Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter

Aaron van Donkelaar,1 Randall V. Martin,1,2 Michael Brauer,3 and Brian L. Boys1

1Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada; 2Harvard–Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA; 3School of Environmental Health, University of British Columbia, Vancouver, British Columbia, Canada

BACKGROUND: More than a decade of satellite observations offers global information about the trend and magnitude of human exposure to fine particulate matter (PM2.5).

OBJECTIVE: In this study, we developed improved global exposure estimates of ambient PM2.5 mass and trend using PM2.5 concentrations inferred from multiple satellite instruments.

METHODS: We combined three satellite-derived PM2.5 sources to produce global PM2.5 estimates at about 10 km × 10 km from 1998 through 2012. For each source, we related total column retrievals of aerosol optical depth to near-ground PM2.5 using the GEOS–Chem chemical transport model to represent local aerosol optical properties and vertical profiles. We collected 210 global ground-based PM2.5 observations from the literature to evaluate our satellite-based estimates with values measured in areas other than North America and Europe.

RESULTS: We estimated that global population-weighted ambient PM2.5 concentrations increased 0.55 µg/m3/year (95% CI: 0.43, 0.67) (2.1%/year; 95% CI: 1.6, 2.6) from 1998 through 2012. Increasing PM2.5 in some developing regions drove this global change, despite decreasing PM2.5 in some developed regions. The estimated proportion of the population of East Asia living above the World Health Organization (WHO) Interim Target-1 of 35 µg/m3 increased from 51% in 1998–2000 to 70% in 2010–2012. In contrast, the North American proportion above the WHO Air Quality Guideline of 10 µg/m3 fell from 62% in 1998–2000 to 19% in 2010–2012. We found significant agreement between satellite-derived estimates and ground-based measurements outside North America and Europe (r = 0.81; n = 210; slope = 0.68). The low bias in satellite-derived estimates suggests that true global concentrations could be even greater.

CONCLUSIONS: Satellite observations provide insight into global long-term changes in ambient PM2.5 concentrations. Satellite-derived estimates and ground-based PM2.5 observations from this study are available for public use.

CITATION: van Donkelaar A, Martin RV, Brauer M, Boys BL. 2015. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ Health Perspect 123:135–143; http://dx.doi.org/10.1289/ehp.1408646

Introduction

Long-term exposure to fine particulate matter (PM2.5) is associated with morbidity and premature mortality (Dockery et al. 1993; Pope et al. 2009). The Global Burden of Disease (GBD) assessment attributed 3.2 million premature deaths per year to ambient PM2.5 exposure, such that PM2.5 is one of the leading risk factors for premature mortality (Lim et al. 2012). Assessments and indicators of the health effects of long-term exposure to PM2.5, such as the GBD assessment, the World Health Organization (WHO) assessment (http://www.who.int/gho/pehe/outdoor_air_pollution/burden/en/) and the Environmental Performance Index (http://epi.yale.edu), rely on an accurate representation of both magnitude and spatial distribution of PM2.5. Long-term trends in PM2.5 concentration can inform whether appropriate steps are being taken to mitigate health and environmental outcomes, and can motivate additional action. Global monitoring can occur from a single satellite as it orbits the earth, minimizing artifacts that may result from regional differences in ground-level network design and operation. Satellites also offer one of the few observationally based sources for long-term PM2.5 concentrations that can represent long-term exposure and detect significant changes in many parts of the world.

Satellite retrievals of aerosol optical depth (AOD), which provide a measure of the amount of light extinction through the atmospheric column due to the presence of aerosol, have a global data record extending more than a decade. Differing design characteristics between satellite instruments and their retrievals can benefit particular applications. For example, Collection 5 retrievals from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument (Levy et al. 2007) provide relatively frequent (daily) global observation and accurate AOD over dark surfaces, but are subject to unknown changes in instrument sensitivity with time which could introduce artificial trends. Retrievals from the MISR (Multi-angle Imaging Spectroradiometer) instrument (Diner et al. 2005; Martonchik et al. 2009) require around 6 days for global coverage, but are accurate for both AOD and trend studies based upon comparisons that include AOD measurements from the AERONET (aerosol robotic network) ground-based sun photometer network (Zhang and Reid 2010). SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) (Hsu et al. 2013) instrument sensitivity was stable to within 0.13% over its mission, making it applicable for temporal trends (Eplee et al. 2011), but is less accurate over land for absolute AOD compared with MODIS or MISR because of the lack of a mid-infrared channel (Petrenko and Ichoku 2013).

