Preliminary Investigation of an Innovative Digital Motion Analysis Device for Badminton Athlete Performance Evaluation

Zahari Taha, Mohammad Syawaludin Syafiq Hassan*, Hwa Jen Yap, Wee Kian Yeo

*Innovative Manufacturing, Mechatronics and Sports Laboratory, Universiti Malaysia Pahang, Pekan 26600, Malaysia

Department of Mechanical Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia

National Sports Institute of Malaysia, Kuala Lumpur 57000, Malaysia

Abstract

Badminton is a sport that combines several different physical aspects. At a professional level, the sport demands excellent fitness criteria namely the player’s aerobic stamina, agility, strength, speed as well as precision. This study fundamentally entails the development of an innovative training system that incorporates technology that could improve the athlete’s performance. Although existing motion tracking technology can provide reliable and accurate tracking results, nonetheless, the product cost and complexity keep them away from being employed in most sports. This investigation involves the comparison between Kinect Technology and inertial measurement unit (IMU). The kinematic movement of the arm from wrist until shoulder was observed in this study for the purpose of investigating the difference between the acceleration of skeleton detected by the Kinect motion tracking and a low-cost IMU. The results obtained were found to be promising, and it is important in enabling pattern recognition of different badminton strokes in the next stage of the study. The movement of the right-hand wrist is tracked by Microsoft Kinect that can track the skeleton of the player whilst the IMU that measures the acceleration is attached at the right-hand wrist. Although the acceleration of the wrist may readily be obtained from the IMU, the acceleration from Kinect may only be obtained through mathematical manipulation. It was found that the accelerations of the upper limb movement from both IMU and Kinect demonstrated good agreement.

1. Introduction

Virtual Reality (VR) technology has been utilised in a variety of field. In sport, the VR technology are used for various training conditions i.e. simulating virtual opponents and three-dimensional sports environment [1]. There are a numbers of research conducted on VR training system in sport, but limited to “ball” type [2,3]. For instance, a virtual ping-pong training system has been developed by several countries, such as Korea, Taiwan and the UK [4–6]. Badminton is a technical sport that requires good motor coordination as well as sophisticated racquet movement techniques. At present, studies and development of the VR technology in this game is limited to 2D/video analysis [7].

Thus, the target of this study is to build a training system with technology that can improve the athlete performance and extend to a level beyond the current technology. Through the combination of two Kinects and other relevant sensors, the parameters needed for badminton analysis i.e. motion detection, player’s acceleration movement and explosive force may be measured [8,9]. A virtual reality training system can then be developed based on this information. The system can be used by

* Corresponding author. Tel.: +6094246358
E-mail address: syawalhassan@imamslab.com
badminton athletes to watch and analyze their performance with the coach & bio mechanist. Motion capture is a process of recording a live motion event or human movement and transforming it into a digital model. The digital model gives access of information for different requirements. In sport technology, motion capture systems provide support to the experts through illustrating the athlete’s movement from different view angles, access of sheltered parameters that cannot be seen by the naked eyes, parameters of the motion (e.g., speed, angle, distance, etc.) that can be computed for further analysis [10]. This valuable information may be used by either coaches or sports scientists to prepare a custom training plan for athletes to enhance further their performance. Furthermore, through this method, tailored training will be provided rather than pushing futile training programme [11].

A number of research has been performed in analysing the motion of that is involved in badminton. Kwan et al. investigated badminton racquet kinematics by means of motion capture [12]. They used eight high-speed cameras to conduct the study. Electrogoniometers that are attached at the joints to observe the movement during the execution of a badminton smash was also performed by Teu et al. [13]. Reflective markers have also been utilised in examining arm movements during overhead badminton smash [14]. One of the motion capture technology that has gained traction amongst the sports research community is Kinect [15]. Kinect is deemed as a low-cost solution for expensive motion capture systems. In addition, owing to its non-intrusive and easy to set up nature it is preferred in sports research. Furthermore, the accuracy and validation of the skeleton tracking using depth sensor in Kinect have already been validated [16,17,8,18]. Kinect requires no markers, no motion sensors, and no special suits. Therefore, it does not affect or influence the players during competition. The significance of markerless and video technology in sports analysis has been extensively explained by Mauthner et al. [19]. Through such tracking system, the evaluation of athletes and opponents may be obtained without extensive technical support. Ting et al. and Che et al. have utilised Kinect technology in analysing badminton movements [20,11].

