On weighted approximations in $D[0, 1]$ with applications to self-normalized partial sum processes

Miklós Csörgő
Carleton University, Ottawa, Canada

Barbara Szyszkowicz
Carleton University, Ottawa, Canada

Qiying Wang
University of Sydney, Australia

Dedicated to István Berkes, Sándor Csörgő and Péter Major in celebration of their sixtieth years

ABSTRACT

Let X, X_1, X_2, \ldots be a sequence of non-degenerate i.i.d. random variables with mean zero. The best possible weighted approximations are investigated in $D[0, 1]$ for the partial sum processes $\{S_{[nt]}, 0 \leq t \leq 1\}$, where $S_n = \sum_{j=1}^n X_j$, under the assumption that X belongs to the domain of attraction of the normal law. The conclusions then are used to establish similar results for the sequence of self-normalized partial sum processes $\{S_{[nt]}/V_n, 0 \leq t \leq 1\}$, where $V_n^2 = \sum_{j=1}^n X_j^2$. L_p approximations of self-normalized partial sum processes are also discussed.

Key Words and Phrases: Weighted approximations in probability, functional central limit theorems, self-normalized sums, domain of attraction of the normal law, L_p approximations.

AMS 2000 Subject Classification: Primary 60G50, 60F17, 60F25, Secondary 62E20.

Running Head: Weighted approximations

The research of M. Csörgő and B. Szyszkowicz is supported by their NSERC Canada Discovery Grants at Carleton University, Ottawa, and Q. Wang’s research is supported in part by Australian Research Council at University of Sydney.

1 Introduction and main results

Let X, X_1, X_2, \ldots be a sequence of non-degenerate i.i.d. random variables with $EX = 0$ and let $S_n = \sum_{j=1}^{n} X_j$, $n \geq 1$, denote their partial sums. The classical weak invariance principle in probability states that, on an appropriate probability space for \{S_n, $n \geq 1$\} and a standard Wiener process \{W(t), 0 \leq t < \infty\}, as $n \to \infty$, we have

$$\sup_{0 \leq t \leq 1} \left| \frac{S_{[nt]}}{\sqrt{n} \sigma} - \frac{W(nt)}{\sqrt{n}} \right| = o_p(1) \text{ if and only if } Var(X) = \sigma^2 < \infty. \quad (1)$$

This invariance principle in probability implies the following version of Donsker’s classical Functional Central Limit Theorem on ($D, D, \|\|$), where D is the σ-field of subsets of $D = D[0, 1]$ generated by its finite-dimensional subsets, and $\|\|$ stands for the sup-norm metric on D.

Corollary A With \to_d standing for convergence in distribution as $n \to \infty$, we have

$$h(S_{[nt]}/\sqrt{n} \delta) \to_d h(W(\cdot))$$

for all $h : D = D[0, 1] \to IR$ that are (D, D) measurable and $\|\|$-continuous, or $\|\|$-continuous except at points forming a set of Wiener measure zero on (D, D), where $W(\cdot)$ stands for a standard Wiener process on the unit interval $[0, 1]$.

Remark A For further reference the statement of Corollary A is summarized by writing, as $n \to \infty$,

$$S_{[nt]}/\sqrt{n} \delta \Rightarrow W(t) \text{ on } (D, D, \|\|).$$

For details and further thoughts on Donsker’s theorem via (1) as in Corollary A, we refer to Breiman (1968, Sections 13.4–13.5), Csörgő and Révész (1981, Section 2.1), and Csörgő (2002, Sections 3.3–3.4).

In view of (1), it is natural to seek conditions for having the following weighted approximation on an appropriate probability space for S_n, $n \geq 1$, and $W(\cdot)$:

$$\sup_{0 < t \leq 1} \left| \frac{S_{[nt]}}{\sqrt{n} \sigma} - \frac{W(nt)}{\sqrt{n}} \right| / q(t) = o_p(1), \quad n \to \infty, \quad (2)$$

where $q(t)$ is a non-negative function on $(0, 1]$ approaching zero as $t \downarrow 0$. In this direction, using the methods developed by Csörgő, Csörgő, Horváth and Mason [CsCsHM] (1986), and subsequently by Csörgő and Horváth (1986), for weighted empirical and quantile processes, based on the Komlós, Major and Tusnády [KMT] (1975, 1976) and Major (1976) strong approximations for partial sum processes, Csörgő and Horváth (1988) concluded that, on an appropriate probability space, as $n \to \infty$,

$$\sup_{1/n \leq t \leq 1} n^{\mu} \left| \frac{S_{[nt]}}{\sqrt{n} \sigma} - \frac{W(nt)}{\sqrt{n}} \right| / t^{1/2-\mu} = O_p(1), \quad (3)$$
for any $0 \leq \mu \leq 1/2 - 1/r$, if we assume $E|X|^r < \infty$ for some $r > 2$.

Let Q be the class of positive functions $q(t)$ on $(0, 1]$, i.e., $\inf_{\delta \leq t \leq 1} q(t) > 0$ for $0 < \delta < 1$, which are nondecreasing near zero, and let

$$I(q, c) = \int_{0+}^1 t^{-1} \exp \left(-cq^2(t)/t \right) dt, \quad 0 < c < \infty.$$

By virtue of the result (3), we have the following fact: if $E|X|^r < \infty$ for some $r > 2$ and $q \in Q$ such that $I(q, c) < \infty$ for all $c > 0$, then the claim (2) holds true. We note in passing that the class of weight functions $q \in Q$ such that $I(q, c) < \infty$ for all $c > 0$ is the optimal class for having (2) (cf. CsCsHM (1986) via Lemma 3 here). For more details along these lines, we refer to Szyszkowicz (1991, 1992, 1996, 1997) where, by a different method, the statement of (2) is established, again for the optimal class of weight functions, assuming only the existence of two moments.

In this paper, we establish a result which is similar to (2) only under the assumption that X belongs to the domain of attraction of the normal law, written $X \in \text{DAN}$ throughout. In fact, it is well-known that $X \in \text{DAN}$ with $EX = 0$ if and only if there exists a sequence of constants $d_n \uparrow \infty$ such that, as $n \to \infty$, $S_n/d_n \to_d N(0, 1)$. It is natural to ask whether a similar version of the weighted approximation (2) could also hold true. Throughout the paper, we make use of the notation $l(x) = E X^2 1_{|X| \leq x}$, $b = \inf \{ x \geq 1 : l(x) > 0 \}$,

$$\eta_j = \inf \{ s : s \geq b + 1, \frac{l(s)}{s^2} \leq \frac{1}{j} \}, \quad j = 1, 2, \ldots.$$

and $b_n^2 = n l(\eta_n)$. We have the following theorem which provides an affirmative answer to this paramount question (cf. Corollary 1).

Theorem 1 Let $q \in Q$ and assume that $X \in \text{DAN}$ and $EX = 0$. Then, on an appropriate probability space for X, X_1, X_2, \ldots, a standard Wiener process $\{W(t), 0 \leq t < \infty\}$ can be constructed in such a way that the following statements hold true as $n \to \infty$:

(a) If $I(q, c) < \infty$ for all $c > 0$, then

$$\sup_{1/n \leq t \leq 1} \left| S_{[nt]}/b_n - W(nt)/\sqrt{n} \right|/q(t) = o_P(1).$$

(b) If $I(q, c) < \infty$ for some $c > 0$, then

$$\sup_{1/n \leq t \leq 1} \left| S_{[nt]}/b_n - W(nt)/\sqrt{n} \right|/q(t) = O_P(1).$$

(c) If \(I(q,c) < \infty \) for some \(c > 0 \), then there exists a sequence of constants \(\tau_n \to 0 \) such that

\[
\sup_{n \leq 1} \left| S_{[nt]} / b_n - W(nt) / \sqrt{n} \right| / q(t) = o_P(1).
\] (6)

