Prediction on Raman Spectra of Intrinsic Two-Dimensional Ga$_2$O$_3$ Monolayer

Zexiang Denga

aSchool of Science, Guilin University of Aerospace Technology, Guilin 541004, People’s Republic of China

March 21, 2022

Abstract

We investigate the vibrational properties and Raman spectra of two-dimensional Ga$_2$O$_3$ monolayer, using density functional theory. Two ferroelectric (FE) phases of Ga$_2$O$_3$ monolayer with wurtzite (WZ) and zincblende (ZB) structures (FE-WZ and FE-ZB, respectively) are considered. The Raman tensor and angle-dependent Raman intensities of two major Raman peak (A_1^1 and A_2^1) in both FE-WZ (497, and 779 cm$^{-1}$) and FE-ZB (481, and 772 cm$^{-1}$) Ga$_2$O$_3$ monolayers are calculated for the polarizations of scattered light parallel and perpendicular to that of the incident light. The characteristics of angle-dependent Raman intensities are analyzed. The averaged non-resonant Raman spectra of minor peaks in FE-WZ (E_1) and FE-BZ (E_1 and E_2) are compared with that of major peaks A_1^1 and A_2^1. These predictions on Raman spectra of Ga$_2$O$_3$ monolayer may guide rational design of two-dimensional optical devices.

1 Introduction

Materials such as ZnO, GaN, AlN, Ga$_2$O$_3$ [1] have attracted the attention of many research groups due to their novel wide band gaps. Low-dimensional nanostructure ultraviolet photodetectors (ultrawide band gap up to 4.8eV [2–4]) are widely investigated. [5] Ultrahigh performance of Ga$_2$O$_3$ (band gap = 4.6-5.3 eV) in power electronics [6, 7] and field-effect transistors with high temperature electronics are reported. [8] In bandgap engineering, applying external strain, i.e. bending, starching or compressing the substrates, [9] strain-tunable wavelength selectivity of photodetection, [10, 11] tunable effective mass and Schottky barrier height for two-dimensional materials, [12] are realized in recent years.

Due to its unusual polarization, two-dimensional III-VI van der Waals (vdW) family members (i.e. In$_2$Se$_3$, Ga$_2$O$_3$ nanosheets) widely broaden its application range to water-splitting [13], gas-sensing, [14] piezoelectricity, [15] optoelectronics [16] and ferroelectrics. [17,18] Cui et al. synthesized two-dimensional layered In$_2$Se$_3$ by experiments, and reported its intercorrelated in-plane and out-of-plane ferroelectricity. [19] Reversible gas capture using a ferroelectric switch and molecule multiferroics on the In$_2$Se$_3$ monolayer could be possible. [20] Theoretical calculation demonstrated that two-dimensional gallium and indium oxides is stable via high-throughput computational method, [21] and discovered the near-edge optical properties of β-Ga$_2$O$_3$. [22] High electron mobility and optoelectronic properties of β-Ga$_2$O$_3$ [23, 24] make it can be applied in electronics and optoelectronics based on sn-doped Ga$_2$O$_3$ single crystal. [25, 26] Wei et al. reported the influence of surface vacancies on the electrical and optical properties of β-Ga$_2$O$_3$. [27] Pearton et al. reported applications of field-effect transistors based on β-Ga$_2$O$_3$. [2,28] And Oh et al. investigated solar-blind photodetectors based on Si-implanted β-Ga$_2$O$_3$ [29].

