An interpopulation comparison of 3-dimensional morphometric measurements of the proximal humerus

Adijat O. Inyang, PhD a,*, Stephen Roche, MD b, Sudesh Sivarasu, PhD a

a Orthopaedic Biomechanics Lab, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa
b Department of Orthopaedic Surgery, University of Cape Town, South Africa

Background: Precise anatomic reconstruction of the proximal humerus is essential to a favorable outcome of total shoulder arthroplasty. Because of the wide variation in the geometric features of the proximal humerus, prosthetic designs incorporating these disparities are being developed.

Methods: The aim of this study is to use data obtained from cadavers and computed tomographic scans to investigate the 3-dimensional morphometric parameters of the proximal humerus of South African and Swiss samples and make an interpopulation comparison. In addition, the study combines the interarticular variations between populations with the differences in sex and shoulder sides. With the aid of medical imaging techniques and engineering design tools, various geometric features were measured.

Results: The results obtained from these analyses revealed several differences in sex and shoulder sides. On average, the Swiss were larger in most of the measured parameters than the South Africans. The male shoulders of Swiss and South Africans were observed to significantly vary in 4 of the parameters measured. The South African male and female right shoulders varied considerably in one-fourth of the measured shoulder variables. Generally, for both populations, the left and right shoulders of the same individuals were not different in all the measured variables irrespective of sex.

Conclusion: The knowledge acquired in this study is expected to assist in the development of a population-specific shoulder prosthetic design and surgical planning procedures.

© 2020 The Authors. Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
morphology of the South African (SA) population. This study combines the uniqueness of analyzing the morphometric variations of the SA proximal humerus with a comparative analysis of the SA shoulders with the Swiss shoulders. Therefore, we have investigated the 3D morphometric parameters of the proximal humerus of the SA and Swiss populations and thereafter made an interpopulation comparison between these populations.

Materials and methods

Data description and 3D reconstruction modeling of the proximal humerus

Forty-two SA fresh-frozen cadaveric humeri and 58 Swiss humeri were used in this study. These data sets were obtained from bilateral shoulders. Of all the shoulders analyzed, 18 pairs were for women (Table I). They were collected from the Clinical Anatomy and Biological Anthropology Division of the University following the institutional review board approval of the Departmental Research Committee of the University’s Department of Surgery. With the aid of a Phillips Brilliance 64-slice computed tomography scanner (Philips Medical Systems, Cleveland, OH, USA), the cadavers were scanned at a resolution of 0.65 mm at a slice thickness of 0.9 mm and an increment of 0.45 mm per rotation. The computed tomographic scans for the Swiss data were obtained from a Swiss repository. Physically or pathologically defective specimens and those on which surgeries had been previously performed were left out from the study. The 3D reconstructed models of the humeri were semi-automatically generated in Mimics (Materialise NV, Leuven, Belgium), and exported as a stereolithography file for further processing.

Table I

Source of data	South Africans	Swiss
Number of shoulders		
Left	21	29
Right	21	29
Total	21 (13)	29 (19)
Age, yr, mean ± SD	47.9 ± 14.7	49.4 ± 19.7

SD, standard deviation; SICAS, Swiss Institute for Computer Assisted Surgery.

Figure 1 Three-dimensional reconstructed geometric models of the proximal humerus showing the (a) axes, (b) planes, (c) measurements characterizing the proximal humerus geometry, (d) posterior offset, and (e) retroversion angles.
Quantitative summary of the shoulder data set and the variables that were analyzed in the study

