A note on the non-commutative arithmetic-geometric mean inequality

Teng Zhang

November 26, 2014

Abstract

This note proves the following inequality: if \(n = 3k \) for some positive integer \(k \), then for any \(n \) positive definite matrices \(A_1, A_2, \ldots, A_n \),

\[
\frac{1}{n^3} \left\| \sum_{j_1, j_2, j_3 = 1}^{n} A_{j_1} A_{j_2} A_{j_3} \right\| \geq \frac{(n-3)!}{n!} \left\| \sum_{j_1, j_2, j_3 = 1, \text{j_1, j_2, j_3 all distinct}}^{n} A_{j_1} A_{j_2} A_{j_3} \right\|,
\]

where \(\| \cdot \| \) represents the operator norm. This inequality is a special case of a recent conjecture by Recht and Ré.

1 Introduction

In [3], Recht and Ré conjectured that the standard arithmetic mean-geometric mean (AM-GM) inequality can be generalized to the non-commutative setting for positive definite matrices \(\{A_i \}_{i=1}^{n} \) as follows:

\[
\frac{1}{n^m} \left\| \sum_{j_1, \ldots, j_m = 1}^{n} A_{j_1} A_{j_2} \cdots A_{j_m} \right\| \geq \frac{(n-m)!}{n!} \left\| \sum_{j_1, \ldots, j_m = 1, \text{j_1, \ldots, j_m all distinct}}^{n} A_{j_1} A_{j_2} \cdots A_{j_m} \right\|.
\]

This inequality gives theoretical guarantee to the fact that, without-replacement sampling leads to faster convergence rates than with-replacement sampling for both the least mean squares and randomized Kaczmarz algorithms.

While the case \(n = m = 2 \) has been proved in [3] Proposition 3.2, to the best of our knowledge, the conjecture for the cases \(n, m > 2 \) remains open, and the main contribution of this note is a proof of the conjecture when \(m = 3 \) and \(n = 3k \) for some positive integer \(k \).

We remark that the following variant of the conjecture

\[
\frac{1}{n^m} \sum_{j_1, \ldots, j_m = 1}^{n} \left\| A_{j_1} A_{j_2} A_{j_3} \right\| \geq \frac{(n-m)!}{n!} \sum_{j_1, \ldots, j_m = 1, \text{j_1, \ldots, j_m all distinct}}^{n} \left\| A_{j_1} A_{j_2} A_{j_3} \right\|
\]

was proposed in [1] and the case \(m = 3 \) has been proved recently in [2].
1.1 Reduction of the conjecture

To prove (1.1), WLOG we assume that \(\| \sum_{j=1}^{n} A_j \| = 1 \), which is equivalent to

\[
\sum_{j=1}^{n} A_j \leq I.
\]

In the note, we write \(A \geq B \) or \(B \leq A \) if and only if \(A - B \) is positive semidefinite. Then the LHS of (1.1) is \(1/n^m \) and it is sufficient to prove

\[
-\frac{1}{n^m} I \leq E[A_{i_1} A_{i_2} \cdots A_{i_m}] \leq \frac{1}{n^m} I,
\]

where \(\{i_1, i_2, \cdots, i_n\} \) is a random permutation of \(\{1, 2, \cdots, n\} \).

2 The proof of the conjecture for \(n = m = 3 \)

The proof is based on the following lemmas, and their proofs are deferred to Sections 2.1 and 2.2.

Lemma 2.1. For symmetric matrices \(A, B \) and positive semidefinite matrix \(C \),

\[
ACA + BCB \geq ACB + BCA.
\]

Lemma 2.2. If \(A, B \) and \(C \) are symmetric matrices and \(A \leq B \), then

\[
CAC \leq CBC.
\]

We will prove the lower bound and the upper bound in (1.2) separately. To prove the upper bound of \(E[A_{i_1} A_{i_2} A_{i_3}] \), we apply Lemma 2.1 and obtain

\[
A_{i_1} A_{i_2} A_{i_3} + A_{i_3} A_{i_2} A_{i_1} \leq A_{i_1} A_{i_2} A_{i_1} + A_{i_3} A_{i_2} A_{i_3}.
\]

