Non-radial solutions to a bi-harmonic equation with negative exponent

Ali Hyder1 · Juncheng Wei1

Received: 22 June 2018 / Accepted: 30 September 2019 / Published online: 30 October 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We prove the existence of smooth non-radial entire solution to
\[\Delta^2 u + u^{-q} = 0 \quad \text{in } \mathbb{R}^3, \quad u > 0, \]
for \(q > 1 \). This answers an open question raised by McKenna and Reichel (Electron J Differ Equ 37:1–3, 2003).

Mathematics Subject Classification 35J61 · 35B40 · 53A30

1 Introduction

We consider the following bi-harmonic equation with negative exponent
\[\Delta^2 u + u^{-q} = 0 \quad \text{in } \mathbb{R}^3, \quad u > 0, \quad (1) \]
where \(q > 0 \).

For \(q = 7 \), every positive smooth solution to (1) corresponds to a conformal metric on \(\mathbb{R}^3 \) with constant \(Q \)-curvature. Let us recall that the Paneitz operator on a three dimension manifold \((M, g)\) is defined by (see [1,5,22])
\[P_g = (-\Delta_g)^2 + \delta \left(\frac{5}{4} R_g g - 4 Ric_g \right) d - \frac{1}{2} Q_g, \]

Communicated by M. Struwe.

Ali Hyder: The author is supported by the Swiss National Science Foundation, Grant No. P2BSP2-172064.
Juncheng Wei: The research is partially supported by NSERC.

*Ali Hyder
ali.hyder@math.ubc.ca

Juncheng Wei
jcwei@math.ubc.ca

1 Department of Mathematics, University of British Columbia, Vancouver, BC V6T1Z2, Canada
where the Q-curvature is given by

$$ Q_g = -2 |\text{Ric}_g|^2 + \frac{23}{32} R_g^2 - \frac{1}{4} \Delta_g R_g. $$

Here, Δ_g denotes the Laplace–Beltrami operator, δ the divergence, d the differential, R_g the scalar curvature, and Ric_g the Ricci tensor of the metric g. Under a conformal change of metrics $g_u = u^{-4} g$ with $u > 0$, the Paneitz operator enjoys the following conformal covariance property

$$ P_{g_u} w = u^7 P(u w). $$

Moreover, the Q-curvatures are related by the equation

$$ P_{g_u} u = -\frac{1}{2} Q_{g_u} u^{-7}. $$

When $(M, g) = (\mathbb{R}^3, |dx|^2)$ ($|dx|^2$ is the Euclidean metric on \mathbb{R}^3), the above equation with $Q_{g_u} \equiv 2$ reduces to (1) with $q = 7$.

In the recent past, radial solutions to Eq. (1) have been studied by many authors, especially the existence and asymptotic behavior:

Theorem A [5,6,8,11,16,21]

(i) There is no entire solution to (1) for $0 < q \leq 1$.

(ii) If u has exactly linear growth at infinity, that is,

$$ \lim_{|x| \to +\infty} \frac{u(x)}{|x|} = C > 0, $$

then $q > 3$. Moreover, for $q = 7$, u is given by $u(x) = \sqrt{1/15} + |x|^2$, and is unique up to dilation and translations.

(iii) For $q > 3$ there exists a radial solution with exactly linear growth.

(iv) For $q > 1$ there exists a radial solution with exactly quadratic growth, that is,

$$ \lim_{|x| \to +\infty} \frac{u(x)}{|x|^2} = C > 0. $$

(v) For $1 < q < 3$ there exists a radial solution u such that $r^{-\frac{4}{q+1}} u(r) \to C(q) > 0$ as $r \to \infty$ (the constant $C(q)$ is explicitly known).

(vi) For $q = 3$ there exists a radial solution u such that $r^{-1} (\log r)^{-\frac{1}{2}} u(r) \to 2^\frac{1}{2}$ as $r \to \infty$.

It has been shown by Choi–Xu [5] that if u is a solution to (1) with $q > 4$, and u has exact linear growth at infinity then u satisfies the integral equation

$$ u(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y|}{u^q(y)} dy + \gamma, \quad (2) $$

for some $\gamma \in \mathbb{R}$, and $\gamma = 0$ if and only if $q = 7$. In fact, every positive solution u to

$$ (-\Delta)^n u + u^{-4n-1} = 0 \quad \text{in } \mathbb{R}^{2n-1}, \quad n \geq 2, $$

with exact linear growth at infinity satisfies

$$ u(x) = c_n \int_{\mathbb{R}^{2n-1}} \frac{|x-y|}{u^{4n-1}(y)} dy, $$

\square Springer
where \(c_n \) is a dimensional constant, see [7,17]. For the classification of solutions to the above integral equation we refer the reader to [12,21].

