P-VARIATION OF STRONG MARKOV PROCESSES

BY MARTYNAS MANSTAVIČIUS

University of Connecticut

Let ξ_t, $t \in [0, T]$, be a strong Markov process with values in a complete separable metric space (X, ρ) and with transition probability function $P_{s,t}(x, dy)$, $0 \leq s \leq t \leq T$, $x \in X$. For any $h \in [0, T]$ and $a > 0$, consider the function $\alpha(h, a) = \sup \{P_{s,t}(x, \{y : \rho(x, y) \geq a\}) : x \in X, 0 \leq s \leq t \leq (s + h) \wedge T\}$. It is shown that a certain growth condition on $\alpha(h, a)$, as $a \downarrow 0$ and h stays fixed, implies the almost sure boundedness of the p-variation of ξ_t, where p depends on the rate of growth.

1. Introduction. Let ξ_t, $t \in [0, T]$, be a strong Markov process defined on some complete probability space (Ω, \mathcal{F}, P) and with values in a complete separable metric space (X, ρ). Denote the transition probability function of ξ_t by $P_{s,t}(x, dy)$, $0 \leq s \leq t \leq T$, $x \in X$. For any $h \in [0, T]$ and $a > 0$, consider the function

$$\alpha(h, a) = \sup \{P_{s,t}(x, \{y : \rho(x, y) \geq a\}) : x \in X, 0 \leq s \leq t \leq (s + h) \wedge T\}.$$

The behavior of $\alpha(h, a)$ as a function of h gives sufficient conditions for regularity properties of the trajectories of the process ξ_t. As Kinney (1953) showed, ξ_t has an almost surely càdlàg version if $\alpha(h, a) \to 0$ as $h \to 0$ for any fixed $a > 0$, and an almost surely continuous version if $\alpha(h, a) = o(h)$ as $h \to 0$ for any fixed $a > 0$. Dynkin (1952) obtained the same result but under slightly stronger conditions. The main goal of this paper is to establish a connection between the arguments of $\alpha(h, a)$ and variational properties of paths of ξ_t, in particular, p-variation which in many instances is very useful, as discussed in Dudley (1992), Dudley and Norvaiša (1998, 1999), Mikosch and Norvaiša (2000), Lyons (1998) and so on.

For a $p \in (0, \infty)$ and a function f defined on the interval $[0, T]$ and taking values in (X, ρ), its p-variation is $v_p(f) := \sup \{\sum_{k=0}^{m-1} \rho(f(t_{k+1}), f(t_k))^p : 0 =
For many important processes, conditions for the almost sure boundedness of p-variation of sample paths on bounded intervals are already known: Lévy (1940) showed that, for Brownian motion, the p-variation is bounded iff $p > 2$, a result which was refined by Taylor (1972). Later, Monroe (1978) proved that every semimartingale is equivalent to a time change of a Brownian motion. In particular, this implies that continuous-time martingales also have almost surely bounded p-variation for any $p > 2$. In the case of martingales with nonconstant sample paths, this result is sharp [e.g., Dudley and Norvaiša (1998), Theorem 5.6].

The p-variation of Gaussian processes was investigated by Jain and Monrad (1983). The same problem for Lévy processes was addressed in the papers by Fristedt and Taylor (1973) and Bretagnolle (1972). Jacob and Schilling (2001) considered more general Feller processes generated by pseudodifferential operators with uniformly bounded coefficients.

Feller processes and, in particular, Lévy processes are Markov but the methods used to establish the boundedness of the p-variation of their paths differ from paper to paper and do not extend to general strong Markov processes; for example, Jacob and Schilling [(2001), Theorem 2.13] require a strong assumption $p \leq 1$.

We, on the other hand, rely on the properties of general strong Markov processes and their transition probabilities. The following definition will be used throughout.

Definition 1.1. Let $\beta \geq 1$ and $\gamma > 0$. We say that a Markov process $\xi_t, t \in [0,T]$, belongs to the class $\mathcal{M}(\beta, \gamma)$ (\mathcal{M} for Markov) if there exist constants $a_0 > 0$ and $K > 0$ such that, for all $h \in [0,T]$ and $a \in (0,a_0]$,

$$
\alpha(h, a) \leq K \frac{h^{\beta}}{a^{\gamma}}.
$$

(1.1)

Remark 1.2. The function $\alpha(h, a)$ is nonincreasing in a for each h. Thus, a process $\xi_t, t \in [0,T]$, belongs to the class $\mathcal{M}(\beta, \gamma)$ iff there exist constants $a_0 > 0$ and $K > 0$ such that, for all $h \in [0,T]$ and $a > 0$,

$$
\alpha(h, a) \leq K \frac{h^{\beta}}{(a \wedge a_0)^\gamma},
$$

(1.2)

because if (1.2) holds for $a = a_0$, it will also hold for any $a > a_0$.

Note that condition (1.2) and Kinney’s result allow us to choose a version of ξ_t with càdlàg paths. We will use this version throughout. Moreover, there exists a random variable $M(\omega)$ such that

$$
\sup_{t \in [0,T]} \rho(\xi_0(\omega), \xi_t(\omega)) \leq M(\omega) < \infty \quad \text{a.s.}
$$

Our main result is
Theorem 1.3. Let $\xi_t, t \in [0, T]$, be a strong Markov process with values in a complete separable metric space (X, ρ). Suppose ξ_t belongs to the class $\mathcal{M}(\beta, \gamma)$. Then for any $p > \gamma/\beta$, the p-variation $v_p(\xi)$ of ξ_t is finite almost surely.

