Heat capacity studies of Ce and Rh site substitution in the heavy fermion antiferromagnet CeRhIn$_5$: Short-range magnetic interactions and non-Fermi-liquid behavior

B.E. Light, Ravhi S. Kumar and A.L. Cornelius

Department of Physics, University of Nevada, Las Vegas, Nevada, 89154-4002

P.G. Pagliuso* and J.L. Sarrao

Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545

(Dated: November 13, 2018)

In heavy fermion materials superconductivity tends to appear when long range magnetic order is suppressed by chemical doping or applying pressure. Here we report heat capacity measurements on diluted alloys of the heavy fermion superconductor CeRhIn$_5$. Heat capacity measurements have been performed on CeRh$_{1-y}$Ir$_y$In$_5$ ($y \leq 0.10$) and Ce$_{1-x}$La$_x$RhIn$_5$ ($x \leq 0.50$) in applied fields up to 90 kOe to study the effect of doping and magnetic field on the magnetic ground state. The magnetic phase diagram of CeRh$_{0.5}$Ir$_{0.1}$In$_5$ is consistent with the magnetic structure of CeRhIn$_5$ being unchanged by Ir doping. Doping of Ir in small concentrations is shown to slightly increase the antiferromagnetic transition temperature T_N ($T_N = 3.8$ K in the undoped sample). La doping which causes disorder on the Ce sublattice is shown to lower T_N with no long range order observed above 0.34 K for Ce$_{0.50}$La$_{0.50}$RhIn$_5$. Measurements on Ce$_{0.50}$La$_{0.50}$RhIn$_5$ show a coexistence of short range magnetic order and non-Fermi-liquid behavior. This dual nature of the Ce 4f-electrons is very similar to the observed results on CeRhIn$_5$ when long range magnetic order is suppressed at high pressure.

PACS numbers: 71.18.+y 71.27.+a 75.30.Kz 65.40.+g

I. INTRODUCTION

Among heavy fermion (HF) materials, magnetically mediated superconductivity has been observed in many materials at the point where long range order is suppressed by alloying or applying pressure at a quantum critical point (QCP) T_{QCP}. One of these systems, CeRhIn$_5$, is antiferromagnetic (AF) at ambient pressure with $T_N = 3.8$ K and $\gamma \approx 400$ mJ/mol K2. The AF state is suppressed at a pressure of around 1.2 GPa and coexists over a limited pressure range with the superconducting (SC) state. Recently, HF systems with the formula Ce$_M$In$_5$ ($M = \text{Co and Ir}$) have also been reported to become superconductors at ambient pressure. Unlike most HF superconductors, the system CeRh$_{1-y}$Ir$_y$In$_5$ displays a coexistence of AF order and SC state over a wide range of doping ($0.3 < x < 0.6$). Thermodynamic, NQR, and neutron scattering experiments all show that the electronic and magnetic properties of CeRhIn$_5$ are anisotropic in nature.

To better understand the magnetic ground state out of which SC evolves, we have performed heat capacity measurements on both the CeRh$_{1-y}$Ir$_y$In$_5$ ($y \leq 0.10$) and Ce$_{1-x}$La$_x$RhIn$_5$ ($x \leq 0.50$) systems. The magnetic field studies for various dopings are an extension of our previous work. The measurements were performed along both the tetragonal a and c axes in applied magnetic fields to 90 kOe. The dependence of the magnetic transitions with respect to temperature, magnetic field applied along different crystal directions, and doping using heat capacity measurements allows the determination of the magnetic interactions in these complicated materials. Precisely determining the changes of magnetic properties with different variables gives insight into favorable conditions for magnetically mediated superconductivity. Field induced transitions when the magnetic field is applied along the a direction are seen in all samples that display AF order. A detailed phase diagram for CeRh$_{0.5}$Ir$_{0.1}$In$_5$ shows excellent agreement to that of the undoped parent compound CeRhIn$_5$ suggesting that Ir doping does not change the AF order from the measured incommensurate spin density wave. La doping suppresses magnetic order with the $x = 0.50$ sample showing no long range AF order; however, a coexistence of short range magnetic order and non-Fermi-Liquid (NFL) behavior is observed.

