Multisystem inflammatory syndrome (MIS-C): a systematic review and meta-analysis of clinical characteristics, treatment, and outcomes

Mônica O. Santos a,*, Lucas C. Gonçalves b, Paulo A.N. Silva b, André L.E. Moreira c, Célia R.M. Ito c, Fernanda A.O. Peixoto d, Isabela J. Wastowski e, Lilian C. Carneiro c, Melissa A.G. Avelino d

a Universidade Federal de Goiás, Patologia Clínica e Medicina, Goiânia, GO, Brazil
b Universidade Federal de Goiás, Faculdade de Medicina, Goiânia, GO, Brazil
c Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, GO, Brazil
d Universidade Federal de Goiás, Departamento de Pediatria, Goiânia, GO, Brazil
e Universidade Federal de Goiás, Laboratório de Imunologia Molecular, Goiânia, GO, Brazil

Received 15 March 2021; accepted 28 October 2021
Available online 3 December 2021

Abstract

Objective: The clinical cases of patients with multisystem inflammatory syndrome (MIS-C) were analyzed via a systematic review and meta-analysis of the clinical findings, treatments, and possible outcomes of articles retrieved via database searches.

Sources: The authors searched the PubMed, Scielo, Web of Science, Science Direct, EMBASA, EBSCO, and Scopus databases for articles containing the keywords “multisystem inflammatory syndrome in children” or “MIS-C” or “PIMS-TS” or “SIMP” and “COVID-19” or “SARS-CoV-2” published between December 1st, 2019 and July 10th, 2021. Patient characteristics, tissue and organ comorbidities, the incidence of symptoms after COVID-19 infection, treatment, and patient evolution in the articles found were evaluated. The data were abstracted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and Newcastle-Ottawa Scale (NOS).

Findings: In total, 98 articles (2275 patients) were selected for demographics, clinical treatment, and outcomes of patients diagnosed with MIS-C. The average age of children with MIS-C, 56.8% of whom were male, was of nine years. Fever (100%), gastrointestinal (GI) (82%), and abdominal pain (68%) were the decisive symptoms for the diagnosis of MIS-C. Shock and/or hypotension were common in patients with MIS-C. Cardiac symptoms (66%) predominated over respiratory (39%) and neurological (28%) symptoms. MIS-C treatment followed the common guidelines for treating children with septic shock and Kawasaki disease (KD) and proved to be effective.

Keywords
MIS-C;
PIMS-TS;
COVID-19;
SARS-CoV-2;
Children

* Corresponding author.
E-mails: monica.santos@ufg.br, mosbio21@gmail.com (M.O. Santos).

https://doi.org/10.1016/j.jped.2021.08.006
0021-7557/© 2021 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

In April 2020, during the peak of the coronavirus disease (COVID-19) pandemic in Europe, reports on children in England with hyperinflammatory shock, the characteristics of which are similar to those of Kawasaki disease (KD) and toxic shock syndrome (TSS), were published. The Royal College of Pediatrics and Child Health referred to this acute condition as pediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS-TS). As more cases emerged worldwide, the disease was called multisystem inflammatory syndrome in children (MIS-C) by the U.S. Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO).2,3

An initial challenge faced by physicians was differentiating patients with MIS-C due to KD and TSS from patients with MIS-C related to COVID-19. Several questions about the symptoms and the possibilities of treatment have been raised.1-3

At the beginning of the pandemic, children were not at high risk for serious manifestations of COVID-19, such as severe acute respiratory syndrome (SARS). However, as the pandemic evolved, more serious complications, including thrombotic events, myocardial dysfunction, and coronary artery disease or aneurysms, manifested in the pediatric age group with MIS-C.

The aim of this systematic review was to describe the main symptoms of MIS-C and characterize its treatment and possible outcomes.

Methods

Literature search and selection criteria

The authors conducted an online search of the PubMed (http://www.ncbi.nlm.nih.gov/pubmed), Scielo (http://www.scielo.br/), Web of Science (https://clarivate.com/products/web--of--science/), Science Direct (https://www.sciencedirect.com/), Embase (www.elsevier.com/embase), EBSCO (https://www.ebscohost.com), and Scopus (https://www.scopus.com/) databases using the keywords “multisystem inflammatory syndrome in children” or “MIS-C” or “PIMS-TS” (pediatric inflammatory multisystem syndrome temporally associated with COVID-19) or “SIMP” (síndrome inflamatorio multisistémica pediátrica) and “COVID-19” or “SARS-CoV-2” to identify relevant studies published between December 1st, 2019 and July 10th, 2021. Before starting our search, the authors searched the Cochrane Library (https://www.cochranelibrary.com) and the National Institute for Health Research database (https://www.crd.york.ac.uk/prospero/) for systematic reviews and meta-analyses on a similar subject, but no articles were found (registration: PROSPERO CRD42020204774).

To assess the heterogeneity of our meta-analysis, the authors used the Higgins and Thompson test (I^2), with the

Conclusions: This meta-analysis highlights the main clinical symptoms used for the diagnosis of MIS-C, the differences between MIS-C and KD, and the severity of the inflammatory process and urgency for hospital care.

