A scoping review of registry captured indicators for evaluating quality of critical care in ICU.

Issrah Jawad (issrah.j@gmail.com)
Network for Improving Critical Care Systems and Training
https://orcid.org/0000-0002-4478-1721

Sumayyah Rashan
National Intensive Care Surveillance - MORU

Chathurani Sigera
National Intensive Care Surveillance - MORU

Jorge Salluh
D’Or Institute for Research and Education: Instituto D’Or de Pesquisa e Ensino

Arjen M Dondorp
Mahidol Oxford Tropical Medicine Research Unit

Rashan Haniffa
Mahidol Oxford Tropical Medicine Research Unit

Abi Beane
Mahidol Oxford Tropical Medicine Research Unit

Research Article

Keywords: Quality Indicators, Critical illness, Health system improvement, ICU, Benchmarking, Patient safety

DOI: https://doi.org/10.21203/rs.3.rs-365999/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background Excess morbidity and mortality following critical illness is increasingly attributed to potentially avoidable complications occurring as a result of complex ICU management [1–3]. Routine measurement of quality indicators through an EHR or registries are increasingly used to benchmark care and evaluate improvement interventions. However, existing Indicators of quality for intensive care are derived almost exclusively from relatively narrow subsets of ICU patients from high-income healthcare systems. The aim of this scoping review is to systematically review the literature on quality indicators (QIs) for evaluating critical care, identify QIs, map their definitions, evidence base, and describe the variances in measurement, and the reported challenges of implementation.

Method We searched MEDLINE, EMBASE, CINAHL and the Cochrane libraries from the earliest available date through to January 2019. To increase sensitivity of the search, grey literature and reference lists were reviewed. Minimum inclusion criteria were a description of one or more QIs designed to evaluate care for patients in ICU captured through a registry platform- or Electronic Health Record (EHR) adapted for quality of care surveillance.

Results The search identified 4780 citations. Review of abstracts led to retrieval of 276 full-text articles, of which 123 articles were accepted. 51 unique QIs in ICU were classified using the three components of health care quality proposed by the High Quality Health Systems (HQSS) framework. Adverse events including hospital acquired infections (13.7%) hospital processes (54.9%) and outcomes (31.4%) were the most common QIs identified. Patient reported outcome QIs accounted for less than 6%. Barriers to the implementation of QIs were described in 35.7% of articles and divided into operational barriers (51%) and acceptability barriers (49%).

Conclusions Despite the complexity and risk associated with ICU care, there are only a small number of operational indicators used. Future selection of QIs would benefit from a stakeholder driven approach, whereby the values of patients and communities and the priorities for actionable improvement as perceived by healthcare providers are prioritised and include greater focus on measuring discriminable processes of care.

Background Critical illness, including (but not limited to) care for the sickest surgical, trauma, and communicable diseases patients, causes an enormous health and economic burden globally. Patients with critical illness are at high risk for poor outcomes and often require intensive care unit (ICU) admission [1]. Specialties synonymous with critical care; traumatic brain injury, infectious diseases and perioperative care have all benefited from high quality clinical trials informing treatment and outcomes, and have all included critically ill populations [4, 5, 6, 7, 8, 9]. However large differences in daily ICU practice and patient outcomes remain, with excess morbidity and mortality following critical illness increasingly attributed to potentially avoidable complications occurring as a result of complex ICU management [2, 3]. As a
consequence, research has increasingly focused on strategies to improve the effectiveness of common interventions synonymous with ICU management, in an effort to reduce avoidable harm, reduce mortality and facilitate quality of recovery [1, 10, 11, 12].

Routine quality measurement using appropriate indicators can guide care improvement, for example, through identifying existing good practice, and evaluating strategies aimed at targeting sub optimal care. The potential of quality indicators to improve care has already been demonstrated in other clinical areas including maternal and child health, and in sepsis or stroke patients [10, 13, 14, 15]. In parallel, clinically facing registries for critical care are expanding internationally. Registries are increasingly seen as a tool to enable the evaluation of existing care including by systematically capturing quality of care indicators used to benchmark and compare performance [1–3]. However, existing indicators of quality for intensive care are derived almost exclusively from relatively narrow subsets of the ICU patient population selected by experts working in high income healthcare systems. Despite many indicators of quality being developed and advocated for as a measure of performance, the exact number and level of scientific evidence of these indicators remains unclear. Furthermore, there is potential for wide variation in the measurement and reporting of indicators of quality internationally. Such heterogeneity of definition and of measurement impedes utility of QIs for both replicable evaluation of performance over time within an institution, and benchmarking of performance between units. Similarly, an absence of literature on the challenges of ‘real world’ implementation of indicators, perhaps suggestive from the variation of definitions of QIs in use, further hinders those seeking to evaluate and improve care from identifying meaningful measures of quality and using them to drive practice and policy change [2, 12, 15, 16]. To enable global registry networks, such as CRIT Care Asia [17], which aims to support communities of practice to measure existing critical care performance and achieve actionable improvement, greater understanding is needed of the indicators of quality currently being used internationally, their evidence base, and the barriers to measurement and reporting. This review aimed to scope the literature on indicators currently being routinely used to evaluate quality of care in Intensive care units, map their evidence base and describe the variances in both their definition and how they are measured. In addition, the reviewers summarised challenges regarding implementation of the indicators as reported in the literature.

Methods

Search strategy

Relevant articles were identified by searching the following databases: MEDLINE, EMBASE, CINAHL, Cochrane Database of Systematic Reviews, Cochrane Database of Abstracts of Reviews of Effects, and Cochrane Central Register of Controlled Trials from the earliest available date through to January 31st, 2019. Searches were performed with no language of publication restrictions. Combinations of the following search terms were used: critical care, ICU, intensive care, quality indicator, quality assurance, quality control, benchmarking, performance improvement, quality measure, best practice, and audit, registry, electronic database, surveillance system. The Cochrane Library was searched using the search
term critical care. To increase the sensitivity of the search strategy, we also searched the grey literature. This search included identifying and searching websites of relevant critical care societies which have associated registry networks (ICNARC [18], SICSAG [19], ANZICS [20], EpiMed [21], ESICM [22], ICS [23], JSICM [24]). Appropriate wildcards were used in all searches to account for plural words and variations in spelling. Additional articles were identified by searching the bibliographies of those articles identified in the searches and contacting experts in the field of ICU registries.

Article selection

We selected all articles that identified or proposed one or more QIs to evaluate the quality of care used to evaluate ICU care through registries. For this study, a QI was defined as ‘a performance measure that compares actual care against an ideal criteria, in order to help assess quality of care [15], minimum inclusion criteria was a description of one or more QIs designed to evaluate clinical performance in intensive care. This included measures associated with admission to the ICU, and outcomes following discharge from the ICU within the same hospital admission. Covidence (an online review tool) was used to collate and curate the stages of the literature review [25].

Article review

Eligible articles were identified using a two phase process: a published method of the Joanna Briggs Institute scoping review framework [26]. In the first phase, two reviewers (SR and CS) independently reviewed the titles and abstracts of retrieved publications and selected relevant articles for possible inclusion in the review. Disagreements between the two reviewers were discussed, and, if agreement could not be reached, the article was retained for further review by AB [11, 26].

