Difference-Type-Exponential Estimators Based on Dual Auxiliary Information Under Simple Random Sampling

Muhammad Irfan\(^1\)*, Maria Javed\(^1,2\) and Sajjad Haider Bhatti\(^1\)

*mirfan@gcuf.edu.pk mariajaved@gcuf.edu.pk goodhaider@gmail.com

\(^1\)Department of Statistics, Government College University, Faisalabad Pakistan.

\(^2\)Department of Mathematics, Institute of Statistics Zhejiang University, Hangzhou 310027 China.

Abstract: Auxiliary information plays a vital role at the selection and/or estimation stage to achieve the efficient estimates of the unknown population parameters. Dual use of auxiliary information, one the original and second the ranks of the auxiliary variable help to increase the efficiency of the estimators. In this article, we proposed and evaluated the performance of difference-type-exponential estimators based on dual auxiliary information for population mean under simple random sampling. Mathematical expressions for the bias and the mean squared error of the proposed estimators are obtained. Three real-life data sets and Monte Carlo simulation studies are carried out for illustration. The results of the empirical and the simulation studies, in terms of mean square errors and percentage relative efficiencies indicate that the proposed estimators perform better as compared to their counterparts.

Key words: Auxiliary variable; Mean square error; Percent absolute relative bias; Percentage relative efficiency; Ranked auxiliary variable.

1. Introduction

Over the last few decades, survey sampling has evolved into an extensive body of theory, methods and operations used daily all over the world. Survey sampling is broadly used in agriculture, business management, demography, economics, education, engineering, industry, medical sciences, political science, social sciences and many others. In sample surveys, there are many estimators of finite population mean under simple random sampling that rely on auxiliary information. It is fact that the appropriate use of auxiliary information in probability sampling results in considerable reduction in variance of the estimator of unknown population parameter(s). The existing estimation procedures are based only on the original form of the supplementary information provided by auxiliary variable(s).

Recently, Haq et al. [1] initiated an idea of utilizing the additional information of the auxiliary variable along with its original information to boost the efficiency of estimators. This additional information is in form of ranks of the auxiliary variable, called ranked auxiliary variable.

The motivation behind this article is to explore more efficient estimators by using the dual auxiliary information. We proposed two difference-type-exponential estimators based on the original and the ranked auxiliary information for the efficient estimation of population mean under simple random sampling scheme.

*Corresponding author: E-mail address: mirfan@gcuf.edu.pk, Tel: +923336777558
Consider a sample of size \(n \) is drawn using simple random sampling without replacement (SRSWOR) scheme from a population of size \(N \), for \(i = 1, 2, 3, \ldots, N \). Let \(x_i, y_i \) and \(r_{x,i} \) denote the observations on the auxiliary variable, study variable and ranked auxiliary variable respectively for the \(i \)th unit of the population. Some useful measures are explained in Table 1. To obtain bias, mean square error (MSE) and minimum MSE of the proposed estimators, we define the following relative error terms and their expectations.

\[
\bar{\xi}_0 = \frac{y - \bar{Y}}{Y}, \quad \bar{\xi}_1 = \frac{r_x - \bar{R}_x}{\bar{R}_x} \quad \text{and} \quad \bar{\xi}_2 = \frac{x - \bar{X}}{\bar{X}}
\]

such that

\[
E(\bar{\xi}_0) = E(\bar{\xi}_1) = E(\bar{\xi}_2) = 0 \quad E(\bar{\xi}_0^2) = \psi C_y^2, \quad E(\bar{\xi}_1^2) = \psi C_r^2, \quad E(\bar{\xi}_2^2) = \psi C_x^2
\]

\[
E(\bar{\xi}_0 \bar{\xi}_1) = \psi \rho_{xy} C_y C_r, \quad E(\bar{\xi}_0 \bar{\xi}_2) = \psi \rho_{xy} C_y C_x, \quad E(\bar{\xi}_1 \bar{\xi}_2) = \psi \rho_{x,y} C_y C_r
\]

where

\[
\psi = (\frac{1}{n} - \frac{1}{N}), \quad \rho_{xy} = (S_y S_x)^{-1} S_{xy}, \quad \rho_{yr} = (S_y S_r)^{-1} S_{yr}, \quad \rho_{rx} = (S_x S_r)^{-1} S_{xr}
\]

\[
S_{xy} = (N - 1)^{-1} \sum_{i=1}^{N} (y_i - \bar{Y})(x_i - \bar{X}), \quad S_{yr} = (N - 1)^{-1} \sum_{i=1}^{N} (y_i - \bar{Y})(r_{x,i} - \bar{R}_x)
\]

\[
S_{xr} = (N - 1)^{-1} \sum_{i=1}^{N} (x_i - \bar{X})(r_{x,i} - \bar{R}_x)
\]

Some important expressions used in upcoming sections are defined below:

\[
R = \frac{\bar{Y}}{\bar{X}}, \quad \bar{R}_x = \frac{\bar{R}_x}{\bar{R}_x}, \quad \bar{R}_y = \frac{\bar{R}_y}{\bar{R}_y}, \quad \gamma = \frac{\alpha \bar{X}}{\alpha \bar{X} + \beta}
\]

\[
\kappa = \rho_{xy} \frac{C_y}{C_x}, \quad \phi_1 = \psi C_y^2, \quad \phi_2 = 1 + \psi C_y^2, \quad \phi_3 = \psi C_r^2
\]

\[
\phi_4 = \psi C_x^2 (\kappa - 1), \quad \phi_5 = \psi C_x^2 (\kappa - \frac{1}{2}), \quad \phi_6 = \psi \rho_{xy} C_y C_r
\]

\[
\phi_7 = \psi \rho_{x,y} C_x C_r, \quad \phi_8 = \psi C_y^2 (2\kappa - 1), \quad \phi_9 = \frac{\psi C_x^2}{2}
\]

2. Traditional and Existing Exponential-type Estimators

Several authors have used ratio, product and regression-type estimators to estimate population mean when both study and auxiliary variables are directly observable. For detail, see the following references: Kadilar and Cingi [2-3], Gupta and Shabbir [4], Grover and Kaur [5-6], Singh and Solanki [7], Haq and Shabbir [8], Shabbir et al. [9], Ekpenyong and Enang [10], Khan et al. [11], Solanki and Singh [12], Srisodaphol et al. [13], Singh and Pal [14], Singh et al. [15], Irfan et al. [16-17], Javed et al. [18] etc.

