Response Agronomic Traits of Lentil Varieties to Zinc Fertilization in Calcareous and Terrace Soils of Bangladesh

Md. Ashraf Hossain¹, Md. Abdul Quddus²,* , Md. Abdus Sattar¹, Md. Babul Anwar³, Shamima Aktar⁴, Mohammad Hossain Sarker¹, Md. Razzab Ali⁵

¹Farm Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
²Soil and Water Management Section, Horticulture Research Centre, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
³Regional Agricultural Research Station, Bangladesh Agricultural Research Institute, Jashore, Bangladesh
⁴Pulses Research Sub-Station, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
⁵Olericulture Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh

Email address: ashrafbdrc@gmail.com, quddus06@yahoo.com (Md. A. Hossain), quddus06@yahoo.com (Md. A. Quddus), sattar72@gmail.com (Md. A. Sattar), babul.bari08@yahoo.com (Md. B. Anwar), shamimaprc@gmail.com (S. Aktar), hoossain.agro@yahoo.com (M. H. Sarker), razzab321@gmail.com (Md. R. Ali)

*Corresponding author

To cite this article: Md. Ashraf Hossain, Md. Abdul Quddus, Md. Abdus Sattar, Md. Babul Anwar, Shamima Aktar, Mohammad Hossain Sarker, Md. Razzab Ali. Response Agronomic Traits of Lentil Varieties to Zinc Fertilization in Calcareous and Terrace Soils of Bangladesh. Journal of Energy and Natural Resources. Special Issue: Assessment of Potassium Element on Lentil (Lens culinaris Medic) Agronomy and Nutrient Use Efficiency in Calcareous Soils. Vol. 8, No. 4, 2019, pp. 155-165. doi: 10.11648/j.jenr.20190804.14

Received: November 19, 2019; Accepted: November 29, 2019; Published: December 6, 2019

Abstract: Zinc (Zn) fertilization is reflected a significant agronomic strategy for global food security. Deficiency of zinc in soils could be caused to decrease the crop yield. Hence an experiment was made over two years at the research farm of Pulses Research Sub-Station of Bangladesh Agricultural Research Institute (BARI), Gazipur and in the research farm of Regional Agricultural Research Station (RARS), Ishwardi and Jessore, during Rabi season to assess the sensitivity of different varieties of lentil to Zn fertilization and evaluate the Zn in terms of yield and Zn mineral content in seed. There were 12 treatment combinations comprising six lentil varieties (V₁ = BARI Masur-2, V₂ = BARI Masur-3, V₃ = BARI Masur-4, V₄ = BARI Masur-5, V₅ = BARI Masur-6 and V₆ = BARI Masur-7) and two levels of zinc (0 and 2 kg ha⁻¹). The experiment was laid out in split-plot design with three replications. Results reveal that growth, yield attributes and yield varied positively by zinc level and variety. Among the varieties, BARI Masur-7 followed by BARI Masur-6 gave the highest seed yield. Interaction of variety and zinc the highest mean seed yield (1568 kg ha⁻¹ at Gazipur, 2396 kg ha⁻¹ at Ishurdy and 1639 kg ha⁻¹ at Jashore) produced by the treatment V₆Zn². The improved protein content (28.5% at Gazipur, 28.9% at Ishurdy and 29% at Jashore) and zinc content (70.2 ppm at Gazipur, 73.6 ppm at Ishurdy and 69.9 ppm at Jashore) was achieved in V₆Zn² treatment. The result, suggest that 2 kg Zn ha⁻¹ could be applied in any lentil variety for quality improvement and yield maximization in terrace and calcareous soils of Bangladesh. The current study recommended conducting another experiment for further monitoring and determining the appropriate Zn dose for lentil production through application of different zinc rates in Zn-deficient soils.

Keywords: Lentil Varieties, Zinc, Yield, Quality, Calcareous and Terrace Soil

1. Introduction

Lentil (Lens culinaris) is an edible pulse which belongs to sub-family Faboideae under the family Fabaceae. It is one of the popular food legumes in Bangladesh and rank first in respect of consumer’s preference and second in terms of area (154000 ha) and production (116000 mt) [1]. Lentil is considered a relatively affordable, high protein, fibers, antioxidants and micronutrients including iron, zinc, selenium and vitamin (A and B complex), folate and β-carotene [2, 3]. Furthermore, lentil enhances of soil fertility by biologically nitrogen fixation (BNF) and can fix 8-14 kg
N ha\(^{-1}\) [4]. The agronomic significance of lentil is related to high protein content and micronutrients like Zn. Insufficiency of Zn nutrient has been documented in terrace and calcareous soils of Bangladesh [5]. This element is less available for plant uptake in high pH soils (e.g. calcareous soils) mainly due to their retention by soils and soil constituents [6]. The terrace soil is acidic in reaction with low organic matter and mainly phosphate fixing, and low in P, K, S, Zn and B levels [7, 8]. Zinc deficiency has occurred mainly due to continuous mining of this nutrient from soil and to increase cropping intensity [9]. Zinc deficiency is the most widespread micronutrient deficiency in the world [10].