In the second phase, the full texts of the remaining articles were independently reviewed by the same two reviewers using a checklist to determine eligibility criteria. Disagreements between the two assessors were discussed, and a third author was consulted if agreement could not be reached [26]. Reviewers were not masked to author or journal name [11]. Two reviewers independently reviewed all full-text articles that satisfied the minimum inclusion criteria and extracted data using a standardized format. Extracted information included; i) QI definition, ii) Variables and guidance for measuring the QI, iii) Modality and frequency of measurement, iv) Level of evidence [10]. Level of evidence was graded using a guide for classifying evidence for use in practice guidelines [27]. Quality indicators were classified using the three components of health care quality proposed by High Quality Health Systems (HQSS) framework [13]: foundation (which includes human resources and governance structures), processes (encompassing measures of safety and timeliness in alongside patient and user experience), and quality impacts (which extends beyond mortality to quality of recovery and life and social economic welfare). The indicators were also categorized as pre, in or post ICU. Reviewers further judged whether QIs were operational (yes vs no) and appraised the literature for barriers and enablers to operationalising or actioning the QIs which were described. Disagreements in assessment and data extraction were resolved by reviewer consensus, and if agreement could not be reached, the article was independently reviewed by a third reviewer (AB). QIs were summarized as counts and proportions using the packages ‘highcharter’ and ‘epiDisplay’ in R
statistical software, version 4.0.2. [28]. The protocol for this study follows the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) included as an additional file [see Additional File 1].

Results

The primary search of the literature yielded 4780 citations. Review of abstracts led to the retrieval of 276 full-text articles for assessment, of which 123 articles were retained for review. The most common reason for excluding articles after full-text review was the absence of an operational QI (FIGURE 1).

The majority of articles reviewed were original research (98.3%, 121), of which 88.6% (109) were cohort studies (TABLE 1).

The majority of the literature was reported from registries evaluating quality of critical care in high income country healthcare systems with 27.85% of research originating from Australia, Canada, Northern Europe and the United States of America (FIGURE 2).

QIs, definition, measurement and evidence base.

From the 123 articles retained for full review, 253 indicators were identified, of which 51 were unique. These unique indicators were classified using prespecified components of the HQSS framework [13] and then by phase of ICU encounter (pre, in, and post ICU) (TABLE 2) [13].

Foundational indicators accounted for 13.7% (7) of the 51 unique QIs identified, processes 54.9% (28) and quality impact 31.3% (16) respectively. Health care associated events (including healthcare associated infections) accounted for 37.1% (10) of process indicators and were present in 39.8% (49) of articles included in full text review. In contrast, patient reported outcome related measures accounted for less than 6% of quality impact indicators and were present in 1.6% (2) of articles reviewed.

The majority of QIs (58%) had a single definition and method of measurement. The mean number of different definitions for a single indicator was 1.61 (SD 0.72 to 2.50). Indicators with the most variation in definition were composite measures of mortality and adverse events; including hospital associated adverse events. Definitions varied based on inclusion or exclusion of laboratory tests, radiological imaging and constellations of clinical signs and symptoms, and varied depending on the country from which the underpinning evidence originated (TABLE 3). Of the 123 articles included in the full review, 96% (118) included a description of how the indicators were measured, and a further 88% (108) reported guidance on data collection (including frequency) and analysis.

Barriers to implementation of quality indicators

Barriers to implementation were described in 35.7% of articles included in the full text review. The barriers identified broadly related to two aspects of implementation; “operational” (51%) (which included issues with data collection and data quality, and “acceptability and actionability” (49%) (which included users'
perceptions of the indicator, its validity and the subsequent actionability of the information for care improvement) (TABLE 4).

Operational

Reliance on manual data entry (as opposed to direct extraction from an electronic source such as patient monitor or EHR) and the associated burden of data capture were reported impediments to operationalisation of the QIs in the ICU [70,101,117]. Absence of data (missingness) resulting in exclusion of patient encounters from analysis, was also described; inhibiting both implementation and utilisation of QIs. Missingness was described both as a consequence of manual data entry and as a result of unavailability of information at source [31,90,96,108]. The impact of this missingness being that several studies had to exclude data in analysis [106,111,124,125]. Challenges with data quality were described at point of data capture and extraction [30,33,34,40,63,84,87,90,101,108,118,120,143]. Ability to accurately measure processes of care associated with the indicator (e.g., time of antibiotic administration in the context of recognition of infection/prescription of antibiotics) hindered utilization of the indicator in care evaluations [32,46,50,51,58,98,103,120,144,145].

Acceptability and Actionability

Concerns about the ramifications for individual clinicians and ICU team performance was a barrier to implementing indicators of quality in ICU. Indicators relating to adverse events including hospital associated (nosocomial) infections and to measures of performance for which there may be significant public pressure (such as antimicrobial prescribing) were particularly associated with fear of blame [70]. These concerns impeded healthcare providers willingness to engage in the reporting of incidence and associated quality of care benchmarking within their department and a willingness to contribute data to interdepartmental and interhospital reporting (regional and national) [42,61,63,70,75,115]. Similarly, it was identified as a contributing factor to missingness of data (described above) and a driver for revision of definitions [30,31,92]. These barriers were most described in literature originating from North America and China.

Validity of the data was a barrier to acceptability (and actionability) of the indicators. Concerns over information that was not captured electronically, but by direct observation from clinicians delivering care was considered at risk of tarnish from self-reporting and responder biases [42,62]. These concerns hindered researchers and clinicians’ willingness to accept findings, and in turn, impeded subsequent efforts to use the data to drive quality improvement initiatives in the clinical settings [35,70]. Challenges in interpretability of indicators, which further limited acceptability were also identified. Indicators relating to ICU resource utilisation (occupancy, turnover and staff utilisation) were described as “difficult” to interpret given the dynamic nature of ICU service activity and patient acuity [103,120]. Similarly, indicators pertaining to hospital associated infections (and other adverse events) were described as undergoing frequent revision of definition and therefore data capture methods, due to difficulties in interpreting the findings in the context of patient groups and care processes [30,31,92,96]. As a consequence, these indicators were associated with frequent revision of definition and method of
measurement. Interconnected, these revisions to definitions and data set further impeded quality of data collection and their acceptability of the findings for the healthcare team [92,96].

Discussion

Given the complexity, intensity and risks of care in ICU, this review of published literature revealed a limited number of indicators in operation internationally. Despite critical care being an increasingly central tenet of healthcare service provision internationally, both the origin of the literature describing these indicators, and the evidence on which they are founded was concentrated from high income country health systems- most notably North America, Canada and China. Unusually for health systems globally, the US and Canada notably have well established EHRs. Such infrastructure is not representational of the majority of health systems, especially in resource constrained settings, where access to EHRs are uncommon. Absence of investment in such infrastructure is well described in Low-and Middle-Income Countries (LMICS) as a barrier to both operationalising quality indicators in ICUs internationally, and as a contributor to the lack of published literature evaluating quality of critical care services [13, 15].

The majority of indicators identified described HQSS measures of care processes and quality impacts [13]. These indicators are composite, meaning that measurement of the indicator requires more than one type of data, and data to be captured at more than one time point [10]. Example composite indicators included, device associated bloodstream infection, antimicrobial resistance, ventilation associated pneumonia. Consequently, implementing such indicators can be problematic due to the burden of data capture they necessitate. The density and volume of information needed to accurately determine such indicators (which in the example of Hospital Acquired Infections (HAIs) may include multiple timepoints in every 24hrs) may be especially troublesome to implement in resource constrained settings, where data capture is likely to by hand, drawing information from multiple sources. The wide variation and iteration in both definition and measurement of indicators described in the literature highlights perhaps how stakeholders have attempted to overcome the challenge of data capture and interpretation. Iterations to definitions include attempts to reduce complexity of measure, reduce the burden of data capture or remove dependency on diagnostic markers to simplify definitions used to determine incidence [30].

