Explainable Planner Selection for Classical Planning

Patrick Ferber1,2 Jendrik Seipp3

1University of Basel, Basel, Switzerland
2Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
3Linköping University, Linköping, Sweden

36th AAAI Conference on Artificial Intelligence

February, 2022
Motivation
Motivation
Motivation
Motivation
Motivation
Motivation

SymBA*
Motivation

SymBA*

DecStar
Motivation

SymBA*
DecStar
Symple-1
Motivation

SymBA*

DecStar

Symple-1

...
Motivation

? SymBA*

DecStar

Symple-1

...
Naive Solution

DecStar: 100%
SymBA*: 79%
Naive Solution

DecStar: 100%
SymBA*: 79%

DecStar: 67%
SymBA*: 100%
Offline Portfolios

0s

SymBA*
DecStar
Blind

T
Offline Portfolios

\[
\begin{array}{c|c}
\text{SymBA}^* & \text{DecStar} \\
0s & T \\
\end{array}
\]

SymBA*
DecStar
Blind
Offline Portfolios

SymBA*	DecStar
0s	T

SymBA*
DecStar
- Blind -
Offline Portfolios

SymBA*	DecStar
0s	T

DecStar: 75%
SymBA*: 72%
Portfolio: 84%
Online Portfolio

\[f(\Pi) = \]

\[
\begin{array}{c}
0s \\
T
\end{array}
\]
Online Portfolio

\[f(\Pi) = \begin{array}{c}
0s \\
T
\end{array} \]

\[f(\text{DecStar}) = \begin{array}{c}
0s \\
T
\end{array} \]

- DecStar: 75%
- SymBA*: 72%
- Offline Portfolio: 84%
- Online Portfolio: 87%
Online Portfolio

\[f(\Pi) = \begin{array}{c}
\text{0s} \\
\text{T}
\end{array} \]

\[f(\text{DecStar}) = \begin{array}{c}
\text{DecStar} \\
\text{0s} \\
\text{T}
\end{array} \]

\[f(\text{SymBA}^* \text{DecStar}) = \begin{array}{c}
\text{SymBA}^* \\
\text{DecStar} \\
\text{0s} \\
\text{T}
\end{array} \]
Online Portfolio

\[f(\Pi) = \frac{\text{DecStar}}{0s} \quad \frac{\text{SymBA}^*}{T} \]

DecStar: 75%
SymBA*: 72%
Offline Portfolio: 84%
Online Portfolio: 87%
Delfi (Katz et al., 2018)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Contributions

• explainable techniques and understandable features
• identify important features
• investigate which planners are selected
• present new self-explaining decision tree
Machine Learning Techniques

Linear Regression

Decision Trees

Multi-Layer Perceptrons
Machine Learning Techniques

Linear Regression

input · weights + bias = output
Machine Learning Techniques

Linear Regression

\[
\text{input} \cdot \text{weights} + \text{bias} = \text{output}
\]
Machine Learning Techniques

Linear Regression

\[
\text{input} \cdot \text{weights} + \text{bias} = \text{output}
\]
Machine Learning Techniques

Decision Tree

input

Q1
Yes
No

Q2
Yes
No

X

...
Machine Learning Techniques

Decision Tree

input

Q1
Yes
Yes
No
No

Q2
Yes
No

X

Yes
No

…

…
Machine Learning Techniques

Decision Tree

input

Q1
Yes No

Q2
Yes No

X
Machine Learning Techniques

Decision Tree

Q1

Q2

Yes

Yes

No

No

Yes

No

X

...
Machine Learning Techniques

Random Forest
Machine Learning Techniques

Multi-Layer Perceptron

![Diagram of a multi-layer perceptron](image)
Machine Learning Techniques

Multi-Layer Perceptron

[Diagram of a multi-layer perceptron network]
Machine Learning Techniques

Multi-Layer Perceptron
Machine Learning Techniques

Multi-Layer Perceptron

input
Features

FPDDL ⊂ Fawcett\(^1\) ⊂ PDDL ⊂ Union

Feature augmentations: normalize

\(^1\) The features presented by Fawcett et al. (2014)
Target Functions

Function	Solves
Time	
log(Time)	