The relationship between AOD and PM2.5 depends on aerosol vertical distribution, humidity, and aerosol composition, which are impacted by changes in meteorology and emissions. One technique of relating AOD to near-surface PM2.5 uses the ratio of PM2.5 to AOD simulated by a chemical transport model. This parameter allows ground-level PM2.5 estimates to be calculated from satellite AOD retrievals. This approach was first demonstrated using the MISR instrument with the GEOS (Goddard Earth Observing System)—Chem chemical transport model (http://www.geos-chem.org) over the United States for 2001 (Liu et al. 2004), and subsequently extended globally for each of the MODIS and MISR instruments for 2001–2002 at a spatial resolution of about 100 km × 100 km (van Donkelaar et al. 2006).

The first long-term mean, global, satellite-derived PM2.5 estimates used this technique to combine filtered values from both MODIS and MISR over 2001–2006 at a spatial resolution of about 10 km × 10 km. This data set demonstrated promising agreement with coincident ground-based observations over North America (r = 0.77; slope = 1.07) and globally (r = 0.83; slope = 0.86) (van Donkelaar et al. 2010). We hereafter refer to this data set as Unconstrained (UC), owing to the unrestricted freedom it gave satellite AOD retrievals to represent the...

Address correspondence to A. van Donkelaar, Department of Physics and Atmospheric Science, Dalhousie University, 6300 Coburg Rd., Halifax, Nova Scotia, B3H 4R2 Canada. E-mail: Aaron.van.Donkelaar@dal.ca

Supplemental Material is available online (http://dx.doi.org/10.1289/ehp.1408646).

This work was supported by Health Canada, the Natural Sciences and Engineering Research Council of Canada, and the U.S. National Institutes of Health. Some of the computing facilities used here were provided by the Atlantic Computational Excellence Network.

The authors declare they have no actual or potential competing financial interests.

Received: 2 May 2014; Accepted: 22 October 2014; Advance Publication: 24 October 2014; Final Publication: 1 February 2015.
Materials and Methods

Production of satellite-derived estimates. We first produced a decadal mean PM$_{2.5}$ estimate over 2001–2010. Following Boys et al. (2014), we combined retrievals from SeaWiFS and MISR (see Supplemental Material, “Description of satellite instrumentation”) with time-varying GEOS–Chem (see Supplemental Material, “Description of the GEOS–Chem chemical transport model”) simulated AOD to PM$_{2.5}$ relationships to infer annual variation in PM$_{2.5}$ over 1998–2012 at a spatial resolution of 0.1° × 0.1° (henceforth referred to as SeaWiFS&MISR PM$_{2.5}$). We then extended both OE and UC to cover the temporal range 2001–2010 by applying to each data set the ratio of a coincident SeaWiFS&MISR PM$_{2.5}$ to its decadal mean. We evaluated each extended data set using ground-based PM$_{2.5}$ observations over North America. The global MODIS land-cover type product (MOD12; Freidl et al. 2010) was used to determine the relative weighting of each data set over each land cover type that maximized agreement with ground-level PM$_{2.5}$ observations following van Donkelaar et al. (2013) to produce an initial global combined decadal mean PM$_{2.5}$ estimate. We subsequently produced a consistent time series of PM$_{2.5}$ over 1998–2012, inclusive. We applied to the initial decadal mean data set the relative temporal variation of SeaWiFS&MISR PM$_{2.5}$ to produce monthly satellite-derived PM$_{2.5}$ estimates over 1998–2012. We calculated absolute annual trends for both data sets using a general least squares regression of 5-month box-car filtered (i.e., median of ± 5 months from the center date), deseasonalized monthly mean values following Zhang and Reid (2010). This approach reduces the impact of any individual season and its relative sampling rate on the overall trend. Confidence intervals (CIs) are based on the integration of Student’s t-distribution, and account for autocorrelation. We use an alpha value of 0.05 to define statistical significance. We superimposed these trends to create global annual PM$_{2.5}$ estimates that were consistent in trend with SeaWiFS&MISR and in magnitude with the initial decadal mean. We used a 3-year running median to reduce noise in the annual satellite-derived values. All PM$_{2.5}$ concentrations are given at 35% relative humidity, except for comparisons involving ground-level measurements outside North America, where the 50% standard is adopted for consistency with the ground-level measurements. This difference in standard can increase satellite-derived PM$_{2.5}$ estimates by approximately 10% due to additional water uptake where hydrophilic aerosols, such as sulfate, dominate.

