Shaping Influence and Influencing Shaping: A Computational Red Teaming Trust-Based Swarm Intelligence Model

Jiangjun Tang\(^1\)(E), Eleni Petraki\(^2\), and Hussein Abbass\(^1\)

\(^1\) School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia
\{j.tang,h.abbass\}@adfa.edu.au

\(^2\) Faculty of Science, Technology, Education, and Mathematics, University of Canberra, Canberra, Australia
Eleni.Petraki@canberra.edu.au

Abstract. Sociotechnical systems are complex systems, where non-linear interaction among different players can obscure causal relationships. The absence of mechanisms to help us understand how to create a change in the system makes it hard to manage these systems.

Influencing and shaping are social operators acting on sociotechnical systems to design a change. However, the two operators are usually discussed in an ad-hoc manner, without proper guiding models and metrics which assist in adopting these models successfully. Moreover, both social operators rely on accurate understanding of the concept of trust. Without such understanding, neither of these operators can create the required level to create a change in a desirable direction.

In this paper, we define these concepts in a concise manner suitable for modelling the concepts and understanding their dynamics. We then introduce a model for influencing and shaping and use Computational Red Teaming principles to design and demonstrate how this model operates. We validate the results computationally through a simulation environment to show social influencing and shaping in an artificial society.

Keywords: Influence · Shaping · Trust · Boids

1 Introduction

Recently, computational social scientists are attracted to studying means for measuring the concepts of influence and shaping. For influence to work is to exert a form of social power. Servi and Elson [1] introduce a new definition of influence which they apply to online contexts as ‘the capacity to shift the patterns of emotion levels expressed by social media users’. They propose that measuring influence entails identifying shifts in users’ emotion levels followed by
the examination of the extent to which these shifts can be connected with a user. However, if the process of influence creates shifts in patterns of emotions which can be detected in the short-term, can a persistent application of influencing operators create a long-term shift (i.e. shaping)?

Shmueli et. al. [2] discuss computational tools to measure processes for shaping and affecting human behaviour in real life scenarios. Trust was identified as a means to influence humans in a social system. Moreover, trust was found to have a significant impact on social persuasion. Trust is a complex psychological and social concept. A review of the concept can be found in [3].

Larson et. al. [4] are among a few to imply a distinction between influence and shaping, whereby shaping is perceived to be a change to the organization or the environment, while influence fosters attitudes, behaviours or decisions of individuals or groups. However, the majority of the literature follows a tendency to assume that social influencing would lead to shaping.

In this paper, we aim to distil subtle differences to distinguish between the two concepts. This distinction is very important for a number of reasons. First, it examines the validity of the implicit assumption that influencing is a sufficient condition for shaping. Second, it is important when studying social sciences using computational models (computational social sciences) to create models that are not ambiguous about the social and psychological phenomena under investigation. Third, it is vital to make it explicit that social influencing and shaping work on different time scales; that is, social influencing is effective in the short run, while shaping requires time and is more effective in the long run.

We will use a computational red teaming (CRT) model, whereby a red agent acts on a blue team to influence, shape and sometimes distract the blue team. The idea of the model should not be seen from a competition or conflict perspective. The model is general, were the red agent can be an agent that promotes a positive attitude within a team (a servant leader) or a social worker correcting the social attitude of a gang.

2 Influence, Shaping, and Trust

Influence will be defined in this paper as: an operation which causes a short-term effect in the attitude or behaviour of an individual, group or an organization. Shaping, on the other hand, is defined as: an operation which causes a long-term effect in the attitude or behaviour of an individual, group or an organization.

We use the more accurate term “effect” rather than the term “change” because sometimes social influence and shaping need to operate to maintain the status quo. If agent A is attempting to influence agent B by changing B’s behaviour, agent C can attempt to counteract agent A’s influence by influencing B to maintain its behaviour. Therefore, influence does not necessarily require a change to occur.

In a strict mathematical sense, social influence would change the parameters of a model, while social shaping would alter the constraint system.

To illustrate the difference, we will use a model, whereby a group of blue agents attempts to follow a blue leader. A red agent has a self-interest to influence
or shape the blue team. All agents are connected through a network. Each agent, excluding the blue leader and the red agent, attempts to align their behaviour with their neighbours (the other agents it is connected to). The blue leader attempts to reach the blue goal (a position in space). When all agents fully trust each other, and in the absence of the red agent’s effect, it is expected that the intention of the blue leader will propagate throughout the network. Over time, the blue agents will also move towards the blue goal.

