Can Coastal Upwelling Trigger a Climate Mode? A Study on Intraseasonal-Scale Coastal Upwelling Off Java and the Indian Ocean Dipole

T. Horii, E. Siswanto, I. Iskandar, I. Ueki, and K. Ando

Abstract Coastal upwelling along the southern coast of Java brings cold and nutrient-rich subsurface water to the surface. We explored whether the upwelling could trigger the onset of the Indian Ocean Dipole (IOD) by supplying cold water to the southeastern tropical Indian Ocean. We used satellite-based daily chlorophyll-a concentration (Chl-a) data during 2003–2020 as a proxy of the coastal upwelling. We focused on first Chl-a bloom that occurred in April–June, the onset phase of the positive IOD (pIOD). We found that the timing and strength of the upwelling signals were significantly correlated with the subsequent IOD peaks. We diagnosed processes associated with the upwelling affecting sea surface temperature (SST) in the southeastern Indian Ocean. Results indicate that after the cold-water upwelling south of Java, westward surface temperature advection plays a role in anomalously cooling the SST in the southeastern Indian Ocean and setting a favorable condition for the subsequent pIOD development.

Plain Language Summary Along the southwestern coastal waters of Java islands in Indonesia, coastal upwelling brings up cold water from below and can cool the ocean surface temperatures. Past studies reported that strong upwelling signals were observed together with the positive Indian Ocean Dipole (IOD) phenomenon. However, it was unclear if and how the coastal cold water spreads over large area of the Indian Ocean and affect the occurrence of IOD. We used sea surface chlorophyll-a (Chl-a) data estimated from satellite observations as an indicator of coastal upwelling. We focused on the date when the first Chl-a bloom occurred south of Java in each year. On average, Chl-a bloom occurs around June, but in years when it occurred earlier (around April-May), Chl-a bloom was followed by a positive IOD event in August-October. We further investigated how the cold water in the coastal area spreads widely over the eastern Indian Ocean. It was found that stronger westward ocean currents expanded the cold water to a wider area of the eastern Indian Ocean and can set a favorable condition for the development of the positive IOD. Thus, accurate observation and understanding of the coastal upwelling may improve the predictability of the Indian Ocean climate.

1. Introduction

The Indian Ocean Dipole (IOD) is a climate mode in the Indian Ocean (Saji et al., 1999) that is characterized by the development of basin-wide dipole pattern in the anomalous sea surface temperature (SST). The large-scale SST change causes a shift in the atmospheric circulation and affects the global climate (e.g., Saji & Yamagata, 2003) and causes extreme weather conditions such as flooding in east Africa (Black et al., 2003) and droughts in east Australia (Ummenhofer et al., 2009). A more detailed understanding of the onset and development of the IOD, as well as its earlier prediction, is an important issue in an Indian Ocean climate study.

In the onset phase of a positive IOD (pIOD) event, cold SST anomalies (SSTA) with anomalous southeasterly winds first appear off the coasts of Sumatra and Java around April–May (Saji et al., 1999; Susanto et al., 2001; Xie et al., 2002). The cold SST then spread in the southeastern tropical Indian Ocean and the warm SSTA spread in the west due to coupled ocean-atmosphere interactions. From a large-scale perspective, the initial SSTA signal indicates the result that large-scale changes in the atmosphere and ocean associated with the IOD, that is, anomalous winds and subsurface conditions in the tropical Indian Ocean, are exposed as enhanced seasonal coastal upwelling along the Indonesian coasts (e.g., Xie et al., 2002).
Various factors can set up a favorable background condition for the onset of the pIOD, such as the El Niño-Southern Oscillation (ENSO) (e.g., Annamalai et al., 2003), biennial monsoon variability in the Indian Ocean (Crétat et al., 2018), and anomalous oceanic and atmospheric condition in the southern Indian Ocean (Fischer et al., 2005; Zhang et al., 2020). Based on these previous achievements, the present study focuses on the coastal upwelling along the southern coast of Java (e.g., Susanto et al., 2001; Wyrtki, 1962), the spatial scale of which is one to two orders smaller than these large-scale factors. Could the coastal upwelling actively contribute to the onset and development of pIOD events, not only as a dependent variation of the large-scale air-sea coupled interaction associated with the IOD? This hypothesis is based on the expansion of cold SSTA from off Sumatra and Java to the southeastern Indian Ocean from May to August observed by satellite and in situ moored buoy data (Horii et al., 2008, 2009; Vinayachandran et al., 2007) during the 2006 pIOD.

