Dispersion corrections in graphenic systems: a simple and effective model of binding

Tim Gould, S Lebègue and John F Dobson

1 Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
2 Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2, UMR CNRS 7036), Institut Jean Barriol, Université de Lorraine, BP 239, Boulevard des Aiguillettes, F-54506 Vandoeuvre-lès-Nancy, France

E-mail: t.gould@griffith.edu.au

Received 19 July 2013, in final form 17 September 2013
Published 11 October 2013
Online at stacks.iop.org/JPhysCM/25/445010

Abstract
We combine high-level theoretical and ab initio understanding of graphite to develop a simple, parametrized force-field model of interlayer binding in graphite, including the difficult non-pairwise-additive coupled-fluctuation dispersion interactions. The model is given as a simple additive correction to standard density functional theory (DFT) calculations, of form

\[\Delta U(D) = f(D)[U_{vdW}(D) - U_{DFT}(D)] \]

where \(D \) is the interlayer distance. The functions are parametrized by matching contact properties, and long-range dispersion to known values, and the model is found to accurately match high-level ab initio results for graphite across a wide range of \(D \) values. We employ the correction on the bigraphene binding and graphite exfoliation problems, as well as lithium intercalated graphite LiC\(_6\). We predict the binding energy of bigraphene to be 0.27 J m\(^{-2}\), and the exfoliation energy of graphite to be 0.31 J m\(^{-2}\), respectively slightly less and slightly more than the bulk layer binding energy 0.295 J m\(^{-2}\)/layer. Material properties of LiC\(_6\) are found to be essentially unchanged compared to the local density approximation. This is appropriate in view of the relative unimportance of dispersion interactions for LiC\(_6\) layer binding.

(Some figures may appear in colour only in the online journal)

1. Introduction

Interlayer binding of graphenic structures such as bigraphene and graphite is very challenging to evaluate in ab initio calculations. Standard approaches like the local density [1] and generalized gradient [2–4] approximations (LDA and GGA), and van der Waals (vdW) density functional theories (vdW DFTs e.g. vdW-DF [5–7], TS-approach [8], DFT-D* [9–11] and VV10 [12]; see [13] for an overview) either miss (LDA/GGA) or mispredict [14] (vdW DFT) the dispersive binding, especially in the asymptotic limit. This failure is in part due to the presence [15] of coupled long-wavelength charge fluctuations, which influence the dispersion interactions between graphene layers [16], and which are difficult to predict via conventional means.

The random-phase approximation to the adiabatic connection, fluctuation-dissipation functional approach [17, 18] (ACFD-RPA or RPA) seamlessly predicts the dispersive binding of graphite [19]. The direct RPA includes all plasmon interactions, and is known [20] to accurately predict the binding properties of a wide variety of systems. However RPA is computationally difficult to evaluate for graphenic materials, requiring substantial computer resources even for the relatively simple case of bulk graphite [19]. For example the RPA binding energy of bigraphene and exfoliation energy of graphite (the energy required to remove a single layer from the surface of bulk graphite) are difficult to evaluate.
with present computational resources, although sophisticated attempts [14] have been made to predict both through rescaled dispersion corrections.

A simple way to deal with dispersion is to use efficient dispersion-free calculations (LDA/GGA) and simply add a model potential accounting for the difficult vdW properties. Such an approach is similar to the popular DFT-D* [9–11] and Tkatchenko–Scheffler (TS) [8] vdW approximations. Previously there have been many attempts [21–25] to develop semiempirical model potentials using the known properties of bulk graphite. Until recently, however, reasonable values of certain material properties like the interlayer binding energy \(\epsilon_b \equiv E(D) - E(\infty) \) normalized per atom or by area where \(E(D) \) is the energy of bulk graphite with intra-layer atomic coordinates fixed and all graphene layers a distance \(D \) from their nearest neighbours) and the inelastic interlayer coefficient \(C_{333} \propto \frac{d^3}{dD^3}E(D_0) \) were not available. Additionally, many early attempts did not include the unusual van der Waals properties [16, 25–27] of graphenic structures, and thus incorrectly reproduced the intermediate- and long-distance binding.

