Propolis is a well-known resinous material collected by bees from exudates and buds of plants, mixed with pollen, bee enzymes, and wax (7). Propolis is a lipophilic material that is hard and easily broken at room temperature but elastic, soft, and very viscous during warming. It possesses an enjoyable aromatic smell and different colors, including red, green, and brown (8).
acid, \textit{trans}-ferulic acid, \textit{trans}-cinnamic acid), aminoacids, stilbenes, lignans, coumarins, \textit{n}-alkanes, \textit{n}-alkanes, etc. (12-19).

Among flavonoids are ones of all the classes, especially flavons (luteolin, apigenin, chrysin, and their derivatives), flavonols (macarangin, quercetin derivatives, kaempferol, galangin), chalcones, dihydrochalcones, etc. (12, 13, 15, 16, 20). Flavonoids significantly contribute to the pharmacological activities of propolis (antibacterial, antiviral, anti-inflammatory, antioxidant, immunomodulatory properties) (13, 16, 17, 19, 21). Therefore, the total flavonoid content (TFC) could be regarded as a criterion for the quality evaluation of propolis and its tinctures (13, 20). Moreover, flavonoids and aromatic acid derivatives are stated to show antimicrobial activity (13, 14, 21). Additionally, there are differences in the chemical composition depending on the country of propolis origin, the season of the propolis collection, and the proximity of herbal recourses to a hive (15, 16, 19, 21, 22). Thus, the standardization of propolis seems to be impossible for any identified or unidentified component.

The ethanolic extracts of propolis inhibited the growth of \textit{Staphylococcus aureus}, \textit{Enterococcus} spp., \textit{Bacillus cereus}, \textit{Candida} yeasts (17, 19, 23). It is supposed that the antimicrobial activity mechanism is complex and could be attributed to the synergic effect of phenolic substances, especially flavonoids and esters of phenolic acids (13, 17, 19, 21, 24).

Propolis administration reduces the use of antipyretics and anti-inflammatory medicinal products, and the rate of evolution to tracheitis, bronchitis, and rhinosinusitis at viral pharyngitis (25). The ethanolic extract of propolis (a ratio of propolis to the extract was 1 to 10, 70% ethanol as a solvent) improved the total mitochondrial respiratory efficiency in human spermatozoa \textit{in vitro} (12). The propolis extract synergically increases the efficacy of antibiotics, including vancomycin and oxacillin against drug-resistant microorganisms (methicillin-resistant \textit{S. aureus}, \textit{Streptococcus pneumoniae}, \textit{Streptococcus pyogenes}) (14, 15). Propolis was stated as a healing subsidiary component for the administration of oral hygiene (14). Propolis from Pakistan has good antimicrobial activity against such pigmented anaerobic periodontal pathogens as \textit{Porphyromonas asaccharolytica}, \textit{Porphyromonas gingivalis}, \textit{Prevotella intermedia}, and \textit{Prevotella melaninogenica} (26).

As a rule, for studies authors employ extracts of propolis prepared in a ratio of propolis to a final extract as 1 to 10, using 70% ethanol, heating, and maceration for 24 h (12, 15, 16).

To the best of our knowledge, there a few studies related to the determination and standardization of TFC in propolis tinctures and screening of antimicrobial activity of propolis of Ukrainian origin. Moreover, there are few studies related to the antimicrobial activity of propolis against \textit{Corynebacterium diphtheriae} NCTC10356 and a clinical isolate of fungus \textit{Candida tropicalis}. These stan-

N	Identification of tincture	Detailed characteristics of propolis	Quantity of components	Technology	Ratio of propolis to tincture	Note
T1	10318O	Collection from 16 September 2017, unpurified, Mykolaiv region	5.01 g: 60 mL 60% ethanol	At a temperature of 40 to 50°C for 200 min plus at room temperature for 21 h	1 : 10.88	-
T2	10120S	Collection from August 2019, unpurified, Poltava region	2.70 g: 30 mL 70% ethanol	Simultaneous preparation; tincture	1 : 10.20	-
T3	10320S	Collection from April 2019, unpurified, Mykolaiv region	2.50 g: 28 mL 70% ethanol	1 : 10.0	10320S is more yellow	
T4	20320O	Collection from August 2018, unpurified, Poltava region	5.02 g: 55 mL 70% ethanol	1 : 10.54	The same sample of propolis was used	
T5	40420S	Collection from August 2018, unpurified, Poltava region	10.06 g: 111 mL 70% ethanol	1 : 9.94		

