Automatically Learning Qualia Structures from the Web

Philipp Cimiano & Johanna Wenderoth
Institute AIFB
University of Karlsruhe

Abstract

Qualia Structures have many applications within computational linguistics, but currently there are no corresponding lexical resources such as WordNet or FrameNet. This paper presents an approach to automatically learn qualia structures for nominals from the World Wide Web and thus opens the possibility to explore the impact of qualia structures for natural language processing at a larger scale. Furthermore, our approach can also be used to support a lexicographer in the task of manually creating a lexicon of qualia structures. The approach is based on the idea of matching certain lexico-syntactic patterns conveying a certain semantic relation on the World Wide Web using standard search engines. We evaluate our approach qualitatively by comparing our automatically learned qualia structures with the ones from the literature, but also quantitatively by presenting results of a human evaluation.

1 Introduction

Qualia Structures have been originally introduced by (Pustejovsky, 1991) and are used for a variety of purposes in Natural Language processing such as the analysis of compounds (Johnston and Busa, 1996), co-composition and coercion (Pustejovsky, 1991) as well as for bridging reference resolution (Bos et al., 1995). Further, it has also been argued that qualia structures and lexical semantic relations in general have applications in information retrieval (Voorhees, 1994; Pustejovsky et al., 1993). One major bottleneck however is that currently Qualia Structures need to be created by hand, which is probably also the reason why there are no practical systems using qualia structures, but a lot of systems using globally available resources such as WordNet (Fellbaum, 1998) or FrameNet\(^1\) as source of lexical/world knowledge. The work described in this paper addresses this issue and presents an approach to automatically learning qualia structures for nominals from the Web. The approach is inspired in recent work on using the Web to identify instances of a relation of interest such as in (Markert et al., 2003) and (Cimiano and Staab, 2004). These approaches are in essence a combination of the usage of lexico-syntactic patterns conveying a certain relation of interest such as in (Hearst, 1992), (Charniak and Berland, 1999), (Iwanska et al., 2000) or (Poesio et al., 2002) with the idea of using the web as a big corpus (Resnik and Smith, 2003), (Grefenstette 1999), (Keller et al., 2002).

The idea of learning Qualia Structures from the Web is not only a very practical, it is in fact a principled one. While single lexicographers creating qualia structures - or lexicon entries in general - might take very subjective decisions, the structures learned from the Web do not mirror the view of a single person, but of the whole world as represented on the World Wide Web. Thus, an approach learning qualia structures from the Web is in principle more reliable than letting lexicographers craft lexical entries on their own. Obviously, on the other hand, using an automatic web based approach yields also a lot of inappropriate results which are due to 1) errors produced by the linguistic analysis (e.g. part-of-speech tagging), 2) idiosyncrasies of ranking algorithms of search machines, 3) the fact that the Web or in particular search engines are to a great extent commercially biased, 4) the fact that people also publish erroneous information on the Web, and 5) lexical ambiguities. Because of these reasons our aim is in fact not to replace lexicographers, but to support them in the task of creating qualia structures on the basis of the automatically learned qualia structures. The paper is structured as follows: Section 2 introduces qualia structures and describes the specific qualia structures we aim to acquire. Section 3 describes our approach in detail and section 4 presents a quantitative and qualitative evaluation of our approach. Before concluding, we discuss some related work in Section 5.

\[^1\]http://framenet.icsi.berkeley.edu/
2 Qualia Structures

According to Aristotle, there are four basic factors or causes by which the nature of an object can be described (cf. (Kronlid, 2003)):

- the material cause, i.e. the material an object is made of
- the agentive cause, i.e. the source of movement, creation or change
- the formal cause, i.e. its form or type
- the final cause, i.e. its purpose, intention or aim

In his Generative Lexicon (GL) framework (Pustejovsky, 1991) reused Aristotle’s basic factors for the description of the meaning of lexical elements. In fact he introduced so called Qualia Structures by which the meaning of a lexical element is described in terms of four roles:

- **Constitutive**: describing physical properties of an object, i.e. its weight, material as well as parts and components
- **Agentive**: describing factors involved in the bringing about of an object, i.e. its creator or the causal chain leading to its creation
- **Formal**: describing that properties which distinguish an object in a larger domain, i.e. orientation, magnitude, shape and dimensionality
- **Telic**: describing the purpose or function of an object

