Pollen diversity in *Phyllanthus* species (Phyllanthaceae) Andhra Pradesh, India

S. Akkulanna¹, Jangam Ganga Kailas², K. Raja Kullayiswamy³, R.R.Venkata Raju¹, Hari Ramakrishna²

ABSTRACT

The present study deals with the pollen morphological diversity and taxonomic importance among the *Phyllanthus* species belonging to the Phyllanthaceae family from combined Andhra Pradesh. Sixteen species belonging to genus *Phyllanthus* analyzed the pollen morphology using SEM. The size, shape, symmetry, aperture and ornamentation were recorded in all test species, among them ten were tricolporate, three tetracolporate while the remaining indicates the pantosyncolpate. The reticulate ornamentation is common and predominant in all taxa. The evaluation of taxonomic diversity among *Phyllanthus* species hitherto not known from Andhra Pradesh, hence the present study is the first report and gains importance. It is clear that the pollen characteristic features are significant in the identification of endemic species (*P.amarus* and *P.narayanaswamii*) and confirmation of potential medicinal plants (*P.amarus* and its allied species) with the help of micromorphological pollen studies.

Key words: Endemic species, *Phyllanthus*, Pollen morphology, Taxonomic diversity.

INTRODUCTION

Phyllanthus L. (s.l.) often divided into six subgenera, namely, Cicca, Eriococcus, Isocladis, Kirgenelia, *Phyllanthus* (s.s) and Xylophylla. The subgenus *Phyllanthus* (s.s.s) is characterized by herbs or semi-woody shrubs bearing colporate pollen grains, tricarpellary capsular fruits with six striate and/or foveolate seeds. The Genus *Phyllanthus* L. is represented by 51 species from India which grows in forests, wastelands and open fields (Chaudhary and Rao 2002).

The genus *Phyllanthus* widely distributed in Sri Lanka, India, Burma, Indonesia, Pacific Islands and West Indies (Mariappan et al., 2015). The erstwhile *P.niruri* non L. is divided into three species viz, *P.amarus* (s.s.), *P.fratermus* and *P.debilis* (Theerakulpisut 2008). Many publications from India, on *P.niruri* non L. were found to be referring to any of the three species and not on the true *P.niruri* L. which is endemic to Central America. The true *P.niruri* L. is native species of Central America which does not occur in India. The group of herbs, *P.amarus*, *P.fratermus*, *P.debilis* and *Purinaria* has been referred to as ‘Bhumyamalaki’, in Indian literature which is also known as *P.niruri* complex. They are similar in morphology but difficult to separate into distinct species on exomorphological features. Specific morphological features that aid the identification of *P.amarus*, *P.debilis*, *P.maderaspatensis* and *P.virgatus* have been reported. The literature revealed about 20 species that occur in Andhra Pradesh (Pullaiah et al., 2018). *P.acidus*, *P.indolifuscus*, *P.fratermus* and *P.leschenaultia* were not relocated. The distribution among the herbaceous *Phyllanthus* like *P.scabrifolius*, *P.heedei*, *P.debilis*, *Pairyshawii* and *P.kozhikodianus* is not well demarcated since most of the morphological features are identical, however, *P.kozhikodianus* Sivarajan and Manilal is reported as a synonym of *P.heedei* Gangopadhyay et al., (2004). *P.debilis* Hook.f is different from *P.debilis* Willd. and the later was replaced by *Pairyshawii* Brun. and Roux (Mitra and Nayar 2017).

Recently a new species was reported from Tamilnadu (Parthipan et al., 2017) earlier it was named as *P.urinaria* var. hookeri Mull.Arg, Raju et al., (2011) *P.narayanaswamii* Gamble, an endemic to the forests of Visakhapatnam and East Godavari districts and reported as endangered due to mining practices in their region. *P.scabrifolius* endemic to south India but recorded as rare with restricted populations. Ambivalent exomorphological features of *P.narayanaswamii* and *P.scabrifolius* are resembled with *P.virgatus* and *P.heedei* respectively (Lalithamba, 2014).

