Non-Euclidean Contraction Theory for Monotone and Positive Systems

Saber Jafarpour, Member, IEEE, Alexander Davydov, Graduate Student Member, IEEE, and Francesco Bullo, Fellow, IEEE

Abstract—In this note, we study contractivity of monotone systems and exponential convergence of positive systems using non-Euclidean norms. We first introduce the notion of conic matrix measure as a framework to study stability of monotone and positive systems. We study properties of the conic matrix measures and investigate their connection with weak pairings and standard matrix measures. Using conic matrix measures and weak pairings, we characterize contractivity and incremental stability of monotone systems with respect to non-Euclidean norms. Moreover, we use conic matrix measures to provide sufficient conditions for exponential convergence of positive systems to their equilibria. We show that our framework leads to novel results on the contractivity of excitatory Hopfield neural networks and the stability of interconnected systems using nonmonotone positive comparison systems.

Index Terms—Contraction theory, interconnected systems, monotone systems, positive systems, stability theory.

I. INTRODUCTION

A. Problem Description and Motivation

A dynamical system is monotone if its trajectories preserve a partial order of their initial conditions and is positive if the nonnegative orthant is a forward invariant set. Monotonicity appears naturally in real-world applications, including biological systems [29], transportation and flow networks [4], and epidemic networks [18], as well as in small-gain analysis of large-scale interconnected systems [6], [27]. Positive systems are also abundant in engineering and science, for instance, in population dynamics [13] and queuing systems [9]. While the notions of monotonicity and positivity are identical for linear systems, they are distinct and lead to different transient and asymptotic behaviors for nonlinear systems. Linear and nonlinear monotone systems have been studied extensively in dynamical systems [28] and control theory [26], [29]. Monotonicity of dynamical systems with respect to arbitrary cones is studied in [12], and a theory of monotone systems on partially ordered Banach spaces has been developed in [23].

Contraction theory is a classic framework [2], [3], [8], [19] aimed at establishing rigorous nonlinear stability properties of dynamical systems. A dynamical system is contracting if every two trajectories converge exponentially to one another. Contracting systems exhibit many desirable asymptotic properties, given as follows:

1) their asymptotic behavior is independent of their initial condition;
2) when the vector field is time-invariant every trajectory converges to a unique equilibrium point; and
3) when the vector field is periodic, every trajectory converges to a unique periodic orbit.

Contracting systems also enjoy desirable transient behavior and robustness properties, including input-to-state stability (ISS) in the presence of bounded unmodeled dynamics. While classical approaches mostly focus on contraction with respect to the ℓ_2-norm, recent works have shown that stability of monotone and positive system can be studied more systematically and efficiently using non-Euclidean norms. It is known that for a monotone system satisfying a conservation law (respectively, translational symmetry), contractivity naturally arises with respect to ℓ_1-norms (respectively, ℓ_∞-norms). Contraction of monotone systems with respect to state-dependent non-Euclidean norms has been studied in [5]. Contraction of monotone systems with respect to ℓ_1-norm has been studied for flow networks in [4], for traffic networks in [4], and for gene translation systems in [21]. Another relevant topic for monotone systems is the search for sum-separable and max-separable Lyapunov functions [10]. Recent works have used contraction with respect to non-Euclidean norms for monotone systems to find separable Lyapunov functions [17], [20]. Despite all these works, a differential and integral characterization of monotone and positive contracting systems with respect to non-Euclidean norms is missing.

B. Contribution

In this note, we build on the framework proposed in [7] and introduce the notion of conic matrix measure, characterize its properties, and propose efficient methods for computing it. We provide a complete characterization of contractive monotone systems using the one-sided Lipschitz constant of their vector fields and the conic matrix measure of their Jacobians. We also propose a sufficient condition, based on the conic matrix measures, for exponential convergence of positive systems to equilibrium points. As a first application of our monotone contraction framework, we provide a sufficient condition for contractivity of excitation Hopfield neural networks. We remark that strong contractivity of Hopfield neural networks automatically leads to their global stability for time-invariant inputs, their entrainment to a unique periodic orbit for periodic inputs, and their input-to-state stability for general time-varying inputs. As a second application, we establish a novel framework for studying ISS of interconnected systems. Our framework is based on comparison with positive dynamical systems and can accommodate both inhibitory and excitatory interconnections between subsystems. By allowing the comparison system to be positive instead of monotone, our framework generalizes the well-known Matrosov–Bellman comparison lemma and unifies several existing small-gain theorems and comparison lemmas in the literature.

II. NOTATIONS

A. Functions, Norms, and Matrix Measures

Let $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ be a function. If f is differentiable, then we denote its derivative by f'. If f is continuous, we denote its upper
Dini derivative by $D^+ f$. We say f is of class K if it is strictly increasing and $f(0) = 0$. We say f is of class $K \infty$ if it belongs to class K and $\lim_{x \to +\infty} f(x) = \infty$. We say a continuous function $g \colon [0, a) \to [0, \infty)$ is of class KC if, for each fixed y, the map $x \mapsto g(x, y)$ is of class K and, for each fixed x, the map $y \mapsto g(x, y)$ is decreasing such that $\lim_{y \to -\infty} g(x, y) = 0$. For vectors $v, w \in \mathbb{R}^n$, the Hadamard product of v and w is the vector $v \odot w \in \mathbb{R}^n$ defined by $(v \odot w)_i = v_i w_i$, for every $i \in \{1, \ldots, n\}$. A matrix $A \in \mathbb{R}^{n \times n}$ is nonnegative if $A_{ij} \geq 0$, for every $(i, j) \in \{1, \ldots, n\}$. For every matrix $A \in \mathbb{R}^{n \times n}$, the positive part of the matrix $A^+ \in \mathbb{R}^{n \times n}$ is defined by $[A^+]_{ij} = A_{ij}$ if $A_{ij} \geq 0$ and $[A^+]_{ij} = 0$ if $A_{ij} < 0$. Given $x, y \in \mathbb{R}^n$, $x \leq y$ if we have $x_i \leq y_i$ for all $i \in \{1, \ldots, n\}$, and we define $[x, y] \subset \mathbb{R}^n$ as the set of all $z \in \mathbb{R}^n$ such that $x \leq z \leq y$. For a vector $\eta \in \mathbb{R}^n$, the diagonal matrix $[\eta] \in \mathbb{R}^{n \times n}$ is defined by $[\eta]_{ii} = \eta_i$, for every $i \in \{1, \ldots, n\}$. Given $A, B \in \mathbb{R}^{n \times n}$, $A \preceq B$ if $B - A$ is a positive semidefinite matrix. A norm $\| \cdot \|$ on \mathbb{R}^n is monotonic, if for every $x, y \in \mathbb{R}^n$ such that $x \leq y$, we have $\|x\| \leq \|y\|$. For $p \in [1, \infty]$ and $\eta \in \mathbb{R}^n$, the $[\eta]$-weighted ℓ_p-norm is a monotonic norm. Let $\| \cdot \|$ be a norm on \mathbb{R}^n, and the induced matrix norm on $\mathbb{R}^{n \times n}$ is again denoted by $\| \cdot \|$. Given a matrix $A \in \mathbb{R}^{n \times n}$, the matrix measure of A with respect to $\| \cdot \|$ is defined by $\mu(A) := \lim_{n \to +\infty} \frac{\|I_n + hA\|}{h}$.

