The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor initially identified as the receptor for dioxin. Almost half a century after its discovery, AHR is now recognized as a receptor for multiple physiological ligands, with important roles in health and disease. In this review, we discuss the role of AHR in the gut–brain axis and its potential value as a therapeutic target for immune-mediated diseases.

Keywords: Aryl hydrocarbon receptor; Autoimmune diseases; Infectious diseases; cancer

INTRODUCTION

In the 1970s, Poland et al. identified a potential receptor for the anthropogenic compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Two years later, the same group demonstrated that TCDD binds to this unknown receptor in hepatic cells, inducing expression of the aryl hydrocarbon hydroxylase enzyme encoded by CYP1A1. Those and other seminal studies by Nebert and Poland led to the identification and characterization of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor with important physiological roles in health and disease.

Indeed, although initial studies focused on ligands such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and halogenated aromatic hydrocarbons (HAHs), it is now clear that a broad range of dietary, commensal and endogenous ligands activate AHR. To date, multiple physiological and dietary AHR ligands (Table 1) have been identified, including tryptophan metabolites such as 6-formylindolo[3,2-b]carbazole (FICZ), kynurenine, indigo, indirubin, the pigment curcumin, carotenoids, flavonoids, bilirubin and biliverdin, 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), indoxyl-3-sulfate (I3S), indole-3-carbinol (I3C), gallic acid, as a cochaperone; (3) AHR-interacting protein (AIP, also known as Ara9 or XAP2), which stabilizes AHR in the cytoplasm, preventing nuclear translocation37 (Fig. 1B). HSP90 is reported to translocate to the nucleus together with AHR and their function remains limited.

The ability of AHR to interact with multiple molecules and its broad expression enables it to modulate diverse physiological processes in response to environmental, microbial and metabolic cues. In this review, we discuss the role of AHR in the immune response, with a focus on the gut–brain axis.

THE AHR

In mice and humans, AHR is an 848-amino acid-long protein. It is encoded by a gene located on chromosomes 7 and 12 in humans and mice, respectively. The Ahr promoter harbors several transcription initiation sites rich in GC-rich regions but without a TATA or a CCAAT box. These GC-rich regions contain binding sites for ubiquitously expressed zinc-finger transcription factors, including Sp1 and Sp3, which seem to be required for basal AHR expression. AHR is a member of the basic-helix/loop/ helix per-Anti-sim (bHLH/PAS) family of transcription factors. The bHLH domain of AHR is responsible for DNA binding and dimerization, stabilizing protein–protein interactions. The PAS domain contains two subdomains: PAS-A, which is essential for dimerization with other proteins, and PAS-B, which harbors ligand-and heat shock protein (HSP) 90-binding motifs (Fig. 1A). The AHR transcriptional activation domain is located in the N terminal region and encompasses a region rich in glutamine (Q-rich region) that also harbors a nuclear translocation signal (Fig. 1A).

Inactive AHR is located in the cytoplasm complexed with several chaperones that stabilize it. The cytoplasmic AHR complex contains the following: (1) an HSP90 dimer that maintains AHR in a conformation that maximizes its affinity for ligands; (2) p23 as a co-chaperone; (3) AHR-interacting protein (AIP, also known as Ara9 or XAP2), which stabilizes AHR in the cytoplasm, preventing its ubiquitination and degradation; and (4) the c-SRC protein kinase. AHR genomic signaling is triggered by ligand binding, which induces a conformational change in AHR, releasing AIP and exposing the nuclear localization signal and a protein kinase C target site that when phosphorylated promotes AHR nuclear translocation (Fig. 1B). HSP90 is reported to translocate to the nucleus together with AHR, but knowledge of the cofactors that translocate to the nucleus together with AHR and their function remains limited.