The confusion is rooted mostly due to a lack of methodological rigor of taxonomy. It may due to the reason...
that there is no specific distinctiveness among the species in the form of a taxonomic key. At any rate, even rather visually different *Punarnava* L. is often used interchangeably with these species known earlier as *P* quiriri n*on* L. (*Pamarus, P.fraternus, *P.debilis*) in traditional/indigenous medicine systems (Kirtikar and Basu 1935). Practitioners did not differentiate properly due to the lack of taxonomic understanding. A similar situation exists in Malaysia, where the same name applies to both *P.quiriri* and *Pунarnava*.

The present attempt is mainly to focus on avoiding ambiguity in morphological characters of *Phyllanthus* species, in which the microscopic and morphological attributes of the pollen grain is provided. Pollen morphological data is particularly valuable in strengthening the taxonomic diversity among the members of *Phyllanthus* which include palynological characters viz., pollen size, shape, polarity, symmetry, apertural structure, ornamentation and other characters can be used to highlight taxonomic relationship (Erdtman 1952), (Bhattarcharya 2014). *Phyllanthus* is the largest genus of the Phyllanthaceae (Euphorbiaceae), contains about 830 species (Govaert et al., 2000). Various morphologists and taxonomists have pointed out the great and complex diversity of pollen in Euphorbiaceae (including Phyllanthaceae). The subfamily Phyllanthoideae under Euphorbiaceae later elevated to a separate family i.e. Phyllanthaceae in general, particularly the genus *Phyllanthus*, have received much attention in recent times (Punt, 1962; Punt and Rentrop, 1974).

Studies on pollen morphology can also provide important information in the forensic investigation in allergens, pollinator biology and honey analysis (Ganga Kailas et al., 2016). Devender et al., (2016). The pollen description of *P.columnaris* and *P.debilis* from the Andaman Islands was provided (Ganga Kailas et al., 2016).

Punt (1987) reviewed on the pollen profile of the subgenera of *Phyllanthus* which indicates that the pollen morphological variation using SEM. The pollen morphology of 21 Philippine *Phyllanthus* species belonging to five subgenera and eleven sections were studied under the genus *Phyllanthus*.

MATERIALS AND METHODS

Study area

The study area is the harbors primarily tropical deciduous vegetation found in Orissa, Telangana andhra Pradesh, Tamilnadu and some parts of the Karnataka States of isolated hill ranges of the Eastern Ghats in peninsular India. The Eastern Ghats of Andhra Pradesh and Telangana (the link between 13°30’19.07”N; 77°28’84.45”E) covers the hilly terrain of coastal Andhra with nine districts and three districts in the Telangana States. The intensive field studies were conducted in the forests of the Eastern Ghats in Andhra Pradesh in between 2017 to 2018 yields 16 *Phyllanthus* spp. Among them, 12 are herbaceous, 2 shrubs and 2 are trees (Fig 1).

Plant collection

Plant samples were collected from the original localities from which the specimens were collected, dried and poisoned with saturated mercuric chloride with ethyl alcohol (Jain and Rao 1977). Collected specimens were identified with the help of floras and monographs and voucher specimens were prepared and confirmed by comparing with authentic specimens housed at Sri Krishnadevaraya University Herbarium (SKU), Anantapuramu. The Madras Herbarium (MH), Coimbatore. The voucher specimens were deposited at SKU, Sri Krishnadevaraya University, Anantapuramu (Table 1).

Preservation

Male flowers of all the sixteen tested species were separated and preserved in FAA solution (Formaldehyde 5%, Glacial acetic acid 5% and 90% Ethyl alcohol). The pollen grains were separated from preserved specimens and subjected to SEM analysis.

