Measurement of the CKM angle \(\alpha (\phi_2) \) with \(B \to \rho \rho \) decays at Belle and B\(\bar{A} \)B\(\bar{A} \)*

A. Somov

University of Cincinnati, Cincinnati, Ohio, 45221, USA

We overview recent measurements in \(B \to \rho \rho \) decays which are based on data samples collected at the PEP-II and KEKB asymmetric-energy \(e^+ e^- \) colliders with the B\(\bar{A} \)B\(\bar{A} \) and Belle detectors. Special emphasis is given to the determination of the \(C P \)-violating coefficients \(A \) and \(S \) from an analysis of \(B^0 \to \rho^+ \rho^- \) decays. The values of \(A \) and \(S \), branching fractions, and longitudinal polarization fractions of \(B \to \rho \rho \) decays are used to constrain the Cabibbo-Kobayashi-Maskawa phase \(\alpha (\phi_2) \) using an isospin analysis; the solution consistent with the standard model is \(71^\circ < \alpha (\phi_2) < 113^\circ \) at 68\% C.L.

I. INTRODUCTION

\(C P \) violation in the Standard Model can be explained by the presence of an irreducible complex phase in the Cabibbo-Kobayashi-Maskawa \((C K M) \) quark-mixing matrix. The unitarity of the CKM matrix leads to six triangles in the complex plane. One such triangle is given by the following relation among the matrix elements: \(V^*_{ub} V_{ud} + V^*_{cd} V_{cd} + V^*_{tb} V_{bd} = 0 \). The phase angle \(\phi_2 \), defined as \(\arg -(V_{ud} V^*_{tb})/|V_{ud} V^*_{ub}| \), can be determined by measuring a time-dependent \(C P \)-asymmetric decay distribution in \(b \to u \bar{d} \) decays such as \(B^0 \to \pi^+ \pi^- , \rho^+ \rho^- \), and \(\rho^0 \rho^0 \). The time-dependent decay rate for \(B \to \rho^+ \rho^- \) decays tagged with \(B^0(q = 1) \) and \(B^0(q = -1) \) mesons is given by

\[
\mathcal{P}_{\rho \rho}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \{1 + q[A_{\rho \rho} \cos(\Delta m \Delta t) + S_{\rho \rho} \sin(\Delta m \Delta t)]\},
\]

where \(\tau_{B^0} \) is the \(B^0 \) lifetime, \(\Delta m \) is the mass difference between the two \(B^0 \) mass eigenstates, \(\Delta t = t_{CP} - t_{tag} \), and \(A_{\rho \rho} \) (B\(\bar{A} \)B\(\bar{A} \)’s definition is \(C_{\rho \rho} = -A_{\rho \rho} \)) and \(S_{\rho \rho} \) are \(C P \) asymmetry coefficients to be obtained from a fit to the experimental data. If the decay amplitude is a pure \(C P \)-even state and is dominated by a tree diagram, \(S_{\rho \rho} = \sin(2\phi_2) \) and \(A_{\rho \rho} = 0 \). The presence of an amplitude with a different weak phase (such as from a "penguin" diagram) gives rise to direct \(C P \) violation and shifts \(S_{\rho \rho} \) from \(\sin(2\phi_2) \). However, the size of the loop amplitude is constrained by the branching fraction of \(B^0 \to \rho^0 \rho^0 \) [2], indicating that this effect is small.

The \(C P \)-violating parameters receive contributions from a longitudinally polarized state (\(C P \)-even) and two transversely polarized states (an admixture of \(C P \)-even and \(C P \)-odd states). Recent measurements of the polarization fraction by Belle and B\(\bar{A} \)B\(\bar{A} \) show that the longitudinal polarization fraction is approximately 100\% \((f_L = 0.968 \pm 0.023 \) [5]). \(f_L \) can be extracted from a fit to helicity-angle distribution.

The angular decay rate \(d^2 \Gamma / (\Gamma d\cos\theta_+ d\cos\theta_-) \) is given by

\[
\frac{2}{3} \{ f_L \cos^2 \theta_+ \cos^2 \theta_+ + f_L (1 - f_L) \sin^2 \theta_+ \sin^2 \theta_- \},
\]

where, \(\theta_\pm \) is the angle between the direction of the \(\pi^0 \) from the \(\rho^\pm \) and the negative of the \(B^0 \) momentum in the \(\rho^\pm \) rest frame.

