Shoaling-breaking Water Wave Modeling Using Velocity Potential Equation with Weighting Coefficient Extracted Analytically from The Dispersion Equation

Syawaluddin Hutahaean

Ocean Engineering Program, Faculty of Civil and Environmental Engineering, -Bandung Institute of Technology (ITB), Bandung 40132, Indonesia
syawaluddin@ocean.itb.ac.id

Received: 26 May 2022,
Received in revised form: 14 Jun 2022,
Accepted: 20 Jun 2022,
Available online: 27 Jun 2022
©2022 The Author(s). Published by AI Publication. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Keywords— weighting coefficient, weighted kinematic free surface boundary condition, weighted momentum equation.

Abstract— A shoaling and breaking water wave model was developed in this study using the velocity potential of the solution of the Laplace equation. Formulation was carried out using Weighted Kinematic Free Surface Boundary Condition Equation, wave number conservation equation, and energy conservation equation. In the Weighted Kinematic Free Surface Boundary Condition equation, a weighting coefficient was used which needs to be determined. The value of the weighting coefficient was extracted from the dispersion equation. The dispersion equation was formulated using Weighted Kinematic Free Surface Boundary Condition and Weighted Momentum Equation to obtain weighting coefficient that meets the hydrodynamic equilibrium equation. By using the weighting coefficient, good shoaling and breaking results were obtained.

I. INTRODUCTION

This study is a follow up research of Hutahaean’s (2021a) research. Previously, breaking equations were formulated, namely the equations to calculate the breaking wave height H_b, breaker wavelength L_b, and breaker depth h_b. These breaking equations were formulated using weighted Kinematic Free Surface Boundary Condition Equation and the weighted momentum equation similar to this study. The weighting coefficient in that study was obtained by calibrating the breaker height H_b model with the breaker height from a number of empirical equations of breaker height index. Therefore, the value of the weighting coefficient was determined by the breaker index equations, instead of based on the hydrodynamic equation.

This study aims to obtain the value of the weighting coefficient analytically. The weighting coefficient was extracted from the dispersion equation formulated from the hydrodynamic equilibrium equations. Thus, it can be said that the weighting coefficient is obtained analytically and fulfills the law of hydrodynamic equilibrium.

II. POTENTIAL VELOCITY EQUATION

The total velocity potential equation obtained from solving the Laplace equation with Variable Separation Method (Dean (1991)) is,

$$\phi(x,z,t) = G(\cos kx + \sin kx) \cosh k(h + z) \sin \sigma t. \tag{1}$$

x is the horizontal axis; z is the vertical axis; t is time; G and k are wave constants, where k is the wave number, where L is wavelength $k = \frac{2\pi}{L}$, σ is angular frequency, for a period of wave T, $\sigma = \frac{2\pi}{T}$. At (1) there are two wave constants for which the equation needs to be determined, G and k.

There is a value of kx where $\cos kx = \sin kx$. This point is called the characteristic point on the x-horizontal axis. The formulation of the wave constants G and k is carried out at the characteristic point, where the wave constants

www.ijaers.com
obtained apply to the cosine component and the sine component. At this characteristic point, (1) can be written,

$$\phi(x, z, t) = G \cos kx \cosh k(h + z) \sin \sigma t \quad \text{(2)}$$

It is important to note that there is a double value of G in (2).

III. EQUATIONS OF CONSERVATION

There are conservation equations in velocity potential (1) and (2) (Hutahaean (2020)), namely

- The wave number conservation equation,
 $$\frac{dk}{dx} = 0 \quad \text{……(3)}$$
 his the water depth, A is the wave amplitude. In deep water, applies
 $$\tan k \left(h + \frac{A}{2} \right) = c_h \approx 1 \quad \text{……(4)}$$
 $$k \left(h + \frac{A}{2} \right) = \theta \pi \quad \text{……(5)}$$
 $$\tanh \theta \pi = c_h \approx 1 \quad \text{……(6)}$$
 θ is a positive number greater than one. The value θ is determined in the shoaling-breaking condition, where θ affects the breaker depth.

- Keeping in mind (3), then (4), (5) and (6) apply to all domains, both in deep water and in shallow water.

