Factor analysis in determining the quality of coal

T Niedoba, P Pieta and A Surowiak

AGH, University of Science and Technology, Faculty of Mining and Geoengineering, Department of Mineral Processing and Environmental Engineering, Cracow, Poland

E-mail: tniedoba@agh.edu.pl

Abstract. The separation of coal material of three types of coals originating from three various Polish hard coal mines (types 31, 34.2 and 35, according to Polish nomenclature, which were steam coal, semi-coking coal and coking coal) into particle size fractions and then into particle density fractions was done and then the following parameters were measured for each particle size-density fraction: combustion heat, ash contents, sulfur contents, volatile parts contents, analytic moisture. In this way a 7-dimensional vector of data was created. Using methods of factor analysis the important features of coal were selected, which decide about their membership to individual types. To evaluate the appropriateness of the applied method the Bartlett’s sphericity test as well coefficient of Kaiser-Mayer-Olkin (KMO) were used. To select important factors the Kaiser criterion and Cattell’s scree test were used. The obtained results were compared with the results obtained in previous works by means of observation tunnels method. The results showed which particular features are crucial to define the type of coal what is also important to select appropriate method of its enrichment.

1. Introduction

Mineral raw materials which are beneficiated in purpose of their using characterize with many factors describing their features. In case of coal, these features are among others ash contents, sulfur contents, combustion heat, volatile parts contents or analytic moisture. The features mentioned above decide about coal quality also in economical aspect. Because of that the preciseness of determining values of these features is very important.

The most often researched properties of the coal are combustion heat, ash contents, sulphur contents, volatile parts contents and moisture. These features are very often highly correlated but also can occur independently. The selection of the necessary factors which influence on individual properties is the goal of the paper. To this purpose three types of coal (according to Polish nomenclature – coal types 31 (steam coal), 34.2 (gas-coking coal) and 35 (oro-coking coal)) were selected to the investigation which were divided into particle size and density fractions. The classification of coals is presented in Table 1.
Table 1. Classification of coal types according to Polish nomenclature [21].

Coal type	Coal number	Volatile parts contents [%]
Steam coal	31	Above 28
Gas-steam coal	32	Above 28
Gas coal	33	Above 28
Gas-coking coal	34	Above 28
Orto-coking coal	35	20-31
Meta-coking coal	36	14-28
Semi-coking coal	37	14-28
Thin coal	38	14-28
Anthracite coal	41	10-14
Anthracite	42	3-10
Meta-anthracite	43	Till 3

The whole group of considered factors were measured for each size-density fraction [14]. The following variables were considered (X_i = 1, 2, …, 5).
X_1 – combustion heat [cal];
X_2 – ash contents [%];
X_3 – sulfur contents [%];
X_4 – volatile parts contents [V_a];
X_5 – moisture [W_a].

2. Materials and methods

The considered types of coal originated from three various Polish coal mines and all of them were initially screened on a set of sieves of the following sizes: -1.00, -3.15, -6.30, -8.00, -10.00, -12.50, -14.00, -16.00 and -20.00 mm. Then, the size fractions were additionally separated into density fractions by separation in dense media using zinc chloride aqueous solution of various densities (1.3, 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9 g/cm^3). The fractions were used as a basis for further consideration and additional coal features were determined by means of chemical analysis. In purpose of appropriate identification of coal type many parameters are being measured which describe coal quality. For each density-size fraction such parameters as combustion heat, ash contents, sulfur contents, volatile parts contents and analytical moisture were determined, making up, together with the mass of these fractions, seven various features for each coal.

The example of obtained data is presented in Table 2.

Table 2. Data for size fraction 14.00-12.50 mm – coal, type 31.

Density [Mg/m^3]	Mass [g]	Combustion heat [cal]	Ash contents [%]	Sulfur contents [%]	Volatile parts contents V_a	Analytical moisture W_a
<1.3	308.6	7048	6.41	0.72	34.32	3.23
1.3-1.4	292.5	5859	19.61	0.7	29.22	3.36
1.4-1.5	36.1	2948	16.55	0.76	28.92	3.87
1.5-1.6	10.7	5117	26.10	1.55	31.08	3.40
1.6-1.7	25.6	4467	35.78	2.28	26.71	2.40
1.7-1.8	139	3920	37.20	1.23	29.24	2.19
1.8-1.9	12.7	3078	48.20	1.13	24.05	2.23
>1.9	601.2	457	86.53	0.40	9.30	0.91
The measurements of X_i were performed for each size-density fraction. Because of the fact that the individual features were measured in various units their standardization was done.