Remark 1. If \(EX^2 < \infty \), then \(\tau_n \) in (6) can be changed to \(1/n \). In this case, it is readily seen that \(n\sigma^2 / b_n^2 \to 1 \), as \(n \to \infty \). Hence, via Theorem 1.1 of Szyszkowicz (1997), a standard Wiener process \(\{W(t), 0 \leq t < \infty \} \) can be constructed such that

\[
\sup_{1/n \leq t \leq 1} \left| S_{[nt]} / b_n - W(nt) / \sqrt{n} \right| / q(t) \\
\leq \frac{\sqrt{n}\sigma}{b_n} \sup_{1/n \leq t \leq 1} \left| S_{[nt]} / \sqrt{n}\sigma - W(nt) / \sqrt{n} \right| / q(t) \\
+ \frac{\sqrt{n}\sigma}{b_n} - 1 \sup_{0 \leq t \leq 1} \left| n^{-1/2}W(nt) \right| / q(t) \\
= o_P(1),
\]

where we make use of \(\sup_{0 \leq t \leq 1} \left| n^{-1/2}W(nt) \right| / q(t) = O_P(1) \), which follows from Lemma 3 below via having the equality in distribution

\[
\{n^{-1/2}W(nt) / q(t), 0 < t \leq 1 \} =_d \{W(t) / q(t), 0 < t \leq 1 \}
\]

for each \(n \geq 1 \). However, it is impossible to replace \(\tau_n \) in (6) by \(1/n \) without further restrictions on \(X \) and/or \(q \in Q \). In Section 2, an example will be given [cf. Proof of (7)] to show that (6) holds in terms of a standard Wiener process \(\{W(t), 0 \leq t < \infty \} \), but

\[
\sup_{1/n \leq t \leq 1} \left| S_{[nt]} / b_n - W(nt) / \sqrt{n} \right| / q(t) \neq o_P(1),
\] (7)

with \(q^2(t) = t \log(\log(t^{-1})) \), where \(\log x = \log(\max\{e, x\}) \) here, as well as throughout.

The following corollaries are consequences of Theorem 1, and are of independent interest.

Corollary 1 Let \(q \in Q \). As \(n \to \infty \), the following statements are equivalent:

(a) \(X \in \text{DAN and } EX = 0; \)

\[S_{[nt]} / b_n \Rightarrow W(t) \text{ on } (D, \mathcal{D}, \|/q\|) \text{ if and only if } I(q,c) < \infty \text{ for all } c > 0, \]

where \(\{W(t), 0 \leq t \leq 1\} \) is a standard Wiener process and \(\|/q\| \) is the weighted sup-norm metric for functions \(x, y \) in \(D[0,1] \), defined by

\[
\|(x-y)/q\| = \sup_{0 \leq t \leq 1} \left| (x(t) - y(t))/q(t) \right|
\] (8)

whenever this is well defined, i.e., when \(\limsup_{t \uparrow 0} \left| (x(t) - y(t))/q(t) \right| \) is finite.
(c) On the probability space of Theorem 1 for X, X_1, X_2, \ldots, a standard Wiener process
\{W(t), 0 \leq t < \infty\} can be constructed in such a way that, as $n \to \infty$,
\[
\sup_{0 < t \leq 1} |S_{[nt]}/b_n - W(nt)/n^{1/2}|/q(t) = o_P(1)
\]
if and only if $I(q, c) < \infty$ for all $c > 0$.

Mutatis mutandis, (b) above is to be read à la Corollary A and Remark A.

While Corollary 1 is a direct consequence of Theorem 1, we now state convergence in
distribution results for sup-functionals of weighted normalized partial sums for the optimal
class of weight functions $q \in Q$ satisfying $\limsup_{t \downarrow 0} |W(t)|/q(t) < \infty$ a.s. (see (b) of Lemma
3). Consequently, the results that follow are not implied by Corollary 1 above, and they
cannot be obtained via classical methods of weak convergence either, for tightness in our
weighted sup-norm is not guaranteed by (b) of Lemma 3.

Corollary 2 Let \{W(t), 0 \leq t < \infty\} be a standard Wiener process, $X \in \text{DAN}$ and $EX = 0$.

(a) If $q \in Q$, then there exists a sequence of positive constants $\tau_n \to 0$ such that, as $n \to \infty$,
\[
b_n^{-1} \sup_{\tau_n \leq t \leq 1} |S_{[nt]}|/q(t) \to_d \sup_{0 < t \leq 1} |W(t)|/q(t)
\]
if and only if $I(q, c) < \infty$ for some $c > 0$.

(b) If $q \in Q$ and $q(t)$ is nondecreasing on $(0,1]$, then, as $n \to \infty$,
\[
b_n^{-1} \sup_{0 < t \leq 1} |S_{[nt]}|/q(t) \to_d \sup_{0 < t \leq 1} |W(t)|/q(t)
\]
if and only if $I(q, c) < \infty$ for some $c > 0$. Consequently, as $n \to \infty$, we have
\[
b_n^{-1} \sup_{0 < t \leq 1} |S_{[nt]}|/(t \log \log(t^{-1}))^{1/2} \to_d \sup_{0 < t \leq 1} |W(t)|/(t \log \log(t^{-1}))^{1/2}.
\]

Remark 2. Corollary 2 rhymes with Corollary 1.1 of Szyszkowicz (1997), where X is
assumed to have two moments. It remains an open problem whether $\sup_{\tau_n \leq t \leq 1}$ in (10) can
be improved to $\sup_{0 < t \leq 1}$ without further restrictions on X and/or $q \in Q$.

Remark 3. The main results of Corollary 1 were announced without proofs in Csörgö,
Szyszkowicz and Wang [CsSzW] (2004), where we reviewed weighted approximations and
strong limit theorems for self-normalized partial sum processes. It is interesting and also of
interest to note that the class of the weight functions in Corollary 2 is bigger than that in
Corollary 1. Such a phenomenon was first noticed and proved for weighted empirical and quantile processes by CsCsHM (1986) and then by Csörgő and Horváth (1988) for partial sums on assuming $E|X|^v < \infty$ for some $v > 2$. For more details along these lines, we refer to Szyszkowicz (1991, 1996, 1997), and to Csörgő, Norvaiša and Szyszkowicz [CsNSz](1999).

We next consider applications of Theorem 1 to the so-called self-normalized partial sum processes defined by $\{S_{[nt]} / V_n, 0 \leq t < \infty\}$, where $V_n^2 = \sum_{j=1}^{n} X_j^2$. Note that

$$V_n^2 / b_n^2 \to_{p} 1 \quad (12)$$

if $X \in DAN$ (see the result (18) in CsSzW (2003), for example). This, together with Theorem 1, yields the following Theorem 2. We mention that Theorem 2 and its corollaries were announced without proofs in CsSzW (2004). We restate them here for convenient reference and further use in the sequel.

Theorem 2 Assume that $X \in DAN$ and $EX = 0$. Then, on the probability space of Theorem 1 for X, X_1, X_2, \cdots, the there constructed standard Wiener process $\{W(t), 0 \leq t < \infty\}$ is such that the following statements hold true.

(a) Let $q \in Q$. Then, as $n \to \infty$,

$$\sup_{1/n \leq t \leq 1} \left| \frac{S_{[nt]}}{V_n} - \frac{W(nt)}{\sqrt{n}} \right| / q(t) = \begin{cases} o_P(1) & \text{if } I(q, c) < \infty \text{ for all } c > 0, \\ O_P(1) & \text{if } I(q, c) < \infty \text{ for some } c > 0. \end{cases} \quad (13)$$

(b) Let $q \in Q$ and $I(q, c) < \infty$ for some $c > 0$. Then there exists a sequence of constants $\tau_n \to 0$ such that as $n \to \infty$,

$$\sup_{\tau_n \leq t \leq 1} \left| \frac{S_{[nt]}}{V_n} - \frac{W(nt)}{\sqrt{n}} \right| / q(t) = o_P(1). \quad (14)$$

Corollary 3 Let $q \in Q$. As $n \to \infty$, the following statements are equivalent:

(a) $X \in DAN$ and $EX = 0$;

(b) $S_{[nt]} / V_n \Rightarrow_d W(t)$ on $(D, D, \|/q\|)$ if and only if $I(q, c) < \infty$ for all $c > 0$, where $\|/q\|$ is defined as in Corollary 1 and $\{W(t), 0 \leq t \leq 1\}$ is a standard Wiener process;

(c) On the probability space of Theorem 1 for X, X_1, X_2, \cdots, a standard Wiener process $\{W(t), 0 \leq t < \infty\}$ can be constructed in such a way that, as $n \to \infty$,

$$\sup_{0 < t \leq 1} \left| \frac{S_{[nt]}}{V_n} - \frac{W(nt)}{n^{1/2}} \right| / q(t) = o_P(1) \quad (15)$$

if and only if $I(q, c) < \infty$ for all $c > 0$. 5
Corollary 4 The conclusions of Corollary 2 continue to hold true if we replace the normalizing constants b_n by V_n.

