Osteoporosis and Related Health Status Among the Elderly Urban Residents in Elderly-Care Inns in Beijing, a Multicenter DXA Survey

XinChao Lin¹, HongTao Guo², YiGang Lian¹, Jiajing Kou¹, GuangLei Wang¹, YiYun Chen¹, Juan Wang³, Xu Han³, Miao Jiang³* and QiaoHui Yang¹*

¹ Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China, ² The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China, ³ Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

Background: Identification of the high risk population for osteoporosis and timely prevention are the best strategies at present. Detailed epidemiological investigation in a well-defined population is necessary to explore the population-based characteristics and risk factors of osteoporosis, thus to facilitate better prevention programs.

Method: In this prospective cross-sectional study, 1423 questionnaires were given out to the urban residents (female ≥ 40 years of age, male ≥50 years) who lived in the 27 Elderly-Care Inns interspersed among the seven central urban areas of Beijing. All participants were voluntary and underwent routine physical examination and spine and hip BMD measurements using the DXA instrument. The study protocols were approved by the Medical Ethics Committee of Dongzhimen Hospital, Beijing University of Chinese Medicine (JDZX2015079).

Results: Altogether 1407 participants fulfilled the survey. Among 359 men, the prevalence of osteoporosis, osteopenia, and normal BMD were 18.1%, 56.6%, and 25.3%, respectively; among 1048 women, the corresponding figures were 40.3%, 42.8%, and 16.9%, respectively. After adjustment of age and BMI, both hands grip strength, height loss over 3 cm, serum levels of ß-CTx, PINP, and OST were the independent risk factors for osteoporosis in both men and women; besides, familial Alzheimer’s disease history in men; and history of steatohepatitis and fracture, serum levels of PTH and ALT, age of menarche, age of menopause, and duration of menstruation in women were also risk factors of osteoporosis. In both genders, the cost-effective method, which adopted both hands grip strength, height loss over 3 cm, and medical history, indicated a good predictive ability to evaluate the risk of osteoporosis (in men AUC=0.730, 95%CI=0.642~0.817; in women AUC=0.769, 95%CI=0.724~0.813).

Conclusions: In the population of elderly Beijing urban residents in Elderly-Care Inns, the prevalence of osteoporosis in women is higher than that in men and increases with aging more rapidly; the prevalence of osteopenia in men is higher than in women. The cost-
INTRODUCTION

Osteoporosis is a kind of systemic bone disease characterized by decreased bone mass and bone microstructure damage, resulting in increased bone fragility and easy fracture (1). Osteopenia is a term to define bone density that is not normal but also not as low as osteoporosis (2). The prevalence rate of osteoporosis increases with age (3). In China, the prevalence rate of osteoporosis among the population above 60 years old was reported to be 36%; 23% in male population and 49% in female (4).

The most serious consequence of osteoporosis is osteoporotic fracture, which has been regarded as one of the most severe public health issues in middle-aged and elderly people concerned with the growth in the aging population throughout the world. It has been estimated that approximately 50% of women and 20% of men over 50 years old will suffer an osteoporosis-related fracture; hip fracture is the most devastating due to the consequent disability, mortality, and costs (5). The number of patients with osteoporosis fractures in China reached 2.33 million in 2010, including 360,000 hip fractures, 1.11 million vertebral fractures, and 860,000 other osteoporotic fractures (6). Among them, 20% of patients die of complications within one year after a hip fracture, and about 50% become disabled, with a significantly reduced quality of life (7). This brings a heavy economic burden on both the families and society, the medical expenditure of fractures in China in 2010 reached $10.2 billion USD, and this figure will be as high as $275 billion USD led by the estimated 5.99 million patients with osteoporotic fracture by the year 2050 (6).

Osteoporosis is preventable and treatable. Proper treatment can effectively reduce the risk of fracture and refracture even for those who have already suffered from brittle fracture (8). Thus, early screening and identification of high-risk populations so as to take timely preventive measures should never be over strengthened (9).

However, the fact is that osteoporosis is underdiagnosed and undertreated, especially in those over 75 years old, in whom treatment is probably most beneficial and cost-effective, and even among the highest-risk populations who have already suffered fractures in big cities such as Beijing (10), although many researchers and clinicians have already concentrated on these issues and made remarkable achievements, such as the publication of the guidelines for the diagnosis and treatment of osteoporosis both in modern medicine and in Chinese medicine (11–16).

Besides the efforts to improve the accessibility to bone densitometry, the awareness of the disease by professionals and the public, and the use and reimbursement of drugs, the first gap that needs to be closed in the structured care pathways for osteoporosis care is how to determine the risk factors so as to identify the high-risk subjects.

As a complex disease, osteoporosis is affected by multiple risk factors, including environmental factors and genetic factors. Genetic factors (uncontrollable factors), include race, aging, female menopause, and family history of brittle fracture. Environmental factors (controllable factors) include mainly unhealthy lifestyle such as smoking, alcohol consumption, nutritional imbalance, improper diet, low physical activity, and so on. These risk factors can individually or synergistically cause the loss of bone mineral density and lead to osteoporosis (17).

Notably, there exist significant differences in the lifestyle between different regions, countries, or ethnicities, for example, even the lifestyles between urban and rural areas and among different regions in China vary greatly, which leads to great differences in the prevalence rate of osteoporosis, the major risk factors, and the proper prevention measures among regions and populations (18).

The accurate and cost-effective clinical risk factor models for the assessment of osteoporosis probability should be based on the highly population-specific data. Unfortunately, work in this area is currently seriously insufficient in China, it has been pointed out that cost-effective analysis on screening strategy and intervention thresholds based on local epidemiology data and economic status are available only in Japan throughout the east Asia area (10). Therefore, the next key step should be focused on the establishment of local data to develop a cost-effective risk assessment strategy to identify high risk individuals for screening and treatment.

Regarding these considerations, the Chinese Society for Health Management of the Chinese Medical Association collaborated with the Chinese Geriatrics Society for Osteoporosis and Bone Mineral Research, for the first time, developed a multicenter epidemiological survey in a large-scale Chinese population for determining the prevalence of osteoporosis and establishing a BMD reference database with a unified DXA system (19).

This study was a sub-project of the above survey, undertaken by Dongzhimen Hospital, Beijing University of Chinese Medicine, the target population was about 1500 elderly urban residents in Beijing, China, in order to obtain the prevalence and risk factors of osteoporosis among them. The data from this survey were included in the first epidemiological study of osteoporosis among Chinese residents developed by the Chronic Disease Center of the Chinese Center for Disease Control and Prevention and the Osteoporosis and Bone Mineral Salt Diseases Branch of the Chinese Medical Association in 2018 organized by the National Health Commission.

Keywords: osteoporosis, osteopenia, DXA, urban area in Beijing, survey, risk factor
MATERIALS AND METHODS

Study Design and the Population

This was a prospective cross-sectional study. All participants were recruited from Beijing urban area and were voluntary and underwent routine physical examination carried out by physicians in the Health Management unnormal Center of Dongzhimen Hospital, Beijing University of Chinese Medicine.

Eligible participants must meet the inclusion criteria: female ≥ 40 years of age, male ≥50 years, and with spine and hip BMD measurements. Pregnant or lactating women; participants with a history of chronic diseases, such as metabolic bone disease, malignant tumors, calcium absorption; participants with acute infectious diseases; participants with mental health problems; and participants with a history of use of any drugs affecting bone metabolism were excluded. Each participant signed written informed consent.

