Globally discordant Isocrinida (Crinoidea) migration confirms asynchronous Marine Mesozoic Revolution

Rowan J. Whittle¹, Aaron W. Hunter²,³, David J. Cantrill⁴ & Kenneth J. McNamara²,³

The Marine Mesozoic Revolution (MMR, starting ~200 million years ago) changed the ecological structure of sea floor communities due to increased predation pressure. It was thought to have caused the migration of less mobile invertebrates, such as stalked isocrinid crinoids, into deeper marine environments by the end of the Mesozoic. Recent studies questioned this hypothesis, suggesting the MMR was globally asynchronous. Alternatively, Cenozoic occurrences from Antarctica and South America were described as retrograde reversions to Palaeozoic type communities in cool water. Our results provide conclusive evidence that isocrinid migration from shallow to deep water did not occur at the same time all over the world. The description of a substantial new fauna from Antarctica and Australia, from often-overlooked isolated columnals and articulated crinoids, in addition to the first compilation to our knowledge of Cenozoic Southern Hemisphere isocrinid data, demonstrates a continuous record of shallow marine isocrinids from the Cretaceous-Paleogene to the Eocene/Oligocene boundary.

¹ British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK. ² Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK. ³ School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. ⁴ Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, VIC 3004, Australia. Correspondence and requests for materials should be addressed to R.J.W. (email: roit@bas.ac.uk) or to A.W.H. (email: awh31@cam.ac.uk)
Interactions between predators and prey have shaped the evolution of life and predation is thought to have been responsible for many major trends in the fossil record\(^1\)–\(^3\). During the Marine Mesozoic Revolution (MMR, starting \(~200\) million years ago\(^2\)), the evolution of shell-crushing (duraphagous) and boring predation in marine organisms caused a change from the dominance of sedentary, epifaunal suspension feeders to more mobile organisms including infauna and predators\(^2\)–\(^5\). It is thought that the MMR heavily affected the stalked crinoids (sea lilies), making the majority of forms extinct as their sessile nature made them easy prey for durophagous predators in shallow waters. Stalked isocrinid crinoids (Order Isocrinida) were displaced into deeper water\(^4\)–\(^8\), potentially by the more mobile comatulid crinoids (featherstars, Order Comatulida), which were better able to evade predation and which underwent a series of radiations during the MMR\(^9\),\(^10\).

Today stalked isocrinids are almost entirely restricted to deeper water environments, their shallowest occurrences being \(100–170\) m in the western Pacific\(^11\),\(^12\) and western Atlantic\(^6\),\(^13\). They occur to depths of \(200–300\) m and, rarely, they occur at \(>400\) m\(^14\). Isocrinids are more mobile than other stalked forms and capable of local relocation\(^15\)–\(^18\). Despite this, it was thought that isocrinids were restricted to middle-shelf and deeper environments during the Late Cretaceous and to outer-shelf and deeper by the Eocene\(^6\),\(^13\).

There is fossil evidence for an increase in predation on shallow water crinoids in the Mesozoic\(^1\),\(^10\), including an increased frequency of bite marks and rate of regenerated arms as a result of autotomy (arm shedding)\(^12\),\(^19\). In modern populations, elevated rates of predation in shallower waters compared with deep waters has also been cited as evidence of increased predation during the MMR\(^12\),\(^19\). However, the main lines of evidence for changes in predation intensity on isocrinids bought about by the MMR are the apparent lack of isocrinids from shallow water fossil sites in the Cenozoic and their absence from shallow waters at the present day.

Globally, the fossil record of stalked crinoids is extremely good for the Middle to Late Cretaceous\(^20\)–\(^22\). Deep water isocrinid occurrences are found from the early Eocene (Rösnäs Formation, Denmark\(^20\)), the Eocene London Clay, England\(^23\), the early Oligocene (Keasey Formation, Oregon, USA\(^24\)–\(^27\)), the late Oligocene (West Indies\(^28\)), the Miocene (Japan\(^29\),\(^30\)) and the Pliocene (Philippines\(^31\)), and these are consistent with the argument that stalked crinoids migrated from shallower to deeper water in the early Cenozoic\(^4\),\(^6\)–\(^8\). However, in the Northern Hemisphere some shallow water isocrinids persisted until the end of the Danian\(^20\),\(^24\), and there are a few isolated occurrences from the late Paleocene\(^6\) and the late Oligocene\(^6\). Recently stalked crinoids have been described from the early Paleogene of Central Europe\(^21\), indicating that stalked forms remained in shallow water settings for

