Retinal and choroidal thickness in pediatric patients with sickle cell disease: a cross-sectional cohort study

Juliana Prazeres¹, Luiz Filipe Lucatto¹, Adriano Ferreira¹, Nilva Moraes¹, Josefina A. P. Braga², Luiz H. Lima¹, Caio Regatieri¹ and Maurício Maia¹*

Abstract

Background: To measure the retinal/choroidal thicknesses in the macular area of asymptomatic pediatric patients with sickle cell disease (SCD).

Methods: This cross-sectional cohort study included 40 children (79 eyes) with SCD and 19 control patients (36 eyes). All subjects underwent spectral-domain optical coherence tomography (SD-OCT) with enhanced-depth imaging OCT. Generalized Estimating Equations (GEE) were applied to compare the outcomes between groups. \(P \leq 0.05\) was considered significant.

Results: The choroidal thickness in the macular area in the study subfields was significantly thinner in the SCD eyes compared with control eyes (subfoveal subfield and temporal parafoveal subfield, \(p < 0.0001\); nasal parafoveal subfield, \(p < 0.0001\) temporal perifoveal subfield, \(p < 0.0001\); nasal perifoveal subfield, \(p < 0.0001\)). The variations in the retinal thickness were not significant.

Conclusion: EDI-OCT showed that the macular choroidal thickness is thinner in asymptomatic pediatric patients with SCD.

Keywords: Retinal thickness, Choroidal thickness, Sickle cell disease

Background

Sickle cell disease (SCD) is an autosomal recessive hematologic disease that results from the substitution of glutamic acid by valine in the hemoglobin molecule [1]. Consequently, the hemoglobin solubility changes resulting in chronic hemolysis and vaso-occlusive events. The irregular shape of the red blood cells may lead to blood flow disturbances, chronic hemolytic anemia, and several systemic complications [2].

Visual loss has been reported in 10% to 20% of patients with SCD possibly due to clinical manifestations in several parts of the eye, including the conjunctiva, iris, uvea, and retina [1]. A higher prevalence of retinopathy is seen in patients with hemoglobin SC compared to those with hemoglobin SS. Although the retinal findings in SCD are predominantly in the retinal periphery, macular changes also can occur including macular infarctions and enlargement of the foveal avascular zone with perifoveal capillary dropout [3, 4].

Previous studies in adults with SCD using spectral-domain optical coherence tomography (SD-OCT) have reported retinal thinning in the macular area due to retinal arteriolar occlusion and decreased choroidal thickness [5–8]. Although the macular findings in adults with SCD have been well described, few studies have specifically assessed the macula in pediatric patients [9, 10].
including the optic nerve and macula. In addition to con-

ranging in the sickle cell anemia group, we found a statisti-
cally significant increase in retinal thickness in the nasal

temporal parafovea (p = 0.026), inferior parafovea (p = 0.036) in the sickle cell anemia
ring were divided further into four equal regions, i.e.,

the central, parafoveal and perifoveal superior, tem-

poral, inferior, and nasal subfields. The macular volume was

recorded from the retinal thickness map.

The horizontal and vertical enhanced-depth imaging
EDI-OCT crosshair scans centered on the fovea were

analyzed. Choroidal imaging was performed as a sin-

gle line scan, 7.2 mm long, passing directly through the

foveal center, using the EDI protocol in the Heidelberg

machine. The choroidal thickness was measured per-

pendicular from the outer edge of the retinal pigment

epithelium to the choriocapillaris at five points:

subfoveal, nasal parafoveal (500 µm nasal to the fovea),

nasal perifoveal (1000 µm nasal to the fovea), temporal

perifoveal (500 µm temporal to the fovea), and temporal

parafoveal (1000 µm temporal to the fovea) (Fig. 1).