In [16] McKenna–Reichel proved the existence of non-radial solution to

\[
\Delta^2 w + w^{-q} = 0 \quad \text{in } \mathbb{R}^n, \quad w > 0
\]

for \(n \geq 4 \). This was a simple consequence of their existence results to (3) in lower dimension. More precisely, if \(u \) is a radial solution to (3) with \(n \geq 3 \) then \(w(x) := u(x') \) is a non-radial solution to \(\Delta^2 w + w^{-q} = 0 \) in \(\mathbb{R}^{n+1} \), where \(x = (x',x'') \in \mathbb{R}^n \times \mathbb{R} \). Then they asked whether in \(\mathbb{R}^3 \) non-radial positive entire solution exist. (See [Open Questions (1), [16]].)

We answer this question affirmatively. (See Theorem 1.2 below.) In fact we prove the following theorems.

Theorem 1.1 Let \(u \) be a solution to (1) for some \(q > 1 \). Assume that

\[
\beta := \frac{1}{8\pi} \int_{\mathbb{R}^3} u^{-q} \, dx < +\infty.
\]

Then, up to a rotation and translation, we have

\[
u(x) = (\beta + o(1))|x| + \sum_{i \in I_1} a_i x_i^2 + \sum_{i \in I_2} b_i x_i + c, \quad o(1) \xrightarrow{|x| \to \infty} 0,
\]

where

\[I_1, I_2 \subset \{1, 2, 3\}, \quad I_1 \cap I_2 = \emptyset, \quad a_i > 0 \text{ for } i \in I_1, \quad |b_i| < \beta \text{ for } i \in I_2, \quad c > 0.\]

Theorem 1.2 Let \(q > 1 \). Then for every \(0 < \kappa_1 < \kappa_2 \) there exists a non-radial solution \(u \) to (1) such that

\[
\lim \inf_{|x| \to \infty} \frac{u(x)}{|x|^2} = \kappa_1 \quad \text{and} \quad \lim \sup_{|x| \to \infty} \frac{u(x)}{|x|^2} = \kappa_2.
\]

Theorem 1.3 Let \(q > 7 \). Then for every \(\kappa > 0 \) there exists a non-radial solution \(u \) to (1) such that

\[
\lim \inf_{|x| \to \infty} \frac{u(x)}{|x|} \in (0, \infty) \quad \text{and} \quad \lim \sup_{|x| \to \infty} \frac{u(x)}{|x|^2} = \kappa.
\]

The non-radial solutions constructed in Theorem 1.2 also satisfy the following integral condition

\[
\int_{\mathbb{R}^3} u^{-q} \, dx < +\infty,
\]

for \(q > \frac{3}{2} \). Note that McKenna-Reichel’s non-radial example has infinite \(L^1 \) bound: \(\int_{\mathbb{R}^{n+1}} w^{-q} \, dx = +\infty \).

The existence of infinitely many entire non-radial solutions with different growth rates for the conformally invariant equation \(\Delta^2 u + u^{-7} = 0 \) in \(\mathbb{R}^3 \) is in striking contrast to other conformally invariant equations \(-\Delta u = u^{\frac{n+2}{n-2}} \) in \(\mathbb{R}^n \), \(n \geq 3 \) and \((-\Delta)^m u = u^{\frac{n+2m}{n-2m}} \) in \(\mathbb{R}^n \), \(n > 2m \). In both cases all solutions are radially symmetric with respect to some point in \(\mathbb{R}^n \), see [2,4,13,19].

Our motivation in the proof of Theorems 1.2–1.3 come from a similar phenomenon exhibited in the following equation

\[
(-\Delta)^{\frac{n}{2}} u = e^{nu} \quad \text{in } \mathbb{R}^n, \quad \int_{\mathbb{R}^n} e^{nu} \, dx < +\infty.
\]
It is well-known that every solution to (8) with $n \geq 4$ is bounded from above, and it has the following asymptotic behavior at infinity:

$$u(x) = -c_0 + o(1)) \log |x| + P(x), \quad o(1) \xrightarrow{|x| \to \infty} 0,$$

where c_0 is a positive constant, P is a polynomial of degree at most $n - 1$, and P is bounded from above. Moreover, for $n \geq 4$, problem (8) admits non-radial entire solutions having the above asymptotic behavior, see [3,9,10,13–15,20] and the references therein.

