Ir-Catalyzed Asymmetric Allylic Alkylation of Dialkyl Malonates Enabling the Construction of Enantioenriched All-Carbon Quaternary Centers

Farbod A. Moghadam,‡ Elliot F. Hicks,‡ Zachary P. Sercel, Alexander Q. Cusumano, Michael D. Bartberger,* Brian M. Stoltz‡

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena CA 91125, USA.

‡Alterome Therapeutics, 11440 West Bernardo Court Ste. 330, San Diego, CA 92127, USA.

ABSTRACT: An enantioselective iridium-catalyzed allylic alkylation of malonates with trisubstituted allylic electrophiles to form all-carbon quaternary stereocenters is reported. This cross-coupling reaction features unprecedented reactivity at ambient temperature, particularly for challenging fully alkyl-substituted allylic electrophiles, and enables the preparation of a wide range of enantioenriched products in up to 93% yield and 97% ee. The products of this transformation can be readily converted to a number of valuable building blocks including vicinal quaternary stereodiads and β-quaternary acids. This method was also used to prepare an enantioenriched intermediate facilitating the asymmetric formal synthesis of the sporochtnol family of natural products.

The enantioselective construction of acyclic all-carbon quaternary centers is an important and challenging problem in synthetic organic chemistry.¹ Ir-catalyzed asymmetric allylic alkylation has emerged as a powerful methodology for the formation of acyclic stereogenic centers, owing to the inherent branched regioselectivity of these intermolecular processes.² While the enantioselective construction of tertiary stereocenters by virtue of this methodology is well-precedented with both carbon and heteroatom nucleophiles,³ the generation of enantioenriched all-carbon quaternary centers by Ir-catalysis remains underexplored and is of interest to our group.

Recently, Carreira and coworkers disclosed an Ir-catalyzed process that forges enantioenriched quaternary products from silyl ketene acetal nucleophiles and tertiary allylic alcohol electrophiles (Figure 1A)⁴ This report hinges on their development of similar processes exploiting branched electrophiles and a novel phosphoramidite ligand, (Sjc-L1).² In contrast, our group has taken interest in the formation of all-carbon quaternary centers using linear trisubstituted electrophiles. In previous endeavors, we have reported the use of masked acyl cyanide and substituted malononitrile nucleophiles with these electrophiles to afford the corresponding branched products in high levels of enantioselectivity (Figure 1B). In the case of masked acyl cyanides, these coupling products are precursors to α-quaternary carboxylic acids (Figure 1B, R = 0MOM).⁴ When

Figure 1. Construction of all-carbon quaternary centers via Ir-catalyzed allylic alkylation.

alkylated malononitrile nucleophiles are employed, the corresponding products are formed in nearly quantitative
yields and excellent levels of enantioselectivity (Figure 1B, R = alkyl).7

Inspired by these efforts, we hoped to expand the scope of this coupling reaction to include malonate nucleophiles, which are ubiquitous in organic synthesis. Such a transformation would allow for the formation of β-quinary 1,3-dicarbonyl compounds (Figure 1C), which can be converted readily to β-quinary carboxylic acids, providing a useful functional handle for further diversification. While malonates have historically served as an archetypal nucleophile in allylic substitution reactions,8 their application to the efficient, enantioselective construction of β-quinary centers remains unaddressed in the literature.9 Herein, we report the reaction of malonates with 1,1',2-trisubstituted allylic coupling partners to form acyclic quaternary centers in high levels of enantio- and regioselectivity.

Table 1. Optimization Studies.

