Reassessment of the genus Maro O. Pickard-Cambridge, 1907, with the description of a new genus (Aranei: Linyphiidae)

Andrei V. Tanasevitch
A.V. Танасевич

ABSTRACT. The species composition of the micronetine spider genus Maro O. Pickard-Cambridge, 1907 is reconsidered, the diversity being restricted to 13 species. The diagnosis of the genus is clarified and extended. A new monotypic genus, Boreomaro gen.n., is established for Maro borealis Eskov, 1991. In addition, further two species of Maro are preliminary transferred to Oreonetides Strand, 1901, i.e. Oreonetides amplus (Dondale et Buckle, 2001), comb.n. and O. bulbosus (Zhao et Li, 2014), comb.n.

How to cite this paper: Tanasevitch A.V. 2022. Reassessment of the genus Maro O. Pickard-Cambridge, 1907, with the description of a new genus (Aranei: Linyphiidae) // Arthropoda Selecta. Vol.31. No.3. P.342–350. doi: 10.15298/arthsel.31.3.11

Introduction

The genus Maro was established by Pickard-Cambridge [1907] for Maro minutus O. Pickard-Cambridge, 1907, one of the smallest linyphiid species in the European spider fauna. Saaristo [1971] revised the genus, restricted its diversity to six species, including two he described as new: M. flavescens (O. Pickard-Cambridge, 1873), M. jeithineni Saaristo, 1971, M. lepidus Casemir, 1961, M. minutus O. Pickard-Cambridge, 1907, M. sublestus Falconer, 1915, and M. thaleri Saaristo, 1971. The latter species, which was known from a female holotype only, was subsequently transferred to Pseudocarorita Wunderlich, 1980 [Wunderlich, 1980]. In the revision of Maro, Saaristo [1971] described and illustrated in detail the structure of the secondary genital organs of both sexes, as well as introduced a few new terms to the genital morphological nomenclature, e.g., column, embolus proper, and suprategulum [Saaristo, 1971].

Three species of Maro were later described from Siberia: M. saaristoi Eskov, 1980, M. sibiricus Eskov, 1980 [Eskov, 1980], and M. borealis Eskov, 1991 [Eskov, 1991]. Four species were added from the Russian Far East: M. bureensis Tanasevitch, 2006, M. khabarum Tanasevitch, 2006, M. pansibiricus Tanasevitch, 2006, and M. ussuricus Tanasevitch, 2006 [Tanasevitch, 2006a]. Of the two Maro known from Japan, M. perpusillus Saito, 1984 and M. lautus Saito, 1984 [Saito, 1984], the latter has recently been transferred to Erigomicronus Tanasevitch, 2018 [Tanasevitch, 2018]. One species, M. bulbosus Zhao et Li, 2014, was described based on females from the Yunnan Province, People’s Republic of China [Zhao, Li, 2014]. Only two species are known from the Nearctic Region: M. amplus Dondale et Buckle, 2001 and M. neearcticus Dondale et Buckle, 2001 [Dondale, Buckle, 2001]. As a result, the genus Maro currently contains 16 species.

A new detailed morphological analysis of the genitalia of both sexes of Maro species shows the genus to be fairly homogeneous, with the exception of three species, M. amplus, M. borealis and M. bulbosus. Their status is discussed below.

The objective of the present study is to provide an updated taxonomic account of the genus Maro, also refining its species composition.

Material and methods

The specimens used in this study have been borrowed from the following museums: Zoological Museum, Turku University, Turku, Finland (MTU), National Science Muse-
Table. Some somatic characters of *Maro* species, based on the literature data and measurements of available specimens from museums and personal collections.

