We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,600
Open access books available

177,000
International authors and editors

195M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Data Mining Based Establishment and Evaluation of Porcine Model for Syndrome in Traditional Chinese Medicine in the Context of Unstable Angina (Myocardial Ischemia)

Huihui Zhao, Jianxin Chen, Qi Shi and Wei Wang
Beijing University of Chinese Medicine
Beijing, 100029, China

1. Introduction

Building an animal model for a disease is a better avenue not only to investigate the disease state in ways which would be inaccessible in human patients with the disease, but also to test new drug for the treatment of the disease. Unstable angina (UA) is a serious disease that causing more than 1 million deaths annually in China. It accounts for heavy burden not only on patients and their families but also on society. Therefore, an increasing number of UA patients pose a major challenge to the entire medical community. The animal model for UA is usually simulated by animal model for myocardial ischemia since the core pathology of UA is myocardial ischemia. There are three widely used methods to reproduce myocardial ischemia animal models: An occlusion of the coronary artery by microembolization, coronary artery ligation and Ameroid constrictor or coling/gelefoam [Monnet & Chachques, 2005]. Among them, Ameroid constrictor is best fit to induce chronic myocardial ischemia when compared with other methods due to its progressive occlusion. Ameroid constrictors have been used in many species of animals. However, porcine hearts have a coronary anatomy most similar to the counterpart of human hearts. They seem to develop much less collateral circulation than dogs after induction of coronary occlusion, which makes them more attractive for the reproduction of chronic myocardial ischemia [Weaver et al., 1986].

1.1 Traditional Chinese medicine and western medicine

Traditional Chinese Medicine (TCM) is a medical system with its continuous practice in the past 3000 years and records thousands of herbal prescriptions, some of which are tested and validated continuously in the clinics [Li et al., 2007]. TCM is taken by most people in China as a complementary therapeutic avenue to treat UA since its herbal remedies have some advantages over western medicine, such as fewer side effects and less cost. Historically, TCM uses pattern recognition strategies to identify patients' characteristics at individual level. These patterns, or so called syndromes, are recognized by collecting patient information through questioning, inspecting, and physical examinations including pulse and tongue recognitions. It is generally acknowledged that more than one distinctive clinical
pattern can usually be found within each biomedical disease or condition. The clinical patterns or syndromes under each biomedical disease therefore can be viewed as unique subsets of that patient population in question. In TCM practice, specific treatment strategies including using Chinese herbal medicine or acupuncture would be applied aiming each pattern/syndrome of a specific biomedical condition. Therefore, the research of syndromes is usually taken place in the context of a disease diagnosed by criteria established in western medicine. Thanks to clinical epidemiology and related data mining approaches, the number of syndromes and the diagnosis criteria of each syndrome in the context of many diseases have been already determined and established in China[Zheng, 2002];[Chen et al., 2007]. Nowadays, investigation material basis of syndromes in the context of biomedical diseases is a research focus, thus building an animal model for syndromes plays a key role in understanding nature of syndromes.

1.2 Blood stasis syndrome in TCM
In the UA patients, a syndrome named blood stasis syndrome (BSS) occupies more than 70% in the cohort [Sun et al., 2007]. It plays a key role in treating UA patients not only because it’s high frequency, but because there are so many herbal remedies that have been tested effectively in clinics for treating BSS that it can help to treat UA in a personalized way. BSS is described in TCM theory as a slowing down of the blood flow due to disruption of Heart Qi, and its main clinical manifestations in UA patients include fixed stabbing pain in the chest, aggravation of pain in the night, chest oppression and shortness of breath, palpitation, purplish tongue, thin and unsmooth pulse. BSS is considered as a special stage of UA or myocardial ischemia in TCM and has special pathological and pathophysiologic mechanisms. BSS is also an important underlying pathology process of many other diseases according to TCM theory. It is often understood in biomedical terms in terms of hematological disorders such as hemorrhage, congestion, thrombosis, and local ischemia (microclots) and tissue changes.

