Effect of Bagging on Fruit Quality of Three Pummelo (Citrus grandis Osbeck) Cultivars

Yan Wang1,2, Xiaoke Fu1,3, Wen He2, Qing Chen1, Jianying Ma3 and Xiaorong Wang1,2,*

1College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
2Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
3Meishan Vocational & Technical College, Meishan, Sichuan, 620010, P.R. China
*Corresponding author’s e-mail: wangxr@sicau.edu.cn

Abstract. In this study, the effect of bagging on fruit quality of three pummelo (Citrus grandis Osbeck) cultivars was evaluated in order to provide basis for high-quality and high-efficient cultivation of pummelo cultivars. Seven bagging times was set at 35, 50, 65, 80, 95, 110, and 125 days after flowering (DAF). Different bagging treatments all effectively improved the external fruit quality, such as beautiful peel color and smooth oil vacuole. The weight per fruit, longitudinal and transverse diameter revealed decrease trends along with the delay of bagging times. In addition, bagging treatments somewhat decreased the content of internal quality, including total soluble solid, vitamin C and sugar, being significantly lower than that in control check. Taking the external and internal fruit quality into consideration, we determined the appropriate bagging times for three cultivars. The best bagging time was at 35, 80, and 65 days after flowering for 'Sanhongmiyou', 'Hongroumiyou' and 'Huangjinmiyou', respectively. It will provide effective basis for bagging treatments in the pummelo producing area.

1. Introduction
Pummelo, Citrus grandis (L.) osbeck, belongs to genus Citrus L., family Rutaceae [1]. China is one of major centers of origination and genetic diversity, possessing abundant pummelo germplasms. The cultivation history of pummelo can date back to 3000 years ago [2], including three major cultivation areas, Southeast coastal, South China and Southwest China [3]. Until now, more than 200 pummelo varieties have been selected and cultivated in China [4]. 'Hongroumiyou' [5], 'Sanhongmiyou' [6], and 'Huangjinmiyou' [7] are mutated from 'Guanximiyou', which have been widely cultivated in Fujian and Sichuan Provinces.

Bagging could effectively improve the external fruit quality [8], reduce risk of pest and disease damage [9, 10], as well as expand the storage life of fruits [11]. It is important for the improvement of fruit quality to bagging in the right time. Previous studies suggested that bag cover should be carried out after the second physiological fruit drop [7, 12]. During the past decades, we observed that the second physiological fruit drop happened at about 35 days after flowering of the three pummelo cultivars in Sichuan Province.
In this study, we compared the fruit quality by setting different bagging times to determine the appropriate bagging time for better improving the fruit quality, which provided basis for high-quality and high-efficient cultivation of pummelo cultivars.

2. Materials and methods

2.1. Plant materials
We selected three pummelo cultivars, *C. grandis* cv. 'Sanhongmiyou', 'Hongroumiyou', and 'Huangjinmiyou' rootstocked by wild *C. grandis*, as the materials in this study. The experiments were carried out using fruit bags (Guonong GN-32) in the orchard in Pujiang County, Chengdu, Sichuan Province, from May to September 2016. We set seven bagging times at 35 (5 June 2016), 50 (20 June), 65 (5 July), 80 (20 July), 95 (5 August), 110 (20 August), and 125 (5 September) days after flowering (DAF). Ten fruits from four orientations of the trees were bagged for each treatment with three repeats per treatment.

2.2. Fruit quality detection
The external fruit quality contained peel color, flesh and spongy layer color, and oil vacuole, which were detected by visual observation. Vernier caliper was used to detect the thickness of spongy layer, longitudinal and transverse diameter, fruit and flesh weight. According to these data, fruit shape index and edible rate were calculated.

The content of total soluble solid (TSS) was detected by the hand-held refractometer. 2,6-dichloroindophenol titration method was used to detect the content of Vitamin C [13]. Total sugar and acid was measured by using anthrone colorimetric [14] and acid-base neutralization method [14], respectively. The sugar contents were calculated according to Xiong et al. [15]: Reducing sugar = D/V1 × 1000, Invert sugar = D/V2 × 1000, Sucrose = (invert sugar − reducing sugar) × 0.95, Total sugar = reducing sugar + sucrose, where D, V1, and V2 represent the glucose content corresponding to 10 mL of Fehling reagent, titration volume of reducing sugar solution and invert sugar solution, respectively.