The red agent has a different goal. It aligns with the agents it is connected to, but it also attempts to influence and/or shape them towards its own goal (or away from the blue’s goal). Social influence by red is represented through changing red movements; thus, affecting the movements of its neighbours. Social shaping by red is represented through a network re-wiring mechanism. Connections in a network are the constraints on the network’s topology. By rewiring the network, the red agent changes the constraints system. We abstract trust to a scale between -1 and 1, whereby “1” implies maximum trust, while “-1” implies maximum distrust. We do not differentiate in this paper between distrust and mistrust. A “0” value is a neutral indicator that is equivalent to not knowing a person.

3 The Model

An agent-based Boids [5] model is proposed in this paper. All agents are randomly initialized with random headings and locations. Agents are connected through a network structure that allows information exchange among the agents. In this setup, the neighborhood is mostly defined by the hamming distance between two agents in the network, while sometimes it will be defined by the proximity of one agent to another in the physical space. This latter definition is the classic and default one used in the Boids model. Three Boids rules: cohesion, alignment, and separation, are still adopted here. However, the first two vectors are sensed by network connections while the separation vector is perceived through the Euclidean distance in the physical space. Each agent has a trust factor value which decides how much this agent trusts the information perceived from others. The first two vectors are scaled using the trust factor before an agent’s velocity gets updated. An agent 100 % trusts the cohesion and alignment information from its linked neighbours when it has a trust factor of 1. When the trust factor is -1, the agent totally believe that the information is deliberately altered to the opposite value, and therefore, the agent reverses the information it receives.

In the model, there are three types of agents: blue leader (A_B), red agent (A_R), and blue agent. The blue leader always moves towards a specific location/goal, and attempts to make the other blue agents follow it. The blue agent is an agent that senses its neighbours through network links for both cohesion and alignment but by Euclidean distance for separation, and then makes decisions on its new velocity. The red agent is a special agent in the model who
controls the level of noise (η) in the velocity and network connections for influencing and shaping. Many blue agents can exist but there is only a single blue leader and a single red agent.

Agents form a set A and live in a space (S) defined by a given width (spaceW) and a given length (spaceL). All agents are connected by a random network. To establish network connections, a probability (p) is defined. If we have n agents including one blue leader, one red agent, and $n - 2$ blue agents, the network can be denoted as $G(n, p)$. A Goal (G) is a 2-D position that sits at one of the corners of S. Blue leader always aims to move towards G. The area surrounding of G is denoted by δ. Once the blue leader enters this area, the position of G changes. An agent has the following common attributes:

- Position (p), $p \in S$, is a 2-D coordinate.
- Velocity (v) is a 2-D vector representing the agent’s movement (heading and speed) in a time unit.
- Cohesion Velocity (cohesionV) of an agent is the velocity calculated based on the mass of all agents that are connected to this agent.
- Alignment Velocity (alignmentV) of an agent is the velocity calculated based on the average velocity of all agents that are connected to this agent.
- Separation Velocity (separationV) of an agent is the velocity that forces this agent to keep a certain small distance from its neighbors and is based on the Euclidean distance.
- Velocity weights:
 - Cohesion weight (w_c): a scaler for the cohesion velocity.
 - Alignment weight (w_a): a scaler for the alignment velocity.
 - Separation weight (w_s): a scaler for the separation velocity.
- Trust factor (τ) defines how much an agent trusts its connected neighbours. It has an impact on both the cohesion velocity and alignment velocity but not on the separation velocity.

All agents except the blue leader attempt moving towards the neighbours’ location guided with the cohesion vector. The cohesion vector, cohesionV_i, of an agent A_i is:

$$\text{cohesionV}_i = \frac{\sum_{j=0}^{\mid N \mid} p_j}{\mid N \mid} - p_i$$ \hspace{1cm} (1)

where, $\mid N \mid$ is the cardinality of the neighbourhood N.

The alignment velocity of an agent with its linked neighbours is:

$$\text{alignmentV}_i = \frac{\sum_{j=0}^{\mid N \mid} v_j}{\mid N \mid} - v_i$$ \hspace{1cm} (2)

The separation velocity of an agent is calculated using neighbours N_d in the spatial proximity of other agents as follows:

$$\text{separationV}_i = -\sum_{j=0}^{\mid N_d \mid} (p_j - p_i)$$ \hspace{1cm} (3)
The trust factor of a blue agent is updated by the average trust factors of all its connected neighbours \((N)\) as below:

\[
\tau_i = 0.5 \times (\tau_i + \frac{\sum_{j=0}^{\mid N \mid} \tau_j}{\mid N \mid})
\] (4)

The blue leader and red agent’s trust factors are not updated.

