Effect of nanostructuration on compressibility of cubic BN

Compressibility of high-purity nanostructured cBN has been studied under quasi-hydrostatic conditions at 300 K up to 35 GPa using diamond anvil cell and angle-dispersive synchrotron X-ray powder diffraction. A data fit to the Vinet equation of state yields the values of the bulk modulus B_0 of 375(4) GPa with its first pressure derivative B_0' of 2.3(3). The nanometer grain size (\sim20 nm) results in decrease of the bulk modulus by \sim9%.

Keywords: nanostructuration, cubic boron nitride, equation of state, superhard materials.

Flexible grain-size control of cubic boron nitride (cBN) sintered bulks has been recently achieved by Solozhenko et al. [1] by simultaneous applying the very high pressure and high temperature to pyrolytic graphite-like BN precursors of various structural faults. At 20 GPa and 1770 K the high-purity nano-cBN (grain size \sim20 nm) has been successfully synthesized [1]. New material shows the superior wear resistance, fracture toughness and extremely high hardness as compared to microcrystalline cBN (micro-cBN). In the present work, we report the 300-K equation of state (EOS) of nano-cBN.

In situ X-ray diffraction experiments in a large-aperture membrane-type diamond anvil cell were conducted at ID27 beamline, European Synchrotron Radiation Facility (ESRF). A small particle (\sim10 µm) of nano-cBN (grain size \sim20 nm) preliminary selected using its specific Raman signal [1], was loaded together with a small ruby ball (less than 5 µm in diameter) and a gold crystal grain (10 µm size). Nano-cBN sample and the pressure markers were placed within a few micrometers to each other close to the center of diamond culet. Neon pressure medium has been used to maintain quasi-hydrostatic conditions. Pressure was determined in situ from the calibrated shift of the ruby R_1 fluorescent line [2] and equations of state of gold [3] and neon [4]. High-brilliance focused synchrotron radiation (8×8 µm2) was set to a wavelength of 0.3738(1) Å. X-ray patterns were collected using on-line large-area Bruker CCD detector (exposure time from 5 to 10 min).

All three pressure gauges indicated very close pressures (Fig. 1a), which points to the negligible strains and stresses, as well as inessential pressure gradients all over the cell. The small differences between apparent lattice parameters for different Bragg peaks (Fig. 1b) indicate the quasi-hydrostatic conditions during the measurements. Uni-axial stress (difference between diagonal elements of the pressure tensor) has been evaluated using equation $\sigma_3 - \sigma_1 \approx -\frac{3M_1}{aM_0 S}$ [3], where M_1 and M_0 are determined by the equation $a_m(hkl) = M_0 + M_1 [3 - 3 \sin^2 \theta) \Gamma(hkl)]$ with $\Gamma(hkl) = \frac{k^2l^2 + k^2 + l^2 + h^2}{(h^2 + k^2 + l^2)^2}$. $S = (-1/C + 1/C')/2$ where $C = C_{44}$, $C' = (C_{11} - C_{12})/2$. For cBN $C_{44} = 469$ GPa, $C_{11} = 798$ and $C_{12} = 172$ GPa [5], therefore, $S = 5.3 \cdot 10^{-4}$ GPa$^{-1}$. The fit (Fig. 1b) gives the estimate for $\sigma_3 - \sigma_1 \sim -6$ GPa, i.e. $p \sim \sigma_1 - 2$ (GPa). The absolute value seems to be quite reasonable for such superhard and low-compressible phase as cubic BN.

Three EOS were used to establish isothermal bulk modulus B_0 and its first pressure derivative B_0', i.e. those of Vinet [6], Birch-Murnaghan [7], and Holzapfel [8]. The fitting results are listed in Table 1, while the Vinet fit is presented in Fig. 1c. In the compression range probed here, all
three models fit the data equally well and give almost the same values for B_0 and B_0'. Fig. 1c also shows equation-of-state data of microcrystalline cBN [9, 10] measured in similar experimental conditions. The bulk modulus of nano-cBN ($B_0 = 375(4)$ GPa) is smaller than the $395(2)$ GPa value for micron-sized cBN crystals [9].

Since the B_0' value of nano-cBN might not be very well constrained due to the relatively narrow pressure range explored in our study, the reliable comparison of the B_0 values could be obtained by constraining B_0' to the same value as for micron-cBN i.e. 3.62 [9, 11-13]. However, fits with both fixed and variable B_0' are indistinguishable in the pressure range under study, and B_0 of nano-cBN remains lower than B_0 of micro-cBN by 8.9%.

Our result confirms recent experimental [14, 15] and theoretical [16-18] studies which have demonstrated that, in numerous cases, elastic moduli of nanomaterials are lower than those of their bulk counterparts (for example, in the same grain size range, B_0 of nanocrystalline Mg$_2$SiO$_4$, MgO, Ni and γ-Al$_2$O$_3$ are smaller than B_0 of their bulk counterparts by 4.9% [15], 8.3% [14], 9% [19] and 34.5% [20], respectively). This can be attributed to the presence in nanocrystalline materials of a significant volume fraction of grain boundaries and triple junctions, which are more compressible than the crystalline grains.

