Screening two-dimensional materials with topological flat bands

Hang Liu,¹²,³ Sheng Meng,²,³,* and Feng Liu†¹,¹

¹Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
²Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People’s Republic of China
³Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

(Received 21 April 2021; revised 23 June 2021; accepted 20 July 2021; published 16 August 2021)

The topological flat band (TFB) has been proposed theoretically in various lattice models, to exhibit a rich spectrum of intriguing physical behaviors. However, the experimental demonstration of flat band (FB) properties has been severely hindered by the lack of materials realization. Here, by screening materials from a first-principles materials database, we identify a group of two-dimensional materials with TFBs near the Fermi level, covering some simple line-graph and generalized line-graph FB lattice models. These include the kagome sublattice of O in TiO2 yielding a spin-unpolarized TFB, and that of V in ferromagnetic V3F8 yielding a spin-polarized TFB. The monolayer Nb7TeCl7 and its counterparts from element substitution are found to be breathing-kagome-lattice crystals. The family of monolayer III2VI3 compounds exhibit a TFB representing the coloring-triangle lattice model. ReF3, MnF3, and MnBr3 are all predicted to be diatomic-kagome-lattice crystals, with TFB transitions induced by atomic substitution. Finally, HgF2, CdF2, and ZnF2 are discovered to host dual TFBs in the diamond-octagon lattice. Our findings pave the way to further experimental exploration of eluding FB materials and properties.

DOI: 10.1103/PhysRevMaterials.5.084203

Introduction. The destructive interference of wave functions in a crystal lattice gives rise to a type of electronic band without dispersion, dubbed as topological/singular flat bands (TFBs) [1–5]. Without spin-orbit coupling (SOC), the TFB can be identified by the presence of a band touching point with a dispersive band at a high-symmetric k point, where its singular Bloch wave functions in reciprocal space manifest the emergence of topological noncontractible edge states in real space [4,5]; it differs from an isolated trivial flat band (FB) with nonsingular Bloch wave functions, such as the dangling-bond states. With SOC, the degeneracy at the touching point is lifted, leading to the gapped 2D TFB with a nonzero (spin) Chern invariant [4]. The nontrivial topology and the inherently strong electron-electron interaction due to vanishing electron kinetic energy render the TFB a rich spectrum of physical phenomena, such as fractional quantum anomalous Hall effect [6–8], ferromagnetism [9,10], Wigner crystallization [11,12], superconductivity [13], excitonic insulator state [14,15], and excited quantum anomalous/spin Hall effect [16].

Various lattice models have been theoretically proposed to host the TFB. These models are generally based on line-graph construction [17–19], such as the kagome [6,19,20], Lieb [21,22], breathing-kagome [23–26], diatomic-kagome [16,27], coloring-triangle lattices [28], and the diamond-octagon lattice (i.e., line-graph lattice of Lieb lattice) [2,29]. Also, the square and honeycomb lattices, with multiple atomic orbitals on each lattice site, can host TFBs [3,11,30–32]. On the other hand, however, very few electronic FB materials [33–42] have been identified, either experimentally or computationally, and realizations of the known FB lattice models are rather limited in general, with only a few examples such as the breathing-kagome lattice in Fe3Sn2 [41], and the coloring-triangle lattice in Cu-dicyanobenzene monolayer [42] presented so far. This, apparently, has severely hindered the experimental realization of eluding FB properties. It is worth noting that the experimental discovery of FB-associated superconductivity in twisted bilayer graphene [43] has generated a lot of excitement recently, and a surprising ferromagnetic covalent-organic framework without transition-metal atoms [44] has been shown to be originated from a FB [10]. Therefore, computational design and identification of new FB materials, already exist or to be fabricated, is highly desirable to significantly advance the study of TFB physics, materials, and devices.

On the other hand, the recent establishment of materials databases has enabled a high-throughput screening approach to discovering new materials in batches. For example, all the three-dimensional (3D) nonmagnetic topological crystals are screened for compiling a complete catalog of topological materials [45–47]; various nontrivial magnetic crystals are identified from 2D and 3D materials databases [48,49]. Here, by screening the 2DMatPedia database [50] for 2D crystalline materials, we have identified 15 monolayer atomic crystals hosting TFBs near the Fermi level, which cover six different FB lattice models. Among them, the kagome sublattice of O in TiO2 supports a spin-unpolarized TFB, and that of V in ferromagnetic V3F8 supports a spin-polarized TFB. Monolayer.
listed in Table I. In the following, we choose the representa-
representing respectively six different TFB lattice models, as
15 TFB materials (nine nonmagnetic and six magnetic) rep-
(see the computational methods in the SM), which confirmed
calculations with high precision and lattice model analysis
these 27 candidates were further double-checked by
ab initio (iv) diatomic-kagome lattices, (iii) diamond-octagon lattice, and
(2) related breathing-kagome, coloring-triangle, and
diatomic-kagome lattices, (iii) diamond-octagon lattice, and
(iii) diamond-octagon lattice.