On the cold SSTA south of Java, Delman et al. (2016) pointed out that the cooling around May-July was a precursor of a pIOD which is driven by upwelling Kelvin waves. While several studies used numerical models and investigated the ocean temperature variations along the coasts of Sumatra and Java associated with IOD (Delman et al., 2018; Du et al., 2008; Halkides & Lee, 2009), no observational study has directly studied the impact of the seasonal timing of the upwelling onset on the IOD, and assessed the possible contribution of the coastal upwelling to SST variations over the eastern Indian Ocean. We explore the possibility that the anomalous cold water along the coasts leads to subsequent large-scale IOD onset and development. If this possibility holds, understanding the coastal upwelling in the southeastern Indian Ocean could contribute to a better understanding of the IOD and thus a better prediction.

To clarify the coastal upwelling variations around May-June, we need to resolve intraseasonal-scale variations. Past studies showed that there is a short-term occurrence of the upwelling due to anomalous southeasterly alongshore winds (Cao et al., 2019; Chen et al., 2015; Horii et al., 2016) during a certain phase of intraseasonal variation, referred to as Madden-Julian oscillation (MJO) (Madden & Julian, 1994) or intraseasonal oscillation (ISO) (Lawrence & Webster, 2002). However, compared to the open ocean (e.g., McPhaden et al., 2009), there have been fewer such hydrographic time series in the coastal area. Analyses by satellite-observed SST (e.g., Hendiarti et al., 2004) or daily sea level variations (Horii et al., 2016, 2018) cannot necessarily discriminate the SST cooling due to coastal upwelling. Satellite-based Chl-a data could be a proxy for the coastal upwelling (Siswanto et al., 2020), but because of the large missing values, most previous studies used monthly averages (e.g., Iskandar et al., 2009; Susanto & Marra, 2005). Recently, Xu et al. (2021) used daily interpolated data and outlined the intraseasonal and interannual Chl-a variations in the southeastern Indian Ocean.

The present study makes daily time series for the coastal upwelling signals based on the satellite-based Chl-a data. We herein primarily report relationships on the coastal upwelling signal in the onset phase of the IOD and its subsequent evolution. We also diagnose the process of how and to what extent the coastal upwelling can contribute to the SSTA variation in the southeastern Indian Ocean.

2. Data and Processing

2.1. Data Sets

We used daily merged surface Chl-a data provided by the Copernicus Marine Service (Garnesson et al., 2019). We also used monthly Chl-a data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) for 1998–2007 to observe the climatology. The daily wind data was obtained from the Cross-Calibrated Multi-Platform (CCMP) satellite-based ocean surface wind data set (Mears et al., 2019). The SST data were provided by the National Oceanic and Atmospheric Administration (NOAA) daily optimum interpolation (OI) data set (Reynolds et al., 2007). Using the data set, we calculated Dipole Mode Index (DMI; Saji et al., 1999) as the difference in SSTA between western (50°–70°E, 10°S–10°N) and eastern regions (90°–110°E, 10°S–0°) (Figure 1). To diagnose the ocean surface heat advection, we used the Ocean Surface Current Analysis-Real Time (OSCAR) data (Bonjean & Lagerloef, 2002). To investigate surface heat flux variation, we used the TropFlux data set (Praveen Kumar et al., 2012). To estimate the thermocline variation south of Java, we used hourly sea level data from a tidal station (7.75°S, 109.02°E) along the coast (Figure S1 in Supporting Information S1). Following the procedure of Horii et al. (2016), we prepared a daily sea level anomaly (SLA) time series with barometric corrections and tides removed.
2.2. A Proxy of the Coastal Upwelling

To make a proxy of the coastal upwelling south of Java, we used a Chl-a data set (OCEANCOLOUR_GLO_CHL_L3_REP_OBSERVATIONS_009_085). The original grids are 1/24° × 1/24° grids (approximately 4.6 km). This product is based on a multiple ocean color sensors but is limited to daily observations, that is, a space-time interpolation is not applied. Due to the large number of missing values off Sumatra, we focused on the region south of Java, where the missing values were relatively small. We analyzed the period from 2003 to 2020 during which the moderate resolution imaging spectroradiometer (MODIS) is incorporated into the merged data.