Though a great deal of both experimental and theoretical work have been performed on heavy fermion systems, a general understanding of the crossover from the single impurity to the lattice limits has been elusive. Recently, the observance of multiple energy scales and the coexistence of localized and delocalized f-electrons have shown the necessity of including the lattice and considering the localization of f-electrons in heavy fermion systems. Our results on Ce$_{0.50}$La$_{0.50}$RhIn$_5$, which is near the QCP, show signatures of the coexistence of short range (short range magnetic order) and long range (non-Fermi liquid) behavior. We find a striking resemblance of the results on Ce$_{0.50}$La$_{0.50}$RhIn$_5$ to those on CeRhIn$_5$ driven to a QCP under pressure.
II. EXPERIMENT

CeRh$_{1-x}$Ir$_x$In$_5$ and Ce$_{1-x}$La$_x$RhIn$_5$ single crystals were grown by a self flux technique. The samples were found to crystallize in the primitive tetragonal HoCoGa$_5$-type structure with lattice parameters, determined by x-ray diffraction, in agreement with literature values. Heat capacity measurements, using a standard thermal relaxation method, were performed in a Quantum Design PPMS system equipped with a superconducting magnet capable of generating a 90 kOe magnetic field. The lattice heat capacity was determined by measuring LaRhIn$_5$, which has no f-electrons. The LaRhIn$_5$ data was subtracted from Ce$_{1-x}$La$_x$Rh$_{1-y}$Ir$_y$In$_5$ to obtain the magnetic heat capacity C_m. This makes the assumption that the specific heat of the lattice is unchanged by the substitutions. Since the lattice constants change less than 0.6% for the studied samples, one expects that the Debye temperature, which is known to depend on volume, and hence the lattice contribution to the heat capacity remains constant for our purposes.

III. RESULTS AND DISCUSSION

A. Low Temperature Specific Heat

The low temperature specific heat measurements were performed over the temperature range 0.34 K $< T <$ 20 K in applied magnetic fields to 90 kOe. As previously mentioned, the lattice contribution to the heat capacity is subtracted using LaRhIn$_5$ as a reference compound. The total magnetic specific heat can be written as

$$C_m = C_{elec} + C_{order} + C_{hyp}$$

where C_{elec} is the electronic contribution, C_{order} is from magnetic correlations (short and long ranged) between the Ce 4f-electrons, and C_{hyp} is from the nuclear moment of the In atoms. The electronic contribution is given by

$$C_{order} = \beta_M T^3 + \beta'_M \left(e^{-E_g/k_BT} \right) T^3$$

where $\beta_M T^3$ is the standard AF magnon term and the second term is an activated AF magnon term. The need for an activated term to describe heat capacity data has been seen before in other Ce and U compounds, and rises from an AF SDW with a gap in the excitation spectrum due to anisotropy. The CeRhIn$_5$ magnetic structure indeed displays an anisotropic SDW with modulation vector $(1/2, 1/3, 0.297)$, which is consistent with this picture. The In atoms have a nuclear magnetic moment which gives rise to hyperfine contribution to the heat capacity C_{hyp}. C_{hyp} is given by A/T^2 with A given by the relation

$$A = \frac{R}{3} \left(\frac{I+1}{I} \right) \left(\frac{\mu H_{hyp}}{k_B} \right)^2,$$

where I is the nuclear moment (9/2 for In), μ is the nuclear magnetic moment (5.54 μ_N for In), and H_{hyp} is the magnitude of the internal field strength at the In site that can be due to both internal H_{int} and externally applied H fields.

Data for CeRhIn$_5$ in a 90 kOe magnetic field applied along the tetragonal a axis (H||a) is shown in Fig. 1.

Two phase transitions at $T_N = 3.91$ K and $T_1 = 3.09$ K are clearly seen. T_N is the transition to long range AF order, and T_1 is a first order field-induced magnetic phase transition. Field induced transitions have been observed before in CeRhIn$_5$, and this topic will be discussed in detail later. The upturn at low temperatures is due to the In nuclear Schottky term. Note that we are in the high temperature limit for the nuclear Schottky term and use the high temperature approximation (Eq. 4) that the nuclear heat capacity falls off as T^{-2}. The solid line in Fig. 1 is a fit to Eq. 4 with $\gamma_0 = 38 \pm 2$ mJ/mol Ce K2, $\beta_M = 6.3 \pm 0.2$ mJ/mol Ce K4, $\beta'_M = 310 \pm 20$ mJ/mol Ce K4, $E_g/k_B = 4.4 \pm 0.2$ K. Fits like this were successful for all CeRh$_{1-x}$Ir$_x$In$_5$ samples in all applied fields directed along either the a- or c-axis. However, fits to the Ce$_{1-x}$La$_x$RhIn$_5$ data, at least for $x > 0.03$, did not give satisfactory results due to short range order and non-Fermi liquid effects and only the $x = 0$ and $x = 0.03$ data were fit and will be reported.
FIG. 2: Magnetic entropy S_m, found by integrating C_m/T, measured on doped CeRhIn$_5$ samples. All of the samples approach $R \ln 2$ of entropy by 20 K consistent with a $S = 1/2$ doublet crystal-field ground state.

