Adsorption and Photocatalytic Properties of Modified Rectorite-Titanium Dioxide Composites

Yuanyuan Du1*, Xinjun Li1*, Ying Fu1, Linlin Zheng1, Xing Gao1, Wen He1 and Pengwu Zheng2

1 School of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan Shandong. 250200. China
2 School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang Jiangxi. 330013. China
Yuanyuan Du1* and Xinjun Li1* contributed equally to this work.

Abstract. Using rectorite as raw material, REC is modified by nitric acid, TiO2 is attached to the surface of the acidized modified REC tablet to form modified REC-TiO2 composite materials by the sol-gel method, and its adsorption performance and photocatalytic properties were studied. The results show that the adsorption of REC, modified REC, modified REC-TiO2 composite material to methylene blue increased with the increase of equilibrium concentration. The process of adsorption MB of modified REC-TiO2 composite materials is an endothermic process. The adsorption of REC, modified REC, modified REC-TiO2 composite materials to MB increased with the increase of temperature. When the temperature is 25 degree, the maximum adsorption capacity of REC is 93.985 mg/g, the maximum adsorption capacity of modified REC is 107.006 mg/g, and the maximum adsorption capacity of modified REC-TiO2 is 120.773 mg/g. The degradation rate of MB and p-nitrophenol by modified REC-TiO2 composite under illumination are 99% and 98%, respectively. The decontamination rate of MB and 4-NP of modified REC-TiO2 composites under darkness was 50% and 0.8%, respectively. Under light conditions, the degradation rate of MB and 4-NP in modified REC-TiO2 composite materials is improved.

1 Introduction

At present, the wanton discharge of agricultural and industrial wastewater has caused serious environmental pollution, which has aroused widespread concern of the society. The REC and montmorillonite are deposited alternately as one layer. It itself is a good adsorbent, but the adsorption capacity is limited. It can be greatly improved by some chemical modification. It has a very wide application and good development prospects in environmental protection.

As a promising semiconductor photocatalytic material, TiO2 is widely used in various fields due to its good biochemical characteristics, high catalytic activity and good oxidation performance, which is bound to lead the new direction of environmental protection industry. Therefore, the modified rec composite can be prepared on the basis of acidification modified REC, so that the prepared composite has good adsorption performance and photocatalytic performance.

2 Experimental methods

2.1 Preparation of modified REC-TiO2 composite

2.1.1 Preparation of modified REC

Weigh 10.00 g REC with an electronic balance, put it into a 250 mL beaker, add 100 mL 3 mol/L nitric acid for pickling, put it into a 100 °C constant temperature water bath, mechanically stir it for 3h with a powerful electric mixer, wash the sample with deionized water and centrifuge it with a low-speed centrifuge, repeat several times until pH=7. The modified rec was dried at 105 °C for 12h. The modified rec was obtained by grinding the sample with mortar and passing through 200 mesh sieve.

2.1.2 Preparation of modified REC-TiO2 composites by sol-gel method

Use a measuring cylinder to accurately measure 40.0 mL absolute ethanol and add it into a 200 ml dry beaker. Accurately measure 15.0 mL butyl titanate with a measuring cylinder, slowly add it along the beaker wall, and mechanically stir the solution at room temperature for 15 min. Accurately measure 6.0 mL glacial acetic acid, and slowly drop it into the beaker with a rubber tipped burette (delay the violent hydrolysis of butyl titanate). The obtained solution was stirred vigorously for 15 min with a strong electric mixer until the solution was transparent. Weigh 6.00 g of modified rec with an electronic balance, add it to the transparent solution, mechanically stir it in a constant temperature water bath

*Corresponding author’s email: duyuan01@126.com, 928878031@qq.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
at 30 °C, and react for 1 h to obtain solution A.

Weigh 3.40 g ammonium nitrate with an electronic balance, add it into a 200 mL dry beaker, transfer 12 mL deionized water and 10 mL absolute ethanol respectively, and prepare solution B.

Slowly add solution B to solution a with a rubber tip dropper and mechanically stir until pH ≈ 4. Put the mixture into a constant temperature water bath at 40 °C. After mechanical stirring 0.5 h, the gel was made. The semi-finished products were sealed with fresh-keeping film for 12 h, washed with deionized water and centrifuged at low speed for several times until the pH was 7. Put the sample into 105 °C electric blast drying oven, and dry for 12 h till drying. The modified REC-TiO2 composite was obtained by grinding in a mortar, passing through a 200 mesh sieve, calcining in an intelligent box type high temperature furnace at 300 °C for 3 h [1].