\[ V_{3}F_{8}, B_{2}S_{3}, R e F_{3} \ldots \]

**FIG. 1.** Flowchart of computational screening for 2D crystals with ideal TFBs.

Nb\(_5\)TeCl\(_7\) and its counterparts from element substitution, whose layered 3D structures were already synthesized over two decades ago, are found to be breathing-kagome crystals with possible high-order topology. The family of monolayer III\(_2\)VI\(_3\) compounds exhibit a TFB representing the coloring-triangle lattice model. ReF\(_3\), MnF\(_3\), and MnBr\(_3\) are all predicted to be diatomic-kagome crystals, with TFB transitions induced by atomic substitution. HgF\(_2\), CdF\(_2\), and ZnF\(_2\) are discovered to host dual TFBs in the diamond-octagon lattice. Overall, some existing simple line-graph and generalized line-graph FB lattice models have been identified with several candidate materials.

**Screening procedure.** Our screening for 2D materials hav-
ing TFBs starts with the database of 2DMatPedia, which contains electronic band structure without SOC for \(\sim 5300\) monolayer atomic crystals [50], as shown in Fig. 1. The bandwidth \(w\) of 11 bands (chosen for FB searching in this work) around the Fermi level is calculated, from which 354 nonmagnetic and 242 magnetic materials are revealed to possess bands whose \(w\) is less than 50 meV. We note that the choice of this bandwidth threshold could be somewhat arbitrary, and we used a value that lies in the typical range of the SOC-induced energy gap in realistic solid materials. In general, using a larger (smaller) value one would find more (less) FB materials from screening but a higher (lower) percentage of trivial ones. Next, if the narrow band is identified with a degenerate point with another dispersive band, its host material is selected, amounting to 27 candidate TFB materials [see Tables S1 and S2 in the Supplemental Material (SM) [51]]. Finally, these 27 candidates were further double-checked by \textit{ab initio} calculations with high precision and lattice model analysis (see the computational methods in the SM), which confirmed 15 TFB materials (nine nonmagnetic and six magnetic) representing respectively six different TFB lattice models, as listed in Table I. In the following, we choose the representative examples to show ideal TFBs discovered in (i) kagome lattice, (ii) related breathing-kagome, coloring-triangle, and diatomic-kagome lattices, (iii) diamond-octagon lattice, and (iv) \(d\)-orbital graphene lattice.

**Table I.** The discovered monolayer atomic crystals with ideal TFBs.

| Model                      | Nonmagnetic     | Magnetic       | Space group |
|----------------------------|-----------------|----------------|-------------|
| Kagome                     | TiO\(_2\), BaYSn\(_3\)O\(_7\) | V\(_3\)F\(_8\), Li\(_2\)Fe\(_3\)F\(_8\) | P-3m1        |
| Breathing kagome           | Nb\(_5\)TeCl\(_7\), Ta\(_3\)SBr\(_7\) | V\(_3\)F\(_8\), Li\(_2\)Fe\(_3\)F\(_8\) | P-3m1        |
| Coloring triangle          | B\(_2\)S\(_3\) (III\(_2\)VI\(_3\)) | Nb\(_2\)Cl\(_6\) | P-62m       |
| Diatomic kagome            | ReF\(_3\)       | MnF\(_3\), MnBr\(_3\) | P-3m1        |
| Honeycomb                  | ReF\(_3\)       | MnF\(_3\), MnBr\(_3\) | P-3m1        |
| Diamond octagon            | CdF\(_2\), ZnF\(_2\), HgF\(_2\) | VF\(_3\) | P-4m2        |

**Kagome crystals with the ideal TFB.** The well-known kagome lattice consists of three sites in a unit cell, exhibiting two Dirac bands touched with a TFB [Fig. 2(a); see the tight-binding Hamiltonian in the SM]. As shown in Fig. 3(a), the monolayer TiO\(_2\), a widely studied compound, has O atoms forming an upper and lower kagome layer bridged by O atoms in the middle. It turns out to host a typical kagome band structure from \(p\) orbitals of O atoms, with a well separated FB right below the Fermi level while the Dirac bands mix with other trivial bands. As expected, an isolated TFB arises upon a nontrivial gap opening in the presence of SOC [Fig. S1(a) in the SM]. There are also two additional sets of kagome bands far below the Fermi level arising from O 2s orbitals in the upper and lower kagome layer, respectively (Fig. S2), sharing a doubly degenerate TFB. Another nonmagnetic kagome crystal is found in monolayer BaYSn\(_4\)O\(_7\), featuring a TFB around the Fermi level arising from Sn atoms sitting on a kagome lattice [Fig. S3(a)]. Previously, kagome bands have been mostly shown in metal-organic and covalent-organic frameworks [35–39]. Here we discover the unknown inorganic 2D materials hosting well-separated kagome bands.