As a proxy of the coastal upwelling, the average Chl-a data south of Java was computed as follows. (a) A spatial Gaussian filter with an e-folding scale of 1/4° was applied to the original Chl-a data set to produce data with 1/8° × 1/8° grids. Here, the data was calculated only if there were more than 50% data around each grid. (b) A temporal linear interpolation was applied for a missing period within 4 days. These procedures can be applicable here because we focus on time scales more than intraseasonal variability (>20 days) while ignoring ocean submesoscale disturbances. We confirmed that the results did not change even if we traded the order of the (a) and (b) above. (c) The interpolated Chl-a data are averaged over the coastal region (Figure 1 and Figure S1 in Supporting Information S1), defined as inside the line between (8.0°S, 106°E) and (9.5°S, 114°E), which is approximately 100 km from the Java coast. The spatial scale is appropriate for observing the coastal upwelling signals (Horii et al., 2018). After (a) and (b), available data in the region during April-September in each year was 91.5% on average, and ranged from 75.6% (2010) to 99.7% (2019) (Table S1 in Supporting Information S1).

Figure 1. Time series of Chl-a concentration (mg/m³; left axis; logscale) averaged south of Java (see Figure S1 in Supporting Information S1 for the map). The light blue and red shades indicate time series of 31-day running-mean Dipole Mode Index (DMI; right axis).
Finally, we estimated the error range using a statistical method (see Text S1 and Figure S2 in Supporting Information S1 for details). The error ranges are shown in Figure S3 in Supporting Information S1.

2.3. Comparison to SST and Sea Level Variations

The first peaks of Chl-a from April to August in each year were mostly accompanied by strengthening of upwelling-favorable alongshore winds, SST cooling, and lowering of SLA (Figure 2 and Figure S2 in Supporting Information S1). Based on our previous study, the lowering SLA is consistent with the shoaling thermocline south of Java (Horii et al., 2018). For example, the Chl-a peaks (>2.0 mg/m3) in mid-June in 2006 and 2007 were concurrent with SST cooling and SLA lowering (Figure S3 in Supporting Information S1). Here, we defined the first significant Chl-a signal in each year based on the two standard deviations (STD) of Chl-a variability from April to June (0.45). Based on the first signals, we made a composite time series of temporal changes in SSTA and SLA (Figure 2). The average peaks of the SST cooling and SLA lowering were approximately −3.2 (°C/month) and −39 (cm/month), respectively, and these signals are statistically significant at the 90% level. Significant lowering in SLA first appeared from day −16, and then SST cooling and Chl-a increase occur concurrently. Intraseasonal-scale variation (e.g., Cao et al., 2019) mainly explained these variations (Figure S4 in Supporting Information S1). We conclude that coastal upwelling signals south of Java can be observed from the Chl-a proxy during the onset phase of the IOD. We also obtained the same results using a higher resolution (1/20° × 1/20°) SST data set of Group for High-Resolution Sea Surface Temperature (GHRSST; https://podaac.jpl.nasa.gov) instead.

3. Coastal Upwelling Signals and Subsequent IOD Events

The daily Chl-a time series for the coastal region south of Java, the proxy of the coastal upwelling, shows weak variations from December to March and has seasonal peaks from August to October in most years (Figure 1). The development and peak of Chl-a are concurrent with southeasterly monsoon winds over the southeastern Indian Ocean (Figure 2). The year-to-year variations show that the Chl-a signals are generally larger in pIOD years such as 2006 and 2019, while the signals are smaller in negative IOD (nIOD) years such as 2010 and 2016. In several pIOD years (Table S1 in Supporting Information S1), significant intraseasonal-scale Chl-a signals above 0.5 mg/m3 appeared in April−June, earlier than the seasonal coastal upwelling period in July−October. This indicates an early supply of cold water due to a short-term upwelling from April to early June in these years.

We focused on the earlier coastal upwelling signals than the basin-scale SSTA developments in several pIOD years (Figure 1) and investigated the relationship between the timing of the first Chl-a signal and the subsequent IOD condition in each year (Figure 3a). A daily time series enabled us to observe a significant correlation between the timing of the first upwelling signals and the subsequent IOD peaks: coastal upwelling signals before early June tended to be followed by pIOD events with DMI > 0.5. On the other hand, in neutral years and nIOD years, most of the coastal upwelling signals occurred after mid-June. Most of the first Chl-a blooms are significant, even when taking into account the error ranges (Figure S3 in Supporting Information S1). Note that the result did not change when the threshold of 2STD was replaced from 3STD to 5STD, whereas this relationship did not hold for 1STD because a sporadic weak Chl-a signal was detected in January–March.

