miRNAs are short, nonprotein coding RNAs that regulate target gene expression principally by causing translational repression and/or mRNA degradation. miRNAs are involved in most mammalian biological processes and have pivotal roles in controlling the expression of factors involved in basal and stimulus-induced signaling pathways. Considering their central role in the regulation of gene expression, miRNAs represent therapeutic drug targets. Here we describe how miRNAs are involved in the regulation of aspects of innate immunity and inflammation, what happens when this goes awry, such as in the chronic inflammatory lung diseases cystic fibrosis and asthma, and discuss the current state-of-the-art miRNA-targeted therapeutics.

miRNA biogenesis & function

miRNAs are a class of noncoding endogenous nucleotide RNAs that have emerged in recent years as regulators of gene expression. These highly conserved 20–25-mer RNAs regulate mRNA at the post-transcriptional level by binding principally to 3´ untranslated regions (3´ UTR). Formerly thought to repress the translation of target mRNA, it has been recently shown that their main function in mammalian systems is to decrease target mRNA levels [1].

Human miRNAs are present in intragenic regions and introns of coding genes. Primary miRNAs (pri-miRNAs) are mainly transcribed from long primary transcripts by RNA polymerase II [2]. They are then cleaved by Drosha-DGCR8 into precursor miRNAs (pre-miRNAs) after going through a series of endonucleocytic steps [3]. Pre-miRNAs are approximately 70 nucleotides in length and typically have a stem-loop hairpin structure; these are transported into the cytoplasm by the RanGTP-dependent dsRNA-binding protein Exportin 5 [4]. Pre-miRNAs are further processed by the cytoplasmic RNAase III enzyme (or Dicer) into double-stranded miRNA duplexes of approximately 22 nucleotides in length consisting of a mature miRNA and a miRNA* strand [5]. The former strand is incorporated into an miRNA-induced silencing complex (miRISC), which is facilitated by Argonaute protein and transported by Importin 8 to its cognate mRNA, leading to either target degradation or repression [6]. Within each miRNA there exists a 2–8 nucleotide ‘seed region’ which is critical for target selection, binding selectively to miRNA recognition elements within the 3´ UTR of target mRNAs. However, recent studies have suggested several exceptions [7]. For example, miRNA-369-3 has been shown to increase rather than decrease the expression of TNF-α by binding within the 3´ UTR of its mRNA [8].

miRNAs themselves are subjected to regulatory processes. These include induction of miRNA expression by transcription factors in response to inflammatory stimuli or cellular stresses, impaired processing due to Dicer inhibition, post-transcriptional modifications and miRNA localization to stress granules and p-bodies [9,10]. Like other gene regulators, miRNAs display spatial and temporal effects which are crucial in the regulation of many genes involved in a variety of biological processes.

miRNAs, innate immunity & Toll-like receptor signaling

The innate immune system is a complex, highly organized system that provides the first-line
defense upon exposure to invading pathogens or allergens. Among its major functions are the recruitment of immune cells to the site of damage, induction of antimicrobial defenses and priming of the adaptive immune system. Innate immunity is predominantly mediated via myeloid cells [11], however, within specific organs other cell types can also play a large part. These cells commonly express pattern recognition receptors which can recognize and discriminate structures present in microbial and/or damaged-self molecules. For example, epithelial cells in the lung express Toll-like receptors (TLRs) [12] which can become activated in response to microbial products such as lipopolysaccharide (LPS) or lipopeptides, or host-derived factors such as HMGB1, leading to activation of transcription factors such as NF-κB and the interferon-regulatory factors [13]. miRNA modulation of innate immune mechanisms is an important fundamental process. At the most basic level miRNAs have an important role in hematopoiesis and in the establishment and maintenance of the cellular fate of immune cells [14–16]. Additionally, multiple miRNAs are involved in regulating components of innate immune signaling pathways and, furthermore, their expression can be induced in response to various proinflammatory stimuli.

MiR-155 is an excellent example of a miRNA that participates in multiple aspects of innate immunity. It is an ubiquitously expressed miRNA [17]. Known targets of miR-155 include the transcription factor PU.1, a key mediator of monocyte and macrophage differentiation [18]; SOCS1 [19]; the inositol phosphatase SHIP1 [20]; FOXP3 [21] and MyD88 [22,23]. Other targets include FADD, IKK-ε and the TNF receptor superfamily-interacting serine threonine kinase Ripk1 [24]. The expression of miR-155 is strongly induced by inflammatory cytokines such as IFN-β and γ and also by TLR ligands through MyD88- or TRIF-dependent pathways [22,24,25].

miR-146a is another miRNA identified to have an important role in the innate immune system. miR-146a is mainly regulated by bacterial products and has been shown to be suppressed by LPS-treatment in a murine macrophage cell line. By directly targeting the 3´ UTR of IRAK1 and TRAF6, this miRNA may play a role in dampening the LPS pathway in the absence of microbial infection, while its downregulation may be needed for the LPS-induced inflammatory response [26]. In human alveolar cells increased expression of miR-146a and b is induced by IL-1β, an event corresponding to a decrease in the expression of IL-8 and RANTES [27].