Whilst commonly used to benchmark care, it is widely accepted that such composite measures are difficult to elucidate, not least because their interpretation is complicated by both complexity of disease and care processes within ICU. Moreover, they are both subject to underreporting and difficult to risk adjust, further complicating their utility for benchmarking. Tending to focus on the presence of an adverse event or omission in care processes, they are used to infer that quality of care may be suboptimal. However in focusing on the negative, these indicators and their measurement provides little insight for teams seeking to inform actionable improvement or reinforce good practice. This reinforces the perception that quality indicators are used as a weapon to criticise care delivery. Described as a barrier to operationalizing QIs, stakeholders questioned the validity of the indicator and failed to engage in using them to guide practice improvement. Very few of the indicators focus on the presence or
inclusion of actions which contribute to positive care outcomes, and for which definition, measurement and interpretation may be arguably more acceptable to the clinical team. Notable exceptions were, indicators focusing on compliance with antimicrobial guidelines, and administration of therapies to prevent adverse events associated with critical illness including anticoagulation for Venous Thromboembolism (VT) prevention and gastric ulcer prophylaxis. The repeated adjustment to definition or measurement of composite indicators described in literature may well be a further illustration of healthcare providers (and researchers) growing uncomfortableness and distrust of such indicators being used to measure clinical performance [30, 92, 96].

Despite a growing acknowledgment of the need to better understand the organisational, social and economic impact of and recovery following critical illness, very few articles described the operationalisation of QIs reporting the quality of recovery following ICU care or patient centered measures of experience, suggesting a need for further empirical research in these aspects of care.

Limitations

There are limitations to this review. Despite the search of multiple databases using comprehensive search strategies with the assistance of experts in critical care registries it is likely that our search missed broad categories of important QIs. This is in part due to the heterogeneity of language used to describe the indicators. In addition, it was difficult to extract accurate data from all publications. 2% of articles were unavailable for full text and some did not disclose the materials or methods used, and in 9% of articles the exact mechanism of capture or definition was not described. Finally, despite categorising articles using predefined data abstraction tools and classification schemes, classification remains subjective. To minimise this a third reviewer reviewed 10% of articles independently to verify consistency of categorisation.

Conclusion

This scoping review has evaluated the growing body of literature on the implementation of QIs in critical care settings and found that, despite the complexity and risk associated with ICU care, there are only a small number of operational indicators used. These mostly focus on processes of care especially healthcare associated adverse events. These predominantly composite measures requiring multiple data points captured at more than one time, are associated with a high burden of data capture and are difficult to evaluate in the context of heterogeneous patient populations and diverse health systems.

Similarly, the majority of literature (and evidence underpinning the definition of indicators) originates from high income country health systems; and are not necessarily representational of the case mix, care processes or patient centred priorities for recovery from low- and middle-income countries. Future selection of QIs would benefit from a stakeholder driven approach, whereby the values of patients and communities and the priorities for actionable improvement as perceived by healthcare providers are prioritised. Such an approach may go some way to address not only the paucity of patient centred
outcome measures in operation but also the barriers of acceptability and actionability identified by this review. In doing so reduce the observations of fear and blame associated with QI used to benchmark care and drive improvement.

List Of Abbreviations

- **EHR**: Electronic Health Record
- **HAIs**: Hospital Acquired Infections
- **HQSS**: High Quality Health Systems
- **ICU**: Intensive Care Unit
- **LMICS**: Low-and Middle-Income Countries
- **QI**: Quality Indicator
- **VT**: Venous Thromboembolism

Declarations

- **Ethics approval and consent to participate**: Not applicable.
- **Consent for publication**: Not applicable
- **Availability of data and materials**: Not applicable
- **Competing interests**: AB and RH are funded by Wellcome Oxford CRIT Care Asia.
- **Funding**: This review was partly funded by the Wellcome- Oxford CRIT Care Asia (award Number: 215522) and NICST, a UK Charity (1171106).
- **Authors' contributions**: AB, JS, IJ, AMD and RH conceived and developed the protocol for this scoping review. SR and CR conducted the systematic literature review with support from IJ and AB. IJ and SR undertook the analysis. IJ and SR overseen by AB drafted the manuscript. All authors read and approved the final manuscript and fulfill the adapted McNutt et al. criteria for authorship.
- **Acknowledgements**: Our thanks to the Linking of global intensive care (LOGIC) group and CRIT Care Asia for their support.

References

1. Berenholtz SM, Dorman T, Ngo K, Pronovost PJ. Qualitative review of intensive care unit quality indicators. Journal of critical care. 2002 Mar 1;17(1):1–2.
2. De Vos M, Graafmans W, Keesman E, Westert G, van der Voort PH. Quality measurement at intensive care units: which indicators should we use?. Journal of critical care. 2007 Dec 1;22(4):267 – 74.
3. Zimmerman JE. Commentary. Quality indicators: The continuing struggle to improve the quality of critical care. J Crit Care. 2002;1(17):12–5.

4. Dewan Y, Komolafe EO, Mejía-Mantilla JH, Perel P, Roberts I, Shakur H. CRASH-3-tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial. Trials. 2012 Dec;13(1):1–4.

5. Myles P, Bellomo R, Corcoran T, Forbes A, Wallace S, Peyton P, Christoﬁ c C, Story D, Leslie K, Serpell J, McGuinness S. Restrictive versus liberal ﬂ uid therapy in major abdominal surgery (RELIEF): rationale and design for a multicentre randomised trial. BMJ open. 2017 Mar 1;7(3):e015358.

6. POISE Study Group. Effects of extended-release metoprolol succinate in patients undergoing noncardiac surgery (POISE trial): a randomised controlled trial. The Lancet. 2008 May 31;371(9627):1839–47.

7. Angus DC, Berry S, Lewis RJ, Al-Beidh F, Arabi Y, van Bentum-Puijk W, Bhimani Z, Bonten M, Broglio K, Brunkhorst F, Cheng AC. The REMAP-CAP (randomized embedded multifactorial adaptive platform for community-acquired pneumonia) study. rationale and design. Annals of the American Thoracic Society. 2020 Jul;17(7):879–91.

8. Angus DC, Derde L, Al-Beidh F, Annane D, Arabi Y, Beane A, van Bentum-Puijk W, Berry L, Bhimani Z, Bonten M, Bradbury C. Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: the REMAP-CAP COVID-19 corticosteroid domain randomized clinical trial. Jama. 2020 Oct 6;324(13):1317-29.

9. Aryal D, Beane A, Dondorp AM, Green C, Haniffa R, Hashmi M, Jayakumar D, Marshall JC, McArthur CJ, Murthy S, Webb SA. Operationalisation of the Randomized Embedded Multifactorial Adaptive Platform for COVID-19 trials in a low and lower-middle income critical care learning health system. Wellcome open research. 2021;6.

10. McGlynn EA. Selecting common measures of quality and system performance. Medical care. 2003 Jan 1:i39-47.

11. Berlin JA, Cirigliano MD. Does blinding of readers affect the results of meta-analyses? The Lancet. 1997;350(9072):185–6.

12. O’Brien K, Wilkins A, Zack E, Solomon P. Scoping the ﬁ eld: identifying key research priorities in HIV and rehabilitation. AIDS Behav. 2010 Apr;14(2):448–58.

