Fertilizer Source and Rate Affect Sulfur Uptake and Yield Response in Corn

T. E. Husa
Kansas State University, thusa@ksu.edu

D. A. Ruiz Diaz
Kansas State University, ruizdiaz@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Agronomy and Crop Sciences Commons

Recommended Citation

Husa, T. E. and Ruiz Diaz, D. A. (2020) "Fertilizer Source and Rate Affect Sulfur Uptake and Yield Response in Corn," *Kansas Agricultural Experiment Station Research Reports*: Vol. 6: Iss. 9. https://doi.org/10.4148/2378-5977.7978
Fertilizer Source and Rate Affect Sulfur Uptake and Yield Response in Corn

Abstract
With sulfur deficiencies being found throughout Kansas, the evaluation of sulfur fertilization and plant uptake are vital to optimize corn production. The objective of this study was to evaluate the effect of application rates of sulfur on yield and uptake in corn. Nutrient concentrations in corn biomass and grain were evaluated at the Kansas River Valley Experiment Field at Rossville, KS, in 2019. Five treatments were evaluated, including a control with no sulfur and no nitrogen (N), and four fertilizer treatments with 180 lb of nitrogen and four rates of sulfur fertilizer (0, 30, 50, and 200 lb S/a). The nitrogen source was urea and balanced for all treatments at 180 lb N/a. The sulfur-containing fertilizer applications were at the time of planting corn. Whole corn plant biomass and grain samples were taken at physiological maturity and analyzed for nitrogen and sulfur concentrations. Results for the study show that sulfur application rates have a significant yield response in corn, likely contributing to increased uptake of nitrogen. Moreover, high yielding environments increased total plant sulfur uptake and removal.

Keywords
sulfur, corn, rate, yield

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

This research report is available in Kansas Agricultural Experiment Station Research Reports: https://newprairiepress.org/kaesrr/vol6/iss9/10
Fertilizer Source and Rate Affect Sulfur Uptake and Yield Response in Corn

T.E. Husa and D.A. Ruiz Diaz

Summary
With sulfur deficiencies being found throughout Kansas, the evaluation of sulfur fertilization and plant uptake are vital to optimize corn production. The objective of this study was to evaluate the effect of application rates of sulfur on yield and uptake in corn. Nutrient concentrations in corn biomass and grain were evaluated at the Kansas River Valley Experiment Field at Rossville, KS, in 2019. Five treatments were evaluated, including a control with no sulfur and no nitrogen (N), and four fertilizer treatments with 180 lb of nitrogen and four rates of sulfur fertilizer (0, 30, 50, and 200 lb S/a). The nitrogen source was urea and balanced for all treatments at 180 lb N/a. The sulfur-containing fertilizer applications were at the time of planting corn. Whole corn plant biomass and grain samples were taken at physiological maturity and analyzed for nitrogen and sulfur concentrations. Results for the study show that sulfur application rates have a significant yield response in corn, likely contributing to increased uptake of nitrogen. Moreover, high yielding environments increased total plant sulfur uptake and removal.

Introduction
Until recent years, sulfur is a nutrient that had often been overlooked. Increasing crop removals was due to higher yields, decreased atmospheric deposition, and a greater amount of crop residues have increased the likelihood of sulfur deficiency (Camberato and Casteel, 2017). Sulfur application is economically feasible in soils that have a severe sulfur deficiency, but not all fields respond to sulfur applications (Sawyer et al., 2011). Moreover, nitrogen application rates play a significant role in the response to sulfur application rates (Steinke et al., 2015). This study used Kansas State University’s recommended rate for nitrogen for the Kansas River Valley Experiment Field and applied four different rates of sulfur.

