СТРАТИФИЦИРОВАННЫЕ МОДЕЛИ САМОПОДОБНЫХ МОДУЛЬНЫХ НЕЙРОННЫХ СЕТЕЙ

Введено понятие самоподобного морфогенеза модульных сетей. Показано, что морфогенез морфологического уровня определён на терминальных проектациях модулей, а структурного уровня — на популяция градуированных подпро странств. Для самоподобных модульных нейронных сетей предложена стратифицированная модель, включающая морфологический, структурный, топологический и параметрический уровни. Рассмотрены структурно-регулярные нейронные сети. Показано, что алгоритмы быстрых преобразований (включая БПФ) могут быть описаны топологической моделью структурно-регулярной самоподобной сети. Представлена лингвистическая модель для описания топологий регулярных самоподобных сетей. Предложен алгоритм построения топологических матриц матричной факторизованной формы быстрых алгоритмов. Показана достаточность топологической модели для описания полного множества быстрых алгоритмов. Приведены примеры.

Известно, что биологический нейрон не функционирует, изолированно, а образует различной величины и численности нейронные ансамбли, нейронные модули или нервные центры. Впервые принцип модульной организации нейронных сетей был описан Р. Лорентье де Но [1]. В 1933 г. Р. Лорентье де Но установил, что нейроны коры головного мозга объединяются в вертикальные столбики клеток (колонки), представляющие собой функциональные единицы, связанные общностью рецепторного поля.

Прямые физиологические результаты, подтверждающие модульное строение корковых структур мозга были получены В. Маунткаслом в 1957–1959 гг. [2, 3]. Исследования новой коры (неокortexa) у млекопитающих проведенные Дж. Эдельманом и В. Маунткаслом [4] показали, что кора обладает высокой степенью однородности в структурном строении. У человека новая кора насчитывает шесть горизонтальных слоёв нейронов, отличающихся по типу и характеру связей. Вертикально, нейроны объединены в так называемые колонки кортекса. Колонки группируются в более сложные образования — макроколонки, сохраняют определённый топологический порядок и образуют строго связанные распределённые системы.

Неокортекс присутствует только у млекопитающих, причём стремительное увеличение коры головного мозга у человека произошло всего лишь пару миллионов лет тому назад. Любые значительные эволюционные изменения, происходящие в короткий промежуток времени, обеспечиваются заимствованием существующих структур, т.е. в новой коре Природой реализован принцип самоподобия.

Известное классическое определение самоподобия [5] ориентировано на обслуживание математических моделей фракталов, и не вполне подходит для представления самоподобных объектов не фрактальной природы, поэтому существует необходимость введения обобщающего определения, включающего в себя фракталь как частный случай. Если обратиться к биологии, то подходящим понятием может служить морфогенез живых систем. Под морфогенезом в биологии понимается процесс возникновения новых структур и изменения их формы в ходе индивидуального развития организмов.

В прикладных областях биологии используется более узкое определение: морфогенез это возникновение и направленное развитие популяции таксономической группы организмов. Где таксон (тάξον от греческого «порядок, устройство, организация») — страта в иерархической классификации, состоящая из дискретных упорядоченных объектов, объединяемых на основании общих свойств и признаков. Не ставя перед собой задачи построение строгой математической модели морфогенеза, введём рабочее определение достаточное для задач морфологического синтеза самоподобных сетей.

