Research Status and Molecular Mechanism of the Traditional Chinese Medicine and Antitumor Therapy Combined Strategy Based on Tumor Microenvironment

Yang Zhang†, Yanni Lou†, Jingbin Wang∥, Cungen Yu∥ and Wenjuan Shen‡∗

† Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China,
∥ Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China,
∥ Department of Spleen and Stomach Disease, Chinese Medicine Shenzhen Hospital, Guangzhou University, Shenzhen, China, ∥ Department of Chinese Medicine, Qinhuangdao Haigang Hospital, Qinhuangdao, China, ‡ Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China

Treatment of malignant tumors encompasses multidisciplinary comprehensive diagnosis and treatment and reasonable combination and arrangement of multidisciplinary treatment, which is not a simple superimposition of multiple treatment methods, but a comprehensive consideration of the characteristics and specific conditions of the patients and the tumor. The mechanism of tumor elimination by restoring the body’s immune ability is consistent with the concept of “nourishing positive accumulation and eliminating cancer by itself” in traditional Chinese medicine (TCM). The formation and dynamic changes in the tumor microenvironment (TME) involve many different types of cells and multiple signaling pathways. Those changes are similar to the multitarget and bidirectional regulation of immunity by TCM. Discussing the relationship and mutual influence of TCM and antitumor therapy on the TME is a current research hotspot. TCM has been applied in the treatment of more than 70% of cancer patients in China. Data have shown that TCM can significantly enhance the sensitivity to chemotherapeutic drugs, enhance tumor-suppressing effects, and significantly improve cancer-related fatigue, bone marrow suppression, and other adverse reactions. TCM treatments include the application of Chinese medicine monomers, extracts, classic traditional compound prescriptions, listed compound drugs, self-made compound prescriptions, as well as acupuncture and moxibustion. Studies have shown that the TCM functional mechanism related to the positive regulation of cytotoxic T cells, natural killer cells, dendritic cells, and interleukin-12, while negatively regulating of regulatory T cells, tumor-associated macrophages, myeloid-derived suppressive cells, PD-1/PD-L1, and other immune regulatory factors. However, the application of TCM in cancer therapy needs further study and confirmation. This article summarizes the existing research on the molecular mechanism of TCM regulation of the TME and provides a theoretical basis for further screening of the predominant population.
Moreover, it predicts the effects of the combination of TCM and antitumor therapy and proposes further developments in clinical practice to optimize the combined strategy.

Keywords: traditional Chinese medicine, cancer, immune ability, anti-tumor therapy, tumor microenvironment

INTRODUCTION

Cancer is one of the major noncommunicable chronic diseases that seriously affect human health (1–3). Although treatment methods and drug research and development continue to improve, many problems such as drug resistance and recurrence still hinder progress (4–9). The treatment of malignant tumors encompasses multidisciplinary comprehensive diagnosis and treatment (10–12) and reasonable combination and arrangement of multiple treatment methods including surgery, radiotherapy, chemotherapy, targeted therapy, immunotherapy, endocrine therapy, interventional therapy (13–19). Multidisciplinary treatment is not a simple superimposition of multiple treatment methods, but a comprehensive consideration of the characteristics and specific conditions of the patients and the tumor, leading to a planned and reasonable choice (20). While pursuing prolonged survival (21), attention should also be given to improving the quality of life of the patients (22).

Due to its huge population, China accounts for about a quarter of the world’s new tumors and deaths, leading to a serious disease burden (23–25). Traditional Chinese medicine (TCM) is a unique diagnosis and treatment method with thousands of years of history (26, 27). It is reported that most Chinese cancer patients have used TCM during the diagnosis and treatment process (28, 29). TCM is mostly used in the form of compound prescriptions in clinical oncology, including oral herbal medicines, granules or capsules, and injections (30). There are many pieces of research on Chinese medicine monomers and their active ingredients (31). Many researches have shown that TCM combined with antitumor therapy can achieve significant tumor suppression effects, reduce drug resistance, and improve adverse reactions and patient quality of life (32–36). In recent years, targeting the immune checkpoints CTLA-4, PD-1, and PD-L1 has led to breakthroughs in a variety of cancer types (37–39). The mechanism of tumor eradication by restoring the body’s immune ability is consistent with the concept of “nourishing positive accumulation and eliminating cancer by itself” or “strengthening vital Qi to treat cancer” in TCM (40, 41).

Abbreviations: Non-small cell lung cancer, NSCLC; Chemotherapy, CT; Traditional Chinese medicine, TCM; Disease control rate, DCR; Interleukin 2, IL-2; Interleukin 10, IL-10; Interferon-γ, IFN-γ; Gemcitabine, G; Matrix metalloprotein-2, MMP-2; Matrix metalloprotein-9, MMP-9; Natural killer cells, NK; Tumor necrosis factor α, TNF-α; High sensitivity C-reactive protein, hs-CRP; Vascular endothelial growth factor, VEGF; Gemcitabine & cisplatin, GP; Paclitaxel & cisplatin, TP; Transforming growth factor β 1, TGF-β1; Fluorouracil & Oxaliplatin & calcium folinate, FOLFOX; Doxorubicin, DOX; Hypoxia inducible factor 1α, HIF-1α; Monocyte chemoattractant protein-1, MCP-1; Myeloid suppressor cells, MDSCs; Insulin-like growth factor 2, IGF-2; Fluorouracil & adriamycin & chloramphenicol, FAP; Cisplatin, DDP; Paclitaxel & cyclophosphamide, TC; Methotrexate & actinomycete D & calcium folinate & vincristine sulfate & cyclophosphamide, EMA-CO; Paclitaxel & gemcitabine, GT; Cisplatin & docetaxel, DC; Gemcitabine & Cisplatin, GP.

The tumor microenvironment (TME) (42, 43) is formed by the structural components such as tumor cells, endothelial cells, fibroblasts, immune cells, extracellular matrix, and secreted cytokines. It has three main roles: inhibiting the immune response, promoting angiogenesis, and growing cancer stem cells. Chronic inflammation (44, 45) and immunosuppression (46, 47) are the core features of the TME. Chronic inflammation leads to low oxygen levels, low pH, high pressure in the microenvironment, and the prolonged existence of inflammatory factors such as tumor necrosis factor (TNF) that maintain and continuously aggravate the inflammatory features of the TME. The hypoxic microenvironment increases hypoxia inducible factor (HIF) levels, induces the formation of new blood vessels, modifies the vascular endothelial growth factor (VEGF), and recruits bone marrow-derived endothelial progenitor cells to form new blood vessels. The TME enables a large number of regulatory T cells (Tregs) that penetrate and accumulate in tumor tissues, inhibit the differentiation and maturation of effector cells such as lymphocytes, macrophages, dendritic cells (DC), and isolate them from tumor tissues to inhibit immune responses. The immunosuppressive microenvironment is closely related to the “deficiency of vital Qi” in Chinese medicine (48). The “syndrome” of TCM involves multiple systems and levels of Western medicine. TCM treatment of cancer pays attention to overall regulation whether it is to strengthen the body (Fu Zheng) or eliminate evil (Qiu Xie). Its advantage lies in regulating the tumor-host microenvironment, allowing normal immune cells to perform their duties, so that there is no environment for tumor cells to survive, and causing apoptosis or autophagy (49–51).

