Standardy badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego – aktualizacja. Badanie zewnątrzczaszkowych odcinków tętnic szyjnych oraz kręgowych

Standards of the Polish Ultrasound Society – update. Examination of extracranial carotid and vertebral arteries

Michał Elwertowski¹, Grzegorz Małek²

¹ Klinika Chirurgii Ogólnej i Chorób Klatki Piersiowej, Warszawski Uniwersytet Medyczny, Warszawa, Polska
² Pracownia Ultrasonografii Naczyniowej i Echokardiografii, Zakład Radiologii, Instytut Gruźlicy i Chorób Płuc, Warszawa, Polska

Correspondence: Prof. nadzw. dr hab. n. med. Grzegorz Małek, Pracownia Ultrasonografii Naczyniowej i Echokardiografii, Zakład Radiologii, Instytut Gruźlicy i Chorób Płuc, ul. Płocka 26, 01-134 Warszawa, e-mail: malekg@wp.pl

Streszczenie

Rоль стандарта не является описанием выступающих патологий, а в первую очередь техническое содержание, а также нормы и ошибки конечных результатов. При проведении стандартов ультрасонографии, основанные на уменьшении уровня кровотока в результате ускорения и спадения. Эффективное проведение стандартов ультрасонографии позволяет выявить патологию, связанную с изменением кровотока в патологических условиях.

Streszczenie

Standards of the follow-up study of the Polish Ultrasound Society – update. Examination of extracranial carotid and vertebral arteries

Michał Elwertowski¹, Grzegorz Małek²

¹ Klinika Chirurgii Ogólnej i Chorób Klatki Piersiowej, Warszawski Uniwersytet Medyczny, Warszawa, Polska
² Pracownia Ultrasonografii Naczyniowej i Echokardiografii, Zakład Radiologii, Instytut Gruźlicy i Chorób Płuc, Warszawa, Polska

Correspondence: Prof. nadzw. dr hab. n. med. Grzegorz Małek, Pracownia Ultrasonografii Naczyniowej i Echokardiografii, Zakład Radiologii, Instytut Gruźlicy i Chorób Płuc, ul. Płocka 26, 01-134 Warszawa, e-mail: malekg@wp.pl

Streszczenie

Role standardu nie jest opisaniem występujących patologii, lecz opisaniem techniki badania, zalecanych norm oraz zasad koniecznych do stworzenia wyniku i wyciągnięcia właściwych wniosków. W pracy przedstawiono technikę badania tętnic szyjnych oraz aktualnie zalecane normy. Zgodnie z konsensusem z San Francisco z 2003 r. zwężenie istotne 70% można rozpoznać, gdy prędkość skurczowa w zwężeniu tętnicy szyjnej wewnętrznej wynosi > 230 cm/s, a prędkość rozkurczowa > 100 cm/s. Bierzemy też pod uwagę prędkość w tętnicy szyjnej wspólnej. Ocena hemodynamiczna jest więc podstawową metodą oceny stopnia zwężenia tętnic wewnętrznych. Istotne jest, by badanie było wykonane przy kącie insonacji do 60°, gdyż pomiary wykonywane pod wyższymi kątami powodują wykładniczą przekroczenie wyników pomiaru. Dołączaliśmy także do skrótowych norm obejmującą praktyczne doświadczenia w oparciu o kliniczne obserwacje i opinie wskazujące na potencjalne ryzyko udaru. Praca została przygotowana na podstawie Standardów badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego i aktualizowana w oparciu o najnowsze doniesienia z piśmiennictwa.

Słowa kluczowe
badanie dopplerowskie, tętnice szyjne, wielkość zwężenia, blaszka miażdżycowa, standard badania

© 2014 Polish Ultrasound Society. Published by Medical Communications Sp. z o.o. All rights reserved.
Abstract

The role of a standard is to describe examination techniques, recommended norms as well as principles necessary to obtain results and draw appropriate conclusions, rather than a description of pathologies. The paper presents a technique for carotid artery examination as well as currently recommended standards. According to San Francisco Consensus from 2003, a significant stenosis of 70% may be detected when systolic velocity in the internal carotid artery stenosis is >230 cm/s, and the diastolic velocity is >100 cm/s. The common carotid artery velocity is also taken into account. Hemodynamic evaluation is therefore the primary method for the assessment of the degree of internal carotid artery stenosis. It is important that the examination is performed at an insonation angle of 60° as measurements at higher angles result in an exponential increase in measurement error. Also, an extended version of standards involving measurements performed behind stenosis, which are used in some clinics, is included in the paper. The paper further presents guidelines for the description of the identified pathologies, which ensure that the findings prove unambiguous for clinicians, especially when stenosis eligible for surgical intervention is detected. Morphological measurement of stenosis (according to NASCET criteria) is only of supplementary character (confirming morphological grounds for the increase of velocity) and has no critical importance, especially due to high measurement divergence. Description of atherosclerotic plaques, especially hypoechoic ones, which are considered potentially unstable and may lead to a raised risk of stroke, is a very important element of examination. The paper is based on *Standards of the Polish Ultrasound Society* and updated based on the latest literature reports.

Wprowadzenie

Tętnice szyjne są jednym z istotniejszych elementów badania dopplerowskiego. Co roku w Polsce dochodzi do około 35 000 udarów mózgu – 80% z nich ma charakter niedokrwieniowy, a blisko 1/4–1/3 związana jest ze zwężeniami zewnątrzczaszkowego odcinka tętnic szyjnych. Ocena stopnia zwężenia światła w tętnicach ma w związku z tym podstawowe znaczenie w przypadku pacjentów zagrożonych udarem. Około 80–90% endarterektomii wykonuje się na podstawie badania ultrasonograficznego – USG dopplerowskie jest zatem bardzo ważne podczas całego procesu postępowania z chorą. Polega ono na ocenie dostępnych odcinków tętnic szyjnych wspólnych (CCA), tętnic szyjnych wewnętrznych (ICA) oraz podstawowej ocenie tętnic szyjnych zewnętrznych (ECA) i kręgowych (VA).

