Microbiology of Cystic Fibrosis Airway Disease

Ana C. Blanchard, MDCM, MSc, FRCPC¹ Valerie J. Waters, MDCM, MSc, FRCPC¹

¹Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

Semin Respir Crit Care Med 2019;40:727–736.

Abstract

Although survival of individuals with cystic fibrosis (CF) has been continuously improving for the past 40 years, respiratory failure secondary to recurrent pulmonary infections remains the leading cause of mortality in this patient population. Certain pathogens such as Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and species of the Burkholderia cepacia complex continue to be associated with poorer clinical outcomes including accelerated lung function decline and increased mortality. In addition, other organisms such as anaerobes, viruses, and fungi are increasingly recognized as potential contributors to disease progression. Culture-independent molecular methods are also being used for diagnostic purposes and to examine the interaction of microorganisms in the CF airway. Given the importance of CF airway infections, ongoing initiatives to promote understanding of the epidemiology, clinical course, and treatment options for these infections are needed.

Cystic fibrosis (CF) is a hereditary and fatal disease that is caused by mutations of the CF transmembrane conductance regulator (CFTR) gene on chromosome 7, which encodes the CFTR protein. This protein functions as an anion channel that is responsible for negatively charged chloride ion transport across cells in the body.¹ This protein is present in various organs of the body, including the respiratory tract, the gastrointestinal tract, the liver, the pancreas as well as the male reproductive tract. In the airways, impaired function of this protein leads to increased mucus thickness, which fails to be cleared by the mucociliary system. This in turn leads to chronic infection of the respiratory tract and subsequent unregulated inflammation.² Inflammatory cytokines and secreted products accumulate, leading to lung damage and bronchiectasis. Airway infections are associated with progressive lung function decline³ and ultimately, with respiratory failure, which is the leading cause of mortality in CF.⁴,⁵

Individuals with CF develop recurrent infections during their lifetime and the organisms identified in their respiratory tract differ over time based on age.⁶ Staphylococcus aureus is commonly found in younger children, whereas Pseudomonas aeruginosa, Achromobacter spp., Stenotrophomonas maltophilia, and species of the Burkholderia cepacia complex (Bcc) become more prevalent in older children and adults. Although these bacteria are considered classic CF pathogens, the importance and the pathogenicity of mycobacteria, fungi, and viruses are increasingly being recognized.

The aim of this review is to summarize the epidemiology and pathogenesis of the most common bacterial, viral, and fungal species infecting the airways of CF patients. Mycobacterial infections will be covered in the article written by Drs. Richards and Olivier.

Bacterial Infections

Staphylococcus aureus

Staphylococcus aureus is commonly detected early on in life in the respiratory tract of children with CF. Staphylococcus aureus is the most prevalent organism in children with CF in the United States and reaches its highest prevalence between the ages of 11 and 17 years, with infection in up to 80% of patients in that age group.⁶ Staphylococcus aureus is a gram-positive coccus which typically grows in aerobic conditions, but can also grow as a facultative anaerobe.⁷ It is usually considered a commensal on human skin and can be commonly isolated from anterior nares and skin creases. Key virulence factors in

Keywords

► cystic fibrosis
► microbiology
► bacteria
► fungi
► viruses
► microbiome

Copyright © 2019 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel: +1(212) 584-4662. DOI https://doi.org/10.1055/s-0039-1698464. ISSN 1069-3424.
S. aureus include the leukocytolytic toxin Panton–Valentine leukocidin, which has been associated with necrotizing lung infections. 3 In addition, small colony variants 5,10 and biofilm formation 11,12 may contribute to increased antimicrobial resistance and accelerate lung disease. Although the pathogenicity of methicillin-sensitive *S. aureus* (MSSA) has been questioned, coinfection with other pathogens such as *P. aeruginosa* may be associated with worsened clinical outcomes including more severe lung disease. 13

Methicillin-resistant *S. aureus* (MRSA) infection tends to occur more commonly in young adults 6 rather than in children. Methicillin resistance is due to the presence of an altered penicillin binding protein, which is encoded by the *mecA* gene belonging to the Staphylococcal Cassette Chromosome (SCC). 14 There have been at least 12 types of SCCmec elements described to date. 15,16 The epidemiology of MRSA is SCCmec type-specific, with hospital-associated MRSA (HA-MRSA) strains being more often SCCmec type I, II, and III, whereas community-associated MRSA (CA-MRSA) strains tend to carry SCCmec type IV or V. 17 Additionally, meca-negative MRSA (also known as borderline oxacillin-resistant *S. aureus* or BORSA) is described in CF with β-lactam resistance through various potential mechanisms, including (1) hyper β-lactamase enzyme production, 18 (2) plasmid-mediated, inducible methicillinase, 19 or (3) modification of the penicillin-binding protein genes. 20 Initial epidemiological studies in children with CF demonstrated that about two-thirds of MRSA infections were HA-MRSA (SCCmec II strains) and one-third CA-MRSA (SCCmec IV strains) 21; however, SCCmec IV strains have been increasing in recent years. 22 The prevalence of MRSA-positive cultures has increased about threefold between 2002 and 2017 in individuals with CF living in the United States. 6 Chronic MRSA infection is of particular significance. It has been associated with several negative clinical outcomes, including accelerated decline in lung function, increased hospitalization, and earlier mortality in patients with CF. Ren et al noted significantly lower lung function in MRSA-infected individuals with CF compared with those with predominant MSSA-positive respiratory tract cultures. 23 Individuals with CF who are MRSA positive have a higher rate of hospitalization and increased use of oral, inhaled, and intravenous antibiotics, compared with MRSA-negative patients. 23 Furthermore, Dassenbrook et al reported that the rate of lung function decline was greater in patients with MRSA compared with MRSA-negative patients in patients aged 8 to 21 years (MRSA-positive patients had a forced expiratory volume in 1 second [FEV1] decline of 2.06% predicted/year compared with 1.44% predicted/year in those without MRSA; difference −0.62% predicted/year, 95% confidence interval [CI]: −0.70 to −0.54; *p* = 0.001). 24

