Group Theory

Complete reducibility and Steinberg endomorphisms

Réductibilité complète et endomorphismes de Steinberg

Sebastian Herpela, Gerhard Röhrlea, Daniel Goldb

a Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany
b School of Mathematics, University of Southampton, Southampton, SO17 1BJ, UK

\textbf{A R T I C L E I N F O}

Article history:
Received 27 December 2010
Accepted after revision 8 February 2011
Available online 24 February 2011
Presented by Jean-Pierre Serre

\textbf{A B S T R A C T}

Let G be a connected reductive algebraic group defined over an algebraically closed field of positive characteristic. We study a generalization of the notion of G-complete reducibility in the context of Steinberg endomorphisms of G. Our main theorem extends a special case of a rationality result in this setting.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\textbf{R É S U M É}

Soit G un groupe algébrique réductible connexe défini sur un corps algébriquement clos de caractéristique positive. Dans cette Note on étudie une généralisation de la notion de réductibilité G-complète dans le contexte des endomorphismes de Steinberg de G. Le théorème fondamental de la Note généralise un cas particulier d’un résultat de rationalité.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section{1. Introduction}

Let p be a prime number and let $k = \mathbb{F}_p$ be the algebraic closure of the field of p elements. Let G be a connected reductive linear algebraic group defined over k and let H be a closed subgroup of G. Let $\mathbb{F}_q \subseteq k' \subseteq k$ be a field extension of \mathbb{F}_p. Following Serre [12], we say that a k'-defined subgroup H of G is G-completely reducible over k' provided that whenever H is contained in a k'-defined parabolic subgroup P of G, it is contained in a k'-defined Levi subgroup of P. If $k' = k$, then H is G-completely reducible over k' if and only if H is G-completely reducible (or G-cr for short). For an overview of this concept see for instance [11] and [12].

The starting point for our discussion is the following special case of the rationality result [1, Theorem 5.8]. Let q be a power of p and let \mathbb{F}_q be the field of q elements.

\textbf{Theorem 1.1.} Suppose that both G and H are defined over \mathbb{F}_q. Then H is G-completely reducible if and only if it is G-completely reducible over \mathbb{F}_q.

Let $\sigma : G \to G$ be a Steinberg endomorphism of G, i.e. a surjective endomorphism of G that fixes only finitely many points, see Steinberg [14] for a detailed discussion (for this terminology, see [6, Definition 1.15.1b]). The set of all Steinberg endomorphisms of G is a subset of all isogenies $G \to G$ (see [14, 7.1(a)]) that encompasses in particular all (generalized)
Frobenius endomorphisms, i.e. endomorphisms of G some power of which are Frobenius endomorphisms corresponding to some F_q-rational structure on G.

Example 1.2. Let F_1, F_2 be the Frobenius maps of $G = SL_2$ given by raising coefficients to the pth and p^2th powers, respectively. Then the map $\sigma = F_1 \times F_2 : G \times G \to G \times G$ is a Steinberg morphism of $G \times G$ that is not a (generalized) Frobenius morphism, cf. the remark following [6, Theorem 2.111].

If G is almost simple, then σ is a (generalized) Frobenius map (e.g. see [6, Theorem 2.111]), and the possibilities for σ are well known ([14, §11], e.g. see [7, Theorem 1.4]): σ is conjugate to either σ_q, $\tau \sigma_q$, $\tau' \sigma_q$ or τ', where σ_q is a standard Frobenius morphism, τ is an automorphism of algebraic groups coming from a graph automorphism of types A_n, D_n or E_6, and τ' is a bijective endomorphism coming from a graph automorphism of type B_2 ($p = 2$), F_4 ($p = 2$) or G_2 ($p = 3$).

Example 1.3. If G is not simple, then a generalized Frobenius map may fail to factor into a field and a graph automorphism as stated above. For example, let $p = 2$ and let H_1, H_2 be simple, simply connected groups of type B_n and C_n ($n \geq 3$), respectively. Then there are special isogenies $\phi_1 : H_1 \to H_2$ and $\phi_2 : H_2 \to H_1$ whose composites $\phi_1 \circ \phi_2$ and $\phi_2 \circ \phi_1$ are standard Frobenius maps with respect to p on H_2, respectively H_1, see [4, p. 5 of Expose 24]. Let $G = H_1 \times H_2$ and define $\sigma : G \to G$ by $\sigma(h_1, h_2) = (\phi_2(h_1), \phi_1(h_2))$. Then σ is an example of such a more complicated generalized Frobenius map.

