Stokes matrices for the quantum differential equations of some Fano varieties

John Alexander Cruz Morales*
Instituto Nacional de Matemática Pura e Aplicada, IMPA.
Estrada Dona Castorina 110. Rio de Janeiro, 22460-320, Brasil.
Marius van der Put†
Department of Mathematics.
University of Groningen.
9700 AK Groningen, P.O. Box 407, The Netherlands.

Abstract
The classical Stokes matrices for the quantum differential equation of \(\mathbb{P}^n \) are computed using multisummation and the ‘monodromy identity’. Thus, we recover the results of D. Guzzetti that confirm Dubrovin’s conjecture for projective spaces. The same method yields explicit formulas for the Stokes matrices of the quantum differential equations of smooth Fano hypersurfaces in \(\mathbb{P}^n \) and for weighted projective spaces.

MSC2010: 34M40, 53D45.
Keywords: Stokes matrices, quantum cohomology, monodromy identity, quantum differential equations.

1 Introduction
For a Fano variety \(X \) one can define a Frobenius structure for its cohomology and the latter induces a linear differential equation (or connection in one

*e-mail: alekosandro@gmail.com, jacruzim@impa.br
†e-mail: m.van.der.put@rug.nl
or more variables) which is called the quantum differential equation of X. This equation reflects geometric properties of X and for many varieties X the quantum differential equation is explicitly known, see [5], [6]. For the cases that we consider, the quantum differential equation is an ordinary linear differential equation in a complex variable z and has two singular points $z = 0$ and $z = \infty$. The point $z = 0$ is regular singular and the point $z = \infty$ is irregular singular. At $z = \infty$ the difference between formal (symbolic) solutions and actual solutions in sectors is measured by Stokes data. The contribution of this paper to the theory of quantum differential equations is an explicit computation of the Stokes data by means of the formalism of multisummation. This formalism is the work of many experts (see [10], §7.1) and in §2 we will explain how it can be used to compute the Stokes data in a purely algebraic way. We note that for a general irregular singularity there are only analytic methods for the determination of the Stokes data. Thus quantum differential equations are rather special.

In the remaining part of this introduction we sketch, for the convenience of the reader (with many black boxes and without any originality, compare [5], [8], [13], [14]), some of the theory of quantum cohomology. The relation with the above Stokes data and our results concerning these are presented.

Let X be a (smooth) complex projective Fano variety. Put $H^*(X, \mathbb{C}) = \bigoplus_{d \geq 0} H^{2d}(X, \mathbb{C})$. Let b_1, \ldots, b_r be a basis of $H^2(X, \mathbb{C})$. For $t = \sum t_i b_i$, one defines a deformation \circ_t of the usual cup product \circ on $H^*(X, \mathbb{C})$. This deformation is called the small quantum product. One writes formally $q_i = e^{t_i}$ and $\partial_i = q_i \frac{\partial}{\partial q_i}$. Further, \hbar will denote a complex parameter. One defines a connection ∇, called the Dubrovin-Givental connection, on the trivial vector bundle $H^2(X, \mathbb{C}) \times H^*(X, \mathbb{C}) \to H^2(X, \mathbb{C})$ by the formula $\nabla \partial_i = \partial_i - \frac{1}{\hbar} b_i \circ_t$ for $i = 1, \ldots, r$. The quantum differential equations are the equations $\hbar \partial_i \Psi = b_i \circ_t \Psi$ for $i = 1, \ldots, r$ and for functions $\Psi : H^2(X, \mathbb{C}) \to H^*(X, \mathbb{C})$.

Above, we have supposed $t \in H^2(X, \mathbb{C})$. However, it is important to consider also $t \in H^*(X, \mathbb{C})$. In that case the deformation of the cup product is called the big quantum product. For the corresponding ‘big quantum cohomology and connection’ we refer to [2], [4].

In the sequel we restrict ourselves to the small quantum product and to the case $r = 1$, i.e., the case where the quantum differential equation is an
ordinary linear differential equation. For a detailed discussion we refer the reader to [5] and references therein.

A ‘good Fano variety’ X is a Fano variety such that $D^b\text{coh}(X)$, the derived category of the coherent sheaves on X, is generated as triangulated category by an exceptional collection $(\mathcal{E}_i)_{i=1}^N$. An object \mathcal{E} is exceptional if $\text{Ext}^i(\mathcal{E},\mathcal{E})$ equals \mathbb{C} for $i = 0$ and equals 0 for $i > 0$. Further $(\mathcal{E}_i)_{i=1}^N$ is an exceptional collection if each \mathcal{E}_i is exceptional and $\text{Ext}^k(\mathcal{E}_i,\mathcal{E}_j) = 0$ for any $i > j$ and any k. In this situation the Gram matrix G of X is defined by $G_{i,j} = \sum_k (-1)^k \dim \text{Ext}^k(\mathcal{E}_i,\mathcal{E}_j)$.

One of conjectures of Dubrovin (see [3]) states that the Gram matrix of X coincides with the Stokes matrix of the quantum differential equation of X (up to a certain equivalence which we will make more explicit). For the complex projective space \mathbb{P}^{n-1}, the ordered set of line bundles $O, O(1), \ldots, O(n-1)$ is an exceptional collection and the Gram matrix $G = (G_{i,j})$ is given by $G_{i,j} = \binom{n-1+j-i}{j-i}$ for $i \leq j$ and $G_{i,j} = 0$ otherwise. The inverse $(a_{i,j})$ of G, which is equivalent to G, has the data $a_{i,j} = (-1)^{j-i} \binom{n}{j-i}$ for $i \leq j$ and $a_{i,j} = 0$ otherwise.

Now we will explain the relation between ‘our’ Stokes data and the Stokes matrix considered in quantum cohomology by Dubrovin et al.. The latter we will call ‘quantum Stokes matrices’ and denote by St_{qc}. The irregular singularity of the quantum differential equation at $z = \infty$ has Poincaré rank 1. This implies that a given formal (or symbolic) fundamental matrix can be lifted to an actual analytic fundamental matrix on a sector at $z = \infty$ of opening slightly larger than π. Moreover these liftings are unique. Let Φ_{right} and Φ_{left} denote two of these lifts, then St_{qc} is defined by $\Phi_{\text{right}} = \Phi_{\text{left}} St_{qc}$.

The multissummation theory produces for every singular direction d of the differential equation a Stokes matrix, denoted by St_d. This expresses the relation between multissummation of the formal fundamental matrix left and right of the singular direction d. One concludes that St_{qc} equals the ordered product $\prod_d St_d$ taken over the singular directions d in an interval of length π (in fact $d \in [0, 1/2]$ in our notation). It so happens that each St_d has only one interesting entry. The collection of these entries will be called the Stokes data. We note that ‘our’ Stokes data are closely related to what are called
‘Stokes factors’ in \([8]\).

For the complex projective space \(\mathbb{P}^{n-1}\) the conjecture of Dubrovin has
been proved by D. Guzzetti \([8]\). The matrix \(St_{qc}\) (the product \(\prod d St_d\)) is
a unipotent matrix and is, a priori, rather complicated with respect to the
given basis (see §6 of \([8]\)). This basis is changed (this is the equivalence
mentioned before) by a permutation, by putting signs and the action of a
braid group. The quantum differential equation lives in a family (in fact
induced by the big quantum product), parametrized by \(\mathbb{C}^n\backslash\) the diagonals,
of similar equations where the singular directions at \(z = \infty\) vary. The braid
group action is derived from loops in this family. Guzzetti showed that \(St_{qc}\)
has, w.r.t. a new basis and up to signs, the form \((a_{i,j})\) which proves the
Dubrovin’s conjecture for \(\mathbb{P}^{n-1}\).

