Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard”

Beatriz B. Oliveira¹,², Bruno Veigas³ and Pedro Viana Baptista¹,²*

¹Nanomedicine Group, UCIBIO, Dept. Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal, ²i4HB, Associate Laboratory—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal, ³ALMASCIENCE, Caparica, Portugal

Nucleic acid amplification technologies (NAATs) have become fundamental tools in molecular diagnostics, due to their ability to detect small amounts of target molecules. Since its development, Polymerase Chain Reaction (PCR) has been the most exploited method, being stabilized as the “gold standard” technique for DNA amplification. However, the requirement for different working temperatures leads to the need of a thermocycler machine or complex thermal apparatus, which have been preventing its application in novel integrated devices for single workflow and high throughput analysis. Conversely, isothermal amplification methods have been gaining attention, especially for point-of-care diagnosis and applications. These non-PCR based methods have been developed by mimicking the in vivo amplification mechanisms, while performing the amplification with high sensitivity, selectivity and allowing for high-throughput analysis. These favorable capabilities have pushed forward the implementation and commercialization of several platforms that exploit isothermal amplification methods, mostly against virus, bacteria and other pathogens in water, food, environmental and clinical samples. Nevertheless, the future of isothermal amplification methods is still dependent on achieving technical maturity and broader commercialization of enzymes and reagents.

Keywords: isothermal amplification, non-pcr amplification, point—of—care, nucleic acids amplification, NAAT

INTRODUCTION

Innovations in biotechnology and molecular biology have push forward novel nucleic acid amplification technologies (NAATs) to meet the demands for more efficient, sensitive, specific protocols capable to be integrated into portable systems and for high-throughput analyses. Polymerase Chain Reaction (PCR), introduced by Mullis in 1985 (Mullis et al., 1986) has become the leading method for DNA amplification with application in all types of molecular detection strategies, such as recognition and identification of infectious pathogens, characterization of genetic disorders, identification of disease biomarkers, gene expression studies, sample preparation for downstream applications and techniques (e.g., sequencing, labelling, etc.), among many others (Klein 2002). In fact, PCR is considered the “gold standard” in molecular analysis of nucleic acids, owing to its capability to amplify from as few as 1 to 10 molecules of target, ultimately leading to an increase to the sensitivity of molecular assays. As a result of the hype regarding PCR, many variants have been developed to address the ever-growing need for additional features, such as
multiplex (Edwards and Gibbs 1994), nested (Porter-Jordan et al., 1990), quantitative (Porter-Jordan et al., 1990) and digital forms (Kopp et al., 1998), which will be further addressed. This is indeed the technique against all others compare.

Still, inherent features to PCR require dedicated instrumentation capable of thermal cycling with appropriate temperature control, which is usually found in laboratory settings. This small but critical bottleneck has spurred the development of non-PCR based techniques, preferably suitable to be performed at a constant temperature—isothermal amplification (IA) methods, which aim at simplifying protocols for point-of-care (PoC) use, allowing to move the molecular diagnosis from centralized labs.

This review shall focus on the most representative and applied isothermal amplification methods, such as Nucleic Acid Sequence-based Amplification (NASBA), Loop-mediated Isothermal Amplification (LAMP), Strand Displacement Amplification (SDA), Recombinase Polymerase Amplification (RPA) and Rolling Circle Amplification (RCA), as well as their characteristics, applications and prospects to become the next gold standard amplification technique (Figure 1).

Despite the plethora of different IA concepts, they converge in the need to remove temperature cycling requirements for specific amplification (Li and MacDonald, 2015). While PCR requires the lowering and rising of two or three working temperatures, to allow annealing and denaturation of DNA strands and primers, and to facilitate strand displacement, IA methods proceed at a single working temperature, which removes the need for a thermocycler. Some of these isothermal amplification mechanisms also allow direct amplification from non-DNA targets, such as RNA (without the need for an additional retro transcription step) or protein-nucleic acids conjugates. Another interesting feature of these IA reactions is that they show increased tolerance to (bio-)chemical inhibitors often present in clinical samples (Bachmann et al., 2009; Craw and Balachandran 2012; Kaneko et al., 2007; Mori and Notomi 2009; Vincent et al., 2004). A summary of the main IA mechanisms proposed in the literature are presented in Table 1, together with key advantages and disadvantages.

Despite the exciting advantages of the IA schemes, these approaches also face some challenges, such as complex primer design, unspecific amplification, high background signal, confuse reaction mechanisms and the requirement for more enzymes and denaturing agents (Karami et al., 2011). These methods differ from each other in terms of primers, enzymes, reaction conditions, attainable sensitivity, specificity and ideal target molecules (miRNA, long DNA fragments, circular DNA and RNA targets) (Chang et al., 2012). Overall, isothermal amplification processes produce longer amplicons, have greater amplification efficiency, produce higher amplification yields and require less sample preparation steps than PCR (Klein 2002). In fact, it has been reported that non-PCR based clinical tests often outmatch the PCR results in clinical diagnosis (Aryan et al., 2010; Bachmann et al., 2009). From these, a risen trend concerning IA systems has been observable, over the last decades (Figure 2).

In fact, scientific literature has been reporting the application of isothermal amplification systems in a wide number of fields, among them: pathogen detection in clinical, environmental and food samples (Fang et al., 2010; Chow et al., 2008; Zhao et al., 2012; Mahmoudian et al., 2008a; Królov et al., 2014), diagnosis of various infectious diseases (Schopf et al., 2011; Hellyer and Nadeau 2004; B.
TABLE 1 | Summary of the characteristics of PCR and the main isothermal amplification systems, highlighting key advantages and disadvantages.

Property	PCR	NASBA	LAMP	SDA	RCA	RPA	
Nr of required enzymes	1	3	1	2	2	2	
Primer design (Nr of primers)	Simple	Simple	Complex	Complex	Simple	Simple	
Temperature	Thermal Cycling (95, 50–65, 72 °C)	Isothermal –41°C	Isothermal 60–65°C	Isothermal 37°C	Isothermal 30°C	Isothermal 37–42°C	
Reaction time	2–3 h	1.5–2 h	<1 h	2 h	1.5 h	20–40 min	
Target	DNA (RNA)	ssRNA (DNA)	dsDNA (RNA)	ssDNA (RNA)	Circular DNA (RNA)	dsDNA	
Amplicon	dsDNA	RNA, DNA	Concatenated DNA	dsDNA	Circular DNA	Long dsDNA	
Sensitivity	1–10 copies	Single copy	Single copy	10 copies	10 copies	Single copy	
Detection	Gel electrophoresis, Real-time and ELISA	Gel electrophoresis, Real-time and turbidity	Gel electrophoresis, Real-time	Gel electrophoresis, Real-time	Gel electrophoresis, Real-time and ELISA		
Tolerance to contaminants	Low	Medium	High	Low	Low	High	
Initial template denaturation	Yes	No	No	Yes	No	No	
Template processivity	Heat	Rnase H	Strand-displacement property of Bst polymerase	Restriction enzymes	Heat	Strand-displacement property of q29 DNA polymerase	Recombinase
Advantages	Accurate and robust quantification	Design to detect RNA targets	10^2-fold amplification in less than 1 h	Suitable for miRNA profiling	Low amplification temperature (~37°C)	ssDNA products are compatible with other isothermal techniques	Low amplification temperature (~37°C)
Simplicity of the procedure	Design to detect RNA targets	10^2-fold amplification in 2 h	Tolerance to inhibitory substances Highly specific	10^5-fold amplification in 2 h	Commercially available platform Power saving (37–50°C)	—	Selective
Well-stablished method	Design to detect RNA targets	10^2-fold amplification in 2 h	Tolerance to inhibitory substances Highly specific	10^5-fold amplification in 2 h	Commercially available platform Power saving (37–50°C)	—	Fastest amplification system (20–40 min)
Availability of wide number of kits	Kits commercially available	Kits commercially available	—	—	—	Tolerance to high volume reduction	
—	Power saving (41°C)	—	—	—	—	Tolerance to inhibitory substances	
—	—	—	—	—	—	—	
Disadvantages	High equipment cost	Not ideal for DNA targets Less efficient for long RNA targets	Not suitable for small targets False positive phenomenon often occurs	Initial denaturation required Requires sample preparation	Only works with circular templates RNA amplification is complex and often problematic	Stringent reaction condition Amplification products cannot be readily detected by electrophoresis Commercial kits are expensive	
Intolerant to many substances	—	—	—	—	—	—	
Error prone polymerase	Prone to false positives Need to optimize 3 different enzymes	—	—	—	—	—	
polymerase	Less efficient than most of the isothermal methods Long amplification time	—	—	—	—	—	

Abbreviations: PCR—Polymerase Chain Reaction; NASBA—Nucleic Acid Sequence-based Amplification; LAMP—Loop-mediated Isothermal Amplification; SDA—Strand Displacement Amplification; RCA—Recombinase Polymerase Amplification; RPA—Recombinase Polymerase Amplification; SDA—Rolling Circle Amplification.

A. Rohrman and Richards-Kortum 2012; Torres-Chavolla and Alocija 2011; S. Y. Lee et al., 2007) and Single-Nucleotide Polymorphisms (SNP) detection (Li et al., 2010). Furthermore, some clinical trials based on IA systems for diagnosis and detection of infectious diseases have been performed: LAMP—ClinicalTrials.gov Identifier: NCT01838902 2018a; ClinicalTrials.gov Identifier: NCT04579549, 2021; ClinicalTrials.gov Identifier: NCT03829735, 2020a; NASBA—ClinicalTrials.gov Identifier: NCT01838902 2018a; HDA—ClinicalTrials.gov Identifier: NCT01838902 2018b; RPA—ClinicalTrials.gov Identifier: NCT04500873 2020b. Among the publications concerning these amplification techniques, most are focused on the analysis of water and food, with LAMP covering 67 and 59% of the publications, respectively. Then RPA covers for circa 20%, and the remainders, RPA, RCA, HDA and NASBA add up to 5%.
Despite the continuous efforts to make IA strategies more robust, there are still some hurdles before these approaches might eventually counteract current PCR limitations. Some constraints relate to complex primer design, different kinetics for template denaturation, the high proficiency of the amplification might indelibly lead to unspecific amplification, and the need for multiple enzymes that are still not in the mainstream production (Karami et al., 2011). Other bottlenecks are shared between PCR and IA, such as requirements for apparatus towards test portability. Still, some IA schemes have been endorsed for particular applications, some already being approved by Regulatory Agencies, such as the Food and Drug Administration (FDA), European Medicines Agency (EMA), and even the World Health Organization (WHO) through the Foundation for Innovative New Diagnostics (FIND), for molecular diagnostics of critical pathogens (Guichón et al., 2004; Eiken 2021; Lucigen 2021; New England BioLabs, 2021), which has attracted further attention by diagnostics-oriented biotech companies (Karami et al., 2011). Some of these advances are depicted in Table 2.