Fig. 1 Examples of newly discovered and described Southern Hemisphere stalked crinoids. **a**, **b** Isocrinus sp. 1 lateral surface views (a WAM 88.32; b WAM 88.6) Cardabia Formation (Wadera Calcarenite Member), Paleocene, Western Australia. **c** Saracrinus sp. lateral side of the crown (D.916.1) from the Cross Valley Formation, Seymour Island, Antarctica. **d**, **e** Metacrinus sp. 2 articular surface views (‘Katie’s Stars’ WAM 17.1938) from Nanarup Limestone, middle Eocene, Western Australia. **f** Metacrinus sp. 2 lateral surface views (WAM 88.374a) Wilson Bluff Limestone (Toolina Limestone) middle Eocene, Western Australia. **g** Metacrinus sp. 3 articular surface views (WAM 17.1937) Wilson Bluff Limestone (Toolina Limestone) middle Eocene, Western Australia. Scale bars = 5 mm.
Taxa	Taxon	Age	Geological unit	Local information	Collector	No. fossils	Housed	Accession nos.
Isocrinus sp. 1	Paleocene	Cardabia Fm (W.M) Australia	Giralia Station	K.J. McNamara 1987	3	WAM 88.32, WAM 88.6, WAM 88.103		
Isocrinus sp. 2	Paleocene	Cardabia Fm (W.M) Australia	Butlara-Giralia Rd Giralia Homestead	K.J. McNamara 1987	1	WAM 88.130		
Isocrinus sp. 3	Paleocene	Cardabia Fm (W.M) Australia	Giralia Range WA Plain west of Mesa Giralia Station	K.M Brimmell 1987	3	WAM 92.716, WAM 92.718, WAM 97.936		
Isocrinus sp. 4	Paleocene	Cardabia Fm (W.M) Australia	Butlara-Giralia Rd Giralia Homestead	A.W. Hunter 2016	2	WAM 17.842, WAM 17.861		
Isocrinus sp. indet	Eocene	Browns Creek Clay Australia	Victoria Coastal Cliffs 0.5km S of Mouth Johanna River	G. W. Kendrick 1984	1	WAM 94.510		
Metacrinus sp. 1	Eocene	Cardabia Fm (C.M) Australia	Giralia Range WA 500m W of Section Hill Cardabia Station	K.J. McNamara 1979	1	WAM 84.597		
Metacrinus sp. 2	Eocene	Nanurup Limestone Toolina Limestone Blanche Point Marl Australia	Nanurup near Albany, Baxter Cliffs East end of Isrealite Bay Western Australia	K.J. McNamara & family L. Stephens 1989	4	WAM 87.223, WAM 17.1938, WAM 88.374a, WAM 86.313		
Metacrinus sp. 3	Eocene	Nanurup Limestone Toolina Limestone Blanche Point Marl Australia	See above & Maslin Beach South Australia	A. Baynes 2005	3	WAM 17.1937, WAM 86.238, WAM 18.1		
Notocrinus sp.	Miocene	Mannum Fm Australia	Young Hus Band (Upstream) New Rd Cutting South Australia	E. Holmes & A.B. Smith 1989	17	NHM-UK EE1261-2, NHM-UK EE1263-5, NHM-UK EE1266-74, NHM-UK EE1759		
Loriolometra sp.								
Glanothomites sp.								
Metacrinus sp. 4	Paleocene	Sobral Fm Antarctica	Lower part of the Sobral Fm (see Supp Fig 7)	R.J. Whittle & J.A. Crame 2009/2010 BAS Antarctic field season	12	BAS D.9.209.801, D.9.209.802, D.9.209.214A, D.9.209.2148, D.9.211.81, D.9.211.528, D.9.211.529, D.9.211.530, D.9.211.531A, D.9.211.531B, D.9.211.531C, D.9.211.531D		
Saracrinus sp.	Paleocene	Cross Valley Fm Antarctica	Base of Allomember C (see Supp Fig C)	D. Cantrell 1998/1999 BAS Antarctic field season	2	BAS D.916.1, D.916.2		

Fig. 2 Information for newly identified fossils included in this study. Descriptions and images of these specimens can be found in the Supplementary Note 1 and Supplementary Figures 1-5. Names in red indicate authors on this paper who originally collected a large proportion of the material in the field. Materials collected by other people, undescribed before this study, were accessed through the institutions in which they are housed. WM Wadera Member, CM Cashin Member, WAM Western Australian Museum, SAM South Australian Museum, BAS British Antarctic Survey, NHM Natural History Museum, UK some time after the initiation of the MMR, until the late Mesozoic and into the early Cenozoic. This led to the suggestion that predation intensity during the Mesozoic was not the only factor controlling the presence or absence of stalked forms in shallow and deep water environments and the off-shore displacement of isocrinids was a gradual process that occurred later than previously supposed. Isolated occurrences of Cenozoic stalked isocrinids from Antarctica, New Zealand, South America, and Australia, have also been described from shallow water deposits. Explanations for the South American and Antarctic occurrences have focused on a hypothetical reversion to Paleozoic type communities in response to environmental perturbations. However, isolated occurrences of isocrinids in the Cenozoic have led to suggestions that the MMR was not globally synchronous or that there was a possible delayed onset of MMR in Southern Hemisphere regions. We describe 37 new Antarctic and Australian isocrinid occurrences of isolated columns (often ignored in evolutionary...
studies) and articulated crowns, assigned to nine different species in three genera. Crinoids from the Cenozoic basins of Australia, one of the largest packages of shallow water sediment of this age, have not been studied in detail and, until now, have only yielded one crinoid occurrence. Exhaustive studies of museum collections and detailed provenance information were applied together with field sampling. Antarctic isocrinids were collected with field studies and published literature (Supplementary Note 2). Our descriptions (Supplementary Note 1) of previously described fossil occurrences were applied together with environmental and temporal placement. In addition to previously described fossil occurrences, this substantial new body of data indicates that the Southern Hemisphere was an important shallow water isocrinid province during the Paleogene. The data presented herein provides conclusive evidence that the migration of stalked isocrinids from shallow to deep water did not occur at the same time all over the world.

Results

Identification of new isocrinid species. Nine new Cenozoic species (and one indeterminate species) of the Order Isocrinida have been identified from shallow water deposits in Antarctica and Australia (Figs. 1 and 2) using traditional crown characters as well as columns or sets of columns (pluri columns) (Supplementary Note 1, Supplementary Figs. 1–5). Three genera of the Order Comatulida are identified from Australia (Fig. 2, Supplementary Note 1, Supplementary Fig. 5c, g–i). Two different isocrinid families are identified: the Metacrinidae (Metacrinus and Saracrinus) and Isocrinidae (Isocrinus). New occurrences of Metacrinidae are identified from Antarctica (Figs. 1–4, Supplementary Note 1, Supplementary Figs. 4 and 6); and Metacrinidae plus Isocrinidae from Australia (Figs. 1–4, Supplementary Note 1, Supplementary Figs. 1–3, 5 and 7). A taxonomic monograph describing all of these new species is in production.

