Ising spin-glass transition in magnetic field out of mean-field: Numerical simulations and experiments

J. J. Ruiz-Lorenzo
with L. Leuzzi, G. Parisi and F. Ricci-Tersenghi (Rome).

Dep. Física, Universidad de Extremadura & BIFI
http://www.unex.es/eweb/fisteor/juan

Leipzig, November 26th, 2010

Phys. Rev. Lett. 103, 267201 (2009) and arXiv:1006.3450v1.
What are spin glasses?

Different Theories and Models (droplet, TNT and RSB).

Spin Glasses with Long Range Interactions.

The one dimensional diluted spin glass with long range interactions.
Outline of the Talk

- What are spin glasses?
- Different Theories and Models (droplet, TNT and RSB).
- Spin Glasses with Long Range Interactions.
- The one dimensional diluted spin glass with long range interactions.
 - Observables and Numerical Simulations.
Outline of the Talk

- What are spin glasses?
- Different Theories and Models (droplet, TNT and RSB).
- Spin Glasses with Long Range Interactions.
- The one dimensional diluted spin glass with long range interactions.
 - Observables and Numerical Simulations.
 - Numerical Analysis of the Spin Glass correlation functions.

Evidences for a spin glass phase in magnetic field out of the MF region.

Experiments.

Conclusions.
Outline of the Talk

- What are spin glasses?
- Different Theories and Models (droplet, TNT and RSB).
- Spin Glasses with Long Range Interactions.
- The one dimensional diluted spin glass with long range interactions.
 - Observables and Numerical Simulations.
 - Numerical Analysis of the Spin Glass correlation functions.
 - Evidences for a spin glass phase in magnetic field out of the MF region.
Outline of the Talk

What are spin glasses?
Different Theories and Models (droplet, TNT and RSB).
Spin Glasses with Long Range Interactions.
The one dimensional diluted spin glass with long range interactions.

- Observables and Numerical Simulations.
- Numerical Analysis of the Spin Glass correlation functions.
- Evidences for a spin glass phase in magnetic field out of the MF region.
- Experiments.
Outline of the Talk

- What are spin glasses?
- Different Theories and Models (droplet, TNT and RSB).
- Spin Glasses with Long Range Interactions.
- The one dimensional diluted spin glass with long range interactions.
 - Observables and Numerical Simulations.
 - Numerical Analysis of the Spin Glass correlation functions.
 - Evidences for a spin glass phase in magnetic field out of the MF region.
 - Experiments.
- Conclusions.
What are Spin glasses

- Materials with disorder and frustration.
- Quenched disorder.
- Canonical Spin Glass: Metallic host (Cu) with magnetic impurities (Mn). RKKY interaction between magnetic moments:
 \[J(r) \sim \frac{\cos(2k_F r)}{r^3}. \]
Some Definitions

- The typical Spin Glass Hamiltonian:

$$\mathcal{H} = - \sum_{i,j} J_{ij} \sigma_i \sigma_j$$

- The order parameter is:

$$q_{EA} = \langle \sigma_i \rangle^2$$

Using two real replicas:

$$\mathcal{H} = - \sum_{i,j} J_{ij} (\sigma_i \sigma_j + \tau_i \tau_j)$$

Let $$q_i = \sigma_i \tau_j$$ be the normal overlap, then: $$q_{EA} = \langle \sigma_i \tau_i \rangle.$$ We also define the link overlap: $$q_{i,\mu}^{\text{link}} = q_i q_{i+\mu}.$$
The Droplet Model

- Based on the Migdal-Kadanoff implementation (approximate) of the Renormalization Group (exact in $D = 1$).
- **Disguished Ferromagnet**: Only two pure states with order parameter $\pm q_{EA}$ (related by spin flip).
- Compact Excitations of fractal dimension d_f. The energy of a excitation of linear size L grows as L^θ.
- Any amount of magnetic field destroys the spin glass phase (even for Heisenberg spin glasses).
- Trivial probability distributions of the overlaps (both the normal overlap and the link one).
The Trivial Non Trivial (TNT) Model

