FIRST LIMITS ON THE 3–200 keV X-RAY SPECTRUM OF THE QUIET SUN USING RHESSI

I. G. Hannah, G. J. Hurford, H. S. Hudson, and R. P. Lin
Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720-7450; hannah@ssl.berkeley.edu, hurford@ssl.berkeley.edu, hudson@ssl.berkeley.edu, rplin@ssl.berkeley.edu

AND

K. van Bibber
Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550; vanbibber@llnl.gov

Received 2007 February 2; accepted 2007 February 27; published 2007 March 9

ABSTRACT

We present the first results using the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) to observe solar X-ray emission not associated with active regions, sunspots, or flares (the quiet Sun). Using a newly developed chopping technique (fan-beam modulation) during seven periods of offpointing between 2005 June and 2006 October, we obtained upper limits over 3–200 keV for the quietest times when the GOES 12 1–8 Å flux fell below 10^{-8} W m^{-2}. These values are smaller than previous limits in the 17–120 keV range and extend them to both lower and higher energies. The limit in 3–6 keV is consistent with a coronal temperature ≤6 MK. For quiet-Sun periods when the GOES 12 1–8 Å background flux was between 10^{-8} and 10^{-7} W m^{-2}, the RHESSI 3–6 keV flux correlates to this as a power law, with an index of 1.08 ± 0.13. The power-law correlation for microflares has a steeper index of 1.29 ± 0.06. We also discuss the possibility of observing quiet-Sun X-rays due to solar axions and use the RHESSI quiet-Sun limits to estimate the axion-to-photon coupling constant for two different axion emission scenarios.

Subject headings: elementary particles — Sun: activity — Sun: corona — Sun: X-rays, gamma rays

1. INTRODUCTION

The X-ray spectrum of the Sun free of sunspots, active regions, and flares (the quiet Sun) is an important yet elusive measurement, despite interest back to the earliest days of solar X-ray observations (e.g., Neupert 1969). Such an observation would provide insight into the nature of possible small-scale steady state energization processes in the solar corona. For soft X-rays (i.e., X-rays emitted by thermal sources as free-free, free-bound continua or lines), the solar corona is comparable to other stars (e.g., Pevtsov & Acton 2001). The stellar coronal emission consists of contributions from more than one physical component with an emission measure distributed over temperature. For hard X-rays (usually characterized by an arbitrary minimum photon energy instead of defined as nonthermal bremsstrahlung), there is only one reported observation, that of Peterson et al. (1966).

Observations of soft X-ray emission not associated with active regions, for instance, with the Yohkoh soft X-ray telescope (SXT), show X-ray bright points that are weak compared to active region emission (Strong et al. 1992). They are numerous, well dispersed across the solar disk, and associated with network boundaries. The presence of nonthermal electrons in these events has been inferred from radio observations (Krucker et al. 1997), but no hard X-ray emission was detected. This is because previous hard X-ray imaging observations (Solar Maximum Mission HXIS, Hinotori, and Yohkoh HXT) were optimized to study flares and were ill suited to observe weak sources distributed over large angular scales.

With small flares, i.e., microflares, the presence of nonthermal electrons has been confirmed by microwave (Gary et al. 1997) and Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) hard X-ray observations (Krucker et al. 2002). Imaged RHESSI microflares are always associated with active regions (Hannah et al. 2006). Although we might expect hard X-ray emission from below the current limit of microflare observability, it is uncertain whether such a population would exist in the absence of active regions. It is speculated that still smaller nonthermal energy releases, such as “nanoflares” (Parker 1988), could produce globally distributed hard X-rays.

To date, no axions have been detected, although their presence is likely, given their strong interactions with matter. Axions were predicted by Peccei & Quinn (1977) to be a consequence of the symmetry breaking of the standard model. A lower limit on the axion mass can be set by detecting axions in the Sun (Kostelecký 2005). If axions exist, then the search for X-rays is obviated; the Sun is a natural laboratory for axion detection. The axion mass is approximately 10^{-5} eV/c2, and the Sun has a diameter of approximately 10^{11} cm, making the Sun a possible source of axions. A Sun axion flux above 10^{-13} cm^{-2} s^{-1} keV^{-1} would result in a detectable signal.