Western Australian isocrinids. In Western Australia four Paleocene species of Isocrinus are identified from shallow marine shelf strata in the Carnarvon Basin (Figs. 2–5, Supplementary Notes 1 and 2, Supplementary Figs. 1, 2 and 7), and isocrinids persisted in this region until the Eocene (Metacrinus sp. 1). Metacrinus species are identified from shallow water deposits in Western and Southern Australia, from the middle and late Eocene (Metacrinus sp.1, Carnarvon Basin, Metacrinus sp. 2; Euclia and St Vincent Basin, Metacrinus sp. 3 Euclia and St Vincent Basin) (Fig. 2, Supplementary Figs. 3, 5d – f and 7 and Supplementary Notes 1 and 2). An indeterminate species of Isocrinus is identified from Eocene shallow water sediments of the Otway Basin, Victoria (Figs. 2–4, Supplementary Fig. 5a, b and Supplementary Notes 1 and 2). In Australia comatulids (the following genera are identified: Glenetromites sp., Notocrinus sp., and Lariolometra sp., Figs. 2–5, Supplementary Note 1, Supplementary Fig. 5c, g–i) first appear in the fossil record in the early Miocene shallow water Mannum Formation (Supplementary Note 2). Our descriptions (Supplementary Note 1) of previously collected specimens represent the richest accumulation of fossil comatulids in the Southern Hemisphere.

Antarctic isocrinids. New specimens of Metacrinus are identified from Antarctic Paleocene deltic sediments on Seymour Island (Metacrinus sp. 4, Sobral Formation, Supplementary Figs. 4 and 6, Supplementary Notes 1 and 2). These are the oldest confirmed specimens of Metacrinus in the fossil record. Previously described
Table: Taxa and Distribution

Taxa	Taxon	Depth	Time	Distribution	Source
Isocrinidae indet	Isocrinus sp. indet	Eocene	Browns Creek Clay	This Study	
Isocrinidae indet	Isocrinus sp. 1	Paleocene	Cardabia Fm (W.M)	This Study	
Isocrinidae indet	Isocrinus sp. 2	Paleocene			
Isocrinidae indet	Isocrinus sp. 3	Paleocene			
Isocrinidae indet	Isocrinus sp. 4	Paleocene			
?Nielsenicrinus sp.	Metacrinus sp. 1	Eocene	Cardabia Fm (C.M)	Milner 198948	
?Nielsenicrinus sp.	Metacrinus sp. 2	Eocene	Nanurup Limestone Toolina Limestone Blanche Point Marl	This Study	
?Nielsenicrinus sp.	Metacrinus sp. 3	Eocene			
?Nielsenicrinus sp.	Gienotremites sp.	Eocene			
Notocrinus sp.	Lorioiomera sp.	Miocene	Mannum Fm	This study	
M. fossils	Metacrinus sp. 4	Paleocene	Sobral Fm		
? Nielsencrinus waiteteensis	Metacrinus (?) seymouriensis	Paleocene	Sobral Fm	Rasmussen 197932	
Isselicrinus antarcticus	Isselicrinus sp.	Paleocene	Sobral Fm	Rasmussen 197932 Zinsmeister et al. 198936	
Notocrinus rasmusseni	Notocrinus sp.	Eocene	La Meseta Fm	Meyer & Oji 199333	
Notocrinus seymouriensis	Notocrinus sp.	Eocene	La Meseta Fm	Baumiller & Gazdicki 199634	
Isselicrinus sp.	Isselicrinus sp.	Eocene	Leticia Fm	Malumian & Olivero 200537	
?Metacrinus	?Metacrinus	Paleocene	Salamanca Fm	Malumian & Olivero 200537	
Isocrinidae indet	Isocrinidae indet	Miocene	Mantunau Gp, Curiosity Shop Sandstone	Hutton 187340	
Isocrinidae indet	Isocrinidae indet	Miocene	Mantunau Gp, Waikari & Mount Brown Fm	Hutton 187340	
Nielsenicrinus waiteteensis	Nielsenicrinus waiteteensis	Oligocene	Terehina Fm	Eagle 199337	
Isocrinidae indet	Isocrinidae indet	Oligocene	Otekaie Limestone Fm	Eagle 200741	
Isocrinidae indet	Isocrinidae indet	Eocene to Oligocene	Ototara Limestone	Kelly et al. 200343 Robinson & Lee 201142	
Isocrinidae indet	Isocrinidae indet	Eocene	Island Sandstone	Feldmann & Maxwell 199045	
Isocrinus cf I. stellatus	Isocrinus cf I. stellatus	Oligocene	Red Bluff Tuff	Eagle 200546	
Metacrinus motuketeketeensis	Metacrinus motuketeketeensis	Paleocene	Waitemata Group Cape Rodney Fm	Eagle 200439	
Metacrinus sp.	Metacrinus sp.	Paleocene	Kauru Fm	Stilwell et al. 199448	
Stenometra otekaieensis	Stenometra otekaieensis	Oligocene	Otekaie Limestone Fm	Eagle 200741	
Cypelometra aotearoa	Cypelometra aotearoa	Oligocene			