Figure 2. (a) Composite time series of winds averaged for 90°—100°E along the equator and 100°—114°E along the coasts of Sumatra and Java from day −45 to +45 based on the first Chl-a bloom during 2003–2020 (Table S1 in Supporting Information S1). (b) As in (a), but for Chl-a south of Java. (c) As in (a), but for temporal changes in sea surface temperature anomalies (SSTA) (blue; °C/month) and sea level anomaly (SLA) (black; cm/month) south of Java. The SSTA was averaged in the same region as the Chl-a. Five-day running-mean filters were applied. The values with dots are statistically significant at the 90% level. The shadings represent the 25th–75th percentile ranges.
We also investigated the relationship between the Chl-a amplitude observed in April-June and the subsequent IOD condition (Figure 3b). The Chl-a averaged in April-June was significantly correlated with the subsequent DMI peaks. The average Chl-a signals greater than 0.4 mg/m3 during April-June were followed by pIOD events. On the other hand, pIOD events did not develop when the average Chl-a was less than 0.35 mg/m3, except in 2012. Among 10 pIOD cases (blue), no significant relationship was obtained between the preceding Chl-a signal and the subsequent DMI peaks. The results did not change with the minor modification of the averaged period of Chl-a or for the case in which we used the average DMI around the peaks (August-October).

To determine whether the coastal upwelling signals depend on the large-scale ocean-atmosphere condition, we also checked the correlation between the average Chl-a (April-June) and the Nino-3.4 index or DMI in the same period. The correlation between Chl-a and Nino-3.4 was −0.30, whereas that with DMI was +0.44. This suggests that in the onset phase of the IOD (April-June), it is unlikely that the coastal upwelling signals occurred due to the large-scale change of the tropical Pacific and Indian Ocean associated with ENSO and IOD, respectively. The Chl-a signals in April-June were concurrent with intraseasonal-scale local SST and SLA variations (Figure S3 in Supporting Information).

4. Anomalous Surface Temperature Advection Associated With the Coastal Upwelling

To investigate whether and to what extent the early occurrence of the coastal upwelling plays a role to anomalously cool the SST in the eastern Indian Ocean, we observe composite SSTA (Figure 4) based on the first Chl-a signal in each year (Table S1 and Figure S3 in Supporting Information). After the upwelling around April-June in pIOD years, significant cold SSTA develop in the southeastern Indian Ocean, including the coastal regions (Figure 4a). The largest cooling is observed south of Java, reaching −1.5 °C in 1 month. The wider distribution of the cold SSTA than the spatial scale of the coastal upwelling is due to the surface heat flux variation. The period (day 0 to approximately +30) follows the easterly phase of the ISO in which the stronger southeasterly alongshore winds enhanced the latent surface heat cooling there (Cao et al., 2019; Horii et al., 2016). For the upwelling in other years, the development of the cold SSTA south of Java is similar to that in pIOD years, although the cooling is confined south of Java, whereas anomalous SST warming is also observed in the west of 100°E.

To diagnose the processes on the expanded cold SSTA observed in the onset phase of the pIOD, we investigate the contribution of anomalous cold-water advection. Anomalous advections are expected to be due to offshore-ward Ekman flow driven by alongshore southeasterly wind anomalies (Wirasatriya et al., 2020) and enhanced northwestern south Java currents (Quadfasel & Cresswell, 1992). Using observational data sets, we estimated the anomalous surface temperature advections. The horizontal mixed-layer temperature gradient and surface currents were estimated using the SST and OSCAR data set, respectively. See the Supporting Information (Text S2 in Supporting Information) for details. Although the estimated horizontal temperature advection

![Figure 3](https://via.placeholder.com/150)

Figure 3. (a) Scatterplot between the timing of the first Chl-a bloom and subsequent maximum Dipole Mode Index (DMI) during August-October. (b) As in (a), but for the average Chl-a from April to June. The numerals denote the year (e.g., “06” means “2006”). The correlation coefficient (r) is shown in each panel.
contains errors of approximately 0.5°C/month in the southeastern Indian Ocean (Horii et al., 2009), it is useful to diagnose SST variations associated with IOD (Horii et al., 2013). We also diagnosed the contribution of surface heat flux variations, assuming a mixed-layer depth (MLD) of 30 ± 10 m (Keerthi et al., 2013).

