Comparative evaluation of composition and properties of milk from cows of different breeds in cheese production

A S Gorelik¹, E I Yarmukhamedova², A F Sharipova², I R Gazeev² and S G Kanareikina²

¹Ural Institute of the state fire service of the EMERCOM of Russia, 22 Mira street, Yekaterinburg, 620075, Russian Federation
²Bashkir State Agrarian University, 34 50-letiya Oktyabrya Str., Ufa, 450001, Russian Federation

E-mail: temae077ex@mail.ru

Abstract. Modern industrial milk processing based on high-tech processes has high demands to the quality of milk used as raw material for the production of a wide range of dairy products. Seasonality of milk production remains a significant problem for dairy cattle breeding. In some seasons, the supply of milk of optimal quality is rather unstable. The purpose of the work was to study the influence of season on the technological properties of milk during its processing into dairy products. As a result of research, it was found that the organoleptic properties of milk met the requirements of regulatory documents. The milk color changed with the seasons. A more intense yellowish tint in the milk color was noted in summer and autumn, which is associated with the carotene content in feed. The highest content of dry matter, SNF, fat and protein in milk was observed in winter, while in summer these values were the lowest. In the spring period, there is an increase in the mechanical contamination of milk up to group 2. In general, the bulk of milk has primary quality. The coagulation phase in cows’ milk was shorter in spring than in other seasons of the year (P <0.001) by 0'05" - 2'35", and it was longer in milk obtained in winter. The best speed to clot under the influence of rennet was the milk of cows in summer. Evaluation of milk for thermal stability, depending on the season of the year, showed that it has high thermal stability and can be used for processing into products with a high temperature of pasteurization and sterilization.

1. Introduction

Uninterrupted and sustainable supply of the population with quality food of animal origin is the main necessity in ensuring the health of the nation and food security of any country [1-6]. An increase in the production of high-quality dairy products is one of the most important tasks for the development of animal husbandry all over the world, which is becoming increasingly important both with the growth of the world's population, and in particular our country, and for the full satisfaction of humanity's needs for food. Milk is a complete nutritiously balanced product and raw material for the processing industry. In this regard, the development of this industry is given great national economic importance [7-14]. An increase in the productivity of cows is connected with an improvement in the quality of milk, which has a significant impact on the quality of finished dairy products [15-25]. The complexity of solving the problem of milk quality is due to the fact that the technologies and sanitary-industrial culture used in most dairy farms in Russia are not compatible with the conditions for obtaining high-quality and safe milk.
milk, and this requires a revision of the technologies for the production of raw milk and preventive measures aimed at improving its quality [25, 26]. In addition, many factors, including genetic ones, affect the composition and properties of milk. At present, dairy cattle of both domestic and foreign selection is widely used for milk production, and the gene pool of the best world Holstein breed is used to improve domestic cattle [27-31]. Therefore, the study of the influence of the breed on the composition and properties of milk is relevant and of practical importance.

The purpose of the work was to study the influence of the breed of dairy cattle on the composition and properties of milk during its processing into cheese.

2. Materials and method

The research was carried out in the conditions of one of the agricultural enterprises of the Sverdlovsk region. Milk was obtained from black-and-white cattle of the Ural type and Holstein breed. The studies were carried out in triplicate. The following properties were determined in milk: dry matter, protein, SNF, density, fat (using the device "Klever-1M"); acidity (titrometric method according to Turner). The technological properties of milk were assessed by rennet clotting, rennet-fermentation test, milk quality indicators in accordance with GOST R 52054 as amended in 2015. Technological experience for the production of cheese "Mozzarella" and semi-hard cheese type "Gollandskiy" was carried out in three replications in the conditions of the dairy laboratory of the Ural State Agrarian University and the Bashkir State Agrarian University.

3. Results

Evaluation of milk as a raw material for the dairy industry begins with a study of organoleptic characteristics, namely, taste, smell, color and consistency (table 1).

Indicator	Breed	
	Black-and-white cattle of the Ural type	Holstein
Color	white, with a light cream tint	white
Consistency	uniform, without sediment and flakes	uniform, without sediment and flakes
Taste and smell	Pure milk, without foreign odors and tastes	Milk, with a weak feed taste

In our case, the organoleptic characteristics of milk met the requirements of GOST R 52054-2003. The milk was white or slightly yellowish in color, with a specific smell and taste, corresponding to cow's milk, and a liquid consistency.