Fig. 4 Distribution data for taxa mentioned in Fig. 3, with data sources for this information. All samples were collected in shallow water. In the Distribution column Australian localities are presented in light blue, Antarctic localities are displayed in dark blue, South American localities are shown in pink, New Zealand localities are presented in green
Maarichtian specimens have been cited as being identified from the Sobral Fm and are thus probably also Paleocene in age (Figs. 3 and 4, Supplementary Note 2). Saracrinus sp., also identified from Seymour Island, inhabited a very shallow marine environment (Cross Valley Formation, Supplementary Note 2). This is the oldest confirmed occurrence of the extant genus Saracrinus in the fossil record (Supplementary Note 1). Several Cretaceous and Eocene occurrences of isocrinids have already been described from Seymour Island and fossil comatulids have previously been described from Antarctica from the early and late Eocene (Figs. 3 and 5). The more motile comatulid crinoids which had previously been described from Antarctica from the late Eocene (Figs. 3 and 5). Isocrinids were not present above the Eocene faunal province inhabited by shallow water isocrinids (Figs. 3 and 5). The modern deep water distribution of isocrinid crinoids is difficult to assess because, until recently, there was little information about predation on crinoids. Diving investigations have shown predation on recent comatulid crinoids by fishes of several families, consisting of sublethal damage to the crinoid visceral mass and arms. Crinoid ossicles from the Order Millericrinida were found in bromalites from the Triassic; durophagous sharks, colobodontid fish, placodonts, and some pachypleurosaurs or sauropterygian reptiles were suggested as possible predators. Predation on comatulid crinoids by cidaroid echinoids has been indicated by studying bite marks on crinoid columnals as well as through direct observation. However, thus far, the only confirmed evidence of predation on isocrinid crinoids has come from laboratory observations and in situ observations using submersibles of predation by cidaroid echinoids. Therefore, echi- noid predation was suggested as a major driver of crinoid radiation and diversity in the Mesozoic. Predation has also been inferred by looking at arm loss and regeneration, suggested to be a response to predation, in fossil isocrinids like Metacrinus from the La Meseta Formation. Latitudinal differences in predation may explain the patterns of Cretaceous isocrinid depth distribution seen in the Southern Hemisphere, if predation pressure decreased with increasing latitude. In modern brachiopods, lower frequencies of repaired predator attacks were observed at high latitudes, possibly due to a lower diversity of crushing predators. However, it is only today that durophagous predators are rare or absent from Antarctica. The presence of isocrinids in the La Meseta Formation was attributed to the population being subjected to lower predation pressure than generally prevailed in post-Mesozoic shallow water environments as the isocrinids had a lower rate of regenerated arms than in modern settings. However, taxa thought to predate upon crinoids are found along with isocrinids in Antarctic deposits so a lack of predators cannot be invoked to explain the present distribution in deeper waters around Australia, New Zealand, New Caledonia, Indonesia, the Philippines and Japan.

The late persistence of isocrinid crinoids in Antarctica, Australia, New Zealand and South America could be explained either as a result of an absence of, or reduced durophagous predation during the MMR in the Southern Hemisphere. Alternatively, it could be as a result of a delayed distribution and/or radiation of motile and more competitive comatulid crinoids which had greater success in shallow waters than the less mobile isocrinids. These two options are considered below.

The role of durophagous predation in relation to the distribution of isocrinid crinoids is difficult to assess because, until recently, there was little information about predation on crinoids. Diving investigations have shown predation on recent comatulid crinoids by fishes of several families, consisting of sublethal damage to the crinoid visceral mass and arms. Crinoid ossicles from the Order Millericrinida were found in bromalites from the Triassic; durophagous sharks, colobodontid fish, placodonts, and some pachypleurosaurs or sauropterygian reptiles were suggested as possible predators. Predation on comatulid crinoids by cidaroid echinoids has been indicated by studying bite marks on crinoid columnals as well as through direct observation. However, thus far, the only confirmed evidence of predation on isocrinid crinoids has come from laboratory observations and in situ observations using submersibles of predation by cidaroid echinoids. Therefore, echi- noid predation was suggested as a major driver of crinoid radiation and diversity in the Mesozoic. Predation has also been inferred by looking at arm loss and regeneration, suggested to be a response to predation, in fossil isocrinids like Metacrinus from the La Meseta Formation.

Latitudinal differences in predation may explain the patterns of Cretaceous isocrinid depth distribution seen in the Southern Hemisphere, if predation pressure decreased with increasing latitude. In modern brachiopods, lower frequencies of repaired predator attacks were observed at high latitudes, possibly due to a lower diversity of crushing predators. However, it is only today that durophagous predators are rare or absent from Antarctica. The presence of isocrinids in the La Meseta Formation was attributed to the population being subjected to lower predation pressure than generally prevailed in post-Mesozoic shallow water environments as the isocrinids had a lower rate of regenerated arms than in modern settings. However, taxa thought to predate upon crinoids are found along with isocrinids in Antarctic deposits so a lack of predators cannot be invoked to explain the present distribution in deeper waters around Australia, New Zealand, New Caledonia, Indonesia, the Philippines and Japan.

The late persistence of isocrinid crinoids in Antarctica, Australia, New Zealand and South America could be explained either as a result of an absence of, or reduced durophagous predation during the MMR in the Southern Hemisphere. Alternatively, it could be as a result of a delayed distribution and/or radiation of motile and more competitive comatulid crinoids which had greater success in shallow waters than the less mobile isocrinids. These two options are considered below.
presence of the isocrinids in the region at the time. Teleost fish, crustaceans and sharks are found in Cretaceous, Paleocene and Eocene deposits of Antarctica60-64 in the same formations as isocrinids. The same is true for Western Australian Eocene deposits (K. McNamara pers. obs.). Isocrinids also co-occur with spines of cidaroid echinoids (known to predate on isocrinids15) in the Sobral Formation, and cidaroid echinoids have also been described from the La Meseta Formation65. Similarly cidaroids and isocrinids are both common in the middle Eocene Nanarup Formation in south-western Australia (McNamara pers. obs.).

