Environmental Carrying Capacity based on Ecosystem Services for Sustainable Development in Banggai Island

M N Sangadji¹, N Edy³, Nursalam¹, A Rahman¹², S Mozin³, R Rahmati¹, I Lakani¹, Z Machmud¹, M Musbah⁴

¹ Faculty of Agriculture Tadulako University, Jl. Soekarno Hatta KM. 9 Palu, Central Sulawesi, Indonesia 94118
² Faculty of Forestry Tadulako University, Jl. Soekarno Hatta KM. 9 Palu, Central Sulawesi, Indonesia
³ Faculty of Animal Husbandry Tadulako University, Jl. Soekarno Hatta KM. 9 Palu, Central Sulawesi, Indonesia 94118
⁴ Institute of Fisheries and Marine. Palu, Central Sulawesi, Indonesia 94118

E-mail: nuredy01@gmail.com

Abstract Environmental carrying capacity based on ecosystem services has been widely used to maintain the environment against development. Environmental carrying capacity assessed in this study to estimate the ability of Banggai Island regency in provisioning food and water, regulating water flow and flood, and regulating of prevention and protection of natural disasters. The environmental carrying capacity was calculated based on ecoregion, vegetation, and land cover. The results subsequently presented in the map. This study pronounced that Banggai Island has a lower environmental carrying capacity for food water provision, as well as protection against natural disasters. This study is highlight carrying capacity profile of Banggai Island as a possible tool for government and multi-stakeholders in directing the development.

1. Introduction
Over the past decades, Indonesia experiences in biodiversity loss with regards to ecosystem functions [1,2]. Forest conversion [3], land use change [4–6], land use intensification [1,7,8], and natural disasters [9] have led potential degradation on natural resources. This, in turn, declines the ecosystem services. Indonesia as islands of Wallace, also known as the biodiversity hotspot [10]. Banggai Island, located in Sulawesi Indonesia, has been reported as a unique biodiversity resource. The natural ecosystem in Banggai Island has a very important role in various aspects of life. However, ecosystem services provided are increasingly diminishing in line with increasing human needs and developments [11]. Massive utilization of ecosystems services that are not followed by conservation will affect the decline of environmental carrying capacity [12,13] and may lead to the degradation of the ecosystem [14,15].

Ecosystem services refer to the function of nature that can be obtained for human wellbeing. This concept initially introduced by [16] in the ecology of the landscape. Based on Millennium Ecosystem Assessments, ecosystem services grouped into four categories, namely supporting services, regulating
services, provisioning services, and cultural services. Ecosystem services being a big concern since nature will not provide services long life, while human obtain the daily needs from the ecosystems. Ecosystem services profile can be an import tool for decision making of the government [17–19]. The ecosystem services profile will integrate ecosystem service tradeoff to manage the land use [20], forecasting the ecological condition in the future and decide the plan [21], and adapt and the actions against the ecosystem services condition [22].

Ecosystem services in Banggai Island may decline and seem more anthropic [23]. There are three possible reasons follows: (i) community activities related to their livelihoods in agriculture push the land-use change [24,25], (ii) economic business activities tend to extractive (see, for example [26], (iii) human behavior to pollute the environment see for instance [27,28]. Shifting cultivation is still a major problem in Banggai Island [29]. This study highlight the profile of the environment carrying capacity based on ecosystem services of provisioning services for food, provisioning services for water, regulating services of water flow and flood, and regulating services of prevention and protection of natural disasters. We then explain the possible actions of the government in implementing sustainable development by pay attention to the environmental carrying capacity.

2. Material and Method

2.1. Study site
This study located in Banggai Island, a regency in Central Sulawesi, Indonesia (1°06' 30" SL to 1°35' 58" SL and 122°37' 6.3" EL up to 123°40' 1.9" EL). The annual temperature ranges from 27ºC to 32 ºC. The relative humidity reported by 82% in June and 73% in October with annual rainfall by 127.10 mm (Central Bureau of Statistics Central Sulawesi, 2018). Figure 1 shows the administrative map of Banggai Island. Based on the morphology, structure and formation processes, Banggai island is divided into four main units namely mountain (hills structural), karst hills, intrusive hills and lowlands and surrounded by ocean [11].

