Transcatheter hepatic arterial chemoembolization plus cinobufotalin injection adjuvant therapy for advanced hepatocellular carcinoma: a meta-analysis of 27 trials involving 2,079 patients

Objective: The aim of this study was to systematically investigate the safety and efficacy of the combination of transcatheter hepatic arterial chemoembolization (TACE) and cinobufotalin injection for advanced hepatocellular carcinoma (HC).

Methods: Clinical trials were searched from Web of Science, Cochrane Library, PubMed, Embase, Chinese Medical Citation Index (CMCI), China National Knowledge Infrastructure (CNKI), Chinese Scientific Journal Database (VIP), and Wanfang database. Outcome measures including therapeutic efficacy, quality of life, liver function, immune function, and adverse events were extracted and evaluated.

Results: After final assessment, 27 studies including 2,079 advanced HC patients were involved in this study. Compared with TACE alone, the combination of TACE with cinobufotalin injection adjuvant therapy significantly prolonged the patients’ 1-, 1.5-, 2-, and 3-year overall survival (OS) rate (1-year OS, OR=2.84, 95% CI=2.20–3.67, P<0.00001; 1.5-year OS, OR=3.57, 95% CI=1.92–6.66, P<0.0001; 2-year OS, OR=3.17, 95% CI=2.36–4.25, P<0.00001; 3-year OS, OR=2.88, 95% CI=1.82–4.57, P<0.00001). The combined therapy also improved patients’ overall response rate (ORR; OR=1.86, 95% CI=1.54–2.24, P<0.00001), disease control rate (DCR; OR=2.05, 95% CI=1.59–2.64, P<0.00001), and quality of life improved rate (QRI; OR=3.45, 95% CI=2.52–4.72, P<0.00001). Moreover, the immune function and liver function of HC patients were all significantly enhanced after the combined therapy of TACE and cinobufotalin injection (CD3+, P=0.001; CD4+, P=0.0006; CD4+/CD8+, P=0.03; natural killer [NK] cell, P=0.01; total bilirubin [TBIL], P=0.003; alanine aminotransferase [ALT], P<0.00001; aspartate aminotransferase [AST], P<0.00001). No serious adverse events occurred during cinobufotalin injection-mediated therapy.

Conclusion: The combination of TACE and cinobufotalin injection adjuvant therapy is safe and more effective for end-stage HC treatment than TACE alone.

Keywords: hepatocellular carcinoma, cinobufotalin injection, transcatheter hepatic arterial chemoembolization, meta-analysis

Introduction

Hepatocellular carcinoma (HC) is a major threat to human health. It is the fifth most common malignancy and caused more than 600,000 deaths every year.1–3 Over the past 20 years, the number of HC-related deaths has increased by 62%.4 China is a high-risk area for HC and accounts for more than half of the HC cases worldwide.4,5 Despite the development of diagnostic methods, early detection of HC is still difficult.3 In most
patients, HC progressed to the intermediate and advanced stage, and the 5-year survival rate was <17% at this stage. Therefore, only a small proportion of early-stage HC patients are suitable for radical treatment.

Transcatheter hepatic arterial chemoembolization (TACE) is the current standard locoregional treatment for advanced HC. Several studies reported that TACE significantly increased the survival time in HC patients compared to supportive treatments. However, TACE also has its own limitations, as it can further influence the liver functions and damage the hepatic arterial system of patients. In addition, its clinical application was also limited by drug resistance and toxic side effects. In view of these limitations of TACE therapy for HC, complementary and alternative medicine has been increasingly used for the treatment of advanced HC.

In recent years, traditional Chinese medicine has become an important source for novel chemotherapeutic agents and was considered as a powerful method for the cancer treatment. Cinobufotalin, a cardiotonic steroid or bufadienolide, is extracted from the skin secretions of the traditional Chinese medicinal giant toads. Many studies have shown that cinobufotalin has anti-tumor activity and can enhance the treatment effect of chemotherapeutics for malignancies. It can inhibit the growth of vascular endothelial cells by inhibiting the expression of vascular endothelial growth factor and EGF receptor and then inhibit the growth and metastasis of the tumor. In addition, it can also induce tumor cells apoptosis through decreasing ROS production and by destroying the structure of DNA in cancer cells.

Up to now, several clinic trials have been conducted to evaluate the therapeutic effects between TACE and TACE+cinobufotalin injection in advanced HC patients. Despite the wide use of cinobufotalin injection in HC treatment for many years, its clinical efficacy was still not well established and recognized. Therefore, we conducted a meta-analysis to investigate the treatment effect and safety of cinobufotalin injection adjuvant therapy combined with TACE in comparison with TACE alone for end-stage HC, to provide scientific reference for the design of future clinical trials.

Materials and methods

Search strategy and selection criteria

Original articles published after 2000 were searched across eight databases, including Web of Science, Cochrane Library, PubMed, Embase, Chinese Medical Citation Index (CMCI), China National Knowledge Infrastructure (CNKI), Chinese Scientific Journal Database (VIP), and Wanfang database, with key terms “huachansu” or “cinobufotalin” “cinobufagin” or “cinobufacini” combined with “hepatocellular carcinoma” or “liver cancer”. No language limits were applied. The initial search was performed in May 2018 and updated in July 2018.

Selection criteria of this study are as follows: 1) controlled trials concerning advanced HC patients; 2) literatures comparing the clinical outcomes of TACE plus cinobufotalin injection adjuvant therapy (experimental group) with TACE treatments alone (control group); and 3) articles involving more than 30 HC patients. Exclusion criteria of this study are as follows: 1) non-contrast articles, case studies, and review papers and 2) patients with mixed malignancies.

Data extraction and quality assessment

Data were extracted by two reviewers (Na Guo and Yanyan Miao) independently; disagreements were adjudicated by the third investigator (Mingzhong Sun). The extracted characteristics were summarized as follows: 1) first author’s names; 2) years of publication; 3) study locations; 4) tumor stages; 5) number of cases; 6) patient ages; 7) study parameter types; 8) therapeutic regimens; 9) enrollment period and expected survival time of patients; 10) application sequence of cinobufotalin injection; and 11) manufacturer of cinobufotalin injection. The included trial’s quality was evaluated according to the Cochrane Handbook.

Outcome definition

Clinical outcomes include therapeutic effect and adverse events. Therapeutic effect was assessed in terms of the overall survival (OS) rates, complete response (CR) rates, partial response (PR) rates, stable disease (SD) rates, progressive disease (PD) rates, overall response rate (ORR; ORR=CR rate+PR rate), disease control rate (DCR; DCR=CR rate+PR rate+SD rate), and quality of life improved rate (QIR). The immune function indicators (CD3+ CD4+ and natural killer (NK) cells percentage and CD4+/CD8+ ratio) and liver function indexes including total bilirubin (TBIL), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and serum albumin (ALB) of HC patients were determined and compared between the two groups. Moreover, adverse events including leukopenia, thrombocytopenia, nausea and vomiting, fever, hepatotoxicity, and myelosuppression were also taken for assessment.
Statistical analyses
The analyses were performed using Review Manager 5.3 and Stata 12.0. Between-study heterogeneity was assessed using the chi-squared statistic and quantified by I^2. $I^2<50\%$ indicated that the studies were homogenous. A fixed effects model was conducted when the heterogeneity did not exist; otherwise, a random effects model was performed. OR was the principal measurement for therapeutic effects and is presented with a 95\% CI. We further investigated potential sources of between-study heterogeneity by subgroup analyses based on the some baseline variables (study design and sample sizes). Publication bias was assessed visually by funnel plots and quantified in Egger’s test and Begg’s regression test. When publication bias existed, trim-and-fill method was applied to adjust the pooled estimates of potentially unpublished studies.