Most of the qualia structures used in (Pustejovsky, 1991) however seem to have a more restricted interpretation. In fact, in most examples the Constitutive role seems to describe the parts or components of an object, while the Agentive role is typically described by a verb denoting an action which typically brings the object in question into existence. The Formal role normally consists in typing information about the object, i.e. its hypernym or superconcept. Finally, the Telic role describes the purpose or function of an object either by a verb or nominal phrase. The qualia structure for knife for example could look as follows (cf. (Johnston and Busa, 1996)):

Formal:	artifact, tool
Constitutive:	blade, handle,...
Telic:	cut, act
Agentive:	make, act

Our understanding of Qualia Structure is in line with this restricted interpretation of the qualia roles. Our aim is to automatically acquire Qualia Structures from the Web for nominals, looking for (i) nominals describing the type of the object, (ii) verbs defining its agentive role, (iii) nominals describing its parts or components and (iv) nouns or verbs describing its intended purpose.

3 Approach

Our approach to learning qualia structures from the Web is on the one hand based on the assumption that instances of a certain semantic relation can be learned by matching certain lexico-syntactic patterns more or less reliably conveying the relation of interest in line with the seminal work of (Hearst, 1992), who defined the following patterns conveying a hypernym relation:

1. such \(NP_0 \) as \(NP_1, NP_2, ..., NP_{n-1} \) (and/or) \(NP_n \)
2. such \(NP_0 \) as \(NP_1, NP_2, ..., NP_{n-1} \) (and/or) \(NP_n \)
3. \(NP_0 \), \(NP_1, NP_2, ..., NP_n \) (and/or) other \(NP_0 \)
4. \(NP_0 \), (including especially) \(NP_1, NP_2, ..., NP_{n-1} \) (and/or) \(NP_n \)

According to Hearst, from such patterns we can derive that for all \(NP_i \), \(1 \leq i \leq n \), \(\text{hypernym}(NP_i, NP_0) \).

For example, for the expression: Bruises, wounds, broken bones or other injuries, we would extract: hypernym(bruise,injury), hypernym(broken bone,injury) and hypernym(wound,injury). However, it is well known that Hearst-style patterns occur rarely, such that it seems intuitive to match them on the Web. So in our case we are looking not only for the hypernym relation (comparable to the Formal-Relation) but for similar patterns conveying a Constitutive, Telic or Agentive relation. As currently there is no support for searching using regular expressions in standard search engines such as Google or Altavista, our approach consists of 5 phases (compare Figure 1):

1. generate for each qualia role a set of so called clues, i.e. search engine queries indicating the relation of interest
2. download the snippets of the 10 first Google hits matching the generated clues
3. part-of-speech-tagging of the downloaded snippets
4. match regular expressions conveying the qualia role of interest
5. weight the returned qualia elements according to some measure

The outcome of this process are then so called Weighted Qualia Structures (WQSs) in which every NP_i stands for a noun phrase.

An exception is certainly the Linguist’s Search Engine (Resnik and Elkiss, 2003).

The reason for using only the 10 first hits is to maintain efficiency. With the current setting the systems needs between 3 and 10 minutes to generate the qualia structure for a given nominal.
qualia element in a certain role is weighted according to some measure. The patterns in our pattern library are actually tuples \((p, c)\) where \(p\) is a regular expression defined over part-of-speech tags and \(c\) a function \(c : string \to string\) called the clue. Given a nominal \(t\) and a clue \(c\), the query \(f(t)\) is sent to the Google API and we download the abstracts of the first \(n\) documents matching this query and then process the abstracts to find instances of pattern \(p\). For example, given the clue \(f(x) = \text{"such as "} \pi(x)\) and the instance computer we would download \(n\) abstracts matching the query \(f(\text{computer})\), i.e. “such as computers”. Hereby \(\pi(x)\) is a function returning the plural form of \(x\). We implemented this function as a lookup in a lexicon in which plural nouns are mapped to their base form. With the use of such clues, we thus download a number of Google-abstracts in which a corresponding pattern will probably be matched thus restricting the linguistic analysis to a few promising pages. The downloaded abstracts are then part-of-speech tagged using QTag (Tufis and Mas, 1998). Then we match the corresponding pattern \(p\) in the downloaded snippets thus yielding candidate qualia elements as output. In our approach we then calculate the weight of a candidate qualia element \(e\) for the term \(t\) we want to compute the qualia structure for by the Jaccard Coefficient:

\[
\text{GoogleHits}(e + t) \\
----------- \\
\text{GoogleHits}(e) + \text{GoogleHits}(t) - \text{GoogleHits}(e + t)
\]