Table 1. Comparison of equation-of-state data of nano-cBN and micro-cBN fitted to various EOS [6-8]. The zero-pressure volume V_0 was fixed to $5.910 \, \text{Å}^3/\text{atom}$

Model	Vinet	Birch-Murnaghan	Holzapfel's AP2	Vinet ($B_0' = 3.62$)
Nano-cBN (this	$B_0 = 375(4)$ GPa	$B_0 = 375(4)$ GPa	$B_0 = 376(4)$ GPa	$B_0 = 360(2)$ GPa
study)	$B_0' = 2.3(3)$	$B_0' = 2.4(3)$	$B_0' = 2.2(3)$	
Micro-cBN [9]	$B_0 = 395(2)$ GPa	$B_0 = 396(2)$ GPa	$B_0 = 397(2)$ GPa	
	$B_0' = 3.62(5)$	$B_0' = 3.54(4)$	$B_0' = 3.50(5)$	

Figure 1. (a) Deviation of pressure by EOS of Ne and Au from the ruby gauge. (b) Lattice parameter of nano-cBN as a function of hkl at 30 GPa. (c) The 300-K equation of state data for nano-cBN (● – present work, solid line – fit to the Vinet EOS) and micro-cBN (○ – from [9] and □ – from [10]).

Acknowledgements. The authors thank G. Le Marchand for his help in preparing the high-pressure experiments. This work was carried out at beamline ID27 during beamtime kindly provided by ESRF and financially supported by the Agence Nationale de la Recherche (grant ANR-2011-BS08-018-01).
References

1. Solozhenko, V.L., Kurakevych, O.O., Le Godec, Y. Creation of nanostuctures by extreme conditions: High-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. // Adv. Mater. – 2012. – 24, N 12. – P. 1540-1544.

2. Mao, H.K., Xu, J., Bell, P.M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. // J. Geophys. Res. – 1986. – 91, N B5. – P. 4673-4676.

3. Takemura, K., Dewaele, A. Isothermal equation of state for gold with a He-pressure medium. // Phys. Rev. B – 2008. – 78, N 10. – P. 104119.

4. Dewaele, A., Datchi, F., Loubeyre, P., Mezouar, M. High pressure-high temperature equations of state of neon and diamond. // Phys. Rev. B – 2008. – 77, N 9. – P. 094106.

5. Zhang, J.S., Bass, J.D., Taniguchi, T., et al. Elasticity of cubic boron nitride under ambient conditions. // J. Appl. Phys. – 2011. – 109, N 6. – P. 063521.

6. Vinet, P., Ferrante, J., Rose, J.R., Smith, J.H. Compressibility of solids. // J. Geophys. Res. – 1987. – 92, N B9. – P. 9319-9325.

7. Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high-pressures and 300-degree-K. // J. Geophys. Res. – 1978. – 83, N NB3. – P. 1257-1268.

8. Holzapfel, W.B. Equations of state for solids under strong compression. // Z. Kristall. – 2001. – 216, N 9. – P. 473-488.

9. Datchi, F., Dewaele, A., Le Godec, Y., Loubeyre, P. Equation of state of cubic boron nitride at high pressures and temperatures. // Phys. Rev. B – 2007. – 75, N 21. – P. 214104.

10. Solozhenko, V.L., Häusermann, D., Mezouar, M., Kunz, M. Equation of state of wurtzitic boron nitride to 66 GPa. // Appl. Phys. Lett. – 1998. – 72, N 14. – P. 1691-1693.

11. Albe, K. Theoretical study of boron nitride modifications at hydrostatic pressures. // Phys. Rev. B – 1997. – 55, N 10. – P. 6203-6210.

12. Karch, K., Bechstedt, F. Ab initio lattice dynamics of BN and AlN: Covalent versus ionic forces. // Phys. Rev. B – 1997. – 56, N 12. – P. 7404-7415.

13. Furthmüller, J., Hafer, J., Kresse, G. Ab-initio calculation of the structural and electronic-properties of carbon and boron-nitride using ultrasoft pseudopotentials. // Phys. Rev. B – 1994. – 50, N 21. – P. 15606-15622.

14. Yeheskel, O., Chaim, R., Shen, Z.J., Nygren, M. Elastic moduli of grain boundaries in nanocrystalline MgO ceramics. // J. Mater. Res. – 2005. – 20, N 3. – P. 719-725.

15. Couvy, H., Chen, J.H., Drozd, V. Compressibility of nanocrystalline forsterite. // Phys. Chem. Miner. – 2010. – 37, N 6. – P. 343-351.

16. Latapie, A., Farkas, D. Effect of grain size on the elastic properties of nanocrystalline alpha-iron. // Scripta Mater. – 2003. – 48, N 5. – P. 611-615.

17. Zhao, S.J., Albe, K., Hahn, H. Grain size dependence of the bulk modulus of nanocrystalline nickel. // Scripta Mater. – 2006. – 55, N 5. – P. 473-476.

18. Lupo, J.A., Sabochick, M.J. Structure and elastic properties of nanophase silicon. // Nanostr. Mater. – 1992. – 1, N 2. – P. 131-136.

19. Zhao, Y., Shen, T.D., Zhang, J.Z. High P-T nano-mechanics of polycrystalline nickel. // Nanoscale Res. Lett. – 2007. – 2, N 10. – P. 476-491.

20. Zhao, J., Hearne, G.R., Maaza, M., et al. Compressibility of nanostructured alumina phases determined from synchrotron x-ray diffraction studies at high pressure. // J. Appl. Phys. – 2001. – 90, N 7. – P. 3280-3285.