C., Cirujano, S., Laínz, M., Montserrat, P., Morales, R., Muñoz Garmendia, F., Navarro, C., Paiva, J., & Soriano, C. (Eds.) (1990). *Flora ibérica. II*. Real Jardín Botánico, CSIC.

Chamberlain, S., Barve, V., Mcglinn, D., Oldoni, D., Desmet, P., Geffert, L. & Ram, K. (2020). rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.4.2. https://CRAN.R-project.org/package=rgbif

Chesters, D. (2017). Construction of a species-level tree of life for the insects and utility in taxonomic profiling. *Systematic Biology*, 66(3), 426-439.

Chidumayo, E. N. (2016). Distribution and abundance of a keystone tree, *Quercus ilex* L. along an aridity and human-use gradient in Spain over the last 100 years. *Forest Ecology and Management*, 262(9), 1807-1816. https://doi.org/10.1016/j.foreco.2011.07.025

Goodchild, A. J. P. (1966). Evolution of the alimentary canal in the Hemiptera. *Biological Reviews*, 41(1), 97-139. https://doi.org/10.1111/j.1469-185X.1966.tb01540.x

Guevara, S., Meave, J., Moreno-Casasola, P., & Laborde, J. (1992). Floristic composition and structure of vegetation under isolated trees in neotropical pastures. *Journal of Vegetation Science*, 3, 655-664. https://doi.org/10.2307/3235833

Hale, S. L., & Koprowski, J. L. (2018). Ecosystem-level effects of keystone species reintroduction: A literature review. *Restoration Ecology*, 26(3), 439-445. https://doi.org/10.1111/rec.12684

Hamid, M., Khuroo, A. A., Charles, B., Ahmad, R., Singh, C. P., & Aravind, N. A. (2019). Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. *Biodiversity and Conservation*, 28, 2345-2370. https://doi.org/10.1007/s10531-018-1641-8

Haupt, T. M., Crawford, J. E., & Chown, S. L. (2014). Solving the puzzle of Phryganea-threatened, keynote detritivores in the sub-Antarctic. *Insect Conservation and Diversity*, 7(4), 308–313. https://doi.org/10.1111/icad.12054

Helm, C. V., & Witkowski, E. T. F. (2012). Characterising wide spatial variation in population size structure of a keystone African savanna tree. *Forest Ecology and Management*, 263, 175-188. https://doi.org/10.1016/j.foreco.2011.09.024

Hernández-Agüero, J. A., Ruiz-Tapiador, I., & Cayuela, L. (2021). Data from: What feeds on Quercus ilex L.? A biogeographical approach to studying trophic interactions in a Mediterranean keystone species. *Dryad Digital Repository*. https://doi.org/10.5061/dryad.2280bgd

Hijmans, R. J., Cameron, S., Parra, J., Jones, P., Jarvis, A., & Richardson, K. (2005). *WorldClim*, version 1.2. University of California.

Iihadadden, A., Velázquez, E., Rey-Benayas, J. M., & Kadi-Hanifi, H. (2013). Climate and vegetation structure determine plant diversity in *Quercus ilex* woodlands along and aridity and human-use gradient in Northern Algeria. *Flora*, 208, 268–284. https://doi.org/10.1016/j.flora.2013.03.009

Joffre, R., & Rambal, S. (1993). How tree cover influences the water balance of Mediterranean rangelands. *Ecology*, 74(2), 570–582. https://doi.org/10.2307/1939317

Joffre, R., Rambal, S., & Ratte, J. P. (1999). The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. *Agroforestry Systems*, 45, 57–79. https://doi.org/10.1023/A:1006259402496

Jordán, F. (2009). Keystone species and food webs. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 364, 1733–1741. https://doi.org/10.1098/rstb.2008.0335

Kassambara, A. & Mundt, F. (2017). Package ‘factoextra’. Extract and visualize the results of multivariate data analyses, 76. https://cran.r-project.org/web/packages/factoextra/

Kivinen, S., Koivisto, E., Keski-Saari, S., Poikolainen, L., Tanskanen, A. K. T., Kuusinen, A., Väisänen, E., Riihijärvi, J., & Virtanen, S. (2020). Quercus ilex L., in boreal forests: Ecological role, knowledge needs and mapping using remote sensing. *Forest Ecology and Management*, 462, 118008. https://doi.org/10.1016/j.foreco.2020.118008

Lessios, H. A., Garrido, M. J., & Kesing, B. D. (2001). Demographic history of *Diadema antillarum*, a keystone herbivore on Caribbean reefs. *The Royal Society*, 268, 2347-2353.

Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., May, W., Trigo, R., Tsimpis, M., Ulbrich, U., & Xoplaki, E.

Gaston, K. J. (2003). *The structure and dynamics of geographic ranges*. Oxford University Press.
Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, Wardhaugh, C. W., Stork, N. E., & Edwards, W. (2012). Feeding strategy
Waller, D. M., & Alverson, W. S. (1997). The white-tailed deer: A keystone
Wardhaugh, C. W., Stork, N. E., & Edwards, W. (2014). Canopy inverte
Wardhaugh, C. W., Stork, N. E., & Edwards, W. (2013). Specialization
Zemanova, M. A., Broennimann, O., Gusian, A., Knop, E., & Heckel, G.
Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C.,
Strauss, T., & von Maltitz, M. J. (2017). Generalising Ward’s method for use with Manhattan distances. PLoS One, 12(1), e0168288. https://

Wardhaugh, C. W., Stork, N. E., & Edwards, W. (2012). Feeding strategy
structure of beetles on Australian tropical rainforest trees reflects
microhabitat resource availability. Journal of Animal Ecology, 81, 1086-1094. https://www.jstor.org/stable/41682526

Wardhaugh, C. W., Stork, N. E., & Edwards, W. (2013). Specialization of rainforest canopy beetles to host trees and microhabitats: Not all specialist are leaf-feeding herbivores. Biological Journal of the Linnean Society, 109, 215–228. https://doi.org/10.1111/bij.12029

Wardhaugh, C. W., Stork, N. E., & Edwards, W. (2014). Canopy invertebrate community composition on rainforest trees: Different microhabitats support very different invertebrate communities. Austral Ecology, 39, 367-377. https://doi.org/10.1111/aec.12085

Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868-2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x

Whittaker, R. J., Araújo, M. B., Jepson, P., Ladle, R. J., Watson, J. E. M., & Willis, K. J. (2005). Conservation biogeography: Assessment and prospect. Diversity and Distributions, 11, 3-23. https://doi.org/10.1111/j.1366-9516.2005.00143.x