Therefore,

\[
E[A_{i_1} A_{i_2} A_{i_3}] = \frac{1}{2} E[A_{i_1} A_{i_2} A_{i_3} + A_{i_3} A_{i_2} A_{i_1}] \leq \frac{1}{4} E[A_{i_1} A_{i_2} A_{i_3} + A_{i_3} A_{i_2} A_{i_1} + A_{i_1} A_{i_2} A_{i_1} + A_{i_3} A_{i_2} A_{i_3}] = \frac{1}{4} E[(A_{i_1} + A_{i_3}) A_{i_2} (A_{i_1} + A_{i_3})].
\]

(2.1)

Since \(0 \leq A_{i_1} + A_{i_3} \leq I \), max_{0 \leq a \leq 1} \(a^2 (1 - a) = 4/27 \) and \(A_{i_2} \leq I - A_{i_1} - A_{i_3} \), applying Lemma 2.2 we have

\[
(A_{i_1} + A_{i_3}) A_{i_2} (A_{i_1} + A_{i_3}) \leq (A_{i_1} + A_{i_3}) (I - (A_{i_1} + A_{i_3})) (A_{i_1} + A_{i_3}) \leq \frac{4}{27} I.
\]

(2.2)

Combining (2.1) and (2.2), the upper bound of \(E[A_{i_1} A_{i_2} A_{i_3}] \) in (1.2) is proved.
To prove the lower bound of $\mathbb{E}[A_i A_{i2} A_{i3}]$ in (1.2), we again apply Lemma 2.1 and obtain
\[-A_i A_{i2} A_{i3} + A_{i3} A_{i2} A_i \leq A_i A_{i2} A_i + A_{i3} A_{i2} A_{i3}. \]

Similar to (2.2), we have
\[\mathbb{E}[-A_i A_{i2} A_{i3}] = \frac{1}{2} \mathbb{E}[A_{i3} A_{i2} A_i - A_{i3} A_{i2} A_{i3}] \]
\[\leq \frac{1}{4} \mathbb{E}[-A_i A_{i2} A_{i3} - A_{i3} A_{i2} A_{i3} + A_{i3} A_{i2} A_{i3}] \]
\[= \frac{1}{4} \mathbb{E}[(A_i - A_{i3}) A_{i2} (A_i - A_{i3})]. \]

Therefore, to prove the lower bound in (1.2), it is sufficient to show
\[\mathbb{E}[(A_i - A_{i3}) A_{i2} (A_i - A_{i3})] \leq \frac{4}{27} I. \]

To prove (2.4), we only need to consider the case
\[\sum_{i=1}^{3} A_i = I, \]

since the triple $\{\hat{A}_1, \hat{A}_2, \hat{A}_3\} = \{A_1 + D, A_2 + D, A_3 + D\}$ with $D = (I - A_1 - A_2 - A_3)/3$ satisfies $\hat{A}_1 + \hat{A}_2 + \hat{A}_3 = I$ and by Lemma 2.2,
\[\mathbb{E}[(A_i - A_{i3}) A_{i2} (A_i - A_{i3})] \leq \mathbb{E}[(\hat{\hat{A}}_i - \hat{\hat{A}}_{i3}) \hat{\hat{A}}_{i2} (\hat{\hat{A}}_i - \hat{\hat{A}}_{i3})]. \]

Under the assumption (2.5), we have
\[\mathbb{E}[(\hat{\hat{A}}_i - \hat{\hat{A}}_{i3}) A_{i2} (\hat{\hat{A}}_i - \hat{\hat{A}}_{i3})] \]
\[= \mathbb{E}[2 A_{i2} A_{i} A_{i2} A_{i} - (A_{i} + A_{i3}) A_{i2} (A_{i} + A_{i3})] \]
\[= \mathbb{E}[2 A_{i2} (A_{i} + A_{i3}) A_{i2} - (A_{i} + A_{i3}) A_{i2} (A_{i} + A_{i3})] \]
\[= \mathbb{E}[2 A_{i2} (I - A_{i2}) A_{i2} - (I - A_{i2}) A_{i2} (I - A_{i2})] \]
\[= \mathbb{E}[-A_{i2} + 4 A_{i2}^2 - 3 A_{i2}^3] = \frac{4}{27} I + \mathbb{E}[-\frac{13}{9} A_{i2} + 4 A_{i2}^2 - 3 A_{i2}^3], \]

where the last step applies $\mathbb{E}[A_{i2}] = \frac{1}{3} I$, which follows from (2.5). Since $\max_{0 \leq x \leq 1} -\frac{13}{9} x + 4 x^2 - 3 x^3 = 0$ and $0 \leq A_{i2} \leq I$, we have
\[-\frac{13}{9} A_{i2} + 4 A_{i2}^2 - 3 A_{i2}^3 \leq 0. \]

Combining it with (2.6), we proved (2.4) and therefore the lower bound in (1.2).