B. Magnetic Entropy

The magnetic entropy S_m can be found by integrating C_m/T as a function of temperature. This has been done for all of the measured samples and the results in zero applied field are shown in Fig. 2.

All of the measured samples approach $R \ln 2$ by 20 K with the exception of the Ce$_{0.50}$La$_{0.50}$RhIn$_5$ sample (which is still very close to $R \ln 2$). Application of a magnetic field has a nearly negligible effect on the measured entropy for all samples with again the exception of the Ce$_{0.50}$La$_{0.50}$RhIn$_5$ sample. The reason for the differences in the behavior of the Ce$_{0.50}$La$_{0.50}$RhIn$_5$ sample relative to the others will be explained in detail later but is due, at least in part, to non negligible entropy below 0.35 K that we cannot measure. It is also possible that the stoichiometry is slightly less than the nominal starting value of $x = 0.50$. In fact a value of $x = 0.47$ gives an entropy of $R \ln 2$ at 20 K. For the rest of the manuscript, we will assume that $x = 0.50$. However, using $x = 0.47$ has little effect on the data and would not change our conclusions. The observance of $R \ln 2$ entropy in all of the measurements is indicative that the measured C_m values are due solely to a doublet crystal-field (CF) ground state. This is consistent with other studies which show the lowest CF level is a doublet separated by 60-80 K from the first excited level. Thus we are confident that our measurement of C_m are solely due to the Ce 4f electrons in a $S = 1/2$ doublet CF ground state.

C. Magnetic Order

Neutron diffraction studies have shown that the substitution of 10% La for Ce lowers T_N from 3.8 K found in CeRhIn$_5$ to 2.7 K but does not change the SDW ground state. As mentioned, CeRh$_{1-y}$Ir$_y$In$_5$ displays a coexistence of AF order and SC state over a wide range of doping ($0.3 < y < 0.6$). As it has been established that 2D magnetic ground states favor SC, it is important to determine if the SC state arises out of the known SDW ground state of the undoped sample. Fig. 3 shows the zero field data as a function of Ir doping.

The application of a magnetic field alters the magnetic interactions. As reported before for CeRhIn$_5$, when $H || c$, T_N decreases for all of the samples that show AF order as is usually seen in heavy fermion systems. As shown in Fig. 1 for $H || a$ field-induced magnetic transitions are observed in CeRh$_{0.9}$Ir$_{0.1}$In$_5$. A cumulative $H - T$ phase diagram is shown in Fig. 4.

T_N corresponds to the antiferromagnetic ordering temperature, and T_1 and T_2 correspond to field-induced first- and second-order transitions respectively. The dashed lines are guides to the eyes. The similarity to the phase diagram of the undoped CeRhIn$_5$ is remarkable. This naturally leads to the conclusion that the Ir substitution does not change the magnetic structure (incommensurate SDW) of CeRhIn$_5$ at least for $x \leq 0.10$. In a manner similar to the effect of doping, recent neutron scattering results show that the incommensurate SDW only weakly changes with pressure up to 2.3 GPa. As stated previously, the magnetic structure in Regions I and II is a spin density wave that is incommensurate with the lattice where Region II has a larger magnetic moment on each Ce atom; Region III corresponds to a spin density wave that is commensurate with the lattice.

