Dark stationary matter-waves via parity-selective evaporation in a Tonks-Girardeau gas

H. Buljan,1 O. Manela,2 R. Pezer,3 A. Vardi,3 and M. Segev2

1Department of Physics, University of Zagreb, PP 332, Zagreb, Croatia
2Physics Department, Technion - Israel Institute of Technology, Haifa 32000, Israel and
3Department of Chemistry, Ben Gurion University of Negev, Beer Sheva 84105, Israel

(Dated: October 25, 2018)

We propose a scheme for observing dark stationary waves in a Tonks-Girardeau (TG) gas. The scheme is based on parity-selective dynamical "evaporation" of the gas via a time-dependent potential, which excites the gas from its ground state towards a desired specially-tailored many-body state. These excitations of the TG gas are analogous to linear partially coherent nondiffracting beams in optics, as evident from the mapping between the quantum dynamics of the TG gas and the propagation of incoherent light in one-dimensional linear photonic structures.

PACS numbers: 03.75.-b,03.75.Kk

Trapped Bose gases confined to one-dimensional (1D) geometry are highly attractive for studying quantum many-body dynamics because pertinent models yield exact solutions [1–4, 8, 9], these regimes are experimentally accessible [5–7, 10], and quantum effects are enhanced [3–11]. Tonks-Girardeau (TG) gas is a system of 1D bosons with “impenetrable core” repulsive interactions [1]. In the fashion of the Pauli exclusion principle, “impenetrable cores” prevent bosons to occupy the same position in space, which causes TG gas to exhibit fermionic properties. This similarity is manifested in the mapping between 1D noninteracting fermions and TG bosons [1, 4]. From the properties of atomic interactions in tight atomic waveguides [2] it follows that the TG regime can be reached at low temperatures, low linear densities or stronger effective interactions [19, 20, 21, 22]. We point out that such excitations, which have been studied theoretically within the nonlinear mean-field theories applicable for weakly interacting gases [19, 21, 22], and observed experimentally in these regimes [21]. For a strongly interacting TG gas on a ring, Girardeau and Wright noticed that if the many-body wavefunction is constructed solely from the odd-parity SP eigenstates of the system, the SP density will have a dip at zero, similar in structure to dark-solitons. However, such a specially structured many-body state is unlikely to occur without deliberate preparation, since even and odd parity SP states of that system are intermingled when ordered with respect to energy (see the discussion in Ref. [4]). In the study of Busch and Huyet, the collapses and reappearances of TG dark soliton-like structures in an harmonic trap are attributed to the mixture of the odd and the even components in the excitation. Generally, the SP eigenstates in parity-invariant 1D potentials can be chosen to be either even or odd, which makes them candidates for observing dark stationary structures in the TG gas. However, for their experimental realization under such confinement, it is essential to separate components of different parity.

Here we propose a scheme for observing dark stationary waves in a TG gas. A time-dependent potential is used to selectively “evaporate” the even component of the many-body wavefunction, thereby creating a dark stationary wave. Such excitation of the strongly interacting TG gas is in fact an excited many-body eigenstate of the system, which distinguishes it from dark-solitons of the nonlinear mean-field equations applicable for weak interactions [19, 21, 22]. We point out that such excited eigenstates of the TG gas are analogous to linear partially coherent nondiffracting beams in optics [23, 24], as evident from the mapping between the quantum dynamics of the TG gas and the propagation of incoherent light in linear photonic structures.
light in one-dimensional linear photonic structures, presented in this Letter.

We consider N impenetrable bosons, confined within a 1D external potential $V_{\text{ext}}(x,t)$. The fully symmetrized many-body wavefunction describing the system, $\psi_B(x_1, \ldots, x_N, t)$, is constructed according to the Fermi-Bose mapping. Let $\psi(\xi, \tau)$ denote a set of orthonormal SP wavefunctions obeying the set of uncoupled linear Schrödinger equations,

$$i \frac{\partial \psi_m}{\partial \tau} = \left[-\frac{\partial^2}{\partial \xi^2} + V(\xi, \tau) \right] \psi_m(\xi, \tau), \quad m = 1, \ldots, N. \tag{1}$$