Spin-polarized TFBs are discovered in magnetic kagome crystals with transition-metal elements. As shown in Fig. 3(b), three V atoms in monolayer V\(_3\)F\(_8\) (shown to be stable in the literature [55]), with magnetic moment \(M = 7 \mu_B\), sit in a kagome sublattice. Naturally, spin-up kagome bands from \(d\) orbitals of vanadium atoms arise, with the TFB lying close to the Fermi level based on electron counting. With SOC, a topological gap opens to isolate a Chern TFB [Fig. S1(b)], affording an intriguing possibility of exploring fractional quantum anomalous Hall effect. Another ferromagnetic kagome material is found in monolayer Li\(_2\)Fe\(_3\)F\(_8\), where the kagome sublattice consists of Fe atoms each with \(M = 4 \mu_B\) [Fig. S3(b)]. The above-mentioned kagome materials are all intrinsic, without the need of doping, and ideal, without band overlapping with other trivial bands, superior over previous computationally and experimentally identified electronic kagome metals [40,56–60]. For the kagome materials of TiO\(_2\) and V\(_3\)F\(_8\), their SOC-induced gap opening between the TFB and dispersive bands (Fig. 2) confirms the gapped TFB to possess a nonzero (spin) Chern invariant [4]. Similarly, the TFBs in other identified 2D materials are checked, where the gap is larger for materials with heavier atoms having stronger SOC.

**Breathing-kagome crystals with potential second-order topology.** When one triangle in a kagome lattice shrinks...
FIG. 2. Lattice structure and tight-binding bands of (a) kagome lattice, and its derivatives including (b) breathing-kagome, (c) coloring-triangle, (d) diatomic-kagome lattices, and (e) diamond-octagon lattice. $t_{\text{NN}}$ and $t_{\text{NNN}}$ represent the NN and NNN hopping integral, respectively. Gray and blue dots/lines in upper panels show the original lattices and their (generalized) line-graph lattices, respectively. For standard construction, (a) and (e), a line graph takes edge centers of the original graph as its vertices, while for generalized construction, a line graph takes off-edge-center positions, along the edge (b) or off the edge (c), as its vertices. Panel (d) can be viewed as two copies of the generalized line graph in (b), leading to dual FBs.

and the other one expands, a so-called breathing-kagome lattice model is constructed as a generalized line graph of hexagonal lattice [Fig. 2(b)]. This breathing mode does not affect the TFB, but opens a gap at Dirac point to induce the second-order topological corner states [23–25,61,62]. As shown in Fig. 4, monolayer Nb$_3$TeCl$_7$ is discovered to have Nb atoms locating at the breathing-kagome lattice sites, where Nb $d$ orbitals constitute a clean set of kagome bands with a Dirac gap at the Fermi level. Such a breathing-kagome state is also discovered in 2D Ta$_3$SBF$_7$ with Ta atoms locating at the breathing-kagome sites [Fig. S4(a)]. Furthermore, spin-polarized breathing-kagome states with $M = 1 \mu_B$ are discovered in monolayer Nb$_3$Cl$_8$ with three Nb atoms sitting at three breathing-kagome sites, respectively [Fig. S4(b)]. While magnetic interaction separates the spin-up and -down bands in energy space, all the features of breathing-kagome bands remain intact. Compared with Nb$_3$TeCl$_7$, the ferromagnetism originates from substituting a Te atom with a Cl atom; compared with V$_3$F$_8$, the breathing deformation in Nb$_3$Cl$_8$ originates from substituting V atoms by Nb atoms.

Coloring-triangle crystals with kagome bands. When one triangle in the kagome lattice rotates 30° clockwise and the other triangle 30° counterclockwise, a so-called coloring-triangle lattice, which is another generalized line graph of hexagonal lattice by an off-edge-center construction.

FIG. 3. Ideal kagome bands in monolayer kagome atomic crystals. (a) Oxygen atoms in monolayer TiO$_2$ form upper and lower kagome layers connected by middle sites, with titanium atoms locating at the center of oxygen tetrahedrons. The electronic structure exhibits obvious kagome bands (bold lines in left panel), and the charge of TFB near the Fermi level is contributed by $p$ orbitals of oxygen atoms (right panel). (b) Vanadium atoms in monolayer V$_3$F$_8$ form the perfect kagome lattice, resulting in the typical kagome bands (bold lines in left panel) with a TFB exactly locating at Fermi level. The $d$ orbitals of vanadium atoms contribute to the electron charge of the spin-up kagome bands (right panel).