Statistical analysis was performed using the Stata v.14.0

software (Stata Corp., College Station, TX, USA). Fre-

quency tables were used for descriptive analyses. The

normality of continuous data was assessed using the

Shapiro–Wilk test. The groups were compared in terms of
demographic characteristics using the Chi-Square test

categorical variables and the Mann–Whitney test for

not normally distributed continuous variables. Consider-
ing that individuals contributed with measurements of

both eyes, the retinal and choroidal thickness values of

those with SCD and controls were compared by Gener-

alized Estimating Equations (GEE) models. P < 0.05 was

considered statistically significant.

Results

The study group included 79 eyes of 40 subjects (20

boys, 20 girls; mean age, 10.05 ± 3.37 years). Thirty-six

eyes of 19 healthy patients comprised the control group.

The mean VA was 20/20, and the mean refractive error

was 0.50 D. Hemoglobin SS was observed in 33 patients

(82%), SC in six patients (15%), and S-beta thalassemia in

one patient (3%). Among the 40 patients with SCD, reti-

nal findings were observed in 26 eyes (32.9%), i.e., retinal

tortuosity in 20 eyes (25.3%), retinal arteriolar narrow-
ing in five eyes (6.3%) and a black sunburst in one eye

(1.27%). No study patients had proliferative SC retinopa-

thy. Table 1 shows the demographic characteristics of the

patients in each group.

The subfoveal choroidal thickness was 240.78 ± 21.27,

and the mean foveal retinal thickness was 256.39 ± 21.27.

Despite the observation of two patients with retinal thin-

ning in the sickle cell anemia group, we found a statisti-
cally significant increase in retinal thickness in the nasal

aparfovea (p = 0.026), inferior paraparfovea (p = 0.011),
temporal paraparfovea (p = 0.036) in the sickle cell anemia

group compared to the control group. (Table 2, Fig. 2).

The choroidal thickness measurements decreased in the
SCD eyes. Compared with the control eyes, the choroidal thickness measurements in the SCD eyes decreased in the subfovea (p < 0.001), temporal parafovea (p < 0.001), nasal parafovea (p < 0.001), temporal perifovea (p < 0.001), and nasal perifovea (p < 0.001) (Table 2, Fig. 3).

When we analyzed the retinal and choroidal thickness values in the patients with SCD according to the status of the retinopathy, no significant retinal or choroidal thinning was seen in the subgroups (SCD with retinopathy vs. SCD without retinopathy) (Table 3).

Discussion

Although findings of SC retinopathy are mostly present peripherally, macular changes due to vascular occlusion in SCD have been reported using fluorescein angiography (FA) [5, 11, 12] electroretinography [13], and histopathology. In the FA studies, the foveal avascular zone was enlarged in patients with SCD. Some studies have reported that macular infarcts can lead to low VA, low foveal sensitivity, and reduced retinal layer thickness on OCT images [5, 6, 14].

Previous SD-OCT studies in adults with SCD have suggested that areas of macular thinning occur secondary to retinal arteriolar occlusion [6, 7, 9]. More recent studies have reported subclinical central macular thinning, foveal splaying, and focal macular thinning in about 50% of eyes with SC hemoglobinopathies [6, 7]. The studies also suggested that central macular splaying/focal thinning may indicate ischemia attributable to vascular occlusions in the capillaries around the fovea.

Since the choroid is a highly vascularized tissue, it is possible that, as in the retina, a vessel occlusive phenomenon can occur at the level of the choroid resulting from...
the irregularly shaped red cells. FA, indocyanine green angiography, and ultrasonography do not visualize the choroid completely. Swept-source OCT and EDI-OCT facilitate better visualization of the choroidal anatomy. This noninvasive tool is useful to evaluate the choroidal thickness and indirectly detect choroidal changes in pathologic states such as choroidal capillary non-perfusion due to subclinical embolic events [8]. Mathew et al. [8] reported significant choroidal thinning in adults with SCD in contrast to discrete areas of retinal thinning. The investigators did not find a correlation between choroidal thinning and areas of macular thinning and suggested that macular microarteriolar occlusions are independent of changes in the choroidal circulation [8].

