Effects of exogenous melatonin on plant growth, root hormones and photosynthetic characteristics of trifoliate orange subjected to salt stress

Ceng-hong Hu1,2 · Ying Zheng1,2 · Cui-ling Tong3 · De-jian Zhang1,2

Received: 28 September 2021 / Accepted: 25 February 2022 / Published online: 8 April 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract

Soil salinity has negative effects on crop growth and production, and melatonin (MT) plays an important role in regulating plant salt stress. However, it is not clear whether exogenous melatonin mitigates the negative effect on citrus plants subjected to salt stress. This study aimed to explore the response of exogenous melatonin (0, 50, 100, 150 µmol/L) on plant growth, root hormone levels and the photosynthetic system of trifoliate orange (Citrus (Poncirus) trifoliata L.) seedlings exposed to 0 or 150 mmol/L NaCl for 4 weeks. The 150 mmol/L NaCl treatment significantly increased root zeatin riboside, gibberellin and brassinolide levels, while dramatically reducing plant growth, root auxin levels, leaf photosynthesis and fluorescence indexes of seedlings. However, melatonin treatment partially ameliorated reductions in plant height and dry matter accumulation caused by salt stress. Melatonin (100 µmol/L) appears to interact with IAA but not the other hormones studied. Furthermore, the effects of NaCl stress on the net photosynthetic rate, stomatal conductance, maximum photochemical efficiency, PSII effective photon yield, photochemical quenching and other indicators of seedlings leaves were also partially alleviated and the damage of NaCl stress was also reduced when seedlings were treated with melatonin. This suggests that 100 µmol/L melatonin may be an effective treatment.

Keywords Hormones · Melatonin · Photosynthetic · Salt stress · Trifoliate orange

Introduction

Salt stress, one of the important abiotic stresses in the plant kingdom, considerably restricts the normal growth of crops (Stassinos et al. 2021). Cl− and CO32− ions are the main factors associated with soil salinization, which seriously restricts agricultural development in arid areas (Wang et al. 2019). Saline-alkali soils are not conducive to the growth and development of crops, as they can damage crop tissues and result in physiological drought of crops (Zhou et al. 2021). The salt in the soil can make the seeds of crops fail to germinate in the soil and become mouldy (Zhou et al. 2021). Too much salt will also cause the roots of crops to dehydrate and die (Sowmyalakshmi et al. 2015). Salt stress significantly inhibits the growth and dry matter accumulation of plants, resulting in slow plant growth, decreased leaf areas and photosynthetic parameters (He et al. 2005a, b). There are two reasons salt stress inhibits the photosynthesis of plants. Firstly, the toxic effect of inorganic salt ions inhibits the activity of photosynthetic pigments; secondly, excessive inorganic salt ions affect the osmotic potential of plant cells and further affect the photosynthetic rate (Lu et al. 2003). Salt stress can cause a decrease of net photosynthetic rate and reduces the synthesis of organic compounds in plants, eventually affecting normal growth (Lu et al. 2003). Preliminary studies have shown that increased stomatal resistance
results in the decreased photosynthetic rate of plants under salt stress (Ennahli and Earl 2005). In addition, another important factor in response to salt damage is changes in hormone levels (Mahmud et al. 2016). Hormones regulating salt responses can be divided into two groups, namely, growth-related hormones (e.g., auxin-IAA, gibberellins-GAs, brassinosteroids-BRs and cytokinins-CKs) and stress hormones (e.g., salicylic acid-SA, jasmonic acid-JA and abscisic acid-ABA) (Yu et al. 2020).

Melatonin (MT) was first discovered in 1995 as an indole compound, and is a natural phytohormone that occurs in most plants (Dubbels et al. 1995; Sun et al. 2020). In plants, melatonin can increase leaf chlorophyll, regulate the photoperiod and improve tolerance to abiotic and biotic stresses which are similar effects to those of auxin (Tan et al. 2012; Janas and Posmyk 2013; Sun et al. 2020). Melatonin alleviates the damage caused by stress by regulating the transcription level of genes encoding antioxidant enzymes (Tan et al. 2000; Chen et al. 2018). It has been found that both the synthesis of melatonin in plants and the exogenous application of melatonin can effectively improve the adaptability of plants to various stresses (Tan et al. 2000; Chen et al. 2018). Earlier studies found that appropriate concentrations of melatonin can enhance the stress resistance of plants and can improve germination rates, regulate the flowering period, delay the aging of leaves, and promote the formation of roots and lateral roots (Tiryaki and Keles 2012; Park and Back 2012; Byeon and Back 2014; Liang et al. 2018). Application of exogenous melatonin to grape can significantly alleviate the damage caused by water-deficient stress, due to enhanced activity of antioxidant enzymes, increased levels of nonenzymatic antioxidants, and increased amounts of osmoprotectants (Meng et al. 2015). Melatonin also can significantly increase the content of potassium ions and decrease the content of sodium ions, and maintain the stability of ions in maize seedlings under salt stress (Jiang et al. 2016). In cucumber, melatonin can improve the germination rate and root growth under drought stress while at the seedling stage, melatonin also inhibited the adverse effects of drought stress by increasing the photosynthetic rate of leaves and the accumulation of chlorophyll (Zhang et al. 2003; Wang et al. 2016). In addition, MT protects plants against salt stress, such as increasing the chlorophyll contents of tomato seedlings, improving photosynthesis and redox homeostasis in watermelon, and promoting the growth and antioxidant capacity of naked oat seedlings (Li et al. 2017; Gao et al. 2019; Sun et al. 2020). Therefore, previous studies have shown that melatonin can enhance the stress resistance of plants.