FIG. 4. Left: The electronic structure of monolayer Nb$_3$TeCl$_7$ with niobium atoms sitting on a breathing-kagome lattice. Right: Electron charge distribution contributing to the breathing-kagome bands with a gapped Dirac cone in the left.
interval between integral, two sets of kagome bands coexist [blue lines in For example, with a small next-NN (NNN) hopping in-
triangle lattice in monolayer B2S3 (Fig. S5). embedded in other bands from S
orbitals in B2S3 [Fig. 5(a)]. The kagome bands are actually
[Fig. 2(c)], forms to also host identical kagome bands [28].
The lattice can also be viewed as a triangle lattice with part
of nearest-neighbor (NN) hopping being blocked, so that
its realization in real crystalline materials is supposed to be
quite difficult. Surprisingly, we have overcome this difficulty
“accidentally.” As shown in Fig. 5(a), within each unit cell
of monolayer B2S3, S atoms constitute a triangle sublattice
while B atoms are located at the center of two S triangles.
Consequently, via the bridging of B atoms, the NN hopping
between those S atoms in the two triangles with B are much
stronger than those S atoms without bridging B atoms. So,
effectively this provides a unique mechanism to selectively
block part of NN hopping in a triangle S lattice, as required by
the construction of a coloring-triangle lattice. This is clearly
confirmed by the prefact kagome bands arising from S p_z
orbitals in B2S3 [Fig. 5(a)]. The kagome bands are actually
embedded in other bands from S p_x, y orbitals in the equilib-
rium B2S3 (Fig. S5), but can be separated out by applying a
small biaxial tensile strain [Fig. 5(b)], which simultaneously
moves the TFB upward closer to the Fermi level. Deep-energy
kagome bands from S 3s orbitals manifest also the coloring-
triangle lattice in monolayer B2S3 (Fig. S5).

Similar to B2S3, our search reveals that most of the mono-
layer III2VI3 compounds, made from elements in the III
and VI main group, exhibit the ideal kagome FBs satisfying the
coloring-triangle model upon strain-induced band separation
[Table S3, Fig. S6(a)]. An exception is monolayer Ta2Te3, for
which the kagome states disappear due to the destruction of
the desired coloring-triangle hopping, but on the other hand,
its strong SOC induces a large topological gap of 0.32 eV [Fig.
S6(b)], affording a candidate for high-temperature topological
insulator. Also, the FB is absent in monolayer In2Se3, Ta2Se3,
and Ta2Te3 with large atoms, because of the structure-induced
destruction of the desired coloring-triangle hopping (see de-
tails in Fig. S7).

TFBs evolution in diatomic-kagome crystals. When every
kagome site is replaced by a pair of lattice sites, a
diatomic-kagome lattice is formed, which is yet another
generalized line graph of hexagonal graph constructed with two
copies of breathing-kagome lattices [Fig. 2(d)], leading to
intriguing evolution of TFBs and phase transitions [16,27].
For example, with a small next-NN (NNN) hopping in-
tegral, two sets of kagome bands coexist [blue lines in
Fig. 2(d)]; as the NNN hopping becomes stronger, the bands
evolve into a combination of Dirac bands and p_{x,y}-orbital
hexagonal bands [gray lines in Fig. 2(d)], labeled as (D; p_{x,y})
phase [11,30]. Interestingly, our screening process
leads to the discovery of three diatomic-kagome crystals,
exhibiting the TFB transitions as proposed in tight-binding
models. As shown in Fig. 6(a), monolayer ReF3 has Re
atoms sitting on the diatomic-kagome sites, resulting in the
(D; p_{x,y}) bands mainly contributed from Re-d orbitals.
In contrast, the monolayer MnF3 and MnBr3 are ferromag-
netic with $M = 4 \mu_B$ on each Mn atom, possessing two sets
of spin-up kagome and (D; p_{x,y}) bands, respectively
[Figs. 6(b) and 6(c)]. From ReF3 to MnF3, the (D; p_{x,y})
bands transform into two sets of kagome bands, which in
turn transform back into the (D; p_{x,y}) bands from MnF3 to
MnBr3. This indicates that atomic substitution is an effective
way to tune the hopping integrals in diatomic-kagome lat-
tices, providing a promising strategy for topological and FB
engineering [63].

