Canonical transient receptor potential channels and their modulators: biology, pharmacology and therapeutic potentials

Yuan-Yuan Gao · Wen Tian · Hui-Nan Zhang · Yang Sun · Jing-Ru Meng · Wei Cao · Xiao-Qiang Li

Received: 25 July 2020 / Accepted: 14 March 2021 / Published online: 24 March 2021
© The Pharmaceutical Society of Korea 2021

Abstract Canonical transient receptor potential channels (TRPCs) are nonselective, high calcium permeability cationic channels. The TRPCs family includes TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7. These channels are widely expressed in the cardiovascular and nervous systems and exist in many other human tissues and cell types, playing several crucial roles in the human physiological and pathological processes. Hence, the emergence of TRPC modulators can help investigate these channels’ applications in health and disease. It is worth noting that the TRPC subfamilies have structural and functional similarities, which presents a significant difficulty in screening and discovering of TRPC modulators. In the past few years, only a limited number of selective modulators of TRPCs were detected; thus, additional research on more potent and more selective TRPC modulators is needed. The present review focuses on the striking desired therapeutic effects of TRPC modulators, which provides intel on the structural modification of TRPC modulators and further pharmacological research. Importantly, TRPC modulators can significantly facilitate future studies of TRPCs and TRPC-related diseases.

Keywords Canonical transient receptor potential channels modulators · Calcium ion · High-resolution structures · Drug discovery · Therapeutic potentials

Introduction

The primary Transient Receptor Potential (TRP) protein was initially discovered in the experiment of aberrant visual transduction of Drosophila melanogaster (Cosens and Manning 1969). TRP channels (TRPs) feasibly form tetramers, a six-transmembrane domain structure with a cation-permeable pore loop between the fifth and sixth transmembrane domains (Hofmann et al. 2017). It is worth noting that there are differential expressions of TRPs in many tissues and cells and that TRPs show functional diversity and different pathological characters (Zhu et al. 2011). So far, the TRPs superfamily in mammalian is composed of 28 nonselective cation channels, and consists of several subfamilies: TRPC (canonical), TRPM (melastatin), TRPA (ankyrin), TRPV (vanilloid), TRPML (mucolipin), and TRPP (polycystin) (Zhu et al. 2011; Zheng 2013; Minard et al. 2018). The TRPC channels (TRPCs) family is the closest homolog to Drosophila TRP channels (Zheng 2013; Li 2017).

TRPCs are nonselective (Ca$^{2+}$, K$^+$, Na$^+$) and high calcium permeability cationic channels. They are extensively expressed in many cells and tissues, including the lung, heart, brain, placenta, adrenal gland, retinal endothelial, testis, and kidney; they play crucial roles in many human physiological and pathological processes and are involved in various pathogenesis (Tai et al. 2017; Li et al. 2019b). TRPCs are activated by various chemical and physical stimuli through the phospholipase C (PLC) signaling pathway. For instance, TRPC1/4/5 homotramers and heterotramers channels are activated by Gq protein-coupled PLC and

© Springer
phosphatidylinositol 4,5-bis-phosphate (PIP2) hydrolysis. This process generates inositol trisphosphate (IP3) that binds to the endoplasmic reticulum IP3 receptor increasing extracellular Ca\(^{2+}\) entry called store-operated calcium entry (SOCE). Also, TRPC3/6/7 channels are unique in being directly activated by diacylglycerol (DAG), a degradation product of PIP2, which is known as receptor-operated calcium entry (ROCE) (Minke and Cook 2002; Jeon et al. 2012; Zheng 2013; Li et al. 2019b).

The present review focuses on the classification, structures, and function of TRPCs, as well as TRPCs modulators and their desired therapeutic effects, highlighting examples and opportunities for the application of TRPCs modulators in the pathology of various diseases.

Classification of TRPCs

TRPs were discovered in 1969 when the founding member of this superfamily was studying the *D. melanogaster* visual nerve transduction system (Cosens and Manning 1969). However, it was not until 1975 that the channels were named (Minke et al. 1975). Since the detection of TRPs, TRPC1 was the first human homolog of TRPs reported in 1995, but no further study for its functionality had been conducted yet (Wes et al. 1995). Over the following 3 years, five more novel related mammalian homologs (TRPC2-6) were detected, in addition to the functional expression of TRPC1 and TRPC3 and the cloning and function of TRPC5 on the store- or receptor-operated Ca\(^{2+}\) entry (Zhu et al. 1996; Boulay et al. 1997; Okada et al. 1998). Additionally, another novel Ca\(^{2+}\) channel protein, TRPC7, was reported (Nagamine et al. 1998). At present, considering the sequence homology, the seven mammalian TRPC subfamily members are subdivided into three subgroups: TRPC1/4/5, TRPC2, and TRPC3/6/7 (Zhu et al. 1995). Since human TRPC2 is most likely a pseudogene (Wissenbach et al. 1998), this review focuses on investigating TRPC1/4/5 and TRPC3/6/7 channels.

Structure of TRPCs

Ions channels modulate the flow of ions through the plasma membrane through temperature, chemical signals, electrical signals, or mechanical signals. Determining the channels' structure is crucial to understanding their molecular mechanisms (Moiseenkova-Bell and Wensel 2011). Along with the tremendous advancement of the electron cryo-microscopy (cryo-EM) technology, high-resolution structures have become an increasingly dominant method for determining the structure of many receptor complexes (Egelman 2016). This technological advancement has resulted in a revolution in the mammalian respiratory complex I structure (Agip et al. 2019). In the last few decades, the atomic models of macromolecular complexes were determined by X-ray crystallography (Egelman 2016). It was not until 2018 that the high-resolution structure of TRPCs was revealed (Li et al. 2019a). Compared with classical X-ray crystallography, cryo-EM technology does not need to crystallize or diffract the protein/protein complex, and only uses a small number of samples. Owing to this advancing technology, membrane proteins' structure determination has become convenient, particularly for various ion channels (Li et al. 2019a; Wang et al. 2020a).

The current TRPCs structures reported had TRPC3, TRPC4, TRPC5, and TRPC6 channels (Fan et al. 2018; Duan et al. 2018, 2019; Azumaya et al. 2018; Vinayagam et al. 2018; Tang et al. 2018). The overall resolution of TRPCs in these reports is exceptionally similar, and they all showed that TRPCs are tetramer structures composed of homologous or heterologous monomers that contain six transmembrane spanning domains (Duan et al. 2018, 2019).

Many experiments showed that TRPC5 was closely related to TRPC4, with a 65% sequence identity (Duan et al. 2018). Mice TRPC4 and TRPC5 carry out protein purification (pH 7.5); then, they are used for the single-particle cryo-EM analysis of the overall resolution of 3.3 Å and 2.8 Å in its unliganded (apo) state, respectively. TRPC4 poor densities are due to disordered regions; it consists of 4 residues in the S1-S2 loop, 2 residues in the S3-S4 loop, 27 residues in the distal N terminus, and 28 residues in the truncated distal C terminus, whereas TRPC5 is composed of 7 residues in the S1-S2 loop, 28 residues in the distal N terminus, and 3 residues in the truncated distal C terminus (Duan et al. 2018, 2019). The TRPC4 and TRPC5 structures are formed by a four-fold symmetric homotetramer with dimensions of 100 Å by 100 Å by 120 Å. Each of the four monomers consists of a unique compact cytosolic domain and a transmembrane domain (TMD), distinguishing it from other TRPs. The cytosolic domain is divided into two subdomains: the N terminus region with four ankyrin repeats domain of AR1 to AR4 and seven α-helices domains of H1 to H7 and the C terminus region with a connecting helix and a coiled-coil domain. The TMD is composed of six helices (S1 to S6), a TRP domain, and several small helices (Duan et al. 2018, 2019). In the TRPC4 and TRPC5 channels, the extracellular third transmembrane helix S3 region is made up of four helical turns, limiting potential extracellular interactions (Duan et al. 2019).

Compared with TRPC4 and TRPC5 channels, the extracellular S3 region in the TRPC3 and TRPC6 channels is a unique transmembrane domain that is remarkably long, constituting an extracellular region that can be used as a sensor of external stimuli (Fan et al. 2018; Duan et al. 2019). In the stable closed state, single-particle cryo-EM analyses
revealed human TRPC6 (hTRPC6) channel with a newly identified high-affinity inhibitor [2-(benzo[d][1, 3] dioxol-5-ylamino) thiazol-4-yl] [(3S, 5R)-3, 5-dimethylpiperidin-1-yl]- methanone (BTDM), which has an overall resolution of 3.8 Å; it also revealed human TRPC3 (hTRPC3) channel with a lipid-activator OAG of 4.4 Å resolution. The hTRPC3 and hTRPC6 channels tetramer possesses dimensions of 75 by 75 by 150 Å³. The TRPC3 channel has four elbow-like membranes prior to the first transmembrane helix, while the TRPC6 channel has only three. The TRP helix is perpendicular to the pore-lining S6, and the hTRPC6 intracellular cytoplasmic domain presents an inverted bell shape whose top is below the ion channel pore of TMD (Fan et al. 2018; Tang et al. 2018). The truncation of the N terminus 71 amino acids is dispensable for the hTRPC6 assembly and gating, and the amino acids of TRPC6 cytoplasmic C terminus fold into two long helices (Tang et al. 2018). Novel electron cryo-EM technology provides a structural basis for the function and gating mechanisms of TRPCs.

TRPCs and diseases

TRPCs are expressed in many cells and tissues and have been reported to be involved in the development and progression of various diseases, including cancers, kidney diseases, cardiovascular and nervous system diseases (Hwang et al. 2013; Sukumaran et al. 2017; Dryer et al. 2019; Falcon et al. 2020).

Cardiovascular diseases

Ca²⁺ plays a crucial role in maintaining physiological functions in the cardiovascular system, including diastolic cardiac function, cardiac contractility, and hemodynamic change (Tai et al. 2017; Wu et al. 2019). Several studies showed that TRPCs participate in cardiovascular system disease progression (Kitajima et al. 2016; Zhang et al. 2018b; Falcon et al. 2020). Wu et al. found that Ca²⁺ influx is increased in the hypertrophic myocytes of adult wild-type mice, while this phenomenon is not observed in the myocytes of dominant-negative (dn) TRPC3/4/6 adult mice (Wu et al. 2010). Additionally, the activity of the calcineurin-nuclear factor of activated T cells (NFAT) significantly decreases in dnTRPC3/4/6 mice (Wu et al. 2010). Over-expression of TRPCs could stimulate the activation of NFAT, which accelerates TRPCs expression through a positive feedback mechanism. The activation of this mechanism could contribute to the development of cardiac hypertrophy and hypertension (Watanabe et al. 2008; Wu et al. 2010). A previous study found that TRPC3 can form a complex with A2R and PDE1C, and PDE1C is activated by TRPC3-invoked Ca²⁺, thereby facilitating cardiomyocyte apoptosis (Zhang et al. 2018b). Remarkably, a background Ca²⁺ entry pathway mediated by TRPC1/C4 can regulate Ca²⁺ cycling in cardiomyocytes. However, the pathological cardiac remodeling development is attenuated in transverse aortic constriction-induced TRPC1/4 double knockout mice (Camacho Londoño et al. 2015).

Kidney diseases

TRPC6 can accelerate the progression of many acquired glomerular diseases, such as glomerulosclerosis associated with autoimmune glomerulonephritis, primary and secondary focal and segmental glomerulosclerosis (FSGS), and type-1 diabetes (Dryer et al. 2019; Polat et al. 2019). Over-activation of the TRPC6 channel and Trpc6 gene mutations result in glomeruli injury (Dryer et al. 2019; Staruschenko...
et al. 2019). It is worth noting that reactive oxygen species and angiotensin II (AngII) are the two major factors that provoke dramatic increases of TRPC6-mediated Ca\(^{2+}\) influx in diabetic kidney disease, resulting in hypertrophy and the death of podocytes (Ilatovskaya et al. 2015; Ma et al. 2016; Staruschenko et al. 2019). TRPC6 antagonist, BTP2, attenuates renal fibrosis and glomerulosclerosis in TRPC6-knockout mice (Wu et al. 2017a). However, Wang et al. revealed that TRPC6 knockout reduces proteinuria and decreases tubule injury but increases mesangial expansion and promotes insulin resistance, causing exacerbation of diabetic kidney disease in Akita mice (Wang et al. 2019c). AngII and endothelin-1-induced mesangial contraction are significantly decreased with the downregulation of TRPC1 in TRPC1 antibody-treated rats. Hence, TRPC1 could play a specific role in regulating mesangial cell contractility (Woudenberg-Vrenken et al. 2009). Studies have indicated that TRPC5 blocker, AC1903, could successfully protect podocytes injury in vitro and the kidney filter function in vivo; thus, TRPC5 could be a potential therapeutic target for FSGS (Pablo and Greka 2019).

Nervous system diseases

TRPCs participate in the formation of synapses and the modulation of neurotransmitter release; this involvement of TRPCs plays a vital role in the neurological system’s functions, such as memory, movement, cognition, anxiety, and fear (Riccio et al. 2014; Hong et al. 2015). TRPCs are primarily expressed in the brain, which is susceptible to oxidative stress. The TRPC5-like current activated by oxidized glutathione increases Ca\(^{2+}\), which ultimately induces striatal neuronal cell death. TRPC5 inhibition by ML204 predominantly attenuates oxidation-provoked striatal neuronal cell death and improves motor and rearing behavior in Huntington’s disease transgenic mice (Hong et al. 2015). Many factors contribute to Parkinson’s disease, such as excitotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, reactive oxygen species, and inflammation; almost all of them depend directly or indirectly on Ca\(^{2+}\) signaling (Sukumaran et al. 2017). Reduction in apoptosis and Ca\(^{2+}\) influx provides neuroprotection via activation of TRPC1 (Thapak et al. 2020). Studies have shown that TRPC6 specifically inhibits its cleavage by γ-secretase of amyloid precursor protein (APP) and reduces β-amyloid formation by preventing APP from interacting with presenilin 1, which could be a novel strategy for treating Alzheimer’s disease (Wang et al. 2015a). At the same time, neurotoxic TRPC6-mediated Ca\(^{2+}\) entry is mediated by presenilin 2. Activation of TRPC6 increases adult hippocampal neurogenesis and long-term spatial memory but reduces Aβ accumulation due to increased cerebrovascular P-glycoprotein (Thapak et al. 2020). Antonio Riccio et al. reported that TRPC4\(^{-/-}\) mice displays decreased anxiety-like behavior and Gq/11-dependent responses (Riccio et al. 2014). Similarly, TRPC1/4/5 blocker, HC-070, alleviates anxiety and depression in mice (Just et al. 2018). Inhibition of TRPC6 degradation by calpain inhibitors prevents ischemic neuronal death, improves behavioral performance, and provides neuroprotection through the Ras/MEK/ERK/CREB pathway (Thapak et al. 2020).