In this work we will use the latest theoretical results, and \textit{ab initio} data from accurate ACFD-RPA calculations to develop a model potential for graphite. The model will be simple to evaluate and to use. To ensure physical realism we shall ensure that the model satisfies many constraints, namely the first three energy derivatives at the optimal lattice spacing, and the vdW dispersion potential away from contact. The model can be used on its own in force-field modelling, or to supplement LDA and GGA calculations, with the LDA recommended over the GGA due to its better predictive power.

The model potential will then be extended to the cases of bigraphene and graphite exfoliation, and used to predict the important binding and exfoliation energies, and other properties. Finally the model potential will be tested on lithium intercalated graphite (LiC\(_6\)). We shall show that the model gives reasonable results for all cases, and should thus be employable on a wide range of graphenic systems.

2. A note on energy units

In this paper we compare a number of different graphitic systems. Special care must be taken when considering energy properties, as these can become ambiguous when comparing between different geometrical arrangements. These issues are discussed as they arise in the text, but we raise some here to help avoid confusion.

Where direct comparisons are made between different geometries (such as in table 2) we use J m\(^{-2}\) which is the energy divided by the surface area of a single layer for bigraphene and graphite exfoliation, and the energy divided by the surface area divided by the number of layers for the bulk systems graphite and lithium intercalated graphite. The elastic coefficient \(C_{33} \) is defined in the standard way for graphite and LiC\(_6\). For bigraphene and exfoliation there is no natural way to define \(C_{33} \) and we define it via the second derivative, with respect to the outermost layer spacing, of the energy per area, scaled appropriately to allow comparison with bulk graphite.

We also give results in meV/atom as this is a natural unit for bulk systems, especially for \textit{ab initio} studies. Here we take the total energy of a cell divided by the number of carbon atoms in the cell. The one exception is in the exfoliation calculations, where we consider only the atoms in the two layers forming the opened surface (four atoms for the standard AB cell used here). For carbon atoms with in-plane C–C bond length \(a_0 \) given in Angstrom we convert energy \(\epsilon \) from meV/atom to J m\(^{-2}\) via \(\epsilon (\text{J m}^{-2}) = 5 \times 10^{-4} \epsilon (\text{meV/atom}) \) where \(S_{\text{graphite}} = S_{\text{LiC}_6} = 0.006158 \times 2/a_0^2 \) for the bulks and \(S_{\text{bigraphene}} = S_{\text{exfoliation}} = 0.006158 \times 4/a_0^3 \) for the layer pairs.

3. Near-contact properties of graphite

Key to previous models of graphene binding are three material properties: the lattice constant \(c \) of AB graphite (or interlayer distance \(D_0 \) where \(c = 2D_0 \)), the inter-planar elastic coefficient \(C_{33} \), and the binding energy \(\epsilon_b \). These are listed in order of experimental inconsistency, with the binding energy showing the greatest variation across different experiments.

The lattice constant \(c \) has been found [28] very accurately to be \(c = 6.68 \text{ Å} \) corresponding to an interlayer distance \(D_0 = 3.34 \text{ Å} \), while the elastic coefficient has been narrowed down by experiment [29–32] to a small range \(C_{33} \approx 38.6 \pm 2.1 \text{ GPa} \). The binding energy has never been directly measured, and most efforts [33–36] to determine it involve unreliable theoretical models \(^3\) of dispersion to reverse engineer the binding energy from other properties. Estimates range between about 25 meV/atom = 0.15 J m\(^{-2}\)/layer and 57 meV/atom = 0.35 J m\(^{-2}\)/layer. Until recently, theory has fared little better than experiment at predicting \(\epsilon_b \). For example, the GGA predicts a binding energy of 2.3 meV/atom [21], the LDA predicts 24 meV/atom [19], and different vdW corrected DFT approaches [5–7, 9–11, 8, 12] predict [37, 38, 14] values between 24 (layer vdW-DF [6]) and 71 meV/atom (Vv10 [14]).

Some of the authors of the present paper previously published accurate RPA calculations for graphite [19]. The RPA is known [20] to be very good at predicting many properties of bulk systems, and in the absence of conclusive experiments we consider it to be a benchmark for graphite energy differences. In those calculations, the binding energy was found to be \(\epsilon_b = 48 \text{ meV/atom} = 0.295 \text{ J m}^{-2}/\text{layer} \), comparable to \(\epsilon_b = 56 \pm 5 \text{ meV/atom} \) found through high-level quantum Monte Carlo (QMC) calculations [39]. Unlike QMC, RPA also gave a lattice distance \(D_0 = 3.34 \text{ Å} \) and an elastic constant \(C_{33} = 36 \text{ GPa} \), in excellent agreement with experiment.