1.3 State-of-art of animal models for BSS in the context of UA
Due to the significant association between BSS and UA, it is urgent for medical society to investigate material basis of BSS in the context of UA. Animal model for BSS is a better way to understand it. However, there is no available animal model with long period of stability and accurate validation for BSS since there is no widely accepted animal model for syndrome in TCM. Formally, syndrome is clinically diagnosed by mean of four traditional phenotype information gathered methods, such as questioning, inspecting, pulse and tongue recognitions, but the related phenotype information is hard to be gathered from animals since it is impossible to inquire, listen and feel the pulse of most animals. Although inspecting information could be collected from an animal, the difference between human and an animal is large, which make symptoms have different medical meaning among clinics and animal model. Therefore, a novel strategy is needed to be presented to build and evaluate syndrome in TCM for an animal in the context of UA.

1.4 A computational strategy to evaluate BSS in context of UA
The biggest obstacle of building animal model for syndrome is that it is hard to diagnose the syndrome in an animal by traditional four methods (questioning, inspecting as well as pulse and tongue recognitions) as they are performed in clinics because of the large difference of
phenotype information between human and animal. However, the physical and chemical specifications of human and animal may have more similar biomedical meaning than the phenotype information. Therefore, the novel strategy to build and evaluate an animal model for BSS is performed by two sequential steps.

1. In clinics, investigation and establishment of association between BSS and related physical and chemical specifications in the context of UA by a computational way.

2. In animals, we build animal model for UA and evaluate whether an animal is BSS by the association established from clinics.

Many research efforts have been performed to investigate distinct clinical biomarkers and pathological mechanisms of BSS in the past 50 years. The research strategy places heavily on discovering some specific biomarkers for BSS. However, it is found that these detected biomarkers have none specificity for BSS. Indeed, BSS (in the context of UA) is a complex disease and the biomarker for it is not sole. As it is pointed out that, the era of one disease with one specific gene has gone [Hayden, 2008], most researchers have realized that there is no distinct single parameter of BSS caused by some kind of unbalance in regulation network and system biology is a better avenue to discover biomarkers and interaction network of them [Li et al., 2007]. Thus, statistical analysis methods to discover biomarkers for BSS in the system biology is turned from t test to data mining approaches. t test is used to discover one biomarker with significant difference between case and control groups. Beyond t test, data mining approaches can investigate significance of a pattern with more than two biomarkers between two groups. The association between BSS and physical and chemical specifications can be uncovered by data mining approaches.

In this paper, we first used data mining approaches to establish association between BSS and inflammation factors from UA data obtained by clinical epidemiology. Alternatively, we built animal model for UA and used the established association in clinics to evaluate whether an animal is with BSS.

The paper is organized as following. The section 2 is devoted to clinical epidemiology for UA patients. The data mining of association between syndrome and inflammation factors is presented in section 3. Building and validating animal model for syndrome in TCM in the context of myocardial ischemia is proposed in section 4. In Section 5 we summarize our finding and give conclusion and discussion.

2. Clinical epidemiology survey for UA in-patients

There are many evidence that inflammation system is significantly associated with Coronary Heart Disease (CHD) including UA [Gustavsson & Agardh, 2009]; [Davidson et al., 2009]. Furthermore, although “golden inflammation factor” for BSS is hard to discover, it is still found that some inflammation factors, for example, Tumor necrosis factor α (TNF-α), Interleukin 6 (IL-6), Endothelin (ET) and Nitrogen monoxide (NO), are associated with the pathology of BSS in the context of UA [Mao et al., 2004]; [Yuan et al., 2006]; [Zhang et al., 2005]; [Ma et al., 2007]. Alternatively, the four factors are relatively easy to be measured from animals, which make them a better bridge to communicate between human and animal. The goal of clinical epidemiology for UA is to establish association between BSS and inflammation factors in the context of UA.

The inclusion criteria are composed of three conditions: (1) Based on diagnosis criteria of UA established in 2002 by ACC and AHA [Braunwald, 2002]; (2) patients aged between 55 and 75; (3) Patients agree to sign the informed consent. Moreover, the exclusion criteria are composed
of four conditions: (1) Besides UA, a patient also suffers from other cordis disease such as acute myocardial infarction, myocarditis, and cardiac nerve functional disease; (2) A patient with angina caused by other diseases, for example, rheumatic fever, syphilis, congenital coronary anomalies, hypertrophic cardiomyopathy, cardiac mitral stenosis; (3) Besides UA, a patient also suffers from stroke, diabetes, nephritis, renal failure, pulmonary infection, urinary tract infection, rheumatism, osteoarthritis, serious disease caused by liver, renal, haematogenous system, incretion system; (4) A woman patient in gestation or lactation.