The combination of Kinect technology with IMU has also been studied. Tian et al. tested a combination of IMU and Kinect and used unscented Kalman filter (UKF) to fuse the data in order to provide robust hand position, which effectively corrected the accumulated errors of IMU and overcome the instability of Kinect [21]. IMU is widely used in sports for human motion detection [22], measuring real-time kayak cadence [23], recording the acceleration of swimmers [24] and other sports application. This wireless sensor system is normally equipped with accelerometers, gyroscopes, and magnetometers that is focus on sensor-based motion recognition system. The wireless IMU is often small in size and does not affect much on the athlete’s performance. Owing to the obtrusive nature of marker-based motion capture to badminton players, we believe that it is important to explore the use of Kinect to track parameters for use by coaches and sports scientists. In this preliminary study, we have acquired the kinematics movement of a badminton player focused on the upper limb body. The acceleration reading acquired from the IMU, and 20 joints from the Kinect sensor is used to obtain the joint accelerations through mathematical operations. Accelerations obtained from the Kinect are then compared with the values obtained from the IMU.

2. Methodology

A set of experiments to track the upper limb movement was performed. The research subject for the experiments is an amateur badminton athlete. The subject is asked to move the upper limb with basic movements, up and down. The IMU is mounted on the subject’s right upper arm, as shown in Figure 1. It records the acceleration value of the right-hand motion that imitates smashing movement. The Kinect sensor is located on the side of the subject to avoid overlap view of the skeleton.

Fig. 1. (a) Installation of IMU accelerometer at the right-hand wrist; (b) real view of the experiment.
The IMU is attached at the right-hand wrist of the athlete. The measurement unit consists of a miniaturized Bluetooth module, 6 Degree of Freedom (DoF) accelerometer and Arduino Pro Mini as a microcontroller. The data is transferred using serial protocol via Bluetooth to a device equipped with Bluetooth receiver. In Android devices, real-time data is imported through Bluetooth Serial Receiver, whereas, in Windows devices, they are imported through Termite for data processing. The Kinect is installed on a tripod one meter above the ground level and 2.5 meter away from the subject location. The experiments began with a video recording of the upper body movements and the skeleton motion tracked by Kinect through a skeleton tracking algorithm using MATLAB. The MATLAB programme with Kinect skeleton tracking algorithm is targeted at the right-hand wrist. The programme provided the coordinates of the the skeleton in meters whilst the IMU measures the acceleration of the wrist during the upper body movement experiments. From the skeleton data, the angles of the wrist and elbow are calculated. Then, using kinematics plane motion equations, the angles are differentiated twice to get the acceleration of right hand wrist.

Two different type of data is obtained from the IMU and the Kinect sensors. The angle between shoulder, elbow and wrist can be calculated using the coordinates obtained from the Kinect sensors using equation (1) and (2).

\[
\text{angle 1, } \theta_1 \text{ (rad) } = \tan^{-1}\left(\frac{\text{elbow}_y - \text{shoulder}_y}{\text{elbow}_x - \text{shoulder}_x}\right)
\]

\[
\text{angle 3, } \beta = (\theta_1 + \theta_2) \text{ (rad) } = \tan^{-1}\left(\frac{\text{wrist}_y - \text{elbow}_y}{\text{wrist}_x - \text{elbow}_x}\right)
\]

\[
\ddot{x}_2 = -l_1 \dot{\theta}_1 \sin \theta_1 - l_1 \dot{\theta}_1^2 \cos \theta_1 - l_2 \dot{\beta} \sin \beta - l_2 \dot{\beta}^2 \cos \beta
\]

\[
\ddot{y}_2 = l_1 \dot{\theta}_1 \cos \theta_1 - l_1 \dot{\theta}_1^2 \sin \theta_1 + l_2 \dot{\beta} \cos \beta - l_2 \dot{\beta}^2 \sin \beta
\]

The linear acceleration values are obtained from the plane kinematics of the upper limb means of equation (3) and (4) for both x and y-axes. The computed values are then compared with the acceleration data from IMU sensor. The experiment was first performed with a slow speed of the upper limb movement. This serves as the control condition for this study. Each experiment was then conducted at different speeds. The experiment was repeated 10 times for each set, which in each set five times of smashing were carried out. The average acceleration from both the IMU and Kinect was calculated in Microsoft Excel.