B. Weak Pairings (WP)

We briefly mention the notion of a WP on \mathbb{R}^n from [7]. A WP on \mathbb{R}^n is a map $\langle \cdot, \cdot \rangle \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ satisfying the following:

i) (subadditivity and continuity of first argument) $\|x + y\| \leq \|x\| + \|y\|$, for all $x, y \in \mathbb{R}^n$ and $\langle \cdot, \cdot \rangle$ is continuous in its first argument,

ii) (weak homogeneity) $k \langle x, y \rangle = k \alpha \langle x, y \rangle = \alpha \langle kx, ky \rangle$ and $\langle x, y \rangle = \langle x, y \rangle$, for all $x, y \in \mathbb{R}^n$ and $\alpha \geq 0$,

iii) (positive definiteness) $\langle x, x \rangle > 0$, for all $x \neq 0$,

iv) (Cauchy–Schwarz inequality)

$$\langle x, y \rangle \leq \|x\|^{1/2} \|y\|^{1/2},$$

for all $x, y \in \mathbb{R}^n$.

For every norm $\| \cdot \|$ on \mathbb{R}^n, there exists (a possibly not unique) associated WP $\langle \cdot, \cdot \rangle$ such that $\|x\|^2 = \langle x, x \rangle$, for every $x \in \mathbb{R}^n$. A WP $\langle \cdot, \cdot \rangle$ satisfies Deimling’s inequality if $\|x\| \leq \|y\| \lim_{n \to +\infty} \sup_{\|z\| \leq \|y\|/2} \|z\| = \|y\|$ for every $x \in \mathbb{R}^n$, and satisfies the curve norm derivative formula if, for every differentiable vector field $\phi : (a, b) \to \mathbb{R}^n$ and for almost every $t \in (a, b)$, we have $\|x(t)\| D^+ \|x(t)\| = \|\dot{x}(t)\| x(t)$. For every $p \in [1, \infty)$ and invertible $R \in \mathbb{R}^{n \times n}$, we define $\|x\|_p \in \mathbb{R}^n$ by

$$\|x\|_p, R = \|y\|_{p, R} (Ry) = \|y\| \sup_{0 \neq Ry \in \mathbb{R}^n} \|y\|^{p-2} R^{T} Ry,$$

for invertible $R \in \mathbb{R}^{n \times n}$, we define $\|x\|_1, R$ and $\|x\|_\infty, R$ by

$$\|x\|_1, R = \|\|x\||\|,$$

$$\|x\|_\infty, R = \max_{i \in \{1, \ldots, n\}} R_{ii} \|x_i\|,$$

where $I_n(x) = \{i \in \{1, \ldots, n\} \mid x_i = \max_{k \in \{1, \ldots, n\}} x_k\}$. It can be shown that, for every $p \in [1, \infty]$ and invertible matrix $R \in \mathbb{R}^{n \times n}$, we have $\|x\|_p, R = \|x\|_1, R$ and $\|x\|_p, R$ satisfies Deimling’s inequality and the curve norm derivative formula. We refer to [7] for a detailed discussion on WP.

C. Dynamical Systems

Consider the dynamical system $\dot{x} = f(t, x)$ on \mathbb{R}^n. Let $\phi(t_0, t, x)$ denote the flow of f at time t starting at time t_0 from x_0. The vector field f is **positive** if \mathbb{R}^n_{++} is a forward invariant set. Let \mathcal{C} be a convex forward invariant set for vector field f. The vector field f is monotone on \mathcal{C}, if for every $x_0, y_0 \in \mathcal{C}$ such that $x_0 \leq y_0$, we have $\phi(t_0, t, x_0) \leq \phi(t_0, t, y_0)$, for every $t \geq t_0$. The Jacobian of f is denoted by $Df(t, x)$. Let $\| \cdot \|$ be a norm with associated WP $\langle \cdot, \cdot \rangle$. The vector field f is contracting with rate $c > 0$ if, for $x, y \in \mathbb{R}^n$ and every $t_0 \leq t \leq 0$, we have

$$\|\phi(t, t_0, x) - \phi(t, t_0, y)\| \leq c \|x - y\|.$$
where the first equality holds by the coordinate, $x = (I_n - hA)^{-1}v$ and the second inequality holds by (4). Therefore, for every $0 \leq h \leq h^*$, we have

$$
\mu^+(A) = \lim_{h \to 0^+} \sup_{\|x\| = 1, x \neq 0} \frac{\|(I_n + hA)x\|}{\|x\|} - 1
$$

where the first equality holds by definition, the second inequality holds by applying triangle inequality to the algebraic equation (5), and the fourth inequality holds by (4). This means that $\mu^+(A) \leq \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$. In addition, using Deimling’s inequality,

$$
\mu^+(A) \leq \frac{\|Ax\|}{\|x\|} \leq \frac{\|x\| + hAx\|}{\|x\|} - 1 = \|x\|^2 \mu^+(A).
$$

This means that $\sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} \leq \mu^+(A)$ and completes the proof of (iv). Regarding (v), the proof is straightforward using the definitions. Regarding part (vi), we show that $\|I_n + hA\| = \|I_n + hA\|/\|x\| = \sup_{x \neq 0} \frac{\|(I_n + hA)x\|}{\|x\|}$, which is a monotonic norm, for every $x \in \mathbb{R}^n$ and for small enough $h > 0$. By triangle inequality, this implies that $(I_n + hA) \|x\| \leq \sup_{x \neq 0} \frac{\|(I_n + hA)x\|}{\|x\|},$ for every $x \in \mathbb{R}^n$ and for small enough $h > 0$. Since $\|\cdot\|$ is a monotonic norm, for every $x \in \mathbb{R}^n$ such that $x \neq 0,$

$$
\frac{\|(I_n + hA)x\|}{\|x\|} \leq \frac{\|(I_n + hA)x\|}{\|x\|} - 1 = \|x\|^2 \mu^+(A),
$$

and thus, for every $x \neq 0,$ and every small enough $h > 0,$ we have

$$
\frac{\|(I_n + hA)x\|}{\|x\|} \leq \frac{\|I_n + hA\| x\|/\|x\|} - 1 = \|x\|^2 \mu^+(A).
$$

Since $x \geq 0,$ we can define $y = |x|$ and take the sup of both sides of the abovementioned inequality over $x \neq 0,$

$$
\mu(A) = \lim_{h \to 0^+} \sup_{x \neq 0} \frac{\|(I_n + hA)x\|}{\|x\|} - 1
$$

and

$$
\mu^+(A) \leq \lim_{h \to 0^+} \frac{\|I_n + hA\| g(x)/\|x\| - 1}{h} = \mu^+(A).
$$

Regarding part (vii), by Theorem 3.3(iv) and Lemma 3.2(ii), we have

$$
\mu^+_{p,R}(A) \leq \sup_{x \neq 0} \frac{[(A + \Delta)x]_p,R}{\|x\|_p,R} = \mu^+_{p,R}(A + \Delta).
$$

Next, we provide formulas for some useful conic matrix measures.

