A Network Pharmacology Study to Uncover the Mechanism of FDY003 for Ovarian Cancer Treatment

Ho-Sung Lee1,2, In-Hee Lee1, Kyungrae Kang2, Sang-In Park3, Minho Jung4, Seung Gu Yang5, Tae-Wook Kwon2 and Dae-Yeon Lee1,2

Abstract
Ovarian cancer (OC) is one of the deadliest gynecological tumors responsible for 0.21 million deaths per year worldwide. Despite the increasing interest in the use of herbal drugs for cancer treatment, their pharmacological effects in OC treatment are not understood from a systems perspective. Using network pharmacology, we determined the anti-OC potential of FDY003 from a comprehensive systems view. We observed that FDY003 suppressed the viability of human OC cells and further chemosensitized them to cytotoxic chemotherapy. Through network pharmacological and pharmacokinetic approaches, we identified 16 active ingredients in FDY003 and their 108 targets associated with OC mechanisms. Functional enrichment investigation revealed that the targets may coordinate diverse cellular behaviors of OC cells, including their growth, proliferation, survival, death, and cell cycle regulation. Furthermore, the FDY003 targets are important constituents of diverse signaling pathways implicated in OC mechanisms (e.g., phosphoinositide 3-kinase [PI3K]-Akt, mitogen-activated protein kinase [MAPK], focal adhesion, hypoxia-inducible factor [HIF]-1, estrogen, tumor necrosis factor [TNF], erythroblastic leukemia viral oncogene homolog [ErbB], Janus kinase [JAK]-signal transducer and activator of transcription [STAT], and p53 signaling). In summary, our data present a comprehensive understanding of the anti-OC effects and mechanisms of action of FDY003.

Keywords
herbal drugs, anticancer agents, ovarian cancer, network pharmacology, molecular mechanisms

Received: October 13th, 2021; Accepted: January 6th, 2022.

Introduction
Ovarian cancer (OC) is one of the deadliest gynecological tumors responsible for 0.21 million deaths per year worldwide. Several cytotoxic and molecular-targeted drugs have been developed and used for OC treatment in clinics; however, their treatment rates and efficacies remain limited, and they may further generate harmful side effects. To overcome these issues, herbal drugs are gaining attention as effective and complementary anticancer therapeutics that can improve the efficacy of anticancer agents and alleviate their toxicities. Herbal drugs may decrease mortality, cancer symptoms, and therapy-related adverse events, and improve the prognosis and survival of patients with OC.

FDY003, a combination of Artemisia capillaris Thunberg (AcT), Cordyceps militaris (Cm), and Lonicera japonica Thunberg (LjT), is a prescription that displays growth-suppressive and cell-death-inducing effects against diverse types of cancer. These pharmacological outcomes result from the targeting of various molecules and pathways related to important cancerous and tumorigenic mechanisms; however, the pharmacological properties of FDY003 for OC treatment have not been elucidated from a systems perspective.

Network pharmacology is a research paradigm that seeks to elucidate the polypharmacological regulatory mechanisms of herbal drugs by analyzing and studying the integrated large-scale pharmacological data relevant to them; it is proven to be the most efficient methodology for herbal-drug-associated studies. This research approach produces distinct types of

1The Fore, Songpa-gu, Seoul, Republic of Korea
2Forest Hospital, Jongno-gu, Seoul, Republic of Korea
3Forestheal Hospitalo, Songpa-gu, Seoul, Republic of Korea
4Forest Hospital, Songpa-gu, Seoul, Republic of Korea
5Kyunghee Naro Hospital, Bundang-gu, Seongnam, Republic of Korea

Corresponding Author:
Dae-Yeon Lee, The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea; Ho-Sung Lee, The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea.
Emails: forehslee@gmail.com; foresthrnd@gmail.com
Results and Discussion

Anti-Ovarian Cancer Activities of FDY003

To confirm the pharmacological activities of FDY003 against OC, SK-OV-3 human OC cells were treated with FDY003 and/or paclitaxel, a frontline drug for OC chemotherapy18, and their viability was assessed. The viability of SK-OV-3 cells was significantly (P < 0.05) reduced after FDY003 treatment compared to the untreated cells, and the reduction in viability was significantly (P < 0.05) greater after co-treatment with paclitaxel and FDY003 (Supplementary Figure S1A and B). These results suggest that FDY003 exhibits pharmacological activity against OC.

Active Ingredients of FDY003 and Their Targets

Among the various ingredients of FDY003, those with Caco-2 permeability ≥ −0.4, druglikeness ≥ 0.18, and oral bioavailability ≥ 30%, were defined as active (Supplementary Table S1)7,12,19,20. Notably, some were further regarded as active ingredients, despite failing to meet the aforementioned requirements on the basis of their previously reported anti-OC effects. From the pharmacokinetic analysis, we obtained 20 active ingredients for FDY003 (Supplementary Table S2). Subsequently, by analyzing the protein–chemical interactions, we obtained 270 targets for 18 of the FDY003 active ingredients (none were identified for loniceracetalides B_qt and demethoxycapillarisin) (Supplementary Table S3). Among the 18 active ingredients having interacting targets, 16 (excluding 4'-methylcapillarisin and isorcarapillin) interacted with 108 targets related to the pathophysiological mechanisms of OC (Supplementary Table S3).

Network-Level Effect of FDY003 Against Ovarian Cancer

We initiated the network pharmacology study for FDY003 by integrating comprehensive FDY003-related information into an herb–active chemical ingredient–target (H-I-T) network (Figure 1 and Supplementary Table S3). In the H-I-T network of FDY003, kaempferol, luteolin, and quercetin displayed the largest number of targets (Figure 2 and Supplementary Table S3), suggesting that these may be the major phytochemicals responsible for the anti-OC activity of FDY003. Among the FDY003 targets, 79.6% (86 of 108 targets) had 2 or more interacting ingredients (Figure 1), implying the multiple ingredient–multiple target pharmacological nature of FDY003.

Since the pharmacological effects of a given drug are exerted and conferred through the molecular, genetic, and functional interactions among the therapeutic targets21-25, we merged and integrated the interaction information between the OC-related targets of FDY003 into a protein–protein interaction (PPI) network (Figure 2). Subsequently, we analyzed the topological characteristics of the FDY003-associated PPI network and explored the hub nodes in the network; notably, hub nodes possessing the largest number of degrees and serving crucial roles as effective therapeutic targets26,27. On the basis of previous analyses, hubs were determined to have a degree at least twice the average degree of all nodes in the network28,29. The hub nodes of the PPI network were AKT1, CASP3, CTNNB1, EGFR, ESR1, IL6, JUN, MAPK3, MYC, SRC, STAT3, TP53, and VEGFA (Figure 2), which may be the major targets for the pharmacological activities of FDY003 against OC. Furthermore, the expression status of these targets was shown to serve as a significant (P < 0.05) predictor of survival and mortality of patients with OC (Figure 3), suggesting the clinical and therapeutic importance of the hub targets.