However, compared with In$_2$Se$_3$ monolayer, the study of electronic and thermal properties on two-dimensional Ga$_2$O$_3$ monolayer still remains the very infant step. Quasi-two-dimensional Ga$_2$O$_3$ mentioned in previous literature were obtained by reducing the thickness of bulk Ga$_2$O$_3$, or epitaxial growth of β-Ga$_2$O$_3$ films prepared by MOCVD. [30]. Peelaers et al. modeled the monolayer Ga$_2$O$_3$ structure by reducing the thickness of the monoclinic β-Ga$_2$O$_3$. [31] Atomically controlled surfaces with step and terrace of β-Ga$_2$O$_3$ single crystal substrates for thin film growth is realized. [32] By plasma etching, the thickness of exfoliated quasi-
two-dimensional β-Ga$_2$O$_3$ flakes can be tuned. [33] Tang et al. reported quasi-epitaxial growth of β-Ga$_2$O$_3$-coated wide band gap semiconductor tape for flexible UV photodetectors. [34] Nanomembranes can be exfoliated from β-Ga$_2$O$_3$ with a thickness less than 100 nm, [33] and Zhou et al. reported its high performance on insulator field-effect transistors. [35] Interestingly, electronic and optoelectronic properties of novel Ga$_2$O$_3$ monolayer can be tuned flexibly, [36] which can make applications in gas-sensing devices [37] and for high-performance solar blind photodetectors based on two-dimensional gallium oxide monolayer. [38] Oh et al. investigated quasi-two-dimensional β-gallium oxide solar-blind photodetectors with ultrahigh responsivity. [39] Nie et al. modulated the blue and green luminescence in the β-Ga$_2$O$_3$ films [40] Swinnich et al. studied the electronic applications based on flexible β-Ga$_2$O$_3$ nanomembrane Schottky barrier diodes. [41] Besides the two-dimensional and bulk Ga$_2$O$_3$, the device based on van der Waals heterostructures widely broaden the applications of these two-dimensional ferroelectric materials. Yan et al. reported high breakdown electric field in β-Ga$_2$O$_3$/graphene vertical barrister heterostructure. [42] Tang et al. investigated the effect of exciton on Ga$_2$O$_3$/GaN heterostructural ultraviolet photodetectors. [43] Li et al. investigated deep-ultraviolet photodetection using single-crystalline β-Ga$_2$O$_3$/NiO heterojunctions. [44] Harada et al. reported electric dipole effect in PdCoO$_2$/ β-Ga$_2$O$_3$ Schottky diodes for high-temperature operation. [45] Kim et al. reported ultrahigh deep-UV sensitivity in graphene-gated β-Ga$_2$O$_3$ phototransistors. [46] As mentioned by Ding et al. [17], the In$_2$Se$_3$ monolayers with quintuple layer(QL) structures could be ferroelectric materials. Here in this study, using the density functional theory, we calculate the polarization direction dependent Raman intensity of Raman active modes $A_1^\text{\Gamma}$ and $A_2^\text{\Gamma}$ of FE-WZ and FE-ZB Ga$_2$O$_3$ monolayer. The vibrations of two major Raman peaks are analyzed. As comparison, the non-resonant Raman spectra of E^1 and E^2 are also presented.

2 Calculation details

In this paper, we apply the first-principles density functional theory (DFT) implementing in the Quantum Espresso package, to calculate the optimized crystal structure, electronic properties and phonon band structure. [47] The exchange—correlation functional is treated with the Perdew–Wang(PW) [48] local density approximation (LDA), with ultrasoft pseudopotentials applied. The energy cutoff is set as 60 Ry in all calculations. The force and electronic convergence toler-

ance are set to 0.01 eV Å and 108 eV, respectively. To minimize the interlayer interactions and make sure the accuracy, the vacuum slab is set to 2.0 nm. A Monkhorst-Pack Γ-centered k grid is set to $11 \times 11 \times 1$ in the structure optimization, while it is set to $15 \times 15 \times 1$ in the self-consistent calculation. What’s more, the phonon band structures are obtained by diagonalizing the force constant matrix with density functional perturbation theory (DFPT). [49] A Monkhorst-Pack Γ-centered k grid of $15 \times 15 \times 1$ is applied. The force tolerance is set to 1014.

3 Results and discussions

![Image](316x392 to 544x574)

Figure 1: Crystal structure of FE-WZ, (a) for $A_1^\text{\Gamma}$, (b) for $A_2^\text{\Gamma}$ and FE-ZB, (c) for $A_1^\text{\Gamma}$, (e) for $A_2^\text{\Gamma}$ Ga$_2$O$_3$ monolayer, and atomic displacement of active Raman modes. (d) is the top view of (b). The red and green balls are for O and Ga elements, respectively. The blue arrows refer to the moving vectors of oxygen atoms.