The velocity of the blue leader always aims at the goal \(G\) at each step and it is not affected by any other factor. The velocities at time \(t\) of all agents except the blue leader are updated by Eq. 5.

\[
v = v + \tau \times (w_c \times cohesion V + w_a \times alignment V) + w_s \times separation V
\] (5)

where, \(cohesion V\), \(Alignment V\), and \(separation V\) are normalized vectors. The position at time \(t\) of each agent can be updated by:

\[
p = p + v_t
\] (6)

If an agent’s new position is outside the bounds of \(S\), the reflection rule is applied. According to Eq. 5, an agent adjusts its own velocity in compliance with both \(cohesion V\) and \(alignment V\) when it has a positive trust value, and follows the opposite direction as suggested by \(cohesion V\) and \(alignment V\) when its trust factor is negative. If \(\tau = 0\), only the separation vector takes effect on this agent so that this agent doesn’t anyone.

The red agent introduces heading noise, changes its network structure, or does both at each time step. The heading noise can be propagated to blue agents through the connections of the network to cause a deviation in some blue agents’ moving directions. Changes in the network structure may result in long term effects on blue agents.

At each time step, Red agent updates its own velocity \((v_{RedAgent})\) by Eq. 5 and then Eq. 7 uses a normal distribution \((N(0, \eta))\) to generate noise and add it to Red’s velocity.

\[
v_{RedAgent} = v_{RedAgent} + N(0, \eta)
\] (7)

Eq. 6 is used to update the red agent’s position.

Furthermore, the red agent has the ability to re-configure network connections by using the noise level \(\eta\) as a probability that governs the eventuality of the following steps:

1. Randomly pick up a blue agent \((A_i)\) who is connected with the red agent.
2. Randomly pick up another blue agent \((A_j)\) who is connected with \(A_i\).
3. Break the connection between \(A_i\) and \(A_j\).
4. Connect the red agent with a randomly chosen blue agent \(A_j\).

In this way, the connection between the red agent and blue agents changes but the number of edges of the whole network remains as before. The long term effects of these topological updates are expected because the path along with information propagates changes and some blue agents may not get consistent updates from their neighbours.
The blue leader attempts to lead other blue agents towards a given destination, and the red agent attempts to disorient through influence (deliberate changes in heading) and/or shaping (deliberate re-configuration of network structure). Therefore, the “effect” from our model can be derived as how well the blue agents follow the blue leader given the influence/shaping by the red agent. A straightforward measure of this effect within our model is the average distance between blue agents and the goal when the blue leader reaches the goal. If this distance is small, blue agents followed the blue leader. If it is large, red agent distracted the blue agent.

During a single simulation run, the blue leader is tasked to reach the goal multiple times. Each time it reaches the goal (an iteration), the location of the goal changes. The effect is measured at the end of each iteration. The overall effect of a simulation run is the average of all iterations except the first iteration, which is excluded to eliminate the warm-up period in the system resultant from the random initialisation of agents. In summary, the effect is defined by Eq. 8.

\[
\bar{d} = \frac{1}{M} \left(\sum_{m=1}^{M} \frac{1}{n} \sum_{i=1}^{n} d_{m,i} \right)
\]

where, \(M \) is the number of iterations except the first one, \(n \) is the number of blue agents, and \(d_{m,i} \) is the distance between agent \(i \) and the goal location at the \(m \)’th iteration.

4 Experimental Design

Our aim is to evaluate the “effects” of the short term inference and long term shaping caused by the red agent. Two stages are used for the experiments. The first stage focuses on the noise of red agent where the effect from the trust factor is minimised. The second stage investigates both the trust factor and the red agent’s noise. The number of blue agents is 25, so there are a total of 27 agents including a blue leader and a red agent. All agents’ initial locations are uniformly initialised at random within \(S \), where \(S \) is a square space with the dimension of 500 × 500. All agents’ headings are uniformly initialised at random with constant speed of 1. All agents except the blue leader have the same velocity weights: \(w_c = 0.4 \) for cohesion, \(w_a = 0.4 \) for alignment, and \(w_s = 0.2 \) for separation. The initial trust factor values of all blue agents are uniformly assigned at random within the range of \([-1, 1]\). Connections among agents are created by a random network \(G(n, 0.1) \), where \(n = 27 \).