In the current study, EDI-OCT showed that the macular choroidal thickness is thinner in pediatric patients with SCD. The choroidal thickness in these patients was not correlated with age and was not the normal choroidal thickness seen in the normal control eyes. However, the current study did not identify significant retinal thinning

Table 2 Comparison of SD-OCT retinal and choroidal thickness subfield measurements in the SCD and control groups

Subfield	SCD Mean µm ± standard deviation (median)	Control Mean µm ± standard deviation (median)	p value
Retinal thickness			
Central	256.39 ± 20.84 (256.00)	254.58 ± 18.89 (255.00)	0.748
Superior parafovea	344.65 ± 21.13 (344.50)	340.06 ± 18.80 (337.00)	0.378
Nasal parafovea	345.58 ± 17.21 (343.00)	334.00 ± 22.24 (330.00)	0.026*
Inferior parafovea	343.07 ± 14.80 (342.00)	332.28 ± 18.26 (331.50)	0.011*
Temporal parafovea	330.83 ± 16.02 (331.00)	322.14 ± 15.89 (320.00)	0.036*
Superior perifovea	317.73 ± 13.24 (316.00)	311.18 ± 21.20 (305.00)	0.285
Nasal perifovea	326.05 ± 15.06 (325.00)	319.75 ± 19.14 (318.50)	0.193
Inferior perifovea	309.41 ± 17.15 (307.00)	300.96 ± 17.18 (299.00)	0.075
Temporal perifovea	293.24 ± 11.09 (292.00)	291.60 ± 23.13 (286.00)	0.733
Choroidal thickness			
Subfovea	240.78 ± 21.27 (238.00)	275.87 ± 41.14 (262.50)	<0.001*
Temporal parafovea	231.08 ± 21.01 (230.00)	266.16 ± 43.43 (255.00)	<0.001*
Nasal parafovea	224.52 ± 17.97 (224.00)	251.44 ± 40.92 (236.00)	<0.001*
Temporal perifovea	220.15 ± 30.47 (212.00)	247.28 ± 47.18 (228.00)	<0.001*
Nasal perifovea	202.36 ± 17.53 (200.00)	220.69 ± 39.94 (214.50)	<0.001*

*p < 0.05 is significant

Fig. 2 Comparison of retinal thickness subfield measurements between the SCD and control groups. The subfoveal choroidal thickness is 240.78 ± 21.27, and the mean foveal retinal thickness is 256.39 ± 20.84. There is no significant reduction in the retinal thickness in the SCD group compared with the control eyes.
in the nine ETDRS subfields compared with the control group. Retinal thinning was seen in only two patients with SCD. Some authors have reported that the choriocapillaris is more sensitive to the effects of hypoxic or ischemic diseases than other ocular components, which may be explained by the lobular arrangement and larger volume of the choriocapillaris [8, 15]. Choroidal thinning can occur due to sickling of red blood cells and subsequent reduction in choriocapillaris blood flow.

Reports that included both adults and children with SCD showed decreased macular thickness, which was more prominent in the temporal macula. A large series of adults with SCD reported a prevalence of 43% of eyes with discrete areas of macular thinning on fovea-centered SD-OCT [8]. Martin et al. reported areas of temporal retinal thinning in 38% of eyes and suggested that retinal thinning may occur early in the disease course [9]. Pahl et al. [10] evaluated 24 eyes of adolescents with

Table 3 Comparison of retinal and choroidal thickness measurements using EDI-OCT in patients with SCD with and without retinopathy