In the nucleus, AHR exchanges its chaperones with the AHR nuclear translocator (ARNT, also known as HIF-1β) to interact with DNA sequences known as xenobiotic responsive elements (XRE, also known as DRE) in the regulatory regions of target genes (e.g., CYP1A1, CYP1A2, CYP1B1, and AHRR). AHR-targeted components of cytochrome P450 (CYP) affected by AHR catalyze the degradation of AHR ligands and hence participate in a negative feedback loop.
Compound	Activity	Source
1,4-dihydroxy-2-naphthoic acid (DHNA)	Agonist	Microbial metabolism
2-(19H-indole-39-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE)	Agonist	Tryptophan metabolism
2-(Indol-3-ylmethyl)-3,39-diindolylmethane (Ltr-1)	Agonist	Cruciferous vegetables
2,3,7,8-Tetrachlorodibenzop-dioxin (TCDD)	Agonist	Anthropogenic
3,3-diindolylmethane (DIM)	Agonist	Cruciferous vegetables
3′-4′-Dimethoxyflavone (DMF)	Partial agonist	Anthropogenic
3-Methylcholanthrene	Agonist	Anthopogenic
4-hydroxy-tamoxifen (4OHT)	Agonist	Anthropogenic
5-hydroxytryptophan (5HTP)	Agonist	Natural amino acid
6-Formylindolo [3,2-b] carbazole (FICZ)	Agonist	Tryptophan metabolism
6-Methyl-1,3,8-trichlorodibenzoferan (6-MCDF)	Partial agonist	Anthropogenic
Baicalin	Antagonist	Scutellaria baicalensis (plant)
Beta-naphthoflavone	Agonist	Anthropogenic
Bilirubin	Agonist	Heme metabolism
Biliverdin	Agonist	Heme metabolism
CH-22319	Antagonist	Anthopogenic
Cinnabarinic acid (CA)	Agonist	Tryptophan metabolism
Curcumin	Agonist	Natural pigment
Diclofenac	Agonist	Anthopogenic
Diosmin	Agonist	Citrus fruit peel
Gallic acid	Agonist	Different plants
GNF351	Antagonist	Anthopogenic
Hydroxyeicosatrienoic acid ([12(R)-HETE])	Agonist	Arachidonic acid metabolism
Indigo	Agonist	Indigofera spp (plant)
Indirubin	Agonist	Indigofera spp (plant)
Indole	Agonist	Diverse natural origen
Indole-3-acetic acid (IAA)	Agonist	Plant hormone (Indole derivative)
Indole-3-acetonitrile (I3ACN)	Agonist	Plant hormone (indole derivative)
Indole-3-aldehyde (I3Al)	Agonist	Tryptophan metabolism by bacterias
Indole-3-carbinol (I3C)	Agonist	Cruciferous vegetables
Indolo [3,2-b]carbazole (ICZ)	Agonist	Indole-3-carbinol
Indoxyl-3-sulfate (I3S)	Agonist	Tryptophan metabolism
Kynurenic acid (KA)	Agonist	Tryptophan metabolism
L-Kynurenine (Kyn)	Agonist	Tryptophan metabolism
Laquinimod	Agonist	Anthopogenic
Lipoxin A4	Agonist	Arachidonic acid metabolism
Malassezin	Agonist	Malassezia furfur (fungi)
3′-methoxy-4′- nitroflavone (MNF)	Antagonist	Synthetic falvone derivative
Norisoboldine	Agonist	Lindera aggregata (plant)
Omeprazole	Agonist	Anthopogenic
Prostaglandin	Agonist	Arachidonic acid metabolism
Quercetin	Partial agonist	Fruits and vegetables
StemRegenin 1 (SR1)	Antagonist	Purine derivative
Sulindac	Agonist	Anthopogenic
Resveratrol	Partial agonist	Fruits and vegetables
Tapinarof	Agonist	Bacterial metabolism
Tryptamine	Agonist	Tryptophan metabolism
Tryptphantrin	Agonist	Tryptophan metabolism
VAF347	Agonist	Anthopogenic
Xanthurenic acid	Agonist	Tryptophan metabolism
that limits AHR activation. AHR also induces expression of the AHR repressor (AHRR), which limits AHR activation.41

In addition to its direct effects mediated via XREs, AHR controls transcriptional responses through interaction with other transcription factors and coactivators, including nuclear factor-kappaB (NF-κB), estrogen receptor (ER), retinoic acid receptor, and members of the signal transducers and activators of transcription family.42 For instance, NF-kB/RelA-dependent AHR expression following LPS stimulation in dendritic cells (DCs) has been described.43 AHR has also been shown to interact with c-Maf to control the expression of IL-10 and IL-21.44–47 AHR has been shown to modulate the epigenetic status of the cell via the control of noncoding RNAs, microRNAs, and histone acetylation/methylation mechanisms that regulate chromatin conformation and accessibility.50

AHR has been shown to modulate the epigenetic status of the cell via the control of noncoding RNAs, microRNAs, and histone acetylation/methylation mechanisms that regulate chromatin conformation and accessibility.50

AHR signaling also involves nongenomic pathways. For example, once released from its complex with AHR, c-SRC can phosphorylate enzymes involved in the arachidonic acid and leukotriene signaling pathways.51 These nongenomic mechanisms are important for the induction of endotoxin tolerance in DCs via c-SRC-driven phosphorylation and stabilization of indoleamine 2,3-dioxygenase 1 (IDO1).52 Finally, AHR has been reported to act as an E3 ubiquitin protein ligase, inducing proteasomal degradation of protein targets such as p53, FOS, hypoxia-inducible factor (HIF)-1α, MYC, and ER.53–55 Altogether, these data demonstrate that almost half a century after the cloning of AHR, the mechanisms mediating the control of cellular responses by AHR still need to be fully elucidated.

AHR IN THE CONTROL OF THE IMMUNE RESPONSE

The purification of AHR and the generation of knockout mice (AHR KO) led to the identification of multiple physiologic roles for AHR.56,57 One of those roles is the regulation of the immune response.