In addition to these processes, the interaction of cosmic rays in the solar atmosphere could also generate weak diffuse X-rays from the quiet Sun (Dolan & Fazio 1965; Seckel et al. 1991). Additional nuclear processes arising from such cosmic-ray interactions are likely to produce minute X-ray emission; for instance, inner bremsstrahlung from β-decaying neutrons in the solar analog of the CRAND (Cosmic-Ray Albedo Neutron Decay) mechanism (MacKinnon 2007) is predicted to produce X-rays at a level far below that of the diffuse cosmic background, which is 10^{-4} to 10^{-8} photons s^{-1} cm^{-2} keV^{-1} from 3 to 100 keV over a solar disk area.

Axions (Weinberg 1978; Wilczek 1978) are hypothetical weakly interacting particles that could also produce an X-ray signature from the Sun (Sikivie 1983). Nuclear reactions in stellar cores should produce axions copiously; in the case of the Sun, the average energy of axions is 4.2 keV (van Bibber et al. 1989). These axions can convert directly to X-ray photons in a perpendicular magnetic field (Sikivie 1983), with the resulting photons having the same energy and momentum as the incident axion. Ground-based experiments using strong magnetic fields have tried to use this process to search for solar axions (Zioutas et al. 2005). The probability of this conversion is proportional to the square of the product of the axion-photon coupling, the distance traveled through a perpendicular magnetic field, and the strength of this field (Sikivie 1983). This raises the possibility of conversion in the corona (Carlson & Tseng 1996). Attempting to observe such a small flux would be difficult but would be more favorable during quiet-Sun periods when the conventional X-ray emission from the Sun is at a minimum.

RHESSI (Lin et al. 2002) has unprecedented sensitivity for
3–25 keV X-rays because when its automated attenuators are “out” it can observe with the full area of its detectors. This was not possible for earlier instruments, which used fixed shielding to prevent excessive count rates from soft X-rays in flares. Normal \textit{RHESSI} imaging is accomplished with a set of nine bigrid rotating modulation collimators (RMCs) with resolutions logarithmically spaced from 2.3° to 183°. Each RMC time modulates sources whose size scale is smaller than their resolution. Thus, despite its sensitivity, \textit{RHESSI} is not well suited to observe weak sources larger than ∼3°. Most potential mechanisms for quiet-Sun emission would be expected to be weak and well dispersed across the 32° solar disk.

For weak sources, it is essential to distinguish counts due to solar photons from counts due to terrestrial, cosmic, or instrumental background. We adopt an offpointing technique called \textit{fan-beam modulation} (Hannah et al. 2007), which provides a time-modulated, or “chopped,” signal of the solar disk, allowing us to distinguish distributed solar emission from the background.

In this Letter, we detail the first analysis of periods of quiet Sun with \textit{RHESSI} using the fan-beam modulation technique (§ 2). We present the first limits of the quiet-Sun X-ray spectrum and show how this correlates with the \textit{GOES} 12 1–8 Å flux and \textit{RHESSI} microflares in § 3. In § 4, we discuss the X-ray emission due to solar axions, and in § 5 we discuss the further work that can be achieved using fan-beam modulation during solar minimum conditions.

2. FAN-BEAM MODULATION TECHNIQUE

Instead of using the rapid time modulation associated with its RMCs, fan-beam modulation is based on a secondary modulation that results from the finite thickness of \textit{RHESSI}'s collimator grids (Hurford et al. 2002). Fan-beam modulation depends on the offpointing angle, with a maximum effect when \textit{RHESSI} is between 0.4° and 1° from offpointed Sun center (Hannah et al. 2007). This “envelope” modulation peaks twice every rotation when the slits of the grids are parallel to the line between the \textit{RHESSI} pointing and source center, producing two transmission maxima per rotation. For a period of offpointing, we bin (or “stack”) the data in a chosen energy range according to the roll angle of the spacecraft. These data are fitted with the expected modulation, and the resulting amplitude is corrected for the predicted grid transmission efficiency. This technique works best in \textit{RHESSI}'s RMC with the narrowest field of view, RMCs 1–6. In addition, RMCs 2, 5, and 7 are not used in this analysis as they have the poorest energy response.