Remark 4. With $q = 1$, Corollary 3 reduces to Theorem 1 of CsSzW (2003), an in probability version of Donsker’s theorem for self-normalized partial sum processes. Corollaries 3 and 4 provide basic tools for investigating the limit behavior of statistics that arise in studying the problem of a change in the mean in the domain of attraction of the normal law. For details we refer to Section 5 in CsSzW (2004).

For the sake of Studentized versions of Theorem 2, Corollaries 3 and 4, consider now the sequence $T_{n,t}(.)$ of Student processes in $t \in [0,1]$ on $D[0,1]$, defined as

$$
\{T_{n,t}(X), 0 \leq t \leq 1\} := \left\{ \frac{(1/\sqrt{n}) \sum_{i=1}^{nt} X_i}{\sqrt{[1/(n-1)] \sum_{i=1}^{n} (X_i - \bar{X}_n)^2}}, \; 0 \leq t \leq 1 \right\}
$$

$$
= \left\{ \frac{\sum_{i=1}^{nt} X_i/V_n}{\sqrt{n - (S_n/V_n)^2}/(n-1)}, \; 0 \leq t \leq 1 \right\}.
$$

Clearly, $T_{n,1}(X)$ is the familiar form of the classical Student ratio. When $X = d N(\mu, \sigma^2)$, then $T_{n,1}(X - \mu)$ is his famous t-random variable with $n - 1$ degrees of freedom [cf. “Student” (1908)]. Clearly, if $T_{n,1}(X)$ or S_n/V_n has an asymptotic distribution, then so does the other, and it is well known that they coincide (cf., e.g., Proposition 1 in Griffin (2002)). Hence, usually, and without loss of generality, the limiting distribution of S_n/V_n is studied in lieu of that of $T_{n,1}(X)$. In fact via Theorem 2 and Corollaries 3 and 4 we follow a functional version of this route. Backtracking a bit, Logan, Mallows, Rice and Shepp (1973) conjectured that “S_n/V_n is asymptotically normal if (and perhaps only if) X is in the domain of attraction of the normal law”. It is the “only if” part that has remained open until 1997 for the general case of not necessarily symmetric random variables, when Gine, Götze and Mason (1997) proved the following result.

Theorem A. The following two statements are equivalent:

(i) X is in the domain of attraction of the normal law;

(ii) There exists a finite constant μ such that, as $n \to \infty$, $T_{n,1}(X - \mu) \to d N(0,1)$.

Moreover, if either (i) or (ii) holds, then $\mu = EX$.

Furthermore, Chistyakov and Götze (2004) confirmed a second conjecture of Logan et al. (1973) that the Student t-statistic has a non-trivial limiting distribution if and only if X is in the domain of attraction of a stable law with some exponent $\alpha \in (0, 2]$. Our next corollary constitutes a Studentized version of the self-normalized results of Theorem 2, and Corollaries 3 and 4. Thus it amounts to various optimal functional extensions of Theorem A in $(D, D, \|/q\|)$.

6
Corollary 5 The results (a), (b) of Theorem 2 continue to hold true when \(EX = \mu \), with \(T_{n,t}(X - \mu) \) replacing \(S_{[nt]}/V_n \) in each of the two statements. Mutatis mutandis, the same is true as well in case of Corollaries 3 and 4.

This paper is organized as follows. In Section 2 we provide proofs of the main results. The proof of Proposition 1, which is used in the proofs of main results, will be given in Section 3. Finally, in Section 4 we will discuss weighted approximations of self-normalized partial sum processes under the optimal class of weight functions in \(L_p \). Throughout the paper, \(A, A_1, A_2, ... \) denote constants which may be different at each appearance.

In concluding this section, we mention some of the previous results on weighted approximation. The study of weighted approximations originates from the earlier works of Anderson and Darling (1952), Rényi (1953), Chibisov (1964), Pyke and Shorack (1968) and O’Reilly (1974), who investigated the asymptotic behaviour of weighted empirical and quantile processes. The works of these authors were later extended by CsCsHM (1986), Szyszkowicz (1991, 1992, 1996, 1997) and CsNSz (1999). In CsCsHM (1986), the authors established approximations of empirical and quantile processes by sequences of Brownian bridges in weighted supremum metrics for the optimal class of weight functions. Szyszkowicz (1996, 1997) derived similarly optimal weighted approximations of standardized partial sum processes in \(D[0, \infty) \) under finite second moment conditions (cf. also Szyszkowicz (1991) concerning related results in \(D[0,1] \)). The paper CsNSz (1999) extends the results of Szyszkowicz (1991, 1992, 1996, 1997) to arbitrary positive weight functions \(q \) on \((0, \infty]\) for which \(\lim_{t \downarrow 0, t \uparrow 0} |W(t)|/q(t) = 0 \) a.s., or \(\limsup_{t \downarrow 0, t \uparrow 0} |W(t)|/q(t) < \infty \) a.s. For further results on weighted approximations for empirical, quantile and standardized partial sum processes with applications to change-point analysis, we refer to two books of Csörgő and Horváth (1993, 1997).

2 Proofs of the main results

We first list several lemmas of independent interest that will be used in the proofs of the main results of Section 1. The first result is due to Sakhanenko (1980, 1984, 1985).

Lemma 1 Let \(X_1, X_2, ... \) be independent random variables with \(EX_j = 0 \) and \(\sigma_j^2 = EX_j^2 < \infty \) for each \(j \geq 1 \). Then we can redefine \(\{X_j, j \geq 1\} \) on a richer probability space together with a sequence of independent \(N(0,1) \) random variables, \(Y_j, j \geq 1 \), such that for every \(p > 2 \) and \(x > 0 \),

\[
P\{ \max_{i \leq n} \left| \sum_{j=1}^{i} X_j - \sum_{j=1}^{i} \sigma_j Y_j \right| \geq x \} \leq (Ap)^p x^{-p} \sum_{j=1}^{n} E|X_j|^p,
\]
where A is an absolute positive constant.

The next two lemmas are due to CsCsHM (1986) [cf. Lemma A.5.1 and Theorem A.5.1 respectively in Csörgő and Horváth (1997)]. Proofs of Lemmas 2 and 3 can also be found in Section 4.1 of Csörgő and Horváth (1993). For related further results along these lines we refer to Csörgő, Shao and Szyszkowicz (1991) and, for some historical references, to Section 2 of CsNSz (1999) (see the statements (2.5), (2.9) and their discussion in there).

Lemma 2 Let $q \in Q$. If $I(q, c) < \infty$ for some $c > 0$, then $\lim_{t \downarrow 0} t^{1/2}/q(t) = 0$.

Lemma 3 Let $\{W(t), 0 \leq t < \infty\}$ be a standard Wiener process and $q \in Q$. Then,

(a) $I(q, c) < \infty$ for all $c > 0$ if and only if $\limsup_{t \downarrow 0} |W(t)|/q(t) = 0$, a.s.

(b) $I(q, c) < \infty$ for some $c > 0$ if and only if $\limsup_{t \downarrow 0} |W(t)|/q(t) < \infty$, a.s.

We are now ready to prove the main results of Section 1.