Dual TFBs in diamond-octagon crystals. Lieb lattice con-
tains a sublattice of checkerboard lattice which is the line
graph of square lattice, and hence possesses FB. The line
graph of Lieb lattice (dubbed as diamond-octagon lattice) also
possesses FB [2,29]. With four lattice sites in a square unit
cell [Fig. 2(e)], when the NN hopping integral is equal to the
NNN hopping integral, two perfect TFBs can appear, which
are degenerate with one parabolic band in between, with the
band touching at $\Gamma$ and $M$ points, respectively. Due to the
usual exponential decay of lattice hopping with distance in
real materials, this peculiar model with equal hopping for
both closer and farther sites appeared difficult to be realized.
Interestingly, in monolayer HgF2 (Fig. 7), two Hg atoms on
the horizontal boundaries of the unit cell are located at dif-
ferent heights from the other two on vertical boundaries. This
leads to an almost equal distance between the NN Hg-Hg sites
in the same plane to the NNN Hg-Hg sites in the different
planes, so as to satisfy the desired electron hopping condition
prescribed in the above model [Fig. 2(e)], similar to the case of
bilayer Ni(CH) for realizing a diatomic-kagome lattice [16].
Consequently, monolayer HgF2 exhibits two TFBs inside four
bands which are mainly contributed by s orbitals of mercury
atoms. Also, this type of dual TFBs is found in monolayer
CdF2 and ZnF2 (Fig. S8).
FIG. 6. Atomic and electronic structure for diatomic-kagome crystals of (a) ReF₃, (b) MnF₃, and (c) MnBr₃. Left: Band structure with the diatomic-kagome bands highlighted by thick lines. Right: The distribution of electron charge density for the diatomic-kagome bands highlighted in the left.

Orbital-enabled TFBs in honeycomb crystals. Beyond TFBs from line-graph construction, atomic/molecular orbitals in non-line-graph lattices can also be exploited to produce TFBs [3,11,30–32]. Organometallic framework [11,30,31] and bismuthene on semiconductor substrates [64,65] have been predicted to realize the honeycomb lattice with TFBs from orbital. Here, as shown in Fig. 8, we discover monolayer VF₃, has V-d-orbital TFBs and Dirac bands, which conforms to the recently proposed TFBs from dₓᵧ and dₓ²−ᵧ² orbitals [3] and Dirac bands from dₓᵧ in a honeycomb lattice, respectively. The TFB is just below the Fermi level and spin polarized, with M = 2 μB on each V atom. In contrast, a previous sd²-orbital honeycomb lattice with TFB has been shown in W overlayer on a halogenated Si(111) surface invoking an electronic kagome lattice from the coupled s and d orbitals [32].

In all the above cases, the screening condition for bandwidth w < 50 meV is used (Fig. 1). One might relax this condition to discover more FB materials. For example, we also found the monolayer II/II-VI compounds, made from elements in the II and VII main groups, have the checkerboard and diamond-octagon FBs with larger bandwidth, where the former arises from an intriguing p-orbital configuration that is equivalent to the diagonal p-orbital orientation in a square lattice [3], such as MgCl₂ shown in Fig. S9 of SM. Totally, two monolayer crystals of VF₃ and MgCl₂ are identified to be non-line-graph materials having the FB near the Fermi level, while others are line-graph FB materials. Beyond the analysis by using tight-binding lattice models, the Wannier construction for FBs of the non-line-graph VF₃ and line-graph VₓFeₓ is carried out, which again confirms our finding that they respectively conform to the kagome and honeycomb FB model (see details in Fig. S10).

Potential experimental fabrication and measurement. We note that the 3D layered NbₓTeCl₇ and TaₓSBr₇ have been experimentally synthesized over twenty years ago [66,67], making experimental observation of these material-specific breathing-kagome states highly promising. The 2D film of breathing-kagome crystal Nb₃Cl₈ with controllable thickness has been already realized in experiment [68], which calls for immediate experimental confirmation of its predicted TFB. Also, some of the coloring-triangle crystals, such as GaₓSᵧ, are potentially experimentally achievable [69–71]. For other 2D FB crystals predicted here, we expect that they can be exfoliated from layered bulk materials by the mechanical, electrical, or chemical method [72,73], or can be grown on suitable prescreened substrates by the molecular beam epitaxy, or chemical vapor deposition technology [74,75].

The TFBs predicted in this work, all around Fermi level, can be directly probed by angle resolved photoemission...
spectroscopy [76], where the momentum-space band dispersion can be measured. Also, the FBs can be probed by scanning tunneling spectroscopy (STS), where a sharp peak of density of states could be shown as a signature for FBs [40], and the edge/corner states from electron topology can be directly imaged by the space-resolved STS. The measurement of quantum Hall conductance can demonstrate topological transport properties [77], which would potentially confirm the intriguing fractional quantum anomalous Hall effect from partially occupied TFBs [6–8].