This type of observation has been done for a total of 45 days during seven periods (2005 July 19–26, 2005 October 18–28, 2006 January 12–17, 2006 February 1–7, 2006 August 3–8, 2006 September 26–29, and 2006 October 12–23), when the \textit{GOES} 12 1–8 Å flux was around 10^−8 W m^2 and no active regions or spots were on the disk. The Sun was very quiet during these periods with the microwave emission (F10.7 levels) in the range 70–78 solar flux units and the \textit{GOES} 12 1–8 Å flux “flat-lining” below 10^−8 W m^-2, the equivalent of an A1 class flare.

The data set was divided into 5 minute time intervals, which are short enough so that the radial offset, and hence grid transmission factor, changes little. For the quiet-Sun results presented in this Letter, we have removed intervals with sharp time-series features (such as flares or particle events). The analysis was further restricted to times when \textit{RHESSI} is at the lowest latitudes in its orbit, to minimize the terrestrial background. From these four offpointing periods, we have a total of 1774 5 minute time intervals (over 147 hr of data), 1071 (or 89.25 hr) of which occurred while the \textit{GOES} 12 1–8 Å flux was below the A1 class of 10^−8 W m^-2. For each of these time intervals, and over chosen energy bands, we have an amplitude of the quiet-Sun count rate corrected for the transmission through \textit{RHESSI}'s grids. The resulting fitted amplitudes are then combined from different time intervals to improve the signal-to-noise ratio before conversion to a final photon flux using the diagonal elements of the appropriate detector response matrix (Smith et al. 2002).

3. \textit{RHESSI} QUIET-SUN SPECTRUM

Figure 1 shows the average 3–6 keV emission for six of \textit{RHESSI}'s detectors. There is a small scatter between the detectors but consistent to within the errors. To calculate the average overall flux for each energy band, we use the weighted mean of the value found in RMCs 1, 3, 4, and 6 and give the error as the standard deviation in this weighted mean. Table 1 shows these values for energy bands between 3 and 200 keV during the quietest times.

None of the values given in Table 1 show a clear statistical significance. Therefore, we do not claim detection of a signal from the quiet Sun but rather give conservative 2σ upper limits to the quiet-Sun emission using the errors given in Table 1, shown in Figure 2. The dotted histogram shows the data of Peterson et al. (1966), who made pioneering solar hard X-ray observations with balloon-borne scintillation counters, in the 17–120 keV range. Our hard X-ray upper limits improve on these results to about 75 keV and are consistent with them above this energy. Our results also extend the energy range into the previously unmeasured domains below 17 keV and above 120 keV.

Figure 2 also shows four CHIANTI thermal spectral models for coronal emission (Dere et al. 1997; Landi & Phillips 2006). For each assumed temperature, the emission measure is constrained by \textit{Yohkoh} SXT observations, which was sensitive to...
1–2 keV X-rays, during solar minimum (Pevtsov & Acton 2001). The RHESSI limit in 3–6 keV is consistent with a quiet coronal temperature \(\leq 6 \) MK.

We can gain a better understanding of possible quiet-Sun X-ray emission by using all 1774 5 minute time intervals, not just the quietest periods. These quiet-Sun observations occurred over a range of GOES 12 1–8 Å background fluxes up to \(10^{-7} \) W m\(^{-2}\) and still in the absence of active regions. By calculating the RHESSI flux in consecutive subsets of GOES 12 background fluxes, we can plot the correlation of RHESSI quiet-Sun 3–6 keV flux to GOES 12, shown by the broad crosses in Figure 3. The errors shown here are the statistical ones found from the fit errors from each time interval combined in quadrature. There is a clear power-law correlation between the GOES 12 and RHESSI data, with an index of \(\gamma = 1.08 \pm 0.13 \).

To put these observations in context, we have also shown, as the square data points in Figure 3, the fluxes for eight microflares that occurred during quiet-Sun offpointing. The times of these microflares were excluded from our quiet-Sun 5 minute time intervals, since they are a sign of activity. We used the fan-beam modulation technique for 16 s about the peak of these flares and plotted the flux against the corresponding background-subtracted GOES 12 flux. The RHESSI flux from these microflares is around 2 orders of magnitude larger than the quiet-Sun values, and there is again a power-law correlation between RHESSI and GOES 12. The microflare power-law correlation with GOES 12 is slightly steeper (1.29 \pm 0.06) than that of the quiet Sun.