Variable	Minimum	Quantile	Maximum	Mean	SD		
Age							
SA	20.00	36.00	50.00	55.00	78.00	47.86	14.65
Swiss	21.00	33.00	51.00	60.00	90.00	49.41	19.85
HHD							
Left	38.18	41.74	44.22	46.78	53.22	44.63	4.11
Right	39.34	44.5	49.14	51.18	53.58	47.63	4.16
AST							
Left	38.94	42.2	43.9	47.6	54.82	45.02	4.16
Right	39.98	44.34	48.22	50.42	52.84	47.43	3.99
MO							
Left	15.33	18.26	19.57	21.38	27.87	19.94	2.91
Right	14.61	18.93	20.76	22.63	25.36	20.66	2.49
ASD							
Left	37.73	41.1	43.93	46.61	53.17	44.18	4.04
Right	39.31	44.3	48.48	50.76	53.37	47.09	4.15
PO							
Left	3.89	5.40	5.76	6.91	9.60	6.16	1.48
Right	3.62	5.40	6.78	7.32	14.19	6.70	2.33
RA1							
Left	4.28	5.60	6.19	7.64	9.83	6.66	1.58
Right	3.45	5.50	6.08	7.04	8.40	6.22	1.29
RA2							
Left	0.63	24.54	28.19	34.32	42.47	25.78	11.43
Right	4.74	10.68	25.43	37.76	61.51	26.56	16.55
PO							
Left	0.00	0.43	1.10	2.23	4.93	1.52	1.37
Right	0.06	0.84	1.72	2.44	4.45	1.77	1.22
PO							
Left	0.63	24.54	28.19	34.32	42.47	25.78	11.43
Right	4.74	10.68	25.43	37.76	61.51	26.56	16.55
PO							
Left	0.00	0.43	1.10	2.23	4.93	1.52	1.37
Right	0.06	0.84	1.72	2.44	4.45	1.77	1.22
PO							
Left	0.63	24.54	28.19	34.32	42.47	25.78	11.43
Right	4.74	10.68	25.43	37.76	61.51	26.56	16.55
PO							
Left	0.00	0.43	1.10	2.23	4.93	1.52	1.37
Right	0.06	0.84	1.72	2.44	4.45	1.77	1.22

HHD, humeral head diameter; AST, articular surface thickness; ASD, articular surface diameter; IA, inclination angle; MO, medial offset; PO, posterior offset; RA1, retroversion angle 1; RA2, retroversion angle 2; SA, South African; SD, standard deviation. Sample demographics: female sex = 18; male sex = 32; N = 21 (South Africa) + 29 (Switzerland); total pairs of shoulders = 50.

Geometry extraction and parameter measurements

Each of the stereolithography files was imported into the reverse engineering environment of Solidworks (Dassault Systemes, Vélizy-Villacoublay, France). In preparation for geometry extraction, the relatively small detached mesh patches around the bone were first removed from the mesh, after which it was smoothed and then the humeral shaft was aligned along the Z-axis. These operations produced no noticeable change in the size and shape of the mesh; that is, the processes reduced the total number of faces in the mesh by less than 0.1%. The anatomic neck plane was defined as the plane that best fits the periphery of the articular surface, which was selected manually based on the observable boundary between the clearly spherical region and its surrounding as illustrated by Iannotti et al.²⁵ (Fig. 1, a). Afterward, the epiphyseal sphere was generated as the sphere that best fits the region of the mesh representing the articular surface using the spherical surface fitting tool of Solidworks (Fig. 1, b). Similarly, the metaphyseal cylinder was obtained from the region representing the upper humeral shaft, which is the part of the shaft above the deltoid tuberosity, using the cylindrical surface fitting tool (Fig. 1, b).

Next, the metaphyseal axis was defined as the central axis of the metaphyseal cylinder (Fig. 1, c), and the humeral head axis was created as a line passing through the center of the epiphyseal sphere and perpendicular to the anatomic neck plane (Fig. 1, c). The last step was to obtain relevant dimensions and measurements as follows:

1. **Humeral head diameter (HHD):** the diameter of the epiphyseal sphere (Fig. 1, d)
2. **Articular surface thickness (AST):** the normal distance between the crest of the articular surface and the anatomic neck plane (Fig. 1, d)
3. **Articular surface diameter (ASD):** the diameter of the intersection circle between the epiphyseal sphere and the anatomic neck plane (Fig. 1, d)
4. **Medial offset (MO):** the normal distance between the center of the epiphyseal sphere and the metaphyseal axis both projected onto the axial plane (Fig. 1, d)
5. **Inclination angle (IA):** the angle between the humeral head axis and the metaphyseal axis (Fig. 1, d)
6. **Posterior offset (PO):** the normal distance between the center of the epiphyseal sphere and the metaphyseal axis measured on the coronal plane (Fig. 1, e)
7. **Retroversion angle A1 (RA1) (transepicondylar):** the angle between the transepicondylar axis and the humeral head axis, both projected on the dorsal plane (Fig. 1, f) (the transepicondylar axis is the line joining the innermost part of the medial epicondyle and the outermost part of the lateral epicondyle)
8. **Retroversion angle A2 (RA2) (tangent elbow):** the angle between the projections of the tangent elbow axis and the humeral head axis on the dorsal plane (Fig. 1, f)

