Mice lacking α1,3-fucosyltransferase 9 exhibit modulation of in vivo immune responses against pathogens

Hiromi Kashiwazaki,1 Masatoshi Kakizaki,1 Yuzuru Ikehara,2 Akira Togayachi,2 Hisashi Narimatsu2 and Rihito Watanabe1

1Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo and 2Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan

Carbohydrate structures, including Lewis X (Lex), which is not synthesized in mutant mice that lack α1,3-fucosyltransferase 9 (Fut9−/−), are involved in cell–cell recognition and inflammation. However, immunological alteration in Fut9−/− mice has not been studied. Thus, the inflammatory response of Fut9−/− mice was examined using the highly neurovirulent mouse hepatitis virus (MHV) JHMV srr7 strain. Pathological study revealed that inflammation induced in the brains of Fut9−/− mice after infection was more extensive compared with that of wild-type mice, although viral titers obtained from the brains of mutant mice were lower than those of wild-type mice. Furthermore, the reduction in cell numbers in the spleens of wild-type mice after infection was not observed in the infected Fut9−/− mice. Although there were no clear differences in the levels of cytokines examined in the brains between Fut9−/− and wild-type mice except for interferon-β (IFN-β) expression, some of those in the spleens, including interferon-γ (IFN-γ), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1), showed higher levels in Fut9−/− than in wild-type mice. Furthermore, Fut9−/− mice were refractory to the in vivo inoculation of endotoxin (LPS) compared with wild-type mice. These results indicate that Lex structures are involved in host responses against viral or bacterial challenges.

Key words: cytokine, Fut9, Lewis X, MHV, neuropathogenic virus

Murine coronavirus mouse hepatitis virus (MHV) is an enveloped virus.1 Infection in most tissues is thought to be medi-
carbohydrate structure of the host animals, which contributes to viral infectivity, including MHV infection and immune system function. The studies were carried out with particular relevance to innate immunity, using Fut9^{−/−} mice, which lack α1,3-fucosyltransferase 9 and are unable to synthesize the Lewis x (Le^e) structure, because srr7 induces neuro-pathological lesions during the early phase of infection before adaptive immune responses occur, and the Le^e structure is believed to be involved in innate immunity through cell–cell and pathogen-recognition. The treatment of patients infected with highly virulent viruses during the early phase of infection includes the control of excessive innate immune responses with or without inflammatory pictures, the latter of which is observed typically in encephalopathy induced by influenza viral infection. Furthermore, Le^e and Fut9 are highly expressed in the central nervous system (CNS). In addition, Fut9^{−/−} mice develop normally without gross phenotypic abnormalities in the brain and other organs, which might affect pathological changes induced by neuropathogenic viral infection.

Although interactions through fucosylated glycans play important roles in innate immunity, of which inhibition has been investigated as an attractive target of anti-inflammatory therapy, there have been no reports on host immune responses against infection after the inhibition of in vivo fucosylation. Our study demonstrated that immunomodulation during the phase of innate immunity occurred in Fut9^{−/−} mice.

MATERIALS AND METHODS

Treatment of mice

The Fut9^{−/−} mice with a BALB/c background and BALB/c mice purchased from Charles River (Tokyo, Japan) were housed in a specific pathogen-free animal facility, and were kept according to the guidelines set by the committee of our university and National Institute of Advanced Industrial Science and Technology (AIST). For infection, mice were transferred to the P3-level laboratory. Each mouse was injected with 1 × 10² of the srr7 virus in 50 μL of culture medium into the right frontal lobe under deep anesthesia, or left untreated. Some mice were injected into the hind footpad with 10 μg of lipopolysaccharide (LPS, Escherichia coli strain 0111:B4; Sigma, Tokyo, Japan) in 50 μL of PBS.

Pathology

Immunostaining was carried out using the antibodies and reagents listed in Table 1. Sections labeled with immunofluorescence were mounted with gold antifade reagent (Invitrogen, Carlsbad, CA, USA) and examined using a fluorescence microscope (Keyence, Osaka, Japan) or confocal laser scanning microscope (Leica Microsystems, Heidelberg, Germany). Tissues for pathological examination were prepared as previously reported. The intensities of inflammation and hyperplastic or atrophic states of the spleen were scored according to the criteria outlined in Methods S1.

