High-yield production of protopanaxadiol from sugarcane molasses by metabolically engineered Saccharomyces cerevisiae

Yuan Zhu1,2†, Jianxiu Li2*, Longyun Peng2†, Lijun Meng2, Mengxue Diao2, Shuiyuan Jiang3, Jianbin Li1* and Nengzhong Xie2*

Abstract

Background: Ginsenosides are Panax plant-derived triterpenoid with wide applications in cardiovascular protection and immunity-boosting. However, the saponins content of Panax plants is fairly low, making it time-consuming and unsustainable by direct extraction. Protopanaxadiol (PPD) is a common precursor of dammarane-type saponins, and its sufficient supply is necessary for the efficient synthesis of ginsenoside.

Results: In this study, a combinational strategy was used for the construction of an efficient yeast cell factory for PPD production. Firstly, a PPD-producing strain was successfully constructed by modular engineering in Saccharomyces cerevisiae BY4742 at the multi-copy sites. Then, the INO2 gene, encoding a transcriptional activator of the phospholipid biosynthesis, was fine-tuned to promote the endoplasmic reticulum (ER) proliferation and improve the catalytic efficiency of ER-localized enzymes. To increase the metabolic flux of PPD, dynamic control, based on a carbon-source regulated promoter PHXT1, was introduced to repress the competition of sterols. Furthermore, the global transcription factor UPC2 was introduced to sterol homeostasis and up-regulate the MVA pathway, and the resulting strain BY-V achieved a PPD production of 78.13 ± 0.38 mg/g DCW (563.60 ± 1.65 mg/L). Finally, sugarcane molasses was used as an inexpensive substrate for the first time in PPD synthesis. The PPD titers reached 1.55 ± 0.02 and 15.88 ± 0.65 g/L in shake flasks and a 5-L bioreactor, respectively. To the best of our knowledge, these results were new records on PPD production.

Conclusion: The high-level of PPD production in this study and the successful comprehensive utilization of low-cost carbon source -sugarcane molasses indicate that the constructed yeast cell factory is an excellent candidate strain for the production of high-value-added PPD and its derivatives with great industrial potential.

Keywords: Protopanaxadiol, Terpenoids, Synthetic biology, Sugarcane molasses, Saccharomyces cerevisiae

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background

Panax ginseng is a traditional Chinese medicine, widely used in Asia, Europe, and North America. Ginsenosides, the major bioactive components extracted from *Panax* plant, are a group of triterpenoids with diverse structural and pharmacological effects including alleviating fatigue and protecting the cardiovascular, endocrine, and immune systems [1–4]. However, the total ginsenosides contents in 5- to 7-year-old *P. ginseng* roots are approximately 2% g/g dry weight, and some rare ginsenosides accounts for less than 0.01%, making it time-consuming and unsustainable by direct extraction [5–7]. Moreover, due to the stereo-chemical complexity of ginsenosides, it is also challenging to synthesize by chemical methods [8].

Engineered microorganisms such as *Saccharomyces cerevisiae* and *Escherichia coli* provide an alternative approach for producing rare ginsenosides compounds to meet the continuously increasing market demand [9, 10]. Many active natural compounds, including lycopene [11], valencene [12], β-amyrin acetate [13], taxadiene and miltiradiene [14, 15], have been successfully produced through artificial microbial cell factories. Biosynthetic method is a green, sustainable and economical means to de novo synthesize natural compounds [16, 17].

Protopanaxadiol (PPD), the precursor of dammarane-type triterpene, is a promising antineoplastic and antidepressant drug candidate, which is hydroxylated from dammarenediol-II (DM-II) at the C12 position by *P. ginseng* PPD synthase (PgPPDS, also known as cytochrome P450 enzyme) [18, 19]. Many metabolic engineering strategies for PPD biosynthesis in *S. cerevisiae* have been developed, such as repression the competitive pathways, optimization of the cytochrome P450 oxidation system, endoplasmic reticulum (ER) amplification to facilitate PPD biosynthesis, etc. (Additional file 1: Table S1). Kim et al. expanded the ER in *S. cerevisiae* by overexpressing the key ER size regulatory factor INO2, which increased the production of squalene and PPD by 71-fold and 8-fold, respectively [20]. To overcome the poor coupling between PPDS and *Arabidopsis thaliana* cytochrome P450 reductase (ATR1), the PPDS-ATR1 fusion protein was introduced, and the PPD production increased significantly [21]. Then, Zhao et al. optimized the multi-genes pathway of PPD in *S. cerevisiae* by modular engineering strategies, of which the mevalonate (MVA) and acetyl-CoA pathway were up-regulated, and the sterol pathway was down-regulated. The PPD production of strain WLT-MVA5 reached 66.55 mg/g/OD600 in batch culture [22]. Wang et al. optimized the expression levels of MVA pathway genes and PPDS to increase the PPD metabolic flux in ZW04BY-RS. The PPD titer of ZW04BY-RS went up to 41.12 mg/g DCW in batch culture and 11.02 g/L in a 10-L bioreactor, which is the highest PPD production ever reported [23].

In this study, a PPD-producing strain was successfully constructed by modular engineering in *S. cerevisiae* BY4742 at the multi-copy sites. Then, the expression level of INO2 was fine-tuned with strong promoters to...
promote the ER amplification and enhance the catalytic efficiency of cytochrome P450 enzymes. Furthermore, two competitive metabolic pathways were repressed by down-regulated lanosterol synthetase (ERG7) and phosphatidate phosphatase (LPP1). In addition, the global transcription factor UPC2-1 was introduced to upregulate the MVA pathway. Finally, sugarcane molasses was used for the first time in PPD synthesis with restricted ethanol feeding. The PPD production of strain BY-V reached \(1.55 \pm 0.02\) and \(15.88 \pm 0.65\) g/L in fed-batch culture of shake flasks and a 5-L bioreactor respectively. This study paves the way for the development of an economical and efficient strategy for high-value-added natural compounds.

