Contribution of STAT4 gene single-nucleotide polymorphism
to systemic lupus erythematosus in the Polish population

Piotr Piotrowski · Margarita Lianeri ·
Mariusz Wudarski · Marzena Olesińska ·
Paweł P. Jagodziński

Received: 14 December 2011 / Accepted: 7 June 2012 / Published online: 24 June 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract The STAT4 has been found to be a susceptible gene in the development of systemic lupus erythematosus (SLE) in various populations. There are evident population differences in the context of clinical manifestations of SLE, therefore we investigated the prevalence of the $\text{STAT4} \ G > C$ (rs7582694) polymorphism in patients with SLE ($n = 253$) and controls ($n = 521$) in a sample of the Polish population. We found that patients with the $\text{STAT4} \ C/G$ and CC genotypes exhibited a 1.583-fold increased risk of SLE incidence (95 % CI = 1.168–2.145, $p = 0.003$), with OR for the C/C versus C/G and G/G genotypes was 1.967 (95 % CI = 1.152–3.358, $p = 0.0119$). The OR for the $\text{STAT4} \ C$ allele frequency showed a 1.539-fold increased risk of SLE (95 % CI = 1.209–1.959, $p = 0.0004$). We also observed an increased frequency of $\text{STAT4} \ C/C$ and C/G genotypes in SLE patients with renal symptoms OR = 2.259 (1.365–3.738, $p = 0.0014$), ($p_{\text{corr}} = 0.0238$) and in SLE patients with neurologic manifestations OR = 2.867 (1.467–5.604, $p = 0.0016$), ($p_{\text{corr}} = 0.0272$). Moreover, we found a contribution of $\text{STAT4} \ C/C$ and C/G genotypes to the presence of the anti-snRNP Ab OR = 3.237 (1.667–6.288, $p = 0.0003$), ($p_{\text{corr}} = 0.0051$) and the presence of the anti-Scl-70 Ab OR = 2.665 (1.380–5.147, $p = 0.0028$), ($p_{\text{corr}} = 0.0476$). Our studies confirmed an association of the $\text{STAT4} \ C$ (rs7582694) variant with the development of SLE and occurrence of some clinical manifestations of the disease.

Keywords SLE · STAT4 · Polymorphism

Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder characterized by the development of an immune response directed against any parts of the host body [1]. The course of SLE is unpredictable, with periods of remission and flare-ups [1]. Moreover, this autoimmune disorder is vastly heterogeneous, with various clinical manifestations including malar and discoid rash, photosensitivity, arthritis, serositis, as well as renal, neurologic, hematologic, immunologic and mucocutaneous manifestations, and biosynthesis of a broad array of autoantibodies [1]. The occurrence of SLE is nine times frequent in premenopausal women than in men [1].

It is accepted that environmental factors together with genetic components are involved in the abnormal immune responses and pathogenesis of SLE [2–6]. Flare-ups of SLE can be triggered by various environmental components, such as exposure to ultraviolet light, drugs, chemicals, and viral infections [6]. Candidate gene and genome wide association studies revealed numerous susceptibility genes of SLE, and the association of some of these genes have been confirmed among distinct populations [3].

The immune cells from patients with SLE display many abnormalities, including reduced T cell cytotoxicity, abnormal function of CD4$^+$ T cells, abnormal activation of B cells, and alterations in cytokine biosynthesis [7–9]. The STAT (signal transducer and activator of transcription) 4

Electronic supplementary material The online version of this article (doi:10.1007/s11033-012-1752-3) contains supplementary material, which is available to authorized users.

P. Piotrowski · M. Lianeri · P. P. Jagodziński
Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiętlickiego St., 60-781 Poznan, Poland
e-mail: pjagodzi@am.poznan.pl

M. Wudarski · M. Olesińska
Institute of Rheumatology, Warsaw, Poland
gene is expressed in T and B cells, monocytes, macrophages, natural killer cells, and dendritic cells [10]. STAT4 is a transcription factor and a member of the STAT family [10]. Its expression may support the differentiation of immune cells to inflammatory subsets, production of inflammatory cytokines and autoantibodies, prevention of apoptosis, and presentation of autoantigens, which may promote the development of autoimmune diseases [10].