However, the present dietary value and reflecting an increasing beneficial effect of lentil in human body and soil fertility, the effort should be taken to increase productivity through using high yielding variety of lentil and appropriate nutrient management. Several works have been done globally regarding the rate determination of micronutrient fertilizer in micronutrient deficient condition [11-13]. Sommer and Lipman [14] were the first to prove the essentiality of Zn as a nutrient requirement for higher plants. Plants emerged from seeds with low concentration of Zn could be highly sensitive to biotic and abiotic stress [15]. Zinc requirement of pulses might be higher than cereals. In the country like Bangladesh, the farmers have been taken less attention on proper nutrient management practices for legume cultivation especially micronutrient like Zn. Keeping the above points of view, the present study was undertaken to assess the sensitivity of different varieties of lentil to Zn fertilization and to evaluate the Zn in terms of yield and Zn mineral content in seed.

2. Materials and Methods

Field experiments were conducted in three locations for two consecutive years (winter season of 2012-13 and 2013-14). Three locations were viz. (i) at the research farm of Pulses Research Sub-Station, Bangladesh Agricultural Research Institute (BARI), Gazipur, (ii) at the research field of Regional Agricultural Research Station, BARI, Ishuridy and (iii) at the research field of Regional Agricultural Research Station, BARI, Jashore, Bangladesh. The terrace soils of Gazipur farm was medium high land with fine-textured (clay loam) belongs to Chhiata series under the agro ecological zone - Madhupur Tract (AEZ-28). The experimental field of Ishuridy was medium high land, calcareous in nature and the soil was clay loam in texture. The land of Jashore belongs to Gopalpur soil series and calcareous in nature having silt loam texture. The soils of both Ishuridy and Jashore are under High Ganges River Floodplain agroecological zone-11. The all experimental sites have subtropical humid climatic conditions which are characterized by relatively high monsoon rainfall, high humidity, and high temperature. Long day with less clear sunshine, sometimes the sky remains cloudy for heavy rainfall during April to September. The scanty rainfall, low humidity and low temperature, short day and more clear sunshine during October to March. During experimental period in Gazipur, two years average total rainfall was received from 130 mm. The mean minimum air temperatures of 10 to 12°C and maximum air temperatures 25 to 33.5 °C during growing period. In Ishuridy, two years average total rainfall got 70.5 mm during growing period. The average minimum temperatures of 7 to 11°C and average maximum temperatures were of 22 to 33°C in experimental period. The Jashore area got average total rainfall 88.8 mm, average minimum temperatures of 8.9 to 13.5°C and average maximum temperatures were of 20 to 33.8°C in experimental period. Before starting the experiment initial soil (0-15 cm) samples of three locations have been analyzed and chemical properties are presented in the Table 1.

Table 1. Fertility status of initial soils of experimental field at Gazipur, Ishuridy and Jashore.

Location	pH	OM (%)	Total N (%)	Ca (meq. 100 g\(^{-1}\))	K (µg g\(^{-1}\))	P (µg g\(^{-1}\))	S (µg g\(^{-1}\))	Zn (µg g\(^{-1}\))	B (µg g\(^{-1}\))
Gazipur (result)	6.1	1.30	0.063	7.2	0.11	12	14.2	0.86	0.16
Critical level				2.0	0.12	7	10	0.60	0.20
Interpretation*	acidic	low	very low	high	low	medium	medium	low	low
Ishuridy (result)	7.6	1.42	0.069	13.2	0.17	14	15	0.90	0.19
Jashore (result)	8.1	1.44	0.078	20.0	0.18	13	14.5	0.89	0.18
Critical level				2.0	0.12	10	10	0.60	0.20
Interpretation*	slightly alkaline	low	very low	high	low	medium	medium	low	low

(*FRG, 2012)

There were 12 treatment combinations containing six lentil varieties (\(V_1 = \) BARI Masur-2, \(V_2 = \) BARI Masur-3, \(V_3 = \) BARI Masur-4, \(V_4 = \) BARI Masur-5, \(V_5 = \) BARI Masur-6 and \(V_6 = \) BARI Masur-7) and two levels of zinc (0 and 2 kg ha\(^{-1}\)). The 12 treatment combinations were as \(V_1Zn_0; V_1Zn_2; V_2Zn_0; V_2Zn_2; V_3Zn_0; V_3Zn_2; V_4Zn_0; V_4Zn_2; V_5Zn_0; V_5Zn_2; V_6Zn_0\) and \(V_6Zn_2\) following main plot and sub-plot system. The experiment was laid out in split-plot design with three replications. The main plot was considered as variety factor and sub-plot was as Zn factor. The unit sub-plot size was 4 m × 3 m. The blanket fertilizers dose of N, P, K, S and B @ 20, 20, 40, 10 and 1 kg ha\(^{-1}\), respectively used in all treatment plots as urea, TSP, MoP, gypsum and boric acid at the time of final plot preparation. Zinc was applied treatments basis as ZnSO\(_4\) (36%Zn). Seeds of lentil varieties were treated using the fungicide Provex 200 (at 2.5 g kg\(^{-1}\) seeds) before sowing to control of root rot disease. Treated seeds of all varieties were sown @ 35 kg ha\(^{-1}\) with a spacing of 30 cm × continuous on 4 November, 2012 & 23 November, 2013 at Gazipur, on 15 November, 2012 & 10 November, 2013 at Ishuridy and on 1
November, 2012 & 24 November, 2013 at Jashore. Manually weeding as well as thinning of seedlings was done at 25 days after sowing (DAS). Again hand weeding was done at 50 days after sowing. The disease of stemphylium blight was controlled by three times spraying of Rovral fungicide @ 2 g L⁻¹ of water at interval of 10 days, first start at flowering stage and two times insecticide (Karate @ 2 ml L⁻¹ of water) sprayed at 10 days interval starting from 60 DAS to overcome insect infestation. Crop was harvested at maturity.