Results
Search results
A total of 1,291 articles were identified with the initial retrieve. 717 papers were excluded due to duplication. After title and abstract review, 468 articles were further excluded because they did not include clinical trials (n=344), were reviews or meta-analysis (n=7), were unrelated studies (n=104), or were case reports (n=13), leaving 106 studies as potentially relevant. After detailed assessment of full texts, articles without the control group (n=15), patients not treated by cinobufotalin injection (n=24) or TACE (n=19), studies with insufficient data (n=7), and studies published before 2000 (n=14) were excluded. Finally, 27 trials involving 2,079 advanced HC patients were included in this analysis (Figure 1).

Figure 1 Flow diagram of the selection process.
Patients’ characteristics
After selection, all studies were carried out in the hospitals in China since 2000. In total, 1,045 advanced HC patients were treated by TACE in combination with cinobufotalin injection adjuvant therapy, while 1,034 patients were treated by TACE alone. Among all included studies, cinobufotalin injection and TACE were used simultaneously in the 16 trials, whereas cinobufotalin injection was used after TACE in nine articles\(^1\) and was used before TACE in two studies.\(^4,14\) Detailed information of the studies involved and HC patients is shown in Tables 1, 2, and S1.

Quality assessment
The evaluation of bias risk is presented in Figure 2. Twenty-five studies had low risk and the other two studies did not have a clear description of randomization process. All included trials did not provide clear description of performance and detection risks. One study was regarded as a high risk due to the absence of follow-up, and 20 trials were considered as unclear risk owing to selective reporting.

Therapeutic efficacy assessments
As shown in Figures 3 and 4 and Table 3, the analysis results showed that patients underwent combined therapy

Table 1 Clinical information from the eligible trials in the meta-analysis

Included studies	Nation	Stage	Patients (Con/exp)	Age (years)	Parameter types	
Chen et al (2017)\(^1\)	China	Child-Pugh A–B	36/36	ND	ND	OS, ORR, DCR, QIR
Cui (2008)\(^2\)	China	Child-Pugh A–B	54/61	ND	ND	OS, ORR, DCR, QIR
Deng and Duan (2015)\(^3\)	China	ND	27/26	48.3±16.2 (mean)	48.7±16.1 (mean)	ORR, DCR, QIR, AE
Fu et al (2010)\(^4\)	China	KPS≥60	78/78	56 (median)	58 (median)	ORR, DCR, QIR, AE
He et al (2012)\(^5\)	China	Child-Pugh A–B	25/26	>60 (20)	>60 (19)	ORR, DCR, QIR, AE
Jia (2016)\(^6\)	China	Child-Pugh A–B	46/49	58.1±8.7 (mean)	58.4±8.3 (mean)	ORR, DCR
Ke et al (2011)\(^7\)	China	Child-Pugh A–B	40/38	57.1±11.8 (mean)	58.3±11.6 (mean)	ORS, ORR, DCR
Kou and Xu (2011)\(^8\)	China	KPS>60	31/31	41 (mean)	40.5 (mean)	ORS, ORR, DCR, QIR
Li et al (2008)\(^9\)	China	Child-Pugh A–B	46/50	ND	ND	OS, ORR, DCR, QIR
Li (2014)\(^10\)	China	ND	25/26	61.7±6.8 (mean)	57.4±6.2 (mean)	ORR, DCR
Liang et al (2008)\(^11\)	China	Child-Pugh A–C	48/48	ND	ND	OS, ORR, DCR, QIR, AE
Liu et al (2009)\(^12\)	China	ND	42/42	ND	ND	OS, ORR, DCR
Liu et al (2010)\(^13\)	China	Child-Pugh A–B	44/38	55.3±11.6 (mean)	54.2±10.3 (mean)	ORR, DCR, AE
Mao (2013)\(^14\)	China	I–III	27/27	48.3±8.9 (mean)	47.6±9.3 (mean)	OS, QIR
Shen (2009)\(^15\)	China	II–III	24/23	ND	ND	AE
Shen and Tan (2015)\(^16\)	China	Child-Pugh A–B	18/18	54.7 (mean)	57.5 (mean)	ORR, DCR
Song (2012)\(^17\)	China	I–II	20/20	49.8±6.4 (mean)	50.3±8.1 (mean)	OS, QIR
Su et al (2013)\(^18\)	China	II–III	30/33	52.7±7.9 (mean)	53.2±8.7 (mean)	ORR, DCR, QIR, AE
Sun et al (2002)\(^19\)	China	ND	118/118	ND	ND	OS, ORR
Wang (2014)\(^20\)	China	III–IV	35/36	ND	ND	ORR, DCR
Xue et al (2010)\(^21\)	China	KPS>60	30/32	45.5±10.7 (mean)	45.8±11.4 (mean)	OS, ORR, DCR, AE
Yan and Bai (2010)\(^22\)	China	II–IV	30/30	63.6 (mean)	65.4 (mean)	ORR, DCR
Yang et al (2014)\(^23\)	China	III–IV	45/45	62.3±7.2 (mean)	61.9±5.4 (mean)	ORR, DCR, AE
Yang et al (2006)\(^24\)	China	ND	40/40	44.3 (mean)	49.6 (mean)	OS, ORR, DCR
Yu (2013)\(^25\)	China	KPS>60	30/30	50.8 (mean)	49.7 (mean)	ORR, DCR
Zeng et al (2009)\(^26\)	China	Child-Pugh A–B	23/23	53.2±3.8 (mean)	52.4±3.7 (mean)	OS, ORR, DCR, QIR
Zhou et al (2006)\(^27\)	China	Child-Pugh A–C	22/21	ND	ND	OS, ORR, DCR

Abbreviations: AE, adverse event; Con, control group (TACE alone group); DCR, disease control rate; Exp, experimental group (TACE plus cinobufotalin injection adjuvant therapy); KPS, Karnofsky performance score; ND, not determined; ORR, overall response rate; OS, overall survival; QIR, quality of life improved rate; TACE, transcatheter hepatic arterial chemoembolization.
Table 2 Information of TACE combined with cinobufotalin injection adjuvant therapy