Following Evans et al. (2013), we estimated dust-free and sea salt–free PM$_{2.5}$ concentrations by scaling total satellite-derived PM$_{2.5}$ concentrations by the monthly simulated relative contribution of the remaining species. These scalars were linearly interpolated from the local simulation resolution to 0.1° × 0.1°. We produced satellite-derived PM$_{2.5}$ surface area estimates for interpretation of the dust- and sea salt–free PM$_{2.5}$ estimates following a similar approach as PM$_{2.5}$ mass concentrations, except that the GEOS–Chem model was used to relate AOD to surface area, rather than to mass (see Supplemental Material, “Description of satellite-derived PM$_{2.5}$ surface area”).

Collection of ground-based observations for evaluation. We also collected ground-based PM$_{2.5}$ observations over Canada and the United States at locations operational for...
at least 8 years between 2001 and 2010. We required European sites to be in operation at least 3 years throughout the decade—less time than for North American locations due to the more recent expansion of this regional network. Details of these monitors are given in the Supplemental Material, “Description of ground-level monitor sources from established networks.”

We collected global ground-based PM$_{2.5}$ measurements from published values based on a literature review using the search terms “aerosol” and “PM$_{2.5}$ ” in the Thomson Reuters Web of Science (http://www.http://thomsonreuters.com/thomson-reuters-web-of-science/), yielding approximately 3,500 results. We selected 541 papers for detailed evaluation from this list and in-publication citations, and found that 342 contained results. We extracted relevant PM$_{2.5}$ observations. We estimated year-specific population densities using linear interpolation.

Results

Figure 1 (top panel) shows decadal mean satellite-derived PM$_{2.5}$ concentrations over North America. Higher concentrations are visible in the eastern United States and in the San Joaquin Valley of California. Figure 1 also shows long-term mean ground-level PM$_{2.5}$ measured during this period over Canada and the United States and comparison with the satellite-derived estimates. Significant overall agreement is found (slope = 0.96, $r = 0.76$; 1-σ error = 1 µg/m3 + 16%, where 1-σ error defines the error envelope within which 68% of data points reside). Separate comparisons of OE and UC satellite-derived estimates with the same ground-level monitors gave similar levels of agreement compared with one another ($r = 0.70$–0.71; 1-σ error = 1 µg/m3 + 18–20%; not shown). Contributions of OE and UC to the final PM$_{2.5}$ estimates were approximately equal over most land cover types.

Figure 2 (top panel) shows decadal mean satellite-derived PM$_{2.5}$ concentrations over Europe. PM$_{2.5}$ is generally higher in Eastern Europe than in Western Europe. The Po Valley in Italy is characterized by the highest regional concentrations, with average PM$_{2.5}$ for some local locations exceeding 35 µg/m3 from 2001 through 2010. Figure 2 also shows available long-term mean ground-level observations, which are mostly for the latter part of this period. We find slightly weaker agreement with satellite-derived estimates for Europe than for North America, with slope = 0.78, $r = 0.73$ and 1-σ error = 1 µg/m3 + 21%. The weaker agreement likely results from the shorter temporal sampling of 3 years over this region, as illustrated in Supplemental Material,
Tables S1 and S2. A cluster of ground-level monitors in southern Poland with annual mean concentrations > 35 μg/m³ contributes to the disagreement. PM2.5 concentrations in southern Poland near Katowice are higher in wintertime compared with other seasons (Rogula-Kozłowska et al. 2014), when satellite observations are more frequent.

Figure 3 (top panel) shows global decadal mean satellite-derived PM2.5. PM2.5 concentrations in large populated regions of northern India and eastern China, respectively, exceed 60 μg/m³ and 80 μg/m³. The bottom right panel shows the 210 locations of global mean ground-level PM2.5 concentrations outside Canada, the United States, and Europe. Significant agreement (r = 0.81) exists, but satellite-derived values tend to be lower than ground-level measurements, with an overall slope of 0.68. Some of this underestimate may arise from locations such as Ulaanbaatar, Mongolia, that experience higher concentrations in wintertime and nighttime. PM2.5 (World Bank 2011) when satellite observations are limited compared with other seasons or daytime. Bias in AOD retrieval may also play a role under the high aerosol loadings found in some regions, such as for MISR AOD over the Indian subcontinent (Dey and Di Girolamo 2010). PM2.5 estimates from a sensitivity analysis in which the 110 sites with unspedified geocoordinates were assigned a coordinate at the city center, rather than allowed to shift by up to one pixel from this center, showed similar, but slightly weaker agreement (r = 0.78; slope = 0.65).