The study protocols were approved by the Medical Ethics Committee of Dongzhimen Hospital, Beijing University of Chinese Medicine. (JDZX2015079). The registration number of the study was NCT02958020.

From July 26, 2017 to May 4, 2018, altogether 1423 questionnaires were given out to the middle-aged and elderly urban residents in Beijing, China. These residents were recruited from 27 Elderly-Care Inns interspersed among the seven central urban areas of Beijing. The distribution of the Elderly-Care Inns and corresponding population is shown in Table 1.

Data Collection

Demographic Characteristics

Age, gender, address, height, weight, waistline, hipline, education level, marital status, occupation information, personal history (smoke, alcohol, dietary favor, pregnancy and parity history, menstrual history, etc.), medical history (chronic diseases, fracture history, medication use, sleep quality, etc.), were collected by specific designed form and face-to-face interviews.

Questionnaires

International Physical Activity Scale (IPAQ) short form was applied to evaluate the physical activity (20); International Osteoporosis Foundation (IOF) was adopted for evaluating the osteoporosis risk (21); EuroQol Health Index Scale EQ-5D (EuroQol-5) dimension [17] was used to assess life quality. Questionnaires were carried out by physicians from the Health Management Center of Dongzhimen Hospital, Beijing University of Chinese Medicine.

Blood Sample Collection

Fasting peripheral blood was collected from each participant. Levels of serum total calcium, serum phosphorus, serum magnesium, serum creatinine, alkaline phosphatase (ALP), thyrotropin (TPH), and 25-Hydroxyvitamin D were tested. Serum procollagen type 1 N-terminal propeptide (PINP), serum osteocalcin (OST), and β cross-linked C-telopeptide of

TABLE 1 | Distribution of the recruited elderly-care inns in Beijing.

District	Elderly-Care Inns	Number	Total number
Dongcheng	Qianmen (前门驿站)	47	426
	Ganyu (甘雨驿站)	68	
	Wangfujing (王府井驿站)	17	
	Zhongyan (中央驿站)	92	
	Gulou (鼓楼驿站)	108	
	Shaoju (韶九驿站)	69	
	Dongzhimen (东直门驿站)	25	
Chaoyang	Aoyuncun (奥运村驿站)	39	167
	Yangtai (阳台北站)	83	
	Dongdaqiao (东大桥北站)	11	
	Kangying (康营西站)	34	
Haidian	Fumeiyuan (福美园南站)	52	335
	Beixinjuyuan (北新家园北站)	71	
	Diankeyuan (电科院南门)	58	
	Yongtai (永泰家园西门)	49	
	Jiancaixi (建材四里西门)	88	
	Erlihuang (二里庄西门)	17	
Fengtai	Fanghuang (芳园北站)	41	127
	Xihongmen (西河门南站)	86	
Daxing	Yizhuangzhanghejiongqian (亦庄长者公馆北站)	30	30
	Yangzhuang (杨庄北站)	134	266
	Tinan (天南西站)	50	
	Taikang (泰康西站)	29	
	Guichengqiongqian (古城公园北站)	20	
Shijingshan	Tongzhuang (通州站)	38	72
	Xinhua (新华北站)	34	
Tongzhou			
Total			1423

Among the 1423 distributed questionnaires, 11 informants were eliminated for improper age, two for incomplete information, three for unable to determine the TCM constitution type, finally 1407 participants were qualifiedly recruited.
type 1 collagen (β-CTx) were tested using radioimmunoassay. Blood samples were collected and tested by researchers from Guangzhou KingMed Diagnostics Group Co. Ltd.

BMD Measurements and Osteoporosis Diagnosis

Each participant underwent a BMD measurement using the DXA instrument (Hologic, American Hologic WI), which was equipped in a BMD examination car, sponsored by Guangzhou KingMed Diagnostics Group Co. Ltd. The BMD examination car entered each community and provided BMD examination service to each participant, the lumbar spine (L1-L4) and the left proximal femur (Neck), the Wards triangle, the Troch, the Shaft, and the Total femur (Total) were measured.

Diagnostic criteria of osteoporosis were based on DXA bone mineral density T-score/Z-score (16). BMD values (g/cm²) were expressed as T-scores for men above 50 years old and postmenopausal women (number of SD above/below the mean for healthy 30-year-old adults); or as Z-scores for premenopausal women (number of SD above/below the mean for the patient’s age). The gender-specific mean BMD and standard deviation (SD) were calculated. The maximal gender-specific mean BMD was defined as the peak BMD. In accordance with the Chinese society of osteoporosis and mineral research (CSOBMR) criteria, osteoporosis was diagnosed using the following criteria:

Normal:	T-score/Z-score > -1.0 SD
Osteopenia:	-2.5 SD < T-score/Z-score < -1.0 SD
Osteoporosis:	T-score/Z-scores < -2.5 SD

Statistical Analysis

Continuous variables were expressed as mean ± SD and categorical variables as numbers (percentages). All analyses were stratified by gender. Descriptive statistics were performed using one-way analysis of variance and LSD methods were adopted in the post hoc test. For the variables that did not conform to the normal distribution, the Kruskal-Wallis H test was applied. Multivariate logistic regression analysis was conducted to evaluate the risk factors of osteoporosis including demographic variables, medical history, and physical and chemical examination variables. The interaction of age and BMI was included; OR value and 95%CI were calculated. The Youden’s index from the ROC was used to determine the cutoff values of the risk factors in predicting osteoporosis and osteopenia. A two-sided P value <0.05 was considered statistically significant. All analyses were conducted using SPSS24.0 software (IBM Corp., Armonk, NY, USA).

RESULTS

Baseline Characteristics and Medical History of the Participants

The baseline characteristics of the participants are listed in Table 2. Altogether 1048 female and 359 male participants were involved in the analysis, the average age of men was 67.14 ± 7.44 (range from 50 to 87), of women was 64.33 ± 8.55 (range from 41 to 96). There were no significant differences among the three groups (normal, osteopenia, and osteoporosis population) in the distribution of monthly household income, working condition, history of smoke and alcohol intake in both genders, job category, and working condition in men.

Among the three groups, the distributions of age, education level, and marital status in both genders; job category and working condition in women, showed statistical differences (P<0.05). Subjects with elder age, physical worker, single status, and those with lower education levels tended to have lower BMD.

The Prevalence Rates of Osteopenia and Osteoporosis in the Participants

The overall prevalence rate of osteoporosis was 34.6% and osteopenia was 46.3% as listed in Table 4. In male population, the prevalence of osteoporosis and osteopenia was 18.1% and 56.6%, respectively; in the female population it was 40.3% and 42.8%, respectively. The prevalence of both osteoporosis and osteopenia in senile women were much higher than those in senile men. Figure 1 shows the prevalence of osteoporosis and osteopenia by age and gender. With the increase of age, the prevalence of osteoporosis elevates more significantly in women.

After the age of 50, the prevalence of osteoporosis in men increased slowly, but the prevalence of osteopenia was always higher than that in women in the same age period. Therefore, the issue of BMD declining in elderly men also needs to be paid high attention. In women, the prevalence of osteoporosis after the age of 50 increased quickly with age. After 80 years old, all women indicated abnormal BMD; the prevalence of osteopenia kept relatively stable. The characteristics of BMD decline between men and women were different.

