PLIKS: A Pseudo-Linear Inverse Kinematic Solver for 3D Human Body Estimation

Karthik Shetty1,2 \quad Annette Birkhold2 \quad Srikrishna Jaganathan1,2 \quad Norbert Strobel2,3 \\
Markus Kowarschik2 \quad Andreas Maier1 \quad Bernhard Egger1 \\
1FAU Erlangen-Nürnberg, Erlangen, Germany \quad 2Siemens Healthineers AG, Forchheim, Germany \quad 3University of Applied Sciences Würzburg-Schweinfurt, Germany \\
karthik.shetty@fau.de

Abstract

We introduce PLIKS (Pseudo-Linear Inverse Kinematic Solver) for reconstruction of a 3D mesh of the human body from a single 2D image. Current techniques directly regress the shape, pose, and translation of a parametric model from an input image through a non-linear mapping with minimal flexibility to any external influences. We approach the task as a model-in-the-loop optimization problem. PLIKS is built on a linearized formulation of the parametric SMPL model. Using PLIKS, we can analytically reconstruct the human model via 2D pixel-aligned vertices. This enables us with the flexibility to use accurate camera calibration information when available. PLIKS offers an easy way to introduce additional constraints such as shape and translation. We present quantitative evaluations which confirm that PLIKS achieves more accurate reconstruction with greater than 10\% improvement compared to other state-of-the-art methods with respect to the standard 3D human pose and shape benchmarks while also obtaining a reconstruction error improvement of 12.9 mm on the newer AGORA dataset.

1. Introduction

Estimating human surface meshes and poses from single images is one of the core research directions in computer vision, allowing for multiple applications in computer graphics, robotics and augmented reality [14, 46]. Since humans have complex body articulations and the scene parameters are typically unknown, we are essentially dealing with an ill-posed problem that is difficult to solve in general.

Thanks to models such as SMPL [35] and SMPL-X [44] additional constraints on body shape and pose became available. They made the problem somewhat more tractable. Most state-of-the-art methods [19, 21, 24, 27, 52] directly regress the shape and pose parameters from a given input image. These approaches rely completely on neural networks, while making several assumptions about the image generation process. One typical assumption is the use of a simplified camera model such as the weak perspective camera. In this scenario, the camera is assumed to be far away from the subject, which is generally realized by setting a large focal length constant for all images. A weak perspective camera can be described based on three parameters, two with respect to translation in the horizontal and vertical directions, and the third being scale. While these methods can estimate plausible shape and pose parameters, it can happen that the resulting meshes are either misaligned in the 2D image space or in the 3D object space. This is because the underlying optimization problem is often not constrained enough such that it is difficult for the underlying networks to optimize between the 2D re-projection loss and the 3D loss.

Some existing methods [23, 25, 31] propose a workaround by tackling the problem using a hybrid...
approach involving learning-based and optimization-based techniques while incorporating a full perspective camera [23]. Optimization-based approaches are, however, prone to local minima, and they are computationally expensive. In [25], the authors propose to regress the SMPL parameters by conditioning on features from a CamCalib network meant to predict the camera parameters. Unfortunately, this camera prediction network needs a specialized dataset to train on, which is very hard to acquire in practice. It also prevents end-to-end learning.

On the other hand, recent non-parametric or model-free approaches [33, 40] directly regress the mesh vertex coordinates based on their 2D projections, aligning well to the input image. However, by ignoring the effects of a perspective camera, even these methods suffer from the same limitations as the parametric models.

Motivated by the above observations, we present a novel approach, named PLIKS, for 3D human shape and pose estimation that incorporates the perspective camera while analytically solving for all the parameters of the parametric model. The pipeline of our approach comprises of two modules, namely the mesh regressor and PLIKS. The mesh regressor provides a mapping between an image and the 3D vertices of the SMPL model. Given a single image, any off-the-shelf Convolution Neural Network (CNN) can be used for feature extraction. The extracted features can then be used to obtain a mesh representation either by using 1D CNNs [40], GraphCNNs [28], or even transformers [33]. This way, correspondences to the image space can be found and a relative depth estimate can be computed. From the image-aligned mesh prediction, we can roughly estimate the rotations with respect to a template mesh in canonical space with the application of Inverse Kinematics (IK), denoted in this work as the Approximate Rotation Estimator (ARE). Finally, we reformulate the SMPL model as a linear system of equations, with which we can use the 2D pixel-aligned vertex maps and any known camera intrinsic parameters to fully estimate the model without the need for any additional optimization. As our approach is end-to-end differentiable and fits the model within the training loop, it is self-improving in nature. The proposed approach is benchmarked against various 3D human pose and shape datasets, and significantly outperforms other state-of-the-art approaches.

To summarize, the contribution of our paper is the following: (1) We bridge the gap between the 2D pixel-aligned vertex maps and the parametric model by reformulating the SMPL model as a linear system of equations. Since the proposed approach is fully differentiable, we can perform end-to-end training. (2) We propose a 3D human body estimation framework that reconstructs the 3D body without relying on weak-perspective assumptions. (3) We show that our approach can improve upon other state-of-the-art methods when evaluated across various 3D human pose and shape benchmarks.

2. Related Work

Recovering human pose and shape from monocular images has been extensively studied using both model-based [21, 24, 52] and model-free approaches [11, 33, 40]. Model-based methods estimate the parameters of a parametric body model such as SMPL [35] based on a single input RGB image. The use of parametric body models makes it possible to enforce strong statistical priors of the human mesh. Model-based methods can be further split into optimization and regression techniques. Optimization-based approaches [3, 6] make use of 2D keypoints estimated by a Deep Neural Network (DNN) which are iteratively fit with the SMPL model. These methods however are sensitive to initialization and are susceptible to local minima. Regression-based techniques based on DNNs directly estimate the pose and shape parameters [10, 21, 42, 45, 52, 54]. However, these approaches typically require a large amount of training data. SPIN [27] provided a revolutionary architecture combining optimization-based techniques with regression-based methods. This allowed for much stronger supervision and improved performance on mesh accuracy. However, due to the difficulty in directly estimating the mapping from a single image to the shape and pose space, the mesh alignment with respect to the input image is often imperfect [17, 29]. Model-free approaches directly regress the vertices based on intermediate representations, such as IUV maps [11, 56, 59], 2D/3D heatmaps [17, 29], silhouette [49, 57], and direct vertex regression [28, 32, 33, 40] where correspondence is established between the model and the input image.