Theorem 3.4 (Computing conic matrix measure): Let $A \in \mathbb{R}^{n \times n}$ be a norm, $\|\cdot\|$ be a conic matrix measure $\mu^+ \in R^{n \times n}$ be an invertible nonnegative matrix, and $\eta \in \mathbb{R}^{n \times n}$. Then,

1. $\mu^+_{R}(A) \leq \mu^+_{(RAR)}$.
2. $\mu^+_{R}(A) = \mu^+_{(R^T)\eta}$.
3. $\mu^+_{p}(A) = p^* - \mu_{p}(A)$, where p^* is the optimal value of the quadratically constrained quadratic programming (QCQP)

$$
p^* = \max \ x^T (A + A^T) + \mu_{p}(A) I_n x
$$

subject to $x \leq 1$, $x \geq 0$, $x \geq 0$.

Proof:

1. $\mu^+_{p}(A) = \max \{a_{ij} + \sum_{p=0}^{n}[a_{ij}^p] \}$.
2. $\mu^+_{p}(A) = \max \{a_{ij} + \sum_{p=0}^{n}[a_{ij}^p] \}$.

Moreover, if A is Metzler, then the following statements hold:

1. $\mu^+_{1}(A) = \min \{c \in \mathbb{R} | \eta^n A \leq c \eta^T \}$.
2. $\mu^+_{[\eta]}(A) = \min \{c \in \mathbb{R} | A \eta \leq c \eta^n \}$.
3. $\mu^+_{[\eta]}(A) = \min \{c \in \mathbb{R} | (\eta A + A^T) \eta^T \leq c \eta^n \}$.

Proof:

1. (Computing conic matrix measures) Theorem 3.3(iii) presents a quadratically constrained quadratic programming (QCQP) optimization problem for computing the ℓ_2-norm conic matrix measure.

2. (Computing conic matrix measures) As is shown in Theorem 3.3, the conic matrix measure shares several nice features with the matrix measure including, positive homogeneity, subadditivity, and translation properties. Remarkably, unlike the matrix measure, the conic matrix measure is sometimes larger than the spectral absissa.

3. (Computing Coppel’s inequality): Let $\|\cdot\|$ be a norm and $t \mapsto A(t)$ be a continuous map. Consider the dynamical system

$$
\dot{x} = A(t)x,
$$

If $A(t)$ is Metzler for all $t \geq 0$ and $x(0) \geq 0,$ then

$$
\|x(t)\| \leq \exp \left(\int_0^t \mu^+(A(t)) d\tau \right) \|x(0)\|,
$$

for all $t \geq 0$.

Proof:

1. Theorem 3.6 (Conic Coppel’s inequality): Let $\|\cdot\|$ be a norm, $x(t) = x(0)$, and $x(0) \geq 0$, then

$$
\|x(t)\| \leq \exp \left(\int_0^t \mu^+(A(t)) d\tau \right) \|x(0)\|,
$$

for all $t \geq 0$. Therefore, for every $t \in \mathbb{R}^+$, we obtain

$$
\|x(t)\| \leq \exp \left(\int_0^t \mu^+(A(t)) d\tau \right) \|x(0)\|.
$$

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
The result then follows from the Grönwall–Bellman Lemma.

IV. CONTRACTING MONOTONE AND POSITIVE SYSTEMS

In this section, we use the notions of conic matrix measure and WP to study contractive monotone systems and converging positive systems. Our first result presents a characterization of contracting monotone systems using conic matrix measures and WPs.

Theorem 4.1 (Contracting monotone systems): Let \(\dot{x} = f(x) \) be a monotone dynamical system with a convex forward invariant set \(C \subseteq \mathbb{R}^n \) and \(|| \cdot || \) be a norm associated with WP [ii., 4], satisfying Deimling’s inequality. If \(\| \cdot \| \) is monotonic, then the following statements are equivalent for \(b \in \mathbb{R} \):

i) \(\mu^+(Df(x)) \leq b \), for every \((t, x) \in \mathbb{R}_+ \times C \),

ii) \(\| f(t, x) - f(t, y) \| \leq \| x - y \|^2 \), for every \((t, x), (t, y) \in \mathbb{R}_+ \times C \) such that \(x \geq y \),

iii) \(\| f(t, x, 0) - \phi(t, x, 0) \| \leq e^{(t-s)} \| \phi(s, x, 0) - \phi(s, 0, y) \| \), for every \(t \leq s \leq t \) and every \(x, y, 0 \in C \).

Instead, if \(\| \cdot \| \) is not monotonic, then conditions (i) and (ii) are equivalent and, with \(C = [x_{\text{min}}, x_{\text{max}}] \) for some \(x_{\text{min}} < x_{\text{max}} \), they imply that

iv) there exists \(M > 0 \) such that, for every \(x, y \in C \), and every \(t_0 \leq t \leq t \),

\[
\| f(t, x, 0) - \phi(t, x, 0) \| \leq M e^{(t-s)} \| \phi(s, x, 0) - \phi(s, 0, y) \|.
\]

Proof: Regarding (i)⇒(ii), compute

\[
\| f(t, x) - f(t, y) \| \leq \left\| \int_0^1 Df(t, \alpha x + (1-\alpha) y) d\alpha \right\| \| x - y \| \leq \int_0^1 \| Df(t, \alpha x + (1-\alpha) y) \| \| x - y \| d\alpha \leq M e^{(t-s)} \| \phi(s, x, 0) - \phi(s, 0, y) \|.
\]

where the first equality is by the mean value theorem, and the second inequality by the subadditivity of the WP and the third inequality holds by Theorem 3.3(iv) and the fact that \(x \geq y \). Regarding (ii)⇒(i), pick \(x = y + hv \), for \(v \in \mathbb{R}^n \) and \(h > 0 \). Thus,

\[
\| f(t, x) - f(t, y) \| = \left\| \int_0^1 \left(\frac{f(t, x) - f(t, y)}{h} \right) h \right\| \leq \left\| \int_0^1 \left(\frac{f(t, x) - f(t, y)}{h} \right) h \right\| \| x - y \| \leq \left\| \int_0^1 \left(\frac{f(t, x) - f(t, y)}{h} \right) h \right\| \| x - y \| \|
\]

In the limit as \(h \to 0^+ \), for every \(y \in \mathbb{R}^n \) and every \(v \in \mathbb{R}^n \)

\[
\| f(t, y) v \| = \lim_{h \to 0^+} \left\| \int_0^1 \left(\frac{f(t, x) - f(t, y)}{h} \right) h \right\| v \leq \| v \| \|
\]

where the first equality holds by the continuity of WP in the first argument. As a result, by Theorem 3.3(iv), \(\mu^+(Df(t, x)) \leq b \), for every \(t \in \mathbb{R}_+ \) and every \(x \in C \). Regarding (i)⇒(iii), since \(f \) is monotone, \(Df(t, x) \) is Metzler for every \(t \in \mathbb{R}_+ \times C \). Since \(\| \cdot \| \) is monotonic, Theorem 3.3(iv) implies \(\mu^+(Df(t, x)) = \mu(Df(t, x)) \), for every \(x \in C \) and every \(t \geq 0 \). These conclusions then follow from [7, Th. 29]. Regarding (iii)⇒(ii), note that \(\| f(t, h, x, 0) - \phi(t, 0, y) \| \leq e^{ Bh}\| \phi(t, x, 0) - \phi(t, 0, y) \| \), for every \(h > 0 \). As a result

\[
\lim_{h \to 0^+} \frac{\| f(t, h, x, 0) - \phi(t, h, x, 0) \| - \| f(t, 0, x, 0) - \phi(t, 0, y) \|}{h} \leq \| f(t, 0, x, 0) - \phi(t, 0, y) \|,
\]

which means that

\[
\| f(t, x, 0) - \phi(t, x, 0) \| \leq \| f(t, 0, x, 0) - \phi(t, 0, y) \|.
\]

Thus, by Deimling’s inequality, for every \(x, y \in C \)

\[
\| f(t, x, 0) - \phi(t, x, 0) \| \leq b \| f(t, 0, x, 0) - \phi(t, 0, y) \|.
\]

This concludes the proof of (iii)⇒(ii).

