Stability of JSQ in queues with general server-job class compatibilities

James Cruise¹ · Matthieu Jonckheere² · Seva Shneer¹

Received: 28 January 2020 / Revised: 21 April 2020 / Published online: 3 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We consider Poisson streams of exponentially distributed jobs arriving at each edge of a hypergraph of queues. Upon arrival, an incoming job is routed to the shortest queue among the corresponding vertices. This generalizes many known models such as power-of-d load balancing and JSQ (join the shortest queue) on generic graphs. We prove that stability in this model is achieved if and only if there exists a stable static routing policy. This stability condition is equivalent to that of the JSW (join the shortest workload) policy. We show that some graph topologies lead to a loss of capacity, implying more restrictive stability conditions than in, for example, complete graphs.

Keywords JSQ load balancing · Hypergraph · Stability

Mathematics Subject Classification 60K25 · 60K30

1 Introduction

Load balancing schemes involving various types of load information have become absolutely essential for the quality of service in many important modern areas of applications: call centres, commercial server farms, scientific computing, vehicles systems, data centres, and others.

In the last decades, many theoretical results have focused on the case of parallel servers (i.e., the complete graph model in our setting; see below). In particular, a lot of attention has been given to mean-field-type results for complete graph models, and
schemes like join the shortest queue (JSQ) among \(n \) available or join the shortest of \(d \) among \(n \) queues (JSQ\((d)\)), where \(n \) is large, beginning with the seminal work of [12,17] and complemented by several papers. (This last scheduling policy is also known as power-of-\(d \).) Transient functional laws of large numbers and propagation of chaos for JSQ and JSQ\((d)\) have been obtained for instance in [10,15] for FIFO scheduling. For general service time distributions, the results are scarcer. For service time distributions with decreasing hazard rate and FIFO service discipline, propagation of chaos properties and asymptotic behaviour of the number of occupied servers were obtained for the JSQ\((d)\) policy in [4]. In [8], the convergence of the mean-field limit of the join-the-idle-queue (JIQ) policy in the stationary regime was proved under light traffic conditions.

More recently, [16] obtains a mean-field limit for JIQ, and [14] computes the diffusive limit in the Halfin–Whitt regime for a class of policies of which JIQ and JSQ\((d)\) are special cases. Interestingly, they show that JIQ is optimal at this diffusive scale. For the JSQ policy, the large-server heavy-traffic limit was derived in [7]. Different scalings (asymptotic relations between number of servers, loads, buffer sizes) were considered for instance in [11].

We consider here a spatial generalization of these models where independent Poisson streams arrive to edges of a hypergraph and are routed (either statically or dynamically) to one of the vertices corresponding to the edge. The well-known case of JSQ\((d)\) can be retrieved simply by considering a hypergraph where every set of \(d \) vertices forms an edge (i.e., a complete \(d \)-hypergraph).

This is also closely related to a model introduced for instance in [13]. In their context, each node has an associated arrival process and upon arrival a customer associated with vertex \(i \) considers the queue lengths at \(i \) and at all its neighbours. It is then allocated to be served by the server at a vertex with the smallest queue length from all those examined. This model is also a special case of the one considered here, as we can construct a hypergraph with \(n \) edges, each edge representing a node in the original graph and all the neighbours of that node in the original graph. Then, arrivals on that edge are equivalent to arrivals at the associated node in the original graph. Note that a further extension to this model is considered in [5], where a random subset of the neighbours is considered when making the decision about routing rather than the full neighbourhood. Again, we can create an equivalent hypergraph model by introducing an edge for each random combination which might be considered.

In the models of [13] and [5], stability is trivial as the state of the system is always dominated, at least in the sense of the maximal queue size, by that in a system where arrivals at a specific node have to be served by the server at that node. The authors are thus interested in the occupancy measures in some growing and/or random topologies. In our more general model, stability is non-trivial and we thus study it, for fixed topologies.