II. MEASUREMENTS

The common features of \(B \to \rho \rho \) analyses are: \(1 \) relatively small signal yields; the branching fractions of \(B \to \rho \rho \) decays are in the order of \(10^{-6} \to 10^{-5} \), \(2 \) large width of \(\rho \) mesons results in the large background; the fraction of signal events in most analysis is less than 1\%, \(3 \) there are several background sources: \(e^+ e^- \to q\bar{q} (q = u, d, s, c) \) continuum, \(b \to c \), and \(b \to u \) backgrounds, \(4 \) significant amount of events with multiple reconstructed \(B \) candidates, \(5 \) various variables are used in the likelihood functions to distinguish among signal and backgrounds.

Both Belle and B\(\bar{A} \)B\(\bar{A} \) analyses identify \(B \to \rho \rho \) decays using the beam-energy constrained mass \(M_{bc} = \sqrt{E_{beam}^2 - p_{T B}^2} \) (called as beam-energy-substituted mass, \(m_{ES}, \) in B\(\bar{A} \)B\(\bar{A} \)) and energy difference \(E = E_B - E_{beam} \), where \(E_{beam} \) is the beam energy, and \(E_B \) and \(p_{T B} \) are the energy and momentum of the reconstructed \(B \) candidate, all evaluated in the center-of-mass (CM) frame.

The dominant background originates from \(e^+ e^- \to q\bar{q} (q = u, d, s, c) \) continuum events. To separate \(q\bar{q} \) jet-like events from spherical-like \(B\bar{B} \) events, Belle uses event-shape variables, specifically, modified Fox-Wolfram moments combined into a Fisher discriminant [3], and \(\theta_B \), the polar angle in the CM frame between the \(B \) direction and the beam axis. The Fisher discriminant and \(\theta_B \) are used to form a ratio of signal and background likelihoods \(R \). In the \(B^\pm \to \rho^\pm B^0 \) analysis Belle also requires \(|\cos \theta_T| < 0.8 \), where \(\theta_T \) is the angle between the thrust axis of the candidate tracks and that of the remaining tracks in the event. In the B\(\bar{A} \)B\(\bar{A} \) analyses \(q\bar{q} \) background is suppressed by requiring \(|\cos \theta_T| < 0.8 \) and making use of a neural network discriminant \(N \) which is based on several event-shape variables. Bellow we describe \(B \to \rho \rho \) measurements in detail.

* Talk presented at CKM2006, Nagoya, Japan, December 12-16 2006. University of Cincinnati preprint UCHEP-07-03.

1 Electronic address: somov@physics.uc.edu

The naming convention: angles \(\alpha \), \(\beta \), and \(\gamma \) used in B\(\bar{A} \)B\(\bar{A} \) are referred to as \(\phi_2 \), \(\phi_1 \), and \(\phi_3 \) in Belle.
B**0 → ρ⁺ρ⁻** are reconstructed by combining two oppositely charged pion tracks with two neutral pions. The ρ± mesons are selected combining π± with π⁰ candidates. The π⁰ candidates are reconstructed from γγ pairs. Main event reconstruction requirements are listed in Table I. A flavor of the π candidate is selected based on the π⁰ mass, i.e. minimizing \(\sum_{\pi^\pm,\pi^0} (m_{\gamma\gamma} - m_{\pi^0})^2 \). The fraction of signal decays which have at least one π ± track incorrectly identified but pass all selection criteria is 13.8% and 6.5% for **BABAR** and Belle, respectively. These are referred to as “self-cross-feed” (SCF) events. The following components are distinguished in the analyses: signal and ρτπ non-resonant decays, SCF events, continuum background (q̅q), charm B background (b → c), and charmless (b → u) background. The b → u background is dominated by B→(μπ, a₂π, a₁ ρ, ρ± ρ⁰) decays.