Data on seed yield (kg ha⁻¹) at around 10% moisture basis were recorded from the whole plot technique.

The growth and yield attributes namely: plant height, number of branch per plant and number of pods per plant were recorded from ten plants randomly from each unit plot. Pods were detached from every plant and the number of pods per plant was counted and averaged. Hundred seed weight (g) was determined by the counting of 100 seeds randomly from each plot and weighing through electronic balance. The data of nodule per plant was recorded at 55 days after sowing in each plot by selecting of 5 plants randomly. The plants of lentil were smoothly uprooted and carefully removed the soil from roots by water. Then washed the roots with water, blotted with tissue paper and counted the number of nodules. Percentage of harvest index (HI) was determined by the formula-

\[
HI = \frac{\text{Economic yield}}{\text{Biological yield}} \times 100
\]

Initial soil sample (0-15 cm depth) of three locations were collected and brought to the laboratory and spread on a brown paper for air drying. The air-dried soil samples were ground and passed through a 2-mm sieve. The sieving soil samples were kept into plastic container with proper label for chemical analysis.

Soil pH was measured by glass electrode pH meter using soil: water ratio of 1:2.5 [16]. Organic carbon was determined following the wet oxidation method as described by Page et al. [16] and the organic matter content was calculated by multiplying the % organic carbon with the Van Bemmelen factor 1.73. Total N by Microkjeldahl method [17]; available P was determined following Olsen method for terrace soil; exchangeable K by 1N calcareous soil as described by Page et al. [16] and Bray and Kurtz [18] method for terracotta soil; exchangeable Ca by 1N NH₄OAc method [20]; available S by turbidity method using BaCl₂ [21]; available Zn by DTPA method [22]; available B by azomethine-H method [16].

Ground seed samples were digested with di-acid mixture (HNO₃-HClO₄) (5: 1) as described by Piper [23] for the determination- concentration of N (Micro-Kjeldahl method) and Zn (atomic absorption spectrophotometer method, VARIAN SpectrAA 55B, Australia). Protein content was measured by estimating the N concentration and then multiplying the N value by 6.25 [24].

Data of growth and yield attributes, nodules per plant, N and protein content were statistical analyzed through ANOVA procedure using a split-plot design with three replications considering main-plot factor variety and sub-plot factor Zn. Then multiple comparisons like all-pairwise comparisons i.e. the means of treatment tested by LSD method at 5% (LSD 0.05) level of significance [25].

3. Result

3.1. Varietal Performance

In case of lentil variety, the growth and yield parameters exhibited significant variation among themselves (Table 2). In Gazipur, the plant height of lentil varied across the varieties from 27.5 to 32.8 cm. The highest plant height (32.8 cm) was recorded from the variety V₆ (BARI Masur-7) which was significantly different over the other variety but statistically identical with V₃ and V₅ variety. The lowest plant height (27.5 cm) was found in V₄ variety. In Ishurdi, the plant height was ranged from 31.8 to 37.2 cm across the varieties where, the significantly highest plant height was obtained from V₆ variety followed by V₅, V₂ and V₁ variety. In case of plant height in Jashore, varied among the variety from 32.3 to 37.7 cm. The tall plant also documented in V₆ which was statistically similar to V₅, V₂ and V₁ variety and dwarf plant was found in V₄ variety (Table 2). Number of branches per plant varied among the lentil varieties from 3.91 to 5.44 at Gazipur, 4.54 to 6.04 at Ishurdi and 5.06 to 6.44 at Jashore. The maximum number of branches per plant (5.44) was recorded in V₁ variety at Gazipur which was significantly different over the others varieties but statistically alike with V₆ variety. Significantly highest number of branches per plant was achieved in the variety V₆ in both the location of Ishurdi and Jashore and lowest was in V₁ variety (Table 2). The maximum number of pods per plant was produced (65.3 at Gazipur, 82.4 at Ishurdi and 101 at Jashore) by V₆ (BARI Masur-7) which was showed significantly variation among the others varieties at Gazipur but statistically similar to V₂ at Ishurdi and similar to V₅, V₃ & V₁ at Jashore. The minimum number of pods per plant was noted from V₃ variety at Gazipur and Jashore while it was found minimum in V₁ variety at Ishurdi (Table 2).

Table 2. Main effects of lentil varieties on growth and yield attribute (Pooled data of two years).