To overcome the issues of the learning-based and optimization-based approaches, hybrid techniques combining both approaches have been proposed [7, 17, 29, 30]. In contrast to SPIN [27], here we have a closed-form solution. First, the learning-based approach localizes 3D human joint coordinates [4, 5, 16, 38], utilizing volumetric heatmaps or GraphCNNs for the target representation. From the localized 3D joints, the swing rotations are then determined analytically, whereas the twist rotations, shape parameters, and root translation are either predicted by a network or iteratively optimized [17, 29].

Typical human reconstruction methods [21, 27] take a cropped input image while using 3D predictions projected onto the cropped image for 2D supervision. This, however, ignores the effects of perspective warping. This happens when the cropped image is off-center resulting in inaccurate rotations [58]. To overcome this, some approaches [17, 23] perform iterative optimization [3] after the initial DNN-based predictions. SPEC [25] proposes to condition the image features from a camera calibration network. How-
ever, a few methods include perspective warping during the cropping process and add an implicit camera rotation as post-processing [36, 58]. CLIFF [31] addresses the problem by incorporating the bounding box information into the cropped image.

3. Methodology

In this section, we present our network architecture which includes an analytical solver for inverse kinematics and is end-to-end trainable. As illustrated in Fig. 2, our network consists of two parts, first, a mesh regressor and second, a Pseudo-Linear Inverse Kinematic Solver (PLIKS). In Sec. 3.1, we go over the SMPL model along with its formulation, we represent a set of vertices/indices corresponding to a particular segment that has the maximum blend weight shown in Fig. 3. A vertex on the mesh with index \(m \) belongs to a segment \(s_k \) with the superscript \(k \). Here, we also consider the individual segments to be a set of rigid 3D points which enables us to orient these segments from the template mesh \(\vec{x}_m^k \) to a network predicted mesh \(X^k \) to obtain an initial rotation estimate using ARE explained in the following section.

3.2. Pseudo-Linear Inverse Kinematic Solver

Solving Inverse Kinematics (IK) from 2D correspondences is a challenging task due to the inherent non-linearity that exists in the parameterized mesh generation process. We propose to solve IK from 2D pixel-aligned vertex inputs by building a linear system of equations of the form \(Ax=b \). We add shape constraints to obtain the optimal world pose \(\hat{\theta} \), shape \(\beta \), and world translation \(t \). Linear-Least-Squares is used to estimate the optimal parametric solution making the entire pipeline end-to-end differentiable. From the world pose \(\hat{\theta} \), the relative rotations \(\theta \) can be inferred by recursively solving the kinematic tree. For the linear system, we assume the rotations as a first-order Taylor approximation [2] with the individual segments of the predicted mesh model approximately oriented \(\hat{\theta} \) along the optimal solution. Based on this assumption, using the rotations estimated from ARE should provide the exact solution in a single optimization step.

Regression Network Assuming that some form of dense vertex correspondences exists that facilitates mapping between 3D vertices to pixels in the 2D image plane, we can then incorporate the IK solver into the network. As shown in Fig. 2, our architecture is comprised of an encoder, a mesh regressor, and a parameter regressor. The encoder is based on HRNet-W32 [51], the mesh regressor is based on MeshNet [40], whereas the parameter regressor is a set of fully connected layers.

The encoder acts as a feature extractor \(\mathbf{F} \in \mathbb{R}^{C \times c' \times c'} \), with a channel dimension \(C=480 \), height and width \(c'=58 \). It takes a cropped image \(\mathbf{I} \in \mathbb{R}^{1 \times 224 \times 224} \) of a person as input. Similar to MeshNet [40], we make use of 1D convolutions to generate four feature vectors

\[
\mathbf{P} = \{ (\mathbf{P}^u, \mathbf{P}^v, \mathbf{P}^d) \in \mathbb{R}^{N \times 58}, \mathbf{w} \in \mathbb{R}^{N} \},
\]

for each mesh vertex. Here, \(\mathbf{P}^u \) and \(\mathbf{P}^v \) represent the features along the \(u \) and \(v \) axis, \(\mathbf{P}^d \) represents the features along the root-normalized depth, and \(\mathbf{w} \) represents the weighting factor. They are obtained as follows

\[
\begin{align*}
\mathbf{P}^u &= f_u^{1D}(\text{avg}^u(\mathbf{F})), \\
\mathbf{P}^v &= f_v^{1D}(\text{avg}^v(\mathbf{F})), \\
\mathbf{P}^d &= f_d^{1D}(\psi_d(\text{avg}^d(\mathbf{F}))), \\
w &= \sigma(\text{avg}^d(f_d^{1D}(\psi_d(\text{avg}^d(\mathbf{F}))))).
\end{align*}
\]

3.1. Parametric Mesh Representation

We use the Skinned Multi-Person Linear (SMPL) model to parameterize the human body [35]. The SMPL model is a statistical parametric function \(\mathcal{M}(\beta, \theta, \Phi) \). The output of this function is a triangulated surface mesh with \(N = 6890 \) vertices. The shape parameters \(\beta \) are represented by a low dimensional principal component which maps the linear basis \(\mathbb{B} \) from \(\mathbb{R}^{|\beta|} \rightarrow \mathbb{R}^{3N} \), representing offsets along with its forward deformations \(\mathcal{R} \). The output of this function is a triangulated surface mesh with \(N = 6890 \) vertices. The shape parameters \(\beta \) are represented by a low dimensional principal component which maps the linear basis \(\mathbb{B} \) from \(\mathbb{R}^{|\beta|} \rightarrow \mathbb{R}^{3N} \), representing offsets along with its forward mesh reconstruction.