In the context of TLR and IL-1R signaling the roles of a selection of miRNAs have been elucidated (Figure 1). For example, members of the let-7 family and miR-223 are key miRNAs that directly target TLR4 [28,29]. Transfection of antisense miRNA to let-7e in macrophages increases LPS-induced cytokine responses [30]. Meanwhile, downregulation of let-7i increases TLR4 in human cholangiocytes following LPS treatment [28]. The aforementioned miR-155 targets MyD88 while miR-146a negatively regulates the expression of IRAK1 and TRAF6 [31]. IKK-α and β were recently shown to be targeted by miR-223 and -199, respectively [32,33], and miR-9 could also directly target the NF-κB1 gene [34].

miRNAs that target cytokines induced by TLRs have also been identified. For example, let-7 and miR-106 target IL-6 and IL-10 mRNA, respectively [35,36]. Interestingly, miRNA-induced stabilization of TNF and IL-10 mRNA has also been demonstrated for miR-369-3 and miR-446l [3,37].

Figure 1. miRNA regulation of TLR2, TLR4 and IL-1R signaling. miRs are expressed in the nucleus and are exported into the cytoplasm (black arrow, lower right hand corner). Multiple TLRs such as TLR2 and 4 and IL-1 receptor signal via the MyD88/IRAK/TRAF6 pathway to propagate NF-κB-dependent gene transcription, which leads to proinflammatory products. Multiple miRNAs directly target components of these pathways including TLR2, TLR4, IL-1R, MyD88, MAL, IRAK1, TRAF6, TAB 2, IKK-α and IKK-β, and p50 protein. The TOM1/Tollip complex and SOCS1 are examples of negative regulators of this pathway, which have also been identified as targets of miRNA.

TLR: Toll-like receptor.

Data from [22,25,26,31,32,41,73,74].
Cystic fibrosis & asthma: the role of miRNAs in the innate immune response of inflammatory lung diseases

By translating these generic observations regarding the roles of miRNAs in innate immunity to clinical scenarios, the concept of miRNAs as therapeutic drug targets emerges clearly. Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in the CFTR gene. CF exhibits a multitude of clinical manifestations, however, the lung disease is responsible for the major morbidity and mortality in CF sufferers; this is characterized by defective epithelial chloride ion conductance, a decreased airway–surface liquid volume, increased expression and activity of host proteases, impaired antimicrobial defenses, mucus hypersecretion and a propensity to become colonized with microbes that can form biofilms within the lung [38–40]. Colonization with Pseudomonas aeruginosa is associated with intrapulmonary LPS and elevated expression of IL-1β impacting on TLR4 and IL-1R1, respectively. Proteases such as neutrophil elastase induce expression of proinflammatory cytokines such as IL-8 via TLRs, MyD88, IRAK and TRAF6. These signaling intermediates therefore represent potential therapeutic targets for miRNA-based CF therapy.

Indeed evidence that miRNAs represent modulators of the innate immune system in CF is emerging [41]. TOM1, a negative regulator of IL-1β- and TNF-α-induced signaling pathways, is a target for miR-126. This miRNA is highly expressed in the non-CF lung, but suppressed in vivo in the CF lung [42]. Following stimulation with LPS or IL-1β, overexpression of TOM1 was found to downregulate NF-kB activity while TOM1 knockdown resulted in a significant increase in NF-κB-regulated IL-8 production. Overexpression of miR-155 in CF has also been implicated in promoting inflammation by directly targeting and reducing SHP1 expression and promoting PI3K/Akt activation. This caused downstream activation of MAPKs and concomitant stabilization of IL-8 mRNA [43].

Asthma is another common chronic airway disease affecting approximately 300 million people worldwide. Its pathogenesis is attributed to both genetic and environmental factors leading to reversible bronchoconstriction as a result from chronic airway inflammation, mucus hypersecretion and airway hyperresponsiveness to inhaled stimuli. An abnormal Th2 response is usually associated with this condition and Th2-related cytokines such as IL-4, -5, -6 and -13 have all be implicated in asthma [44]. Studies on animal and human models have implicated miRNAs in asthma pathogenesis. miR-21, for example, is highly expressed in IL-13 transgenic mice [45] and has also been implicated as a major regulator of Th1 versus Th2 responses and IFN-γ signaling [46]. Meanwhile, inhibition of miR-126 by administration of an antagonomir has also been shown to suppress eosinophil recruitment into the airways but had no effect on chronic inflammation in the airway wall, or on changes of remodeling in the mouse model of chronic asthma [47]. Another study showed that let-7 inhibits IL-13 expression, identifying it as a major potential regulator of Th2 inflammation [48]. New data on miRNAs including, once again, miR-146a modulating human bronchial epithelial cell survival in response to the cytokine-induced apoptosis [49], strongly support the concept that miRNAs represent valid drug targets for the treatment of asthma (Figure 2).

