Structure, non-stoichiometry, and geometrical frustration of α-tetragonal boron

Naoki Uemura and Koun Shirai

Nanoscience and Nanotechnology Center,
Institute of Scientific and Industrial Research (ISIR),
Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

Hagen Eckert
Institute for Materials Science and Max Bergmann,
Center of Biomaterials, Dresden University of Technology, Germany

Jens Kunstmann
Theoretical Chemistry, Department of Chemistry and Food Chemistry,
TU Dresden, 01062 Dresden, German and
Institute for Materials Science and Max Bergmann,
Center of Biomaterials, Dresden University of Technology, Germany

(Dated: March 31, 2022)
Abstract

Recent discoveries of supposedly pure α-tetragonal boron require to revisit its structure. The system is also interesting with respect to a new type of geometrical frustration in elemental crystals, which was found in β-rhombohedral boron. Based on density functional theory calculations, the present study has resolved the structural and thermodynamic characteristics of pure α-tetragonal boron. Different from β-rhombohedral boron, the conditions for stable covalent bonding (a band gap and completely filled valence bands) are almost fulfilled at a composition B_{52} with two 4c interstitial sites occupied. This indicates that the ground state of pure α-tetragonal boron is stoichiometric. However, the covalent condition is not perfectly fulfilled because non-bonding in-gap states exist that cannot be eliminated. The half occupation of the 4c sites yields a macroscopic amount of residual entropy, which is as large as that of β-rhombohedral boron. Therefore, α-tetragonal boron can be classified as an elemental crystal with geometrical frustration. Deviations from stoichiometry can occur only at finite temperatures. Thermodynamic considerations show that deviations δ from the stoichiometric composition ($B_{52+\delta}$) are small and positive. For reported high-pressure syntheses conditions δ is predicted to be about 0.1 to 0.2. An important difference between pure and C- or N-containing α-tetragonal boron is found in the occupation of interstitial sites: the pure form prefers to occupy the 4c sites, whereas in C- or N-containing forms a mixture of 2a, 8h, and 8i sites are occupied. The present article provides relations of site occupation, δ values, and lattice parameters, which enable us to identify pure α-tetragonal and distinguish the pure form from other ones.

PACS numbers: 81.05.Cy, 61.72.Bb, 71.55.Cn
I. INTRODUCTION

The existence of α-tetragonal (α-T) boron has long been a controversial issue. Historically, α-T boron was first isolated in 19431, and tentatively identified as B\textsubscript{50}, which is composed of four tetrahedrally coordinated B\textsubscript{12} icosahedra and two interstitial B atoms (see Fig. 1).2 But soon this structural model was doubted by theorists. Longuet-Higgins and Roberts showed that the B\textsubscript{50} structure is unstable due to electron deficiency.3 Later, experimental groups showed that the actual crystals contained C or N atoms4–6 and the chemical compositions were approximately B\textsubscript{50}N\textsubscript{2} or B\textsubscript{50}C\textsubscript{2}. This point of view was further supported by DFT calculations.7,8 Since then, it is almost generally accepted that pure α-T form does not exist and that the structure is stabilized only by inclusion of foreign atoms.

In the 2000’s, nanostructures were repeatedly reported to have the structure of pure α-T boron.9–13 Hayami and Otani explained the existence of pure α-T boron in nanostructures by the presence of low surface energies.14 Subsequently, they predicted the possibility of pure α-T boron bulk structures with the composition B\textsubscript{52}.15 After this theoretical work, the high-pressure syntheses of bulk α-T boron were reported by several groups16–21. Notwithstanding the prediction by Hayami and Otani, many different forms of tetragonal boron were discovered, including a known form of β-tetragonal boron.22 The current situation occurs to be rather complicated and many questions are raised: Does pure α-T boron truly exist? And if it does, what stabilizes its structure and what was wrong with the previous theory? The purpose of this paper is to answer these questions.

To say it shortly, the qualitative argument of Longuet-Higgins and Roberts is not wrong. The structure of B\textsubscript{50} is indeed not stable. However, there are ingenious ways to circumvent this instability.23 One way is a deviation from stoichiometry. A suitable deviation from stoichiometry can lead to complete valence band filling and thus stabilize the structure of a covalent crystal. This explanation however raises a new question: Why was pure α-T boron not found in bulk phases until recently? A simple answer is that there are other phases which are more stable at ambient conditions, \textit{i.e.}, α- and β-rhombohedral (α-R and β-R) boron. However, the relative stability of these polymorphs can be changed at high pressures, which is a different way for stabilizing α-T boron. To clarify the relative stability of boron phases, a detailed comparison is required, which will be addressed in another study. Here, we concentrate on α-T boron, only and identify the best structure that pure α-T boron can
FIG. 1: The crystal structure of α-tetragonal boron is composed of four icosahedral B$_{12}$ units and partially occupied interstitial sites that are indicated as colored balls. For a better visibility not all equivalent interstitial sites are shown. The sites are labeled according to the high symmetry space group $P4_{2}/nnm$: $2a(000)$, $2b(00\frac{1}{2})$, $4c(0\frac{3}{2}0)$, $4g(00z)$, $8h(0\frac{1}{2}z)$, $8i(x0\frac{1}{2})$.

have, if it exists.

There are several theoretical studies on the structure of α-T boron. However, these studies assumed stoichiometry. From our point of view, this assumption leads to an incorrect description of the metal/insulator behavior. The important role of non-stoichiometry has been recognized only recently and it will therefore be described in Sec. II. Some words are also given there concerning the terminologies related to defect states, because they are used differently in different fields of science. This section also provides an overview and analysis of recent experiments, which is necessary because the current situation is very complicated. Through this analysis, we are able to delineate a clear approach for identifying pure α-T boron. After describing the calculation method (Sec. III), the article studies the electronic structures of individual interstitial sites (IS) in Sec. IV A. By considering all the involved IS, the driving force for the deviation from stoichiometry is clarified in Sec. IV B 1. Based on this analysis, a deviation is predicted for various synthesis conditions (Sec. IV B 2). An assessment on the characterization of recently discovered α-T boron is
attempted in Sec. IV B 3. Behind the deviation from stoichiometry, we can say more about why \(\alpha \)-T boron is not satisfied with a simple structure \(B_{52} \). Section IV C is devoted to discuss this topics from a view point of geometrical frustration. In the last section, we summarize our results.

II. THEORETICAL BACKGROUND AND EXPERIMENTAL FACTS

For a long time solid-state theory of boron crystals had a fundamental problem. For many boron-rich crystals, band structure calculations showed metallic behavior, whereas in experiments all the crystals were found to be semiconductors. We call this problem the metal/insulator problem. Table I summarizes this discrepancy. This table is adapted from a paper of R. Schmechel and H. Werheit\(^{26}\), who first pointed out the importance of deviation from stoichiometry for the metal/insulator problem. The last entry of the table corresponds to \(\alpha \)-T boron, where for convenience the conclusion of this study is already given. We can notice in this table that, whenever the metal/insulator problem occurs, deviation from stoichiometry is observed. In boron-rich solids, the crystals are composed of a regular arrangement of icosahedra and various kinds of atoms at interstitial sites. Those interstitial sites are either fully occupied sites (FOS) or partially occupied sites (POS). The deviation from stoichiometry is a result of the presence of POS.

It is well known that boron-based materials are characterized as electron deficient systems in the chemical literature.\(^{27}\) Electron deficiency and the metal/insulator problem occur unrelated and therefore we had not be aware until recently that these two different matters are actually intimately related. In the last decade, the effect of POS was extensively studied by DFT calculations on \(\beta \)-R boron.\(^{28-31}\) It was found that the occupation of IS in boron-rich solids cannot be considered as defects, contrary to the usual notion in the literature about defect physics. The interstitial atoms are a part of the host crystals, in a sense that the energy is lower than that of the perfect crystals. The deviation from stoichiometry in \(\beta \)-R boron led Ogitsu and Widom to conceive a new concept of geometrical frustration.\(^{30-32}\) Shirai and Uemura have finally established a relationship between the deviation from stoichiometry and the metal/insulator problem.

