Gradient Imitation Reinforcement Learning for Low Resource Relation Extraction

Xuming Hu¹, Chenwei Zhang², Yawen Yang¹, Xiaohe Li¹, Lin Li¹, Lijie Wen¹, Philip S. Yu¹,³

¹ Tsinghua University
² Amazon
³ University of Illinois at Chicago
Relation Extraction

Sentence

Derek Bell was born in *Belfast.*

Donald Trump was born in *America.*

Thomson is based in *Toronto.*

Beijing is located in *China.*

Relation

Born In

Located in

Relation Encoder + Deep Classification Model

(Labor-intensive)

(Sanovsky et al., 2018; Saha et al., 2018; Yu et al., 2017)
How to improve the model performance for LRE?

• Previous Methods: Directly used limited annotations during training.
• Shortage: The trained models inevitably possesses selection bias.
• Motivation: How to use existing annotations as a guideline and leverage unlabeled data to increases generalization ability?

A letter _\textit{head} was delivered to my office _\textit{tail} ...

\(g_u \) : Entity-Destination \quad \checkmark \quad Positive

\(g_{u'} \) : Entity-Origin \quad \times \quad Negative
How to improve the model performance for LRE?

Design a reward → Explicit feedback → Reinforcement learning

A letter\textsubscript{head} was delivered to my office\textsubscript{tail}...

😊 Reward \(g_u \) : Entity-Destination ✔ Positive

😭 Punishment \(g_u' \) : Entity-Origin ☠️ Negative
Framework (GradLRE)

1) Limited labeled data and large amounts of unlabeled data are available
 • Relation Label Generator (RLG)
 • Gradient Imitation Reinforcement Learning (GIRL)

2) Only limited labeled data is available
 • Contextualized Data Augmentation (CDA)
Relation Label Generator (RLG)

- Mark two entities with four reserved tokens \([E1], [/E1], [E2], [/E2]\):

 \(\text{A [E1] letter [/E1] was delivered to my [E2] office [/E2]} \ldots\)

- Get the relation representation of two entities corresponding to \([E1],[E2]\) from BERT:

 \(\mathbf{h} = [\mathbf{h}_{[E1]}, \mathbf{h}_{[E2]}]\)

- Classify these representations into specific relations with a fully connected network \(f_\theta(x, E1, E2)\).
Gradient Imitation Reinforcement Learning (GIRL)

• Define Standard gradient descending:
 Partial derivatives on the labeled data $\nabla_\theta f(x, y; \theta)$

• Assume: When pseudo-labeled data are correctly labeled, partial derivatives on the pseudo-labeled data would be highly similar to standard gradient descending.

A letter\textsubscript{head} was delivered to my office\textsubscript{tail}...

g_u: Entity-Destination ✓

g_u': Entity-Origin ✗
Gradient Imitation Reinforcement Learning (GIRL)

• **State**
 Updated labeled dataset D_l and standard gradient direction g_l at step t.

• **Policy**
 RLG network f_θ.

• **Action**
 Predict relational label on unlabeled data $\tilde{x}^{(t)}$ as pseudo-labeled data $(\tilde{x}^{(t)}, \tilde{y}^{(t)})$ at step t.

• **Reward**
 Standard gradient descent direction on the all N labeled data.
 \[g_l^{(n)}(\theta) = \nabla_\theta \mathcal{L}_l(x^{(n)}, y^{(n)}; \theta) \]

 Expected gradient descent direction on the pseudo-labeled data.
 \[g_p^{(t)}(\theta) = \nabla_\theta \mathcal{L}_p(\tilde{x}^{(t)}, \tilde{y}^{(t)}; \theta) \]

 Cosine similarity between g_l and g_p for state $s^{(t)}$.
 \[R^{(t)} = \frac{g_l(\theta)^T g_p(\theta)}{||g_l(\theta)||_2 ||g_p(\theta)||_2} \]
Gradient Imitation Reinforcement Learning (GIRL)

- **Update State**

 For these positive reinforcement $R(t)>0.5$:

 $$D_t \leftarrow D_t \cup D_p$$
 $$g_t \leftarrow \frac{1}{N+1} (Ng_t + g_p)$$

- **Reinforcement Learning loss**

 We calculate the loss over a batch of pseudo-labeled samples.

 $$\mathcal{L}(\theta) = \sum_{t=1}^{T} \text{loss}(f_\theta(\tilde{x}^{(t,E1,E2)}), \text{one_hot}(\tilde{y}^{(t)})) \times R^{(t)}$$
Contextualized Data Augmentation

Only limited labeled data is available.