We now give an extension of Serre’s notion of G-complete reducibility in this setting of Steinberg endomorphisms: Let σ be a Steinberg endomorphism of G and let H be a subgroup of G. We say that H is σ-completely reducible (or σ-cr for short), provided that whenever H lies in a σ-stable parabolic subgroup P of G, it lies in a σ-stable Levi subgroup of P. This notion is motivated as follows: If σ_q is a standard Frobenius morphism of G, then a subgroup H of G is defined over F_q if and only if it is σ_q-stable and if so, H is G-completely reducible over F_q if and only if it is σ_q-completely reducible. In view of this new notion, the goal of this note is the following generalization of Theorem 1.1 to arbitrary Steinberg endomorphisms of G (the special case of Theorem 1.4 when $\sigma = \sigma_q$ gives Theorem 1.1).

Theorem 1.4. Let σ be a Steinberg endomorphism of G. Let H be a σ-stable subgroup of G. Then H is σ-completely reducible if and only if H is σ-completely reducible.

Theorem 1.4 follows from Theorems 2.4 and 2.5 proved in the next section.

Example 1.5. Theorem 1.4 is false without the σ-stability condition on H. For instance, a maximal torus T of G is always G-cr, cf. [1, Lemma 2.6]. But it may happen that T is contained in a σ-stable Borel subgroup of G, without being itself σ-stable. Then T clearly fails to be σ-cr. In the other direction, G may contain a maximal parabolic subgroup P of G that is not σ-stable. The only σ-stable parabolic subgroup of G containing P is G itself. Then P is σ-cr for trivial reasons, whereas a proper parabolic subgroup of G is not G-cr.

Remark 1.6. Even if H is not σ-stable, Theorem 1.4 gives some information about the notion of σ-complete reducibility, as follows. Let \overline{H}^σ be the algebraic subgroup of G generated by all translates $\sigma^i H$, $i \geq 0$. Then \overline{H}^σ is σ-stable and contained in the same σ-stable subgroups of G as H. In particular, H is σ-cr if and only if \overline{H}^σ is σ-cr. Thus, by Theorem 1.4, this is equivalent to \overline{H}^σ being G-cr.

2. Proof of Theorem 1.4

In addition to the notation already fixed in the Introduction, $\sigma : G \to G$ is always a Steinberg endomorphism of G and from now on the subgroup H of G is assumed to be σ-stable. We begin with a generalization of (a special case of) [8, Proposition 2.2 and Remark 2.4]. The proof of Proposition 2.1 consists in a reduction to the case when H is finite, covered in [8, Proposition 2.2 and Remark 2.4].

Proposition 2.1. If H is not G-completely reducible, then there exists a proper σ-stable parabolic subgroup of G containing H.

Proof. First we assume that G is almost simple. We want to reduce to the case where H is a finite, σ-stable subgroup of G, and then apply [8, Proposition 2.2 and Remark 2.4]. Since G is almost simple, we can assume that $\sigma^m = \sigma_q$ is a standard Frobenius map for some positive integer m. We choose a closed embedding $G \to GL_n(k)$ so that σ_q is the restriction of the standard Frobenius map of $GL_n(k)$ that raises coefficients to the qth power (see [5, Proposition 4.111]). For $r \in \mathbb{Z}$, $r \geq 1$, let $H(r) = H \cap GL_n(F_{q^r})$. Then we can write H as the directed union of finite subgroups $H = \bigcup_{r \geq 1} H(r)$. Note that the union is indeed directed, that is