In the remaining part of the paper we prove Theorems 1.1–1.3 respectively. We also give a new proof of (iii)–(iv) of Theorem A, see Sect. 2.1.

2 Proof of the theorems

We begin by proving Theorem 1.1.

Proof of Theorem 1.1 Let u be a solution to (1), (4). We set

$$v(x) := \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y| - |y|}{u^q(y)} dy, \quad w := u - v. \quad (9)$$

Fixing $\varepsilon > 0$ and $R = R(\varepsilon) > 0$ so that

$$\int_{B_R} \frac{dx}{u^q(x)} < 8\pi \varepsilon,$$

one gets

$$v(x) \geq \frac{1}{8\pi} \int_{B_R} \frac{|x| - 2|y|}{u^q(y)} dy - \frac{1}{8\pi} \int_{B_R} \frac{|x|}{u^q(y)} dy \geq (\beta - 2\varepsilon)|x| - C(R).$$

Using that $||x - y| - |y|| \leq |x|$, from (9), we obtain

$$|v(x)| \leq \beta |x| \text{ in } \mathbb{R}^3.$$

Combining these estimates we deduce that

$$\lim_{|x| \to \infty} \frac{v(x)}{|x|} = \beta.$$

It follows that w satisfies

$$\Delta^2 w = 0 \text{ in } \mathbb{R}^3, \quad w(x) \geq -\beta |x|,$$

and hence, w is a polynomial of degree at most 2, see for instance [14, Theorem 5]. Indeed, up to a rotation and translation, we can write

$$w(x) = \sum_{i \in \mathcal{I}_1} a_i x_i^2 + \sum_{i \in \mathcal{I}_2} b_i x_i + c_0,$$

where $\mathcal{I}_1, \mathcal{I}_2$ are two disjoint (possibly empty) subsets of $\{1, 2, 3\}$, $a_i \neq 0$ for $i \in \mathcal{I}_1$, $b_i \neq 0$ for $i \in \mathcal{I}_2$ and $c_0 \in \mathbb{R}$. Therefore, up to a rotation and translation, we have

$$u(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y| - |y|}{u^q(y)} dy + \sum_{i \in \mathcal{I}_1} a_i x_i^2 + \sum_{i \in \mathcal{I}_2} b_i x_i + c.$$

Now $u > 0$ and $|v(x)| \leq \beta |x|$ lead to $a_i > 0$ for $i \in \mathcal{I}_1$, $|b_i| \leq \beta$ for $i \in \mathcal{I}_2$ and $c = u(0) > 0$.

© Springer
In order to prove that $|b_1| < \beta$ we assume by contradiction that $|b_{i_0}| = \beta$ for some $i_0 \in I_2$. Up to relabelling we may assume that $i_0 = 1$. Then

$$ u(x) \leq C + |b_1 x_1| + b_1 x_1 \text{ on } C := \{x = (x_1, \bar{x}) \in \mathbb{R} \times \mathbb{R}^2 : |\bar{x}| \leq 1\}, $$

a contradiction to (4).

We conclude the proof. \square

Now we move on to the existence results. We look for solutions to (1) of the form $u = v + P$ where P is a polynomial of degree 2. Notice that $u = v + P$ satisfies (1) if and only if v satisfies

$$ \Delta^2 v = -(v + P)^{-q}, \quad v + P > 0. \quad (10) $$

In particular, if $P \geq 0$, and v satisfies the integral equation

$$ v(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y|}{(P(y) + v(y))^{q}} dy, \quad (11) $$

then v satisfies (10). Thus, we only need to find solutions to (11) (or a variant of it), and we shall do that by a fixed point argument. Let us first define the spaces on which we shall work:

$$ X := \{v \in C^0(\mathbb{R}^3) : \|v\|_X < \infty\}, \quad \|v\|_X := \sup_{x \in \mathbb{R}^3} \frac{|v(x)|}{1 + |x|}, $$

$$ X_{ev} := \{v \in X : v(x) = v(-x) \forall x \in \mathbb{R}^3\}, \quad \|v\|_{X_{ev}} := \|v\|_X, $$

$$ X_{rad} := \{v \in X : v \text{ is radially symmetric}\}, \quad \|v\|_{X_{rad}} := \|v\|_X. $$

The following proposition is crucial in proving Theorem 1.2.