Citrus, as an important economic crop, is widely cultivated around the world (Wu et al. 2010a; Zhang et al. 2016; He et al. 2019) and are salt-sensitive horticultural crops (Wu and Zou 2009, 2013; Wu et al. 2010b; Zhang et al. 2017). Due to this, the purpose of the present study was to evaluate the effects of melatonin on plant growth, root hormone levels, and photosynthetic physiology of trifoliate orange Citrus (Poncirus) trifoliata L., a citrus rootstock under salt stress.

Materials and methods

Experimental design.

The experiment was arranged in a 2^2 factorial completely randomized blocked design: soil with or without NaCl (150 mmol/L) and 4 concentrations of melatonin (MT, N-acetyl-5-methoxytryptamine. Sigma, USA; MT: 0, 50, 100, 150 µmol/L). Each treatment was replicated 6 times, and each replicate had 3 seedlings, for a total of 144 seedlings.

Plant culture.

Five-leaf-old trifoliate orange seedlings were transplanted into 2.0 L pots containing autoclaved (0.11 MPa, 121 ℃, 1.5 h) substrates (soil : sand = 3 : 1, v/v). Two weeks after transporting, the salt and melatonin treatments were applied. The NaCl and MT solutions were watered weekly into each pot. The salt and melatonin treatments were maintained for four weeks until the plants were harvested. The seedlings were grown in a glasshouse of Yangtze University campus between March to May, 2021.

Plant assessment.

At harvest, plant heights and stem diameters were determined. The seedlings were divided into roots and shoots and the dry weights of these parts determined.

Chlorophyll contents, including chlorophyll a (Chla), chlorophyll b (Chlb) and total chlorophyll (Chla + Chlb), were determined using their absorbance at wavelengths of 665, 649 and 470 nm using a spectrophotometer (UH5300, Hitachi of Japan) based on the protocol of Pazurkiewicz-Kocot et al. (2011).

Leaf photosynthetic characteristics, including net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO$_2$ concentration (Ci) and transpiration rate (Tr), were determined using a portable photosynthetic system analyzer (Li-6400, Li-Cor of USA) based on the protocol of Fan et al. (2021).

Leaf chlorophyll fluorescence kinetic parameters, including PSII reaction center actual photochemical efficiency (ϕPSII), PSII effective light quantum yield (Fv'/Fm'), photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (NPQ), were determined using a luminoscope (Handy-PEA, Lufthansa of England) based on the protocol of Baker et al. (2008).

Root endogenous hormones, including indole acetic acid (IAA), zeatin riboside (ZR), gibberellin (GAs) and
brassinolide (BRs), were extracted using the protocol of He et al. (2019) and were determined by liquid chromatography-mass spectrometry (LC-MS) based on the protocol of Kojima and Sakakibara (2012).

Statistical analysis

Statistical analysis was carried out using two-way ANOVA followed by post hoc test analysis computer software Data Processing System (Version DPSv7.5). Post hoc mean comparison was performed using the LSD tests. A value of P<0.05 was considered significant.

Results

For all data sets analyzed the effect of salt-treatment was significant (P<0.05 in all cases).

Plant growth performance.

As shown in Table 1, salt stress suppressed seedling growth. Plant height, stem diameter, total dry weight, shoot and root dry weight were significantly decreased in the salt treatments compared to the non-salt treatments, irrespective of MT status (Table 1). MT treatment had no effect on the growth of the non-salt stressed plants. Under salt stress, plant height was increased by 19.7%, 21.7%, 18.7% with 50, 100 and 150 μmol/L MT treatments, and total dry weight, root and shoot dry weight were significantly increased compared to the appropriate control by 11.9%, 11.9%, 14.7% by the 100 μmol/L MT treatment. 50 μmol/L MT also ameliorated reductions in root dry weight (Table 1). For these data sets, the interactions between the salt and MT treatments were not significant.

Leaf photosynthetic pigment content.