Species	Tibial dorsal spines	TmI	Size (mm)
1. *Maro bureensis*	2221	0.36–0.55	1.58–1.80
2. *M. flavescens*	2222	0.40	1.20–1.50
3. *M. khabarum*	2221	0.32–0.36	1.48–1.58
4. *M. lehtineni*	2222	0.36–0.40	0.90–1.30
5. *M. lepidus*	2222	0.40–0.49	1.40–1.80
6. *M. minutus*	2222	0.30–0.49	1.10–1.40
7. *M. nearcticus*	2221	0.50–0.56	1.25–1.64
8. *M. pansibiricus*	2221	0.38–0.43	1.35–1.65
9. *M. perpusillus*	2221	0.33–0.42	1.40–1.80
10. *M. saaristoi*	2222	0.48–0.51	1.70–2.05
11. *M. sibiricus*	2222	0.49–0.53	1.60–1.85
12. *M. subletus*	2222	0.40–0.49	1.10–1.60
13. *M. ussuricus*	2221	0.35–0.52	1.26–1.60
The genus Maro seems to be particularly close to Oreonetides Strand, 1901, which was well justified by Saaristo [1972], van Helsdingen [1981] and Eskov [1991]. I shall mention here only the main features of similarity: same pattern of leg chaetotaxy and trichobothriotaxy; similar structure of the complex embolic division, namely, the peculiar shape of the embolus; similar structure of the protruded epigyne with somewhat reduced parts of the scape. In turn, Maro differs by the boat-shaped radix, vs V-shaped in Oreonetides; a simple shape of the paracymbium (vs usually well-modified in Oreonetides) in the male (see van Helsdingen [1981]). The differences in the structure of the epigyne of both genera are still vague.

SPECIES INCLUDED. The genus presently contains 13 species: Maro bureensis Tanasevitch, 2006, M. flavescens (O. Pickard-Cambridge, 1873), M. kaharum Tanasevitch, 2006, M. lehtineni Saaristo, 1971, M. lepidus Casemir, 1961, M. minutus O. Pickard-Cambridge, 1907, M. nearcticus Don-dale et Buckle, 2001, M. pansibiricus Tanasevitch, 2006, M. perpusillus Saito, 1984, M. saaristoi Eskov, 1980, M. sibiricus Eskov, 1980, M. sublestus Falconer, 1915, M. ussuricus Tanasevitch, 2006.

Based on the structure of the genital organs, the remaining formal species, Maro amplus Dondale et Buckle, 2001, M. borealis Eskov, 1991, and M. bulbosus Zhao et Li, 2014, do not belong to Maro and are to be transferred to other genera (see below).

HABITAT. Unfortunately, we still know very little about the habitat of Maro representatives, and we can only say that these spiders prefer moist mossy sod and litter from the forests mainly of the boreal belt of Eurasia.

DISTRIBUTION. The Holarctic, mainly Euro-Siberian [Eskov, 1991; Tanasevitch, 2006a]; one species, M. perpusillus, is known from Japan [Saito 1984], one more, M. nearcticus, from the Nearctic [Dondale, Buckle, 2001]. For details see World Spider Catalog [2022].
Reassessment of the genus *Maro*

Figs 10–19. *Maro nearcticus* Dondale et Buckle, 2001, ♂ paratype from Lac Barette, Québec, Canada (MTU) (10–13); *M. perpusillus* Saito, 1984, ♂ and ♀ paratypes from Mt. Akagi, Gunma Prefecture, Japan (14–17); *M. bureensis* Tanasevitch, 2006 (18); *M. khabarum* Tanasevitch, 2006, both specimens from Norsky NR, Amur Area, Russia (ZMMU) (19). 10 — embolic division, ventral view; 11, 12 — paracymbium, different aspects; 13 — lamella characteristic, ventrolateral view; 14 — ♀ palp, retrolateral view; 15 — embolus proper, mesal view; 16, 17 — epigyne, ventral and dorsal views, respectively; 18, 19 — embolus, mesal view. Figure 15 not to scale.

Рис. 10–19. *Maro nearcticus* Dondale et Buckle, 2001, ♂ парапти из Lac Barette, Квебек, Канада (MTU) (10–13); *M. perpusillus* Saito, 1984, ♂ и ♀ парапти из Mt. Akagi, Гунма префектура, Япония (14–17); *M. bureensis* Tanasevitch, 2006 (18); *M. khabarum* Tanasevitch, 2006, оба экземпляра из Норского заповедника, Амурская обл., Россия (ZMMU) (19). 10 — эмболийский отдел, вид снизу; 11, 12 — парацимбиум, различные аспекты; 13 — ламела характеристика, вид снизу и сбоку; 14 — пальца ♂, ретролатерально; 15 — собственно эмболус; 16, 17 — эпигина, соответственно вид снизу и сверху; 18, 19 — эмболус. Рис. 15 не в масштабе.
Maro nearcticus Dondale et Buckle, 2001
Figs 10–13.

2001 Maro nearcticus. — Dondale, Buckle: 10, figs 1–6 (♂, ♀), ♀ examined.

TYPE MATERIAL EXAMINED. Paratype ♀ (MTU), CANADA, Québec, Parc Jacques-Cartier, Lac Barette, 1VI.–10.VII.1985, leg. S. Koponen.