Proposition 2.1 Let P be a positive continuous function on \mathbb{R}^3 such that $P(-x) = P(x)$ and for some $q > 0$

$$ \int_{\mathbb{R}^3} \frac{|x|}{(P(x))^{q}} dx < \infty. $$

Then there exists a function $v \in X_{ev}$ satisfying $\min_{\mathbb{R}^3} v = v(0) = 0,$

$$ v(x) := \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y| - |y|}{(P(y) + v(y))^{q}} dy, \quad (12) $$

and

$$ \lim_{|x| \to \infty} \frac{v(x)}{|x|} = \alpha_{P,v} := \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{dy}{(P(y) + v(y))^{q}}. $$

Moreover, if P is radially symmetric then there exists a solution to (12) in X_{rad}.

Proof Let us define an operator $T : X_{ev} \to X_{ev}, v \mapsto \tilde{v}$, (In case P is radial we restrict the operator T on X_{rad}.) Notice that $T(X_{rad}) \subset X_{rad}$.) where

$$ \tilde{v}(x) := \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y| - |y|}{(P(y) + |v(y)|)^{q}} dy. \quad (13) $$

We note that $\tilde{v} \in C^3_{rad}(\mathbb{R}^3)$ for every $0 \leq \alpha < 1$. We prove the proposition in few steps.

Step 1 T is compact.
Using that $||x - y| - |y|| \leq |x|$ we bound

$$\|\bar{v}\|_X \leq \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{1}{(P(y))^q} dy \leq C \quad \text{for every } v \in X.$$ \hfill (14)

Differentiating under the integral sign one gets

$$|\nabla \bar{v}(x)| \leq \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|y|^i}{(P(y) + |v_k(y)|)^q} dy \xrightarrow{k \to \infty} c_i.$$

We rewrite (13) (with \(v = v_k\) and \(\bar{v} = \bar{v}_k\)) as

$$\bar{v}_k(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y|}{(P(y) + |v_k(y)|)^q} dy + \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y| - |x|}{(P(y) + |v_k(y)|)^q} dy =: I_{1,k}(x) + I_{2,k}(x).$$

It follows that

$$I_{1,k}(x) \to c_0|x| - c_1 \quad \text{in } X \quad \text{as } k \to \infty.$$

Using that $||x - y| - |x|| \leq |y|$ we bound

$$|I_{2,k}(x)| \leq \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|y|}{(P(y))^q} dy \leq C.$$

This implies that

$$\lim_{R \to \infty} \sup_k \sup_{x \in \mathbb{R}^3 \setminus B_R} \frac{I_{2,k}(x)}{1 + |x|} = 0.$$

Since

$$\sup_k \sup_{x \in \mathbb{R}^3} |\nabla I_{2,k}(x)| < \infty,$$

up to a subsequence,

$$I_{2,k} \to I \quad \text{in } X_{ev},$$

for some \(I \in X_{ev}\). This proves Step 1 as \(T\) is continuous.

Step 2 \(T\) has a fixed point in \(X_{ev}\).

It follows from (14) that there exists \(M > 0\) such that \(T(X_{ev}) \subset B_M \subset X_{ev}\). In particular, \(T(\mathcal{B}_M) \subset B_M\). Hence, by Schauder fixed point theorem there exists a fixed point of \(T\) in \(B_M\).

Step 3 For every \(v \in X_{ev}\) we have \(\lim_{|x| \to \infty} \frac{\bar{v}(x)}{|x|} = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{dy}{(P(y) + |v(y)|)^q} =: \alpha(P, v)\).

Step 3 follows from

$$|\bar{v}(x) - \alpha(P, v)|x|| \leq \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{||x - y| - |y| - |x||}{(P(y) + |v(y)|)^q} dy \leq \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{|y|}{(P(y))^q} dy \leq C.$$

Step 4 If \(v\) is a fixed point of \(T\) then \(v \geq 0\).
Differentiating under the integral sign, from (13) one can show that the hessian $D^2 \bar{v}$ is strictly positive definite, and hence \bar{v} is strictly convex. Moreover, using that $(P + |v|)$ is an even function, one obtains $\nabla \bar{v}(0) = 0$. This leads to

$$\min_{x \in \mathbb{R}^3} \bar{v}(x) = \bar{v}(0) = 0.$$

We conclude the proposition. \hfill \square

In the same spirit one can prove the following proposition.