In order to unify notation and discuss the equivalence with optics, we find it convenient to use dimensionless units. The boson mass m and the (arbitrary) choice of spatial lengthscale $x_0 = x/x_0$ determine the units of time $t_0 = 2m\hbar^2/\hbar (\tau = t/t_0)$ and energy $E_0 = h^2/(2m\hbar^2) [V(\xi, \tau) = V_{\text{ext}}(x,t)/E_0]$. From the SP wavefunctions ψ_m one first constructs a fully antisymmetric (fermionic) wavefunction in the form of the Slater determinant, $\psi_F(x_1, \ldots, x_N, t) = \sqrt{N^N/N!} \det[\psi_m(\xi_j, \tau)]$; ψ_F describes a system of spinless noninteracting fermions in the 1D potential $V_{\text{ext}}(x,t)$. The bosonic many-body solution $\psi_B(x_1, \ldots, x_N, t)$ is obtained after symmetrization of ψ_F:

$$\psi_B = A(x_1, \ldots, x_N) \sqrt{\frac{x_0}{N}} \det_{m,j=1}^{N} \psi_m(\xi_j, \tau), \tag{2}$$

where $A = \Pi_{1 \leq i < j \leq N} \text{sgn}(x_i - x_j)$ is a "unit antisymmetric function". Thus, the quantum dynamics of the TG gas is obtained from Eq. (2) after solving Eq. (1). For example, the evolution of the single-particle density $\rho_{SP}(x,t) = \int dx_2 \ldots dx_N |\psi_F(x_2, x_3, \ldots, x_N, t)|^2$ corresponds to the evolution of $\rho(\xi, \tau) = \sum_m |\psi_m(\xi, \tau)|^2$.

Excited many-body eigenstates with soliton-like SP density are found in real, time-independent, and parity invariant potentials, $V(\xi) = V(-\xi)$. Let $\phi_{\epsilon, \gamma}(\xi)$ denote the eigenstates, and let ϵ denote eigenvalues (energies) of the SP Hamiltonian $H = -\frac{d^2}{d\xi^2} + V(\xi)$ with appropriate boundary conditions. The extra index γ is used in case there are degenerate SP eigenstates. Since the Hamiltonian commutes with the parity operator, they can have a common complete set of eigenstates, in which case the eigenstates $\phi_{\epsilon, \gamma}(\xi)$ are either symmetric $\phi^+_{\epsilon, \gamma}(\xi) = \phi^+_{\epsilon, -\gamma}(\xi)$ (even parity) or antisymmetric $\phi^-_{\epsilon, \gamma}(\xi) = -\phi^-_{\epsilon, -\gamma}(\xi)$ (odd parity). Consider a bosonic many-body wavefunction, constructed according to Eq. (2), from odd-parity eigenmodes only, i.e., every ψ_m equals to one of the eigenstates $\phi_{\epsilon, \gamma}(\xi)$ ($\psi_m \neq \psi_n$ for $m \neq n$). Such a wavefunction is an excited many-body eigenstate of the system. Its SP density $\rho^{-}(\xi) = \sum |\phi^+_{\epsilon, \gamma}(\xi)|^2$ is stationary, and $\rho^{-}(0) = 0$ because $\phi^+_{\epsilon, \gamma}(0) = 0$. The SP density of this excited many-body eigenstate thus has a dip at $\xi = 0$, which resembles the structure of nonlinear dark-solitons. Therefore we will refer to these states as dark many-body eigenstates.

Dark and anti-dark many-body eigenstates are specially tailored excitations of the TG gas, constructed solely from the odd or even SP eigenstates of the parity invariant potential $V(\xi)$. Assuming the absence of degeneracy, the even and odd parity SP eigenstates alternate when ordered with respect to energy, meaning that such specially tailored states are unlikely to naturally occur. We illustrate this by studying $N = 20$ TG bosons in the external container-like potential $V(\xi) = V_0^2 [2 + \sum_{i=1,2} (-1)^{i+1} \tanh \alpha (\xi - (\xi^2)_{x_i})] \left[V_0^2 = 15, x_{w} = 4, \text{and } x_{c} = 7 \right]$, shown in Fig. 1(a). The SP density ρ of the ground state is plotted as a solid black line, whereas the dotted red (dashed blue) line depicts the odd (even, respectively) component of the SP density: $\rho(\xi) = \rho^{+}(\xi) + k(\xi)$. The energies of the odd (even) parity SP eigenmodes are shown as blue squares (red circles, respectively). As expected odd and even parity eigenstates alternate with increasing energy. Thus, half of the SP eigenstates comprising the ground state are even and half are odd. The even ρ^{+} (odd ρ^{-}) component of the SP density has the structure of the anti-dark (dark, respectively) many-body eigenstates. In what follows we propose a method for the dynamical excitation of dark stationary waves.