Risk Factors for Osteoporosis Analyses

The results of physical examination, biochemical test, and bone metabolic examination are listed in Table 5. TCM symptoms and constitution differentiation, International Physical Activity Scale (IPAQ) short form, International Osteoporosis Foundation (IOF), and EuroQol Health Index Scale EQ-5D (EuroQol-5) were also adopted and the information were analyzed, since no positive result was detected, the relative results were ignored.

Univariate analysis showed that in the male population, height, weight, grip strength of each hand, OST, β-CTx, and PINP presented significant differences among groups (P<0.05), the P values in post analysis by LSD method are listed as well. In the female population, height, weight, BMI, grip strength of each hand, sit test, ALP, PTH, OST, serum magnesium, β-CTx, and PINP show differences among groups (P<0.05).

Risk Factors Analysis and the Predictive Ability for Osteoporosis

Multivariate analysis was adopted to determine the risk factors of osteoporosis and the results are displayed and ordered by OR value in Table 6. For men, β-CTx, familial Alzheimer disease, OST, height loss, and PINP were risk factors for osteoporosis
TABLE 2 | Baseline characteristics of study participants grouped by osteoporosis diagnose.

	Male	Female								
	Total	Normal	Osteopenia	Osteoporosis	P value	Total	Normal	Osteopenia	Osteoporosis	P value
Case number	359	91	203	65	18.1%	1048	177	449	422	40.3%
Age category (in years)										
40–49										
	64 (17.8%)	17	38 (59.4%)	9 (14.1%)	0.007*	299	82	137	80	26.8%
50–59	190	49	110 (57.9%)	31 (16.3%)		467	56	210 (45.0%)	201	43.0%
70–79	83 (23.1%)	23	43 (51.6%)	17 (20.5%)		193	6	74 (38.3%)	113	58.6%
80–89	22 (6.1%)	2	12 (54.6%)	8 (36.4%)		32	0	7 (21.9%)	25 (78.1%)	
≥90	0	0	0	0		2	0	2 (100.0%)		
Monthly household income										
≤1000	18 (5.3%)	4	11 (61.1%)	3 (16.7%)	0.672	53	12	25 (47.2%)	16 (30.2%)	0.064
1000-3000	22 (6.5%)	5	11 (50.0%)	6 (27.3%)		188	38	83 (44.1%)	67 (35.6%)	
3000-5000	110	22	64 (58.2%)	24 (21.8%)		326	45	141 (43.3%)	140 (42.9%)	
5000-8000	123	32	73 (59.3%)	18 (14.6%)		276	54	117 (42.4%)	105 (38.0%)	
8000-12000	51 (15.0%)	15	27 (52.9%)	9 (17.6%)		113	16	39 (34.5%)	58 (51.3%)	
12000-15000	6 (1.8%)	1	2 (33.3%)	1 (16.7%)		30	3	17 (56.7%)	10 (33.3%)	
15000-20000	5 (1.5%)	2	2 (40.0%)	1 (20.0%)		7	0	2 (28.6%)	5 (71.4%)	
≥20000	0	0	0	0		2	0	2 (100.0%)		
Job category										
Physical labor	129	24	78 (60.5%)	27 (20.9%)	0.168	363	64	145 (39.9%)	154 (42.4%)	0.011
Mental labor	86 (27.5%)	25 (29.1%)	48 (55.6%)	13 (15.1%)		305	36	127 (41.9%)	140 (46.2%)	
Both physical and mental labor	98 (31.3%)	31	53 (54.1%)	14 (14.3%)		267	59	118 (44.2%)	90 (33.7%)	
Working condition										
keep working	23 (6.6%)	8	13 (56.5%)	2 (8.7%)	0.350	88	31	36 (40.9%)	21 (23.9%)	<0.001
Retired	328	80	187	61 (18.6%)		929	145	398 (42.8%)	386 (41.6%)	
Education level										
Illiteracy	3 (0.8%)	0	3 (100.0%)	0	0.019*	32	3	15 (46.9%)	16 (50.0%)	<0.001
Primary school	17 (4.8%)	4	8 (47.1%)	5 (29.4%)		88	6	31 (35.2%)	51 (58.0%)	
High school	135	24	77 (57.9%)	32 (24.1%)		336	42	146 (43.5%)	148 (44.0%)	
College	108 (30.6%)	34	65 (6.0%)	9 (8.3%)		364	84	159 (43.7%)	121 (33.2%)	
Bachelor degree or above	59 (16.7%)	15	34 (57.6%)	10 (16.9%)		142	28	60 (42.6%)	53 (37.6%)	
Marriage										
Married	317	80	182 (57.4%)	55 (17.4%)	0.043*	841	162	364 (43.3%)	315 (37.5%)	<0.001
Single	3 (0.9%)	1	1 (33.3%)	0		8	0	1 (12.5%)	3 (37.5%)	4 (50.0%)
Divorced	13 (3.7%)	1	8 (61.5%)	4 (30.8%)		36	5	17 (47.2%)	13 (36.1%)	
Widowed	18 (5.1%)	6	9 (50.0%)	1 (5.8%)		154	8	57 (37.0%)	89 (57.8%)	
Smoke										
No smoking	142	45	71 (50.0%)	26 (18.3%)	0.248	985	165	420 (42.6%)	400 (40.6%)	0.976
Active smoking	126	27	75 (59.5%)	24 (19.0%)		37	7	16 (43.2%)	14 (37.8%)	
Passive smoking	86 (24.3%)	18	53 (61.6%)	15 (17.4%)		12	1	2 (16.7%)	6 (50.0%)	4 (33.3%)

(Continued)
table 2 continued

History of alcohol intake	Total	Normal	Osteopenia	Osteoporosis	P value	Total	Normal	Osteopenia	Osteoporosis	P value
No alcohol use	141	40	73 (51.8%)	28 (19.9%)	0.739	962	162	404 (42.0%)	396 (41.2%)	0.129
Alcohol drinking	171	41	102 (59.6%)	28 (16.4%)		57	12	29 (50.9%)	16 (28.1%)	
Drinking in the past	40 (11.2%)	10	23 (57.5%)	7 (17.5%)		12	2	8 (66.7%)	2 (16.7%)	

Values are presented as N (%). P < 0.05 stands for a significant difference among the three groups (Normal, Osteopenia, and Osteoporosis). Medical history of study participants and related medications were collected, including fracture, cerebral infarction, coronary heart disease, hyperlipidemia, hypertension, lumbar intervertebral disc protrusion, lumbar spinal stenosis, knee osteoarthritis, gout, gastritis, gastric ulcer, type 2 diabetes, steatohepatitis, chronic pharyngolaryngitis, allergic rhinitis, cerebral hemorrhage, hypothyroidism, hyperparathyroidism, chronic nephrosis, diabetic nephropathy, kidney transplantation, type 1 diabetes, chronic hepatitis B, liver cirrhosis, liver transplantation, alcoholic liver disease, breast cancer, liver cancer, ovarian cancer, thyroid cancer, chronic bronchitis, pulmonary emphysema, chronic obstructive pulmonary disease (COPD), bronchial asthma, bronchiectasis, and pulmonary interstitial fibrosis. Table 3 lists the prevalence rates and inter group differences of 15 diseases with high prevalence. In female population, the prevalence of fracture, coronary heart disease, and hypertension increased as BMD decreased (P<0.05); the prevalence of steatohepatitis showed significant difference among the three groups (P<0.05). There was no significant difference of the disease history distribution among the three groups in men (P > 0.05).