SEM analysis

The dried/dehydrated method (Pathan, et al., 2008) was followed for pollen analysis. The Sirion resolution SEM equipped with a Schottky field emission source with a high voltage variable between 200 V and 300 Kv. Detectors include Everhart-Thorley and solid-state backscatter detectors and an in-lens detector for high-resolution imaging resolution: 1.5nm at >10 kV, 2.5nm at 1 kV, 3.5nm at 500V. The pollen grains were mounted onto a metallic stub with double-sided adhesive tape. The Gold coating of few nanometers was applied using a sputter coating machine to avoid charging. Capture high-quality images and recorded the surface morphological features of the test species.

RESULTS AND DISCUSSION

1. **Phyllanthus airy-shawii** Brun. and Roux. (Plate 1, Fig 1, 2)

Symmetry: Bilateral.

Shape: Subprolate.
Pollen diversity in *Phyllanthus* species (Phyllanthaceae) Andhra Pradesh, India

Polarity: Isopolar.
Size: PA 16.5-18 µm, EA 13.5-15 µm.
Polar view (amb): Circular, 15-17 µm.
Aperture: Tricolporate.
Sporoderm stratification: Exine 1.5 µm thick, sexine as thick as nexine.
Ornamentation: Psilate.

2. *Phyllanthus amarus* Schum. and Thonn. (Plate 1, Fig 3, 4)
Symmetry: Bilateral.
Shape: Subprolate.
Polarity: Isopolar.
Size: PA 17-19 µm, EA 14-16 µm.
Polar view (amb): Triangular, 12-14 µm.
Aperture: Tricolporate.
Sporoderm stratification: Exine 1 µm thick, sexine as thick as nexine.
Ornamentation: Granular.

3. *Phyllanthus debilis* Kl. ex Willd. (Plate 1, Fig 5, 6).
Symmetry: Radial.
Shape: Spheroidal.
Polarity: Isopolar.
Size: PA 20-25 µm, EA 20-25 µm.

Polar view (amb): Circular, 21-25 µm.
Aperture: Tricolporate, colpi long, tips acute.
Sporoderm stratification: Exine 1.5 µm thick, sexine as thick as nexine.
Ornamentation: Reticulate.

4. *Phyllanthus emblica* L. (Plate 1, Fig 7, 8)
Symmetry: Radial.
Shape: Spheroidal.
Polarity: Isopolar.
Size: PA 22-28 µm, EA 22-28 µm.
Polar view (amb): Circular, 22-27 µm.
Aperture: Tetracolporate.
Sporoderm stratification: Exine 1.5 µm thick, sexine as thick as nexine.
Ornamentation: Reticulate.

5. *Phyllanthus leschenaultia* Mull. Arg. (Plate 1, Fig 9, 10)
Symmetry: Bilateral.
Shape: Subprolate.
Polarity: Isopolar.
Size: PA 30-35 µm, EA 29-32 µm.
Polar view (amb): Triangular, 25-27 µm.

Plate 1: 1, 2. *Phyllanthus airy-shawii* Brun. and Roux.; 3, 4. *Phyllanthus amarus* Schum. and Thonn.; 5, 6. *Phyllanthus debilis* Kl. ex Willd.; 7, 8. *Phyllanthus emblica* L.; 9, 10. *Phyllanthus leschenaultia* Mull. Arg.; 11, 12. *Phyllanthus maderaspatensis* L.; 13, 14. *Phyllanthus narayanaswami* Gamble and 15, 16. *Phyllanthus pinnatus* (Wt.) Webster. scalebar 5µm.
Pollen diversity in *Phyllanthus* species (Phyllanthaceae) Andhra Pradesh, India

Aperture: Tricolporate.
Sporoderm stratification: Exine 1.5 µm thick, sexine as thick as nexine.
Ornamentation: Granular.

6. *Phyllanthus maderaspatensis* L. (Plate 1, Fig 11, 12)
Symmetry: Bilateral.
Shape: Prolate.
Polarity: Isopolar.
Size: PA 21-23 µm. EA 15-17 µm.
Polar view (amb): Triangular, 16.5-18 µm.
Aperture: Tricolporate.
Sporoderm stratification: Exine 1 µm thick, sexine as thick as nexine.
Ornamentation: Reticulate.