Figure 2. The current understanding of miRNAs in the pathogenesis of asthma.
Changes in the expression of several miRNAs are associated with the development of asthma. Class 1 HLA-G, an asthma susceptibility gene is a direct target of miR-148a, b and -152 [75]. miR-146a have multiple roles including the regulation of inflammation in both human alveolar and bronchial smooth muscles cells via Bcl-XL and IL-1β-induced cytokine production, respectively [47,27]. miR-21 targets IL-12p35 and proinflammatory tumor suppressor PDCD4 while miR-126 regulates PU.1, regulating cytokine production such as IL-3, -5 and -10 and therefore effectively suppressing the Th2-driven airway inflammation [44,76,77]. Meanwhile, let-7 miRNAs inhibit IL-13 expression and thereby Th2 inflammation [44]. In ovalbumin-induced asthma mice model, upregulation of MMP-12 resulted in decreased miR-672 and -143, while miR-29 regulation of NF-κB-YY1 is implicated in tissue fibrosis and remodeling [78,79]. In another ovalbumin-induced asthma model, the expression of Rhoa is associated with downregulation of miR-133a. miR-25 and -26a directly target KLF-4 and GSK3β, respectively [80–82]. These targets are associated with airway smooth muscle hypertrophy and bronchial smooth muscle cells. Blue arrows reflect 3´ UTR mRNA targeting, while green arrows reflect indirect or unproven 3´ UTR targeting.
Pharmaceutical strategies to modulate miRNAs
miRNA therapeutics are the most recent of a range of RNA therapies that have emerged over the last 10–15 years including siRNA and shRNA based on manipulation of the RNAi machinery of diseased cells (Table 1).

miRNA inhibitors
miRNAs that are overexpressed or have a gain of function in diseased tissue may be therapeutically targeted in a number of ways (Figure S3A). Each of the approaches aims to target endogenous miRNAs of interest through sequence complementarity and subsequently block its processing by RISC or alternatively lead to its degradation. Anti-miRNA oligonucleotides (anti-miRs) have been developed to anneal to miRNAs and subsequently inhibit their function. Many modifications to anti-miRs exist which confer increased serum stability and higher affinity and specificity towards small RNAs [50,51]. More advanced modifications include locked nucleic acids [52] and cholesterol-conjugated anti-miRs termed ‘antago-miRs’ [53].

miRNA mimics
Conversely, miRNAs that are downregulated in disease may be replaced transiently by using miRNA mimics, or more stably using a transgene approach to deliver DNA encoding primary, pre- or mature miRNA generally via plasmid DNA (Figure 3B). Although most of the work with miRNA mimetics to date has been done in the field of cancer treatment, efforts to use these strategies in other settings are underway.

The translation of miRNA modulation into therapeutics in vivo will be dependent on delivery to the desired target cells. As miRNA

Table 1. Therapeutic strategies for miRNA modulation†.

Vector	Delivery route	Species	Disease/area	miRNA	Inhibitor/mimic	Ref.
Viral						
Lentivirus	Intranasally	Mouse	NSCLC	let-7	Inhibitor	[83]
Lentivirus	Intravenous injection	Mouse	Gastric cancer	let-7f	Mimic	[84]
Lentivirus	Local injection	Mouse	Cancer	mir-101	Mimic	[85]
Adenovirus	Intranasally	Mouse	NSCLC	let-7	Inhibitor	[86]
Adenovirus	Cellular innoculation	Mouse	Breast cancer	mir-145	Mimic	[87]
Recombinant AAV	Intravenous injection	Mouse	Hepatocellular carcinoma	shRNA	Mimic	[88]
Nonviral						
Naked	Intravenous and subcutaneous injection	Rat	Cardiac disease	miR-208	Inhibitor	[89]
Naked	Intravenous injection	Mouse	Breast/lung cancer	mir-10b	Inhibitor	[90]
Naked	Intravenous injection	Chimpanzee	HCV	mir-122	Inhibitor	[63]
Naked	Intraperitoneal injection	Mouse	Hypercholesterolemia	mir-122	Inhibitor	[52]
Naked	Intravenous injection	African green monkey	Hypercholesterolemia	mir-122	Inhibitor	[52]
Plasmid	Intratumoral injection	Mouse	Colorectal cancer	USP22 miRNA	Mimic	[91]
Plasmid	Intravenous injection	Mouse	Familial hypercholesterolemia	Synthetic (no endogenous miR)	Mimic	[92]
Plasmid DNA-coated gold particles	Biolistic epidermal transfection	Mouse	Infection and inflammation	mir-155	Mimic	[93]
Atelocollagen-mediated	Intravenous injection	Mouse	Bone-metastatic prostate cancer	miR-16	Mimic	[94]
PEI	Intravenous injection	Mouse	Colon carcinoma	mir-145	Mimic	[62]
iNOP-7	Intravenous injection	Mouse	Hypercholesterolemia	mir-122	Inhibitor	[95]
CPP-targeted PEI	Intravenous injection	Mouse	Neuronal development	mir-124a	Mimic	[96]

†Methods for therapeutic miRNA modulation in vivo can be broadly categorized into viral and nonviral strategies. The most popular viral delivery methods include lentiviral, adenoviral and adeno-associated virus systems. Various nonviral means of miRNA modulation exist including delivery of ‘naked’ nucleic acids or by using polymeric, liposomal or peptide-targeting systems.