This section gives a brief introduction of traditional estimators i.e. unbiased, ratio, product and regression and well-known exponential-type estimators of population mean under simple random sampling.
2.1. Commonly used unbiased, ratio, product and regression estimators of the population mean \bar{Y} are

$$\hat{Y} = \bar{y}$$ \hspace{1cm} (2.1)

$$\bar{Y}_R = y \left(\frac{X}{x} \right), \quad x \neq 0$$ \hspace{1cm} (2.2)

$$\bar{Y}_p = y \left(\frac{x}{X} \right)$$ \hspace{1cm} (2.3)

$$\bar{Y}_{REG} = \bar{y} + b (\bar{X} - \bar{x}) \quad \text{where} \quad b = \frac{\rho_{xy} S_y}{S_x} \text{is the slope coefficient.}$$ \hspace{1cm} (2.4)

The expressions for the bias of \bar{Y}_R and \bar{Y}_p are given by

$$\text{Bias}\left(\bar{Y}_R \right) \approx \psi \bar{Y} C_x \left(C_x - \rho_{xy} C_y \right)$$ \hspace{1cm} (2.5)

$$\text{Bias}\left(\bar{Y}_p \right) \approx \psi \bar{Y} C_x \left(C_x + \rho_{xy} C_y \right)$$ \hspace{1cm} (2.6)

2.2. Following ratio and product exponential type estimators are suggested by Bahl and Tuteja [19]

$$\bar{Y}_{BT,R} = \bar{y} \exp \left(\frac{\bar{X} - \bar{x}}{\bar{X} + \bar{x}} \right)$$ \hspace{1cm} (2.7)

$$\bar{Y}_{BT,P} = \bar{y} \exp \left(\frac{\bar{x} - \bar{X}}{\bar{x} + \bar{X}} \right)$$ \hspace{1cm} (2.8)

Average of Equation (2.7) and Equation (2.8) can be written as

$$\bar{Y}_{BT,Avg} = \bar{y} \left[\exp \left(\frac{\bar{X} - \bar{x}}{\bar{X} + \bar{x}} \right) + \exp \left(\frac{\bar{x} - \bar{X}}{\bar{x} + \bar{X}} \right) \right]$$

2.3. Haq and Shabbir [8] proposed three improved exponential type estimators based on original auxiliary information, given by

$$\bar{Y}_{HS1} = \left[\frac{\lambda_1}{2} \frac{\bar{y}}{y} \left(\frac{\bar{X}}{x} + \frac{x}{X} \right) + \lambda_2 \left(\bar{X} - \bar{x} \right) \right] \exp \left(\frac{\bar{X} - \bar{x}}{\bar{X} + \bar{x}} \right)$$ \hspace{1cm} (2.9)

$$\bar{Y}_{HS2} = \left[\lambda_1 \bar{Y}_{BT,Avg} + \lambda_3 \left(\bar{X} - \bar{x} \right) \right] \exp \left(\frac{\bar{X} - \bar{x}}{\bar{X} + \bar{x}} \right)$$ \hspace{1cm} (2.10)

$$\bar{Y}_{HS3} = \left[\frac{\lambda_1}{2} \bar{Y}_{BT,Avg} \left(\frac{\frac{\bar{X}}{x} + \frac{x}{X}}{\bar{X} + \bar{x}} \right) + \lambda_6 \left(\bar{X} - \bar{x} \right) \right] \exp \left(\frac{\bar{X} - \bar{x}}{\bar{X} + \bar{x}} \right)$$ \hspace{1cm} (2.11)

Expressions for bias of $\bar{Y}_{HS1}, \bar{Y}_{HS2}$ and \bar{Y}_{HS3} are given by

$$\text{Bias}\left(\bar{Y}_{HS1} \right) \approx \frac{1}{8} \left[-8 \bar{Y} + \bar{Y} \left[8 + \psi C_x \left(7 C_x - 4 \rho_{xy} C_y \right) \right] \lambda_1 + 4 \bar{X} \psi C_x^2 \lambda_2 \right]$$ \hspace{1cm} (2.12)
\begin{equation}
\text{Bias}(\bar{Y}_{HS2}) \approx \frac{1}{2} \left[-2\bar{Y} + \bar{Y} \left\{ 2 + \psi C_x \left(C_x - \rho_{xy} C_y \right) \right\} \lambda_3 + \bar{X} \psi C_x^2 \lambda_4 \right] \tag{2.13}
\end{equation}

\begin{equation}
\text{Bias}(\bar{Y}_{HS3}) \approx \frac{1}{2} \left[-2\bar{Y} + \bar{Y} \left\{ 2 + \psi C_x \left(2C_x - \rho_{xy} C_y \right) \right\} \lambda_3 + \bar{X} \psi C_x^2 \lambda_6 \right] \tag{2.14}
\end{equation}

2.4. Ekpenyong and Enang [10] proposed following two efficient exponential ratio estimators as below

\[\bar{Y}_{j1} = \lambda_7 \bar{Y} + \lambda_8 \left(\bar{X} - \bar{x} \right) \exp \left(\frac{\bar{X} - \bar{x}}{\bar{X} + \bar{x}} \right) \tag{2.15} \]

\[\bar{Y}_{j2} = \lambda_9 \bar{Y} + \lambda_{10} \left(\bar{X} - \bar{x} \right) \exp \left(\frac{2(\bar{X} - \bar{x})}{\bar{X} + \bar{x}} \right) \tag{2.16} \]

Bias of \(\bar{Y}_{j1} \) and \(\bar{Y}_{j2} \) are given as

\[\text{Bias}(\bar{Y}_{j1}) \equiv \bar{Y} \left[(\lambda_7 - 1) + \lambda_8 R\psi \frac{C_x^2}{2} \right] \tag{2.17} \]

\[\text{Bias}(\bar{Y}_{j2}) \equiv \bar{Y} \left[(\lambda_9 - 1) + \lambda_{10} R\psi C_x^2 \right] \tag{2.18} \]

2.5. Haq et al. [1] suggested an improved class of estimators following the lines of Shabbir and Gupta [20] and Grover and Kaur [5-6]. This class is based on the original and the ranked auxiliary information.

\[\bar{Y}_{HA} = \left[\lambda_{11} \bar{Y} + \lambda_{12} \left(\bar{X} - \bar{x} \right) + \lambda_{13} \left(\bar{R}_x - \bar{r}_x \right) \right] \exp \left(\frac{\alpha(\bar{X} - \bar{x})}{\alpha(X - x) + 2\beta} \right) \tag{2.19} \]

where \(\alpha \) and \(\beta \) may be any constant values or functions of the known parameters of the auxiliary variable.

Expression for bias of \(\bar{Y}_{HA} \) is stated as

\[\text{Bias}(\bar{Y}_{HA}) \equiv \frac{1}{8} \left[-8\bar{Y} + 4\psi C_x \left(\bar{X} C_x \lambda_{12} + \bar{R}_x C_x \lambda_{13}\rho_{xy} \right) + \bar{Y} \lambda_{11} \left\{ 8 + \psi\gamma C_x \left(3\gamma C_x - 4C_y \rho_{xy} \right) \right\} \right] \tag{2.20} \]

Remark 2.1. As we know, \(\lambda_i, i = 1, 2, \ldots, 13 \) appearing in the above equations are the unknown weights determined such that the MSEs are minimized. So, the optimal values of \(\lambda_i \) are obtained by using the following condition:

\[\frac{\partial \text{MSE}}{\partial \lambda_i} = 0; \quad i = \bar{Y}_{HS1}, \bar{Y}_{HS2}, \bar{Y}_{HS3}, \bar{Y}_{j1}, \bar{Y}_{j2}, \bar{Y}_{HA} \quad (i = 1, 2, 3, \ldots, 13). \]