All the axes and planes are as defined in Boileau and Walch.⁴

Statistical analysis

All the statistical analyses were implemented with R (R Core Team, 2016; R Foundation for Statistical Computing, Vienna, Austria) statistical software. The analyses were performed in order to investigate the differences and similarities between populations from South Africa and Switzerland, as a function of various humeral characteristics. Linear correlation analysis was first used to assess the relationship between all the pairs of the continuous variables in the humeral morphologic data. A Student t test and 2-tailed, paired, and unpaired tests were used to determine whether there are differences in the geometry of the proximal humerus between male and female samples as well as between paired shoulders. A logistic
regression analysis was then used to perform an interpopulation comparison with respect to each of the measured variables. In other words, logistic regression was implemented in order to identify the combination of the measured variables that could differentiate between humeri of separate nations or sexes. Prior to proceeding with the main logistic regression analysis, the degree of linear relationship between pairs of the shoulder specimen variables with continuous measurements was analyzed. Correlation coefficients vary between -1 and 1. The sign of the value indicates the direction of the linear relationship. The absolute value of the coefficient represents the degree of the relationship: 0 implies no linear correlation, whereas 1 implies perfect relationship. Two perfectly correlated variables are expected to contribute similar information to a regression model and need not be both included in the same model to avoid redundancy.

Results

The distributions of all the variables analyzed in this study are summarized in Table II. The table contains the counts for the qualitative measurements and 5-number summaries, means, and standard deviations. The table is supplemented with a graphical summary in Fig. 2. The plot illustrates the distributions of all the measured variables using standardized values. The choice of standardized measurements for the plot is to enhance visibility. Table II and Fig. 2 show that the Swiss and South African data were similarly distributed with respect to age and the AST, RA1, RA2, PO, and MO measurements, except that the Swiss have more variable age, RA1, RA2, PO, and MO whereas South Africans have more variable AST. It is also apparent that the South African specimens produced lower HHD, ASD, and IA measurements.

Figure 3 describes how the measured parameters compare between the 2 population groups, provided that the subjects were of the same sex and shoulder side. On average, the values for all the parameters were not different statistically, for SA and Swiss female shoulders, as none of the corresponding P values was less than .05. We assert that AST, MO, and PO variables were, on average, not significantly different between SA and Swiss male shoulders because the comparisons yielded P values that were greater than .092. On the other hand, there is a significant difference in the average values of HHD, ASD, and IA variables between SA and Swiss male shoulders. These parameters had P values that ranged between <.001 and .021. Both retroversion angle variables did not show any evidence to indicate that they were different between the left shoulders of SA men and their Swiss counterparts. Based on the magnitude of the P value of .058 for the comparison of RA2 between the right shoulders of SA and Swiss males, it is apparent that the evidence in the analyzed data is inconclusive. Given the corresponding P value of .027, it is evident that the retroversion angles, RA1s, for the right shoulders of SA men were significantly higher, on average, than those of their Swiss counterparts. Figure 4 contains boxplots that illustrate how the shoulder specimen variables compare between sexes within country as a function of shoulder side. The P values were obtained from unpaired Student t tests that were independently conducted to verify the null hypothesis that variables do not differ between sexes within a specific shoulder side. It is apparent from the plots that on average the HHD, ASD, AST, and IA parameters differ significantly between Swiss male and female shoulders, provided that shoulder side and nationality were kept unchanged. Unlike the Swiss, there were significant differences between male and female MO and RA1 measurements at the right shoulders of SAs. The difference in the estimated averages of MO and RA1 were higher for right shoulders of SA males. Figure 5 was generated in order to illustrate the comparisons between shoulder sides within the subjects when sex and country of origin were kept constant. It can be observed that, as expected, the interquartile boxes all overlap, except for a few variable scenarios. Generally, the P values were greater than .05, and this agrees with the implications of the overlaps observed with the
boxes. Therefore, it can be clearly seen that all the parameters tend to be the same for both left and right shoulders for a randomly chosen male or female sample from either SA or Switzerland. The small \(P \) values obtained for HHD and ASD within-subject comparisons for SA women contradict expectations and are interesting for future investigations.