The result is then a Weighted Qualia Structure (WQS) in which for each role the qualia elements are weighted according to this Jaccard coefficient. In what follows we describe in detail the procedure for acquiring qualia elements for each qualia role. In particular, we describe in detail the clues and lexico-syntactic patterns used. In general, the patterns have been crafted by hand, testing and refining them in an iterative process, paying attention to maximize their coverage but also accuracy.

In general it is important to mention that by this approach we are not able to detect and separate multiple meanings of words, i.e. to handle polysemy, which is appropriately accounted for in the framework of the Generative Lexicon (Pustejovsky, 1991).

3.1 The Formal Role

To derive qualia elements for the Formal role, we first download for each of the clues in Table 1 the first 10 abstracts matching the clue and then process them offline matching the patterns defined over part-of-speech-tags thus yielding up to 10 different qualia element candidates per clue. The patterns are specified in form of regular expressions, whereby the part-of-speech tags are always given in square brackets after the token. Further, besides using the traditional regular expression operators such as +, * and ?, we also use Perl-like symbols such as \(\backslash w\) denoting any alphabetic character as well as [a-z] denoting the set of all lower case letters.

As there are 4 different clues for the Formal role, we thus yield up to 40 qualia elements as potential candidates to fill the Formal role. In general, we paid attention to create clues relying on indefinite articles as we found out that they produce more general and reliable results than when using definite articles. In order to choose the correct indefinite article – a or an – or even using no article at all, we implemented some ad-hoc heuristics checking if the first letter of the term in question is a vowel and checking if the term is used more often with an article or without an article on the Web by a set of corresponding Google queries. The alternative '(a/an/?)' means that we use either the indefinite article 'a' 'an' or no article depending on the results of the above mentioned Google queries.

A general question raised also by Hearst (Hearst, 1992) is how to deal with NP modification. Hearst’s conclusion is that this depends on the application. In our case we mainly remove adjective modifiers, keeping only the heads of noun phrases as candidate qualia elements. The lemmatized heads of the NPs noun phrase are then regarded as qualia role candidates for the Formal role. These candidates are then weighted using the above defined Jaccard Coefficient measure. Hereby, a noun phrase is an instance matching the following regular expression:

\[
\text{NP:} = [a-z]+[DT]?\ ([a-z]+[JJ]+)?\ ([a-z]+[NN(S?)])+.\]

where the head is the underlined expression, which is lemmatized and considered as a candidate qualia element. After some initial experiments we decided not to use the patterns ‘X is Y’ and ‘X is a kind of Y’ such as in a book is an item or a book is a kind of publication

5 We use the well-known Penn Treebank tagset described at http://www.computing.dcu.ie/~acahill/tagset.html.
as well as the pattern 'Y, including X' (compare (Hearst, 1992)) as we found that in our settings they delivered quite spurious results.

Clue	Pattern
such as \(\pi(t) \)	NP _ such[DT] as[IN] NP
especially \(\pi(t) \)	NP _ especially[RB] NP
\(\pi(t) \) or other	NP or[CC] other\{JJ\} NP
\(\pi(t) \) and other	NP and[CC] other\{JJ\} NP

Table 1: Clues and Patterns for the Formal role

3.2 The Constitutive Role

The procedure for finding elements of the Constitutive role is similar to the one described above for the Formal role. The corresponding clues and patterns are given in Table 2. As above, the candidate qualia elements are then the lemmatized heads of the noun phrase NP\(_C\).