4. SOLAR AXIONS

Axions emitted from the burning core of the Sun may be converted to X-rays by its own coronal magnetic field (Carlson & Tseng 1996), thus providing a detectable signal during periods of solar quiescence. The Sun’s general field is constant and well constrained during quiet periods, and so it should be possible to derive a robust limit on the axion-photon coupling \(g_{\alpha \gamma} \), provided that other conventional solar mechanisms can be convincingly excluded.

Carlson & Tseng (1996) calculated whether such X-ray emission was observable by assuming \(g_{\alpha \gamma} = 10^{-10} \) GeV\(^{-1}\) and a dipole field scaled from a 10 T polar field, predicting a flux of \(4 \times 10^{-2} \) photons s\(^{-1}\) cm\(^{-2}\) keV\(^{-1}\) over 3–6 keV. This is valid for the case of sufficiently light axions, i.e., \(\text{m}_a < 1.8 \times 10^{-4} \) eV. This X-ray flux is comparable to the value given in Table 1. The \(g_{\alpha \gamma} \) used in this calculation is similar to those cited by Zioutas et al. (2005) in a direct search for solar axions and the best bounds from stellar evolution, i.e., those from

Energy (keV)	Weighted Mean \((10^{-4} \text{photons s}^{-1}\text{cm}^{-2}\text{keV}^{-1}) \)	\(\sigma \)
3–6	330.99	\(\pm 207.25 \)
6–12	5.24	\(\pm 8.46 \)
12–25	0.73	\(\pm 1.34 \)
25–50	0.14	\(\pm 0.63 \)
50–100	0.74	\(\pm 0.54 \)
100–200	0.79	\(\pm 0.42 \)

Note: When the GOES 12 1–8 Å flux \(< 10^{-8} \) W m\(^{-2}\).
horizontal-branch stars (Raffelt 1996, 2006). This indicates that
the *RHESSI* limit is consistent with other approaches, albeit
for smaller axion masses.

Zioutas et al. (2004) published limits utilizing *RHESSI* data,
constraining massive Kaluza-Klein (KK) axions, which arise
in certain theories of large extra dimensions, in a scenario where
KK axions are emitted from the Sun in gravitationally bound
orbits, and subsequently undergo free-space decay \(a \rightarrow \gamma \gamma \).
Their value of \(g_{\gamma \gamma} \), however, was derived from *RHESSI* data
taken during solar maximum and had not been corrected for
instrumental response. Using the flux estimate in Table 1, we
obtain an X-ray luminosity about 2 orders of magnitude smaller
than the value cited by Zioutas et al. (2004); repeating their
calculation, we find a somewhat smaller limit to the axion-
photon coupling constant within this scenario of \(g_{\gamma \gamma} \ll 6 \times 10^{-15} \text{ GeV}^{-1} \).

5. DISCUSSION AND CONCLUSIONS

We have established new upper limits on quiet-Sun emission
in hard X-rays when activity levels were below the *GOES 12*
A1 class. The most natural explanation of such possible emission
is that of unresolved microflares. Figure 3 however, indicates
a normalization of the distribution
law (e.g., the constant multiplier in the power-law distribution).
The comparisons in Figure 3 would then yield a normalization
which follows a flat power law (Hudson 1991). The comparisons
from (micro-)flares, such as the speculated nanoflares (Parker
1988). These quiet-Sun limits must be interpreted in terms of
our knowledge of the distribution function of flare magnitudes,
which follows a flat power law (Hudson 1991). The comparisons
in Figure 3 would then yield a normalization of the distribution
law (e.g., the constant multiplier in the power-law distribution).
This will be calculated once the *RHESSI* microflare distribution
is known—such a study is near completion (Hannah et al. 2006).

The work presented here represents the first use of the *fan-
beam modulation technique* and shows that this method opens
a new regime of observations for *RHESSI*, namely, weak
sources larger than 3\(\arcmin \) in size. Further use of this technique
during the quieter times of solar minimum should help improve
the limits presented here.

