Physiological response of the cold-water coral *Desmophyllum dianthus* to thermal stress and ocean acidification

Andrea Gori, Christine Ferrier-Pagès, Sebastian J Hennige, Fiona Murray, Cécile Rottier, Laura C Wicks, J Murray Roberts

Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral *Desmophyllum dianthus* maintained for ~8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of *D. dianthus* is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.
Physiological response of the cold-water coral *Desmophyllum dianthus* to thermal stress and ocean acidification

Abstract

Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral *Desmophyllum dianthus* maintained for ~8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO$_2$ conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO$_2$ levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO$_2$ significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of *D. dianthus* is more sensitive to thermal than pCO$_2$ stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.
23 Andrea Gori, Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, United Kingdom. Centre Scientifique de Monaco, Monaco, Principality of Monaco.

26 Christine Ferrier-Pagès, Centre Scientifique de Monaco, Monaco, Principality of Monaco.

28 Sebastian J Hennige, Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, United Kingdom.

31 Fiona Murray, Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, United Kingdom.

34 Cécile Rottier, Centre Scientifique de Monaco, Monaco, Principality of Monaco.

36 Laura C Wicks, Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, United Kingdom.

39 J Murray Roberts, Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, United Kingdom.

Corresponding author: Andrea Gori, Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, School of Life Sciences, John Muir Building Gate 1, Edinburg EH14 4AS, United Kingdom, email: agori.mail@gmail.com, tel: 0034 633824502.
Introduction

Increases in anthropogenic carbon emissions, leading to rising sea temperatures and ocean acidification, have resulted in extensive tropical coral bleaching (e.g. Hoegh-Guldberg, 1999; Mcleod et al., 2013) and decreased coral calcification rates (e.g. Gattuso et al., 1998; Chan and Connolly, 2012; Movilla et al., 2012; Bramanti et al., 2013). The combination of rising temperatures and ocean acidification are substantial threats for corals in the next few decades (Hoegh-Guldberg et al., 2007; Silverman et al., 2009; Erez et al., 2011). While considerable research efforts have focused on tropical and temperate corals, less is known about the effects of ocean warming and acidification on cold-water corals (CWC) (e.g. Guinotte et al., 2006; Rodolfo-Metalpa et al., 2015 and references therein). These corals are among the most important ecosystem engineering species (sensu Jones et al., 1994) in the deep sea, where they build three-dimensional frameworks (Roberts, Wheeler and Freiwals, 2006) that support a highly diverse associated fauna (Henry and Roberts, 2007; Buhl-Mortensen et al., 2010). Scleractinian CWC are most commonly distributed at temperatures between 4 °C and 12 °C (Roberts, Wheeler and Freiwals), and show species-specific responses to temperatures above their natural thermal range. For instance, elevated seawater temperatures increased calcification in the non-reef forming Dendrophyllia cornigera (Naumann, Orejas and Ferrier-Pagès, 2013; Gori et al., 2014a); had no effect on calcification in the solitary coral Desmophyllum dianthus (Naumann, Orejas and Ferrier-Pagès, 2013); and had either no effect on the reef-forming Lophelia pertusa calcification (Hennige et al., 2015) or induced mortality (Brooke et al., 2013) depending upon the site of origin and change in temperature.
In comparison to thermal stress, CWC seem to have a general capacity to withstand ocean acidification under experimental time periods of up to 12 months. Decreases in pH did not affect calcification rates in both the reef forming *L. pertusa* and *Madrepora oculata* (Form and Riebesell, 2012; McCulloch et al., 2012; Maier et al., 2012, 2013a; Hennige et al., 2014, 2015; Movilla et al., 2014a), or the non-reef forming *D. cornigera*, *D. dianthus* (Movilla et al., 2014b; Rodolfo-Metalpa et al., 2015), *Caryophyllia smithii* (Rodolfo-Metalpa et al., 2015) or *Enallopsammia rostrata* (McCulloch et al., 2012). However, whether calcification can be sustained indefinitely remains unclear, as seawater acidification has been shown to affect coral metabolism (Hennige et al., 2014), increasing energy demand (McCulloch et al., 2012), and leading to up-regulation of genes related to stress and immune responses, energy production and calcification (Carreiro-Silva et al., 2014). Coral responses to ocean acidification may also depend on seawater temperature (e.g. Reynaud et al., 2003; Edmunds, Brown and Moriarty, 2012), and evidence is now emerging that only when these two factors are combined (as is likely with future climatic changes), do the real effects of ocean change become apparent (Reynaud et al., 2003; Roberts and Cairns, 2014).