Clue	Pattern
(a/an)? \(t \) is made up of	NP _ [VBZ] made\{VBN\}
\(\pi(t) \) are made up of	NP _ are[VBP] made\{VBN\}
(a/an)? \(t \) is made of	NP _ are[VBP] made\{VBN\}
\(\pi(t) \) are made of	NP _ are[VBP] made\{VBN\}
(a/an)? \(t \) comprises	NP _ comprises[VBZ] NP\(_C\)
\(\pi(t) \) comprise	NP _ comprise[VBZ] NP\(_C\)
(a/an)? \(t \) consists of	NP _ consists[VBZ] of[IN] NP\(_C\)
\(\pi(t) \) consist of	NP _ consist[VBZ] of[IN] NP\(_C\)

Table 2: Clues and Patterns for the Constitutive Role

As an additional heuristic, we test if the lemmatized head of NP\(_C\) is an element of the following list containing nouns denoting an indication of amount: \{variety, bundle, majority, thousands, million, millions, hundreds, number, numbers, set, sets, series, range\} and furthermore this NP\(_C\) is followed by the preposition 'of'. In that case we would take the head of the noun phrase after the preposition 'of' as potential candidate of the Constitutive role. For example, when considering a conversation is made up of a series of observable interpersonal exchanges, we would take exchange as a potential qualia element candidate instead of series.

3.3 The Telic Role

The Telic Role is in principle acquired in the same way as the Formal and Constitutive roles with the exception that the qualia element is not only the head of a noun phrase, but also a verb or a verb followed by a noun phrase. Table 3 gives the corresponding clues and patterns. In particular, the returned candidate qualia elements are the lemmatized underlined expressions in PURP:= \[w+[VB]\ NP _ be[VB] _ w+[VBD]\].

Clue	Pattern
purpose of \(t \) is	purpose[NN] of[IN]
purpose of \(\pi(t) \) is	PURP of[IN]
(a/an)? \(t \) is used to	PURP used[VBZ] to[TO]
\(\pi(t) \) are used to	PURP used[VBZ] used[VBZ]

Table 3: Clues and Patterns for the Telic Role

3.4 The Agentive Role

As mentioned in (Hearst, 1992), it is not always as straightforward to find lexico-syntactic patterns reliably conveying a certain relation. In fact, we did not find any patterns reliably identifying qualia elements for the Agentive role. Certainly, it would have been possible to find the source of the creation by using patterns such as X is made by Y or X is produced by Y. However, we found that these patterns do not reliably convey a verb describing how an object is brought into existence. The fact that it is far from straightforward to find patterns indicating an Agentive role is further corroborated by the research in (Yamada and Baldwin, 2004), in which only one pattern indicating a qualia relation is used, namely 'NN BE V[+en]' in order to match passive constructions such as the book was written. On the other hand it is clear that constructing a reliable clue for this pattern is not straightforward given the current state-of-the-art concerning search engine queries. Nevertheless, in order to also get results for the Agentive role, we apply a different method here. Instead of issuing a query which is used to search for possible candidates for the role, we take advantage of the fact that the verbs which describe how something comes into being, particularly artificial things, are often quite general phrases like 'make, produce, write, build...'. So instead of generating clues as above, we calculate the value \(\frac{Google\,Hits(t)}{t} < AGENTIVE_E_V_ERB _ a _ t} \) for the nominal we want to acquire a qualia structure for as well as the following verbs: build, produce, make, write, plant, elect, create, cook, construct and design. If this value is over a threshold (0.0005 in our case), we assume that it is a valid filler of the Agentive qualia role.

4 Evaluation

We evaluate our approach for the lexical elements knife, beer, book, which are also discussed in (Johnston and
Busa, 1996) or (Pustejovsky, 1991), as well as computer, an abstract noun, i.e. conversation, as well as two very specific multi-term words, i.e. natural language processing and data mining. We give the automatically learned weighted Qualia Structures for these entries in Figures 3, 4, 5 and 6. The evaluation of our approach consists on the one hand of a discussion of the weighted qualia structures, in particular comparing them to the ideal structures form the literature. On the other hand, we also asked a student at our institute to assign credits to each of the qualia elements from 0 (incorrect) to 3 (totally correct) whereby 1 credit meaning 'not totally wrong' and 2 meaning 'still acceptable'.

