A Parameterized Family of Meta-Submodular Functions

Mehrdad Ghadiri
Georgia Tech
ghadiri@gatech.edu

Richard Santiago
ETH Zurich
rtorres@ethz.ch

Bruce Shepherd
UBC
fbrucesh@cs.ubc.ca

Abstract

Submodular function maximization has found a wealth of new applications in machine learning models during the past years. The related supermodular maximization models (submodular minimization) also offer an abundance of applications, but they appeared to be highly intractable even under simple cardinality constraints. Hence, while there are well-developed tools for maximizing a submodular function subject to a matroid constraint, there is much less work on the corresponding supermodular maximization problems.

We give a broad parameterized family of monotone functions which includes submodular functions and a class of supermodular functions containing diversity functions. Functions in this parameterized family are called γ-meta-submodular. We develop local search algorithms with approximation factors that depend only on the parameter γ. We show that the γ-meta-submodular families include well-known classes of functions such as meta-submodular functions ($\gamma = 0$), metric diversity functions and proportionally submodular functions (both with $\gamma = 1$), diversity functions based on negative-type distances or Jensen-Shannon divergence (both with $\gamma = 2$), and σ-semi metric diversity functions ($\gamma = \sigma$).

1 Introduction

In the past decades, the catalogue of algorithms available to combinatorial optimizers has been substantially extended to new settings which allow submodular objective functions. These developments in submodular maximization were occurring at the same time that researchers found a wealth of new applications in machine learning and data mining for these models [29, 34, 10, 32, 28, 36, 44, 37, 40, 16].

The related supermodular maximization models (submodular minimization) also offer an abundance of applications, but they appeared to be highly intractable even under simple cardinality constraints [45]. The applications include, but are not limited to, feature selection [49, 24], neural architecture search [6], document aggregation [1], web search [2, 47], keyword search in databases [50].

In some cases constrained supermodular maximization admits a constant factor approximation. One such example arises in the realm of diversity maximization. Let $[n] = \{1, \ldots, n\}$ be our ground set and A be a pairwise dissimilarity measure on the elements of $[n]$, where A is a symmetric, zero-diagonal matrix with non-negative entries. Given an integer r, the goal of the diversity maximization problem is to find a set $S \subseteq [n]$ of size r that maximizes $f(S) = \sum_{i,j \in S} A(i, j)$. When A is a metric distance (i.e., $A(i, j) \leq A(i, k) + A(k, j)$ for any $i, j, k \in [n]$), this problem admits a 2-approximation [25, 1, 9] which is tight [4, 9]. One might think that this is because of the nice pairwise structure of these functions. However,
where A is not metric and its entries are from $\{0, 1\}$, then this problem is equivalent to the densest k-subgraph problem whose approximation is $O(n^{0.25+\epsilon})$. In this case it cannot admit a constant-factor approximation under the generally accepted complexity assumption of ETH \[38\]. In fact, the metric property is key to why diversity functions behave nicely in the former case. This is generalized to the case where A is a γ-semi-metric (i.e., $A(i, j) \leq \gamma(A(i, k) + A(k, j))$ for any $i, j, k \in [n]$). Namely, it is shown that maximizing a diversity function with a γ-semi-metric distance, subject to a cardinality constraint $|S| \leq r$, admits a 2γ-approximation \[48\], which is tight \[23\].

As discussed, for a fixed semi-metric parameter there is a constant-factor approximation for functions with a pairwise structure. Can this parameter be generalized to general set functions? We answer this question affirmatively in this paper. In order to define this generalization we introduce the following notation.

Definition 1. Let $f : 2^{[n]} \to \mathbb{R}_{\geq 0}$ be a set function defined on the powerset of $[n]$. For a set $S \subseteq [n]$ and elements $i, j \in [n]$, we define the first-order difference (or marginal gain) of i with respect to S as

$$B_i(S) := f(S + i) - f(S - i),$$

where $S + i = S \cup \{i\}$ and $S - i = S \setminus \{i\}$. We also define the second-order difference of i, j with respect to S as

$$A_{ij}(S) := B_j(S + i) - B_j(S - i) = f(S + i + j) - f(S + i - j) - f(S - i + j) + f(S - i - j).$$

Note that $A_{ij}(S) = A_{ji}(S)$. For the *diversity function* $f(S) = \frac{1}{2} \sum_{u,v \in S} A(u, v)$, we have $B_i(S) = \sum_{u \in S - i} A(i, u)$ and $A_{ij}(S) = A(i, j)$. The latter means that $A_{ij}(S)$ is constant for these diversity functions. Note that B_i and A_{ij} are defined for any set function and they do not need a pairwise structure. One can easily verify that f is monotone if and only if $B_i(S) \geq 0$ for all i and S. Moreover f is submodular (supermodular) if and only if $A_{ij}(S) \leq 0$ ($A_{ij}(S) \geq 0$) for all i, j and S. Now we can define our parameterized family of functions.

Definition 2. Let $\gamma \geq 0$. We say a set function f is γ-meta-submodular (γ-MS) if, for any nonempty $S \subseteq [n]$ and $i, j \in [n]$, we have

$$A_{ij}(S) \leq \gamma \cdot \frac{B_i(S) + B_j(S)}{|S|}. \tag{1}$$

For $\gamma = 0$, our definition implies that $A_{ij}(S) \leq 0$ for any $i, j \in [n]$ and nonempty S. This is equivalent to the class of meta-submodular functions defined by Kleinberg et al \[31\]. They defined this class of functions inspired by segmentation problems. Trivially, the class of 0-MS functions contain all submodular functions. For γ-semi-metric diversity functions, if $i, j \notin S$, the inequality in \[1\] is equivalent to $A(i, j) \leq \gamma(\sum_{k \notin S}[A(i, k) + A(j, k)])/|S|$. This holds because for any $i, j, k \in [n]$, the γ-semi-metric property implies $A(i, j) \leq \gamma(A(i, k) + A(j, k))$. Therefore the above is just an average over such inequalities. Moreover the above inequality holds for γ-semi-metric diversity functions, regardless of whether i, j are in S. Hence these functions are γ-MS — see Proposition \[4\] in Appendix \[B\].

Negative-type distances and Jensen-Shannon divergence are among the most important distance functions. These distances are 2-semi-metric (see \[23\]) and therefore, the diversity functions defined on them are 2-MS. Another important class of functions are proportionally submodular functions which contains the functions that are the sum of a monotone submodular function and a metric diversity function \[8\]. Proportionally submodular functions are contained in the class of 1-MS functions — see Proposition \[4\] in Appendix \[B\].

As discussed, even for small γ, the class of γ-MS functions contain many important classes of functions used in machine learning and data mining applications. Moreover if f, g are γ-MS and $\alpha > 0$ is a real number, then $f + g$ and αf are also γ-MS. This allows combining γ-MS functions in different ways. We primarily focus on monotone functions and we denote by \mathcal{G}_γ the family of non-negative, monotone set functions which are γ-MS. Note that this implies that the B_i’s are non-negative. Therefore one can see that $\mathcal{G}_\gamma \subseteq \mathcal{G}_{\gamma'}$ if $\gamma < \gamma'$.

In this work we consider the problem of maximizing a monotone γ-MS function subject to a matroid constraint. Before discussing our results, we review some background material.
1.1 Background, Notation, and Preliminary Results

We need the following notation and definitions to explain our techniques and results. We use \([n] := \{1, \ldots, n\}\) to refer to the ground set of a set function. For a set \(R \subseteq [n]\), we denote by \(1_R\) its characteristic vector. For \(x = (x_1, \ldots, x_n) \in [0, 1]^n\), \(p_x(R)\) denotes the probability of picking set \(R\) with respect to vector \(x\). In other words, \(p_x(R) = \prod_{v \in R} x_v \prod_{v \in [n]\setminus R}(1 - x_v)\).

The multilinear extension of a set function \(f : 2^{[n]} \to \mathbb{R}\) is \(F : [0, 1]^n \to \mathbb{R}\), where

\[
F(x) = \sum_{R \subseteq [n]} f(R)p_x(R) = E_{R \sim x}[f(R)].
\]

One can easily check that \(f(R) = F(1_R), B_i(R) = \nabla_i F(1_R),\) and \(A_{ij}(R) = \nabla^2_{ij} F(1_R)\) — see [46]. The following lemma describes the connection between the terms \(A_{ij}\) and \(B_i\) (see Appendix A for proof details).

Lemma 1 (Discrete integral). Let \(f : 2^{[n]} \to \mathbb{R}, i \in [n],\) and \(R = \{v_1, \ldots, v_r\} \subseteq [n].\) Moreover, let \(R_m = \{v_1, \ldots, v_m\}\) for \(1 \leq m \leq r\) and \(R_0 = \emptyset.\) Then \(B_i(R) = f(\{i\}) + \sum_{j=1}^r A_{ij}(R_{j-1}).\)

We use \(x^\top\) to denote the transpose of vector \(x\). For vectors \(x, y\), we denote the entrywise maximum of them by \(x \vee y\), i.e., \(z = x \vee y\) is a vector such that \(z_i = \max\{x_i, y_i\}\).

A pair \(M = ([n], \mathcal{I})\), where \(\mathcal{I}\) is a family of subsets of \([n]\), is a matroid if: 1) for any \(S \subseteq T \subseteq [n]\), if \(T \in \mathcal{I}\) then \(S \in \mathcal{I}\) (hereditary property); and 2) for any \(S, T \in \mathcal{I}\), if \(|S| < |T|\), then there exists \(i \in T \setminus S\) such that \(S + i \in \mathcal{I}\) (exchange property) [43]. We call \(\mathcal{I}\) the set of independent sets of the matroid \(M\). Therefore given a \(\gamma\)-MS function \(f\) and a matroid \(M = ([n], \mathcal{I})\), our problem of interest is to find a set \(S \in \mathcal{I}\) that maximizes \(f(S)\).

A maximal independent set of a matroid is called a base. All the bases of a matroid have the same size. The rank of a matroid \(M\), denoted by \(r\), is the size of a base of \(M\). Any subset of \([n]\) not in \(\mathcal{I}\) is called a dependent set of \(M\). A minimal dependent set of a matroid is called a circuit. Note that the size of circuits are not necessarily equal. We usually denote the size of the smallest circuit of \(M\) by \(c (= c(M))\).

Two important families of matroids are uniform matroids and graphic matroids. Given an integer \(r\), the set of independent sets of a uniform matroid is \(\mathcal{I} = \{S \subseteq [n] : |S| \leq r\}\). Therefore cardinality constraints are a special class of matroid constraints. For a uniform matroid, it is not hard to see that the rank is \(r\) and the size of the smallest circuit is \(c = r + 1\).

Given a graph \(G = (V, E)\), the graphic matroid on \(G\) is \(M = (E, \mathcal{I})\) where \(\mathcal{I}\) is the set of all forests of \(G\). If \(G\) is connected then \(r = |V| - 1\) and \(c\) is the size of the smallest cycle of \(G\). Matroids contain many more interesting family of constraints — see [43]. We frequently use the following result in our proofs.

Lemma 2 [43]. Let \(M = ([n], \mathcal{I})\) be a matroid and \(S, T\) be two bases of \(M\). Then there exists a bijective mapping \(g : S \setminus T \to T \setminus S\) such that \(S - i + g(i) \in \mathcal{I}\) for any \(i \in S \setminus T\).

1.2 Our Results

Recall that \(\mathcal{G}_{\gamma}\) denotes the family of non-negative, monotone set functions which are \(\gamma\)-meta submodular. Our most general result states that for these functions, there is an approximation factor which depends only on \(\gamma\). We remark that for constant values of \(\gamma\) we obtain a new tractable (parameterized) class of functions.