	SCD with retinopathy Mean µm ± standard deviation (median)	SCD without retinopathy Mean µm ± standard deviation (median)	p value
Retinal thickness			
Central	253.00 ± 23.39 (256.00)	258.15 ± 19.40 (256.00)	0.665
Superior parafovea	347.48 ± 30.20 (346.00)	343.16 ± 14.37 (344.00)	0.423
Nasal parafovea	348.52 ± 22.39 (346.00)	344.06 ± 13.79 (343.00)	0.298
Inferior parafovea	345.26 ± 19.94 (344.00)	341.94 ± 11.33 (341.50)	0.313
Temporal parafovea	332.11 ± 18.60 (331.00)	330.17 ± 14.66 (329.00)	0.688
Superior perifovea	323.26 ± 13.12 (320.00)	314.84 ± 12.49 (314.50)	0.029*
Nasal perifovea	330.11 ± 18.58 (329.00)	323.94 ± 12.55 (325.00)	0.636
Inferior perifovea	313.36 ± 17.04 (313.00)	307.26 ± 17.00 (303.50)	0.356
Temporal perifovea	297.44 ± 11.97 (294.00)	291.06 ± 10.04 (289.00)	0.058
Choroidal thickness			
Fovea	237.50 ± 17.86 (235.50)	242.46 ± 22.85 (240.00)	0.391
Temporal parafovea	230.45 ± 17.18 (230.00)	231.41 ± 22.93 (229.00)	0.854
Nasal parafovea	224.40 ± 16.03 (225.00)	224.59 ± 19.09 (222.00)	0.979
Temporal perifovea	228.70 ± 34.87 (214.00)	215.77 ± 27.40 (210.00)	0.108
Nasal perifovea	202.80 ± 16.62 (199.00)	202.13 ± 18.18 (200.00)	0.953

*p < 0.05 is significant
SCD aged 10 to 19 years and reported macular thinning and flow abnormalities on OCT angiography (OCTA) images. In contrast, Ong et al. observed less dense vasculature on the OCTA images but with similar retinal thickness compared with an age- and race-matched control group and suggested that the microvascular abnormalities may precede the structural retinal thinning [16]. Unlike previous studies, our study showed an increase in retinal thickness in asymptomatic children with sickle cell anemia, which may suggest that retinal thinning occurs at a later stage of the disease.

Despite the normal retinal thickness in the study eyes, we found choroidal thinning in pediatric patients with SCD. Our results suggested that choroidal thinning may precede the retinal thinning in asymptomatic children with SCD, possibly due to the earlier sickling in the choroidal vessels as a result of slower vascular flow.

Ideally, SCD retinopathy should be diagnosed before the proliferative stage develops, since patients may experience visual loss due to macular microinfarcts during the non-proliferative stage. Because patients with SCD begin to exhibit evidence of proliferative retinopathy around 10 years of age, pediatric patients with SCD should be referred to an ophthalmologist as soon as possible [17].

The current study had some limitations. In addition to its retrospective design and small number of study eyes, the choroidal thickness measurements were performed manually. Another limitation is a single choroidal measurement for a constantly changing structure. We performed a single measurement because it is an exam that requires the child’s cooperation. To minimize this effect of daily variation, we performed all exams between 9 and 11 am.

In conclusion, the current study showed that the choroid was significantly thinner in the macular area of pediatric patients with SCD, which may be related to the choroidal microvasculature changes that precede retinal thinning.

Abbreviations
SCD: Sickle cell disease; SD-OCT: Spectral-domain optical coherence tomography; VA: Visual acuity; D: Diopeters; ETDRS: Early Treatment Diabetic Retinopathy Study; FA: Fluorescein angiography; EDI-OCT: Enhanced-depth imaging optical coherence tomography; OCTA: Optical coherence tomography angiography.

Acknowledgements
Not applicable.

Authors' contributions
JP and NM participated in study elaboration, clinical evaluation, interpretation of data, coordination and helped to draft the manuscript. JAPB analyzed and evaluated the patient data regarding sickle cell disease. LFL, AF, CR participated in study design and helped to draft the manuscript. LHL and MM participated in coordination, interpretation of data, study design and helped to draft the manuscript. All authors read and approved the final manuscript.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations
Ethics approval and consent to participate
The institutional review board and ethics committee of Federal University of São Paulo, São Paulo, Brazil, approved this study and all patients parents or legal guardian provided informed consent after adequate study explanation.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Ophthalmology, Federal University of São Paulo, 806, Botucatu Street, São Paulo 04026-062, Brazil. 2 Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil.