For this work, additional RPA calculations were performed using the same parameters as [19] at additional interlayer distances \(D \). Using the extra points we can now calculate the inelastic constant \(C_{333} = -530 \text{ GPa} \pm 10\% \), where \(C_{333} \) is defined via

\[
\frac{F_3(D)}{V_0} \approx \frac{C_{33}}{D_0} \left(\frac{D}{D_0} - 1 \right) + C_{333} \left(\frac{D}{D_0} - 1 \right)^2
\]

\(^3\) Notably the model used in [36] produces internal inconsistencies in the elastic coefficient \(C_{33} \).
distances, with − showed [27] that this form is only valid at quite large inter-atomic interactions whose form is consistent with sums over the layers of a graphene unit cell with lattice parameters arising from all other transitions. The latter give rise to a C–C distance in the plane ≈ optimal unit cell defined by $\sqrt{D_0}$ so that the unit cell has volume $V_0 = \sqrt{D_0}a_0^2D_0$.

From the RPA data we thus have four, well-converged inelastic constants D_0, the binding energy ϵ_b, and the elastic and inelastic constants C_{33} and C_{333}. A model which reproduces all four should be expected to reproduce the near-contact behaviour of graphite, at least at the RPA level.

4. vdW dispersion potential of graphite

In addition to the near-contact behaviour, we also seek a model which can reproduce the asymptotic dispersion properties. Dispersion in graphite is comprised of two major contributions: (i) ‘unusual’ coupled-fluctuation graphenic interactions from the gapless transitions between π and π^* orbitals; and (ii) ‘usual’ insulating van der Waals interactions arising from all other transitions. The latter give rise to a potential with the conventional ‘planar’ formula $-C_4/D^4$, whose form is consistent with sums over the layers of inter-atomic interactions $-C_6/R^6$. The former, however, have been previously [16, 25] shown to give rise to a potential with the asymptotic form $-C^3/D^3$. The authors more recently showed [27] that this form is only valid at quite large distances, with $-C_3^{\frac{2}{7}}\text{atan}(D/D_c + \phi_c)/D^3$ being more valid at intermediate values.

To leading orders in $1/D$, the dispersion energy per carbon atom can thus be written as

$$U_{vdW}(D) \equiv \frac{E_{vdW}(D)}{N_C} \approx \frac{1}{8}D_0^3 C_3 \left(U^{(3)}(D) + U^{(4)}(D) \right)$$

where D_0 is the equilibrium lattice distance, V_0 is the equilibrium volume of the unit cell and E is the energy of the graphene unit cell with lattice parameters $a = a_0$ and $c = 2D_0$. For reference we note that AB graphite has an interlayer distance of 5 Å.

5. Model correction

Hasegawa and Nishidate [21] (HN) suggested that a model of graphite interactions could be developed around the assumption that standard groundstate DFT (LDA/GGA) is valid in the inner $D < D_0$ region, while the dispersion potential dominates for $D > D_0$, and thus a fit between these two functions would be appropriate for the total energy. It is in this spirit that we develop our model. With the aid of simplicity we follow the ideas of their earlier work [21] more than those of their latter [22].

HN found that the potential energy of the local density approximation (LDA) or generalized gradient approximation 4. The cutoff of 5 eV is approximately the gap from the Fermi energy to the bottom of the Dirac cone. A larger value would cause the theoretical model to include transitions that are not available in real graphite. With the other dispersion terms included, the model is not very sensitive to variations in the energy cutoff, at least in the regions of interest.
(GGA) was well-reproduced by a function

\[U_{\text{DFT}}(D) \approx M(D)/D - 1 \tag{7a} \]

\[M(x) = \left\{ \begin{array}{ll}
-M_0 \frac{\tau_2 e^{-\tau_1 x} - \tau_1 e^{-\tau_2 x}}{\tau_2 - \tau_1}, & \tau_1 \neq \tau_2 \\
-M_0 (1 + \tau x) e^{-\tau x}, & \tau_1 = \tau_2 = \tau \tag{7b} \end{array} \right. \]