Aparatura

Badania wykonuje się aparatem przeznaczonym do badań naczyniowych, tj. wyposażonym w moduł dopplerowski. Moduł ten pozwala na zapis widma przepływu i kolorowe obrazowanie przepływu; posiada również tryb umożliwiający jednoczesową ocenę morfologiczną obrazu 2D, obrazowanie w kolorze i zapis widm przepływu – tzw. triplex.

Do badania stosuje się przeznaczone do tego celu głowice naczyniowe, w których długość czoła nie przekracza 45 mm. Częstotliwość głowic powinna mieścić się w zakresie od 5–7 do 8–12 MHz; wyższa nie zapewnia wystarczającej penetracji wiązki fal przy większej grubości tkanki czy też trudnych warunkach badania. W tych przypadkach można użyć głowicy convex 3–5 MHz, pamiętając, że jej niższa częstotliwość nie pozwala na szczegółową ocenę morfologiczną zmian miażdżyco-wych, ale dzięki prezentacji kolorowej możliwa jest ocena atherosclerotic plaque, stenosis size, examination standards

Key words

Doppler ultrasound, carotid arteries, stenosis size, atherosclerotic plaque, examination standards

Introduction

Carotid artery evaluation is an essential part of Doppler ultrasound examination. Every year about 35 000 people in Poland suffer from stroke – 80% of these cases are ischemic, while nearly 1/4–1/3 are associated with extracranial carotid artery stenosis. Therefore, the assessment of the degree of stenosis within these vessels is vital in the case of patients with the risk of stroke. Since nearly 80–90% of endarterectomy procedures are performed based on ultrasonography, Doppler ultrasound is of great importance for the whole process of patient management. It involves an assessment of the accessible segments of the common carotid arteries (CCA), internal carotid arteries (ICA) as well as a basic assessment of the external carotid arteries (ECA) and vertebral arteries (VA).

Equipment

Examinations are performed using a device for vascular evaluation, i.e. fitted with a Doppler module. The module allows for both spectral flow recording and color flow imaging; it also features a mode for simultaneous 2D morphological analysis as well as color and spectral flow imaging – a so called triplex mode.

Special vascular probes with a footprint of max. 45 mm are used in the examination. The frequency of a probe should range between 5–7 and 8–12 MHz; higher frequencies do not allow for a sufficient wave penetration in thicker tissues or under difficult examination conditions. In such cases 3–5 MHz convex probe may be used, however, it should be noted that although its lower frequency does not allow for a detailed morphological imaging of atherosclerotic lesions, color imaging enables an assessment of vascular course and diameter as well as the velocity of blood flow.
Technique

The examination is performed with the patient in the supine position with the neck slightly extended and head turned away from the side being examined. In order to avoid dizziness or pain resulting from head extension when placed on a flat surface, it is recommended for some patients to have slightly raised head, neck and the upper abdomen – the top part of the examination table is elevated at 30° during examination.

First, the vessels are examined in a transverse plane, beginning in the supraclavicular region, and moving the probe up towards the angles of the mandible. This is done in order to determine the topography of blood vessels – their mutual relationship, as well as to identify the site of common carotid artery bifurcation and to perform an initial assessment of both the location and extent of atherosclerotic lesions.

The main part of the examination is performed in the longitudinal planes in the vessel axis in order to assess the length of lesions as well as to perform blood flow velocity measurements. Depending on the anatomical conditions, the examination is performed from the anterolateral and lateral (anteriorly and posteriorly from the sternoclavicular muscle) approach as well as posterior-lateral approach – by applying the probe towards the back from the muscle, with a strong neck rotation. In the case of calcified atherosclerotic lesions located in the lateral part of the aortic bulb, examination through the medial-anterior approach, i.e. with the probe placed directly at the trachea vicinity and with the ultrasound beam directed to the side, is preferable as it allows for a better visualization of a patent vessel lumen. In the case of patients with favorable anatomical conditions, examination through the jugular veins is recommended as it allows to obtain artifact-free images of the carotid artery walls. When applying the probe from the anterolateral...
Techniczne aspekty badania

Pomiary prędkości wykonujemy zawsze w osi długiej kanału naczynia, a dokładniej w osi strumienia płynącego wewnątrz naczynia krwi, zaś w przypadku zwężenia – w osi kanału przepływu. Szerokość bramki powinna wynosić 1/3–1/2 światła naczynia (tak by nie obejmowała ściany w osi kanału przepływu). Szerokość bramki powinna wynosić 1/3–1/2 światła naczynia (tak by nie obejmowała ściany w osi kanału przepływu).

Miejsca standardowych pomiarów:

- **CCA** – środkowy odcinek co najmniej 2 cm poniżej zatoki (w dolnym odcinku CCA prędkości są wyższe);
- **ICA** – przy prawidłowym naczyniu ok. 1 cm powyżej opuszcza, w miejscu o stałej średnicy (czyli powyżej turbulencji związanych z przepływem krwi w szerszym odcinku naczynia);
- **ECA** – około 1 cm powyżej odsłania naczynia oraz powyżej odsłania tętnicy tarczowej górnej;
- tętnice kręgowe (o ile to możliwe) – w odcinku V1, przed ich wejściem do wyrostków poprzecznych kregosłupa, w odcinku V2, w miejscu dobrej uwidocznienia naczynia pomiędzy wyrostkami i nadającego się do prawidłowej korekcji kąta pomiaru prędkości.

Sposób pomiaru

Kąt dostępu do naczynia zależy od fizycznego ustawienia głowy w stosunku do naczynia, a gdy jest to konieczne – także od elektronicznego ustawienia wąskiej fal USG. Łączne połączenie obu tych parametrów z reguły pozwala na uzyskanie kąta dostępu do naczynia – poniżej 60°. Pomiary wykonywane pod wyższymi kątami są bezwartościowe klinicznie, ponieważ kąty powyżej 60° powodują wykładniczy przyrost błędu pomiaru prędkości. W przypadku braku zwężenia jest rzeczą oczywistą, że kąt przepływu jest równoległy do ścian naczynia i przy ich prostym przebiegu korekcja kąta jest łatwa.