Other diseases

Some reports have shown that TRPCs are involved in other diseases, such as obesity, type II diabetes, and lung diseases (Yu et al. 2004; Krout et al. 2017). TRPC3/6 expression in the lung tissues and pulmonary artery smooth muscle cells of idiopathic pulmonary arterial hypertension patients was much higher than those normotensive or secondary pulmonary hypertension patients (Yu et al. 2004). It has been reported that hypoxia-inducible factor-1 boosts the expressions of TRPC1 and TRPC6 increasing intracellular Ca\(^{2+}\) level in pulmonary artery smooth muscle cells (Wang et al. 2006). Another study suggested that TRPC1 plays a crucial role in adiposity via inducing autophagy and apoptosis; moreover, high-fat diet-induced obesity and type II diabetes were alleviated in TRPC1 knockout mice (Krout et al. 2017).

TRPCs agonists

TRPC5 channel

Methylprednisolone

The glucocorticoid methylprednisolone is a long-acting, reversible TRPC5 agonist with EC\(_{50}\) of 12 µM, which is effectively inhibited by clemizole. Methylprednisolone only activates the TRPC5 channel and does not affect other TRPC subfamily members; however, the carbachol-induced TRPC4 channel can also be activated by methylprednisolone. Prednisolone can also act as a weak activator of TRPC5 channels with EC\(_{50}\) of 64 µM (Beckmann et al. 2017). One study has demonstrated that local delivery of methylprednisolone succinate in combination with a copolymer of ethylene oxide and propylene oxide facilitates spinal cord sensorimotor circuitry and increases excitability (Baltin et al. 2021). Additionally, methylprednisolone acetate administration intraarticularly or intravenously has shown to improve the lung function of horses and infants with severe asthma and bronchopulmonary dysplasia, respectively (Millares-Ramirez et al. 2021; Billion et al. 2021; Wang et al. 2021a).
AM237

AM237, a xanthine derivative synthesized compound, potently activates the TRPC5:C5 channel with EC_{50} of 15–20 nM in Ca^{2+} assays. AM237 does not activate either the TRPC4:C1, TRPC5:C1, TRPC4:C4, TRPC1:C5, TRPC1:C4 channels, or native TRPC1:C4 channel in A498 cells; instead, it suppresses the activation evoked by (−)-englerin A (Minard et al. 2019).

GW‑1929

A rosiglitazone-related peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, N-(2-benzoylphenyl)-O-[2-(methyl-2-pyridinylamino)ethyl]-l-tyrosine (GW-1929), can weakly stimulate the TRPC5 channel (Majeed et al. 2011). GW1929 inhibits TRPC1 and TRPC6 expressions in the pulmonary artery smooth muscle cells through the activation of PPARγ (Lu et al. 2010; Wang et al. 2013).

TRPC6 channel

Hyperforin

Hyperforin is isolated from the leaves, stems, and roots of the dried herb Hypericum perforatum L (St John’s wort); it has been used for mild to moderate depression, multidrug-resistant Staphylococcus aureus, and (other) gram-positive bacteria (Laakmann et al. 1998; Orth et al. 1999; Ebrey 1999; Singer et al. 1999; Szewczyk et al. 2019). Hyperforin is a specific and highly selective activator of the TRPC6 channel without activating TRPC1/4/5 and TRPC3/7 channels (Leuner et al. 2010; Tu et al. 2010). Hyperforin has a neuroprotective effect by reducing aluminum-induced Aβ production and tau phosphorylation against Alzheimer’s disease (AD), which could provide a potential AD therapy (Huang et al. 2017; Jiang et al. 2018; Wang et al. 2019a). TRPC6 channel activation can attenuate brain damage (Lin et al. 2013) and substantially improve recurrent moderate hypoglycemia-induced cognitive impairment (He et al. 2020). Hyperforin has also been demonstrated to promote post-stroke neurovascular regeneration and functional recovery via astrocytic IL-6-mediated negative immune regulation (You et al. 2019) and improve post-stroke social isolation-induced exaggeration of post-stroke depression and post-stroke anxiety via TGF-β (Zhang et al. 2019). Additionally, hypericum extracts have been reported to have a protective effect on the brain, improve anxiety-like behavior (Sestore-Berghian et al. 2018) and exhibit an antidepressant-like activity in mice (Pochwat et al. 2018). Besides, as a specific activator for TRPC6, hyperforin usage could reduce the growth and viability of the various human and rat cancer cell lines by apoptosis with IC_{50} between 3 and 15 μM (Schempp et al. 2002; Chen et al. 2018; Liu et al. 2019). The anti-tumor activity of H. perforatum L. and hyperforin has been proven to be linked with mediating inflammatory signaling, ROS generation, and proton dynamics, as well as exhibiting anti-proliferative effects (Allegra and Tonacci 2020). Hyperforin causes apoptosis through extrinsic/intrinsic pathways and inhibits NF-κB-mediated invasion, enhancing the survival potential in bladder cancer and non-small cell lung cancer (Chen et al. 2018; Liu et al. 2019); it also inhibits the EGFR/ERK/NF-κB-modulated anti-apoptotic potential in glioblastoma (Hsu et al. 2020). Hyperforin could prevent parental and oxaliplatin-resistant human adenocarcinoma cells’ metastasis through anti-adhesion therapy (Šemeláková et al. 2018). TRPC6 activation stimulates the differentiation and proliferation of keratinocytes, playing a significant role in treating atopic dermatitis and psoriasis; therefore, hyperforin presents an innovative therapeutic strategy in skin disorders (Kadaka et al. 2017). Additionally, TRPC6 gene silencing through ryanodine receptor type 1 can partially ameliorate muscle cation dyshomeostasis and the halothane’s response to malignant hyperthermia in a mouse model (Lopez et al. 2020). Hyperforin also prevents the growth of infection-induced inflammatory responses of glial cells and neurotropic parasite Toxoplasma gondii (Shinjyo et al. 2021). OAG

Leuner et al. (2010) demonstrated that 2, 4-diaethylphloroglucinol derivative has the pharmacophore of diacylglycerol and hyperforin; it is also TRPC6 selective. Tesfai et al. (2001) revealed that the membrane-permeant analogs of DAG initiate the activation of Ca^{2+} inflow in the adrenal chromaffin cell line (PC12 cell); similarly is the permeant DAG analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) effect (Hofmann et al. 1999; Tesfai et al. 2001; Venkatachalam et al. 2003; Tu et al. 2009; Fuchs et al. 2011). It has been reported that the TRPC6 channel is essential for acute hypoxic pulmonary vasoconstriction (HPV) in mice. Under the condition of repetitive hypoxic ventilation, OAG dose-dependently attenuates the strength of acute HPV by TRPC6 channel activation (Fuchs et al. 2011).

20-HETE

20-hydroxyeicosatetraenoic acid (20-HETE) is an eicosanoid compound that can activate the TRPC6 channel in the HEK293 cell line, Hek-t6.11 with EC_{50} of 0.8 μM (Basora et al. 2003).

Flufenamic acid

Flufenamic acid is a non-steroidal anti-inflammatory that belongs to the fenamates family and can induce the TRPC6
expression; it also does not significantly affect TRPC7 expression and reduces TRPC3 expression (Foster et al. 2009). Blocking the TRPC3 channel by flufenamic acid modulates the depolarization of cholinergic interneurons (Xie and Zhou 2014). Increased expression of TRPC6 by flufenamic acid promotes cell proliferation in human megakaryocytes (Ramanathan and Mannhalter 2016) (Table 1).

TRPC1/5 channels

Riluzole

Riluzole is a marketed drug that plays a role in the survivability of amyotrophic lateral sclerosis (ALS) and acts as an antidepressant (Miller et al. 2000; Grant et al. 2010; Minard et al. 2018). Richter et al. (2014b) identified riluzole as a novel TRPC5 channel agonist with EC\(_{50}\) of 9.2 μM. Riluzole can activate the heteromeric TRPC1:C5 channel expressed in HEK293 cells and the endogenous TRPC5:C5 channel expressed in the U-87 glioblastoma cell lines. The riluzole-induced TRPC5 activation mechanism is independent of G protein signaling and PLC activity as it differs from the La\(^{3+}\)-mediated TRPC5 activation. Finally, the recordings of excised inside-out patches demonstrated that riluzole has a relatively direct effect on TRPC5 activation. Riluzole improves recovery from ischemia in mice through TRPC5 activation in the endothelial cells (Zhu et al. 2019). Additionally, riluzole has neuroprotection and therapeutic application to prevent oxaliplatin-induced neuropathy (Trinh et al. 2021). Riluzole can also treat severe hyponatremia secondary to amyotrophic lateral sclerosis (Tambe et al. 2021).

Rosiglitazone

Rosiglitazone, a high-affinity PPAR-γ ligand, can activate TRPC5 with EC\(_{50}\) of about 30 μM. The effects of rosiglitazone on TRPC5 occur rapidly and reversibly on washout (Majeed et al. 2011). It has been reported that rosiglitazone also activates the heteromeric TRPC1:C5 channel. Rosiglitazone (as a thiazolidinedione) is an antidiabetic drug that acts as an insulin sensitizer. Rosiglitazone decreases free fatty acids released from adipocytes to ameliorate skeletal muscle insulin resistance. Rosiglitazone can also inhibit angiotensin II-induced proliferation of rats’ glomerular mesangial cells via the Goq/Plcβ4/TRPC signaling pathway (Wei et al. 2017b). Moreover, rosiglitazone ameliorates rat radiation-induced intestinal inflammation by inhibiting NLRP3 inflammasome and TNF-alpha production (Hu et al. 2020a). The development and progression of endometriosis are impacted by rosiglitazone likely by inhibiting angiogenesis and inducing apoptosis (Zhang et al. 2021). Rosiglitazone treatment improves cognitive areas that mainly depend on the dorsal hippocampus (Cortez et al. 2020). However, it has been withdrawn from clinical use in most countries due to its side effects, such as heart attacks and sudden death (Rubaiy 2019; Gong et al. 2020).

Table 1 TRPCs agonists (1)

Modulators	Chemical structure	Targeting channels and IC\(_{50}\)	Predicted effects	Reference
Methylprednisolone	![Methylprednisolone](image)	12 μM (TRPC5:C5)	Activate TRPC5 channel and improve the lung function	Beckmann et al. (2017), Millares-Ramirez et al. (2021)
AM237	![AM237](image)	15–20 nM (TRPC5:C5)	Suppress activation evoked by (−)-EA	Minard et al. (2019)
GW-1929	![GW-1929](image)	TRPC5:C5	a Rosiglitazone-related PPAR-γ agonist	Lu et al. (2010), Majeed et al. (2011)
Hyperforin	![Hyperforin](image)	3–15 μM (TRPC6)	Mild to moderate depression, inhibit bacteria, Alzheimer’s disease, the various human and rat cancer cell lines	Jiang et al. (2018), Liu et al. (2019)
OAG	![OAG](image)	TRPC3/6/7	The activation of Ca\(^{2+}\) inflow, acute HPV in mice	Fuchs et al. (2011)
20-HETE	![20-HETE](image)	0.8 μM (TRPC6)	Activate TRPC6 channel in HEK293 cell line, Hek-t6.11	Basora et al. (2003)
Flufenamic acid	![Flufenamic acid](image)	TRPC6	Non-steroidal anti-inflammatory	Foster et al. (2009)
TRPC3/6 channels

Artemisinin

Artemisinin has been identified as a well-known TRPC3 channel agonist; it was discovered by screening 2000 bioactive compounds in a Ca2+ influx assay (Urban and Schaefer 2020). Artemisinin has a strong stimulatory effect on TRPC3 or heteromeric TRPC3:C6 channels, and it weakly affects the TRPC6 and TRPC7 channels, or these channels lack the response to artemisinin (Urban and Schaefer 2020). Artemisinin is an antimalarial agent isolated from the Chinese medicinal plant Artemisia annua L. (Liu et al. 2011; Stringham et al. 2018) and has been used as an effective treatment for malaria (Wang et al. 2021b; van der Pluijm et al. 2021). At the same time, artemisinin, as a novel anti-cancer drug, targets a global cancer pandemic through drug repurposing (Xu et al. 2020; Augustin et al. 2020). Furthermore, Bai et al. (2020) revealed the vital role of pH-dependent molecular rearrangement in the activation and activity of artemisinin against cancer. Interestingly, artemisinin and its derivatives may be valuable in treating obesity and diabetes (Shen et al. 2020; Jiang et al. 2020). Artemisinin can also ameliorate inflammation by suppressing the process of epithelial-mesenchymal transition and inducing macrophage polarization to the M2 phenotype, which may help treat inflammatory bowel disease in the future (Huai et al. 2020). Zhou et al. (2020) discovered novel artemisinin derivatives through structural optimization of artemisinin that works against liver and ovarian cancers.

GSK1702934A

GSK1702934A is a small 1,3-dihydro-2H-benzo[d]imidazole-2-one-based potent agonist that activates TRPC3/6 channels directly with EC50 of 0.08 mM and 0.44 mM, respectively. Whole-cell patch-clamp experiments have proven that GSK1702934A can activate the TRPC3/6-currents in HEK293 cells (de la Cruz et al. 2017). Cardiovascular morbidity and mortality are associated with increased blood pressure variability (BPV). Activation of TRPC6 by GSK1702934A exacerbates the systolic and diastolic BPV (Wang et al. 2020d), while TRPC3 activation substantially contributes to cardiac contractility control and arrhythmogenesis (Doleschal et al. 2015).

TRPC1/4/5 channels

Tonantzitlolone

Tonantzitlolone is extracted from the Mexican plant Still‑ingia sanguinolecta; it has been used against fibroblasts

(−)-englerin A

Similar to tonantzitlolone, (−)-englerin A is a guaian-type sesquiterpene and a natural product that originates from the Tanzanian plant Phyllanthus engleri; it is isolated and fractionated from the roots and bark of this plant (Ratnayake et al. 2009). Ratnayake et al. (2009) revealed that (−)-englerin A has 1000-fold selectivity to six of the eight renal cancer cell lines with GI50 of 123 nM, 83 nM, 140 nM, and 61 nM, respectively, which could be useful for investigating the function of these ion channels. However, tonantzitlolone could not activate endogenous SOCE in HEK 293 cells and over-expressed the TRPC3, TRPV4, and TRPM2 channels. In whole-cell patch-clamp recordings, tonantzitlolone was washed-out reversibly and inhibited potently by Picol145, a TRPC1/4/5 inhibitor (Rubaiy et al. 2017b). Tonantzitlolone A and its synthetic enantiomer inhibit cell proliferation and kinesin-5 function, and the synthetic enantiomer shows a more potent inhibitory effect; thus, it is possible to enhance the anti-proliferative effect of tonantzitlolol A by chemical modification (Pfeffer et al. 2016). Rubaiy et al. (2018) revealed that tonantzitlolone is a novel potent agonist for TRPC4, TRPC5, TRPC4-TRPC1, and TRPC5-TRPC1 channels with EC50 of 123 nM, 83 nM, 140 nM, and 61 nM, respectively, which could be useful for investigating the function of these ion channels. However, tonantzitlolone could not activate endogenous SOCE in HEK293 cells and over-expressed the TRPC3, TRPV4, and TRPM2 channels. In whole-cell patch-clamp recordings, tonantzitlolone was washed-out reversibly and inhibited potently by Picol145, a TRPC1/4/5 inhibitor (Rubaiy et al. 2017b). Tonantzitlolone A and its synthetic enantiomer inhibit cell proliferation and kinesin-5 function, and the synthetic enantiomer shows a more potent inhibitory effect; thus, it is possible to enhance the anti-proliferative effect of tonantzitlolol A by chemical modification (Pfeffer et al. 2016).
Moreover, (−)-englerin A directly activates PKCθ to limit the access of tumor cells to glucose, resulting in glucose dependence and insulin resistance in tumor cells through the activation of heat shock transcription factor, HSF1, and insulin receptor substrate 1 (IRS1) (Muraki et al. 2017).

