Deeply Virtual Compton Scattering to the twist-four accuracy: Impact of finite-t and target mass corrections

V. M. Braun

University of Regensburg

based on

V. Braun, A. Manashov, D. Müller, B. Pirnay, Phys.Rev. D89 (2014) 074022

Warsaw, 30.04.2014
Hard exclusive processes involve off-forward matrix elements

DVCS: $\gamma^* P \rightarrow \gamma P'$

Form factors: $\gamma^* \pi \rightarrow \gamma, B \rightarrow \rho \ell \bar{\nu}_\ell$, ...

Operator Product Expansion

$$J(x) J(0) \sim \sum_N C_N(x^2, \mu^2) O_N(\mu^2)$$

involves

$$\langle P' | O_N(\mu^2) | P \rangle \quad \langle \rho(p) | O_N(\mu^2) | 0 \rangle$$

Kinematic variables: hadron mass m^2, momentum transfer $t = (P - P')^2$

How to calculate effects \(\sim m^2/Q^2 \) and \(t/Q^2 \)?
Nucleon Tomography?

access to three-dimensional picture of the nucleon (M. Burkardt)

\[\rightarrow \text{first two moments of transverse spin parton density} \]

\[\text{computer simulations: M. Göckeler et al., Phys. Rev. Lett. 98 (2007) 222001} \]

• paradigm shift: finite \(t \) a “nuisance” \(\rightarrow \) important tool
How to calculate effects $\sim \frac{m^2}{Q^2}$ and $\frac{t}{Q^2}$ in DVCS?

Early work:

- **DVCS:**
 - Extension of Nachtmann's approach to target mass corrections in DIS
 - Spin-rotation (Wandzura-Wilczek)
 - Blümlein, Robaschik: NPB581 (2000) 449
 - Radyushkin, Weiss: PRD63 (2001) 114012
 - Belitsky, Müller: NPB589 (2000) 611
 - Results not gauge invariant
 - Results not translation invariant

- **B-decays:**
 - Ball, Braun: NPB543 (1999) 201
 - Problem localized but not solved
Contributions of different twist are intertwined by symmetries:

- Conservation of the electromagnetic current and translation invariance

\[
\partial^{\mu} T\left\{ j_{\mu}^{\text{em}}(x)j_{\nu}^{\text{em}}(0) \right\} = 0
\]

\[
T\left\{ j_{\mu}^{\text{em}}(2x)j_{\nu}^{\text{em}}(0) \right\} = e^{-i\mathbf{P} \cdot x} T\left\{ j_{\mu}^{\text{em}}(x)j_{\nu}^{\text{em}}(-x) \right\} e^{i\mathbf{P} \cdot x}
\]

are valid in the sum of all twists but not for each twist separately.

- Higher-twist contributions that restore gauge/translation invariance are due to descendants of leading-twist operators obtained by adding total derivatives

\[
T\left\{ j_{\mu}^{\text{em}}(x)j_{\nu}^{\text{em}}(0) \right\} = \sum_{N} a_{N} O_{N} + \sum_{N} \left(b_{N} \partial^{2} O_{N} + c_{N} (\partial O)_{N} \right) + \text{other operators}
\]

leading-twist

- “Kinematic” and “Dynamic” contributions must have autonomous scale-dependence

- Explicit diagonalization of the mixing matrix for twist-4 operators not feasible, but, conformal symmetry implies that this matrix is hermitian w.r.t. to a certain scalar product.

\[V.B., A. Manashov: PRL 107 (2011) 202001; JHEP 1201 (2012) 085\]
BMP amplitudes

Introduction

DVCS observables

Summary

BMP reference frame

Braun, Manashov, Pirnay: PRD 86 (2012) 014003

longitudinal plane \((q, q')\)

\[n = q', \quad \tilde{n} = -q + \frac{Q^2}{Q^2 + t} q' \]

with this choice \(\Delta = q - q'\) is longitudinal and

\[|P_\perp|^2 = -m^2 - \frac{t}{4} \frac{1 - \xi^2}{\xi^2} \sim t_{\text{min}} - t \]

where

\[P = \frac{1}{2} (p + p'), \quad \xi_{\text{BMP}} = -\frac{(\Delta \cdot q')}{2(P \cdot q')} = \frac{x_B(1 + t/Q^2)}{2 - x_B(1 - t/Q^2)} \]