A graphical exploratory summary of the degree of linear relationship between pairs of the shoulder parameters is presented in Fig. 6. It is evident that the HHD-ASD, RA1-RA2, ASD-AST, and AST-HHD pairs were strongly correlated. Of the identified pairs, the HHD-ASD pair has the strongest correlation (\(r = 0.99 \)). Consequently, and without loss of generality, the HHD variable was omitted from

Figure 3 Box plots illustrating how the measured variables compare between South Africans and Swiss subjects. The \(P \) values were obtained from unpaired \(t \) tests to verify the hypotheses of equal mean values. SA, South African.
the regression analysis. The strength of correlation of the other identified pairs could be accommodated in the model and were therefore retained. Results from the logistic regression models are summarized in Table III. The baseline for the sex and nationality models were male and South Africa, respectively. In all parameters measured, AST, IA, RA1, and RA2 contribute significantly to differentiating between humeri of separate nations or sexes (Table III). Interestingly, the analysis on sex relating to the left shoulder indicated significant differences with respect to AST, IA, RA1, and RA2, whereas on the right shoulder the differences were related to IA and RA1. In contrast, on the left shoulder, significant differences were observed between South African and Swiss data.
with regard to AST and RA2, whereas on the right shoulder, AST, IA, and RA1 were significantly different.

Discussion

The results obtained from this study reveal interesting differences in sex and sides in the proximal humeral morphometric parameters. Although many studies have been conducted earlier on the 3D morphometric analysis of the proximal humerus, most of them have focused on Western populations; of these, a few have considered either sides or sex differences and a few have compared populations involving an African origin. One of the strong points of this study is that the comparison was made across continents—the SA population having rarely been

Figure 5 Parametric and visual summaries of the interpopulation comparisons of the measurements. The P values were recorded from paired t tests designed to verify the null hypothesis that left shoulders were equal to right shoulders, on average. L, left; R, right; SA, South African.
studied—with the 2 populations having a statistically comparable age and sex distribution.

These results revealed variations in the proximal humeral morphology, with the Swiss population being larger or more variable than the SA population in most of the measured parameters. In general, the left and right shoulders of same individuals for both SAs and Swiss were not different in all the measured variables irrespective of sex. This is consistent with the findings of Delude

Table III
Summarized outputs from logistic regression models fitted for the shoulder morphometric data

Parameter	Sex	Age (OR, 95% CI)	P value	Age (OR, 95% CI)	P value
HHD, humeral head diameter	1.017 (0.987, 1.053)	.563	1.008 (0.984, 1.036)	.529	
ASD, articular surface diameter	0.019 (0.000, 0.288)	.032	0.206 (0.009, 1.584)	.264	
AST, articular surface thickness	0.946 (0.891, 0.992)	.039	0.957 (0.915, 0.990)	.028	
IA, inclination angle	4.058 (1.662, 15.924)	.020	2.564 (1.319, 5.878)	.020	
RA1, retroversion angle 1	1.003 (0.984, 1.082)	.953	0.962 (0.863, 1.082)	.445	
RA2, retroversion angle 2	1.013 (0.987, 1.043)	.346	1.002 (0.976, 1.029)	.891	
PO, posterior offset	1.013 (0.996, 1.065)	.600	0.987 (0.940, 1.033)	.578	
MO, medial offset	1.004 (0.977, 1.032)	.772	1.003 (0.982, 1.025)	.756	
age	0.489 (0.246, 0.909)	.015	0.533 (0.342, 0.745)	.001	
IA	0.975 (0.938, 1.008)	.169	0.965 (0.93, 0.992)	.020	
RA1	1.724 (0.969, 2.289)	.093	2.130 (1.292, 3.969)	.007	
RA2	1.036 (1.004, 1.074)	.037	0.993 (0.968, 1.016)	.543	
PO	1.002 (0.988, 1.019)	.963	0.990 (0.948, 1.034)	.712	
MO	1.013 (0.988, 1.042)	.316	1.002 (0.976, 1.028)	.901	