2.2 Adsorption experiment of methylene blue

2.2.1 Drawing of standard curve

Accurately weigh 0.0005 g, 0.0010 g, 0.0015 g, 0.0020 g and 0.0025 g MB solids with an electronic analytical balance, put them into different beakers, dissolve them, transfer them into a 250 mL volumetric flask with labels, add deionized water to make a constant volume to the scale line, shake them well, and prepare them into 2 mg/L, 4 mg/L, 6 mg/L, 8 mg/L and 10 mg/L. The absorbance of MB solution was measured with UV-vis spectrophotometer and recorded. The standard curve of concentration (c) and absorbance (A) of MB solution was drawn.

2.2.2 Adsorption kinetics

0.0050 g REC, modified REC and modified REC-TiO2 composite were accurately weighed by electronic analytical balance and added into three different parts of 10.00 mL 0.1 mmol / L MB solution. Put the oscillator into the water bath at a constant temperature to measure the absorbance, and record the absorbance with the water bath constant temperature oscillator at 25 °C and oscillated at constant temperature until the adsorption reached saturation. The absorbance was measured by ultraviolet visible spectrophotometer and recorded.

2.3 Study on Photocatalytic Performance

Two parts of 0.0010 g of modified REC-TiO2 composite were accurately weighed with an electronic analytical balance and added into 20 mL of 0.1 mmol / L MB solution respectively, and then shaken up. One was irradiated by 365 nm triple UV analyzer, and the other part was left in the dark. The absorbance was measured every half an hour and recorded. The test was stopped after 4 hours.

Two parts of 0.0020 g of modified REC-TiO2 composite were accurately weighed with an electronic analytical balance and added into 10 mL of 10 mg / L 4-NP solution respectively, and then shaken up. One part was irradiated by 253 nm triple UV analyzer, and the other part was left in the dark. The absorbance was measured every half an hour and recorded. The test was stopped after 4 hours.

2.4 Infrared spectrum analysis

REC, modified REC and modified REC-TiO2 composite materials were mixed with potassium bromide at the ratio of 1:100 in an agate mortar and ground, then pressed with a tablet press, and finally scanned with an infrared spectrometer. The resolution of the infrared spectrometer is 4 cm⁻¹, the analysis range is 400-4000 cm⁻¹, and the accuracy is 0.01 cm⁻¹. Analysis of the wavelength range of each absorption band, infer that there should be some functional groups in the molecule, in order to identify the sample.

3 Results and discussion

3.1 Adsorption experiment of methylene blue

3.1.1 Adsorption kinetics

In order to study the kinetic mechanism of adsorption process, pseudo second order kinetic model is often used to simulate the experimental data [5]. According to the pseudo second order kinetic equation:

$$\frac{t}{q_e} = \frac{1}{kq_o^2} + \frac{t}{q_e}$$

Where k (mg / g · h) is the second-order adsorption rate constant [6], qe (mg / g) is the adsorption capacity of MB at t (h), qe (mg / g) is the adsorption capacity of MB at equilibrium time [7]. The kinetic parameters obtained from the experimental data are shown in Table 1 and Table 2.
3.2 Study on Photocatalytic Performance

Under the photocatalysis, TiO₂ can degrade MB by demethylation. At the wavelength of 662 nm, the absorbance of the unadsorbed MB solution decreases. The degradation rate of MB was 99% in light and 50% in dark. Under the condition of ultraviolet lamp irradiation, the modified REC-TiO₂ composite has strong photodegradation effect on MB in addition to adsorption effect, which makes the degradation rate under light condition higher than that under dark condition.

Under photocatalysis, the modified REC-TiO₂ composite can remove 4-NP, but not affected by its adsorption performance. The degradation rate of 4-NP was 98% in light and 0.8% in dark. Under the irradiation of UV lamp, the modified REC-TiO₂ composite has a strong photodegradation effect on 4-NP, which makes the degradation rate of 4-NP in the light condition higher than that in the dark.