The fifty-seven UA in-patients were included in the survey in AnZhen Hospital in Beijing from September 2006 to August 2007, each of which was told to pause Resisting Platelet Activating drug for 24 hours. The 10 milliliter limosis vein blood of each patient was took out early morning in the next day of hospitalization. The 10 ml blood was divided into two parts. The first 2 ml was saved in the cuvette (American B-D Co.Ltd) with 2% EDTA anticoagulant and the other 8 ml was put into the counterpart with trisodium citrate anticoagulant. All samples were centrifuged with 2500 r/min for 10 minutes to separate plasma from the blood, which was kept at -80°C.

It is noted that no healthy control subjects were included since we study syndrome in the context of UA. BSS is used to divide the UA into two groups, UA with BSS and UA with none-BSS.

Each patient included is diagnosed whether is BSS by TCM experts. The difference between two groups is studied by data mining approaches, which establishes the association between syndrome and physical and chemical specifications measured in plasma.

3. Data mining approaches to establish association between BSS and inflammation factors

The response variable is a categorical variable composed of BSS and non BSS and the independent variables are the four inflammations factors. The goal of data mining for clinical data is to build association between four inflammation factors and BSS in the context of UA.

In a first step, Independent sample t test method is employed to detect factors that are significantly different between BSS and Non-BSS. Using a threshold $P < 0.01$, only TNF-α is detected that is different between the two groups. However, the student’ t test statistics only measure the significance of single independent variable, it can not measure significance of a pattern composed of more than 2 factors between two categories. Data mining approaches provide a better solution to build association between a pattern and response variable. They can not only deal with data with large samples and more variables, but also for small samples. The significance of a pattern between two categories is evaluated by three performance measures of data mining approaches: Accuracy, Specificity and Sensitivity.

Generally, data mining methods are divided into two complementary parts. The one is supervised classification and the other is unsupervised cluster. Here, the association between four factors and syndrome in TCM is investigated by classification approaches, which are mainly composed of five groups [Ian & Eibe, 2005]. i.e. Neural network, Support vector machine, Decision tree, Bayes approach and Logistic approach.

The accuracy of association establishment not only affects investigation of BBS in microcosmic level in clinics, but also has impact on successful evaluation of animal model for syndrome. However, there is no evidence that what classification approach is best fit to establish association between BSS and four factors. Consequently, we carried out a comparison study to detect the best classification approach for the UA data here.
Comparison study is usually used in data mining field, especially for classification, to choose the best model for establishment of association. We employed three hackneyed performance measures of all classification approaches: accuracy, sensitivity and specificity. A distinguished confusion matrix was obtained to calculate the three measures. Confusion matrix is a matrix representation of the classification results. The upper left cell denotes the number of samples classified as true while they were true (i.e., true positives, TP), and lower right cell denotes the number of samples classified as false while they were actually false (i.e., true false, TF). The other two cells (lower left cell and upper right cell) denote the number of samples misclassified. Specifically, the lower left cell denotes the number of samples classified as false while they actually were true (i.e., false negatives, FN), and the upper right cell denotes the number of samples classified as true while they actually were false (i.e., false positives, FP). Once the confusion matrices were constructed, the accuracy, sensitivity and specificity are easily calculated as: sensitivity = TP/(TP + FN); specificity = TN/(TN + FP); Accuracy = (TP + TN)/(TP + FP + TN + FN); where TP, TN, FP and FN denotes true positives, true negatives, false positives and false negatives, respectively [Delen et al., 2005].

3-fold cross validation was used here to minimize the bias produced by random sampling of the training and test data samples.

3.1 Bayes approach

Bayes classification approach originates from Bayes rules in statistics, in which Naïve Bayes and Bayesian network are two classification models that can perform the classification task [Morelante et al., 2007]. We do not describe the mathematic principle of the two models in detail. Table 1 shows the results of three performance measures. The local comparison study indicates that Naïve Bayes has better performance for classification in Bayes method, so it can be taken as a ‘delegate’ of Bayes approach to compete with other classification approaches. However, it is found that the better model in Bayes approach has low specificity, although the sensitivity is high, therefore, Bayes approach may be not a good way to establish association between BSS and 4 factors.