In purpose of selecting significant factors influencing on individual variables, the factor analysis method was applied. To evaluate adequacy of applying factor analysis to this problem two criteria were used: Bartlett’s test and Kaiser-Mayer-Olkin coefficient (KMO) [1, 2, 10, 11, 21].

The reduction of variables is done through the Cattell’s scree criteria and criterion of sufficient proportion which suggest to apply such number of factors that they explain together at least 85% of variance of all observed variables [22].

3. Results

Applying Bartlett’s test it occurred that for all researched cases the value of the test was significantly higher than the critical values on significance level being equal to $\alpha=0.0005$. The lowest value of the test U was obtained for coal, type 35 in particle density fraction (1.9-2.0) and was equal to 84.74, while the critical value on this level is equal to 31.42. It can be said then that zero hypothesis (that correlation matrix is a unit matrix) should be rejected for all particle size and density fractions.

Furthermore, it can be noticed that in almost all cases the value of KMO coefficient was higher than 0.5. Only for density fraction lower than 1.3 g/cm3 for coal, type 34.2 and density fraction (1.6-1.7) for coal, type 35 it occurred to be slightly lower than 0.5. That means that the results of Bartlett’s test and the values of KMO coefficient gave strong basis to apply factor analysis.

In the work, the reduction of variables is done through the Cattell’s scree criteria and criterion of sufficient proportion which suggest to apply such number of factors that they explain together at least 85% of variance of all observed variables [22].

The correlation matrix of the factor Z_j with variable X_i is obtained by creation of matrix Z, which elements are numbers

$$z_{ij} = \sqrt{\lambda_i}a_{ij}, \quad i, j = 1, 2, ..., 5. \quad (1)$$

where: λ_i – ith eigenvalue of correlation matrix; a_{ij} – elements of matrix A which fulfills the condition $A^T = R$, where R is correlation matrix of variables X_i.

The square of number z_{ij} is the percentage of variance changeability explained by the factor Z_j. For example, considering coal, type 31 from the particle size fraction (10-12.5) it is obtained that matrix Z is in form

$$Z = \begin{bmatrix}
-0.9813 & 0.1331 & -0.0962 & 0.0676 & 0.0747 \\
0.9828 & -0.1017 & 0.1145 & -0.0767 & 0.0700 \\
-0.0667 & -0.9963 & -0.0484 & 0.0246 & 0.0033 \\
-0.9793 & -0.0651 & -0.0297 & 0.1893 & -0.0019 \\
-0.9620 & -0.1035 & 0.2487 & 0.0063 & -0.0029
\end{bmatrix} \quad (2)$$

The eigenvalues of the correlation matrix are in this case numbers $\lambda_1=3.8177; \lambda_2=1.0355; \lambda_3=0.0875; \lambda_4=0.0488; \lambda_5=0.0105$.

The plot of scree is presented on Figure 1.
On the basis of the presented Cattell’s scree plot only these factors remain which are located to the left from the point in which a mild decline of eigenvalues is observed. In this case these are factors Z_1 and Z_2.

The group of factors (Z_1, Z_2) explain 98.07% of changeability of combustion heat, 97.12% of changeability of ash contents, 99.71% of changeability of sulfur contents, 96.33% of changeability of volatile parts contents and 93.62% of changeability of moisture.

It is obtained then that factor Z_1 is responsible for variables $\{X_1, X_2, X_4, X_5\}$ and factor Z_2 for variable X_3.

Let consider the particle density fraction (1.6-1.7) of coal, type 34.2

The matrix Z is in form

$$Z = \begin{bmatrix} 0.8566 & -0.4196 & -0.1506 & -0.1824 & 0.3643 \\ -0.5854 & -0.6574 & 0.3863 & 0.1622 & 0.1400 \\ 0.5544 & -0.7491 & -0.2733 & 0.1882 & -0.2073 \\ -0.7229 & -0.5915 & -0.1757 & -0.2615 & -0.0447 \\ -0.4385 & 0.1454 & -0.8755 & 0.0956 & 0.0961 \end{bmatrix}$$

The eigenvalues of correlation matrix in this case are numbers $\lambda_1=2.0993; \lambda_2=1.5404; \lambda_3=1.0443; \lambda_4=0.1727; \lambda_5=0.1433$. The plot of Cattell’s scree is presented on Figure 2.

