Genome diversity of domesticated Acinetobacter baumannii ATCC 19606T strains

Irene Artuso†, Massimiliano Lucidi†, Daniela Visaggio1,2, Giulia Capecchi1, Gabriele Andrea Lugli3, Marco Ventura3 and Paolo Visca1,2,∗

Abstract
Acinetobacter baumannii has emerged as an important opportunistic pathogen worldwide, being responsible for large outbreaks for nosocomial infections, primarily in intensive care units. A. baumannii ATCC 19606 is the species type strain, and a reference organism in many laboratories due to its low virulence, amenability to genetic manipulation and extensive antibiotic susceptibility. We wondered if frequent propagation of A. baumannii ATCC 19606T in different laboratories may have driven micro- and macro-evolutionary events that could determine inter-laboratory differences of genome-based data. By combining Illumina MiSeq, MinION and Sanger technologies, we generated a high-quality whole-genome sequence of A. baumannii ATCC 19606, then performed a comparative genome analysis between A. baumannii ATCC 19606T strains from several research laboratories and a reference collection. Differences between publicly available ATCC 19606T genome sequences were observed, including SNPs, macro- and micro-deletions, and the uneven presence of a 52 kb prophage belonging to genus Vieuvirus. Two plasmids, pMAC and p1ATCC19606, were invariably detected in all tested strains. The presence of a putative replicase, a replication origin containing four 22-mer direct repeats, and a toxin-antitoxin system implicated in plasmid stability were predicted by in silico analysis of p1ATCC19606, and experimentally confirmed. This work refines the sequence, structure and functional annotation of the A. baumannii ATCC 19606T genome, and highlights some remarkable differences between domesticated strains, likely resulting from genetic drift.

DATA SUMMARY
The sequence data of the Acinetobacter baumannii ATCC 19606(A) used in this study is freely available from the NCBI BioProject database under accession number PRJNA637288.

INTRODUCTION
Acinetobacter baumannii is a worldwide-distributed Gram-negative bacterium and a major opportunistic pathogen, especially among critically ill patients in intensive care units [1–3]. Due to extensive antibiotic resistance [4, 5], A. baumannii is on top of the global priority list of pathogens for which new and effective drugs are urgently needed, according to the World Health Organization [6]. While it is likely that infections caused by bacteria now classified as A. baumannii emerged during the 1970s...
Impact Statement

For decades Acinetobacter baumannii has emerged as a major antibiotic-resistant nosocomial pathogen, and the type strain ATCC 19606\(^7\) has been used as the reference organism for A. baumannii research in many laboratories. However, frequent subculturing and local differences in culture conditions can result in domestication of laboratory strains, a micro-evolutionary process driven by mutational events at the genome level that can reflect into a variable phenotype. Motivated by the remarkable diversity in publicly available A. baumannii ATCC 19606\(^7\) whole-genome sequences, we generated an accurately revised whole-genome sequence of ATCC 19606\(^7\), which will set a more solid basis for studies of the genetics and genomics of this model organism. Accurate genome assembly made it possible to characterize indigenous plasmids and a new prophage in the A. baumannii ATCC 19606\(^7\) genome. The remarkable genome diversity among A. baumannii ATCC 19606\(^7\) strains from different laboratories poses the need for researchers to specify the lineage of the strain used, as local culturing and storage practices may affect strain microevolution.

[7], the species was not formally established until 1986, when strain ATCC 19606\(^7\) was designated as the A. baumannii type strain [8]. A. baumannii ATCC 19606\(^7\) was isolated in 1948 from the urine of a US patient, and called Bacterium anitratum [9, 10], then filed with the ATCC and renamed A. baumannii in 1986 [8]. More recently, ATCC 19606\(^7\) was assigned type O by pulsed-field gel electrophoresis and ST52 by multi-locus sequence typing (MLST) [11]. A. baumannii ATCC 19606\(^7\) has extensively been used as a model strain for research on antimicrobial resistance [12–15], desiccation and osmotic shock tolerance [16], transcriptional regulation and virulence both in vitro and in vivo [17–24], with more than 180 published papers according to ISI Web of Science records (accessed July 2021). The importance of A. baumannii ATCC 19606\(^7\) as a model organism led us to initiate a whole sequencing and annotation project of its genome. While this work was in progress, three complete genome sequences of ATCC 19606\(^7\) were released [CP045110.1 [25], hereafter ATCC 19606(H); AP022836 [26], hereafter ATCC 19606(O); CP046654.1 [27], hereafter ATCC 19606(M)], showing remarkable differences in sequence and annotation compared with the A. baumannii ATCC 19606\(^7\) genome determined in our laboratory. We wondered if the maintenance and propagation of A. baumannii ATCC 19606\(^7\) in laboratories throughout the world may have entailed micro- and macro-evolutionary events responsible for such differences, and eventually affect the inter-laboratory comparison of genome-based data, as inferred for other laboratory-adapted strains [28–32]. To test this hypothesis, we generated a high-quality complete genome sequence of A. baumannii ATCC 19606\(^7\) employing Illumina MiSeq and MinION technologies and performed a comparative analysis with previously deposited whole-genome sequences of this strain [25–27]. To gain further insights into inter-laboratory diversification of the A. baumannii ATCC 19606\(^7\), the whole-genome sequences of strains maintained in different research institutions throughout Europe and the ATCC (complete genome sequence available at https://www.lgcstandards-atcc.org/Products/All/19606.aspx?geo_country=it#generalinformation) were compared. Numerous single nucleotide polymorphisms (SNPs) and insertions-deletions (INDELs), as well as the occasional loss of a prophage and the invariant presence of two indigenous plasmids were demonstrated, probably reflecting strain domestication. Moreover, the toxin-antitoxin (TA) module and the replicase gene of the indigenous plasmid p1ATCC19606 [25] were in silico characterized and experimentally verified, providing useful information about the mechanisms of plasmid maintenance and replication in Acinetobacter.

METHODS

Bacterial strains and culture media

Bacterial strains used in this study (Table 1) were grown in Luria–Bertani (LB) broth or on LB agar (LA) plates at 37°C. When needed, kanamycin (Km), gentamicin (Gm) or tetracycline (Tc) were added. The Km concentrations used for Escherichia coli DH5α and Acinetobacter baylyi BD413 were 40 µg ml−1 and 15 µg ml−1, respectively. The Gm and Tc concentrations used for E. coli DH5α were 10 µg ml−1 and 12.5 µg ml−1, respectively. Zeocin (Zeo) was added to low-salt LA [33] at 25 µg ml−1 and 250 µg ml−1 for E. coli DH5α and Acinetobacter spp., respectively.

DNA manipulation

Genomic DNA was extracted and purified with the QIAamp DNA minikit (Qiagen), according to the manufacturer's instructions. Plasmid DNA was extracted from overnight bacterial cultures using the Wizard Plus SV Minipreps DNA Purification System (Promega Corporation), according to the manufacturer’s instructions. PCR reactions were performed using Thermo Scientific Phusion High-Fidelity DNA Polymerase with primers listed in Table S1 (available in the online version of this article). FastDigest restriction enzymes were purchased from Thermo Fisher Scientific. Plasmid DNA sequencing was performed using an ABI3730 Sequencer (service by Bio-fab Research, Rome, IT).
Table 1. Bacterial strains and plasmids

Strain or plasmid	Relevant characteristics*	Received year	Reference and/or source
Strain			
A. baumannii			
ATCC 19606(A)	Clinical isolate; type strain	2014	Beate Averhoff collection; genome accession number: CP058289.1
ATCC 19606(D)	Clinical isolate; type strain	2020	German Collection of Microorganisms and Cell Cultures, DSMZ GmbH (genome available at https://genomes.atcc.org/genomes/1577c3a70f334038)
ATCC 19606(H)	Clinical isolate; type strain	–	[25]; genome accession number: CP045110.1
ATCC 19606(M)	Clinical isolate; type strain	–	[27]; genome accession number: CP046654.1
ATCC 19606(O)	Clinical isolate; type strain	–	[26]; genome accession number: AP022836
ATCC 19606(S)	Clinical isolate; type strain	2019	Harald Seifert collection
ATCC 19606(T)	Clinical isolate; type strain	2010	Kevin Towner collection
ATCC 17978	Clinical isolate	2007	[114]
ACICU	MDR clinical isolate, prototype of the international clonal lineage II	2007	[115]
AB5075	MDR and hypervirulent clinical isolate	2019	[116]
A. baylyi BD413 (ADP1)	Naturally transformable strain	2017	[117]
Acinetobacter dijkshoorniae 271	Member of the ACB complex	2017	[118]; H. Seifert collection
Acinetobacter nosocomialis UKK_0361	Member of the ACB complex	2017	[66]; H. Seifert collection
Acinetobacter pittii UKK_0145	Member of the ACB complex	2017	[66]; H. Seifert collection
E. coli DH5α	*recA1 endA1 hsdR17 supE44 thi-1 gyrA96 relA1 Δ(lacZYA-argF) U169 [φ80lacZΔM15] F- NalR*	–	[60]
Plasmid			
pCR-Blunt II-TOPO	*E. coli* cloning vector; Km*, Zeo*	–	ThermoFisher
p1ATCC19606	Native plasmid of *A. baumannii* ATCC 19606	–	[25]
pMAC	Native plasmid of *A. baumannii* ATCC 19606	–	[87]
pVRL1	*E. coli-Acinetobacter* species shuttle vector for general cloning purposes; Gm*	–	[66]
pVRL1ΔTA	pVRL1 carrying a deletion in the TA system; Gm*	–	[66]
pVRL2	*E. coli-Acinetobacter* species shuttle vector for arabinose-inducible gene expression; Gm*	–	[66]
pME6032	Broad-host-range shuttle vector for IPTG-inducible gene expression; Tc*	–	[68]
pCR-p1ATCC19606	Full length p1ATCC19606 ligated to pCR-Blunt II-TOPO; Km*, Zeo*	–	This work