Zemanova, M. A., Broennimann, O., Gusian, A., Knop, E., & Heckel, G. (2018). Slimy invasion: Climatic niche and current and future biogeography of Arion slug invaders. Diversity and Distributions, 24, 1627-1640. https://doi.org/10.1111/did.12789

Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svanetson, S., Wengstrom, N., Zizka, V., & Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 19(5), 744-751. https://doi.org/10.1111/2041-210X.13152

Supporting Information
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Hernández-Agüero, J. A., Ruiz-Tapiador, I., & Cayuela, L. (2022). What feeds on Quercus ilex L.? A biogeographical approach to studying trophic interactions in a Mediterranean keystone species. Diversity and Distributions, 28, 4-24. https://doi.org/10.1111/ddi.13413

Appendix 1

References
Ageno, R. (1950). Morfología, biología y distribución geográfica de Orgya dubia (Tausch.) en España (Lep. Lymant.). Eos 283–299.
Aguado, L.Ó., San José, I. & Ortiz, M. (2001). Las mariposas de Valladolid. Diputación de Valladolid.
Arahou, M. (2008). Catalogue de l'entomofaune du Chêne vert du Moyen Atlas (Maroc). Rabat, Maroc: Institut Scientifique.
Arnáiz Ruiz, L.A. (1999). Los Buprestis del cuadrante noroccidental Español (Coleoptera, Buprestidae). Graellsia, 55, 163–176.
Askew, R.R., Melika, G., Pujade-Villar, J., Schoenrogge, K., Stone, G.N. & Nieves-Aldrey, J.L. (2013). Catalogue of parasitoids and inquilines in cynipid oak galls in the West Palaearctic. Zootaxa, 3643(1), 1–133.
Askew, R.R. & Nieves-Aldrey, J.L. (2017). Eupelmidae of Iberia and the Islas Canarias: Check list comentada de las especies, incluyendo la descripción de una nueva especie de Colosota Curtis, 1836 y de los machos previamente no reconocidos de algunas especies. Graellsia, 73(2), e065-e065.
Baena, M. & Zuzarte, A.J. (2013). Contribución al estudio de los Bostriquidos de Portugal y actualización del catálogo de la fauna ibérica (Coleoptera, Bostritidae). Zoologica baetica, 24, 25–51.
Balachowsky, A. (1949) Coleoptères Scolytides. Faune de France, vol. 50. Fédération Française des Sociétés de Sciences Naturelles, Paris: 320 p.
Baldizzone, G. & Landry, J.F. (2012). Kasyniana shardana Baldizzone, sp. n. (Lepidoptera: Oecophoridae). SHILAP Revista de lepidopterología 40(158), 197–205.
Balkenohl, M.W. (1999). Reicheiodes microphthalmus (Heyden, 1870) from the north-western Iberian peninsula, with a description of the new subspecies Reicheiodes microphthalmus assmanni ssp. n. (Coleoptera: Carabidae, Scaritinae). Beiträge zur Entomologie=Contributions to Entomology 49(2), 389–397.
Barbagallo, S., Binazzi, A., Pennacchio, F. & Pollini, A. (2011). An annotated checklist of aphids surveyed in the Italian regions of Tuscany and Emilia Romagna. Redia 94, 59–96.
Baselga, A. & Novoa, F. (2000). Citas interesantes de Buprestidiae (Coleoptera) del Noroeste de la Península Ibérica. Boletín de la Asociación Española de Entomología 24(1–2): 13–17.
Faggi M., Nappini S. & Biscaccianti A.B. (2010). Studies on longhorn beetles (Coleoptera Cerambycidae) of the Monte Rufeno Nature Reserve and Bosco del Sasseto Natural Monument (Lazio, central Italy). Redia 93:31–45
Favet, C., Moulet, P. & Frapa, P. (2012). Contribution à la connaissance des insectes de la Réserve de biosphère Luberon-Lure (Vaucluse et Alpes-de-Haute-Provence) Ordre des Hétéroptères. Courrier scientifique du Parc naturel régional du Luberon et de la Réserve de biosphère Luberon-Lure.
Fernández, J. (2017). Nuevos taxones animales descritos en la península Ibérica y Macaronesia desde 1994 (XX). Graellsia, 73(1), e058-e058.
Fernández de Córdova, J. (2002). Insectos que atacan a los encinares cordobeses (Homoptera: Aphidinea). Boletín de la Sociedad Andaluza de Entomología, 3, 40–47.
Fernández de Córdova, J. & Gallego, F.J. (1997). Control de la cochinilla de la encina (Asterolecanium ilicicola, Targioni, 1892) mediante la inyección de insecticidas al tronco del árbol. Boletín de Sanidad Vegetal - Plagas 23(4), 607–612.
Fuentes Sanchez, C. (1993). Plagas endémicas de la encina. Agricultura: Revista agropecuaria y ganadera (729): 336–339.
Fuentes Sanchez, C. (1994). La encina en el centro y suroeste de España y su aprovechamiento y el de su contorno. Cervantes, Salamanca.
Galante, E. & Verdú, J.R. (2000). Los artrópodos de “La Directiva Hábitat” en España. Madrid, Spain: Ministerio de Medio Ambiente.
Gallardo, P. & Cárdenas, A.M. (2016). Long-term monitoring of sap-roxylic beetles from Mediterranean oak forests: an approach to the larval biology of the most representative species. Journal of Insect Conservation, 20(6), 999-1009.