Approach	Models	TP	FN	FP	TN	Sensitivity	Specificity	Accuracy
Bayesian network	41	0	16	0	0	100%	0%	71.9%
Naïve Bayes	40	1	10	1	6	97.6%	37.5%	80.7%

Table 1. The performance of Bayes in classifying BSS in the UA data

3.2 Neural network

With regard to neural network approach, Multilayer perceptron (MLP) with back propagation algorithm and Radial-basis Function Network (RBF) are extensively applied in various fields for classification [Lee, 2006]; [Peng et al., 2007]. As depicted in Table 2, RBF performs better than MLP in accuracy in classifying BSS. Both two types of neural networks have hidden layers, which make neural networks have powerful classification ability. However, as the other side of coin, the hidden layers hamper
the interpretation of neural network when applied to classification here, thus neural network remains a “Black Box” for us (Figure 1). Despite this, the powerful ability of classification by neural network still greatly helps us to establish association between BSS and inflammation factors.

![Fig. 1. The topology of MLP and RBF network](image)

Table 2. RBF is the best for Neural Networks

Approach	Model	TP	FN	Sensitivity	Specificity	Accuracy
MLP	33	8	12	80.5%	75%	78.9%
RBFN	38	3	12	92.7%	75%	87.7%

3.3 Support Vector Machine

Support Vector Machine (SVM) was a newly developed supervised learning method during last decade (Figure 2) [Vapnik, 1995]. Here, we use two most frequently applied SVM types. One is introduced in [Platt, 1980], called SMO. The other is Libsvm that can be accessed in [Chang & Lin, 2001]. Table 3 is responsible for the local comparison study results of SVM. We easily conclude that Libsvm can be considered as ‘delegate’ of SVM.

![Fig. 2. Support Vector Machine](image)

Table 3. Libsvm is slightly best in a steady way

Approach	Model	TP	FN	Sensitivity	Specificity	Accuracy
SVM	SMO	41	0	100%	0%	71.9%
	Libsvm	38	3	92.7%	50%	80.7%
3.4 Decision tree
As the name implies, this approach recursively separates observations in branches to construct a tree for the purpose of improving prediction accuracy [Shekhar et al., 2007]. Here we employ three kinds of decision tree classification models, J48, ADTree and Random Forest. Table 4 depicts the performance of local comparison study outcomes. The algorithm J48 is better in the decision tree methods than other two models. The tree is illustrated in Figure 3, from which we can see that Decision Trees is very intuitionistic, association between BSS and inflammation factors is clearer than other approaches. Of course, the advantage in interpretation usually goes with the slightly low accuracy in classification. It is found in Table 4 that most models in Decision Tree approach have low classification accuracy.

3.5 Logistic regression
Logistic regression is a generalization of linear regression [Hastie et al., 2001]. It is used primarily for predicting binary or multi-class dependent variables. It only contains solo model. The Table 5 is the classification result.

Approach	Model	TP	FN	FP	TN	Sensitivity	Specificity	Accuracy
Decision Tree	J48	37	4	6	10	90.2%	62.5%	82.5%
	ADTree	36	5	11	5	87.8%	31.3%	71.9%
	Random Forest	36	5	11	5	87.8%	31.3%	71.9%

Table 4. J48 is ‘delegate’ of decision tree
Fig. 3. The association between BSS and inflammation factors is delineated by decision tree

Approach	Model	TP	FN	Sensitivity	Specificity	Accuracy
Logistic	Logistic regression	36	5	87.8%	37.5%	73.7%

Table 5. Logistic regression performs the task well

3.6 A summary of association between BSS and inflammation factors

By global comparison, we find that radial basis function network is most fit for building association between microscopic specifications and macroscopic syndrome. The second best is J48 from decision tree approach. Although till now RBF network is a kind of “Black Box” model so we could not “see” how the four factors interact with each other to behave differently between two categories, the trained RBF network is still able to predict whether an UA case is BSS.