Regarding (iv), first we show that, for \(x_0 \geq y_0 \), \(\| f(t, x, 0) - f(t, y, 0) \| \leq e^{(t-s)} \| \phi(s, x, 0) - \phi(s, y, 0) \| \). For \(\alpha \in [0, 1] \), define \(\psi(t, \alpha) = \phi(s, \alpha x, 0) + (1-\alpha) \phi(s, 0, y) \) and note \(\psi(t, \alpha) = \phi(s, x, 0) + (1-\alpha) \phi(s, 0, y) \) and \(\frac{d}{ds} \| \psi(t, \alpha) \| = \| f(t, x, 0) - \phi(t, 0, y) \| \). We then compute

\[
\frac{\partial}{\partial t} \psi(t, \alpha) = \frac{\partial}{\partial t} f(t, \psi(t, \alpha)) = \frac{\partial}{\partial x} f(t, \psi(t, \alpha)) \frac{\partial}{\partial \alpha} \psi(t, \alpha).
\]

Therefore, \(\frac{\partial}{\partial t} \psi(t, \alpha) \) satisfies the linear time-varying differential equation \(\frac{\partial}{\partial t} \psi(t, \alpha) = \mathcal{M}(x, \psi(t, \alpha)) \). Moreover, \(x_0 = y_0 \geq 0 \) and \(D f(t, x) \) is Metzler, for every \(t \in \mathbb{R}_+ \times C \). Therefore, Theorem 3.6 implies

\[
\| f(t, x, 0) - f(t, 0, y) \| \leq \int_0^t \mu^+(Df(t, \psi(t, \alpha))) d\tau \leq e^{(t-s)} \| \phi(s, x, 0) - \phi(s, 0, y) \|
\]

where we used \(\mu^+(Df(t, x)) \leq b \), for every \(t \in \mathbb{R}_+ \) and \(x \in \mathbb{R}^n \). In turn, inequality (9) implies

\[
\| f(t, x, 0) - f(t, 0, y) \| \leq \| f(t, x, 0) - f(t, y, 0) \| \leq \| f(t, 0, x, 0) - f(t, 0, y) \|.
\]

Now assume that \(x_0 > y_0 \). We define \(\xi, \eta \in \mathbb{R}^n \) by \(\xi = \max\{x_0, y_0\} \), \(\eta = \min\{x_0, y_0\} \), \(I_n = \{i \in \{1, \ldots, n\} \} \).

Then, \(\eta < x \leq \xi \) and it is clear that \(\eta \leq x \leq \xi \). Moreover, since all the norms are equivalent in \(\mathbb{R}^n \), there exists \(M_1, M_2 > 0 \) such that \(M_1 \| x \| \leq \| x \| \leq M_2 \| x \| \). As a result, we get

\[
\| f(t, x, 0) - f(t, y, 0) \| \leq e^{(t-s)} \| \phi(s, x, 0) - \phi(s, 0, y) \|.
\]

However, we know that \(\eta \leq \xi \); thus, by the abovementioned argument, we get \(\| f(t, x, 0) - f(t, y, 0) \| \leq e^{(t-s)} \| \phi(s, x, 0) - \phi(s, 0, y) \| \). Therefore,

\[
\| f(t, x, 0) - f(t, y, 0) \| \leq e^{(t-s)} \| \phi(s, x, 0) - \phi(s, 0, y) \|.
\]

Remark 4.2: For monotone norms, using Theorem 3.3(vi), the notion of conic matrix measure coincides with the standard matrix measure on Metzler matrices. Therefore, Theorem 4.1 can be completely recovered from [7, Th. 31]. However, for nonmonotonic norms, Theorem 4.1 provides a conic matrix measure condition for incremental exponential stability of the system. The next example elaborates this point in more detail.
Example 4.3: Consider the class of dynamical system on \mathbb{R}^2
\[
\begin{align*}
\dot{x}_1 &= - x_1 + \alpha x_2 - \gamma g(x_1) \\
\dot{x}_2 &= \beta x_2 - x_2
\end{align*}
\]
where $\alpha, \beta, \gamma \geq 0$ and $g : \mathbb{R} \to \mathbb{R}_{\geq 0}$ is differentiable with $g(0) = 0$ and $0 \leq g'(x) \leq C$, for every $x \in \mathbb{R}$. It is easy to see that, since $\alpha, \beta \geq 0$, the dynamical system (10) is monotone. For $\alpha = \frac{1}{2}, \beta = 1.2, \gamma = 1$, and $C = 0.1$, we have $Df(x_1, x_2) = \begin{bmatrix} -1 - g'(x_1) & \frac{1}{2} \\ 1.2 & -1 \end{bmatrix}$.

For the monotonic norm $\| \cdot \|_\infty$, we have $\mu \cdot (Df(x_1, x_2)) = \mu(x)(Df(x_1, x_2)) = 0.2$. Therefore the dynamical system (10) is not contracting with respect to ℓ_∞-norm. For the nonmonotonic norm $\| \cdot \|_{\infty,R}$ with $R = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ we can compute
\[
\mu_{\infty,R}(Df(x_1, x_2)) = \mu_{\infty,R}(RDf(x_1, 1)x^R) = -0.15 - \frac{g'(x_1)}{2} \leq -0.15.
\]
(11)

Therefore, using Theorem 4.1 and inequality (11), the dynamical system (10) is incrementally exponentially stable with respect to the nonmonotonic norm $\| \cdot \|_{\infty,R}$. As a consequence, \mathcal{O}_2 is the globally exponentially stable equilibrium point of the dynamical system (10).

On the other hand, we have
\[
\mu_{\infty,R}(Df(x_1, x_2)) = \mu_{\infty,R}(RDf(x_1, 1)x^R) = \begin{bmatrix} -1.85 - \frac{g'(x_1)}{2} & 0.35 + \frac{g'(x_1)}{2} \\ -0.35 + \frac{g'(x_1)}{2} & -0.15 - \frac{g'(x_1)}{2} \end{bmatrix}
\]
\[
\geq 0.2 - g'(x_1) \geq 0.1.
\]
(12)

However, using [7, Th. 31] and (12), the dynamical system (10) is not contracting with respect to $\| \cdot \|_{\infty,R}$.

We can also simplify Theorem 4.1 for diagonally weighted norms.