7. *Phyllanthus narayanaswamii* Gamble (Plate 1, Fig 13, 14)
Symmetry: Radial.
Shape: Spheroidal.
Polarity: Isopolar.
Size: PA 19.5-21 µm. EA 19.5-21 µm.
Polar view (amb): Circular, 19.5-22 µm.
Aperture: Pantosyncolpate.
Sporoderm stratification: Exine 2 µm thick, sexine thicker than nexine.
Ornamentation: Reticulate.

8. *Phyllanthus pinnatus* (Wt.) Webster (Plate 1, Fig 15, 16)
Symmetry: Radial.
Shape: Spheroidal.
Polarity: Isopolar.
Size: PA 15-17 µm. EA 15-17 µm.
Polar view (amb): Triangular, 15-16 µm.
Aperture: Tricolporate.
Sporoderm stratification: Exine 1 µm thick, sexine as thick as nexine.
Ornamentation: Reticulate.

9. *Phyllanthus polyphyllus* Willd. (Plate 2, Fig 17, 18)
Symmetry: Radial.
Shape: Spheroidal.
Polarity: Isopolar.
Size: PA 12-14 µm. EA 12-14 µm.
Polar view (amb): Circular, 12-14 µm.
Aperture: Tetracolporate.
Sporoderm stratification: Exine 1.5 µm thick, sexine thicker than nexine.
Ornamentation: Reticulate.

10. *Phyllanthus reticulatus* Poir. (Plate 2, Fig 19, 20)
Symmetry: Radial.
Shape: Spheroidal.
Polarity: Isopolar.
Size: PA 23-28 µm. EA 23-28 µm.
Polar view (amb): Circular, 23-28 µm.
Aperture: Tricolporate.
Sporoderm stratification: Exine 2 µm thick, sexine thicker than nexine.
Ornamentation: Coarsely reticulate.

11. *Phyllanthus rheedei* Wt. (Plate 2, Fig 21, 22)
Symmetry: Bilateral.
Shape: Subprolate.
Polarity: Isopolar.
Size: PA 25.5-27 µm. EA 19.5-21 µm.
Polar view (amb): Circular, 18-20 µm.
Aperture: Tricolporate, oralolongate.
Sporoderm stratification: Exine 1.5 µm thick, sexine thicker than nexine.
Ornamentation: Psilate.

12. *Phyllanthus rotundifolius* Kl. ex Willd. (Plate 2, Fig 23, 24)
Symmetry: Bilateral.
Shape: Prolatespheroidal.
Polarity: Isopolar.
Size: PA 30-34 µm. EA 26-30 µm.
Polar view (amb): 28-31 µm.
Aperture: Tricolporate.
Sporoderm stratification: Exine 2 µm thick, sexine thicker than nexine.
Ornamentation: Reticulate.

13. *Phyllanthus scabrifolius* Hook.f. (Plate 2, Fig 25, 26)
Symmetry: Bilateral.
Shape: Prolate.
Polarity: Isopolar.
Size: PA 28-32 µm. EA 28-32 µm.
Polar view (amb): 27-32 µm.
Aperture: Tetracolporate.
Sporoderm stratification: Exine 2 µm thick, sexine thicker than nexine.
Ornamentation: Reticulate.

14. *Phyllanthus tenellus* Roxb. (Plate 2, Fig 27, 28)
Symmetry: Radial.
Shape: Spheroidal.
Polarity: Isopolar.
Size: PA 28-32 µm. EA 28-32 µm.
Polar view (amb): Circular, 27-32 µm.
Aperture: Tetracolporate.
Sporoderm stratification: Exine 1.5 µm thick, sexine as thick as nexine.
Ornamentation: Reticulate.