(the second case is the limit \(\tau_1 \to \tau_2 \) of the first) where \(U_{\text{DFT}}(D) \) takes its minimum at \(D = \tilde{D} \). HN found that \(M_0 = 26.5 \text{ meV, } \tilde{D} = 3.31 \text{ Å and } \tau = 8.167 \) gave slightly better agreement (under 0.3 meV maximum absolute error). We use the new parameters in this work. The HN parameters for PW91 [2] GGA results were found that the similar \(M_0 = 25.4 \text{ meV, } \tilde{D} = 3.31 \text{ Å and } \tau = 8.157 \) gave slightly better agreement (under 0.3 meV maximum absolute error). We use the new parameters in this work. The HN parameters for PW91 [2] GGA results were \(M_0 = 2.3 \text{ meV, } \tilde{D} = 4.407, \tau_1 = 2.523 \) and \(\tau_2 = 12.99 \), and these provide a decent approximation to PBE [4] data from VASP. However, given its poor binding parameters, and high sensitivity to the in-plane lattice constant [42], we do not recommend using GGA in graphitic systems, and include it mostly for illustrative purposes.

Following HN we model the dispersion-corrected energy via

\[U(D) \approx U^{\text{Calc}}(D) + \Delta U(D) \tag{8} \]

\[\Delta U(D) = f \left(\frac{D}{D_0} - 1 \right) \left[U^{\text{vdW}}(D) - U^{\text{DFT}}(D) \right] \tag{9} \]

where \(U^{\text{Calc}}(D) \) is the potential energy calculated via lower-level LDA/GGA theory, \(U^{\text{vdW}}(D) \) is defined in (3) and \(U^{\text{DFT}}(D) \) is defined in (7) and involves the same approximation (LDA or GGA) as \(U^{\text{Calc}} \). To match all constraints we employ a four-parameter fitting function

\[f(x) = (1 + x) e^{-(a_1 x + a_2 x^2 + a_3 x^3)} \tag{10} \]

Here \(\kappa > 0 \) and \(a_3 > 0 \) are required to ensure \(f(x \gg 0) = 1 \) so that the potential is dominated by dispersion for \(D \gg D_0 \).

We determine the best-fit parameters \(C = [\kappa, a_1, a_2, a_3] \) by ensuring that the model correctly reproduces energy derivatives at the contact distance \(D = D_0 \) when the model DFT potential \(U^{\text{DFT}} \) is used to represent \(U^{\text{Calc}} \); i.e., we ensure that the derivatives of \((1 - f) U^{\text{DFT}} + f U^{\text{vdW}} \) equal the derivative of \(U^{\text{RPA}} \). The parameters are thus found via

\[\frac{d}{dD} |f(D, C) P(D)|_{D_0} = \frac{d}{dD} Q(D)|_{D_0} \tag{11} \]

for \(p = 0 \ldots 3 \) where \(P(D) = U^{\text{vdW}}(D) - U^{\text{DFT}}(D) \) and \(Q(D) = U^{\text{RPA}}(D) - U^{\text{DFT}}(D) \). Using the dispersion potential (3) and LDA/GGA model potential (7) with the parameters found earlier and tabulated in table 1 we find \(\kappa = 1.420, a_1 = 12.5, a_2 = -8.1 \) and \(a_3 = 137.5 \) for the LDA and \(\kappa = 0.578, a_1 = 10.0, a_2 = -7.8 \) and \(a_3 = 30.7 \) for the GGA.

We test the model by adding appropriately parametrized \(\Delta U(D) \) to \(U^{\text{LDA}}(D) \) and \(U^{\text{GGA}}(D) \) and comparing with the RPA. As can be seen in figure 2 the appropriate models agree well with the RPA values across all \(D \), using \textit{ab initio} data from either the LDA or GGA. We note that the fitting involves matching three derivatives at the origin, and the asymptotic tail, so agreement at the intermediate points was not guaranteed. The agreement with the RPA is surprising for the GGA calculations, as without correction the GGA predicts a grossly inaccurate interlayer distance \(D_0^{\text{GGA}} = 4.407 \text{ Å and binding energy } e_b^{\text{GGA}} = 2.3 \text{ meV/atom.} \)

6. Bigraphene and exfoliation

At the moment, RPA results are unavailable for bigraphene and exfoliation. We thus propose to use the modelled properties of graphite to predict properties of the more difficult systems. This requires some adjustment of the theory to take into account the different geometries, but otherwise follows the same broad approach.