Our results, Theorem (3.1), for the Stokes data \(\{x_{\ell,k}\}_{0 \leq k, \ell < n; k \neq \ell}\) of \(\mathbb{P}^{n-1}\) are:
For odd \(n\) and \(0 \leq \ell < k\) one has \(x_{\ell,k} = -(-1)^{k-\ell} \binom{n}{k-\ell}\) and \(x_{\ell,k} = -x_{k,\ell}\).
For even \(n\) and \(0 \leq \ell < k\) one has \(x_{\ell,k} = -(-1)^{k-\ell} \binom{n}{k-\ell}\) if \(k - \ell \leq \frac{n}{2}\) and
\(x_{\ell,k} = (-1)^{k-\ell} \binom{n}{k-\ell}\) if \(k - \ell > \frac{n}{2}\).
For even \(n\) and \(0 \leq k < \ell\) one has \(x_{\ell,k} = (-1)^{\ell-k} \binom{n}{\ell-k}\).

Theorem (3.1) proves again Dubrovin’s conjecture for \(\mathbb{P}^{n-1}\) and we ob-
serve that the above matrix \((a_{i,j})\), equivalent to \(St_{qc}\), can rather simply be
expressed into the Stokes data \(\{x_{\ell,k}\}\). The Stokes data can be read off from
the monodromy identity which compares the topological monodromy at \(z = 0\)
with the Stokes matrices \(St_d\) and the formal monodromy at \(z = \infty\). The
same method leads to the further results: computations of the Stokes data
for weighted projective spaces (Remark (3.2) and Proposition (3.3)) and for
Fano hypersurfaces (Theorem (4.1)).

Recent papers on the computation of quantum Stokes matrices are \([11]\)
and \([13, 14]\). The first one proposes another proof of Dubrovin’s conjecture
for \(\mathbb{P}^n\). In the other two papers quantum Stokes matrices are computed for
Grassmannians (based on the results for \(\mathbb{P}^n\)) and for cubic surfaces.

After completing the calculations of this paper we became aware that a
related discussion (from a physical point of view) to our work is presented in
\([15]\), for the case of projective spaces. However, the argument in loc.cit. con-
cerns the computation of the Stokes matrices for the so-called tt^*-equations (see [1]). The question whether these equations are related to the equations for the quantum cohomology and, in particular, whether their Stokes matrices coincide, is discussed in [7].

The paper is organized as follows. In section 2 we give a brief presentation of the theory of Stokes matrices emphasizing the relevant facts for our computation. In section 3 we present the explicit computation for the case of (weighted) projective spaces and in section 4 we extend that computation to the case of smooth Fano hypersurfaces. In the sequel q will be replaced by z and the parameter \hbar is taken to be 1. We will often write δ for $z\frac{d}{dz}$.

The quantum differential equation in operator form for $P_n - 1$ then obtains the simple form $\delta^n - z$.

2 Stokes matrices and the monodromy identity

A linear differential operator of order n, analytic in the neighbourhood of $z = \infty$, has a scalar form $(z\frac{d}{dz})^n + a_{n-1}(z\frac{d}{dz})^{n-1} + \cdots + a_1z\frac{d}{dz} + a_0$ with all a_j in the field $\mathbb{C}((z^{-1}))$ of the convergent Laurent series in z^{-1}. The scalar operator can be transformed into a matrix differential operator $z\frac{d}{dz} + A$ where the entries of the matrix A are in $\mathbb{C}((z^{-1}))$.

As a differential module over $\mathbb{C}((z^{-1}))$, the scalar equation above translates into a vector space M of dimension n over this field, equipped with a \mathbb{C}-linear operator δ_M satisfying $\delta_M(fm) = z\frac{d}{dz}(f) \cdot m + f\delta_M(m)$, for $f \in \mathbb{C}((z^{-1}))$, $m \in M$. Note that for a suitable basis of M, the matrix A above is the matrix of δ_M with respect to this basis.

The formal classification of M is the classification of the differential module $\mathbb{C}((z^{-1})) \otimes M$ over the field $\mathbb{C}((z^{-1}))$ of the formal Laurent series in z^{-1}. In general, a root $z^{1/m}$ of z for certain $m \geq 1$ is needed for the formulation of the classification that we describe now.

There are distinct elements $q_1, \ldots, q_n \in z^{\frac{1}{m}}\mathbb{C}[z^{\frac{1}{m}}]$, called the generalized eigenvalues of M such that $\mathbb{C}((z^{1/m})) \otimes M$ is a direct sum of (differential) submodules N_1, \ldots, N_r over $\mathbb{C}((z^{1/m}))$. The differential module N_j has a basis such that the operator δ_{N_j} has the form $q_j \cdot id + \ell_j$, where ℓ_j has entries
in \mathbb{C}. The q_j and the decomposition $\mathbb{C}((z^{-1/m})) \otimes M = N_1 \oplus \cdots \oplus N_r$ are unique. The ℓ_j are not unique.

One defines symbols z^λ for every $\lambda \in \mathbb{C}$, $\log z$ and $e(q)$ for every $q \in \cup_{n \geq 1} z^{1/n}\mathbb{C}[z^{1/n}]$, by the rules $z^{\lambda_1 + \lambda_2} = z^{\lambda_1} z^{\lambda_2}$, $z^0 = 1$, $z^1 = z$, $e(q_1 + q_2) = e(q_1) e(q_2)$, $e(0) = 1$ and $\delta(z^\lambda) = \lambda z^\lambda$, $\delta(\log z) = 1$, $\delta(e(q)) = q \cdot e(q)$. On a sector at $z = \infty$ these symbols have an obvious interpretation (e.g., the interpretation of $e(q)$ is $e^{\int q \frac{dz}{z^2}}$), but not on a full neighbourhood of $z = \infty$.

Let γ denote the automorphism of $\cup_{n \geq 1} \mathbb{C}((z^{-1/n}))$ defined by $\gamma z^\lambda = e^{2\pi i \lambda} z^\lambda$ for all $\lambda \in \mathbb{Q}$. The natural action of γ on the symbols is given by the formulas $\gamma z^\lambda = e^{2\pi i \lambda} z^\lambda$ for all $\lambda \in \mathbb{C}$, $\gamma \log z = 2\pi i \log z$, $\gamma e(q) = e(\gamma q)$.

The symbolic solution space. Let U be the $\mathbb{C}((z^{-1}))$-algebra generated by these symbols. Then U is a universal Picard–Vessiot ring for the differential field $\mathbb{C}((z^{-1}))$, which means that for every differential module M over $\mathbb{C}((z^{-1}))$, the \mathbb{C}-vector space $V := \ker(\delta, U \otimes M)$ has the property that the obvious map $U \otimes_{\mathbb{C}} V \to U \otimes M$ is an isomorphism. Moreover, U is minimal with this property and U has only trivial differential ideals. The space V is called the symbolic solution space of M. Let b_1, \ldots, b_d be a basis of M over $\mathbb{C}((z^{-1}))$. The elements of V are sums $\sum_{j=1}^d \alpha_j b_j$ where the $\alpha_j \in U$ are (by definition) expressions using formal power series, and the symbols $z^\lambda, \log z, e(q)$.