Proposition 2.2 Let P be a continuous positive even function on \mathbb{R}^3 such that for some $q > 0$

$$\int_{\mathbb{R}^3} \frac{|x|}{(P(x))^q} dx < \infty.$$

Then there exists a positive function $v \in X_{ev}$ satisfying

$$v(x) := \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y|}{(P(y) + v(y))^q} dy, \quad \min_{x \in \mathbb{R}^3} v = v(0).$$ \hspace{1cm} (15)

Proof of Theorem 1.2 Let $q > 1$ and $0 < \kappa_1 < \kappa_2$ be fixed. For every $\varepsilon > 0$ let $v_\varepsilon \in X_{ev}$ be a solution of (12), that is,

$$v_\varepsilon(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y| - |y|}{(P_\varepsilon(y) + v_\varepsilon(y))^q} dy,$$ \hspace{1cm} (16)

where

$$P_\varepsilon(x) := 1 + \kappa_1 x_1^2 + \kappa_2 (x_2^2 + x_3^2) + \varepsilon |x|^4, \quad x = (x_1, x_2, x_3) \in \mathbb{R}^3.$$

We claim that for every multi-index $\beta \in \mathbb{N}^3$ with $|\beta| = 2$

$$|D^\beta v_\varepsilon(x)| \leq C \quad \text{on } B_2 \quad \text{and} \quad |D^\beta v_\varepsilon(x)| \leq C f_q(x) \quad \text{on } B_2^c,$$ \hspace{1cm} (17)

where

$$f_q(x) := \begin{cases} |x|^{-1} & \text{if } q > 3/2 \\ |x|^{-1} \log |x| & \text{if } q = 3/2 \\ |x|^{2-2q} & \text{if } q < 3/2. \end{cases}$$

For $|\beta| = 2$, differentiating under the integral sign, from (16), we obtain

$$|D^\beta v_\varepsilon(x)| \leq C \int_{\mathbb{R}^3} \frac{1}{|x - y|} \frac{dy}{(P_\varepsilon(y) + v_\varepsilon(y))^q} \leq C \int_{\mathbb{R}^3} \frac{1}{|x - y|} \frac{dy}{(1 + \kappa_1 |y|^2)^q}$$

$$= C \sum_{i=1}^{3} I_i(x),$$

where

$$I_i(x) := \int_{A_i} \frac{dy}{|x - y|} \frac{1}{(1 + \kappa_1 |y|^2)^q}, \quad A_1 := B_{|x|}, \quad A_2 := B_{2|x|} \setminus A_1, \quad A_3 := \mathbb{R}^3 \setminus B_{2|x|}.$$
Since \(q > 1 \) we have \(|D^\beta v_\varepsilon| \leq C \) on \(B_2 \). For \(|x| \geq 2 \) we bound
\[
I_1(x) \leq \frac{2}{|x|} \left[\int_{A_1} \frac{dy}{(1 + \kappa_1|y|^2)^q} \right] \leq Cf_q(x),
\]
\[
I_2(x) \leq \frac{C}{|x|^{2q}} \left[\int_{A_2} \frac{dy}{|x - y|} \right] \leq \frac{C}{|x|^{2q}} \left[\int_{|y| \leq 3|x|} \frac{dy}{|y|} \right] \leq C|x|^{-2q},
\]
\[
I_3(x) \leq 2 \left[\int_{A_3} \frac{dy}{|y|(1 + \kappa_1|y|^2)^q} \right] \leq C|x|^{-2q}.
\]
This proves (17). Since \(v_\varepsilon(0) = |\nabla v_\varepsilon(0)| = 0 \), by (17), we have that \((|\nabla v_\varepsilon|) \) is bounded in \(C^0_{loc}(\mathbb{R}^3) \), and that
\[
v_\varepsilon(x) \leq C \begin{cases}
(1 + |x|) \log(2 + |x|) & \text{if } q > 3/2 \\
(1 + |x|)(1 + |x|)^2 & \text{if } q = 3/2 \\
(1 + |x|)^{4-2q} & \text{if } q < 3/2.
\end{cases}
\]

Thus \((v_\varepsilon) \) is bounded in \(C^2_{loc}(\mathbb{R}^3) \). In fact, as \(P_\varepsilon \) is smooth, using the integral Eq. (16) one can show that \((v_\varepsilon) \) is bounded in \(C^5_{loc}(\mathbb{R}^3) \). Therefore, for some \(\varepsilon_k \downarrow 0 \) we must have \(v_{\varepsilon_k} \to v \) in \(C^4_{loc}(\mathbb{R}^3) \) for some \(v \in C^4(\mathbb{R}^3) \), where \(v \) satisfies
\[
\Delta^2 v = -\frac{1}{(v + P_0)^q} \quad \text{in } \mathbb{R}^3, \quad v \geq 0 \quad \text{in } \mathbb{R}^3, \quad P_0(x) := 1 + \kappa_1 x_1^2 + \kappa_2 (x_2^2 + x_3^2).
\]

Hence, \(u = v + P_0 \) is a solution to (1). Moreover, as \(v \) satisfies (18), we have
\[
\liminf_{|x| \to \infty} \frac{u(x)}{|x|^2} = \liminf_{|x| \to \infty} \frac{P_0(x)}{|x|^2} = \kappa_1, \quad \limsup_{|x| \to \infty} \frac{u(x)}{|x|^2} = \limsup_{|x| \to \infty} \frac{P_0(x)}{|x|^2} = \kappa_2.
\]

This completes the proof.