Salt stress significantly decreased leaf photosynthesis pigment indices. Compared to the non-salt treatments, NaCl significantly decreased the levels of chlorophyll a (Chla), chlorophyll b (Chlb) and total chlorophyll content

Treatments	Plant height (cm)	Stem diameter (mm)	Total dry weight (g)	Root dry weight (g)	Shoot dry weight (g)
0 mmol/L NaCl 0 μmol/L MT	25.13±0.67abc	2.81±0.07a	2.01±0.05ab	0.80±0.01a	1.22±0.04a
50 μmol/L MT	25.25±0.80ab	2.82±0.09a	2.08±0.06a	0.83±0.01a	1.24±0.05a
100 μmol/L MT	25.61±0.73a	2.88±0.09a	2.10±0.09a	0.84±0.02a	1.25±0.05a
150 μmol/L MT	26.12±0.87ab	2.81±0.08a	2.07±0.07a	0.83±0.01a	1.23±0.05a
150 mmol/L NaCl 0 μmol/L MT	20.01±0.66d	2.52±0.06b	1.68±0.04d	0.67±0.01c	1.02±0.05c
50 μmol/L MT	23.95±0.63c	2.55±0.06b	1.79±0.04cd	0.72±0.03b	1.06±0.05bc
100 μmol/L MT	24.35±0.66bc	2.59±0.06b	1.88±0.04bc	0.75±0.02b	1.17±0.04ab
150 μmol/L MT	23.76±0.56c	2.56±0.07b	1.77±0.03cd	0.71±0.01bc	1.08±0.03bc
ANOVA NaCl***	MT***	Stem diameter***	Total dry weight***	Root dry weight***	Shoot dry weight***
NaCl×MT ns	ns	ns	ns		

The data presented are means (n=6) and standard errors. The different letters followed within the same column indicate the significant differences at P≤0.05. ** means P≤0.05, *** means P≤0.01, ns means not significant. The same as below.

Treatments	Chla (mg/g)	Chlb (mg/g)	Chla+Chlb (mg/g)	Chla/Chlb
0 mmol/L NaCl 0 μmol/L MT	1.72±0.06ab	0.72±0.02b	2.41±0.05bc	2.28±0.05ab
50 μmol/L MT	1.79±0.04ab	0.75±0.03ab	2.51±0.04ab	2.38±0.07a
100 μmol/L MT	1.81±0.06a	0.79±0.04a	2.61±0.07a	2.27±0.06ab
150 μmol/L MT	1.73±0.06ab	0.76±0.01ab	2.47±0.05b	2.29±0.07ab
150 mmol/L NaCl 0 μmol/L MT	1.05±0.03d	0.48±0.01c	1.48±0.03d	2.26±0.05ab
50 μmol/L MT	1.22±0.03c	0.56±0.02d	1.88±0.03c	2.27±0.07ab
100 μmol/L MT	1.67±0.04b	0.65±0.01c	2.30±0.02d	2.40±0.09a
150 μmol/L MT	1.23±0.02c	0.57±0.02d	1.83±0.05d	2.19±0.05b
ANOVA NaCl***	MT***	Chla+Chlb***	Chla/Chlb ns	
NaCl×MT ns	ns	ns	ns	

Note: Chla- chlorophyll a, Chlb- chlorophyll b, Chla+Chlb- total chlorophyll content, Chla/Chlb- chlorophyll a / chlorophyll b;
(Chla + Chlb), irrespective of MT status (Table 2). Under non-salt stress, the 100 µmol/L MT treatment significantly increased leaf Chlb, Chla + Chlb by 9.7%, and 8.3%. Under salt stress, compared with control group, MT-treated seedlings contained higher concentrations of Chla and Chlb with the 100 µmol/L treatment showing the least reduction. As for Chla + Chlb, only the 50 µmol/L MT treatment performed significantly differently with a 27.0% increase compared to the control. However, there were no significant difference of Chla/Chlb in all treatments, irrespective of salt stress and MT (Table 2). Regarding the interactions between the main effects, only those relating to Chla and Chla + Chlb were significant.

Leaf photosynthetic parameters.

As shown in Table 3, salt stress significantly decreased the leaf photosynthetic parameters of the seedlings. Compared to the non-salt treatment, 150 mmol/L NaCl dramatically decreased net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO₂ concentration (Ci) and transpiration rate (Tr) by 26.3%, 49.2%, 40.0% and 29.6% (Table 3). MT treatment had no significant effects on Pn, Gs, Ci and Tr under non-salt stress conditions. However, 100 µmol/L MT notably decreased the reductions in Pn, Gs, Ci and Tr by 22.9%, 72.8%, 57.3% and 24.4% and under salt stress, compared with 0 µmol/L MT. The plants in the 50 and 100 µmol/L MT treatments also had significantly higher Gs than the control by 68.5 and 72.8%, respectively (Table 3). For these data sets, the interactions between the main effects were significant.