Fortunately, the decision tree is a better approach to investigate the association. As depicted in Figure 3, the tree is composed of two factors, TNF-α and NO. True and False in the terminal of tree represent BSS and Non-BSS respectively. From it we can see that TNF-α and NO are significantly associated with BSS and they are selected from four inflammation factors. The other two factors are considered as low association with the BSS by the decision tree approach. It is important to note that TNF-α has significant difference between BSS and Non-BSS while NO has no significance between the two groups by t test in statistics, which suggests that the data mining approaches not only take the specifications with significant difference into account, but also never “give up” specifications with no significance. Furthermore, by carefully investigation of the tree, it is found that the higher the TNF-α, the more possibility to be diagnosed as BSS. Besides this, a lower concentration in TNF-α still induces the BSS if NO is high than 0.535 (after normalization), that is to say, BSS is associated with a combination of TNF and NO. Finally, some patients with high concentration in NO may have BSS while the other may with Non-BSS as we can see from the tree, this is why NO has no significant difference between the two groups. In a word, the association between two factors and BSS can be mined and uncovered by data mining approaches, which can help to investigate the inner mechanism of BSS.
4. Building and evaluating animal model for BSS in the context of myocardial ischemia

Myocardial ischemia is the nature of UA. We first built myocardial ischemia animal model and then evaluated and predicted whether an animal is BSS by established RBF network. The animal for building model was chosen as Chinese experimental mini swine since the heart of swine is most similar to the counterpart of human as we have discussed above.

4.1 Material

Healthy Chinese experimental minis swine (provided by Chinese University of Agriculture), weight was 25±4kg, aged between 6 months and 10 months. Regardless of sex of swine. The healthy animals are randomly divided into two groups: model group and sham operation group. In the former group, Each Chinese experimental mini swine was instrumented with a size-matched Ameroid constrictor (Research Instrument SW, USA, inner diameter of 2.75 mm) on the anterior descending branch under general anesthesia in sterile condition. Based on early results of dynamic observations, evaluations were performed four weeks after operation. Clinical performances of animals were collected and electrocardiogram, echocardiography, coronary angiography were detected. Meanwhile, blood was obtained from former cava vena to detect blood rheological features and the concentration of prostacyclin, thromboxane A2, endothelin-1 and calcitonin gene-related peptide. Then the diseases of model animals were diagnosed.

All animals were maintained and treated in accordance with the Principles of Laboratory Animal Care, formulated by the National Society for Medical Research, and the guide for the Care and Use of Laboratory Animals, prepared by the National Academy of Sciences and published by the National Institutes of Health (NIH Publication No. 86-23, revised 1985). The local ethics committee of Beijing University of Chinese Medicine approved all animal experiments.

General anesthesia was induced in the animals in a fasting state by intramuscular ketamine (25 mg/kg). They were intubated and anesthesia was maintained with continuous intravenous ketamine. After electrocardiogram (ECG) was performed, the heart of the animal was exposed through a left thoracotomy. A 4 to 6 mm segment of the left anterior descending coronary artery beginning at its origin was then freed by blunt dissection and an Ameroid constrictor with an internal diameter of 2.75mm was placed around the exposed segment. The Ameroid constrictor did not interrupt the blood flow initially, but by its hygroscopic nature, it gradually occluded the vessel by external compression. After placement of the constrictor, the thoracotomy was closed by layers and the electrocardiogram was performed again.

The surgery was performed under continuous monitoring of ECG. After recovered from anesthesia, animals were extubated. During the first 3 days after surgery, penicillin (4,800,000 units per day) was injected intramuscular to anti-infective.

4.2 Evaluating the MI disease of animal model

Selective coronary angiography was performed after 4 weeks and the degree of narrowing of the anterior descending branch were observed.

Echocardiography study was conducted pre and 4 weeks post surgery respectively to evaluate the degree of stenosis and myocardial function. Echocardiography studies including the images of six standard planes (parasternal long axis, short axis at bicuspid...
level, papillary muscle level, cardiac apex level, apical four chambers and apical two chambers), Adopting LVEDd, LVEDs, IVST, LVAW thickness (bicuspid level, papillary muscle level, cardiac apex level), EDV, ESV, Peak early diastolic velocity, Peak late diastolic velocity, etc, and calculating EF, FS, SV, $\Delta T\%$. 2-DE is introduced to visual examination the movement of the left ventricular muscles.