In all experiments, two levels of noise (\(\eta^- = 0.1 \) and \(\eta^+ = 0.9 \)) are used. In the first stage, to reduce the effect of the trust factor, it is assumed constant with a value of 1 for all agents; that is, all blue agents trust any perceived information, including the information arriving from red. In the second stage, the blue leader has two trust levels: \(\tau^-_B = 0.2 \) and \(\tau^+_B = 1 \), and the red agent has two levels of trust: \(\tau^-_R = -0.2 \) and \(\tau^+_R = -1 \).

Three scenarios are designed for investigating the red agent’s impact in our experiments. In Scenario 1, the red agent introduces noise to its heading at
that are obtained at α are the averages of 10 runs, the standard deviations and the confidence intervals in the cases in isolation. and shaping work together, the effect is more profound than any of the individual work on a smaller timescale than the influence operator. When both influence decrease may not be significant. This is expected since the shaping operates on a smaller timescale than the influence operator. When both influence and shaping work together, the effect is more profound than any of the individual cases in isolation.

Scenario	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	Avg	STD	Conf
1	47.64	46.78	39.26	56.63	47.09	67.29	60.65	38.76	42.99	44.86	49.19	8.90	6.36
2	145.90	155.75	168.04	199.94	171.94	243.61	162.15	144.08	103.82	117.94	161.32	37.65	26.93
3	98.27	108.97	128.78	143.31	124.85	176.33	101.50	105.33	60.83	73.08	112.12	31.70	22.68
4	45.71	59.28	47.39	54.31	58.14	69.65	50.27	44.35	43.90	48.83	52.18	7.78	5.56
5	61.23	57.63	56.30	81.25	53.65	74.69	55.76	40.86	47.74	52.03	58.11	11.36	8.13
6	15.52	1.65	8.91	26.94	4.49	5.04	5.49	3.49	3.85	3.20	5.93	9.00	6.44

Table 1: Results of red agent’s noise impact when $\tau_B = 1$ and $\tau_R = 1$

each time step thus this noise can immediately affect direct neighbours and can be propagated through the network. In Scenario 2, the red agent changes the network structure at each time step thus shaping the environment of the blue agents. In Scenario 3, the red agent introduces noises to its heading and changes network structures at each time step so that both influence and shaping take place in our model.

Using 2^k factorial design [6], a total of 2 factor combinations is available at the first stage and 8 at the second stage. Each combination has three individual scenarios to study. Moreover, the randomness exists in the initialisation phase, therefore 10 runs for each factor combination and impact are desired in order to obtain meaningful results. In summary, there are 60 ($3 \times 2 \times 5 \times 10$) simulation runs in the first stage and 240 ($3 \times 8 \times 10$) runs in the second stage. The results and analysis are provided in the next section.

5 Results and Discussion

The results from the first stage experiments are presented in Table 1. The distance between blue agents and goal location of each run (\bar{d}) is listed from the second column to the eleventh column. And the last three columns of the table are the averages of 10 runs, the standard deviations and the confidence intervals that are obtained at $\alpha = 0.05$.

The results show that the more noise the red agent has in its velocity, the more deviation from the goal observed by the blue agents. Changes in the network structure can lower blue agents performance, although the magnitude of this decrease may not be significant. This is expected since the shaping operates work on a smaller timescale than the influence operator. When both influence and shaping work together, the effect is more profound than any of the individual cases in isolation.
The results from the second stage are summarised in Table 2. Interestingly, the trust factors of the blue leader and red agent become critical but the red agent’s noise is not critical. The model responses to the trust factor as expected. When the blue leader has a higher level of trust, all blue agents follow it better (smaller effect values can be observed from $e_{\tau B}$). On the other hand, the blue agents demonstrate disorder behaviours (larger value of $e_{\tau R}$) if red agents have small negative trust. These situations are found in all three scenarios and the effects of trust factors are all statistically significant. Although the red agent’s noise has some effects on blue agents, it is very little and can be ignored when compared to the effect of the trust factor. Negative trust values taken by the blue agents counteract the influence generated by both blue and red agents.