Leaf fluorescence parameters.

Compared to the non-salt treatments, 150 mmol/L NaCl significantly decreased PSII reaction center photochemical efficiency (ϕPSII), PSII effective light quantum yield (Fv’/Fm’) and photochemical quenching coefficient (qP) by 27.4%, 28.1% and 25.3% (Table 4); MT treatment had no significant effects on on these parameters under non-salt stress conditions. However, under salt stress, MT notably increased ϕPSII, Fv’/Fm’ and qP by 22.2%, 31.1%, 24.4%, 12.9%, 25.8%, 14.5%, and 16.2%, 25.0%, 16.2%, respectively, compared to the appropriate control. The greatest increase in Fv’/Fm’ and qP occurred with MT given at 100 µmol/L (Table 4). However, the level of

Table 3

Treatments	Pn (µmol/m².s)	Gs (µmol/m².s)	Ci (µmol/mol)	Tr (mmol/m².s)
0 mmol/L NaCl	8.15 ± 0.16a	1.81 ± 0.04a	200.01 ± 4.31ab	2.80 ± 0.07a
50 µmol/L MT	8.24 ± 0.14a	1.82 ± 0.05a	210.08 ± 8.37a	2.83 ± 0.08a
100 µmol/L MT	8.50 ± 0.14a	1.82 ± 0.04a	212.10 ± 7.42a	2.84 ± 0.09a
150 µmol/L MT	8.19 ± 0.13a	1.81 ± 0.05a	209.07 ± 7.91a	2.83 ± 0.09a
150 mmol/L NaCl	6.01 ± 0.14d	0.92 ± 0.03c	120.68 ± 4.34d	1.97 ± 0.04d
50 µmol/L MT	6.96 ± 0.16bc	1.55 ± 0.05b	169.79 ± 6.12c	2.22 ± 0.06c
100 µmol/L MT	7.39 ± 0.22b	1.59 ± 0.04b	189.88 ± 6.88b	2.45 ± 0.07b
150 µmol/L MT	6.77 ± 0.20c	1.01 ± 0.02c	168.77 ± 4.63c	2.21 ± 0.08c

ANOVA

NaCl	MT	NaCl×MT
***	***	***

Note: Pn- net photosynthetic rate, Gs- stomatal conductance, Ci- intercellular CO₂ concentration and Tr- transpiration rate.

Table 4

Treatments	ϕPSII	Fv’/Fm’	qP	NPQ
0 mmol/L NaCl	0.62 ± 0.03ab	0.85 ± 0.01ab	0.91 ± 0.02ab	0.60 ± 0.02d
50 µmol/L MT	0.63 ± 0.02ab	0.86 ± 0.02ab	0.92 ± 0.01a	0.59 ± 0.02d
100 µmol/L MT	0.66 ± 0.02a	0.88 ± 0.03a	0.93 ± 0.03a	0.58 ± 0.01d
150 µmol/L MT	0.63 ± 0.02ab	0.81 ± 0.02bc	0.91 ± 0.01a	0.60 ± 0.02d
150 mmol/L NaCl	0.45 ± 0.01d	0.62 ± 0.01c	0.68 ± 0.02d	1.57 ± 0.05a
50 µmol/L MT	0.55 ± 0.01c	0.70 ± 0.01d	0.79 ± 0.02c	1.22 ± 0.04b
100 µmol/L MT	0.59 ± 0.01bc	0.78 ± 0.02c	0.85 ± 0.03b	1.05 ± 0.03c
150 µmol/L MT	0.56 ± 0.01c	0.71 ± 0.01d	0.79 ± 0.01c	1.21 ± 0.04b

ANOVA

NaCl	MT	NaCl×MT
***	***	***

Note: ϕPSII- PSII reaction center actual photochemical efficiency, Fv’/Fm’- PSII effective light quantum yield, qP- photochemical quenching coefficient and NPQ- non-photochemical quenching coefficient.
non-photochemical quenching coefficient (NPQ) was significantly increased by 161.7% on salt stress, compared with non-salt stress (Table 4), and MT had no effect of NPQ under non-salt-stress conditions, but reduced NPQ to varying degrees particularly at 100 µmol/L, under salt-stress. As a consequence, the damage caused by salt stress on leaf fluorescence parameters was partially restored when seedlings were treated with melatonin. For all data sets there were significant interactions between the main effects.

Root endogenous hormones.