On solving, we get the following:

\[\lambda_1 = \frac{8 + 3\psi C_x^2}{8[1 + \psi C_x^2 + \psi C_y^2(1 - \rho_{xy})]}, \quad \lambda_2 = \frac{\bar{Y} \left[8C_x \rho_{xy} + C_x \left\{ -4 + \psi(3\rho_{xy} C_x - 4C_y \rho_{xy}) \right\} \right]}{8XC_x \left[1 + \psi C_x^2 + \psi C_y^2(1 - \rho_{xy}) \right]} \]
\[
\lambda_3 = \frac{4}{4 + \psi C_y^2 - 4\psi C_x^2(-1 + \rho_{yx}^2)}, \quad \lambda_4 = \frac{\bar{Y}}{2X} \left[\frac{-8C_x + 8\psi C_y^2 \rho_{yx}}{C_x[4 + \psi C_x^2 - 4\psi C_y^2(-1 + \rho_{yx}^2)]} \right]
\]

\[
\lambda_5 = \frac{4 + 2\psi C_x^2}{4 + 5\psi C_x^2 - 4\psi C_y^2(-1 + \rho_{yx}^2)}, \quad \lambda_6 = \frac{\bar{Y}}{2X} \left[\frac{8C_x \rho_{yx} + C_x \{-4 + \psi(4\rho_{yx} C_y C_x - 4\psi C_y^2(-1 + \rho_{yx}^2))\}}{2XC_x[4 + 5\psi C_x^2 - 4\psi C_y^2(-1 + \rho_{yx}^2)]} \right]
\]

\[
\lambda_7 = \frac{\phi_1 + \phi_4 \phi_6}{\phi_1 \phi_2 - \phi_3^2}, \quad \lambda_8 = R \left(\frac{\phi_3 + \phi_5 \phi_6}{\phi_1 \phi_2 - \phi_3^2} \right)
\]

\[
\lambda_9 = \frac{\phi_1 + \phi_4 \phi_6}{\phi_1 \phi_2 - \phi_4^2}, \quad \lambda_{10} = R \left(\frac{\phi_3 + \phi_5 \phi_6}{\phi_1 \phi_2 - \phi_4^2} \right)
\]

\[
\lambda_{11} = \frac{8 - \psi \gamma^2 C_x^2}{8 \left[1 + \psi C_x^2(1 - R_{yx}^2) \right]}\]

\[
\lambda_{12} = \frac{\bar{Y} \left[\psi \gamma^2 C_y^2(-1 + \rho_{yx}^2) + (-8C_y + \psi \gamma^2 C_x^2)C_x \left(\rho_{yx} - \rho_{xy} \rho_{yx} \right) + 4\gamma C_y(-1 + \rho_{yx}^2)\{-1 + \psi \gamma^2 (1 - R_{yx}^2)\} \right]}{8XC_x(-1 + \rho_{yx}^2) \left[1 + \psi C_y^2 (1 - R_{yx}^2) \right]}
\]

\[
\lambda_{13} = \frac{\bar{Y} \left(8 - \psi \gamma^2 C_x^2 \right)C_x \left(\rho_{yx} \rho_{xy} - \rho_{yx} \right)}{8R_{yx}C_s(-1 + \rho_{yx}^2) \left[1 + \psi C_y^2 (1 - R_{yx}^2) \right]}
\]

Remark 2.2. MSEs and minimum MSEs at the optimal values of \(\lambda_i, i = 1, 2, ..., 13\) of the estimators presented in Equation (2.1) to Equation (2.19) are given below.

\[
MSE\left(\hat{Y} \right) = V\left(\hat{Y} \right) = \psi \bar{Y}^2 C_y^2
\]

\[
MSE\left(\bar{Y}_R \right) \equiv \psi \bar{Y}^2 \left[C_y^2 + C_x^2 - 2 \rho_{yx} C_y C_x \right]
\]

\[
MSE\left(\bar{Y}_P \right) \equiv \psi \bar{Y}^2 \left[C_y^2 + C_x^2 + 2 \rho_{yx} C_y C_x \right]
\]

\[
MSE\left(\bar{Y}_{REG} \right) \equiv \psi \bar{Y}^2 C_y^2 \left[1 - \rho_{yx}^2 \right]
\]

\[
MSE\left(\bar{Y}_{BT,R} \right) \equiv \frac{\psi}{4} \bar{Y}^2 \left[4C_y^2 + C_x^2 - 4 \rho_{yx} C_y C_x \right]
\]

\[
MSE\left(\bar{Y}_{BT,P} \right) \equiv \frac{\psi}{4} \bar{Y}^2 \left[4C_y^2 + C_x^2 + 4 \rho_{yx} C_y C_x \right]
\]

\[
MSE_{\text{min}}\left(\bar{Y}_{HS1} \right) = \frac{\psi \bar{Y}^2 \left[-25\psi C_y^4 + 16(-1 + \rho_{yx}^2)(-4 + \psi C_y^2)C_y^2 \right]}{64[1 + \psi C_y^2 + \psi C_y^2(1 - \rho_{yx}^2)]}
\]
\[
MSE_{\min}(\bar{Y}_{HS2}) = \frac{\psi \bar{Y}^2 \left[-\psi C_x^2 + 4(-1 + \rho_{xy}^2)(-4 + \psi C_y^2)C_y^2 \right]}{4[4 + \psi C_x^2 - 4\psi C_y^2(-1 + \rho_{xy}^2)]}
\] (2.28)

\[
MSE_{\min}(\bar{Y}_{HS3}) = \frac{\psi \bar{Y}^2 \left[-9\psi C_x^4 + 4(-1 + \rho_{xy}^2)(-4 + \psi C_y^2)C_y^2 \right]}{4[4 + 5\psi C_x^2 - 4\psi C_y^2(-1 + \rho_{xy}^2)]}
\] (2.29)

\[
MSE_{\min}(\bar{Y}_{II}) = \bar{Y}^2 \left(1 - \frac{\varphi_1 + 2\varphi_2 + \varphi_3 + \varphi_4}{\varphi_2 - \varphi_4^2} \right)
\] (2.30)

\[
MSE_{\min}(\bar{Y}_{II}) = \bar{Y}^2 \left(1 - \frac{\varphi_1 + 2\varphi_2 + \varphi_3 + \varphi_4}{\varphi_2 - \varphi_4^2} \right)
\] (2.31)

\[
MSE_{\min}(\bar{Y}_{II}) = \psi \bar{Y}^2 \left[64C_y^2(1 - R_{xy}^2) - \psi\gamma^4 C_x^4 - 16\psi\gamma^2 C_x^2C_y^2(1 - R_{xy}^2) \right]
\] (2.32)

where
\[
R_{xy}^2 = \frac{\rho_{xy}^2 + \rho_{yx}^2 - 2\rho_{xy}\rho_{yx}\rho_{xr}}{1 - \rho_{xy}^2}
\]

3. Proposed Estimators

In this section, we proposed two new difference-type-exponential estimators for population mean under SRSWOR. These estimators are based on the dual use of auxiliary information. 1) The auxiliary variable, uses the original/actual measurements of the auxiliary variable. 2) The ranked auxiliary variable, uses the ranks of the auxiliary variable. Mathematical properties such as bias, MSE and minimum MSE of the proposed estimators are derived up to first order of approximation. The bias of an estimator is the difference between the estimator's expected value and the true value of the parameter being estimated i.e. \(\text{Bias}(\hat{Y}) = E(\hat{Y} - \bar{Y}) \) and mean square error (MSE) can be defined as the divergence of the estimator values from the true parameter value i.e. \(MSE(\hat{Y}) = E((\hat{Y} - \bar{Y})^2) \).

