H₂S biosynthesis and catabolism: new insights from molecular studies

Peter Rose¹,² · Philip K. Moore³ · Yi Zhun Zhu²

Received: 10 August 2016 / Revised: 7 October 2016 / Accepted: 1 November 2016 / Published online: 14 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Hydrogen sulfide (H₂S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H₂S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H₂S within tissues. Studies utilising these systems are revealing new insights into the biology of H₂S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H₂S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H₂S gas within tissues.

Keywords Hydrogen sulfide · Biosynthesis · Catabolism · Molecular models

Introduction

Hydrogen sulfide (H₂S) has gained acceptance by researchers, as the third gaseous mediator identified in mammals alongside nitric oxide (NO) and carbon monoxide (CO). Over the past decade, this molecule has been shown to be synthesised by a range of tissues in which it functions as a signalling molecule with distinct physiological and biochemical effects [1–3]. To date, the spectrum of signalling systems identified include, but is not restricted to, nuclear factor-kappa beta (NF-κB), the activity of several kinases, including p38 mitogen-activated protein kinase (p38 MAPK) [4], c-JunNH₂-terminal kinase (JNK) [5], extracellular signal-regulated kinase (ERK) [6], phosphoinositide 3-kinase-protein kinase B (PI-3K-Akt) [7], protein kinase C (PKC) [8], nuclear factor erythroid 2-related factor 2 (Nrf-2) [9], p53 [10], AMP-activated protein kinase [11], proliferator-activated receptor γ [12], NAD-dependent deacetylase sirtuin-1 (SIRT1) [13], SIRT3 [14], and mechanistic target of rapamycin (mTOR) [15]. Studies focused on delineating these molecular networks have revealed H₂S to have important roles in cytoprotection [16–20], inflammation [21–24], vascular function [25–27], neurological systems [28], tissue repair and healing [29–34], apoptosis and the cell cycle [35, 36], mitochondrial function and energy metabolism and biogenesis [37–48], obesity [49–53], and in ageing [54–60]. What function H₂S which plays in these processes ranges from its ability to act as an antioxidant during episodes of elevated free-radical production [61, 62] to direct post-transcriptional modification of cellular proteins via S-sulfhydration [63, 64]. In practice, the signalling effects of H₂S are more complex due to the fact that this gas readily interacts with other signalling molecules, such as reactive oxygen and nitric-oxide species [65–67]. Aside
from enzymatic routes of synthesis, recent evidence has also shown indirect or secondary sites of H2S production. These sites include the endogenous liberation from persulfides and polysulfide species, both endogenous and dietary derived, along with bacterial sources present within the gastrointestinal tract [68–79]. How these pools of H2S are coordinated within localised, as well as distal sites, and how these systems influence disease pathology and longevity in mammals is one of the key questions currently being explored by researchers in this field.

H2S biosynthesis and catabolism

Biosynthetic and degradative pathways involved in H2S production and consumption are largely mediated by cystathionine β synthase (CBS, EC 4.2.1.22), cystathionine-γ-lyase (CSE, EC 4.4.1.1), 3-mercaptopyruvate sulfurtransferase (3-MST, EC 2.8.1.2), ethylmalonic encephalopathy protein 1 (ETHE1, EC: 1.13.11.18), mitochondrial sulfide–quinone oxidoreductase (SQR, EC 1.8.5.4), and cysteine dioxygenase (CDO, EC: 1.13.11.20) (Fig. 1). Biochemical and pharmacological aspects relating to these enzymatic systems have recently been covered in great detail [80, 81] and will, therefore, only be touched upon herein. Moreover, whilst the roles of ETHE1, SQR, and CDO may not appear obvious at first sight, their potential influence on H2S tissue levels, via catabolic effects on either H2S directly or on the amino-acid cysteine justifies inclusion. Since the potential importance of these enzymes has, until now, been largely ignored, we believe that some discussion is warranted, if only at the very least, to stimulate debate and hopefully encourage future studies using the available murine genetic knockout models. Furthermore, the possibility of the existence of polymorphisms linked to genes encoding H2S detoxification enzymes is intriguing. How such variants influence tissue H2S turnover rates and physiological effects remains largely unexplored. Thus, the expression levels and catabolic effects of each of these enzymes may well influence exposure levels of cells, tissues, and organs to this biologically active gas. It is for this reason that these systems will be described across physiologically relevant models, including the mouse, *Mus musculus*, and to a lesser extent in *Caenorhabditis elegans*, *Drosophila melanogaster*, and *Danio rerio*. Collectively, these models will pave the way to a better understanding of the biological significance of this gaseous molecule and could potentially assist in the development of future pharmacologically active entities. The review will also address some of the recent findings relating to H2S biology in which genetic approaches, including gene knockdown and genetic model systems, have been employed to explore the functional role of this gas.

Fig. 1 Generalised overview of H2S production and degradation within mammalian tissues. The dietary amino acids, methionine and cysteine, serve as the primary substrates for the trans-sulfuration pathway and in the production of H2S. The levels of H2S within cells and tissues will be governed by the rates of synthesis by the enzymes cystathionine β synthase (CBS, EC 4.2.1.22), cystathionine-γ-lyase (CSE, EC 4.4.1.1), 3-mercaptopyruvate sulfurtransferase (3-MST, EC 2.8.1.2), versus the rates of oxidation and detoxification by the enzymes ethylmalonic encephalopathy protein 1 (ETHE1, EC: 1.13.11.18) and sulfur:quinone oxidoreductase (SQR, EC 1.8.5.4). Alternatively, the levels of the substrate cysteine may be depleted via the catabolic actions of cysteine dioxygenase (CDO, EC: 1.13.11.20) and sulfur:quinone oxidoreductase (SQR, EC 1.8.5.4).

Pharmacological approaches to manipulate H2S levels within biological systems

In general, our current understanding of H2S biology has arisen from work focused on enzymes of the trans-sulfuration pathway. For detailed coverage of the biochemical aspects relating to these enzymatic systems, we refer interested readers elsewhere [82–84]. By and large, the maintenance of the cellular H2S homeostatic equilibrium is governed by a small group of enzymes that are involved in the catabolism of the amino-acid cysteine, namely, CBS, CSE, and 3-MST. Both CBS and CSE appear to be the major enzymatic routes for the production of H2S within biological systems. Tissue specific expression of CBS predominates in the brain, nervous system, liver, and kidney, while CSE is expressed in the liver and in vascular and non-vascular smooth muscle. However, recent studies have reported on the expression of CBS in HUAEC cells, the uterine artery, mesenteric artery, and carotid body [85]. Furthermore, the expression of CBS in the uterine artery was found to be stimulated at the hormonal level [86]. This finding suggests a critical role for H2S within the reproductive tract. 3-MST is localised to mitochondria and produces H2S in a coupled reaction with the enzyme cysteine aminotransferase [87]. Information on the degradative
and detoxification routes for H\textsubscript{2}S within biological systems is less widely reported. What is known is that the degradation or loss of tissue H\textsubscript{2}S appears to occur via a number of distinct pathways that likely working in concert. For example, chemical processes, such as (1) the direct oxidation of H\textsubscript{2}S to thiosulfate in the presence of O\textsubscript{2} and transition metals or (2) via enzymatic processes that include SQR and ETHE1 systems [88–91]. Functional roles for the enzymes rhodanese (EC 2.8.1.1) and sulfite oxidase (EC 1.8.3.1) have also been proposed, yet data are currently lacking for these detoxification routes [92–95]. For many studies, manipulation of cellular and tissue levels of H\textsubscript{2}S is required and historically, this has been achieved utilizing inhibitor and/or donor molecules targeting the H\textsubscript{2}S biosynthetic pathway (Fig. 2). The widely used CSE inhibitor, D,L-propargylglycine, for example, can increase disease severity in animal models of colitis [96], myocardial ischemia–reperfusion-induced injury [97], and also has anti-hyperalgesic effects [98] and has reported inflammatory as well as anti-inflammatory effects in rodent models [21]. These studies indicate that the inhibition of H\textsubscript{2}S biosynthetic enzymes, and therefore, the production of H\textsubscript{2}S within tissues and cells typically leads to increased disease severity which effects are reversed by the use of H\textsubscript{2}S donor molecules. To date, several pharmacological inhibitors are now available for use in this field, including hydroxylamine (HA), trifluoralanine, aminooxyacetate (AOAA) (for CBS), and D,L-propargylglycine (PAG) or \(\beta\)-cyanoalanine (BCA) (for CSE), that have provided a means to manipulate tissue H\textsubscript{2}S levels [99–103]. Other newer inhibitory molecules with greater specificity and enhanced potency have also been characterized, but sadly, many of these are not currently commercially available. For instance, in the work of Thorson, a marine invertebrate compound library consisting of 160 characterized marine natural products and 80 purified synthetic derivatives aided in the identification of several small molecular weight inhibitors of CBS with IC\textsubscript{50} values below 200 \(\mu\)M (range 83–187 \(\mu\)M) [104, 105]. So far, a number of similar library-based screening approaches have proven fruitful in the identification of novel inhibitory molecules targeting CSE, CBS, and/or both. Indeed, Zhou and colleagues have utilised a tandem well-plate screening system to assess potential inhibitory molecules that target CSE and CBS. This approach involved screening 21599 chemical entities that lead to the identification of several potent inhibitory molecules designated NSC111041, NSC67078, and SP14311008 [106]. Interestingly, NSC111041 and SP14311008 appear to target these enzymes at sites distal to the PLP binding site. This finding could perhaps serve to assist in the development of new classes of inhibitory molecules. Lastly, the pharmacological targeting of 3-mercaptopyruvate sulfotransferase is less widely reported, however, several inhibitor molecules have been identified based on their abilities to affect the rate of enzyme catalyzed thiocyanate formation in vitro. This structurally diverse class of inhibitor molecule includes hypotaurine, methanesulfonic acid along with pyruvate, phenylpyruvate,
oxobutyrate, and oxoglutarate [107]. These molecules appear to inhibit 3-MST in a concentration-dependent manner and have been determined to be uncompetitive inhibitors of 3-MST with respect to 3-mercaptopropionate [108, 109]. Typical IC₅₀ values for all three alpha-keto acids ranging between 9.5 and 13.7 mM. In spite of this information, no direct confirmation of their inhibitory action towards 3-MST and its ability to generate H₂S has been reported.

Genetic evidence for a role of CBS, CSE, and 3-MST in health and disease

The established roles for CBS, CSE in sulfur amino-acid metabolism are widely recognised [110–112] and it is of interest that a number of polymorphisms in the genes coding for these proteins are linked to a range of pathophysiological conditions in humans [113, 114]. For example, there are an estimated 150 mutations in the CBS locus and of these approximately 20 appear to have altered enzymatic activity [115]. A consequence for this loss often being homocystinuria [116]. Interestingly, the CBS T833C variant has been associated with premature coronary artery disease [117], essential hypertension [118], and an increased risk of stroke [119]. Similarly, the CBS 844ins68 polymorphism is linked to increase risk of breast cancer [120], spontaneous cervical artery dissections [121], raised plasma homocysteine levels [122], and elevated homocysteine-thiolactone concentrations [123]. Homocysteinethiolactone is pro-atherogenic [124, 125], and can promote optic lens dislocation [126]. Of equal interest, are polymorphisms linked to the CBS gene that predispose individuals to hypertension [127] and in some cases raised plasma homocysteine levels [128]. Several of these polymorphisms have been described in patients with cystathioninuria, and a single nucleotide polymorphism in CSE, c.1364G>T, is linked to elevated plasma homocysteine levels [128]. The influence of the rs1021737 and rs482843 CSE polymorphisms in preeclampsia has been raised [129], and a proposed role in the development of chronic hypertension reported [111]. Importantly, many of these polymorphic variants have reduced Vₘₐₓ for the substrate cystathionine [130]. Polymorphisms linked to the 3-MST gene are also known and the recent characterisation of a nonsense mutation (Tyr85Stop) that leads to the production of a severely truncated protein lacking enzymatic activity has been described [131]. In spite of the information relating to H₂S biosynthetic enzymes, data are currently lacking as to whether these polymorphic variants influence H₂S biosynthetic rates. However, supporting evidence would indicate that this may be the case. Research utilising site-directed mutagenesis studies of the CBS protein has identified several key cysteine residues that are directly involved in the regulation of basal CBS activity and in H₂S production [132], and changes in the CBS binding site of the allosteric activator S-adenosylmethionine reduce H₂S synthesis by this enzyme [133]. Similarly, several amino-acid residues in CSE have been identified that are actively involved in H₂S production [134]. Therefore, the possibility that known polymorphisms for CBS, CSE, and 3-MST would influence enzymatic activity of these proteins, and therefore, tissue H₂S levels is not unreasonable.