Varieties	Plant height (cm)	No. of branches plant⁻¹	No. of pods plant⁻¹						
	Gazipur	Ishurdi	Jashore	Gazipur	Ishurdi	Jashore	Gazipur	Ishurdi	Jashore
V₁	29.0bc	34.4ab	35.3abc	3.92b	4.54b	5.06b	56.1bc	74.5c	93.6ab
V₂	30.5ab	34.9ab	35.4ab	3.91b	4.59b	5.39b	58.8b	79.5ab	95.5ab
V₃	27.8c	32.4b	33.0bc	4.33b	5.05ab	5.71ab	52.7c	76.4bc	82.5c
V₄	27.5c	31.8b	32.3c	4.37b	4.87b	5.66ab	59.0b	77.7bc	92.4b
V₅	30.7ab	36.1a	36.8a	5.44a	5.93a	6.30a	58.1b	77.1bc	99.0ab
V₆	32.8a	37.2a	37.7a	5.34a	6.04a	6.44a	65.3a	82.4a	101a
CV (%)	6.52	7.42	6.70	11.7	15.7	11.3	5.41	4.66	7.0
In case of seed weight, the heaviest seed (2.29 g at Gazipur and 2.28 g at Ishurdi) was obtained from \(V_2 \) variety which was significantly different with the others variety at Gazipur but it was showed non-significant at Ishurdi. In Jashore, the highest seed weight (2.41 g) was recorded from \(V_5 \) variety that was showed significant variation among the other varieties. The lowest seed weight was noted in \(V_1 \) variety in all the locations. Nodulation showed significantly variation among the different lentil varieties in all the locations (Table 3). The highest number of nodules per plant (36.7) at Gazipur was noted in the variety \(V_3 \) that was statistically alike to \(V_6 \), \(V_5 \) and \(V_4 \) variety. The lowest nodulation (27.6) was found in \(V_2 \) variety. In the locations of Ishurdi and Jashore, the maximum number of nodules per plant (35.9 at Ishurdi and 38.0 at Jashore) was counted in the variety \(V_6 \) which was statistically similar with \(V_5 \), \(V_4 \) and \(V_3 \) at Ishurdi and \(V_5 \), \(V_4 \), \(V_3 \) and \(V_1 \) at Jashore. The lowest nodulation was observed in \(V_2 \) (27.6) at Ishurdi and \(V_1 \) (29.6) at Jashore which was statistically inferior with the other varieties (Table 3).

Table 3. Main effects of lentil varieties on yield attribute (Pooled data of two years).

Varieties	100 seed wt. (g)	No. of nodules plant\(^1\)							
	Gazipur	Ishurdi	Jashore	Gazipur	Ishurdi	Jashore	Gazipur	Ishurdi	Jashore
\(V_1 \)	1.78c	2.13	1.84e	29.1bc	27.8b	29.6b			
\(V_2 \)	2.29a	2.28	2.26c	27.6c	27.6b	30.5ab			
\(V_3 \)	2.06b	2.27	2.31b	36.7a	34.7a	35.4ab			
\(V_4 \)	2.06b	2.20	2.33d	32.5abc	34.5a	34.3ab			
\(V_5 \)	1.98b	2.19	2.21d	33.8ab	31.8ab	33.2ab			
\(V_6 \)	2.02b	2.17	2.41a	34.5ab	35.9a	38.0a			
CV (%)	4.79	8.91	0.77	14.3	14.8	16.2			
LSD (0.05)	0.13	ns	0.023	5.98	6.13	7.13			

In a column, the values having common letter do not differ significantly (P≤0.05)
Note: \(V_1 \) = BARI Masur-2, \(V_2 \) = BARI Masur-3, \(V_3 \) = BARI Masur-4, \(V_4 \) = BARI Masur-5, \(V_5 \) = BARI Masur-6, and \(V_6 \) = BARI Masur-7

In case of seed yield of lentil, significantly the highest yield (1471 kg ha\(^{-1} \) in 1\(^{st} \) year and 1302 kg ha\(^{-1} \)) was produced by \(V_6 \) at Gazipur but it was statistically identical by \(V_3 \), \(V_4 \), \(V_1 \) and \(V_2 \) variety in 1\(^{st} \) year. The lowest seed yield was produced by \(V_1 \) = BARI Masur-2 in both the years. In Ishurdi, the greatest seed yield (2030 kg ha\(^{-1} \)) was achieved in \(V_6 \) = BARI Masur-6 in 1\(^{st} \) year showed non-significant with other varieties but in 2\(^{nd} \) year it was obtained highest (2314 kg ha\(^{-1} \)) from \(V_6 \) = BARI Masur-7 followed by \(V_2 \), \(V_3 \), \(V_5 \) and \(V_4 \) variety. The lowest seed yield produced by BARI Masur-2 in both the years. In Jashore, the highest seed yield (1599 kg ha\(^{-1} \)) got from \(V_6 \) = BARI Masur-7 in 1\(^{st} \) year which statistically resemble with most of the varieties although highest yield (1599 kg ha\(^{-1} \)) acquired by \(V_5 \) = BARI Masur-6 in 2\(^{nd} \) year which was significantly different over other varieties but statistically at par \(V_6 \) and \(V_2 \) variety (Table 4). In the experiment, harvest index (HI) of lentil was ranged across the varieties from 41.2 to 44.4% at Gazipur, 45.6 to 46.5% at Ishurdi and 42.8 to 45.6% at Jashore, respectively, where the significantly highest HI (44.4%) was recorded from \(V_6 \) variety and lowest HI was found in \(V_1 \) variety for Gazipur. The highest harvest index was recorded at Ishurdi from \(V_2 \) variety which showed non-significant. The highest HI was found in \(V_1 \) variety for Jashore that was statistically similar with most of the varieties (Table 4).

Table 4. Main effects of lentil varieties on yield and harvest index.