Several genome-wide association studies have identified STAT4 as an SLE susceptible gene in Caucasian and Asian populations [4, 5]. Recently, many studies have demonstrated the contribution of intronic single nucleotide polymorphisms (SNPs) of STAT4 G > C (rs7582694) and G > T (rs7574865) to the incidence of SLE and its clinical manifestations [11–19]. Both of these polymorphisms display complete linkage disequilibrium (LD) in Asian and Caucasian populations presented in HapMap CHB data (http://hapmap.ncbi.nlm.nih.gov/).

We studied the STAT4 G > C (rs7582694) polymorphism distribution in SLE patients in a sample from a Polish cohort. As SLE is a heterogeneous disorder, we also assessed the association of these polymorphisms with various clinical symptoms of SLE and the production of autoantibodies.

Patients and methods

Patients and controls

Data for two hundred and fifty-three women fulfilling the American College of Rheumatology Classification criteria for SLE [20, 21] were collected in a random manner for the study at the Institute of Rheumatology in Warsaw, Poland (Table 1). Controls included five hundred and twenty-one unrelated healthy volunteers and healthy women selected during medical examination at the Institute of Mother and Child, Warsaw. Women with SLE and controls were of Polish and Caucasian origin and of a similar age. The mean age of SLE patients at diagnosis was 34 ± 8 years, and of controls 33 ± 7 years. All participating subjects provided written consent. The study procedures were approved by the Local Ethical Committee of Poznań University of Medical Sciences.

Genotyping

DNA was isolated from peripheral leucocytes using a standard salting out procedure. Identification of the STAT4 C > G (rs7582694) polymorphic variant was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP). PCR was conducted employing primer pair 5’ ATCCAACCTCCTTCTCAGCCCTT 3’ and 5’ TCATAATCAGGAGAGGAGT 3’. The PCR-amplified fragments of STAT4 that were 338 bp in length were isolated and digested with the endonuclease Hpy CH4III (ACN/GT) NewEngland BioLabs, (Ipswich, USA). The STAT4 C allele was cleaved into 258 and 80 bp fragments, whereas the STAT4 G allele remained uncut. DNA fragments were separated by electrophoresis on 3 % agarose gel and visualized by ethidium bromide staining. The STAT4 C > G polymorphism was confirmed by repeated PCR–RFLP. The genotyping quality was examined by direct sequencing of approximately 10% of the all samples.

Statistical analysis

The distribution of genotypes in patients and controls was examined for deviation from Hardy–Weinberg equilibrium using exact and log likelihood ratio χ^2 tests (http://ihg.gsf.de/cgi-bin/hw/hwa1.pl). The polymorphism was tested for association with SLE incidence using the χ^2 test for trend (p_{trend}). The χ^2 test was employed to examine differences in genotypic and allelic distribution between patients and controls, and a p value <0.05 was considered statistically significant. The Odds Ratio (OR) and 95 % Confidence Intervals (95 % CI) were calculated. Contribution of the STAT4 C > G polymorphism to clinical manifestations and the production of autoantibodies (Ab) was determined by χ^2 test. The Bonferroni correction for

Characteristic	Genotype distribution	Odds ratio (95 % CI), pc		
	G/G (131)a	G/C (94)b	C/C (28)b	
Malar rash	74	53	15	
Discoid rash	39	28	8	
Photosensitivity	58	48	14	
Oral or nasopharyngeal	62	44	13	
Arthritis	30	22	6	
Serositis	23	16	5	
Renal	51	59	13	2.259 (1.365–3.738, $p=0.0014$)b
Neurologic	15	27	6	2.867 (1.467–5.604, $p=0.0016$)b
Hematologic	43	30	9	
Immunologic	61	44	13	
ANA	131	94	28	

aAbsolute number of positive patients for G/G, G/C, C/C genotypes, respectively. Comparison of genotypes G/C or G/C vs G/G genotype between patients with and patients without a particular manifestation was performed by χ^2 test.
multiple comparisons was used and both p values, before (p) and after correction (p corr), were determined. Power analysis was performed using uncorrected χ² test using Power and Sample Size Calculation program version 2.1.30.

