Association study of polymorphisms in synaptic vesicle-associated genes, SYN2 and CPLX2, with schizophrenia

Hee Jae Lee*1,4, Ji Young Song2, Jong Woo Kim2, Sheng-Yu Jin3, Mi Suk Hong3, Jin Kyoung Park2, Joo-Ho Chung3, Hiroki Shibata4 and Yasuyuki Fukumaki4

Address: 1Medical Science Institute, Kangwon National University, Chunchon, Republic of Korea, 2Department of Neuropsychiatry, College of Medicine, Kyung Hee University, Seoul, Republic of Korea, 3Kohwang Medical Research Institute, College of Medicine, Kyung Hee University, Seoul, Republic of Korea and 4Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan

Email: Hee Jae Lee* - heejaelee@kangwon.ac.kr; Ji Young Song - jysongnp@hanmail.net; Jong Woo Kim - psyjongwoo@freechal.com; Sheng-Yu Jin - kimshengyu@hanmail.net; Mi Suk Hong - msbona21@korea.com; Jin Kyoung Park - dasom39@unitel.co.kr; Joo-Ho Chung - jhchung@khu.ac.kr; Hiroki Shibata - hshibata@gen.kyushu-u.ac.jp; Yasuyuki Fukumaki - yfukumak@gen.kyushu-u.ac.jp

* Corresponding author

Abstract

Background: The occurrence of aberrant functional connectivity in the neuronal circuit is one of the integrative theories of the etiology of schizophrenia. Previous studies have reported that the protein and mRNA levels of the synapsin 2 (SYN2) and complexin 2 (CPLX2) genes were decreased in patients with schizophrenia. Synapsin 2 and complexin 2 are involved in synaptogenesis and the modulation of neurotransmitter release. This report presents a study of the association of polymorphisms of SYN2 and CPLX2 with schizophrenia in the Korean population.

Methods: Six single nucleotide polymorphisms (SNPs) and one 5-bp insertion/deletion in SYN2 and five SNPs in CPLX2 were genotyped in 154 Korean patients with schizophrenia and 133 control patients using direct sequencing or restriction fragment length polymorphism analysis. An intermarker linkage disequilibrium map was constructed for each gene.

Results: Although there was no significant difference in the genotypic distributions and allelic frequencies of either SYN2 or CPLX2 polymorphisms between the schizophrenia and control groups, the two-way haplotype analyses revealed significant associations with the disease (P < 0.05 after Bonferroni correction). The three-way haplotype analyses also revealed a significant association of SYN2 with schizophrenia (P < 0.001 after Bonferroni correction).

Conclusion: These results suggest that both SYN2 and CPLX2 may confer susceptibility to schizophrenia in the Korean population.
heritability of approximately 50–70% [2]. Many studies have attempted to identify the allelic variants that confer susceptibility to the illness, but no single genes have been identified that produce a major effect on the vulnerability [3].

Recently the synaptic hypothesis of schizophrenia has gained attention by attributing the fundamental pathology of schizophrenia to the dysfunction of synaptic transmission involving various molecules [4]. Synapsins, a family of synaptic vesicle-associated phosphoproteins, play a crucial role in the regulation of neurotransmission, synaptogenesis, and neuronal plasticity [5]. Three human synapsin genes have been identified (SYN1, 2, and 3; OMIM 313440, 600755, and 602705) [6]. Complexin 1 and complexin 2, which are encoded by CPLX1 (OMIM 605032) and CPLX2 (OMIM 605033), respectively, and are also called synaphins, are pre-synaptic membrane proteins that preferentially bind to syntaxin within the SNARE (soluble N-ethylmaleimide-sensitive fusion attachment protein receptors) complex. These proteins are important regulators of transmitter release immediately preceding vesicle fusion [7]. Previous studies have demonstrated that the concentrations of synapsins and complexins are reduced in the brains of schizophrenics [8,9]. The expression levels of both synapsins were significantly decreased in the hippocampal tissue of schizophrenic patients [10]. The levels of synapsin 2 and complexin 2 mRNA were also significantly reduced in the prefrontal cortex, cerebellum, and hippocampus of schizophrenics [11-14].