The significance of population selection in this study

Previous studies usually concentrated on a certain group of subjects, such as the elderly (22), postmenopausal women (23, 24), persons with physical disabilities (25), or people in some region or a country (26–28). These studies facilitated to deepen our understanding of the role of human factors in the development of osteoporosis and promoted the guidelines for the prevention and treatment of osteoporosis. However, the controllable factors, or lifestyle factors, should receive more attention because they also play an undeniably important role on the occurrence of osteoporosis. The diagnosis and treatment rate of osteoporosis still varied significantly among regions and between urban and rural areas, therefore, epidemiological investigation of osteoporosis in specific populations with similar lifestyles in the same living area could help to find more effective prevention and treatment methods for this population.

Aging and urbanization have been the two major issues in China, which make lifestyle changes significant, especially in the big cities such as Beijing, Shanghai, and so on. In the year 2020,
the average life expectancy of registered residents in Beijing was 82.43 years. In 2020 there were 4.299 million registered elderly residents (aged 60 and above) in Beijing, accounting for 19.6% of registered residents. These numbers keep increasing; it is expected that by 2025, this figure will be close to 24%. The distribution of the elderly population in Beijing is uneven. In the central urban area, the aging population is the highest, with 65% of the elderly population in Beijing living in the six central urban districts (Dongcheng, Xicheng, Chaoyang, Haidian, Fengtai, and Shijingshan District).

The consequent pension problem has become an urgent social problem. Given China’s traditional culture, most elderly residents tend to live in their own homes rather than going to the elder nursing institutions. Therefore, the government tried to put forward the mode of combining home-based, community-based, and institutional care, and increased government investment and policy support for the elderly. The Elderly-Care Inns, as the main functional unit of elderly care service, have been widely established in urban communities in Beijing, as well as other big cities in China, aiming to provide home-based elderly care services for the surrounding community residents: meal, assistant, medical aid, day care, full care services, etc.

This home-based pension service mode is suitable to be the main pension model in China’s big cities. By the end of 2017, Beijing had established 380 community Elderly-Care Inns in the urban area. These Elderly-Care Inns have greatly alleviated the increasingly urgent demand for urban elderly care in Beijing, however, as a new thing, there is not accurate survey data about the pension needs, population characteristics, and health conditions of the urban elderly in China.

Thus, our study was designed to develop a survey among the elder population who lived in Beijing urban area for at least 5 years, and all received the service from the Elderly-Care Inns, to investigate the prevalence of osteoporosis, and health status of these population, in order to provide assistance for the construction of the hardware and the service contents, as well to provide data support and theoretical guidance for the combination of medical care and rehabilitation for the Elderly-Care institutions.

Identification of High-Risk Population for Osteoporosis in the Elderly Urban Residents in Elderly-Care Inns in Beijing

In this study, a cost-effective method to evaluate the risk of abnormal BMD level (including osteoporosis and osteopenia) was established, based on hands grip strength, height loss, and familial Alzheimer’s history in men; and hands grip strength,steatohepatitis, chronic pharyngolaryngitis, allergic rhinitis, and Gout.

Disease	Total	Male	Female	P value	Normal (n=1407)	Osteopenia (n=652)	Osteoporosis (n=268)	P value
Fracture	14 (18.7%)	44 (58.7%)	17 (22.7%)	0.215	31 (13.6%)	79 (34.6%)	118 (51.8%)	<0.001*
Cerebral infarction	3 (8.8%)	22 (64.7%)	9 (26.5%)	0.051	6 (11.5%)	17 (32.7%)	29 (55.8%)	0.064
Coronary heart disease	19 (30.2%)	28 (44.4%)	16 (25.4%)	0.085	14 (9.3%)	64 (42.4%)	73 (48.3%)	0.012*
Hyperlipidemia	31 (29.5%)	60 (57.1%)	14 (13.3%)	0.235	52 (13.5%)	170 (44.3%)	162 (42.2%)	0.088
Hypertension	43 (25.1%)	97 (56.7%)	31 (18.1%)	0.870	59 (12.8%)	201 (43.7%)	200 (43.5%)	0.006*
Lumbar intervertebral disc protrusion	12 (20.3%)	37 (62.7%)	10 (16.9%)	0.542	43 (20.0%)	99 (46.0%)	73 (34.0%)	0.087
Lumbar spinal stenosis	6 (20.0%)	16 (53.3%)	8 (26.7%)	0.416	22 (19.3%)	50 (43.9%)	42 (36.8%)	0.656
Knee osteoarthritis	7 (17.1%)	26 (63.4%)	8 (19.5%)	0.430	38 (15.8%)	109 (45.4%)	93 (38.8%)	0.649
Gout	8 (47.1%)	7 (41.2%)	2 (11.8%)	0.108	4 (16.7%)	13 (54.2%)	7 (29.2%)	0.475
Gastritis	9 (22.0%)	24 (58.5%)	8 (19.5%)	0.863	27 (17.4%)	64 (41.3%)	41 (41.3%)	0.914
Gastric ulcer	5 (22.7%)	14 (63.6%)	3 (13.8%)	0.767	4 (12.9%)	8 (25.8%)	19 (61.3%)	0.051
Type 2 diabetes	24 (29.3%)	49 (59.8%)	9 (11.0%)	0.148	24 (13.5%)	75 (42.1%)	79 (44.4%)	0.301
Steatohepatitis	25 (34.2%)	39 (53.4%)	9 (12.9%)	0.095	42 (19.9%)	106 (50.2%)	63 (29.9%)	0.003*
Chronic pharyngolaryngitis	19 (27.1%)	37 (52.9%)	14 (20.0%)	0.782	54 (19.1%)	119 (42.2%)	109 (38.7%)	0.483
Allergic rhinitis	20 (30.3%)	38 (57.6%)	8 (12.1%)	0.288	26 (20.3%)	62 (48.4%)	40 (31.3%)	0.081

Values are presented as N (%).
P<0.05 stands for a significant difference among groups (Normal, Osteopenia, and Osteoporosis) adjusted by age and BMI.
*P<0.05.

TABLE 4 | The prevalence rates of osteoporosis in participants by gender.

Gender	Total (n=1407)	Male (n=359)	Female (n=1048)
Normal	268 (25.6%)	91 (25.3%)	177 (16.9%)
Osteopenia	652 (46.3%)	203 (56.6%)	449 (42.8%)
Osteoporosis	487 (34.6%)	65 (18.1%)	422 (40.3%)

Lin et al. Osteoporosis Among Beijing Urban Residents

Frontiers in Endocrinology | www.frontiersin.org July 2022 | Volume 13 | Article 8756787
height loss, history of fracture and steatohepatitis, and menstrual history in women. The predictive ability for osteoporosis is desirable in both men and women.

Hand grip strength was independently associated with increased fall risk score in osteoporotic elderly women (29), and low hand-grip strength was specifically associated with the risk of distal forearm fractures within 10 years and clinical vertebral fractures within 15 years or more in Japanese postmenopausal women (30). Since hand grip strength is easy and cost-effective to measure, it is suitable to be used as an easy assessment method for identifying individuals at a high risk of osteoporosis. The cutoff strength for evaluating osteoporosis in adults is age and sex specific (31). The results in this study were consistent with the previous studies.