3. Results and discussion

The average measured acceleration of the right-hand wrist obtained from the IMU is found to be 1.2 gms$^{-2}$, whilst the computed Kinect acceleration is approximately 0.8 gms$^{-2}$. In designing a motion tracking device, one of the important characteristics that requires attention is the number of parameters that could be captured by a single tracking device. Through this device viz. a kinect-based monitoring system, the use of obtrusive equipment may be eliminated, and furthermore, its competitive pricing may further appeal its usage as compared to expensive motion capture systems.
Fig. 2. The average result from experiments show (a) acceleration for x-axis from IMU and calculated acceleration for x-axis from Kinect; (b) acceleration for y-axis from IMU and calculated acceleration for y-axis from Kinect.

From Figure 2 (a), the graph shows different standard deviation between calculated acceleration and IMU acceleration for x-axis is 0.224. For Figure 2 (b), the different standard deviation value is 0.245. Apart from the graph, there is an apparent delay of (0.025s) between the calculated acceleration and the acceleration read from the IMU. The delay is likely due to the different time frame. Although the acceleration values consists some error, similar patterns could be observed for both x and y acceleration graph. This will lead our study to investigate the relationship between body movements track by Kinect technology and effect to the patterns of the graphs.

4. Conclusion

This study serves as a preliminary investigation in the development of digital analysis of badminton athlete motion to evaluate the use of Kinect. It is too early to conclude that the Kinect is capable of measuring the acceleration of the body joints as accurate as established accelerometers. In addition, this study is driven by the notion of eliminating obtrusive based sensors on athletes as it may affect one’s performance. Its preliminary results suggest that the Kinect-based readings and patterns are comparable to that of IMU’s. Future works for this study will explore the influence of spatial motion kinematics in computing the acceleration values. Furthermore, the influence of different positioning and mounting of the equipment will also be investigated that lead towards the development of the VR for badminton training system.

References

[1] J. Wang, Research on Application of Virtual Reality Technology in Competitive Sports, Procedia Eng. 29 (2012) 3659–3662. doi:10.1016/j.proeng.2012.01.548.
[2] H.C. Miles, S.R. Pop, S.J. Watt, G.P. Lawrence, N.W. John, A review of virtual environments for training in ball sports, Comput. Graph. 36 (2012) 714–726. doi:10.1016/j.cag.2012.04.007.
[3] E. Ruffaldi, A. Filippeschi, Structuring a virtual environment for sport training: A case study on rowing technique, Rob. Auton. Syst. 61 (2013) 390–397. doi:10.1016/j.robot.2012.09.015.
[4] Y.-B. Kim, S.-H. Han, S.-J. Kim, E.-J. Kim, C.-G. Song, Multi-Player Virtual Ping-Pong Game, in: 17th Int. Conf. Artif. Real. Telexistence (ICAT 2007), 2007: pp. 269–273. doi:10.1109/ICAT.2007.34.
[5] T.-H. Kuo, C.-C. Tsai, J.-J. Fang, Development of Virtual Ping-Pong Game with 6-DOF Tracking System, J. Comput. Inf. Sci. Eng. 12 (2012) 014501. doi:10.1115/1.3615975.
[6] Y. Li, L.K. Shark, S.J. Hobbs, J. Ingham, Real-time immersive table tennis game for two players with motion tracking, in: 14th Int. Conf. Inf. Vis., 2010: pp. 500–505. doi:10.1109/IV.2010.97.
[7] X. Li, W. Li, X. Qi, Research and develop of badminton sports video retrieval system, in: Int. Conf. Comput. Sci. Netw. Technol. ICCSNT 2011, 2011: pp. 1855–1858. doi:10.1109/ICCSNT.2011.6182331.
[8] R. a. Clark, Y.H. Pua, K. Fortin, C. Ritchie, K.E. Webster, L. Denehy, et al., Validity of the Microsoft Kinect for assessment of postural control, Gait Posture. 36 (2012) 372–377. doi:10.1016/j.gaitpost.2012.03.033.
[9] T. Dutta, Evaluation of the Kinect sensor for 3-D kinematic measurement in the workplace, Appl. Ergon. 43 (2012) 645–649. doi:10.1016/j.apergo.2011.09.011.
[10] H.Y. Ting, K.S. Sim, F.S. Abas, Kinect-Based Badminton Action Analysis System, Adv. Mater. Res. 1042 (2014) 94–
[11] Y.L. Che, Z.J. Lu, The Key Technology Research of Kinect Application in Sport Training, Adv. Mater. Res. 945-949 (2014) 1890–1893. doi:10.4028/www.scientific.net/AMR.945-949.1890.