Remark 1.4. For symmetric stable Lévy processes of index $\alpha \in (0, 2]$, the condition $p > \gamma/\beta$ will be shown in Section 4, at the end of the paper, to apply with $\gamma/\beta = \alpha$. Moreover, by results of Lévy (1940) and Blumenthal and Getoor (1960), the paths of such processes have unbounded p-variation for $p = \alpha$. Hence, the condition on p in Theorem 1.3 is sharp.

As condition (1.2) indicates, we will concentrate on the “small” oscillations of the trajectories. Let

$$
\nu_b(\omega) := \sup \{ k : \exists \{ t_i \}_{i=1}^{2k}, t_1 < t_2 \leq t_3 < \cdots < t_{2k}, \rho(\xi_{t_{2j-1}}, \xi_{t_{2j}})(\omega) > b, j \leq k \},
$$

that is, ν_b is the random number of oscillations of size $> b$ of ξ_t over nonoverlapping intervals.

Remark 1.5. The paths of ξ_t are chosen to be càdlàg, so the supremum in the definition of ν_b can be taken over t_i’s from some countable dense subset $\Gamma \subset [0, T]$; thus ν_b is a measurable random variable. Moreover, $\nu_b < \infty$ almost surely. Hence the contribution to $v_p(\xi(\omega))$ of oscillations $> b$ is at most $((2M)^p\nu_b)(\omega) < \infty$ with probability 1; that is, “large” oscillations can be handled easily.

The abundance of “small” oscillations will be handled via stopping-time techniques in Section 2.

Later we will need an Ottaviani-type inequality. Recall the following result from Gikhman and Skorohod [(1974), page 420]. Similar inequalities can be found in Blumenthal [(1957), Lemmas 2.1 and 2.2].

Lemma 1.6. Let $\xi_t, t \in [0, T]$, be a separable Markov process taking values in a complete separable metric space (X, ρ). Then for any $h > 0$ and $M > 0$ such that $\alpha(h, M/2) < 1$, and for any $t \in [0, T]$,

$$
P \left(\sup_{s \in [t, (t+h) \wedge T]} \rho(\xi_t, \xi_s) > M \right) \leq \frac{P(\rho(\xi_t, \xi_{(t+h) \wedge T}) > M/2)}{1 - \alpha(h, M/2)}. \tag{1.3}
$$

2. Markov times and related results. Consider the natural filtration \mathcal{F}_t^ξ generated by the process ξ, that is, $\mathcal{F}_t^\xi = \{ \mathcal{F}_r^\xi, t \in [0, T] \}$, where $\mathcal{F}_t^\xi = \sigma(\xi_u, 0 \leq u \leq t) \subset \mathcal{F}$. Recall that a random variable $\tau: \Omega \to [0, \infty]$ is an \mathcal{F}_t^ξ-Markov time iff, for all $u \in [0, T]$, $\{ \tau < u \} \in \mathcal{F}_u^\xi$. If τ is an \mathcal{F}_t^ξ-Markov time,
define $F_\tau := \{ A : A \cap \{ \tau < u \} \in F_\xi^s, u \in [0,T] \}$. Also set $F_0 := \{ \emptyset, \Omega \}$. Furthermore, for any $0 \leq a < b \leq T$, let

$$R(a,b) := \sup_{a \leq s \leq t \leq b} \rho(\xi_s,\xi_t) = \sup_{s,t \in (Q \cap [a,b]) \cup \{ b \}} \rho(\xi_s,\xi_t),$$

since ξ_t has càdlàg paths. Hence $R(a,b)$ is F_ξ^s-measurable. Moreover, for any sequence $0 < a_n \downarrow a \leq b \leq T$, we have $R(a_n, b) \uparrow R(a, b)$ as $n \to \infty$ since the intervals $[a_n, b]$ are expanding and ξ_t is right-continuous.

For any $r = 0, \pm 1, \pm 2, \ldots$, define $M_r := 2^{-r-1}$ and let $\{ \tau_{l,r} \}, l = 0, 1, 2, \ldots$, be the sequence of random times defined as follows:

$$\tau_{0,r} := 0, \quad \tau_{l,r} := \begin{cases} \inf \{ t \in [\tau_{l-1,r}, T] : R(\tau_{l-1,r}, t) > M_r \}, & \text{if the set above is empty.} \\ T + 1, & \text{if } \tau_{l-1,r} \geq T. \end{cases}$$

Each $\{ \tau_{l,r} \}$ is an F_ξ-Markov time. This is obvious for $l = 0$. Suppose that we have shown that $\{ \tau_{l,r} \}$ are F_ξ-Markov times for all $l = 0, 1, \ldots, k$. Now assume for a moment that $\tau_{k,r} < s \leq T$ and we have a sequence $\{ a_n \}_{n=1}^{\infty}$ such that $a_n \downarrow \tau_{k,r}$ as $n \to \infty$. Then $R(a_n, s) \uparrow R(\tau_{k,r}, s)$ as $n \to \infty$ and so

$$\{ R(\tau_{k,r}, s) > M_r \} = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \{ R(a_m, s) > M_r \}. $$