Included studies	Therapeutic regimen	Enrollment period (year.month)	Expected survival time (months)	
Chen et al (2017)18	TACE+cinobufotalin injection (IV)	TACE (oxaliplatin, THP)	2014.7–2016.7	>3
Cui (2008)19	TACE+cinobufotalin injection (IV)	TACE (5-Fu, ADR, mitomycin, HCPT)	2000.6–2007.6	ND
Deng and Duan (2015)20	TACE+cinobufotalin injection (IV)	TACE (DDP, THP)	2011.1–2013.2	ND
Fu et al (2010)21	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, mitomycin)	2006.6–2009.10	>4
He et al (2012)22	TACE+cinobufotalin injection (IV)	TACE (5-Fu, oxaliplatin, THP)	2007.3–2010.8	>3
Jia (2016)23	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, ADR)	2010.1–2012.6	>3
Ke et al (2011)24	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, E-ADM)	2006.2–2008.3	>3
Kou and Xu (2011)25	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, ADR, HCPT)	2003.5–2008.5	>3
Li et al (2008)26	TACE+cinobufotalin injection (IV)	TACE (5-Fu, ADR, mitomycin, HCPT)	2001–2005	ND
Li (2014)27	TACE+cinobufotalin injection (IV)	TACE (5-Fu, 5-fluorouracil, oxaliplatin, mitomycin)	2012.8–2013.8	ND
Liang et al (2008)28	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, ADR)	2002.2–2006.2	ND
Liu et al (2009)29	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, E-ADM)	2004.2–2006.6	ND
Liu et al (2010)30	TACE+cinobufotalin injection (IV)	TACE (DDP, DDP, mitomycin)	2005.6–2008.1	>3
Mao (2013)31	TACE+cinobufotalin injection (IV)	TACE (5-Fu, ADR, mitomycin)	2007.6–2010.6	ND
Shen (2009)32	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, mitomycin)	2004–2007	>2
Shen and Tan (2015)33	TACE+cinobufotalin injection (IV)	TACE (5-Fu, lobsaplatin, THP)	2013.3–2014.12	ND
Song (2012)34	TACE+cinobufotalin injection (IV)	TACE (5-Fu, ADR, mitomycin)	2007.1–2010.12	>3
Su et al (2013)35	TACE+cinobufotalin injection (IV)	TACE (5-Fu, ADR, mitomycin, HCPT)	2008.6–2012.6	>2
Sun et al (2002)36	TACE+cinobufotalin injection (IV)	TACE (carboplatin, mitomycin, E-ADM)	1994.6–2000.6	ND
Wang (2014)37	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, ADR)	2003.1–2005.10	>3
Xue et al (2010)38	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, ADR)	2004.12–2010.1	ND
Yan and Bai (2010)39	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, ADR, mitomycin, HCPT)	2010.6–2013.6	>3
Yang et al (2014)40	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, ADMh, mitomycin)	1996.7–2002.3	>3
Yang et al (2006)41	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, mitomycin, gencitabine)	2003.2–2011.5	ND
Yu (2013)42	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, ADR, mitomycin)	2002.2–2006.5	ND
Zeng et al (2009)43	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, THP)	2002.2–2005.12	>3
Zhou et al (2014)44	TACE+cinobufotalin injection (IV)	TACE (DDP, 5-Fu, mitomycin)	2014.7–2016.7	>3

Abbreviations: ADMh, doxorubicin hydrochloride; ADR, adriamycin; Con, control group (TACE alone group); DDP, cisplatin; E-ADM, pharmorubicin; Exp, experimental group (TACE plus cinobufotalin injection adjuvant therapy); 5-Fu, 5-fluorouracil; HCPT, hydroxycamptothecin; IV, intravenous; ND, not determined; TACE, transcatheter hepatic arterial chemoembolization; THP, pirarubicin.

had significantly improved 1-, 1.5-, 2-, and 3-year OS (1-year OS, OR=2.84, 95% CI=2.20–3.67, P<0.00001; 1.5-year OS, OR=3.57, 95% CI=1.92–6.66, P<0.0001; 2-year OS, OR=3.17, 95% CI=2.36–4.25, P<0.00001; 3-year OS, OR=2.88, 95% CI=1.82–4.57, P<0.00001), CR rate (OR=1.73, 95% CI=1.04–2.87, P=0.03), PR rate (OR=1.61, 95% CI=1.31–1.97, P<0.00001), ORR (OR=1.86, 95% CI=1.54–2.24, P<0.00001), and DCR (OR=2.05, 95% CI=1.59–2.64, P<0.00001) and significantly decreased PD rate (OR=0.46, 95% CI=0.35–0.59, P<0.00001), whereas the 0.5-year OS and SD rate (0.5-year OS, OR=1.40, 95% CI=0.97–2.01, P=0.07; SD rate, OR=0.88, 95% CI=0.72–1.09, P=0.25) did not show significant difference from patients who received TACE alone.

Quality of life assessment

Thirteen studies18,22,25,26,28,31,34,35,43,44 assessed the quality of life of advanced HC patients between the TACE+cinobufotalin injection and TACE alone groups. Results showed that quality of life of patients in the combined group was significantly better than that of the control group, indicated by significantly improved QIR (Figure 5; OR=3.45, 95% CI=2.52–4.72, P<0.00001).
Liver function evaluation

Five clinical trials24,26,32,42,44 evaluated the liver function of advanced HC patients between the two groups. As shown in Figure 6, the liver function of HC patients who received combined therapy was significantly improved compared with TACE alone, indicated by obviously reduced TBIL, AST, and ALT (TBIL, OR=−9.21, 95% CI=−15.14 to −3.10, \(P=0.003 \); ALT, OR=−30.76, 95% CI=−41.65 to −19.88, \(P<0.00001 \); AST, OR=−30.66, 95% CI=−42.36 to −18.97, \(P<0.00001 \); ALB, OR=2.46, 95% CI=−2.75 to 7.67, \(P=0.35 \)).

Immune function evaluation

The immune status of patients was examined between TACE and TACE+cinobufotalin injection group in five controlled studies.23,26,29,36,43 Compared with TACE alone, the percentages of CD3\(^+\), CD4\(^+\), and NK cells, and CD4\(^+\)/CD8\(^+\) ratio in the combined treatment group were significantly increased (Figure 7; CD3\(^+\), OR=9.05, 95% CI=3.62–14.49, \(P=0.001 \); CD4\(^+\), OR=7.42, 95% CI=3.20–11.63, \(P=0.0006 \); NK, OR=10.00, 95% CI=2.08–17.92, \(P=0.01 \); CD4\(^+\)/CD8\(^+\), OR=0.33, 95% CI=0.03–0.62, \(P=0.03 \)).

Adverse events assessment

Safety of cinobufotalin injection-mediated therapy was evaluated in eight studies.20–22,28,30,32,35,38 As shown in Figure 8, no serious adverse events were reported during cinobufotalin injection-mediated therapy. The group that received TACE plus cinobufotalin injection had lower rates of myelosuppression (OR=0.29, 95% CI=0.15–0.57, \(P=0.0003 \)), whereas analysis on other adverse events did not show significant difference (leukopenia, OR=2.74, 95% CI=0.25–30.43, \(P=0.41 \); thrombocytopenia, OR=1.08, 95% CI=0.46–2.52, \(P=0.86 \); nausea and vomiting, OR=0.57, 95% CI=0.21–1.57, \(P=0.28 \); fever, OR=1.23, 95% CI=0.16–9.78, \(P=0.84 \); hepatotoxicity, OR=0.83, 95% CI=0.22–3.13, \(P=0.79 \)).

Publication bias

Publication bias was assessed visually by funnel plots and quantified in Egger’s test and Begg’s regression test. As shown in Figures 9 and 10 and Table 4, no significant publication bias for OS rate, CR rate, PR rate, SD rate, PD rate, and QIR was observed in these analyses, which confirmed the reliability of our primary conclusions.

Sensitivity analysis

We conducted subgroup analysis to explore the source of heterogeneity in OS rate, ORR, DCR, and QIR with respect to the study design and sample sizes of involved studies.