Gallardo, P., Moyano, L. & Cardenas, A.M. (2011). Incidencia de insectos perforadores de bellotas en el área de mejora ambiental asociada a la construcción del embalse La Breña II (Sierra Morena Central, Córdoba). Boletín de Sanidad Vegetal - Plagas 37:69–78.
Gallardo, P. & Cárdenas, A. (2017). Foliar damage by adults of spring weevils (Coleoptera: Curculionoidea) on Quercus species from Mediterranean oak forests in the Iberian Peninsula. Entomologica Fennica, 28(1), 1–8.
García-Barros, E., Munguira, M.L., Stefanescu, C. & Vives Moreno, A. (2013). Fauna Ibérica Volumen 37: Lepidoptera: Papilionoidea. CSIC, Madrid, Spain.
Germann, C., Wolf, I. & Schütte, A. (2015). Echinodera (Ruteria) soumasi sp. n. from Greece (Coleoptera, Curculionidae). Mitteilungen der Schweizerischen Entomologisch Gesellschaft 88:285–293.
Gessé, F., Monleón-Getino, T. & Goula, M. (2014). Biodiversity analysis of true bug assemblages (Hemiptera, Heteroptera) in four habitats in the Garraf Natural Park (Barcelona, Spain). Journal of Insect Science, 14(1), 283.
Gesse, F. & Goula, M. (2006). Listado de heterópteros terrestres (Insecta, Hemiptera, Heteroptera) del Macizo de Garraf (Cataluña). Boletín de la Asociación Española de Entomología 30(3–4): 51–74.
Giustina, W.D. (1989). Hétéroptères Cicadellidae. Vol. 3. Compléments aux ouvrages dHenri Ribaut Volumes 73: Faune de France. Institut National de la Recherche Agronomique.
Gómez-Bustillo, M. & Fernandez-Rubio, F. (1976). Mariposas de la Península Ibérica, Heteroceros Bd. 1. Instituto Nacional para la Conservación de la Naturaleza, Madrid.
Gómez de Aizpurúa, C. (1985). Biología y morfología de las orugas. Lepidoptera. Tomo III Geometridae. Boletín de Sanidad Vegetal - Plagas.
Gómez de Aizpurúa, C. (1986). Biología y morfología de las orugas. Lepidoptera. Tomo II: Cossidae, Sphingidae, Thaumetopoeidae, Lymansiridae, Arcriidae. Boletín de Sanidad Vegetal - Plagas.
Gómez de Aizpurúa, C. (1991). Tortix viridana (LINNE, 1758), Lep. Torticidae. Nueva forma de orugas. Boletín de Sanidad Vegetal - Plagas 17:459–463.
Gómez de Aizpurúa, C. (1993). Cydia fagiglandana (Zeller, 1841), Lep. Torticidae, en España. Boletín de Sanidad Vegetal - Plagas 19:389–400.
Gómez de Aizpurúa, C. (2001). Orugas y mariposas de Europa vol II. Organismo Autónomo Parques Nacionales, Madrid.
Gómez de Aizpurúa, C. (2001). Orugas y mariposas de Europa vol V. Organismo Autónomo Parques Nacionales, Madrid.
Gómez de Aizpurúa, C. (2008). Orugas y mariposas de Europa vol I. Organismo Autónomo Parques Nacionales, Madrid.
Gómez de Aizpurúa, C. (2008). Orugas y mariposas de Europa vol III. Organismo Autónomo Parques Nacionales, Madrid.
Gómez-Menor Ortega, J. (1945). Contribución al conocimiento de los Aleyródidos de España (Hem. Homop.). Instituto Español de Entomología.
Gómez-Zurita, J. & Petitpierre, E. (2010). Contribution to the knowledge of the iberian fauna of Chrysomelidae (Coleoptera). I: New records of Criocerinae, Clytrinae and Cryptocephalinae. Boletín de la Sociedad Entomológica Aragonesa 47:139–142.
González Peña, C.F., Noguera, E.V. & de Sousa Zuzarte, A.J. (2007). Nuevo catálogo de los Cerambycidae (Coleoptera) de la Península Ibérica, Islas Baleares e islas atlánticas: Canarias, Azores y Madeira. Sociedad Entomológica Aragonesa.
Gotlin Čuljak, T., Grubišić, D., Mešić, A. & Juran, I. (2012). List of aphids (Homoptera: Aphidoidea) and their host plants in Croatia. Lepidoptera. Tomo III Geometridae. Nueva forma de orugas. Boletín de Sanidad Vegetal - Plagas 37:69–78.
Goula, M.G. (1989). Catáleg dels Miridae (Heteroptera) del massís del Montseny. Graellsia, 73(1), 1–11.
Goula, M.G. (1986). Miridae (Heteroptera) de roures, alzines i faigs (Fagaceae) del Montseny. Sessió Conjunta d’Entomologia, 165–172.
Goula, M.G. (1989). Catáleg dels Miridae (Heteroptera) del massís del Garraf. Sessió Conjunta d’Entomologia, 67–76.
Goula, M.G. (1989). Catáleg dels Miridae (Heteroptera) del massís del Garraf. Sessió Conjunta d’Entomologia, 67–76.
Guevara, R.G.L., Marco, L.R. & Tomás, A.A. (1985). Primera contribución al catálogo de noctuidos de la provincia de Albacete. Al- Basit: Revista de Estudios Albacetenses, 17:113–154.
Guillemíno, A., D'Ursio, V. & Alma, A. (2000). Auchenorrhyncha (Insecta, Homoptera) from Sardinia (Italy): A faunistic, ecological and zoogeographical contribution. Deutsche Entomologische Zeitschrift 47:161–172.
Hallima, M.K.B. (2012). Aphid fauna (Homoptera Aphididae) and their host association of chott mariem, coastal area of Tunisia. Annals of Biological Research, 3(2), 746–754.
Halperin, J., Binazzi, A. & Swirski, E. (1988). Additional species of aphidioidea in Israel. *Phytoparasitica* 16(2): 231–237