- The next conservation equation is the energy conservation equation, namely,
 $$G \frac{\partial k}{\partial x} + 2k \frac{\partial \sigma}{\partial x} = 0 \quad \text{……(7)}$$
 And
 $$\frac{\partial^2 \sigma}{\partial x^2} = 0 \quad \text{……(8)}$$
 Equation (8) shows that the wave constant G changes linearly with respect to the x-horizontal axis. While, the water depth changes with respect to the x-horizontal axis, then the wave constant G also changes linearly with respect to water depth. Furthermore, (7) and (8) indicate that the wave number k also changes linearly with water depth.

IV. WAVE AMPLITUDE FUNCTION

Wave amplitude function is an equation that expresses the relationship between G, k and A. This equation is formulated using the weighted kinematic free surface boundary condition (Hutahaean (2021b)), which takes the following form,

$$\gamma \frac{\partial \eta}{\partial t} = w_\eta - u_\eta \frac{\partial \eta}{\partial x} \quad \text{(9)}$$

$\eta = \eta(x, t)$ is water surface elevation equation to the still water level; w_η is vertical water surface particle velocity; u_η is horizontal water surface particle velocity; γ is weighting coefficient greater than one whose value will be determined.

From (2), the vertical particle velocity is,

$$w(x, z, t) = - \frac{\partial \phi}{\partial z} = -Gk \cos kx \sinh k(h + z) \sin \sigma t \quad \text{……(10)}$$

Vertical water surface particle velocity at $z = \eta$ is,

$$w_\eta = -Gk \cos kx \sin h(k + \eta) \sin \sigma t \quad \text{……(11)}$$

Horizontal particle velocity is,

$$u(x, z, t) = - \frac{\partial \phi}{\partial x} = Gk \sin kx \cosh k(h + z) \sin \sigma t \quad \text{……(12)}$$

Horizontal water surface particle velocity at $z = \eta$ is,

$$u_\eta = Gk \sin kx \cosh (k + \eta) \sin \sigma t \quad \text{……(13)}$$

Substitution (11) and (13) to (9),

$$Gk \cos kx \sinh k(h + \eta) \sin \sigma t$$

$$= -Gk \sin kx \cosh k(h + \eta) \sin \sigma t \frac{\partial \eta}{\partial x} \quad \text{(9)}$$

At the characteristic point where $\cos kx = \sin kx$

$$\gamma \frac{\partial \eta}{\partial t} = -Gk \left(\sinh k(h + \eta) + \cosh k(h + \eta) \frac{\partial \eta}{\partial x} \right) \cos kx \sin \sigma t$$

Or,

$$\gamma \frac{\partial \eta}{\partial t} = -Gk \cos k(h + \eta) \left(\frac{\partial k(h + \eta) + \frac{\partial \eta}{\partial x}}{\cos kx \sin \sigma t} \right) \quad \text{……(14)}$$

As a periodic function, then,

$$Gk \cos k(h + \eta) \left(\frac{\partial k(h + \eta) + \frac{\partial \eta}{\partial x}}{\cos kx \sin \sigma t} \right) = \text{constant}$$

Thus, (14) can be integrated with respect to time t by integrating $\sin \sigma t$ only.

$$\eta(x, t) = \frac{Gk}{\gamma \sigma} \cos k(h + \eta) \left(\frac{\partial k(h + \eta) + \frac{\partial \eta}{\partial x}}{\cos kx \cos \sigma t} \right)$$

For

$$A = \frac{Gk}{\gamma \sigma} \cos k(h + \eta) \left(\frac{\partial k(h + \eta) + \frac{\partial \eta}{\partial x}}{\cos kx \cos \sigma t} \right) \quad \text{……(15)}$$

The water level equation becomes
\(\eta(x, t) = A \cos kx \cos \sigma t \)(16)

The characteristic point in the time domain is the value of \(\sigma t \) where, \(\cos \sigma t = \sin \sigma t \). Then, at the characteristic point in the \(x \) domain and in the \(t \) domain,

\[
\eta = \frac{A}{2} \quad \text{......(17)}
\]

\[
\frac{\partial \eta}{\partial x} = -\frac{ka}{2} \quad \text{......(18)}
\]

Substitution (17) and (18) to (15),

\[
A = \frac{Gk}{\gamma \sigma} \cosh k \left(h + \frac{A}{2} \right) \left(\tanh k \left(h + \frac{A}{2} \right) - \frac{ka}{2} \right)
\]

Substitution (5) and (6),

\[
A = \frac{Gk}{\gamma \sigma} \cosh \theta \pi \left(c_h - \frac{ka}{2} \right) \quad \text{......(19)}
\]

