The role and utilization of feed in supporting UPSUS SIWAB in East Aceh District

Y Yusriani¹, F F Rahmah¹, R Wahyuni², M Sabri³, M I A Dagong⁴ and B Bakrie⁵
¹Aceh Assessment Institute for Agricultural Technology
²Sumatera Barat Assessment Institute for Agricultural Technology
³Faculty of Veterinary Medicine University Unsyiah
⁴Faculty of Animal Science, Hasanuddin University
⁵Indonesian Center for Agricultural Technology Assessment and Development

E-mail: yenniyusriani@ymail.com

Abstract. Supporting the SIWAB program, especially in East Aceh, requires a guarantee of adequate feed availability, for that, information on aspects of regional potential is needed, so that the location chosen for development efforts is a potential area. The research objective was to determine the potential of natural resources in terms of the availability of forage for the development of ruminant farms. Research and data collection were carried out in East Aceh District in 2017. The method used research analysis is descriptive. The data needed is in the form of potential natural resources seen from the availability of forage. The variables observed included: (1) ruminant livestock population data, (2) food crop production data, (3) livestock groups, (4) the number of livestock officers. The largest population of cattle is in Peudawa Subdistrict with 17,683 AU (Animal Unit) the production of by-products of food plants is 713.44 tons/year and feed needs of 20,158.25 tons/year. The largest population of buffalo is in Bireun Bayuem Subdistrict, amounting to 3,062.40 AU, production of food crop by-products worth 904.73 DDM tons/year and feed needs 3,491.14 DDM tons/year. It was concluded that the insufficient need for by-products of food crops could be surplus in other districts by using the by-products of plantation, horticulture and agro-industrial crops to support the SIWAB program in East Aceh District.

1. Introduction
The Ministry of Agriculture predicted that Indonesian meat production in 2018 will not be able to meet national needs. Based on data from the Central Statistics Agency [1], the cattle population in 2017 was 16,599,247 heads, which increased by 3.59 from 2016. Beef production in 2018 was 496,302 tonnes, but the demand for domestic beef in 2018 reached 662,540 tonnes. assumption of an average national consumption of 2.5 kg/capita/year. According to [2] domestic production is only able to meet around 65%, the shortfall is met from imported products in the form of 20% frozen beef and 15% domestic fattened feed. In order to accelerate the achievement of increased productivity and beef cattle population in maintaining germplasm, the government launched the UPSUS SIWAB program (Special Efforts for Mandatory Pregnant Cows). This program aims to accelerate the increase in pregnant cattle and buffalo populations, which is a continuation of the meat self-sufficiency program. [3]. The results of the study stated that the management of feeding for ruminants is one of the problems often faced by breeders [4-9] and the amount of feed given [10] so that to support the success of the program it is necessary to
implement a strategy to optimize resource use locally by optimizing productive land and processing specific location-specific agricultural by-products by substituting forage for livestock [11] as a source of nutrition for ruminants.

There are three main things that need to be considered in developing animal husbandry in an area, namely livestock, human resources in this case as managers and land resources as a place for livestock to live, breeders and forage as well as technological factors. The development of livestock in an area needs to measure the potential area for livestock to be developed, because livestock production will depend a lot on the carrying capacity of feed, which is about 80%, which is reflected in the area of forage land and agricultural residues. East Aceh District, which is located in Aceh Province, has a number of advantages in various fields, such as Agriculture and Animal Husbandry. This district has a population of 60,040 beef cattle and 13,304 head of buffalo in 2018 with 3281 breeders in families spread across 24 sub-districts. This district is one of the areas that has the highest rice field area in Aceh Province. The majority of land is wetland, reaching 33,073 ha, paddy fields that have been passed through irrigation by 51.69% or 17,094 ha and the rest are rainfed rice fields [1]. Cattle and food crops are two mainstay commodities in this district, therefore the existing potential can be optimized in one farming system due to the abundance of agricultural by-products during the harvest season. All of this can be achieved with a sustainable approach that utilizes local feed sources, through technological innovation by agricultural by products as a potential source of animal feed [12]. The purpose of this study is to see the role and utilization of agricultural by-products as well as how much contribution and availability as forage for livestock in the development of ruminants to support the SIWAB program in East Aceh district.