$$\overline{H(r)} \subseteq \overline{H(r + 1)} \quad \forall r \geq 1.$$

(2.2)
We wish to construct a similar, but σ-stable filtration of H. For this purpose we set $H(r) = \bigcap_{i=0}^{m-1} \sigma^i H(t)$. Then each $H(r)$ is a finite, σ-stable subgroup of H (for the σ-stability, we use that each $\sigma^i H(t)$ is stable under $\sigma^m = \sigma_0$). Moreover, we claim that H is the directed union $H = \bigcup_{r \geq 1} H(r)$. Indeed, if $h \in H$, then the identities $H = \sigma H$ and $H = \bigcup_{r \geq 1} H(r)$ imply that for each $i = 0, \ldots, m - 1$ we can find some r_i such that $h \in \sigma^i H(t)$. Then (2.2) implies that $h \in H(r)$ for $r \geq \max\{r_0, \ldots, r_{m-1}\}$. It follows from the argument in the proof of [1, Lemma 2.10] that there is an integer r' so that $H(r')$ has the following property: H is contained in a parabolic subgroup P of G (respectively a Levi subgroup L of G) if and only if $H(r')$ is contained in P (respectively in L). Therefore, if H is not G-cr, then neither is $H(r')$, and we can apply [8, Proposition 2.2 and Remark 4.4] to obtain a proper σ-stable parabolic subgroup P of G that contains $H(r')$. But then P also contains H.

Next we drop the simplicity assumption on G. Then we can use the almost simple components of G to reduce to the almost simple case: Let $\pi : G' := Z(G)^o \times G_1 \times \cdots \times G_r \to G$ be the product map, where G_1, \ldots, G_r are the almost simple components of the semisimple group $[G, G]$ and let $\pi_i : G' \to G_i$ be the projection $(1 \leq i \leq r)$. Then π is an isogeny. Let $H' = \pi^{-1}(H)$. Using [1, Lemma 2.12] and the fact that $Z(G)^o$ is a torus, we find that there is some index i such that $H_i := \pi_i(H') \subseteq G_i$ is not G_i-cr. We can assume that $i = 1$. We are now in the situation of the first part of the proof (for $H_1 \subseteq G_1$), except that we have yet to specify a Steinberg endomorphism of G_1 that stabilizes H_1. Since σ stabilizes $[G, G]$ and maps components to components [4, Expose 18, Proposition 3], we can assume that σ permutes G_1, \ldots, G_r cyclically for some $s \leq r$. Moreover, σ stabilizes $Z(G)^o = R(G)$ (because σ is an isogeny). Using the restrictions $\sigma|_{Z(G)^o}$ and $\sigma|_{[G, G]}$, we can define a Steinberg endomorphism $\sigma' : G' \to G'$ of $\sigma \sigma' = \sigma \circ \pi$. We denote by H'' the image (under the projection) of H' in $G'' := G_1 \times \cdots \times G_r$. Now let $\tau = \sigma|_{G_1} : G_1 \to G_1$ denote the generalized Frobenius map on G_1 induced by σ [6, Theorems 2.1.2(g) and 2.1.11]. Then H_1 is τ-stable, since H is σ^s-stable. We apply the first part of the proof to $H_1 \subseteq G_1$ to obtain a proper τ-stable parabolic subgroup P_1 of G_1 containing H_1. Then $P'' := P_1 \times \sigma P_1 \times \cdots \times \sigma^{s-1}P_1 \subseteq G''$ is a proper σ'^s-stable parabolic subgroup of G'' [13, Corollary 6.2.8]. The bijectivity of $\sigma^s|_{H_1} : H_1 \to H_1$ for $1 \leq i \leq s$ implies that $H_1 = \sigma^s_1 H_1$ for $1 \leq i \leq s$. We get that P'' contains H'', since we have $H'' \subseteq H_1 \times H_2 \times \cdots \times H_r$ and $H_1 \subseteq P_1$. Consequently, $P' = Z(G)^o \times P'' \times G_{s+1} \times \cdots \times G_r$ is a proper σ'-stable parabolic subgroup of G' containing H''. Finally, $P = \pi'(P')$ is a proper σ-stable parabolic subgroup of G containing H, as desired. □

Remark 2.3. In [8, Proposition 2.2 and Remark 2.4], Liebeck, Martin and Shalev prove the following: Let G be an almost simple algebraic group over k as above. Let $Aut^s(G)$ denote the group of abstract automorphisms of G that is generated by inner automorphisms of G, together with p' power field morphisms ($i \geq 1$), and abstract graph automorphisms (which may include the bijective algebraic endomorphisms coming from a graph automorphism of type B_2 ($p = 2$), F_4 ($p = 2$) or G_2 ($p = 3$)). (Note that $Aut^s(G)$ is an extension of the group $Aut^*(G)$ from [8, p. 455].) Let S be a subgroup of $Aut^s(G)$ and suppose that $G \subseteq G'$ is a finite, S-stable subgroup that is not G-cr. Then H is contained in a proper S-invariant parabolic subgroup of G (note that the notion of strongly reductive subgroups in G is equivalent to the notion of G-completely reducible subgroups, cf. [1, Theorem 3.1]). If we take S to be generated by a (generalized) Frobenius endomorphism σ of G, then we get the assertion of Proposition 2.1 for G almost simple and H finite.