Height loss is also simple to evaluate in the clinical setting, and it is a frequent manifestation of vertebral osteoporosis or fracture. The degree of height loss varied among individuals, and excessive height loss, of 3-4 cm or more can be considered a

TABLE 5 | Physical and chemical indexes by gender and osteoporosis diagnosis.

Male (N=364)	Female (N=1055)							
Total	**Normal**	**Osteopenia**	**Osteoporosis**	**P value**	**P value by LSD**			
Height (cm)	170.01 ± 5.80	171.79 ± 5.70	170.33 ± 5.38	166.77 ± 5.95	<0.001*	0.038#	<0.001#	<0.001$
Weight (kg)	73.15 ± 11.14	75.07 ± 14.81	73.97 ± 9.36	67.89 ± 8.56	<0.001*	<0.001#	<0.001$	
BMI (kg/cm²)	25.29 ± 5.32	25.48 ± 4.90	25.48 ± 2.93	24.41 ± 2.77	0.083			
Waistline (cm)	90.15 ± 16.80	92.81 ± 15.74	89.85 ± 18.23	87.27 ± 12.60	0.128			
Hipline (cm)	99.38 ± 16.83	102.37 ± 15.35	98.51 ± 18.30	97.89 ± 13.17	0.148			
W/H	0.91 ± 0.08	0.91 ± 0.07	0.91 ± 0.09	0.89 ± 0.06	0.211			
Grip strength of left hand (Kg)	32.73 ± 8.88	36.04 ± 9.68	31.82 ± 8.42	31.01 ± 8.03	<0.001*	<0.001#		
Grip strength of right hand (Kg)	34.35 ± 8.67	37.35 ± 7.55	33.51 ± 8.99	32.77 ± 8.21	0.001*	<0.001#		
Sit test (S)	9.30 ± 4.26	8.63 ± 2.76	9.48 ± 3.73	9.65 ± 6.75	0.050			
Alkaline phosphatase-ALP (µ/L)	17.24 ± 22.33	68.60 ± 16.06	74.29 ± 24.68	73.70 ± 21.66	0.126			
Creatinine (µmol/L)	82.14 ± 15.25	84.45 ± 14.20	81.34 ± 14.13	81.40 ± 19.48	0.255			
Parathyroid hormone-PTH (pmol/L)	3.30 ± 1.21	3.01 ± 1.13	3.06 ± 1.23	3.34 ± 1.23	0.191			
Serum Phosphorus (mmol/L)	10.35 ± 3.88	9.74 ± 3.19	10.78 ± 3.93	12.10 ± 4.21	<0.001*	0.034#	<0.001#	0.017$
Serum Magnesium (mmol/L)	0.93 ± 0.80	0.93 ± 0.80	0.93 ± 0.82	0.94 ± 0.72	0.598			
Serum Total Calcium (mmol/L)	2.35 ± 0.85	2.36 ± 0.08	2.35 ± 0.09	2.34 ± 0.08	0.271			
Serum Magnesium (mmol/L)	7.52 ± 0.85	7.52 ± 0.08	7.52 ± 0.09	7.51 ± 0.08	0.271			
Serum Total Calcium (mmol/L)	15.68 ± 6.25	15.85 ± 6.50	15.57 ± 6.05	15.73 ± 6.37	0.871			

Values are presented as mean ± SD.

*: P<0.05 among the 3 groups (Normal, Osteopenia, and Osteoporosis) by ANOVA.

*: P<0.05 between the Normal group and the Osteopenia group;

#: P<0.05 between the Normal group and the Osteoporosis group;

$: P<0.05 between the Osteopenia group and the Osteoporosis group.

CTx stands for cross-linked C-telopeptide of type 1 collagen; PINP represented Procollagen type I N-terminal propeptide.

The male case numbers involved in the tests of CTx, PINP, 25-hydroxyvitamin D3, and 25-hydroxyvitamin D Total was 357; and in the test of 25-hydroxyvitamin D2 is 80; The female case numbers in the above two parts are 1012 and 252, respectively.
TABLE 6 | Multivariate analysis of relevant risk factors for osteoporosis.

Variables	B regression coefficient	P value	Exp(B)/OR	95%CI
Male				
b-CTx (ng/mL)	4.380	<0.001	79.838	10.602–601.845
Familial Alzheimer Disease	1.020	0.033	2.773	1.087–7.078
Osteocalcin-OST (ng/mL)	0.96	0.01	2.612	1.042–1.162
Height loss (>3cm)	0.478	0.037	1.613	1.028–2.527
PINP (ng/mL)	0.25	0.001	1.284	1.011–1.040
Grip strength of left hand (Kg)	-0.040	0.002	0.961	0.936–0.986
Grip strength of right hand (Kg)	-0.036	0.008	0.965	0.939–0.990
Female				
b-CTx (ng/mL)	3.736	<0.001	41.93	14.397–122.120
Fracture	0.412	0.007	1.510	1.116–2.042
Height loss (>3cm)	0.310	0.024	1.363	1.042–1.786
Parathyroid hormone-PTH (pmol/L)	0.168	<0.001	1.183	1.087–1.307
Osteocalcin-OST (ng/mL)	0.100	<0.001	1.105	1.077–1.134
Age of menarche (Year)	0.086	0.009	1.089	1.021–1.161
Alkaline phosphatase-ALP (U/L)	0.019	<0.001	1.019	1.013–1.025
PINP (ng/mL)	0.018	<0.001	1.018	1.116–1.025
Grip strength of right hand (Kg)	-0.029	0.010	0.971	0.950–0.993
Grip strength of left hand (Kg)	-0.032	0.001	0.969	0.951–0.987
Age of menopause (Year)	-0.048	0.002	0.953	0.924–0.982
Duration of menstruation (Day)	-0.072	0.039	0.931	0.870–0.996
Steatohepatitis	-0.390	0.013	0.677	0.498–0.922

All variables were analyzed after adjustment by age and BMI. b-CTx stood for b cross-linked C-telopeptide of type 1 collagen; PINP represented Procollagen type 1 N-terminal propeptide. The cutoff value was calculated and the ROC curve was drawn of each selected risk factor to determine the predictive ability for osteoporosis. The sensitivity, specificity, and the AUC (area under the curve) with 95%CI, and P value for predicting osteoporosis are displayed in Table 7.

In both men and women, the AUC of one single factor ranged from 0.55 to 0.75. To achieve better AUC, the factors were grouped and combined together. One group was cost-effective group, including both hands grip strength and medical history (including family history, decrease of body height (>3cm), chronic disease, and menstrual history in women); the other group was serum test group (including serum levels of b-CTx, PINP, and OST in men and b-CTx, PINP, OST, ALP, and PTH in women). Finally, the two groups were combined together as one predictor. The best predictive ability was achieved by the final combined predictor in both men and women, which reached 79.7% in men and 82.6% in women. Notably, the predictive ability of the cost-effective group for osteoporosis was also desirable, and reached 73.0% in men and 76.9% in women, respectively. Both were higher than the predictive ability of serum test group. The predictive ability of these factors for abnormal BMD (including both osteopenia and osteoporosis) was similar to, and a little lower than, that for osteoporosis.

TABLE 7 | Predictive ability of the risk factors for predicting osteoporosis and osteopenia by gender.