Continued
Genome sequencing, assembly and annotation

Whole-genome sequencing of *A. baumannii* ATCC 19606(A) was performed by GenProbio srl (Parma, Italy) using a MiSeq platform (Illumina, San Diego, CA, USA) according to the supplier's protocol (Illumina, San Diego, CA, USA). Genomic DNA extracted from *A. baumannii* ATCC 19606(A) was also subjected to whole-genome sequencing using a MinION (Oxford Nanopore, UK) at GenProbio srl (Parma, Italy) according to the supplier's protocol (Oxford Nanopore, UK). MinION long reads obtained from genome sequencing runs were used as input for a *de novo* genome assembly using Canu v1.8 with the estimated parameter 'genomeSize' of 4.0 m [34], generating a single complete sequence of the genome. Then, fastq files of Illumina paired-end reads (250 bp) and MinION long reads (ranging from 1000 to 100 065 bp) were used as input for a second genome assembly through the MEGAnnotator pipeline [35]. The SPAdes programme v 3.13.0 was used for the hybrid assembly of the genome sequence with the pipeline option '--isolate', a list of k-mer sizes of 21, 33, 55, 77, 99, 127, and the complete genome sequence obtained through Canu v1.8 for gap closure and repeat resolution using the option '--trusted-contigs' [36]. The chromosome sequence, together with those of plasmids, were then analysed by MEGAnnotator for the prediction of protein-encoding ORFs using Prodigal [37]. Predicted ORFs were functionally annotated by means of RAPSearch2 (Reduced Alphabet based Protein similarity Search) (cutoff E value, 1×10^{−5}; minimum alignment length, 20 aminoacids) by interrogation of the NCBI nr database [38] coupled with hidden Markov model (HMM) profile searches (http://hmmer.org/), performed against the manually curated Pfam-A database (cutoff E value, 1×10^{−30}). tRNA genes were identified using tRNAscan-SE v1.4 [39], while rRNA genes were detected using RNAmmer v1.2 [40]. Before genome submission to NCBI, a protein integrity check that takes neighbouring pairs of proteins and does a BLASTp analysis on them was performed to detect frameshifts (https://www.ncbi.nlm.nih.gov/ genomesrameshifts/frameshifts.cgi). Pairs of neighbours that hit the same longer protein were annotated as pseudogenes. The presence of genomic islands (GIs) was predicted by IslandViewer 4 [41], which uses SIGI-HMM, IslandPath-DIMOB and IslandPick prediction algorithms to calculate codon usage, dinucleotide bias within a genome, generating a dataset of GIs. Only GIs predicted by at least one of the three algorithms, which do not completely overlap with any predicted phage regions, were considered. Insertion sequences (ISs) were predicted by ISEScan [42]. Prophage sequence prediction and annotation were performed using PHASTER (PHAge Search Tool Enhanced Release) (http://phaster.ca), and only intact (score >90) and questionable (score >70 to 90) phage genomes were considered, whereas incomplete phage genomes (score ≤70) were discarded [43]. The raw read data of the ATCC 19606(M) sequencing project (SRR10295884) were downloaded and screened in search for putative plasmid sequences.

Table 1. Continued

Strain or plasmid	Relevant characteristics*	Received year	Reference and/or source
pCR-p1ATCC19606Δ1	Deletion derivative of p1ATCC19606 cloned into pCR-Blunt II-TOPO; Km\(^*\), Zeo\(^*\)	–	This work
pCR-p1ATCC19606Δ2	Deletion derivative of p1ATCC19606 cloned into pCR-Blunt II-TOPO; Km\(^*\), Zeo\(^*\)	–	This work
pCR-p1ATCC19606Δ3	Deletion derivative of p1ATCC19606 cloned into pCR-Blunt II-TOPO; Km\(^*\), Zeo\(^*\)	–	This work
pCR-p1ATCC19606Δ4	Deletion derivative of p1ATCC19606 cloned into pCR-Blunt II-TOPO; Km\(^*\), Zeo\(^*\)	–	This work
pCR-p1ATCC19606Δ5	Deletion derivative of p1ATCC19606 cloned into pCR-Blunt II-TOPO; Km\(^*\), Zeo\(^*\)	–	This work
pCR-p1ATCC19606ΔhigB2A2	pCR-p1ATCC19606 carrying a deletion in the TA system; Km\(^*\), Zeo\(^*\)	–	This work
pVRL2higA2	higA2-like antitoxin promoterless gene cloned into pVRL2; Gm\(^*\)	–	This work
pME6032higB2	higB2-like toxin promoterless gene cloned into pME6032; Tc\(^*\)	–	This work

Na\(^\), nalidixic acid resistant; Km\(^*\), kanamicin resistant; Tc\(^*\), tetracycline resistant; Zeo\(^*\), zeocin resistant, Gm\(^*\), gentamicin resistance.
Comparative genome analyses and mutation detection

ProgressiveMauve [47] was used for pairwise comparison of the *A. baumannii* ATCC 19606(A) assembled genome with *A. baumannii* ATCC 19606(D, M, H and O strains) genome assemblies. To detect SNPs and microindels (insertion or deletion events), sequence reads belonging to ATCC 19606(A) were mapped against the ATCC 19606(M) and ATCC 19606(H) genome sequences with BWA mem v0.7.17 [48], using default parameters. A consensus pileup was produced using SAMtools v1.10 [49]. Then, SNPs and microindels were defined using VarScan v2.3.6 [50] with the following parameters: minimum coverage (8), min-reads2 (2), min-avg-qual (15), min-var-freq (0.5), P-value (99×10^{-5}). SNPs and microindels were manually inspected in the output files with Artemis [51]. All discrepancies, i.e. mutations inferred from comparative genome analysis, between ATCC 19606(A), ATCC 19606(M) and ATCC 19606(H) were confirmed by Sanger sequencing of PCR products encompassing the mutated site using an ABI3730 Sequencer (service by Bio-Fab Research, Rome, Italy). For each mutated protein product, a corresponding orthologue from ACICU strain (CP031380.1) was identified using blastp analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi) with a cutoff value E<10^{-5} and 50% identity across at least 80% of protein sequences. Twenty-two genes showing SNPs and INDELs in pairwise comparisons between ATCC 19606(A), ATCC 19606(H) and ATCC 19606(M) genomes were concatenated, and aligned with mafft v7, selecting the G-INS-i method [52]. A phylogenetic tree based on the concatenated alignment was constructed using the neighbour-joining (NJ) method and visualized using iTOL v6.1.2 [53]. The tree was rooted on ATCC 19606(A).

Detection of phage Φ19606

The presence of phage Φ19606 in *A. baumannii* ATCC 19606 strains A, D, S and T was verified by PCR using the primer pairs listed in Table S1 and 30 ng of bacterial DNA as a template. To evaluate the loss of Φ19606 during serial propagation steps, ten 1 mm colonies were randomly taken from primary plating on LA of the original *A. baumannii* ATCC 19606(D) vial and suspended in 500 μl of saline at 4 °C for 30 min with intermittent vortexing to maximize the separation of individual cells. The absence of cell aggregates was verified by bright-field microscopy. Then 1 μl of this suspension was streaked onto an LA plate and incubated at 37 °C for 24 h, while the rest was centrifuged for total DNA extraction from the cell pellet using QIAamp DNA minikit (Qiagen), according to the manufacturer’s instructions. Fourteen serial passages were repeated according to this procedure, for a total of 15 passages including the primary plating from the DSMZ stock vial. For each propagation step of ATCC 19606(D), the presence/absence of Φ19606 was verified by PCR using the primers listed in Table S1 and 30 ng of the purified genome as template.

Phylogenetic analysis of phage Φ19606

The complete genome sequences of *Acinetobacter* phages belonging to the *Siphoviridae* family were retrieved from the NCBI database. The resulting dataset contained the genomes of 19 *Acinetobacter* phages (Table S2), including Φ19606. All pairwise comparisons of the nucleotide sequences were conducted using the Genome-blast Distance Phylogeny (GBDP) method [54] under settings recommended for prokaryotic viruses [55] using VICTOR (https://ggdc.dsmz.de/victor.php). The resulting intergenomic distances were used to infer a balanced minimum evolution tree with branch support via FASTME including SPR postprocessing [56] for the formula D0. Branch support was inferred from 100 pseudo-bootstrap replicates each. The tree was rooted at the midpoint [57] and visualized with iTOL [53]. Taxon boundaries at the genus level were estimated with the opttsil programme [58], with the recommended clustering threshold of 0.84 [56] and an F value (fraction of links required for cluster fusion) of 0.5 [59]. The presence of the Φ19606 sequence was searched in all *Acinetobacter* strains using blastn against the NCBI database with cutoff values of 95% identity and 85% coverage of consecutive segments from the query sequence. For each strain containing the Φ19606 sequence, MLST was performed according to the Pasteur scheme (https://pubmlst.org/bigsdb?db=pubmlst_abumannii_pasteur_seqdef) and the corresponding sequence type (ST) was determined.

Preparation of *Acinetobacter* spp. and *E. coli* DH5α competent cells

E. coli competent cells were prepared by the rubidium–calcium chloride method and transformed according to the heat-shock protocol [60]. Electrocompetent cells of *A. baumannii* were prepared according to Lucidi and coworkers [22]. Plasmid DNA was introduced in *Acinetobacter* spp. by electroporation as previously described [22]. Naturally competent *A. baylyi* BD413 was transformed with 150 ng of plasmid, as previously reported [61].

Deletion analysis of p1ATCC19606

DNA fragments encompassing different regions of the p1ATCC19606 plasmid were amplified by PCR using primer pairs listed in Table S1. The amplicons were cloned into pCR-Blunt II-TOPO (pCR, Thermo Fisher Scientific) according to the manufacturer’s instructions, and the resulting constructs (Table 1) were introduced by electroporation into different *Acinetobacter* spp. The transformation efficiency (TE) was calculated as the ratio between the c.f.u. counts on selective agar plates and the amount of DNA used for transformation and expressed as c.f.u. μg⁻¹ of plasmid DNA.
Homology searches and protein modelling
Putative protein-coding genes from plasmid p1ATCC19606 were manually annotated by integrating the MEGAnnotator [35] and Blast2GO (Basic Local Alignment Search Tool 2 Gene Ontology; [62]) outputs. The putative TA system of p1ATCC19606 was characterized by predicting the protein structures using I-TASSER [63] and SWISS-MODEL [64]. Match marker analyses and superimposition of proteins were performed using the UCSF Chimaera software [65].