It is also worth noting that our model is equivalent to a bipartite graph between customer arrival processes and servers (i.e., customer arrival processes are connected by edges to the servers that can serve the arriving jobs). These models have been referred to as skill-based systems and studied by several papers (see, for example, [2], [1] and references therein). The load balancing studied in the aforementioned papers, however, is join the shortest workload (JSW), which has (for a specific state
description) a product form stationary measure, and thus the stability condition is easily derived. This is not the case for JSQ networks. Furthermore, even if the JSW discipline has been shown to have the largest stability region (and, in particular, larger than that of the JSQ discipline) in highly symmetric models, like multi-server queues or networks of these queues (see [6,9]), it is not clear that it can be generalized to asymmetric network topologies.

The article is organized as follows: In Sect. 2, we precisely define our load balancing model on a hypergraph. In Sect. 3, we derive the stability conditions of static allocations and show that they do not necessarily correspond to a trivial rate conservation condition. In Sect. 4, we present the main contribution of our paper. Namely, we show that the JSQ load balancing on a hypergraph ensures stability if and only if there is a stable static allocation. This stability condition is the same as that derived for JSW policies (see [2], [1]).

2 Model

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a hypergraph with vertices \mathcal{V} and edges \mathcal{E}, where each $e \in \mathcal{E}$ is a subset of \mathcal{V}. Associated with each edge $e \in \mathcal{E}$ is a class of customers who arrive as a Poisson process with rate λ_e. Associated with every vertex $v \in \mathcal{V}$ is a single server, and we denote its queue size at time t by $Q_v(t)$. Each customer served by the server at vertex v, irrespective of its arrival class, requires exponential service with rate μ_v. Customers in the class associated with an edge $e \in \mathcal{E}$ can be served by any of the servers at vertices incident with that edge. In other words, customers in class in $e \in \mathcal{E}$ can be served by any server at a vertex $v \in e$. Upon arrival, a customer is allocated to a server and joins the relevant queue. The customers in each queue are served using the FIFO discipline.

We now introduce the static and dynamic allocation policies which we analyse.

2.1 Static allocation

Associated with each edge $e \in \mathcal{E}$ there are probabilities $\{p_v,e\}_{v \in e}$ such that $p_v,e \geq 0$ for all $v \in e$ and

$$\sum_{v \in e} p_v,e = 1.$$

When a customer arrives upon an edge $e \in \mathcal{E}$, it is allocated to a node $v \in e$ with probability p_v,e, independently of all other arrivals and services. Let $P = \{(p_v,e)_{v \in e}\}_{e \in \mathcal{E}}$ refer to a given allocation for each edge.

Therefore, the total arrival process at node v is a Poisson process, independent of all other nodes, of rate

$$\lambda_v(P) = \sum_{e \in \mathcal{E}(v)} p_v,e \lambda_e,$$
where $E(v) = \{ e \in E : v \in e \}$ is the set of all edges containing node v.

2.2 Dynamic allocation

The dynamic allocation aims to load balance across the network by utilizing join-the-shortest-queue dynamics. Upon an arrival of a customer on an edge $e \in E$, the queue sizes at all nodes $v \in e$ are examined, and the customer is routed to the shortest of these. If there is more than one queue with the smallest size, the customer is routed to any one of them, at random with equal likelihoods.

Note that this is a natural definition of join-the-shortest-queue in this setting.

3 Stability of static allocations

For static allocations, the queues decouple and the stability condition is straightforward.

Proposition 1 A static allocation is stable if and only if

$$\sum_{e \in E(v)} p_{v,e} \lambda_e < \mu_v$$

for all $v \in V$, or, alternatively,

$$\max_{v \in V} \frac{1}{\mu_v} \sum_{e \in E(v)} p_{v,e} \lambda_e < 1.$$

Proof For the static allocation, we know that for a given allocation P the arrival process at each vertex is an independent Poisson process with arrival rate

$$\lambda_v(P) = \sum_{e \in E(v)} p_{v,e} \lambda_e.$$

From this, we have the stability condition associated with each node

$$\sum_{e \in E(v)} p_{v,e} \lambda_e < \mu_v,$$

so that the stability condition for the whole system follows.

