NON VANISHING OF CENTRAL VALUES OF MODULAR L-FUNCTIONS FOR HECKE EIGENFORMS OF LEVEL ONE

D. CHOI AND Y. CHOIE

Abstract. Let \(F(z) = \sum_{n=1}^{\infty} a(n)q^n \) be a newform of weight \(2k \) and level \(N \) with a trivial character, and assume that \(F(z) \) is a non-zero eigenform of all Hecke operators. For \(x > 0 \), let

\[
\mathcal{N}_F(x) := |\{ D \text{ fundamental } | |D| < x, (D, N) = 1, L(F, D, k) \neq 0 \}|.
\]

A based on the Goldfeld’s conjecture one expects to have \(\mathcal{N}_F(x) \gg x \ (x \to \infty) \). Kohnen [10] showed that if \(k \geq 6 \) is a even integer, then for \(x \gg 0 \) there is a normalized Hecke eigenform \(F \) of level 1 and weight \(2k \) with the property that

\[
\mathcal{N}_F(x) \gg_k x \ (x \to \infty).
\]

In this paper, we extend the result in [10] to the case when \(k \) is any integer, in particular when \(k \) is odd. So, we obtain that, when the level is 1, for each integer \(2k \) such that the dimension of cusp forms of weight \(2k \) is not zero, there is a normalized Hecke eigenform \(F \) of weight \(2k \) satisfying \(\mathcal{N}_F(x) \gg x \ (x \to \infty) \).

January 28, 2010

1. Introduction and statement of result

Let \(F(z) = \sum_{n=1}^{\infty} a(n)q^n \in S_{2k}(N, \chi_0) \) be a newform of weight \(2k \) and level \(N \) with a trivial character \(\chi_0 \), and assume that \(F(z) \) is a non-zero eigenform of all Hecke operators. For a fundamental discriminant \(D \), that is \(D = 1 \) or the discriminant of a quadratic field, we define the \(L \)-function \(L(F, D, s) \) of \(F \) twisted with the quadratic character \((\frac{D}{\cdot}) \) by

\[
\sum_{n \geq 1} \left(\frac{D}{n} \right) \frac{a(n)}{n^s}.
\]

In this paper, we consider the central values of \(L \)-functions \(L(F, D, k) \).

It is well-known by Waldspurger [18] that the central critical values \(L(F, D, k) \) are essentially proportional to the squares of Fourier coefficients of the modular form of weight \(k + \frac{1}{2} \) corresponding to \(F \) under Shimura correspondence.

On the other hand, for \(x > 0 \), consider the set

\[
\mathcal{N}_F(x) := |\{ D \text{ fundamental } | |D| < x, (D, N) = 1, L(F, D, k) \neq 0 \}|.
\]

2000 Mathematics Subject Classification. 11F67, 11F37.

Key words and phrases. modular L-functions, quadratic twist, central L-values.
A based on the Goldfeld’s conjecture one expected to have
\begin{equation}
\mathcal{N}_F(x) \gg x \quad (x \to \infty)
\end{equation}

(In \cite{5} Goldfeld conjectured that
\[
\sum_{D \text{ fundamental}, \ |D| < x, \gcd(D,N) = 1} \text{ord}_{s=k} L(F,D,s) \\
\approx \frac{1}{2} |\{D \text{ fundamental} \ | \ |D| < x, \gcd(D,N) = 1\}| \quad (x \to \infty).
\]

In \cite{14} using the theory of Galois representations of modular forms together with the results of Friedberg and Hoffstein \cite{4}, the following was proved
\[
\mathcal{N}_F(x) \gg \frac{x}{\log x} \quad (x \to \infty).
\]

