Review

Multidisciplinary management of patients diagnosed with von Hippel-Lindau disease: A practical review of the literature for clinicians

Alessandro Larchera,b,c, Federico Belladellia,b, Giuseppe Fallara a,b, Isaline Rowea,b, Umberto Capitaniob,a, Laura Marandino a,d, Daniele Raggi a,d, Jody Filippo Capitanioc,e, Michele Bailoa,c,e, Rosangela Lattanzio a,f, Costanza Barresia,f, Sonia Francesca Calloniga,g, Maurizio Barberaa,g, Valentina Andreatsi,c,h, Giorgia Guazzarottia,i, Giovanni Pipitone a,j, Paola Carrera a,j, Andrea Neckih,c,d, Pietro Mortini a,c,e, Francesco Bandello a,c,f, Andrea Falini a,c,g, Stefano Partelli a,c,h, Massimo Falconia,c,h, Francesco De Cobelli a,c,i, Andrea Salonia,b,c,*

a Ospedale San Raffaele VHL Research Program, Milan, Italy
b URI-Urological Research Institute, Department of Urology, Division of Experimental Oncology, IRCCSOspedale San Raffaele, Milan, Italy
c Università Vita-Salute San Raffaele, Milan, Italy
d Department of Oncology, IRCCSOspedale San Raffaele, Milan, Italy
e Department of Neurosurgery, IRCCSOspedale San Raffaele, Milan, Italy
f Department of Ophthalmology, IRCCSOspedale San Raffaele, Milan, Italy
g Department of Neuroradiology, IRCCSOspedale San Raffaele, Milan, Italy
h Pancreas Translational & Clinical Research Center, OSR ENETS Center of Excellence, Unit ofPancreatic Surgery, IRCCSOspedale San Raffaele, Milan, Italy
i Department of Radiology, IRCCSOspedale San Raffaele, Milan, Italy
j Service of Laboratory Medicine, Molecular Genetics Service and Clinical Genomics

Received 9 March 2022; received in revised form 27 July 2022; accepted 17 August 2022
Available online 10 September 2022

* Corresponding author. URI-Urological Research Institute, Department of Urology, Division of Experimental Oncology, IRCCSOspedale San Raffaele, Milan, Italy.
E-mail address: salonia.andrea@hsr.it (A. Salonia).
Peer review under responsibility of Tongji University.

https://doi.org/10.1016/j.ajur.2022.08.002
2214-3882/© 2022 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Von Hippel-Lindau (VHL) syndrome is an autosomal dominant disease with an incidence around 1/36 000 live births [1] and is the genetic etiology most commonly associated with kidney cancer [2]. The onco-suppressor gene VHL is located in the chromosome 3p25.3 and it codes for an ubiquitin ligase. This protein is used to degrade the hypoxia inducible transcription factor-zalpha (HIF-2a). The inactivation of VHL genes leads to the accumulation of HIF-2a, which through the activation of other genes, including vascular endothelial growth factor (VEGF), leads to oncogenesis [3].

Multiple tumors can develop over the course of VHL syndrome, but the most prevalent ones are hemangioendotheliomas (HBs) of the retina and central nervous system (CNS), clear cell renal cell carcinomas (RCCs), pheochromocytomas, pancreatic islet tumors, endolymphatic sac tumors, renal and pancreatic cystadenomas, epididymal cystadenomas in men, and broad ligament of the uterus cystadenomas in women [1]. In 80% of sporadic clear cell RCC, VHL gene alterations are seen [4]. VHL patients present with a single allele VHL germline mutation and a subsequent somatic mutation affecting the remaining VHL allele increases risk of uncontrolled proliferation [5]. Individuals diagnosed with VHL suffer from multiple tumors, but patients’ quality of life is mainly influenced by RCC [3], while the main cause of death is still CNS HB [6,7].

Because VHL is considered a rare disease, very limited evidence is available for diagnosis, surveillance, active treatment with local or systemic therapy and follow-up; hence the aim of the current review is to summarize the available evidence to aid clinicians in the surveillance, treatment, and follow-up of patients diagnosed with VHL syndrome.

2. CNS HBs

2.1. Clinical features

CNS HBs are rare neoplasms that may occur sporadically or in association with VHL syndrome. HBs are generally considered indolent tumors composed of neoplastic stromal cells and a prominent capillary network composed of endothelium and pericytes. According to 2021 World Health Organization classification of CNS tumors, HBs are graded as 1 and are enclosed in the “vascular” subcategory of the “mesenchymal non-meringothelial” tumor subgroup [8].

There is a slight male predominance (male:female ratios of 1.3–2.6:1), with a peak incidence between 30 and 60 years old in sporadic cases and at a younger age (30 years old) in VHL families [9]. Isolated HBs are considered sporadic in 75% of cases, although family history should be always questioned, and genetic test is recommended. HBs in a VHL setting represent the remaining 25% of total HBs cases; they are frequently multiple, with a tendency to develop throughout the course of a patient’s life [10]. VHL-associated HBs are tend to appear about 10 years earlier than their sporadic counterparts, often growing in unusual CNS regions; in fact, 50% of them are located in spinal cord and 40% in the cerebellum [11]. VHL subtypes 1, 2A, and 2B entail a higher risk of developing CNS disease occurrence or progression [12]. Recently new pathogenic variants at intron 2 in VHL-associated HBs were observed. According to gene sequencing, CNS HBs can arise from both exonic and intronic mutations [13].

Signs and symptoms are related to the affected anatomic region. Cerebellar HBs can cause headache (75%), gait ataxia (55%), dysmetria (29%), hydrocephalus (28%), and nausea and vomiting (28%); other symptoms such as slurred speech, nystagmus, labile hypertension, and positional vertigo have also been described. Brainstem HBs can cause hypoesthesia (55%), gait ataxia (22%), dysphagia (22%), hyperreflexia (22%), and headache (11%). Spinal cord HBs typically produce hypoesthesia (83%), weakness (65%), gait ataxia (65%), hyperreflexia (52%), and pain (17%) [11]. Other symptoms such as paraneoplastic erythrocytosis can occur in 15–20% of patients with HBs. The elevated values of hematocrit and red cell mass seem to be the result of excessive erythropoietin production by the stromal cells [14].

By the time of clinical presentation, the majority of mass effect, and related symptoms, derive from the cystic components, rather than the solid nodule generating them,
mainly because the pace of cystic enlargement is way faster than for solid tumor progression. Cystic HBs are more prone, compared to solely solid tumors, to become symptomatic. Spontaneous edema is exceptional in the cerebellum, while relatively frequent in the spinal cord [15]. Hemorrhages occur more frequently in the peripheric nervous than in the CNS [16].

2.2. Diagnostic examinations

Magnetic resonance imaging (MRI) represents the imaging of choice in terms of neuroradiological evaluation and monitoring of VHL patients, since it provides extremely detailed images of CNS and orbital HBs [17,18] without ionizing radiation.

MRI evaluation of a patient affected by VHL is usually acquired on a 1.5 Tesla scan and includes scans of brain, the orbits, and a whole spine MRI. Brain MRI scan protocol comprises of axial T2-weighted images (WIs), three-dimensional fluid-attenuated inversion recovery, diffusion-WIs, and pre- and post-contrast three-dimensional T1WIs. T2WIs and fluid-attenuated inversion recovery sequences are useful in the evaluation and follow-up of the cystic part of the lesion and of adjoining brain edema or post-surgical changes. Post-contrast T1WIs are rather mandatory to monitor the progressive enlargement of the vascular nodular component of the lesion and to detect small (≤2 mm in size) HBs [19]. HBs are most commonly primary intra-axial infra-tentorial tumor, but 5% can be supratentorial (typically in the optic radiations or the sellar region) [20]. Eventually, a T2WI coronal sequence can be added to study the pituitary gland region, or a T2 DRIVE sequence to better discriminate small infratentorial HBs of the vermis or rarely of the cerebellopontine angle.