It can be shown that for bigraphene the vdW dispersion and LDA fit takes the same basic form

\[U^{(3)}_{\text{bi}}(D) = \frac{-c_{3\text{bi}}}{D^3} \tan \left(\frac{D}{D_0^\text{bi}} + \phi_c^\text{bi} \right) \tag{12} \]

\[U^{(4)}_{\text{bi}}(D) = \frac{-c_{4\text{bi}}}{D^4} \tag{13} \]

\[U^{\text{RPA}}_{\text{bi}}(D) = M \left(\frac{D}{D_0^\text{bi}} - 1; \text{bi} \right) \tag{14} \]

where \(M(x; \text{bi}) \) is equation (7b) with bigraphene parameters \(M_0^\text{bi} \) and \(r_{1/2}^\text{bi} \) as for graphite, but with different parameters \(c_{3\text{bi}} \cdot \phi_c^\text{bi}, c_{4\text{bi}} \cdot \phi_c^\text{bi}, M_0^\text{bi} \) and \(r_{1/2}^\text{bi} \). In the appendix we argue that the most important effects of changing the geometry from graphite to bigraphene are the changes to \(c_{3\text{bi}} \cdot c_{4\text{bi}} \) and \(M_0^\text{bi} \). Thus we can simply rescale the graphite functions so that equation (9) becomes

\[U_{\text{bi}}(D) = U^{\text{Calc}}(D) + \Delta U_{\text{bi}}(D) \tag{15} \]

\[\Delta U_{\text{bi}}(D) \approx f \left(\frac{D}{D_0} - 1 \right) \left[G_3 U^{(3)}(D) + G_4 U^{(4)}(D) - G_L U^{\text{DFT}}(D) \right] \tag{16} \]
for bigraphene. Here \(G_3 = 0.455, G_4 = 1/[12 \zeta (4)] = 0.462\) and \(G_1 = \frac{1}{2}\) are the geometry factors for converting the graphite results to bigraphene. We assume that the fitting function is unchanged from its graphite form and parametrization.

Using VASP [40, 41] we evaluate \(U_{bi}^{LDA}(D)\) and add (16) to introduce the dispersions. Here we use similar convergence parameters to bulk graphite, with an energy cutoff of 700 eV, C–C distance 1.421 Å, and \(k\)-grid of 24 × 24 × 1. We perform all calculations in a supercell with \(c = 39.38\) Å. The vacuum between bigraphene units is always over 20 Å so that contamination with neighbouring cells is avoided.

The LDA and dispersion-corrected LDA results are plotted in figure 3, showing the importance of corrections to bigraphene. We find the binding distance to be unchanged (to numerical accuracy) by the dispersion correction at \(D_{0LDA}^{bi} ≈ D_0 = 3.32\), but we find a substantial change to the predicted binding energy, from 12 meV/atom in the LDA to 22 meV/atom with the correction. While \(C_{33}\) is somewhat ill-defined for bigraphene, we find that the effective coefficient \(C_{33}^{bi} = 2\frac{D_0}{\alpha_3 D_0} (D_0/\alpha_3)\) (the factor 2 allows direct comparison with graphite—each layer of bigraphene has only one nearest neighbour whereas layers of graphite have two) is increased by 22% compared to the LDA, with \(C_{33}^{LDA} = 29\) GPa and \(C_{33} = 35\) GPa. Converting the binding energy to be per unit of surface area (×2/\(A_C\) where \(A_C\) is the area per carbon atom), we see \(\epsilon_{bi} = 22\) meV/atom = 0.27 J m\(^{-2}\), slightly under the graphite value of 0.295 J m\(^{-2}\)/layer. This agrees well with the very recent results of Olsen and Thysgen [43], who found a binding energy of 22 meV/atom from RPA calculations.

We can also estimate the energy of exfoliation through a similar procedure. Here we remove a single layer of graphene from the surface of a bulk, while keeping the other layers fixed in position (no relaxation), so that the distances between layers starting at the top are \(D, D_0, D_0, \ldots\), where \(D_0\) is the bulk graphite interlayer distance. We first perform an LDA calculation, using four layers of which three are fixed in place at spacing \(D_0\) and the fourth is varied to \(D\). This allows us to determine \(U_{LDA}(D)\). To calculate the dispersion correction, we use the bigraphene correction from all other layers as follows:

\[
\Delta U_{ex}(D) \approx \sum_{n=0}^{\infty} \Delta U_{bi}(D + nD_0),
\]

which is added to an LDA calculation with an energy divided by the number of surface atoms i.e. four for AB graphite.