Impact of the higB2A2-like toxin-antitoxin system on p1ATCC19606 stability
The p1ATCC19606 plasmid was ligated to the PCR plasmid to enable replication in E. coli, yielding pCR-p1ATCC19606. Subsequently, deletion of the higB2A2-like operon (293 bp) was generated using primers ΔTA FW and ΔTA RV (Table S1) and a Q5 site-directed mutagenesis kit (New England BioLabs). The resulting construct, named pCR-p1ATCC19606ΔhigB2A2, was introduced into E. coli DH5α for plasmid stability testing. Briefly, bacterial strains were preliminarily grown for 18 h in LB with 40 µg ml⁻¹ Km, then washed and diluted 1000-fold in LB (without antibiotic). Bacterial cultures were refreshed (1:1000) every 12 h four times, for a total of 48 h. Bacterial colony counts were determined on LA (N) and LA supplemented with 40 µg ml⁻¹ Km (Nₐ₀). Plasmids pVRL1 and pVRL1ΔTA were used as controls for plasmid stability, as reported elsewhere [66]. Plasmid stability is defined by the ratio Nₐ₀/N₀ [67].

Construction of plasmids directing the controlled expression of higB2 and higA2 genes
The promoterless higA2-like antitoxin gene was amplified from p1ATCC19606 with primers pVRL2higA2_FW and pVRL2higA2_RV (Table S1), and the 357 bp amplicon was ligated to XhoI and HindIII sites of the pVRL2 vector [66], yielding pVRL2higA2. The promoterless higB2-like toxin gene was amplified by PCR from p1ATCC19606 with primers pME6032higB2_FW and pME6032higB2_RV (Table S1), and the 368 bp amplicon was ligated to the SacI and XhoI sites of the pME6032 vector [68], yielding pME6032higB2. Plasmids pVRL2higA2 and pME6032higB2 were individually introduced into E. coli DH5α, and transformants were selected on LA supplemented with either 10 µg ml⁻¹ Gm or 12.5 µg ml⁻¹ Tc, respectively. Subsequently, pME6032higB2 was introduced in E. coli DH5α(pVRL2higA2) and transformants were routinely maintained on LA supplemented with 10 µg ml⁻¹ Gm, 12.5 µg ml⁻¹ Tc and 0.5% l-arabinose to ensure plasmid selection and expression of the higB2-like antitoxin gene. To test the neutralizing effect of the HigA2 antitoxin on the HigB2 toxin, E. coli DH5α carrying both pVRL2higA2 and pME6032higB2 was grown in LB supplemented with 10 µg ml⁻¹ Gm, 12.5 µg ml⁻¹ Tc, and 0.5% l-arabinose, then washed in saline, diluted to OD₆₀₀ =0.001 (corresponding to ca 5×10⁶ cfu ml⁻¹) and dispensed in a microtitre plate containing LB supplemented with 12.5 µg ml⁻¹ Tc and different concentrations of l-arabinose (from 1–0.015%) and isopropyl-β-D-1-thiogalactopyranoside (IPTG; from 300 to 9.4 µM). After 24 h incubation at 37°C, the growth was determined by OD₆₀₀ measurements in a Spark 10M microtitre reader (Tecan). E. coli DH5α(pVRL2higA2 pME6032higB2) was also plated on LA supplemented with 0.5, 0.25, 0.12 and 0% l-arabinose. Then paper discs containing IPTG (from 5 mM to 0.08 mM) were dispensed on the plate, and the zone of inhibition (ZOI) was determined after 24 h incubation at 37°C.

RESULTS AND DISCUSSION
Historical background of A. baumannii ATCC 19606T
In the course of a study on ‘paracolon bacilli’ (old designation for coliform bacteria that do not ferment lactose) carried out by Dr K. Wheeler and Dr C.A. Stuart, several isolates were sent to Dr I.G. Schaub and Dr F.D. Hauber (John Hopkins University, Baltimore, MD, USA) for laboratory identification. Among these, one isolate (no. 81 according to Schaub’s and Hauber’s nomenclature) was reported to be an unidentifiable Bacterium sp. responsible for a urinary tract infection. The isolate was proposed for classification as a new species in 1964, but it was not accepted by the scientific community [69]. Thereafter, ATCC 19606 was formally designated as the type strain of B. anitratum [10]. In the 1980s, DNA–DNA hybridization studies reclassified B. anitratum as Acinetobacter calcoaceticus [70] and, subsequently, the definitive name of A. baumannii ATCC 19606T was assigned to the original Schaub and Hauber no. 81 isolate [8].

Genealogy of A. baumannii ATCC 19606T strains from different sources
We wondered if maintenance and sequential propagation of A. baumannii ATCC 19606T in different laboratories may result in genotype differences. To address this issue, four ATCC 19606 strains (A, D, S, T) were obtained from three independent research laboratories in Europe and the German Collection of Microorganisms and Cell Cultures-DSMZ GmbH (Braunschweig, Germany) (Table 1). ATCC 19606(A) was directly purchased from ATCC by microbiologists of the Robert Koch Institute (Wernigerode, Germany), then given to Professor B. Averhoff of the Goethe University (Frankfurt am Main,
Germany) before reaching our laboratory. ATCC 19606 strain D was purchased by our laboratory from the DSMZ. ATCC 19606 strains S and T were shared by Dr P.A.D. Grimont of Institute Pasteur (Paris, France) with Professor H. Seifert (Institut Für Medizinische Mikrobiologie Immunologie Und Hygiene, Cologne, Germany) and Professor K.J. Towner (Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Nottingham, UK), respectively, then sent to our laboratory.

From the history of the various strains, it emerged that ATCC 19606(A, S, T) were serially propagated several times (personal communications), while ATCC 19606(D) at least five times before ending up in our hands (see previous section Historical background of A. baumannii ATCC 19606T and https://www.lgcstandards-atcc.org/products/all/19606.aspx?geo_country=it#history).

General features of the A. baumannii ATCC 19606(A) genome

The whole-genome sequence of A. baumannii ATCC 19606(A) was determined in our laboratory using a hybrid *de novo* assembly combining Illumina paired-end reads and MinION long reads. The resulting A. baumannii ATCC 19606(A) genome sequence represents a 696-fold coverage (426-fold coverage based on short-reads and 270 on long-reads) complete genome with a consensus sequence of 3927723 bp and a mean GC content of 39.18\% (Fig. 1). The ATCC 19606(A) genome contains 3618 ORFs, 71 tRNAs and 6 rRNA operons (six copies of 5s, 16s and 23s). Two indigenous plasmids, named p1ATCC19606
and pMAC, were entirely reconstructed, resulting in 9540 and 7655 bp sequences with 11 and 13 predicted ORFs, respectively. The ATCC 19606(A) chromosome and plasmid sequences are now publicly available under GenBank Accession numbers of CP058289, CP058290 and CP058291, respectively. ATCC 19606(A) was assigned to ST52 with MLST Pasteur scheme (crp60-fusA-gltA-pyrG-recA-rplB-rpoB, 3-2-2-7-9-1-5) [71], in accordance with a previous report [11]. Six ISs were predicted in ATCC 19606(A) genome: five already reported by Zhu and coworkers [27], and an additional IS belonging to the ISL3 family spanning positions 2528296–2531742 of the chromosome (Table S3). A total of 11 GIs were predicted in the chromosome (Fig. 1, Table S4), many of which are located in the proximity of tRNA genes, which serve as integration sites for exogenous genetic elements [72, 73]. Several genes located in the predicted GI-10 (named GI19606 in [25]) encode proteins involved in arsenic resistance (arsenic resistance protein ArsH, and arsenic reductase and transporter [HTZ92_3354-HTZ92_3356]) and sulfamethoxazole resistance (Sul2 [HTZ92_3349]). Moreover, the gene encoding for a putative chlorhexidine efflux transporter (HTZ92_1759), plausibly implicated in resistance to this disinfectant, was detected in GI-3. In GI-4 two efflux pumps (HTZ92_2076 and HTZ92_2085) were detected, whose role is still unknown. The lprI lipoprotein gene (HTZ92_2140) was detected in GI-5. LprI was previously reported to act as a lysozyme inhibitor [74] and could therefore contribute to elude the host’s innate immunity [75].

Based on the above observations, the GIs predicted in the ATCC 19606(A) genome encode for some functions that could contribute to the general fitness of the bacterium by facilitating its survival under unfavourable environmental conditions.

Comparative quality assessment of available ATCC 19606T complete genome sequences

To assess the quality of the assembled ATCC 19606(A) genome sequence, a pairwise comparison between three publicly available complete genome sequences of the same strain retrieved from the NCBI database, i.e. ATCC 19606(M) (CP046654.1 [27]), ATCC 19606(O) (AP022836 [26]) and ATCC 19606(H) (CP045110.1 [25]), and the sequence of ATCC 19606(D) deposited at the ATCC web site (https://genomes.atcc.org/genomes/1577c3a70f334038), was conducted. All genome assemblies showed >99% completeness and no contamination (Fig. 2). Screening with the MAUVE multiple genome aligner [47] unveiled several SNPs and small INDELs (Fig. 2). ATCC 19606(O) showed the highest number of mutations with respect to ATCC 19606(H), ATCC 19606(M) and ATCC 19606(D), with a total of 1698, 1683 and 1843 SNPs plus INDELs, respectively (Fig. 2). These results are consistent with previous observations by Hamidian and coworkers [25]. Manual screening of the ORFs revealed 263 frameshifted genes in ATCC 19606(O), which also showed the lowest annotation accuracy, with 1284 hypothetical proteins. Although both Racon v1.3.1.1 and Pilon v1.20.1 were used to improve the sequence quality of ATCC 19606(O) [26], the high number of SNPs, INDELs and frameshifted ORFs in its genome suggests they could result from a low-quality sequence. Therefore, further comparative genome analyses were limited to the ATCC 19606(A) and the publicly available genomes with the highest quality represented by ATCC 19606(M) and ATCC 19606(H).