2. Materials And methods

2.1. Place and time of research
The study was conducted from January to December 2017-2018 in East Aceh District, Aceh Province.

2.2. Types and data collection
Sampling at the research location was carried out using purposive sampling method with the consideration that some of the farmers / breeders in East Aceh district have used agricultural by-products. The method of analysis used in this research is descriptive research method with a quantitative approach. Data sources are primary data and secondary data. Secondary data were obtained from the Livestock Service Office, Food Crops and Horticulture Service and the Central Bureau of Statistics in the form of livestock population and on the area and production of food crops data. Based on secondary data, the calculation of the number of livestock units, the production of food crop waste and the capacity of livestock will be calculated. Other supporting data relating to this research was obtained from study reports and various other literature resources.

2.3. Observed variables
The observed variables include the population of large ruminants, namely beef cattle and buffalo, is located in a sub-district in East Aceh district using the animal unit (AU) calculation unit. Data on the population of large ruminants was obtained from the Livestock Service Office of East Aceh district in 2018. Meanwhile, data on the population of large ruminants is calculated based on the production level (weaning, off weaning, young, adult and imported cattle). The structure of beef cattle population based on age is (a) Weaners with an age <1 year have a composition of 19.30% of the population; (b) Off weaning >1 year old has a composition of 25.85% of the population; (c) Young people aged 2-4 years have a composition of 18.15%; (4) Adults >4 years old have a composition of 26.89%; and (5) Imported cattle have a composition of 9.81% [13]. Furthermore, the beef cattle population based on age was converted into animal units (AU) using the method [14]. The unit value of beef cattle according to [14] is 0.25 AU for calves (weaning and off weaning), 0.6 AU (young) and 1.00 (adult and imported). The unit value of buffalo is calculated according to [15] specifically 0.88 AU.
The minimum need for forage for large ruminants using the calculation of [16] which is 1.14 tonnes digestible dry matter (DDM) / year. Estimated production of food crop waste per hectare per year which is calculated based on the estimated production of food crops (rice, corn and soybeans) with data sources from the Food Crops and Horticulture Service of East Aceh district and was calculated according [16].

3. Results and Discussion

3.1. Geography of East Aceh District

Geographically, East Aceh District is located between 4˚09'21.08 "- 5˚ 06'02.16 North Latitude and 97˚15'22.07 " - 97˚34'47.22 "East Longitude with a wide range of altitudes, ranging 0 to 240 meters above sea level and a slope of 1 to 5 degrees, consisting of 24 sub districts, 513 villages, covering 60 settlements. East Aceh District area is 6040.60 km² or 10.53 percent of the total area of Aceh Province. The largest area is Serbajadi sub District that is 2165.66 Km² and the smallest is Darul Falah Subdistrict, covering an area of 42.40 Km². East aceh regency is strategic location because it is located in primary path (Medan – Banda Aceh) so that it is a potential area to be developed [1].

3.2. Potential of ruminant livestock development based on base areas

Ruminant livestock has economic value, not only utilizing its energy for working livestock but also a main business for breeders. Cattle is one of the livestock commodities developed in marginal areas in Indonesia, and has sufficient opportunities and potential to be developed with semi-intensive and rural-intensive business models, as well as a high contribution for farmers as an additional source of income [17]. In essence, the ultimate goal of beef cattle business is to obtain optimal profits [18].

The need for animal protein consumption continues to increase in line with the increase of Indonesia's population. One of the needs for animal protein can be fulfilled from large ruminants, namely beef cattle [19] and buffalo [20]. The government once launched the animal protein self-sufficiency grand design program to perfect the meat self-sufficiency program in 2014. The animal protein self-sufficiency grand design program includes the grand design of beef cattle and buffalo [21].