Simplified SMPL Although the SMPL model described above is intrinsically linear, it cannot be defined as a linear system of equations to solve the IK problem directly. To deal with this problem, we make use of a simplified model, where we ignore the pose-related shape deformations \(\mathcal{R} \). Instead, we use a simplified model based on the relative rotations \(\theta \) and shape deformations \(\beta \). The 3D body joints can be obtained by a linear combination of the mesh vertices using any desired linear regressor \(\mathcal{J} ^{'} (\mathcal{M}(\beta, \theta, \Phi)) \).

576
Here $f_i^{1D}(.)$ and $\psi_i(.)$ represent a 1D convolution along the i-th dimension, which converts the features F from $C \times C' \to N \times C'$ and $C \times 1 \to (C \times C')^T$, respectively. The average function $avg(\cdot)$ averages the features along the i-th dimension. For the weighting factor w, we average across the channel dimension, followed by applying the sigmoid activation function $\sigma(\cdot)$ [41]. More details about the weighting function w are explained in the following sections.

We then concatenate and process $\tilde{P} = \{P^u, P^v, P^d\}$ using a graph convolution network (GCN) to predict $uvd \in \mathbb{R}^{N \times 3}$. We use GCN rather than the heatmap-based approach from MeshNet [40] to avoid any truncation-based artifacts, which are prominent when partial images of humans are supplied as inputs. For the GCN we use the formulation from Kipf et al. [22], defined as $G = \sigma(A \tilde{P} W)$, where $A \in \mathbb{R}^{N \times N}$ denotes the graph adjacency matrix, $W \in \mathbb{R}^{C \times l}$ denotes the trainable weights with l as the output channel dimension, and σ denotes the ReLU [1] activation function. We make use of 3 GCNs in series, with channel sizes 64, 32, and 3 respectively. The final output $X_{uvd}^I \in \mathbb{R}^{N \times 3}$ acts as the vertex correspondence in the image coordinate system.

The parameter regressor is a set of fully connected layers to obtain an approximate shape $\hat{\beta}$ and a weak perspective camera $\hat{\epsilon} \in \mathbb{R}^3$, which are used to determine the approximate world rotations later. We make use of the estimated depth \tilde{c}_d from the camera prediction to obtain a mesh in the world coordinate system X as follows,

$$X = (K^{-1}X_{uvd}^I) \cdot (X_d^I + \tilde{c}_d),$$

where $K \in \mathbb{R}^{3 \times 3}$ is an intrinsic matrix with fixed focal length of 1000.

Approximate Rotation Estimator (ARE) Given two sets of corresponding points in 3D space, it is possible to obtain an optimal rotation as a closed-form solution using the Kabsch solver [20]. For a given segment from network mesh prediction X^k we use the Kabsch solver to determine the rotation that a same segment from the template mesh needs to go through from its rest pose. As the mesh prediction X^k can represent a wide range of human shapes, we make use of the shape predictions $\hat{\beta}$ on the mean shape as $x^k = x_m^k + (\hat{\beta} B)^k$. The pose solver minimizes the squared distances between a set of 3D correspondences to obtain an optimal pose as follows,

$$(U \Sigma V^T)_k = C_k \sum_{x^k} (X^k - \bar{X}^k) (x^k - \bar{x}^k)^T w^k \psi^k.$$

Here $f_i^{1D}(.)$ and $\psi_i(.)$ represent a 1D convolution along the i-th dimension, which converts the features F from $C \times C' \to N \times C'$ and $C \times 1 \to (C \times C')^T$, respectively. The average function $avg(\cdot)$ averages the features along the i-th dimension. For the weighting factor w, we average across the channel dimension, followed by applying the sigmoid activation function $\sigma(\cdot)$ [41]. More details about the weighting function w are explained in the following sections.

We then concatenate and process $\tilde{P} = \{P^u, P^v, P^d\}$ using a graph convolution network (GCN) to predict $uvd \in \mathbb{R}^{N \times 3}$. We use GCN rather than the heatmap-based approach from MeshNet [40] to avoid any truncation-based artifacts, which are prominent when partial images of humans are supplied as inputs. For the GCN we use the formulation from Kipf et al. [22], defined as $G = \sigma(A \tilde{P} W)$, where $A \in \mathbb{R}^{N \times N}$ denotes the graph adjacency matrix, $W \in \mathbb{R}^{C \times l}$ denotes the trainable weights with l as the output channel dimension, and σ denotes the ReLU [1] activation function. We make use of 3 GCNs in series, with channel sizes 64, 32, and 3 respectively. The final output $X_{uvd}^I \in \mathbb{R}^{N \times 3}$ acts as the vertex correspondence in the image coordinate system.

The parameter regressor is a set of fully connected layers to obtain an approximate shape $\hat{\beta}$ and a weak perspective camera $\hat{\epsilon} \in \mathbb{R}^3$, which are used to determine the approximate world rotations later. We make use of the estimated depth \tilde{c}_d from the camera prediction to obtain a mesh in the world coordinate system X as follows,

$$X = (K^{-1}X_{uvd}^I) \cdot (X_d^I + \tilde{c}_d),$$

where $K \in \mathbb{R}^{3 \times 3}$ is an intrinsic matrix with fixed focal length of 1000.