While the previous result concerns a single allocation, we now consider the best possible allocation and the maximal stability region. The stability region for a given graph and load parameters is maximized by minimizing over the possible allocations, as shown in the following. It also corresponds to a more intuitive condition which can be expressed in terms of sub-graphs.
Proposition 2 There exists a stable static allocation if and only if

\[
\min_P \left(\max_{v \in \mathcal{V}} \frac{1}{\mu_v} \sum_{e \in \mathcal{E}(v)} p_{v,e} \lambda_e \right) < 1, \tag{3.1}
\]

which is equivalent to the requirement that

\[
\sum_{e \in E} \lambda_e < \sum_{e \in E} \sum_{v \in e} \mu_v, \tag{3.2}
\]

for all \(E \subset \mathcal{E} \).

Proof The first characterization follows directly from the stability conditions of a static allocation. We obtain that (3.2) is a necessary condition by summation of the stability condition for a static condition. The fact that it is also a sufficient condition follows from the product-form measure of the stationary distribution using the results of [1] or [3]. □

3.1 Particular case: homogeneous arrival and service rates

In this subsection, we consider a particular case of our general setting where all customer classes have the same arrival intensity and all jobs require service times with the same distribution. More precisely, \(\lambda_e = \lambda \) for all \(e \in \mathcal{E} \) and \(\mu_v = \mu \) for all \(v \in \mathcal{V} \). The general stability condition thus reduces to the requirement

\[
\lambda \left(\min_P \left(\max_{v \in \mathcal{V}} \sum_{e \in \mathcal{E}(v)} p_{v,e} \right) \right) < \mu,
\]

or equivalently

\[
\lambda |E| < \mu |\mathcal{V}(E)| \quad \text{for all} \quad E \subset \mathcal{E},
\]

where \(|E|\) is the number of edges in \(E \) and \(|\mathcal{V}(E)|\) is the number of vertices attached to the edges in \(E \).

Note that, practically, the maximal arrival rate characterizing the optimal static stability condition in this case can be computed as \(\lambda^* = \frac{\mu}{z^*} \), where \(z^* \) is the solution of the following linear program:

\[
\begin{align*}
\min_{p,z} & \quad z, \\
\text{s.t.} & \quad \sum_{e \in \mathcal{E}(v)} p_{v,e} \leq z, \forall v \in \mathcal{V}, \\
& \quad 0 \leq p_{e,v}, \\
& \quad \sum_{v \in e} p_{e,v} = 1, \forall e \in \mathcal{E}.
\end{align*}
\]
It is worth noting that if there exists an allocation P which equalizes $\left(\sum_{e \in \mathcal{E}(v)} p_{v,e} \right)$ over all vertices v, then there is no loss in stability region due to the restrictions imposed by the graph structure, i.e., the maximum possible total arrival rate into the network is equal to the total service rate of the network. Indeed, as all the values of $\left(\sum_{e \in \mathcal{E}(v)} p_{v,e} \right)$ are equal, each of them is necessarily equal to $|V|/|\mathcal{E}|$, where $|\mathcal{E}|$ is the number of edges and $|V|$ is the number of vertices. The stability condition hence reads $\lambda |\mathcal{E}| < \mu |V|$, which is exactly the requirement that the total arrival rate is smaller than the total service rate. In this case, we obtain complete resource pooling in the sense of stability (but possibly in a weaker sense than state space collapse).

An interesting question thus arises: can we understand what properties of the graph enable us to find a balanced (i.e., maximal stable in terms of rate conservation) allocation, and when is this not possible? We partially answer this question in the next section.

3.2 Addition of edges can lead to a smaller stability region

To better understand the question posed above, we provide three revealing examples: firstly two extreme cases where balance is always achievable, and then an example where balance is not achievable and we do observe a loss of capacity. We focus on standard graphs in this section, so each customer class can be served by exactly two servers.

Let us consider two extreme graphs on n vertices, the circle and the complete graph (corresponding to the power-of-d structure). In both cases, the allocation of $(1/2, 1/2)$ on every edge balances the loads and enables the maximum stability region.