Variables	Disease for predicting	Optimal cutoffs	Sensitivity	Specificity	AUC	95%CI	P value
Male							
b-CTx (ng/mL)	Osteoporosis	0.20	0.794	0.596	0.714	0.630–0.798	<0.001
	Osteopenia + osteoporosis	0.21	0.620	0.840	0.636	0.570–0.702	<0.001
PINP (ng/mL)	Osteoporosis	28.97	0.841	0.494	0.671	0.583–0.759	<0.001
	Osteopenia + osteoporosis	28.90	0.741	0.494	0.634	0.565–0.703	<0.001
Osteocalcin-OST (ng/mL)	Osteoporosis	13.65	0.381	0.921	0.677	0.591–0.763	<0.001
	Osteopenia + osteoporosis	7.35	0.867	0.303	0.598	0.531–0.665	0.006
Grip strength of left hand (Kg)	Osteoporosis	33.80	0.640	0.675	0.671	0.548–0.758	<0.001
	Osteopenia + osteoporosis	33.55	0.625	0.622	0.648	0.584–0.713	<0.001
Grip strength of right hand (Kg)	Osteoporosis	35.45	0.640	0.625	0.660	0.573–0.748	0.001
	Osteopenia + osteoporosis	32.55	0.764	0.472	0.640	0.576–0.704	<0.001
b-CTx + PINP + OST	Osteoporosis	–	–	–	0.708	0.623–0.792	<0.001
	Osteopenia + osteoporosis	–	–	–	0.649	0.583–0.715	<0.001
Familial Alzheimer Disease + Height loss (>3cm) + Both Hand Grip strength	Osteoporosis	–	–	–	0.730	0.642–0.817	<0.001
	Osteopenia + osteoporosis	–	–	–	0.672	0.600–0.743	<0.001

(Continued)
simple indicator of increasing fracture risk (32, 33). In our study, height loss over 3 cm was an independent risk factor for osteoporosis in both men (OR = 1.613 and 95% CI = 1.028–2.527) and women (OR = 1.316 and 95% CI = 1.042–1.786), which was consistent with the previous studies, in which the magnitude of the association translated to a 19% increase in odds for 1/2 in. and 177% for 3 in (34). Thus, height loss was suggested as routine evaluation in the outpatient setting for its ability in detecting osteoporosis of the hip (32, 35).

Steatohepatitis history was negatively associated with the risk of osteoporosis based on this study (OR = 0.677 and 95% CI = 0.498–0.922). There existed controversy regarding the relationship between BMD and nonalcoholic fatty liver disease (36–38). As study concluded that the incidence of osteoporosis was significantly higher in the nonalcoholic fatty liver disease group (39). In addition, contradictory results have also been reported regarding a relationship between serum lipid levels and BMD. Some researchers believed that serum lipid levels could be potentially useful indicators to reflect the process of osteoporosis (40), some think that hyperlipidemia was associated with decreased BMD (41), and some found serum lipids did not directly and correlatively influence BMD (42, 43). Given that in

TABLE 7 | Continued

Variables	Disease for predicting	Optimal cutoffs	Sensitivity	Specificity	AUC	95%CI	P value
Familial Alzheimer Disease+ Height loss (>3cm) + Both Hand Grip strength+β-CTX+ PINP+ OST	Osteoporosis	–	–	–	0.797	0.715–0.879	<0.001
	Osteopenia+osteoporosis	–	–	–	0.717	0.652–0.780	<0.001
Female β-CTX (ng/mL)	Osteoporosis	0.27	0.591	0.743	0.707	0.661–0.752	<0.001
	Osteopenia+osteoporosis	0.27	0.533	0.739	0.675	0.632–0.718	<0.001
Parathyroid hormone-PTH (pmol/L)	Osteoporosis	3.68	0.369	0.754	0.573	0.523–0.623	0.005
	Osteopenia+osteoporosis	3.67	0.349	0.750	0.552	0.507–0.598	0.029
Osteocalcin-OST (ng/mL)	Osteoporosis	14.66	0.529	0.840	0.731	0.688–0.773	<0.001
	Osteopenia+osteoporosis	14.53	0.472	0.830	0.691	0.661–0.732	<0.001
Age of menarche (Year)	Osteoporosis	13.50	0.718	0.454	0.613	0.563–0.663	<0.001
	Osteopenia+osteoporosis	13.50	0.684	0.451	0.581	0.534–0.627	0.001
Alkaline phosphatase-ALP (U/L)	Osteoporosis	71.50	0.663	0.840	0.682	0.635–0.729	<0.001
	Osteopenia+osteoporosis	71.50	0.613	0.842	0.656	0.611–0.700	<0.001
PINP (ng/mL)	Osteoporosis	37.13	0.768	0.474	0.652	0.605–0.700	<0.001
	Osteopenia+osteoporosis	38.16	0.724	0.500	0.638	0.592–0.680	<0.001
Grip strength of left hand (Kg)	Osteoporosis	19.91	0.864	0.459	0.709	0.664–0.753	<0.001
	Osteopenia+osteoporosis	24.05	0.599	0.696	0.659	0.612–0.707	<0.001
Grip strength of right hand (Kg)	Osteoporosis	22.25	0.780	0.521	0.689	0.643–0.735	<0.001
	Osteopenia+osteoporosis	22.65	0.743	0.487	0.626	0.576–0.677	<0.001
Age of menopause (Year)	Osteoporosis	49.50	0.764	0.420	0.627	0.575–0.680	<0.001
	Osteopenia+osteoporosis	49.50	0.757	0.400	0.612	0.561–0.662	<0.001
Duration of menstruation (Day)	Osteoporosis	4.50	0.861	0.274	0.565	0.516–0.614	0.013
	Osteopenia+osteoporosis	–	–	–	–	–	–
β-CTX+ PINP+ OST+ ALP+ PTH	Osteoporosis	–	–	–	0.760	0.719–0.801	<0.001
	Osteopenia+osteoporosis	–	–	–	0.716	0.676–0.757	<0.001
Fracture+ Height loss (>3cm) + Steatohepatitis+ hands Grip strength + Age of menarche+ Age of menopause+Duration of menstruation	Osteoporosis	–	–	–	0.769	0.724–0.813	<0.001
	Osteopenia+osteoporosis	–	–	–	0.692	0.646–0.738	<0.001
β-CTX+ PINP+ OST+ ALP+ PTH+ Fracture+ Height loss (>3cm) + Steatohepatitis+ hands Grip strength + Age of menarche+ Age of menopause +Duration of menstruation	Osteoporosis	–	–	–	0.826	0.787–0.864	<0.001
	Osteopenia+osteoporosis	–	–	–	0.753	0.711–0.795	<0.001

All variables are analyzed after adjustment by age and BMI. β-CTX stands for β cross-linked C-telopeptide of type 1 collagen; PINP represents Procollagen type 1 N-terminal propeptide. The bold type is used when the AUC value > 0.7.
In the present study, we did not distinguish between alcoholic fatty liver and nonalcoholic fatty liver, and the serum lipid levels were not available, further studies are needed to clarify the relationship between steatohepatitis history or lipid parameters and osteoporosis.

In men, the cost-effective method adopts both hands grip strength, height loss over 3 cm, and familial Alzheimer’s disease history indicated a good predictive ability to evaluate the risk of osteoporosis (AUC=0.730, 95%CI=0.642–0.817) and abnormal BMD (AUC=0.672, 95%CI=0.600–0.743). In women, the method adopted both hands grip strength, height loss over 3 cm, Steatohepatitis history, and menstrual history (age of menarche, age of menopause, and duration of menstruation) achieved similar predictive ability (AUC=0.769, 95%CI=0.724–0.813).