To gain insights into the regulatory effects of FDY003 at the molecular and signaling levels in OC treatment, we explored the functional enrichment of FDY003 targets. Functional enrichment investigation revealed that the targets may coordinate diverse cellular behaviors of OC cells, including their growth, proliferation, survival, death, and cell cycle regulation (Supplementary Figure S2). Furthermore, the FDY003 targets were important constituents of diverse signaling pathways implicated in the OC mechanisms (Figure 4 and Supplementary Figure S2), which suggests that FDY003 may target these key pathways, exhibiting its anti-OC activities.

The overall analysis suggests that FDY003 exhibits multiple-ingredient, multiple-target, and multiple-pathway polypharmacological features, with multiple modes of action, against OC.

Molecular Docking Analysis of FDY003 Ingredients and Their Targets

To verify the interactions between the FDY003 ingredients and their targets, we performed molecular docking analysis and assessed their binding affinities. The active ingredients of FDY003 and their hub targets exhibited chemical–protein docking scores < −5.0 (Figure 5 (A–L) and Supplementary Figure S3), suggesting their potent binding affinities.

In the present study, we found that FDY003 suppressed the viability of human OC cells and further chemosensitized them to cytotoxic chemotherapy. Functional enrichment investigation revealed that the targets may coordinate diverse cellular behaviors of OC cells, including their growth, proliferation, survival, death, and cell cycle regulation. Furthermore, the FDY003 targets were found to be important constituents of diverse signaling pathways implicated in OC mechanisms, that is, phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein
kinase (MAPK), focal adhesion, hypoxia-inducible factor (HIF)-1, estrogen, mitogen-activated protein kinase (TNF), erythroblastic leukemia viral oncogene homolog (ErbB), Janus kinase-signal transducer and activator of transcription (JAK-STAT), and p53 signaling. These analyses present the anti-OC effects of FDY003 and its regulatory mechanisms.

The important FDY003 hub targets have been reported to coordinate diverse cancerous and pro-tumorigenic events of OC and serve as potent targets for pharmacological interventions against OC. More specifically, the oncogene AKT1 enhances growth, migration, epithelial-to-mesenchymal transition (EMT), glycolysis, and chemoresistance of OC cells; it functions as a biomarker for therapeutic response to OC treatment30-33.

CASP3 expression and activity are correlated with apoptosis, migration, proliferation, growth, viability, and chemosensitivity of OC cells; it is further associated with metastasis, survival, and clinical and prognostic outcomes of patients with OC34-39. The dysregulated expression and activity, and the genetic mutation of CTNNB1 are implicated in the development, progression, metastasis, recurrence, and prognosis of OC40-42.

Overexpression, amplification, and mutations of EGFR are associated with OC pathomechanisms; targeting EGFR may lead to antitumor effects43. ESR1 is involved in the proliferation and invasion of OC cells and its genetic features are correlated with the risk, progression, and overall survival of patients with OC44-46. IL6 induces angiogenesis, pro-tumorigenic inflammation, infiltration of tumor-promoting macrophages, chemoresistance, survival, proliferation, and immune surveillance of OC cells and tumors; its increased expression is related to a worse prognosis for patients with OC47-49. The proto-oncogene JUN stimulates chemoresistance, survival, migration, proliferation, angiogenesis, growth, EMT, invasion, recurrence, and metastasis of OC cells50-55. Expression of JUN is further elevated in OC cells and tumors, which correlates with carcinogenesis, progression, and prognosis of OC50-55. Extracellular signal-regulated kinase (ERK)-2 (encoded by MAPK3) regulates survival, growth, proliferation, cell cycle process, migration, invasion, anoikis resistance, and stemness of OC cells56-59. Targeting MYC can suppress cell cycle progression, growth, proliferation, viability, survival, and chemoresistance of OC cells; MYC is a predictor of prognosis and therapy response in patients with OC60-63. Genetic mutation and aberrant expression and activity of TP53 are important events that contribute to OC initiation and progression64,65. Src (encoded by SRC) is a key oncogenic kinase that is hyperactivated in OC cells and tumors and is involved in various pro-tumorigenic mechanisms; targeting the kinase can enhance therapy responsiveness66-69. STAT3 is a promising drug target for OC treatment because it is frequently

Figure 1. Herb–active chemical ingredient–target (H-I-T) network for FDY003. Green nodes, drug constituents; red nodes, active constituents; blue nodes, ovarian cancer (OC)-associated targets.
overexpressed in OC cells and promotes angiogenesis, cancer stemness, proliferation, metastasis, survival, and drug resistance.70 VEGFA is overexpressed in OC cells and tumors and it modulates angiogenesis, lymphangiogenesis, tumor vascularization, carcinogenesis, migration, invasion, progression, proliferation, tumorigenicity, and therapeutic sensitivity.71-77

The targeted OC-related pathways of FDY003 represent important signaling mechanisms of OC, and they may serve as targets for pharmacological modulation in OC treatment. The 5' adenosine monophosphate-activated protein kinase (AMPK), estrogen, gonadotropin-releasing hormone (GnRH), and mammalian target of rapamycin (mTOR) pathways are involved in the regulation of proliferation, survival, invasion, migration, and metastasis of OC cells.78-82 Imbalanced activity of the chemokine pathway contributes to metastasis, enhanced proliferation and survival, angiogenesis, vascularization, and pro-tumorigenic inflammation of OC cells and tumors, which makes the pathway a potential therapeutic target.81 Aberrations in the functional regulation of ErbB, MAPK, PI3K-Akt, and Ras pathways may promote uncontrolled cell growth and proliferation, survival, cell cycle progression, metastasis, angiogenesis, and malignant progression of OC cells, which can be inhibited by their targeting.84-86 Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and TNF pathways stimulate pro-tumorigenic inflammation that is suppressed by pharmacological intervention, and their expression levels are relevant to OC carcinogenesis.87,88 The focal adhesion pathway modulates migration, angiogenesis, proliferation, metastasis, survival, invasion, and anoikis resistance; inhibition of this pathway can augment therapeutic sensitivity.89,92 The HIF-1 and vascular endothelial growth factor (VEGF) pathways confer angiogenic and metastatic properties to OC cells and tumors, and their expression levels are correlated with malignancy, prognosis, and metastasis of OC.93-95 Activation of the JAK-STAT pathway results in EMT, chemoresistance, stemness, migration, metastasis, invasion, proliferation, and survival of OC cells; it is related to the poor survival outcome of patients with OC.96-99 The prolactin pathway drives hyperproliferation, pro-survival, and malignant progression of OC cells and tumors; its activity is associated with the risk of OC.100-102 The programmed death-ligand 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway, which regulates antitumor immune response, is a prognostic indicator for the survival of patients with OC.103 Genetic mutations and improper functional modulation of the p53 pathway may result in metastasis, EMT, proliferation, and increased survival and motility of OC cells and tumors; these are key mechanisms in the incidence, prognosis, and disease progression.104-110