Powinno się unikać wykonywania pomiarów w zagłębiach naczyń, a przy krętych naczyńach należy poszukać w miarę prostego odcinka. Jeżeli jest to nieosiągalne, trzeba zapisywać prędkości przy dość szerokim ustawieniu bramki pomiarowej w środkowej części kanału przepływu (prędkość krwi w bocznej części zagłębia naczynia jest and medial-anterior approach, it should be noted, that there is a possibility of carotid body stimulation caused by to strong compression – the pressure applied during the examination should be minimal. In the case of uncommon clinical situations such as dizziness or disability (patient on a wheelchair), the examination may be performed with a patient in sitting position, facing the device, with the head slightly extended in the direction opposite to the side being examined. The examination of carotid arteries should be performed according to the same scheme and always in the same imaging (and documenting) order for each vessel.

Technicznym aspektom badania

Pomiary prędkości wykonujemy zawsze w osi długiej kanału naczynia, a dokładniej w osi strumienia płynącego wewnątrz naczynia krwi, zaś w przypadku zwężenia – w osi kanału przepływu. Szerokość bramki powinna wynosić 1/3–1/2 światła naczynia (tak by nie obejmowała ściany w kierunku przeciwnym do badanej strony. Badanie tętnicy kręgowej w miarę prostego odcinka. Jeżeli jest to nieosiągalne, trzeba zapisywać prędkości przy dość szerokim ustawieniu bramki pomiarowej w środkowej części kanału przepływu (prędkość krwi w bocznej części zagłębia naczynia jest z reguły pozwala na uzyskanie kąta dostępu do naczynia – poniżej 60°. Pamiętaj o możliwości pobudzenia kłębka szyjnego przez zbyt mocny ucisk – ucisk podczas badania powinien być jak najmniejszy. W przypadku nietypowych sytuacji klinicznych, takich jak zawroty głowy, pacjent na wózku inwalidzkim, badanie można wykonywać u osoby w pozycji siedzącej, ustawionej przodem do aparatu, z lekko odgiętą głową w kierunku przeciwnym do badanej strony. Badanie tętnicy kręgowej w miarę prostego odcinka. Jeżeli jest to nieosiągalne, trzeba zapisywać prędkości przy dość szerokim ustawieniu bramki pomiarowej w środkowej części kanału przepływu (prędkość krwi w bocznej części zagłębia naczynia jest z reguły pozwala na uzyskanie kąta dostępu do naczynia – poniżej 60°. Pamiętaj o możliwości pobudzenia kłębka szyjnego przez zbyt mocny ucisk – ucisk podczas badania powinien być jak najmniejszy. W przypadku nietypowych sytuacji klinicznych, takich jak zawroty głowy, pacjent na wózku inwalidzkim, badanie można wykonywać u osoby w pozycji siedzącej, ustawionej przodem do aparatu, z lekko odgiętą głową w kierunku przeciwnym do badanej strony. Badanie tętnicy kręgowej w miarę prostego odcinka. Jeżeli jest to nieosiągalne, trzeba zapisywać prędkości przy dość szerokim ustawieniu bramki pomiarowej w środkowej części kanału przepływu (prędkość krwi w bocznej części zagłębia naczynia jest z reguły pozwala na uzyskanie kąta dostępu do naczynia – poniżej 60°. Pamiętaj o możliwości pobudzenia kłębka szyjnego przez zbyt mocny ucisk – ucisk podczas badania powinien być jak najmniejszy. W przypadku nietypowych sytuacji klinicznych, takich jak zawroty głowy, pacjent na wózku inwalidzkim, badanie można wykonywać u osoby w pozycji siedzącej, ustawionej przodem do aparatu, z lekko odgiętą głową w kierunku przeciwnym do badanej strony. Badanie tętnicy kręgowej w miarę prostego odcinka. Jeżeli jest to nieosiągalne, trzeba zapisywać prędkości przy dość szerokim ustawieniu bramki pomiarowej w środkowej części kanału przepływu (prędkość krwi w bocznej części zagłębia naczynia jest z reguły pozwala na uzyskanie kąta dostępu do naczynia – poniżej 60°. Pamiętaj o możliwości pobudzenia kłębka szyjnego przez zbyt mocny ucisk – ucisk podczas badania powinien być jak najmniejszy. W przypadku nietypowych sytuacji klinicznych, takich jak zawroty głowy, pacjent na wózku inwalidzkim, badanie można wykonywać u osoby w pozycji siedzącej, ustawionej przodem do aparatu, z lekko odgiętą głową w kierunku przeciwnym do badanej strony. Badanie tętnicy kręgowej w miarę prostego odcinka. Jeżeli jest to nieosiągalne, trzeba zapisywać prędkości przy dość szerokim ustawieniu bramki pomiarowej w środkowej części kanału przepływu (prędkość krwi w bocznej części zagłębia naczynia jest
fizjologicznie 10–15% wyższa niż w przylegającej do wewnętrznej części zagięcia).

W przypadku obecności zmian miażdżycowych zwarzony kanał przepływu krwi może nie przebiegać równolegle do jego ścian – korekcja musi być wówczas wykonywana wzdłuż kanału najszybszego przepływu, najlepiej widocznego w opcji kolorowego obrazowania, przy ustawieniu aparatu dla rejestracji wyższych prędkości.

Przy niemiarowości tętna pomiary wykonuje się na drugim/trzecim skurczu po przerwie, kiedy są one bardziej regularne. W trudnych przypadkach należy uśrednić prędkość z kilku skurczów.

Pomiary

W czasie badania należy dokonać u każdego pacjenta pomiarów prędkości przepływu krwi w:

- śródkowym odcinku CCA;
- ICA – około 1 cm powyżej opuszki;
- ECA – około 1–2 cm powyżej odejścia;
- VA – w odcinkach V1 lub/V2.

Wartości prawidłowych prędkości przedstawiono w tab. 1.

Należy pamiętać, że prędkości przepływu w naczyniach domózgowych zmniejszają się z wiekiem – górne wartości norm prędkości u osób w podeszłym wieku są zwykle związane z patologią.

