UDC 612.821.35

Bioelectrical activity of the brain during performance of manipulative movements in women with different modal alpha-frequencies

A.G. Morenko

Lesia Ukrainka Eastern European National University, Lutsk, Ukraine

An important component of the general biological problem of coordinated activity of the brain’s motor systems and of the executive apparatus during the implementation of motor functions is the question of the interconnection of electroencephalogram (EEG) rhythm characteristics, above all, α-rhythm, with control peculiarities of manipulative movements (MM). A test group consisting of 113 healthy right-handed women from the ages of 19 to 21 was divided into two groups according to the average magnitude of their individual modal α-frequency – groups with high and low values of individual modal α-frequency (IαF). The ideal time of a simple sensorimotor reaction and choice-point behavior as well as speed capabilities of nervous processes during the finger tapping test, and measures of the power spectrum of EEG spectral components individually determined for each testee in quiescent intervals and while performing alternating movements by the fingers of the right hand were evaluated. Alternate female finger movements were accompanied by a decrease in the EEG of α-right-handed women from the ages of 19 to 21 was divided into two groups according to the average magnitude of their individual modal α-frequency (IαF). The ideal time of a simple sensorimotor reaction and choice-point behavior as well as speed capabilities of nervous processes during the finger tapping test, and measures of the power spectrum of EEG spectral components individually determined for each testee in quiescent intervals and while performing alternating movements by the fingers of the right hand were evaluated. Alternate female finger movements were accompanied by a decrease in the EEG α- and β-activities in the posterior cortical areas, and β1- and γ-activities in the frontal, temporal and central areas of the cortex compared with the same in the immobile state; they were also characterized by the generalized growth of θ-oscillations and local (in the frontal leads) – α1- and β2-activities. Thus, in both groups of women surveyed the increase in activity of those cortical structures that ensure its implementation – sensory perception, motor start and motor programming commands and sense-motor coordination, was found. When MM are performed by women with a higher output α-frequency, they were characterized by more local changes in the electrical activity of the cerebral cortex. People with a lower modal α-frequency were characterized by somewhat less specific and differentiated features of the cortex activation. Alternating movements of fingers performed by women with low IαF were associated with higher EEG θ-, α1-, α2-activities, generally in the cortex, and α3-, β- and γ-oscillations – in the posterior areas than in those with high IαF. Instead of this, a relatively lower power spectral EEG was recorded in the frontal leads of the range consisting of α3-, β- and γ-oscillations. Intergroup differences found by us may indicate a higher status regarding a specific cortical tone, its readiness for activity and control of information processes in people with high IαF in comparison with those who had low IαF. It is natural that different levels of features of such activation systems achieve specific outcomes in testees with a different starting IαF. Women with a higher IαF had better speed characteristics of nervous processes.

Keywords: electroencephalogram; individual mode of the α-rhythm; female testees; finger movements

Bioелектрична активність мозку під час виконання маніпулятивної моторики у жінок із різною модальною альфа-частотою

А.Г. Моренко

Східноєвропейський національний університет імені Лесі Українки, Луцьк, Україна

Обстежено 113 правопрофільніших жінок віком 19–21 років, яких поділили на дві групи: з високими та низькими значеннями модальної альфа-частоти, визначеної індивідуально у стані спокою. Оцінювали час простої сенсомоторної реакції та реакції вибору, швидкісні можливості нервових процесів під час теплінг-тестування, показники спектральної потужності частотних компонентів електроенцефалограми обстежуваних у стані спокою, під час почергових рухів пальців правої руки. Жінки з високою модальною α-частотою мали кращі швидкісні характеристики нервових процесів. Почергові руки пальців у жінок супроводжувалися зниженням потужності α2- і α3-активності задніх кортикалних ділянок, β1- і γ-активності – лобових, скроневих і центральних ділянок порівняно зі спокоєм; характеризувалися генералізованім зростанням θ-коливань і локальним (у лобових відділеннях) – α1- і β2-активності. Для осіб з низькою модальною α-частотою вимірювали менш специфічні та диференційовані особливості активації кори. У жінок із низькою α-частотою виконання почергових рухів пальцями пов’язане з вищою потужністю θ-, α1-.
 Movements by the upper extremities, particularly but not exclusively, by human fingers, form the basis of the manual movements in any labor activities. This or that person’s individual functional capacities of the motor system acquire a critical score for successful learning of a wide range of trades in present-day society. For this purpose, the academic community places greater emphasis on issues dealing with the personality traits of the cerebral processes guaranteeing the motorial programming of manipulation movements (MM). Various aspects of the abovementioned problem were studied in the area of neurophysiology concerning motor activities (Sheth and Shimojo, 2002; Ioffe, 2003; Rhodes et al., 2004; Hatfield et al., 2005; Wise and Willingham, 2009; Grigal and Kurganskiy, 2010; Pavlovych et al., 2012; Cavallo et al., 2014). MM are obviously associated with significant alterations of the brain’s activities ensuring the formation of the appropriate motor programs and orders. However, specific information concerning these processes in the cerebral cortex is still very limited. It is not improbable that certain performance measures of the cerebration correlated with MM – their amplitude, speed and accuracy, exist.

