Concrete quantum cryptanalysis of binary elliptic curves

Gustavo Banegas, Daniel J. Bernstein, Iggy van Hoof and Tanja Lange

2021, September 13
Google Claims ‘Quantum Supremacy,’ Marking a Major Milestone in Computing

Quantum computing leaps ahead in 2019 with new power and speed

- Shor (1994): Sufficiently large quantum computers break DLP and RSA
- How big do these quantum computers need to be?
- Previous recent work: RSA & prime field ECDH.
- This work: binary ECDH.
- Results: $7n + \lfloor \log_2(n) \rfloor + 9$ qubits, $48n^3 + O(n^{\log_2(3)+1})$ TOF gates.
Most expensive step in Shor is adding precomputed points $[2^i]P$.
We treat rest of Shor as blackbox.
Point addition uses operations in \mathbb{F}_{2^n}:
- Addition
- Multiplication
- Division
How do we build quantum circuits?
Quantum Gates

- Quantum bits: qubits.
- Today quantum computing 101: no purely quantum gates.
- Classical reversible gates:

\[
\begin{align*}
\text{NOT:} & \\
& a \quad 1 - a \\
\text{CNOT:} & \\
& a \quad a \oplus b \\
& b \quad b
\end{align*}
\]

\[
\begin{align*}
\text{SWAP:} & \\
& a \quad b \\
& b \quad a
\end{align*}
\]

\[
\begin{align*}
\text{TOF:} & \\
& a \\
& b \\
& c \quad c \oplus (a \cdot b)
\end{align*}
\]
Quantum circuits

- We can now make circuits.
- Number of qubits is most important.
- Need a measure of quality:
 - Gate count?
 - TOF gates?
 - Depth?
 - Physical implementation?
Binary addition with a constant: NOT gates (same as classically).

Binary addition of 2 variables:
- bitwise XOR \rightarrow CNOT.
- Reversible: 2 inputs f, g; 2 outputs $f \oplus g, g$.
- n CNOTs.
Basic arithmetic: Multiplication by x in \mathbb{F}_{2^n}

- Field: use $\mathbb{F}_{2^n} \cong \mathbb{F}_2[x]/m(x)$ for an irreducible polynomial $m(x) \in \mathbb{F}_2[x]$ of degree n.
- Times x without reduction is free with SWAP.
- Modular reduction in 1 CNOT for trinomial $m(x)$.
- Modular reduction in 3 CNOTs for pentanomial $m(x)$.
- Do in reverse for division by x.

$$|g_0\rangle \quad \cdots \quad |g_3\rangle$$

Figure: Multiplication by x modulo $x^4 + x + 1$ with $g_0 + \cdots + g_3x^3$ as the input and $h_0 + \cdots + h_3x^3 = x \cdot g \mod x^4 + x + 1 = g_3 + (g_0 + g_3)x + g_1x^2 + g_2x^3$ as the output.
Basic arithmetic: Multiplication by constant & Squaring in \mathbb{F}_{2^n}

- Multiplication by a constant is a linear map.
- Turn linear map into a series of CNOTs using LUP decomposition.
- Do the same with squaring, linear map; $(a + b)^2 = a^2 + b^2$ in \mathbb{F}_{2^n}.
- Alternatively, adding the squaring result to a second polynomial also with only CNOTs.
Advanced arithmetic: Multiplication in \mathbb{F}_{2^n}

- Earlier work (van Hoof, Quantum Information and Computation 2020):
 - Quantum Karatsuba multiplication in \mathbb{F}_{2^n}.
 - No \textit{ancillary} qubits needed, only $3n$ space.
 - Previous work used extra qubits.
 - Optimal TOF gate count for Karatsuba: $n^{\log_2 3}$ TOF gates.
Most expensive step: division or inversion.
We compare 2 methods:
- Extended Euclidean algorithm.
- Fermat’s little theorem.
Division: Extended Euclidean algorithm

- Normal Euclidean algorithm has variable number of steps.
- Based on constant time classical inversion (Bernstein & Yang, CHES 2019).

\[
|\delta\rangle \quad \frac{1}{|\delta|} \quad +1 \quad |\delta\rangle \\
|\text{sign}\rangle \quad |\text{sign}\rangle \\
|f\rangle \quad \frac{1}{n+1} \quad \times \quad |f\rangle \\
|g\rangle \quad \frac{1}{n+1} \quad \times \quad |g\rangle \\
g_0[\ell] = |0\rangle \\
a = |0\rangle \\
|r\rangle \quad \frac{1}{n+1} \\
|v\rangle \quad \frac{1}{n+1} \quad \cdot \chi \quad |v\rangle \\
\]

Figure: Step \(\ell\) of Algorithm 1. \(|\delta| = \lfloor \log(n) \rfloor + 1\).
Fermat’s little theorem: \(x^p \equiv x \mod p \rightarrow x^{p-2} \equiv x^{-1} \mod p \).

