Photon-photon gates in Bose-Einstein condensates

Arnaud Rispe, Bing He, and Christoph Simon
Institute for Quantum Information Science and Department of Physics and Astronomy,
University of Calgary, Calgary T2N 1N4, Alberta, Canada
(Dated: October 4, 2010)

Photon-photon gates in Bose-Einstein condensates are of great interest to explore the potential for the implementation of quantum information processing as well. This is particularly relevant for quantum repeaters [1–3], which would allow one to distribute quantum states over distances that are inaccessible by direct transmission. Quantum repeaters require both the capability to store photons for relatively long times and to perform efficient quantum gates between them [4]. Potential architectures where storage and quantum gates can be achieved in the same system are particularly attractive. Recently it was shown that light can be stored for over a second in a Bose-Einstein condensate (BEC) [4], making condensates a very interesting candidate system for the implementation of quantum memories. Quantum repeaters can tolerate long gate times in the sub-second range, since repetition rates are in any case limited by other factors such as communication times and transmission probabilities. It is therefore of great interest to explore the potential for photon-photon gates in BECs, where interactions between stored excitations are weak, but non-zero.

In the following we describe a concrete proposal for realizing such photon-photon gates in BECs. Our work builds on Refs. [3,6], but we focus on the case of two single photons interacting. In this extremely low-intensity regime achieving significant controlled phase shifts is not straightforward. However, we show that phase shifts of $\pi$ can be achieved on sub-second timescales by combining a Feshbach enhancement of the relevant scattering length and an adiabatic compression of the trap after the light has been stored. The fidelity of photon-photon gates can be affected by unwanted multi-mode effects, see e.g. Ref. [5]. In the present proposal these effects are greatly suppressed by the fact that the interaction is much weaker than the confinement, ensuring high-fidelity operations.

Let us assume that the two photons have orthogonal polarization. Their propagation inside the BEC can be controlled by two independent control beams, leading to storage in two different atomic levels 1 and 2, where the BEC was prepared in level 0, see Fig. 1. Slow and stopped light in BECs has been thoroughly investigated [1, 5, 8–10]. Due to the linearity of the equations of motion, the physics of storage and retrieval is the same at the single-photon level as for weak classical probe pulses [11, 12]. Inside the medium and in the presence of the appropriate control beam, the photon is converted into a slowly moving polariton, which can be stopped by adiabatically switching off the control beam, thus converting the photon into a stored atomic spin wave. Running the process in reverse allows the reconversion of spin waves into photons. Here we focus on the interaction between the two spin waves, once the control beams have been turned off. Due to the weakness of the collision-induced interactions the timescale for the storage and retrieval processes is much shorter than the timescale on which significant interaction occurs in the photon-photon regime.

The dynamics of the atomic spin waves is governed by the collisional interactions between atoms in combination with the external trapping potential. Spin waves in levels 1 and 2 experience an effective trapping potential and effective collisional interactions that depend on the differences between the atomic scattering lengths in the various atomic levels [6]. These differences, which are usually small, can be enhanced by Feshbach resonances [13, 14]. We consider a situation where both spin waves experience the same effective trapping potential, and where they are both in its ground state. The latter condition can be achieved by carefully matching the pulse duration and width of the incoming photons and the intensity of the control beams (which determines the propagation speed and thus the longitudinal extent of the polaritons inside the condensate) to the parameters of the effective trapping potential. We focus on the regime...
the size of the ground state wave functions is based on Refs. \[6, 18\]. The Gross-Pitaevskii (GP) terms. Our treatment of the spin waves inside the BEC can be read out independently.

where the stored spin waves are localized well inside the condensate, cf. Fig. 2.

The interaction strength, and thus the accumulated controlled phase shift for a given time, then strongly depends not only on the scattering lengths, but also on the size of the ground state wave packets. During storage and retrieval, this size has to be significantly larger than a wavelength, due to focusing restrictions for the transverse dimensions and in order to justify the slowly varying envelope description which underlies the polarization picture for the longitudinal dimension. However, in between storage and retrieval it is possible to adiabatically increase the trapping potential, thus reducing the size of the ground state wave packets while keeping the spin waves in the ground state, see Fig. 2. This enhances the interaction strength, making controlled phase shifts of \( \pi \) achievable on one-second timescales. Note that the basic ingredients of the present proposal are similar to those of single-atom quantum gates schemes based on cold collisions such as Refs. \[16, 17\].