ASD, articular surface diameter; AST, articular surface thickness; IA, inclination angle; RA1, retroversion angle 1; RA2, retroversion angle 2; PO, posterior offset; MO, medial offset; OR, odds ratio; CI, confidence interval.
In the present study, we assessed the morphometric characteristics of the shoulder joint in both male and female samples. The study was conducted on a total of 84 individuals, comprising 42 Swiss and 42 South African (SA) subjects. The measurements taken included humeral head diameter (HHD), articular surface diameter (ASD), articular surface thickness (AST), retroversion angle 1 (RA1), retroversion angle 2 (RA2), inclination angle (IA), posterior offset (PO), and medial offset (MO).

The results indicate that there was a significant difference in the HHD for Swiss males (47.53 ± 4.04 mm) compared to SA males (44.83 ± 4.09 mm). Similarly, the ASD for Swiss males (44.44 ± 4.06 mm) was slightly higher than that for SA males (40.22 ± 2.82 mm). The AST for Swiss males (20.22 ± 2.82 mm) was also slightly higher than that for SA males (18.50 ± 2.82 mm). The IA for Swiss males (131.58 ± 5.54°) was significantly higher than that for SA males (129.60 ± 2.98°). The PO for Swiss males (1.58 ± 1.49) was slightly higher than that for SA males (1.58 ± 1.49). The MO for Swiss males (6.41 ± 1.53) was slightly higher than that for SA males (6.46 ± 1.88).

The comparison of the morphometric measurements with previous published studies is as follows:

Parameter	Present study, mean ± SD	Previous studies, mean ± SD
HHD	44.83 ± 4.09	46.0 ± 4.00³⁵
		46.2 ± 5.40⁷
		45.0 ± 3.60¹³
	47.83 ± 2.80	48.8 ± 5.00¹³
		48.2 ± 5.80¹²
	50.69 ± 4.30	48.0 ± 4.20¹⁶
	50.30 ± 0.00	42.9 ± 3.60²⁶
	50.11 ± 4.40	42.9 ± 3.80¹³
ASD	44.44 ± 4.06	43.3 ± 4.30⁴
		41.4 ± 3.70²⁶
		42.9 ± 3.60¹³
AST	20.22 ± 2.82	15.2 ± 1.60⁴
	20.54 ± 2.33	19.0 ± 2.00¹⁵
		18.7 ± 2.10⁴
	17.0 ± 1.70	16.9 ± 1.50⁴
	17.0 ± 1.70	16.7 ± 1.50⁴
IA	131.58 ± 5.54	129.60 ± 2.98⁴
	135.02 ± 5.47	131.0 ± 3.00¹⁵
		135.0 ± 3.00⁴
	137.0 ± 3.62¹³	133.0 ± 3.10¹⁵
		132.0 ± 4.70⁴
RA1	26.41 ± 9.72	17.9 ± 13.70⁹
	24.41 ± 13.89	19.0 ± 6.00¹⁵
		21.4 ± NR⁴
RA2	28.97 ± 9.68	21.5 ± 15.10⁴
	26.83 ± 14.80	23.3 ± 11.75⁴
	1.58 ± 1.49	2.0 ± 2.00¹⁵
PO		2.0 ± NR⁴
	1.96 ± 1.82	0.9 ± 1.10¹⁵
	0.40 ± 0.84	3.5 ± 1.6⁴
MO	6.41 ± 1.53	6.9 ± 2.00⁴
	6.46 ± 1.88	7.0 ± 2.00¹⁵
	6.2 ± 1.40²⁶	6.0 ± 1.81¹³
	5.0 ± 1.80	6.3 ± 0.90¹³

HHD: humeral head diameter; ASD: articular surface diameter; AST: articular surface thickness; IA: inclination angle; RA1: retroversion angle 1; RA2: retroversion angle 2; PO: posterior offset; MO: medial offset; SD: standard deviation; NR: not reported.

The data suggest that the morphometric characteristics of the shoulder joint differ significantly between Swiss and SA populations. This finding is consistent with previous studies, particularly within the context of ethnic diversity. The differences observed could be related to genetic, environmental, or cultural factors. The results highlight the importance of considering these variations in the design of prostheses and surgical techniques. Future studies should aim to expand the sample size and include more ethnic groups to further understand the observed differences.

