Effect of *Melia Azedarach* Fruits on Gipsing-Restraint Stress-Induced Ulcers in Rats

S.A. HANIFA MOURSI and Izaldin M.H. AL-KHATIB*

Medicinal Plants Research Unit, Department of Physiology, College of Veterinary Medicine, Baghdad University, Baghdad, Iraq
*Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyushu University 62, Fukuoka 812, Japan

Accepted September 8, 1984

Abstract—A study was undertaken on the antiulcer effect of some active ingredients present in the lipid part of the fruits of *M. azedarach* administered p.o. to male rats. Acute gastric ulcers were induced by gipsing the rats for 22 hr preceded by 24 hr starvation to obtain the maximum stress. The free HCl, total HCl and total acidity were also measured. The total lipid (TLP), 1.0, 2.5 and 5.0 g/kg, reduced the ulcer index by 25–41.8% and 50–58% when given daily for 5 and 10 days, respectively. The saponifiable fraction (SP), 0.85, 2.0 and 4.0 g/kg, given for 10 days reduced the ulcer index by 41.8–50%, while the nonsaponifiable (NSP), 0.075, 0.150 and 0.50 g/kg, for 10 days reduced it by 50–83.5%. The 70% ethanol extract of the defatted residue showed no antiulcer effect. Analysis of the gastric juice showed a significant decrease in free HCl (P<0.001) induced by TLP; the total HCl and total acidity were reduced only at 5 g/kg. The results revealed the antiulcer effect of the lipid components of *M. azedarach* fruits which is mainly due to the phytosterol fraction.

Melia azedarach (Fam. Meliaceae) is widely distributed all over the world, and some parts of the plant, including the fruits, have been used in the traditional medicine of many countries as an antiulcer agent, resolvent and antiseptic (1), vermifuge and antiseptic (2), insecticide (3, 4), and fungicide (5).

Several factors were used to induce gastric ulcers experimentally such as restraint, starvation, environmental changes and drugs (6). Among these, stress was the simplest one to be induced by various methods: by tying fore- and hind-limbs together or by wrapping the rat with a towel for 24–48 hr (7). The factors involved in stress were suggested to be age, presence of adrenal and hypophysis and starvation (7, 8).

The present study is part of a series of studies to obtain new natural sources of drugs from medicinal plants. *M. azedarach* was selected to study its antiulcer effect because of its wide distribution and popularity in Iraq. Moreover, the validity of a scoring system to study the effect on gastric ulcer induction of some of its active ingredients, i.e., the alcoholic extract and lipid part of the fruit, was evaluated.

Materials and Methods

Animals: Male albino rats 150–200 g were used. Animals were housed in a temperature controlled room at 22±3°C and 50±5% humidity with a 12:12 light-dark cycle (lights on 07:00–19:00). Rats were kept in groups of 5 per cage (35×30×30) with food and water ad lib. till starvation.

Procedure for extraction of samples: The lipid fractions were extracted by defatting samples of 100 g dried powdered ripe fruits with petroleum ether (300 ml) (b.p. 60–80°C) in a Soxhlet for 8 hr at 40°C. The solvent system was evaporated under reduced pressure: the extract was concentrated and
amassed to 4.8% of the total dry weight. Samples of 1 g each of the lipid residue were subjected to saponification (9). The non-saponifiable fraction (NSP), containing phytosterols, and the saponifiable fraction (SP), containing fatty acids, were obtained and amounted to 15% and 85% of the total lipid, respectively. They were flushed with nitrogen and stored in screw cap vials at -20°C. The alcoholic extract was obtained by extracting the defatted residue with 300 ml of 70% ethanol in a Soxhlet for 24 hr at 60°C and then evaporated under reduced pressure. It amounted to 15% of the total defatted fruit weight.

Experimental induction of gastric ulcers:
Stress procedure was performed according to the method of Shumpelich and Paschen (10) with some modifications. Briefly, it was performed by gipsing the extracts-pretreated rats for 22 hr preceded by 24 hr food deprivation to induce acute ulcers. For recording the gastric ulceration, an ulcer index was applied which was taken from two scoring systems.

Score I: This score depends on the macroscopic appearance of the ulcer which was seen by lens and the numericals were given according to the size of the ulcer as: score 1: small; 2: medium; 3: large; 4: very large or stretch. Then multiplying the number of each observed ulcer with score numericals and adding the products, score 1 was obtained.

Score II: It depends on the sum of the values of score I (Table 1).