(−)-englerin A is a highly selective and potent activator of both homomorphic and heteromeric TRPC1/4/5 channels, which helps study these proteins’ pharmacological action (Akbulut et al. 2015; Minard et al. 2018; Rubaiy 2019). (−)-englerin A could activate TRPC1/4/5 channels to influence A498 renal cancer cells (Haque et al. 2017). Acute inflammatory response induced by (−)-englerin A could modulate anti-tumor immunity. Additionally, Batova et al. (2017) revealed that lipid metabolism and ER stress could be targeted vulnerabilities in renal cell carcinoma. However, (−)-englerin B, a (−)-englerin A metabolic product, could not activate TRPC1/4/5 channels to influence A498 renal cancer cells (Wu et al. 2017b). As stated, (−)-englerin A is a potent TRPC4:C4 and TRPC5:C5 channels activator in HEK293 cells with EC50 of 11.2 nM and 7.6 nM, respectively (Akbulut et al. 2015). (−)-englerin A may have a similar activating effect on TRPC1:C4 and TRPC4-containing channels, but it does not affect TRPC6, TRPM2, TRPV4 channels, 10 other ion channels, and 59 GPCRs (Akbulut et al. 2015; Minard et al. 2018). Grant et al. (2019) showed that (−)-englerin A-evoked cytotoxicity results in rapid cancer cell death in two different triple-negative breast cancers cancer cells, BT-549 and Hs578T.

BTD

Beckmann et al. identified a novel TRPC5 agonist, which is N-[3-(adamantan-2-yloxy)propyl]-3-(6-methyl-1, 1-dioxo-2H-1λ5,2,4-benzothiadiazin-3-yl)propanamide (BTD) with EC50 of 1.4 μM in Ca2+ assays and EC50 of 1.3 μM in the electrophysiological whole-cell patch-clamp recordings from screening the ChemBioNet compound library (Beckmann et al. 2017). BTD is long-lasting, reversible, and sensitive to clemizole, which is a TRPC5 blocker. Furthermore, BTD displayed selectivity to TRPC1/4/5 channels; it can activate the homomeric TRPC5:C5 channel as well as the heteromeric TRPC1:C5 and TRPC4:C5 channels, and to a less extent, the TRPA1, TRPV1, TRPM3, and TRPM8 channels; however, it does not activate the TRPC4:C4 and TRPC1:C4 channels (Beckmann et al. 2017) (Table 2).

TRPC3/6/7 channels

4m–4p

4m–4p are a series of potent and direct agonists of TRPC3/6/7 channels belonging to pyrazolopyrimidines (Qu et al. 2017). They activate the TRPC3/6/7 channels with a potency order of TRPC3 > C7 > C6. One of the 4n is the most potent with EC50 of < 20 nM for TRPC3 channel activation.

Table 2 TRPCs agonists (2)
Modulators
Riluzole
Rosiglitazone
artemisinin
GSK1702934A
Tonantizilolone
(−)-englerin A
BTD
TRPCs antagonists

TRPC3 channel

Pyr3

Ethyl-1-(4-(2,3,3-trichloroacrylamide)phenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate (Pyr3) is a specific and direct inhibitor of TRPC3 channel. Pyr3 ameliorates intracerebral hemorrhage-induced brain injury and could be used as a novel treatment strategy for TRPC3-mediated diseases, including pathological cardiac remodeling and heart failure (Glasnov et al. 2009; Munakata et al. 2013). Moreover, Pyr3 exerts an inhibitory effect on the growth of human glioblastoma cancer cells and triple-negative breast cancer cells in vitro and vivo through inducing apoptosis and inhibiting migration (Chang et al. 2018; Wang et al. 2019d). The inhibitory effect of Pyr3 is dose-dependent in acute lymphoblastic leukemia cell lines (Abdoul-Azize et al. 2016). Pyr3 also inhibits smooth muscle proliferation and alleviates stent implantation-induced arterial injury (Álvarez-Miguel et al. 2017). Exposure to PM2.5 can increase the propensity to cardiac arrhythmias which could be attenuated with TRPC3 inhibition by Pyr3 (Cai et al. 2019). Pyr3 can also significantly decreases intracellular calcium concentrations, normalize resorptive activity and osteoclastic differentiation of TRPC6-deficient cells (Klein et al. 2020; Sato et al. 2020), and promotes systolic blood pressure in hypertensive patients (Hu et al. 2020d).

TRPC5 channel

Galangin

Galangin is a natural flavonoid compound from the ginger family that is used as a novel antidiabetic. It has been screened as a lanthanide-induced Ca2+ entry antagonist in overexpressed TRPC5 HEK293 cells with IC50 of 0.45 μM through a screen of natural compounds in traditional Chinese medicines (Naylor et al. 2016; Brás et al. 2020). Galangin also inhibits lanthanide-induced TRPC5-mediated current and calcium entry. TRPC5 is less inhibited by other related natural flavonols, such as kaempferol and quercetin, and is not affected by myricetin, luteolin, and apigenin. Galangin can attenuate isoproterenol-induced inflammation, cardiac fibrosis, pulmonary fibrosis and non-alcoholic fatty liver disease (Thangaiyan et al. 2020; Wang et al. 2020c; Zhang et al. 2020). Galangin can also reduce cerebral ischemia–reperfusion injury by inhibiting ferroptosis and activating the SLC7A11/GPX4 axis (Guan et al. 2021). Additionally, galangin improves cardiac remodeling through the MEK1/2-ERK1/2 and PI3K-AKT pathways (Wang et al. 2019b). Differentiation of dendritic cells shows tolerogenic properties in response to lipopolysaccharide stimulation during galangin treatment (Song et al. 2021). Also, galangin has a protective effect on ulcerative colitis induced by dextran sulfate sodium in mice and rats (Sangaraju et al. 2019; Fan et al. 2021). Galangin inhibits cell growth and metastasis of cholangiocarcinoma by downregulating the expression of microRNA-21 (Zou et al. 2020). Besides, galangin inhibits epithelial-mesenchymal transition and angiogenesis of glioma by downregulating CD44 (Chen et al. 2019a). Simultaneously, galangin promotes apoptosis of diverse cancer cells, such as hepatocellular carcinoma cells, ovarian cancer cells and glioblastoma cells (Kong et al. 2019; Fang et al. 2019; Zhong et al. 2020; Huang et al. 2020). One study suggested that galangin, either alone or combined with insulin, can reduce glucose levels and improve skeletal muscle health in patients with diabetes (Kalhotra and Chittepu 2019).

AC1903

AC1903 is a specific TRPC5 inhibitor synthesized through experimentation. By comparison, AC1903 is nearly equipotent to ML204 in blocking riluzole-activated TRPC5-mediated whole-cell current, but AC1903 fails to inhibit carbachol (CCh)-evoked TRPC4 and OAG-induced TRPC6 currents in whole-cell patch recordings, with a half-maximal inhibitory concentration of 14.7 μM (Zhou et al. 2017). AC1903, as a TRPC5 inhibitor, can provide a therapeutic benefit to podocyte survivability in chronic kidney diseases, such as focal and segmental glomerulosclerosis (Zhou et al. 2017; van der Wijst and Bindels 2018; Sharma et al. 2019; Pablo and Greka 2019).

NU6027

NU6027 is a cyclin-dependent kinase inhibitor that inhibits the basal and zinc-augmented TRPC5 currents in TRPC5 overexpressed HEK293 cells. It has a neuroprotective effect on oxidative neuronal injury in prolonged seizures. NU6027 is considered a potent antagonist of the TRPC5 channel (Park et al. 2019). TRPC5 suppression using NU6027 reduces the neuronal death that may occur after traumatic brain injury (Park et al. 2020).

TRPC6 channel

Ribemansides A and B

Ribemansides A and B are two new acylated β-hydroxynitrile glycosides isolated from the aerial parts of Ribes manshuriicum. They can inhibit the activity of the TRPC6 channel with IC50 of 24.5 and 25.6 μM, respectively. These two compounds can suppress transforming growth factor β1
(TGF-β1)-induced fibrogenesis in HK-2 cells, similar to SAR7334, a TRPC6 inhibitor (Zhou et al. 2018).

Larixyl acetate

Through testing and identifying several preparations from plant extracts, larixol and larixyl acetate were identified as TRPC6 inhibitors of receptor-induced Ca2+ entry (Urban et al. 2016). TRPC6 channel is inhibited by larixyl acetate in the DAG-stimulated rat’s pulmonary artery smooth muscle cells with IC$_{50}$ of 0.1–0.6 μM. Larixyl acetate can also prevent hypoxia-induced pulmonary vasoconstriction (HPV) (Urban et al. 2016) and improve the endothelial function after traumatic brain injuries in mice (Chen et al. 2019b). TRPC3/7 and TRPC4/5 channels are weakly blocked by larixyl acetate, whereas no significant inhibition occurs in other related TRPV or TRPM channels (Urban et al. 2016). Moreover, larixyl acetate has analgesic and anti-inflammatory effects on neuropathic pain; therefore, it can be a novel therapy for intractable chronic pain (Wang et al. 2020b).

FK506

FK506 (Tacrolimus) is a potent immunosuppressive agent isolated from the filamentous bacteria fermentation broth, a strain of *Streptomyces tsukubaensis* No.9993. FK506 has been generally used in liver and kidney transplantation therapy (Kino et al. 1987; Dumont 2000; Tang et al. 2021). Studies have demonstrated that FK506 could suppress TRPC6 expression to ameliorate podocyte injury in T2DM cells (Chang et al. 2019); it also affects proteinuria and renal damage progression in renal tissues (Wei et al. 2017a; Chen et al. 2021). Down-regulation of TRPC6 by FK506 can also be used to treat overactive bladder (Chang et al. 2019). Besides, FK506-binding protein 52, as a novel interaction partner of TRPC3, improves the hypertrophic growth of cardiomyocyte cultures (Bandleon et al. 2019). Also, FK506 induces the TGF-beta 1/Smad 3 pathway to prevent intervertebral disk degeneration independent of calcineurin inhibition (Ge et al. 2020).

BI 749327

BI 749327 is an orally bioavailable TRPC6 antagonist that has been reported by Lin et al. (2019) with IC$_{50}$ of 13 nM; it can boost cardiac function and ameliorate renal disease fibrosis.

DS88790512

DS88790512 is another orally bioavailable compound that is potent and a selective blocker of the TRPC6 channel; it is a cyclic [4.3.0] nonane derivative with IC$_{50}$ of 11 nM. However, there have not been any reports of its efficacy in vivo (Motoyama et al. 2018) (Table 3).

TRPC1/5 channels

Clemizole

Richter et al. (2014a) identified clemizole as a novel, reversible TRPC5 blocker that can efficiently inhibit TRPC5 currents and Ca2+ entry with IC$_{50}$ ranging from 1.0 to 1.3 μM. In excised inside-out membrane patches, clemizole could still block TRPC5 current at single-channel level; it also affected TRPM3 and M8 and weakly impacted the TRPV1, V2, V3, and V4 channels at higher concentrations. Simultaneously, clemizole inhibits the heterologous TRPC1:C5 channel and the native TRPC5-like currents in the U-87 glioblastoma cell line. Studies have also shown that clemizole can have a certain therapeutic effect on Dravet syndrome (Strzelecky and Schubert-Bast 2020). As a TRPC5 channel inhibitor, clemizole hydrochloride reduces electric field stimulation amplitude, which causes muscarinic receptor-induced contractions impairment of the detrusor and carotid arteries (Griffin et al. 2018; Liang et al. 2019).

TRPC4/5 channels

ML204

Through a cell-based high-throughput fluorescence assay for 305,000 compounds, ML204 has been reported as a novel, potent, and relatively selective antagonist of the TRPC4 and TRPC5 channels with IC$_{50}$ of 13.6 μM (Zhou et al. 2017), as well as weakly inhibiting TRPC6. ML204 has a direct inhibitory effect on TRPC4/5 channels; it also can affect other GPCR-independent receptors (Miller et al. 2011; Alom et al. 2018). ML204 can prevent pseudocyst formation; thus, podocyte numbers can be preserved by treatment with ML204 (Zhou et al. 2017). Also, ML204 reduces carotid arteries endothelium-dependent contractions in mice (Liang et al. 2019). The histamine-induced depolarization is significantly inhibited by ML204, which reduces neuronal excitation (Sato et al. 2020). Although ML204 cannot inhibit pacemaker activity, it modulates the depolarization of the membrane potential (Lee et al. 2020a). Intradermal injections of ML204 in psoriasiform skin significantly reversed chronic pruritus and the inflammation induced by imiquimod (Lee et al. 2020b). Recent studies have reported that ML204, as a selective TRPC4/5 blocker, can completely revert acetylcholine relaxations (Alom et al. 2018; Silva and Ballejo 2019). ML204 can also reduce electric-field stimulation and CCh-evoked contractions in TRPC4−/− detrusor strips mice (Griffin et al. 2018).
M084

M084 is a 2-aminobenzimidazole derivative similar to ML204 reported to effectively block the TRPC4 and TRPC5 channels with IC$_{50}$ of 10.3 and 8.2 µM, respectively. On the other hand, M084 weakly inhibits TRPC3 and moderately inhibits TRPC6 (Zhu et al. 2015). Research has discovered that M084 also has antidepressant and anti-anxiety effects in mice experiments (Yang et al. 2015). Additionally, Zhu et al. (2015) proved that M084 effectively inhibits the plateau potential induced by TRPC4-containing channels through electrophysiological recording in the lateral septal neurons of mice. Through synthesizing and testing a total of 28 structural analogs of M084, it has been found that the 2-aminobenzimidazol skeleton is an essential requirement for blocking the TRPC4 channel (Zhu et al. 2015).

AM12

AM12 can directly inhibit the activation of lanthanide-induced and (-)-englerin A-evoked TRPC5 channel with IC$_{50}$ of 0.28 µM. Likewise, it inhibits TRPC4 channels and weakly inhibits the TRPC1-TRPC5 channel (Naylor et al. 2016).