It has been established that there is a change in the composition of milk by seasons of the year (figure 1).

![Figure 1. Chemical composition of milk, %](image-url)
The highest content of dry matter, SNF, fat in milk was noted in the milk of black-and-white cattle of the Ural type. In the milk of Holstein cows, the mass fraction of milk sugar (lactose) is higher. From the point of view of processing milk into cheese according to the ratio of SNF and fat; fat and protein in milk, it meets the requirements of the technological instructions for the production of cheese, but the reduced fat content in the milk of Holstein cows (3.61%) leads to a decrease in the efficiency of cheese production. Thus, the breed influences the quality of milk in terms of its chemical composition.

When evaluating milk, much attention is paid to its physical properties, since they are indicators of the naturalness of the product. Studies of these indicators allow us to conclude that the breed also influences their changes (figures 2,3).

![Figure 2. Milk density, kg / m³.](image)

The density of milk of both breeds corresponded to the GOST requirements for premium milk. Figure 2 clearly shows that the density of milk is higher in black-and-white cattle of the Ural type, which is explained by the higher dry matter content in milk. The second indicator of the naturalness of milk is the freezing point (figure 3). It also met the requirements of GOST R 52054-2003.

![Figure 3. Freezing point of milk, °C.](image)

According to sanitary and hygienic indicators, namely, bacterial contamination and the presence of somatic cells, acidity, both the quality of milk and its freshness (acidity) are judged. Figure 4 presents data on the health and hygiene indicators of milk from cows of different breeds.
In terms of sanitary and hygienic indicators, the milk of cows of both groups was of the highest quality and in terms of bacterial contamination and the presence of somatic cells in the milk it corresponded to primary quality, and in terms of acidity it was fresh and also belonged to primary quality.

For cheese production, milk, which, along with normal physical and chemical composition and microbiological parameters, is characterized by certain technological properties is required. Evaluation of the cheese suitability of milk according to the rennet-fermentation test and rennet coagulability showed that milk is suitable for cheese and belongs to the second type, the most suitable for the production of cheese. Milk from Holstein cows had a higher clotting rate than milk from black-and-white cows, the curd was too dense, which resulted in a coarse cheese consistency. In our opinion, this milk is more suitable for making semi-hard and other maturing cheeses. When using this milk, it is worth adjusting the cheese cooking technology: lower heating temperatures and increase grain size.

Evaluation of the quality of ready-made cheeses has confirmed the above. According to the organoleptic characteristics of the Mozzarella cheese, the best was the cheese made from the milk of the black-and-white cattle of the Ural type, and from the semi-hard cheese the cheese from the milk of the Holstein breed had a more pronounced taste (figure 5).
The quality and grade of cheese was determined according to a 100-point system, in which each indicator is given a certain number of points: taste, smell - 45, consistency 25, figure 10, dough color - 5, appearance - 10, packaging, marking - 5 points. Depending on the amount of points, cheeses are assigned to a certain grade: the highest - with a total score of 100-87 points, including at least 37 points in taste and smell; I with a total score of 86-75 points, including taste and smell of at least 34 points.

All cheeses, with the exception of Mozzarella cheese from the milk of Holstein cows, are classified as superior. Mozzarella cheese from the milk of Holstein cows is true to the 1st grade. The evaluation showed that milk from black-and-white cows is better suited for the production of Mozzarella cheese than milk from Holstein cows, such a cheese is richer in smell and taste with a softer and firmer consistency. And semi-hard cheeses made from milk from Holstein cows showed good results, in particular in terms of consistency.

4. Discussion
The quality of milk, its physical and chemical indicators depend on many factors, including the season of the year, despite the creation of optimal conditions for feeding and keeping, in our case, the same type of feeding and year-round stablekeeping. There is a change in the milk of cows of Holsteinized black-and-white cattle of the Ural type in its physical and chemical parameters and technological properties, depending on the season of the year. The best in nutritional and biological value was milk obtained in winter; the best in terms of technological properties for cheese making is milk obtained in summer. Similar studies were carried out by A Beloukov, O Beloukova, V Zhuravel, S Gritsenko, & E Ponomarev, O Gorelik, Y Shatskikh, M Rebezov & E Okuskanova, S L Gridina, V F Gridin, O I Leshonok, A S Shuvarikov, D A Baimukanov, M I Dunin, O N Pastukh, E V Zhukova, E A Yurova, Yu A Yuldashbayev, A I Erokhin, E A Karasev.