Modulation of inflammation by AHR expressed in mucosal tissues and skin

The intestinal epithelium interacts with a myriad of microbial metabolites, pollutants, and dietary molecules. AHR acts as a sensor for many of these environmental stimuli, mediating some of their effects on the immune response. AHR conditional

Fig. 1 AHR and its signaling pathway. A Schematic representation of AHR protein domains. B The AHR signaling pathway. The inactive form of AHR is localized in the cytosol in a complex composed of HSP90, AIP, p23, and c-SRC. AHR agonists induce conformational changes in AHR that result in its translocation to the nucleus. In the nucleus, AHR interacts with ARNT, and the heterodimer is responsible for the transcription of XRE-containing genes. Notes: (AHR) aryl hydrocarbon receptor, (N) N terminal motif, (C) C terminal motif, (NLS) nuclear localization signal, (bHLH) basic-helix loop helix, (PAS) Per-Arnt-Sim, (Q-rich) glutamine rich, (HSP90) heat shock protein 90, (AIP) AHR-interacting protein, (XRE) xenobiotic responsive elements, (AHRR) AHR repressor, (CYP) cytochrome P450, (IDO) indoleamine 2,3-dioxygenase
knockout mice generated using an intestinal epithelial cell (IEC)-specific Cre recombinase (Vill-1-Cre) showed increased susceptibility to *Citrobacter rodentium* infection.58 In addition, these mice display defective differentiation of intestinal stem cells, resulting in the malignant transformation of IECs.58 Conversely, AHR activation by dietary ligands limits intestinal stem cell proliferation by regulating the E3 ubiquitin ligases Rnf43 and Znrf3, suppressing Wnt/β-Catenin signaling. Within the context of inflammation, IFN-γ induces the expression of IDO1, which produces the AHR agonist L-kynurenine, thereby triggering AHR-driven upregulation of IL-10 receptor 1 and consequently amplifying the anti-inflammatory effects of IL-10.76 These findings highlight the anti-inflammatory role of AHR in IECs and its contribution to the integrity of the intestinal barrier.

AHR also controls the expression of antimicrobial peptides that fight pathogens in the gut. For instance, regenerating islet-derived protein III (REGIIIβ) and REGilly are upregulated following administration of the probiotic-derived AHR agonist 1,4-dihydroxy-2-naphthoic acid (DHNIA), altering the microbiome and ameliorating dextran sodium sulfate-induced colitis in mice.60 In support of a role for AHR in therapeutic interventions already in use, the increase in Th22 cell differentiation and IL-22 production induced by TNF blockade was abrogated by AHR inhibition in Crohn’s disease (CD) patients treated with antitumor necrosis factor (TNF)-blocking antibodies. These data suggest a new role for AHR agonists as potential adjuvants for anti-TNF therapy in CD patients.61

Although these and additional studies40,47,58,62–69 support a protective role for AHR in intestinal inflammation, some studies have challenged this notion. In particular, it was recently reported that environmental oxazoles induce the production of AHR agonists by IDO1 expressed in IECs and other cell types,70 which surprisingly leads to increased intestinal inflammation via the suppression of IL-10 secretion, modulation of CD1d-dependent antigen presentation and production of IFNγ/IL-13 by NK cells.71 These provocative findings should be further investigated, particularly within the context of alternative interpretations, such as the expansion of AHR-driven nonpathogenic Th17 cells, which may acquire full pathogenic activity following exposure to additional factors in the inflamed gut, such as IL-23.71

Innate lymphoid cells (ILCs) are tissue-resident innate immune cells that participate in the response to infection and contribute to tissue homeostasis and chronic inflammation.72,73 ILCs are classified into five subsets: NK cells, lymphoid tissue inducer cells, group 1 ILCs (ILC1s), group 2 ILCs (ILC2s), and group 3 ILCs (ILC3s).74 Each of these subsets is controlled by different transcription factors,75 and AHR controls IL-22 expression in ILC3s.76 Indeed, AHR-deficient mice exhibit expansion of segmented filamentous bacteria in the small intestine due to reduced IL-22 production by ILC3s, which in turn promotes Th17 cell expansion in the gut and the development of spontaneous colitis.72,73 Of note, polymorphisms in caspase recruitment domain family member 9 (CARD9) have been associated with intestinal inflammation.77 Interestingly, CARD9 risk alleles associated with inflammatory bowel disease promote a decrease in the abundance of intestinal commensals that produce AHR agonists, leading to decreased AHR activation and intestinal inflammation.77 These findings highlight how AHR’s role as a sensor of commensal products contributes to mechanisms of intestinal pathogenesis.

DCs play central roles in the maintenance of tolerance and the generation of protective immune responses against pathogens in the gut as well as in other tissues.78,79 AHR is highly expressed in DCs,80 affecting their differentiation and function.98 AHR-driven cytokine kynurenine,32–34 and retinoic acid83 production in DCs boosts the differentiation of regulatory T cells that suppress the development of experimental autoimmune encephalomyelitis (EAE), the model of multiple sclerosis (MS).90

Different subsets of DCs sense the lumen microenvironment, and following their migration to mesenteric lymph nodes (MLNs) via CCR7 signaling, they control peripheral differentiation regulatory cells and prime effector T cells.87 For example, AHR activation by the commensal metabolite indole-3-pyruvic acid reduces the ability of DCs in MLNs to promote the differentiation of IFN-γ-producing T cells, thus preventing chronic inflammation during colitis.88 AHR signaling in DCs is also reported to affect nonimmune cells in unexpected ways, as demonstrated by reports of increased numbers of small intestinal epithelial stem cells and atypical differentiation of epithelial precursors following AHR deletion from CD11c+ DCs.89