[12] M. Kwan, M.S. Andersen, C.L. Cheng, W.T. Tang, J. Rasmussen, Investigation of high-speed badminton racket kinematics by motion capture, Sport. Eng. 13 (2011) 57–63. doi:10.1007/s12283-010-0053-0.

[13] K.K. Teu, W. Kim, J. Tan, F.K. Fuss, Using dual Euler angles for the analysis of arm movement during the badminton smash, Sport. Eng. 8 (2005) 171–178. doi:10.1007/BF02844017.

[14] M.S. Salim, H.N. Lim, M.S.M. Salim, M.Y. Baharuddin, Motion analysis of arm movement during badminton smash, Proc. 2010 IEEE EMBS Conf. Biomed. Eng. Sci. IECBES 2010. (2010) 111–114. doi:10.1109/IECBES.2010.5742210.

[15] S. Choppin, J. Wheat, The potential of the Microsoft Kinect in sports analysis and biomechanics, Sport. Technol. 6 (2013) 78–85. doi:10.1080/19346182.2013.819008.

[16] K. Khoshelham, Accuracy Analysis of Kinect Depth Data, ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVIII-5/ (2012) 133–138. doi:10.5194/isprsarchives-XXXVIII-5-W12-133-2011.

[17] M. a. Livingston, J. Sebastian, Z. Ai, J.W. Decker, Performance measurements for the Microsoft Kinect skeleton, 2012 IEEE Virtual Real. (2012) 119–120. doi:10.1109/VR.2012.6180911.

[18] S.B. Choppin, B. Lane, J.S. Wheat, The accuracy of the Microsoft Kinect in joint angle measurement, Sport. Technol. (2014) 37–41. doi:10.1080/19346182.2014.968165.

[19] T. Mauthner, C. Koch, M. Tilp, H. Bischof, Visual Tracking of Athletes in Beach Volleyball Using a Single Camera, Int. J. Comput. Sci. Sport. 6 (2004) 21–34.

[20] H.Y. Ting, K.S. Sim, F.S. Abas, Kinect-Based Badminton Action Analysis System, in: Adv. Mater. Res., 2014: pp. 94–99. doi:10.4028/www.scientific.net/AMR.1042.94.

[21] Y. Tian, X. Meng, D. Tao, D. Liu, C. Feng, Upper limb motion tracking with the integration of IMU and Kinect, Neurocomputing. 159 (2015) 207–218. doi:10.1016/j.neucom.2015.01.071.

[22] D. Qiao, G.K.H. Pang, M.M. Kit, D.C.C. Lam, A new PCB-based low-cost accelerometer for human motion sensing, in: Proc. IEEE Int. Conf. Autom. Logist. ICAL 2008. 2008: pp. 56–60. doi:10.1109/ICAL.2008.4636119.

[23] H. Croft, D.C. Ribeiro, Developing and applying a tri-axial accelerometer sensor for measuring real time kayak cadence, Procedia Eng. 60 (2013) 16–21. doi:10.1016/j.proeng.2013.07.038.

[24] A. Stamm, D. a. James, B.B. Burkett, R.M. Hagem, D. V. Thiel, Determining maximum push-off velocity in swimming using accelerometers, Procedia Eng. 60 (2013) 201–207. doi:10.1016/j.proeng.2013.07.067.