The population of cattle and buffalo in East Aceh District as shown in table 1 for ruminants, sub districts used as a base for cattle were Peudawa, Ranto Peurelak, Bireun Bayeum, Peureulak, Darul Aman, Nurussalam, Idi Rayeuk, Mandat while for sub-districts used as a base for buffalo, were Bireun Bayeum, Ranto Peureulak, Peureulak, Nurussalam, East Idi and Darul Aman. Sub-districts with great potential as a basis for cattle and buffalo development are Ranto Peurelak, Bireun Bayeum, Peureulak, Darul Aman, Nurussalam sub-districts. Bireun Bayeum and Ranto Peureulak sub-districts are very potential as the basis for cattle and buffalo development because they have the largest population of ruminants in East Aceh district.

3.3. Potential of beef cattle development based on forage sources

Feed is a main factor influencing the success of livestock business in increasing the body weight of livestock. Suherman and Kurniawan [22] stated that the development of livestock areas integrated with other sub-sectors can take advantage of by-products in the form of agricultural by-products. The introduction of forage protein sources (grass and legume) in grazing areas is important not only in providing cheap and easy feed but also guaranteed quantity and quality feed [23,24]. Adequacy of forage in terms of quantity and quality is the main requirement in breeding as well as increasing the population of cattle [25,26]. Utilization of agricultural by-products as alternative feed is one of solution to overcome the shortage of ruminant feed [27].
Table 1. Population of beef cattle and buffalo by age and conversion to animal units (AU)

Sub District	Population of beef cattle (head)¹	Weaned calves population (head)²	Weaning cattle population (head)³	Population of young cattle (head)²	Adult population (head)²	Imported cattle population (head)²	Beef cattle population (AU) ³	Buffalo Populations (AU)⁴
Serbajadi	8.00	1.54	2.07	1.45	2.15	0.78	5	66.00
Simpang Jernih	391.00	75.46	101.07	70.97	105.14	38.36	230	272.80
Peunarom	441.00	85.11	114.00	80.04	118.58	43.26	260	142.56
Bireun Bayeur	10491.00	2024.76	2711.92	1904.12	2821.03	1029.17	6.177	3.062.40
Rantau Selamat	963.00	185.86	248.94	174.78	258.95	94.47	567	14.08
Sungai Raya	784.00	151.31	202.66	142.30	210.82	76.91	462	72.16
Peureulak	7781.00	1501.73	2011.39	1412.25	2092.31	763.32	4.581	2.145.44
Peureulak Timur	3483.00	672.22	900.36	632.16	936.58	341.68	2.051	125.84
Peureulak Barat	994.00	191.84	256.95	180.41	267.29	97.51	585	479.60
Ranto Peureulak	11198.00	2161.21	2894.68	2032.44	3011.14	1098.52	6.593	1.259.28
Igi Rayeuk	1945.00	375.39	502.78	353.02	523.01	190.80	1.145	343.20
Peudawa	30033.00	5796.37	7763.53	5450.99	8075.87	2946.24	17.683	458.48
Banda Alam	773.00	149.19	199.82	140.30	207.86	75.83	455	37.84
Igi Tunong	961.00	185.47	248.42	174.42	258.41	94.27	566	79.20
Darul Ihson	988.00	190.68	255.40	179.32	265.67	96.92	582	205.92
Igi Timur	931.00	179.68	240.66	168.98	250.35	91.33	548	684.64
Darul Aman	4140.00	799.02	1070.19	751.41	1113.25	406.13	2.438	597.52
Nurussalam	3901.00	752.89	1008.41	708.03	1048.98	382.69	2.297	976.80
Darul Falah	979.00	188.95	253.07	177.69	263.25	96.04	576	344.08
Julok	1256.00	242.41	324.68	227.96	337.74	123.21	740	79.2
Indra Makmur	931.00	179.68	240.66	168.98	250.35	91.33	548	19.36
Pante Bidari	700.00	135.10	180.95	127.05	188.23	68.67	412	146.08
Simpang Ulim	967.00	186.63	249.97	175.51	260.03	94.86	569	41.36
Mandat	2001.00	386.19	517.26	363.18	538.07	196.30	1.178	53.68