AAV: Adeno-associated virus; CPP: Cell-penetrating peptide; NSCLC: Non-small-cell lung cancer; PEI: Polyethylenimine.
modulation is mediated by large, anionic DNA- and RNA-based constructs, many anatomical and cellular barriers to their delivery exist in vivo including degradation by serum nucleases, clearance by glomerular filtration, limited extravasation, poor cell membrane permeability and limited endolysosomal escape. While localized delivery to the target tissue overcomes some of these barriers, for example, aerosolization for delivery of miRNA therapeutics targeting respiratory conditions, the barriers to delivery are still not trivial [55]. At a cellular level, small RNAs must be delivered to the cytoplasm where the RISC is active; whereas plasmid DNA-based strategies require access to the nucleus for efficacy. Many delivery systems are currently under examination for use in vivo, and categorized into viral and nonviral approaches.

Viral delivery
Stable expression of anti-miRs or mature miRNA may be achieved by using a viral vector such as adenovirus, lentivirus and adeno-associated virus. For the therapeutic targeting of disease associated with overexpressed miRNAs, ‘miRNA sponges’ are an exciting option. With the ability to stably express these are transcripts containing numerous tandem-binding sites targeting an miRNA of interest, allowing for a greater number of target miRNAs to be inhibited than by using synthetic anti-miRs [56]. Conversely, miRNAs that are downregulated in disease (e.g., miR-126 in CF bronchial epithelium) may be replaced transiently by using miRNA mimics, or more stably using the transgene approach to deliver DNA encoding primary, pre- or mature miRNA. Driven by RNA polymerase (Pol) III promoters, miRNAs can be expressed as pre-miRNAs or as artificial shRNA, the latter with the ability to circumvent Dicer processing. Although high stable expression of these transcripts can be achieved using Pol III, a major drawback is risk of severe toxicity due to the saturation of the exportin-5 pathway used by endogenous miRNA [57]. This saturation can have fatal consequences [58]. Perhaps a better method, with the possibility of induced ectopic or tissue-specific expression of the miRNA of interest is the use of an entire primary miRNA driven by the Pol II promoter. Successfully used to overexpress various miRNAs, a pri-miR-Pol II transgene system has also appeared to be of use in the expression of multiple miRNAs from a single transcript [59–61].

Nonviral delivery
Viral delivery of RNA and DNA in vivo has been associated with induction of toxic immune responses, random integration into the host genome and potential saturation of RISC machinery [62]. Therefore, nonviral delivery approaches have been explored. Possibly the most advanced miRNA therapeutic is currently a ‘naked’ locked nucleic acid-anti-miR against liver-expressed miR-122 [63]. Constituting over 70% of the total miRNAs in the liver, this miRNA appears to be required for the replication of HCV [64]. Santaris Pharma has recently entered the locked nucleic acid miravirsen (SPC-3649) into Phase II(a) clinical trials.

Nonviral carriers can offer improved stability and targeting over naked nucleic acids, especially for systemic delivery of miRNA therapeutics. The majority of nonviral RNA and DNA carriers are lipid or polymer based. Cationic lipids or liposomes

Figure 3. Approaches to therapeutic miRNA inhibition or restoration in disease. Many therapeutic options for inhibition of miRNAs upregulated in disease are illustrated in (A). Anti-miRNA antisense oligonucleotides (1) can be synthesized to be complimentary to a mature miRNA of interest and inhibit its function. Modifications of these nucleic acids have been developed such as 2’-O-Methyl, 2’-O-Methoxyethyl and Locked nucleic acids (LNAs), which have additional characteristics such as increased stability in serum [50–51]. miRNA sponges (2) are transcripts containing several tandem-binding sites towards a miRNA of interest, and can be stably expressed through delivery to the nucleus [51]. A different class of oligonucleotides may be delivered to the cytoplasm to bind to miRNA responsive elements on target genes [97]. As these oligonucleotides mask miRNA binding to gene target sites [51], these are aptly termed ‘miRNA masks’ (3). Therapeutic options for restoration of miRNAs that are downregulated in disease are also under development (B). Nuclear delivery (1) of DNA encoding pri-miRNA, pre-miRNA and shRNA may produce sustained restoration of miRNA expression. Transient restoration may be attained through the use of pre-miRNA and mature miRNA mimics with cytoplasmic delivery (2) [54,57].
Using patented encapsulation technologies that rarely, if ever, target only a single mRNA transcript. Thus, inhibit pros, there are downsides to take into consideration also. miRNAs knockdown or replace a particular natural miRNA that is fewer than several splice variants; for miRNA therapies the goal is to either nucleotides in length and part of populations that encompass therapies may be simpler than siRNA therapeutics. For siRNA the moderate effects can be developed there would now appear to be a near equal interchangeability, where siRNA versus miRNA-based therapies targeted strategies. Although these two approaches are not always drug development from siRNA-based approaches to miRNA-research practice has come a measurable shift in the focus of early biology and the race to develop effective miRNA-based therapies may have made significant advances in our basic understanding of the complete miRNA-ome of individual mRNAs and using a translational research approach to determine whether these miRNA signatures are altered in vivo.