13. Kruk ME, Gage AD, Arsenault C, Jordan K, Leslie HH, Roder-DeWan S, Adeyi O, Barker P, Daelmans B, Dodbova SV, English M. High-quality health systems in the Sustainable Development Goals era: time for a revolution. The Lancet global health. 2018 Nov 1;6(11):e1196-252.

14. Donabedian A. Evaluating the quality of medical care. The Milbank memorial fund quarterly. 1966 Jul 1;44(3):166–206.

15. Agency for Healthcare Research and Quality. AHRQ Quality Indicators [Internet] http://www.qualityindicators.ahrq.gov/. Accessed January 6, 2019.

16. European Society of Intensive Care Medicine. Guidelines and Consensus statements. [Internet] https://www.esicm.org/resources/guidelines-consensus-statements/. Accessed 17 February 2021.
17. Beane A, Dondorp AM, Taqi A, Ahsan AS, Vijayaraghavan BK, Pempikul C, Pell C, Gandy D, Priyadarshani D, Aryal D, Khiem DP. Establishing a critical care network in Asia to improve care for critically ill patients in low-and middle-income countries. Critical Care. 2020 Oct 15;24(1).

18. Intensive Care National Audit & Research Centre. Focus on Quality [Internet] https://www.icnarc.org/ . Accessed 17 February 2021.

19. The Scottish Intensive Care Society Audit Group. Quality Indicators [Internet]. https://www.sicsag.scot.nhs.uk/quality/indicators.html. Accessed 17 February 2021.

20. Australian and New Zealand Intensive Care Society. Critical Care Resources (CCR) Registry. [Internet]. https://www.anzics.com.au/critical-care-resources-ccr-registry/. Accessed 17 February 2021.

21. Epimed Solutions. About Epimed. [Internet]. https://www.epimedsolutions.com/en/team/. Accessed 17 February 2021.

22. European Society of Intensive Care Medicine. Research. [Internet]. https://www.esicm.org/research/. Accessed 17 February 2021.

23. Intensive Care Society. Intensive Care Society Frameworks. [Internet]. https://ics.ac.uk/ICS/Education/ICS/events-and-seminars.aspx?hkey=2b34aa75-0ff9-475f-b2ea-96b1ab957b51. Accessed 17 February 2021.

24. The Japanese Society of Intensive Care Medicine. JIPAD [Internet]. https://www.jsicm.org/en/jipad.html. Accessed 17 February 2021.

25. Covidence systematic review software. [Internet] Veritas Health Innovation, Melbourne, Australia.

26. Moulton E, Wilson R, Silva AR, Kircher C, Petry S, Goldie C, Medves J, Deluzio K, Ross-White A. Measures of movement and mobility used in clinical practice and research: a scoping review. JBI Evidence Synthesis. 2021 Feb 1;19(2):341–403.

27. Burns PB, Rohrich RJ, Chung KC. The levels of evidence and their role in evidence-based medicine. Plastic reconstructive surgery. 2011 Jul;128(1):305.

28. R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

29. Brown SE, Ratcliffe SJ, Halpern SD. Assessing the utility of ICU readmissions as a quality metric: an analysis of changes mediated by residency work-hour reforms. Chest. 2015 Mar 1;147(3):626 – 36.

30. Christiansen CF, Møller MH, Nielsen H, Christensen S. The Danish intensive care database. Clinical epidemiology. 2016;8:525.

31. Chrusch CA, Martin CM. Quality improvement in critical care: selection and development of quality indicators. Canadian respiratory journal. 2016 Jan 1;2016.

32. Oliveira AC, Garcia PC, Nogueira LD. Nursing workload and occurrence of adverse events in intensive care: a systematic review. Revista da Escola de Enfermagem da USP. 2016 Aug;50(4):683–94.

33. Kahn JM, Brake H, Steinberg KP. Intensivist physician staffing and the process of care in academic medical centres. BMJ Quality & Safety. 2007 Oct 1;16(5):329 – 33.
34. Levy MM, Rapoport J, Lemeshow S, Chalfin DB, Phillips G, Danis M. Association between critical care physician management and patient mortality in the intensive care unit. Annals of internal medicine. 2008 Jun 3;148(11):801-9.

35. Metnitz B, Metnitz PG, Bauer P, Valentín A. Patient volume affects outcome in critically ill patients. Wiener klinische Wochenschrift. 2009 Jan;121(1):34–40.

36. Morita K, Matsui H, Yamana H, Fushimi K, Imamura T, Yasunaga H. Association between advanced practice nursing and 30-day mortality in mechanically ventilated critically ill patients: a retrospective cohort study. Journal of critical care. 2017 Oct 1;41:209 – 15.

37. Zampieri FG, Soares M, Borges LP, Salluh JI, Ranzani OT. The Epimed Monitor ICU Database®: a cloud-based national registry for adult intensive care unit patients in Brazil. Revista Brasileira de terapia intensiva. 2017 Dec;29(4):418–26.

38. Ahern JW, Alston WK. Use of longitudinal surveillance data to assess the effectiveness of infection control in critical care. Infection Control Hospital Epidemiology. 2009 Nov;30(11):1109–12.

39. Attridge RT, Frei CR, Pugh MJ, Lawson KA, Ryan L, Anzueto A, Metersky ML, Restrepo MI, Mortensen EM. Health care–associated pneumonia in the intensive care unit: Guideline-concordant antibiotics and outcomes. Journal of critical care. 2016 Dec 1;36:265 – 71.

40. Claridge JA, Pang P, Leukhardt WH, Golob JF, Carter JW, Fadlalla AM. Critical analysis of empiric antibiotic utilization: establishing benchmarks. Surgical infections. 2010 Apr 1;11(2):125 – 31.

41. Meyer E, Schwab F, Jonas D, Rueden H, Gastmeier P, Daschner FD. Surveillance of antimicrobial use and antimicrobial resistance in intensive care units (SARI): 1. Antimicrobial use in German intensive care units. Intensive care medicine. 2004;30(6):1089–96.

42. Trejnowska E, Deptuł A, Tarczyńska-Słomian M, Knapik P, Jankowski M, Misiewska-Kaczur A, Tamowicz B, Śmiechowicz J, Antończyk R, Armatowicz P, Sułkowski W. Surveillance of antibiotic prescribing in intensive care units in Poland. Canadian Journal of Infectious Diseases and Medical Microbiology. 2018 Jan 1;2018.

43. Brown SE, Ratcliffe SJ, Halpern SD. An empirical comparison of key statistical attributes among potential ICU quality indicators. Critical care medicine. 2014 Aug;42(8):1821.

44. Weissman GE, Gabler NB, Brown SE, Halpern SD. Intensive care unit capacity strain and adherence to prophylaxis guidelines. Journal of critical care. 2015 Dec 1;30(6):1303-9.

45. Miltiades AN, Gershengorn HB, Hua M, Kramer AA, Li G, Wunsch H. Cumulative probability and time to reintubation in united states intensive care units. Critical care medicine. 2017 May;45(5):835.

46. Hill AD, Fowler RA, Burns KE, Rose L, Pinto RL, Scales DC. Long-term outcomes and health care utilization after prolonged mechanical ventilation. Annals of the American Thoracic Society. 2017 Mar;14(3):355–62.