TRPC3/6 channels

Salvianolic acid B

Salvianolic acid B, extracted from the root of Salvia miltiorrhiza Bunge (Lamiaceae), is the most abundant bioactive compound that inhibits the expression of TRPC3 and TRPC6 channels. In the cardiovascular system, salvianolic acid B effectively counteracts doxorubicin (DOX)-evoked structural heart abnormalities and apoptotic damage, and inhibits the DOX-induced Ca$_{2+}$ overload and endoplasmic reticulum stress in cardiomyocytes via TRPC3 and TRPC6 inhibition (Chen et al. 2017; Li et al. 2020a). Salvianolic acid B can also alleviate myocardial ischemic injury by inhibiting activation of the NLRP3 inflammasome and promoting mitophagy (Hu et al. 2020c). Regarding its effects
on the hepatic system, salvianolic acid B suppresses hepatic endoplasmic reticulum stress to improve insulin resistance in ob/ob mice (Shi et al. 2020). Salvianolic acid B also blocks the activation of hepatic stellate cells, protects against sepsis-induced liver injury, and prevents alleviates liver, pulmonary and renal interstitial fibrosis (Su et al. 2020; Ma et al. 2020; Jiang et al. 2020a; Hu et al. 2020b; Tian et al. 2021; Gong et al. 2021). Furthermore, salvianolic acid B prevents high-fat diet-induced obese mice body weight gain and regulates gut microbiota (Li et al. 2020b). Additionally, salvianolic acid B decreases mice interleukin-1 beta-induced colitis recurrence (Feng et al. 2020). Regarding its effects on the skeletal system, salvianolic acid B promotes new bone formation and protects against oxidative damage (Kayalar et al. 2020; Xiao et al. 2020; Bian and Xiang 2020); it improves atherosclerosis by inhibiting the YAP/TAZ/JNK signaling pathway in endothelial cells and pericytes (Yang et al. 2020). In the nervous system, salvianolic acid B could improve the cognitive impairment of mice infected with Porphyromonas gingivalis by inhibiting neuroinflammation and reducing Aβ level (Liu et al. 2020). Salvianolic acid B can also improve chronic mild stress-induced depressive behaviors in rats via the AMPK/SIRT1 signaling pathway (Liao et al. 2020). As an otoprotective agent, salvianolic acid B inhibits ototoxic drug-induced ototoxicity by suppressing the apoptosis pathway (Zheng et al. 2020).

Rox4560

Rox4560 is a TRPC3/6 channel antagonist that could suppress the elevation of thrombin intracellular calcium levels in podocytes (Guan et al. 2017).

TRPC1/6 channels

Sildenafil

Sildenafil inhibits TRPC1 and TRPC6 expressions through PPARγ-dependent mechanisms counteracting podocyte injury and proteinuria (Sonneveld et al. 2017). Sildenafil also has potential cardioprotective effects (Santiago-Vacas et al. 2021).

TRPC1/4/5 channels

Pico145

Pico145 (C31, HC-608) is a xanthine derivative that potently inhibits TRPC1/4/5 channels with IC50 of 1.3 nM (TRPC5:C5), 0.349 nM (TRPC4:C4), 0.199 nM (TRPC5:C1, heteromers), and 0.033 nM (TRPC4:C1, heteromers) (Rubaiy et al. 2017b). Pico145 can directly, reversibly, and competitively inhibits the AM237-mediated TRPC5:C5 channel activation (Rubaiy et al. 2017a; Minard et al. 2019; Wright et al. 2020). The potency of Pico145 depends on the concentration of the (−)-englerin A (Rubaiy et al. 2017b). Pico145 was also found to be highly similar to HC-070 (Just et al. 2018). Inhibition of TRPC1 by Pico145 causes group I metabotropic glutamate receptors-induced long-term depression and memory extinction in mice (Yerna et al. 2020). Additionally, Pico145 can prevent adverse reactions of the cancer cell cytotoxic agent (−)-englerin A (Cheung et al. 2018).

HC070

HC070 is a highly potent, small molecule antagonist of TRPC4 and TRPC5 invented by Just et al. (Just et al. 2018). HC070 inhibits the homologous TRPC4:C4 (IC50 = 46.0 nM) and TRPC5:C5 (IC50 = 0.52 nM) channel, as well as the heterologous TRPC1:C5 (IC50 = 1.4 nM, La3+-activated; IC50 = 4.4 nM, M1 receptor-activated), and TRPC1:C4 (IC50 = 1.3 nM) channel. HC070 also reversibly inhibits the lanthanum-induced mouse TRPC5 current with IC50 of 0.55 nM. Additionally, HC070 and Pico145 showed anxiolytic and antidepressant effects on mice (Just et al. 2018; Rubaiy 2019).

SAR7334

SAR7334 is a novel, highly potent, and bioavailable compound that inhibits TRPC6-, TRPC3-, and TRPC7-induced Ca2+ influx with IC50 of 9.5, 282, and 226 nM, respectively, whereas it does not affect TRPC4/5 channels (Maier et al. 2015). Furthermore, SAR7334 suppresses TRPC6-dependent acute HPV in the isolated perfused lungs of mice (Maier et al. 2015) and (O-3)-induced airway inflammatory responses (Chen et al. 2020a). SAR7334 can also negate malignant hyperthermia hypersensitivity by blocking TRPC3/6 (Lopez et al. 2020a). There is a strong possibility that SAR7334 improves cognitive deficits (Uryash et al. 2020). As for the cardiovascular system, SAR7334 dose-dependently attenuates systolic and diastolic blood pressure variability (Wang et al. 2020d). Additionally, TRPC6 knockdown by SAR7334 inhibits renal tubular epithelial cells apoptosis upon oxidative stress through autophagy activation (Hou et al. 2018).

Compound 14a

Compound 14a is a novel TRPC6 antagonist that strongly inhibits 4o, TRPC3/6/7 agonist-induced, and receptor-operated activation of the TRPC6 channel. Compound 14a inhibits TRPC3/6/7 (TRPC6 > C7 > C3) with IC50 of around...
1 μM against gastric cancer cell growth and xenograft tumor formation. Compound 14a weakly affects the TRPC4 channel and doesn’t affect other TRP channels (Ding et al. 2018).

TRPC3/5/6 channels

KB-R7943

Whole-cell voltage-clamp experiments confirmed that KB-R7943 could potently block TRPC3, TRPC6, and TRPC5 currents with IC₅₀ of 0.46, 0.71, 1.38 μM, respectively, and nearly fully suppress the OAG-induced Ca²⁺ entry in HEK293 cells (Kraft 2007) (Table 4).

Table 4 TRPCs antagonists (2)

Modulators	Chemical structure	Targeting channels and IC₅₀	Predicted effects	Reference
Clemizole	![Chemical structure](clemizole.png)	1.0–1.3 μM (TRPC5) TRPC1:C5	Inhibit TRPC1:C5 channel and TRPC5 currents in the U-87 glioblastoma cell line	Richter et al. (2014a)
ML204	![Chemical structure](ml204.png)	13.6 μM (TRPC4/5)	Block riluzole-activated TRPC5-mediated current; reduce the mouse carotid arteries endothelium-dependent contractions	Liang et al. (2019), Miller et al. (2011), Zhou et al. (2017)
M084	![Chemical structure](m084.png)	10.3 μM (TRPC4), 8.2 μM (TRPC5)	Antidepressant and anti-anxiety effects	Yang et al. (2015), Zhu et al. (2015)
AM12	![Chemical structure](am12.png)	0.28 μM (TRPC5) TRPC4	Inhibit the activation TRPC5 channel	Naylor et al. (2016)
Salvianolic acid B	![Chemical structure](salvianolic acid B.png)	TRPC3, TRPC6	Counteracted DOX-evoked heart abnormalities and tissue injury	Chen et al. (2017), Su et al. (2020)
Rox4560	![Chemical structure](rox4560.png)	TRPC3/6	Suppress calcium levels in podocytes	Guan et al. (2017)
Sildenafil	![Chemical structure](sildenafil.png)	TRPC1/6	Counteracting renal injury; cardioprotective effects	Lu et al. (2010), Santiago-Vacas et al. (2021), Sonneveld et al. (2017)
Pico145	![Chemical structure](pico145.png)	1.3 nM (TRPC5:C5), 0.349 nM (TRPC4:C4), 0.199 nM (TRPC5:C1), 0.033 nM (TRPC4:C1)	Inhibit AM237-mediated TRPC5:C5 channel activation	Minard et al. (2019), Rubaiy et al. (2017a, b)
HC070	![Chemical structure](hc070.png)	46.0 nM (TRPC4:C4), 0.52 nM (TRPC5:C5), 1.4 nM (TRPC1:C5), 1.3 nM (TRPC1:C4)	Anxiolytic and anti-depressant	Just et al. (2018)
SAR7334	![Chemical structure](sar7334.png)	9.5 nM (TRPC6), 282 nM (TRPC3), 226 nM (TRPC7)	Suppress acute HPV; attenuate renal injury	Hou et al. (2018), Maier et al. (2015)
Compound 14a	![Chemical structure](compound 14a.png)	~1 μM (TRPC3/6/7)	Inhibit gastric cancer cell growth	Ding et al. (2018)
KB-R7943	![Chemical structure](kb-r7943.png)	0.46 μM (TRPC3), 0.71 μM (TRPC6), 1.38 μM (TRPC5)	Suppress Ca²⁺ entry	Kraft (2007)

Merritt et al. (1990) originally identified SKF96365 as a novel inhibitor of ROCE, 1-(β-[3-(4-methoxy-phenyl)propoxy]-4-methoxyphen-ethyl)-1 H-imidazole hydrochloride), with IC₅₀ of around 10 μM. However, SKF96365 was not as potent or selective as desired because it could also block T-type calcium channels (Singh et al. 2010). A previous study indicated that SKF96365 inhibits TRPC channels, arrests the cell cycle in the G2/M phase, and suppresses cell growth in AGS or MKN45 human gastric cancer cell lines.
as well as arresting the cell cycle in the S and G2 phases in glioblastoma cells (Song et al. 2014). SKF-96365 is proven effective in the therapy of primary thermal and mechanical hyperalgesia and persistent spontaneous nociception (Ding et al. 2011, 2012). As a SOCE inhibitor, SKF-96365 also exhibits potent anti-neoplastic activity in non-small cell lung cancer cells (Wang et al. 2018b). Moreover, recent reports showed evidence that SKF-96365 induces reduction in cardiac conduction (He et al. 2017). Moreover, SKF96365 reduces Ca$^{2+}$ concentration and airway smooth muscle cell viability in asthmatic mice (Zhang et al. 2018a).

2-APB

2-Aminoethoxydiphenyl borate (2-APB) is an inositol 1,4,5-trisphosphate receptors (IP3Rs) antagonist and TRPC channel antagonist that blocks the expression of human TRPC5 and TRPC6 in HEK-293 cells. In the concentration–response curve, 2-APB has IC$_{50}$ of 20 μM (Diver et al. 2001; Xu et al. 2005; Sekaran et al. 2007). 2-APB can act directly on TRPC ion channels in melanosin-expressing ganglion cells (Sekaran et al. 2007). TRPC1/3/6 inhibition by SKF96365 and 2-APB attenuates TGF-β1-induced epithelial-mesenchymal transition in gastric cancer via the Ras/Raf1/ERK signaling pathway (Ge et al. 2018) (Table 5).

All nonselective TRPCs antagonists have certain inhibitory effects on various cell types and can target a particular channel or disease through structural modification, which presents a novel TRPCs therapeutic target for drug discovery.

Discussion

TRPCs are associated with the occurrence and development of many diseases. Studies have proved that they are linked with different crucial roles in the pathophysiological process of many diseases; thus, they present a novel target for the intervention and treatment of some diseases. Additionally, the emergence of TRPCs modulators can prompt an understanding of these channels in health and disease.

At present, highly potent and highly selective TRPCs modulators, such as (−)-englerin A, hyperforin, ML204, Pico145, HC070, Pyr3, DS88790512, and AC1903 are still unprecedented opportunities for TRPCs research. However, some obstacles, such as the toxicity and instability of (−)-englerin A in the cardiac and respiratory systems limit their use (Wu et al. 2017b; Minard et al. 2018; Rubaiy 2019). Additionally, hyperforin is also unstable and susceptible to oxygen, heat, and light. Pico145 and HC070 are suitable for in vivo studies, whereas ML204 and DS88790512 were only conducted in vitro studies; thus, there are no reports on their in vivo efficacy. AC1903 could cause a developmental defect in the amygdala. These problems are collectively obstructive to the usage of the current selective TRPCs modulators; thus, the development of new TRPCs modulators drugs that are more potent and more selective is needed.

With the tremendous advancement of science and drug technologies, discovering the means to overcome the mentioned undesired effects becomes possible. In structural biology, high-resolution structures are increasingly becoming the dominant method for determining the structures of many receptor complexes through cryo-EM technology. In recent decades, rich combinatorial compound libraries provide an abundant material basis for high-throughput screening due to their vast quantities and diverse structures that have become a popular approach to discovering and developing new medications, offering possibilities for finding suitable TRPCs modulators. Furthermore, many reports revealed that antisense oligonucleotide therapies and small molecule peptides therapies have increasingly become a novel strategy for treating a variety of diseases (Yamamoto et al. 2016; Beekman and Howell 2016; Mignani et al. 2019; Chen et al. 2020b; Tahirovic et al. 2020). Studying channel domains functions, especially the precise interpretation of modulators’ binding sites, helps discover highly selective TRPCs

Modulators	Chemical structure	Targeting channels and IC$_{50}$	Predicted effects	Reference
SKF96365	![SKF96365](image)	TRPC, low-voltage-activated T-type calcium channels 10 μM	suppress growth in human gastric cancer cell lines, glioblastoma cells, non-small cell lung cancer and colorectal cancer cells, primary thermal and mechanical hyperalgesia and persistent spontaneous nociception, induce a reduction in cardiac condition	Ding et al. (2011), Singh et al. (2010), Song et al. (2014), Ge et al. (2018)
2-APB	![2-APB](image)	TRPC, TRPM3 20 μM	Act directly on a TRPC ion channel in melanosin-expressing ganglion cells, block human TRPC5, TRPC6 and TRPM3 channels	Diver et al. (2001), Ge et al. (2018), Sekaran et al. (2007), Xu et al. (2005)
modulators. These new technologies permit a more comprehensive assessment of the structures and function of TRPCs in physiology and pathophysiology, thereby providing the means to find more potent and selective TRPCs modulators.

Acknowledgements The present work was supported by the National Natural Science Foundation of China Nos. 81770432, 81970245 to X. Q. Li., and the Innovation Capacity Support Project of Shaanxi Province in China No. 2019PT-23 to X. Q. Li.