In this review, we mainly discuss, from the perspective of TME regulation, the studies on the combined application of TCM and anticancer treatments. Further screening of dominant populations and predictors will help optimize the joint strategy and provide a theoretical basis for clinical practice.

TCM COMBINED WITH CHEMOTHERAPY

Chemotherapy is still the cornerstone of anticancer therapy. As one of the most important treatments for advanced stage cancer, chemotherapy compatibility ensures the correct combination of chemotherapeutic drugs and the combination of chemotherapy and other types of treatment. There are many clinical and preclinical studies on the combination of TCM treatment and chemotherapy.

The clinical studies on TCM combined with chemotherapy for anticancer treatment research have been mainly published in Chinese journals (Table 1). The studied cancer types include lung cancer (52–58), digestive system cancer (gastric/liver/esophageal cancer) (59–63), gynecological cancer (ovarian...
Cancers	Formulation	Herbal medicine	Group and Number of cases	Effect of Combination	Upregulate	Downregulate	Refs.
Lung Cancer							
NSCLC	Compound	Baihe Gujin Decoction (Rehmannia, Rehmannia, Carl, album AGLAOPHOTIS, illum, Frittillaria, Ophiopogon, Betiflower, Scrophulariae, radis Licoria)	TOM + DC vs DC = 48 vs 48	DCR 89.6% vs 72.9% (p<0.05)	CD3+, CD4+, CD4+/CD8+, IL-2, and INF-γ	CD8+, IL-4, IL-10	He and Huang (52)
	Compound	Bushen Yifei Jiedu Decoction (Xianling lenis contegentem membranam, Ligusticum lucidum, Ganoderma lucidum, Crud astragalus, Radx Angelicae Ginseng, Pinellia, Atractylodes, Germen stone, aesculus aesculus, Shansi Fungorum aurea Buck wheat, etc)	TOM + CT vs CT = 30 vs 30	/	/	/	Wang et al. (63)
	Compound	Jinfukang Oral Liquid (Astragalus, Ophiopogon japonicus, Adenophora glabria, Ligusticum lucidum, Cornus alba, etc)	TOM + G vs G = 60 vs 60	DCR 91.67% vs 75% (p<0.05)	/	MMP-9	Zhang et al. (54)
	Compound	Yifei Qinghua Granule (American Ginseng, Adenophora, Atragalus, Ophiopogon japonicus, Patrinia vulgaris, Oldenlandia diffusa, Panax notoginseng, Citrus aurantium, STILIO, etc)	TOM + CT vs CT = 101 vs 101	DCR 81.19% vs 64.36% (p<0.05)	CD3+, CD4+, CD4+/CD8+, IL-6, TNF-α, his-PR	CD8+, IL-6, CD8+, CD4+/CD8+, NK	Wang et al. (55)
	Compound	Yanghe Decoction (Muta Rehmannia, cornibus gum, eruca alba semina, ephedra, cinnamo, gingiberi, Jujube)	TOM + TP vs TP = 32 vs 32	DCR 84.4% vs 68.9% (p<0.05)	/	VEGF, MMP-2, MMp-9	Liu et al. (56)
	Compound	Shenni Fuzheng Injection (Codonopsis, Astragalus)	TOM + TP vs TP = 41 vs 38	DCR 90.2% vs 76.3%, PFS 19m vs 13m, OS 43m vs 29m (p<0.05)	Th17	/	Treg et al. (57)
	Compound	Kanglai Injection (Coix Oil)	TOM + GP vs GP = 36 vs 36	DCR 91.67% vs 69.34% (p<0.05)	/	VEGF, PS3, anti-Survivin antibody	Wang et al. (58)
Digestive system cancer	Compound	Compound Kushen Injection (Sophora faveosens, Berberis vulgaris uniseriale)	TOM + FOLFOX vs FOLFOX = 39 vs 39	DCR 97.44% vs 87.18% (p<0.05)	hydrogen sulfide, CD3+, CD8+, CD4+, CD8+, CD4+/CD8+, /	IL-6, TGF-β1	Meng et al. (59)
Gastric Cancer	Compound	Buzhong Guben Yiwei Decoction (Atractylodes movent-frixum, Ginseng, Atragalus, Poria, tangerine cortices, Chuanxiong, Carl, Frittillaria, Cyperus rotundus, album AGLAOPHOTIS, Bupleurum falcatum, amomi, Phatycodon, lignei, Licorica, gingiberi, Jujube)	TOM + FOLFOX vs FOLFOX = 50 vs 50	DCR 66% vs 38% (p<0.05)	/	/	Wang and Zhang (60)
	Compound	Yanghe Decoction (Muta Rehmannia, cornibus gum, eruca alba semina, ephedra, cinnamo, gingiberi, Licorica)	TOM + DOX vs DOX = 60 vs 60	DCR 85% vs 68.3% (p<0.05)	IFN-γ	HIF-1α, IL-10, TGF-β1, MIF, MCP-1, MDCS, MDC, Tregh	Tian et al. (61)
Carcinoma	Compound	Chaihu Zaouxiu Decoction (Bupleurum falcatum, Fusarium oxysporum, Poria, rubrum AGLAOPHOTIS, album AGLAOPHOTIS, Rubia, Angelica, Turmeric, Cyperus rotundus: Scutellaria, Curcuma, totum cucumis, Cruda turtur, Polygonum cuspidatum, Licorica)	TOM + FAP vs FAP = 40 vs 40	ORR 35% vs 22.5% (p<0.05)	IL-2	MMP-2, MMP-9, VEGF, IGF-2	Wang et al. (62)
Esophageal Cancer	Compound	Buyi Zhiai Decoction (Ginseng, Poria, Atragalus, Carl, album AGLAOPHOTIS, Rehmannia, Atractylodes, Licorica, Shouwu, CISSANTHEMOS, dandelion, Taraxacum)	TOM + DDP vs DDP = 53 vs 53	/	CD4+, CD4+/CD8+, CD8+, IgA, IgG, IgM	/	Feng et al. (63)
Gynecological cancer							