As discussed in ref. [17], two kinds of In$_2$Se$_3$ monolayer with ferroelectric properties, which can be exfoliated from few-layer In$_2$Se$_3$, were demonstrated stable. As shown in fig.1, the monolayer(QL) contains five atomic layers, and each atomic layer in a QL contains only one elemental species, with the atoms in a given layer arranged in a triangular lattice. According to the different stacking sequence, two ferroelectric structure can be classified as, FE-WZ(ABABC) and FE-ZB(ABBCA), respectively. In this paper, as one of the III–VI van der Waals family members, two phases (FE-WZ and FE-BZ) of Ga$_2$O$_3$ monolayer with QL structure are considered, as shown in fig.1. The five atomic layers in a QL stack in the sequence of O-Ga-O-Ga-O atomic layers.

We notice that, both FE-WZ and FE-ZB have indirect band structures. As shown in fig.2, for both FE-WZ...
and FE-ZB, the minimum of conduction band (CBM) locates at Γ point, while the maximum of valence band (VBM) locates near K point, which is slightly higher than that at Γ point. In the band curve of conduction band, at K point, it is a minimum for FE-WZ Ga$_2$O$_3$ monolayer, while for FE-BZ, it is a maximum.

![Image](image1.png)

Figure 2: Band structure and PDOS of (a) FE-WZ and (b) FE-ZB Ga$_2$O$_3$ monolayer. The highest point of valence band is set at zero. Atom-projected band structures and PDOS are highlighted with red and blue colors for O and Ga elements, respectively.

To better understand the electronic structure of Ga$_2$O$_3$ monolayer, the atom-projected band structures of FE-WZ and FE-ZB are also exhibited in fig. 2. We notice that, the main contribution of the valence band comes from oxygen atoms, while for the conduction band, both gallium and oxygen atoms play important roles. This point can also be confirmed from the corresponding partial density of states (PDOS) in the right panel of fig. 2.

The stabilities of Ga$_2$O$_3$ monolayer are essential for the practical device applications. By calculating the phonon band structures using DFTP (fig. 3 a,b), the absence of imaginary phonon modes at Γ point indicates that, the crystal structure of monolayer of FE-WZ and FE-BZ could be dynamically stable. As shown in the phonon band structure(fig. 3), both FE-WZ and FE-ZB have 12 optical branches(4 one-dimensional modes(A_1) and 4 doubly degenerate modes (E $)).$

\[\Gamma_{\text{optical}} = 4A_1 + 4E \]

![Image](image2.png)

Figure 3: Phonon band structure of (a) FE-WZ and (b) FE-ZB Ga$_2$O$_3$ monolayer along high symmetry k points. The corresponding Raman active modes (E (blue), A_1 (red) and A_2 (red)) in FE-WZ and FE-ZB are highlighted by different colors.

To better understand which mode is of importance, the non-resonant Raman spectra of FE-WZ and FE-BZ Ga$_2$O$_3$ monolayer are presented in fig. 4. The intensities are averaged in all directions of the incident light and all polarization directions of the incident light and scattered light. As shown in fig. 4(a), FE-WZ Ga$_2$O$_3$ monolayer has only three obvious broadening of Raman peaks(A_1 (487), A_2 (779) and E (548nm)). For FE-ZB(fig. 4(b)), besides A_1 (481), A_2 (772) and E (533nm), one more mode is observed E (519). Compared with the E modes, both A_1 and A_2 have much stronger Raman intensity. In the following paragraph, we pay our attention to these two major modes(A_1 and A_2). In fig. 1(a,c),

3
for A_1^1 mode, the atomic displacement vibrating along z-direction, happens mainly on the oxygen atom located in the lowest layer. For A_2^1 mode of FE-WZ(b,d), the atomic displacement vibrating in x-y plane, happens mainly on the oxygen atom located in the middle layer. While for A_2^1 mode of FE-ZB(c,e), the atomic displacement vibrating in z plane, happens on the oxygen atom located in the middle layer. This demonstrates that, oxygen atoms play an essential role in Raman spectra of Ga$_2$O$_3$ monolayer.

![Image](a)

![Image](b)

![Image](c)

![Image](d)

Figure 4: Non-resonant Raman shifts of (a) FE-WZ and (b) FE-ZB Ga$_2$O$_3$ monolayer, with a Gaussian broadening width of 5 cm$^{-1}$.

![Image](a)

![Image](b)

Figure 5: Polar plots of the incident polarization angle-dependent intensities for A_1^1(a,b) and A_2^1(c,d) modes of FE-WZ Ga$_2$O$_3$ monolayer, with polarization of scattered light parallel (left panels (a,c)) and perpendicular (right panels (b,d)) to the polarization of the incident light, corresponding to two laser lines (633 (blue) and 532 (red) nm).