The decomposition $U = \bigoplus q U_q$ with $U_q := e(q) \mathbb{C}((z^{-1}))[[z^\lambda], \log z]$ induces a decomposition $V = \bigoplus q V_q$ with $V_q = \ker(\delta, U_q \otimes M)$. Further γ acts as a \mathbb{C}-linear automorphism on V and has the property $\gamma V_q = V_{\gamma q}$. The action of γ on V is called the formal monodromy.

Thus we have associated to M a tuple $(V, \{V_q\}, \gamma)$ of a finite dimensional \mathbb{C}-vector space V, a subspace V_q for every q in the set of generalized eigenvalues $\cup_{n \geq 1} z^{1/n}\mathbb{C}[z^{1/n}]$, an element $\gamma \in \text{GL}(V)$, such that $V = \oplus V_q$ and $\gamma V_q = V_{\gamma q}$ for every q. This construction yields in fact an equivalence of Tannakian categories (see [10] for more details).

Singular directions and multissumation. For a pair of distinct eigenvalues (q, \tilde{q}), one considers the operator $z \frac{d}{dz} - (q - \tilde{q}) = z \frac{d}{dz} - (cz^\lambda + \cdots)$ with $\lambda > 0$, $c \neq 0$ and the dots are terms z^μ with $0 < \mu < \lambda$. The solution of the equation is $y := e^{X z^\lambda + \cdots}$. Let $d \in \mathbb{R}$ stand for the direction $e^{2\pi i d}$ at $z = \infty$. Then a real number d is called a singular direction for the pair (q, \tilde{q}) if and only if $\frac{X}{\lambda} e^{2\pi i \lambda d}$ is real and negative.
Let M be a differential module over $\mathbb{C}(\{z^{-1}\})$. Multisummation in a direction d is a \mathbb{C}-linear bijection m_d from the symbolic solution space V of M to the space of the actual solutions of M in a sector around the direction d. The map m_d exists (and is unique) if d is not a singular direction for any pair (q, \tilde{q}) of eigenvalues of M.

The Stokes maps. Let a differential module M over $\mathbb{C}(\{z^{-1}\})$ be given and let $(V, \{V_q\}, \gamma)$ be the tuple corresponding to $\mathbb{C}((z^{-1})) \otimes M$. Let d be a direction. Then the Stokes map St_d for this direction has the form $St_d = 1 + \sum M_{d,q,\tilde{q}}$, where the sum is taken over all pairs (q, \tilde{q}) such that $V_q, V_{\tilde{q}} \neq 0$ (i.e., q and \tilde{q} are eigenvalues for M), d is a singular direction for (q, \tilde{q}) and $M_{d,q,\tilde{q}} : V \xrightarrow{\text{projection}} V_q \xrightarrow{\text{linear inclusion}} V$. This Stokes map is obtained by comparing the multisummation maps $m_{d-\epsilon}, m_{d+\epsilon}$ (with small enough $\epsilon > 0$) from V to actual solutions of the differential equation in a sector around the direction d. Further $\gamma^{-1}St_d\gamma = St_{d+1}$. We note that a direction d can be singular for more than one pair (q, \tilde{q}).

For a given differential module M over $\mathbb{C}(\{z^{-1}\})$, there is an algorithm computing the tuple $(V, \{V_q\}, \gamma)$. The entries of the Stokes maps can be expressed as certain involved integrals and, in general, these cannot be made explicit.

Now we have associated to a differential module M over $\mathbb{C}(\{z^{-1}\})$ a tuple $(V, \{V_q\}, \gamma, \{St_d\})$ with the properties stated above. This yields an equivalence between the Tannakian categories of the differential modules over $\mathbb{C}(\{z^{-1}\})$ and the category of these tuples (see Theorem 9.11 in [10]).

A change of variables. The inclusion $K := \mathbb{C}(\{z^{-1}\}) \to K_n := \mathbb{C}(\{u^{-1}\})$ with $z = u^n$ and $n > 1$ induces a functor which associates to a differential module M over K the differential module $K_n \otimes M$ over K_n. The corresponding morphism between tuples, maps a tuple $(V, \{V_q\}, \gamma, \{St_d\})$ to a tuple $(V, \{V_{\tilde{q}}\}, \tilde{\gamma}, \{\tilde{St}_d\})$. It can be verified that $V_{\tilde{q}} = V_q$ for $\tilde{q}(u) = q(u^n)$, $\tilde{\gamma} = \gamma^n$ and $\tilde{St}_d = St_{nd}$. Using this one can compare the singularities of, for instance, $(z \frac{d}{dz})^n z$ and $(u \frac{d}{du})^n u^n - n^nu^n$ where $z = u^n$.

The monodromy identity. Let the differential module M over $\mathbb{C}(\{z^{-1}\})$ correspond to the tuple $(V, \{V_q\}, \gamma, \{St_d\})$. Let W be a solution space at a certain point p close to $z = \infty$. One makes a loop around $z = \infty$ and analytic continuation along this loop yields the topological monodromy
mon_{\infty} \in \text{GL}(W). After some identification of W with V one obtains the
monodromy identity (see Proposition 8.12 in \cite{10}):

\[\text{mon}_{\infty} \quad \text{is conjugated to} \quad \gamma \prod_{d \in [0,1), \ d \ \text{singular}} \text{St}_d, \]

where the order of the maps \text{St}_d in the product is counter clockwise.

3 The Stokes matrices for \(\delta^n - z \).

We summarize the results for this quantum differential operator of \(\mathbb{P}^{n-1} \)
(normalized by putting \(\hbar = 1 \)). The irregular singular point \(z = \infty \) has
(generalized) eigenvalues \(q_j = e^{2\pi ij/n}z^{1/n}, \ j = 0, \ldots, n - 1 \).

The symbolic solution space \(V \) at \(z = \infty \) has a basis
\(e_0, \ldots, e_{n-1} \), uniquely
determined (up to simultaneous multiplication by a constant) by normalizing
the matrix of \(\gamma \). Let \(E_{k,\ell} \in \text{End}(V) \) denote the map defined by
\(E_{k,\ell}e_\ell = e_k \) and \(E_{k,\ell}e_j = 0 \) for \(j \neq \ell \). For a direction \(d \), the Stokes matrix \(\text{St}_d \in \text{GL}(V) \)
has the form \(\text{St}_d = 1 + \sum x_{\ell,k} E_{\ell,k} \), where the sum is taken over the pairs
\((k, \ell)\) such that the direction \(d \) is singular for \(q_k - q_\ell \). For \(k \neq \ell \) the pair
\((q_k, q_\ell)\) has in the interval \([0, n)\) precisely one singular direction and produces
the constant \(x_{\ell,k} \). Of the \(n(n-1) \) singular directions in \([0, n)\) (counted with
multiplicity) there are \(n - 1 \) in the interval \([0, 1)\). The \(x_{\ell,k} \) corresponding to
the singular directions in \([0, 1)\) are computed, using the monodromy identity.
The other \(x_{\ell,k} \) are obtained by the formula \(\gamma^{-1} \text{St}_d \gamma = \text{St}_{d+1} \).