After the first signal of coastal upwelling in pIOD years, significant cold temperature advection anomalies extend westward from the coastal region to the open ocean. The regional peak around 10°–7°S, 98°–103°E is consistent with that in the SSTA change. The anomalous cold advection is primarily explained by the nonlinear zonal advection (Text S2 and Figure S5 in Supporting Information S1). Anomalously enhanced westward surface currents bring cold temperature anomalies from east to west. The pair of climatological (anomalous) westward currents and anomalous (climatological) temperature gradients also has a secondary role in the cooling (Figure S5 in Supporting Information S1). On the other hand, cold advection anomalies were observed only south of Java for other years and warm advection anomalies were prominent west of 107°E (Figure 4d).

We diagnose the anomalous contribution of the surface heat flux and horizontal temperature advection to SSTA changes before and after the coastal upwelling signals for the southeastern sector (100°–110°E, 10°S–5°S) (Figures 4a–4d) of the eastern pole of the IOD. The flux contribution was estimated by the net surface heat flux. On the composite of pIOD years, SSTA changes and advection anomalies have similar amplitudes and

Figure 4. Composite SSTA change (°C) from day 0 to day +30 based on the first upwelling signal for (a) 10 positive IOD (pIOD) years and (b) seven other years. (c) and (d) As in (a) and (b), but for horizontal surface temperature advection anomalies integrated from day 0 to day +30, respectively. (e) Composite time series for 10 pIOD years for the area (100°–110°E, 10°S–0°) shown in Figures 4a–4d. The lines denote the temporal change in the sea surface temperature anomalies (SSTA) (blue), the surface horizontal temperature advection (black), and the contribution of net surface heat flux (gray). Positive heat flux indicates a heat gain for the ocean. (f) As in (e), but for seven other years. The values with dots are statistically significant at the 90% level.
show significant cooling from day -1 to day $+5$ and from day -3 to day $+12$, respectively (Figure 4e). The flux occasionally contributes to the cooling around day -15, but shows warming after day $+18$. The total flux does not contribute to cooling in the region. Neither surface heat flux nor advection explains the peak SSTA cooling around day 0. Ocean vertical processes that are not quantified here must play a role in the cooling. Nevertheless, the integrated contribution from the advection for 1 month after the first coastal upwelling signal (day 0) is -0.8°C and is equivalent to the observed SSTA change (-1.0°C). On the other hand, there are no significant SSTA changes in the composite time series for other years (Figure 4f), as the timing of SSTA cooling varies among the cases. From day -30 to day -2, anomalous warm advections from the west due to eastward surface current anomalies significantly contribute to the warming. Unlike pIOD years, anomalous heat flux mainly by the enhanced latent heat flux significantly contributes to the temperature change of -0.5 to -1.0°C with peaks at day 0 and day $+15$. Although these flux contributions were estimated assuming a MLD of 30 m, the conclusions are the same in case of the MLD of 20 m or 40 m.

These results indicate that intraseasonal-scale coastal upwelling around April to early June in pIOD years leads to SSTA cooling in the southeastern Indian Ocean on a temporal scale approximately 1 month thereafter. This anomalous cold advection prevails only in the pIOD years when an earlier occurrence of the anomalously cold coastal waters is effectively expanded to the open ocean in the form of nonlinear advection anomalies. Implications of the cooling for the IOD onset and development are further discussed in the next section.

5. Discussion and Conclusions

A daily proxy of the coastal upwelling south of Java showed some relationships between the early occurrence of the upwelling and the subsequent IOD evolution (Figure 3). Anomalous cold advections to the open ocean associated with the coastal upwelling in pIOD years were also demonstrated (Figure 4). Further question should be how this signal could promote the development of the basin-scale IOD. An earlier supply of cold temperature anomalies into the eastern edge of the tropical Indian Ocean may have an implication for triggering ocean-atmosphere interaction. Since the climatological SST in the eastern equatorial Indian Ocean has its peak in April-May, the cold SSTA south of Java appearing in this period results in a large SST gradient with a spatial scale of approximately 1,000 to 2,000 km. This large SST gradient can provide a favorable condition for Bjerknes feedback, which is essential for the development of the IOD.

