INTRODUCTION

Cryopreservation is an important and widely used element for long-term storage of sperm cells. However, this technique induces partially irreversible damages to sperm (Amann and Pickett, 1987; Purdy, 2006), which may decrease motility, viability and the fertilization rate after artificial insemination (Matsuoka et al., 2006). Therefore, considerable care must be exercised during semen freezing to avoid damaging the sperm unduly at this stage of the processing. It has been suggested that membrane is a primary target of chilling or freezing damage in cells (Darin-Bennett and White, 1977). On the other hand, sperm cells are highly susceptible to lipid peroxidation (LPO) by free radicals such as O$_2^-$ and H$_2$O$_2$ (Alvarez et al., 1987; Sinha et al., 1996; Gadella et al., 2001), which lead to the structural damage of sperm membranes during cryopreservation (Alvarez et al., 1987; Sinha et al., 1996). However, differences among species in the sensitivity of their sperm to cooling are largely attributable to compositional variations of the sperm plasma membrane (Bailey et al., 2000). There is evidence that the ram sperm membrane has a higher polyunsaturated/saturated fatty acids ratio (Evans and Maxwell, 1990), which thereby makes the membrane of this species more sensitive to cold shock and peroxidative damage than that of other species such as bull, rabbit, or even the human with subsequent loss of membrane integrity of the acrosomal region and impaired cell function (Watson, 1981; Fiser and Fairfull, 1989; Aitken and Fisher, 1994).

Based on this information, Hammerstedt et al. (1990) and Curry et al. (1994) suggested that the composition of...
diluents and suitable cryoprotectants seem to play an important role in successful semen cryopreservation. Therefore, in recent years, different antioxidants have been used to protect spermatozoa from the deleterious effects of cryopreservation by elimination of free radicals (Curry et al., 1994; Baumber et al., 2000; Purdy, 2006). One of the antioxidants supplemented to extender is butylated hydroxytoluene (BHT), and its beneficial effects have been reported in many studies (Hammerstedt et al., 1976; Pursel, 1979; Watson and Anderson, 1983; Killian et al., 1989; Bamba and Cran, 1992; Donoghue and Donoghue, 1997; Roca et al., 2004; Khalifa et al., 2008; Shoae and Zamiri, 2008; Ijaz et al., 2009).

There is evidence that butylated hydroxytoluene, as a phenolic anti-oxidant, acted as a membrane lipid perturbant which prevented or substantially reduced the permeability changes of sperm plasma membrane when the cell was cold-shocked (Hammerstedt et al., 1976). Snipes et al. (1975) and Hammerstedt et al. (1976) suggested that BHT has antiviral activity and thereby it can inactivate lipid-containing viruses. Furthermore, it is important to note that butylated hydroxytoluene, as a synthetic analogue of vitamin E, has been used successfully to preserve liquid semen of different species, such as ram (Watson and Anderson, 1983), turkey tom (Donoghue and Donoghue, 1997), bull (Killian et al., 1989; Shoae and Zamiri, 2008), boar (Roca et al., 2004), goat (Khalifa et al., 2008) and buffalo (Ijaz et al., 2009). However, there is evidence that extender containing BHT could not positively affect the motility of stallion spermatozoa at 5°C (Ball et al., 2001).

Despite years of research, there are few available reports in which the effects of BHT on post-thaw motility and viability of ram spermatozoa were studied. Therefore, within this study, an attempt was made to investigate the positive effects of BHT at three phases (after dilution, after cooling and after frozen-thawing) on different characteristics of ram spermatozoa.

MATERIALS AND METHODS

Location, animals and extender

This study was conducted on the testing station for Iranian Moghani sheep in Jafarabad, Province Ardebil, Iran. The animals were kept under natural photoperiod and maintained using conventional feeding, housing and lighting conditions. Five mature and fertile rams (2-4 years old) were used in this study. The base extender consisted of 3.786% Tris (hydroxymethyl-aminoethane, Merck 64271, Germany), 2.172% citric acid (BHD 1081, England), and 1% fructose (BDH 28433, England) in 100mL distilled water, containing 5.0% (v/v) glycerol (Merck, 2400 Germany) and 10% (v/v) egg yolk, Penicillin (100,000 IU), Streptomycin (100 g) at pH 6.8 (Evans and Maxwell, 1990).