In \cite{7} K. James gave an example of a form F, by looking at the difference of two special ternary theta series of level 56, satisfying $\mathcal{N}_F(x) \gg x \quad (x \to \infty)$. Furthermore, Kohnen \cite{10} showed that if $k \geq 6$ is an even integer, then there is a normalized Hecke eigenform F of level 1 and weight $2k$ with the property that $\mathcal{N}_F(x) \gg k \cdot x \quad (x \gg 0)$; in particular, it was shown that $\mathcal{N}_\Delta(x) \gg x \quad (x \to \infty)$ where Δ is Ramanujan’s Δ-function of weight 12. More precisely, Kohnen proved that if $N^+_{k,\Gamma_1}(x)$ is the number of fundamental discriminant D, $0 < D < x$, such that there exists a normalized Hecke eigenform $F \in S_{2k}$ satisfying $L(F,D,k) \neq 0$, then for any positive ϵ
\[
N^+_{k,\Gamma_1}(x) \geq \left(\frac{9}{16\pi^2} - \epsilon \right) x \quad (x \gg 0).
\]

Here, S_{2k} is the space of cusp forms of weight 2k on $\Gamma_1 = SL(2,\mathbb{Z})$. In this paper, we extend the result \cite{10} to the case when k is any integer, in particular when k is odd. To obtain these results, we refine the argument of Kohnen by using an isomorphism \cite{8} from the spaces of modular forms of integral weight to the Kohnen plus space of half integral weight modular forms.

Let $N_{k,\Gamma_1}(x)$ denote the number of fundamental discriminants D, $|D| < x$, such that there exists a normalized Hecke eigenform $F \in S_{2k}$ satisfying $L(F,D,k) \neq 0$, then we have the following:

Theorem 1.1. Suppose that $k \geq 9$ is odd. Then for any positive ϵ

\[
N_{k,\Gamma_1}(x) \geq \left(\frac{9}{16\pi^2} - \epsilon \right) x \quad (x \gg 0).
\]

Let $d_k := \dim(S_{2k})$. With the result of Kohnen \cite{10} in which covers the case of $k \equiv 0 \pmod{2}$, we state the following result:
Theorem 1.2. Suppose that k is a positive integer such that $d_k \geq 1$. Then for any $\epsilon > 0$

$$\mathcal{N}_{k,1}(x) \geq \left(\frac{9}{16\pi^2} - \epsilon\right) x \ (x \gg \epsilon 0).$$

Theorem 1.2 immediately implies that for each integer k such that $d_k > 0$ there is a Hecke eigenform $F \in S_{2k}$ satisfying (1.1).

Corollary 1.3. Suppose that k is an integer such that $d_k \geq 1$. Then there exists a Hecke eigenform $F(z) \in S_{2k}$ such that for any positive ϵ

$$\mathcal{N}_F(x) \geq \frac{1}{d_k} \left(\frac{9}{16\pi^2} - \epsilon\right) x \ (x \gg \epsilon 0).$$

Recently, Farmer and James [3] proved that the characteristic polynomial of the Hecke operator T_2 on S_{2k} is irreducible over \mathbb{Q} for $k \leq 1,000$. If K is the field obtained from \mathbb{Q} by adjoining the eigenvalues of T_2, then the Galois group $G = Gal(K/\mathbb{Q})$ operates transitively on the set of normalized Hecke eigenforms in S_{2k}. Using Theorem 1.1 and the known fact [15] that $L(F^\sigma, D, k)_{alg} = L(F, D, k)_{alg}$ for all $\sigma \in G$, we have that every Hecke eigenform $F \in S_{2k}$ satisfies (1.1) for each integers $k, 6 \leq k \leq 1,000$. Here, “alg” means “algebraic part”.

Theorem 1.4. Suppose that $6 \leq k \leq 1,000$ is an integer. Then every normalized Hecke eigenform F in S_{2k} satisfies

$$\mathcal{N}_F(x) \geq \left(\frac{9}{16\pi^2} - \epsilon\right) x \ (x \gg \epsilon 0).$$

Remark 1.5. Maeda ([6] Conjecture 1.2) made a conjecture that the Hecke algebra of S_{2k} over \mathbb{Q} is simple, and that its Galois closure over \mathbb{Q} has Galois group G the full symmetric group. The conjecture implies that there is a single Galois orbit of Hecke eigenforms in S_{2k}. Thus, Maeda’s conjecture implies that every normalized Hecke eigenform F in S_{2k} satisfies (1.2).