Hausmann, A. (2001). *The Geometrid Moths of Europe. (Vol. I).* Apollo books

Hausmann, A. & Viidalepp, J. (2012). *The geometrid moths of Europe (Vol. III).* Apollo books.

Hellrligl, K. (1978). Ókolgie und Brutpflanzen europäischer Prachtkäfer (Col., Buprestidae). *Journal of Applied Entomology* 85(1–4): 253–275.

Hiernaux, L., Pereira, P., Hurtado, A. & Fernández, J. (2018) Catálogo y atlas de los Ropalocéros del Parque Nacional de Cabañeros. Organismo Autónomo Parques Nacionales. Madrid.

Henri-Pierre Aberlenc, P. (2010) *Liste commentée des insectes du Bois de Païolive (Gard & Arèche).* http://aberecouto.fr/24_supp_web_ento/01-liste-insectes-paiolive.pdf

Hoffman, A. (1945). *Coléoptères Bruchides et Anthribides Volumen 44: Faune de France. Institut National de la Recherche Agronomique.*

Hoffman, A. (1950). *Coléopteres, Curculionides (Premiere partie) Volumen 52: Faune de France. Institut National de la Recherche Agronomique.*

Hoffman, A. (1958). *Coléoptères Curculionides. 3ème partie. Volumen 62: Faune de France. Institut National de la Recherche Agronomique.*

Hoffman, A. (1986). *Coléopteres, Curculionides (Deuxième partie) Volumen 59: Faune de France. Institut National de la Recherche Agronomique.*

Hrnčič, S. & Radonjić, S. (2004). *Phylloxera quercus Boyer de Fonsec. (Homoptera, Phylloxeridae), the first detection in Montenegro. In: Zbornik radova, V anučn-stručni simpozij, Biotehnologija i agrindustrija, Velika Plana. Proceedings: 351–356.*

Huertas-Dionisio, M. (2009). Estados inmaturos de Lepidoptera (XXV). Seis especies y dos subespecies del género Acrobasis. *SHILAP Revista de lepidopterología, 37 (145): 65–99.*

Huertas-Dionisio, M. (2012). Estados inmaturos de Lepidoptera (XLIV). Seis especies de la familia Gelechiidae Stainton, 1854 en Huelva, España (Insecta: Lepidoptera). *SHILAP Revista de Lepidopterología 40(158): 135–154*

Iablokoff-Khnzorian, S.M. (1982). Les coccinelles, *Coléoptères-Coccinelidae: tribu coccinellini des régions paléarctique et orientale. Éditions Boubée.*

Justicia, A.I., Sánchez, A.S., Gonzalvo, M.M. & Arias, E.P.L. (2007). Distribución y abundancia de *Lymnantria dispar* (Linnaeus, 1758) (Lepidoptera: Lymantiidae) en las principales masas de carrasca Quercus ilex (L) subsp. *Rotundifolia* (Lam.) y alcornoque *Quercus suber* (L.) de la Comunitat Valenciana. *Boletín de Sanidad Vegetal - Plagas* 33:491–502.

Inácio, M.L., Naves, P., Moreira, M. & Sousa, E.M. (2002). Gall inducing insects associated with oak trees (*Quercus* spp.) in Portugal. Integrated Protection in Oak Forests. *IOBC/wprs Bull. 25(5): 59–162.*

Jenedek, E. & Poláková, J. (2014). *Host Plants of World Agrilus* (Coleoptera, Buprestidae). Springer International Publishing.

Jiménez, A., Antonietty, A., Gallardo, A., Soria, F.J. & Ocete, E (2011). Efectividad de varias cepas comerciales de nematodos entomopatógenos sobre larvas de *Curculio elephas* Gyllenhal (Coleoptera: Curculionidae). *Boletín de Sanidad Vegetal - Plagas* 37:9–17.

Kalapanida, M. & Petrakis, M. (2012). Temporal partitioning in an assemblage of insect defoliators feeding on oak on a Mediterranean mountain. *European Journal of Entomology* 109:55–69.

Karaman, S. & Tezcan, S. (1998). Contribution to the study of the genus *Anthaxia* (subgenus *Anthaxia* s. str.) Eschscholtz, 1829 (Coleoptera, Buprestidae) of Turkey. *Turkish Journal of Entomology* 22(1): 19–35.

Kemal, M & Koçak, A.O. (2015). On the Pterygota fauna of Hatay Province (S. Turkey), based upon the info-system of the Cesa. CesaNews Centre for Entomological Studies Ankara 102:16–233.

Kolarov, J., Coruh, S. & Coruh, I. (2017). A study of Ichneumonidae (Hymenoptera) from Northeastern Anatolia (Hymenoptera) from Northeastern Anatolia III, with records and description male of *Temelucha pseudocaudata* Kolarov, 1982. *Turkish Journal of Entomology* 41(2): 125–146.

Koren, T., Vukotić, K. & Crne, M. (2015). Diversity of the moth fauna (Lepidoptera: Heterocera) of a wetland forest: A case study from Motovun forest, Istria, Croatia. *Periodicum Biologorum 117(3): 339–414*.

Kolarov, J., Bellavista, M., Giardina, G. & Sparacio, I. (2010). Longhorn beetles of the Ficuszza woods (W Sicily, Italy) and their relationship with plant diversity (Coleoptera, Cerambycidae). *Biodiversity Journal 1(1–4): 15–44.*

Lastuvka, A. & Lastuvka, Z. (2007). Southern European *Phylloxyrctyer* species mining Quercus with two new species (Lepidoptera: Gracillariidae). Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 11:95–110.

Lastuvka, A. & Lastuvka, Z. (2014). New records of mining Lepidoptera from the Iberian Peninsula (Insecta: Lepidoptera). *SHILAP Revista de Lepidopterología 42(165): 122–133.*

Leonardi, G. & Silvestri, F. (1920). *Monografia delle cocciniglie italiane: Opera postuma* (Vol. 25). Stab. tip. E. Della Torre.

Leseigneur, L. (1972). *Coléoptères Elateridae de la faune de France continentale et de Corse. Publications de la Société Linnéenne de Lyon, 41(2), 3–82.*

Lienhard (1998). *Psocopteres euro-méditerranéens Volumen 83: Faune de France.* Institut National de la Recherche Agronomique.

Lieutier, F. & Paine, T.D. (2016). Responses of Mediterranean Forest Phytophagous Insects to Climate Change. *Insects and Diseases of Mediterranean Forest Systems: 801–858.*

López Alonso, C., Vidal, M. & Eizaguirre Altuna, M. (2004). Descripcion y biología de *Dryomia lichtensteini* (F. Low) en Lleida. *Boletín de Sanidad Vegetal - Plagas* 30:671–678.

López Fernández, M.J. & Otero González, J.C. (2016). *Fauna Ibérica Volumen 42. Coleoptera: Latiridae.* CSIC, Madrid, Spain.

Lumbierres, B., Sarý, P. & Pons, X. (2005). Parasitoids and predators of aphids associated with public green areas of Lleida (NE Iberian Peninsula). *Advances in Horticultural Science 19(2): 69–75.*

Luna Murillo, M. (2017). *Interessanti specie di Buprestidi rinvenute nel Preappennino umbro in provincia di Perugia. Quaderno di Studi e Notizie di Storia Naturale della Romagna 46:139–146.*
Luna Murillo, M. (2009). Nuevos datos de bupréstidos (Coleoptera, Buprestidae) para Córdoba y Granada (Andalucía). Boletín de la Sociedad Andaluza de Entomología 16:57–60.

Luna Murillo, M. & Obregón, R. (2013). Nuevas aportaciones a la fauna de Bostrichidae (Coleoptera) de la provincia de Córdoba (Andalucía, España). Boletín de la Sociedad Andaluza de Entomología 21:46–57.