Results

Prevalence of STAT4 G > C polymorphism in SLE patients and healthy individuals

Distribution of STAT4 G > C genotypes did not display significant deviation from Hardy–Weinberg equilibrium between patients and healthy individuals. The prevalence of the STAT4 C/C genotype was 1.8-fold times higher in patients with SLE than in healthy individuals (Table 2). The STAT4 C/G heterozygous frequency in patients was higher than in controls and amounted to 37 and 31 %, respectively (Table 2). The OR for SLE patients with the C/C genotype as compared to the C/G and G/G genotypes was 1.967 (95 % CI = 1.152–3.358, p = 0.0119) and OR for the C/C and C/G genotypes as compared to the G/G genotype was 1.583 (95 % CI = 1.168–2.145, p = 0.0030) (Table 2; Figure 1S, online supplementary data).

To evaluate the effect of the minor allele as a risk factor in SLE incidence, we also assessed the minor allele’s distribution in patients and healthy individuals. The frequency of the STAT4 C allele was higher in patients with SLE compared to healthy individuals, with frequencies of 30 and 22 %, respectively (Table 2). The OR for the STAT4 C allele frequency showed a 1.539-fold increased risk of SLE (95 % CI = 1.209–1.959, p = 0.0004) (Table 2; Figure 1S, online supplementary data). The p value of the χ² test for the trend observed for the STAT4 G > C polymorphism was also statistically significant (p trend = 0.0008). The statistical power of this study amounted to 84 % for the C/C or C/G genotypes and 69 % for the C/C genotype (Table 2).

Autoantibodies (aAb)	Genotype distribution	Odds ratio (95 % CI), p	
	G/G (131)	G/C (94)	C/C (28)
Anti-dsDNA	54	35	11
Anti-Smith	12	8	3
Anti-snRNp	15	31	5
Anti-Ro	21	17	5
Anti-La	18	14	4
Anti-Scl-70	16	28	5

* Absolute number of positive patients for G/G, G/C, C/C. Genotype comparison (C/C or G/C vs G/G genotype) between patients with and patients without an autoantibody was performed by χ² test. The autoantibody titers were determined by ELISA kit (EUROIMMUN AG, Germany) and were in the range from 100 to 700 IU/ml for anti-dsDNA, and in the range from 20 to 180 RU/ml for anti-Smith, anti-snRNp, anti-Ro, anti-La, and anti-Scl-70. The cut-off normal range was <100 IU/ml for anti-dsDNA and <20 RU/ml for other autoantibodies.

Contribution of STAT4 G > C polymorphism to clinical manifestations and production of autoantibodies in patients with SLE

We found an association between STAT4 C/C and C/G genotypes with renal OR = 2.259 (1.365–3.738, p = 0.0014), (p corr = 0.0238) and neurologic manifestations OR = 2.867 (1.467–5.604, p = 0.0016), (p corr = 0.0272) of the disease (Table 1; Figure 2S, online supplementary data). Moreover, we observed a significant association between the STAT4 C/C and C/G genotypes and the presence of anti-snRNp Ab OR = 3.237 (1.667–6.288, p = 0.0003), (p corr = 0.0051). There was also significant association between the C/C and C/G genotypes and the anti-Scl-70 Ab OR = 2.665 (1.380–5.147, p = 0.0028), (p corr = 0.0476) (Table 3; Figure 3S, online supplementary data).

Table 2 Prevalence of the STAT4 G > C (rs7582694) polymorphisms in SLE patients and controls

STAT4 G > C (rs7582694)	SLE n = 253 (%)	Controls n = 521 (%)	OR	95 % CI	P value	P trend	Power
Genotype frequency							
G/G	131 (0.52)	328 (0.63)			0.0008		
C/G	94 (0.37)	162 (0.31)					
C/C	28 (0.11)	31 (0.06)		1.967a	1.152–3.358a	0.0119a	69
C/G + C/C	122 (0.48)	193 (0.37)		1.583b	1.168–2.145b	0.0030b	84
Minor allele frequency							
C	0.30	0.22		1.539c	1.209–1.959c	0.0004c	93