2.2. Data analysis
The environmental carrying capacity was calculated based on ecoregion, vegetation, and land cover (Equation 1). The ecosystem services obtained by weighting and comparison of the landforms and land cover contribution to the ecosystem services. The higher the value of ecosystem services, the higher the environment carrying capacity. The assessment of the role of each type of landform, type of vegetation, and type of land cover was carried out by an expert based valuation method, namely an assessment carried out by some experts in a focus group discussion. Weighting related to the role and contribution of landforms, vegetation, and land cover to ecosystem services was determined by the analytical hierarchy process (AHP) method. To this study purpose, we calculated provisioning services for food and water. The regulating services consisted of water flow and flood management; and prevention and protection of natural disasters. Ecosystem services will show environmental carrying capacity indicative based classes (Table 1).

\[
ES = (w_{bl} \times s_{bl})+(w_{veg} \times s_{veg})+(w_{pl} \times s_{pl})
\]

equation 1

where ES is ecosystem services, \(w_{bl}\) is weighted for ecoregion, \(s_{bl}\) is the score for ecoregion, \(w_{veg}\) is weighted for vegetation, \(s_{veg}\) is the score for vegetation, \(w_{pl}\) is weighted for land cover, \(s_{pl}\) is the score for land cover. The carrying capacity of rice (Equation 2) was measured separately to support the carrying capacity of provisioning food on ecosystem services.
where CC_{rice} is the carrying capacity of provisioning rice, PR is the productivity of the rice field which planted by rice (kg/ha), AP is the total area planted by rice (ha), α is index conversion of paddy to be rice (62.74%), Po (number of population), RN is the standard need for rice (kg). The interpretation of carrying capacity of provisioning rice estimated as “<1” if the area is not able or “>1” if the area able to provide the need of rice for their population by themselves.

![Figure 1](image_url)

Figure 1. Administrative are of Banggai Island Indonesia.

Class of Carrying Capacity	Ecosystem services indices
Very low	1.00 - 1.80
Low	1.81 - 2.60
Moderate	2.61 - 3.40
High	3.41 - 4.20
Very high	4.21 - 5.00

3. **Results and discussion**

3.1. *Provisioning services for food*
Ecosystems everything that comes from biological resources from above ground and water, which are intended as food or drinks for human consumption. Provision of food by ecosystems comes from agricultural and plantation, livestock food, marine and forest products. We found only 38% of areas had high and very high carrying capacity status (Table 2, Figure 2A). A total of 62% area of Banggai Island show low to moderate carrying capacity. The distribution of regions had a high food providing service mostly found in land cover dominated by dryland agriculture, mixed farming, secondary forest, and shrub. These land cover types are majority located in the District of Bulagi. It indicates that maintaining ecosystems related to food providers will, in turn, support food production. Hence, the regions which showed lower ecosystem services can be managed not for agricultural purposes in regional development of Banggai Island. We also measured the carrying capacity of Banggai Island in providing rice. The results show that Banggai Island was not able to provide rice to fulfill the need of population in Banggai Island (CC rice = 0.1). It is not surprising since Banggai Island only have 5 of 12 districts that have paddy swim. We noted that the large area of paddy swim in Banggai Island was 559 ha from 2,488.9 the total large area of Banggai Island.

It is indicating that Banggai Island does not have an adequate carrying capacity related to the function of food supply. The collaboration between governments of Banggai Island and other neighbor government areas will be needed for maintaining the continuity of rice supply to Banggai Island. Also, the government of Banggai Island has to protect the area belong to agricultural wetland for paddy from the land use change. The network of irrigation infrastructure is one to be considered. Revitalization and develop the new irrigation for agriculture has to be a priority for increasing the carrying capacity of Banggai Island in providing rice.