BABAR obtains the signal yield, \(f_L \), and CP-violating parameters \(A_{ρ^+\rho^-} \) and \(S_{ρ^+\rho^-} \) from an unbinned extended maximum-likelihood (ML) fit to \(m_{ES}, \Delta E, \Delta t, m_{π^±π^0}, \cos θ_{±,0} \), and \(N \) distribution of 33902 events [7]. The Belle analysis is organized in two main steps: (a) we first determine the yields of signal and background components from an unbinned extended ML fit to the three-dimensional \(m_{bc}, \Delta E, R \) distribution. (b) we perform a fit to the \(\Delta t \) distribution of 18004 events to determine the CP parameters \(A_{ρ^+\rho^-} \) and \(S_{ρ^+\rho^-} \). The fit results are presented in Figures 1 and 2 and are listed in Table 11. The fraction of longitudinal polarization and fraction of non-resonant events (6.3 ± 6.7%) were measured in our previous analysis [8]. The branching fraction, \(f_L \), and CP asymmetries measured by Belle are similar to those obtained by **BABAR**. The values \(A_{ρ^+\rho^-} \) and \(S_{ρ^+\rho^-} \) are also consistent with no CP violation (\(A = S = 0 \)).

B → ρ⁺ρ⁻** decays are reconstructed by combining two oppositely charged pion tracks with two neutral pions. The ρ± mesons are selected combining π± with π⁰ candidates. The π⁰ candidates are reconstructed from γγ pairs. Main event reconstruction requirements are listed in Table I. A flavor of the π candidate is selected based on the π⁰ mass, i.e. minimizing \(\sum_{\pi^\pm,\pi^0} (m_{\gamma\gamma} - m_{\pi^0})^2 \). The fraction of signal decays which have at least one π ± track incorrectly identified but pass all selection criteria is 13.8% and 6.5% for **BABAR** and Belle, respectively. These are referred to as “self-cross-feed” (SCF) events. The following components are distinguished in the analyses: signal and ρτπ non-resonant decays, SCF events, continuum background (q̅q), charm B background (b → c), and charmless (b → u) background. The b → u background is dominated by B→(μπ, a₂π, a₁ ρ, ρ± ρ⁰) decays.

BABAR obtains the signal yield, \(f_L \), and CP-violating parameters \(A_{ρ^+\rho^-} \) and \(S_{ρ^+\rho^-} \) from an unbinned extended maximum-likelihood (ML) fit to \(m_{ES}, \Delta E, \Delta t, m_{π^±π^0}, \cos θ_{±,0} \), and \(N \) distribution of 33902 events [7]. The Belle analysis is organized in two main steps: (a) we first determine the yields of signal and background components from an unbinned extended ML fit to the three-dimensional \(m_{bc}, \Delta E, R \) distribution. (b) we perform a fit to the \(\Delta t \) distribution of 18004 events to determine the CP parameters \(A_{ρ^+\rho^-} \) and \(S_{ρ^+\rho^-} \). The fit results are presented in Figures 1 and 2 and are listed in Table 11. The fraction of longitudinal polarization and fraction of non-resonant events (6.3 ± 6.7%) were measured in our previous analysis [8]. The branching fraction, \(f_L \), and CP asymmetries measured by Belle are similar to those obtained by **BABAR**. The values \(A_{ρ^+\rho^-} \) and \(S_{ρ^+\rho^-} \) are also consistent with no CP violation (\(A = S = 0 \)).

The main reconstruction features of the analysis are the same as those for the \(B^0 \rightarrow ρ^± ρ^0 \) decays. Event selection requirements are listed in Table II.
FIG. 4: Belle: the Δt distribution and projections of the fit for high-purity tagged events: (a) B^0 tags, (b) \bar{B}^0 tags. The raw CP asymmetry is shown in (c). The hatched region shows signal events.

FIG. 5: BABAR (a) m_{ES}, (b) ΔE, (c) $\cos \theta$, and (d) $m_{\pi\pi\rho}$ distributions for a signal-enriched sample along with fit projections: the dashed lines show $q\bar{q}$ and $B\bar{B}$ backgrounds, the solid line is the total.