© 2021 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
following interpretation of the results: 25% = low heterogeneity, 50% = moderate heterogeneity, and ≥ 75% = high heterogeneity. A heterogeneity of ≥ 50% indicates significant differences among the results of the studies used in the meta-analysis; thus, the randomized effect was used. On the other hand, when the heterogeneity was < 50%, the fixed effect was used, which considers the heterogeneity as insignificant. This interpretation and statistical application are extremely important for assertive results.5

Proportion transformation models and methods

When the heterogeneity among the survey data showed results without significance, the inverse model was used, allowing for the return of the transformation of proportions. This model is associated with the Freeman-Tukey double sine transformation (PFT) for the exact probability transformation. However, when the surveys plotted on the graph had several similar, and some discrepant data, the inverse model, associated with the arcsine transformation (PAS) was used for approximate likelihood transformations. When the heterogeneity among the survey data was significant, the mixed generalized linear model (GLMM), associated with the logistic transformation (PLOGIT), was used for the approximate likelihood transformations.

Determination of bias

The bias in our search results was determined by analyzing funnel plot graphs, which was feasible only when the number of plotted surveys was ≥ 10. This takes into account the inefficiency of the graph when the sample size is small.6

Sample significance

For all statistical analyses, an alpha level of 5% was previously defined as significant; thus, P < 0.05 was considered statistically significant. Statistical analyses were performed using the RStudio® version 4.0.2, and STATA® statistical software ver. 16.0 (StataCorp LLC, College Station, TX, USA).

Results

Study selection and characteristics

The inclusion and exclusion criteria for articles followed the guidelines of the Royal College of Pediatrics and Child Health (RCPCH), the CDC, and the WHO (Supplementary Table 1). The search of the databases yielded 1312 articles, of which 252 were examined in full, and 98 were selected for systematic review (Figure 1 and Supplementary Tables 2 and 3). The articles included in the systematic review included 26 case series, 35 observational cohort studies, and 37 case reports (Table 1). The authors divided the analysis into qualitative studies with five or fewer patients and quantitative studies with six or more patients (Figure 1 and Supplementary Table 2). The number of patients in the quantitative meta-analysis articles was 2197 children, adolescents, and

![Figure 1](image-url) PRISMA flow diagram of the search of databases. The diagram contains the steps of identification, screening, eligibility, and inclusion.
Table 1 Characteristics of the studies selected in the systematic review and meta-analysis.

Articles (2020/2021)	Country	Study	Total cases	Age in years	Total male
Abdel-Haq et al. 2021	USA	Observational	33	6 (0.3-17)	15
Abdel-Mannan et al. 2020	UK	Case series	4	12 (8-15)	2
Acharya et al. 2020	India	Case report	1	0.3	1
Alkan et al. 2021	Turkey	Observational	36	7.8 (1.7-17)	19
Bahrami et al. 2020	USA	Observational	3	5	0
Balasubramanian et al. 2020	India	Case report	1	8	1
Bapt et al. 2020	Switzerland	Case report	1	13	1
Bektaş et al. 2021	Turkey	Case report	2	10.5	1
Belhadj et al. 2020	France	Observational	35	10 (2 – 16)	18
Belot et al. 2020	France	Observational	108	8 (5 – 11)	53
Blondiaux et al. 2020	Italy	Case report	1	11	0
Buonsenso et al. 2020	USA	Observational	33	8.6 (5.5 – 12.6)	20
Carter et al. 2021	UK	Observational	25	12,5 (7.7-14.4)	15
Cattalini et al. 2021	Italy	Observation	53	7 (4.5-11)	31
Cheung et al. 2020	USA	Observation	17	8 (1.8 – 16)	8
Chiotos et al. 2020	USA	Case series	6	7.5 (5 – 14)	1
Cogan et al. 2021	Belgium	Case report	1	19	0
Dallan et al. 2020	Switzerland	Case series	3	11 (10-12)	2
Dasgupta and Finch 2020	USA	Case report	1	8	0
Davies et al. 2020	UK	Observational	78	11 (8-14)	52
De Paulis et al. 2020	Brazil	Case report	1	4	0
Deza Leon et al. 2020	USA	Case report	1	6	0
Dhanalakshmi et al. 2020	India	Case series	19	6 (1-16)	8
Dionne et al. 2020	USA	Observational	25	9.5 (2.7 – 15)	15
Diario et al. 2020	USA	Case series	6	6 (5-7)	2
Dolhnikoff et al. 2020	Brazil	Case report	1	11	0
Dolinger et al. 2020	USA	Case report	1	14	1
Domico et al. 2020	USA	Case report	1	11	1
Dufort et al. 2020	USA	Observational	99	(0-20)	53
Farias et al. 2020	Brazil	Case series	11	4.9 (0.7-11)	9
Farias et al. 2019	Brazil	Case report	1	0.7	0
Feldstein et al. 2020	USA	Observational	186	8.3 (3.3-12.5)	115
Flood et al. 2021	UK and Ireland	Observational	268	8.2 (4-12.1)	161
Giannattasio et al. 2021	Italy	Case report	1	9	1
Godfred-Cato et al. 2020	USA	Observational	570	8 (4-12)	316
Greene et al. 2020	USA	Case report	1	11	0
Grimaud et al. 2020	France	Observational	20	10 (2.9 – 15)	10
Gruber et al. 2020	USA	Case series	8	11.5 (3-20)	4
Gupta et al. 2021	India	Case report	1	7	0
Hameed et al. 2020	UK	Observational	35	11	27
Heidemann et al. 2020	USA	Case series	3	6 (5-7)	2
Hutchison et al. 2020	USA	Case report	1	14	1
Jain et al. 2020	India	Observational	23	7.2 (0.8-14)	11
Joshi et al. 2020	USA	Case series	3	10.6 (6-13)	2
Kashyap et al. 2021	India	Observation	12	6.5	9
Kaushik et al. 2020	USA	Observation	33	10 (6 – 13)	20
Kest et al. 2020	USA	Case series	3	8 (6-10)	1
Khesrani et al. 2020	Algeria	Case report	1	9	0
Klopcerk et al. 2020	Czechia	Case report	1	8	0
Lang et al. 2020	Germany	Case report	2	(10-13)	0
Lee and Margolskee 2020	USA	Case report	1	5	0
Lee et al. 2020	USA	Observational	28	9 (0.1-17)	15
Lee et al. 2020	USA	Case report	1	17	1
Licciardi et al. 2020	Italy	Case series	2	12, 7	1
Lin et al. 2020	USA	Case report	1	13	0
Mamishi et al. 2020	Iran	Observational	45	7 (4–9.9)	24
young adults. All data, forest plot graphs, and bias analysis (funnel plot) are provided in the Supplementary Figures.