Table 1 provides a summary of population-weighted satellite-derived exposure according to the regions used by the Global Burden of Disease (Lim et al. 2012). The estimated global population-weighted PM2.5 exposure between 2001 and 2010 is 26.4 μg/m³ with large spatial variability (SD of 21.4 μg/m³). South and East Asia have the highest estimated population-weighted mean exposures, at 34.6 and 50.3 μg/m³.

Figure 3 (middle) presents global estimates of satellite-derived PM2.5 with mineral dust and sea salt concentrations removed for 2001–2010. High concentrations remain over northern India, the Middle East, and West sub-Saharan Africa. Dust and sea salt account for 10% of these concentrations in East Asia and 20% in South Asia. Dust and sea salt have little influence over European and North American concentrations.

Table 1 contains population-weighted PM2.5 trends over 1998–2012 for each GBD region. A corresponding global trend map following Boys et al. (2014) is in Supplemental Material, Figure S2. Statistically significant increasing population-weighted trends include 1.63 μg/m³/year; 95% CI: 1.09, 2.17 (3.2%/year; 95% CI: 2.1, 4.3) over East Asia and 1.02 μg/m³/year; 95% CI: 0.77, 1.27 (2.9%/year; 95% CI: 2.2, 3.6) over South Asia. These trends are generally consistent with changes in anthropogenic emissions (Klimont et al. 2013; Kurokawa et al. 2013) and increasing sulfate–nitrate–ammonium concentrations as described in Boys et al. (2014). Trends of 0.38 μg/m³/year; 95% CI: 0.17, 0.59 (1.5%/year; 95% CI: 0.7, 2.3) in the Middle East are driven by mineral dust (Chin et al. 2014). Statistically significant downward population-weighted trends include –0.33 μg/m³/year; 95% CI: –0.41, –0.25 (–3.3%/year; 95% CI: –4.1, –2.5) over North America and –0.25 μg/m³/year;
Global PM$_{2.5}$ from satellite for long-term assessment

Environmental Health Perspectives • Volume 123 | Number 2 | February 2015

95% CI: –0.37, –0.13 (–1.9%/year; 95% CI: –2.8, –1.0) over Western Europe. The global population-weighted trend was 0.55 μg/m3/year; 95% CI: 0.43, 0.67 (2.1%/year; 95% CI: 1.6, 2.6).

Figure 4 shows time-series snapshots of PM$_{2.5}$ over the four large-scale areas that demonstrate statistically significant trends. Dust- and sea salt–removed time series over the same regions are shown in Supplemental Material, Figure S3. Changes in PM$_{2.5}$ estimates occur over large spatial domains. Figure 5 shows local trends for a major city within each area. The satellite-derived PM$_{2.5}$ trend estimate for Detroit, Michigan, from 2001 through 2010 (–0.51 μg/m3; 95% CI: –0.23, –0.79) was similar to the corresponding trend based on available ground-level observations (–0.54 μg/m3/year; 95% CI: –0.17, –0.91).

The full 15-year satellite-derived PM$_{2.5}$ time-series changes by –0.43 μg/m3/year; 95% CI: –0.31, –0.55, over 1998–2012. Beijing, China, and New Delhi, India, have significant increasing trends over this time period.

Table 1. Population-weighted ambient PM$_{2.5}$ and trend within Global Burden of Diseasea regions.