The Odds ratio was calculated for patients (a) (C/C vs C/G or G/G genotype), (b) (C/C or C/G vs G/G genotype). We also determined the OR for the patients’ minor allele; (c) (C allele vs G allele); (d) χ² test.
Discussion

STATs include DNA-interacting transcription factors that trigger the expression of the DNA’s target genes by recognizing specific DNA regulatory sequences [10]. The expression of STATs has been observed in a vast range of cell types, however the expression of STAT4 mainly takes place in immune cells and the testis [22]. STAT4 is essential for signal transduction by interleukin-12 (IL-12), interleukin-23 (IL-23), and type 1 interferon (IFN) in T cells and monocytes [10]. IL-12 induces the STAT4-dependent NK cell activation and differentiation of naive CD4+ lymphocytes into Th1 effector cells and IFNγ production [23–25]. STAT4 also mediates the IL-23-dependent expansion of Th17 cells, contributing to autoimmune diseases [26]. It has been demonstrated that STAT4-deficient mice display reduced manifestation of T cell-linked autoimmune diseases including encephalomyelitis, arthritis, myocarditis, colitis, and autoimmune diabetes [10]. Moreover, STAT4 deficiency results in a reduction of IFNγ biosynthesis in immune cells [10]. Accordingly, an association between disease activity in SLE patients and activation of the type 1 IFN system has been observed [27].

We observed that STAT4 G > C (rs7582694) intronic substitution may significantly increase the risk of SLE occurrence in a sample of the Polish population. Recent studies carried out by Luan et al. [28] demonstrated a statistically significant contribution of STAT4 G > C (rs7582694) to SLE incidence in the Mainland Chinese female population. The association of the STAT4 G > T (rs7574865) polymorphism with SLE development was also previously observed in other Asian ethnic groups residing in Hong Kong, Northern Han of China, and Japan [14–19]. The contribution of the STAT4 G > C (rs7582694) or STAT4 G > T (rs7574865) polymorphisms to SLE incidence was also observed in large groups of patients of European origin, among them a Finnish family cohort as well as Spanish, Swedish and other populations [11, 12, 14, 15, 19, 20]. The SNP rs7574865 has also been confirmed as a risk factor of SLE incidence in other populations [15]. Additionally, other STAT4 SNPs were associated with lupus nephritis, arthritis, and the production of anti-SSA/B autoantibodies, which are significantly increased in SLE patients and activation of the type 1 IFN system has been observed [27].

Our genetic studies are consistent with other studies that have demonstrated the STAT4 G > C (rs7582694) intronic substitution as a significant risk factor of SLE incidence. Moreover, we found that this SNP can be associated with renal and neurological symptoms of SLE. Since this autoimmune disease is vastly heterogeneous, further studies of this polymorphism’s effects on clinical manifestations of SLE in other populations would be valuable.