Approximate Rotation Estimator (ARE) Given two sets of corresponding points in 3D space, it is possible to obtain an optimal rotation as a closed-form solution using the Kabsch solver [20]. For a given segment from network mesh prediction X^k we use the Kabsch solver to determine the rotation that a same segment from the template mesh needs to go through from its rest pose. As the mesh prediction X^k can represent a wide range of human shapes, we make use of the shape predictions $\hat{\beta}$ on the mean shape as $x^k = x_m^k + (\hat{\beta} B)^k$. The pose solver minimizes the squared distances between a set of 3D correspondences to obtain an optimal pose as follows,

$$(U \Sigma V^T)_k = C_k \sum_{x^k} (X^k - \bar{X}^k) (x^k - \bar{x}^k)^T w^k \psi^k.$$
Here C_k is the covariance matrix between the correspondences. In this context, x^k and \bar{x}^k represent the means over the associated point sets. The world rotation for the k-th segment $\theta_k = (VU^T)_k$ is obtained by applying singular value decomposition (SVD) over the covariance matrix. Since the SVD is differentiable, gradients can be back-propagated during the training process. Due to the blend skinning W process, a vertex may have rotation influence from on one or more joints. To tackle this, we multiply the squared distances in Eq. (3) with a weight term w_k from Eq. (1) and the maximum blend influence W_k. The weight is learned in an unsupervised manner to offset any influence the blending process contributes.

The obtained rotations are in the world space, whereas the SMPL model expects relative rotations in its axis space. The rotation around the pelvis $\theta_{k=1}$ corresponds to the global root rotation. The relative rotations for the other joints can be recursively based on the parent rotation following a pre-defined kinematic tree for the SMPL model. To this end, let $\hat{R}_k = R(\hat{\theta}_k) \in SO(3)$ represent the estimated world rotation determined for segment k. Then the relative rotation for segment k is

$$\hat{\theta}_k = \hat{R}_k = \hat{R}_{p(k)}^{-1} \hat{R}_k,$$

where $p(k)$ represents the parent joint of k and $\hat{\theta}_k$ the estimated relative pose.

Pseudo-Linear Inverse Kinematic Solver (PLIKS) An approximate SMPL model projected onto the image plane, with no pose-related blend shapes can be represented as

$$i^k = \tilde{K} \sum_{j=1}^{K} W_j^k \left(\Delta R_k \tilde{R}_k (\bar{x}_m^k + \beta B^k) + t_k \right).$$

Here, the superscript k refers to the k-th’s subset of vertices defined in Sec. 3.1. The matrix $\tilde{K} \in \mathbb{R}^{3 \times 4}$ represents a perspective projection matrix taking into account the affine transformation (only crop and resize) for the image fed into the network as

$$\tilde{K} = \begin{bmatrix} f_x & 0 & p_x & 0 \\ 0 & f_y & p_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Further, \tilde{R}_k represents the approximate world rotation obtained from the previous step. ΔR_k is defined as the additional rotation required to get an optimal solution, t^k represents the joint translation, and W are the blend weights. By combining all segments, we get $i = X_{i=1}^I \in \mathbb{R}^3$. This represents the correspondence between mesh vertices, defined in homogeneous coordinates, and the pixels in the image plane.

Since the additional rotation required is considered to be small we linearize the rotation matrix which needs to be determined based on Taylor expansion with angles α, β, γ along the x, y and z axes, respectively, as follows

$$\Delta R_k = \begin{bmatrix} 1 & -\gamma_k & \beta_k \\ \gamma_k & 1 & -\alpha_k \\ -\beta_k & \alpha_k & 1 \end{bmatrix}.$$

Further, we simplify the projected SMPL model in Eq. (5) by making some additional assumptions using the definitions introduced in Eq. (6). For the x^k_r term we assume that the majority of the rotation is significantly affected by the rotation with respect to the primary segment, i.e., we ignore the impact of neighbouring rotations as they are usually miniscule. This assumption is also made for the term B^k_r by assuming that for small rotations $\Delta R_k \tilde{R}_k \beta B^k \approx \tilde{R}_k \beta B^k$.

$$i^k = \hat{K} \left(\Delta R_k \sum_{j=1}^{K} W_j^k \tilde{R}_k (x^k_m + \beta B^k) + t_k \right).$$

The equation is now linear, with 154 unknown parameters corresponding to $\Delta R_k, \beta$ and t_k. If the focal lengths f_x, f_y and principal points p_x, p_y are not known, we assume a fixed focal length of 1000 mm and the image center as the principal point. Note that the fixed values here apply to the entire image, i.e., not to the cropped and resized input fed to the network.

Using Direct Linear Transform (DLT) [12] we can rewrite Eq. (6) in the form $Ax = b$. The optimal parameters can be obtained by minimizing the analytical error using linear least square defined by $x = A^+b$, where A^+ represents the pseudo-inverse of A. As the pseudo-inverse of a tall matrix is differentiable [8], gradients can be back-propagated during the training process. One of the major drawbacks when using DLT is that it minimizes the analytical loss rather than the geometric loss. One option to overcome this is to use Iterative Reweighted Least Squares (IRLS) [9], which robustly minimizes the objective function in an iterative manner by reweighing the geometric loss. However, we make use of the network predicted weighting w^k to weight the correspondences [26, 47]. To further enforce the predicted shape to be close to the mean shape, we add an additional constraint such that $||\beta||_2 \approx 0$ with a regularizing weight ω_{β} as

$$\arg\min_{\Delta R_k, \beta, t_k} ||w^k \left(i^k - \hat{K} (\Delta R_k x^k_m + \beta B^k + t_k W_r^k) \right)||_2 + \omega_{\beta} ||\beta||_2.$$

To get the final relative pose θ_k for each joint k, we apply Eq. (4) on the obtained world rotations $\Delta R_k \hat{R}_k$. The
Table 1. Benchmark of state-of-the-art models on 3DPW, Human3.6M, and MPI-INF-3DHP datasets. All units are in mm. Here + represents non-parametric methods. † means that the network was additionally trained with 3DPW. ‡ means that the network was additionally trained with 3DPW and AGORA.