The increasing demand for agricultural products, about the rising of population commonly increase the pressure of agricultural intensification. However, the negative impact on the environment has to be controlled. In developed countries, the productivity of agriculture can reach the maximum level. In parallel, high external inputs which are unsustain will follow. Therefore, we can see the conditions that high energy cost, the resistance of pesticide, and a decrease in soil carbon to support productivity. Maintaining ecosystem surrounding the agricultural fields will support the sustainability of agricultural productivity (see for example [30]. Managing water as one of an ecosystem services providers will benefit the food provisioning [31].

Table 2. Distribution of environmental carrying capacity in Banggai Island based on ecosystem services and their coverage area (Ha and %).

CES	Provisioning services for food	Provisioning services for water	Regulating services of water flow and flood	Regulating services of prevention and protection of natural disasters				
Area (Ha)	%							
Very Low	1,002.72	0.42	3,147.83	1.31	93,582.2	39.09	56,599.0	23.64
Low	62,754.2	26.21	18,380.8	7.68	5,325.12	2.22	44,403.5	18.55
Moderate	84,270.3	35.20	157,806.	65.92	0.00	0.00	98,928.2	41.33
High	55,973.3	23.38	59,853.9	25.00	29	57.75	138,252.	41.33
Very High	35,386.4	7	197.72	0.08	2,227.43	0.93	1,620.85	0.68
Total	239,387.	100.00	239,387.	100.00	239,387.	100.00	239,387.	100.00

*CES: a class of ecosystem services.
3.2. **Provisioning services for water**

Water, as provided by ecosystems mainly originated from groundwater and rain which uses for agriculture, industry, and daily household needs. Provision of clean water services is strongly influenced by rainfall conditions and soil layers that can store water (aquifers) as well as factors that can affect groundwater storage systems such as landforms and types of land cover [32–34]. In this study, we found high to a very high carrying capacity of water covers 25% of all land cover in Banggai Island (Table 2, Figure 2B), particularly in primary dryland forest, secondary dryland forest, shrub, swam shrub, and mangrove areas. These land uses distributed in Tinangkung, North Tinangkung, South Tinangkung, Liang, Buko, and South Buko districts. Around 75 % or 176,890.76 ha of land cover identified does not have adequate carrying capacity (moderate to very low carrying capacity classes) related to the function of providing clean water. In terms of the ability of Banggai Island in providing clean water, is still relatively low. A water crisis that may occur potentially caused by drought or environmental damage at the location of existing water sources. This ecological condition suggests the local government have to be able to improve and maintain the environmental carrying capacity of water supply. Government policy related to water protection suggest that: (i) allocation of water use has to consider the potential of water resources; (ii) increasing the efficiency of the use of water resources in various sectors also has to be managed; (iii) Maintain the sustainability of natural water flow rainy and dry seasons; (iv) avoid physical buildings except water collection tanks and water flow distribution pipes in the area of water sources and water flow; (v) prevention of changes of the cave mouths or water sources that alter the changes of natural rock structures; and (vi) control the land clearing or deforestation around the water sources. Water management for food can be enhanced. Asian countries normally face water provision problem. An optimistic scenario suggested by [35] that water demand in line with food demand is possible by improving agriculture irrigation.

3.3. **Regulating services of water flow and flood**

Our study show that only 58% area had a high carrying capacity (Table 2, Figure 2C), means that Banggai Island potentially suffers by flood and uncontrolled water flow. The distribution of that regions are mainly in primary dryland forest, secondary dryland forest, mixed dryland agriculture, and secondary mangrove forest. These land covers distributed in Bulagi and Buko districts.

The operational function of the regulating services of water flow and flood is related to the process of the hydrological cycle, as well as natural infrastructure for water storage, flood control, and water maintenance [36–38]. The hydrology cycle is the movement of water in the hydrosphere which includes the evaporation process, cooling air mass (condensation), precipitation, and flow. The hydrological cycle that occurs in the atmosphere includes the formations of rain clouds, the of rain, evaporation, transpiration, and evapotranspiration [39–41]. While the hydrological cycle that occurs in the biosphere and lithosphere is a water ecosystem that includes surface flow, freshwater ecosystems, and ocean ecosystems, a normal hydrological cycle will have an impact on good water management arrangements for a variety of interests such as water storage, flood control, and maintenance of water availability. The regulation of the water system with the hydrological cycle is strongly influenced by the type of land cover and physiography of an area.