Semen collection and evaluation

Semen samples were collected twice weekly for 8 weeks using an artificial vagina (42-43°C). Immediately after collection, the fresh semen was transported to the laboratory and kept in a water bath at 37°C. Ejaculates were evaluated for initial quality from volume (ml, using a calibrated semen collection tube), sperm concentration (×10⁹ sperm/ml, using a Neubaur hemocytometer after 1:200 dilution of semen with 0.5% eosin solution), mass activity (% undiluted semen), motility (% diluted with normal saline), and progressive motility using an arbitrary scale of 1 (10 to 25%), 2 (25 to 50%), 3 (50 to 70), 4 (70 to 90%), and 5 (90 to 100%) of the motile spermatozoa. To evaluate mass activity, motility and progressive motility, a sample of the diluted spermatozoa was placed under a cover slip in the centre of a pre-warmed (37°C) slide and transferred to a heated microscope stage set at 37°C and subjectively assessed by phase contrast microscopy (×400 magnification). The assessment of live sperm used the eosin-nigrosin stain procedure described by Evans and Maxwell, 1990). A mixture of 10 µl of diluted spermatozoa and 10 µl eosin-nigrosin stain was smeared on a slide and allowed to air dry in a dust-free environment. Two hundred spermatozoa from different microscopic fields were examined under a bright-field microscope using a 400× objective, and the number of non-stained (viable) spermatozoa was counted. The morphological acrosome abnormality was assessed by viewing a wet mount of diluted spermatozoa fixed in buffered Formalin-Citrate solution as described by Weitzie (1977). A drop of the fixed spermatozoa was placed on a slide under a cover glass. The slides were examined by phase-contrast microscopy using a 400× oil immersion objective and white light. Spermatozoa (n = 200/slide) were examined and the percentage with normal acrosomes determined. The hypo-osmotic swelling test (HOS-test) was used to evaluate the functional integrity of the sperm membrane, and was performed by incubating 20 µl of semen with 200 µl of a 100 mOsm hypo-osmotic solution (9.0 g fructose+4.9 g sodium citrate/L distilled water) at 37°C for 60 min. After incubation, 100 µl of the mixture was spread with a cover slip on a warm slide. A total of 200 sperm were counted in at least 5 different microscopic fields. The percentage of sperm with swollen and curled tails was then recorded (Revell and Mrode, 1994). The frozen-thawed semen was assessed for motility, progressive motility, viability, acrosome and membrane integrity.

Experimental procedure and semen dilution

This study was conducted to investigate the influence of different concentrations of BHT at three different phases.
(after addition, cooling and frozen-thawed steps) on diluted ram spermatozoa. Ejaculates showing >70% motility and having >3×10^9 sperm/ml concentration were pooled and used for freezing. After pooling, semen was diluted 1:4 with the basic extender containing different concentrations (0.5, 1.0, 2.0 or 3.0 mM, according to Ijaz et al. (2009) for freezing of buffalo sperm) of butylated hydroxytoluene (W218405, Sigma-Aldrich Co, Australia), which was dissolved in 0.25% (v/v) dimethyl sulfoxide (DMSO) before addition to extender. As a control, semen was frozen in the diluent without butylated hydroxytoluene. Diluted semen samples were cooled to 5°C over 2 h, transferred into 0.25-ml straws, equilibrated for 1.5 h at 5°C and frozen in liquid nitrogen vapor (4-5 cm from the LN2 surface level) for 10 min. They were then stored in liquid nitrogen for 24 h. The straws were thawed in a water bath at 37°C for 2 min. Semen samples were evaluated after dilution, cooling and thawing for motility, progressive motility, viability, morphological acrosome abnormality and hypo-osmotic swelling test.