\textbf{Proof of Theorem 1.3} Let \(q > 7 \) be fixed. Then for every \(\varepsilon > 0 \) there exists a positive solution \(v_\varepsilon \) to (15) with
\[
P(x) = P_\varepsilon(x) := 1 + \varepsilon x_1^2 + \kappa (x_2^2 + x_3^2).
\]
Setting \(u_\varepsilon := v_\varepsilon + P_\varepsilon \) one gets
\[
u_\varepsilon(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y|}{u_\varepsilon^q(y)} \, dy + P_\varepsilon(x), \quad \min_{\mathbb{R}^3} u_\varepsilon = u_\varepsilon(0).
\]

Setting \(u_\varepsilon := v_\varepsilon + P_\varepsilon \) one gets
\[
u_\varepsilon(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y|}{u_\varepsilon^q(y)} \, dy + P_\varepsilon(x), \quad \min_{\mathbb{R}^3} u_\varepsilon = u_\varepsilon(0).
\]

Since \(c_q := \frac{1}{2} - \frac{3}{q^2 q} > 0 \) for \(q > 7 \), from (22), one obtains
\[
0 = c_q \int_{\mathbb{R}^3} \frac{1}{u_\varepsilon^{q-1}(x)} \, dx + \frac{1}{2} \int_{\mathbb{R}^3} \frac{2x \cdot \nabla P_\varepsilon(x) - P_\varepsilon(x)}{u^q(x)} \, dx
\]
\[
= \frac{1}{2} \int_{\mathbb{R}^3} \frac{3 P_\varepsilon(x) + 2c_q u_\varepsilon(x) - 4}{u_\varepsilon^q(x)} \, dx,
\]
which implies that \(2c_q u_\varepsilon(0) < 4 \), that is, \(u_\varepsilon(0) \leq C \). Therefore, by (19)
\[
\frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|y|}{u_\varepsilon^q(y)} \, dy = u_\varepsilon(0) - 1 \leq C.
\]
Hence, differentiating under the integral sign, from (19)

\[|\nabla (u_\epsilon(x) - P_\epsilon(x))| \leq \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{dy}{u_\epsilon^q(y)} \leq C. \]

Thus, \((u_\epsilon)_{0<\epsilon\leq 1}\) is bounded in \(C^1_{loc}(\mathbb{R}^3)\). This yields

\[u_\epsilon(x) \geq \frac{1}{8\pi} \int_{B_1} \frac{|x - y|}{u_\epsilon^q(y)} dy \geq \delta |x| \quad \text{for} \quad |x| \geq 2, \]

for some \(\delta > 0\). Using this, and recalling that \(q > 4\), we deduce

\[\lim_{R \to \infty} \sup_{0<\epsilon\leq 1} \int_{|y| \geq R} \frac{|y|}{u_\epsilon^q(y)} dy = 0. \]

Therefore, for some \(\epsilon_k \downarrow 0\), we have \(u_{\epsilon_k} \to u\), where \(u\) satisfies

\[u(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y|}{u^q(y)} dy + 1 + \kappa(x_2^2 + x_3^2). \]

We conclude the proof. \(\square\)

2.1 A new proof of (iii)–(iv) of Theorem A

Proof of (iii) Let \(q > 3\) be fixed. Then by Proposition 2.1, for every \(\epsilon > 0\), there exists a radial function \(u_\epsilon\) satisfying

\[u_\epsilon(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y|}{u_\epsilon^q(y)} dy + 1 + \epsilon |x|^2, \quad \min_{\mathbb{R}^3} u_\epsilon = u_\epsilon(0) = 1. \]