Images from the Noun Project: Delwar Hossai (timer), Landan Lloyd (thumb)
Training

- data set by Ferber et al. (2019)
- 10-fold domain-preserving cross-validation

Noun Project: RomStu (file), Becris (Lin. Regression), Knut Synstad (Tree), Samuel Dion-Girardeau (brain)
Performance

	Linear Regression	MLP	Forest					
	0.0	0.1	1.0	2.0	5.0	3	5	50
Fawcett								
binary	78.6	77.2	82.1	82.4	80.9	87.1	78.2	84.8
logtime	79.3	79.0	81.5	81.7	83.6	82.2	82.2	84.1
time	78.6	81.8	80.5	80.4	80.3	82.2	85.3	81.8
Fpddl								
binary	87.7	74.3	72.7	74.3	71.4	81.0	81.5	77.5
logtime	82.5	84.0	78.5	77.7	80.3	78.2	79.7	82.0
time	86.5	86.5	86.5	86.6	86.6	80.2	81.9	78.8
Pddl								
binary	81.4	75.7	72.6	74.1	71.4	78.1	79.8	80.2
logtime	82.1	79.7	80.4	79.8	77.8	79.5	78.0	82.8
time	81.6	82.0	81.2	79.0	78.7	77.8	78.4	79.7
Union								
binary	74.8	81.0	79.4	82.4	80.9	84.7	78.3	82.1
logtime	75.6	80.0	80.7	81.8	83.4	82.2	82.2	84.7
time	74.8	77.3	75.7	76.1	77.1	84.3	83.6	84.0
Performance

Random: 67.2% Best: 73.5%

60/60 56/60
12/12 12/12
24/24 24/24
Performance

	Min	Mean	Max
Experiments 1	71.4%	80.0%	87.7%
Experiments 2	77.5%	81.9%	84.8%
Experiments 3	77.8%	81.1%	87.1%
Planner Choices

Usage	Cov$_P$	Cov$_C$	Planner
43.7	80.1	94.4	SymBA*
12.3	82.4	89.9	h2 + OSS + LM-Cut
9.7	78.7	54.5	h2 + DKS + iPDB
9.4	78.8	88.5	h2 + OSS + iPDB
8.1	82.7	78.1	h2 + DKS + LM-Cut
5.4	67.9	74.8	DKS + M&S-MIASM-DFP
3.3	74.8	97.5	h2 + DKS + M&S-BS-sbMIASM
2.8	65.9	86.6	h2 + OSS + M&S-SCC-DFP
2.1	75.8	100	h2 + DKS + M&S-BS-SCC-DFP
1.0	67.7	84.0	OSS + M&S-MIASM-DFP
Planner Choices

Usage	Cov_P	Cov_C	Planner
43.7	80.1	94.4	□ SymBA*
12.3	82.4	89.9	□ h2 + OSS + LM-Cut
9.7	78.7	54.5	□ h2 + DKS + iPDB
9.4	78.8	88.5	□ h2 + OSS + iPDB
8.1	82.7	78.1	□ h2 + DKS + LM-Cut
5.4	67.9	74.8	□ DKS + M&S-MIASM-DFP
3.3	74.8	97.5	□ h2 + DKS + M&S-BS-sbMIASM
2.8	65.9	86.6	□ h2 + OSS + M&S-SCC-DFP
2.1	75.8	100	□ h2 + DKS + M&S-BS-SCC-DFP
1.0	67.7	84.0	□ OSS + M&S-MIASM-DFP
Planner Choices

Usage	Cov_P	Cov_C	Planner
43.7	80.1	94.4	SymBA*
12.3	82.4	89.9	h2 + OSS + LM-Cut
9.7	78.7	54.5	h2 + DKS + iPDB
9.4	78.8	88.5	h2 + OSS + iPDB
8.1	82.7	78.1	h2 + DKS + LM-Cut
5.4	67.9	74.8	DKS + M&S-MIASM-DFP
3.3	74.8	97.5	h2 + DKS + M&S-BS-sbMIASM
2.8	65.9	86.6	h2 + OSS + M&S-SCC-DFP
2.1	75.8	100	h2 + DKS + M&S-BS-SCC-DFP
1.0	67.7	84.0	OSS + M&S-MIASM-DFP
Planner Choices