MATURE Isothermal Amplification Systems—How Close to Become the Next “Gold Standard”

Nucleic Acid Sequence-Based Amplification

Nucleic acid sequence-based amplification (NASBA) is an isothermal transcription-based technique, that mimics the retroviral RNA replication (Compton 1991). NASBA mechanism entails two phases: 1) non-cycling, where the target RNA is converted to dsDNA by reverse transcription; and 2) cycling, where the dsDNA molecules are actively transcribed into RNA products, leading to a yield of 10–100 copies of RNA from each template molecule (Hønsvall and Robertson 2017) (Figure 3A).

Even though this mechanism requires three enzymes - Reverse transcriptase, RNase H and T7 RNA polymerase, there are some advantages when compared to Reverse-transcription-PCR (RT-PCR), such as isothermal working temperature (41°C), which allows amplification on a simple heating block, shorter reaction
time and less prone to inhibitory components in clinical and environmental samples (Dyer et al., 1996; Rutjes et al., 2006). In addition, NASBA uses RNA as the main target molecule, removing the need to previously prepare cDNA, thus saving time, labor and reducing the risk of contamination (Hønsvall and Robertson 2017). Also, contamination with DNA does not interfere with the reaction, because the temperature is kept below the DNA melting temperature, so strand displacement does not occur (Simpkins et al., 2000) (Table 3).

Nevertheless, there are limitations concerning NASBA implementation, such as the challenge to optimize three different enzymes that leads to higher costs, and the susceptibility to false positives that require additional probe-specific detection methods, which are generally more expensive than non-specific dyes (Cordray and Richards-Kortum 2012). Once amplification has been achieved, there are several ways to detect and monitor products, such as: molecular beacons, which is the most commonly used (Leone et al., 1998), fluorescence markers

Kit	Diagnostic use	Cost	FDA approval	CE market	Available tests	Biotech companies
NASBA Nucli SENS EasyQ OligoG-TesT	No	$50,000	No	No	HIV, Leishmania parasites	Bio Merieux, France CorisBioConcept, Belgium
LAMP Gene II	No	$13,000	No	No	Compatible with most fluorescence-based assays	OptiGene, United Kingdom Eiken Chemical Co., Japan
LAMP Loopamp™	Yes	$352.50/96 reactions	Yes	Yes	Mycobacterium tuberculosis*, Plasmodium vivax, Plasmodium falciparum and Plasmodium pan species, SARS-CoV-2*	Meridian Bioscience, 2021, United States
Alethia (Illumigene)	Yes	—	Yes	Yes	C. difficile, Herpes simplex virus (HSV) type 1 and 2*, Cytomegalovirus*, Streptococcus agalactiae, Mycoplasma pneumonia, Bordetella pertussis, Streptococcus pyogenes, Plasmodium spp	
SDA ProbeTec Becton	Yes	—	Yes	Yes	Chlamydia trachomatis*, Neisseria gonorrhoeae* HSV 1and2*	Dickinson and Co., United States
RCA ilustra TemplPhi 2000	No	$3,804/200 reactions	No	No	User design	GE Healthcare, United States
RPA Twista	No	$160/100 reactions	No	No	User design	TwistDX, United Kingdom
MDA REPLI-g Mini Kit	No	$807/100 reactions	No	No	User design	Qiagen, United States
NEAR DNAble®	No	—	No	No	GMO testing	EnviroLogix, Brazil
SMAP 2 AccuLift Ultra-Sensitive RNA Amplification Kit	No	—	No	No	User design	Fluidigm, United States
HDA BEST Cassette Type II Yes	$10/test	Yes	No	Neisseria gonorrhoeae Chlamydia trachomatis, HSV 1and2* Bordetella pertussis, Trichomonas vaginalis* Clostridium difficile*, Herpes simplex virus type 1 and 2* Varicella-zoster virus, Group B Streptococcus* Bordetella parapertussis, Streptococcus pyogenes* Influenza A, Influenza B respiratory syncytial virus Human metapneumovirus, Streptococcus dysgalactia*	BioHelix United States	
MDA AmpliVue and Solana Yes	—	Yes	No	Neisseria gonorrhoeae Chlamydia trachomatis, HSV 1and2*	Quidel, United States	
TMA Aptima® assays Yes	—	Yes	Yes	Chlamydia trachomatis*, Neisseria gonorrhoeae* Mycoplasma genitalium, Trichomonas vaginalis HIV 1 and 2*, Zika Virus, HIV-1*, HBV*, HCV, SARS-CoV-2*	Hologic®, Inc., United States	

(*) Tests with FDA approval; Abbreviations: MDA—Multiple Displacement Amplification; NEAR—Nicking and Extension Amplification Reaction; HDA—Helicase Dependent Amplification; SMAP2—Smart Amplification Process Version 2.
FIGURE 3 | Schematic representations of the main isothermal amplification techniques. (A) Schematic representation of NASBA. Initially, the forward primer hybridizes to the target RNA molecule, leading to the formation of complementary DNA (cDNA) intermediate by reverse transcriptase and RNase H activity. Secondly, the reverse primer hybridizes in the cDNA intermediate forming a double stranded (ds) cDNA intermediate with a promoter region, which is recognized by T7 DNA-dependent RNA polymerase to produce more initial RNA template targets by transcription of the cDNA intermediate. The newly formed antisense RNA targets and cDNA serve as templates for the continuous cycling of reverse transcription (rt) and transcription reactions, resulting on the exponential accumulation of antisense RNA molecules complementary to the initial RNA target. (B) Schematic representation of SDA. The SDA mechanism starts with heat denaturation in the presence of two primers. After this step, primers hybridize forming two primer-template duplexes with 5’ overhangs, each containing one restriction site for the endonuclease (NEase) to cleave. Following, DNA polymerase extends the 3’ ends of the duplexes to produce dsDNA with complete recognition sites, that will be cleaved after by NEase. These nicks create new 3’ ends that promote new extension reaction with the displacement of the downstream fragment by DNA polymerase. The cycles of these sequenced events of cleavage and polymerization/displacement continuously produce a ssDNA molecule complementary to each of the primer-template duplexes, resulting in exponential accumulation of target sequences. (C) Schematic representation of LAMP. Steps (1) to (6) correspond to the first stage of LAMP—starting material producing stage. Steps (7) to (10) correspond to the second stage—Cycling amplification. Step (11) represent the third and final step of
FIGURE 3 | LAMP — Elongation and rolling cycle step. Adapted from reference (Notomi, 2000). (D) Schematic representation of RPA. The recombinase-primer filaments scan the dsDNA target molecule for the homologous site. Recombinase catalyzes the primer hybridization with the homologous template sequence. Strand exchange is promoted by recombinase in the cognate sites. The resulting structures are stabilized by ssDNA-binding proteins to prevent primers displacement by branch migration. The DNA polymerase recognize the 3’ end of the primer and starts primer extension reaction. The binding/extension events of two opposing primers generate one complete copy amplicon together with the original template. (E) Schematic representation of RCA of a circularized probe using two primers. The first primer (P1) initiates an RCA reaction, and the reverse primer (P2) binds to each tandem repeat generated by the rolling circle. Multiple priming events are initiated by P2 as the original RCA strand elongates. As these priming events elongate and generate displaced DNA strands, new priming sites for the first primer (P1) are generated. To follow the sequence of strand displacement events, note that as the reverse primer P2 binds to the fifth repeat, the primer at the third repeat begins to displace a branch; subsequently, as P2 binds to the seventh repeat, the elongating strand at the fifth repeat begins to displace a branch, and so forth. By the time a reverse primer binds to the tenth repeat, the DNA product already contains three growing branches. New primer extension events initiated in released DNA molecules also generate branches, as shown at the bottom of figure. As the displaced DNA becomes completely double-stranded, it accumulates in fragments of unit length containing one, two, three or four repeats (shown as: 1 rep, 2 rep, 3 rep, 4 rep). Thus, in the presence of a circular template, the two primers generate a self-propagating, ever-increasing pattern of alternating strand-displacement, branching and DNA fragment release events, which we call hyperbranching.

TABLE 3 | Advantages and disadvantages of NASBA in comparison with PCR.

Advantages	Disadvantages
Sensitivity (detection limits < 1 cell per reaction)	Reaction kits are expensive
Isothermal (does not require thermocycler)	False-positives more common than false-negatives
Shorter reaction time	Harder to calculate concentrations with qNASBA
Less labor-intensive	Often requires probe-specific detection
Does not require cDNA preparation	Requires the optimization of three different enzymes
Less susceptible to reaction inhibitors	—
Decreased risk of contamination	—

cDNA—Complementary DNA; qNASBA—Quantitative Nucleic Acid Sequence-based Amplification.

TABLE 4 | Top. Examples of LOC devices using NASBA for amplification and detection of targets with environmental interest. Middle. Examples of LOC devices using LAMP for the amplification and detection of targets relevant in infectious diseases and food quality control. Bottom. Examples of LOC devices using RPA for the amplification and detection of targets relevant in infectious diseases and antibiotic resistance.