The Cattell’s scree plot suggests to take factors Z_1, Z_2 and Z_3 into consideration. The same factors explain sufficient percentage of changeability of all observed variables. Group of factors (Z_1, Z_2, Z_3) explains 93.25% of changeability of combustion heat, 92.41% of ash contents, 94.32% of sulfur.
contents, 90.33% of volatile parts contents and 97.99% of moisture, while factor Z_1 is related to variables X_1, X_2, X_3, X_4; factor Z_2 to variables X_3, X_4, X_5 and factor Z_3 to variable X_5.

Another criterion of limiting number of factors is determination of amount of percent of total variance explained by chosen factors (most often it is required to not be lower than 85%). In this case, for coal type 31, factors Z_1 and Z_2 explain 93.14% of variation of variable X_1 (combustion heat), 96.65% of variation of variable X_2 (ash contents), 99.00% of variation of variable X_3 (sulfur contents), 91.14% of variation of variable X_4 (volatile parts contents) and 89.14% of variation of variable X_5 (analytic moisture). For coal type 34.2, factors Z_1, Z_2 and Z_3 explain 95.21% of variation of variable X_1, 97.48% of variation of variable X_2, 99.95% of variation of variable X_3, 86.72% of variation of variable X_4 and 99.68% of variation of variable X_5. Finally, for coal type 35, these factors explain 98.21% of variation of variable X_1, 98.39% of variation of variable X_2, 99.87% of variation of variable X_3, 95.57% of variation of variable X_4 and 99.00% of variation of variable X_5.

The influences of individual factors on considered variables in all fractions of individual types of coal are presented in Tables 3-8. It was assumed that changeability of each feature should be explained by factors in at least 85%.

Table 3. Influence of factors on properties of coal, type 31 by particle size fractions.
Feature
Combustion heat
Z_1
Z_2
Ash contents
Z_1
Sulfur contents
Z_1
Z_2
Volatile parts contents
Z_1
Z_2
Moisture
Z_1
Z_2
Table 4. Influence of factors on properties of coal, type 34.2 by particle size fractions.

Feature

Combustion heat
Z₁
Z₂
Z₃
Ash contents
Z₁
Sulfur contents
Z₁
Z₂
Z₃
Volatile parts contents
Z₁
Z₂
Z₃
Moisture
Z₁
Z₂
Z₃

Table 5. Influence of factors on properties of coal, type 35 by particle size fractions.
Feature

Combustion heat
Z₁
Z₂
Ash contents
Z₁
Z₂
Sulfur contents
Z₁
Z₂
Z₃
Volatile parts contents
Z₁
Z₂
Moisture
Z₁
Z₂
Z₃
Table 6. Influence of factors on properties of coal, type 31 by particle density fractions.

Feature	<1.3	1.3-1.4	1.4-1.5	1.5-1.6	1.6-1.7	1.7-1.8	1.8-1.9	1.9-2.0
Combustion heat								
Z_1	86.99	87.47	35.10	84.97	59.66	28.46	87.94	75.69
Z_2	60.40	8.15	20.53	63.98	27.82	9.15		
Z_3								
Ash contents								
Z_1	92.42	94.03	82.88	70.94	83.86	82.04	75.15	51.62
Z_2	1.33	25.38	11.19	0.02		9.01	36.33	
Z_3	3.12	17.05	0.01					
Z_4								15.30
Sulfur contents								
Z_1	7.82	17.61	35.58	64.03	36.52	18.13	1.60	40.24
Z_2	56.73	80.64	48.87	4.86	36.97	67.04	87.51	54.30
Z_3	34.85	14.49	17.92	23.87				
Volatile parts contents								
Z_1	89.88	87.01	73.80	68.22	21.16	71.84	18.36	74.33
Z_2	0.03	1.26	43.08	13.03	42.04	16.73		
Z_3	0.06	6.83	35.45	1.06	38.69			
Z_4	24.75	23.66						
Moisture								
Z_1	1.87	79.85	63.42	46.36	93.10	60.04	39.66	66.11
Z_2	67.24	0.09	5.97	37.93	5.84	34.95	0.07	
Z_3	30.74	18.61	27.06	15.37	31.75	0.06	37.06	
Z_4								24.35
Table 7. Influence of factors on properties of coal, type 34.2 by particle density fractions.