We now describe our proposal in more quantitative terms. Our treatment of the spin waves inside the BEC is based on Refs. \[6, 18\]. The Gross-Pitaevskii (GP) equation for the macroscopic wave-function \( \psi_0 \) of the condensate is

\[
i\hbar \frac{\partial \psi_0}{\partial t} = \left( -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x}) + U_{00}|\psi_0|^2 + U_{01}|\psi_1|^2 + U_{02}|\psi_2|^2 \right) \psi_0,
\]

where \( m \) is the atomic mass, \( V \) is the trapping potential, \( U_{00}, U_{01}, U_{02} \) are the collisional interaction potentials, which are related to the corresponding scattering lengths \( a_{00}, a_{01}, a_{02} \) by \( U_{0j} = \frac{4\pi\hbar^2 a_{0j}}{m} \), and \( \psi_1, \psi_2 \) are the macroscopic wave functions for levels 1 and 2. We will make the transition to a single-quantum description for the latter in a moment.

For a sufficiently large condensate, and keeping in mind that the perturbation due to the spin waves in levels 1 and 2 is extremely weak in our case, the solution for \( \psi_0 \) will be essentially stationary, and the stationary equation for \( \psi_0 \) can be solved in the Thomas-Fermi approximation (i.e. neglecting the kinetic term) \[18\], giving

\[
|\psi_0|^2 = \frac{1}{U_{00}}(\mu - V - U_{01}|\psi_1|^2 + U_{02}|\psi_2|^2),
\]

where \( \mu \) is the chemical potential. This solution of Eq. 2 can now be inserted into the GP equations for \( \psi_1 \) and \( \psi_2 \). Corrections to the Thomas-Fermi approximation mainly affect the boundary layer of the condensate \[19\]. We therefore expect the present treatment to be correct under the above-mentioned condition that the spin waves in levels 1 and 2 are localized well inside the BEC.

In order to describe the few-excitation regime, we replace the macroscopic wave functions \( \psi_1, \psi_2 \) by quantum field operators \( \hat{\psi}_1, \hat{\psi}_2 \) satisfying commutation relations \( [\hat{\psi}_1(\mathbf{x}), \hat{\psi}_1^\dagger(\mathbf{x})] = \delta_{ij} \delta^{(3)}(\mathbf{x} - \mathbf{x'}) \), in analogy to the transition from classical to quantum non-linear optics \[20\]. They fulfill the equations (neglecting a constant energy shift that depends on \( \mu \))

\[
\begin{align*}
\hbar \frac{\partial \hat{\psi}_1}{\partial t} &= \left( -\frac{\hbar^2}{2m} \nabla^2 + \hat{V}_1(\mathbf{x}) + \hat{U}_{11} \hat{\psi}_1^\dagger \hat{\psi}_1 + \hat{U}_{12} \hat{\psi}_2^\dagger \hat{\psi}_2 \right) \hat{\psi}_1 \\
\hbar \frac{\partial \hat{\psi}_2}{\partial t} &= \left( -\frac{\hbar^2}{2m} \nabla^2 + \hat{V}_2(\mathbf{x}) + \hat{U}_{22} \hat{\psi}_2^\dagger \hat{\psi}_2 + \hat{U}_{12} \hat{\psi}_1^\dagger \hat{\psi}_2 \right) \hat{\psi}_2,
\end{align*}
\]

where \( \hat{V}_i = (1 - \frac{\mu}{2a_{0i}})V \) are the effective trapping potentials and \( \hat{U}_{ij} = \frac{4\pi\hbar^2}{m} \left( a_{ij} - \frac{a_{0i}a_{0j}}{a_{00}} \right) \) are the effective interaction potentials, which are all modified due to the interaction with the background condensate. These equations are analogous to those obtained in Ref. \[6\] for the two-level case. Here we have assumed that the bare trapping potential \( V \) is the same for all atomic levels. Moreover for simplicity we will assume that \( a_{01} = a_{02} \) implying \( \hat{V}_1 = \hat{V}_2 = V \). We require \( a_{01} < a_{02} \) in order for \( V \) to be attractive, provided that \( V \) is attractive \[21\].

Eq. 3 allows one to describe the dynamics of any number of quantum excitations in levels 1 and 2. However, we are interested in the case where there is exactly
one excitation in each level. It is then convenient to introduce the two-particle wave-function $\psi_{12}(x_1, x_2) = \langle 0|\hat{\psi}_1(x_1)\hat{\psi}_2(x_2)|\Phi\rangle$, where $|0\rangle$ is the state without any excitations (i.e. the state where there is just the condensed in level 0), and

$$|\Phi\rangle = \int d^3x_1 d^3x_2 \phi_0(x_1)\phi_0(x_2)\hat{\psi}_1^\dagger(x_1)\hat{\psi}_2^\dagger(x_2)|0\rangle$$

(4)

is the initial state (after storage), which consists of one atomic excitation in each level (1 and 2), both of which are in the ground state $\phi_0$ of the effective trapping potential $V$. In the Heisenberg picture for the quantum field theory the state remains constant, but the field operators evolve according to Eq. (3). As a consequence, the two-particle wave function $\psi_{12}$ defined above evolves according to

$$\frac{i\hbar}{\partial t}\psi_{12}(x_1, x_2, t) = (-\frac{\hbar^2}{2m}(\nabla_1^2 + \nabla_2^2) + V(x_1) + V(x_2) + U_{12}\delta^3(x_1 - x_2))\psi_{12}(x_1, x_2, t),$$

(5)

with the initial condition $\psi_{12}(x_1, x_2, 0) = \phi_0(x_1)\phi_0(x_2)$. We assume a spherically symmetric harmonic potential $V(x) = \frac{1}{2}m\omega^2x^2$, implying $\phi_0(x) = (\frac{m}{\pi \hbar \omega})^{\frac{3}{4}}e^{-\frac{m \omega x^2}{2\hbar}}$.