3.1. First proposed estimator

\[
\bar{Y}_{P1} = \frac{\lambda_{14}}{2} \left(\frac{X}{\bar{x}} + \frac{\bar{x}}{X} \right) \bar{Y}_{BT, Avg} + \lambda_{15} \left(R_x - \bar{r} \right) + \lambda_{16} \left(\bar{X} - \bar{x} \right) \exp \left(\frac{\bar{X} - \bar{x}}{\bar{X} + \bar{x}} \right) \] (3.1)

where \(\lambda_{14}, \lambda_{15} \text{ and } \lambda_{16} \) are the suitably chosen constants.

Using relationship (1.1) to rewrite the estimator in Equation (3.1), then subtract \(\bar{Y} \) from both sides and get the expression up to first order of approximation in this way

\[
\bar{Y}_{P1} - \bar{Y} = \left[\lambda_{14} \bar{Y} + \frac{5\lambda_{14} \bar{Y} \bar{r}_x^2}{8} + \lambda_{14} \bar{Y} \bar{r}_x - \lambda_{15} \bar{r}_x \bar{r}_y - \lambda_{16} \bar{X} \bar{r}_y + \frac{\lambda_{16} \bar{X} \bar{r}_y^2}{2} \right] - \bar{Y}
\] (3.2)
Applying expectation on both sides of Equation (3.2), we get the bias of proposed estimator as

\[
\text{Bias}\left(\bar{Y}_{p1}\right) \equiv (\lambda_{i4} - 1)\bar{Y} + \frac{\theta_i}{2} \left(\lambda_{i6} \bar{X} + \frac{5\lambda_{i4} \bar{Y}}{4}\right) \tag{3.3}
\]

Squaring both sides of Equation (3.2) up to first order of approximation, we have

\[
\left(\bar{Y}_{p1} - \bar{Y}\right)^2 \equiv \left[\bar{Y}^2 + \lambda_{i4} \bar{Y}^2 + \lambda_{i4}^2 \bar{Y}^2 \varepsilon_0^2 + \lambda_{i5} R_s \varepsilon_1^2 + \lambda_{i6}^2 \bar{X}^2 \varepsilon_2^2 + \frac{5}{4} \lambda_{i4} \bar{Y}^2 \varepsilon_2^2 + \lambda_{i4} \lambda_{i6} \bar{X} \bar{Y} \varepsilon_2^2 - 2\lambda_{i4} \bar{Y}^2 \varepsilon_2^2 - \frac{5}{4} \lambda_{i4} \bar{Y}^2 \varepsilon_2^2 - 2\lambda_{i4} \lambda_{i5} \bar{X} \bar{Y} \varepsilon_2^2 - 2\lambda_{i4} \lambda_{i6} \bar{X} \bar{Y} \varepsilon_2^2 - \lambda_{i6} \bar{X} \bar{Y} \varepsilon_2^2\right] \tag{3.4}
\]

The MSE of \(\bar{Y}_{p1}\) is obtained by taking the expectation on both sides of Equation (3.4)

\[
MSE\left(\bar{Y}_{p1}\right) \equiv \bar{Y}^2 \left[1 + \lambda_{i4}^2 \phi_2 + \frac{5}{4} \lambda_{i4} \phi_1 + \lambda_{i5}^2 \varepsilon_1^2 + \lambda_{i6}^2 \varepsilon_2^2 + 2\lambda_{i4} \phi_1 - \frac{5}{4} \lambda_{i4} \phi_1\right] \tag{3.5}
\]

Now, we have to choose the weights of \(\lambda_{i4}, \lambda_{i5}\) and \(\lambda_{i6}\) such that the resulting MSE of \(\bar{Y}_{p1}\) will be minimized. So, the optimal weights of \(\lambda_{i4}, \lambda_{i5}\) and \(\lambda_{i6}\) are selected with the help of following equations.

\[
\frac{\partial \text{MSE}\left(\bar{Y}_{p1}\right)}{\partial \lambda_{i4}} = (8\phi_2 + 10\phi_1) \lambda_{i4} - 8\lambda_{i5} \phi_6 - 4\lambda_{i6} \phi_8 - 8 - 5\phi_i
\]

\[
\frac{\partial \text{MSE}\left(\bar{Y}_{p1}\right)}{\partial \lambda_{i5}} = 2\lambda_{i5} \phi_3 - 2\lambda_{i4} \phi_6 + 2\lambda_{i6} \phi_7 - \lambda_{i4} \phi_8
\]

\[
\frac{\partial \text{MSE}\left(\bar{Y}_{p1}\right)}{\partial \lambda_{i6}} = 2\lambda_{i6} \phi_3 - 2\lambda_{i3} \phi_6 - \lambda_{i4} \phi_8 - \phi_i
\]

Setting \(\frac{\partial \text{MSE}\left(\bar{Y}_{p1}\right)}{\partial \lambda_{i}} = 0, i = 14, 15, 16\) and solving simultaneously, we get

\[
\lambda_{i4(\text{opt})} = \frac{E_1 E_2 - 2E_2 \phi_3 \phi_5}{E_2 E_4 - 2E_3^2}
\]

\[
\lambda_{i5(\text{opt})} = \frac{2\phi_6 (E_1 E_2 - 2E_2 \phi_3 \phi_5) + \phi_7 \left(E_1 E_3 - \phi_3 E_4\right)}{2 \phi_3 R_s \left(E_2 E_4 - 2E_3^2\right)}
\]

\[
\lambda_{i6(\text{opt})} = \frac{\phi_5 \phi_4 E_4 - E_1 E_3}{2 \phi \left(E_2 E_4 - 2E_3^2\right)}
\]

where

\[
E_1 = 8\phi_3 + 5\phi_3 \phi_3, \quad E_2 = \phi_3 \phi_5 - \phi_3^2
\]

\[
E_3 = 2\phi_6 \phi_3 - \phi_3 \phi_5, \quad E_4 = 8\phi_3 \phi_5 + 10\phi_3 \phi_5 - 8\phi_3^2
\]
Inserting optimal weights of $\lambda_{14}, \lambda_{15}$ and λ_{16} in Equation (3.5), we get the minimum MSE of the proposed estimator as

$$
MSE_{\text{min}}(\bar{Y}_{p1}) = \frac{\bar{Y}^2}{4\varphi_3 F_1^2} \left[4\varphi_3 F_1^2 + \left(4\varphi_2 \varphi_3 - 4\varphi_6^2 + 5\varphi_4 \varphi_3 \right) F_2^2 + \left(\varphi_1 \varphi_3 - \varphi_7^2 \right) F_3^2 - \left(8 + 5\varphi_1 \right) \varphi_3 F_1 F_2 \right] ^2
$$

(3.6)

where

$$
F_1 = E_2 E_4 - 2 E_3^2, \quad F_2 = E_4 E_2 - 2 \varphi_3 E_3, \quad F_3 = \varphi_4 E_4 - E_4 E_3
$$

3.2. Second proposed estimator

$$
\bar{Y}_{p2} = \lambda_{17} \bar{Y} + \lambda_{18} \left(\bar{R}_x - \bar{r}_x \right) + \lambda_{19} \left(\bar{X} - \bar{x} \right) \exp \left(\frac{2 \left(\bar{X} - \bar{x} \right)}{\bar{X} + \bar{x}} \right)
$$

(3.7)

where $\lambda_{17}, \lambda_{18}$ and λ_{19} are the suitably chosen constants.