AHR signaling controls T-cell responses not only via the modulation of APC function but also through intrinsic effects in T cells. For example, AHR modulates the expansion and differentiation of Th17 cells,90,91 though AHR appears to be more relevant for the control of the transcriptional program of nonpathogenic Th17 cells.71 Indeed, AHR signaling promotes the conversion of Th17 cells to type 1 regulatory T cells (Tr1 cells).92 Moreover, AHR has been linked to the control of regulatory T cells through multiple mechanisms involving their differentiation and stability as well as effector mechanisms.93,94,96–99 Overall, the effects of AHR on T cells is likely to have consequences for inflammation in other tissues in addition to the gut.

Intraepithelial lymphocytes (IELs) constitute a population of T cells localized in the epithelial layer of mammalian mucosal linings such as the intestine. IELs are antigen-experienced T cells of both T-cell receptor γδ (TCRγδ)6 and TCRαβ lineages.94 AHR modulates IEL survival and response to nutritional and microbial stimuli.95 For example, administration of the AHR agonist FICZ ameliorates DDS-induced colitis by reducing the apoptotic rate of CD8αα TCRαβ IELs, while decreasing and increasing their production of IFN-γ and IL-10, respectively.96 Furthermore, Colonna and collaborators established that CD8αα TCRαβ IELs in the small intestine are supported by the activation of AHR signaling by tryptophan metabolites produced by *Lactobacillus reuteri*.95 Interestingly, Kadokawa et al. reported that microbial AHR agonists promote the differentiation of regulatory CD4+ IELs, which can migrate to the CNS and suppress inflammation through LAG3-dependent mechanisms.97 These important findings suggest that AHR-dependent immunoregulatory mechanisms operating in the gut can affect inflammatory processes in other tissues.

Modulation of inflammation in the central nervous system (CNS) is important. The gut and brain axis is now recognized as a key factor in the pathology of multiple neurological disorders, including MS and its experimental model EAE.25 In EAE and MS, CD4+ effector T cells primed in the periphery migrate to the CNS, where they are reactivated by cDCs and other cells to cause myelin destruction.98,99 In addition, recruited T cells secrete cytokines that modulate the activity of CNS-resident immune cells, such as microglia and astrocytes.100–102

In pioneering studies, Weckerle and coworkers demonstrated that the commensal gut flora controls autoreactive T cells that migrate to the CNS and cause inflammation and tissue pathology.103 Follow-up studies defined alterations in the gut microbiota associated with MS104 and identified specific components of the microbiome involved in the regulation of effector and regulatory T cells.103–107 Similarly, it was recently reported that anti-inflammatory B cells controlled by the commensal flora migrate the gut to the CNS to limit tissue pathology in MS.108 Interestingly, AHR controls B-cell anti-inflammatory activities.109,110 Moreover, AHR controls the differentiation and stability of intestinal Tregs,77,85 and oral administration of the AHR agonist ITE increases the myelin-reactive Treg/Teff ratio and suppresses EAE.85 These findings suggest that AHR signaling contributes to the anti-inflammatory effects of the commensal flora not only in the gut but also in other tissues, such as the CNS.
Astrocytes are the most abundant glial cells in the CNS and have essential roles associated with the support of neurons and synapses, the control of neurotransmitters and the regulation of blood–brain barrier development and function. Astrocytes also play important roles in CNS inflammation and neurodegeneration via their own neurotoxic activities as well as the recruitment and activation of other cells involved in CNS pathogenesis. Transcriptional analyses of astrocytes revealed AHR upregulation in the context of EAE and MS. Indeed, specific inactivation of AHR in astrocytes via conditional knockout mice and cell-specific shRNA knockdown identified AHR as a negative regulator of the NF-kB transcriptional responses that promote microglial activation, neurotoxic peripheral monocyte recruitment to the CNS, and astrocyte-intrinsic neurotoxic activities. Moreover, in-depth molecular studies have established that AHR inhibits NF-kB activation in astrocytes through a SOCS2-dependent mechanism that also operates in DCs. Interestingly, microbiota perturbation studies showed that metabolites produced from the degradation of tryptophan by the intestinal commensal flora reach the CNS and activate AHR in astrocytes to limit CNS inflammation, describing for the first time a mechanism mediating the control of astrocytes by the gut flora.

Microglia are CNS-resident macrophages with multiple functions in health and disease, playing important roles in the control of astrocyte responses. Interestingly, microglia express AHR, and conditional knockout mice revealed that AHR limits NF-kB activation in microglia. In addition, AHR controls microglial production of TGF-α and VEGF-B: AHR transactivates the Tgfα promoter, interfering with NF-kB-driven VEGF-B expression. Microglial TGF-α and VEGF-B suppress and induce astrocyte responses, respectively, that promote CNS pathogenesis. In fact, deletion of microglial AHR worsens EAE, increasing demyelination and monocyte recruitment to the CNS. As microbial agonists can also activate microglial AHR, these findings provide a molecular mechanism by which the gut microbiome modulates microglial and astrocyte responses as well as interactions between these CNS-resident cells.

