ON THE CLASSIFICATION OF QUANDLES OF LOW ORDER

L. VENDRAMIN

Abstract. Using the classification of transitive groups we classify indecomposable quandles of size < 36. This classification is available in Rig, a GAP package for computations related to racks and quandles. As an application, the list of all indecomposable quandles of size < 36 not of type D is computed.

1. Introduction

Racks appeared for the first time in [11] and quandles appeared in [18] and [21]. Racks and quandles are used in modern knot theory because they provide good knot invariants, [18]. They are also useful for the classification problem of pointed Hopf algebras because they provide a powerful tool to understand Yetter-Drinfeld modules over groups, see [5]. Of course, the classification of finite racks (or quandles) is a very difficult problem. Several papers about classifications of different subcategories of racks have appear, see for example [15], [17], [16], [5], [15], [8].

In this paper we use the classification of transitive groups and the program described in [9] to classify indecomposable quandles. With this method, we complete the classification of all non-isomorphic indecomposable quandles of size < 36. This classification is available in Rig, a GAP [1] package designed for computations related to racks and quandles. Rig is a free software and it is available at http://code.google.com/p/rig/.

2. Definitions and examples

We recall basic notions and facts about racks. For additional information we refer for example to [5]. A rack is a pair \((X, \triangleright)\), where \(X\) is a non-empty set and \(\triangleright : X \times X \to X\) is a map (considered as a binary operation on \(X\)) such that

\begin{enumerate}
 \item the map \(\varphi_i : X \to X\), where \(x \mapsto i \triangleright x\), is bijective for all \(i \in X\), and
 \item \(i \triangleright (j \triangleright k) = (i \triangleright j) \triangleright (i \triangleright k)\) for all \(i, j, k \in X\).
\end{enumerate}

A rack \((X, \triangleright)\), or shortly \(X\), is a \textit{quandle} if \(i \triangleright i = i\) for all \(i \in X\). A subrack of a rack \(X\) is a non-empty subset \(Y \subseteq X\) such that \((Y, \triangleright)\) is also a rack.

Example 2.1. A group \(G\) is a quandle with \(x \triangleright y = x y x^{-1}\) for all \(x, y \in G\). If a subset \(X \subseteq G\) is stable under conjugation by \(G\), then it is a subquandle of \(G\).

To construct racks associated to (union of) conjugacy classes of groups use the Rig function \texttt{Rack}. For example, to construct the quandle of three elements associated to the conjugacy class of transpositions in \(S_3\):

\begin{verbatim}
gap> r := Rack(SymmetricGroup(3), (1,2));;
gap> Size(r);
3
\end{verbatim}
Example 2.2. Let G be a group and $s \in \text{Aut}(G)$. Define $x \triangleright y = xs(x^{-1}y)$ for $x, y \in G$. Then (G, \triangleright) is a quandle. Further, let $H \subseteq G$ be a subgroup such that $s(h) = h$ for all $h \in H$. Then G/H is a quandle with $xH \triangleright yH = xs(x^{-1}y)H$. It is called the homogeneous quandle (G, H, s).

Example 2.3. Let $n \geq 2$. The dihedral quandle of order n is $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ with $i \triangleright j = 2i - j \pmod{n}$.

The package provides several functions to construct racks and quandles. See the documentation for more information.

Let X be a finite rack. Assume that $X = \{x_1, x_2, \ldots, x_n\}$. With the identification $x_i \equiv i$ the rack X can be presented as a square matrix $M \in \mathbb{N}^{n \times n}$ such that $M_{ij} = i \triangleright j$. This matrix is called the table of the rack. See [10].

Example 2.4. The matrix (or table) of the rack \mathbb{D}_4 is
\[
\begin{pmatrix}
\varphi_1 \\
\varphi_2 \\
\varphi_3 \\
\varphi_4 \\
\end{pmatrix} = \begin{pmatrix}
1 & 4 & 3 & 2 \\
3 & 2 & 1 & 4 \\
1 & 4 & 3 & 2 \\
3 & 2 & 1 & 4 \\
\end{pmatrix}.
\]

The files of the matrix are the permutations of the quandle: $\varphi_1 = \varphi_3 = (2 4)$ and $\varphi_2 = \varphi_4 = (1 3)$.