Received: 23 June 2021 Accepted: 17 December 2021
Published online: 04 March 2022

References
1. Fadugbagbe AO, Gurgel RQ, Mendonça CQ, Cipolotti R, Dos Santos AM, Cuevas LE. Ocular manifestations of sickle cell disease. Ann Trop Paediatr. 2010;30:19–26.
2. Reynolds SA, Besada E, Winter-Corella C. Retinopathy in patients with sickle cell trait. Optometry. 2007;78:582–7.
3. Moriarty BJ, Achesson RW, Condon PI, Serjeant GR. Patterns of visual loss in untreated sickle cell retinopathy. Eye. 1986;2:330–5.
4. Elagouz M, Jyothi S, Gupta B, Srivaprasad S. Sickle cell disease and the eye: old and new concepts. Surv Ophthalmol. 2010;55:359–77.
5. Witkin AJ, Rogers AH, Ko TH, Fujimoto JG, Schuman JS, Duker JS. Optical coherence tomography demonstration of macular infarction in sickle cell retinopathy. Arch Ophthalmol. 2006;124:746–7.
6. Chow CC, Geneed MA, Anastasakis A, Chau FY, Fishman GA, Lim JL. Structural and functional correlation in sickle cell retinopathy using spectral-domain optical coherence tomography and scanning laser ophthalmoscope microperimetry. Am J Ophthalmol. 2011;152:704–11.
7. Hoang QV, Chau FY, Shahidi M, Lim JL. Central macular splaying and outer retinal thinning in asymptomatic sickle cell patients by spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;151:990–4.
8. Mathew R, Bafiq R, Ramu J, Pearce E, Richardson M, Drasar E, et al. Spectral domain optical coherence tomography in patients with sickle cell disease. Br J Ophthalmol. 2015;99:967–72.
9. Martin GC, Albuisson E, Brousse V, de Montalembert M, Bremond-Gignac D, Robert MP. Paramacular temporal atrophy in sickle cell disease occurs early in childhood. Br J Ophthalmol. 2019;103:906–10.
10. Pahl DA, Green NS, Bhatia M, Lee M, Chang JS, Licuri M, et al. Optical coherence tomography angiography and ultra-widefield fluorescein angiography for early detection of adolescent sickle retinopathy. Am J Ophthalmol. 2017;183:91–8.
11. Asdourian GK, Nagpaul KC, Busse B, Goldbaum M, Rabb MF, Goldberg MF, et al. Macular and perimacular vascular remodelling sickling haemoglobinopathies. Br J Ophthalmol. 1997;80(6):431–5.
12. Sanders RJ, Brown GC, Rosenstem RB, Magargal LF. Oveal avascular zone diameter and sickle cell disease. Arch Ophthalmol. 1991;109:812–5.
13. Cusick M, Toma HS, Hwang TS, Brown JC, Miller NR, Adams NA. Binasal visual field defects from simultaneous bilateral retinal infarctions in sickle cell disease. Am J Ophthalmol. 2007;143:893–6.
14. Murthy RK, Grover S, Chalam KV. Temporal macular thinning on spectral-domain optical coherence tomography in proliferative sickle cell retinopathy. Arch Ophthalmol. 2011;129:247–9.
15. Wajer SD, Taomoto M, McLeod DS, McCally RL, Nishiwaki H, Fabry ME, et al. Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures. Microvasc Res. 2000;60:281–93.
16. Ong SS, Linz MO, Li X, Liu TY, Han IC, Scott AW. Retinal thickness and microvascular changes in children with sickle cell disease evaluated by optical coherence tomography (OCT) and OCT angiography. Am J Ophthalmol. 2020;209:88–98.
17. Babalola OE, Wambebe CO. When should children and young adults with sickle cell disease be referred for eye assessment? Afr J Med Med Sci. 2001;30:261.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.