Dokumentacja/opis badania

Każdy opis badania ultrasonograficznego tętnic szyjnych i kręgowych powinien zawierać następujące dane:

- imię, nazwisko i ew. wiek badanego;
- data badania;
- nazwa aparatu i typ użytej głowicy wraz z jej częstotliwością.

Do opisu należy załączyć oznaczoną imieniem i nazwiskiem pacjenta dokumentację zdjęciową (z wiedodrukarki lub drukarki komputerowej czy na mediach elektronicznych).

Styl opisu badania powinien zależeć od tego, czy zaobserwowano zwięznięcie wchodzące w zakres interwencji chirurgicznej (hemodynamicznie istotne), czy tylko stwierdzono flow velocity in the lateral part of a curved blood vessel is physiologically 10–15% higher compared to the inner part of the curve).

In the presence of atherosclerotic lesions, the stenotic blood flow channel may not be parallel to its walls, therefore correction should be performed along the channel with the highest flow velocity, best visualized by color imaging and with the apparatus set for higher velocity recording.

In the case of arrhythmia, measurements are performed after second/third contraction after a pause, when contractions are more regular. In complicated cases, average velocity of several contractions should be used.

Measurements

The examination of each patient should involve the measurements of blood flow velocity in:

- the middle CCA;
- ICA – about 1 cm above the bulb;
- ECA – about 1–2 cm above the origin;
- VA – at V1 and/or V2.

Normal values for flow velocity are shown in tab. 1.

It should be noted that there is a decrease in blood flow velocities in the carotid vessels with advancing age – the upper values of velocity norms in the elderly are usually associated with pathology.

Records/examination characteristics

Each description of carotid and vertebral artery ultrasound examination should include the following data:

- patient’s full name, age;
- date of examination;
- the name of device and the type of probe, including its frequency.

Photographic documentation (from a videoprinter, computer printer or recorded on electronic media) with patient’s full name should be included in the characteristics.

The style of description should depend on whether stenosis qualifying for surgical intervention (hemodynamically significant) or only minor lesions, which do not qualify for

	PSV		**EDV**	
CCA	0,8–1,2 m/s		0,1–0,3 m/s	
ICA	0,8–1,2 m/s		do 0,3 m/s	
ECA	0,8–1,2 m/s		do 0,25 m/s	
VA	<0,6 m/s		0,05–0,2 m/s	

Tab. 1. **Prawidłowy zakres prędkości**

Tab. 1. **Normal range of velocities**
zmiany mniejszego stopnia, nierozważane pod kątem interwencji. Taki podział opisu ułatwi podjęcie decyzji co do dalszego postępowania i ułatwia komunikację z klinicystą.

Opis badania w przypadku stwierdzenia zwężenia istotnego hemodynamicznie

- W pierwszym akapicie należy scharakteryzować zwężenie i podać jego parametry. Na przykład: „Istotne hemodynamicznie zwężenie lewej ICA >70%. W miejscu zwężenia prędkość skurczowa (PSV) 240 cm/s, a rozkwarczowa (EDV) 105 cm/s. W CCA prędkość skurczowa 55 cm/s.”
- W przypadku istotnych hemodynamicznie zwężeń ICA (przekraczających 50%) trzeba dodatkowo uwzględniać prędkości przepływu w górnym odcinku naczynia (istotnie zmniejszające się przy zwężeniach powyżej 80%) oraz (przy zwężeniach ICA) w środkowo-górnym odcinku CAA – potrzebne do wyliczenia wskaźnika ICA/CCA.
- Przy dużych zwężeniach (>70%) należy uwzględnić w opisie prędkości przepływu w pozostałych naczyniach dogłowowych – mogą one stanowić drogę krążenia obocznego, zmniejszając przepływ przez zwężone naczynie i zafalizowując ocenę stopnia zwężenia.
- W opisie powinno się uwzględnić nietyposowe położenia podziału CCA – niskie/wysokie; konieczne przy planowaniu zagiebia operacyjnym.
- Przy istniejących zwężeniach niewielkich i średniego stopnia (do 50%) należy podać maksymalne prędkości przepływu PSV i EDV rejestrowane w okolicy zwężenia. Zwężenia do 30% nie powodują zaburzeń widma i prędkości przepływu w obrębie naczyń.
- Przy opisie badania korzystniejsze jest określanie przedziału, w którym zawiara się zwężenie, najlepiej z dokładnością ±5–10%, np. zwężenie 40–50%, 70–80% itp.
- Nie wolno ustawiać przedziału nad różnicującymi dalsze postępowanie zwężeniami 50% i 70%, tj. nie istnię-reacty 45–55% i 65–75% – wykonując badanie ma obowiązek określenia kategorii klinicznej, do której należy zakwalifikować pacjenta.
- W przypadku znacznego stopnia rozbieżności pomiędzy hemodynamiczną i morfologiczną oceną stopnia zwężenia naczyń – w wyniku należy uwzględnić obie wartości.
- Opis morfologiczny zwężenia powinien je szczegółowo lokalizować w stosunku do opuszczonej szynowej wewnętrznej – należy podać długość zmiar oraz opisać typ blaszki (miękkie, włókniste, zwapiennione itd.), może to bowiem mieć wpływ na wybór metody leczenia.
- Należy szczegółowo opisać morfologię stwierdzanych blaszek – by móc później porównać ewolucję zmian. Opis blaszek miażdżycowych: ich grubość, przy większych zmianach długość, echogeniczność (ze szczególnym podkreśleniem w opis blaszki hipochochogenicznych – czyli zmiar potencjalnie niestabilnych), powierzchnia (głębki/nierówna, obecność i wielkość ubytków), położenie (blaszka koncentrycznie zwężająca światło, ekscentryczna – umiejscowiona w bocznej części opuszki).