2.3. Data analysis
Significant differences between the means of the treatments were determined with 95% confidence (p < 0.05) limit by Duncan multiple range test using SPSS18.0 (IBM, USA). Data are shown as the means of three replicates.

3. Results

3.1. External fruit quality
As we can see from the Table 1, bagging treatments improved pericarp coloring of pummelo cultivars, revealing light yellow or yellow in 'Sanhongmiyou' and 'Hongroumiyou', and light yellow or olivine in 'Huangjinmiyou'. The fruit fleshes appeared red or light orange in this study. There were smaller vertical and transverse diameter, fruit weight in 'Sanhongmiyou' and 'Huangjinmiyou' for bagging treatments than that in control check, while these parameters revealed different trend in 'Hongroumiyou'. Significant differences were observed among different bagging treatments. Taking 'Sanhongmiyou' as example, the biggest and smallest fruit were obtained by bagging at 125 and 35 days after flowering, with the weight per fruit of 1.64 kilograms in 'Sanhongmiyou'. Edible rate had an increase trend along with the delay of bagging times. There were no significant differences among other parameters such as flesh color and segments.
As shown in Table 1, bagging treatments decreased the content of internal fruit quality. The content of total soluble solid (TSS) revealed an increase change along with the delay of bagging times, which were all lower than that in control check in 'Sanhongmiyou'. While in 'Hongroumiyou' and 'Huangjinmiyou', the highest TSS content occurred at 125 days after flowering, with the value of 10.90% and 11.17%, respectively. They were no significant differences with that in control. Compared with TSS, bagging treatments increased the accumulation of total acid content. In addition, bagging treatments decreased the content of vitamin C and sugar, being significantly lower than that in control check.

Table 1. Effect of bagging on external fruit quality of three pummelo cultivars

Cultivar	Bagging time (DAF)	Peel color	Flesh color	Spongy layer Color	Thickness /cm	longitudinal diameter /cm	Transverse diameter /cm	Fruit shape index	Weight per fruit /kg	Flesh weight /kg	Edible rate /%	Oil vacuole	Segments
'Sanhongmiyou'	35	Lavender blush	Light yellow with lustre	1.01ab	14.18h	13.81h	1.03a	1.47h	0.98b	66.87h	Fine grained, dense & smooth	14	
	50	Light yellow with lustre	1.03a	15.43g	15.75g	0.98b	1.49g	1.02g	68.80g	Fine grained, dense & smooth	15		
	65	Light yellow with lustre	0.97e	17.32f	17.51f	0.99b	1.52f	1.10f	72.46f	Fine grained, dense & smooth	14		
	80	Yellow with lustre	1.00bc	17.83e	17.92e	0.99b	1.55e	1.13c	72.72e	Fine grained, dense & smooth	13		
	95	Yellow with lustre	Red Pink	0.99cd	18.06fd	18.34b	0.98b	1.57d	1.15d	73.05d	Fine grained, dense & slightly convex	14	
	110	Yellow with lustre	1.01ab	18.21c	18.01d	0.97b	1.60c	1.17c	73.45c	Grained, loose & slightly convex	16		
	125	Yellow with lustre	0.98de	18.28b	18.59a	0.98b	1.64b	1.22b	74.73b	Rough, loose & slightly convex	15		
	CK	Oliveine without lustre	0.98de	18.67a	18.32c	1.02a	1.71a	1.29a	75.89a	Rough, loose & convex	15		
'Hongroumiyou'	50	Light yellow with lustre	1.57d	16.30e	16.58d	0.98c	1.47f	1.13f	76.76a	Fine grained, dense & smooth	15		
	65	Light yellow with lustre	1.52e	17.70c	17.23c	1.03b	1.83a	1.38a	75.19d	Fine grained, dense & smooth	14		
	80	Yellow with lustre	1.73h	17.70c	17.23c	1.03b	1.73b	1.30b	75.25c	Fine grained, dense & slightly convex	16		
	95	Yellow with lustre	Red —	1.73h	17.80b	17.33b	1.03b	1.69c	1.27c	75.18d	Grained, loose & slightly convex	14	
	110	Yellow with lustre	1.50e	17.97a	17.37a	1.03b	1.64d	1.23d	75.11e	Rough, loose & slightly convex	14		
	125	Yellow with lustre	1.83a	17.27d	15.90e	1.09a	1.57e	1.18e	75.50b	Rough, loose & slightly convex	15		
	CK	Oliveine without lustre	1.60c	16.07f	15.53f	1.03b	1.33g	0.99g	74.84f	Rough, loose & convex	15		
'Huangjinmiyou'	50	Light yellow with lustre	1.52b	16.36c	16.17c	0.99a	1.38e	0.99d	0.69ab	Fine grained, dense & smooth	15		
	65	Light yellow	1.70a	16.21c	16.41c	1.01a	1.40d	0.94d	0.71a	Fine grained, dense & smooth	16		
	80	Oliveine	1.66a	17.92ab	17.43b	0.97a	1.81c	1.41c	0.75a	Fine grained, dense & smooth	17		
	95	Oliveine	Light orange —	1.65a	17.42b	17.42b	1.00a	1.94b	1.47c	0.76a	Fine grained, dense & slightly convex	17	
	110	Oliveine	1.53b	17.82ab	17.79ab	0.99a	1.99b	1.55b	0.76a	Grained, loose & slightly convex	18		
	125	Oliveine	1.55b	17.68ab	17.86ab	1.01a	2.03a	1.58b	0.78a	Rough, loose & slightly convex	18		
	CK	Oliveine	1.61a	18.27a	18.21a	0.99a	2.15a	1.65a	0.79a	Rough, loose & convex	17		