Region	2001–2010 PM$_{2.5}$ (mean μg/m3 ± SD)	Dust- and sea salt–free PM$_{2.5}$ (mean μg/m3 ± SD)	PM$_{2.5}$ trend [μg/m3/year (95% CI)]	PM$_{2.5}$ trend [%/year (95% CI)]
Global	26.4 ± 21.4	21.2 ± 19.1	0.55 (0.43, 0.67)	2.1 (1.6, 2.6)
Asia, Pacific, high income	16.8 ± 6.4	15.3 ± 6.0	–0.06 (–0.2, 0.08)	–0.4 (–1.2, 0.4)
Asia, Central	17.3 ± 5.7	16.7 ± 5.1	0.29 (0.12, 0.46)	1.7 (0.7, 2.7)
Asia, East	50.3 ± 24.3	45.2 ± 22.5	1.63 (1.09, 2.17)	6.2 (2.1, 4.3)
Asia, South	34.6 ± 15.8	27.8 ± 13.2	1.02 (0.77, 1.27)	2.9 (2.2, 3.6)
Asia, Southeast	11.0 ± 6.4	10.2 ± 6.0	0.30 (0.21, 0.39)	2.7 (1.9, 3.5)
Australasia	3.0 ± 1.0	2.6 ± 0.9	0.01 (–0.02, 0.04)	0.3 (–0.7, 1.3)
Caribbean	7.0 ± 2.5	4.7 ± 1.5	–0.02 (–0.09, 0.05)	–0.3 (–1.3, 0.7)
Europe, Central	17.8 ± 2.6	16.2 ± 2.7	–0.22 (–0.48, 0.04)	–1.2 (–2.7, 0.3)
Europe, Eastern	12.6 ± 3.7	11.2 ± 3.5	–0.04 (–0.25, 0.17)	–0.3 (–2.0, 1.4)
Europe, Western	13.5 ± 4.6	12.1 ± 4.2	–0.25 (–0.37, –0.13)	–1.9 (–2.8, –1.0)
Latin America, Anadal	6.6 ± 3.7	6.6 ± 3.7	0.09 (–0.05, 0.23)	1.4 (0.7, 2.5)
Latin America, Central	8.5 ± 4.3	7.8 ± 4.3	–0.07 (–0.14, 0.00)	–0.8 (–1.6, 0.0)
Latin America, Southern	6.4 ± 2.4	5.4 ± 2.3	0.08 (–0.01, 0.17)	1.3 (0.1, 2.7)
Latin America, Tropical	5.0 ± 2.6	4.9 ± 2.5	0.01 (–0.03, 0.05)	0.2 (0.6, 1.0)
North Africa/Middle East	25.5 ± 10.7	11.5 ± 3.6	0.38 (0.17, 0.59)	1.5 (0.7, 2.3)
North Africa, high income	9.9 ± 2.2	9.6 ± 2.3	–0.33 (–0.41, –0.25)	–3.2 (–4.1, –2.5)
Oceania	2.3 ± 1.1	2.3 ± 1.1	0.09 (0.06, 0.12)	0.3 (0.6, 2.5)
Sub-Saharan Africa, Central	11.4 ± 3.3	9.9 ± 2.7	–0.05 (–0.14, 0.04)	–0.4 (–1.2, 0.4)
Sub-Saharan Africa, East	9.8 ± 8.2	5.5 ± 2.4	0.10 (0.01, 0.19)	0.1 (0.1, 1.9)
Sub-Saharan Africa, Southern	5.9 ± 2.0	5.6 ± 1.9	0.09 (0.01, 0.17)	0.1 (0.1, 2.9)
Sub-Saharan Africa, West	30.8 ± 14.9	7.6 ± 2.9	–0.04 (–0.33, 0.25)	–0.1 (–1.0, 0.8)

aLim et al. (2012).

Figure 4. Three-year running mean of satellite-derived PM$_{2.5}$ over sample areas of significant trends. Sub-areas highlighted in Figure 5 are denoted by boxes with black circles around city centers. A common, logarithmic color scale is used for Figures 1–4.
of 2.4 μg/m³/year; 95% CI: 1.7, 3.1, and 1.7 μg/m³; 95% CI: 1.0, 2.4, respectively, following the regional trends described earlier. Kuwait City has an even larger increasing trend of 3.1 μg/m³/year; 95% CI: 2.3, 3.9.

Differences in instrumentation, methodology, and site selection inhibit the inference of trends from the PM$_{2.5}$ measurements we collected from published literature and can affect the comparability of these measurements with area-weighted values such as satellite-derived estimates. Comparisons can, however, be informative as shown in the Supplemental Material, Figures S4–S6, which overlay the literature-collected PM$_{2.5}$ satellite-derived estimates. Comparisons with area-weighted values such as the Supplemental Material, Figures S4–S6, can, however, be informative as shown in Figures 5. New Delhi measurements such as those by Hyvarinen et al. (2010), taken between 2007 and 2010, suggest a local underestimate in satellite-derived PM$_{2.5}$ over Kuwait City are driven by wintertime enhancement. Average PM$_{2.5}$ time series at the four sub-areas identified in Figure 4. Black dots and vertical lines denote monthly mean and 25th–75th percentile of satellite-derived PM$_{2.5}$ overlaid the literature-collected PM$_{2.5}$ values. Corresponding ground-level monitor (red x) and satellite-derived coincident with ground-level monitor (blue diamonds) PM$_{2.5}$ are also shown for Detroit in the same notation. Trend and 95% CIs based on these values are provided in the keys. Supplemental Material, Figures S4–S6, overlay satellite-derived PM$_{2.5}$ values with those collected from the literature for Beijing, New Delhi, and Kuwait City.