This equation is the wave amplitude function, which can be written as the equation for \(G \),

\[
G = \frac{2\sigma A}{k \cosh \theta \pi \left(c_h - \frac{ka}{2} \right)} \quad \text{......(20)}
\]

V. DISPERSION EQUATION

Surface momentum equation (Hutahaean (2021b)) ignoring convective acceleration,

\[
y^2 \frac{\partial u}{\partial t} = -g \frac{\partial \eta}{\partial x} \quad \text{......(21)}
\]

Substitutions (13) and (16). The equation is done at the characteristic point,

\[
y^2 \sigma Gk \cosh k \left(h + \frac{A}{2} \right) = gka
\]

\(k \)on the left and right sides cancel each other out, and the wave amplitude \(A \) on the right side is substituted by (19),

\[
y^2 \sigma Gk \cosh k \left(h + \frac{A}{2} \right) = g \frac{Gk}{\gamma \sigma} \cosh \theta \pi \left(c_h - \frac{ka}{2} \right)
\]

The \(G \) on the left and right sides of the equation cancel each other out. Keeping in mind (5), the terms of the hyperbolic function on the left and right sides also cancel each other out,

\[
y^2 \sigma = g \frac{Gk}{\gamma \sigma} \left(c_h - \frac{ka}{2} \right) \quad \text{......(22)}
\]

This equation can be written as,

\[
\frac{a^2}{4} k^2 - \frac{bg}{2} k + \gamma^2 \sigma^2 = 0 \quad \text{......(23)}
\]

\[
a = \frac{Gk}{\gamma \sigma} \quad ; \quad b = -\frac{g}{\gamma \sigma} k_h \quad ; \quad c = \gamma^2 \sigma^2 \quad ; \quad d = b^2 - 4 ac
\]

\[k = \frac{-b - \sqrt{d}}{2a} \]

The minus sign used at \(\sqrt{d} \) is to make the obtained wavelength not too short.

Table (1) presents the results of the calculation of the wavelength with (23), where the wave height \(H \) from the Wiegel equation (1949,1964) is,

\[
H = \frac{g\sigma^2}{15.6\sigma^2} \quad \text{......(24)}
\]

which is the maximum wave height in a wave period in deep water. Assuming a sinusoidal wave, the wave amplitude is half of the wave height.

The calculation was carried out using \(\gamma = 1.342 \), the determination of \(\gamma \) is aimed at getting wave steepness \(\frac{H}{L} = 0.17 \) which is following the criteria of critical wave steepness from Toffoli et al (2010), where according to Toffoli et al, the critical wave steepness can actually reach more of 0.2.

\(T \) (sec)	\(H \) (m)	\(L \) (m)	\(H/L \)
6	1.451	8.516	0.17
7	1.975	11.591	0.17
8	2.579	15.139	0.17
9	3.265	19.161	0.17
10	4.03	23.655	0.17
11	4.877	28.623	0.17
12	5.804	34.064	0.17
13	6.811	39.978	0.17
14	7.899	46.365	0.17
15	9.068	53.225	0.17

Calculation of the wavelength in Table (1) was carried out using the value of \(\theta = 1.95 \), where the value of \(\tanh \theta \pi = 0.9999990 \). However, the value of \(\theta \) does not really affect the wavelength. The effect of \(\theta \) is on the breaker depth, which is discussed in section (7).
VI. DETERMINATION OF THE VALUE OF THE WEIGHTING COEFFICIENT γ

Hutahaean (2021b) obtained the value of the weighting coefficient by using Taylor series on the function in the form (1), where the value of the weighting coefficient γ = 3. This coefficient is not yet a product of the hydrodynamic equilibrium equation.

In the previous section, it has been shown that the value of the weighting coefficient γ can also be obtained by adjusting the obtained wavelength with the critical wave steepness. However, the value of the weighting coefficient is the result of coercion, not naturally contained in the hydrodynamic equilibrium law.

In this section, the value of the weighting coefficient γ is determined analytically, extracted from the dispersion equation (23). This equation is derived from the hydrodynamic equilibrium equation. Hence, it can be said that it is another form of the hydrodynamic equilibrium equation. By extracting the weighting coefficient γ from (23), the value of the weighting coefficient is the product of the hydrodynamic equation.