Demographic characteristics and comorbidities

Meta-analysis showed that 0.58 (0.55 - 0.61) of the children with MIS-C were male, and the median age of all children was 8.9 years (range = 0.1 days to 20 years old).

Only 23 articles included in the meta-analysis reported the race/ethnicity of the patients. Approximately 0.33 (0.26 - 0.42) of the children were Hispanic, 0.29 (0.24 - 0.34) were Black, 0.32 (0.24 - 0.40) were White, 0.05 (0.02 - 0.13) were Asian, 0.11 (0.07 - 0.16) were multiracial or other, and 0.13 (0.07 - 0.21) had no ethnicity specified in the study (Table 2).

Clinical manifestations

The analysis of the symptom data and clinical characteristics of all patients with MIS-C (Table 2 and Figure 2) showed that the most common symptoms were fever, 1.00 (0.98 - 1.00);...
gastrointestinal symptoms, 0.82 (0.71–0.89); abdominal pain, 0.68 (0.62–0.74); erythema and rash, 0.59 (0.53–0.65); and non-purulent conjunctivitis, 0.54 (0.47–0.61). Cough [0.41 (0.28–0.55)], dyspnea [0.29 (0.21–0.38)], and sore throat [0.20 (0.12–0.31)] also were reported. In contrast with adults, respiratory symptoms in children [0.39 (0.30–0.49)] were less prevalent. Cardiac comorbidities were commonly observed in children with MIS-C [0.66 (0.58–0.74)].

Treatment of patients with MIS-C

Thirty-three articles that met the inclusion criteria presented clinical characteristics and the complete outcome of the treatment of patients with MIS-C (Table 2). The treatment offered to these patients involved the WHO protocols for treating patients with septic shock and KD.2

Of the 1294 patients with MIS-C, 0.76 (0.67–0.84) needed intensive hospitalization. Because of the rapid and progressive

Table 2 Meta-analysis of pooled demographic and clinical characteristics of MIS-C or PIMS-TS patients.