Proof of Theorem 1. In addition to the notation in Section 1, write

$$X_j^* = X_j I(|X_j| \leq \eta_j) \quad \text{and} \quad S_n^* = \sum_{j=1}^n X_j^*.$$

By Lemma 1, we can redefine $\{X_j, j \geq 1\}$ on a richer probability space together with a sequence of independent $N(0, 1)$ random variables, Y_j, $j \geq 1$, such that for any $x > 0$ and any constant sequence $c_j, j \geq 1$,

$$P\left\{ \max_{i \leq n} \left| \sum_{j=1}^i c_j \left(X_j^* - EX_j^* \right) - \sum_{j=1}^i c_j \sigma_j^* Y_j \right| \geq x \right\} \leq Ax^{-3} \sum_{j=1}^n |c_j|^3 E|X|^3 I(|X| \leq \eta_j),$$

where $\sigma_j^2 = \text{Var}(X_j^*)$. Let $\{W(t), 0 \leq t < \infty\}$ be a standard Wiener process such that

$$W(n) = \sum_{j=1}^n Y_j, \quad n = 1, 2, 3, ...$$

The results (4)-(6) will be shown to hold true for the this way constructed Wiener process, and then Theorem 1 follows accordingly. To prove (4)-(6), we need the following proposition.

Proposition 1 We have, as $n \to \infty$,

$$\frac{1}{n} \sum_{j=1}^n \left(\frac{\sigma_j^*}{\eta_j^{1/2}} - 1 \right)^2 \to 0,$$

$$b_n^{-1} \sup_{0 \leq t \leq 1} |S_{[nt]} - \sum_{j=1}^{[nt]} \sigma_j^* Y_j| = o_P(1),$$

$$b_n^{-1} \sup_{0 < t \leq 1} \left| \frac{S_{[nt]} - \sum_{j=1}^{[nt]} \sigma_j^* Y_j}{t^{1/2}} \right| = O_P(1).$$
The proof of Proposition 1 will be given in Section 4. By virtue of Proposition 1, we have that if \(I(q, c) < \infty \) for some \(c > 0 \), then

\[
I_n := b_n^{-1} \sup_{1/n \leq t \leq 1} \left| \frac{S_{[nt]} - \sum_{j=1}^{[nt]} \sigma_j^* Y_j}{q(t)} \right| = o_P(1). \tag{20}
\]

Indeed it follows from (18) and (19) that, for any \(0 < \delta < 1 \),

\[
I_n \leq \sup_{1/n \leq t \leq \delta} t^{1/2}/q(t) \sup_{0 < t \leq 1} \left| \frac{S_{[nt]} - \sum_{j=1}^{[nt]} \sigma_j^* Y_j}{t^{1/2}} \right|
+ \sup_{\delta < t \leq 1} q^{-1}(t) \sup_{\delta < t \leq 1} \left| \frac{S_{[nt]} - \sum_{j=1}^{[nt]} \sigma_j^* Y_j}{q(t)} \right|
= O_P(1) \sup_{1/n \leq t \leq \delta} t^{1/2}/q(t) + o_P(1) \sup_{\delta < t \leq 1} q^{-1}(t).
\]

The claim (20) now follows from Lemma 2 and the fact that \(\inf_{\delta \leq t \leq 1} q(t) > 0 \) for any \(\delta > 0 \).

We now proceed to prove (4)-(6). Consider (4) and (5) first. We have

\[
\sup_{1/n \leq t \leq 1} \left| \frac{S_{[nt]}/b_n - W(nt)/\sqrt{n}}{q(t)} \right| \leq I_n + I_1(n) + I_2(n), \tag{21}
\]

where \(I_1(n) = n^{-1/2} \sup_{1/n \leq t \leq 1} \left| W([nt]) - W(nt) \right|/q(t) \) and

\[
I_2(n) = \sup_{1/n \leq t \leq 1} \left| b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^* Y_j - n^{-1/2} W([nt]) \right|/q(t).
\]

Note that \(\left\{ \frac{W(nt) - W([nt])}{\sqrt{nt}}, 0 < t \leq 1 \right\} =_d \left\{ \frac{W(nt - [nt]/nt)}{nt}, 0 < t \leq 1 \right\} \) and \(\frac{[nt] - [nt]}{nt} \leq 1 \) for \(1/n \leq t \leq 1 \). Similarly to the proof of (20), it follows that

\[
I_1(n) \leq \sup_{1/n \leq t \leq \delta} t^{1/2}/q(t) \sup_{1/n \leq t \leq \delta} \left| W([nt]) - W(nt) \right|/\sqrt{n}
+ n^{-1/2} \sup_{\delta < t \leq 1} q^{-1}(t) \sup_{\delta < t \leq 1} \left| W([nt]) - W(nt) \right|
= o_P(1), \tag{22}
\]

whenever \(I(q, c) < \infty \) for some \(c > 0 \). As to \(I_2(n) \), we have

\[
I_2(n) \leq \sup_{1/n \leq t \leq \delta} \left| b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^* Y_j - n^{-1/2} W([nt]) \right|/q(t) + II(n) \sup_{\delta < t \leq 1} q^{-1}(t), \tag{23}
\]

for any \(\delta \in (0, 1) \), where \(II(n) = \max_{1 \leq k \leq n} \left| b_n^{-1} \sum_{j=1}^{k} \sigma_j^* Y_j - n^{-1/2} \sum_{j=1}^{k} Y_j \right| \). Furthermore, \(II(n) = o_P(1) \), since it follows from (17) that, as \(n \to \infty \),

\[
E[II(n)]^2 \leq \frac{1}{n} E \max_{1 \leq k \leq n} \left| \sum_{j=1}^{k} \left(\frac{\sigma_j^*}{l_{1/2}(\eta_n)} - 1 \right) Y_j \right|^2 \leq \frac{1}{n} \sum_{j=1}^{n} \left(\frac{\sigma_j^*}{l_{1/2}(\eta_n)} - 1 \right)^2 \to 0.
\]
In view of (20)-(23), the results (4) and (5) will follow if we prove

\[
I_2^{(1)}(n, \delta) := \sup_{1/n \leq t \leq \delta} \left| b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^* Y_j - n^{-1/2} W([nt]) \right| / q(t)
\]

\[
= \begin{cases}
O_P(1) & \text{if } I(q, c) < \infty \text{ for all } c > 0, \\
O_P(1) & \text{if } I(q, c) < \infty \text{ for some } c > 0,
\end{cases}
\]

(24)

by letting \(n \to \infty \) first and then \(\delta \downarrow 0 \). In order to prove (24), let \(\delta > 0 \) be small enough, so that \(q(t) \) is already nondecreasing on \((0, \delta)\) and let \(n \) be such that \(1/n < \delta \). Since

\[
\sigma_j^* \leq (EX^2 I(l(X|\leq \eta_j)))^{1/2} \leq l^{1/2}(\eta_j), 1 \leq j \leq n,
\]

we have \(\frac{1}{n} \sum_{j=1}^{[nt]} \left(\frac{\sigma_j^*}{l^{1/2}(\eta_j)} - 1 \right)^2 \leq t \), for \(t \in [0, 1] \). On the other hand, for each \(n \geq 1 \),

\[
\left\{ n^{-1/2} \sum_{j=1}^{[nt]} \left(\frac{\sigma_j^*}{l^{1/2}(\eta_j)} - 1 \right) Y_j, 0 < t \leq 1 \right\} \overset{D}{=} \left\{ W \left(\frac{1}{n} \sum_{j=1}^{[nt]} \left(\frac{\sigma_j^*}{l^{1/2}(\eta_j)} - 1 \right)^2 \right), 0 < t \leq 1 \right\}.
\]

Now it is readily seen that

\[
I_2^{(1)}(n, \delta) \overset{D}{=} \sup_{1/n \leq t \leq \delta} \left| W \left(\frac{1}{n} \sum_{j=1}^{[nt]} \left(\frac{\sigma_j^*}{l^{1/2}(\eta_j)} - 1 \right)^2 \right) \right| / q(t)
\]

\[
\leq \sup_{1/n \leq t \leq \delta} \left| W \left(\frac{1}{n} \sum_{j=1}^{[nt]} \left(\frac{\sigma_j^*}{l^{1/2}(\eta_j)} - 1 \right)^2 \right) \right| / q \left(\frac{1}{n} \sum_{j=1}^{[nt]} \left(\frac{\sigma_j^*}{l^{1/2}(\eta_j)} - 1 \right)^2 \right)
\]

\[
\leq \sup_{0 < t \leq \delta} \left| W(t) \right| / q(t).
\]

(25)

This, together with Lemma 3, implies (24). The proofs of (4) and (5) is now complete.