The SST cooling by the anomalous cold advections in the southeastern Indian Ocean is observed only in the pIOD years, whereas intraseasonal-scale coastal upwelling signals are present in most years (e.g., Cao et al., 2019). This indicates that the background conditions in the eastern Indian Ocean around April–May are essential for the onset and development of the IOD (e.g., Song et al., 2008). The present study suggests that it would be important to have intraseasonal-scale coastal upwelling under the condition of a shallow thermocline in the eastern Indian Ocean. This leads to subsequent anomalous coolings that expand over a wider area due to nonlinear cold advection anomalies. As a partial evidence of this speculation, significant interrelationship among intraseasonal-scale southeasterly wind anomalies and subsequent SLA and SST decreases during the first Chl-a bloom period was mainly observed in the pIOD years (Figure S6 in Supporting Information S1). Note that in some years, large-scale dipole SSTA (pIOD) have already appeared before the first upwelling signals, such as in 2007, 2017, and 2018 (Figure 1). In these cases, the basin-scale SSTA and atmosphere-ocean interaction started by surface heat flux (e.g., Wang et al., 2020), and the coastal upwelling plays a secondary role in further cooling the SSTA. Further studies including the use of numerical models are needed to better quantify the coastal upwelling and its potential impact on IOD onset.

Finally, we would like to note that the relationship between the alongshore southeasterly winds/coastal upwelling south of Java and the subsequent pIOD is similar to that between westerly wind bursts and subsequent El Niño in the tropical Pacific in terms of multi-scale interactions. Although these are opposite anomalous conditions, these are examples of how climate modes develop due to intraseasonal-scale forcing on favorable background fields. Thus, understanding the coastal upwelling signals will help predict pIOD events as well as WWB on El Niño events. We recognize that appropriate observation of the eastern boundary region in the tropical Indian Ocean will contribute to Indian Ocean climate study.
Data Availability Statement

Merged surface Chl-a concentration data were provided by the Copernicus Marine Service (https://resources.marine.copernicus.eu/product-detail/OCEANCOLOUR_GLO_CHL_L3_REP_OBSERVATIONS_009_085_DATA-ACCESS). Monthly Chl-a data from Sea-viewing Wide Field-of-View Sensor (SeaWiFS) were provided by the Goddard Space Flight Center of NASA and were obtained through the Asia-Pacific Data-Research Center (APDRC; http://apdrc.soest.hawaii.edu/datadoc/seawif_v5.2_mon.php). Quality-controlled sea level data from tide gauges were provided by the University of Hawaii Sea Level Center (https://uhlscl.soest.hawaii.edu/opendap/rqds/global/hourly/contents.html). Optimum interpolation SST data were provided by NOAA (https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html). The GHRSSST Level 4 data were obtained through the APDRC (http://apdrc.soest.hawaii.edu/datadoc/ghrsst.php). The Cross-Calibrated Multi-Platform (CCMP) wind data set were provided by Remote Sensing Systems (http://www.remss.com/measurements/ccmp/). Ocean surface current data (OSCAR) were provided by Physical Oceanography Distributed Active Archive Center at the Jet Propulsion Laboratory of NASA (https://podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-deg). Air-sea flux data (TropFlux data set) were provided by the Indian National Centre for Ocean Information Services (https://incois.gov.in/tropflux/data_access.jsp).

Acknowledgments

The authors thank two anonymous reviewers for their helpful and constructive comments. T. H. was supported by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research, 18K03753 and 18H03731. I. I. is grateful for the support from the Ministry of Education, Culture, Science and Technology, Republic of Indonesia through the Penelitian Dasar Unggulan Perguruan Tinggi 2022 (075/ E5/PG.02.00.PT/2022).