The predictive abilities of serum testing variables, including serum levels of β-CTx, OST, and PINP in men and PTH and ALT in women, were close to those of the cost-effective method. β-CTx and PINP were designated as reference bone turnover markers in osteoporosis by the International Osteoporosis Foundation (IOF) and International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) (44). The IOF-IFCC Joint Working Group on Bone Marker Standards (WG-BMS) recommended PINP and β-CTX be used as blood reference markers for bone formation and bone resorption, respectively, in osteoporosis (45, 46). Serum β-CTX and PINP distributed abnormally and stably in healthy men and women of Han nationality, the serum β-CTX and PINP reference interval were provided by several studies (47, 48).

Although the combination predictor including both cost-effective and serum testing factors achieved better predictive ability (in men AUC=0.797 with 95%CI=0.715–0.879; in women AUC=0.826 with 95%CI=0.787–0.864), considering the simplicity and accessibility of operation, the cost-effective factors were strongly recommended in the identification of high risk subjects in the elderly urban residents in Elderly-Care Inns in Beijing.

Limitations and Prospective
There were still some limitations in this study. Firstly, the number of male subjects was relatively small, which might weaken the power of the conclusion. Secondly, there was too much missing data of some important indexes, such as the use of vitamin D and calcium, physical activity, and the determination of TCM symptoms and constitution, which made it difficult to conduct further in-depth analysis in the risk factor screening. In addition, as a cross-sectional study, the evidence that this study could provide was relatively limited, so long-term follow-up of this population is necessary to provide more evidence.

CONCLUSION
In the population of elderly urban residents in Elderly-Care Inns in Beijing, the prevalence of osteoporosis in women was higher than that in men, and increased with aging more rapidly; yet, the prevalence of osteopenia in men was higher than that in women. After adjustment of age and BMI, both hands grip strength, height loss over 3 cm, serum levels of β-CTX, PINP, and OST were the independent risk factors for osteoporosis in both men and women; besides, familial Alzheimer’s disease history in men; and history of steatohepatitis and fracture, serum levels of PTH and ALT, age of menarche, age of menopause, duration of menstruation in women, were also risk factors of osteoporosis. The cost-effective method, including both hands grip strength, height loss over 3 cm, and familial Alzheimer’s disease history in men; fracture and steatohepatitis history and menstrual history in women, indicated good predictive ability to evaluate the risk of osteoporosis, thus was recommended in identifying the high risk subjects for osteoporosis.

DATA AVAILABILITY STATEMENT
The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT
The studies involving human participants were reviewed and approved by The Medical Ethics Committee of Dongzhimen Hospital, Beijing University of Chinese Medicine. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS
XL designed the study protocol and drafted the manuscript; HG, YL, JK, GW, and YC developed the questionnaires and data collection; JW and XH performed the data analysis; MJ and QY took part in the design of the study and MJ made revision of the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING
This research was supported by the National Clinical Research Base of TCM Project (JDZX2015079), the Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences (CZ2021A05404), and the National Natural Science Foundation of China (81873181).
REFERENCES

1. Xu W, Wu W, Yang S, Chen T, Teng X, Gao D, et al. Risk of Osteoporosis and Fracture After Hysterectomies Without Oophorectomies: A Systematic Review and Pooled Analysis. Osteoporos Int (2022). doi: 10.1007/s00198-022-06353-1 (Online ahead of print)

2. Varacallo M, Seaman TJ, Jandu JS, Pizzutillo P. Osteopenia. In: StatPearls Treasure Island (FL: StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.)

3. Kim D, Pirshahid AA, Li Y, Varghese T, Pope JE. Prevalence of Osteoporosis in East Asia: A Systematic Review and Meta-Analysis. Osteoporos Int (2022). doi: 10.1007/s00198-022-06376-0 (Online ahead of print)

4. Liing H, Jun S, Wenzian Y, Kequin P. The Prevalence Rate of Osteoporosis in the Elderly in China Between 2010 and 2016: A Meta-Analysis of Single Rate. Chin J Osteoporos (2016) 22:1590-5. doi: 10.3989/jisscn.1006-7108.2016.12.019

5. Coughlan T, Dockery F. Osteoporosis and Fracture Risk in Older People. Clin Med (Lond) (2014) 14:187–91. doi: 10.7861/cimedi13.4-2-187

6. Si L, Winzenberg TM, Jiang Q, Chen M, Palmer AJ. Prevention of Osteoporosis-Related Fractures and Costs in China: 2010-2050. Osteoporos Int (2015) 26:1929–37. doi: 10.1007/s00198-015-3093-2

7. Lahtinen A, Lepiolahi J, Vähänikka H, Kujala S, Ristiniemi J, Jalovaara P. No Major Differences in Recovery After Hip Fracture Between Home-Dwelling Female and Male Patients. Scandinavian J Surg SJS Off Organ Finnish Surg Soc Scandinavian Surg Society (2020) 109:250–64. doi: 10.1177/1457496919847392

8. Disease. TCMaoOaBM. Guidelines for the Diagnosis and Treatment of Primary Osteoporosis (2017). Chin J Pract Internal Med (2018) 38:127–50. doi: 10.15388/jkistan201802109

9. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int (2014) 25:2359–81. doi: 10.1007/s00198-014-2794-2

10. Cheung EYN, Tan KCB, Cheung CL, Kung AWC. Osteoporosis in East Asia: Current Issues in Assessment and Management. Osteoporos Int Spon by Chinese College of Bone and Mineral Disease (2016) 2:118–33. doi: 10.1007/1016.007.0011

11. Microsurgery Department of the Orthopedics Branch of the Chinese Medical Association. Chinese Guideline for the Diagnosis and Treatment of Osteonecrosis of the Femoral Head in Adults (2018) 24:1541

12. Choi E, Park Y. The Association Between the Consumption of Fish/Shellfish and the Risk of Osteoporosis in Men and Postmenopausal Women Aged 50 Years or Older. Nutrients (2016) 8:1113. doi: 10.3390/nu8030113

13. Rossi LMM, Copes RM, Dal Osto LC, Flores C, Comim FV, PremoAR. Factors Related With Osteoporosis Treatment in Postmenopausal Women. Medicine (2018) 97:e11524. doi: 10.1097/MD.0000000000011524

14. Langer FW, da Silveira Coderle AA, Bringheni R, Dal Osto LC, Campos TR, Martins TT, et al. Low Self-Awareness of Osteoporosis and Fracture Risk Among Postmenopausal Women. Arch Osteoporos (2016) 11:27. doi: 10.1007/s11657-016-0266-3

15. Smeltzer SC, Zimmerman V, Capriotti T. Osteoporosis Risk and Low Bone Mineral Density in Women With Physical Disabilities. Arch Phys Med Rehabil (2005) 86:582–6. doi: 10.1016/j.apmr.2004.09.002

16. Modi A, Sen S, Adachi JD, Adami S, Cortet B, Cooper AL, et al. Rationale and Design of MUSIC-Os-EU: An International Observational Study of the Treatment of Postmenopausal Women for Osteoporosis in Europe and Canada. Clin Exp Rheumatol (2013) 33:357–44

17. Kim SW, Nae KH, Seo JB, Jeon JH, Lee WK, Lee JK, et al. Association Between Household Size, Residential Area, and Osteoporosis: Analysis of 2008 to 2011 Korea National Health and Nutrition Examination Survey. Korean J Internal Med (2016) 31:712–21. doi: 10.3904/kjim.2015.274

