ESSENTIAL DIMENSION OF CENTRAL SIMPLE ALGEBRAS
OF DEGREE 8 AND EXPONENT 2 IN CHARACTERISTIC 2

ADAM CHAPMAN

Abstract. The goal of this note is to reduce the existing upper bound
for the essential dimension of central simple algebras of degree 8 and
exponent 2 over fields of characteristic 2 from 10 to 9.

1. Introduction

Fixing a field k in the background, we consider the covariant functor
$\text{Alg}_{d,e}$ sending any field F containing k to the set of all (isomorphism classes
of) central simple algebras of degree d and exponent dividing e over F. The
essential dimension of an algebra A in $\text{Alg}_{d,e}(F)$ is the minimal possible
transcendence degree of a field E over k with $k \subseteq E \subseteq F$ for which there ex-
ists a central simple algebra A_0 in $\text{Alg}_{d,e}(E)$ with $A_0 \otimes F = A$. The essential
dimension of $\text{Alg}_{d,e}$, denoted $\text{ed}(\text{Alg}_{d,e})$, is thus the supremum on the essen-
tial dimensions of A where A ranges over all algebras in $\text{Alg}_{d,e}(F)$ and F ranges
over all fields containing k. The question of computing $\text{ed}(\text{Alg}_{d,e})$ is
a very difficult one (see [Mer13, Section 10]) and the exact value is known
only in specific cases: it is known that $\text{ed}(\text{Alg}_{2,2}) = \text{ed}(\text{Alg}_{3,3}) = 2$, but
for any prime $p > 3$ it is still not known what $\text{ed}(\text{Alg}_{p,p})$ is. The value of
$\text{ed}(\text{Alg}_{4,2})$ is 4 when $\text{char}(k) \neq 2$ and 3 when $\text{char}(k) = 2$. The value of
$\text{ed}(\text{Alg}_{8,2})$ is 8 when $\text{char}(k) \neq 2$ ([BM12, Corollary 1.4]). The exact value
of $\text{ed}(\text{Alg}_{8,2})$ when $\text{char}(k) = 2$ is not known, but was bounded from above
by 10 and below by 3 in [Bae11]. The lower bound was improved to 4 in
[McK17]. The goal of this short note is to prove the following theorem:

Theorem 1.1 (Main Theorem). When $\text{char}(k) = 2$, we have $\text{ed}(\text{Alg}_{8,2}) \leq 9$.

This is proved in Section 3 and Section 2 describes the main ingredients.

2. Preliminaries

When F is a field of $\text{char}(F) = 2$, a quaternion algebra over F is of
the form $\langle \alpha, \beta \rangle_F = F \langle i, j : i^2 + i = \alpha, j^2 = \beta, ijj^{-1} = i + 1 \rangle$ for some

2010 Mathematics Subject Classification. 16K20 (primary); 16K50 (secondary).
Key words and phrases. Essential Dimension; Central Simple Algebras; Fields of
Characteristic 2.
\(\alpha \in F \) and \(\beta \in F^\times \). We write \(\wp(t) \) for \(t^2 + t \) and \(F[\wp^{-1}(\alpha)] \) thus stands for \(F[i : i^2 + i = \alpha] \). By [GS17 Theorem 9.1.4] (credited to Teichmüller), every class in \(2Br(F) \) is represented by a tensor product of quaternion algebras. In particular, when \(A \) is a central simple algebra of degree 4 and exponent 2, it decomposes as a tensor product of two quaternion algebras ([Rac74]).

A tool that makes the study of the essential dimension of central simple algebras of degree 8 and exponent 2 easier is the chain lemma for quaternion algebras ([Dra83, Chapter 14, Theorem 7]): If \([\alpha, \beta, \gamma] \) is a central simple algebra of degree 4 and exponent 2, it decomposes as a tensor product of two quaternion algebras ([Rac74]).

Another important tool is the fact that the essential dimension of central simple algebras of degree 8 and exponent 2 is 1 (see [Led04, Lemma 2] and [BF03, Remark 3.8] for reference, and for an explicit construction; despite the condition \(|k| \geq 2^n \) appearing in [Led04, Lemma 2], the proof of the latter goes through under the weaker assumption that \(|F| \geq 2^n \), and for our purpose this always applies, for in order for noncommutative division algebras to exist over \(F \), the cardinality of \(F \) must be infinite). The meaning is that if \(K = F[\wp^{-1}(\alpha), \wp^{-1}(\beta), \wp^{-1}(\gamma)] \) is a compositum of three cyclic quadratic extensions of a field \(F \) containing \(k \), then there exists a field \(L \supseteq k \) transcendent degree 1 over \(k \) containing \(a, b, c \) such that the tensor product \(L[\wp^{-1}(\alpha), \wp^{-1}(b), \wp^{-1}(c)] \otimes_L F \) is \(K \). In other words, the elements \(\alpha, \beta, \gamma \) can be chosen to come from a single field \(L \) of transcendence degree at most 1 over \(k \).