Following the same procedure mentioned in section 3.1, we have the following expressions:

$$
\bar{Y}_{p2} - \bar{Y} = \left[\lambda_{17} \bar{Y} + \lambda_{17} \bar{Y} \xi_0 - \lambda_{18} R_x \xi_1 - \lambda_{19} \bar{X} \xi_2 + \lambda_{19} \bar{X} \xi_2 - \bar{Y} \right]
$$

(3.8)

$$
\text{Bias} \left(\bar{Y}_{p2} \right) = \bar{Y} \left[(\lambda_{17} - 1) + \lambda_{19} \varphi_1 \rho \right]
$$

(3.9)

$$
\left(\bar{Y}_{p2} - \bar{Y} \right)^2 = \bar{Y}^2 + \lambda_{17}^2 \bar{Y}^2 + \lambda_{18}^2 R_x \xi_1 + \lambda_{19}^2 \bar{X} \xi_2 + 2 \lambda_{17} \lambda_{19} \bar{Y} \bar{X} \xi_2 - 2 \lambda_{17} \bar{Y}^2 - 2 \lambda_{17} \bar{Y}^2
$$

(3.10)

$$
\text{MSE} \left(\bar{Y}_{p2} \right) = \bar{Y}^2 \left[1 + \lambda_{17}^2 \varphi_2 + \lambda_{18}^2 R_x \varphi_3 + \lambda_{19}^2 R_x \varphi_4 - 2 \lambda_{17} \right]
$$

(3.11)

The optimal weights of $\lambda_{17}, \lambda_{18}$ and λ_{19} are obtained in this way

$$
\frac{\partial \text{MSE} \left(\bar{Y}_{p2} \right)}{\partial \lambda_{17}} = 2 \left(\lambda_{17} \varphi_2 - 1 - \lambda_{19} \varphi_3 - \lambda_{18} \varphi_4 \right)
$$

$$
\frac{\partial \text{MSE} \left(\bar{Y}_{p2} \right)}{\partial \lambda_{18}} = 2 \left(\lambda_{18} \varphi_3 - \lambda_{17} \rho \right)
$$

$$
\frac{\partial \text{MSE} \left(\bar{Y}_{p2} \right)}{\partial \lambda_{19}} = 2 \left(\lambda_{19} \varphi_4 - \lambda_{17} \rho \right)
$$

Setting $\frac{\partial \text{MSE} \left(\bar{Y}_{p2} \right)}{\partial \lambda_i} = 0, i = 17, 18, 19$ and solving simultaneously, we get
\[
\lambda_{17(\text{opt})} = \frac{\varphi_3 E_5 - (\varphi_2 E_7 + \varphi_4 E_8)}{\varphi_2 (E_5 E_8 - E_6^2)}
\]

\[
\lambda_{18(\text{opt})} = \frac{\varphi_6 E_5 - E_6 E_7}{R (E_5 E_8 - E_6^2)}
\]

\[
\lambda_{19(\text{opt})} = \frac{E_7 E_4 - \varphi_6 E_6}{R (E_5 E_8 - E_6^2)}
\]

where

\[
E_5 = \varphi_3 - \varphi_4^2, \quad E_6 = \varphi_2 E_7 - \varphi_6, \quad E_7 = \varphi_2 + \varphi_4, \quad E_8 = \varphi_2^2 - \varphi_6^2
\]

Inserting optimal weights of \(\lambda_1, \lambda_8\) and \(\lambda_9\) in Equation (3.11), we get the minimum MSE of the proposed estimator as below.

\[
\text{MSE}_{\text{min}}(\bar{Y}_{\text{opt}}) = \frac{\bar{Y}^2}{\varphi_2 F_4^2} \left[\varphi_2 F_4^2 + \varphi_4 F_2 + \varphi_2 \varphi_3 F_6^2 + F_7^2 - 2(\varphi_1 F_4 - \varphi_2 F_6) \varphi_2 F_5 \right]
\]

where

\[
F_4 = E_5 E_8 - E_6^2, \quad F_5 = E_7 E_8 - \varphi_6 E_6
\]

\[
F_6 = \varphi_6 E_5 - E_6 E_7, \quad F_7 = \varphi_2 \varphi_3 E_5 - \varphi_2 \varphi_7 E_6 - \varphi_6 E_6 E_7 + \varphi_4 E_7 E_8
\]

Remark 3.1. It is important to mention that the parameters \(\rho_x, \rho_y, \rho_{xy}, C_y, C_x\) and \(C_r\) appearing in the expressions of optimal weights and the minimum MSEs are generally unknown. However, these parameters can be estimated quite accurately from the preliminary data or from the repeated surveys based on sampling over several occasions. The utilization of prior information on parameters at the estimation stage has been dealt by various authors including Singh and Singh [21] and Vishwakarma and Kumar [22].

4. Applications

In this section, three real-life data sets are used to evaluate the performance of proposed estimators as compared to the existing estimators in terms of percent absolute relative bias (PARB), mean squared error (MSE) and percentage relative efficiencies (PRE). For more details of these measures see Rao et al. [23], Silva and Skinner [24] and Nidhi et al. [25] etc. MSEs are calculated using the expressions defined in sections 2-3. PARB and PRE of an estimator can be computed through the following expressions:

\[
\text{PARB}(\star) = \left(\frac{\bar{Y} - \bar{\hat{Y}}}{\bar{Y}} \right) \times 100
\]

\[
\text{PRE} = \frac{\text{MSE}(\hat{\bar{Y}})}{\text{MSE}(\bar{Y})} \times 100
\]

where \(\star = \bar{Y}, \bar{\hat{Y}}_\text{REG}, \bar{\hat{Y}}_{\text{HS1}}, \bar{\hat{Y}}_{\text{HS2}}, \bar{\hat{Y}}_{\text{HS3}}, \bar{\hat{Y}}_{J1}, \bar{\hat{Y}}_{J2}, \bar{\hat{Y}}_{HA}, \bar{\hat{Y}}_{P1}, \bar{\hat{Y}}_{P2}\)
Population 1: (Source: Singh and Mangat [26], p. 369)

\[
N = 69, \quad n = 12, \quad \bar{Y} = 135.2608, \quad \bar{X} = 345.7536
\]
\[
C_y = 0.8422, \quad C_x = 0.8479, \quad C_r = 0.5747, \quad \beta_{2(x)} = 7.2159
\]
\[
\bar{R} = 34.9565, \quad \rho_{yx} = 0.9224, \quad \rho_{yr} = 0.7136, \quad \rho_{sx} = 0.8185
\]

Population 2: (Source: Ekpenyong and Enang [10])

\[
N = 923, \quad n = 180, \quad \bar{Y} = 436.4345, \quad \bar{X} = 11440.5
\]
\[
C_y = 1.7183, \quad C_x = 1.8645, \quad C_r = 0.577, \quad \beta_{2(x)} = 18.7208
\]
\[
\bar{R} = 461.9642, \quad \rho_{yx} = 0.9543, \quad \rho_{yr} = 0.6442, \quad \rho_{sx} = 0.6306
\]

Population 3: (Source: Kadilar and Cingi, [27])

\[
N = 854, \quad n = 290, \quad \bar{Y} = 2930.12, \quad \bar{X} = 37600.11
\]
\[
C_y = 5.8379, \quad C_x = 3.8509, \quad C_r = 0.1883, \quad \beta_{2(x)} = 312.0651
\]
\[
\bar{R} = 426.8747, \quad \rho_{yx} = 0.9165, \quad \rho_{yr} = 0.2585, \quad \rho_{sx} = 0.3458
\]

The PARB of all the estimators are shown in Table 2 and the MSEs and PREs are given in Table 3.