Figure 6 provides the cumulative distribution of estimated global annual mean PM$_{2.5}$ as a function of time, and for the three GBD regions with the greatest positive and negative trend magnitudes, respectively. Table 2 provides the percent of population living in areas where concentrations are above the WHO interim targets (IT3, IT2, and IT1) and air quality guideline (AQG) for 1998–2000 and 2010–2012 for all regions. A small population-weighted global improvement (1%) of those living within the AQG was estimated for 1998–2012, driven predominantly by improvements to air quality in North America that reduced the population exposed to PM$_{2.5}$ > 10 μg/m³ from 62% to 19%. Globally, we estimated that exceedance of IT1 (35 μg/m³) rose by 8% over the same time period, reaching 30% by 2010–2012 as driven by increasing PM$_{2.5}$ concentrations in the heavily populated regions of South and East Asia. Because satellite-based values appear to underestimate concentrations measured by ground-based monitors, it is possible that the proportion of populations living above WHO targets could be higher.

Table 2 also shows the effect of population change on WHO target achievement as represented by applying a 1998–2012 population distribution on 2010–2012 PM$_{2.5}$ concentrations. This effect, taken as the percent difference between 1998–2000 and 2010–2012 achievement that occurs from population changes, is < 25% across all targets for all regions, and < 10% in most cases. The number of people living above the AQG in some regions has increased due to population changes, accounting for about a quarter of the change seen in Central Asia and South sub-Saharan Africa from 1998 to 2012. About half the change in Eastern Europe is attributable to population, although the overall change is small (2%). Population changes contributed to small reductions in population-weighted mean PM$_{2.5}$ concentrations for regions such as Southeast Asia and North America.

Discussion

A broad community requires globally consistent estimates of long-term PM$_{2.5}$ exposure and changes over time. For example, this information is used for Global Burden of Disease assessments (Brauer et al. 2012; Lim et al. 2012; WHO 2014), for environmental performance indicators (Environmental Performance Index 2014), and for epidemiologic studies of air pollution health effects at global (Anderson et al. 2012; Fleischer et al. 2014) and regional (Chudnovsky et al. 2013; Crouse et al. 2012; Vineau et al. 2013) scales. Satellite retrievals offer the most globally complete observationally based data source of this information, but...
improvements to these estimates are needed to reduce uncertainties.

In this work, we combined the attributes of several recent satellite-derived PM$_{2.5}$ data sets to improve the accuracy in estimates of long-term exposure and changes in annual concentrations from 1998 through 2012. We inferred decadal mean PM$_{2.5}$ from Unconstrained (van Donkelaar et al. 2010) and Optimal Estimation (van Donkelaar et al. 2013) based approaches using the MODIS and MISR instruments. We then applied the relative temporal variation from SeaWiFS and MISR observations (Boys et al. 2014) to represent the annual variation over 15 years. The resultant combined data set had significant agreement with ≥8-year means of ground-based observations.

Figure 6. Cumulative distribution of regional annual mean PM$_{2.5}$ for 1998–2012. AQG, IT3, IT2, and IT1 refer to the WHO air quality guidelines of 10, 15, 25, and 35 μg/m3.

Table 2. Percent of population (%) in excess of WHO PM$_{2.5}$ target within Global Burden of Disease regions.