\texttt{gap> D4 := DihedralQuandle(4);}
\texttt{gap> Permutations(D4);}
\texttt{[[1, 4, 3, 2], [3, 2, 1, 4], [1, 4, 3, 2], [3, 2, 1, 4]]}

Let (X, \triangleright) and (Y, \triangleright) be racks. A map $f : X \to Y$ is a morphism of racks if $f(i \triangleright j) = f(i) \triangleright f(j)$ for all $i, j \in X$.

Notation 2.5. We write g^G for the conjugacy class of g in G.

Example 2.6. Let $T_1 = (1 2 3)^{h_1}$ and $T_2 = (1 3 2)^{h_2}$. Then the quandles T_1 and T_2 are isomorphic.

\texttt{gap> T1 := Rack(AlternatingGroup(4), (1,2,3));}
\texttt{gap> T2 := Rack(AlternatingGroup(4), (1,3,2));}
\texttt{gap> IsomorphismRacks(T1, T2);}
\texttt{(3,4)}

Hence $T_1 \simeq T_2$ and the isomorphism is given by the permutation $\sigma = (3,4)$. More precisely, assume that $T_1 = \{x_1, x_2, x_3, x_4\}$ and $T_2 = \{y_1, y_2, y_3, y_4\}$. Then the map $f : T_1 \to T_2, f(x_i) = y_{\sigma(i)}$, is an isomorphism of racks.

Example 2.7. Let A be an abelian group, and let $T \in \text{Aut}(A)$. We have a quandle structure on A given by
\[a \triangleright b = (1 - T)a + Tb \]
for $a, b \in A$. The quandle (A, \triangleright) is called affine (or Alexander) quandle and it will be denoted by $\text{Aff}(A, T)$. In particular, let p be a prime number, q a power of p and $\alpha \in \mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$. We write $\text{Aff}(\mathbb{F}_q, \alpha)$, or simply $\text{Aff}(q, \alpha)$, for the affine quandle $\text{Aff}(A, g)$, where $A = \mathbb{F}_q$ and g is the automorphism given by $x \mapsto \alpha x$ for all $x \in \mathbb{F}_q$.

Example 2.8. The tetrahedron quandle is the quandle $T = (1 2 3)^A_4$. It is easy to see that this quandle is isomorphic to an affine quandle over \mathbb{F}_4.

The inner group of a rack X is the group generated by the permutations φ_i of X, where $i \in X$. We write $\text{Inn}(X)$ for the inner group of X. A rack is said to be faithful if the map

$$\varphi : X \to \text{Inn}(X), \quad i \mapsto \varphi_i,$$

is injective. We say that a rack X is indecomposable (or connected) if the inner group $\text{Inn}(X)$ acts transitively on X. Also, X is decomposable if it is not indecomposable. Any finite rack X is the disjoint union of indecomposable subracks [5, Prop. 1.17] called the components of X.

Example 2.9. The dihedral quandle D_4 is decomposable: $D_4 = \{1, 3\} \sqcup \{2, 4\}$.

```gap
gap> D4 := DihedralQuandle(4);;
gap> IsIndecomposable(D4);
false
gap> Components(D4);
[ [ 1, 3 ], [ 2, 4 ] ]
```

For any rack X, the enveloping group of X is

$$G_X = F(X)/(ijj^{-1} = i \triangleright j, \ i, j \in X),$$

where $F(X)$ denotes the free group generated by X. This group is also called the associated group of X, see [11]. Let

$$\overline{G_X} = G_X/\langle \text{ord}(\varphi_x) \mid x \in X \rangle.$$

If X is finite then the group $\overline{G_X}$ is finite and it is called the finite enveloping group of X, see [14].