Statistical analysis

The experiments were conducted as a completely randomized design, and statistical analysis of data was performed by the General Linear Model (GLM) procedure of SAS (1996). All percentage data were arcsine transformed before statistical analysis. Back-transformed data are reported as mean ±SEM. A probability level of p≤0.05 was considered as significant.

RESULTS

The average macroscopic and microscopic seminal characteristics in primary evaluation are presented in Table 1. The results indicated that the average volume (1.22±0.05 ml), sperm concentration (4.52±0.10×10^9 ml^-1), mass activity (4.50±0.06), motility (88.56±0.74%), progressive motility (82.09±0.85%), live sperm (86.54±0.76%) and rate of morphologically normal acrosome (87.34±0.65%) were in the ejaculates of Moghani ram spermatozoa.

Table 2 shows the effect of supplementation of Tris-citric acid-fructose-egg yolk extender with different concentrations of BHT (0.5, 1.0, 2.0 or 3.0 mM) on the motility, progressive motility, viability, membranes (hypo-osmotic swelling test) and acrosome integrity after dilution (first part of experiment) of ram spermatozoa. The obtained results showed no significant differences (p>0.05) between treatments and control extender. However, the results indicated that extenders containing 2.0 and 3.0 mM BHT were slightly better than other BHT concentrations and control diluent.

The result of the second part (effects of BHT levels after cooling) of this study is presented in Table 3. The data demonstrated significant (p<0.01) improvement by supplementation and increasing levels of BHT to extenders. The results showed that significantly (p<0.01) better values were achieved when extenders contained 2.0 and 3.0 mM BHT. Furthermore, the highest sperm motility (76.25±0.85), progressive motility (70.25±0.96), viability (80.31±0.84) were in the ejaculates of Moghani ram spermatozoa.

Table 1. Macroscopic and microscopic characters of seminal plasma of Moghani ram spermatozoa
Semen characters
Volume (ml)
Sperm concentration (×10^9 ml^-1)
Mass activity (1-5)
Motility (%)
Progressive motility (%)
Live sperm (%)
Normal acrosome (%)

Table 2. Effect of different concentrations of BHT added to a basic TCEY extender on Moghani ram spermatozoa characteristics after dilution (mean±SEM, n = 16)

Semen treatments (mM)	Motility (%)	Progressive motility (%)	Live sperm (%)	Acrosome abnormality (%)	Membrane integrity (%)
0.5	78.6±0.69	73.8±0.76	83.1±0.62	5.9±0.15	79.9±0.76
1	78.9±0.65	74.4±0.78	83.4±0.66	5.7±0.16	80.6±0.75
2	80.4±0.78	76.1±0.92	84.2±0.74	5.7±0.24	81.4±0.89
3	79.3±0.74	74.7±0.82	83.8±0.68	5.6±0.18	81.0±0.82
Control	79.0±0.68	73.7±0.76	82.3±0.61	5.9±0.16	79.2±0.78

All data within each column are not statistically different (Duncan's multiple range test; p>0.05).
and membrane integrity (76.47±0.75) were observed for 2 mM BHT and the lowest values for 0.5 mM BHT concentration (72.28±0.75, 64.56±0.88, 75.39±0.72 and 72.90±1.05, respectively). However, there was no significant differences (p>0.05) in the presence of 0.5 or 1.0 mM BHT.