The roots were harvested to measure the levels of indole-acetic acid (IAA), zeatin riboside (ZR), gibberellin (GAs) and brassinolide (BRs). Compared with the non-salt treated seedlings, the salt stressed seedlings had significantly lower levels of IAA (Table 5). By contrast, salt stress observably increased the levels of ZR, GAs and BRs by 29.4%, 44.4%, and 2.3% (Table 5). In non-stressed plants, statistical analysis showed no effects of MT on GAs, BR and ZR. For IAA, under 100 and 150 µmol/L MT-treatment IAA was increased. For the salt-stressed plants, no MT treatment had any effect on ZR, and the 100 µmol/L MT treatment caused small increases in GA and BR (Table 5). However, the decrease IAA caused by salt stress was partly ameliorated by treatment with MT, particularly at 100 µmol/L. For the IAA or GAs data sets, the interactions between the main effects were significant.

Discussion

Salt stress is one of the most problematic abiotic stresses affecting plants in agriculture worldwide. In saline soils, plants try to neutralize the effects of salt stress by physiological changes, leading to decreases in both oxidative and osmotic stresses (Stassinos et al. 2021). Melatonin, an indoleamine widely found in animals and plants, is considered as a candidate phytohormone that affects responses to a variety of biotic and abiotic stresses, such as salt stress (Wei et al. 2015; Li et al. 2019). In the present study, exogenous melatonin treatment alleviated the inhibition of trifoliate orange seedling growth under 150 mmol/L NaCl stress to a certain extent, which is in line with the earlier result reported by Zhang et al. (2014) that melatonin treatment could improve the germination of *Pennisetum alopecuroides* (Linn.) seeds and alleviate the negative effect of salt stress on their subsequent growth. In addition, exogenous melatonin treatment can effectively promote dry matter accumulation, leaf elongation rate and alleviate the inhibition of plant height under salt stress, which imples that melatonin can improve plant resistance to salt stress through osmotic regulation (Li et al. 2019). Also, melatonin promotes soybean growth, seed production, and stress (salt and drought) tolerance by regulating cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis, and ascorbate metabolism (Wei et al. 2015).

When plants are under stress, the photosynthetic rate and the level of chlorophyll in leaves decreases (Harizanova and Koleva-Valkova 2019). The main tissue in which photosynthesis occurs is the leaf, and the amount of chlorophyll directly affects the ability of plants to carry out photosynthesis (Demming and Adams 1996). Salt stress not only affects the synthesis of chlorophyll but also accelerates the decomposition of chlorophyll, resulting in a decrease of chlorophyll (Schreiber et al. 1998). Our results showed that NaCl stress led to the degradation of chlorophyll in leaves, and exogenous melatonin alleviated the damage of NaCl stress on chlorophyll a and chlorophyll b in trifoliate orange leaves, as reported by Kostopoulos et al. (2014) in citrus. Salt stress can also decrease the net photosynthetic rate of plants, reduce the synthesis of organic matter, and ultimately affect the normal growth of plants (Centritto et al. 2003). In cotton, salt stress significantly inhibited seedling growth (Zhang et al. 2014) in *Pennisetum alopecuroides* (Linn.) seeds

Treatments	IAA (ng/g FW)	ZR (ng/g FW)	GAs (ng/g FW)	BRs (ng/g FW)
0 mmol/L NaCl 0 µmol/L MT	60.13 ± 0.48b	5.81 ± 0.05b	6.01 ± 0.05c	6.81 ± 0.01c
50 µmol/L MT	61.25 ± 0.54b	5.82 ± 0.06b	6.08 ± 0.03c	6.83 ± 0.02c
100 µmol/L MT	66.51 ± 0.56a	5.80 ± 0.06b	6.10 ± 0.07c	6.88 ± 0.03c
150 µmol/L MT	66.12 ± 0.72a	5.81 ± 0.05b	6.07 ± 0.05c	6.83 ± 0.04c
150 mmol/L NaCl 0 µmol/L MT	50.01 ± 0.38c	7.52 ± 0.04a	8.68 ± 0.04b	6.97 ± 0.01b
50 µmol/L MT	52.95 ± 0.39d	7.53 ± 0.05a	8.59 ± 0.04b	7.02 ± 0.02b
100 µmol/L MT	55.35 ± 0.60c	7.52 ± 0.05a	8.89 ± 0.03a	7.11 ± 0.01a
150 µmol/L MT	52.76 ± 0.56d	7.51 ± 0.05a	8.57 ± 0.02b	7.01 ± 0.02b

ANOVA

NaCl	***	***	***	***
MT	***	ns	***	***
NaCl×MT	***	ns	***	ns

Note: IAA- indole acetic acid, ZR- zeatin riboside, GAs- gibberellin and BRs- brassinolide.
growth and biomass accumulation, and decreased leaf area and Pn, Gs, Ci and Tr, which is in line with our results (He et al. 2005a, b). In this study, salt stress decreased leaf Pn, Gs, Ci and Tr while melatonin increased them partially, which is agreement with previous work in cucumber (Harizanova and Koleva-Valkova 2019).