Target	Amplification	Detection	Device material	Ref
NASBA				
Escherichia coli	NASA (NucliSENS kit)	Molecular beacon	PDMS	Dimov et al. (2008)
Norovirus	NASA (NucliSENS Kit)	SYBRs Green II	PMMA and PDMS	Chung et al. (2015)
hsp70 of Cryptosporidium parvum	NASA (NucliSENS Kit)	Lateral flow assay	PMMA	Reinholz et al. (2014)
rbcL of Karenia brevis	NASA (gelled/modified reagents from Basic EasyQTM kit)	Molecular beacon (read by portable LabCardReader)	Labcard made with COC	Tsaloglou et al. (2013)
LAMP				
Salmonella spp.	LAMP	Eva Green, SYBR Green I, SYTO-26, SYTO-62 and SYTO-82 slab-electrophoresis	COC	Y. Sun et al. (2015)
Nervous necrosis virus	RT-LAMP	SYBR Green I	PDMS	C. H. Wang et al. (2011a)
Salmonella enterica	Loopamp™ DNA Amplification Kit	Electrochemical (square wave voltammetry)	Custom made portable device	Jayananth et al. (2018)
Typhimurium	LAMP	Naked eye observation with AuNPs	PDMS and PMMA	Gamido-Maestu et al. (2017)
Hepatitis B	LAMP	—	—	—
Salmonella spp.	—	—	—	—
RPA				
methicillin-resistant	RPA exo kit (TwistDeX)	Fluorophore/quencher system	PDMS	Yeh et al. (2017)
S. aureus DNA blaCTX-M-15 and blaPM-1 genes	Digital RPA	ion-sensitive field effect transistor	SlipChip	Shen et al. (2011)
F. tularensis holarctica	Solid phase RPA	Label-free detection	TFT sensor, Nanoribbon transistors, PDMS and PMMA	Hu et al. (2017)
mecA gene	Multiplex solid-phase RPA	Fluorescence	PMMA, PDMS, SOI wafer	Sabaté del Río et al. (2015)
Ebola virus	RT-RPA	Fluorescence	Paper microfluidics device	Kersting et al. (2014a)

NASBA—Nucleic Acid Sequence-based Amplification; PDMS—Polydimethylsiloxane; PMMA—Poly(methyl methacrylate); COC—Cyclic olefin co-polymer; LAMP—Loop-mediated Isothermal Amplification; RT-LAMP—Reverse-transcriptase LAMP; PDMS—Polydimethylsiloxane; PMMA—Poly(methyl methacrylate); COC—Cyclic olefin co-polymer; PSA—Pressure-sensitive adhesive; RPA—Recombinase Polymerase Amplification; RT-RPA—Reverse-transcriptase RPA; PDMS—Polydimethylsiloxane; TFT—Thin Film Technology; PMMA—Poly(methyl methacrylate); SOI—Silicon on Insulator.
that bind and/or intercalate into the produced amplicons (Hønsvall and Robertson 2017) and gel electrophoresis for end-point detection (Morabito et al., 2013). Additionally, other colorimetric methods have been proposed that rely on nanoparticles, e.g., gold nanorods (Niazi et al., 2013) and spherical gold nanoparticles functionalized with specific probes (Mollasalehi and Yazdanparast, 2012).

Despite its promising performance, NASBA has yet to be widely acknowledged by users in mainstream labs and thus it remains in the “shadow” of other amplification techniques. NASBA has already shown it usefulness for the detection of common waterborne pathogens, such as Escherichia coli (Heijnen and Medema, 2009), Pseudo-nitschia multiseries (Delaney et al., 2011), norovirus (Rutjes et al., 2006) and notoriously it has been adopted by international space agencies for monitoring of recycled water in the International Space Station (Bechy-Loizeau et al., 2015). Another example suitable for the standard user is the NucliSENS EasyQ, an automatized commercially available NASBA system directed at the real-time amplification detection by fluorescence (Yao et al., 2005), (Biomerieux, 2021).

Depending on the detection method used for monitoring of the isothermal amplification profile, there is the possibility of NASBA integration into Lab-on-chip (LOC) devices, suitable for point-of-need, low-cost and portable platforms. In fact, there are some examples of LOC devices using NASBA for the assessment of environmental pathogens (Table 4), among which the first integrated chip for RNA isolation, NASBA amplification and real-time detection proposed (Dimov et al., 2008).

In summary, NASBA has been reported as more sensitive and less prone to inhibitory substances than PCR, which in combination with the isothermal profile makes it a useful point-of-need (PoN) tool. Still, the high cost of the reaction kits, the need to optimize multiple enzymes and the lack of specificity are crucial factors that prevent its widespread uptake by the general community.

Strand Displacement Amplification

In 1992, Walker et al. proposed to use the strand displacement capability of primers and enzymes for amplification of a given target (Walker et al., 1992). The strand displacement amplification (SDA) combines the action of an endonuclease, an exonuclease deficient DNA polymerase and two sets of primers, one with single-stranded restriction site overhangs, and a second set called “bumper primers” to support the displacement of the amplification product from the first set of primers. Briefly, dsDNA is initially heat denatured, allowing for the hybridization of the first set of primers with 5’ overhangs with specific recognition site for HincII restriction enzyme. Because of thiol-modified dATP, only the original primer is cleaved by HincII but not the newly synthesized strand, resulting in 3’ overhangs, which are extended by the exonuclease deficient klenow (exo-klenow) polymerase and further displace the downstream DNA strand, at temperatures ranging from 30—50°C. The exponential amplification is achieved though the coupling of sense and antisense reactions, in which the displaced sense strand serve as template for the antisense reaction and vice versa—(Deng and Gao 2015) for deeper insights into the molecular mechanism (Figure 3B).

Despite the advantages of isothermal reaction, the low temperature (between 30 and 55°C) makes it prone to unspecific primer-binding that might cause unspecific amplifications (Karami et al., 2011), similarly to what happens with NASBA. This is a critical aspect that prevent expansive implementation for diagnostics, since DNA/RNA retrieved from clinical samples usually contains several potential similar target sequences (e.g., gene families, homologous loci, etc.) that might miss-prime in relation to the desired target (de Paz et al., 2014). Generally, SDA presents high amplification efficiency for short target sequences that require initial template denaturation.

The high amplification efficiency of SDA associated to the capability to amplify small fragments (ranging from 50 to 120 bp) has highlighted its potential for miRNA expression profiling (Ye et al., 2019; Deng and Gao 2015). Still, SDA takes a long-time to detection (2.5 h), which makes SDA inadequate for on-site amplifications and detection. As such, SDA has been mainly applied to clinical diagnosis of Chlamydia trachomatis, Neisseria gonorrhoeae and herpes simplex virus from urogenital samples, on a high throughput platform commercialized since 1999 (Little et al., 1999; Akduman et al., 2002). This semiautomated system offers several advantages over the traditional methods for STDs detection, such as the exploit of an alternative NAAT while maintaining high sensibility and specificity, offers high-throughput and removes the need for separate work areas or unidirectional workflow. Additionally, offers medium-free transport for swabs and room temperature storage and the total time of the assays ranges from 3 to 4 h (Van Der Pol et al., 2001). Another example refers SDA inclusion into an automated device that combines sample preparation from whole cells and detection (J. M. Yang et al., 2002).

Loop-Mediated Isothermal Amplification

Loop-Mediated Isothermal Amplification (LAMP) (Notomi et al., 2000) has been the most widely used IA method, referenced in approximately 3,700 scientific publications, 8 clinical trials (ClinicalTrials.gov, 2021) and approved by WHO as an alternative molecular diagnostics method for pulmonary tuberculosis (World Health Organization 2016) and SARS-CoV-2 (Kashir and Ahmed, 2020).

LAMP relies on the strand-displacement activity of a DNA polymerase combined with a set of four unique primers, that may be extended to six for additional acceleration of amplification (Notomi et al., 2000; Mori and Notomi 2009). Compared to other NAATs, LAMP is 10 to 100-fold more sensitive than PCR (X. Wang X et al., 2014), with a detection limit as low as 1 copy per μL of template (H. Zhang et al., 2019), showing a higher specificity (Fujino et al., 2005) with an amplification time usually less than 1 h at 60–65°C, yielding 10⁹ copies (Notomi et al., 2000). Additional advantages include not requiring an initial template denaturation step at 95°C and being less prone to inhibitory substances often present in biological samples (Enomoto et al., 2005; Kaneko et al., 2007). Perhaps one of the most interesting
TABLE 5 | Examples of commercial DNA and RNA amplification kits based on LAMP method.

Target	Name of the kit	Company	Ref
Tuberculosis	Loopamp™ MTBC Detection kit	Eiken Chemical Co.	Nguyen et al. (2018)
Malaria	Loopamp™ MALARIA Pan	Eiken Chemical Co.	Cuadros et al. (2017)
Leishmaniasis	Loopamp™ Leishmania Detection Kit	Eiken Chemical Co.	Ibara-Meneses et al. (2018)
koi herpesvirus	Loopamp™ Koi Herpesvirus Detection Kit	Eiken Chemical Co.	Yoshino et al. (2009)
West Nile Virus	Loopamp™ RNA Amplification Kit	Eiken Chemical Co.	J. S. Kumar et al. (2018b)
Trypanosoma cruzi	Loopamp™ Trypanosoma cruzi kit	Eiken Chemical Co.	Besuschio et al. (2017)
Clostridium difficile	Ilumigene C. difficile DNA assay	Meridian Bioscience	Pancholi et al. (2012)
Mycoplasma pneumoniae	Ilumigene Mycoplasma DNA assay	Meridian Bioscience	Ratliff, Duffy, and Watts (2014)
bla carbapenemase genes	eazyplex® SuperBug CRE system	Amplex Biosystems	García-Fernández et al. (2014)

The main features of LAMP, and in particular its outstanding specificity and ability to amplify without highly sophisticated equipment, makes it a valuable alternative to PCR (H. Zhang et al., 2019). In fact, LAMP has been used for detection of pathogens, e.g., detection of RNA from severe acute respiratory syndrome virus (M. Parida et al., 2008), identification of Methicillin Resistant *Staphylococcus aureus* (MRSA) (C. H. Wang et al., 2011a), tuberculosis (M. F. Lee et al., 2009), influenza A (Jung et al., 2015), Zika (J. Song et al., 2016), nervous necrosis (C. H. Wang et al., 2011b), biomarkers of disease such as Adenoviral keratoconjunctivitis (Wakabayashi et al., 2004), Varicella-zoster virus (Okamoto et al., 2004) and SNP genotyping (Iwasaki et al., 2003) and cancer diagnostics like detecting metastasis of gastric cancer (Horibe et al., 2007), KRas gene mutation (Itanaga et al., 2016) and screening of other cancer-related mutations (Srividya et al., 2019). More recently, LAMP as also been applied to the molecular detection of SARS-CoV-2 (Srividya et al., 2019), due to the rapidness and specificity of its amplification mechanisms, being exploited by many biotech-oriented companies.

Additionally, LAMP has also played an important role in quality control of food and dietary products, such as rapid detection of *Salmonella* (Q. Yang et al., 2018), *Staphylococcus aureus* (H. Yang et al., 2011), *E. coli* O157 (Zhao et al., 2010), *Vibrio parahaemolyticus* (Oh et al., 2016) and food allergens (Yuan et al., 2018).

Continuous evolution of LAMP led to improvements to reaction conditions and accuracy, which spun it into a mature and reliable assay, suitable for stand-alone molecular diagnostics (Eiken 2021; Meridian Bioscience, 2021) (Table 5). Some of the available commercially and certified detections assays take between 15 and 30 min to result. Additionally, for real-time monitoring of LAMP reaction, low complexity apparatus are also available, such as Instrument Gene II from Optigene (Horsham, United Kingdom) for fluorescence-based measurements and Ilumipro-10 from Meridian Bioscience that detects amplification products based on turbidimetry (de Paz et al., 2014).