photon polarization vectors

\[\varepsilon_\mu^0 = - \left(q_\mu - q'_\mu \frac{q^2}{(qq')} \right) / \sqrt{-q^2}, \]

\[\varepsilon_\mu^\pm = (P_\mu^\perp \pm i \tilde{P}_\mu^\perp) / (\sqrt{2} |P_\perp|), \quad \tilde{P}_\mu^\perp = \epsilon_{\mu \nu}^\perp P^\nu \]
BMP helicity amplitudes

\[
A_{\mu\nu}(q, q', p) = i \int d^4 x \, e^{-i(z_1 \cdot q - z_2 \cdot q')} x \langle p', s' | T\{J_\mu(z_1 x) J_\nu(z_2 x)\} | p, s \rangle
\]

\[
= \varepsilon^+_\mu \varepsilon^-_\nu A^{++} + \varepsilon^-_\mu \varepsilon^+_\nu A^{--} + \varepsilon^0_\mu \varepsilon^-_\nu A^{0+} + \varepsilon^0_\mu \varepsilon^+_\nu A^{0-} + \varepsilon^0_\mu \varepsilon^+_\nu A^{+-} + \varepsilon^-_\mu \varepsilon^-_\nu A^{-+} + q'_\nu A^{(3)}
\]

for the calculation to the twist-4 accuracy one needs

- \(A^{++}, A^{--}\): \(1 + \frac{1}{Q^2}\)
- \(A^{0+}, A^{0-}\): \(\frac{1}{Q}\) \(\leftarrow\) agree with existing results
- \(A^{-+}, A^{+-}\): \(\frac{1}{Q^2}\) \(\leftarrow\) straightforward
BMP Compton form factors (CFFs)

- Photon helicity amplitudes can be expanded in a given set of spinor bilinears

\[
\mathcal{A}_q^{a\pm} = \mathbb{H}_q^{a\pm} h + \mathbb{E}_q^{a\pm} e \mp \mathbb{H}_q^{a\pm} \tilde{h} \mp \mathbb{E}_q^{a\pm} \tilde{e}
\]

with, e.g.

\[
h = \frac{\bar{u}(p') (\bar{q} + \bar{q}') u(p)}{P \cdot (\bar{q} + \bar{q}')} \quad \ldots
\]

- The results read

Belitsky, Müller, Ji: NPB 878 (2014) 214

Braun, Manashov, Pirnay: PRL109 (2012) 242001

\[
\begin{align*}
\mathbb{H}_{++} &= T_0 \otimes H + \frac{t}{Q^2} \left[-\frac{1}{2} T_0 + T_1 + 2\xi \mathbf{D}_\xi T_2 \right] \otimes H + \frac{2t}{Q^2} \xi^2 \partial_\xi \xi T_2 \otimes (H+E) \\
\mathbb{H}_{0+} &= -\frac{4|\xi P_\perp|}{\sqrt{2}Q} \left[\xi \partial_\xi T_1 \otimes H + \frac{t}{Q^2} \partial_\xi \xi T_1 \otimes (H+E) \right] - \frac{t}{\sqrt{2}Q|\xi P_\perp|} \xi T_1 \otimes \left[\xi (H+E) - \tilde{H} \right] \\
\mathbb{H}_{-+} &= \frac{4|\xi P_\perp|^2}{Q^2} \left[\xi \partial_\xi^2 \xi T_1^{(+)} \otimes H + \frac{t}{Q^2} \partial_\xi^2 \xi^2 T_1^{(+)} \otimes (H+E) \right] \\
&\quad + \frac{2t}{Q^2} \xi \left[\xi \partial_\xi \xi T_1^{(+)} \otimes (H+E) + \partial_\xi \xi T_1 \otimes \tilde{H} \right]
\end{align*}
\]
BMP Compton form factors (CFFs)

- Photon helicity amplitudes can be expanded in a given set of spinor bilinears

\[\mathcal{A}_q^{a\pm} = \mathbb{H}_a^{q\pm} h + \mathbb{E}_a^{q\pm} e \mp \mathbb{H}_a^{q\pm} \tilde{h} \pm \mathbb{E}_a^{q\pm} \tilde{e} \]

with, e.g.

Belitsky, Müller, Ji: NPB 878 (2014) 214

\[h = \frac{\bar{u}(p')(\slashed{q} + \slashed{q}')u(p)}{P \cdot (\slashed{q} + \slashed{q}')} \]

... etc.

