Оригінальні дослідження
Новітні досягнення

Біль. Суглоби. Хребет
14 № 3(7), 2012

Недосконалий остеогенез (НО), або хвороба крихких кісток, є генетичним захворюванням сполучної тканини, що характеризується крихкістю кісток та підвищеним ризиком до переломів від легкої травми. Клінічний спектр даної незгody є надзвичайно широким, починаючи від смертельних випадків у перинатальному періоді, до симптомів, які дуже тяжко виявити в більш пізному віці, оскільки захворювання може перебігати під маскою раннього остеопорозу. Пацієнти з НО можуть мати затримку в рості, вормієві кістки (ossa Wormiana), сколіоз та екстраскелетні прояві, такі як недосконалий дентиногенез (dentinogenesis imperfecta), втрату слуху, макроцефалію, голубі склери, бочкоподібну деформацію грудної клітки, гіпермобільність суглобів [1].

Близько 85–90 % пацієнтів із НО мають порушення будови колагену І типу, основного структурного компонента по-заклітинного матриксу кістки, шкіри та сухожилків, що обумовлене мутаціями, які передаються за автосомно-домінантним типом успадкування. У 1979 році Сіленс описав класичну клінічну картину НО [2]. Він розділив НО на чотири типи, що засновувалися на клінічних та рентгенологічних особливостях.

Помірні та тяжкі форми НО, що успадковуються за автосомно-домінантним типом, обумовлені структурними дефектами в одному із двох ланцюгів колагену І типу. У хворих із І типом НО синтезується нормальний колаген І типу та колаген зі структурними дефектами.

Дослідження, проведені за останні роки, установили генетичне підґрунтя відносно рідкісних рецепсивних форм НО [5]. НО з автосомно-рецесивним шляхом успадкування зумовлюється дефектом білків комплексу проліл-3-
Clinical Characteristics and Types of OI

Because the types of OI vary widely in symptoms, clinical appearance and in their onset, the diagnosis varies with the age of the individuals. A positive family history is usually not present, because appearance of classical OI in children of unaffected parents is caused by parental mosaicism [8].

Prenatally, severe types may be difficult to distinguish from thanatophoric dysplasia (misense mutations in fibroblast growth factor receptor-3), campomelic dysplasia (mutations in or near the SOX9 gene), and achondrogenesis type I (type 1A etiology is unknown, type 1B is caused by mutations in the SLC26A2 gene). The key diagnostic element for OI is the generalized nature of the connective tissue defect with facial features (flat midface, triangular shape, blue sclerae, yellowish or opalescent teeth), relative macrocephaly, thoracic deformations, like barrel chest or pectus excavatum, joint laxity, morphologic changes of the vertebral and growth deficiency, present in variable combinations in each case. When a diagnosis is still in doubt, collagen biochemical tests and DNA sequencing provide helpful information on the presence of a mutation.

The classification proposed by Sillence [2] is based on clinical and radiographic criteria that distinguished four types. The Sillence types have autosomal dominant inheritance. Although, laboratory practice has subsequently developed, the classification is still in use. More recently the types of OI have been extended to the autosomal recessive types V through XI [4] (table 1), although they are defined by different criteria than types I-IV (OMIM 166200, 166210, 259420, 166220). Clinical, the recessive forms of OI overlap with types I and III OI but have the distinction of white sclerae [6, 9].

OI Type I is the mildest form of the disorder. Fracture occurrence starts postnatally and usually decreases or even stops after puberty. Fracture rate in OI increases again after menopause in women and over 60 years of age in men [10].

Individuals with type I OI have blue sclerae and often bruise easily. They may have hearing loss or joint hyperextensibility. Growth reduction and deformities of the long bones are mild. Based on the presence of dentinogenesis imperfecta, type I has been divided into subtypes A and B.

OI Type II shows a very high perinatal lethality, however, survival to one year or more has been noted. These individuals are often born premature and are small for gestational age. Legs are usually held in the frog leg position with hips abducted and knees flexed. In X-rays long bones are extremely osteoporotic, with in-utero fractures and abnormal modeling. The skull is severely under-mineralized with wide-open fontanelles. The sclerae gідроксилази-1 (P3H1), CRTAP [6, 7], LEPRE1 і PPIB або мутації генів FKBP10, SERPINH1 [4]. У майже в 5% випадків NO не пов’язаний із жолінм дфектом колагену I типу чи комплексу P3H1.

Клінічна характеристика та типи НО

Оскільки різні типи NO мають різноманітні симптоматику, клінічні прояви відрізняються за часом маніфестації, тому термін встановлення діагнозу буде також різним. У більшості дітей із класичним перебігом NO необхідний сімейний анамнез зумовлений мозаїзмом хвороби в їх батьків [8].

Пренатально тяжкі типи NO складно відрізнити від та-натофорної дисплазії (місценс-мутація рецептора фак-тора росту фібробластів-3), кампомелічної дисплазії (му-тація гена SOX9) та ахондрогенезу I типу (тип 1А — етіо-логія невідома, тип 1В викликано мутаціями в гені SLC26A2). Ключовим діагностичним моментом NO є уза-гальнення характеру дефектів сполучної тканини, що мо-жуть бути в різноманітних комбінаціях, зокрема воло-чече (черешенько-плямистого типу). Може виникати корисну інформацію про на-явність мутації.