This observation helps to justify the second equality in the following: for any $t \leq T$, we have

$$\{ \tau_{k+1,r} < t \} = \bigcup_{s < t, s \in Q} \left(\{ \tau_{k,r} < s \} \cap \{ R(\tau_{k,r}, s) > M_r \} \right)$$

$$= \bigcup_{s < t, s \in Q} \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \bigcup_{l=0}^{2^n-1} \left(\{ \tau_{k,r} \in [a_{l-1,m}, a_{l,m}] \} \cap \{ R(a_{l,m}, s) > M_r \} \right),$$

where $a_{l,m} := s(l+1)2^{-m}$ and the aforementioned a_n is defined by

$$a_n := \begin{cases} a_{l,n}, & \text{if } \tau_{k,r} \in [a_{l-1,n}, a_{l,n}) \text{ for some } l = 0, 1, \ldots, 2^n - 1, \\ T + 1, & \text{if } \tau_{k,r} \geq s. \end{cases}$$

Moreover, $\{ \tau_{k,r} \in [a_{l-1,m}, a_{l,m}) \} \in F_{a_{l,m}}^{\xi} \subset F_s^{\xi}$ since $\tau_{k,r}$ is an F_ξ-Markov time by assumption and $\{ R(a_{l,m}, s) > M_r \} \in F_s^{\xi}$ since $a_{l,m} \leq s$ for all $l = 1, 2, \ldots, 2^n - 1$ and $m = 1, 2, \ldots$. Thus $\{ \tau_{k+1,r} < t \} \in F_t^{\xi}$, that is, $\tau_{k+1,r}$ is an F_ξ-Markov time.

Let $\zeta_{i,r} := \tau_{i,r} - \tau_{i-1,r}$ for $i = 1, 2, \ldots$ and let i_0 be the smallest integer i such that $\tau_{i,r} \geq T$ if at least one such i exists; otherwise set $i_0 = +\infty$. Since ξ_t is taken to be right-continuous, we have two cases:
Case \(i_0 < +\infty \). Then \(0 = \tau_{0,r} < \tau_{1,r} < \cdots < \tau_{i_0-1,r} < T \leq \tau_{i_0,r} \leq \tau_{i_0+1,r} = \tau_j,r = T + 1 \) for \(j \geq i_0 + 1 \) almost surely. Furthermore, \(\zeta_{i,r} > 0 \) for \(i \leq i_0 \), \(\zeta_{i,r} = 0 \) for \(i > i_0 + 1 \) and

\[
\zeta_{i_0+1,r} = \begin{cases} 1, & \text{if } \tau_{i_0,r} = T, \\ 0, & \text{if } \tau_{i_0,r} = T + 1, \end{cases}
\]

almost surely.

Case \(i_0 = +\infty \). Then \(0 = \tau_{0,r} < \tau_{1,r} < \cdots < \tau_{j,r} < \cdots \) and \(\zeta_{j,r} > 0 \) for all \(j \geq 1 \) almost surely.

Before proceeding any further, let us clarify that for any random variables \(X \) and \(Y \) and a measurable set \(A \), the expression \(\text{“} X \leq Y \text{ almost surely on the set } A \text{”} \) will mean \(P(\{ X \leq Y \} \cap A) = P(A) \). If \(P(A) > 0 \), this is equivalent to \(P(X \leq Y|A) = 1 \).

The next lemma is the first step towards bounding the average number of oscillations of a given “small” size that a trajectory can have.

Lemma 2.1. Let \(r \) be any integer and let \(u_0 \in [0,T \wedge 1] \) be such that \(\alpha(u_0, M_{r+2}) < 1 \). Then for any \(i = 1,2,\ldots \) and \(u \in [0,u_0] \), almost surely on the set \(\{ \tau_{i-1,r} < T \} \),

\[
P(\zeta_{i,r} \leq u | \mathcal{F}_{\tau_{i-1,r}}) \leq \frac{\alpha(u, M_{r+2})}{1 - \alpha(u, M_{r+2})}
\]

Proof. First of all, notice that for any \(i = 1,2,\ldots, i_0 \) and \(u \in [0,1] \),

\[
 \{ \zeta_{i,r} \leq u, \tau_{i-1,r} < T \}
\subset \left\{ \sup_{\tau_{i-1,r} \leq t \leq (\tau_{i-1,r} + u) \wedge T} R(\tau_{i-1,r}, t) \geq M_r, \tau_{i-1,r} < T \right\}
\subset \left\{ \sup_{s,t \in [\tau_{i-1,r},(\tau_{i-1,r} + u) \wedge T]} \rho(\xi_s, \xi_t) \geq M_r, \tau_{i-1,r} < T \right\}
\subset \left\{ \sup_{t \in [\tau_{i-1,r},(\tau_{i-1,r} + u) \wedge T]} \rho(\xi_{\tau_{i-1,r}}, \xi_t) \geq M_{r+1}, \tau_{i-1,r} < T \right\}.
\]

Take any set \(A \in \mathcal{F}_{\tau_{i-1,r}} \). Then the definition of conditional expectation, the strong Markov property, (2.1) and Lemma 1.6 imply