In summary, although both MSSA and MRSA are common pathogens in the CF airways, MRSA in particular is associated with detrimental outcomes in patients with CF.

Pseudomonas aeruginosa

Pseudomonas aeruginosa is an important gram-negative pathogen in patients with CF. It is a non-lactose fermenter commonly found in freshwater, which grows at an optimal temperature for growth of 42°C. 25 *Pseudomonas aeruginosa* has several virulence factors associated with infection of the host, including flagella which makes it a motile organism, as well as pili which facilitate attachment to epithelial cells in the respiratory tract. 6,27 *Pseudomonas aeruginosa* expresses three main exopolysaccharides: alginate, Pel, and Psl, which are important in the establishment and maintenance of a biofilm structure. 28 It grows mainly as an aerobe but can also survive under anaerobic conditions. *Pseudomonas aeruginosa* is intrinsically resistant to some β-lactam antibiotics and can acquire antimicrobial resistance via either chromosomal mutation or horizontal gene transfer. 29

As per the CF Foundation Patient Registry Annual Report, the percentage of individuals with a positive culture for *P. aeruginosa* has declined over time, with the largest decrease observed among individuals younger than 18 years (47.0 percent had a positive culture in 1997 compared with 27.5 percent in 2017). 6 The decrease in *P. aeruginosa* infection prevalence may be due to early antibiotic eradication treatment of incident infections. In 2017, 44.6% of individuals with CF in the United States were culture positive for *P. aeruginosa*. 6

Pseudomonas aeruginosa is often initially acquired from environmental sources. Once the bacteria establish themselves in the CF airways, they undergo adaptive changes such as decreasing motility by downregulating flagellum expression. In addition to downregulating other virulence factors, 30–33 *P. aeruginosa* will also overproduce exopolysaccharides such as alginate which confers mucoid status. 33 Chronic infection, which is often monoclonal before undergoing adaptive diversification of clonal variants, has been associated with accelerated lung function decline and earlier mortality. 34 To prevent these poor outcomes, initial and new-onset *P. aeruginosa* infections are usually aggressively treated in an attempt to eradicate the organism from the airways. 35–37 However, eradication failure remains a problem in this patient population. 38,39 Chronically infected patients may require combination therapy due to the development of resistance. 40

Burkholderia cepacia Complex

The Bcc includes over 20 species of nonfermenting gram-negative bacilli, which can be acquired from the environment or transmitted from person to person. 40

Burkholderia species grow under aerobic conditions. This organism is frequently found in the environment, especially soil and potted plants. 41 It is considered to be a highly virulent organism, with factors such as pili facilitating epithelial cell attachment, extracellular proteases resulting in tissue damage, quorum sensing genes facilitating biofilm formation, and a type III secretion system promoting cellular invasion. 42–46 As previously mentioned, Bcc species are intrinsically resistant to several different antimicrobial classes including aminoglycosides due to efflux pumps and β-lactams via inducible chromosomally encoded β-lactamases. 47,48

The epidemiology of Bcc infections in CF has been extensively examined given the potential for transmission between patients. 49,50 In 2017, 2.4 percent of individuals with CF in the CF Foundation Patient Registry Annual Report were culture positive for Bcc. 6 In early epidemiological studies, *Burkholderia*
Stenotrophomonas maltophilia

Stenotrophomonas species are gram-negative rods and obligate aerobes. They are nonfermenting, oxidase-negative organisms that can be found in water sources in the environment. Although four species of Stenotrophomonas exist, S. maltophilia is the most common one identified in human hosts. Stenotrophomonas maltophilia virulence factors include extracellular enzymes (such as alkaline serine proteases), outer membrane lipopolysaccharides, and the ability to form biofilms. Antimicrobial resistance may occur due to the presence of multidrug efflux pumps, β-lactamases, aminoglycoside-modifying enzymes, and reduced outer membrane permeability.