Theorem 2.4. If H is σ-completely reducible, then it is G-completely reducible.

Proof. If H is not contained in any proper σ-stable parabolic subgroup of G, then it is G-cr according to Proposition 2.1. So we can assume that there is a proper σ-stable parabolic subgroup P of G containing H. We choose P minimal with these properties. Since H is σ-cr, it is contained in an σ-stable Levi subgroup L of P. Suppose there is a proper σ-stable parabolic subgroup P_1 of L containing H. Then $P' := P_1 R_\alpha(P) \not\subseteq P$ is another parabolic subgroup of G (see [3, Proposition 4.4(c)]) containing H, and P' is σ-stable (σ stabilizes $R_\alpha(P)$ as any isogeny does). But this contradicts our choice of P. So we can use Proposition 2.1 again to deduce that H is L-cr, which in turn implies that H is G-cr [1, Corollary 3.2]. □

For the converse of Theorem 2.4 we argue as in the last part of the proof of [9, Theorem 9]. But first we recall a parametrization of the parabolic and Levi subgroups of G in terms of cocharacters of G, e.g. see [1, Lemma 2.4]: Given a parabolic subgroup P of G and any Levi subgroup L of P, there exists some cocharacter λ of G such that P and L are of the form $P = P_\lambda = \{g \in G \mid \lim_{-\to 0} \lambda(t) g \lambda(t)^{-1} \text{ exists}\}$ and $L = L_\lambda = C_G(\lambda(k^s))$, respectively. The unipotent radical of P_λ is then given by $R_\alpha(P_\lambda) = \{g \in G \mid \lim_{-\to 0} \lambda(t) g \lambda(t)^{-1} = 1\}.

Theorem 2.5. If H is G-completely reducible, then it is σ-completely reducible.

Proof. Suppose that P is a σ-stable parabolic subgroup of G containing H. Since H is G-cr, there is some Levi subgroup L of P that contains H. Let $U = R_\alpha(P)$. Then $A = \{u L u^{-1} \mid u \in U, H \subseteq u L u^{-1}\}$ is the set of all Levi subgroups of P that contain H. Clearly, A is σ-stable, since H is contained in A. We need to prove that A contains an element fixed by σ.

If $u L u^{-1}$ is in A, then $u^{-1} H U \subseteq U H = H$, so that u normalizes H. In fact, u centralizes H, since $[N_U(H), H] \subseteq H \cap U = 1$. So the group $C = C_G(H)$ acts transitively on A. We claim that C is connected. In order to prove this, write $P = P_\lambda$, $L = L_\lambda$ and $U = R_\alpha(P_\lambda)$ for some suitable cocharacter λ of G. The torus $\lambda(k^s)$ normalizes $C_G(H)$ (because H is
contained in \(L \) and \(U \), hence it normalizes \(C \). Whence, for any fixed \(c \in C \), the map \(\phi_c : k^* \to C \), given by \(t \mapsto \lambda(t)c\lambda(t)^{-1} \), is well-defined. Moreover, \(C \subseteq U \) implies that \(\phi_c \) extends to a morphism \(\hat{\phi}_c : k \to C \) that maps 0 to 1 and 1 to \(c \). Since the image of \(\phi_c \) is connected, we get \(c \in C^0 \). It follows that \(C = C^0 \). But now we can apply the Lang–Steinberg theorem (see [14, Theorem 10.1]) to conclude that \(A \) contains an element fixed by \(\sigma \).

