Efficient Quantum Transmission in Multiple-Source Networks

Ming-Xing Luo1,2,3, Gang Xu2,4, Xiu-Bo Chen2, Yi-Xian Yang2 & Xiaojun Wang5

1Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu 610031, China, 2State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China, 3State Key Laboratory of Information Security (Graduate University of Chinese Academy of Sciences), Beijing 100049, China, 4School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China, 5School of Electronic Engineering, Dublin City University, Dublin 9, Ireland.

A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further encoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.

Maximizing information transmission is very important concern when dealing with limited-resource scenarios in large-scale networks. Network coding1, which allows multiple messages to be encoded before transmission in common channels, may provide a solution for single-source networks. One typical example is illustrated in Figure 1(a). With linear encoding, the source node can simultaneously transmit two messages to all receivers from two edge-disjoint paths1, even if two receivers share one common channel CD. The key is that two incoming messages \(x, y\) are encoded into a new message \(x + y\) at the node C. Each receiver can recover \(x, y\) using \([x, x + y]\) or \([y, x + y]\). This task cannot be successfully performed using the trivial transmission scheme [store-forward routing for each node2] because in this scheme, only one message, \(x\) or \(y\), may be transmitted in the common channel CD each time. Generally, transmission conflicts in common channels [network congestion] become serious problems [congestion collapse] in large-scale networks [Internet]3. Fortunately, network coding can achieve the optimal Shannon capacity of single-source networks1,2. Network coding is considered to be an important technology for next-generation communication to achieve network multicasts4-6 [the sender simultaneously sends multiple messages to all receivers on a single-source network] or k-pair transmissions7,8, i.e., multiple unicasts [each sender transmits messages to its corresponding receiver simultaneously over multiple-source networks].

When classical networks are quantized with quantum nodes and quantum channels, one may wish to optimize the transmission efficiency over large-scale quantum networks, as illustrated in Figure 1(b). Because of the quantum no-cloning theorem, the source node O may be replaced with two source nodes \(S_1\) and \(S_2\). Thus, the multicast over the Butterfly network is reduced to the 2-pair problem on the reduced quantum network with common channels9. However, perfect quantum k-pair transmissions have been proved to be impossible in the absence of any additional resources10-12. They require all incoming states \(|\psi\rangle\) be encoded into a coherent superposition \(\sum_z|\psi^z\rangle\) at the node C, and decoded at the node D. This is a rather difficult task. The situation may be changed if classical communications are freely allowed13,14. This assumption is reasonable because classical communications are much cheaper and more readily available than quantum communications. These results are dependent on the linear encodings14 or the nonlinear encodings15 applied in the enlarged encoding space, and give rise to three natural questions. The first question (Q1) is whether the enlarged encoding space is necessary for large-scale quantum network communications. The second question (Q2) is what amount of classical communication is sufficient. Classical two-way unlimited channels have been assumed to exist between any two nodes14 or only between two quantum nodes connected by quantum channels15. The third question (Q3)
The reduced quantized network. The transmissions over the channels SCIENTIFIC S and O Figure 1 | Schematic network transmission over the Buttery network. (a) The classical network multicast with network coding. Each channel has unit transmission capacity. Each node Ri has two edge-disjoint paths originating from the source node O, i = 1, 2. CD is a common channel for two receivers. The input messages \(|x, y\rangle \) are encoded into \(x + y \) at the node C, and forwarded to the node D. \(x + y \) is copied [unit fidelity], and each message is forwarded to one node \(R_i \). Each receiver can recover \(|x, y\rangle \) from \(|x, x + y\rangle \) or \(|y, x + y\rangle \). (b) The quantized network without the node O. All nodes and channels may be quantized with quantum participants and quantum channels, respectively. The node O is canceled because of the quantum no-cloning theorem at the node O. Thus, the quantum task is for each \(S_i \) to multicast an unknown state to all receivers simultaneously. (c) The reduced quantized network. The transmissions over the channels \(S_1, S_2 \) and \(S_2 R_1 \) are trivial and reduced. The remaining task is to design the transmission over the common channel CD.

is whether the linear encoding is sufficient for large-scale quantum network communications. These problems are related to the optimization of the transmission capacity of multiple-source quantum networks.