Acknowledgments Supported by grant No 502-01-01124182-07474, Poznan University of Medical Sciences. The technical assistance of Ms. Monika Świerzewska is gratefully acknowledged.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Sekigawa I, Naito T, Hira K, Mitsuishi K, Ogawara H, Hashimoto H, Ogawa H (2004) Possible mechanisms of gender bias in SLE: a new hypothesis involving a comparison of SLE with atopy. Lupus 13:217–222
2. Warchol T, Lianeri M, Lacki JK, Jagodziński PP (2010) SDF1-3’ G801A polymorphisms in Polish patients with systemic lupus erythematous. Mol Biol Rep 37:3121–3125
3. Harley JT, Kaufman KM, Langefeld CD, Harley JB, Kelly JA (2009) Genetic susceptibility to SLE: new insights from fine
mapping and genome-wide association studies. Nat Rev Genet 10:285–290
4. International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN), Harley JB, Alarcón-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, Tsoo BP, Vyse TJ, Langefeld CD, Nath SK, Guthridge JM, Cobb BL, Mirel DB, Marion MC, Williams AH, Divers J, Wang W, Frank SG, Namjou B, Gabriel SB, Lee AT, Gregersen PK, Behrens TW, Taylor KE, Fernando M, Zidovetzki R, Gaffeey PM, Edberg JC, Rioux JD, O’ Connor JO, James JA, Merrill JT, Gilkeson GS, Sedlin MF, Yin H, Baechler EC, Li QZ, Wakeland EK, Bruner GR, Kaufman KM, Kelly JA (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXX, KIAA1542 and other loci. Nat Genet 40:204–210
5. Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, Xu JH, Cai ZM, Huang W, Zhao GP, Xie HF, Fang H, Lu QJ, Xu JH, Li XP, Pan YF, Deng DQ, Zeng FQ, Ye ZZ, Zhang XY, Wang QW, Hao F, Ma L, Zuo XB, Zhou FS, Du WH, Cheng YL, Yang JQ, Shen SK, Li J, Sheng YJ, Zuo XX, Zhu WF, Gao F, Zhang PL, Guo Q, Li B, Gao M, Xiao FL, Quan C, Zhang C, Zhang Z, Zhu KJ, Li Y, Hu DY, Lu WS, Huang JL, Liu SX, Li H, Ren YQ, Wang ZX, Jiang CJ, Wang PG, Zhou WM, Lv YM, Zhang AP, Zhang SQ, Lin D, Li Y, Low HQ, Shen M, Zhai ZF, Wang Y, Zhang FY, Yang S, Liu JJ, Zhang XJ (2009) Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 41:1234–1237
6. Jönsen A, Bengtsson AA, Nived O, Truedsson L, Sturfelt G (2007) Gene-environment interactions in the aetiology of systemic lupus erythematosus. Autoimmunity 40:613–617
7. Crispín JC, Tsokos GC (2008) Novel molecular targets in the systemic lupus erythematosus. PLoS Genet 4:e1000084
8. Stohl W, Metyas S, Tan SM, Cheema GS, Xu D, Oamar B, Roschke J, Eisenberg C, Alm G, Goering HH, Pastinen T, Syvanen AC, Kiyohara C, Washio M, Horiuchi T, Yamamoto K, Ikari K, Kaneko H, Kochi Y, Yamamoto K, Shiyan B, Nakamura Y, Toyama Y, Mochizuki T, Tsukahara S, Kawaguchi Y, Terao C, Hara M, Tomatsu T, Yamanaka H, Horiiuchi T, Tao K, Yasutomo K, Hamada D, Yasui N, Inoue H, Itakura M, Komoto H, Kamatani N, Momohara S (2008) Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. Arthritis Rheum 58:1940–1946
9. Al-Janadi M, Al-Balla S, Al-Dalaan A, Raziuddin S (1993) Factor XIII and antiphospholipid antibodies: an association with systemic lupus erythematosus. Arthritis Rheum 36:2195–2203
10. Kaplan MH (2005) STAT4: a critical regulator of inflammation in IRF7/KIAA1542 regions with systemic lupus erythematosus in a Northern Han Chinese population. Hum Immunol 72:249–255
11. Su Y, Zhao Y, Liu X, Guo JP, Jiang Q, Liu XY, Zhang FC, Zheng Y, Li XX, Song H, Huang CB, Huang YH, Wang T, Pan SS, Li C, Liu X, Zhu L, Zhang CF, Li ZG (2010) Variation in STAT4 is associated with systemic lupus erythematosus in Chinese Northern Han population. Chin Med J (Engl) 123:3173–3177
12. Yang S, Liu JJ, Zhang XJ (2009) Genome-wide association study of systemic lupus erythematosus genetic associations: a case-control association study of the STAT1-STAT4 region. Arthritis Res Ther 10:R113
13. Kobayashi S, Ikari K, Kaneko H, Kochi Y, Yamamoto K, Shireman N, Nakamura Y, Toyama Y, Mochizuki T, Tsukahara S, Kawaguchi Y, Terao C, Hara M, Tomatsu T, Yamanaka H, Horiiuchi T, Tao K, Yasutomo K, Hamada D, Yasui N, Inoue H, Itakura M, Komoto H, Kamatani N, Momohara S (2008) Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. Arthritis Rheum 58:1940–1946