Varieties	Seed yield (kg ha\(^{-1} \))	HI (%)							
	Gazipur	Ishurdi	Jashore	Gazipur	Ishurdi	Jashore	Gazipur	Ishurdi	Jashore
\(V_1 \)	1219b	923b	1930	1867b	1543a	1391bc	41.2c	45.6	45.6a
\(V_2 \)	1262ab	999b	2054	2209a	1482a	1608ab	41.6c	46.5	45.1a
\(V_3 \)	1323ab	1062b	1995	2199a	1415a	1520b	42.0bc	46.3	44.9a
\(V_4 \)	1286ab	1011b	1980	2272a	1171b	1267c	42.2bc	46.4	42.8b
\(V_5 \)	1333ab	1104b	2030	2214a	1578a	1755a	43.0b	45.9	45.5a
\(V_6 \)	1471a	1302a	2014	2314a	1599a	1584ab	44.4a	46.3	45.1a
CV (%)	14.5	14.2	10.4	9.66	9.86	11.5	1.87	5.85	3.41
LSD (0.05)	249	195	ns	270	186	227	1.02	ns	1.96

In a column, the values having common letter do not differ significantly (P≤0.05)
Note: \(V_1 \) = BARI Masur-2, \(V_2 \) = BARI Masur-3, \(V_3 \) = BARI Masur-4, \(V_4 \) = BARI Masur-5, \(V_5 \) = BARI Masur-6, and \(V_6 \) = BARI Masur-7
In the experiment, the highest protein content (27.9% in Gazipur, 28.3% in Ishurdy and 28.2% in Jashore) was estimated in the seed lentil variety $V_6 = \text{BARI Masur-7}$ which was significantly variation among the other varieties at Gazipur but at Ishurdy and Jashore it was showed non-significant (Table 5). In case of zinc content in seed, the zinc content varied across the varieties from 54.7 to 67.4 ppm at Gazipur, 57.0 to 71.1 ppm at Ishurdy and 54.2 to 67.8 ppm at Jashore, where the highest zinc content was recorded from the variety $V_6 = \text{BARI Masur-7}$ that was significantly different with the other varieties but statistically identical at par $V_3 = \text{BARI Masur-6}$ in all the locations (Table 5).

Table 5. Main effects of lentil varieties on protein and zinc content (Pooled data of two years.)

Varieties	Protein content (%)	Zinc content (ppm)				
	Gazipur	Ishurdy	Jashore	Gazipur	Ishurdy	Jashore
V_1	26.7b	27.1	26.9	58.6bc	60.0b	60.0b
V_2	26.9b	27.2	27.3	59.9bc	57.0b	58.1b
V_3	26.7b	26.9	27.4	54.7c	57.5b	54.2c
V_4	27.2b	27.3	26.8	61.5abc	61.2b	57.1bc
V_5	26.8b	27.2	27.0	64.8ab	68.3a	65.9a
V_6	27.9a	28.3	28.2	67.4a	71.1a	67.8a
CV (%)	1.82	6.66	7.13	8.90	6.94	6.64
LSD (0.05)	0.63	ns	ns	7.0	5.58	5.16

In a column, the values having common letter do not differ significantly (P≤0.05) Note: $V_1 = \text{BARI Masur-2}, V_2 = \text{BARI Masur-3}, V_3 = \text{BARI Masur-4}, V_4 = \text{BARI Masur-5}, V_5 = \text{BARI Masur-6}, V_6 = \text{BARI Masur-7}$

3.2. Effect of Zinc

In case of lentil varieties, application of zinc showed positive variation among the different yield parameters (Tables 6 & 7). The tallest plant of lentil (31.3 cm at Gazipur, 36.2 cm at Ishurdy and 36.7 cm at Jashore) was significantly found in the plot application of 2 kg Zn ha$^{-1}$. The dwarf plant was observed in Zn control plot at all the locations (Table 6). The highest number of branches per plant (4.82 at Gazipur, 5.41 at Ishurdy and 6.06 at Jashore) and the maximum number of pods per plant (62.8 at Gazipur, 80.9 at Ishurdy and 99.0 at Jashore) was recorded in the plot receiving of 2 kg Zn ha$^{-1}$. The number of both branches and pods were recorded lowest in Zn control plot (Table 6). The highest seed weight (2.07 g at Gazipur, 2.31 g at Ishurdy and 2.23 g at Jashore) and maximum nodulation (34.5 at Gazipur, 35.2 at Ishurdy and 38.0 at Jashore) was obtained by the application of 2 kg Zn ha$^{-1}$ and both the parameters got lowest in Zn control plot (Table 7).

Table 6. Main effects of zinc on growth and yield attribute of lentil varieties.

Zn level (kg ha$^{-1}$)	Plant height (cm)	No. of branches plant$^{-1}$	No. of pods plant$^{-1}$						
	Gazipur	Ishurdy	Jashore	Gazipur	Ishurdy	Jashore	Gazipur	Ishurdy	Jashore
0	28.1b	32.7b	33.5b	4.29b	4.92	5.46b	53.8b	74.9b	89.0b
2	31.3a	36.2a	36.7a	4.82a	5.41	6.06a	62.8a	80.9a	99.0a
CV (%)	6.52	7.42	6.70	11.7	15.7	11.3	5.41	4.66	7.0
LSD (0.05)	1.81	1.99	1.81	0.29	ns	0.41	0.31	4.02	2.73

In a column, the values having common letter do not differ significantly (P≤0.05)

Table 7. Main effects of zinc on yield attribute of lentil varieties.