We next prove (6). Similarly to the proofs of (4) and (5), it suffices to show that there exists a sequence of positive constants \(\tau_n \to 0 \) such that if \(I(q, c) < \infty \) for some \(c > 0 \), then

\[
\sup_{\tau_n \leq t \leq \delta} \left| b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^* Y_j - n^{-1/2} W([nt]) \right| / q(t) = O_P(1),
\]

(26)

when \(n \to \infty \) first and then \(\delta \downarrow 0 \). In fact, in view of (17), there exists a sequence of positive constants \(\kappa_n \to \infty \) so that

\[
\frac{\kappa_n}{n} \sum_{j=1}^{n} \left(\frac{\sigma_j^*}{l^{1/2}(\eta_j)} - 1 \right)^2 \to 0, \quad \text{as } n \to \infty.
\]

This implies that for any \(\epsilon > 0 \),

\[
\frac{1}{nt} \sum_{j=1}^{[nt]} \left(\frac{\sigma_j^*}{l^{1/2}(\eta_j)} - 1 \right)^2 \leq \frac{\kappa_n}{n} \sum_{j=1}^{n} \left(\frac{\sigma_j^*}{l^{1/2}(\eta_j)} - 1 \right)^2 \leq \epsilon^2,
\]

10
whenever $1/\kappa_n \leq t \leq 1$ and n is large enough. Let $\tau_n = 1/\kappa_n$ and δ be small enough so that $q(t)$ is nondecreasing on $(0, \delta)$. Then $\tau_n \to 0$ and, similarly to the proof of (25), we have that if $I(q, c) < \infty$ for some $c > 0$, then

$$
\sup_{\tau_n \leq t \leq \delta} \left| n^{-1/2} \sum_{j=1}^{[nt]} \left(\frac{\sigma_j^*}{\sqrt{n}^2(\eta_n)} - 1 \right) Y_j \right|/q(t) = d \sup_{\tau_n \leq t \leq \delta} \left| W \left(\frac{1}{n} \sum_{j=1}^{[nt]} \left(\frac{\sigma_j^*}{\sqrt{n}^2(\eta_n)} - 1 \right)^2 \right) \right|/q(t)
$$

$$
= d \sup_{\tau_n \leq t \leq \delta} \left| \epsilon W \left(\frac{1}{n} \sum_{j=1}^{[nt]} \left(\frac{\sigma_j^*}{\sqrt{n}^2(\eta_n)} - 1 \right)^2 \right) q \left(\frac{1}{\sqrt{n}} \sum_{j=1}^{[nt]} \left(\frac{\sigma_j^*}{\sqrt{n}^2(\eta_n)} - 1 \right)^2 \right) q(t) \right| \leq \epsilon \sup_{0 < t \leq \delta} \left| W(t) \right|/q(t) = \epsilon O_P(1).
$$

(27)

This yields (26) and hence the proof of (6). The proof of Theorem 1 is now complete.

Proof of Corollary 1. We only show part (c) following from part (a). Clearly, (c) implies (b), and that, in turn, (a). In fact, under the conditions that $X \in$ DAN and $EX = 0$, it follows from Theorem 1 and Lemma 3 that

$$
\sup_{0 < t \leq 1} \left| S_{[nt]}/b_n - W(nt)/\sqrt{n} \right|/q(t) \leq \sup_{0 < t < 1/n} \left| n^{-1/2}W(nt) \right|/q(t) + \sup_{1/n \leq t \leq 1} \left| S_{[nt]}/b_n - W(nt)/\sqrt{n} \right|/q(t)
$$

$$
= o_P(1),
$$

if $I(q, c) < \infty$ for any $c > 0$. This shows sufficiency of part (c). Noting that $\sup_{0 < t \leq 1} \left| S_{[nt]}/V_n - W(nt)/\sqrt{n} \right|/q(t) \geq \sup_{0 < t < 1/n} \left| n^{1/2}W(nt) \right|/q(t)$, the necessity of part (c) follow as in Szyszkowicz (1996) (pages 331-332). Hence we omit these details. The proof of Corollary 1 is now complete.

Proof of Corollary 2. If one of (10) and (11) holds, then

$$
\sup_{0 < t \leq 1} \left| W(t)/q(t) \right| < \infty \quad a.s.,
$$

(28)

for any standard Wiener process. Consequently, Lemma 3 implies that $I(q, c) < \infty$ for some $c > 0$.

Next we assume $I(q, c) < \infty$ for some $c > 0$. By Lemma 3 again, we get (28). Then, clearly as $n \to \infty$, we have that

$$
\sup_{\tau_n \leq t \leq 1} \left| W(t) \right|/q(t) \to_d \sup_{0 < t \leq 1} \left| W(t) \right|/q(t),
$$

11
which, together with part (c) of Theorem 1, implies (10).

We next prove (11). Recalling (20), we have

\[
b_n^{-1} \sup_{0 < t \leq 1} \left| S_{[nt]} / q(t) \right| \leq \sup_{1/n \leq t \leq 1} \left| b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^* Y_j / q(t) + o_P(1) \right|.
\]

(29)

Since \(\sigma_j^2 \leq EX^2 I_{(|X| \leq \eta_j)} = l(\eta_j) \), it can be easily seen that \(b_n^{-2} \sum_{j=1}^{[nt]} \sigma_j^2 \leq t \) for \(t \in (0, 1] \). This, together with the fact that \(q(t) \) is nondecreasing on \((0, 1]\), yields that

\[
\sup_{1/n \leq t \leq 1} \left| b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^* Y_j / q(t) \right| = d \sup_{1/n \leq t \leq 1} \left| \frac{W \left(b_n^{-2} \sum_{j=1}^{[nt]} \sigma_j^2 \right)}{q(t)} \right|
\]

\[
\leq \sup_{1/n \leq t \leq 1} \left| \frac{W \left(b_n^{-2} \sum_{j=1}^{[nt]} \sigma_j^2 \right)}{q \left(b_n^{-2} \sum_{j=1}^{[nt]} \sigma_j^2 \right)} \right|
\]

\[
\leq \sup_{0 < t \leq 1} \left| W(t) / q(t) \right|.
\]

(30)

It follows from (29) and (30) that for any \(x \geq 0 \)

\[
\lim_{n \to \infty} P \left(b_n^{-1} \sup_{0 < t \leq 1} \left| S_{[nt]} / q(t) \right| \leq x \right) \geq P \left(\sup_{0 < t \leq 1} \left| W(t) / q(t) \right| \leq x \right).
\]

On the other hand, (10) and the fact that \(\tau_n > 0 \) obviously imply that for any \(x \geq 0 \)

\[
\lim_{n \to \infty} P \left(b_n^{-1} \sup_{0 < t \leq 1} \left| S_{[nt]} / q(t) \right| \leq x \right) \leq \lim_{n \to \infty} P \left(b_n^{-1} \sup_{\tau_n \leq t \leq 1} \left| S_{[nt]} / q(t) \right| \leq x \right) = P \left(\sup_{0 < t \leq 1} \left| W(t) / q(t) \right| \leq x \right).
\]

Therefore, we get the desired (11). This also completes the proof of Corollary 2.