Scientists (Kristeva et al., 2005; Bazanova and Aftanas, 2007; Grandy et al., 2013; Morenko et al., 2014) found out that individual values of the amplitude-frequency characteristics of any α-rhythm, including the modal frequency of such a rhythm, demonstrate a significant informational content in determining the state of the main physiological functions of a person. According to the data of Kristeva et al. (2005), Bazanova and Aftanas (2007), the ideal coordination of processes organizing movements and capacity for censorship are positively correlated to the power of the individual EEG α-range and negatively to the tension of the muscles of the facial expression (forehead) being inactive during the MM autoniesia. These statements are study specific of the authors (Kaplan and, Borisov, 2003; Angelakis et al., 2004; Anokhin et al., 2006; Bégler and Porjesz, 2006; Klimesch et al., 2007) who consider the modal EEG α-frequency as rigidly determinate by a genetic trait inasmuch it reflects the essential innate peculiarities of the structural organization of any thalamic and cortical neurons (Page et al., 2006; Ng and Raveendran, 2007; Spergel, 2007).

Estimating the crucial importance of results obtained by different scientists, it is worth mentioning that such information is clearly inadequate for a thorough understanding of personality traits of the neurophysiological maintenance of the goal directed movements of any individual. Records are critically limited as to the way in which such an innate aspect of the mental functioning as a modal frequency of EEG α-rhythm deals with the activities regulating distal hand muscles during the execution of MM. The prognostic value of an individual’s cerebral activities dealing with MM is marginally studied today. At the same time, the question of the interconnection of certain EEG rhythms characteristics, above all α-rhythm, with control peculiarities of distal movements of the upper limbs is an essential component of the important general biological problems of coordinated activity of the brain’s motor systems and of the activity of the executive apparatus during the implementation of motor functions.

With the aim of shedding light on such issues, we conducted a study of changes in the power spectrum of the EEG frequency components during the time of execution of alternating movements by fingers in men having some different modal alpha-frequencies (Morenko et al., 2014). According to the results obtained, all the men had the power reduction of 0-, α- and β1-waves, especially in the posterior cortical areas as well as some power growth of the EEG (0- and α1-) low-frequency vibrations in the frontal area. However, men with a low mode of α-frequency had a lower power of the EEG α1-, β- and γ-activities in the frontal areas whilst the higher power of the EEG frequency components and generalization of such changes were found to be greater in the parietal, occipital, central and temporal lobes than in men with a higher modal α-frequency. Peculiarities of the cortical electrical activity determined in the flow of the regulation of the manipulation movements in men with a high mode of α-frequency were associated with relatively higher rates of the speed and accuracy of the sensorimotor responses. Taking into consideration the obtained results concerning men and the general scientific relevance of the gender flow phenomena of the cerebral activities particularly but not exclusively during MM, it is appropriate to carry out the relevant studies with the involvement of women as testees.

The goal of our research is to find out the specifics of the EEG power spectrum during the execution of alternating movements by fingers of women with higher and lower modal frequencies of the EEG α-rhythm, taking into account the prognostic value of the relevant data in the area of the speed capabilities of nervous processes.

Materials and Methods

The object of the study. The participants in our study were 136 female volunteers from the ages of 19 to 21, each of whom had given written consent. Biomedical ethics rules in accordance with the Helsinki Declaration of the World Medical Association on the Ethical Principles of Scientific and Medical Research involving Human Subjects were adhered to during the experiment. All the testees were judged by medical professionals to be healthy and have normal hearing. The survey of the women was conducted during the secretory phase of the menstrual cycle.