FDY003 and its active ingredients possess anti-OC properties. The growth-arrest and pro-apoptotic effects of Cm in OC cells are mediated by the pharmacological regulation of TNF-α, TNF receptor 1, NF-κB, activating transcription factor 3 (ATF3), caspase, poly ADP-ribose polymerase.
(PARP)-1, B-cell lymphoma (Bcl)-2, and Bcl-2-associated X protein (Bax) pathways. Cordycepin targets Dickkopf-related protein 1 (Dkk1), autophagy-related protein 8 (ATG8), beclin, microtubule-associated protein 1A/1B-light chain 3 (LC3), β-catenin, matrix metalloproteinase (MMP), transforming growth factor (TGF)-β, vimentin, peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α, E-cadherin, estrogen receptor (ER)-α, mitochondrial, CC chemokine ligand 5 (CCL5), Akt, NF-κB, the long form of cellular FLICE-inhibitory protein (c-FLIP), and caspase signaling of OC cells; these pharmacological effects inhibit the survival, self-renewal potential, viability, EMT, metastasis, therapeutic resistance, migration, and invasion of OC cells. Cordycepin modulates the activities of p53, p21, Bad, Bax, caspase, Bel-2, B-cell lymphoma-extra large (Bel-xL), c-Myc, HIF, VEGF, Akt, estrogen-related receptor alpha (ESRRA), ERK, STAT, p38, c-Jun N-terminal kinases (JNK), checkpoint kinase 2 (Chk2), cell division cycle 25C (CDC25c), cyclin-dependent kinase 1 (Cdc2), Fas-associated protein with death domain (FADD), death receptor, TNF-related apoptosis-inducing ligand (TRAIL), homologous protein (CHOP), and endoplasmic reticulum (ER) stress pathways, thereby suppressing viability, growth, cell cycle progression, chemoresistance, angiogenesis, and proliferation of OC cells. Luteolin inhibits invasion, migration, survival, drug resistance, autophagy, metastasis, EMT, and proliferation of OC cells by targeting Bcl-2, MMP, FAK, ERK, Snail, Slug, and Twist1 pathways. Quercetin pharmacologically modulates autophagy, survival and death, viability, invasion, migration, proliferation, radio- and chemoresistance, cell cycle processes, and stem-like features of OC cells. These processes are mediated by ER stress, STAT, Bel-2, Bel-xL, urokinase-type plasminogen activator (uPA), MMP, caspase, mitochondrial, BH3-interacting domain death agonist (Bid), Bad, Bax, survivin, induced myeloid leukemia cell differentiation protein (Mcl-1), p53, p21, cyclins, and TGF-β pathways.

Conclusions

In summary, the network pharmacological analysis enabled us to dissect the regulatory mechanisms of FDY003 against OC.
FDY003 decreased the viability of human OC cells and increased their chemosensitivity. The drug contains 16 potentially active ingredients that may target various key OC-associated genes, proteins, and pathways. Follow-up studies need to assess the pharmacological action of F D Y 0 0 3 on important cancerous behaviors of cancer cells and tumors (eg, angiogenesis, anoikis resistance, cancer stem-like features, and metastasis) and chemosensitivity and radioresistance. Such studies will advance the role of natural medicines as effective anticancer therapies.

Materials and Methods

Cell Culture

The SK-OV-3 human OC cell line was purchased from the Korean Cell Line Bank (Seoul, Korea) and incubated in Dulbecco’s modified Eagle’s medium (WELGENE Inc.) supplemented with antibiotics (penicillin-streptomycin) (Thermo Fisher Scientific, Inc.) and 10% fetal bovine serum (WELGENE Inc.) at 37°C under 5% CO₂.

Preparation of F D Y 0 0 3

The dried raw herbal constituents of F D Y 0 0 3 (eg, Cm [100 g], LjT [150 g], and AcT [150 g]) were acquired from Hanpure Pharmaceuticals (Pocheon, Korea). After grinding and mixing, the herbal samples were placed in 70% ethanol (500 mL), and subjected to a 3 h reflux extraction at 80°C. The herbal extracts were successively purified with 80% and 90% ethanol and lyophilized at − 80°C. The final 50.4 g of dried extract was stored at − 20°C and dissolved in distilled water prior to use.

Evaluation of Cell Viability in Response to Drug Treatment

Cell viability in response to drug treatment was determined using water-soluble tetrazolium salt (WST-1) assays. Cells (1.0 × 10⁴) were seeded in a 96-well plate and cultured with the indicated drug combinations consisting of F D Y 0 0 3 and paclitaxel (Sigma-Aldrich) for 72 h, and subsequently with WST-1 solution (Daeil Lab Service Co. Ltd) for an additional 2 h, at 37°C under 5% CO₂. The viability of the drug-treated cells was determined by measuring the absorbance at 450 nm using an xMark microplate absorbance spectrophotometer (Bio-Rad).

Active Ingredient Screening

Detailed information on the ingredients of F D Y 0 0 3 was obtained from the Anticancer Herbs Database of Systems Pharmacology¹³⁰, Traditional Chinese Medicine Systems Pharmacology¹⁰, and Bioinformatics Analysis Tool for

Figure 4. Herb–active chemical–ingredient–target–pathway (H-I-T-P) network for F D Y 0 0 3. Green nodes, drug constituents; red nodes, active constituents; blue nodes, ovarian-cancer-associated targets; orange nodes, ovarian-cancer-related pathways.
Figure 5. Molecular docking study for the active ingredients of FDY003 and their targets. (A) Cordycepin–CASP3 (score = −5.6). (B) Cordycepin–IL6 (score = −6.1). (C) Cordycepin–MYC (score = −5.1). (D) Isorhamnetin–AKT1 (score = −6.4). (E) Kaempferol–AKT1 (score = −6.5). (F) Kaempferol–CASP3 (score = −6.8). (G) Kaempferol–EGFR (score = −8.1). (H) Kaempferol–ESR1 (score = −8.6). (I) Kaempferol–JUN (score = −9.0). (J) Kaempferol–MAPK3 (score = −8.4). (K) Kaempferol–SRC (score = −8.6). (L) Kaempferol–STAT3 (score = −7.4).
Molecular Mechanism of Traditional Chinese Medicine. We identified bioactive ingredients by evaluating their oral bioavailability, druglikeness, and Caco-2 permeability, which are pharmacokinetic parameters widely considered for active ingredient screening. Oral bioavailability indicates the efficiency of delivery of orally administered compounds to their target organs and tissues; oral bioavailability ≥ 0.18 (the average druglikeness value of whole available pharmacological agents) is an indicator of reasonable druggability. Caco-2 permeability indicates the intestinal permeability and absorptivity of compounds; Caco-2 permeability ≥ 0.4 is an indicator of potent intestinal permeability required by a druggable compound. In summary, the active ingredients selected were those with oral bioavailability $\geq 30\%$, druglikeness ≥ 0.18, and Caco-2 permeability ≥ 0.4.

