Table S1. Probes used in this work.

Manufacturer	Name	Target	Dye Color	Catalog number	Use in figure
Beijing Jinpujia Medical Technology Co., Ltd.	GLP 13 / 21	13q14/21q22	G/ R	F01001	
	GLP P53 / 1q21	17p13.1/1q21	G/R	F01003/F01003	Figure S3 E
	GLP IGH	14q32	R/ G	F01003	Figure S3C
	GLP C-MYC	8q24	R/G	F04016M	Figure 2 D
	GLP BCR / ABL	22q11/9q34	G/ R	F01005	Figure S4 C/
					Figure S7 C
	GLP TEL / AML1	12p13/21q22	R/ G	F01036	Figure 2 E
	GLP MLL	11q23	G/ R	F01036	Figure 3 B
	GLP D7S486 / CSP7	7q31/7p11-q11	R/G	F01032	Figure S7 D
	CSP X / Y	Xp11.1-q11.1/	G/ R	F01006	
		Yp11.1-q11.1			
	GLP PML / RARA	15q22/17q21	G/ R	F01023	Figure S8 B
	GLP AML1 / ETO	21q22/8q22	G/ R	F01025	Figure 2 C/
					Figure S2 C
	GLP IGH / CCND1	14q32/11q13	G/ R	F01019	
	GLP BCL6	3q27	R/ G	F04011M	
	CSP 3 / CSP 7	3p11.1-q11.1/7p11.1-q11	R/G	F01008	
	GLP D20S108 / CSP8	20q12/8p11-q11	R/G	F01032	
	GLP CSF1R / D5S23	5q33/5p15	R/G	F01032	
	D5S721				
	GLP p16 / CSP 17	9p21/17p11.1-q11.1	R/ G	F01008	Figure S4 B
Guangzhou Anbiping Pharmaceutical Technology Co., Ltd.	GSP IGH / CCND3	6p21/14q32	G/R	F.01123-01	Figure S3 D
	GSP EWSR1	22q12	G/R	F.01194-0	Figure S2 B
	GSP PDGFRB	5q32	G/R	F.01033-01	
	GSP TCF3 / PBX1	1q23/19p13	R/G	F.01095-01	
Table S2: Results of FISH signals were quantified by image cytometry in 10 patients (19 probes).

case	GLP	GLP	p16	CSP	3	/	GLP	GLP	IGH	/	GLP	BCR	GLP	GLP	GLP	TEL	GLP	AML1	GLP	PML	GSP	GSP	GSP	IGH	GSP	TCF3	/
	PS3	/CSP	17%(/																					
	(%)																										
1	2G4O(40)	4G3O(37)	4G4O(27)	4G4O(40)	2G2O(5)	3F(38)	3G4O(38)	4G3O(36)	2F(60)	2F(60)	4G4O(40)	4G4O(22)	4F(38)	4G4O(34)	4G4O(39)	4F(37)	2F(66)	3G3O(40)	4G4O(34)								
2G2O(60)	2G2O(63)	2G2O(73)	2G2O(60)	2G1O(36)	4F(5)	3G3O(6)	2G2O(64)	3F(4)	3F(23)	2G2O(60)	4G5O(12)	2F(62)	4G5O(5)	2G2O(61)	2F(63)	3F(18)	2G2O(60)	4G5O(6)									
1G1O(59)	2G2O(56)	F(30)	4F(17)	2G2O(61)	4F(6)	2G2O(61)	5F(6)																				
1. 2G4O(88)	2G3O(90)	2G2O(100)	2G4O(76)	2G1O(80)	2F(15)	4G3O(78)	4G3O(85)	6F(80)	2F(100)	2G2O(10)	4G4O(85)	2F(20)	4G6O(87)	4G4O(85)	2F(13)	4F(88)	4G4O(93)	2G4O(84)									
2G3O(4)	2G2O(10)		2G2O(24)	1G1O(10)	4F(85)	4G4O(13)	4G4O(5)	3F(4)	0	2G2O(5)	3F(80)	4G4O(5)	2G2O(15)	4F(87)	4F(87)	2G2O(7)	2G2O(16)										
2G2O(8)		2G2O(10)		2G2O(9)	2G2O(10)	2F(6)																					
3 1. 2G4O(50)	4G3O(47)	4G4O(85),	4G3O(75)	2F2G2	6G4O(50)	4G4O(20)	2F(16)	2F(21)	4G4O	4G4O(10)	2F(20)	3G3O(70)	4G4O(76)	4F(80)	2F(31)	5G4O(18)	4G4O(78)										
3G5O(20)	2G1O(5)	(89)	2G2O(15)	2G2O(15)	8F(5)	5G4O(28)	4G3O(60)	3F(84)	4F(70)	(81)	3G4O(70)	4G4O(80)	4G4O(6)	2G2O(24)	2F(10)	4F(53)	4G4O(11)	2G2O(22)									
4G4O(6)	2G1O(18)	2G2O(11)		1F2O2	4G4O(10)	2G2O(20)	5F(9)	2G2O(19)	4G5O(4)	2. F(15)	2G2O(24)	2.	5F(16)	2G2O(11)													
2G2O(22)		2. 2.	2.	2.	G(30)	2G2O(12)	2.	2.	2G2O(16)	4F(85)	2.	2F(87)	2.														
4G(77)	4G4O	4G4O(85),	4G4(85)	2G2O		4F(90)	4G4O(78)		4G4O(78)	2G4O(30)	4G4O(80)	2F(13)	2F(47)	2.	4G4O(78)												
2. 2G1O(5)	(89)	2G2O(15)	2G2O(20)	(15)	6G4O(63)	4G4O(20)	2F(16)	2F(10)	2G2O(22)	2.	4G4O(70)	2G2O(20)	4F(27)	6G4O(60)	2G2O(22)												
3G5O(8)	2G1O(8)	2G2O(10)		2.	4G4O(20)	4G3O(60)	3F(84)																				
3G4O(62)	2F2G2	2G2O(17)	2G2O(20)		4G5O(2)																						
4G4O(8)	2G2O(22)	F2G2G(4)		2G2O(18)																							
Note: 1 = At diagnosis; 2 = At relapse