The mechanism behind the insulating property of boron crystals, which are otherwise predicted as metals, can be elucidated by the following way.\(^{23}\) (i) The system has an odd...
TABLE I: A comparison of hypothetical (theoretically considered) and real structures of boron-rich solids. For most systems theory was unable to correctly predict their semiconducting properties (second column). The experimentally determined electronic properties are given in the last column. For the real structures, some ground-state properties are indicated, such as high- or low-symmetry (H-Sym./L-Sym.) and stoichiometric or non-stoichiometric compositions (St./NSt.). The experimentally determined electronic properties are given in the last column. N_{at} is the number of atoms per unit cell. Odd numbers of electrons N_{el} are indicated by italicized numbers. The last entry of this table contains our conclusion about the structure of α-T boron, that is presented in this article.

Crystal	Hypothetical structure	Real structure		
	Sym. N_{at} N_{el} Prediction	N_{at}	Ground state	Elect.
α-rhomb.	D_{3d} 12 36 semicon.	12	H-sym.	semicon.
			St.	
β-rhomb.	D_{3d} 105 315 metal	106.5	L-sym.	semicon.
			NSt.	
$B_{13}C_2$	D_{3d} 15 47 metal	15	L-sym.	semicon.
			NSt.	
α-tetra.	D_{4h} 50 150 metal	52+δ $\delta = 0$ for $T = 0$ semicon.	δ $\neq 0$ for $T > 0$	

number of electrons (N_{el}), which is a consequence of electron deficiency. Then band theory unequivocally predicts it to be a metal. (ii) The system has strong covalency. This requires an even number of electrons. These two conditions (i) and (ii) are mutually incompatible. This competition yields a strong driving force to modify chemical bonds. Reconstruction of chemical bonds is usually difficult because of high energy barriers which exist between different configurations. By combining with the third condition (iii) of a large unit cell size (large number of atoms N_{at} per cell), the energy barrier can largely be reduced. The deviation from stoichiometry is an efficient solution for reconciling the electron deficiency and the covalency. Using this mechanism, difficult problems with the electronic properties of $B_{13}C_2$ were resolved.33,34

The above-mentioned mechanism should naturally work for α-T boron, too. The initially
assumed structure of α-T boron is B$_{50}$, which is composed of four icosahedra and two 2b-site B atoms (Fig. 1). The 2b site is almost perfectly occupied (see Table II). Therefore B$_{50}$ was believed to be stoichiometric. Later we will show, however, that this model should be revised. Although the hypothetical structure B$_{50}$ has an even number of electrons and condition (i) does not hold, the valence-electron counting indicates that the covalent condition (ii) is not satisfied, because the system is short of ten electrons to completely fill up the valence band. This is the reason why Longuet-Higgins and Roberts cast doubt on the existence of B$_{50}$.

Their conclusion is essentially correct even in modern DFT calculations. See, for example, Fig. 3 of Ref. 23 where the top five bands of the valence band are unoccupied.

Aside from the 2b site, many IS, which are partially occupied, have been reported (see Fig. 1). The occupancies are listed in Table II. As described in the Introduction, the α-T boron crystals reported in the last century are now believed to contain C or N impurities and the crystals reported by Hoard35 may belong to this class, too. Hereafter we will call these crystals traditional α-T boron. Such traditional α-T boron always contains impurities such as C or N, and exhibits a deviation from stoichiometry.

Recently, motivated by a quest for pure α-T boron, Hayami and Otani showed that B$_{52}$, with two occupied 4c sites, is the lowest-energy structure, and they suggested that pure α-T boron exists in bulk form15 Hereafter, when speaking of non-stoichiometry, we refer to B$_{52}$ as the stoichiometric composition, for a reason which will be clear below. The deviation from stoichiometry is expressed as B$_{52+\delta}$, with a small fractional number δ. Incidentally, several articles reporting the synthesis of pure α-T boron have been published$^{16-21}$ These newly discovered α-T forms should be seen as distinct from the traditional boron, because in most cases they were obtained by solid-state phase transformation from β-R boron. Thus they are very likely to be truly pure boron crystals. Unfortunately, the chemical compositions in the new α-T borons are not well analyzed. For example, Qin’s α-T boron was designated as B$_{50}$.18 However, this is only because they could not measure the chemical composition accurately. Owing to the lack of reliable characterization, it is not even certain if the reported α-T borons are all the same. In this paper, we shall refer to the reported α-T borons by the name of the first author, for example, Ekimov’s α-T boron. Kurakevych’s α-T borons are actually a series of crystals containing a C coagent ranging from 0 to 5 at.$\%.$19

Hyodo analyzed Kirihara’s samples, reporting a slight non-stoichiometry (δ=+0.2)36 However, Kirihara’s α-T boron comes from nanostructures13 and therefore his analysis will
TABLE II: A comparison of different α-tetragonal boron structures that were reported in the literature. The lattice parameters and occupancies of partially occupied sites vary greatly among the different samples. Hoard’s and Will’s forms are traditional α-T boron, and the others are recently discovered forms. The lattice parameters \(a_0 \) and \(c_0 \) are compared by evaluating the difference from Hoard’s crystal in %. For Qin’s structure, the name \(\text{B}_{50} \) is only nominal and does not indicate the accurate composition.

Author	Hoard35	Will46	Hyodo36	Ekimov16	Qin18	Kurakevych19
Formula	\(\text{B}_{50} \)	\(\text{B}_{50} \text{C}_{1.9} \)	\(\text{B}_{50} \text{N}_{1.8} \)	\(\text{B}_{52.2} \)	\(\text{B}_{51.5} \)	various C conc. including 0%
\(a_0 \) (Å)	8.750	8.753	8.634	8.808	9.0508	8.71
(%)	0	+0.03	−1.3	+0.63	+2.8	−0.46
\(c_0 \) (Å)	5.060	5.093	5.128	5.047	5.1341	5.00
(%)	0	+0.65	+1.3	−0.27	+1.5	−0.01

Site	Occupancy
2a	12.8
	1.4
2b	100
(C)	90.8
(N)	92.9
4c	0
	31
4g	6
4d	0
8h	11.2
	2.6
8i	9.8
	23

not be discussed on the same ground as the results for bulk crystals. Only Ekimov \textit{et al} clarified the chemical composition of their bulk α-T boron, the value being 51.5 (\(\delta = -0.5 \))15,17.

As shown in Table11, Ekimov’s α-T boron has the largest lattice parameter \(a_0 \) ever obtained. Our calculations show that the lattice parameters shrink when C or N impurities occupy the 2b site. This was also reported experimentally37. From this, Ekimov \textit{et al} claimed that their crystals are pure α-T boron. Because of their synthesis method (pyrolysis of decaborane \(\text{B}_{10} \text{H}_{14} \)) the possibility of hydrogen incorporation is not excluded. Their chemical analysis, however, did not indicate H content as high as it influences the lattice parameter.

On the basis of the above analysis, we can summarize the current state of α-T boron
research as follows: If the recently synthesized \(\alpha \)-T borons are pure ones, there is little
doubt that they are non-stoichiometric; in contrast theory predicts stoichiometric \(B_{52} \) to be
the lowest-energy structure. The question is thus, if the deviation from stoichiometry in
real crystals is an intrinsic property (lowest-energy state) or not. For \(\beta \)-R boron\(^{29,31} \) and
\(B_{13}C_{23} \)^{33}, the deviation is an intrinsic property. If this is not the case for \(\alpha \)-T boron, the
deviation must be an extrinsic property, caused by entropic effects at high temperatures.
Then the degree of deviation would depend on the preparation conditions. Accordingly, one
should characterize the real crystals with respect to the preparation conditions.