Total 60,040.00 11,587.72 15,520.34 10,897.26 16,144.76 5,889.92 35,350 11,707.52

¹ Livestock Service Office of [1]; ² data processing based on population and age according to the [13]; ³ processed data for total beef cattle population in livestock units according to [14], ⁴ data processed based on [16]

The provision of feed for ruminants can be done by using the by-products of agro-industry, plantation, agriculture, and horticulture so that breeders will get optimal benefits. The growth of ruminant livestock can be accelerated through the provision of good quality feed, in addition to utilizing local resources, especially those from agricultural, plantation and agro-industrial waste [2,28]. The availability of the by product of plantation, horticulture and agro-industry will reduce the problem of feed for farmers so that breeders will not experience difficulties. De Lima [29] states that agricultural waste or fibrous feed waste (straw) is an important component for providing ruminant animal feed. Sources of agricultural by-products are obtained from food crop commodities and their availability is influenced by the cropping pattern and harvested area of food crops in an area. Types of agricultural waste that can be used as a source of feed for ruminants are rice straw, corn straw, soy straw, peanut straw, cassava shoots and sweet potato straw. Table 2 shows the percentage of contribution of food crops by product as a source of feed (DDM ton/year) in East Aceh district. Abundant yields based on
the harvested area of the plant will affect to the by-products that can be used as ruminant animal feed. An increase in agricultural land area, it will contribute to increased agricultural waste production [30].

Table 2. Percentage and contribution of food crop by-products as a source of feed (DDM ton/year)

Sub district	Rice	Gogo	Rice	Corn	Soy	Mung Bean	Peanuts	Sweet Potato	Cassava	Total waste production in tonnes (DDM/yr)	%
Serbajadi	1,505.84	1,594.88	1,262.4	0	0	0	0	0	4,363.12	8.99	
Simpang	354.62	651	120.3	0	0	0	0	0	1,125.92	2.33	
Jerah	1,266.72	468.72	1,978.8	0	0	0.40	0	0	3,714.63	7.65	
Peunarun	729.96	17.36	141.9	15.51	0	0	0	0	904.73	1.86	
Bireun	318.78	231.00	16.8	0	0	0.40	5.74	9.90	582.62	1.30	
Bayeun	768.6	0	29.1	1.32	0	0	0	0	799.02	1.66	
Rantau	4,567.92	133.2	56.43	0	0	0	0	0	4,757.55	9.80	
Selamat	658.84	50.4	20.46	0.43	0	0	0	0	730.13	1.50	
Sungai	780.78	28.8	0	0	0	0	0	9.81	2,846.59	5.86	
Ranto	2,024.4	84	665.7	2.31	0	0	0	0	2,776.41	5.72	
Peureulak	4,567.92	133.2	56.43	0	0	0	0	0	4,757.55	9.80	
Timur	658.84	50.4	20.46	0.43	0	0	0	0	730.13	1.50	
Peureulak	2,807.98	28.8	0	0	0	0	9.81	2,846.59	5.86		
Barat	2,024.4	84	665.7	2.31	0	0	0	0	2,776.41	5.72	
Peureulak	552.58	0	6.6	0	0	0	0	0	559.18	1.15	
Peulawa	660.52	48.3	4.62	0	0	0	0	0	713.44	1.47	
Banda	810.32	114.9	40.92	0	0	0	0	0	966.14	2.00	
Alam	1,299.2	289.8	0	0	0	0	0	1,589.00	3.27		
Idi Tunong	408.8	189	22.44	0.43	0	0	9.84	630.52	1.30		
Darul Ihsan	256.48	216.6	38.61	0.43	0	5.77	9.84	527.74	1.09		
Idi Timur	1,430.38	154.5	14.52	0	0	0	0	0	1,599.40	3.29	
Aman	1,584.94	44.7	24.75	0	0	0	0	1,654.39	3.41		
Nurussalam	681.38	7.2	0	0	0	0	0	688.58	1.42		
Darul Falah	1,618.96	282.3	27.06	0	0	0	0	1,928.32	3.97		
Julok	564.9	168.6	88.77	0	0	0	0	0	822.27	1.69	
Indra	2,132.06	260.4	1,901.7	160.71	0	0	0	0	4,454.87	9.18	
Makmur	3,994.76	52.2	0	0	0	0	0	0	4046.96	8.34	
Pante	5,767.02	45.9	0	0	0	0	0	0	5,812.92	11.97	
Bidari	36,764.56	3,308.2	7,942.2	524.7	0.43	0.40	5.76	9.85	48,556.10	100	