Examination characteristics in the case of hemodynamically significant stenosis

- The first paragraph should include stenosis description and parameters. For instance: “Hemodynamically significant stenosis in the left ICA of >70%. The peak systolic velocity in the stenosis (PSV) of 240 cm/s, end-diastolic velocity (EDV) of 105 cm/s. Systolic velocity in the CCA: 55 cm/s.”
- In the case of hemodynamically significant ICA stenoses (exceeding 50%), the description should additionally include flow velocities in the upper part of the vessel (significantly decreased at stenoses of more than 80%) and (at ICA stenoses) in the middle-upper part of the CCA – necessary for ICA/CCA index calculation.
- In the case of high grade stenoses (>70%), the characteristics should include flow velocities in the remaining carotid vessels as these may serve as collateral circulation, and thus reduce the blood flow through stenotic vessels, which leads to a false evaluation of the degree of stenosis.
- The description should include atypical location of CCA bifurcation – low/high; necessary for planned surgical procedure.
- In the case of minor and medium stenosis (up to 50%), the description should include the peak flow velocities (PSV and EDV) registered in the area of stenosis.
- Stenoses of up to 30% do not influence spectrum or blood flow velocities within vessels.
- The description should preferably include the range of stenosis, most preferably with accuracy of ±5–10%, e.g. 40–50% stenosis, 70–80% stenosis, etc.
- The range should not differentiate further management of stenoses of 50 and 70%, i.e. there are no ranges 45–55% or 65–75% – the operator is required to determine the clinical category to which the patient belongs.
- In the event of considerable divergence between hemodynamic and morphological assessments of the degree of vascular stenosis, both values should be included in the results.
- Morphological stenosis description should include the precise location of stenosis in relation to the internal carotid bulb – the length of lesions and the type of plaques (soft, fibrous, calcified) should be provided as this may affect the choice of treatment.
- Morphology of the identified plaques should be described in detail for future comparison of the evolved lesions. Atherosclerotic plaque characteristics should include: thickness and, in the case of major lesions, length, echogenicity (with particular emphasis on hypoechoic plaques, i.e. potentially unstable lesions), surface (smooth/rough, missing plaque fragments and their size), location (concentric or eccentric – in the lateral part of the bulb).
- The characteristics should include major (of more than 50%) differences in the diameters of homonymous vessels.
Uwagi dodatkowe

Opis badania, jeżeli wynika to z uzyskanych danych, należy zakończyć wnioskami diagnostycznymi z podaniem procentowego stopnia zwężenia i propozycją ewentualnych badań uzupełniających (TK, MR, angiografia). W przypadku stwierdzenia znacznego stopnia zwężenia (>70%) pacjent powinien mieć wpisane we wnioskach (niezależnie od specjalisty kierującego na badanie) skierowanie na konsultację chirurga naczyniowego.

Dokumentacja

Nawet w przypadku braku zmian dokumentacja powinna obejmować dla każdej ze stron:

• zdjęcie zatoki tętnicy szyjnej wspólnej z opuską tętnicy szyjnej wewnętrznej;
• zapis widma w tętnicy szyjnej wewnętrznej w miejscu przepływu laminarnego i pomiar prędkości;
• widmo w tętnicy kręgowej.

W przypadku stwierdzenia zmian należy wykonać także:

• zdjęcie blaszki (blaszka o niskiej echogeniczności, owrzodzenie itp.) z pomiarami;
• pomiar prędkości skurczowej i rozkurczowej w zwężeniu w ICA;
• pomiar prędkości skurczowej i rozkurczowej bardziej dogłębnie od zwężenia w początkowym odcinku ICA;
• pomiar prędkości skurczowej w tętnicy szyjnej wspólnej (CCA);
• pomiar prędkości skurczowej w zwężeniu tętnicy szyjnej zewnętrznej, gdy zostanie ono stwierdzone.

W przypadku stwierdzenia zmian należy wykonać również:

• pomiar prędkości skurczowej w zwężeniu tętnicy szyjnej wewnętrznej;
• pomiar prędkości skurczowej w zwężeniu tętnicy podobojczykowej (zadni fragment);
• pomiar prędkości skurczowej w zwężeniu tętnicy szyjnej zewnętrznej w początkowym odcinku;
• pomiar prędkości skurczowej w zwężeniu tętnicy podobojczykowej (pierwotny fragment);
• pomiar prędkości skurczowej w zwężeniu tętnicy szyjnej wewnętrznej w początkowym odcinku;
• pomiar prędkości skurczowej w zwężeniu tętnicy podobojczykowej (pierwotny fragment);
• pomiar prędkości skurczowej w zwężeniu tętnicy podobojczykowej (zadni fragment);
• pomiar prędkości skurczowej w zwężeniu tętnicy szyjnej zewnętrznej, gdy zostanie ono stwierdzone.

Podać trzeba większe (przekraczające 50%) różnice w średnicach jednoimiennych naczyń.

Nawet w przypadku braku zwężenia i innych anomalii powinno się uwzględnić w opisie prędkości przepływu krwi w tętnicach szyjnych wewnętrznych.

Przy badaniu tętnic kręgowych należy podać ich średniice w przypadku hipoplazji, tj. wynoszącą poniżej 2 mm (co występuje u około 20% badanych). Pamiętajmy, że fizjologicznie różne prędkości mogą wynosić do 30%, natomiast rejestrowane spektra powinny mieć symetryczny, zbliżony do siebie kształt (porównywalne PI).

W przypadku prawidłowych naczyń szyjnych i kręgowych poza podaniem prędkości w tętnicach szyjnych wewnętrznych nie ma potrzeby uwzględniania w opisie prędkości przepływu w innych naczyniach (gdzie wykonana dokumentacja zawiera obrazy naczyń z prędkościami przepływu w ich obrębie).

Przy patologiach tętnic kręgowych należy podać: kierunek przepływu krwi w naczyniu, zmiany prędkości i oporów przepływu poprzez porównanie ze stroną przeciwną oraz wnioski wypływające z uzyskanych danych. W zespole podkradania badanie trzeba poszerzyć o ocenę tętnic podobojczykowych.

The characteristics should include blood flow velocities in the internal carotid arteries, even if no stenoses or other pathologies were found.

With reference to vertebral arteries, their diameters should be reported in the case of hypoplasia, i.e. below 2 mm (as found in 20% of patients). It should be noted that physiological differences in flow velocity may account for up to 30%, and the registered spectra should be symmetrical and similar in shape (comparable PI).