3.4. **Prevention and protection of natural disasters**

This ecosystem service refers to the capacity of natural infrastructure prevention and protection from land fires, erosion, abrasion, landslides, storms and tsunami. An ecosystem contains regulation element on natural infrastructure for prevention and protection of certain types of disasters, especially natural disasters.

In this study, we calculated only a total of 16% areas could provide high and very high carrying capacity of natural disaster protection in Banggai Island (Table 2, Figure 2D). The type of land cover
supported by primary dryland forest, secondary dryland forest, dry land agriculture, mixed dryland agriculture and secondary mangrove forest in North Bulagi and Buko districts.

The functions of preventing natural disasters are closely related to the presence types of land cover and landforms [42,43]. Above ground biomass that covered by dense vegetation can prevent areas from erosion, landslides, abrasion, and tsunami [44–46]. Also, landforms specifically have a direct impact on the source of the disaster, for example, erosion and landslides generally occur in structural and denudation landforms with hilly morphology [47–49].

4. Conclusion
The profile of environmental carrying capacity based ecosystem services contributes important information toward science development and practical decision making by Government. Understanding the need for development and the same direction to protect the environment for sustainability lead sustainable goals achievement to be possible. Here, we present the environmental carrying capacity of Banggai Island, in particular for food water provision, as well as protection against natural disasters, that shows low capacity. It suggests the multi-stakeholders to plan the development by protecting and improving nature for ecosystem services.

5. Acknowledgments
We thank the Government of Banggai Regency in Central Sulawesi to support this study through the Strategic Environmental Assessment funded by Development Planning Agency at Sub-National Level (Badan Perencanaan Pembangunan Daerah).