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

References

Abdoul-Azize S, Buquet C, Vannier JP, Dubus I (2016) Pyr3, a TRPC3 channel blocker, potentiates dexamethasone sensitivity and apoptosis in acute lymphoblastic leukemia cells by disturbing Ca2+ signaling, mitochondrial membrane potential changes and reactive oxygen species production. Eur J Pharmacol 784:90–98. https://doi.org/10.1016/j.ejphar.2016.05.014

Agip AA, Blaza JN, Fedor JG, Hirst J (2019) Mammalian respiratory complex I through the lens of cryo-EM. Annu Rev Biophys 48:165–184. https://doi.org/10.1146/annurev-biophys-052118-115704

Akbolut Y, Gaunt HJ, Muraki K, Ludlow MJ, Hirst J (2019) Mammalian respiratory complex I through the lens of cryo-EM. Annu Rev Biophys 48:165–184. https://doi.org/10.1146/annurev-biophys-052118-115704

Allegra A, Tonacci A (2020) Antiproliferative effects of St. John’s wort, its derivatives, and other hypericum species in hematologic malignancies. Int J Mol Sci. https://doi.org/10.3390/ijms2010146

Alom F, Miyakawa M, Matsuyama H, Nagano H, Tanahashi Y, Unno T (2018) Possible antagonistic effects of the TRPC4 channel blocker ML204 on M2 and M3 muscarinic receptors in mouse ileal and detrusor smooth muscles and atrial myocardium. J Vet Med Sci 80:1407–1415. https://doi.org/10.1292/jvms.18-0197

Álvarez-Miguel I, Cidad P, Pérez-García MT (2017) Differences in TRPC3 and TRPC6 channels assembly in mesenteric vascular smooth muscle cells in essential hypertension. J Physiol 595:1497–1513. https://doi.org/10.1113/JP273327

Augustin Y, Staines HM, Krishna S (2020) Artemisinins as a novel anti-cancer therapy: targeting a global cancer pandemic through drug repurposing. Pharmacol Ther 216:107706. https://doi.org/10.1016/j.pharmthera.2020.107706

Aydar E, Yeo S, Djamgoz M, Palmer C (2009) Abnormal expression, localization and interaction of canonical transient receptor potential ion channels in human breast cancer cell lines and tissues: a potential target for breast cancer diagnosis and therapy. Cancer Cell Int 9:23. https://doi.org/10.1186/1475-2867-9-23

Azumaya CM, Sierra-Valdez F, Cordero-Morales JF, Nakagawa T (2018) Cryo-EM structure of the cytoplasmic domain of murine transient receptor potential cation channel subfamily C member 6 (TRPC6). J Biol Chem 293:10381–10391. https://doi.org/10.1074/jbc.RA118.003183

Bai G, Gao Y, Liu S, Shui S, Liu G (2020) pH-dependent rearrangement determines the iron-activation and antitumor activity of artemisinins. Free Radic Biol Med 163:234–242. https://doi.org/10.1016/j.freeradbiomed.2020.12.024

Baltin ME, Sabirova DE, Kiseleva EI, Kamalov MI, Abdullin TI, Petrova NV, Ahmetov NF, Sachenkov OA, Baltina TV, Lavrov IA (2021) Comparison of systemic and localized carrier-mediated delivery of methylprednisolone succinate for treatment of acute spinal cord injury. Exp Brain Res. https://doi.org/10.1007/s00220-020-05974-w

Bandleon S, Strunz PP, Pickel S, Tiapko O, Cellini A, Miranda-Laferte E, Eder-Negrin P (2019) FKBP52 regulates TRPC3-dependent Ca2+ signals and the hypertrophic growth of cardiomyocyte cultures. J Cell Sci. https://doi.org/10.1242/jcs.231506

Basora N, Boulay G, Bilodeau L, Rousseau E, Payet MD (2003) 20-hydroxyecosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J Biol Chem 278:31709–31716. https://doi.org/10.1074/jbc.M304437200

Batova A, Altomare D, Creek KE, Navaiaux RK, Wang L, Li K, Green E, Navaiaux JC, Diccianni M, Yu AL (2017) Englishin A induces an acute inflammatory response and reveals lipid metabolism and ER stress as targetable vulnerabilities in renal cell carcinoma. PLoS ONE 12:e0172632. https://doi.org/10.1371/journal.pone.0172632

Beekman AM, Howell LA (2016) Small-molecule and peptide inhibitors of the pro-survival protein Mcl-1. ChemMedChem 11:802–813. https://doi.org/10.1002/cmdc.201509497

Beekmann H, Richter J, Hill K, Urban N, Lemoine H, Schaefer M (2017) A benzothiadiazine derivative and methylprednisolone are novel and selective activators of transient receptor potential canonical 5 (TRPC5) channels. Cell Calcium 66:10–18. https://doi.org/10.1016/j.cca.2017.05.012

Bian Y, Xiang J (2020) Salvianolic acid B promotes the osteogenic differentiation of human periodontal ligament cells through Wnt/β-catenin signaling pathway. Arch Oral Biol 113:104693. https://doi.org/10.1016/j.archoralbio.2020.104693

Bilion E, Hachdouel A, Garcelon N, Delacourt C, Drummond D (2021) Intravenous pulses of methylprednisolone for infants with severe bronchopulmonary dysplasia and respiratory support after 3 months of age. Pediatr Pulmonol 56:74–82. https://doi.org/10.1002/ppul.25109

Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272:29672–29680. https://doi.org/10.1074/jbc.272.47.29672

Brás NF, Neves RPP, Lopes FAA, Correia MAS, Palma AS, Sousa SF, Ramos MJ (2020) Combined in silico and in vitro studies to identify novel antidiabetic flavonoids targeting glycogen phosphorylase. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2020.104552

Busch T, Drager G, Kunst E, Benson H, Sasse F, Siemes K, Kirschning A (2016) Synthesis and antiproliferative activity of new tonantizitoline-derived diterpene derivatives. Org Biomol Chem 14:9040–9045. https://doi.org/10.1039/c6ob01697a

Cai C, Huang J, Lin Y, Miao W, Chen P, Chen X, Wang J, Chen M (2019) Particulate matter 2.5 induced arhythmicogenesis mediated by TRPC3 in human induced pluripotent stem cell-derived cardiomyocytes. Arch Toxicol 93:1009–1020. https://doi.org/10.1007/s00204-019-02403-y

Camacho Londoño JE, Tian Q, Hammer K, Schröder L, Camacho Londoño J, Reil JC, He T, Oberhofer M, Mannebach S, Mathar I, Philipp SE, Tabellion W, Schweda F, Dietrich A, Kaestner L, I, Philipp SE, Tabellion W, Schweda F, Dietrich A, Kaestner L, Laufs U, Birnbaumer L, Flockerzi V, Freichel M, Lipp P (2015) A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur Heart J 36:2257–2266. https://doi.org/10.1093/eurheartj/ehv250
Chang HH, Cheng YC, Tsai WC, Tsao MJ, Chen Y (2018) Pyr3 induces apoptosis and inhibits migration in human glioblastoma cells. Cell Physiol Biochem 48:1694–1702. https://doi.org/10.1159/000492293
Chang C, Li K, Jiang S, Li B, Cao L, Wang P (2019) Downregulation of TRPC6 expression is a critical molecular event during FK506 treatment for overactive bladder. Cell Calcium 77:8–19. https://doi.org/10.1016/j.ceca.2018.11.007
Chen X, Wang DD, Li ZP (2021) Analysis of time course and dose effect of tacrolimus on proteinuria in lupus nephritis patients. J Clin Pharm Ther 46:106–113. https://doi.org/10.1111/jcpt.13260
Chen RC, Sun GB, Ye JX, Wang J, Zhang MD, Sun XB (2017) Salvinianolic acid B attenuates doxorubicin-induced ER stress by inhibiting TRPC3 and TRPC6 mediated Ca2+ overload in rat cardiomyocytes. Toxicol Lett 276:21–30. https://doi.org/10.1016/j.toxlet.2017.04.010
Chen WT, Chen YK, Lin SS, Hsu FT (2018) Hyperfomin suppresses tumor growth and NF-κBmediated anti-apoptotic and invasive potential of non-small cell lung cancer. Anticancer Res 38:2161–2167. https://doi.org/10.21873/anticanres.12457
Chen D, Li D, Xu XB, Qiu S, Luo S, Qiu E, Rong J, Zheng D (2019a) Galangin inhibits epithelial-mesenchymal transition and angiogenesis by downregulating CD44 in glioma. J Cancer 10:4499–4508. https://doi.org/10.7150/jca.31487
Chen X, Taylor-Nguyen NN, Riley AM, Herring BP, White FA, Obukhov AG (2019b) The TRPC6 inhibitor, harbixyl acetate, is effective in protecting against traumatic brain injury-induced systemic endothelial dysfunction. J Neuroinflammation 16:21. https://doi.org/10.1186/s12974-019-1407-6
Chen QZ, Zhou YB, Zhou LF, Fu ZD, Wang YF, Huang JR, Li JH (2020a) TRPC6-dependent Ca2+ signaling mediates airway inflammation in response to oxidative stress via ERK pathway. Cell Death Dis 11:16. https://doi.org/10.1038/s41419-020-2360-0
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH (2020b) Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 40:532–585. https://doi.org/10.1002/med.21626
Cheung SY, Henrot M, Al-Saad M, Baumann M, Muller H, Abbas SK, Waldmann H, Abbas SK, Wei D, Li Z, Zhang J (2018) Structure of the mouse TRPC4 channel. Nat Commun 9:3102. https://doi.org/10.1038/s41467-018-05247-9
Ding M, Wang H, Qu C, Xu F, Zhu Y, Lv G, Lu Y, Zhou Q, Zhou H, Zeng X, Zhang J, Yan C, Lin J, Luo HR, Deng Z, Xiao Y, Tian J, Zhu MX, Hong X (2018) Pyrazolol[1,5-α]pyrimidine TRPC6 antagonists for the treatment of gastric cancer. Cancer Lett 432:47–55. https://doi.org/10.1016/j.canlet.2018.05.041
Diver JM, Sage SO, Rosado JA (2001) The inositol trisphosphate receptor antagonist 2-aminoethoxydiphenylborate (2-APB) blocks Ca2+ entry channels in human platelets: cautions for its use in studying Ca2+ influx. Cell Calcium 30:323–329. https://doi.org/10.1007/s00223-001-0239
Dolosebal B, Primessnig U, Wölkart G, Wolf S, Schernthaner M, Lichtenegger M, Glasnov TN, Kappe CO, Mayer B, Antoons G, Heinzel F, Pontes M, Grosschner K (2015) TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1. Cardiovasc Res 106:163–173. https://doi.org/10.1093/cvr/cvv022
Dryer SE, Roshanravan H, Kim EY (2019) TRPC channels: regulation, dysregulation and contributions to chronic kidney disease. Biochim Biophys Acta Mol Basis Dis 1865:1041–1066. https://doi.org/10.1016/j.bbadis.2019.04.001
Duan J, Li J, Zeng B, Chen GL, Peng X, Zhang Y, Wang J, Clapham DE, Li Z, Zhang J (2018) Structure of the mouse TRPC4 ion channel. Nat Commun 9:3102. https://doi.org/10.1038/s41467-018-05247-9
Duan J, Li J, Chen GL, Ge Y, Liu J, Xie K, Peng X, Zhou W, Zhong J, Zhang Y, Xu J, Xue C, Liang B, Zhu L, Liu W, Zhang C, Tian XL, Wang J, Clapham DE, Zeng B, Li Z, Zhang J (2019) Cryo-EM structure of TRPC5 at 2.8-Å resolution reveals unique and conserved structural elements essential for channel function. Sci Adv 5:eaaaw7935. https://doi.org/10.1126/sciadv.aaw7935
Dumont FJ (2000) FK506, an immunosuppressant targeting calcium channel function. Curr Med Chem 7:731–748. https://doi.org/10.2174/0929897003747273
Ebrey RJ (1999) Antibacterial activity of hyperforin from St John's wort. Lancet 354:777. https://doi.org/10.1016/s0140-6736(05)76020-7
Egelman EH (2016) The current revolution in cryo-EM. Biophys J 110:1008–1012. https://doi.org/10.1016/j.bpj.2016.02.001
Falcon D, Galeano-Otero I, Martin-Bornez M, Fernandez-Velasco M, Gallardo-Castillo I, Rosado JA, Ordonez A, Smani T (2020) TRPC channels: dysregulation and Ca2+ mishandling in ischemic heart disease. Cells. https://doi.org/10.3390/cells9101173
Fan C, Choi W, Sun W, Du J, Lu W (2018) Structure of the human lipid-gated cation channel TRPC3. Elife. https://doi.org/10.7554/eLife.36852
Fan J, Zhao XH, Li TJ (2021) Heat treatment of galangin and kaempferol inhibits their benefits to improve barrier function in rat intestinal epithelial cells. J Nutr Biochem 87:108517. https://doi.org/10.1016/j.jnutbio.2020.100571
Fang D, Xiong Z, Xu J, Yin J, Luo R (2019) Chemopreventive mechanisms of galangin against hepatocellular carcinoma: a review. Biomed Pharmacother 109:2054–2061. https://doi.org/10.1016/j.biopha.2018.09.154
Feng PP, Fang XS, Zhao SH, Fu JY, Zhang HT, Yi YL, Li CY, Jiang CL, Chen DP (2020) Salvianolic acid B decreases interleukin-1 beta-induced colitis recurrence in mice. Chin Med J 133:1436–1444. https://doi.org/10.1097/cm9.0000000000007773
Foster RR, Zadeh MA, Welsh GI, Satchell SC, Ye Y, Mathieson PW, Bates DO, Saleem MA (2009) Fluafenamic acid is a tool for investigating TRPC6-mediated calcium signalling in human conditionally immortalised podocytes and HEK293 cells. Cell Calcium 45:384–390. https://doi.org/10.1016/j.ceca.2009.01.003
Fuchs B, Rupp M, Ghofrani HA, Schermuly RT, Seeger W, Grimminger F, Gudermann T, Dietrich A, Weissmann N (2011) Dicylglycerol regulates acute hypoxic pulmonary
vasoconstriction via TRPC6. Respir Lett 12:20. https://doi.org/10.1186/1465-9921-20

Ge P, Wei L, Zhang M, Hu B, Wang K, Li Y, Liu S, Wang J, Li Y (2018) TRPC1/3/6 inhibition attenuates the TGF-β1-induced epithelial-mesenchymal transition in gastric cancer via the Ras/Raf1/ERK signaling pathway. Cell Biol Int 42:975–984. https://doi.org/10.1002/cbin.10963

Ge J, Wang Y, Yan Q, Wu C, Yu H, Yang H, Zou J (2020) FK506 Induces the TGF-β/beta 1/Smad 3 pathway independently of calcineurin inhibition to prevent intervertebral disk degeneration. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.608308