Our scheme utilizes a time-dependent potential which tailors the many-body wavefunction in a specific desired fashion, and separates the odd from the even component. The system of $N = 20$ TG bosons is initially in the ground state of the confining potential, see Fig. 1(a). In the spirit of Refs. 4, 13, we perturb this system at its symmetry point $\xi = 0$, with a spatially-narrow-repulsive potential, which may be obtained with a laser 4, 13. However, in contrast to 4, 13, here we periodically switch this potential on and off in time. Such a time-dependent potential can be modeled as $V_{\text{p}}(\xi, \tau) = V_{0}^p [\text{sgn}(|\sin(2\pi \tau/\tau_p)| + 1] \exp[-(\xi/\sigma)^2]$, where $\tau_p = 0.1$ is the periodicity of the laser signal, $V_{0}^p = 100$ corresponds to the peak intensity of the laser, and $\sigma = 0.06$ to its spatial focusing width. As bosons are kicked by the time-dependent potential, they acquire energy which has a certain probability of being higher than the lip of the trap and are ejected away from it. However, because the laser is focused close to $\xi = 0$, it strongly affects only the even-parity SP eigenstates, whereas the odd-parity eigen-
FIG. 1: (color online) Dark and anti-dark many-body eigenstates: structure and excitation. (a) The container potential $V_c(\xi)$ (black dot-dashed line), the even ρ^+ (blue dashed line), odd ρ^- (red dotted line), and total SP density $\rho = \rho^+ + \rho^-$ (black solid line) of the ground state with 20 bosons; the first 20 eigenvalues are shown as blue squares (even SP eigenstates) and red circles (odd SP eigenstates). (b) The spectrum P_τ of the excitation at $\tau = 0$ and $\tau = 19.8$, and (c) the dynamics of the SP density following the time-dependent perturbation. (d) The SP density $\rho(\xi)$ of an anti-dark (black dotted line) and dark (red solid line) many-body eigenstate in the periodic potential (see text for details).

states are left nearly unperturbed. Consequently, the many-body wavefunction within the container ($|x| < x_c$) takes on a specific structure: it is constructed via Eq. (2) mainly from the odd-parity SP eigenstates. This filtering process is depicted in Fig. 1(b), showing the spectrum of the SP wavefunctions $\psi_m(\xi, \tau)$ calculated according to $P_\tau = \sum_m |\int_{-x_c}^{x_c} d\xi \, \psi_m(\xi, \tau) \phi_\tau(\xi)|^2$, where $\phi_\tau(\xi)$ is the τth eigenstate of the SP Hamiltonian. The spectrum at $\tau = 0$ is flat (black squares) because the odd and the even eigenstates are equally present. However, the spectrum after $\tau = 19.8$ (red circles) is mainly comprised from odd-parity eigenstates. Fig. 1(c) shows the evolution of the total SP density. The time-dependent potential acts within the interval $\tau = [0, 19.8]$. After $\tau = 19.8$ (marked by a horizontal line) it is turned off. The SP density nevertheless retains a dark notch at $\xi = 0$ even after the time-dependent potential is turned off, clearly displaying dark stationary wave evolution. The numerical evaluation of Eq. 1 is performed with the split-step Fourier method.

Although different in nature, the scheme proposed here is akin to evaporative cooling. The concept should work for various types of container-like potentials. The scheme is also fairly robust. For lasers with larger intensity $\alpha V'_0$, the filtering occurs on faster time scales (i.e., a smaller number of on-off switches are sufficient) and is more efficient. The focusing width of the laser σ limits the number of particles which can be efficiently filtered. This width should be sufficiently smaller than the period of the spatial oscillation (close to $\xi = 0$) of the Nth SP eigenstate. It should be emphasized that even though we follow the spirit of Refs. [4, 12], the proposed scheme separates the odd and the even component in space, while the many-body wavefunction within the container assumes the particular structure of a dark stationary wave.