\[
P(\{ \zeta_{i,r} \leq u \} \cap A \cap \{ \tau_{i-1,r} < T \})
= \int_{A \cap \{ \tau_{i-1,r} < T \}} P(\zeta_{i,r} \leq u | \mathcal{F}_{\tau_{i-1,r}}) dP
= \int_{\{ \tau_{i-1,r} < T \}} P(\zeta_{i,r} \leq u | \tau_{i-1,r}) P(A|\tau_{i-1,r}) dP
\]
\[
\leq \int_{\{\tau_{i-1,r} < T\}} P\left(\sup_{\tau_{i-1,r} \leq s \leq (\tau_{i-1,r} + u) \wedge T} \rho(\xi_{\tau_{i-1,r}}, \xi_s) \geq M_{r+1} \middle| \tau_{i-1,r}\right) \\
\times P(A \mid \tau_{i-1,r}) \, dP \\
\leq \frac{\alpha(u, M_{r+2})}{1 - \alpha(u, M_{r+2})} P(A \cap \{\tau_{i-1,r} < T\}),
\]
provided \(u \leq u_0\). Now, for each \(\varepsilon > 0\), let
\[
A_\varepsilon := A_\varepsilon(i, r, u) := \left\{ P(\zeta_{i,r} \leq u \mid F_{\tau_{i-1,r}}) - \frac{\alpha(u, M_{r+2})}{1 - \alpha(u, M_{r+2})} \geq \varepsilon \right\}.
\]
Obviously \(A_\varepsilon \in F_{\tau_{i-1,r}}\), and the argument above with \(A_\varepsilon\) in place of \(A\) shows that
\[
P(\{\zeta_{i,r} \leq u\} \cap A_\varepsilon \cap \{\tau_{i-1,r} < T\}) \leq \frac{\alpha(u, M_{r+2})}{1 - \alpha(u, M_{r+2})} P(A_\varepsilon \cap \{\tau_{i-1,r} < T\}).
\]
On the other hand, from the definition of \(A_\varepsilon\) we get
\[
P(\{\zeta_{i,r} \leq u\} \cap A_\varepsilon \cap \{\tau_{i-1,r} < T\}) \\
= \int_{A_\varepsilon \cap \{\tau_{i-1,r} < T\}} P(\zeta_{i,r} \leq u \mid F_{\tau_{i-1,r}}) \, dP \\
\geq (\varepsilon + \frac{\alpha(u, M_{r+2})}{1 - \alpha(u, M_{r+2})}) P(A_\varepsilon \cap \{\tau_{i-1,r} < T\}).
\]
Combining inequalities yields
\[
P(A_\varepsilon \cap \{\tau_{i-1,r} < T\}) = 0 \text{ for all } \varepsilon > 0.
\]
Thus, for all \(\varepsilon > 0\), almost surely on the set \(\{\tau_{i-1,r} < T\}\),
\[
P(\zeta_{i,r} \leq u \mid F_{\tau_{i-1,r}}) < \varepsilon + \frac{\alpha(u, M_{r+2})}{1 - \alpha(u, M_{r+2})}.
\]
Now let \(\varepsilon \downarrow 0\) to get the desired inequality. □

Remark 2.2. For any \(\omega\) such that \(\tau_{i-1,r}(\omega) = T\), we always have \(\tau_{i,r}(\omega) = T + 1\) and \(\zeta_{i,r}(\omega) = 1\). Hence on the set \(\{\tau_{i-1,r} = T\}\),
\[
P(\zeta_{i,r} \leq u \mid F_{\tau_{i-1,r}}) = \begin{cases} 1, & \text{if } u \geq 1, \\ 0, & \text{otherwise}. \end{cases}
\]

Remark 2.3. Similarly, if \(\omega\) is such that \(\tau_{i-1,r}(\omega) = T + 1\), then also \(\tau_{i,r}(\omega) = T + 1\) and \(\zeta_{i,r}(\omega) = 0\). Thus on the set \(\{\tau_{i-1,r} = T + 1\}\), we have, for all \(u > 0\),
\[
P(\zeta_{i,r} \leq u \mid F_{\tau_{i-1,r}}) = 1.
\]
Here is a bound for the conditional expectation of the desired quantity.
Lemma 2.4. Let r be any integer. For any $i = 1, 2, \ldots$ and $T_0 \in (0, T \wedge 1]$ such that $\alpha(T_0, M_{r+2}) \leq 1/2$, we have
\[E(e^{-\zeta_{i,r}} | F_{\tau_{i-1},r}) \leq \begin{cases} e^{-T_0} + 2 \int_0^{T_0} \alpha(x, M_{r+2})e^{-x} \, dx, & \text{a.s. on } \{\tau_{i-1,r} < T\}, \\ 1, & \text{on } \{\tau_{i-1,r} \geq T\}. \end{cases} \]

Proof. By Remarks 2.2 and 2.3, on the set $\{\tau_{i-1,r} \geq T\}$, $\zeta_{i,r} = 0$ or 1, hence trivially $e^{-\zeta_{i,r}} \leq 1$. So consider what happens on $\{\tau_{i-1,r} < T\}$. Using Theorem 10.2.5 of Dudley (2002), integration by parts, Lemma 2.1 and the assumption $\alpha(T_0, M_{r+2}) \leq 1/2$,
\[E(e^{-\zeta_{i,r}} | F_{\tau_{i-1},r}) = \int_0^{T+1} e^{-x} \, dP(\zeta_{i,r} \leq x | F_{\tau_{i-1},r}) \]
\[\leq e^{-(T+1)} + \int_0^{T+1} e^{-x} \, dx + \int_0^{T_0} P(\zeta_{i,r} \leq x | F_{\tau_{i-1},r})e^{-x} \, dx \]
\[\leq e^{-T_0} + 2 \int_0^{T_0} \alpha(x, M_{r+2})e^{-x} \, dx. \]

The form of condition (1.2) and the bound of Lemma 2.4 indicate that we need to deal with the incomplete gamma function which, for any $a > 0$ and $x \geq 0$, is defined as
\[\gamma(a,x) := \int_0^x u^{a-1}e^{-u} \, du. \]
Here are some needed facts about $\gamma(a,x)$.