3.3 Infrared spectrum analysis

The Fourier transform infrared spectra of REC, modified REC and modified REC-TiO₂ composites were analyzed. The results show that the absorption peaks at 3630 cm⁻¹ are bending vibration absorption peaks of -OH formed by interlayer adsorbed water; the absorption peak at 3390 cm⁻¹ is the vibration absorption peaks formed by hydrogen bond formed by interlayer adsorbed water; the absorption peak at 525 cm⁻¹ is the stretching vibration absorption peak formed by silicon hydroxyl group; the absorption peak at 1100 cm⁻¹ is the characteristic absorption peak of TiO₂ loaded in the modified REC-TiO₂ composite; when TiO₂ particles are loaded on the modified rec sheet, the absorption peak at 3630 cm⁻¹ is the highest. The blue shift of the absorption peak at cm⁻¹ indicates that there is a strong interaction between TiO₂ particles and modified REC.

4 Conclusion

REC was modified by nitric acid and TiO₂ was attached to the surface of modified REC by butyl titanate to form modified REC-TiO₂ composite. The loading of TiO₂ particles in the modified REC-TiO₂ composite makes the adsorption rate of MB on the modified REC-TiO₂ composite was 99% and 98% under light and dark, respectively, indicating that the adsorption process of modified REC-TiO₂ composite for MB is endothermic. The MB adsorption capacity of modified REC, modified rec and modified REC-TiO₂ increased with the increase of equilibrium concentration. When the temperature was 25 °C, the maximum adsorption capacity of modified rec was 93.985 mg / g, the maximum adsorption capacity of modified rec was 107.006 mg / g, the maximum adsorption capacity of modified REC-TiO₂ composite was 120.773 mg / g, indicating that the adsorption performance of modified REC-TiO₂ composite was much higher than that of modified rec and rec original sample. The adsorption capacity of REC, modifiedREC and modified REC-TiO₂ composite increased with the increase of temperature, and finally reached the adsorption saturation state. The degradation rates of MB and 4-NP of the modified REC-TiO₂ composite were 99% and 98% respectively under light, and 50% and 0.8% respectively under dark, which indicated that the light condition was beneficial to improve the photocatalytic activity of the modified REC-TiO₂ composite.

Table 1. Second order kinetic parameters of MB adsorption by REC, modified REC and modified REC-TiO₂ composites with different time

Sample	k (mg/g·h⁻¹)	qe (mg/g)	R²
REC	0.013	74.627	0.996
Modified REC	0.027	78.125	0.996
Modified REC-TiO₂	0.048	79.365	0.999

Table 2. Second order kinetic parameters of MB adsorption by modifiedREC-TiO₂ composite at different temperatures

Modified REC-TiO₂	k (mg/g·h⁻¹)	qe (mg/g)	R²
25°C	0.027	75.414	0.999
35°C	0.037	76.982	0.999
45°C	0.062	78.864	0.999

Reference

1. Liu Chengdong, Wu Yixin, Meng Xiangyu, et al. Construction of Two Novel Titanium Oxide Clusters: Copper Ion Introducing Enhances Photocatalytic Performance. 2020, 2020(44):4189-4194.
2. Ziqiang Yin, Rique Jie En Yeow, Yunqiao Ma, et al. Link between interfacial interaction and membrane fouling during organic solvent ultrafiltration of colloidal foulants. 2020, 611.
3. Masayuki Yamane, Shinji Aso, Teruo Sakaino. Preparation of a gel from metal alkoxide and its properties as a precursor of oxide glass[J]. Journal of Materials Science, 1978, 13(4): 865-870.
4. Jingyi Li, Chunsheng Chen, Jinchao Zhao, et al.
Photodegradation of dye pollutants on TiO$_2$ nanoparticles dispersed in silicate under UV-Vis irradiation[J]. Appl Catal B, 2002, 37: 331-338.

5. Harstrick A, KutO M, Heinzle E. TiO$_2$-assisted degradation of environmentally relevant organic compounds in waste water using a novel fluidised bed photoreactor[J]. Environmental Science and Technology, 1996, 30: 817-826.

6. Bonamali Pal, Maheshwar Sharon, Gyoichi Nogami. Preparation and characterization of TiO$_2$/Fe$_2$O$_3$ binary mixed oxides and its photocatalytic properties[J]. Materials Chemistry and Physics, 1999, 59: 254-261.

7. Jiaguo Yu, Xiujian Zhao, Qingnan Zhao. Effect of surface on photocatalytic activity of TiO$_2$ thin films prepred by sol-gel method[J]. Thin Solid Films, 2000, 379: 7-14.

8. Hiroshi Yoneyama, Shigeo Haga, Shoji Yamanaka. Photocatalytic Activities of Microcrystalline TiO$_2$ Incorporated in Sheet Silicates of Clay[J]. The Journal of Physical Chemistry, 1989, 93(12): 4833-4837.