Source: Agricultural Office of East Aceh (processed data), 2017-2018

Table 2 shows that the potential by-products of food plants in producing animal feed in East Aceh District was 48,556,096 DDM tons/year. The total food crop waste production was mostly produced from rice at 40,072.76 DDM tonnes/year and the least comes from peanut was 0.40 DDM ton/year. The greatest potential for food availability from food plant waste was Madat subdistrict at 5812.92 tonnes/year DDM (11.97%) and the least amount was East Idi Subdistrict at 527.74 tonnes/year DDM (1.09%). The potential of food crop by-products is the ability of an area to produce animal feed in the form of food crop by-products that can meet the needs of a number of ruminant livestock populations not only in fresh but also dry form, without special processing. The residue of the food crops can usually be used as livestock feed. The production of food crop by-products depends on the area of harvest of the food crop. The potential amount is the potential for potential feed availability. The high production of food crop by-products affects the carrying capacity of an area. Thus it can be argued that the
production of by-products of food crops can assist in the provision of feed for ruminants, especially cattle and buffalo.

3.4. Beef cattle and buffalo populations and feed needs.

In line with the increasing population of ruminants, the need for forage from year to year is always increasing. On the other hand, the area of grazing area is decreasing. To overcome the shortage of grass or other forage, one of which is the use of agricultural by-products as animal feed. Thus, for the development of ruminants in an area, efforts should be made to utilize agricultural by-products, given the very limited supply of grass and other forages as feed.

Sub Districts	Population of Beef Cattle	Need for beef cattle DDM (tonnes / year)	Buffalo Population	Need for buffalo DDM (tonnes / year)	Total DDM Needs (tonnes / year)	DDM Production (ton / year)
Serbajadi	4.71	5.37	66.00	75.24	80.61	4,363.12
Simpang Jernih	230.21	262.44	272.80	310.99	573.43	1,125.92
Peunaron	259.65	296.00	142.56	162.52	458.52	3,714.63
Bireun Bayune	6,176.84	7,041.60	3,062.40	3,491.14	1,0532.73	904.73
Rantau Selamat	566.99	646.37	14.08	16.05	662.42	582.62
Sungai Raya	461.60	526.22	72.16	82.26	608.49	799.02
Peureulak	4,581.26	5,222.63	2,145.44	2,445.80	7,668.44	4,757.55
Peureulak Timur	2,050.70	2,337.80	125.84	143.46	2,481.26	730.13
Peureulak Barat	585.24	667.18	479.60	546.74	1,213.92	2,846.59
Ranto Peureulak	6,593.10	7,516.14	1,259.28	1,435.58	8,951.72	2,776.41
Idi Rayeuk	1,145.71	1,305.49	343.20	391.25	1,696.74	559.18
Peudawa	17,682.68	20,158.25	458.48	522.67	20,680.92	713.44
Banda Alam	455.12	518.84	37.84	43.14	561.98	966.14
Idi Tunong	565.81	645.03	79.20	90.29	735.31	1,589.00
Darul Ihsan	581.71	663.15	205.92	234.75	897.90	630.51
Idi Timur	548.15	624.89	684.64	780.49	1,405.38	527.73
Darul Aman	2,437.53	2,778.78	597.52	681.17	3,459.96	1,599.4
Nurussalam	2,296.81	2,618.36	976.80	1,113.55	3,731.92	1,654.39
Darul Falah	576.41	657.11	344.08	392.25	1,049.36	688.58
Julok	739.50	843.03	79.20	90.29	933.32	1,298.32
Indra Makmur	548.15	624.89	19.36	22.07	646.96	822.27
Pante Bidari	412.14	469.84	146.08	166.53	636.37	4,454.87
Simpang Ulim	569.35	649.051	41.36	47.15	696.20	4,046.96
Mandat	1,178.14	1,343.08	53.68	61.20	1,404.27	5,812.92

