Monitoring and protection of deflated agricultural landscapes of the central caucasus

A V Loshakov¹, N Y Khasai, O V Bulavinova and M G Kasynina
FSBI of HE Stavropol State Agrarian University, Stavropol, Russian Federation

¹E-mail: alexandrloshakov@mail.ru

Abstract. The purpose of our work is to analyze the results of monitoring agricultural landscapes exposed to wind erosion and develop recommendations for their protection and further use, depending on their quality condition. Monitoring data allows us to assess the state of agricultural land and make recommendations for their further use. During the research, modern methods of territory survey were used, such as remote sensing of the earth using satellite images and unmanned aerial vehicles, as well as ground-based methods for detecting deflated land. Deflated areas of agricultural landscapes were identified, the area, the degree of their degradation, the causes of their occurrence and the percentage of increase in the area relative to previous surveys were determined. The results of monitoring of agricultural landscapes show that the area of land subject to wind erosion tends to increase, and in addition, there is an increase in the area of land with a medium, strong and very strong degree of degradation. The obtained research results give an idea of the current state of agricultural landscapes that have undergone deflation, and also allow us to propose a number of measures aimed at their improvement and preservation. It should also be noted that not taking urgent measures to correct the current situation will lead to the loss of large areas of agricultural land in all administrative districts of the region.

1. Introduction
The problem of deflation of agricultural landscapes is characteristic of many regions of our country, but its most active development is observed in the leading agricultural regions, where large areas of land are arable land. Also, a significant factor affecting the development of wind erosion is the natural and climatic conditions of a particular region. The territory of the Stavropol Territory is characterized by a complex terrain and the presence of a large number of wind corridors. The average maximum wind speed is 15 m/s, but in different parts of the region, the wind speed can increase to 26-30 m/s. In such conditions, the risk of deflation is maximum, which has led to the fact that the area of deflation-prone land in the region is about 4.5 million hectares [1].

The region under study is also characterized by such a phenomenon as dust storms, which can occur almost at any time of the year. They cause great damage to agriculture and, especially, to crops and soils. Dust storms are repeated every 3-20 years, carrying away up to 15-20 cm of the surface layer of the soil, but in the 1970s, in some areas, dust storms blew up to 1 m of soil. Large particles of soil move over short distances, lingering at various obstacles and in the depressions of the terrain. The smallest soil particles in the form of an air suspension can move for tens, hundreds, and even thousands of kilometers [2]. There is also everyday deflation, which is more slowly but regularly eroding the soil. It manifests itself in the form of riding erosion and snowdrift.
2. Monitoring of deflated agricultural landscapes

Monitoring of deflated agricultural landscapes is not systematic and therefore the problem of conservation, use and protection of such lands is important for modern agricultural land use. On the territory of the studied region, more than 92% of the land fund belongs to agricultural land, of which about 90% is agricultural land. Thus, the use of agricultural landscapes is very intensive, which in turn leads to the development and strengthening of deflation processes. Issues of monitoring of deflated land and its protection should be addressed in a timely manner to avoid deterioration of the quality of the land and its further loss [3].

The area of deflated agricultural land during the study period increased by more than 100 thousand hectares and at the same time the area of land with a weak degree of degradation decreased, but the area of land with a medium, strong and very strong degree of degradation significantly increased.

More than 58% of the deflated land is arable land and about 40% is pasture. The remaining area is represented by hayfields (0.68%), perennial plantings (0.48%) and fallow (0.14%). Of all the lands subject to deflation, more than 47% are medium-drained and about 42% are low-drained. The area of heavily ventilated land is 83 thousand hectares and during the analyzed period it increased by more than 26 thousand hectares. The area of very heavily deflated land has also increased by 2115 hectares. The maximum area of deflated agricultural land was recorded in 2006. (820,507 ha), which is reduced by 64,000 ha by 2012 and increased by 34,000 ha by 2017.

The area of deflated land in the Stavropol Territory in 2017 is 854.2 thousand hectares (table 1).