The effects of the tested ingredients were studied by orally administering the TLP (1.0, 2.5 and 5.0 g/kg; 5 and 10 days), the NSP (0.075, 0.150 and 0.500 g/kg), SP (0.85, 2.00 and 4.00 g/kg) and the alcoholic extract (0.10, 0.25 and 0.500 g/kg) daily for 10 days followed by application of stress.

Histological study of the stomach: The specimens of stomach tissue, after scoring, were preserved in 10% formalin, and 6 μm thick sections were prepared and stained with hematoxyline-eosine.

Statistical analysis: Student's t-test was used to analyze the data.

Procedure for gastric analysis: A modification of the method of McColl et al. (11) and Shay et al. (12) was performed. The total lipid residue was given daily per os in doses of 1.0, 2.5 and 5.0 g/kg for 10 days. The treated rats were kept off food for 48 hr before the ligature of the pylorus. Water was given ad lib. Under ether anaesthesia, the pylorus of each animal was ligated, the animals were kept under normal conditions without food and water for 5 hr, then the stomach was removed, and the gastric juice was collected, its volume was measured, and it was centrifugated for 10 min at 3000 r.p.m. The supernatant was discarded, and the juice was analyzed quantitatively (13) to determine the free and bound HCl in addition to the total acidity in mmol/l.

Results
Induction of gastric mucosal lesions by gipsing: The stress obtained by gipsing was found to be enough to induce various mucosal lesions that were observed macroscopically and verified histologically (Fig. 1A and C).

Effect of M. azedarach components on the gastric lesions: The results shown in Fig. 2 revealed that the incidence of gastric ulcers was reduced in the rats treated with the extracts in a dose- and time-dependent manner. As depicted in Table 2, by applying our scoring system, it was possible to

| Table 1. Values of score II determined according to the sum of points of score I range |
|--------------------------------------|-------------------------------|
score II value	score I range
0	No lesions
1	Medium lesions
2	Severe lesions
3	Very severe lesions
4	Affecting the whole gastric mucosa

The ulcer index is the mean±S.E. of score II.
Table 2. Effect of different components of the fruits of *M. azedarach* on gepsing-restraint induced gastric ulcers in rats

Treatment	Doses (g/kg, p.o.)	No. of ulcers according to size	Ulcer points				
		Small	Medium	Large	Very large	Score I	Score II
Control							
Total lipid (TLP)	1	21.6±1.8**	2.0±0.3**	3.0±0.6	1.2±0.2	39.6±1.3**	3.0±0.0**
(5 days)	2.5	6.4±3.6***	3.0±0.9	2.2±1.1	1.6±0.2	25.4±6.4**	2.6±0.25**
	5.0	4.2±1.1***	0.0±0.0***	0.0±0.0***	0.8±0.4	7.4±0.75***	1.8±0.2***
Control							
Total lipid (10 days)	1	9.2±0.3***	0.4±0.2*	0.4±0.2*	0.6±0.2*	13.6±4.5***	1.8±0.5***
	2.5	3.0±1.0***	1.6±0.7*	0.6±0.2*	0.0±0.0**	8.0±1.4***	2.0±0.0**
	5.0	5.0±1.9***	0.6±0.4*	0.4±0.2*	0.8±0.3*	10.6±2.8***	1.8±0.2***
Saponifiable fraction (SP)	Control	40.4±5.1	6.2±1.1	4.2±1.3	2.6±1.3	75.8±11.0	3.8±0.2
(10 days)	0.85	17.0±3.0**	0.6±0.2**	0.4±0.2*	0.0±0.0*	19.2±3.6***	2.4±0.25**
	2.0	3.6±1.1***	0.0±0.0***	1.0±0.5	3.4±1.5	20.8±5.6**	2.6±0.25**
	4.0	8.4±2.7***	0.0±0.0***	0.0±0.0*	0.6±0.2	10.4±2.3***	1.8±0.2***
Nonsaponifiable fraction (NSP)	Control	38.0±0.4	5.0±0.3	2.2±0.2	2.0±0.5	63.0±1.7	4.0±0.0
(10 days)	0.075	16.0±0.8	5.6±0.5	0.2±0.1***	0.0±0.0**	27.8±1.1***	3.0±0.0*
	0.15	1.6±0.7***	0.0±0.0***	0.0±0.0**	0.0±0.0*	1.6±0.7***	0.8±0.2***
	0.50	2.6±0.7***	0.0±0.0***	0.0±0.0**	0.0±0.0*	2.6±0.75***	0.8±0.2***