References
[1] Drescher J, Rembold K, Allen K, Beckschäfer P, Buchori D, Clough Y, Faust H, Fauzi A M, Gunawan D, Hertel D, Irawan B, Jaya I N S, Klarner B, Kleinn C, Knohl A, Kotowska M M, Krashevska V, Krishna V, Leuschner C, Lorenz W, Meijide A, Melati D, Nomura M, Pérez-Cruzado C, Qaim M, Siregar I Z, Steinbach S, Tjoa A, Tscharntke T, Wick B, Wiegand K, Kreft H and Scheu S 2016 Ecological and socio-economic functions across tropical land use systems after rainforest conversion Philos. Trans. R. Soc. B Biol. Sci. 371 20150275
[2] Tsujino R, Yumoto T, Kitamura S, Djamaluddin I and Darnaedi D 2016 History of forest loss and degradation in Indonesia Land use policy 57 335–47
[3] Margono B A, Potapov P V., Turubanova S, Stolle F and Hansen M C 2014 Primary forest cover loss in Indonesia over 2000-2012 Nat. Clim. Chang. 4 730–5
[4] Dimyati M, Mizuno K, Kobayashi S And Kitamura A T 1996 An analysis of land use/cover change in Indonesia Int. J. Remote Sens. 17 931–44
[5] Verburg P H, (A.) Veldkamp T and Bouma J 1999 Land use change under conditions of high population pressure: the case of Java Glob. Environ. Chang. 9 303–12
[6] Wanger T C, Iskandar D T, Motzke I, Brook B W, Hodini N S, Clough Y and TSCHARNTKE T 2010 Effects of Land-Use Change on Community Composition of Tropical Amphibians and Reptiles in Sulawesi, Indonesia Conserv. Biol. 24 795–802
[7] Lee D R (David R, Barrett C B (Christopher B, Budidarsono S, Gillison A N, Kusumanto T, Murdiyarso D, Stolle F and Fagi A M 2001 Tradeoffs or synergies? : agricultural intensification, economic development, and the environment (CABI Pub)
[8] Potter L 2001 Agricultural Intensification in Indonesia: Outside Pressures and Indigenous Strategies Asia Pac. Viewp. 42 305–24
[9] Measey M 2010 Indonesia: A Vulnerable Country in the Face of Climate Change vol 1
[10] Myers N, Mittermeier R A, Mittermeier C G, Fonseca G A B and Kent J 2000 Biodiversity
hotspots for conservation priorities 403–8
[11] EPMP 2014 Environmental Protection and Management Plan Banggai Island Regency 45
[12] Goodland R 1995 The Concept of Environmental Sustainability Annu. Rev. Ecol. Syst. 26 1–24
[13] Rees W E 1992 Ecological footprints and appropriated carrying capacity: what urban economics leaves out Environ. Urban. 4 121–30
[14] Phuthego T . and Chanda R 2004 Traditional ecological knowledge and community-based natural resource management: lessons from a Botswana wildlife management area Appl. Geogr. 24 57–76
[15] Jewitt G 2002 Can Integrated Water Resources Management sustain the provision of ecosystem goods and services? Phys. Chem. Earth, Parts A/B/C 27 887–95
[16] Leimona B, van Noordwijk M, de Groot R and Leemans R 2015 Fairly efficient, efficiently fair: Lessons from designing and testing payment schemes for ecosystem services in Asia Ecosyst. Serv.
[17] Giannetti B F, Barrella F A and Almeida C M V B 2006 A combined tool for environmental scientists and decision makers: ternary diagrams and emergy accounting J. Clean. Prod. 14 201–10
[18] Daily G C, Polasky S, Goldstein J, Kareiva P M, Mooney H A, Pejchar L, Ricketts T H, Salzman J and Shallenberger R 2009 Ecosystem services in decision making: time to deliver Front. Ecol. Environ. 7 21–8
[19] Bagstad K J, Semmens D J, Waage S and Winthrop R 2013 A comparative assessment of decision-support tools for ecosystem services quantification and valuation Ecosyst. Serv. 5 27–39
[20] Goldstein J H, Caldarone G, Duarte T K, Ennaanay D, Hannahs N, Mendoza G, Polasky S, Wolny S and Daily G C 2012 Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. U. S. A. 109 7565–70
[21] Clark J S, Carpenter S R, Barber M, Collins S, Dobson A, Foley J A, Lodge D M, Pascual M, Pielke R, Pizer W, Pringle C, Reid W V, Rose K A, Sala O, Schlesinger W H, Wall D H and Wear D 2001 Ecological forecasts: an emerging imperative. Science 293 657–60
[22] Pramova E, Locatelli B, Brockhaus M and Fohlmeister S 2012 Ecosystem services in the National Adaptation Programmes of Action Clim. Policy 12 393–409
[23] Syarifuddin A, Hasmiyani, Dirpan A and Mahendra M 2017 Physical, mechanical, and barrier properties of sodium alginate/gelatin emulsion based-films incorporated with canola oil IOP Conf. Ser. Earth Environ. Sci. 73 012018
[24] Lambin E F and Meyfroidt P 2010 Land use transitions: Socio-ecological feedback versus socio-economic change Land use policy 27 108–18
[25] Adger W N, Arnell N W, Geddes A and Thomas D 2011 The effect of environmental change on human migration Glob. Environ. Chang. 21 S3–11
[26] Dewi S, Belcher B and Pundoweno A 2005 Village economic opportunity, forest dependence, and rural livelihoods in East Kalimantan, Indonesia World Dev. 33 1419–34
[27] Nakazawa K, Nagafuchi O, Kawakami T, Inoue T, Yokota K, Serikawa Y, Cyio B and Elvince R 2016 Human health risk assessment of mercury vapor around artisanal small-scale gold mining area, Palu city, Central Sulawesi, Indonesia Ecotoxicol. Environ. Saf. 124 155–62
[28] Sumarga E 2017 Spatial Indicators for Human Activities May Explain the 2015 Fire Hotspot Distribution in Central Kalimantan Indonesia Trop. Conserv. Sci. 10 1940082917700616
[29] Akbar r k m a And Ali M 2017 Etnografi Komunitas Adat Terpencil Loinang di Daerah Kabupaten Banggai
[30] Bommarco R, Kleijn D and Potts S G 2013 Ecological intensification: harnessing ecosystem services for food security Trends Ecol. Evol. 28 230–8
[31] Gordon L J, Finlayson C M and Falkenmark M 2010 Managing water in agriculture for food production and other ecosystem services Agric. Water Manag. 97 512–9
[32] Rockström J, Lannerstad M and Falkenmark M 2007 Assessing the water challenge of a new
The green revolution in developing countries. *Proc. Natl. Acad. Sci. U. S. A.* **104** 6253–60