Taken along with neutron scattering experiments on Ce$_{0.9}$La$_{0.1}$RhIn$_5$ that show no change in the magnetic
FIG. 4: The cumulative phase diagrams for CeRh$_{0.9}$Ir$_{0.1}$In$_5$ in various applied fields H applied along the a-axis. T_N corresponds to the antiferromagnetic ordering temperature, and T_1 and T_2 correspond to field-induced first- and second-order transitions respectively. The dashed lines are guides to the eyes.

structure24 substitutions of up to 10\% of La for Ce and 10\% Ir for Rh do not change the magnetic structure. This result leads one to believe that the superconductivity in the Ir doped samples, and NFL behavior in the La doped samples, evolve out of the magnetic structure of the ground state, namely an incommensurate SDW. However, recent neutron scattering results on Ir doped samples with $y \geq 0.30$ show the appearance of a commensurate component to the magnetic order35.

D. Long-range magnetic order

All of the CeRh$_{1-x}$Ir$_x$In$_5$ data and Ce$_{0.97}$La$_{0.03}$RhIn$_5$ were fit using Eqs. 1-3 for $T < 0.8T_N$. Fits were made in applied fields of 50 kOe and 90 kOe applied along both the a– and c–axis. A summary of the results are displayed in Table II. The internal field H_{int} was found by using the measured A value and using Eq. 1. From NQR measurements, it is known that in the absence of an applied field the internal field at the In sites in CeRhIn$_5$ is of the order 2 kOe24, which is consistent with the data in Table II where H_{int} for the 50 and 90 kOe data is slightly higher than the applied field. For the zero field data, a value of 2 kOe for H_{int} gives a nearly negligible contribution to the heat capacity in our temperature range so we have set $H_{int} = 2$ kOe for $H = 0$ in all of our fits shown in Table II (this assumption has a negligible effect on the zero field fit parameters as they do not change if $H_{int} = 0$ is used). For all values of y the value of γ_0 is seen to decrease as field is applied as usually seen in heavy fermion systems36. For $H \parallel c$ the value of β_M is seen to increase as field is applied while E_g/k_B remains relatively constant. For AF systems where $\beta_M \propto D^{\alpha}$ with D the spin wave stiffness28 one would expect D to decrease in an applied field that weakens AF interactions leading to an increase in β_M. For $H \parallel a$ in an applied field, the values of β_M and E_g/k_B tend to decrease relative to the zero field value. As seen in Fig. 11 the fits to the data in this direction are for $T < T_1$ where the spin structure is believed to be a SDW that is commensurate with the lattice. As the zero field spin structure is an incommensurate SDW, the commensurate state has a smaller value of E_g/k_B as one would naively expect. The small amount of La doping decreases the value of γ_0 as expected. Qualitatively, applied field affects the fitting parameters for the La doped sample in the same manner as the Ir doped samples. For $H \parallel c$ the value of β_M is seen to increase with E_g/k_B remaining unchanged within the uncertainty of the values, while for $H \parallel a$, the values of β_M and E_g/k_B both decrease as field increases.

E. Short-range magnetic order

As shown in a previous report, La doped for Ce in Ce$_{1-x}$La$_x$Rh$_{1-y}$Ir$_y$In$_5$ suppresses T_N and leads to a QCP for $x \approx 0.40$, a value consistent with the 2D percolation threshold17. The zero field data for various values of x ($x \leq 0.5$) are shown in Fig. 13. These results are in good agreement with previous La doped17,18 and Y doped19 reports. The value of T_N is seen to decrease as x increases indicative of a weakening
of the magnetic interactions. For \(x = 0.50 \), the upturn at low temperatures is not due to magnetic order but can be fit quite well for \(T < 0.7 \) K to a non-Fermi-liquid form \(C/T = \gamma^* \ln T^* / T \). In all samples, a significant portion of the entropy (\(\sim R \ln 2 \) as shown in Fig. 2) is found above \(T_N \). This is consistent with neutron scattering results that show short range magnetic correlations at temperatures on the order of \(2T_N \). The contribution to the heat capacity from these short range correlations can be seen as a “hump” in the heat capacity data that becomes apparent as \(T_N \) is suppressed and is consistent with our previous report that speculated the hump was due to short range magnetic interactions.

To further discuss the data in terms of short range magnetic interactions, we consider the results of McCoy and Wu for a 2D Ising model on a square lattice with two magnetic interaction energies \(E_1 \) and \(E_2 \). We identify \(E_1 \) and \(E_2 \) as \(E_{in} \) and \(E_{out} \) (in and out of plane directions) that correspond to the magnetic interaction energies along the two orthogonal directions. Where this mapping is completely rigorous of some concern as the model only takes into account nearest neighbor interactions on a 2D lattice, and the inclusion of both a magnetic interaction in the c-direction along with next-nearest neighbors would lead to multiple magnetic interaction strengths. However, to a first approximation, it seems reasonable to qualitatively describe our data using \(E_{in} \) as the interaction in the basal plane and \(E_{out} \) as the out of plane (interlayer) interaction. We fix \(E_{in}/2 = T_N \) and vary \(E_{out} \) with the results shown in Fig. 5.