(Continued)
Cancers	Formulation	Herbal medicine	Group and Number of cases	Effect of Combination	Upregulate	Downregulate	Refs.	
Ovarian Cancer	Compound (Listed drug, injection)	Shenqi Fuzheng Injection (Codonopsis, Astragalus)	TOM + TC vs TC = 55 vs 50	DCR 70.9% vs 50% (p<0.05)	CD3+, CD4+, CD4+/CD8+	/	Wei and Li (64)	
Choriocarcinoma	Compound (Self-made, oral)	Fuzheng Yiliu Formula (Astragalus, Ligustrum lucidum, Oldenlandia diffusa, Scutellaria barbata, Fritillaria, Salvia, muta Rehmannia, Codonopsis, rubrum AGLAOPHOTIS, futurist awards, Poria, Atractylodes, Carlo, Polygonatum, Zhihe, Gynostemma, Pinellia, Licoricia, auranolce cortices, three-lens)	TOM + EMA-CO vs EMA-CO = 46 vs 48	DCR 73.91% vs 47.83% (p<0.05)	CD3+, CD4+, CD4+/CD8+	CD8+	Zhang et al. (65)	
Triple-negative Breast Cancer	Compound (Self-made, oral)	Huangqi Jiedu Decoction (Astragalus, Scutellaria barbata, Coix semen Oldenlandia diffusa, Radix Angelicae Scrophulariaceae, Gentianaceae, Ligustrum lucidum, solanum, Atractylodes, Poria Cocos, Ophiopogon japonicus: Fungorum Shanzi, Fritillaria, Licorice)	TOM + GT vs GT = 51 vs 51	DCR 78.4% vs 58.8% (p<0.05)	IL-2, IFN-γ, IL-2/IL-6, IFN-γ/IL-6	IL-6	Yang et al. (66)	
Breast Cancer	Compound (Listed drug, injection)	Shenqi Fuzheng Injection (Codonopsis, Astragalus)	TOM + D vs DEC = 50 vs 50	DCR 84% vs 64% (p<0.05)	CD3+, CD4+, CD4+/CD8+, CD80, CD83, CD86	CD8+	Lu et al. (67)	
Cervical Cancer	Monomer (Listed drug, injection)	Matrine Injection	TOM + DC vs DC = 35 vs 35	DCR 94.29% vs 71.43% (p<0.05)	IL-18, IFN-γ, IL-6, CD3+, CD4+, CD4+/CD8+	IL-6	Du et al. (68)	
Others	Bladder Cancer	Monomer (Listed drug, injection)	Matrine Injection	TOM + GP vs GP = 39 vs 42	DCR 97.43% vs 87.5% (p = 0.034), PFS 12.64m vs 10.37m, OS 18.63m vs 15.09m (p<0.001)	CTL, NK	Treg	Han et al. (69)
cancer, choriocarcinoma, breast cancer) (64–68), and bladder cancer (69). The observed drugs are mainly compound herbal medicines, including classic prescriptions [Baihe Gujin decoction (52), Yanghe decoction (61)], listed drugs [Shenqi Fuzheng injection (57, 64, 67), Kanglaite injection (58), compound Kushen injection (59), Aidi injection (59), Jinfukang oral liquid (54), Yifei Qinghua granules (55)], a variety of self-made empirical formulas (53, 56, 60, 62, 63, 65, 66), and monomeric Chinese medicines or their components (matrine) (68, 69). The results consistently show that TCM can help improve the quality of life self-report scores also show significant improvement. Regarding the regulation of tumor immune function, clinical studies mainly detected immune-related factors in peripheral blood. The results concluded that TCM combined with chemotherapy can upregulate CD3+, CD4+, and CD4+/CD8+ (52, 55, 59, 60, 64, 65, 67, 68), interleukin-2 (IL-2) (52, 62, 66), interferon-gamma (INF-γ) (52, 61, 66, 68), natural killer cells (NK) (55, 69), and cytotoxic T lymphocytes (CTL) (69), while downregulating IL-6 (55, 59, 66, 68), IL-10 (52, 61), transforming growth factor-β1 (TGF-β1) (59, 61), vascular endothelial growth factor (VEGF) (58, 62), matrix metalloproteinase-2 (MMP-2), MMP-9 (54, 56, 62), Forkhead box protein 3 (Foxp3), and B7-H3 (53), and Tregs (57, 61, 69). However, there are also inconsistencies between different research results for some indicators.

Table 2. Cell and animal experiments present more in-depth research on the mechanism of TCM improvement of chemotherapeutic efficacy. The observed drugs include Chinese medicine monomers [curcumin (70–73), ginsenoside Rg3 (74)], extracts [Ginseng and Astragalus (75)], classic traditional compound prescriptions [Huangqin decoction PHY906 (76, 77), Shiquan Dabu decoction (78)], listed compound drugs [Shexiang Baoxin pill (79)], and self-made compound prescriptions (80, 81). The most representative ones are curcumin, PHY906, and tonic Chinese medicines. The combination of curcumin and chemotherapy has been proven to overcome multidrug resistance [FOLFOX (70), oxaliplatin (71, 73), 5-Fu (72)] through a number of in vivo and in vitro studies. The effect of this combined chemotherapy may upregulate Bax, caspase-3, and PARP and downregulate EGFRs (such as IGF-1R), Bcl-2, survivin, HSP70, Nrf2, Bcl-2/Bax, NF-κB, p-p65, and TGF-β/Smad2/3. PHY906 is derived from the classic formula Huangqin decoction; however, instead of the separation and purification of the possible active compounds, it is taken as a whole. In-depth research via animal experiments, clinical trials, and quality control of PHY906 have been conducted. Results showed that PHY906 could significantly increase the antitumor activity of CPT-11, decreasing toxicity in normal tissues while promoting cell death within the TME, and that its effect may be upregulated by IRF-1, IRF-5, CCL-2/ MCP-1, and CCL-5/RANTES. Tonic Chinese medicines include monomers, water extracts, the classic compound Shiquan Dabu decoction, or self-made prescriptions, and their mechanism of action may be related to the regulation of macrophage polarization, the reduction of epithelial cell-mesenchymal transition, and cell stemness.

TCM COMBINED WITH TARGETED THERAPY OR IMMUNOTHERAPY

Unlike the destructive antitumor effects of traditional chemotherapy, new molecular targeted therapies target specific molecular changes in cancer (16). They have achieved significant effects in clinical practice in recent years and have also triggered a change in the concept of anticancer treatment. The immunotherapeutic approach involves the restart and maintenance of the tumor immune cycle, the restoration of the body's normal antitumor immune response, and the control and elimination of cancer, by means such as monoclonal antibody immune checkpoint inhibitors, therapeutic antibodies, tumor vaccines, cell therapy, and small molecule inhibitors. Among them, PD-1 inhibitors lead the treatment of malignant tumors into a new era of immunotherapy (17, 38, 39). There are currently many studies on the combined application of TCM and targeted drugs or immunotherapy, focusing on improving efficacy, reversing drug resistance, and reducing adverse reactions. Some research results describing the impact of TCM combined with targeted drugs (Table 3) and immunotherapy (Table 4) on the TME have been released; however, there are still more treatment aspects that need further clarification.