Proof of (7). Let us consider i.i.d. symmetric random variables \(X, X_1, X_2, ... \) satisfying \(EX^2 I_{(|X| \leq x)} = 0 \), for \(x \leq 1 \), and

\[
l(x) = EX^2 I_{(|X| \leq x)} \sim \exp \left((\log x)^\alpha \right), \quad \text{for } x > 1,
\]

(31)

where \(0 < \alpha < 1 \). Then \(l(x) \) is a slowly varying function at \(\infty \). Hence, \(EX = 0 \) and \(X \) is in the domain of attraction of the normal law. Along the proof, and using the notations, of Theorem 1, a standard Wiener process \(\{W(t), 0 \leq t < \infty \} \) can be constructed such that (6) holds and

\[
\sup_{1/n \leq t \leq 1} \left| S_{[nt]} / b_n - W(nt) / \sqrt{n} / q(t) \right|
\]
\[\geq \sup_{1/n \leq t \leq 1} \left| b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^* Y_j - n^{-1/2} W(nt) \right| / q(t) - I(n) \]

\[\geq \sup_{1/n \leq t \leq 1} \left| b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^* Y_j - n^{-1/2} W(nt) \right| / q(t) - I(n) \]

\[\geq \sup_{1/n \leq t \leq 1} \left| n^{-1/2} W(nt) \right| / q(t) - \sup_{1/n \leq t \leq 1} \left| b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^* Y_j \right| / q(t) - I(n), \]

where \(I(n) \) is defined as in (20). Noting that \(q^2(t) = t \log \log(t^{-1}) \) satisfies \(I(q, 2) < \infty \), \(I(n) = o_P(1) \). So, to show (7), it suffices to show that

\[\sup_{1/n \leq t \leq 1} \left| n^{-1/2} W(nt) \right| / q(t) \rightarrow_d \sup_{1/n \leq t \leq 1} \left| W(t) \right| / q(t) \neq o_P(1) \]

(32)

with \(q^2(t) = t \log \log(t^{-1}) \), and if \(I(q, c) < \infty \) for some \(c > 0 \), then

\[\sup_{1/n \leq t \leq 1} \left| b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^* Y_j \right| / q(t) = o_P(1). \]

(33)

We first prove (33). For the \(l(x) \) defined in (31), it can be easily shown that, for \(n \) large enough, \(\eta_n \geq \sqrt{n} \) and \(\max_{1 \leq j \leq \sqrt{n}} \eta_j \leq (\sqrt{n})^{3/5} \). Hence,

\[\max_{1 \leq j \leq \sqrt{n}} l(\eta_j)/l(\eta_n) \leq 2 \exp \left((0.3^a - 0.5^a) (\log n)^a \right) \rightarrow 0, \quad \text{as } n \rightarrow \infty. \]

This, together with \(\sigma_j^* \leq l(\eta_j) \), yields that, as \(n \rightarrow \infty \),

\[\frac{1}{t b_n^2} \sum_{j=1}^{[nt]} \sigma_j^2 \leq \frac{1}{n t} \sum_{j=1}^{[nt]} l(\eta_j) \rightarrow 0, \]

whenever \(1/n \leq t \leq \sqrt{n} \). Now, a method that is similar to making statements as in (27) shows that

\[\sup_{1/n \leq t \leq 1/\sqrt{n}} \left| b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^* Y_j \right| / q(t) = \sup_{1/n \leq t \leq 1/\sqrt{n}} \left| W \left(b_n^{-2} \sum_{j=1}^{[nt]} \sigma_j^* \right) \right| / q(t) = o_P(1), \]

which implies (33).

Next we prove (32). In fact, if (32) is not true, i.e., if

\[\sup_{1/n \leq t \leq 1/\sqrt{n}} \left| W(t) \right| / q(t) = o_P(1), \]

then there exists an \(0 < \varepsilon \leq 1/4 \) such that

\[P \left(\sup_{1/n \leq t \leq 1/\sqrt{n}} \left| W(t) \right| / q(t) \leq \varepsilon^{1/2} / 2 \right) \geq 1/2. \]
Hence, following the proof of (4.1.14) in Csörgő and Horváth (1993, page 185), we have, for $q^2(t) = t \log \log(t^{-1})$, as $n \to \infty$,

$$0 \leftarrow P \left(\sup_{1/n \leq t \leq 1/\sqrt{n}} \left| W(t) \right| / q(t) > \epsilon^{1/2} / 2 \right)
\geq \frac{1}{4} \int_{1/n}^{1/\sqrt{n}} \frac{1}{t} \exp \left(-2\epsilon q^2(t) / t \right) dt
\geq \frac{1}{4} \int_{1/n}^{1/\sqrt{n}} \frac{1}{t} \exp \left(-2^{-1} \log \log(t^{-1}) \right) dt
\geq \frac{1}{2} \left(1 - \frac{1}{\sqrt{2}} \right) (\log n)^{1/2} \to \infty.$$

This is a contradiction, which implies that (32) holds. The proof of (7) is now complete.

Proof of Theorem 2. It follows from (5) that if $I(q, c) < \infty$ for some $c > 0$, then

$$b_n^{-1} \sup_{1/n \leq t \leq 1} |S_{nt}| / q(t) \leq \sup_{1/n \leq t \leq 1} n^{-1/2} |W(nt)| / q(t)$$
$$+ \sup_{1/n \leq t \leq 1} \left| S_{nt} / b_n - W(nt) / \sqrt{n} \right| / q(t) = O_P(1).$$

This, together with (12), yields that

$$\sup_{1/n \leq t \leq 1} \left| S_{nt} / V_n - S_{nt} / b_n \right| / q(t) \leq \left| b_n / V_n - 1 \right| b_n^{-1} \sup_{1/n \leq t \leq 1} |S_{nt}| / q(t) = o_P(1), \quad (34)$$

whenever $I(q, c) < \infty$ for some $c > 0$. Theorem 2 now follows immediately from (34) and Theorem 1.

Proofs of Corollaries 3-5. In view of Theorem 2, the proofs of Corollaries 3-5 are the same as in the proofs of Corollaries 1 and 2 and hence the details are omitted.

3 Proof of Proposition 1

We only prove (19). The result (17) can be found in CsSzW (2003, page 1235) and the result (18) follows from similar arguments. Let

$$Z_j = X_j^* - EX_j^* - \sigma_j^* Y_j, \quad j = 1, 2, \ldots,$$

and write $\eta_0 = 0$. Note that $\eta_j^2 \leq (j + 1)l(\eta_j)$ and $l(\eta_n) = \sum_{k=1}^{n} EX^2 I(\eta_n < |X| \leq \eta_n)$. It follows from the Shorack and Smythe inequality (cf. Shorack and Weller, 1986, p. 844), (16) with
Similarly, by noting that \(c_j = 1/j^{1/2} \) that, for any \(C > 0 \),

\[
P \left(\sup_{1/n \leq t \leq 1} \left| \sum_{j=1}^{[nt]} Z_j \right| / t^{1/2} \geq C b_n \right) \\
\leq P \left(\max_{1 \leq k \leq n} \left| (k/n)^{-1/2} \sum_{j=1}^{k} Z_j \right| \geq C b_n \right) \\
\leq P \left(\max_{1 \leq k \leq n} \left| \sum_{j=1}^{k} j^{-1/2} Z_j \right| \geq 2^{-1} C b_n / \sqrt{n} \right) \\
\leq A \left(2 \sqrt{n} C b_n \right) \sum_{j=1}^{n} j^{-3/2} |X| X^{3} I_{(|X| \leq \eta)} \\
\leq AC^{-3} l^{-3/2}(\eta_n) \sum_{k=1}^{n} k^{-1/2} E |X|^{3} I_{(|X| \leq \eta)} \\
\leq AC^{-3} l^{-3/2}(\eta_n) \sum_{k=1}^{n} l^{1/2}(\eta_k) E |X|^{2} I_{(|X| \leq \eta)} \\
\leq AC^{-3}.
\]

This yields

\[
J_{1n} := b_n^{-1} \sup_{1/n \leq t \leq 1} \left| \sum_{j=1}^{[nt]} Z_j \right| / t^{1/2} = O_P(1).
\]