4.1 Quantitative Evaluation

The distribution of credits for each qualia role and term is given in Table 4. It can be seen that with three exceptions: beer→formal, book→agentive as well as beer→constitutive, '3' is the mark assigned in most cases to the automatically learned qualia elements. Further, for almost every query term and qualia role, at least 50% of the automatically learned qualia structures have a mark of '2' or '3' – the only exceptions being beer→formal with 45.45%, book→agentive with 33.33% and beer→constitutive with 28.57%. In general this shows that the automatically learned qualia roles are indeed reasonable. Considering the average over all the terms ('All' in the table), we observe that the qualia role which is recognized most reliably is the Telic one with 73.15% assignments of credit '3' and 75.93% of credits '2' or '3', followed by the Agentive role with 71.43% assignments of credit 3. The results for the Formal and Constitutive role are still reasonable with 62.09% assignments of credit '3' and 66.01% assignments of credits '2' or '3' for the Formal role, and respectively 61.61% and 64.61% for the Constitutive role. The worst results are achieved for the Constitutive role due to the fact that 26.26% of the qualia elements are regarded as totally wrong. Table 5 supports the above claims and shows the average credits assigned by the human evaluator per query term and role. It shows again that the roles with the best results are the Agentive and Telic roles, while the Formal and Constitutive roles are not identified as accurately. This is certainly due to the fact that the patterns for the Telic role are much less ambiguous than the ones for the Formal and Constitutive roles. Finally, we also discuss the correlation between the credits assigned and the Jaccard Coefficient. Figure 2 shows this correlation. While for the Formal role the correlation is as expected, i.e. the higher the credit assigned, the higher also the Jaccard Coefficient, for the Constitutive and Telic roles this correlation is unfortunately less clear, thus making the task of finding a cut-off threshold more difficult.

4.2 Qualitative Evaluation & Discussion

In this section we provide a more subjective evaluation of the automatically learned qualia structures by comparing them to ideal qualia structures discussed in the literature wherever possible. In particular, we discuss more in detail the qualia structure for book, knife and beer and leave the detailed assessment of the qualia structures for computer, natural language processing, data mining and conversation to the interested reader.

For book, the first four candidates of the Formal role, i.e. product, item, publication and document are very appropriate, but alluding to the physical object meaning of book as opposed to the meaning in the sense of information container (compare (Pustejovsky, 1991). As candidates for the Agentive role we have make, write and create which are appropriate, write being the ideal filler of the Agentive role according to (Pustejovsky, 1991). For the Constitutive role of book we get – besides it at the first position which could be easily filtered out – sign (2nd position), letter (3rd position) and page (6th position), which are quite appropriate. The top four candidates for the Telic role are give, select, read and purchase. It seems that give is emphasizing the role of a book as a gift, read is referring to the most obvious purpose of a book as specified in the ideal qualia structures of (Pustejovsky, 1991) as well as (Johnston and Busa, 1996) and purchase denotes the more general purpose of a book, i.e. to be bought.

The first element of the Formal role of knife unfortunately denotes the material it is typically made of, i.e. steel, but the next 5 elements are definitely appropriate: weapon, item, kitchenware, object and instrument. The ideal element artifact, tool (compare (Johnston and Busa, 1996)) can be found at the 10th position. The results are interesting in that on the one hand the most prominent meaning of knife according to the web is the one of a weapon. On the other hand our results are more specific, classifying a knife as kitchenware instead of merely as an artifact, tool. Very interesting are the specific and accurate results at the end of the list. The reason why they appear at the end is that the Jaccard Coefficient ranks them lower because they are more specific, thus appearing less frequently. This shows that using some other measure less sensitive to frequency could yield more accurate results. The fillers of the Agentive role produce, make and create seem all appropriate, whereby make corresponds exactly to the ideal filler for the Agentive role as mentioned in (Johnston and Busa, 1996). The results for the Constitutive role contain not only parts but also materials a knife is made of and thus contain more information than the typical qualia structures assumed in the literature. The best results are (in this order) blade, metal, steel, wood and handle at the 6th position. In fact, in the ideal qualia structure in (Johnston and Busa, 1996) blade and han-
Table 4: Distribution of credits for each role and term

Role	Formal	Agentive	Constitutive	Telic								
	0	1	2	3	0	1	2	3	0	1	2	3
Book	2/17 (11.76%)	4/17 (23.52%)	1/17 (5.88%)	10/17 (58.82%)								
Computer	8/28 (28.57%)	1/28 (3.57%)	2/28 (7.14%)	17/28 (60.71%)								
Knife	3/16 (18.75%)	0/16 (0%)	0/16 (0%)	13/16 (81.25%)								
Beer	12/22 (54.54%)	0/22 (0%)	2/22 (9.09%)	8/22 (36.36%)								
Data Mining	6/25 (24%)	0/25 (0%)	25/25 (100%)	19/25 (76%)								
Natural Language Processing	2/15 (13.33%)	1/15 (6.66%)	0/15 (0%)	12/15 (80%)								
Conversation	10/30 (33.33%)	4/30 (13.33%)	0/30 (0%)	16/30 (53.33%)								
All	43/153 (28.10%)	11/153 (7.19%)	6/153 (3.92%)	95/153 (62.09%)								