Згідно із запропонованою Сіленсом класифікацією [2], що грунтується на клінічних та рентгенологічних критеріях, роз-різняють чотири типи НО. Вони мають аутосомно-домі-налній тип успадкування. Хоч згодом лабораторні дослідження додатково включалися, проте запропонована класифікація викро- ристовується до сьогодені. Недавно було додано нові типи NO із V по XI із аутосомно-речисьвим типом успадкування [4] (таб. 1). Вони характеризуються іншими критеріями, ніж типи I—IV (OMIM (медична база даних, у якій зберігається інформація про відомості захворювання з генетичним компонентом) 166200, 166210, 259420, 166220). Клінічні ресценсійні форми NO подібні до NO типу I та III, проте пацієнти мають білі склери [6, 9].

I тип NO є найлегшою формою захворювання. Переломи виникають постнатально, зазвичай частота переломів знижу-ється або навіть припиняється після періоду статевого дозрі-вання. Ризик переломів при NO I типу зростає після настання менопаузи в жінок та після 60-річного віку у чоловіків [10].

Пацієнти зі I типом НО мають голубі склери, підвищену схиль-ність до крововиливів (за петехіально-плямистим типом). Може рекоструватися зниження слуху або гіпермобільність суглобів. Спор-стергіється незначна затримка росту та легкі деформації довічних трубчастих кісток. На підставі наявності або відсутності недоско-налих каналюваних виділяють NO підтипів A і B.

HO II типу супроводжується дуже високою перинатальною смертністю, випадки вживання до року та довше не реєстру-валися. Такі діти часто народжуються недоношенними та відповідають своєму гестаційному віку. Нижні кінцівки зна-ходяться в положенні жабки: із зігнутими кінцями в ко-шені, відповідають своєму гестаційному віку. Нижні кінцівки зна-ходяться в положенні жабки: із зігнутими кінцями в ко-
are blue-gray. Bones are composed predominantly of woven bone without haversian canals or organized lamellae.

OI Type III is known as the progressive deforming type. Most individuals with type III OI survive childhood with severe bone dysplasia. The presentation at birth may be similar to mild type II OI spectrum. They have extremely fragile bones and sustain up to hundreds of fractures over a lifetime. The long bones are easily deformed from normal muscle tension, and subsequently fractures occur. These individuals have extreme growth deficiency. Almost all type III cases develop scoliosis. Radiographically, bone abnormalities such as a flaring of the metaphyses and «popcorn» formation at growth plates are seen in addition to osteoporosis. The individuals require intensive physical rehabilitation and orthopedic care. Many of them are bound to wheelchairs.

OI Type IV is the moderately severe Sillence form. The diagnosis may be made at birth or delayed until school ages. Scleral hue is variable. These children often have several fractures a year and bowing of their long bones. Again, fractures decrease or even stop after puberty. Essentially, all type IV individuals have short final stature, which is often in the range of pubertal children. Many of these children are responsive to growth hormone by significant additional height. X-rays of the bones show osteoporosis and mild modeling abnormalities. Many develop vertebral compressions and scoliosis. With consistent rehabilitation and orthopedic management, these individuals should be able to attain independent mobility (fig. 1).

OI Type	Inheritance	Phenotype	Gene Defect
I	AD	mild	Null COL1A1 allele
II	AD	lethal	COL7A1/COL1A2
III	AD	progressive deforming	COL1A1/COL1A2
IV	AD	moderate	COL1A1/COL1A2
V	AR	distinctive history	unknown
VI	AR?	mineralization defect	unknown
VII	AR	severe — lethal	CRTAP
VIII	AR	severe — lethal	LEPRE1 (P3H1)
IX	AR	moderate — severe	PPIB (CyP)
X	AR	severe — lethal	SERPINH1 (HSP47)
XI	AR	progressive deforming	FKBP10 (FKBP65)

Table 1. Nosology of OI (modified from Forlino et al., 2012, [4])

Таблиця 1. Класифікація НО (у модифікації А. Форліно та співавт., 2012, [4])

Зацією та широкими тім'ячками. Склери сіро-голубі. Кістки складаються в основному із кісткової тканини без гаверсових каналів або з безладним розташуванням пластинок.

НО III типу відомий як прогресуючий деформуючий варіант. Більшість хворих із III типом НО в дитинстві мають тяжку форму дисплазії кісток. Клінічна картина захворювання при народженні може бути схожою на легкий варіант НО II типу. Вони мають надзвичайно крихкі кістки, у них реєструють до сотні переломів протягом усього життя. Довгі трубчасті кістки легко деформуються від нормального на- пруження м’язів та внаслідок перенесених переломів. Ці люди мають вигадану затримку росту. Майже в усіх пацієнтів із НО III типу розвивається сколіоз. Рентгенологічно — широкі метафізи, нашарування за типом «попкорну» в зонах рос- ту на додаток до остеопорозу. Хворі потребують інтенсивної фізичної реабілітації та ортопедичної допомоги. Багато хто з них прикутий до інвалідного візка.