Similarly, by noting that \(l(\eta_n) = \sum_{k=1}^{n} E X^2 I_{(|X| \leq \eta)} \) and \(E |X| I_{(|X| > \eta)} = o\left(\eta_n^{-1} l(\eta_n) \right) \) = \(o(b_n/n) \) [see Lemma 1 of CsSzW (2003) for example], it follows from (7) in CsSzW (2003) with \(a_j = EX^2 I_{(|X| \leq \eta)} \) that

\[
P \left(\sup_{1/n \leq t \leq 1} \left| \sum_{j=1}^{[nt]} (X_j - X_j^* + EX_j^*) \right| / t^{1/2} \geq C b_n \right) \\
\leq P \left(\max_{1 \leq k \leq n} \sum_{j=1}^{k} \frac{1}{j^{1/2}} \left(|X_j| I_{(|X_j| > \eta_j)} + E |X_j| I_{(|X_j| > \eta_j)} \right) \geq C b_n / n^{1/2} \right) \\
\leq 2 n^{1/2} \sum_{k=1}^{n} \frac{1}{k^{1/2}} E |X| I_{(|X| > \eta_k)} \\
\leq \frac{2n}{Cb_n} E |X| I_{(|X| > \eta_n)} + \frac{2C^{-1}}{l^{1/2}(\eta_n)} \sum_{k=1}^{n} \frac{1}{k^{1/2}} E |X| I_{(|X| > \eta_k)} \\
\leq AC^{-1} + \frac{2C^{-1}}{l^{1/2}(\eta_n)} \sum_{k=1}^{n} \eta_n^{-1/2}(\eta_k) E |X|^2 I_{(|X| \leq \eta_{n+1})} \\
\leq AC^{-1}.
\]
This yields
\[J_{2n} := b_n^{-1} \sup_{1/n \leq t \leq 1} \left| \sum_{j=1}^{[nt]} (X_j - X_j^* + EX_j^*) \right|/t^{1/2} = O_P(1). \]
(36)

Combining the estimates (35) and (36), we obtain
\[b_n^{-1} \sup_{0 < t \leq 1} \left| S_{[nt]} - \sum_{j=1}^{[nt]} \sigma_j^* Y_j \right|/t^{1/2} \leq J_1 + J_2 = O_P(1), \]
which implies (19). This also completes the proof of Proposition 1.

4 \(L_p \)-approximations of weighted self-normalized processes

Noting that \(\lim sup_{t \downarrow 0} |W(t)|/t^{1/2} = \infty \text{ a.s.} \), it is impossible to extend Theorem 2 and its corollaries to the weight function \(q(t) = t^{1/2} \). However, due to the finiteness of the integral \(\int_0^1 |W(t)|/t^{1/2} dt \), such a weight function is an immediate candidate for weighted \(L_1 \)-approximation. We still use \(Q \) to denote the class of those positive functions on \((0, 1]\) for which \(q(t) \) is nondecreasing near zero. The main purpose of this section is to establish \(L_p \)-approximations of weighted self-normalized partial sum processes, and thus to extend Theorem 1.1 of Szyszkowicz (1993) that is based on assuming two moments when working with standardized partial sums.

Theorem 3 Let \(q \in Q \) and \(0 < p < \infty \). Let \(EX = 0 \) and \(X \) be in the domain of attraction of the normal law. Then the following statements hold true.

(a) On an appropriate probability space for the i.i.d. random variables \(X, X_1, X_2, \ldots \), we can construct a standard Wiener process \(\{W(t), 0 \leq t < \infty\} \) such that, as \(n \to \infty \),
\[\int_0^1 |V_n^{-1} S_{[nt]} - n^{-1/2} W(nt)|^p / q(t) dt = o_P(1) \]
if and only if
\[\int_0^1 t^{p/2} / q(t) dt < \infty. \]
(37)
(38)

(b) Let \(\{W(t), 0 \leq t < \infty\} \) be a standard Wiener process. Then, as \(n \to \infty \),
\[\int_0^1 |V_n^{-1} S_{[nt]}|^p / q(t) dt \to_d \int_0^1 |W(t)|^p / q(t) dt \]
if and only if (38) holds.
It is of interest to call attention to the fact that (a) and (b) are equivalent under the conditions of Theorem 3. Thus, unlike in the case of Theorem 2 where, in addition to Corollary 3 we also have Corollary 4 for a larger class of weight functions, in L_p we have (a) and (b) for the same class of weight functions.

In the proof of Theorem 3 we make use of the following result, which is a consequence of Corollary 2.1 of Csörgő, Horváth and Shao (1993).

Lemma 4 Let \{W(t), 0 \leq t < \infty\} be a standard Wiener process, 0 < p < \infty, and assume that q is a positive function on (0,1]. Then (38) holds if and only if

$$\int_0^1 |W(t)|^p / q(t) dt < \infty \quad a.s. \quad (40)$$

We now turn to the proof of Theorem 3.

Proof. We first show (a). If (37) is satisfied, then

$$\int_0^{1/n} |n^{-1/2}W(nt)|^p / q(t) dt = d \int_0^{1/n} |W(t)|^p / q(t) dt = o_P(1).$$

Therefore, following the proof of Theorem 1.1 of Szyszkowicz (1993), we have (40), and hence also (38), via Lemma 4.

We now prove that (38) implies (37). Still using the notations in the proof of Theorem 1, it can be easily seen that for $\delta \in (0,1)$,
This, together with (12), implies that

\[
\int_0^1 |V_n^{-1} S_{[nt]} - n^{-1/2} W(nt)|^p / q(t) dt \\
\leq \int_0^1 |V_n^{-1} S_{[nt]} - n^{-1/2} W(nt)|^p / q(t) dt \\
+ \left(\frac{b_n}{V_n} \right)^p \int_{1/n}^\delta b_n^{-1} (S_{[nt]} - (S^*_{[nt]} - ES^*_{[nt]})) |^p / q(t) dt \\
+ \left(\frac{b_n}{V_n} \right)^p \int_{1/n}^\delta b_n^{-1} (S^*_{[nt]} - ES^*_{[nt]}) - b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^2 Y_j |^p / q(t) dt \\
+ \left(\frac{b_n}{V_n} \right)^p \int_{1/n}^\delta b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^2 Y_j |^p / q(t) dt + \int_0^\delta |n^{-1/2} W(nt)|^p / q(t) dt \\
:= II_1(n) + II_2(n) + II_3(n) + II_4(n) + II_5(n).
\] (41)

By Theorem 2, we have

\[
II_1(n) \leq \sup_{0 \leq t \leq 1} |V_n^{-1} S_{[nt]} - n^{-1/2} W(nt)|^p \int_0^1 1 / q(t) dt \\
= o_P(1), \quad \text{for any } \delta \in (0, 1).
\] (42)

By (12) and (36), it follows that

\[
II_2(n) \leq \left(\frac{b_n}{V_n} \right)^p (J_{2n})^p \int_{1/n}^\delta t^{p/2} / q(t) dt = O_P(1) \int_0^\delta t^{p/2} / q(t) dt.
\] (43)

Similarly, by (12) and (35), we get

\[
II_3(n) \leq \left(\frac{b_n}{V_n} \right)^p (J_{1n})^p \int_{1/n}^\delta t^{p/2} / q(t) dt = O_P(1) \int_0^\delta t^{p/2} / q(t) dt.
\] (44)

Let \(\delta \) be small enough so that \(q \) is already nondecreasing on \((0, \delta) \). Similarly to the proof of (30), we have

\[
\int_{1/n}^\delta |b_n^{-1} \sum_{j=1}^{[nt]} \sigma_j^2 Y_j | / q(t) dt =_d \int_{1/n}^\delta |W(1/n \sum_{j=1}^{[nt]} \sigma_j^2 / l(\eta_n)) | / q(t) dt \\
\leq \int_{1/n}^\delta |W(1/n \sum_{j=1}^{[nt]} \sigma_j^2 / l(\eta_n)) | / q(1/n \sum_{j=1}^{[nt]} \sigma_j^2 / l(\eta_n)) dt.
\]

This, together with (12), implies that

\[
II_4(n) = O_P(1) \int_0^\delta |W(1/n \sum_{j=1}^{[nt]} \sigma_j^2 / l(\eta_n)) | / q(1/n \sum_{j=1}^{[nt]} \sigma_j^2 / l(\eta_n)) dt.
\] (45)
We also have for each n

$$II_5(n) =_d \int_0^\delta |W(t)|^p/q(t)dt. \quad (46)$$

Taking $n \to \infty$ and then δ arbitrarily small, on using (38) via Lemma 4, by (41)-(46) we arrive at (37).