Exploration of FDY003 Targets

The simplified molecular-input-line entry system notation of the active ingredients of FDY003 searched from PubChem was entered into the following databases: SwissTargetPrediction, PharmMapper, Search Tool for Interactions of Chemicals, and Similarity Ensemble Approach, and the targets of the active ingredients were obtained. In addition, we investigated the targets associated with OC pathophysiology by entering the search term “ovarian cancer” into the following databases: Human Genome Epidemiology Navigator, DrugBank, Therapeutic Target Database, Pharmacogenomics Knowledgebase, DisGeNET, Comparative Toxicogenomics Database, Online Mendelian Inheritance in Man, and GeneCards.

Network Generation

A network contains nodes (which indicate herbal medicines, ingredients, genes/proteins, and pathways) and edges (which indicate node-to-node interactions). The degree of a node is the number of its edges. H-I-T network contains edges connecting the medicines of FDY003 to their active constituents, and edges connecting the active ingredients to the OC-associated target interacting with them. The H-I-T-pathway (H-I-T-P) network additionally contains edges connecting the FDY003 targets to the OC-associated pathways in which they are involved. The PPI network contains edges connecting the individual FDY003 targets to their interacting partners, and information on the target-to-target interactions was investigated using STRING. Network generation was conducted using Cytoscape.

Survival Assessment of Patients with Ovarian Cancer According to the Expression of FDY003 Targets

The survival rates and survival periods of patients with OC according to the expression status of OC-related targets of FDY003 were investigated using the Kaplan-Meier Plotter.

Assessment of Functional Enrichment of the Ovarian Cancer-Related Targets of FDY003

The OC-related targets of FDY003 were imported into g:Profiler, a widely used web-based database for the investigation of functional enrichment, and gene ontology (GO) and pathway enrichment analysis results were obtained. Differences at a level of $P < .05$ were considered significant.

Molecular Binding Evaluation

We explored the molecular structures of the chemical ingredients and targets of FDY003 from the PubChem and RCSB Protein Data Bank, respectively. The binding affinities of the targets with their interacting ingredients were evaluated on the basis of molecular docking scores of individual chemical ingredient–target pairs using Autodock Vina. Those with molecular docking scores ≤ -5.0 were regarded to exhibit potent binding affinities, as previously described.

Statistical Analysis

Statistical analysis was conducted using GraphPad Prism software (GraphPad Software Inc.). The test methods and number of replicates are provided in the figure legends. P-values $< .05$ were considered significant.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Research Foundation of Korea (grant number 2021R1F1A1049472).

Statement of Human and Animal Rights

This article does not contain any studies with human or animal subjects.

Author Contributions

Conceptualization: Ho-Sung Lee, In-Hee Lee, and Dae-Yeon Lee Methodology: Ho-Sung Lee, In-Hee Lee, and Dae-Yeon Lee Data collection: Ho-Sung Lee, In-Hee Lee, Kyungae Kang, Sang-In Park, Minho Jung, Seung Gu Yang, and Tae-Wook Kwon
Data analysis and investigation: Ho-Sung Lee, In-Hee Lee, and Dae-Yeon Lee
Writing: Ho-Sung Lee, In-Hee Lee, and Dae-Yeon Lee
All authors read and approved the final manuscript.

Data Availability Statement
All data either generated or analyzed during this study are included in this published article and its Supplemental materials file.

Statement of Informed Consent
There are no human subjects in this article and informed consent is not applicable.

Ethical Approval
Not applicable, because this article does not contain any human or animal subjects.

ORCID iD
Ho-Sung Lee https://orcid.org/0000-0002-3198-9881

Trial Registration
Not applicable, because this article does not contain any clinical trials.

Supplemental Material
Supplemental material for this article is available online.