Results and discussion

Construction of PPD synthetic pathway in S. cerevisiae

PPD is a common precursor of PPD-type saponins, and its accumulation is essential to the production of ginseng metabolites [24]. In *S. cerevisiae*, the glycolytic flux is directed towards ethanol due to the Crabtree effect during cell growth on glucose [25]. Then, ethanol was converted to acetaldehyde through cytosolic acetaldehyde dehydrogenase. Acetyl-CoA is further oxidized from acetate, which is derived from acetaldehyde [26]. The PPD synthesis from acetyl-CoA requires 13 enzymatic steps (Fig. 1). PPD biosynthesis-related enzymes were thus divided into two expression cassettes, as shown in Fig. 2a, and \(\delta 17\) and \(\delta 15\) were chosen for multi-copy integration [27, 28]. The first cassette includes seven genes, namely, ERG9, ERG20, ERG1, PgDDS, PgPPDS, AtCPR1, and tHMG1, which were integrated into the \(\delta 17\) multi-copy site of BY4742 to construct the PPD synthetic pathway. Transformants were screened using CM-His medium and further verified through PCR amplification.

The heterologous genes \(PgDDS\), \(PgPPDS\) and \(AtCPR1\), which encode dammarenediol-II synthase (DDS), protopanaxadiol synthase (PPDS) and NADPH-cytochrome P450 reductase (CPR1), respectively, are essential for PPD synthesis from 2,3-oxidosqualene. Because the multiple integrations occurred randomly with a low probability (about 1–10%), there was a huge range of PPD production among the clones screened [29]. A total of 192 positive colonies were examined via HPLC analysis after shake flask fermentation for 72 h (Additional file 1: Fig. S1a). The PPD-producing strain

![Figure 1](image-url)
named B-C9 had a PPD yield of 2.21 ± 0.45 mg/g DCW (10.93 ± 0.89 mg/L), while strain BY-I achieved a PPD yield of 11.32 ± 0.45 mg/g DCW (58.43 ± 1.76 mg/L). The copy numbers and transcription levels of two heterologous genes ($PgPPDS$ and $AtCPR1$) and two endogenous genes ($tHMG1$ and $ERG9$) of the first cassette were detected using real-time fluorescence quantitative PCR (RT-qPCR). In comparison with B-C9, the copy number and RNA transcription levels of $ERG9$, $PgPPDS$, $AtCPR1$, and $tHMG1$ in BY-I have risen to varying degrees, which makes it an outlier (Additional file 1: Fig. S2).

Next, the second cassette composed of $ERG8$, $ERG12$, $ERG13$, $MVD1$, $IDI1$, $ERG10$, and $tHMG1$ was integrated into the $delta15$ multi-copy site of BY-I to strengthen the transformation of acetyl-CoA into isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which were the isoprenoid building blocks. Considering that HMG1 is the rate-limiting enzyme of the mevalonate pathway (MVA pathway), $tHMG1$ was integrated again to increase HMG-CoA flux [30]. One hundred and fifty-three positive colonies were verified using HPLC (Additional file 1: Fig. S1b). The PPD yield of strain BY-II exhibited a prominent improvement and achieved 33.23 ± 0.26 mg/g DCW (164.30 ± 3.48 mg/L), which was 2.94 times higher than that of BY-I ($P < 0.01$) (Additional file 1: Fig. S2), which were consist with PPD production.

Enhancing PPD production by engineering endoplasmic reticulum (ER)

S. cerevisiae is an ideal platform for heterologous biosynthesis of triterpenoids [31]. However, the low catalytic efficiency of cytochrome P450 enzymes (P450s), which require NADPH-cytochrome P450 reductases (CPR) to provide electrons, was the primary challenge for terpenoids synthesis [32]. ER proliferation could enhance the insertion and retention of the P450 reductase in the ER membrane to reach a high-level catalytic efficiency of membrane-localized P450s [33]. The key ER regulatory factor $INO2$, together with $INO4$ and $OP11$, are the primary ER responsive elements of *S. cerevisiae*, which constitute an auto-regulatory phospholipid biosynthesis system [34]. It has been reported that overexpression of $INO2$ for ER expansion could drive ER sheets proliferation, alleviate stress and improve the cell viability [35]. In the present study, $INO2$ was overexpressed through promoter swapping. Four strong promoters, namely, P_{HXT7}, P_{PGK1}, P_{TDP1}, and P_{TEF1}, were selected to replace the $INO2$ endogenous promoter of BY-II, resulting in BY-III-1, BY-III-2, BY-III-3, and BY-III-4, respectively. As seen in Fig. 3a, the cell growth of BY-III strains far surpassed that of BY-II after 24 h. The PPD production of BY-III-1, BY-III-2, BY-III-3, and BY-III-4 at 48 h

Fig. 2 Construction of PPD-producing strain. **a** Engineering strain construction using in vivo DNA assembly. **b** PPD production of engineering strains. The error bars indicate three biological replicates.
reached 156.75 ± 7.89, 151.55 ± 1.44, 153.43 ± 4.77, and 197.26 ± 1.14 mg/L, respectively, which equaled or even exceeded that of BY-II at 72 h. Notably, strain BY-III-4 exhibited a surprising PPD yield of 40.79 ± 0.30 mg/g DCW (310.35 ± 8.96 mg/L) at 72 h, which increased 1.89 times than that of BY-II (164.30 ± 3.48 mg/L) (P < 0.001) (Fig. 3b and Table 1). Kim et al. previously reported that overexpressing INO2 could expand the ER, thus improve the capacity to synthesize ER-associated proteins and cytochrome P450-mediated PPD, and increase available space to accommodate them [20]. In our study, the cell growth and PPD production of BY-III strains are significantly improved by up-regulation INO2 possibly due to efficient localization of cytochrome P450 in an expanded ER as a possible mechanism, which is consistent with Kim’s studies [36].