НО IV типу є дуже тяжкою формою за Сіленсом. Діа- гноз можна встановити при народженні або у шкільному віці. Колір склер може бути різним. Ці діти часто мають декілька переломів на рік та викривлення довгих трубча- тих кісток. Частота переломів може зменшуватися, або їх може навіть не бути після пубертатного періоду. Загалом усіх пацієнтів із НО III типу розвивається сколіоз. Рентгенологічно — широкі метафізи, нашарування за типом «попкорну» в зонах росту на додаток до остеопорозу. Хворі потребують інтенсивної фізичної реабілітації та ортопедичної допомоги. Багато хто з них прикутий до інвалідного візка.
Radiologic Findings

Long bones have thin cortical bone and a gracile appearance. In moderately to severely affected patients, long bones have bowing and modeling deformities, including cylindrical configuration from an apparent lack of modeling, metaphyseal dense band adjacent to the growth plate of long bones. Patients with OI develop hypertrophic callus formation at the sites of fractures or surgical procedures. They show calcification of the membrane between the radius and ulna, leading to restricted rotation. Patients have normal teeth and white sclerae [11].

OI Type V OI is associated with radiographic findings of thin cortical bone and a gradient appearance under the microscope. OI Type VI is characterized by an increased amount of non-mineralized osteoid with a relatively late onset of fractures. Teeth and sclera development is normal, the skeletal disease seems to be moderate to severe [12]. OI Type VI show only a poor response to bisphosphonate therapy [13].

OI Type VII is caused by defects in cartilage-associated protein (CRTAP) [6, 7, 14]. These individuals have rhizomelia and a moderate bone disease, associated with a hypomorphic mutation in CRTAP. Null mutations in CRTAP have been shown to cause a lethal form of OI, with white sclerae, rhizomelia and a small to normal cranial vault [9].

OI Type VIII is caused by defects in P3H1 (encoded by LEPRE1). There is considerable overlap in the phenotypes of OI VII and VIII. Null mutations in LEPRE1 result in a phenotype that overlaps types II and III OI, but has distinct features like white sclerae, extreme growth deficiency, and undermineralization [9].

OI Type IX is caused by a gene defect in PPILB (CyPB). The phenotype is moderate to severe [4].

OI Type X is associated with SERPINH1 nonsense mutations (collagen chaperone HSP47). The only child reported with HSP47 deficiency had a severe OI phenotype, including blue sclerae, dentinogenesis imperfecta, transient skin bullae, pyloric stenosis and renal stones [4].

OI Type XI is caused by FKBP10 frameshift mutations. Patients have deforming OI including long bone fractures, ligamentous laxity, platyspondyly and scoliosis. Sclerae and teeth are normal [4].

Recently also the Bruck Syndrome type 2, Caffey Disease and Osteoblast Maturation Defects have been added as unclassified OI-like or collagen-based disorders to the OI classification system.

For Type V–XI the Silence numeration has been continued, but they are based on different criteria than the Silence types. Clinically they present a phenotype, according to Silence type IV. Type V (OMIM 610967) and type VI (OMIM 610968) are defined by histologic and clinical/radiographic signs and have an unknown etiology.

Recently also the Bruck Syndrome type 2, Caffey Disease and Osteoblast Maturation Defects have been added as unclassified OI-like or collagen-based disorders to the OI classification system.
seal flaring, and “popcorn” appearance at the metaphyses [15]. Long bones of the upper extremity are often seen with milder deformities than those of the lower extremity, even without weight bearing. Vertebrae often have central compressions even in mild type I OI. These often appear first at the T12-L1 level, consistent with weightbearing stress. In moderate to severe OI, vertebrae show central and anterior compressions and may appear compressed throughout. The compressions are generally consistent with the patient’s L1-L4 DXA Z-score but do not correlate in a straightforward manner with scoliosis. In the lateral view of the spine it is difficult to assess the asymmetry of vertebral collapse, which, along with paraspinal ligamentous and discous structures, contributes to the “popcorn” appearance. In severe OI, vertebral collapse may be so severe that the vertebrae are compressed throughout. These central compression fractures may lead to focal compressions of the spinal cord with resultant symptoms of paraplegia or quadriplegia. In the lateral view, mild and moderate deformities are often difficult to discern. However, vertebral deformities may be assessed on the anteroposterior view, where the degree of vertebral collapse may be more apparent.

Figure 1. DXA body scan of a 38-year old man with OI type IV:
short stature, scoliosis, moderate deforming bones of the lower extremity

Рисунок 1. Двофотонна рентгенівська денситометрія весього скелета 38-річного чоловіка із НО IV типу: низькорослість, сколіоз, помірні деформації кісток нижньої кінцівки

Figure 2. DXA scan of the lumbar spine of a 40-year old woman with OI III. Unfeasible scan due to multiple vertebral fractures and scoliosis

Рисунок 2. Двфотонна рентгенівська денситометрія по- перекового відділу хребта 40-річної жінки із НО III типу. Неможливість сканування та аналізу внаслідок множинних переломів тіл хребців та сколіозу

Figure 3. HR-pQCT image of the tibia of a 35-year old man with OI IV. Reduced trabecular number and decreased BV/TV, increased inhomogeneity of the network