Binary FLT: \(x^{2^n-2} \equiv x^{-1} \mod m(x) \).

Itoh-Tsujii inversion optimizes this.

Large number of squarings, low number of multiplications.

Number of multiplications depends on HW of \(n - 1 \).

Every multiplication costs \(n \log_2 3 \) TOF gates.

Squaring costs only CNOT gates.
FLT-based inversion circuit

Figure: Step 1-3 of Algorithm 2 for $n = 10$. S is the squaring circuit and M is multiplication.
XGCD vs FLT

- Extended Euclidean algorithm uses more TOF gates.
- Fermat’s little theorem uses more qubits and CNOT gates.
- Example: $n = 233$:

inversion method	TOF gates	qubits
XGCD	827,977	1,646
FLT	132,783	3,029
Point addition

- On the curve we need to add multiples of P to quantum $P_1 = (x_1, y_1)$.
 - If qubit $q_i = 1$ output $(x_3, y_3) = P_1 + P_2$ with pre-computed $P_2 = (x_2, y_2) = [2^i]P$.
 - Else: output P_1.

- Binary addition in affine coordinates: 2 S, 2 M and 2 D in \mathbb{F}_{2^n}.
- 2nd division returns ancillary qubits to all-0.

- Special cases:
 - Addition with O.
 - Addition when $x_1 = x_2$.

\[
\begin{align*}
|x_1\rangle & \quad /n \cdot +x_2 \quad +a + x_2 \quad +x_2 \quad \text{or} \quad |x_3\rangle \quad \text{or} \quad |x_1\rangle \\
|q\rangle & \quad \text{or} \quad |q\rangle \\
|y_1\rangle & \quad /n \cdot +y_2 \quad M \quad S \quad S \quad M \quad +y_2 \quad \text{or} \quad |y_3\rangle \quad \text{or} \quad |y_1\rangle \\
|0\rangle & \quad /n \cdot D \quad \text{or} \quad |0\rangle
\end{align*}
\]
Can we use classical precomputation?

Classical computation is very cheap.

Classically precompute all \(2^j \ell (a_0 P + a_1 2P + \cdots + a_{\ell-1} 2^{\ell-1} P)\) with \(a_i \in \{0, 1\}\) and handle \(\ell\) bits in one quantum addition.

Need qRAM lookups.

Example: \(n = 233\):

Window size	Point additions	TOF gates	Lookups	Pre-computed points
1	468	781 M	0	0
7	68	113 M	408	8,704
16	30	52 M	180	1,966,080
32	16	27 M	96	68,719,476,736
Summary: No windowing

- Division is the most expensive step.
- Results without windowing:

n	qubits	Point addition	Total
		TOF gates	TOF gates
8	68	7,360	132,480
16	125	21,016	714,544
127	904	559,141	143,140,096
163	1,157	893,585	293,095,880
233	1,647	1,669,299	781,231,932
283	1,998	2,427,369	1,378,745,592
571	4,015	8,987,401	10,281,586,744
Summary: Windowing

- Need approximation of cost of qRAM lookup.
- Previous work: $2(2^\ell - 1)$ TOF gates per lookup (Babbush, Gidney, Berry, Wiebe, McClean, Paler, Folwer and Neven, Physical Review, 2018).
- Results with windowing:

n	ℓ	TOF gates	Lookups	Total TOF gates	pre-computed points
8	7	29,344	24	35,440	512
16	8	125,808	36	144,168	1,536
127	13	11,733,960	120	13,699,800	163,840
163	13	24,113,592	156	26,669,184	212,992
233	14	58,401,000	204	65,085,264	557,056
283	14	101,913,840	252	110,170,872	688,128
571	16	655,955,224	432	712,577,464	4,718,592
Comparison to other work

- Division and multiplication numbers look good for binary fields.
- General results:
 - \(7n + \lfloor \log_2(n) \rfloor + 9\) qubits, mostly ancillary qubits for division.
 - \(48n^3 + 8n^{\log_2(3)+1} + 352n^2 \log_2(n) + 512n^2 + O(n^{\log_2(3)})\) TOF gates.
- Prime field: similar results (Roetteler, Naehrig, Svore and Lauter, Asiacrpt 2017 & Häner, Jaques, Naehrig, Roetteler and Soeken, PQCrypto 2020).
 - Lots of speedup over the prime field case: addition, multiplication, division all cheaper in \(\mathbb{F}_{2^n}\).
- Projective binary coordinates: not optimized for space (Amento, Roetteler, Steinwandt, Quantum Information and Computation 2013)
 - Significantly worse space.
 - Lower TOF gate count due to fewer divisions.