The red agent’s noise can have impact on blue agents’ behaviours through short term influence (velocity) and long term shaping (network structures) if the effects of trust are low. When the trust factors are high, the situation changes. Trust has a significant impact on blue agents’ behaviours.

Figure 1 illustrates the agents’ footprints when the red agent impacts velocity, network structure or both but with minimum trust effects. These footprints are obtained from the first runs of all three scenarios in the first stage and the results are listed in the column “R1” of Table 1.

Figure 1a–c show that the blue leader leads other agents towards the goal well as being demonstrated by a few congested trajectories. When noise increases, blue agents’ trajectories are disturbed as shown in Fig. 1d. Figure 1e shows that changes in the network structure seem to not generate much effects on blue agents’ behaviours. However, the blue agents behaviours are more random when red affects both velocity and network structure. This manifests disorderliness as more scattered blue agents’ footprints can be observed in the last figure.

Figure 2 shows two examples of agents’ footprints that are affected by trust with small noise values ($\eta = 0.1$). The footprints presented in Fig. 2a are extracted from the first run of the third scenario in the second stage with $\tau_B = 0.2$ and $\tau_R = -1$. When the red agent’s trust is -1, the negative effect on blue agents’ trust is continuously broadcasted throughout the network.
Fig. 1. Agents’ footprints under Red agent’s noise (η) impacts on velocity and network with minimum trust effects ($\tau_B = 1$ and $\tau_R = 1$).

Fig. 2. Trust effects on agents behaviours with red agent noise level at 0.1 in scenario 3.

Eventually, all blue agents will have a negative trust value that is close to -1 since the blue leader doesn’t have much power ($\tau_B = 0.2$) to compete against the red agent. This results in all blue agents distrusting each other. In this case, the blue agents spread out to the boundaries. However, the reflection rule forces them back into the given space, causing the blue agents to move around the corners after several time steps as shown in Fig. 2a.

The right side of Fig. 2 depicts agents’ footprints extracted from the third scenario in the second stage with $\tau_B = 1$, $\tau_R = -0.2$, and $\eta = 0.1$.
Some trajectory patterns can be observed from Fig. 2b. In this case, the blue leader has enough power to beat the red agent in terms of trust. All blue agents will have positive trust that are passed from the blue leader. Although the red agent has influence on their velocity and connections, the blue agents are still capable to follow the blue leader to reach the goal locations (corners) as the trajectory patterns show.

From the above examples and previous results, it can be concluded that trust has a more significant impact on blue agents' behaviours than the effect of noise caused by the red agent.

6 Conclusion

In this paper, we presented a CRT trust-based model which is an extension of the classic Boids. The network topologies for situation awareness and a trust factor on perceived information are introduced into our model. They provide the necessary tools to investigate influence and shaping using CRT.

A number of experiments are designed and conducted in order to differentiate the potential impact from influence and shaping on a system. As the results of the first experimental stage suggest, short term influence can have an immediate effect on the system which is easily observed. The long term shaping effects may not be easily observable although it has effect on the system, especially when it interacts with influence. However, trust among agents plays a critical role in the model. Based on our findings in the second experiment, trust dominates the agents' behaviours regardless of noise.

References

1. Servi, L., Elson, S.B.: A mathematical approach to gauging influence by identifying shifts in the emotions of social media users. IEEE Trans. Comput. Soc. Syst. 1(4), 180–190 (2014)
2. Shmueli, E., Singh, V.K., Lepri, B., Pentland, A.: Sensing, understanding, and shaping social behavior. IEEE Trans. Comput. Soc. Syst. 1(1), 22–34 (2014)
3. Petraki, E., Abbass, H.: On trust and influence: a computational red teaming game theoretic perspective. In: 2014 Seventh IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), pp. 1–7. IEEE (2014)
4. Larson, E.V., Darilek, R.E., Gibran, D., Niciboruk, B., Richardson, A., Schwartz, L.H., Thurston, C.Q.: Foundations of effective influence operations: a framework for enhancing army capabilities. Technical report, DTIC Document (2009)
5. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21, 25–34 (1987). ACM
6. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, Hoboken (2008)
Advances in Swarm Intelligence
7th International Conference, ICSI 2016, Bali, Indonesia,
June 25-30, 2016, Proceedings, Part I
Tan, Y.; Shi, Y.; Niu, B. (Eds.)
2016, XXVI, 657 p. 193 illus., Softcover
ISBN: 978-3-319-40999-3