Entry	Ligand	Base	Lewis Acid	Temp.	Yield (%)	ee (%)
1	(S)Sal1	LiOH-Bu	BEt3	60 °C	0	-
2	(S)Sal1	LiOH-Bu	BEt3	60 °C	23	-
3	(S,R)-L2	LiOH-Bu	BEt3	60 °C	0	-
4	(S,S,S)L3	NaOMe	BEt3	60 °C	<5	-
5	(S)Sal1	NaOMe	BEt3	60 °C	10	-
6	(S)Sal1	LiHMDS	BEt3	60 °C	46	-
7	(S)Sal1	LiOH-Bu	LiBr	60 °C	14	-
8	(S)Sal1	LiOH-Bu	Yb(OTf)3	60 °C	90	-
9	(S)Sal1	LiOH-Bu	ZnBr2	60 °C	28	-
10	(S)Sal1	KHMDS	ZnBr2	60 °C	80	75
11	(S)Sal1	LiHMDS	ZnBr2	60 °C	60	86
12	(S)Sal1	NaHMDS	ZnBr2	40 °C	86	93
13	(S)Sal1	NaHMDS	ZnBr2	21 °C	83	97
14	(S)Sal1	NaHMDS	Zn(OTf)2	21 °C	14	-
15	(S)Sal1	NaHMDS	Zn(OTf)2	21 °C	0	-
16	(S)Sal1	NaHMDS	Zn(OTf)2	21 °C	83	79

Yields determined by 1H NMR relative to a CHBr2 internal standard. Reactions conducted at 0.05 mmol scale, utilizing a 1:1 stoichiometry of 1A:2A.4 Determined by chiral SFC.5 Average yield from two experiments.

Early attempts to effect this transformation sought to utilize analogous conditions as reported in our previous coupling that featured malononitrile nucleophiles. Unfortunately, the application of BEt3 as a stoichiometric Lewis acid additive and DABCO as a base led to no conversion (Table 1, entry 1). Using LiOH-Bu instead as the base provided a 23% yield of the desired product (3A) when (S)-L1 was utilized (entry 2), whereas (S,R)-L210 and (S,S,S)L311 did not lead to significant product formation (entries 3 & 4). While NaOMe failed to improve conversion, employing LiHMDS as the base increased the yield to 46% (entries 5 & 6). Though lithium salts have been frequently used as Lewis acid additives in Ir-catalyzed allylic alkylations of stabilized carbon nucleophiles,12 replacement of BEt3 with LiBr did not lead to appreciable product formation (entry 7). As lanthanide Lewis acids were previously reported by Carreira,4 Yb(OTf)3 was investigated but led to minimal yields (entry 8). However, we were pleased to find that bench-stable ZnBr2 in concert with LiOH-Bu as the base, resulted in an elevated 50% yield and full conversion of starting material (entry 9). Exogenous zinc salt additives have indeed proven beneficial to reactivity and selectivity in a number of related Ir-catalyzed allylic alkylations.13 Combination of ZnBr2 with HMDS-derived bases resulted in up to 83% yield and 86% ee (entries 10–12). Finally, decreasing the reaction temperature to ambient 21 °C increased the enantiomeric excess to 97%, delivering the desired product in 83% isolated yield, with no detectable linear alkylolation product (entry 14). Interestingly, alternative Zn2+ sources performed poorly (entries 15–17). VCD was utilized to determine the absolute stereochemistry of this model product (see Supporting Information).

With optimized reaction conditions in hand, the efficacy of other malonates in conjunction with allylic methyl carbonate electrophile 2A was explored (Scheme 1A). The reaction utilizing dimethyl malonate afforded the corresponding quaternary product in an identical 97% ee as the diethyl variant (3B), albeit with a notable decrease in yield from 83% to 69%. Use of t-Pr (3C) or t-Bu (3D) malonates resulted in diminished 54–56% yield and 90% ee. Unfortunately, the use of substituted malonate 4A, as well as other stabilized carbon nucleophiles (4B, 4C), was unsuccessful under these conditions. Substituted malononitrile nucleophile 4D generated the desired quaternary product in an improved 83% yield relative to our previous study,7 but in a significantly decreased 79% ee. With diethyl malonate as the optimal nucleophile, we aimed to elaborate the electrophile scope.