Conclusions. By employing the data screening calculations on materials from a first-principles materials database, we have discovered 15 inorganic 2D crystals (Table I) with ideal TFBs representing six FB lattice models, which opens a door towards experimental observation of TFBs in real materials, and exploration/substantiation of their intriguing physics and applications. In particular, some of these realistic 2D crystals have already been made in experiments, which will hopefully draw immediate attention. Moreover, the screening approach developed here for searching 2D FB crystals can be extended to systematically uncovering 3D FB materials from the well-established databases [78–81].

Acknowledgments. F.L. was supported by U.S. DOE-BES (Grant No. DE-FG02-04ER46148). S.M. and H.L. acknowledge financial support from the National Natural Science Foundation of China (Grants No. 12025407 and No. 11934003), and Chinese Academy of Sciences (Grant No. XDB330301).

[1] Z. Liu, F. Liu, and Y.-S. Wu, Exotic electronic states in the world of flat bands: From theory to material, Chin. Phys. B 23, 077308 (2014).
[2] D.-S. Ma, Y. Xu, C. S. Chiu, N. Regnault, A. A. Houck, Z. Song, and B. A. Bernevig, Spin-Orbit-Induced Topological Flat Bands in Line and Split Graphs of Bipartite Lattices, Phys. Rev. Lett. 125, 266403 (2020).
[3] H. Liu, G. Sethi, S. Meng, and F. Liu, Orbital design of flat bands in non-line-graph lattices via line-graph wavefunctions, arXiv:2104.14163.
[4] J.-W. Rhim and B.-J. Yang, Classification of flat bands according to the band-crossing singularity of Bloch wave functions, Phys. Rev. B 99, 045107 (2019).
[5] D. L. Bergman, C. Wu, and L. Balents, Band touching from real-space topology in frustrated hopping models, Phys. Rev. B 78, 125104 (2008).
[6] E. Tang, J. W. Mei, and X. G. Wen, High-Temperature Fractional Quantum Hall States, Phys. Rev. Lett. 106, 236802 (2011).
[7] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Fractional Quantum Hall States at Zero Magnetic Field, Phys. Rev. Lett. 106, 236804 (2011).
[8] K. Sun, Z. Gu, H. Katsura, and S. D. Sarma, Nearly Flatbands with Nontrivial Topology, Phys. Rev. Lett. 106, 236803 (2011).
[9] E. C. Stoner, Collective electron ferromagnetism, Proc. R. Soc. London, Ser. A 165, 372 (1938).
[10] W. Jiang, H. Huang, and F. Liu, A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism, Nat. Commun. 10, 2207 (2019).
[11] C. Wu, D. Bergman, L. Balents, and S. D. Sarma, Flat Bands and Wigner Crystallization in the Honeycomb Optical Lattice, Phys. Rev. Lett. 99, 070401 (2007).
[12] B. Jaworowski, A. D. Güçlü, P. Kaczmarkiewicz, M. Kupczyński, P. Potasz, and A. Wójs, Wigner crystallization in topological flat bands, New J. Phys. 20, 063023 (2018).
[13] S. Miyahara, S. Kusuta, and N. Furukawa, BCS theory on a flat band lattice, Phys. C (Amsterdam, Neth.) 460, 1145 (2007).
[14] D. Jérome, T. M. Rice, and W. Kohn, Excitonic insulator, Phys. Rev. 158, 462 (1967).
[15] G. Sethi, Y. Zhou, L. Zhu, L. Yang, and F. Liu, Flat-Bands-Enabled Triplet Excitonic Insulator in a Di-Atomic (Yin-Yang) Kagome Lattice, Phys. Rev. Lett. 126, 196403 (2021).
[16] Y. Zhou, G. Sethi, H. Liu, Z. Wang, and F. Liu, Excited quantum Hall effect: Enantiomorphic flat bands in a Yin-Yang Kagome lattice, arXiv:1908.03689.
[17] A. Mielke, Ferromagnetic ground states for the Hubbard model on line graphs, J. Phys. A: Math. Gen. 24, L73 (1991).
[18] A. Mielke, Ferromagnetism in the Hubbard model on line graphs and further considerations, J. Phys. A: Math. Gen. 24, 3311 (1991).
[19] A. Mielke, Exact ground states for the Hubbard model on the Kagome lattice, J. Phys. A: Math. Gen. 25, 4335 (1992).
[20] I. Syüz, Statistics of kagomé lattice, Proc. Theor. Phys. 6, 306 (1951).
[21] E. H. Lieb, Two Theorems on the Hubbard Model, Phys. Rev. Lett. 62, 1201 (1989).
[22] H. Tasaki, From Nagaoka’s ferromagnetism to flat-band ferromagnetism and beyond, Proc. Theor. Phys. 99, 489 (1998).
[23] M. Ezawa, Higher-Order Topological Insulators and Semimetals on the Breathing Kagome and Pyrochlore Lattices, Phys. Rev. Lett. 120, 026801 (2018).
[24] H. Xue, Y. Yang, F. Gao, Y. Chong, and B. Zhang, Acoustic higher-order topological insulator on a kagome lattice, Nat. Mater. 18, 108 (2019).
[25] A. Bolens and N. Nagaosa, Topological states on the breathing kagome lattice, Phys. Rev. B 99, 165141 (2019).
[26] K. Essafi, L. D. C. Jaubert, and M. Udagawa, Flat bands and Dirac cones in breathing lattices, J. Phys.: Condens. Matter 29, 315802 (2017).
[27] Y. Zhou, G. Sethi, C. Zhang, X. Ni, and F. Liu, Giant intrinsic circular dichroism of enantiomorphous flat Chern bands and flatband devices, Phys. Rev. B 102, 125115 (2020).
[28] S. Zhang, M. Kang, H. Huang, W. Jiang, X. Ni, L. Kang, S. Zhang, H. Xu, Z. Liu, and F. Liu, Kagome bands disguised in a coloring-triangle lattice, Phys. Rev. B 99, 100404(R) (2019).
[29] B. Pal, Nontrivial topological flat bands in a diamond-octagon lattice geometry, Phys. Rev. B 98, 245116 (2018).
[30] C. Wu and S. D. Sarma, p3xy-orbital counterpart of graphene: Cold atoms in the honeycomb optical lattice, Phys. Rev. B 77, 235107 (2008).
[31] Z. Liu, Z. F. Wang, J. W. Mei, Y. S. Wu, and F. Liu, Flat Chern Band in a Two-Dimensional Organometallic Framework, Phys. Rev. Lett. 110, 106804 (2013).
X. Zhang and M. Zhao, Robust half-metallicity and topological aspects in two-dimensional Cu-TPyB, Sci. Rep. 5, 14098 (2015).