The ‘Stokes data’ for the equation is by definition \(\{x_{\ell,k}\}_{k \neq \ell} \). We note that
\(x_{\ell,k} = x_{\ell',k'} \) if \(\ell \equiv \ell' \mod n \). The result of this section is:

\textbf{Theorem 3.1} The monodromy identity yields the following formulas:

\textbf{For } n \text{ odd}
\[x_{l,k} = -(-1)^{k-l} \binom{n}{k-l} \text{ for } n > k > l \geq 0 \text{ and } k + l = \left\lfloor \frac{n}{2} \right\rfloor \text{ or } \left\lfloor \frac{n}{2} \right\rfloor - 1, \]
\[x_{l,k} = (-1)^{l-k} \binom{n}{l-k} \text{ for } n > l > k \geq 0 \text{ and } k + l = 3\left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ or } 3\left\lfloor \frac{n}{2} \right\rfloor, \]
and \(x_{l+s,k+s} = x_{l,k} \) for all \(s \in \mathbb{Z} \).

\textbf{For } n \text{ even}
\[x_{l,k} = -(-1)^{k-l} \binom{n}{k-l} \text{ for } n > k > l \geq 0 \text{ and } k + l = \frac{n}{2} \text{ or } \frac{n}{2} - 1, \]
\[x_{l,k} = (-1)^{l-k} \binom{n}{l-k} \text{ for } n > l > k \geq 0 \text{ and } k + l = 3\frac{n}{2} \text{ or } 3\frac{n}{2} - 1, \]
and \(x_{l+s,k+s} = x_{l,k} \) for all \(s \in \mathbb{Z} \).
From the above one deduces for $0 \leq k, \ell < n, \ k \neq \ell$ the formulas:

For n odd and $0 \leq \ell < k$ one has $x_{\ell,k} = -(-1)^{k-\ell} \binom{n}{k-\ell}$
and $x_{\ell,k} = -x_{k,\ell}$.

For n even and $0 \leq \ell < k$ one has $x_{\ell,k} = (-1)^{k-\ell} \binom{n}{k-\ell}$ if $k - \ell \leq \frac{n}{2}$
and $x_{\ell,k} = (-1)^{\ell-k} \binom{n}{\ell-k}$.

For n even and $0 \leq k < \ell$ one has $x_{\ell,k} = (-1)^{\ell-k} \binom{n}{\ell-k}$.

The second part of 3.1 is obtained from the first part by using the equal-
ities $x_{\ell,k} = x_{\ell',k'}$ if $\ell \equiv \ell'$, $k \equiv k'$ modulo n and the equalities $x_{\ell,k} = x_{\ell+s,k+s}$
for all $s \in \mathbb{Z}$.

3.1 Generalised eigenvalues and formal monodromy

The scalar operator $(z \frac{d}{dz})^n - z$ can be transformed into a matrix differential
operator $(z \frac{d}{dz}) + A$ where the entries of the matrix A are in $\mathbb{C}((z^{-1}))$. More
precisely, the matrix A has the form

$$
\begin{pmatrix}
0 & 1 \\
0 & 1 \\
& & 0 & 1 \\
& & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & 0 & 1 \\
& & & & & & & & & z \\
& & & & & & & & & 0
\end{pmatrix}
$$

In the case of $(z \frac{d}{dz})^n - z$, the differential module $\mathbb{C}((z^{-1/n})) \otimes M$ has a
basis b_0, \ldots, b_{n-1} such that $\delta b_j = -q_j b_j$ with $q_j = \zeta^{j} z^{1/n}$ and $\zeta = e^{2\pi i/n}$. The
q_j are the generalized eigenvalues and the matrix form of δ, with respect to
this basis, reads $z \frac{d}{dz} - \text{diag}(z^{1/n}, \zeta z^{1/n}, \ldots, \zeta^{n-1} z^{1/n})$.

The symbolic solution space V has the basis $\{e_j := e^{\frac{j}{n} \log \zeta} b_j | j = 0, \ldots, n-1\}$. The elements b_j are unique up to multiplication by a constant.
From the identities $\gamma V_q = V_{\gamma q}$ it follows that these constants are choosen such that the formal monodromy γ has the form $e_0 \mapsto e_1 \mapsto \cdots \mapsto e_{n-2} \mapsto e_{n-1} \mapsto (-1)^n e_0$. The sign $(-1)^n$ comes from the observation that γ has determinant 1 on V.

In this case mon_∞ can be identified with the topological monodromy mon_0
at $z = 0$ (because \mathbb{Z} is the fundamental group of \mathbb{C}^*). This is a unipotent
matrix with characteristic polynomial $(\lambda - 1)^n$.
3.2 The singular directions

Put $(\zeta^k - \zeta^\ell) = |\zeta^k - \zeta^\ell| \cdot e^{2\pi i \phi(k, \ell)}$ with, say, $0 \leq \phi(k, \ell) < 1$. Now d is a singular direction for $q_k - q_\ell$ if and only if $\cos(2\pi \phi(k, \ell) + 2\pi \frac{d}{n}) = -1$. Thus $d =: d(k, l) = n(\frac{1}{2} - \phi(k, \ell))$ is modulo n the only singular direction for the pair (q_k, q_ℓ).

Recall that the symbolic solution space V has basis e_0, \ldots, e_{n-1}. We denote by $E_{a,b} \in \text{End}(V)$ the map given by $E_{a,b}e_b = e_a$ and $E_{a,b}e_c = 0$ for $c \neq b$. One has $E_{a,b}E_{b,c} = E_{a,c}$. Moreover, the part of $St_{d(k,l)}$ corresponding to the pair (q_k, q_ℓ) has the form $x_{l,k}E_{l,k}$ for a certain constant $x_{l,k}$. Then

$$St_d = 1 + \sum_{(k,l) \text{ such that } d=d(k,l) \mod n} x_{l,k}E_{l,k}.$$

Our goal is to compute all constants $x_{l,k}$.

Computation of $d(k, l)$. One observes that for $\lambda \in (0, 1) \subset \mathbb{R}$, the formula $(e^{2\pi i \lambda} - 1) = |(e^{2\pi i \lambda} - 1)| e^{2\pi i \mu}$ holds with $\mu = \frac{1}{3} + \frac{1}{2}$. This implies:

For $n > k > l \geq 0$ one has $\phi(k, l) = \frac{1}{3} + \frac{k+l}{2n}$ and $d(k, l) = \frac{n}{3} - \frac{k+l}{2}$.

For $n > l > k \geq 0$ one has $\phi(k, l) = \frac{2}{3} + \frac{k+l}{2n}$ and $d(k, l) = \frac{3n}{4} - \frac{k+l}{2}$.

For n odd and $n > k > l \geq 0$, the possibilities for $d(k, l) \in [0, 1) + \mathbb{Z}n$ are given by: $k + l = \lfloor \frac{n}{2} \rfloor$, $d(k, l) = \frac{1}{4}$ and $k + l = \lceil \frac{n}{2} \rceil - 1$, $d(k, l) = \frac{3}{4}$.

For n odd and $n > l > k \geq 0$, the possibilities for $d(k, l) \in [0, 1) + \mathbb{Z}n$ are given by: $k + l = 3\lfloor \frac{n}{2} \rfloor + 1$, $d(k, l) = \frac{1}{4}$ and $k + l = 3\lceil \frac{n}{2} \rceil$, $d(k, l) = \frac{3}{4}$.