Theorem 1. Let \(f \in \mathcal{G}_{\gamma}\). Then a local search algorithm gives an \(O(\gamma^22^{4\gamma})\)-approximation for maximizing \(f\) subject to a matroid constraint.

One can improve the above approximation by requiring additional assumptions on the function \(f\). The following result shows that if the corresponding \(B_i\)'s are submodular, then the exponential factor from Theorem 1 improves to a quadratic factor in terms of \(\gamma\). We remark that submodularity of the \(B_i\)'s is just the notion of second-order submodularity introduced in [43], and is also equivalent to the non-positivity of the third-order partial derivatives of the multilinear extension. Note that it is also equivalent to having \(A_{ij}(S + k) - A_{ij}(S - k) \leq 0\) for all \(i, j, k, S\).
Theorem 2. Let \(f \in \mathcal{G}_\gamma \) such that \(f \) is also second-order submodular (that is, \(B_i \)'s are submodular). Let \(\mathcal{M} \) be a matroid of rank \(r \) that has the smallest circuit size of \(c \). Then the modified local search algorithm (Algorithm 1) gives an \(O(\gamma + \frac{\sqrt{c}}{r}) \)-approximation for maximizing \(f \) subject to \(\mathcal{M} \). If in addition \(f \) is supermodular, then this can be further improved to an \(O(\min(\gamma + \frac{\sqrt{c}}{r}, \frac{2r}{\gamma}) \) \)-approximation.

As we discussed \(\gamma \)-semi-metric diversity functions are \(\gamma \)-MS. One can easily check that such diversity function are also supermodular and second-order submodular. The reason is that for any \(i, j, k, S \), we have \(A_{ij}(S + k) - A_{ij}(S - k) = A(i, j) - A(i, j) = 0 \) and \(A_{ij}(S) = A(i, j) \geq 0 \). Therefore, Theorem 2. guarantees an \(O(\gamma^{3/2}) \)-approximation for maximizing a \(\gamma \)-semi-metric diversity function subject to a matroid constraint. This matches the current best known approximation for this problem given in [23]. The latter uses a continuous relaxation approach, which involves solving a continuous optimization problem and rounding the fractional solution to an integral one. We remark that while the \(O(\gamma^{3/2}) \)-approximation given in [23] only applies to \(\gamma \)-semi-metrics, our result holds for a larger class of functions. That is, for the class of supermodular, second-order submodular, \(\gamma \)-MS functions, which does not necessarily have the nice pairwise structure of \(\gamma \)-semi-metrics. Moreover our algorithm is a simple combinatorial algorithm.

We note that for some matroid classes, the approximation factors in Theorem 2 are better than \(O(\gamma^{3/2}) \). For instance, uniform matroids (and more generally paving matroids) satisfy \(c \geq r \). Hence the term \(\frac{\sqrt{c}}{r} \) gives a linear approximation of \(O(\gamma) \).

1.3 Techniques

The class of \(\gamma \)-meta-submodular functions are closely related to the newly introduced concept of one-sided smoothness [23]. A continuously twice differentiable function \(F : [0, 1]^n \to \mathbb{R} \) is called one-sided \(\sigma \)-smooth at \(x \neq 0 \) if for any \(u \in [0, 1]^n \),

\[
\frac{1}{2} u^\top \nabla^2 F(x) u - \sigma \cdot \left(\frac{||u||_1}{||x||_1} \right) u^\top \nabla F(x) \leq 0.
\]

A function \(F \) is one-sided \(\sigma \)-smooth if it is \(\sigma \)-smooth at any non-zero point of its domain. It is shown in [23] that the smoothness parameter governs the approximability of the associated continuous maximization problem \(\max_{x \in P} F(x) \) where \(P \) is a downwards closed polytope and \(F \) is a monotone one-sided smooth function. Our first observation is that the one-sided smoothness of the multilinear extension of a set function \(f \) implies the meta-submodularity of \(f \) — see Appendix C for proof details.

Proposition 1. Let \(f \) be a set function and \(F \) be its multilinear extension. If \(F \) is one-sided \((\gamma/2) \)-smooth, then \(f \) is \(\gamma \)-MS.

In fact the \(\gamma \)-MS definition can be derived from one-sided \((\gamma/2) \)-smoothness if we only consider [23] for some specific \(x \) and \(u \). Suppose [23] holds for \(x = 1_R \) and \(u = 1_{(i,j)} \). Then

\[
A_{ij}(R) = \frac{1}{2} (2u_i u_j \nabla^2 F_{ij}(x)) \leq \frac{\gamma}{2} \cdot \frac{u_i + u_j}{||x||_1} (u_i \nabla_i F(x) + u_j \nabla_j F(x)) = \gamma \cdot \frac{B_i(R) + B_j(R)}{|R|}.
\]

Conversely, if \(f \) satisfies a probabilistic version of [11], then \(F \) is one-sided smooth (see Appendix C for proof details).

Lemma 3. Let \(f \) be a non-negative, monotone set function and \(F \) be its multilinear extension. Let \(x \in [0, 1]^n \) and \(\gamma \geq 0 \). If for any \(i, j \in [n] \) we have the following:

\[
\mathbb{E}_{R \sim x} [B_i(R)] \leq \gamma \cdot (\mathbb{E}_{R \sim x} [A_{ij}(R)] + \mathbb{E}_{R \sim x} [B_j(R)]),
\]

where \(R \sim x \) denotes a random set that contains element \(i \) independently with probability \(x_i \), then \(F \) is one-sided \(\gamma \)-smooth at \(x \).

We call this probabilistic version the expectation inequality [3]. We have proved this inequality holds (modulo a constant factor) in the supermodular case (see Lemma 11 in Appendix C). This yields the following.
Theorem 3. Let \(f \) be a supermodular function such that \(f \in \mathcal{G}_\gamma \). Then its multilinear extension \(F \) is one-sided \((\max(\{\gamma, 2\gamma + 1\})\)-smooth.

We conjecture that for \(\gamma > 0 \), the multilinear extension of any \(\gamma \)-meta-submodular function is one-sided \(O(\gamma) \)-smooth. We use one-sided smoothness to prove Theorem 1. While it is most convenient to have the smoothness property for the multilinear extension \(F \) at every point of its domain, in order to prove Theorem 1 we only need it on a subdomain of \(F \). We prove the following “subdomain smoothness” property in Section 3.

Theorem 4. Let \(f \in \mathcal{G}_\gamma \) and \(F \) be its multilinear extension. Let \(\alpha \geq 1 \) and \(S \subseteq [n] \) be non-empty. Then \(F \) is one-sided \(\alpha \gamma \)-smooth on \(\{x \mid x \geq 1_S, ||x||_1 \leq \alpha|S|\} \).

1.4 Additional Related Work

For metric diversity functions, there exists a 2-approximation subject to a cardinality constraint \([11, 22]\). Moreover, this has been extended to the case of matroid constraints \([1, 9]\).

A PTAS is recently given for maximizing diversity functions on negative-type distances subject to a matroid constraint \([11, 12]\). There exists a 10.22-approximation for maximizing proportionally submodular functions subject to a matroid constraint \([7, 8]\).

Other extensions of submodular functions with respect to some sliding parameter (measuring how close a set function is to being submodular) have been considered in the literature. These include the class of weakly submodular functions, introduced in \([15]\) and further studied in \([17, 30, 27, 13, 5, 42]\). The class of set functions with supermodular degree \(d \) (an integer between 0 and \(n - 1 \) such that \(d = 0 \) if and only if \(f \) is submodular), introduced in \([19]\) and further considered in \([20, 21]\). This has been extended to the Supermodular Width hierarchy \([14]\). The class of \(\epsilon \)-approximate submodular functions studied in \([20]\).

The hierarchy over monotone set functions introduced in \([18]\), where levels of the hierarchy correspond to the degree of complementarity in a given function. They refer to this class as MPH (Maximum over Positive Hypergraphs), and MPH-k denotes the \(k \)-th level in the hierarchy where \(1 \leq k \leq n \). The highest level MPH-n of the hierarchy captures all monotone functions, while the lowest level MPH-1 captures the class of XOS functions (which include submodular).

We remark that our class of \(\gamma \)-meta-submodular functions differs from all the above extensions, since, for instance, none of them captures the class of metric diversity functions (in the sense of having a parameter that gives a good, say \(O(1) \), approximation) while ours does.

2 A Modified Local Search Algorithm

In this section we introduce the modified local search algorithm, i.e., Algorithm 1. The first part of the algorithm (steps 1-6) consists of the standard local search procedure, where an approximate local optimum set \(S \) is found. A set \(S \) is an \(\epsilon \)-approximate local optimum if for any \(i \in S \) and \(j \in [n] \setminus S \) that \(S - i + j \in \mathcal{L} \), we have \(f(S - i + j) \leq (1 + \frac{\epsilon}{2}) f(S) \). It is a standard practice to find an approximate local optimum instead of an actual local optimum as the latter might take exponential time. The new component of the algorithm consists of step 7, which requires finding a maximum weighted bipartite matching with \(\lfloor \frac{\epsilon}{2} \rfloor \) edges in an auxiliary graph, in order to produce a second candidate solution \(S' \) — which is the node set of the matching. Note that \(S' \) is an independent set of the matroid because its size is less than \(c \), the minimum size of any circuit in the matroid. The algorithm then returns the better of the two solutions \(S \) and \(S' \). The new step (i.e., step 7) plays a key role in improving the approximation factor when the function is supermodular — see Theorem 2.

The auxiliary graph is a complete weighted bipartite graph \(G \) with node sets \(S \) and \([n] \setminus S \). The edge weights are \(w(i, j) := A_{ij}(S) \) for \(i \in S \) and \(j \in [n] \setminus S \). We want to find a maximum weighted matching with \(\lfloor \frac{\epsilon}{2} \rfloor \) edges in \(G \). This matching can be found by a simple reduction to the maximum weighted bipartite matching problem as follows: add \(|S| - \lfloor \frac{\epsilon}{2} \rfloor \) dummy nodes to \([n] \setminus S \) and connect them to all the nodes in \(S \) with a weight equal to the maximum of \(w(i, j) \)'s. Finding a maximum weighted bipartite matching in this graph is equivalent to finding a maximum weighted bipartite matching with \(\lfloor \frac{\epsilon}{2} \rfloor \) edges in the original graph.
This matching can be found in time $O(n^2 (r + \log n))$ using the Hungarian algorithm with the Dijkstra algorithm and Fibonacci heap [22].

We note that the standard local search algorithm (i.e., the one consisting of steps 1-6 of Algorithm 1) has been previously used for maximizing a submodular [39, 35] and diversity [1, 49] objective functions subject to a matroid constraint.