As detailed, HBs in VHL patients are typically located in the retina, but can rarely occur in other regions of the visual pathway or in the CNS, such as in the optic nerve or chiasm, especially in case of clinical symptoms [21]. Orbital MRI scan protocol includes axial and coronal Dixon T2WI, diffuse WI, axial and coronal T1WIs, and post-contrast imaging.

Whole spine MRI scan consists of sagittal T2- and short-T1 inversion recovery WI, and pre- and post-contrast T1WIs. Axial T2WI and axial and coronal post-contrast T1WI are also used to better evaluate small HBs that can be located eccentrically or may have an exophytic component along the dorsum of the cord [22]. Only 25% of spine HBs are entirely intramedullary; even if rare, some of those can be located extramedullary intradural along the cauda equine [23]. T2WI allows for a better definition of associated tumor cyst or syrinx (50%–100%) [24], as well in the assessment of eventual post-surgical spinal cord changes.

Overall, the time of acquisition to correctly perform this type of MRI evaluation is 1 h. Motion artifacts on acquired images can be present or patients can feel the burden of an extended imaging scan, so each examination must be tailored depending on the clinical status of the patient and the necessity of definition of specific imaging findings. When necessary, MRI scan can be performed with deep sedation.

For CNS screening, baseline MRI of the brain and spine is performed at 20 years of age, followed by annual neurologic examinations, with a shorter threshold for repeated imaging if there are any suspicious signs or symptoms. In absence of strong recommendations about surveillance, it has been proposed to perform annual MRI to monitor CNS in VHL patients [25].

2.3. Indications for active treatments

Guidelines for the optimal management of CNS HBs are not available yet. It has been reported that CNS HBs alternate period of quiescence (mean 25 months) with periods of growth (mean 13 months) [11]. Consequently, HBs frequently remain asymptomatic and do not require treatment for long periods of time; however, over time most patients become symptomatic and active treatment is indicated.

2.4. Therapeutic options

Different therapeutic options are conceivable, and the decision is tailored based on signs and symptoms, number of lesions, localization and depending on the sporadic or familial pattern. HBs en-bloc total surgical excision with closure of arterial feeders and dissection of the tumor margins from their pial attachments are usually regarded as the optimal treatment since it generally provides long-term tumor control and frequently results in definitive cure. Recurrence is usually associated with partial or complete removal of the mass in the sporadic group while VHL patients, unfortunately, develop new lesions with a frame rate of about 2 years, independently from surgical radicality. Surgery is associated to a generic risk of intraoperative bleeding which may be reduced by preoperative embolization in cases of large tumors and/or presence of several distal feeding arteries. Most lesions are well defined, have a small nidus together with a large cyst and few small feeding arteries and could be easily dissected from cerebellar parenchyma making embolization unneeded in most cases. Intraoperative use of indocyanine green angiography to demonstrate residual vascularity seems to be a valid option in case of remnants and could be employed in selected cases to accomplish gross total resection.

Cystic drainage alone and/or partial removals or even mere biopsies should be avoided due to inconsistency and risk of recurrence, although they can be accepted when combined with a radiation treatment of the remaining lesion. Draining the cyst before surgery can relief neural structure and allow for a natural corridor to better dissect each HBs from the parenchyma. Generally, a second and third surgical look may be considered in HBs larger than 3 cm, mainly located in posterior fossa, in case of hemorrhage or when a new enlarging cyst is growing to prevent further neurologic sequelae. Surgical techniques should be tailored according to HB localization and center experience; intraoperative neuronavigation paired with augmented reality software’s as well as intraoperative ultrasound (US) scans are useful to define the mass, identify the shorter and safer surgical trajectory, restrict the corticectomy size, and preserve cerebellum nuclei.

Although the main therapy of HB is surgical resection, for patients with sub-totally excised, unresectable lesions, or military HB diffusion, radiotherapy (RT) and/or stereotactic or radiosurgery (SRS) are effective options. Conventional RT
has been associated with good rates of local control in the 60%–90% range depending on the extension, localization, and number of HBs. Concerning volumes of interest for RT planning, the clinical target volume should include the operative bed with an isotropic margin of 1 cm. Prescription dose is 50–60 Gy at 1.8 Gy or 2.0 Gy per fraction, which has been associated with improved local tumor control. The target for SRS in HB has typically been identified as the contrast-enhancing tumor without margin, and prescription doses are typically among 15–20 Gy [26]. Depending on cyst sizes, different irradiation techniques may be adopted: generally, the cyst must be included in the gross tumor volume, and whenever possible, cyst should be drained in advance to reduce volume, especially if larger than 2 cm in diameter. Since higher control rates have been reported for smaller volumes and higher doses, a stereotactical cyst evacuation after the placement of a catheter connected to an Ommaya reservoir just before irradiation is generally advocated.

Radiosurgical experience especially in the management of brainstem HBs is limited because of the frequent presence of symptomatic cystic components and the eloquence of the normal tissue surrounding the lesion, especially for lower brainstem locations, thus raising some concern on long-term efficacy and safety of the procedure. SRS is potentially attractive for patients with VHL syndrome where multiple HBs may develop either concurrently or sequentially and may be difficult to treat or retreat with repeated surgery and/or conventional radiation techniques without excessive cumulative toxicity.

The only known factor predictive of recurrence for long-term tumor control among patients treated with gamma knife SRS is the coexistence of multiple lesions; thereof, patients with multiple HBs are less likely to exhibit long-term tumor control of treated lesions following SRS. In different published series, HBs treated with SRS resulted in excellent tumor control reaching 80%–90% at 5 years, with improvement of symptoms likewise. Factors associated with longer tumor control on univariate analysis were solid tumor characteristics on imaging, small treatment volume, and tumors associated with VHL.

3. Retinal HBs

3.1. Clinical features

Retinal capillary hemangioblastoma (RCH) is one of the most common clinical manifestations of VHL syndrome and is commonly considered as its earliest presenting condition [27–30]. HBs occur in approximately 68% of VHL patients [31,32]. According to a large cross-sectional study, RCHs presented unilaterally in 42% of VHL patients, while 58% presented bilaterally, regardless of age and sex [33]. A recent study found VHL to be the underlying cause of 84% retinal hemangiomas, emphasizing the importance of VHL screening in patients diagnosed with RCH [34].

The exact pathophysiology of the lesion is not fully understood. It has been proposed to be either a congenital, hamartomatous-like lesion or a benign vascular neoplastic process [31]. Histopathological studies displayed that the tumor is characterized by a neovascular plexus, with numerous communicating, irregular vessels (i.e., the result of the benign proliferation of endothelial cells and pericytes), separated by collagen fibers and vacuolated “stromal” cells [35–37].