The matrix element of the Raman tensor R is defined as:

$$R_{\alpha\beta}(i) = V_{\text{cell}} \sum_{\mu=1}^{N} \sum_{l=1}^{3} \frac{\partial \chi_{\alpha\beta}}{\partial r_l(\mu)} e_l^i(\mu) \sqrt{M_\mu},$$

Here, $r_l(\mu)$ is the position of the μth atom along direction l, $e_l^i(\mu)$ is the eigen vector of the ith phonon mode at the Γ point, and V_{cell} is the volume of the unit cell. $\chi_{\alpha\beta}$ is the element of the electric polarizability tensor, which is closely related to the dielectric tensor $\varepsilon_{\alpha\beta} = 4\pi \chi_{\alpha\beta} + \delta_{\alpha\beta}$. The dielectric tensor ε can be obtained directly from DFT calculations. As the Raman tensor R is complex, we need to consider the influence of light absorption on the Raman intensity. To better understand the impact of light absorption on Raman intensity, two laser lines (633 and 532 nm) are considered in our simulations.

If the vector k of the incident light is parallel to the x direction with polarization direction $e_i = (0, \cos \theta, \sin \theta)$, the parallel and perpendicular polarization directions of scattered light can be defined as $e_i^\parallel = (0, \cos \theta, \sin \theta)$, $e_i^\perp = (0, -\sin \theta, \cos \theta)$, respectively.

According to the group theory, both FE-WZ and FE-ZB belong to C_{3v} point group. The Raman tensor of A_1 mode is:

$$I \propto |e_s \cdot R \cdot e_i|^2.$$
Figure 6: Polar plots of the incident polarization angle-dependent intensities for A^1_1 (a,b) and A^2_1 (c,d) modes of FE-ZB Ga$_2$O$_3$ monolayer, with polarization of scattered light parallel (left panels (a,c)) and perpendicular (right panels (b,d)) to the polarization of the incident light, corresponding to two laser lines (633 (blue) and 532 (red) nm).

$$R(A_{1g}) = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}.$$

Here, we take the notations of $a = |a|e^{i\phi_a}$, and $b = |b|e^{i\phi_b}$. Herein, for the parallel scattered light, we have:

$$I^\parallel(A_1) \propto |a|^2\cos^4\theta + |b|^2\sin^4\theta + \frac{1}{2}|a||b|\sin^2(2\theta)\cos\phi_{ab},$$

and for the perpendicular scattered light:

$$I^\perp(A_1) \propto \frac{1}{4}(|a|^2 + |b|^2 - 2|a||b|\cos\phi_{ab})\sin^2(2\theta).$$

The incident polarization angle-dependent intensities for A^1_1(fig.5 a,b) and A^2_1(fig.5 c,d) modes of FE-WZ Ga$_2$O$_3$ monolayer are shown in fig. 5, with polarization of scattered light parallel (left panels (a,c)) and perpendicular (right panels (b,d)) to the polarization of the incident light, corresponding to two laser lines (633 (blue) and 532 (red) nm). We notice that, there is no such laser line dependent maxima number change in the angle-dependent Raman intensity of A^1_1 mode. When the polarization direction of the scattered light is parallel to the incident light, the four maxima located at $\theta = 0^\circ$, 90°, 180° and 270°. While for the perpendicular case, they locate at $\theta = 45^\circ$, 135°, 225° and 315°. For mode A^2_1, when the polarization direction of the scattered light is parallel to the incident light, it has two maxima for the blue (633 nm) laser line, while four maxima for the red (532 nm) laser line. For the perpendicular case, the configurations of A^2_1 is similar to that of A^1_1.

Figure 7: Absorbance spectra of (a) FE-WZ and (b) FE-ZB Ga$_2$O$_3$ monolayer along x, y and z directions. Two vertical dash lines refer the energies of two different lasers(633nm(1.96eV) and 532nm(2.33eV)).