Psychophysiological examination. As part of the psychophysiological testing the profile of manual and auditory asymmetry was determined for each subject. It was determined by the nature of responses in the survey, execution of the motor and psychoacoustic tests and counting the individual ratio of the manual and auditory asymmetries (K skew) (form. 1) (Zhavoronkova, 2009):

$$ K_{\text{skew}} = \frac{\Sigma_{\text{right}} - \Sigma_{\text{left}}}{\Sigma_{\text{right}} + \Sigma_{\text{left}}} \times 100\% $$
Further studies involved dextral testees whose coefficients of manual and auditory asymmetries were positive and were above 50%. The total number of women was 113.

The level of speed properties of the testees’ nervous processes was surveyed with a single sensorimotor reaction taking into consideration time period and sensorimotor responses in the choice of one of three objects as signals (triangles, circles, squares). See the program "Diagnosticsian–1", Ukraine. All testees had to respond to the certain stimuli as quickly as possible by pressing a button with the right hand.

All examinations were performed in the morning. The profile of the asymmetry and time of simple and complicated sensory-motor reactions was evaluated 30 minutes before the EEG recording registration. It made it impossible to influence the experiment, particularly, on EEG results.

EEG testing procedures. The testees were in a quiescent state with their eyes closed and in a reclining position with their limbs relaxed and not crossed during the EEG testing. The experiment was carried out in a room which was sound-proof and light-proof. The whole experimental procedure consistently included the following steps for each testee:

1. The EEG recording in the functional balance (background);
2. The EEG recording while performing the alternate movements by fingers of the right hand.

Each step lasted 40 s. To exclude edge effects, the EEG recording registration was started 15 s after the beginning and had been stopped 5 s after its completion.

The testees performed finger movements one by one in the following order: forefinger – fourth finger – third finger – little finger. The sequence of movements was reported to the testees just before the test to minimise stereotyping of the task.

Movements of each finger involved its bending and unbending. Each finger flexion or extension was performed by the testees in response to the sound. The electronic version of a drum battle (the software of Finale 2006) was used for this purpose. Binaural stimuli were produced by four speakers placed in different corners of the room at the distance of 1.2 m from the testee’s right or left ear. The stimulus duration was 130 ms; the playback sound volume did not exceed 55–60 dB at the outlet from the speakers. The frequency of the ‘DE-3301’ type (certificate of attestation # 025-2009, valid until 21.12.2014). Additionally, the sound loudness of the 'DE-3301' type was determined in steps of 2 Hz to the left of the IAF in increments of 2 Hz. It corresponded to the lower limit of the α1-band. The upper limit of the β1-sub-band was defined according to the standard concepts as 25 Hz. The lower limit of the α2-band was determined in steps of 2 Hz to the left of the peak, and the α1-band in 4 Hz steps, as well as θ-frequencies – in 6 Hz. Limits of β2- and γ-bands were recognized as standard, properly, 26–35 Hz and 36–45 Hz.

Statistical analyses. A statistical data analysis was performed by using the package Statistica 6.0 (StatSoft, 2001). Any normalcy of the data distribution in testees’ subgroups was evaluated by means of the Shapiro-Wilks test (indicator SW). Since the distributions of our data were usually normal, we calculated the average values (M), standard deviation (σ) and error of average value (± m). M ± m is specified in the text and tables. To estimate the significance of differences existing in testees’ subgroups, the Student's t-test was used between steps of testing both for independent equal samples and for dependent samples.

Results

The individual modal frequency evaluation of the α-EEG activity and individual limits of the frequency content of the EEG sub-range in the findings for female testees. The average value of the modal frequency of any α-activity in samples of female testees was 10.25 ± 0.03 Hz. Considering the leveled
nature of the individual α-frequency value histogram (Fig. 1) in the female testees, the conditional distribution of samples was made under the average mean of the modal frequency of α-activity. Two groups were formed, in particular, groups having a high value of $\text{I}_{\alpha F}$ ($n = 59, \text{I}_{\alpha F} \geq 10.25 \text{ Hz}$) and groups with a low value of $\text{I}_{\alpha F}$ ($n = 54, \text{I}_{\alpha F} < 10.25 \text{ Hz}$).

Fig. 1. Histogram of values of α-frequency mode in female testees:
vertical columns – individual values of the EEG α-frequency mode in samples involving female testees

Features of the output speed characteristics of the nervous processes in women with high and low IαF. Women with a high IαF showed a shorter time for simple and complex reactions (Table).