Once the animal model for MI is built, by using the established association, each animal can be evaluated whether is with BSS based on the “communication bridge”-the four inflammation factors. However, the difference of the four factors in concentration contained in the blood is needed to be investigated before evaluation. That is to say, the four factors should have the same scale on human and swine.

4.3 The significant difference of inflammation factors between animal and human
We found that each inflammation factor takes different concentration between animal and human. The student’s t tests showed that there is significant difference between microscopic specifications of animal and human (Table 6). In order to bridge the gap, we employed normalization method for each group to scale the concentrations of each factor. The normalized method was given in equation (1):

$$\bar{X} = \frac{X - \text{min}(A)}{\text{max}(A) - \text{min}(A)}$$

(1)

Where X represents factors, \bar{X} is responsible for the normalized factors. A is the group (human or animal) where X is included. $\text{min}(A)$ is the minimal value of X in group A while $\text{max}(A)$ is the maximal value of X. It is easy to see that \bar{X} values between 0 and 1.

	ET	TNF	IL-6	No
Human	66.61±18.576	0.6805±0.24097	68.94±47.134	82.91±54.451
Animal	137.16±24.391	1.7656±0.53346	320.39±98.939	57.74±29.497

Table 6. Mean and standard derivation of each factor for human and animal respectively.

As shown in Figure 4, after normalization with regard to each group, the concentrations of factors are in the same scale, which paves a basis for further prediction. Otherwise, the great error would be occurred during the prediction of whether an MI animal is BSS. Figure 4 shows that the minimum of ET concentration is larger than maximal of counterpart in human, which means that the difference of four inflammation factors between animal (swine) and human is significant. After normalization with regard to each group, as depicted in nether figure, the factors are in the same scale between zero and one.

4.4 Evaluating whether an animal is BSS by RBF network in the context of MI
As shown above, human data was used to train the RBF network and animal data was used for test animal model by using the model built by RBF network. The RBF network has the ability to predict whether a new case is BSS after training by the clinical data. The parameter information for RBF network that configures the classification model is shown detailedly in Table 7. Each animal with myocardial ischemia disease can be predicted by the network. The detailed results are shown in Table 8. We can see that 10 animals from total 13 animals personalized therapy of UA should be taken into account. Furthermore, the frequency of
Fig. 4. 13 patients that are randomly chosen from the cohort are compared with 13 swine. BSS in the context of animal model is nearly 77%. While in the clinics, the frequency of BSS are with BSS, the other animals are with non-BSS, which means that BSS in the context of MI is a subtype of MI (UA). By concept of syndrome in TCM, MI cohort can be divided into different groups, each of which has same phenotype that is characterized by the syndrome. Chinese herbal is prescribed in accordance with syndrome diagnosed. Therefore, in the context of UA is about 72%, the frequency error is 5%, it can be considered as sampling error.
since there are only 13 animals to be included here. It indicated that the evaluation of BSS in the animal model is accurate to some extent. Moreover, we used the second best classification approach (Decision tree J48) to re-evaluate again the 13 animals, we found out that most of animals are evaluated as same kind of syndrome. So the results obtained by RBF network evaluation and prediction are robust and credible.

Parameter	Description	Setting
Clustering Seed	The random seed to pass on to K-means	1
Ridge	Set the Ridge value for the logistic or linear regression	1.0E-8
Maxiam Iteration	Maximum number of iterations for the logistic regression to perform.	-1
minStdDev	Sets the minimum standard deviation for the clusters.	0.1
numClusters	The number of clusters for K-Means to generate.	2

Table 7. Parameter setting for RBF network

Animal	ET	TNF-	IL-6	NO	Prediction By RBF	Prediction By J48
1	0.17948	1	0.52407	0.11825	FALSE	TRUE
2	0.32296	0.13656	0.37839	0.38443	FALSE	FALSE
3	0.94394	0.77967	0.92968	0.49553	TRUE	TRUE
4	0.34929	0.67016	0.34369	0.68466	TRUE	TRUE
5	0.71667	0.5637	0.20881	0.36932	TRUE	TRUE
6	0.81531	0.30977	0.78601	0.30622	TRUE	FALSE
7	0.76521	0.85297	0.73035	0.43243	TRUE	TRUE
8	0.64986	0.52443	0.78601	1	TRUE	TRUE
9	0	0.51134	0.6987	0.49499	TRUE	TRUE
10	0.30225	0.66274	0.64863	0	FALSE	TRUE
11	0.80805	0.6514	0.48062	0.18028	TRUE	TRUE
12	0.1889	0.363	0.24321	0.11709	TRUE	TRUE
13	0.60479	0.45899	0.91622	0.36986	TRUE	TRUE