Рисунок 3. Зображення, отримане за допомогою високо- роздільної периферичної комп’ютерної томографії гоміл- ки 35-річного чоловіка із НО IV типу. Зменшення кількості трабекул та зниження співвідношення BV/TV (об’єму кіст- ки до загального об’єму), зниження гомогенності трабеку- лярної сітки

Figure 4. HR-pQCT image of the pelvis of a 35-year old woman with OI IV. Reduced trabecular number and decreased BV/TV, increased inhomogeneity of the network

Рисунок 4. Зображення, отримане за допомогою високо- роздільної периферичної комп’ютерної томографії статовідділу тіла 35-річної жінки із НО IV типу. Зменшення кількості трабекул та зниження співвідношення BV/TV (об’єму кістки до загального об’єму), зниження гомогенності трабекулярної сітки
nal ligamentous laxity, is generally the cause of OI scoliosis. The skull of OI patients, with a wide range of severity, has wormian bones, although this is not unique to OI. Patients with type III and IV OI may also have platybasia, which should be followed with periodic CT studies for basilar impression and invagination [16].

The skeletal radiographic appearances of only a few infants and children with OI types VII and VIII have been described [6, 7, 9]. Both groups have extreme osteoporosis and abnormal long bone modeling, leading to a cylindrical appearance. The bone material appears cystic and disorganized. In surviving children with type VIII there is a flaring of the metaphyses.

Laboratory and Histomorphometric Findings

Parameters of bone metabolism are generally in the normal range. However, bone turnover has also been described to be high [17] or even low-normal in OI [18]. Alkaline phosphatase may be elevated after a fracture and is lightly elevated in type VI [12]. Acid phosphatase is elevated in type VIII OI and can logically be expected to be elevated in type VII. Hormones of the growth axis usually have normal levels [19]. P1NP levels are decreased due to pathophysiology of disease [20]. Lower levels were found for OI I in comparison to OI III or OI IV due to the reduced amount of collagen [21]. Serum-CTX levels are usually in normal range [17] or decreased [20].

Bone histomorphometry shows defects in bone modeling and in production and thickening of trabeculae [22]. Cortical width and trabecular bone volume are decreased in all types. Trabecular number and width are decreased. Bone remodeling is increased, as are osteoblast’s and osteoclast’s surfaces [23]. Under polarized light, the lamellae of OI bone are thinner and less smooth than in controls. Mineral apposition rate is normal, crystal disorganization may contribute to bone weakness.

BMD Measurements

BMD measurements by DXA (L1-L4) are useful over a wide age and severity range of OI [24]. It aids diagnosis in milder cases and facilitates longitudinal follow-up in moderate to severe forms. There is a general correlation of Z-score and severity of OI. Type I individuals are generally in the -1 to -2 range, type IV Z-score cluster in the -2 to -4 range, whereas type III spans -3 to -6. Children with type VII OI have -6 to -7 Z-score. It is important to remember that the Z-score compares the mineral content of the bone being studied to bone with a normal matrix structure and crystal alignment. In OI, many mutations result in irregular crystal alignment on the abnormal matrix, in addition to reduced mineral quantity.

The skeletal radiographic appearances of only a few infants and children with OI types VII and VIII have been described [6, 7, 9]. Both groups have extreme osteoporosis and abnormal long bone modeling, leading to a cylindrical appearance. The bone material appears cystic and disorganized. In surviving children with type VIII there is a flaring of the metaphyses.
Medical Therapy

Growth hormone (GH) therapy in patients with OI suggests an acceleration of short-term height velocity. The severe growth deficiency of OI is responsive to exogenous growth hormone.

Treatment Options

It has to be noted, that there is currently no cure for OI. Targets of treatment include an increase in BMD, a decrease in fracture rate, a reduction of pain, improvement of mobility as well as an increase in growth velocity.

Medical Therapy

Growth hormone (GH) therapy in patients with OI suggests an acceleration of short-term height velocity. The severe growth deficiency of OI is responsive to exogenous growth hormone.
administration in about one half of cases of type IV OI [28] and most type I OI [29]. Some treated children can attain heights within the normal range. In addition, an increase in BMD, bone volume per total volume (BV/TV) and bone formation rate (BFR) were shown. However, GH increases bone turnover, which seems to be counterproductive in a high bone turnover state like OI. Additionally, a non-responder status has been described [30].

Numerous controlled trials have shown the benefits and limitations of bisphosphonate treatment for OI [31–33]. The trabecular bone of vertebral bodies has the most positive response. BMD is increased, although the functional meaning of this measurement is difficult to assess because it also includes retained mineralized cartilage. More importantly, the vertebral ability to resist compressive forces is shown as increased vertebral area and decreased central vertebral compressions. The effect of bisphosphonate treatment on predominantly cortical long bone is more equivocal. There is a combination of increased stiffness and load bearing that is balanced by weakened bone quality [34].

Primary, pamidronate was administered in patients with OI [35]. An increase in vertebral height and a fracture reduction were noted in studies with cyclic pamidronate in children with severe OI [35]. However, also zoledronate acid showed satisfactory results regarding BMD and fracture risk reduction [36, 37].