The size of the lymph nodes was determined by measuring the largest cross-sectional area of a hematoxylin and eosin (HE)-stained lymph node using the BZ analyzer (Keyence).

Table 1 Antibodies and reagent used in this study

Target	Species	Clone or designation	Conjugate	Reference/supplier
Primary antibodies for immunofluorescence staining of murine tissue sections				
JHMV	Mouse	Monoclonal	Purified	3
CD11b	Rat IgG2b, κ	M1/70	Biotin	BD Pharmingen, San. Diego, CA, USA, 557395
CD20	Goat	M-20	Purified	Santa Cruz Biotechnology, Santa Cruz, CA, USA, sc-7735
IFN-β	Rabbit	Polyclonal	Purified	PBL Interferon Source, Piscataway, NJ, USA, 32400-1
Secondary antibodies for immunofluorescence staining of murine tissue sections				
Anti-mouse IgG	Goat	Polyclonal	Alexa488	Molecular Probe, Carlsbad, CA, USA
Anti-mouse IgG	Donkey	Polyclonal	Biotin	Rockland, Gilbertsville, PA, USA, 610-706-124
Anti-goat IgG	Donkey	Polyclonal	Alexa488	Invitrogen, Carlsbad, CA, USA, A11055
Anti-rabbit IgG	Goat	Polyclonal	Alexa568	Invitrogen, A11011
Streptavidin			Alexa568	Invitrogen, S11226
Reagent to stain nuclei			Horseradish peroxidase	Zymed, South San Francisco, CA, USA, 43-4323
Hoechst 33342				Invitrogen, H21492

© 2014 The Authors
Pathology International © 2014 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd
srr7 virus per well and incubated for the specified time period. Viral antigen-positive cells were visualized by immunofluorescence, as described above.

Cytokine assay

Protein from the pons and spleen was purified according to the manufacturer's instructions (Affimetrix, Santa Clara, CA, USA), with minor modifications using radioimmunoprecipitation assay buffer (Wako, Osaka, Japan) in addition to cell lysis buffer (Affimetrix). Experimental details are described in Methods S1.

Statistical analysis

Overall survival (Fig. 1a) was analyzed and compared by the Kaplan–Meier method. Differences in survival were tested for significance by the log-rank test. Otherwise, Student's t test was used. P-values of less than 0.05 were considered to indicate significance.

RESULTS

Viral growth and virulence

Although mutant mice showed a slightly shorter survival period after infection, no fundamental differences in virulence among the different strains of mice after infection were observed (Fig. 1a), showing that infected mice died within 10 days post-inoculation (dpi). Viral titers prepared from organs of infected mice at desired time-points are shown in Fig. 1b. Viral growth in the mutant mice was more than one order lower compared with that in wild-type mice (Fig. 1b).

Pathological findings

Prominent inflammation extending to the brain parenchyma was observed in infected mutant mice (Fig. 2a). In contrast, cell infiltration was restricted to the perivascular area to a less extensive degree in infected wild-type mice (Fig. 2b) except for the meningeal region, which was already observed at 48 hpi both in mutant and wild-type mice (Fig. 3a,b), as we reported previously.6,9 Cell infiltration beyond the Virchow-Robin space (arrowheads in Fig. 2a) was observed more frequently in the brain parenchyma of mutant mice than that of wild-type mice (Fig. 4a), at 48 hpi. The distribution of viral antigens in the brains of mutant mice appeared in a similar manner to that of wild-type mice, as previously reported.6,8 During the early phase of infection, at 48 hpi, viral antigens were detected in the meninges (Fig. 3a,b), which appeared at a similar frequency in mutant and wild-type mice (Fig. 3c), and in the restricted area in the periventricular area (Fig. 2c,e). During the later phase of infection, they were distributed in the wide areas of the brain of mutant mice in the same manner as those found in wild-type mice (Fig. 2d,f).