With respect to the treatment of respiratory disease, RNA-based therapies are particularly attractive as organ-specific targeting of RNA therapeutics can be achieved via inhalation. Respiratory drug delivery decreases systemic exposure of the patient to the therapy, thereby reducing off-target effects. Indeed, inhaled siRNA has been one of the first RNA-based therapies to reach the clinic with Alnylam’s anti-RSV siRNA treatment now reaching Phase III trials. It seems inevitable that miRNA-targeted strategies to treat chronic inflammatory lung diseases will follow a similar route in the coming years.

Five-year view

Within the next 5 years we are likely to see continued investment of time and effort by researchers and pharmaceutical companies in the development of miRNA-targeted therapies to treat chronic inflammatory disorders. Although organ-specific delivery systems for modulation of miRNAs in vivo are still in development, major advances in this area are inevitable. In our group we have been examining the feasibility of delivering pre-miRs into CF bronchial epithelial cells and our efforts have yielded very promising results to date [McKiernan PJ et al. Delivery of pre-miR-126 to cystic fibrosis bronchial epithelial cells using nanoparticles (2012), Manuscript in Preparation]. Using patented encapsulation technologies that can penetrate mucus, facilitate rapid and efficient cell uptake and minimize toxicity we are developing bioreponsive, inhalable hydrogels that will release miR-targeted nucleic acids directly to sites of inflammation in the lung. These customized drugs will selectively inhibit only abnormal inflammatory processes and mucus hypersecretion leaving intact the normal processes required for normal lung physiology.

In order to develop these and similar drugs effectively, clearly we also need a better understanding of the in vivo pharmacokinetics of viral and nonviral miRNA mimics and inhibitors. For this, preclinical animal models will prove useful. Finally, while we have made significant advances in our basic understanding of the role of miRNAs in cellular physiology, cancer and more recently inflammatory diseases, there will be further intensive research in these areas over the coming years. A particularly exciting aspect of this will be the prospect of developing personalized medicines to treat idiosyncratic disease manifestations.

Expert commentary

The enthusiasm with which researchers have embraced miRNA biology and the race to develop effective miRNA-based therapies over recent years has been astounding. With this change in research practice has come a measurable shift in the focus of early drug development from siRNA-based approaches to miRNA-targeted strategies. Although these two approaches are not always interchangeable, where siRNA versus miRNA-based therapies can be developed there would now appear to be a near equal investment of time and effort in both.

With each comes challenges: however the idea of using miRNAs rather than siRNAs to fight disease may have broader and more moderate effects [72]. In addition, some aspects of miRNA-based therapies may be simpler than siRNA therapeutics. For siRNA the targets are mRNA transcripts that can be up to several thousand nucleotides in length and part of populations that encompass several splice variants; for miRNA therapies the goal is to either knockdown or replace a particular natural miRNA that is fewer than two dozen nucleotides long. However, notwithstanding these pros, there are downsides to take into consideration also. miRNAs rarely, if ever, target only a single mRNA transcript. Thus, inhibiting or enhancing the expression of a miRNA can have off-target effects. One potential solution to this problem could be to target combinations of miRNAs that represent a ‘miRNA signature’ for a given mRNA. Work in our group focuses on identifying the complete miRNA-ome of individual mRNAs and using a translational research approach to determine whether these miRNA signatures are altered in vivo.

Financial & competing interests disclosure

Financial support for PJ McKiernan is gratefully acknowledged from the Health Research Board in Ireland under grant no. PHD/2007/11 and in the Cryan laboratory from Science Foundation Ireland for the Irish Drug Delivery Network (IDDN) under grant no. SFI 07/SRC/B1154 and HRB grant no. RP2005/117. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.
Therapeutic modulation of miRNA for the treatment of proinflammatory lung diseases

Key issues

- miRNAs regulate 30–60% of human mRNA transcripts and play a key role in almost all biological processes.
- In the context of innate immunity miRNAs have roles in regulating immune cell lineage development and maintenance, and in the control of individual genes involved in innate immune signaling pathways. miRNAs can be rapidly induced in response to proinflammatory stimuli to enhance the immune response.
- miRNA expression can be altered in a tissue-specific manner in individuals suffering from chronic inflammatory diseases such as cystic fibrosis or asthma. Key miRNAs that are dysregulated in this way represent new therapeutic targets for drug development.
- Strategies to overexpress or inhibit miRNAs exist but are still in their infancy. Currently, the most significant barriers to miRNA-based medicines are the development of effective pharmaceutical strategies for targeted delivery to specific sites and with acceptably low toxicity.
- One of the most advanced miRNA-based therapies comes from Santaris Pharma and has recently reached Phase II(a) clinical trials. This therapy is a locked nucleic acid (SPC-3649) targeting miR-122 in the liver for the treatment of HCV.