References

Annamalai, H., Murtugudde, R., Potemra, J., Xie, S.-P., Liu, P., & Wang, B. (2003). TOPOgraphic CONTROL of intraseasonal variability of the Indian Ocean: Spring initiation of the zonal mode. Deep Sea Research Part II, 50(12–13), 2305–2330. https://doi.org/10.1016/S0967-0645(03)00284-8
Black, E., Slingo, J., & Sperber, K. R. (2003). An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Monthly Weather Review, 131(1), 74–94. https://doi.org/10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2
Bonjean, F., & Lagerloef, G. S. (2002). Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. Journal of Physical Oceanography, 32(10), 2938–2954. https://doi.org/10.1175/1520-0485(2002)032<2938:DMAACO>2.0.CO;2
Cao, G., Xu, T., He, Y., Wang, L., Wang, D., Wei, Z., & Zhu, Y. (2019). Seasonality in intraseasonal sea surface temperature variability along the Sumatra-Java southern coast. Journal of Geophysical Research: Oceans, 124, 5138–5157. https://doi.org/10.1002/2018JC014853
Chen, G., Han, W., Li, Y., Wang, D., & Shinoda, T. (2015). Intraseasonal variability of upwelling in the equatorial Eastern Indian Ocean. Journal of Geophysical Research: Oceans, 120, 7598–7615. https://doi.org/10.1002/2015JC011223
Crétu, J., Terray, P., Masson, S., & Sooraj, K. P. (2018). Intrinsic precursors and timescale of the tropical Indian Ocean Dipole: Insights from partially decoupled numerical experiment. Climate Dynamics, 51(4), 1311–1332.
Delman, A. S., McClean, J. L., Sprintall, J., Talley, L. D., & Bryan, F. O. (2018). Process-specific contributions to anomalous Java mixed layer cooling during positive IOD events. Journal of Geophysical Research: Oceans, 123, 4153–4176. https://doi.org/10.1002/2017JC013749
Delman, A. S., Sprintall, J., McClean, J. L., & Talley, L. D. (2016). Anomalous Java cooling at the initiation of positive Indian Ocean Dipole events. Journal of Geophysical Research: Oceans, 121, 5805–5824. https://doi.org/10.1002/2016JC011635
Du, Y., Qu, T., & Meyers, G. (2008). Interannual variability of sea surface temperature off Java and Sumatra in a global GCM. Journal of Climate, 21(11), 2451–2465. https://doi.org/10.1175/2008JCLI1753.1
Fischer, A. S., Terray, P., Guilyardi, E., Gualdi, S., & Delecluse, P. (2005). Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. Journal of Climate, 18(17), 3428–3449. https://doi.org/10.1175/JCLI3478.1
Garrensson, P., Mangin, A., Fanton d’Andon, O., Demaria, J., & Bretagnon, M. (2019). The CMEMS GlobColour chlorophyll a product based on satellite observation: Multi-sensor merging and flagging strategies. Ocean Science, 15(3), 819–830. https://doi.org/10.5194/os-15-819-2019
Halkides, D. J., & Lee, T. (2009). Mechanisms controlling seasonal-to-interannual mixed layer temperature variability in the southeastern tropical Indian Ocean. Journal of Geophysical Research, 114, C03021. https://doi.org/10.1029/2008JC004949
Hendriarti, N., Siegel, H., & Ohde, T. (2004). Investigation of different coastal processes in Indonesian waters using SeaWiFS data. Deep Sea Research Part II: Topical Studies in Oceanography, 51(1–3), 85–97. https://doi.org/10.1016/j.dsr2.2003.10.003
Horii, T., Hase, H., Ueki, I., & Masumoto, Y. (2008). Oceanic precondition and evolution of the 2006 Indian Ocean Dipole. Geophysical Research Letters, 35, L03607. https://doi.org/10.1029/2007GL032464
Horii, T., Masumoto, Y., Ueki, I., Hase, H., & Mizuno, K. (2009). Mixed layer temperature balance in the eastern Indian Ocean during the 2006 Indian Ocean dipole. Journal of Geophysical Research, 114, C07011. https://doi.org/10.1029/2008JC005180
Horii, T., Ueki, I., & Ando, K. (2018). Coastal upwelling events along the southern coast of Java during the 2008 positive Indian Ocean Dipole. Journal of Oceanography, 74(5), 499–508. https://doi.org/10.1007/s10872-018-0475-z
Horii, T., Ueki, I., Ando, K., & Mizuno, K. (2013). Eastern Indian Ocean warming associated with the negative Indian Ocean Dipole: A case study of the 2010 event. Journal of Geophysical Research: Oceans, 118, 536–549. https://doi.org/10.1002/jgrc.20071
Horii, T., Ueki, I., Syamsudin, F., Sofian, I., & Ando, K. (2016). Intraseasonal coastal upwelling signal along the southern coast of Java observed using Indonesian tidal station data. Journal of Geophysical Research: Oceans, 121, 2690–2708. https://doi.org/10.1002/2015JC010886
Iskandar, I., Rao, S. A., & Tozuka, T. (2009). Chlorophyll-a bloom along the southern coasts of Java and Sumatra during 2006. International Journal of Remote Sensing, 30(3), 663–671.
Keerthi, M. G., Lengaigne, M., Vialard, J., de Boyer Montégut, C., & Muraleedharan, P. M. (2013). Interannual variability of the Tropical Indian Ocean mixed layer depth. Climate Dynamics, 40(3), 743–759. https://doi.org/10.1007/s00382-012-1295-2
Lawrence, D. M., & Webster, P. J. (2002). The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. Journal of Atmospheric Science, 59, 1593–1606. https://doi.org/10.1175/1520-0469(2002)059<1593:TBSIOS>2.0.CO;2
Madden, R. A., & Julian, P. R. (1994). Observations of the 40–50 day tropical oscillation: A review. Monthly Weather Review, 122, 814–837. https://doi.org/10.1175/1520-0493(1994)122<0814:OOTITO>2.0.CO;2
McPhaden, M. J., Meyers, G., Ando, K., Masumoto, Y., Murti, V. S. N., Ravichandran, M., et al. (2009). Rama: The research moored array for African–Asian–Australian monsoon analysis and prediction. Bulletin of the American Meteorological Society, 90(4), 459–480. https://doi.org/10.1175/2009BAMS2608.1
Mears, C. A., Scott, J., Wentz, F. J., Ricciardulli, L., Leidner, S. M., Hoffman, R., & Atlas, R. (2019). A near-real-time version of the cross-calibrated multiparameter (CCMP) ocean surface wind velocity data set. *Journal of Geophysical Research: Oceans*, 124, 6997–7010. https://doi.org/10.1029/2019JC015367