In addition to evaluating the immune function of peripheral blood, some studies involved the detection of tumor-specific markers and tumor tissue-related factors to evaluate the invasion ability of tumors. Clinical studies on non-small-cell lung carcinoma (NSCLC) (82), hepatocellular carcinoma (83), and ovarian cancer (84) use compound preparations, including classic traditional formula Xuefu Zhuyu decoction; however, instead of the separation and purification of the possible active compounds, it is taken as a whole. In-depth research via animal experiments, clinical trials, and quality control of PHY906 have been conducted. Results showed that PHY906 could significantly increase the antitumor activity of CPT-11, decreasing toxicity in normal tissues while promoting cell death within the TME, and that its effect may be upregulated by IRF-1, IRF-5, CCL-2/ MCP-1, and CCL-5/RANTES. Tonic Chinese medicines include monomers, water extracts, the classic compound Shiquan Dabu decoction, or self-made prescriptions, and their mechanism of action may be related to the regulation of macrophage polarization, the reduction of epithelial cell-mesenchymal transition, and cell stemness.
Cells Type	Formulation	Herbal medicine	Chemo	Effect of Combination	Upregulate	Downregulate	Refs.	
HCT-116 and HT-29, LoVo-xenograft; HCT-8/5–Fu cells	In vivo and in vitro	Monomer	Curcumin	FOLFOX/ Oxa/5-Fu	Confirmed the reversal effect on multidrug resistance	Bax, caspase-3, and PARP	EGFRs and IGF-1R, Bcl-2, survivin, HSP70, Nrf2, Bcl-2/Bax, NF-κB p-p65, TGF-β/Smad2/3	Patel et al. (70) Guo et al. (71) Zhang et al. (72) Yin et al. (73) Wang et al. (74)
SPC-A1, H1299, A549 cell lines	In vivo and in vitro	Monomer	Ginsenoside Rg3	DDP	Increase the sensitivity to DDP	/	NF-κB, EMT and stemness	Wang et al. (75)
A549 cells and Lewis lung carcinoma (LLC1)	In vivo and in vitro	Compound extract	WEGA (Water extract of ginseng and astragalus)	DDP	Effectively inhibited the transplanted tumor growth and improved weight loss and immunosuppressive	Inhibited A549 cell proliferation, M1 macrophage markers	M2 TAMs markers	Chen et al. (75)
Colon 38 tumors	In vivo	Compound (Classic)	PHY906 (Glycyrrhiza uralensis Fisch, Paeonia lactiflora Pall, Scutellaria baicalensis Georgi, and Ziziphus jujuba Mill)	CPT-11	Increased the antitumor activity of CPT-11 while decreasing animal weight loss caused by CPT-11; decrease toxicity in normal tissues while promoting cell death within the tumor microenvironment	IRF-1, IRF-5, CCL-2/MCP-1 and CCL-5/ RANTES	/	Lam et al. (76) Wang et al. (77)
B6F10 Melanoma cells	In vivo and in vitro	Compound (Classic)	Shiquan Dabu Decocction (Ginseng, calami similiter ducentos quinquaginta, Chuanxiong, Rehmannia, Poria, Atractylodes, Licoricia, Astragalus, Carlo, etc)	DDP	Inhibit the proliferation of melanoma, promote apoptosis and the proliferation of mouse spleen lymphocytes, enhance the anti-tumor effect	IL-4	IL-1β	Zhang et al. (78)
Murine LLC cells	In vivo and in vitro	Compound (Listed drug)	Shexiang Baoxin Pill (Artificial Moschus, Cortex cinnamonic, Borneolum, Radix ginseng, Calculus bovis, Styx, Venenum Bufonis)	GEM	Enhance the effective treatment performance while minimizing the toxic side effects	tumor angiogenesis, blood perfusion, vascular permeability, and vessel dilation	a-SMA, collagen	Yang et al. (79)
Lewis lung carcinoma (LLC1)	In vivo and in vitro	Compound (Self-made)	JC-001 (Bupleurum chinense DC, Gentiana scabra Bge., Rheum palmatum L., Olibanum mongolica Buch.-Ham., Carthamus tinctorius L., Prunus persica (L.) Batsch, Angelica dahurica (Fisch. ex Hoffm.) Benth. et Hook. f., Siegesbeckia orientalis L., Glycyrrhiza uralensis Fisch. and Solanum incanum L.)	DDP	JC-001 suppressed foci formation and reduced the viability of LLC1 cells in vitro, increased the chemosensitivity to CDDP in vivo	IL-2, IL-10, TNF-α and INF-γ; enhanced the Th1 response	IL-17A, TGF-β	Chuang et al. (80)
CNE2 cells nasopharyngeal carcinoma	In vivo	Compound Granules	Qi-Boosting Toxin-Resolving Granules (Rudis Astragalus, Coptis, Oldenlandia diffusa, etc)	DDP	Apoptotic rate was significantly higher	INF-γ, Foxp3	IL-17, TGF-β, ROR-γt mRNA	Hu et al. (81)
Cancers	Type	Formulation	Herbal medicine	Targeted therapy	Effect of Combination	Upregulate	Downregulate	Refs.
-----------------------	----------------	--	---	-----------------------------------	--	---------------------	------------------------------------	--------
NSCLC	Clinical	Compound (Classic, oral)	Xuefu Zhuyu Decoction (Angelica, peach kernel, chuanxiong, safflower, red peony root, achyranthes, bupleurum, citrus aurantium, platycodon, habitat, mountain mushroom, oldenlandia diffusa, shuyangquan, gecko, licorice)	TCM + gefitinib/erlotinib vs gefitinib/erlotinib = 39 vs 39	DCR 56.4% vs 48.7% (p<0.05) T cell, Th, Tc	Calmodulin, matrix metalloproteinase-9 (MMP-9), hMCP1, M1/M2, AMPK, p-ERK, MPP-9	Li et al. (82)	
Hepatocellular Carcinoma	Clinical	Compound (Listed drug, injection)	Shenqi Fuweng Injection (Codonopsis, Astragalus)	TCM + sorafenib vs sorafenib = 44 vs 44	DCR 97.7% vs 86.4% (p<0.05) CD4*	CD8*, CXCR3, mIR-103	Lu et al. (83)	
Ovarian cancer	Clinical	Compound (Self-made, oral)	Yiqi Yangyin Decoction (Seres yam, Astragalus, Habitat, Polygonatum, Scrophulariaceae, Ligustrum lucidum, Zingiber turmeric, Shanzi fungus Prunella vulgaris, Platycodon grandiflorum, Jujube)	TCM + bevacizumab vs bevacizumab = 43 vs 37	/	CD3*, CD4*, CD4+/CD8*, IL-2, INF-γ	CD4+CD25*, IL-6, IL-10, VEGF, CD133, DDX4	Guli et al. (84)
HCC cells	in vitro and in vivo	Compound (Listed drug, injection)	Compound Kushen Injection (Sophora flavescens, Berberis vulgaris uniseriale)	sorafenib	Enhanced the anticancer activity of sorafenib at a subclinical dose with no obvious side effects, triggering TNFR1, mediated NF-kB and p38 MAPK signaling cascades	/	Yang et al. (85)	
Gastric AGS cells	in vitro	Monomer component	Astragalus polysaccharide (APS)	apatinib	Remarkable increase in apoptosis p-AKT, MMP-9	/	p-AKT, MMP-9	Wu et al. (86)
Pancreatic cancer cell lines	in vitro	Monomer component	Astragalus polysaccharide (APS)	apatinib	Enhanced inhibitory effects on cell migration and invasion, and increased cell apoptosis percentage potentiate the anti-hepATOMA activity	/	p-AKT, p-ERK, MPP-9	Wu et al. (87)
HepG2 xenografts	in vivo	Compound (Classic, oral)	PHY906 (KD018)	sorafenib	/	hMCP1, M1/M2, AMPKα-P and ULK1-SS55-P, ERK1/2-P	Lam et al. (88)	
Cancers	Type	Formulation	Herbal medicine	Immunotherapy	Effect of Combination	Upregulate	Downregulate	Refs.
-------------------------	---------------	----------------------------------	--	---	---	------------	--------------	-----------
WEHI-3 leukemia or EL4	in vitro	Monomer component	PG2 (A polysaccharide isolated from the radix of Astragalus membranaceus)	/	/		PD-L1 on the cell surface	Chang et al. (91)
lymphoblast cells				via the protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase beta-1 (p70S6K) pathway	IL-2, IFN-γ	/		
Diffuse large B cell	in vitro	Monomer component	Ginsenoside Rg3	PD-1 inhibitor	enhance the anti-tumor effect and proliferation of T cells, inhibiting apoptosis, increasing the secretion of cytokine			
cell lymphoma					PD-L1 on the cell surface			
TC-1	in vivo	Monomer component	Glycyrrhiza uralensis water extract	HPV dendritic cell-based vaccine	dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway			
					PD-L1			
MB79 bladder cancer	in vivo	Monomer component	Bisdemethoxycurcumin	α-PD-L1	significantly prolonged survival of intraperitoneal metastasized bladder cancer bearing mice			
					PD-L1			
CT26 colon cancer	in vivo	Compound (Classic)	Gegen Qinlian Decoction	anti-mouse PD-1	Gut microbiota analysis revealed that combination significantly enriched for s: Bacteroides acidificiens and s:uncultured_organism_g:norank_f:Bacteroidales_S24-7_group.			
					PD-L1			
CT26 colon cancer	in vivo	Compound (Classic)	ninjin’yoeito (NYT, Renshen Yangrong Decoction)	tumor vaccine	synergistically enhances the effects of the prophylactic tumor vaccine			
					CD8+ T cells	Tregs: CD4		
					+CD25-Fopx3			
B16 melanoma cancer	in vivo	Compound (Classic)	Juzentaihoto (JTT, Shiquan Dabu Decoction)	anti-PD-1 antibody	significantly suppressed B16 cell metastasis		IL-12, IFN-γ, NK	
Advanced stage cancer	Clinical	Compound (Classic, oral)	Guipi Decoction	tumor vaccine	CD3+, CD4+, CD8+, NK			
Castration-resistant prostate cancer	Clinical	Compound (Classic, oral)	Hochu-eikki-to (Buzhong Yiqi Decoction) and Keshi-bukuyo-gan (Guizhi Fuling Pills)	Personalized Peptide Vaccine (PPV)	well tolerated without severe adverse events.		Mo-MDSC, IL-6	