We next show (b). If (39) holds true, then clearly we have (40) and hence also (38) by Lemma 4. Conversely, we now assume (38). Since q is a positive function on $(0,1]$, it follows from Theorem 2 that, as $n \to \infty$,

$$\int_\delta^1 |V_n^{-1}S_{[nt]}|^p/q(t)dt \to_d \int_\delta^1 |W(t)|^p/q(t)dt$$

for all $\delta \in (0,1)$. On using (38), by Lemma 4 we conclude that

$$\lim_{\delta \downarrow 0} \int_0^\delta |W(t)|^p/q(t)dt = 0 \quad a.s.$$

From here on, mutatis mutandis, the proof follows similarly to that of proving (iii) of Theorem 1.1 of Cs"org"o, Horv"ath and Shao (1993).

This completes the proof of Theorem 3.

REFERENCES

Anderson, T. W. and Darling, D. A. (1952). Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes, *Ann. Math. Statist.* 23, 193-212.

Breiman, L. (1968). *Probability*, Addison-Wesley, Reading, MA.

Chibisov, D. (1964). Some theorems on the limiting behaviour of empirical distribution functions, *Selected Transl. Math. Statist. Probab.* 6, 147-156.

Chistyakov, G. P. and G"otze, F. (2004). Limit distributions of Studentized means. *Ann. Probab.* 32, no. 1A, 28–77.

Cs"org"o, M. (2002). A glimpse of the impact of Pál Erdős on probability and statistics, *The Canadian Journal of Statistics* 30, 493–556.

Cs"org"o, M., Csörg"o, S., Horv"ath, L. and Mason, D.M. (1986). Weighted empirical and quantile processes, *Ann. Probab.* 14, 31-85.

Csörgő, M. and Horváth, L. (1986). Approximations of weighted empirical and quantile processes, *Statist. Probab. Lett.* 4, 151–154.

Csörgő, M. and Horváth, L. (1988). Nonparametric methods for changepoint problems, In *Handbook of Statistics*, 7, Elsevier Science Publisher B.V., 403-425, North-Holland, Amsterdam.

Csörgő, M. and Horváth, L. (1993). *Weighted Approximations in Probability and Statistics*, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, Wiley, Chichester.
Csörgő, M. and Horváth, L. (1997). *Limit Theorems in Change-Point Analysis*, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, Wiley, Chichester.

Csörgő, M. and Horváth, L. and Shao, Q.-M. (1993). Convergence of integrals of uniform empirical and quantile processes, *Stochastic Process. Appl.* 45, 283–294.

Csörgő, M., Norvaiša, R. and Szyszkowicz, B. (1999). Convergence of weighted partial sums when the limiting distribution is not necessarily Radon, *Stochastic Process. Appl.* 81, 81-101.

Csörgő, M. and Révész, P. (1981). *Strong Approximations in Probability and Statistics*, Academic Press, New York.

Csörgő, M., Shao, Q.-M. and Szyszkowicz, B. (1991). A note on local and global functions of a Wiener process and some Rényi-type statistics, *Studia Sci. Math. Hungar.* 26, 239–259.

Csörgő, M., Szyszkowicz, B. and Wang, Q. (2003). Donsker’s theorem for self-normalized partial sums processes. *Ann. Probab.* 31, 1228–1240.

Csörgő, M., Szyszkowicz, B. and Wang, Q. (2004). On weighted approximations and strong limit theorems for self-normalized partial sums processes. In *Asymptotic Methods in Stochastics*, 489–521, Fields Inst. Commun. 44, Amer. Math. Soc., Providence, RI.

Gine, E., Götze, F. and Mason, D.M. (1997). When is the Student t-statistic asymptotically standard normal? *Ann. Probab.* 25, 1514-1531.

Griffin, P.S. (2002). Tightness of the Student t–statistic, *Electron. Comm. Probab.* 2, 181-190.

Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent RV’s, and the sample DF, I., *Z. Wahrscheinlichkeitstheorie verw. Gebiete* 32, 111–131.

Komlós, J., Major, P. and Tusnády, G. (1976). An approximation of partial sums of independent RV’s, and the sample DF. II., *Z. Wahrscheinlichkeitstheorie verw. Gebiete* 34, 33–58.

Logan, B.F., Mallows, C.L., Rice, S.O. and Shepp, L.A. (1973), Limit distributions of self-normalized sums. *Ann. Probab.* 1, 788–809.

O’Reilly, P. (1974). On the weak convergence of empirical processes in sup-norm metric, *Ann. Probab.* 2, 642-651.

Major, P.(1976). The approximation of partial sums of independent RV’s. *Z. Wahrscheinlichkeitstheorie und Verw. Gebiete* 35, 213–220.

Pyke, R. and Shorack, G.R. (1968). Weak convergence of two-sample empirical processes and a new approach to Chernoff-Savage theorems, *Ann. Math. Statist.* 39, 755-771.

Rényi, A. (1953). On the theory of order statistics, *Acta. Math. Acad. Sci. Hungar.* 4, 191-231.

Sakhanenko, A. I. (1980). On unimprovable estimates of the rate of convergence in invariance principle, In *Colloquia Math. Soc. János Bolyai* 32, *Nonparametric Statistical Inference*, Budapest, Hungary, 779-783, North-Holland, Amsterdam.
Sakhanenko, A. I. (1984). On estimates of the rate of convergence in the invariance principle, In *Advances in Probability Theory: Limit Theorems and Related Problems*, (A. A. Borovkov, Ed.) 124-135. Springer, New York.

Sakhanenko, A. I. (1985). Convergence rate in the invariance principle for non-identically distributed variables with exponential moments, In *Advances in Probability Theory: Limit Theorems for Sums of Random Variables*, (A. A. Borovkov, Ed.) 2-73. Springer, New York.

Shorack, G. R. and Wellner, J. A. (1986). *Empirical Processes with Applications to Statistics*, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, Wiley, New York.

“Student” (1908). The probable error of the mean, *Biometrika* 6, 1-25.

Szyszkowicz, B. (1991). Weighted stochastic processes under contiguous alternatives, *C.R. Math. Rep. Acad. Sci. Canada* 13, 211-216.

Szyszkowicz, B. (1992). Weighted asymptotics of partial sum processes in $D[0, \infty)$, *C.R. Math. Rep. Acad. Sci. Canada* 14, 273-278.

Szyszkowicz, B. (1993). L_p-approximations of weighted partial sum processes, *Stochastic Process. Appl.* 45, 295-308.

Szyszkowicz, B. (1996). Weighted approximations of partial sum processes in $D[0, \infty)$. I, *Studia Sci. Math. Hungar.* 31, 323-353.

Szyszkowicz, B. (1997). Weighted approximations of partial sum processes in $D[0, \infty)$. II, *Studia Sci. Math. Hungar.* 33, 305-320.

Miklós Csörgő
School of Mathematics and Statistics
Carleton University
1125 Colonel By Drive
Ottawa, ON Canada K1S 5B6
mcsorgo@math.carleton.ca

Barbara Szyszkowicz
School of Mathematics and Statistics
Carleton University
1125 Colonel By Drive
Ottawa, ON Canada K1S 5B6
bszyszko@math.carleton.ca

Qiying Wang
School of Mathematics and Statistics
University of Sydney
NSW 2006, Australia
qiying@maths.usyd.edu.au