Cytokine assay and LPS challenge

There were almost no differences between mutant and wild-type mice in the shift of cytokine levels after infection examined in the pons and spleen, except for IFN-β in the pons, and IFN-γ, IL-6 and MCP-1 in the spleen (Fig. 5). JHM viruses are known to proliferate, suppressing the production of IFN-β in the in vitro-infected cells.26–28 Because IFN-β levels in the pons were increased after infection both in mutant and wild-type mice, we examined IFN-β expression by immunofluorescence, and IFN-β was found to be widely distributed in the brain parenchyma, where viral antigens were not detected at 48 hpi, although many infected cells had infiltrated the meninges, as shown in the upper left corner of Fig. 3f. The result indicated that the IFN-β after infection is considered to be produced by an indirect bystander effect on the cells in the brain parenchyma.

Inoculation of LPS in vivo also showed different inflammatory responses between mutant and wild-type mice. A marked reduction in the size of the popliteal lymph nodes (pLN) with inoculation of LPS and infection of wild-type mice compared to that only with LPS was observed (Fig 4c), and such a reduction did not occur in mutant mice. However, mutant mice were shown to be refractory to the LPS challenge (Fig. 4c). The possibility that this refractoriness in mutant mice is a result of the poor recognition of LPS is
unlikely, because leukocytes derived from mutant mice produced higher levels of some cytokines after stimulation with LPS \textit{in vitro} than those from wild-type mice (Fig. S1). Elucidation of the mechanism needs further studies, including migration rates of leukocytes into pLN, which might be low in mutant mice after the challenge, because the infected cells in pLN were much fewer (Fig. 3c), counted as less than 25–50% compared to those of wild-type mice (Fig. 3c). Many viral antigen-positive cells were mainly detected in the interfollicular area of pLN obtained from infected wild-type mice after inoculation with LPS (Fig. 3i), whereas few viral antigen-positive cells were detected within the LN parenchyma of infected wild-type mice untreated with LPS or mutant mice (Fig. 3g,h).

\textcopyright{} 2014 The Authors

Pathology International \textcopyright{} 2014 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd
Figure 2 Paraffin-embedded sections (a–j) obtained from the pons (a,b), thalamus (d,f) around the third (IIIv) and fourth ventricle (IVv), respectively (c,e), and spleen (g–j) were stained with HE (a, b, and g–j), for viral antigens by immunohistochemistry, visualized by the 3,3′-diaminobenzidine tetrahydrochloride reaction (c–f). Arrows in a and b indicate the areas of spongiotic degeneration, which is a typical pathology in srr7 infection.8 Arrowheads in a indicate cell infiltration beyond the Virchow-Robin space. White arrows in h and j indicate clustered and pyknotic cells, respectively. Black arrows in j indicate hemosiderin deposits. fBA and wBA indicate mutant and wild-type mice, respectively. dpi and hpi indicate days and hours post-inoculation with srr7, respectively. Scale bar: 100 (single line), or 20 μm (double line).
Figure 3 Frozen sections were stained for viral antigens (V), nuclei (Hoe), CD11b, CD20, and IFN-β by immunofluorescence in the meninges (a,b), pons (f), spleen (d,e), and popliteal lymph nodes (g–i) after inoculation with srr7 (V) and/or LPS. The areas surrounded by dotted lines in d and e include the follicles and marginal zones. The arrow in (d) indicates the nodular accumulation of CD11b-positive cells. Scale bar: 50 (single line), or 20 μm (double line). (c) The viral antigen-bearing cells and total cell numbers were quantified in frozen sections stained for viral antigens and nuclei by immunofluorescence, using a BZ-analyzer (Keyence). Ratios of viral antigen-bearing cells to total cell numbers in the sections of the meningeal region around the pons and cerebellum (Mx) and the spleen (Spl) are shown. The average number of viral antigen-positive cells in the section of popliteal lymph nodes (pLN) 48 h after treatment with srr7 (V) and/or LPS were also quantified. The standard deviation is shown by the vertical line. P-values (p) by Student’s t-test is shown as *, which indicates 0.005 < P < 0.05. fBA and wBA indicate mutant and wild-type mice, respectively. hpi indicates hours post-inoculation with srr7. ■ fBA; □ wBA.
Extended inflammation in the brain and the rather hyperplastic state in the spleen of infected mutant mice, accompanied by lower viral titration compared to wild-type mice, indicated that mutant mice are more advantageously equipped for viral replication inhibition or viral clearance through inflammatory responses during the early phase of infection than wild-type mice. This indicates that Le^X structures play an inhibitory role in inflammation during the acute phase of infection. The finding that viral titers in mutant mice in the brain and liver after infection were lower than those in wild-type mice might be due to the lower infectivity of cells lacking Le^X structures, because the major viral receptor, CEACAM1, carries Le^X structures.17 However, in vivo and in vitro examinations revealed that there was no difference in infectivity between wild-type and mutant mice. Therefore, the virological and pathological differences observed in the two strains would more likely result from different immune responses during the initial phase of infection.