Table 1. Developed tinctures of propolis of Ukrainian origin.
standardized tinctures could be regarded as antimicrobial, anti-inflammatory, and immunomodulation preparations for the oral drug administration and oral hygiene (14, 26). Therefore, the purpose of our study was to elaborate propolis tinctures and analytical procedure for the evaluation of the developed tinctures and study their stability, and conduct screening for the antimicrobial activity of the tinctures of propolis of Ukrainian origin.

MATERIALS AND METHODS

Chemicals and Reagents
All the chemicals and solvents used for analyses were of analytical purity grade. Ethanol and aluminum chloride hexahydrate were purchased from POCH S.A. (Gliwice, Poland). The rutin and quercetin were purchased from Sigma-Aldrich (Poznań, Poland).

Material
Crude propolis was collected from two regions of Ukraine in 2017-2019 (four samples). The propolis samples were kept at a temperature of 2-8°C before the tincture preparation.

Extraction
All the tinctures were obtained in a ratio of propolis to a final tincture as approximately 1 to 10. As a solvent, 70% ethanol was used. The mixtures were in closed containers at a temperature of 40-50°C for 200 min with the following extraction at room temperature for 21 h. After this period the residue was separated from the extraction solvent by means of filtration through a paper filter. Therefore, the total period of maceration was 24 h (3 h + 21 h = 24 h). The characteristics of the propolis samples and prepared tinctures are presented in Table 1.

Total flavonoid content (TFC)
TFC was evaluated by the colorimetric method as flavones, isoflavones, and flavonols form stable complexes with aluminum chloride according to C.-C. Chang et al. and Falcão et al. (5, 20). TFC was determined using the slightly modified analytical procedures of differential spectrometry provided by A. Meda et al. for the quality evaluation of the TFC in honey (27) and by N. Hudz et al. for bee bread and Satureja montana tinctures (2, 28). The Quercetin dihydrate and rutin trihydrate solution in a concentration of 50 mg/L at the absorption maximum (\(\lambda_{\text{max}} = 412\) nm), m (mg) is mass of rutin trihydrate for the preparation of the stock solution (approximately 1000 mg/L), k is coefficient for the recalculation of rutin trihydrate into rutin (0.917) and dilution of the tinctures (20 times), \(V_R\) is a volume in which rutin was dissolved. The test was carried out for each tincture in triplicate.

\[
C = A_{\text{test}} \times m \times \frac{1000 \times k}{A_R \times V_R},
\]

where C is TFC of the tested tincture (mg/L), \(A_{\text{test}}\) is the absorbance of the reaction mixture of the tincture at the absorption maximum, \(A_R\) is the absorbance of the reaction mixture of rutin trihydrate solution in a concentration of 50 mg/L at the absorption maximum (\(\lambda_{\text{max}} = 412\) nm), m (mg) is mass of rutin trihydrate for the preparation of the stock solution (approximately 1000 mg/L), k is coefficient for the recalculation of rutin trihydrate into rutin (0.917) and dilution of the tinctures (20 times), \(V_R\) is a volume in which rutin was dissolved. For computing with reference to quercetin, we employed the same analytical procedure, taking 50 µL of a stock solution of quercetin dihydrate (432 mg/L). TFC with reference to quercetin was calculated, using the following formula: \(C = A_{\text{test}} \times m \times \frac{1000 \times k}{A_Q \times V_Q}\), where C is TFC of the tested tincture (mg/L), \(A_{\text{test}}\) is the absorbance of the reaction mixture of the tincture at the absorption maximum, \(A_Q\) is the absorbance of the reaction mixture of quercetin dihydrate solution in a concentration of 21.6 mg/L at the absorption maximum (\(\lambda_{\text{max}} = 426-427\) nm), m (mg) is mass of quercetin dihydrate for the preparation of the stock solution (approximately 432 mg/L), k is coefficient for the recalculation of quercetin dihydrate into quercetin (0.894) and dilution of the tinctures (20 times), \(V_Q\) is a volume in which quercetin dihydrate was dissolved.
Screening antimicrobial activity