The detection of the component of the solar X-ray flux due
to axions converting in the coronal magnetic field is especially
challenging. Carlson & Tseng (1996) suggested that the stronger
magnetic fields associated with sunspots should permit tighter
limits and are valid up to higher values of the axion mass. How-
ever, such limits would be subject to greater uncertainties as-
associated with the modeling of these magnetic fields. Using
RHESSI to search for this emission due to axions may be more
effective despite the large background from conventional emis-
sion since we know the characteristic spatial scale (i.e., core size)
on which the emission is expected to occur (van Biber et al.
1989) and it should vary in a distinctive manner as the sunspot
moves across the solar disk. Given *RHESSI*’s low Earth orbit,
it may be preferable to observe the X-rays produced through the
conversion of axions in Earth’s nightside magnetic field (Dav-
oudiasl & Huber 2006). This method has the advantage that the
Earth blocks the competing solar X-ray flux.

A detailed presentation of *RHESSI* limits on solar axions
from both daytime and nighttime observations of the Sun will
be the subject of a subsequent paper.

NASA supported this work under grant NAG5-98033. Work at
Lawrence Livermore National Laboratory was supported
under Department of Energy contract W-7405-Eng-048. We
thank many people involved in the *RHESSI* program for
inspiration and assistance with software, calibration, and spectral
fitting issues, especially Brian Dennis, Richard Schwartz, and
David Smith.

REFERENCES

Carlson, E. D., & Tseng, L. S. 1996, Phys. Lett. B, 365, 193
Davoudiasl, H., & Huber, P. 2006, Phys. Rev. Lett., 97, 141302
Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C., & Young,
P. R. 1997, A&AS, 125, 149
Dolan, J. F., & Fazio, G. G. 1965, Rev. Geophys., 3, 319
Gary, D. E., Hartl, M. D., & Shimizu, T. 1997, ApJ, 477, 958
Hannah, I. G., Christie, S. D., Krucker, S., & Lin, R. P. 2006, AGU Abstr.
Fall, SH23A-0348
Hannah, I. G., Hurford, G. J., Hudson, H. S., & Lin, R. P. 2007, Rev. Sci.
Instrum., 78, 024501
Hudson, H. S. 1991, Sol. Phys., 133, 357
Hurford, G. J., et al. 2002, Sol. Phys., 210, 61
Krucker, S., Benz, A. O., Bastian, T. S., & Acton, L. W. 1997, ApJ, 488, 499
Krucker, S., Christie, S., Lin, R. P., Hurford, G. J., & Schwartz, R. A. 2002,
Sol. Phys., 210, 445
Landi, E., & Phillips, K. J. H. 2006, ApJS, 166, 421
Lin, R. P., et al. 2002, Sol. Phys., 210, 3
MacKinnon, A. L. 2007, A&A, 462, 763
Neupert, W. M. 1969, ARA&A, 7, 121
Parker, E. N. 1988, ApJ, 330, 474

Peterson, L. E., Schwartz, D. A., Pelling, R. M., & McKenzie, D. 1966, J.
Geophys. Res., 71, 5778
Pevtsov, A. A., & Acton, L. W. 2001, ApJ, 554, 416
Raffelt, G. G. 1996, Stars as Laboratories for Fundamental Physics: The
Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles
(Chicago: Univ. Chicago Press).
———. 2006, preprint (hep-ph/0611350)
Seckel, D., Stanev, T., & Gaisser, T. K. 1991, ApJ, 382, 652
Sikivie, P. 1983, Phys. Rev. Lett., 51, 1415
Smith, D. M., et al. 2002, Sol. Phys., 210, 33
Strong, K. T., Harvey, K., Hirayama, T., Nitta, N., Shimizu, T., & Tsuneta, S.
1992, PASJ, 44, L161
van Biber, K., McIntyre, P. M., Morris, D. E., & Raffelt, G. G. 1989, Phys.
Rev. D, 39, 2089
Weinberg, S. 1978, Phys. Rev. Lett., 40, 223
Wilczek, F. 1978, Phys. Rev. Lett., 40, 279
Zioutas, K., Dennerl, K., DiLella, L., Hoffmann, D. H. H., Jacoby, J., &
Papaevangelou, T. 2004, ApJ, 607, 575
Zioutas, K., et al. 2005, Phys. Rev. Lett., 94, 121301