Glasnov TN, Groschner K, Kappe CO (2009) High-speed microwave-assisted synthesis of the trifluoromethylpyrazol- derived canonical transient receptor potential (TRPC) channel inhibitor Pyr3. ChemMedChem 4:1816–1818. https://doi.org/10.1002/cmdc.200900304

Gong L, Jin H, Li Y, Quan Y, Yang J, Tang Q, Zou Z (2020) Rosiglitazone ameliorates skeletal muscle insulin resistance by decreasing free fatty acids release from adipocytes. Biochem Biophy Res Commun 533:1122–1128. https://doi.org/10.1016/j.bbrc.2020.09.144

Gong Y, Li D, Li L, Yang J, Ding H, Zhang C, Wen G, Wu C, Fang Z, Hou S, Yang Y (2021) Smad3 C-terminal phosphorylation site mutation attenuates the hepatoprotective effect of salvinorin A against hepatocarcinogenesis. Food Chem Toxicol 147:119192. https://doi.org/10.1016/j.fct.2020.111912

Grant P, Song JY, Swedo SE (2010) Review of the use of the glutamate antagonist riluzole in psychiatric disorders and a description of recent use in childhood obsessive-compulsive disorder. J Child Adolesc Psychopharmacol 20:309–315. https://doi.org/10.1089/ cap.2010.0009

Grant CV, Carver CM, Hastings SD, Ramachandran K, Muniswamy M, Risinger AL, Beutler JA, Mooberry SL (2019) Triple-negative breast cancer cell line sensitivity to englerin A identifies a new, targetable subtype. Breast Cancer Res Treat 177:345–355. https://doi.org/10.1007/s10549-019-05324-7

Griffin CS, Thornbury KD, Hollywood MA, Sergeant GP (2018) Triple-negative breast cancer cell line sensitivity to englerin A identifies a new, targetable subtype. Breast Cancer Res Treat 177:345–355. https://doi.org/10.1007/s10549-019-05324-7

Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Guerdemann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263. https://doi.org/10.1038/16711

Hofmann L, Wang H, Zheng W, Philipp SE, Hidalgo P, Calválié A, Chen XZ, Beck A, Fowleriz V (2017) The S4–S5 linker-gearbox of TRP channel gating. Cell Calcium 67:156–165. https://doi.org/10.1016/j.ceca.2017.04.002

Hong C, Seo H, Kwak M, Jeon J, Jang J, Jeong EM, Myeong J, Hwang YJ, Ha K, Kang MJ, Lee KP, Yi EC, Kim IG, Jeon JH, Ryu H, So I (2015) Increased TRPC5 glutathionylation contributes to striatal neuron loss in Huntington’s disease. Brain 138:3030–3047. https://doi.org/10.1093/brain/awv188

Hou X, Xiao HT, Zhang YH, Zeng XX, Huang MJ, Chen XY, Birnbaumer L, Liao YH (2018) Transient receptor potential channel 6 knockdown prevents apoptosis of renal tubular epithelial cells upon oxidative stress via autopagy activation. Cell Death Dis 9:15. https://doi.org/10.1038/s41419-018-1052-5

Hsu FT, Chen WT, Wu CT, Chung JG (2020) Hyperforin induces apoptosis through extrinsic/intrinics pathways and inhibits EGFR/ERK/NF-kB-mediated anti-apoptotic potential in glioblastoma. Environ Toxicol 35:1058–1069. https://doi.org/10.1002/tox.22942

Hu L, Chen H, Zhang X, Feng Z, Zhang H, Meng Q (2020a) Rosiglitazone ameliorates radiation-induced intestinal inflammation in rats by inhibiting NLRP3 inflammasome and TNF-alpha production. J Radiat Res 61:842–850. https://doi.org/10.1093/jrr/rraa062

Hu Y, Wang M, Pan Y, Li Q, Xu L (2020b) Salvianolic acid B attenuates renal interstitial fibrosis by regulating the HPSE/SDC1 axis. Mol Med Rep 22:1325–1334. https://doi.org/10.3892/mmr.2020.11229

Hu Y, Wang X, Li Q, Pan Y, Xu L (2020c) Salvianolic acid B alleviates myocardial ischemic injury by promoting mitophagy and inhibiting activation of the NLRP3 inflammasome. Mol Med Rep 22:5199–5208. https://doi.org/10.3892/mmr.2020.11589

Hu Y, Xia W, Li Y, Wang Q, Lin S, Wang B, Zhou C, Cui Y, Jiang Y, Pu X, Wei X, Wu H, Zhang H, Zhu Z, Liu D, Li Z (2020d) High-salt intake increases TRPC3 expression and enhances TRPC3-mediated calcium influx and sstolic blood pressure in hypertensive patients. Hypertens Res 43:679–687. https://doi.org/10.1007/s10992-020-0411-1

Hu Y, M. Zeng J, Ge W (2020) Artemisinin ameliorates intestinal inflammation by skewing macrophages to the M2 phenotype and inhibiting epithelial-mesenchymal transition. Int Immunopharmacol 91:107284. https://doi.org/10.1016/j.intimp.2020.107284

Huang W, Cheng P, Yu K, Han Y, Song M, Li Y (2017) Hyperforin attenuates aluminum-induced Aβ production and Tau phosphorylation via regulating Akt/GSK-3β signaling pathway in PC12 cells. Biomed Pharmacother 96:1–6. https://doi.org/10.1016/j.biopharmaha.2017.09.114

Huang H, Chen AY, Ye X, Guan R, Rankin GO, Chen YC (2020) Galangin, a flavonoid from lesser galangal, induced apoptosis via p53-dependent pathway in ovarian cancer cells. Molecules. https://doi.org/10.3390/molecules25071579

Hwang JW, Hwang MK, Jang Y, Lee EJ, Kim JE, Oh MH, Shin DJ, Lim S, Ji G, Oh U, Bode AM, Dong Z, Lee KW, Lee HJ (2013) 20-O-β-d-glucopyranosyl-20(S)-propanaxadiol, a metabolite of ginseng, inhibits colon cancer growth by targeting TRPC channels-mediated calcium influx. J Nutr Biochem 24:1096–1104. https://doi.org/10.1016/j.jnutbio.2012.08.008

Ilatovskaya DV, Levchenko D, Vowing A, Shuyskiy LS, Palygin O, Staruschenko A (2015) Podocyte injury in diabetic nephropathy: implications of angiotensin II-dependent activation of TRPC channels. Sci Rep 5:17637. https://doi.org/10.1038/srep17637
Jardin I, Diez-Bello R, Lopez JJ, Redondo PC, Salido GM, Smani T, Rosado JA (2018) TRPC6 channels are required for proliferation, migration and invasion of breast cancer cell lines by modulation of orai1 and orai3 surface expression. Cancers (Basel). https://doi.org/10.3390/cancers10090331

Jasper C, Wittenberg R, Quitschalle M, Jakupovic J, Kirschning A (2005) Total synthesis and elucidation of the absolute configuration of the diterpene tonantizolione. Org Lett 7:479–482. https://doi.org/10.1021/ol047559e

Jeon JP, Hong C, Park EJ, Jeon NH, Kim IG, Choe H, Muullem S, Kim HJ, So I (2012) Selective Galphai subunits as novel direct activators of transient receptor potential canonical (TRPC)4 and TRPC5 channels. J Biol Chem 287:17029–17039. https://doi.org/10.1074/jbc.M111.326553

Jiang GN, Zeng B, Zhang Y, Daskoulidou N, Fan H, Qu JM, Xu SZ (2013) Involvement of TRPC channels in lung cancer cell differentiation and the correlation analysis in human non-small cell lung cancer. PLoS ONE 8:e67637. https://doi.org/10.1371/journal.pone.0067637

Jiang X, Kumar M, Zhu Y (2018) Protective effect of hyperforin on β amyloid protein induced apoptosis in PC12 cells and colchicine induced Alzheimer’s disease: an anti-oxidant and anti-inflammatory therapy. J Oleo Sci 67:1443–1453. https://doi.org/10.5650/jos.e18117

Jiang L, Wang J, Ju J, Dai J (2020a) Salvinianolic acid B and sodium tanshinone II A sulfonate prevent pulmonary fibrosis through anti-inflammatory and anti-fibrotic process. Eur J Pharmacol 883:173352. https://doi.org/10.1016/j.ejphar.2020.173352

Jiang YY, Shui JC, Zhang BX, Chiu JW, Yue RS (2020b) The potential roles of artemisinin and its derivatives in the treatment of type 2 diabetes mellitus. Front Pharmacol 11:585487. https://doi.org/10.3389/fphar.2020.585487

Just S, Chenard BL, Ceci A, Strassmaier T, Chong JA, Blair NT, Gallasschun RJ, Del Camino D, Cantin S, D’Amours M, Eickmeier C, Fanger CM, Hecker C, Hessler DP, Hengerer B, Kroker KS, Malekiani S, Mikaleh S, McLaughlin J, Rast G, Witte J, Sauer A, Prucz CR, Moran MM (2018) Treatment with HC-070, a Na+/Ca2+ exchange inhibitor, blocks TRPC channels. Biochem Biophys Res Commun 492:1–6. https://doi.org/10.1016/j.bbrc.2018.03.959

Kayalar E, Deynek GT, Tok OE, Kucuk S (2020) Effect of salvinianolic acid B on new bone formation in the orthopedically expanded suture. Angle Orthod. https://doi.org/10.2319/042620-360.1

Kim JH, Hwang KH, Eom M, Kim M, Park EY, Jeong Y, Park KS, Cha SK (2019) WK1 promotes renal tumor progression by activating TRPC6-NEAT pathway. FASEB J 33:8588–8599. https://doi.org/10.1096/fj.201802019RR

Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama Y, Yazima T, Goto T, Ohkura M, Kohsaka M, Aoki H, Ochiai T (1987) FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo) 40:1256–1265. https://doi.org/10.7164/antibiotics.40.1256

Kitajima N, Numaga, Tumita T, Watanabe M, Kuroda T, Nishimura A, Miyanaka K, Yasuda S, Kuwahara K, Sato Y, Ide T, Birnbauer L, Sumimoto H, Morii Y, Nishida M (2016) TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Sci Rep 6:37001. https://doi.org/10.1038/srep37001

Klein S, Mentrup B, Timmen M, Sherwood J, Lindemann O, Fober M, Kronenberg D, Pap T, Raschke MJ, Stange R (2020) Modulation of transient receptor potential channels 3 and 6 regulates osteoclast function with impact on trabecular bone loss. Calcif Tissue Int 106:655–664. https://doi.org/10.1007/s00223-020-00673-8

Kong Y, Feng Z, Chen A, Qi Q, Han M, Wang S, Zhang Y, Zhang X, Yang N, Wang J, Huang B, Zhang Q, Xiang G, Li W, Zhang D, Wang J, Li X (2019) The natural flavonoid galangin elicits apotosis, pyroptosis, and autophagy in glioblastoma. Front Oncol 9:942. https://doi.org/10.3389/fonc.2019.00942

Kraft R (2007) The Na+/Ca2+ exchange inhibitor KB-R7943 potently blocks TRPC channels. Biochem Biophys Res Commun 361:230–236. https://doi.org/10.1016/j.bbrc.2007.07.019

Krut D, Schara A, Sun Y, Sukumaran P, Roemmich JN, Singh BB, Claycombe-Larson KJ (2017) The TRPC1 Ca2+-permeable channel inhibits exercise-induced protection against high-fat diet-induced obesity and type II diabetes. J Biol Chem 292:20799–20807. https://doi.org/10.1074/jbc.M117.809954

Laakmann G, Schule C, Baghai T, Kieser M (1998) St John’s wort in mild to moderate depression: the relevance of hyperforin for the clinical efficacy. Pharmacopsychiatry 31(Suppl 1):54–59. https://doi.org/10.1055/s-2007-979346

Lee JH, Wu WH, Huang XJ, Jun JY, Choi S (2020a) Transient receptor potential canonical 4 and 5 channel antagonist ML204 depolarized pacemaker potentials of interstitial cells of cajal. J Neurogastroenterol Motil 26:521–528. https://doi.org/10.5056/jnm20064

Lee SH, Tonello R, Choi Y, Jung SJ, Berta T (2020b) Sensory neuron- expressed TRPC4 is a target for the relief of psoriasis itch and skin inflammation in mice. J Invest Dermatol 140:2221–9.e6. https://doi.org/10.1016/j.jid.2020.03.959

Leuner K, Heiser JH, Derksen S, Mladenov MI, Fehskje CJ, Schubert R, Gollasch M, Schneider G, Harteneck C, Chatterjee SS, Muller WE (2010) Simple 2,4-diacetylphloroglucinols as classic transient receptor potential-6 activators—identification of a novel pharmacophore. Mol Pharmacol 77:368–377. https://doi.org/10.1124/mol10.1057513

Li H (2017) TRP channel classification. Adv Exp Med Biol 976:1–8. https://doi.org/10.1007/978-94-024-1088-4_1

Li J, Zhang X, Song L, Liu R, Zhang J, Li Z (2019a) The structure of TRPC ion channels. Cell Calcium 80:25–28. https://doi.org/10.1016/j.ceca.2019.03.005

Li N, He Y, Yang G, Yu Q, Li M (2019b) Role of TRPC1 channels in pressure-mediated activation of airway remodeling. Respir Res 20:91. https://doi.org/10.1186/s12931-019-1050-x

Li CL, Liu B, Wang ZY, Xie F, Qiao W, Cheng J, Kuang Y, Wang Y, Zhang MX, Liu DS (2020a) Salvinianolic acid B improves myocardial function in diabetic cardiomyopathy by suppressing IGFBP3. J Mol Cell Cardiol 139:98–112. https://doi.org/10.1016/j.yjmcc.2020.01.009

Li L, Li R, Zhu R, Chen B, Tian Y, Zhang H, Xia B, Jia Q, Wang L, Zhao D, Mo F, Li Y, Zhang S (2020b) Salvinianolic acid B prevents body weight gain and regulates gut microbiota and LPS/TLR4 signaling pathway in high-fat diet-induced obese mice. Food Nutr Sci 11:473–476. https://doi.org/10.3970/d06011116a

Liang C, Zhang Y, Zhuo D, Lo CY, Yu L, Lau CW, Kwan YW, Tse G, Huang Y, Yao X (2019) Endothelial cell transient receptor potential channel C5 (TRPC5) is essential for endothelium-dependent contraction in mouse carotid arteries. Biochem Pharmacol 159:11–24. https://doi.org/10.1016/j.bcp.2018.11.002

Liao D, Chen Y, Guo Y, Wang C, Liu N, Gong Q, Fu Y, Fu Y, Cao L, Yao D, Jiang P (2020) Salvinianolic acid B improves chronic mild stress-induced depressive behaviors in rats: involvement of AMPK/SIRT1 signaling pathway. J Inflamm Res 13:195–206. https://doi.org/10.2147/jir.s249363