Corollary 4.4 (Diagonally weighted norms): Let $\bar{x} = f(x, t)$ be a monotone dynamical system and $\eta \in \mathbb{R}_{\geq 0}$. Then, the following statements about $[\eta]$-weighted ℓ_∞-norm are equivalent:

i) $\mu_{[\eta]}(Df(x_1, x_2)) \leq b, \forall x \in \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$,

ii) $\eta^T (f(x, t) - f(y)) \leq b \eta^T (x - y), \forall x, y \in \mathbb{R}_{\geq 0}$.

Regarding (ii) \Rightarrow (i), pick $x = y + hv, \forall v \in \mathbb{R}_{\geq 0}$ and $h > 0$. Thus, we get
\[
\eta^T (f(x, t) - f(y)) = \eta^T (f(t, y + hv) - f(t, y)) \leq bh\eta^T v.
\]
By taking the limit as $h \to 0^+$, for every $v \in \mathbb{R}_{\geq 0}$ and every $v \in \mathbb{R}_{\geq 0}$
\[
\eta^T Df(t, y)v = \lim_{h \to 0^+} \eta^T (f(t,y+hu) - f(t,y)) \leq bh \eta^T v.
\]
The result then follows by Theorem 3.4(iv).

Regarding (iv) \Rightarrow (v), note that, for every $c > 0$ such that $x = y + cn$,

\[
f(t, x) - f(t, y) = \int_0^1 Df(t, (1-\tau)y + \tau x)(x - y) d\tau \leq b(x - y)
\]
where the inequality follows from Theorem 3.4(vii). For (v) \Rightarrow (iv)
\[
Df(t, x)\eta = \lim_{h \to 0^+} \frac{f(t, x + hn) - f(t, x)}{h} \leq b\eta.
\]
The result follows by Theorem 3.4(vii). The rest of the proof follows from Theorem 4.1.

Next, we use the notion of conic matrix measure and WP to study the exponential convergence of positive systems to their equilibrium points.

Theorem 4.5 (Converging positive systems): Let $\bar{\dot{x}} = f(x, t)$ be a positive system with equilibrium point \mathcal{O}_2, $\| \cdot \|_\infty$ be a norm with associated WP $[\eta]$ satisfying Deimling’s inequality and the curve norm derivative formula, and $b \in \mathbb{R}$. Consider the following:

i) $\| f(t, x) \| \leq b \| x \|^2, \forall x \in \mathbb{R}_{\geq 0}$

ii) $\| \phi(s, t, 0, x_0) \| \leq e^{b(s-\tau)} \| \phi(s, t, 0) \| \| x_0 \|, \forall x_0 \in \mathbb{R}_{\geq 0}$

Similarly, the following statements about $[\eta]$-weighted ℓ_∞-norm are equivalent:

i) $\mu_{[\eta]}(Df(x_1, x_2)) \leq b, \forall x \in \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$,

ii) $\eta^T (f(x, t) - f(y)) \leq b \eta^T (x - y), \forall x, y \in \mathbb{R}_{\geq 0}$.

Proof: Regarding (i) \Rightarrow (ii), the proof is similar to [7, Th. 33], and we omit it.

Regarding (ii) \Rightarrow (i), for every $x \geq 0$, we have
\[
\| f(t, x) \| = \| B(t, x) x \| \leq \mu^+(B(t, x)) \| x \| \| x \|^2 \leq b \| x \|^2
\]
where the second inequality holds by Theorem 3.4(iv).

In the next example, we investigate the role of conic matrix measures in the sufficient condition for exponential stability of positive systems in Theorem 4.5.

Example 4.6: Consider the following dynamical system on \mathbb{R}^2:
\[
\begin{align*}
\dot{x}_1 &= -2x_1 + x_2 := f_1(x_1, x_2) \\
\dot{x}_2 &= -x_1\alpha(x_2) - x_2 := f_2(x_1, x_2)
\end{align*}
\]
where $\alpha : \mathbb{R} \to \mathbb{R}_{\geq 0}$ is a nonnegative nondecreasing function. First note that $Df(x_1, x_2) = \begin{bmatrix} -2 & 1 \\ -\alpha(x_2) & -1 \end{bmatrix}$. Thus, the vector field f is not monotone on $\mathbb{R}^2_{\geq 0}$ because $-\alpha(r) \leq 0$ for every $r \in \mathbb{R}$. However, the dynamical system (13) is positive with an equilibrium point at $\mathcal{O}_2 \in \mathbb{R}^2_{\geq 0}$. Moreover,
\[
\begin{align*}
f(x_1, x_2) &= \begin{bmatrix} -2 & 1 \\ -\alpha(x_2) & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} := B(x_1, x_2) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.
\end{align*}
\]
Using Theorem 3.4(v), for every $(x_1, x_2) \in \mathbb{R}^2_{\geq 0}$
\[
\mu_{\infty,B}(x_1, x_2) = -1 \leq \mu_{\infty,B}(x_1, x_2) = -1 + \alpha(x_2).
\]
(14)
By Theorem 4.5(ii), every trajectory \(t \mapsto [x_1(t), x_2(t)]^T \) of the positive system (13) starting at \([x_1(0), x_2(0)]^T \in \mathbb{R}_{>0}^2\) satisfies
\[
\| [x_1(t), x_2(t)]^T \|_\infty \leq e^{-t} \| [x_1(0), x_2(0)]^T \|_\infty.
\]

It is worth mentioning that, by equation (14), the \(\ell_2 \)-matrix measure of \(B(x_1, x_2) \) might not be bounded and cannot be used to deduce convergence of trajectories of (13) to \(0_2 \).

V. APPLICATIONS

In this section, we present two applications for our non-Euclidean contraction framework for monotone and positive systems. As a first application, we show that a Hopfield neural network with excitatory interactions between its neurons is monotone but nonpositive. We then use our framework to analyze stability and robustness of excitatory Hopfield neural networks. As a second application, we develop a framework for the stability analysis of networks of interconnected systems using positive but nonmonotone comparison systems.

A. Excitatory Hopfield Neural Networks

Hopfield model is a class of recurrent neural networks that can serve as an associative memory system [14]. There has been a recent growing interest in the machine learning community to use variations of Hopfield neural networks to store information or to learn dynamical systems [25]. However, neural networks are notoriously vulnerable to adversarial perturbations of their input; small changes in their input can cause a large change in their output [30]. In this section, we study stability and input–output robustness of Hopfield neural network with excitatory neuron interactions and provide explicit adversarial robustness guarantees for this class of learning algorithms. The dynamics of the Hopfield neural network is given by
\[
\dot{x} = -Ax + Tg(x) + I(t) := F_H(x) \tag{15}
\]
where \(x \in \mathbb{R}^n \) is the state of neurons, \(\Lambda \in \mathbb{R}^{n \times n} \) is the diagonal positive-definite matrix of dissipation rates, \(T \in \mathbb{R}^{n \times n} \) is the interaction matrix, and \(I : \mathbb{R}^2 \rightarrow \mathbb{R}_{>0}^n \) is a time-varying input. Assume \(g(x) = (g_1(x_1), \ldots, g_n(x_n))^T \), where the \(i \)-th activation function \(g_i \) is Lipschitz continuous, monotonic nondecreasing with \(g_i(0) = 0 \) and with the finite sector property
\[
0 \leq \frac{g_i(x) - g_i(y)}{x - y} := G_i(x, y) \leq \overline{G}_i,
\]
where \(\overline{G} = (\overline{G}_1, \ldots, \overline{G}_n)^T \in \mathbb{R}_{>0}^n \). We study excitatory Hopfield networks, i.e., neural networks with Metzler interaction matrix \(T \).