The \(E_{in}/E_{out} = 10 \) curve looks remarkably similar to the CeRhIn5 data shown in Fig. 4 showing a peak in \(C_m/T \) at \(T_N \). Neutron scattering results on CeRhIn5 show the magnetic correlation lengths above \(T_N \) are only about a factor of 2-3 different for measurements along and perpendicular to the c-axis35 and magnetic susceptibility measurements show a factor of 2-3 difference in the in-plane and out-of-plane susceptibility31,32,33,40.

However, as there are more near neighbors (4) in plane than out of plane (2) using the value of 10 for \(E_{in}/E_{out} \) seems reasonable from a qualitative point of view. Keeping \(E_{in} \) fixed and reducing \(E_{out} \) is seen to have a dramatic effect on \(C_m/T \) as \(T_N \) moves to lower temperatures and a Schottky-like maximum (or hump) appears. In the calculations, the heat capacity for the case \(E_{in}/E_{out} = \infty \) shows no long range order and is identical to that of a two-state Schottky anomaly with an energy difference of \(E_{in} \) between the two levels. The evolution of the 2D Ising calculation displays the same systematics as the data taken on Ce\(_{1-x}\)La\(_x\)RhIn5 shown in Fig. 4. In this scenario, as La is doped for Ce, short range in-plane magnetic correlations remain while those along the c-axis are weakened considerably by the disorder. This culminates in the observance of no long range order for \(x = 0.50 \).

F. Non-Fermi-liquid behavior

As mentioned, the heat capacity appears to display NFL behavior in the \(x = 0.50 \) sample that is near the QCP. This is in agreement with the La doped results of Kim et al.39 and Y doped results of Zapf et al.39 who find NFL behavior near the QCP in the magnetic susceptibility, heat capacity and resistivity (Y only) data. To further investigate the NFL behavior in the La doped system, data in numerous magnetic fields were collected, and some of the results are displayed in Fig. 6.

As mentioned previously, the zero field data can be fit quite well for \(T < 0.7 \) K to a NFL logarithmic dependence. The application of an applied field moves the NFL feature to higher temperatures eventually appearing to merge with the “hump” centered around 2.5 K in zero
field (note that the upturn at the lowest temperature for the 90 kOe applied field is due to the In nuclear term). The inset to Fig. 7 shows the measured entropy up to 20 K at 0 and 90 kOe. Note that there is a small increase in the entropy which approaches the expected $R \ln 2$ (5.76 J/mol Ce K) as field is increased. This “missing” entropy is due to the large increase in C_m/T at low temperatures due to the NFL behavior that we do not measure; if we could measure to lower temperature, we would expect to find all of the $R \ln 2$ entropy observed for other samples (see Fig. 2).

In heavy fermion systems, there is a natural competition between single site and intersite interactions. This has lead to a scenario of two types of coexisting f-electrons: a local “Kondo gas” and a global “Kondo liquid.”

In a similar fashion, we can separate the data in Fig. 7 into two components: a “localized” term due to short range order C_{SRO} (the “hump”) and a NFL term C_{NFL} that can be attributed to intersite effects. It is important to note that the C_m/T data in Fig. 7 is nearly field independent above 5 K. Above 5 K, we would expect the NFL contribution to be negligible as T^* in the equation $C_{NFL}/T = \gamma^* \ln T^*/T$ is of the order of 5 K. Therefore, we assume that there is a field independent term C_{SRO} which we find by subtracting off the zero field NFL contribution. The resulting C_{SRO} is displayed in Fig. 8.