Table IV

Comparison of the morphometric measurements with previous published studies.
following limitations are associated with this study. The sample size is relatively small. More data would have improved the precision of the inferences. For example, the inconclusiveness of the RA2 comparison of the right shoulder between nationalities and the unexplainable differences inferred for HHD and ASD within-subject comparisons for SA female specimens could be resolved. Another limitation is that the left and right sides were chosen based on position and not on handedness. A follow-up study could investigate the influence of this choice on the inferences, if any. Also, the height of the subject, which is related to bone dimensions, is not included in this study because this information was not available in the data. Lastly, extension of the regression analyses could be undertaken by considering, for example, other discriminant analysis varieties. Because the SA population inherently comprises heterogeneous ethnic groups, further analyses should interrogate the population more thoroughly in terms of race—black, mixed, and white—and allow an intrapopulation analysis in comparison with the Swiss. Such an analysis would provide information as to which of the ethnic groups in SA influence the results, if any.

Conclusions

This work has focused on investigating the morphologic measurements from a 3D analysis of the proximal humerus based on an interpopulation comparison between SA and Swiss shoulders. The study has shown that some humeral parameters are nationality- and sex-biased in morphology. The distinctiveness of this all-encompassing study stemmed from the fact that it has incorporated a number of variables including sex and bilateral humeri as well as conducting morphologic differences between different ethnicities. This inimitable approach provides valuable information for both biomedical engineers and clinicians. It could provide useful information during surgery or for prosthetic design by using the contralateral healthy shoulder as a basis for the affected shoulder.

The morphometric data on the African shoulder are very limited, and this study will significantly contribute to the shoulder data repository for the SA population. The findings of this work can be adapted clinically to provide analog humeral implants that would favorably suit the SA patients and hence serve as an extension to the African population in the near future, consequently minimizing postsurgical complications. In conclusion, it is envisaged that the findings from this study will facilitate the design of a new shoulder prosthesis for the African populace.

Disclaimer

The National Research Foundation (NRF) South Africa provided financial assistance for this study. Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the NRF. The authors, their immediate families, and any research foundations with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

Acknowledgments

The authors acknowledge the contributions of Dr Tinasho Mutsvangwa, Mr Hassan Sadiq, and Mr Edward Olayemi to this work. We also thank the Schlumberger Foundation Faculty for the Future for providing Postdoctoral Fellowship for one of the authors.