Usage	Cov_P	Cov_C	Planner
43.7	80.1	94.4	[SymBA*](#)
12.3	82.4	89.9	h2 + OSS + LM-Cut
9.7	78.7	54.5	h2 + DKS + iPDB
9.4	78.8	88.5	h2 + OSS + iPDB
8.1	82.7	78.1	h2 + DKS + LM-Cut
5.4	67.9	74.8	DKS + M&S-MIASM-DFP
3.3	74.8	97.5	h2 + DKS + M&S-BS-sbMIASM
2.8	65.9	86.6	h2 + OSS + M&S-SCC-DFP
2.1	75.8	100	h2 + DKS + M&S-BS-SCC-DFP
1.0	67.7	84.0	OSS + M&S-MIASM-DFP

SymBA
Planner Choices

Usage	CovP	CovC	Planner
43.7	80.1	94.4	SymBA*
12.3	82.4	89.9	h2 + OSS + LM-Cut
9.7	78.7	54.5	h2 + DKS + iPDB
9.4	78.8	88.5	h2 + OSS + iPDB
8.1	82.7	78.1	h2 + DKS + LM-Cut
5.4	67.9	74.8	DKS + M&S-MIASM-DFP
3.3	74.8	97.5	h2 + DKS + M&S-BS-sbMIASM
2.8	65.9	86.6	h2 + OSS + M&S-SCC-DFP
2.1	75.8	100	h2 + DKS + M&S-BS-SCC-DFP
1.0	67.7	84.0	OSS + M&S-MIASM-DFP
Feature Importance

- requires negative preconditions
- max parameters per predicate
- mean negations per effect
- mean predicates per effect
- requires conditional effects
- requires equality
- max predicates per effect
- #types
- min predicates per effect
Single Decision Tree

\[
\frac{\#\text{atoms}}{\#\text{objects}} \leq 6.9
\]

- **true**
 - \(\#\text{atoms} \leq 266.5\)
 - **true**
 - 1000s
 - **false**
 - 800s
- **false**
 - median \(\#\text{objects per type} \leq 22.5\)
 - **true**
 - 500s
 - **false**
 - 100s
Single Decision Tree

- \#atoms / \#objects \leq 6.9
 - true: \#atoms \leq 266.5
 - SymBA*
 - h2+DKS+iPDB
 - false: median \#objects per type \leq 22.5
 - SymBA*
 - h2+OSS+LM-Cut
Comparison to Delfi

Delfi1	86.9	86.2	76.8	70.8	82.7

Delfi1 86.9
Planner Choices

- Delfi
- LR
- RF
- DT
- MLP
- Opt
Planner Choices

Planner	Delfi	LR	RF	DT	MLP	Opt

![Heatmap of Planner Choices](chart)
Planner Choices
Delfi
LR
RF
DT
MLP
Opt
Planner Choices

Delfi
LR
RF
DT
MLP
Opt
Summary

Explainable planner selection ...

- is competitive
- let’s us identify important features
- learns the right planner for a domain
- can be as simple as a single decision tree
Fawcett, C.; Vallati, M.; Hutter, F.; Hoffmann, J.; Hoos, H.; and Leyton-Brown, K. 2014. Improved Features for Runtime Prediction of Domain-Independent Planners. In Chien, S.; Fern, A.; Ruml, W.; and Do, M., eds., *Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2014)*, 355–359. AAAI Press.

Ferber, P.; Mai, T.; Huo, S.; Chen, J.; and Katz, M. 2019. IPC: A Benchmark Data Set for Learning with Graph-Structured Data. In *In Proceedings of the ICML-2019 Workshop on Learning and Reasoning with Graph-Structured Representations*.

Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018. Delfi: Online Planner Selection for Cost-Optimal Planning. In *Ninth International Planning Competition (IPC-9): Planner Abstracts*, 57–64.