Lin Y, Zhang JC, Fu J, Chen F, Wang J, Wu ZL, Yuan SY (2013) Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition
of TRPC6 channels degradation. J Cereb Blood Flow Metab 33:253–262. https://doi.org/10.1038/jcbfm.2012.164

Lin BL, Matera D, Doerner JF, Zheng N, Del Camino D, Mishra S, Bian H, Zeleveska S, Zhen X, Blair NT, Chong JA, Hessler DP, Bedja D, Zhu G, Muller GK, Ranek MJ, Pantages L, McFarland M, Netterton MR, Berry A, Wong D, Rast G, Qian HS, Weldon SM, Kuo JJ, Sauer A, Sarko C, Moran MM, Kass DA, Pullen SS (2019) In vivo selective inhibition of TRPC6 by antagonist BI 749327 ameliorates fibrosis and dysfunction in cardiac and renal disease. Proc Natl Acad Sci USA 116:10156–10161. https://doi.org/10.1073/pnas.1813554116

Liu B, Wang H, Du Z, Li G, Ye H (2011) Metabolic engineering of artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep 30:689–694. https://doi.org/10.1007/s00299-010-0967-9

Liu YC, Lin KH, Hsieh JH, Chung JG, Tan ZL, Hsu FT, Chiang CH (2015) Discovery and pharmacological characterization of TRPC1/4/5 channels: implications for understanding the channels in health and disease. Cells. https://doi.org/10.3390/cells7060052

Liu J, Wang Y, Guo J, Sun J, Sun Q (2020) Salvianolic acid B improves cognitive impairment by inhibiting neuroinflammation and decreasing Aβ level in Porphyromonas gingivalis-infected mice. Aging (Albany NY) 12:10117–10128. https://doi.org/10.18632/aging.103306

Lopez JR, Uryash A, Adams J, Hopkins PM, Allen PD (2020b) Canonical transient receptor potential canonical 6 channels modulates calcium dyshomoeostasis in a mouse model relevant to malignant hyperthermia. Anesthesiology. https://doi.org/10.1097/ALN.0000000000003635

Lopez JR, Uryash A, Adams J, Hopkins PM, Allen PD (2020b) Molecular modification of transient receptor potential canonical 6 channels modulates calcium dyshomoeostasis in a mouse model relevant to malignant hyperthermia. Anesthesiology. https://doi.org/10.1097/ANL.0000000000003387

Lopez JR, Uryash A, Adams J, Hopkins PM, Allen PD (2020a) Transient receptor potential cation channels and calcium dyshomeostasis in a mouse model relevant to malignant hyperthermia. Anesthesiology 133:364–376. https://doi.org/10.1097/ANL.0000000000002966

Lu W, Ran P, Zhang D, Peng G, Li B, Zhong N, Wang J (2010) Sildenafil inhibits chronically hypoxic upregulation of canonical transient receptor potential expression in rat pulmonary arterial smooth muscle. Am J Physiol Cell Physiol 298:C114–C123. https://doi.org/10.1152/ajpcell.00629.2008

Ma R, Chaudhari S, Li W (2016) Canonical transient receptor potential 6 channel: a new target of reactive oxygen species in renal physiology and pathology. Antioxid Redox Signal 25:732–748. https://doi.org/10.1089/ars.2016.6661

Ma X, Tang M, Lu L, Zheng J, Huang J, Li J, Luo W (2020) Effects of salvianolic acid B on liver fibrosis: a protocol for systematic review and meta analysis. Medicine (Baltimore) 99:e21036. https://doi.org/10.1097/md.00000000000021036

Maier T, Follmann M, Hessler G, Kleemann HW, Hachet S, Fuchs B, Weissmann N, Linz W, Schmidt T, Lohn M, Schroeter K, Wang L, Rutten H, Strubing C (2015) Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels. Br J Pharmacol 172:3650–3660. https://doi.org/10.1111/bph.13151

Majeed Y, Bahnasi Y, Seymour VA, Wilson LA, Milligan CJ, Agarwal AK, Sukumaran P, Naylor J, Beech DJ (2011) Rapid and contrasting effects of rosiglitazone on transient receptor potential TRPM3 and TRPC5 channels. Mol Pharmacol 79:1023–1030. https://doi.org/10.1124/mol.110.069922

Merritt JE, Armstrong WP, Benham CD, Hallam TJ, Jacob R, Jaxa-Chamiec A, Leigh BK, McCarthy SA, Moores KE, Rink TJ (1990) SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J 271:515–522. https://doi.org/10.1042/bj2710515

Mignani S, Shi X, Zablocka M, Majoral JP (2019) Dendrimer-enabled therapeutic antisense delivery systems as innovation in medicine. Bioconjugate Chem 30:1938–1950. https://doi.org/10.1021/acs.bioconjchem.9b00385

Millares-Ramirez EM, Picotte K, Lavoie JP (2021) Pulmonary response of severely asthmatic horses after intra-articular administration of methylprednisolone. Equine Vet J 53:78–84. https://doi.org/10.1111/evj.13272

Miller RG, Mitchell JD, Moore DH (2000) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD000147

Minard A, Bauer CC, Wright DJ, Rubaiyi HN, Muraki K, Beech DJ, Bon RS (2018) Remarkable progress with small-molecule modulation of TRPC1/4/5 channels: implications for understanding the channels in health and disease. Cells. https://doi.org/10.3390/cells7060052

Miller M, Shi J, Zhu Y, Kustov M, Tian JB, Stevens A, Wu M, Xu J, Long S, Yang P, Zholos AV, Salovich JM, Weaver CD, Hopkins CR, Lindsay CW, McManus O, Li M, Zhu MX (2011) Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J Biol Chem 286:33436–33446. https://doi.org/10.1074/jbc.M111.274167

Minard A, Bauer CC, Chuntharpursat-Bon E, Pickles IB, Wright DJ, Ludlow MJ, Burnham MP, Warriner SL, Beech DJ, Muraki K, Bon RS (2019) Potent, selective, and subunit-dependent activation of TRPC5 channels by a xanthine derivative. Br J Pharmacol 176:3924–3938. https://doi.org/10.1111/bph.14791

Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472. https://doi.org/10.1152/physrev.00001.2002

Minke B, Wu C, Pak WL (1975) Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258:84–87. https://doi.org/10.1038/258084a0

Moiseenkov-Bell V, Wensel TG (2011) Functional and structural studies of TRP channels heterologously expressed in budding yeast. Adv Exp Med Biol 704:25–40. https://doi.org/10.1007/978-94-007-0265-3_2

Motoyama K, Nagata T, Kobayashi J, Nakamura A, Miyoshi N, Kazui M, Sakurai K, Sakakura T (2018) Discovery of a bicyclo[4.3.0]nonane derivative DS88790512 as a potent, selective, and orally bioavailable blocker of transient receptor potential canonical 6 (TRPC6). Bioorg Med Chem Lett 28:2222–2227. https://doi.org/10.1016/j.bmcl.2018.03.056

Munakata M, Shirakawa H, Nagayasu K, Miyanohara J, Miyake T, Nakagawa T, Katsuki H, Kaneko S (2013) Transient receptor potential canonical 3 inhibitor Pyr3 improves outcomes and attenuates astrogliosis after intracerebral hemorrhage in mice. Stroke 44:1981–1987. https://doi.org/10.1161/strokeaha.113.679332

Muraki K, Ohnishi K, Takezawa A, Suzuki H, Hatano N, Muraki Y, Hamzah N, Foster R, Waldmann H, Nussbaumer P (2017) Na(+)-entry through heteromeric TRPC4/C1 channels mediates (-)-englerin A-induced cytotoxicity in synovial sarcoma cells. Sci Rep 7:16988. https://doi.org/10.1038/s41598-017-17303-3

Nagamine K, Kudoh D, Minoshima S, Kawasaki K, Asakawa S, Ito F, Sawada K, Kurosaki T, Takada Y, Nakagawa T, Katsuki H, Kaneko S (2013) Transient receptor potential canonical 3 inhibitor Pyr3 improves outcomes and attenuates astrogliosis after intracerebral hemorrhage in mice. Stroke 44:1981–1987. https://doi.org/10.1161/strokeaha.113.679332

Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N, Imoto K, Mori Y (1998) Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel.
modulating the immune system. Pharmacol Ther 216:107696. https://doi.org/10.1016/j.pharmthera.2020.107696

Shi Y, Pan D, Yan L, Chen H, Zhang X, Yuan J, Mu B (2020) Salvia-Singer A, Wonnemann M, Muller WE (1999) Hyperforin, a major silica J, Ballejo G (2019) Pharmacological characterization of the calcium influx pathways involved in nitric oxide production by endothelial cells. Einstein 17:04600. https://doi.org/10.31744/einstein_journal.2019AO4600

Singer A, Wonnemann M, Muller WE (1999) Hyperforin, a major antidepressant constituent of St. John's Wort, inhibits serotonin uptake by elevating free intracellular Na⁺. J Pharmacol Exp Ther 290:1363–1368

Singh A, Hildebrand ME, Garcia E, Snutch TP (2010) The transient receptor potential channel antagonist SKF 96365 is a potent blocker of low-voltage-activated T-type calcium channels. Br J Pharmacol 160:1464–1475. https://doi.org/10.1111/j.1476-5381.2010.00786.x

Song M, Chen D, Yu SP (2014) The TRPC channel blocker SKF 96365 inhibits glioblastoma cell growth by enhancing reverse mode of the Na⁺/Ca²⁺ exchanger and increasing intracellular Ca²⁺. Br J Pharmacol 171:3432–3447. https://doi.org/10.1111/bph.12691

Song HY, Kim WS, Han JM, Seo HS, Lim ST, Byun EB (2021) Galangin treatment during dendritic cell differentiation confers tolerogenic properties in response to lipopolysaccharide stimulation. J Nutr Biochem 87:108524. https://doi.org/10.1016/j.jnutbio.2020.108524

Sonneveld R, Hoenderop JG, Isidori AM, Henique C, Dijkman HB, Beutler JA, Linehan WM, Neckers L (2015) Tonantzitlolone inhibits glioblastoma cell growth by enhancing reverse mode of the Na⁺/Ca²⁺ exchanger and increasing intracellular Ca²⁺. Br J Pharmacol 171:3432–3447. https://doi.org/10.1111/bph.12691

Staruschenko A, Spires D, Palygin O (2019) Role of TRPC6 in pro-tolerogenic properties in response to lipopolysaccharide stimulation. J Nutr Biochem 87:108524. https://doi.org/10.1016/j.jnutbio.2020.108524

Tambe A, Kohli S, Gambhir HS, Tambe V (2021) Severe hypotonemia secondary to riluzole therapy in amyotrophic lateral sclerosis. Am J Thorac 28:e164–e165. https://doi.org/10.1097/mjt.0000000000001023

Tang Q, Guo W, Zheng L, Wu JX, Liu M, Zhou X, Zhang X, Chen L (2018) Structure of the receptor-activated human TRPC6 and TRPC3 ion channels. Cell Res 28:746–755. https://doi.org/10.1038/s41422-018-0038-2

Tang T, Xu T, Liu X, Yang T, Zhang L, Yang Z (2021) Roles of BATF/JUN/IRF4 complex in tollulocid mediated immunosuppression on Tlh cells in acute rejection after liver transplantation. J Cell Physiol 236:1776–1786. https://doi.org/10.1002/jcp.29953

Tesfai Y, Breeroton HM, Barratt GI (2001) A diacylglycerol-activated Ca²⁺ channel in PC12 cells (an adrenal chromaffin cell line) correlates with expression of the TRP-6 (transient receptor potential) protein. Biochem J 358:717–726. https://doi.org/10.1042/0264-02024-026-01350717

Thangaiyan R, Arjunan S, Govindasamy K, Khan HA, Alhomedi AS, Prasad NR (2020) Galangin attenuates isoproterenol-induced inflammation and fibrosis in the cardiac tissue of albino wistar rats. Front Pharmacol 11:585163. https://doi.org/10.3389/fphar.2020.585163

Thapak P, Vaidya B, Joshi HC, Singh JN, Sharma SS (2020) Therapeutic potential of pharmacological agents targeting TRP channels in CNS disorders. Pharmacol Res 159:105026. https://doi.org/10.1016/j.phrs.2020.105026

Tian S, Chen M, Wang B, Han Y, Shang H, Chen J (2021) Salvianolic acid B blocks hepatic stellate cell activation via FGFR1/FGFR4 signaling. Ann Hepatol 20:100259. https://doi.org/10.1016/j.aohep.2020.07.013

Trinh T, Park SB, Murray J, Pickering H, Lin CSY, Martin A, Friedlander M, Kiernan MC, Goldstein D, Krishnan AV (2021) Neurohorizons: neuroprotection and therapeutic use of riluzole for the prevention of oxaliplatin-induced neuropathy-a randomised controlled trial. Support Care Cancer 29:1103–1110. https://doi.org/10.1007/s00520-020-05559-x

Tu P, Kunert-Keil C, Lucke S, Brinkmeier H, Bourou A (2009) Diacylglycerol analogues activate second messenger-operated calcium channels exhibiting TRPC-like properties in cortical neurons. J Neurochem 108:126–138. https://doi.org/10.1111/j.1471-4159.2008.05752.x

Tu P, Gibson J, Bourou A (2010) The TRPC6 channel activator hyperforin induces the release of zinc and calcium from mitochondria. J Neurochem 112:204–213. https://doi.org/10.1111/j.1471-4159.2009.06446.x

Urban N, Schaefer M (2020) Direct activation of TRPC3 channels by the antimarial agent artemisinin. Cells. https://doi.org/10.3390/cells9010202

Urban N, Wang L, Kwiek S, Rademann J, Kuebler WM, Schaefer M (2016) Identification and validation of larixyl acetate as a potent
TRPC6 inhibitor. Mol Pharmacol 89:197–213. https://doi.org/10.1124/mol.115.100792

Uryash A, Flores V, Adams JA, Allen PD, Lopez JR (2020) Memory and learning deficits are associated with Ca2+ dyshomoestasis in normal aging. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2020.00224

van der Pluijm RW, Amarantunga C, Dhorda M, Dondorp AM (2021) Triple artemisinin-based combination therapies for malaria—a new paradigm? Trends Parasitol 37:15–24. https://doi.org/10.1016/j.pt.2020.09.011

van der Wijst J, Bindels RJM (2018) Renal physiology: TRPC5 inhibition to treat progressive kidney disease. Nat Rev Nephrol 14:145–146. https://doi.org/10.1038/nrneph.2018.4

Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278:29031–29040. https://doi.org/10.1074/jbc.M302751200

Vinayagam D, Mager T, Apelbaum A, Bothe A, Merino F, Hofnagel van der Pluijm RW, Amaratunga C, Dhorda M, Dondorp AM (2021) New paradigm? Trends Parasitol 37:15–24. https://doi.org/10.1016/j.pt.2020.09.011

Wang J, Weigand L, Sylvester JT, Semenza GL, Shimoda LA (2020) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98:1528–1537. https://doi.org/10.1161/CIRCRESAHA.119.317551