Example 2.10. Let $X = T$ be the tetrahedron rack. Then $\text{Inn}(X) \simeq A_4$ and $\overline{G_X} \simeq \text{SL}(2,3)$.

```gap
gap> T := Rack(AlternatingGroup(4), (1,2,3));;
gap> inn := InnerGroup(T);
gap> StructureDescription(inn);
A4
gap> env := FiniteEnvelopingGroup(T);
gap> StructureDescription(env);
SL(2,3)
```

Table 1 contains the inner group and the finite enveloping groups associated to some particular racks. These racks appear in the classification of finite-dimensional Nichols algebras, see for example [2 Table 6].

Quandle	$\text{Inn}(Q)$	$\overline{G_X}$
D_3	S_3	S_3
T	A_4	$\text{SL}(2,3)$
Aff(5,2), Aff(5,3)	$\mathbb{Z}_5 \rtimes \mathbb{Z}_4$	$\mathbb{Z}_5 \rtimes \mathbb{Z}_4$
$(1 2)^{A_4}$	S_4	S_4
Aff(7,3), Aff(7,5)	$(\mathbb{Z}_7 \rtimes \mathbb{Z}_4) \rtimes \mathbb{Z}_2$	$(\mathbb{Z}_7 \rtimes \mathbb{Z}_4) \rtimes \mathbb{Z}_2$
$(1 2 3 4)^{A_4}$	S_4	$\text{SL}(2,3) \rtimes \mathbb{Z}_4$
$(1 2)^{A_5}$	S_5	S_5
3. The classification of indecomposable quandles of low order

The main tool for the classification of indecomposable quandles is the following theorem of [9]. Our proof is heavily based on [18, Theorem 7.1]. For completeness we give a proof in the context of this paper.

Theorem 3.1. Let X be an indecomposable quandle of n elements. Let $x_0 \in X$, $z = \phi_{x_0}$, $G = \text{Inn}(X)$ and $H = \text{Stab}_G(x_0) = \{ g \in G \mid g \cdot x_0 = x_0 \}$. Then

1. G is a transitive group of degree n,
2. z is a central element of H,
3. X is isomorphic to the homogeneous quandle (G, H, I_z), where $I_z : G \to G$ is the conjugation $x \mapsto zxz^{-1}$.

Proof. The claim (1) follows by definition. The claim (2) follows from [9, Theorem 4.3]. We now prove (3). We consider the quandle structure over G given by $x \bowtie y = xI_z(x^{-1}y)$ for all $x, y \in G$, and let $e : G \to X$, $x \mapsto x \cdot x_0$, be the evaluation map. Since G acts transitively on X, the map e is surjective. We claim that e is a rack morphism. Indeed,

$$e(x \bowtie y) = e(xs(x^{-1}y)) = e(xzx^{-1}yz^{-1} \cdot x_0) = xzx^{-1}y \cdot x_0 = x \cdot (x_0 \bowtie (x^{-1}y \cdot x_0)) = e(x) \bowtie e(y)$$

for all $x, y \in G$. Further, $e(x) = e(y)$ if and only if $xH = yH$. Then e induces the isomorphism $G/H \to X$, $xH \mapsto e(x)$. Hence the claim follows. □

Algorithm 1: Indecomposable quandles of size n

Result: The list L of all non-isomorphic indecomposable quandles

$L \leftarrow \emptyset$;

for all transitive groups G of degree n do

Compute $H = \text{Stab}_G(x_0)$;

Compute $Z(H)$, the center of H;

for $z \in Z(H) \setminus \{1\}$ do

Compute the homogeneous quandle $Q = (G, H, I_z)$;

if Q is indecomposable and $Q \not\approx X$ for all $X \in L$ then

Add the quandle Q to L;

end

end

end

Recall that all indecomposable quandles of prime order p are affine, see [10]. Let $n \in \mathbb{N}$, $n < 36$, and n not being a prime number. Using Theorem 3.1 and Algorithm 1, the list of all non-isomorphic indecomposable quandles can be constructed. The only requirement is the classification of transitive groups. The complete list of transitive groups up to degree < 32 is included in GAP. Hulpke classified several of these transitive groups, see [17]. Further, Hulpke classified transitive groups of degree 33, 34 and 35. Transitive groups of degree 32 were classified in [6].