Proposition 5.1 (Contracting Hopfield neural networks): Consider the Hopfield neural network (15) with an irreducible nonnegative interaction matrix \(T \). Assume the Metzler matrix \(- \Lambda + T \overline{G}\) is Hurwitz with \((c, v)\) and \((\omega, w)\) its left and the right Perron eigenpair, respectively. For any \(p \in [1, \infty) \), define \(\eta \in [1, \infty) \) by \(\frac{1}{p} + \frac{1}{\eta} = 1 \) (with convention \(1/\infty = 0 \)) and \(\eta \in \mathbb{R}_{>0}^n \) by
\[
\eta = \left(\frac{1}{v_1^T}, \ldots, \frac{1}{v_n^T} \right)^T.
\]
Then the following statements hold for any \(p \in [1, \infty] \):

i) The Hopfield neural network (15) is monotone and contracting with respect to the norm \(\| \cdot \|_{p, \eta} \) with rate \(\epsilon \);

ii) If \(I(t) = I^* \) is constant, then the Hopfield neural network (15) has a unique globally exponentially stable equilibrium point \(x^* \) with the Lyapunov functions \(\| x - x^* \|_{p, \eta} \) and \(F_H(x) \| x \|_{p, \eta} \);

iii) if \(t \mapsto x_1(t) \) and \(t \mapsto x_j(t) \) are solutions of the Hopfield neural network (15) for input signals \(t \mapsto I(t) \) and \(t \mapsto J(t) \), respectively, then, for every \(t \in \mathbb{R}_{>0} \)
\[
\| x_1(t) - x_J(t) \|_{p, \eta} \leq e^{\epsilon t} \| x_1(0) - x_J(0) \|_{p, \eta} + \int_0^t e^{\epsilon(t-s)} \| I(s) - J(s) \|_{p, \eta} ds.
\]

Proof: Let \(i \in \{1, \ldots, n\} \) and consider \(x \leq y \) such that \(x_i = y_i \). For every \(i \neq j \), by the finite sector property of \(g_i \), we have \(g_i(x_i) \leq g_i(y_j) \), and thus,
\[
[F_H(x)]_i = -\gamma_i x_i + \sum_{j=1}^n T_{ij} g_j(x_j) + I(t)
\leq -\gamma_i y_i + \sum_{j=1}^n T_{ij} g_j(y_j) + I(t) = [F_H(y)]_i,
\]
where the inequality holds because the matrix \(T \) is Metzler. This means that the Hopfield neural network (15) is monotone. Moreover, for every \(x \geq y \geq 0_n \)
\[
\| x - y \|_{p, \eta} D^+ \| x - y \|_{p, \eta}
\leq \| -\Lambda(x - y) + T(g(x) - g(y), x - y) \|_{p, \eta}
\leq \| (-\Lambda + T \overline{G})(x - y), x - y \|_{p, \eta}
\leq \mu_{p, \eta} \| -\Lambda + T \overline{G} \| \| x - y \|_{p, \eta}^2 = -c \| x - y \|_{p, \eta}^2
\]
where the first equality is the curve norm derivative formula. Since \(g \) is nondecreasing and \(T \) is nonnegative, we get the bound \(T(g(x) - g(y)) \leq T \overline{G}(x - y) \) for every \(x \geq y \geq 0_n \). Lemma 3.2(ii) and this bound give us the second inequality. The third inequality holds by the definition of \(\mu_{p, \eta} \), and the fourth equality holds by [1] using the fact that \(-\Lambda + T \overline{G}\) is Metzler, irreducible, and Hurwitz with Perron eigenvalue \(-c\) and left and right Perron eigenvectors \(v \) and \(w \). Then, parts (i) and (ii) follow from Theorem 4.1. Regarding part (iii)
\[
\| x_1 - x_J \|_{p, \eta} D^+ \| x_1 - x_J \|_{p, \eta}
= \| F_H(x_1) - F_H(x_J) + I(t) - J(t), x_1 - x_J \|_{p, \eta}
\leq \| F_H(x_1) - F_H(x_J), x_1 - x_J \|_{p, \eta}
+ \| I(t) - J(t), x_1 - x_J(t) \|_{p, \eta}
\leq -c \| x_1 - x_J \|_{p, \eta}^2 + \| x_1 - x_J \|_{p, \eta} \| I(t) - J(t) \|_{p, \eta},
\]
where the first equality holds by the curve norm derivative formula, the second inequality by subadditive property of WP, and the third inequality by contractivity of \(F_H \) and the Cauchy–Schwarz inequality. This implies that \(D^+ \| x_1(t) - x_J(t) \|_{p, \eta} \leq -c \| x_1(t) - x_J(t) \|_{p, \eta} + \| I(t) - J(t) \|_{p, \eta}, \) for every \(t \in \mathbb{R}_{>0} \). The result follows by Grönwall–Bellman inequality [7, Lemma 11].

Remark 5.2 (Comparison with the literature): We refer to [32] for a review of the stability properties of Hopfield neural networks, e.g., it is known that Hurwitzness of \(-\Lambda + T \overline{G}\) (as we assume in Proposition 5.1) implies global exponential stability. To the best of our knowledge, the strong contractivity (with respect to appropriately weighted \(p \)-norms) in part (i) and the Lyapunov functions in part (ii) are novel. Recall that, as reviewed in the introduction, contractivity is a stronger property than global exponential stability. To the best of our knowledge, the input-to-output stability in part (iii) is novel and is directly applicable to obtain adversarial robustness guarantees of Hopfield neural networks.

B. Nonmonotone Comparison Systems

Comparison principles are well-established techniques in dynamical system theory to infer stability of a dynamical system using properties of a simpler comparison systems. In most of the existing comparison
frameworks in the literature, monotonicity of the comparison system plays a crucial role [22], [24]. In this section, we develop a novel comparison principle for the stability analysis of the networks of interconnected systems. Unlike the existing comparison results in the literature, our framework uses positive comparison systems that are not necessarily monotone. Consider the interconnection of n subsystems

$$
\dot{x}_i = f_i(x_i, u_i), \quad i \in \{1, \ldots, n\}
$$

(16)

where $x_i \in \mathbb{R}^{N_i}$ is the state and $u_i \in \mathbb{R}^{M_i}$ is the exogenous input for the ith subsystem. We define $N = \sum_{i=1}^{n} N_i$ and $M = \sum_{i=1}^{n} M_i$, and $x = (x_1, \ldots, x_n)^T \in \mathbb{R}^N$. We assume that, for every $i \in \{1, \ldots, n\}$, we have $f_i(0, N_i) = 0, i$ and the ith subsystem is equipped with the norm $\| \cdot \|$ on \mathbb{R}^{N_i}. We assume that, for every $i \in \{1, \ldots, n\}$, the ith subsystem has a storage function $V_i : \mathbb{R}^{N_i} \to \mathbb{R}_{\geq 0}$ such that

i) there exists class \mathcal{K}_∞ function α_i and Γ_i such that $\alpha_i(\|x_i\|) \leq V_i(x_i)$

ii) for every $x \in \mathbb{R}^N, u \in \mathbb{R}^M$, the inequality

$$
\mathcal{L}_{f_i} V_i(x_i) \leq -\alpha_i(V_i(x_i)) + g_i(V(x_i)) + \Gamma_i(u) (17)
$$

holds for some function $g_i : \mathbb{R}^N \to \mathbb{R}$ with $g_i(0) = 0$ and for some class \mathcal{K}_∞ functions α_i and Γ_i.