References
1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.
2. Burger RA, Brady MF, Bookman MA, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365(26):2473-2483.
3. Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. Semin Oncol Nurs. 2019;35(2):151-156.
4. Zhang W, Shen Z, Luo H, Hu X, Zheng L, Zhu X. The benefits and Side effects of bevacizumab for the treatment of recurrent ovarian cancer. Curr Drug Targets. 2017;18(10):1125-1131.
5. Wang R, Sun Q, Wang F, et al. Efficacy and safety of Chinese herbal medicine on ovarian cancer after reduction surgery and adjuvant chemotherapy: a systematic review and meta-analysis. Front Oncol. 2019;9(730):1-11.
6. Chang CY-Y, Yang P-Y, Tsai F-J, et al. Integrated Chinese herbal medicine therapy improves the survival of patients With ovarian cancer. Int J Cancer Ther. 2019;18:1-10.
7. Lee HS, Lee IH, Kang K, et al. A network pharmacology study on the molecular mechanisms of FDY003 for breast cancer treatment. Evid Based Complement Alternat Med. 2021;2021(3919143):1-18.
8. Lee I-H, Lee D-Y. FDY003 Inhibits colon cancer in a Colo205 xenograft mouse model by decreasing oxidative stress. Pharmacogn Mag. 2019;15(65):675-681.
9. Lee H-S, Lee I-H, Kang K, et al. Network pharmacology-based dissection of the comprehensive molecular mechanisms of the herbal prescription FDY003 against estrogen receptor-positive breast cancer. Nat Prod Commun. 2021;16(9):1-15.
10. Poornima P, Kumar JD, Zhao Q, Blunder M, Efferth T. Network pharmacology of cancer: from understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacol Res. 2016;111:290-302.
11. Lee WY, Lee CY, Kim YS, Kim CE. The methodological trends of traditional herbal medicine employing network pharmacology. Biomolecules. 2019;9(8):1-15.
12. Lee HS, Lee IH, Park SI, Lee DY. Network pharmacology-based investigation of the system-level molecular mechanisms of the hematopoietic activity of samul-tang, a traditional Korean herbal formula. Evid Based Complement Alternat Med. 2020;2020(9048089):1-17.
13. He R, Ou S, Chen S, Ding S. Network pharmacology-based study on the molecular biological mechanism of action for compound kushen injection in anti-cancer effect. Med Sci Monit. 2020;26(e918520):1-15.
14. Mi JL, Liu C, Xu M, Wang RS. Network pharmacology to uncover the molecular mechanisms of action of LeiGongTeng for the treatment of nasopharyngeal carcinoma. Med Sci Monit Basic Res. 2020;26(923431):1-10.
15. Wang Y, Dong B, Xue W, et al. Anticancer effect of radix astragali on cholangiocarcinoma In vitro and Its mechanism via network pharmacology. Med Sci Monit. 2020;26(e921162):1-20.
16. Xu T, Wang Q, Liu M. A network pharmacology approach to explore the potential mechanisms of huangqi-baishao herb pair in treatment of cancer. Med Sci Monit. 2020;26(e923199):1-11.
17. Zhang SQ, Xu HB, Zhang SJ, Li XY. Identification of the active compounds and significant pathways of Artemisia Anna in the treatment of Non-small cell lung carcinoma based on network pharmacology. Med Sci Monit. 2020;26(e923624):1-11.
18. Kampan NC, Madondo MT, McNally OM, Quinn M, Plebanski M. Paclitaxel and Its evolving role in the management of ovarian cancer. Bmc Res Int. 2015;2015(413076):1-22.
19. Yue SJ, Xin LT, Fan YC, et al. Herb pair danggui-honghua: mechanisms underlying blood stasis syndrome by system pharmacology approach. Sci Rep. 2017;7(40318):1-15.
20. Ru J, Li P, Wang J, et al. TCMSNP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(13):1-6.
21. Athanasios A, Charalampos V, Vasileios T, Ashraf GM. Protein-Protein interaction (PPI) network: recent advances in drug discovery. Curr Drug Metab. 2017;18(1):5-10.
22. Chu LH, Chen BS. Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets. BMC Syst Biol. 2008;2(56):1-17.
23. Huang J, Niu C, Green CD, Yang L, Mei H, Han JD. Systematic prediction of pharmacodynamic drug-drug interactions through
24. Yildirim MA, Goh KL, Cusick ME, Barabasi AL, Vidal M. Drug-target network. Nat Biotechnol. 2007;25(10):1119-1126.
25. Zhu M, Gao L, Li X, et al. The analysis of the drug-targets based on the topological properties in the human protein-protein interaction network. J Drug Target. 2009;17(7):524-532.
26. Cho DY, Kim YA, Przytycka TM. Chapter 5: network biology approach to complex diseases. PLoS Comput Biol. 2012;8(12):1-11.
27. Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41-42.
28. Zhu J, Yi X, Zhang Y, Pan Z, Zhong I, Huang P. Systems pharmacology-based approach to comparatively study the independent and synergistic mechanisms of danhong injection and naxiogin capsule in ischemic stroke treatment. Evid Based Complement Alternat Med. 2019;2019(1056708):1-18.
29. Zhong J, Liu Z, Zhou X, Xu J. Synergic anti-pruritis mechanisms of action for the radix Sophorae flavescentis and Fructus cnidii herbal pair. Molecules. 2017;22(9):1-13.
30. Chen L, Cheng X, Tu W, et al. Apatinib inhibits glycolysis by suppressing the VEGFR2/AKT1/SOX5/GLUT4 signaling pathway in ovarian cancer cells. Cell Oncol (Dordr). 2019;42(5):679-690.
31. Etemadmoghadam D, Bowtell D. AKT1 Gene amplification as a biomarker of treatment response in ovarian cancer: mounting evidence of a therapeutic target. Gynecol Oncol. 2014;135(3):409-410.
32. Hua G, He C, Lv X, et al. The four and a half LIM domains 2 (FHL2) regulates ovarian granulosa cell tumor progression via controlling AKT1 transcription. Cell Death Dis. 2016;7(2):e2297:1-12.
33. Zhang L, Zhou Q, Qiu Q, et al. CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol Cancer. 2019;18(144):1-19.
34. Chen Q, He Q, Zhuang I, Wang K, Yin C, He L. IP10-CDR3 Reduces The viability And induces The apoptosis Of ovarian cancer cells By down-regulating The expression Of Bcl-2 And caspase 3. Onco Targets Ther. 2019;12:9697-9706.
35. Gregoraszczuk EL, Rak-Mardyla A, Rys J, Jakubowicz J, Urbanski K. Effect of chemotherapeutic drugs on caspase-3 activity, as a Key biomarker for apoptosis in ovarian cell cultured as monolayer. A pilot study. Iran J Pharm Res. 2015;14(4):1153-1161.
36. Kleinberg L, Dong HP, Holth A, et al. Cleaved caspase-3 and nuclear factor-kappaB p65 are prognostic factors in metastatic serous ovarian carcinoma. Hum Pathol. 2009;40(6):795-806.
37. Yang X, Zheng F, Xing H, et al. Resistance to chemotherapy-induced apoptosis via decreased caspase-3 activity and overexpression of antiapoptotic proteins in ovarian cancer. J Cancer Res Clin Oncol. 2004;130(7):423-428.
38. Zhang X, Yang X, Chen M, et al. ST3Gal3 Confers paclitaxel-mediated chemoresistance in ovarian cancer cells by attenuating caspase8/3 signaling. Mol Med Rep. 2019;20(5):4499-4506.
39. Zhao X, Wang D, Zhao Z, et al. Caspase-3-dependent activation of calcium-independent phospholipase A2 enhances cell migration in non-apoptotic ovarian cancer cells. J Biol Chem. 2006;281(39):29357-29368.
40. Lage MN, Paquet M, Fan HY, et al. Synergistic effects of pten loss and WNT/CTNNB1 signaling pathway activation in ovarian granulosa cell tumor development and progression. Carcinogenesis. 2008;29(11):2062-2072.
41. Yoshioka S, King ML, Ran S, et al. WNT7A Regulates tumor growth and progression in ovarian cancer through the WNT/beta-catenin pathway. Mol Cancer Res. 2012;10(3):469-482.
42. Zyla RE, Olkhov-Mitsel E, Amemiya Y, et al. CTNNB1 Mutations and aberrant beta-catenin expression in ovarian endometrioid carcinoma: correlation With patient outcome. Am J Surg Pathol. 2021;45(1):68-76.
43. Sheng Q, Liu J. The therapeutic potential of targeting the EGFR Family in epithelial ovarian cancer. Br J Cancer. 2011;104(8):1241-1245.
44. Doherty JA, Rossing MA, Cushing-Haagen KL, et al. ESR1/ESR1 Polymorphism and invasive epithelial ovarian cancer risk: an ovarian cancer association consortium study. Cancer Epidemiol Biomarkers Prev. 2010;19(1):245-250.
45. Giannopoulou I, Mastoraki S, Buderath P, et al. ESR1 Methylation in primary tumors and paired circulating tumor DNA of patients with high-grade serous ovarian cancer. Gynecol Oncol. 2018;150(2):355-360.
46. Wang K, Zhu G, Bao S, Chen S. Long Non-coding RNA LINC00511 mediates the effects of ESR1 on proliferation and invasion of ovarian cancer through miR-424-5p and miR-370-5p. Cancer Manag Res. 2019;11:10807-10819.
47. Coward J, Kalbe H, Chakravarty P, et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res. 2011;17(18):6083-6096.
48. Dijkstra EM, Welters MJ, van der Burg SH, Kroep JR. Interleukin-6/interleukin-6 receptor pathway as a new therapy target in epithelial ovarian cancer. Curr Pharm Des. 2012;18(25):3816-3827.
49. Isobe A, Sawada K, Kinose Y, et al. Interleukin 6 receptor is an independent prognostic factor and a potential therapeutic target of ovarian cancer. PLoS One. 2015;10(2):1-20.
50. Alvero AB, Heaton A, Lima E, et al. TRX-E-002-1 induces c-Jun-dependent apoptosis in ovarian cancer stem cells and prevents recurrence In vivo. Mol Cancer Ther. 2016;15(6):1279-1290.
51. Echevarria-Vargas IM, Valiyeva F, Vivas-Mejia PE. Upregulation of miR-21 in cisplatin resistant ovarian cancer via JNK-1/c-Jun pathway. PLoS One. 2014;9(5):1-13.
52. Eckhoff K, Flurschutz R, Trillsch F, Mahner S, Janicke F, Hein S, Milde-Langosch K. Expression of Jun and Fos proteins in ovarian tumors of different malignant potential and in ovarian cancer cell lines. Oncol Rep. 2009;22(1):177-183.
54. Liu L, Ning Y, Yi J, et al. miR-6089/MYH9/beta-catenin/c-Jun negative feedback loop inhibits ovarian cancer carcinogenesis and progression. *Biomed Pharmacother.* 2020;125(109865):1-11.