Remark 2.6. We conclude by outlining a short alternative approach to Proposition 2.1; the latter was crucial in the proof of Theorem 2.4. This variant utilizes the so-called Centre Conjecture for spherical buildings due to J. Tits from the 1950s. This deep conjecture has recently been established by work of Leeb and Ramos-Cuevas, e.g. see [2, §2] and the references therein for further details. This conjecture states that in the building \(\Delta = \Delta(G) \) of \(G \) any convex contractible subcomplex \(\Sigma \) has a simplex which is fixed under any building automorphism of \(\Delta \) which stabilizes \(\Sigma \) as a subcomplex. Such a fixed simplex is often referred to as a 'centre' giving this conjecture its name. Here is a sketch of a building theoretic alternative to the proof of Proposition 2.1: Let \(H \) be a \(\sigma \)-stable subgroup of \(G \) which is not \(G \)-cr. Consider the subcomplex \(\Delta^H \) of \(H \)-fixed points of the building \(\Delta \), i.e., \(\Delta^H \) corresponds to the set of all parabolic subgroups of \(G \) that contain \(H \). Note that \(\Delta^H \) is always convex [12, Proposition 3.1] and since \(H \) is not \(G \)-cr, \(\Delta^H \) is also contractible [10, Theorem 2]. The Steinberg morphism \(\sigma \) of \(G \) affords a building automorphism of \(\Delta \), also denoted by \(\sigma \). Since \(H \) is \(\sigma \)-stable, so is \(\Delta^H \). Now since \(\Delta^H \) is convex and contractible, the Centre Conjecture asserts the existence of a centre of \(\Delta^H \) with respect to the action of \(\sigma \) which corresponds to a proper parabolic subgroup of \(G \) which is \(\sigma \)-stable and contains \(H \). This is precisely the conclusion of Proposition 2.1.

Acknowledgements

The authors acknowledge the financial support of the DFG-priority program SPP 1388 “Representation Theory”. We are grateful to Olivier Brunat for helpful discussions on the material of this note.

References

[1] M. Bate, B. Martin, G. Röhrle, A geometric approach to complete reducibility, Invent. Math. 161 (1) (2005) 177–218.
[2] M. Bate, B. Martin, G. Röhrle, Complete reducibility and separable field extensions, C. R. Math. Acad. Sci. Paris, Ser. I 348 (9–10) (2010) 495–497.
[3] A. Borel, J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965) 55–150.
[4] C. Chevalley, Classification des groupes algébriques semi-simples, Collected Works, vol. 3, Springer-Verlag, Berlin, 2005.
[5] M. Geck, An Introduction to Algebraic Geometry and Algebraic Groups, Oxford Graduate Texts in Mathematics, vol. 10, Oxford University Press, Oxford, 2003.
[6] D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups. Part I, Chapter A: Almost simple \(K \)-groups, Mathematical Surveys and Monographs, vol. 40 (3), American Mathematical Society, Providence, RI, 1998.
[7] M.W. Liebeck, Subgroups of simple algebraic groups and of related finite and locally finite groups of Lie type, in: Finite and Locally Finite Groups, Istanbul, 1994, in: NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 471, Kluwer Acad. Publ., Dordrecht, 1995, pp. 71–96.
[8] M.W. Liebeck, B.M.S. Martin, A. Shalev, On conjugacy classes of maximal subgroups of finite simple groups, and a related zeta function, Duke Math. J. 128 (3) (2005) 541–557.
[9] M.W. Liebeck, G.M. Seitz, On the subgroup structure of exceptional groups of Lie type, Trans. Amer. Math. Soc. 350 (9) (1998) 3409–3482.
[10] J-P. Serre, La notion de complète réductibilité dans les immeubles sphériques et les groupes réductifs, Séminaire au Collège de France, résumé dans [15, pp. 93–98], 1997.
[11] J-P. Serre, The notion of complete reducibility in group theory, Morsund Lectures, Part II, University of Oregon, arXiv:math/0305257v1 [math.GR], 1998.
[12] J-P. Serre, Complète réductibilité, Séminaire Bourbaki, Série année, 2003–2004, no. 932.
[13] T.A. Springer, Linear Algebraic Groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston Inc., Boston, MA, 1998.
[14] R. Steinberg, Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical Society, vol. 80, American Mathematical Society, Providence, RI, 1968.
[15] J. Tits, Théorie des groupes, Résumé des Cours et Travaux, Annuaire du Collège de France 97e année (1996–1997) 89–102.