Differential genomic traits of A. baumannii ATCC 19606 strains A, M and H

ATCC 19606(A) and ATCC 19606(M) exhibited similar annotation accuracy (Fig. 2), while ATCC 19606(H) showed lower accuracy, with 1599 hypothetical proteins. Discrepancies were also observed in the number of annotated pseudogenes, specifically six in ATCC 19606(A), none in ATCC 19606(H) and 45 in ATCC 19606(M), including frameshifted, incomplete or internally stopped ORFs [27]. Eleven out of 45 putative pseudogenes annotated in ATCC 19606(M) encode frameshifted proteins, and likely result from DNA sequencing errors; 28 putative pseudogenes shared 100% sequence identity with ATCC 19606(A) counterparts but were differently annotated in ATCC 19606(M) and ATCC 19606(A) (Table S5). The remaining six putative pseudogenes were detected also in ATCC 19606(A), according to the NCBI annotation pipeline, which interprets pairs of neighbouring proteins that hit the same longer protein in blastp search as encoded by a single pseudogene. This implies that the pair may represent a single gene that has gained frameshift or other mutations along the way. Although the increasing number of pseudogenes is suggestive of genome erosion [76], in this case, the difference in the number of predicted pseudogenes seems to be due to discrepancies in sequencing and annotation.

It was also noticed that ATCC 19606(A) lacks three tRNA genes compared with ATCC 19606 strains M and H (Fig. 2): one tRNA-Gly (GO593_07205) arranged in tandem with another tRNA-Gly and two tRNA-Gln (GO593_10340 and GO593_10345). The absence of these tRNA genes was confirmed in both Illumina and Nanopore assemblies.

SNPs and INDELs

A comparison of ATCC 19606(A), considered as reference, with ATCC 19606(M) and ATCC 19606(H) genome sequences revealed 67 individual mutations: 47 in ATCC 19606(M) only, 12 in ATCC 19606(H) only, and eight in both ATCC 19606(M) and ATCC 19606(H) (Fig. S1). Among the 47 mutations detected in ATCC 19606(M), 13 insertions mapped inside intergenic regions (Table S6) and one SNP resulted in nucleotide substitution in GO593_04005, encoding a tRNA-Arg. None of the intergenic mutations were mapped within putative promoter sequences, as predicted with the BPROM software [77]. The remaining 33 mutations were located within ORFs, causing frameshifts in 12 genes of ATCC 19606(M), compared with ATCC 19606(A) (Table 2). Multiple mutations were detected in GO593_18950 (ten insertions and two SNPs) and in GO593_18955 (11 insertions), predicted...
Artuso et al., Microbial Genomics 2022;8:000749

One insertion in the ATCC 19606(M) GO593_04990 gene (encoding a putative 3′→5′ exonuclease domain-containing protein) produced a shift in the stop codon, leading to an extended protein product.

Of the eight mutations shared by both ATCC 19606(M) and ATCC 19606(H) (Table 2), one SNP mapped in an intergenic region, and two SNPs were synonymous mutations. Only one SNP introduced a stop codon in HTZ92_0363, whose predicted product is a methyltransferase, leading to the production of truncated protein form in ATCC 19606(A), compared with the full-length protein predicted for both ATCC 19606(M) and ATCC 19606(H) genomes. Four SNPs detected in both ATCC 19606(M) and ATCC 19606(H) caused aminoacid substitutions relative to corresponding ATCC 19606(A) proteins (Table 2). Twelve additional mutations were

![Fig. 2. Relevant features of genome sequences of different A. baumannii ATCC 19606 T strains.](image)
Table 2. Comparative analysis of SNPs detected in ATCC 19606(M), ATCC 19606(H) and ATCC 19606(A) genomes

Mutation	Position in ATCC 19606(M)	Position in ATCC 19606(H)	Nucleotide change	Aminoacid change	Protein length (aa) in ATCC 19606(M)/ATCC 19606(A)/ATCC 19606(H)	Gene designation in ATCC 19606(M)	Gene designation in ATCC 19606(A)	Gene designation in ACICU (Protein length)
SNPs between ATCC 19606(M) and ATCC 19606(A)								
Frameshift	175 678	T→TG	G80W	85/513/513	GO593_01010/FQU82_02766	HTZ92_0804		DMO12_07743 (513)
	426 614	A→AT	L235F	258/548/548	GO593_02100/FQU82_02985	HTZ92_0587		DMO12_08688 (548)
	1052 567	G→GA	F207I	222/213/213	GO593_04990/FQU82_03557	HTZ92_0046		DMO12_10425 (213)
	1452 728	A→AG	L101T	144/250/250	GO593_06935/FQU82_00154	HTZ92_3299		DMO12_00333 (250)
	2027 426	A→AC	I100Y	113/462/462	GO593_09615/FQU82_00690	HTZ92_2784		DMO12_02013 (462)
	2761 191	T→TG	L96I	100/209/209	GO593_13255/FQU82_01413	HTZ92_2145		DMO12_03804 (209)
	3154 380	C→CT	N62E	67/181/181	GO593_15095/FQU82_1785	HTZ92_1775		DMO12_04716 (181)
	3271 196	T→TG	R380Q	381/576/576	GO593_15665/FQU82_01898	HTZ92_1663		DMO12_05028 (576)
	3974 985	T→TC	F157I	172/212/212	GO593_18930/FQU82_02556	HTZ92_1005		DMO12_07332 (212)
	3976 370	G→GA	E45R	75/300/300	GO593_18945/FQU82_02559	HTZ92_1002		DMO12_07341 (300)
	3977 672	T→TC†	W9L	19/411/411	GO593_18950/FQU82_02560	HTZ92_1001		DMO12_07344 (411)
	3978 830	A→ATC‡	2IL‡	20/382/382	GO593_18955/FQU82_02561	HTZ92_1000		DMO12_07347 (382)
SNPs between ATCC 19606(M, H) and ATCC 19606(A)								
Stop codon	711 049	T→A	K337‡	403/345/403‡	GO593_03295/FQU82_03219	HTZ92_0363		DMO12_09396 (286)

Continued
Mutation	Position in ATCC 19606(M)	Position in ATCC 19606(H)	Nucleotide change	Amino acid change	Protein length (aa) in ATCC 19606(M)/ATCC 19606(A)/ATCC 19606(H)	Gene designation in ATCC 19606(M)	Gene designation in ATCC 19606(A)	Gene designation in ACICU (Protein length)	Gene product	Gene product	Gene product
Amino acid change	261 181	2939754	G -> A	G40D	213/213/213	GO593_01345/FQU82_02834	HTZ92_0737	Hypothetical protein	DMO12_08034 (213)		
	1149064	3827640	A -> T	V56D	265/265/265	GO593_05440/FQU82_03650	HTZ92_3585	MBL fold metallo-hydrolase	DMO12_10692 (265)		
	1168711	3847287	A -> T	T36S	70/70/70	GO593_05520/FQU82_03666	HTZ92_3569	Hypothetical protein	DMO12_10740 (70)		
	3331765	2029407	A -> G	V94A	711/711/711	GO593_15945/FQU82_01954	HTZ92_1607	TonB-dependent siderophore receptor	DMO12_05199 (711)		
Synonymous	20323	2698895	T -> C	S117	475/478/478	GO593_00130/FQU82_02587	HTZ92_0978	M48 family metalloprotease	DMO12_07425 (478)		
	2190622	887198	T -> C	I319	394/394/394	GO593_10430/FQU82_00850	HTZ92_2632	Hypothetical protein	DMO12_02541 (394)		
Intergenic	1184582	3863158	A -> T	–	–	GO593_05600-GO593_05605/FQU82_03682-FQU82_03683	HTZ92_3552-HTZ92_3553	–	–		

SNPs between ATCC 19606(H) and ATCC 19606(A)

- Stop codon: 2834189 T -> A, 117L*, 178/178/178, GO593_00915/FQU82_02747, HTZ92_0820, Peptidase C39, DMO12_07686 (178)
- Amino acid change: 2573642 C -> A, R190L, 201/201/201, GO593_18455/FQU82_02459, HTZ92_1102, Potassium-transporting ATPase C, DMO12_07086 (201)
- Synonymous: 3278427 C -> T, R362||, 548/548/533¶, GO593_02765/FQU82_03113, HTZ92_0463, Lipid A phosphoethanolamine transferase, DMO12_09075 (533)

*Only the first nucleotide change is shown: GO593_18950 contains ten insertions and two SNPs.
†Only the first nucleotide change is shown: GO593_18955 contains eleven insertions.
¶Indicates a stop codon.
§The predicted ORF in ATCC 19606(A) starts 27 nucleotides upstream, relative to ATCC 19606(M) and ATCC 19606(H).
¶¶Only the first nucleotide change is shown: FQU82_03113 contains ten SNPs.
||The predicted ORF in ATCC 19606(A) starts 48 nucleotides downstream, relative to ATCC 19606(M) and ATCC 19606(H).
detected by direct comparison between ATCC 19606(H) and ATCC 19606(A), taken as reference genome; ten were synonymous changes in the pmrC gene encoding lipid A phosphoethanolamine transferase (FQU2_03113), one caused a non-conservative (R⇒L) aminoacid substitution, and one generated a stop codon in the peptidase C39 gene (FQU82_02747), resulting in a truncated protein in ATCC 19606(H).

To validate the above observations, Sanger sequencing of the PCR-generated genomic regions encompassing individual SNPs was performed using the ATCC 19606(A) DNA as template. Results confirmed the sequence determined by the hybrid assembly for all SNP-containing regions (100% identity). Since multiple validations of the reconstructed genome sequence of ATCC 19606(A) made it possible to exclude sequencing errors, it can be argued that ATCC 19606 strains domesticated in different laboratories had diversified their genome sequence.