For n even and $n > k > l \geq 0$, the possibilities for $d(k, l) \in [0, 1) + \mathbb{Z}n$ are given by: $k + l = \frac{n}{2}$, $d(k, l) = 0$ and $k + l = \frac{n}{2} - 1$, $d(k, l) = \frac{1}{2}$.

For n even and $n > l > k \geq 0$, the possibilities for $d(k, l) \in [0, 1) + \mathbb{Z}n$ are given by: $k + l = 3\frac{n}{2}$, $d(k, l) = 0$ and $k + l = 3\frac{n}{2} - 1$, $d(k, l) = \frac{1}{2}$.

3.3 The equation for odd n

The monodromy identity for odd n is: mon_∞ is conjugated to $\gamma St_{\frac{1}{4}} St_{\frac{1}{4}}$. Therefore $P_n := \det(-\lambda 1 + \gamma St_{\frac{1}{4}} St_{\frac{1}{4}})$ equals $-(\lambda - 1)^n$. Further

$$\gamma = E_{1,0} + E_{2,1} + \cdots + E_{n-1,n-2} + E_{0,n-1},$$
\[S_{St\frac{3}{4}} = 1 + \sum_{k+l=\left[\frac{n}{2}\right]-1, k>l} x_{l,k} \lambda_{l,k} + \sum_{k+l=3\left[\frac{n}{2}\right], l>k} x_{l,k} \lambda_{l,k} \]
\[S_{St\frac{1}{4}} = 1 + \sum_{k+l=\left[\frac{n}{2}\right], k>l} x_{l,k} \lambda_{l,k} + \sum_{k+l=3\left[\frac{n}{2}\right]+1, l>k} x_{l,k} \lambda_{l,k}. \]

One observes that \(P_n \) is the determinant of a sparse matrix and guided by a few explicit examples, verified by a MAPLE,
\[
P_3 = -\lambda^3 + x_{0,1} \lambda^2 + x_{2,1} \lambda + 1,
\]
\[
P_5 = -\lambda^5 + x_{0,1} \lambda^4 + x_{0,2} \lambda^3 + x_{4,2} \lambda^2 + x_{4,3} \lambda + 1,
\]
\[
P_7 = -\lambda^7 + x_{1,2} \lambda^6 + x_{0,2} \lambda^5 + x_{0,3} \lambda^4 + x_{6,3} \lambda^3 + x_{6,4} \lambda^2 + x_{5,4} \lambda + 1,
\]
\[
P_9 = -\lambda^9 + x_{1,2} \lambda^8 + x_{1,3} \lambda^7 + x_{0,3} \lambda^6 + x_{0,4} \lambda^5 + x_{8,4} \lambda^4 + x_{8,5} \lambda^3 + x_{7,5} \lambda^2 + x_{7,6} \lambda + 1.
\]

one obtains the general formula for \(P_n \) and odd \(n \): \(P_n = -\lambda^n + 1 + \sum_{k>l, k+l=\left[\frac{n}{2}\right] \text{ or } =\left[\frac{n}{2}\right]-1} x_{l,k} \lambda^{n-(k-l)} + \sum_{l>k, k+l=3\left[\frac{n}{2}\right]+1 \text{ or } =3\left[\frac{n}{2}\right]} x_{l,k} \lambda^{l-k}. \)

From this and the equality \(\gamma^{-1}St_d\gamma = St_{d+1} \) one obtains
\[
x_{l,k} = (-1)^{k-l} \binom{n}{k-l} \text{ for } k > l \text{ and } k+l = \left[\frac{n}{2}\right] \text{ or } =\left[\frac{n}{2}\right]-1,
\]
\[
x_{l,k} = (-1)^{l-k} \binom{n}{l-k} \text{ for } l > k \text{ and } k+l = 3\left[\frac{n}{2}\right]+1 \text{ or } =3\left[\frac{n}{2}\right],
\]
and \(x_{l+t,k+t} = x_{l,k} \) for all \(t \in \mathbb{Z} \).

The proof of the formula for \(P_n \) consists simply of determining for each power of \(\lambda \) the part of the sparse matrix which contributes to its coefficient in the determinant. The verification is straightforward.

3.4 The equation for even \(n \)

According to the monodromy identity, \(mon_\infty \) is conjugated to \(\gamma St\frac{1}{2} St_0 \). Thus \(P_n := \det(-\lambda I + \gamma St\frac{1}{2} St_0) \) equals \((\lambda - 1)^n \).

\[\gamma = E_{1,0} + E_{2,1} + \cdots + E_{n-1,n-2} - E_{0,n-1}, \]
\[S_{1/4} = 1 + \sum_{k>l, k+l=\frac{n}{2}-1} x_{l,k} E_{l,k} + \sum_{l>k, k+l=\frac{3n}{4}-1} x_{l,k} E_{l,k}, \]

\[S_{0} = 1 + \sum_{k>l, k+l=\frac{n}{2}} x_{l,k} E_{l,k} + \sum_{l>k, k+l=\frac{3n}{2}} x_{l,k} E_{l,k}. \]

Guided by a few examples, verified by a MAPLE computation

\[P_{2} = \lambda^2 - x_{0,1} \lambda + 1, \]
\[P_{4} = \lambda^4 - x_{1,1} \lambda^3 - x_{0,2} \lambda^2 + x_{3,2} \lambda + 1, \]
\[P_{6} = \lambda^6 - x_{1,2} \lambda^5 - x_{0,2} \lambda^4 + x_{5,3} \lambda^2 + x_{5,4} \lambda + 1, \]
\[P_{8} = \lambda^8 - x_{1,2} \lambda^7 - x_{1,3} \lambda^6 - x_{0,3} \lambda^5 + x_{7,4} \lambda^3 + x_{7,5} \lambda^2 + x_{6,5} \lambda + 1. \]

one deduces the general formula for \(P_{n} \) and even \(n \).

\[P_{n} = \lambda^n + 1 + \sum_{k>l, k+l=\frac{n}{2} \text{ or } \frac{3n}{2}-1} x_{l,k} \lambda^{n-(k-l)} + \sum_{l>k, k+l=\frac{3n}{2} \text{ or } \frac{3n}{2}-1} x_{l,k} \lambda^{l-k}. \]

This implies

\[x_{l,k} = -(-1)^{k-l} \binom{n}{k-l} \text{ for } k > l \text{ and } k + l = \frac{n}{2} \text{ or } \frac{n}{2} - 1, \]

\[x_{l,k} = (-1)^{l-k} \binom{n}{l-k} \text{ for } l > k \text{ and } k + l = \frac{3n}{2} \text{ or } \frac{3n}{2} - 1, \]

and \(x_{l+s,k+s} = x_{l,k} \) for all \(s \in \mathbb{Z} \).

Remark 3.2 Weighted projective spaces.