For this study, we used the procedure described by Serrano et al. for herbal extracts and essential oils (29). The antimicrobial activity of three developed propolis tinctures and one tincture purchased in a pharmacy (Ukrainian manufacture “Ternopil pharmaceutical factory”, lot 30216) was evaluated against microorganisms. The tested microorganisms were Gram-positive bacteria: *Staphylococcus aureus* ATCC 25923, *C. diphtheriae* NCTC 10356, clinical isolates of methicillin-resistant (MR) *S. aureus* and *S. pyogenes* (2 isolates), Gram-negative bacterium: *Escherichia coli* ATCC 25922, and fungus *C. tropicalis* isolated from a female patient. The preparation of inoculates and media was carried out in accordance with EUCAST guidelines (30, 31).

Sterile filter discs (diameter 6 mm, manufacture “Aspect”, Ukraine) were impregnated with 20, 40 and 60 µL of four tinctures of propolis and 0.12% solution of chlorhexidine digluconate and dried in the air. Impregnating the discs with 40 and 60 µL was conducted using 20 µL with the following drying and putting again 20 µL. Then dried discs were placed on the surface of Mueller-Hinton agar for *S. aureus*, *E. coli*, *S. pyogenes* and *C. diphtheria*, and Sabouraud agar (Merck, Darmstadt, Germany) for *C. tropicalis*. The treated Petri dishes with *S. aureus* and *E. coli* were incubated at a temperature of 37°C for 24 h, with *S. pyogenes* and *C. diphtheriae* for 48 h, and with *C. tropicalis* at a temperature of 30°C for 24 h.

The antimicrobial activity was evaluated by measuring the growth inhibition zone diameter, including the disc diameter. The standard discs with antimicrobial drugs (penicillin G, amikacin, ampicillin, pefloxacin, tetracycline) were used for the quality control of the experiments. Each experiment was carried out in triplicate.

Statistical analysis

Values were expressed as means ± standard deviation for the TFC in propolis tinctures and samples and for antimicrobial activity and means ± relative standard deviation (for the TFC in propolis tinctures).

Wayne’s statistical analysis was used for comparison of the TFC mean values obtained in different days, for different samples of propolis, etc. The decision rule in all cases was: with $\alpha = 0.025$, critical values of t^* should be in the range of -2.78 to $+2.78$. Null hypothesis (H_0) was denied if $t^* < -2.78$ or $t^* > +2.78$ (2, 28, 33).

RESULTS AND DISCUSSION

The propolis samples of Ukrainian origin and respectively tinctures are rich in flavonoids. The TFC ranged from 4.78% to 7.18% and 11.0% to 19.5% with reference to quercetin and rutin, respectively. The TFC of the propolis tinctures was in the range of 4784.31 mg/L ± 8.80% to 6796.51 mg/L ± 0.52% and of 10411 mg/L ± 3.47% to 18499.20 mg/L ± 0.52% with reference to quercetin and rutin, respectively. The results of that study indicated a high content TFC in propolis of Ukrainian origin. According to C.-C. Chan, the TFC of three Taiwan samples, one Brazil sample, and two Chinese samples, ranged from 2.82 to 7.73% with reference to quercetin (20). Therefore, our studies are in line with the studies of C.-C. Chan et al. Chan et al. also provide the results for three propolis tinctures: the TFC was in the range of 1.02% to 1.47% with refe-
Table 2. Calculations of the total flavonoid content in the developed tinctures of propolis from south Ukraine.