Liver function evaluation

Five clinical trials24,26,32,42,44 evaluated the liver function of advanced HC patients between the two groups. As shown in Figure 6, the liver function of HC patients who received combined therapy was significantly improved compared with TACE alone, indicated by obviously reduced TBIL, AST, and ALT (TBIL, OR=−9.21, 95% CI=−15.14 to −3.10, \(P=0.003 \); ALT, OR=−30.76, 95% CI=−41.65 to −19.88, \(P<0.00001 \); AST, OR=−30.66, 95% CI=−42.36 to −18.97, \(P<0.00001 \); ALB, OR=2.46, 95% CI=−2.75 to 7.67, \(P=0.35 \)).

Immune function evaluation

The immune status of patients was examined between TACE and TACE+cinobufotalin injection group in five controlled studies.23,26,29,36,43 Compared with TACE alone, the percentages of CD3\(^+\), CD4\(^+\), and NK cells, and CD4\(^+\)/CD8\(^+\) ratio in the combined treatment group were significantly increased (Figure 7; CD3\(^+\), OR=9.05, 95% CI=3.62–14.49, \(P=0.001 \); CD4\(^+\), OR=7.42, 95% CI=3.20–11.63, \(P=0.0006 \); NK, OR=10.00, 95% CI=2.08–17.92, \(P=0.01 \); CD4\(^+\)/CD8\(^+\), OR=0.33, 95% CI=0.03–0.62, \(P=0.03 \)).

Adverse events assessment

Safety of cinobufotalin injection-mediated therapy was evaluated in eight studies.20–22,28,30,32,35,38 As shown in Figure 8, no serious adverse events were reported during cinobufotalin injection-mediated therapy. The group that received TACE plus cinobufotalin injection had lower rates of myelosuppression (OR=0.29, 95% CI=0.15–0.57, \(P=0.0003 \)), whereas analysis on other adverse events did not show significant difference (leukopenia, OR=2.74, 95% CI=0.25–30.43, \(P=0.41 \); thrombocytopenia, OR=1.08, 95% CI=0.46–2.52, \(P=0.86 \); nausea and vomiting, OR=0.57, 95% CI=0.21–1.57, \(P=0.28 \); fever, OR=1.23, 95% CI=0.16–9.78, \(P=0.84 \); hepatotoxicity, OR=0.83, 95% CI=0.22–3.13, \(P=0.79 \)).

Publication bias

Publication bias was assessed visually by funnel plots and quantified in Egger’s test and Begg’s regression test. As shown in Figures 9 and 10 and Table 4, no significant publication bias for OS rate, CR rate, PR rate, SD rate, PD rate, and QIR was observed in these analyses, which confirmed the reliability of our primary conclusions.

Sensitivity analysis

We conducted subgroup analysis to explore the source of heterogeneity in OS rate, ORR, DCR, and QIR with respect to the study design and sample sizes of involved studies.
As shown in Table 5, our analysis results showed that no significant difference was found between different study designs and sample sizes of studies in most of the primary indicators except 0.5-year OS.

Discussion

In view of the limitations such as drug resistance and toxic side effects of the current chemotherapy for malignancies, more and more physicians are trying to find more adjunctive or auxiliary therapies to improve patients’ survival time or quality of life and to reduce side effects caused by chemotherapy. Traditional Chinese medicine has been utilized as an adjuvant method to treat HC for a long time. Several studies have been reported that the addition of cinobufotalin injection could be beneficial to patients with advanced HC. Even though there were statistical analyses

Study or subgroup	Experimental events	Total	Control events	Total	Weight (%)	Odds ratio (M-H, fixed, 95% CI)	Odds ratio (M-H, fixed, 95% CI)
0.5-year OS							
Chen KR 2017	25	36	20	36	12.4	1.82 (0.69, 4.78)	
Cui YQ 2008	45	61	41	54	23.1	0.89 (0.38, 2.08)	
Ke J 2011	27	38	21	40	12.0	2.22 (0.87, 5.66)	
Li Q 2008	37	50	35	46	19.2	0.89 (0.35, 2.26)	
Liang Y 2008	47	48	46	48	1.9	2.04 (1.18, 33.2)	
Mao MD 2013	27	27	25	27	0.9	5.39 (0.25, 117.7)	
Song GP 2012	20	20	19	20	0.9	3.15 (0.12, 82.16)	
Xue Q 2010	23	32	21	30	12.3	1.10 (0.37, 3.28)	
Yang YG 2006	23	40	19	40	16.3	1.50 (0.62, 3.61)	
Zeng BR 2009	23	23	22	23	0.9	3.13 (0.12, 81.00)	
Subtotal (95% CI)	375	364	100				
Total events	297		269				
Heterogeneity: $\chi^2=4.72, df=9 (P=0.86); I^2=0%	Test for overall effect: $Z=1.80 (P=0.07)$						

Study or subgroup	Experimental events	Total	Control events	Total	Weight (%)	Odds ratio (M-H, fixed, 95% CI)	Odds ratio (M-H, fixed, 95% CI)
1-year OS							
Chen KR 2017	17	36	11	36	8.3	2.03 (0.77, 5.34)	
Cui YQ 2008	40	61	22	54	11.5	2.77 (1.30, 5.91)	
Ke J 2011	16	38	9	40	7.3	2.91 (0.94, 6.69)	
Kou CY 2011	22	31	14	31	5.8	2.97 (1.04, 8.48)	
Li Q 2008	32	50	19	46	10.2	2.93 (1.11, 5.76)	
Liang Y 2008	40	48	22	48	5.2	5.91 (2.29, 15.25)	
Liu XH 2009	33	42	20	42	6.1	4.03 (1.55, 10.47)	
Mao WD 2013	24	27	21	27	3.3	2.29 (0.51, 10.29)	
Song GP 2012	18	20	16	20	2.3	2.25 (0.36, 13.97)	
Sun ZJ 2002	94	118	56	118	16.3	4.34 (2.44, 7.71)	
Xue Q 2010	18	32	13	30	8.4	1.68 (0.62, 4.59)	
Yang YG 2006	11	40	8	40	8.3	1.52 (0.54, 4.29)	
Zeng BR 2009	15	23	14	23	7.0	1.21 (0.36, 4.00)	
Subtotal (95% CI)	566	555	100				
Total events	380		245				
Heterogeneity: $\chi^2=10.05, df=12 (P=0.61); I^2=0%	Test for overall effect: $Z=7.97 (P=0.00001)$						

Figure 3 (Continued)
Figure 3 Forest plot of the comparison of 0.5-year (A), 1-year (B), 1.5-year (C), 2-year (D), and 3-year (E) OS between the experimental and control groups.

Notes: Control group, TACE alone group; experimental group, TACE+cinobufotalin injection combined therapy group. The fixed-effects meta-analysis model (Mantel–Haenszel method) was used.

Abbreviations: OS, overall survival; TACE, transcatheter hepatic arterial chemoembolization.
Figure 4 Forest plot of the comparison of ORR (A) and DCR (B) between the experimental group and the control group.

Notes: Control group, TACE alone group; experimental group, TACE+cinobufotalin injection combined therapy group. The fixed-effects meta-analysis model (Mantel-Haenszel method) was used.

Abbreviations: DCR, disease control rate; ORR, overall response rate; TACE, transcatheter hepatic arterial chemoembolization.
of published clinical trials, the exact therapeutic effects were still not systematically evaluated because of small sample sizes and different applied protocols in different studies. In this analysis, we conducted a wide range of online search according to the strict inclusion and exclusion criteria, by which to provide clear and systematical conclusion.