- *Disguished Ferromagnet with Anti Periodic Boundary conditions.*
- Trivial probability distributions for the link overlap (the interface has no effect) but Non Trivial probability distribution for the normal one (induced by the interface).
Replica Symmetry Breaking (RSB) Theory

- Exact in $D = \infty$.
- Infinite number of phases (pure states) not related by any kind of symmetry.
- These (pure) states are organized in an ultrametric fashion.
- The spin glass phase is stable under (small) magnetic field.
- The excitations of the ground state are space filling.
Long Range Interactions

- Hamiltonian (Action) for the long range model ($J(r) \sim r^{-\rho/2}$):
 \[
 S_n = H_n \propto \int d^d k \left(k^{\rho-d} + \tau \right) \text{Tr} Q^2 + \int d^D x \left[g_3 \text{Tr}(Q^3) + \lambda \sum Q^4_{ab} \right]
 \]

- $\text{dim}_p(g_3) = d - \frac{3}{4} \rho$. In MF: $\eta = d + 2 - \rho$ (holds in IRD!) and $1/\nu = \rho - d$.

- Hence, the Mean Field and Infrared region are ($d = 1$):

ρ	$D(\rho)$	transition type
≤ 1	∞	Bethe lattice like
$(1, 4/3]$	$[6, \infty)$	2^{nd} order, MF
$(4/3, 2]$	$[2.5, 6)$	2^{nd} order, non-MF
2	2.5	Kosterlitz-Thouless or $T = 0$-like
> 2	< 2.5	none

- It is possible to show (equivalence D-SR and $1d$-LR):
 \[
 \frac{2 - \eta(D)}{D} = \rho - 1 ; \ \rho = 1.8 \rightarrow D = 3
 \]
Numerical Simulations

- The spins live on a finite connectivity network ($z = 6$) with periodic boundary conditions: $J_{ij} = 0, \pm 1$ with $P(J_{ij} \neq 0) \propto r_{ij}^{-\rho}$. With this choice one has $J_{ij}^2 \propto r_{ij}^{-\rho}$.
- We have implemented the Parallel Tempering Method.
- We have used multispin coding (64 bits) on a C++ code.
- We have simulated a Gaussian magnetic field and only two replicas.
- We have run on PC’s Clusters.
Some Observables

- The spin glass correlation function:

\[C(x) = \sum_{i=1}^{L} \left(\langle \sigma_i \sigma_{i+x} \rangle - \langle \sigma_i \rangle \langle \sigma_{i+x} \rangle \right)^2 \]

- The associated spin glass correlation length:

\[\xi \equiv \frac{1}{2} \sin \left(\frac{\pi}{L} \right) \left[\tilde{C}(0) \tilde{C}(\frac{2\pi}{L}) - 1 \right]^{\frac{1}{\rho - 1}} \]
Some Observables

• The spin glass correlation function:

\[C(x) = \sum_{i=1}^{L} \left(\langle \sigma_i \sigma_{i+x} \rangle - \langle \sigma_i \rangle \langle \sigma_{i+x} \rangle \right)^2 \]

• The associated spin glass correlation length:

\[\xi \equiv \frac{1}{2 \sin(\pi/L)} \left[\frac{\tilde{C}(0)}{\tilde{C}(2\pi/L)} - 1 \right] \frac{1}{\rho - 1} \]
Some Observables

- The spin glass correlation function:

\[C(x) = \sum_{i=1}^{L} \left(\langle \sigma_i \sigma_{i+x} \rangle - \langle \sigma_i \rangle \langle \sigma_{i+x} \rangle \right)^2 \]

- The associated spin glass correlation length:

\[\xi \equiv \frac{1}{2 \sin(\pi/L)} \left[\frac{\tilde{C}(0)}{\tilde{C}(2\pi/L)} - 1 \right] \left(\frac{1}{\rho - 1} \right) \]