TAXONOMIC REMARKS. Maro nearcticus is very similar to the Siberian M. sibiricus, but differs by the shape of the upper branch of the lamella characteristica (cf. Fig. 13 and fig. 1 in Eskov [1980]).

REMARKS. The species has been described from eastern Canada and the northeastern U.S.A. [Dondale, Buckle, 2001]. According to the picture presented by Gómez-Rodriguez et al. [2014], their record of M. nearcticus from Mexico is a misidentification, and probably refers to M. messus sp.

DISTRIBUTION. Québec, Ontario, New Brunswick and Newfoundland (Canada), Maine and New Hampshire (U.S.A.) [Dondale, Buckle, 2001].

Maro perpusillus Saito, 1984
Figs 14–17.

1984 Maro perpusillus. — Saito: 4, figs 3, 4 (♂, ♀), examined.

REMARKS. The species has been described from both sexes from the Gunma Prefecture, Honshu Island, Japan [Saito, 1984].

TYPE MATERIAL EXAMINED. Paratypes: 2 ♂♂, 2 ♀♀ (NSMT-Ar. 860), JAPAN, Gunma Prefecture, Konuma, Mt. Akagi, 16.VI.1979, leg. H. Saito.

TAXONOMIC REMARKS. The male palp of Maro perpusillus resembles that of M. pansibiricus, but differs by the shape of the lamella characteristica (cf. Fig. 14 and figs 1, 3–5 in Tanasevitch [2006a]). The epigyne is similar to that of M. flavescens, but is distinguished by its non-concave posterior edge (cf. Fig. 16 and fig. 35 in Tanasevitch [2006a]).

DISTRIBUTION. So far known from Honshu, Japan [Saito, 1984].

Oreonetides amplus (Dondale et Buckle, 2001), comb.n.

2001 Maro amplus Dondale, Buckle: 13, figs 10–14 (♂), examined.

COMPARATIVE MATERIAL EXAMINED. 2 ♂♂ (CDB), CANADA, Alberta, 20 km NW Dixonville, aspen forest, 15.VI.2000, leg. D. Shorthouse; 1 ♂ (CDB); same locality; 13.VI.2020, leg. D. Shorthouse.

TAXONOMIC REMARKS. The Nearctic M. amplus was originally described from males alone. Its large size (up to 2.01 mm), the high-value TmI (0.80–0.85), and the presence of a mastidon on the chelicerae have long raised certain doubts as to the assignment of amplus to Maro [Dondale, Buckle, 2001]. A detailed study of the palpal structure of males of M. amplus from Alberta, Canada (CDB) shows that neither the palpal tibia nor the paracycymbium, nor the structure of the embolic division agrees with those in Maro. The species, besides the somatic differences mentioned above, has a slightly modified palpal tibia bearing several outgrowths, the paracycymbium totally lacking a posterior pocket, and the structure of the embolic division being rather similar to those in the genus Oreonetides, seemingly especially similar to O. kolymensis Eskov, 1991. Hence, this species is preliminary to be transferred: Oreonetides amplus (Dondale et Buckle, 2001) comb.n. Discovering a conspecific female may put an end to the riddle concerning the generic identity of this species, since probably this species belongs neither to Maro nor to Oreonetides.

DISTRIBUTION. Throughout Canada; Alaska, Maine and Vermont (U.S.A.) [Dondale, Buckle, 2001; Paquin et al., 2010].

Oreonetides bulbosus (Zhao et Li, 2014), comb.n.

2014 Maro bulbosus Zhao, Li: 30, figs 56A–F, 57A–B (♀), not seen.

TAXONOMIC REMARKS. The species was originally described from females alone, all from the extreme south of the Yunnan Province, People’s Republic of China. This region is situated near the borders with Laos and Myanmar, virtually a territory in the northern part of the Oriental Region. Based on detailed figures and photographs presented in Zhao & Li [2014], the epigyne of Maro bulbosus seems to strongly resemble to that in some Oreonetides, e.g., the Far Eastern O. badzhakensis Eskov, 1991 or O. minitus Tanasevitch, 2017. The similarity is based on the somewhat protruding semi-circular epigyne with wide, anisiform entrance ducts. Hence, I dare preliminary transfer this species to Oreonetides Strand, 1901: Oreonetides bulbosus (Zhao et Li, 2014), comb.n. Only the discovery of the conspecific male is to clarify the taxonomic position of the species within lynxidiids.