Identification of tincture	Absorption maximum/mean value±SD, nm	Ratio	TFC±SD in tinctures, mg/L, TFC±RSD	TFC in propolis, %	TFC±SD in tinctures, mg/L, TFC±RSD	TFC in propolis, %		
T1	405.4, 405.3, 405.9/405.5		10411 ± 361	11.0%	-	-		
			10411 ± 3.47%					
T2	402.2, 402.7, 403.4/402.8 ± 0.6		17612 ± 387	17.61%	-	-		
			17612 ± 2.20%					
	In 4 months							
	403.7, 403.6, 404.6/404.0 ± 0.6		13109.58 ± 603.51	13.11%	5056.42 ± 232.78	5.06%		
			13109.58 ± 4.61%		13109.58 ± 4.61%			
T3	403.8, 402.1, 402.5/402.8 ± 0.9		16294 ± 1195	16.29%	-	-		
			16294 ± 7.34%					
	In 4 months							
	403.8, 402.8, 402.1/402.9 ± 0.9		13947.78 ± 737.62	13.95%	-	-		
			13947.78 ± 5.29%					
T4	405.8, 405.1, 405.3/405.4 ± 0.4		14554 ± 1019	14.60%	5377.74 ± 284.5	5.38%		
			14554 ± 7.00%		5377.74 ± 5.29%			
	In 4 months							
	406.1, 404.3, 404.4/404.9 ± 1.0		13022.67 ± 1146.25	13.00%	4784.31 ± 421.12	4.78%		
			13022.67 ± 8.80%		4784.31 ± 8.80%			
T5	403.5, 403.8, 403.6/403.6 ± 0.2		18499.20 ± 0.52%	19.50%	6796.51 ± 1.75	7.18%		
			18499.20 ± 95.52		6796.51 ± 0.52%			
T6	404.2, 403.4, 403.1/403.6 ± 0.6		17703.19 ± 1209.9	17.70%	6503.86 ± 6.83%	6.50%		
			18499.20 ± 6.83%		6503.86 ± 444.51			
No.	Comparable Samples	Comparable mean values of TFC, mg/g	Standart deviation (SD) of mean values	$X_1 - X_2$	S^2	t	Conclusion 1	Conclusion 2
-----	--------------------	------------------------------------	---------------------------------------	-------------	------	-----	--------------	--------------
1	T2 T2	17.61 13.11	0.387 0.604	4.50	0.258	10.87	H_0 is rejected	The two means are statistically significantly different. There is influence of the storage of the tincture on the TFC with reference to rutin
2	T3 T3	16.29 13.95	1.196 0.738	2.34	0.988	2.90	H_0 is rejected	The two means are statistically significantly different. There is influence of the storage of the tincture on the TFC with reference to rutin
3	T4 T4	14.60 13.00	1.022 1.144	1.60	1.177	1.81	H_0 is accepted	The two means are equal. There is no effect of the storage time of the tincture on the TFC with reference to rutin
4	T5 T6	19.50 17.70	0.101 1.209	1.80	0.736	2.57	H_0 is accepted	The two means are equal. The propolis sample is homogenous. There is no effect on the TFC with reference to rutin
5	T2 T5	17.61 19.50	0.387 0.101	1.89	0.080	8.22	H_0 is rejected	The two means are statistically significantly different. There is influence of the propolis collection year on the TFC with reference to rutin (the same location)
6	T2 T3	17.61 16.29	0.387 1.196	1.32	0.780	1.82	H_0 is accepted	The two means are equal. The propolis sample is homogenous. There is no effect on the TFC with reference to rutin
ference to quercetin. However, these authors did not state the ratio of propolis to a final tincture. In our studies, the TFC of the tinctures was in the range of 0.48 to 0.68% with reference to quercetin (4784.31 mg/L ± 8.80% to 6796.51 mg/L ± 0.52% with reference to quercetin).

Quercetin or rutin were chosen as commercially available reference standards. Moreover, a lot of authors use quercetin for the TFC determination in propolis samples by the aluminum spectrophotometric method (15, 20, 34, 35). Bakchiche et al. employed rutin (36). Furthermore, quercetin and rutin were revealed in propolis (37).