5. Conclusion
The breed of cattle affects the quality of milk and cheese produced from it, despite the high quality indicators and suitability for processing. The evaluation showed that milk from black and white cows is better for production of Mozzarella cheese than milk from Holstein cows.

References
[1] Ahsan S et al. 2020 Safety assessment of milk and indigenous milk products from different areas of Faisalabad J Microbiol Biotech Food Sci 9(6) 1197-203 DOI: 10.15414/jmbfs.2020.9.6.1197-1203
[2] Smolnikova F, Rebezov M, Shaydullin R, Knysh I, Yadina O, Nikolaeva N, Sorokin A, Zubtsova Yu and Kozlov V 2020 Vegetable stabilizers used in the production of fermented milk drinks and yogurts International Journal of Psychosocial Rehabilitation 24(6) 7663-7 DOI: 10.37200/IJPR/V24I6/PR260775
[3] Ashan S et al. 2020 Functional exploration of bioactive moieties of fermented and non-fermented soy milk with reference to nutritional attributes J Microbiol Biotech Food Sci 10(1) 145-9 doi: 10.15414/jmbfs.2020.10.1.145-149
[4] Morozova L et al. 2020 Improving the physiological and biochemical status of high-yielding cows through complete feeding International Journal of Pharmaceutical Research Supplemental Issue 1 2181-90 https://doi.org/10.31838/ijpr/2020.SP1.319
[5] Paul Ernest F et al. 2020 Radiosensitivity of two varieties of watermelon (Citrullus lanatus) to different doses of gamma irradiation Braz. J. Bot. https://doi.org/10.1007/s40415-020-00659-8
[6] Akhmetova S, Suleimenova M and Rebezov M 2019 Mechanism of an improvement of business processes management system for food production: case of meat products enterprise Entrepreneurship and sustainability issues 7(2) 1015-35 Doi 10.9770/jesi.2019.7.2(16)
[7] Gorelik O, Rebezov M, Gorelik A, Harlap S, Dolmatova I, Zaitseva T, Maksimuk N, Fedoseeva N and Novikova N 2019 Effect of bio-preparation on physiological status of dry cows
International Journal of Innovative Technology and Exploring Engineering 8(7) 559-62

Gorelik O et al. 2019 The state of nonspecific resistance of calves during the preweaning period International Journal of Pharmaceutical Research https://doi.org/10.31838/ijpr/2019.11.01.133

Gorelik O et al. 2017 Study of chemical and mineral composition of new sour milk bio-product with sapropel powder Annual Research and Review in Biology 18(4) DOI: 10.9734/ARRB/2017/36937

Gorelik O et al. 2020 Studying the biochemical composition of the blood of cows fed with immune corrector biopreparation AIP Conference Proceedings 2207 020012 https://doi.org/10.1063/5.0000317

Belookov A, Belookova O, Zhuravel V, Gritsenko S, Bobyleva I, Ermolova E, Ermolov S, Matrosova Y, Rebezov M and Ponomarev E 2019 Using of EM-technology (effective microorganism) for increasing the productivity of calves International Journal of Engineering and Advanced Technology 8(4) 1058-61

Khaziakhmetov F et al. 2018 Effect Of Probiotics On Calves, Weaned Pigs And Lamb Growth Research Journal of Pharmaceutical, Biological and Chemical Sciences 9(3) 866-70 WOS:000438847100113

Khaziakhmetov F, Khabirov A, Rebezov M, Basharov A, Ziangulov I and Okuskhanova E 2018 Influence of probiotics "Stimix Zoostim" on the microflora of faeces, hematological indicators and intensity of growth of calves of the dairy period International Journal of Veterinary Science 7(4) 178-81

Smolnikova F et al. 2019 Sour milk production technology and its nutritive value International Journal of Innovative Technology and Exploring Engineering 8(7) 670-2

Chernopolskaya N, Gavrilova N, Rebezov M, Harlap S, Nigmatyanov A, Peshecherov G, Bychkova T, Vlasova K and Karapetyan I 2019 Biotechnology of specialized fermented product for elderly nutrition International Journal of Pharmaceutical Research 11(1) 545-50 DOI: 10.35940/ijrte.B3158.078219