III. COMPUTATIONAL METHODS

The electronic structures of \(\alpha \)-T boron were studied by density functional theory using
a pseudopotential method and the Osaka2k code\(^{38} \). It uses the LDA parameterization by
Perdew and Zunger\(^{39} \), the Perdew-Burke-Ernzerhof form of the generalized gradient ap-
proximation (GGA)\(^{40} \) and Troullier-Martins pseudopotentials\(^{41} \) with the fully separable
Kleinman-Bylander form\(^{42} \). In all the cases, the kinetic cutoff energy was 40 Ry. Various
\(k \)-point sampling methods were used. For calculations using the primitive unit cell, a
\(4 \times 4 \times 4 \) grid was used and for supercell calculations \(\Gamma \)-point only sampling. The conver-
gence was well tested in our previous studies\(^{28,33,43} \). The formation energy \(\Delta E_f \) is defined
as the difference of the total energy with respect to a reference state, which was one form
of \(\alpha \)-T boron \(B_m \) (the stoichiometric composition, \(m=52 \), in most cases). Then, \(\Delta E_f \) of a
composition \(B_{m+n} \) is obtained by,

\[
\Delta E_f[B_{m+n}] = E[B_{m+n}] - \frac{m+n}{m}E[B_m],
\]

where \(E[B_m] \) is the total energy of \(B_m \). With this definition of \(\Delta E_f \), a negative value
implies a more stable structure. A similar definition is used to indicate the change of the
specific volume \(\Delta V \), where \(E \) is substituted by \(V \) in Eq. (1) and \(\Delta V \) is evaluated in units of
eV/GPa. Structural optimizations were performed with respect to atomic positions and cell
parameters and no constraints on the crystal symmetry were imposed, except the tetragonal
symmetry for the lattice parameters. Optimizing the cell parameters is important in view of
the study of high-pressure phases. LDA was used only for supercell calculations, because of
its computational efficiency, otherwise GGA was used. Of course, in this case, comparisons
were made only between cells with the same size.

Comparisons between impurity-containing α-T boron (impurity $X=C$ or N) were also performed when necessary. In this case, compositions $B_{50}X_2$ were assumed, where X-atoms were placed on the $2b$ sites and the interstitial B atoms were placed either at the $8h$ or the $8i$ sites.

IV. RESULTS AND DISCUSSION

A. The structure of α-tetragonal boron

1. Formation energy of interstitial sites

The formation energies of various IS were extensively studied by Hayami and Otani15 In this work we want to study the roles of IS in more detail. We constructed a B_{50} structure, where the $2b$ sites are fully occupied, and then placed B atoms at various IS, one by one. The results for ΔE_f are shown in Table III. However, care is needed for the interpretation of these values because usually an energy barrier is to be expected between two local energy minimum sites. Between the $4c$ and $8i$ sites, Hayami and Otani reported a small energy barrier, less than 10 meV15 The values for ΔE_f in Table III were obtained by performing steepest-descent minimization with typically seven or eight iterations, which usually is enough to locate local minimum configurations. However, started from an $8i$ site, we found that continuing the iteration by more than 30 times finally brought the $8i$-site atom to the $4c$ site (see Supplemental Material). In this sense, $8i$ or $8h$ are metastable sites. However, to facilitate comparison with other calculations and experiments, we will still consider these sites as distinct, below.

The configuration B_{52} with two $4c$ sites in the out of plane configuration (two $4c$-site atoms located in different $4c$ planes and not being neighbors) is the lowest-energy configuration. Hereafter, we designate this configuration as $B_{50} + 2B_{4c}$. As mentioned above, all formation energies are defined with respect to this configuration.

Let us now consider only the blocks with $N_{\text{at}} = 51$ or less in Table III We see that ΔE_f of many IS are lower than that of B_{50} (3.14 eV). This fact already indicates that these interstitial B atoms are not defects but are a part of the host structure. The order of the stability of these IS is $4c$ (-1.45), $8i$ (-1.35), and $8h$ (-1.28) (the values in parenthesis are
TABLE III: The formation energy ΔE_f of interstitial sites in α-T boron within the primitive unit cell. The results indicate that B_{52}, with two 4c sites occupied, is the lowest-energy structure. The reference for ΔE_f and the change in volume ΔV is B_{52} with two 4c-site atoms in the out-of-plane configuration. In the second column `-2b' indicates a removal of a 2b atom. $2 \times 4c$ should be read as two atoms at 4c sites. All the data are obtained by GGA, while LDA results are added for ΔE_f in parentheses.

N_{at}	Sites	ΔE_f	ΔV
		eV (eV/GPa)	
49	$-2b$	4.59 (4.76)	0.068
50		3.14 (3.40)	0.052
51	4c	1.69 (1.66)	0.034
	8h	1.72 (1.69)	-0.047
	8i	1.80 (1.81)	0.035
	4g	4.12 (4.13)	0.036
	2a	3.80 (3.52)	0.049
52	$2 \times 4c$ (out-of-plane)	0.0 (0.0)	0.0
	$2 \times 4c$ (in-plane)	0.19 (0.15)	-0.006
	$2 \times 4c$ (nearest)	1.80 (1.82)	-0.006
	4c + 8i	0.19 (0.13)	-0.005
	4c + 8h	1.46 (1.49)	0.021
53	$3 \times 4c$	1.31 (1.11)	-0.028
	$2 \times 4c + 8i$	2.68 (2.65)	-0.036
	$2 \times 4c + 8i'$	2.67 (2.65)	-0.037
	$2 \times 4c + 8h$	1.33 (1.10)	-0.024
54	$4 \times 4c$	2.40 (2.00)	0.069

The differences in ΔE_f with respect to B_{50}. The $2b$ site is always a stable site, as seen from its perfect occupancy, i.e., removing a $2b$-site atom from B_{50} requires an energy of +1.45 eV. The sites $2a$ (0.66) and $4g$ (0.98) are not stable.

The energy ordering in ΔE_f can be understood by inspecting the bonding environment of
these IS as shown in Fig. 2. As seen, the $2b$ site is most perfectly tetrahedrally coordinated, which is the best configuration for a sp^3-type covalent bond. The short bond length of 1.63 Å also supports its strong covalent character. Hence, it is reasonable to obtain the perfect occupancy for this site. The $2a$ site also has perfect tetrahedral coordination, too. But, the nearest neighbor distance of 2.15 Å is too long. Furthermore, none of the atoms of the neighboring B$_{12}$ icosahedron are oriented in the direction linking the $2a$ site to B$_{12}$. Therefore, the bonding of $2a$-site atoms is weak. The site $4c$ is also close to tetrahedral coordination with a bond length of 1.79 Å, however the bond angles are largely distorted in the ab plane. Although the $8i$ and $8h$ sites have short bond lengths (1.62 and 1.73 Å, respectively), there are only two of these short bonds, and the overall bonding is weaker than of $4c$-site atoms.

To summarize, the IS of α-T boron are not defect states. Their role is not just to fill space between the icosahedra, but it is a more active one, i.e., the enhancement of the host structure by forming tetrahedral bonds. The closer the sites are to the perfect tetrahedral coordination, the stronger is the bonding.