References

Papers of special note have been highlighted as:

• of interest
•• of considerable interest

1. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. *Nature* 466(7308), 835–840 (2010).

2. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. *Nature* 432(7014), 231–235 (2004).

3. Han J, Lee Y, Yeo CM, Kim YK, Jin H, Kim VN. The Drosha–DGCRI8 complex in primary microRNA processing. *Genes Dev.* 18(24), 3016–3027 (2004).

4. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. *Science* 303(5654), 95–98 (2004).

5. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. *Nat. Rev. Mol. Cell Biol.* 6(5), 376–385 (2005).

6. Weinmann L, Hock J, Ivacevic T et al. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. *Cell* 136(3), 496–507 (2009).

7. Lytle JR, Yario TA, Steitz JA. Target miRNAs are repressed as efficiently by microRNA-binding sites in the 3′ UTR as in the 3′ UTR. *Proc. Natl Acad. Sci. USA* 104(23), 9667–9672 (2007).

8. Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. *Cell* 128(6), 1105–1118 (2007).

9. Suzuki H, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. Modulation of microRNA processing by p53. *Nature* 460(7254), 529–533 (2009).

10. Leung A, Calabrese JM, Sharp PA. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. *Proc. Natl Acad. Sci. USA* 103(48), 18125–18130 (2006).

11. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. *Immunity* 34(5), 637–650 (2011).

12. Martin TR, Frevert CW. Innate immunity in the lungs. *Proc. Am. Thorac. Soc.* 2(5), 403–411 (2005).

13. Greene CM, McElvaney NG. Toll-like receptor expression and function in airway epithelial cells. *Arch. Immunol. Ther. Exp. (Warsz)* 53(5), 418–427 (2005).

14. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs mediate hematopoietic lineage differentiation. *Science* 303(5654), 83–86 (2004).

15. The first study to investigate the specific role of miRNAs in hematopoiesis and lineage differentiation.

16. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. *Cell* 136(1), 26–36 (2009).

17. Xiao C, Calado DP, Galler G et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. *Cell* 131(1), 146–159 (2007).

18. Garzon R, Croce CM. MicroRNAs in normal and malignant hematopoiesis. *Curr. Opin. Hematol.* 15(4), 352–358 (2008).

19. Vigorito E, Perks KL, Abreu-Goode C et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. *Immunity* 27(6), 847–859 (2007).

20. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. *Proc. Natl Acad. Sci. USA* 106(17), 7113–7118 (2009).

21. Kohlihaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E. Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. *J. Immunol.* 182(5), 2578–2582 (2009).

22. Tang B, Xiao B, Liu Z et al. Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation. *FEBS Lett.* 584(8), 1481–1486 (2010).

23. Huang RS, Hu QG, Lin B, Lin ZY, Sun CC. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. *J. Investig. Med.* 58(8), 961–967 (2010).

24. Tili E, Michaille JJ, Cimino A et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. *J. Immunol.* 179(8), 5082–5089 (2007).

25. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. *Proc. Natl Acad. Sci. USA* 104(5), 1604–1609 (2007).

26. The first demonstration that several Toll-like receptor (TLR) ligands increased miR-155 expression through either the MyD88 or TRIF signaling pathways.

27. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate...
immune responses. Proc. Natl Acad. Sci. USA 103(33), 12481–12486 (2006).

- The first study to profile miRNAs that are induced by TLR signaling and to identify miRNAs as negative regulators by targeting signaling proteins in the TLR-dependent pathway.

27 Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA. Rapid changes in microRNA-146a expression negatively regulate the IL-1β-induced inflammatory response in human lung alveolar epithelial cells. J. Immunol. 180(8), 5689–5698 (2008).

28 Chen XM, Splinter PL, O’Hara SP, LaRusso NF. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J. Biol. Chem. 282(39), 28299–28307 (2007).

29 Johnnidis JB, Harris MH, Wheeler RT et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Genes Dev. 14(1), 1125–1129 (2000).

30 Androulidakis A, Ilipooulos D, Arranz A et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating miRNAs. Immunity 31(2), 220–231 (2009).

31 Hou J, Wang P, Lin L et al. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J. Immunol. 183(3), 2150–2158 (2009).

32 Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, Liu ZG. MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IκKβ during macrophage differentiation. Nat. Immunol. 11(9), 799–805 (2010).