We define the maps $\Gamma : \mathbb{R}^N \to \mathbb{R}^n$ and $A : \mathbb{R}^n \to \mathbb{R}^n$ by

$$
\Gamma(x) = (g_1(x_1), \ldots, g_n(x_n))^T, \quad A(x) = (\alpha_1(x_1), \ldots, \alpha_n(x_n))^T
$$

One can also define the nonmonotone comparison system by

$$
\dot{v}_i = -A_i(v_i) + \Gamma_i(v) + \gamma_i(u), \quad i \in \{1, \ldots, n\}
$$

(18)

Using the inequality (17), one can show that, for $u = 0_M$, the comparison system (18) is a positive dynamical system. However, since g_i can be any arbitrary function, the comparison system (18) is not necessarily monotone.

Remark 5.3 (Input-to-state Stability): The inequality (17) can be considered as a generalization of componentwise input-to-state stability (ISS). An interconnected system is componentwise ISS if each of its subsystems is ISS when interconnections between subsystems are considered as the input. In other words, the interconnected system (16) is componentwise ISS if, for every $i \in \{1, \ldots, n\}$, the storage function V_i satisfies

$$
\mathcal{L}_{f_i} V_i(x_i) \leq -\alpha_i(V_i(x_i)) + \sum_{j \neq i} \gamma_{ij}(V_j(x_j)) + \gamma_{iu}(u_i)
$$

for class \mathcal{K}_∞ function α_i and class \mathcal{K} functions γ_{ij} and γ_{iu}. Indeed, if the interconnected system is componentwise ISS, then the associated comparison system (18) is monotone.

Proposition 5.4 (Stability of interconnection of systems): Consider the interconnected system (16) and suppose that every subsystem satisfies the abovementioned conditions (i) and (ii). Let $p \in [1, \infty]$ and $R \in \mathbb{R}^{n \times n}$ be invertible nonnegative matrices. Suppose that there exists $c > 0$ such that, for every $x \geq 0_n$

$$
-\|A(v)\|_p, R \geq \|G(v)\|_p, R + c\|v\|_p^2.
$$

Then, the following statements hold:

i) the comparison system (18) converges exponentially to 0_n, ii) for $u(t) = 0_M$, every trajectory of the interconnected system (16) converges to 0_N, iii) the system (16) is input-to-state stable in the sense that, for every $i \in \{1, \ldots, n\}$ and $t \geq 0$, there exists $L_i > 0$, such that

$$
\|x_i(t)\| \leq \Omega_i(t) \left(L_i e^{-ct} \|V(x(0))\|_p, R + \frac{L_i(1-e^{-ct})}{c} \max_{r \in [0,t]} \|\gamma_i(u(r))\|_p, R \right).
$$

(20)

Alternatively, if $v \mapsto -A(v) + \Gamma(v)$ is continuously differentiable, then (i)-(iii) still holds by replacing condition (19) with the following stronger condition:

$$
\mu_{p,R}^+(B(v)) \leq -c
$$

(21)

where $B(v) \in \mathbb{R}^{n \times n}$ satisfies $B(v) v = -A(v) + \Gamma(v)$, for $v \in R^n$.

Proof: Regarding part (i), for $u = 0_M$, we have

$$
\|A(v)\|_p, R \leq \|A(v)\|_p, R + \|\Gamma(v)\|_p, R - c\|v\|_p^2.
$$

for every $v \in \mathbb{R}^n$. Since the comparison system is positive, the result follows from Theorem 4.5(i). Regarding part (ii), by setting $V(x(t)) = V(t)$, we get

$$
\|V(t)\|_p, R \leq \|V(t)\|_p, R + \frac{1-e^{-ct}}{c} \max_{r \in [0,t]} \|\gamma_i(u(r))\|_p, R.
$$

Therefore, for $u = 0_M$, we have $t \to V(t)$ converges exponentially to 0_N, and, thus, $\lim_{t \to \infty} x(t) = 0_N$. Regarding part (iii), since R is nonnegative and invertible, there exists $L_i > 0$ such that $V_i(x_i) \leq L_i \|V_i(x_i)\|_p, R$ for every $i \in \{1, \ldots, n\}$. Moreover, we know that $\alpha_i(\|x_i\|) \leq V_i(x_i)$, for every $i \in \{1, \ldots, n\}$. The result then easily follows. Finally, for continuously differentiable $v \mapsto -A(v) + \Gamma(v)$, condition (21) implies condition (19) by Theorem 4.5(ii).

Remark 5.5 (Small-gain interpretation):

i) For condition (19), the term $-\|A(v)\|_p, R$ captures the incremental dissipation gains of the subsystems, whereas the term $\|\Gamma(v)\|_p, R$ captures the incremental interconnection gains between subsystems. Therefore, one can interpret the condition (19) as a small-gain condition requiring the dissipation gains to dominate the interconnection gains.

ii) For monotone vector field Γ, one can choose $p = 1$ and $R = \eta \in \mathbb{R}^{n \times n}$ for some $\eta \in \mathbb{R}^n$ and using Corollary 4.4 write condition (19) as

$$
\eta^T A(v) \geq \eta^T \Gamma(v) + c\eta^T v
$$

for every $v \geq 0_n$. This result is similar to the small-gain theorem developed in [6] and [27].

iii) Compared with the classical comparison results (see [22], [24], and [27]), Proposition 5.4 does not require monotonicity of the comparison system. Instead it is based on comparing the interconnected system with a positive comparison system. As a result, contrary to the existing small-gain theorems (see [6] and [27]), Proposition 5.4 can take into account both the inhibitory and excitatory nature of the interactions between the subsystems. The next example illustrates this point in more detail.