15. *Phyllanthus urinaria* L. var. *najarana* (Plate 2, Fig 29, 30)
Symmetry: Bilateral.
Shape: Subprolate.
Polarity: Isopolar.
Size: PA 18-20 µm. EA 15-17 µm.
Polar view (amb): Circular, 13.5-15 µm.
Aperture: Tetracolporate, colpi long, oralolongate.
Sporoderm stratification: Exine 1.5 µm thick, sexine as thick as nexine.
Ornamentation: Reticulate.
In this regards you may please reply of the reviewer comments mail.

Pollen diversity in *Phyllanthus* species (Phyllanthaceae) Andhra Pradesh, India

16. *Phyllanthus virgatus* G.Forst. (Plate 2, Fig 31, 32)

Symmetry: Radial.
Shape: Spheroidal.
Polarity: Isopolar.
Size: PA 18-20 µm, EA 18-20 µm.
Polar view (amb): Circular, 18-20 µm.
Aperture: Pantosyncolpate.
Sporoderm stratification: Exine 2 µm thick, sexine as thick as nexine.
Ornamentation: Reticulate.

The pollen samples of 16 *Phyllanthus* species collected from the Eastern Ghats of Andhra Pradesh were analyzed (Table 1). Half of the test species (8 spp) exhibit radial symmetry while the other half indicates bilateral symmetry but all taxa possess isopolar condition. The pollen size and shape were recorded based on the P/E×100 (P= Polar axis diameter, E= equatorial diameter) and enumerated (Table 2), spheroidal shape revealed in majority species (9 spp) followed by sub-prolate (4), prolate (2 spp.) and prolate-spheroidal found in 1 species only. However, ornamentation of pollen wall plays an important role in taxonomic identification of the taxa Bhattacharya et al., (2009).

The sixteen taxa of *Phyllanthus* in this present study reveal that a significant diversity in pollen morphology. Among these taxa, 3 types of apertures viz., tricolporate, tetracolporate and pantosyncolpate, whereas 3 types of ornamentations viz., psilate, granular and reticulate were recorded. Reticulate ornamentation is the common feature of Phyllanthaceae Punt and Rentrop (1973). *Phyllanthus airy-shawii* and *P.rheedei* has tricolporate with psilate ornamentation whereas, *P.leschenaultii* has tricolporate with granular; while *P.amarus P.debilis, P.maderaspatensis, P.pinatus, P.reticulatus and P.rotundifolius* have tricolporate with reticulate ornamentation. Earlier Punt and Rentrop (1973) Bor (1979), Long and Yu (1984), Chen and Wu (1997 and 2009) have reported prolate spheroidal to subprolate, tricolporate with reticulate ornamentation in *P.amarus*. Tetracolporate with reticulate ornamentation is found in *P.urinaria, P.emblica, P.polyphyllus and P.tenellus*. Earlier Punt and Rentrop (1973), Bor (1979), Long and Yu (1987), Rossignol et al., (1987), Lobreau-callen et al., (1988) and Chen and Wu (1997 and 2009) were recorded prolate in shape, tetracolporate, narrow colpi with reticulate ornamentation in *P.urinara*.

The pollen of *P.virgatus* and *P.narayanaswamii* has pantosyncolpate which is rare associated character with reticulate ornamentation. These grains were also studied by Punt (1980 and 1987) recorded spheroidal, pantosyncolpate condition.
Pollen diversity in Phyllanthus species (Phyllanthaceae) Andhra Pradesh, India

Table 1: The Phyllanthus species collected from Eastern Ghats of Andhra Pradesh.