Algorithm 1: Local search under matroid constraint

1. **Input:** A set function f, a matroid $\mathcal{M} = ([n], \mathcal{I})$ with circuits of minimum size c, and $\epsilon > 0$.
2. $S_0 \leftarrow \arg \max_{\{v, v'\} \in E} f(\{v, v'\})$
3. $S \leftarrow$ any base of \mathcal{M} that contains S_0
4. **while** S is not an approximate local optimum **do**
5. Find $i \in S$ and $j \in [n] \setminus S$ such that $S - i + j \in \mathcal{I}$ and $f(S - i + j) \geq (1 + \frac{\epsilon}{\epsilon'} f(S^*)$
6. $S \leftarrow S - i + j$
7. Create a complete weighted bipartite graph G with node sets S and $[n] \setminus S$, and edge weights

$$w(i, j) := A_{ij}(S)$$

for each $i \in S$ and $j \notin S$. Find a maximum weighted matching M in G of (edge) cardinality $\frac{\epsilon}{\epsilon'}$, and let S' denote the node set of M.
8. **return** $\arg \max \{f(S), f(S')\}$

3 General γ-Meta-Submodular Functions

In this section we present the main algorithmic result for general monotone γ-meta-submodular functions. Our goal is to show that an approximate local optimum solution S is a good approximation for a global optimum solution. To prove this, we need to bound $f(T)$ by a factor of $f(S)$. Since f is monotone, we know $f(T) \leq f(S \cup T)$. Therefore, instead of bounding $f(T)$ directly, we find a bound for $f(S \cup T)$. To do so, we can use the multilinear extension of f and Taylor’s expansion of the extension. Let F be the multilinear extension of f. Then by Taylor’s theorem, for some $\epsilon' \in [0, 1]$, we have

$$f(S \cup T) = F(\mathbb{1}_S \cup \mathbb{1}_T) = F(\mathbb{1}_S + \mathbb{1}_{T\setminus S}) = F(\mathbb{1}_S) + \mathbb{1}_{T\setminus S} \nabla F(\mathbb{1}_S + \epsilon' \mathbb{1}_{T\setminus S})$$

$$= f(S) + \mathbb{1}_{T\setminus S} \nabla F(\mathbb{1}_S + \epsilon' \mathbb{1}_{T\setminus S}).$$

So we only need to bound $\mathbb{1}_{T\setminus S} \nabla F(\mathbb{1}_S + \epsilon' \mathbb{1}_{T\setminus S})$ in terms of $f(S)$. To do so, we use a subdomain smoothness of meta-submodular functions and then we use this property to bound the mentioned term. Hence in this section, we first prove the subdomain smoothness of meta-submodular functions (Lemma 3 and Theorem 4), and then we show some bounds on the directional derivative of the multilinear extension of meta-submodular function using the subdomain smoothness property (Lemma 4 and Lemma 6). We then use these bounds to prove that an approximate local optimum is a good approximation for a global optimum (Theorem 4).

Lemma 3 Let f be a non-negative, monotone set function and F be its multilinear function. Let $x \in [0, 1]^n$ and $\gamma \geq 0$. If for any $i, j \in [n]$ we have

$$E_{R \sim x}[|R|] \cdot E_{R \sim x}[A_{ij}(R)] \leq \gamma \cdot (E_{R \sim x}[B_i(R)] + E_{R \sim x}[B_j(R)]),$$

or equivalently (see [6] or Lemma 2 in Appendix C),

$$||x||_1 \nabla^2_{ij} F(x) \leq \gamma (\nabla_i F(x) + \nabla_j F(x)),$$

then F is one-sided γ-smooth at x.

Proof. We have

$$u^T \nabla^2 F(x) u = \sum_{i=1}^n \sum_{j=1}^n u_i u_j \nabla^2_{ij} F(x) \leq \frac{\gamma}{||x||_1} \sum_{i=1}^n \sum_{j=1}^n u_i u_j (\nabla_i F(x) + \nabla_j F(x))$$

$$= \frac{\gamma}{||x||_1} \sum_{i=1}^n \sum_{j=1}^n u_i u_j \nabla_i F(x) + \sum_{i=1}^n \sum_{j=1}^n u_i u_j \nabla_j F(x)$$
Then
\[
= \frac{\gamma}{||x||_1} \left(\sum_{i=1}^{n} u_i \nabla_i F(x) (\sum_{j=1}^{n} u_j) + \sum_{i=1}^{n} u_i (\sum_{j=1}^{n} u_j \nabla_j F(x)) \right)
\]
\[
= \frac{\gamma}{||x||_1} \left(||u||_1 \sum_{i=1}^{n} u_i \nabla_i F(x) + ||u||_1 \sum_{j=1}^{n} u_j \nabla_j F(x) \right)
\]
\[
= 2\gamma \left(\frac{||u||_1}{||x||_1} \right) (u^T \nabla F(x)).
\]

Now we can show the following subdomain smoothness property which will be used to bound the Taylor’s polynomial of the multilinear extension of \(\gamma \)-MS functions.

Theorem 4 Let \(f \in \mathcal{G}_\alpha \) and \(F \) be its multilinear extension. Let \(\alpha \geq 1 \) and \(S \subseteq \{t \} \) be non-empty. Then \(F \) is one-sided \(\alpha \gamma \)-smooth on \(\{ x | x \geq 1_S, ||x||_1 \leq \alpha |S| \} \).

Proof. Let \(y \in \{ x | x \geq 1_S, ||x||_1 \leq \alpha |S| \} \). First, we show that
\[
||y||_1 \nabla^2 F(y) \leq \gamma \alpha (\nabla_i F(y) + \nabla_j F(y)).
\]

We know \(\nabla^2_{ij} F(y) = \sum_{R \subseteq \{t \}} A_{ij}(R) p_R(R) \). Since \(y \geq 1_S, p_R(R) = 0 \) for any \(R \) that is not a superset of \(S \). Therefore, we have
\[
||y||_1 \nabla^2_{ij} F(y) = ||y||_1 \sum_{R \subseteq \{t \}} A_{ij}(S \cup R) p_R(S \cup R) \leq \alpha |S| \sum_{R \subseteq \{t \}} A_{ij}(S \cup R) p_R(S \cup R)
\]
\[
\leq \sum_{R \subseteq \{t \}} \frac{\gamma \alpha |S|}{|S \cup R|} (B_i(S \cup R) + B_j(S \cup R)) p_R(S \cup R)
\]
\[
\leq \sum_{R \subseteq \{t \}} \gamma \alpha (B_i(S \cup R) + B_j(S \cup R)) p_R(S \cup R)
\]
\[
\leq \gamma \alpha (\nabla_i F(y) + \nabla_j F(y)).
\]

Now, by Lemma 3 we conclude that \(F \) is one-sided \((\alpha \gamma)\)-smooth at \(y \). \(\square \)

To analyse the local search algorithm, we use the following technical lemmas which use subdomain one-sided smoothness (Theorem 4) to bound the Taylor series expansion of the multilinear extension of \(\gamma \)-MS functions.

Lemma 4. Let \(f \in \mathcal{G}_\alpha \) and \(F \) be its multilinear extension. Let \(R \subseteq \{t \} \) such that \(|R| \geq 2 \). Then
\[
\|_{R}^T \nabla F(1_R) = \sum_{i \in R} B_i(R - i) \leq \left(\frac{|R|}{2} + \frac{|R|}{2} \right) + 2 \gamma + 2 f(R) \leq (5 \gamma + 2) f(R)
\]

Proof. Partition \(R \) into two sets of size \(\left\lfloor \frac{|R|}{2} \right\rfloor \) and of size \(\left\lceil \frac{|R|}{2} \right\rceil \) like \(S \) and \(T \). Using Theorem 4 we know that \(F \) is one-sided \((\left\lfloor \frac{|R|}{2} \right\rfloor + 1)\gamma \)-smooth on \(\{ y | 1_T \leq y \leq 1_R \} \) and it is one-sided \((\left\lfloor \frac{|R|}{2} \right\rfloor + 1)\gamma \)-smooth on \(\{ y | 1_S \leq y \leq 1_R \} \). Let \(\alpha = (\left\lfloor \frac{|R|}{2} \right\rfloor + 1) \). We show that
\[
\sum_{i \in T} B_i(R - i) \leq \alpha \gamma f(R).
\]

Let \(h(t) = F(1_S + t 1_T) \) and \(g(t) = \|_{T}^T \nabla F(1_S + t 1_T) \) where \(0 \leq t \leq 1 \). Note that \(g(t) = h'(t) \) and \(\|_{T}^T \nabla^2 F(1_S + t 1_T) 1_T = g'(t) \). Since \(F \) is one-sided \(\alpha \gamma \)-smooth at any given point \(1_S \leq y \leq 1_R \), we have
\[
g'(t) = \|_{T}^T \nabla^2 F(1_S + t 1_T) 1_T \leq \alpha (\frac{||1_T||_1}{||1_S + t 1_T||_1}) (\|_{T}^T \nabla F(1_S + t 1_T)) \leq \alpha \frac{1}{t} g(t).
\]
Therefore, \(tg'(t) \leq \alpha \gamma g(t) \). Integrating both sides, we get
\[
\int_0^1 tg'(t) dt \leq \int_0^1 \alpha \gamma g(t) dt.
\]
Applying the integration by parts formula to the left hand side, we get
\[
tg(t)|_0^1 - \int_0^1 g(t) dt \leq \alpha \gamma \int_0^1 g(t) dt.
\]
It follows that
\[
1 \cdot g(1) - 0 \cdot g(0) = \int_1^1 \nabla F(\mathbb{1}_S + \mathbb{1}_T) = \frac{\gamma}{2} \nabla F(\mathbb{1}_R) = \sum_{i \in T} B_i(R - i) \leq (\alpha \gamma + 1) \int_0^1 g(t) dt.
\]
By using \(g(t) = h'(t) \) we have
\[
\sum_{i \in T} B_i(R - i) \leq (\alpha \gamma + 1) \int_0^1 h'(t) dt = (\alpha \gamma + 1)(h(1) - h(0))
\]
\[
= (\alpha \gamma + 1)(F(\mathbb{1}_S + \mathbb{1}_T) - F(\mathbb{1}_S))
\]
\[
\leq (\alpha \gamma + 1)F(\mathbb{1}_R) = (\alpha \gamma + 1)f(R).
\]
This means that
\[
\sum_{i \in T} B_i(R - i) \leq (|R|/2)|R| + 1 + 1)f(R).
\]
With the same argument we can conclude that
\[
\sum_{i \in S} B_i(R - i) \leq (|R|/2)|R| + 1 + 1)f(R),
\]
and combining these inequalities yields the lemma. \(\square \)

For our next result, we use the following lemma from [23] which bounds the directional derivative at points close to \(x \) by a factor of the directional derivative at \(x \).

Lemma 5 ([23]). Let \(x \in [0, 1]^n \setminus \{0\} \), \(u \in [0, 1]^n \) and \(\epsilon > 0 \) such that \(x + \epsilon u \in [0, 1]^n \). Let \(F : [0, 1]^n \to \mathbb{R} \) be a non-negative, monotone function which is one-sided \(\sigma \)-smooth on \(\{y|x + \epsilon u \geq y \geq x\} \). Then
\[
u^\top \nabla F(x + \epsilon u) \leq \left(\frac{||x + \epsilon u||_1}{||x||_1}\right)^{2\sigma}\nu^\top \nabla F(x).
\]

The following is an immediate result of Theorem 4 and Lemma 5.

Lemma 6. Let \(f \in G_\gamma \) and \(F \) be its multilinear function. Let \(R \subset [n] \), and \(x \in [0, 1]^n \) such that \(||x||_1 \leq |R| \). Let \(u = \mathbb{1}_R \vee x - \mathbb{1}_R \). Then for \(0 \leq \epsilon \leq 1 \), we have \(u^\top \nabla F(\mathbb{1}_R + \epsilon u) \leq 2^{4\gamma}u^\top \nabla F(\mathbb{1}_R) \)

Proof. By Theorem 4, we know that \(F \) is one-sided \(2\gamma \)-smooth on \(A = \{y|y \geq \mathbb{1}_R, ||y||_1 \leq 2|R|\} \). Therefore \(F \) is one-sided \(2\gamma \)-smooth on \(B = \{y|\mathbb{1}_R + \epsilon u \geq y \geq \mathbb{1}_R\} \) because \(B \subseteq A \). Therefore, the desired result yields by Lemma 5. \(\square \)

We now prove Theorem 1. We note that this result does not use the last step of Algorithm 1 where we find a maximum matching. We discuss the runtime of Algorithm 1 for matching and submodular functions in Appendix D.