The incident polarization angle-dependent intensities for A^1_1(fig.6 a,b) and A^2_1(fig.6 c,d) modes of FE-ZB Ga$_2$O$_3$ monolayer are shown in fig. 6, with polarization of scattered light parallel (left panels (a,c)) and perpendicular (right panels (b,d)) to the polarization of the incident light, corresponding to two laser lines (633 (blue) and 532 (red) nm). There is no such laser line dependent maxima number change in the angle dependent Raman intensity of A^1_1 mode for the red (532nm) laser. When the polarization direction of the scattered light is parallel to the incident light, the four maxima located at $\theta = 0^\circ$, 90°, 180° and 270°. While for the perpendicular case, they locate at $\theta = 45^\circ$, 135°, 225° and 315°.

However, for the blue (633nm) laser, in the parallel case, it has two maxima(90° and 270°), while it has four maxima in the perpendicular situation. This configura-
tion of A_1^2 is similar that of A_1^1, except the parallel case for the red (532 nm) laser, in which, the configuration of Raman intensity becomes an ellipse.

We notice that the Raman intensity (fig.5) of the red (532 nm) laser line is much stronger than that of the blue (633 nm) laser line, for both A_1^1 and A_1^2 modes. This is closely related to the light absorption. As shown in fig.7, the absorbance at the blue (633 nm) laser line is smaller than that at the red (532 nm) laser line for FE-WZ Ga$_2$O$_3$ monolayer. Due to the anisotropy of crystal structure, the absorption in x and y direction are almost the identical.

4 Conclusions

In summary, the vibrational properties and Raman spectra of FE-WZ and FE-ZB Ga$_2$O$_3$ monolayers are systematically studied. The phonon band without imaginary mode demonstrates that both FE-WZ and FE-ZB Ga$_2$O$_3$ monolayers are stable. Besides E^1 mode, two major Raman peak (A_1^1 and A_1^2) are found in both FE-WZ (497, and 779 cm$^{-1}$) and FE-ZB (481, and 772 cm$^{-1}$) Ga$_2$O$_3$ monolayers. The angle-dependent Raman intensity of these two major modes are investigated, with polarization of scattered light parallel and perpendicular to the polarizations of the incident light. For FE-WZ Ga$_2$O$_3$ monolayers, the corresponding intensities of laser 532 nm are much stronger than that of laser 633 nm, which is closely related to its absorbance. Therefore, we believe that these calculated Raman spectra of FE-WZ and FE-ZB Ga$_2$O$_3$ monolayers should guide rational design of two-dimensional optical devices in future.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

This work was supported by the Project of Improving the Basic Scientific Research Ability of Young and Middle-aged Teachers in Universities of Guangxi (Grant No. 2022KY0784).

References

[1] JY Tsao, S Chowdhury, MA Hollis, D Jena, NM Johnson, KA Jones, RJ Kaplan, S Rajan, CG Van de Walle, E Bellotti, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. Advanced Electronic Materials, 4(1):1600501, 2018.

[2] SJ Pearton, Jiancheng Yang, Patrick H Cary IV, Fan Ren, Jihyun Kim, Marko J Tadjer, and Michael A Mastro. A review of ga2o3 materials, processing, and devices. Applied Physics Reviews, 5(1):011301, 2018.

[3] Masataka Higashiwaki, Kohei Sasaki, Hisashi Murakami, Yoshinao Kumagai, Akinori Koukitu, Akito Kuramata, Takekazu Masui, and Shigenobu Yamakoshi. Recent progress in ga2o3 power devices. Semiconductor Science and Technology, 31(3):034001, 2016.

[4] Damanpreet Kaur and Mukesh Kumar. A strategic review on gallium oxide based deep-ultraviolet photodetectors: Recent progress and future prospects. Advanced Optical Materials, 9(9):2002160, 2021.

[5] Lin Peng, Linfeng Hu, and Xiaosheng Fang. Low-dimensional nanostructure ultraviolet photodetectors. Advanced Materials, 25(37):5321–5328, 2013.

[6] Kanika Arora, Neeraj Goel, Mahesh Kumar, and Mukesh Kumar. Ultrahigh performance of self-powered β-ga2o3 thin film solar-blind photodetector grown on cost-effective si substrate using high-temperature seed layer. Acs Photonics, 5(6):2391–2401, 2018.

[7] Weiyuan Guo, Yating Guo, Hao Dong, and Xin Zhou. Tailoring the electronic structure of β-ga 2 o 3 by non-metal doping from hybrid density functional theory calculations. Physical Chemistry Chemical Physics, 17(8):5817–5825, 2015.