References

1. Akman SD, Karakaş P, Bozkir MG. The morphometric measurements of humerus segments. Turk J Med Sci 2006;36:81–5.
2. Ballmer FT, Sidles JA, Lippitt SB, Matsen FA III. Humeral head prosthesis arthroplasty: surgically relevant geometric considerations. J Shoulder Elbow Surg 1993;2:296–304.
3. Bicknell RT, Deluade JA, Redgley AE, Ferreira LM, Dunning CE, King CJ, et al. Early experience with computer-assisted shoulder hemarthroplasty for fractures of the proximal humerus: development of a novel technique and an in vitro comparison with traditional methods. J Shoulder Elbow Surg 2007;16: S117–25. https://doi.org/10.1016/j.jse.2006.08.007.
4. Bonnet P, Walch G. The three-dimensional geometry of the proximal humerus: implications for surgical technique and prosthetic design. J Bone Joint Surg Br 1997;79:857–65.
5. Cabezás AF, Krebs K, Hussey MM, Santoni BG, Kim HS, Franken M, et al. Morphologic variability of the shoulder between the populations of North American and East Asia. Clin Orthop Surg 2016;8:280–7. https://doi.org/10.1055/cios.2016.8.3.280.
6. De Wilde LF, Berghs BM, VandeVyver F, Schepens A, Verdonk RC. Glenohumeral relationship in the transverse plane of the body. J Shoulder Elbow Surg 2003;12:260–7. https://doi.org/10.1058/sj.1050834.
7. Deluade JA, Bicknell RT, MacKenzie GA, Ferreira LM, Dunning CE, King CJ, et al. An anthropometric study of the bilateral anatomy of the humerus. J Shoulder Elbow Surg 2007;16:477–83. https://doi.org/10.1016/j.jse.2006.09.016.
8. Doyle AJ, Burks RT. Comparison of humeral head retroversion with the humeral axis/biceps groove relationship: a study in live subjects and cadavers. J Shoulder Elbow Surg 1998;7:453–7.
9. Farrokhi D, Fabeck L, Descamps PJ, Hardy D, Delince P. Computed tomography measurement of humeral head retroversion: influence of patient positioning. J Shoulder Elbow Surg 2001;10:530–3.
10. Gebhart BJ, MINiaci A, Fening SD. Predictive anthropometric measurements for humeral head curvature. J Shoulder Elbow Surg 2011;20:842–7. https://doi.org/10.1016/j.jse.2011.04.005.
11. Harryman DT, Sidles JA, Harris SL, Lippitt SB, Matsen F III. The normal glenohumeral relationship in the transverse plane of the body. J Shoulder Elbow Surg 1993;2:296–304. https://doi.org/10.1016/j.jse.2006.09.016.
12. Hertel R, Knothe U, Ballmer FT. Geometry of the proximal humerus and implications for prosthetic design. J Shoulder Elbow Surg 2002;11:331–8. https://doi.org/10.1067/mse.2002.124429.
13. Iannotti JP, Schneck S, Evans B, Misra S. The normal glenohumeral articulation variations on cement mantle stresses in total shoulder arthroplasty. J Shoulder Joint Surg Am 1995;77:555–63.
14. Inyang AO, Roche S, Rosch T, Sivarasu S. Investigating the intra-ancestral morphometric variations of the three-dimensional geometry of the proximal humerus. J Musculoskelet Res 2018;28:1850012. https://doi.org/10.1080/ 00016470510030878.
15. Jacobson A, Gilet GJ, Greene A, Flurin P-H, Wright TW, Zuckerman JD, et al. Glenohumeral anatomy study: a comparison of male and female shoulders with similar average age and BMI. Bull Hosp Jt Dis (2013) 2015;73(Suppl 1): S68–78.
16. Jobe CM, Lannotti JP. Limits imposed on glenohumeral motion by joint geometry. J Shoulder Elbow Surg 1995;4:281–5.
17. Lannotti JP, Williams GR, MINiaci A, Zuckerman JD. Disorders of the Shoulder: Reconstruction. Philadelphia, PA: Lippincott Williams & Wilkins; 2013.
18. Lannotti JP, Gabriel JP, Schneck S, Evans B, Misra S. The normal glenohumeral relationships. An anatomical study of one hundred and forty shoulders. J Bone Joint Surg Am 1992;74:491–500.
19. Iannotti JP, Gabriel JP, Schneck S, Evans B, Misra S. The normal glenohumeral relationship in the transverse plane of the body. J Shoulder Elbow Surg 1993;2:296–304. https://doi.org/10.1016/j.jse.2016.02.021.
20. Kistler M, Bonaretti S, Pfahrer M, Niklaus R, Büchler P. The virtual skeleton measurement of humeral head retroversion: in EJ 2002;12:612–7. https://doi.org/10.1016/j.jse.2004.04.008.
21. Lannotti JP, Williams GR, MINiaci A, Zuckerman JD. Disorders of the Shoulder: Reconstruction. Philadelphia, PA: Lippincott Williams & Wilkins; 2013.