Consider positive integers \(w_{0}, \ldots, w_{n} \) with \(\gcd(w_{0}, \ldots, w_{n}) = 1 \). For the weighted projective space \(\mathbb{P}(w_{0}, \ldots, w_{n}) \), which is defined by \(\mathbb{C}^{n+1} \setminus \{0\}/\mathbb{C}^{*} \), where \(t \cdot (z_{0}, \ldots, z_{n}) = (t^{w_{0}}z_{0}, \ldots, t^{w_{n}}z_{n}) \), we adopt the quantum differential operator, given in [6], namely

\[\prod_{i=1}^{n} (w_{i}h\partial)(w_{i}h\partial - h) \cdots (w_{i}h - (w_{i} - 1)h) - q, \]

where \(\partial = q \frac{d}{dq} \). After taking \(h = 1 \) and replacing \(q \) by \(z \) and \(\partial \) by \(\delta = z \frac{d}{dz} \), the operator reads

\[\prod_{j=0}^{n} \delta(\delta - \frac{1}{w_{j}}) \cdots (\delta - \frac{w_{j} - 1}{w_{j}}) - z. \]
We note that the above formula is attributed to Corti and Golyshev and that in [9] Dubrovin’s conjecture is extended to orbifolds. In particular, there is a conjecture for weighted projective spaces. Unfortunately the latter is not explicit enough to allow us a comparison with the Stokes data. Here we will show that our computations of the classical Stokes matrices for ordinary projective spaces extend to the case of weighted projective spaces. The preprint [12], related to Proposition , appeared after this paper was finished.

Proposition 3.3 The Stokes data \(\{x_{\ell,k}\} \) for

\[
\prod_{j=0}^{n} \delta(\delta - \frac{1}{w_j}) \cdots (\delta - \frac{w_j - 1}{w_j}) - z. \text{ Put } s = \sum w_j.
\]

At \(z = \infty \), the generalized eigenvalues are \(\zeta^j z^{1/s} \) with \(j = 0, \ldots, s - 1 \) where \(\zeta = e^{2\pi i/s} \). Thus the above equation is formally equivalent to \(\delta^s - z \) and the configuration of the Stokes matrices is the same as for the ordinary projective space \(\mathbb{P}^{s-1} \). The formal monodromy differs by a minus-sign if \(n \) is even.

The topological monodromy at \(z = 0 \) (or equivalently at \(z = \infty \)) has characteristic polynomial \(\prod_{j=0}^{n} (\lambda^{w_j} - 1) \).

The Stokes data \(\{x_{\ell,k}\} \) are determined by:

(a). The monodromy identity \(\pm P_n = \prod_{j=0}^{n} (\lambda^{w_j} - 1) \).
(b). \(x_{\ell,k} = x_{\ell',k'} \) if \(\ell \equiv \ell', k \equiv k' \mod s \).
(c). \(x_{\ell,t+k+t} = x_{\ell,k} \) for all \(t \in \mathbb{Z} \).

In particular, the Stokes data consists of computable integers.

The proof is a straightforward computation. We note that it might be difficult to give a closed formula (as in the \(\mathbb{P}^{n-1} \) case) for the \(x_{\ell,k} \).

Example \(\mathbb{P}(1,2,4) \). The topological monodromy at \(z = \infty \) is conjugated to \(\gamma \text{St}_{3/4} \text{St}_{1/4} \). The characteristic polynomial of this \(7 \times 7 \)-matrix is

\[
-\lambda^7 + x_{1,2} \lambda^6 + x_{0,2} \lambda^5 + x_{0,3} \lambda^4 + x_{6,3} \lambda^3 + x_{6,4} \lambda^2 + x_{5,4} \lambda + 1,
\]

where these \(x_{\ell,k} \) are the non trivial entries of \(\text{St}_{3/4} \) and \(\text{St}_{1/4} \).

The topological monodromy at \(z = 0 \) has characteristic polynomial

\[
-(\lambda - 1)(\lambda^2 - 1)(\lambda^4 - 1)
\]

and thus we find

\[
\begin{align*}
x_{1,2} &= 1, & x_{0,2} &= 1, & x_{0,3} &= -1, & x_{6,3} &= 1, & x_{6,4} &= -1, & x_{5,4} &= -1.
\end{align*}
\]
4 The quantum differential equation
\[\delta^{N-1} - z(k\delta + k - 1)(k\delta + k - 2) \cdots (k\delta + 1) \]

According to [5], the Dubrovin–Givental connection for a non-singular hypersurface of degree \(k \leq N - 1 \) in \(\mathbb{P}^{N-1} \) is given by this formula. We prefer to write this operator differently (with \(m = k \) and \(n = N - k \))

\[\delta^{n+m-1} - m^m z (\delta + \frac{m-1}{m})(\delta + \frac{m-2}{m}) \cdots (\delta + \frac{1}{m}) \] with \(\delta = z \frac{d}{dz}, n > 1, m > 1. \)

For \(m = 1 \) this reduces this operator to the one studied in §3. At the end of this section we will comment on the case \(n = 1. \)

Theorem 4.1 The Stokes data for the above equation is:
\{ \(x_{\ell,k} \mid 0 \leq k, \ell \leq n - 1, k \neq \ell \} \) and \{ \(z_j \mid 1 \leq j \leq m - 1 \), \(y_j \mid 1 \leq j \leq m - 1 \). \) The \(y_j \) and \(z_j \) depend on the choice of a basis. However, the products \(y_j z_j, j = 1, \ldots, m - 1 \) are computable elements of \(\mathbb{Q}(\zeta) \), where \(\zeta = e^{2\pi i/m} \) and independent of this choice.

4.1 The differential equation \(\delta^4 - 27z\delta^2 - 27z\delta - 6z \)

We start by investigating the case \(n = 2, m = 3 \) of Theorem 4.1, which is the quantum differential equation of a hypersurface of degree 3 in \(\mathbb{P}^4 \) (see [4], p 42, Example 3.6). A matrix form for this equation is

\[
\begin{pmatrix}
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
-6z & -27z & -27z & 0 \\
\end{pmatrix}
\]

We proceed as in §3. The (generalised) eigenvalues at \(z = \infty \) are \(q_1 = \sqrt[3]{27z^{1/2}}, q_2 = -\sqrt[3]{27z^{1/2}}, 0. \) The symbolic solution space \(V \) at \(z = \infty \) has
the form $V = V_{q_1} \oplus V_{q_2} \oplus V_0$ with $V_{q_1} = \mathbb{C}e_1$, $V_{q_2} = \mathbb{C}e_2$ and $V_0 = \mathbb{C}e_3 \oplus \mathbb{C}e_4$. The basis e_1, \ldots, e_4 is chosen such that the formal monodromy has the form

$$
\gamma = \begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & \zeta & 0 \\
0 & 0 & 0 & \zeta^2
\end{pmatrix}, \text{ where } \zeta = e^{2\pi i/3}.
$$

We note that this basis is unique up to a transformation of the type $e_1 \mapsto \lambda_1 e_1$, $e_2 \mapsto \lambda_1 e_2$, $e_3 \mapsto \lambda_2 e_3$, $e_4 \mapsto \lambda_3 e_4$ with all $\lambda_j \in \mathbb{C}^*$. The singular directions are $0 + 2\mathbb{Z}$ for the differences $q_2 - q_1$, $q_2 - 0$, $0 - q_1$ and are $1 + 2\mathbb{Z}$ for the differences $q_1 - q_2$, $q_1 - 0$, $0 - q_2$. The Stokes matrix St_0 has the form

$$
St_0 = \begin{pmatrix}
1 & 0 & x_4 & x_5 \\
x_1 & 1 & 0 & 0 \\
0 & x_2 & 1 & 0 \\
0 & x_3 & 0 & 1
\end{pmatrix}, \quad \gamma St_0 = \begin{pmatrix}
-x_1 & -1 & 0 & 0 \\
1 & 0 & x_4 & x_5 \\
0 & \zeta x_2 & \zeta & 0 \\
0 & \zeta^2 x_3 & 0 & \zeta^2
\end{pmatrix}
$$

and $St_1 = \gamma^{-1} St_0 \gamma$. According to the monodromy identity, γSt_0 is equivalent to the topological monodromy at $z = 0$. The latter is seen to have the single eigenvalue 1 (and only one Jordan block). Thus the characteristic polynomial of γSt_0 is $(\lambda - 1)^4$. This yields the data for the entries of the Stokes matrices $x_1 = -5$, $x_2 x_4 = -9\zeta + 18$, $x_3 x_5 = 9\zeta + 27$. It seems that we have not enough information to obtain values for all x_j. This is due however to the non uniqueness of the basis vectors e_3, e_4. As an example we can see that for a suitable choice of e_3, e_4 we will have, say, $x_4 = 1$ and $x_5 = 1$ and further $x_1 = -5$, $x_2 = -9\zeta + 18$, $x_3 = 9\zeta + 27$.