Praveen Kumar, B., Vialard, J., Lengaigne, M., Murty, V., & McPhaden, M. J. (2012). Tropflux: Air-sea fluxes for the global tropical oceans description and evaluation. *Climate Dynamics*, 38, 1521–1543. https://doi.org/10.1007/s00382-012-1455-4

Quadfasel, D., & Cresswell, G. R. (1992). A note on the seasonal variability of the South Java Current. *Journal of Geophysical Research*, 97(C3), 3685–3688. https://doi.org/10.1029/91JC03056

Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G. (2007). Daily high-resolution-blended analyses for sea surface temperature. *Journal of Climate*, 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1

Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. *Nature*, 401(6751), 360–363. https://doi.org/10.1038/43854

Saji, N. H., & Yamagata, T. (2003). Possible impacts of Indian Ocean dipole mode events on global climate. *Climate Research*, 25(2), 151–169. https://doi.org/10.3354/cr025151

Susanto, R. D., Gordon, A. L., & Zheng, Q. (2001). Upwelling along the coasts of Java and Sumatra and its relation to ENSO. *Geophysical Research Letters*, 28(8), 1599–1602. https://doi.org/10.1029/2000GL011844

Susanto, R. D., & Marra, J. (2005). Effects of the 1997/98 El Niño on chlorophyll a variability along the southern coasts of Java and Sumatra. *Oceanography*, 18(4), 124–127. https://doi.org/10.5670/oceanog.2005.13

Ummenhofer, C. C., England, M. H., McIntosh, P. C., Meyers, G. A., Poek, M. J., Risbey, J. S., et al. (2009). What causes southeast Australia’s worst droughts? *Geophysical Research Letters*, 36, L04706. https://doi.org/10.1029/2008GL036801

Vinayachandran, P. N., Kurian, J., & Neema, C. P. (2007). Indian Ocean response to anomalous conditions in 2006. *Geophysical Research Letters*, 34, L15602. https://doi.org/10.1029/2007GL030194

Wang, G., Cai, W., Yang, K., Santos, A., & Yamagata, T. (2020). A unique feature of the 2019 extreme positive Indian Ocean Dipole event. *Geophysical Research Letters*, 47, e2020GL088615. https://doi.org/10.1029/2020GL088615

Wirasatriya, A., Setiawan, J. D., Sugianto, D. N., Rosyadi, I. A., Haryadi, H., Winarso, G., et al. (2020). Ekman dynamics variability along the southern coast of Java revealed by satellite data. *International Journal of Remote Sensing*, 41(21), 8475–8496. https://doi.org/10.1080/01431161.2020.1797215

Wyrtki, K. (1962). The upwelling in the region between Java and Australia during the south-east monsoon. *Australian Journal of Marine & Freshwater Research*, 13, 217–225. https://doi.org/10.1071/mf0620217

Xie, P., Annamalai, H., Schott, F. A., & McCreary, J. P., Jr. (2002). Structure and mechanisms of South Indian Ocean climate variability. *Journal of Climate*, 15(8), 864–878. https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2

Xu, T., Wei, Z., Li, S., Susanto, R. D., Radiarta, N., Yuan, C., et al. (2021). Satellite-observed multi-scale variability of sea surface chlorophyll-a concentration along the south coast of the Sumatra-Java islands. *Remote Sensing*, 13, 2817. https://doi.org/10.3390/rs13142817

Zhang, L. Y., Du, Y., Cai, W., Chen, Z., Tonga, T., & Yu, J. Y. (2020). Triggering the Indian Ocean Dipole from the southern hemisphere. *Geophysical Research Letters*, 47, e2020GL088648. https://doi.org/10.1029/2020GL088648