To our delight, the alkylation protocol accommodated a range of substitution patterns of the arene of the electrophile (Scheme 1B). A relatively sterically encumbered 2-naphthyl substituted electrophile could undergo the alkylation process in a 97% ee (5). Electron-withdrawing -CF3 and -NO2 substituents at the para-position led to the desired coupling products in high yield and ee (6A, 6B). Para-substituents with electron-donating character, such as -Me and -OMe groups, also resulted in moderate to high yields and excellent levels of enantioselectivity (8A, 8D). Meta-substitution with a -Cl or -Me substituent was well-tolerated (9A, 9B). Heterocyclic scaffolds bearing chromanone and indole-derived fragments proved compatible, (11A, 11B), though a 3-pyridyl substituent leads to deterioration of the enantioselectivity, potentially due to coordination of the substrate to the catalyst (11C). Exploring more structurally complex targets, we found that adapalene, a common topical acne medication,14 could be converted to the corresponding allylic methyl carbonate, which then underwent the Ir-catalyzed allylic alklylation to yield 10 in 77% yield and 96% ee.
Scheme 1. Nucleophile and Aryl Electrophile Investigation

Similar to the limitations of our previous research,^{6,7} ortho-substitution was not tolerated, possibly indicative of challenges related to the oxidative addition of the catalyst into such hindered systems (12). Furthermore, replacement of the methyl substituent of the electrophile with an ethyl group led to a dramatic decrease in yield to 8% (13). Yield was somewhat recovered when this substituent was constrained in the form of a cyclic compound, resulting in the formation of the chromanone-derived product 11a in 32% yield and 92% ee.

Having established the reactivity and scope of cinamyl-type trisubstituted electrophiles, we turned our attention to the historically challenging fully-allyl substituted electrophiles. We were pleased to find that under these conditions, this class of substrates could form the corresponding quaternary alkylation products in up to 63% yield (Scheme 2). Phenethyl-substituted compound 14b and geranyl methyl carbonate-derived product 14c could be synthesized in 87% and 86% ee, respectively. Notably, the levels of enantiomeric excess and branched-selectivity obtained in this study are among the highest reported for alkyl-substituted electrophiles. The regio- and

\[\text{Scheme 2. Alkyl-substituted Allylic Electrophiles}^{a} \]

\[\text{Previous Reports:} \]

\[\text{Stoltz: [ref 7]} \]

\[\text{Carreira: [ref 4]} \]

\[\text{Yields determined by CH}_{2}Br\text{; }^1\text{H NMR standard. Reactions performed at 0.1 mmol scale.} \]
yield determined by 1H NMR relative to a CH$_3$Br$_2$ internal standard. %ee was not measured.

Stereoselective allylic alkylation of these substrates to form quaternary centers is a problem that has been left unsolved except in a limited number of cases. In our group’s previous investigation, 2-methyl malononitrile could be reacted with the phenethyl methyl carbonate to form vicinal quaternary product 15 in a 65% yield and 84% ee, albeit as an inseparable 3:2 mixture of branched and linear isomers. Simi-
larly, the Carreira group reported the substitution of a silyl ketene acetal with a cyclopropyl-substituted allenic electrophile to form allene 16 in 94% ee.

As was observed in our previous studies with the Carreira ligand (L1), the branched structural isomer of the model electrophile (i.e., 17a) led to the desired product in a similar yield as the linear analog, but with a 0% ee (Scheme 3). The Z-stereoisomer of electrophile (i.e., 17b) proceeded in a dramatically decreased yield. The lack of enantioinduction for the branched electrophile is consistent with a slow π-allyl equilibration process between diastereomeric Ir-allyl intermediates, which is observed in other reports of Ir-catalyzed allylic alkylation.