Each value is the mean±S.E. Score I and II are calculated from the individual values. Ulcer index is expressed as the mean±S.E. of score II. Five animals were used per group. Statistically significant difference from the control at *P<0.05, **P<0.01, ***P<0.001.
confirm the antiulcer effect and to compare the obtained data quantitatively by statistical analysis. The administration of the TLP for 5 days mainly reduced the small and medium size ulcers, while on prolonging the course of administration to 10 days, the effect was extended to involve the large and stretch ulcers. Moreover, on testing the effect of SP & NSP fractions, it was found that the latter was more potent in exerting the anti-ulcer effect, on the basis of the lower ulcer index, and it completely prevented the
incidence of stretch ulcers in doses of 0.075–5.0 g/kg, and only the small ulcers were observed in doses of 0.15 and 0.5 g/kg. The results were sustained histopathologically (Fig. 1B and D). The alcoholic extract showed no effect on the gastric lesions.

Effect on gastric juice: Table 3 shows that TLP in doses of 1 and 5 g/kg for 10 days increased the volume of the gastric juice along with a significant reduction in total HCl and total acidity only at 5 g/kg. Free HCl was significantly reduced by all doses examined.

Discussion
The prominent finding in the present experiment was that the gipsing-restraint stress-induced ulcer was inhibited, in a dose- and time-dependent manner, by the lipid components of the fruits of *M. azedarach* without causing any observed syndromes during the experiment; and the finds showed the validity of the scoring system used to confirm the antiulcer effect and to compare the potency of the various fractions in this respect.

Gastric acid is regarded as a factor in restraint lesions (14), so the reduction of free and total HCl combined with reduction of total acidity may add to the antiulcer effect of TLP which significantly increased the volume of gastric juice, which was reported to be reduced by stress (15).

The SP contains several fatty acids, myristic, palmitic, stearic, oleic, linoleic and linolenic (16). The fatty acids are well

Treatment	Dose gm/kg.p.o.	Gastric lesions (% of control)
control	0	0
TLP	1.0	50
	2.5	100
	5.0	
control	0	0
TLP	1.0	
	2.5	
	5.0	
control	0	
SP	0.85	
	2.00	
	4.00	
control	0	
NSP	0.075	
	0.150	
	0.500	

Fig. 2. Dose response relationship of various components of the lipid part of *M. azedarach* fruits in preventing gipsing-induced gastric lesions. Each column is the mean±S.E. Five animals were used per group. Abbreviations are explained in the test. Statistically significant difference from the control: *P<0.05, **P<0.01, ***P<0.001.

Table 3. Effect of the total lipid part of the fruits of *M. azedarach* on the gastric juice of rat

Dose g/kg, p.o. (10 days)	volume (ml)	Free HCl	Bound HCl	Total HCl	Total acidity
Control	10±0.4	62±7.0	80±23.0	106±8.0	121±9.0
1.0	11±0.6***	11±0.6***	91±22.0	112±12.0	
2.5	10±0.3***	19±0.0***	84±20.0	111±26.0	
5.0	19±2.0***	14±3.0***	42±6.0***	81±11.0***	

Each value is the mean±S.E. Five rats were used per group. * , ** , *** : Significantly different from the control at P<0.05 and P<0.001 levels, respectively.
known as a source of prostaglandins (PGs). A plethora of data shows that PGs have cytoprotective effects (17, 18), and they are reduced in the gastric mucosa of patients with gastric ulcer (19), they also inhibit the pentagastrin-induced acid secretion in dogs (20) and their protective effects are intimately associated with stimulation of gastric chloride transport (21). Whether the SP effect is direct or via conversion to PGs merits verification. The NSP fraction, which contains the phytosterols, stigmasterol, campsterol and β-sitosterol (16), produced the most remarkable reduction of the ulcer index, and the role of phytosterols in this regard needs also to be clarified. No antiulcer effect was exerted by the alcoholic extract of the defatted residue; this proves that the antiulcer effect is confined to the lipid components. Beside the above mentioned components, the fruits also contain various terpenoids (22, 23) which possess antiulcer activity (24, 25) and are involved in synthesis of glyco-proteins which on their own possess cytoprotective activity (26). It is not unusual that by the virtue of the above mentioned components, the examined lipid components induced the antiulcer effect.

This study indicated that the role of sterols, fatty acids and other lipid components in reducing the gastric ulcer should be further clarified and that the medicinal plants are a treasure which must be explored on a scientific base for the constituents of their active ingredients as a resource for medicinal uses.

Acknowledgement: The authors gratefully acknowledge Prof. S. Ueki for his valuable comments and for revising this manuscript. Thanks are extended to Miss Ahlam Al-Wazini and Mrs. Kifah Al-Janabi for their technical assistance.