Domesticated *A. baumannii* ATCC 19606 strains A, S and T lack the Φ19606 prophage

A preliminary comparison between ATCC 19606(A) and ATCC 19606(M) genomes revealed one major structural difference, consisting in the absence of a 52 kb prophage region spanning from GO593_11545 to GO593_11900 in ATCC 19606(M), mapping between a gene coding for a hypothetical protein (HTZ92_2409) and the ssrS gene (HTZ92_ssRs) in ATCC 19606(A). This prophage region was also detected in the ATCC 19606(D) and ATCC 19606(H) genomes and was predicted by PHASTER as an ‘intact’ prophage in the region 2438683–2490916 of the ATCC 19606(M) genome, with a GC content of 38.22%. We propose to designate this putative prophage Φ19606 (Fig. 3a). A 60-nucleotide repeat (N_{60}), overlapping the ssrS gene sequence, encoding the 6S regulatory RNA, was detected at both ends of the prophage in ATCC 19606 strains D, H and M. Notably, N_{60} was present as a single copy in ATCC 19606(A), which lacks Φ19606 (Fig. 3b). Genome inspection of other *A. baumannii* strains, such as AYE (CU459141.1) and AB307-0294 (CP001172.2), revealed that the ssrS gene is also an insertion site for other phages. Integration of Φ19606 in ATCC 19606(M) had occurred immediately downstream of the stop codon of the ssrS gene, causing target site duplication of the N_{60} sequence. Consequently, N_{60} could represent a homology region between Φ19606 and ATCC 19606(M) genome, possibly implicated in phage integration. Similar repeats could constitute possible recognition sites for the predicted phage terminase (GO593_11890); at the end of their infection cycle, dsDNA phages generally form concatemers that are cut by the terminase, enabling packaging of the mature phage genome [79].

Seventy-two ORFs were predicted in the Φ19606 prophage, 48 of which match proteins in the phage protein database, five match bacterial proteins and 19 are annotated as hypothetical proteins (Table S7). According to PHASTER results, prophage Φ19606 showed partial similarity with previously published *Acinetobacter* siphoviral phages YMC/09/02/B1251_ABA_BP (NC_019541 [80]) and YMC11/11/R3177 (NC_041866 [81]), with 38 and 31 homologous proteins, respectively. Intriguingly, Φ19606 harbours the GO593_11890 gene, encoding a putative lipid A phosphoethanolamine transferase (eptA), showing 95% identity with the chromosomal pmrC gene, implicated in colistin resistance [82]. However, colistin susceptibility testing by the broth microdilution method showed similar MIC values (1 µg ml⁻¹ colistin) for both ATCC 19606(A) and ATCC 19606(D) (data not shown).

While the absence of Φ19606 is a distinctive feature of ATCC 19606(A), three prophage regions classified as ‘intact’ and ‘questionable’ by PHASTER, were conserved among ATCC 19606 strains A, D, H and M (Table S8).

Since the whole-genome sequence is unavailable for ATCC 19606 strains S and T, the occurrence of Φ19606 in the genome of these domesticated strains was experimentally tested by PCR, including the ATCC 19606(D) and ATCC 19606(A) DNA as positive and negative control, respectively (Fig. 3c, d). An amplicon of 498 bp was invariably detected in domesticated strains ATCC 19606(A, S, T), indicating the absence of Φ19606 prophage. Intriguingly, the generation of both 560 bp and 498-bp-amplicons from genomic DNA of ATCC 19606(D) suggests that Φ19606 prophage was present in both integrated and episomal form (Fig. 3c). Coherently, genes encoding Cro (GO593_11615) and CI (GO593_11625) repressors, likely implicated in the switch control between the lysogenic and lytic cycle [83, 84], were detected in Φ19606, also presenting with the divergent gene organization typical of the λ-like coliphages.

Since ATCC 19606(A, S, T) were originally filed with ATCC before being distributed to the various laboratories, we hypothesized that multiple propagations from the original vial resulted in Φ19606 loss. To reproduce the *in vitro* conditions that may have led to the phage loss, serial propagation steps of ATCC 19606(D) from the original vial obtained from DSMZ were conducted. In particular, preliminary viable counts showed that a single ~1 mm colony of *A. baumannii* ATCC 19606(D) generated after 24 h growth at 37 °C on LA plates is composed of 2.14 (±0.7)×10⁷ c.f.u. Assuming that one colony originates from a single cell, it was calculated that *A. baumannii* ATCC 19606(D) replicates ca 24 times to produce a ~1 mm colony, with a mean generation time of ~1 h. Therefore, it was estimated that a total of 360 generations were made by *A. baumannii* ATCC 19606(D) after 15 daily passages on LA plates. For each propagation step, the presence of the prophage was verified by PCR with the primers listed in Table S1, using 30 ng of genomic DNA purified from ten randomly selected colonies as a template for PCR. Amplicons of 560 and 498 bp were detected for all colonies at all passages. In addition, a large screening conducted on 200 randomly selected colonies from the last propagation plate invariably yielded both amplicons, indicating...
that not even a single cell had lost Φ_{19606} during 360 generations. Spontaneous prophage induction could be due to both extrinsic and intrinsic factors, or a combination of both [85]. In fact, extrinsic factors, such as pH variations, accumulation of reactive oxygen species, UV radiation or other factors causing DNA damages could have triggered Φ_{19606} excision. On the other hand, spontaneous activation of genetic circuitry causing prophage excision in single cells of bacterial populations was also observed in the absence of an external trigger, a phenomenon dubbed 'spontaneous prophage induction' [85].
Consequently, the events that have led to Φ_{19606} loss remain unpredictable and difficult to reproduce in vitro, likely resulting from a combination of stochastic and/or ill-defined environmental conditions.

Φ_{19606} belongs to genus *Vieuvirus* and its host range is likely restricted to *A. baumannii*

To address the phylogeny of bacteriophage Φ_{19606}, genome comparisons between Φ_{19606} and all 19 previously reported *Acinetobacter* phages belonging to the *Siphoviridae* family were performed using VICTOR, in agreement with the recommendations of the International Committee on Taxonomy of Viruses [55]. The resulting minimum evolution tree grouped Φ_{19606} with members of the genus *Vieuvirus*, with Ab105-3phi and Ab105-2phi resulting the closest relatives (Fig. 4). Therefore, Φ_{19606} can be classified as a member of the genus *Vieuvirus*, within the *Siphoviridae* family.

A significant portion (over 85%) of the Φ_{19606} sequence was detected in 123 non-redundant *A. baumannii* complete genomes (Table S9). *A. baumannii* strains harbouring Φ_{19606} belonged to clonal complex 2 (95%), including ST2 and a single-locus variant of ST2, and to ST52 and a single-locus variant of ST52 (3%). In most of the *A. baumannii* genomes (75%), Φ_{19606} was inserted between a homologue of the hypothetical protein coding sequence HTZ92_2409 [according to the ATCC 19606(A) annotation] and the ssrS gene (HTZ92_ssRs), and in six strains an ISAba1 was detected between HTZ92_2409 and Φ_{19606}. In 19% of *A. baumannii* genomes, Φ_{19606} mapped between the HTZ92_2409 homologue and the gene encoding for another hypothetical protein [absent in ATCC 19606(A)], and in 6% between an integrase and the ssrS genes. Φ_{19606} was not detected in any organisms other than *A. baumannii*, in line with previous evidence that *Vieuvirus* only infect *Acinetobacter* spp. [86].

A. baumannii ATCC 19606T harbours two plasmids: pMAC and p1ATCC19606*

An indigenous plasmid, called pMAC, was previously identified and characterized in *A. baumannii* ATCC 19606T [87]. pMAC is a 9.5 kb mobilizable episomal element carrying the genetic determinants for resistance to organic peroxides [87]. The existence of an additional replicon was firstly predicted from previous genome assemblies (https://genomes.atcc.org/genomes/1577c3a70f334038; [25, 26]), but no physical evidence of the existence of two different replicons in *A. baumannii* ATCC 19606T has so far been provided. Moreover, the predicted size of *A. baumannii* ATCC 19606T plasmids differs from previous studies (Fig. 2). To address these discrepancies, both *A. baumannii* ATCC 19606T plasmids were isolated and entirely sequenced. The two indigenous plasmids were found to coexist in four different *A. baumannii* type strains (A, D, S, T), as demonstrated by agarose gel electrophoresis of clear lysates (Fig. 5a). The 7655 bp extrachromosomal element was identified as p1ATCC19606 [25], copurified with pMAC in order to perform a restriction analysis of both replicons (Fig. 5b), and Illumina sequences were confirmed by primer walking and Sanger sequencing with primers listed in Table S1. Fig. 5(c) displays the
physical and functional maps of pMAC and p1ATCC19606. The pMAC size (9540 bp) and annotated ORFs exactly match previous data [87]. Inspection of publicly available A. baumannii genomes did not detect p1ATCC19606 and pMAC in strains other than ATCC 19606 T. Multiple analyses conducted on the raw sequence read data of ATCC 19606(M) did not detect plasmid p1ATCC19606 (7655 bp). This is because small plasmids are frequently overlooked from long-read-only assemblies [88], likely due to the removal of <~10 kb DNA fragments during the library preparation.
Determination of the minimal self-replicating region of p1ATCC19606

For a preliminary functional characterization of p1ATCC19606, protein-coding genes were annotated by integrating the output of MEGAnnotator and Blast2GO. Thirteen putative ORFs (ORF-1 to ORF-13) were identified (Table 3). Among them, three overlapping ORFs (ORF 10, 11 and 12) were predicted to be involved in plasmid replication and segregation, namely ORF-10 encoding a putative replication protein located downstream the predicted origin of replication, ORF-11 encoding a putative DNA-binding protein, and ORF-12 encoding a putative integral membrane protein, likely involved in plasmid segregation.

The p1ATCC19606 origin of replication (oriC), predicted by using the DoriC 5.0 software [89], consists of a 1072–bp sequence containing four 22-mer direct repeats (5′-GCAA GGTA AACG GTGT CATATT-3′). Similarly arranged iterons of four 21 bp direct repeats were also identified in pMAC [87] and could be implicated in the initiation of plasmid replication and copy-number control [90, 91]. Interrogation of PlasmidFinder (https://cge.cbs.dtu.dk/services/PlasmidFinder/; [92]) did not retrieve any replication class for the p1ATCC19606 oriC region, suggesting that p1ATCC19606 has a narrow-host range, consistent with the absence of predicted mobilization proteins.