Feature	<1.3	1.3-1.4	1.4-1.5	1.5-1.6	1.6-1.7	1.7-1.8	1.8-1.9	1.9-2.0
Combustion heat								
Z_1	68.90	21.37	75.81	52.56	73.37	99.60	91.83	83.37
Z_2	13.54	70.82	1.03	28.72	17.60			7.68
Z_3	14.35	20.48	13.13					
Ash contents								
Z_1	80.94	83.39	89.18	73.41	34.26	13.14	87.25	6.51
Z_2	6.02	10.66	3.69	43.21	23.72			86.19
Z_3	18.01	4.79	9.90	14.92	46.22			
Z_4								5.34
Sulfur contents								
Z_1	18.36	83.26	63.64	53.96	30.73	51.60	37.05	95.39
Z_2	64.78	11.15	8.70	0.06	56.11	48.00	52.91	
Z_3	16.30	23.41	31.76					
Volatile parts contents								
Z_1	82.88	71.58	56.23	11.26	52.25	1.46	75.65	87.32
Z_2	15.10	0.06	0.01	81.28	34.98	72.72	19.64	
Z_3	26.70	34.32						
Moisture								
Z_1	49.75	47.22	2.97	43.19	19.22	43.02	40.90	64.67
Z_2	25.45	42.22	86.52	8.72	2.11	32.11	48.26	24.86
Z_3	20.63	39.77	76.65	4.38				
Z_4								20.13
Table 8. Influence of factors on properties of coal, type 35 by particle density fractions.

Feature	<1.3	1.3-1.4	1.4-1.5	1.5-1.6	1.6-1.7	1.7-1.8	1.8-1.9	1.9-2.0
Combustion heat								
Z₁	36.22	94.80	58.46	93.14	55.65	88.39	59.42	99.70
Z₂	47.32	0.17	43.09	18.46				
Z₃	13.34	37.14						
Ash contents								
Z₁	36.62	97.91	15.03	71.14	76.54	77.59	59.87	
Z₂	47.32	56.07	23.93	9.48	5.65	32.02		
Z₃	13.34	27.41						
Sulfur contents								
Z₁	22.05	40.51	16.48	9.04	21.90	75.06	27.98	57.54
Z₂	70.30	54.61	37.22	78.17	16.54	10.15	53.01	26.44
Z₃	17.61	7.79	54.39					
Z₄	25.56							
Volatile parts contents								
Z₁	94.78	55.74	4.00	49.97	28.64	39.06	31.14	26.50
Z₂	31.34	42.35	19.51	44.55	35.14	10.68	44.03	
Z₃	20.81	15.70	11.12	13.42	51.94	12.22		
Z₄	31.70	4.93						
Moisture								
Z₁	70.12	23.27	86.19	7.81	27.96	5.03	52.51	6.35
Z₂	14.68	1.38	33.79	44.98	68.92	18.25	0.21	
Z₃	11.48	72.67	48.87	20.76	25.99	1.18	89.98	
Z₄								17.51

4. Conclusions
Because of the fact that the most often three factors occur in individual fractions and considering power of relations between individual properties the investigated variables can be divided into three subsets. First one contains combustion heat, ash contents and volatile parts contents, second one contains sulfur contents and the third one contains moisture. In scientific works [3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24], through application of various visualization methods it was claimed that features being sufficient to identify coal type are sulfur contents, moisture and volatile parts contents. The conducted analysis confirms these results. The selection of variable X_4 (volatile parts contents) occurs from the fact that this variable is explained by other factor than mutual factor with variables moisture and combustion heat.