O. J. Silveira, S. S. Alexandre, and H. Chacham, Electron states of 2D metal–organic and covalent–organic honeycomb frameworks: Ab initio results and a general fitting hamiltonian, J. Phys. Chem. C 120, 19796 (2016).

Z. F. Wang, N. Su, and F. Liu, Prediction of a two-dimensional organic topological insulator, Nano Lett. 13, 2842 (2013).

M. G. Yamada, T. Soejima, N. Tsuji, D. Hirai, M. Dinc˘a, and Z. F. Wang, N. Su, and F. Liu, Prediction of a two-dimensional metal-organic topological insulator, J. Phys. Soc. Jpn. 85, 084203 (2016).

L. Z. Zhang, Z. F. Wang, B. Huang, B. Cui, Z. Wang, S. X. Du, H. J. Gao, and F. Liu, Intrinsic Two-Dimensional Organic Topological Insulators in Metal-Dicyanooanthracene Lattices, Nano Lett. 16, 2072 (2016).

X. Zhang, Z. Wang, M. Zhao, and F. Liu, Tunable topological states in electron-doped HTT-Pt, Phys. Rev. B 93, 165401 (2016).

O. J. Silveira and H. Chacham, Electronic and spin-orbit properties of the kagome MOF family M2(1, 2, 5, 6, 9, 10 – triphenylenehexathi)2 (M = Ni, Pt, Cu and Au), J. Phys.: Condens. Matter 29, 09LT01 (2017).

Z. Li, J. Zhuang, L. Wang, H. Feng, G. Qiao, X. Xu, W. Hao, X. Wang, C. Zhang, K. Wu, S. X. Dou, L. Chen, Z. Hu, and Y. Du, Realization of flat band with possible nontrivial topology in electronic Kagome lattice, Sci. Adv. 4, eaau4511 (2018).

H. Tanaka, Y. Fujisawa, K. Kuroda, R. Noguchi, S. Sakuragi, C. Bareille, B. Smith, C. Cacho, S. W. Jung, T. Muro, Y. Okada, and T. Kondo, Three-dimensional electronic structure in ferromagnetic Fe3Sn2 with breathing kagome bilayers, Phys. Rev. B 101, 161114(R) (2020).

Y. Gao, Y.-Y. Zhang, J.-T. Sun, L. Zhang, S. Zhang, and S. Du, Quantum anomalous Hall effect in two-dimensional Cudicyanobenzene coloring-triangle lattice, Nano Res. 13, 1571 (2020).

Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature (London) 555, 43 (2018).