Chlorophyll fluorescence is an effective probe of photosynthesis, through which almost all changes of photosynthesis can be detected (Mimuro et al. 1999). Chlorophyll fluorescence can be used to determine PSII reaction center photochemical efficiency (φPSII), PSII effective light quantum yield ($F_{v'}/F_{m'}$), photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (NPQ) (Farzad et al. 2007). This study showed that salt stress markedly increased NPQ and significantly decreased φPSII, $F_{v'}/F_{m'}$ and qP. Furthermore, to a degree, melatonin alleviated these effects. As the photochemical efficiency of the PSII reaction center, the decrease of φPSII implies that salt stress inhibits photosynthesis (Han et al. 2010). The decrease of $F_{v'}/F_{m'}$ is due to the fact that photosynthetic electron transfer not being carried out in time (Shibata et al. 2012). The decrease of qP indicates that PSII could not transfer photosynthetic electrons efficiently after being damaged, and the effective reaction light has been decreased (Havaux et al. 1991). NPQ is a non-photochemical quenching index reflecting chlorophyll absorption and transformation, and is an effective heat dissipation element used to resist light damage (Tietz et al. 2017). In this experiment, NaCl stress leded to an increase in NPQ, resulting in a decrease in PSII and photosynthetic rate. Melatonin increased φPSII, $F_{v'}/F_{m'}$ and qP and decrease the NPQ in trifoliate orange seedlings under salt stress, implying that melatonin can effectively improve PSII photochemical efficiency and photosynthetic rate of leaves, which is consistent with previous studies on maize and celery (Ye et al. 2016). Thus, melatonin can improve the photosynthetic capacity of plants under NaCl stress.

IAA plays an important role in regulating plant growth under adverse stresses (Iqbal and Ashraf 2007; Zhang et al. 2013, 2018, 2019). As a cytokinin, ZR has been reported to have the ability to enhance plant tolerance to salt and temperature stress (Javid et al. 2011). GAs is an essential for many plants in response to abiotic stress and also take part in plant growth and development (Colebrook et al. 2014). BRs, a kind of steroid hormone, are necessary for plant growth and development, and can tolerate environmental stresses by inducing antioxidant activities (Bajguz and Piotrowska-Niczyporuk 2014). IAA significantly enhanced the tolerance of salt stress in maize (Kaya et al. 2013). Our study showed that there was a significant decrease in root IAA levels under salt stress. However, melatonin notably increased root IAA concentrations. This result is similar to the findings of Liu et al. (2016). Furthermore, IAA is closely related to the growth and development of plant roots (Liu et al. 2018). Therefore, the melatonin effect on IAA is effectively associated with melatonin-induced growth improvement, root modification and salt tolerance. Salt stress slightly increased root ZR, GAs and BRs levels, but melatonin had no or little effect on these hormones. Therefore, melatonin appears to increase plant salt tolerance mainly through interactions with auxin.

Conclusions

Salt stress significantly increased root zeatin riboside, gibberellin and brassinolide levels, while reduces plant growth, root auxin levels, leaf photosynthesis and fluorescence mediate of seedlings. In salt stress, melatonin only increased plant height. However, melatonin seedlings represented similar growth performance and dry matter quality under non-salt stress. At the same time, melatonin (100 μmol/L) appears to interact with the root hormones (IAA, GAs and BRs) except ZR. Furthermore, the effects of salt stress on the net photosynthetic rate, stomatal conductance, maximum photochemical efficiency, PSII effective photon yield, photochemical quenching and other indicators of seedlings leave were practically alleviated when the seedlings were treated with 100 μmol/L melatonin.

Acknowledgements This work was supported by the Young and Middle-aged Talent Project of Hubei Provincial Education Department (grant number Q20181304) and the National Natural Science Foundation of China (No. 32001984).

Declarations

Ethical Statements In consideration of the publication, we hereby warrant and undertake: 1. This article is an original work and no portion of the study has been published or is under consideration for publication elsewhere. 2. None of the authors has any potential conflict of interest related to this manuscript. 3. All authors have contributed to the work, and they have agreed to submit the manuscript.

