Autophosphorylation-dependent Targeting of Calcium/Calmodulin-dependent Protein Kinase II by the NR2B Subunit of the N-Methyl-D-aspartate Receptor*

(Received for publication, April 9, 1998, and in revised form, May 22, 1998)

Stefan Strack and Roger J. Colbran

From the Department of Molecular Physiology and Biophysics and Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0615

Activation and Thr286 autophosphorylation of calcium/calmodulin-dependent kinase II (CaMKII) following Ca2+ influx via N-methyl-D-aspartate (NMDA)-type glutamate receptors is essential for hippocampal long term potentiation (LTP), a widely investigated cellular model of learning and memory. Here, we show that NR2B, but not NR2A or NR1, subunits of NMDA receptors are responsible for autophosphorylation-dependent targeting of CaMKII. CaMKII and NMDA receptors colocalize in neuronal dendritic spines, and a CaMKII/NMDA receptor complex can be isolated from brain extracts. Autophosphorylation induces direct high-affinity binding of CaMKII to a 50 amino acid domain in the NR2B cytoplasmic tail; little or no binding is observed to NR2A and NR1 cytoplasmic tails. Specific colocalization of CaMKII with NR2B-containing NMDA receptors in transfected cells depends on receptor activation, Ca2+ influx, and Thr286 autophosphorylation. Translocation of CaMKII because of interaction with the NMDA receptor Ca2+ channel may potentiate kinase activity and provide exquisite spatial and temporal control of postsynaptic substrate phosphorylation.

CaMKII is a multifunctional, calcium-activated kinase (1, 2), whose α and β isoforms are particularly abundant in brain cytosol and in postsynaptic densities (PSDs), submembranous scaffolds for receptors, ion channels, and signal transducers (3, 4). Postsynaptic calcium influx triggers autophosphorylation of CaMKII at a threonine residue in the autoinhibitory domain (Thr286 in CaMKIIα) (5), which renders the kinase persistently active and causes a translocation of soluble CaMKII to the PSD (6). Multiple lines of evidence indicate Thr286 autophosphorylation of postsynaptic CaMKII is necessary for NMDA receptor-dependent LTP (7–11), a cellular model of learning and memory. PSD-associated CaMKII phosphorylates ionotropic glutamate receptors (6, 12–14), providing a mechanism for increased synaptic strength during LTP (15).

Mechanisms by which CaMKII is targeted to its postsynaptic substrates are poorly understood. Previous gel overlay analyses revealed a candidate PSD-associated CaMKII-anchoring protein, p190, that binds selectively to the Thr286-autophosphorylated kinase (P-[T286]CaMKIIα) (16). The NR2A and NR2B subunits of the NMDA receptor share several properties with this CaMKII-binding activity, including apparent size, enrichment in PSDs, and regional and developmental expression profiles (17). Here, we demonstrate a direct and specific interaction between [P-T286]CaMKIIα and NR2B and show that NR2B targets CaMKII in intact cells.

Experimental Procedures

Immunoprecipitations—PSD isolation and immunoprecipitation of sodium dodecyl sulfate (SDS)-solubilized PSD proteins were carried out as described (6) using 2 μg/ml NR2A/B antibodies (Chemicon) and protein phosphatase 1 antibodies (18). For CaMKII/NMDA receptor communoprecipitations, PSDs (1 mg/ml) were cross-linked (45 min, 4 °C) with 0.25 mM dithiobis(succinimidyl suberate), dissolved by sonication in 2% SDS, and diluted 15-fold in 1% Nonidet P-40, 50 mM NaCl, 50 mM Tris, pH 7.5, 2 mM EDTA, 2 mM EGTA, 1 mM phenylmethylsulfonyl fluoride, 1 mM benzamidine, 1 μM microcin-LR. The supernatant after ultracentrifugation (30 min, 100,000 × g) was immunoprecipitated with 3 μg/ml goat anti-CaMKII (16) or preimmune IgG (19). The cross-linker was cleaved and proteins eluted from the beads by boiling in reducing SDS sample buffer.