[33] Pimentel D, Houser J, Preiss E, White O, Fang H, Mesnick L, Barsky T, Tariche S, Schreck J and Alpert S 1997 Water Resources: Agriculture, the Environment, and Society *Bioscience* **47** 97–106

[34] Kijne J W, Barker R and Molden D (David) 2003 *Water Productivity in Agriculture: Limits and Opportunities for Improvement*. (CAB International)

[35] de Fraiture C and Wichelns D 2010 Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture *Agric. Water Manag.* **97** 495–501

[36] Oki T and Kanae S 2006 Global hydrological cycles and world water resources. *Science* **313** 1068–72

[37] Richter B D, Mathews R, Harrison D L and Wigington R 2003 Ecologically Sustainable Water Management: Managing River Flows For Ecological Integrity *Ecol. Appl.* **13** 206–24

[38] Wheater H and Evans E 2009 Land use, water management and future flood risk *Land use policy* **26** S251–64

[39] Trenberth K E, Dai A, Rasmussen R M, Parsons D B, Trenberth K E, Dai A, Rasmussen R M and Parsons D B 2003 The Changing Character of Precipitation *Bull. Am. Meteorol. Soc.* **84** 1205–18

[40] Pielke R A, Adegoke J, Beltráén-Przekurat A, Hiemstra C A, Lin J, Nair U S, Niyogi D and Nobis T E 2007 An overview of regional land-use and land-cover impacts on rainfall *Tellus B Chem. Phys. Meteorol.* **59** 587–601

[41] Benton G S, Blackburn R T and Snead V O 1950 The role of the atmosphere in the hydrologic Cycle *Trans. Am. Geophys. Union* **31** 61

[42] Aleotti P and Chowdhury R 1999 Landslide hazard assessment: summary review and new perspectives *Bull. Eng. Geol. Environ.* **58** 21–44

[43] Dewan A M, Islam M M, Kumamoto T and Nishigaki M 2007 Evaluating Flood Hazard for Land-Use Planning in Greater Dhaka of Bangladesh Using Remote Sensing and GIS Techniques *Water Resour. Manag.* **21** 1601–12

[44] O’Loughlin C L 1984 Effectiveness of introduced forest vegetation for protection against landslides and erosion in New Zealand’s steeplands. *Symp. Eff. For. L. use Eros. slope Stab.* 275–80

[45] Tanaka N 2009 Vegetation bioshields for tsunami mitigation: review of effectiveness, limitations, construction, and sustainable management *Landscape Ecol. Eng.* **5** 71–9

[46] Woods Plantations P S, Rica C, Palo Arco P and Guanacaste C 2013 *FOREST Management Public Summary*

[47] Schulz W H 2007 Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington *Eng. Geol.* **89** 67–87

[48] Oh H-J and Lee S 2011 Landslide susceptibility mapping on Panaon Island, Philippines using a geographic information system *Environ. Earth Sci.* **62** 935–51

[49] Sartohadi J 2010 Landslide Susceptibility Assessment using Heuristic Statistically Method in Kayangan Catchment Kulon Progo Yogyakarta-Indonesia *Int. J. Geoinformatics* **6**