SYN2 was mapped to chromosome 3p25 [15], and CPLX2 is located on chromosome 5q35.3 (OMIM 605033). These loci were identified as potential regions conferring susceptibility to schizophrenia in diverse populations [16-18]. Based on their localization, well-established neurobiological roles, and expression patterns in schizophrenic patients, we selected SYN2 and CPLX2 as candidate genes for conferring susceptibility to schizophrenia. In this report, we present an association study of SYN2 and CPLX2 with schizophrenia using 12 polymorphisms in the Korean population.

Results
SYN2 polymorphisms in the schizophrenia and control groups
Of the seven polymorphisms in SYN2, rs2623873 (SYN2-1) is located in the promoter region, whereas the others are all located in the intronic regions (SYN2-2–7) (Fig. 1, a). SYN2 spans over 140 kb and is composed of 14 exons. Seven markers are indicated with the dbSNP reference ID http://www.ncbi.nlm.nih.gov/SNP. b) CPLX2 spans over 83 kb and is composed 3 exons. Five markers are indicated with the dbSNP reference ID http://www.ncbi.nlm.nih.gov/SNP.

Figure 1
Genomic organization of SYN2 and CPLX2 and locations of SNPs. a; SYN2 spans over 140 kb and is composed of 14 exons. Seven markers are indicated with the dbSNP reference ID http://www.ncbi.nlm.nih.gov/SNP. b; CPLX2 spans over 83 kb and is composed 3 exons. Five markers are indicated with the dbSNP reference ID http://www.ncbi.nlm.nih.gov/SNP.
The genotypic distributions and allelic frequencies of polymorphisms in SYN2 were determined in 113 schizophrenic patients and 114 normal healthy controls by direct sequencing or DdeI RFLP. The genotypic distributions and allelic frequencies of polymorphisms in SYN2 are shown in Table 2. The average allelic frequency of the SNPs was 0.312. Given the equivalent frequency for the susceptible allele, the expected detection power for SYN2 was 0.9538 to 0.9929 under the multiplicative model with a genotype relative risk = 1.8 to 2.0 [22]. None of the SNPs showed any significant deviation from Hardy-Weinberg equilibrium ($P > 0.05$). We observed no significant difference in the genotypic distributions and allelic frequencies between the schizophrenics and control groups (Table 2).

We compared the LD for all possible two-way comparisons of the SNPs in the controls (Table 3). The pairwise D’ values for the seven SNPs were consistently high, except in one instance (SYN2-2 vs. SYN2-6; D’ = 0.300, r² = 0.200). Out of the 21 possible pairs of SNPs, significant haplotype associations with schizophrenia were observed for 4 pairs: SYN2-1 – SYN2-2 ($\chi^2 = 27.58$, df = 3, $P = 4.45 \times 10^{-6}$), SYN2-2 – SYN2-4 ($\chi^2 = 16.46$, df = 3, $P = 9.12 \times 10^{-4}$), SYN2-2 – SYN2-7 ($\chi^2 = 8.08$, df = 3, $P = 0.044$), and SYN2-3 – SYN2-4 ($\chi^2 = 10.66$, df = 3, $P = 0.014$) (Table 3). Even after the Bonferroni correction (number of haplotypes, n = 21), the associations of the SYN2-1 – SYN2-2 and SYN2-2 – SYN2-4 haplotypes with schizophrenia remained significant ($P_{corr} = 9.35 \times 10^{-5}$ and $P_{corr} = 0.019$) (Table 3). The T allele-the deletion allele haplotype for the SYN2-1 – SYN2-2 combination and the deletion allele-the G allele haplotype for the SYN2-2 – SYN2-4 combination were observed more frequently in schizophrenia than the controls (Table 4).

We also investigated the association of three-way haplotypes formed by SYN2-1, SYN2-2, and SYN2-4 with schizophrenia. A significant difference in the haplotype frequencies between the schizophrenia and control groups was observed ($\chi^2 = 35.0$, df = 7, $P_{corr} = 1.1 \times 10^{-5}$). For the combination of SYN2-1, SYN2-2, and SYN2-4, the estimated frequencies of the T-deletion-G haplotype differed between the schizophrenia (0.570) and controls (0.440).