The data can be fit reasonably well by the 2D Ising model with a value of $E_{in}/2 = 2.64 \text{ K}$, and only around 2/3 of the Ce spins being involved. Those numbers are similar to those obtained on Y doped samples. However Zapf et al interpret their data in terms of crystal fields that also display Schottky-like behavior. As mentioned previously, the heat capacity in the 2D Ising model for the case $E_{in}/E_{out} = \infty$ is identical to that of a two-state Schottky anomaly. The fact that the data is broader than the fit is likely due to disorder. McCoy and Wu have indeed shown that disorder broadens measured features in heat capacity measurements. The value of $E_{in}/2$ is less than the value of T_N for the undoped sample that is used in Fig. 6. As already discussed, doping non magnetic La atoms should not only reduce E_{out} as was done in Fig. 6; it should also reduce E_{in} as we observe. The short range order scenario also gives a natural explanation of the absence of magnetic field effects on the C_{SRO} data because the spins align in the basal plane and the magnetic field is applied perpendicular to the spins. The magnetic field would be expected to have an effect on E_{out} while leaving E_{in} unchanged. Since $E_{out} \ll E_{in}$ the ratio of E_{in}/E_{out} will be quite large and the heat capacity data is very insensitive to changes in E_{out} as long as the ratio is large, and C_{SRO} appears Schottky-like in nature peaking at the same temperature since E_{in} is not changing. The C_{SRO} data is also similar to that seen by others near the QCP for La doping Y doping and applied pressure.

The case of high pressure is of particular interest, because the “hump” like feature is seen in the undoped stoichiometry near the QCP when pressure is applied. Though Fisher et al. attribute the “hump” to the Kondo effect the feature is much too narrow to be fit by a spin 1/2 Kondo impurity model. In fact the feature due to superconductivity is seen below a maximum in C that is field independent as is our C_{SRO} data. In this interpretation, the long range 3D magnetic order is nearly destroyed while short range 2D magnetic correlations are still present near the QCP. This could easily be envisioned by the magnetic correlation length becoming smaller along the c-axis than the nearest neighbor Ce-Ce separation which is much greater than the basal plan Ce-
Ce distances leading to very large values of E_{in}/E_{out}. For the 16.5 kbar data of Fisher et al. that is very near the QCP, the data is fit fairly well assuming that 65% of the Ce spins are involved in the magnetic heat capacity with an energy of $E_{in}/2 = 2.45$ K. These numbers are remarkably similar to the Ce$_{0.5}$La$_{0.5}$RhIn$_5$ data that is near the QCP. The small feature near 2.5 K in the pressure data could be explained by AF order with the fit parameters listed. This would mean that the superconducting transition would be at even lower temperatures (perhaps the very small looking feature in the data at 1 K). Recent NQR results at 16 kbar are interpreted in terms of microscopic regions of AF order below around 2.8 K and AF and superconducting states below 1.3 K. This scenario is in excellent agreement with the above analysis. The application of higher pressure would be expected to increase the anisotropy of the magnetic interactions while reducing the magnitude of $E_{in}/2$. This is exactly what is found at 19 kbar where the data is fit reasonably well by $E_{in}/2 = 1.88$ K with $E_{in}/E_{out} = \infty$. Unlike the crystal field interpretation, the universality of the “hump” like feature near the QCP in both pressure and doping experiments, the agreement with the 2D Ising calculations, and the fact that the crystal field levels are found not to change with La doping in CeCoIn$_5$ compound lead us to confidently conclude that the data we have labelled C_{SRO} is indeed due to short range magnetic order.

The remaining $\sim 34\%$ of the entropy for the $x = 0.50$ sample is found in a NFL $\gamma^* \ln T^*/T$ term. After the nuclear In term is estimated using Eq. 3 with $H_{int} = H$ and subtracted along with the field independent C_{SRO}/T contribution, the remaining data is C_{NFL}/T. The C_{NFL}/T data is plotted for various fields in Fig. 9.

As field increases, the low temperature data appears to go to a nearly constant Fermi-liquid like value. This field dependent behavior is remarkably similar to that seen in one of the prototypical NFL system CeCu$_{5.9}$Au$_{0.1}$ and also to recent results on CeCoIn$_5$. These findings lead to the conclusion that the $4f$-electrons in Ce$_{0.5}$La$_{0.5}$RhIn$_5$ display both short range (short range magnetic order) and long range (non-Fermi liquid) behavior consistent with an evolving picture of coexisting short and long range correlations in the Kondo lattice.