Table 8. The prediction of whether a disease animal is BSS or non-BSS by using two better classification approaches. It is noted that the normalization of animal model is with regard to all animals, including sham operation groups (data not shown here since they are not needed to be evaluated by the approaches).

5. Conclusion and discussion

In this paper, we proposed a novel strategy to build and evaluate an animal model for BSS in TCM in the context of UA. The work filled the blank of adequately evaluating animal
model for syndrome and solved the problem of how to diagnose syndrome in animal. We took advantage of supervised data mining approaches to establish the association between physical and chemical specifications and syndrome in the context of the disease in clinical data obtained by clinical epidemiology survey. The accuracy of classification of data mining approach guarantees the association establishment is right (higher than 87%). Then the specifications were used as “Communication Bridge” to translate the association to the animal. The prediction results showed that animal model with same disease (UA) may have different syndrome phenotypes and the association established in the clinics could be used to evaluate whether an animal is of BSS. The presented strategy here not only builds and evaluates animal for syndrome in TCM, but also paves a key basis to uncover the mechanism of syndrome and treat disease in a personalized way.

The paper only took the most important syndrome in the UA-BSS into account. So the UA cohort is divided into two subgroups: BSS and non-BSS. However, by former clinical research, it was found that there are about seven syndromes can be discovered in the context of UA. The further work will focus in the differential diagnosis of each syndrome by physical and chemical specifications in the context of UA and build animal models for them respectively.

6. Acknowledgement

This work was supported by a grant from the National Basic Research Program (973 Program) under grant No. 2011CB505106, the National Department Public Benefit Research Foundation of China under grant No. 200807007, the Creation for Significant New Drugs Project of China under grant No. 2009ZX09502-018, National Natural Science Foundation of China under grant No. 30902020.

7. References

Braunwald, ET AL.(2002). ACC/AHA 2002 Guideline Update for the Management of Patients With Unstable Angina and Non-ST-Segment Elevation Myocardial Infarction. *J Am Coll Cardiol*, 2002, 40, 1366-1374, ISSN 0002-9149

Chang, CC. & Lin, CJ.(2001). LIBSVM : a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.6.

Chen, JX.; Xi, GC. & Chen, J.(2007). An unsupervised pattern (syndrome in traditional Chinese medicine) discovery algorithm based on association delineated by revised mutual information in chronic renal failure data. *Journal of biological systems*, 2007, vol.15, no.4, 435-451, ISSN 0218-3390

Davidson, KW.; Schwartz, JE. & Kirkland, SA. (2009). Relation of inflammation to depression and incident coronary heart disease (from the Canadian Nova Scotia Health Survey [NSHS95] Prospective Population Study),2009, vol.103, no.6, 755-761.

Delen, D.; Walker, G. & Kadam, A.(2005). Predicting breast cancer survivability: a comparison of three data mining methods. *Artificial Intelligence in Medicine*, 2005, vol.34, no. 2, 113-127, ISSN 0999-3657

Gustavsson, CG. & Agardh, CD.(2009). Inflammatory activity increases with haemoglobin A1c in patients with acute coronary syndrome. *Scandinavian Cardiovascular Journal*, 2009, vol.9999, no.1, 1-6, ISSN 1401-7431

Hastie, T.; Tibshirani, R. & Friedman, J.(2001). *The elements of statistical learning*. Springer-Verlag, ISBN 978-0-387-84857-0, New York
Hayden, EC. (2008). Biological tools revamp disease classification. *Nature*, 2008, vol.453, no.7156, 709, ISSN 0028-0836

Ian, H.W. & Eibe, F. (2005). *Data mining: Practical machine learning tools and techniques*, Morgan, ISBN 0120884070

Lee, K. (2006). MLP-based phone boundary refining for a TTS database. *IEEE Transactions on Audio, Speech, and Language Processing*, 2006, 14, 981-989, ISSN 1558-7916