Luna Murillo, M. & Obregón, R. (2014). Nuevas aportaciones a la fauna de Cleridae (Coleoptera) de la provincia de Córdoba (Andalucía, España). Boletín de la Sociedad Andaluza de Entomología 23:45–62.

Luna Murillo, A.A. (2009). Nuevos datos de cerambycidos (Coleoptera, Cerambycidae) para Córdoba (Andalucía). Boletín de la Sociedad Andaluza de Entomología, (16), 61–65.

Lupoli, R. & Dusoulier, F. (2015). Les Punaises Pentatomoides de France. Éditions Ancyrosoma.

Magano, L. & Mifsud, D. (1998). A new species of Alaocyba Perris, 1869 (Insecta: Coleoptera: Curculionidae: Raymondiomyinae) from the Maltese Islands. Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie: 175–178.

Mantín Piera, F. & López Colon, J.J. (2000). Fauna Ibérica Volumen 14. Coleoptera Scarabaeoidea I. CSIC, Madrid, Spain.

Martin, F. & Monserrat, V.J. (1987). Los neúrópteros del encinar íbérico. Boletín de Sanidad Vegetal - Plagas 13:347–359

Martin-Santafe, M, Forbea, V.P., Zuriaga, P. & Freijoo, J.B. (2014). Phytosanitary problems detected in truffle cultivation in Spain. A review. Forest Systems 23(2): 307–316.

Masten Milek, T., Sejjak, G., Šimala, M., Pintar, M. & Markotić, V. (2016). Popis štitastih uši (Hemiptera: Coccomorpha) na domaćinima iz roda Xerobion eriosomatinum (Aphididae Aphidini) y otros pulgones del encinar Iberico. Boletín de Sanidad Vegetal - Plagas 18:395–405.

Monserrat, V.J. (1978). Contribución al conocimiento de los Neurópteros de Orense (Neu., Planipennia). Boletín de la asociación Española de Entomología 2:169–184.

Monserrat, V.J. (1984). Contribución al conocimiento de los neúrópteros de Alicante (Neu., Planipennia). Mediterranea, Serie Biologia 7:91–116.

Monserrat, V.J. (1984). Contribución al conocimiento de los neúrópteros de Zamora (Neur., Planipennia). Miscellània Zoològica, 8:153–163.

Monserrat, V.J. (1985). Contribución al conocimiento de los Neurópteros (Neuroptera: Planipennia) de Murcia. Anales de Biologia 3:81–94.

Monserrat, V.J. (2008). Nuevos datos sobre algunas especies de críosphídos (Insecta: Neuroptera, Chrysopidae). Heteropterus Revista de Entomología, 8(2): 171–196.

Monserrat, V.J., Triviño, V. & Acevedo, F. (2013). Contribución al conocimiento de los neúrópteros de Navarra (Insecta, Neuroptera). Heteropterus Revista de Entomología, 13(1), 41–58.

Moraal, L.G. & Hilszczanski, J. (2000). The oak buprestid beetle, Agrilus biguttatus (F.) (Col., Buprestidae), a recent factor in oak decline in Europe. Anzeiger für Schädlingskunde 73(5), 134–138.

Moreno, M.D. (1991). Mariposas diurnas a proteger en Andalucía. Agencia de Medio Ambiente (Consejería de Cultura y Medio Ambiente, Junta de Andalucía). Sevilla.

Moulet, P. (1995). Hémiptères Coreioidea Euro-Méditerranéens. Volumes 81: Faune de France. Institut National de la Recherche Agronomique. Munguira, M.L., García-Barros, E. & Martín, J. (1997). Plantas nutriciales de los licénidos y satirinos españoles (Lepidoptera: Lycaenidae y Nymphalidae). Boletín de la Asociación Española de Entomología 21(1–2): 29–53.

Muñoz López, C.M. (2007). Sanidad forestal. Guía en imágenes de plagas: guía en imágenes de plagas, enfermedades y otros agentes presentes en los bosques. Mundi-Prensa Libros.

Muscarella, M., Sparacio, I., Liberto, A. & Nardi, G. (2013). The genus Lichenophanes Lesne, 1899 in Italy (Coleoptera Bostrichidae) and short considerations on the saproxylophagous beetle-fauna of Nebrodi Mountains (Sicily). Biodiversity Journal 4(4): 451–466.

Nappini, S. & Bracalini, M. (2008). Coleotteri xilofagi delle “Bandite di Scarlino” (Toscana Meridionale). Atti Mus. Stor. nat. Marea, 22, 73–104.
Nardi, G. & Mifsud, D. (2015). The Bostrichidae of the Maltese Islands (Coleoptera). ZooKeys 481:69–108.

Nardi, G. & Mifsud, D. (2015). The Bostrichidae of the Maltese Islands (Coleoptera). ZooKeys 481:69–108.

Navone, P. (2006). Notes on parasitoids of Phyllocopteryctis jovialis Constant (Lepidoptera: Gracillariidae), with description of a new species of Achrysocharoides Girault (Hymenoptera, Eulophidae). Deutsche Entomologische Zeitschrift 53(2):290–297.

Nieto Nafria, J.M., Mier Durante, M.P., Binazzi, A. & Pérez Hidalgo, N. (2002). Fauna Ibérica Volumen 19. Hemiptera: Aphididae II. CSIC, Madrid, Spain.

Nieto Nafria, J.M., Mier Durante, M.P. (1998). Fauna Ibérica Volumen 11. Hemiptera: Aphididae I. Madrid, Spain: CSIC.

Nieto Nafria, J.M. & Mier Durante, M.P. (2006). Notes on parasitoids of Phyllocopteryctis jovialis Constant (Lepidoptera: Gracillariidae), with description of a new species of Achrysocharoides Girault (Hymenoptera, Eulophidae). Deutsche Entomologische Zeitschrift 53(2):290–297.

Nieto Nafria, J.M., Mier Durante, M.P. (1998). Fauna Ibérica Volumen 11. Hemiptera: Aphididae I. Madrid, Spain: CSIC.

Nieto Nafria, J.M. & Mier Durante, M.P. (2006). Notes on parasitoids of Phyllocopteryctis jovialis Constant (Lepidoptera: Gracillariidae), with description of a new species of Achrysocharoides Girault (Hymenoptera, Eulophidae). Deutsche Entomologische Zeitschrift 53(2):290–297.

Pérez, C. (1965). Contribución a la faunistica de la Corse: hétreroptères Miridae et Anthocoridae. Bulletin Mensuel de la Société Linnéenne de Lyon 34:377–384.