2. Preliminaries

Let $q := e^{2\pi iz}$, where z is in the complex upper half plane \mathbb{H}. For an integer $k \geq 2$ recall the normalized Eisenstein series $E_{2k}(z) := 1 - \frac{4k}{B_{2k}} \sum_{n \geq 1} \sigma_{k-1}(n) q^n$ of weight $2k$, and for an integer $r \geq 1$ let $H_{r+\frac{1}{2}}(z) = \sum_{N=0}^{\infty} H(r, N) q^N$ be the Cohen-Eisenstein series of weight $r + \frac{1}{2}$ on $\Gamma_0(4)$ (see [1]). Here, for each positive integer N, define

$$h(r, N) = \begin{cases} (-1)^{\lfloor \frac{r}{2} \rfloor} (r-1)! N^{r-\frac{1}{2}} 2^{1-r} \pi^{-r} L(r, \chi_{(-1)^r} N) & \text{if } (-1)^r N \equiv 0 \text{ or } 1 \pmod{4}, \\
0 & \text{if } (-1)^r N \equiv 2 \text{ or } 3 \pmod{4}, \end{cases}$$

where $L(s, \chi)$ is the normalized L-function of a Dirichlet character χ. The function $h(r, N)$ is used to define the Hecke operators on S_{2k}.
where χ_D denotes the character $\chi_D(d) = (\frac{D}{d})$. Furthermore, for $N \geq 1$, define

$$H(r, N) = \begin{cases}
\sum_{d | N} h(r, \frac{N}{d}) & \text{if } (-1)^r N \equiv 0 \text{ or } 1 \pmod{4}, \\
\zeta(1 - 2r) & \text{if } N = 0, \\
0 & \text{otherwise.}
\end{cases}$$

The followings are proved in [1]:

Proposition 2.1. (1) For $r \geq 2$, Cohen-Eisenstein series $H_{r+1/2}(z)$ is a modular form of weight $r + \frac{1}{2}$ on $\Gamma_0(4)$ and it is in Kohnen plus condition, that is,

$$H(r, N) = 0 \text{ if } (-1)^r N \not\equiv 0, 1 \pmod{4}.$$

(2) Let a and b be integers with $a \geq 1$. Suppose that $-b$ is a quadratic non residue of a. Then the function

$$G_{a,b}(z) := \sum_{N \equiv b \pmod{a}} H(1, n)q^n$$

is a modular form of weight $\frac{3}{2}$ and character a over $\Gamma_0(A)$, where we can take $A = 4a^2$, and furthermore $A = a^2$ if a is even.

For a nonnegative integer k denote $M_{k+1/2}(\Gamma_0(4))$ as the usual complex vector space of cusp forms of weight $k + \frac{1}{2}$ on $\Gamma_0(4)$ with the trivial character. In [8], Kohnen introduces the plus space $M_{k+1}^+(\Gamma_0(4))$ of modular forms $g(z)$ of weight $k + \frac{1}{2}$ on $\Gamma_0(4)$ with a Fourier expansion of the form

$$g(z) = \sum_{(-1)^k n \equiv 0, 1 \pmod{4}} c(n)q^n.$$

and proved the following isomorphism (Proposition 1 in [8]).

Proposition 2.2. Let M_k be the space of modular forms of weight k on Γ_1. If k is even, then the spaces $M_k \bigoplus M_{k-2}$ and $M_{k+1}^+(\Gamma_0(4))$ are isomorphic under the map

$$(f(z), h(z)) \mapsto f(4z)\theta(z) + h(4z)H_{1/2}(z),$$

where $\theta(z) = 1 + 2\sum_{n=1}^{\infty} q^{n^2}$. If k is odd, then the spaces $M_{k-3} \bigoplus M_{k-5}$ and $M_{k+1}^+(\Gamma_0(4))$ are isomorphic under the map

$$(f(z), h(z)) \mapsto f(4z)H_{3/2}(\tau) + h(4z)H_{11/2}(z).$$

For $k \geq 2$ we have $M_{k+1}^+(\Gamma_0(4)) = \mathbb{C}H_{k+1/2} \bigoplus S_{k+1}^+(\Gamma_0(4)).$

The results of [11], [9], and [18] connect the coefficients of Hecke eigenforms of half-integral weight to the central L-values of twists of integral weight Hecke eigenforms. More precisely, suppose that $f(z) = \sum_{n=1}^{\infty} a(n)q^n \in S_{2k}$ is a normalized Hecke eigenform and that $g(z) = \sum_{n=1}^{\infty} c(n)q^n \in S_{k+1}^+(\Gamma_0(4))$ is a Hecke eigenform with the same Hecke eigenvalues as those of f. Here,
Theorem 1 of [11] states the following.