Our meta-analysis revealed that TACE combined with cinobufotalin injection adjuvant therapy is associated with a favorable efficacy compared to HC patients treated by TACE alone. Compared to patients treated by TACE alone, patients treated with combined therapy showed markedly increased 1- to 3-year OS, CR rate, PR rate, ORR, DCR, and QIR (P<0.05). Moreover, after TACE and cinobufotalin injection combined treatment, the liver function of HC patients was obviously improved, indicated by increased ALB and decreased TBIL, ALT, and AST, although changes in ALB did not show statistical significance. These results indicated that intravenous infusion of cinobufotalin injection could increase the curative effect of TACE.

The immunosuppressed status of cancer patients has been reported previously. Therefore, immune system reconstruction is one of the critical factors to effectively treat

Parameter	TACE-cinobufotalin injection group (n)	TACE group (n)	Analysis method	Heterogeneity	OR	95% CI	P-value	
CR	816	802	Fixed	0	0.93	1.73	1.04-2.87	0.03
PR	816	802	Fixed	0	0.94	1.61	1.31-1.97	<0.00001
SD	856	842	Fixed	0	0.86	0.88	0.72-1.09	0.25
PD	856	842	Fixed	0	0.99	0.46	0.35-0.59	<0.00001
ORR	974	960	Fixed	0	0.66	1.86	1.54-2.24	<0.00001
DCR	856	842	Fixed	0	0.92	2.05	1.59-2.64	<0.00001

Abbreviations: CR, complete response; DCR, disease control rate; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease; TACE, transcatheter hepatic arterial chemoembolization.

Table 3 Comparison of CR, PR, SD, PD, ORR, and DCR between the TACE and TACE+cinobufotalin injection groups

Figure 5 Forest plot of the comparison of QIR between the experimental group and the control group.

Notes: Control group, TACE alone group; experimental group, TACE+cinobufotalin injection combined therapy group. The fixed-effects meta-analysis model (Mantel–Haenszel method) was used.

Abbreviations: M–H, Mantel–Haenszel; QIR, quality of life improved rate; TACE, transcatheter hepatic arterial chemoembolization.
OncoTargets and Therapy 2018:11

TACE plus cinobufotalin injection for advanced HC

Study or subgroup	Experimental mean (SD)	Total mean (SD)	Weight (%)	Mean difference (IV, random, 95% CI)	Mean difference (IV, random, 95% CI)		
TBIL							
Ke J 2011	32.5 (8.23)	38	56.3	8.89	40	8.2	−23.80 (−27.60, −20.00)
Li Q 2008	28.6 (9.6)	61	34.2	12.5	54	8.1	−5.60 (−9.71, −1.49)
Shen JJ 2009	32.8 (3.5)	23	41	3.4	24	8.3	−8.40 (−10.37, −6.43)
Yu JJ 2013	23 (10)	30	22.9	12	30	7.9	0.10 (−5.49, 5.69)
Zhou JS 2006	10.8 (3.8)	21	18	4.1	22	8.3	−7.20 (−9.56, −4.84)
Subtotal (95% CI)	173 (170)	40.8					

ALT

Study or subgroup	Experimental mean (SD)	Total mean (SD)	Weight (%)	Mean difference (IV, random, 95% CI)	Mean difference (IV, random, 95% CI)		
Ke J 2011	59.9 (10.83)	38	93.2	11.12	40	8.0	−33.30 (−38.17, −28.43)
Li Q 2008	53.7 (30.3)	61	67.1	24.5	54	7.0	−13.40 (−23.43, −3.37)
Shen JJ 2009	188.7 (23.7)	23	233.5	23.5	24	6.2	−44.80 (−58.30, −31.30)
Yu JJ 2013	79 (47)	30	115	63	30	3.3	−36.00 (−64.13, −7.87)
Zhou JS 2006	48.7 (21.7)	21	79.6	31.3	22	5.6	−30.90 (−46.94, −14.86)
Subtotal (95% CI)	173 (170)	30.0					

AST

Study or subgroup	Experimental mean (SD)	Total mean (SD)	Weight (%)	Mean difference (IV, random, 95% CI)	Mean difference (IV, random, 95% CI)		
Yu JJ 2013	50 (11)	30	76	23	30	7.2	−26.00 (−35.12, −16.88)
Zhou JS 2006	51.8 (18.8)	21	89.6	30.2	22	5.8	−38.30 (−53.26, −23.34)
Subtotal (95% CI)	173 (52)	13.0					

ALB

Study or subgroup	Experimental mean (SD)	Total mean (SD)	Weight (%)	Mean difference (IV, random, 95% CI)	Mean difference (IV, random, 95% CI)		
Yu JJ 2013	39 (11)	30	40	12	30	7.9	−1.00 (−6.83, 4.83)
Zhou JS 2006	37.6 (2.7)	21	33.1	3.9	22	8.3	4.50 (2.50, 6.50)
Subtotal (95% CI)	173 (51)	16.2					

Total (95% CI)

Experimental mean (SD)	Total mean (SD)	Weight (%)	Mean difference (IV, random, 95% CI)	Mean difference (IV, random, 95% CI)
448	444	100	−16.75 (−23.27, −10.24)	

Note: Control group, TACE alone group; experimental group, TACE+cinobufotalin injection combined therapy group. The random effects meta-analysis model (inverse variance method) was used.

Abbreviations: ALB, serum albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; IV, inverse variance TACE, transcatheter hepatic arterial chemoembolization; TBIL, total bilirubin.

malignancies. Many studies reported that cinobufotalin injection can enhance the ability of body’s immunity and resistance to tumors by increasing the IL-2 and interferon (IFN)-γ secretion of T cells and the activities of NK cells and by promoting the maturation of dendritic cells and upregulating the expression of costimulatory molecules in dendritic cells. Our analysis showed significantly increased percentages of CD3+, CD4+, NK, and CD3+CD56+ T cells and CD4+/CD8+ ratio, indicating that immune function of HC patients was improved after cinobufotalin injection-mediated therapy.

Safety is the top priority of the clinical treatment, and it is also a key factor for the development of cinobufotalin injection-mediated therapy. Our analysis showed no significant difference in most adverse events between the two groups, while the myelosuppression caused by TACE was obviously alleviated (P<0.05), which proves the safety of cinobufotalin injection treatment for advanced HC.

Some factors may have influence on the therapeutic effects of cinobufotalin injection treatment. In our study, subgroup analysis was used for evaluating the impact of study design and sample size on therapeutic effects of cinobufotalin injection-mediated therapy. Our results found no difference between different study designs and sample sizes of studies in most indexes, except 0.5-year OS. However, currently, studies probing the impact of these factors on treatment effects of cinobufotalin injection adjuvant therapy are still insufficient, and these should be further researched and explored.
There are a few limitations in our study. First, all included researches were performed in different medical institutions in China, which may bring in regional bias and influence the clinical application of cinobufotalin injection-mediated therapy worldwide. In addition, different trials evaluated the treatment efficacy with different outcomes, resulting in a reduction in the size of the statistical sample, making it difficult to summarize the results at the same scale. Finally, the therapeutic effects of the combined therapy may be influenced by numerous variables such as chemotherapeutics types, tumor stage, tumor size, and patient’s age. Due to the above limitations, future studies and generated data will be valuable to further verify the safety and efficacy of cinobufotalin injection-mediated therapy.