Due to its robust and fast isothermal amplification profile, LAMP has become a suitable solution for on field molecular assays (M. Parida et al., 2004), especially for integration in lab-on-chip platforms based on microfluidics. Since the development of the first microfluidic device for the detection of *hepatitis B* virus, that accomplished a sensitivity of about 50 copies per reaction within 60 min (S. Y. Lee et al., 2008), other PoC devices based on LAMP have been developed targeting relevant biomarkers in infectious diseases and food quality control (Table 4).

Over the years, several modifications have been made to LAMP, such as digital LAMP where reactions occur in individualized “reactors” (micelles) yielding a 0/1 output, ideal for applications requiring quantification of target (Rane et al., 2015; Gansen et al., 2012), reverse transcription LAMP for assessing gene expression (C. H. Wang et al., 2011a), multiplex LAMP for simultaneous detection of pathogens using dedicated platforms (Abe et al., 2011) and LAMP-on-a-chip (Xuzhi Zhang et al., 2014). These developments allow for high throughput, up to 1,200 samples simultaneously, while remaining extremely sensitive (less than 10 fg of target DNA) in small sample volumes (~10 μL) (Q. Zhu et al., 2012; C. H. Wang et al., 2011b; Rane et al., 2015). However, the complex primer design and the susceptibility to false positives still need to be addressed before LAMP is routinely applied globally (Tanner et al., 2012).

Perhaps one of the most relevant acknowledgements to LAMP has been its recognition by the WHO to fulfill all the criteria for an ideal NAAT for diagnostics (Wong et al., 2018). In fact, considering the continuous evolution of LAMP will allow expansion to other targets of relevance, which in turn will push costs of reagents down and make them more accessible,
it is expected that LAMP will become a universal tool (H. Zhang et al., 2019).

Recombinase Polymerase Amplification

Recombinase Polymerase Amplification (RPA) is an isothermal amplification mechanism that operates at low temperature, usually between 37°C and 42°C, which exploits the activity of two different enzymes: a recombinase and a DNA polymerase and single stranded DNA-binding proteins. (SSBs) to ensure ssDNA stabilization (Piepenburg et al., 2006). RPA allows amplification to occur in 20—40 min, exhibiting a detection limit of 1 copy of target, being considered as one of the fastest NAATs available (de Paz et al., 2014). Briefly, RPA amplification begins with the binding of a recombinase protein (RecA from *E. coli* or as usually used uvsX from T4-like bacteriophages) to primers in the presence of ATP and a crowding agent (high molecular weight PEG or Carbowax20M), leading to the formation of a recombinase-primer complex. Then the complex scans the dsDNA target seeking for a homologous sequence, once homology is found the complex promotes strand displacement, forming a D-loop structure, which is stabilized by SSBs and further promotes primer-target hybridization. Finally, recombinase disassembly allows for a DNA polymerase with strand displacement activity (Bacillus subtilis Pol 1 or *Sau* Recombinase polymerase) to bind to the 3’ end of the primer and elongate it in the presence of dNTPs. An exponential amplification is achieved by cyclic repetition of this process (Lobato et al., 2018) (Figure 3D).

Besides the established RPA reaction setup, several improvements have been made allowing RPA to evolve to different formats, such as RT-RPA (Magro et al., 2017), digital RPA (Yeh et al., 2017) and multiplex RPA, an example is the study conducted by Kersting et al. for multiplex detection of *Neisseria gonorrhoeae, Salmonella enterica* and *Staphylococcus aureus* (Kersting et al., 2014a). Additionally, several proof of concepts on RPA incorporation with varied detection technologies have been described for improved sensitivity, reduced manual handling, improved cost effectiveness and are suitable for rapid molecular diagnosis (James and MacDonald 2015) (Table 6).

These RPA-based assays attain comparable sensitivities to those obtained with PCR, but with a significant reduction in the reaction time—time to full reaction between 10 and 20 min (Kunze et al., 2016). Moreover, RPA assays show a detection limit around 10–20 copies of target, reduced sample and reagent volumes, and the capability to amplify under high concentrations of known PCR inhibitors (Polymerase and Rpa 2017; Kersting et al., 2014b; Cranell et al., 2014a). Also, RPA does not require an initial template denaturation step and complex thermal instrumentation (Deng and Gao 2015).

RPA has been mainly applied to the detection of pathogens (Shen et al., 2011; Cranell et al., 2014b; B. Rohrman and Richards-Kortum, 2015). For example, Rohrman and Richards-Kortum accomplished the detection of 10 copies of HIV DNA in under 15 min through RPA incorporated with a lateral flow assay allowing to perform HIV diagnostics compatible with resource poor settings (B. A. Rohrman and Richards-Kortum, 2012). Additionally, an RPA assay was also developed for the detection of Tuberculosis under 20 min with a limit of detection in the femtograms of template (Boyle et al., 2014). RPA has long been translated to the commercial and laboratory setting - TwistDX (Cambridge, United Kingdom) for both end-point detection (TwistAmp™ LF probe) and real-time monitoring (TwistAmp™ exo probe) (TwistDx 2021).

Apart from the traditional detection methods usually applied for PCR, a unique FRET-based fluorescence probe and a lateral-flow strip system have also been employed in RPA detection of SARS-CoV-2 N gene, which decrease background noise and enable an instrumentation-free readout (Xia and Chen 2020). In fact, the RPA’s low temperature reaction profile coupled to the high efficiency and specificity have been supporting the growing application of RPA in LOC devices for the amplification and detection of targets relevant in infectious diseases and antibiotic resistance (Table 4).

These examples demonstrate the advantages of RPA, especially as the quest for decentralized NAATs for diagnostics at PoC (Lobato et al., 2018; Daher et al., 2016). Additional reports show the possibility to use RPA for biomedical applications in surveillance of disease biomarkers (Euler et al., 2012), in the food industry (T. H. Kim et al., 2014) and in the agriculture sector...
Rolling Circle Amplification

Rolling Circle Amplification (RCA) is an isothermal amplification protocol that operates at low temperature (23°C—60°C), which has been adapted from the in vivo RCA mechanism (Fire and Xu, 1995). This system requires a DNA polymerase with strand displacement activity (such as Phi29 DNA polymerase), that is present in a circular template (e.g., plasmid, bacteriophages, DNA/RNA from virus or bacteria, etc.) and a specific primer generates a long DNA molecule with tandem repeats (D. Liu et al., 1996) (Figure 3E). The RCA mechanism has circular DNA as the predominant type of template, but in presence of linear DNA, a surrogate circular intermediate template is formed, that is then used for the subsequent amplification step. The RCA architecture offers two main benefits: 1) the low temperature isothermal scheme, with incubation temperatures as low as 23°C; and 2) the simplicity of its mechanism requirements (single primer and a productive DNA polymerase) (Li and Macdonald, 2015), which yields high amplification efficiencies (~10^3 copies in under 1 h), that could be enhanced though the addition of ssDNA-binding proteins (Y. Zhao et al., 2015).

Interestingly, the early RCA mechanism results in a linear amplification profile over time. In order to overcome this hurdle, several techniques have been developed to allow for an exponential mechanism, such as ramification amplification (RAM) (D. Y. Zhang et al., 2001), hyperbranched RCA (HRCA) (Lizardi et al., 1998), cascade RCA (Thomas et al., 1999) and multiply primed RCA (Dean et al., 2001).

One key feature of RCA, i.e., the capability to produce long fragments has been proven of great value to produce material for whole genome amplification, especially in the analysis of...
viral DNA genomes (Rector et al., 2004; Inoue-Nagata et al., 2004). RCA can also be performed on a solid support or complex biological matrices (e.g., inside the cell or on cell surfaces) allowing for molecular level detection (Konry et al., 2011).

These advantageous characteristics have spurred the development of highly sensitive RCA-based detection methods (Yue et al., 2021) (Table 7).

The low temperature isothermal profile of RCA also makes it an attractive candidate for integration in point-of-care devices (Giuffrida and Giuseppe Spoto, 2017), for example for the detection of bacteria and virus (Sato et al., 2010; Schopf et al., 2008). Other schemes have evolved from the original RCA, such as C2CA, digital RCA, microbead-based RCA, particle-based RCA, performed in a great diversity of device formats, e.g., centrifugal valve-less (Heo et al., 2016) and droplet-based devices (Giuffrida and Giuseppe Spoto, 2017), DMF chips and paper-strips (Ali et al., 2009).

Despite RCA use has been evolving over 2 decades, no RCA-based diagnostic kits have yet reached the market (de Paz et al., 2014). So far, there are only RCA research-type kits being commercialized, such as the Illustra TempliPhi DNA amplification kit from GE HealthCare (Buckinghamshire, United Kingdom) (Reagin et al., 2003).

Presently, the large number of RCA developments have focused on biotechnology applications and molecular detection schemes, several innovative concepts have been merging RCA and nanotechnology that promise extension of RCA potential to new a totally different scale and scope.

BLOOMING CONTENDERS TO THE “GOLD STANDARD” TITLE

Despite the great number of isothermal amplification systems already showing technological maturity and consolidated applications, such as the reviewed before, the quest for improved systems and specific application still encourages the development of more isothermal amplification methods. The ones with most expression have been the Multiple Displacement Amplification (MDA) (Spits et al., 2006), Exponential Amplification Reaction (EXPAR) and Nicking and Extension Amplification Reaction (NEAR) (Van Ness et al., 2003), Helicase Dependent Amplification (HDA) (Vincent et al., 2004) and Hybridization Chain Reaction (HCR) (Evanko 2004; Dirks and Pierce 2004) (Figure 4). Next, these methods are briefly overviewed.

The ability to amplify really short fragments (~10 bp), perform whole genome amplification, use miRNA as targets, generate amplification products under linear ss-DNA forms, error prone reduction and the pursue for more efficient and specific reactions were the driving forces behind the development of these methods.

