Towards a resolution of the proton form factor problem: new electron and positron scattering

D. Adikaram,1 D. Rimal,2 L.B. Weinstein,1 B. Raue,2 P. Khetarpal,2 R.P. Bennett,3 J. Arrington,3 W.K. Brooks,4 K.P. Adhikari,1 A.V. Afanasev,11 M.J. Amaryan,1 M.D. Anderson,36 J. Ball,3 M. Battaglieri,18 I. Bednianski,22 A.S. Biselli,11 J. Bono,2 S. Boiarinov,34 W.J. Briscoe,14 V.D. Burkett,34 D.S. Carman,34 A. Celentano,18 S. Chandavar,28 G. Charles,21 L. Colaneri,19, 30 P.L. Cole,15 M. Contalbrigo,16 A. D’Angelo,19, 30 N. Dashyan,40 R. De Vita,18 E. De Sanctis,17 A. Deur,34 C. Djalali,32 G.E. Dodge,1 R. Dupre,31, 3 H. Egiyan,34 A. El Alaoui,4, 3 L. El Fassi,1, 3 P. Eugenio,12 G. Fedotov,32, 31 S. Fegan,18, 36 A. Filippi,20 J.A. Fleming,35 A. Fradi,21 G.P. Gilfoyle,29 K.L. Giovanetti,23 F.X. Girod,34 J.T. Goetz,28 W. Gohm,10, 3 E. Golovatch,31 R.W. Gothe,32 K.A. Griffioen,39 M. Guidai,21 L. Guo,2 K. Hafidi,3 H. Hakobyan,4, 40 N. Harrison,10 M. Hattaway, 21 K. Hicks,28 M. Holtrop,26 S.M. Hughes,35 C.E. Hyde,1 Y. Ilieva,32 D.G. Ireland,36 B.S. Ishkhanyan,31 D. Jenkins,37 H. Jiang,32 K. Joo,10 S. Joosten,33 M. Khandaker,15, 27 W. Kim,24 A. Klein,1 F.J. Klein,7 S. Koira,1 V. Kubarovsky,34 S.E. Kuhn,1 H.Y. Lu,32, 6 I. J. D. MacGregor,36 N. Markov,10 M. Mayer,42 B. McKinnon,36 M.D. Mestayer,34 C.A. Meyer,6 M. Mirazita,17 V. Mokeev,34, 31 R.A. Montgomery,17 C.I. Moody,3 H. Moutarde,8 A Movsisyan,16 C. Munoz Camacho,21 P. Nadel-Turonski,34 S. Niccolai,21 G. Niculescu,23 M. Ospienko,19 A.I. Ostrovidov,12 K. Park,34 E. Pasyuk,34 S. Pisano,17, 21 O. Pogorelov,22 S. Procureur,8 Y. Prok,1, 9 D. Protopopescu,36 A.J.R. Puckett,10 M. Ripani,18 A. Rizzo,19, 30 G. Rosner,36 P. Rossi,34, 17 F. Sabatié,8 D. Schott,14, 2 R.A. Schumacher,6 Y.G. Sharabian,34 A. Simonian,40 I. Skorodumina,32, 31 E.S. Smith,34 G.D. Smith,35, 36 D.I. Sober,7 N. Sparveris,33 S. Stepanyan,34 S. Strauch,32 V. Sytnik,4 M. Tauri,13, 34 Ye Tian,32 A. Trivedi,32 M. Ungaro,34, 10 H. Voskanyan,40 E. Voutier,25 K.N. Walford,7 D.P. Watts,35 X. Wei,34 M.H. Wood,5 N. Zachariou,32, 14 L. Zana,35, 26 J. Zhang,34 Z.W. Zhao,1, 38, 34 and I. Zonta19, 30
(\textit{The CLAS Collaboration})