BABAR obtained the yields of $B^\pm \to \rho^\pm \rho^0$ and $B^\mp \to \rho^\mp f_0$ decays, polarization, and charge asymmetry $A_{\rho^\pm \rho^0} = (N_{B^+} - N_{B^-})/(N_{B^+} + N_{B^-})$ using an unbinned extended ML fit to $m_{ES}, \Delta E, \Delta t, m_{\pi\pi\rho}, m_{\pi\rho\rho}, \cos \theta_{\pm}, \cos \theta_0,$ and N distribution of 74293 events [8]. The charmed $b \to u$ background is dominated by $\eta'\rho^\pm,$ $K^{*0}\rho^\pm,$ $a_1^0\pi^\pm,$ $a_1^\pm\pi^0,$ $a_1^\pm\rho^0,$ and $a_1^0\rho^\pm$ decays.

FIG. 6: Belle: ΔE (left) and M_{bc} (right) distributions. The dashed curve is the sum of $B\bar{B}$ and continuum backgrounds, the dot-dashed curve is the signal, the hatched region shows $B\bar{B}$, and the solid curve is the total.

TABLE II: Reconstruction requirements used in $B^\pm \to \rho^\pm \rho^0$ analysis.

Cut	BABAR	Belle
E_{c} (MeV)	50	50 (barrel); 100 (endcap)
$M_{\gamma\gamma}$ (MeV/c^2)	100 - 160, 118 - 150.	
M_{0} (MeV/c^2)	0.396 - 1.146	0.65 - 0.89
M_{0} (MeV/c^2)	0.520 - 1.146	0.65 - 0.89
$\cos \theta_{\pm}$	-0.9 - 0.95	-
$\cos \theta_0$	-0.95 - 0.95	-
$\rho_{\gamma\gamma}^M$ (MeV/c)	> 0.5	
M_{bc} (MeV/c^2)	5.26 < 5.272 <	
ΔE (GeV)	-0.15 - 0.15	-0.4 - 0.4

FIG. 7: BABAR m_{ES} and ΔE distributions and projections of the fit for a signal-enriched sample. The dashed curve is full background, the small solid curve is signal, the dotted curve is $B^+ \to \rho^0 f_0$, and the large solid is the total.

The signal yield in Belle analysis [9] is obtained from a fit to ΔE distribution. To measure the polarization, Belle bins in $\cos \theta_{\pm}$ and $\cos \theta_0$ and determine the signal yield for each bin from the fit to ΔE distribution. The polarization is obtained from a simultaneous fit to two background-subtracted helicity-angle distributions. The results of the fits are shown in Figures 6 and 7 and listed in Table III.

III. $B^0 \to \rho^0 \rho^0$

BABAR finds evidence for $B^0 \to \rho^0 \rho^0$ decays and measures its branching fraction and polarization using a sample of about 348 million $B\bar{B}$ pairs [2]. Events are selected from the region $5.24 \text{ GeV}/c^2 < M_{bc} < 5.29 \text{ GeV}/c^2$, $|\Delta E| < 85 \text{ MeV}$, and are required to satisfy $0.55 < M_{\pi\pi} < 1.05 \text{ GeV}/c^2$, and $|\cos \theta_0| < 0.98$. In events with multiple B candidates one is selected based on the the best χ^2 of a four-pion vertex fit. Additional suppression of the dominant continuum background is achieved using the flavor tagging information. The data sample is divided into seven tag-quality intervals, $ctag$. The $B^0 \to \rho^0 \rho^0$ event yield and polarization f_\perp are obtained from an unbinned extended ML fit to $m_{ES}, \Delta E, m_{\pi\pi} - 1.2, \cos \theta_{1,2}, N,$ and $ctag$ distribution of 65180 events. The fit also allows to obtain the yields for $B^0 \to \rho^0 f_0(990)$ and $B^0 \to f_0(980) f_0(980)$ decays. The charmed background is dominated by $B^0 \to a_1^\pm \pi^\mp$ events which number is a free parameter in the fit. Other $b \to u$ background modes include: $B \to (\rho^0 K^{*0}, \rho^0 \rho^0, \rho \pi)$, and $B^0 \to \rho^+ \rho^-$. The fit results are shown in Fig. 6 and listed in Table III.
TABLE III: Summary of $B \rightarrow \rho \rho$ measurements.