This study focused on the combined effects of increased temperature and pCO$_2$ on key physiological processes of the cosmopolitan solitary CWC *D. dianthus* (Cairns and Zibrowius, 1997) sampled in the deep waters of the Mediterranean Sea. Calcification, respiration, and ammonium excretion were quantified in corals maintained over ~8 months under a combination of conditions that replicated ambient temperature and pCO$_2$ levels (12 ºC - 390 ppm, Movilla et al., 2014b), and elevated temperature and pCO$_2$ levels predicted in the IPCC IS92a emission scenarios (15 ºC - 750 ppm, following Riebesell et al., 2010). We hypothesize that the
combination of elevated temperatures and pCO$_2$ will have a greater impact on coral calcification, respiration and excretion than single stressors. Analysis of the ratio of respired oxygen to excreted nitrogen (O:N), which is a physiological index providing information on the main sources of energy being metabolized (Sabourin and Stickle, 1981; Yang et al., 2006; Zonghe et al., 2013), was used to reveal whether corals are mainly metabolizing proteins, carbohydrates or lipids, giving a further indication of coral stress under the experimental conditions.

Materials and methods

Coral collection and maintenance

Specimens of *D. dianthus* (Esper, 1794) (Fig. 1) were collected in the Bari Canyon (Adriatic Sea, Mediterranean Sea, 41° 17.2622' N, 17° 16.6285' E, 430 m depth) by the Achille M4 and Pollux III ROVs, and kept alive on board the RV ‘Urania’ during the cruise ARCADIA (March 2010). Corals were transported to the Centre Scientifique de Monaco (CSM, Monaco, Principality of Monaco, CITES permit 2012MC/7725) and maintained there for ~35 months in 50 L continuous flow-through tanks, with seawater pumped from 50 m depth at a rate of 20 L h$^{-1}$. Water temperature was maintained close to *in situ* conditions (12 ± 1.0 °C), and powerheads provided continuous water movement within the tanks. Corals were fed five times a week with frozen *Mysis* (Crustacea, Eumalacostraca) and adult *Artemia salina* (Crustacea, Sarsrostraca). For experimental work, 12 specimens of *D. dianthus* were transferred to Heriot-Watt University (Edinburgh, Scotland, UK, CITES permit 2012MC/7929), and kept under collection site ambient conditions for ~2 months before beginning the experimental incubations. Corals were then
placed into ambient temperature and pCO$_2$ (12 °C - 390 ppm) levels, and predicted future conditions following the IPCC IS92a emission scenarios (Riebesell et al., 2010): ambient temperature and elevated pCO$_2$ (12 °C - 750 ppm), elevated temperature and ambient pCO$_2$ (15 °C - 390 ppm), and elevated temperature and pCO$_2$ (15 °C - 750 ppm).

For each treatment, there were three replicate systems of ~ 80 L tanks, holding one coral each. The tanks were equipped with pumps and filtration units to ensure adequate water mixing and filtration. Tanks were closed systems, filled with seawater collected from the east coast of Scotland (St. Andrews), with partial water changes (20%) every two weeks. Ambient and mixed elevated pCO$_2$ air mixes were bubbled directly into the tanks as described by Hennige et al., (2015). Gas mixing was achieved to target levels, by mixing pure CO$_2$ with air plumbed from outside of the laboratory building in mixing vessels. Mixed or ambient gas was then supplied to appropriate experimental systems. Target gas levels were checked and adjusted daily using a LI-COR 820 gas analyzer calibrated using pre-mixed 0 and 750 CO$_2$ ppm gases (StG gases). All replicate systems were housed in darkness within a temperature-controlled room at 9°C ± 0.5°C, and water temperatures in the systems (12°C ± 0.5°C and 15°C ± 0.5°C) were controlled through Aqua Medic T-computers and titanium heaters (Aqua Medic TH-100). Experimental system temperature, salinity (YSI 30 SCT) and pH$_{\text{NBS}}$ (Hach HQ 30D) were measured and recorded throughout the duration of experiment. Average pH$_{\text{NBS}}$ (± standard deviation) values for each treatment (pooled between 3 replicate tanks) over this 8 month period were: 12 °C - 380 ppm = 7.96 ± 0.06; 12 °C - 750 ppm = 7.92 ± 0.06; 15 °C - 380 ppm = 7.97 ± 0.04; and 15 °C - 750 ppm = 7.90 ± 0.06. Further details about the incubation systems are available in Hennige et al. 2015, which support routine pH$_{\text{NBS}}$ measurements and highlight the stability of these systems.
over prolonged time periods (Supplementary Table 1). Corals were fed 3 times a week with a controlled supply of 2 krill (Gamma frozen blister packs) per polyp per feeding event.

Physiological measurements

After 236 days under experimental conditions, four sets of incubations were performed, one for each experimental condition to assess rates of calcification, respiration and ammonium excretion. Each incubation started with the preparation of 1 L of 50 μm pre-filtered seawater. 140 ml of this seawater was sampled for the initial determination of the total alkalinity (TA) (120 ml) and ammonium concentration (20 ml) as described below. The remaining filtered water was equally distributed between 4 incubation chambers (200 ml each). One chamber was left without a coral polyp and used as a control. Three other chambers housed one polyp, each from a different replicate system. Polyps were incubated for six hours in the individual chambers that were completely filled (without any air space) and hermetically closed, according to the standardized protocol developed by Naumann et al., (2011). Constant water movement inside the beakers was ensured by a teflon-coated magnetic stirrer. At the end of the incubation, 140 ml of seawater was taken from each incubation chamber and split between storage vessels for the determination of the final TA and ammonium concentration as described below.