5. Simulation Study Based on Real Data Sets

Monte Carlo simulation study is carried out to check the potential of the proposed estimators over the competing estimators through R software.

A step by step approach for the simulation study is as below:
1) Select a SRSWOR of size \(n\) from the population of size \(N\).
2) Use sample data from step 1 to find PARB and MSE of all the estimators under study.
3) Repeat 50,000 times step 1 and step 2.
4) Obtain 50,000 values for PARB and MSE of all the estimators.
5) Average of 50,000 values obtained in step 4 are the PARB and MSE.
6) PARB and PREs (with respect to sample mean \(\hat{Y}\)) of all the estimators are calculated.

6. Important Findings

✓ From Table 2, the percentage absolute relative bias of the proposed estimators are least as compared to all the competing estimators for all three data sets.
✓ From Table 3, it is imperative to mention that the proposed estimators \(\bar{Y}_m\) and \(\bar{Y}_{r_2}\) have minimum MSEs and maximum PREs than all the traditional and existing estimators in all populations.
From Table 4, simulation study indicates that the percentage absolute relative bias (PARB) of the proposed estimators are lesser than the competing estimators for all three data sets used in our study.

From Table 5, simulation study again reveals that \bar{Y}_{P1} and \bar{Y}_{P2} have maximum gain in PREs than all other estimators under competition. This phenomenon is observed in all populations under study.

So, above findings confirmed that the proposed estimators outperform than the competitors under study.

7. Concluding Remarks

This manuscript considers the improved estimation of finite population mean under simple random sampling without replacement. Efficient utilization of auxiliary information can play vital role in this regard. So, the purpose is achieved by using the original information of the auxiliary variable and additionally the ranks of auxiliary variable. Some new difference-type-exponential estimators based on above idea of dual auxiliary information are proposed. Mathematical properties including bias, MSE and minimum MSE of the proposed estimators are derived up to first degree of approximation. To assess the potentiality of the proposed estimators over the competing estimators, real data analysis as well as simulation study is carried out. Three natural data sets are used for the empirical study. The outcome of this comparison indicates that the proposed estimators are more efficient and less biased than the traditional and other well-known existing estimators. Thus, the researchers are encouraged to use the proposed estimators for estimating the population mean under SRSWOR.

The present work could be extended to estimate the: 1) finite population mean under other sampling designs like stratified random sampling and two-phase sampling etc. 2) other unknown finite population parameters including median, variance and proportions etc. 3) population mean of a sensitive variable in the presence of non-sensitive auxiliary information.

References

[1] Haq, A., Khan, M., and Hussain, Z. “A new estimator of finite population mean based on the dual use of the auxiliary information”, Communications in Statistics- Theory and Methods, 46(9), pp. 4425-4436 (2017).
[2] Kadilar, C. and Cingi, H. “Ratio estimators in simple random sampling”, Applied Mathematics and Computation, 151, pp. 893-902 (2004).
[3] Kadilar, C. and Cingi, H. “Improvement in estimating the population mean in simple random sampling”, Applied Mathematics Letters, 19, pp. 75-79 (2006a).
[4] Gupta, S. and Shabbir, J. “On improvement in estimating the population mean in simple random sampling”, Journal of Applied Statistics, 35(5), pp. 559-566 (2008).
[5] Grover, L. K., and Kaur, P. “An improved estimator of the finite population mean in simple random sampling”, Model Assisted Statistics and Applications, 6(1), pp. 47-55 (2011).
[6] Grover, L. K., and Kaur, P. “A generalized class of ratio type exponential estimators of population mean under linear transformation of auxiliary variable”, Communications in Statistics-Simulation and Computation, 43, pp. 1552-1574 (2014).
[7] Singh, H. P. and Solanki, R. S. “An efficient class of estimators for the population mean using auxiliary information”, Communications in Statistics- Theory and Methods, 42, pp. 145-163 (2013).
[8] Haq, A., and Shabbir, J. “Improved exponential type estimators of finite population mean under complete and partial auxiliary information”, Hacettepe Journal of Mathematics and Statistics, 43(6), pp. 1079-1093 (2014).
[9] Shabbir, J., Haq, A., and Gupta, S. “A new difference-cum-exponential type estimator of finite population mean in simple random sampling”, Revista Colombiana de Estadistica, 37(1), pp. 199-211 (2014).
[10] Ekpenyong, E. J., and Enang, E. I. “Efficient exponential ratio estimator for estimating the population mean in simple random sampling”, Hacettepe Journal of Mathematics and Statistics, 44(3), pp. 689-705 (2015).
[11] Khan, S. A., Ali, H., Manzoor, S., and Alamgir. “A class of transformed efficient ratio estimators of finite population mean”, Pakistan Journal of Statistics, 31(4), pp. 353-362 (2015).
[12] Solanki, R. S., and Singh, H. P. “The improvement over regression method of estimation of finite population mean in survey sampling”, Journal of Advanced Computing, 4(3), pp. 101-111 (2015).
[13] Srisodaphol, W., Kingphai, K., and Tanjai, N. “New ratio estimators of a population mean using one auxiliary variable in simple random sampling”, Chiang Mai Journal of Science, 42(2), pp. 523-527 (2015).
[14] Singh, H. P., and Pal, S. K. “A class of exponential-type ratio estimators of a general parameter”, Communications in Statistics- Theory and Methods, 46(8), pp. 3957-3984 (2017).
[15] Singh, H. P., Pal, S. K., and Solanki, R. S. “A new class of estimators of finite population mean in sample surveys”, Communications in Statistics-Theory and Methods, 46(6), pp. 2630-2637 (2017).
[16] Irfan, M., Javed, M., and Lin, Z. “Improved estimation of population mean through known conventional and non-conventional measures of auxiliary variable”, Iranian Journal of Science and Technology, Transactions A: Science, 43(4), pp. 1851-1862 (2019).
[17] Irfan, M., Javed, M., and Lin, Z. “Efficient ratio-type estimators of finite population mean based on correlation coefficient”, Scientia Iranica: Transactions on Industrial Engineering (E), 25(4), pp. 2361-2372 (2018).
[18] Javed, M., Irfan, M., and Pang, T. “Hartley-Ross type unbiased estimators of population mean using two auxiliary variables”, Scientia Iranica: Transactions on Industrial Engineering (E), 26(6), pp. 3835-3845 (2019).
[19] Bahl, S., and Tuteja, R. K. “Ratio and product type exponential estimator”, Information and Optimization Sciences, XII(1), pp. 159-163 (1991).
[20] Shabbir, J., and Gupta, S. “On estimating finite population mean in simple and stratified random sampling”, Communications in Statistics- Theory and Methods, 40(2), pp. 199-212 (2011).
[21] Singh, R. K., and Singh, G. “A class of estimators with estimated optimum values in sample surveys”, Statistics and Probability Letters, 2, pp. 319-321 (1984).
[22] Vishwakarmar, G. K., and Kumar, M. “A general family of dual to ratio-cum-product estimators of population mean in simple random sampling”, Chilean Journal of Statistics, 6(2), pp. 69-79 (2015).
[23] Rao, J. N. K., Kovar, J. G., and Mantel, H. J. “On estimating distribution function and quantiles from survey data using auxiliary information”, Biometrika, 77, pp. 365-375 (1990).
[24] Silva, N. P. L. D., and Skinner, C. J. “Estimating distribution functions with auxiliary information using post-stratification”, *Journal of Official Statistics*, **11**, pp. 277-294 (1995).