Region	AQG (10 μg/m3)	IT3 (15 μg/m3)	IT2 (25 μg/m3)	IT1 (35 μg/m3)
	1998–2000	2010–2012	2010–2012	2010–2012
Global	76	75	75	60
Asia Pacific, High Income	77	80	80	49
Asia, Central	78	84	82	68
Asia, East	95	99	99	95
Asia, South	92	100	100	98
Asia, Southeast	42	55	56	28
Australasia	0	0	0	0
Caribbean	15	27	24	2
Europe, Central	96	96	97	63
Europe, Eastern	66	68	67	22
Europe, Western	84	66	65	27
Latin America, Andean	23	26	26	4
Latin America, Central	43	34	34	9
Latin America, Southern	8	8	8	1
Latin America, Tropical	15	6	6	0
North Africa/Middle East	93	97	97	79
North America, High Income	62	19	20	2
Oceania	0	1	0	0
Sub-Saharan Africa, Central	65	60	59	27
Sub-Saharan Africa, East	32	38	36	20
Sub-Saharan Africa, Southern	3	8	7	0
Sub-Saharan Africa, West	97	96	95	84

*Lim et al. (2012). *Percent of population in excess of target based on 2010–2012 PM$_{2.5}$ concentrations, but using 1998–2000 population distribution. Other columns use a population distribution according to their respective years.
over North America (slope = 0.96; r = 0.76; 1-σ error = 1 μg/m^3 ± 16%) and ≥ 3-year means over Europe (slope = 0.78; r = 0.73; 1-σ error = 1 μg/m^3 ± 21%) in noncoincident comparisons that represent both retrieval- and sampling-induced uncertainties. This performance was better than for any of the individual data sets. The agreement between satellite-derived and ground-based PM2.5 was higher when limited to coincident samples (i.e., when monitor and satellite data were restricted to only those days when the other was available, the approach used by many previous studies) compared with data not restricted in this manner (as in the present analysis). For example, the correlation of r = 0.77 over North America for 2001–2006 previously given by van Donkelaar et al. (2010) drops to r = 0.70 when unrestrained by instrumental co-sampling. The unrestrained comparisons used in this present work include any residual effect of satellite sampling on its long-term mean PM2.5 estimates and therefore offer a better representation of uncertainty.

A major challenge in evaluating global satellite-derived PM2.5 is the paucity of ground-based measurements. We collected a global data set of 210 ground-based observations from the literature and used them to evaluate global satellite-derived PM2.5 estimates, including many locations in India and China. Significant agreement was found (r = 0.81), although these monitors revealed that satellite-derived PM2.5 is typically lower than ground-based observations (slope = 0.68). This underestimate may result from factors such as AOD bias in the MISR retrieval over South and East Asia (Kahn et al. 2009), missing satellite observations during wintertime and/or nighttime if PM2.5 concentrations are relatively high at these times (e.g., Katowice, Poland, and Ulanbaatar, Mongolia), or coarse resolution of either the satellite-derived product or the simulation used to relate AOD to PM2.5, which may obscure localized features. The potential underestimate in satellite-derived PM2.5 outside North America and Europe furthermore suggests that true PM2.5 concentrations may be even greater than we estimated.

Uncertainty in satellite-derived PM2.5 decreases with increased sampling and can vary by season. As a result, the satellite-derived PM2.5 estimates presented here are best used on large regional scales over multiple years. Studies interested in seasonal variation and/or smaller spatial scales would benefit from some resolution satellite imaging. Environ Pollut 172:121–128.

Crouse DL, Peters PA, van Donkelaar A, Goldberg MS, Villeneuve PJ, Brion O, et al. 2012. Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: a Canadian national-level cohort study. Environ Health Perspect 130:709–714; doi:10.1289/ehp.1104048.

Dey S, Di Girolamo L. 2010. A climatology of aerosol optical and microphysical properties over the Indian subcontinent from 9 years (2000–2008) of Multisensor Imaging Spectroradiometer (MISR) data. J Geophys Res 115; doi:10.1029/2009JD013395.

Diner DD, Braswell BH, Davies R, Giborob N, Hu J, Jin Y, et al. 2005. The value of multiscale measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sens Environ 97:495–518.

Dockery DW, Pope CA III, Xu XP, Spengler JD, Ware JH, Fay ME, et al. 1993. An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759.

Environmental Performance Index. 2014. 2014 Environmental Performance Index Full Report and Analysis. Available: http://issuu.com/yaleepi/docs/2014_epi_report [accessed 8 January 2015].

Eplee RE Jr, Meister G, Patt FS, Franz BA, McClain CR. 2011. Uncertainty assessment of the SeaWiFS data product calibration. In: Earth Observing Systems XVI, Vol. 8153 (Butler JJ, Xiong X, Gu X, eds). Proc SPIE 8153; doi:10.1117/12.892340.

Evans JA, van Donkelaar A, Martin RV, Burnett RT, Rainham DG, Birkett NJ, et al. 2013. Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environ Res 120:33–42.