Method	3DPW (14)	Human3.6M (14)	MPI-INF-3DHP (17)						
	PA-MPJPE↓	MPJPE↓	PVE↓	PA-MPJPE↓	MPJPE↓	PVE↓	PCK↑	AUC↑	MPJPE↓
HMR [21]	81.3	130.0	-	56.8	88.0	-	-	-	-
SPIN [27]	59.2	96.9	116.4	41.1	-	76.4	37.1	105.2	
I2L+ [40]	58.6	93.2	-	41.7	55.7	-	-	-	-
EFT† [19]	51.6	-	44.0	-	-	-	-	-	-
ROMP† [52]	47.3	76.7	93.4	-	-	95.1	-	-	-
PARE† [24]	46.5	74.5	88.6	-	-	-	-	-	-
Mesh Graphormer† [33]	45.6	74.7	87.7	34.5	51.2	-	-	-	-
HybrIK† [29]	45.3	74.1	86.5	33.6	55.4	87.5	46.9	93.9	
CLIFF [31]	43.0	69.0	81.2	32.7	47.1	-	-	-	-
PLIKS†	42.8	66.9	82.6	34.7	49.3	91.8	52.3	72.3	
PLIKS†	40.1	63.5	76.7	34.9	46.8	93.1	53.0	69.8	
PLIKS† (HR48)	38.5	60.5	73.3	34.5	47.0	93.9	54.1	67.6	

Table 2. Ground truth errors to validate the closed-form solution of PLIKS. Results in brackets represent running the PLIKS module twice. All units are in mm.

Table 3. Evaluation on Human3.6M dataset, with respect to the MRPE and MRPE on x, y, and z axis. † means the network was additionally trained with 3DPW [55] and AGORA [43].

Method	3DPW AGORA	MRPE	MRPE x	MRPE y	MRPE z
ARE	MPJPE↓	PVE↓	MPJPE↓	PVE↓	
PLIKS	23.0	24.9	52.0	55.3	
PLIKS†	1.3	1.5	8.4 (1.1)	10.3 (1.7)	

Table 4. Absolute PCK evaluation on the MuPoTs-3D [37] dataset.

Method	Matched People	All People	
	PCKKab↓	PKKroot↓	PKKab↑
RootNet [38]	31.8	31.0	31.5
VirtualPose [50]	47.0	53.5	44.0
PLIKS†	44.8	55.7	44.2

Table 4. Absolute PCK evaluation on the MuPoTs-3D [37] dataset.

4. Experiments

Following previous works, the base PLIKS model is trained on a combination of 3D datasets (Human3.6M [15] and MPI-INF-3DHP [36]), and 2D dataset (COCO [34]) with pseudo-GT labels obtained from EFT [19]. We evaluate on Human3.6M [15], 3DPW [55], MPI-INF-3DHP [36], AGORA [43], MuPoTs-3D [37], and 3DOH50K [61]. During the evaluation, we highlight our results for networks trained with any additional datasets.

4.1. PLIKS Error Analysis

We measure the effective reconstruction capability of ARE and PLIKS with ground truth conditions for the 3DPW [55] test set and the AGORA [43] validation set. For the ARE module experiment, we provide the GT SMPL mesh vertex projections and the GT shape parameters. Additionally, we set the root depth as 7 m for all the images as the SMPL model in its template pose can be well represented inside a 224 × 224 image when assuming weak perspective settings with a focal length of 1 m. For the PLIKS module experiment, we only provide the GT SMPL mesh vertex projections and a root depth of 7 m to the ARE module along with the GT bounding-box camera intrinsics as inputs. We also set the weights for the shape regularizer ω_z=0. We measure the Mean Per Joint Position Error (MPJPE), and the Per Vertex Error (PVE).

4.2. Comparison with the State-of-the-art

We compare our method with previous human mesh reconstruction approaches based on Human3.6M, MPI-INF-3DHP, and 3DPW datasets. To remain consistent with previous approaches, we use the LSP regressor [27] to obtain the 14 joints for Human3.6M and 3DPW datasets, while we...
use 17 joints with the Human3.6M regressor [27] for the MPI-INF-3HP dataset. We measure Procrustes Aligned Mean Per Joint Position Error (PA-MPJPE), Percentage of Correct Keypoints (PCK), and Area Under Curve (AUC) on the 3D pose results.

In Table 1, we provide quantitative results for previous 3D human shape and pose estimation results. We use the best results reported in all the other works for our comparison. Our network outperforms all previous state-of-the-art techniques on MPI-INF-3HP and 3DPW datasets along with the lowest MPJPE on Human3.6M. Further fine-tuning with the AGORA dataset results in a significant performance improvement. We also provide results of our network when trained on a larger HRNet-W48 [51] backbone following previous works [31, 33, 60]. We provide qualitative results of our approach considering prior methods [29, 31] in Fig. 4. Though all methods shown in Fig. 4 align well in the 2D projected space, it is apparent that the prior methods fail to align well in 3D space due to perspective warping. The effect of perspective warping is observed significantly when the human is off-centered. On the MPI-INF-3HP dataset, the advantage of incorporating PLIKS is more pronounced since the images are captured with a wide Field-of-View (FOV) (66°~90°) showing a 26.3 mm MPJPE improvement.

In Table 5, we list quantitative results on the AGORA benchmark. It can be seen that the proposed approach significantly outperforms all prior methods. AGORA additionally measures the F1 score to get Normalized Mean Joint Error (NMJE) and Normalized Mean Vertex Error (NMVE), which penalizes missed or faulty human detection. Here the human bounding box and camera parameters are not provided for the test set. We make use of YOLO-v5 [18, 39] for person detection. From Table 5, PLIKS was fine-tuned only on AGORA, whereas, PLIKS† was trained on all the 2D and 3D datasets which helps in generalizing to real-world images. As the focal length is not available during the test, we set \(f = 1 \) m for all images. Making use of the estimated focal length from CamCalib [25] on PLIKS† shows a 3.4 mm NMJE improvement (PLIKS†).