The prevalence of S. maltophilia has been shown to vary from 12% to as high as 30% in CF populations. Previously identified risk factors for acquisition include antibiotic use, in particular following the use of antipseudomonal agents. Initial infection is thought to be due to acquisition from environmental sources rather than person-to-person transmission.

Previous studies have described that individuals with CF who are infected with S. maltophilia infection tend to be older and have lower baseline lung function compared with patients without S. maltophilia. However, in these studies, S. maltophilia–positive individuals did not have more rapidly declining percent predicted FEV₁ (ppFEV₁) or decreased 3-year survival. However, chronic S. maltophilia infection (defined as two or more positive cultures in the year prior) has been described as a significant risk factor for pulmonary exacerbations treated with intravenous antibiotics; it is not, however, associated with a higher risk of failing to recover baseline lung function following an exacerbation event. In addition, registry-based studies have shown that patients with chronic S. maltophilia have a three times higher risk of death or lung transplantation compared with those without S. maltophilia infection.

Achromobacter Species

Achromobacter species are gram-negative, catalase-positive, oxidase-positive, nonsporulating rods. Up to 23 species are now known within the Achromobacter genus to date. Achromobacter species tend to grow under aerobic, nonfermentative conditions and at an optimal temperature of 25 to 37°C. They are environmental organisms, commonly found in soil and water. Achromobacter species are motile due to the presence of flagella, and can exhibit binding factors to mucin, collagen, and fibronecint, thereby facilitating initial attachment and invasion of the respiratory tract. Biofilm formation as well as intrinsic resistance to several classes of antimicrobials through the expression of efflux pumps, β-lactamases, and aminoglycoside-modifying enzymes is also expressed by this group of pathogens.

Achromobacter xylosoxidans is the most common Achromobacter species identified in individuals with CF, accounting for 42% of Achromobacter respiratory tract infections. Prevalence of Achromobacter infections varies greatly and has been reported between 3 and 30%. Acquisition is thought to occur mostly from the environment, although patient-to-patient transmission has been previously described.

Published data regarding the risk factors for initial infection and clinical impact of Achromobacter infection are limited and include studies with small sample sizes. Risk factors for chronic infection include older age and chronic P. aeruginosa infection. Of note, patients with chronic Achromobacter infection had lower lung function and more pulmonary exacerbations than age, gender, and P. aeruginosa matched controls in one of the main observational studies assessing clinical outcomes in patients with Achromobacter infection. In a large epidemiologic study using the Toronto CF Database, chronic Achromobacter infection (defined as two or more positive cultures in the previous 12 months) was associated with a twofold increase in the risk of death or lung transplantation compared with patients with no history of Achromobacter infection. Currently, no consensus data exist on optimal treatment strategies for initial acquisition, treatment during pulmonary exacerbation, or for chronic suppression of Achromobacter infections.
Due to the technical difficulties of isolating and identifying anaerobes in culture-dependent methods, the prevalence of anaerobic infections in patients with CF is not well known. Recently, culture-independent methods have helped identify that anaerobic bacteria are found in abundant quantities in sputum and bronchoalveolar lavage fluid of individuals with CF, with a density estimated between 10^4 and 9×10^7 colony forming unit (CFU)/mL of sputum. Some of the main anaerobic bacteria found in the CF airways include Prevotella, Veillonella, Fusobacterium, Propionibacterium, and Actinomyces. However, the role of anaerobes in CF lung disease remains controversial. In recent years, studies have described the association between the detection of anaerobes and diminished clinical response to systemic antimicrobials with lung function decline. One of the major limitations in the study of anaerobes in CF lung disease is the risk of contamination of lower airway samples by oropharyngeal secretions during collection, although recent studies have tried to address this concern. Anaerobes may interact with other organisms present in the CF airways, increasing the virulence of P. aeruginosa and transferring extended-spectrum β-lactamases to P. aeruginosa for example.

In contrast, the potential beneficial role of anaerobes has also been described in studies using both culture-dependent and culture-independent methods. Patients exposed to antimicrobial therapy may experience a decrease in the relative abundance of anaerobes, with subsequent increased inflammation and decreased lung function. Therefore, reducing microbial community diversity with regard to anaerobes may be playing a role in CF lung disease progression.

Viral Infections

The role of viruses in CF airway disease has increasingly been recognized in recent years, due to ongoing advances in molecular detection, using methods such as polymerase chain reaction. These molecular assays allow for rapid, highly sensitive and relatively cost-effective identification of viruses in the respiratory tract. Viral culture and serology used to be the main methods of detection in the past, but these techniques were limited due to high cost, labor intensity, and lack of sensitivity.