The determinant d in (23) must be greater than or equal to zero.

\[d = \frac{g^2 c_h^2}{4} - \frac{4}{\sigma_A^3} \geq 0 \]

The amplitude of wave A is a known variable which accordingly taking the equals sign will get the value of γmax.

\[\gamma_{max}^3 = \frac{g c_h^2}{4\sigma_A^3} \]

(25)

If γ from (25) is used, where the determinant d=0, then the wave number equation becomes,

\[k = \frac{2}{A} \]

(26)

In (26), there is no longer a value of γ, but the equation is formulated based on the condition of the determinant value d = 0, then the value of γ in (26) is γmax. It was found that in deep water, the wave-number is only determined by the wave amplitude. Meanwhile, the value of c_h is always close to or equal to one. Moreover, it is also found that the wave number is not determined by the wave period T.

Table (2) presents the results of the calculation of γ using (25), wave number k is calculated by (26) wave height H is calculated by (24), which assuming a sinusoidal wave, the wave amplitude A = 0.5H.

T (sec)	γ	H (m)	L (m)	H/L
6	1.455	1.448	4.55	0.318
7	1.455	1.971	6.193	0.318
8	1.455	2.575	8.089	0.318
9	1.455	3.259	10.237	0.318
10	1.455	4.023	12.639	0.318
11	1.455	4.868	15.293	0.318
12	1.455	5.793	18.2	0.318
13	1.455	6.799	21.359	0.318
14	1.455	7.885	24.772	0.318
15	1.455	9.052	28.437	0.318

Table (2) shows that the value of the weighting coefficient γ is constant with respect to the wave period of γ = 1.455.

The obtained wavelength is shorter than the previous calculation results because a larger weighting coefficient is used. The wave steepness obtained is constant for all wave periods with a value of \(\frac{H}{L} = 0.318 \). The value of this wave steepness is much greater than the critical wave steepness value of Toffoli et al. However, the critical wave steepness value is the natural value contained in (23).

Equation (26) obtained by working on the weighting coefficient of γmax on (23). Therefore, the calculation of the wavelength with (26) at various wave amplitudes produce a wave steepness \(\frac{H}{L} \) of 0.318 as presented in Table (3).

A (m)	H (m)	L (m)	H/L
0.1	0.2	0.628	0.318
0.2	0.4	1.257	0.318
0.3	0.6	1.885	0.318
0.4	0.8	2.513	0.318
0.5	1	3.142	0.318
0.6	1.2	3.77	0.318
0.7	1.4	4.398	0.318
0.8	1.6	5.027	0.318
0.9	1.8	5.655	0.318
1	2	6.283	0.318
VII. FORMULATION OF SHOALING-BREAKING

Equation

The shoaling and breaking equations are formulated using the conservation equations contained in (1), (Hutahaeon (2020)) namely,

a. The energy conservation equation (7) which can be written as

\[\frac{\partial \rho}{\partial x} + \frac{k}{2} \frac{\partial A}{\partial x} = -k \frac{\partial h}{\partial x} \] \hspace{1cm} \ldots (27)

b. The wave number conservation equation (3), which can be written as

\[\left(\frac{h + A}{2} \right) \frac{\partial k}{\partial x} + \frac{k}{2} \frac{\partial A}{\partial x} = -k \frac{\partial h}{\partial x} \] \hspace{1cm} \ldots (28)

Equation (19) is differentiated about the x-horizontal axis and (27) is substituted for the product of the differential,

\[\frac{\partial A}{\partial x} = \frac{G \cosh \theta \pi}{4y_G} \left(c_h - \frac{kA}{2} \right) \frac{\partial k}{\partial x} \] \hspace{1cm} \ldots (29)

To make writing easier, defined

\[\alpha = \frac{G \cosh \theta \pi}{4y_G} \left(c_h - \frac{kA}{2} \right) \] \hspace{1cm} \ldots (30)

Thus, (29) becomes

\[\frac{\partial A}{\partial x} = \alpha \frac{\partial k}{\partial x} \] \hspace{1cm} \ldots (31)

Substituting this equation into (28), it is obtained,

\[\left(\frac{h + A}{2} + \frac{k}{2} \alpha \right) \frac{\partial k}{\partial x} = -k \frac{\partial h}{\partial x} \] \hspace{1cm} \ldots (32)

This equation is used to calculate \(\frac{\partial k}{\partial x} \). After \(\frac{\partial k}{\partial x} \) is obtained, \(\frac{\partial A}{\partial x} \) can be calculated using (29).