Lemma 2.5. (i) For any $a > 0$ and $x \geq 0$,
\[\gamma(a,x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{k+a}}{k!(k+a)}. \]

(ii) If $0 \leq x < 3(3 + a)(2 + a)^{-1}$, then
\[\gamma(a,x) \leq \frac{x^a}{a} \left(1 - \frac{a}{a+1}x + \frac{a}{2(a+2)}x^2 \right), \]
with strict inequality holding for $x > 0$.

(iii) If $a \geq 1$, then
\[0 < a \gamma(a,1) - 1 = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(k+a+1)} < \frac{7}{24}. \]

Proof. (i) This series is well known [e.g., Davis (1970), equations (6.5.4) and (6.5.29), pages 260 and 262].
(ii) For \(k \geq 2 \) and \(x \) as specified, the ratio of absolute values of the successive terms in the series of part (i) is
\[
\frac{x(k + a)}{(k + 1)(k + a + 1)} < 1.
\]
Since the series alternates and the third term is negative, we can discard all terms starting with the third to get the needed inequality.

(iii) From the absolute convergence of the series for \(\gamma(a, x) \) and for \(e^{-x} \),
\[
a\gamma(a, 1) - \frac{1}{e} = \sum_{k=0}^{\infty} \frac{(-1)^k a}{k!(k + a)} - \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(k + a + 1)}.
\]
Since the series alternates plus, minus, and so on, and the terms decrease in absolute value, two terms provide a lower bound, whereas three terms give an upper bound:
\[
a\gamma(a, 1) - \frac{1}{e} > \frac{1}{a + 1} - \frac{1}{2 + a} = \frac{1}{(1 + a)(2 + a)} > 0,
\]
and for \(a \geq 1 \),
\[
a\gamma(a, 1) - \frac{1}{e} < \frac{1}{(a + 1)(a + 2)} + \frac{1}{2(a + 3)} \leq \frac{1}{6} + \frac{1}{8} = \frac{7}{24}.
\]

Combining the last two lemmas, we get

Corollary 2.6. Assume that a strong Markov process \(\xi_t, t \in [0, T] \), belongs to the class \(\mathcal{M}(\beta, \gamma) \) and satisfies the conditions of Lemma 2.4. Then almost surely on \(\{\tau_{i-1,r} < T\} \),
\[
E(e^{-\zeta_{i,r}}|\mathcal{F}_{\tau_{i-1,r}}) \leq \begin{cases}
\beta \gamma(\beta, T_r)T_r^{-\beta}, & \text{if } T_r < 1, \\
e^{-1} + \frac{1}{2T}, & \text{if } T_r = 1,
\end{cases}
\]
where \(T_r = \min\{((M_{r+2} \wedge a_0)\gamma/(2K))^{1/\beta}, T, 1\} \).

Proof. First notice that condition (1.2) implies
\[
\alpha(T_r, M_{r+2}) \leq KT_r^\beta (M_{r+2} \wedge a_0)^{-\gamma} \leq 1/2.
\]
Thus, we can apply Lemma 2.4 with \(T_0 = T_r \) to obtain, on \(\{\tau_{i-1,r} < T\} \),
\[
(2.2) \quad E(e^{-\zeta_{i,r}}|\mathcal{F}_{\tau_{i-1,r}}) \leq e^{-T_r} + \frac{2K}{(M_{r+2} \wedge a_0)\gamma} \int_0^{T_r} x^\beta e^{-x} dx.
\]
Now integration by parts yields
\[0 \leq \gamma(\beta + 1, T_r) = \int_0^{T_r} x^\beta e^{-x} \, dx \]
(2.3)
\[
= -x^\beta e^{-x}|_0^{T_r} + \beta \int_0^{T_r} x^{\beta - 1} e^{-x} \, dx
= -T_r^\beta e^{-T_r} + \beta \gamma(\beta, T_r),
\]
and \(\gamma(1, T_r) = 1 - e^{-T_r}\). Now consider three cases.

Case 1. \(T_r^\beta = 1 \leq (M_{r+2} \wedge a_0)^\gamma/(2K)\). Then from (2.2), (2.3) and part (iii) of Lemma 2.5, we have
\[
E(e^{-\zeta_{i,r}} \mid F_{\tau_{i-1},r}) \leq e^{-1 + \frac{2K}{(M_{r+2} \wedge a_0)^\gamma}} (-e^{-1} + \beta \gamma(\beta, 1)) \leq e^{-1 + \frac{7}{24}} < 0.660.
\]

Case 2. \(T_r^\beta = (M_{r+2} \wedge a_0)^\gamma/(2K)\). Then from (2.2) and (2.3),
\[
E(e^{-\zeta_{i,r}} \mid F_{\tau_{i-1},r}) \leq e^{-T_r} + \frac{1}{T_r^\beta} (-T_r^{\beta} e^{-T_r} + \beta \gamma(\beta, T_r)) = \beta \gamma(\beta, T_r) T_r^{-\beta}.
\]

Case 3. \(T_r^\beta = T^\beta < \min\{1, (M_{r+2} \wedge a_0)^\gamma/(2K)\}\). Then by (2.2) and (2.3) again,
\[
E(e^{-\zeta_{i,r}} \mid F_{\tau_{i-1},r}) \leq e^{-T} + \frac{1}{T^\beta} (-T^{\beta} e^{-T} + \beta \gamma(\beta, T)) = \beta \gamma(\beta, T) T^{-\beta}.
\]
And so in all cases we have the stated bounds. □

Now we are ready to state and prove the following crucial lemma.