IV. CONCLUSIONS

In conclusion, we have measured the heat capacity on both the CeRh$_{1-x}$Ir$_x$In$_5$ ($y \leq 0.10$) and Ce$_{1-x}$La$_x$RhIn$_5$ ($x \leq 0.50$) systems. Field induced transitions when the magnetic field is applied along the a direction for CeRh$_{0.90}$Ir$_{0.10}$In$_5$ are very similar to those observed in CeRhIn$_5$ suggestive that Ir doping up to 10% does not change the AF order from the measured incommensurate spin density wave in the undoped sample La doping suppresses magnetic order with the $x = 0.50$ sample showing no long range AF order. The La doped data shows excellent agreement to calculation on a 2D square Ising lattice with La doping weakening the out of plane magnetic interactions. In Ce$_{0.50}$La$_{0.50}$RhIn$_5$, a coexistence of short range magnetic order and non-Fermi-Liquid behavior is observed that is remarkably similar in nature to the pressure induced superconductivity at a QCP in undoped CeRhIn$_5$. This “dual” nature of the $4f$-electrons in Ce-based and other heavy fermion systems shows the importance of including the effect of the lattice when studying these systems.

Acknowledgments

Work at UNLV is supported by DOE EPSCoR-State/National Laboratory Partnership Award DEFG02-00ER45835 and DOE Cooperative Agreement DE-FC08-98NV1341 Work at LANL is performed under the auspices of the U.S. Department of Energy.

1. F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979).

2. D. Jaccard, K. Behina, and J. Sierro, Phys. Lett. A 163, 25 (1979).

- UNICAMP, 13083-970, Campinas, Brazil
A. L. Cornelius, J. M. Lawrence, T. Ebihara, P. S. Riseborough, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. B 53, 8241 (1996).

F. M. Grosche, S. R. Julian, N. D. Mathur, and G. G. Lonzarich, Physica B 223-224, 50 (1996).

N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Frey, R. K. Haselwimmer, and G. G. Lonzarich, Nature 394, 39 (1998).

H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. Lett. 84, 4986 (2000).

A. L. Cornelius, A. J. Arko, J. L. Sarrao, M. F. Hundley, and Z. Fisk, Phys. Rev. B 62, 14181 (2000).

R. A. Fisher, F. Bouquet, N. E. Phillips, M. F. Hundley, P. G. Pagliuso, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. B 65, 224509 (2002).

T. Mito, S. Kawasaki, G. q. Zheng, Y. Kawasaki, K. Ishida, Y. Kitaoka, D. Aoki, Y. Haga, and Y. Onuki, Phys. Rev. B 63, 220507(R) (2001).

T. Mito, S. Kawasaki, Y. Kawasaki, G.-Q. Zheng, Y. Kitaoka, D. Aoki, Y. Haga, and Y. Onuki, Phys. Rev. Lett. 90, 077004 (2003).

C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, and P. Monthoux, J. Phys.:Condens. Matter 13, L337 (2001).

C. Petrovic, R. Movshovich, M. Jaime, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Europhys. Lett. 53, 351 (2001).

P. G. Pagliuso, C. Petrovic, R. Movshovich, D. Hall, M. F. Hundley, J. L. Sarrao, J. D. Thompson, and Z. Fisk, Phys. Rev. B 64, 100503(R) (2001).

N. J. Curro, P. C. Hammel, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, and Z. Fisk, Phys. Rev. B 62, R6100 (2000).

W. Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. Fisk, J. W. Lynn, and R. W. Erwin, Phys. Rev. B 62, R14621 (2000).

W. Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. Fisk, J. W. Lynn, and R. W. Erwin, Phys. Rev. B 67, 099903(E) (2003).

P. G. Pagliuso, N. O. Moreno, N. J. Curro, J. D. Thompson, M. F. Hundley, J. L. Sarrao, Z. Fisk, A. D. Christianson, A. H. Lacerda, B. E. Light, et al., Phys. Rev. B 66, 054433 (2002).

A. L. Cornelius, J. M. Lawrence, T. Ebihara, P. S. Riseborough, C. H. Booth, M. F. Hundley, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, M. H. Jung, et al., Phys. Rev. Lett. 88, 117201 (2002).

T. Ebihara, E. D. Bauer, A. L. Cornelius, J. M. Lawrence, N. Harrison, J. D. Thompson, J. L. Sarrao, M. F. Hundley, and S. Uji, Phys. Rev. Lett. 90, 166404 (2003).