Table 4 presents the results of different concentrations of BHT added to a basic TCEY extender on post-thaw characteristics of Moghani ram spermatozoa. The results indicated significant (p<0.01) improvement by increasing of BHT concentrations. Comparison of these results with those of various extenders have been described (Salamon and Maxwell, 2000), but there are few available reports on the effects of BHT, as an antioxidant, on the characteristics of ram spermatozoa. The present study investigated whether the presence of BHT would improve the quality of Moghani ram sperm after dilution, cooling and freezing. The results observed in the first part of this study (after dilution) demonstrated no significant differences between the conditions about 50% of motile sperm can survive the freeze-thaw process. Oxidative stress associated with decline in fertility during semen storage is one of the important factors (Sinha et al., 1996; Stradaiali et al., 2007). Alvarez et al. (1987) and Sinha et al. (1996) reported that sperm plasma membrane is rich in polyunsaturated fatty acids and is therefore highly susceptible to lipid peroxidative damage by O_2- and H_2O_2, resulting from reactive oxygen species during aerobic incubation. Based on speculation by Evans and Maxwell (1990), ram sperm membrane has a higher polyunsaturated/saturated fatty acids ratio and the sperm membrane of this species is more sensitive to cold shock and peroxidative damage than other species. Therefore, in recent years, antioxidants have been used to protect spermatozoa from the deleterious effects of cryopreservation. Furthermore, antioxidants eliminate free radicals, which are detrimental to sperm due to the induction of lipid peroxidation (Baumber et al., 2000; Watson, 2000).

Concerning cryopreservation of ram spermatozoa, various extenders have been described (Salmon and Maxwell, 2000), but there are few available reports on the effects of BHT, as an antioxidant, on the characteristics of ram spermatozoa. The present study investigated whether the presence of BHT would improve the quality of Moghani ram sperm after dilution, cooling and freezing. The results observed in the first part of this study (after dilution) demonstrated no significant differences between the

Table 3. Effect of different concentrations of BHT added to a basic TCEY extender on cooled Moghani ram spermatozoa characteristics (mean±SEM, n = 16)

Semen treatments (mM)	Characteristics of spermatozoa				
	Motility (%)	Progressive motility (%)	Live sperm (%)	Acrosome abnormality (%)	Membrane integrity (%)
0.5	72.3±0.75^b	64.6±0.88^c	75.4±0.72^b	8.7±0.60^b	72.9±1.05^{bc}
1	73.3±0.78^b	66.1±0.84^{bc}	76.2±0.69^b	8.3±0.58^b	74.7±1.09^{bc}
2	76.3±0.85^a	70.3±0.96^a	80.3±0.84^a	6.1±0.72^c	76.5±1.34^a
3	74.1±0.80^{ab}	68.5±0.89^{ab}	79.1±0.70^c	7.4±0.66^{bc}	74.9±1.25^{ab}
Control	69.4±0.72^c	64.3±0.92^c	75.1±0.65^b	10.5±0.62^a	70.5±1.06^c

^{a,b}Within each column, means with similar letter (s) are not significantly different (Duncan's multiple range test; p<0.05).

Table 4. Effect of different concentrations of BHT added to a basic TCEY extender on post-thaw characteristics of Moghani ram spermatozoa (mean±SEM, n = 16)

Semen treatments (mM)	Characteristics of spermatozoa				
	Motility (%)	Progressive motility (%)	Live sperm (%)	Acrosome abnormality (%)	Membrane integrity (%)
0.5	41.4±0.76^c	33.3±0.78^c	47.1±0.86^c	11.2±0.45^b	38.6±0.82^c
1	42.6±0.78^c	34.6±0.76^c	48.1±0.92^c	11.8±0.48^b	39.5±0.98^c
2	52.3±1.02^a	45.4±1.05^a	59.4±1.24^a	8.1±0.65^d	54.4±1.32^a
3	45.4±1.08^b	38.1±0.84^b	53.1±0.94^b	9.9±0.54^c	48.4±1.02^b
Control	38.3±0.75^d	29.4±0.76^d	42.2±0.82^d	14.3±0.46^b	38.3±0.82^c