References
[1] Comrey A. L. 1973. *A first Course in Factor Analysis* New York Academic Press
[2] Dobosz M. 2001. *Statistical analysis of research results* Akademicka Oficyna Wydawnicza Exit Warsaw [in Polish]
[3] Jamróz D. 2009. Multidimensional labyrinth - multidimensional virtual reality. In: Cyran K., Koziełski S., Peters J., Stanczyk U., Wakulicz-Deja A. (eds.): *Man-Machine, Interactions*, AISC Heidelberg Springer-Verlag 59 445–450
[4] Jamróz D. 2014a. Application of Multidimensional Data Visualization in Creation of Pattern Recognition Systems, In: Gruca A., Czachórski T., Koziełski S. (eds.), *Man-Machine, Interactions 3* AISC Switzerland Springer International Publishing 242 443-450
Jamróz D. 2014b. Application of multidimensional scaling to classification of various types of coal. *Archives of Mining Sciences* **59**(2), 413-425

Jamróz D. 2014c. Application of multi-parameter data visualization by means of autoassociative neural networks to evaluate classification possibilities of various coal types. *Physicochemical Problems of Mineral Processing* **50**(2) 719-734

Jamróz D., Niedoba T. 2014. Application of Observational Tunnels Method to Select Set of Features Sufficient to Identify a Type of Coal. *Physicochemical Problems of Mineral Processing* **50**(1), 185-202

Jamróz D., Niedoba T. 2015a. Application of multidimensional data visualization by means of self-organizing Kohonen maps to evaluate classification possibilities of various coal types. *Archives of Mining Sciences* **60**(1), 39-50

Jamróz D., Niedoba T. 2015b. Comparison of selected methods of multi-parameter data visualization used for classification of coals. *Physicochemical Problems of Mineral Processing* **51**(2) 769-784

Kline P. 1994. *An easy Guide to Factor Analysis* Routledge London.

Lawley D.N., Maxwell A.E. 1971. *Factor Analysis as a Statistical Method* London Butterworths.

Niedoba T. 2009. Multidimensional distributions of grained materials characteristics by means of non-parametric approximation of marginal statistical density function. *AGH Journal of Mining and Geoengineering* **4** 235-244 [in Polish].

Niedoba T. 2011. Three-dimensional distribution of grained materials characteristics, in *Proceedings of the XIV Balkan Mineral Processing Congress* Tuzla Bosnia and Herzegovina 1 57-59.

Niedoba T. 2013a. *Multidimensional characteristics of random variables in description of grained materials and their separation processes* Wydawnictwo Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN Kraków [in Polish].

Niedoba T. 2013b. Statistical analysis of the relationship between particle size and particle density of raw coal. *Physicochemical Problems of Mineral Processing* **49**(1) 175-188

Niedoba T. 2014. Multi-parameter data visualization by means of principal component analysis (PCA) in qualitative evaluation of various coal types. *Physicochemical Problems of Mineral Processing* **50**(2) 575-589

Niedoba T. 2015. Application of Relevance Maps in Multidimensional Classification of Coal Types. *Archives of Mining Sciences* **60**(1) 93-106.

Niedoba T., Jamróz D. 2013. Visualization of multidimensional data in purpose of qualitative classification of various types of coal. *Archives of Mining Sciences* **58**(4) 1317-1333

Niedoba T., Pięta P., Surowiak A. 2018. Analysis of distributions of various coal types properties by means of statistical methods. *IOP Conference Series: Materials Science and Engineering* art. 012008 427 1-5

Niedoba T., Surowiak A. 2012. Type of coal and multidimensional description of its composition with density and ash contents taken into consideration, in *Proceedings of the XXVI International Mineral Processing Congress* 1 3844-3854

Sobolewski A., Micorek T., Winnicka G., Helpern S. 2016. Proposal of Polish Coking Coal Classification, *The Polish Mining Review* **72**(10) 38-43 [in Polish]

Stanisz A. 2007. *Easy Course of Statistics, vol. 3* Statsoft Krakow Poland [in Polish]

Surowiak A. 2013. Investigation of hard coal beneficiation destined to gasification process in fluidized bed gas generator. *The Polish Mining Review* **69**(2) 239–244 [in Polish]

Surowiak A. 2014. Influence of particle density distributions of their settling velocity for narrow size fractions. *Mineral Resources Management* **30** 105-122 [in Polish]

Acknowledgement

The paper is a result of statutory project no. 16.16.100 215.