CaMKII Gel Overlays—Purified recombinant CaMKIIα was autophosphorylated with γ[32P]ATP (8,000–40,000 cpm/pmol) in the presence of calcium/calmodulin or EGTA at Thr286 or Thr305/306, respectively, and desalted (16). Stoichiometries ranged between 0.17 and 0.39 (Thr286) and 0.24 and 0.47 (Thr305/306). Protein blots to be analyzed for CaMKII binding were blocked and incubated with 100–200 mM [32P]CaMKII in 5% milk for 3 h, washed extensively, and autoradiographed.

Immunofluorescence—18-Day-old cultures of dissociated neonatal rat cortex were fixed in acetone:methanol (1:1), blocked, and incubated 10–14 h in 1:500 dilutions of goat anti-CaMKII (16), rabbit anti-NR1 (20), and mouse anti-synaptophysin (Boehringer Mannheim) in 1% normal donkey serum, 10 mM Tris, pH 7.5, 150 mM NaCl, 0.1% Triton X-100. Cultures were treated with species-specific donkey antibodies conjugated to Cy3, Cy2, and Cy5 (Jackson Laboratories) and imaged on a Zeiss laser scanning confocal microscope.

Generation and Analysis of NMDA Receptor Fusion Proteins—The entire cytoplasmic domains (C terminus starting immediately after transmembrane region IV) of NR1 (splice variant A containing both C1 and C2 exon cassettes), NR2A, and NR2B subunits, as well as shorter NR2B constructs, were cloned from full-length cDNAs by polymerase chain reaction using Pfu polymerase and primers containing restriction sites or by restriction digestes. Fragments were sequenced and ligated into pRSSET-A His6, tag (Qiagen) or pGEX-2T glutathione S-transferase (GST) (Amersham Pharmacia Biotech) fusion vectors. His6 tag fusions were expressed, and GST fusions were expressed and purified.

APV, 2-amino-5-phosphonovaleric acid; GST, glutathione S-transferase; LTP, long term potentiation.

S. Strack, R. B. McNeill, and R. J. Colbran, unpublished data.
fied according to the manufacturers’ instructions. His₄tag fusion protein lysates were subjected to CaMKII overlay (see above) or immunoblotted with anti His₄tag antibodies (CLONTECH) and [³²P]-labeled secondary antibodies for expression levels, followed by PhosphorImager quantification.

Microtitre Plate Solution Binding—Ni⁺⁺-coated 96-well plates (HisSorb strips, Qiagen) were adsorbed for 2 h with soluble His₄tag NR2B fusion protein expressing or nonexpressing bacterial extracts (0.25 mg/ml) in blocking buffer (5 mg/ml bovine serum albumin, 200 mM NaCl, 50 mM Tris, pH 7.5, 0.1% Tween 20, 5 mM β-mercaptoethanol). After extensive washes, [³²P-T286]CaMKIIa diluted in blocking buffer (200 μM) was allowed to bind to the tethered fusion protein for 2 h, followed by 10–12 more washes. Bound CaMKII was solubilized in 1% SDS, 0.2 N NaOH, 50 mM EDTA, and quantified by liquid scintillation counting. Nonspecific binding to control bacterial extracts was subtracted from total binding to obtain specific binding. No specific binding was observed using [³²P-T306]CaMKIIa.

GST Pull-down Analysis—GST fusion proteins were incubated (1 h, 4°C) with either purified CaMKIIa (Fig. 2D, see caption) or with a freshly prepared rat brain cytosolic extract (3 mg/ml extract protein, 10 μg/ml GST fusion protein) containing 2 μM microcystin-LR and 0.5% Triton X-100, precipitated with glutathione-agarose, washed extensively, and eluted with SDS sample buffer. CaMKIV antibodies were from Transduction Laboratories.