Lemma 2.7. Let \(r\) be any integer. For any \(j = 1, 2, \ldots,\)
\[
P(\tau_{j,r} \leq T) \leq e^T \begin{cases}
(\beta \gamma(\beta, T_r) T_r^{-\beta})^j, & \text{if } T_r < 1, \\
(e^{-1} + \frac{7}{24})^j, & \text{if } T_r = 1.
\end{cases}
\]

Proof. Properties of conditional expectations, Markov’s inequality and Corollary 2.6 applied \(j\) times yield, for any \(r\) such that \(T_r < 1,\)
\[
P(\tau_{j,r} \leq T) = P(\tau_{j,r} \leq T, \tau_{j-1,r} < T)
\]
\[
= E(1_{\{\tau_{j-1,r} < T\}} P(\tau_{j,r} \leq T \mid F_{\tau_{j-1},r}))
\]
\[
= E(1_{\{\tau_{j-1,r} < T\}} P(e^{-\tau_{j,r}} \geq e^{-T} \mid F_{\tau_{j-1},r}))
\]
\[
\leq e^T E(1_{\{\tau_{j-1,r} < T\}} E(e^{-\tau_{j,r}} \mid F_{\tau_{j-1},r}))
\]
\[
= e^T E\left(\prod_{i=1}^{j-1} (1_{\{\tau_{i,r} < T\}} e^{-\zeta_{i,r}}) E(e^{-\zeta_{j,r}} \mid F_{\tau_{j-1},r}) \right)
\]
Then our assumptions imply $M \in \kappa$

Let $r \in \mathbb{R}$, where as before (to bound T)

Let ν be the set of all point partitions of $[0,T]$, where as before (to bound T)

Now recall ν is càdlàg.

We now classify oscillations of a strong Markov process ξ, $t \in [0,T]$, which belongs to the class $\mathcal{M}(\beta, \gamma)$. For any integer r, recall $M_r = 2^{-r-1}$ and let $\kappa \in PP, \kappa = \{t_i\}_{i=0}^{m_\kappa}$ be an arbitrary point partition. Define the random sets

$$K_r(\omega) := K_r(\nu, \kappa) := \{k : 1 \leq k \leq m_\kappa, M_r \leq \xi_{k,\kappa} < M_{r-1}\}.$$

Let r_1 be the largest integer less than or equal to $-(\log_2 a_0 + 3)$, so that $M_{r_1} \geq a_0$ for all $r < r_1$. Let B be the set of such $\omega \in \Omega$ that $\xi_t(\omega)$ is càdlàg.

Then our assumptions imply $P(B) = 1$.

Now recall ν_0 as defined before Remark 1.5. For any $\omega \in B$, let $\nu_0(\omega) := \nu_{a_0/2}(\omega)$, so that ν_0 counts all oscillations $> a_0/2$, including all those $\geq a_0$.

Then write

$$\nu_p(\xi(\omega)) \leq \sum_{r > r_1} \sup_{\kappa \in PP} \sum_{k \in K_r(\omega)} \xi_{k,\kappa}^p(\omega) + \sup_{\kappa \in PP} \sum_{r \leq r_1} \sum_{k \in K_r(\omega)} \xi_{k,\kappa}^p(\omega)$$

(3.1)

$$\leq \sum_{r > r_1} 2^{-rp} \sup_{\kappa \in PP} \sum_{k \in K_r(\omega)} 1 + ((2M)^p \nu_0)(\omega)$$

$$=: S_1 + ((2M)^p \nu_0)(\omega).$$

To establish that $\nu_p(\xi)$ is bounded almost surely for $p > \gamma/\beta$, it is sufficient to bound

$$E \sup_{\kappa \in PP} \sum_{k \in K_r(\omega)} 1 =: EY_r$$

for $r > r_1$, and to show that S_1 converges for $p > \gamma/\beta$.

Lemma 3.1. Let r be any integer and let $\alpha(x,a)$ and T_r be as in Corollary 2.6. Suppose that $r > r_1$. Then

$$EY_r \leq \begin{cases} 4T_r^{-1}e^{T_r}, & \text{if } T_r < 1, \\ 1.95e^{T_r}, & \text{if } T_r = 1. \end{cases}$$
Proof. First write $E Y_r = \sum_{j=1}^{\infty} P(Y_r \geq j)$. Since $r > r_1$, we have $M_{r+2} < a_0$ and $T_r = \min\{ (M_{r+2}^2/(2K))^{1/\beta}, T_1 \} < 1$. So by Lemma 2.7, we get

$$P(Y_r \geq j) \leq P(\tau_{j,r} \leq T) \leq e^T \left\{ \frac{\beta \gamma(\beta, T_r)}{T_r^\beta} \right\}^j.$$

Now Lemma 2.5(ii) yields $\beta \gamma(\beta, T_r) < T_r^\beta$ and, since $T_r < 1$, we also have

$$\frac{1}{T_r^\beta - \beta \gamma(\beta, T_r)} \leq \frac{1}{\beta/(\beta + 1)T_r^\beta + 1 - \beta/(2(\beta + 2))T_r^\beta + 2} \leq \frac{2(\beta + 1)}{\beta T_r^\beta + 1} \leq \frac{4}{T_r^\beta + 1}.$$