Zn level (kg ha$^{-1}$)	100 seed wt. (g)	No. of nodules plant$^{-1}$				
	Gazipur	Ishurdy	Jashore	Gazipur	Ishurdy	Jashore
0	1.96b	2.10b	2.19b	30.2b	28.9b	30.4b
2	2.07a	2.31a	2.23a	34.5a	35.2a	38.0a
CV (%)	4.79	9.81	0.77	14.3	14.8	16.2
LSD (0.05)	0.02	0.05	0.01	0.88	0.97	0.96

In a column, the values having common letter do not differ significantly (P≤0.05)

The seed yield of lentil was exhibited significantly different between Zn$_0$ and 2 kg Zn ha$^{-1}$ during all the years and all the locations (Table 8). The highest seed yield (1480 kg ha$^{-1}$ in 1st year and 1193 kg ha$^{-1}$ in 2nd year) at Gazipur was produced by the application of 2 kg Zn ha$^{-1}$. In Ishurdy, the highest seed yield (2166 kg ha$^{-1}$ in 1st year and 2333 kg ha$^{-1}$ in 2nd year) was achieved in the same Zn rate and it was produced highest (1544 kg ha$^{-1}$ in 1st year and 1653 kg ha$^{-1}$ in 2nd year) at Jashore in the plot receiving of 2 kg Zn ha$^{-1}$. The lowest yield was found in all the years and locations in Zn control plot (Table 8). In the present study, harvest index (HI) of lentil was showed significant at Gazipur and it was non-significant at Ishurdy and Jashore between Zn$_0$ and 2 kg Zn ha$^{-1}$ during all the years and all the locations (Table 8). The highest HI (42.9%) at Gazipur, (46.6%) at Ishurdy and (45.0%) at Jashore was documented by the application of 2 kg Zn ha$^{-1}$ and it was lowest at Zn control plot at all the locations (Table 7).
Table 8. Main effects of zinc on yield and harvest index of lentil varieties.

Zn level (kg ha⁻¹)	Seed yield (kg ha⁻¹)	Harvest index (%)	
	Gazipur	Ishurdy	Jashore
	1st Yr. 2nd Yr.	1st Yr. 2nd Yr.	1st Yr. 2nd Yr.
0	1184b 1025b	1384b 1389b	41.8b 45.7b
2	1480a 2166a	1544a 1653a	42.9a 46.6a
CV (%)	14.5 10.4	11.5 15.3	1.87 8.58
LSD (0.05)	153 189	89 64	0.66 ns

In a column, the values having common letter do not differ significantly (P≤0.05).

In the trial, zinc exhibited significantly positive effect on protein and zinc content in lentil seed at all the locations of Gazipur, Ishurdy and Jashore (Table 9). The highest protein content (27.6%) at Gazipur, (28.1%) at Ishurdy and (27.9%) at Jashore was estimated from the plot receiving of 2 kg Zn ha⁻¹ and it was lowest at Zn control plot at all the locations (Table 9). Similarly the highest zinc content (64.6 ppm) at Gazipur, (65.5 ppm) at Ishurdy and (62.4 ppm) at Jashore was determined from the same dose of zinc (2 kg Zn ha⁻¹) (Table 9).

Table 9. Main effects of zinc on protein and zinc content in lentil varieties.

Zn level (kg ha⁻¹)	Protein content (%)	Zinc content (ppm)
	Gazipur Ishurdy	Jashore
0	26.4b 26.6b	57.7b 59.3b
2	27.6a 28.1a	64.6a 65.5a
CV (%)	1.82 6.66	8.90 6.94
LSD (0.05)	0.19 0.32	1.48 1.63

In a column, the values having common letter do not differ significantly (P≤0.05).

3.3. Interaction Effect of Variety and Zinc

The growth and yield attributes of lentil were positively influenced by the interaction of variety and zinc in all the locations (Tables 10 & 11). In the study, the tallest plant of lentil (34.9 cm at Gazipur, 38.7 cm at Ishurdy and 39.3 cm at Jashore) was recorded from the treatment combination of V₃Zn₂ which was showed significantly difference in most of the cases. The dwarf plant (26.0 cm at Gazipur, 29.9 cm at Ishurdy and 30.2 cm at Jashore) was found in V₀Zn₀ treatment (Table 10). In case of branches, the number of branches per plant was ranged across the combined variety and zinc treatments from 3.68 to 5.78 at Gazipur, 4.31 to 6.33 at Ishurdy and 5.00 to 6.88 at Jashore. The maximum number of branches per plant (5.78) was noted in V₃Zn₂ treatment which was statistically identical to V₃Zn₀, V₃Zn₁ and V₃Zn₂ treatments at Gazipur. The highest number of branches per plant (6.33 at Ishurdy and 6.88 at Jashore) was attained in the treatment V₃Zn₂ followed by V₂Zn₀, V₂Zn₁, V₂Zn₂ and V₂Zn₃ at both the locations and the lowest was in V₀Zn₀ treatment (Table 10). In Gazipur, BARI Masur-7 formed the highest number of pods per plant (70.3) in zinc treated plot which was significantly different over the other treatment of varieties and zinc treated or control. The lowest number of pods per plant (49.9) was recorded in V₀Zn₀ treatment. The maximum number of pods per plant (88.3 at Ishurdy and 110 at Jashore) was achieved by the variety BARI Masur-7 in Zinc treated plot (V₃Zn₂) which was statistically at par V₃Zn₂ in both Ishurdy and Jashore and at par V₂Zn₂ in Jashore. The lowest pods (72.0) was recorded at Ishurdy for V₀Zn₀ and (81.0) was found in V3Zn0 treatment at Jashore (Table 10).

Table 10. Interaction effects of lentil variety and zinc on growth and yield attribute of lentil.