Further circumstantial evidence linking impaired tissue biosynthesis rates of H₂S and disease are provided from a range of additional sources. Loss of function in either CBS or CSE can increase the risk of individual developing cardiovascular diseases. Moreover, decreased H₂S production rates in mice predispose animals to vascular remodeling, hypertension, and early the development of atherosclerosis. Therefore, the idea that H₂S may have an important function within the cardiovascular system and at other sites is not a new concept. Indeed, H₂S and allied donor drugs can reduce homocysteine mediate cellular stress responses and tissue damage in mammalian systems [135–139]. In addition, it is widely recognised that H₂S can directly affect blood pressure, alter lipid metabolism, inhibit monocytes adhesion and activate the endothelium [140, 141], promote vasorelaxation [142], and induce angiogenesis [143]. H₂S also mediates vascular smooth muscle cell proliferation, migration, and apoptosis [144–146], inhibits macrophage foam cell formation [147], chemotaxis [148], and inflammation [23, 149], and decreases vascular calcification [150], platelet aggregation, and thrombogenesis [151, 152] (reviewed in [153, 154]). Importantly, in humans, decreased plasma H₂S concentrations are found to correlate with the activation of protein kinase CβII in uremic accelerated atherosclerosis patients [155] and in chronic haemodialysis patients with diabetic nephropathy [156]. Diminished levels of plasma H₂S are also reported to be significantly lowered in CHD patients and in smokers as compared to normal subjects [157], in essential hypertensive children suffering from a metabolic imbalance of homocysteine and hydrogen sulfide [158], and are decreased in patients on chronic haemodialysis due to reduced CSE expression [159]. Lower H₂S levels also correlate with the accumulation of lanthionine in the blood of uremic patients [160]. These changes potentially contribute to hyperhomocysteinemia in uraemia. Intriguingly, homocysteine has been reported to decrease H₂S production in macrophages by increasing promoter DNA methylation and transcriptional repression of CSE [161]. In addition, the cardioprotective effects of atorvastatin appear to be partly mediated by the effects of this drug on the expression of CSE and associated increases in the
generation of H₂S [162]. Therefore, from the available evidence, it is clear that multiple pathologies and mechanisms underpin these diseases, but, intriguingly, a lack of H₂S production seems to be at least one common thread. For this reason, the characterisation of gene polymorphisms linked with enzymes associated with H₂S synthesis and its degradation requires further exploration. This could provide a greater understanding of how such polymorphisms influence enzymatic function and this may, in the future, be found to translate to changes in circulatory H₂S levels. A key question is how do changes in the expression levels of enzymes involved in H₂S homeostatic regulation, and their associated mutations cause disease and what are the molecular mechanisms responsible for this? To answer these questions, new approaches that include genetic models of H₂S deficiency and/or overproduction have been adopted. Specifically, knockout animals lacking genes encoding for CSE, CBS, 3-MST, CDO and ETHE1. In the case of studies utilising these models, a greater understanding of how H₂S functions as a signalling molecule and how this translates to influencing physiological and biochemical processes in vivo is pushing the boundaries of our current views for this gas. Importantly, findings from such work may provide routes for patient screening prior to pharmacological intervention with H₂S releasing drugs to restore H₂S levels.

Molecular approaches to alter H₂S biosynthetic capacity in cells and animals

In addition to pharmacological approaches to alter tissue H₂S concentrations, a number of researchers have adopted siRNA methodologies to assist in loss of function studies by targeting H₂S biosynthetic enzyme expression levels. These techniques have been particularly amenable for use in cell-culture systems. As shown in Table 1, these approaches have assisted researchers in the manipulation of the expression levels of enzymes involved in H₂S homeostatic regulation across a range of cell types. These technologies, while technically more challenging, have shown that H₁S is involved in cellular proliferation and apoptosis [146], endoplasmic reticulum stress, and insulin secretion [176], and NF-κB and MAP kinase signalling and inflammation in macrophages [166, 167]. Curiously, the silencing of 3-MST has revealed this enzyme to be involved in the H₂S production that in turn supports mitochondrial bioenergetics [39, 40]. Currently, siRNA and shRNA systems targeting CSE and CBS can be obtained from a range of commercial suppliers, including, but not exclusively by, CAYMAN chemicals, Addgene (Cambridge, MA, USA), and Santa Cruz Biotechnology (Texas, USA) or can be custom synthesised by IDT DNA technologies (Glasgow, UK).

In vivo knockout models of H₂S research

Over the last two decades, much has been learnt regarding the biological roles ascribed to H₂S, yet many questions still remain to be answered. Indeed, little is known regarding the compensatory mechanisms that may exist to maintain physiological levels of H₂S nor the interplay between biosynthetic routes and the recently characterised detoxification pathways involving ETHE1 and SQR. Establishing links between these two metabolic processes will be important in the future developed of pharmacologically active drugs and inhibitor molecules that target the H₂S system. The possibility that inhibitors targeting ETHE1 or SQR could offer an alternate means to manipulate H₂S levels is intriguing. These approaches will most certainly require work within whole physiological systems and perhaps in this instance in the use of transgenic mouse models in which genes encoding for H₂S synthesising enzymes have been manipulated. Of relevance here then are the approaches taken to generate mice devoid of H₂S biosynthetic enzymes as described previously [177–180] (reviewed in [113]).

Cystathionine-β-synthase knockout mouse models

Watanabe and colleagues were the first group to report on the generation of a CBS deficiency mouse line using gene targeting of embryonic stem (ES) cells followed by incorporation into C57BL/6J mice. This early work establishes an in vivo system to explore aspects relating to homocysteine and its associated pathophysiological effects in cardiovascular diseases. Homozygous animals completely lacked CBS and mice suffer from severe homocysteinemia, have severe growth retardation and many die within 5 weeks following birth. Heterozygous animals show greater viability and have a 50% reduction in CBS expression and enzyme activity in the liver and have twice normal plasma homocysteine levels. Studies using this model are, therefore, restricted to younger animals and may consequently be influenced by the age-dependent expression of other H₂S biosynthetic enzymes, such as CSE. For this reason, some authorities have called into question the use of this model [177].

Problems associated with early lethality in the CBS model were later overcome by the work of Wang et al. [178, 179]. In the first approach taken by this group, mice were produced with the aim of overexpressing CBS. This was achieved using a transgenic system in
Disease model	Transgenic system	Cell type	Consequence	References
Cystathionine gamma lyase	CSE adenovirus gene transfer	Stably CSE overexpression in HEK-293 cells	Increases in CSE mRNA levels, CSE proteins, leading to increased intracellular production rates of H₂S. This correlated with the inhibition of cell proliferation and DNA synthesis. Sustained ERK activation and upregulation of the cyclin-dependent kinase inhibitor p21Cip/WAK was also noted.	[163]
	CSE adenovirus gene transfer	Stably CSE overexpression in Human aorta smooth muscle cells	Increase in the expression of CSE protein and a committed increase in H₂S production rates. Cell growth inhibition and the induction of apoptosis noted in CSE overexpressing cells. Apoptosis was associated with an increased in ERK and p38 MAPK activation, upregulation of p21(Cip/WAK-1), and downregulation of cyclin D1 expression. Inhibiting endogenous background CSE gene expression, and direct administration of H₂S at 100 microM induced apoptosis in HASMCs.	[146]
CVD	Transfected with miR-30 mimics	HEK293 cells and primary neonatal rat myocardial cells	Overexpression of miR-30 family members decreases the expression of CSE protein and H₂S production. Reduced CSE expression sensitised cells to hypoxia conditions. Overexpression of CSE was cytoprotective in this model. Knockdown of miR-30 family members leads to the upregulation of CSE and H₂S production rates.	[164]
Diabetes	CSE adenovirus gene transfer	Transfection of insulin secreting beta cell line INS-1E cells	CSE overexpression stimulates INS-1E cell apoptosis via increased endogenous production of H₂S. Ad-CSE transfection inhibited ERK1/2 but activated p38 MAPK. Overexpression of CSE or H₂S treatment increased BiP and CHOP levels indicators of endoplasmic reticulum (ER) stress.	[176]
Inflammation	siRNA targeting mouse CSE	Marine Raw264.7 macrophages and primary macrophage isolated from adult male C57BL/6 mice	CSE overexpression reduced the ox-LDL-stimulated tumor necrosis factor-α (TNF-α) generation in Raw264.7 and primary macrophage while CSE knockdown enhanced it.	[149]
	siRNA targeting mouse CSE	Human chondrocytes and mesenchymal progenitor cells	CBS- and CSE-siRNA treatment sensitises cells to oxidative stress leading to loss of cell viability as determined using the MTT assay. L-cysteine, a substrate for CSE and CBS, fails to protect against SIN-1, H₂O₂, and 4-HNE induced cell death in chondrocytes in silenced cells.	[165]
	siRNA targeting mouse CSE	Marine RAW 264.7 macrophages	Lipopolysaccharide (LPS) treatment of RAW 264.7 cells promotes increased CSE mRNA and protein levels along with increased production of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and MCP-1) and nitric oxide (NO). Silencing of CSE reduced proinflammatory mediator levels and enhanced NO production.	[166]
	siRNA targeting mouse CSE	Marine RAW 264.7 macrophages	CSE silencing reduced inflammation status by attenuating the activity of NF-κB in lipopolysaccharide- (LPS-) stimulated macrophages. Reduced production of inflammatory mediators via inhibition of extra cellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation.	[167]
Preeclampsia	siRNA targeting mouse CSE and adenovirus gene transfer	Human umbilical vein endothelial cells (HUVEC)	Downregulation of CSE results in an increased release of soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng); both proteins involved in angiogenesis. Overexpression of CSE results in the inhibition of sFlt-1 and sEng release.	[168]
Disease model	Transgenic system	Model system	Consequence	References
---------------	------------------	--------------	-------------	------------
Osteoporosis	siRNA targeting mouse CSE	Bone marrow mesenchymal stem cells (BMMSCs)	Knockdown of CSE lead to increased cell proliferation, reduced capacity for forming mineralized nodules in vitro, and downregulation of Runx2 and ALP. Reduction of H2S levels resulted in a cascade response in BMMSCs, including altered Ca2+ channel sulfhydration, Ca2+ influx, Wnt/β-catenin signaling, and osteogenic differentiation.	[169]
	siRNA targeting mouse CSE	Mouse RAW 264.7 macrophages	CSE silencing inhibited osteoclast formation by reducing the expression of the typical osteoclast markers, Cathepsin K, TRAP and MMP9.	[229]
Cystathionine-beta synthetase CVD	Transfected with CBS cDNA subcloned into the plasmid pcDNA3	Mouse aortic endothelial cells (MAEC)	Transfection of endothelial cells with cystathionine-beta-synthase (CBS) reduced Hcy accumulation in high methionine-fed cells. Reduced inflammatory response, as evident by attenuated ICAM-1 and VCAM-1 expression and reduced expression of collagen type-1 and MMP-9 activity.	[170]
	Lentiviral CBS-targeting short hairpin RNA (shRNA)	Human umbilical vein endothelial cells (HUVEC) and human aortic endothelial cells (HAEC)	CBS knockdown reduced cell proliferation in both HUVEC and HAEC cells. Expression of p21WAF-1 and γ-H2AX, both molecular markers of senescence, were induced along with positive staining for β-galactosidase (SA-β-gal). Loss of CBS induces premature endothelial cell senescence.	[171]
Cancer	siRNA targeting mouse CBS	A2780, A2780/CP-70, OV-202 and SKOV3 human ovarian carcinoma cells	Ovarian cancer cell proliferation was decreased upon CBS silencing as determined via [3H]-thymidine incorporation. In CBS silenced A2780 cells cellular ROS levels increase and glutathione levels significantly decrease. Expression of p53 is also induced in A2780 cells with the RelA/p65 subunit of NF-κB showing decreased expression.	[172]
	siRNA targeting mouse CBS	Human colonic epithelial cancer cell line HCT116	Silencing leads to a reduction of CBS expression and associated reductions in H2S production and cell proliferation. Reduction in ATP synthesis, basal cellular respiration and spare respiratory capacity. A significant reduction in the density of CD31-positive blood vessels within tumour tissue and an increase in vessel branching. Reduced glycolytic functions, possibly due to inhibition of GAPDH activity.	[173]
which the human CBS cDNA was placed under the control of the zinc-inducible metallothionein promoter (Tg-CBS). Zinc supplementation in Tg-CBS mice causes a two–four-fold increase in liver and kidney CBS activity and a 45% decrease in serum homocysteine levels. In contrast to previous model systems, these animals do not develop hepatic steatosis, fibrosis, or suffer from high rates of neonatal death. The second approach was to engineer mice that express the human I278T and I278T/T424N mutant CBS proteins under the control of a metallothionein driven transgene. These animals were rescued from early lethality yet still showed severe elevations in both plasma and tissue levels of homocysteine, methionine, S-adenosylmethionine, and S-adenosylhomocysteine and a concomitant decrease in plasma and tissue levels of cysteine [178].