HEK293 Cell Colocalization—HEK293 cells were seeded on coverslips in 35-mm dishes, transfected with a total of 3 μg/dish DNA (1 μg of Sr promoter-CaMKIIa expression plasmid, 2 μg of cytomembrane promoter plasmids with NMDA receptor subunits at a mass ratio of 1:3 NR1a and NR2A/B subunits), and grown for 48 h as described (21). Robust expression of NMDA currents was verified by patch-clamp recording of parallel cultures. Cells were washed and incubated in Mg²⁺-, Ca²⁺-, and Hanks’ balanced saline containing 2 μM CaCl₂ and either the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV, 50 μM) or NMDA/glucose (100/10 μM) for 15 min. Cultures were fixed and processed for immunofluorescence (see above) using: 1:500 antibody dilutions of goat anti-CaMKIIa (16), mouse anti-NR1 (PharMingen), and rabbit anti-NR2A/B (Chemicon). Between 2 and 5% of cells were strongly positive for at least one label; only those cells expressing high levels of each antigen (>50% of transfected cells) were included in the analyses. Under basal conditions, CaMKIIa expression was diffusely cytoplasmic. Irrespective of agonist treatment, NR1 and NR2A/B strictly colocalized (mean scores >3.4, see below) in a patchy or reticular, often perinuclear pattern as seen previously in heterologous cells (22). Cultures were randomized prior to sampling digital images on a confocal microscope to prevent operator bias. Coded images (as in Fig. 3) were assigned a colocalization score by a second, naïve observer: 0, mutual exclusion; 1, coincidental overlap; 2 or 3, increasing degrees of colocalization, 4, complete overlap of labels. For reference, the cells in Fig. 3 scored a 0, 1, 2, 2, and a 3 (from left to right, top to bottom).

RESULTS AND DISCUSSION

To determine whether NR2 subunits contribute to the previously characterized “p190” overlay binding activity (16), we analyzed immunoprecipitated NR2A/B by gel overlay with [³²P-T286]CaMKIIa (Fig. 1A). A CaMKIIa-binding activity coimmunoprecipitated with NR2A and NR2B was immunoprecipitated with NR2A/B antibodies, but not control antibodies, indicating that NR2A and/or NR2B are CaMKIIa-binding proteins.

This interaction may be physiologically relevant, because triple immunofluorescent labeling of cultured cortical neurons demonstrated that CaMKIIa colocalizes with NMDA receptors in many punctae along dendritic shafts, identified as synapses by the adjacent or overlapping presence of synaptophysin (Fig. 1B). Higher magnification revealed a mostly postsynaptic localization of CaMKIIa in dendritic spines (Fig. 1C). Moreover, a complex of CaMKIIa with NMDA receptor subunits can be immunoprecipitated from PSDs using CaMKIIa antibodies, but not preimmune IgG (Fig. 1D). NR2B was more efficiently coprecipitated than NR1, likely because association of CaMKIIa with NR1 is indirect (i.e. via NR2B, see below). Recovery of the receptor-kinase complex required pretreatment of PSDs with a reversible cross-linker prior to essentially complete PSD solubilization in 2% SDS, indicating that the interaction of CaMKIIa with NMDA receptors is not stable in harsh detergents. The specificity of the cross-linking procedure was demonstrated by the absence of other abundant PSD proteins in the immunoprecipitate, including the catalytic subunit of protein phosphatase 1 (Fig. 1D).