AHR is expressed in CNS endothelial cells, neurons, and oligodendrocytes. Endothelial cell AHR is suggested to contribute to detoxification processes and studies in fish suggest that AHR hyperactivation in endothelial cells trigger apoptosis and vascular defects, resulting in hemorrhage, edema, and embryonic mortality. Metabolites of the pesticide DDT induce AHR-dependent neurotoxicity. Finally, AHR has been proposed to participate in oligodendrocyte differentiation. These findings indicate that AHR participates in the regulation of endothelial cells, neurons and oligodendrocytes in health and disease, though further studies are needed to identify the specific mechanisms involved.

As mentioned above, AHR signaling can modulate peripheral T-cell differentiation. Moreover, peripheral T cells recruited to the CNS control astrocyte and microglial responses. Hence, these findings suggest that AHR signaling participates in the gut–brain axis through multiple mechanisms ranging from activation of AHR in CNS-resident cells by microbial metabolites to AHR-mediated peripheral modulation of immune cells that migrate to the CNS.

ROLE OF AHR IN INFECTIONS TARGETING THE CNS

The microbiota establishes multiple types of relationships with the host, ranging from mutualism to parasitism: in the former, the interaction is beneficial for both organisms; in the latter, this interaction is only beneficial for the parasite and harmful for the host. We discussed AHR-mediated microbiota–host relationships beneficial for the host above; below, we describe the role of AHR in relationships detrimental to the host (Fig. 2).

Lysteria monocytogenes targets the gastrointestinal tract and can also cause meningitis. In a murine model of listeriosis, AHR-deficient mice displayed higher mortality than their WT counterparts, concomitant with higher levels of pro-inflammatory cytokines, decreased ROS production and macrophage survival. Zika virus (ZIKV) infection has been associated with severe outcomes, including fetal brain abnormalities and Guillain–Barré syndrome. Similarly, it was recently reported that ZIKV infection triggers the production of AHR agonists by the host. AHR activation interferes with IFN-1-dependent mechanisms of anti-ZIKV immunity, in agreement with previous reports. AHR also interferes with mechanisms of intrinsic immunity mediated by the protein PML. Most importantly, AHR inhibition with clinical antagonists suppresses ZIKV replication in vitro and in vivo and ameliorates CNS abnormalities associated with ZIKV. Similar mechanisms appear to operate within the context of infection by dengue virus.

Trypanosoma cruzi is the etiological agent of Chagas’s disease, a chronic illness endemic to Central and South America with long-term consequences for the heart, esophagus, colon and nervous system. In the experimental model of Chagas disease, AHR activation expands the Treg compartment, increasing parasite replication. In agreement with these findings, AHR-deficient mice show reduced *T. cruzi* parasitemia and a heightened immune response characterized by the production of proinflammatory

Fig. 2 Role of AHR in infections targeting the CNS. AHR can affect the outcome of infectious diseases that target the CNS. Notes: (NP) nanoparticles, (ROS) reactive oxygen species, (NO) nitric oxide.
cytokines, increased NO in serum, and downregulation of SOCS2.145,146 Conversely, within the context of infection by *Toxoplasma gondii*, AHR deficiency results in higher mortality as a result of increased pro-inflammatory responses and decreased IL-10 production.147 Taken together, these findings highlight the complex roles played by AHR in infection: AHR can limit immunopathology but can also be exploited by pathogens to evade the immune response.

AHR AND CNS TUMORS

Based on its multiple physiological roles, it is not surprising that AHR contributes to tumor pathogenesis. Glioblastoma is the most common primary malignant brain tumor in adults148 and one of the most aggressive cancers, with a median survival of 15–18 months despite standard of care therapy.148,149 Opitz et al. reported that tryptophan 2,3-dioxygenase in glioblastoma leads to the production of kynurenine, which acts in an autocrine manner to enhance tumor invasiveness and replication.150,151 In addition, Gramarzki et al. reported that AHR in glioma cells drives expression of TGF-β, suggesting that AHR signaling promotes an immune suppressive microenvironment in glioma.152 Indeed, AHR expression has been detected in tumor-associated macrophages (TAMs), which constitute more than 30% of infiltrating cells in glioblastoma. Takenaka et al. recently showed that AHR activation induces an anti-inflammatory phenotype in glioblastoma TAMs.153 Moreover, AHR drives expression of CD39 in TAMs, which promotes CD8+ T-cell dysfunction153 (Fig. 3). These findings suggest a role for AHR in tumor immunoevasion and highlight the intrinsic tumor cell functions, emphasizing its potential as a therapeutic target.151,154,155