Changes in spectral power while performing alternate finger movements in the testees’ groups. Some decrease in the spectral power of the EEG especially in the posterior cortical areas, in α2- ($P < 0.05$) and α3-subranges ($P < 0.05 – < 0.01$) in comparison with the state of immobility (Fig. 2) was recorded in both female groups.

Furthermore, women with higher IαF had the reduced spectral power of the β1- and γ-activities in the frontal, temporal and central areas of the cortex ($P < 0.05 – < 0.01$) compared to the state of immobility. Against the background of such changes in both female groups, there was found a generalized growth of spectral power of the EEG θ-oscillations ($P < 0.05 – < 0.01$). Such changes of the PS of the θ-activity were less significant ($P < 0.05$) in women with lower IαF. Instead of it, relatively low EEG spectral power (Fig. 3) was registered in the frontal leads of the α3-, β- and γ-oscillations ($P < 0.05 – < 0.01$).

Discussion

The aim of our study was to determine the characteristics of the EEG spectral power during the performance of successive movements by fingers of women with higher and lower modal frequencies of the EEG α-rhythm while taking into account the prognostic value of the relevant information in the speed of nervous processes.

Features of the output speed characteristics of the nervous processes in women indicate the higher speed capabilities of nervous processes in women with higher IαF compared with those with lower IαF.

The implementation of the alternating movements by the right (dominant) hand was accompanied by a decrease of the...
EEG spectral power in both groups of women, especially in the posterior cortical areas, in α2- and α3-subranges compared to the state of immobility. In our opinion and according to Buzsáki et al. (2006) Tebenova (2009), these effects may reflect the increase of activity in the cortical areas involved in the processes of sensory analysis, sensory-spatial attention, and the motor programming. At the same time, women with higher IαF had a reduction of the spectral power of the β1- and γ-activity in the frontal, temporal and central areas of the cortex compared to the state of immobility. According to some authors, high-frequency electrical activity is modulated by the brain stem structures of the cortex, particularly the reticular formation (Revest et al., 1994; Boldyreva et al., 2000; Razumnikova et al., 2009). The latter creates a non-specific activation impact on the cortical processes and causes some high expression of EEG components. So, obviously, the pattern established by us is a manifestation of a certain decrease in the non-specific activation processes in this group of testees.

![Fig. 3. Intergroup differences in spectral power of EEG fluctuations during performance of alternate finger movements by female subgroups: Δ, ▲, ▼, ■ – higher (lower) power in women with a low IαF in comparison with women with a high IαF, P < 0.05 (white triangle), P < 0.01 (black triangle)](image)

Against the background of these changes, a generalized growth of the PS of the EEG θ-oscillations was revealed in women from both groups. According to scientists (Boldyreva et al., 2000; Pavlovych et al., 2012), it can be interpreted as a correlate strengthening of the emotional and motivational backgrounds being modulated by the limbic system. It should be emphasized that women with lower IαF had spectral power changes in the θ-activity of less significance. According to data from the literature (Klimesch et al., 2007), the increment in the α1- and β2-activity of the frontal areas in all the women may reflect, on the one hand, the updating processes of the memory which allow a person to keep the necessary focus of sensory and motor information and manipulate it, but on the other hand, the increase in the power of α1-oscillations in the frontal area (P < 0.05), may be associated with the increased selective attention as a mechanism to facilitate functioning of the active cortical structures. A more generalized growth capacity of the β- and γ-activity was recorded in the cortices of women with lower IαF, which may be a non-specific correlate enhancing the cortical activity (Pulvermuller et al., 1997).

According to sources in the literature (Klimesch et al., 2007; Razumnikova et al., 2009), higher θ-capacity and lower α-activity is associated with some decrease in the state of the readiness and maintenance of some attention and the decrease of the α3-, β- and γ-oscillations in the frontal areas – with the organization of specific forms of attention necessary for higher cognitive functions. Then, the differences found by us in EEG frequency components of power between the groups of testees may indicate the status regarding a lower specific cortical tone, its readiness for any activity and control of information processes in testees with lower IαF compared with those testees with higher IαF. At the same time, higher PS in the posterior cortical areas in the high frequency ranges of the EEG (α3-, β- and γ-) may indicate a predominance of the non-specific activation patterns in the reaction of encephalic processes (Pulvermuller et al., 1997; Boldyreva et al., 2000; Morenko et al., 2014).