References
1 Al Rawi, A. and Chakravarty, H.L.: Medicinal Plants of Iraq. Edited by Ministry of Agriculture, Baghdad (1964)
2 Watt, J.M. and Breyer-Bradwijk, M.G.: Medicinal and Poisonous Plants of Southern and Eastern Africa. 2nd ed., E. & S. Livingstone, Ltd., Edinburgh and London (1962)
3 Atawal, A.S. and Pajni, H.R.: Preliminary studies on the insecticidal properties of drugs of Melia azedarach against caterpillars of Pieris brassicaceae (Lepidoptera pieridae). Indian J. Entomol. 26, 221–227 (1964)
4 Burkhill, I.H.: A Dictionary of the Economic Products of the Malay Peninsula, Vol. II, Edited by Ministry of Agriculture & Cooperatives, Kuala Lumpur (1966)
5 Campbell, D.B.: Fungicides from Chinaberry. Tetrahedron Lett. 18, 1050–1052 (1966)
6 Selye, H.: The Physiology and Pathology of Exposure to Stress. Acta Inc., Montreal (1950)
7 Selye, H.: Thymus and adrenals in the response of the organism to injuries and intoxications. Br. J. Exp. Pathol. 17, 234 (1936)
8 Brodies, D.V. and Hanson, H.M.: A study of the factors involved in the production of gastric ulcers by the restraint technique. Gastroenterology 38, 363–369 (1960)
9 A.O.C.S. Methods Cd. 3–25: Saponification Value. Food Chemicals Codex 1st ed., p. 760, National Academy of Sciences-National Research Council, Washington, D.C. (1966)
10 Schumpelich, V. and Paschen, M.: Comparison of the protective effects of diazepam and vagotomy on the stress ulcers. Arzneimittelforsch. 24, 176–179 (1974)
11 McColl, J.D., Lee, G.F. and Hajdu, A.: Effect of some sulfonamide derivatives in experimental ulcer formation in the rat. Arch. Int. Pharmacodyn. Ther. 141, 181–189 (1963)
12 Shay, H., Komarov, S.A., Feles, S.S., Meranze, D., Gruenstein, M. and Siplet, H.: A simple method for the uniform production of gastric ulceration in the rat. Gastroenterology 5, 43–61 (1945)
13 Hallman, L.: Klinische Chemie und Mikroskopie. p. 72–80. George Thieme-Verlag, Stuttgart (1960)
14 Brodie, D.A., Marshall, R.W. and Moreno, O.M.: Effect of restraint on gastric acidity in the rat. Am. J. Physiol. 202, 812–814 (1962)
15 Brodie, D.A. and Valitski, L.S.: Production of gastric haemorrhage in rats by multiple stresses. Proc. Soc. Exp. Biol. Med. 113, 998–1001 (1963)
16 Hanifa Moursi, S.A., Al-Shamae, A.A. and Al-Khatib, Iz. M.H.: Determination of some active ingredients in the fruits of Melia azedarach cultivated in Iraq. Second Southeast Asian Western Pacific Regional Meeting of Pharmacologists, Yogyakarta, June (1979)
17 Robert, A., Nezamis, J.E., Lancaster, C. and Hanchar, A.J.: Gastric cytoprotective property of prostaglandins. Gastroenterology 72, 1121 (1977)
18 Robert, A., Nezamis, J.E., Lancaster, C. and Hanchar, A.J.: Cytoprotection by prostaglandins
23 Inubushi, Y. and Hibino, T.: Components of fruits of *M. azedarach var Japonica*. Yakugaku Zasshi 90, 99–102 (1970) (Abstract in English)

24 Adami, E., Marrazzi-Uberti, E. and Turba, C.: The antiulcer action of some natural and synthetic terpenic compounds. Med. Exp. 7, 171–176 (1962)

25 Ogiso, A., Kitazawa, E., Kurabayashi, M., Sato, A., Takahashi, S., Noguchi, H., Kuwano, H., Kobayashi, S. and Mishima, H.: Isolation and structure of antipeptic ulcer diterpene from Thai medicinal plant. Chem. Pharm. Bull. (Tokyo) 26, 3117–3123 (1978)

26 Hemming, F.W.: Lipids in glycan biosynthesis. In MTP International Reviews in Science, Biochemistry, Series 1: Biochemistry of Lipids, Edited by Goodwin, T.W., Vol. 4, p. 39–98, Butterworths, London (1974)