S. Nakatsuji, S. Yeo, L. Balicas, Z. Fisk, P. Schlottmann, P. G. Pagliuso, N. O. Moreno, J. L. Sarrao, and J. D. Thompson, Phys. Rev. Lett. 89, 106402 (2002).

S. Nakatsuji, D. Pines, and Z. Fisk (2003), cond-mat/0304587.

E. G. Moshopoulou, Z. Fisk, J. L. Sarrao, and J. D. Thompson, J. Solid State Chem. 158, 25 (2001).

Y. N. Grin, Y. P. Yarmolyuk, and E. I. Gladyshevskii, Sov. Phys. Crystallogr. 24, 137 (1979).

Y. N. Grin, F. Rogl, and K. Hiebl, J. Less-Common Met. 121, 497 (1986).

C. D. Bredl, J. Magn. Magn. Mater. 63-64, 355 (1987).

N. H. van Dijk, F. Bourdarot, J. P. Klaasse, I. H. Hagmusa, E. Bruck, and A. A. Menovsky, Phys. Rev. B 56, 14493 (1997).

S. Murayama, C. Sekine, A. Yokoyanagi, and Y. Onuki, Phys. Rev. B 56, 11092 (1997).

M. R. Lees, O. A. Petenko, G. Balakrishnan, and D. M. Paul, Phys. Rev. B 59, 1298 (1999).

The software used to measure the heat capacity uses average values to fit the thermal relaxation data. From the raw traces, the transitions which we have assigned as first order are clearly first order in nature. Experience tells us the averaging method underestimates the value of the heat capacity near the peak of the first order transition by a factor of four or five.

A. L. Cornelius, P. G. Pagliuso, M. F. Hundley, and J. L. Sarrao, Phys. Rev. B 64, 14411 (2001).

T. Takeuchi, T. Inoue, K. Sugiyama, D. Aoki, Y. Tokiwa, Y. Haga, K. Kindo, and Y. Onuki, J. Phys. Soc. Jpn. 70, 877 (2001).

P. G. Pagliuso, N. J. Curro, N. O. Moreno, M. F. Hundley, J. D. Thompson, J. L. Sarrao, and Z. Fisk, Physica B 320, 370 (2002).

A. D. Christianson, J. M. Lawrence, P. G. Pagliuso, N. O. Moreno, J. L. Sarrao, J. D. Thompson, P. S. Risborough, S. Kern, E. A. Goremychkin, and A. H. Lacerda, Phys. Rev. B 66, 139102 (2002).

W. Bao, A. D. Christianson, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, A. H. Lacerda, and J. W. Lynn, Physica B 312-313, 120 (2002).

P. Monthoux and G. G. Lonzarich, Phys. Rev. B 63, 054529 (2001).

G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).

A. Lobet, J. S. Gardner, E. G. Moshopoulou, J.-M. Mignot, M. Nicklas, W. Bao, N. O. Moreno, P. G. Pagliuso, I. N. Goncharenko, J. L. Sarrao, et al. (2003), cond-mat/0307055.

W. Bao (2003), private Communication.

J. S. Kim, J. Alwood, D. Mixson, P. Watts, and G. R. Stewart, Phys. Rev. B 66, 134418 (2002).

V. S. Zapf, N. A. Frederick, K. L. Rogers, K. D. Hof, P.-C. Ho, E. D. Bauer, and M. B. Maple, Phys. Rev. B 67, 064405 (2003).

H. v. Löhnseyn, T. Pietrus, G. Portisch, H. G. Schlager, A. Schröder, M. Sieck, and T. Trappmann, Phys. Rev. Lett. 72, 3262 (1994).

G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001).

W. Bao, G. Aeppli, J. W. Lynn, P. G. Pagliuso, J. L. Sarrao, M. F. Hundley, J. D. Thompson, and Z. Fisk, Phys. Rev. B 65, 100505(R) (2002).

B. M. McCoy and T. T. Wu, Two-Dimensional Ising Model (Harvard University Press, Cambridge, 1973).

N. J. Curro, J. L. Sarrao, J. D. Thompson, P. G. Pagliuso, S. Kos, A. Abanov, and D. Pines, Phys. Rev. Lett. 90, 227202 (2003).

V. T. Rajan, Phys. Rev. Lett. 51, 308 (1983).

A. Bianchi, R. Movshovich, I. Vekhter, P. G. Pagliuso, and J. L. Sarrao, cond-mat/0302226.