Conclusions

The theoretical generalization of research results makes it possible to outline the features of the brain processes that were observed during the execution of successive finger movements initiated by the sensory signals in people with different modal frequencies of α-rhythm. Alternate female finger movements were accompanied by a decrease in the EEG α2- and α3-activities in the posterior cortical areas, and β1- and γ-activities in the frontal, temporal and central areas of the cortex compared with the same in the immobile state; they were also characterized by the generalized growth of θ-oscillations and local (in the frontal leads) – α1- and β2-activities. Thus, in both groups of women surveyed an increase in activity of those cortical structures that ensure its implementation – sensory perception, motor start and motor programming commands and a sense-motor coordination, was found. When MM were performed by women with higher output α-frequency, they were characterized by more local changes in the electrical activity of the cerebral cortex. People with lower modal α-frequency were characterized by somewhat less specific and differentiated features of the cortex activation. Alternating movements of fingers performed by women with lower IαF were associated with higher EEG θ-, α1-, α2-activities, generally in the cortex, and α3-, β- and γ-oscillations – in the posterior areas than in those with higher IαF. Instead of this, a relatively lower power spectral EEG was recorded in the frontal leads of the range consisting of α3-, β- and γ-oscillations. Intergroup differences found by us may indicate a higher status regarding a specific cortical tone, its readiness for activity and control of information processes in people with higher IαF in comparison with those who had lower IαF.

A different level of features of such activation systems is natural for achievement of specific outcomes in testees with a different starting IαF. Women with higher IαF had better speed characteristics of nervous processes.
The results of the study indicate that the value of a female α-frequency mode determined in the state of the immobility may have a prognostic value with regard to the reaction of cortical processes during performance of alternating movements by the fingers.

Acknowledgments

This research has been conducted under the frame of the science topic of the Biological Faculty of Lesia Ukrainka Eastern European National University – “Neurophysiological mechanisms of sensorimotor organization and system of human (and sexual aspects)”, No 0111U002143 (2009–2011).

References

Angelakis, E., Lubar, J.P., Stathopoulou, S., Kounios, J., 2004. Peak alpha frequency: An electroencephalographic measure of cognitive preparedness. Clin. Neurophysiol. 115, 887–897.

Anokhin, A., Muller, V., Lindenberger, U., Heath, A., Myers, E., 2006. Genetic influences on dynamic complexity of brain oscillations. Neurosci Lett. 397, 93–98.

Bazanova, O.M., Aftanas, L.I., 2007. Individualnyje pokazateli alfa-aktivnosti electroencefalogramy i neverbalnaja kreativnost' [Individual alpha activity of electroencephalogram and nonverbal creativity]. Ross. Fiziol. Zh. im. I. M. Sechenova 93(1), 14–26 (in Russian).

Begleiter, H., Porjesz, B., 2006. Genetics of human brain oscillations. Int. J. Psychophysiol. 60(2), 162–171.

Boldyrev, G.N., Sharova, Y.V., Dobronravova, I.S., 2000. Rol' regulatoryh structur mozga v formirovanii EEG cheloveka [Regulatory role in the formation of structures in the brain EEG]. Fiziol. Cheloveka 26(5), 19–34 (in Russian).

Buzsáki, G., 2006. Rhythms of the Brain. Oxford University Press, New York.

Cavallo, A., Catmur, C., Cowden, S., Iani, F., Becchio, C., 2014. Stopping movements: When others slow us down. European J. Neurosci. 40(5), 2842–2849.

Grandy, T.H., Werkle-Bergner, M., Chicherio, C., Schmiedek, F., Lövdén, M., Lindenberger, U., 2013. Peak individual alpha frequency qualifies as a stable neurophysiological trait marker in healthy younger and older adults. Psychophysiol. 50, 570–582.

Grigal, P.P., Burgaksky, A.V., 2010. Napravlennyje kortiko-kortikal'nyje funkcionalyal'nyje vzaimodejstviya na rannih stadijah serijnogo nauchenja u vzroslyh i detej semi–vosminj let [Directed corticocortical functional connectivity at the early stages of serial learning in adults and seven- to eight-year-old children]. Fiziol. Cheloveka 36(4), 408–419 (in Russian).

Hatfield, B.D., Haufler, A.J., Hung, T.M., Spalding, T.W., 2004. Electroencephalographic studies of skilled psychomotor performance. J. Clin. Neurophysiol. 21(4), 144–156.