55. Yang Y, Xia L, Wu Y, et al. Programmed death ligand-1 regulates angiogenesis and metastasis by participating in the c-JUN/VEGFR2 signaling axis in ovarian cancer. *Cancer Commun (Lond).* 2021;41(6):511-527.

56. Carduner I, Picot CR, Leroy-Dudal J, Blay I, Kellouche S, Carreiras F. Cell cycle arrest or survival signaling through alphav integrins, activation of PKC and ERK1/2 lead to anoikis resistance of ovarian cancer spheroids. *Exp Cell Res.* 2014;320(2):329-342.

57. Goncharenko-Khaidier N, Matte I, Lane D, Rancourt C, Piche A. Ovarian cancer ascites increase Mel1 expression in tumor cells through ERK1/2/Elk-1 signaling to attenuate TRAIL-induced apoptosis. *Mol Cancer.* 2012;11(84):1-13.

58. Siu MKY, Jiang YX, Wang JJ, et al. Hexokinase 2 regulates ovarian cancer cell migration, invasion and stemness via FAK/ERK1/2/MMP9/ANGIO/VEGF/EGF signaling cascades. *Mol Cancer.* 2019;11(6):1-20.

59. Yu TT, Wang CY, Tong R. ERBB2 Gene expression silencing negatively feedback loop inhibits ovarian cancer carcinogenesis and progression. *Cancer Sci.* 2020;11(6):1-13.

60. Wang L, Zhao F, Xiao Z, Yao L. Exosomal microRNA-205 is involved in proliferation, migration, invasion, and apoptosis of ovarian cancer cells via regulating VEGFA. *Cancer Sci.* 2020;11(6):837-848.

61. Reyes-Gonzalez JM, Armaiz-Pena GN, Mangala LS, et al. MYC status as a determinant of synergistic response to olaparib and palbociclib in ovarian cancer. *Oncotarget.* 2020;13:8161-8171.

62. Jang K, Kim M, Gilbert CA, Simpkins F, Ince TA, Slingerland JM. VEGFA Activates an epigenetic pathway upregulating ovarian cancer-initiating cells. *EMBO Mol Med.* 2017;9(3):304-318.

63. Li X, Hu Z, Shi H, Wang C, Lei J, Cheng Y. Inhibition of VEGFA increases the sensitivity of ovarian cancer cells to chemotherapy by suppressing VEGFA-mediated autophagy. *Onco Targets Ther.* 2020;13:5629-5633.

64. Schuijer M, Berns EM. TP53 And ovarian cancer. *Cancer Ther.* 2015;14(10):2260-2269.

65. Wu B, Zhang L, Yu Y, et al. miR-6086 inhibits ovarian cancer angiogenesis by downregulating the O2C2/VEGFA/EGF6 axis. *Cell Death Dis.* 2020;11(3):1-17.

66. Zhou P, Xiong T, Chen J, Li F, Qi T, Yuan J. Clinical significance of melanoma cell adhesion molecule CD146 and VEGFA expression in epithelial ovarian cancer. *Oncol Lett.* 2019;17(2):2418-2424.

67. Fan X, Xie M, Zhao F, et al. Daphnetin triggers ROS-induced cell death and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway in ovarian cancer. *PloS medicine.* 2021;82(153465):1-14.

68. Lee JS, Sul JY, Park JB, Lee MS, Cha EY, Ko YB. Honokiol induces apoptosis and suppresses migration and invasion of ovarian carcinoma cells via AMPK/mTOR signaling pathway. *Int J Mol Med.* 2019;43(5):1969-1978.

69. Liu Y, Tong L, Luo Y, Li X, Chen G, Wang Y. Resveratrol inhibits the proliferation and induces the apoptosis in ovarian cancer cells via regulating VEGFA. *Cancer Cells* 2020;8(595585):1-11.

70. Grundler C, Emmons G. Role of gonadotropin-releasing hormone (GnRH) in ovarian cancer. *Cells.* 2021;10(66):1-7.

71. Langdon SP, Herrington CS, Hollis RL, Courley C. Estrogen signaling and Its potential as a target for therapy in ovarian cancer. *Cancers (Basel).* 2018;10(65):1-7.

72. Barbieri F, Bajetto A, Florio T. Role of chemokine network in the development and progression of ovarian cancer: a potential novel pharmacological target. *J Oncol.* 2010;2010(426956):1-16.

73. Edirwewa MK, Tenneskoorn KH, Samarakoon SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: biological and therapeutic significance. *Semin Cancer Biol.* 2019;59:147-160.

74. Sheppard KE, Cullinane C, Hannan KM, et al. Synergistic inhibition of ovarian cancer cell growth by combining selective PI3K/mTOR and Ras/ERK pathway inhibitors. *Eur J Cancer.* 2013;49(18):3936-3944.
86. Zhou C, Qiu L, Sun Y, et al. Inhibition of EGFR/PI3K/AKT cell survival pathway promotes TSA’s effect on cell death and migration in human ovarian cancer cells. Int J Ovar. 2006;29(1):269-278.

87. Gupta M, Babic A, Beck AH, Terry K. TNF-alpha expression, risk factors, and inflammatory exposures in ovarian cancer: evidence for an inflammatory pathway of ovarian cancer carcinogenesis? Hum Pathol. 2016;54:82-91.

88. Thaklaewphan P, Ruttanapattanakul J, Monkaew S, et al. Kaempferia parviflora extract inhibits TNF-alpha-induced release of MCP-1 in ovarian cancer cells through the suppression of NF-kappaB signaling. Biomed Pharmacother. 2021;141(111911):1-11.

89. Halder J, Landen CN, Lutgendorf SK, et al. Focal adhesion kinase silencing augments docetaxel-mediated apoptosis in ovarian cancer cells. Clin Cancer Res. 2005;11(24 Pt 1):8829-8836.

90. Sood AK, Armaiz-Pena GN, Halder J, et al. Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J Clin Invest. 2010;120(5):1515-1523.

91. He Z, Chen AY, Rojanasakul Y, Rankin GO, Chen YC. Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1alpha/VEGF signaling pathway in ovarian cancer cells. Oncol Rep. 2016;35(1):291-297.

92. Stone RL, Baggerly KA, Armaiz-Pena GN, et al. Focal adhesion kinase: an alternative focus for anti-angiogenesis therapy in ovarian cancer. Cancer Biol Ther. 2014;15(7):919-929.

93. Shen W, Li HL, Liu L, Cheng JX. Expression levels of PTEN, PI3K, and AKT in human ovarian cancer cells. Cancer Lett. 2018;391:1-9.