Pérez, C. (1983). Hémiptères Tingidae euro-méditerranéens Volume 69 Faune de France. Institut National de la Recherche Agronomique.

Petitpierre, E. (1983). Cataleg dels coleopters Crismolids de Catalunya, II. Zeugophorinae, Donaciinae, Criocerinae, Clytrinae, Lamprosomatinae i Europominae. Butlleti ICHN, 49, 87–96.

Petitpierre, E. (2016). Fauna Ibérica Volumen 13. Coleoptera: Chrysomelidae I. Madrid, Spain: CSIC.

Petitpierre, E. (2019). Fauna Ibérica Volumen 46. Coleoptera : Chrysomelidae II. Madrid, Spain: CSIC.

Petitpierre, E. & Doguet, S. (1981). Citas nuevas o interesantes de Chrysomelidae para la Península Ibérica. Boletín de la Asociación Española de Entomología 22(3-4), 246–248.

Pons, X., Lumbierres, B. & Starý, P. (2006). Expansion of the aphid Myzocallis (Lineomyzocallis) walshii (Monell) on the red oak Quercus rubra, and adaptation of local parasitoids in the northeastern Iberian Peninsula (Hom., Aphididae, Calaphidinae; Hym., Braconidae, Aphidiinae). Journal of pest science, 79(1), 17–21.

Prokhorov, A.V. (2011). Review of Ukrainian Species of the Genus Melibeus (Coleoptera, Buprestidae, Agrilinae). Вестник зоології, 45(6), 503–511.

Pujade-Villar, J. & Ros-Farré, P. (1998). Inquilinos y parasitoides de las agallas del género Plagiotrochus Mays colectadas en el Nordeste de la Península Ibérica. Boletín de la Asociación Española de Entomología 22(1-2): 115–143.

Pujade-Villar, J., Vallemant, C. & Andrei-Ruiz, M.C. (2000). Cynipidae associated with Quercus collected in Corsica with the description of a new Plagiotrochus species (Hymenoptera, Cynipoidae). Zoosystmesa 22(4):835–846

Pujade-Villar, J., Grani, M., Milik, Z.B., Mnara, S. & Jamâa, M.L.B. (2011). Les Cynipidae des chênes (Hymenoptera) collectés dans la chaîne montagneuse de Khmir (Tunisie) et mise à jour des connaissances sur les Cynipini tunisiens. Orsis: organismes i sistemes, 157–176.

Pujade-Villar, J. (1992). On Synergus ilicinus (Barbotin, 1972) n. comb. and other species of Synergus Htg. in the northeast of the Iberian Peninsula (Hym., Cynipidae, Synergini). Boletín de la Asociación española de Entomología, 16, 129–148.

Quednau, F.W. & Barbagallo, S. (1991). A new genus and three new species of aphids from Quercus calliprinos Webb in the mediterranean countries (Homoptera: Aphididae). The Canadian Entomologist 123:581–593.
Rapuzzi, P. & Sama, G. (2006). Cerambycidae nuevos o interesantes para la fauna de Sicilia. *Quaderni di Studi e notizie di Storia Naturale della Romagna*, 23, 157-172.

Rebel, H. (1912). Über die Lepidopterenfauna von Brionischen Inseln. *Jahresb. Ent. Ver. Wien*, 23, 217-222.

Recalde Iruzen, J. & San Martín Moreno, A.S. (2003). Coleópteros: características y estado de conocimiento de la fauna de la Sierra de Tudía (Badajoz, Extremadura, España). *Bolletin de la Sociedad Entomológica Aragonesa* 1(41): 407–412.

Saez Bolaño, J.A., Villero, J.M.B., Ruiz, M.S. & Alonso-Zarazaga, M.Á. (2010). Los Curculionidae de la sierra de Tudía (Badajoz, Extremadura, España). I. El género *Brachyderes choenherr*, 1823. *Boletín de la Sociedad Entomológica Aragonesa* 46:541–545.

Salas-Remón, P., Limona, X., Lozano Parejo, M. T., Alcaraz, F. & Pujade-Villar, J. (2015). Aportación al conocimiento de los cecidios encontrados en la vegetación de Murcia y localidades próximas del SE de España (Arthropoda: Insecta y Acari; Bacterií). *Anales de Biología*, 37, 2015.

Sama, G., Ringenbach, J.C. & Rejzek, M. (2005). A preliminary survey of the Cerambycidae of Libya (Coleoptera). *Boletin de la Société Entomologique de France*, 110(4), 439–454.

Sama, G., Buse, J., Orbach, E., Friedman, A.L.L., Rittner, O. & Chikatunov, V. (2010). A new catalogue of the Cerambycidae (Coleoptera) of Israel with notes on their distribution and host plants: *Munis Entomology & Zoology*, 5(1), 1–55.

Sánchez-Herrera, F. & Soria, S. (1987). Las poblaciones de lagarta peluda, *Lymantria dispar*, y su influencia sobre la supervivencia y dispersión de sus hemípteros parásitos en el follaje de la encina y su influencia sobre las poblaciones de lagarta peluda, *Lymantria dispar*, y su influencia sobre la supervivencia y dispersión de sus hemípteros parásitos en el follaje de la encina. *Boletín de Sanidad Vegetal - Plagas* 13:213–224.

Silva, I.D.F., Serrano, A.R.M. & Zahradník, P. (2008). Additions to the knowledge of genus *Stegus* Wollaston, 1861 (Coleoptera, Ptinidae) in the Iberian Peninsula. *Graellsia* 64(2): 335–338.

Simov, N., Gradinarov, D. & Davranoglou, L.R. (2017). Three new assassin bug records (Hemiptera: Heteroptera: Reduviidae) for the Balkan Peninsula. *Ecologica Montenegro*, 13, 25–29.

Skuhravá, M. & Skuhravý, V. (1994). Gall midges (Diptera: Cecidomyiidae) of Italy. *Entomologica*, 28, 45–76.

Skuhravá, M. & Skuhravý, V. (2002). Gall midges (Diptera: Cecidomyiidae) of Sardinia—second contribution to the gall midge fauna of Italy. *Entomologica*, 36, 25–43.

Skuhravá, M. & Skuhravý, V. (2004). Gall midges (Diptera: Cecidomyiidae) of Mallorca (Balearic Islands, Spain), and records of fifty-five species new to Britain. *Entomologist’s Gazette*, 67(3), 177–222.