In this paper, based on the achievements of quantum information theory and quantum networking theory, we investigate these problems using similar ideas in classical network coding. Unlike the entanglement quantization of a classical channel, it may be quantized with a continuous physical channel and the transmission information may be quantized with quantized electromagnetic fields of identical frequencies. To distinguish the decoded quantum states for different nodes, special phase-shift operations may be designed to index different incoming quantum states, using phase shifters [coupling the optical fields to driven Duffing oscillators] or gauge transformations. This encoding can spread the spectral content of the quantum information across the entire spectrum in order to encode the information, and can distinguish different senders with their own phase factors. Unfortunately, the added phase information is not easily decoded, and doing so requires the ability to precisely control the remote chaotic systems during the communication. To solve this problem, free classical communications are assumed between two quantum nodes with common channels, and are used to synchronize the remote phase shifters. This is classical chaos synchronization and may be achieved using the nonlinear coupling between the optical fields and Duffing oscillators or semiconductor lasers. The key is the nonlinear Kerr interaction, which can be used to couple the classical chaotic light with the information-bearing quantum light. Recently, electrooptic modulators (EOMs) have also been used for chaos synchronization. Moreover, all encoded quantum information may be combined into a coherent superposition state, and decoded using paired multiport beam splitters. Based on our transmission schemes in common channels, using the network reduction shown in the supplementary information (SI), we can identify the optimal transmission scheme for quantum multiple-source networks assuming restricted maximum-flow. Our scheme is beyond both the quantum K-pair transmissions based on the classical solvability and classical network transmissions via network coding. These results may be beneficial for large-scale quantum network communications.

Results

Consider an acyclic directed quantized network \(G_q = (V_q, E_q) \), as shown in Figure 2(a). \(V_q \) and \(E_q \) are the node set and the edge set, respectively. Each node in \(V_q \) is quantized with a quantum participant that can perform all quantum operations and classical operations. The transmission information is quantized with electromagnetic fields \(a_i \) and \(b_j \) of the same frequency. Each channel in \(E_q \) is quantized with a continuous-time physical channel and has a unit transmission rate [one quantum state]. Each pair \((S_i, R_j) \) has \(h_j \equiv 1 \) edge-disjoint paths. Our task is to allow efficient transmissions in large-scale quantum networks: All source-sink nodes pairs communicate simultaneously, subject to restricted maximum-flow. Although quantum multiple-source networks have no uniform network topology, based on the network reduction shown in the SI, the optimal quantum multiple-source transmission may be reduced to the transmission in the primitive network, as shown in Figure 2(b). Thus, special encoding and decoding operations should be designed to be suitable to the quantum task.

Restricted maximum-flow. In the optimization theory, the maximum-flow problem [unit capacity for each channel] is equivalent to identifying the maximal number of edge-disjoint paths between the source and the sink, under the assumption unit capacity of per edge. Our interest is in the case of restricted maximum-flow, i.e., no common channels for different source-sink node pairs are outgoing edges of source nodes or incoming edges of sink nodes. This assumption is reasonable because of the quantum non-cloning theorem.

Motivated by network coding and quantum network theory, a schematic illustration of quantum transmission over a common channel is presented in Figure 3. The information-bearing field \(a_j \) originating from the node \(A_j \) is first shifted at the node \(C \) using a chaotic phase shifter (CPS) with the Hamiltonian \(\delta_j(t) = \delta_j(t) a_j^\dagger a_j \) and the time-dependent classical chaotic signal \(\delta_j(t), j = 1, \ldots, n \). This phase shift corresponds to the gauge transformation in the nearest node. All new quantum information is encoded using a multiport beam splitter (MBS), and transmitted over the common channel CD. The combined quantum information is amplified using a phase-insensitive linear amplifier (LA) at the node D to compensate for the information losses induced by MBS, and then decomposed into \(n \) different components by MBS. The amplifier gain of the LA is \(n + 1 \). All decomposed information may be decoded using CPS, the inverse of CPS, with the corresponding Hamiltonian \(\delta_j(t) = \delta_j(t) b_j^\dagger b_j, j = 1, \ldots, n \). Each decoded information-bearing field \(b_j \) is sent to the subsequent node \(B_j, j = 1, \ldots, B_n \).