Improving PPD production by metabolic pathway optimization

For PPD biosynthesis, the lanosterol pathway is a competing pathway [37]. It has been reported that down-regulation of lanosterol synthetase (ERG7) expression can increase the metabolic flux of target terpenoid [38, 39]. However, as one of the inherent components of cell membrane, lanosterol is essential for the normal growth of *S. cerevisiae*, thus cannot be knocked out [40, 41]. In the current work, dynamic control, based on a carbon-source regulated promoter *PHXT1*, was introduced to relieve the competition between cell-growth and PPD production associated processes. Maury et al. previously characterized the *PHXT1* promoter in *S. cerevisiae* via transcriptional analysis, which was high expressed in glucose-excess and low expressed in glucose-limiting conditions. The endogenous promoter of INO2 gene of BY-II is replaced by *PHXT7*, *PPGK1*, *PTDH3*, and *PTEF1* to construct strains BY-III-1, BY-III-2, BY-III-3, and BY-III-4, respectively. Asterisks or pounds denote statistically significant differences from BY-II as determined by a Student’s t-test (*P < 0.05; **P < 0.01; ***P < 0.001; #P < 0.05; ##P < 0.01; ###P < 0.001). All data are presented as mean ± standard deviation of biological triplicates.
conditions [42]. Owning to the glucose-sensing toggle switch of \(P_{\text{HXT1}} \), the cell-growth of BY-III-5 was divided in a glucose growth phase and an ethanol growth phase, and BY-III-5 was conferred a significant increase of PPD production, with a PPD yield of 57.25±0.25 mg/g DCW (412.13±1.93 mg/L) at 72 h, which is 2.51 times higher than that of BY-II (Fig. 4 and Table 1). To further test the efficiency of \(P_{\text{HXT1}} \), the endogenous promoter of \(\text{ERG7} \) in BY-III-4 was replaced by \(P_{\text{HXT1}} \), resulting in BY-IV. Although a lower growth in logarithmic phase was observed in BY-IV compared to BY-III-4, the metabolic flux of DM-II in BY-IV was promoted conspicuously, showing a DM-II accumulation of 177.64±13.39 mg/L. It is possible that \(\text{ERG7} \) was induced in the presence of glucose at the early stage of cell growth and repressed after the depletion of glucose, which boosted the synthesis of DM-II and impaired the synthesis of lanosterol [43]. Maintaining the sterol homeostasis is of paramount importance for fungi growth and metabolism. The sterol-regulating transcription factor \(\text{UPC2} \) plays an essential role in the sterol homeostasis of \(S. \text{cerevisiae} \) by upregulating MVA pathway, and has been successfully used to enhance terpenoids production [44, 45]. To further improve PPD production, \(\text{UPC2.1} \), the G888D mutant of \(\text{UPC2} \), was introduced. Meanwhile, the phosphatidate phosphatase (\(LPP1 \)) was knocked out to diminish the
metabolic flux of farnesol [46]. Hence, the PPGK1-UPC2.1-TADH1 expression cassette was knocked into the LPP1 locus of BY-IV by CRISPR/Cas9, resulting in BY-V. As illustrated in Fig. 4, the yield of PPD by strain BY-V was further increased. Moreover, the DM-II of BY-V declined to 66.91 ± 7.38 mg/L, and the PPD yield went up to 78.13 ± 0.38 mg/g DCW (563.06 ± 1.65 mg/L) (P < 0.01), which was a new record to the best of our knowledge.

PPD production in shake flasks

As a major by-product of sugar manufacturing process, molasses contains approximately 50% fermentable sugars and a small number of nitrogenous compounds, inorganic salts, and trace elements, which are the essential nutrients for growth and biosynthesis of *S. cerevisiae* [47]. The shake flask fermentation was conducted with an initial molasses concentration of 40 g/L. As shown in Fig. 5, the cell growth of strain BY-V in molasses was faster at the logarithmic phase, and closed at stationary phase, compared with that of YPD. However, the PPD titer and PPD yield (PPD/sugar) in molasses were 402.22 ± 7.39 mg/L and 13.11 ± 0.16 mg/g, respectively, at 72 h, which were just 71.37% of those in YPD medium.

To further improve PPD titer, fed-batch fermentation was carried out. The potential of BY-V for PPD production was firstly investigated by restricted glucose/molasses feeding strategy (Table 2 and Additional file 1: Fig. S3). The production of PPD with glucose and molasses feeding achieved 841.09 ± 2.16 mg/L and 556.26 ± 4.90 mg/L, respectively. The lower PPD titer in molasses might be caused by the large quantities of ash and metal ions in molasses, which inhibit the synthesis of target compounds [47]. Then, two-stage feeding strategy was conducted. The initial concentrations of glucose and molasses in YPD medium were 20 and 40 g/L (containing approximately 20 g/L of fermentable sugars), respectively. In the early stage, glucose and molasses were fed to improve cell growth, respectively. After 48 h, ethanol (99.7%, v/v) was added at intervals to facilitate PPD accumulation. As shown in Fig. 6a, the two-stage feeding strategy resulted in high cell biomass. The OD600 of BY-V achieved 48.62 in molasses-ethanol, which is 2.12 and 1.81 times higher than that of batch and fed-batch in molasses, respectively. Moreover, the PPD titer went up to 1.25 ± 0.01 g/L after 168 h, with a PPD yield [PPD/(sugar + ethanol)] of 15.63 ± 0.83 mg/g (Fig. 6b and Table 2).