For an example where balance cannot be obtained, consider a graph containing $2k$ vertices for $k > 2$ and separate them into two groups of k vertices. The first k vertices form a clique. Each of the remaining k vertices is connected to a distinct vertex of the clique. It is not difficult to see that the best allocation one can achieve here is to equalize across the clique and then on all leaf edges, to allocate all the traffic to the leaf vertex. This gives the following pair of stability constraints:

$$\lambda < \mu \quad \text{and} \quad \frac{k-1}{2} \lambda < \mu.$$

The second condition may be obtained, for instance, using the stability condition provided in Remark 1 and taking the subset E to be the clique. Note that for $k > 3$ the first condition is superfluous, so the maximum arrival rate per edge is $\frac{2\mu}{k-1}$. Since there are $k(k+1)/2$ edges in this graph, the maximum total stable arrival rate is

$$\frac{k(k+1)}{(k-1)} \mu,$$

which is substantially below the total service rate of $2k\mu$.
4 Stability of dynamic allocations

We now turn to our main result, which characterizes the stability of dynamic allocations in terms of the maximal static stability condition. Note that the result below also shows that the stability condition in the JSQ model is the same as that in the JSW model.

Theorem 1 The dynamic allocation is stable if and only if the maximal static allocation is stable, i.e.,

\[
\min_{\mathbf{P}} \left(\max_{v \in \mathcal{V}} \frac{1}{\mu_v} \sum_{e \in \mathcal{E}(v)} p_{v,e} \lambda_e \right) < 1.
\]

Proof Necessary condition

Suppose the dynamic allocation is stable. Then, there exist stationary probabilities, \(\pi_{v,e} \) say, for a customer arriving at edge \(e \) to be routed to vertex \(v \in e \). Since the network is stationary, rate stability implies that

\[
\sum_{e \in \mathcal{E}(v)} \lambda_e \pi_{v,e} = \mu_v P(X_v > 0).
\]

In particular,

\[
\sum_{e \in \mathcal{E}(v)} \lambda_e \pi_{v,e} < \mu_v.
\]

Hence, the collection \(\{\pi_{v,e}\}_{v \in \mathcal{V}} \) clearly forms a stable static allocation.

Sufficient condition

Assume there exists a stable static allocation \(\mathbf{P} \):

\[
\sum_{e \in \mathcal{E}(v)} p_{v,e} \lambda_e < \mu_v
\]

for all \(v \in \mathcal{V} \). As there are a finite number of vertices, fix \(\varepsilon > 0 \) such that

\[
\sum_{e \in \mathcal{E}(v)} p_{v,e} \lambda_e - \mu_v < -\varepsilon \tag{4.1}
\]

for all \(v \in \mathcal{V} \).

Consider now the system with dynamic allocations (with arbitrary tie breaks) and consider the Lyapunov function

\[
L(\tilde{x}) = \sum_{v \in \mathcal{V}} x_v^2.
\]

We know that at rate \(\mu_v \) there is a departure from node \(v \), and at rate \(\lambda_e \) there is an arrival at edge \(e \), which will then go to the minimal adjacent queue. Therefore,
conditioned on the current queue lengths being \((x_v)_{v \in V}\), the drift of the Lyapunov function is equal to

\[-2 \sum_{v \in V} \mu_v x_v + 2 \sum_{e} \lambda_e \min_{v \in e} x_v + c,
\]

where \(c\) is a finite constant. Note now that

\[\min_{v \in e} x_v \leq \sum_{v \in e} p_{v,e} x_v,\]

as \(\sum_{v \in e} p_{v,e} = 1\). The drift can then be bounded from above by

\[-2 \sum_{v \in V} \mu_v x_v + 2 \sum_{e} \lambda_e \sum_{v \in e} p_{v,e} x_v + c = -2 \sum_{v \in V} \mu_v x_v + 2 \sum_{v \in V} \sum_{e \in E(v)} \lambda_e p_{v,e} x_v + c
\]

\[= 2 \sum_{v \in V} x_v \left(-\mu_v + \sum_{e \in E_v} \lambda_e p_{v,e} \right) + c \leq -2\varepsilon \sum_{v \in V} x_v + c,
\]

thanks to (4.1). The drift is therefore smaller than \(-\delta < 0\) as long as \(\sum_{v \in V} x_v > (c + \delta)/(2\varepsilon)\), which is sufficient for stability.