94. Liu S, Sun J, Cai B, et al. NANOG Regulates epithelial-mesenchymal transition and chemoresistance through activation of ATF3/TP53 signaling in vitro and in vivo. Cell Death Discov. 2018;4(62):1-11.

95. Jang HJ, Yang KE, Hwang IH, et al. Cordycepin inhibits human ovarian cancer cells from anoikis. PLoS One. 2021;16(8):1-15.

96. Jo E, Jang H-J, Yang KE, et al. Cordyceps militaris induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem. 2011;128(2):513-519.

97. Jo E, Jang HJ, Yang KE, et al. Cordyceps militaris induces apoptosis in ovarian cancer cells through inhibiting CCL5-mediated Akt/NF-kappaB phosphorylation. Oncol Rep. 2020;34(10):2591-2599.

98. Jo E, Jang H-J, Yang KE, et al. Cordyceps militaris exerts antitumor effect on carboplatin-resistant ovarian cancer via activation of ATF3/TP53 signaling in vitro and in vivo. Nat Prod Commun. 2020;15(1):1-14.

99. Jo E, Jang H-J, Yang KE, et al. Cordycepin induces apoptosis in ovarian cancer cells through inhibiting CCL5-mediated Akt/NF-kappaB signaling pathway. Cell Death Dis. 2018;9(4):627.

100. Xiaomeng F, Lei L, Jinghong A, Juan J, Qi Y, Dandan Y. Treatment with beta-elemene combined with paclitaxel inhibits cell proliferation of high-grade serous ovarian cancer cells and in a spontaneous fallopian tube derived model. Cancer Lett. 2018;433:221-231.

101. Hashawy CA, Rice MS, Townsend MK, et al. Prolactin and risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2021;30(9):1652-1659.

102. Karthikeyan S, Russo A, Dean M, Lamvit DD, Endsley M, Burdette JE. Prolactin signaling drives tumorigenesis in human high grade serous ovarian cancer cells and in a spontaneous fallopian tube derived model. Cancer Lett. 2018;433:221-231.

103. Wang L. Prognostic effect of programmed death-ligand 1 (PD-L1) in ovarian cancer: a systematic review, meta-analysis and bioinformatics study. J Ovarian Res. 2019;12(37):1-10.

104. Bartel F, Jung J, Bohnke A, et al. Both germ line and somatic genetics of the p53 pathway affect ovarian cancer incidence and survival. Clin Cancer Res. 2008;14(1):89-96.

105. Green JA, Berns EM, Coens C, et al. Alterations in the p53 pathway and prognosis in advanced ovarian cancer: a multi-factorial analysis of the EORTC gynaecological cancer group (study 55865). Eur J Cancer. 2006;42(15):2539-2548.

106. Hayano T, Yokota Y, Hosomichi K, et al. Molecular characterization of an intact p53 pathway subtype in high-grade serous ovarian cancer. PLoS One. 2014;9(12):1-18.

107. Li H, Zheng Z, Yang X, Chen Y, He L, Wan T. LncRNA GClncl may contribute to the progression of ovarian cancer by regulating p53 signaling pathway. Eur J Histochem. 2020;64(4):1-17.

108. Luo H, Rankin GO, Li Z, Depriest L, Chen YC. Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem. 2011;128(2):513-519.

109. Yan C, Yuan J, Xu J, et al. Ubiquitin-specific peptidase 39 regulates the process of proliferation and migration of human ovarian cancer via p53/p21 pathway and EMT. Med Oncol. 2019;36(95):1-13.

110. Zhang C, Li Z, Wang J, et al. Ethanol extracts of Solanum lyratum thunb regulate ovarian cancer cell proliferation, apoptosis, and epithelial-to-mesenchymal transition (EMT) via the ROS-mediated p53 pathway. J Immunol Res. 2021;2021(5569354):1-16.

111. Jo E, Jang H, Yang KE, et al. Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-alpha/TNFR1-mediated inhibition of NF-kappaB phosphorylation. BMC Complement Med Ther. 2020;20(1):1-12.

112. Jo E, Jang H-J, Yang KE, et al. Cordyceps militaris exerts antitumor effect on carboplatin-resistant ovarian cancer via activation of ATF3/TP53 signaling in vitro and in vivo. Nat Prod Commun. 2020;15(1):1-14.

113. Cui ZY, Park SJ, Jo E, et al. Cordycepin induces apoptosis of human ovarian cancer cells by inhibiting CCK5-mediated Akt/NF-kappaB signaling pathway. Cell Death Dis. 2018;9(462):1-11.

114. Jang HJ, Yang KE, Hwang IH, et al. Cordycepin inhibits human ovarian cancer by inducing autophagy and apoptosis through dickkopf-related protein 1/beta-catenin signaling. Am J Transl Res. 2019;11(11):6890-6906.

115. Wang CW, Hsu WH, Tai CJ. Antimetastatic effects of cordycepin mediated by the inhibition of mitochondrial activity and estrogen-related receptor alpha in human ovarian carcinoma cells. Oncotarget. 2017;8(2):3049-3058.
116. Wang CW, Lee BH, Tai CJ. The inhibition of cordycepin on cancer stemness in TGF-beta induced chemo-resistant ovarian cancer cell. *OncoTargets* 2017;8(67):111912-111921.

117. El-Kott AF, Shati AA, Al-Kahtani MA, Alharbi SA. Kaempferol induces cell death in A2780 ovarian cancer cells and increases their sensitivity to cisplatin by activation of cytotoxic endoplasmic Reticulum-mediated autophagy and inhibition of protein kinase B. *Folia Biol (Praha)* 2020;66(1):36-46.

118. Gao Y, Yin J, Rankin GO, Chen YC. Kaempferol induces G2/M cell cycle arrest via checkpoint kinase 2 and promotes apoptosis via death receptors in human ovarian carcinoma A2780/CP70 cells. *Molecules*. 2018;23(5):1-12.

119. Luo H, Daddysman MK, Rankin GO, Jiang BH, Chen YC. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. *Cancer Cell Int*. 2010;10(16):1-9.

120. Luo H, Rankin GO, Liu I, Daddysman MK, Jiang BH, Chen YC. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. *Natr Cancer*. 2009;61(4):554-563.

121. Yang S, Si L, Jia Y, et al. Kaempferol exerts anti-proliferative effects on human ovarian cancer cells by inducing apoptosis, G0/G1 cell cycle arrest and modulation of MEK/ERK and STAT3 pathways. *J BUON*. 2019;24(3):975-981.

122. Zhao Y, Tian B, Wang Y, Ding H. Kaempferol sensitizes human ovarian cancer cells-OVCA-3 and SK-OV-3 to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis via JNK/ERK-CHOP pathway and Up-regulation of death receptors 4 and 5. *Med Sci Monit*. 2017;23:e5096-e5105.

123. Dia VP, Pangolli P. Epithelial-to-Mesenchymal transition in paclitaxel-resistant ovarian cancer cells Is downregulated by luteolin. *J Cell Physiol*. 2017;232(2):391-401.