DISTRIBUTION. Known only from the Yunnan Province, People’s Republic of China [Zhao, Li 2014].

Boreomaro gen.n.

Type species Maro borealis Eskov, 1991, by monotypy. The type material (ZMU) of both sexes examined.

NAME. The generic name is a combination of “boreal” and “Maro”. The gender is masculine.

DIAGNOSIS. The genus contains medium-sized micrines (total length 1.40–1.90) characterized by the following combination of somatic and genital characters:

(1) Carapace and chelicerae unmodified in both sexes, a mastidion absent.

(2) Abdomen white to grey, a distinct pattern absent.

(3) Chaetotaxy 2.2.2.2; TmI 0.53–0.56; metatarsi IV without trichobothrium.

(4) Male palp. Paracycymbium highly modified (Figs 20, 22); embolic division large and complex, consisting of highly modified sclerites. (Figs 24, 25); radix with several radial apophyses; lamella characteristica, terminal apophysis and Fickert’s gland absent. Embolus with a stem, embolus proper exceptionally long (Fig. 26). NOTE: It is possible that the radical apophysis(es) at the place where the lamella characteristica is usually located is(are) a strongly transformed lamella characteristica.

(5) Epigyne short, proximal and median parts of scape reduced, lateral lobes absent, receptacles very large, sub-spherical (Figs 27–29, 32, 33).

TAXONOMIC REMARKS. Boreomaro gen.n. resembles Maro by the structure of the epigyne alone, while the male palp, in particular the embolic division, strongly differs, except for the embolus which has a stem. Unlike Maro, the radix in the new genus is not boat-shaped, with long apophyses conducting and protecting the extended embolus proper. Unlike Maro, a lamella characteristica and a termi-
Reassessment of the genus *Moro*

Figs 20–29. *Boreomaro borealis* (Eskov, 1991), comb.n., specimens from Norsky NR, Amur Area, Russia (ZMMU). 20 — ♀ palp, retrolateral view; 21 — palpal tibia, dorsal view; 22 — paracymbium, lateral view; 23 — suprategulum and pit-hook, lateral view; 24, 25 — embolic division, ventrolateral and ventro-retrolateral views, respectively; 26 — embolus, ventrolateral view; 27–29 — epigyne, ventral, lateral and dorsal views, respectively.

Рис. 20–29. *Boreomaro borealis* (Eskov, 1991), comb.n., экземпляр из Норского заповедника, Амурская обл., Россия (ZMMU). 20 — пальпа ♀, ретролateralно; 21 — голень пальцы ♀, вид сверху; 22 — парацимбий, вид сбоку; 23 — супратегулюм и пит-хук, вид сбоку; 24, 25 — эмболюсный отдел, соответственно вентролateralно и вентро-ретrolateralно; 26 — эмболюс, вид снизу и сбоку; 27–29 — эпигина, соответственно вид снизу, сбоку и сверху.
Figs 30–33. Scanning electron micrographs: Boreomaro borealis (Eskov, 1991), comb.n., specimens from Norsky NR, Amur Area, Russia (ZMMU). 30 — embolic division, ventrolateral view; 31 — comb-shaped thickening on apex of radical apophysis; 32, 33 — epigyne, dorsal view, different aspects.

Discussion

The first revision of the genus Muro was released by Saaristo [1971] based on only six species known at that time, five of which treated as European. Since the
beginning of the 1980s, an intensive study of the spiders of Siberia and the Russian Far East started, associated with the emergence of a new pleiad of Soviet and Russian arachnologists (see Mikhailov [2016]). This allowed for not only the knowledge of the distribution areas of the six known Maro to be expanded, but also seven additional new species to be discovered in Asia.

The question arose concerning the homogeneity of the genus. I tried to answer this question based on a comparative analysis of the genital structures. This analysis became possible only thanks to M.I. Saaristo [1971, 1972, 1973, etc.], who provided a detailed study of the structure of the genitalia of both sexes, not only of Maro, but also of many other micronetine groups. This time-consuming study ensured subsequent substantial progress in the taxonomy of the subfamily Micronetinae sensu Saaristo & Tanasevitch [1996]. Especially valuable was Saaristo's atlas showing the embolic division of various micronetines, in which homologous structures were presented using the same colour. Unfortunately, this atlas was published only posthumously by Marusik & Koponen [2008].