Theorem 1. Let \(f \in G_\gamma \), and \(M = ([n], \mathcal{I}) \) be a matroid of rank \(r \). Let \(T \in \mathcal{I} \) be an optimum set, i.e., \(T \in \arg \max_{R \subseteq \mathcal{I}} f(R) \), and \(S \in \mathcal{I} \) be an \((1 + \frac{\epsilon}{n^2})\)-approximate local optimum, i.e., for any \(i \) and \(j \) such that \(S - i + j \in \mathcal{I} \), \((1 + \frac{\epsilon}{n^2})f(S) \geq f(S - i + j) \), where \(\epsilon > 0 \) is a constant. Then if \(\gamma = O(r) \), \(f(T) \leq O(\gamma^{24\gamma})f(S) \) and if \(\gamma = \omega(r) \), \(f(T) \leq O(\gamma^{24\gamma})f(S) \).
Proof. Since \(f \) is monotone, we assume that \(|S| = |T| = r \). By Lemma 2, there is a bijective mapping \(g : S \setminus T \rightarrow T \setminus S \) such that \(S - i + g(i) \in \mathcal{I} \) where \(i \in S \setminus T \). Since \(S \) is a \((1 + \frac{1}{n})\)-approximate local optimum, for all \(i \in S \setminus T \) we have \((1 + \frac{1}{n}) f(S) \geq f(S - i + g(i))\).

That is, \(\frac{1}{n} f(S) + B_i(S - i) \geq B_{g(i)}(S - i) \). Using this we get
\[
B_{g(i)}(S) = B_{g(i)}(S - i) + A_{g(i)}(S - i) \leq B_{g(i)}(S - i) + \gamma \left(\frac{B_{g(i)}(S - i) + B_i(S - i)}{r - 1} \right),
\]
where the equality follows from Lemma 1 and the first inequality from \(\gamma \)-meta-submodularity. Therefore,
\[
\sum_{i \in S \setminus T} B_{g(i)}(S) \leq \frac{2\gamma + r - 1}{r - 1} \sum_{i \in S \setminus T} B_i(S - i) + o(1)f(S).
\]

Now, by Taylor’s Theorem, Lemma 3, and the above inequality, we have
\[
f(S \cup T) = f(\mathbb{1}_S \cup \mathbb{1}_T) = f(\mathbb{1}_S + \mathbb{1}_{T \setminus S}) = f(\mathbb{1}_S) + \mathbb{1}_{T \setminus S}^{\top} \nabla f(\mathbb{1}_S) + o' = f(\mathbb{1}_S) + 2\gamma \sum_{i \in S \setminus T} B_{g(i)}(S)
\]
\[
\leq (1 + 2^{4\gamma} \cdot o(1))f(S) + \frac{2\gamma + r - 1}{r - 1} 2^{4\gamma} \sum_{i \in S \setminus T} B_i(S - i),
\]

Therefore, using the monotonicity of \(f \) and Lemma 4 we get
\[
f(T) \leq f(S \cup T) \leq \left[\frac{2\gamma + r - 1}{r - 1} 2^{4\gamma} (5\gamma + 2) + 1 + 2^{4\gamma} \cdot o(1) \right] f(S).
\]

As discussed, one can get improved approximation factors by requiring additional conditions on the marginal gains of the set function \(f \). We discuss this in the next section.

4 Meta-Submodularity with Additional Second Order Conditions

In this section we show that the modified local search algorithm can be used to find an \(O(\gamma^2) \)-approximation for maximizing a second-order submodular \(\gamma \)-MS function subject to a matroid constraint. Moreover if the function is supermodular, we improve the approximation to \(O(\gamma^3/2) \). Our result relies on the following key lemma, which bounds the Taylor series expansion of second-order submodular functions.

Lemma 7. Let \(f : 2^n \rightarrow \mathbb{R} \) be a non-negative, second-order submodular set function and \(F \) be its multilinear extension. Then for any \(R \subseteq [n] \), \(\sum_{i \in R} B_i(R) \leq 2f(R) \). If \(f \) is also monotone then for \(x \in [0, 1]^n \), \(x^{\top} \nabla^2 F(x)x \leq 2F(x) \).

Proof. For the first part, without loss of generality let \(R = [r] \) (we can always relabel the elements so that this is true) and \(R_i = [i] \). By Lemma 4 we have
\[
\sum_{i \in R} B_i(R) = \sum_{i=1}^{r} \left(f(\{i\}) + \sum_{j=1}^{r} A_{ij}(R_{j-1}) \right).
\]

Since \(B_i(R_i) = B_i(R_{i-1}) \), and \(f(\emptyset) = f(\emptyset) = 0 \) we have
\[
2f(R) = 2 \sum_{i=1}^{r} B_i(R_i) = 2 \sum_{i=1}^{r} \left(f(\{i\}) + \sum_{j=1}^{i} A_{ij}(R_{j-1}) \right).
\]

Moreover, note that
\[
\sum_{i=1}^{r} \sum_{j=1}^{k} A_{ij}(R_{j-1}) \leq 2 \sum_{i=1}^{r} \sum_{j=1}^{i} A_{ij}(R_{j-1})
\]

9
Since
\[
\sum_{i=1}^{r} \sum_{j=i+1}^{r} A_{ij}(R_{j-1}) = \sum_{j=1}^{r} \sum_{i=1}^{j-1} A_{ij}(R_{j-1}) = \sum_{j=1}^{r} \sum_{i=1}^{j-1} A_{ji}(R_{j-1} - 1) \leq \sum_{j=1}^{r} \sum_{i=1}^{j-1} A_{ji}(R_{i-1})
\]

\[
\sum_{j=1}^{r} \sum_{i=1}^{j-1} A_{ji}(R_{i-1}) = \sum_{i=1}^{r} \sum_{j=i+1}^{r} A_{ij}(R_{i-1}),
\]

where the second equality follows from the fact that \(A_{ij}(S) = A_{ji}(S) \) for all \(i, j \in [n] \) and \(S \subseteq [n] \), and the third equality from the fact that \(A_{ii}(S) = 0 \) for all \(i \in [n] \) and \(S \subseteq [n] \).

The inequality follows since \(f \) is second-order submodular and \(R_{j-1} \supseteq R_{i-1} \) if \(j \geq i \).

By non-negativity we also have that \(2f(\{i\}) \geq f(\{i\}) \). This yields the first part of the lemma.

We now discuss the second part. By the Taylor’s Theorem, non-negativity, monotonocity and second-order submodularity, we have
\[
F(x) = F(0) + x^T \nabla F(0) + \frac{1}{2} x^T \nabla^2 F(0) x \geq \frac{1}{2} x^T \nabla^2 F(0) x \geq \frac{1}{2} x^T \nabla^2 F(x) x.
\]

Now, we are equipped to improve the approximation factor for meta-submodular functions with additional assumptions.

Theorem. Let \(f \in G_2 \) be second-order submodular (that is, \(B_i \)'s are submodular). Let \(\mathcal{M} = ([n], \mathcal{T}) \) be a matroid of rank \(r \) and minimum circuit size of \(c > 2 \). Let \(T \in \mathcal{T} \) be an optimum set, i.e., \(T \in \arg\max_{R \in \mathcal{T}} f(R) \), and \(S \in \mathcal{T} \) be an \((1 + \frac{1}{c})\)-approximate local optimum, i.e., for any \(i \) and \(j \) such that \(S - i + j \in \mathcal{T} \), \((1 + \frac{1}{c}) f(S) \geq f(S - i + j)\), where \(\epsilon > 0 \) is a constant. Then \(f(T) \leq O(\gamma + \frac{\epsilon^2}{\gamma}) f(S) \). So Algorithm 2 gives an \(O(\gamma + \frac{\epsilon^2}{\gamma}) \)-approximation. If \(f \) is also supermodular then Algorithm 2 gives an \(O(\min\{\gamma + \frac{\epsilon^2}{\gamma}, \frac{\epsilon r}{\gamma r - 1}\}) \) -approximation.

Proof. Since \(f \) is monotone, we assume that \(|S| = |T| = r \). By Lemma 2, there is a bijective mapping \(g : S \setminus T \to T \setminus S \) such that \(S - i + g(i) \in \mathcal{T} \) where \(i \in S \setminus T \). Since \(S \) is a \((1 + \frac{1}{c})\)-approximate global optimum, for all \(i \in S \setminus T \) we have \((1 + \frac{1}{c}) f(S) \geq f(S - i + g(i))\). That is,
\[
\epsilon \geq f(S) + B_i(S - i) \geq B_{g(i)}(S - i).
\]

\[\text{(4)}\]

Using this we get
\[
B_{g(i)}(S) = B_{g(i)}(S - i) + A_{ig(i)}(S - i) \leq B_{g(i)}(S - i) + \gamma \left(\frac{B_{g(i)}(S - i) + B_i(S - i)}{r - 1} \right)
\]
\[
\leq \frac{2\gamma + r - 1}{r - 1} B_i(S - i) + \frac{(\gamma + r - 1)}{(r - 1)n^2} f(S) = \left(\frac{2\gamma}{r - 1} + 1 \right) B_i(S) + \frac{(\gamma + r - 1)}{(r - 1)n^2} f(S),
\]

where the first equality follows from Lemma 1, the first inequality from \(\gamma \)-meta-submodularity, and the last equality from \(B_i(S) = B_i(S - i) \) for all \(i \in [n] \) and \(S \subseteq [n] \).

Thus,
\[
\sum_{i \in S \setminus T} B_{g(i)}(S) \leq \left(\frac{2\gamma}{r - 1} + 1 \right) \sum_{i \in S \setminus T} B_i(S) + |S \setminus T| \cdot \frac{\epsilon (\gamma + r - 1)}{(r - 1)n^2} f(S)
\]
\[
\leq \left(\frac{2\gamma}{r - 1} + 1 \right) \sum_{i \in S} B_i(S) + \frac{\epsilon (\gamma + r - 1)}{(r - 1)n} f(S)
\]
\[
\leq \left(\frac{4\gamma}{r - 1} + 2 + o(1) \right) f(S),
\]