Name of the species	Voucher specimen	Habit	Latitude and Longitude	Location
P. airy-shawii Brunn. and Roux.	SKU50214	Herb	15°24'25.61"N; 78°41'30.24"E	Chelama(Kurnool Dist.)
P. amarus Schum. and Thonn.	SKU50217	Herb	14°28'32.32"N; 78°43'08.32"E	Yuru garden(Kadapa Dist.)
P. debilis Kl. ex Willd.	SKU50216	Herb	17°37'47"N; 81°03'01"E	Maredumelli(East Godavari Dist.)
P. emblica L.	SKU50219	Tree	14°28'26.75"N; 78°43'06.56"E	Yuru garden(Kadapa Dist.)
P. leshaundii Mull.Arg.	SKU50220	Herb	14°25'44.82"N; 78°59'15.22"E	Palakondalu(Kadapa)
P. maderaspatensis L.	SKU50221	Herb	14°36'43"N; 77°38'42"E	S.K.U Campus(Ananthapuram Dist.)
P. narayanaswamii Gamble	SKU50206	Herb	18°16'27"N; 82°19'26"E	Araku(Visakhapatnam Dist.)
P. pinnatifidus (Wt.) Webster	SKU50201	Shrub	15°00'38.82"N; 78°01'25.53"E	Bhuuga (Ananthapuram Dist.)
P. polyphyllus Willd.	SKU50222	Tree	13°41'57"N; 79°20'21"E	Tirumala(Chittoor Dist.)
P. reticulatus Poir.	SKU50223	Shrub	14°12'21.72"N; 78°07'43.35"E	Kalamasamudram(Ananthapuram Dist.)
P. rheediae Wt.	SKU50204	Herb	15°53'07.39"N; 78°49'34.22"E	Rollipenta(Kurnool Dist.)
P. rotundifolius Kl. ex Willd.	SKU50224	Herb	17°43'21"N; 83°19'29"E	A.U. Campus(Visakhapatnam Dist.)
P. scabriolatus Hook.f.	SKU50215	Herb	15°24'25.61"N; 78°41'28.58"E	Chelama(Kurnool Dist.)
P. tenuifolius Roxb.	SKU50225	Herb	13°42'46"N; 79°20'31"E	Tirumala(Chittoor Dist.)
P. maderaspatensis L. var. njarana	SKU50207	Herb	15°07'46.70"N; 78°40'41.63"E	Ahobilum(Kurnool Dist.)
P. virgatus G. Forst	SKU50202	Herb	14°14'39.70"N; 78°09'48.36"E	Kalamasamudram(Ananthapuram Dist.)

Table 2: Pollen morphology of Phyllanthus species (Phyllanthaceae).

Name of the species	P	E	P/E	Shape	Ornamentation	Aperture
P. airy-shawii Brunn. and Roux.	16.5-18 µm	14-16 µm	113	Subprolate	Psilate	Tricolporate
P. amarus Schum. and Thonn.	17-19 µm	20-25 µm	85	Subprolate	Granular	Tricolporate
P. debilis Kl. ex Willd.	20-25 µm	20-25 µm	100	Spheroidal	Reticulate	Tricolporate
P. emblica L.	22-28 µm	22-28 µm	100	Spheroidal	Reticulate	Tetracolporate
P. lawii J.Grah.	30-35 µm	29-32 µm	103	Subprolate	Granular	Tricolporate
P. maderaspatensis L. var. njarana	21-23 µm	15-17 µm	137	Prolate	Reticulate	Tricolporate
P. narayanaswamii Gamble	19.5-21 µm	19.5-21 µm	100	Spheroidal	Reticulate	Pantosynclolate
P. pinnatifidus (Wt.) Webster	15-17 µm	15-17 µm	100	Spheroidal	Reticulate	Tricolporate
P. polyphyllus Willd.	12-14 µm	12-14 µm	100	Spheroidal	Reticulate	Tetracolporate
P. reticulatus Poir.	23-28 µm	23-28 µm	100	Spheroidal	Coarsely reticulate	Tricolporate
P. rheediae Wt.	25.5-27 µm	25.5-27 µm	100	Spheroidal	Psilate	Tricolporate
P. rotundifolius Kl. ex Willd.	30-34 µm	26-30 µm	114	Prolatespheroidal	Reticulate	Tricolporate
P. scabriolatus Hook.f.	22.5-24 µm	15-17 µm	162	Prolate	Reticulate	Tricolporate
P. tenuifolius Roxb.	28-32 µm	28-32 µm	100	Spheroidal	Reticulate	Tetracolporate
P. unifolius var. njarana	18-20 µm	15-17 µm	118	Subprolate	Reticulate	Tetracolporate
P. virgatus G.Forst.	18-20 µm	18-20 µm	100	Spheroidal	Reticulate	Pantosynclolate

P=Polar axis, E= Equatorial axis.