RCH is usually a well-circumscribed, round bulging with a red to orange color and a variable appearance depending upon whether the tumor is endophytic, sessile, or exophytic [28]. RCH can arise at the level of the optic disc (designated as juxtapapillary or epipapillary RCH), or within retina elsewhere (designated as extrapapillary RCH) [38]. Extrapapillary RCH usually starts as a tiny red or gray intraretinal dot no larger than a few hundred microns, appearing on ophthalmoscopic examination like a microaneurysm or punctate intraretinal hemorrhage. As the tumor grows, RCH displays more distinctive prototypical features, such as increasing nodularity, dilated and tortuous feeding and draining vessels, associated with exudation and/or retinal edema [28] (Fig. 1). Noteworthy, peripheral tumors can lead to marked retinal edema and hard exudates in the macular region. Conversely, juxtapapillary RCH may exhibit more subtle features, sometimes appearing only as a localized fullness of the inner retina at the border of the neural rim, while feeding and draining vessels are usually absent. A majority of RCHs grow over time, while only few untreated tumors remain static for a long period and rarely regress spontaneously [39]. Complications, such as exudation of subretinal or intraretinal spaces, are often limited to the perilesional region, but can also be far enough to produce macular star exudates. Without treatment, large or multiple adjacent RCHs might grow to displace retinal structures and cause an exudative retinal detachment. In large RCHs, fibrosis of the epiretinal space, followed by posterior hyaloid contraction, may lead to macular epiretinal membrane with macular thickening, vitreoretinal traction, or tractional retinal detachment. As a rare complication, neovascularization of the iris can also occur, eventually leading to neovascular glaucoma [40]. Symptoms of RCH are generally secondary to macular exudation or retinal detachment. Patients frequently complain of gradual vision loss or metamorphopsia.

3.2. Diagnostic examinations

Nowadays, multimodal retinal imaging plays a key role in detecting early signs of ocular involvement in VHL syndrome. Fluorescein angiography, particularly with the use of wide-field imaging, is a sensitive tool for identifying small or subtle tumors, which exhibit early hyper-fluorescence of the feeder artery during the arterial phase and cumulative hyper-fluorescence within the entire tumor during the later phases of the exam [27]. For larger tumors, B-scan ultrasonography can be used to corroborate the size of the lesion and to detect signs of exudative retinal detachment [41]. On optical coherence tomography scans, RCH appears as a mass within the inner retinal, with hyper-reflective thickening of the inner layers and displacement of the outer layers with increasing size of the lesion [42].

Further studies, with optical coherence tomography angiography, showed that eyes with VHL syndrome are characterized by an abnormal retinal vascular pattern of the macular region compared with eyes without VHL syndrome.
normalities. strabismus, hearing impairment, and blood pressure ab-
ciased with annual neurological screening for nystagmus or
indirect ophthalmoscope to rule out retinal lesions, asso-
recommendations suggest yearly eye examinations with
exudation or subretinal fluid. Vascular lesions, such as
To date, the most effective treatment remains thermal
photocoagulation. Vascular lesions, such as

3.4. Therapeutic options

To date, the most effective treatment remains thermal
laser photocoagulation. Vascular lesions, such as
RCHs, absorb yellow laser more than other laser wave-
lengths, based on the absorption range of oxyhemoglobin; therefore, yellow and green wavelengths are the most
used. For angiomas smaller than the optic disc diameter, the treatment is performed in a single session, with low
power values and long exposure to prevent bleeding
complications. Larger angiomas firstly require a perile-
sional barrage, followed by direct photocoagulation of the
tumor. After 20–30 days from the barrage, time necessary
for the spots to meet scarring, direct photocoagulation
could be performed in several sessions. Furthermore, it is
suggested—in more voluminous angiomas—first to proceed
with the photocoagulation of the feeder vessels to reduce
blood supply to the angioma and to reduce the risk of
bleeding.

To date, cryotherapy is used only for large size angi-
omas, located in the extreme periphery, in the presence of
lens opacities or with evidence of neuroepithelial detach-
ment around the lesion. Surgical treatment is consid-
forced for those cases of partial or non-response to laser
photocoagulation or cryotherapy. Via pars plana vit-
rectomy is performed when angiomas cause fibrous or
tractional retinal detachment, epiretinal or vascular pro-
liferation affecting central vision, but require careful
attention to several risks. Eyes with RCH presenting
with exudation, hemorrhage or epiretinal proliferation are
at high risk of developing proliferative vitreoretinopathy
after surgery.

Notably, intravitreal anti-VEGF have recently been used
to reduce exudation resulting from RCH. There is
hope that better understanding of the molecular basis of
VHL syndrome will allow rational design of non-ablative
strategies to reduce RCH growth, with concrete improve-
ment on visual outcomes.

The most frequent complications of RCH photocoagula-
tion are hemorrhages and fibrotic contraction, which can
occur during and after therapy. Marked adverse side
effects, including altitudinal defects and central scotomas
in the visual field, are also associated with photocoagula-
tion. Notably, both laser and cryotherapy of peripheral
tumors may lead to massive retinal hard exude accumu-
lation and macular edema, contributing to further decrease
in vision after treatment. Indeed, early diagnosis and
prompt treatment of RCH may significantly impact both on
short- and long-term visual outcomes of the patients.

4. Pancreatic neuroendocrine tumors and
pancreatic cistoadenomas

4.1. Clinical features

Pancreatic lesions develop in approximately 70% of patients
with VHL syndrome and comprise pancreatic neuroendo-
crine neoplasms (PanNENs) as well as pancreatic cystic le-
sions, including simple cysts, serous cystadenomas (SCs),
intraductal papillary mucinous neoplasms, and mixed tu-
mors (cystic PanNENs). Pancreatic cyst is the most
frequent kind of pancreatic involvement and appear in
about half of VHL patients, showing a benign biological
behavior. Since pancreatic cysts are extremely rare in the
general population, their detection during screening
examination may help in identification of gene carriers.
PanNENs diagnosis occurs in 10%–20% of patients, with a
slight female predominance. Patients with VHL
syndrome typically develop multiple, non-functioning Pan-
NENs, which are more frequently located in the
pancreatic head or uncinate process. VHL-related PanNENs
usually display a lower malignant potential compared to
sporadic neoplasms, with a consequently reduced rate of
high-grade and metastatic lesions (9%–12%).
are uncommon and mainly related to compression of the bile duct and the increased risk of pancreatitis.

4.2. Diagnostic examinations

At computed tomography (CT), pancreatic cysts are seen as hypodense lesions (fluid density) without enhancement while SCs appear as multicystic lesions (usually composed of more than six cysts) with each cyst measuring less than 2 cm. A central scar with delayed enhancement and sometimes stellate calcification (20% of cases) may be seen. MRI shows a T1 hypointense and T2 hyperintense “cluster of cysts”; its central fibrotic scar may have hypointense signal on both T1WI and T2WI with delayed enhancement. The absence of communication with the Wirsung duct permits differentiation of SCs from intraductal papillary mucinous neoplasms, while it could be difficult to distinguish SCs from a cluster of closely apposed single cysts; however, it has no clinical relevance since both are benign lesions requiring no intervention [61].

Unrelated to pancreatic cysts, PanNENs occur in 5%–17% of patients [61–63], and are usually multiple and more common in patients with phaeochromocytomas [17,64,65]. If CT and US could be used for screening purpose, MRI is the imaging method that better depicts PanNENs. At US, Pan-NEN appears as a well-defined mass, hypoechoic relative to pancreatic parenchyma. They are homogeneous and hypo- or iso-attenuating relative to the rest of the pancreas at unenhanced CT and hypointense on T1-weighted and slightly hyperintense on T2-weighted MRI scans [65,66]. They typically show intense arterial enhancement at both CT and MRI scans [57]. Calcification, areas of necrosis, or cystic degeneration may be evident in large tumors [65]. Combining anatomic and functional imaging is essential in PanNEN. In fact, fluorine-18 fluorodeoxyglucose positron emission tomography/CT and gallium-68 somatostatin receptor positron emission tomography/CT may play a role in identification of lesion occulted to anatomic imaging and in prognostication [67,68].