In summary, our study confirmed that TACE combined with cinobufotalin injection adjuvant therapy was an effective treatment for advanced HC patients. Intravenous infusion of cinobufotalin injection markedly enhanced the treatment efficacy of TACE for advanced HC. Moreover, cinobufotalin injection-mediated therapy can effectively improve the quality of life, immune function, and liver function of HC patients. Therefore, cinobufotalin injection-mediated therapy could be recommended as an adjuvant treatment method for end-stage HC.
Study or subgroup	Experimental events	Control events	Total	Weight (%)	Odds ratio M–H, random, 95% CI	Odds ratio M–H, random, 95% CI
Leukopenia						
He SL 2012	23	26	21	25	5.0	1.46 (0.29, 7.30)
Liang Y 2008	43	48	13	48	5.9	23.15 (7.53, 71.23)
Liu YQ 2010	31	38	9	44	5.7	0.57 (0.16, 1.96)
Subtotal (95% CI)	112	117	16.6	2.74 (0.25, 30.43)		
Total events	97	73				
Heterogeneity:	$\chi^2=4.06$, $df=2$, $P=0.0001$; $I^2=90\%$					
Test for overall	$Z=0.82$ ($P=0.41$)					
Thrombocytopenia						
He SL 2012	10	26	9	25	5.9	1.11 (0.36, 3.46)
Liu YQ 2010	33	38	38	44	5.6	1.04 (0.29, 3.73)
Subtotal (95% CI)	64	69	11.5	1.08 (0.46, 2.52)		
Total events	43	47				
Heterogeneity:	$\chi^2=0.00$, $df=1$, $P=0.94$; $I^2=0\%$					
Test for overall	$Z=0.18$ ($P=0.86$)					
Nausea, vomiting						
Deng ZY 2015	3	25	10	24	5.3	0.19 (0.04, 0.82)
Liu YQ 2010	29	38	37	44	5.9	0.61 (0.20, 1.83)
Shen JJ 2009	10	23	8	24	5.8	1.28 (0.40, 4.12)
Subtotal (95% CI)	86	92	17.1	0.57 (0.21, 1.57)		
Total events	42	56				
Heterogeneity:	$\chi^2=0.40$, $df=2$, $P=0.13$; $I^2=50\%$					
Test for overall	$Z=1.09$ ($P=0.28$)					
Fever						
He SL 2012	7	26	19	25	5.7	0.12 (0.03, 0.41)
Liang Y 2008	25	48	2	48	5.2	25.00 (5.44, 114.85)
Liu YQ 2010	33	38	39	44	5.5	0.85 (0.23, 3.18)
Shen JJ 2009	8	23	8	24	5.7	1.07 (0.32, 3.57)
Subtotal (95% CI)	135	141	22.1	1.23 (0.16, 9.78)		
Total events	73	68				
Heterogeneity:	$\chi^2=4.00$, $df=3$, $P<0.00001$; $I^2=90\%$					
Test for overall	$Z=0.20$ ($P=0.84$)					
Hepatotoxicity						
Deng ZY 2015	9	25	16	24	5.8	0.28 (0.09, 0.91)
Liang Y 2008	47	48	45	48	3.9	3.13 (0.31, 31.25)
Liu YQ 2010	33	38	37	44	5.7	1.25 (0.36, 4.31)
Subtotal (95% CI)	111	116	15.4	0.83 (0.22, 3.13)		
Total events	89	98				
Heterogeneity:	$\chi^2=0.77$, $df=2$, $P=0.09$; $I^2=58\%$					
Test for overall	$Z=0.27$ ($P=0.79$)					
Myelosuppression						
Deng ZY 2015	4	25	10	24	5.5	0.27 (0.07, 1.02)
Fu ZL 2010	78	78	78	78	Not estimable	
Su Y 2013	14	33	19	30	6.1	0.43 (0.15, 1.18)
Xue Q 2010	5	32	15	30	5.8	0.19 (0.06, 0.61)
Subtotal (95% CI)	168	162	17.4	0.29 (0.15, 0.57)		
Total events	101	122				
Heterogeneity:	$\chi^2=0.00$, $df=1$, $P=0.57$; $I^2=0\%$					
Test for overall	$Z=3.61$ ($P=0.0003$)					
Total (95% CI)	676	697	100	0.89 (0.45, 1.73)		
Total events	445	464				
Heterogeneity:	$\chi^2=1.67$, $df=17$, $P=0.00001$; $I^2=80\%$					
Test for overall	$Z=0.35$ ($P=0.72$)					
Test for subgroup differences: $\chi^2=8.51$, $df=5$, $P=0.13$; $I^2=41.3\%$						

Figure 8 Forest plot of the comparison of adverse effects including leukopenia, thrombocytopenia, diarrhea, nausea and vomiting, fever, hepatotoxicity, and myelosuppression between the experimental group and the control group.

Notes: Control group; TACE alone group; experimental group, TACE+cinobufotalin injection combined therapy group. The random effects meta-analysis model (inverse variance method) was used.

Abbreviation: TACE, transcatheter hepatic arterial chemoembolization.
Table 4 Publication bias on OS, CR, PR, SD, PD, ORR, DCR, and QIR

Publication bias	0.5-year OS	1-year OS	2-year OS	CR	PR	SD	PD	ORR	DCR	QIR
Begg	0.152	0.077	0.755	0.436	0.195	0.492	0.413	0.747	0.444	0.300
Egger	0.110	0.070	0.564	0.151	0.191	0.383	0.134	0.821	0.207	0.335

Abbreviations: CR, complete response; DCR, disease control rate; ORR, overall response rate; OS, overall survival; PD, progressive disease; PR, partial response; QIR, quality of life improved rate; SD, stable disease.

Figure 9 Funnel plot of 0.5-year (A), 1-year (B), and 2-year (C) OS.
Abbreviation: OS, overall survival; SE, standard error.

Figure 10 Funnel plot of ORR (A) and DCR (B).
Abbreviations: DCR, disease control rate; ORR, overall response rate; SE, standard error.
Table 5 Subgroup analyses of ORR and DCR between the Exp and Con groups

Parameter	Factors at study level	Exp group (n)	Con group (n)	Analysis method	Heterogeneity	OR	95% CI	P-value	
					P (%)				
0.5-year OS	Study sample size								
	≥80	199	188	Fixed	0	0.77	1.09	0.67–1.79	0.73
	<80	176	176	Fixed	0	0.89	1.86	1.08–3.19	0.02
Type of control trials	RCT	314	310	Fixed	0	0.90	1.55	1.03–2.32	0.03
	Total	375	364	Fixed	0	0.86	1.40	0.97–2.01	0.07
1-year OS	Study sample size								
	≥80	359	348	Fixed	4	0.39	3.41	2.47–4.71	<0.00001
	<80	207	207	Fixed	0	0.95	2.07	1.35–3.17	0.0008
Type of control trials	RCT	505	501	Fixed	0	0.53	2.85	2.17–3.75	<0.00001
	Total	566	555	Fixed	0	0.61	2.84	2.20–3.67	<0.00001
2-year OS	Study sample size								
	≥80	311	300	Fixed	0	0.80	3.74	2.59–5.38	<0.00001
	<80	154	153	Fixed	0	0.73	2.33	1.42–3.83	0.0009
Type of control trials	RCT	404	399	Fixed	0	0.66	3.21	2.35–4.39	<0.00001
	Total	465	453	Fixed	0	0.74	3.17	2.36–4.25	<0.00001
ORR	Study sample size								
	≥80	569	561	Fixed	0	0.49	1.96	1.53–2.50	<0.00001
	<80	405	399	Fixed	0	0.62	1.74	1.30–2.32	0.0002
Type of control trials	RCT	883	876	Fixed	0	0.61	1.82	1.49–2.21	<0.00001
	Total	974	960	Fixed	0	0.66	1.86	1.54–2.24	<0.00001
DCR	Study sample size								
	≥80	451	443	Fixed	0	0.71	1.93	1.35–2.75	0.0003
	<80	405	399	Fixed	0	0.85	2.18	1.52–3.14	<0.0001
Type of control trials	RCT	765	758	Fixed	0	0.86	2.04	1.55–2.68	<0.00001
	Total	856	842	Fixed	0	0.92	2.05	1.59–2.64	<0.00001
QIR	Study sample size								
	≥80	237	226	Fixed	0	0.57	4.04	2.50–6.52	<0.00001
	<80	242	238	Fixed	0	0.99	3.05	2.02–4.63	<0.00001
Type of control trials	RCT	418	410	Fixed	0	0.99	3.31	2.40–4.56	<0.00001
	Total	479	464	Fixed	0	0.99	3.45	2.52–4.72	<0.00001