Определение 1. Будем говорить, что на популяции индексированных объектов определяется морфогенез, если для каждого объекта популяции найдётся точное отображение «родитель-потомок» однозначно индексирующее дочерние объекты.
Например, пусть $X = X_0 = \bigoplus_{z_0} A_{z_0}$ — начальная индексированная популяция, тогда направленное развитие популяции по поколениям определяется последовательностью индексируемых популяций вида:

$$X_0 = \bigoplus_{z_0} A_{z_0}, \quad X_1 = \bigoplus_{z_1} \bigoplus_{z_0} A_{z_1z_0}, \ldots, \quad X_{n-1} = \bigoplus_{z_{n-1}} \bigoplus_{z_0} A_{z_{n-1}z_0}, \ldots$$

Если $X$ это компактное топологическое пространство заданное отрезком единичной длины и объектами популяцией является части отрезка, то все поколения объектов популяции совпадают с этим пространством, так что

$$X = X_0 = X_1 = \ldots = X_{n-1} = \ldots,$$

и если ещё потребовать конечности выбора правил индекации объектов популяции, то понятие морфогенеза трансформируется к определению самоподобия на компакте, т. е. к фракталу. Заметим, теперь, что если ограничится только условием конечности выбора правил индексации, то это приводит к самоподобным растущим популяциям, не связанным с фрактами, а если снять условие конечности выбора правил индексации, то процесс роста популяции вследствие морфогенеза в общем случае не будет самоподобным.

При неопределённости числа поколений затруднительно ответить на вопрос о конечности выбора правил индексации и наличия самоподобия. В этом случае необходимо вводить дополнительные ограничения, выделяющие самоподобный процесс, например, если для всех поколений морфогенеза, отображения «родитель-потомок» совпадают, то очевидно морфогенез тривиально самоподобен. Однако класс популяций тривиального самоподобного морфогенеза достаточно узкий, и для практических целей целесообразно его несколько расширить.

Определение 2. Морфогенез назовём регулярным, если отображение «родитель-потомок» в каждом поколении совпадает для всех объектов и однозначно определяется номером поколения.

Очевидно, что тривиальный самоподобный морфогенез является частным случаем регулярного, когда отображения «родитель-потомок» для всех поколений совпадают. Прослеживается явная автомодельность в описании регулярного и тривиального самоподобного морфогенеза, поэтому и для регулярного морфогенеза мы также будем использовать термин самоподобный.

Математические модели служат средством изучения и проектирования нейронных сетей. От модели требуется, чтобы она была простой, но функционально достаточной. Основной проблемой математического моделирования является нахождение приемлемого компромисса между детализацией и простотой описания. Один из путей решения этой проблемы заключается в формировании иерархически вложенных семейств моделей, где каждый уровень иерархии соответствует уровню разумного абстрагирования свойств системы, что ведёт к упрощению каждой частной модели. Такое многоуровневое представление модели принято называть стратификацией [6], а каждый уровень модельного представления – стратой. Стратификация позволяет исследовать систему на разных стадиях познания и описывать каждый уровень адекватными средствами. Стратификация можно рассматривать и как средство последовательного углубления представления о системе: при спуске по иерархии страт вниз система раскрывается в деталях; при подъёме на более абстрактные уровни яснее становится смысл и значение всей системы. В математической формулировке стратификация связана с выделением на каждом уровне иерархии эквивалентных отношений и переходом к факторным моделям, описывающим каждый уровень адекватными средствами. Стратификация можно рассматривать и как средство последовательного углубления представления о системе: при спуске по иерархии страт вниз система раскрывается в деталях; при подъёме на более абстрактные уровни яснее становится смысл и значение всей системы. В математической формулировке стратификация связана с выделением на каждом уровне иерархии эквивалентных отношений и переходом к факторным моделям, описывающим следующий уровень.

Для модульных нейронных сетей можно построить четырёхуровневую стратифицированную модель, включающую морфологический, структурный, топологический и параметрический уровни. Страты моделей представленных упорядочены по степени абстракции (рисунок). Высший уровень абстракции соответствует морфологическому представлению, а низший – параметрическому. На морфологическом уровне описываются условия порождающего морфогенеза и системные инварианты самоподобных сетей. В структурной модели представлены размерности модулей и ранги межмодульных связей, но отсутствует информация об индексах координат вектора данных. Эта модель предназначена для оценки качественных показателей быстрого перестраиваемого преобразования, таких как быстродействие и пластичность. При-
вязка векторов к структурной модели может иметь множество вариантов и порождает множество топологических реализаций быстрых преобразований. Топологическая модель позволяет выбрать форму алгоритма, удобную для практической реализации. Топологическая модель, дополненная значениями коэффициентов базовых операций (модулей), образует модель параметрического уровня. На параметрическом уровне реализуются методы обучения и настройки нейронных сетей по заданным показателям качества.