Note: The table provides a summary of the influence of traditional Chinese medicine (TCM) combined immunotherapy on various cancer types. Each entry includes the cancer type, formulation, herbal medicine, immunotherapy used, effect of combination, and regulatory changes.
Whether tonic herbal medicine be used in combination with immunotherapy is one of the issues that Chinese cancer patients are extremely concerned about; moreover, it is a very controversial issue for cancer clinicians. Research on the combination of TCM and immunotherapy mainly includes in vivo and in vitro studies, while clinical studies are rarely conducted. The TCM studied mostly include tonic drugs or their components: Astragalus (91), ginsenoside Rg3 (92), Glycyrrhiza uralensis water extract (93), and bisdemethoxycurcumin (94). Most of the compound prescriptions are classic medicines, including Gegen Qinlian decoction (95), Renshen Yangrong decoction (96), Shiquan Dabu decoction (97), Guipi decoction (98), and Buzhong Yiqi decoction (99). The components of Astragalus can downregulate PD-L1 on the tumor cell surface, which may be related to the AKT/mTOR/p70S6K pathway (91). In vivo studies have shown that TCM combinations have a positive effect on therapeutic curative potential and tumor inhibition. Some studies also explored the intestinal flora; however, in clinical observation, the main observed effect remains the improvement of symptoms. Both TCM treatment and immunotherapy have systematic and complex characteristics. Determining whether TCM affects the efficacy or the adverse effects of immunotherapy by regulating the TME and related factors necessitates further research.

TCM COMBINED WITH LOCAL TREATMENT

Malignant tumors require different treatment strategies according to the different stages of the disease. Additionally, local treatment plays an important role in the treatment of cancer. Early radical surgery is the most effective way to obtain a curative effect and long-term survival. Radiotherapy and interventional therapy can obtain survival benefits and symptom improvement through the control of local lesions. The combined citation of TCM and local treatment have been clinically observed to reduce perioperative complications, promote the recovery of immune function, reduce recurrence and metastasis, and improve long-term prognosis. The TCM involved are mostly listed drugs (Table 5), and research on their mechanism of action is relatively lacking and limited to peripheral blood immune function detection.

DISCUSSION

The clinical application of TCM has a long history, and its treatment principles and philosophy have a unique system. With the continuous improvement of research methods, our understanding of TCM is deepening. The study of herbal medicine monomers and their components is relatively easy to explain; however, compound prescription and compatibility are more characteristic of TCM holistic thinking. TCM has its advantages and specifics in the treatment of cancer. In addition to reducing the side effects of antitumor treatment and improving the symptoms and patient quality of life, it also

Cancer Type	Formulation	Local treatment	Effect of Combination
NSCLC	Clinical Compound (Listed drug, injection)	TCM + gknife vs gknife = 20 vs 20	/ IgA, IgG, IgM, CD3+, CD4+, CD4+/CD8+, NK; Saghg, TSGF
Lung cancer	Clinical Compound (Listed drug, injection)	TCM vs control = 30 vs 30	/ IgA, IgG, IgM, CD3+, CD4+, CD4+/CD8+, NK; Saghg, TSGF
Triple-negative Breast Cancer	Clinical Compound (Listed drug, injection)	TCM vs control = 30 vs 30	/ IgA, IgG, IgM, CD3+, CD4+, CD4+/CD8+, NK; Saghg, TSGF
Primary liver cancer	Clinical Compound (Listed drug, injection)	TCM + intervention = 30 vs 30	/ IgA, IgG, IgM, CD3+, CD4+, CD4+/CD8+, NK; Saghg, TSGF

Table 5 | Influence of traditional Chinese medicine (TCM) Combined Local treatment (Peri-operation, gknife, interventional therapy).
“supports the healthy Qi” and restores the body’s own immune system. It can improve efficacy and prolong survival in the comprehensive treatment of cancer.