[25] Nidhi, B. V. S., Sisodia, Singh, S., and Singh, S. K. “Calibration approach estimation of the mean in stratified sampling and stratified double sampling”, *Communications in Statistics-Theory and Methods*, **46**(10), pp. 4932-4942 (2017).

[26] Singh, R., and Mangat, N. S. “Elements of survey sampling”, *Norwell, MA: Kluwer Academic Publishers*, (1996).

[27] Kadilar, C., and Cingi, H. “Ratio estimators for the population variance in simple and stratified random sampling”, *Applied Mathematics and Computation*, **173**(2), pp. 1047-1059 (2006b).

Table Captions

Table 1 Some useful measures
Table 2 Numerical comparison of percent absolute relative bias
Table 3 MSE’s and PRE’s of the existing and proposed estimators
Table 4 Percent absolute relative bias of estimators w.r.t \(\hat{Y} \) based on simulation study
Table 5 PREs of estimators w.r.t \(\hat{Y} \) based on simulation study

Measures	Study variable (y)	Auxiliary variable (x)	Ranked auxiliary variable (r_x)							
Sample Mean	\(\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \)	\(\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \)	\(\bar{r}_x = \frac{1}{n} \sum_{i=1}^{n} r_{x,i} \)							
Population mean	\(\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} y_i \)	\(\bar{X} = \frac{1}{N} \sum_{i=1}^{N} x_i \)	\(\bar{R}_x = \frac{1}{N} \sum_{i=1}^{N} r_{x,i} \)							
Population Variance	\(S_y^2 = (N-1) \sum_{i=1}^{N} (y_i - \bar{Y})^2 \)	\(S_x^2 = (N-1) \sum_{i=1}^{N} (x_i - \bar{X})^2 \)	\(S_{rx}^2 = (N-1) \sum_{i=1}^{N} (r_{x,i} - \bar{R}_x)^2 \)							
Population coefficient of variation	\(C_y^2 = \left(\frac{1}{\bar{Y}^2} \right) S_y^2 \)	\(C_x^2 = \left(\frac{1}{\bar{X}^2} \right) S_x^2 \)	\(C_{rx}^2 = \left(\frac{1}{\bar{R}_x^2} \right) S_{rx}^2 \)							
Estimators	Population 1	Population 2	Population 3							
------------	--------------	--------------	--------------							
\(\hat{Y}\)	---	---	---							
\(\overline{Y}_{\text{REG}}\)	---	---	---							
\(\overline{Y}_{\text{HS}1}\)	0.5901	0.1062	1.1345							
\(\overline{Y}_{\text{HS}2}\)	0.6905	0.1153	1.1993							
\(\overline{Y}_{\text{HS}3}\)	0.5439	0.1017	1.1069							
\(\overline{Y}_{\text{JI}1}\)	0.6399	0.1115	1.1195							
\(\overline{Y}_{\text{JI}2}\)	0.4642	0.0961	0.9136							
\(\overline{Y}_{\text{HA} (1)} \alpha = 1, \beta = C_x\)	0.6857	0.1129	1.1855							
\(\overline{Y}_{\text{HA} (2)} \alpha = 1, \beta = \beta_{2(x)}\)	0.6863	0.1130	1.1857							
\(\overline{Y}_{\text{HA} (3)} \alpha = \beta_{2(x)}, \beta = C_x\)	0.6857	0.1129	1.1855							
\(\overline{Y}_{\text{HA} (4)} \alpha = C_x, \beta = \beta_{2(x)}\)	0.6865	0.1130	1.1856							
\(\overline{Y}_{\text{HA} (5)} \alpha = 1, \beta = \rho_{yx}\)	0.6857	0.1130	1.1855							
\(\overline{Y}_{\text{HA} (6)} \alpha = C_x, \beta = \rho_{yx}\)	0.6858	0.1129	1.1855							
\(\overline{Y}_{\text{HA} (7)} \alpha = \rho_{yx}, \beta = C_x\)	0.6857	0.1129	1.1855							
\(\overline{Y}_{\text{HA} (8)} \alpha = \beta_{2(x)}, \beta = \rho_{yx}\)	0.6857	0.1130	1.1855							
\(\overline{Y}_{\text{HA} (9)} \alpha = \rho_{yx}, \beta = \beta_{2(x)}\)	0.6863	0.1129	1.1858							
\(\overline{Y}_{\text{HA} (10)} \alpha = 1, \beta = N \bar{X}\)	0.6981	0.1138	1.1974							
\(\overline{Y}_{\text{P1}}\)	0.3343	0.0845	0.9117							
\(\overline{Y}_{\text{P2}}\)	0.3588	0.0938	0.8730							
Estimators	Population 1	Population 2	Population 3							
------------	--------------	--------------	--------------							
	MSE’s	PRE’s	MSE’s	PRE’s	MSE’s	PRE’s				
\hat{Y}	893.344	100.000	2515.074	100.000	666353.000	100.000				
\overline{Y}_{REG}	133.267	670.342	224.611	1119.747	106635.000	624.891				
\overline{Y}_{HS1}	107.982	827.308	202.369	1242.816	97410.320	684.068				
\overline{Y}_{HS2}	126.334	707.129	219.747	1144.532	102974.400	647.105				
\overline{Y}_{HS3}	99.528	897.581	193.846	1297.460	95034.750	701.168				
\overline{Y}_{J1}	117.484	760.396	212.505	1183.536	96116.890	693.274				
\overline{Y}_{J2}	84.936	1051.785	183.133	1373.359	78444.970	849.453				
$\overline{H}^{(1)}_{HA}$	125.473	711.981	215.232	1168.541	101787.500	654.651				
$\overline{H}^{(2)}_{HA}$	125.577	711.391	215.239	1168.503	101806.400	654.529				
$\overline{H}^{(3)}_{HA}$	125.460	712.055	215.231	1168.546	101787.300	654.652				
$\overline{H}^{(4)}_{HA}$	125.597	711.278	215.235	1168.525	101792.300	654.620				
$\overline{H}^{(5)}_{HA}$	125.474	711.975	215.232	1168.541	101787.300	654.652				
$\overline{H}^{(6)}_{HA}$	125.477	711.958	215.232	1168.541	101787.300	654.652				
$\overline{H}^{(7)}_{HA}$	125.474	711.975	215.232	1168.541	101787.500	654.651				
$\overline{H}^{(8)}_{HA}$	125.460	712.055	215.231	1168.546	101787.300	654.652				
$\overline{H}^{(9)}_{HA}$	125.587	711.335	215.239	1168.503	101808.100	654.519				
$\overline{H}^{(10)}_{HA}$	127.734	699.378	216.793	1160.127	102806.400	648.162				
\overline{P}_{P1}	61.170	1460.428	161.068	1561.498	78281.210	851.229				
\overline{P}_{P2}	65.656	1360.643	178.828	1406.421	74957.120	888.979				