Finally, MacClean and colleagues developed a mouse model null for the mouse CBS gene that carried copies of the human CBS gene expressed at low levels [180]. So far, CBS KO models have supported a range of studies focused on folate metabolism [181, 182], blood brain barrier function [183], endothelial dysfunction [184], cerebral vascular dysfunction [185], brain function linked to changes in the SAPK/JNK signalling pathway [186], redox homeostasis [187–189] microvascular remodelling [190], blood–brain barrier integrity [191], lung fibrosis [192], lipid homeostasis [193–195], retinal neuron death [196], infertility [197, 198], and susceptibility to drug induced toxicity [199]. Of relevance here then is the growing body of work indicating that H₂S plays a part in many of these processes.

Cystathionine γ-lyase knockout mouse models

So far, the most widely used animal system in H₂S research is the CSE-KO model. To date, CSE-KO animals have been utilised to explore the role of H₂S within the cardiovascular disease [204], diabetes [200, 201, 213], and in studying interactions of H₂S with other important gaseous signalling molecules, such as nitric oxide [202]. The production of viable and fertile CSE-KO animals was first reported in the work of Yang et al. In these homozygous animals, CSE mRNA and protein levels were absent in heart, aorta, mesenteric artery, liver, and kidneys. Importantly, both tissue and serum levels of H₂S were significantly reduced in KO animals with this correlated with an age-dependent increase in blood pressure and impaired endothelium-dependent vasorelaxation [204]. This is in contrast to the CSE-KO model reported by Ishii et al. [203], in which animals appeared both normotensive and hyperhomocysteinemic. Interestingly, these mice were extremely sensitive to sulfur amino-acid restriction and
Table 2: Available CSE knockout mice models have been used to confirm a role of H₂S across a wide range of pathophysiological models

Biological process	Consequence	References
Vasorelaxation and hypertension	Genetic deletion of CSE in mice markedly reduces H₂S levels in the serum, heart, aorta, and other tissues. Mutant mice lacking CSE display pronounced hypertension and diminished endothelium-dependent vasorelaxation	[204]
Cell proliferation and apoptosis	CSE-KO mice have lower levels of phosphorylated extracellular signal-regulated kinase (ERK1/2) in mesentery arteries. SMCs of KO animals display an increased proliferation rate in vitro and in vivo, and these cells are more susceptible to apoptosis	[205]
O₂ sensing	Deletion of CSE severely impairs carotid body response and ventilatory stimulation to hypoxia, as well as a loss of hypoxia-evoked H₂S generation	[206]
Cellular senescence	Mouse embryonic fibroblasts isolated from CSE knockout mice (CSE-KO-MEFs) display increased oxidative stress and accelerated cellular senescence. The protein expression of p53 and p21 is significantly increased in KO-MEFs, and knockdown of p53 or p21 reversed CSE deficiency-induced senescence	[207]
Pressure overload-induced heart failure	H₂S levels are decreased in mice following heart failure. CSE plays a critical role in the preservation of cardiac function in heart failure	[208]
Asthma	CSE expression was absent and H₂S production rate significantly lower in the lungs of CSE-KO mice. CSE deficiency resulted in aggravated AHR, increased airway inflammation, and elevated levels of Th2 cytokines IL-5, IL-13, and eotaxin-1 in bronchoalveolar lavage fluid after OVA challenge	[209]
Physiologic vasorelaxation	CSE-KO induces elevated resting-membrane potential of SMCs and eliminated methacholine-induced endothelium-dependent relaxation of mesenteric arteries. H₂S is an endothelium derived hyperpolarizing factor	[210]
Renal ischemia/reperfusion	CSE-KO mice have markedly reduced renal production of H₂S, and CSE deficiency increases damage and mortality after renal ischemia/reperfusion injury as compared to wild-type mice	[211]
Atherosclerosis	Deficiency of CSE in mice leads to a decreased endogenous H₂S levels, and age-dependent increase in blood pressure, and impaired endothelium-dependent vasorelaxation. CSE-KO animals fed with an atherogenic diet developed early fatty streak lesions in the aortic root, elevated plasma levels of cholesterol and low-density lipoprotein cholesterol, hyperhomocysteinemia, increased lesion oxidative stress and adhesion molecule expression, and enhanced aortic intimal proliferation	[212]
Caeruline-induced acute pancreatitis	CSE-KO mice showed significantly less local pancreatic damage as well as acute pancreatitis-associated lung injury compared with the WT mice. Lower levels of pancreatic elcosanoid and cytokines, as well as reduced acinar cell NF-kB activation in the CSE-KO mice	[213]
Ischemia/reperfusion (I/R) injury	CSE-KO mice exhibit elevated oxidative stress, dysfunctional eNOS, diminished NO levels, and exacerbated myocardial and hepatic I/R injury. H₂S therapy restored eNOS function and NO bioavailability and attenuated I/R injury	[202]
Postischemic cerebral vasodilation/hyperemia	CSE-KO reduced postischemic cerebral vasodilation/hyperemia but only inhibited Na-F extravasation. Uregulated CBS was found in cerebral cortex of CSE-KO animals. L-cysteine-induced hydrogen sulfide (H₂S) production is similarly increased in ischemic side cerebral cortex of control and CSE-KO mice	[214]
Arteriogenesis	Femoral artery ligation of WT mice significantly increased CSE activity, expression and endogenous H₂S generation in ischaemic tissues, and monocyte infiltration. These being largely absent in CSE-KO mice. Treatment of CSE-KO mice with the polysulfide donor diallyl trisulfide restored ischaemic vascular remodelling, monocyte infiltration, and cytokine expression	[215]
Pain	Paw inflammation and peripheral nerve injury causes the upregulation of CSE expression in dorsal root ganglia. CSE-KO mice demonstrated normal pain behaviours in inflammatory and neuropathic pain models. This finding suggestive that CSE is not critically involved in chronic pain signaling in mice and that sources different from CSE mediate the pain relevant effects of H₂S	[216]
Gluconeogenesis	CSE-KO mice reduced gluconeogenesis, which was reversed by administration of NaHS (an H₂S donor). H₂S upregulates the expression levels of peroxisome proliferator-activated receptor-γ coactivator-1α and phosphoenolpyruvate carboxykinase. Upregulation of PGC-1α is mediated via the GR pathway and through the activation of the cAMP/PKA pathway. PGC-1α, and the activities of glucose-6-phosphatase and fructose-1,6-bisphosphatase are increased via S-sulfhydration	[217]
Mitochondrial biogenesis-dependent M2 polarization of macrophages

H$_2$S supplementation ameliorated pathological remodeling and dysfunction post-MI in WT and CSE-KO mice. Decreased infarct size and mortality, accompanied by an increase in the number of M2-polarized macrophages at the early stage of MI. H$_2$S induced M2 polarization was achieved by enhanced mitochondrial biogenesis and fatty acid oxidation.

Antiviral

H$_2$S has antiviral and anti-inflammatory activity in respiratory syncytial virus (RSV) infection. CSE-KO mice showed significantly enhanced RSV-induced lung disease and viral replication compared to wild-type animals. Intranasal delivery of GYY4137 to RSV-infected mice significantly reduced viral replication and markedly improved clinical disease parameters and pulmonary dysfunction.

Infiltration and migration

Increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in CSE-KO mice. Treatment with the H$_2$S donor NaHS enhances macrophage migration. This is achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.

Many of these studies have shown that loss of H$_2$S synthesising capacity within tissues significantly affects the cardiovascular system, metabolism, and recovery from stress insults. Such studies highlight a fundamental role of H$_2$S in the regulation of cellular stress pathways and in physiological responses to stress.

Homozygous animals maintained on a low cysteine diet, succumbed to acute skeletal muscle atrophy, and reduced tissue glutathione levels and lethality. Hepatocytes isolated from these animals were also highly sensitive to oxidative stress. To date, the CSE-KO model developed by Yang has been widely used to explore the role of H$_2$S across a range of pathophysiological conditions. These studies are summarised in Table 2 and include hypertension [204], cellular proliferation [205], oxygen sensing [206], cellular senescence [207] pressure overload heart failure [208], asthma [209], vasorelaxation [210], ischemia/reperfusion injury [202, 211], atherosclerosis [212], caerulein-induced acute pancreatitis [213], postischemic cerebral vasodilation/hyperemia [214], arteriogenesis [215], pain [216], gluconeogenesis [217], M2 macrophage polarization [45], antiviral effects [218], and infiltration and migration [219]. Particularly interesting are the functional aspects relating to interaction of H$_2$S with other gaseous signalling molecules. It is now widely accepted that H$_2$S and NO readily interact at physiological pH to produce a range of biologically active species [65, 220–222]. An established link between NO and H$_2$S has now been reported utilising the CSE-KO systems. Studies by Kondo and colleagues reported on the influence of H$_2$S and its interaction with NO in a murine model of pressure overload-induced heart failure using CSE-KO animals [208]. CSE knockout (KO) animals had reduced circulating H$_2$S levels and cardiac dilatation and dysfunction. In this instance, H$_2$S therapy was found to be cardioprotective. This corresponding with the upregulation of the VEGF-Akt-eNOS-nitric-oxide-cGMP pathway, preserved mitochondrial function, attenuated oxidative stress, and increased myocardial vascular density. Elevated oxidative stress, dysfunctional eNOS, diminished NO levels, and exacerbated myocardial and hepatic I/R injury are also reported for CSE-KO animals [202]. Collectively, this work suggesting that H$_2$S and NO interact and that H$_2$S is particularly important in the regulation of NO within the cardiovascular system.

Several newer reports have focused on the overexpression of CSE within mammalian systems. For example, in the work of Elrod et al, a transgenic mouse model was developed in which CSE is overexpressed within cardiac tissues leading to increased myocardial levels of H$_2$S [37]. These mice had a reduction in infarct size following MI-R injury and were used to establish that a localised increase of H$_2$S within cardiac tissues protects against myocardial infarction. Similarly, manipulation of CSE either via knockdown or overexpression in mammalian cells has also shed additional light on the cardioprotective effects of H$_2$S. Wang and colleagues found that CSE overexpression reduces ox-LDL-stimulated tumor necrosis factor-α (TNF-α) generation in Raw264.7 and primary macrophage, while CSE knockdown enhanced it [149]. Under pathophysiological conditions linked to CVD, Cheung et al. reported that overexpression of CSE reduces markers associated with atherosclerosis [223]. Using transgenic ApoE knockout mice overexpressing CSE (Tg/KO), increased endogenous H$_2$S production in aortic tissue was demonstrated that correlated with reduced atherosclerotic plaque sizes and reduced plasma lipid profiles in mice maintained on an atherogenic diet. Moreover, an upregulation in plasma glutathione peroxidase, indicative of reduced oxidative stress, and an
increase in the expression of p-p53 and downregulation of inflammatory nuclear factor-kappa B (NF-κB) were noted [223]. Decreased CSE expression and its influence on H₂S metabolism and atherosclerosis are currently an active area of investigation. Utilising the CSE knockout mouse, Mani et al. revealed a functional role of the CSE enzyme in atherosclerosis development [212]. In CSE-KO animals, maintained on an atherogenic diet, cholesterol levels were found to be twofold higher within the plasma of CSE-KO animals compared to the WT animals. Moreover, fatty acid streaks, atherogenic lesions, and reduced blood flow were seen in CSE-KO animals. In this instance, KO animals treated with NaHS for 12 weeks showed significant improvements in plasma lipid profiles and decreased atherosclerotic lesions thus confirming a role of H₂S in atherosclerosis. Furthermore, by combining the CSE-KO with the ApoE-1 KO genetic background to produce a double KO system (DKO), the authors were again able to demonstrate reduced lesion formation in DKO animals when treated with NaHS [212]. Thus, endogenous loss of CSE has been shown to increase disease severity across several independent studies utilising the CSE-KO model.