Li, S.; Zhang, X. & Li, Y. (2007). Understanding Zheng in traditional Chinese medicine in the context of neuro-endocrine immune network. *IET System Biology*, 2007, vol.1, no.1, 51-60, ISSN 1751-8849

Ma, XJ.; Yin, HJ. & Chen, KJ. (2007). Research Progress of Correlation between Blood stasis Syndrome and Inflammation. *Chinese Journal of Integrated Traditional and Western Medicine*, 2007, Vol.27, No.7, 669-672, ISSN 1003-5370 (PMID: 17717936) (Chinese)

Mao, YL.; Yuan, ZK. & Huang, XP. (2004). Study on relationship between the polymorphism of angiotensin converting enzyme gene and blood stasis syndrome in patients with coronary heart disease. *Chinese Journal of Integrated Traditional and Western Medicine*, 2004, Vol.24, No.9, 776-780, ISSN 1003-5370 (PMID: 15495818) (Chinese)

Monnet, E. & Chachques, JC. (2005). Animal Models of Heart Failure: What Is New? *Ann Thorac Surg*, Apr 2005, 79, 1445-1453, ISSN 0003-4975

Morelande, M.; Kreucher & Kastella, K. (2007). A Bayesian Approach to Multiple Target Detection and Tracking. *IEEE Transactions on Signal Processing*, 2007, Vol.55, No.5, 1589-1604, ISSN 1053-587X

Peng, J.; Li, K. & Irwin, G. (2007). A Novel Continuous Forward Algorithm for RBF Neural Modeling. *IEEE Transactions on Automatic Control*, 2007, 52, 117-122, ISSN 0018-9286

Platt, J. (1980). Training of Support Vector Machines using Sequential Minimal Optimization. *Advances in Kernel Methods - Support Vector Learning*, Schoelkopf, B.; Burges, C. & Smola, A., MIT Press, ISBN 0262194163

Shekhar, R.; Phoha, G. & Balagani, K. (2007). K-Means+ID3: A Novel Method for Supervised Anomaly Detection by Cascading K-Means Clustering and ID3 Decision Tree Learning Methods. *IEEE Transactions on Knowledge and Data Engineering*, 2007, 19, 345-354, ISSN 1041-4347

Sun, ZQ.; Xi, GC. & Yi, JQ. (2007). Select informative symptom combination of diagnosing syndrome. *Journal of biological systems*, 2007, vol.15 no.1, 27-37, ISSN 0218-3390

Vapnik, V. (1995). *The Nature of Statistical Learning Theory*. Springer, 0387987800, New York

Yuan, ZK.; Huang, XP. & Tan, GB. (2006). Analysis of the Function of Vascular Endothelial Cells in Coronary Heart Disease Patients of Blood-Stasis Syndrome. *Chinese Journal of Integrated Traditional and Western Medicine*, 2006, Vol.26, No.5, 407-410, ISSN 1003-5370 (PMID: 16883905) (Chinese)

Zhang, JG.; Yang, N. & He, H. (2005). Effect of Astragalus Injection on Plasma Levels of Apoptosis-related Factors in Aged Patients with Chronic Heart Failure. *Chinese Journal of Integrated Traditional and Western Medicine*, 2005, Vol.25, No.11, 187-190, ISSN 1003-5370 (PMID: 16181532) (Chinese)

Zheng, YY. (2002). *Guiding principle of new drug clinical research of traditional Chinese medicine*, Medical Science Publishing House of China, ISBN 750672586x, Beijing (Chinese)
The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by 'Data Mining' address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Huihui Zhao, Jianxin Chen, Qi Shi and Wei Wang (2011). Data Mining Based Establishment and Evaluation of Porcine Model for Syndrome in Traditional Chinese Medicine in the Context of Unstable Angina (Myocardial Ischemia), Knowledge-Oriented Applications in Data Mining, Prof. Kimito Funatsu (Ed.), ISBN: 978-953-307-154-1, InTech, Available from: http://www.intechopen.com/books/knowledge-oriented-applications-in-data-mining/data-mining-based-establishment-and-evaluation-of-porcine-model-for-syndrome-in-traditional-chinese-