where the second inequality follows from monotonicity (i.e. \(B_i(S) \geq 0 \)), and the last one follows from Lemma 4.
Now, by Taylor’s Theorem and the submodularity of the marginal gains of \(f \) (i.e. the submodularity of \(B_i \)'s), \(\gamma \)-meta submodularity, and the above inequality, we have
\[
\begin{align*}
f(T) &\leq f(S \cup T) = F(1_S + 1_{T \setminus S}) \\
&\leq F(1_S) + \left(1 + \frac{\gamma |T \setminus S|}{|S|}\right)1_{T \setminus S}^\top \nabla F(1_S) \\
&\leq F(1_S) + \left(1 + \frac{1}{2}\right)1_{T \setminus S}^\top \nabla^2 F(1_S) \\
&\leq F(1_S) + (1 + \gamma)1_{T \setminus S}^\top \nabla F(1_S) \\
&= F(1_S) + (1 + \gamma) \sum_{i \in S \setminus T} B_{g(i)}(S) \\
&\leq f(S) + (1 + \gamma) \sum_{i \in S \setminus T} B_{g(i)}(S) \\
&\leq f(S) + (1 + \gamma) \sum_{i \in S \setminus T} B_i(S - i) + \frac{3r}{c-1}f(S').
\end{align*}
\]
Now, we assume that \(f \) is also supermodular. Let \(M \) be the maximum weighted matching defined in line 7 of Algorithm \(^{1}\) and \(S' \) be the node set of \(M \). Let \(S \setminus S' = \{a_1, \ldots, a_p \} \) and \(S' \setminus S = \{b_1, \ldots, b_p \} \) where \(\{a_i, b_i\} \)'s are the edges of \(M \). Also, let \(U_i = \{a_1, \ldots, a_i \} \) and \(R_i = \{b_1, \ldots, b_i \} \), where \(U_0 = R_0 = \emptyset \). Then since \(M \) is a maximum weighted matching, we have
\[
\sum_{i \in S \setminus T} A_{g(i)}(S) \leq \frac{|S \setminus T|}{\lceil \frac{c-1}{r} \rceil} \sum_{i=1}^p A_{a_i b_i}(S) \leq \frac{3r}{c-1} \sum_{i=1}^p A_{a_i b_i}(S), \tag{5}
\]
where the second inequality follows from \(\frac{r}{c-1} \leq \frac{c-1}{r} \) (when \(c > 2 \)) and the assumption that \(f \) is supermodular, which implies \(A_{a_i b_i} \)'s are non-negative. We also have that
\[
\begin{align*}
f(S') &= \sum_{i=1}^p f(U_i \cup R_i) - f(U_{i-1} \cup R_{i-1}) \\
&= \sum_{i=1}^p \left(B_a(U_{i-1} \cup R_{i-1}) + B_b(U_{i-1} \cup R_{i-1} + a_i) \right) \\
&= \sum_{i=1}^p \left(B_a(U_{i-1} \cup R_{i-1}) + f(\{b_i\}) + \sum_{j=1}^{i-1} A_{b_j a_j}(U_{j-1}) \right) \\
&= \sum_{i=1}^p \left(B_a(U_{i-1} \cup R_{i-1}) + A_{b_a a}(U_{i-1}) + f(\{b_i\}) + \sum_{j=1}^{i-1} A_{b_j a_j}(U_{j-1}) \right) \\
&\geq \sum_{i=1}^p A_{a_i b_i}(U_{i-1}) \geq \sum_{i=1}^p A_{a_i b_i}(S). \tag{6}
\end{align*}
\]
where the third equality follows from Lemma \(^{1}\) the first inequality from monotonicity and supermodularity (i.e. all the \(B_i \) and \(A_{ij} \) terms are non-negative), and the last inequality from second-order submodularity and the fact that \(U_i \subseteq S \) for any \(i = 1, \ldots, p \).

Hence, by combining \(^{4}\) and \(^{5}\), we get
\[
\sum_{i \in S \setminus T} A_{g(i)}(S - i) = \sum_{i \in S \setminus T} A_{g(i)}(S) \leq \frac{3r}{c-1} \sum_{i=1}^p A_{a_i b_i}(S) \leq \frac{3r}{c-1} f(S'). \tag{7}
\]
We have
\[
\begin{align*}
f(T) &\leq f(S \cup T) = F(1_S + 1_{T \setminus S}) \\
&\leq F(1_S) + \left(1 + \frac{\gamma |T \setminus S|}{|S|}\right)1_{T \setminus S}^\top \nabla F(1_S) \\
&\leq F(1_S) + (1 + \gamma)1_{T \setminus S}^\top \nabla F(1_S) \\
&= f(S) + (1 + \gamma) \sum_{i \in S \setminus T} B_{g(i)}(S) \\
&= f(S) + (1 + \gamma) \sum_{i \in S \setminus T} B_{g(i)}(S - i) + \sum_{i \in S \setminus T} A_{g(i)}(S - i) \\
&\leq f(S) + (1 + \gamma) \left(\frac{r^2}{2} f(S) + \sum_{i \in S \setminus T} B_i(S - i) + \frac{3r}{c-1} f(S') \right)
\end{align*}
\]
\[
\leq f(S) + (1 + \gamma)\left(\frac{re}{n}f(S) + 2f(S) + \frac{3r}{c-1}f(S')\right) = O\left(\frac{\gamma r}{c-1}\right)\max\{f(S), f(S')\}.
\]

where the second inequality follows from Taylor’s Theorem and second-order submodularity (i.e. the non-positivity of the third order derivatives), the third inequality from γ-meta submodularity, the fifth inequality from (4) and (7), and the second to last inequality from Lemma [7]. We then have that if $r \leq \sqrt{\gamma}$ then $\gamma r = O(\gamma^{3/2})$, and if $r \geq \sqrt{\gamma}$ then $\frac{\gamma}{r} + \gamma = O(\gamma^{3/2})$. Therefore, $f(T) \leq O(\gamma^{3/2})\max\{f(S), f(S')\}$.

\section{Conclusions}

Maximizing a set function subject to cardinality (or matroid) constraint can capture problems with sweeping applications. The setting is too general, however, to allow algorithms with good performance on all data sets. It remains an interesting direction to classify those set functions which lead to tractable formulations. This is the key question considered in this work. We provide a “spectrum of tractability” by defining a new meta-submodularity parameter γ associated with any monotone set function. These families capture for low values of γ several widely known tractable classes, such as submodular functions ($\gamma = 0$) or metric diversity ($\gamma = 1$). We then show that there exist efficient (in theory and practice) algorithms which have maximization approximation guarantees which are function of γ alone.

\section{References}

[1] Zeinab Abbassi, Vahab S. Mirrokni, and Mayur Thakur. Diversity maximization under matroid constraints. In The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013, pages 32–40, 2013.

[2] Albert Angel and Nick Koudas. Efficient diversity-aware search. In Timos K. Sellis, Renée J. Miller, Anastasios Kementsietsidis, and Yannis Velegrakis, editors, Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 781–792. ACM, 2011.

[3] Aditya Bhaskara, Moses Charikar, Venkatesan Guruswami, Aravindan Vijayaraghavan, and Yuan Zhou. Polynomial integrality gaps for strong sdp relaxations of densest k-subgraph. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete algorithms, pages 388–405. SIAM, 2012.

[4] Aditya Bhaskara, Mehrdad Ghadiri, Vahab S. Mirrokni, and Ola Svensson. Linear relaxations for finding diverse elements in metric spaces. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 4098–4106. JMLR. org, 2017.

[5] Yijun Bian, Qingquan Song, Mengnan Du, Jun Yao, Huanhuan Chen, and Xia Hu. Sub-architecture ensemble pruning in neural architecture search. CoRR, abs/1910.00370, 2019.

[6] Allan Borodin, Dai Le, and Yuli Ye. Weakly submodular functions. CoRR, abs/1401.6697, 2014.

[7] Allan Borodin, Dai Le, and Yuli Ye. Proportionally submodular functions. http://www.cs.toronto.edu/~bor/Papers/proportional-talg-submit.pdf, 2015.

[8] Allan Borodin, Hyun Chul Lee, and Yuli Ye. Max-sum diversification, monotone submodular functions and dynamic updates. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 155–166, 2012.
[10] Yuri Y Boykov and M-P Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, volume 1, pages 105–112. IEEE, 2001.

[11] Alfonso Cevallos, Friedrich Eisenbrand, and Rico Zenklusen. Max-sum diversity via convex programming. In 32nd International Symposium on Computational Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA, pages 26:1–26:14, 2016.

[12] Alfonso Cevallos, Friedrich Eisenbrand, and Rico Zenklusen. Local search for max-sum diversification. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 130–142, 2017.

[13] Lin Chen, Moran Feldman, and Amin Karbasi. Weakly submodular maximization beyond cardinality constraints: Does randomization help greedy? arXiv preprint arXiv:1707.04347, 2017.

[14] Wei Chen, Shang-Hua Teng, and Hanrui Zhang. Capturing complementarity in set functions by going beyond submodularity/subadditivity. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[15] Abhimanyu Das and David Kempe. Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In Proceedings of the 28th International Conference on Machine Learning, pages 1057–1064, 2011.

[16] Debadeepta Dey, Tian Yu Liu, Martial Hebert, and J Andrew Bagnell. Contextual sequence prediction with application to control library optimization. 2012.

[17] Ethan Elenberg, Alexandros G Dimakis, Moran Feldman, and Amin Karbasi. Streaming weak submodularity: Interpreting neural networks on the fly. In Advances in Neural Information Processing Systems, pages 4044–4054, 2017.

[18] Uriel Feige, Michal Feldman, Nicole Immorlica, Rani Izsak, Brendan Lucier, and Vasilis Syrgkanis. A unifying hierarchy of valuations with complements and substitutes. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 872–878, 2015.

[19] Uriel Feige and Rani Izsak. Welfare maximization and the supermodular degree. In Proceedings of the 4th conference on Innovations in Theoretical Computer Science, pages 247–256. ACM, 2013.

[20] Moran Feldman and Rani Izsak. Constrained monotone function maximization and the supermodular degree. arXiv preprint arXiv:1407.6328, 2014.

[21] Moran Feldman and Rani Izsak. Building a good team: Secretary problems and the supermodular degree. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1651–1670. SIAM, 2017.

[22] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM, 34(3):596–615, 1987.

[23] Mehrdad Ghadiri, Richard Santiago, and Bruce Shepherd. Beyond submodular maximization via one-sided smoothness. arXiv preprint arXiv:1904.09216v3, 2019.

[24] Mehrdad Ghadiri and Mark Schmidt. Distributed maximization of “submodular plus diversity” functions for multi-label feature selection on huge datasets. In The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, volume 89 of Proceedings of Machine Learning Research, pages 2077–2086. PMLR, 2019.

[25] R Hassin, S Rubinstein, and A Tamir. Notes on dispersion problems. Unpublished manuscript, 1994.

[26] Thibaut Horel and Yaron Singer. Maximization of approximately submodular functions. In Advances in Neural Information Processing Systems, pages 3045–3053, 2016.

[27] Hanzhang Hu, Alexander Grubb, J Andrew Bagnell, and Martial Hebert. Efficient feature group sequencing for anytime linear prediction. arXiv preprint arXiv:1409.5495, 2014.
[28] Stefanie Jegelka and Jeff Bilmes. Submodularity beyond submodular energies: coupling edges in graph cuts. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1897–1904. IEEE, 2011.

[29] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 137–146. ACM, 2003.

[30] Rajiv Khanna, Ethan Elenberg, Alexandros G Dimakis, Sahand Negahban, and Joydeep Ghosh. Scalable greedy feature selection via weak submodularity. arXiv preprint arXiv:1703.02723, 2017.

[31] Jon M. Kleinberg, Christos H. Papadimitriou, and Prabhakar Raghavan. Segmentation problems. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 25-26, 1998, pages 473–482, 1998.

[32] Pushmeet Kohli, M Pawan Kumar, and Philip HS Torr. P3 & beyond: Move making algorithms for solving higher order functions. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(9):1645–1656, 2009.

[33] Nitish Korula, Vahab Mirrokni, and Morteza Zadimoghaddam. Online submodular welfare maximization: Greedy beats 1/2 in random order. SIAM Journal on Computing, 47(3):1056–1086, 2018.

[34] Andreas Krause and Carlos Guestrin. Near-optimal observation selection using submodular functions. In AAAI, volume 7, pages 1650–1654, 2007.

[35] Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple matroids via generalized exchange properties. Mathematics of Operations Research, 35(4):795–806, 2010.

[36] Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pages 510–520. Association for Computational Linguistics, 2011.

[37] Yuzong Liu, Kai Wei, Katrin Kirchhoff, Yisong Song, and Jeff Bilmes. Submodular feature selection for high-dimensional acoustic score spaces. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 7184–7188. IEEE, 2013.

[38] Pasin Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest k-subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 954–961, 2017.

[39] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for maximizing submodular set functions - i. Mathematical Programming, 14(1):265–294, 1978.

[40] Adarsh Prasad, Stefanie Jegelka, and Dhruv Batra. Submodular meets structured: Finding diverse subsets in exponentially-large structured item sets. In Advances in Neural Information Processing Systems, pages 2645–2653, 2014.