3-Mercaptopyruvate sulfurtransferase knockout mouse models

The roles for both CBS and CSE and their part played in the production of H₂S within biological systems have been broadly defined in recent years, yet the view that these two enzymes are perhaps the only ones responsible for maintaining physiological levels of H₂S is rather simplistic. As mentioned, an additional enzymatic system is known, that of 3-MST [224]. In view of this, efforts have been made to generate a 3-MST murine model that could potentially provide a detailed picture of how this enzyme functions and its role in diseases [227]. From a biochemical perspective 3-MST is a multifunctional enzyme involved in (1) cysteine catabolism, since it catalyses the trans-sulfuration of the substrate 3-mercaptopuruvate to pyruvate and (2) functions in cyanide detoxification. Also, the protein has a potential redox function since in the presence of the oxidant hydrogen peroxide (H₂O₂), enzyme activity is inhibited [225]. Oxidant-mediated inhibition appears to occur via the formation of a sulfenate (SO₂⁻) moiety at the catalytic site cysteine. Enzymatic activity can be re-established in the presence of reducing agents DTT or reduced thioredoxin but not the cellular antioxidant glutathione. Under conditions of mild oxidative stress, such as those found in physiological systems, 3-MST activity is reduced leading to a resultant increase in cysteine concentrations in vitro. Thus, the current views suggest that 3-MST serves as an antioxidant protein. The curious fact that this enzyme is localised to mitochondria has further bolstered work on this enzyme, especially given the known inhibitory effects of H₂S on cytochrome c oxidase function [226]. Ongoing work in this area has shown that 3-mercaptopyruvate stimulates mitochondrial H₂S production that in turn stimulates electron transport and bioenergetics at low concentrations (10–100 nM). Conversely, siRNA-mediated silencing of 3-MST reduces basal bioenergetics and prevents the stimulatory effects of 3-MP on mitochondrial energetics. In this scenario, H₂S can be seen to serve as an electron donor that functions as an inorganic source of energy that supports electron transport and ATP production in mammalian cells. Interestingly, oxidant-mediated stress reverses these effects in cells. Shibuya reported that that tissue levels and production of H₂S within brain tissues were similar in CBS KO mice with this supporting the notion that an alternate H₂S production system must exist within brain tissues [87]. Indeed, this work confirmed that CBS was not the primary source of H₂S within this organ. Further characterisation led to the realisation that two proteins work in concert to produce H₂S within brain tissues, these being, cysteine aminotransferase and 3-MST respectively [87]. While a 3-MST-KO model has been developed currently only one report exists citing the generation and utilised of this model. Nagahara et al. were the first to describe a homozygous (null) MST-knockout (MST-KO) mouse model [227]. These mice have increased anxiety-like behaviour, with increased serotonin levels in the prefrontal cortex. In this instance, 3-MST was proposed to function as an antioxidant redox-sensing protein involved in maintaining cellular redox homeostasis.

Genetic models of H₂S detoxification systems in animals

Three major enzymatic routes for the removal of H₂S from tissues are currently recognised these constituting the aforementioned proteins SQR, ETHE1, and CDO. At present, the sites and rates of H₂S detoxification have been less well defined than that of the biosynthetic routes of production. However, these systems likely play an equally important function in maintaining physiologically relevant tissue concentrations of H₂S. Changes in the expression levels of these proteins would alter the physiological concentrations of this sulfurous gas in vivo and therefore, the response of cells to exposure to this molecule. Even with their recognised association with H₂S detoxification, only now are we beginning to see how these enzymes influence physiological levels of this gas.
Sulfide–quinone reductase-like protein knockout models

In mammalian systems, sulfide is oxidized by the mitochondrial sulfide–quinone reductase-like protein (SQR), a homologue of bacterial sulfide–ubiquinone oxidoreductase (SQR), and fission yeast heavy metal tolerance 2 protein [228]. This protein is involved in the transfer of an electron from sulfide to membrane intrinsic quinones [229]. The process of sulfide oxidation, therefore, links sulfide catabolism to oxidative phosphorylation and the subsequent production of ATP. This whole process allowing for sulfide to be used as an inorganic substrate for the human electron transfer chain. SQR is a component of several mammalian tissues, and protein expression has been confirmed within heart, lung, colon, liver, kidney, thyroid, brain, leukocytes, and penis and testicles of mice and rats [230]. Fractionation experiments revealed this protein to be localised to mitochondria. SQR mRNA levels can be increased following exposure to sulfide in T cells and also with increasing age within the kidney. This finding indicating that the expression levels of this protein show some plasticity that allows for SQR to respond to changes in tissue H2S levels. It is easy to envisage that changes in SQR protein levels would influence H2S oxidation rates and the role of H2S in the production of ATP, ROS formation, oxygen sensing [231] and subsequently the effects of this gas on cell-signalling networks [1] and on S-sulfhydration of proteins [62]. Recently, polymorphisms have been identified for the SQR gene, which are linked to pathophysiological conditions in humans. Jin et al. reported on the SQR I264T gene variant that increases susceptibility to osteoporosis in Korean postmenopausal women [232]. In another study, genome-wide screening in Filipino women reported that the rs12594514 SNP in the SQR gene is associated with two obesity-related phenotypes [233]. Interestingly, the cellular levels of H2S are critical determinants in the regulation of bone remodelling [169, 232] and osteoclast differentiation [234, 235]. Moreover, it is now widely recognised that H2S has a range of functions linked to metabolism and obesity [7, 236–240]. Therefore, it is likely that SQR has the potential to influence some of the biological effects of H2S in vivo. To date, there are no reported murine SQR KO models however, SQR KO C.elegans systems are known. Using gene knockout strategies in C. elegans, SQR was found to be important in the maintenance of protein translation. In SQR mutant worms, exposure to H2S leads to phosphorylation of eIF2α and the inhibition of protein synthesis. The authors speculating that SQR may be involved in H2S signalling relating to proteostasis [241]. Of relevance, here is the potential link with H2S, proteostasis and the anti-ageing effects of this gas.

Ethylmalonic encephalopathy knockout mouse models

Another candidate protein potentially involved in H2S detoxification is that of ETHE1. The ETHE1 gene codes for an iron-containing protein from the metallo β-lactamase family are required in the mitochondrial sulfide oxidation pathway and for the oxidation of glutathione persulfide (GSSH) to give glutathione and persulfate [91]. ETHE1 protein catalyses the second step in the mitochondrial sulfide oxidation pathway downstream of SQR. Mutations in this gene cause the rare condition known as ethylmalonic encephalopathy (EE) that affects the brain, gastrointestinal tract, and peripheral vessels [242]. This inborn error of metabolism is an autosomal recessive condition that is invariably fatal and characterised by encephalopathy, microangiopathy, chronic diarrhea, and defective cytochrome c oxidase (COX) in muscle and brain [243]. The latter oxidizes H2S to persulfide and transfers electrons to the electron transport chain via reduced quinone. Indeed, recombinant expression of human SQR is known to enhance sulfide oxidation in mammalian cells [244]. More revealing insights as to the functional role of ETHE1 have been reported [245]. Adopting a proteomic approach Hildbrant and colleagues conducted an analysis of ETHE1 KO mouse tissues and confirmed a role of ETHE1 in the sulfide oxidation pathway while also revealing more subtle effects on post-translational protein modifications linked to protein cysteine modification. Elevated H2S levels caused by loss of ETHE1 likely cause an increase in S-sulfhydration of cellular proteins via persulfide-mediated reactions [246]. Of particular interest, from this work is that sulfide signalling seems to play a pivotal part in regulating mitochondrial catabolism of fatty acids and branched-chain amino acids. Interestingly, sulfide concentrations are decreased in the plasma of overweight men and low sulfide levels are associated with the development of insulin resistance in Type 2 diabetes [247]. Moreover, in rats fed high-fat diets ETHE1 and SQR are reported to be decreased by more than 50% in tissues [248].

Cysteine dioxygenase knockout mouse models

Finally, a common component linking all of the enzymatic systems described herein is their reliance on intermediates derived from sulfur amino-acid metabolism, specifically, the interplay between cysteine synthesis, its cellular uses, and its degradation. Cysteine homeostasis and the relative rates of synthesis versus degradation will clearly influence
how and when H₂S will be produced within tissues. This coupled with the relative rates of oxidation of both molecules further adding complexity to the H₂S story. One particularly interesting model is the cysteine dioxygenase (CDO; EC: 1.13.11.20) KO mouse model. Ordinarily, CDO oxidizes cysteine-to-cysteine sulfinate, which is further metabolized to either taurine or to pyruvate plus sulfate. This metabolic pathway is believed to function in maintaining cysteine levels and to supply circulatory taurine. In the CDO KO mouse line, there is postnatal mortality, growth deficit, and connective tissue pathology. Moreover, KO animals have reduced taurine levels, elevated cysteine levels, and increased desulfurization in liver tissues that correlates with the elevated production of H₂S. This reported to be due to CBS activation. Importantly, CDO null mice also exhibit lower hepatic cytochrome c oxidase levels, suggesting impaired electron transport capacity. Cytochrome c oxidase being a known cellular target prone to H₂S-mediated inhibition. Similarly, in hepatocytes isolated from CDO null mice increased synthesis of H₂S within cells occurs that is perhaps due to an increase in the endogenous pool of cysteine within tissues [249]. Also reported in the CDO KO mice is an increase in the urinary excretion of thiosulfate, coupled with higher tissue and serum cystathionine and lanthionine levels. Importantly, the inhibition and destabilization of cytochrome c oxidase are observed that again is consistent with increased production of H₂S [249, 250]. Thus, it would appear that the ability of CDO to control cysteine levels may be necessary to maintain low H₂S/sulfane sulfur pools within tissues to facilitate the use of H₂S as a signalling molecule [251]. This model, therefore, provides a unique system to explore cysteine metabolism and its influence of H₂S production and redox-signalling networks.

Availability of knockout mouse models for H₂S research

At this time, it may be of interest to researchers that CBS KO mice are now commercially available and can be obtained from the Jackson laboratories which supplies the JAX® Mice derived from the fully sequenced mouse strain, C57BL/6J [252]. This particular line is useful for studying the in vivo role of elevated levels of homocysteine in the aetiology of cardiovascular diseases and was developed in the lab of Dr Nobuyo Maeda at the University of North Carolina at Chapel Hill. A number of researchers have utilised this mouse model to determine the functional role of H₂S in colitis [253] for the role of H₂S in alveolarization [254] and in the prevention of hyperhomocysteinemias associated chronic renal failure [255], however, studies are limited primarily due to the high mortality rates in offspring. In the case of research using CSE knockout (CSE-KO) animals, this model is more widely reported in the literature. These animals have markedly reduced H₂S levels in the serum, heart, aorta, and other tissues and mutant mice lacking CSE display pronounced hypertension and diminished endothelium-dependent vasorelaxation. Again, this model is particularly useful for studying cardiovascular disease. Although not commercially available at present several institutions maintain the CSE-KO mouse model that was originally developed in the laboratory of Rui Wang, Lakehead University, Thunder Bay, Ontario, Canada. This model is the most widely used physiologically relevant model and has been the focus of research ranging from the role of H₂S in vasorelaxation [204], to O₂ sensing in the carotid body [206]. 3-MST and ETHER KO animals are maintained at the Isotope Research Centre, Nippon Medical School, Tokyo and at the Institute of Neurology Carlo Besta-Istituto di Ricovero e Cura a Carattere Scientifico Foundation, Milan, Italy. Hopefully in the future, these models will become more common place in research focused on H₂S biology.

Non-mammalian genetic models

The majority of work highlighting a biological role for H₂S has been derived from mammalian models. Information derived from non-mammalian models reflects on the evolutionary importance of H₂S and its role in biochemical and physiological processes across different taxa. Several reports now describe the homeostatic systems and physiological effects of H₂S across a range of animal and plant systems particularly in the model organisms C. elegans, D. melanogaster, D. rerio, and Arabidopsis thaliana [256, 257]. The reason for this work is one of translation, since, for example, the exploitation of the H₂S biosynthetic pathway in animals and in plants may assist in Agritech for the purpose of improving crop yields or resistance to pathogen attack. To date, only a handful of studies have been described in which the targeted deletion or overexpression of H₂S synthesising enzymes has been manipulated in non-mammalian systems. Much of this work has utilised molecular approaches to alter the expression levels of H₂S synthesising enzymes in the nematode worm, C. elegans. These studies have identified roles for H₂S in the ageing process, in longevity, and in the health benefits attributed to caloric/dietary restriction. It is widely known that worms exposed to exogenous H₂S have increased longevity and thermotolerance [258, 259]. However, direct molecular confirmations that these physiological processes can be controlled via endogenous H₂S synthesis have only recently been described [54, 55]. In these studies, siRNA-mediated silencing approaches were
utilised to knock down *C. elegans* targets. Deletion of CYST-2, a cysteine sulfhydrylase, caused a significant reduction in lifespan in worms exposed to stress conditions [54]. This finding establishing a clear link between H2S synthesis and the ability of worms to adapt and recover from stress insults associated with the ageing process. Indeed, deficiency in mpst-1, mammalian 3-MST orthologue 1, reduces lifespan in *C. elegans*. It has subsequently been demonstrated in the work of Hine et al. that H2S production in *C. elegans* is linked to the health benefits attributed to caloric/dietary restriction. In this study, utilising siRNA technologies, individual KO experiments were performed that focused on a number of proteins associated with the trans-sulfuration pathway, namely, the cystathione-γ-lyase worm homologues CTH-1 and CTH-2 and the CBS homolog CBS-1 and CBL-1 [260, 261]. Loss of functional CBL-1 and CBS-2 protein appears to have no effects on longevity when expressed in the eat-2 mutant worms; the eat-2 mutant serving as a genetic model of life extension that mimics dietary restriction. Interestingly, eat-2 worms produce more H2S than their wild-type counterparts. Importantly, the overexpression of CBS-1 extends the median lifespan of wild-type worms this clearly showing that H2S mediates the beneficial effects attributed to dietary/caloric restriction in *C. elegans*.