14. Kawasaki A, Ito I, Hikami K, Ohashi I, Hayashi T, Goto D, Matsumoto I, Ito S, Tsutsumi A, Koga M, Arini Tami, Graham RR, Hom G, Takayaki Y, Hashimoto H, Behrens TW, Sumida T, Tsuchiya N (2008) Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region. Arthritis Res Ther 10:R113
15. Kobayashi S, Ikari K, Kaneko H, Kochi Y, Yamamoto K, Shireman N, Nakamura Y, Toyama Y, Mochizuki T, Tsukahara S, Kawaguchi Y, Terao C, Hara M, Tomatsu T, Yamanaka H, Horiiuchi T, Tao K, Yasutomo K, Hamada D, Yasui N, Inoue H, Itakura M, Komoto H, Kamatani N, Momohara S (2008) Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. Arthritis Rheum 58:1940–1946
16. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277
17. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725
18. Yamamoto K, Kobayashi H, Arai A, Miura O, Hiroswa S, Miyasaka N (1997) cDNA cloning, expression and chromosome mapping of the human STAT4 gene: both STAT4 and STAT1 gene loci are mapped to 2q32.2–23.3. Hum Mol Genet 6:77:207–210
19. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW (2002) Cigarette smoking, STAT4 and BLK, but not TLR2 and TLR4, are associated with systemic lupus erythematosus in Hong Kong Chinese. Genes Immun 10:219–226
20. Taylor KE, Fernando M, Zidovetzki R, Gaffney PM, Edberg JC, Namjou B, Gabriel SB, Lee AT, Gregersen PK, Behrens TW, Criswell LA, Jacob CO, Kimberly RP, Moser KL, Tsoo BP, Vyse TJ, Langefeld CD, Nath SK, Guthridge JM, Cobb BL, Mirel DB, Marion MC, Williams AH, Divers J, Wang W, Frank SG, Sedlin MF, Yin H, Baechler EC, Li QZ, Wakeland EK, Bruner GR, Kaufman KM, Kelly JA (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXX, KIAA1542 and other loci. Nat Genet 40:204–210
21. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725
22. Kiyohara C, Washio M, Horiuchi T, Tada Y, Asami T, Ide S, Atsumi T, Kobashi G, Takahashi H, Kyushu Sapporo SLE (KYSS) Study Group (2009) Cigarette smoking, STAT4 and TNFRSF1B polymorphisms, and systemic lupus erythematosus in a Japanese population. J Rheumatol 36:2195–2203
23. Su Y, Zhao Y, Liu X, Guo JP, Jiang Q, Liu XY, Zhang FC, Zheng Y, Li XX, Song H, Huang CB, Huang YH, Wang T, Pan SS, Li C, Liu X, Zhu L, Zhang CF, Li ZG (2010) Variation in STAT4 is associated with systemic lupus erythematosus in Chinese Northern Han population. Chin Med J (Engl) 123:3173–3177
24. Yang W, Ng P, Zhao M, Hirankarn N, Lau CS, Mok CC, Chan TM, Wong RW, Lee KW, Mok MY, Wong SN, Avihingsanon Y, Lee TL, Ho MH, Lee PP, Wong WH, Lau YL (2009) Population differences in SLE susceptibility genes: STAT4 and BLK, but not PXK, are associated with systemic lupus erythematosus in Hong Kong Chinese. Genes Immun 10:219–226
25. O'Shea JJ, Gadina M, Schreiber RD (2002) Cell 109(suppl.):S121–S131
26. Hunter CA (2005) New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 5:521–531
27. Bengtsson AA, Sturfelt G, Truedsson L, Blomberg J, Alm G, Vallin H, Rönnblom L (2000) Activation of type I interferon system in systemic lupus erythematosus correlates with disease activity but not with antiretroviral antibodies. Lupus 9:664–671
28. Luan H, Li P, Cao C, Li C, Hu C, Zhang S, Zeng X, Zhang F, Zeng C, Li Y (2011) A single-nucleotide polymorphism of the STAT4 gene is associated with systemic lupus erythematosus (SLE) in female Chinese population. Rheumatol Int. doi:10.1007/s00296-010-1767-9
29. Suarez-Gestal M, Calaza M, Endreffy E, Pullmann R, Ordi-Ros J, Sebastiani GD, Ruzickova S, Jose Santos M, Papasteriades C, Marchini M, Skopouli FN, Suarez A, Blanco FJ, D’Alfonso F, Bijl M, Carreira P, Witte T, Migliaresi S, Gomez-Reino JJ, Gonzalez A, European Consortium of SLE DNA Collections (2009) Replication of recently identified systemic lupus erythematosus genetic associations: a case-control study. Arthritis Res Ther 11:R69
30. Abelson AK, Delgado-Vega AM, Kozyliev SV, Sánchez E, Velázquez-Cruz R, Eriksson N, Wojcik J, Linga Reddy MV, Lima G, D’Alfonso S, Migliaresi S, Baca V, Orozco L, Witte T, Ortega-Centeno N, AADEA Group, Abderrahim H, Pons-Estel BA, Gutiérrez C, Suárez A, González-Escribano MF, Martin J, Alarcón-Riquelme ME (2009) STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk. Ann Rheum Dis 68:1746–1753