- **Multiple Displacement Amplification (MDA)**—Ability to amplify very long fragments (around 50 kilobases) (Paul M. Lizardi 1997; Maragh et al., 2008; Y. Q. Sun et al., 2007).
- **Nicking and Extension Amplification Reaction (NEAR)**—Most efficient with short fragments (21–28 bp). Amplifies directly from RNA. Generates ssDNA products (Maples et al., 2007).
- **Exponential Amplification Reaction (EXPAR)**—Most applied to miRNA detection, DNA, proteins, enzyme activity and metal ions. Exponential version of NEAR (R. D. Li et al., 2016; Jia et al., 2010; Van Ness et al., 2003; Wang K et al., 2014; Zhang et al., 2015; J. Chen et al., 2016; H. Liu et al., 2017; Q. Xue et al., 2015; Jia et al., 2014).
- **Helicase Dependent Amplification (HDA)**—Diagnosis of dsDNA pathogens such as Neisseria gonorrhoeae, Clostridium difficile, Staphylococcus aureus and HIV-1 (Goldmeyer et al., 2008; Chow et al., 2008; Pandori and Branson 2010; Tang et al., 2010).
- **Hybridization Chain Reaction (HCR)**—Non-enzymatic mechanism based on successive hairpin hybridization. Applied to mRNA imaging, signal amplification and photoelectrochemical detection (Wu et al., 2015; Sha, Zhang, and Wang 2016; Chu et al., 2019).
- **Single Chimeric Primer Isothermal Amplification (SPIA)**—Specifically used to amplify linear mRNA. It has been applied to Whole genome amplification and Whole transcriptome amplification (Peng et al., 2018; Myrnel et al., 2017).
- **Smart Amplification Process Version 2 (SMAP 2)**—SNP identification and genotyping (Watanabe et al., 2007; Tatsumi et al., 2008; Araki et al., 2010).
- **Isothermal and Chimeric primer-initiated Amplification of Nucleic acids (ICAN)**—Specifically amplify short DNA sequences from complex DNA samples, (Mukai et al., 2007; Shimada et al. 2002).
- **Beacon-assisted molecular detection (BAD AMP)**—Emerging method to detect and amplify short DNA fragments (<22 bp) (Connolly and Matt, 2010; Connolly and Matt, 2011).
- **Hairpin Florecence Probe Assisted Isothermal Amplification (PHAMP)**—Detect and amplify microRNA (<22 bb). Mechanism similar to BADAMP (Ma, Liu, and Shi 2014).
- **Exonuclease III-induced cascade two-stage isothermal amplification-mediated zinc (II) protoporphyrin IX/ G-quadruplex supramolecular fluorescent nanotags (EIC)**—Emerging method for early diagnosis of gene-related diseases (Q. Xue et al., 2014).
- **CRISPR-Cas9-triggered nicking endonuclease-mediated strand displacement amplification mediated strand displacement amplification (CRISDA)**—Emerging method with single nucleotide specificity and attomolar sensitivity (Zhou et al., 2018).

Multiple Displacement Amplification (2002)

MDA is an alternative DNA amplification based on random hexamer primers and the activity of a high-fidelity enzyme, such as Phi29 DNA polymerase (Spits et al., 2006). Compared with PCR and other amplification techniques, MDA do not require...
sequence specific primers, once its mechanism exploits the random hybridization to generate large sized DNA fragments. Beside the isothermal profile (30°C), Phi 29 polymerase has proofreading activity, consequently MDA products contain less errors and higher sizes than the ones obtain via Taq amplification for the same time interval (2–3 h) (Blanco et al., 1989; Paez et al., 2004; Esteban, Salas, and Blanco 1993).

These beneficial features have spurred the application of MDA for Single Cell Genome Sequencing (Dean et al., 2002; Yoon et al., 2011; Rinke et al., 2013). Since it yields roughly 1–2 μg of DNA (enough for sequencing studies) with a genome coverage around 99% (Paez et al., 2004; Hellani et al., 2005), which allowed for the screening of genetic health condition in early-staged embryos before implantation (Hellani et al., 2005). MDA is also valuable for SPN allele detection (Ling et al., 2012) and for identifying the size of allelic polymorphic repeats (Ballantyne et al., 2006).

Exponential Amplification Reaction and Nicking and Extension Amplification Reaction (2003)

EXPAR is the exponential version of NEAR system, both simulate the SDA mechanism, where the difference in the melting temperature is exploited for target release and regeneration (Van Ness et al., 2003). A target template comprising a nicking site is designed to hybridize with the desire target. The polymerase replicates the template target, which is then nicked, producing a short fragment (8–16 bp) that is released by duplex instability, rather than by strand displacement activity (Van Ness et al., 2003). Conversely, the exponential version of NEAR uses a target template with two target complementary regions, instead of one, which after being nicked, releases a synthetized target, that can also pair up with the template target, creating a cycle of target regeneration and empowering NEAR to the desired exponential scale (Jia et al., 2010).

NEAR has a linear amplification profile, nevertheless it allows the amplification of any small targets by adding restriction sequences in the flanking regions (Maples et al., 2007). On the other hand, EXPAR is strongly limited by the requirement of targets natively flanked by restriction sites (Jia et al., 2010). Both NEAR and EXPAR (Tan et al., 2005) are particularly well suited for the detection of small fragments (8–16 bp) with high analytical sensitivity. Applications of NEAR include the detection of DNA (Zhou et al., 2014; Y. Song et al., 2014), proteins (A. X. Zheng et al., 2012; L. Xue, Zhou, and Xing 2010; Y. Huang et al., 2013; L. Xue, Zhou, and Xing 2012) and enzymes (Y. Zhao et al., 2013; X. Liu et al., 2014). Additionally, NEAR’s ability to amplify at room temperature, without initial template denaturation and higher tolerance to reaction inhibitors are two beneficial criteria for POC integration. In this regard, Wang et al., (L. Wang et al., 2017) reported on a highly specific detection assay for transgenic soya based on NEAR that is promising for PoC analysis. NEAR system is also being commercialized under kit formats. DNAble® by EnviroLogix (Portland, United States) test kit detects Salmonella and Clavibacter michiganensis (a plant pathogen) in 15 min with a sensitivity of 10^2 cfu per reaction (Envirologix, 2021). Alere-i POC allows the detection of influenza A and B virus in 15 min (Alere, Waltham, United States) (Nie et al., 2014; Alere™ now Abbott, 2021). Even though, not much is known about NEAR and EXPAR technology, their simplicity, specificity, and high adaptability are attractive features pushing for wider application.

Helicase Dependent Amplification (2004)

HDA is regarded as one of the simplest isothermal amplification schemes since it is based on the in vivo human DNA replication process (Vincent, Xu, and Kong 2004). HDA retains most of the PCR advantages, while improving the efficiency and selectivity, reducing the reaction and analysis complexity and requires less sample preparation steps, denoting the potential for integration in decentralized settings (An et al., 2005).

In the same fashion as PCR, HDA is compatible with different detection mechanisms such as gel electrophoresis for end-point measurement, fluorescent detection [with fluorescent DNA intercalator (Barbieri et al., 2014) and specific probes (Tong et al., 2008)] and electrochemical detection [with electroactive intercalator (Kivlehan et al., 2011)], for real-time monitorization. However, HDA can also be monitored though Lateral Flow Devices (LFDs), which are much more suitable for low-cost and point-of-need scenario, than real-time assays (Du et al., 2017; Mahalanabis et al., 2010; Kolm et al., 2019; Tomlinson, Dickinson, and Boonham 2010).

Regarding HDA applications, the majority are devoted to the detection of infectious diseases. In fact, HDA has found a market niche in point-of-need testing (Craw et al., 2015), driven forward the development of commercial test kits (Gaydos et al., 2017) for pathogens such as, Herpes simplex [approved by FDA in 2011 (Lemieux et al., 2012); H. J. Kim et al., 2011], Bordetella pertussis, Clostridium difficile Toxin A and Streptococcus from vaginal/rectal swabs (Faron et al., 2015). Quidel (proprietary for HDA technology) commercializes the AmpliVue and Solana test kits (Quidel 2021), based on HDA-Lateral Flow Devices, allowing the DNA amplification to occur in a CLIA-waiver, meaning without any sample preparation step (Weber et al., 2016). Additionally, BioHelix developed qualitative amplification detection kits (New England BioLabs, 2021) that recently receive FDA 501 (k) approval (Craw and Balachandran 2012).

Despite the usefulness of HDA in pathogen detection, it can be easily misinterpreted, since HDA presents issues often posed by the isothermal profile, such as the high risk of primer-dimer artifacts and off-target effects, ultimately leading to false positive phenomena, high background signal, inability to multiplex, low sensitivity and selectivity (Barreda-Garcia et al., 2018). Together, single-propriety commercialization, the false positive phenomena and the lack of validated assays have been hampered HDA widespread. However, if developers pushed forward the integration with LOC systems, HDA will likely show a significant increase in point-of-need pathogen detection,
ultimately fueling the development of more isothermal amplification schemes.

Hybridization Chain Reaction (HCR) (2004)

HCR Evanko (2004), Dirks and Pierce (2004) differs from all the previously reported methods, since isothermal amplification is achieved via signal amplification, without requiring the generation of DNA or RNA products. Comparing to the polymerase-based methods, the signal amplification schemes are not subject to product or enzyme inhibition. Depending on the strategy for signal amplification mechanism, there are three categories: nuclease-assisted, DNAzyme-assisted and enzyme-free reactions. Regarding the last type, HCR was the first being proposed in 2004 (Dirks and Pierce, 2004) being based in the differential hybridization of two partially complementary probes (hairpin form), that can only attain the energy required for conformational change (at room temperature) when in the presence of target ssDNA or RNA, generating a long-nicked copolymer. Trough the introduction of a fluorescent label on a specific hairpin moiety, real-time tracking of HCR can be achieved (Chemeris, Nikonorov, and Vakhitov 2008). This method pioneered the development of nanostructures from DNA self-assembly (Xuan and Hsing 2014; G. Zhu et al., 2013; Ding et al., 2015; J. Zheng et al., 2013; Xuan, Fan, and Hsing 2015) and introduced DNA as an amplifying transducer for biosensing (J. Huang et al., 2011; Y. Chen et al., 2012; L. Yang et al., 2012; B. Zhang et al., 2012; P. Liu et al., 2013) and bioimaging (Choi et al., 2010; Choi, Beck, and Pierce 2014; G. Zhu et al., 2013). HCR have shown applicability in in situ analysis (Choi et al., 2010; Choi, Beck, and Pierce 2014), miRNA (L. Zhou et al., 2019) and mRNA (Choi et al., 2010) detection. Additionally, the combination of HCR with other methods such as Catalyze Hairpin Assembly for detection single nucleotide polymorphisms (Li B et al., 2012), immuno-HCR (B. Zhang et al., 2012; J. Zhou et al., 2012) and AuNPs-supporting HCR (W. J. Wang et al., 2015) as electrochemical immunoassays and RCA incorporating HCR (Bi et al., 2013).

HCR’s attractive features such as enzyme-free, isothermal profile and excellent efficiency, have contributed for its rapid gain of popularity (Deng and Gao 2015). Despite all the hype around non-enzymatic methods, they have been put aside due to leakage problems (Bi, Yue, and Zhang 2017).

Other Isothermal Amplification Schemes

Beside the up-mentioned methods, some other “niche” methods have also been developed, among them are SMART, SPIA, ICAN, SMAP 2 and BAD AMP (Figure 5).