- FSSA in the MF regime (1 < \rho < 4/3):

\[\frac{\chi_{sg}}{L^{1/3}} = \tilde{\chi} \left(L^{1/3} (T - T_c) \right), \quad \frac{\xi}{L^{\nu/3}} = \tilde{\xi} \left(L^{1/3} (T - T_c) \right) \]

with \(\nu = 1/(\rho - 1) \),
Some Observables

- The spin glass correlation function:
 \[C(x) = \sum_{i=1}^{L} \left(\langle \sigma_i \sigma_{i+x} \rangle - \langle \sigma_i \rangle \langle \sigma_{i+x} \rangle \right)^2 \]

- The associated spin glass correlation length:
 \[\xi \equiv \frac{1}{2 \sin(\pi/L)} \left[\frac{\tilde{C}(0)}{\tilde{C}(2\pi/L)} - 1 \right] \frac{1}{\rho-1} \]

- FSSA in the MF regime (1 < \rho \leq 4/3):
 \[\frac{\chi_{\text{sg}}}{L^{1/3}} = \tilde{\chi} \left(L^{1/3} (T - T_c) \right), \quad \frac{\xi}{L^{\nu/3}} = \tilde{\xi} \left(L^{1/3} (T - T_c) \right) \]
 with \(\nu = 1 / (\rho - 1) \),

- FSSA in the IRD regime (\rho > 4/3):
 \[\frac{\chi_{\text{sg}}}{L^{2-\eta}} = \tilde{\chi} \left(L^{1/\nu} (T - T_c) \right), \quad \frac{\xi}{L} = \tilde{\xi} \left(L^{1/\nu} (T - T_c) \right) \].
The negative overlap problem

- $P(q)$ in a magnetic field: SK results and numerical ones.

![Graph showing $P(q)$ vs q with a peak at $q=0$.]
The negative overlap problem

- $P(q)$ in a magnetic field: SK results and numerical ones.

![Graph showing $P(q)$ as a function of q with a negative overlap region inducing large corrections in $\tilde{C}(0)$](image)
The negative overlap problem

- $P(q)$ in a magnetic field: SK results and numerical ones.

- The negative overlap region induces large corrections in $\tilde{C}(0)$!!

\[P(q) \]

\[q=0 \quad q \]

\[\rho = 1.2 \text{ (MF)}, \ h = 0.3 \]

\[N = 2^6 \]

\[N = 2^{13} \]
Numerical Analysis of the Correlation function $(h = 0)$

- $h = 0$ and $\rho = 1.8$.

![Graph showing the relationship between T and $\chi_{SG} L^{\eta 2}$ for different values of ρ.](image)
Numerical Analysis of the Correlation function ($h = 0$)

- $h = 0$ and $\rho = 1.8$.
Numerical Analysis of the Correlation function ($h = 0$)

- $h = 0$ and $\rho = 1.8$.

![Graphs showing correlation function analysis](image)
We will avoid the $k = 0$ value by fitting ($k > 0$):

\[
\left(\frac{1}{\tilde{C}_4(k)} \right)^{\text{fit}} = A(L, T) + B(L, T) \left[\frac{\sin(k/2)}{\pi} \right]^{\rho-1}
\]
Numerical Analysis of the Correlation function

- We will avoid the $k = 0$ value by fitting ($k > 0$):

$$
\left(\frac{1}{\tilde{C}_4(k)} \right)^{\text{fit}} = A(L, T) + B(L, T) [\sin(k/2)/\pi]^\rho-1
$$

- We can analyze the L and T dependence of

$$A(L, T) \equiv \lim_{k \to 0} \frac{1}{\tilde{C}_4(k)}$$
Numerical Analysis of the Correlation function