Fig. 3 Role of AHR in glioblastoma. Kynurenine in the tumor microenvironment activates AHR in TAMs, promoting expression of CCR2, CD39 and KLF4. CCR2 contributes to the recruitment of TAMs to the tumor microenvironment, CD39 promotes CD8+ T-cell dysfunction, and KLF4 together with SOCS2 influences TAM polarization. Notes: (Kyn) kynurenine, (TAM) tumor-associated macrophages

Fig. 4 AHR sensor and immunomodulatory roles. AHR senses diverse environmental cues provided by the diet, microbiome, and anthropogenic compounds. AHR signaling participates in physiological and pathological processes, making it a potential target for therapeutic intervention
AHR AS A TARGET FOR THERAPEUTIC IMMUNOMODULATION

As briefly discussed in this manuscript, AHR signaling has multiple effects on the immune response. AHR constitutes a potential target for therapeutic intervention based on the ability of small molecules to control its activity (Fig. 4).

With regard to autoimmune diseases, laquinimod22 and tapinarof23,156,157 have been developed as AHR-targeting drugs for the treatment of MS, psoriasis and atopic dermatitis. Furthermore, codelivery of tolerogenic AHR agonists and antigens to DCs with nanoparticles provides an attractive approach. This nanoparticle-based approach is based on the induction of a tolerogenic phenotype in DCs, which are concomitantly loaded with disease-relevant antigens,158 thereby boosting antigen-specific tolerance with minimal effects on nonrelated immune responses. This approach leads to expansion of Tregs (both FoxP3 + Tregs and TR1 cells) that suppress inflammation in EAE.159 Similar observations have been made in other autoimmune diseases, such as type 1 diabetes.127 Within the context of infection or tumors, AHR inhibitors may offer a novel pathway to limit immune evasion,151 with the caveat that AHR may also play a role in limiting immunopathology. Nonetheless, in considering the therapeutic targeting of AHR, it should be kept in mind that AHR participates in multiple physiological processes in addition to immune regulation. Moreover, AHR signaling is regulated by microbial metabolites, with important effects on the immune response. Thus, therapeutic targeting of AHR should consider not only its effects on the immune response but also its important roles in the host–microbiome relationship and the multiple effects of the microbiome in autoimmunity, cancer, and infections.

CONCLUDING REMARKS

Five decades after its identification, AHR has emerged as an important immune regulator. It is therefore important to characterize the physiological AHR agonists involved in immune regulation, as they may provide lead molecules for the development of novel immunomodulators. In addition, they may contribute to the identification of ligand-specific downstream effects of AHR signaling of therapeutic interest. Within this context, there remains an important need to characterize the cell-specific effects of AHR signaling and the mechanisms involved.

Finally, the participation of AHR in the gut–brain axis prompts new research questions, as follows: (1) Which microbial AHR agonists reach the CNS? (2) Which components of the commensal flora produce AHR ligands, and how are they regulated in health and disease? (3) Which peripheral cells are educated by the commensal flora in the periphery to then migrate to the CNS and control the activity of resident cells? These questions will guide future research efforts and reveal novel opportunities for AHR-targeted therapeutics.

ACKNOWLEDGEMENTS

This work was supported by grants NS102807, ES02530, ES029136, AI126880 from the NIH and RG-1902-33606 from the NMSS and PA-1604-08459 from the International Progressive MS Alliance. J.V.M. and P.H.G.C. were supported by Santander Universidades and by Fundação Faculdade de Medicina (FFM), São Paulo, SP, Brazil.