The overall prevalence of viral infections during pulmonary exacerbations in individuals with CF is estimated to be between 13 and 60%. However, viral infections may be underreported due to infrequent use of viral swabs and the limited number of respiratory viruses detected in a given assay. The most commonly identified viruses in CF patients are respiratory syncytial virus (RSV), human rhinovirus, influenza types A and B, and parainfluenza virus, although many other viruses including human metapneumovirus, picornavirus, coronavirus, and coxsackie/echovirus have also been described. Viral infections are detected more frequently in children than in adults with CF. In children, RSV is associated with significant respiratory morbidity. Rates of hospitalization due to RSV-related admissions to hospital compared with healthy children. In infants who have CF disease, RSV is associated with significant respiratory morbidity. Rates of hospitalization due to RSV-related admissions to hospital compared with healthy children.

Fungal Infections

Several different yeasts and filamentous fungi can be recovered from the respiratory tract secretions of CF patients. Direct microscopic examination of specimens using fungal stains can reveal yeast cells, pseudohyphae, or hyphae and some media can be used to improve the recovery of fungi from clinical specimens. Fungal growth can take as long as 4 weeks depending on the species. Identification of fungal isolates can be done using microscopic examination, biochemical testing, DNA sequence analysis, or matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The most common filamentous fungi recovered from CF airways are Aspergillus species with prevalence rates up to
The CF Microbiome

With the advent of culture-independent molecular methods of microbial detection, our understanding of microbial diversity and the interactions of microbial communities in the CF airways has significantly expanded. These newer techniques not only allow the identification of microorganisms, but also the estimation of relative abundances of microbial communities in the CF airways. Methods such as 16S ribosomal RNA sequencing of respiratory tract specimens have characterized the polymicrobial nature of lower airway infections in CF, including the coexistence of classic CF pathogens with both aerobic and anaerobic bacteria in the lower airways that were previously considered oropharyngeal contaminants.

In a recent study of 269 children and adults with CF, 16S rRNA sequencing was used to investigate the lower airway microbiota. Despite significant interindividual variability in community structure and composition, the core microbiota included *Streptococcus, Prevotella, Rothia, Veillonella*, and *Actinomycetes*. However, when classic CF pathogens such as *Pseudomonas, Burkholderia, Stenotrophomonas*, or *Achromobacter* were found to be present, they tended to dominate the microbial community within individuals. Zemanick et al also corroborated these main findings, with classic CF pathogens found more commonly in adults. Both Coburn et al and Zhao et al have described a decrease in both microbial diversity and lung function as age increases and lung disease progresses.

In summary, many studies of the CF microbiome have recently documented a diversity much more complex than that described by conventional culture alone, with changes in relative abundance and structure of microbial communities in response to age, disease progression, and acute clinical events. Further studies are needed to understand how these changes impact clinical outcomes and are affected by therapeutic interventions.

Conclusions

Infections of the lower respiratory tract remain a significant contributor to mortality and morbidity, even in the era of treatment that corrects and/or potentiates CFTR channel function. Pathogens such as MRSA, *P. aeruginosa*, and species of the *Bcc* continue to have significant clinical impacts on lung function and mortality rates in individuals with CF. Advances in molecular technology will help our understanding of the microbial communities and their interactions in the CF airways. Due to the ongoing impact of pulmonary infections on CF patient survival, novel eradication strategies and effective chronic suppressive treatments are needed.

Conflict of Interest

None declared.