CPLX2 polymorphisms in schizophrenia and control groups

Of the five SNPs in CPLX2, rs2247916 (CPLX2-1) is located in the promoter region, rs2243404 (CPLX2-2) is located in the 5'UTR, and the others are located in the intronic regions (Fig. 1, Table 1). We determined the genotypic distributions and allelic frequencies of the SNPs in 154 schizophrenic patients and 133 normal healthy controls by direct sequencing or RFLP analysis. The genotypic distributions and allelic frequencies for CPLX2 SNPs are shown in Table 2. The average allelic frequency of the SNPs was 0.126. Given the equivalent frequency for the susceptible allele, the expected detection power for CPLX2 was 0.7445 to 0.8802 based on the multiplicative model with the genotype relative risk = 1.8 to 2.0 [22]. None of the five SNPs showed any significant deviations from Hardy-Weinberg equilibrium. We observed no significant differences in genotypic distributions or allelic frequencies between the schizophrenia and control groups (Table 2).
Table 2: Genotype distributions and allele frequencies of each polymorphism of the SYN2 and CPLX2 in the schizophrenia and control groups.

Polymorphism	Subjects	Genotype distribution (frequency)	Allele frequency			
		11 12 22	p0	1	2	p0
SYN2-1	Cases (n = 113)	47 (0.416) 50 (0.442) 16 (0.142)	0.527	0.637	0.363	0.679
	Controls (n = 114)	41 (0.360) 59 (0.518) 14 (0.122)	0.618	0.382		
SYN2-2	Cases (n = 113)	40 (0.354) 55 (0.487) 18 (0.159)	0.758	0.597	0.403	0.438
	Controls (n = 114)	36 (0.316) 56 (0.491) 22 (0.193)	0.561	0.439		
SYN2-3	Cases (n = 113)	83 (0.735) 30 (0.265) 0 (0.000)	0.762	0.867	0.133	0.975
	Controls (n = 114)	85 (0.746) 28 (0.246) 1 (0.009)	0.868	0.132		
SYN2-4	Cases (n = 113)	49 (0.434) 45 (0.398) 19 (0.168)	0.722	0.633	0.367	0.612
	Controls (n = 114)	44 (0.386) 51 (0.447) 19 (0.167)	0.610	0.390		
SYN2-5	Cases (n = 113)	72 (0.637) 35 (0.310) 6 (0.053)	0.973	0.792	0.208	0.869
	Controls (n = 114)	74 (0.649) 34 (0.298) 6 (0.053)	0.798	0.202		
SYN2-6	Cases (n = 113)	67 (0.593) 39 (0.345) 7 (0.062)	0.786	0.765	0.235	0.622
	Controls (n = 114)	63 (0.553) 44 (0.386) 7 (0.061)	0.746	0.254		
SYN2-7	Cases (n = 113)	39 (0.345) 54 (0.478) 20 (0.177)	0.847	0.584	0.416	0.576
	Controls (n = 114)	42 (0.368) 55 (0.482) 17 (0.149)	0.610	0.390		
CPLX2-1	Cases (n = 154)	132 (0.857) 22 (0.143) 0 (0.000)	0.441	0.929	0.071	0.612
	Controls (n = 133)	113 (0.850) 18 (0.135) 2 (0.015)	0.917	0.083		
CPLX2-2	Cases (n = 154)	132 (0.857) 22 (0.143) 0 (0.000)	0.254	0.929	0.071	0.198
	Controls (n = 133)	108 (0.812) 23 (0.173) 2 (0.015)	0.898	0.102		
CPLX2-3	Cases (n = 154)	115 (0.747) 34 (0.221) 5 (0.032)	0.129	0.857	0.143	0.072
	Controls (n = 133)	85 (0.639) 43 (0.323) 5 (0.038)	0.801	0.199		
CPLX2-4	Cases (n = 154)	110 (0.714) 40 (0.260) 4 (0.026)	1.000	0.844	0.156	0.849
	Controls (n = 133)	94 (0.707) 35 (0.263) 4 (0.030)	0.838	0.162		
CPLX2-5	Cases (n = 154)	124 (0.805) 30 (0.195) 0 (0.000)	0.312	0.903	0.097	0.541
	Controls (n = 133)	112 (0.842) 20 (0.150) 1 (0.008)	0.917	0.083		

a Fisher’s exact probability tests, case vs controls (2 × 3 genotype-based analysis)
b Fisher’s exact probability tests, case vs controls (2 × 2 allele-based analysis)

Table 3: Pairwise linkage disequilibrium and haplotype association of SNPs in SYN2.