Note that each pair of CPS and CPS induces phase shifts with the phase \(\exp(i\theta_j(t)) \) and the inverse phase \(\exp(-i\theta_j(t)) \), respectively.
quantum multiple-source transmission tasks. All incoming states such that \(d \) quantum communication, i.e., it must be ensured that the two chaotic transformations must be precisely controlled during the process of quantum multiple-source networks.

or the incoming edge of a sink node. (b) The primitive subnetwork of and decoded at the node \(\text{SCIENCE REPORTS} \) and CPS

Figure 2 | Schematic acyclic directed quantum multiple-source network. (a) \(\{S_1, \cdots, S_k\}, \{R_1, \cdots, R_l\} \subset V \) are source and target nodes, respectively. Each pair \(S_R \) has \(l_j \) edge-disjoint paths. \(CD \) is a common channel for different pairs. No common channel is the outgoing edge of a source node or the incoming edge of a sink node. (b) The primitive subnetwork of quantum multiple-source networks. \(a_l \) and \(b_l \) are information-bearing fields of quantum information [the original fields generated by the former nodes]. The node \(C \) has \(n \) incoming edges, and the node \(D \) has \(n \) outgoing edges. The transmission in the channel \(CD \) is the main concern for quantum multiple-source transmission tasks. All incoming states \(|\phi_1\rangle, \cdots, |\phi_n\rangle \) should be encoded into a superposition state at the node \(C \), and decoded at the node \(D \).

where \(b_j(t) = \int_0^t \delta_j(\tau) d\tau \). To achieve faithful transmission, these transformations must be precisely controlled during the process of quantum communication, i.e., it must be ensured that the two chaotic systems have the same parameters, initial values, and evolutions such that \(\delta_j(t) = \delta_j(t) \) for each \(j = 1, \cdots, n \). However, this precise control is impractical for remote participants because the chaotic system is unstable in system parameters and initial values. Therefore, additional classical channels are assumed to exist for common channel \(CD \), and used to synchronize each pair of CPS and CPS\(_j\), \(j = 1, \cdots, n \), as shown in Figure 3(b). These classical channels are cheap and readily available compared with quantum channels.

Modeling quantum transmission over a common channel. Consider the primitive quantum network shown in Figure 3(b). Each pair of CPS and CPS\(_j\) has been synchronized prior to the transmission of quantum information, \(j = 1, \cdots, n \). The information-bearing fields \(a_1, \cdots, a_n \) with the same frequency \(\omega_j \) are modulated using \(n \) different pseudo-noise signals and pass through CPS\(_j\), MBS\(_1\), the LA, MBS\(_j\), and CPS\(_j\) sequentially. The global quantum transmission can be described using the following linear relation:

\[
b_j = a_j + \frac{1}{n} \sum_{k=1, k \neq j}^n \sum_{i=2}^n e^{i(\theta_i - \theta_j)} e^{i(\theta_i - \theta_j)} a_i + \frac{1}{n^2 - 1} \sum_{i=2}^n e^{i\theta_i} a_{iA} + \sqrt{\frac{n^2 - 1}{n}} e^{i\theta_i} a_{iA} \tag{1}
\]

for all \(j = 1, \cdots, n \). The matrices \((\alpha_j)_{n \times n} \) and \((\beta_i)_{n \times n} \) denote the transformations of MBS\(_1\) and MBS\(_j\), respectively, and satisfy \(\lambda x_{11} = \cdots = \lambda x_{ii} = 1 \). \(a_{iA} \) denotes the annihilation operator of the auxiliary vacuum field entering MBS\(_j\), \(j = 2, \cdots, n \). For the pseudo-noise chaotic phase shift \(\delta_j(t) \) from the CPSs, one needs to take an average over the broadband random signal, i.e.,

\[
\exp(i \delta_j(t)) \approx \sqrt{M_j} \quad \text{with} \quad M_j = \exp(-\pi \int_{-\infty}^{\infty} S_0(\omega) \sqrt{\omega^2 d\omega})
\]

and the power-spectrum density \(S_0(\omega) \) of signal \(\delta_j(t) \). Here, \(\omega_j \) and \(\omega_o \) are the lower and upper frequency-band bounds of \(\delta_j(t) \), respectively. Thus, the equation (1) is further reduced to

\[
b_j = a_j + \frac{1}{n} \sum_{k=1, k \neq j}^n \sqrt{M_j M_k} a_k + \frac{1}{n} \sum_{i=2}^n \sqrt{M_j} \beta_j a_{iA} + \sqrt{\frac{n^2 - 1}{n}} \sqrt{M_j} a_{iA} \tag{2}
\]

All \(M_j \) are extremely small with respect to the chaotic signal with the broadband frequency spectrum, and thus can be ignored in equation (2), therefore

\[
b_j \approx a_j, \quad \tag{3}
\]
i.e., faithful transmission of quantum information is achieved from the node A_j to the node A'_j, $j = 1, \ldots, n$.