VHL-related PanNENs usually appear during the fourth decade, although several cases have been described in teenage as well as in elderly patients. Given this wide range of disease onset, current guidelines recommend initiating the radiological screening, performed on a 2-year basis, no later than the age of 15 years and to suspend it at the age of 65 years if no pancreatic lesions have appeared [59,69]. Gadolinium-enhanced MRI represents the technique of choice for the surveillance of VHL-related pancreatic lesions, due to lower radiation exposure compared to CT, especially considering the lifelong radiological follow-up required in VHL patients [70]. However, the choice of the best imaging technique is complex, and it should be carefully weighted also considering the high risk of other visceral neoplasms. In this setting, additional imaging should be avoided, favoring a single radiological examination to investigate at the same time all the organs that might be involved. VHL-related PanNENs measuring less than 1.5 cm and remaining stable in at least two consecutive scans are considered low-risk and can be managed by active surveillance, with serial imaging every 1 or 2 years [56,59,71].

4.3. Indications for active treatments

The management of VHL-associated PanNENs should be carefully tailored based on the unique clinical course of each lesion, to avoid unjustified surgical resections. Likewise, the presence of extrapancreatic manifestations should be always considered to establish the optimal treatment sequence.

Patients with VHL-related cystic lesions that are symptomatic or cannot be distinguished from other (pre)malignant lesions should be managed by surgery [59]. When the surgical indication is represented by diagnostic uncertainty, parenchyma-sparing resection with nodal sampling is suggested. On the other hand, when biliary or gastrointestinal obstruction represents the indication for surgery, endoscopic stent placement or surgical bypass can be considered [72]. Finally, radiological drainage or cyst marsupialization can be regarded as alternative treatment options for simple cysts [58].

Surgical resection should be considered for patients with VHL-related PanNENs at high risk of developing metastatic disease. Tumor size more than 3 cm predicts disease aggressiveness and represents the major risk-stratifying parameter in these patients [60,73]. Therefore, surgical resection is currently recommended for all the patients with VHL-related PanNENs more than 3 cm [56,59]. The management of PanNENs measuring between 2 and 3 cm represents a “grey zone” [74] and depends on multiple factors. If the lesion is in the pancreatic body or tail, surgical resection is recommended. Conversely, when the lesion is located in the pancreatic head, a lower dimensional threshold is applied and the patient is elected for surgery earlier (tumor size ≥2 cm), when enucleation, rather than pancreatoctoduodenectomy, is still technically feasible [54,56,59]. A rapid tumor growth during follow-up (i.e., doubling time <500 days) has also been shown to be associated with an increased risk of distant metastases. Therefore, this parameter represents an additional indication for surgical resection. Finally, germline mutations in exon 3 are considered as predictors of poor prognosis [74,75]. In any case, the oncological benefit should be always carefully balanced with the surgical risk and sequelae, considering that VHL patients frequently undergo multiple surgeries due to various manifestations of their genetic condition.

4.4. Therapeutic options

When surgical resection is recommended, treatment options include formal or parenchyma-sparing resections. Parenchyma-sparing surgery (i.e., enucleation) should be preferred over formal resections (i.e., pancreatoctoduodenectomy) for treating patients with VHL-related PanNENs and cystic lesions [56,59]. Enucleation is an attractive surgical option, especially considering the high risk of recurrent PanNENs and the potentially compromised pancreatic function due to concomitant cystic disease. Enucleation requires the tumor to be located at more than 3 mm from the main pancreatic duct and to harbor a low-risk metastatic disease [76]. Total pancreatectomy should be considered only when all the other options for
limited pancreatic resection have been ruled out. Pancreatic endocrine and exocrine insufficiency represent the major sequelae of formal pancreatic resections. The risk of this long-term functional impairment is reduced in patients submitted to parenchyma-sparing resections, although the rate of postoperative pancreatic fistula is higher [76].

Patients with advanced VHL-related PanNENs are managed following the guidelines for sporadic PanNENs [77]. Tyrosine kinase inhibitors, including sunitinib and pazopanib, have been evaluated as possible therapeutic options in this setting. In particular, a phase 2 study reported the efficacy of pazopanib in reducing the size of VHL-related unresectable PanNENs [78]. However, the most promising therapeutic option is represented by HIF-2α inhibitors (i.e., belzutifan). This drug prevents HIF-2α or HIF-1beta dimerization in conditions of hypoxia or non-functional VHL protein, reducing the expression of HIF-2α target genes and controlling the growth of VHL-associated tumors [79]. HIF-2α inhibitor has shown good preliminary results in the treatment of VHL-related RCC and its use has recently been approved for the treatment of VHL-associated PanNENs [80].

5. Pheochromocytomas

5.1. Clinical features

The reported range of prevalence of pheochromocytomas is wide, from 0 to 60% [64], with a higher prevalence in families with a lower frequency of RCC and cerebellar HB [17]. VHL pheochromocytomas tend to be multiple and bilateral in 50%–80% of cases [66], with a very low proportion of malignancy [64]; ectopic sites (including the organ of Zuckerkandl, glomus jugulare, carotid body, and periaortic, perisplenic, and intrarenal lesions) are more common, occurring in 15%–18% of cases [66]. In tumors secreting predominantly epinephrine or dopamine, symptoms of orthostatic hypotension may be more prevalent [81]. Non-specific symptoms such as weakness and chronic fatigue are also quite common. Leukocytosis and gastrointestinal manifestation (constipation, nausea, and vomiting) are among the other less common presentations. Uncontrolled hypertension can lead to other manifestations such as stroke, seizures, and focal neurologic deficits [82]. Larger tumors may present with other cardiovascular incidents such as cardiogenic shock, acute pulmonary edema, myocardial infarction, cardiac arrhythmias, and cardiomyopathy [83]. Recently, a newly discovered cryptic exon (E1') of VHL gene was observed in VHL patients. Patients with a clinical suspicion of VHL should be screened for VHL E1' cryptic exon mutations, which in a recent study was observed to account for 1.32% (1/76) of a “VHL-like” cohort [84].

5.2. Diagnostic examinations

At CT pheochromocytomas present as solid or complex cystic masses; calcifications, areas of necrosis or hemorrhage may be present. Pheochromocytomas typically show strong enhancement during arterial phase [85]. However, this pattern of enhancement does not help in distinguishing pheochromocytomas from adenomas and hyper vascular adrenal metastases since absolute and relative percentage CT washout values may overlap [86]. MRI is superior in diagnosis pheochromocytomas even in ectopic sites [17]. In 95%–100% of cases, they showed low or intermediate signal intensity on T1WIs and high signal intensity on T2WIs (similar to that of cerebrospinal fluid) [17,64,66] with a marked gadolinium enhancement. Radionuclide imaging (e.g., iodine 131 or iodine 123 metaiodobenzylguanidine scintigraphy) with its high specificity (98%–100%) may help in tumor localization and occult metastatic disease detection. However, because of a relatively low sensitivity (75%–95%), a negative image does not exclude the diagnosis of pheochromocytoma [87].