Scheme 4. Product Diversification

We next examined the synthetic utility of the β-quaternary acid 18 in moderate yield (Scheme 4). Standard Lemieux–Johnson oxidation resulted in the formation of the expected α-quaternary aldehyde species 19 in 66% yield. Treatment of 3a with NaH and Mel generated the methylated diester species 20, featuring a vicinal quaternary scaffold, in 43% yield. Lastly, exhaustive reduction of the diester functionality with lithium aluminum hydride afforded the corresponding enantioenriched 1,3-diol 21 in 67% yield.

This technology was then applied to generate a key intermediate employed by Prasad and coworkers in their formal synthesis of sporochnols A–C, isolated from the marine algae Sporochnus bolleanus. Alkylation product 8b, which was formed in 59% yield and 96% ee at a 1 mmol scale, could undergo saponification and decarboxylation to afford β-quaternary acid 22a in 65% yield (Scheme 5). Subsequent Fischer esterification generated the desired ethyl ester 22b in 69% yield. This constitutes an asymmetric formal synthesis of the sporochnol natural products.

Scheme 5. Formal Asymmetric Synthesis of Sporochnols A–C

In summary, we have developed a novel method for the synthesis of highly enantioenriched β-quaternary carbonyl compounds via an Ir-catalyzed allylic alkylation reaction. This transformation proceeds under mild conditions, and a broad range of allylic electrophiles, including fully alkyl-substituted substrates, are well-tolerated. To date, this report represents a broadly applicable method enabling the formation of enantioenriched β-quaternary centers with acyclic malonate nucleophiles. Further exploration of the mechanism of this reaction is currently underway.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental procedures, spectroscopic data (1H-NMR, 13C-NMR, IR, HRMS), and SFC, HPLC data.

AUTHOR INFORMATION

*E-mail: stoltz@caltech.edu

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. These authors contributed equally.

Funding Sources

The NIH-NIGMS (R01GM080269) and Caltech are thanked for their support of our research program. E. F. H. and Z. P. S. would like to thank the NSF GRFP for funding.

Notes

The authors declare no conflict of interest.

REFERENCES

1 a) Liu, Y.; Han, S.; Liu, W.; Stoltz, B. M. Catalytic Enantioselective Construction of Quaternary Stereocenters: Assembly of Key Building Blocks for the Synthesis of Biologically Active Molecules. Acc. Chem. Res. 2015, 48, 740–751.; b) Feng, J.; Holmes, M.; Krische, M. Acyclic Quaternary Carbon Stereocenters via Enantioselective Transition Metal Catalysis. J. Chem. Rev. 2017, 117, 12564–12580.

2 a) Takeuchi, R.; Kashio, M. Iridium Complex-Catalyzed Allylic Alkylation of Allylic Esters and Allylic Alcohols: Unique Regio- and Stereoselectivity. J. Am. Chem. Soc. 1998, 120, 8647–8655.; b) Madrahimov, S. T.; Li, Q.; Sharma, A.; Hartwig J. F. Origins of Regioselectivity in Iridium Catalyzed Allylic Substitution J. Am. Chem. Soc. 2015, 137, 14968–14981.

3 For recent reviews of Ir-catalyzed asymmetric allylic alkylation, see: Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. Iridium-Catalyzed Diastereo- and Enantioselective Allylic Alkylation with Prochiral Enolates. ACS Catal. 2016, 6, 6207–6213.; Qu, J.; Helmchen, G. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis. Acc. Chem. Res. 2017, 50, 2539–2555.; Cheng, Q.; Tu, H.; Zheng, C.; Qu, J.; Shockley, S. E.; Hethcox, J. C.; Stoltz, B. M. Intramolecular Stereoselective Iridium-Catalyzed Allylic Substitution: An Evolutionary Account. Synlett 2018, 29, 2481–2492.; Helmchen, G.; You, S. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem. Rev. 2019, 119, 1855–1969.