47. Ibrahim AS, Akkari AR, Raza T, Hassan IF, Akbar A, Alatoum I. Epidemiological and Clinical Profiles of Patients with Acute Respiratory Distress Syndrome Admitted to Medical Intensive Care in Qatar: A Retrospective Analysis of the Data Registry for the Year 2015. Qatar medical journal. 2019 Sep 20;2019(1):3.
48. Durdu B, Kritsotakis EI, Lee AC, Torun P, Hakyemez IN, Gultepe B, Aslan T. Temporal trends and patterns in antimicrobial-resistant gram-negative bacteria implicated in intensive care unit-acquired infections: a cohort-based surveillance study in Istanbul, Turkey. Journal of global antimicrobial resistance. 2018 Sep 1;14:190-6.

49. Kanamori H, Weber DJ, DiBiase LM, Sickbert-Bennett EE, Brooks R, Teal L, Williams D, Walters EM, Rutala WA. Longitudinal trends in all healthcare-associated infections through comprehensive hospital-wide surveillance and infection control measures over the past 12 years: substantial burden of healthcare-associated infections outside of intensive care units and “other” types of infection. Infect Control Hosp Epidemiol. 2015 Oct 1;36(10):1139-47.

50. Kwak YG, Lee SO, Kim HY, Kim YK, Park ES, Jin HY, Choi HJ, Jeong SY, Kim ES, Ki HK, Kim SR. Risk factors for device-associated infection related to organisational characteristics of intensive care units: findings from the Korean Nosocomial Infections Surveillance System. Journal of Hospital infection. 2010 Jul 1;75(3):195-9.

51. Laupland KB, Lee H, Gregson DB, Manns BJ. Cost of intensive care unit-acquired bloodstream infections. Journal of Hospital Infection. 2006 Jun 1;63(2):124–32.

52. Vanhems P, Lepape A, Savey A, Jambou P, Fabry J. Nosocomial pulmonary infection by antimicrobial-resistant bacteria of patients hospitalized in intensive care units: risk factors and survival. Journal of hospital infection. 2000 Jun 1;45(2):98–106.

53. Weber DJ, Sickbert-Bennett EE, Brown V, Rutala WA. Comparison of hospitalwide surveillance and targeted intensive care unit surveillance of healthcare-associated infections. Infection Control Hospital Epidemiology. 2007 Dec;28(12):1361–6.

54. Zuschneid I, Schwab F, Geffers C, Rüden H, Gastmeier P. Reducing central venous catheter–associated primary bloodstream infections in intensive care units is possible: data from the German nosocomial infection surveillance system. Infection Control Hospital Epidemiology. 2003 Jul;24(7):501–5.

55. Agodi A, Auxilia F, Barchitta M, Brusaferro S, D’Alessandro D, Montagna MT, Orsi GB, Pasquarella C, Torregrossa V, Suetens C, Mura IG. Building a benchmark through active surveillance of intensive care unit-acquired infections: the Italian network SPIN-UTI. Journal of Hospital Infection. 2010 Mar 1;74(3):258 – 65.

56. Lambert ML, Silversmit G, Savey A, Palomar M, Hiesmayr M, Agodi A, Van Rompaye B, Mertens K, Vansteelandt S. Preventable proportion of severe infections acquired in intensive care units: case-mix adjusted estimations from patient-based surveillance data. Infection Control Hospital Epidemiology. 2014 May;35(5):494–501.

57. Schröder C, Schwab F, Behnke M, Breier AC, Maechler F, Piening B, Dettenkofer M, Geffers C, Gastmeier P. Epidemiology of healthcare associated infections in Germany: nearly 20 years of surveillance. International Journal of Medical Microbiology. 2015 Oct 1;305(7):799–806.

58. Schwab F, Geffers C, Behnke M, Gastmeier P. ICU mortality following ICU-acquired primary bloodstream infections according to the type of pathogen: a prospective cohort study in 937
59. Wojkowska-Mach J, Godman B, Glassman A, Kurdi A, Pilc A, Rozanska A, Skoczyński S, Wałaszek M, Bochenek T. Antibiotic consumption and antimicrobial resistance in Poland; findings and implications. Antimicrobial Resistance Infection Control. 2018 Dec;7(1):1–0.

60. Iacchini S, Sabbatucci M, Gagliotti C, Rossolini GM, Moro ML, Iannazzo S, D’Ancona F, Pezzotti P, Pantosti A. Bloodstream infections due to carbapenemase-producing Enterobacteriaceae in Italy: results from nationwide surveillance, 2014 to 2017. Eurosurveillance. 2019 Jan;31(5):1800159. 24.

61. Ding X, Zhang Y, Jiang Y, Yuan Y, Xu B. Targeted surveillance to hospital infection in intensive care unit. Chinese Journal of Nosocomiology. 2010;20(21):3295–7.

62. Ding XP, Gu P, Yuan YM, Zhang YP, Xu BY, Jiang YN, Shao SJ. Prospective surveillance of pathogens causing nosocomial infection during 2004–2010. Chinese Journal of Nosocomiology. 2011;20.

63. Li Y, Cao X, Ge H, Jiang Y, Zhou H, Zheng W. Targeted surveillance of nosocomial infection in intensive care units of 176 hospitals in Jiangsu province, China. Journal of Hospital Infection. 2018 May 1;99(1):36–41.

64. Alwan A, Aldhubhani AH, Izham MM, Pazilah I, Anaam MS, Karsany MS, Elshayeb AA, Saeed ES, Elaagib R, Ibrahim SA, Elsamani E. Eastern Mediterranean Health Journal. 2016 Dec. 22(12).

65. El-Saed A, Al-Jardani A, Althaqafi A, Alansari H, Alsalman J, Al Maskari Z, El Gammal A, Al Nasser W, Al-Abri SS, Balkhy HH. Ventilator-associated pneumonia rates in critical care units in 3 Arabian Gulf countries: A 6-year surveillance study. Am J Infect Control. 2016 Jul 1;44(7):794-8.

66. Bird D, Zambuto A, O’Donnell C, Silva J, Korn C, Burke R, Agarwal S, Burke P. Adherence To Vap Bundle Decreases Incidence Of Ventilator-associated Pneumonia In The Intensive Care Unit. In critical Care Medicine 2009 Dec 1 (Vol. 37, No. 12, Pp. A142-a142). 530 Walnut St, Philadelphia, Pa 19106 – 3621 Usa: Lippincott Williams & Wilkins.

67. Bouadma L, Sonneville R, Garroute-Orgeas M, Darmon M, Souweine B, Voiriot G, Kallel H, Schwebel C, Goldgran-Toledano D, Dumenil AS, Argaud L. Ventilator-associated events: prevalence, outcome, and relationship with ventilator-associated pneumonia. Critical care medicine. 2015 Sep 1;43(9):1798 – 806.

68. Choi JY, Kwak YG, Yoo H, Lee SO, Kim HB, Han SH, Choi HJ, Kim YK, Kim SR, Kim TH, Lee H. Trends in the incidence rate of device-associated infections in intensive care units after the establishment of the Korean Nosocomial Infections Surveillance System. Journal of Hospital Infection. 2015 Sep 1;91(1):28–34.

69. Choi JY, Kwak YG, Yoo H, Lee SO, Kim HB, Han SH, Choi HJ, Kim HY, Kim SR, Kim TH, Lee H. Trends in the distribution and antimicrobial susceptibility of causative pathogens of device-associated infection in Korean intensive care units from 2006 to 2013: results from the Korean Nosocomial Infections Surveillance System (KONIS). Journal of Hospital Infection. 2016 Apr 1;92(4):363 – 71.