Characteristics	Total	Events	Pooled mean proportion % (95% CI)	Heterogeneity I² (%)	Combined
Demographics					
Sex	2.144	1.234	0.58 [0.55–0.61]	31%, p = 0.03	Random
White	1627	338	0.19 [0.13–0.26]	84%, p < 0.01	Random
Multiracial or others	1.514	139	0.11 [0.07–0.16]	77%, p < 0.01	Random
Black or Afrodescendents	1.627	477	0.32 [0.24–0.40]	74%, p < 0.01	Random
Asian	1.627	158	0.05 [0.02–0.13]	79%, p < 0.01	Random
Hispanic	1.043	340	0.33 [0.26–0.42]	55%, p < 0.02	Random
Not declared	1.134	175	0.13 [0.07–0.21]	82%, p < 0.01	Random
Clinical features					
Fever	2.144	2.067	1.00 [0.98–1.00]	78%, p < 0.01	Random
Cough	1.388	535	0.41 [0.28–0.55]	93%, p < 0.01	Random
Headache	1.173	280	0.28 [0.21–0.37]	70%, p < 0.01	Random
Dyspnea	874	235	0.29 [0.21–0.38]	65%, p < 0.01	Random
Conjunctivitis	978	541	0.54 [0.47–0.61]	58%, p < 0.01	Random
Sore throat	279	57	0.20 [0.12–0.31]	71%, p < 0.01	Random
Diarrhoea	1.542	655	0.58 [0.49–0.67]	76%, p < 0.01	Random
Vomiting	1.541	736	0.66 [0.56–0.75]	73%, p < 0.01	Random
Abdominal pain	1.598	763	0.68 [0.62–0.74]	24%, p < 0.12	Random
GI symptoms (not specifics)	1.228	986	0.82 [0.71–0.89]	87%, p < 0.01	Random
Erythema	1.724	814	0.59 [0.53–0.65]	51%, p < 0.01	Random
Shock	1.544	675	0.60 [0.51–0.69]	84%, p < 0.01	Random
Hypotension	1.697	890	0.59 [0.53–0.65]	62%, p < 0.01	Random
Heart disease	1.837	1.251	0.66 [0.58–0.74]	87%, p < 0.01	Random
Neurologic symptoms	1.494	488	0.28 [0.20–0.38]	83%, p < 0.01	Random
Respiratory symptoms	1.695	869	0.39 [0.30–0.49]	88%, p < 0.01	Random
Comorbidity	1.805	604	0.33 [0.27–0.40]	80%, p < 0.01	Random
Laboratory features					
Serological test confirmation	2.044	2.102	0.69 [0.60–0.77]	84%, p < 0.01	Random
RT-PCR	2.102	588	0.31 [0.24–0.38]	76%, p < 0.01	Random
Treatment					
Inotropics	1.965	913	0.54 [0.47–0.60]	77%, p < 0.01	Random
Steroids	1.973	1.145	0.64 [0.52–0.74]	68%, p < 0.01	Random
Antibiotics	777	395	0.77 [0.54–0.95]	97%, p < 0.01	Random
IVIG	1.963	1.501	0.84 [0.79–0.88]	79%, p < 0.01	Random
Antiplatelet	1.625	1.116	0.78 [0.63–0.89]	97%, p < 0.01	Random
Biological Immunodulation	1.401	355	0.27 [0.16–0.42]	77%, p < 0.01	Random
Antiviral therapy	295	45	0.16 [0.08–0.29]	67%, p < 0.01	Random
ICU (MV/NIV/HFNC)	1.973	1.294	0.76 [0.67–0.84]	77%, p < 0.01	Random
ECMO	1.919	731	0.50 [0.39–0.62]	82%, p < 0.01	Random
Outcomes					
Recoverd	1.973	1.935	1.00 [0.99–1.00]	13%, p < 0.24	Random
Death	1.973	38	0.01 [0.01–0.03]	22%, p = 0.11	Random

PICU, pediatric intensive care unit; MV, mechanical ventilation; NIV, noninvasive ventilation; HFNC, high-flow nasal cannula; ECMO, extracorporeal membrane oxygenation.
Figure 2 Summary of the size of the effect of proportions on all the variables studied in the meta-analysis.
instability caused by the inflammatory process, 0.54 (0.47–0.60) of the patients needed stabilization and inotropic agents. Shock or hypotension was reported in 0.60 (0.51–0.69) and 0.59 (0.53–0.65) of the patients, respectively.

The authors observed the following variations in the treatment of patients with MIS-C: intravenous immunoglobulin (IVIG), 0.84 (0.79–0.88); antiplatelet or anticoagulant, 0.78 (0.63–0.89); steroid, 0.64 (0.52–0.74); biological immunomodulator, 0.27 (0.16–0.42); and antiviral, 0.16 (0.08–0.29). Approximately 0.50 (0.39–0.62) of the patients with COVID-19-related MIS-C required some respiratory support, and 0.06 (0.03–0.10) eventually needed membrane oxygenation cardiopulmonary bypass (extracorporeal membrane oxygenation [ECMO]).

Some studies reported the use of broad-spectrum antibiotics in the first days of hospitalization; however, once the diagnosis of MIS-C was confirmed, the antibiotics were suspended. Only 0.02 (0.01–0.05) of the patients died despite the severity of the clinical symptoms of MIS-C.

To determine the statistical significance of all the characteristics studied, the authors performed a size test on the effect of proportions on all the variables studied in the meta-analysis (Figure 2).

Discussion

This systematic review analyzed and summarized 98 publications that included case reports, case series, and broader observational studies of patients with MIS-C. All the criteria were followed, and all information was noted for statistical analysis and evaluation. The results of this review confirm that there is a new multisystem inflammatory syndrome related to SARS-CoV-2.

In April 2020, alarming news emerged about children with evidence of recent SARS-CoV-2 infection and who developed a severe multisystem disease with fever, severe abdominal pain, hypotension and/or shock, and myocardial dysfunction with markedly elevated damage markers. This syndrome is called pediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS-TS) in Europe and multisystem inflammatory syndrome in children (MIS-C) by the CDC. Although the symptoms and characteristics of MIS-C are similar to those of KD, several studies have presented significant differences that distinguish the two diseases. Studies have shown that MIS-C occurs in children and adolescents, where the average age of those studied was 08–11 years. In our systematic review, the mean age of the children with MIS-C was 9.5 years. This contrasts with studies on the incidence of KD in children with an average age of 5 years.

Despite the incidence of COVID-19 in Asian countries, the prevalence of MIS-C there is lower, although cases have been registered worldwide according to the WHO (2020). Our systematic review, which included studies from 18 countries, found there was no statistically significant difference in the incidence of MIS-C in Asian children. This contrasts with studies that showed a predominance of KD in children of Asian origin.

In addition, children with MIS-C had significant abdominal pain that required advanced imaging and surgical consultation, whereas abdominal pain rarely occurs with KD.