- We will avoid the \(k = 0 \) value by fitting \((k > 0) \):
 \[
 \left(\frac{1}{\bar{C}_4(k)} \right)^{\text{fit}} = A(L, T) + B(L, T) \left[\sin \frac{k}{2} / \pi \right]^{\rho - 1}
 \]

- We can analyze the \(L \) and \(T \) dependence of

 \[
 A(L, T) \equiv \lim_{k \to 0} \frac{1}{\bar{C}_4(k)}
 \]

- We fix the \(L \)-dependent critical temperature by means:

 \[
 A(L, T_{c}(L)) = 0
 \]
Numerical Analysis of the Correlation function

\[T_c(L) \]

vs.

\[1/L \]
$h = 0.1$ and $\rho = 1.5$.
Numerical Analysis of the Correlation function ($h \neq 0$)

- $h = 0.1$ and $\rho = 1.5$.
Numerical Analysis of the Correlation function ($h \neq 0$)

- $h = 0.1$ and $\rho = 1.5$.

![Image of correlation function graphs]

- Various diagrams showing the correlation function $C(k)$ as a function of $|\sin(k/2)/\pi|^{1/2}$ for different values of $\kappa = 6, 7, 8, 9, 10, 11, 12$.

- Plots of $A(L,T)$ vs. T for different values of $\rho = 1.5$ and $h = 0.1$.

- Data fits for $C^{-1}(k)$ for $T = 2.1$, $\rho = 1.5$, $h = 0.1$.
Characterization of the de Almeida-Thouless line

	ρ	“D”	\hbar	T_c from $\tilde{C}(0)$	T_c from $A(L, T)$
MF	1.2	10	0.0	2.24(1)	2.34(3)
	1.2	10	0.1	2.02(2)	1.9(2)
	1.2	10	0.2	1.67(3)	1.4(2)
	1.2	10	0.3	1.46(3)	1.5(4)
	1.25	8	0.0	2.191(5)	2.23(2)
IRD	1.4	5	0.0	1.954(3)	1.970(2)
	1.4	5	0.1	\sim 1.5	1.67(7)
	1.4	5	0.2	\sim 1.1	1.2(2)
	1.5	4	0.0	1.758(4)	1.770(5)
	1.5	4	0.1	—	1.46(3)
	1.5	4	0.15	—	1.20(7)
Experiments

Relative decrease of $T_c(h)/T_c(0)$ with increase field for $\rho = 1.5$ and $h = 0, 0.1, 0.15$ and 0.2 versus the relative decrease of χ^* (ZFC susceptibility). Experimental data from Fe$_{0.5}$Mn$_{0.5}$TiO$_3$ (Jönsson et al.).

Hence, the critical field should be $H_c < 1000$ Oe.
Experimental data from Fe$_{0.5}$Mn$_{0.5}$TiO$_3$ (Jönsson et al.).
More on Experiments

- Experimental data from Fe$_{0.5}$Mn$_{0.5}$TiO$_3$ (Jönsson et al.).

\[\omega/2\pi = 0.51 \text{ Hz} \]

\[h = 3 \text{ Oe} \]

\[[\chi_{eq} - \chi'(\tau)] / \chi_{eq} \]

\[H (\text{Oe}) \]

\[T_f (\text{K}) \]
More on Experiments

- Experimental data from Fe$_{0.5}$Mn$_{0.5}$TiO$_3$ (Jönsson et al.).

- $q(t) \sim 1/t^x$ clear signature of a Spin Glass Phase (Ogileski).
Conclusions

- We have introduced a new analysis method to bypass the bias which induces the large plateau (at negative overlap) in $\tilde{C}(0)$.

- Experimental studies in Heisenberg spin glass find Phase Transition (Campbell et al.).

- Experimental studies in Ising spin glass find NO Phase Transition (Jönsson et al.) for fields $H > 1000\text{Oe}$.

- We suggest to reanalyze the experimental data for $H < 1000\text{Oe}$ on Fe$_{0.5}$Mn$_{0.5}$TiO$_3$.