Most methods reported in Table 1 generate root relative meshes using a weak perspective camera. As our results are in absolute camera coordinates, we present root localization results in Table 3. We report previous results on Human3.6M provided from [38] on the mean root position error (MRPE). Here baseline [36, 48] depth is obtained using the least squares fit from the predicted 3D joints and its corresponding 2D projections. Though [38] has explicitly been designed to learn the absolute depth, we observe comparable results along the depth while performing better in the horizontal and vertical directions. Using 3DPW and AGORA for training results in significant improvement of the root localization error. We also report the Absolute PCK result on the MuPoTs-3D [37] dataset in Table 4. Note that the results are not strictly comparable due to differences in network backbones, the training datasets, and the joint prediction techniques.

4.3. Occlusion Analysis

To validate the stability under occlusion, we evaluate PLIKS on the object-occluded benchmark dataset 3DOH50K [61] and the person-occluded dataset 3DPW-OCC [55]. Following [24], we use only COCO, Human3.6M, and 3DOH datasets for training. To arrive at a fair comparison, we also train a network with ResNet50 [13] as the backbone. We observe better occlusion performance on both backbones from Table 6 for our approach. This can be attributed to the fact, that our approach is intrinsically trained on dense correspondences.

4.4. Ablation Studies

In this context, we evaluate the individual components of our approach. For all experiments, we use only the COCO, Human3.6M, and MPI-INF-3HP datasets for training and evaluation on all 3D datasets. We use the 3DPW validation set to determine the best model. In Table 7, we provide all the results for our ablation studies. The ARE module on its own can reconstruct 3D models provided the shape and camera parameters are regressed by the network. Hence, we evaluate its performance without the PLIKS module. Here, we observe that it performs poorly on all metrics for all datasets except for the PA-MPJPE of 3DPW. Next, on the same ARE module, we replace the HRNet-32 backbone with a ResNet-50 backbone. In this setting, similar to the

Method	F1↑	NMVE↓	NMJE↓	MVE↓	MPJPE↓
SPIN	0.77	193.4	199.2	148.9	153.4
SPEC	0.84	113.6	118.8	103.4	108.1
BEV [55]	0.93	108.3	113.2	100.7	105.3
H4W [39]	0.94	90.2	95.5	84.8	89.8
CLIFF [31]	0.91	83.5	89.0	76.0	81.0
PLIKS	0.94	76.8	81.5	72.2	76.6
PLIKS†	0.94	78.3	83.0	73.6	78.0
PLIKS‡	0.94	74.9	79.6	70.4	74.8
PLIKS‡(HR48)	0.94	71.6	76.1	67.3	71.5

Table 5. Reconstruction errors on the AGORA test set. All results are taken from the official evaluation platform. PLIKS† was trained with all 2D and 3D datasets. PLIKS‡ represents the usage of CamCalib [25] for focal length estimation during evaluation.

3DPW-OCC	3DOH	
MPJPE↓	PA-MPJPE↓	
DOH [61]	-	27.2
EFT [19]	94.4	60.9
pare [24]	90.5	56.6
PLIKS(R50)	86.1	53.2

Table 6. Evaluation on occlusion datasets 3DPW-OCC and 3DOH.
Figure 4. Qualitative results from 3DPW (top 2), MPI-INF-3DHP (bottom 2) datasets. The last column shows our shows the pelvis centred 3D joint locations. Here, the ground truth joint locations are represented in red with PLIKS in blue, HybrIK in orange and CLIFF in purple.

Module	Camera	3DPW	Human3.6M	MPI-INF-3DHP			
		MPJPE	PA-MPJPE	MPJPE	PA-MPJPE	MPJPE	PA-MPJPE
ARE	(wP)	83.6	50.5	53.6	39.4	94.6	61.4
ARE(R50)	(wP)	87.1	53.2	54.5	40.5	95.9	61.7
PLIKS	(wP)	85.5	50.6	51.3	36.2	93.4	63.2
PLIKS	f=√(W^2+H^2) (P)	81.8	51.7	47.8	34.8	83.2	61.4
	Known (P)	81.8	51.9	48.9	34.8	76.9	60.6

Table 7. Ablation studies by varying network setting. Here, (wP) and (P) refers to the weak-perspective and perspective camera model respectively.

occlusion test, HRNet performs better than ResNet. Next, we evaluate the importance of accounting for camera intrinsics by training a network with the PLIKS module but with all cropped images given as input to the network having a fixed focal length of f=0.3 m. The low focal length value violates the assumption of a weak-perspective setting. We observe slight improvements compared to that of ARE on the Human3.6M, whereas we see on-par results with the other datasets. Finally, we determine the effect of using a focal length of f=√(W^2+H^2) proposed in [23] only during inference. While there is no significant difference in 3DPW and Human3.6M, we observe a drop in performance for the MPI-INF-3DHP dataset compared to PLIKS with known camera intrinsics. This is due to the actual FOV being larger than the estimated FOV. Our ablations clearly demonstrate the importance of incorporating camera intrinsics into a network.

5. Conclusion

In this paper, we bridge the gap between 2D correspondence and body mesh estimation by creating a pipeline from which the inverse kinematics can be solved in closed form. This can be effectively leveraged to use the full perspective projection rather than having to rely on weak-perspective counterparts. Our approach yields considerable improvements in both root-relative and absolute-3D estimation for human pose estimation. PLIKS further enables our method to be fully differentiable facilitating end-to-end training. We validated the effectiveness of our method on various 3D pose and shape datasets and achieved state-of-the-art on multiple benchmarks. Due to the inherent nature of a built-in solver, we can extend our work with additional constraints like using multi-view systems for even higher reconstruction accuracy or temporal constraints for smooth video reconstruction should be feasible and foster future research in this direction.