Calculation steps:

1. At a point \(x \), given \(h_x, A_x, k_x, G_x \), will calculate \(A_{x+\delta x}, k_{x+\delta x}, \) and \(G_{x+\delta x} \) at point \(x + \delta x \)
2. Calculate \(\alpha = \frac{G_h \rho}{4y_G} \left(c_h - \frac{k x A_x}{2} \right) \)
3. Calculate \(\frac{\partial k}{\partial x} \) with the following equation :

\[\left(h_x + \frac{A_x}{2} \right) \frac{\partial k}{\partial x} + \frac{k_x}{2} \alpha = -k \frac{\partial h}{\partial x} \]

4. Calculate \(\frac{\partial A}{\partial x} \) with the equation: \(\frac{\partial A}{\partial x} = \alpha \frac{\partial k}{\partial x} \)
5. Calculate \(k_{x+\delta x} \) and \(A_{x+\delta x} \):

a. \(k_{x+\delta x} = k_x + \delta x \frac{\partial k}{\partial x} \)

b. \(A_{x+\delta x} = A_x + \delta x \frac{\partial A}{\partial x} \)
6. \(G_{x+\delta x} \) is calculated analytically by integrating (27),

\[G_{x+\delta x} = e^{ln G_x - \frac{1}{2} \ln k_{x+\delta x} - \ln k_x} \]

At the starting point, namely in deep water, wave number was calculated by (26), \(G \) was calculated by (20) and wave amplitude was calculated by (24).

Fig (1) visualizes the results of the shoaling-breaking model for a wave period of 8 sec., the deep water wave height \(H_0 \) was calculated by (24) assuming a sinusoidal wave was \(A_0 = 0.5H_0 \). As a calculation parameter of \(\gamma \) (25) and the coefficient of deep water depth \(\theta = 1.95 \) were used where \(\tan \theta \pi = 0.999904 \). The results of the calculation of \(H_b \) are presented in Table (3), namely \(H_b = 2.987 \) m while the results of the calculation using (33), namely the equation of Komar & Gaughan (1972), obtained \(H_b = 3.019 \) m. Breaker depth index \(\frac{h_b}{h_b} = 0.78 \), according to Mc Cowan’s (1984) breaker depth index equation.

![Fig (1) Example of a shoaling-breaking model result](image)

The equation for breaking wave height \(H_b \) from Komar & Gaughan (1972) is as follows:

\[H_b = 0.39 g^{1/5} (TH_0)^{2/5} \] \hspace{1cm} \ldots (33)

This equation uses a primitive variable, namely the wave period \(T \), making it very practical in its use.

![Fig (2) Change of G with water depth h](image)

(8) shows that the change in the wave constant \(G \) with respect to water depth is linear. In Fig (2), the linear
nature only occurs before breaking, while after breaking, it is nonlinear, especially in very shallow waters.

Using (7) and (8), it was found that the change in wave number\(k \) on water depth is linear, the same with the one on wavelength\(L \). Figure (3) shows that the change in wavelength\(L \) is linear, but slightly nonlinear in very shallow waters. With changes in\(G \) and changes in\(k \) as shown, further research and development is needed on wave conditions after breaking, especially in very shallow waters.

\textbf{Table (4) Results of the shoaling-breaking model for a number of wave periods}

\(T \) (sec)	\(H_0 \) (m)	\(H_b \) (m)	\(\frac{H_b}{L_b} \)	\(\frac{H_b}{h_b} \)	
6	1.451	1.681	1.698	0.637	0.781
7	1.975	2.287	2.312	0.638	0.782
8	2.58	2.987	3.019	0.637	0.781
9	3.265	3.78	3.821	0.637	0.78
10	4.031	4.667	4.718	0.637	0.781
11	4.878	5.646	5.708	0.637	0.781
12	5.805	6.719	6.794	0.637	0.781
13	6.812	7.886	7.973	0.637	0.781
14	7.901	9.146	9.247	0.637	0.781
15	9.07	10.499	10.615	0.637	0.781

\textbf{Note}: \(K-G \), Komar&Gaughan

The stability of breaking characteristics including \(\frac{H_b}{L_b} \) and \(\frac{H_b}{h_b} \) in the model on the wave period is shown in Table (4), indicating that both \(\frac{H_b}{L_b} \) and \(\frac{H_b}{h_b} \) can be said to be constant. The calculations in Table (4) were carried out using (25), the coefficient of deep water depth \(\theta = 1.95 \).