Table 5: Average credits for each role

Role	Formal	Agentive	Constitutive	Telic
Book	2.12	1.67	1.86	2.27
Computer	2	3	2.23	2.78
Knife	2.44	3	2.2	2.17
Beer	1.27	2.33	0.96	n.a.
Data Mining	2.28	3	3	2.36
Natural Language Processing	2.47	3	n.a.	2.5
Conversation	1.73	1.5	2.19	1.62
All	1.99	2.36	2.02	2.33
dle are mentioned as fillers of the Constitutive role, while there are no elements describing the materials of which a knife is made of. Finally, the top four candidates for the Telic role are kill, slit, cut and slice, whereby cut corresponds to the ideal filler of the qualia structure for knife as mentioned in (Johnston and Busa, 1996).

Considering the qualia structure for beer, it is surprising that no purpose has been found. The reason is that currently no results are returned by Google for the clue a beer is used to and the four snippets returned for the purpose of a beer contain expressions of the form the purpose of a beer is to drink it which is not matched by our patterns as it is a pronoun and not matched by our NP pattern (unless it is matched by an error as in the Qualia Structure for book in Figure 4). Considering the results for the Formal role, the elements drink (1st), alcohol (2nd) and beverage (4th) are much more specific than liquid as given in (Pustejovsky, 1991), while thing at the 3rd position is certainly too general. Furthermore, according to the automatically learned qualia structure, beer is made of rice, malt and hop, which are perfectly reasonable results. Very interesting are the results concoction and libation for the Formal role of beer, which unfortunately were rated low by our evaluator (compare Figure 3).

Overall, the discussion has shown that the results produced by our method are reasonable when compared to the qualia structures from the literature. In general, our method produces in some cases additional qualia candidates, such as the ones describing the material a knife is typically made of. In other cases it discovers more specific candidates, such as for example weapon or kitchenware as elements of the Formal role for knife instead of the general term artifact. is-a-relations learned is 61/106 (57.55%) when measured against WordNet as gold standard, which is comparable to our results. Hearst’s idea has been reapplied by different researchers with either slight variations in the patterns used (Iwanska et al., 2000), to acquire knowledge for anaphora resolution (Poesio et al., 2002), or to discover other kinds of semantic relations such as part-of relations (Charniak and Berland, 1999) or causation relations (Girju and Moldovan, 2002).

Instead of matching these patterns in a large text collection, some researchers have recently turned to the Web to match these patterns such as in (Cimiano and Staab, 2004) or (Markert et al., 2003). (Cimiano and Staab, 2004) for example aim at learning instance-of as well as taxonomic (is-a) relations. This is very related to the acquisition of the Formal role proposed here. (Markert et al., 2003) aim at acquiring knowledge for anaphora resolution, while (Etzioni et al., 2004) aim at learning the complete extension of a certain concept. For example, they aim at finding all the actors in the world.

Our approach goes further in that it not only learns typing, superconcept or instance-of relations, but also Constitutive and Telic relations. There also exist approaches specifically aiming at learning qualia elements from corpora based on machine learning techniques. (Claveau et al., 2003) for example use Inductive Logic Programming to learn if a given verb is a qualia element or not. However, their approach goes not as far as learning the complete qualia structure for a lexical element in an unsupervised way as presented in our approach. In fact, in their approach they do not distinguish between different qualia roles and restrict themselves to verbs as potential fillers of qualia roles. (Yamada and Baldwin, 2004) present an approach to learning Telic and Agentive relations from corpora analyzing two different approaches: one relying on matching certain lexico-syntactic patterns as in the work presented here, but also a second approach consisting in training a maximum entropy model classifier. Their conclusion is that the results produced by the classification approach correlate better with two hand-crafted gold standards.