Abbreviations: Con, control group (TACE alone group); DCR, disease control rate; Exp, experimental group (TACE plus cinobufotalin injection adjuvant therapy); ORR, overall response rate; OS, overall survival; QIR, quality of life improved rate; RCT, randomized controlled trial.

Author contributions
All authors contributed to data analysis, drafting and revising the article, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Zhang Y, Hui F, Yang Y, et al. Can Kushen injection combined with TACE improve therapeutic efficacy and safety in patients with advanced HCC? a systematic review and network meta-analysis. *Oncotarget*. 2017;8(63):107258–107272.
2. Liu X, Wang Z, Chen Z, et al. Efficacy and safety of transcatheter arterial chemoembolization and transcatheter arterial chemotherapy infusion in hepatocellular carcinoma: a systematic review and meta-analysis. *Oncol Res*. 2018;26(2):231–239.
3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.
4. Ma X, Li RS, Wang J, et al. The therapeutic efficacy and safety of compound kushen injection combined with transcatheter chemoembolization in unresectable hepatocellular carcinoma: an update systematic review and meta-analysis. Front Pharmacol. 2016;7:70.
5. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–132.
6. Cho WC, Chen HY. Transcatheter arterial chemoembolization combined with or without Chinese herbal therapy for hepatocellular carcinoma: meta-analysis. Expert Opin Investig Drugs. 2009;18(5):617–635.
7. Llovet JM, Real MI, Montaña X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359(9319):1734–1739.
8. Oliveri RS, Woterssev J, Ghud C, Transarterial GC. Transarterial (chemo)embolisation for unresectable hepatocellular carcinoma. Cochrane Database Syst Rev. 2011;3(3):CD004787.
9. Sergio A, Cristofori C, Cardin R, et al. Transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): the role of angiogenesis and invasiveness. Am J Gastroenterol. 2008;103(4):914–921.
10. Zhai XF, Chen Z, Li B, et al. Traditional herbal medicine in preventing recurrence after resection of small hepatocellular carcinoma: a multicenter randomized controlled trial. J Integ Med. 2013;11(2):90–100.
11. Tian HQ, Li HL, Wang B, et al. Treatment of middle/late stage primary hepatic carcinoma by Chinese medicine comprehensive therapy: A prospective randomized controlled study. Chin J Integ Med. 2010;16(2):102–108.
12. Meng Z, Yang P, Shen Y, et al. Pilot study of huachansu in patients with hepatocellular carcinoma, nonsmall-cell lung cancer, or pancreatic cancer. Cancer. 2009;115(22):5309–5318.
13. Bai XJ. Clinical observation of 30 cases of advanced liver cancer treated by cinobufagin injection combined with transcatheter arterial chemoembolization for hepatocellular carcinoma treatment. China Health Care Nutr. 2014;7:3728.
14. Song GP. Effect of cinobufagin injection on prevention of recurrence of primary liver cancer with radical resection. Chin J Exp Tradit Med Formulae. 2012;18(22):307–309.
15. Yang YG, Li J, Ma YH, Liu JS. Clinical observation of cinobufagin injection intervention combined with transcatheter arterial chemoembolization for the treatment of primary liver cancer. Chin Arch Tradit Chin Med. 2011;33(6):463–464.
16. Deng ZY, Duan HB. Clinical observation of cinobufacini injection combined with TACE in the treatment of hepatocellular carcinoma. Tianjin J Tradit Chin Med. 2015;32(5):275–278.
17. Fu ZL, Qu ZH, Wang Y. The clinical research of huachansu injection combined with interventional therapy for middle and advanced stages of hepatocellular carcinoma. China Pract Med. 2010;5(34):107–108.
18. He SL, Liu LM, Sun XJ, Shen J. Effect of huachansu injection sequence TACE including oxaliplatin regimen for advanced hepatocellular carcinoma. Chin J Clin. 2012;6(14):3808–3833.
19. Jia YJ. Clinical effect of cinobufagin combined with transhepatic arterial chemotherapy and embolization in the treatment of primary hepatocellular carcinoma. China Med J. 2016;23(8):52–57.
43. Zeng BR, He X, Li P. The clinical research on the treatment of primary liver cancer by sequential therapy of cinobufotalin intravenous and transcathether arterial infusion. *J Emerg Tradit Chin Med*. 2009;18(4):525–527.

44. Zhou JS, Lu H, Wu XD, Xu S. Effects of huachansu injection combined with transcathether arterial chemoembolization on patients with advanced unresectable hepatocellular carcinoma. *Chin J Prim Med Pharm*. 2006;13(4):571–572.

45. Zeng X, Zhang Y, Kwong JS, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. *J Evid Based Med*. 2015;8(1):2–10.

46. Jackson D, White IR, Riley RD. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. *Stat Med*. 2012;31(29):3805–3820.

47. Zhang L, Mu Y, Zhang A, et al. Cytokine-induced killer cells/dendritic cells-cytokine induced killer cells immunotherapy combined with chemotherapy for treatment of colorectal cancer in China: a meta-analysis of 29 trials involving 2,610 patients. *Oncotarget*. 2017;8(28):45164–45177.