Al-Ani et al. state that the TFC of the Irish propolis was 2.86 ± 0.2 mg quercetin equivalents per gram of the propolis extract while the Germany and Czech Republic samples contain approximately 2 mg per gram of propolis (15). Moreover, the technology of the ethanol propolis extract preparation was similar to our one for such parameters (70% ethanol, a ratio of propolis to the extract was 1 to 10, 24 h of maceration). Wang X. et al. determined from 21 to 53 mg quercetin equivalent per gram of the ethanolic extract of propolis (the Brazilian, Chinese, Australian, and Korean propolis samples) (35).

However, we could not compare these results with our ones as computing was given for propolis extract after special sample preparation (extraction, ethanol evaporation, and dilution for the TFC determination). Furthermore, these authors compare results for propolis of different origins not giving absolute values of the TFC. The computing of TFC is more complicated comparing different results obtained with different standards, for example, quercetin and galangin. Falcão et al. give results for flavones/flavonols and flavanones/dihydroflavonols in the range of 5-114 mg galangin equivalents per g of propolis extract and 35-118 mg pinocembrin equivalents per g of extract respectively, while the TFC range from 50 to 232 mg/g (5).

Zarate H. et al. state about a high content in the propolis from Mexica (various areas of Guanajuato). The TFC was in the range of 13 to 379 mg of quercetin equivalents per g of propolis (1.3-39.9%) (34). Bakchiche et al. state about a low TFC (379 mg rutin per 100 g sample, namely 0.379% of rutin equivalents) in the propolis from the south of Algeria (36).

Therefore, the TFC of propolis depends on an analytical procedure of the TFC determination, including a wavelength for measurements, reference standard, origin, way of computing, etc. It seems that it is impossible to compare the results expressed in different equivalents.

The TFC of tinctures and recalculations for the crude propolis samples with reference to quercetin and rutin are given in Table 2.

In our studies we used the absorption maximum of the reaction mixtures of the tinctures with aluminum chloride for the TFC determination, namely, we measured the absorbance of the reaction mixtures of the tinctures and reference standards in their absorption maxima. Speaking about the spectra of the reaction mixtures of the tinctures with aluminum chloride, it can be seen that these mixtures showed the absorption maximum in the range of 402.8 nm to 405.5 nm (Table 2, Fig. 1). A hypsochromic shift of the tinctures compared to rutin ($\lambda_{\text{max}} = 412$ nm) and quercetin ($\lambda_{\text{max}} = 426-427$ nm) could be explained by the presence of flavones in propolis, especially luteolin, apigenin, chrysin, and their glycosides, having an absorption maximum in the range of 385-395 nm (2, 15, 16, 20, 28).

Chan et al., Al-Ani et al., and Zarate et al. used a wavelength of 415 nm for measurements (15, 20, 34). Wang X. used a wavelength of 435 nm. Al-Ani et al., Zarate et al., and Wang X. did not explain why they chose such a wavelength (15, 34, 35). Moreover, these authors used quercetin for computing TFC (15, 34, 35). Additionally, Al-Ani et al. did not conduct calculations for the TFC determination in the propolis samples. They just compare the TFC in samples of Irish, Czech, and Germanic origin according to their elaborated analytical procedure. Falcão et al. used also a wavelength 415 nm for measurements and galangin as a reference standard (15).

Therefore, on the one hand, we employed two reference standards for easier comparison of our results with ones obtained by other authors. On the other hand, we used rutin as a reference standard because of the proximity of its absorption maximum to one of the tinctures after adding aluminum chloride.

Null hypothesis testing was employed for the comparison of two mean values of the TFC per 1 g of propolis obtained for the tinctures which are differed in year of the propolis collection, data of the TFC determination, and preparation of the tinctures from the same sample of propolis, etc. In all the cases the null hypothesis (H_0) was tested that the difference is equal to zero, namely, two means were regarded the same at $H_0 (\mu_1 = \mu_2)$ (Table 3).

As can be seen from Table 3, the year of the propolis collection has a significant influence on the TFC (line 5) while the part of the propolis sample used for the preparation of tinctures does not influence the TFC. Therefore, it can be concluded that
the propolis samples are homogenous (lines 4 and 6).

Additionally, it was observed that there is a noticeable decrease in the TFC after 4 months that needs further studies in order to set up a storage period of propolis tinctures. The statistical analysis showed that in 2 cases of 3 there is a decrease in the tinctures TFC during storage (lines 1–3).