Similar finding has also been reported for *Drosophila melanogaster*. In this model, dietary restriction promotes the upregulation and increased activity of the trans-sulfuration pathway leading to increased tissue synthesis rates of H2S [262]. Transgene-mediated increases in gene expression and enzyme activity of *Drosophila* cystathionine β-synthase (dCBS) are sufficient to increase fly lifespan. Moreover, the inhibition of the trans-sulfuration pathway effectively blocks the lifespan extension normally observed in diet-restricted animals. These findings are of particular interest, since they provide an additional evidence that H2S plays important functional roles in the ageing process of living organisms. Besides, ageing, H2S also appears to mediate neurodegenerative processes in *Drosophila* models. For example, overexpression of CSE in *Drosophila* suppresses spinocerebellar ataxia type 3-associated damage and neurodegeneration [263]. The observed decreased in cellular damage being attributed to a reduction in oxidative stress and a reduced immune response in flies. Clearly, these findings correlate well with the known antioxidant and anti-inflammatory effects attributed to H2S.

Work using teleost’s species, such as *Danio*, are rare, but, nonetheless, provides important information on the physiological role of H2S. In the work of Kumai et al., H2S was found to influence Na+ homeostatic regulation in the larva of *D. rerio* [264]. Translational gene knockdown was used to reduce CSE expression in tissues. Using this approach Kumai and colleagues were able to elegantly demonstrate that H2S is an endogenous inhibitor of Na+ uptake in developing zebrafish.