References

Bajguz A, Piotrowska-Niczyporuk A (2014) Brassinosteroids implicated in growth and stress responses. In: Tran LS, Pal S (eds) Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications. Springer, New York, NY, pp 163–190
Baker NR (2008) Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Ann Rev Plant Bio 59:89–113
Byeon Y, Back K (2014) An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. J Pineal Res 56:408–414
Centritto M, Loreto F, Chartzoulakis K (2003) The use of low $[CO_2]$ to estimate diffusional and non-diffusional limitations of
photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ 26:585–594

Chen ZP, Gu Q, Yu XL, Huang L, Xu S, Wang R, Shen W, Shen W (2018) Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Ann Bot 121:1127–1136

Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

Demming AB, Adams WW (1996) The role of the xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

Dubrels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwa HR, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18:28–31

Ennahl S, Earl HJ (2005) Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Sci 45:2374–2382

Fan W, Li W, Zhang X (2021) Photosynthetic Physiological Characteristics of Tetracentron sinense Oliv in Different DBH Classes and the Factors Restricting Regeneration. J Plant Growth Regul 6:1–10

Farzad P, Mohammad N, Moghadam H, Hossein Z, Alahmadi MJ (2007) Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. J Biol Sci 7:841–847

Gao W, Feng Z, Bai Q, He J, Wang Y (2019) Melatonin-Mediated Regulation of Growth and Antioxidant Capacity in Salt-Tolerant Naked Oat under Salt Stress. Int J Mol Sci 20:1176

Han B, Chen GX, Gao ZP, Wei XD, Xie KB, Yang XS (2010) The changes of PSI1 chlorophyll fluorescence dynamic characteristic during leaf senescence of ginkgo. Acta Horticulturae Sinica 37(2):171–178 (in Chinese with English abstract)

Harizanova A, Koleva-Valkova L (2019) Effect of silicon on photosynthetic rate and the chlorophyll fluorescence parameters at hydroponically grown cucumber plants under salinity stress. J Cent Eur Agric 20:953–960

Havaux M, Strauss RG, Greppin H (1991) A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth Res 27:41–55

He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Zhang H (2005a) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848–1854

He C, Yan JQ, Shen GX, Fu LH, Holaday AS, Auld D, Blumwald E, Zhang H (2005b) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848–1854

He JD, Li JL, Wu QS (2019) Effects of Rhizoglomus intraradices on plant growth and root endogenous hormones of trifoliate orange under salt stress. J Anim Plant Sci-Pak 29(1):245–250

Iqbal M, Ashraf M (2007) Seed treatment with auxins modulates growth and ion partitioning in salt-stressed wheat plants. Bot Gaz 168(7):1003–1015

Janas KM, Posmyk MM (2013) Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiol Plant 35:3285–3292

Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 32:726–734

Jiang CQ, Cui QR, Feng K, Xu D, Li C, Zheng Q (2016) Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol Plant 38:82

Kaya C, Ashraf M, Dikilitas M, Tuna AL (2013) Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients - a field trial. Aust J Crop Sci 7:249–254

Kojima M, Sakakibara H (2012) Highly sensitive high-throughput profiling of six phytohormones using MS-probe modification and liquid chromatography-tandem mass spectrometry. Methods Mol Biol 918:151–164

Kostopoulou Z, Therios I, Roumeliotis E, Kanellis AK, Molassioti A (2014) Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiol Bioch 86:155–165

Li H, Chang J, Chen HJ, Wang ZY, Gu XR, Wei CH, Zhang Y, Ma JX, Yang JQ, Zhang X (2017) Exogenous melatonin confers salt stress tolerance to Watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:295

Li J, Liu J, Zhu T, Zhao C, Li L, Chen M (2019) The role of melatonin in salt stress responses. Int J Mol Sci 20:1735

Liang D, Gao F, Ni ZY, Lin L (2018) Melatonin improves heat tolerance in kiwifruit seedlings through promoting antioxidant enzymatic activity and glutathione S-transferase transcription. Molecules 23:584

Liu CY, Wang P, Zhang DJ, Zou YN, Kuca K, Wu QS (2018) Mycorrhiza-induced change in root hair growth is associated with IAA accumulation and expression of EXPs in trifoliate orange under two P levels. Sci Hortic 234:227–235

Liu J, Guo C, Chen ZL, He JD, Zou YN (2016) Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress. Emir J Food Agric 28:251–256

Lu C, Jiang G, Wang B, Kuang T (2003) Photosystem ii photochemistry and photosynthetic pigment composition in salt-adapted halophyte artemisia anethifolia grown under outdoor conditions. J Plant Physiol 160(4):403–408

Mahmud S, Sharmin S, Chowdhury BLD, Hossain MA, Bhuiany MJH (2016) Mitigation of salt stress in rice plant at germination stage by using methyl Jasmonate. Asian J Med Biol Res 2:74–81

Meng XF, Xu TF, Wang ZZ, Fang YL, Xi ZM, Zhang ZW (2015) The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. J Pineal Res 57:200–212

Mimuro M, Akimoto S, Yamazaki I, Miyashita H, Miyachi S (1999) Fluorescence properties of chlorophyll d-dominating prokaryotic alga, acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1412:37–46

Park S, Back K (2012) Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. J Pineal Res 53:385–389