Children with MIS-C have gastrointestinal symptoms more often than do adults with COVID-19. As most children with gastrointestinal symptoms are not severely ill, the authors can conclude that children are more vulnerable to gastrointestinal involvement than to respiratory involvement than are adults. Some children had abdominal pain so severe that they underwent surgery for suspected peritonitis or appendicitis that resulted in the diagnosis of MIS-C.

Cardiac involvement was commonly observed in children with MIS-C (Table 2). Fever, skin rashes, and gastrointestinal symptoms also were common. Case report studies showed that the symptoms of patients hospitalized with MIS-C quickly became acute. Placement in the intensive care unit, treatment for shock and hypotension, fluid resuscitation, and ventilatory support were necessary in most cases. Many patients with MIS-C develop cardiac symptoms, including mild coronary artery dilation or, rarely, aneurysms.

That mild transient coronary artery dilation can develop as a result of a cytokine storm with high IL-6 levels has been demonstrated in systemic-onset juvenile idiopathic arthritis, and it could result from a similar cytokine storm in MIS-C. However, persistent coronary artery aneurysms and their complications have been previously attributed to only KD in pediatric patients.

Another theory about the cause of cardiac injury is that a direct viral infection causes myocarditis. SARS-CoV-2 may directly cause myocardial damage by entering cardiomyocytes via the angiotensin-converting enzyme 2 (ACE2) receptor. The virus is also capable of activating CD8+ T lymphocyte migration to cardiomyocytes and causing myocardial inflammation through cell-mediated cytotoxicity. Endomyocardial biopsies from patients with COVID-19 have shown viral particles, and inflammatory infiltrates in the myocardium. All patients in the articles reviewed who had cardiac symptoms were followed up for a longer period, and the total regression of their cardiac symptoms was observed.

Our systematic review found that the immediate medical support offered to patients with MIS-C that was associated with treatment proved effective toward their recovery. In addition, the treatment of patients with MIS-C correlated with that of patients with KD and with the control of the systemic inflammatory process and cardiac injury as reported in other studies.

The successful use of steroids, in addition to IL-1 receptor antagonists (Anakinra) and IVIG, to control KD has been described. The anti-IL-6 receptor monoclonal antibody tofacitinib has been used successfully in treating chronic inflammatory processes such as juvenile idiopathic arthritis. The authors observed the use of preventive treatment that included the use of antiplatelet drugs or anticoagulants as well as broad-spectrum antibiotics initially until severe inflammation was contained, and then the diagnosis of MIS-C was confirmed.

Limitations

This systematic review has some limitations. Because the authors are still working within the situation of a global
pandemic, we believe that patient overload and the need for urgent care have prevented hospitals and researchers from providing more detailed information about symptoms, examinations, and outcomes. In addition, several studies included in this review have points of bias resulting from the type of case, the absence of statistical analysis, patient data in more than one article, or difficulty in separating the data of children from that of adults. The authors believe that the inclusion and exclusion criteria used to obtain articles for this review, as well as the attention paid in analyzing the data and statistics, minimized the observed biases.

Conclusions

The results of this systematic review show MIS-C as a severe inflammatory syndrome that affects older children, in contrast to DK. Many organs are affected, and children need hospitalization and fluid and respiratory support. The treatments proposed by the health guidelines (WHO and RCPCH) were followed and proved to be effective in the total recovery of patients.

Funding

Dr. Melissa AG Avelino coordinates the project: "Differential diagnosis and pediatric clinical evolution of COVID-19 in the context of the seasonality of respiratory viruses in a capital of the Midwest Brazil."/CAPES. Dr. Mônica O. Santos, Dr. Paulo A. N Silva, Dr. André L. E Moreira and Dr. Célia RM Ito were supported by grant (CNPJ Capes: 00.889.834 / 0001-08).

Conflicts of interest

The authors declare no conflicts of interest.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jpeds.2021.08.006.