The last tool is the following lemma:

Lemma 2.1 ([Bae11 Lemma 3.3]). Given a field \(F \) of characteristic 2 and a field extension \(E = F[i : i^2 + i = \alpha] \) and \(\beta \in F \), if \(x^2 + xy + y^2 \alpha = u^2 + uv + v^2 \beta \) for some \(x, y, u, v \in F \), then \([\beta, x + yi)_E = [\beta, y + v]_E \).

3. **Proof of the main theorem**

Consider a division algebra \(A \) of degree 8 and exponent 2 over a field \(F \) containing a subfield \(k \) of \(\text{char}(k) = 2 \). By [Row84], \(A \) contains a maximal subfield \(K = F[\wp^{-1}(\alpha), \wp^{-1}(\beta), \wp^{-1}(\gamma)] \). By [Led04, Lemma 2], \(\alpha, \beta, \gamma \) can be chosen to come from a single subfield \(k \subseteq L \subseteq F \) of transcendence degree 1 over \(k \). Let \(E = F[\wp^{-1}(\alpha)] = F[\mu : \mu^2 + \mu = \alpha] \). Then \(A_E \) is Brauer equivalent to \(\beta, b)_E \otimes [\gamma, c)_E \) for some \(b, c \in E \). The corestriction back to \(F \) is trivial, and so \([\beta, N_b)_F = [\gamma, N_c)_F \), where \(N_b = b_0^2 + b_0b_1 + b_1^2 \alpha \) and
$N_c = c_0^2 + c_0c_1 + c_1^2\alpha$, given that $b = b_0 + b_1\mu$ and $c = c_0 + c_1\mu$ for some $b_0, b_1, c_0, c_1 \in F$ (\cite{MM91}). By the chain lemma for quaternion algebras, there exists $\delta \in F$ for which $[\beta, N_b)_F = [\delta, N_c)_F = [\gamma, N_c)_F$. Therefore $\delta = \beta + u^2 + u + x^2N_b = \gamma + y^2 + y + z^2N_c = \lambda^2 + \lambda + t^2N_bN_c$ for some $u, x, y, z, \lambda, t \in F$. By replacing δ, y, λ with $u^2 + u + y + u, \lambda + u$ respectively, we can assume $u = 0$. Note that $y = \varphi^{-1}(\beta + y + x^2N_b + z^2N_c)$ and $\lambda = \varphi^{-1}(\beta + x^2N_b + t^2N_bN_c)$. If $x = 0$ then $\delta = \beta$, which means $[\beta + \delta, b)F$ is split. If $x \neq 0$, then from the equation $\delta = \beta + x^2N_b$ we obtain $(\beta + \delta)^\frac{1}{x} = b_0^2 + b_0b_1 + b_1^2\alpha$. It follows then from Lemma \ref{lem:split} that $[\beta + \delta, b)_E = [\beta + \delta, b_1 + \frac{1}{x}E$. Similarly, if $z = 0$ then $[\gamma + \delta, c)_E$ is split, and otherwise $[\gamma + \delta, c)_E = [\gamma + \delta, c_1 + \frac{1}{x}E$, and if $t = 0$ then $[\delta, bc)_E$ is split and otherwise $[\delta, bc)_E = [\delta, \frac{1}{x} + b_0c_1 + b_1c_1 + b_1c_1)E$. Therefore, of the case of $\mu = 0$. Hence, $A \sim_{Br} [a, a)_F \otimes [\beta + \delta, b_1 + \frac{1}{x}E \otimes [\gamma + \delta, c_1 + \frac{1}{x}E \otimes [\delta, \frac{1}{x} + b_0c_1 + b_1c_1 + b_1c_1)E$.