1Old Dominion University, Norfolk, Virginia 23529
2Florida International University, Miami, Florida 33199
3Argonne National Laboratory, Argonne, Illinois 60439
4Universidad Técnica Federico Santa María, Casilla 110-V Valparaíso, Chile
5Canisius College, Buffalo, NY
6Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
7Catholic University of America, Washington, D.C. 20064
8CEA, Centre de Saclay, Ifsa/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France
9Christopher Newport University, Newport News, Virginia 23606
10University of Connecticut, Storrs, Connecticut 06269
11Fairfield University, Fairfield CT 06824
12Florida State University, Tallahassee, Florida 32306
13Università di Genova, 16146 Genova, Italy
14The George Washington University, Washington, DC 20052
15Idaho State University, Pocatello, Idaho 83209
16INFN, Sezione di Ferrara, 44100 Ferrara, Italy
17INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
18INFN, Sezione di Genova, 16146 Genova, Italy
19INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy
20INFN, sez. di Torino, 10125 Torino, Italy
21Institut de Physique Nucléaire, CNRS/IN2P3 and Université Paris Sud, Orsay, France
22Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia
23James Madison University, Harrisonburg, Virginia 22807
24Kyungpook National University, Daegu 702-701, Republic of Korea
25LPSC, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
26University of New Hampshire, Durham, New Hampshire 03824-3568
27Norfolk State University, Norfolk, Virginia 23504
28Ohio University, Athens, Ohio 45701
29University of Richmond, Richmond, Virginia 23173
30Università di Roma Tor Vergata, 00133 Rome, Italy
31Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
32University of South Carolina, Columbia, South Carolina 29208
33Temple University, Philadelphia, PA 19122
34Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
35Edinburgh University, Edinburgh EH9 3JZ, United Kingdom
36University of Florida, Gainesville, Florida 32611
37University of Maryland, College Park, Maryland 20742
38University of New Mexico, Albuquerque, New Mexico 87131
39University of Texas, Austin, Texas 78712
40University of Virginia, Charlottesville, Virginia 22904
41Virginia Military Institute, Lexington, Virginia 24450
42Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
43Worcester Polytechnic Institute, Worcester, Massachusetts 01610
The electromagnetic form factors describe fundamental aspects of nucleon structure. However, measurements of the ratio of the electric to magnetic proton form factors, $G_E(Q^2)/G_M(Q^2)$, extracted using unpolarized and polarized electron scattering data differ by a factor of three at momentum transfer squared $Q^2 \approx 6$ GeV2 [10]. Until the cause of this surprising discrepancy is understood, the uncertainty in the form factors can affect the determination of the proton radius, the interpretation of color transparency and $(e,e'p)$ proton knockout measurements, comparisons to isovector and isoscalar nucleon structure calculations from Lattice QCD [10], and measurements to extract the flavor-dependent quark contributions to the form factors from parity-violating asymmetries [11].

One possible explanation for the discrepancy is the presence of two-photon exchange (TPE) effects, where the electron exchanges a virtual photon with the proton, possibly exciting it to a higher state, and then exchanges a second virtual photon, de-exciting the proton back to its ground state. TPE effects are suppressed by an additional power of the fine structure constant $\alpha = e^2/h \approx 1/137$ [12,13]. Calculations indicate that TPE effects are small, but increase with electron scattering angle θ_e [17,18]. In unpolarized measurements, G_E is extracted from the angular dependence of the elastic cross section at fixed Q^2. For $Q^2 > 2$ GeV2, the contribution from G_E is less than 10%, making it very sensitive to even a small angle-dependent correction. For scattering from a point-like particle, the TPE correction can be calculated exactly [15]. However, calculation of the TPE contributions requires a knowledge of all the baryonic resonance and continuum states that can couple to the two virtual photons. These corrections are therefore not yet sufficiently well understood to be applied to the data and are typically neglected in calculating radiative corrections [19,21].

The most direct way to measure the TPE contributions to the cross section is by measuring the ratio of positron-proton to electron-proton elastic scattering. However, due to the low luminosity of secondary positron beams, existing measurements of the e^+p/e^-p cross section ratio are statistically limited and unable to sufficiently constrain the TPE contribution [22,25]. Two new experiments, VEPP-3 at Novosibirsk and OLYMPUS at DESY, will measure the e^+p and e^-p cross sections sequentially using e^- and e^+ beams in storage rings [26,28].

