A note on the orientation covering number

Barnabás Janzer*

Abstract

Given a graph G, its orientation covering number $\sigma(G)$ is the smallest non-negative integer k with the property that we can choose k orientations of G such that whenever x, y, z are vertices of G with $xy, xz \in E(G)$ then there is a chosen orientation in which both xy and xz are oriented away from x. Esperet, Gimbel and King showed that $\sigma(G) \leq \sigma(K_{\chi(G)})$, where $\chi(G)$ is the chromatic number of G, and asked whether we always have equality. In this note we prove that it is indeed always the case that $\sigma(G) = \sigma(K_{\chi(G)})$. We also determine the exact value of $\sigma(K_n)$ explicitly for 'most' values of n.

1 Introduction

Given a non-empty graph G and k orientations $\vec{G}_1, \ldots, \vec{G}_k$ of G, we say that $\vec{G}_1, \ldots, \vec{G}_k$ is an orientation covering of G if whenever $x, y, z \in V(G)$ with $xy, xz \in E(G)$ then there is an orientation in which both xy and xz are oriented away from x (i.e., there is some i such that $(x, y), (x, z) \in E(\vec{G}_i)$). The orientation covering number $\sigma(G)$ of G is the smallest positive integer k such that there is a list of k orientations forming an orientation covering of G. Orientation coverings were introduced by Esperet, Gimbel and King [2], who used them to study the minimal number of equivalence subgraphs needed to cover a given graph.

Esperet, Gimbel and King [2] showed that $\sigma(G) \leq \sigma(K_{\chi(G)})$ for any graph G, where χ denotes the chromatic number. They asked whether we always have $\sigma(G) = \sigma(K_{\chi(G)})$. In this note we answer this question in the positive.

Theorem 1. For any non-empty graph G, we have $\sigma(G) = \sigma(K_{\chi(G)})$.

The value of $\sigma(K_n)$ has been investigated by Esperet, Gimbel and King [2], who determined its order of magnitude and the exact values for small values of n. An observation of Gyárfás (see [2]) shows that we have $\chi(DS_n) \leq \sigma(K_n) \leq \chi(DS_n) + 2$, where DS_n is the double-shift graph on n vertices. Using the results of Füredi, Hajnal, Rödl and Trotter [3] on the chromatic number of DS_n, this gives $\sigma(K_n) = \log \log n + \frac{1}{2} \log \log \log n + O(1)$. (All logarithms in this paper are base 2.) In this note we will also determine the value of $\sigma(K_n)$ exactly in terms of a certain sequence of positive integers sometimes called the Hoşten–Morris numbers. As a corollary, we get the following improved estimate.

Theorem 2. We have $\sigma(K_n) = \lceil \log \log n + \frac{1}{2} \log \log \log n + \frac{1}{2} \log \pi + 1 + o(1) \rceil$ as $n \to \infty$.

*Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom. Email: bkJ21@cam.ac.uk. This work was supported by EPSRC DTG.
Given a positive integer \(k \), let \([k]\) denote \{1, \ldots, k\}, as usual. Given a family \(\mathcal{A} \subseteq \mathcal{P}([k]) \) of subsets of \([k]\), we say that \(\mathcal{A} \) is intersecting if whenever \(S, T \in \mathcal{A} \) then \(S \cap T \neq \emptyset \). We say that \(\mathcal{A} \) is maximal intersecting if \(\mathcal{A} \) is intersecting and whenever \(\mathcal{B} \supseteq \mathcal{A} \) and \(\mathcal{B} \) is intersecting then \(\mathcal{B} = \mathcal{A} \). (Equivalently, if \(\mathcal{A} \) is intersecting and \(|\mathcal{A}| = 2^{k-1} \).) The following characterisation of \(\sigma(G) \) is the key to our results.

Theorem 3. For any non-empty graph \(G \), \(\sigma(G) \) is the smallest positive integer \(k \) such that there are at least \(\chi(G) \) maximal intersecting families over \([k]\).

Clearly, Theorem 3 implies Theorem 1. Let \(\lambda(k) \) denote the number of maximal intersecting families over \([k]\). The numbers \(\lambda(k) \) are sometimes called Hosten–Morris numbers, after a paper of Hošten and Morris [4] in which they showed that the order dimension of \(K_n \) is the smallest positive integer \(k \) with \(\lambda(k) \geq n \). An equivalent formulation of their result is that the minimal number of linear orders on \([n]\) with the property that the induced orientations of \(K_n \) form an orientation covering is the smallest positive integer \(k \) with \(\lambda(k) \geq n \). Note that by Theorem 3 this number is the same as the orientation covering number of \(K_n \).

Although no exact or asymptotic formula is known for \(\lambda(k) \), it was shown by Brouwer, Mills, Mills and Verbeek [1] that

\[
\log \lambda(k) \sim \frac{2^k}{\sqrt{2\pi k}}
\]

Furthermore, the exact values of \(\lambda(k) \) are known [1] for \(k \) up to 9, with \(\lambda(9) \approx 4 \times 10^{20} \).