5 Related Work

There is quite a lot of work related to the use of linguistic patterns to discover certain ontological relations from text. Hearst’s (Hearst, 1992) seminal work had the aim of discovering taxonomic relations from electronic dictionaries. The precision of the is-a-relations learned

![Figure 2: Average Jaccard Coefficient value per credit](image_url)
The patterns used by (Yamada and Baldwin, 2004) differ substantially from the ones used in this paper, which is mainly due to the fact that search engines do not provide support for regular expressions and thus instantiating a pattern as 'V[+ing] Noun' is impossible in our approach as the verbs are unknown a priori.

Finally, (Pustejovsky et al., 1993) present an interesting framework for the acquisition of semantic relations from corpora not only relying on statistics, but guided by theoretical lexicon principles.

6 Conclusion

We have presented an approach to automatically learning Qualia Structures from the Web. Such an approach is especially interesting either for lexicographers aiming at constructing lexicons, but even more for natural language processing systems relying on deep lexical knowledge as represented by qualia structures. We have in particular shown that the qualia structures learned by our system are reasonable. In general, it is valid to claim that our system is the first one automatically producing complete qualia structures for a given nominal.

Our system can be tested online at http://km.aifb.uni-karlsruhe.de/pankow/qualia/. Further work will aim at improving the system but also at using the automatically learned structures within NLP applications.

Acknowledgments The work reported in this paper has been partially supported by the SmartWeb project6, funded by the German Ministry of Research. Thanks also to Laura Goebes for assisting in the evaluation of the system.

References

J. Bos, P. Buitelaar, and M. Mineur. 1995. Bridging as coercive accommodation. In E. Klein, S. Manandhar, W. Nutt, and J. Siekmann, editors, Working Notes of the Edinburgh Conference on Computational Logic and Natural Language Processing (CLNLP-95).

E. Charniak and M. Berland. 1999. Finding parts in very large corpora. In Proceedings of the 37th Annual Meeting of the ACL, pages 57–64.

P. Cimiano and S. Staab. 2004. Learning by googling. SIGKDD Explorations, 6(2), December.

V. Claveau, P. Sebillot, C. Fabre, and P. Bouillon. 2003. Learning semantic lexicons from a part-of-speech and semantically tagged corpus using inductive logic programming. Journal of Machine Learning Research, (4):493–525.

Figure 3: Weighted Qualia Structure for knife and beer

O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked, S. Soderland, D.S. Weld, and A. Yates. 2004. Web-scale information extraction in KnowItAll (preliminary results). In Proceedings of the 13th World Wide Web Conference, pages 100–109.

C. Fellbaum. 1998. WordNet, an electronic lexical database. MIT Press.

R. Girju and M. Moldovan. 2002. Text mining for causal relations. In Proceedings of the FLAIRS Conference, pages 360–364.

G. Grefenstette. 1999. The WWW as a resource for example-based MT tasks. In Proceedings of ASLIB ’99 Translating and the Computer 21.

M.A. Hearst. 1992. Automatic acquisition of hyponyms from large text corpora. In Proceedings of the 14th In-
Block	Formal	
product	34.6238	3
item	53.8737	3
publication	20.2621	3
document	14.4778	3
material	8.6704	2
reader	8.3899	0
resource	7.7239	3
tool	6.1324	3
object	5.7705	3
specific	0.5374	3
library	0.0026	1

Agentive	Constitutive	
make	21.3785	0
write	21.0870	3
create	11.7380	1
page	10.9020	1
collection	10.7901	0
teaching	10.7004	2
paper	9.3551	3
material	8.6704	3
piece	6.1424	3
chapter	7.4746	3
presentation	7.7155	0
detail	6.8218	3
sheet	4.4169	3
lie	5.0866	1
ticket	5.2189	0
ink	2.7369	3
dot	7.1427	3
leather	1.1162	1
leaf	1.0263	1
title page	0.3639	3
price	0.0530	0
dedication page	0.0076	3

Tele	Telic	
give	14.9554	1
select	12.9994	0
read	12.4937	3
purchase	9.0372	2
support	0.0204	3
identify	7.9388	1
represent	7.5829	2
inspire	1.7282	3
convey	1.3940	3
present information	0.0728	3
convey information	0.0688	3
file	0.1011	3
share a story	0.0081	3
commit crime	0.0061	0
contain words	0.0055	3
introduce concepts	0.0038	3
traprocks	0.0150	3
stocks libraries	0.0009	3
hold a collection	0.0008	3
fund special projects	0.0007	2
support teachings	0.0001	3