Theorem 2.3. Suppose that f and g are as above, D is a fundamental discriminant with $(-1)^k D > 0$, and $L(f, D, s)$ is the twisted L-series

$$L(f, D, s) = \sum_{n=1}^{\infty} \left(\frac{D}{n} \right) a(n) n^{-s}.$$

Then

$$(g, g)_D = \left(\frac{k-1)!}{\pi^k} \frac{|D|^{k-1/2}}{|D|^{k-1}} L(f, D, k) \langle f, f \rangle.$$

Here, (g, g) and (f, f) are the normalized Petersson scalar products

$$(g, g) = \frac{1}{6} \int_{\Gamma_0(4) \backslash \mathbb{H}} |g(z)|^2 y^{k-3/2} dx \, dy$$

$$(f, f) = \int_{\Gamma_1 \backslash \mathbb{H}} |f(z)|^2 y^{2k-2} dx \, dy.$$

3. Proof of Theorem 1.1

For any function $f(z)$ on $\mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}$ and any positive integer d we define the operator U_d

$$\langle f \mid U_d \rangle(z) := \frac{1}{d} \sum_{j=0}^{d-1} f \left(\frac{z + j}{d} \right).$$

Suppose that f has a Fourier expansion $f(z) = \sum a(n) q^n$. Then $\langle f \mid U_d \rangle(z) = \sum a(nd) q^n$. If $g(z) = \sum_{n=0}^{\infty} c(n) q^n$ is in $M_{k+\frac{1}{2}}(\Gamma_0(4N))$, then the Hecke operator with the trivial character on $M_{k+\frac{1}{2}}(\Gamma_0(4N))$ is defined for odd primes ℓ by

$$\langle g \mid T(\ell^2, k) \rangle(z) := \sum_{n=0}^{\infty} \left(c(\ell^2 n) + \ell^{k-1} \left(\frac{-1}{\ell^2} \right) c(n) \right) + \left(\frac{-1}{\ell^2} \right) \ell^{2k-1} c \left(\frac{n}{\ell^2} \right) \right) q^n,$$

where $\left(\frac{\ell}{\ell^2} \right)$ and $\left(\frac{n}{\ell^2} \right)$ are Jacobi symbols, and $c \left(\frac{n}{\ell^2} \right) := 0$ if $\ell^2 \nmid n$. If g has integral coefficients, then one also has that

$$(g \mid U_\ell \equiv g^\ell \mid T(\ell^2, \ell k + \frac{(\ell - 1)}{2}) \pmod{\ell}).$$

For any positive integer d we define the operator V_d

$$(g \mid V_d)(z) := \sum_{n=0}^{\infty} c(n) q^{dn}.$$
Note that if ℓ is a prime, then

\[(g|V_\ell)(z) \equiv g(z)^\ell \pmod{\ell}.\]

For a Dirichlet character χ let

\[g \otimes \chi := \sum_{n=0}^{\infty} \chi(n)c(n)q^n.\]

The following proposition immediately implies our main theorems.

Proposition 3.1. Suppose that $k \geq 8$ is an integer.

1. If k is odd, then for any positive ϵ

\[N_{k,\Gamma_1}(x) \geq \left(\frac{9}{16\pi^2} - \epsilon \right) x \quad (x \gg \epsilon).\]

2. If k is an even integer such that $d_k > 1$ or $k = 10$, then for any positive ϵ

\[N_{k,\Gamma_1}(x) \geq \left(\frac{9}{16\pi^2} - \epsilon \right) x \quad (x \gg \epsilon).\]

Proof For a positive even positive integer t, let

\[m(t) := \frac{1}{2} \left(t - 4 \left[\frac{t}{4} \right] \right).\]

For a non negative integer t we define a modular form $R_t(z)$:

\[R_t(z) := \begin{cases} E_4(4z)^{\left[\frac{t}{4}\right]-m(t)}E_6(4z)^{m(t)} & \text{if } t > 0, \\ 1 & \text{if } t = 0. \end{cases}\]

For any even positive integer t, we have

\[(3.5) \quad R_t(z) \equiv 1 \pmod{3}.\]

This is from the fact that if $k \geq 4$ is an even integer, then $E_{p-1}(z) \equiv 1 \pmod{p}$ for any prime p such that $k \equiv 0 \pmod{p-1}$ (see [12]).