NMDA receptor subunits have a common transmembrane topology with three membrane-spanning regions and a C-terminal tail of variable length, which forms the intracellular portion of the receptor (Fig. 2A, diagram). Bacterial lysates expressing the cytoplasmic domains of the predominant forebrain NMDA receptor subunits, NR1, NR2A, and NR2B, as His₄tag fusion proteins were screened for [³²P]-CaMKIIa binding by overlay (Fig. 2A). The NR2B cytoplasmic domain bound about six times more [³²P]-CaMKIIa than the corresponding region of NR2A; neither NR1 nor any endogenous bacterial proteins showed detectable binding. Interactions with NR2A and NR2B were specific for autonomously active CaMKIIa, as

³R. L. Popp and D. M. Lovinger, personal communication.
CaMKII Binding to NR2B

Identification of a CaMKII-binding domain in NR2B. A, full-length cytosolic domains of NR1 (splice variant A, 834-T), NR2A (838-T), and NR2B (839-T) (where T indicates terminus) and the diagrammed NR2B constructs were screened for overlay binding of [32P]CaMKII phosphorylated at either Thr286 (T286) or Thr1310 (T306). Data were corrected for expression levels and autophosphorylation stoichiometries, normalized to NR2B-(839-T) and expressed as means ± S.E. of four to eight experiments. B, a blot of 0.5 μg of the indicated NR2A or NR2B residues fused to GST or 1.5 μg of GST alone was first stained for protein with Ponceau S (top) and then analyzed for [32P]CaMKIIa phosphorylated at either Thr286 (T286) or Thr1310 (T306). Data were corrected for expression levels and autophosphorylation stoichiometries, normalized to NR2B-(839-T) and expressed as means ± S.E. of four to eight experiments. C, indicated soluble His-tag NR2B fusion proteins were affinity-tethered to a microtiter plate and incubated with the indicated concentrations of [32P-T286]CaMKIIa. Shown are means ± S.D. of duplicate determinations from one experiment representative of three. Inset, linear fit of Scatchard plot of same data. D, CaMKIIα and GST-NR2B-(1260–1309) fusion protein (0.5 μM each) with or without calcium/calmodulin (0.5 mM/3 μM) and Thr286 autophosphorylation were sedimented with glutathione-agarose and analyzed by Ponceau S staining of protein blots. E, a rat brain cytosolic extract was incubated with GST-NR2B or GST alone, purified with glutathione-agarose, and immunoblotted with the indicated antibodies. Data (D, E) are representative of three experiments.

CaMKIIα phosphorylated in the absence of calcium/calmodulin at Thr1036/1039 ([P-T306]CaMKIIα) bound only weakly (<5%). Because NR2B displayed the most robust interaction with CaMKII, we mapped its CaMKII-binding domain by creating a series of truncation and internal deletion constructs. Only con- structs containing NR2B residues 1260–1309 showed CaMKII binding similar to the full-length cytoplasmic tail. Fusion of NR2B-(1260–1309) to GST demonstrated that this domain is also sufficient for interaction with autonomous CaMKIIα (Fig. 2B).

A solution interaction assay was employed to examine binding of CaMKII to NR2B that had not undergone denaturation/renaturation for gel overlay analysis. [32P-T286]CaMKIIα bound saturably to a His6 tag NR2B fusion protein containing residues 1260–1309, but not to a construct that starts at resi-
calmodulin binding is sufficient for full CaMKII activation, and Thr286 autophosphorylation stabilizes the active conformation of the kinase in the absence of calcium/calmodulin (1, 2). Thus, CaMKII residues outside the substrate binding site are involved in the interaction with NR2B.

Further evidence for specific association of CaMKII with NR2B was obtained by performing GST-NR2B pull-downs from brain cytosolic extracts. α and β isoforms of CaMKII were isolated following incubation with GST-NR2B-(1260–1309), but not GST alone. Affinity-purified CaMKIIα displayed an upward electrophoretic mobility shift characteristic of autophosphorylation (Fig. 2E). CaM kinase IV, a related kinase with a similar phosphorylation site preference (24), as well as other kinases and phosphatases tested, were not detected in the precipitated material, strongly indicating that NR2B-(1260–1309) binds selectively to CaMKII.