FIG. 2: The partially occupied sites of α-tetragonal boron and their local bonding environments. Most of the sites have tetragonal coordination. The experimental data obtained from Will’s crystals are used. Bond lengths are given in Å. The color code corresponds to Fig. 1.
2. Comparison with C- or N-containing α-tetragonal boron

Although the positions of $8h$ sites $(0,1/2,u)$ and $8i$ sites $(u,0,1/2)$ are distinct from $4c$ sites $(0,1/2,0)$ by symmetry, they can be continuously connected to the $4c$ site by varying u. However, the bonding environments of $8h$ and $8i$ are very different from that of $4c$. The coordination of the former is two-fold, while the latter is four-fold. For pure α-T boron, ΔE_f of the $8i$ and $8h$ sites is bigger than that of the $4c$ sites by 0.03 and 0.11 eV, respectively. On the other hand, for C- or N-containing α-T boron, the energy difference between these sites almost vanishes (less than 0.001 eV or even negative). Only the energy of the $8h$ site of the N-containing form is higher by 0.008 eV. The present calculations imply that the $4c$ site is the major interstitial for pure α-T boron, whereas for C/N-containing α-T boron comparable amounts of $8i$-site atoms are present and the occupation of the $8h$ site is the smallest.

This different order of ΔE_f for $4c$ and $8i$ sites between pure and C/N-containing α-T boron is consistent with the experiment in Table II. If the recently discovered α-T forms are regarded as pure: $8h$ and $8i$ sites are observed in impurity-containing forms and $4c$ sites are observed in the pure form. In our calculations, the bond lengths of C or N at the $2b$-site to their neighbors are short, *i.e.*, 1.57 and 1.59 Å, respectively. The corresponding value for pure $B_{50} + 2B_{4c}$ is 1.70 Å. In general, in icosahedron-based boron crystals, *intericosahedral* bonds are the shortest ones but the value is at most 1.69 Å. The experimental value of 1.63 Å for traditional α-T boron (see Fig. 2) is too short for B-B bonds, so that the measured value may be evidence for C or N at the $2b$ site.

A clearer contrast between pure and C/N-containing forms is found in the occupation of the $2a$ site. ΔE_f of the pure form is large (3.80 eV), while that of the latter one is small (0.3 eV), so that for the pure form there are practically no $2a$-site atoms. Again, if recently discovered α-T forms are pure ones, the present results for the site occupancies are consistent with the experiment, as seen in Table II.

The different site occupations, *i.e.*, $4c$ in the pure form and $8h$, $8i$, and $2a$ in the impurity-containing forms, provide a useful guideline for identifying impurities. From the site occupations, we can say that at least Ekimov’s α-T boron is not a traditional α-T form. To identify it as pure α-T boron, however, we may need further evidence, because here the term ‘impurity-containing form’ is used in a restricted sense,, referring to C- or N-impurities, only.
We cannot exclude the existence of other impurities. Further assessments of Ekimov’s α-T boron are made below.

3. Valence filling

Let us now consider to vary the composition \(n \) in \(B_{50+n} \) (hereafter, \(B_{50+n} \) is also designated as \(B_{50} + nB_s \) to indicate \(n \) atoms at site \(s \)). This is seen by inspecting the whole range of \(N_{at} \) in Table III. Hayami and Otani studied IS of α-T boron over a compositional range \(n = 0 - 4 \), concluding that \(B_{50} + 2B_{4c} \) is the most stable structure. The present calculations confirm their conclusion. Among various combinations of two 4c-site atoms, the out-of-plane configuration has the lowest energy (For details of the structures, see Supplemental Material). A configuration in which two 4c-site atoms occupy neighboring sites is highest in energy. There is a general tendency in boron-rich crystals that atoms of the same IS avoid each another. The present result for 4c sites is in accordance with this tendency.

The fact that the formation energy is minimized at \(n = 2 \) can be understood by examining the valence filling for different values of \(n \). Figure 3 shows the evolution of the density of states (DOS) by successively placing B atoms at 4c-sites. For \(B_{50} \), there are 160 valence states (80 bands), and the top 10 states are unoccupied. Among these 10 unoccupied states, the lower 6 states are the tail part of the valence band and they are mainly contribution derived from the intericosahedral \(t-t \) bonds (in the notations of Ref. 23). The upper 4 states are gap states, which are mainly derived from \(p_z \) orbitals of two 4c-site atoms.

As \(n \) increases by one, the unoccupied states are filled by the additional 3 valence electrons, almost like a rigid-band shift. Although it is by no means a rigid-band shift, the valence-electron counting explains this rigid-band-like behavior very well. In α-T boron, each equatorial (e site) B atom of the \(B_{12} \) icosahedron has one intericosahedral bond. On placing a B atom at a 4c site, four intericosahedral \(e-e \) bonds are replaced by four tetrahedral bonds of 4c-site atoms. In total, the number of orbitals is not changed, and consequently three electrons of a B atom are used for filling the unoccupied valence states. This way proceeds until \(n = 2 \), where the valence states are completely filled. Further adding of interstitial atoms creates additional gap states, and it is therefore undesirable. \(B_{52} \) with two 4c-site B atoms is the best configuration to meet the valence requirement in a \(B_{50+n} \) series.

This valence filling scheme becomes clearer, when examining the DOS of \(B_{50}C_2 \) and
FIG. 3: (Upper panel) Valence filling for B$_{50+n}$ as the number n of 4c-site B atoms increases. Only B$_{52}$ can completely fill up the valence bands, but 12 in-gap states remain. This indicates that the conditions for stable covalent bonding are only partially fulfilled. The numbers of occupied states are indicated by the # symbol. The Fermi levels are indicated by red vertical lines. Light-blue areas indicate unoccupied states, and the numbers of unoccupied states is given in brackets. (Lower panel) Similar plot for impurity-containing B$_{50}$C$_2$ and B$_{50}$N$_2$. B$_{50}$N$_2$ can properly fulfill the the conditions for stable covalent bonding, i.e. all valence bands are occupied and no in-gap states are created.
B$_{50}$N$_2$ (see the lower panel of Fig. 3). For B$_{50}$N$_2$, 10 valence electrons from N$_2$ completely fill the unoccupied states of B$_{50}$. Therefore, B$_{50}$N$_2$ is the most desirable compound for α-T type structures. B$_{50}$C$_2$ may be the next desirable form. In contrast, in pure α-T boron the unoccupied states are successively filled with increasing n, but this has the side effect of also creating gap states. For the interstitial configurations examined here, we found no configuration that completely separates the valence and conduction bands by using interstitial B atoms only. Probably, there is really no pure configuration without gap states. The significance of this behavior is discussed in Sec. IV C.

Let us now discuss the energy gap of the B$_{52}$ structure. Hayami and Otani claimed that B$_{52}$ is a narrow energy-gap semiconductor with an energy gap of 0.07 eV. (according to a private communication with the authors Fig. 8 of their paper, which is expected to indicate this gap, is incorrect.). The corresponding “gap” is seen in Fig. 3. However, in our opinion the empty bands, indicated by the light-blue area, should rather be regarded as gap states. This means that the LDA band gap is actually 2.7 eV. In experiment, the energy gap was reported to be 1.55 eV by electrical resistivity measurement and similar values even at high pressures. Unfortunately, even the most comprehensible data handbook contains only very little data of the optical properties of α-T boron. An optical measurement of a material with a similar structure B$_{48}$Al$_3$C$_2$ has a fundamental gap of about 2.0 eV with a tail extending down to 0.5 eV. According to our experience with boron carbide B$_{13}$C$_2$, the fundamental gap itself is large but there are many gap states, which renders the tail part of the conduction band extending deeply into the gap. Therefore, it is reasonable to expect a similar gap structure for pure α-T boron.