Fleischer NL, Merlaldi M, van Donkelaar A, Valdillo-Ortega F, Martin RV, Betran AP, et al. 2014. Outdoor air pollution, preterm birth, and low birth weight: analysis of the World Health Organization Global Survey on Maternal and Perinatal Health. Environ Health Perspect 122:425–430; doi:10.1289/ehp.1306837.

Freidl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, et al. 2010. Modis Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114:180–192.

Hopke PK, Cohen DD, Begum BA, Biswas SK, Ni BF, Pandit GG, et al. 2008. Urban air quality in the Asian region. Sci Total Environ 404:103–112.

Hsu NC, Jeong MJ, Bettenhausen C, Sayer AM, Hansell R, Seftor CS, et al. 2013. Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J Geophys Res 118:9296–9315.

Hyvarinen AP, Lihavainen H, Kompula M, Panwar TS, Sharma VP, Hooda RK, et al. 2010. Aerosol measurements at the Gual Pahari EUCAARI station: preliminary results from in-situ measurements. Atmos Chem Phys 10:7241–7252.

Kahn RA, Nelson DL, Garay MJ, Levy RC, Bull MA, Diner DJ, et al. 2009. MISR aerosol product attributes, and statistical comparisons with MODIS. IEEE Trans Geosci Remote Sens 47:4095–4113.

Klimont Z, Smith SJ, Cofala J. 2013. The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ Res Lett 8: 014003; doi:10.1088/1748-9326/8/1/014003.

Kurokawa J, Ohsaka T, Morikawa T, Hayanaya S, Janssens-Maenhout G, Fukushima T, et al. 2013. Emissions of air pollutants and greenhouse gases over Asian region during 2000–2008: Regional Emission Inventory in Asia (REAS) version 2. Atmos Chem Phys 13:11019–11058.
Levy RC, Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, et al. 2013. The Collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tech 6:2989–3034.

Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ. 2007. Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J Geophys Res 112:D13211; doi:10.1029/2006JD007811.

Lim SS, Vos T, Flaxman AD, Shibuya K, Adair-Rohani H, et al. 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260.

Liu Y, Park RJ, Jacob DJ, Li QB, Kilaru V, Sarnat JA. 2004. Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States. J Geophys Res 109:D22206; doi:10.1029/2004JD005025.

Martonchik JV, Kahn RA, Diner DJ. 2009. Retrieval of aerosol properties over land using MISR observations. In: Satellite Aerosol Remote Sensing Over Land (Kokhanovsky AA, de Leeuw G, eds). Berlin, Germany:Springer Praxis Books, 267–283.

Maynard AD, Maynard RL. 2002. A derived association between ambient aerosol surface area and excess mortality using historic time series data. Atmos Environ 36:5561–5567.

Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839; doi:10.1289/ehp.7339.

Petrenko M, Ichoku C. 2013. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors. Atmos Chem Phys 13:6777–6805.

Pope CA III, Ezzati M, Dockery DW. 2009. Fine-particle air pollution and life expectancy in the United States. N Engl J Med 360:276–386.

Petrenko M, Ichoku C. 2013. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors. Atmos Chem Phys 13:6777–6805.

van Donkelaar A, Martin RV, Spurr RJD, Drury E, Remer LA, Levy RC, et al. 2013. Optimal estimation for global ground-level fine particulate matter concentrations. J Geophys Res 118:5621–5636.

WHO (World Health Organization). 2014. Burden of Disease from Ambient Air Pollution for 2012—Summary of Results. Available: http://www.who.int/gho/health_topics/outdoorair/databases/AAP_BoD_results_March2014.pdf [accessed 30 September 2014].

World Bank. 2011. Air Quality Analysis of Ulaanbaatar: Improving Air Quality to Reduce Health Impacts (Mongolian). Washington, DC:World Bank. Available: http://documents.worldbank.org/curated/en/2011/12/15580103/air-quality-analysis-ulaaanbaatar-improving-air-quality-reduce-health-impacts-vol-1-2 [accessed 30 September 2014].

Zhang J, Reid JS. 2010. A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and level 2 MISR aerosol products. Atmos Chem Phys 10:10949–10983.

Zhang W, Guo JH, Sun YL, Yuan H, Zhuang GS, Zhuang YH, et al. 2007. Source apportionment for urban PM10 and PM2.5 in the Beijing area. Chin Sci Bull 52:508–615.