While the part of (17) involving \(U^{(4)}\) is likely to be correct, the asymptotically dominant \(U^{(3)}\) component is invalid for \(D > D_0\), as it predicts \(U(D) \propto D^{-2}\) rather than the correct [26] \(U(D) \propto D^{-3} \log(D/D')\) (where \(D'\) is a constant of \(O(Å)\)). However, in the pre-asymptotic intermediate region \(5 Å \leq D \leq 10 Å\) where the \(\pi\) to \(\pi^*\) dispersion is a significant fraction of the total potential, but where higher order contributions must also be considered it is a reasonable approximation.

Results for exfoliation are plotted with their bigraphene counterparts in figure 3. We use a unit cell of four layers: with interlayer distances \(D_0, D_0\) and \(D\) (where \(D_0 = 3.334 Å\)). These are placed in a supercell with \(\alpha_3 = 39.38 Å(0, 0, 1)\) so that the vacuum length is always greater than 13 Å. Other parameters are the same as for the bigraphene calculations.

The LDA predicts a binding distance \(D_{0LDA} = 3.32 Å\), decreased to 3.31 Å via the dispersion corrections. There are no reliable experimental or high-level theory results to compare with. Along with the shorter interlayer distance, the effective elastic modulus is increased from \(C_{33}^{LDA} = 27\) GPa to \(C_{33} = 36\) GPa. Finally, the LDA exfoliation energy is predicted to be 0.15 J m\(^{-2}\) or 12 meV/atom (where we divide only by the number of surface atoms—four for the AB unit cell), while the dispersion correction increases this to a physically reasonable 0.31 J m\(^{-2}\) or 25 meV/surface atom, around 6% or 0.015 J m\(^{-2}\) greater than the bulk layer binding energy of a graphene layer, and 0.04 J m\(^{-2}\) greater than the bilayer binding energy. This is in good agreement with Björkman et al [14] who also found (see figure 4 of their work) a 0.04 J m\(^{-2}\) difference between the exfoliation and bilayer binding energies of graphene via a different theoretical approach.

Results for graphite, bigraphene and exfoliation are presented together in table 2 for easy comparison. In addition to the already defined \(D_0, C_{33}\) and \(\epsilon\) we also include the
A

We now test the theory on lithium intercalated graphite in without dispersion correction is expected to be more accurate the binding distance of LiC. We note that the graphene e.g. the review of Dresselhaus and Dresselhaus [44–46]), and changed. However, at the intermediate distances of interest, provided C–C interactions are ignored in the pairwise ab initio provide a simple way of improving calculations of graphite without resorting to extremely expensive methods such as ACFD-RPA. The dispersion modelling and fitting technique employed here can also be adapted to other layered materials for which conventional modelling techniques struggle due to the presence of coupled plasmons. Our non-pairwise model could also be employed alongside existing vdW approaches such as the DFT-D* [9–11] or TS [8] functionals that account for pairwise atomistic dispersion, provided C–C interactions are ignored in the pairwise approach to avoid double counting.

8. Conclusions

In this work we presented an interlayer distance D-dependent, simple, parametrized model potential of graphite dispersion energies, and total graphite binding energies valid for distances from just inside contact to infinity. The model can be employed on its own or as a correction to standard DFT (LDA/GGA) calculations to improve their energetics. Geometry dependent corrections were then introduced to deal with bigraphene and graphite exfoliation. As a correction the model takes the form [21]

\[\Delta U(D) = f \left(\frac{D}{D_0} - 1 \right) \left[U_{\text{vdW}} - U_{\text{DFT}}(D) \right] \]

(18)

for graphite, and the geometry adapted forms (16) for bigraphene and (17) for exfoliation. It includes models of the dispersion (equation (3)) and DFT (equation (7)) energetics, interpolated by a fitting function (equation (10)). Parameters for all functions were determined by fitting the model to high-level RPA ab initio theory results and the theoretical asymptotic dispersion of graphite, and are summarized in table 1.