B. Deviation from stoichiometry

The conclusion that pure α-T boron has the stoichiometric composition B$_{52}$, is only provisional. It was obtained by calculations using primitive unit cells and will change if we extend the cell size and use supercells. In this section, we examine this possibility.
1. Supercell calculations

For studying non-stoichiometry, Ekimov’s α-T boron is appealing, because only in this case the site occupancy and the composition were determined. An interesting point of Ekimov’s α-T boron is the occupation of IS, as indicated in Table 1. The occupancy 0.31 for the 4c site amounts to approximately \(1 \frac{1}{4}\) atoms per unit cell and 0.06 for the 4g site to approximately 1/4 atoms per unit cell. These values suggest an approximate structural model for Ekimov’s α-T boron as

\[
4 \times B_{50} + 5 \times B_{4c} + B_{4g} = B_{206},
\]

which can be realized in a \(2 \times 2 \times 1\) supercell. A similar model structure for \(B_{13}C_{2}\) was studied before.33

![Graph](image1.png)

FIG. 4: The formation energies of different \(2 \times 2 \times 1\) supercell model structures (\(B_{206}\)) for Ekimov’s α-tetragonal boron. Overall one finds small positive energy differences, indicating that Ekimov’s α-tetragonal boron is not the lowest-energy structure. The abscissa is the number of nearest neighbor 4c-site atoms surrounding a 4g-site atom and the energy reference state is \(4 \times B_{52} = B_{208}\).

In this supercell model (2), one 4g-site B atom is introduced, and four 4c-site B atoms are placed, one in each primitive cell. The fifth B atom is randomly placed in one of the four cells, completing the \(B_{206}\) model, which corresponds to a deviation from stoichiometry of \(\delta = -0.5\). The corresponding formation energy \(\Delta E_f\), plotted as a function of the number...
of nearest neighbor 4c-site atoms surrounding the 4g-site atom, is shown in Fig. 4. In the figure, the energy reference state is B_{208}, which corresponds to the stoichiometric B_{50}+2B_{4c}.

The formation energy ΔE_f has slight dependence on how many 4c-site atoms gather around the 4g site, but it is not significant. The energy differences between the B_{206} models and the stoichiometric B_{208} are at least 1.3 eV/atom. The positive ΔE_f shows that the composition of Ekimov’s α-T is not the lowest-energy composition. Entropic effect cannot change this situation. There are four 4c sites in a primitive unit cell. The configurational entropy is maximized at half occupation, $n=2$. And the entropic contribution results only in an improved stability of B_{52}, which is already the minimum of the total energy. Our survey for the lowest-energy structure is by no means exhaustive. But, it is unlikely to find lowest-energy configurations than the present ones by further extending the size of the supercell, when retaining the present structural model.

Next, let us remove some restrictions of the composition and take other IS into account. A slightly different way of constructing the $2 \times 2 \times 1$ supercell will be employed, now. It is constructed by gathering four unit cells of the lowest-energy configuration B_{50} + 2B_{4c}. Then, various combinations of IS are studied in one of the four cells only, and the remaining cells are left to be in the B_{50}+2B_{4c} configuration. The formation energies of those configurations are listed in Table IV. The energy zero is taken to be that of the stoichiometric B_{208} = $4 \times (B_{50} + 2B_{4c})$. The multiplicity g_i of atom configurations for a specific type i of IS is the number of configurations which are energetically degenerate. For convenience, g_i is counted within a primitive unit cell. High-energy configurations were omitted beforehand.

Although a low-energy state different from B_{50} + 2B_{4c} was found for a combination of 4c and 8h, we still continue to use B_{50} + 2B_{4c} as energy zero. The energy decrease is very small, 0.06 eV. Rather, we should regard $2 \times 4c$, together with $4c + 8i$ and $4c + 8h$ to form a degenerate ground state of B_{52}. In this sense, pure α-T boron has non-zero residual entropy even in the stoichiometric composition.

The minimum ΔE_f is still found to be B_{52}. From this, we have convinced ourselves that the lowest-energy structure of pure α-T boron is indeed the stoichiometric B_{52}. However, the statistical distribution in ΔE_f brings a new feature into the structure B_{52}. Furthermore, an imbalance of ΔE_f is found between $\delta = -0.25$ and $+0.25$ (see Table IV). On the average the case $\delta = +0.25$ has lower energy states than $\delta = -0.25$. In particular, the configuration $2c + 8h$ has the lowest formation energy among the non-stoichiometric compositions and
TABLE IV: The formation energy of interstitial sites and the change of the specific volume \(\Delta V \) in a \(2 \times 2 \times 1 \) supercell model of \(\alpha \)-T boron. Also in supercell calculations \(B_{52} \) is the lowest energy structure. The reference configuration is \(4 \times (B_{50} + 2B_{4c}) = B_{208} \). The multiplicity \(g \) of the interstitial sites refers to a primitive unit cell.

\(N_{at} (\delta) \)	Config.	\(g \)	\(\Delta E_f \) (eV)	\(\Delta V \) (eV/GPa)
207	4c	4	0.84	0.010
\((-0.25)\)	8h	8	0.68	0.005
	8i	8	0.85	0.009
208	\(2 \times 4c\)	2	0	
\((0)\)	\(2 \times 4c^\prime\)	2	0.20	-0.022
	\(4c + 8i\)	\(4 \times 2\)	0.07	-0.031
	\(4c + 8h\)	\(4 \times 2\)	-0.06	-0.008
	\(8i + 8h\)	\(8 \times 2\)	0.22	-0.043
209	\(3 \times 4c\)	4	1.10	-0.046
\((+0.25)\)	\(2 \times 4c + 8h\)	\(4 \times 4\)	0.50	-0.027
	\(2 \times 4c + 8i\)	\(4 \times 4\)	1.04	-0.046
	\(4c + 2 \times 8i\)	\(4 \times 4\)	0.76	0.002
	\(2 \times 4c + 8i^\prime\)	\(4 \times 4\)	1.15	-0.052
	\(4c + 8h + 8i\)	\(4 \times 6 \times 2\)	0.77	-0.051

the value 0.5 eV is not large for high-temperature synthesis. More importantly, the case \(\delta = +0.25 \) contains larger multiplicities than \(\delta = -0.25 \). This can yield a positive deviation \((\delta > 0) \) from \(B_{52} \) at high temperatures. In the next section, we will discuss the deviation from stoichiometry \(\delta \) at finite temperatures and finite pressure, based on the calculated values in Table IV.

2. High-pressure high-temperature properties

Considering that most of the recent syntheses of pure \(\alpha \)-T boron were performed at high pressures \(p \), it is important to take the pressure dependence of the formation enthalpy \(H \) into account. This can be done by calculating \(\Delta H = \Delta E + p \Delta V \). As shown in Table IV, the
magnitude of ΔV is of the order of 0.02 eV/GPa; so it has a sizable effect on ΔH at around $p = 10$ GPa. For the evaluation of ΔH, ΔE values from supercell calculations were used, because they are more accurate. Each atomic configuration j in Table IV is characterized by the formation enthalpy ΔH_j, the multiplicity g_j, and the deviation from stoichiometry δ_j. The thermal average of the deviation form stoichiometry $\langle \delta \rangle$ is calculated by

$$\langle \delta \rangle = \frac{1}{Z} \sum_j \delta_j g_j \exp \left(-\frac{\Delta H_j}{kT} \right),$$

where Z is the partition function given by,

$$Z = \sum_j g_j \exp \left(-\frac{\Delta H_j}{kT} \right).$$

The quantity $\langle \delta \rangle$ has pressure dependence through the enthalpy. It is plotted as function of p and T in Fig. 5.

![Contour plot](image)

FIG. 5: Contour plot showing the deviation δ from the stoichiometric composition $B_{52+\delta}$ as a function of pressure p and temperature T. The increment of the contours is 0.025. The results indicate that for high $p-T$ synthesis a positive deviation from stoichiometry is to be expected.

The obtained values of $\langle \delta \rangle$ are of the order of 0.1. With increasing T, $\langle \delta \rangle$ becomes more positive. At high pressure, negative changes in the specific volume ΔV are favorable because
of LeChatelier’s principle. From Table IV, we see that configurations of \(N_{\text{at}} = 209 \) are more favorable at high \(p \) than configurations of \(N_{\text{at}} = 207 \). Accordingly, \(\langle \delta \rangle \) increases with \(p \). We see that \(\langle \delta \rangle = +0.14 \) is expected for synthesis conditions of \(p = 10 \) GPa and \(T = 2000 \) K. The corresponding occupancies are 0.20, 0.08, 0.09 for 4c, 8h and 8i sites, respectively. Therefore, even at high \(T \), the 4c site predominates over other IS in pure \(\alpha \)-T boron.