For $n \in \mathbb{N}$ let $q(n)$ be the number of non-isomorphic indecomposable quandles of size n. In Example 3.2 above, $q(20)$ is computed. Further, Table 2 shows the value of $q(n)$ for $n \in \{1, 2, \ldots, 35\}$.

Example 3.2. There are 10 isomorphism classes of indecomposable quandles of order 20.

```
gap> NrSmallQuandles(20);
10
```
Rig contains a huge database with the set of representatives of isomorphism classes of indecomposable quandles of size < 36. Let $n \in \{1, 2, \ldots, 35\}$ such that $q(n) \neq 0$, and let $Q_{n, 1}, Q_{n, 2}, \ldots, Q_{n, q(n)}$ be the set of representatives of isomorphism classes of indecomposable quandles of size n. In the package, a representative $Q_{n, i}$, $1 \leq i \leq q(n)$, can be obtained with the function SmallQuandle.

Example 3.3. There exists only one (up to isomorphism) indecomposable quandle of order 10. Further, this quandle is isomorphic to the conjugacy class of transpositions in S_5.

```gap
gap> NrSmallQuandles(10); 1
gap> Q := SmallQuandle(10, 1);
gap> R := Rack(SymmetricGroup(5), (1,2));
gap> IsomorphismRacks(Q, R);
(3,5,6,10,8,4,9,7)
```

Recall that a crossed set is a quandle (X, \triangleright) which further satisfies $j \triangleright i = j$ whenever $i \triangleright j = i$ for all $i, j \in X$.

Example 3.4. It is easy to see that the only indecomposable quandles of size < 36 which are not crossed sets are $Q_{30, 4}$ and $Q_{30, 5}$.

Table 2. The number of non-isomorphic indecomposable quandles

n	1	2	3	4	5	6	7	8	9	10	11	12
$q(n)$	1	0	1	1	3	2	5	3	8	1	9	10

n	13	14	15	16	17	18	19	20	21	22	23	24
$q(n)$	11	0	7	9	15	12	17	10	9	0	21	42

n	25	26	27	28	29	30	31	32	33	34	35
$q(n)$	34	0	65	13	27	24	29	17	11	0	15

Conjecture 3.5. Let p be an odd prime number and let Q be an indecomposable quandle of $2p$ elements. Then $p \in \{3, 5\}$.

4. Rack homology

Let X be a rack. For $n \geq 0$ let $C_n(X, \mathbb{Z}) = \mathbb{Z}X^n$. Consider $C_*(X, \mathbb{Z})$ as a complex with boundary $\partial_0 = \partial_1 = 0$ and $\partial_{n+1} : C_{n+1}(X, \mathbb{Z}) \to C_n(X, \mathbb{Z})$ defined by

$$
\partial_{n+1}(x_1, x_2, \ldots, x_{n+1}) = \sum_{i=1}^{n} (-1)^{i+1} [x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}]
$$

for $n \geq 1$. It is straightforward to prove that $\partial^2 = 0$. The homology $H_*(X, \mathbb{Z})$ of X is the homology of the complex $C_*(X, \mathbb{Z})$. See for example [7], [12], [13] for applications to the theory of knots and [5] for applications to the theory of Hopf algebras.