In addition to other forms of surveillance, VHL patients should, starting at 2 years of age, commence with blood pressure checks at every medical visit, and with annual plasma or urine metanephrine levels [88].

5.3. Indications for active treatments

If after imaging and clinical evaluations the diagnosis of pheochromocytoma is established, the definitive therapy is complete surgical resection. It is important to highlight that in the case of acute hyperadrenergic crisis immediate surgery is not recommended [89].

5.4. Therapeutic options

To optimize the patient’s condition prior to surgery, careful pharmacologic treatment is essential. The control on blood pressure and heart rate is of essential importance prior to surgery in order to prevent surgery-related catecholamine excess [90]. Alpha-adrenergic antagonists and combined alpha- and beta-adrenergic blockers are the most commonly used drugs and is typically started 7–21 days prior to surgery [91]. Adrenalectomy, which consists in the removal of the entire gland, remains the primary treatment of pheochromocytoma. Laparoscopic techniques are used in over 90% of cases and are preferred over open surgery due to improved postoperative morbidity, duration of hospital stay, and cost, especially for tumors less than 10 cm in diameter. Open techniques are recommended in cases of complex dissections and malignant disease. Operative survival rates are as high as 98%–100% with an experienced surgeon, anesthesiologist, and adequate preoperative management [92]. As previously stated, VHL has a high incidence of bilateral disease with less metastatic potential. Cortex sparing or partial adrenalectomies are preferred in such cases to prevent permanent glucocorticoid deficiency [93].

Among the different immediate postoperative complications, hypotension and hypoglycemia are the most common. Persistent non-responding hypotension, especially in the setting of bilateral adrenal manipulation, should raise suspicion for adrenal insufficiency and be treated with stress doses of glucocorticoids and intravenous pressors. In 10%–15% of patients after pheochromocytoma resection due to excess catecholamines removed from circulation and the consequent interruption of suppression of insulin, hypoglycemia occurs, which should be carefully monitored for and treated with intravenous glucose [94].
6. Clear cell RCCs

6.1. Clinical features

Renal masses present at an early age as multicentric renal cysts of various complexity and are found in approximately 42%—63% of patients; age at presentation tends to be earlier than sporadic clear cell RCC, with a mean age of 37 years [95]. RCC is diagnosed in approximately 40%—70% of patients with VHL syndrome. Similarly to renal cysts, the median age at the time of diagnosis is 39 years [96]. The majority of RCCs in VHL syndrome are identified as clear cell histology, and patients with VHL type 1 and type 2B are at significantly increased risk of developing RCC compared to patients with other types [5,17].

With the increasing use of routine imaging for many different diseases, most patients with RCC are identified by chance. Among the 30% of patients diagnosed, physical examination has a limited role in the diagnostic workup of RCC. The presence of a palpable abdominal mass, new-onset varicocele, or lower extremity edema should always lead to additional imaging assessments. Moreover, at all stages RCC might produce multiple hormone-like or cytokine-like biologically active products that lead to clinically important paraneoplastic syndromes [97].

6.2. Diagnostic examinations

RCCs may arise as degeneration of a cystic lesion or completely de novo [98]. Periodic screening is fundamental because it can early detect any malignant transformation of cystic lesion and because untreated RCCs carry a poor prognosis [1]. US can easily distinguish a solid from a cystic lesion and because untreated RCCs carry a poor prognosis [1]. US can easily distinguish a solid from a cystic lesion and because untreated RCCs carry a poor prognosis [1]. US can easily distinguish a solid from a cystic lesion and because untreated RCCs carry a poor prognosis [1]. US can easily distinguish a solid from a cystic lesion and because untreated RCCs carry a poor prognosis [1].

US has a better accuracy for evaluating small renal lesions, even if characterized by presence of intracellular lipid, RCCs may not show signal loss in out-of-phase chemical shift MRI imaging sequences [5].

Regarding RCC, older studies and international guidelines suggest an initial screening based on abdomen MRI or CT [102], which should be repeated every 2 years until the largest solid neoplasm reaches 3 cm [98]. It is recommended to start renal mass screening at the age of 15 years using MRI scans and to continue the screening based on abdominal MRI every 2 years if no tumor is detected.

6.3. Indications for active treatments

In the case of detection of renal masses with dimension less than 3 cm, active surveillance evaluating tumor growth rate with MRI every 3—6 months for the first year is recommended. For renal masses bigger than 3 cm, nephron-sparing techniques are currently the gold standard in order to preserve renal function [103]. Patients with small tumors (3 cm is the commonly accepted threshold) who are at high peri-operative risk of complications and mortality can benefit from ablative techniques, including radiofrequency ablation and cryoablation [104]. Robust prior clinical researches are currently lacking. These voids must be filed with well-structured prospective trials.

6.4. Therapeutic options

To date, the treatment options after the diagnosis of RCC are being managed with active surveillance, multiple session of renal surgery, or ablative therapies since there are not any validated standardized protocols [96]. Patient mortality is mainly associated to renal failure, complications of dialysis or systemic progression, and cancer-specific mortality [105].

The different surgery strategies include radical nephrectomy, partial nephrectomy (nephron-sparing surgery), and ablative techniques. While radical nephrectomy implicates the removal of the whole kidney, in nephron-sparing surgeries only the renal mass is excised and as much of the normal renal parenchyma as possible is maintained. Observations regarding nephron-sparing surgery suggested oncological control similar to radical nephrectomy [106] but with the additional benefit of renal preservation [107]. These implications are of profound importance since VHL patients are usually managed with active surveillance, multiple session of renal surgery, or ablative therapies without any validated standardized protocol [96], and about one out of four patients who underwent multiple surgeries to the kidney will develop chronic kidney disease, which often is the key determinant of patients’ survivorship together with RCC progression [105].

In the setting of nephron-sparing surgery, image-guided ablative procedures with different possible approach (percutaneous or intraoperative) may play an important role in the management of VHL-related RCCs [108]. Many investigations reported up to a 100% 5-year cancer-specific survival rate for non-cystic RCCs measuring 2—3 cm [109]. The presence of major abdominal structure is a relative contraindication for ablative procedure, as cystic RCCs [109]. However, it should be noted that ablative procedure may have higher recurrence rates.
These proportions are very high given the young age of these patients. As such, the preservation of renal function, along with oncological safety, should be the most important goal to achieve in VHL patients undergoing kidney surgery, also given the high rate (46%) of patients diagnosed with low aggressive tumors (pT1a G1–2) [105].

7. Endolymphatic sac tumors and broad ligament cystadenomas

About 10%–16% of people with VHL syndrome develop endolymphatic sac tumors, and in some cases, the associated unilateral or bilateral hearing loss is the first sign of the illness [115]. Hearing loss usually develops suddenly, ranging in degree from severe to profound [116]. The presenting ailment is either vertigo or tinnitus. Individuals with endolymphatic sac tumors unrelated to VHL reported more severe hearing loss and higher tumor sizes at presentation compared to those with VHL-related endolymphatic sac tumors [117]. Other cranial nerves may be affected by large endolymphatic sac tumors. These tumors are rarely malignant [118]. A discussion of the potential side effect of total deafness must be initiated with the patient when deciding whether to remove these slow-growing tumors surgically. It has been demonstrated that early treatment of tiny tumors can preserve hearing and vestibular function [119].