To determine the shortest DNA region enabling self-replication in Acinetobacter spp., deletion analysis of p1ATCC19606 was performed. Overlapping DNA fragments encompassing the oriC region were generated by PCR with the primer pairs listed in Table S1, and the resulting amplicons were cloned into the pCR vector for transformation of E. coli DH5α. After sequence verification, all constructs (designated as pCR-p1ATCC19606 to pCR-p1ATCC19606Δ5) were individually transferred by electroporation in different Acinetobacter spp. to assess self-replication (Fig. 6). Except for the putative replicase gene, all ORFs could be deleted from p1ATCC19606 without affecting the replication of the hybrid constructs in Acinetobacter spp.

All p1ATCC19606 deletion derivatives showed similar TEs (Table S10). Intriguingly, the transformation of Acinetobacter pittii UKK_0145 with pCR-p1ATCC19606Δ4, lacking the putative replicase gene, yielded some transformants, though with low efficiency. A blastp search of p1ATCC19606 putative replicase protein sequence in the NCBI nr database of A. pittii proteins retrieved a chromosomally located DNA replication protein (KQF43430.1) sharing 85% identity with the putative replicase gene of p1ATCC19606. It can therefore be speculated that a chromosomal DNA replicase could act in trans to enable pCR-p1ATCC19606Δ4 replication in A. pittii UKK_0145 (Table S10).

The p1ATCC19606 predicted replicase was modelled on the E. coli π initiator protein–iteron complex of plasmid R6K (2NRA [93]). Both SWISS-MODEL and I-TASSER provided highly superimposable models (Fig. S2), with maximum superimposition at the level of the replicase DNA-binding domain. This prediction suggests that the p1ATCC19606 replicase could interact with the four 22-mer direct repeats identified in oriC, similar to R6K replicase. However, R6K replication also requires iterons located outside the predicted origin of replication [93, 94], which are not detectable in p1ATCC19606, arguing for a different replication mechanism.
A HigB2-HigA2-like TA system accounts for p1ATCC19606 plasmid stability

ORF-1 and ORF-2 of p1ATCC19606 (Table 3) were predicted to encode a putative antitoxin and a toxin, respectively, possibly constituting a type-II TA module [95–97]. TA modules are implicated in plasmid maintenance since they encode a poisonous toxin, and a neutralizing antitoxin [98–100].

Homology modelling of ORF-2 and superimposition to the HigB2 toxin from *V. cholerae* (5JA8; [101]), using both I-TASSER and SWISS-MODEL, provided high scores for template modelling (TM) and Qualitative Model Energy ANalysis (QMEAN) (Table S11; Fig. 7a). ORF-1 was modelled by I-TASSER and SWISS-MODEL on the HigA2 antitoxin cocrystallized with its cognate HigB2 toxin (5JAA; [101]) (Fig. 7a). The predicted HigB2A2-like module was substantiated by the unusual genetic organization of this TA system: although the antitoxin gene is usually located upstream of the toxin gene, \textit{higB2A2} module has reverse gene organization [102–104]. Although I-TASSER and SWISS-MODEL software employed the same protein template to model the putative HigA2-like antitoxin, SWISS-MODEL provided higher modelling scores compared with I-TASSER (Table S11), probably because antitoxin proteins show considerable structural flexibility, which limits the superimposition of the ORF-1 product on the template structure, compared with the HigA2 template (Fig. 7a). After structure editing of the I-TASSER-derived antitoxin model, consisting of the torsion angle modification of five residues (from 26 to 30), both SWISS-MODEL and I-TASSER models became superimposable onto the HigB2A2 crystal structure complex (5JAA; [101]) (Fig. 7b), enabling to predict a 3D model of the interaction between the p1ATCC19606 putative toxin and antitoxin proteins (Fig. 7c).

To demonstrate the involvement of the predicted TA system in p1ATCC19606 stability, the \textit{higB2A2}-like gene system was deleted from pCR-p1ATCC19606, yielding pCR-p1ATCC19606ΔhigB2A2. The stability of p1ATCC19606ΔhigB2A2 in \textit{E. coli} DH5α after 48 h growth in the absence of antibiotic selection (\(N_{\text{ad}}/N_{\text{r}}\) ratios) was reduced by ca 99% compared with the parent pCR-p1ATCC19606 plasmid (Table S12). A comparable reduction of plasmid stability was also observed for the TA deletion derivative of pVRL1 (i.e. pVRL1ΔTA; [66]), used as a control. Therefore, the deletion of the TA module dramatically reduces p1ATCC19606 stability.

To provide direct evidence of the toxicity of the HigB2-like toxin, \textit{E. coli} DH5α was transformed with both pVRL2\textit{higA2} and pME6032\textit{higB2} plasmids, directing the arabinose- and IPTG-inducible expression of \textit{higA2} and \textit{higB2} genes, respectively (Fig. 7d). Assuming that the HigB2-like protein is a toxin and the HigA2-like protein is the cognate antitoxin, cells should...
be viable only upon expression of the higA2-like antitoxin gene, i.e. in the presence of arabinose. On this assumption, the growth of *E. coli* DH5α carrying both pVRL2higA2 and pME6032higB2 was determined after 24 h incubation at 37 °C in LB supplemented with 10 µg ml⁻¹ Tc and different concentration of IPTG and arabinose. Results clearly demonstrate that IPTG-inducible expression of the higA2-like antitoxin gene provided in trans from pVRL2 allows the growth of *E. coli* DH5α expressing the IPTG-inducible higB2-like toxin gene from plasmid pME6032higB2. (e) Bacterial growth assessed after 24 h incubation at 37 °C in LB supplemented with the appropriate antibiotic concentration. To induce the expression of the higA2-like antitoxin gene from the arabinose-inducible *P*ₐₕ₇₅ promoter and of the higB2-like toxin gene from the IPTG-inducible *P*ₜₐ₅₉ promoter, the medium was supplemented with the indicated arabinose and IPTG concentrations, respectively. OD₆₀₀ values are representative of three independent experiments giving similar results.

The peculiar gene architecture together with the structural and functional similarities between the p1ATCC19606 TA system and the HigB2A2 complex of *Enterobacteriaceae* suggest that the *A. baumannii* HigB2-like toxin acts as a translating mRNA ribonuclease, causing a stall in protein synthesis in plasmid-free daughter cells and cell death [105]. The activity of the HigB2-like toxin is neutralized by the cognate HigA2-like antitoxin, securing the survival of the *A. baumannii* cells that inherit the p1ATCC19606 plasmid.
CONCLUSION
For decades A. baumannii ATCC 19606T has been the reference strain for A. baumannii research. However, it is known that frequent subculturing and local differences in culture conditions can result in the domestication of laboratory strains, a micro-evolutionary process driven by mutational events at the genome level that could even reflect into variable phenotype [28–32, 106]. Motivated by the remarkable diversity in publicly available A. baumannii ATCC 19606T genome sequences, we generated an accurately revised genome sequence of ATCC 19606T, which will hopefully set a more solid basis for studies of the genetics and genomics of this model organism. Previous long-read sequence data, such as those generated by PacBio and Oxford Nanopore technologies [26, 27], allowed for complete assembly of the ATCC 19606T genomic sequence without manual intervention. However, assembling long-read data alone can result in sequencing errors [107], and in the case of ATCC 19606T failed to detect both plasmids [25]. To overcome these limitations, we combined deep Illumina short-read with MinION long-read and Sanger technologies to generate a high-quality genome sequence. Subsequent annotation made it possible to lower the number of genes encoding hypothetical proteins as well as of pseudogenes, compared with formerly released ATCC 19606T genome sequences. Indeed, comparative analysis of our genomic sequence with previously published ones [25–27] highlighted a high number of SNPs and INDELs, and a difference in the annotation of putative pseudogenes. Sanger sequencing of the genomic regions encompassing individual SNPs confirmed the sequence determined by the hybrid assembly of ATCC 19606(A), allowing us to exclude sequencing errors. Therefore, the confirmed SNPs and INDELs could result from micro-evolutionary events of individual strains during domestication, whereas differences in pseudogene number are suggestive of sequencing and/or annotation errors, rather than genome erosion events.

Accurate genome assembly also made it possible to characterize the indigenous plasmid p1ATCC19606, whose presence and size were undefined in previous versions of the A. baumannii ATCC 19606T genome sequence (Fig. 2). The HigB2A2-like TA system and the minimal self-replicating region of p1ATCC19606 were characterized both in silico and in vitro, providing insights into the mechanisms of plasmid maintenance and replication, respectively. Of note, HigB2A2-like modules are the most prevalent plasmid-borne TA systems in A. baumannii [100, 108]. Coherently, the invariable presence of p1ATCC19606 in all tested ATCC 19606 strains A, D, S and T denotes intrinsic stability, which can be ascribed to a very efficient maintenance system rather than a selective advantage, e.g. antibiotic resistance, conferred by plasmid carriage. However, the function of p1ATCC19606 remains so far elusive.

Propagates are important sources of new genetic information, having the potential of transferring virulence and antibiotic resistance genes [109–111]. Propagates belonging to the Siphoviridae and Myoviridae families were the most frequently discovered in A. baumannii genomes [109, 112]. Here, we show that a remarkable difference among domesticated A. baumannii ATCC 19606T strains was the uneven presence of a 52 kb region, which we identified as the siphoviral Φ19606 prophage. This genetic element was only detected in A. baumannii ATCC 19606T stocks directly originating from ATCC, as inferred from genome analysis of strains D, H, M and O, but not in strains A, S and T, which were passed from lab to lab since the 1980s. Φ19606 belongs to the Vieuvirus genus and was not detected in species other than A. baumannii, showing high prevalence among strains belonging to the successful clonal complex 2 [113]. In A. baumannii ATCC 19606(D) both integrated and episomal forms of Φ19606 were experimentally proven to coexist during serial passages under non-curing conditions (ca 360 generations on LA plates), denoting substantial phage stability. Therefore, at which stage of the of A. baumannii ATCC 19606 A, S and T evolutionary history Φ19606 was lost remains an open question.