124. Liu H, Zeng Z, Wang S, et al. Main components of pomegranate, ellagic acid and luteolin, inhibit metastasis of ovarian cancer by down-regulating MMP2 and MMP9. *Cancer Biol Ther*. 2017;18(12):990-999.

125. Liu Q, Zhu D, Hao B, Zhang Z, Tian Y. Luteolin promotes the sensitivity of cisplatin in ovarian cancer by decreasing PP1A-mediated autophagy. *Cell Mol Biol (Noisy-le-grand)*. 2018;64(6):17-22.

126. Wang H, Luo Y, Qiao T, Wu Z, Huang Z. Luteolin sensitizes the antitumor effect of cisplatin in drug-resistant ovarian cancer via induction of apoptosis and inhibition of cell migration and invasion. *J Ovarian Res*. 2018;11(93):1-11.

127. Parvaresh A, Razavi R, Rafie N, Ghiasvand R, Pourmasoumi M, Miraghaei M. Quercetin and ovarian cancer: an evaluation based on a systematic review. *J Res Med Sci*. 2016;21(34):1-7.

128. Shafabakhsh R, Asemi Z. Quercetin: a natural compound for ovarian cancer treatment. *J Ovarian Res*. 2019;12(55):1-9.

129. Vafadar A, Shabaninejad Z, Movahedpour A, et al. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. *Cell Biosi*. 2020;10(32):1-17.

130. Tao W, Li B, Gao S, et al. CancerHSP: anticancer herbs database of systems pharmacology. *Sci Rep*. 2015;5(11481):1-6.

131. Liu Z, Guo F, Wang Y, et al. BATMAN-TCM: a bioinformatics analysis tool for molecular mechanANism of traditional Chinese medicine. *Sci Rep*. 2016;6(21146):1-11.

132. Wang CK, Craik DJ. Cyclic peptide oral bioavailability: lessons from the past. *Biopolymers*. 2016;106(6):901-909.

133. Lee AY, Park W, Kang TW, Cha MH, Chun JM. Network pharmacology-based prediction of active compounds and molecular targets in yin-jin-tang acting on hyperlipidemia and atherosclerosis. *J Ethnopharmacol*. 2018;221:151-159.

134. Kono Y, Iwasaki A, Matsuoka K, Fujita T. Effect of mechanical agitation on cationic liposome transport across an unstirred water layer in caco-2 cells. *Biol Pharm Bull*. 2016;39(8):1293-1299.

135. Volpe DA. Variability in caco-2 and MDCK cell-based intestinal permeability assays. *J Pharm Sci*. 2008;97(2):712-725.

136. Garcia MN, Flowers C, Cook JD. The caco-2 cell culture system can be used as a model to study food iron availability. *J Natr*. 1996;126(1):251-258.

137. Kim S, Chen J, Cheng T, et al. Pubchem 2019 update: improved access to chemical data. *Nucleic Acids Res*. 2019;47(D1):D1102-D1109.

138. Daina A, Michielin O, Zoete V. Swisstargetprediction: updated data and new features for efficient prediction of protein targets of small molecules. *Nucleic Acids Res*. 2019;47(W1):W357-W364.

139. Wang X, Shen Y, Wang S, et al. Pharmmapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. *Nucleic Acids Res*. 2017;45(W1):W356-W360.

140. Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-chemical interaction network with a comprehensive target pharmacophore database. *Nucleic Acids Res*. 2010;38(Database issue):D787-D791.

141. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. *Nat Biotechnol*. 2007;25(2):197-206.

142. Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ. A navigator for human genome epidemiology. *Nat Genet*. 2008;40(2):124-125.

143. Wishart DS, Feunang YD, Guo AC, et al. Drugbank 5.0: a major update to the DrugBank database for 2018. *Nucleic Acids Res*. 2018;46(D1):D1074-D1082.

144. Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. *Clin Pharmacol Ther*. 2010;97(2):414-417.

145. Pinero J, Bravo A, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. *Nucleic Acids Res*. 2017;45(D1):D833-D839.

146. Davis AP, Grondin CJ, Johnson RJ, et al. The comparative toxicity of non-steroidal anti-inflammatory drugs: lessons from the past. *Biopolymers*. 2016;106(6):901-909.

147. El-Kott AF, Shati AA, Al-Kahtani MA, Alharbi SA. Kaempferol induces cell death in A2780 ovarian cancer cells and increases their sensitivity to cisplatin by activation of cytotoxic endoplasmic Reticulum-mediated autophagy and inhibition of protein kinase B. *Folia Biol (Praha)* 2020;66(1):36-46.

148. Luo H, Daddysman MK, Rankin GO, Jiang BH, Chen YC. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. *Cancer Cell Int*. 2010;10(16):1-9.
149. Safran M, Dalah I, Alexander J, et al. Genecards version 3: the human gene integrator. Database. 2010;2010(baq020):1-16.
150. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5(2):101-113.
151. Szklarczyk D, Gable AL, Lyon D, et al. STRING V11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-D613.
152. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504.
153. Nagy A, Lanczky A, Menyhart O, Gyorffy B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep. 2018;8(9227):1-9.
154. Raudvere U, Kolberg L, Kuzmin I, et al. G:profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191-W198.
155. Burley SK, Berman HM, Bhikadiya C, et al. RCSB Protein data bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019;47(D1):D464-D474.
156. Trott O, Olson AJ. Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461.

Author Biographies

Ho-Sung Lee is a senior researcher at “The Fore” research institute and also a doctor at the Forest Hospital in Jongno-gu, Seoul, Korea. His work has been focused on the cancer and tumor biology, systems biology, network pharmacology, medical science, and herbal medicine. He is the first and corresponding author of the study.

In-Hee Lee is a director of the “The Fore” research institute. His work has been focused on the microbiology, cancer and tumor biology, medical science, and herbal medicine. He is the co-author of the study.

Kyungrae Kang is a doctor at the Forest Hospital in Jongno-gu, Seoul, Korea. His work has been focused on the medical science and herbal medicine. He is the co-author of the study.

Sang-In Park is a director of the Forest Hospital in Songpa-gu, Seoul, Korea. His work has been focused on the cancer and tumor biology, and herbal medicine. He is the co-author of the study.

Minho Jung is a director of the Forest Hospital in Songpa-gu, Seoul, Korea. His work has been focused on the cancer and tumor biology, and herbal medicine. He is the co-author of the study.

Seung Gu Yang is a director of the Kyunghee Naro Hospital in Bundang-gu, Seongnam, Korea. His work has been focused on the cancer and tumor biology, and herbal medicine. He is the co-author of the study.

Tae-Wook Kwon is a doctor at the Forest Hospital in Jongno-gu, Seoul, Korea. His work has been focused on the cancer and tumor biology, and herbal medicine. He is the co-author of the study.

Dae-Yeon Lee is a CEO of “The Fore” and also a director of the Forest Hospital in Jongno-gu, Seoul, Korea. His work has been focused on the cancer and tumor biology, medical science, and herbal medicine. He is the corresponding author of the study.