Quantum state transmission over a common channel. Consider pure qudit state transmission over the proposed model, as shown in Figure 4. The transmitted states are dark states of general Λ type $d+1$-level atoms $|\phi\rangle = \sum_{\xi_{ij}} \xi_{ij} |i\rangle$ with $\xi_{ij} \in [0,1]$, where the j-th atom is located in the cavity CA_j [see Figure 4(a)], $j = 1, \ldots, n$. These states are transferred to the cavities via Raman transitions, transmitted over the quantum network, and stored in the new cavities. Assume that $2n$ coupled atom-cavity systems have the same parameters. By adiabatically eliminating the highest energy level $|d\rangle$, the atom j will always lie in the lowest d energy levels $|0\rangle, |1\rangle, \ldots, |d-1\rangle$. The neighboring transition $|i\rangle \rightarrow |i+1\rangle$, is driven by a near-resonant laser field, and is coupled to the classical control field and the quantized cavity field with a coupling strength $\Omega_j(t)$. The Hamiltonian of the atom-cavity systems can be expressed as

$$H_j = \sum_{i=0}^{d-1} g_j(i+1) \left(c_j^\dagger |i+1\rangle \langle i| + c_j^\dagger |i\rangle \langle i+1| \right),$$

where c_j is the annihilation operator of the j-th cavity mode; $g_j(t) = g\Omega_j(t)/\Delta$ is the coupling strength tuned by the classical control field $\Omega_j(t)$.

![Figure 4](www.nature.com/scientificreports)

Figure 4 | Quantum state transmission over a common channel. (a) The circular symbols denote atom cavities. $\Omega_j(t)$ denotes the amplitudes of classical driving fields in each cavity, Ω_j denotes the transition frequency of $|i\rangle \rightarrow |i+1\rangle$. The circle in the center denotes a general Λ type $d+1$-level atom. a_{in} [vacuum states] is the input field, $j = 1, \ldots, n$. (b) Schematic quantum transmission over a common channel. a_{in} denotes the incoming information-bearing fields of nodes A_j, $j = 1, \ldots, n$. a_j and \tilde{a}_j are the incoming and outgoing information-bearing fields of MBS$_1$, respectively; and a_{in} and \tilde{a}_{in} are the incoming and outgoing information-bearing fields of MBS$_2$, respectively, $j = 1, \ldots, n$. a^\dagger_{in} and a^\dagger_{in} are one of the incoming and outgoing information-bearing fields of the LA, respectively.

$\Omega_j(t)$, $j = 1, \ldots, n$; and Δ is the atom-cavity detuning. c_j is related to the traveling field a_j as follows:

$$a_j = \sqrt{2} c_j + a_{j,in},$$

$$\tilde{a}_j = \sqrt{2} c_j^* + \tilde{a}_{j,out},$$

where λ is the decay rate of the cavity field.

CPS and CPS' are realized by coupling the optical fields to Duffing oscillators, as described by the Hamiltonian

$$H_{D_j} = \omega_0 \pi \left(p_j^2 + q_j^2 \right) - \mu q_j^4 - \gamma \cos(\omega_0t)q_j,$$

where ω_0 and q_j are the normalized position and momentum of the Duffing oscillators, respectively; ω_0 is the frequency of the fundamental mode; and μ, γ, and ω_0 are constants. The interaction between the field a_j and Duffing oscillators is given by the Hamiltonian $H_j = \zeta_j x_j a_j^\dagger a_j$, where ζ_j is the coupling strength between the field a_j and the oscillators. By choosing a suitable interaction, a phase factor $\exp\left(-i\int_0^\infty \zeta_j x_j(t) dt\right)$ can be generated for the field a_j.

Moreover, the chaotic synchronization between CPS and CPS' may be achieved by using the harmonic potential coupling

$$V(x_j, x_j^*) = \eta_j (x_j^2 - x_j^*2)^2, j = 1, \ldots, n.$$

To show the quantum transmission efficiency, let us calculate the fidelity $F_j = \langle \phi_j | \rho_j | \phi_j \rangle$, where ρ_j is the quantum state received by the atom j. From equation (2), the fidelity F_j can be approximated as 1 when $\mu = 0$, i.e., when Duffing oscillators enter the hard chaotic regimes. This result means that qudit states can be faithfully transmitted over this primitive network via a common channel.