Note: The different normal letters indicate significant difference at 0.05 level. The same as below.

3.2. Internal fruit quality

As shown in Table 2, bagging treatments decreased the content of internal fruit quality. The content of total soluble solid (TSS) revealed an increase change along with the delay of bagging times, which were all lower than that in control check in 'Sanhongmiyou'. While in 'Hongroumiyou' and 'Huangjinmiyou', the highest TSS content occurred at 125 days after flowering, with the value of 10.90% and 11.17%, respectively. They were no significant differences with that in control. Compared with TSS, bagging treatments increased the accumulation of total acid content. In addition, bagging treatments decreased the content of vitamin C and sugar, being significantly lower than that in control check.

Table 2. Effect of bagging on internal fruit quality of three pummelo cultivars

Cultivar	Bagging time (DAF)	Total soluble solid%/	Total acid/g•100mL⁻¹	TSS-acid ratio	Vitamin C/mg•100mL⁻¹	Reducing sugar/g•100mL⁻¹	Sucrose/g•100mL⁻¹	Total sugar/g•100mL⁻¹
'Sanhongmiyou'	35	10.47f	0.97a	10.79h	39.68g	3.51f	5.61bc	9.12f
	50	10.50ef	0.93ab	11.29g	39.91f	3.58g	5.55d	9.13g
	65	10.60e	0.90bc	11.78	40.16e	3.65f	5.72b	9.37f
	80	10.87d	0.86cd	12.64e	40.16e	3.72e	5.74b	9.47e
	95	11.13c	0.82de	13.57d	40.22d	3.87d	5.75b	9.63d

Note: The different normal letters indicate significant difference at 0.05 level. The same as below.
4. Discussion

Fruit bagging is one of the key factors in producing green fruits. This study indicated that bagging treatments effectively improved the external fruit quality of three pummelo cultivars, such as well-coloured peel, exquisite and smooth oil vacuole. The bagging fruits are in the moderate microenvironment, which makes the waxy cuticle distribute uniformly, and epidermal cells arrange closely [16]. In addition, bagging treatments make epidermis cells secrete wax, reduce lignin synthesis, few and small lenticels. These factors make the bagging fruit have smooth and light peel. The longitudinal, transverse diameter and weight per fruit have increase trends along with the delay of bagging times, all lower than that in the control check. This might be caused by the microenvironment with higher temperature and less photosynthetic products due to light deficiency, which make fruits grow slowly in the short time. Bagging fruits started to recover growth at 20 to 30 days after bagging treatments because they adapted to the new environment of bags [17]. This is consistent with previous reports about the navel orange, pear, and apple [18-20]. The remaining parameters, the thickness of spongy layer, segments, fruit shape index and edible rate are not closely related to the bagging treatments.

Previous studies suggested that the content of total soluble solid, sugar and vitamin C have decrease trends in bagging fruits [21-23]. Similar results were observed among three pummelo cultivars. The content of TSS, Vc, and sugar in no bagging fruits were all higher than that in bagging fruits. It is not helpful to accumulate the photosynthetic products and carbohydrates because bagging treatments reduce the light intensity in the bags. In addition, bagging treatments promote the accumulation of total acid. Thus, to some extent, bagging changed the taste of pummelo cultivars for eating quality. Taking the external and internal fruit quality into consideration, we considered that the best bagging time was at 35, 80, and 65 days after flowering for ‘Sanhongmiyou’, ‘Hongroumiyou’ and ‘Huangjinmiyou’. This study will provide effective basis for bagging treatments in the pummelo producing area.