To determine the effect of the deep water depth coefficient \(\theta \), a calculation was carried out using \(\theta = 1.85 \) with \(\gamma \) from (25).

\textbf{Table (5) Results of the shoaling-breaking model with } \(\theta = 1.85 \)

\(T \) (sec)	\(H_0 \) (m)	\(H_b \) (m)	\(\frac{H_b}{L_b} \)	\(\frac{H_b}{h_b} \)	
6	1.451	1.681	1.698	0.639	0.835
7	1.975	2.287	2.312	0.638	0.833
8	2.58	2.987	3.019	0.637	0.832
9	3.265	3.78	3.821	0.637	0.833
10	4.031	4.667	4.718	0.638	0.833
11	4.878	5.646	5.708	0.637	0.831
12	5.805	6.719	6.794	0.637	0.832
13	6.812	7.886	7.973	0.637	0.832
14	7.901	9.146	9.247	0.637	0.831
15	9.07	10.499	10.615	0.637	0.832

The calculation results in Table (5) present that there is no change in the breaking wave height \(H_b \), even though the deep water depth coefficient \(\theta \) was reduced. The changes that occur were the enlargement of \(\frac{H_b}{L_b} \) and \(\frac{H_b}{h_b} \). This shows that the reduction of the deep water depth coefficient \(\theta \) causes the shallower breaker depth \(h_b \).

\textbf{VIII. CONCLUSIONS}

This study concludes that the weighting coefficient on the weighted kinematic free surface boundary condition and on the weighted momentum equation can be extracted from the dispersion equation. The dispersion equation is formulated using hydrodynamic equilibrium equations. Accordingly, the value of the weighting coefficient obtained is to meet the laws of hydrodynamic equilibrium equations. A good shoaling-breaking model is obtained using the weighting coefficient extracted from the dispersion equation. However, a large critical wave steepness is obtained both in deep waters and at the breaking point. Therefore, further research is still needed, both on the model and on the existing critical wave steepness criteria, both in deep water and at the breaking point. In general, the results of the shoaling-breaking model provide good information regarding the height of the shoaling wave and the breaking wave height. However, further research is still needed on wave conditions after breaking, especially in very shallow waters.
REFERENCES

[1] Hutahaean, S (2021a). Analytical Formulation of Breaker Equation. International Journal of Advanced Engineering Research and Science (IJAEERS), Vol-8, Issue-10; Oct, 2021, pp.194-200. ISSN-2349-6495(P)/2456-1908 (O). https://dx.doi.org/10.22161/ijaers.810.22

[2] Dean, R.G., Dalrymple, R.A. (1991). Water wave mechanics for engineers and scientists. Advance Series on Ocean Engineering.2. Singapore: World Scientific. ISBN 978-981-02-0420-4. OCLC 22907242.

[3] Hutahaean, S (2020). Study on the Breaker Height of Water Wave Equation Formulated Using Weighted Total Acceleration Equation (Kajian Teknis). Vol-27, No. 1; April, 2020, pp.95-101. ISSN-0853-2982, eISSN 2549-2659.

[4] Hutahaean, S (2021b). Weighted Taylor Series for Water Wave Modeling. International Journal of Advanced Engineering Research and Science (IJAEERS), Vol-8, Issue-6; Jun, 2021, pp.295-302. ISSN-2349-6495(P)/2456-1908 (O). https://dx.doi.org/10.22161/ijaers.86.37

[5] Wiegel, R.L. (1949). An Analysis of Data from Wave Recorders on the Pacific Coast of the United States, Trans. Am. Geophys. Union, Vol.30, pp.700-704.

[6] Wiegel, R.L. (1964). Oceanographical Engineering, Prentice-Hall, Englewoods Cliffs, N.J.

[7] Toffoli, A., Babanin, A., Onorato, M., and Waseda T. (2010). Maximum steepness of oceanic waves : Field and laboratory experiments. Geophysical Research Letters. First published 09 March 2010. https://doi.org/10.1029/2009GL041771

[8] Komar, P.D. & Gaughan M.K. (1972). Airy Wave Theory and Breaker Height Prediction, Coastal Engineering Proceedings, 1 (13).

[9] Mc Cowan. (1984). On the highest waves of a permanent type. Philosophical Magazine, Edinburgh (38), 5th Series, pp. 351-358.