[41] S. S. Ravi, Daniel J. Rosenkrantz, and Giri Kumar Tayi. Heuristic and special case algorithms for dispersion problems. Operations Research, 42(2):299–310, 1994.

[42] Richard Santiago and Yuichi Yoshida. Weakly submodular function maximization using local submodularity ratio. arXiv preprint arXiv:2004.14650, 2020.

[43] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer Science & Business Media, 2003.

[44] Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular functions. In Advances in Neural Information Processing Systems, pages 1577–1584, 2009.

[45] Zoya Svitkina and Lisa Fleischer. Submodular approximation: Sampling-based algorithms and lower bounds. SIAM Journal on Computing, 40(6):1715–1737, 2011.
[46] Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model. In *Proceedings of the fortieth annual ACM symposium on Theory of computing*, pages 67–74. ACM, 2008.

[47] Cong Yu, Laks V. S. Lakshmanan, and Sihem Amer-Yahia. Recommendation diversification using explanations. In Yannis E. Ioannidis, Dik Lun Lee, and Raymond T. Ng, editors, *Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, March 29 2009 - April 2 2009, Shanghai, China*, pages 1299–1302. IEEE Computer Society, 2009.

[48] Sepehr Abbasi Zadeh and Mehrdad Ghadiri. Max-sum diversification, monotone submodular functions and semi-metric spaces. *CoRR*, abs/1511.02402, 2015.

[49] Sepehr Abbasi Zadeh, Mehrdad Ghadiri, Vahab S. Mirrokni, and Morteza Zadimoghadam. Scalable feature selection via distributed diversity maximization. In *Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA.*, pages 2876–2883, 2017.

[50] Feng Zhao, Xiaolong Zhang, Anthony K. H. Tung, and Gang Chen. BROAD: diversified keyword search in databases. *Proc. VLDB Endow.*, 4(12):1355–1358, 2011.
A Appendix: Preliminaries

The following result describes the connection between the terms A_{ij} and B_i. One can see it as a discrete integral formula.

Lemma \[\text{Let } f : 2^{[n]} \to \mathbb{R}, \ i \in [n], \text{ and } R = \{v_1, \ldots, v_r\} \subseteq [n]. \text{ Moreover, let } R_m = \{v_1, \ldots, v_m\} \text{ for } 1 \leq m \leq r \text{ and } R_0 = \emptyset. \text{ Then} \\
B_i(R) = f(\{i\}) + \sum_{j=1}^{r} A_{ij}(R_{j-1}). \]

Proof. First, we consider the case where $i \notin R$. Then $B_i(R) = f(R + i) - f(R)$ and the right-hand side is equal to

\[
f(R_{r-1} + i + v_r) - f(R_{r-1} - i + v_r) - f(R_{r-1} + i - v_r) + f(R_{r-1} - i - v_r) \\
+ f(R_{r-2} + i + v_{r-1}) - f(R_{r-2} - i + v_{r-1}) - f(R_{r-2} + i - v_{r-1}) + f(R_{r-2} - i - v_{r-1}) \\
+ \ldots \\
+ f(R_1 + i + v_2) - f(R_1 - i + v_2) - f(R_1 + i - v_2) + f(R_1 - i - v_2) \\
+ f(R_0 + i + v_1) - f(R_0 - i + v_1) - f(R_0 + i - v_1) + f(R_0 - i - v_1) \\
+ f(\{i\}) \\
= f(R + i) - f(R) - f(R_{r-1} + i) + f(R_{r-1}) \\
+ f(R_{r-1} + i) - f(R_{r-1} - i) - f(R_{r-2} + i) + f(R_{r-2}) \\
+ \ldots \\
+ f(R_2 + i) - f(R_2) - f(R_1 + i) + f(R_1) \\
+ f(R_1 + i) - f(R_1 - i) - f(R_0 + i) + f(R_0) \\
+ f(\{i\}) \\
= f(R + i) - f(R)
\]

The last equality holds because the third and the fourth elements of each line cancel out the first and the second element of the next line (except for the last two lines), respectively. For the last two lines, note that $f(R_0) = f(\emptyset) = 0$ and $f(R_0 + i) = f(\{i\})$.

Now, we consider the case that $i \in R$. Let $i = v_j$. Then $B_i(R) = f(R) - f(R - i)$ and the right-hand side is equal to

\[
f(R_{r-1} + i + v_r) - f(R_{r-1} - i + v_r) - f(R_{r-1} + i - v_r) + f(R_{r-1} - i - v_r) \\
+ f(R_{r-2} + i + v_{r-1}) - f(R_{r-2} - i + v_{r-1}) - f(R_{r-2} + i - v_{r-1}) + f(R_{r-2} - i - v_{r-1}) \\
+ \ldots \\
+ f(R_j + i + v_{j+1}) - f(R_j - i + v_{j+1}) - f(R_j + i - v_{j+1}) + f(R_j - i - v_{j+1}) \\
+ f(R_{j-1} + i + v_j) - f(R_{j-1} - i + v_j) - f(R_{j-1} + i - v_j) + f(R_{j-1} - i - v_j) \\
+ f(R_{j-2} + i + v_{j-1}) - f(R_{j-2} - i + v_{j-1}) - f(R_{j-2} + i - v_{j-1}) + f(R_{j-2} - i - v_{j-1}) \\
+ \ldots \\
+ f(R_1 + i + v_2) - f(R_1 - i + v_2) - f(R_1 + i - v_2) + f(R_1 - i - v_2) \\
+ f(R_0 + i + v_1) - f(R_0 - i + v_1) - f(R_0 + i - v_1) + f(R_0 - i - v_1) \\
+ f(\{i\}) \\
= f(R) - f(R - i) - f(R_{r-1} + i) + f(R_{r-1} - i) \\
+ f(R_{r-1} - i) - f(R_{r-1} + i) - f(R_{r-2} + i) + f(R_{r-2} - i) \\
+ \ldots \\
+ f(R_{j+1} - f(R_{j+1} - i) - f(R_{j}) + f(R_{j}) \\
+ f(R_{j}) - f(R_{j} - f(R_{j-1}) + f(R_{j-1}) \\
+ f(R_{j-1}) - f(R_{j-1} - f(R_{j-2} + i) + f(R_{j-2}) \\
+ \ldots \\
+ f(R_2 + i) - f(R_2) - f(R_1 + i) + f(R_1)
\]
\[+ f(R_1 + i) - f(R_1) - f(R_0 + i) + f(R_0)\]
\[+ f(\{i\})\]
\[= f(R) - f(R - i).\]

Like before the last equality holds because the last two terms of each line cancel out the first two terms of the next line except for the last two lines, the first \(f(R_j)\) line and the \(f(R_{j+1})\) line. The terms of the first \(f(R_0)\) line cancel each other out, while the last two terms of the \(f(R_{j+1})\) line cancel the first two terms of the second \(f(R_j)\) line.

The following result connects the first and second order marginal gains \(B_i\) and \(A_{ij}\), to the first and second order partial derivatives of the multilinear extension.

Lemma 8 ([40]). Let \(f\) be a set function and \(F\) its multilinear function. Then for any \(x = (x_1, \ldots, x_n) \in [0,1]^n\) and \(i,j \in [n]\),

\[
\nabla_i F(x) = \mathbb{E}_{R \sim x}[B_i(R)] = \sum_{R \subseteq [n]} B_i(R)p_x(R)
\]

\[
= \sum_{R \subseteq [n]-i} [f(R + i) - f(R)] \prod_{v \in R} x_v \prod_{v \in [n]\setminus (R+i)} (1-x_v),
\]

and,

\[
\nabla_i^2 F(x) = \mathbb{E}_{R \sim x}[A_{ij}(R)] = \sum_{R \subseteq [n]} A_{ij}(R)p_x(R)
\]

\[
= \sum_{R \subseteq [n]-i-j} [f(R + i + j) - f(R + i) - f(R + j) + f(R)] \prod_{v \in R} x_v \prod_{v \in [n]\setminus (R+i+j)} (1-x_v).
\]

Proof. First of all, note that if \(i \notin R\) then \(B_i(R + i) = B_i(R)\). Now, we write the multilinear function

\[
F(x) = \sum_{R \subseteq [n]} f(R) \prod_{v \in R} x_v \prod_{v \in [n]\setminus R} (1-x_v)
\]

\[
= \sum_{R \subseteq [n]-i} (f(R + i)x_i + f(R)(1-x_i)) \prod_{v \in R} x_v \prod_{v \in [n]\setminus (R+i)} (1-x_v).
\]

Therefore

\[
\nabla_i F(x) = \sum_{R \subseteq [n]-i} (f(R + i) - f(R)) \prod_{v \in R} x_v \prod_{v \in [n]\setminus (R+i)} (1-x_v)
\]

\[
= x_i \sum_{R \subseteq [n]-i} (f(R + i) - f(R)) \prod_{v \in R} x_v \prod_{v \in [n]\setminus (R+i)} (1-x_v)
\]

\[
+ (1-x_i) \sum_{R \subseteq [n]-i} (f(R + i) - f(R)) \prod_{v \in R} x_v \prod_{v \in [n]\setminus (R+i)} (1-x_v)
\]

\[
= \sum_{R \subseteq [n]-i} (f(R + i) - f(R)) \prod_{v \in R + i} x_v \prod_{v \in [n]\setminus (R+i)} (1-x_v)
\]

\[
+ \sum_{R \subseteq [n]-i} (f(R + i) - f(R)) \prod_{v \in [n]\setminus R} x_v \prod_{v \in [n]\setminus (R+i)} (1-x_v)
\]

\[
= \sum_{R \subseteq [n]-i} B_i(R)p_x(R + i) + \sum_{R \subseteq [n]-i} B_i(R)p_x(R)
\]

\[
= \sum_{R \subseteq [n]} B_i(R)p_x(R).
\]

Now, to prove the other part of the lemma, we write the multilinear function again.

\[
F(x) = \sum_{R \subseteq [n]} f(R) \prod_{v \in R} x_v \prod_{v \in [n]\setminus R} (1-x_v)
\]
Therefore, by using the fact that

\[
\sum_{R \subseteq [n]-i-j} f(R + i + j) \prod_{v \in R} x_v \prod_{v \in [n] \setminus (R+i+j)} (1-x_v)
+ x_i(1-x_j) \sum_{R \subseteq [n]-i-j} f(R + i) \prod_{v \in R} x_v \prod_{v \in [n] \setminus (R+i+j)} (1-x_v)
+ (1-x_i)x_j \sum_{R \subseteq [n]-i-j} f(R + j) \prod_{v \in R} x_v \prod_{v \in [n] \setminus (R+i+j)} (1-x_v)
+ (1-x_i)(1-x_j) \sum_{R \subseteq [n]-i-j} f(R) \prod_{v \in R} x_v \prod_{v \in [n] \setminus (R+i+j)} (1-x_v).
\]

\[
\nabla_i^2 F(x) = \sum_{R \subseteq [n]-i-j} (f(R + i + j) - f(R + i) - f(R + j) + f(R)) \prod_{v \in R} x_v \prod_{v \in [n] \setminus (R+i+j)} (1-x_v)
\]

\[
= x_ix_j \sum_{R \subseteq [n]-i-j} A_{ij}(R + i + j) \prod_{v \in R} x_v \prod_{v \in [n] \setminus (R+i+j)} (1-x_v)
+ (1-x_i)x_j \sum_{R \subseteq [n]-i-j} A_{ij}(R + i) \prod_{v \in R} x_v \prod_{v \in [n] \setminus (R+i+j)} (1-x_v)
+ x_i(1-x_j) \sum_{R \subseteq [n]-i-j} A_{ij}(R + j) \prod_{v \in R} x_v \prod_{v \in [n] \setminus (R+i+j)} (1-x_v)
+ (1-x_i)(1-x_j) \sum_{R \subseteq [n]-i-j} A_{ij}(R) \prod_{v \in R} x_v \prod_{v \in [n] \setminus (R+i+j)} (1-x_v)
\]

\[
= \sum_{R \subseteq [n]-i-j} A_{ij}(R + i + j) \prod_{v \in R+i+j} x_v \prod_{v \in [n] \setminus R} (1-x_v)
+ \sum_{R \subseteq [n]-i-j} A_{ij}(R + j) \prod_{v \in R+j} x_v \prod_{v \in [n] \setminus (R+i)} (1-x_v)
+ \sum_{R \subseteq [n]-i-j} A_{ij}(R + i) \prod_{v \in R+i} x_v \prod_{v \in V \setminus (R+i)} (1-x_v)
+ \sum_{R \subseteq [n]-i-j} A_{ij}(R) \prod_{v \in R} x_v \prod_{v \in [n] \setminus R} (1-x_v)
\]

\[
= \sum_{R \subseteq [n]-i-j} A_{ij}(R + i + j)p_x(R + i + j)
+ \sum_{R \subseteq [n]-i-j} A_{ij}(R + j)p_x(R + j)
+ \sum_{R \subseteq [n]-i-j} A_{ij}(R + i)p_x(R + i)
+ \sum_{R \subseteq [n]-i-j} A_{ij}(R)p_x(R)
\]

\[
= \sum_{R \subseteq [n]} A_{ij}(R)p_x(R).
\]

\[\square\]