CONCLUSION

Since time immemorial, Phyllanthus species have been used for the treatment of several human and veterinary diseases all over the world. Most of the medicinally important Phyllanthus species are often adulterated with other ingredients due to their close similarities with their related species. It is evident that the pollen morphological characters provide helpful attributes in distinguishing Phyllanthus species within the genus and the characteristic features of aperture are significant in confirmation of taxonomic identity. The taxonomic discrimination among the members of Phyllanthus species depends on pollen morphology along with other microscopic characters as a majority of them are identical in exo- morphological features. Hence the present study supports classical taxonomic diversity in strengthening of key characters to enable easy identification.

ACKNOWLEDGEMENT

The authors are grateful to the Department of Biotechnology, New Delhi, for financial assistance and thankful to the forest officials, Government of Andhra Pradesh for helping in field studies. The authors are thankful to Professor V.S. Raju, Kakatiya University, Warangal for help and support during field exploration. The second author renders special thanks to UGC-RGNF for providing financial assistance. Also thankful to the Principal, University College of Science, Osmania University, Saifabad Hyderabad for providing lab facilities. Raja Kullayiswamy grateful to SERB-Npdf, New
Pollen diversity in *Phyllanthus* species (Phyllanthaceae) Andhra Pradesh, India

Delhi for financial assistance and CES, IISc, Bangalore for providing facilities.

REFERENCES

Bhattacharya, K. (2014). A Textbook of Palynology (Basic and Applied). New Central Book Agency.

Bor, J. (1979). Pollen morphology and the bi-reticulate exine of the *Phyllanthus* species (Euphorbiaceae) from Mauritius and Réunion. Review of Palaeobotany and Palynology. 27(2): 149-172.

Chaudhary, L.B. and Rao, R.R. (2002). Taxonomic study of herbaeeous species of *Phyllanthus* L. (Euphorbiaceae) in India. Phytotaxonomy. 2: 143-162.

Chen Y.J., Chen S.H., Huang T.C. and Wu M.J. (2009). Pollen morphology of Philippine species of *Phyllanthus* (Phyllan-taceae, Euphorbiaceae). I.) Blumea. 54: 47- 58.

Chen, S.H. and Wu, M.J. (1997): A revision of the herbaceous *Phyllanthus* L. (Euphorbiaceae) in Taiwan. Taiwania. 42: 239-261.

Devender, R., Ganga Kailas, J. and Ramakrishna, H. (2016). Microscopical analysis of *Apis Dorsata* and *Apis cerana* Honeys from South Telangana State. Advances in Plant Science. 29: 27-33.

Erdtman, G. (1952). Pollen morphology and plant taxonomy: angio-sperms, Almquist and Wiksell, Stockholm.

Ganga Kailas, J., Ramakrishna, H., Seetharam, D.S. and Devender, R. (2016) Aeropalyonological study of Rangaraopet Village, Karimnagar District, Telangana State, India. Eco. Env. and Cons. 22(3): 181-185.

Gangopadhyay, M., Chakrabarty, T. and Balakrishnan, N.P. (2004). On the status of *Phyllanthus airyshawii* and *P. kozhikodianus* (Euphorbiaceae). J. Econ. Taxon. Bot. 28(3): 585- 592.

Govaerts, R., Frodin, D.G., Radcliffe-Smith, A. and Carter, S., (2000). World checklist and bibliography of Euphorbiaceae (with Pandaceae). Royal Botanic Gardens, Kew.

Jain, S.K. (Sudhanshu Kumar) and Raghavendra Rao, R.A. (1977). Handbook of Field and Herbarium Methods. Today an Tomorrow’s Printers and Publishers, New Delhi.