Skuhravá, M. & Skuhravý, V. (1994). Gall midges (Diptera: Cecidomyiidae) of Mallorca (Balearic Islands, Spain). *Entomologica*, 28, 45–76.

Skuhravá, M. & Skuhravý, V. (2002). Gall midges (Diptera: Cecidomyiidae) of Sardinia—second contribution to the gall midge fauna of Italy. *Entomologica*, 36, 25–43.

Shaw, M.R., Horstmann, K. & Whiffin, A.L. (2016). Two hundred and twenty-five species of reared western Palaearctic Campopleginae (Hymenoptera: Ichneumonidae) in the National Museums of Scotland, with descriptions of new species of *Campoplex and Diadegma*, and records of fifty-five species new to Britain. *Entomologist’s Gazette*, 67(3), 177–222.

Simov, N., Gradinarov, D. & Davranoglou, L.R. (2017). Three new assassin bug records (Hemiptera: Heteroptera: Reduviidae) for the Balkan Peninsula. *Ecologica Montenegro*, 13, 25–29.

Skuravà, M., Skuhravá, V. & Ebejer, M.J. (2002). Gall midges (Diptera: Cecidomyiidae) of Malta. *Homopteres Auchenorhynques, II (Jassidae) Volume 3: 43–50*. Institut National de la Recherche Agronomique.

Sime, J., Sime, M., Buse, J., Orbach, E., Friedman, A.L.L., Rittner, O. & Chikatunov, V. (2010). A new catalogue of the Cerambycidae (Coleoptera) of Israel with notes on their distribution and host plants: *Munis Entomology & Zoology*, 5(1), 1–55.

Sánchez-Herrera, F. & Soria, S. (1987). Los Curculionidae de la Sierra de Tudía (Badajoz, Extremadura, España). I: Familias Cleridae Latreille, 1802, Prionoceridae Lacordaire, J. I. (2007). Cleroidea de la Sierra de Tudía (Badajoz, Extremadura, España). I. *Sociedad Entomológica Aragonesa* 1(41): 407–412.
Soria Iglesias, F.J., Villagrán Pinteño, M., Martín Santana, P. & Ocete Rubio, M.E. (1998). Sobre la distribución de Asterodiaspis ilicicola (Targioni-Tozzetti, 1888) (Homoptera, Asterolecaniidae) en encima. Boletín de Sanidad Vegetal. Plagas, 24 (2), 307–312.

Soria, F.J., Villagrán, M., Martín, P. & Ocete, M.E. (1999). Cydia fagi glandana (Zeller) (Lepidoptera: Torticidae) en la caída del fruto de la encina. Boletín de Sanidad Vegetal. Plagas 25:125–130.

Soria, F.J., Jiménez, A., Villagrán, M. & Ocete, M.E. (2002). Influencia de las escorias de la escarabajos de la encina. Boletín de Sanidad Vegetal. Plagas 28:213–216.

Spodek, M., Ben-Dov, Y. & Mendel, Z. (2013). The scale insects (Hemiptera: Coccoidea) of oak trees (Fagaceae: Quercus spp.) in Israel. Israel Journal of Entomology 43:95–124.

Statthas, G.J., Kartsonas, E.D. & Skouras, P.J. (2013). First record of Kermes echinatus on Quercus ilex. Entomologia Hellenica, 22(1), 19–22.

Stathas, G.J., Kartsonas, E.D. & Skouras, P.J. (2013). First record of the scale insect Asterodiaspis illicicola in Greece and additional data about the scale Gonaspisotus minus on Quercus ilex. Hellenic Plant Protection Journal 6:55–57.

Stork, A.L. & Wüest, J. (1996). Galles à Aceria ilicis (Acari: Eriophyoidae) sur inflorescences de Quercus ilex (Fagaceae) en Bretagne (France). Annales des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie, 25–34.

Suñer, D. & Abós, L. (1994). Estudio de la infestación de Coroebus undatus (Fabricius) Col., Buprestisidae en los alcornoques catalanes. Scientia gerundensis, 45–45.

Tennent, J. (1996). Butterflies of Morocco Algeria and Tunisia. British Library Cataloguing, Wallingford, Oxfordshire: Gem Pub. Co.

Tomil, F.J. (1989). Comparación del período larval de las especies defoliadoras más importantes del encinar encontradas en la provincia de Huelva entre 1985 y 1988. Boletín de Sanidad Vegetal. Plagas 4:365–374.

Tolman, T. (2008). Mariposas de España y Europa. LYNX.

Tomasi, E. (2014). Indagine cecidologica sulla pianura e le lagune friulane (Italia NE). Atti del Museo Civico di Storia Naturale di Trieste, 56, 43–202.

Tomil, F.J. (1987). Algunos lepidópteros defoliadores de la encina (Q. ilex L.) y alcornoque (Q. suber L.), en la provincia de Huelva. Boletín de Sanidad Vegetal Plagas 13:331–346.

Tomil, F.J. (1988). Algunos lepidópteros defoliadores del encinar en la provincia de Huelva. Boletín de Sanidad Vegetal Plagas 14:595–608.

Toros, S.P.Y. (2002). Ankara ili ve Çevresinde Bulunan Coccoidea (ka- buklubit ve koşnil) Türleri ve Doğal Düşmanların Tespiti. Ankara Üniversitesi Araştırma Fonu Müdürliği.

Torres-Vila, L.M. & Tschorsnig, H.P. (2019). Billaea adelpha (Loew) (Diptera: Tachinidae) as a larval parasitoid of large oak-living cerambycids in Southwestern Spain. The Tachinid Times 32:4–15.

Torres-Vila, L.M., Caldera, E.C., Molina, M.C.R., González, A.S., Valiente, E.D., García, J.J.F., Ponce Escudero, F., Palo Núñez, E.J., Barrena Galán, F., Aza Barrero, M.C. & Rodríguez Corbacho, F. (2006). Daños, distribución espacial e interacción intra-e inter específica de los principales caprófagos de encina y alcornoque en Extremadura: Curculio elephas Gyllenhall, Cydia fagi glandana Zeller y Cydia triangulella Goeze. Boletín de Sanidad Vegetal. Plagas 32:45–56.

Torres-Vila, L.M., Zugasti-Martínez, C., Mendiola-Díaz, F.J., De-Juan-Murillo, J.M., Sánchez-González, A., Conejo-Rodríguez, Y., Ponce-Escudero, F. & Fernández-Moreno, F. (2007). Larval assemblages of large sproxylic cerambycids in Iberian oak forests: wood quality and host preference shape resource partitioning. The Society of Population Ecology 59(4): 315–328.