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

REFERENCES

1. Nebert, D. W., Winker, J. & Gelboin, H. V. Aryl hydrocarbon hydroxylase activity in human placenta from cigarette smoking and nonsmoking women. Cancer Res. 29, 1763–1769 (1969).
2. Nebert, D. W. & Gelboin, H. V. The in vivo and in vitro induction of aryl hydrocarbon hydroxylase in mammalian cells of different species, tissues, strains, and developmental and hormonal states. Arch. Biochem. Biophys. 134, 76–89 (1969).
3. Poland, A. P. et al. Genetic expression of aryl hydrocarbon hydroxylase activity. Induction of monoxygenase activities and cytochrome P1-450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically “nonresponsive” to other aromatic hydrocarbons. J. Biol. Chem. 249, 5599–5606 (1974).
4. Poland, A., Glover, E. & Kendle, A. S. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J. Biol. Chem. 251, 4936–4946 (1976).
5. Nebert, D. W. The Ah locus. A gene with possible importance in cancer predictability. Arch. Toxicol. Suppl. 3, 195–207 (1980).
6. Nebert, D. W. et al. The Ah phenotype. Survey of forty-eight rat strains and twenty inbred mouse strains. Genetics 100, 79–87 (1982).
7. Hahn, M. et al. Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family. Proc. Natl Acad. Sci. USA 94, 13743–13748 (1997).
8. Denisov, M. S. et al. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol. Sci. 124, 1–22 (2011).
9. Gutierrez-Vazquez, C. & Quintana, F. J. Regulation of the immune response by the Ah/aryl hydrocarbon receptor. Immunol. 48, 19–33 (2018).
10. Quintana, F. J. & Sherr, D. H. Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol. Rev. 65, 1148–1161 (2013).
11. Lee, H. U. et al. Host-microbiome interactions: the aryl hydrocarbon receptor and the central nervous system. J. Mol. Med. 95, 28–39 (2017).
12. Cioliño, H. P. et al. Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Biochem. Pharmacol. 56, 197–206 (1998).
13. Wanner, R. et al. The differentiation-related upregulation of aryl hydrocarbon receptor transcript levels is suppressed by retinoic acid. Biochem. Biophys. Res. Commun. 209, 706–711 (1995).
14. Phelan, D. et al. Activation of the Ah receptor signal transduction pathway by bilirubin and biliverdin. Arch. Biochem. Biophys. 357, 155–163 (1998).
15. Abron, J. D. et al. An endogenous aryl hydrocarbon receptor ligand, ITE, induces regulatory T cells and ameliorates experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G220–G230 (2018).
16. Abdullah, A. et al. Activation of aryl hydrocarbon receptor signaling by a novel agonist ameliorates autoimmune encephalomyelitis. PLoS ONE 14, e0215981 (2019).
17. Nebert, D. W. Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix per-anti-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Prog. Lipid Res. 67, 38–57 (2017).
18. Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).
19. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).
20. Quattrochi, L. C. & Tukey, R. H. Nuclear uptake of the Ah (dioxin) receptor in response to omepazole: transcriptional activation of the human CYP1A1 gene. J. Pharmacol. Exp. Ther. 301, 141–146 (2002).
21. Cioliño, H. P. et al. Sulindac regulates the aryl hydrocarbon receptor-mediated expression of Phase 1 metabolic enzymes in vivo and in vitro. Carcinogenesis 27, 1586–1592 (2006).
22. Kaye, J. et al. Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor. Proc. Natl Acad. Sci. USA 113, E6145–E6152 (2016).
23. Smith, S. H. et al. Tapinarof is a natural AhR agonist that resolves skin inflammation in mice and humans. J. Investig. Dermatol. 137, 2110–2119 (2017).
24. Bass, S. E. et al. Novel dithiolethione-modified nonsteroidal anti-inflammatory drugs in human hepatic HepG2 and colon LS180 cells. Clin. Cancer Res. 15, 1964–1972 (2009).
25. Kadowaki, A. & Quintana, F. J. The Gut-CNS axis in multiple sclerosis. Trends Neurosci. 43, 622–634 (2020).
26. Le Beau, M. M. et al. Chromosomal localization of the human Ah locus encoding the structural gene for the Ah receptor to 7p21–>p15. Cytogenet Cell Genet. 66, 172–176 (1994).
27. Seldin, M. F., Howard, T. A. & D’Eustachio, P. Comparison of linkage maps of mouse chromosome 12 derived from laboratory strain intraspecific and Mus spretus interspecific backcrosses. Genomics 5, 24–28 (1989).
28. Eguchi, H. et al. Molecular cloning of the human AH receptor gene promoter. Biochem. Biophys. Res. Commun. 203, 615–622 (1994).
29. Fitzgerald, C. T., Nebert, D. W. & Puga, A. Regulation of mouse Ah receptor (Ahr) gene basal expression by members of the Sp family of transcription factors. DNA Cell Biol. 17, 811–822 (1998).

The aryl hydrocarbon receptor and the gut–brain axis
A Barroso et al. 265
The aryl hydrocarbon receptor and the gut-brain axis

A Barroso et al.
90. Quintana, F. J. et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. *Nature* **453**, 65–71 (2008).

91. Veldhoen, M. et al. The aryl hydrocarbon receptor links T(H)17-cell-mediated autoimmunity to environmental toxins. *Nature* **453**, 106–109 (2008).

92. Gagliani, N. et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. *Nature* **523**, 221–225 (2015).

93. Mascarenhas, L. D. et al. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF-1α. *Nat. Med.* **21**, 638–646 (2015).

94. Cherouste, H., Lambolez, F. & Mulica, D. The light and dark sides of intestinal intraepithelial lymphocytes. *Nat. Rev. Immunol.* **11**, 445–456 (2011).

95. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. *Cell* **147**, 629–640 (2011).

96. Chen, W. et al. Aryl hydrocarbon receptor activation modulates CD11balpha (+) TCRalpha beta (+) T cells suppress central nervous system autoimmunity via LAG-3. *Nat. Commun.* **7**, 11639 (2016).

97. Mundt, S. et al. Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. *Sci Immunol.* 4, eaau3880 (2019).

98. Jordao, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. *Science* **363**, eaat7554 (2019).

99. Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. *Cell* **176**, 581–596.e18 (2019).

100. Alamey, M. et al. Role of sphingolipid metabolism in neurodegeneration. *J. Neurochem.* **2020**.

101. Chao, C. C. et al. Metabolic control of astrocyte pathogenic activity via CPLA2-MAVS. *Cell* **179**, 1483–1498, e22 (2019).

102. Wheeler, M. A. et al. Environmental control of astrocyte pathogenic activities in CNS inflammation. *Cell* **176**, 581–596.e18 (2019).