 Acknowledgements. I am most grateful to Kirill G. Mikhailov (ZMMU) and Hirotsugu Ono (NSMT) for the provision of material from the museum collections under their care, as well as to Donald Buckle, Saskatchewan, Canada for sending comparative material. Thanks also go to Sergei Golovatch (Moscow) who kindly checked the English of an early draft, to Gustavo Hormiga (Washington, USA) and Jeremy Miller (Leiden, the Netherlands) for some of their constructive commenting on the manuscript.

References

Casemir H. 1961. Einige für Deutschland neue und seltene Spinnen // Zoologischer Anzeiger. Bd.246. P.1–70.
Dondale C.D., Buckle D.J. 2001. The spider genus Maro in North America (Aranea, Linyphiidae) // Fabreries. Vol.26. P.9–15.
Eskov K.Yu. 1991. [On the taxonomy and zoogeography of the structure of the genitalia of both sexes, not only of Maro, but also of many other micronetine groups. This time-consuming study ensured subsequent substantial progress in the taxonomy of the subfamily Micronetinae sensu Saaristo & Tanasevitch [1996]. Especially valuable was Saaristo’s atlas showing the embolic division of various micronetines, in which homologous structures were presented using the same colour. Unfortunately, this atlas was published only posthumously by Marusik & Koponen [2007]. The comparative morphological approach used in that paper has revealed two species as not belonging to Maro, both being transferred to Oreonetides, as well as a new genus established for one marginal species.]