This paper describes a unique technique to compare e^+p and e^-p scattering. Rather than alternating between mono-energetic e^+ and e^- beams, we generated a combined electron-positron beam covering a range of energies and detected the scattered lepton and struck proton in the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (Jef-ferson Lab). This let us simultaneously cover a wide range of momentum transfers and virtual photon polarization, $\varepsilon = [1 + 2(1 + \tau) \tan^2(\theta_e/2)]^{-1}$, where $\tau = Q^2/4M_p^2$. By measuring the e^+p and e^-p elastic cross sections simultaneously, luminosity-related systematic uncertainties cancelled.

The lepton-proton elastic scattering cross section is proportional to the square of the sum of the Born amplitude and all higher-order QED correction amplitudes. The ratio of $e^\pm p$ elastic scattering cross sections can be
written as \([29]\):
\[
R' \approx 1 - \frac{2\delta_{2\gamma}}{(1 + \delta_{\text{even}})}. \tag{2}
\]

We produced a simultaneous tertiary beam of electrons and positrons by using the primary electron beam to produce photons and then using the photons to produce \(e^+ e^-\) pairs. A 110 – 140 nA 5.5 GeV electron beam struck a 9 \(\times 10^{-3}\) radiation length (RL) gold foil to produce a bremsstrahlung photon beam. The electrons were diverted by the Hall-B tagger magnet \([30]\) into the tagger beam dump. The photon beam then struck a 9 \(\times 10^{-2}\) RL gold foil to produce \(e^+ e^-\) pairs. The combined photon-lepton beam then entered a three-dipole magnet chicane to horizontally separate the positron and photon beams. The photon beam was stopped by a tungsten block in the middle of the second dipole. The lepton beams were recombined into a single beam by the third dipole and then proceeded to a 30-cm long liquid hydrogen target at the center of CLAS. For more information on the beam line, see Ref. \([29]\). The scattered leptons and protons were detected in the CLAS spectrometer \([31]\).

CLAS is a nearly \(4\pi\) detector. Six superconducting coils produce an approximately toroidal magnetic field in the azimuthal direction around the beam axis. The sectors between the six magnet cryostats are instrumented with identical detector packages. We used the three regions of drift chambers (DC) \([32]\) to measure charged particle trajectories, scintillation counters (SC) \([33]\) to measure time-of-flight (TOF) and forward (\(\theta < 45^\circ\)) electromagnetic calorimeters (EC) \([34]\) to trigger events. Additionally, a Sparse Fiber Monitor, located just upstream of the target, was used to monitor the lepton beam position and stability. A remotely insertable TPE calorimeter (TPECal) located downstream of CLAS measured the energy distributions of the individual lepton beams at lower intensity before and after each chicane field reversal. A compact mini-torus magnet placed close to the target shielded the DC from Møller electrons. The CLAS event trigger required at least minimum ionizing energy deposited in the EC in any sector and a hit in the SC in the opposite sector.

In order to reduce the systematic uncertainties due to potential detector acceptance and incident beam differences, the torus magnet and beam chicane magnet currents were periodically reversed during the run period.

The final data set was grouped into four magnet cycles and each magnet cycle contained all possible configurations \((c + t, c + t, c - t, c - t)\) where \(c\) and \(t\) are the chicane and torus magnet polarities, respectively.

The symmetric production of \(e^+/e^-\) pairs gives confidence that reversing the chicane magnet polarity ensures that the ‘left beam’ luminosity for particles passing on the left side of the chicane is the same for positive-chicane positrons as for negative-chicane electrons. This in turn allows us to use the powerful ‘ratio of ratios’ technique.

The ratio between the number of \(e^+p\) and \(e^-p\) elastic scattering events is calculated in three steps. First, the single ratios are calculated for each magnet configuration as \(R_{1}^{c\pm t\pm} = \frac{N_{c\pm}^{t\pm}}{N_{e\pm}^{c\pm}}\). Here \(N_{c\pm}^{t\pm}\) are the number of detected elastic events for each different chicane \((c)\) and torus \((t)\) polarities. The proton detection acceptance and efficiency effects cancel in the single ratio. Next, the double ratios are calculated for each chicane polarity as \(R_{2}^{c\pm} = \sqrt{R_{1}^{c\pm t\pm} R_{1}^{c\pm t\mp}}\). Any differences in proton and lepton acceptances cancel out in the double ratio. Last, the quadruple ratio is calculated as \(R = \sqrt{R_{2}^{c\pm} R_{2}^{c\pm t\mp}}\). The differences in the incident \(e^-\) and \(e^+\) beam luminosities cancel out in the quadruple ratio \([29]\). The remaining effects due to lepton-proton correlations and due to the non-reversed magnetic field of the mini-torus were simulated and corrected for as described below.