References

1. RCPCH. Paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS) - guidance for clinicians. 2020;178:379-85. [Cited 2020 Nov 23]. Available from: https://www.rcpch.ac.uk/resources/paediatric-multisystem-inflammatory-syndrome-temporally-associated-covid-19-pims-guidance.
2. CDC. Centers for disease control and prevention. Emergency Preparedness and Response: Multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19. May 14.
3. WHO. Organization World Health. Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19. Geneva: WHO; 2020.
4. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.
5. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.
6. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.
7. Abdel-Haq N, Asmar BI, Deza Leon MP, McGrath EJ, Arora HS, Cashen K, et al. SARS-CoV-2-associated multisystem inflammatory syndrome in children: clinical manifestations and the role of infliximab treatment. Eur J Pediatr. 2021;180:1581–91.
8. Abdel-Mannan O, Eyre M, Löbél U, Bamford A, Eltzee C, Hameed B, et al. Neurologic and radiographic findings associated with COVID-19 infection in children. JAMA Neurol. 2020;77:1440–5.
9. Acharya BC, Acharya S, Das D. Novel Coronavirus mimicking Kawasaki disease in an infant. Indian Pediatr. 2020;57:753–4.
10. Alkan G, Sert A, Oz SK, Emiroglu M, Yılmaz R. Clinical features and outcome of MIS-C patients: an experience from Central Anatolia. Clin Rheumatol. 2021;40:4179–89.
11. Bahrami A, Vafapour M, Moazami B, Rezaei N. Hyperinflammatory shock related to COVID-19 in a patient presenting with multisystem inflammatory syndrome in children: First case from Iran. J Paediatr Child Health. 2021;57:922–5.
12. Balasubramanian S, Nagendran TM, Ramachandran B, Ramanan AV. Hyper-inflammatory syndrome in a child with COVID-19 treated successfully with intravenous Immunoglobulin and Tocilizumab. Indian Pediatr. 2020;57:681–3.
13. Bapat T, Romano F, Muller M, Rohr M. Special dermatological presentation of paediatric multisystem inflammatory syndrome related to COVID-19: erythema multiforme. BMJ Case Rep. 2020;13:e236986.
14. Bektaş G, Nihal A, Kübra B, Esra S. Reversible splenial lesion syndrome associated with SARS-CoV-2 infection in two children. Brain Dev. 2021;43:230–3.
15. Belhadjer Z, Meot M, Bajolle F, Khraiche D, Legendre A, Abakka S, et al. Acute heart failure in multisystem inflammatory syndrome in children in the context of global SARS-CoV-2 pandemic. Circulation. 2020;142:429–36.
16. Belot A, Antonia D, Renolleau S, Javouhey E, Hentgen V, Angoulvant F, et al. SARS-CoV-2-related paediatric inflammatory multisystem syndrome, an epidemiological study, France 1 March to 17 May 2020 Euro Surveill. 2020;25:2001010.
17. Blondiaux E, Parisot P, Redheuil A, Tzaroukian L, Levy Y, Sileo C, et al. Cardiac MRI in children with multisystem inflammatory syndrome associated with COVID-19. Radiology. 2020;297:e283–8.
18. Blumenthal E, Levin TL, Kurian J, Lee EY, Liszewski MC. Imaging findings in multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19. AJR Am J Roentgenol. 2021;216:507–17.
19. Buonsenso D, Di Sante G, Sali M, Group CC-S. Cytokine profile in an adolescent with pediatric multisystem inflammatory syndrome temporally related to COVID-19. Pediatr Infect Dis J. 2020;39:e213–5.
20. Capone CA, Subramony A, Sweberg T, Schneider J, Shah S, Rubin L, et al. Characteristics, cardiac involvement, and outcomes of multisystem inflammatory syndrome of childhood associated with severe acute respiratory syndrome coronavirus 2 infection. J Pediatr. 2020;224:141–5.
21. Carter MJ, Fish M, Jennings A, Doores KJ, Wellman P, Seow J, et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat Med. 2020;26:1701–17.
22. Cattalini M, Della Paolera S, Zunica F, Bracaglia C, Giangreco M, Verdoni L, et al. Rheumatology Study Group of the Italian Pediatric Society. Defining Kawasaki disease and pediatric inflammatory multisystem syndrome-temporally associated to SARS-CoV-2 infection during SARS-CoV-2 pandemic in Italy: results from a national, multicenter survey. Pediatr Rheumatol Online J. 2021;19:e29.
Dufort EM, Koumans EH, Chow EJ, Rosenthal EM, Muse A, Rowlands J, et al. Multisystem inflammatory syndrome related to COVID-19 in previously healthy children and adolescents in New York City. JAMA. 2020;324:294–6.

Ciotics K, Bassiri H, Behrens EM, Blatz AM, Chang J, Diorio C, et al. Multisystem inflammatory syndrome in children during the Coronavirus 2019 Pandemic: a case series. J Pediatric Infect Dis Soc. 2020;9:393–8.

Cogan E, Foulon P, Cappeliez O, Dolle N, Vanfraechem G. De Backer D. multisystem inflammatory syndrome with complete Kawasaki disease features associated with SARS-CoV-2 infection in a young adult. A case report. Front Med. 2020;7:428.

Dallan C, Romano F, Siebert J, Politi S, Lacroix L, Sahyoun C. Septic shock presentation in adolescents with COVID-19. Lancet Child Adolesc Health. 2020;4:e21–3.

Dasgupta K, Finch SE. A case of pediatric multisystem inflammatory syndrome temporally associated with COVID-19 in South Dakota. DOI Med. 2020;73:246–51.

Davies P, Evans C, Kanthimathinan HK, Lillie J, Brierley J, Waters G, et al. Intensive care admissions of children with pediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 (PIMS- Ts) in the UK: a multicentre observational study. Lancet Child Adolesc Health. 2020;4:669–77.

De Paula M, Oliveira DB, Vieira RP, Pinto IC, Machado RR, Cavalcanti MP, et al. Multisystem inflammatory syndrome associated with COVID-19 with neurologic manifestations in a child: a brief report. Pediatr Infect Dis J. 2020;39:e321–4.

Deza Leon MP, Redzepi A, Griseth A, Abdel-Haq N, Shawaqfeh E, et al. Pediatric inflammatory syndrome in children and adolescents. N Engl J Med. 2020;383:334–46.

Flood J, Shingleton J, Bennett E, Walker B, Amin- Chowdhury Z, Olgib G, et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 (PIMS-TS): prospective, national surveillance, United Kingdom and Ireland. 2020. Lancet Reg Heal Eur. 2021;3:e100075.

Giannattasio A, Maglione M, Zenzori L, Mauro A, Di Mitto O, Iodice RM, Typo V. A child with a severe multisystem inflammatory syndrome following an asymptomatic COVID-19 infection: A novel management for a new disease? J Med Virol. 2021;93:112–4.