Pazurkiewicz-kocot K, Kita A, Haduch A (2011) The effect of kentin on the chlorophyll pigments content in leaves of Zea mays L. seedlings and accumulation of some metal ions. Inżynieria i Ochrona Środowiska 14:397–409

Schreiber U, Bilger W, Hornmann H, Neubauer C (1998) Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. Cambridge University Press, Cambridge, pp 320–336

Shibata S, Satou F, Kimura H, Ohayu T (2012) The relationship between chlorophyll fluorescence parameter (Fv/Fm) and frequency component of plant bioelectric potential in spraying chemical herbicides. IEEE Trans Sens Micromachines 132:154–158

Sowmyalakshmi S, Han L, Pierre D, Smith DL (2015) Computed tomography scanning can monitor the effects of soil medium on roots, root growth, and enzyme activities. IEEJ Trans Sens Micromachines 132:154–158

Zhao Y, Liao W (2009) Chlorophyll fluorescence parameter (Fv/Fm) and frequency components of plant photosynthetic rate and the chlorophyll fluorescence parameters at hydroponically grown cucumber plants under salinity stress. J Cent Eur Agric 20:953–960
Stassinos PM, Rossi M, Borromeo I, Capo C, Forni C (2021) Amelioration of salt stress tolerance in rapeseed (Brassica napa) cultivars by seed inoculation with Arthrobacter globiformis. Plant Biosyst 5:1–12

Sun S, Wen D, Yang W, Meng Q, Gong B (2020) Overexpression of caffeic acid O-methyltransferase 1 (COMT1) increases melatonin level and salt stress tolerance in tomato plant. J Plant Growth Regul 39(3):1–15

Tan DX, Hardeland R, Manchester LC, Ahmet K, Ma S, Sergio RC, Reiter RJ (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63(2):577–597

Tietz S, Hall CC, Cruz JA, Kramer DM (2017) NPQ_{17}: a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. Plant Cell Environ 40(8):1243–1255

Tiryaki I, Keles H (2012) Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin. J Pineal Res 52(3):332–339

Wang LY, Liu JL, Wang WX, Sun Y (2016) Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54:19–27

Wang X, Zhang D, Qi Q, Tong S, An Y, Lu X, Liu Y (2019) The restoration feasibility of degraded carex tussock in soda-salinization area in arid region. Ecol Indic 98:131–136

Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 3:695–707

Wu QS, Zou YN (2009) Arbucellular mycorrhizal symbiosis improves growth and root nutrient status of citrus subjected to salt stress. Sci Asia 35:388–391

Wu QS, Zou YN (2013) Mycorrhizal symbiosis alters root H^+ effluxes and root system architecture of trifoliate orange seedlings under salt stress. J Anim Plant Sci-PAK 23:143–148

Wu QS, Zou YN, He XH (2010b) Contributions of arbucellular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Planta- rum 32:297–304

Wu QS, Zou YN, Liu W, Ye XF, Zai HF, Zhao LJ (2010a) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ 56:470–475

Ye J, Wang SW, Deng XP, Yin LN, Xiong BL, Wang XY (2016) Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol Plantarum 38:48

Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G (2020) How plant hormones mediate salt stress responses. Trends Plant Sci 25(11):1117–1130

Zhang DJ, Liu CY, Yang YJ, Wu QS, Li YY (2019) Plant root hair growth in response to hormones. Not Bot Horti Agrobo 47:278–281

Zhang DJ, Xia RX, Cao X (2016) Ethylene modulates root hair development in trifoliate orange through auxin-signaling pathway. Sci Horti 213:252–259

Zhang DJ, Xia RX, Cao X, Shu B, Chen CL (2013) Root hair development of Poncirus trifoliata grown in different growth cultures and treated with 3-indolebutyric acid and ethephon. Sci Horti 160:389–397

Zhang DJ, Yang HY, Liu CY, Zhang F, Hu W, Gong SB, Wu QS (2018) Auxin modulates root hair growth through its signaling pathway in citrus. Sci Horti 236:73–78

Zhang N, Jiang Q, Dian-Bo LI, Cai LT, Zhang HJ, Si WJ, Fan XF, Guo YD (2014) Effect of exogenous melatonin on germination of Pennisetum alopecuroides under NaCl stress. J China Agricultural Univ 19:54–60 (in Chinese with English abstract)

Zhang N, Zhao B, Zhang HJ, Weeda S, Yang C (2003) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54:15–23

Zhang YC, Wang P, Wu QH, Zou YN, Bao Q, Wu QS (2017) Arbucellular mycorrhizas improve plant growth and soil structure in trifoliate orange under salt stress. Arch Agron Soil Sci 63:491–500

Zhou ZX, Li Z, Zhang Z, You L, Cui X (2021) Treatment of the saline-alkali soil with acidic corn stalk biochar and its effect on the sorghum yield in western songnen plain. Sci Total Environ 797:149190

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.