Ethanol was commonly used in yeast fermentation for terpenoids accumulation [48]. Zhang et al. has reported that 138.80 mg/L of β-amyrin production was achieved

![Fig. 5](image-url)
Fig. 5 Cell growth and PPD production of BY-V in different carbon sources. Curves and bars marked in yellow and brown represent BY-V cultivated with glucose and molasses, respectively. Data are presented as the means of three replicates, and bars represent the standard deviations

Table 2 PPD production of strain BY-V in fed-batch culture

Carbon source	Feeding strategy	PPDa (mg/g DCW)	PPD (mg/L)	[PPD/(sugar + ethanol)] (mg/g)	Time (h)
Glucose	NAb	78.13 ± 0.38c	563.60 ± 1.65	18.79 ± 0.23	72
Molasses	NA	53.04 ± 0.30	402.22 ± 7.39	13.11 ± 0.16	72
Glucose	G + Na	41.29 ± 0.78	841.09 ± 2.16	8.14 ± 0.56	96
Molasses	M + N	64.33 ± 0.54	556.26 ± 4.90	11.13 ± 0.44	120
Glucose	G + E + N	77.01 ± 0.17	1320.69 ± 42.51	14.67 ± 0.68	120
Molasses	M + E + N	79.92 ± 0.19	1251.56 ± 12.54	15.63 ± 0.83	168
Glucose	E + N	95.15 ± 0.96	1323.22 ± 13.13	19.41 ± 0.75	120
Molasses	E + N	106.55 ± 0.91	1553.68 ± 18.72	22.79 ± 1.06	168

a PPD yields represented the total amounts of intracellular and extracellular extraction
b NA: Not applicable
c All data are presented as mean ± standard deviation of biological triplicates
d G, N, M and E represented glucose, nitrogen, molasses and ethanol, respectively
using pure ethanol feeding [44]. In this study, ethanol was fed as the sole carbon source after glucose/molasses depletion (Fig. 6c). The OD$_{600}$ of BY-V was 46.94, slightly lower than that in two-stage feeding with molasses-ethanol. Surprisingly, 1.55 ± 0.02 g/L (106.55 ± 0.91 mg/g DCW) of PPD was accumulated at 168 h, which is 2.79 and 1.24 times higher than that of molasses feeding and two-stage feeding with molasses-ethanol. Moreover, the PPD yield of restricted ethanol feeding strategy went up to 19.41 ± 0.75 mg/g and 22.79 ± 1.06 mg/g, respectively (Fig. 6d and Table 2). These results demonstrated that although ethanol served as a non-fermentable carbon source and might hinder the growth of engineering chassis, it facilitated the synthesis of PPD via acetyl-CoA pathway directly rather than by the complex glycolytic pathway [49].

PPD production in a 5-L bioreactor

To evaluate the performance of the PPD production of strain BY-V in high-density culture, a 5-L bioreactor with 1.5 L of synthetic medium was employed. Ethanol was fed at intervals to control the ethanol concentration in the range of 1–5 g/L. The ethanol metabolism results the accumulation of NADH, which is regenerated by oxidative phosphorylation and consequently consumes large amounts of oxygen [50]. Hence, adequate oxygen supplement is needed to promote cell
growth and PPD synthesis. To maintain the dissolve oxygen (DO) of fermentation broth at 40%, pure oxygen was supplied when the cell growth of BY-V entered logarithmic phase (about 48 h) (Fig. 7a and b). Then, the strain entered stationary phase at 96 h, and attained a maximum OD600 of 262.14 at 108 h. The PPD of culture broth was continued to accumulate with a PPD titer of 8.63 ± 0.13 g/L (100.82 ± 0.42 mg/g DCW) at 120 h (Fig. 7c and Table 3). Zhao et al. reported that a large amount of PPD was secreted to extracellular space and adhered to the stainless pipe and the inner tank wall [51]. Notably, PPD mainly showed intracellular accumulation (10.18 ± 0.35 g/L) with sugarcane molasses as the initial carbon source in a 5-L bioreactor. As compared with glucose, sugarcane molasses generates less foam and adhered sediment, which increases oxygen transferring and facilitates downstream pretreatment and separation [23, 51]. In our study, the total PPD production, including fermented broth and faint yellow sediment, attained 15.88 ± 0.65 g/L (188.50 ± 0.56 mg/g DCW) at the end of the fermentation (Fig. 7c, Table 3 and Additional file 1: Fig. S5). The PPD titer was a new record and 1.44 times higher than that of ZW04BY-RS, reported by Wang et al. [23]. This result indicates that using molasses as the cheap carbon source with ethanol feeding is an effective strategy for PPD production.