Example 4.1. Let $X = D_5$. Then $H_2(X, \mathbb{Z}) \cong \mathbb{Z}$.

```gap
gap> RackHomology(DihedralQuandle(5), 2);
[ 1, [ ] ]
```
Example 4.2. Let $X = (12)(345)^{\overline{5}}$. Then $H_2(X, \mathbb{Z}) \simeq \mathbb{Z} \times \mathbb{Z}_6$.

```gap
gap> r := Rack(SymmetricGroup(5), (1,2)(3,4,5));;
gap> RackHomology(r, 2);
[ 1, [ 6 ] ]
```

Example 4.3. Recall that T is the tetrahedron quandle defined in Example 2.8. Then $H_2(T, \mathbb{Z}) \simeq \mathbb{Z} \times \mathbb{Z}_2$ and $H_3(T, \mathbb{Z}) \simeq \mathbb{Z} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$. Further, the torsion subgroup of $H_2(T, \mathbb{Z})$ is generated by

$$
\chi = \chi(1,2) + \chi(1,3) + \chi(2,1) + \chi(2,3) + \chi(3,1) + \chi(3,2),
$$

where

$$
\chi_{(i,j)}(a,b) = \begin{cases}
1 & \text{if } (i,j) = (a,b), \\
0 & \text{otherwise.}
\end{cases}
$$

Indeed,

```gap
gap> T := Rack(AlternatingGroup(3), (1,2,3));;
gap> RackHomology(T, 2);
[ 1, [ 2 ] ]
gap> RackHomology(T, 3);
[ 1, [ 2, 2, 4 ] ]
gap> TorsionGenerators(T, 2);
[ [ 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 ] ]
```

Table 3 contains the second rack homology group of all the indecomposable quandles of size ≤ 21. Quandles with a prime number of elements were not included in Table 3 because of the following lemma of [15].

Lemma 4.4. Let p be a prime number. Let X be an indecomposable quandle of p elements. Then $H_2(X, \mathbb{Z}) \simeq \mathbb{Z}$.

Proof. It follows from [15, Lemma 5.1] and [20, Theorem 2.2].

5. RACKS OF TYPE D

Recall from [3] that a finite rack X is of type D if there exists an indecomposable subrack $Y = R \sqcup S$ (here R and S are the components of Y) such that

$$
r \triangleright (s \triangleright (r \triangleright s)) \neq s
$$

for some $r \in R$ and $s \in S$.

Quandles of type D are very important for the classification of finite-dimensional pointed Hopf algebras, see for example the program described in [2, §2.6]. For some interesting applications we refer to [3, 4].

Proposition 5.1. Let Q be an indecomposable quandle of size < 36. Then Q is of type D if and only if Q is isomorphic to one of the following quandles:

1. $Q_{12,1}$,
2. $Q_{18,i}$ for $i \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$,
3. $Q_{20,3}$,
4. $Q_{24,i}$ for $i \in \{1, 2, 3, 4, 5, 6, 8, 10, 11, 16, 17, 21, 22, 23, 26, 27, 28, 32\}$,
5. $Q_{27,i}$ for $i \in \{1, 14\}$,
6. $Q_{30,i}$ for $i \in \{1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16\}$,
7. $Q_{32,i}$ for $i \in \{1, 2, 3, 5, 6, 7, 8, 9\}$.
Indecomposable quandle Q & $H_3(Q, \mathbb{Z})$ & \\
$Q_{4.1}$ & $\mathbb{Z} \times \mathbb{Z}_2$ & \\
$Q_{6.1}$ & $\mathbb{Z} \times \mathbb{Z}_2$ & \\
$Q_{6.2}$ & $\mathbb{Z} \times \mathbb{Z}_4$ & \\
$Q_{8.1}, Q_{8.2}, Q_{8.3}$ & \mathbb{Z} & \\
$Q_{9.4}, Q_{9.5}, Q_{9.7}, Q_{9.8}$ & $\mathbb{Z} \times \mathbb{Z}_3$ & \\
$Q_{9.2}, Q_{9.3}, Q_{9.6}$ & $\mathbb{Z} \times \mathbb{Z}_2$ & \\
$Q_{10.1}$ & $\mathbb{Z} \times \mathbb{Z}_2$ & \\
$Q_{12.1}, Q_{12.2}, Q_{12.4}$ & $\mathbb{Z} \times \mathbb{Z}_2$ & \\
$Q_{12.3}$ & $\mathbb{Z} \times \mathbb{Z}_{10}$ & \\
$Q_{12.1}, Q_{12.2}, Q_{12.4}$ & $\mathbb{Z} \times \mathbb{Z}_4$ & \\
$Q_{12.7}$ & $\mathbb{Z} \times \mathbb{Z}_2 \times \mathbb{Z}_4$ & \\
$Q_{12.8}$ & $\mathbb{Z} \times \mathbb{Z}_2^2$ & \\
$Q_{12.9}$ & $\mathbb{Z} \times \mathbb{Z}_4^2$ & \\
$Q_{12.10}$ & $\mathbb{Z} \times \mathbb{Z}_6$ & \\
$Q_{15.1}, Q_{15.3}, Q_{15.4}$ & \mathbb{Z} & \\
$Q_{15.2}$ & $\mathbb{Z} \times \mathbb{Z}_2^2$ & \\
$Q_{15.5}, Q_{15.6}$ & $\mathbb{Z} \times \mathbb{Z}_5$ & \\
$Q_{15.7}$ & $\mathbb{Z} \times \mathbb{Z}_2$ & \\
$Q_{16.1}, Q_{16.7}$ & $\mathbb{Z} \times \mathbb{Z}_4$ & \\
$Q_{16.2}$ & $\mathbb{Z} \times \mathbb{Z}_2^2$ & \\
$Q_{16.3}, Q_{16.4}$ & $\mathbb{Z} \times \mathbb{Z}_4^2$ & \\
$Q_{16.5}, Q_{16.6}$ & $\mathbb{Z} \times \mathbb{Z}_2$ & \\
$Q_{16.8}, Q_{16.9}$ & \mathbb{Z} & \\
$Q_{18.1}, Q_{18.8}, Q_{18.11}, Q_{18.12}$ & $\mathbb{Z} \times \mathbb{Z}_6$ & \\
$Q_{18.2}, Q_{18.9}, Q_{18.10}$ & $\mathbb{Z} \times \mathbb{Z}_2$ & \\
$Q_{18.3}, Q_{18.6}, Q_{18.7}$ & $\mathbb{Z} \times \mathbb{Z}_4$ & \\
$Q_{18.4}, Q_{18.5}$ & $\mathbb{Z} \times \mathbb{Z}_{12}$ & \\
$Q_{20.1}, Q_{20.2}, Q_{20.3}$ & $\mathbb{Z} \times \mathbb{Z}_6$ & \\
$Q_{20.4}, Q_{20.7}, Q_{20.8}$ & $\mathbb{Z} \times \mathbb{Z}_2$ & \\
$Q_{20.5}, Q_{20.9}$ & $\mathbb{Z} \times \mathbb{Z}_2^2$ & \\
$Q_{20.6}$ & $\mathbb{Z} \times \mathbb{Z}_2 \times \mathbb{Z}_4$ & \\
$Q_{20.10}$ & $\mathbb{Z} \times \mathbb{Z}_4$ & \\
$Q_{21.1}, Q_{21.2}, Q_{21.3}, Q_{21.4}, Q_{21.5}$ & \mathbb{Z} & \\
$Q_{21.6}$ & $\mathbb{Z} \times \mathbb{Z}_2^3$ & \\
$Q_{21.7}, Q_{21.8}$ & $\mathbb{Z} \times \mathbb{Z}_7$ & \\
$Q_{21.9}$ & $\mathbb{Z} \times \mathbb{Z}_2$ & \\

Proof. By [10], indecomposable quandles of size p are affine. Further, [2] Prop. 4.2 implies that affine quandles with p elements are not of type D. Therefore we may assume that the size of Q is not a prime number. Now the claim follows from a straightforward computer calculation.