2.1 Proof of Lemma 2.1

The difference of its LHS and RHS can be written as the product of a matrix with its transpose as follows:
\[A C A + B C B - A C B - B C A = (A - B) C (A - B) = (A - B) C^{0.5} (A - B) C^{0.5}^T, \]

which is clearly positive definite.
2.2 Proof of Lemma 2.2

Since \(B - A \) is positive definite, we can assume \(B - A = H H^T \) for some matrix \(H \). Therefore, \(CBC - CAC = C(B - A)C = (CH)(CH)^T \) is positive definite.

3 Generalization to \(n = 3k \)

It is possible to extend the proof from the case \((n, m) = (3, 3)\) to the cases where \(m = 3 \) and \(n = 3k \) for some positive integer \(k \). The proof follows directly from the following observation.

Lemma 3.1. If (1.2) holds for \((n, m) = (n_0, m_0)\), then it also holds for \((n, m) = (kn_0, m_0)\) with any positive integer \(k \).

Proof. If \(n = kn_0 \) and \(m = m_0 \), then

\[
E[A_{i_1} A_{i_2} \cdots A_{i_m}] = \frac{1}{k^m} E \left[\sum_{j=1}^{k} A_{i_j} \cdots \sum_{j=(m-1)k+1}^{2k} A_{i_j} \cdots \sum_{j=(m-1)k+1}^{3k} A_{i_j} \cdots \sum_{j=(m-1)k+1}^{mk} A_{i_j} \right]
\]

\[
= \frac{1}{k^m} E \left[\sum_{l_1}^{l_1k} A_{i_j} \cdots \sum_{j=(l_1-1)k+1}^{l_2k} A_{i_j} \cdots \sum_{j=(l_2-1)k+1}^{l_3k} A_{i_j} \cdots \sum_{j=(l_m-1)k+1}^{l_mk} A_{i_j} \right]
\]

where \(\{l_1, l_2, \cdots, l_n\} \) is a random permutation of \(\{1, 2, \cdots, n\} \).

Apply (1.2) with \((n, m) = (n_0, m_0)\) to \(n_0 \) positive definite matrices \(\{ \sum_{j=(l-1)k+1}^{l_k} A_{i_j} \}_{l=1}^{n_0} \), we have

\[
-\frac{1}{n_0} I \leq \mathbb{E}_{l_1, l_2, \cdots, l_{n_0}} \left[\sum_{j=(l_1-1)k+1}^{l_1k} A_{i_j} \cdots \sum_{j=(l_2-1)k+1}^{l_2k} A_{i_j} \cdots \sum_{j=(l_m-1)k+1}^{l_mk} A_{i_j} \right] \leq \frac{1}{n_0} I
\]

(3.2)

Combining (3.1) and (3.2), we proved (1.2) for \((n, m) = (kn_0, m_0)\).

We remark that since the conjecture for \((n, m) = (2, 2)\) has been proved in [3, Proposition 3.2], Lemma 3.1 implies that the conjecture also holds for \((n, m) = (2k, 2)\) when \(n \) is even.

References

[1] J. C. Duchi. Commentary on "toward a noncommutative arithmetic-geometric mean inequality: Conjectures, case-studies, and consequences". In S. Mannor, N. Srebro, and R. C. Williamson, editors, COLT, volume 23 of JMLR Proceedings, pages 11.25–11.27. JMLR.org, 2012.

[2] A. Israel, F. Krahmer, and R. Ward. An arithmetic-geometric mean inequality for products of three matrices. arXiv preprint arXiv:1411.0333, 2014.
[3] B. Recht and C. Ré. Beneath the valley of the noncommutative arithmetic-geometric mean inequality: conjectures, case-studies, and consequences. \textit{arXiv preprint arXiv:1202.4184}, 2012.