We applied a series of corrections and cuts to the experimental data to select the elastic \(e^+p\) events. The systematic deviations in the reconstructed momenta and angles were studied and corrected. Fiducial cuts in angle and momentum were used to select the region of CLAS with uniform acceptance for both lepton polarities, thus matching the acceptances for \(e^+\) and \(e^-\). Contamination from target entrance and exit windows was removed by a 28-cm target vertex cut on both leptons and protons.

We calculated the incident lepton energy from the measured scattering angles assuming elastic scattering as \(E_l = M_p (\cot(\theta_t/2) \cot \theta_p - 1)\). Since elastic lepton-proton scattering is kinematically overdetermined when both particles are detected, we applied kinematic cuts on four quantities to select elastic events: the azimuthal angle difference between the lepton and proton \((\Delta \phi)\), the difference between the incident lepton energy \((\Delta E_l)\) calculated in two different ways, the difference between the measured and the calculated scattered lepton energy \((\Delta E'_l)\) and the difference between the measured and the calculated recoiling proton momentum \((\Delta p_p)\):

\[
\Delta \phi = \phi_l - \phi_p
\]
\[
\Delta E_l = E_l - (p_l \cos \theta_l + p_p \cos \theta_p)
\]
\[
\Delta E'_l = \frac{M_p E_l}{E_l (1 - \cos \theta_l) + M_p} - E'_l
\]
\[
\Delta p_p = \frac{p_l \sin \theta_l}{\sin \theta_p} - p_p.
\]
where \((p_1, \theta_1, \phi_1)\) and \((p_p, \theta_p, \phi_p)\) are the measured momenta, scattering angles and azimuthal angles of the lepton and proton, respectively. The measured scattered lepton energy is \(E'_l = p_1\). \(\Delta E_l\) and \(\Delta E'_l\) are strongly correlated so we applied cuts to \(\Delta E^\pm = \Delta E_l \pm \Delta E'_l\). We identified \(e^+\) and \(p\) kinematically. When this was ambiguous (i.e., when an event with two positive particles passed all four kinematic cuts as either \(e^+p\) or \(pe^+\)) then TOF information was used to identify the \(e^+\) and \(p\). We applied \(\pm 3\sigma\) \(Q^2\) and \(\varepsilon\)-dependent kinematic cuts to select elastic scattering events. The resulting spectra are remarkably clean (see Fig. [1]).

![Graph](image1)

FIG. 1: (Color online) Number of events as a function of the four variables, \(\Delta \phi\), \(\Delta P_p\) and \(\Delta E^\pm\), before (blue dashed) and after (red) applying the other three elastic cuts on each and summed over all kinematics.

There is a remnant background seen under the signal, primarily at low \(\varepsilon\) and high \(Q^2\), even after all other cuts. Since this background is symmetric in \(\Delta \phi\), it was estimated by fitting a Gaussian to the tails of the \(\Delta \phi\) distribution. We validated the Gaussian shape of the background by comparing it to the background shape determined by the events in the tails of the \(\Delta E^-\) distribution. The background was subtracted from the signal before constructing the final cross section ratio.

The incident lepton energy distribution rises rapidly from about 0.5 GeV to a peak at about 0.85 GeV and then decreases. We required \(E_{\text{incident}} \geq 0.85\) GeV to avoid the region where the distribution is changing rapidly. The distributions were slightly different in shape and magnitude (\(\approx 10\%) for different beam chicane polarities, indicating that the chicane was not quite symmetric. This result is consistent with the incident lepton energy distributions as measured by the TPECal. The TPECal data showed that the \(e^+\) energy distribution for positive chicane polarity was identical to the \(e^-\) energy distribution for negative chicane polarity (and vice versa). Therefore differences in \(e^+\) and \(e^-\) beam luminosities cancel in the final ratio.