First, we assume that k is odd. For each odd integers $k \geq 9$ define

\[(3.6) \quad \Phi_{k+\frac{1}{2}}(z) = 28H_{3+\frac{1}{2}}(z)R_{k-3}(z) - \frac{44}{3}H_{5+\frac{1}{2}}(z)R_{k-5}(z) := \sum_{n=1}^{\infty} \beta_k(n)q^n.\]

Then $\Phi_{k+\frac{1}{2}}(z)$ is in $S_{k+\frac{1}{2}}(\Gamma_0(4))$ by Proposition [22] and the Fourier coefficients of $\Phi_{k+\frac{1}{2}}(z)$ are 3-integral. On the other hand, for every odd $k \geq 9$, we have

\[\Phi_{k+\frac{1}{2}}(z) \equiv \Phi_{9+\frac{1}{2}}(z) := 28H_{3+\frac{1}{2}}(z)R_6(z) - \frac{44}{3}H_{5+\frac{1}{2}}(z)R_4(z) \pmod{3}.\]
Let
\[
F(z) := (\Phi_{g+\frac{1}{2}}(z) - (\Phi_{g+\frac{1}{2}}(z)|U_3|V_3)) + (\Phi_{g+\frac{1}{2}}(z) - (\Phi_{g+\frac{1}{2}}(z)|U_3|V_3)) \otimes \left(\frac{1}{3} \right)
\]
\[= \sum_{n \equiv 1 \pmod{3}} \beta_9(n)q^n.
\]

Recall that
\[G_{3,1}(z) = \sum_{n \equiv 1 \pmod{3}} H(1, n)q^n.
\]

Proposition 2.1 implies that \(G_{3,1}(z) = \sum_{n \equiv 1 \pmod{3}} H(1, n)q^n\) is a modular form of weight \(\frac{3}{2}\) on \(\Gamma_0(36)\) such that its coefficients are 3-integral.

Thus, by computing a few coefficient modulo 3 and using Sturm’s bound in (16) we have
\[
F(z) \equiv \sum_{n \equiv 1 \pmod{3}} \beta_9(n)q^n \\
\equiv 2q^4 + q^7 + q^{19} + 2q^{28} + 2q^{40} + q^{43} + 2q^{49} + q^{52} + \cdots \\
\equiv \sum_{n \equiv 1 \pmod{3}} H(1, n)q^n \equiv G_{3,1}(z) \pmod{3}.
\]

On the other hand, let \(h(D) = H(1, D)\) be the class number of \(\mathbb{Q}(\sqrt{D})\). It is known that for \(D < 0\), \(h(D) = -B_{1,1}(\frac{D}{4})\) (apart from \(D = -3\) and \(-4\)) (for example, see [17]). Thus, we have
\[
\beta_k(D) \equiv B_{1,1}(\frac{-D}{4}) \equiv h(-D) \pmod{3},
\]
for a fundamental discriminant \(D > 1\) such that \(D \equiv 1 \pmod{3}\).

Now let \(m\) and \(N\) be positive integers satisfying the condition:

\[**\quad \text{If an odd prime } p \text{ is a common divisor of } m \text{ and } N, \text{ then } p \mid N \text{ and } p^2 \nmid m. \text{ Further if } N \text{ is even, then } (i) \ 4 \mid N \text{ and } m \equiv 1 \pmod{4} \text{ or } (ii) \ 16 \mid N \text{ and } m \equiv 8 \text{ or } 12 \pmod{16}.
\]