While the proposed method for exciting dark stationary states of the TG gas employs a container-like potential, it should be emphasized that the notion of dark and anti-dark many-body eigenstates pertains to various parity invariant potentials. We illustrate this fact in a periodic potential $V(\xi) = V(\xi + D)$ (e.g., optically induced lattices). The SP eigenstates of this system are Bloch waves $\psi_m(\xi, \tau)$ of the form $\phi_{k,n}(\xi, \tau) = u_{k,n}(\xi) e^{ik\xi} e^{-\kappa_{k,n}\tau}$, where n denotes the band number, k is the Bloch wavevector, and $u_{k,n}(\xi) = u_{k,n}(\xi + D)$ describes the periodic spatial profile of the Bloch wave. Since $V(\xi) = V(-\xi)$, the Bloch waves $\phi_{k,n}$ and $\phi_{-k,n}$ are degenerate. By properly choosing the coefficients $a_{k,m}$ and $a_{-k,m}$ within the superposition $\psi_m(\xi, \tau) = a_{k,m}\phi_{k,m,n} + a_{-k,m}\phi_{-k,m,n}$, degenerate eigenstates $\phi_{\pm k,m,n}$ can be superimposed to obtain even $[\psi^+_m(\xi, \tau) = \psi^+_m(-\xi, \tau)]$ and odd-parity $[\psi^-_m(\xi, \tau) = -\psi^-_m(-\xi, \tau)]$ eigenstates. The many-body wavefunction comprised solely from $\psi^+_m(\xi, \tau)$ $[\psi^+_m(\xi, \tau)]$ via Eq. 2 is a dark (anti-dark) excited many-body eigenstate of the TG gas in the lattice. Figure 1(d) shows the (stationary) SP density of the dark and anti-dark many-body eigenstate in a periodic potential $V(\xi) = 10 \cos^2(\pi x)$, constructed by symmetrizing the lowest $N = 21$ SP eigenmodes. The calculation is performed on the ring (periodic boundary conditions) of length $L = 71$.

Relation to linear incoherent light.- Dark and anti-dark excited many-body eigenstates of the TG gas are analogous to partially coherent nondiffracting beams that were studied in the context of classical optics [23, 24]. In order clarify this point, we first demonstrate the mapping between the propagation of incoherent light in linear 1D photonic structures [20] and the TG gas dynamics. Consider a quasimonochromatic, linearly polarized, partially-spatially incoherent light beam which propagates paraxially in the 1D photonic structure described by the spatially dependent index of refraction $n^2_{tot} = n_0^2 + 2\alpha_0 n(x,z)$. The classical electromagnetic field $E(x,z,t)$ of the beam randomly fluctuates; $z(x)$ denotes the propagation axis (spatial, respectively) coordinate. The state of the system is described by the mutual coherence function $B = \langle E^*(x_2, z, t) E(x_1, z, t) \rangle$ [27], where brackets denote the time-average, which equals ensemble average assuming the light source is stationary and ergodic [27]. The mutual coherence function B can be decomposed through an orthonormal set of coherent modes.
\[B(x_1, x_2, \tau) \sum_m \lambda_m \tilde{\psi}_m(x_2, z) \tilde{\psi}_m(x_1, z). \]

In order to connect \(B \) to Eq. (1), we switch to dimensionless units: \(\xi = x/x_0, \tau = z/(2kx_0^2) \) ("time" is here the propagation length) where \(k = n_0\omega/c, \) and \(\omega \) is the temporal frequency of the beam. The potential \(V \) arises from the refractive index \(V(\xi, \tau) = -2(kx_0)^2n(x, z)/n_0. \) Waves \(\psi_m(\xi, \tau) = \sqrt{x_0} \tilde{\psi}_m(x, z) \) obey Eq. (1) (e.g., see Ref. 28), affirming the mapping between the two systems. Note that each solution of Eq. (1) generates one bosonic many-body wavefunction via Eq. (2), and, due to the arbitrary choice of modal weights \(\lambda_m, \) many correlation functions \(\psi_m(\xi, \tau) \) corresponding to incoherent optical fields propagating in linear 1D photonic structures. The density \(\rho = \sum_m |\psi_m|^2 \) corresponds to time-averaged intensity \(I = \sum_m \lambda_m |\psi_m|^2 \) 27.

One particular example of a partially coherent non-diffracting optical beam propagating in vacuum, corresponds to the dark stationary TG wave on a ring studied by Girardeau and Wright 4. An incoherent optical beam with the mutual coherence function \(B(x_1, x_2) = \int dk_x G(k_x) \sin(k_xx), \) or equivalently with the modal structure \(\tilde{\psi}_m(x) = \sqrt{G(k_x)} \sin(k_xx), \) is propagation invariant. If its power spectrum \(G(k_x) \) is rectangular, \(G(k_x) = I_0/K \) for \(|k_x| < K, \) and zero otherwise, the intensity structure has the form \(I_0/2[1 - j_0(Kx)], \) which is exactly the form of the odd SP density-component of the dark stationary wave on a ring in the thermodynamic limit 4. If \(B(x_1, x_2) = \int dk_x G(k_x) \cos(k_xx), \) one obtains anti-dark optical propagation-invariant waves.

We have thus established a link between the dynamics of incoherent light in linear photonic media and TG gas via Eq. (1). It should be kept in mind that the former system is classical, while the latter is quantum, and the evolution of the quantities derived from the set of waves \(\psi_m \) (e.g., the density \(\rho = \sum_m |\psi_m|^2 \)) should be properly interpreted. This mapping adds to the analogies between optical and matter waves 27, and in particular to the analogy between nonlinear partially coherent optical- and matter-waves 31.