Consider now the algebra $B = [a, a)_T \otimes [\beta + \delta, b_1 + \frac{1}{x}T \otimes [\gamma + \delta, c_1 + \frac{1}{x}T \otimes \delta, \frac{1}{x} + b_0c_1 + b_1c_1 + b_1c_1)$, where $T = L(a, b_0, b_1, c_0, c_1, x, z, t, y, \lambda)$. Note that y and λ are algebraic over $L(a, b_0, b_1, c_0, c_1, x, z, t)$, and thus the transcendence degree of T over k is at most 9. In order to conclude the argument, we need to explain why B is of index 8 rather than 16, which means that it is $M_8(A_0)$ for some division algebra A_0 of degree 8 over T, and thus A descends to a degree 8 division algebra over a field of transcendence degree at most 9 over k. The restriction of B to $R = T[\varphi^{-1}(\alpha)]$ is Brauer equivalent to $[\beta + \delta, b_1 + \frac{1}{x}_R \otimes [\gamma + \delta, c_1 + \frac{1}{x}_R \otimes [\delta, \frac{1}{x} + b_0c_1 + b_1c_1 + b_1c_1)_R$. Since $[\beta + \delta, b_1 + \frac{1}{x}_R = [\beta + \delta, b)_R$ (for the same equality $\delta = \beta + x^2N_b$ holds true as before), $[\gamma + \delta, c_1 + \frac{1}{x}_R = [\gamma + \delta, c)_R$ and $[\delta, \frac{1}{x} + b_0c_1 + b_1c_1 + b_1c_1)_R = [\delta, bc)_R$, we get that $B \otimes R$ is Brauer equivalent to $[\beta, b)_R \otimes [\gamma, c)_R$. Thus, B is split by $T[\varphi^{-1}(\alpha), \varphi^{-1}(\beta), \varphi^{-1}(\gamma)]$, and so its index is 8.

\textbf{Remark 3.1.} It seems that in the argument in \cite{Bae11}, the author is suggesting that one could assume $x = z = 1$ in our computation above. If we were talking only about the quadratic equations $\delta = \beta + x^2N_b = \gamma + y^2 + y + z^2N_c$ this would be correct, because replacing b_j and c_j with $\frac{ab_j}{x}$ and $\frac{ac_j}{x}$ would eliminate their occurrences in these equations. However, that would change...
$[\beta, b]_E$ to $[\beta, \frac{b}{c}]_E$ and $[\gamma, c]_E$ to $[\gamma, \frac{c}{z}]_E$. It is therefore not clear why one can assume $x = z = 1$. If this were true, that would reduce the upper bound of the essential dimension from 9 to 7.

Acknowledgements

The author wishes to thank the anonymous referee for the detailed reading of the manuscript and for the helpful comments and suggestions.

References

[Bae11] Sanghoon Baek. Essential dimension of simple algebras in positive characteristic. *C. R. Math. Acad. Sci. Paris*, 349(7-8):375–378, 2011.

[BF03] Grégory Berhuy and Giordano Favi. Essential dimension: a functorial point of view (after A. Merkurjev). *Doc. Math.*, 8:279–330, 2003.

[BM12] Sanghoon Baek and Alexander S. Merkurjev. Essential dimension of central simple algebras. *Acta Math.*, 209(1):1–27, 2012.

[CFM] Adam Chapman, Mathieu Florence, and Kelly McKinnie. Common splitting fields of symbol algebras. *Manuscripta Math.* to appear.

[Dra83] P.K. Draxl. *Skew Fields*, volume 81 of *London Math. Soc. Lect. Notes*. Cambridge University Press, 1983.

[GS17] Philippe Gille and Tamás Szamuely. *Central simple algebras and Galois cohomology*, volume 165 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 2017. Second edition of [MR2266528].

[Led04] Arne Ledet. On the essential dimension of p-groups. In *Galois theory and modular forms*, volume 11 of *Dev. Math.*., pages 159–172. Kluwer Acad. Publ., Boston, MA, 2004.

[McK17] Kelly McKinnie. Essential dimension of generic symbols in characteristic p. *Forum Math. Sigma*, 5:e14, 30, 2017.

[Mer13] Alexander S. Merkurjev. Essential dimension: a survey. *Transform. Groups*, 18(2):415–481, 2013.

[MM91] P. Mammone and A. Merkurjev. On the corestriction of p^n-symbol. *Israel J. Math.*, 76(1-2):73–79, 1991.

[Rac74] M. L. Racine. A simple proof of a theorem of Albert. *Proc. Amer. Math. Soc.*, 43:487–488, 1974.

[Row84] Louis H. Rowen. Division algebras of exponent 2 and characteristic 2. *J. Algebra*, 90(1):71–83, 1984.

School of Computer Science, Academic College of Tel-Aviv-Yaffo, Rabenu Yeruham St., P.O.B 8401 Yaffo, 6818211, Israel.

Email address: adam1chapman@yahoo.com