4 Isomura, M.; Petrone, D. A.; Carreira, E. M. Construction of Vicinal Quaternary Centers via Iridium-Catalyzed Asymmetric Allenyl Alkylation of Racemic Tertiary Alcohols. J. Am. Chem. Soc. 2021, 143, 3323–3329.

5 a) Lafrance, M.; Roggen, M.; Carreira, E. M. Direct Enantioselective Iridium-Catalyzed Allylic Amination of Racemic Allylic Alcohols. Angew. Chem. Int. Ed. 2012, 51, 3470–3473.; b) Rössler, S. L.; Krautwald, S.; Carreira, E. M. Study of Intermediates in Iridium-(Phosphoramidite,Olefín)-Catalyzed Enantioselective Allylic Substitution. J. Am. Chem. Soc. 2017, 139, 3603–3606.; c) Rössler, S. L.; Petrone, D. A.; Carreira, E. M. Iridium-Catalyzed Asymmetric Synthesis of Functionally Rich Molecules Enabled by (Phosphoramidite,Olefín) Ligands. Acc. Chem. Res. 2019, 52, 2657–2672.

6 a) Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. Enantioselective Iridium-Catalyzed Allylic Alkylation Reactions of Masked Acyl Cyanide Equivalents. Org. Lett. 2017, 19, 1527–1529.; b) Shockley, S. E.; Hethcox, J. C.; Stoltz, B. M. Enantioselective Synthesis of Acyclic α-Quaternary Carboxylic Acid Derivatives through Iridium-Catalyzed Allylic Alkylation. Angew. Chem. Int. Ed. 2017, 56, 11545–11548.

7 Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. Enantioselective Synthesis of Vicinal All-Carbon Quaternary Centers via Iridium-Catalyzed Allylic Alkylation. Angew. Chem. Int. Ed. 2018, 57, 8664–8667.

8 a) Bartels, B.; García-Yebra, C.; Helmchen, G. Asymmetric Ir-Catalysed Allylic Alkylation of Monosubstituted Allylic Acetates with Phosphorus Amidites As Ligands. Eur. J. Org. Chem. 2003, 6, 1097–1103.; b) Polet, D.; Alexakis, A. Kinetic Study of Various Phosphoramidite Ligands in the Iridium-Catalyzed Allylic Substitution. Org. Lett. 2005, 7, 1621–1624.; c) Helmchen, G.; Kazmaier, U.; Förster, S. Enantioselective Allylic Substitutions with Carbon Nucleophiles. In Catalytic Asymmetric Synthesis, 3rd ed.; John Wiley & Sons, 2013, pp 497–635.

9 Onodera, G.; Watabe, K.; Matsubara, M.; Oda, K.; Kezuka, S.; Takeuchi, R. Iridium-Catalyzed Enantioselective Allylic Alkylation Using Chiral Phosphoramidite Ligand Bearing an Amide Moiety. Adv. Synth. Catal. 2008, 350, 2725–2732.

10 a) Hulst, R.; de Vries, N. K.; Feringa, B. L. α-Phenylethylamine based chiral phospholines; new agents for the determination of the enantiomeric excess of chiral alcohols, amines, and thiols by means of 31P NMR. Tetrahedron Asymmetry 1994, 5, 699–708.; b) Feringa, B. L. Phosphoramidates: Marvellous Ligands in Catalytic Asymmetric Conjugate Addition. Acc. Chem. Res. 2000, 33, 346–353.; c) Kiener, C. A.; Shu, C.; Inciverto, C.; Hartwig, J. F. Identification of an Activated Catalyst in the Iridium-Catalyzed Allylic Amination and Etherification. Increased Rates, Scope, and Selectivity. J. Am. Chem. Soc. 2003, 125, 14272–14273.; d) Alexakis, A.; Polet, D. Very Efficient Phosphoramidite Ligand for Asymmetric Iridium-Catalyzed Allylic Alkylation. Org. Lett. 2004, 6, 3529–3552.