Initial immune responses after infection are triggered by pathogen recognition through pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs)29 and various classes of glycan-binding receptor (lectins), 18,19 leading to the production of proinflammatory cytokines. A comparison of cytokine production between the two strains revealed that the amounts in the pons and spleen shifted after infection similarly in the two strains were less than 2-fold in almost every case. Therefore, similar survival rates in spite of different viral growth in the brains after infection in the two strains might be caused by the cytokine production being a bystander effect rather than directly due to the injury of infected cells. Bystander effects represented as an elevation of cytokine levels cause a poor prognosis after brain injuries observed in viral infection, such as influenza viral encephalopathy, which exhibits almost no inflammation nor viral growth in the brain,20 and in other types of brain injury such as stroke.30

In the spleen, most of the cytokine levels examined in wild-type mice were reduced after infection more markedly than those in mutant mice. However, the differences in levels between wild-type and mutant mice were less than 2-fold in almost every case, which could also be a bystander effect in uninfected areas of the spleen, leading to elevated amounts of IFN-β in the whole spleen at 48 hpi both in wild-type and mutant mice, although it has been reported that MHV infection in vitro inhibits IFN-β-production.26–28 There may be a more marked reduction of cytokine production in the spleen of wild-type mice compared to that of mutant mice in the local environment, especially in the interfollicular areas including the marginal zone, where viral antigens are detected during the early phase of infection,6 and the influx and efflux of leukocytes are controlled through the fibroblastic reticular system.31

A difference in immediate inflammatory responses of the two strains was observed when mice were challenged by LPS, a ligand of TLR-4,32,33 to induce lymphadenitis in the regional lymph nodes. In wild-type mice, the inflammatory response against LPS-challenge in the popliteal lymph nodes was tolerated after infection, which did not occur in mutant mice, as far as the size of the lymph nodes was concerned. LPS-tolerance, also known as endotoxin-tolerance,
The amounts of cytokines in the pons and spleen obtained from uninfected (V⁻) and infected (V⁺) mice were measured. pg per 100 mg of tissue and per total organ, in the pons and spleen, respectively, are shown. IRA (closed bars) and wBA (open bars) indicate mutant and wild-type mice, respectively. d and h indicate days and hours post-inoculation with srm7, respectively. P-values (p) by Student’s t-test are shown as **, *, and △, which indicate $P < 0.005$, $0.005 < P < 0.05$, and $0.05 < P < 0.1$, respectively.
is induced by LPS-challenge accompanied by other immunological treatments, infection, or injury,34,35 and is caused by inhibitory cascades activated after the recognition of ligands by PRRs,34,36 which play an important role in immunological homeostasis, suppressing excess immune responses activated through positive cascades triggered by the activation of PRRs.36 The Le\(^+\) structure might be involved in the negative cascades in the PRR pathway, causing more severe inflammation in the mutant mice after viral infection than in wild-type mice. The possibility that a lack of Le\(^+\) causes increased inflammatory responses after up-regulation of the positive cascades in the PRR-pathway is unlikely, because mutant mice were refractory to in vivo challenge by LPS. Furthermore, most of the levels of cytokines examined after in vitro stimulation by LPS using leukocytes derived from naive mutant mice were lower or similar compared to those from wild-type mice. However, the production of IFNs was greater in the culture of leukocytes derived from mutant compared to wild-type mice, which excludes the possibility that mutant mice poorly recognize LPS.

Collectively, challenges by viral infection and/or LPS induced different inflammatory or immune responses between wild-type and mutant mice during the early phase after the challenges. The differences are not believed to be a result of different ligand-receptor affinities, but are more likely caused by differences in down-stream cascades, which are responsible for the down-regulation of excess immune responses triggered by the activation of PRRs.36 Our experimental model would provide an opportunity to study the in vivo regulatory mechanism, which involves fucosylated glycans, causing the inhibition or enhancement of inflammation.