Since \(u_\epsilon\) is radially symmetric, one has (see Eq. (3.3) in [5])

\[u_\epsilon(r) \geq \delta (1 + r^4)^{\frac{1}{q+1}}, \]

for some \(\delta > 0\). Therefore, as \(q > 3\)

\[\int_{\mathbb{R}^3} \frac{dx}{u_\epsilon^q(x)} \leq C \int_{\mathbb{R}^3} \frac{dx}{(1 + |x|^4)^{\frac{q}{q+1}}} \leq C, \]

which gives

\[|\nabla u_\epsilon(x)| \leq \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{1}{u_\epsilon^q(y)} dy + 2\epsilon |x| \leq C + 2\epsilon |x|. \]

As \(u_\epsilon(0) = 1\), one would get

\[u_\epsilon(x) \leq 1 + C|x| + C\epsilon |x|^2. \]

Thus, the family \((u_\epsilon)_{0<\epsilon\leq 1}\) is bounded in \(C^1_{loc}(\mathbb{R}^3)\). Hence, for some \(\epsilon_k \downarrow 0\) we have \(u_{\epsilon_k} \to u\) where \(u\) satisfies

\[u(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y| - |y|}{u^q(y)} dy + 1, \quad \min_{\mathbb{R}^3} u = u(0) = 1. \]

Finally, as before, we have

\[\lim_{|x| \to \infty} \frac{u(x)}{|x|} = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{dy}{u^q(y)}. \]
Since \(q > 1 \) be fixed. Then by Proposition 2.1, for every \(\varepsilon > 0 \), there exists a non-negative radial function \(v_\varepsilon \) satisfying
\[
v_\varepsilon(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y| - |y|}{(1 + |y|^2 + \varepsilon |y|^4 + v_\varepsilon(y))^q} dy.
\]
The rest of the proof is similar to that of Theorem 1.2.

\[\square \]

Proof of (iv) Let \(q > 1 \) be fixed. Then by Proposition 2.1, for every \(\varepsilon > 0 \), there exists a non-negative radial function \(v_\varepsilon \) satisfying
\[
v_\varepsilon(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y| - |y|}{(1 + |y|^2 + \varepsilon |y|^4 + v_\varepsilon(y))^q} dy.
\]
The rest of the proof is similar to that of Theorem 1.2.

\[\square \]

In the spirit of [5, Lemma 4.9] we prove the following Pohozaev type identity (see [18]).

Lemma 2.3 (Pohozaev identity) Let \(u \) be a positive solution to
\[
u(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y|}{u^q(y)} dy + P(x), \tag{21}
\]
for some non-negative polynomial \(P \) of degree at most 2 and \(q > 4 \).

Then
\[
\left(\frac{1}{2} - \frac{3}{q - 1} \right) \int_{\mathbb{R}^3} \frac{1}{u^{q-1}(x)} dx + \frac{1}{2} \int_{\mathbb{R}^3} \frac{2x \cdot \nabla P(x) - P(x)}{u^q(x)} dx = 0 \tag{22}
\]

Proof Differentiating under the integral sign, from (21)
\[
x \cdot \nabla u(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{x \cdot (x - y)}{|x - y|} \frac{1}{u^q(y)} dy + x \cdot \nabla P(x).
\]

Multiplying the above identity by \(u^{-q}(x) \) and integrating on \(B_R \)
\[
\int_{B_R} \frac{x \cdot \nabla u(x)}{u^q(x)} dx = \frac{1}{8\pi} \int_{B_R} \int_{\mathbb{R}^3} \frac{x \cdot (x - y)}{|x - y|} \frac{1}{u^q(y)u^q(y)} dy dx + \int_{B_R} \frac{x \cdot \nabla P(x)}{u^q(x)} dx.
\]

Integration by parts yields
\[
\int_{B_R} \frac{x \cdot \nabla u(x)}{u^q(x)} dx = \frac{1}{1 - q} \int_{B_R} x \cdot \nabla (u^{1-q}(x)) dx
\]
\[= -\frac{3}{1 - q} \int_{B_R} u^{1-q} dx + \frac{R}{1 - q} \int_{\partial B_R} u^{1-q} d\sigma.
\]

Since \(q > 4 \) and \(u(x) \geq \delta |x| \) for some \(\delta > 0 \) and \(|x| \) large
\[
\lim_{R \to \infty} R \int_{\partial B_R} u^{1-q} d\sigma = 0.
\]