Conclusions

Over the last decade, considerable evidence has been accumulated which collectively points to a functional role for H2S in a number of physiological systems. Much of these data have been derived from pharmacological intervention in which inhibition of enzymatic systems linked to the production of H2S has been targeted or via direct drug targeting using small molecular weight H2S donor molecules. Invariably, these studies have highlighted a role of H2S levels within a number of pathophysiological states and that restoration of tissue H2S levels is protective in the majority of cases. Despite the current knowledge, and continued breakthroughs, one can envisage that transgenic models will be at the forefront of future work in this area. Developments based on the approach taken by Mani et al. in which a double knockout mouse model in which both the CSE and the apolipoprotein E gene are silenced may be particularly revealing [212]. Studies using these models have been fruitful and have shown how changes in cellular H2S levels influence physiological processes. Yet, the true power of these models is still to be realised. Since the discovery that cross talk exists between H2S with other gaseous signalling molecules, such as NO, the use of transgenic models in which one or both sets of synthesising enzymes are silenced may be invaluable in future studies. Data on the interactions of NO with H2S are only just emerging and it would be fascinating to explore the effects of incorporating the CSE-KO background into other transgenic systems such as that of iNOS [265] or eNOS KO [266, 267] mouse models. How would the loss of each gas alter the formation and levels of circulating nitrosothiols for example? What would be the consequences of this systemically? Could biologically active persulfides compensate for the loss of nitrosothiols? More revealing is the current evidence showing that both gases can influence mitochondrial function, energy metabolism, and tissue homeostasis, but the functional consequences of combined defects in H2S and NO production are not known. Could these interactions, or lack off, underpin dysregulation in metabolism as seen in diabetes or obesity? The development of these models would also be particularly useful in the screening of H2S/NO hybrid donor drugs [268–270]. Finally, could double knockout models be developed to explore the influence of H2S detoxification enzymes on cardiovascular function and on inflammatory responses in animals? What, for example, would be the effect of loss of CBS, or 3-MST in the
apoprotein E KO murine model? Would this further predisposes animals to atherosclerosis, and would similar effects be found with the overexpression of SQR and ETHE1? With the development of these transgenic models, there are certainly more questions than answers and much remains to be explored regarding the role of this gas within biological systems. Hopefully, a greater understanding will come from the use of these newer tools that will hopefully assist in the development and introduction of new H2S releasing pro-drugs within the clinic.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187
2. Kabil O, Vitvitsky V, Banerjee R (2014) Sulfur as a signaling nutrient through hydrogen sulfide. Annu Rev Nutr 34:171–205
3. Gemici B, Elsheikh W, Feitosa KB et al (2015) H2S-releasing drugs: anti-inflammatory, cytoprotective and chemopreventive potential. Nitric Oxide 46:25–31
4. Yang G, Sun X, Wang R (2004) Hydrogen sulfide-induced apoptosis of human aorta smooth muscle cells via the activation of mitogen-activated protein kinases and caspase-3. FASEB J 18:1782–1784
5. Shi S, Li QS, Li H et al (2009) Anti-apoptotic action of hydrogen sulfide is associated with early JNK inhibition. Cell Biol Int 33:1095–1101
6. Hu Y, Chen X, Pan TT et al (2008) Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Pflugers Arch 455:607–616
7. Manna P, Jain SK (2011) Hydrogen sulfide and l-cysteine increase phosphatidylinositol 3,4,5-trisphosphate (PIP3) and glucose utilization by inhibiting phosphatase and tensin homolog (PTEN) protein and activating phosphoinositide 3-kinase (PI3K)/serine/threonine kinase protein (AKT)/protein kinase Cζ/λ (PKCζ/λ) in 3T3L1 adipocytes. J Biol Chem 286:39848–39859
8. Pan TT, Neo KL, Hu LF et al (2008) H2S preconditioning-induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes. Am J Physiol Cell Physiol 294:C169–C177
9. Szabo G, Veres G, Radovits T et al (2011) Cardioprotective effects of hydrogen sulfide. Nitric Oxide 25:201–210
10. Calenic B, Yaegaki K, Ishkitiev N et al (2013) p53-Pathway activity and apoptosis in hydrogen sulfide-exposed stem cells separated from human gingival epithelium. J Periodontal Res 48:322–330
11. Lee HG, Mariappan MM, Feliers D et al (2012) Hydrogen sulfide inhibits high glucose-induced matrix metalloproteinase synthesis by activating AMP-activated protein kinase in renal epithelial cells. J Biol Chem 287:4451–4461
12. Cai J, Shi X, Wang H et al (2016) Cystathionine γ-laye-hydrogen sulfide increases peroxisome proliferator-activated receptor γ activity by sulfhydration at C139 site thereby promoting glucose uptake and lipid storage in adipocytes. Biochim Biophys Acta 1861:419–429
13. Li X, Zhang KY, Zhang P et al (2014) Hydrogen sulfide inhibits formaldehyde-induced endoplasmic reticulum stress in PC12 cells by upregulation of SIRT-1. PLoS One 9:e89856
14. Xei L, Feng H, Li S et al (2016) SIRT3 mediates the antioxidant effect of hydrogen sulfide in endothelial cells. Antioxid Redox Signal 24:329–343
15. Talaei F, van Praag VM, Henning RH et al (2013) Hydrogen sulfide restores a normal morphological phenotype in Werner syndrome fibroblasts. attenuates oxidative damage and modulates mTOR pathway. Pharmacol Res 74:34–44
16. Zayackivska O, Havryluk O, Hrycevych N et al (2014) Cytoprotective effects of hydrogen sulfide in novel rat models of non-erosive esophagitis. PLoS One 9:e110688
17. Meng JL, Mei WY, Dong YF et al (2011) Heat shock protein 90 mediates cytoprotection by H2S against chemical hypoxia-induced injury in PC12 cells. Clin Exp Pharmacol Physiol 38:42–49
18. Yang C, Yang Z, Zhang M et al (2011) Hydrogen sulfide protects against chemical hypoxia-induced cytotoxicity and inflammation in HaCaT cells through inhibition of ROS/NF-kB/COX-2 pathway. PLoS One 6:e21971
19. Yang M, Huang Y, Chen J et al (2014) Activation of AMPK participates hydrogen sulfide-induced cytoprotective effect against dexamethasone in osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 454:42–47
20. Calvert JW, Jha S, Gundewar S et al (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105:365–374
21. Li L, Bhatia M, Zhu YZ et al (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19:1196–1198
22. Zanardo RC, Brancalone V, Distrutti E et al (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20:2118–2120
23. Whiteman M, Li L, Rose P et al (2010) The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal 12:1147–1154
24. Gemici B, Wallace JL (2015) Anti-inflammatory and cytoprotective properties of hydrogen sulfide. Methods Enzymol 555:169–193
25. Zhao W, Zhang J, Lu Y et al (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20:6008–6016
26. Köhn C, Schlierfbaun J, Szijjartó IA et al (2012) Differential effects of cystathionine-γ-laye-dependent vasodilatory H2S in periodontal vasoregulation of rat and mouse aortas. PLoS One 7:e41951
27. Yang R, Teng X, Li H et al (2016) Hydrogen sulfide improves vascular calcification in rats by inhibiting endoplasmic reticulum stress. Oxid Med Cell Longev. doi: 10.1155/2016/9095242
28. Wang Z, Liu D-X, Wang F-W et al (2013) l-Cysteine promotes the proliferation and differentiation of neural stem cells via the CBS/H2S pathway. Neuroscience 237:106–117
29. Cai WJ, Wang MJ, Moore PK et al (2007) The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76:29–40
30. Wallace JL, Dicay M, McKnight W et al (2007) Hydrogen sulfide enhances ulcer healing in rats. FASEB J 21:4070–4076
31. Papapetropoulos A, Pyriochou A, Altanay Z et al (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106:21972–21977
32. Liu W, Liu K, Ma C et al (2014) Protective effect of hydrogen sulfide on hyperbaric hypoxia-induced lung injury in a rat model. Undersea Hyperb Med 41:573–578
33. Wang G, Li W, Chen Q et al (2015) Hydrogen sulfide accelerates wound healing in diabetic rats. Int J Clin Exp Pathol 8:5097–5104
34. Jang H, Oh MY, Kim YJ et al (2014) Hydrogen sulfide treatment induces angiogenesis after cerebral ischemia. J Neurosci Res 92:1520–1528
35. Yang GD, Wang R (2007) H(2)S and cellular proliferation and apoptosis. Sheng Li Xue Bao 59:133–140
36. Elrod JW, Calvert JW, Morrison J et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104:15560–15565
37. Wang G, Li W, Chen Q et al (2015) Hydrogen sulfide accelerates wound healing in diabetic rats. Int J Clin Exp Pathol 8:5097–5104
38. Goubern M, Andriamihaja M, Nu¨bel T et al (2007) Sulfide, the first inorganic substrate for human cells. FASEB J 21:1699–1706
39. Modis K, Coletta C, Erdélyi K et al (2013) Intramitochondrial hydrogen sulfide production by 3-mercaptoppyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27:601–611
40. Modis K, Asimakopoulou A, Coletta C et al (2013) Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptoppyruvate sulfurtransferase/hydrogen sulfide pathway. Biochem Biophys Res Commun 433:401–407
41. Goo Z, Li CS, Wang CM et al (2015) CSE/H2S system protects mesenchymal stem cells from hypoxia and serum deprivation-induced apoptosis via mitochondrial injury, endoplasmic reticulum stress and PI3K/Akt activation pathways. Mol Med Rep 12:2128–2134
42. Banu S, Ravindran S, Kurian GA et al (2016) Hydrogen sulfide post-conditioning preserves inter fibrillar mitochondria of rat heart during ischemia reperfusion injury. Cell Stress Chaperones 21:571–582
43. Szczesny B, Módis K, Yanagi K et al (2014) AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 41:120–130
44. Coletta C, Módis K, Szczesny B et al (2015) Regulation of vascular tone, angiogenesis and cellular bioenergetics by the 3-mercaptoppyruvate sulfurtransferase/H2S pathway: functional impairment by hyperglycemia and restoration by δ-amino adipic acid. Mol Med 21:1–14
45. Miao L, Shen X, Whiteman M et al (2016) Hydrogen sulfide mitigates myocardial infarction via promotion of mitochondrial biogenesis-dependent M2 polarization of macrophages. Antioxid Redox Signal 25:268–281
46. Sun A, Wang Y, Liu J et al (2016) Exogenous H2S modulates mitochondrial fusion-fission to inhibit vascular smooth muscle cell proliferation in a hyperglycemic state. Cell Biosci. doi:10.1186/s13578-016-0102-x
47. Zhao FL, Fang F, Qiao PF et al (2016) AP39, a mitochondria-targeted hydrogen sulfide donor, supports cellular bioenergetics and protects against Alzheimer’s disease by preserving mitochondrial function in APP/PS1 mice and neurons. Oxid Med Cell Longev. doi:10.1155/2016/8360738
48. Vicente JB, Malagrino` F, Arese M et al (2016) Bioenergetic stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Biochem Biophys Res Commun 433:401–407
49. Whiteman M, Gooding KM, Whatmore JL et al (2010) Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia 53:1722–1726
50. Geng B, Cai B, Liao F et al (2013) Increase or decrease hydrogen sulfide exert opposite lipolysis, but reduce global insulin resistance in high fatty diet induced obese mice. PLoS One 8:e73892
51. Velmurugan GV, Huang H, Sun H et al (2015) Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production. Sci Signal. doi:10.1126/scisignal.aac7135
52. Candela J, Velmurugan GV, White C et al (2016) Hydrogen sulfide depletion contributes to microvascular remodeling in obesity. Am J Physiol Heart Circ Physiol 310:H1071–H1080
53. Jamroz-Wiśniewska A, Gertler A, Solomon G et al (2015) Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: role of nitric oxide and hydrogen sulfide. PLoS One 9:e86744. doi:10.1371/journal. pone.0086744
54. Qabazard B, Li L, Gruber J et al (2013) Hydrogen sulfide is an endogenous regulator of aging in Caenorhabditis elegans. Antioxid Redox Signal 20:2621–2630
55. Qabazard B, Ahmed S, Li L et al (2014) C. elegans aging is modulated by hydrogen sulfide and the sulhydrylase/cysteine synthase cysl-2. PLoS One 8:e80135
56. Krejcova T, Smelcova M, Petri J et al (2015) Hydrogen sulfide donor protects porcine oocytes against aging and improves the developmental potential of aged porcine oocytes. PLoS One 10:e0116964
57. Yang G, An SS, Ji Y et al (2015) Hydrogen sulfide signaling in oxidative stress and aging development. Oxid Med Cell Longev. doi:10.1155/2015/357824
58. Jin S, Pu SX, Hou CL et al (2015) Cardiac H2S generation is reduced in aging diabetic mice. Oxid Med Cell Longev. doi:10.1155/2015/758358
59. Li L, Li M, Li Y et al (2016) Exogenous H2S contributes to recovery of ischemic post-conditioning-induced cardioprotection by decrease of ROS level via down-regulation of NF-κB and JAK2-STAT3 pathways in the aging cardiomyocytes. Cell Biosci. doi:10.1186/s13578-016-0090-x
60. Wei Y, Kenyon C (2016) Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans. Proc Natl Acad Sci USA. doi:10.1073/pnas.1524727113
61. Whiteman M, Armstrong JS, Chu SH et al (2004) The novel neutromodulator hydrogen sulfide: an endogenous peroxyxynitrite ‘scavenger’? J Neurochem 90:765–768
62. Whiteman M, Cheung NS, Zhu YZ et al (2005) Hydrogen sulfide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun 326:794–798
63. Mustafa AK, Gadalla MM, Sen N et al (2009) H2S signals bioactive reaction products of the NO/H2S interaction are S/N-oxo- and S/N-thiol- adducts. Antioxid Redox Signal 20:2621–2630
64. Filipovic MR (2015) Persulfidation (S-sulfhydration) and H2S. Handb Exp Pharmacol 230:29–59
65. Whiteman M, Li L, Kostetski I et al (2006) Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 343:303–310
66. Pryor WA, Houk KN, Foote CS et al (2006) Free radical biology of medicine: it’s a gas, man. Am J Physiol Regul Integr Comp Physiol 291:R491–R511
67. Cortese-Krott MM, Kuhnle GG, Dyson A et al (2015) Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proc Natl Acad Sci USA 112:E4651–E4660
68. Olson KR (2011) A practical look at the chemistry and biology of hydrogen sulfide. Antioxid Redox Signal 17:32–44
69. Shen X, Patillo CB, Pardue S et al (2011) Measurement of plasma hydrogen sulfide in vivo and in vitro. Free Radic Biol Med 50:1021–1031
70. Shen X, Kolluru GK, Yuan S et al (2015) Measurement of H2S in vivo and in vitro by the monorhomobimane method. Methods Enzymol 554:31–45
71. Mueller EG (2014) Trafficking in persulphides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2:185–194
72. Greiner R, Pálinkás Z, Básell K et al (2013) Polysulphides link H2S to protein thiol oxidation. Antioxid Redox Signal 19:1749–1765
73. Pimentel M, Mathur R, Chang C et al (2013) Gas and the microbiome. Curr Gastroenterol Rep 15:356
74. Ida T, Sawa T, Ihara H et al (2014) Reactive cysteine persulphides and S-polysulphiation regulate oxidative stress and redox signaling. Proc Natl Acad Sci USA 111:7606–7611
75. Benavides GA, Squadril GL, Mills RW et al (2007) Hydrogen sulphide releasing capacity of essential oils isolated from Allium cepa. Med 50:1021–1031
76. Lei C, Wu B, Cao Q et al (2011) Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells. Toxicol Appl Pharmacol 257:420–428
77. Tocmo R, Liang D, Lin Y et al (2015) Chemical and biochemical mechanisms underlying the cardioprotective roles of dietary organosulfurpolysulphides. Front Nutr. doi:10.3389/fnut.2015.00001
78. Tocmo R, Lin Y, Huang D (2014) Effect of processing conditions on the organosulphides of shallot (Allium cepa L. Aggregatum group). J Agric Food Chem 62:5296–5304
79. Liang D, Wang A, Tocmo R et al (2015) Hydrogen sulphide (H2S) releasing capacity of essential oils isolated from organosulphur rich fruits and vegetables. J Funct Foods 14:634–640
80. Kabil O, Banerjee R (2014) Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal 20:770–782
81. Huang CW, Moore PK (2016) H2S synthesizing enzymes: biochemistry and molecular aspects. Handb Exp Pharmacol 230:3–25
82. Kabil O, Banerjee R (2010) Redox biochemistry of hydrogen sulfide. J Biol Chem 285:21903–21907
83. Xie ZZ, Liu Y, Bian JS (2016) Hydrogen sulfide and cellular redox homeostasis. Oxid Med Cell Longev. doi: 10.1155/2016/6043038
84. Paul BD, Snyder SH (2015) Hydrogen sulfide contributes to maintenance of neuropathic pain. Psin 150:183–191
85. Abeles RH, Walsh CT (1973) Acetylcholine enzyme inactivators. Inactivation of gamma-cystathionase, in vitro and in vivo, by propargylglycine. J Am Chem Soc 95:6124–6125
86. Washitien W, Abeles RH (1977) Mechanism of inactivation of gamma-cystathionase by the acetylenic substrate analogue proprargylglycine. Biochemistry 16:2485–2491
87. Asimakopoulou A, Panopoulos P, Chasapis CT et al (2013) Selectivity of commonly used pharmacological inhibitors for cystathionine beta synthase (CBS) and cystathionine gamma lyase (CSE). Br J Pharmacol 169:922–932
88. Steegborn C, Clausen T, Sondermann P et al (1999) Kinetics and inhibition of recombinant human cystathionine gamma-lyase. Toward the rational control of transsulfuration. J Biol Chem 274:12675–12684
89. Yao K (1975) Effects of several unusual sulfur-containing amino acids on rat liver cystathionine-gamma-lyase. Physiol Chem Phys 7:401–408
90. Thorsen MK, Matjak T, Kraus JP et al (2013) Identification of cystathionine beta-synthase inhibitors using a hydrogen sulfide selective probe. Angew Chem Int Ed Engl 52:4641–4644
91. Thorsen MK, Van Wagoner RM, Harper MK et al (2015) Marine natural products as inhibitors of cystathionine beta-synthase activity. Bioorg Med Chem Lett 25:1064–1066
92. Zhou Y, Yu J, Lei X et al (2013) High-throughput tandem-microwell assay identifies inhibitors of the hydrogen sulfide signaling pathway. Chem Commun (Camb) 49:11782–11784
93. Wing DA (1992) Modifiers of mercaptopyruvate sulfurtransferase catalyzed conversion of cyanide to thiocyanate in vitro. J Biochem Toxicol 7:65–72
94. Porter DW, Baskin SI (1995) Specificity studies of 3-Mercaptopropionate sulfurtransferase. J Biochem Toxicol 10:287–292
95. Porter DW, Baskin SI (1996) The effect of three alpha-keto acids on 3-mercaptopropionate sulfurtransferase activity. J Biochem Toxicol 11:45–50
96. Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136:1636S–1640S
111. Stipanuk MH (1986) Metabolism of sulfur-containing amino acids. Annu Rev Nutr 6:179–209
112. Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577
113. Beard RS, Bearden SE (2011) Vascular complications of cystathionine β-synthase deficiency: future directions for homocysteine-to-hydrogen sulfide research. Am J Physiol Heart Circ Physiol 300:H13–H26
114. Wang J, Hegele RA (2003) Genomic basis of cystathioninuria (MIM 219500) revealed by multiple mutations in cystathionine gamma-lyase (CTH) Hum. Genet 112:404–408
115. Meier M, Oliveriusova J, Kraus JP et al (2003) Structural insights into mutations of cystathionine beta-synthase. Biochim Biophys Acta 1647:206–213
116. Finkelstein JD (2006) Inborn errors of sulfur-containing amino acid metabolism. J Nutr 136:1750S–1754S
117. Tsai MY, Hanson NQ, Bignell M et al (1996) Simultaneous detection and screening of T833C and G919A mutations of the cystathionine beta-synthase gene by single-strand conformational polymorphism. Clin Biochem 29:473–477
118. Shi H, Yang S, Liu Y et al (2015) Study on environmental causes and SNPs of MTHFR, MS and CBS genes related to congenital heart disease. PLoS One 10:e0128646. doi: 10.1371/journal.pone.0128646
119. Ding R, Lin S, Chen D (2012) The association of cystathionine β synthase (CBS) T833C polymorphism and the risk of stroke: a meta-analysis. J Neurol Sci 312:26–30
120. Gallegos-Arreola MP, Figuera-Villanueva LE, Ramos-Silva A et al (2014) The association between the 844ins68 polymorphism in the CBS gene and breast cancer. Arch Med Sci 10:1214–1224
121. Konrad C, Müller GA, Langer C et al (2004) Plasma homocysteine, MTHFR C677T, MS and CBS genes in relation to coronary artery disease. Int J Mol Med 13:17–25
122. Zhang Z, Dai C (2002) Correlation analysis between plasma homocysteine level and polymorphism of homocysteine metabolism related enzymes in ischemic cerebrovascular or cardiovascular diseases. Zhonghua Xue Ye Xue Za Zhi 23:126–129
123. Chwatkko G, Boers GH, Strauss KA et al (2007) Mutations in methylenetetrahydrofolate reductase or cystathionine beta-synthase gene, or a high-methionine diet, increase homocysteine thiolactone levels in humans and mice. FASEB J 21:1707–1713
124. Harker LA, Slichter SJ, Scott CR et al (1974) Homocystinemia. Vascular injury and arterial thrombosis. N Engl J Med 291:537–543
125. Endo N, Nishiyama K, Otsuka A et al (2006) Antioxidant activity of vitamin B6 delays homocysteine-induced atherosclerosis in rats. Br J Nutr 95:1088–1093
126. Maestro de las Casas C, Epeldeguia M, Tudela C et al (2003) High exogenous homocysteine modifies eye development in early chick embryos. Birth Defects Res A Clin Mol Teratol 67:35–40
127. Li Y, Zhao Q, Liu XL et al (2008) Relationship between cystathionine gamma-lyase gene polymorphism and essential hypertension in Northern Chinese Han population. Chin Med J (Engl) 121:716–720
128. Wang J, Huff AM, Spence JD et al (2004) Single nucleotide polymorphism in CTH associated with variation in plasma homocysteine concentration. Clin Genet 65:483–486
129. Mrozikiewicz PM, Bogacz A, Omielaczynzcky M et al (2015) The importance of rs1021737 and rs482843 polymorphisms of cystathionine gamma-lyase in the etiology of preeclampsia in the Caucasian population. Ginekol Pol 86:119–125
130. Zhu W, Lin A, Banerjee R (2008) Kinetic properties of polymorphic variants and pathogenic mutants in human cystathionine gamma-lyase. Biochemistry 47:6226–6232
131. Billault-Laden I, Rat E, Allorge D et al (2006) Evidence for a functional genetic polymorphism of the human mercaptopyruvate sulfurtransferase (MPST), a cyanide detoxification enzyme. Toxicol Lett 165:101–111
132. Eto K, Kimura H (2002) A novel enhancing mechanism for hydrogen sulfide-producing activity of cystathionine beta-synthase. J Biol Chem 277:42680–42685
133. Erefio-Orbea J, Majtan T, Oeynarte I et al (2014) Structural insight into the molecular mechanism of allosteric activation of human cystathionine β-synthase by S-adenosylmethionine. Proc Natl Acad Sci USA 111:E3845–E3852
134. Zhu W, Chua JH, Yew WS et al (2010) Site-directed mutagenesis on human cystathionin-gamma-lyase reveals insights into the modulation of H2S production. J Mol Biol 396:708–718
135. Tang XQ, Chen RQ, Dong L et al (2013) Role of paraoxonase-1 in the protection of hydrogen sulfide-donating sildenafil (ACS6) against homocysteine-induced neurotoxicity. J Mol Neurosci 50:70–77
136. Sen U, Sathnur PB, Kundu S et al (2012) Increased endogenous H2S generation by CBS, CSE, and 3MST gene therapy improves ex vivo renovascular relaxation in hyperhomocysteinemia. Am J Physiol Cell Physiol 303:C41–C51
137. Pushpakumar S, Kundu S, Sen U et al (2014) Endothelial dysfunction: the link between homocysteine and hydrogen sulfide. Curr Med Chem 21:3662–3672
138. Chang L, Geng B, Yu F et al (2008) Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34:573–585
139. Wang R (2009) Hydrogen sulfide: a new EDRF. Kidney Int 76:700–704
140. Pan LL, Liu XH, Gong QH et al (2011) Hydrogen sulfide attenuated tumor necrosis factor-α-induced inflammatory signaling and dysfunction in vascular endothelial cells. PLoS One. doi:10.1371/journal.pone.0019766
141. Li L, Whiteman M, Guan YY (2008) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137); new insights into the biology of hydrogen sulfide. Circulation 117:2351–2360
142. Lynn EG, Austin RC (2011) Hydrogen sulfide in the pathogenesis of atherosclerosis and its therapeutic potential. Expert Rev Clin Pharmacol 4:97–108
143. Meng QH, Yang G, Yang W et al (2007) Protective effect of hydrogen sulfide on balloon injury-induced neointima hyperplasia in rat carotid arteries. Am J Pathol 170:1406–1414
144. Yang G, Li H, Tang G et al (2012) Increased neointimal formation in cystathionine gamma-lyase deficient mice: role of hydrogen sulfide in αvβ1-integrin and matrix metalloproteinase-2 expression in smooth muscle cells. J Mol Cell Cardiol 52:677–688
145. Yang G, Wu L, Wang R (2006) Pro-apoptotic effect of endogenous H2S on human aorta smooth muscle cells. FASEB J 20:553–555
146. Zhao ZZ, Wang Z, Li GH et al (2011) Hydrogen sulfide inhibits macrophage-derived foam cell formation. Exp Biol Med (Maywood) 236:169–176
147. Zhang H, Guo C, Wu D et al (2012) Hydrogen sulfide inhibits the development of atherosclerosis with suppressing CX3CR1 and CX3CL1 expression. PLoS One. doi:10.1371/journal.pone.0041147
149. Wang XH, Wang F, You SJ et al (2013) Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. Cell Signal 25:2255–2262