4.2 The general case

The above operator is transformed in the usual way into a first order matrix differential operator. The formal data for the symbolic solution space V at $z = \infty$ are: the (generalised) eigenvalues are 0 and the $q_j = \sqrt[n]{m^m \zeta_n^j z^{1/n}}$ for $j = 0, 1, \ldots, n - 1$ with $\zeta_n = e^{2\pi i/n}$. This solution space V has the decomposition $V = V_{q_0} \oplus V_{q_1} \oplus \cdots \oplus V_{q_{n-1}} \oplus V_0$ with $V_{q_j} = \mathbb{C}e_j$ for $j = 0, \ldots, n - 1$ and $V_0 = \mathbb{C}f_1 \oplus \cdots \oplus \mathbb{C}f_{m-1}$. The basis vectors are chosen such that the formal monodromy γ acts as $e_0 \mapsto e_1 \mapsto \cdots \mapsto e_{n-1} \mapsto (-1)^{n-1}(-1)^{m-1}e_0$ and $\gamma f_j = \zeta_n^j f_j$ for $j = 1, \ldots, m - 1$ and $\zeta_m = e^{2\pi i/m}$.

We note that the basis f_1, \ldots, f_{m-1} of V_0 is unique up to multiplication by
scalars. The computation of the ‘monodromy identity’ is done separately for \(n \) even and \(n \) odd.

even \(n \).
The singular directions \(d \) for \(q_k - q_\ell \) lying in \([0, 1) + \mathbb{Z}n\) are the same as in §3, namely:

- For \(n > k > \ell \geq 0 \): \(d = 0 \) and \(k + \ell = \frac{n}{2}; \ d = \frac{1}{2} \) and \(k + \ell = \frac{n}{2} - 1 \).
- For \(n > \ell > k \geq 0 \): \(d = 0 \) and \(k + \ell = \frac{3n}{2}; \ d = \frac{1}{2} \) and \(k + \ell = \frac{3n}{2} - 1 \).

For \(q_k - 0 \), the only singular direction in \([0, 1) + \mathbb{Z}n\) is \(d = 0 \) with \(k = \frac{n}{2} \).

For \(0 - q_k \), the only singular direction in \([0, 1) + \mathbb{Z}n\) is \(d = 0 \) with \(k = 0 \).

Description of \(St_0 \). For elements in \(\text{End}(\mathbb{C}e_0 + \cdots + \mathbb{C}e_{n-1}) \) we use the notation of §3. Then \(St_0 \) is the identity plus a number of maps, namely \(\sum_{k>\ell, \ k+\ell=\frac{n}{2}} x_{\ell,k} E_{\ell,k} \) and \(\sum_{\ell>k, \ k+\ell=\frac{3n}{2}} x_{\ell,k} E_{\ell,k} \) and a map \(e_2 \mapsto y_1f_1 + \cdots + y_{m-1}f_{m-1} \) (the other base vectors are mapped to 0) and for \(j = 1, \ldots, m-1 \) a map \(f_j \mapsto z_je_0 \) (the other base vectors are mapped to 0).

Description of \(St_{\frac{1}{2}} \). This Stokes matrix is the identity plus certain maps, namely \(\sum_{k>\ell, \ k+\ell=\frac{n}{2}-1} x_{\ell,k} E_{\ell,k} \) and \(\sum_{\ell>k, \ k+\ell=\frac{3n}{2}-1} x_{\ell,k} E_{\ell,k} \).

The matrix \(\gamma St_{\frac{1}{2}} St_0 \) and its characteristic polynomial \(P \) can be computed. The monodromy identity \(P = (\lambda - 1)^{n+m-1} \) leads to the statement that \(x_{\ell,k} \) have the form \(\pm \binom{n+m}{*} \) and that the \(y_jz_j \) are elements of \(\mathbb{Q}[\zeta_m] \). As in §4.1, i.e., the case \(n = 2, m = 3 \), one cannot compute the \(y_j \) and \(z_j \) separately since this involves a definite choice of the basis \(f_1, \ldots, f_{m-1} \).

Example. The case \(n = 4, m = 3 \) and \(\zeta := e^{2\pi i/3} \).

\[
\gamma = \begin{pmatrix}
0 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \zeta & 0 \\
0 & 0 & 0 & 0 & 0 & \zeta^2
\end{pmatrix}, \quad St_{\frac{1}{2}} = \begin{pmatrix}
1 & x_{0,1} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & x_{3,2} & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix},
\]
\[
St_0 = \begin{pmatrix}
1 & 0 & x_{0,2} & 0 & z_1 & z_2 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & y_1 & 0 & 1 & 0 \\
0 & 0 & y_2 & 0 & 0 & 1
\end{pmatrix}.
\]

Since the characteristic polynomial of \(\gamma St_0\) is \((\lambda - 1)^6\) one finds
\[x_{0,1} = 7, \quad x_{0,2} = -21, \quad x_{3,2} = -7, \quad y_1 z_1 = 9(2\zeta^2 + 1), \quad y_2 z_2 = -9(2\zeta^2 + 1).\]

Let \(P\) denote again the characteristic polynomial of \(\gamma St_1\) for \(n\) even and \(m > 1\). One observes that \((\lambda - 1)^{n+m} = (\lambda - 1)P\) is the sum of \((\lambda^m - 1)Q\) with
\[
Q = \lambda^n - \sum_{k > l, \ k + l = \frac{n}{2} \text{ or } = \frac{n}{2} - 1} x_{l,k} \lambda^{n-(k-l)} + \sum_{l > k, \ k + l = 3\frac{n}{2} \text{ or } = 3\frac{n}{2} - 1} x_{l,k} \lambda^{l-k} + 1
\]
and terms \(a\lambda^j (a \in \mathbb{C})\) with \(3\frac{n}{2} < j < m + \frac{n}{2}\). This leads to the formulas
\[
x_{l,k} = (-1)^{k-l+1} \left(\frac{n+m}{k-l}\right) \text{ for } k > l, k + l = \frac{n}{2} \text{ or } = \frac{n}{2} - 1,
\]
\[
x_{l,k} = (-1)^{n+m+l-k+1} \left(\frac{n+m}{l-k}\right) \text{ for } l > k, k + l = 3\frac{n}{2} \text{ or } = 3\frac{n}{2} - 1.
\]
The elements \(y_j z_j\) are (in general complicated) expressions in \(\mathbb{Q}(\zeta)\).