The model was used to predict the binding energy of bigraphene and exfoliation energy of graphite, with results in good agreement with previous theory. Layers of bigraphene were found to be marginally less bound at 0.27 J m⁻² than those of graphite at 0.295 J m⁻², while the energy of exfoliation 0.31 J m⁻² was found to be slightly larger. Additionally, the model was tested on stage 1 lithium intercalated graphite and found to make only a small change to the energetics, as appropriate.

We believe that the models presented in this paper can provide a simple way of improving ab initio calculations of graphite without resorting to extremely expensive methods such as ACFD-RPA. The dispersion modelling and fitting technique employed here can also be adapted to other layered materials for which conventional modelling techniques struggle due to the presence of coupled plasmons. Our non-pairwise model could also be employed alongside existing vdW approaches such as the DFT-D* [9–11] or TS [8] functionals that account for pairwise atomistic dispersion, provided C–C interactions are ignored in the pairwise approach to avoid double counting.

Acknowledgments

TG and JFD were supported by Australian Research Council Discovery Grant DP1096240. JFD was also supported by a visiting position at Université de Lorraine. SL acknowledges financial support from the Université de Lorraine through
the program ‘Soutien à la dimension internationale de la recherche’.

Appendix. Bigraphene model

The parametrization given in equations (12)–(14) can be shown to be equally valid for bigraphene as for graphite. However, parameters such as C^3_{D} and D^3_{bi} require RPA fitting to be determined, and energy results are not available for the case of bigraphene.

Energy data for $U^{(3)}$ and U^{DFT} are available, and fits show that the variation in D_c, ϕ_c, D and τ are minimal when we change from a graphite to bigraphene geometry. The parameters C_3, C_4 and M_0 are, unsurprisingly, strongly geometry dependent, as each is proportional to the energetics which vary with the proximity of other layers. We thus assume that only those three parameters are changed from their graphite values, and that the bigraphene parametrization can be described by the graphene parameters and additional geometry dependent, as each is proportional to the energetics which vary with the proximity of other layers.

To determine G_3, we use the theoretical values of C_3 and C^3_{D}. Here C_3 is calculated through equation (12) of [27]. To determine C^3_{D} we modify equation (12) of [27] by replacing the graphite screened response integral $\int_0^1 \text{d}x[F_{\infty}(C) - F(C)]$ by the bigraphene screened response integral $\int_0^1 \text{d}x[D_{\infty}(C) - D(C)]$. Evaluating this integral with a cutoff energy of 5 eV also shows that D^3_{bi} and ϕ^3_{bi} change only a little from their graphite values. The factor is thus $G_3 = C_3/C^3_{\text{D}} \approx 0.455$.

In the absence of numerical RPA data, to calculate G_3 we rely on the argument that the ‘usual’ dispersion terms are additive. That is that the total dispersion energy is given by the sum over the dispersion between all layer pairs, where all interactions are of the form $U = C^4_{\text{D}}/D^4$. For bigraphene this is $U^{(4)}_{\text{bi}} = C^4_{\text{D}}/D^4 \equiv C^4_{\text{bi}}/D^4$ so that we can set $C^4_{\text{bi}} = C^4_{\text{bi}}$. For graphite, each layer interacts with two other layers at a distance nD where $n \in \{1, \ldots, \infty\}$. Thus $U^{(4)} = \sum_{n=1}^{\infty} C^4_{\text{bi}}/(nD)^4 = 2\pi(4)C^4_{\text{bi}}/D^4$ and $G_4 = 1/(2\pi(4)) \approx 0.462$.

Finally, while the DFT curve can be fully re-parametrized, for simplicity we treat it in the same way. Here we recognize that the local interactions are approximately halved as there are no next-nearest-neighbour interactions due to the exponential decay of the LDA or GGA. Thus we set $U^{\text{DFT}}_{\text{bi}}(D) \approx 1/2 U^{\text{DFT}}(D)$ and $G_{\text{L}} = 1/2$.