SYN2-1	SYN2-2	SYN2-3	SYN2-4	SYN2-5	SYN2-6	SYN2-7
SYN2-1	0.532	0.776	0.758	0.865	0.516	0.642
	0.222	0.056	0.553	0.306	0.482	0.397
SYN2-2	4.45 × 10^-4 a	0.613	0.453	0.734	0.300	0.429
		0.044	0.250	0.174	0.200	0.225
SYN2-3	0.246	0.632	1.000	0.997	0.480	1.000
	0.097	0.038	0.433	0.097		
SYN2-4	0.845	9.12 × 10^-4 a	0.014	1.000	0.480	0.806
	0.395	0.433	0.938	0.865		
SYN2-5	0.896	0.655	0.135	0.133	0.938	0.865
	0.651	0.295				
SYN2-6	0.116	0.892	0.602	0.602	0.147	0.722
	0.722					
SYN2-7	0.646	0.044	0.155	0.392	0.404	0.0.72

Upper diagonal top: D', bottom: r^2 in controls; Lower diagonal: P value by χ^2 test (df = 3)
aP < 0.05 after Bonferroni correction
We compared LD for all possible two-way comparisons of the SNPs in controls (Table 5). The pairwise D' values for the five SNPs were consistently low, except in one instance (CPLX2-2 vs. CPLX2-4; D' = 0.715, r² = 0.011). Only one pair of SNPs (CPLX2-1 vs. CPLX2-2) showed a significant haplotype association with schizophrenia (χ² = 16.28, df
SNPs in \(9.35 \times 10^{-5} \) and associations with schizophrenia for two pairs of SNPs in SYN2 (SYN2-1 – SYN2-2 and SYN2-2 – SYN2-4; \(P_{corr} = 9.35 \times 10^{-5} \) and \(P_{corr} = 0.019 \), respectively) and one pair of SNPs in CPLX2 (CPLX2-1 – CPLX2-2, \(P_{corr} = 0.009 \)) (Table 3, 5). The three-way haplotype (SYN2-1, SYN2-2, and SYN2-4) also showed a significant association with schizophrenia (\(P_{corr} = 1.1 \times 10^{-5} \)). The SYN2-1 and CPLX2-1 SNPs are located in the respective promoter regions, -98 and -156. SYN2-1 was located within the GC box motif and CPLX2-1 within the C/EBP motif in a database search http://www.cbrc.jp/research/db/TFSEARCH. The positive haplotype associations seem to be based on an increase of LD in the schizophrenia group compared to the control group because the D' values of the schizophrenia group were higher than those of the controls [(SYN2-1 – SYN2-2, 0.935 vs. 0.531 (schizophrenics vs. controls)), (SYN2-2 – SYN2-4, 0.750 vs. 0.453)] (Table 3). A similar situation was also observed with the positive association of the haplotype in CPLX2 with schizophrenia [CPLX2-1 – CPLX2-2, 0.852 vs. 0.412 (schizophrenics vs. controls)] (Table 5).

Chen et al. [23] recently reported an association study of four SNPs in SYN2 using Han Chinese samples. They found significant associations of SNP rs795009 and a haplotype constructed by the four SNPs with schizophrenia. Chen et al. [23] and our study examined two SNPs (rs2308169 and rs308963) in common, and their genotypic and allelic frequencies were similar in both studies. Although Chen et al. [23] did not mention the pairwise haplotype association study that we performed, they did report a significant difference in the overall four-way haplotype frequencies between schizophrenia and controls.