70. El-Kholy A, Saied T, Gaber M, Younan MA, Haleim MM, El-Sayed H, Bazara’a H, Talaat M. Device-associated nosocomial infection rates in intensive care units at Cairo University hospitals: first step
toward initiating surveillance programs in a resource-limited country. American journal of infection control. 2012 Aug 1;40(6):e216-20.

71. Katherason SG, Naing L, Jaalam K, Musa KI, Mohamad NA, Aiyar S, Bhojani K, Harussani N, Rahman AA, Ismail A. Ventilator-associated nosocomial pneumonia in intensive care units in Malaysia. The Journal of Infection in Developing Countries. 2009 Oct;22(09):704–10. 3(.

72. Hayashi Y, Morisawa K, Klompas M, Jones M, Bandeshe H, Boots R, Lipman J, Paterson DL. Toward improved surveillance: the impact of ventilator-associated complications on length of stay and antibiotic use in patients in intensive care units. Clinical infectious diseases. 2013 Feb;15(4):471–7. 56(.

73. Kim EJ, Choi YH, Kim HY, Kwak YG, Kim TH, Kim HB, Park SH, Lee M, Lee SO, Choi JY, Choe PG. Trends of Device Utilization Ratios in Intensive Care Units During 10 Years in South Korea: Results from the Korean National Healthcare-Associated Infections Surveillance System. InOpen Forum Infectious Diseases 2017 (Vol. 4, No. suppl_1, pp. S629-S630). US: Oxford University Press.

74. van der Kooi TI, de Boer AS, Manniën J, Wille JC, Beaumont MT, Mooi BW, van den Hof S. Incidence and risk factors of device-associated infections and associated mortality at the intensive care in the Dutch surveillance system. Intensive care medicine. 2007 Feb;33(2):271–8.

75. Lilly CM, Landry KE, Sood RN, Dunnington CH, Ellison RT III, Bagley PH, Baker SP, Cody S, Irwin RS. Prevalence and test characteristics of national health safety network ventilator-associated events. Critical care medicine. 2014 Sep 1;42(9):2019-28.

76. Rosenthal VD, Bijie H, Maki DG, Mehta Y, Apisarnthanarak A, Medeiros EA, Leblebicioglu H, Fisher D, Álvarez-Moreno C, Khader IA, Martínez MD. International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, for 2004–2009. American journal of infection control. 2012 Jun 1;40(5):396–407.

77. Zahar JR, Nguile-Makao M, Français A, Schwebel C, Garrouse-Orgeas M, Goldgran-Toledano D, Azoulay E, Thuong M, Jamali S, Cohen Y, de Lassence A. Predicting the risk of documented ventilator-associated pneumonia for benchmarking: construction and validation of a score. Critical care medicine. 2009 Sep 1;37(9):2545-51.

78. Bénet T, Ecochard R, Voirin N, Machut A, Lepape A, Savey A, Vanhems P. Effect of Standardized Surveillance of Intensive Care Unit–Acquired Infections on Ventilator-Associated Pneumonia Incidence. Infection Control Hospital Epidemiology. 2014 Oct;35(10):1290–3.

79. Gastmeier P, Behnke M, Schwab F, Geffers C. Benchmarking of urinary tract infection rates: experiences from the intensive care unit component of the German national nosocomial infections surveillance system. Journal of Hospital Infection. 2011 May 1;78(1):41 – 4.

80. Laupland KB, Bagshaw SM, Gregson DB, Kirkpatrick AW, Ross T, Church DL. Intensive care unit-acquired urinary tract infections in a regional critical care system. Critical care. 2005 Apr;9(2):1–6.

81. Balkhy H, Al Shehri AM, Dagunton NL, Dagunton N. A multifaceted approach in reducing central line associated bloodstream infections (CLABSI) in pediatric icus at a tertiary hospital. Antimicrobial Resistance Infection Control. 2015 Dec;4(1):1.
82. Bion J, Richardson A, Hibbert P, Beer J, Abrusci T, McCutcheon M, Cassidy J, Eddleston J, Gunning K, Bellingan G, Patten M. ‘Matching Michigan’: a 2-year stepped interventional programme to minimise central venous catheter-blood stream infections in intensive care units in England. BMJ quality & safety. 2013 Feb 1;22(2):110 – 23.

83. Fontela PS, Platt RW, Rocher I, Frenette C, Moore D, Fortin É, Buckeridge D, Pai M, Quach C. Surveillance Provinciale des Infections Nosocomiales (SPIN) Program: implementation of a mandatory surveillance program for central line-associated bloodstream infections. American journal of infection control. 2011 May 1;39(4):329 – 35.

84. Li L, Fortin E, Tremblay C, Ngenda-Muadi M, Quach C. Central-line–associated bloodstream infections in Quebec intensive care units: results from the provincial healthcare-associated infections surveillance program (SPIN). Infection control & hospital epidemiology. 2016 Oct;37(10):1186–94.

85. Spelman T, Pilcher DV, Cheng AC, Bull AL, Richards MJ, Worth LJ. Central line-associated bloodstream infections in Australian ICUs: evaluating modifiable and non-modifiable risks in Victorian healthcare facilities. Epidemiology Infection. 2017 Oct;145(14):3047–55.

86. Conrick-Martin I, Foley M, Roche FM, Fraher MH, Burns KM, Morrison P, Healy M, Power MW, Fitzpatrick F, Phelan D, Walshe CM. Catheter-related infection in Irish intensive care units diagnosed with HELICS criteria: a multi-centre surveillance study. Journal of Hospital Infection. 2013 Mar 1;83(3):238 – 43.

87. L'heriteau F, Olivier M, Maugat S, Joly C, Merrer J, Thaler F, Grandbastien B, Beaucaire G, Astagneau P. REACAT catheter study group. Impact of a five-year surveillance of central venous catheter infections in the REACAT intensive care unit network in France. Journal of Hospital Infection. 2007 Jun 1;66(2):123–9.

88. Laupland KB, Zygun DA, Doig CJ, Bagshaw SM, Svenson LW, Fick GH. One-year mortality of bloodstream infection-associated sepsis and septic shock among patients presenting to a regional critical care system. Intensive care medicine. 2005 Feb;31(2):213–9.

89. Bonnet V, Dupont H, Glorion S, Aupée M, Kipnis E, Gérard JL, Hanouz JL, Fischer MO. Influence of bacterial resistance on mortality in intensive care units: a registry study from 2000 to 2013 (IICU Study). Journal of Hospital Infection. 2019 Jul 1;102(3):317 – 24.

90. Januel JM, Harbarth S, Allard R, Voirin N, Lepape A, Allaouchiche B, Guerin C, Lehot JJ, Robert MO, Fournier G, Jacques D. Estimating attributable mortality due to nosocomial infections acquired in intensive care units. Infection Control Hospital Epidemiology. 2010;31(4):388–94.

91. Kwak YG, Choi JY, Yoo HM, Lee SO, Kim HB, Han SH, Choi HJ, Kim SR, Kim TH, Chun HK, Koo HS. Validation of the Korean National Healthcare-associated Infections Surveillance System (KONIS): an intensive care unit module report. Journal of Hospital Infection. 2017 Aug 1;96(4):377 – 84.