103. Almeida, E. et al. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. *Sci. Signal.* 9, ra61 (2016).

104. Prinz, M., Jung, S. & Priller, J. Microglia biology: one century of evolving concepts. *Cell* **179**, 292–311 (2019).

105. Linnerbauer, M., Wheeler, M.A. & Quintana, F.J. Astrocyte crosstalk in CNS inflammation. *Neuron* (2020). In press.

106. Ayata, P. et al. Epigenetic regulation of brain region-specific microglia clearance activity. *Nat. Neurosci.* **21**, 1049–1060 (2018).

107. Buttger, A. et al. Sall1 is a transcriptional regulator defining microglia identity and function. *Nat. Immunol.* **17**, 1397–1406 (2016).

108. Filbrandt, C. R. et al. Presence and functional activity of the aryl hydrocarbon receptor in isolated murine cerebral vascular endothelial cells and astrocytes. *Neurotoxicology* **25**, 605–616 (2004).

109. Kim, M. D., Jan, L. Y. & Jan, Y. N. The Bhlh4-PAS protein Spineless is necessary for the diversification of dendritic morphology of Drosophila dendritic arborization neurons. *Genes Dev.* **20**, 2806–2819 (2006).

110. RNaseq. B. Brain RNaseq. 2020. https://www.brainmaseq.org/.

111. Dauchy, S. et al. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in HCMC/D3 human cerebral microvascular endothelial cells. *Biochem. Pharmacol.* **77**, 897–909 (2009).

112. Jacob, A. et al. Aryl hydrocarbon receptor regulates CYP1B11 but not ABCB1 and ABCG2 in HCMC/D3 human cerebral microvascular endothelial cells after TCD exposure. *Brain Res.**1613**, 27–36 (2015).

113. Winkl, A. et al. Autophagy-related neurotoxicity is mediated via AHR and CAR in mouse neurons exposed to DDE. *Sci. Total Environ.* **742**, 140599 (2020).

114. Wu, P. Y. et al. Novel Endogenous Ligands of Aryl Hydrocarbon Receptor Mediate Neural Development and Differentiation of Neuroblastoma. *ACS Chem. Neurosci.* **10**, 4031–4042 (2019).

115. Paracer, S. & Ahmadjian V. Symbiosis: an introduction to biological associations. 2nd ed. (Oxford University Press, New York, 2000). 291 p.

116. Kimura, A. et al. Aryl hydrocarbon receptor protects against bacterial infection by promoting macrophage survival and reactive oxygen species production. *Int. Immunol.* **26**, 209–220 (2014).

117. França, G. V. A. et al. Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. *Lancet* **387**, 891–897 (2016).

118. Cao-Lormeau, V. M. et al. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. *Lancet* **387**, 1531–1539 (2016).

119. Yamada, T. et al. Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense. *Nat. Immunol.* **17**, 687–694 (2016).

120. Machado, F. S. et al. Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. *Semin. Immunopathol.* **34**, 753–770 (2012).

121. Ambrosio, L. F. et al. Role of Aryl hydrocarbon receptor (AhR) in the regulation of immunity and immunopathology during trypanosomosis cruzi infection. *Front. Immunol.* **10**, 631 (2019).

122. Barros, A. et al. The Aryl hydrocarbon receptor modulates production of cytokines and reactive oxygen species and development of myocarditis during trypanosomosis cruzi infection. *Infect. Immun.* **84**, 3071–3082 (2016).

123. Sanchez, Y. et al. The unexpected role for the aryl hydrocarbon receptor on the diversity of dendritic cell subsets in the aryl hydrocarbon receptor. *Biochim. Biophys. Acta* **1892**, 1892–196 (2016).

124. Sanchez, Y. et al. The unexpected role for the aryl hydrocarbon receptor on the diversity of dendritic cell subsets in the aryl hydrocarbon receptor. *Biochim. Biophys. Acta* **1892**, 1892–196 (2016).

125. The aryl hydrocarbon receptor and the gut-brain axis

126. A Barroso et al. to (reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. *Nature* **453**, 65–71 (2008).
154. Gabriely, G. & Quintana, F. J. Role of AHR in the control of GBM-associated myeloid cells. Semin Cancer Biol. 64, 13–18 (2020).
155. Gabriely, G. et al. Role of AHR and HIF-1α in glioblastoma metabolism. Trends Endocrinol. Metab. 28, 428–436 (2017).
156. Gold, L. S. et al. A phase IIb, randomized clinical trial of tapinarof cream for the treatment of plaque psoriasis: secondary efficacy and patient-reported outcomes. J. Am. Acad. Dermatol. 9622, 30957–30959 (2020).
157. Robbins, K. et al. Phase 2, randomized dose-finding study of tapinarof (GSK2894512 cream) for the treatment of plaque psoriasis. J. Am. Acad. Dermatol. 80, 714–721 (2019).
158. Rothhammer, V. & Quintana, F. J. Environmental control of autoimmune inflammation in the central nervous system. Curr. Opin. Immunol. 43, 46–53 (2016).
159. Yeste, A. et al. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 109, 11270–11275 (2012).