[8] Janghyuk Kim, Sooyeoun Oh, Michael A Mastro, and Jihyun Kim. Exfoliated β-ga 2 o 3 by non-metal doping from hybrid density functional theory calculations. Physical Chemistry Chemical Physics, 18(23):15760–15764, 2016.

[9] John A Rogers, Takao Someya, and Yonggang Huang. Materials and mechanics for stretchable electronics. science, 327(5973):1603–1607, 2010.

[10] Pilgyu Kang, Michael Cai Wang, Peter M Knapp, and SungWoo Nam. Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Advanced Materials, 28(23):4639–4645, 2016.

[11] Takahiro Kawamura and Toru Akiyama. Bandgap engineering of α-ga2o3 by hydrostatic, uniaxial, and equibiaxial strain. Japanese Journal of Applied Physics, 2021.
[12] Seoung-Ki Lee, Beom Joon Kim, Houk Jang, Sung Cheol Yoon, Changjin Lee, Byung Hee Hong, John A Rogers, Jeong Ho Cho, and Jong-Hyun Ahn. Stretchable graphene transistors with printed dielectrics and gate electrodes. \textit{Nano letters}, 11(11):4642–4646, 2011.

[13] Pei Zhao, Yandong Ma, Xingshuai Lv, Mengmeng Li, Baibiao Huang, and Ying Dai. Two-dimensional iii2-vi3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum. \textit{Nano Energy}, 51:533–538, 2018.

[14] Zhi Xie, Fugui Yang, Xuee Xu, Rui Lin, and Limin Chen. Functionalization of α-in2se3 monolayer via adsorption of small molecule for gas sensing. \textit{Frontiers in chemistry}, 6:430, 2018.

[15] Fei Xue, Junwei Zhang, Wei-Ting Hsu, Ali Han, Siu-Fung Leung, Jing-Kai Huang, Yi Wan, Shuhai Liu, Junli Zhang, et al. Multidirection piezoelectricity in mono-and multilayered hexagonal α-in2se3. \textit{ACS nano}, 12(5):4976–4983, 2018.

[16] Robin B Jacobs-Gedrim, Mariyappan Shanmugam, Nikhil Jain, Christopher A Durcan, Michael T Murphy, Thomas M Murray, Richard J Matyi, Richard L Moore, and Bin Yu. Extraordinary photoresponse in two-dimensional in2se3 nanosheets. \textit{ACS nano}, 8(1):514–521, 2014.

[17] Wenjun Ding, Jianbao Zhu, Zhe Wang, Yanfei Gao, Di Xiao, Yi Gu, Zhenyu Zhang, and Wenguang Zhu. Prediction of intrinsic two-dimensional ferroelectrics in in 2 se 3 and other iii 2-vi 3 van der waals materials. \textit{Nature communications}, 8(1):1–8, 2017.

[18] Jun Xiao, Hanyu Zhu, Ying Wang, Wei Feng, Yunxia Hu, Arvind Dasgupta, Yimo Han, Yuan Wang, David A Muller, Lane W Martin, et al. Intrinsic two-dimensional ferroelectricity with dipole locking. \textit{Physical review letters}, 120(22):227601, 2018.

[19] Chaojie Cui, Wei-Jin Hu, Xingxu Yan, Christopher Addiego, Wenpei Gao, Yao Wang, Zhe Wang, Linze Li, Yingchun Cheng, Peng Li, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor in2se3. \textit{Nano letters}, 18(2):1253–1258, 2018.

[20] Xiao Tang, Jing Shang, Yuantong Gu, Aijun Du, and Liangzhi Kou. Reversible gas capture using a ferroelectric switch and 2d molecule multiferroics on the in 2 se 3 monolayer. \textit{Journal of Materials Chemistry A}, 8(15):7331–7338, 2020.

[21] Ruishen Meng, Michel Houssa, Konstantina Jordanidou, Geoffrey Pourtois, Valéri Afanasiev, and André Stesmans. Two-dimensional gallium and indium oxides from global structure searching: Ferromagnetism and half metallicity via hole doping. \textit{Journal of Applied Physics}, 128(3):034304, 2020.