Propolis is a beekeeping product rich in flavonoids with known antimicrobial activity. Our results of the antimicrobial activity of the propolis tinctures are provided in Table 4.

As can be seen from table 4, the propolis tinctures evaluated in this study showed antibacterial activity against Gram-positive bacterial pathogens: *S. aureus*, including MR *S. aureus*, *S. pyogenes* and *C. diphtheriae*. We observe the logical dependence of an increase in the inhibition zones on a volume of the tinctures and chlorhexidine put on the discs. Our study is in line with studies of Al-Ani et al. (15). Irish propolis demonstrated significant bactericidal activity against Gram-positive bacteria (*S. pyogenes* and *Bacillus subtilis*) (15).

E. coli and clinical isolate *C. tropicalis* were highly resistant to the propolis tinctures. The inhibition zones were absent that completely coincided with studies of Al-Ani et al. who stated that *P. aeruginosa* and *E. coli* were highly resistant to the propolis extracts (Irish, Czech, and German origin). The ethanolic extracts of propolis from Ireland and Czech showed a good fungicidal effect. The minimum fungicidal concentrations were in the range of 0.1 mg/mL to 2.5 mg/mL, while propolis of German origin showed mostly fungistatic activity.

Table 4. Antimicrobial activity of four tinctures of propolis.

Volume, µL	2	3	4	5	1	Chl	Pen	Ak	Pef	Tet	Amp
Staphylococcus aureus ATCC 25923											
20	11	10	9	11	0	14					
40	11	10	10	11	0	15.5				24	28
60	10	9	9	10	0	18					
MR Staphylococcus aureus											
20	11	11	11.5	12.5	0	15				24	25
40	12	12.5	12	13.5	0	17				25	25
60	13.5	13.5	11	14	0	20					
Corynebacterium diphtheriae NCTC 10356											
20	10	10	10	10.5	0	15				26	26
40	11	11	11	11	0	18				26	26
60	12	13	12	13	0	20					
Streptococcus pyogenes (two isolates)											
20	12	12	10.5	12	0	16				35	
40	13	12	12	13	0	20					
60	15	15	15	16	0	24					
Candida tropicalis											
20	Inhibition zones are absent	0	9								
40		0	12.5								
60	8	0	0	8	0	15					
Escherichia coli ATCC 25922											
20	Inhibition zones are absent	0	12	24	28	-	27				
40		0	12								
60		0	25.5								

Chl - 0.12% solution of chlorhexidine digluconate; Pen - penicillin, Ak - amikacin, Pef - perfloxacin, Tet - tetracyclin, Amp - ampicillin; 1 - 70 % ethanol; 2, 3, 4, 5 - tinctures T6, T2, a purchased tincture in a pharmacy and T1, respectively. SD ranged from 0.5 to 2.0 mm. The inhibition zones of *C. tropicalis* are 24 mm for nystatin, 28 mm for fluconazole (there was a growth of small colonies in the inhibition zone), 20 mm for itraconazole, and 26 mm for miconazole.
Our study also partly corresponded to the studies performed by Kujumgiev et al. with propolis from Bulgaria, Albania, Mongolia, Egypt, Brazil, and Canary Islands. Kujumgiev et al. revealed that propolis samples were not active against the *E. coli* and were active against *C. albicans* (19). According to Marcucci, the ethanol extract of propolis inhibited Candida and all tested dermatophytes (14).

It is worth noting that *C. tropicalis* demonstrated a partial resistance even to fluconazole despite the inhibition zone of 28 mm as there was a growth of small colony in the inhibition zone. Thus, we can suppose that the propolis of Ukrainian origin does not possess antifungal activity against the used clinical isolate of *C. tropicalis*.

The ethanolic extracts of propolis of Brazilian origin have a more pronounced activity against Gram-positive bacteria (*Staphylococcus* sp. and *Streptococcus mutans*) and *Candida albicans* ATCC 10231, and a less evident activity against Gram-negative and Candida albicans FT2010 (23).