- The results read

Braun, Manashov, Pirnay: PRL109 (2012) 242001

\[
\begin{align*}
\mathbb{E}_{++} & = T_0 \otimes E + \frac{t}{Q^2} \left[-\frac{1}{2} T_0 + T_1 + 2\xi D_\xi T_2 \right] \otimes E - \frac{8m^2}{Q^2} \xi^2 \partial_\xi \xi T_2 \otimes (H + E) \\
\mathbb{E}_{0+} & = -\frac{4|\xi P_\perp|^2}{\sqrt{2}Q} \left[\xi \partial_\xi T_1 \otimes E \right] + \frac{4m^2}{\sqrt{2}Q|\xi P_\perp|} \xi T_1 \otimes \left[\xi (H + E) - \tilde{H} \right] \\
\mathbb{E}_{--} & = \frac{4|\xi P_\perp|^2}{Q^2} \left[\xi \partial_\xi^2 \xi T_1^{(+)} \otimes E \right] - \frac{8m^2}{Q^2} \xi \left[\xi \partial_\xi \xi T_1^{(+)} \otimes (H + E) + \partial_\xi \xi T_1 \otimes \tilde{H} \right]
\end{align*}
\]
where \(F = H, E, \tilde{H}, \tilde{E} \) are \(C \)-even GPDs

\[
T \otimes F = \sum_q e_q^2 \int_{-1}^{1} \frac{dx}{2\xi} \frac{1}{2(\xi - i\epsilon)} F(x, \xi, t)
\]

the coefficient functions \(T_{k-}^{T} \) are given by the following expressions:

\[
T_0(u) = \frac{1}{1 - u}
\]

\[
T_1(u) = \frac{\ln(1 - u)}{u}
\]

\[
T_1^{(+)}(u) = \frac{(1 - 2u)\ln(1 - u)}{u}
\]

\[
T_2(u) = \frac{\text{Li}_2(1) - \text{Li}_2(u)}{1 - u} + \frac{\ln(1 - u)}{2u}
\]

and

\[
D_\xi = \partial_\xi + 2|\xi P_\perp|^2 \partial_\xi^2 \xi = \partial_\xi - \frac{t - t_{\text{min}}}{2t} (1 - \xi^2) \partial_\xi^2 \xi
\]
Main features:

- Two expansion parameters

\[
\frac{t}{Q^2}, \quad \frac{t - t_{\text{min}}}{Q^2} \sim \frac{|\xi P_\perp|^2}{Q^2}
\]

- All mass corrections for scalar targets absorbed in \(t_{\text{min}} = -4m^2\xi^2/(1 - \xi^2) \); always overcompensated by finite-\(t \) corrections in the physical region

- Some extra \(m^2/Q^2 \) corrections for nucleon due to spinor algebra; disappear in certain CFF combinations

- Factorization checked to \(1/Q^2 \) accuracy
- Gauge and translation invariance checked to \(1/Q^2 \) accuracy
- Correct threshold behavior \(t \to t_{\text{min}}, \xi \to 1 \)
From CFFs to DVCS observables

- The only existing calculation to the required accuracy: BMJ

Belitsky, Müller, Ji: NPB 878 (2014) 214

!!! Subtlety: BMJ use a different reference frame to define photon helicity amplitudes; hence a different set of CFFs (calligraphic) related to BMP CFFs (blackboard bold) by a kinematic trafo

\[
\mathcal{F}_{\pm} = F_{\pm} + \frac{\kappa}{2} \left[F_{++} + F_{--} \right] - \kappa_0 F_{0+}, \\
\mathcal{F}_{0+} = -(1 + \kappa) F_{0+} + \kappa_0 \left[F_{++} + F_{--} \right]
\]

where

\[
\kappa_0 \sim \sqrt{\left(t_{\text{min}} - t \right) / Q^2}, \quad \kappa \sim \left(t_{\text{min}} - t \right) / Q^2
\]

Adopted strategy is, thus,

BMP CFFs $\xrightarrow{\text{exact}}$ BMJ CFFs $\xrightarrow{\text{exact}}$ observables

$\mathcal{O}(1/Q^2)$
Defining the Leading Twist approximation

Kumerički-Müller convention (KM)

\[
\mathbf{LT}_{\text{KM}}: \begin{cases}
\mathcal{F}_{++} = T_0 \otimes F, & \mathcal{F}_{0+} = 0, \\
\mathcal{F}_{--} = 0, & \xi = \xi_{\text{KM}}
\end{cases}
\]