Thus for $T_r < 1$,

$$E Y_r \leq e^T \sum_{j=1}^{\infty} \left\{ \frac{\beta \gamma(\beta, T_r)}{T_r^\beta} \right\}^j$$

$$= e^T \frac{\beta \gamma(\beta, T_r)}{T_r^\beta} \left\{ 1 - \frac{\beta \gamma(\beta, T_r)}{T_r^\beta} \right\}^{-1}$$

$$\leq 4e^T \frac{\beta \gamma(\beta, T_r)}{T_r^{\beta + 1}} \leq \frac{4e^T}{T_r}.$$

If $T_r = 1$, then Lemma 2.7 gives, for each j,

$$P(Y_r \geq j) \leq P(\tau_{j,r} \leq T) \leq e^T (e^{-1} + \frac{7}{24})^j < e^T (0.66)^j.$$

Thus in this case

$$E Y_r \leq e^T \sum_{j=1}^{\infty} (0.66)^j = e^T \frac{0.66}{0.34} < 1.95e^T.$$

Returning to the proof of Theorem 1.3, recall the definition of r_1. It satisfies the following inequalities:

$$r_1 \leq -(\log_2 a_0 + 3) < r_1 + 1.$$

(3.2)

Now choose any $\varepsilon > 0$ and let $N > 0$. Then from (3.1) we get

$$P(v_p(\xi) > N) = P(\{v_p(\xi) > N\} \cap B) \leq P_1 + P_2 + P_3,$$

where, using Markov’s inequality and Lemma 3.1,

$$P_1 := P\left(S_1 > \frac{N}{2}\right) \leq \frac{2}{N} \sum_{r > r_1} 2^{-rp} E Y_r$$

$$\leq \frac{2e^T}{N} \sum_{r > r_1} 2^{-rp} \left\{ 4T_r^{-1} \mathbf{1}_{\{T_r < 1\}} + (1.95) \mathbf{1}_{\{T_r = 1\}} \right\}.$$
If $r > r_1$, then $M_{r+1} = 2^{-r-3} < a_0$ and $T_r = \min\{(M_{r+1}^{\gamma}/(2K))^{1/\beta}, T, 1\}$. And so
\[
T_r^{-1} = \left(\min\left\{\left(\frac{M_{r+1}^{\gamma}}{2K}\right)^{1/\beta}, T, 1\right\}\right)^{-1}
\]
\[
= \max\left\{1, \frac{1}{T}, \frac{(2K)^{1/\beta}}{M_{r+1}^{\gamma/\beta}}\right\}
\]
\[
\leq 1 + \frac{1}{T} + (K2^{1+\gamma(r+3)})^{1/\beta}.
\]
Hence
\[
P_1 \leq \frac{2e^{T}}{N} \left(6 + \frac{4}{T}\right) \sum_{r=r_1+1}^{\infty} 2^{-rp} + K^{1/\beta}2^{2+(3\gamma+1)/\beta} \sum_{r=r_1+1}^{\infty} 2^{-r(p-\gamma/\beta)}
\]
\[
= \frac{2e^{T}}{N} \left(6 + \frac{4}{T}\right) \frac{2^{-(r_1+1)p}}{(1 - 2^{-p})} + \frac{K^{1/\beta}2^{2+(3\gamma+1)/\beta} - (r_1+1)(p-\gamma/\beta)}{1 - 2^{-(p-\gamma/\beta)}}
\]
\[
=: \frac{C_1(K, T, p, \beta, \gamma, a_0)}{N} \leq \frac{\varepsilon}{3},
\]
for all $N \geq N_1 := [3C_1(K, T, p, \beta, \gamma, a_0)\varepsilon^{-1}] + 1$ and $p > \gamma/\beta$. Moreover, for $N \geq N_2(\varepsilon)$ large enough,
\[
P_2 := P\left((2M(\omega))^p > \sqrt{N/2}\right) \leq \frac{\varepsilon}{3}.
\]
Similarly, for $N \geq N_3(\varepsilon)$ large enough,
\[
P_3 := P\left(\nu_0(\omega) > \sqrt{N/2}\right) \leq \frac{\varepsilon}{3}.
\]
Combining the obtained bounds and recalling Remark 1.5, for all $N \geq \max\{N_1, N_2, N_3\}$ and $p > \gamma/\beta$, we have $P(\nu_p(\xi) > N) \leq \varepsilon$. This implies that, for $p > \gamma/\beta$, $\nu_p(\xi)$ is bounded almost surely. This completes the proof of the main theorem.

4. Examples. In this section we show how Theorem 1.3 can be applied to real-valued symmetric α-stable Lévy processes.

Let X_1 be a real-valued symmetric α-stable random variable with a characteristic function $\phi(t) = e^{-ct^\alpha}$ for $t \in \mathbb{R}$, $\alpha \in (0, 2]$ and some constant $c > 0$. Consider the temporally homogeneous symmetric α-stable Lévy motion $\{X_t, t \geq 0\}$ started at $x = 0$ and with increments having distribution:
\[
X_t - X_s \sim |t - s|^{1/\alpha} X_1, \quad t, s > 0.
\]
It is well known [e.g., Feller (1971), page 448] that, for some constant $b \in (0, \infty)$,

$$x^\alpha P(X_1 > x) \to b \quad \text{as } x \to +\infty.$$

Thus there exists an $x_0 \in (0, \infty)$ such that

$$P(X_1 > x) \leq 2bx^{-\alpha} \quad \text{for all } x \geq x_0.$$

For $x \in (0, x_0)$, we trivially have $P(X_1 > x) \leq x_0^\alpha x^{-\alpha}$. By assumption, X_1 is symmetric, and so combining the above bounds, we have

$$P(|X_1| > x) \leq 2\max\{x_0^\alpha, 2b\}x^{-\alpha} =: Kx^{-\alpha}.$$

Therefore for $h > 0$ and $a > 0$,

\[(4.1) \quad P(|X_{t+h} - X_t| > a) = P(|X_1| > ah^{-1/\alpha}) \leq K \frac{h}{a^{\alpha}}.\]