Corollary 5.2. Let Q be an indecomposable simple quandle of size < 36. Assume that Q is of type D. Then $Q \simeq Q_{30.3}$.

Acknowledgement. I am grateful to M. Graña for writing several functions for the package. I would like to thank N. Andruskiewitsch, E. Clark, F. Fantino, M. Farinati, J. A. Guccione, J. J Guccione, I. Heckenberger and A. Lochmann for several conversations related to racks and quandles. I also thank J. A. Hulpke for the list.
of transitive groups of degree 33, 34 and 35 and D. Holt for the list of transitive
groups of degree 32.

References

[1] The GAP Group, 2006. GAP – Groups, Algorithms, and Programming, Version 4.4.12. Available at http://www.gap-system.org.
[2] N. Andruskiewitsch, F. Fantino, G. A. Garcia, and L. Vendramin. On Nichols algebras associated to simple racks. Contemp. Math. 537 (2011) 31-56.
[3] N. Andruskiewitsch, F. Fantino, M. Graña, and L. Vendramin. Finite-dimensional pointed Hopf algebras with alternating groups are trivial. Ann. Mat. Pura Appl. (4) 190 (2011), no. 2, 225-245.
[4] N. Andruskiewitsch, F. Fantino, M. Graña, and L. Vendramin. Pointed Hopf algebras over the sporadic simple groups. J. Algebra, 325:305-320, 2011.
[5] N. Andruskiewitsch and M. Graña. From racks to pointed Hopf algebras. Adv. Math., 178(2):177–243, 2003.
[6] J. J. Cannon and D. F. Holt. The transitive permutation groups of degree 32. Experiment. Math., 17(3):307–314, 2008.
[7] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito. Quandle cohomology and state-sum invariants of knotted curves and surfaces. Trans. Amer. Math. Soc., 355(10):3947–3989, 2003.
[8] F. J. B. J. Clauwens. Small connected quandles. Preprint: arXiv:1011.2456.
[9] G. Ehrman, A. Gurpinar, M. Thibault, and D. N. Yetter. Toward a classification of finite quandles. J. Knot Theory Ramifications, 17(4):511–520, 2008.
[10] P. Etingof, A. Soloviev, and R. Guralnick. Indecomposable set-theoretical solutions to the quantum Yang-Baxter equation on a set with a prime number of elements. J. Algebra, 242(2):709–719, 2001.
[11] R. Fenn and C. Rourke. Racks and links in codimension two. J. Knot Theory Ramifications, 1(4):343–406, 1992.
[12] R. Fenn, C. Rourke, and B. Sanderson. James bundles. Proc. London Math. Soc. (3), 89(1):217–240, 2004.
[13] R. Fenn, C. Rourke, and B. Sanderson. The rack space. Trans. Amer. Math. Soc., 359(2):701–740 (electronic), 2007.
[14] M. Graña, I. Heckenberger, and L. Vendramin. Nichols algebras of group type with many quadratic relations. Adv. Math., 227(5):1956–1989, 2011.
[15] M. Graña. Indecomposable racks of order p^2. Beiträge Algebra Geom., 45(2):665–676, 2004.
[16] B. Ho and S. Nelson. Matrices and finite quandles. Homology Homotopy Appl., 7(1):197–208, 2005.
[17] A. Hulpke. Constructing transitive permutation groups. J. Symbolic Comput., 39(1):1–30, 2005.
[18] D. Joyce. A classifying invariant of knots, the knot quandle. J. Pure Appl. Algebra, 23(1):37–65, 1982.
[19] D. Joyce. Simple quandles. J. Algebra, 79(2):307–318, 1982.
[20] R. A. Litherland and S. Nelson. The Betti numbers of some finite racks. J. Pure Appl. Algebra, 178(2):187–202, 2003.
[21] S. V. Matveev. Distributive groupoids in knot theory. Mat. Sb. (N.S.), 119(161)(1):78–88, 160, 1982.