^{a,b}Within each column, means with similar letter (s) are not significantly different (Duncan's multiple range test; p<0.05).
treatments, when BHT was added to the extenders used. However, the data observed after cooling presented significant improvement, with the highest motility, progressive motility, viability, acrosomal integrity and hypo-osmotic swelling response of spermatozoa observed for 2.0 and 3.0 mM BHT concentrations. These observations were in agreement with findings of Donoghue and Donoghue (1997) for turkey, Anderson et al. (1994) and Shoae and Zamiri (2008) for bull and Khalifa et al. (2008) for goat spermatozoa. These researchers reported that inclusion of BHT in semen extender improved the characteristics of spermatozoa evaluated after the cooling step. However, there is evidence that extender containing BHT could not positively affect the motility of stallion spermatozoa at 5°C (Ball et al., 2001). Furthermore, the frozen-thawed results in this study indicated that with addition of increasing BHT concentrations to basic TCEY-extender, all evaluated spermatozoa characteristics were improved significantly. In agreement with our finding, Anderson et al. (1994) and Shoae and Zamiri (2008) reported that inclusion of BHT in semen dilution gave the highest post-thaw quality of cryopreserved bull spermatozoa. Ijaz et al. (2009) suggested that cryopreservation of buffalo sperm in extender containing BHT was better than extender without BHT (control group). Moreover, Roca et al. (2004) and Khalifa et al. (2008) reported that freezing of boar and goat spermatozoa in extender containing exogenous antioxidants such as BHT may reduce the harmful effects of lipid peroxidation, thereby resulting in significantly greater post-thaw quality of spermatozoa. However, the potential effect of BHT in preventing damage to the spermatozoa depends on different parameters, such as species, added BHT concentration, cell membrane composition, incubation time and the composition of basic diluent (Watson and Anderson, 1983; Killian et al., 1989; Ball et al., 2001; Roca et al., 2004).

Based on our results and those of other researchers, we can hypothesize that supplementation of BHT to freezing media positively affects the post-thaw characteristics of spermatozoa. However, the exact mechanism by which the butylated hydroxytoluene causes improvement is not clearly understood. A variety of hypotheses and speculations have been proposed by various authors to explain the protective mechanism of BHT during cryopreservation. Snipes et al. (1975) and Hammerstedt et al. (1976) suggested that BHT has antiviral activity and thereby, it can inactivate lipid-containing viruses. Moreover, Hammerstedt et al. (1976) suggested that BHT, as a phenolic anti-oxidant, is incorporated into the spermatozoal membrane and thereby decreases the viscosity of membrane lipids. This may imply greater lipid fluidity at reduced temperatures and would prevent or substantially reduce the permeability changes of sperm plasma membrane when the cells were cold-shocked. Killian et al. (1989), Aitken and Clarkson (1988) and Aitken, (1995) speculated that BHT serves as a scavenger of oxygen free radicals, which are associated with the extender and sperm, to minimize damage to sperm characteristics. However, Watson (1981) suggested that the membrane disruption which occurs in ram sperm during cold shock is extensive, and is difficult to account for by concepts of lipid-phase changes alone. Furthermore, the results in this study showed that optimal ram semen cryopreservation was achieved when 2-3 mM BHT was added to extender. It seems that optimal concentration of BHT depends upon the species of animals and ranges between 0.05-2.0 mM (Bamba and Cran, 1992; Shoae and Zamiri, 2008; Ijaz et al., 2009). The exact mechanism by which the higher butylated hydroxytoluene concentrations negatively affected the frozen-thawed sperm characteristics, remains unclear. Shoae and Zamiri (2008) speculated that fluidity of the plasma membrane can increase above the desired point, making spermatozoa more prone to acrosomal damage, when higher levels of BHT are used in extender. However, contrary to our results and those of other publications, Watson and Anderson, (1983) reported 2-4 mM BHT as the optimal concentration. Khalifa et al. (2008) reported that optimal goat sperm cryopreservation was achieved when 5.0 mM BHT was added to egg yolk-based semen extender. In conclusion, the present data indicated that 2.0-3.0 mM BHT may be suitable for freezing ram spermatozoa in the TCFY extender. However, further studies are still needed to establish the effect of such addition on in vitro and in vivo fertility in farm animals.