[22] Kelsey A Mengle, Guangsha Shi, Dylan Bayerl, and Emmanouil Kiosevakis. First-principles calculations of the near-edge optical properties of β-ga2o3. \textit{Applied Physics Letters}, 109(21):212104, 2016.

[23] Rui Guo, Jie Su, Zhenhua Lin, Junjing Zhang, Yu Qin, Jincheng Zhang, Jingjing Chang, and Yue Hao. Understanding the potential of 2d ga2o3 in flexible optoelectronic devices: impact of uniaxial strain and electric field. \textit{Advanced Theory and Simulations}, 2(9):1900106, 2019.

[24] Jie Su, Rui Guo, Zhenhua Lin, Siyu Zhang, Jincheng Zhang, Jingjing Chang, and Yue Hao. Unusual electronic and optical properties of two-dimensional ga2o3 predicted by density functional theory. \textit{The Journal of Physical Chemistry C}, 122(43):24592–24599, 2018.

[25] Masataka Higashiwaki and Gregg H Jessen. Guest editorial: The dawn of gallium oxide microelectronics. \textit{Applied Physics Letters}, 112(6):060401, 2018.

[26] Yuki Usui, Daisuke Nakauchi, Naoki Kawano, Go Okada, Noriaki Kawaguchi, and Takayuki Yanagida. Scintillation and optical properties of sn-doped ga2o3 single crystals. \textit{Journal of Physics and Chemistry of Solids}, 117:36–41, 2018.

[27] Yidan Wei, Chaoming Liu, Yanqing Zhang, Chunhua Qi, Heyi Li, Tianqi Wang, Guoliang Ma, Yong Liu, Shangli Dong, and Mingxue Huo. Modulation of electronic and optical properties by surface vacancies in low-dimensional β-ga 2 o 3. \textit{Physical Chemistry Chemical Physics}, 21(27):14745–14752, 2019.

[28] Kelson D Chabak, Neil Moser, Andrew J Green, Dennis E Walker Jr, Stephen E Tetlak, Eric Heller, Antonio Crespo, Robert Fitch, Jonathan P McCandless, Kevin Leedy, et al. Enhancement-mode ga2o3 wrap-gate fin field-effect transistors on native (100) β-ga2o3 substrate with high breakdown voltage. \textit{Applied Physics Letters}, 109(21):213501, 2016.
Sooyeoun Oh, Younghun Jung, Michael A Mastro, Jennifer K Hite, Charles R Eddy, and Jihyun Kim. Development of solar-blind photodetectors based on si-implanted β-ga2o3. Optics Express, 23(22):28300–28305, 2015.

Di Wang, Xiaochen Ma, Hongdi Xiao, Rongrong Chen, Yong Le, Caina Luan, Biao Zhang, and Jin Ma. Effect of epitaxial growth rate on morphological, structural and optical properties of β-ga2o3 films prepared by moecd. Materials Research Bulletin, page 111718, 2021.

Hartwin Peelaers and Chris G Van de Walle. Lack of quantum confinement in ga2o3 nanolayers. Physical Review B, 96(8):081409, 2017.

Shigeo Ohira, Naoki Arai, Takayoshi Oshima, and Shizuo Fujita. Atomically controlled surfaces with step and terrace of β-ga2o3 single crystal substrates for thin film growth. Applied surface science, 254(23):7838–7842, 2008.

Yongbeom Kwon, Geonyeop Lee, Sooyeoun Oh, Jihyun Kim, Stephen J Pearton, and Fan Ren. Tuning the thickness of exfoliated quasi-two-dimensional β-ga2o3 flakes by plasma etching. Applied Physics Letters, 110(13):131901, 2017.

Xiao Tang, Kuang-Hui Li, Yue Zhao, Yanxin Sui, Huili Liang, Zeng Liu, Che-Hao Liao, Feras S Alqatari, Zengxia Mei, Weihua Tang, et al. Quasi-epitaxial growth of β-ga2o3-coated wide band gap semiconductor tape for flexible uv photodetectors. ACS Applied Materials & Interfaces, 2021.

Hong Zhou, Kerry Maize, Gang Qiu, Ali Shakouri, and Peide D Ye. β-ga2o3 on insulator field-effect transistors with drain currents exceeding 1.5 a/mm and their self-heating effect. Applied Physics Letters, 111(9):092102, 2017.