Acknowledgments

This work was financially supported by Sichuan Science and Technology Program (2019YFH0061, 2016NZYZF0019) and Chengdu Technological Innovation Research and Development Project (2018-YF05-00489-SN).

References

[1] Huang, C.J. (1997) Flora of China. Science Press, Beijing.
[2] Ye, Y.M. (1997) The diversity center of pummelo germplasm. South China Fruits, 26(1): 3–5.
[3] He, T.F. (1999) Grapefruit cultivation in China. China Agricultural Press, Beijing.
[4] Deng, X.X., Peng, S.A. (2013) Citrus. China Agricultural Press, Beijing.
[5] Huang, X.Z., Liu, X.M., Lu, X.K., Chen, X.M., Lin, H.Q., Lin, J.S., Cai, S.H. (2007) Hongroumiyou, a new red fleshed pomelo cultivar. J. Fruit Sci., 24(1): 123–124.

	110	11.20c	0.80e	14.00c	40.40b	3.92c	5.81a	9.73c
125		11.47b	0.77ef	14.90b	40.34c	4.04b	5.76b	9.80b
CK		11.63a	0.74f	15.72a	40.46a	4.17a	5.73b	9.90a
'Hongroumiyou'	50	9.50d	1.04a	9.13g	35.68g	4.04b	5.76b	9.80b
	65	10.10e	0.99b	10.20f	36.23f	4.04b	5.76b	9.80b
	80	10.40bc	0.97bc	10.72c	36.96e	4.04b	5.76b	9.80b
	95	10.70ab	0.94c	11.34d	37.54f	4.04b	5.76b	9.80b
'Huangjinmiyou'	110	10.82a	0.89d	12.16e	38.01c	4.04b	5.76b	9.80b
	125	10.90a	0.85e	12.82b	39.56b	4.04b	5.76b	9.80b
CK		11.00a	0.81f	13.58a	40.01a	4.04b	5.76b	9.80b

4. Discussion

Fruit bagging is one of the key factors in producing green fruits. This study indicated that bagging treatments effectively improved the external fruit quality of three pummelo cultivars, such as well-coloured peel, exquisite and smooth oil vacuole. The bagging fruits are in the moderate microenvironment, which makes the waxy cuticle distribute uniformly, and epidermal cells arrange closely [16]. In addition, bagging treatments make epidermis cells secrete wax, reduce lignin synthesis, few and small lenticels. These factors make the bagging fruit have smooth and light peel. The longitudinal, transverse diameter and weight per fruit have increase trends along with the delay of bagging times, all lower than that in the control check. This might be caused by the microenvironment with higher temperature and less photosynthetic products due to light deficiency, which make fruits grow slowly in the short time. Bagging fruits started to recover growth at 20 to 30 days after bagging treatments because they adapted to the new environment of bags [17]. This is consistent with previous reports about the navel orange, pear, and apple [18-20]. The remaining parameters, the thickness of spongy layer, segments, fruit shape index and edible rate are not closely related to the bagging treatments.

Previous studies suggested that the content of total soluble solid, sugar and vitamin C have decrease trends in bagging fruits [21-23]. Similar results were observed among three pummelo cultivars. The content of TSS, Vc, and sugar in no bagging fruits were all higher than that in bagging fruits. It is not helpful to accumulate the photosynthetic products and carbohydrates because bagging treatments reduce the light intensity in the bags. In addition, bagging treatments promote the accumulation of total acid. Thus, to some extent, bagging changed the taste of pummelo cultivars for eating quality. Taking the external and internal fruit quality into consideration, we considered that the best bagging time was at 35, 80, and 65 days after flowering for 'Sanhongmiyou', 'Hongroumiyou' and 'Huangjinmiyou'. This study will provide effective basis for bagging treatments in the pummelo producing area.

Acknowledgments

This work was financially supported by Sichuan Science and Technology Program (2019YFH0061, 2016NZYZF0019) and Chengdu Technological Innovation Research and Development Project (2018-YF05-00489-SN).