11 Liu, W.; Zheng, C.; Zhuo, C.; Dai, L.; You, S. Iridium-Catalyzed Allylic Alkylation Reaction with N-Aryl Phosphoramidite Ligands: Scope and Mechanistic Studies. J. Am. Chem. Soc. 2012, 134, 4812–4821.

12 a) Bartels, B.; Helmchen, G. Ir-catalysed allylic substitution: mechanistic aspects and asymmetric synthesis with phosphorus amidites as ligands. Chem. Commun. 1999, 741–742.; b) Liu, W.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. Construction of Vicinal Tertiary and All-Carbon Quaternary Stereocenters via Ir-Catalyzed Regio-, Diastereo-, and Enantioselective Allylic Alkylation and Applications in Sequential Pd Catalysis. J. Am. Chem. Soc. 2013, 135, 10626–10629.; c) Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. Iridium-Catalyzed Stereoselective Allylic Alkylation Reactions with Crotly Chloride. Angew. Chem. Int. Ed. 2016, 55, 16092–16095.

13 a) Fuji, K.; Kinoshita, N.; Tanaka, K.; Kawabata, T. Enantioselective allylic substitution catalyzed by an iridium complex: remarkable effects of the counter cation. Chem. Commun. 1999, 2289–2290.; b) Alexakis, A.; El Hajjaji, S.; Polet, D.; Rathgeb X. Iridium-Catalyzed Asymmetric Allylic Substitution with Aryl Zinc Reagents. Org. Lett. 2007, 9, 3393–3395.; c) Meng, C.-Y.; Liang, X.; Wei, K.; Yang, Y.R. Enantioselective Ir-Catalyzed Allylic Alkylation of Racemic Allylic Alcohols with Malonates. Org. Lett. 2019, 21, 840–843.

14 Rusu, A.; Tanase, C.; Pascu, G.-A.; Todoran, N. Recent Advances Regarding the Therapeutic Potential of Adapalene. Pharmaceuticals 2013, 13, 217.

15 a) Bartels, B.; García-Yebra, C.; Rominger, F.; Helmchen, G. Iridium-Catalysed Allylic Substitution: Stereochemical Aspects and Isolation of Ir(IV) Complexes Related to the Catalytic Cycle. Eur. J.
Inorg. Chem. 2002, 2569–2586.; b) Helmchen, G.; Dahnz, A.; Dübon, P.; Schelwies, M.; Weihofen, R. Iridium-catalysed asymmetric allylic substitutions. Chem. Commun. 2007, 675–691.; c) Madrahimov, S.; Hartwig, J. F. Origins of Enantioselectivity during Allylic Substitution Reactions Catalyzed by Metallacyclic Iridium Complexes. J. Am. Chem. Soc. 2012, 134, 8136–8147. For Z-retentive iridium catalyzed allylic alkylation, see: d) Takeuchi, R.; Shiga, N. Complete Retention of Z Geometry in Allylic Substitution Catalyzed by an Iridium Complex. Org. Lett. 1999, 1, 265–267.; e) Jiang, R.; Ding, L.; Zheng, C.; You, S. Iridium-catalysed Z-retentive asymmetric allylic substitution reactions. Science 2021, 371, 380–386.

16 Pappo, R.; Allen, D.; Lemieux, R.; Johnson, W. Osmium Tetroxide-Catalyzed Periodate Oxidation of Olefinic Bonds. J. Org. Chem. 1956, 21, 478–479.

17 Srikrishna, A.; Satyanarayana, G.; Prasad, M. R. Synthetic Approaches to Sporochnols A–C. Synth. Commun. 2005, 35, 1687–1698.

18 Ohira, S.; Kuboki, A.; Hasegawa, T.; Kikuchi, T.; Kutsukake, T.; Nomura, M. Total synthesis of sporochnols, fish deterrents from a marine alga. Tetrahedron Lett. 2002, 43, 4641–4644.