The predicted value of \(\langle \delta \rangle \sim 0.1 \) is not as large as \(\delta = +1.5 \) for \(\beta \)-R boron, where the deviation is an intrinsic property. This is a consequence of the fact that \(\alpha \)-T boron has an even number of valence electrons, and thus the driving force for the deviation is weak. Values of \(\langle \delta \rangle \sim 0.1 \) are also found in \(\text{B}_{50}\text{C}_2 \) and \(\text{B}_{50}\text{N}_2 \) (see Table II). According to the discussion in Sec. IV A 3, the structures of \(\text{B}_{50}\text{C}_2 \) and \(\text{B}_{50}\text{N}_2 \) meet the valence requirement most properly, and hence they are almost likely to be stoichiometric. Therefore, it is reasonable to find similar values of \(\langle \delta \rangle \) for pure and C/N-containing \(\alpha \)-T boron.

At present, there is little experimental information available about \(\delta \). Among them, Ekimov’s samples are best characterized. They show a negative value \(\delta = -0.5 \), contrary to the present prediction. By considering their preparation conditions (\(p = 10 \) GPa, and \(T = 1600^\circ \text{C} \)) this discrepancy is well beyond the error of our calculations. As noted before, their samples were synthesized by pyrolysis of decaborane \(\text{B}_{10}\text{H}_{14} \). So there is the possibility of hydrogen inclusion, but the authors reported not to detect hydrogen. Hyodo’s samples with a positive value \(\delta = +0.2 \) are indeed within the present prediction, however no occupation of the 4c site was reported. In this case, the question is whether bulk samples and nanostructures can be compared on the same ground. More reliable measurements on the chemical compositions of the recently discovered \(\alpha \)-T borons are indispensable for further developments.

3. Lattice parameters

As indicated in Table II some trends in the lattice parameters exist between traditional and recently discovered \(\alpha \)-T borons. When compared with the early-days crystals by Hoard, it is seen that the lattice parameters \(a_0 \) are small for the traditional forms and large for the recently discovered ones. In general, the error of GGA for lattice parameters is less than 1 \%, and hence GGA calculations can resolve subtle differences in the lattice parameters which are expected to exist among different \(\alpha \)-T forms.
FIG. 6: The lattice parameters of α-T boron as a function of the composition N. Red circles indicate the present calculations, symbols with authors’s name are experimental data. For Kurakevych’s and Qin’s α-T boron, the chemical compositions are not known and therefore the data are plotted at the rightmost side. Clear differences are discernible between the C/N containing forms and Ekmov’s α-T boron on the one hand and the recently discovered and the calculated forms on the other hand.

Our calculations of the lattice parameters are shown in Fig. 6 as a function of the composition B_{50+n}. The calculated values of a₀ of pure α-T boron are in most cases about 1% larger than that of the traditional α-T boron over a range n = 0 to 4. When compared with the calculated structures B_{50}C₂ and B_{50}N₂ (not shown in the figure), a₀ of pure B₅₂ is larger than that of B₅₀C₂ by 1.9% and of B₅₀N₂ by 2.8%. This result is to be expected, because, as discussed in Sec. IV A these impurities enhance the covalency of the crystal, resulting in contraction of the cell.

An opposite trend is found for c₀; both the calculated values for pure α-T boron and the experimental values for the recently discovered ones are smaller than that of the traditional ones. This opposite behavior between a₀ and c₀ is a consequence of the distortion of the tetrahedral bonds of the IS. Remember that there is a strong anisotropy between a₀ and c₀, despite the tetrahedral arrangement of four icosahedra B₁₂. As mentioned repeatedly, the role of interstitial atoms is not small. The bonding of interstitial atoms indeed has to be strong in order to be able to support the local arrangement of icosahedra in the unit cell. An interstitial-site atom, in particular the 4c site, has a tetrahedral bonding environment (see Fig. 2). However, these tetrahedral geometries are strongly flatten in the ab plane. Accordingly, the four icosahedra which are connected to the interstitial atom
are also deformed in the ab plane. By replacing the interstitial B with C or N atoms, the covalency of the related tetrahedral bondings becomes more ideal, i.e., isotropic, and the anisotropy between a_0 and c_0 is reduced.

Let us check the experimental data. Kurakevych’s α-T boron contain various concentrations of C including 0 at.%. They showed an increase in a_0 as the C content is decreased\cite{19}, which is consistent with our results. Total agreement in a_0 and c_0 with our calculation suggests that Kurakevych’s α-T boron with no C content is pure α-T boron. For Qin’s case a judgment is more difficult. Although they claimed in their paper\cite{18} that there is a good agreement in the lattice parameters with previous experiments, TEM measurements, which they employed, are generally less accurate.

The lattice parameter a_0 of Ekimov’s α-T boron is evidently larger than the traditional ones. However, his value is too large even when compared with the calculated one for pure α-T boron. Judging from the lattice parameters and the negative deviation from stoichiometry $\delta = -0.5$, it is safe to identify Ekimov’s α-T boron as non-pure boron. Further studies on Ekimov’s α-T boron are in progress.

\section*{C. Geometrical frustration}

As discussed in Sec. IV A 3 and different from impurity-containing forms, a profound feature of pure α-T boron is the presence of gap states. Let us consider the electronic nature of the gap states. For $B_{50}N_2$, where two 2b sites are occupied by two N atoms and half of the 4c sites are occupied by two B atoms, the 10 unoccupied states of B_{50} are completely filled by ten valence electrons from two N atoms. On the other hand, for pure α-T boron, $B_{50} + 2B_{4c}$, the lower 6 valence states are filled, leaving 4 topmost states unoccupied. These topmost unoccupied states are filled by the extra 4 electrons in the case of $B_{50}N_2$, but are left as unoccupied gap states in the pure form.

The electronic nature of these topmost valence states for the pure form $B_{50} + 2B_{4c}$ can be seen by calculating the partial DOS. Figure 7 shows the partial DOS with respect to two 4c-site B atoms. The gap states are mainly coming from the 4c-site atoms. As mentioned before, the bonding arrangement of the 4c site is a strongly flattened tetrahedron; roughly speaking, almost similar to sp^2 in-plane bonding. The wave functions of the gap states have non-bonding p_z-orbital character along the direction of the c-axis (see Supplemental
FIG. 7: Partial density of states (DOS) projected on two 4c-site B atoms (red area) for B$_{50}$ + 2B$_{4c}$ indicates that the in-gap states mainly come from interstitial 4c-site atoms. The black line indicates the total DOS. The scales of partial and total DOS are different.

Material). For the B$_{50}$N$_2$ case, the four extra electrons, coming from the two N atoms, can fill these gap states in a similar way as a rigid-band shift.