We matched the detector acceptances by selecting the region of the detector that had a uniform acceptance for both \(e^+\) and \(e^-\) (fiducial cuts) and by eliminating events that hit a dead channel or would have hit a dead channel if the lepton charge were reversed. To account for the non-reversed magnetic field of the mini-torus, we simulated events using GISM, the CLAS GEANT-based Monte Carlo program. The resulting acceptance correction factors are all within 0.5\% of unity and were applied to the measured cross section ratios.

![Graph](image2)

FIG. 2: (Color online) The number of \(e^+p\) elastic scattering events plotted versus \(Q^2\) and \(\varepsilon\) for positive torus polarity. The red lines indicate the bin boundaries for the \(Q^2 \approx 1.45\) GeV^2 data. The hole at \(\varepsilon \approx 0.7\) is due to the trigger requirement that at least one of the two particles hit the EC. The holes for other configurations (negative torus polarity or \(e^-p\) events) are smaller.

Our TPE data covered a wide \(Q^2-\varepsilon\) range (see Fig. 2). Small scattering angles \(\theta\) correspond to virtual photon polarization \(\varepsilon \approx 1\) and large scattering angles correspond to small \(\varepsilon\). The \(Q^2 > 1\) GeV^2 data were binned into five bins in \(\varepsilon\) at an average \(Q^2 = 1.45\) GeV^2. Similarly, the \(\varepsilon > 0.8\) data were binned into six \(Q^2\) bins at an average \(\varepsilon = 0.88\). The cross section ratio \(R\) was measured for each bin. It was then divided by a radiative correction factor equal to the ratio of the \(e^+p\) and \(e^-p\) radiatively corrected cross sections calculated in the modified peaking approximation \[21\] and averaged over each bin by Monte Carlo integration. The radiative correction ranged from 0.4% at \(Q^2 = 0.23\) GeV^2 and \(\varepsilon = 0.88\) to a maximum of 3% at \(Q^2 = 1.45\) GeV^2 and \(\varepsilon = 0.4\). The uncorrected, \(R\), and radiatively corrected, \(R'\), \(e^+p/e^-p\) cross section ratios are tabulated in the supplemental information.

Systematic uncertainties were carefully investigated. The uncertainty due to the target vertex cuts is the difference in the cross section ratios, \(R\), between 26 cm and 28 cm target cuts. The uncertainty due to the fiducial cuts is the difference in \(R\) between nominal and tighter fiducial cuts. The uncertainty due to the elastic event selection is the difference in \(R\) between 3\(\sigma\) and 3.5\(\sigma\) kinematic cuts. Relaxing the elastic event selection cuts from 3\(\sigma\) to 3.5\(\sigma\) doubled the background. Thus the kinematic cut uncertainty also includes the background subtrac-
tion uncertainty. We varied the background fitting region to determine the additional uncertainty associated with the fitting procedure. We used the six-fold symmetry of CLAS to calculate \(R \) independently for each kinematic bin for leptons detected in each of the CLAS sectors (for bins and sectors with good overall efficiency). We compared the variance of the measurements with the statistically expected variance to determine the uncertainty due to detector imperfections (0.35%). The variation in \(R \) among the beam chicane magnet cycles was included as an uncertainty (0.3%). The uncertainty in the radiative correction was estimated to be 15% of the correction (point-to-point) plus a correlated uncertainty of 0.3% for \(Q^2 = 1.45 \text{ GeV}^2 \) and 0.15% for \(\varepsilon = 0.88 \). The uncertainties are tabulated in the supplemental information.

Figure 3 shows the ratio \(R' \) at \(Q^2 = 1.45 \text{ GeV}^2 \) and at \(\varepsilon = 0.88 \) compared to hadronic calculations. Blunden et al. \(^{17}\) calculated the TPE amplitude using only the elastic nucleon intermediate state. Zhou and Yang \(^{35}\) considered both the nucleon and the \(\Delta(1232) \) in the intermediate state. These calculations bring the form factor ratio extracted from Rosenbluth separation measurements into good agreement with the polarization transfer measurements at \(Q^2 < 2 - 3 \text{ GeV}^2 \) \(^{15}\) with an additional 1–2% TPE contribution needed to fully resolve the discrepancy at larger \(Q^2 \) \(^{35, 40}\).