Isocrinids are capable, as are comatulids, of autotomy to avoid predatory attacks12. Autotomy planes in stalks and arms and muscular articulations allowing rapid crumbling originated in the Middle Triassic65.66. This, along with recent evidence that isocrinids are motile12, indicates that isocrinids evolved adaptations that enabled them to evade predators during the Mesozoic. Recent specimens of the isocrinids Metacrinus, Saracrinus and Endoxocrinus have been shown to exhibit arm regeneration12,19. Endoxocrinus shows a greater frequency of arm regeneration in shallower (~150 m deep) water than in deeper water (~750 m), leading to the suggestion that predation in shallow water caused isocrinids to move to deeper water66. However, this also shows that today isocrinids are able to inhabit areas which are subject to predation. Isocrinids have been subject to predation throughout their evolutionary history, and have evolved strategies to deal with predatory attacks. Salamon and Gorzelak22 suggested that predation intensity during the Mesozoic was not the only factor controlling the presence or absence of stalked forms in shallow and deep water environments and our data seem to be consistent with this.

Comatulids (feather stars) are thought to have had a higher survival capacity in shallow water than stalked isocrinids12, due to their greater adaptability12. This resulted in comatulids becoming dominant in shallow waters at the present day66. The timing of the onset of comatulid radiation may have not been globally consistent, accounting for longer survival for isocrinids in shallow waters in the Southern Hemisphere. The first true comatulids date from the Early Jurassic66, but overall their fossil record is poor due to a lack of articulated fossils. Using disarticulated elements relies heavily on finding a single centrodorsal ossicle, as arm ossicles are largely taxonomically indeterminate. The oldest known Antarctic comatulid (Notocrinus) was described from the early Eocene and co-occurred with isocrinids34. In South Australia, specimens of comatulids (Glenotremites, Notocrinus, and Loriolometra–Notocrinidae) have been collected in abundance60 from the shallow water early Miocene Mannum Formation, with no co-occurring Isocrinida. This may indicate comatulid dominance in the marine community.

We can show that Australia has a shallow water fossil record of Isocrinida from the Paleocene to the end of the Eocene (Fig. 3). The oldest (Paleocene) Australian Isocrinida are from Western Australia (Fig. 3). At this time the southern margin of Australia was still connected to Antarctica67 (Fig. 5), but a transgression in the north led to the formation of a shallow water basin68, which the Isocrinida inhabited until the early Eocene. Australia finally separated from Antarctica later in the Eocene, forming an embayment with a complex of shallow water basins from west to east across the southern margin of the Australian continent (Fig. 5). Like echinoids69, foraminifera70, and brachiopods71, the Isocrinida show a pattern of dispersal in a southerly direction along the western Australia coast during the early Paleogene, then an easterly spread across the southern margin of the Australian continent (Fig. 5). Isocrinids do not occur in post- Eocene strata in Australia (Figs. 3 and 5), having seemingly been replaced by comatulids in shallow water habitats. New Zealand was left as an apparent shallow water refuge for isocrinids until the early Miocene (Fig. 3), isocrinids having persisted here from the Paleocene (Figs. 3 and 5)69-66. Following this, isocrinids were displaced to deeper water environments, which they still inhabit today15.

Isocrinids inhabited Antarctic shallow water communities until the end of the Eocene (Fig. 3). There is no evidence for fossil isocrinids in Antarctica, Australia or South America after the Eocene (Figs. 2 and 4). This was a time of speciation and radiation in the Southern Hemisphere for many taxa, including comatulids12,72 when changes in continental configuration and ocean circulation brought in different water masses and isolated Antarctic marine faunas10,14. The Antarctic Circumpolar Current (ACC) started around the EoceneOligocene boundary to early Oligocene72,75 physically isolating Antarctica and preventing warmer water masses from reaching the continent. Full development of the ACC resulted in faunal turnover in the Southern Hemisphere, and an increase in cool water cosmopolitan and true Antarctic endemic forms76,77. This is supported by molecular clock data, which shows that modern species of the comatulid Promachocrinus evolved in the Antarctic region after the onset of the ACC73. Similar radiation events after the onset of the ACC are seen in other taxa such as amphipods, isopods and octopods.72 The radiation of apparently more successful modern comatulid taxa in the Southern Hemisphere is co-incident with the demise of isocrinids in the region. The onset of the ACC may have caused a local extinction of isocrinids in the Southern Ocean. The repeated extension of ice sheets across the Antarctic continental shelf may also have discouraged the less mobile isocrinids from living at the depths at which they are found elsewhere today.

Overall, based on the evidence presented herein, it is clear that isocrinids inhabited shallow waters in the Southern Hemisphere region in the early Cenozoic, with the oldest metacrinid specimens found in Antarctica. Opening seaways resulted in isocrinids dispersing along newly formed shallow Australian basins around the southern margin of Australia to New Zealand.