Year	Deflated land	Agricultural land	Arable land	Fallow	Perennial plantings	Hayfields	Pastures
2000	Total, including	754178	404670	1098	836	2894	344680
	weak	544079	336282	1065	388	2039	204305
	medium	147030	57522	33	448	782	88245
	strong	56788	7406	-	-	73	49309
	very strong	6281	3460	-	-	-	2821
2006	Total, including	884284	581936	347	3254	4255	294492
	weak	372795	222459	347	881	2722	146386
	medium	419914	316727	-	2337	1129	99721
	strong	82427	36908	-	36	365	45118
	very strong	9148	5842	-	-	39	3267
2012	Total, including	820507	509339	621	3578	3965	303004
	weak	376424	207874	579	1134	2464	164373
	medium	364955	267019	42	2425	1038	94431
	strong	71140	29417	-	19	411	41293
	very strong	7988	5029	-	-	52	2907
2017	Total, including	854232	501382	1238	4139	5792	341681
	weak	357141	160758	1137	1548	3660	190038
The area of deflated arable land is more than 501 thousand hectares, of which 298.5 thousand hectares have an average degree of degradation and more than 160 thousand hectares are weak. More than 7% of the land exposed to wind erosion is deflated to a strong degree and about 1% is very severely degraded. During the research period, the total area of deflated arable land increased by 97 thousand hectares, but at the same time, the area of land with a weak degree of degradation sharply decreased and the number of lands with medium, strong and very strong degrees of deflation increased [4].

Analyzing the graph, it can be concluded that in 2006 the area of deflated arable land reached a maximum (581.9 ha) and after that there is a gradual decrease in the total area of land subject to wind erosion. It is also possible to note a constant decrease in the area of land with a weak degree of degradation, and an increase in the number of land with an identified medium and strong degree of deflation. This fact indicates an increase in the intensity of deflationary processes on arable land and the deterioration of their condition.

Pasture lands are less prone to deflation, but on sloping lands and in areas where there is no dense grass, favorable conditions are created for the development of negative processes. More than 341 thousand hectares of deflated land have been identified in pastures, of which 190 thousand hectares are slightly deflated and 103 thousand hectares are medium-deflated. More than 45 thousand hectares of pastures are already deflated to a strong degree and more than 3 thousand hectares are very strongly deflated. During the analyzed period, the deflated area did not significantly decrease.

The dynamics of deflated pasture lands shows that their total area for 2000-2017 remains more or less stable, but there are significant changes in the areas of land where a weak and medium degree of deflation is detected [5].

On such lands as fallow, perennial plantings and hayfields, the total amount is not much more than 10 thousand hectares of deflated land, and only on hayfields were identified areas with a strong (603 ha) and very strong (81 ha) degree of degradation. The monitoring of deflated agricultural land was carried out in the context of administrative districts and taking into account specific natural conditions, topography and intensity of agriculture. Over 10 years, the total area of deflated land has decreased by 30 thousand. this reduction was due to the area of arable land (-80554 ha), but during this period the area of deflated pasture land (+47189 ha), hayfields (+1537 ha), perennial plantings (+885 ha) and fallow land (+891 ha) increased.

According to the monitoring results, a catastrophic situation was identified in the Georgievsky, Krasnogvardeysky, Kursk, Levokumsky and Neftekumsky districts. The total area of deflated land in these areas is 600 thousand hectares, that is, in each district it exceeds 100 thousand hectares of actually degraded land. In such districts as Blagodarnensky, Georgievsky, Grachevsky, Ipatovsky, Kirovsky, Krasnogvardeysky and Petrovsky, more than 90% of deflated land falls on arable land, and in most other districts this figure is about 50%. There are exceptional cases, for example, in Levokumsky, Kursk, Neftekumsky and Shpakovsky districts, the main land on which deflation is detected is pasture land [6].

When monitoring deflated land, we also calculated the percentage of land subject to deflation over a ten-year period (table 2).
Table 2. Dynamics of deflated areas of agricultural landscapes.