Coral calcification rates were assessed using the alkalinity anomaly technique (Smith and Key, 1975; Langdon, Gattuso and Andersson, 2010), assuming a consumption of 2 moles of alkalinity for every mole of calcium carbonate produced (Langdon, Gattuso and Andersson, 2010). Seawater samples (120 ml) from before and after incubation, were sterile filtered (0.2 μm)
and fixed with HgCl$_2$ to prevent further biological activity. TA was determined on 6 subsamples of 20 ml from each chamber using a titration system composed of a 20 ml open thermostated titration cell, a pH electrode calibrated on the National Bureau of Standards scale, and a computer-driven titrator (Metrohm 888 Titrando, Riverview, FL, USA). Seawater samples were kept at a constant temperature (25.0 ± 0.2°C) and weighed (Mettler AT 261, L'Hospitalet de Llobregat, Spain, precision 0.1 mg) before titration to determine their exact volume from temperature and salinity. TA was calculated from the Gran function applied to pH variations from 4.2 to 3.0 as the function of added volume of HCl (0.1 mol L$^{-1}$), and corrected for changes in ammonium concentration resulting from metabolic waste products (Jacques and Pilson, 1980; Naumann et al., 2011). Change in the TA measured from the control chamber was subtracted from the change in TA in the chambers with corals, and calcification rates were derived from the depletion of TA over the 6 h incubation.

Respiration rates were assessed by measuring oxygen concentration in the incubation chambers during incubations with optodes (OXY-4 micro, PreSens, Germany) calibrated using sodium sulfite and air saturated water as 0 and 100% oxygen saturation values, respectively. Variations in oxygen concentrations measured from the control chamber were subtracted from those measured in the coral chambers, and respiration rates were derived from the recorded depletion of dissolved oxygen over the incubation. Oxygen consumption rates were converted to C equivalents (μmol) according to the equation $C_{\text{respired}} = O_2 \text{ consumed} \cdot RQ$, where RQ is a coral-specific respiratory quotient equal to 0.8 mol C / mol O$_2$ (Muscatine et al., 1981; Anthony and Fabricius, 2000; Naumann et al., 2011).
Excretion rates were assessed by determining ammonium concentration in seawater samples (20 ml) that were sterile filtered (0.2 μm) and kept frozen (-20°C) until ammonium concentration was determined in 4 replicates per sample through spectrofluorometric techniques (Holmes et al., 1999, protocol B).

Results from calcification, respiration and ammonium excretion measurements were normalized to the coral skeletal surface area (fully covered by coral tissue), to allow for comparison with other coral species. The skeletal surface area (S) of each coral polyp was determined by means of Advanced Geometry (Naumann et al., 2009) according to the equation \(S = \pi \cdot (r + R) \cdot a + \pi \cdot R^2 \), where \(r \) and \(R \) represent the basal and apical radius of each polyp respectively, and \(a \) is the apothem measured with a caliper (Rodolfo-Metalpa et al., 2006).

Finally, the O:N ratio was calculated for each coral from the results of the measured oxygen respired and ammonium excreted in atomic equivalents (Yang et al., 2006; Zonghe et al., 2013).

Statistical analyses

All results were expressed as means ± standard error. Normal distribution of the residuals was tested using a Shapiro-Wilk test performed with the R-language function shapiro.test of the R 3.1.2 software platform (R Core Team, 2014). Homogeneity of variances was tested by the Bartlett test performed with the R-language function bartlett.test. Differences in the variation of TA, oxygen and ammonium concentration between control and experimental chambers were tested by means of a Wilcoxon-Mann-Whitney test performed with the R-language function wilcoxon.test. Differences among the four experimental conditions in calcification, respiration,
ammonium excretion, and O:N ratio were tested by two-way ANOVA with temperature (12 °C - 15 °C) and pCO₂ (390 ppm - 750 ppm) as factors, performed with the R-language function aov.

Results

TA changes in incubation chambers (2.8–12.8 μEq L⁻¹ h⁻¹) were consistently higher (Wilcoxon-Mann-Whitney test, U=48, p=0.004) than changes measured in the control chambers (<0.5 μEq L⁻¹ h⁻¹). Regardless of pCO₂ level, calcification rates assessed with the TA anomaly technique (Fig. 2A) were significantly lower in corals maintained at 15 °C compared to those maintained at 12 °C (ANOVA, F=8.57, p=0.019, Table 1). For each temperature treatment assessed individually, calcification did not significantly differ at either pCO₂ level.