Methods

Taphonomic study of isocrinids. The taxonomy of Cenozoic crinoids is virtually unstudied24 other than the notable exceptional occurrences where the crowns have been preserved such as the Rösnäs Formation (Eocene), Denmark, the London Clay (Eocene), England, the Kasey Formation (Oligocene) Mist, Columbia County, Oregon and the La Meseta Formation (Eocene), Seymour Island, Antarctica. The vast majority of material consists of single columnals or sets of columnals, much of which is in need of revision24. We used a new systematic framework based on recent taxonomic work on Jurassic and Cretaceous65 taxa and applied this to the new taxa collected from Australia and Antarctica (Supplementary Note 1). We also compared specimens to recent isocrinids from the Natural History Museum (NHM) UK and the University of Tokyo Museum. Artificially isocrinid crinoids are typically identified based on the number of brachials in the arms and their surface ornamentation. The systematics of isocrinid crinoids has been previously restricted to characters within the crown. In contrast, taxonomy using stem columnals or sets of columnals (pluricolumnals) is considered problematic28. However, there are studies which have extensively utilised columnals in the absence of preserved cup material79-81. We use the methodology detailed in these studies and summarised in Supplementary Fig. 8 for the material described herein. Taphonomic features include the outer surface of the stem (latera), the shape and articular face of the columnals, and its articulations (Supplementary Fig. 8). Sets of columnals called pluricolumnals typically represent stem segments shed in life. These can be quickly incorporated into the sediment or can remain in the substrate where they are subject to abrasion or local transport. The majority of the columnals have not been abraded, suggesting little transport82,83; the high number of articulated sets of columnals in the dataset also suggests rapid burial of columnal segments. However, it should be noted that articulated stalks and headless erect stalks have been observed to survive in the deep-sea and in lab-held Metacrinus from Japan83. Therefore, some caution is needed in claiming that articulated lengths of stalk found widely in the fossil record indicate rapid burial.

Sample collection. Information about the collecting localities of the newly identified specimens in this study can be found in Fig. 2, Supplementary Figs. 6 and 7.
1. Gorzelak, P., Salomon, M. A. & Baummiller, T. K. Predator-induced macroevolutionary trends in Mesozoic crinoids. *Proc. Natl. Acad. Sci. USA* **109**, 7004–7007 (2012).

2. Vermeij, G. J. The Mesozoic Marine Revolution: evidence from snails, predators and grazers. *Paleobiology* **3**, 245–258 (1977).

3. Vermeij, G. J. *Evolution and Escalation: An Ecological History of Life*. (Princeton University Press, Princeton, New Jersey, 1987; 527).

4. Harper, E. M. in *Predator-Prey Interactions in the Fossil Record* (eds Kelley, P. H., Kowalewski, M. & Hansen, T. A.) pp. 433–455, (Kluwer Academic/Plenum Publishers, New York, 2003).

5. Wagner, P. J., Kosnik, M. A. & Lidgard, S. Abundance distributions imply elevated complexity of Post-Paleozoic marine ecosystems. *Science* **314**, 1289–1292 (2006).

6. Bottjer, D. J. & Jablonski, D. Paleoenvironmental patterns in the evolution of Anostracan benthic marine ostracoderms. *Paleobiology* **3**, 540–560 (1988).

7. Aronson, R. B. Scale-independent biological interactions in the marine environment. *Oceanogr. Mar. Biol. - Annu. Rev.* **32**, 435–460 (1994).

8. Jablonski, D. & Sepkoski, J. I. Jr. Paleobiology, community ecology, and scales of ecological pattern. *Ecology* **77**, 1367–1378 (1996).

9. Gorzelak, P., Salomon, M. A., Trzpiot, D., Lach, R. & Baummiller, T. K. Diversity dynamics of post-Paleozoic crinoids—in quest of the factors affecting crinoid macroevolution. *Lethaia* **49**, 231–244 (2016).

10. Baummiller, T. K. et al. Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. *Proc. Natl. Acad. Sci. USA* **107**, 5893–5896 (2010).

11. Oji, T. in *Current Aspects of Biogeography in West Pacific and East Asian Regions. Nature and Culture, No. 1.* (eds Ohba, H., Hayami, I., Mochizuki, K.) pp. 27–43, (The University Museum, The University of Tokyo, 1989).

12. Oji, T. is predation intensity reduced with increasing depth? Evidence from the West Atlantic stalked crinoid *Endocrinus parvus* (Gervais) and implications for the Mesozoic Marine Revolution. *Paleobiology* **22**, 339–351 (1996).

13. Meyer, D. L. & Macurda, D. B. Jr. Adaptive radiation of comatulid crinoids. *Paleobiology* **3**, 74–82 (1977).

14. Ameiziane-Cominardi, N. Distribution bathymetrique des pentacrines du Pacifique occidental: essai de modelisation et d'application aux faunes du lias: problemes de tectono-eustatisme au cours du rifting lethyien. *Doc. Des Lab. 1*, 1–83 (1972).

15. Salamon, M. A., Gorzelak, P., Borszcz, T., Gajerski, A. & Kazmierzczak, J. A. Crinoid concentration Lagerstätte in the Turonian (Late Cretaceous) Conulid Bed (Miechów-Wolbrom area, Poland). *Geobios* **32**, 351–357 (2009).

16. Burns, C. & Mooi, R. *Exceptional crinoid occurrences from the Cenomanian Toarcian (Early Cretaceous) of Mist, Oregon, USA*. (The University Museum, The University of Tokyo, 1989).

17. Moore, R. C. & Vokes, H. E. Lower Tertiary crinoid faunas from western Oregon. *Geol. Surv. Prof. Pap.* **233-E**, 113–148 (1953).

18. Burns, C. & Mooi, R. In *From Greenhouse to Icehouse: The Marine Eocene-Oligocene Transition* (eds Prothero, D. R., Ivany, L. C. & Nesbitt, E. A.) pp. 88–106, (Columbia University Press, New York, 2003).