Many studies on the monomers or components of herbal medicine have confirmed that they affect related factors in the TME; however, their effects in a more complex system are relatively unexplored. This review summarizes and analyzes the influence and effect of TCM in combination with antitumor therapy, including chemotherapy, targeted therapy, immunotherapy, the perioperative period, radiotherapy, and interventional therapy. Relevant Chinese medicines include marketed drugs (injections, oral liquids, and tablets), traditional prescriptions, and self-developed experiential prescriptions, as well as many Chinese medicinal monomers or ingredients. Toxic drugs are the main active agents, including multiple treatments such as replenishing Qi, invigoration of the spleen, promoting blood circulation, eliminating phlegm, clearing heat, and dispelling stagnation. It is well known that the immune system of body, plays defensive, protective and eliminative roles on tumor cells. For example, NK cells can directly recognize and eradicate tumor cells; Dendritic cells (DCs) can activate adaptive immunity; macrophages (M) can kill tumor cells by generating cytotoxicity, which related to the production of effector molecules and accompanying phagocytosis. Clinical studies have shown that adding TCM to the treatment strategy can significantly improve patient symptoms without increasing adverse reactions, with a tendency to prolong survival. The detection of peripheral blood-related immune factors suggests that TCM has a regulatory effect on immune function and that it can promote a healthy Th1/Th2 balance and regulate the polarization of macrophages. Peripheral blood is the most commonly used medium for disease diagnosis and has been widely accepted by patients for noninvasive molecular diagnosis. In addition, compared with the tumor tissue sample, the dynamic change of macroenvironment is ignored, and the peripheral blood can be compared with the tumor tissue sample, the dynamic change of patient for noninvasive molecular diagnosis. In addition, compared with the tumor tissue sample, the dynamic change of macroenvironment is ignored, and the peripheral blood can be sampled for many times regularly, which is convenient for monitoring. In relevant in vivo and in vitro studies, possible mechanisms of action have been discussed, including the classical NF-xB, AKT, and TLR4 signaling pathways and the intestinal flora. However, TCM treatment still needs to go through top-level design, good quality control, reverse verification, and in-depth research that can reproduce results to demonstrate the role of TCM in the comprehensive treatment of tumors and clarify its therapeutic mechanism.

CONCLUSIONS

Cancer treatment has multiple stages and high complexity, and the optimal approach includes multidisciplinary comprehensive diagnosis and treatment. TCM has its unique advantages and characteristics that are different from other types of antineoplastic treatment, and these should not be ignored. However, current research results cannot clearly explain the dominant population and mechanism of effect of TCM combined with antitumor therapy; however, the impact on the TME may be the core principle of this approach. More evidence-based experimental research is still needed to provide a basis for formulating better combined strategies for cancer treatment.

AUTHOR CONTRIBUTIONS

YZ, YL, and WS conceptualized and designed the review. YZ and YL wrote the manuscript. JW, CY, and WS revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work is supported by the National Natural Science Foundation of China (No. 81973601 and No. 81904003), and the Beijing Municipal Natural Science Foundation (No. 7202184).

ACKNOWLEDGMENTS

We would like to thank Editage (www.editage.cn) for English language editing.

REFERENCES

1. Freddie BBMP, JF ME. Isabelle Soerjomataram MD MP, MPH RLS, MSPH LAT, Ahmedin Jemal PhD D. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin (2018) 68:394–424. doi: 10.3322/caac.21492
2. Fidler MM, Bray F, Soerjomataram I. The global cancer burden and human development: A review. Scand J Public HEALT (2018) 46:27–36. doi: 10.1177/1403494817715400
3. Camilla M, Giuseppe L. Cancer statistics: a comparison between World Health Organization (WHO) and Global Burden of Disease (GBD). Eur J Public Health (2019) 30:1026–27. doi: 10.1093/eurpub/ckz216
4. Neil V, Jose B, M HD. A view on drug resistance in cancer. Nature (2019) 575:299–309. doi: 10.1038/s41586-019-1730-1
5. Nikolou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastas (2018) 55:309–18. doi: 10.1007/s10585-018-9903-0
6. Ankur G, Kumardeep C, Rahul K, Sudheer G, Harinder S, RGP S. Managing Drug Resistance in Cancer: Role of Cancer Informatics. Methods Mol Biol (Clifton NJ) (2016) 1395:299–312. doi: 10.1007/978-1-4939-3347-1_17
7. Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Liné A, Machuqueiro M, et al. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Update (2019) 46:100645. doi: 10.1016/j.drup.2019.100645
8. M GM, Orit L, D HM, Jean-Pierre G. Toward a Better Understanding of the Complexity of Cancer Drug Resistance. Annu Rev Pharmacol (2016) 56:85–102. doi: 10.1146/annurev-pharmaco.610715-103111
9. N AS, Robert E, R SE, D SCM. Fear of cancer recurrence: A qualitative systematic review and meta-synthesis of patients’ experiences. Clin Psychol Rev (2019) 68:13–24. doi: 10.1016/j.cpr.2018.12.001
10. Pillay B, Wooten AC, Crowe H, Corcoran N, Tran B, Bowden P, et al. The impact of multidisciplinary team meetings on patient assessment, management and outcomes in oncology settings: A systematic review of the literature. Cancer Treat Rev (2016) 42:56–72. doi: 10.1016/j.ctrv.2015.11.007
Zhang et al. TCM and Tumor Microenvironment

11. Rogers MJ, Matheson L, Garrard B, Maher B, Cowdery S, Luo W, et al. Comparison of outcomes for cancer patients discussed and not discussed at a multidisciplinary meeting. Public Health (2017) 149:74–80. doi: 10.1016/j.puhe.2017.04.022

12. PhD IPD, MB MPH, CA MPH, Kathleen M, Castro RN MA, Brandys B, et al. multidisciplinary treatment planning in US cancer care settings. Outcomes Cancer-Am Cancer Soc (2018) 124:3656–67. doi: 10.1002/cncr.31394

13. Wyld L, Audisio RA, Poston GJ. The evolution of cancer surgery and future perspectives. Nat Rev Clin Oncol (2015) 12:115–24. doi: 10.1038/nrclinonc.2014.191

14. Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol (2015) 12:527–40. doi: 10.1038/nrclinonc.2015.126

15. Stefan B. Molecular precision chemotherapy: overcoming resistance to targeted therapies? Clin Cancer Res (2014) 20:1064–6. doi: 10.1158/1078-0432.CCR-13-3194

16. Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: Treating cancer with precision. Eur J Pharmacol (2018) 834:28–32. doi: 10.1016/j.ejphar.2018.07.034

17. Guo Q, Huang F, Goncalves C, Rincón SVD, Miller WH. Translation of cancer immunotherapy from the bench to the bedside. Adv Cancer Res (2019) 143:1–62. doi: 10.1016/bs.acr.2019.03.001

18. Fabian CJ, Visvanathan K, Somerfield MR. Use of Endocrine Therapy for Breast Cancer Risk Reduction: ASCO Clinical Practice Guideline Update 2019. J Oncol Pract (2019) 15:660–10. doi: 10.1200/JOP.19.00379

19. AS S, CM R, TP T, KP G, BG M, Helen B, et al. Clinical Development of Novel Drug-Radiotherapy Combinations. Clin Cancer Res An Off J Am Assoc Cancer Res (2019) 25:1455–61. doi: 10.1158/1078-0432.CCR-18-2466

20. Linda H, Cath T, Magda Z, Ross W, Emma P, James G. Improving the effectiveness of cancer multidisciplinary team meetings: analysis of a national survey of MDT members’ opinions about streamlining patient discussions. BMJ Open Qual (2019) 8:e000631. doi: 10.1136/bmjqlq-2019-000631

21. Stone E, Rankin N, Kerr S, Fong K, Currow DC, Phillips J, et al. Does presentation at multidisciplinary team meetings improve lung cancer survival? Findings from a consecutive cohort study. Lung Cancer (2018) 124:199–204. doi: 10.1016/j.lungcan.2018.07.032

22. Elena CM, Romano D, Corrado G, Pietro I, Alessandra E, Massimo U. Management of toxicities associated with targeted therapies for HR-positive metastatic breast cancer: a multidisciplinary approach is the key to success. Breast Cancer Res TR (2019) 176:483–94. doi: 10.1054/jsf.2019-05261-5

23. Wu C, Li M, Meng H, Liu Y, Niu W, Zhou Y, et al. Analysis of status and countermeasures of cancer incidence and mortality in China. Sci China Life Sci (2019) 62:640–7. doi: 10.1007/s11427-018-9461-5

24. Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (2019) 39:22. doi: 10.1007/s11480-019-03636-6

25. Wanqing Chen PhD MD, RZ MPH, PDB P, BMedSc SZ, Hongmei Zeng PhD MD, PhD FB, et al. Chinese medicine for treatment of glioblastoma. Modernization Tradit Chin Med Mater Med World Sci Technol (2019) 21:943–8. doi: 10.11842/wst.2019.05.017

26. HD C, SL A. The Tumor Microenvironment Inately Modules Cancer Progression. Cancer Res (2019) 79:4557–66. doi: 10.1158/0008-5472.CAN-18-3962

27. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol (2016) 27:1482–92. doi: 10.1093/annonc/mdw168

28. Jinjing W, Fanghua Q, Zhixue W, Zhikun Z, Ni P, Lei H, et al. A review of traditional Chinese medicine for treatment of glabloblastoma. Biosci Trends (2020) 13:476–87. doi: 10.5585/bst.2019.03123

29. Tian JH, Xi ZC, Luo B, Qiao ZJ, Xu HX, Liu JX. Scientific Connotation of the Theory of “Strengthening Vital Qi to Treat Cancer”. Modernization Tradit Chin Med Mater Med World Sci Technol (2019) 21:943–8. doi: 10.11842/wst.2019.05.017

30. Glauben L, De la Fuente, Peti T, Chanitra T, HM A. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol (2014) 2014:149–85. doi: 10.1111/1445-1418/1419185

31. Dingzhi W, DR N. Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis (2015) 36:1085–93. doi: 10.1093/carcin/bgv123

32. Nakamura K, Yaguchi O, Ohmura G, Kobayashi A, Kawamura N, Iwata T, et al. Involvement of local renin-angiotensin system in immunosuppression of tumor microenvironment. Cancer Sci (2018) 109:54–64. doi: 10.1111/cas.13433

33. Henning D, Cheng BCY, Fu XQ, Su T, Li T, Guo H, et al. In vitro assays suggest Shenzu Fuhezhang Injection has the potential to alter melanoma immune microenvironment. Int Oncol J (2019) 41:138–45. doi: 10.1016/j.intexpandl.2018.06.038

34. Zhaokun Y, Zijun L, Jiumao L. Anticancer Properties of Traditional Chinese Medicine. COMB Chem High T SCR (2017) 20:423–9. doi: 10.2174/138620732066170116141818

35. Lin W, Lu J, Cheng B, Ling C. Progress in research on the effects of traditional Chinese medicine on the tumor microenvironment. J Integr Med (2017) 15:282–7. doi: 10.1016/j.jim.2016.05.001