31. Palomino-Morales RJ, Rojas-Villarraga A, González CI, Ramírez G, Anaya JM, Martín J (2008) STAT4 but not TRAF1/C5 variants influence the risk of developing rheumatoid arthritis and systemic lupus erythematosus in Colombians. Genes Immun 9:379–382

32. Zervou MI, Vazgiourakis VM, Yilmaz N, Kontaki E, Trouw LA, Toes RE, Bicakcigil M, Bounmpas DT, Yavuz S, Goulielmos GN (2011) TRAF1/C5, eNOS, C1q, but not STAT4 and PTPN22 gene polymorphisms are associated with genetic susceptibility to systemic lupus erythematosus in Turkey. Hum Immunol 72:1210–1213

33. Chung SA, Taylor KE, Graham RR, Nititham J, Lee AT, Ortmann WA, Jacob CO, Alarcón-Riquelme ME, Tsao BP, Harley JB, Gaffney PM, Moser KL, SLEGEn, Petri M, Demirci FY, Kamboh MI, Manzi S, Gregersen PK, Langefeld CD, Behrens TW, Criswell LA (2011) Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet 7:e1001323

34. Yin H, Borghi MO, Delgado-Vega AM, Tincani A, Meroni PL, Alarcón-Riquelme ME (2009) Association of STAT4 and BLK, but not BANK1 or IRF5, with primary antiphospholipid syndrome. Arthritis Rheum 60:2468–2471

35. Lee YH, Woo JH, Choi SJ, Ji JD, Song GG (2009) Association between the rs7574865 polymorphism of STAT4 and rheumatoid arthritis: a meta-analysis. Rheumatol Int 30:661–666

36. Glas J, Seiderer J, Nagy M, Fries C, Beigel F, Weidinger M, Pfennig S, Klein W, Epplen JT, Lohse P, Polwaczny M, Göke B, Ochsenkühn T, Diegelmann J, Müller-Muthok B, Roeske D, Brand S (2010) Evidence for STAT4 as a common autoimmune gene: Rs7574865 is associated with colonic Crohn’s disease and early disease onset. PLoS One 5:e10373

37. Pykäläinen M, Kinos R, Valkonen S, Rydman P, Kilpeläinen M, Laitinen LA, Karjalainen J, Nieminen M, Hurme M, Kere J, Laitinen T, Laihismaa R (2005) Association analysis of common variants of STAT6, GATA3, and STAT4 to asthma and high serum IgE phenotypes. J Allergy Clin Immunol 115:80–87

38. Rueda B, Broen J, Simeon C, Hesselstrand R, Diaz B, Suárez H, Ortego-Centeno N, Riemekasten G, Fonollosa V, Vonk MC, van den Hoogen FH, Sanchez-Román J, Aguirre-Zamorano MA, García-Portales R, Pros A, Camps MT, Gonzalez-Gay MA, Coenen MJ, Airo P, Beretta L, Scorzà R, van Laar J, Gonzalez-Escribano MF, Nelson JL, Radstake TR, Martin J (2009) The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum Mol Genet 18:2071–2077

39. Korman BD, Alba MI, Le JM, Alevizos I, Smith JA, Nikolov NP, Kastner DL, Remmers EF, Illei GG (2008) Variant form of STAT4 is associated with primary Sjogren’s syndrome. Genes Immun 9:267–270