Kailas, J.G., Naik, M.C., Bheemalingappa, M., Ramakrishna, H. and Rao, B.R.P. (2017). Arboreal diversity of the Andaman Islands, India, based on pollen analysis. Palynology. 41 (3): 370-388.

Kirtikar, K.R.B.B. and Basu, B.D. (1935). Indian medicinal plants. Indian Medicinal Plants. Vol. II. Lalit Mohan Publication, Allahabad. 1347-1348.

Lalithamba, A. (2014). The New distributional record of *Phyllanthus scabrilolius* Hook, (Phyllanthaceae) from, Velungoda hills of Nellore District Andhra Pradesh, Lobreau-Callen, D., Punth, W. and Schmid, M. (1988). Pollen morphology and taxonomy of the Phyllanthus species (Euphorbiaceae) native to New Caledonia. Review of Paleobotany and Palynology. 53: 283-304.

Long, H., Yu C.H. (1984). Intrageneric variation of pollen types in the genus *Phyllanthus* L. Acta Botanica Sinica. 26: 247–251.

Mariappan, P., Sundaramurthy, K. and Balasundaram, J. (2015). Studies on phytochemical screening, total phenol content and antioxidant activity of root and shoot of *Phyllanthus debilis* and *Phyllanthus virgatus*. International Journal of Current Biotechnology. 3(2): 7-12

Mitra, R.L. and Nayar, M.P. (2017). *Phyllanthus airy-shawii* Replaces *Phyllanthus debilis* (Euphorbiaceae) of the flora of British India. International association for Plant Taxonomy. 37 (2): 469-470.

Parthipan, M., Rajendran, K., Arumugasamy, H.L., Jemimma and Therumaran, G.(2017). A new species of the *Phyllanthus* vasukii sp. nov. (Phyllanthaceae)-From Southern Eastern Ghats of India. Int.J.Ad. 5(3): 2054-2059.

Pathan, A.K., Bond, J. and Gaskin, R.E. (2008). Sample preparation for scanning electron microscopy of plant surfaces-horses for courses. Micron. 39(8): 1049-1061.

Pullaiah, T., Ali Moulali, D. and Sandhya Rani, S. (2018). The Flora of Andhra Pradesh 2nd revised edition Scientific Publications, Jodhpur, India. Vol. IV: 1745-1764.

Punt, W. (1980). Pollen morphology of the *Phyllanthus* species (Euphorbiaceae) occurring in New Guinea. Review of Paleobotany and Palynology. 31: 155–177.

Punt, W. (1987). A survey of pollen morphology in Euphorbiaceae with special reference to *Phyllanthus*. Botanical Journal of the Linnean Society. 94: 127–142.

Punt, W. and Rentrop, J. (1973). Pollen morphology of the *Phyllanthus* species (Euphorbiaceae) occurring in the continental United States. Review of Paleobotany and Palynology. 16: 243–261.

Punt, W. and Rentrop, J. (1974). Pollen morphology of the *Phyllanthus* species occurring in the continental United States. Rev. Palaeobot. Palynol. 16: 243-261.

Punt, W. (1962). Pollen morphology of the *Euphorbiaceae* with special reference to taxonomy. Wentia. 7: 1-116.

Raju, V.S., Suthari, S. and Ragan, A., (2011). The identity and occurrence of *Phyllanthus hookeri* Muell.-Arg. and *P. nozeranii* Rossignol and Haicour (Euphorbiaceae) in India. Bangladesh Journal of Plant Taxonomy. 18(1): 57-63.

Rossignol, L., Rossignol, M. and Haicour, R. (1987). A systematic revision of *Phyllanthus* subsection Urania (Euphorbiaceae). American Journal of Botany. 74(12): 1853-1862.

Theerakulpisut, P., Kanawapee, N., Maensiri, D., Bunnag, S. and Chantaranothai, P. (2008). Development of species-specific SCAR markers for identification of three medicinal species of *Phyllanthus*. J Syst Evol. 46(4): 614-621.