Godfred-Cato S, Bryant B, Leung J, Oster ME, Conklin L, Abrams J, et al. COVID-19- Associated multisystem inflammatory syndrome in children - United States, March-July 2020. MMWR Morb Mortal Wkly Rep. 2020;69:1074–80.

Green IG, Salmon M, Rosen E, Sinert R. Toxic shock-like syndrome and COVID-19: Multisystem inflammatory syndrome in children (MIS-C). Am J Emerg Med. 2020;38:2492: e2492-e6.

Girmaud M, Starck J, Levy M, Marais C, Chareyre J, Khraiche D, et al. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Ann Intensive Care. 2020:10:69.

Gruber CN, Patel RS, Trachtman R, Lepow L, Amanat F, Krammer F, et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell. 2020;183:982–95. e14.

Gupta N, Richter R, Robert S, Kong M. Viral sepsis in children. Front Pediatr. 2018;6:252.

Hameed S, Elbaaly H, Reid CE, Santos RM, Shivamurthy V, Wong J, et al. Spectrum of imaging findings on chest radiographs, US, CT, and MRI images in multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19. Radiology. 2020: e202543.

Heidemann SM, Tilford B, Baurerfeld C, Martin A, Garcia RU, Yagiela L, et al. three cases of pediatric multisystem inflammatory syndrome associated with COVID-19 due to SARS-CoV-2. Am J Case Rep. 2020;21:e925779.

Hutchison L, Plichta AM, Lerea Y, Madora M, Ushay HM. Neuro-psychiatric symptoms in an adolescent boy with multisystem inflammatory syndrome in children. Psychosomatics. 2020;61:739–44.

Jain S, Sen S, Lakhshminvakeshiah S, Bobhate P, Venkatesh S, Udani S, et al. Multisystem inflammatory syndrome in children with COVID-19 in Mumbai, India. Indian Pediatr. 2020;57:1015–9.

Joshi K, Kaplan D, Bakar A, Jennings JF, Hayes DA, Mahajan S, et al. Cardiac dysfunction and shock in pediatric patients with COVID-19. JACC Case Rep. 2020;2:1267–70.

Kashyap H, Kumar RN, Gautam S, Gupta A, Gupta S, Tiwari PK. Multisystem inflammatory syndrome and COVID-19: Multisystem inflammatory syndrome associated with SARS-CoV-2 infection in critically ill children. A novel management for a new disease? J Med Virol. 2021;93:112–4.

Kesht H, Kaushik A, DeBruin W, Colletti M, Goldberg D. Multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19. Case Rep Pediatr. 2020;2020:8875987.

Kheslani LS, Chan K, Sadek FZ, Daheouh A, Ladjadji Y, Bougueurmou D. Intestinal ischemia secondary to Covid-19. J Pediatr Surg Case Rep. 2020;61:e101604.
57. Klopcerk A, Parackova Z, Dissou J, Malcova H, Pavlick P, Vymazal T, et al. Case report: systemic inflammatory response and fast recovery in a pediatric patient with COVID-19. Front Immunol. 2020;11:1665.

58. Lang P, Eichholz T, Bakhchoul T, Streiter M, Petrochch M, Bosmulla H, et al. Defibrotide for the treatment of pediatric inflammatory multisystem syndrome temporally associated with severe acute respiratory syndrome Coronavirus 2 infection in 2 pediatric patients. J Pediatr Infect Dis Soc. 2020;9:622–5.

59. Lee WS, Margolskee E. Leukoerythroblastosis and plasmacytoid lymphocytes in a child with SARS-CoV-2-associated multisystem inflammatory syndrome. Blood. 2020;136:914.

60. Lee PY, Platt CD, Weeks S, Grace RF, Maher G, Gauthier K, et al. Immune dysregulation and multisystem inflammatory syndrome in children (MIS-C) in individuals with haploinsufficiency of SOCS1. J Allergy Clin Immunol. 2020;146:1194–200.

61. Lee PY, Day-Lewis M, Henderson LA, Friedman KG, Lo J, Roberts JE, et al. Distinct clinical and immunological features of SARS-CoV-2-induced multisystem inflammatory syndrome in children. J Clin Invest. 2020;130:5942–50.

62. Licciardi F, Pruccoli G, Denina M, Parodi E, Taglietto M, Rosati S, et al. SARS-CoV-2-Induced Kawasaki-Like hyperinflammatory syndrome: a novel COVID phenotype in children. Pediatr. 2020;146:e20201711.

63. Lin J, Lawton FE, Verma S, Peterson RB, Sidhu R. Cytotoxic lesion of the corpus callosum in an adolescent with multisystem inflammatory syndrome and SARS-CoV-2 infection. AJNR Am J Neuroradiol. 2020;41:2017–9.

64. Mamishi S, Movahedi Z, Mohammadi M, Ziaee V, Khodabandeh S, et al. SARS-CoV-2-Induced Kawasaki-Like hyperinflammatory syndrome in children (MIS-C) in individuals with haploinsufficiency of SOCS1. J Allergy Clin Immunol. 2020;146:1194–200.