- CDA samples spans of the sentence as \([\text{MASK}]\) and finally fills the mask with tokens using BERT.

\begin{align*}
\text{A letter was delivered to my office in this morning.} \\
\text{Sample spans as [MASK]} \\
\text{A letter was [MASK] [MASK] my office in this morning.} \\
\text{Fill the [MASK]} \\
\text{A letter was sent from my office in this morning.}
\end{align*}
Experiments

Datasets

Datasets	SemEval	TACRED
Relation mentions	7199/800/1864	75049/25763/18659
Relation	19	42
No_relation rate	17.4%	78.7%

Baselines

- **Relation Encoders**
 - LSTM (Hochreiter and Schmidhuber, 1997)
 - PCNN (Zeng et al., 2015)
 - PRNN (Zhang et al., 2017)
 - BERT (Devlin et al., 2019)
- **Self-Training** (Rosenberg et al., 2005)
- **Mean-Teacher** (Tarvainen and Valpola, 2017)
- **DualRE** (Lin et al., 2019)
- **RE-Ensemble** (Lin et al., 2019)
- **MRefG** (Li and Qian, 2020)
- **MetaSRE** (Hu et al., 2021)
- **BERT w. gold labels**

Implementations

Datasets	SemEval	TACRED
Labeled set	5%/10%/30%	3%/10%/15%
Unlabeled set	50%	50%

11/7/21 Gradient Imitation Reinforcement Learning for Low Resource Relation Extraction 11
Does GIRL help to improve pseudo label quality?

Yes!

Figure 2: Pseudo label F1 (%) Performance with GIRL based on SemEval (left) and TACRED (right).
Does GIRL help to guide the gradient descent direction?

Yes!

Figure 3: GradLRE gradient descent directions on labeled data and pseudo label data. The dotted line indicates the average gradient direction on labeled data.
Case study using GIRL

Sentence	Label	Prediction w/o GIRL	Prediction w. GIRL
My *brother* has entered my *room* without knocking.	*Entity-Destination*	Other	Entity-Destination
The *disc* in a disc *music box* plays this function, with pins perpendicular to the plane surface...	*Content-Container*	Component-Whole	Content-Container
Ditto for his funny turn as a *man* who instigates the *kidnapping* of his own wife in ...	*Cause-Effect*	Other	Cause-Effect

Table 2: Predictions with/without GIRL on SemEval, where *red* and *blue* represent head and tail entities respectively.
Handling two major low resource scenarios

1) L+U: Limited labeled data + 50% unlabeled data.
2) L+CDA: Limited labeled data + CDA generate 50% unlabeled data.
3) L: Limited labeled data.

Table 3: F1 (%) of GradLRE with various percentages of labeled data under different LRE scenarios.
Does CDA generate useful unlabeled data?

Yes!

Figure 4: F1 (%) Performance with various unlabeled data and 10% labeled data on SemEval (left) and TACRED (right).
Case study using CDA

Original	Label	Generated	Pseudo label
A letter was delivered to my office in ...	Entity-Destination	A letter was sent from my office in ...	Entity-Origin
Maintain the original relation			
The editor improved the manuscript with his changes.	Product-Producer	The editor improved the manuscript with some improvements.	Product-Producer
Change the original relation			
The suspect dumped the dead body into a local reservoir.	Entity-Destination	The dam bulids the human body into a local reservoir.	Other

Table 4: CDA on labeled data to obtain generated data, where red and blue represent head and tail entities respectively, cyan represents the replaced words.
Conclusion

• Our model encourages pseudo-labeled data to imitate the gradient optimization direction in labeled data to improve the pseudo label quality.
• Contextualized data augmentation is proposed to handle the extremely low resource Relation Extraction situation where no unlabeled data is available.
• Experiments on two public datasets show effectiveness of GradLRE and augmented data over competitive baselines.
THANK YOU!

Code + Data are Available at:
http://github.com/THU-BPM/GradLRE