B Appendix: Meta-Submodular Family

In this section, we discuss the meta-submodularity parameter of the class of meta-submodular functions (defined by Kleinberg et al. [3]) and the class of proportionally submodular functions (defined by Borodin et al. [4]).
Proposition 2. f is 0-meta-submodular if and only if it is meta-submodular (by Kleinberg et al. definition [31]).

Proof. Kleinberg et al [31] show that a set function f is meta-submodular if and only if

$$f(S + i) - f(S) \geq f(T + i) - f(T), \quad \forall \emptyset \neq S \subseteq T, \forall i \notin T.$$

The above is clearly equivalent to

$$f(S + i) - f(S) \geq f(S + j + i) - f(S + j), \quad \forall S \neq \emptyset, \forall i \neq j \notin S.$$

Then f is 0-meta submodular

$$\iff A_{ij}(S) \leq 0, \quad \forall S \neq \emptyset, \forall i, j \in V$$

$$\iff f(S + i + j) - f(S + i) - f(S + j) + f(S) \leq 0, \quad \forall S \neq \emptyset, \forall i, j \in V$$

$$\iff f(S + i) - f(S) \geq f(S + j + i) - f(S + j), \quad \forall S \neq \emptyset, \forall i, j \in V$$

$$\iff f(S + i) - f(S) \geq f(S + j + i) - f(S + j), \quad \forall S \neq \emptyset, \forall i \neq j \notin S$$

$$\iff [31]$$ holds.

\qed

Proposition 3. Any monotone proportionally submodular function is 1-meta-submodular.

Proof. The proof is by case analysis.

- If $i, j \notin R$ then using the proportional submodularity property we have

$$\max \left(R \right) f(R) + \left(R \right) f(R + i + j) \leq \left(R \right) f(R + i) + \left(R \right) f(R + j),$$

which means

$$\max \left(R \right) \cdot (f(R) + f(R + i + j) - f(R + i) - f(R + j)) \leq f(R + i) + f(R + j) - 2f(R).$$

Hence

$$f(R + i + j) - f(R + i) - f(R + j) + f(R) \leq \frac{f(R + i) - f(R) + f(R + j) - f(R)}{|R|}$$

$$= \frac{f(R + i) - f(R + i - j) + f(R - i - j) - f(R - j)}{|R|}.$$

- If $i, j \in R$ then by proportional submodularity we have

$$\max \left(R \right) f(R) + \left(R \right) f(R - i - j) \leq \left(R \right) f(R - i) + \left(R \right) f(R - j),$$

which means

$$\max \left(R \right) \cdot (f(R) + f(R - i - j) - f(R - i) - f(R - j)) \leq 2f(R) - f(R - i) - f(R - j).$$

Hence

$$f(R + i + j) - f(R + i - j) + f(R - i - j) - f(R - j)$$

$$= f(R) - f(R - j) - f(R - i) + f(R - i - j)$$

$$\leq \frac{f(R) - f(R - i) + f(R) - f(R - j)}{|R|}$$

$$= \frac{f(R + i) - f(R - i) + f(R + j) - f(R - j)}{|R|}.$$
• If $i \in R$ and $j \notin R$ then using the proportional submodularity property we have

$$(|R| - 1)f(R + j) + (|R| + 1)f(R - i) \leq (|R|)f(R) + (|R|)f(R + j - i),$$

which means

$$|R| \cdot (f(R + j) + f(R - i) - f(R) - f(R + j - i)) \leq f(R + j) - f(R - i)$$

$$= f(R + j) - f(R - j) + f(R + i) - f(R - i),$$

where the equality is correct because $f(R) = f(R - j) = f(R + i)$. Hence

$$f(R + i + j) - f(R + i - j) - f(R + j - i) + f(R - i - j)$$

$$= f(R + j) - f(R) - f(R + j - i) + f(R - i)$$

$$\leq \frac{f(R + j) - f(R - i)}{|R|}$$

$$= \frac{f(R + i) - f(R - i) + f(R + j) - f(R - j)}{|R|}. $$

\[\square\]

Proposition 4. Let $g(R) := \sum_{q \in R} g(q)$ be a non-negative modular function and $d(R) = \sum_{(q, q') \subseteq R} A(q, q')$ be a diversity function such that A is a γ-semi-metric distance and $\gamma \geq 1$. Then $f(R) := d(R) + g(R)$ is a γ-MS function.

Proof. We have $f(R) = \sum_{q \in R} g(q) + \sum_{(q, q') \subseteq R} A(q, q')$. The proof goes by case analysis as follows.

• If $i, j \notin R$, we have

$$|R|A_{ij}(R) = |R|(f(R + i + j) - f(R + i - j) - f(R - i + j) + f(R - i - j))$$

$$= |R|\left(\sum_{q \in R + i + j} g(q) + \sum_{(q, q') \subseteq R + i + j} A(q, q') - \sum_{q \in R + i} g(q) - \sum_{(q, q') \subseteq R + i} A(q, q') \right)$$

$$- \sum_{q \in R + j} g(q) - \sum_{(q, q') \subseteq R + j} A(q, q') + \sum_{q \in R} g(q) + \sum_{(q, q') \subseteq R} A(q, q').$$

We also have

$$\gamma(B_i(R) + B_j(R)) = \gamma(f(R + i) - f(R - i) + f(R + j) - f(R - i))$$

$$= \gamma\left(\sum_{q \in R + i} g(q) + \sum_{(q, q') \subseteq R + i} A(q, q') - \sum_{q \in R} g(q) - \sum_{(q, q') \subseteq R} A(q, q') \right)$$

$$+ \sum_{q \in R + j} g(q) + \sum_{(q, q') \subseteq R + j} A(q, q') - \sum_{q \in R} g(q) - \sum_{(q, q') \subseteq R} A(q, q').$$

Therefore $|R|A_{ij}(R) \leq \gamma(B_i(R) + B_j(R))$ because g is non-negative and A is a γ-semi-metric distance.

• If $i, j \in R$, we have

$$|R|A_{ij}(R) = |R|(f(R + i + j) - f(R + i - j) - f(R - i + j) + f(R - i - j))$$

$$= |R|\left(\sum_{q \in R} g(q) + \sum_{(q, q') \subseteq R} A(q, q') - \sum_{q \in R - j} g(q) - \sum_{(q, q') \subseteq R - j} A(q, q') \right)$$

$$- \sum_{q \in R - i} g(q) - \sum_{(q, q') \subseteq R - i} A(q, q') + \sum_{q \in R - j} g(q) + \sum_{(q, q') \subseteq R - j} A(q, q').$$
we obtain the γ-smoothness for u.

Let Proposition 1.

In this section we discuss the connection between meta-submodularity of a function and the smoothness of its multilinear extension. We show that the smoothness of the multilinear extension results in the meta-submodularity of the underlying set function. We also have

\[\gamma(B_i(R) + B_j(R)) = \gamma(f(R + i) - f(R - i) + f(R + j) - f(R - j)) \]

\[= \gamma(\sum_{q \in R} g(q) + \sum_{\{q,q'\} \subseteq R} A(q,q') - \sum_{q \in R-i} g(q) - \sum_{\{q,q'\} \subseteq R-i} A(q,q')) + \gamma(|R|A(i,j)). \]

Therefore $|R|A_{i,j}(R) \leq \gamma(B_i(R) + B_j(R))$ because g is non-negative, A is a γ-semi-metric distance, and $\gamma \geq 1$.

- If $i \in R$ and $j \notin R$, we have

\[|R|A_{i,j}(R) = |R|(f(R + i) - f(R - i) + f(R + j) - f(R - j)) \]

\[= |R|(\sum_{q \in R+i} g(q) + \sum_{\{q,q'\} \subseteq R+i} A(q,q') - \sum_{q \in R-i} g(q) - \sum_{\{q,q'\} \subseteq R-i} A(q,q')) + \gamma(|R|A(i,j)). \]

We also have

\[\gamma(B_i(R) + B_j(R)) = \gamma(f(R + i) - f(R - i) + f(R + j) - f(R - j)) \]

\[= \gamma(\sum_{q \in R} g(q) + \sum_{\{q,q'\} \subseteq R} A(q,q') - \sum_{q \in R-i} g(q) - \sum_{\{q,q'\} \subseteq R-i} A(q,q')) + \gamma(|R|A(i,j)). \]

Therefore $|R|A_{i,j}(R) \leq \gamma(B_i(R) + B_j(R))$ because g is non-negative, A is a γ-semi-metric distance, and $\gamma \geq 1$.

\[\square \]

C Appendix: One-Sided Smoothness and Meta-Submodularity

In this section we discuss the connection between meta-submodularity of a function and the smoothness of its multilinear extension. We show that the smoothness of the multilinear extension results in the meta-submodularity of the underlying set function.

Proposition 1. Let f be a set function and F be its multilinear extension. If F is one-sided ($\gamma/2$)-smooth, then f is γ-meta-submodular.

Proof. Let non-empty $R \subseteq [n]$ and $i,j \in [n]$. The inequality from one-sided ($\gamma/2$)-smoothness for $u = 1_{\{i,j\}}$ and $x = 1_R$ yields:

\[\frac{1}{2} \left(2u_iu_j\nabla^2 F_{ij}(x) \right) \leq \frac{\gamma}{2} \frac{u_i + u_j}{||x||_1} (u_i\nabla_i F(x) + u_j\nabla_j F(x)) \]

Since $u_i = u_j = 1$, $||x||_1 = |R|$, $\nabla^2 F_{ij}(x) = A_{ij}(R)$, and $\nabla_i F(x) + \nabla_j F(x) = B_i(R) + B_j(R)$ we obtain the γ-meta-submodular inequality. \[\square \]
C.1 Smoothness of Supermodular γ-Meta-Submodular Functions

In this section we show that the multilinear extension of a supermodular γ-meta-submodular function is one-sided $O(\gamma)$-smooth. We do this by proving the expectation inequality for these functions and using Lemma 3.