Theorem 2 follows from Theorem 3 and (1). Indeed, taking logarithms in (1) shows that \(\sigma(K_n) \) is the smallest positive integer \(k \) with \(\log \log n \leq k - \frac{1}{2} (\log \pi + 1) - \frac{1}{2} \log k + o(1) \), which gives \(\sigma(K_n) = \lceil \log \log n + \frac{1}{2} \log \log \log n + \frac{1}{2} (\log \pi + 1) + o(1) \rceil \).

2 Proof of Theorem 3

The proof is based on the following observation.

Lemma 4. For any non-empty graph \(G \), \(\sigma(G) \) is the smallest positive integer \(k \) with the property that there is a collection \(\{ A_v \}_{v \in V(G)} \) of subsets of \(\mathcal{P}([k]) \) (i.e., \(A_v \subseteq \mathcal{P}([k]) \) for all \(v \)) such that the following two conditions hold.

1. If \(uv \in E(G) \), then there exists \(S \in A_u \) and \(T \in A_v \) such that \(S \cap T = \emptyset \).
2. For all \(v \in V(G) \) and \(S, T \in A_v \), we have \(S \cap T \neq \emptyset \). (i.e., \(A_v \) is intersecting.)

Proof. First assume that \(\sigma(G) = k \) and \(\vec{G}_1, \ldots, \vec{G}_k \) form an orientation cover of \(G \). For each directed edge \((x, y)\) of \(G \), let \(S_{(x, y)} = \{ i \in [k] : (x, y) \in E(\vec{G}_i) \} \). Let \(A_u = \{ S_{(v, w)} : uv \in E(G) \} \). Clearly \(S_{(v, w)} \cap S_{(w, u)} = \emptyset \), so Condition 1 holds. Also, we have \(S_{(v, w)} \cap S_{(w, v')} \neq \emptyset \) whenever \(vw, vw' \in E(G) \), since by assumption there is an \(i \) such that \((v, w), (v, w') \in E(\vec{G}_i) \). So Condition 2 holds as well.

Conversely, suppose that we have such a collection \(\{ A_v \}_{v \in V(G)} \) with \(A_v \subseteq \mathcal{P}([k]) \) for all \(v \). For each \(uv \in E(G) \), pick \(S_{(u, v)} \in A_u \) and \(S_{(v, u)} \in A_v \) such that \(S_{(u, v)} \cap S_{(v, u)} = \emptyset \). Define the orientations \(\vec{G}_1, \ldots, \vec{G}_k \) of \(G \) by orienting the edge \(uv \) from \(u \) to \(v \) in \(\vec{G}_i \) if \(i \in S_{(u, v)} \), from \(v \) to \(u \) if \(i \in S_{(v, u)} \), and arbitrarily otherwise. This is clearly well-defined, and whenever \(uv, uw \in E(G) \), then \(S_{(u, v)} \cap S_{(u, w)} \neq \emptyset \) (by Condition 2). This gives \(\sigma(G) \leq k \), as claimed. \(\square \)
Proof of Theorem 3. We first show the lower bound for $\sigma(G)$. Let G be any non-empty graph, and let $(A_v)_{v \in V(G)}$ be as in Lemma 4 for $k = \sigma(G)$. For each $v \in V(G)$, let B_v be a maximal intersecting family with $B_v \supseteq A_v$. Note that the families $(B_v)_{v \in V(G)}$ still satisfy both conditions in Lemma 4. Furthermore, $v \mapsto B_v$ is a proper vertex-colouring (since each B_v is intersecting but $B_v \cup B_w$ is not whenever $vw \in E(G)$). It follows that the number of maximal intersecting families over $[k]$ is at least $\chi(G)$.

Conversely, assume that k is a positive integer such that there are at least $\chi(G)$ distinct maximal intersecting families B_1, \ldots, B_k over $[k]$. Let $c : V(G) \mapsto [\chi(G)]$ be a proper vertex-colouring of G, and set $A_v = B_{c(v)}$ for each v. Certainly each A_v is intersecting. Furthermore, by maximality, no $A_v \cup A_w$ can be intersecting when $c(v) \neq c(w)$, and hence $A_v \cup A_w$ is not intersecting when $vw \in E(G)$. It follows that $(A_v)_{v \in V(G)}$ satisfies both conditions in Lemma 4 and so $\sigma(G) \leq k$.

References

[1] A. E. Brouwer, C. F. Mills, W. H. Mills, and A. Verbeek. Counting families of mutually intersecting sets. Electron. J. Combin., 20(2):Paper 8, 2013.

[2] L. Esperet, J. Gimbel, and A. King. Covering line graphs with equivalence relations. Discrete Appl. Math., 158(17):1902–1907, 2010.

[3] Z. Füredi, P. Hajnal, V. Rödl, and W. T. Trotter. Interval orders and shift graphs. In Sets, graphs and numbers (Budapest, 1991), volume 60 of Colloq. Math. Soc. János Bolyai, pages 297–313. North-Holland, Amsterdam, 1992.

[4] S. Hoşten and W. D. Morris, Jr. The order dimension of the complete graph. Discrete Math., 201(1-3):133–139, 1999.