Conclusion

We found significant differences in the haplotype frequencies in both SYN2 and CPLX2 polymorphisms between schizophrenia and control groups. In addition, the haplotype constructed from three polymorphisms (SYN2-1, SYN2-2, and SYN2-4) showed a significant association with schizophrenia. Our results suggest that both SYN2 and CPLX2 polymorphisms may contribute susceptibility to schizophrenia in the Korean population.

Methods

Subjects

A total of 154 unrelated Korean schizophrenia patients (80 male and 74 female with a mean ± SD age of 43.8 ± 11.4 yr) and 133 unrelated Korean controls (64 male and 69 female; age 50.6 ± 11.7 yr) were recruited. For the SYN2 analysis, 113 unrelated Korean schizophrenia patients (60 male and 53 female with a mean ± SD age of 42.2 ± 11.3 yr) and 114 unrelated Korean controls (60 male and 54 female; age 51.7 ± 10.9 yr) were participated. The schizophrenia patients were diagnosed using the Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV criteria. The control subjects were recruited after they had been designated as mentally healthy in a general health check-up program. The average age of the controls exceeded 50 years because we tried to avoid misincorporation of patients with late onset schizophrenia in the control group, while it may produce statistical bias potentially. Written informed consent was obtained from all subjects. This study was approved by the Ethics Committee of Kyung Hee University, Faculty of Medicine. Genomic DNA was extracted from whole blood cells using a NucleoSpin® Blood kit (Macherey-Nagel, Easton, PA).

SNP Selection and PCR-based Genotyping

Since the genomic sizes of SYN2 and CPLX2 are about 187 and 89 kb, respectively, we initially intended to select common polymorphisms at intervals of approximately 20–50 kb from the dbSNP http://www.ncbi.nlm.nih.gov/SNP/. After validating the frequency of each polymor-
phism in 24 healthy Korean individuals using direct sequencing, we selected seven common polymorphisms from SYN2 and five from CPLX2 for further analyses (Fig. 1, Table 1). We amplified the fragments containing polymorphisms individually and genotyped DNA samples for each SNP with either PCR-based restriction fragment length polymorphism (RFLP) assays or direct sequencing performed with an ABI PRISM® Dye Terminator Cycle Sequencing kit (Applied Biosystems, Foster City, CA) on an ABI PRISM® 3100 DNA sequencer (Applied Biosystems) (Table 1). In case of unclear sequence data, we repeated direct sequencing under various conditions until the genotype was determined correctly.

Statistics

The deviation of the genotypic frequencies from Hardy-Weinberg equilibrium was examined using the chi-square test (df = 1). Statistical differences in the genotypic distributions and allelic frequencies between the schizophrenia and control groups were examined using the Fisher's exact probability test. We calculated D' and r² to evaluate the magnitude of linkage disequilibrium (LD) [19]. We estimated haplotype frequencies using the EH program, version 1.14 [20].

The statistical analysis of haplotype association was done as previously described [21]. We applied the Bonferroni correction to multiple testing based on the number of haplotypes. The significance level for all the statistical tests was 0.05.

Authors’ contributions

HJ Lee conceived of the study, carried out sequencing, participated in the interpretation of the data and drafted manuscript, JY Song, JW Kim and JK Park recruited the samples of schizophrenia patients, SY Jin, MS Hong, and J-H Chung recruited the samples of normal control, H Shibata and Y Fukumaki participated in its design, carried out the statistical analyses, and participated in the interpretation of data. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by JPSS and KOSEF, and in part by a grant of the Korean Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea. (0405-NS01-0704-0001).