ACKNOWLEDGMENT

The authors are thankful to all performance Jahad -e-agriculture organization, Ardabil and testing station staff of the Moghani sheep Breeding Station, Jafar-Abad, especially Mr. Ing. N. Tavakoli, Mr. Ing. M. Azari, Mr. Ing. K. Imani and H. Mabodi for the sincere co-operation and research facilities during this study.

REFERENCES

Amann, R. and B. Pickett. 1987. Principles of cryopreservation and a review of stallion spermatozoa. J. Equine Vet. Sci. 7:145-173.
Aboagla, E. M. E. and T. Terada. 2003. Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing. Biol. Reprod. 69:1245-1250.
Aitken, R. J. 1995. Free radicals, lipid peroxidation and sperm function. Reprod. Fertil. Dev. 7:659-668.
Aitken, R. J. and J. S. Clarkson. 1988. Significance of reactive oxygen species and antioxidants in defining the efficacy of spermatozoa preparation techniques. J. Androl. 9:367-376.
Aitken, R. J. and H. Fisher. 1994. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays. 16:259-267.
Darin-Bennett, A. and I. G. White. 1977. Influence of the Curry, M. R., J. D. Millar and P. F. Watson. 1994. Calculated Beconi, M. T., C. R. Francia, N. G. Mora and M. A. Affranchino. Beconi, M. T., M. A. Affranchino and N. B. Beorlegui. 1991. Baumber, J., B. A. Ball, C. G. Gravance, V. Medina and M. C. G. Evans, G. and W. M. S. Maxwell. 1990. Salamon's artificial Bamba, K. and D. G. Cran. 1992. Effect of treatment with Baumber, J., B. A. Ball, C. G. Gravance, V. Medina and J. Bumber. 2001. Effect of antioxidants on preservation of motility, viability and acrosomal integrity of equine spermatozoa during storage at 5°C. Theriogenology 56:577-589.
Bamba, K. and D. G. Cran. 1992. Effect of treatment with butylated hydroxytoluene on the susceptibility of boar spermatozoa to cold stress and dilution. J. Reprod. Fertil. 95:69-77.
Baumber, J., B. A. Ball, C. G. Gravance, V. Medina and M. C. G. Davies-Morel. 2000. The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential and membrane lipid peroxidation. J. Androl. 21:895-902.
Beconi, M. T., M. A. Affranchino and N. B. Beorlegui. 1991. Influence of antioxidants on SOD activity in bovine sperm. Biochem. Int. 23:545-553.
Beconi, M. T., C. R. Francia, N. G. Mora and M. A. Affranchino. 1993. Effect of natural antioxidants on frozen bovine semen preservation. Theriogenology 40:841-851.
Curry, M. R., J. D. Millar and P. F. Watson. 1994. Calculated optimal cooling rates for ram and human sperm cryopreservation fail to confirm with empirical observations. Biol. Reprod. 51:1014-1021.
Darin-Bennett, A. and I. G. White. 1977. Influence of the cholesterol content of mammalian spermatozoa on susceptibility to cold-shock. Cryobiology 14:466-470.
Donoghue, A. N. and D. J. Donoghue. 1997. Effects of water and lipid-soluble antioxidants on turkey sperm viability, membrane integrity, and motility during liquid storage. Poult. Sci. 76:1440-1445.
Eiman, M.-E. A. and T. Terada. 2004. Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing. Biol. Reprod. 69:1245-1250.
Evans, G and W. M. S. Maxwell. 1990. Salamon's artificial insemination of sheep and goats. University Press, Sydney, NSW, Australia.
Fiser, P. S. and R. W. Fairful. 1989. The effect of glycerol related osmotic changes on post thaw motility and acrosomal integrity of ram spermatozoa. Cryobiology 26:64-69.
Gadella, B. M., R. Ratli, J. F. H. M. Brouwers, T. A. E. Stout and B. Colenbrander. 2001. Capacitation and the acrosome reaction in equine sperm. Anim. Reprod. Sci. 68:249-265.