Chernopolskaya N, Gavrilova N, Rebezov M, Dolmatova I, Zaitseva T, Somova Y, Babaeva M, Ponomarev E and Voskanyan O 2019 Biotechnology of specialized product for sports nutrition International Journal of Engineering and Advanced Technology 8(4) 40-5 DOI: 10.35940/ijrte.B3158.078219

Gavrilova N, Chernopolskaya N, Molyboga E, Shipkova K, Dolmatova I, Demidova V, Rebezov M, Kuznetsova E and Ponomareva I 2019 Biotechnology application in production of specialized dairy products using probiotic cultures immobilization International Journal of Innovative Technology and Exploring Engineering 8(6) 642-8

Gavrilova N, Chernopolskaya N, Rebezov M, Shchetinina E, Suyazova I, Safronov S, Ivanova V and Sultanova E 2020 Development of specialized food products for nutrition of sportsmen Journal of Critical Reviews 7(4) 233-6 DOI: 10.31838/jcr.07.04.43

Gavrilova N, Chernopolskaya N, Rebezov M, Moisejkina D, Dolmatova I, Mironova I, Peshecherov G, Gorelik O and Derkho M 2019 Advanced Biotechnology of Specialized Fermented Milk Products International Journal of Recent Technology and Engineering 8(2) 2718-22 DOI: 10.35940/ijrte.B3158.078219

Temerbayeva M et al. 2018 Development of Yoghurt from Combination of Goat and Cow Milk Annual Research & Review in Biology 23(6) 1-7 DOI: 10.9734/arrb/2018/38800

Temerbayeva M et al. 2018 Technology of Sour Milk Product For Elderly Nutrition Research Journal of Pharmaceutical, Biological and Chemical Sciences 9(1) 291-5

Serikova A, Smolnikova F, Rebezov M, Okuskhanova E, Temerbayeva M, Gorelik O, Kharlap S, Baitukonova Sh, Baitukonova S and Tumbasova Y 2018 Development Of Technology Of Fermented Milk Drink With Immune Stimulating Properties Research Journal of Pharmaceutical, Biological and Chemical Sciences 9(4) 495-500 WOS:000438848100062

Smolnikova F, Toleubekova S, Temerbayeva M, Cherkasova E, Gorelik O., Kharlap S,
Derkho M, Rebezov M and Penkova I 2018 Nutritive Value Of Curd Product Enriched With Wheat Germ Research Journal of Pharmaceutical, Biological and Chemical Sciences 9(3) 1003-8 WOS:000438847100131

[24] Kuramshina N, Rebezov M, Kuramshin E, Tretyak L, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okuskhanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia International Journal of Pharmaceutical Research 11(1) 1301-5 DOI: 10.21668/health.risk/2019.2.04.eng

[25] Skvortsov E, Bykova O, Mymrin V, Skvortsova E, Neverova O, Nabokov V and Kosilov V 2018 Determination of the applicability of robotics in animal husbandry The Turkish Online Journal of Design Art and Communication 8(S-MRCHSPCL) 291-9

[26] Mymrin V and Loretts O 2019 Contemporary trends in the formation of economically-beneficial qualities in productive animals ISPC 2019 Advances in Intelligent Systems Research 511-4

[27] Gridina S, Gridin V and Leshonok O 2018 Characterization of high-producing cows by their immunogenetic status Advances in Engineering Research 253-6

[28] Chechenikhina O, Loretts O, Bykova O, Shatskikh E, Gridin V and Topuriya L 2018 Productive qualities of cattle in dependence on genetic and paratypic factors International Journal of Advanced Biotechnology and Research 253-6

[29] Tkachenko I, Gridin V and Gridina S 2016 Results of researches federal state scientific institution “Ural research institute for agri-culture” on identification of interrelation efficiency cows of the ural type with the immune status Yekaterinburg 085-90

[30] Shuvarikov A, Baimukanov D, Dunin M, Pastukh O, Zhukova E, Yurova E, Yuldashbayev Yu, Erokhin A and Karasev E 2019 Estimation of composition, technological properties, and factor of allergenicity of cows goats and camels milk Vestnik Natsional'noy akademii nauk Respubliki Kazakhstan 6(382) 64-74

[31] Agarkova E et al. 2020 Processing cottage cheese whey components for functional food production Foods and Raw Materials 8(1) 52-9 DOI: http://doi.org/10.21603/2308-4057-2020-1-52-59