It is convenient to transform to center-of-mass and relative coordinates defined by $X = \frac{x_1+x_2}{\sqrt{2}}$ and $r = \frac{x_1-x_2}{\sqrt{2}}$. In these coordinates the wave function is separable at all times, $\psi_{12}(X, r, t) = e^{-\frac{im}{2}\omega t}\phi_0(X)\psi(r, t)$. The center of mass wave function exactly remains in the ground state of $V$. The relative coordinate wave function $\psi(r, t)$ fulfills the equation

$$\frac{i}{\partial t}\psi(r, t) = (-\frac{\hbar^2}{2m}\nabla^2 + \tilde{V}(r) + \tilde{U}_{12}\delta^3(r))\psi(r, t),$$

(6)

where $\tilde{U}_{12} = U_{12}2^{-\frac{3}{4}}$. The interaction between the two spin wave excitations inside the BEC is thus reduced to a fairly simple problem in one-particle quantum mechanics.

In practice the interaction energy associated with the $\tilde{U}_{12}$ term is two to three orders of magnitude smaller than the harmonic oscillator energy scale $\hbar \omega$. As a consequence, the use of perturbation theory is well justified. Due to the large separation between the two energy scales, $\psi(r, t)$ remains essentially proportional to the ground state, see below. However, there is an energy shift relative to the ground state energy, which is given by

$$\Delta E = |\langle \phi_0|\tilde{U}_{12}\delta^3(r)|\phi_0\rangle| = \tilde{U}_{12}|\phi_0(0)|^2 = \tilde{U}_{12}s^{-3},$$

(7)

where $s = \sqrt{\frac{3m}{\hbar \omega}}$ is the characteristic length scale of the ground state wave function, which is related to its full width at half maximum $l$ by $s = \frac{\sqrt{3m}}{\hbar \omega l}$. This energy shift is the basis of our quantum gate proposal. Since it is due to the interaction, it only occurs if there are two excitations in the condensate, allowing one to realize a controlled phase gate. The gate naturally has high fidelity because the correction terms to the ground state wave function have amplitudes of order $\frac{\Delta E}{\hbar \omega} \approx \frac{\tilde{U}_{12}}{8\hbar}$, which is smaller than $10^{-2}$ even for the largest scattering length and smallest ground state size that we will consider. This means that, apart from the phase, the overlap with the initial state remains extremely high, which is exactly what is required for high-fidelity operation.

The remaining challenge is therefore to achieve a controlled phase shift of $\pi$. Let us begin by choosing parameter values that should be straightforwardly achievable. For example, one can choose level 0 in the $F = 1$ submanifold of $^{87}$Rb, and levels 1 and 2 in the $F = 2$ submanifold, giving $a_{00} = 5.39$ nm, $a_{01} = a_{02} = 5.24$ nm and $a_{12} = 5.58$ nm [18], and a full width at half maximum for the ground state wave packet $l = 8\mu$m (corresponding to about ten wavelengths). With these values one finds that the time required for a phase of $\pi$ is 6 minutes, which at first sight may seem rather discouraging. We now discuss how to overcome this difficulty by acting both on the $\tilde{U}_{12}$ factor and the $s^{-3}$ factor in Eq. (7).

The factor $\tilde{U}_{12} = \frac{s\hbar k}{m}(a_{12} - a_{00}a_{02})$ is very small for the values given above because there is a quasi-cancelation between the two terms in parentheses because all the scattering lengths are so similar. A moderate increase in $a_{12}$, which can be achieved using a Feshbach resonance [12, 15], can therefore lead to a very large increase of $\tilde{U}_{12}$. For example, increasing $a_{12}$ by a factor of $F = 3$, which was already demonstrated in Ref. [14] for $^{87}$Rb, increases $\tilde{U}_{12}$ by a factor of 24.