References

1. Lewis DA, Lieberman JA: Catching up on schizophrenia: natural history and neurobiology. Neuron 2002, 28:325-334.
2. Owen MJ, O’Donovan MC, Gottesman II: Schizophrenia. In Psychiatric Genetics & Genomics Edited by: McGuffin P, Owen MJ, Gottesman II, Oxford; 2002:247-266.
3. Owen MJ, Williams NM, O’Donovan MC: The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004, 9:14-27.
4. Frankle WG, Lerma J, Laruelle M: The synaptic hypothesis of schizophrenia. Neuron 2003, 39:205-215.
5. Hilfiker S, Pieribone VA, Czernik AJ, Kao H-T, Augustine GJ, Greenberg P: Synapsins as regulators of neurotransmitter release. Phil Trans R Soc Lond B 1999, 354:269-279.
6. Kao H-T, Porton B, Hilfiker S, Stefani G, Pieribone VA, DeSalle R: Molecular evolution of the synapsin gene family. J Exp Zool (Mol Dev Evo) 1999, 285:360-377.
7. Tokumaru H, Umayahara K, Pellegrini LL, Ishizuka T, Saisu H, Betz H: SNARE complex oligomerization by synphin/complexin is essential for synaptic vesicle exocytosis. Cell 2001, 104:421-432.
8. Browning MD, Dudek EM, Raper JL, Leonard S, Freedman R: Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics. Biol Psychiatry 1993, 34:529-535.
9. Harrison PJ, Eastwood SL: Preferential involvement of excitatory neurons in medial temporal lobe in schizophrenia. Lancet 1998, 352:1669-1673.
10. Xie X, Ott J: Testing linkage disequilibrium between a disease gene and marker loci. Nat Genet 1996, 5:425-432.
11. Eastwood SL, Cotter D, Harrison PJ: Cerelellar synaptic protein expression in schizophrenia. Neuroscience 2001, 105:219-229.
12. Knable MB, Barci BM, Webster MJ, Meador-Woodruff L, Torrey EF: Molecular abnormalities of hippocampus in severe psychiatry illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 2004, 9:609-620.
13. Marques K, Middleton PA, Markug A, Lewis DA, Levits P: Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000, 28:53-67.
14. Carvalho C, Chen C, Gentles AJ, Cleary M: Associations between human disease genes and overlapping gene groups and multiple amino acid runs. Proc Nat Acad Sci 2002, 99:17008-17013.
15. Lewis CM, Levinson DF, Wise LH, Delisi LE, Straub RE, Hovatta I: Genome scan meta-analysis of schizophrenia and bipolar disorder, Part II: Schizophrenia. Am J Hum Genet 2003, 73:34-48.
16. Pulver AE, Lasseter K, Kasch L, Wolyenie P, Nestadt G, Blouin JL: Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Genet 1995, 60:252-260.
17. Sklar P, Patz MT, Kirby A, Kirby A, Petrushen TL, Medeiros H, Carvalho C: Genome-wide scan in Portuguese island families identifies 5q31-5q35 as a susceptibility locus for schizophrenia. Mol Psychiatry 2004, 9:213-218.
18. Taillon-Miller P, Bauer-Sardina I, Saccione NL, Purzel J, Laitinen T, Cao A, Kere J, Pilla G, Rice JP, Kwok PY: Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nat Genet 2000, 25:324-328.
19. Xie X, Ozt J: Testing linkage disequilibrium between a disease gene and marker loci. Am J Hum Genet 1993, 53:1170.
20. Shaman P: The analysis of allelic association. In Statistics in Human Genetics Edited by: Sham P: London; Arnold; 1997:145-185.
21. Ohashi J, Tokunaga K: The power of genome-wide association studies of complex disease genes: statistical limitations of indirect approaches using SNP markers. J Hum Genet 2001, 46:478-482.
22. Chen Q, He G, Wang XY, Chen QY, Liu XM, Gu ZZ: Positive association between synapsin II and schizophrenia. Biol Psychiatry 2004, 56:177-181.
23. Thompson PM, Egbufoama S, Vawter MP: SNAP-25 reduction in the hippocampus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2003, 27:411-417.
24. Imai C, Sugai T, Iritani S, Nizato K, Nakamura R, Makifuchi T: A quantitative study on the expression of synapsin II and N-ethylmaleimide-sensitive fusion protein in schizophrenic patients. Neuropsychopharmacol 2001, 305:185-188.
25. Takahashi S, Yamamoto H, Matsuda Z, Ogawa M, Yagyu K, Taniguchi T: Identification of two highly homologous presynaptic proteins distinctly localized at the dendritic and somatic synapses. FEBS Lett 1993, 368:455-460.