Oral bisphosphonates like risedronate increase BMD at the lumbar spine, but not at the hip. However, fracture incidence and bone pain are not improved with oral bisphosphonates [38]. In addition, oral bisphosphonates do not seem to be appropriate in children, due the gastro-oesophageal side effects. In summary, it has been shown that there is a trend toward reduced fracture incidence or a reduced relative risk rather than a clear statistical benefit. The functional changes in amputation, muscle strength and bone pain reported in uncontrolled trials have been shown to be similar to placebo. The prolonged half-life and recirculation of pamidronate in children up to 8 years after treatment cessation may pose paediatric specific skeletal and reproductive risks [39]. Prolonged or high-dose administration to children can induce defective bone remodeling [40] and may lead to accumulation of bone microdamage. Delayed osteotomy healing was noted at conventional doses [41]. The current management of bisphosphonates for OI is to treat for 2–3 years and then reduce the dose or discontinue the drug but continue to follow the patient.

Future prospects in OI treatment

The RANKL antibody denosumab is an established therapy in postmenopausal osteoporosis [42] and bone metastases [43]. Recently, denosumab has type [28]. In the past, on-treatment has a trend toward reduced fracture incidence [42] and a fracture reduction were noted in studies with zoledronate acid showed satisfactory results regarding BMD and fracture risk reduction [36, 37].

Tabletated bisphosphonates, zomepirac acid showed satisfactory results regarding BMD and fracture risk reduction [36, 37].

Oral bisphosphonates like risedronate increase BMD at the lumbar spine, but not at the hip. However, fracture incidence and bone pain are not improved with oral bisphosphonates [38]. In addition, oral bisphosphonates do not seem to be appropriate in children, due the gastro-oesophageal side effects. In summary, it has been shown that there is a trend toward reduced fracture incidence or a reduced relative risk rather than a clear statistical benefit. The functional changes in amputation, muscle strength and bone pain reported in uncontrolled trials have been shown to be similar to placebo. The prolonged half-life and recirculation of pamidronate in children up to 8 years after treatment cessation may pose paediatric specific skeletal and reproductive risks [39]. Prolonged or high-dose administration to children can induce defective bone remodeling [40] and may lead to accumulation of bone microdamage. Delayed osteotomy healing was noted at conventional doses [41]. The current management of bisphosphonates for OI is to treat for 2–3 years and then reduce the dose or discontinue the drug but continue to follow the patient.

Mайбутні перспективи в лікуванні НО

Деносумаб (антитіла до RANKL) створений для терапії постменопаузального остеопорозу [42] і метастазів кісток [43]. Нещодавно проведено дослідження ефективності лено-
been determined in a small cohort of rare OI VI, who show poor response to bisphosphonate treatment [13]. Denosumab was injected subcutaneously every three months and caused a decrease of bone resorption, greater than the previous bisphosphonate therapy. Bisphosphonates stay in the skeleton for many years. One of the advantage of denosumab could be faster elimination [13].

However, further studies have to focus on effects of a long-term treatment and fracture risk prediction in bigger cohorts and different types of OI.

Osteoanabolic therapy with teriparatide (TPTD) is known to increase BMD and reduce vertebral fracture risk in male and female patients with osteoporosis [44]. In 2009 a phase four, multicentre, placebo-controlled study was enrolled to determine the effectiveness of TPTD in adult patients with OI (unpublished data). We could recently show the benefit of short-term TPTD treatment in fracture healing in a male patient with OI type IV and a five-fold pelvic fracture (ahead of print).

The Glycoprotein sclerostin is a potent inhibitor of bone formation. A sclerostin antibody was lately developed for the treatment of osteoporosis, showing promising data for this anabolic treatment in preclinical studies [45]. Currently the sclerostin antibody was evaluated in the Brtl/+ mouse knock-in model for moderately severe Type IV OI with a point mutation on COL1A1 [46]. Two weeks of treatment increased trabecular bone mass, resulted from increased trabecular thickness, but not number. Additionally, sclerostin antibody treatment significantly increased ultimate load and stiffness. Functional outcomes including ultimate load and stiffness were improved to levels not significantly different from wild type mice [46]. However, the role of sclerostin in patients with OI remains unclear. Further investigations are needed on this field to confirm these preliminary data.

Mesenchymal stem cells (MSC) transplantation could possibly correct genetic disorders like OI [47]. Horwitz et al. performed bone marrow transplantations in three children with severe OI. Specimen of iliac bone biopsies, before MSC-transplantation, showed the characteristic appearance of high bone turnover, disorganized osteocytes, enlarged lacunae and a decreased number of osteoblasts. Seven months after MSC-transplantation a reduced number of osteocytes, linearly organized osteoblasts, improved bone formation and mineralisation were found. Additionally, bone mineral content, measured by DXA, increased by 28 g (median) during the first 100 days after transplantation [47]. Taking into account the small sample size of this study, MSC-transplantation could be a robust treatment in patients with OI. However, adverse effects of MSC such as tumour modulation, malignant transformation and immunosuppressive property have to be considered [48].