These new isothermal amplification schemes cover broad applications, from nucleic acids detection (DNA, RNA, long RNA, SNPs, miRNA, DNA methylation) to the detection of proteins, enzymes, cancer cells, pathogens, small molecules and metal-ions (Y. Zhao et al., 2015; S. Kumar J. et al., 2018). Despite their range of applications, not all of these “blooming” amplification schemes have been applied much beyond their initial “proof-of-concept” purpose, since many of these methods still lack technical maturity (e.g., PHAMP, EIC, SPIA, ICAN and BAD AMP). Conversely, others have been endorsed over the years (e.g., MDA, SMART, HDA, EXPAR and HCR), nevertheless the strictness of conditions and reagents and the lack of accessible amplification kits and literature has been preventing wider use, forcing them to set as “niche” application schemes. As so, all schemes must undergo through improvements before they can emerge as competitors to the previously stablished methods (Li and Macdonald 2015).

CONCLUSIONS AND FUTURE PERSPECTIVES

PCR is the most widespread method and the current standard for nucleic acids amplification, its inherent features, such as the requirement for a thermocycler and the strict reaction conditions, increase the complexity of device integration and operating settings, overall rising the cost of PCR-based devices and assays. Conversely, isothermal schemes have constant and low temperature profiles, ability to use different types of molecules as starting material, low sensibility to inhibitors and...
offer a wide range of detection methods, which are crucial features rendering for a significantly easier LOC integration, ultimately pushing forward their implementation and rising consideration. Furthermore, the integration under chip formats contributes to enhance the sensibility, reproducibility, rapidity, cost-effectiveness and achieve more accurate results, reducing the amplification bias. All together, these features are true “game changers”, defying PCR technique for the “gold standard” title.

Generally, isothermal amplification methods offer a great potential for lower-cost, higher speed, smaller consumption of sample and reagents and the opportunity to automation of all processes from sample preparation to signal detection under lab-on-chip formats. In this regard, the isothermal amplification schemes were grouped in two main categories: the mature and consolidated ones, such as SDA, NASBA, LAMP, RPA and RCA; and the blooming schemes, that despite their promising features, still lack technical maturity and widespread application or commercialization under kit formats. This last group comprises SMART, MDA, EXPAR, HDA, HCR, SPIA and others.

Besides the nucleic acid detection purposes, isothermal amplification schemes have also been applied much further than this initial concept, such as: whole genome sequencing, single cell sequencing, electrochemical immunoassays, single-nucleotide polymorphism detection, virus and bacterial detection from biological swabs, environmental point-of-need niche applications, amplification of non-DNA templates and amplification of long, short and micro-RNA fragments. Nevertheless, the ultimate success of the isothermal schemes is still dependent on wider demonstration of specificity and cost-effectiveness. In fact, most of these methods show unspecific products formation and high background noise, due to the low amplification temperature, issues that need to be addressed before translation to the clinical scenario. Additionally, many of the schemes discussed are still protected by patents or licensed by a single proprietary company, which may be limiting the access to the necessary enzymes and reagents, ultimately leading to high market prices, thus preventing broader application. Once these rights have expired, IA-based methods should meet the requirements to become a reference to nucleic acid diagnosis and POC applications, with a profitable commercialization worldwide.

AUTHOR CONTRIBUTIONS

BO, BV, and PB planned and conceptualized the work, drafted the manuscript, and edited the final version. BO designed the schematics and figures.

FUNDING

This work is financed by national funds from FCT—Fundação para a Ciência e a Tecnologia, I.P., in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences—UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy—i4HB; and for 2020.07660. BD to BO.

REFERENCES

Abe, T., Segawa, Y., Watanabe, H., Yotorigaya, T., Kai, S., Yasuda, A., et al. (2011). Point-of-Care Testing System Enabling 30 Min Detection of Influenza Genes. Lab. Chip 11 (6), 1166–1167. doi:10.1039/c0lc00519c

Akduman, D., Ehret, J. M., Messina, K., Ragdale, S., and Judson, F. N. (2002). Evaluation of a Strand Displacement Amplification Assay (BD ProbeTec SDA) for Detection of Neisseria Gonorrhoeae in Urine Specimens. J. Clin. Microbiol. 40 (1), 281–283. doi:10.1128/JCM.40.1.281-283.2002

Ali, M. M., Aguirre, S. D., Xu, Y., Filipe, C. D. M., Pelton, R., and Li, Y. (2009). Detection of DNA Using Bioactive Paper Strips. Chem. Commun. 43, 6640–6642. doi:10.1039/b911559e

An, L., Tang, W., Ranalli, T. A., Kim, H.-J., Wytlaz, J., and Kong, H. (2005). Characterization of a Thermostable UvrD Helicase and its Participation in Helicase-dependent Amplification. J. Biol. Chem. 280 (32), 28952–28958. doi:10.1074/jbc.M503096200

Araki, T., Shimizu, K., Nakamura, K., Nakamura, T., Mitani, Y., Ohayashi, K., et al. (2010). Usefulness of Peptide Nucleic Acid (PNA)-Clamp Smart Amplification Process Version 2 (SmartAmpl2) for Clinical Diagnosis of KRAS Codon12 Mutations in Lung Adenocarcinoma. J. Mol. Diagn. 12 (1), 118–124. doi:10.2353/jmdx.2010.090081

Aryan, E., Makvandi, M., Farajzadeh, A., Huygen, K., Bifani, P., Mousavi, S.-L., et al. (2010). A Novel and More Sensitive Loop-Mediated Isothermal Amplification Assay Targeting IS6110 for Detection of Mycobacterium Tuberculosis Complex. Microbiol. Res. 165 (3), 211–220. doi:10.1016/j.micres.2009.05.001

Biomerieux. 2021. “NUCLISENS EASYQ®.” 2021. Available at: https://www.biomerieux-diagnostics.com/nuclisens-easyqr.

Bachmann, L. H., Johnson, R. E., Cheng, H. John. R. Papp., Markowitz, L. E., III, Papp, J. R., and Hook, E. W. (2009). Nucleic Acid Amplification Tests for Diagnosis of Neisseria Gonorrhoeae Oropharyngeal Infections. J. Clin. Microbiol. 47 (4), 902–907. doi:10.1128/JCM.01581-08

Ballantyne, K. N., van Oorschot, R. A. H., John Mitchell, R., and Koukoulas, I. (2006). Molecular Crowding Increases the Amplification Success of Multiple Displacement Amplification and Short Tandem Repeat Genotyping. Anal. Biochem. 355 (2), 298–303. doi:10.1016/j.ab.2006.04.039

Barbieri, D., Venturoli, S., Rösl, F., and Bincoletto-Corazza, B. (2014). Detection of High-Risk Human Papillomavirus Type 16 and 18 Using Isothermal Helicase-dependent Amplification. Diagn. Microbiol. Infect. Dis. 79 (2), 178–182. doi:10.1016/j.diagmicrobio.2014.02.012

Barreda-Garcia, S., Miranda-CastroMiranda-Castro, R., de-las-Santos-Alvarez, N., Miranda-Ordieres, A. J., and Lobo-Castañón, M. I. (2018). Helicase-Dependent Isothermal Amplification: A Novel Tool in the Development of Molecular-Based Analytical Systems for Rapid Pathogen Detection. Anal. Bioanal. Chem. 410 (3), 679–693. doi:10.1007/s00216-017-0620-3

Bechy-Loizeau, A.-L., Flandrois, J.-P., Abaibou, H., and Abaibou, Ha. (2015). Assessment of Polycarbonate Filter in a Molecular Analytical System for the Microbiological Quality Monitoring of Recycled Waters Onboard ISS. Life Sci. Space Res. 6, 29–35. doi:10.1016/j.lssr.2015.06.002

Besuchico, S. A., Llano Murcia, M., Benatar, A. F., Monnerat, S., Cruz, I., Picadode Gil, P., et al. (2010). A Novel and More Sensitive Loop-Mediated Isothermal Amplification (LAMP) Kit Prototype for Detection of Trypanosoma Cruzi DNA in Human Blood Samples. Plos Negl. Trop. Dis. 11 (7), e0005779–18. doi:10.1371/journal.pntd.0005779
Du, X.-j., Zhou, T.-j., Li, P., and Wang, S. (2017). A Rapid Salmonella Detection Method Involving Thermophilic Helicase-dependent Amplification and a Lateral Flow Assay. *Mol. Cell Probes* 34, 37–44. doi:10.1016/j.mcp.2017.05.004

Dyer, J. R., Gilliam, B. L., Gilliam, J. J., Grosso, L., Cohen, M. S., and Fiscus, S. A. (1996). Quantitation of Human ImmuneDeficiency Virus Type 1 RNA in Cell Free Seminal Plasma: Comparison of NASBA with Amplicor Reverse Transcription-PCR Amplification and Correlation with Quantitative Culture. *J. Virol. Methods* 60 (2), 161–170. doi:10.1016/0166-0934(96)02063-0

Edwards, M. C., and Gibbs, R. A. (1994). Multiplex PCR: Advantages, Development, and Applications. *Genome Res.* 4 (3), S65–S75. doi:10.1101/gr.4.3.S65

Eiken. 2021. “Products, Eiken Chemical Co., LTD.” Available at: http://www.eiken.co.jp/en/product/index.html.

Enomoto, Y., Yoshikawa, T., Ibara, M., Akimoto, S., Miyaue, F., Usui, C., et al. (2005). Rapid Diagnosis of Herpes Simplex Virus Infection by a Loop-Mediated Isothermal Amplification Method. *J. Clin. Microbiol.* 43 (2), 951–955. doi:10.1128/JCM.1.951-955.2005

Envirologix. 2021 DNAble. Available at: https://www.envirologix.com/technology/molecular-detection/ (Accessed July 27, 2021).