Ioffe, M., 2003. Mozgovye mehanizmy formirovanija novykh dvizhenij pri obuchenii: Evoljucija klassicheskix predstavlenij [Neural basis of learning new movements: Evolution of classical concepts]. I.P. Pavlov Journal of Higher Nervous Activity 53(1), 5–21 (in Russian).

Kaplan, A.Y., Borisov, S.V., 2003. Dynamika segmentnych karakteristik alfa-aktivnosti EEG cheloveka v pokoje i pri kognitivnyh nagruzkah [Dynamic properties of segmental characteristics of EEG alpha activity in rest conditions and during cognitive tasks]. I.P. Pavlov Journal of Higher Nervous Activity 53(1), 22–32 (in Russian).

Klimesch, W., Sauseng, P., Hanslmayr, S., 2007. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res. Rev. 53, 63–88.

Kristeva, R., Chakarov, V., Losch, F., Hummel, S., Popa, T., Schulte-Mönting, J., 2005. Electroencephalographic spectral power in writer’s cramp patients: Evidence for motor cortex malfunctioning during the cramp. NeuroImage 27(3), 706–714.

Morenko, A.G., Tsjos, A.V., Kotsan, I.Y., 2014. Features of the cortical activity of men having a high or low alpha-frequency background of the EEG while performing alternate finger movements. Health Problems of Civilization 8(1), 24–31.

Ng, S.C., Raveendran, P., 2007. EEG peak alpha frequency as an indicator for physical fatigue. Medicon 16, 517–520.

Page, A.J., O’Donnell, T.A., Blackshaw, L.A., 2006. Inhibition of mechanosensitivity in visceral primary afferents by GABA(B) receptors involves calcium and potassium channels. Neurosci. 137(2), 627–636.

Pavlovych, O.S., Morenko, A.G., Kotyk, O.A., Vlasjuk, S.S., 2012. Cortical arousal strategies in left-handers during the aural perception and manual playback of mono and polyphonic rhythmical patterns. Journal of Life Sciences 6(12), 1408–1413.

Pulvermüller, F., Birbaumer, N., Lutzenberger, W., Mohr, B., 1997. High-frequency brain activity: Its possible role in attention, perception and language processing. Prog. Neurobiol. 52(5), 427–445.

Razumnikova, O.M., Tarasova, I.V., Volf, N.V., 2009. Osobennosti aktivacii kory u lic s voslyokoj i nizkoj verbalnoj kreativnost'ju: Analiz alfa-1, -2 ritmov [Features of cortical activation in individuals with high and low verbal creativity: an analysis of the alpha-1, -2 rhythms]. I.P. Pavlov Journal of Higher Nervous Activity 59(5), 581–586 (in Russian).

Revest, P.A., Jones, H.C., Abbott, N.J., 1994. Transendothelial electrical potential across pial vessels in anaesthetised rats: A study of ion permeability and transport at the blood-brain barrier. Brain Res. 652(1), 76–84.

Rhodes, B., Bullock, J., Verwey, W.B., Averbee, B.B., Page, M.P.A., 2004. Learning and production of movement sequences: Behavioral, neurophysiological and modeling perspectives. Hum. Movement Sci. 23(5), 699–746.

Sheth, B.R., Shimojo, S., 2002. How the lack of visuomotor feedback affects even the early stages of goal-directed pointing movements. Exp. Brain Res. 143(2), 181–190.

Spergel, D.J., 2007. Calcium and small-conductance calcium-activated potassium channels in gonadotropin-releasing hormone neurons before, during, and after puberty. J. Endocrinol. 148(5), 2383–2390.

Tebenova, K.C., 2009. Izuchenije bioelektritcheskoy aktivnosti mozga operatorov telefonnyh stantcij [The study of brain bioelectrical activity of telephone station operators]. Sovremennyje Problemy Nauki i Obrazovaniya 4, 138–141 (in Russian).

Wise, S.P., Willingham, D.T., 2009. Motor skill learning. In: Squire, L.R. (ed.). Encyclopedia of Neuroscience. Academic Press, Oxford. Vol. 5, pp. 1057–1066.

Zhavoronkova, L., 2009. Pravshy-Levshy. Mezhpolusharnaja asimmetrija biopotencyalov mozga cheloveka [Right-handed and Left-handed: Hemispheric asymmetry of brain potentials of man]. Press Ekoinvest, Krasnodar (in Russian).

Надійшла до редколегії 14.03.2016