The NR2B subunit of the NMDA receptor was shown to target Thr286 autophosphorylated CaMKII in HEK293 cells. CaMKIIα was coexpressed with various NMDA receptor subunit combinations, and their distributions were compared by immunofluorescence (Fig. 3). Whereas NR1 alone does not form functional NMDA receptors in HEK293 cells, activation of both NR1/NR2A and NR1/NR2B receptors leads to massive calcium influx (25). Coexpression of CaMKIIα and NR1 alone resulted in low colocalization scores that were unaffected by acute treatment with the receptor agonists NMDA/glycine (Fig. 3A). Perhaps reflecting the low but detectable CaMKII binding activity of NR2A (Fig. 2, A and B), additional expression of the NR2A subunit led to a small increase in CaMKIIα and NR1/NR2A colocalization, which was not significantly increased by NMDA/glycine treatment (Fig. 3B). In cells expressing NR2B with CaMKIIα and NR1, we observed a similarly modest increase in colocalization in the absence of agonist treatment compared with CaMKIIα and NR1 alone (Fig. 3, C and D). In contrast to NR2A-containing NMDA receptors, activation of NR1/NR2B receptors with NMDA/glycine caused a highly significant redistribution of CaMKII into receptor-positive patches (Fig. 3, C and D), strongly suggesting that receptor activation induced the formation of a CaMKII-NR2B complex. Replacing extracellular calcium with barium, which is receptor-permeable but binds only poorly to calmodulin, completely blocked the effect of NMDA (Fig. 3D). Thus, opening of NMDA receptors is not sufficient for complex formation, but calcium influx is essential, presumably to stimulate calcium/calmodulin-dependent autophosphorylation of CaMKII. Consistent with this interpretation, an autophosphorylation-incompetent form of CaMKII, T286A-CaMKIIα (26, 27), expressed at similar levels of wild-type CaMKIIα failed to show activity-induced colocalization with NR1/NR2B containing NMDA receptors (Fig. 3D). Thus, NR2B mediates targeting of CaMKII to NMDA receptors in a calcium- and Thr286 autophosphorylation-dependent manner in intact cells.

Our data support a model in which dendritic calcium influx induced by synaptic activity triggers CaMKII autophosphorylation at Thr286 and subsequent binding to residues 1260–1309 in the NR2B subunit of the NMDA receptor. What are the functional consequences of this interaction? Autonomous CaMKII in the PSD is inactivated by PSD-associated serine/threonine phosphatases (18, 28, 29). Once dephosphorylated at Thr286, CaMKII positioned near the mouth of the NMDA receptor calcium channel is likely to undergo rapid re-autophosphorylation even during periods of low level NMDA receptor activation. Thus, an interaction of CaMKII with NMDA receptors is predicted to boost autonomous kinase activity, leading to enhanced phosphorylation of nearby downstream effectors of synaptic plasticity (15). Furthermore, recruitment of CaMKII into the PSD structure (6), possibly via association with NR2B, may play a role in the rapid ultrastructural changes of synapses that undergo LTP (30, 31). The developmental appearance of NR2A and down-regulation of NR2B in the mammalian visual system correlate with the end of the “critical period” of synapse maturation (32, 33). Preferential association of CaMKII with NR2B over NR2A may therefore provide a mechanism by which NMDA receptor subunit composition can impact developmental plasticity.

Acknowledgments—We thank L. MacMillan for scoring cells; M. Bass for invaluable technical assistance; V. Rema, F. Ebner, and M. Maguire (Vanderbilt) for NR1 antibodies and cortical cultures; D. Lynch (Penn State) for NR expression plasmids; T. Soderling (Vollum Institute) for CaMKII expression plasmids; DNAX, Inc. (Palo Alto, CA) for use of the pME185 expression vector; L. Popp, S. Sessions, and D. Lovinger (Vanderbilt) for help with HEK cell transfections; and R. Blakely, F. Ebner, J. Exton, L. Limbird, J. Lisman, D. Lovinger, and B. Wadzinski for helpful suggestions.