Trócoli, S. (2018). Actualización del catálogo de Longicornios de Marruecos Actualización del catalague des Longicornes du Maroc (Parte I / Partie I : Prioninae, Aseminae, Saphaninae). Revue de l’Association Roussillonnaise d’Entomologie XXVII (3): 130–140.

Trócoli, S. (2019). Actualización del catálogo de Longicornios de Marruecos Actualización du catalague des Longicornes du Maroc (Parte II / Partie II : Cerambycidae : Lepturinae, Vesperidae). Revue de l’Association Roussillonnaise d’Entomologie Tome XXVIII (2): 72–84.

Trócoli, S. (2019). Actualización del catálogo de Longicornios de Marruecos Actualisation du catalague des Longicornes du Maroc (Parte III / Partie III : Cerambycidae : Cerambycinae). Revue de l’Association Roussillonnaise d’Entomologie XXVIII (3): 143–185.

San Vicente, I.U. & Cerezo, F.S. (2007). Nuevos e interesantes cerambícidos (Coleoptera: Cerambycidae) escasamente citados de la Comunidad Autónoma del País Vasco (norte de la Península Ibérica). Boletín de la SEA, 41, 383–391.

Vacante, V. (1983). Prima raccolta di acari Tetranychidi in Sicilia. Phytophaga, 1, 41–114.

Van Nieukerken, E.J. (1985). A taxonomic review of the western palaeartic species of the subgenera Zimmermannia Hering and Ectoedemia busck s.str. (Lepidoptera, Nepticulidae), with notes on their phylogeny. Tijdschrift voor Entomologie 128:1–98.

Van Nieukerken, E.J., Laštêvka, A. & Laštêvka, Z.K. (2006). The Nepticulidae and Ostephiidae of mainland France and Corsica: an annotated catalogue (Lepidoptera: Nepticulioidea). Zootaxa 1,216:1–114.

Van Nieukerken, E.J., Lastuvka, A. & Lastuvka, Z. (2010). Western Palaeartic Ectoedemia (Zimmermannia) Hering and Ectoedemia Busck s. str. (Lepidoptera, Nepticulidae): five new species and new data on distribution, host plants and recognition. ZooKeys 32:1–82.

Vázquez, X.A. (1991). Fauna Ibérica Volumen 5. Coleoptera: Oedemeridae, Pyrochroidae, Pythidae, Mysteridae. CSIC, Madrid, Spain.

Vázquez, X.A. (2002). European Fauna of Oedemeridae: Coleoptera. Argania editio.

Vázquez, F., Marquez, F. & Jaraquemada, F. (1990). Los ataques de Curculio elephas Gyll (Balaninus elephas) y Carpocapsa sp. L. sobre...
Quercus rotundifolia Lam. en Extremadura. Boletín de Sanidad Vegetal - Plagas 16:755–759.

Vegliante, F. & Zilli, A. (2007). The butterflies and moths of the Park and surroundings (Lepidoptera). Conservazione Habitat Invertebrati, 4, 307–364.

Vela, J.M. (2018). On the identity of Calomicrus fallax (Joannis, 1865) with description of a new, widespread species of Calomicrus from Spain and Portugal and comments on the Iberian species (Coleoptera, Chrysomelidae, Galerucinae). Graellsia, 74(2), e074.

Vergés, D.V. (1905). Algunas Zoe- cecidias de Tarrassa. Butlletí de la Institució Catalana d’Història Natural, 65–65.

Verdinelli, M., Serra, G., Cao, O.V. & Luciano, P. (2005). Sequential sampling to estimate Malacosoma neustrium (L.) population density. Entomological Research in Mediterranean Forest Ecosystems 237–245.

Verdugo, A. (2005). Los Cerambícidos de Andalucía (Coleoptera: Cerambycidae). Sociedad Andaluza de Entomología, 74(2), e074.

Verdugo, A. (2004). Los Cerambícidos de Andalucía (Coleoptera: Cerambycidae). Sociedad Andaluza de Entomología, 4, 307–364.

Villemant, C. & Fraval, A. (1993). La faune entomologique du chêne-liège en forêt de la Mamora (Maroc). Ecologia mediterranea, 19(3), 89–98.

Viñolas, A. (2011). Stagetus micoae n. Sp. del Parque Nacional de Canbañeros, Ciudad Real, España (Coleoptera: Anobiidae: Dorcatominae). Heteropterus Revista de Entomologia 11(1): 13–19.

Viñolas, A., Muñoz-Batet, J. & Soler, J. (2014). Primera cita de Phenolia (Lasiodites) limbata tibialis (Bohemán, 1851) para España (Coleoptera: Nitidulidae), y de otros coleópteros nuevos o interesantes para Cataluña. Butlletí de la Institució Catalana d’Història Natural 78:109–114.

Viñolas, A. & Batet, J.M. (2017). Noves dades sobre els Pitínid s Latrille, 1802 (Coleoptera) del Parc Natural del Ports, Tarragona, Catalunya. Butlletí de la Institució Catalana d’Història Natural 80:113–115.

Vives, E. (2000). Fauna Ibérica Volumen 12 Coleoptera, Cerambycidae. Madrid, Spain: CSIC.

Vives, E. (2001). Atlas fotografico de los cerambicidos iberica-baleares (Coleoptera), Barcelona: Argania edition. 287 p.

Wagner, E. & Weber, H. (1964). Hétéroptères Miridae. Volume 67 Faune de France. Institut National de la Recherche Agronomique.

Xue, X.F., Wang, Z., Song, Z.W. & Hong, X.Y. (2009). Eriophyoid mites on Fagaceae with descriptions of seven new genera and eleven new species (Acari: Eriophyoidea). Zootaxa, 2,253(1), 1–95.

Yardibi, M. & Tozl u, G. (2013). Karabük İli Buprestidae, Cerambycidae ve Curculionidae (Coleoptera) Türleri Üzerinde Faunistik Çalışmalar. Orman Fakültesi Dergisi 14(1): 136–161.

Yela, J.L. (1989). Contribución al conocimiento de los Catocalinae de la región de Madrid (Lepidoptera, Noctuidae). EOS 64:217–248.

Yela, J.L. (1992). Los Noctuidos (Lepidoptera) de la Alcarria (España central) y su relación con las principales formaciones vegetales de porte arbóreo (No. 595.781 Y43n). Madrid, ES: Ministerio de Agricultura, Pesca y Alimentación.