Braun-Manashov-Pirnay convention (BMP)

\[
\mathbf{LT}_{\text{BMP}}: \begin{cases}
\mathcal{F}_{++} = T_0 \otimes F, & \mathcal{F}_{0+} = 0, \\
\mathcal{F}_{--} = 0, & \xi = \xi_{\text{BMP}}
\end{cases}
\]

\[
\Downarrow
\]

\[
\mathbf{LT}_{\text{BMP}}: \begin{cases}
\mathcal{F}_{++} = (1 + \frac{\xi}{2}) F_{++}, & \mathcal{F}_{0+} = \kappa_0 F_{++}, \\
\mathcal{F}_{--} = \frac{\kappa}{2} F_{++}, & \xi = \xi_{\text{BMP}},
\end{cases}
\]

Changing frame of reference results in

- Different skewedness parameter
 \[
 \xi_{\text{KM}} = \frac{x_B}{2 - x_B}
 \]
 vs.
 \[
 \xi_{\text{BMP}} = \frac{x_B(1 + t/Q^2)}{2 - x_B(1 - t/Q^2)}
 \]

- Numerically significant excitation of helicity-flip CFFs \(\mathcal{F}_{0+}, \mathcal{F}_{--}\)
Unpolarized target

GPD model: GK12

Braun, Manashov, Müller, Pirnay: arXiv:1401.7621

Figure: Unpolarized cross section [upper panels] and electron helicity dependent cross section difference [lower panels] from HALL A
(new) Transversely polarized target

Figure: Transverse target spin asymmetries by HERMES collaboration

GPD model: GK12 (Kroll, Moutarde, Sabatie, Eur.Phys.J. C73, 2278)
Summary and conclusions

- Target mass and finite-\(t \) corrections to DVCS are known to twist-4 accuracy. They are relatively simple and can be implemented with moderate effort.

- **Premium:**

 - Gauge and translation invariance of the Compton tensor is restored to \(1/Q^2 \) accuracy.
 - Convention-dependence of the common leading-twist calculations is removed.
 - Theoretically motivated limits \(-t/Q^2 \lesssim 1/4\).

- For several key observables, the lion share of the twist-4 effects is captured by going over to the BMP frame.

- Standardization badly needed for all steps, starting from the Compton tensor:

\[
A_{\mu\nu}(q, q', p) = \varepsilon_+^\mu \varepsilon_-^\nu A^{++} + \varepsilon_-^\mu \varepsilon_+^\nu A^{--} + \varepsilon_0^\mu \varepsilon_-^\nu A^{0+} + \varepsilon_-^\mu \varepsilon_0^\nu A^{0-} + \varepsilon_+^\mu \varepsilon_0^\nu A^{+-} + \varepsilon_-^\mu \varepsilon_+^\nu A^{-+} + q'_\nu B_\mu
\]
Backup slides
Unpolarized target (2)

Braun, Manashov, Müller, Pirnay: arXiv:1401.7621

Figure: Single electron beam spin asymmetry by CLAS collaboration

GPD model: GK12 (Kroll, Moutarde, Sabatie, Eur.Phys.J. C73, 2278)
Unpolarized target (3)

Braun, Manashov, Müller, Pirnay: arXiv:1401.7621

Figure: The single electron beam spin asymmetry [left panel] in the charge-odd sector and the unpolarized beam charge asymmetry [right panel] measured by the HERMES collaboration

GPD model: GK12 (Kroll, Moutarde, Sabatie, Eur.Phys.J. C73, 2278)
Longitudinally polarized targets

Braun, Manashov, Müller, Pirnay: arXiv:1401.7621

Figure: Longitudinal proton spin asymmetry from CLAS [left panel], measured with an electron beam, and HERMES [right panel], measured with a positron beam

GPD model: GK12 (Kroll, Moutarde, Sabatie, Eur.Phys.J. C73, 2278)
Collider kinematics

Braun, Manashov, Müller, Pirnay: arXiv:1401.7621

Figure: The DVCS cross section from H1 (squares, diamonds, triangles) and ZEUS (circles)

GPD model: GK12 (Kroll, Moutarde, Sabatie, Eur.Phys.J. C73, 2278)