48. Liang M, Chen Q, Zhang Y, et al. Impact of diabetes on the risk of bedsore in patients undergoing surgery: an updated quantitative analysis of cohort studies. *Oncotarget*. 2017;8(9):14516–14524.
Supplementary materials

Table S1 Application sequence of and manufacturer of cinobufotalin injection

Included studies	Application sequence of cinobufotalin injection	Manufacturer
Chen et al (2017)	After TACE	No description
Cui (2008)	Used simultaneously	No description
Deng and Duan (2015)	Used simultaneously	No description
Fu et al (2010)	Used simultaneously	Anhui Golden Toad Biochemical Corp, Ltd
He et al (2012)	After TACE	No description
Jia (2016)	Used simultaneously	Anhui Golden Toad Biochemical Corp, Ltd
Ke et al (2011)	Used simultaneously	No description
Kou and Xu (2011)	After TACE	No description
Li et al (2008)	Used simultaneously	No description
Li (2014)	Used simultaneously	No description
Liang et al (2008)	After TACE	No description
Liu et al (2009)	Used simultaneously	No description
Liu et al (2010)	Used simultaneously	No description
Mao (2013)	Used simultaneously	No description
Shen (2009)	After TACE	No description
Shen and Tan (2015)	After TACE	No description
Song (2012)	Used simultaneously	Anhui Golden Toad Biochemical Corp, Ltd
Su et al (2013)	After TACE	Anhui Golden Toad Biochemical Corp, Ltd
Sun et al (2002)	After TACE	No description
Wang (2014)	Used simultaneously	No description
Xue et al (2010)	Used simultaneously	Anhui Golden Toad Biochemical Corp, Ltd
Yan and Bai (2010)	Used simultaneously	No description
Yang et al (2014)	Used simultaneously	Anhui Golden Toad Biochemical Corp, Ltd
Yang et al (2006)	Before TACE	Anhui Golden Toad Biochemical Corp, Ltd
Yu (2013)	Used simultaneously	No description
Zeng et al (2009)	Before TACE	Anhui Golden Toad Biochemical Corp, Ltd
Zhou et al (2006)	After TACE	Anhui Golden Toad Biochemical Corp, Ltd

Abbreviation: TACE, transcatheter hepatic arterial chemoembolization.

References

1. Chen KR, Zhang HW, Ma JL. Clinical efficacy of TACE combined with cinobufotalin injection and Entecavir dispersible tablets for liver cancer. *J Clin Med Lit*. 2017;4(56):11021–11022.
2. Cui YQ. Clinical analysis of 61 cases of liver cancer patients treated by cinobufotalin combined with TACE. *J Binzhou Med Univ*. 2008;31(6):463–464.
3. Deng ZY, Duan HB. Clinical observation of cinobufacini injection combined with TACE in the treatment of hepatocellular carcinoma. *Tianjin J Tradit Chin Med*. 2015;32(5):275–278.
4. Fu ZL, Qu ZH, Wang Y. The clinical research of huachansu injection combined with interventional therapy for middle and advanced stages of hepatocellular carcinoma. *China Pract Med*. 2010;5(34):107–108.
5. He SL, Liu LM, Sun XJ, Shen J. Effect of huachansu injection sequence TACE including oxaliplatin regimen for advanced hepatocellular carcinoma. *China J Clin*. 2012;6(14):3880–3883.
6. Jia JY. Clinical effect of cinobufagin combined with transhepatic arterial chemotherapy and embolization in the treatment of primary hepatocellular carcinoma. *China Mod Med*. 2016;23(8):52–57.
7. Ke J, Lu K, Li Y. Clinical observation of patients with primary liver cancer treated by cinobufagin Injection combined with transcatheter arterial chemoembolization (TACE). *China Pract Med*. 2011;6(34):1–2.
8. Kou CY, Xu Z. The clinical analysis of huachansu injection combines with transcatheter arterial chemoembolization for middle and advanced stages of hepatocellular carcinoma treatment. *Chin J Misdiagnostics*. 2011;11(25):6151–6152.
9. Li Q, Sun BM, Peng YH, Fan ZZ, Sun J. Clinical study on the treatment of primary liver cancer by cinobufotain combined with transcatheter arterial chemoembolization. *Acta Universtitatis Traditions Medicalis Sinensis Pharmacologicae Shanghai*. 2008;22(2):32–34.
10. Li XF. Clinical observation of cinobufacini injection combined with transcatheter hepatic arterial chemoembolization for primary hepatocellular carcinoma. *China Health Care Nutr*. 2014;7:3728.
11. Liang Y, Long JZ, Liu H, Feng J. Study of cinobufotalin and interferon combined with transcatheter hepatic arterial chemoembolization on primary hepatocellular carcinoma. *Modern J Integr Tradit Chin West Med*. 2008;17(11):1628–1630.
12. Liu XH, Fu H, Zhu QH, Pan PS, Yang L. The clinical study of cinobufotalin injection combined with transcatheter hepatic arterial chemoembolization on hepatocellular carcinoma. Chin J Mod Drug Appl. 2009;3(23):134–135.

13. Liu YQ, Zh Y, Shao ZH, Jiang ZY, Liu XW. The clinical study of cinobufotalin injection combined with transcatheter arterial chemoembolization for hepatocellular carcinoma treatment. Chin Rural Health Serv Admin. 2010;30(5):402–404.

14. Mao WD. Clinical study of cinobufotalin injection intervention on the postoperative recurrence of primary liver cancer. Anhui Med Pharm J. 2013;17(12):2144–2145.

15. Shen JJ. The clinical effect of Cinobufagin injection by transcatheter arterial chemoembolization (TACE) combined with intraoperative treating primary liver cancer (PLC). J Clin Hepatol. 2009;25(3):207–209.

16. Shen JJ, Tan SZ. Transcatheter arterial embolization with cinobufacini on terminal stage of hepatocellular carcinoma. Jilin J Tradit Chin Med. 2015;35(7):678–680.

17. Song GP. Effect of cinobufagin injection on prevention of recurrence of primary liver cancer with radical resection. Chin J of Exp Tradit Med Formulae. 2012;18(22):307–309.

18. Su Y, Yang JQ, Guo CQ. The cinobufotalin injection in combination with transcatheter arterial chemoembolization for advance hepatocellular carcinoma treatment. J Basic Clin Oncol. 2013;26(3):245–246.

19. Sun ZJ, Pan CN, Wang GJ. Clinical observation on cinobufotain in treating hepatocellular carcinoma after transcatheter arterial chemoembolization. Cancer Res Prevent Treat. 2002;29(1):67–68.

20. Wang YF. TACE combined with cinobufotain in the treatment of primary liver cancer. J Basic Clin Oncol. 2014;27(5):417–418.

21. Xue Q, Lu LQ, Yuan GR, Zhao TW. Clinical study of cinobufotain combined with TACE for the treatment of 32 cases patients with middle and advanced liver cancer. Jiangsu J Tradit Chin Med. 2010;42(2):22–24.

22. Yan M, Bai XJ. Clinical observation of 30 cases of advanced liver cancer treated by cinobufotain injection and chemotherapy. J Pract Tradit Chin Med. 2010;26(8):554–555.

23. Yang GH, Xue T, Li P, Yu XM, Mo JM, Xu LP. Study of cinobufacini injection intervention on serum prealbumin and vascular endothelial growth factor in patients with primary liver cancer. Chin Arch Tradit Chin Med. 2014;32(5):1086–1088.

24. Yang YG, Li J, Ma YH, Liu JS. Clinical observation of cinobufacini injection intervention combined with chemotherapy for the treatment of advanced liver cancer. J Pract Tradit Chin Med. 2006;22(1):20.

25. Yu JG. Clinical observation of cinobufotain injection combined with transcatheter hepatic arterial chemoembolization for the treatment of primary liver cancer. Modern Digestion Interv. 2013;18(1):32–33.

26. Zeng BR, He X, Li P. The clinical research on the treatment of primary liver cancer by sequential therapy of cinobufotain intravenous and transcathether arterial infusion. J Emerg Tradit Chin Med. 2009;18(4):525–527.

27. Zhou JS, Lu H, Wu XD, Xu S. Effects of huachansu injection combined with transcatheter arterial chemoembolization on patients with advanced unresectable hepatocellular carcinoma. Chin J Prim Med Pharm. 2006;13(4):571–572.