Procedures
The Rossville field study was completed in September of 2019, initial soil samples were collected at the 0–6 in. soil layer and analyzed for various soil parameters (Table 1). The experiment was a randomized block design with four replications. Five treatments were evaluated, including a control (No N/ No S) and four rates of sulfur fertilizer (0, 30, 50, and 200 lb S/a), which will be called control, low, medium, and high, respectively. The fifth treatment solely utilized urea and served as the sulfur control treatment (Table 2). Sulfur sources include urea calcium sulfate (27% and 33%), and ammonium sulfate.
The nitrogen source for the S control was urea following Kansas State University’s recommended nitrogen rate (180 lb N/a). Whole plant biomass and grain samples were collected at physiological maturity in the corn crop. Whole plant biomass samples were gathered, weighed, and dried at 140°F and then reweighed to attain dry matter content. Corn was harvested, and the yield was calculated and corrected to 15.5% moisture. After corn harvest, soil samples were collected from 0–24 in. depth. All the soil samples were dried at 106°F, and sulfur was measured by a monocalcium phosphate extraction. All statistical analyses were completed in SAS (v. 9.4 (SAS Inst. Inc., Cary, NC)) using the generalized linear mixed model (GLIMMIX) procedure for analysis of variance (ANOVA).

Results

Preliminary results for this study showed significant differences between sulfur fertilization rates for both nitrogen and sulfur plant total uptake (Figures 1 and 2). Whole plant sulfur uptake significantly increased when sulfur was applied. Increasing the rate of sulfur showed no significant difference between sulfur rates (Figure 1), suggesting a rate of 30 lb was sufficient for the corn crop. Increases in nitrogen uptake were seen when sulfur was applied (Figure 2). A substantial increase in nitrogen uptake is likely linked to keeping the balance of nitrogen to sulfur within the plant. Nitrogen uptake is indicative of increased yield and sulfur uptake, suggesting that higher-yielding environments will also have elevated levels of sulfur removal (Figure 3). Soil sulfate levels in the 0–24 in. soil profile post-harvest were only significantly different at the high sulfur rate (Figure 4). This is likely due to excess S applied related to corn total need. Preliminary results show that the highest sulfur application rate significantly increased yield compared to the urea-only application (Figure 5). This suggests sulfur applied at the lowest rate may have not been sufficient for maximum yield. An increase in nitrogen provided significantly more yield gain over the control when compared to sulfur.

References

Camberato, J., and Casteel, S., 2017. Purdue University Department of Agronomy Soil Fertility Update Sulfur deficiency, pp. 1-6.

Sawyer, J. E., Lang, B. J., and Barker, D. W. 2011. Sulfur Fertilization Response in Iowa Corn Production. Agronomy Publications. 62. https://lib.dr.iastate.edu/agron_pubs/62.
Table 1. Soil test parameters for 0–6 in. pre-plant samples

P	K	Zn	Ca	Mg	Na	Fe	Mn
31	148	1.7	1194	123	11	21	8

pH	Sikora	OM	Sand	Silt	Clay	CEC Sum.	EC
6.5	7.3	1.5	55	37	9	7	0.42

P = phosphorus. K = potassium. Zn = zinc. Ca = calcium. Mg = magnesium. Na = sodium. Fe = iron. Mn = manganese. OM = organic matter. CEC = cation exchange capacity. EC = electrical conductivity.

Table 2. Nitrogen and sulfur rates for each treatment

Treatment	Source	Nitrogen rate	Sulfur rate
	lb N/a	lb S/a	
1	Ammonium sulfate	180	200
2	Urea + calcium sulfate	180	50
3	Urea + calcium sulfate	180	30
4	Urea	180	0
5	Control	0	0

Figure 1. Whole plant sulfur uptake response at different levels of sulfur application in corn. Letters represent significant differences between treatments at $P < 0.05$.
Figure 2. Whole plant nitrogen uptake response at different levels of sulfur application in corn. Letters represent significant differences between treatments at $P < 0.05$.

Figure 3. Sulfur removal in grain at physiological maturity in corn. Letters represent significant differences between treatments at $P < 0.05$.
Figure 4. Corn post-harvest sulfate levels in the 0–24 in. soil profile samples. Letters represent significant differences between treatments at $P < 0.05$.

Figure 5. Corn yield response as affected by different rates of sulfur application. Letters represent significant differences between treatments at $P < 0.05$.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service