Escadafal, C., Faye, O., Sall, A. A., Faye, O., Weidmann, M., Strohmeier, O., et al. (2012). Comparison between Protein-Primed Initiation and DNA Polymerization. *J. Virol. Methods* 174, 174–176. doi:10.1016/j.viromet.2011.09.015

Evanko, D. (2004). Hybridization Chain Reaction. *Nat. Methods* 1 (3), 186. doi:10.1038/nmeth1204-186a

Fang, X., Liu, Y., Kong, J., and Jiang, X. (2010). Loop-Mediated Isothermal Amplification Integrated on Microfluidic Chips for Point-of-Care Quantitative Detection of Pathogens. *Anal. Chem.* 82 (7), 3002–3006. doi:10.1021/ac100652p

Faron, M. L., Ledeboer, N. A., Granato, P., Daly, J. A., Pierce, K., Pancholi, P., et al. (2015). Clinical Application of a Strepptoccocus in Pharyngeal Swab Specimens by Use of the AmpliVue Gas Isothermal Helicase-dependent Amplification Assay. *J. Clin. Microbiol.* 53 (7), 2365–2367. doi:10.1128/JCM.00504-11

Fire, A., and Xu, S. Q. (1995). Rolling Replication of Short DNA Circles. *Proc. Natl. Acad. Sci.* 92 (10), 4641–4645. doi:10.1073/pnas.92.10.4641

Fujino, M., Yoshiha, N., Yamaguchi, S., Hosaka, N., Ota, Y., Notohmi, T., et al. (2005). Simple Method for the Detection of Measles Virus Genome by Loop-Mediated Isothermal Amplification (LAMP). *J. Med. Virol.* 76 (3), 406–413. doi:10.1002/jmv.20371

Gansen, A., Herrick, A. M., Dimov, I. K., Lee, L. P., and Chiu, D. T. (2012). Digital LAMP in a Sample Self-Digitization (SD) Chip. *Lab. Chip* 12 (12), 2247–2254. doi:10.1039/c2lc2147a

Garcia-Fernandez, S., Morosini, M.-L., Marco, F., Gijon, D., Vergara, A., Vilà, J., et al. (2014). Evaluation of the Eazyplex(R) SuperBug CRE System for Rapid Loop-Mediated Isothermal Amplification Kit to Detect Leishmania DNA. *Parasites Vectors* 7, 306. doi:10.1186/1756-3305-7-306

Guichón, A., Chiparelli, H., Martínez, A., Rodríguez, C., Trento, A., Russi, J. C., et al. (2005). Clinical Application of Multiple Displacement Amplification in Preimplantation Genetic Diagnosis. *Reprod. BioMed Online* 10 (3), 376–380. doi:10.14743/s1472-6483(10)61799-3

Hellyer, T. J., and Nadeau, J. G. (2004). Strand Displacement Amplification: A Versatile Tool for Molecular Diagnostics. *Expert Rev. Mol. Diagn.* 4 (2), 251–261. doi:10.1586/14737159.4.2.251

Heo, H. Y., Chung, S., Kim, Y. T., Kim, D. H., and Seo, T. S. (2016). A Valveless Rotary Microfluidic Device for Multiplex Point Mutation Identification Based on Ligation-Rolling Circle Amplification. *Biosens. Bioelectron.* 78, 140–146. doi:10.1016/j.bios.2015.11.039

Honsvall, B. K., and Robertson, L. J. (2017). From Research Lab to Standard Environmental Analysis Tool: Will NASBA Make the Leap. *Water Res.* 109, 389–397. doi:10.1016/j.watres.2016.11.052

Horibe, D., Ochiai, T., Shimada, H., Tomonaga, T., Nomura, F., Gun, M., et al. (2007). Rapid Detection of Metastasis of Gastric Cancer Using Reverse Transcript Loop-Mediated Amplification. *Int. J. Cancer* 120 (5), 1063–1069. doi:10.1002/ijc.22397

Hu, C., Kalis, S., Zeimpelis, I., Sun, K., Ashburn, P., Turner, C., et al. (2017). Ultra-Fast Electronic Detection of Antimicrobial Resistance Genes Using Isothermal Amplification and Thin Film Transistor Sensors. *Biosens. Bioelectron.* 96 (January), 281–287. doi:10.1016/j.bios.2017.05.016

Huang, J., Wu, Y., Chen, Y., Zhu, Z., Yang, X., Yang, C. J., et al. (2011). Pyrene-Eximer Probes Based on the Hybridization Chain Reaction for the Detection of Nucleic Acids in Complex Biological Fluids. *Angew. Chem. Int. Ed.* 50 (2), 401–404. doi:10.1002/anie.201005375

Huang, Y., Chen, J., Zhao, S., Shi, M., Chen, Z.-F., and Liang, H. (2013). Label-Free Colorimetric Aptasensor Based on Nicking Enzyme Assisted Signal Amplification and DNAzyme Amplification for Highly Sensitive Detection of Protein. *Anal. Chem.* 85 (9), 4432–4430. doi:10.1021/ac3037443

Ibarra-Meneses, A. V., Cruz, I., Chicharro, C., Sánchez, C., Bider, S., Broger, T., et al. (2018). Evaluation of Fluorometry and Direct Visualization to Interpret Results of a Loop-Mediated Isothermal Amplification Kit to Detect Leishmania DNA. *Parasites Vectors* 11 (1), 1–9. doi:10.1186/s13071-018-2386-2

Inoue-Nagata, A. K., Albuquerque, I. C., Rocha, W. B., and Nagata, N. (2004). A Simple Method for Cloning the Complete Begomovirus Genome Using the Bacteriophage q29 DNA Polymerase. *J. Virol. Methods* 116 (2), 209–211. doi:10.1016/j.viromet.2003.11.015

Itonaga, M., Matsuoka, I., Wargayya, K., Tamura, T., Shimizu, Y., Fujimoto, M., et al. (2016). Novel Methodology for Rapid Detection of KRAS Mutation Using PNA-LNA Mediated Loop-Mediated Isothermal Amplification. *Plos ONE* 11 (3), e0151654–12. doi:10.1371/journal.pone.0151654

Iwasaki, M., Young, T., Otsuka, K., Suzuki, W., Nagamine, K., Hase, T., et al. (2003). “Validation of the Loop-Mediated Isothermal Amplification Method for Single Nucleotide Polymorphism Genotyping with Whole Blood.” *Genome Lett.* 2 (8): 119–126. doi:10.1166/gl.2003.028

James, A., and MacDonald, J. (2015). Recombinase Polymerase Amplification: Emergence as a Critical Molecular Technology for Rapid, Low-Resource Diagnostics. *Expert Rev. Mol. Diagn.* 15 (11), 1475–1489. doi:10.1586/14737159.2015.1090877

Jayanath, N. Y., Nguyen, L. T. T., Vu, T. T., and Tran, L. D. (2018). Development of a Portable Electrochemical Loop Mediated Isothermal Amplification (LAMP) Device for Detection of Hepatitis B Virus. *RSC Adv.* 8 (61), 34954–34959. doi:10.1039/c8ra07235c
Peng, Y., Li, D., Yuan, R., and Xiang, Y. (2018). A Catalytic and Dual Recycling Amplification ATP Sensor Based on Target-Driven Allosteric Structure Switching of Aptamer Beacons. *Biosens. Bioelectron.* 105 (October), 1–5. doi:10.1016/j.bios.2018.01.017

Piepenburg, O., Williams, C. H., Stemple, D. L., and Armes, N. A. (2006). DNA Detection Using Recombination Proteins. *Plos Biol.* 4 (7), e204–21. doi:10.1371/journal.pbio.0040204

Polymerase, R., and Rpa. A. (2017). Recombinase Polymerase Amplification (RPA) an Isothermal Technique Suitable for a Range of Applications- Evaluation of RPA Volume Tolerance. *BioTechniques* 62 (6), 295. doi:10.2144/000114561

Porter-Jordan, K., Keiser, J. F., Allan, M., Gross, A. M., Nasim, S., and Garrett, C. T. (1990). Nested Polymerase Chain Reaction Essays for the Detection of Cytomegalovirus Overcomes False Positives Caused by Contamination with Fragmented DNA. *J. Med. ViroL* 30 (2); 85–91. doi:10.1128/jmv.198903202

Quidel (2021). *AmpliVue - Helicep Discrete Amplification Assays, 2021.*

Rane, T. D., Chen, L. H., Zec, H. C., and Wang, T.-H. (2015). Microfluidic Continuous Flow Digital Loop-Mediated Isothermal Amplification (LAMP). *Lab. Chip* 15 (3), 776–782. doi:10.1039/c4lc01158a

Radloff, A. E., Duffy, L. B., and Waites, K. B. (2014). Comparison of the Illumigene Mycoplasma DNA Amplification Assay and Culture for Detection of Mycoplasma Pneumoniae. *J. Clin. Microbiol.* 52 (4), 1060–1063. doi:10.1128/JCM.02913-13

Reagin, M. J., GieslerAlia L. Merla, T. L., Merla, A. L., Resetar-Gerke, J. M., Kapolka, K. M., and Mamone, J. A. (2003). Templetli: A Sequencing Template Preparation Procedure that Eliminates Overnight Cultures and DNA Purification. *J. Biomol. Tech.* 14 (2), 143–148. doi:10.1021/173680490905817

Rector, A., Tachezy, R., and Van Ranst, M. (2004). A Sequence-independent Strategy for Detection and Cloning of Circular DNA Virus Genomes by Using Multiply Primed Rolling-Circle Amplification. *J. ViroL* 78 (10), 4993–4998. doi:10.1128/jvi.78.10.4993-4998.2004

Reinholt, S. J., Behrent, A., Greene, C., Kalfe, A., and Baeunmer, A. J. (2014). Isolation and Amplification of MRNA within a Single Microfluidic Lab on a Chip. *Anal. Chem.* 86 (1), 849–856. doi:10.1021/ac403417a

Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J.-F., et al. (2013). Insights into the Phylogeny and Coding Potential of Microbial Dark Matter. *Nature* 499 (7549), 431–437. doi:10.1038/nature12352

Rohrmann, B. A., and Richards-Kortum, R. R. (2012). A Paper and Plastic Device for Manufacturing Whole-Genome Microarrays by Rolling Circle Amplification. *Genes Chromosom. Cancer* 40 (1), 72–77. doi:10.1002/gcc.20015

Smolina, I. V., Demidov, V. V., Cantor, C. R., and Broude, N. E. (2004). Real-Time Monitoring of Branched Rolling-Circle DNA Amplification with Peptide Nucleic Acid Beacon. *Anal. Biochem.* 335 (2), 326–329. doi:10.1016/j.jab.2004.07.022

Song, J., Mauk, M. G., Hackett, B. A., Cherry, S., Bau, H. H., and Liu, C. (2016). Instrument-Free Point-of-Care Molecular Detection of Zika Virus. *Anal. Chem.* 88 (14), 7289–7294. doi:10.1021/acs.analchem.6b01632

Song, Y., Li, W., Duan, Y., Li, Z., and Deng, L. (2014). Nicking Enzyme-Assisted Biosensor for Salmonella Enteritidis Detection Based on Fluorescence Resonance Energy Transfer. *Biosens. Bioelectron.* 55, 400–404. doi:10.1016/j.bios.2013.12.053

Spits, C., Le Caignec, C., De Rycke, M., Van Haute, L., Van Steirteghem, A., Liebers, I., et al. (2006). Whole-Genome Multiple Displacement Amplification from Single Cells. *Nat. Protoc.* 1 (4), 1965–1970. doi:10.1038/nprot.2006.326