Conclusion

In this study, we adopted various strategies, including metabolic engineering, promoter engineering, ER engineering, and lanosterol pathway down-regulation to improve heterogenous PPD biosynthesis of *S. cerevisiae*. The strain BY-V, engineered by combinational strategies, exhibited a prominent improvement in PPD biosynthesis and achieved a PPD yield of 78.13 ± 0.38 mg/g DCW (563.60 ± 1.65 mg/L), which was a new record to the best of our knowledge. Thereafter, sugar molasses, a major by-product of sugar manufacturing process, was first used for PPD synthesis. After the optimization of fermentation process, the PPD titer (1.55 ± 0.02 g/L and 106.55 ± 0.91 mg/g DCW) from sugar molasses with restrict ethanol feeding in shake flasks was much higher than that of glucose (1.32 ± 0.01 g/L and 95.15 ± 0.96 mg/g DCW). In a 5-L bioreactor, the total PPD production (in both the culture broth and the yellow sediment) attained 15.88 ± 0.65 g/L and

Table 3 PPD and DM-II production of strain BY-V in 5-L bioreactor

Time (h)	PPDa (mg/g DCW)	PPD (g/L)	[PPD/(sugar + ethanol)] (mg/g)	DM-II (g/L)	DM-II/PPD (%)
48	78.55 ± 0.36b	1.71 ± 0.20	12.10 ± 0.32	0.07 ± 0.01	2.08 ± 0.21
72	81.86 ± 0.77	3.71 ± 0.07	14.38 ± 0.45	0.13 ± 0.04	3.35 ± 0.35
96	87.06 ± 0.45	7.16 ± 0.18	15.91 ± 0.74	0.75 ± 0.04	9.46 ± 0.43
120	100.82 ± 0.42	8.64 ± 0.13	15.16 ± 0.56	1.23 ± 0.02	12.47 ± 0.25
126	188.50 ± 0.56	15.88 ± 0.65	25.05 ± 0.47	2.19 ± 0.04	13.02 ± 0.36

* a PPD yields represented the total amounts of intracellular and extracellular extraction
 b All data are presented as mean ± standard deviation of biological triplicates
188.50 ± 0.56 mg/g DCW at the end of the fermentation. This study provides a reference for the comprehensive utilization of molasses via a low cost and environment-friendly approach, and also an example for the biosynthesis of high-value-added natural compounds.

Methods

Strains and medium

S. cerevisiae BY4742 (MAT\(a\), his3\(Δ1\), leu2\(Δ0\), lys2\(Δ0\), ura3\(Δ0\)) obtained from American Type Culture Collection (Manassas, VA, USA) was used as the parent strain. Yeast was grown in YPD medium (20 g/L glucose, 20 g/L peptone, and 10 g/L yeast extract) or CM medium (20 g/L glucose, 6.7 g/L yeast nitrogen base without amino acids, and 0.8 g/L dropout powder minus appropriate amino acids) at 30 °C. E. coli Trans 5α (TransGen Biotech, Beijing, China), cultivated at 37 °C in LB medium, was used for plasmid amplification. All of the strains and plasmids used in this study are listed in Table 4 and Additional file 1: Table S2. Molasses used in this study were purchased from Guangxi Sugar Industry Group Co., Ltd (Nanning, China).

Plasmids construction

The sequences of PgDDS, PgPPDS, and AtCPR1 (GenBank Accession Nos. ACZ71036.1, AEY75213.1, and AIC73829.1) were codon optimized and synthesized by Wuhan Gene Create Biological Engineering Co., Ltd. (Wuhan, China). Then, these synthesized DNA fragments were cloned into pUC57, resulting in pUC57-PgDDS and pUC57-PgPPDS/AtCPR1. Promoters, terminators, and genes were homologous arms were amplified from the genome of BY4742 via PCR with specific primers (Additional file 1: Table S3). The selection marker (i.e., HIS, LEU, and URA3) were amplified from plasmid PYES3-CT. N-terminally truncated HMG-CoA reductase (tHMG1) was artificially synthesized. All fragments were purified using Gel Recovery Kit (GenStar, Beijing, China). Promoters, terminators, and genes were spliced by overlap extension PCR to synthesize expression cassettes. The plasmid DNA including the target fragments (\(P_{TEF1}\), \(P_{HXT7}\), and \(P_{PGK1-UPC2.1-TADH1}\)) were sequenced by Sangon Biotech Co., Ltd. (Sangon Biotech, Shanghai, China). Finally, the fragments were co-transformed into yeast using LiAc/ssDNA method.

Quantification of genes copy numbers and RNA transcription level

Genomic DNA was extracted using TIANamp Yeast DNA Kit (Tiangen Biotech, Beijing, China), and RNA was extracted using Trizol (Invitrogen, Carlsbad, USA) following product manuals. cDNA was obtained by reverse transcription-polymerase chain reaction using a Prime Script One Step RT-PCR kit (Takara, Beijing, China). Quantitative real-time PCR (RT-qPCR) was performed using Prime Script RT reagent kit with gDNA eraser (Takara, Beijing, China) [52] Primers used for RT-qPCR were listed in Additional file 1: Table S4.

CRISPR/Cas9 gene editing in S. cerevisiae

gRNA sequences with 100% specificity to other genomes was obtained using online gene editing tools, and target sequences with the highest scores were selected [53]. All gRNA target sequences used in this study were listed in Additional file 1: Table S5. The plasmid skeleton of pCAS-RNR2p-Cas9-CYC1t was amplified with pCas9-F/R primers (Additional file 1: Fig. S4). Equal volumes of 10 μM primer-F and primer-R were mixed with a slow annealing to obtain the gRNA oligo. For gRNA assembly, gRNA oligos of \(P_{INO2}\), \(P_{ERG7}\), and \(LPP1\) were introduced to