References

[1] Huang, C.J. (1997) Flora of China. Science Press, Beijing.
[2] Ye, Y.M. (1997) The diversity center of pummelo germplasm. South China Fruits, 26(1): 3–5.
[3] He, T.F. (1999) Grapefruit cultivation in China. China Agricultural Press, Beijing.
[4] Deng, X.X., Peng, S.A. (2013) Citrus. China Agricultural Press, Beijing.
[5] Huang, X.Z., Liu, X.M., Lu, X.K., Chen, X.M., Lin, H.Q., Lin, J.S., Cai, S.H. (2007) Hongroumiyou, a new red fleshed pomelo cultivar. J. Fruit Sci., 24(1): 123–124.
[6] Zhang, J.T. (2015) Field observation of characteristics and the high-quality and high-efficient cultivation techniques of 'Sanhongmiyou' pomelo. South China Fruits, 44(4): 109–112.

[7] Lu, X.K., Lin, Q.H., Lin, Y.J., Zhang, J.T., Zhang, S.M., Li, C.S. (2013) 'Huangjinmiyou', a new orange yellow fleshed pomelo cultivar. J. Fruit Sci., 30(5): 900–902.

[8] Hofman, P.J., Smith, L.G., Joyce, D.C., Johnson, G.I., Meiburg, G.F. (1997) Bagging of mango (Mangifera indica cv. 'Keitt') fruit influences fruit quality and mineral composition. Postharvest Biol. Tec., 12(1): 83–91.

[9] Kitagawa, H., Manabe, K., Esguerra, E.B. (1992) Bagging of fruit on the tree to control disease. Acta Hortic., 321: 870–875.

[10] Tyas, J.A., Hofman, P.J., Underhill, S.J.R., Bell, K.L. (1998) Fruit canopy position and panicle bagging affects yield and quality of 'Tai So' lychee. Sci. Hortic., 72(3-4): 203–213.

[11] Hu, G.B., Wang, H.C., Huang, H.B. (2001) Bagging improves storability of 'Feizixiao' litchi. Acta Hortic. Sinica, 28(4): 290–294.

[12] Lu, X.K., Lin, Y.J., Lin, Q.H., Jiang, C.C. (2014) High-quality and high-efficient cultivation techniques of 'Huangjinmiyou' pomelo. Southeast Hortic., 5: 66–69.

[13] Gou, L., Shan, Z. (2015) Biochemical Experimental technology. Chengdu: Southwest Jiaotong University Press.

[14] Li, L. (2009) Plant Physiology Module Experiment Instructions. Beijing: Science Press.

[15] Xiong, Q.E. (2003) Plant Physiology Experimental Course. Sichuan Science and Technology Press. pp 81–83.

[16] Li, P., Zheng, R.Q., Wen, H.L., Chen, W.G., Wu, Y.J., Luo, S. (2003) Effects of bagging on pigments and total phenol in Xinshiji Guava fruit skin. J. Fruit Sci., 20(2): 120-123.

[17] Zhao, Z.L. (2003) Effects on fruit quality and development of 'Changfu 2' by different bagging periods. Master's Dissertation. Baoding: Hebei Agricultural University.

[18] Wang, G.Y., Jing, L., Xia, R.X. (2003) Effect of bagging on fruit quality of Newhall navel orange. Subtrop. Plant Sci., 32(4): 8–10.

[19] Li, X.Q., Yang, Y.J., Zhang, Y.M. (2003) Effect of bagging on external fruit quality of South pear. J. He'nan Univ. Sci. Techno., 23(2): 20–22.

[20] Pan, Z.G., Xin, P.G. (1995) Effects of bagging on apple fruit quality and microenvironment analysis. Northern Hortic., 101: 21–22.

[21] Wang, C.M., Zhang, Q.M. (2005) Effect of bagging on fruit quality of Navel orange. Guangxi Hortic., 16(2): 2–4.

[22] Su, M.L., Zhou, Z.L., Lin, L., Li, J.X., Huang, G.X., Cai, J., Zhang, X.Y., Zhou, C.X. (2019) Effects of different bagging treatment on peel color and fruit quality of Sanhongmiyou. Agr. Res. Appl., 32(2): 9–12.

[23] Zhao, W.F., Zhang, Y.F., Liu, S.H., Wei, C.B., Shi, Z.H., Deng, D.H., Yang, W.X. (2019) Effects of different bagging time and bag materials on yield and quality of Pineapple. Guangdong Agr. Sinica.