\[\square\]

5 Conclusion

We provided necessary and sufficient conditions for stability for a model of load balancing on fixed hypergraphs that generalize most previous JSQ models in the literature. Interesting and difficult challenges consist in characterizing these conditions for large classes of random graphs.

Acknowledgements The authors are grateful to the editor and associate editor for their careful reading of the paper and useful comments and suggestions, especially for bringing to our attention relevant work on skill-based routing. We also warmly thank Pablo Groisman for fruitful discussions.

Funding Funding was provided by royal society (Grant No. IES/R3/170148).

References

1. Adan, I., Righter, R., Weiss, G.: FCFS parallel service systems and matching models. In: Proceedings of the 11th EAI International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2017, United States, 12, pp. 106–112. Association for Computing Machinery, Inc. (2017)
2. Adan, I., Weiss, G.: A skill based parallel service system under FCFS-ALIS—steady state, overloads, and abandonments. Stoch. Syst. 4(1), 250–299 (2014)
3. Bonald, T., Comte, C.: Balanced fair resource sharing in computer clusters. Perform. Eval. 116, 70–83 (2017)
4. Bramson, M., Lu, Y., Prabakhar, B.: Asymptotic independence of queues under randomized load balancing. Queu. Syst. 71, 247–292 (2012)
5. Budhiraja, A., Mukherjee, D., Wu, R.: Supermarket model on graphs. arXiv preprint arXiv:1712.07607, (2017)
6. Chernova, N.I., Foss, S.G.: On optimality of the FCFS discipline in multiserver queueing systems and networks. Siber. Math. J. 42(2), 372–385 (2001)
7. Eschenfeldt, P., Gamarnik, D.: Join the shortest queue with many servers. The heavy traffic asymptotics (2015)
8. Foss, S., Stolyar, A.: Large-scale Join-Idle-Queue system with general service times. J. Appl. Probab. 54(4), 995–1007 (2017)
9. Foss, S.G.: Approximation of multichannel queueing systems. Siber. Math. J. 21, 851–857 (1980)
10. Graham, C.: Chaoticity on path space for a queueing network with selection of the shortest queue among several. J. Appl. Probab. 37(1), 198–211 (2000)
11. Jonckheere, M., Prabhu, B.: Asymptotics of insensitive load balancing and blocking phases. Queu. Syst. 88(3–4), 243–278 (2018)
12. Mitzenmacher, M.: The power of two choices in randomized load balancing. Ph.D. Thesis (1996)
13. Mukherjee, D., Borst, S., Van Leeuwaarden, J.: Asymptotically optimal load balancing topologies. Proc. ACM Measur. Anal. Comput. Syst. 2(1), 1–29 (2018)
14. Mukherjee, D., Borst, S.C., van Leeuwaarden, J.S.H., Whiting, P.A.: Universality of load balancing schemes on the diffusion scale. J. Appl. Probab. 53(4), 1111–1124 (2016)
15. Mukhopadhyay, A., Karthik, A., Mazumdar, R., Guillemin, F.: Mean field and propagation of chaos in multi-class heterogeneous loss models. Perform. Eval. 91, 117–131 (2015). Special Issue: Performance 2015
16. Stolyar, A.: Pull-based load distribution among heterogeneous parallel servers: the case of multiple routers. Queueing Syst. 85, 31–65 (2017)
17. Vvedenskaya, N.D., Dobrushin, R.L., Karpelevich, F.I.: Queueing system with selection of the shortest of two queues: an asymptotic approach. Problems Inf. Transm. 32(1), 15–27 (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.