Hammerstedt, R. H., J. K. Graham and J. P. Nolan. 1990. Cryopreservation of mammalian sperm: what we ask them to survive. J. Androl. 11:73-88.
Hammerstedt, R. H., R. P. Amann, T. Rucinsky, I. I. Morsel and P. D. Lepock. 1976. Use of spin labels and electron spin resonance spectroscopy to characterize membrane of bovine sperm: the effect of butylated hydroxytoluene and cold shock. Biol. Reprod. 14:381-397.
Ijaz, A., A. Hussain, M. Aleem, M. S. Yousaf and H. Rehman. 2009. Butylated hydroxytoluene inclusion in semen extender improves the post-thawed semen quality of Nili-Ravi buffalo (Bubalus bubalis). Theriogenology 71:1326-1329.
Khalifa, T. A. A., A. G. Lymberopoulos and B. E. El-Saidy. 2008. Testing usability of butylated hydroxytoluene in conservation of goat semen. Reprod. Domest. Anim. 43:525-530.
Killian, G. T., Honadel, T. McNutt, M. Henault, C. Wegner and D. Dunlap. 1989. Evaluation of butylated hydroxytoluene as a cryopreservative added to whole or skim milk diluent for bull semen. J. Dairy Sci. 72:1291-1295.
Matsuoka, T., H. Imai, H. Kohno and Y. Fukui. 2006. Effect of bovine serum albumin and trehalose in semen diluents for improvement of frozen-thawed ram spermatozoa. J. Reprod. Dev. 52:675-683.
Morris, G. I., G. I. Morris and A. Clarke. 1981. Effects of low temperature on biological membranes. New York, Academic Press, 241-377.
Purdy, P. H. 2006. A review on goat sperm cryopreservation. Small Rumin. Res. 63:215-225.
Pursel, V. G. 1979. Effect of cold shock on boar sperm treated with butylated hydroxytoluene. Biol. Reprod. 21:319-324.
Revell, S. G. and R. A. Mrode. 1994. An osmotic resistance test for bovine semen. Anim. Reprod. Sci. 36:77-86.
Roca, J., M. A. Gil, M. Hernandez, I. Parrilla, J. M. Vazquez and E. A. Martinez. 2004. Survival and fertility of boar spermatozoa after freeze thawing in extender supplemented with butylated hydroxytoluene. J. Androl. 25:397-405.
Salomon, S. and W. M. Maxwell. 2000. Storage of ram semen. Anim. Reprod. Sci. 62:77-111.
SAS.1996. SAS/STAT Software: Changes and Enhancements Through Release 6.12. SAS Institute Inc., Cary, NC, USA.
Shoaie, A. and M. J. Zamiri. 2008. Effect of butylated hydroxytoluene on bull spermatozoa frozen in egg yolk-citrate extender. Anim. Reprod. Sci. 104:414-418.
Sinha, M. P.; A. K. Sinha, B. K. Singh and P. L. Prasad. 1996. The effect of glutathione on the motility, enzyme leakage and fertility of frozen goat semen. Theriogenology 41:237-243.
Snipes, W., S. Person, A. Keith and J. Cupp. 1975. Butylated hydroxytoluene inactivates lipid containing viruses. Science NY 88:64-66.
Stradaioli, G., T. Noro, L. Sylia and M. Monaci. 2007. Decrease in glutathione (GSH) content in bovine sperm after cryopreservation: comparison between two extenders. Anim. Reprod. Sci. 67:1249-2155.
Watson, P. F. and W. Anderson. 1983. Influence of butylated hydroxytoluene (BHT) on the viability of ram spermatozoa undergoing cold shock. J. Reprod. Fertil. 69:229-235.
Watson, P. F. 1981. The role of lipid and protein in the protection of ram spermatozoa at 5 degrees C by egg-yolk lipoprotein. J. Reprod. Fertil. 62:483-492.
Watson, P. F. 2000. The cause of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 61:481-492.
Weitz, K. F. 1977. Untersuchungen zur Tiefgefrierekonservierung von kaninchen sperma. Habil- Schr., Tierarztl Hochs. Hannover, Germany.