Total | 35,350 | 40,299.06 | 11,707.52 | 13,346.57 | 53,645.63 | 48,556.10

To determine the capacity of livestock in an area, it is necessary to calculate the potential of feed amount to meet livestock needs in the form of agricultural waste conversion factors. This conversion factor can be obtained by calculating the main production of a commodity and its by-products, and its ability to support livestock production per unit of livestock [31].

As shown at table 3, the calculation of the population of cows and buffaloes and feed needs in East Aceh District namely the Serbajadi, Pante Bidari, Simpang Ulim, Peunaron, Simpang Jernih and Madat.
sub districts, Pante Bidari sub-district was very potential as a basis for cattle and buffalo development because it has the largest population of ruminants and sufficient feed needs in East Aceh district. According to the Directorate General of Animal Husbandry of the Republic of Indonesia [13], in principle, the development of integration of livestock into farming, both in food crops, horticultural crops and plantation crops, is to cultivate livestock without reducing productivity and plant activities. In fact, hoping that this integration can increase crop productivity as well as livestock production. the integration of livestock and plants aims to achieve a mutualism synergy leading to help reducing production costs.

4. Conclusion
The largest population of cattle is in Peudawa Subdistrict with 17,683 AU, the production of by-products of food plants is 713.44 tons/year and feed needs of 20,158.25 tons/year. The largest population of buffalo is in Bireun Bayeum Sub district, amounting to 3,062.40 AU, production of food crop by-products worth 904.73 DDM tons/year and feed needs 3,491.14 DDM tons/year. It was concluded that the insufficient need for food crop by-products could be surplus in other districts by using the by-products of plantation, horticulture and agro-industrial crops to support the SIWAB program in East Aceh district.