References

[1] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[2] Perdew J P 1991 Electronic Structure of Solids vol 91 (Berlin: Akademie)
[3] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[4] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[5] Rydberg H, Lundqvist B I, Langreth D C and Dion M 2000 Phys. Rev. B 62 6997
[6] Rydberg H, Dion M, Jacobson N, Schröder E, Hylgaard P, Simak S I, Langreth D C and Lundqvist B I 2003 Phys. Rev. Lett. 91 126402
[7] Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
[8] Tkatchenko A and Scheffler M 2009 Phys. Rev. Lett. 102 073005
[9] Grimme S 2004 J. Comput. Chem. 25 1463
[10] Grimme S 2006 J. Comput. Chem. 27 1787
[11] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[12] Vydrov O A and Van Voorhis T 2010 Phys. Rev. A 81 062708
[13] Björkman T, Gulans A, Krasheninnikov A V and Nieminen R M 2012 J. Phys.: Condens. Matter 24 424218
[14] Björkman T, Gulans A, Krasheninnikov A V and Nieminen R M 2012 Phys. Rev. Lett. 108 235502
[15] Dobson J F and Gould T 2012 J. Phys.: Condens. Matter 24 073201
[16] Dobson J F, White A and Rubio A 2006 Phys. Rev. Lett. 96 073201
[17] Esbuis H, Bates J E and Furche F 2012 Theor. Chem. Acc. 131 1
[18] Ren X, Rinke P, Joas C and Scheffler M 2012 J. Mater. Sci. 47 7447
[19] Lebègue S, Harl J, Gould T, Ángyán J G, Kresse G and Dobson J F 2010 Phys. Rev. Lett. 105 196401
[20] Harl J and Kresse G 2009 Phys. Rev. Lett. 103 056401
[21] Hasegawa M and Nishidate K 2004 Phys. Rev. B 70 205431
[22] Hasegawa M, Nishidate K and Iyetomi H 2007 Phys. Rev. B 76 115424
[23] Girifalco L A and Hodak M 2002 Phys. Rev. B 65 125404
[24] Ortman F, Bechstedt F and Schmidt W G 2006 Phys. Rev. B 73 205101
[25] Gould T, Simpkins K and Dobson J F 2008 Phys. Rev. B 77 165134
[26] Gould T, Gray E and Dobson J F 2009 Phys. Rev. B 79 113402
[27] Gould T, Dobson J F and Lebègue S 2013 Phys. Rev. B 87 165422
[28] Baskin Y and Meyer L 1955 Phys. Rev. 100 544
[29] Blakslee O L, Proctor D G, Seldin E J, Spence G B and Weng T 1970 J. Appl. Phys. 41 3373
[30] Gauster W B and Fritz I J 1974 J. Appl. Phys. 43 3309
[31] Wada N, Clarke R and Solin S 1980 Solid State Commun. 35 675
[32] Bosak A, Krirsch M, Mohr M, Maultzsch J and Thomsen C 2007 Phys. Rev. B 75 153408
[33] Girifalco L A and Lad R A 1956 J. Chem. Phys. 25 693
[34] Benedict L X, Chopra N G, Cohen M L, Zettl A, Louie S G and Crespi V H 1998 Chem. Phys. Lett. 286 490
[35] Zacharia R, Ulbricht H and Hertel T 2004 Phys. Rev. B 69 155406
[36] Liu Z, Liu J Z, Cheng Y, Li Z, Wang L and Zheng Q 2012 Phys. Rev. B 85 205418
[37] Chakarov-Käck S D, Schröder E, Lundqvist B I and Langreth D C 2006 Phys. Rev. Lett. 96 146107
[38] Ziaimarash A, Kleis J, Schröder E and Hylgaard P 2007 Phys. Rev. B 76 155425
[39] Spanu L, Sorella S and Galli G 2009 Phys. Rev. Lett. 103 196401
[40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[42] Bučko T, Hafner J, Lebègue S and Ángyán J G 2010 Phys. Rev. B 82 056401
[43] Zhang A, Weng T 2004 Phys. Rev. B 70 205431
[44] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[45] Ziambaras E, Kleis J, Schröder E and Hylgaard P 2007 Phys. Rev. B 76 155425
[46] Spanu L, Sorella S and Galli G 2009 Phys. Rev. Lett. 103 196401
[47] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[48] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[49] Bučko T, Hafner J, Lebègue S and Ángyán J G 2010 Phys. Rev. B 82 056401
[50] Dresselhaus M S and Dresselhaus G 2002 Phys. Rev. Lett. 87 165422
[51] Zhou P and Fischer J E 1996 Phys. Rev. B 53 12643
[52] Binding A, Nalinova A V, Sklovsky D E, Kamitakahara W A and Fischer J E 1999 Phys. Rev. B 57 5182