ACKNOWLEDGMENTS

We thank Ms Nami Suzuki of AIST for assistance in breeding of mice. This work was financially supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology (Grant Number: 22590368).

REFERENCES

1 Bender SJ, Weiss SR. Pathogenesis of murine coronavirus in the central nervous system. J Neuroimmune Pharmacol 2010; 5: 336–54.
2 Godfraind C, Langreth S, Cardellichio C et al. Tissue and cellular distribution of an adhesion molecule in the carcinoembryonic antigen family that serves as a receptor for mouse hepatitis virus. Lab Invest 1995; 73: 615–27.
3 Nakagaki K, Nakagaki K, Taguchi F. Receptor-independent spread of a highly neurotropic murine coronavirus JHM strain from initially infected microglial cells in mixed neural cultures. J Virol 2005; 79: 6102–10.
4 Taguchi F, Siddell SG, Wege H, ter Meulen V. Characterization of a variant virus selected in rat brains after infection by coronavirus mouse hepatitis virus JHM. J Virol 1985; 54: 429–35.
5 Saeki K, Ohtsuka N, Taguchi F. Identification of spike protein resides of murine coronavirus responsible for receptor-binding activity by use of soluble receptor-resistant mutants. J Virol 1997; 71: 9024–31.
6 Takatsuki H, Taguchi F, Nomura R et al. Cytopathy of an infiltrating monocyte lineage during the early phase of infection with murine coronavirus in the brain. Neuropathology 2010; 30: 361–71.
7 Kashiwazaki H, Taguchi F, Ikehara Y, Watanabe R. Characterization of splenic cells during the early phase of infection with neuropathogenic mouse hepatitis virus. Jpn J Infect Dis 2011; 64: 256–9.
8 Kashiwazaki H, Nomura R, Matsuyama S, Taguchi F, Watanabe R. Spongiform degeneration induced by neuropathogenic murine coronavirus infection. Pathol Int 2011; 61: 184–91.
9 Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. Simultaneous treatment of human bronchial epithelial cells with serum and cytokine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol 2012; 86: 6537–45.
10 de Groot RJ, Baker SC, Baric RS et al. Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. J Virol 2013; 87: 7790–92.
11 Nomura R, Kashiwazaki H, Kakizaki M, Matsuyama S, Taguchi F, Watanabe R. Receptor-independent infection by mutant viruses newly isolated from the neuropathogenic mouse hepatitis virus srr7 detected through a combination of spinoculation and ultraviolet radiation. Jpn J Infect Dis 2011; 64: 499–505.
12 Kakizaki M, Kashiwazaki H, Watanabe R. Mutant murine hepatitis virus-induced apoptosis in the hippocampus. Jpn J Infect Dis 2014; 67: 9–16.
13 Kreisman LS, Cobb BA. Infection, inflammation and host carbohydrates: A Glyco-Evasion Hypothesis. Glycobiology 2012; 22: 1019–30.
14 Watanabe R, Sawicki SG, Taguchi F. Heparan sulfate is a binding molecule but not a receptor for CEACAM1-independent infection of murine coronavirus. Virology 2007; 366: 16–22.
15 de Haan CA, Li Z, te Lintelo E, Bosch BJ, Hajjema BJ, Rottier PJ. Murine coronavirus with an extended host range uses heparan sulfate as an entry receptor. J Virol 2005; 79: 14451–6.
16 Kudo T, Kaneko M, Iwasaki H et al. Normal embryonic and germ cell development in mice lacking alpha1,3-fucosyltransferase IX (Fut9) which show disappearance of stage-specific embryonic antigen 1. Mol Cell Biol 2004; 24: 4221–8.
17 Bogovevka V, Horst A, Kiampe B, Lucka L, Wagener C, Nollau P. CEACAM1, an adhesion molecule of human granulocytes, is fucosylated by fusocyltransferase IX and interacts with DC-SIGN of dendritic cells via Lewis x residues. Glycobiology 2006; 16: 197–209.
18 Rabinovich GA, van Kooyk Y, Cobb BA. Glycobiology of immune responses. Annu Rev Med Sci 2012; 1253: 1–15.