Treatment combination	Plant height (cm)	No. of branches plant⁻¹	No. of pods plant⁻¹			
	Gazipur Ishurdy	Jashore	Gazipur Ishurdy	Jashore	Gazipur Ishurdy	Jashore
V₃Zn₀	27.8cd 33.3cd	34.3cd	3.84ef 4.31c	5.00b 50.2c	72.0c 87.0def	
V₂Zn₀	30.2bc 35.5abc	36.3ab	4.00def 4.77bc	5.12b 61.9bc	77.0bc 100bc	
V₃Zn₁	28.6bcd 32.9cd	33.8bcd	3.68f 4.82abc	5.55b 62.3bc	82.9ab 103ab	
V₂Zn₁	32.4ab 36.9abc	37.1ab 4.15c-f	4.82abc 5.43b	49.9e 74.0c	81.0f 101f	
V₃Zn₂	26.9cd 30.3d	31.1cd	4.10def 4.85abc	5.43b 49.9e	74.0c 81.0f	
V₂Zn₂	28.7bcd 34.6a-d	34.9bc	4.56b-e 5.24abc	5.99ab 55.6d	78.7bc 84.0f	
V₃Zn₃	26.0d 29.9d	30.2d	4.01ef 4.57c	5.32b 52.6de	76.5bc 90.0def	
V₂Zn₃	28.9bcd 33.8bc	34.4bcd	4.74bcd 5.16abc	6.00b 65.4b	78.9bc 95.0bc	
V₃Zn₄	28.8bcd 34.5a-d	35.5ab	5.10ab 5.67ab	5.77b 54.6d	74.4e 96.0bc	
V₂Zn₄	32.6ab 37.7ab	38.1ab	5.78a 6.19ab	6.82b 61.6bc	79.8bc 102ab	
V₃Zn₅	30.7abc 35.7abc	36.0abc	5.08abc 5.74abc	6.00ab 60.4c	76.6bc 92.0de	
V₂Zn₅	34.9a 38.7a	39.3a	5.68a 6.33a	6.88a 70.3a	88.3a 110a	
CV (%)	8.39 7.94	7.12	8.83 16.8	9.85 0.72	7.10 4.01	
LSD (0.05)	4.43 4.87	4.44	0.72 1.55	1.01 0.75	9.84 6.71	

In a column, the values having common letter do not differ significantly (P≤0.05). Note: V₁ = BARI Masur-2, V₂ = BARI Masur-3, V₃ = BARI Masur-4, V₄ = BARI Masur-5, V₅ = BARI Masur-6, and V₆ = BARI Masur-7
The heaviest seed (2.38 g at Gazipur and 2.44 g at Ishurdy) produced by the variety BARI Masur-3 in zinc treated plot (V3Zn3) which was non-significant. Significantly the highest test seed weight (2.43 g) was obtained in the treatment V6Zn2 at Jashore and the lowest was in V1Zn6 treatment (Table 11). In the experiment, the nodulation per plant of lentil varied across the combination of variety and zinc from 26 to 38.4 at Gazipur, 25 to 39.3 at Ishurdy and 26.4 to 43.4 at Jashore, however, the maximum number of nodules per plant was counted in the treatment V3Zn3 at Gazipur which was non-significant. It was recorded highest in the treatment V5Zn5 at Ishurdy and Jashore that also showed non-significant (Table 11).

Seed yield of lentil influenced significantly by the interaction of variety and zinc at three locations like Gazipur, Ishurdy and Jashore during two years but was non-significant in 2nd year at Jashore (Table 12). The highest seed yield (1664 kg ha⁻¹ in 1st year and 1471 kg ha⁻¹ in 2nd year) produced by the treatment V3Zn2 which was statistically identical to V5Zn2, V3Zn3, V2Zn2, V3Zn3 and V1Zn2 at Gazipur in 1st year but it was significantly different over the other treatment combinations in 2nd year. The lowest seed yield (1079 kg ha⁻¹ in 1st year and 832 kg ha⁻¹ in 2nd year) was recorded in the treatment combination of V1Zn9 at Gazipur (Table 12). The average seed yield of lentil varied from 956 to 1568 kg ha⁻¹ across the treatments where the highest yield (1568 kg ha⁻¹) was got from V1Zn2 treatment at Gazipur (Figure 1). In Ishurdy, the highest seed yield (2268 kg ha⁻¹ in 1st year and 2523 kg ha⁻¹ in 2nd year) was obtained from V3Zn1 treatment that statistically resembled in most of the treatment combinations. The lowest yield (1799 kg ha⁻¹ in 1st year and 1633 kg ha⁻¹ in 2nd year) was found in V1Zn5 treatment (Table 12). The average seed yield (mean of two years) of lentil ranged across the treatment combinations at Ishurdy from 1716 to 2396 kg ha⁻¹ but the greatest yield was found in V4Zn2 treatment (Figure 1). In Jashore, the highest seed yield (1669 kg ha⁻¹ in 1st year and 1608 kg ha⁻¹ in 2nd year) was achieved in V1Zn2 treatment that was significantly different with other treatments but showed statistically alike in most the treatments in 1st year; however in 2nd year it was showed non-significant. The lowest yield was found in V2Zn0 treatment in both the years (Table 12). The average seed yield (mean of two years) of lentil ranged among the different treatment combinations at Jashore from 1114 to 1639 kg ha⁻¹ but the highest yield was found in V4Zn2 treatment (Figure 1). Comparison among the three locations on mean seed yield across the treatment combination of variety and zinc indicated that the highest yield was observed at Ishurdy followed by Jashore and the lowest in Gazipur (Figure 1). In the experiment, the harvest index (HI) of lentil varied among the treatments from 40.9 to 45.0% at Gazipur while the highest harvest index (45.0%) was calculated in the treatment V1Zn5 that was statistically similar to V5Zn3 and V2Zn2 treatment. The lowest HI was in V1Zn0 treatment (Table 12). In Ishurdy, the highest harvest index (46.9%) was computed in V4Zn2 treatment which was showed non-significant. In Jashore, it was computed highest (45.8%) in V4Zn2 treatment which was statistically at par most of the treatment combinations and the lowest HI (42.5%) was in V2Zn0 treatment (Table 12).