Denote $A_a(x) = \{y \in \mathbb{R} : |x - y| \geq a\}$ for $a > 0$. From the spatial homogeneity of transition probability functions of Lévy processes [e.g., Sato (2000), Theorem 10.5] and (4.1), we get, for any $T > 0$, $h \in (0, T]$ and $a > 0$,

\[
\alpha(h, a) = \sup\{P_{s,t}(x, A_a(x)) : x \in \mathbb{R}, 0 \leq s \leq t \leq (s + h) \land T\} \\
= \sup\{P_{s,t}(0, A_a(0)) : 0 \leq s \leq t \leq (s + h) \land T\} \\
= \sup\{P(|X_t - X_s| \geq a) : 0 \leq s \leq t \leq (s + h) \land T\} \\
\leq \sup\left\{\frac{Kv}{a^{\alpha}} : 0 \leq v \leq h \leq T\right\} = K \frac{h}{a^{\alpha}}.
\]

Now Theorem 1.3 implies that α-stable Lévy motion has bounded p-variation on every interval $[0, T]$ for $p > \alpha$. This reestablishes the “positive” parts of Theorem 9 of Lévy (1940) for $\alpha = 2$ and Theorem 4.1 of Blumenthal and Getoor (1960) for $\alpha \in (0, 2)$. Moreover, this example shows that the condition “$p > \gamma/\beta$” of Theorem 1.3, in general, cannot be replaced by $p \geq \gamma/\beta$: by the aforementioned theorems, for $p = \gamma/\beta = \alpha$, the p-variation of an α-stable Lévy motion is infinite almost surely for all intervals $[0, T]$.

Acknowledgments. This paper contains some of the results from my Ph.D. dissertation written under the guidance of Professor Richard M. Dudley, to whom I am deeply grateful for many helpful suggestions. I would also like to thank Professors Marjorie G. Hahn and Daniel W. Stroock as well as an anonymous referee who carefully read this paper and helped to improve it.
REFERENCES

BLUMENTHAL, R. M. (1957). An extended Markov property. Trans. Amer. Math. Soc. 82 52–72. MR88102

BLUMENTHAL, R. M. and GETOOR, R. K. (1960). Some theorems on stable processes. Trans. Amer. Math. Soc. 95 263–273. MR119247

BRETAGNOLLE, J. (1972). p-variation de fonctions aléatoires. Séminaire de Probabilités VI. Lecture Notes in Math. 258 51–71. Springer, Berlin. MR373019

DAVIS, P. J. (1970). Gamma function and related functions. In Handbook of Mathematical Functions (M. Abramowitz and I. A. Stegun, eds.) 253–293. Dover, New York.

DUDLEY, R. M. (1992). Fréchet differentiability, p-variation and uniform Donsker classes. Ann. Probab. 20 1968–1982. MR1188050

DUDLEY, R. M. (2002). Real Analysis and Probability, 2nd ed. Cambridge Univ. Press. MR1932358

DUDLEY, R. M. and NORVAIŠA, R. (1998). An introduction to p-variation and Young integrals. Maphysto Lecture Notes 1. Available at www.maphysto.dk/cgi-bin/w3msql/publications/index.html#LN.

DUDLEY, R. M. and NORVAIŠA, R. (1999). Differentiability of Six Operators on Nonsmooth Functions and p-Variation. Lecture Notes in Math. 1703. Springer, Berlin. MR1705318

DYKNIN, E. B. (1952). Criteria of continuity and absence of discontinuity of the second kind for trajectories of a Markov process. Izv. Akad. Nauk SSSR Ser. Mat. 16 563–572. MR52055

FELLER, W. (1971). An Introduction to Probability Theory and its Applications II, 2nd ed. Wiley, New York.

FRISTEDT, B. and TAYLOR, S. J. (1973). Strong variation for the sample functions of a stable process. Duke Math. J. 40 259–278. MR317421

GIKHMAN, I. I. and SKOROHOD, A. V. (1974). The Theory of Stochastic Processes I. Springer, Berlin.

JACOB, N. and SCHILLING, R. L. (2001). Lévy-type processes and pseudo-differential operators. In Lévy Processes: Theory and Applications (O. Barndorff-Nielsen, T. Mikosch and S. Resnick, eds.) 139–167. Birkhäuser, Boston. MR1833696

JAIN, N. C. and MONRAD, D. (1983). Gaussian measures in B_p. Ann. Probab. 11 46–57. MR682800

KINNEY, J. R. (1953). Continuity properties of sample functions of Markov processes. Trans. Amer. Math. Soc. 74 280–302. MR53428

LÉVY, P. (1940). Le mouvement Brownien plan. Amer. J. Math. 62 487–550. MR2734

LYONS, T. J. (1998). Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 215–310. MR1654527

MIKOSCH, T. and NORVAIŠA, R. (2000). Stochastic integral equations without probability. Bernoulli 6 401–434. MR1762553

MONROE, I. (1978). Processes that can be embedded in Brownian motion. Ann. Probab. 6 42–56. MR455113

SAITO, K. (2000). Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press.

TAYLOR, S. J. (1972). Exact asymptotic estimates of Brownian path variation. Duke Math. J. 39 219–241. MR295434