36. Qujuan G, Jie L, Hongsheng L. Effect and Molecular Mechanisms of Traditional Chinese Medicine on Regulating Tumor Immunosuppressive Microenvironment. BioMed Res Int (2015) 2015:261620. doi: 10.1155/2015/261620
52. He SM, Huang QQ. Effect of Baihe Gujin Decoction with TP chemotherapy on advanced non-small cell lung carcinoma differentiated by lung-kidney yin deficiency and on the immune function. World J Integrated Tradit Western Med (2020) 15:682-686.e690. doi: 10.13935/j.cnki.200425
53. Wang JY, Lin Y, Li HG, Zhou L, Zhu LH, Zhao LH, et al. Effect of Bushen Yifei liedu decoction combined with chemotherapy on expression of serum Foxp3 and B7-H3 in advanced non-small cell lung cancer of type of lung and kidney deficiency. Modern J Integrated Tradit Chin Western Med (2020) 29:1608–11. doi: 10.3969/j.issn.1008-8849.2020.15.003
54. Zhang JH, Wang J, Cui QR. Effect of Jinfukang Oral Liquid Combined with chemotherapy for advanced non-small cell lung cancer. Chin Tradit Herbal Drugs (2018) 49:5368–72. doi: 10.7501/j.issn.0253-2670.2018.22.022
55. Liu JX, Yang LL. Yifei Xiaoai Decoction in Treatment of Advanced Non-Small Cell Lung Cancer. Acta Med Chin (2018) 33:2064–8. doi: 10.16368/j.issn.1674-8999.2018.11.489
56. Chen R, Li M, Ji BT, Qi SJ. Clinical Observation of Shenqi Fuzheng Injection Combined with Chemotherapy in Treatment of Non-Small Cell Lung Cancer and the Rehabilitation of Th1/Th2 Cells. Chin J Exp Tradit Med Formulae (2018) 38:1994–7. doi: 10.13913/j.issn.1673-7712.2018.08.054
57. Wang Y, Hui S, Li M, Zhang CH. Clinical trial of Kanglea injection in gemcitabine combined cisplatin regimen chemotherapy for advanced non-small cell lung cancer. Chin J Clin Pharmacol (2017) 33:2354–2356+2360. doi: 10.13699/j.cnki.1001-6821.2017.23.008
58. Meng XY, Meng WY, Ye Q, Dai L, Hu J, Wang XH, et al. Effect of Modified FOLFOX7 Regimen Combined With Compound Kushen Injection and Aidi Injection on Levels of CA125,CEA,IL-6,TGFβ1 and Hydrogen Sulphide in Advanced Gastric Cancer and Analysis of Drug Safety. Chin Arch Tradit Chin Med (2020) 38:208–11. doi: 10.13193/j.isn.1673-7717.2020.07.048
59. Wang DD, Zhang K. Clinical study of Buzhong Guben Yiwei decoction combined with chemotherapy in the treatment of patients with advanced gastric cancer after operation. Hebei J Tradit Chin Med (2020) 42:240–244+248. doi: 10.3969/j.issn.0262-1690.2020.02.018
60. Tian TD, Yang F, Yue LY, Wang XX, Shi B. Effect of Yanghetang in postoperative patients with liver cancer. Hebei J Tradit Chin Med (2020) 42:216–222. doi: 10.13192/j.issn.1000-1339.2019.02.068
61. Wang J, Tian L, Khan MN, Zhang L, Liu J. Ginsenoside Rg3 sensitizes hypoxic lung cancer cells to cisplatin via blocking of NF-κB mediated epithelial–mesenchymal transition and stemness. Cancer Lett (2018) 415:73–85. doi: 10.1016/j.canlet.2017.11.037
62. Yingna C, Lei B, Huijuan L, Yusui J, Feiyan C, Yunshan W, et al. Water extract of ginseng and astragalus regulates macrophage polarization and synergistically enhances DDP’s anticancer effect. J Ethnopharmacol (2018) 232:11–20. doi: 10.1016/j.jep.2018.12.003
63. Lam W, Bussom S, Guan F, Jiang Z, Zhang W, Gullen EA, et al. The Four-Herb Chinese Medicine PHY906 Reduces Chemotherapy-Induced Gastrointestinal Toxicity. Sci Transl Med (2010) 2:45ra59. doi: 10.1126/scitranslmed.3001270
64. Wang E, Bussom S, Chen J, Quinn C, Bedognetti D, Lam W, et al. Interaction of a traditional Chinese Medicine (PHY906) and CPT-11 on the inflammatory process in the tumor microenvironment. BMC Med Genomics (2011) 4:38. doi: 10.1186/1755-8794-4-38
65. Zhang TT, Zou W, Yang CM, Qian C, Wu YY, Li XM, et al. Study on the Anti-Melanoma Effect of Shiquan Daba Decoction and its Combination Therapy with Cisplatin. J Nanjing Univ Tradit Chin Med (2019) 35:160–5. doi: 10.14148/j.issn.1672-0482.2019.0160
66. Yang LQ, Li RY, Yang XY, Cui QF, Zhang JG. Co-administration of Shexiang Bauxin Pill and Chemotherapy Drugs Potentiated Cancer Therapy by Vascular-Promoting Strategy. Front Pharmacol (2019) 10:565. doi: 10.3389/fphar.2019.00565
67. Chuang M, Jan M, Chang JT, Lu F. The Chinese medicine JC-001 enhances the chemosensitivity of Lewis lung tumors to cisplatin by modulating the immune response. BMC Complement Altern Med (2017) 17:210. doi: 10.1186/s12906-017-1728-x
68. Hu M, Zhou FL, Song L, Li L, He YC. Effect of Qi-Boosting Toxin-Resolving Stasis and Detoxication Method Combined with EGFR-TKI on Chemotherapy-Induced Gastrointestinal Toxicity. Anti-tumor Pharm (2019) 39:206–10. doi: 10.7501/j.scr.2019.09.016
69. Lu Y, Jiang LF, Ma DY, Cui QL, Hu YH, Fu BF. Effect and Mechanism of EMA-CO chemotherapy and the impacts on immune function in the patients. Chin Arch Tradit Chin Med (2019) 37:1006–8. doi: 10.13913/j.issn.1673-7717.2019.04.057
70. Wei HL, Li LN. The Influence of the Life Quality of Shengqi Fuzheng Injection on the Immune Function of Ovarian Cancer after Chemotherapy. Pract J Cancer (2019) 34:1032–4. doi: 10.3969/j.issn.1001-5930.2019.06.046
71. Zhang BP, Meng M, Lv SY. Therapeutic effects on choricarcinoma treated with fuzheng yifu formula and EMA-CO chemotherapy and the impacts on immune function in the patients. World J Integrated Tradit Western Med (2019) 14:86–89+93. doi: 10.13935/j.cnki.190122
72. Yang SY, Gao ZQ, Liu LL, Lai Q. Xie D. Curative Effects of Huangqi liedu Decoction Combined with GT Chemotherapy on Metastatic Triple-negative Breast Cancer and its Influence on Th1/Th2 Cytokine Balance. Anti-tumor Pharm (2019) 9:312–316+324. doi: 10.3969/j.issn.2095-1264.2019.02.029
73. Lu R, Shen ZW, Cao LY. Effect of Shenqi Fuzheng Injection combined with Docetaxel on Cellular Immune Function in Patients with Terminal Breast Cancer. Chin J Exp Tradit Med Formulae (2018) 24:149–55. doi: 10.3969/j.issn.1007-6948.2018.02.005
74. Du R, Zhang HY, Hu QF. Effect of Matrine Injection on Chemosensitivity, Quality of Life and Immune Function in Patients with Cervical Cancer. Chin Arch Tradit Chin Med (2018) 36:3051–5. doi: 10.13193/j.isssn.1673-7717.2018.12.059
75. Du RX, Zhao YQ, Liu QJ, Ji SQ, Cheng WL, Zhang HJ, et al. Short-term Effects of Matrine Injection Combined with Gemcitabine + Cisplatin Chemotherapy on Advanced Bladder Cancer Patients and on the Survival Time. Anti-tumor Pharm (2019) 9:112–6. doi: 10.3969/j.issn.2095-1264.2019.01.24
76. PB B, Radha S, Sadia Q, HETal, Yingjie Y, RA K, et al. Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR and IGF-1R. Int J Cancer (2008) 122:627–73. doi: 10.1002/ijc.23097
77. Li-da G, Yong-qing S, Xiao-han Z, Li-cian G, Hu J, Wang XH, et al. Effect of Fuzheng yiliu formula and EMA-CO chemotherapy and the impacts on immune function in patients with cervical cancer. Chin J Surg Integrated Tradit Western Med Liver Dis (2020) 30:218+20+230+290. doi: 10.3969/j.issn.2095-1264.2020.03.009
78. Gulimire BRJ, Reziya· KEB, Aliikemu· ABDWK, Li XW, Gulina· KEB. Effects of Yiqi Yangjin decoction combined with bevacizumab on immune function, inflammatory factors and tumor markers in patients with ovarian...