Oxygen depletion from coral respiration in incubation chambers (5.3–54.7 μmol L⁻¹ h⁻¹) was significantly higher (Wilcoxon-Mann-Whitney test, U=47, p=0.002) than oxygen depletion in the control chambers from microbial respiration (<4.2 μmol L⁻¹ h⁻¹). Respiration rates (Fig. 2B) of corals kept under increased temperature and pCO₂ were significantly lower compared to other treatments (ANOVA, F=12.44, p=0.007, Table 1).

Changes in ammonium concentration from coral excretion in incubation chambers (0.39–1.78 μmol L⁻¹ h⁻¹) were significantly higher (Wilcoxon-Mann-Whitney test, U=48, p=0.001) than changes in control chambers from microbial activity (<0.04 μmol L⁻¹ h⁻¹). Coral excretion rates (Fig. 2C) were not significantly different among treatments (Table 1).
The ratio of respired oxygen to excreted nitrogen (O:N) (Fig. 3) in corals kept under increased temperature and pCO$_2$ was significantly lower than in the other treatments (ANOVA, $F=7.94$, $p=0.023$, Table 1).

Discussion

Overall, the results of this study show that the CWC *D. dianthus* is more sensitive to changes in temperature than to ocean acidification stress. This CWC maintains its metabolism under elevated pCO$_2$, whereas calcification is significantly reduced under elevated temperatures. Furthermore, there is a clear synergistic impact when elevated temperature and pCO$_2$ are combined, resulting in a severe reduction of coral metabolism.

D. dianthus has the ability to withstand elevated pCO$_2$ (750 ppm) under ambient temperature (12 °C) over ~8 months, with no change in calcification, respiration and ammonium excretion rates (Fig. 2 and Table 1). This agrees with previous studies on the same species (Movilla et al., 2014b; Carreiro-Silva et al., 2014; Rodolfo-Metalpa et al., 2015), and with the general consensus that CWC can physiologically cope with elevated pCO$_2$ in the mid-term (3–12 months, Form and Riebesell, 2012; Maier et al., 2013a, b; Movilla et al., 2014a; Hennige et al., 2015). This may be due to their ability to buffer external changes in seawater pH by up-regulating their pH at the site of calcification (McCulloch et al., 2012; Anagnostou et al., 2012), therefore allowing calcification even in aragonite-undersaturated seawater (Venn et al., 2013). Increased expression of genes involved in cellular calcification and energy metabolism may indicate the mechanisms by which *D. dianthus* continues to calcify under elevated pCO$_2$ at rates
similar to those recorded at ambient pCO$_2$ (Carreiro-Silva et al., 2014). Whereas microdensity and porosity of $D. dianthus$ skeleton have been shown to be unaffected by increased pCO$_2$ (Movilla et al., 2014b), the effects of elevated pCO$_2$ conditions on hidden skeleton microstructure and aragonitic crystals organisation cannot be discounted (e.g. molecular bond lengths and orientation, see Hennige et al., 2015). Such effects would take a long time to become evident as reduced skeletal microdensity and porosity, due to the very slow growth rates of $D. dianthus$ (Orejas et al., 2011; Naumann et al., 2011). The experimentally observed physiological ability of $D. dianthus$ to cope with elevated pCO$_2$ is also supported by the recent observation of this CWC in aragonite-undersaturated waters (Thresher et al., 2011; McCulloch et al., 2012; Jantzen et al., 2013a; Fillinger and Richter, 2013). However, there is the possibility that high food availability in these areas may allow corals to sustain the cost of calcification under low pH (Jantzen et al., 2013a; Fillinger and Richter, 2013).

In contrast to elevated pCO$_2$, elevated temperature alone significantly reduced calcification in $D. dianthus$ (Fig. 2B and Table 1). Calcification shows a strong sensitivity to temperature in this CWC species (McCulloch et al., 2012), which is able to maintain growth under elevated seawater temperatures for a short time (3 months at 17.5 °C, Naumann, Orejas and Ferrier-Pagès, 2013), but when exposed to thermal stress for longer periods (~8 months at 15 °C, this study) calcification rates are significantly reduced. Decreased calcification in $D. dianthus$ under prolonged elevated temperature might be linked to decreased activity in the enzymes involved in calcification (such as carbonic anhydrases; Ip, Lim and Lim, 1991; Al-Horani, AL-Moghrabi and De Beer, 2003; Allemand et al., 2004), since enzyme activity is maximal within the thermal range of the species and decreases otherwise (Jacques, Marshall and Pilson, 1983;
Marshall and Clode, 2004; Al-Horani, 2005). Reported calcification rates by *D. dianthus* have varied widely between studies. Rates measured here (1.26 ± 0.20 μmol CaCO$_3$ cm$^{-2}$ d$^{-1}$) were in the same order of magnitude as the rates reported by Naumann et al., 2011 in the Mediterranean (~3.84 μmol CaCO$_3$ cm$^{-2}$ d$^{-1}$), and much lower than those reported by Jantzen et al., 2013b in Chilean fjords (18.6–54.4 μmol CaCO$_3$ cm$^{-2}$ d$^{-1}$). Whilst direct comparison with other studies is problematic due to differences in methodology (total alkalinity vs buoyant weight) or normalization techniques, the rates measured here are consistent with previous results from Mediterranean *D. dianthus* (e.g. Orejas et al., 2011; Maier et al., 2012; Movilla et al., 2014b), and are much higher than rates measured in *D. dianthus* from Azores (Carreiro-Silva et al., 2014). Differences in the quality and quantity of food provided to corals (Mortensen, 2001; Jantzen et al., 2013b), coral size (Carreiro-Silva et al., 2014; Movilla et al., 2014b), or intraspecific variability and local adaptation could all contribute to observed variability between studies.