- Recent experiments find spin glass order in a magnetic field for small external fields ($H \simeq 500\text{Oe}$) in RKKY Spin Glasses.
Conclusions

We have introduced a new analysis method to bypass the bias which induces the large plateau (at negative overlap) in $\tilde{C}(0)$.

We have found strong evidences for a stable spin glass phase in presence of a magnetic field.
Conclusions

- We have introduced a new analysis method to bypass the bias which induces the large plateau (at negative overlap) in $\tilde{C}(0)$.
- We have found strong evidences for a stable spin glass phase in presence of a magnetic field.
- Experimental studies in Heisenberg spin glass find Phase Transition (Campbell et al.).
- Experimental studies in Ising spin glass find NO Phase Transition (Jönsson et al.) for fields $H > 1000\, \text{Oe}$.
- We suggest to reanalyze the experimental data for $H < 1000\, \text{Oe}$ on Fe$_{0.5}$Mn$_{0.5}$TiO$_3$.
- Recent experiments find spin glass order in a magnetic field for small external fields ($H \approx 500\, \text{Oe}$) in RKKY Spin Glasses.
Conclusions

- We have introduced a new analysis method to bypass the bias which induces the large plateau (at negative overlap) in \(\tilde{C}(0) \).
- We have found strong evidences for a stable spin glass phase in presence of a magnetic field.
- Experimental studies in Heisenberg spin glass find Phase Transition (Campbell et al.).
- Experimental studies in Ising spin glass find NO Phase Transition (Jönsson et al.) for fields \(H > 1000 \text{Oe} \).
Conclusions

- We have introduced a new analysis method to bypass the bias which induces the large plateau (at negative overlap) in $\tilde{C}(0)$.
- We have found strong evidences for a stable spin glass phase in presence of a magnetic field.
- Experimental studies in Heisenberg spin glass find Phase Transition (Campbell et al.).
- Experimental studies in Ising spin glass find NO Phase Transition (Jönsson et al.) for fields $H > 1000$Oe.
- We suggest to reanalyze the experimental data for $H < 1000$ Oe on Fe$_{0.5}$Mn$_{0.5}$TiO$_3$.

Recent experiments find spin glass order in a magnetic field for small external fields ($H \approx 500$ Oe) in RKKY Spin Glasses.
Conclusions

- We have introduced a new analysis method to bypass the bias which induces the large plateau (at negative overlap) in $\tilde{C}(0)$.
- We have found strong evidences for a stable spin glass phase in presence of a magnetic field.
- Experimental studies in Heisenberg spin glass find Phase Transition (Campbell et al.).
- Experimental studies in Ising spin glass find NO Phase Transition (Jönsson et al.) for fields $H > 1000$Oe.
- We suggest to reanalyze the experimental data for $H < 1000$ Oe on Fe$_{0.5}$Mn$_{0.5}$TiO$_3$.
- Recent experiments find spin glass order in a magnetic field for small external fields ($H \simeq 500$ Oe) in RKKY Spin Glasses.
Some (additional) References:

- H. Katzgraber and A. P. Young, PRB 68, 224408 (2003); 72, 184416.
- H. Katzgraber and A. Hartmann, PRL 102, 037207 (2009).
- L. Leuzzi, G. Parisi, F. Ricci-Tersenghi and J. J. Ruiz-Lorenzo, PRL
- H. Katzgraber, D. Larson and A. P. Young, PRL 102, 177205 (2009).
- D. Petit, L. Fruchter, I.A. Campbell. PRL 88, 207206 (2002).
- P. E. Jönsson, H. Takayama, H. Aruga Katori and A. Ito, PRB 71, 180412(R) (2005).
- Y. Tabata, K. Matsuda, S. Kanada, T. Yamazaki, T. Waki, H. Nakamura, K. Sato and K. Kindo, arXiv:1009.6115v2.