References

1. Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. N Engl J Med 2005; 352(19):1992–2001
2. Cohen TS, Prince A. Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med 2012; 18(4):509–519
3. Konstan MW, Morgan WJ, Butler SM, et al; Scientific Advisory Group and the Investigators and Coordinators of the Epidemiologic Study of Cystic Fibrosis. Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis. J Pediatr 2007; 151(2):134–139, e1
4. Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 2003; 168(8):918–951
5. Liou TG, Adler FR, Fitzsimmons SC, Cahill BC, Hibbs JR, Marshall BC. Predictive 5-year survivorship model of cystic fibrosis. Am J Epidemiol 2001; 153(4):345–352
6 Ryan C, Ross S, Davey P, et al. Prevalence and causes of prescribing errors: the ePrescribing Outcomes for Trainee Doctors Engaged in Clinical Training (PROTECT) study. PLoS One 2014;9(01):e79802
7 Goss CH, Muhlebach MS. Review: Staphylococcus aureus and MRSA in cystic fibrosis. J Cyst Fibros 2011;10(05):298–306
8 Labandeira-Rey M, Conouz F, Boisset S, et al. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 2007;315(5815):1130–1133
9 Besier S, Smaczny C, von Mallinckrodt C, et al. Prevalence and clinical significance of Staphylococcus aureus small-colony variants in cystic fibrosis lung disease. J Clin Microbiol 2007;45(01):168–172
10 Hoffman LR, Dédézé E, D’Argenio DA, et al. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2006;103(32):19890–19895
11 Heiby N. Understanding bacterial biofilms in patients with cystic fibrosis: current and innovative approaches to potential therapies. J Cyst Fibros 2002;1(04):249–254
12 Molina A, Del Campo R, Máiz L, et al. High prevalence in cystic fibrosis patients of multiresistant hospital-acquired methicillin-resistant Staphylococcus aureus ST228-SCCme1 capable of biofilm formation. J Antimicrob Chemother 2008;62(05):961–967
13 Hudson VL, Wielinski CL, Regelmann WE. Prognostic implications of initial oropharyngeal bacterial flora in patients with cystic fibrosis diagnosed before the age of two years. J Pediatr 1993;122(06):854–860
14 Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 1997;10(04):781–791
15 International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). Classification of Staphylococcal Cassette Chromosome mec (SCCmeC): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother 2009;53(05):4961–4967
16 Ito T, Kuwahara-Arai K, Katayama Y, et al. Staphylococcal Cassette Chromosome mec (SCCmec) analysis of MRSA. Methods Mol Biol 2014;1085:131–148
17 Deurenberg RH, Stobberingh EE. The evolution of Staphylococcus aureus. Infect Genet Evol 2008;8(06):747–763
18 McDougall LK, Thornsberry C. The role of beta-lactamase in staphylococcal resistance to penicillin-resistant penicillins and cephalosporins. J Clin Microbiol 1986;23(05):832–839
19 Massidda O, Montanari MP, Varaldo PE. Evidence for a methicillin-hydrolysing beta-lactamase in Staphylococcus aureus strains with borderline susceptibility to this drug. FEMS Microbiol Lett 1992;71(03):223–227
20 Nadarajah J, Lee MJ, Louie L, et al. Identification of different clonal complexes and diverse amino acid substitutions in penicillin-binding protein 2 (PBP2) associated with borderline oxacillin resistance in Canadian Staphylococcus aureus isolates. J Med Microbiol 2006;55(Pt 12):1675–1683
21 Gilkman D, Siegel JD, David MZ, et al. Complex molecular epidemiology of methicillin-resistant Staphylococcus aureus isolates from children with cystic fibrosis in the era of epidemic community-associated methicillin-resistant S aureus. Chest 2008;133(06):1381–1387
22 Muhlebach MS, Heltshel SL, Popowitch EB, et al; STAR-CF Study Team. Multicenter observational study on factors and outcomes associated with various methicillin-resistant Staphylococcus aureus types in children with cystic fibrosis. Ann Am Thorac Soc 2015;12(06):864–871
23 Ren CL, Morgan WJ, Konstan MW, et al; Investigators and Coordinators of the Epidemiologic Study of Cystic Fibrosis. Presence of methicillin resistant Staphylococcus aureus in respiratory cultures from cystic fibrosis patients is associated with lower lung function. Pediatr Pulmonol 2007;42(06):513–518
24 Dasenbrook EC, Merlo CA, Dierer-West M, Lechtzin N, Boyle MP. Persistent methicillin-resistant Staphylococcus aureus and rate of FEV1 decline in cystic fibrosis. Am J Respir Crit Care Med 2008;178(08):814–821
25 Mandell GL, Dolin R. Principles and Practice of Infectious Diseases. 7th ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2015
26 Feldman M, Bryan R, Rajan S, et al. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun 1998;66(01):43–51
27 Mahenthiralingam E, Campbell ME, Speert DP. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically patients with cystic fibrosis. Infect Immun 1994;62(02):596–605
28 Chew SC, Kundukad B, Seviour T, et al. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides. MBio 2014;5(04):e01356–14
29 Kidd TJ, Canton R, Ekkelenkamp M, et al. Antimicrobial Resistance in Cystic Fibrosis International Working Group. Defining antimicrobial resistance in cystic fibrosis. J Cyst Fibros 2018;17(06):696–704
30 Blanchard AC, Horton E, Stanoevits S, Taylor L, Waters V, Ratjen F. Effectiveness of a stepwise Pseudomonas aeruginosa eradication protocol in children with cystic fibrosis. J Cyst Fibros 2017;16(03):395–400
31 Mayer-Hamblett N, Ramsey BW, Kulasekara HD, et al. Pseudomonas aeruginosa phenotypes associated with eradication failure in children with cystic fibrosis. Clin Infect Dis 2014;59(05):624–631
32 Vidya P, Smith L, Beaudoin T, et al. Chronic infection phenotypes of Pseudomonas aeruginosa are associated with failure of eradication in children with cystic fibrosis. Eur J Clin Microbiol Infect Dis 2016;35(01):67–74
33 Hogardt M, Heesemann J. Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int J Med Microbiol 2010;300(08):557–562
34 Pamukcu A, Bush A, Buchdahl R. Effects of pseudomonas aeruginosa colonization on lung function and anthropometric variables in children with cystic fibrosis. Pediatr Pulmonol 1995;19(01):10–15
35 Gibson RL, Emerson J, McNamara S, et al; Cystic Fibrosis Therapeutics Development Network Study Group. Significant microbiological effect of inhaled tobramycin in young children with cystic fibrosis. Am J Respir Crit Care Med 2003;167(06):841–849
36 Ratjen F, Döring G, Nikolaizik WH. Effect of inhaled tobramycin on early Pseudomonas aeruginosa colonisation in patients with cystic fibrosis. Lancet 2001;358(9286):983–984
37 Treggiari MM, Retsch-Bogart G, Mayer-Hamblett N, et al; Early Pseudomonas Infection Control (EPIC) Investigators. Comparative efficacy and safety of 4 randomized regimens to treat early Pseudomonas aeruginosa infection in children with cystic fibrosis. Arch Pediatr Adolesc Med 2011;165(09):847–856
38 Schelstraete P, Haeryck F, Van daele S, Deseye N, De Baets F. Eradication therapy for Pseudomonas aeruginosa colonization episodes in cystic fibrosis patients not chronically colonized by P. aeruginosa. J Cyst Fibros 2013;12(01):1–8
39 Beaudoin T, Lafayette S, Nguyen D, Rousseau S. Mucoid Pseudomonas aeruginosa caused by mucA mutations result in activation of TLR2 in addition to TLR5 in airway epithelial cells. Infect Immun 2014;82(04):2002–2010
40 Drevinek P, Mahenthiralingam E. Burkholderia cepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 2010;16(07):821–830
41 LiPuma JJ, Spilker T, Coenye T, Gonzalez CF. An epidemic Burkholderia cepacia complex strain identified in soil. Lancet 2002;359(9232):2002–2003
42 Mahenthiralingam E, Vandamme P, Campbell ME, et al. Infection with Burkholderia cepacia complex genovarics in patients with cystic fibrosis: virulent transmissible strains of genovar III
can replace Burkholderia multivorans. Clin Infect Dis 2001;33(09):1469–1475