Глікопротеїн склеростин є потужним інгібітором формування кісткової тканини. Останнім часом розроблені антитіла до склеростину для лікування остеопорозу та отримано обнадійливі результати для цього виду анаболічної терапії в доклінічних дослідженнях [45]. Сьогодні вивчається ефективність призначення антитіл до склеростину в експерименті на мишах Brtl/+, моделі середньотяжкої форми NO IV типу із мутацією в COL1A1 [46]. Два тижні лікування сприяють приросту trabekularної кісткової маси за рахунок збільшення товщини trabekula, але не їх кількості. Крім того, при терапії антитілами до склеростину значно збільшується граничне навантаження та міцність. Результати функціональних тестів, у тому числі граничного навантаження та міцності, значно підвищилися від первинної до другої прогнози [46]. Тим не менше роль склеростину у хворих із NO залежить від високоутрошеного навантаження та міцності. Результати функціональних тестів, у тому числі граничного навантаження та міцності, значно підвищилися від первинної до другої прогнози [46]. Тим не менше роль склеростину у хворих із NO залежить від високоутрошеного навантаження та міцності. Результати функціональних тестів, у тому числі граничного навантаження та міцності, значно підвищилися від первинної до другої прогнози [46].
Physical Therapy and Orthopedic Surgery

Early and consistent rehabilitation intervention is the basis for maximizing the physical potential of individuals with OI [49, 50]. Physical therapy should begin in infancy for the severest types, promoting muscle strengthening, aerobic conditioning, and, if possible, protected ambulation. Programs to assure muscle strength to lift a limb against gravity should continue between orthopedic interventions using isotonic and aerobic conditioning. Swimming should be encouraged.

The goals of orthopedic surgery are to correct deformities for ambulation and to interrupt a cycle of fracture and re-fracture. The classic osteotomy procedure requires fixation with an intramedullary rod. The hardware currently in use includes telescoping rods (Bailey-Dubow [51] or Fassier-Duval rods) and nonelongating rods (Rush rods). Important considerations include selection of a rod with the smallest diameter suited to the situation to avoid cortical atrophy.

The secondary features of OI, including abnormal pulmonary function, hearing loss and basilar invagination are best managed in a specialized coordinated care program.

Conclusion

Osteogenesis imperfecta is a genetic disorder of connective tissue characterized by fragile bones and a susceptibility to fracture from mild trauma. The defects are either caused by primary defects in collagen type I or by proteins interacting with collagen type I. The clinical range of this condition is extremely broad, ranging from lethal cases in the perinatal period to mild cases with only few fractures. Currently over 1500 dominant mutations in COL1A1 and COL1A2 have been identified [4]. Eleven types of OI have been classified, so far.

OI is diagnosed by radiologic and clinical findings or by collagen biochemical testing and DNA sequencing. The follow up of disease is made by radiological techniques, since bone turnover markers are not feasible for OI. DXA measurement might be a helpful tool for therapy monitoring. However, the DXA method has its limitations, especially in patients with OI. The HR-pQCT could be a helpful means in the evaluation of bone structure and quality.

Cyclic bisphosphonate therapy in OI treatment was firstly introduced in the late 1980’s. Numerous studies showed the positive effects of intravenous bisphosphonates on BMD, especially pamidronate and zoledronate acid. However, data on fracture risk and pain reduction are inconsistent. Oral bisphosphonate do not have significance in OI treatment. In future, osteoanabolic drugs, such as TPTD, sclerostin antibody and perhaps MSC could play a mayor role in the treatment of OI.

Фізіотерапія і ортопедична хірургія

Ранні та постійні реабілітаційні заходи є основою для максималної фізичної активності хворих із НО [49, 50]. Фізіотерапія повинна починатися в ранньому дитинстві у випадку найтяжчих типів, призначають аеробні заняття, вправи, що сприяють зміцненню м’язів, використовувати протектори при пересуванні. Вправи для збільшення м’язової сили, зокрема ізотонічні та антигрavityціі, аеробні заняття, виконують між ортопедичними втручаннями. Також слід заохочувати пацієнтів плавати в басейні.

Метою ортопедичних втручань є корекція деформацій, що виникають при ходьбі, і запобігання повторним переломам. Класичні використовують остеотомію з інтратезацією фіксацією стрижням. На сьогодні використовують конструкції із застосуванням телескопічних «ростучих» (Bailey — Dubow або Fassier — Duval) і «неростучих» стрижням (Rush). Важливим застереженням при виборі стрижня є те, що він повинен бути найменшого діаметра, щоб уникнути атрофії кортикального шару.

Корекцію вторинних захворювань при НО, зокрема втрати слуху, базилярної інвагінації, проводять у спеціалізованих закладах згідно з розробленими спеціалізованими координаційними програмами.

Висновки

Недосконалість остеогенезу є генетичним захворюванням сполучної тканини, що характеризується кріхкістю кісток і підвищеним ризиком переломів від легкої травми. Недуга викликана первинним дефектом колагену I типу або білків, які взаємодіють із колагеном першого I типу. Клінічна картина захворювання є надзвичайно різноманітною, починайчи від смертельних випадків у перинатальному періоді до легких проявів, наприклад, декількох переломів. На сьогодні більше 1500 домінуючих мутацій виділено в COL1A1 і COL1A2 [4]. На даний час класифікація навіть одинадцять типів НО.