We denote by \(N_2^-(x, m, N)\) the number of fundamental discriminants \(D\) with \(-x < D < 0\) and \(D \equiv m \pmod{N}\). The results of Davenport-Heilbronn [2] and Nakagawa-Horie [13] imply that for any positive number \(\epsilon\)
\[
|\{ \text{fundamental discriminants } D \equiv 1 \pmod{3} \mid 0 < D < x \text{ and } 3 \mid h(-D)\}| \\
\gg (\frac{1}{2} - \epsilon) (N_2^-(x, 1, 3)).
\]
Since \(N_2^-(x, 1, 3) \sim \frac{9}{8\pi}x\) for \(x \to \infty\) (see Proposition 2. in [13]), for odd integers \(k \geq 7\) we have

\[
(3.9) \quad |\{ \text{fundamental discriminants } D \mid 0 < D < x \text{ and } 3 \nmid \beta_k(D) \}| \gg \left(\frac{9}{16\pi^2} - \epsilon\right)x.
\]

Since \(\Phi_{k+\frac{1}{2}}(z) \in S_{k+\frac{1}{2}}^+(\Gamma_0(4))\), the cusp form \(\Phi_{k+\frac{1}{2}}(z)\) is a linear combination of Hecke eigenforms \(g_\ell(z) = \sum_{n=1}^{\infty} c_\ell(n)q^n \in S_{k+\frac{1}{2}}^+(\Gamma_0(4))\) for \(1 \leq \ell \leq d_k\). By Theorem 2.3 we complete the proof of Theorem.

From now on, suppose that \(k\) is even, and that \(d_k > 1\) or \(k = 10\). Let

\[
(3.10) \quad \Psi_{k+\frac{1}{2}}(z) := \Delta(4z)R_{k-12}(z)\theta(z) = \sum_{n=1}^{\infty} \alpha_k(n)q^n \quad \text{for } k > 10
\]

and

\[
(3.11) \quad \Psi_{10+\frac{1}{2}}(z) := -(\theta(z)E_4(4z)E_6(4z) - H_{\frac{1}{2}}(4z)^2) \otimes \chi_3 + (\theta(z)E_4(4z)E_6(4z) - H_{\frac{1}{2}}(4z)^2) \otimes \chi_3^2,
\]

where \(\chi_3(n) = \left(\frac{n}{3}\right)\). We have by the Sturm’s bound and (3.5)

\[
\sum_{n \equiv 2 \pmod{3}} \alpha_k(n)q^n \equiv \sum_{n \equiv 2 \pmod{3}} \alpha_{12}(n)q^n \equiv 2q^8 + 2q^{17} + q^{20} + 2q^{41} + q^{44} + q^{53} + q^{56} + 2q^{68} + 2q^{80} + 2q^{89} + 2q^{92} \cdots
\]

\[
\equiv \sum_{n \equiv 2 \pmod{3}} H(1, 3n)q^n \quad \pmod{3}.
\]

The remained part of the proof can be completed in a similar way as before, so we omit the details. \(\square\)

Remark 3.2. The argument given in [10], p. 186 bottom] in the case where \(k\) is even and \(k \equiv 1 \pmod{3}\) is not correct, since it would require that all the coefficients of \(\delta_{k-4}\) are 3-integral which in general is not the case.

4. Conclusion

In this paper, we extend the result in [10] to the case when \(k\) is any integer, in particular when \(k\) is odd. So, we obtain that, for each integer \(2k\) such that \(\dim S_{2k} \geq 1\), there is a normalized Hecke eigenform \(F\) in \(S_{2k}\) satisfying \(N_F(x) \gg x \quad (x \to \infty)\). We conclude this paper with the following remark:
Remark 4.1.

1. For each odd \(k \geq 9 \) and even \(\lambda \) such that \(\lambda \geq 12 \), all the coefficients of \(\Phi_{k+\frac{1}{2}} \) and \(\Psi_{\lambda+\frac{1}{2}} \) are 3-integral and a positive portion of these coefficients \(\beta_k(n) \) and \(\alpha_\lambda(n) \) is not vanishing modulo 3.