Table 4	Estimators	Population 1	Population 2	Population 3						
---	---	---	---	---						
		$n = 12$	$n = 14$	$n = 16$	$n = 180$	$n = 200$	$n = 230$	$n = 290$	$n = 310$	$n = 330$
	\hat{Y}	---	---	---	---	---	---	---	---	---
	\bar{Y}_{REG}	---	---	---	---	---	---	---	---	---
	\bar{Y}_{HS1}	0.5140	0.4522	0.3982	0.0967	0.0873	0.0747	0.9971	0.9283	0.8595
	\bar{Y}_{HS2}	0.6106	0.5190	0.4469	0.1056	0.0942	0.0795	1.0573	0.9771	0.8997
	\bar{Y}_{HS3}	0.4688	0.4207	0.3753	0.0923	0.0839	0.0723	0.9703	0.9065	0.8415
	\bar{Y}_{JI1}	0.5639	0.4870	0.4236	0.1019	0.0913	0.0775	0.9871	0.9196	0.8522
	\bar{Y}_{JI2}	0.3864	0.3654	0.3356	0.0867	0.0796	0.0694	0.7930	0.7621	0.7223
	$\bar{Y}_{HA}^{(1)}$	0.5430	0.4661	0.4055	0.1024	0.0913	0.0770	1.0094	0.9322	0.8654
	$\bar{Y}_{HA}^{(2)}$	0.5387	0.4646	0.4051	0.1025	0.0906	0.0774	1.0246	0.9345	0.8645
	$\bar{Y}_{HA}^{(3)}$	0.5361	0.4689	0.4108	0.1026	0.0910	0.0771	1.0217	0.9388	0.8603
	$\bar{Y}_{HA}^{(4)}$	0.5305	0.4658	0.4042	0.1030	0.0914	0.0766	1.0184	0.9236	0.8598
	$\bar{Y}_{HA}^{(5)}$	0.5353	0.4633	0.4062	0.1029	0.0912	0.0771	1.0113	0.9283	0.8589
	$\bar{Y}_{HA}^{(6)}$	0.5400	0.4706	0.4057	0.1024	0.0914	0.0767	1.0237	0.9407	0.8521
	$\bar{Y}_{HA}^{(7)}$	0.5311	0.4678	0.4061	0.1024	0.0904	0.0776	1.0153	0.9345	0.8636
	$\bar{Y}_{HA}^{(8)}$	0.5373	0.4666	0.4083	0.1027	0.0915	0.0769	1.0172	0.9308	0.8786
	$\bar{Y}_{HA}^{(9)}$	0.5368	0.4658	0.4054	0.1021	0.0911	0.0767	1.0168	0.9285	0.8590
	$\bar{Y}_{HA}^{(10)}$	0.5462	0.4721	0.4071	0.1039	0.0910	0.0773	1.0277	0.9446	0.8663
	\bar{Y}_{PI1}	0.2253	0.1965	0.1880	0.0744	0.0697	0.0619	0.7530	0.7232	0.6876
	\bar{Y}_{PI2}	0.2347	0.1769	0.1574	0.0834	0.0767	0.0669	0.7210	0.6971	0.6664
Estimators	Population 1		Population 2		Population 3					
------------	--------------	--------------	--------------	--------------	--------------					
	$n = 12$	$n = 14$	$n = 16$	$n = 180$	$n = 200$	$n = 230$	$n = 290$	$n = 310$	$n = 330$	
\hat{Y}	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	
\bar{Y}_{REG}	766.586	749.207	729.755	1206.283	1193.833	1178.324	676.225	618.575	556.940	
\bar{Y}_{HS1}	987.347	913.926	858.046	1347.447	1313.015	1274.462	734.719	678.189	617.416	
\bar{Y}_{HS2}	812.755	785.375	758.909	1234.139	1217.667	1197.828	696.543	639.131	577.600	
\bar{Y}_{HS3}	1098.132	990.408	914.524	1411.218	1365.724	1315.974	753.621	697.281	637.084	
\bar{Y}_{JI1}	888.710	842.743	803.538	1279.251	1255.959	1228.712	740.498	683.856	622.881	
\bar{Y}_{JI2}	1382.002	1165.650	1032.976	1502.994	1473.015	1417.636	898.397	850.142	798.285	
$\bar{Y}_{(1)}^{HA}$	908.289	868.816	833.734	1272.931	1257.712	1236.909	722.773	663.921	600.093	
$\bar{Y}_{(2)}^{HA}$	907.008	869.154	832.204	1269.818	1254.615	1234.438	744.068	723.019	717.034	
$\bar{Y}_{(3)}^{HA}$	905.622	866.220	839.286	1261.567	1244.772	1233.626	736.168	722.732	714.374	
$\bar{Y}_{(4)}^{HA}$	905.313	849.367	834.382	1263.093	1260.664	1242.487	733.023	725.365	710.147	
$\bar{Y}_{(5)}^{HA}$	903.575	864.829	836.822	1262.015	1259.152	1240.036	732.665	716.237	707.388	
$\bar{Y}_{(6)}^{HA}$	911.161	868.626	832.772	1268.188	1250.123	1245.323	730.110	724.998	717.704	
$\bar{Y}_{(7)}^{HA}$	897.334	865.880	848.572	1262.963	1252.886	1244.779	726.805	717.746	713.321	
$\bar{Y}_{(8)}^{HA}$	904.338	862.441	840.217	1259.486	1253.556	1240.967	733.072	719.673	714.668	
$\bar{Y}_{(9)}^{HA}$	907.359	878.727	838.201	1281.329	1251.296	1234.161	729.270	724.919	708.541	
$\bar{Y}_{(10)}^{HA}$	894.141	853.038	839.442	1263.584	1247.958	1232.534	725.638	715.839	707.742	
\bar{Y}_{PI}	3258.479	1952.065	1524.815	1748.603	1642.411	1536.096	937.697	889.288	836.048	
\bar{Y}_{F2}	3055.020	1903.397	1464.315	1561.014	1493.770	1423.147	968.348	922.812	872.949	
Author’s Biographies

Muhammad Irfan obtained his Ph.D. degree in Statistics at Zhejiang University, Hangzhou, China in 2018. He holds the position of Assistant Professor in the Department of Statistics, Government College University, Faisalabad Pakistan. He has more than 20 research publications in well reputed journals. His areas of interest are Sampling Theory, Probability Distributions and Time Series Analysis.

Maria Javed obtained her Ph.D. degree in Statistics at Zhejiang University, Hangzhou, China in 2019. She has been working as Assistant Professor in the Department of Statistics, Government College University, Faisalabad Pakistan. She has about 15 refereed publications now and has guided research students at all levels of the curriculum. Her research interests include Sampling Theory and Probability Distributions.

Sajjad Haider Bhatti received his Ph.D. in Applied Statistics and Econometrics from University of Dijon, France. He received his MSc from the Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan. He is currently working as Assistant Professor in the Department of Statistics, Government College University, Faisalabad, Pakistan. His Research interests include Regression Diagnostics, Modified Estimators, Sampling Theory and Statistical Applications in varying fields.