43 Sun L, Jiang RZ, Steinbach S, et al. The emergence of a highly transmissible lineage of cbl+: Pseudomonas (Burkholderia) cepacia causing CF centre epidemics in North America and Britain. Nat Med 1995;1(07):661–666

44 Zlosnik JE, Speert DP. The role of mucoidy in virulence of bacteria from the Burkholderia cepacia complex: a systematic proteomic and transcriptomic analysis. J Infect Dis 2010;202(05):770–781

45 Huber B, Riedel K, Hentzer M, et al. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 2001;147(Pt 9):2517–2528

46 Loutet SA, Valvano MA. A decade of Burkholderia cenocepacia virulence determinant research. Infect Immun 2010;78(10):4088–4100

47 Mahenthiralingam E, Urban TA, Goldberg JB. The multifarious, multiplexilin Burkholderia cepacia complex. Nat Rev Microbiol 2005;3(02):144–156

48 Hancock RE. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis 1998;27(Suppl 1):S93–S99

49 Govan JR, Brown PH, Maddison J, et al. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 1993;342(8862):15–19

50 Biddick R, Spiker T, Martin A, LiPuma JJ. Evidence of transmission of Burkholderia cepacia. Burkholderia multivorans and Burkholderia dolosa among persons with cystic fibrosis. FEMS Microbiol Lett 2003;228(01):57–62

51 LiPuma JJ, Spiker T, Gill LH, Campbell PW III, Liu L, Mahenthiralingam E. Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med 2001;164(01):92–96

52 Chen JS, Witzmann KA, Spiker T, Fink RJ, LiPuma JJ. Endemicity and inter-city spread of Burkholderia cepacia genomovar III in cystic fibrosis. J Pediatr 2001;139(05):643–649

53 Coene T, LiPuma JJ. Multilocus restriction typing: a novel tool for studying global epidemiology of Burkholderia cepacia complex infection in cystic fibrosis. Infect Dis 2002;185(10):1454–1462

54 Drevinek P, Vosahlikova S, Cinek O, et al. Widespread clone of Burkholderia cepacia in cystic fibrosis patients in the Czech Republic. J Med Microbiol 2005;54(Pt 7):655–659

55 Johnson WM, Tyler SD, Rozee KR. Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J Clin Microbiol 1994;32(04):924–930

56 Speert DP, Henry D, Vandamme P, Corey M, Mahenthiralingam E. Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 2002;8(02):181–187

57 Baldwin A, Mahenthiralingam E, Drevinek P, et al. Elucidating global epidemiology of Burkholderia multivorans in cases of cystic fibrosis by multilocus sequence typing. J Clin Microbiol 2008;46(01):290–295

58 Govan JR, Brown AH, Jones AM. Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol 2007;2(02):153–164

59 Zlosnik JE, Zhou G, Brant R, et al. Burkholderia species infections in patients with cystic fibrosis in British Columbia, Canada. 30 years’ experience. Ann Am Thorac Soc 2015;12(01):70–78

60 Saiman L, Siegel JD, LiPuma J, et al; Cystic Fibrosis Foundation; Society for Healthcare Epidemiology of America. Infection prevention and control guideline for cystic fibrosis: 2013 update. Infect Control Hosp Epidemiol 2014;35(Suppl 1):S1–S67

61 Whiteford ML, Wilkinson JD, McColl JH, et al. Outcome of Burkholderia (Pseudomonas) cepacia colonisation in children with cystic fibrosis following a hospital outbreak. Thorax 1995;50(11):1194–1198