19. Burns, C., Campbell, K. A. & Pettorelli, R. Deeper water: a crinoid–brachiopod association in the Upper Oligocene of Antigua, West Indies. *Lethaia* **48**, 291–298 (2015).

20. Oji, T. Tiocene isocrinids (stalked crinoids) from Japan and their biogeographic implication. *Trans. Proc. Palaeontol. Soc., Ipn.* **N. S. 157**, 412–429 (1990).

21. Burns, C., Campbell, K. A. & Pettorelli, R. Exceptional crinoid occurrences and associated carbonates of the Keasey Formation (Early Oligocene) at Mist, Oregon, USA. *Paleoecology: Palaeoclimatol. Palaeoecol.* **227**, 210–231 (2005).

22. Donovan, S. K., Harper, D. A. T. & Portell, R. W. In deep water: a crinoid–brachiopod association in the Upper Oligocene of Antigua, West Indies. *Lethaia* **210**, 291–298 (2015).

23. Oji, T. *Miocene isocrinids (stalked crinoids) from Japan and their biogeographic implication*. *Trans. Proc. Palaeontol. Soc., Ipn.* **N. S. 157**, 412–429 (1990).

24. Fujiwara, S.-I., Oji, T., Tanaka, Y. & Kondo, Y. Relay Strategy and adaptation to a muddy environment in *Issellicerina (Isellericrinidae: Crinoidae)*. *Palaeontol. **20**, 241–248 (2005).