33 Chen R, Alvero AB, Silasi DA et al. Regulation of IKKβ by miR-199a affects NF-κB activity in ovarian cancer cells. Oncogene 27(34), 4712–4723 (2008).

34 Bazzoni F, Rossato M, Fabbri M et al. Induction and regulatory function of mir-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl Acad. Sci. USA 106(13), 5282–5287 (2009).

35 Ilipooulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and ILe6 links inflammation to cell transformation. Cell 139(4), 693–706 (2009).

36 Sharma A, Kumar M, Aich J et al. Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc. Natl Acad. Sci. USA 106(14), 5761–5766 (2009).

37 Ma F, Liu X, Li D et al. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J. Immunol. 184(11), 6053–6059 (2010).

38 Greene CM, McElvaney NG. Toll-like receptors as therapeutic targets in cystic fibrosis. Expert Opin. Ther. Targets 12(12), 1481–1495 (2008).

39 Greene CM, McElvaney NG. Proteases and antiproteases in chronic neutrophilic lung disease – relevance to drug discovery. Br. J. Pharmacol. 158(4), 1048–1058 (2009).

40 MicroRNA-223. MicroRNAs modulate the in vivo immune response to lipopolysaccharide by antagonizing non-canonical transcription factor NF-κB. Br. J. Pharmacol. 164(4), 1048–1058 (2009).

41 Oglesby IK, Bray IM, Chotirmall SH et al. miR-126 is down-regulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J. Immunol. 184(4), 1702–1709 (2008).

42 Oglesby IK, Bray IM, Chotirmall SH et al. MicroRNAs in inflammatory lung disease – master regulators or target practice? Respir. Res. 11, 148 (2010).

43 Bhattacharyya S, Balakathiresan NS, Dalgad C et al. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J. Biol. Chem. 286(13), 11604–11615 (2011).

44 Finn PW, Bigby TD. Innate immunity and asthma. Proc. Am. Thorac. Soc. 6(3), 260–265 (2009).

45 Lu TX, Hartner J, Lim EJ et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/ IFN-γ pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J. Immunol. 187(6), 3362–3373 (2011).

46 Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, Liu ZG. MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IκKβ during macrophage differentiation. Nat. Immunol. 11(9), 799–805 (2010).

47 Henry JC, Azevedo-Pouly AC, Schmittgen TD. microRNA replacement therapy for cancer. Pharm. Res. 28(12), 3030-42 (2011).

48 Lam JK, Liang W, Chan HK. Pulmonary delivery of therapeutic siRNA. Adv. Drug Deliv. Rev. doi:10.1016/j.addr.2011.02.006 (2011) (Epub ahead of print).

49 Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat. Rev. Drug Discov. 9(10), 775–789 (2010).

50 Castanotto D, Sakurai K, Lingeman R et al. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res. 35(15), 5154–5164 (2007).

51 Grimm D, Streetz KL, Jopling CL et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092), 537–541 (2006).

- The first study to illustrate safety concerns with sustained high-level shRNA
expression consequences for future in vivo RNAi-based strategies.

59 Stegemeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ. A lentiviral microRNA-based system for single-copy polynucleotide II-regulated RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA 102(37), 13212–13217 (2005).

60 Chung KH, Hart CC, Al-Bassam S et al. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res. 34(7), e53 (2006).

61 Chen S, Ni M, Yu B, Lv T, Lu M, Gong F. Construction and identification of a human liver specific microRNA eukaryotic expression vector. Cell Mol. Immunol. 4(6), 473–477 (2007).

62 Ibrahim AF, Weirauch U, Thomas M, Grunweller A, Hartmann RK, Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 71(15), 5214–5224 (2011).

63 Lanford RE, Hildebrandt-Eriksen ES, Petri A et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327(5962), 198–201 (2010).

** Demonstrates the use of locked nucleic acids against liver-expressed miR-122 for the treatment of viremia in chronically HCV-infected chimpanzees. It is representative of the most advanced miRNA treatment currently involved in clinical trials (Phase Ia).

64 Bala S, Marcos M, Szabo G. Emerging role of microRNAs in liver diseases. World J. Gastroenterol. 15(45), 5633–5640 (2009).

65 Liu XQ, Song WJ, Sun TM, Zhang PZ, Wang J. Targeted delivery of antisense inhibitor of miRNA for angiogenesis therapy using cRGD-functionalized nanoparticles. Mol. Pharm. 8(1), 250–259 (2011).

66 Wu SY, McMillan NA. Lipidic systems for in vivo siRNA delivery. AAPS J. 11(4), 639–652 (2009).

67 Brower V. RNA interference advances to early-stage clinical trials. J. Natl Cancer Inst. 102(19), 1459–1461 (2010).

68 Nielsen EJ, Nielsen JM, Becker D et al. Pulmonary gene silencing in transgenic EGFP mice using aerosolised chitosan/siRNA nanoparticles. Pharm. Res. 27(12), 2520–2527 (2010).