65. Mehler K, Jung N, Oberthuer A. Is it all MIS-C? Unusual findings in a series of nine German patients with multisystem inflammatory syndrome in children after SARS-CoV-2 infection. J Infect Dis. 2021;106:405–8.

66. Meredith J, Khedim CA, Henderson P, Wilson DC, Russell RK. Paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 infection in 45 children: a first report from Iran. Epidemiol Infect. 2020;148:e196.

67. Mehta H, Jung N, Oberthuer A. Is it all MIS-C? Unusual findings in a series of nine German patients with multisystem inflammatory syndrome in children after SARS-CoV-2 infection. J Infect Dis. 2021;106:405–8.

68. Mills T, Trivedi A, Tremoulet AH, Hershky D, Burns JC. Hyponatremia in patients with multisystem inflammatory syndrome in children. Pediatr Infect Dis J. 2021;40:344–6.

69. Miller J, Cantor A, Zachariah P, Ahn D, Martinez M, Margolis KG. Multisystem inflammatory syndrome temporally associated with severe acute respiratory syndrome Coronavirus 2 infection in 2 pediatric patients. J Pediatr Infect Dis Soc. 2020;9:622–5.

70. Ng KF, Kothari T, Bandi S, Bird PW, Goyal K, Zoha M, et al. COVID-19 multisystem inflammatory syndrome in three teenagers with confirmed SARS-CoV-2 infection. J Med Virol. 2020;92:2880–6.

71. Nguyen DC, Haskett H, Pace ER, Zhang XS, Dobbs KR. Pediatric case of severe COVID-19 with shock and multisystem inflammation. Cureus. 2020;12:e8915.

72. Okarska-Napierala M, Zalewska E, Kuchar E. Fever and diarrhea as the only symptoms of Multisystem Inflammatory Syndrome in Children (MIS-C). Gastroenterology. 2020;160:968–9.

73. Paolino J, Williams DA. Peripheral blood smears of children with multisystem inflammatory syndrome demonstrate prominence of early myeloid forms with morphologic evidence of toxic change. Pediatr Blood Cancer. 2020;68:e28551.

74. Patnaik S, Jain MK, Ahmed S, Dash AK, RK P, Sahoo B, et al. Short-term outcomes in children recovered from multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Rheumatol Int. 2021;14:1957–62.

75. Penner J, Abdel-Mannan O, Grant K, Maillard S, Kucera F, Hassell J, et al. 6-month multidisciplinary follow-up and outcomes of patients with paediatric multisystem inflammatory syndrome (PIMS-TS) at a UK tertiary paediatric hospital: a retrospective cohort study. Lancet Child Adolesc Health. 2021;5:473–82.

76. Pereira MF, Litvinov N, Farhat SC, Eisencrantz AP, Gibelli M, Carvalho WB, et al. Severe clinical spectrum with high mortality in pediatric patients with COVID-19 and multisystem inflammatory syndrome. Clinics. 2020;75:e20201711.

77. Perez-Toledo M, Faustini SE, Jossi SE, Shields AM, Kanthimathinathan HK, Allen JD, et al. Serology confirms SARS-CoV-2 infection in PCR-negative children presenting with Paediatric Inflammatory Multi-System Syndrome. medRxiv. 2020; e20213117.

78. Pouletty M, Rocchis C, Ouldali N, Caseri M, Basmaci R, Lacharme N, et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis. 2020;79:999–1006.

79. Prata-Barbos A, Lima-Setta F, Santos GRD, Lanzotti VS, de Castro RE, de Souza DC, et al. Pediatric patients with COVID-19 admitted to intensive care units in Brazil: a prospective multicenter study. J Pediatr (Rio J). 2020;96:582–92.

80. Prieto LM, Toral B, Llorente A, Coca D, Blázquez-Gamero D. Cardiovascular magnetic resonance imaging in children with pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 and heart dysfunction. Clin Microbiol Infect. 2021;27:648–50.

81. Ramcharan T, Nolan O, Lai CY, Prabhu N, Krishnamurthy R, Richter AG, et al. Paediatric inflammatory multisystem syndrome: temporally associated with SARS-CoV-2 (PIMS-TS): cardiac features, management and short-term outcomes at a UK tertiary paediatric hospital. Pediatr Cardiol. 2020;41:1391–401.

82. Raufl A, Vijayan A, John ST, Krishnan R, Ratheef A. Multisystem inflammatory syndrome with features of atypical Kawasaki disease during COVID-19 pandemic. Indian J Pediatr. 2020;87:745–7.

83. Regov T, Antebi M, Eytan D, Shachor-Meyouhas Y, Ilivitzki A, Aviel YB, et al. Pediatric inflammatory multisystem syndrome with central nervous system involvement and hypocomplementemia following SARS-COV-2 Infection. Pediatr Infect Dis J. 2020;39:e206–7.

84. Riollano-Cruz M, Akkoyun E, Briceno-Brito E, Kowalsky S, Reed O, et al. Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis. 2020;79:999–1006.

85. Regev T, Antebi M, Eytan D, Shachor-Meyouhas Y, Ilivitzki A, Aviel YB, et al. Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis. 2020;79:999–1006.

86. Riollano-Cruz M, Akkoyun E, Briceno-Brito E, Kowalsky S, Reed O, et al. Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis. 2020;79:999–1006.