Disclaimer The concepts and information presented in this article are based on research and are not commercially available.
References

[1] Abien Fred Agrap. Deep learning using rectified linear units (relu), 2018. cite arxiv:1803.08375Comment: 7 pages, 11 figures, 9 tables. 4

[2] Timothy Barfoot, James R. Forbes, and Paul T. Furgale. Pose estimation using linearized rotations and quaternion algebra. Acta Astronautica, 68(1):101–112, 2011. 3

[3] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero, and Michael J Black. Keep it small: Automatic estimation of 3d human pose and shape from a single image. In European conference on computer vision, pages 561–578. Springer, 2016. 2

[4] Hongsu Choi, Gyeongsik Moon, and Kyoung Mu Lee. Pose2mesh: Graph convolutional network for 3d human pose and mesh recovery from a 2d human pose. In European Conference on Computer Vision (ECCV), 2020. 2

[5] Hongsu Choi, Gyeongsik Moon, JoonKyu Park, and Kyoung Mu Lee. Learning to estimate robust 3d human mesh from in-the-wild crowded scenes. In Conference on Computer Vision and Pattern Recognition (CVPR), 2022. 2

[6] Qi Fang, Qing Shuai, Junting Dong, Hujun Bao, and Xiaowei Zhou. Reconstructing 3d human pose by watching humans in the mirror. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12814–12823, 2021. 2

[7] Georgios Georgakis, Ren Li, Srikrishna Karanam, Terrence Chen, Jana Košcká, and Ziyan Wu. Hierarchical kinematic human mesh recovery. In European Conference on Computer Vision, pages 768–784. Springer, 2020. 2

[8] G. H. Golub and V. Pereyra. The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM Journal on Numerical Analysis, 10(2):413–432, 1973. 5

[9] P. J. Green. Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. Journal of the Royal Statistical Society. Series B (Methodological), 46(2):149–192, 1984. 5

[10] Riza Alp Guler and Iasonas Kokkinos. Holopose: Holistic 3d human reconstruction in-the-wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10884–10894, 2019. 2

[11] Riza Alp Guler, Natalia Neverova, and Iasonas Kokkinos. Densepose: Dense human pose estimation in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7297–7306, 2018. 2

[12] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, New York, NY, USA, 2 edition, 2003. 5

[13] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016. 7

[14] David C. Hogg. Model-based vision: a program to see a walking person. Image Vis. Comput., 1:5–20, 1983. 1

[15] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments.

IEEE Trans. Pattern Anal. Mach. Intell., 36(7):1325–1339, 2014. 6

[16] Umar Iqbal, Pavlo Molchanov, and Jan Kautz. Weakly-supervised 3d human pose learning via multi-view images in the wild. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 5242–5251, 2020. 2

[17] Umar Iqbal, Kevin Xie, Yunrong Guo, Jan Kautz, and Pavlo Molchanov. Kama: 3d keypoint aware body mesh articulation. 2021 International Conference on 3D Vision (3DV), pages 689–699, 2021. 2

[18] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012, Yonghye Kwon, TaoXie, Kalen Michael, Ji-acong Fang, Imyhxy, , Lorna, Colin Wong, (Zeng Yifu), Ab-cirim V, Diego Montes, Zhiqiang Wang, Crísti Fati, Jebastin Nadar, Laughing, UngleKitDe, Tkiainai, YxNONG, Piotr Skalski, Adam Hogan, Max Strobel, Mrinal Jain, Lorenzo Mammana, and Xyleong. ultralytics/yolov5: v6.2 - yolov5 classification models, apple m1, reproducibility, clearml and deci.ai integrations, 2022. 7

[19] Hanbyul Joo, Natalia Neverova, and Andrea Vedaldi. Exemplar fine-tuning for 3d human pose fitting towards in-the-wild 3d human pose estimation. In 3DV. 2020. 1, 6, 7

[20] W. Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A, 32(5):922–923, 1976. 4

[21] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. End-to-end recovery of human shape and pose. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 7122–7131. IEEE Computer Society, 2018. 1, 2, 6

[22] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th International Conference on Learning Representations, ICLR ’17, 2017. 4

[23] Imry Kissos, Lior Fritz, Matan Goldman, Eduard Oks, and Mark Kliger. Beyond weak perspective for monocular 3d human pose estimation. In Computer Vision – ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part II, page 541–554, Berlin, Heidelberg, 2020. Springer-Verlag. 1, 2, 6, 8

[24] Muhammed Kocabas, Chun-Hao P. Huang, Otmar Hilliges, and Michael J. Black. PARE: Part attention regressor for 3D human body estimation. In Proceedings International Conference on Computer Vision (ICCV), pages 11127–11137. IEEE, Oct. 2021. 1, 2, 6, 7

[25] Muhammed Kocabas, Chun-Hao P. Huang, Joachim Tesch, Lea Mülter, Otmar Hilliges, and Michael J. Black. SPEC: Seeing people in the wild with an estimated camera. In Proc. International Conference on Computer Vision (ICCV), pages 11035–11045, Oct. 2021. 1, 2, 7

[26] Tatsuro Koizumi and William A. P. Smith. “look ma, no landmarks!” – unsupervised, model-based dense face alignment. Berlin, Heidelberg, 2020. Springer-Verlag. 5

[27] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and Kostas Daniilidis. Learning to reconstruct 3d human pose and shape via model-fitting in the loop. In ICCV, 2019. 1, 2, 6, 7

582
[28] Nikos Kolotouros, Georgios Pavlakos, and Kostas Daniilidis. Convolutional mesh regression for single-image human shape reconstruction. In CVPR, 2019. 2

[29] Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin Yang, and Cewu Lu. Hybrik: A hybrid analytical-neural inverse kinematics solution for 3d human pose and shape estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3383–3393, 2021. 2, 6, 7, 8

[30] Runze Li, Srikrishna Karanam, Ren Li, Terrence Chen, Bir Bhanu, and Ziyan Wu. Learning local recurrent models for human mesh recovery. In 2021 International Conference on 3D Vision (3DV), pages 555–564. IEEE, 2021. 2

[31] Zhihao Li, Jianzhuang Liu, Zhensong Zhang, Songcen Xu, and Youliang Yan. Cliff: Carrying location information in full frames into human pose and shape estimation. arXiv preprint arXiv:2208.00571, 2022. 1, 3, 6, 7, 8

[32] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end human pose and mesh reconstruction with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1954–1963, 2021. 2