Table 4 Strains used in this study

Strain	Genotype	Reference
E. coli DH5α	F−, φ80lac ZΔM15, ΔlacZYA-argF U169, deoR recA1, endA1, hsdR17(k+ K- rk+), thi-1, gyrA96, relA1, proA	Novagen
BY4742	MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0	ATCC
BY-I	\(P_{ADH1}\)−\(ERG20\)−\(T_{RC1}\), \(P_{HXT7}\)−\(ERG9\)−\(T_{RC1}\), \(P_{PZC}\)−\(ERG1\)−\(T_{ADH1}\), \(P_{PPLA}\)−\(PgDS\)−\(T_{CYC1}\), \(P_{ADH1}\)−\(CYP716\)−\(A47\)−\(ATR1\)−\(T_{BAP}\)−\(P_{TADH1}\)−\(HMG1\)−\(T_{RC1}\)	This study
BY-II	\(P_{INO2}\)−\(ERG12\)−\(T_{PSI1}\), \(P_{HXT7}\)−\(ERG13\)−\(T_{RC1}\), \(P_{GNNM}\)−\(MVDO1\)−\(T_{MVE}\), \(P_{PZC}\)−\(ERG8\)−\(T_{ADH1}\)−\(P_{UPC2}\)−\(D1\)−\(P_{TADH1}\)−\(HMG1\)−\(T_{MVE}\)−\(T_{ADH1}\)−\(P_{TEF1}\)−\(ERG10\)−\(T_{RC1}\)	This study
BY-III	\(P_{INO2}\)−\(P_{HXT7}\)	This study
BY-III-2	\(P_{INO2}\)−\(P_{PSI1}\)	This study
BY-III-3	\(P_{INO2}\)−\(P_{TADH1}\)	This study
BY-III-4	\(P_{INO2}\)−\(P_{TEF1}\)	This study
BY-III-5	\(P_{INO2}\)−\(P_{HXT7}\)	This study
BY-IV	\(P_{INO2}\)−\(P_{HXT7}\)	This study
BY-V	\(P_{INO2}\)−\(P_{HXT7}\)	This study
Yeast cultivation and metabolite extraction

Engineered strains were grown in YPD medium containing 100 mg/L G418 sulfate (Sangon Biotech, Shanghai, China) at 30 °C for 2–3 d. Positive colonies were verified by sequencing.

Chemical analysis

The fermentation broth was centrifuged and properly diluted. The concentrations of glucose and ethanol were detected using a biosensing analyzer (SBA-40C, Shandong Academy of Sciences, China). The quantification of DM-II and PPD were conducted using a SHIMADZU LC20A system (Shimadzu, Kyoto, Japan) equipped with LC-20ADXR liquid chromatograph and SIL-20AXR auto-sampler. Chromatographic separation of PPD was conducted at 30 °C on a Poroshell 120 EC-C18 column (4.6 × 250 mm, 4 μm, Agilent). DM-II and PPD were separated by using 10% water and 90% acetonitrile. The injection volume was 10 μL, and the flow rate was kept at 1.0 mL/min.

Batch and fed-batch fermentation for PPD production

For batch fermentation, strain BY-V was inoculated into the YPD medium and cultivated at 30 °C on a rotary shaker at 220 rpm for 18 h. Then, the seed culture was added to 50 mL YPD medium in 250-mL flasks with a 2.0% inoculation and grown at 30 °C and 220 rpm for 72 h. The optical density at 600 nm (OD600) was measured using a Shimadzu UV-1900i spectrophotometer. Dry cell weight was calculated using the coefficient, 0.3296 g/L DCW.

For restricted glucose feeding, 0.4 mL glucose (or 40 g/L molasses) and 0.6 mL fed solution were added to the medium at 48, 60, 72, 84, 96, 108, 120, and 144 h. For the two-stage feeding, 10 g/L glucose/molasses and 0.6 mL fed solution (9 g/L KH2SO4, 5.12 g/L MgSO4·7H2O, 3.5 g/L K2SO4, 0.28 g/L Na2SO4, 1.5 g/L lysine, 12 mL vitamin solution, and 10 mL trace metal solution) were added at 24 and 36 h [54]. Ethanol was fed at intervals to maintain a concentration in the range of 1–5 g/L after 48 h. For restricted ethanol feeding, 0.2 mL ethanol (99.7%, v/v) and 0.6 mL fed solution were added to the medium at 48, 60, 72, 84, 96, 108, 120, and 144 h.

Fermentation by strain BY-V was conducted in a 5-L bioreactor (Sartorius Stedim Biotech, Gottingen, Germany) using synthetic medium (40 g/L molasses, 15 g/L (NH4)2SO4, 8 g/L KH2PO4, 1.5 g/L lysine, 5.65 g/L MgSO4, 0.72 g ZnSO4, 12 mL vitamin solution and 10 mL trace metal solution). 150 mL seed solution cultured at 30 °C and 220 rpm for 18 h was inoculated into 1.5 L synthetic medium. Fermentation was carried out at 30 °C and pH was controlled at 5.5 by aqueous ammonia. Dissolved O2 was maintained at 40% with an air flow rate higher than 1 L/min. Feeding rate was controlled at a range of 1–5 g/L.

Statistical analysis

The experimental data were represented as mean ± standard deviation of biological triplicates. The statistical analyses were performed with GraphPad Prism software (San Diego California, USA) and Origin 9.6 (Origin Lab, Northampton, MA, USA).

Acknowledgements

Not applicable.

Author contributions

YZ, JL and LP contributed equally. JL, NX, and JL designed the experiments. YZ, LP, and LM performed the experiments. YZ, and JL wrote the manuscript. YZ, JL, MD, and SJ, revised the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the Science and Technology Service Network Initiative of Chinese Academy of Sciences (KJFI-STS-QY2D-201, KJFI-STS-QY2D-200), National Natural Science Foundation of China (31760469, 21868007), National Natural Science Foundation of Guangxi (2021AC19176, 2018GXNSFBA2B1017, 2021GXNSFBA196087), Science Foundation Project of Guangxi Academy of Sciences (2021YFJ210, 2020YBJ703, 2020YBJ702, CQ-D-2415), Science and Technology of Guangxi Zhuang Autonomous
Availability of data and materials

All data generated or analyzed during this study are included in this published article and additional file.

Declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing financial interest.

Author details

1College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China. 2State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biofermentation, Guangxi Bioscience and Biotechnology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China. 3Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China.

Received: 5 August 2022 Accepted: 13 October 2022

Published online: 05 November 2022

References

1. Choi HI, Wominal NE, Park HM, Kim NH, Choi BS, Park M, Choi D, Lim YP, Kwon SJ, Park BK, et al. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Plant J. 2014;77:906–16.

2. Jeffreys LN, Girvan HM, McLean KJ, Munro AW. Chapter eight-characterization of cytochrome P450 enzymes and their applications in synthetic biology. In: Scrutton N, editor. Methods Enzymol, vol. 608. Academic Press, 2018. p. 189–261.

3. Zhang H, Xu HL, Fu WW, Xin Y, Li MW, Wang SJ, Yu XF, Sui DY. 2013-Protopanaxadiol induces human breast cancer MCF-7 apoptosis through a caspase-mediated pathway. Asian Pac J Cancer Prev. 2014;15:7919–23.

4. Han BH, Park MH, Han YN, Woo K, Sankawa U, Yaha S, Tanaka O. Degradation of ginseng saponins under mild acidic conditions. Planta Med. 1982;44:146–9.

5. Bae E, Han MJ, Kim E, Kim D. Transformation of ginseng saponins to ginsenoside Rb2 by acids and human intestinal bacteria and biological activities of their transformants. Arch Pharmacol Res. 2004;27:61–7.

6. Liang J, Chen L, Guo YH, Zhang M, Gao Y. Simultaneous determination of taxadiene in Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Plant J. 2014;77:906–16.

7. Nowrouzi B, Li R, Wallis L, d’Espaux L, Malci K, Liang L, Borrego N, Leima Escalera A, Morones Ramirez J, Keasling J, Rios SL. Enhanced production of taxadiene in Saccharomyces cerevisiae: microbe Cell Fact. 2019;18:195.

8. Ahmed M, Ikram S, Rasool A, Li C. Design and construction of short synthetic terminators for β-amyrin production in Saccharomyces cerevisiae. Biocem Eng J. 2019;146:105–16.

9. Sun X, Shen X, Jain R, Lin Y, Wang J, Sun J, Wang J, Yan Y, Yuan Q. Synthesis of chemicals by metabolic engineering of microbes. Chem Soc Rev. 2015;44:3760–85.

10. Yu L, Chen Y, Shi J, Wang J, Yang L, Zhao S, Wang ZT. Biosynthesis of rare 20(β)-protopanaxadiol/protopanaxatriol type ginsenosides in Escherichia coli engineered with uridine diphosphate glycosyltransferase genes. J Ginseng Res. 2019;43:116–24.

11. Hussain MH, Hung Q, Zaman WQ, Mohsin A, Wei Y, Zhang N, Fang H, Wang Z, Hang H, Zhuang Y, Guo M. Rationally optimized generation of integrated Escherichia coli with stable and high yield lycopene biosynthesis from heterologous mevalonate (MVA) and lycopene expression pathways. Synth Syst Biotechnol. 2021;6:85–94.

12. Chen HF, Zhu CY, Zhu MZ, Xiong JH, Ma H, Zhou M, Li S. High production of valencene in Saccharomyces cerevisiae through metabolic engineering. Microbe Cell Fact. 2019;18:195.

13. Liang J, Chen L, Guo YH, Zhang M, Gao Y. Simultaneous determination of taxadiene in Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Plant J. 2014;77:906–16.

14. Nowrouzi B, Li R, Wallis L, d’Espaux L, Malci K, Liang L, Borrego N, Leima Escalera A, Morones Ramirez J, Keasling J, Rios SL. Enhanced production of taxadiene in Saccharomyces cerevisiae: microbe Cell Fact. 2019;18:195.

15. Dai ZB, Liu Y, Huang LQ, Zhang XL. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae: Biotechnol Bioeng. 2012;109:2945–53.

16. Zhu AQ, Zhou K, Li YR. Rational design strategies for functional reconstitution of plant cytochrome P450s in microbial systems. Curr Opin Plant Biol. 2021;60:102005.

17. Kim JE, Jang IS, Son SH, Ko YJ, Choi BK, Kim SC, Lee JJY. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metab Eng. 2019;56:50–9.

18. Zhang H, Wang JW, Li SJ, Wang SM, Liu MC, Wang WN, Zhao YJ. Molecular cloning, expression, purification and functional characterization of an antifungal cyclophilin protein from Panax ginseng. Biomedal Reports. 2017;7:527–31.

19. Zhou AQ, Zhou K, Li YR. Rational design strategies for functional reconstitution of plant cytochrome P450s in microbial systems. Curr Opin Plant Biol. 2021;60:102005.

20. Kim JE, Jang IS, Son SH, Ko YJ, Choi BK, Kim SC, Lee JJY. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metab Eng. 2019;56:50–9.

21. Zhao FL, Dai ZB, Liu Y, Huang LQ, Zhang XL. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae: Biotechnol Bioeng. 2016;111:1787–95.

22. Zhao FL, Du YH, Bai P, Liu J, Lu DS, Zhang XM, Lu WY, Yuan YJ. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae. Biotechnol Bioeng. 2016;111:1787–95.