Block	Formal	
technology	20.3667	3
information	20.2418	0
network	14.8052	3
hardware	14.6539	3
service	13.9161	3
f x	6.7469	3
device	5.6259	3
notebook	2.1126	3
x circuit	1.8663	0
consumer electronics	1.1544	0
appliance	1.0043	3
library equipment	0.0037	3
complex computer processes	0.0005	3

Agenerative	Conversative	
make	16.9636	1
write	12.2216	3
create	2.9701	3
build	2.8860	3
switch	2.2718	3
run	1.9592	3
assist	1.2792	3
publish	0.9896	1
access data	0.3025	3
translate	0.9981	1
provide feedback	0.0900	3
manage information	0.0231	3
improve	0.0099	3
enable people	0.0255	3
performance	0.0005	3

Figure 4: Weighted Qualia Structures for book, computer and conversation
The figure shows the weighted qualia structure for data mining and natural language processing. The tables list the various components and their corresponding values.

Data Mining

Natural Language Processing	Format
lingustics	1.0043
technique	0.4983
intelligence	0.3559
method	0.2748
model	0.1847
aspect	0.1380
scheme	0.1258
system	0.0750
research	0.0636
application	0.0603
science	0.0536
technology	0.0414
area	0.0373
product	0.0337
document processing applications	0.0273

The figure shows the weighted qualia structure for data mining and natural language processing. The tables list the various components and their corresponding values.

Figure 5: Weighted Qualia Structure for data mining

Figure 6: Weighted Qualia Structure for natural language processing

The text continues with a discussion on the application of data mining techniques in various fields such as natural language processing and information retrieval. It references several research papers and authors, including M. Johnston and F. Busa, F. Keller, M. Lapata, O. Ourioupina, F. Kronlid, I. Yamada and T. Baldwin, F. Resnik and A. Elkiss, P. Resnik and N. Smith, and E.M. Voorhees. The text also includes an article by L.M. Iwanska, N. Mata, and K. Kruger on fully automatic acquisition of taxonomic knowledge from large corpora of texts. The full reference is: *Natural Language Processing and Knowledge Processing*, pages 335–345. MIT/AAAI Press.

M. Johnston and F. Busa. 1996. Qualia structure and the compositional interpretation of compounds.

F. Keller, M. Lapata, and O. Ourioupina. 2002. Using the web to overcome data sparseness. In *Proceedings of EMNLP-02*, pages 230–237.

F. Kronlid. 2003. Modes of explanation - aristotelian philosophy and pustejovskyan linguistics. Ms. University of Gteborg.

K. Markert, N. Modjeska, and M. Nissim. 2003. Using the web for nominal anaphora resolution. In *EACL Workshop on the Computational Treatment of Anaphora*.

M. Poesio, T. Ishikawa, S. Schulte im Walde, and R. Viera. 2002. Acquiring lexical knowledge for anaphora resolution. In *Proceedings of the 3rd Conference on Language Resources and Evaluation*.

J. Pustejovsky, P. Anick, and S. Bergler. 1993. Lexical semantic techniques for corpus analysis. *Computational Linguistics, Special Issue on Using Large Corpora II*, 19(2):331–358.

J. Pustejovsky. 1991. The generative lexicon. *Computational Linguistics*, 17(4):209–441.

P. Resnik and A. Elkiss. 2003. The linguist’s search engine: Getting started guide. Technical Report LAMP-TR-108/CS-TR-4541/UMIACS-TR-2003-109, University of Maryland, College Park, November.

P. Resnik and N. Smith. 2003. The web as a parallel corpus. *Computational Linguistics*, 29(3):349–380.

D. Tufis and O. Mason. 1998. Tagging Romanian Texts: a Case Study for QTAG, a Language Independent Probabilistic Tagger. In *Proceedings of the First International Conference on Language Resources and Evaluation (LREC)*, pages 589–96.

E.M. Voorhees. 1994. Query expansion using lexical-syntactic relations. In *Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval*, pages 61–69.

I. Yamada and T. Baldwin. 2004. Automatic discovery of telic and agentive roles from corpus data. In *Proceedings of The 18th Pacific Asia Conference on Language, Information and Computation (PACLIC 18)*.