Przybyłek I. and Karpiński T.M. state about the greater activity of propolis against Gram-positive bacteria compared to Gram-negative ones (38).

The control experiments with 70% ethanol showed that it does not have any activity. This is obvious as 70% ethanol was previously evaporated from discs. The drawback of this study is the absence of the influence of ethanol. It does not express a real administration of propolis tinctures in real clinical conditions. It could be supposed that the antimicrobial activity of the combination of propolis and 70% ethanol would be stronger. The second drawback is overlooking hydrophobic propolis components with antimicrobial activity in the method of diffusion in agar. Therefore, we consider these studies as preliminary or antimicrobial screening of the propolis tinctures.

We would like to note that similar antimicrobial activities were observed for the tinctures of different samples of propolis and TFC in the tinctures. It is supposed that there are some still unknown, but common for all types of propolis, compounds which induce antimicrobial activity not depending on the propolis origin. One more drawback of this study is the non-testing of the purchased tincture for TFC. However, this tincture and T1 were tested for the total phenolic contents, which were similar, respectively, 14200 mg/L and 15849 mg/L (with reference to gallic acid) (32). Moreover, we determined the total phenolic content of one more purchase tincture of the same manufacture (lot 20216) which was 16586 mg/L.

CONCLUSION

The TFC measured by the spectrophotometric method can be used as a key index for the quality evaluation of propolis and its tinctures for pharmaceutical usage. The TFC was determined using the reaction of forming a complex of flavonoids with aluminum chloride. Propolis of Ukrainian origin is rich in flavonoids. The tinctures of propolis exhibit antimicrobial activity against *S. aureus*, *S. pyogenes* and *C. diphtheria*. Our studies also confirmed the absence of the antibacterial activity of propolis against *E. coli* and *C. tropicalis*. These studies are ground for the development of sprays with antibacterial activity against *S. aureus*, *S. pyogenes* and *C. diphtheria* for the complementary therapy of infection disorders of the oral cavity.
Further studies will be directed at the synergic activity of propolis tinctures and known antimicrobials, and the development and studies of antimicrobial sprays on the base of propolis tinctures for the oral cavity. Currently, allergic screening of the sprays with the propolis tincture and herbal preparations are being performed.

Acknowledgment

Co-author Nataliia Hudz thanks the International Visegrad Fund for the scholarship for the research related to the development of sprays on the base of natural products and performed at the University of Opole (Poland). The coauthors are thankful to S. Velichko and O. Tkachenko for providing with the propolis samples from Poltava and Mykolaiv regions, respectively.

Conflict of interest

The authors declare no conflict of interest.