22. Lannotti JP, Gabriel JP, Schneck S, Evans B, Misra S. The normal glenohumeral relationships. An anatomical study of one hundred and forty shoulders. J Bone Joint Surg Am 1992;74:491–500.
23. Kistler M, Bonaretti S, Pfahrer M, Niklaus R, Büchler P. The virtual skeleton database: an open access repository for biomedical research and collaboration. J Med Internet Res 2013;15:e245. https://doi.org/10.2196/jmir.2330.
24. Knowles NK, Carroll MJ, Keener JD, Ferreira LM, Athwal GS. A comparison of normal and osteoarthritic humeral head size and morphology. J Shoulder Elbow Surg 2016;25:502–9. https://doi.org/10.1016/j.jse.2015.08.047.
25. Krueger F A. A vitalium replica arthroplasty on the shoulder; a case report of aseptic necrosis of the proximal end of the humerus. Surgery 1951;30:1005.
26. Kummer FJ, Perkins R, Zuckerman JD. The use of the bicruciate groove for alignment of the humeral stem in shoulder arthroplasty. J Shoulder Elbow Surg 1998;7:144–6.
27. Matsumura N, Oki S, Ogawa K, Iwashima T, Ochi K, Sato K, et al. Three-dimensional anthropometric analysis of the glenohumeral joint in a normal Japanese population. J Shoulder Elbow Surg 2016;25:493–501. https://doi.org/ 10.1016/j.jse.2015.08.003.
27. Milner GR, Boldsen JL. Humeral and femoral head diameters in recent white American skeletons. J Forensic Sci 2012;57:35–40. https://doi.org/10.1111/j.1556-4029.2011.01953.x.
28. Neer C. Anatomy of shoulder reconstruction. Shoulder reconstruction. Philadelphia, PA: WB Saunders Company; 1990. p. 1–39.
29. Neer C, Watson K, Stanton F. Recent experience in total shoulder replacement. J Bone Joint Surg Am 1982;64:319–37.
30. Pearl ML. Proximal humeral anatomy in shoulder arthroplasty: implications for prosthetic design and surgical technique. J Shoulder Elbow Surg 2005;14:599–104. https://doi.org/10.1016/j.jse.2004.09.025.
31. Pearl ML, Kurutz S. Geometric analysis of commonly used prosthetic systems for proximal humeral replacement. J Bone Joint Surg Am 1999;81:660–71.
32. Pearl ML, Volk AG. Retroversion of the proximal humerus in relationship to prosthetic replacement arthroplasty. J Shoulder Elbow Surg 1995;4:286–9.
33. Pearl ML, Volk AG. Coronal plane geometry of the proximal humerus relevant to prosthetic arthroplasty. J Shoulder Elbow Surg 1996;5:320–6.
34. Roberts S, Foley A, Swallow H, Wallace W, Coughlan D. The geometry of the humeral head and the design of prostheses. J Bone Joint Surg Br 1991;73:647–50.
35. Robertson DD, Yuan J, Bigliani LU, Flatow EL, Yamaguchi K. Three-dimensional analysis of the proximal part of the humerus: relevance to arthroplasty. J Bone Joint Surg Am 2000;82:1994–602.
36. Soslowsky LJ, Flatow EL, Bigliani LU, Mow VC. Articular geometry of the glenohumeral joint. Clin Orthop Relat Res 1992:181–96.
37. Wang VM, Krishnan R, Ugwonali OF, Flatow EL, Bigliani LU, Ateshian GA. Biomechanical evaluation of a novel glenoid design in total shoulder arthroplasty. J Shoulder Elbow Surg 2005;14:S129–40. https://doi.org/10.1016/j.jse.2004.09.029.
38. Wataru S, Kazumori S, Yoshikazu N, Hiroaki I, Takaharu Y, Hideki Y. Three-dimensional morphological analysis of humeral heads: a study in cadavers. Acta Orthop 2005;76:392–6. https://doi.org/10.1080/00016470510030878.
39. Wolff AL, Rosenzwieg L. Anatomical and biomechanical framework for shoulder arthroplasty rehabilitation. J Hand Ther 2017;30:167–74. https://doi.org/10.1016/j.jht.2017.05.009.
40. Zhang L, Yuan B, Wang C, Liu Z. Comparison of anatomical shoulder prostheses and the proximal humeri of Chinese people. Proc Inst Mech Eng H 2007;221:921–7. https://doi.org/10.1243/09544119jeim267.
41. Zhang Q, Shi LL, Ravella KC, Koh JL, Wang S, Liu C, et al. Distinct proximal humeral geometry in Chinese population and clinical relevance. J Bone Joint Surg Am 2016;98:2071–81. https://doi.org/10.2106/jbjs.15.01232.
42. Zumstein V, Kraljević M, Hoechel S, Conzen A, Nowakowski AM, Müller-Gerb M. The glenohumeral joint—a mismatching system? A morphological analysis of the cartilaginous and osseous curvature of the humeral head and the glenoid cavity. J Orthop Surg Res 2014;9:34. https://doi.org/10.1186/1749-799x-9-34.