Yikai Liao, Zhaofu Zhang, Zhibin Gao, Qingkai Qian, and Mengyuan Hua. Tunable properties of novel ga2o3 monolayer for electronic and optoelectronic applications. ACS applied materials & interfaces, 12(27):30659–30669, 2020.

Junlei Zhao, Xinran Huang, Yiheng Yin, Yikai Liao, Haowen Mo, Qingkai Qian, Yuzhong Guo, Xiaolong Chen, Zhaofu Zhang, and Mengyuan Hua. Two-dimensional gallium oxide monolayer for gas-sensing application. The Journal of Physical Chemistry Letters, 12:5813–5820, 2021.

Wei Feng, Xiaona Wang, Jia Zhang, Lifeng Wang, Wei Zheng, PingAn Hu, Wenwu Cao, and Bin Yang. Synthesis of two-dimensional β-ga2o3 nanosheets for high-performance solar blind photodetectors. Journal of Materials Chemistry C, 2(17):3254–3259, 2014.

Sooyeoun Oh, Janghyuk Kim, Fan Ren, Stephen J Pearton, and Jihyun Kim. Quasi-two-dimensional β-gallium oxide solar-blind photodetectors with ultrahigh responsivity. Journal of Materials Chemistry C, 4(39):9245–9250, 2016.

Yiyin Nie, Shujie Jiao, Shaofang Li, Hongliang Lu, Shuo Liu, Song Yang, Dongbo Wang, Shiyoung Gao, Jinzhong Wang, and Yongfeng Li. Modulating the blue and green luminescence in the β-ga2o3 films. Journal of Alloys and Compounds, page 163431, 2021.

Edward Swinnich, Md Nazmul Hasan, Ke Zeng, Yash Dove, Uttam Singisetti, Baishakhi Mazumder, and Jung-Hun Seo. Flexible β-ga2o3 nanomembrane schottky barrier diodes. Advanced Electronic Materials, 5(3):1800714, 2019.

Xiaodong Yan, Ivan S Esqueda, Jiahui Ma, Jesse Tice, and Han Wang. High breakdown electric field in β-ga2o3/graphene vertical barristor heterostructure. Applied Physics Letters, 112(3):032101, 2018.

Ruifan Tang, Guanqi Li, Ying Jiang, Na Gao, Jinchai Li, Cheng Li, Kai Huang, Junyong Kang, Tao Wang, and Rong Zhang. Ga2o3/gan heterostructural ultraviolet photodetectors with exciton-dominated ultranarrow response. ACS Applied Electronic Materials, 2021.

Kuang-Hui Li, Nasir Alfaraj, Chun Hong Kang, Laurentiu Braic, Mohamed Nejib Hedhili, Zaibing Guo, Tien Khee Ng, and Boon S Ooi. Deep-ultraviolet photodetection using single-crystalline β-ga2o3/nio heterojunctions. ACS applied materials & interfaces, 11(38):35095–35104, 2019.

T Harada, S Ito, and A Tsukazaki. Electric dipole effect in pdoco2/β-ga2o3 schottky diodes for high-temperature operation. Science advances, 5(10):eaax5733, 2019.

Subyun Kim, Sooyeoun Oh, and Jihyun Kim. Ultrahigh deep-uv sensitivity in graphene-gated β-ga2o3 phototransitors. ACS Photonics, 6(4):1026–1032, 2019.

Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo Cavazzoni,
Davide Ceresoli, Guido L. Chiarotti, Matteo Cococcioni, Ismaila Dabo, et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. *Journal of physics: Condensed matter*, 21(39):395502, 2009.

[48] John P. Perdew and Yue Wang. Accurate and simple analytic representation of the electron-gas correlation energy. *Physical review B*, 45(23):13244, 1992.

[49] Xavier Gonze and Changyol Lee. Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. *Physical Review B*, 55(16):10355, 1997.

[50] P. Umari, Alfredo Pasquarello, and Andrea Dal Corso. Raman scattering intensities in α-quartz: A first-principles investigation. *Physical Review B*, 63(9):094305, 2001.

[51] Michele Ceriotti, Fabio Pietrucci, and Marco Bernasconi. Ab initio study of the vibrational properties of crystalline teo 2: The α, β, and γ phases. *Physical Review B*, 73(10):104304, 2006.