References
[1] East Aceh Central Statistics Agency 2019 East Aceh District in Figures (Publisher East Aceh District Regency)
[2] Ilham N, Saptana, Purwoto A, Supriyatna Y and Nurasa T 2015 The study on the development of the livestock industry supports increased meat production (http://pse.litbang.pertan)
[3] Directorate General of Animal Husbandry RI 2012 General Guidelines for the Development of Cattle Integration in 2012 (Jakarta: Directorate General of Animal Husbandry, Ministry of Agriculture, Republic of Indonesia)
[4] Alfian Y, Hermansyah F I, Hardayanto E, Utoyo and Suprayogi W P S 2012 Analysis of the capacity of ruminant livestock in the dry season in dryland agricultural areas, Semin District, Gunung Kidul Regency Trop. Anim. Husb. 1 33–42
[5] Nugraha B D, Handayanta E and Rahayu E T 2013 Analysis of the carrying capacity of ruminant livestock during the rainy season in dryland agricultural areas, Semin District, Gunung Kidul Regency Trop. Anim. Husb. 2 34–40
[6] Rahmansyah M, Sugiharto A, Kanti A and Sudiana I M. 2013. Feed readiness in small scale cattle as adoption strategy to climate change through utilization of local flora biodiversity. Anim. Husb. Bull. 37 95–106
[7] Rusdiana S and Adawiyah C R 2013 Economic analysis and business prospects of cattle and crops in coconut plantation land SEPA 10 118–31
[8] Salendu A H S and Elly F H 2013 Agroecosystem of coconut-cattle and carrying capacity analysis in Lolayan Subdistrict of Bolaang Mongondow regency Eur. J. Soc. Sci. 40 549–55
[9] Susanti A E, Prabowo A and Karman J 2013 Identification and troubleshooting of cattle feed supply in supporting smallholder animal husbandry business in South Sumatra Animal Husbandry Agribusiness Innovations for Food Security (Bandung: Padjadjaran University) pp 127–32
[10] Sahara D, Muryanto and Subiharta B 2015 The benefits of raising simmental cows through feed improvement in Semarang Regency J. Assess. Dev. Agric. Technol. 18 169–79
[11] Rusdiana S, Uutedi E and Kusumaningrum D. 2019. Business integration of food crops and beef cattle and its financial analysis of trans migrants farmers in Central Bengkulu Vet. J. 20 74–86
[12] Yusriani Y, Elviwirda and Sabri M. 2015. The study of rice straw utilization for cattle feed supplement in Aceh Province J. Peternak. Indones. 17 163–9
[13] Directorate General of Animal Husbandry RI 2011. General guidelines for the development of cattle integration in 2012 (Jakarta)
[14] Nell A J and Rollington D H L 1974 The requirement and availability of livestock feed in Indonesia
(Jakarta)
[15] Ashari F, Juarini E, Sumanto, Wibowo B and Suratman 1995 Guidelines for analysis of potential areas for distribution and development of livestock (Jakarta: Center for Animal Research and Directorate of Livestock Spread and Development Development)
[16] Sumanto and Juarini E 2006 Guidelines for Regional Potential Identification (Ciawi-Bogor: Animal Research Institute)
[17] Romjali E 2018 Development of Beef Cattle Innovation through “Field Laboratory” Approach WARTAZOA 28 69–80
[18] Idris N, Harahap A and Fatati 2017 Analysis of the level of livestock independence on the integration pattern of cattle with oil palm plantations in Jambi Province J. Appl. Sci. I 162–9
[19] Susanti Y, Priyarsono D S and Mulatsih S 2018 Beef cattle farm development for economic improvement of Central Java Province Reg. Plan. Approach. 2 177–90
[20] Komariah, Burhanuddin and Permatasari N 2018 Potential and development analysis of swamp buffalo in Serang District J. Anim. Prod. Sci. Technol. 6 90–7
[21] Riwantoro 2016 Optimization of Livestock Technology and Agribusiness in The Context of Fulfilling Animal Protein from Livestock (Jenderal Soedirman University)
[22] Suherman and Kurniawan E 2017 Management of goat Livestock in Batu Mila Village as additional income for dry land farmers J. Dedik. Masyarakat. I 7–13
[23] Hadi R F, Kustantinah and Hartadi H 2011 In-sacco digestibility of legumes and non-leguminous forages in the rumen of cattle 85 Ongole crossbreds Anim. Husb. Bull. 35 79
[24] Kasuya H and Takahashi J. 2010. Methane emissions from dry cows fed grass or legume silage Asian-Australasian J. Anim. Sci. 23 563–6
[25] Yamin M, Muhakha and Abrar A 2010 Feasibility of cattle and palm coconut plantation in South Sumatra Province J. Pembang. Mns. I 1–19
[26] Gunawan E R, Suhendra D and Hermanto D 2013 Optimizing the integration of cattle, maize and seaweed (pijar) in animal feed processing technology based on corn-seaweed agricultural waste to support the One Million Cows (BSS) Earth Program in West Nusa Tenggara. Anim. Husb. Bull. 37 157–64
[27] Samadi, Usman Y and Delima M 2010 Study on the potential of agricultural waste as ruminant feed in Aceh Besar District Agripet’s J. 10 45–53
[28] Budiyono H 2010 Analysis of livestock trade balance and beef self-supporting in 2014. J. Agribisnis dan Pengemb. Wil. I 63–75
[29] De Lima D 2012 Production of agricultural waste and livestock waste and its utilization in Huamuel Belakang and Tanivel Districts, West Seram District J. Agrofor. 7 1–7
[30] Matitaputty P R and Kuntoro B 2010 Potential and strategy for the development of ruminant animal husbandry areas and utilization of food crop waste in West Southeast Maluku Regency (MTB) J. Anim. Husb. 7 70–81
[31] Shiddieqy M I, Widiawati Y and Ramadhan B A 2017 Potency of availability and fulfillment of feed from cocoa plantation byproducts in South Sulawesi Province Semi Proceedings Nasional Teknologi Peternakan dan Veteriner pp 575–84