\textbf{odd} \(n > 1\).

The singular directions \(d\) in \([0, 1] + \mathbb{Z}n\) are:
For \(q_k - q_e:\)
\(n > k > \ell \geq 0, \ d = \frac{1}{4}\) with \(k + \ell = \lfloor \frac{n}{2} \rfloor; \ d = \frac{3}{4}\) with \(k + \ell = \lfloor \frac{n}{2} \rfloor - 1\)
\(n > \ell > k \geq 0, \ d = \frac{1}{4}\) with \(k + \ell = 3\lfloor \frac{n}{2} \rfloor + 1; \ d = \frac{3}{4}\) with \(k + \ell = 3\lfloor \frac{n}{2} \rfloor\).

For \(q_k - 0: \ d = \frac{1}{2}\) and \(k = \lfloor \frac{n}{2} \rfloor\). For \(0 - q_k: \ d = 0\) and \(k = 0\).

\textit{Example.} \(n = 3, m = 3, \ \zeta = e^{2\pi i/3}\).
\[
\gamma := \begin{pmatrix}
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \zeta
\end{pmatrix}, \quad St_{\frac{3}{4}} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.
\]
\[
St_{\frac{1}{2}} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
z_1 & 0 & 1 & 0 & 0 \\
z_2 & 0 & 0 & 1 & 0 \\
\end{pmatrix},
St_{\frac{3}{4}} = \begin{pmatrix}
1 & x_{0,1} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
z_1 & 0 & 1 & 0 & 0 \\
z_2 & 0 & 0 & 1 & 0 \\
\end{pmatrix},
St_0 = \begin{pmatrix}
1 & 0 & 0 & y_1 & y_2 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}.
\]

The observation that the characteristic polynomial of \(\gamma St_{\frac{1}{2}} St_{\frac{3}{4}} St_{\frac{3}{4}} St_0\) is \((\lambda - 1)^5\) yields \(x_{0,1} = 6, x_{2,1} = -6\) and \(y_1 z_1 = -9(\zeta^2 + 1), y_2 z_2 = 9\zeta^2\).

As in the case of even \(n\) one obtains for general odd \(n > 1\) and \(m > 1\) explicit formulas for the entries \(x_{\ell,k}\) (same notation as in the even case) of the Stokes matrices, namely

\[
x_{\ell,k} = (-1)^{k-\ell+1} \frac{n+m}{k-\ell} \quad \text{for } k > \ell, \ k + \ell = \left\lfloor \frac{n}{2} \right\rfloor \text{ or } = \left\lfloor \frac{n}{2} \right\rfloor - 1,
\]

\[
x_{\ell,k} = (-1)^{\ell-k} \frac{n+m}{\ell-k} \quad \text{for } \ell > k, \ k + \ell = 3\left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ or } = 3\left\lfloor \frac{n}{2} \right\rfloor.
\]

The elements \(y_j z_j\) are (in general complicated) expressions in \(\mathbb{Q}(\zeta)\).

Comments on the case \(n = 1\).
The equation reads \(\delta^m - m^m z(\delta + \frac{m-1}{m})(\delta + \frac{m-2}{m}) \cdots (\delta + \frac{1}{m})\). The (generalized) eigenvalues at \(z = \infty\) are \(z\) and \(0\). This equation is not really a quantum differential equation and moreover there is no ramification at \(z = \infty\)!

The symbolic solution space \(V\) is given a basis \(e_0, f_1, \ldots, f_{m-1}\) such that \(V_z = \mathbb{C} e_0\), \(V_0\) has basis \(f_1, \ldots, f_{m-1}\) and the formal monodromy \(\gamma\) has the form \(\gamma(e_0) = e_0\) and \(\gamma(f_j) = \zeta^j f_j\) for all \(j\) and \(\zeta = e^{2\pi i/m}\). The above basis is unique up to multiplication by scalars. The singular directions are \(d = \frac{1}{2}\) and \(d = 0\) and the corresponding Stokes matrices involve (using the earlier notation) only \(\{y_1, \ldots, y_{m-1}\}\) and \(\{z_1, \ldots, z_{m-1}\}\). These elements are not unique, however the products \(y_j z_j\) are independent of the choice of \(e_0, f_1, \ldots, f_{m-1}\) and are computable elements of \(\mathbb{Q}(\zeta)\).

Example: for \(m = 3\) one finds \(y_1 z_1 = 3 + 3\zeta, y_2 z_2 = -3\zeta\). This example
seems unrelated to the quantum cohomology of a cubic surface, studied by K. Ueda in [14].

Acknowledgements The first author would like to thank Hiroshi Iritani for pointing out the reference [11] and for many interesting conversations about the quantum cohomology of Fano varieties. JACM was supported by a Japanese Government (Monbukagakusho:MEXT) Scholarship. We thank the referees for their helpful comments.

References

[1] Cecotti, S. and Vafa, C. On Classification of $N = 2$ supersymmetric theories. Comm.Math.Phys, 158,(1993), 569-644.

[2] Dubrovin, B. Geometry of 2D topological field theories, in: Integrable systems and quantum groups, Montecatini, Terme, 1993. Springer Lecture Notes in Mathematics. 1620 (1996) 120-348.

[3] Dubrovin, B. Geometry and analytic theory of Frobenius manifolds, in: Proceedings of the International Congress of Mathematicians, vol II, 315-326 (Berlin 1998),

[4] Dubrovin, B. Painlevé transcendents in two dimensional topological field theory, in: The Painlevé property:100 years later. CRM. Ser. Math. Phys. Springer (1999) 287-412

[5] Guest, M.A. From Quantum Cohomology to Integrable Systems, Oxford Graduate Texts in Mathematics 15, 2008

[6] Guest, M.A. and Sakai, H. Orbifold quantum D-modules associated to weighted projective spaces, arXiv: 0810.4236v1 [math.AG] 23 Oct. 2008

[7] Guest, M.A., Its, A and Lin C-S. Isomonodromy aspects of the tt^* equations of Cecotti and Vafa I. Stokes data. arXiv: 1209.2045v1 [math.DG]

[8] Guzzetti, D. Stokes matrices and monodromy of the quantum cohomology of projective spaces. Comm. Math. Phys., 207 (2), (1999) 341-383

[9] Iritani, H. An integral structure in quantum cohomology and mirror symmetry for toric varieties, Adv. Math. 222 (2009), 1016–1079

[10] Van der Put, M. and Singer, M.F. Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften 328, 2003.
[11] Tanabe, S. *Invariant of a hypergeometric group associated to the quantum cohomology of the projective space*. Bull. Sci. Math. **128** (2004) 811-827.

[12] Tanabe, S. and Ueda, K. *Invariants of hypergeometric groups for Calabi–Yau complete intersections in weighted projective spaces* arXiv:1305.1659v2, 9 Sep 2013.

[13] Ueda, K. *Stokes Matrices for the Quantum Cohomologies of Grassmannians*. Int. Math. Res. Nos. 2005, no 34, 2075–2086

[14] Ueda, K. *Stokes Matrices for the Quantum Cohomology of Cubic Surfaces* arXiv:math/0505350v, 2005

[15] Zaslow, E. *Soliton and Helices: the search for a Math-Phys bridge*. Comm. Math. Phys, 175 (1996) 337-375