19 van Kooyk Y, Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 2008; 9: 593–601.
20 Morishima T, Togashi T, Yokota S et al. Encephalitis and encephalopathy associated with an influenza epidemic in Japan. Clin Infect Dis 2002; 35: 512–17.
21 Kudo T, Ikehara Y, Togayachi A et al. Expression cloning and characterization of a novel murine alpha1,3-fucosyltransferase, mFuc-TIX, that synthesizes the Lewis x (CD15) epitope in brain and kidney. J Biol Chem 1998; 273: 26729–38.
x structure in brain and increased anxiety-like behaviors.
Glycobiology 2007; 17: 1–9.
23 Jiang XR, Song A, Bergelson S et al. Advances in the assessment and control of the effector functions of therapeutic antibodies.
Nat Rev Drug Discov 2011; 10: 101–11.
24 Okeley NM, Alley SC, Anderson ME et al. Development of orally active inhibitors of protein and cellular fucosylation.
Proc Natl Acad Sci U S A 2013; 110: 5404–9.
25 Matsuyama S, Watanabe R, Taguchi F. Neurovirulence in mice of soluble receptor-resistant (srr) mutants of mouse hepatitis virus: Intensive apoptosis caused by less virulent srr mutant.
Arch Virol 2001; 146: 1643–54.
26 Roth-Cross JK, Martinez-Sobrido L, Scott EP, Garcia-Sastre A, Weiss SR. Inhibition of the alpha/beta interferon response by mouse hepatitis virus at multiple levels.
J Virol 2007; 81: 7189–99.
27 Roth-Cross JK, Bender SJ, Weiss SR. Murine coronavirus mouse hepatitis virus is recognized by MDA5 and induces type I interferon in brain macrophages/microglia.
J Virol 2008; 82: 9829–38.
28 Rose KM, Elliott R, Martinez-Sobrido L, Garcia-Sastre A, Weiss SR. Murine coronavirus delays expression of a subset of interferon-stimulated genes.
J Virol 2010; 84: 5656–69.
29 Hauwel M, Furon E, Canova C, Griffiths M, Neal J, Gasque P. Innate (inherent) control of brain infection, brain inflammation and brain repair: The role of microglia, astrocytes, ‘protective’ glial stem cells and stromal ependymal cells.
Brain Res Brain Res Rev 2005; 48: 220–33.
30 Vartanian KB, Stevens SL, Marsh BJ, Williams-Karnesky R, Lessov NS, Stenzel-Poore MP. LPS preconditioning redirects TLR signaling following stroke: TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic injury.
J Neuroinflammation 2011; 8: 140.
31 Bajenoff M, Egen JG, Koo LY et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes.
Immunity 2006; 25: 989–1001.
32 Blasius AL, Beutler B. Intracellular toll-like receptors.
Immunity 2010; 32: 305–15.
33 Song DH, Lee JO. Sensing of microbial molecular patterns by Toll-like receptors.
Immunol Rev 2012; 250: 216–29.
34 Peng Q, O’Loughlin JL, Humphrey MB. DOK3 negatively regulates LPS responses and endotoxin tolerance.
PLoS One 2012; 7: e39967.
35 Sato S, Takeuchi O, Fujita T, Tomizawa H, Takeda K, Akira S. A variety of microbial components induce tolerance to lipopolysaccharide by differentially affecting MyD88-dependent and-independent pathways.
Int Immunol 2002; 14: 783–91.
36 Murray PJ, Smales ST. Restraint of inflammatory signaling by interdependent strata of negative regulatory pathways.
Nat Immunol 2012; 13: 916–24.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Methods S1 This file describes the detailed methods for evaluating the intensities of inflammation of the brain and hyperplastic or atrophic states of the spleen, and cytokine assay used in the study.

Figure S1 The amounts of cytokines in the culture supernatant derived from uninfected wild-type (wBA) or mutant (iBA) mice, after stimulation with LPS (LPS) or medium (Medium), were measured. P-values (p) by Student’s t-test are shown as ** and * which indicate P < 0.005 and 0.005 < P < 0.05, respectively.