Abbreviation: G = green signal; O = red signal; M = multiple signals; F = yellow signal.
Table S3: Main Characteristics of Patients with AML with ins (21;8).

Case	Age/Sex	FAB	Cytogenetic analysis	Revised cytogenetic result following FISH	Response	Reference
1	2.9/F	M2	45,X,-X	45,X,-X,der(7)t(7;8)(q34;q24),ins(21;8)(q22;q22q22)	CCR	Gamerdinger et al., 2003
2	12.2/M	M1	47,XY,+8/46,XY	46,XY,ins(21;8)(q22;q22q22)/47,XY,+8,ins(21;8)(q22;q22q22)	CR	
3	3.8/F	M1	47,XX,der(3)(3;?8)(q27;?q13),der(21)(8;21)(q22;22q22),+?der(21)(8;21)(q22;22q22)	47,XX,der(3)(3;8)(q29;13)del(8)(q21q22),+8,der(8)t(3;8)(q21q22)	CCR	
4	43/M	M2	45,X,-Y	45,X,-Y,ins(21;8)(q22;q22q22)	CR	Onozawa et al., 2003
5	73/F	M2	46,XX,ins(21;8)(q12;q13q22)	46,XX,ins(21;8)(q12;q13q22)	CR	Yamazaki et al., 2000
6	37/M	M2	46,XY,ins(21;8)(q22;q21q22)	46,XY,ins(21;8)(q22;q21q22)	NA	Harrison et al., 1999
7	NA	M2	ins(21;8),del(8)a	ins(21;8)a	NA	Kazama et al., 1996
8	48/F	M2	NA	46,XX,ins(21;8)(q22;q21q22)	CR	
9	10/F	M2	46,XX[20]	46,XX,ins(21;8)(q22;q21q22)	CR	
10	43/M	M2	46,XY[1]/46,XY,t(8;21)(q22;q22)[14]	46,XY,ins(21;8)(q22;q11q22)	CR	Giorgina Specchia, et al., 2004
11	54/M	M2	46,XY[20]	46,XY,ins(21;8)(q22;q21q22)	CCR	
12	19/F	M2	46,XY[20]	46,XX,ins(21;8)(q22;q13q22)	CR	
13	48/M	M2	47,XY,+8[22]	47,XY,p8,ins(21;8)(q22;q22q22)	ED	Frank G, et al., 2011
14	47/M	M2	45,X, - Y,t(8;21)(q22;q22)[20].	45,X, - Y, der(8)inv(8)(q22q24.1)ins(21;8)(q22;q12q22),der(21)ins(21;8)(q22;q12q22)	CR	Jae-Hee Lee, et al., 2014
15	23/M	M2	92,XXYY,t(8;21)(q22;q21)X2[8]/46,t(8;21)(q22;21)[12]	92,XXYY,ins(21;8)(q22;q24;q22)	R	In our present case

Note:
*: Partial cytogenetic data are available.
$: CR = complete remission;
Abbreviation:
CCR = continuous complete remission;
R = Relapse;