The genetic drift resulting from laboratory domestication of reference strains can reflect phenotypic variability, and genome-level differences among laboratory-adapted strains were observed to affect the inter-laboratory experimental reproducibility in the case of Pseudomonas aeruginosa PAO1 lineages [28, 30]. Our studies on A. baumannii ATCC 19606T strains from different laboratories highlighted remarkable diversity at the genome level. This poses the need for researchers to specify the lineage of the strain used, as individual culturing and storage practices may affect micro-evolution, and should encourage the storage of the strains in a single glycerol stock, revitalizing an aliquot when necessary, without recurring to subculturing. Stringent quality controls and strain assessments, including sequencing and the use of low-passage cultures, will help ensure the reproducibility and consistency of A. baumannii research.

Funding information
This work was supported by the Excellence Departments grant (art. 1, commi 314–337 Legge 232/2016) to the Department of Science, Roma Tre University, and grant PRIN 2017 (Prot. 20177J5Y3P) to PV, both from the Italian Ministry of Education, University and Research (MIUR), and by grants no. 85-2017-13763 ANTIMET and no. A0375-2020-36558 GAVAP, both from Regione Lazio. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Acknowledgements
We are grateful to Professor Beate Averhoff (Department of Molecular Microbiology and Bioenergetics, Johann Wolfgang Goethe University Frankfurt am Main, Germany), Professor Harald Seifert (Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany) and Professor Kevin J. Towner (Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom) for providing A. baumannii ATCC 19606(A), A. baumannii ATCC 19606(S) and A. baumannii ATCC 19606(T), respectively.
Author contributions
PV supervised the work and revised the manuscript. I.A. performed genomic analysis with assistance from G.A.L. and M.V., and drafted part of the manuscript. M.L. carried out experimental work with the assistance of G.C. and D.V., and drafted part of the manuscript. All authors interpreted the results, contributed to the editing of the manuscript, and read and approved the final version of the manuscript.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
1. Peleg AT, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2010;23:538–582.
2. Visca P, Seifert H, Towner KJ. Acinetobacter infection—an emerging threat to human health. IUBMB Life 2011;63:1048–1054.
3. Antunes LCS, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 2014;71:292–301.
4. Harding CM, Hennson SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 2018;16:91–102.
5. Lee C-R, Lee JH, Park M, Park KS, Bae IK, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol 2017;7:55.
6. WHO. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organisation 2017.
7. Bergogne-Bérézin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996;9:148–165.
8. Bouvet PJM, Grimont PAD. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter juni sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter Iwoffii. Int J Syst Bacteriol 1986;36:228–240.
9. Schaub IG, Hauber FD. A biochemical and serological study of a group of identical unidentifiable gram-negative bacilli from human sources. J Bacteriol 1948;56:379–385.
10. Hugh R, Reese R. Designation of the type strain for Bacterium anitratum Schaub and Hauber 1948. Int J Syst Bacteriol 1967;17:245–254.
11. Giannoni M, Antunes LCS, Marchetti V, Triassi M, Visca P, et al. Virulence-related traits of epidemic Acinetobacter baumannii strains belonging to the international clonal lineages I–III and to the emerging genotypes ST25 and ST78. BMC Infect Dis 2012;13:282.
12. Moffatt JH, Harper M, Harrison P, Hale JDF, Vinogradov E, et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 2010;54:4971–4977.
13. Krizova L, Poirel L, Nordmann P, NemeC. TEM-1 β-lactamase as a source of resistance to sulbactam in clinical strains of Acinetobacter baumannii. J Antimicrob Chemother 2013;68:2786–2791.
14. Malone L, Kwon DH. Carbapenem-associated multidrug-resistant Acinetobacter baumannii are sensitised by aztreonam in combination with polymyxins. Int J Antimicrob Agents 2013;41:70–74.
15. Hamidian M, Hall RM. Acinetobacter baumannii ATCC 19606 carries Gsu1L in a genomic island located in the chromosome. Antimicrob Agents Chemother 2017;61:e01991-16.
16. Zeidler S, Müllner V. Coping with low water activities and osmotic stress in Acinetobacter baumannii: significance, current status and perspectives. Environ Microbiol 2019;21:2212–2230.
17. Pachón-Ibáñez ME, Docobo-Pérez F, López-Rojas R, Domínguez-Herrera J, Jiménez-Meijas ME, et al. Efficacy of rifampin and its combinations with imipenem, sulbactam, and colistin in experimental models of infection caused by imipenem-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2010;54:1165–1172.
18. Gaddy JA, Arivett BA, McConnell MJ, López-Rojas R, Pachón J, et al. Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galliera mellonella caterpillars, and mice. Infect Immun 2012;80:1015–1024.
19. Henry R, Crane B, Powell D, Deveson Lucas D, Li Z, et al. The transcriptomic response of Acinetobacter baumannii to colistin and doripenem alone and in combination in an in vitro pharmacokinetics/pharmacodynamics model. J Antimicrob Chemother 2015;70:1303–1313.
20. Luo L, Wu L, Xiao Y, Zhao D, Chen Z, et al. Enhancing pili assembly and biofilm formation in Acinetobacter baumannii ATCC19606 using non-native acyl-homoserine lactones. BMC Microbiol 2015;15:62.
21. Aikasir R, Ma Y, Liu F, Li J, Lu N, et al. Characterization and transcriptome analysis of Acinetobacter baumannii persister cells. Microb Drug Resist 2018;24:1466–1474.
22. Lucidi M, Visaggio D, Prencepe E, Imperi F, Rampioni G, et al. New shuttle vectors for real-time gene expression analysis in multidrug-resistant Acinetobacter species: in vitro and in vivo responses to environmental stressors. Appl Environ Microbiol 2019;85:e00334-19.
23. Runci F, Gentile V, Frangipani E, Rampioni G, Leoni L, et al. Contribution of active iron uptake to Acinetobacter baumannii pathogenicity. Infect Immun 2019;87:e00755-18.
24. Zhu Y, Zhao J, Maifiah MHM, Velkov T, Schreiber F, et al. Metabolic responses to polymyxin treatment in Acinetobacter baumannii ATCC 19606 integrating transcriptomics and metabolomics with genome-scale metabolic modeling. mSystems 2019;4:e00157-18.
25. Hamidian M, Blasco L, Tillman LN, To J, Tomas M, et al. Analysis of complete genome sequence of Acinetobacter baumannii strain ATCC 19606 reveals novel mobile genetic elements and novel prophage. Microorganisms 2020;8:1851.
26. Tsubouchi T, Suzuki M, Niki M, Onuma K-I, Niki M, et al. Complete genome sequence of Acinetobacter baumannii ATCC 19606T, a model strain of pathogenic bacteria causing nosocomial infection. Microbiol Resour Announc 2020;9:e00289-20.
27. Zhu Y, Lu J, Zhao J, Zhang X, Yu HH, et al. Complete genome sequence and genome-scale metabolic modelling of Acinetobacter baumannii type strain ATCC 19606. Int J Med Microbiol 2020;310:151412.
28. Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F, et al. Genome diversity of Pseudomonas aeruginosa PA01 laboratory strains. J Bacteriol 2010;192:1113–1121.
29. Draper JL, Hansen LM, Bernick DL, Abedrabbo S, Underwood JG, et al. Fallacy of the unique genome: sequence diversity within single Helicobacter pylori strains. mBio 2017;8:e02321-16.
30. Chandler CE, Horspool AM, Hill PJ, Wozniak DJ, Schertzler JW, et al. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PA01. J Bacteriol 2019;201:e00595-18.
31. Pascoe B, Williams CK, Calland JK, Meric G, Hitchings MD, et al. Domestication of Campylobacter jejuni NCTC 11168. Microb Genom 2019;5.
32. Dorman MJ, Thomson NR. “Community evolution” - laboratory strains and pedigrees in the age of genomics. Microbiology (Reading) 2020;166:233–238.
33. Luna BM, Ulhag A, Yan J, Pantapalangkoor P, Nielsen TB, et al. Selectable markers for use in genetic manipulation of extensively drug-resistant (XDR) Acinetobacter baumannii HUMC1. mSphere 2017;2:e00140-17.

34. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017;27:722–736.

35. Lugli GA, Milani C, Mancabelli L, van Sinderen D, Ventura M. MEGAnnotator: a user-friendly pipeline for microbial genomes assembly and annotation. FEMS Microbiol Lett 2016;363:fnw049.

36. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477.

37. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119.

38. Zhao Y, Tang H, Ye Y. RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics 2012;28:125–126.

39. Chan PP, Lowe TM. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. Methods Mol Biol 2019;1692:1–14.

40. Lagesen K, Hallin P, Redland EA, Staerfeldt HH, Rognes T, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108.

41. Bertelli C, Laird MR, Williams KP, Simon Fraser University Research Computing Group, Lau BY, et al. IslandViewer: 4: expanded prediction of genomic islands for larger-scale data sets. Nucleic Acids Res 2017;45:W30–W35.

42. Xie Z, Tang H. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 2017;33:3340–3347.

43. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016;44:W16-21.

44. Antipov D, Raiko M, Lapidus A, Pezner PA. Plasmid detection and assembly in genomic and metagenomic data sets. Genome Res 2019;29:961–968.

45. Langmead B, Wilks C, Antonescu V, Charles R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 2019;35:421–432.

46. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055.

47. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004;14:1394–1403.

48. Li H. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv:12033997 [q-bio] 2021.

49. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078–2079.

50. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, et al. VarScan: variant detection in massively parallel sequencing data. Bioinformatics 2009;25:2283–2285.

51. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012;28:464–469.

52. Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008;9:286–298.

53. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019;47:W256–W259.

54. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60.

55. Meier-Kolthoff JP, Göker M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 2017;33:3396–3404.

56. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015;32:2798–2800.

57. Farris JS. Estimating phylogenetic trees from distance matrices. The American Naturalist 1972;106:645–668.

58. Göker M, García-Blázquez G, Voglmayr H, Telleria MT, Martin MP. Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS One 2009;4:e6319.

59. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014;9:2.

60. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual 1989.

61. Renda BA, Chan C, Parent KN, Barrick JE. Emergence of a competence-reducing filamentous phage from the genome of Acinetobacter baylyi ADP1. J Bacteriol 2016;198:3209–3219.

62. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005;21:3674–3676.