Epididymal or papillary cystadenomas in men with VHL syndrome are relatively common. They rarely pose a concern, unless bilateral, in which case infertility could develop. A papillary cystadenoma of the wide ligament is the equivalent, far less frequent, lesion in women. Both tissues were presumably left behind after somatic VHL loss during development and have mesonephric origins [120]. Surgery is typically not necessary for epididymal or broad ligament papillary cystadenomas unless they are symptomatic or endanger fertility [120].

8. Conclusions

In conclusion, VHL disease is one of the most frequent autosomal dominant syndromes leading to multiple tumors, among which the most important in terms of mortality and quality of life is clear cell RCC. To date, pre-clinical and clinical research on the subject is scarce and clinical guidelines are not supported by strong validation studies. Further studies are needed to develop precise clinical guidelines.

Author contributions

Study concept and design: Andrea Salonia.
Drafting of manuscript: Alessandro Larcher, Federico Belladelli, Giuseppe Fallara, Isaline Rowe, Umberto Capitanio, Laura Marandino, Daniele Raggi, Jody Filippo Capitanio, Michele Baio, Rosangela Lattanzio, Costanza Barresi, Sonia Francesca Calloni, Maurizio Barbera, Valentina Andreasi, Giorgia Guazzarotti, Giovanni Pipitone, Paola Carrera.
Critical revision of the manuscript: Andrea Necchi, Pietro Mortini, Francesco Bandello, Andrea Falini, Stefano Partelli, Massimo Falconi, Francesco De Cobelli, Andrea Salonia.

Conflicts of interest

The authors declare no conflict of interest.
References

[1] Varshney N, Kebede AA, Owusu-Dapaah H, Lather J, Kaushik M, Bhullar JS. A review of von Hippel-Lindau syndrome. J Kidney Cancer VHL 2017;4:20–9.

[2] Ball MW, An JY, Gomella PT, Gautam R, Ricketts CJ, Vocke CD, et al. Growth rates of genetically defined renal tumors: implications for active surveillance and intervention. J Clin Oncol 2020;38:1146–53.

[3] Condine B, Hutwitz ME. Current status and future directions of immunotherapy in renal cell carcinoma. Curr Oncol Rep 2019;21:34. https://doi.org/10.1007/s11912-019-0779-1.

[4] Capitanio U, Montorsi F. Renal cancer. Lancet Lond Engl 2016;387:894–906.

[5] Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, et al. Von Hippel-Lindau disease. Lancet 2003;361:2059–67.

[6] Binderup MLM, Jensen AM, Budtz-Jørgensen E, Bisgaard ML. Survival and causes of death in patients with von Hippel-Lindau disease. J Med Genet 2017;54:11–8.

[7] Zhou B, Wang J, Liu S, Peng X, Hong B, Zhou J, et al. Hemangioblastoma instead of renal cell carcinoma plays a major role in the unfavorable overall survival of von Hippel-Lindau disease patients. Front Oncol 2019;9:1037. https://doi.org/10.3389/fonc.2019.01037.

[8] Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23:1231–51.

[9] Aksu G, Ulutin C, Fayda M, Saynak M. Cerebellar and multiple spinal hemangioblastomas and intraventricular meningioma of the central nervous system. A 10-year study with special reference to von Hippel-Lindau syndrome. J Neurosurg 1989;70:24.

[10] Neumann HP, Eggert HR, Weigel K, Friedburg H, Wiestler OD, Wiesener MS, Seyfarth M, Warnecke C, Juergensen JS, van der Horst-Schrivers ANA, Sluiter WJ, Kruizinga RC, van Wanebo JE, Lonser RR, Glenn GM, Oldfield EH. The natural history of hemangioblastomas and intraventricular meningioma managed with subtotal resection and external beam radiotherapy: report of a case with literature review. J BUON 2005;10:405–9.

[11] Linehan WM, et al. von Hippel-Lindau disease. Lancet 2003;361:2059.

[12] Thermal ablative treatment for patients with von Hippel-Lindau disease: a systematic review and meta-analysis. Front Oncol 2019;9:1037. https://doi.org/10.7759/cureus.5319.

[13] Karimi S, Abut S, Shahrapan T, Saki S. Von Hippel-Lindau disease: a genetic and clinical review. Semin Ophthalmol 2020;511:179–86.

[14] Umar A. Diagnostic imaging: brain. London: Elsevier; 2016. p. 593.

[15] Apaydin M, Varer M, Oztok E. Radiological considerations in von Hippel-Lindeau disease: imaging findings and the review of the literature. Radiol Oncol 2010;44:164–7.

[16] Pan L, Wang EM, Wang BJ, Zhuo LF, Zhang N, Cai PW, et al. Gamma knife radiosurgery for hemangioblastomas. Stereotact Funct Neurosurg 1998;70(Suppl. 1):179–86.

[17] Bransford MT, Gavin M, Mitchell KT, Peiris AN. Ocular manifestations of von Hippel-Lindau disease. Cureus 2019;11: e5319. https://doi.org/10.7759/cureus.5319.

[18] Webster AR, Maher ER, Moore AT. Clinical characteristics of ocular angiomas in von Hippel-Lindau disease and correlation with germline mutation. Arch Ophthalmal 1999;117:371–8.

[19] Grossniklaus HE, Thomas JW, Vigneswaran N, Jarrett 3rd WH. Retinal hemangioblastoma: a histologic, immunohistochemical, and ultrastructural evaluation. Ophthalmol 1992;99:442–511.

[20] Watanabe H, Hamada M, Sugimoto H, Hayakawa H. Ophthalmologic manifestations of von Hippel-Lindau disease: report of a case with literature review. Jpn J Ophthalmol Soc 2005;103:495–96.

[21] Kiilgaard JF, Bisgaard ML. Retinal hemangioblastoma: prevalence, incidence and frequency of underlying von Hippel-Lindau disease. Br J Ophthalmal 2018;102:942–7.

[22] Grossniklaus HE, Thomas JW, Vigneswaran N, Jarrett 3rd WH. Retinal hemangioblastoma: a histologic, immunohistochemical, and ultrastructural evaluation. Ophthalmol 1992;99:442–511.

[23] Watanabe H, Hamada M, Sugimoto H, Hayakawa H. Ophthalmologic manifestations of von Hippel-Lindau disease: report of a case with literature review. Jpn J Ophthalmol Soc 2005;103:495–96.

[24] Kiilgaard JF, Bisgaard ML. Retinal hemangioblastoma: prevalence, incidence and frequency of underlying von Hippel-Lindau disease. Br J Ophthalmal 2018;102:942–7.