2. Note that \(k = 9 \) is the minimum odd integer such that \(\dim(S_{2k}) > 0 \). Let

\[
\Delta(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24}.
\]

If we take \(F(z) = \Delta(z)E_6(z) \), then \(F(z) \) is the unique normalized Hecke eigenform in \(S_{18} \). Corollary[1.3] implies that

\[
\mathcal{N}_F(x) \geq \left(\frac{9}{16\pi^2} - \epsilon \right) x \quad (x \gg \epsilon 0).
\]

3. The direct computation shows that if \(f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4)) \) has integral coefficients for even \(k \) such that \(d_k = 1 \), then

\[
f \equiv c \sum_{n \geq 1 \atop \not\equiv 3m} q^{n^2} \quad (mod \ 3)
\]

for some \(c \in \{-1, 1\} \).

Acknowledgement

The first author was supported by KRF-2008-331-C00005 and wish to express his gratitude to KIAS for its support through Associate membership program. The second author was partially supported by KOSEF-R01-2008-000-20446 and KRFKRF-2007-412-J02302.

References

[1] H. Cohen. Sums involving the values at negative integers of \(L \)-functions of quadratic characters. *Math. Ann.*, 217(3):271–285, 1975.

[2] H. Davenport and H. Heilbronn. On the density of discriminants of cubic fields. II. *Proc. Roy. Soc. London Ser. A*, 322(1551):405–420, 1971.

[3] D. W. Farmer and K. James. The irreducibility of some level 1 Hecke polynomials. *Math. Comp.*, 71(239):1263–1270 (electronic), 2002.

[4] S. Friedberg and J. Hoffstein. Nonvanishing theorems for automorphic \(L \)-functions on \(GL(2) \). *Ann. of Math. (2)*, 142(2):385–423, 1995.

[5] D. Goldfeld. Conjectures on elliptic curves over quadratic fields. In *Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979)*, volume 751 of *Lecture Notes in Math.*, pages 108–118. Springer, Berlin, 1979.

[6] H. Hida and Y. Maeda. Non-abelian base change for totally real fields. *Pacific J. Math.*, (Special Issue):189–217, 1997. Olga Taussky-Todd: in memoriam.

[7] K. James. \(L \)-series with nonzero central critical value. *J. Amer. Math. Soc.*, 11(3):635–641, 1998.

[8] W. Kohnen. Modular forms of half-integral weight on \(\Gamma_0(4) \). *Math. Ann.*, 248(3):249–266, 1980.

[9] W. Kohnen. Fourier coefficients of modular forms of half-integral weight. *Math. Ann.*, 271(2):237–268, 1985.
[10] W. Kohnen. On the proportion of quadratic character twists of L-functions attached to cusp forms not vanishing at the central point. *J. Reine Angew. Math.*, 508:179–187, 1999.

[11] W. Kohnen and D. Zagier. Values of L-series of modular forms at the center of the critical strip. *Invent. Math.*, 64(2):175–198, 1981.

[12] S. Lang, *Introduction to Modular Forms*, Grundl. d. Math. Wiss. no. 222, Springer: Berlin Heidelberg New York, 1976 Berlin, 1995.

[13] J. Nakagawa and K. Horie. Elliptic curves with no rational points. *Proc. Amer. Math. Soc.*, 104(1):20–24, 1988.

[14] K. Ono and C. Skinner. Fourier coefficients of half-integral weight modular forms modulo l. *Ann. of Math. (2)*, 147(2):453–470, 1998.

[15] G. Shimura. The special values of the zeta functions associated with cusp forms. *Comm. Pure Appl. Math.*, 29(6):783–804, 1976.

[16] J. Sturm. On the congruence of modular forms. In *Number theory (New York, 1984–1985)*, volume 1240 of *Lecture Notes in Math.*, pages 275–280. Springer, Berlin, 1987.

[17] J. Urbanowicz. On the divisibility of generalized Bernoulli numbers. In *Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983)*, volume 55 of *Contemp. Math.*, pages 711–728. Amer. Math. Soc., Providence, RI, 1986.

[18] J.L. Waldspurger. Sur les coefficients de Fourier des formes modulaires de poids demi-entier. *J. Math. Pures Appl. (9)*, 60(4):375–484, 1981.

School of Liberal Arts and Sciences, Korea Aerospace University, Goyang, Gyeonggi 412-791, Korea

E-mail address: choija@kau.ac.kr

Dept of Mathematics and PMI, POSTECH, Pohang, Korea 790-784

E-mail address: yjc@postech.ac.kr