92. Malacarne P, Langer M, Nascimben E, Moro ML, Giudici D, Lampati L, Bertolini G. Italian Group for the Evaluation of Interventions in Intensive Care Medicine. Building a continuous multicenter infection surveillance system in the intensive care unit: findings from the initial data set of 9,493 patients from 71 Italian intensive care units. Critical care medicine. 2008 Apr 1;36(4):1105-13.
93. Masia MD, Barchitta M, Liperi G, Cantù AP, Alliata E, Auxilia F, Torregrossa V, Mura I, Agodi A, Italian Study Group of Hospital Hygiene (GISIO. Validation of intensive care unit-acquired infection surveillance in the Italian SPIN-UTI network. Journal of Hospital Infection. 2010 Oct 1;76(2):139 – 42.

94. Mertens K, Morales I, Catry B. Infections acquired in intensive care units: results of national surveillance in Belgium, 1997–2010. Journal of Hospital Infection. 2013 Jun 1;84(2):120-5.

95. Zhu S, Cai L, Ma C, Zeng H, Guo H, Mao X, Zeng C, Li X, Zhao H, Liu Y, Liu S. The clinical impact of ventilator-associated events: a prospective multi-center surveillance study. Infection control & hospital epidemiology. 2015 Dec;36(12):1388–95.

96. Li Y, Cao X, Ge H, Jiang Y, Zhou H, Zheng W. Targeted surveillance of nosocomial infection in intensive care units of 176 hospitals in Jiangsu province, China. Journal of Hospital Infection. 2018 May 1;99(1):36–41.

97. Callejo-Torre F, Bouza JM, Astigarraga PO, Del Corral MJ, Martínez MP, Alvarez-Lerma F. Risk factors for methicillin-resistant Staphylococcus aureus colonisation or infection in intensive care units and their reliability for predicting MRSA on ICU admission. Europe. 2016;5:1–9.

98. Gastmeier P, Sohr D, Geffers C, Behnke M, Daschner F, Rüden H. Mortality risk factors with nosocomial Staphylococcus aureus infections in intensive care units: results from the German Nosocomial Infection Surveillance System (KISS). Infection. 2005 Apr 1;33(2):50 – 5.

99. Huang SS, Rifas-Shiman SL, Warren DK, Fraser VJ, Climo MW, Wong ES, Cosgrove SE, Perl TM, Pottinger JM, Herwaldt LA, Jernigan JA. Improving methicillin-resistant Staphylococcus aureus surveillance and reporting in intensive care units. The Journal of infectious diseases. 2007 Feb 1;195(3):330-8.

100. Kramer TS, Schröder C, Behnke M, Aghdassi SJ, Geffers C, Gastmeier P, Remschmidt C. Decrease of methicillin resistance in Staphylococcus aureus in nosocomial infections in Germany—a prospective analysis over 10 years. Journal of Infection. 2019 Mar 1;78(3):215-9.

101. Anesi GL, Gabler NB, Allorto NL, Cairns C, Weissman GE, Kohn R, Halpern SD, Wise RD. Intensive care unit capacity strain and outcomes of critical illness in a resource-limited setting: A 2-hospital study in South Africa. J Intensive Care Med. 2020 Oct;35(10):1104–11.

102. Brown SE, Ratcliffe SJ, Halpern SD. An empirical derivation of the optimal time interval for defining ICU readmissions. Medical care. 2013 Aug;51(8):706.

103. Fernández R. Occupancy of the Departments of Intensive Care Medicine in Catalonia (Spain): A prospective, analytical cohort study. Medicina Intensiva (English Edition). 2015 Dec 1;39(9):537 – 42.

104. Verburg IW, de Jonge E, Peek N, de Keizer NF. The association between outcome-based quality indicators for intensive care units. PloS one. 2018 Jun 13;13(6):e0198522.

105. Hua M, Gong M, Brady J, Wunsch H. Hospital Readmissions At 30 Days For Survivors Of Critical Illness. Am J Respir Crit Care Med. 2014;189:1.

106. Marik PE, Doyle H, Varon J. Is obesity protective during critical illness? An analysis of a national ICU database. Critical Care and Shock. 2003 Aug 1;6(3):156 – 62.
107. Damian MS, Ben-Shlomo Y, Howard R, Bellotti T, Harrison D, Griggs K, Rowan K. The effect of secular trends and specialist neurocritical care on mortality for patients with intracerebral haemorrhage, myasthenia gravis and Guillain–Barré syndrome admitted to critical care. Intensive care medicine. 2013 Aug;39(8):1405–12.

108. Beale R, Reinhart K, Brunkhorst FM, Dobb G, Levy M, Martin G, Martin C, Ramsey G, Silva E, Vallet B, Vincent JL. Promoting Global Research Excellence in Severe Sepsis (PROGRESS): lessons from an international sepsis registry. Infection. 2009 Jun 1;37(3):222 – 32.

109. Engerström L, Kramer AA, Nolin T, Sjöberg F, Karlström G, Fredrikson M, Walther SM. Comparing time-fixed mortality prediction models and their effect on ICU performance metrics using the simplified acute physiology score 3. Critical care medicine. 2016 Nov 1;44(11):e1038-44.

110. Kübler A, Adamik B, Durek G, Mayzner-Zawadzka E, Gaszyński W, Karpel E, Duszyńska W. Results of the severe sepsis registry in intensive care units in Poland from 2003 – 2009. Anaesthesiol Intensive Ther. 2015;47(1):7–13.

111. Llompart-Pou JA, Chico-Fernández M, Sánchez-Casado M, Salaberria-Udabe R, Carbayo-Górriz C, Guerrero-López F, González-Robledo J, Ballesteros-Sanz M, Herrán-Monge R, Servià-Goixart L, León-López R. Scoring severity in trauma: comparison of prehospital scoring systems in trauma ICU patients. European journal of trauma emergency surgery. 2017 Jun;43(3):351–7.

112. Lone NI, Gillies MA, Haddow C, Dobbie R, Rowan KM, Wild SH, Murray GD, Walsh TS. Five-year mortality and hospital costs associated with surviving intensive care. American journal of respiratory and critical care medicine. 2016 Jul 15;194(2):198–208.

113. Quach S, Hennessy DA, Faris P, Fong A, Quan H, Doig C. A comparison between the APACHE II and Charlson Index Score for predicting hospital mortality in critically ill patients. BMC Health Serv Res. 2009 Dec;9(1):1–8.

114. Turner PL, Ilano AG, Zhu Y, Johnson SB, Hanna N. ACS-NSQIP criteria are associated with APACHE severity and outcomes in critically ill surgical patients. Journal of the American College of Surgeons. 2011 Mar 1;212(3):287 – 94.

115. Worth LJ, Spelman T, Bull AL, Brett JA, Richards MJ. Central line-associated bloodstream infections in Australian intensive care units: Time-trends in infection rates, etiology, and antimicrobial resistance using a comprehensive Victorian surveillance program, 2009–2013. American journal of infection control. 2015 Aug 1;43(8):848 – 52.

116. Yin W, Li Y, Zeng X, Qin Y, Wang D, Zou T, Su L, Kang Y. The utilization of critical care ultrasound to assess hemodynamics and lung pathology on ICU admission and the potential for predicting outcome. PLoS One. 2017 Aug 14;12(8):e0182881.

117. Zajic P, Bauer P, Rhodes A, Moreno R, Fellinger T, Metnitz B, Stavropoulou F, Posch M, Metnitz PG. Weekends affect mortality risk and chance of discharge in critically ill patients: a retrospective study in the Austrian registry for intensive care. Critical care. 2017 Dec;21(1):1–8.