Quantum transmission in a multiple-source network. Note that according to the network reduction shown in the SI, the number of incoming channels for one common channel is equal to the number of outgoing channels. Thus, each common channel CD is equivalent to m distinct quantum channels $C_1 D_1, \ldots, C_m D_m$ [not common channels] aided by additional classical channels, where m denotes the number of incoming channels, as shown in Figure 5. By replacing all common channels with equivalent quantum channels, an equivalent multiple-source network $\tilde{G}_q = (\tilde{V}_q, \tilde{\delta}_q)$ can be constructed, which satisfies that all pairs (S_i, R_j) have no common channels under the assumption of restricted maximum-flow. Here, the source nodes and the sink nodes are unchanged. The resultant quantum transmission can be easily achieved via forward routing on the equivalent network with the aid of chaotic synchronization on the auxiliary classical channels. Thus, we identify and implement the optimal quantum transmission under the assumption of restricted maximum-flow in a multiple-source network, and partially answer the questions Q1–Q3. More specifically, the un-enlarged linear encoding [encoding operations such as those represented by equation (1)] is sufficient for large-scale quantum network communications under the assumption of restricted maximal-flow, and unlimited classical one-way channels corresponding to the common quantum channel are assumed. Of course, classical synchronization should be applied prior to the transmission in the common channel and requires some classical communication.

Discussion We have introduced quantum multiple-source networks based on classical multiple-source networks and chaotic synchronization, where quantum information can be simultaneously transmitted in multiple subnetworks derived from source-sink node pairs. The proposed quantum transmission attains the optimal transmission
One typical example is presented in the Figure 1(c); this example is for the common quantum channels and not all quantum channels.15. And classical channels are assumed to exist only in the enlarged space. Moreover, the new scheme extends the solvability of the quantum k-pair problem, and is more general than previous schemes.13–15

Methods
We calculate the linear mapping over the quantum network shown in the Figure 4(b). The mapping relationships of the CPSi, ..., CPSn may be represented as

\[
\begin{pmatrix}
 a_{11} \\
 \vdots \\
 a_{mn}
\end{pmatrix} = \left(\begin{pmatrix}
 e^{-\theta_1} \\
 \vdots \\
 e^{-\theta_n}
\end{pmatrix} \right) \begin{pmatrix}
 \alpha_{11} \\
 \vdots \\
 \alpha_{mn}
\end{pmatrix}.
\]

where \(a_i \) and \(\alpha_i \) are the annihilation operators of the auxiliary vacuum fields entering and output the CPS, respectively, \(i = 1, \ldots, n \). The mapping relationship of the MBSi is defined as

\[
\begin{pmatrix}
 a_{12} \\
 \vdots \\
 a_{mn}
\end{pmatrix} = \begin{pmatrix}
 \frac{\beta_{11}}{\alpha_{11}} & \cdots & \frac{\beta_{1n}}{\alpha_{1n}} \\
 \vdots & \ddots & \vdots \\
 \frac{\beta_{m1}}{\alpha_{m1}} & \cdots & \frac{\beta_{mn}}{\alpha_{mn}}
\end{pmatrix} \begin{pmatrix}
 a_{11} \\
 \vdots \\
 a_{1n}
\end{pmatrix},
\]

where \(a_{12}, \ldots, a_{mn} \) are the annihilation operators of the auxiliary vacuum fields entering and outputting the MBS, respectively, \(i = 1, \ldots, n \). The mapping relationship of the CPSi, ..., CPSn is defined as

\[
\begin{pmatrix}
 b_{11} \\
 \vdots \\
 b_{n1}
\end{pmatrix} = \begin{pmatrix}
 e^{\phi_1} \\
 \vdots \\
 e^{\phi_n}
\end{pmatrix} \begin{pmatrix}
 a_{11} \\
 \vdots \\
 a_{1n}
\end{pmatrix},
\]

where \(b_{ij} \) is the annihilation operator of the auxiliary vacuum field entering the LA. The mapping relationship of the CPS, ..., CPSn is defined as

\[
b_{ij} = a_{ij} + \frac{1}{n} \sum_{k \neq j} e^{i(\theta_k - \theta_j)n} + \frac{\beta_{ij}}{\alpha_{ij}} + \frac{\beta_{ij}}{\alpha_{ij}} + \frac{\beta_{ij}}{\alpha_{ij}}.
\]

where \(\beta_i \) is independent chaotic noise, \(j = 1, \ldots, n \).