63. Zhang Y. i-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008;9:40.

64. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, et al. SWISS-MODEL: homology modeling of protein structures and complexes. Nucleic Acids Res 2018;46:w296–W303.

65. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–1612.

66. Lucidi M, Runci F, Rampioni G, Frangipani E, Leoni L, et al. New shuttle vectors for gene cloning and expression in multidrug-resistant acinetobacter species. Antimicrob Agents Chemother 2018;62:e02480-17.

67. Hunger M, Schmucker R, Kishan V, Hillen W. Analysis and nucleotide sequence of an origin of DNA replication in Acinetobacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene 1990;87:45–51.

68. Heeb S, Itoh Y, Nishijo T, Schneider U, Keel C, et al. Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol Plant Microbe Interact 2000;13:232–237.

69. Steel KJ, Cowan ST. Le rattachement de bacterium antratum, moraxella lwoffii, bacillus mallei et haemophilus parapertussis au genre acinetobacter brisou et prevot. Ann Inst Pasteur 1964;106:479–483.

70. Johnson JL, Anderson RS, Ordal EJ. Nucleic acid homologies among oxidase-negative Moraxella species. J Bacteriol 1970;101:568–573.

71. Karah N, Jolley KA, Hall RM, Uhlin BE. Database for the ampC alleles in Acinetobacter baumannii. PLoS One 2017;12:e0176695.

72. Reiter WD, Palm P, Yeats S. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 1989;17:1907–1914.

73. Williams KP. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 2002;30:866–875.

74. Sethi D, Mahajan S, Singh C, Lama A, Hade MD, et al. Lipoprotein LprI of Mycobacterium tuberculosis Acts as a Lysozyme Inhibitor. J Biol Chem 2016;291:2938–2953.

75. Callewaert L, Aertsen A, Deckers D, Vanrobaeck KGA, Vanderkelen L, et al. A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria. PLoS Pathog 2008;4:e1000019.
76. Mira A, Ochman H, Moran NA. Deletional bias and the evolution of bacterial genomes. Trends Genet 2001;17:589–596.

77. Solovyev V, Salamov A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences. in Metagenomics and Its Applications in Agriculture, Biomedicine and Environmental Studies. Nova Science Publishers, 2011, pp. 61–78.

78. Ramisety BCM, Sudhakari PA. Bacterial “Grounded” prophages: hotspots for genetic renovation and innovation. Front Chem Biol 2019;10:65.

79. Black LW. DNA packaging in dsDNA bacteriophages. Annu Rev Microbiol 1989;43:267–292.

80. Jeon J, Kim J, Yong D, Lee K, Chong Y. Complete genome sequence of the podoviral bacteriophage YMC/09/02/B1251 ABA BR, which causes the lysis of an OXA-23-producing carbapenem-resistant Acinetobacter baumannii isolate from a septic patient. J Virol 2012;86:12437–12438.

81. Jeon J, D’Souza R, Pinto N, Ryu C-M, Park J, et al. Complete genome sequence of the siphoviral bacteriophage Bo-R3177, which lyses an OXA-66-producing carbapenem-resistant Acinetobacter baumannii isolate. Arch Virol 2015;160:3157–3160.

82. Potron A, Vuillemont J-B, Puja H, Triponney P, Bour M, et al. ISAbal-dependent overexpression of eptA in clinical strains of Acinetobacter baumannii resistant to colistin. J Antimicrob Chemother 2019;74:2544–2550.

83. Ackers GK, Johnson AD, Shea MA. Quantitative model for gene regulation by lambda phage repressor. Proc Natl Acad Sci U S A 1982;79:1129–1133.

84. Atsumi S, Little JW. Regulatory circuit design and evolution using phage lambda. Genes Dev 2004;18:2086–2094.

85. Nanda AM, Thormann K, Frunzke J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol 2015;197:410–419.

86. López-Leal G, Reyes-Muñoz A, Santamaría RI, Cevallos MA, Pérez-Monter C, et al. A novel vируivirus from multidrug-resistant Acinetobacter baumannii. Arch Virol 2021;166:1401–1408.

87. Dorsey CW, Tomaras AP, Actis LA. Sequence and organization of pMAC, an Acinetobacter baumannii plasmid harboring genes involved in organic peroxide resistance. Plasmid 2006;56:112–123.

88. Wick RR, Judd LM, Wyres KL, Holt KE. Recovery of small plasmid sequences via Oxford Nanopore sequencing. Microb Genom 2021;7.

89. Gao F, Luo H, Zhang C-T, Dorić 5.0: an updated database of oriC regions in both bacterial and archaeal genomes. Nucleic Acids Res 2013;41:D90–3.

90. Kües U, Stahl U. Replication of plasmids in gram-negative bacteria. Microbiol Rev 1989;53:491–516.

91. Chattoraj DK. Control of plasmid DNA replication by iterons: no longer paradoxical. Mol Microbiol 2000;37:467–476.

92. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014;58:3895–3903.

93. Swan MK, Bastia D, Davies C. Crystal structure of pi initiator protein-iteron complex of plasmid R6K: implications for initiation of plasmid DNA replication. Proc Natl Acad Sci U S A 2006;103:18481–18486.

94. Abhyankar MM, Reddy JM, Sharma R, Büllesbach E, Bastia D. Biochemical investigations of control of replication initiation of plasmid R6K. J Biol Chem 2004;279:6711–6717.

95. Goeders N, Van Melden L. Toxin-antitoxin systems as multi-level interaction systems. Toxins (Basel) 2014;6:304–324.

96. Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 2016;12:208–214.

97. Unterholzner SJ, Poppenberger B, Rozhon W. Toxin-antitoxin systems: Biology, identification, and application. Mob Genet Elements 2013;3:e2219.

98. Chan WT, Espinosa M, Yeo CC. Keeping the wolves at bay: anti-toxins of prokaryotic type II toxin-antitoxin systems. Front Mol Biosci 2016;3:9.

99. Rocker A, Meinhardt A. Type II toxin: antitoxin systems. More than small selfish entities? Curr Genet 2016;62:287–290.

100. Armalyte J, Jurėnas D, Krausauskas R, Čepauskas A, Suziedelienė E. The higBA toxin-antitoxin module from the opportunistic pathogen Acinetobacter baumannii – regulation, activity, and evolution. Front Microbiol 2018;9:732.

101. Hadži S, García-Pino A, Haesaerts S, Jurenas D, Gerdes K, et al. Ribosome-dependent Vibrio cholerae mRNAse HigB2 is regulated by a β-strand sliding mechanism. Nucleic Acids Res 2017;45:4972–4983.

102. Hurley JM,沃奇克NA. Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites. J Biol Chem 2009;284:18605–18613.

103. Yamaguchi Y, Park J-H, Inouye M. MosR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J Biol Chem 2009;284:28746–28753.

104. Heaton BE, Herrou J, Blackwell AE, Wysocki VH, Crosson S. Molecular structure and function of the novel BrnT/BrnA toxin-antitoxin system of Brucella abortus. J Biol Chem 2012;287:12098–12110.

105. Christensen-Dalsgaard M, Gerdes K. Two higBA loci in the Vibrio cholerae superintegron encode mRNA cleaving enzymes and can stabilize plasmids. Mol Microbiol 2006;62:397–411.

106. Graña-Miraglia L, Lozano LF, Velázquez C, Volkow-Fernández P, Pérez-Oseguera A, et al. Rapid gene turnover as a significant source of genetic variation in a recently seeded population of a healthcare-associated pathogen. Front Microbiol 2017;8:1817.

107. Watson M, Warr A. Errors in long-read assemblies can critically affect protein prediction. Nat Biotechnol 2019;37:124–126.

108. Jurenaitė M, Markuckas A, Suziedelienė E. Identification and characterization of type II toxin-antitoxin systems in the opportunistic pathogen Acinetobacter baumannii. J Bacteriol 2013;195:3165–3172.

109. Costa AR, Monteiro R, Azeredo J. Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests profound impact on bacterial virulence and fitness. Sci Rep 2018;8:15346.

110. Wachino J-I, Jin W, Kimura K, Arakawa Y. Intercellular transfer of chromosomal antimicrobial resistance genes between Acinetobacter baumannii strains mediated by prophages. Antimicrob Agents Chemother 2019;63:e00334-19.

111. López-Leal G, Santamaría RI, Cevallos MA, González V, Castillo- Ramírez S. Letter to the editor: prophages encode antiiotic resistance genes in Acinetobacter baumannii. Microb Drug Resist 2020;26:1275–1277.

112. Loh B, Chen J, Manohar P, Yu Y, Hua X, et al. A biological inventory of prophages in A. baumannii genomes reveal distinct distributions in classes, length, and genomic positions. Front Microbiol 2020;11:579802.

113. Hamidian M, Nigro SJ. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb Genom 2019;5:e000306.

114. Smith MG, Gianoulis TA, Pukatzki S, Mekalanos JJ, Ornston LN, et al. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 2007;21:601–614.

115. Iacono M, Villa L, Fortini D, Bordoni R, Imperi F, et al. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group. Antimicrob Agents Chemother 2008;52:2616–2625.

116. Jacobs AC, Thompson MG, Black CC, Kessler JL, Clark LP, et al. AB5075, a highly virulent isolate of Acinetobacter baumannii, as a model strain for the evaluation of pathogenesis and antimicrobial treatments. mBio 2014;5:e01076-14.
117. Vaneechoutte M, Young DM, Ornston LN, De Baere T, Nemec A, et al. Naturally transformable *Acinetobacter* sp. strain ADP1 belongs to the newly described species *Acinetobacter baylyi*. *Appl Environ Microbiol* 2006;72:932–936.

118. Cosgaya C, Mari-Almirall M, Van Assche A, Fernández-Orth D, Mosqueda N, et al. *Acinetobacter dijkshoorniae* sp. nov., a member of the *Acinetobacter calcoaceticus-Acinetobacter baumannii* complex mainly recovered from clinical samples in different countries. *Int J Syst Evol Microbiol* 2016;66:4105–4111.

119. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. The COG database: an updated version includes eukaryotes. *BMC Bioinformatics* 2003;4:41.

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.