A comparable gain can be achieved by acting on the second factor in Eq. (7), i.e. on the size of the wave function, or equivalently on the trapping frequency. We already mentioned in the introduction that $l$ (and thus $s$) cannot be too small during the storage process, because focusing becomes too difficult and the slowly varying envelope approximation breaks down. However, the trap-
ping frequency can be increased once the photons have been stored, see Fig.
2, with the caveat that this increase has to be done adiabatically so that the spin waves remain in the ground state of the effective trapping potential. The mentioned $l = 8\mu m$ corresponds to an effective frequency $\tilde{\omega} = 2\pi 10$ Hz, which corresponds to a real trap frequency $\omega = 2\pi 50$ Hz. This gives a condensate size of $17 \mu m$ for $N = 10^5$ atoms in the Thomas-Fermi approximation. The mentioned $l = 8\mu m$ corresponds to an effective frequency $\tilde{\omega} = 2\pi 10$ Hz, which corresponds to a real trap frequency $\omega = 2\pi 50$ Hz. This gives a condensate size of $17 \mu m$ for $N = 10^5$ atoms in the Thomas-Fermi approximation [22]. The effective frequency can be increased to $\tilde{\omega} = 2\pi 80$ Hz in $t_f = 0.14$ seconds while exciting the system out of the ground state with a probability that is smaller than 0.002. At this frequency the ground state size $l$ is $2.9\mu m$ and the size of the condensate is $7.4 \mu m$. For a Feshbach factor $F = 3$ a phase of order $\pi$ can then be achieved with $t_f = 0.73$ seconds. Taking into account that one has to decrease the frequency before readout, the total gate time $2t_a + t_f$ is 1.01 seconds for this example. Note that there is also a small contribution to the total phase from the adiabatic compression and expansion periods, see Fig. 3. The peak density of the condensate in its compressed state is $6 \times 10^{14}$/cm$^3$ in this case, which is compatible with typical three-body loss rates. Shorter gate times could be achieved for smaller initial ground state sizes, higher compressed densities, or larger Feshbach enhancement factors.

We have shown that a controlled phase of $\pi$ between individual photons is achievable on the one-second timescale under realistic conditions. We hope that our proposal will stimulate experimental work in this direction.

We thank D. Feder, A.I. Lvovsky, A. MacRae and A. Sørensen for helpful comments. This work was supported by an AI-TF New Faculty Award and an NSERC Discovery Grant.

[1] H.-J. Briegel, W. Dür, J.I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).
[2] L.-M. Duan, M.D. Lukin, J.I. Cirac, and P. Zoller, Nature 414, 413 (2001).
[3] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, arXiv:0906.2699, to appear in Rev. Mod. Phys.
[4] R. Zhang, S.R. Garner, and L.V. Hau, Phys. Rev. Lett. 103, 233602 (2009).
[5] Z. Dutton and L.V. Hau, Phys. Rev. A 70, 053831 (2004).
[6] Z. Dutton and C.W. Clark, Phys. Rev. A 71, 063618 (2005).
[7] B. He, A. MacRae, Y. Han, A.I. Lvovsky, and C. Simon, arXiv:1006.3584.
[8] L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, Nature 397, 594 (1999).
[9] C. Liu, Z. Dutton, C.H. Behroozi, and L.V. Hau, Nature 409, 490 (2001).
[10] N.S. Ginsberg, S.R. Garner, and L.V. Hau, Nature 445, 623 (2007).
[11] A.V. Gorshkov, A. André, M. Fleischhauer, A.S. Sørensen, and M.D. Lukin, Phys. Rev. Lett. 98, 123601 (2007).
[12] K. Hammerer, A.S. Sørensen, and E.S. Polzik, Rev. Mod. Phys. 82, 1041 (2010).
[13] S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.M. Stamper-Kurn, and W. Ketterle, Nature 392, 151 (1998).
[14] T. Volz, S. Dür, S. Ernst, A. Marte, and G. Rempe, Phys. Rev. A 68, 010702(R) (2003).
[15] A.M. Kaufman et al., Phys. Rev. A 80, 050701(R) (2009).
[16] D. Jaksch, H.-J. Briegel, J.I. Cirac, C.W. Gardiner, and P. Zoller, Phys. Rev. Lett. 82, 1975 (1999).
[17] T. Calarco, E.A. Hinds, D. Jaksch, J. Schmiedmayer, J.I. Cirac, and P. Zoller, Phys. Rev. A 61, 022304 (2000).
[18] Z. Dutton, Ultra-slow, stopped, and compressed light in Bose-Einstein condensates (PhD thesis, Harvard University, 2002).
[19] A.L. Fetter and D. Feder, Phys. Rev. A 58, 3185 (1998); F. Dalfovo, L. Pitaevskii, and S. Stringari, Phys. Rev. A 54, 4213 (1996).
[20] M. Hillery, Act. Phys. Slov. 59, 1 (2009), arXiv:0901.3439.
[21] These conditions are compatible with the phase-separation regime used in Ref. [4], provided that $a_{11}, a_{22} < a_{20}^2$.
[22] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).
[23] D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 80, 2027 (1998).