18. Zhang J, Yang M, Zhang X, He J, Wen L, Wang X, et al. The Effectiveness of a Co-Management Care Model on Older Hip Fracture Patients in China - A Multicentre Non-Randomised Controlled Study. Lancet regional Health Western Pacific (2022) 19:010348. doi: 10.1016/j.lanpub.2021.010348

19. Nagai T, Okano I, Ishikawa K, Kuroda T, Oshita Y, Tsuchiya K, et al. The Serum 25(OH)D Level and Hand Grip Strength for Fall Risk Assessment Among Osteoporotic Elderly Japanese Women. Arch Osteoporos (2016) 21:462. doi: 10.1007/s11657-021-00901-0

20. Kamiya K, Kaita E, Tachiki T, Ikehara S, Kouda K, Sato Y, et al. Association Between Hand-Grip Strength and Site-Specific Risks of Major Osteoporotic Fracture: Results From the Japanese Population-Based Osteoporosis Cohort Study. Maturitas (2019) 130:13–20. doi: 10.1016/j.maturitas.2019.09.008

21. Lin YH, Chen HC, Hsu NW, Chou P, Teng MMH. Hand Grip Strength in Predicting the Risk of Osteoporosis in Asian Adults. J Bone Miner Metab (2020) 39:289–94. doi: 10.1007/s00774-020-01150-w

22. Plunkiewicz W, Adamsczyk P, Drozdzowska B. Height Loss in Postmenopausal Women: Do We Need More for Fracture Risk Assessment? Results from the GO Study. Osteoporis Int (2021) 32:2043–9. doi: 10.1007/s00198-021-03591-3

23. Ahn KS, Kang CH, Cho SB, Cho KH, Han KD, Park YG, et al. Height Loss was Associated With Osteoporotic in Korean Elderly Men, Not in Women: The Korean National Health and Nutrition Examination Survey 2008-2010. J Clin Densitom (2019) 22:59–66. doi: 10.1016/j.jocd.2017.07.001

24. Xu W, Perera S, Medich D, Fiorito G, Wagner J, Berger LK, et al. Height Loss, Vertebral Fractures, and the Misclassification of Osteoporosis. Bone (2011) 48:307–11. doi: 10.1016/j.bone.2010.09.027

25. Wang YX, Diacinti D, Leung JCS, Iannaccone A, Kripa E, Kwok TCY, et al. Much Lower Prevalence and Severity of Radiographic Osteoporotic Vertebral Fracture in Elderly Hong Kong Chinese Women Than in Age-Matched Rome Caucasian Women: A Cross-Sectional Study. Arch Osteoporos (2021) 2016:174. doi: 10.1007/s11657-021-00987-6

26. Upala S, Jarvungvanich V, Wijjamprecha K, Sanguankoe A. Nonalcoholic Fatty Liver Disease and Osteoporosis: A Systematic Review and Meta-Analysis. J Bone Miner Metab (2017) 35:685–93. doi: 10.1007/s00774-016-0807-2

27. Filip R, Radzki RP, Bienko M. Novel Insights Into the Relationship Between Nonalcoholic Fatty Liver Disease and Osteoporosis. Clin Interventions Aging (2018) 13:1879–91. doi: 10.2147/cia.s170533

28. Yilmaz Y. Review Article: Non-Alcoholic Fatty Liver Disease and Osteoporosis—Clinical and Molecular Cross-talk. Alimentary Pharmacol Ther (2012) 36:345–52. doi: 10.1111/j.1365-2036.2012.05196.x
39. Loosen SH, Roderburg C, Demir M, Qvartskhava N, Keitel V, Kostev K, et al. Non-Alcoholic Fatty Liver Disease (NAFLD) Is Associated With an Increased Incidence of Osteoporosis and Bone Fractures. *Z für Gastroenterologie* (2021). doi: 10.1055/a-1482-9236 (Online ahead of print)

40. Chen YY, Wang WW, Yang L, Chen WW, Zhang HX. Association Between Lipid Profiles and Osteoporosis In Postmenopausal Women: A Meta-Analysis. *Eur Rev Med Pharmacol Sci* (2018) 22:1–9. doi: 10.26355/eurrev_201801_14093

41. Alay I, Kaya C, Cengiz H, Yıldız S, Ekin M, Yasar L. The Relation of Body Mass Index, Menopausal Symptoms, and Lipid Profile With Bone Mineral Density in Postmenopausal Women. *Taiwanese J Obstetrics Gynecology* (2020) 59:61–6. doi: 10.1016/j.tjog.2019.11.009

42. Arikan DC, Coskun A, Ozer A, Kilinc M, Atalay F, Arikan T. Plasma Selenium, Zinc, Copper and Lipid Levels in Postmenopausal Turkish Women and Their Relation With Osteoporosis. *Biol Trace Element Res* (2011) 144:807–17. doi: 10.1007/s12011-011-9109-7

43. Platsika P, Antoniou A, Alexandrou A, Panoulis C, Kouskouni E, Augoulea A, et al. Serum Lipid Levels and Bone Mineral Density in Greek Postmenopausal Women. *Gynecological Endocrinol Off J Int Soc Gynecological Endocrinology* (2012) 28:655–60. doi: 10.3109/09513590.2011.650766

44. Bhattoa HP, Cavalier E, Eastell R, Heijboer AC, Jørgensen NR, Makris K, et al. Analytical Considerations and Plans to Standardize or Harmonize Assays for the Reference Bone Turnover Markers PINP and β-Ctx in Blood. *Clin Chim Acta* (2021) 515:16–20. doi: 10.1016/j.cca.2020.12.023

45. Vasikaran S, Eastell R, Bruyere O, Folds AJ, Garnero P, Griesmacher A, et al. Markers of Bone Turnover for the Prediction of Fracture Risk and Monitoring of Osteoporosis Treatment; A Need for International Reference Standards. *Osteoporos Int* (2011) 22:391–420. doi: 10.1007/s00198-010-1501-1

46. Diemar SS, Lylloff L, Renne MS, Møllehave LT, Heidemann M, Thuesen BH, et al. Reference Intervals in Danish Children and Adolescents for Bone Turnover Markers Carboxy-Terminal Cross-Linked Telopeptide of Type I Collagen (β-Ctx), Pro-Collagen Type I N-Terminal Propeptide (PINP), Osteocalcin (OC) and Bone-Specific Alkaline Phosphatase (Bone ALP). *Bone* (2021) 146:115879. doi: 10.1016/j.bone.2021.115879

47. Ranxing Z, Hanlian L, Xu W, Jinghua G, Yanning X, Yan H, et al. Reference Interval Analysis of Procollagen Type 1 N-terminal Propeptide and β Cross-Linked C- Teleopeptide of Type 1 Collagen for Healthy Premenopausal Women in Beijing. *Chin J Osteoporos* (2018) 24:769–75 [in Chinese].

48. Mei I, ZhenLin Z, Yan L, WeiMin D, ZhongLiang D, YingYng H, et al. Re-Analysis of Serum Procollagen Type 1 N-terminal Propeptide and β Cross-Linked C-telopeptide of Type 1 Collagen Concentrations in Healthy Men and Women of Han Nationality. *Chin J Osteoporosis Bone Miner Res* (2016) 97–13 [in Chinese].

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Lin, Guo, Lian, Kou, Wang, Chen, Wang, Han, Jiang and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.