However, for pure α-T boron, the valence filling does not work in this way. When successively adding B atoms to B$_{50}$, each time three unoccupied states are eliminated, until $n = 2$. However, this valence filling by B atoms creates new gap states (see Fig. 3). Further increase of n is even worse as it does not eliminate gap states. In this way, we see that satisfying one bond is connected to the creation of new non-bonding states elsewhere. There is no way to completely remove unoccupied states. This is just the principle of geometrical frustration, which was also found in a similar boron material, i.e. β-R boron.31

In a general sense, the icosahedral geometry is intimately related to geometrical frustration.49 But, the special feature of boron is that the geometrical frustration is caused by POS. The driving force is strong, because of the covalent nature of the bonding. A pictorial interpretation of the above electronic situation can be obtained by using an idea given by Ogitsu et al for β-R boron.31,32,50 In analogy with antiferromagnetism (AF), it is useful to understand what happens in B$_{50}$ + 2B$_{4c}$. As noted previously, in boron crystals there is a tendency of interstitial atoms to spatially avoid each other. This situation can be modeled
FIG. 8: The principle of geometrical frustration and its realization in α-T boron. (left) A perfectly ordered antiferromagnetic configuration on a cubic lattice. Spin up represents an occupied site, spin down an unoccupied site. (right) Frustration occurring in $B_{50} + 2B_{4c}$. The illustration shows one primitive unit cell and the vertices of the eight cuboids are the locations of the 2a, 2b and 4c sites (compare with Fig. 1). The 2a (unoccupied) and 2b (occupied) sites, enclosed in green, are fixed in their occupations. The remaining 4c sites cannot be arranged in an ordered way. Therefore the system is geometrically frustrated. Roman numbers stand for the index of layers from front to back.

by spin systems. Let us denote an occupied site with spin up, and an empty site with spin down. A perfectly ordered AF phase in a cubic lattice is shown in the left-hand side of Fig. 8. Let us apply this spin model to $B_{50} + 2B_{4c}$. The right-hand side of the figure corresponds to the adapted spin model. It shows a primitive unit cell as in Fig. 1 and the vertices of the eight cuboids are the locations of the 2a, 2b and 4c sites. The spin arrangement enclosed in green indicates that the involved spin directions are fixed, that is to say, the 2b site is always occupied and the 2a site is always unoccupied. Then, we are free to choose the spin directions at the 4c sites. Let us consider a spin arrangement in the first layer (denoted as I). The arrangement, as shown in the figure, meets the AF configuration. Every pair of neighboring spins is antiparallel. In the next layer (II), the 2a and 2b sites interchange their
positions. Then, an AF spin arrangement within the second layer can be realized as shown in the figure. However, this spin arrangement causes parallel spins between layers I and II. In this way, we will find that there is no perfect ordered state for the occupation of the two 4c-sites.

From the geometrical point of view, this frustration can be regarded as arising from the incompatibility of the symmetry, that is, a conflict between the presence of inversion symmetry for icosahedra and the absence of it for the tetrahedral arrangement of four icosahedra in a unit cell. This conflict yields an asymmetry in the occupation between fully occupied 2b sites and vacant 2a sites, which surround each icosahedron. Two symmetry equivalent 2b sites are connected by inversion with respect to the center of an icosahedron, and the same holds for 2a sites. This symmetric occupation of 2b and 2a sites is incompatible with the tetrahedral arrangement of the four icosahedra.

In the stoichiometric B\textsubscript{50} + 2B\textsubscript{4c} structure only half of the equivalent 4c sites are occupied. Therefore it has non-zero entropy S_0 at $T = 0$. This residual entropy is $(1/52) \ln 6 = 0.034$ per atom (in units of k_B, Boltzmann’s constant), provided that there is no interaction between 4c-site atoms. This value is small compared with a value $(1/3)\ln(3/2) = 0.135$ of water51, which is a prototypical for geometrical frustration, but it is yet a macroscopic amount. In fact, this simple estimation shows that the residual entropy of α-T boron is as large as that of β-R boron, which was recognized as a geometrically frustrated system. For β-R boron, the primary IS is a replacement of one atom at the B(13) site with one interstitial atom at the B(16) site. Both of those sites have six equivalent sites. This simple estimate gives the residual entropy $(1/105) \ln(6 \times 6) = 0.034$ per atom. The numerical agreement with the above estimate for α-T boron is of course accidental. A more accurate estimate was done by Ogitsu et al.32 They determined a value of $S_0 = 0.04$ for β-R boron. The value is very close to the present estimation. Thus the residual entropy of α-T boron is comparable to that of β-R boron.

Let us now proceed with a more elaborate estimate of the residual entropy. At high temperatures at which the α-T boron crystals are synthesized, many POS appear, non-stoichiometric systems are formed (see Sec. [V B 2]), and the configurational entropy increases. We estimate the configurational entropy S by using the following formula,

$$S = k_B \sum_j [x_j \ln x_j + (1 - x_j) \ln(1 - x_j)],$$ \hspace{1cm} (5)
TABLE V: A comparison of the site occupancies and the configurational entropy between α-T boron synthesized at $p = 10$ GPa and $T = 2000$ K (modeled in this work) and β-R boron (from literature). Both crystals have a similar amount of configurational entropy, caused by geometrical frustration. N_{at} is presented by separating the stoichiometric composition and δ.

Crystal	N_{at}	Site occupancy	S k_B/atom	Notes
β-R boron	105+1.7	74.5 (B13), 27.2(B16), 8.5 (B17)	0.137	Equivalent site numbers are all 6, except 12 for B(20)
α-T boron	52 +0.14	6.6 (B18), 6.8 (B19), 3.7 (B20)	0.128	

where x_j is the occupancy of the IS j. By using this formula, it is implied that all the IS are independent. Experimental values of occupancies for β-R boron by Slack et al. and our calculated values for α-T boron are compared in Table V. From these values, we obtain $S = 0.137$ for β-R boron and $S = 0.128$ for α-T boron. So the configurational entropy of α-T boron is comparable to that of β-R boron. On one hand this is an unexpected result, because the deviation from stoichiometry in α-T boron is only small. On the other hand it is actually reasonable, because the numbers of equivalent sites (the multiplicity g) is bigger in α-T boron (mostly 8) than in β-R boron (mostly 6). Moreover, the number of atoms per unit cell in β-R boron is twice as large as that in α-T boron.

Based on these arguments, α-T boron can be considered as a new member of the group geometrical frustrated boron systems, because (i) an unavoidable conflict between the elimination of the existing unoccupied states and the creation of new unoccupied states, and (ii) the existing of a macroscopic amount of residual entropy. An interesting point is that the geometrical frustration of α-T boron does not require non-stoichiometry, differently from the situation in β-R boron. This makes the theoretical analysis simpler. Recently, a novel view, the so-called correlated disorder has appeared, which is a universal approach connecting different classes of disorders, that is, frustrated over-constraint and configurational under-constraint. The structure of α-T boron is a particularly a good system for developing this view, because the structure seems to have both characters of disorder in it, because there is no way to perfectly satisfy covalent conditions (over-constraint) and there are many ways.
of arranging POS (under-constraint).

V. CONCLUSIONS

We have examined the possibility of the existence of non-stoichiometric, pure α-T boron. Supercell calculations have shown that the lowest-energy state of pure α-T boron, if it exists, is the stoichiometric B$_{52}$ with two occupied 4c sites. Therefore, a deviation from stoichiometry occurs only by entropic effects at high temperatures. This is different from β-R boron, where non-stoichiometry is a property of the lowest-energy state. This difference essentially comes from the fact that B$_{52}$ has an even number of electrons and therefore the driving force for a deviation from stoichiometry is relatively weak. Finite temperatures cause a deviation from stoichiometry B$_{52+\delta}$ by a small positive amount, with 4c site atoms as the main interstitial species. For high-pressure and high-temperature synthesis under reported conditions, δ is estimated to be around $\delta=0.1$ to 0.2.

The present results on the site occupancies, the δ values as a function of pressure and temperature, and the lattice parameters provide a good test for the experimental identification of pure α-T boron. The dominant interstitial site of the pure form is 4c, while for C- or N-containing forms the 2a, 8h and 8i sites are favored. Judging from the limited experimental data, we conclude that Ekimov’s α-T boron is probably not a pure form, because of its negative δ together with other inconsistencies. Judging from the lattice parameters, other recently discovered α-T boron forms could indeed be pure ones, though not all. For a final conclusion, however, more detailed information about the chemical composition and the site occupancies are required.