Writing \(x = \frac{1}{2} ((x + y) + (x - y)) \), and setting
\[
F(x, y) := \frac{(x + y) \cdot (x - y)}{|x - y|} \frac{1}{u^q(x)u^q(y)}
\]
we get
\[
\frac{1}{8\pi} \int_{B_R} \int_{\mathbb{R}^3} \frac{x \cdot (x - y)}{|x - y|} \frac{1}{u^q(x)u^q(y)} dy dx
\]
\[= \frac{1}{2} \int_{B_R} \frac{1}{u^q(x)} \left(\frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y|}{u^q(y)} dy \right) dx + \frac{1}{16\pi} \int_{B_R} \int_{\mathbb{R}^3} F(x, y) dy dx
\]
\[= \frac{1}{2} \int_{B_R} \frac{1}{u^q(x)} (u(x) - P(x)) dx + \frac{1}{16\pi} \int_{B_R} \int_{\mathbb{R}^3} F(x, y) dy dx.
\]
Notice that \(F(x, y) = -F(y, x) \). Hence,
\[\int_{B_R} \int_{B_R} F(x, y) dy dx = 0, \]

and

\[\lim_{R \to \infty} \int_{B_R} \int_{B_R} F(x, y) dy dx = \lim_{R \to \infty} \int_{B_R} \int_{B_R} F(x, y) dy dx = 0, \]

where the last equality follows from \(|x| u^{-q}(x) \in L^1(\mathbb{R}^3)\). Combining these estimates and taking \(R \to \infty\) in (23) one gets (22).

\[\square \]

References

1. Branson, T.P.: Group representations arising from Lorentz conformal geometry. J. Funct. Anal. 74, 199–291 (1987)
2. Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989)
3. Chang, S.-Y.A., Chen, W.: A note on a class of higher order conformally covariant equations. Discrete Contin. Dyn. Syst. 63, 275–281 (2001)
4. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)
5. Choi, Y.S., Xu, X.: Nonlinear biharmonic equations with negative exponents. J. Differ. Equ. 246, 216–234 (2009)
6. Duoc, T.V., Ngô, Q.A.: A note on positive radial solutions of \(\Delta^2 u + u^{-q} = 0\) in \(\mathbb{R}^3\) with exactly quadratic growth at infinity. Differ. Integral Equ. 30(11–12), 917–928 (2017)
7. Feng, X., Xu, X.: Entire solutions of an integral equation in \(\mathbb{R}^5\). ISRN Math. Anal. p. 17 (2013). https://doi.org/10.1155/2013/384394
8. Guerra, I.: A note on nonlinear biharmonic equations with negative exponents. J. Differ. Equ. 253, 3147–3157 (2012)
9. Hyder, A.: Conformally Euclidean metrics on \(\mathbb{R}^n\) with arbitrary total Q-curvature. Anal. PDE 10(3), 635–652 (2017)
10. Hyder, A., Martinazzi, L.: Conformal metrics on \(\mathbb{R}^{2n}\) with constant Q-curvature and large volume. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(1), 283–299 (2015)
11. Lai, B.: A new proof of I. Guerra’s results concerning nonlinear biharmonic equations with negative exponents. J. Math. Anal. Appl. 418, 469–475 (2014)
12. Li, Y.: Remarks on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. 6, 1–28 (2004)
13. Lin, C.S.: A classification of solutions of a conformally invariant fourth order equation in \(\mathbb{R}^n\). Comment. Math. Helv. 73, 206–231 (1998)
14. Martinazzi, L.: Classification of solutions to the higher order Liouville’s equation on \(\mathbb{R}^{2m}\). Math. Z. 263, 307–329 (2009)
15. Martinazzi, L.: Conformal metrics on \(\mathbb{R}^{2m}\) with constant Q-curvature and large volume. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(6), 969–982 (2013)
16. McKenna, P.J., Reichel, W.: Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry. Electron. J. Differ. Equ. 37, 1–13 (2003)
17. Ngô, Q.A.: Classification of entire solutions of \((-\Delta)^nu + u^{4n-1} = 0\) with exact linear growth at infinity in \(\mathbb{R}^{2n-1}\). Proc. Am. Math. Soc. 146(6), 2585–2600 (2018)
18. Pohozaev, S.: Eigenfunctions of the equation \(\Delta u + \lambda f(u) = 0\). Sov. Math. Dokl. 6, 1408–1411 (1965)
19. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313(2), 207–228 (1999)
20. Wei, J., Ye, D.: Nonradial solutions for a conformally invariant fourth order equation in \(\mathbb{R}^4\). Calc. Var. Partial Differ. Equ. 32(3), 373–386 (2008)
21. Xu, X.: Exact solutions of nonlinear conformally invariant integral equations in \(\mathbb{R}^3\). Adv. Math. 194, 485–503 (2005)
22. Yang, P., Zhu, M.: On the Paneitz energy on standard three sphere. ESAIM Control Optim. Calc. Var. 10(2), 211–223 (2004)