The synergistic effects of elevated temperature and pCO$_2$ on calcification, respiration and O:N ratio observed in this study (Fig. 2 and Table 1), show that these stressors interact to control *D. dianthus* metabolism causing a far greater effect than increased temperature or pCO$_2$ in isolation (Reynaud et al., 2003). Under elevated temperature and pCO$_2$ treatment, respiration dropped to low values (1.2 ± 0.7 μmol C cm$^{-2}$ d$^{-1}$) comparable to those reported for starved *D. dianthus* (~1.5 μmol C cm$^{-2}$ d$^{-1}$, Naumann et al., 2011) or for *D. dianthus* fed only twice a week (1.34 ± 0.31 μmol C cm$^{-2}$ d$^{-1}$, Gori et al., 2014b), indicating a reduction in the coral’s metabolic activity. Reduced metabolism is reflected in the concurrent significant reduction in calcification rates (Fig. 2A). Whilst ammonium excretion, which results from protein and amino acid
catabolism (Wright, 1995; Talbot and Lawrence, 2002), was not significantly affected by either or both elevated temperature and pCO$_2$ (consistent with previous studies, Carreiro-Silva et al., 2014), the combined effects of elevated temperature and pCO$_2$ caused a shift in O:N from ~30 to ~13 (Fig. 3). This highlights a shift from a mixed use of protein and carbohydrate or lipid, to a much less efficient protein-dominated catabolism for energy (Pillai and Diwan, 2002) indicating metabolic stress (Zonghe et al., 2013). Conversely, single stressors caused a slightly increase in O:N ~30 to ~50. This is a consequence of increased respiration combined with steady ammonium excretion, leading to a shift to a carbohydrate or lipid-dominated metabolism (Sabourin and Stickle, 1981; Uliano et al., 2010; Zonghe et al., 2013). This is a possible way for the corals to fulfill increased energy demands needed to maintain cell homeostasis under single stressors, but this may be insufficient when subjected to multiple stressors.

Overall, this study shows that the combined effects of increased temperature and pCO$_2$ result in a significant change in D. $dianthus$ metabolism. This may represent an immediate threat to CWC as their habitats are expected to be exposed to both high temperature events and reduced seawater pH with increased frequency in the near future (Roberts and Cairns, 2014). Given the major role of feeding on the metabolism of CWC species (Naumann et al., 2011), it is also extremely important to understand how coral responses to single or multiple stressors can be affected by food availability and quality (Dodds et al., 2007; Thomsen et al., 2013; Rodolfo-Metalpa et al., 2015). Reduced food availability will limit the allocation of extra-energy to physiological adjustments under stress conditions, which could further heighten the negative impacts of elevated temperature and pCO$_2$ on coral metabolism. Studies into the combined
impact of climate change and changes in food quantity and quality would provide a more holistic
insight into the future of CWC in a changing ocean.

References

Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and
calcification in the scleractinian coral *Galaxea fascicularis*, measured with O$_2$, Ca$^{2+}$ and pH
microsensors. Scientia Marina 69:347–354

Al-Horani FA, Al-Moghrabi SM, De Beer D (2003) The mechanism of calcification and its
relation to photosynthesis and respiration in the scleractinian coral, *Galaxea fascicularis*. Marine
Biology 142:419–426

Allemand D, Ferrier-Pagès C, Furla P, Houlbrèque F, Puverel S, Reynaud S, Tambutté E,
Tambutté S, Zoccola D (2004) Biomineralisation in reef-building corals: from molecular
mechanisms to environmental control. Comptes Rendus Palevol 3:453–467

Anagnostou E, Huang KF, You CF, Sikes EL, Sherrell RM (2012) Evaluation of boron isotope
ratio as a pH proxy in the deep sea coral *Desmophyllum dianthus*: evidence of physiological pH
adjustment. Earth and Planetary Science Letters 349–350:251–260

Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral
ergy budgets at variable turbidity. Journal of Experimental Marine Biology and Ecology
Bramanti L, Movilla J, Guron M, Calvo E, Gori A, Dominguez-Carrió C, Grinyó J, Lopez-Sanz A, Martínez-Quintanilla A, Pelejero C, Ziveri P, Rossi S (2013) Detrimental effects of ocean acidification on the economically important Mediterranean red coral (Corallium rubrum). Global Change Biology 19:1897–1908

Brooke S, Ross SW, Bane JM, Seim HE, Young CM (2013) Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States. Deep-Sea Research II 92:240–248

Buhl-Mortensen LA, Vanreusel AJ, Gooday LA, Levin I, Priede G, Buhl-Mortensen P, Gheerardyn H, King NJ, Raes M (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Marine Ecology 31:21–50

Cairns SD, Zibrowius H (1997) Cnidaria Anthozoa: azooxanthellate Scleractinia from the Philippine and Indonesian regions. Memoirs du Museum National d’Histoire Naturelle 172:27–243

Carreiro-Silva M, Cerqueira T, Godinho A, Caetano M, Santos RS, Bettencourt R (2014) Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs 33:465–476
Chan NCS, Connolly SR (2012) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Global Change Biology 19:282–290

Dodds LA, Roberts JM, Taylor AC, Marubini F (2007) Metabolic tolerance of the cold-water coral *Lophelia pertusa* (Scleractinia) to temperature and dissolved oxygen change. Journal of Experimental Marine Biology and Ecology 349:205–214

Edmunds PJ, Brown D, Moriarty V (2012) Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, Freanch Polynesia. Global Change Biology 18:2173–2183

Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky Z and Stambler N (eds.), Coral Reefs: An ecosystem in transition. pp 151–176

Fillinger L, Richter C (2013) Vertical and horizontal distribution of *Desmophyllum dianthus* in Comau Fjord, Chile: a cold-water coral thriving at low pH. PeerJ 1:e194; DOI 10.7717/peerj.194

Form AU, Riebesell U (2012) Acclimation to ocean acidification during long-term CO$_2$ exposure in the cold-water coral *Lophelia pertusa*. Global Change Biology 18:843–853

Gattuso JP, Frankignoule M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global and Planetary Change 18:37–46
Gori A, Reynaud S, Orejas C, Gili JM, Ferrier-Pagès C (2014a) Physiological performance of the cold-water coral *Dendrophyllia cornigera* reveals its preference for temperate environments. Coral Reefs 33:665-674

Gori A, Grover R, Orejas C, Sikorski S, Ferrier-Pagès C (2014b) Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea. Deep-Sea Research II 99:42–50

Riebesell U, Fabry VJ, Hansson L, Gattuso JP (2010) Guide to best practices for ocean acidification research and data reporting, 260 p. Luxembourg: Publications Office of the European Union

Guinotte JM, Orr JC, Cairns SS, Freiwald A, Morgan L, George R (2006) Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Frontiers in Ecology and Environment 4:141–146

Hennige SJ, Wicks LC, Kamenos NA, Bakker DCE, Findlay HS, Dumousseaud C, Roberts JM (2014) Short-term metabolic and growth response of the cold-water coral Lophelia pertusa to ocean acidification. Deep-Sea Research II 99:27–35
Hennige SJ, Wicks LC, Kamenos NA, Findlay HS, Roberts JM (2015) Hidden impacts of coral acclimation to ocean acidification. Proceedings of the Royal Society B: Biological Sciences 282:20150990

Henry LA, Roberts JM (2007) Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep-Sea Research I 54:654–672

Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Marine Freshwater Research 50:839–866

Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

Holmes RM, Aminot A, Kérouel R, Hooker BA, Peterson BJ (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 56:1801–1808

Ip YK, Lim LL, Lim RWL (1991) Some properties of calcium-activated adenosine triphosphate from the hermatypic coral Galaxea fascicularis. Marine Biology 111:191–197
Jacques TG, Pilson MEQ (1980) Experimental Ecology of the temperate scleractinian coral

Astrangia danae I. Partition of respiration, photosynthesis and calcification between host and symbionts. Marine Biology 60:167–178

Jacques TG, Marshall N, Pilson MEQ (1983) Experimental ecology of the temperate scleractinian coral Astrangia danae. II Effect of temperature, light intensity and symbiosis with zooxanthellae on metabolic rate and calcification. Marine Biology 76:135–148

Jantzen C, Häussermann V, Försterra G, Laudien J, Ardelan M, Maier S, Richter C (2013a) Occurrence of a cold-water coral along natural pH gradients (Patagonia, Chile). Marine Biology 160:2597–2607

Jantzen C, Laudien J, Sokol S, Försterra G, Häussermann V, Kupprat F, Richter C (2013b) In situ short-term growth rates of a cold-water coral. Marine and Freshwater Research 64:631–641

Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

Langdon C, Gattuso JP, Andersson A (2010) Measurement of calcification and dissolution of benthic organisms and communities. In: Riebesell U, Fabry VJ, Hanson L, Gattuso JP (eds) Guide to Best Practices for Ocean Acidification Research and Data Reporting. Publications office of the European Union, Luxembourg
Maier C, Watremez P, Taviani M, Weinbauer MG, Gattuso JP (2012) Calcification rates and the
effect of ocean acidification on Mediterranean cold-water corals. Proceedings of the Royal
Society B: Biological Sciences 279:1716–1723

Maier C, Schubert A, Berzunza Sánchez MM, Weinbauer MG, Watremez P, Gattuso JP (2013a)
End of the century pCO2 levels do not impact calcification in Mediterranean cold-water corals.
Plos ONE 8: e62655

Maier C, Bils F, Weinbauer MG, Watremez P, Peck MA, Gattuso JP (2013b) Respiration of
Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of
the century. Biogeoscience Discuss 10:7617–7640

Marshall AT, Clode P (2004) Calcification rate and the effect of temperature in a zooxanthellate
and an azooxanthellate scleractinian reef coral. Coral Reefs 23:218–224

McCulloch M, Trotter J, Montagna P, Falter J, Dunbar R, Freiwald A, Försterra G, López Correa
M, Maier C, Rüggeberg A, Taviani M (2012) Resilience of cold-water scleractinian corals to
ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation.
Geochimica et Cosmochimica Acta 87:21–34

Mcleod E, Anthony KRN, Andersson A, Beeden R, Golbuu Y, Kleypas J, Kroeker K, Manzello
D, Salm RV, Schuttenberg H, Smith JE (2013) Preparing to manage coral reefs for ocean
acidification: lessons from coral bleaching. Frontiers in Ecology and the Environment 11: 20–27
Mortensen PB (2001) Aquarium observations on the deep-water coral *Lophelia pertusa* (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54:83–104

Movilla J, Calvo E, Pelejero C, Coma R, Serrano E, Fernández-Vallejo P, Ribes M (2012) Calcification reduction and recovery in native and non-native Mediterranean corals in response to ocean acidification. Journal of Experimental Marine Biology and Ecology 438:144–153

Movilla J, Gori A, Calvo E, Orejas C, López-Sanz À, Domínguez-Carrió C, Grinyó J, Pelejero C (2014a) Resistance of two Mediterranean cold-water coral species to low-pH conditions. Water 6:59–67

Movilla J, Orejas C, Calvo E, Gori A, López-Sanz À, Grinyó J, Domínguez-Carrió C, Pelejero C (2014b) Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33:675–686

Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnology and Oceanography 26:601–611

Naumann MS, Niggl W, Laforsch C, Glaser C, Wild C (2009) Coral surface area quantification - evaluation of established methods by comparison with computer tomography. Coral Reefs 28:109–117
Naumann MS, Orejas C, Wild C, Ferrier-Pagès C (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. Journal of Experimental Biology 214:3570–3576

Naumann MS, Orejas C, Ferrier-Pagès C (2013) High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria. Coral Reefs 32:749-754

Orejas C, Ferrier-Pagès C, Reynaud S, Gori A, Beraud E, Tsounis G, Allemand D, Gili JM (2011) Long-term growth rate measurements of four Mediterranean cold water coral species (Madrepora oculata, Lophelia pertusa, Desmophyllum cristagalli and Dendrophyllia cornigera) maintained in aquaria. Marine Ecology Progress Series 429:57–65

Pillai BR, Diwan AD (2002) Effects of acute salinity stress on oxygen consumption and ammonia excretion rates of the marine shrimp Metapenaeus monoceros. Journal of Crustacean Biology 22:45–52

R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.

Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pagès C, Jaubert J, Gattuso JP (2003) Interacting effects of CO₂ partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biology 9:1660–1668
Roberts JM, Cairns SD (2014) Cold-water corals in a changing ocean. Current Opinion in Environmental Sustainability 7:118–12

Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

Rodolfo-Metalpa R, Richard C, Allemand D, Ferrier-Pagès C (2006) Growth and photosynthesis of two Mediterranean corals, *Cladocora caespitosa* and *Oculina patagonica*, under normal and elevated temperatures. Journal of Experimental Biology 209:4546–4556

Rodolfo-Metalpa R, Montagna P, Aliani S, Borghini M, Canese S, Hall-Spencer JM, Foggo A, Milazzo M, Taviani M, Houlbrèque F (2015) Calcification is not the Achilles’ heel of cold-water corals in an acidifying ocean. Global Change Biology 21:2238–2248

Sabourin TD, Stickle WB (1981) Effects of salinity on respiration and nitrogen excretion in two species of echinoderms. Marine Biology 65:91–99

Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO₂ doubles. Geophysical Research Letters 36:L05606