References

Casemir H. 1961. Einige für Deutschland neue und seltene Spinnen // Zoologischer Anzeiger. Bd.166. S.195–206.
Dondale C.D., Buckle D.J. 2001. The spider genus Maro in North America (Aranea, Linyphiidae) // Fabreries. Vol.26. P.9–15.
Eskov K. Yu. 1980. [Two new species of spiders of the genus Maro (Aranei, Linyphiidae) from Siberia] // Zoologicheskii zhurnal. Vol.59. No.7. P.1100–1103 [in Russian, with an English abstract].
Eskov K. Yu. 1991. [On the taxonomy and zoogeography of the spider genera Maro and Oreonetides (Aranei, Linyphiidae)] // Zoologicheskii zhurnal. Vol.70. No.4. P.45–54 [in Russian, with an English abstract].
Falconer W. 1915. The spiders of Wicken with description of two new species // Naturalist. Vol. 40. P. 201–204, 225–230.
Gómez-Rodríguez J.F., Montaño H., Ibarray-Núñez G., Salazar O.C.A. 2014. Arácnidos (excepto ácaros) de Tamaulipas: lista do actualizado y algunos registros nuevos // Correa A., Horta J.V., García J., Barrientos L. (eds.). Biodiversidad Tamaulipeca. Vol.2. Num.2. Tamaulipas, México: Tecnológico Nacional de México – Instituto Tecnológico de Ciudad Victoria. P. 51–57, 64–74.
Helsinki P.J., van. 1965. Sexual behaviour of Lepthyphantes leprosus (Ohleri) (Araneida, Linyphiidae), with notes on the function of the genital organs // Zoologische Mededelingen. Bd.41. P.15–42.
Helsinki P.J., van, Thaler K., Deltsch C. 1977. The tennis group of Lepthyphantes Menge (Araneae, Linyphiidae) // Tijdschrift voor Entomologie. Vol.120. P.1–54.
Holm Å. 1979. A taxonomic study of European and East African species of the genera Pelecopsis and Trichopterna (Araneae, Linyphiidae), with descriptions of a new genus and two new species of Pelecopsis from Kenya // Zoológica Scripta. Vol.8. No.1–4. P.255–278.
Hormiga G. 2000. Higher level phylogenetics of erigonine spiders (Araneae, Linyphiidae, Erigoninae) // Smithsonian Contributions to Zoology. Vol.609. P.1–160.
Kulczyński W. 1898. Symbola ad faunam araneorum Austriae infe rioris cognoscendam // Rozprawy i Sprawozdania z Posiedzeń Wydziału Matematyczno-Przyrodniczego Akademii Umiejętności, Kraków. Vol.36. P.1–114.
Marusik Yu.M., Koponen S. 2008. Obituary. Michael Ilmari Saaristo (1938–2008) // Arthropoda Selecta. Vol.17. No.1–2. P.4–16.
Merrett P. 1963. The palpus of male spiders of the family Linyphiidae // Proceedings of the Zoological Society of London. Vol.140. P.347–467.
Mikhailov K.G. 2016. [Arachnology in Russia/USR] // Pavlovin I.Ya. (ed.). Aspekty bioraznoobraziya (= Aspects of Biodiversity). Part 2. Sbornik trudov Zoologicheskogo Muzeya MGU (= Archives of Zoological Museum of the Moscow State University). Vol.54. No.2. P.655–691 [in Russian, with English summary].
Paquin P., Buckle D.J., Dupérré N., Dondale C.D. 2010. Checklist of the spiders (Araneae) of Canada and Alaska // Zootaxa. Vol.2461. P.1–170.
Pickard-Cambridge O. 1873. On some new species of Araneida, chiefly from Oriental Siberia // Proceedings of the Zoological Society of London. Vol.41. No.2. P.435–452, pl. 40–41.
Pickard-Cambridge O. 1907. On some new and British Arachnida // Proceedings of the Dorset Natural History and Anti quarian Field Club. Vol.27 (for 1906). P.72–92.
Saaristo M.I. 1971. Revision of the genus Maro O.P.-Cambridge (Araneae, Linyphiidae) // Annales Zoologici Fennici. Vol.8. P.463–482.
Saaristo M.I. 1972. Redelimitation of the genus Oreonetides Strand, 1901 (Araneae, Linyphiidae) based on an analysis of the genital organs // Annales Zoologici Fennici. Vol.9. P.69–74.
Saaristo M.I. 1973. Taxonomical analysis of the type-species of Agyneta, Anomalaria, Meioneta, Aprolagus, and Syedrula (Araneae, Linyphiidae) // Annales Zoologici Fennici. Vol.10. P.451–466.
Saaristo M.I., Tanasevitch A.V. 1996. Redelimitation of the sub-family Micronetinae Hull, 1920 and the genus Lepthyphantes Menge, 1866 with descriptions of some new genera // Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck. Vol.83. P.163–186.
Saito H. 1984. Descriptions of four new species of the soil dwelling linyphiine spiders (Araneae: Linyphiidae) from the Kyushu and Kanto District // Edaphologia. Vol.31. P.1–8.
Strand E. 1901. Theridien aus dem nördlichen Norwegen // Archiv für Mathematik og Naturvidenskab Christiania. Bd.24. Nr.2. S.1–66.
Tanasevitch A.V. 2006a. New or little-known Maro O.P.-Cambridge from Siberia and the Russian Far East (Aranei: Linyphiidae: Micronetinae) // Arthropoda Selecta. Vol.14 (for 2005). No.3. P.259–268.
Tanasevitch A.V. 2006b. Linyphid spiders of the Norsky Nature Reserve, Amurskaya Area, Russian Far East (Arachnida: Aranei) // Arthropoda Selecta. Vol.14 (for 2005). No.4. P.347–371.
Tanasevitch A.V. 2017. A new Oreonetides Strand, 1901 from the Russian Far East (Araneae, Linyphiidae) // Zootaxa. Vol.4318. No.3. P.569–599.
Tanasevitch A.V. 2018. A new, remarkable erigonine spider genus from eastern Asia (Araneae, Linyphiidae) // Zootaxa. Vol.4524. No.2. P.245–250.
Tanasevitch A.V., Trilkauskas L.A. 2004. Check-list of the linyphiine spiders (Araneae: Linyphiidae), with descriptions of a new genus and two new species // Annales Zoologici Fennici. Vol.70. No.4. P.45–54 [in Russian, with an English abstract].

Reassessment of the genus Maro

349
Trilikauskas L.A., Tanasevitch A.V. 2006. New records of the linyphiid spiders from the Bureinsky Nature Reserve, Khabarovsk Province, Russian Far East // Arthropoda Selecta. Vol.14 (for 2005). No.4. P.339–345.

World Spider Catalog. 2022. Natural History Museum Bern. Online at http://wsc.nmbe.ch. Version 23.5 (accessed in July, 2022).

Wunderlich J. 1980. Drei neue Linyphiidae-Genera aus Europa (Arachnida: Araneae) // Senckenbergiana Biologica. Bd.61. S.119–125.

Zhao Q.Y., Li S.Q. 2014. A survey of linyphiid spiders from Xishuangbanna, Yunnan Province, China (Araneae, Linyphiidae) // ZooKeys. Vol.460. P.1–181.

Responsible editor K.G. Mikhailov