150. Wu SY, Pan CS, Geng B et al (2006) Hydrogen sulfide ameliorates vascular calcification induced by vitamin D3 plus nicotine in rats. Acta Pharmacol Sin 27:299–306

151. Zagli G, Patacchini R, Trevisani M et al (2007) Hydrogen sulfide inhibits human platelet aggregation. Eur J Pharmacol 559:65–68

152. Grambow E, Mueller-Graf F, Delyagina E et al (2007) Effect of the hydrogen sulfide donor GYY4137 on platelet activation and microvascular thrombus formation in mice. Platelets 25:166–174

153. Qiao W, Chaoshu T, Hongfang J et al (2010) Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis. Biochem Biophys Res Commun 396:182–186

154. Xu S, Liu Z, Liu P (2014) Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis. Int J Cardiol 172:313–317

155. Wang W, Feng SJ, Li H et al (2015) Correlation of lower concentrations of hydrogen sulfide with activation of protein kinase CβII in uremic accelerated atherosclerosis patients. Chin Med J 128:1465–1470

156. Li H, Feng SJ, Zhang GZ et al (2015) Correlation of lower concentrations of hydrogen sulfide with atherosclerosis in chronic hemodialysis patients with diabetic nephropathy. Blood Purif 38:188–194

157. Jiang HL, Wu HC, Li ZL et al (2005) Changes of the new gaseous transmitter H2S in patients with coronary heart disease. Di Yi Jun Yi Da Xue Xue Bao. 25:951–954

158. Chen L, Ingrid S, Ding YG et al (2007) Imbalance of endogenous homocysteine and hydrogen sulfide metabolic pathway in essential hypertensive children. Chin Med J (Engl). 120:389–393

159. Perna AF, Luciano M, Ingrosso D et al (2009) Hydrogen sulphide generating pathways in haemodialysis patients: a study on relevant metabolites and transcriptional regulation of genes encoding for key enzymes. Nephrol Dial Transplant 24:3756–3763

160. Perna AF, Di Nuncio A, Amoresano A (2016) Divergent behavior of hydrosulfuric acid pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients. Biochimie 126:97–107

161. Li J, Li Q, Du HP et al (2015) Homocysteine triggers inflammatory responses in macrophages through inhibiting CSE-H2S signaling via DNA hypermethylation of CSE promoter. Int J Mol Sci 16:12560–12577

162. Xu Y, Du HP, Li J et al (2014) Statins upregulate cystathionine γ-lyase transcription and H2S generation via activating Akt signaling in macrophage. Pharmacol Res 87:18–25

163. Yang G, Cao K, Wu L et al (2004) Cystathionine gamma-lyase overexpression inhibits cell proliferation via a H2S-dependent modulation of ERK1/2 phosphorylation and p21cip/WAK-1. J Biol Chem 279:49199–49205

164. Shen Y, Shen Z, Miao L et al (2015) miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-γ-lyase expression. Antioxid Redox Signal 22:224–240

165. Fox B, Schantz JT, Haigh R et al (2012) Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? J Cell Mol Med 16:896–910

166. Badiei A, Rivers-Auty J, Ang AD et al (2013) Inhibition of hydrogen sulfide production by gene silencing attenuates inflammatory activity of LPS-activated RAW264.7 cells. Appl Microbiol Biotechnol 97:7845–7852

167. Badiei A, Muniraj N, Chambers S et al (2014) Inhibition of hydrogen sulfide production by gene silencing attenuates inflammatory activity by downregulation of NF-κB and MAP kinase activity in LPS-activated RAW 264.7 cells. Biomed Res. doi:10.1155/2014/848570

168. Wang K, Ahmad S, Cai M et al (2013) Dysregulation of hydrogen sulfide producing enzyme cystathionine γ-lyase contributes to maternal hypertension and placental abnormalities in pre-eclampsia. Circulation 127:2514–2522

169. Liu Y, Yang R, Liu X et al (2014) Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca2+ channel sulfhydration. Cell Stem Cell 15:66–78

170. Sen U, Givvimani S, Abe OA et al (2007) Cystathionine β-synthase and cystathionine γ-lyase double gene transfer ameliorate homocysteine-mediated mesangial inflammation through hydrogen sulfide generation. Am J Physiol Cell Physiol 300:C155–C163

171. Albertini E, Koziel R, Dürr A et al (2012) Cystathionine beta synthase modulates senescence of human endothelial cells. Aging (Albany NY) 4:664–673

172. Bhattacharyya S, Saha S, Giri K et al (2013) Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS One 8:e79167

173. Szabo C, Coletta C, Chao C et al (2013) Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci USA 110:12474–12479

174. Miller TW, Wang EA, Gould S et al (2011) Hydrogen sulfide is an endogenous potentiator of T cell activation. J Biol Chem 287:4211–4221

175. Sen S, Kawahara B, Gupta D et al (2015) Role of cystathionine β-synthase in human breast Cancer. Free Radic Biol Med 86:228–238

176. Yang G, Yang W, Wu L et al (2007) H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting beta cells. J Biol Chem 282:16567–16576

177. Watanabe M, Osada J, Aratani Y et al (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocysteinemia. Proc Natl Acad Sci USA 92:1585–1589

178. Wang L, Jhee KH, Hua X et al (2004) Modulation of cystathionine beta-synthase level regulates total serum homocysteine in mice. Circ Res 94:1318–1324

179. Wang L, Chen X, Tang B et al (2005) Expression of mutant human cystathionine beta-synthase rescues neonatal lethality but not homocystinuria in a mouse model. Hum Mol Genet 14:2201–2208

180. Maclean KN, Sikora J, Kožíček V et al (2010) A novel transgenic mouse model of CBS-deficient homocystinuria does not incur hepatic steatosis or fibrosis and exhibits a hypercoagulative phenotype that is ameliorated by betaine treatment. Mol Genet Metab 101:153–162

181. Lentz SR, Erger RA, Dayal S et al (2000) Folate dependence of human cystathionine beta-synthase: animal models for mild and severe homocystinuria in a mouse model of CBS-deficient homocystinuria does not incur hepatic steatosis or fibrosis and exhibits a hypercoagulative phenotype that is ameliorated by betaine treatment. Mol Genet Metab 101:153–162

182. Clarke ZL, Moat SJ, Miller AL et al (2006) Differential effects of low and high dose folic acid on endothelial dysfunction in a murine model of mild hyperhomocysteinemia. Eur J Pharmacol 559:65–68

183. Sen U, Givvimani S, Abe OA et al (2007) Cystathionine β-synthase and cystathionine γ-lyase double gene transfer ameliorate homocysteine-mediated mesangial inflammation through hydrogen sulfide generation. Am J Physiol Cell Physiol 300:C155–C163