E. Jin, M. Asada, Q. Xu, S. Dalapati, M. A. Addicoat, M. A. Brady, H. Xu, T. Nakamura, T. Heine, Q. Chen, and D. Jiang, Two-dimensional sp2 carbon-conjugated covalent organic frameworks, Science 357, 673 (2017).

F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehensive search for topological materials using symmetry indicators, Nature (London) 566, 486 (2019).

M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, A complete catalogue of high-quality topological materials, Nature (London) 566, 480 (2019).

T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, and C. Fang, Catalogue of topological electronic materials, Nature (London) 566, 475 (2019).

H. Liu, J. T. Sun, M. Liu, and S. Meng, Screening magnetic two-dimensional atomic crystals with nontrivial electronic topology, J. Phys. Chem. Lett. 9, 6709 (2018).
[63] B. Huang, M. Yoon, B. G. Sumpter, S. H. Wei, and F. Liu, Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in Transition-Metal Dichalcogenides, Phys. Rev. Lett. 115, 126806 (2015).

[64] M. Zhou, W. Ming, Z. Liu, Z. Wang, P. Li, and F. Liu, Epitaxial growth of large-gap quantum spin Hall insulator on semiconductor surface, Proc. Natl. Acad. Sci. USA 111, 14378 (2014).

[65] M. Zhou, W. Ming, Z. Liu, Z. Wang, Y. Yao, and F. Liu, Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling, Sci. Rep. 4, 7102 (2014).

[66] G. J. Miller, Solid state chemistry of Nb3Cl8: Nb3TeCl7, mixed crystal formation, and intercalation, J. Alloys Compd. 217, 5 (1995).

[67] M. Smith and G. J. Miller, Ta3SBr7 — A new structure type in the $M_3QX_7$ family ($M$ = Nb, Ta; $Q$ = S, Se; $X$ = Cl, Br, I), J. Solid State Chem. 140, 226 (1998).

[68] J. Yoon, E. Lesne, K. Sklarek, J. Sheekelton, C. Pasco, S. S. P. Parkin, T. M. McQueen, and M. N. Ali, Anomalous thickness-dependent electrical conductivity in van der Waals layered transition metal halide, Nb3Cl8, J. Phys.: Condens. Matter 32, 304004 (2020).

[69] M. M. Y. A. Alsaif, N. Pillai, S. Kuriakose, S. Walia, A. Jannat, K. Xu, T. Alkathiri, M. Mohiuddin, T. Daeneke, K. Kalantar-Zadeh, J. Z. Ou, and A. Zavabeti, Atomically thin Ga2S3 from skin of liquid metals for electrical, optical, and sensing applications, ACS Appl. Nano Mater. 2, 4665 (2019).

[70] X. Wang, Y. Sheng, R. J. Chang, J. K. Lee, Y. Zhou, S. Li, T. Chen, H. Huang, B. F. Porter, H. Bhaskaran, and J. H. Warner, Chemical vapor deposition growth of two-dimensional monolayer gallium sulfide crystals using hydrogen reduction of Ga2S3, ACS Omega 3, 7897 (2018).

[71] L. Hu and X. Huang, Peculiar electronic, strong in-plane and out-of-plane second harmonic generation and piezoelectric properties of atom-thick $\alpha$-M$_2X_3$ ($M$ = Ga, In; $X$ = S, Se): Role of spontaneous electric dipole orientations, RSC Adv. 7, 55034 (2017).

[72] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353, aac9439 (2016).

[73] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004).

[74] J. Deng, B. Xia, X. Ma, H. Chen, H. Shan, X. Zhai, B. Li, A. Zhao, Y. Xu, W. Duan, S. C. Zhang, B. Wang, and J. G. Hou, Epitaxial growth of ultrathin stanene with topological band inversion, Nat. Mater. 17, 1081 (2018).

[75] J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q. Zeng, C. H. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin, B. I. Yakobson, Q. Liu, K. Suenaga, G. Liu, and Z. Liu, A library of atomically thin metal chalcogenides, Nature (London) 556, 355 (2018).

[76] J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B. G. Park, J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus, Science 349, 723 (2015).

[77] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue, Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator, Science 340, 167 (2013).

[78] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1, 011002 (2013).

[79] S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T. Stokes, D. O. Demchenko, and D. Morgan, AFLLOW: An automatic framework for high-throughput materials discovery, Comput. Mater. Sci. 58, 218 (2012).

[80] C. Draxl and M. Scheffler, NOMAD: The FAIR concept for big data-driven materials science, MRS Bull. 43, 676 (2018).

[81] G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozinsky, AiiDA: Automated interactive infrastructure and database for computational science, Comput. Mater. Sci. 111, 218 (2016).