23. Zhao FL, Du YH, Bai P, Liu J, Lu DS, Zhang XM, Lu WY, Yuan YJ. Enhancing Saccharomyces cerevisiae reactive oxygen species and ethanol stress tolerance for high-level production of protopanaxadiol. Bioresour Technol. 2017;227:308–16.

24. Wang PP, Wei W, Ye W, Li XD, Zhao WF, Yang CS, Li CI, Yan X, Zhou Z. Synthesizing ginsenoside R2H in Saccharomyces cerevisiae cell factory at high efficiency. Cell Discovery. 2019;5:5.

25. Wang MY, Li HH, Liu WW, Gao H, Hu X, Gao X, Xu FX, Li ZL, Hua HM, Li DH. Distammarane-type leads panaxadial and protopanaxadiol for drug discovery: biological activity and structural modification. Eur J Med Chem. 2020;189:11087.

26. De Deken RH, The Crabtree effect: a regulatory system in yeast. J Gen Microbiol. 1966;64:149–56.

27. Lee FWF, Silva NAD. Improved efficiency and stability of multiple cloned gene insertions at the Δ sequences of Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1997;48:339–45.

28. Ravindra A, Richard F. Chapter 7-Homologous recombination in Eukaryotes. In: Doetsch PW, editor. Prog Mol Biol Transl Sci, vol. 110. Academic Press; 2012. p. 155–206.

29. Dai ZB, Wang BB, Liu Y, Shi MY, Wang D, Zhang XL. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae: Biotechnol Bioeng. 2012;109:2945–53.

30. Sun X, Shen X, Jain R, Lin Y, Wang J, Sun J, Wang J, Yan Y, Yuan Q. Synthesis of chemicals by metabolic engineering of microbes. Chem Soc Rev. 2015;44:3760–85.

31. Yao L, Wang J, He JP, Huang LQ, Gao WY. Endophytes, biotransforming microorganisms, and engineering microbial factories for terpenoid saponins production. Crit Rev Biotechnol. 2021;41:249–72.

32. Sandig G, Kärgel E, Menzel R, Vogel F, Zimmmer T, Schunck WH. Regulation of endoplasmic reticulum biogenesis in response to cytochrome P450 overproduction. Drug Metab Rev. 1999;31:393–410.

33. Liang J, Chen L, Guo YH, Zhang M, Gao Y. Simultaneous determination of taxadiene in Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Plant J. 2014;77:906–16.
36. Wittenkindt NE, Würgler FE, Sengstag C. Targeting of heterologous membrane proteins into proliferated internal membranes in Saccharomyces cerevisiae. Yeast. 1995;11:913–28.

37. Li XD, Wang YM, Fan ZJ, Wang Y, Wang PP, Yan X, Zhou ZH. High-level sustainable production of the characteristic protopanaxatriol-type saponins from Panax species in engineered Saccharomyces cerevisiae. Metab Eng. 2021;66:87–97.

38. Liu M, Lin YC, Guo JJ, Du MM, Tao XY, Gao B, Zhao M, Ma YS, Wang FQ, Wei DZ. High-level production of sesquiterpene patchoulol in Saccharomyces cerevisiae. ACS Synth Biol. 2021;10:158–72.

39. Guo H, Wang HY, Huo YX. Engineering critical enzymes and pathways for improved triterpenoid biosynthesis in yeast. ACS Synth Biol. 2020;9:2214–27.

40. Veen M, Stahl U, Lang C. Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast Res. 2003;4:87–95.

41. Teske B, Taramino S, Bhuiyan MSA, Kamaraswami NS, Randall SK, Barbuch P, Eckstein J, Balliano G, Bard M. Genetic analyses involving interactions between the ergosterol biosynthetic enzymes, lanosterol synthase (ERG7p) and 3-ketoreductase (ERG27p), in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 2008;1781:359–66.

42. Maury J, Kannan S, Jensen NB, Öberg FK, Kildegaard KR, Forster J, Nielsen J, Workman CT, Borodina I. Glucose-dependent promoters for dynamic regulation of metabolic pathways. Front Biotechnol. 2018;6.

43. Tomás-Cobos L, Casadó-Mé L, Mas G, Sanz P, Pasos F. Expression of the hkt1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways. J Biol Chem. 2004;279:22010–9.

44. Zhang GL, Cao Q, Liu JZ, Liu BY, Li J, Li C. Refactoring β-amyrin synthesis in Saccharomyces cerevisiae. AICHE J. 2015;61:3172–9.

45. Srisawat P, Yasumoto S, Fukushima EO, Robertlee J, Seki H, Muranaka T. Production of the bioactive plant-derived triterpenoid morolic acid in engineered Saccharomyces cerevisiae. Biotechnol Bioeng. 2020;117:2198–208.

46. Faulkner A, Chen X, Rush J, Horazdovsky B, Waechter CJ, Carman GM, Sternweis PC. The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae. J Biol Chem. 1999;274:14831–7.

47. Reddy PK, Vijay M, Kusuma M, Ramesh KV. Optimum parameters for production of ethanol from synthetic molasses by Saccharomyces cerevisiae. Mater Today: Proc. 2021;46:154–6.

48. Cansanba E, Pintado M, Olivera C. Fermentation strategies for production of pharmaceutical terpenoids in engineered yeast. Pharmaceuticals. 2021;14:295.

49. Zhao FL, Bai P, Nan WH, Li DS, Lu CZ, Qi HS, Lu WY. A modular engineering strategy for high-level production of protopanaxadiol from ethanol by Saccharomyces cerevisiae. AlChE J. 2019;65:866–74.