Wang J, Yang K, Xu L, Zhang Y, Lai N, Jiang H, Zhang Y, Zhong N, Ran P, Lu W (2013) Sildenafil inhibits hypoxia-induced transient receptor potential canonical protein expression in pulmonary arterial smooth muscle via cGMP-PKG-PPARgamma axis. Am J Respir Cell Mol Biol 49:231–240. https://doi.org/10.1165/rcmb.2012-0185OC

Wang J, Lu R, Yang J, Li H, He Z, Jing N, Wang X, Wang Y (2015a) TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production. Nat Commun 6:8876. https://doi.org/10.1038/ncomms9876

Wang T, Chen Z, Zhu Y, Pan Q, Liu Y, Qi X, Jin L, Jin J, Ma X, Hua D (2015b) Inhibition of transient receptor potential channel 5 reverses 5-fluorouracil resistance in human colorectal cancer cells. J Biol Chem 290:448–456. https://doi.org/10.1074/jbc.M114.390364

Wang T, Ning K, Sun X, Zhang C, Jin LF, Hua D (2018a) Glycolysis is essential for chemoresistance induced by transient receptor potential channel C5 in colorectal cancer. BMC Cancer 18:207. https://doi.org/10.1186/s12885-018-4123-1

Wang Y, He J, Jiang H, Zhang Q, Yang H, Xu X, Zhang C, Xu C, Wang J, Lu W (2018b) Nicotine enhances store-operated calcium entry by upregulating HIF-1α and SOCC components in non-small cell lung cancer cells. Oncol Rep 40:2097–2104. https://doi.org/10.3892/or.2018.6580

Wang H, Shao B, Yu H, Xu F, Wang P, Yu K, Han Y, Song M, Li Y, Cao Z (2019a) Neuroprotective role of hyperforin on aluminum maltolate-induced oxidative damage and apoptosis in PC12 cells and SH-SY5Y cells. Chem Biol Interact 299:15–26. https://doi.org/10.1016/j.cbi.2018.11.016

Wang HB, Huang SH, Xu M, Yang J, Yang J, Liu MX, Wan CX, Liao HH, Fan D, Tang QZ (2019b) Galangin ameliorates cardiac remodeling via the MEK1/2-ERK1/2 and PI3K-AKT pathways. J Cell Physiol 234:15654–15667. https://doi.org/10.1002/jcp.28216

Wang L, Chang JH, Buckley AF, Spurney RF (2019c) Knockout of TRPC6 promotes insulin resistance and exacerbates glomerular injury in Akita mice. Kidney Int 95:321–332. https://doi.org/10.1016/j.kint.2018.09.026

Wang Y, Qi YX, Qi Z, Tsang SY (2019d) TRPC3 regulates the proliferation and apoptosis resistance of triple negative breast cancer cells through the TRPC3/RAA4/MAPK pathway. Cancers (Basel). https://doi.org/10.3390/cancers11040558

Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX (2020a) TRPC channels: structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2020.107497

Wang J, Zhao M, Jia P, Liu FF, Chen K, Meng FY, Hong JH, Zhang T, Jin XH, Shi J (2020b) The analgesic action of laryx acetate, a potent TRPC6 inhibitor, in rat neuropathic pain model induced by spared nerve injury. J Neuroinflammation 17:118. https://doi.org/10.1186/s12974-020-01767-8

Wang L, Liu H, He Q, Gan C, Li Y, Zhang Q, Yao Y, He F, Ye T, Yin W (2020c) Galangin ameliorated pulmonary fibrosis in vivo and in vitro by regulating epithelial-mesenchymal transition. Biosorg Med Chem 28:115663. https://doi.org/10.1016/j.bmc.2020.115663

Wang Y, Liu L, Tao H, Wen L, Qin S (2020d) TRPC6 participates in the development of blood pressure variability increase in sinoaortic denervated rats. Heart Vessels 35:1755–1765. https://doi.org/10.1007/s00380-2020-01682-1

Wang J, Walline JH, Yin L, Dai Y, Dai J, Zhu H, Yu X, Xu J (2021a) Efficacy of prophylactic methylprednisolone on reducing the risk of post-extubation stridor in patients after an emergency intubation: study protocol for a randomized controlled trial. Trials 22:30. https://doi.org/10.1186/s13063-020-04994-9

Wang J, Xu C, Wong YK, Ma N, Liao FL, Jiang T, Tu Y (2021b) Triple artemisinin-based combination therapies for malaria: proceed with caution. Lancet 396:1976. https://doi.org/10.1016/s1473-7806(20)30240-4

Watanabe H, Murakami M, Ohba T, Takahashi Y, Ito H (2008) TRP channel and cardiovascular disease. Pharmacol Ther 118:337–351. https://doi.org/10.1016/j.pharmthera.2008.03.008

Wei L, Du Y, Jia L, Ma X, Chen Z, Lu J, Tian L, Duan Z, Dong F, Lv Z, Yao G, Fu R, Wang L (2017a) Therapeutic effects of FK506 on IgA nephropathy rat. Kidney Blood Press Res 42:983–998. https://doi.org/10.1159/000485346

Wei L, Mao J, Lu J, Gao J, Zhu D, Tian L, Chen J, Jia L, Wang L, Fu R (2017b) Rosiglitazone inhibits angiogenesis II-Induced proliferation of glomerular mesangial cells via the Gαq/PKCβ4/TRPC signaling pathway. Cell Physiol Biochem 44:2228–2242. https://doi.org/10.1159/000486056

Wei L, Li, Jia L, Liu F, Chen W, Liao F, Zhang X, Wei Y, Xue F, Li G, Yang Q, Gong W, Feng X, Bai X, Liu G, Shi J (2016) Regulation of multi-drug resistance in hepatocellular carcinoma cells is TRPC6/calcium dependent. Sci Rep 6:23269. https://doi.org/10.1038/srep23269

Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA 92:9652–9656. https://doi.org/10.1073/pnas.92.21.9652

Wissenbach U, Schroth G, Philipp S, Flockerzi V (1998) Structure and mRNA expression of a bovine trp homologue related to mammalian trp2 transcripts. FEBS Lett 429:61–66. https://doi.org/10.1016/s0014-5793(98)00561-4

Woudenberg-Vrenken TE, Bindels RJ, Hoenderop JG (2009) The role of transient receptor potential channels in kidney disease. Nat Rev Nephrol 5:441–449. https://doi.org/10.1038/nrneph.2009.100

Wright DJ, Simmons KJ, Johnson RM, Beech DJ, Muench SP, Bon RS (2020) Human TRPC5 structures reveal interaction of a xanthine-based TRPC1/4 inhibitor with a conserved lipid binding site. Commun Biol. https://doi.org/10.1038/s42003-020-01437-8

Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are potent TRPC6 inhibitor, in rat neuropathic pain model induced by spared nerve injury. J Neuroinflammation 17:118. https://doi.org/10.1186/s12974-020-01767-8
Wu YL, Xie J, An SW, Oliver N, Barrezaeta NX, Lin MH, Birnbaumer L, Huang CL (2017a) Inhibition of TRPC6 channels ameliorates renal fibrosis and contributes to renal protection by soluble klotho. Kidney Int 91:830–841. https://doi.org/10.1016/j.kint.2016.09.039

Wu Z, Zhao S, Fash DM, Li Z, Chain WJ, Beutler JA (2017b) Engler-Wu YL, Xie J, An SW, Oliver N, Barrezueta NX, Lin MH, Birnbaumer Y.-Y. Gao et al. Development of anti-HIV drugs: novel therapeutic approaches, molecular mechanisms, and clinical trials. Front Pharmacol 11:529873. https://doi.org/10.3389/fphar.2020.529873

Xie YF, Zhou F (2014) TRPC3 channel mediates excitation of striatal cholinergic interneurons. Neuronal Sci 35:1757–1761. https://doi.org/10.1007/s10072-014-2182-0

Xu SZ, Zeng F, Boulay G, Grimm C, Harteincken C, Beech DJ (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145:405–414. https://doi.org/10.1038/sj.bjp.0706197

Xu C, Zhang H, Mu L, Yang X (2020) Artemisinins as anticancer drugs: therapeutic approaches, molecular mechanisms, and clinical trials. Front Pharmacol 11:529881. https://doi.org/10.3389/fphar.2020.529881

Yamamoto T, Wada F, Harada-Shiba M (2016) Development of anti-sense drugs for dyslipidemia. J Atheroscler Thromb 23:1011–1025. https://doi.org/10.5551/jat.RV16001

Yang SL, Cao Q, Zhou KC, Feng YJ, Wang YZ (2009) Transient receptor potential channel C3 contributes to the progression of human ovarian cancer. Oncogene 28:1320–1328. https://doi.org/10.1038/onc.2008.475

Yang LP, Jiang FJ, Wu GS, Deng K, Wen M, Zhou X, Hong X, Zhu MX, Luo HR (2015) Acute treatment with a novel TRPC4/C5 channel inhibitor produces antidepressant and anxiolytic-like effects in mice. PLoS ONE 10: e0136255. https://doi.org/10.1371/journal.pone.0136255

Yang Y, Pei K, Zhang Q, Wang D, Feng H, Du Z, Zhang C, Gao Z, Yang W, Wu J, Li Y (2020) Salvianolic acid B ameliorates atherosclerosis via inhibiting YAP/TAZ/JNK signaling pathway in endothelial cells and pericytes. Biochim Biophys Acta Mol Cell Lipids 1865:158779. https://doi.org/10.1016/j.bbalip.2020.158779

Yao H, Zhang Y, Shu H, Xie B, Tao Y, Yuan Y, Shang Y, Yuan S, Zhang J (2019) Hyperforin promotes post-stroke neuroangiogenesis via astrocytic IL-6-mediated negative immune regulation in the ischemic brain. Front Cell Neurosci 13:201. https://doi.org/10.3389/fncel.2019.00201

Yerna X, Schakman I, Rathi I, Kreis A, Lepannetier S, de Cippele M, Achour J, Taejedine N, Tissir F, Gualdani R, Gaillly P (2020) Role of the TRPC1 channel in hippocampal long-term depression and in spatial memory extinction. Int J Mol Sci. https://doi.org/10.3390/ijms21051712

Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N, Platskoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan JX (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci USA 101:13861–13866. https://doi.org/10.1073/pnas.0405908101

Zhang X, Zhao Z, Ma L, Guo Y, Li X, Zhao L, Tian C, Tang X, Cheng D, Chen Z, Zhang L (2018a) The effects of transient receptor potential channel (TRPC) on airway smooth muscle cell isolated from asthma model mice. J Cell Biochem 119:6033–6044. https://doi.org/10.1002/jcb.26801

Zhang Y, Knight W, Chen S, Mohan A, Yan C (2018b) Multifunctional complex with TRPC (transient receptor potential-canonical) channel, PDE1C (phosphodiesterase 1C), and A2R (adenosine A2 receptor) plays a critical role in regulating cardiomyocyte cAMP and survival. Circulation 138:1988–2002. https://doi.org/10.1161/circulationaha.118.034189

Zhang Y, Yu P, Liu H, Yao H, Yao S, Yuan SY, Zhang JC (2019) Hyperforin improves post-stroke social isolation-induced exacerbation of PSD and PSA via TGF-β. Int J Mol Med 43:413–425. https://doi.org/10.3892/ijmm.2018.3971

Zhang X, Deng Y, Xiang J (2020) Galangin improved non-alcoholic fatty liver disease in mice by promoting. Autophagy 14:3393–3405. https://doi.org/10.2147/autophagy.d258187

Zhang S, Zhuang L, Liu Q, Yu X, Min Q, Chen M, Chen Q (2021) Rosiglitazone affects the progression of surgically-induced endometriosis in a rat model. Mol Med Rep. https://doi.org/10.3892/mmr.2020.11673

Zheng J (2013) Molecular mechanism of TRP channels. Compr Physiol 3:221–242. https://doi.org/10.1002/cphy.c120001

Zheng Z, Wang Y, Yu H, Li W, Wu J, Cai C, He Y (2020) Salvianolic acid B inhibits ototoxic drug-induced ototoxicity by suppression of the mitochondrial apoptosis pathway. J Cell Mol Med 24:6883–6897. https://doi.org/10.1111/jcmm.15345

Zhong X, Huang S, Liu D, Jiang Z, Jin Q, Li C, Da L, Yao Q, Wang D (2020) Galangin promotes cell apoptosis through suppression of H19 expression in hepatocellular carcinoma cells. Cancer Med 9:5546–5557. https://doi.org/10.1002/cam4.3195

Zhou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M, Kim S, Sieber J, Wieder N, Jung YJ, Andreeva S, Reichard J, Dubois F, Hoffmann SC, Basgen JM, Montesinos MS, Weins A, Johnson AC, Lander ES, Garrett MR, Hopkins CR, Greka A (2017) A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358:1332–1336. https://doi.org/10.1126/science.aal4178

Zhou B, Wang Y, Zhang C, Yang G, Zhang F, Yu B, Chai C, Cao Z (2018) Riberansimides A and B, TRPC6 inhibitors from rubes manshuricum that suppress TGF-beta-induced fibrogenesis in HK-2 Cells. J Nat Prod 81:913–917. https://doi.org/10.1021/acs.jnatprod.7b01037

Zhou Y, Li X, Chen K, Ba Q, Zhang X, Li J, Wang J, Wang H, Liu H (2020) Structural optimization and biological evaluation for novel artemisinin derivatives against liver and ovarian cancers. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2020.113000

Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198. https://doi.org/10.1016/0014-5793(95)01038-g

Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+-entry. Cell 85:661–671. https://doi.org/10.1016/s0008-6740(00)81233-7

Zhu Z, Luo Z, Ma S, Liu D (2011) TRP channels and their implications in metabolic diseases. Pflug Arch 461:211–223. https://doi.org/10.1007/s00424-010-0902-5

Zhu Y, Lu Y, Cui Q, Miller T, Tian J, Thakur DP, Zhu J, Deng Z, Hu X, Wu M, McManus OB, Li M, Hong X, Zhu MX, Luo HR (2015) Identification and optimization of 2-amino-benzimidazole derivatives as novel inhibitors of TRPC4 and TRPC5 channels. Br J Pharmacol 172:3495–3509. https://doi.org/10.1111/bph.13140

Zhu Y, Gao M, Zhou T, Xie M, Mao A, Feng L, Yao X, Wong WT, Ma X (2019) The TRPC5 channel regulates angiogenesis and promotes recovery from ischemic injury in mice. J Biol Chem 294:28–37. https://doi.org/10.1074/jbc.RA118.005392

Y.-Y. Gao et al.
Zou Y, Li R, Kuang D, Zuo M, Li W, Tong W, Jiang L, Zhou M, Chen Y, Gong W, Liu L (2020) Galangin inhibits cholangiocarcinoma cell growth and metastasis through downregulation of MicroRNA-21 expression. BioMed Res Int. https://doi.org/10.1155/2020/5846938

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.