Стратификация моделей позволяет разделить проектирование нейронной сети на относительно независимые этапы и использовать для каждого этапа специфичный математический аппарат.

В работе показано, что математическая модель самоподобия может быть распространена на многослойные модульные сети. Морфогенез самоподобия реализуется на популяции терминальных проекций нейронных модулей. Доказаны теоремы самоподобных структур. Представлены стратифицированные математические модели многослойных модульных нейронных сетей. Показано, что структура самодобной сети может быть выражена аналитически и описана лингвистической моделью. Построены графы морфологических, структурных и топологических моделей самоподобных нейронных сетей. Показано, что граф быстро преобразования Фурье относится к классу самоподобных сетей.

Самоподобие и регулярность слабосвязанных сетей обеспечивают уникальную возможность аналитического представления топологии реализующей сети, что позволяет разработать алгоритмы обучения нейронных сетей, абсолютно-сходящиеся за конечное число шагов. Кроме того, существует вариант аналитического расширения топологии самоподобной сети, который приводит к архитектурам глубоких нейронных сетей, сохраняющих быструю абсолютную сходимость алгоритмов обучения [7].

ЛИТЕРАТУРА
1. Lorente de No R. Studies on structure of the cerebral cortex // J. Psychol. Neurol. 1933. V.45. P. 381-392.
2. Mauntcastle V.B. Mogality and topographics of single neurons of cat’s somatic sensory cortex // J. Neurophysiol. 1957. V.20. P. 408-434.
3. Mauntcastle V.B. Powell T.P. Central nervous mechanisms subserving position sense and kinesthesis // Bull. John Hopkins Hosp. 1959. V.105. P. 173–182.
4. Маункасл В. Организующий принцип функции мозга – элементарный модуль и распределенная система // Дж. Эдельман, В. Маункасл. Разумный мозг: Кортикальная организация и селекция групп в теории высших функций головного мозга / Пер. с англ. Н.Ю. Алексеенко; под ред. Е.К. Соколова. М.: Мир, 1981. 133 с.
5. https://ru.wikipedia.org/wiki/Самоподобие.
6. Волкова В.Н., Денисов А.А. Основы теории систем и системного анализа: Учеб. для студентов вузов. СПб.: Изд-во СПбГТУ, 1999. 512 с.
7. Дорогов А.Ю. Бystрые нейронные сети глубокого обучения. Сборник докладов III Международной научной конференции по проблемам управления в технических системах (CTS'2019). Санкт-Петербург. 30 октября – 1 ноября 2019 г. СПб. СПбГЭТУ «ЛЭТИ». С. 275–280.
A.Yu. Dorogov (Saint Petersburg Electrotechnical University “LETI”, St. Petersburg)

**Stratified Models of Self-similar Modular Neural Networks**

The concept of self-similar morphogenesis of modular networks is introduced. It is shown that the morphogenesis of the morphological level is defined on the terminal projections of modules, and the structural level – on the population of graded subspaces. For self-similar modular neural networks, a stratified model is proposed, including morphological, structural, topological and parametric levels. Structurally regular neural networks are considered. It is shown that fast transformation algorithms (including FFT) can be described by a topological model of a structurally regular self-similar network. A linguistic model for describing the topologies of regular self-similar networks is presented. An algorithm for constructing topological matrices of matrix factorized form of fast algorithms is proposed. The sufficiency of the topological model is shown to describe the full set of fast algorithms. Examples are given.