n/a	District	Area of agricultural land, 2006. ha	Area of deflated land, 2006 ha	Area of agricultural land, 2017. ha	Area of deflated land, 2017. ha		
1	Alexandrovsky	175561	12400	7,06	175561	11651	6.63
2	Andropovsky	199286	3746	1.88	199285	3205	1.61
3	Apanasenkovsky	315889	-	-	315889	-	-
4	Arzgirsky	297766	10375	3.48	297754	9691	3.25
5	Blagodarnensky	225355	17667	7.84	225269	16844	7.48
6	Budennovsky	269828	12898	4.78	269807	11327	4.19
7	St. George's	161867	138004	85.26	161863	134915	83.35
8	Grachevsky	160242	37608	23.47	160182	19441	12.13
9	Izobilnensky	160402	-	-	160276	19441	12.13
10	Ipatovsky	362557	15337	4.23	362551	14008	3.86
11	Kirovsky	119719	13751	11.48	119305	13049	10.94
12	Kochubeevsky	185819	18830	10.13	184715	17690	9.58
13	Krasnogvardeysky	195753	133157	68.02	195675	129268	66.06
14	Kursky	314029	108940	34.69	314029	106743	33.91
15	Levokumsky	416486	115328	27.69	416482	114014	27.37
16	Mineralovodsky	120223	6621	5.51	119597	5496	4.59
17	Neftekumsky	326903	115338	35.28	326893	113022	34.57
18	Novoaleksandrovsy	174006	6	0.003	173796	-	-
19	Novoselitsky	158262	14335	9.06	158210	13503	8.53
20	Petrovsky	239633	64090	26.74	239575	62857	26.24
21	Foothill	157386	1707	1.08	157159	1901	1.21
22	Soviet	181493	48	0.03	181361	39	0.02
23	Stepnovsky	169995	-	-	169995	-	-
24	Trunovsky	150037	5091	3.39	150367	4118	2.74
25	Turkmen	239240	9704	4.06	239240	8643	3.61
26	Shpakovsky	181843	8618	4.74	182298	7706	4.23
	Total by edge	5659580	884284	15.62	5657352	854232	15.1

The reduction in the area of deflated arable land is associated with increased attention to arable land and the use of anti-erosion measures, but the qualitative state of natural forage lands and perennial plantings is ignored [7].

The smallest areas of deflated land were found on the territory of the Sovetsky (39 ha), Foothill (1901 ha) and Andropovsky (3205 ha) districts. And within the boundaries of the Apanasenkovsky, Novoaleksandrovsy and Stepnovsky districts, no land subject to wind erosion was found during the research period.
The total area of land subject to deflation in the Stavropol Territory decreased by 0.5% during the analyzed period. The maximum share of agricultural land subject to deflation of various degrees, with the majority of them falling on arable land, is noted in the Georgievsky district (more than 83%). In the Krasnogvardeysky district, 66% of the land is eroded. In some areas, about a third of the land has signs of deflation: Neftekumsky (34.57%), Kursk (33.91%), Levokumsky (33.91%) and Petrovsky (26.24%).

Monitoring of land subject to wind erosion has shown that the development of these processes tends to reduce the area of arable land, and on other types of agricultural land to increase. And this situation is absolutely typical for most of the administrative districts of the Stavropol Territory. The development of deflation depends on many factors, and to reduce the intensity of its development, urgent measures are needed to preserve and protect agricultural landscapes [8].

Reference

[1] Klyushin P V, Khlystun V N, Loshakov A V, Savinova S V and Ivanova T A 2019 Efficiency of field-protective forest plantations in the first agro-climatic zone of the Stavropol territory of the Russian Federation *IOP Conference Series: Earth and Environmental Science* **350**(1) 012034

[2] Vershinin V V, Murasheva A A, Shirokova V A et al. 2016 The solutions of the agricultural land use monitoring problems *International Journal of Environmental and Science Education* **11**(12) 5058-69

[3] Manaenkov A S and Rybashlykova L P 2020 Increasing the Efficiency of Plant-Cover Restoration in the Modern Focus of Deflation on Pastures of the Northwestern Caspian Region *Arid Ecosystems* **10**(4) 358-67

[4] Poenaru V, Badea A, Dana Negula I and Moise C and Cimpeanu S 2016 Land degradation
monitoring in Braila agricultural area using RADARSAT2 data Proceedings of SPIE - The International Society for Optical Engineering 9688 968815

[5] Esaulko A, Sigida M, Golosnoy E, Antonov S and Lobankova O 2019 Condition monitoring and analysis of development in winter crops of water erosion processes using remote sensing technologies Engineering for Rural Development 18 391-6

[6] Kliment'ev A I and Tikhonov V E 2001 Ecohydrological Analysis of Soil Loss Tolerance in Agrolandscapes Eurasian Soil Science 34(6) 673-82

[7] Ergina E I, Tronza G E, Shevchenko I M, Ergin S M and Sidorenko I Y 2020 Current nature and problems of agricultural land management in the Republic of Crimea E3S Web of Conferences 224 04015

[8] Vlasenko M V, Kulik A K and Salugin A N 2019 Evaluation of the Ecological Status and Loss of Productivity of Arid Pasture Ecosystems of the Sarpa Lowland Arid Ecosystems 9(4) 273-81