Діагноз НО грунтується на основі клінічних та рентгенографічних даних, результатів колагенспецифічних біохімічних тестів та секвенування ДНК. Спостереження за перебігом хвороби проводиться за допомогою радіологічних методів. Застосування маркерів ремоделювання кісткової тканини є необхідним для моніторингу терапії НО. Двофотонна рентгенівська денситометрія може бути корисним інструментом для моніторингу перебігу НО. Двофотонна рентгенівська денситометрія може бути корисним інструментом для моніторингу терапії, проте вона має свої обмеження, особливо у хворих із НО. Високорозрізній периферичний комп’ютерний томографія (HR-pQCT) може бути важливим засобом при оцінці структурної та якості кістки.

Курсова терапія біофосфонатами в лікуванні НО була вперше представлена в кінці 1980-х років. Численні дослідження показали позитивний ефект від внутрішньовенованих інфузій біофосфонатів на стан МЩКТ, особливо памідронової та золедронової. Тим не менше їх вплив на ризик переломів і зменшення болю суперечливий. Пероральні біофосфонати не мають позитивного впливу в лікуванні НО. У майбутньому анатомічна терапія, зокрема терапія рентгеновим кістковим івантитілом до склеростину та, можливо, трансплантація МСК, може відіграти важливу роль у лікуванні хворих із НО.
Список літератури
1. Monti E., Mottes M., Fraschini P., Brunelli P., Forlino A., Venturi G., Doro P., Perlini S., Cavarzere P., Antoniazzi F. Current and emerging treatments for the management of osteogenesis imperfecta // Ther. Clin. Risk Manag. — 2010. — 6:367-81.
2. Silence D.O., Senn A., Danks D.M. Genetic heterogeneity in osteogenesis imperfecta // J. Med. Genet. — 1979. — 16(2). — 101-16.
3. Willing M.C., Prucno C.J., Byers P.H. Molecular heterogeneity in osteogenesis imperfecta type I // Am. J. Med. Genet. — 1993. — 45(2). — 223-7.
4. Forlino A., Cabral W.A., Barnes A.M., Marini J.C. New perspectives on osteogenesis imperfecta // Nat. Rev. Endocrinol. — 2011. — 7(9). — 540-57.
5. Marini J.C., Cabral W.A., Barnes A.M., Chang W. Components of the collagen prolyl 3-hydroxylation complex are crucial for bone development // Cell Cycle. — 2007. — 6(14). — 1675-81.
6. Barnes A.M., Chang W., Morello R., Cabral W.A., Weis M., Eyre D.R., Leikin S., Makareva E., Kuznetsova N.V., Uveges T.E., Ashok A., Flor A.W., Munkvold J., Wilson P.L., Sundaram U.T., Lee B., Marini J.C. Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta // N. Engl. J. Med. — 2006. — 355(26). — 2757-64.
7. Morello R., Bertin T.K., Chen Y., Hicks J., Tonachini L., Monticone M., Castagnola E., Rauch F., Glorieux F.H., Vranka J., Bachinger H.P., Pace J.M., Schwarze U., Byers P.H., Weis M., Fernandez J., Eyre D.R., Yao Z., Boyce B.F., Lee B. CRTAP is required for prolyl 3-hydroxylation and mutation causes recessive osteogenesis imperfecta // Cell. — 2006. — 127(3). — 391-304.
8. Cohn D.H., Starman B.J., Blumberg B., Byers P.H. Recurrence of lethal osteogenesis imperfecta due to parental mosaicism for a dominant mutation in a human type I collagen gene (COL1A1) // Am. J. Hum. Genet. — 1990. — 46(3). — 591-601.
9. Cabral W.A., Chang W., Barnes A.M., Weis M., Scott M.A., Leikin S., Makareva E., Kuznetsova N.V., Rosenbaum K.N., Tiff C.L., Bulas D.I., Kozma C., Smith P.A., Eyre D.R., Marini J.C. Prolyl 3-hydroxylyase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta // Nat. Genet. — 2007. — 39(3). — 359-65.
10. Wekere L.L., Eriksen E.F., Falch J.A. Bone mass, bone markers and prevalence of fractures in adults with osteogenesis imperfecta // Arch. Osteoporos. — 6(1-2). — 31-8.
11. Glorieux F.H., Rauch F., Plotkin H., Ward L., Travers R., Roughley P., Lacit L., Glorieux D.F., Fassier F., Bishop N.J. Type V osteogenesis imperfecta: a new form of brittle bone disease // J. Bone Miner. Res. — 2000. — 15(9). — 1650-8.
12. Glorieux F.H., Ward L.M., Rauch F., Lacit L., Roughley P.J., Travers R. Glorieux type V osteogenesis imperfecta: type VI: a form of brittle bone disease with a mineralization defect // J. Bone Miner. Res. — 2002. — 17(1). — 30-8.
13. Semler O., Netzer C., Hoyer-Kuhn H., Becker J., Eyssel P., Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI // J. Musculoskelet Neuronal Interact. — 2012. — 12(3). — 183-8.
14. Ward L.M., Rauch F., Travers R., Chabot G., Azouz E.M., Lacit L., Roughley P.J., Glorieux F.H. Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease // Bone. — 2002. — 31(2). — 12-8.
15. Goldman A.B., Davidson D., Prolo H., Bullough P.G. Popcorn calcifications: a prognostic sign in osteogenesis imperfecta // Radiology. — 1980. — 136(2). — 351-8.
16. Charnas L.R., Marini J.C. Communicating hydrocephalus, basilar invagination, and other neurologic features in osteogenesis imperfecta // Neurology. — 1993. — 43(12). — 2603-6.
17. Braga V., Gatti D., Rossini M., Colapietro F., Battaglia E., Viapiana O. Skeletal turnover markers in patients with osteogenesis imperfecta // Bone. — 2004. — 34(6). — 1013-6.
18. Cepollaro C., Gonnelli S., Pondrelli C., Montagnani A., Marini S., Bruni D., Gennari C. Osteogenesis imperfecta: bone turnover, bone density, and ultrasound parameters // Calcif. Tissue Int. — 1999. — 65(2). — 129-32.
es predicted material properties and has detrimental effects on osteoblasts and bone formation // J. Bone Miner. Res. — 2009. — 24(5). — 849-59.