In the case of normal carotid and vertebral vessels, it is not necessary to include blood flow velocity in other vessels apart from flow velocity in the internal carotid arteries as images of these vessels with their blood flow velocities are included in the photographic documentation.

In the case of pathological flow in vertebral arteries, the following details should be reported: the direction of blood flow in the vessel, changes in velocities and flow resistance by comparison with the opposite side as well as conclusions drawn from the data obtained. In the case of subclavian steal syndrome, the examination should additionally include an evaluation of subclavian arteries.

Additional comments

Examination characteristics, depending on the data obtained, should end with diagnostic conclusions, including the degree of stenosis expressed as a percentage as well as suggestions on complementary examinations (CT, MR, angiography). In the case of significant degree of stenosis (>70%), conclusions should include (regardless of the referring specialist) a referral for vascular surgeon consultation.

Records

The following data should be provided even if no lesions were found:

• images of the common carotid sinus with the internal carotid bulb;
• a record of the spectrum obtained in the internal carotid artery in the region of laminar flow as well as velocity measurement;
• spectrum from the vertebral artery.

Additionally, the following should be performed in the case of identified lesions:

• plaque image (low-echoic plaque, ulceration, etc.) with measurements;
• systolic and diastolic velocity measurement in the ICA stenosis;
• systolic and diastolic velocity measurement in distally from stenosis;
• measurements of the common carotid (CCA) systolic velocity;
• measurement of systolic velocity in the external carotid artery stenosis, if present.
Ocena zmian patologicznych w tętnicach szyjnych

Ocena kompleksu intima-media

Badanie grubości kompleksu intima-media (IMT) przeprowadza się w górnych odcinkach CCA, około 10 mm poniżej jej podziału, w płaszczyźnie podłużnej, przy uzyskaniu silnego (spekularnego) odbicia od powierzchni błony wewnętrznej, dokonując kilku pomiarów na dłuższych odcinkach ścian, jako wynik podając średnią uzyskanych wartości (ryc. 1). Badanie wymaga wysokiej jakości aparatury i głowic. Na powiększonych obrazach mierzona jest łączna grubość IMT – czyli hipoechogenicznej środkowej części naczynia razem z echogeniczną błoną wewnętrzną. Grubość kompleksu intima-media zwiększa się wraz z wiekiem. Prawidłowe wartości wynoszą 0,6 mm u kobiet i 0,7 mm u mężczyzn. Za zmiany patologiczne uważa się pogrubienie kompleksu 0,9 mm (K) i powyżej tej wartości (M). Pomiar IMT w tętnicy szyjnej wewnętrznej bywa trudny, z uwagi na problemy w uzyskaniu prostopadłego kąta dojścia do ściany naczynia.

Wielu autorów uważa, że pojedynczy pomiar w najgrubszym miejscu jest wystarczający. Dlatego w przypadku takiego typu pomiaru należy podać w opisie: pomiar ogniskowy/punktowy.

Ocena blaszki miażdżycowej

Blaszka miażdżycowa jest definiowana jako pogrubienie ściany naczynia (grubość kompleksu IM) powyżej 1,5 mm lub uwypuklanie się zmian na głębokość większą niż 50% grubości ściany naczynia.

Pomiary blaszki miażdżycowej dotyczą:

• grubości – dla porównania w kolejnych badaniach;
• długości – głównie w celu określenia rozległości cięcia w przypadku planowanego zabiegu operacyjnego;

Evaluation of carotid artery lesions

Evaluation of the intima-media complex

Examination of the intima-media thickness (IMT) is performed in the upper CCA segments, about 10 mm below its bifurcation, in a longitudinal plane, with strong (specular) reflection from the surface of the internal membrane, and involves several measurements over longer wall segments with a result as a mean value (fig. 1). High quality equipment and probes are required for the examination. In the enlarged images, total IMT thickness, i.e. hypoechogenic middle part of the vessel together with echogenic inner membrane, is measured. The thickness of intima-media increases with advancing age. Normal values are 0.6 in females and 0.7 in males. Thickness of 0.9 mm (F) and more (M) is considered pathological. The measurement of IMT in the internal carotid artery may be problematic due to difficulties in obtaining a perpendicular approach angle to the vascular wall.

Many authors believe that a single measurement in the thickest point is sufficient. Therefore, in this type of measurement, the characteristics should include focal/point measurement.

Atherosclerotic plaque assessment

Atherosclerotic plaque is defined as vessel wall thickening (IM thickness) of more than 1.5 mm or lesion protrusion into vascular vessel wall at a depth of more than 50% of the vessel thickness.

Atherosclerotic plaque measurements include:

• thickness – for comparison in subsequent examinations;
• length – mainly in order to determine the extent of incision in the case of planned surgical procedure;
• echogenicity – the risk of neurological events increases with decreasing plaque echogenicity (fig. 2);
Standards of the Polish Ultrasound Society – update.
Examination of extracranial carotid and vertebral arteries

Morphologic evaluation of the degree of stenosis

Morphologic ocena stopnia zwężenia naczyń dogłowo-wych na podstawie pomiarów morfologicznych jest uży-wana jako pomiar pomocniczy. Nie powinna być stosowana jako podstawowy element oceny stopnia zwężenia.

Zwężenie morfologiczne to redukcja średnicy naczynia. Należy ją podawać zgodnie z NASCET (pomiar średnicy zwężenia i pomiar prawidłowej średnicy dogłowowej) według wzoru:

\[\%\text{steno} = \frac{B - A}{B} \]

gdzie:
- A – średnica kanału przepływu w zwężeniu
- B – średnica odcinka dogłowowego

Praktycznie nie stosuje się pomiaru zwężenia według ECST (C – średnica na poziomie zwężenia, A – średnica kanału przepływu w zwężeniu).

Pomiar pola przekroju to metoda o wartości historycznej.

Stenosis – hemodynamic assessment

Hemodynamic assessment is the primary method of determining the degree of carotid artery stenosis. Examination of these vessels does not in fact involve morphological assessment of arteries, but is a functional and dynamic method evaluating the degree of cerebral circulation impairment based on both direct and indirect measurements of the amount and velocity of cephalad blood flow. Measurements are performed at an angle of attack i.e. the angle of 60° between the axis of ultrasound beam and the axis of the blood flow in a vessel, which in the case of stenosis may be parallel to the long axis of the vessel. A universal ALAP principle (“as low as possible”, i.e. measurement at the smallest angle) should be applied in all blood flow Doppler measurements.