118. Koetsier A, de Keizer NF, de Jonge E, Cook DA, Peek N. Performance of risk-adjusted control charts to monitor in-hospital mortality of intensive care unit patients: a simulation study. Critical care
119. Koetsier A, Peek N, de Jonge E, Dongelmans D, van Berkel G, de Keizer N. Reliability of in-hospital mortality as a quality indicator in clinical quality registries. A case study in an intensive care quality register. Methods Inf Med. 2013 Jun;28(5):432–40.

120. Durairaj L, Torner JC, Chrischilles EA, Sarrazin MS, Yankey J, Rosenthal GE. Hospital volume-outcome relationships among medical admissions to ICUs. Chest. 2005 Sep 1;128(3):1682-9.

121. Lilly CM, Zuckerman IH, Badawi O, Riker RR. Benchmark data from more than 240,000 adults that reflect the current practice of critical care in the United States. Chest. 2011 Nov 1;140(5):1232-42.

122. Nathanson BH, Higgins TL, Teres D, Copes WS, Kramer A, Stark M. A revised method to assess intensive care unit clinical performance and resource utilization. Critical care medicine. 2007 Aug 1;35(8):1853-62.

123. Niskanen M, Reinikainen M, Pettilä V. Case-mix-adjusted length of stay and mortality in 23 Finnish ICUs. Intensive care medicine. 2009 Jun;35(6):1060–7.

124. Paul E, Bailey M, Van Lint A, Pilcher DV. Performance of APACHE III over time in Australia and New Zealand: a retrospective cohort study. Anaesthesia and intensive care. 2012 Nov;40(6):980–94.

125. Paul E, Bailey M, Kasza J, Pilcher D. The ANZROD model: better benchmarking of ICU outcomes and detection of outliers. Critical Care Resuscitation. 2016 Mar;18(1):25.

126. Paul E, Bailey M, Kasza J, Pilcher DV. Assessing contemporary intensive care unit outcome: development and validation of the Australian and New Zealand Risk of Death admission model. Anaesthesia intensive care. 2017 May;45(3):326–43.

127. Poole D, Rossi C, Anghileri A, Giardino M, Latronico N, Radrizzani D, Langer M, Bertolini G. External validation of the Simplified Acute Physiology Score (SAPS) 3 in a cohort of 28,357 patients from 147 Italian intensive care units. Intensive care medicine. 2009 Nov;35(11):1916–24.

128. Reiter A, Mauritz W, Jordan B, Lang T, Pölzl A, Pelinka L, Metnitz PG. Improving risk adjustment in critically ill trauma patients: the TRISS-SAPS Score. Journal of Trauma and Acute Care Surgery. 2004 Aug 1;57(2):375 – 80.

129. Lagu T, Lindenauer PK, Rothberg MB, Nathanson BH, Pekow PS, Steingrub JS, Higgins TL. Development and validation of a model that uses enhanced administrative data to predict mortality in patients with sepsis. Critical care medicine. 2011 Nov 1;39(11):2425-30.

130. Lilly CM, Swami S, Liu X, Riker RR, Badawi O. Five-year trends of critical care practice and outcomes. Chest. 2017 Oct 1;152(4):723 – 35.

131. Liu V, Turk BJ, Ragins AI, Kipnis P, Escobar GJ. An electronic Simplified Acute Physiology Score-based risk adjustment score for critical illness in an integrated healthcare system. Critical care medicine. 2013 Jan 1;41(1):41 – 8.

132. Render ML, Kim HM, Welsh DE, Timmons S, Johnston J, Hui S, Connors AF Jr, Wagner D, Daley J, Hofer TP. Automated intensive care unit risk adjustment: results from a National Veterans Affairs study. Critical care medicine. 2003 Jun 1;31(6):1638-46.
133. Umegaki T, Sekimoto M, Hayashida K, Imanaka Y. An outcome prediction model for adult intensive care. Crit Care Resusc. 2010 Jun;12(2):96.

134. da Costa JB, Taba S, Scherer JR, Oliveira LL, Luzzi KC, Gund DP, Sartori G, Porto IR, Jorge AC, Duarte PA. Psychological disorders in post-ICU survivors and impairment in quality of life. Psychology Neuroscience. 2019 Sep;12(3):391.

135. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients. Critical care medicine. 2006 May 1;34(5):1297 – 310.

136. Moore L, Stelfox HT, Turgeon AF, Nathens A, Bourgeois G, Lapointe J, Gagné M, Lavoie A. Hospital length of stay after admission for traumatic injury in Canada: a multicenter cohort study. Annals of surgery. 2014 Jul 1;260(1):179 – 87.

137. Moore L, Stelfox HT, Evans D, Hameed SM, Yanchar NL, Simons R, Kortbeek J, Bourgeois G, Clément J, Lauzier F, Turgeon AF. Hospital and intensive care unit length of stay for injury admissions: a pan-Canadian cohort study. Annals of surgery. 2018 Jan 1;267(1):177 – 82.

138. Venier AG, Gruson D, Lavigne T, Jarno P, L’héritéau F, Coignard B, Savey A, Rogues AM. Identifying new risk factors for Pseudomonas aeruginosa pneumonia in intensive care units: experience of the French national surveillance, REA-RAISIN. Journal of Hospital Infection. 2011 Sep 1;79(1):44 – 8.

139. Vestergaard AH, Christiansen CF, Nielsen H, Christensen S, Johnsen SP. Geographical variation in use of intensive care: a nationwide study. Intensive care medicine. 2015 Nov;41(11):1895–902.

140. Pradelli L, Povero M, Muscaritoli M, Eandi M. Updated cost-effectiveness analysis of supplemental glutamine for parenteral nutrition of intensive-care patients. Eur J Clin Nutr. 2015 May;69(5):546–51.

141. Pieris L, Sigera PC, De Silva AP, Munasinghe S, Rashan A, Athapattu PL, Jayasinghe KS, Samarasinghe K, Beane A, Dondorp AM, Haniffa R. Experiences of ICU survivors in a low middle income country-a multicenter study. BMC anesthesiology. 2018 Dec;18(1):1–8.

142. Zampieri FG, Lisboa TC, Correa TD, Bozza FA, Ferez M, Fernandes HS, Japiassú AM, Verdeal JC, Carvalho AC, Knibel MF, Mazza BF. Role of organisational factors on the ‘weekend effect’in critically ill patients in Brazil: a retrospective cohort analysis. BMJ open. 2018 Jan 1;8(1):e018541.

143. Hung SC, Kung CT, Hung CW, Liu BM, Liu JW, Chew G, Chuang HY, Lee WH, Lee TC. Determining delayed admission to the intensive care unit for mechanically ventilated patients in the emergency department. Crit Care. 2014 Aug;18(4):1–9.

144. Barbash IJ, Le TQ, Pike F, Barnato AE, Angus DC, Kahn JM. The effect of intensive care unit admission patterns on mortality-based critical care performance measures. Annals of the American Thoracic Society. 2016 Jun;13(6):877–86.

145. Glance LG, Osler TM, Dick A. Rating the quality of intensive care units: is it a function of the intensive care unit scoring system?. Critical care medicine. 2002 Sep 1;30(9):1976-82.

Tables
Please see the manuscript file to view the tables.

Figures

Figure 1

PRISMA flowchart. PRISMA flowchart summarizing study review and inclusion
Figure 2

Geographical origin of literature. Origin of literature by country [using the UN Geoscheme classification – Accessed: at http://millenniumindicators.un.org/unsd/methods/m49/m49regein.htm]. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- AdditonalFile1PRISMAScRChecklist.docx