Our data points plus the previous \(\varepsilon = 0 \) point \(^{37}\) prefer the hadronic TPE calculation Ref. \(^{17}\) by 2.5\(\sigma \) over the no-TPE (\(R' = 0 \)) hypothesis. A calculation of TPE effects on a structureless point proton \(^{15}\) is disfavored by 5\(\sigma \).

We corrected the CLAS TPE cross section ratios at \(Q^2 = 1.45 \text{ GeV}^2 \) for the charge-even radiative correction (see Eq. \(^2\)) averaged over the appropriate kinematic bins to determine the correction factor \(1 + \delta_2 \). We fit this to a linear function of \(\varepsilon \) and used this to correct the reduced electron scattering cross sections measured at \(Q^2 = 1.75 \text{ GeV}^2 \) by Andivahis et al. \(^{1}\): \(\sigma_R^{\text{corr}}(\varepsilon) = \sigma_R(\varepsilon)(1 + \delta_2(\varepsilon)) \). Fig. \(^4\) shows the original \(\sigma_R \) from Andivahis et al. \(^{1}\) and the corrected \(\sigma_R^{\text{corr}} \) as a function of \(\varepsilon \). The TPE corrections change the proton form factor ratio obtained from the unpolarized data from \(\mu_p G_E/G_M = 0.910 \pm 0.060 \) to 0.816 \pm 0.076, bringing it into good agreement with the polarized electron scattering result of 0.789 \pm 0.042 \(^7\). This can be seen graphically in Fig. \(^4\) where the slope of the ‘Unpolarized + TPE’ cross section is much closer to that of the polarized results.

In conclusion, we have measured the ratio of \(e^+p/e^-p \) elastic scattering cross sections over a wide range of \(Q^2 \) and \(\varepsilon \) using an innovative simultaneous tertiary \(e^+e^- \) beam, detecting the scattered particles in the CLAS spectrometer. The results are much more precise than previous measurements. The two photon exchange (TPE) corrections determined by this experiment from the observed \(\varepsilon \)-dependence of the \(e^+p/e^-p \) cross section ratio at \(Q^2 = 1.45 \text{ GeV}^2 \) significantly decrease the proton form factor ratio, \(G_E/G_M \), measured by unpolarized elastic scattering data at \(Q^2 \sim 1.75 \text{ GeV}^2 \) and bring it into good agreement with that determined from polarized measurements. Our measurements also support hadronic calculations of two photon exchange (TPE) which resolve the proton form factor discrepancy between polarized and unpolarized electron scattering measurements up to \(Q^2 < 2 - 3 \text{ GeV}^2 \) \(^{15}\). Verifying the hadronic structure corrections associated with TPE is vital, as such corrections will apply to many other observables \(^{18, 25, 38–40}\) where direct TPE measurements are not feasible.

Our results give confidence that the magnetic and electric form-factors of the proton do not scale with one another, implying that there is more involved in the proton’s structure than the internal properties of the constituent quarks; for example, angular momentum must.
reside in orbital motion or in the gluons.

We acknowledge the outstanding efforts of the Jefferson Lab staff (especially Dave Kashy and the CLAS technical staff) that made this experiment possible. This work was supported in part by the U.S. Department of Energy under several grants including DE-FG02-96ER40960 and DE-AC02-06CH11357, the U.S. National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the Chilean Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), the French Centre National de la Recherche Scientifique and Commissariat à l’Energie Atomique, the UK Science and Technology Facilities Council (STFC), and the National Research Foundation of Korea. Jefferson Science Associates, LLC, operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under contract DE-AC05-060R23177.

* Current address: Thomas Jefferson National Accelerator Facility, Newport News, VA 23606
† Current address: University of Florida, Gainesville, FL 32611
‡ Contact Author: weinstein@odu.edu
§ Current address: University of Kentucky, Lexington, Kentucky 40506
¶ Current address: Old Dominion University, Norfolk, Virginia 23529
‖ Current address: INFN, Sezione di Genova, 16146 Genova, Italy
[1] L. Andivahis et al., Phys. Rev. D 50, 5491 (1994).