Srividya, A., Maiti, B., Chakraborty, A., and Chakraborty, G. (2019). Loop Mediated Isothermal Amplification: A Promising Tool for Screening Genetic Mutations. *Mol. Diagn. Ther.* 23 (6), 723–733. doi:10.1007/s10438-019-00422-0

Su, Y. Q., Monstein, H.-I., Byberg, A., and Borch, K. (2007). Multiple Strand Displacement Amplification of DNA Isolated from Human Archival Plasma/ Serum: Identification of Cytokine Polymorphism by Pyrosequencing Analysis. *Clinica Chim. Acta* 377 (1–2), 108–113. doi:10.1016/j.cca.2006.09.003

Sun, Y., Quyen, T. L., Hung, T. Q., Chin, W. H., Wolfle, A., and Bang, D. D. (2015). A Lab-On-A-Chip System with Integrated Sample Preparation and Loop-Mediated Isothermal Amplification for Rapid and Quantitative Detection of Salmonella Spp. In Food Samples. *Lab Chip* 15 (8), 1898–1904. doi:10.1039/c4lc01459f

Tan, E., Wong, J., Nguyen, D., Zhang, Y., Erwin, B., Van Ness, L. K., et al. (2005). Isothermal DNA Amplification Coupled with DNA Nanosphere-Based Colorimetric Detection. *Anal. Chem.* 77 (24), 7984–7992. doi:10.1021/ac051364i

Tang, W., Chow, W. H. A., Li, Y. K., Kong, H., Tang, Y. W., and Lemieux, B. (2010). Nucleic Acid Assay System for Tier II Laboratories and Moderately Complex Clinics to Detect HIV in Low-Resource Settings. *J. Infect. Dis.* 201 (Suppl. 1), S46–S51. doi:10.1086/650388

Tanner, N. A., Zhang, Y., and Evans, T. C. (2012). Simultaneous Multiple Target Detection in Real-Time Loop-Mediated Isothermal Amplification. *BioTechniques* 53 (2), 81–89. doi:10.2144/000113902

Tatsuki, K., Mitani, Y., Watanabe, J., Takakura, H., Hoshi, K., Kawai, Y., et al. (2008). Rapid Screening Assay for KRAS Mutations by the Modified Smart Amplification Process. *J. Mol. Diagn.* 10 (6), 520–526. doi:10.2353/jmdx.2008.080024

Thomas, D. C., Naradone, G. A., and Randall, S. K. (1999). Amplification of Padlock Probes for DNA Diagnostics by Cascade Rolling Circle Amplification or the
Polymerase Chain Reaction. Arch. Pathol. Lab. Med. 123 (12), 1170–1176. doi:10.1043/1543-2165-123.20.1170

Tomlinson, J. A., Dickinson, M. J., and Boonham, N. (2010). Rapid Detection of Phytophthora Ramorum and P. kernoviae by Two-Minute DNA Extraction Followed by Isothermal Amplification and Amplicon Detection by Generic Lateral Flow Device. *Pathology* 100 (2), 143–149. doi:10.1094/PHTY-100-2-0143

Tong, Y., Tang, W., Kim, H.-J., Pan, X., Ranalli, T. A., and Kong, H. (2008). Development of Isothermal TaqMan Assays for Detection of Biothreat Organisms. *BioTechniques* 45 (5), 543–557. doi:10.2144/000112959

Torres-Chavolla, E., and Alocilia, E. C. (2011). Nanoparticle Based DNA Biosensor for Tuberculosis Diagnosis Using Thermophilic Helicase-dependent Isothermal Amplification. * Biosens. Bioelectron.* 26 (11), 4614–4618. doi:10.1016/j.bios.2011.04.055

Tsaloglou, M.-N., Laouenan, F., Loukas, C.-M., Monsalve, L. G., Thanner, C., Morgan, H., et al. (2013). Real-Time Isothermal RNA Amplification of Marine Microalgae Using Preserved Reagents on an Integrated Microfluidic Platform. *Analyst* 138 (2), 593–602. doi:10.1039/c3an36464f

Tu, P.-A., Shiu, J.-S., Lee, S.-H., Pang, V. F., Wang, D.-C., Wang, P.-H., et al. (2017). Development of a Recombinase Polymerase Amplification Lateral Flow Dipstick (RPA-LFD) for the Field Diagnosis of Caprine Arthritis-Encephalitis Virus (CAEV) Infection. *J. Virol. Methods* 243: 98–104. doi:10.1016/j.jvirometh.2017.01.023

TwistDX. 2021. “TwistAmp® Liquid Exo.” 2021. Available at: https:// www.twistdx.co.uk/en/products/product/twistamp-liquid-exo.

Uddin, S., Ibrahim, F., Sayad, A., Thaha, A., Pei, K., Mohktar, M., et al. (2015). A Portable Automatic Endpoint Detection System for Amplexor Loop Mediated Isothermal Amplification on Microfluidic Compact Disk Platform. *Sensors* 15 (3), 5376–5389. doi:10.3390/s150305376

Van Der Pol, B., Ferrero, D. V., Buck-Barrington, L., Hook, E., Lenderman, C., Quinn, T., et al. (2001). Multicenter Evaluation of the BDProbeTec ET System for Detection of Chlamydia Trachomatis and Neisseria Gonorrhoeae in Urine Specimens, Female Endocervical Swabs, and Male Urethral Swabs. *J. Clin. Microbiol.* 39 (3), 1008–1016. doi:10.1128/JCM.39.3.1008-1016.2001

Van Ness, J., Van Ness, L. K., Galas, D. J., and Galas, David. J. (2003). Isothermal Amplification (LAMP): A Versatile Technique for Detection of Micro-organisms. *J. Appl. Microbiol.* 124 (3), 626–643. doi:10.1111/j.1365-2672.2003.02467.x

Vincent, M., Xu, Y., and Kong, H. (2004). Helicase-dependent Isothermal DNA Amplification. *Nat. Protoc.* 15 (3), 5376–5389. doi:10.1039/c3an36464f

Wharam, S. D., Peter Marsh, J. S., McPhee, J. E., Weston, A., Donald, L., and Cardy, N. (2001). Specific Detection of DNA and RNA Targets Using a Novel Isothermal Nucleic Acid Amplification Assay Based on the Formation of a Three-Way Junction Structure. *Nucleic Acids Res.* 29 (11), 54–54. doi:10.1093/nar/29.11.e34

Wong, Y.-P., Othman, S., Lau, Y.-L., Radu, S., and Chee, H.-Y. (2018). Loop-Mediated Isothermal Amplification (LAMP): A Versatile Technique for Detection of Micro-organisms. *J. Appl. Microbiol.* 124 (3), 626–643. doi:10.1111/j.1365-2672.2003.02467.x

World Health Organization (2016). The Use of Loop-Mediated Isothermal Amplification (TB-LAMP) for the Diagnosis of Pulmonary Tuberculosis: Policy Guidance. Geneva, Switzerland: WHO Library Cataloguing-in-Publication Data.

Wu, C., Cansiz, S., Zhang, L., Teng, I.-T., Qiu, L., Li, J., et al. (2015). A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of MRNA Imaging inside Live Cells. *J. Am. Chem. Soc.* 137 (15), 4900–4903. doi:10.1021/acs.jacsat.5b05542

Xia, S., and Chen, X. (2020). Single-copy Sensitive, Field-Deployable, and Simultaneous Dual-Gene Detection of SARS-CoV-2 RNA via Modified RT-RTA. *Cell Discov.* 6 (1), 4–7. doi:10.1038/s41421-020-0175-x

Xuan, F., Fan, T. W., and Hsing, I.-M. (2015). Electrochemical Interrogation of Kinetically-Controlled Dengritic DNA/PNA Assembly for Immobilization-free and Enzyme-free Nucleic Acids Sensing. *ACS Nano* 9 (5), 5027–5033. doi:10.1021/acsnano.5b07282f

Xuan, F., and Hsing, I.-M. (2014). Triggering Hairpin-free Chain-Branching Growth of Fluorescent DNA Dendrimers for Nonlinear Hybridization Chain Reaction. *J. Am. Chem. Soc.* 136 (28), 9810–9813. doi:10.1021/ja502904a

Xue, L., Zhou, X., and Xing, D. (2010). Highly Sensitive Protein Detection Based on Aptamer Probe and Isothermal Nicking Enzyme Assisted Fluorescence Signal Amplification. *Chem. Commun.* 46 (39), 7373–7375. doi:10.1039/b00230c038A

Xue, Q., Ly, V., Xu, S., Zhang, Y., Wang, L., Li, R., et al. (2015). Highly Sensitive Fluorescence Assay of DNA Methylation Transferase Activity by Methylation-Sensitive Cleavage-Based Primer Generation Exponential Isothermal Amplification-Induced G-Quadruplex Formation. *Biosens. Bioelectron.* 66, 547–553. doi:10.1016/j.bios.2014.12.017

Xue, Q., Ly, V., Zhang, Y., Xu, S., Li, R., Yue, Q., et al. (2014). Ultrasensitive Fluorescence Detection of Nucleic Acids Using Exonuclease III-Induced Cascade Two-Stage Isothermal Amplification-Mediated Zinc (II)-Protoporphyrin IXG-Quadruplex Supramolecular Fluorescent Nanotags. *Biosens. Bioelectron.* 61, 351–356. doi:10.1016/j.bios.2014.05.047

Xue, X., Zhou, X., and Xing, D. (2012). Sensitive and Homogeneous Protein Detection Based on Target-Triggered Aptamer Hairpin Switch and Nicking Enzyme Assisted Fluorescence Signal Amplification. *Anal. Chem.* 84 (8), 3507–3513. doi:10.1021/ac2026783

Yan, Z., Qiao, Z., Hai, X., Song, W., and Bi, S. (2021). Versatile Electrochemical Biosensor Based on Bi-enzyme Cascade Biocatalysis Spatially Regulated by DNA Architecture. *Biosens. Bioelectron.* 174: 112827. doi:10.1016/j.bios.2020.112827

Yan, H., Ma, X., Zhang, X., Wang, Y., and Zhang, W. (2011). Development and Evaluation of a Loop-Mediated Isothermal Amplification Assay for the Rapid Detection of Staphylococcus Aureus in Food. *Eur. Food Res. Technol.* 232 (5), 769–776. doi:10.1007/s00217-011-1442-8

Yang, J. M., Bell, J., Huang, Y., Tirado, M., Thomas, D., Forster, A. H., et al. (2002). An Integrated, Stacked Microlaboratory for Biological Agent Detection with DNA and Immunassays. *Biosens. Bioelectron.* 17 (6–7), 605–618. doi:10.1016/S1359-6463(02)00023-4