Averaging the chaotic phase shift. The chaotic signal \(\delta(t) \) may be expressed as a combination of many high-frequency components, i.e.,

\[
\delta(t) = \sum_{k} A_{\phi_k} \cos(\omega_{k}t + \phi_{k}).
\]

where \(A_{\phi_k}, \omega_{k}, \phi_{k} \) are the amplitude, frequency, and phase of each component, respectively. Then the phase of the signal is defined as

\[
\delta_{\phi}(t) = \int_{0}^{t} \frac{\delta_{\phi}(t)}{\omega_{k}} dt = \sum_{k} A_{\phi_k} \left[\sin(\omega_{k}t + \phi_{k}) - \sin(\phi_{k}) \right].
\]

Using the Fourier-Bessel series identity \(\exp(ix) = \sum_{n=0}^\infty (\exp(\sin2\pi n x) \exp(i n y)) \) with the n-th Bessel function of the first kind \(J_n(x) \), we can write

\[
\exp(-i \theta_{\phi}(t)) = \Pi_{k} A_{\phi_k} \left[J_k \sin(\omega_{k}t + \phi_{k}) + J_k \sin(\phi_{k}) \right].
\]

Take average over the random phase \(\omega_{k} \), the components related to the high-frequencies is averaged out because of the energy dissipation. It means that the resultant is only the near-resonance components, i.e., the lowest-frequency terms \(\omega_{k} = 0 \) dominating the dynamical evolution. Thus, we have

\[
\exp(-i \theta_{\phi}(t)) = \Pi_{k} A_{\phi_k} \left[J_k \sin(\omega_{k}t) \right] = A_{\phi_k} \left[J_k \sin(\omega_{k}t) \right].
\]
Moreover, since the chaotic signal $\theta(t)$ is mainly distributed in the high-frequency regime, we have $\frac{\partial^2 \theta}{\partial x^2} \ll \frac{\partial \theta}{\partial x}$.

\[
\exp(-\beta \theta(x)) = \prod_k \left(\frac{A_k}{\partial x^k} \right).
\]

Using the approximations $f_3(x) = 1 - x^2/4$ and $\log(1 + x) = \frac{x}{2}$ for $x \ll 1$, it easily follows that

\[
\prod_k \frac{A_k}{\partial x^k} = \exp \left[\sum_k \log f_3 \left(\frac{A_k}{\partial x^k} \right) \right] = \exp \left[-\frac{\pi}{2} \int_0^{\frac{\pi}{2}} S_2(\alpha) \cos^2 d\alpha \right] = \sqrt{M},
\]

Consequently, from equations (9) and (10), we obtain the approximation

\[
\exp(-\beta \theta(x)) = \sqrt{M}.
\]
Author contributions
L.M.X. proposed the theoretical method. L.M.X. and C.X.B. wrote the main manuscript text. W.X., Y.Y.X. and G.X. reviewed the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Luo, M.-X., Xu, G., Chen, X.-B., Yang, Y.-X. & Wang, X.J. Efficient Quantum Transmission in Multiple-Source Networks. Sci. Rep. 4, 4571; DOI:10.1038/srep04571 (2014).
RETRACTION: Efficient Quantum Transmission in Multiple-Source Networks

Ming-Xing Luo, Gang Xu, Xiu-Bo Chen, Yi-Xian Yang & Xiaojun Wang

The authors wish to retract this Article because the main improvements reported are invalid.

1. The paper has not considered how to route quantum information. This is an essential problem in classical network communication such as TCP/IP.

2. In the presented quantum network, the quantum address or quantum IP address representation for each quantum node has not been designed. In this point of view, different quantum signals going into one common quantum channel cannot be distinguished for their different goal addresses.

3. The synchronizations of the oscillators are only useful when different quantum signals may be distinguished. From (3), they cannot be completed for quantum network. For an example, see the following figure, there are three incoming edges and three outcoming edges. The synchronizations of the oscillators may be false if the nodes C and D do not know the outcoming paths of three incoming quantum signals. For an example, our synchronizations are shown in Figure 1a while the real paths may be those shown in Figure 1b. Even if one can synchronize them before the transmission, the transmission goals may be different in each time.

Figure 1