69 Moschos SA, Jones SW, Perry MM et al. Lung delivery studies using siRNA conjugated to TAT(48–60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug. Chem. 18(5), 1450–1459 (2007).

70 Moschos SA, Williams AE, Lindsay MA. Cell-penetrating-peptide-mediated siRNA lung delivery. Biochem. Soc. Trans. 35(4 Pt 4), 807–810 (2007).

71 Oh SY, Ju Y, Kim S, Park H. PNA-based antisense oligonucleotides for micrometas in the absence of a transfection reagent. Oligonucleotides 20(5), 225–230 (2010).

72 Baker M. RNA interference: homing in on delivery. Nature 464(7292), 1225–1228 (2010).

73 Starczynowski DT, Kuchenbauer F, Argiropoulos B et al. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat. Med. 16(1), 49–58 (2010).

74 Ceppi M, Pereira PM, Dunand-Sauthier I et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc. Natl Acad. Sci. USA 106(8), 2735–2740 (2009).

75 Tan Z, Randall G, Fan J et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am. J. Hum Genet. 81(4), 829–834 (2007).

76 Shedy FJ, Palsson-McDermott E, Hennessy EJ et al. Negative regulation of TL1R4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol. 11(2), 141–147 (2010).

77 Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc. Natl Acad. Sci. USA 106(44), 18704–18709 (2009).

78 Garbacci N, Di Valentin E, Huey-Thu VA et al. MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNA targets. PLoS One 28(1), e16509 (2009).

79 Wang H, Garzon R, Sun H et al. NF-kB-Y11-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14(5), 369–381 (2008).

80 Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M. Down-regulation of miR-133a contributes to up-regulation of Rhoa in bronchial smooth muscle cells. Am. J. Respir. Crit. Care Med. 180(8), 713–719 (2009).

81 Kuhn AR, Schlauch K, Lao R, Halayko AJ, Gertshoffen WT, Singer CA. MicroRNA expression in human airway smooth muscle cells: role of miR-25 in regulation of airway smooth muscle phenotype. Am. J. Respir. Cell Mol. Biol. 42(4), 506–511 (2010).

82 Mohamed JS, Lopez MA, Boriek AM. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J. Biol. Chem. 285(38), 29336–29347 (2010).

83 Li YJ, Zhang YX, Wang PY et al. Regression of A549 lung cancer tumors by anti-miR-150 vector. Oncol. Rep. 27(1), 129–134 (2011).

84 Liang S, He L, Zhao X et al. MicroRNA-let-7i inhibits tumor invasion and metastasis by targeting MYH9 in human gastric cancer. PLoS One 6(4), e18409 (2011).

85 Yan D, Ng WL, Zhang X et al. Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS One 5(7), e11397 (2010).

86 Trang P, Medina PP, Wiggins JF et al. Regression of murine lung tumors by the let-7i microRNA. Oncogene 29(11), 1580–1587 (2010).

87 Kim SJ, Oh JS, Shin JY et al. Development of microRNA-145 for therapeutic application in breast cancer. J. Cont. Release (2011).

88 Borel F, van Logtenstein R, Koornneef A et al. In vivo knock-down of multidrug resistance transporters ABCB1 and ABCBC2 by AAV-delivered shRNAs and by artificial microRNAs. J. RNAi Gene Silencing 7, 434–442 (2011).

89 Montgomery RL, Hullinger TG, Semus HM et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124(14), 1537–1547 (2011).

90 Ma L, Reinhardt F, Pan E et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat. Biotechnol. 28(4), 341–347 (2010).

91 Xu H, Liu YL, Yang YM, Dong XS. Knock-down of ubiquitin-specific protease 22 by micro-RNA interference inhibits colorectal cancer growth. Int. J. Colorectal. Dis. 27(1), 21–30 (2011).

92 Hibiir O, Akgatesy S, Owen C et al. RNAi-mediated knockdown of HMG CoA reductase enhances gene expression from...
physiologically regulated low-density lipoprotein receptor therapeutic vectors in vivo. *Gene Ther.* doi:10.1038/gt.2011.103 (2011) (Epub ahead of print).

93 Mao CP, He L, Tsai YC et al. *In vivo* microRNA-155 expression influences antigen-specific T cell-mediated immune responses generated by DNA vaccination. *Cell Biosci.* 1(1), 3 (2011).

94 Takeshita F, Patrawala L, Osaki M et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. *Mol. Ther.* 18(1), 181–187 (2010).

95 Su J, Baigude H, McCarroll J, Rana TM. Silencing microRNA by interfering nanoparticles in mice. *Nucleic Acids Res.* 39(6), e38 (2011).

96 Hwang do W, Son S, Jang J et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. *Biomaterials* 32(21), 4968–4975 (2011).

97 Choi WY, Giraldez AJ, Schier AF. Target protectors reveal dampening and balancing of nodal agonist and antagonist by miR-430. *Science* 318(5848), 271–274 (2007).