[25] Grossniklaus HE, Thomas JW, Vigneswaran N, Jarrett 3rd WH. Retinal hemangioblastoma: a histologic, immunohistochemical, and ultrastructural evaluation. Ophthalmol 1992;99:442–511.
[38] Wiley HE, Krivosic V, Gaudric A, Gorin MB, Shields C, Shields J, et al. Management of retinal hemangioblastoma in von Hippel-Lindau disease. Retina 2019;39:2254–63.
[39] Whitson JT, Welch RB, Green WR. Von Hippel-Lindau disease: case report of a patient with spontaneous regression of a retinal angioma. Retina 1986;6:253–9.
[40] Chen S, Chew EY, Chan CC. Pathology characteristics of ocular von Hippel-Lindau disease with neovascularization of the iris and cornea: a case report. J Med Case Rep 2015;9:66. https://doi.org/10.1186/s12256-015-0359-2.
[41] Mansfield Smith S, Makam R, Sullivan L, Sandford R, Allen L. Is ultra wide-field retinal imaging alone appropriate for retinal angioma screening in lower risk subjects attending von Hippel-Lindau (VHL) clinics? Ophthalmic Genet 2019;40:403–6.
[42] Chin EK, Trikha R, Morse LS, Zawadzki RJ, Werner JS, Park SS. Optical coherence tomography findings of exophytic retinal capillary hemangiomas of the posterior pole. Ophthalmic Surg Laser Imag 2010;1–5.
[43] Pilotto E, Nacci EB, Ferrara AM, De Mojá G, Zovato S, Midena E. Macular perfusion impairment in von-Hippel-Lindau disease suggests a generalized retinal vessel alteration. J Clin Med 2020;9:2677. https://doi.org/10.3390/jcm9082677.
[44] Lu Y, Wang JC, Zeng R, Nagata T, Katz R, Mukai S, et al. Detection of retinal microvascular changes in von Hippel-Lindau disease using optical coherence tomography angiography. PLoS One 2020;15:e0229213. https://doi.org/10.1371/journal.pone.0229213.
[45] Krivosic V, Kamami-Levy C, Jacob J, Richard S, Tadayoni R, Gaudric A. Laser photocoagulation for peripheral retinal capillary hemangioblastoma in von-Hippel-Lindau disease. Ophthalmol Retina 2017;1:47–9.
[46] Blodi CF, Russell SR, Pulido JS, Folk JC. Direct and feeder vessel photocoagulation of retinal angiomas with dye yellow laser. Ophthalmology 1990;97:791–7.
[47] Shields JA. Response of retinal capillary hemangioma to cryotherapy. Arch Ophthalmol 1993;111:551. https://doi.org/10.1001/archoph.1993.01090040143049.
[48] Gaudric A, Krivosic V, Duguid G, Massin P, Giraud S, Richard S. Vitreoretinal surgery for severe retinal capillary hemangiomas in von-Hippel-Lindau disease. Ophthalmology 2011;118:142–9.
[49] Singh AD, Nouri M, Shields CL, Shields JA, Perez N. Treatment of retinal capillary hemangioma. Ophthalmology 2002;109:1799–806.
[50] Slim E, Antoun J, Kouriie HR, Schakkal A, Cherfan G. Intravitreal bevacizumab for retinal capillary hemangioblastoma: a case series and literature review. Can J Ophthalmol 2014;49:450–7.
[51] Agarwal A, Kumari H, Singh R. Intravitreal bevacizumab and feeder vessel laser treatment for a posteriorly located retinal capillary hemangioma. Int Ophthalmol 2016;36:747–50.
[52] Wong WT, Liang KJ, Hammel K, Coleman HR, Chew EY. Intravitreal ranibizumab therapy for retinal capillary hemangioblastoma related to von Hippel-Lindau disease. Ophthalmology 2008;115:1957–64.
[53] Huang C, Tian Z, Lai K, Zhong X, Zhou L, Xu F, et al. Long-term therapeutic outcomes of photodynamic therapy-based or photocoagulation-based treatments on retinal capillary hemangioma. Photomed Laser Surg 2018;36:10–7.
[54] Keutgen XM, Hammel P, Choyke PL, Libutti SK, Jonasch E, Kebebew E. Evaluation and management of pancreatic lesions in patients with von-Hippel-Lindau disease. Nat Rev Clin Oncol 2016;13:537–49.
[55] Sharma A, Mukesar V, Yege SS. Clinical profile of pancreatic cystic lesions in von Hippel-Lindau disease: a series of 48 patients seen at a tertiary institution. Pancreas 2017;46:948–52.
[72] Medina DC, Ossorno R, Boutros CN. Biliary and gastric drainage in advanced pancreatic serous cystadenoma and portal hypertension in von Hippel-Lindau syndrome. J Gastrointest Oncol 2014;5:550–3. https://doi.org/10.3978/j.issn.2078-6891.2014.017.

[73] Penentiti F, Landoni L, Scardoni M, Piredda ML, Cingarlini S, Scarpa A, et al. Clinical presentation, genotype-phenotype correlations, and outcome of pancreatic neuroendocrine tumors in von Hippel-Lindau syndrome. Endocrinol 2021;74:180–7.

[74] Krauss T, Ferrara AM, Links TP, Wellner U, Bancos I, Pavel M, O'Toole D, Costa F, Capdevila J, Gross D, Partelli S, Bartsch DK, Capdevila J, Chen J, Knigge U, Penitenti F, Landoni L, Scardoni M, Piredda ML, Cingarlini S, Medina DC, Osorno R, Boutros CN. Biliary and gastric drainage from adrenal adenoma. AJR Am J Roentgenol 2016;206:512–7.

[75] Tirosh A, Sadowski SM, Linehan WM, Libutti SK, Patel D, Nilubol N, et al. Association of VHL genotype with pancreatic neuroendocrine tumor phenotype in patients with von Hippel-Lindau disease. JAMA Oncol 2018;4:124–6.

[76] Partelli S, Bartsch DK, Capdevila J, Chen J, Knigge U, Niederle B, et al. ENETS consensus guidelines for standard of care in neuroendocrine tumours: surgery for small intestinal and pancreatic neuroendocrine tumours. Neuroendocrinology 2017;105:255–65.

[77] Pavel M, O’Toole D, Costa F, Capdevila J, Gross D, Kianmanesh R, et al. ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology 2016;103:172–85.

[78] Jonasch E, McCutcheon IE, Gombos DS, Ahrak P, Perrier ND, Liu D, et al. Pazopanib in patients with von Hippel-Lindau disease: a single-arm, single-centre, phase 2 trial. Lancet Oncol 2018;19:1351–9.

[79] Metelo AM, Noonan H, Ilipoulos O, HIF2α inhibitors for the treatment of VHL disease. Oncotarget 2015;6:23036–7.

[80] Deeks ED. Belzutifan: first approval. Drugs 2021;81:1921-22.

[81] Yu R, Nissen NN, Bannykh SI. Cardiac complications as initial manifestation of pheochromocytoma: frequency, outcome, and predictors. Endocr Pract 2012;18:483.

[82] Buffet A, Calsina B, Flores S, Giraud S, Lenglet M, Romanet P, Northcutt BG, Raman SP, Long C, Oshmyansky AR, Rathmell KW, et al. Evaluation, diagnosis and surveillance of kidney cancer patients with von Hippel-Lindau syndrome: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 2017;23:e68–75. https://doi.org/10.1158/1078-0432.CCR-17-0547.

[83] Diner EK, Franks ME, Behari A, Linehan WM, Walther MM. Partial adrenalectomy: the national cancer institute experience. Urology 2005;66:19–23.

[84] Akiba M, Kodama T, Ito Y, Obara T, Fujimoto Y. Hypoglycemia induced by excessive rebound secretion of insulin after removal of pheochromocytoma. World J Surg 1990;14:217–24.

[85] Rednam SP, Erez A, Drucker H, Janeway KA, Kamsara J, Kohlmann WK, et al. Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. JAMA Oncol 2018;4:1240–5.

[86] Levine E, Lee KR, Weigel JW, Farber B. Computed tomography in the diagnosis of renal carcinoma complicating von Hippel-Lindau syndrome. Radiology 1979;130:703–6.