184. Dayal S, Bottiglieri T, Arning E et al (2001) Endothelial dysfunction and elevation of S-adenosylhomocysteine in
cystathionine beta-synthase-deficient mice. Circ Res 88:1203–1209
185. Dayal S, Arning E, Bottiglieri T et al (2004) Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke 35:1957–1962
186. Robert K, Santiard-Baron D, Chassé JF et al (2004) The neuronal SAPK/JNK pathway is altered in a murine model of hyperhomocysteinemia. J Neurochem 89:33–43
187. Vitiisky V, Dayal S, Stabler S et al (2004) Perturbations in homocysteine-linked redox homeostasis in a murine model for hyperhomocysteinemia. Am J Physiol Regul Integr Comp Physiol 287:R93–R46
188. Kundu S, Kumar M, Sen U et al (2009) Nitrosylation, remodeling and endothelial-myocyte uncoupling in iNOS, cystathionine beta synthase (CBS) knockouts and iNOS/CBS double knockout mice. J Cell Biochem 106:119–126
189. Mayo JN, Beard RS Jr, Price TO et al (2012) Nitrative stress in cerebral endothelium is mediated by mGlur5 in hyperhomocysteinemia. J Cereb Blood Flow Metab 32:825–834
190. Shasry S, Moning L, Tyagi N et al (2005) GABA receptors and nitric oxide ameliorate constrictive collagen remodeling in hyperhomocysteinemia. J Cell Physiol 205:422–427
191. Kamath AF, Chauhan AK, Kisucka J et al (2012) Elevated levels of homocysteine compromise blood–brain barrier integrity in mice. Blood 107:591–593
192. Hamelet J, Demuth K, Paul JL et al (2007) Hyperhomocysteinemia due to cystathionine beta synthase deficiency induces dysregulation of genes involved in hepatic lipid homeostasis in mice. J Hepatol 46:151–159
193. Liao D, Tan H, Hui R et al (2006) Hyperhomocysteinemia decreases circulating high-density lipoprotein by inhibiting apolipoprotein A-I Protein synthesis and enhancing HDL cholesteral clearance. Circ Res 99:598–606
194. Gupta S, Kruger WD (2011) Cystathionine beta-synthase deficiency causes fat loss in mice. PLoS One. doi:10.1371/journal.pone.0027598
195. Ganapathy PS, Moister B, Roop P et al (2009) Endogenous elevation of homocysteine induces retinal neuron death in the cystathionine-beta-synthase mutant mouse. Invest Ophthalmol Vis Sci 50:4460–4470
196. Nuño-Aylama M, Guillén N, Arnal C et al (2012) Cystathionine β-synthase deficiency causes infertility by impairing decidualization and gene expression networks in uterus implantation sites. Physiol Genomics 44:702–716
197. Guzman MA, Navarro MA, Carnicer R et al (2006) Cystathionine beta-synthase is essential for female reproductive function. Hum Mol Genet 15:3168–3176
198. Hagiya Y, Kamata S, Mitsuoka S et al (2015) Hemizygosity of transsulfuration genes confers increased vulnerability against acetalaminophen-induced hepatotoxicity in mice. Toxicol Appl Pharmacol 282:195–206
199. Okomoto M, Yamakoa M, Takei M et al (2013) Endogenous hydrogen sulfide protects pancreatic beta-cells from a high-fat diet-induced glucotoxicity and prevents the development of type 2 diabetes. Biochem Biophys Res Commun. 442:227–233
200. Tang T, Zhang L, Yang G et al (2013) Hydrogen sulfide-induced inhibition of L-type Ca2+ channels and insulin secretion in mouse pancreatic beta cells. Diabetologia 56:533–541
201. King AL, Polhemus DJ, Bhushan S et al (2015) Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci USA 111:3182–3187
202. Ishii I, Akahoshi N, Yamada H et al (2010) Cystathionine gamma-lyase-deficient mice require dietary cysteine to protect against acute lethal myocardyopathy and oxidative injury. J Biol Chem 285:26358–26368
203. Yang G, Wu L, Jiang B et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine beta-lyase. Science 322:587–590
204. Yang G, Wu L, Bryan S (2010) Cystathionine gamma-lyase deficiency and overproliferation of smooth muscle cells. Cardiovasc Res 86:487–495
205. Peng YJ, Nanduri J, Raghubaran G et al (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA 107:10719–10724
206. Yang G, Zhao K, Ju Y et al (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18:1906–1919
207. Kondo K, Bhushan S, King AL et al (2013) H2S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 127:1116–1127
208. Zhang G, Wang P, Yang G et al (2013) The inhibitory role of hydrogen sulfide in arterial hyperresponsiveness and inflammation in a mouse model of asthma. Am J Pathol 182:1188–1195
209. Yang G, Yang G, Jiang B et al (2013) H2S is an endothelium-derived hyporesponsive factor. Antioxid Redox Signal 19:1634–1646
210. Bos EM, Wang R, Snijder PM et al (2013) Cystathionine y-lyase protects against renal ischemia/reperfusion by modulating oxidative stress. J Am Soc Nephrol 24:759–770
211. Miki S, Li H,Unterener A et al (2013) Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127:2523–2534
212. Mani S, Li H,Unterener A et al (2013) Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127:2523–2534
213. Ang AD, Rivers-Auty J, Hegde A et al (2013) The effect of CSE gene deletion in caerulein-induced acute pancreatitis in the mouse. Am J Physiol Gastrointest Liver Physiol 305:G712–G721
214. Jiang Z, Li C, Manuel ML et al (2015) Role of hydrogen sulfide in early blood–brain barrier disruption following transient focal cerebral ischemia. PLoS One. doi:10.1371/journal.pone.0117982
215. Kolluru GK, Bir SC, Yuan S et al (2015) Cystathionine y-lyase regulates arteriogenesis through NO-dependent monocyte recruitment. Cardiovasc Res 107:590–600
216. Syhr KM, Boosen M, Hohmann SW et al (2015) The H2S-producing enzyme CSE is dispensable for the processing of inflammatory and neuropsychatic pain. Brain Res 1624:380–389
217. Untereneer AA, Wang R, Ju Y et al (2016) Decreased Glucogenesis in the Absence of Cystathionine Gamma-Lyase and the Underlying Mechanisms. Antioxid Redox Signal 24:129–140
218. Ivanicue T, Sbrana E, Ansar M et al (2016) Hydrogen sulfide: an antiviral and anti-inflammatory endogenous gasotransmitter in the airways. Role in respiratory syncytial virus infection. Am J Respir Cell Mol Biol. doi:10.1165/rcmb.2015-0385OC
219. Miao L, Xin X, Xin H et al (2016) Hydrogen sulfide recruits macrophage migration by integrin β1-Src-FAK/Pyk2-Rac pathway in myocardial infarction. Sci Rep. doi:10.1038/srep22263
220. Ali MY, Pong CY, Mok YY et al (2006) Regulation of vascular nitric oxide in vitro and in vivo: a new role for endogenous hydrogen sulfide? Br J Pharmacol 149:625–634
221. Filipovic MR, Miljkovic JL, Nauser T et al (2012) Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular NO2 sensing in the carotid body. Proc Natl Acad Sci USA 109:1634–1646
222. Cortese-Krott MM, Fernandez BO, Santos JL et al (2014) Nitrosothiols (SSNO(-)) account for sustained NO bioactivity in a mouse model of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 307:L117–L126
223. Cheung SH, Kwok WK, To KF et al (2014) Anti-atherogenic effect of hydrogen sulfide by over-expression of cystathionine beta-synthase deficient mice. Circ Res 88:1203–1209
gamma-lyase (CSE) gene. PLoS One. doi:10.1371/journal.pone.0115038

224. Kimura Y, Toyofuku Y, Koike S et al (2015) Identification of H₂S₃ and H₂S produced by 3-mercaptopyruvate sulfurtransferase in the brain. Sci Rep 5:14774. doi:10.1038/srep014774

225. Yadav PK, Yamada K, Chiku T et al (2013) Structure and kinetic analysis of H₂S production by human mercapto- 3-mercaptopyruvate sulfurtransferase. J Biol Chem 288:20002–20013

226. Nicholls P (1975) Inhibition of cytochrome c oxidase by sul- phide. Biochem Soc Trans 3:316–319

227. Nagahara N, Nagano M, Ito T et al (2013) Antioxidant enzyme, 3-mercaptopyruvate sulfurtransferase-knockout mice exhibit increased anxiety-like behaviors: a model for human mercap- tolactate-cysteine disulfiduria. Sci Rep. doi:10.1038/srep01986

228. Vande Weghe JG, Ow DW (1999) A fission yeast gene for mitochondrial sulfide oxidation. J Biol Chem 274:13250–13257

229. Ackermann M, Kubitsa M, Hauska G et al (2014) The vertebrate homologue of sulfide-quinone reductase in mammalian mito- chondria. Cell Tissue Res 358:779–792

230. Olson KR (2015) Hydrogen sulfide as an oxygen sensor. Anti- oxid Redox Signal 22:377–397

231. Jin HS, Kim J, Park S et al (2016) Association of the I264T variant in the sulfide quinone reductase-like (SQRLD) gene with osteoporosis in Korean postmenopausal women. PLoS One. doi:10.1371/journal.pone.0135285

232. Jin HS, Kim J, Park S et al (2016) Association of the I264T variant in the sulfide quinone reductase-like (SQRLD) gene with osteoporosis in Korean postmenopausal women. PLoS One. doi:10.1371/journal.pone.0135285

233. Croteau-Chon DC, Marvelle AF, Lange EM et al (2011) Genome-wide association study of anthropometric traits and evidence of interactions with age and study year in Filipino women. Obesity (Silver Spring) 19:1019–1027

234. Itou T, Maldonado N, Yamada I et al (2014) Cystathionine gamma-lyase accelerates osteoclast differentiation: identification of a novel regulator of osteoclastogenesis by proteomic analysis. Arterioscler Thromb Vasc Biol 34:626–634

235. Gambari L, Lisignoli G, Cattini L et al (2014) Sodium hydro- sulfide inhibits the differentiation of osteoclast progenitor cells via NRF2-dependent mechanism. Pharmacol Res 87:99–112

236. Pan Z, Wang H, Liu Y et al (2014) Involvement of CSE/H₂S in high glucose induced aberrant secretion of adipokines in 3T3-L1 adipocytes. Lipids Health Dis. doi:10.1186/1476-511X-13-155

237. Geng B, Bai B, Liu F et al (2013) Increase or decrease hydrogen sulfide exert opposite lipolysis, but reduce global insulin resistance in high fatty diet induced obese mice. PLoS One. doi:10.1371/journal.pone.0073892

238. Carter RN, Morton NM (2016) Cysteine and hydrogen sulphide in the regulation of metabolism: insights from genetics and pharmacology. J Pathol 238:321–332

239. Sen U, Basu P, Abe OA et al (2009) Hydrogen sulfide amelio- rates hyperhomocysteinemia-associated chronic renal failure. Am J Physiol Renal Physiol 297:F410–F419

240. Flannigan KL, Ferraz JG, Wang R et al (2013) Enhanced syn- thesis and diminished degradation of hydrogen sulfide in experimental colitis: a site-specific, pro-resolution mechanism. J Biol Chem 288:17062–17068

241. Ueki I, Roman HB, Valli A et al (2011) Knockout of the murine homologue of sulfide-quinone reductase in mammalian mito- chondria. Cell Tissue Res 358:779–792

242. Henriques BJ, Lucas TG, Rodrigues JV et al (2014) Ethyl- malonic encephalopathy ETHE1 R163W/R163Q mutations alter protein stability and redox properties of the iron centre. PLoS One. doi:10.1371/journal.pone.0107157

243. Zafeiriou DI, Augoustides-Savvopoulos P, Haas D et al (2007) Ethylmalonic encephalopathy: clinical and biochemical obser- vations. Neuropediatrics 38:78–82

244. Lagoue E, Mimoun S, Andriamihaja M et al (2010) Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophys Acta 1797:1500–1511

245. Hildbrant TM, Di Meo I, Zeviani M et al (2013) Proteome adaptations in Ethel-deficient mice indicate a role in lipid cat- abolism and cytoskeleton organization via post-translation protein modifications. Biosci Rep. doi:10.1042/BSR20130051

246. Hine C, Harputlugil E, Zhang Y et al (2015) Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160:132–144
261. Hine C, Mitchell JR (2015) Calorie restriction and methionine
restriction in control of endogenous hydrogen sulfide production
by the transsulfuration pathway. Exp Gerontol 68:26–32

262. Kabil H, Kabil O, Banerjee R et al (2011) Increased transsul-
furation mediates longevity and dietary restriction in
Drosophila. Proc Natl Acad Sci USA 108:16831–16836

263. Snijder PM, Baratashvili M, Grzeschik NA et al (2015) Over-
expression of cystathionine γ-lyase suppresses detrimental
effects of spinocerebellar ataxia type 3. Mol Med. doi:10.2119/
molmed.2015.00221

264. Kumai Y, Porteus CS, Kwong RW et al (2015) Hydrogen sulfide
inhibits Na\(^+\) uptake in larval zebrafish, Danio rerio. Pflugers
Arch 467:651–664

265. Laubach VE, Shesely EG, Smithies O et al (1995) Mice lacking
inducible nitric oxide synthase are not resistant to lipopolysac-
charide-induced death. Proc Natl Acad Sci USA 92:10688–10692

266. Shesely EG, Maeda N, Kim HS et al (1996) Elevated blood
pressures in mice lacking endothelial nitric oxide synthase. Proc
Natl Acad Sci USA 93:13176–13181

267. Duplain H, Burcelin R, Sartori C et al (2001) Insulin resistance,
hyperlipidemia, and hypertension in mice lacking endothelial
nitric oxide synthase. Circulation 104:342–345

268. Kodela R, Chattopadhyay M, Kashfi K (2012) NOSH-aspirin: a
novel nitric oxide-hydrogen sulfide-releasing hybrid: a new class
of anti-inflammatory pharmaceuticals. ACS Med Chem Lett
3:257–262

269. Fonseca MD, Cunha FQ, Kashfi K et al (2015) NOSH-aspirin
(NBS-1120), a dual nitric oxide and hydrogen sulfide-releasing
hybrid, reduces inflammatory pain. Pharmacol Res Perspect.
doi:10.1002/prp2.133

270. Hu Q, Wu D, Ma F et al (2016) Novel angiogenic activity and
molecular mechanisms of ZYZ-803, a slow-releasing hydrogen
sulfide-nitric oxide hybrid molecule. Antioxid Redox Signal.
doi:10.1089/ars.2015.6607