Three groups of patients may be distinguished in terms of clinical diagnostics:

1. with a stenosis of <50%, who do not require surgical intervention;
2. ze zwężeniami od 50% do 70%, u których interwencja jest potrzebna w wybranych przypadkach;
3. ze zwężeniami >70%, kiedy zabieg chirurgiczny lub założenie stentu są metodą z wyboru, przy braku istotnych przeciwwskazań.

Prędkości przepływu w tych grupach pacjentów mierzone w obrębie/sąsiedztwie zwężenia powinny zawierać się w przedziałach wymienionych w tab. 2.

W tab. 3 przedstawiono powszechnie zalecane obecnie normy rozpoznawania wielkości hemodynamicznej zwężenia, na których podstawie pacjent jest kwalifikowany do zabiegu operacyjnego.

Przy ocenie pacjentów po endarterektomii obowiązują te same kryteria rozpoznawania zwężeń. Trzeba pamiętać, że restenozę tętnicy szyjnej rozpoznaje się przy rezydualnym zwężeniu >50%.

Te same kryteria hemodynamiczne stosowane są przy ocenie drożności stentów. Obecnie zakładane stenty są taperyzowane, tj. ich górna część jest nieco węższa od dolnej, w związku z czym morfologiczna ocena stentu nie jest do końca mierodajna (mogą również występować turbulencje przepływu w sąsiedztwie górnej części protezy naczyniowej).

Najdokładniejszym pojedynczym parametrem określającym zwężenie ICA powyżej 70% jest pomiar EDV > 1,0 m/s. Dla zwężenia powyżej 70% stosunek prędkości w miejscu zwężenia do prędkości w CCA powinien wynosić >4,0. Przy zwężeniach >75% występuje istotna redukcja przepływu.

Blood flow velocities in these patient groups, measured within or in the vicinity of stenosis, should be within the ranges listed in tab. 2.

Tab. 3 shows currently and widely recommended standards regarding the identification of the hemodynamic size of stenosis, based on which patients are qualified for surgical procedures.

The same criteria should be used for the assessment in post-endarterectomy patients. It should be noted that carotid artery restenosis is diagnosed when residual stenosis is >50%.

The same hemodynamic criteria are used for the evaluation of stent patency. Currently used stents are tapered, i.e. their upper part is slightly narrower than the lower part, therefore morphological assessment of stent is not fully reliable (flow turbulence in the vicinity of the upper part of a vascular prosthesis may also occur).

EDV measurement of >1.0 m/s is the most accurate, single parameter for the determination of ICA stenosis of more than 70%. In the case of stenosis of more than 70%, stenosis velocity/CCA velocity ratio should be >4,0. In the case of stenosis of >75%, there is a substantial reduction in blood flow in the upper portion of the ICA – the quotient

I	PSV < 1,5 m/s	EDV < 0,4/0,5 m/s
II	1,5 < PSV < 2,3 m/s	0,5 < EDV < 1,0 m/s
III	PSV > 2,3 m/s	EDV > 1,0 m/s

Tab. 2. Podział pacjentów w zależności od wielkości zwężenia
Tab. 2. Patient categories based on the size of stenosis

Prawidłowy	ICA PSV	Blaszka	ICA/CCA PSV	ICA EDV
Normal	<125 cm/s	Nie ma	<2,0	<40 cm/s
<50%	<125 cm/s	<50% redukcji średnicy	<2,0	<40 cm/s
50–69%	125–230 cm/s	50% redukcji średnicy	2,0–4,0	40–100 cm/s
70%	>230 cm/s	50% redukcji średnicy	>4,0	>100 cm/s
Zwięzzenie krytyczne	Bardzo niskie lub niewykrywalne	Widoczne	Różne	Różne
Critical stenosis	Very low or undetectable	Visible	Various	Various
Znieczulność	Niewykrywalna	Widoczna, nie widać światła naczynia	–	–
Occlusion	Undetectable	Visible, vascular lumen in not visible	–	–

Tab. 3. Zalecane normy dla oceny hemodynamicznej wielkości zwężenia tętnic szyjnych wewnętrznych według Society of Radiologists in Ultrasound (Consensus Conference on Carotid Ultrasound, San Francisco, 22–23 października 2002 r.)
Tab. 3. Recommended standards for hemodynamic assessment of the size of internal carotid artery stenosis in accordance with the Society of Radiologists in Ultrasound (Consensus Conference on Carotid Ultrasound, San Francisco, 22–23rd October 2002)
Standards of the Polish Ultrasound Society – update.
Examination of extracranial carotid and vertebral arteries

w górnym odcinku ICA – iloraz prędkości mierzonej w miejscu zwężenia do pomiaru wykonanego minimum 3 cm powyżej powinien wynosić >5,0. Przy zwężeniach >80% występuje wydłużenie czasu akceleracji >0,2 s.

W tab. 4 przedstawiono inne normy stosowane w opisie zwężenia tętnic szyjnych, ocenające także przepływ powyżej miejsca zwężenia.

Na ryc. 3 przedstawiono 70-procentowe zwężenie tętnicy szyjnej wewnętrznej wywołane hipoechogenną blaszką miażdżycową.

Na ryc. 4 przedstawiono 80–90-procentowe zwężenie tętnicy szyjnej wewnętrznej.

Niedrożność tętnic dogłowowych

Niedrożność naczynia rozpoznaje się przy stwierdzaniu braku przepływu w jego obrębie. We wczesnej fazie po zamknięciu światła naczynie jest szerokie, łatwe do uwidocznienia, wypełnione blaszkami miażdżycowymi of the velocity measured at stenosis to the measurement performed at least 2–3 cm above should be >5.0. In the case of stenosis of >80%, extended acceleration time of >0,2 s is observed.

Tab. 4 shows other standards for carotid artery stenosis characteristics, which also assess the flow above stenosis.