Despite of B$_{50}$ + 2B$_{4c}$ having a band gap, the valence bond requirement is not ideally fulfilled. Unoccupied p_z orbitals at 4c sites form gap states that cannot be eliminated by adding further interstitial atoms. There is no way to fully satisfy the conditions for covalent bonding. Despite of being stoichiometric, B$_{52}$ has a macroscopic amount of residual entropy that is as large as that of β-R boron. Because of having such a lowest-energy state, macroscopic residual entropy and no atomic arrangement that can satisfy the conditions for covalent bonding, pure α-T boron is identified as a geometrically frustrated elemental crystal.
Acknowledgments

The authors thank K. Kimura and W. Hayami for initiating our interests in this subject. We also thank E. Ekimov for discussing the characterization of his samples. JK acknowledges financial support from the German Research Foundation (DFG) (project KU 2347/2-2). HE and JK acknowledge financial support from the German Academic Exchange Service (DAAD) (project 54368630)

* Electronic address: koun@sanken.osaka-u.ac.jp

1 A. W. Laubengayer, D. T. Hurd, A. E. Newkirk, and J. L. Hoard, J. Am. Chem. Soc. 65, 1924 (1943).
2 J. L. Hoard, S. Geller, and R. E. Hughes, J. Am. Chem. Soc. 75, 1892 (1951).
3 H. C. Longuet-Higgins and M. de V. Roberts, Proc. Roy. Soc. London A230, 110 (1955).
4 E. Amberger and K. Ploog, J. Less-Common Metals 23, 21 (1971).
5 K. Ploog, H. Schmidt, E. Amberger, G. Will, and K. H. Kossobutzki, J. Less-Common Met. 29, 161 (1972).
6 G. Will and K. H. Kossobutzki, J. Less-Common Metals 47, 33 (1976).
7 I. Morrison, D. M. Bylander, and L. Kleinman, Phys. Rev. B 45, 10872 (1992).
8 S. Lee, D. M. Bylander, W. Kim, and L. Kleinman, Phys. Rev. B 45, 3248 (1992).
9 Y. Zhang, H. Ago, M. Yumura, T. K. S. Ohshima, K. Uchida, and S. Iijima, Chem. Comm. 2002, 2806 (2002).
10 Z. Wang, Y. Shimizu, T. Sasaki, K. Kawaguchi, K. Kimura, and N. Koshizaki, Chem. Phys. Lett. 368, 663 (2003).
11 T. T. Xu, J. G. Zheng, A. W. Nicholls, J. R. Roth, D. A. Dikin, and D. R. Yang, Nano Lett. 4, 963 (2004).
12 Q. Yang, J. Sha, J. Xu, Y. J. Ji, X. Y. Ma, J. J. Niu, H. Q. Hua, and D. R. Yang, Chem. Phys. Lett. 379, 87 (2004).
13 K. Kirihara, Z. Wang, K. Kawaguchi, Y. Shimizu, T. Sasaki, N. Koshizaki, K. Soga, and K. Kimura, Appl. Phys. Lett. 86, 212101 (2005).
14 W. Hayami and S. Otani, J. Phys. Chem. C 112, 2711 (2009).
15 W. Hayami and S. Otani, J. Solid State Chem. 183, 1521 (2010).
16 E. A. Ekimov and I. P. Zibrov, Sci. Technol. Adv. Mater. 12, 055009 (2011), errata: 12 069801 (2011).
17 E. A. Ekimov, I. P. Zibrov, and A. V. Zoteev, Inorganic Materials 47, 1194 (2011).
18 J. Qin, T. Iritune, H. Dekura, H. Ohfuji, N. Nishiyama, L. Lei, and T. Shinmei, Phys. Rev. B 85, 014107 (2012).
19 O. O. Kurakevych, Y. L. Godec, T. Hammouda, and C. Goujon, High Pressure Research 32, 31 (2012).
20 O. O. Kurakevych and V. L. Solozhenko, J. Superhard Materials 35, 79 (2013).
21 V. L. Solozhenko and O. O. Kurakevych, Sci. Rep. 3, 2351 (2013).
22 Y. Ma, C. T. Prewitt, G. Zou, H. Mao, and R. J. Hemley, Phys. Rev. B 67, 174116 (2003).
23 K. Shirai and N. Uemura, Solid State Sci. 14, 1609 (2012).
24 S. Aydin and M. Simsek, J. Alloys Compounds 509, 5219 (2011).
25 S. Aydin and M. Simsek, Solid State Sci. 14, 1636 (2012).
26 R. Schmechel and H. Werheit, J. Phys.: Condens. Matter 11, 6803 (1999).
27 L. Pauling, The Nature of the Chemical Bond, third ed. (Cornell Univ. Press, New York, 1960).
28 A. Masago, K. Shirai, and H. Katayama-Yoshida, Phys. Rev. B 73, 104102 (2006).
29 M. J. van Setten, M. A. Uijttewaal, G. A. de Wijs, and A. de Groot, J. Am. Chem. Soc. 129, 2458 (2007).
30 M. Widom and M. Mihalković, Phys. Rev. B 77, 064113 (2008).
31 T. Ogitsu, F. Gygi, J. Reed, Y. Motome, E. Schwegler, and G. Galli, J. Am. Chem. Soc. 131, 1903 (2009).
32 T. Ogitsu, F. Gygi, J. Reed, M. Udagawa, Y. Motome, E. Schwegler, and G. Galli, Phys. Rev. B 81, 020102(R) (2010).
33 K. Shirai, K. Sakuma, and N. Uemura, Phys. Rev. B 90, 064109 (2014).
34 A. Ektrarawong, S. I. Simak, L. Hultman, J. Birch, and B. Alling, Phys. Rev. B 92, 014202 (2015).
35 J. L. Hoard, R. H. Hughes, and D. E. Sands, J. Am. Chem. Soc. 80, 4507 (1958).
36 H. Hyodo, Dr. Thesis, University of Tokyo (2009).
37 E. A. Ekimov, Y. B. Lebed’, S. G. Lyapina, and N. F. Borovikov, Inorganic Materials 49, 247 (2013).
http://www.cmp.sanken.osaka-u.ac.jp/~koun/osaka.html.

J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

N. Troullier and L. Martins, Phys. Rev. B 43, 1993 (1991).

L. Kleinman and M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

H. Dekura, K. Shirai, and A. Yanase, Phys. Rev. B 84, 094117 (2011).

W. C. Shaw, D. E. Hudson, and G. C. Danielson, Phys. Rev. 107, 419 (1957).

E. A. Ekimov, J. B. Lebed, V. A. Sidorov, and S. G. Lyapin, Phys. Status Solids B 250, 721 (2013).

H. Werheit and R. Schmechel, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series III/41c (Springer-Verlag, Berlin, 1998).

H. Werheit, R. Shmechel, F. D. Meyer, and H. Hillebrecht, J. Solid State Chem. 154, 75 (2000).

S. Yamanaka, E. Enishi, H. Fukuoka, and M. Yasukawa, Inorg. Chem. 39, 56 (2000).

J.-F. Sadoc and R. Mosseri, Geometrical Frustration (Cambridge UP, Cambridge, 2006).

T. Ogitsu, E. Schwegler, and G. Galli, Chem. Rev. 113, 3425 (2013).

A. Ben-Naim, Molecular Theory of Water and Aqueous Solutions (World Scientific, Singapore, 2009).

G. A. Slack, C. I. Hejna, and J. S. Kasper, J. Solid State Chem. 76, 52 (1988).

D. A. Keen and A. L. Goodwin, Nature 521, 303 (2015).

Caution is needed for the values of δ_j when evaluating Eq. 3. For example, $\delta_j = +1$ should be used for $N_{\text{at}} = 209$ systems (not 1/4). This is because we are considering the change of the total energy of the crystal that is induced by one interstitial atom; so the size of a supercell is irrelevant.