62 Stephenson AL, Sykes J, Berthiaume Y, et al. Clinical and demographic factors associated with post-lung transplantation survival in individuals with cystic fibrosis. J Heart Lung Transplant 2015;34(09):1139–1145

63 Murray S, Charbeneau J, Marshall BC, LiPuma JJ. Impact of Burkholderia infection on lung transplantation in cystic fibrosis. Am J Respir Crit Care Med 2008;178(04):363–371

64 Jones AM, Dodd ME, Govan JR, et al. Burkholderia cenocepacia and Burkholderia multivorans: influence on survival in cystic fibrosis. Thorax 2004;59(11):948–951

65 Blackburn L, Brownlee K, Conway S, Denton M. ‘Cepacia syndrome’ with Burkholderia multivorans, 9 years after initial colonization. J Cyst Fibros 2004;3(02):133–134

66 Waters VJ, Gómez MI, Soong G, Amin S, Ernst RK, Prince A. Immunostimulatory properties of the emerging pathogen Stenotrophomonas maltophilia. Infect Immun 2007;75(04):1698–1703

67 Di Bonaventura G, Spedicato I, D’Antonio D, Robuffo I, Piccolimini R. Biofilm formation by Stenotrophomonas maltophilia: modulation by quinolones, trimethoprim-sulfamethoxazole, and ceftazidime. Antimicrob Agents Chemother 2004;48(01):151–160

68 Pompilio A, Crocetta V, Confalone P, et al. Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients. BMC Microbiol 2010;10:102

69 Crossman LC, Gould VC, Dow JM, et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 2008;9(04):R74

70 Demko CA, Stern RC, Doershuk CF. Stenotrophomonas maltophilia in cystic fibrosis: incidence and prevalence. Pediatr Pulmonol 1998;25(05):304–308

71 Ballester G, Vissera S, Escobar H, Suárez L, Baquero F. Stenotrophomonas maltophilia in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 1995;14(08):728–729

72 Cystic Fibrosis Foundation. Patient Registry Report. Bethesda, MD2016

73 Canada Cystic Fibrosis. Canadian Patient Data Registry Report. Toronto, Canada2016

74 Talmaciu I, Varlotta L, Mortensen J, Schidlov DV. Risk factors for emergence of Stenotrophomonas maltophilia in cystic fibrosis. Pediatr Pulmonol 2000;30(01):10–15

75 Burns JL, Van Dalfsen JM, Shawar RM, et al. Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. J Infect Dis 1999;179(05):1190–1196

76 Denton M, Todd NJ, Littlewood JM. Role of anti-pseudomonal antibiotics in the emergence of Stenotrophomonas maltophilia in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 1996;15(05):402–405

77 Goss CH, Mayer-Hamblett N, Aiiken ML, Rubenfeld GD, Ramsey BW. Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax 2004;59(11):955–959

78 Goss CH, Otto K, Aiiken ML, Rubenfeld GD. Detecting Stenotrophomonas maltophilia does not reduce survival of patients with cystic fibrosis. Am J Respir Crit Care Med 2002;166(03):356–361

79 Waters V, Atenafu EG, Salazar JG, et al. Chronic Stenotrophomonas maltophilia infection and exacerbation outcomes in cystic fibrosis. J Cyst Fibros 2012;11(01):8–13

80 Waters V, Atenafu EG, Lu A, Yau Y, Tuliss E, Ratjen F. Chronic Stenotrophomonas maltophilia infection and mortality or lung transplantation in cystic fibrosis patients. J Cyst Fibros 2013;12(05):482–486

81 Waters V, Yau Y, Prasad S, et al. Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med 2011;183(05):635–640
Microbiology of CF Airway Disease

Blanchard, Waters

82 Ridderberg W, Nielsen SM, Narskov-Lauritsen N. Genetic adaptation of Achromobacter sp. during persistence in the lungs of cystic fibrosis patients. PLoS One 2015;10(08):e0136790

83 Filipic B, Malesevic M, Vasiljevic Z, et al. Uncovering differences in virulence markers associated with Achromobacter species of CF and non-CF origin. Front Cell Infect Microbiol 2017;7:224

84 Tom SK, Yau YC, Beaudoin T, LiPuma JJ, Waters V. Effect of high-dose antimicrobials on biofilm growth of Achromobacter species isolated from cystic fibrosis patients. Antimicrob Agents Chemother 2015;60(01):650–652

85 Bador J, Amoureux L, Blanc E, Neuwirth C. Innate aminoglycoside resistance of Achromobacter xylosoxidans is due to AxyXY-OpzX, an RND-type multidrug efflux pump. Antimicrob Agents Chemother 2013;57(01):603–605

86 Decrè D, Arlet G, Daglot C, et al. A beta-lactamase-overproducing strain of Alcaligenes denitrificans subsp. xylosoxydans isolated from a case of meningitis. J Antimicrob Chemother 1992;30(06):769–779