35. Glorieux F.H., Bishop N.J., Plotkin H., Chabot G., Lanoue G., Travers R. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta // N. Engl. J. Med. — 1998. — 339(14). — 947-52.

36. Brown J.J., Zacharin M.R. Safety and efficacy of intravenous zoledronic acid in paediatric osteoporosis // J. Pediatr. Endocrinol. Metab. — 2009. — 22(1). — 55-63.

37. Panigrahi I., Das R.R., Sharda S., Marwaha R.K., Khandelwal N. Response to zoledronic acid in children with type III osteogenesis imperfecta // J. Bone Miner. Res. — 2010. — 28(4). — 451-5.

38. Bradbury L.A., Barlow S., Geoghegan F., Hannon R.A., Stuckey S.L., Wass J.A., Russell R.G., Brown M.A., Duncan E.L. Risedronate in adults with osteogenesis imperfecta type I: increased bone mineral density and decreased bone turnover, but high fracture rate persists // Osteoporos Int. — 2012. — 23(1). — 285-94.

39. Papapoulos S.E., Cremers S.C. Prolonged bisphosphonate release after treatment in children // N. Engl. J. Med. — 2007. — 356(10). — 1075-6.

40. Whyte M.P., Wenkert D., Clements K.L., McAlister W.H., Mum Ahn S. Bisphosphonate-induced osteoporosis // N. Engl. J. Med. — 2003. — 349(5). — 457-63.

41. Munns C.F., Rauch F., Zeitlin L., Fassier F., Glorieux F.H. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate // J. Bone Miner. Res. — 2004. — 19(11). — 1779-86.

42. Muschitz C., Fahrleitner-Pammer A., Huber J., Preisinger E., Kudlacek S., Resch H. Update on denosumab in postmenopausal osteoporosis-recent clinical data // Wien Med. Wochenschr. — 2012. — 162(17–18). — 374-379.

43. Yuasa T., Yamamoto S., Urukami S., Fukui I., Yonese J. Denosumab: a new option in the treatment of bone metastases from urological cancers // Onco Targets. Ther. — 2012. — 5. — 221-9.

44. Johnson B.E. Review: Teriparatide reduces fractures in postmenopausal women with osteoporosis // Ann. Intern. Med. — 2012. — 157(6). — JC3-4.

45. Li X., Ominsky M.S., Warmington K.S., Morony S., Gong J., Cao J., Gao Y., Shalhoub V., Tipton B., Haldankar R., Chen Q., Winters A., Boone T., Geng Z., Niu Q.T., Ke H.Z., Kostenuik P.J., Simonet W.S., Lacey D.L., Paszty C. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis // J. Bone Miner. Res. — 2009. — 24(4). — 578-88.

46. Sinder B.P., Eddy M.M., Ominsky M.S., Caird M.S., Marini J.C., Kozloff K.M. Sclerostin antibody improves skeletal parameters in a Brl/+ mouse model of osteogenesis imperfecta // J. Bone Miner. Res. — 2012.

47. Horwitz E.M., Prockop D.J., Fitzpatrick L.A., Koo W.W., Gordon P.L., Neel M., Sussman M., Orchard P., Marx J.C., Pyeritz R.E., Brenner M.K. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta // Nat. Med. — 1999. — 5(3). — 309-13.

48. Wong R.S. Mesenchymal stem cells: angels or demons? // J. Biomed. Biotechnol. — 2011. — 459-510.

49. Binder H., Conway A., Hason S., Gerber L.H., Marini J., Berry R., Weinrob J. Comprehensive rehabilitation of the child with osteogenesis imperfecta // Am. J. Med. Genet. — 1993. — 45(2). — 265-9.

50. Gerber L.H., Binder H., Weinrob J., Grange D.K., Shapiro J., Fromherz W., Berry R., Conway A., Nason S., Marini J. Rehabilitation of children and infants with osteogenesis imperfecta. A program for ambulation // Clin. Orthop. Relat. Res. — 1990. — 251. — 254-62.

51. Zionts L.E., Ebramzadeh E., Stott N.S. Complications in the use of the Bailey-Dubow extensible nail // Clin. Orthop. Relat. Res. — 1998. — 348. — 186-95.