[87] Choyke PL, Glenn GM, Walther MM, Zbar B, Weiss GH, Alexander RB, et al. The natural history of renal lesions in von Hippel-Lindau disease: a serial CT study in 28 patients. AJR Am J Roentgenol 1992;159:1229–34.

[88] Sacco E, Pinto F, Sasso F, Racipoli M, Gulino G, Volpe A, et al. Paraneoplastic syndromes in patients with urological malignancies. Urol Int 2009;83:1–11.

[89] Tappouni R, Kissane J, Sarwani N, Lehman EB. Pseudohypoparathyroidism in children: a review. J Pediatr Endocrinol Metab 2004;17:1857–61.

[90] Borkowski A, et al. A prospective, randomised EORTC trial of novel insights from a large consortium. World J Urol 2021;39:39:2455–60.

[91] Tsirlin A, Oo Y, Sharma R, Kansara A, Gliwa A, Banerji MA. Pheochromocytoma: a review. Maturitas 2014;77:229–38.

[92] Manelli M. Management and treatment of pheochromocytomas and paragangliomas. Ann N Y Acad Sci 2006;1073:405–16.

[93] Inazu-Fin P, Sesay M, Gosse P, Ballanger P. Effects of perioperative alpha1 block on haemodynamic control during laparoscopic surgery for pheochromocytoma. Br J Anaesth 2004;92:512–7.

[94] Shen WT, Grogan R, Vriens M, Clark OH, Duh QY. One hundred two patients with pheochromocytoma treated at a single institution since the introduction of laparoscopic adrenalectomy. Arch Surg 2010;145:893–7.

[95] Diner EK, Franks ME, Behari A, Linehan WM, Walther MM. Partial adrenalectomy: the national cancer institute experience. Urology 2005;66:19–23.

[96] Rednam SP, Erez A, Drucker H, Janeway KA, Kamsara J, Kohlmann WK, et al. Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 2017;23:e68–75. https://doi.org/10.1158/1078-0432.CCR-17-0547.

[97] Maher ER. Hereditary renal cell carcinoma syndromes: diagnosis, surveillance and management. World J Urol 2013;31:1891–8.

[98] Sacco E, Pinto F, Sasso F, Racipoli M, Gulino G, Volpe A, et al. Paraneoplastic syndromes in patients with urological malignancies. Urol Int 2009;83:1–11.

[99] Choyke PL, Glenn GM, Walther MM, Zbar B, Weiss GH, Alexander RB, et al. The natural history of renal lesions in von Hippel-Lindau disease: a serial CT study in 28 patients. AJR Am J Roentgenol 1992;159:1229–34.

[100] Levine E, Lee KR, Weigel JW, Farber B. Computed tomography in the diagnosis of renal carcinoma complicating von Hippel-Lindau syndrome. Radiology 1979;130:703–6.

[101] Choyke PL, Glenn GM, Walther MM, Zbar B, Linehan WM. Hereditary renal cancers. Radiology 2003;226:33–46.

[102] Tappouni R, Kissane J, Sarwani N, Lehman EB. Pseudoenhancement of renal cysts: influence of lesion size, lesion location, slice thickness, and number of MDCT detectors. AJR Am J Roentgenol 2012;198:133–7.

[103] Patel J, Davenport MS, Cohan RH, Caoili EM. Can established predictors accurately exclude pheochromocytoma? AJR Am J Roentgenol 2013;201:122–7.

[104] Hamilton ZA, Capitanio U, Lane BR, Larcher A, Yim K, Dey S, et al. Should partial nephrectomy be considered “elective” in patients with stage 2 chronic kidney disease? A comparative analysis of functional and survival outcomes after radical and partial nephrectomy. World J Urol 2019;37:2429–37.

[105] Chahoud J, McGettigan M, Parikh N, Boris RS, Iliopoulos O, Rathmell KW, et al. Evaluation, diagnosis and surveillance of renal masses in the setting of VHL disease. World J Urol 2021;39:2409–15.

[106] Capitanio U, Roselli G, Erdem S, Rowe I, Kara O, Roussel E, et al. Clinical, surgical, pathological and follow-up features of kidney cancer patients with von Hippel-Lindau syndrome: novel insights from a large consortium. World J Urol 2021:39:2969–75.
intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol 2011;59:543–52.

[107] Scosyrev E, Messing EM, Sylvester R, Campbell S, Van Poppel H. Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. Eur Urol 2014;65:372–7.

[108] De Cobelli F, Papa M, Panzeri M, Colombo M, Steidler S, Ambrosi A, et al. Percutaneous microwave ablation versus cryoablation in the treatment of T1a renal tumors. Cardiovasc Intervent Radiol 2020;43:76–83.

[109] Matin SF, Ahrar K, Wood CG, Daniels M, Jonasch E. Patterns of intervention for renal lesions in von Hippel-Lindau disease. BJU Int 2008;102:940–5.

[110] Jonasch E, McCutcheon IE, Waguespack SG, Wen S, Davis DW, Smith LA, et al. Pilot trial of sunitinib therapy in patients with von Hippel-Lindau disease. Ann Oncol 2011;22:2661–6.

[111] Oudard S, Elaidi R, Brizard M, Rest CL, Caillet V, Deveaux S, et al. Sunitinib for the treatment of benign and malignant neoplasms from von Hippel-Lindau disease: a single-arm, prospective phase II clinical study from the PRE DIR group. Oncotarget 2016;7:85306–17.

[112] Jonasch E. https://clinicaltrials.gov/ct2/show/results/NCT01266070?cond=Von-Hippel-Lindau-Disease&draw=2 &rank=10. [Accessed 5 March 2022].

[113] Jonasch E, McCutcheon IE, Gombos DS, Ahrar K, Perrier ND, Liu D, et al. Pazopanib in patients with von Hippel-Lindau disease: a single-arm, single-centre, phase 2 trial. Lancet Oncol 2018;19:1351–9.

[114] Jonasch E, Donskov F, Iliopoulos O, Rathmell WK, Narayan VK, Maughan BL, et al. Belzutifan for renal cell carcinoma in von Hippel-Lindau disease. N Engl J Med 2021; 385:2036–46.

[115] Binderup MLM, Gimsing S, Kosteljanetz M, Thomsen C, Bisgaard ML. Von Hippel-Lindau disease: deafness due to a non-MRI-visible endolymphatic sac tumor despite targeted screening. Int J Audiol 2013;52:771–5.

[116] Choo D, Shotland L, Mastroianni M, Glenn G, van Waes C, Linehan WM, et al. Endolymphatic sac tumors in von Hippel-Lindau disease. J Neurosurg 2004;100:480–7.

[117] Nevoux J, Nowak C, Vellin JF, Lepajolec C, Sterkers O, Richard S, et al. Management of endolymphatic sac tumors: sporadic cases and von Hippel-Lindau disease. Otol Neurotol 2014;35:899–904.

[118] Muzumdar DP, Goel A, Fattepurkar S, Goel N. Endolymphatic sac carcinoma of the right petrous bone in von Hippel-Lindau disease. J Clin Neurosci 2006;13:471–4.

[119] Friedman RA, Hoa M, Brackmann DE. Surgical management of endolymphatic sac tumors. J Neurol Surg B Skull Base 2013; 74:12–9.

[120] van Leeuwaarde RS, Ahmad S, Links TP, Giles RH. Von Hippel-Lindau syndrome. GeneReviews® [Internet]. Seattle: University of Washington; 1993. p. 523. http://www.ncbi.nlm.nih.gov/books/NBK1463/. [Accessed 25 July 2022].