Example 5.6: Consider the following system on \mathbb{R}^2:

$$
\dot{x}_1 = -x_1 + \beta(x_2) x_1 x_2 \frac{3}{2} - 2x_1^3 x_2^4
$$

$$
\dot{x}_2 = -x_2 + \alpha(x_1) x_2 - x_1^2 x_2^2
$$

(22)

where $\beta : \mathbb{R} \to \mathbb{R}$ such that $|\beta(r)| \leq |r|$, for every $r \in \mathbb{R}$. We choose the storage functions $V_i(x_i) = x_i^2$ for $i \in \{1, 2\}$. One can construct a

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
monotone comparison system for the dynamics (22) as follows:
\[
\begin{aligned}
\dot{V}_1 &= -2V_1 + 2\beta(x_2)x_2^2 V_1 - 4V_1^2 V_2^2 - 2 \leq -2V_1 + 2V_3^3 V_1 \\
\dot{V}_2 &= -2V_2 + 2V_1^3 V_2 - 2V_1^3 V_2^3 - 2 \leq -2V_2 + 2V_1^3 V_2.
\end{aligned}
\]
Therefore, the comparison system has the form \(\dot{v} = h(v) \) with \(h(v) = -2v_1 + 2v_2, 0 \leq \dot{v}_2 \leq 2v_2 \). Since the Jacobian of \(h \) is Metzler on \(\mathbb{R}_0^2 \), the comparison system \(h \) is monotone on \(\mathbb{R}_0^2 \). However, this comparison system has two equilibrium points \(v_1 = v_2 = 0 \) and \(v_1 = v_2 = 1 \). Therefore, it is not possible to use comparison system \(h \) to deduce global stability of \(\bar{0}_0 \) for the original dynamical system (22). On the other hand, one can construct a positive nonmonotone comparison system for the dynamics (22) as follows:
\[
\begin{aligned}
\dot{V}_1 &= -2V_1 + 2\beta(x_2)x_2^2 V_1 - 4V_1^2 V_2^2 - 2 \leq -2V_1 + 2V_3^3 V_1 \\
\dot{V}_2 &= -2V_2 + 2V_1^3 V_2 - 2V_1^3 V_2^3 - 2 \leq -2V_2 + 2V_1^3 V_2.
\end{aligned}
\]
Therefore, the comparison system has the from \(\dot{v} = A(v) + \Gamma(v) \) with \(A(v_1, v_2) = -2v_1 \) and \(\Gamma(v_1, v_2) = \begin{bmatrix} v_2 & -4v_1 v_2 \\ 2v_2^2 & -2v_1^2 v_2 \end{bmatrix} \). We can also define \(B(v_1, v_2) = 2 \begin{bmatrix} x_1^2 - x_2^2, v_1 v_2, v_1, v_2 \end{bmatrix} \), and the first equality holds by Theorem 3.3(iv) and the second equality holds by the fact that \(\beta(Bx) = (1/2)x^T (B + B^T)x \). Therefore, condition (21) holds, and by Proposition 5.4, every trajectory of the system (22) converges to \(\bar{0}_0 \).

VI. CONCLUSION

In this article, we used conic matrix measures and WPs to characterize contracting monotone systems and to provided sufficient conditions for exponential convergence of positive systems to their equilibriums. As applications, we used our monotone contraction results to study the contractivity and robustness of Hopfield neural networks. We also used our positive contraction results to established a novel and less-conservative framework for studying stability of interconnected networks. Future work includes extension of this framework to study monotone and positive systems that are weak- or semicontracting [15] and to characterize contractivity of systems that are monotone with respect to arbitrary cones.

REFERENCES

[1] J. Albrecht, “Minimal norms of nonnegative irreducible matrices,” Linear Algebra Appl., vol. 249, no. 1, pp. 255–258, 1996.
[2] Z. Aminzare and E. D. Sontag, “Contraction methods for nonlinear systems: A brief introduction and some open problems,” in Proc. IEEE Conf. Decis. Control, 2014, pp. 3835–3847.
[3] F. Bullo, Contraction Theory for Dynamical Systems, 1st ed. Seattle, WA, USA: Kindle Direct Publishing, 2022.
[4] G. Como, E. Lovisari, and K. Savla, “Throughput optimality and overload behaviour of dynamical flow networks under monotone distributed routing,” IEEE Trans. Control Netw. Syst., vol. 2, no. 1, pp. 57–67, Mar. 2015.
[5] S. Coogan, “A contractive approach to separable Lyapunov functions for monotone systems,” Automatica, vol. 106, pp. 349–357, 2019.
[6] S. N. Dashkovskiy, B. S. Rüffer, and F. R. Wirth, “Small gain theorems for large scale systems and construction of ISS Lyapunov functions,” SIAM J. Control Optim., vol. 48, no. 6, pp. 4089–4118, 2010.
[7] A. Davydov, S. Jafarpour, and F. Bullo, “Non-Euclidean contraction theory for robust nonlinear stability,” IEEE Trans. Autom. Control, early access, Jun. 17, 2022, doi: 10.1109/TAC.2022.3183966.
[8] M. Di Bernardo, D. Fiore, G. Russo, and F. Scavini, “Convergence, consensus and synchronization of complex networks via contraction theory,” in Complex Systems and Networks, J. Lü, X. Yu, G. Chen, and W. Yu, Eds., Berlin, Germany: Springer, 2016, pp. 313–339.
[9] L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications. Hoboken, NJ, USA: Wiley, 2000.
[10] H. R. Feyzmahdavian, B. Besselink, and M. Johansson, “Stability analysis of monotone systems via max-separable Lyapunov functions,” IEEE Trans. Autom. Control, vol. 63, no. 3, pp. 643–656, Mar. 2018.
[11] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.2,” Jan. 2020.
[12] M. W. Hirsch and H. L. Smith, “Competitive and cooperative systems: A mini-review,” in Positive Systems, L. A. De Benvenuti Santis and L. Farina, Eds., Berlin, Germany: Springer, 2003, pp. 183–190.
[13] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics. Cambridge, U.K.: Cambridge Univ. Press, 1998.
[14] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci., vol. 79, no. 8, pp. 2554–2558, 1982.
[15] S. Jafarpour, P. Cisneros-Velarde, and F. Bullo, “Weak and semi-contractive network systems and diffusively-coupled oscillators,” IEEE Trans. Autom. Control, vol. 67, no. 3, pp. 1285–1300, Mar. 2022.
[16] S. Jafarpour, A. Davydov, and F. Bullo, “Non-Euclidean contraction theory for monotone and positive systems,” Aug. 2022. [Online]. Available: https://arxiv.org/pdf/2104.01321.pdf
[17] Y. Kawano, B. Besselink, and M. Cao, “Contraction analysis of monotone systems via separable functions,” IEEE Trans. Autom. Control, vol. 65, no. 8, pp. 3486–3501, Aug. 2020.
[18] A. Khanfar, T. Baqar, and B. Gharesifard, “Stability of epidemic models over directed graphs: A positive systems approach,” Automatica, vol. 74, pp. 126–134, 2016.
[19] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear systems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.
[20] I. R. Manchester and J.-J. E. Slotine, “Control contraction metrics: Convex and intrinsic criteria for nonlinear feedback design,” IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 3046–3053, Jun. 2017.
[21] M. Margaliot, E. D. Sontag, and T. Tuller, “Entrainment to periodic initiation and transition rates in a computational model for gene translation,” PLoS One, vol. 9, no. 5, 2014, Art. no. e96039.
[22] A. A. Martynyuk and A. Y. Obolensky, “On the theory of one-sided models in spaces with arbitrary cones,” J. Appl. Math. Stochastic Anal., vol. 3, no. 3, pp. 85–97, 1990.
[23] A. G. Mazko, “Positivity, robust stability and comparison of dynamic networks. Future work includes extension of this framework to study monotone and positive systems that are weak- or semicontracting [15] and to characterize contractivity of systems that are monotone with respect to arbitrary cones.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.