Lemma 9. Let $f : 2^{[n]} \to \mathbb{R}_+$ be a non-negative, monotone, supermodular, γ-meta-submodular set function. Let $x \in [0,1]^n \setminus \{0\}$ and $R \subseteq [n]$ such that $1 \leq |R| < ||x||_1$. Then for all $i,j \in [n]$ we have

$$(||x||_1 - |R|)A_{ij}(R)p_x(R) \leq 2\gamma \sum_{e \in [n]\setminus R} \frac{B_i(R + e) + B_j(R + e)}{|R| + 1})p_x(R + e).$$

Also, for the empty set,

$$(||x||_1 - R)A_{ij}(\emptyset)p_x(\emptyset) \leq 2(\gamma + 1) \sum_{e \in [n]} (B_i(\{e\}) + B_j(\{e\}))p_x(\{e\}).$$

Proof. Let $|R| = r$. Note that $r < n$ because $|R| = r < ||x||_1$. Also, note that if $x_e = 1$ for some $e \in [n] \setminus R$ then $p_x(R) = 0$, which means that the left hand side is zero. In that case, the inequality holds because f is monotone and the right hand side is non-negative. Hence, we assume that $x_e < 1$ for all $e \in [n] \setminus R$. We know that

$$\sum_{e \in [n]} x_e = ||x||_1.$$

Therefore, because each $x_e \leq 1$,

$$\sum_{e \in [n]\setminus R} x_e = ||x||_1 - \sum_{e \in R} x_e \geq ||x||_1 - \sum_{e \in R} 1 = ||x||_1 - |R|.$$

Hence, since $0 < 1 - x_e \leq 1$ for all $e \in [n] \setminus R$, we get

$$((||x||_1 - |R|)A_{ij}(R)p_x(R) \leq \sum_{e \in [n]\setminus R} x_e A_{ij}(R)p_x(R)$$

$$\leq \sum_{e \in [n]\setminus R} \frac{x_e}{1 - x_e} A_{ij}(R)p_x(R)$$

$$= \sum_{e \in [n]\setminus R} A_{ij}(R)p_x(R + e).$$

Moreover, $2|R| \geq |R| + 1$ because $|R| \geq 1$, and we have

$$\sum_{e \in [n]\setminus R} A_{ij}(R)p_x(R + e) \leq \sum_{e \in [n]\setminus R} \frac{[R]A_{ij}(R)}{|R| + 1} p_x(R + e).$$

Using the γ-meta-submodularity and supermodularity we have

$$2 \sum_{e \in [n]\setminus R} \frac{[R]A_{ij}(R)}{|R| + 1} p_x(R + e) \leq 2\gamma \sum_{e \in [n]\setminus R} \frac{B_i(R) + B_j(R)}{|R| + 1} p_x(R + e)$$

$$\leq 2\gamma \sum_{e \in [n]\setminus R} \frac{B_i(R + e) + B_j(R + e)}{|R| + 1} p_x(R + e).$$

Combining all of these inequalities yields the first part of the lemma. For the second part of the lemma, we consider the set $\{i, j, e\}$. By Lemma 1 and the γ-meta-submodularity, we have

$$f(\{i, j, e\}) = B_i(\{j, e\}) + B_j(\{e\}) + f(\{e\})$$

$$= A_{ij}(\{e\}) + B_i(\{e\}) + B_j(\{e\}) + f(\{e\})$$

$$\leq (\gamma + 1)(B_i(\{e\}) + B_j(\{e\})) + f(\{e\}).$$
Also, by Lemma 1 we have
\[f((i, j, e)) = B_i((j, e)) + B_j((e)) + f(\{e\}) \]
Therefore
\[A_{ie}(\{j\}) + A_{ij}(\emptyset) + f(\{i\}) + B_j((e)) + f(\{e\}) \leq (\gamma + 1)(B_i((\{e\}) + B_j((\{e\}))) + f(\{e\}). \]
Hence, because \(f \) is non-negative, monotone and supermodular, it follows that
\[A_{ij}(\emptyset) \leq A_{ie}(\{j\}) + A_{ij}(\emptyset) + f(\{i\}) + B_j((\{e\})) \leq (\gamma + 1)(B_i((\{e\}) + B_j((\{e\}))). \]
Moreover, because \(f \) is non-negative and monotone, we have
\[A_{ij}(\emptyset) = f((i, j)) - f(\{i\}) - f(\emptyset) = B_j((\{i\}) - f(\{j\}) \leq B_j((\{i\}) + B_i((\{i\})) \leq (\gamma + 1)(B_i((\{i\}) + B_j((\{i\}))). \]
If \(x_e = 1 \) for an \(e \in [n] \) then \(p_x(\emptyset) = 0 \) and the inequality holds because the left hand side is zero and the right hand side is non-negative (since \(f \) is monotone). Therefore, we assume that \(x_e < 1 \) for all \(e \in [n] \). Combining the above inequalities, we have
\[\left(\langle ||x||_1 \rangle A_{ij}(\emptyset) p_x(\emptyset) = \sum_{e \in [n]} x_e A_{ij}(\emptyset) p_x(\emptyset) \leq \sum_{e \in [n]} x_e A_{ij}(\emptyset) p_x(\emptyset) = \sum_{e \in [n]} A_{ij}(\emptyset) p_x(\{e\}) \leq (\gamma + 1) \sum_{e \in [n]} (B_i((\{e\}) + B_j((\{e\}))) p_x(\{e\}), \right. \]
where the last inequality follows from (9). This completes the proof.

Lemma 10. Let \(f \) be a non-negative, monotone, supermodular, \(\gamma \)-meta-submodular set function and \(F \) be its multilinear function. Then for any \(x \in [0, 1]^n \setminus \{0\} \) and \(i, j \in [n] \),
\[\|x\|_1 \nabla_i^j F(x) \leq (\max\{3\gamma, 2\gamma + 1\})(\nabla_i F(x) + \nabla_j F(x)). \]

Proof. By using Lemma 9 for all the sets of size less than \(||x||_1 \), we can write
\[\left(\langle ||x||_1 \rangle A_{ij}(\emptyset) p_x(\emptyset) + \sum_{R \subseteq [n]} 1 \leq |R| < ||x||_1} \sum_{e \in [n]} (B_i((\{e\}) + B_j((\{e\})) p_x(\{e\}) \right. \]
\[+ 2\gamma \sum_{R \subseteq [n]} 1 \leq |R| < ||x||_1} \sum_{e \in [n] \setminus R} (B_i(R + e) + B_j(R + e)) p_x(R + e) \]
\[= (\gamma + 1) \sum_{e \in [n]} (B_i((\{e\}) + B_j((\{e\})) p_x(\{e\}) + 2\gamma \sum_{R \subseteq [n]} 2 \leq |R| < ||x||_1 + 1} (B_i(R) + B_j(R)) p_x(R) \]
\[\leq \max\{\gamma + 1, 2\gamma\} \sum_{R \subseteq [n]} (B_i(R) + B_j(R)) p_x(R) = \max\{\gamma + 1, 2\gamma\} (\nabla_i F(x) + \nabla_j F(x)), \]

(10)
where the equality follows from a simple counting argument, and in the last inequality we used the monotonicity of f (i.e., the B_i's are non-negative).

By γ-meta-submodularity, we also have that
\[
\sum_{R \subseteq [n]} |R||A_{ij}(R)|p_x(R) + \sum_{|R| \geq ||x||} (||x||1)A_{ij}(R)p_x(R)
\]
\[
\leq \sum_{|R| \geq 1} |R||A_{ij}(R)|p_x(R) \leq \sum_{|R| \geq 1} \gamma(B_i(R) + B_j(R))p_x(R)
\]
\[
\leq \sum_{R \subseteq [n]} \gamma(B_i(R) + B_j(R))p_x(R) = \gamma(\nabla_i F(x) + \nabla_j F(x)). \tag{12}
\]

By adding (10) and (12), we conclude that
\[
||x||1 \sum_{R \subseteq [n]} A_{ij}(R)p_x(R) = ||x||1 \nabla_{ij}^2 F(x) \leq \max\{2\gamma + 1, 3\gamma\}(\nabla_i F(x) + \nabla_j F(x)).
\]

\[\square\]

D Runtime of the Local Search Algorithm for Meta-Submodular Functions

In this section, we analyze the runtime of the local search algorithm that finds an approximate local optima.

Lemma 11. Let f be a non-negative, monotone, γ-meta-submodular function and $\mathcal{M} = ([n], \mathcal{I})$ be a matroid of rank r. Let $A \in \mathcal{I}$ be an optimum set, i.e.,
\[
A = \arg \max_{R \in \mathcal{I}} f(R),
\]
and
\[
S_0 = \arg \max_{\{v,v'\} \in \mathcal{I}} f(\{v,v'\}).
\]

Then $f(A) \leq O(r(\gamma + 1)^{r-2})f(S_0)$.

Proof. Let $A = \{a_1, \ldots, a_r\}$ and $A_i = \{a_1, \ldots, a_i\}$ for $1 \leq i \leq r$. By definition of S_0 we know that $f(A_2) \leq f(S_0)$. Now by induction we show that for any $2 \leq i < j \leq n$, $B_{a_{ij}}(A_i) \leq O((\gamma + 1)^{i-1})f(S_0)$. The base case is $i = 2$. By definition of $f(S_0)$, monotonicity and meta submodularity of f, we have
\[
B_{a_{ij}}(A_2) = B_{a_{ij}}(A_1) + A_{a_{2a_j}}(A_1) \leq B_{a_j}(A_1) + \gamma(B_{a_j}(A_1) + B_{a_2}(A_1)) \leq (2\gamma + 1)f(S_0)
\]
\[
\leq O(\gamma + 1)f(S_0).
\]

Now assume that for $k < j \leq n$, we have $B_{a_{ij}}(A_k) \leq O(\gamma^{k-1})f(S_0)$. We want to show that for $k + 1 < j \leq n$, we have $B_{a_{ij}}(A_k+1) \leq O(\gamma^k)f(S_0)$.
\[
B_{a_{ij}}(A_{k+1}) = B_{a_{ij}}(A_k) + A_{a_{k+1}a_j}(A_k) \leq B_{a_j}(A_k) + \frac{\gamma}{k}(B_{a_{k+1}}(A_k) + B_{a_j}(A_k))
\]
\[
\leq (1 + \frac{2\gamma}{k}) O((\gamma + 1)^{k-1})f(S_0) \leq O((\gamma + 1)^k)f(S_0).
\]

We know that
\[
f(A) = f(A_2) + \sum_{i=3}^r B_{a_i}(A_{i-1}) \leq f(S_0) + \sum_{i=3}^r O((\gamma + 1)^{i-2})f(S_0) \leq O(r(\gamma + 1)^{r-2})f(S_0)
\]

\[\square\]

Proposition 5. Local search algorithm (Algorithm 1) runs in $O(n^4(\log(r) + r \log(\gamma + 1)/\epsilon)$ time on a γ-meta submodular functions and a matroid of rank r.
Proof. Cost of finding S_0 is $O(n^2)$. Also, each iteration of the while loop costs $O(n^2)$. Let S_k be the solution after k iterations and A be an optimum solution. By Lemma 11 we know
\[
f(S_k) \leq (1 + \frac{\epsilon}{n^2})^k f(S_0) \leq f(A) \leq O(r(\gamma + 1)^{r-2}) f(S_0).
\]
Taking the logarithm, we have
\[
k \ln(1 + \frac{\epsilon}{n^2}) \leq O(\ln(r) + (r - 2) \ln(\gamma + 1)).
\]
Noting that $\frac{x-1}{x} \leq \ln x$ for any $x > 0$, we have
\[
k(\frac{\epsilon}{n^2})/(\frac{n^2 + \epsilon}{n^2}) \leq O(\ln(r) + (r - 2) \ln(\gamma + 1)).
\]
This yields the result. ☐