REFERENCES

1. Hudz N., Ivanova R., Brindza J., Grygorieva O., Schubertová Z., et al.: Potravinarstvo Slovak J. Food Sci. 11, 480 (2017).
2. Hudz N., Yezerska O., Grygorieva O., Brindza J., Felšćiová S., et al.: Acta Pol. Pharm. 76, 439 (2019).
3. Stanek N., Jasicka-Misiak I.: Food Anal. Methods. 11, 2979 (2018).
4. Jasicka-Misiak I., Gruyaert S., Poliwoda A., Kafarski P.: J. Chem. 2017, 5393158 (2017).
5. Falcão S., Freire C., Vilas-Boas M.: J. Am. Oil Chem. Soc. 90, 1729 (2013).
6. Živković J., Sunarić S., Stanković N., Mihajilov-Krstev T., Spacić A.: Acta Pol. Pharm. 76, 671 (2019).
7. Sforcin J.M.: Phytother. Res. 30, 894 (2016).
8. Rebai A., Belfar M.L., Mesbah M.A., Nani S., Tliba A., et al.: J. Fund App. Sci. 9, 1656 (2017).
9. Kurek-Górecka A., Rzepecka-Stojko A., Górecki K., Stojko J., Spasova D., et al.: Molecules 19, 78 (2013).
10. Viuda-Martos M., Ruiz-Navaajas Y., Fernández-López J., Pérez-Alvarez J.A.: J. Food Sci. 73, 117 (2008).
11. Shimizu T., Hino A., Tsutsumi A., Yong K.P., Watanabe W., et al.: Antivir. Chem. Chemother. 19, 7 (2008).
12. Čedikova M., Miklíkova M., Stachova L., Grundmanova M., Tuma Z., et al.: Evid. Based Complement. Alternat. Med. 2014, 248768 (2014).
13. Huang S., Zhang C.P., Wang K., Li G.Q., Hu F.L.: Molecules 19, 19610 (2014).
14. Marcucci M.C.: Apidologie 26, 83 (1995).
15. Al-Ani I., Zimmermann S., Reichling J., Wink M.: Medicines 5, 2 (2018).
16. Abd El Hady F.K., Hegazi A.G.: Z. Naturforsch. C. J. Biosci. 57, 386 (2002).
17. Sarğolan C., Yerlikaya S.: J. Agroaliment. Proc. Tech. 22, 56 (2016).
18. Rashidi A.I., Adgaba N., Bayaquob N.I., Al-Khazim A., Simonet B. et al.: SpringerPlus. 3, 253 (2014).
19. Kujumgiev A., Tsvetkova I., Serkedjiya Y., Bankova V., Christov R. et al.: J Ethnopharmacol. 64, 235 (1999).
20. Chang C.-C., Yang M.-H., Wen H.-W., Chern J.-C., Zielinski A., et al.: J. Food Drug Anal. 10, 178 (2002).
21. Urushisaki T., Takemura T., Tazawa S., Fukushima M., Hosokawa-Muto J. et al.: Evid. Based Complement. Alternat. Med. 2011, 254914 (2011).
22. Schnitzler P., Neuner A., Nolkenper S., Zundel C., Nowack H., et al.: Phytother. Res. 24, 20 (2010).
23. Rezende G.P.S.R., Pimenta F.C., Costa L.R.R.S.: Braz. J. Oral Sci. 5, 967 (2006).
24. Ramanauskiene K., Inkeniene A.M., Savickas A., Masteikova R., Brusokas V.: Acta Pol. Pharm. 66, 681 (2009).
25. Di Pierro F., Zanvit A., Colombo M.: Int. J. Gen. Med. 9, 409 (2016).
26. Shabbir A., Rashid M., Tipu H.N.: Cureus 8, 682 (2016).
27. Meda A., Lamien C.E., Romito M., Millogo J., Nacoulma O.G.: Food Chem. 91, 571 (2005).
28. Hudz N., Makowicz E., Shanaida M., et al.: Molecules. 25, 4763 (2020).
29. Serrano C., Matos O., Teixeira B., Ramos C., Neng N., et al.: J. Sci. Food Agric. 91, 1554 (2011).
30. EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing – Version 8.0, 2020. http://www.eucast.org.
31. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs for antifungal agents, version 10.0, 2020. ttp://www.eucast.org/astoffungi/clincalbreakpointsforantifungals.
32. Hudz N., Tkachenko O., Brindza J.: Agrobiodesity for Improve the Nutrition, Health and Quality of Human and Bees Life: Book of Abstracts of the 4th International Scientific
Conference. 40 (2019).
33. Wayne, W.D. Biostatistics: A Foundation for Analysis in the Health Sciences, 9th ed.; Wiley: Hoboken, NJ, USA (2009).
34. Zarate H.M.S., Abraham Juárez M.R., Cerón García A., Dzuna López C., Gutoérrez Chávez A.J., et al.: Food Sci. Technol. 38, 210 (2018).
35. Wang X., Sankarapandian K., Cheng Y., Woo S.O., Kwon H.W., et al.: BMC Complement. Altern. Med. 16, 65 (2016).
36. Bakchiche B., Habati M., Benmebarek A., Gherib A.: WNOFNS 11, 91 (2017).
37. Coneac G., Gafi E., Anu R., Pınzarı I., Bandur G., et al. Chem. Bull. “POLITEHNICA” Univ. (Timisoara) 53, 56 (2009).
38. Przybyłek I. Karpiński T.M.: Molecules 24, 2047 (2019).

© 2020 by Polish Pharmaceutical Society. This is an access article under the CC BY NC license (http://creativecommons.org/licenses/by-nc/4.0/).