REFERENCES

Braun, A. P., and Schulman, H. (1995) Annu. Rev. Physiol. 57, 417–445

Soderling, T. R. (1995) Adv. Second Messenger Phosphoprotein Res. 30, 175–189

Kennedy, M. B. (1997) Trends Neurosci. 20, 264–268

Zif, E. B. (1997) Neuron 19, 1163–1174

Pakunaga, K., Stoppini, L., Miyamoto, E., and Muller, D. (1993) J. Biol. Chem. 268, 7865–7867

Strack, S., Choi, S., Lovinger, D. M., and Colbran, R. J. (1997) J. Biol. Chem. 272, 13467–13470

Silva, A. J., Stevens, C. F., Tonegawa, S., and Wang, Y. (1992) Science 257, 201–206

Pettit, D. L., Perlman, S., and Malinow, R. (1994) Science 266, 1881–1885

Lledo, P.-M., Hjelmstad, G. O., Makherji, S., Soderling, T. R., Malenca, R. C., and Nicol, R. A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 11175–11179

Otmakhov, N., Griffith, L. C., and Lisman, J. E. (1996) J. Neurosci. 16, 5257–5365

Giese, K. P., Fedorov, N. B., Filipkowski, R. K., and Silva, A. J. (1998) Science 279, 870–873

McGlaide-McCollugh, E., Yamamoto, H., Tan, S. E., Brickey, D. A., and Soderling, T. R. (1993) Nature 362, 640–642

Omkumar, R. V., Kiely, M. J., Rosenstein, A. J., Min, K. T., and Kennedy, M. B. (1996) J. Biol. Chem. 271, 31670–31678

Mannen, A. L., Ramayansu, K., Roche, K. W., and Huganir, R. L. (1997) J. Biol. Chem. 272, 32528–32533

Barria, A., Muller, D., Derkach, V., Griffith, L. C., and Soderling, T. R. (1997) Science 276, 2042–2045

McNeill, R. B., and Colbran, R. J. (1995) J. Biol. Chem. 270, 10043–10049

Sheng, M., Cummings, J., Roldan, L. A., Jan, Y. N., and Jan, L. Y. (1994) Nature 368, 144–147

Szatkarc, S., Barban, M. A., Wadzinski, B. E., and Colbran, R. J. (1997) J. Neurochem. 68, 3119–3128

Colbran, R. J., Bass, M. A., McNeill, R. B., Bollen, M., Zhao, S., Wadzinski, B. E., and Strack, S. (1997) J. Neurochem. 69, 920–929

Rema, V., and Ebner, F. F. (1996) J. Comp. Neurol. 368, 165–184

Lovinger, D. M. (1995) J. Pharmacol. Exp. Ther. 274, 164–172

Kim, E., Cho, K. O., Rothschild, A., and Sheng, M. (1996) Neuron 17, 103–113

Kendrick, S. J., Kricka, L. J., and Lynch, D. R. (1997) J. Biol. Chem. 272, 647–656

Fong, Y. L., Taylor, W. L., Means, A. R., and Soderling, T. R. (1989) J. Biol. Chem. 264, 16759–16763

Hanson, P. I., Kailof, M. S., Lou, L. L., Rosenfeld, M. G., and Schulman, H. (1989) Neuron 3, 59–70

Shields, S. M., Ingebritsen, T. S., and Kelly, P. T. (1985) J. Neurosci. 5, 3414–3422

Dosemechi, A., and Reese, T. S. (1993) J. Neurochem. 61, 550–555

Geinisman, Y., deToledo-Morrell, L., and Morrell, F. (1991) Brain Res. 566, 77–88

Buchs, P.-A., and Muller, D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 8040–8045

Flint, A. C., Maish, U. S., Weishaupt, J. H., Kriegstein, A. R., and Monyer, H. (1997) J. Neurosci. 17, 2469–2476

Shi, J., Aamodt, S. M., and Constantine-Paton, M. (1997) J. Neurosci. 17, 6264–6276