Before closing, it should also be noted that the evolution equation for the mutual coherence function \(B(x_1, x_2, z), \) in the paraxial approximation, in linear photonic structures (e.g., see 28), is identical to the evolution of the reduced single-particle density matrix of non-interacting spinless fermions (in 1D, and 2D as well).

In conclusion, we have proposed a scheme for exciting dark stationary waves of the TG gas. Within our scheme, a time-dependent potential focused to the center of the trap, selectively "evaporates" a non-desirable part of the many-body wavefunction, thereby creating a dark stationary wave. The stationary waves of the TG gas are analogous to partially-coherent nondiffracting beams in optics. This analogy is a consequence of the mapping between incoherent light in linear 1D photonic structures and the TG gas.

[1] M. Girardeau, J. Math. Phys. 1, 516 (1960).
[2] E. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963); E. Lieb, Phys. Rev. 130, 1616 (1963).
[3] A. Lenard, J. Math. Phys. 5, 930 (1964).
[4] M. Girardeau and E.M. Wright, Phys. Rev. Lett. 84, 5691 (2000).
[5] F. Schrek et al., Phys. Rev. Lett. 87, 080403 (2001).
[6] A. Görlich et al., Phys. Rev. Lett. 87, 130402 (2001).
[7] M. Greiner et al., Phys. Rev. Lett. 87, 160405 (2001).
[8] H. Moritz et al., Phys. Rev. Lett. 91, 250402 (2003).
[9] B.L. Tolra et al., Phys. Rev. Lett. 92, 190401 (2004); T. Stöferle et al., Phys. Rev. Lett. 92, 130403 (2004).
[10] T. Kinoshita, T. Wenger, and D.S. Weiss, Science 305, 1125 (2004).
[11] B. Paredes et al., Nature (London) 429, 377 (2004).
[12] T. Kinoshita, T. Wenger, and D.S. Weiss, Nature (London) 440, 900 (2006).
[13] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[14] D.S. Petrov, G. Schlyapnikov, and J.T.M. Valraven, Phys. Rev. Lett. 85 3745 (2000).
[15] V. Dunjko, V. Lorent, and M. Olshanii, Phys. Rev. Lett. 86 5413 (2001).
[16] M. Rigol et al., arXiv:cond-mat/0604476 (2006).
[17] T. Busch and G. Huyet, J. Phys. B 36 2553 (2003).
[18] M. Girardeau and E.M. Wright, Phys. Rev. Lett. 84, 5239 (2000).
[19] P. Ohberg and L. Santos, Phys. Rev. Lett. 89, 240402 (2002).
[20] M. Rigol and A. Muramatsu, Phys. Rev. Lett. 94, 240404 (2005).
[21] G.P. Berman et al., Phys. Rev. Lett. 92, 030404 (2004).
[22] A. Minguzzi and D.M. Gangardt, Phys. Rev. Lett. 94, 240404 (2005).
[23] R. Dum et al., Phys. Rev. Lett. 80, 2972 (1998).
[24] S. Burger et al., Phys. Rev. Lett. 83, 5198 (1999); J. Denschlag, et al., Science 287, 97 (2000).
[25] Th. Busch, and J.R. Anglin, Phys. Rev. Lett. 84, 2298 (2000).
[26] A. Muryshev et al., Phys. Rev. Lett. 89, 110401 (2002).
[27] J. Turunen, A. Vasara, and A.T. Friberg, J. Opt. Soc. Am. A 8 282 (1991).
[28] A.V. Shechegrov and E. Wolf, Opt. Lett. 25 (2000).
[29] N.W. Ascroft and N.D. Mermin, *Solid State Physics* (Saunders, Philadelphia, 1976).
[30] J.D. Joannopoulos, R.D. Meade, and J.D. Winn, *Photonic Crystals: Molding the Flow of Light* (Princeton University Press, Princeton, 1995).
[31] L. Mandel and E. Wolf, *Optical Coherence and Quantum Optics*, (Cambridge University Press, New York, 1995).
[32] N. Christodoulides et al., Phys. Rev. E 63, 035601 (2001).
[33] G. Lens, P. Meystre, and E.M. Wright, Phys. Rev. Lett. 71, 3271 (1993); S. L. Rolston and W. D. Phillips, Nature 416, 219 (2002).
[34] H. Buljan, M. Šegvić, and A. Vardi, Phys. Rev. Lett. 95, 180401 (2005).