Smith SV, Key GS (1975) Carbon dioxide and metabolism in marine environments. Limnology and Oceanography 20:493–495
Talbot TD, Lawrence JM (2002) The effect of salinity on respiration, excretion, regeneration and production in *Ophiophragmus filograneus* (Echinodermata: Ophiuroidea). Journal of Experimental Marine Biology and Ecology 275:1–14

Thomsen J, Casties I, Pansch C, Körtzinger A, Melzner F (2013) Food availability outweighs ocean acidification effects in juvenile *Mytilus edulis*: laboratory and field experiments. Global Change Biology 19:1017–1027

Thresher RE, Tilbrook BD, Fallon S, Wilson NC, Adkins J (2011) Effects of chronic low carbonate saturation levels on the distribution growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Marine Ecology Progress Series 442:87–99

Uliano E, Cataldi M, Carella F, Migliaccio O, Iaccarino D, Agnisola C (2010) Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (*Gambusia affinis*) and zebrafish (*Danio rerio*). Comparative Biochemistry and Physiology, Part A 157:283–290

Venn AA, Tambutte E, Holcomb M, Laurent J, Allemand D, Tambutte S (2013) Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proceeding of the National Academy of Science of the United States of America 110:1634–1639
Wright PA (1995) Nitrogen excretion: three end products, many physiological roles. Journal of Experimental Biology 198:273–281

Yang H, Zhou Y, Zhang T, Yuan X, Li X, Liu Y, Zhang F (2006) Metabolic characteristics of sea cucumber *Apostichopus japonicus* (Selenka) during aestivation. Journal of Experimental Marine Biology and Ecology 330:505–510

Zonghe Y, Zhanhui Q, Chaoqun H, Wenguang L, Huang H (2013) Effects of salinity on ingestion, oxygen consumption and ammonium excretion rates of the sea cucumber *Holothuria leucospilota*. Aquaculture Research 44:1760–1767

Figure captions

Fig. 1 The cold-water coral *Desmophyllum dianthus*. Photo by A Gori.

Fig. 2 Calcification rate (A), respiration rate (B), and ammonium excretion rate (C) of *Desmophyllum dianthus* under the two experimental temperatures (12 and 15 ºC) and the two pCO$_2$ levels (390 and 750 ppm). Values are presented as means ± s.e. normalized to coral skeletal surface area.

Fig. 3 Ratio of respired oxygen to excreted nitrogen (O:N) of *Desmophyllum dianthus* under the two experimental temperatures (12 and 15 ºC) and the two pCO$_2$ levels (390 and 750 ppm). Values are presented as means ± s.e. normalized to coral skeletal surface area.
The cold-water coral *Desmophyllum dianthus*

The cold-water coral *Desmophyllum dianthus*. Photo by A Gori.
Main physiological processes in *Desmophyllum dianthus*

Main physiological processes in *Desmophyllum dianthus* under the two experimental temperatures (12 and 15°C) and the two pCO$_2$ (390 and 750 ppm). (A) Calcification rate, (B) respiration rate, and (C) ammonium excretion rate as the result of coral nubbins incubation in individual beakers for 6 h. Values are presented as means ± s.e. normalised to coral skeletal surface area.
A

Calcification (μmol CaCO$_3$ cm$^{-2}$ d$^{-1}$)

B

Respiration (μmol C cm$^{-2}$ d$^{-1}$)

C

Ammonium excretion (μmol NH$_4^+$ cm$^{-2}$ d$^{-1}$)

Water temperature

12°C

390 ppm 750 ppm

15°C

390 ppm 750 ppm
3

Figure 3

Ratio of respired oxygen to excreted nitrogen (O:N) of Desmophyllum dianthus under the two experimental temperatures (12 and 15 °C) and the two pCO2 levels (390 and 750 ppm). Values are presented as means ± s.e. normalized to coral skeletal surface area.
Table 1

Two-way ANOVA for comparison of calcification, respiration, ammonium excretion rates, and O:N ratio among the experimental treatments; significant p-values are indicated with one (p-value < 0.05), two (p-value < 0.01), or three asterisks (p-value < 0.001).
Table 1 - Two-way ANOVA for comparison of calcification, respiration, ammonium excretion rates, and O:N ratio among the experimental treatments; significant p-values are indicated with one (p-value < 0.05), two (p-value < 0.01), or three asterisks (p-value < 0.001).

	F	p value
Calcification		
Temperature	8.58	0.019 *
pCO₂	1.89	0.206
Temperature:pCO₂	0.44	0.524
Respiration		
Temperature	1.04	0.337
pCO₂	0.29	0.602
Temperature:pCO₂	12.44	0.008 **
Ammonium excretion		
Temperature	1.01	0.344
pCO₂	0.06	0.811
Temperature:pCO₂	2.07	0.188
O:N		
Temperature	0.69	0.431
pCO₂	0.48	0.509
Temperature:pCO₂	7.94	0.023 *