[33] Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh graphformer. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages 12919–12928. IEEE, 2021. 2, 6, 7

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context, 2014. cite arxiv:1405.0312Comment: 1) updated annotation pipeline description and figures; 2) added new section describing datasets splits; 3) updated author list. 6

[35] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. SMPL: A skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–248:16, Oct. 2015. 1, 2, 3

[36] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian Theobalt. Monocular 3d human pose estimation in the wild using improved cmn supervision. In 3DV, pages 506–516. IEEE Computer Society, 2017. 3, 6, 7

[37] Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Srinath Sridhar, Gerard Pons-Moll, and Christian Theobalt. Single-shot multi-person 3d pose estimation from monocular rgb. In 2018 International Conference on 3D Vision (3DV), pages 120–130. IEEE, 2018. 6, 7

[38] Gyeongsik Moon, Juyong Chang, and Kyoung Mu Lee. Camera distance-aware top-down approach for 3d multi-person pose estimation from a single rgb image. In The IEEE Conference on International Conference on Computer Vision (ICCV), 2019. 2, 6, 7

[39] Gyeongsik Moon, Hongshuk Choi, and Kyoung Mu Lee. Accurate 3d hand pose estimation for whole-body 3d human mesh estimation. In Computer Vision and Pattern Recognition Workshop (CVPRW), 2022. 7

[40] Gyeongsik Moon and Kyoung Mu Lee. 1Dl-meshnet: Image-to-ixel prediction network for accurate 3d human pose and mesh estimation from a single rgb image. ArXiv, abs/2008.03713, 2020. 2, 3, 4, 6

[41] Chigozie Nwankpa, W. Ijomah, Anthony Gachagan, and Stephen Marshall. Activation functions: Comparison of trends in practice and research for deep learning. 12 2020. 4

[42] Mohamed Omran, Christoph Lassner, Gerard Pons-Moll, Peter Gehler, and Bernt Schiele. Neural body fitting: Unifying deep learning and model based human pose and shape estimation. In 2018 international conference on 3D vision (3DV), pages 484–494. IEEE, 2018. 2

[43] Priyanka Patel, Chun-Hao P. Huang, Joachim Tesch, David T. Hoffmann, Shashank Tripathi, and Michael J. Black. Agora: Avatars in geography optimized for regression analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 13468–13478, June 2021. 6

[44] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and Michael J. Black. Expressive body capture: 3D hands, face, and body from a single image. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 10975–10985, 2019. 1

[45] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas Daniilidis. Learning to estimate 3d human pose and shape from a single color image. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 459–468, 2018. 2

[46] Liliana Lo Presti and Marco La Cascia. 3d skeleton-based human action classification: A survey. Pattern Recognition, 53:130–147, May 2016. 1

[47] Rene Ranftl and Vladlen Koltun. Deep fundamental matrix estimation. In The European Conference on Computer Vision (ECCV), 2018. 5

[48] Gregory Rogez, Philippe Weinzaepfel, and Cordelia Schmid. LCR-Net: Localization-Classification-Regression for Human Pose. In CVPR, 2017. 6, 7

[49] Akash Sengupta, Ignas Budvytis, and Roberto Cipolla. Synthetic training for accurate 3d human pose and shape estimation in the wild. In British Machine Vision Conference (BMVC), September 2020. 2

[50] Jiajun Su, Chunyu Wang, Xiaojuan Ma, Wenjun Zeng, and Yizhou Wang. Virtualpose: Learning generalizable 3d human pose and mesh models from virtual data. ArXiv, abs/2207.09949, 2022. 6

[51] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representation learning for human pose estimation. In CVPR, 2019. 3, 7

[52] Yu Sun, Qian Bao, Wu Liu, Yili Fu, Black Michael J., and Tao Mei. Monocular, one-stage, regression of multiple 3d people. In ICCV, 2021. 1, 2, 6

[53] Yu Sun, Wu Liu, Qian Bao, Yili Fu, Tao Mei, and Michael J Black. Putting people in their place: Monocular regression of 3d people in depth. In CVPR, 2022. 7

[54] Hsiao-Yu Tung, Hsiao-Wei Tung, Ersin Yumer, and Katerina Fragkiadaki. Self-supervised learning of motion capture. Advances in Neural Information Processing Systems, 30, 2017. 2
[55] Timo von Marcard, Roberto Henschel, Michael J. Black, Bodo Rosenhahn, and Gerard Pons-Moll. Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In European Conference on Computer Vision (ECCV), volume Lecture Notes in Computer Science, vol 11214, pages 614–631. Springer, Cham, Sept. 2018. 6, 7

[56] Yuanlu Xu, Song-Chun Zhu, and Tony Tung. Denserac: Joint 3d pose and shape estimation by dense render-and-compare. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 7759–7769, 2019. 2

[57] Kaibing Yang, Renshu Gu, Maoyu Wang, Masahiro Toyoura, and Gang Xu. Lasor: Learning accurate 3d human pose and shape via synthetic occlusion-aware data and neural mesh rendering. IEEE Transactions on Image Processing, 31:1938–1948, 2022. 2

[58] Frank Yu, Mathieu Salzmann, Pascal Fua, and Helge Rhodin. Pcls: Geometry-aware neural reconstruction of 3d pose with perspective crop layers. CVPR, 2021. 2, 3

[59] Wang Zeng, Wanli Ouyang, Ping Luo, Wentao Liu, and Xiaogang Wang. 3d human mesh regression with dense correspondence. In CVPR, 2020. 2

[60] Hongwen Zhang, Yating Tian, Yuxiang Zhang, Mengcheng Li, Liang An, Zhenan Sun, and Yebin Liu. Pymaf-x: Towards well-aligned full-body model regression from monocular images. arXiv preprint arXiv:2207.06400, 2022. 7

[61] Tianshu Zhang, Buzhen Huang, and Yangang Wang. Object-occluded human shape and pose estimation from a single color image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. 6, 7