25. Donovan, S. K. & Helverda, R. A. Neogene crinoids of southeast Asia: preservation, systematics and significance. *Alcheringa* **41**, 215–221 (2016).
32. Rasmussen, H. W. Cretaceous-Cenozoic geology and biostratigraphy of the North American Cordillera. *Contrib. U.S. Natl. Mus.* 111 (1976).
33. Meyer, D. L. & Oji, T. Crinoideos del Cretacico superior y del Terciario inferior de la Cordillera de la Costa, Argentina. *Rec. Asoc. Argent. Geol.* 4, 79–87 (1979).
34. Meyer, D. L. & Oji, T. Crinoids from Seymour Island, Antarctic Peninsula: Paleobiogeographic and paleoecologic implications. *J. Paleontol.* 67, 250–257 (1993).
35. Baumiller, T. K. & Gaudzicki, A. New crinoids from the Eocene La Meseta Formation of Seymour Island, Antarctic Peninsula. *Paleoceanogr.* 55, 101–116 (1996).
36. Aronson, R. B., Blake, D. B. & Oji, T. Trogocore community structure in the late Eocene of Antarctica. *Geology* 25, 903–906 (1997).
37. Zinsmeister, W. J., Feldmann, R. M., Woodburne, M. O. & Elliot, D. H. Latest Cretaceous-Earliest Tertiary transition on Seymour Island, Antarctica. *J. Paleontol.* 68, 631–738 (1994).
38. Aronson, R. B. & Oji, T. Crinoids (Crinoidea: Metacrinitinae) from the Early Miocene of Motuketekete Island, Hauraki Gulf, Auckland, New Zealand. *Rec. Asoc. Argent. Geol.* 43, 1–24 (2004).
39. Hutton, F. W. Catalogue of the Tertiary Mollusca and Echinodermata of New Zealand in *The Collection of the Colonial Museum (New Zealand Geological Survey, Wellington)*. 1: 257–473 (1980).
40. Eagle, M. K. A new genus of fossil crinoid (Cycrtocrinida: Sclerocrinidae) from Chatham Island, New Zealand. *Rec. Asoc. Argent. Geol.* 42, 35–47 (2005).
41. Malumian, N. & Olivero, E. B. Shallow-water late middle Eocene crinoids from Tierra del Fuego: a new southern record of a retrograde community structure. *Sci. Mar.* 69, 349–353 (2005).
42. Milner, G. J. The Crinoidea: an illustrated survey of the fossil record. *Rec. Auckl. Mus.* 67, 3–39 (2001).
43. Messing, C. Metacrinites Carpenter, 1882 in *Messing, C. (2015) World List of Crinoides. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=411397 on 2016-03-01 (2015)*.
44. Meyer, D. L. & Aussch, W. L. in *Biotic Interactions in Recent and Fossil Benthic Communities* (eds Tevesz, J. J. et al.) pp. 377–427. (Springer Science + Business Media, New York, 1983).
45. Baumiller, T. K. & Gahn, F. J. Testing predator-driven evolution with Paleozoic crinoid arm regeneration. *Science* 305, 1453–1455 (2004).
46. Meyer, D. L. Evolutionary implications of predation on Recent comatulid crinoids from the Great Barrier Reef. *Paleobiology* 11, 154–164 (1985).
47. Salamon, M. A., Niewiadomski, R., Gorzech, P., Lach, R. & Surmik, D. Bromalites from the Middle Triassic of Poland and the rise of the Mesoozoic Marine Revolution. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 321–322, 142–150 (2012).
48. Harper, E. M. & Peck, L. S. Vertical and depth gradients in marine predation pressures. *Glob. Ecol. Biogeogr.* 25, 670–678 (2016).
49. Aronson, R. B. et al. Climate Change and the Invasibility of the Antarctic Benthos. *Annu. Rev. Ecol. Evol. Syst.* 38, 129–154 (2007).
50. Grande, L. & Chatterjee, S. New Cretaceous fish fossils from Seymour Island, Antarctic Peninsula. *Paleoceanogr.* 30, 829–837 (2015).
51. Oji, T. & Kitazawa, K. Discovery of two rare species of stalked crinoids from Metacrinus (Crinoidea: Metacrininae) from the Early Miocene of Motuketekete Island, Hauraki Gulf, Auckland, New Zealand. *Rec. Asoc. Argent. Geol.* 41, 217–222 (2006).
52. Hess, H. Origin and radiation of the comatulids (Crinoidea) in the Jurassic. *Swiss. J. Palaeontol.* 133, 23–34 (2014).
53. Clarke, J. D. A., Gammon, P. R., Hou, B. & Gallagher, S. J. Middle to Upper Eocene stratigraphic nomenclature and deposition in the Eucla Basin. *Aust. J. Earth Sci.* 50, 231–248 (2003).
54. Hocking, R. M., Moors, H. T. & Van de Graaff, J. E. The Geornarvon Basin Western Australia. *Geol. Surv. West. Aust. Bull.* 133, 1–288 (1987).
55. McNamara, K. J. in *Inchinordroom Research 1986* (eds Canvila Carnevilli, M. D. & Bonasoro, F.) pp. 333–338 (A.A. Balkema, Rotterdam, 1999).
56. McGowan, B. et al. Australasian palaeobiogeography: the Palaeogene and Neogene record. *Rec. Auckl. Inst. Mus.* 23, 405–470 (2000).
57. Craig, R. S. The Cenozoic brachiopods of the Carnarvon Basin, Western Australia. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 43, 111–152 (2002).
58. Newman, L., Convey, P., Gibson, J. A. E. & Linse, K. Antarctic palaeobiology: Glacial refugia and constraints on past ice-sheet reconstructions. *PAGES News* 17, 22–24 (2009).
59. Wilson, N. G., Hunter, R. L., Lockhart, S. J. & Halanych, K. M. Multiple lineages and absence of pannixia in the “circumpolar” crinid *Pomachocrinus kerguelensis* from the Atlantic sector of Antarctica. *Mar. Biol.* 152, 895–907 (2004).
60. Barnes, D. K. A. & Clarke, A. Antarctic marine biology. *Curr. Biol.* 21, R451–R457 (2011).
61. Barrow, P. F., Filippelli, G. M., Florindo, F., Martin, E. E. & Scher, H. D. Onset and role of the Antarctic circumpolar current. *Deep Sea Res. Part 2 Top. Stud. Oceanogr.* 54, 2388–2398 (2007).
62. Lazarus, D. & Caulet, J. – P. in *The Antarctic Palaeoenvironment: A Perspective on Global Change Antarctic Research Series*, 60 (eds Kennett, J. P. & Warnke, D. A.) pp. 145–174 (American Geophysical Union, Washington, DC, 1993).
63. Brown, B., Gaina, G. & Müller, R. D. Circum-Antarctic paleoebathymetry: illustrated examples from Cenozoic to recent times. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 231, 158–168 (2006).
64. Hess, H., Messing, C. G. & Aussch, W. L. in *Treatise on Invertebrate Palaeontology, Part T, Echinodermata 2* (eds Selden, P.A.) pp. 1–261 (The University of Kansas Press, Lawrence, Kansas, 2011).
65. Simms, M. J. British Lower Jurassic crinoids. *Monogr. Palaeontogr. Soc., Lond.* 142 (581 for 1988), 1–103 (1989).
66. Hunter, A. W., Barras, C. G. & Thuy, B. Online field-guide to fossils: British Middle Jurassic echinoderms. *Proc. Geol. Assoc.* 122, 501–503 (2011).
67. Hunter, A. W. & Underwood, C. J. Lithofacies and taphofacies control on distribution of crinoid lineages and absence of pannixia in the “circumpolar” *Pomachocrinus kerguelensis* from the Atlantic sector of Antarctica. *Mar. Biol.* 152, 895–907 (2004).
68. Bowman, V. et al. The Paleocene of Antarctica: biostратigraphy and palaeoecological implications for the palaeo-Pacific margin of Gondwana. *Gondwana Res.* 38, 132–148 (2016).
69. Macelli, C. E. Stratigraphy, sedimentology, and palaeocore of Upper Cretaceous/Paleocene shallow-basin deposits of Seymour Island. *Geol. Soc. Am. Mem.* 169, 25–53 (1988).
70. Marenssi, S., Santillana, S. & Bauer, M. Estratigrafia, petrografía sedimentaria y procedencia de las formaciones Sobral y Cross Valley (Paleocene), isla Marambio (Seymour), Antártica. *Andean Geol.* 39, 67–91 (2012).
71. McGowan, B. The Tertiary of Australia: foraminiferal overview. *Mar. Micropaleontol.* 55, 174–176 (2010).
72. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. *Earth-Sci. Rev.* 113, 212–270 (2012).

Acknowledgements
This study is a part of the BAS Palaeoenvironments, Ice-sheets and Climate Change Programme. This work was funded by NERC (UK) grant NE/I00582X/1. The authors thank the PALEOPOLAR team and Dr J.D. Wits from the American Museum of...
Natural History. H. Blagbrough assisted with access to BAS collections and technical support, and P. Bucktrout with photography. Dr. D. Hodgson provided critical feedback. BAS provided Antarctic field logistics. We thank A. Cabrinovic and T. Ewin for access to specimens at the Natural History Museum, London. M. Siversson (WAM) and M-A. Binnie (SAM) provided access to Australian collections. The management of Giralia Station allowed access to their land. L.E. Young and R. Nicholls provided Australian field assistance. M.K. Eagle provided discussion. K.J.M. thanks those who helped collect the Australian material now housed in the WAM.

Author contributions

R.J.W. and A.W.H. initiated the study, collected specimens, compiled the data, conducted the analyses and wrote the manuscript. D.J.C. and K.J.M. collected specimens and edited the manuscript.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s42003-018-0048-0.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.