87 Spilker T, Vandamme P, Lipuma JJ. Identification and distribution of Achromobacter species in cystic fibrosis. J Cyst Fibros 2013;12(03):298–301

88 De Baets F, Schelstraete P, Van Daele S, et al. Analysis of lung microflora in patients with cystic fibrosis. J Cyst Fibros 2015;14(06):769–779

89 Van Daele S, Verhelst R, Claeys G, et al. Shared genotypes of Achromobacter species isolated from patients at a CF centre. Front Cell Infect Microbiol 2017;7:224

90 Tom SK, Yau YC, Beaudoin T, LiPuma JJ, Waters V. Effect of high-dose antimicrobials on biofilm growth of Achromobacter species isolated from cystic fibrosis patients. Antimicrob Agents Chemother 2015;60(01):650–652

91 Hogan DA, Willger SD, Dolben EL, et al. Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease. PLoS One 2016;11(03):e0149998

92 Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Bruce KD. Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16s ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 2004;42(11):5176–5183

93 Tunney MM, Klem ER, Fodor AA, et al. Use of culture and molecular analysis to determine the effect of antibiotic treatment on microbial community diversity and abundance during exacerbation in patients with cystic fibrosis. Thorax 2011;66(07):579–584

94 Mirković B, Murray MA, Lavelle GM, et al. The role of short-chain fatty acids, produced by anaerobic bacteria, in the cystic fibrosis airway. Am J Respir Crit Care Med 2015;192(11):1314–1324

95 Sherrard LJ, Tunney MM, Elborn JS. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. Lancet 2014;384(9944):703–713

96 Goddard AF, Staudinger BJ, Dowd SE, et al. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci U S A 2012;109(34):13769–13774

97 Prevæs SM, de Steenhuijsen Piters WA, de Winter-de Groot KM, et al. Concordance between upper and lower airway microbiota in infants with cystic fibrosis. Eur Respir J 2017;49(03):49

98 Phan J, Gallagher T, Oliver A, England WE, Whiteson K. Fermentation products in the cystic fibrosis airways induce aggregation and dormancy-associated expression profiles in a CF clinical isolate of Pseudomonas aeruginosa. FEMS Microbiol Lett 2018;365(10):365

99 Sherrard LJ, McGrath SJ, McIlravey L, et al. Production of extended-spectrum β-lactamases and the potential indirect pathogenic role of Prevotella isolates from the cystic fibrosis respiratory microbiota. Int J Antimicrob Agents 2016;47(02):140–145

100 Zemanick ET, Harris JK, Wagner BD, et al. Inflammation and airway microbiota during cystic fibrosis pulmonary exacerbations. PLoS One 2013;8(04):e62917

101 Zemanick ET, Wagner BD, Robertson CE, et al. Airway microbiota across age and disease spectrum in cystic fibrosis. Eur Respir J 2017;50(05):50

102 Zemanick ET, Wagner BD, Robertson CE, et al. Assessment of airway microbiota and inflammation in cystic fibrosis using multiple sampling methods. Ann Am Thorac Soc 2015;12(02):221–229

103 Muhlebach MS, Hatch JE, Einarsson GG, et al. Anaerobic bacteria cultured from cystic fibrosis airways correlate with milder disease: a multisite study. Eur Respir J 2018;52(01):52

104 O’Neill K, Bradley JM, Johnston E, et al. Reduced bacterial colony count of anaerobic bacteria is associated with a worsening in lung clearance index and inflammation in cystic fibrosis. PLoS One 2015;10(05):e0126980

105 Filkins LM, Hampton TH, Gifford AH, et al. Prevalence of streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability. J Bacteriol 2012;194(17):4709–4717

106 Scagnolari C, Turriziani O, Monteleone K, Pierangelo A, Antonelli G. Consolidation of molecular testing in clinical virology. Expert Rev Anti Infect Ther 2017;15(04):387–400

107 Wang EE, Prober CG, Manson B, Corey M, Levison H. Association of respiratory viral infections with pulmonary deterioration in patients with cystic fibrosis. N Engl J Med 1984;311(26):1653–1658

108 van Ewijk BE, van der Zalm WM, Wolfs TF, van der Ent CK. Viral respiratory infections in cystic fibrosis. J Cyst Fibros 2005;4(Suppl 2):31–36

109 Asher S, Waters V, Solomon M, et al. Role of respiratory viruses in pulmonary exacerbations in children with cystic fibrosis. J Cyst Fibros 2012;11(05):433–439
Zhao J, Schloss PD, Kalikin LM, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci U S A 2012;109(15):5809–5814

Layeghifard M, Li H, Wang PW, et al. Microbiome networks and change-point analysis reveal key community changes associated with cystic fibrosis pulmonary exacerbations. NPJ Biofilms Microbiomes 2019;5:4

Carmody LA, Caverly LJ, Foster BK, et al. Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis. PLoS One 2018;13(03):e0194060

Hisert KB, Heltshe SL, Pope C, et al. Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am J Respir Crit Care Med 2017;195(12):1617–1628