Tab. 4. Other standards used in carotid stenosis description, including stenotic blood flow

Stopień zwężenia w proc.	ICA PSV m/s	ICA EDV m/s	Turbulencje	ICA/CCA	ICA/ICA wysoko
0–30	<1,25	<0,4	–	<2	<1,3
30–40	<1,25	<0,4	+	<2	<1,3
40–50	<2,0	<0,5	+	<2	<1,3
50–60	<2,0	0,5–0,7	++	2–4	1,3–2,5
60–70	<2,5	<1,0	++	<4,5	2,5–5,0
70–90	>2,5	>1,0	++	>4,5	>5,0
>90	>2,5	>1,3	+++	>4,5	>8,0
>95	<2,5	<1,0	+++	dowolny	dowolny any

Tab. 4. Inne normy stosowane w opisie zwężenia tętnic szyjnych, uwzględniające przepływ ze zwężeniem

Carotid artery occlusion

Vascular occlusion is diagnosed based on the lack of blood flow in the vessel. In the early phase after lumen closure, the vessel is wide, easily visualized, filled with atherosclerotic plaques characterized by different echogenicity as well as with hypoechoic thrombi. Several months later the lesions become fibrous, their echogenicity increases, while the vascular diameter decreases, thus hindering

Stopień zwężenia w proc.	ICA PSV m/s	ICA EDV m/s	Turbulencje	ICA/CCA	ICA/ICA wysoko
0–30	<1,25	<0,4	–	<2	<1,3
30–40	<1,25	<0,4	+	<2	<1,3
40–50	<2,0	<0,5	+	<2	<1,3
50–60	<2,0	0,5–0,7	++	2–4	1,3–2,5
60–70	<2,5	<1,0	++	<4,5	2,5–5,0
70–90	>2,5	>1,0	++	>4,5	>5,0
>90	>2,5	>1,3	+++	>4,5	>8,0
>95	<2,5	<1,0	+++	dowolny	dowolny any

Tab. 4. Other standards used in carotid stenosis description, including stenotic blood flow

Ryc. 3. Zwężenie hemodynamiczne – około 70%. A. Hipoechogeniczna blaszka wywołująca 70-procentowe zwężenie. B. Zwężenie zwiększające prędkość skurczową do 288 cm/s, a rozkurczową do 103 cm/s

Fig. 3. Hemodynamic stenosis – about 70%. A. Hypoechoic plaque resulting in 70-percent stenosis. B. Stenosis resulting in an increased systolic velocity up to 288 cm/s, and diastolic velocity up to 103 cm/s
o różnej echogeniczności i hipoechogenicznymi skrzeplinami. Po kilku, kilkunastu miesiącach zmiany włóknieją, ich echogeniczność rośnie, a średnica naczynia maleje, co powoduje, że staje się ono trudne do uwidocznienia. W przypadku tętnic kręgowych występujące często odmiany średnicy i przebiegu naczynia w połączeniu z trudnymi warunkami badania u pacjentów ze zmianami z wyrodnieniowymi w kręgosłupie szyjnym powodują, że ich ocena staje się trudna. W takiej sytuacji należy unikać jednoznacznych stwierdzeń – gdy brak jest uwidocznienia naczyń, nie należy pisać o ich niedrożności, ale o warunkach uniemożliwiających ocenę. Niedrożności odpowiada uwidocznienie tętnicy kręgowej bez zapisu widma przeływu w jej obrębie.

Podsumowanie

Badanie ultrasonograficzne dopplerowskie tętnic dogłowych jest precyzyjną metodą umożliwiającą ocenę zwiężeń naczyń szyjnych. Wynik badania jest wypadkową wielu czynników – zwiężeń naczyń, zaburzeń przepływu rejestrowanych w ich obrębie (powyżej i poniżej), innych współistniejących anomalii, rozwiniętych dróg krążenia obocznego w pozostałych naczyniach dogłowowych. Dopiero łączne rozpatrzenie wszystkich tych elementów pozwala na postawienie rozpoznania.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rościć sobie prawo do tej publikacji.

Conflict of interest

The authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication or claim authorship rights to this publication.
Standards of the Polish Ultrasound Society – update. Examination of extracranial carotid and vertebral arteries

Piśmiennictwo/References

1. Hennerici MG: Vascular Diagnosis with Ultrasound, Georg Thieme Verlag, Stuttgart 2006.
2. Jakubowski W (ed.): Standardy badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego. Roztoczańska Szkoła Ultrasonografii, Warszawa-Zamość 2008.
3. Pellerito JS, Polak JF: Introduction to Vascular Ultrasonography. Saunders, Philadelphia 2012.
4. Polak JF: Carotid intima-media thickness: an early marker of cardiovascular disease. Ultrasound Q 2009; 25: 55–61.
5. Cronenwett JL, Johnston KW: Rutherford’s Vascular Surgery. Elsevier, Philadelphia 2010.
6. Cronenwett JL, Johnston KW: Rutherford’s Vascular Surgery. Elsevier, Philadelphia 2005.
7. Szczerbo-Trojanowska M, Jargiełło T, Drelich-Zbroja A: Postępowanie w zwężeniach tętnicy szyjnej wewnętrznej. Historia i teraźniejszość. J Ultrason 2013; 13: 6–20.
8. Tola M, Yurdakul M: Effect of Doppler angle in diagnosis of internal carotid artery stenosis. J Ultrasound Med 2006; 25: 1187–1192.
9. Touboul PJ, Hennerici MG, Mearns S, Adams H, Amarenco P, Bornstein N et al.: Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conference. Cerebrovasc Dis 2012; 34: 290–296.
10. U-King-Im JM, Young V, Gillard JH: Carotid-artery imaging in the diagnosis and management of patients at risk of stroke. Lancet Neurol 2009; 8: 569–580.
11. Kaźmierski R (ed.): Podręcznik diagnostyki ultrasonograficznej w neurologii. Czelej, Lublin 2011.
12. Małek G: Ultrasonografia dopplerowska. Zastosowania kliniczne. Vol. 1, Medipage, Warszawa 2003.