Decay	Quantity	BRAH	-	Value	N_{sig}	\mathcal{L}(fb$^{-1}$)	Value	N_{sig}	\mathcal{L}(fb$^{-1}$)	Value
$B \rightarrow \rho^\pm \rho^\mp$	f_L	$23.5 \pm 2.2 \pm 4.1$	615 \pm 57	316	$22.8 \pm 3.8^{+3.3}_{-2.6}$	194 \pm 32	253	$23.1^{+4.2}_{-3.3}$	0.9680 \pm 0.23	
$A_{\rho^+ \rho^-}$	$0.07 \pm 0.15 \pm 0.06$	615 \pm 57	316	$0.16 \pm 0.21 \pm 0.07$	372 \pm 43	492	0.11 ± 0.13			
$S_{\rho^+ \rho^-}$	$-0.19 \pm 0.21^{+0.05}_{-0.07}$	615 \pm 57	316	$0.19 \pm 0.30 \pm 0.07$	372 \pm 43	492	-0.06 ± 0.18			

IV. CONSTRAINT ON $\alpha(\phi_2)$

We constrain ϕ_2 using an isospin analysis\([11]\), which allows one to relate six observables to six underlying parameters: five decay amplitudes for $B \rightarrow \rho \rho$ and the angle ϕ_2. The observables are the branching fractions for $B \rightarrow \rho^e \rho^\mp$, $\rho^+ \rho^0$, and $\rho^0 \rho^0$ (listed in Table III), the CP parameters $A_{\rho^+ \rho^-}$ and $S_{\rho^+ \rho^-}$; and the parameter $A_{\rho^0 \rho^0}$ for $B \rightarrow \rho^0 \rho^0$ decays. The branching fractions must be multiplied by the corresponding longitudinal polarization fractions (taken from Table III)\([5]\). We neglect possible contributions from electromagnet penguins and $I=1$ amplitudes\([11]\) to $B^0 \rightarrow \rho^+ \rho^-$. We follow the statistical method of Ref.\([12]\) and construct a $\chi^2(\phi_2)$ using the measured values and obtain a minimum χ^2 (denoted χ^2_{min}); we then scan ϕ_2 from 0° to 180°, calculating the difference $\Delta \chi^2 \equiv \chi^2(\phi_2) - \chi^2_{\text{min}}$. We insert $\Delta \chi^2$ into the cumulative distribution function for the χ^2 distribution for one degree of freedom to obtain a confidence level (C.L.) for each ϕ_2 value. The resulting function $1-$C.L. (Fig. 8) has more than one peak due to ambiguities that arise when solving for ϕ_2. Because $A_{\rho^0 \rho^0}$ is not yet measured, we allow this observable to float; this produces the “flat-top” regions in Fig. 8. The solution consistent with the Standard Model is $71^\circ < \phi_2 < 113^\circ$ at 68% C.L. or $67^\circ < \phi_2 < 116^\circ$ at 90% C.L. Recently, a different model-dependent approach to extract ϕ_2 using flavor $SU(3)$ symmetry has been proposed\([13]\). This method would give more stringent constraints on ϕ_2.

In summary, we present recent measurements in $B \rightarrow \rho \rho$ decays. These measurements are used to constrain the angle ϕ_2 using an isospin analysis.

1. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973); N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
2. B. Aubert et al., Phys. Rev. Lett. 94, 131801 (2005); \[hep-ex/0612021]\ (2006), submitted to Phys. Rev. Lett.
3. A. Somov et al., Phys. Rev. Lett. 96, 171801 (2006).
4. B. Aubert et al., Phys. Rev. Lett. 95, 041805 (2005); Phys. Rev. Lett. 93, 231801 (2004).
5. Heavy Flavor Averaging Group, August 2006, \[http://www.slac.stanford.edu/xorg/hfag/\]
6. S. H. Lee et al., Phys. Rev. Lett. 91, 261801 (2003).
7. B. Aubert et al., \[hep-ex/0607009\]
8. B. Aubert et al., Phys. Rev. Lett. 97, 261801 (2006).
9. J. Zhang et al., Phys. Rev. Lett. 91, 221801 (2003)
10. M. Gronau, D. London, Phys. Rev. Lett. 65, 3381 (1990).
11. A. Falk et al., Phys. Rev. D 69, 011502(R) (2004).
12. J. Charles et al., Eur. Phys. J. C41, 1 (2005).
13. M. Beneke, M. Gronau, J. Rohrer and M. Spranger, Phys. Lett. B 638, 68 (2006).