Table 11. Interaction effects of lentil variety and zinc on yield attribute of lentil.

Treatment combination	100 seed wt. (g)	No. of nodules plant⁻¹				
	Gazipur	Ishurdy	Jashore	Gazipur	Ishurdy	Jashore
V1Zn2	2.05	1.98	1.98	26.7	25.0	26.4
V3Zn2	2.20	2.13	1.84i	31.6	30.6	32.7
V3Zn3	2.28ef	2.28de	2.29cd	34.8	31.4	31.9
V4Zn2	2.36	2.32c	2.39b	38.4	37.9	38.6
V6Zn2	2.16	2.10	2.12gh	30.7	31.2	31.1
V6Zn3	2.23	2.18	2.24fg	34.2	37.8	37.6
V6Zn5	2.03	2.04	2.39b	31.3	32.6	32.6
V6Zn6	2.04	2.30	2.43a	37.7	39.3	43.4
CV (%)	3.13	0.97	3.74	4.17	3.9	
LSD (0.05)	ns	ns	0.03	ns	ns	ns

In a column, the values having common letter do not differ significantly (P≤0.05)

Note: V1 = BARI Masur-2, V2 = BARI Masur-3, V3 = BARI Masur-4, V4 = BARI Masur-5, V5 = BARI Masur-6, and V6 = BARI Masur-7

Table 12. Interaction effects of lentil varieties and zinc on yield and harvest index (pooled data of two years) of lentil.

Treatment combination	Seed yield (kg ha⁻¹)	HI (%)							
	Gazipur	Ishurdy	Jashore	Gazipur	Ishurdy	Jashore			
V1Zn2	1079b	832f	1799c	1633c	1526ab	1137	40.9d	45.0	45.7a
V3Zn2	1359ab	1013cede	2060abe	2100b	1559ab	1645	41.4cd	45.4	45.5a
V3Zn3	1146b	877ef	1930abe	2110b	1427bc	1528	41.2cd	46.1	45.2ab
V4Zn2	1378ab	1120bcd	2177abc	2307ab	1537ab	1688	42.0cd	46.8	45.0ab
V4Zn3	1202b	933def	1830bc	2100b	1210cd	1479	41.4cd	45.7	44.3abc
Ishurdy and Jashore but was showed non-significant at interaction of variety and zinc at three locations like Gazipur, Ishurdy and Jashore (Table 13). The protein content ranged among the treatment combinations of variety and zinc from 25.9 to 28.5% at Gazipur, 26.2 to 28.9% at Ishurdy and 26.26% achieved in the treatment of V3 Zn2 at Jashore but it was lowest in V6 Zn1 combination.

In a column, the values having common letter do not differ significantly (P≤0.05)

Note: V1 = BARI Masur-2, V2 = BARI Masur-3, V3 = BARI Masur-4, V4 = BARI Masur-5, V5 = BARI Masur-6, and V6 = BARI Masur-7

Figure 1. Seed yield variation among 3 locations due to different treatment combination.

Note: V1 = BARI Masur-2, V2 = BARI Masur-3, V3 = BARI Masur-4, V4 = BARI Masur-5, V5 = BARI Masur-6 and V6 = BARI Masur-7

Error bar represent the SEM

Seed protein content of lentil affected positively by the interaction of variety and zinc at three locations like Gazipur, Ishurdy and Jashore but was showed non-significant at Ishurdy and Jashore (Table 13). The protein content ranged among the treatment combinations of variety and zinc from 25.9 to 28.5% at Gazipur, 26.2 to 28.9% at Ishurdy and 26.2 to 29.0% at Jashore, while the highest protein content was achieved in the treatment of V3 Zn2 in all the locations and lowest content was found in V3 Zn1 treatment at Gazipur and Jashore but it was lowest in V3 Zn1 at Ishurdy (Table 13). In case of zinc content in seed, it was showed non-significant by the interaction of variety and zinc at Gazipur and Ishurdy. However, the zinc content of seed exhibited significant among the combination of different lentil varieties and 2 kg Zn ha⁻¹ at Jashore (Table 13). The highest zinc content (70.2 ppm at Gazipur and 73.6 ppm at Ishurdy) was recorded from V3 Zn2 treatment which was non-significant. In Jashore, the highest zinc content also recorded highest (69.9 ppm) in V6 Zn2 treatment that was statistically identical with V3 Zn0, V3 Zn2, V3 Zn0 and V3 Zn2 treatments (Table 13).

Table 13. Interaction effects of lentil variety and zinc on protein and zinc content in lentil seed.

Treatment combination	Protein content (%)	Zinc content (ppm)				
	Gazipur	Ishurdy	Jashore	Gazipur	Ishurdy	Jashore
V1 Zn0	25.9d	26.3	26.2	54.9	53.6	54.8cd
V2 Zn0	27.4b	27.8	27.6	62.3	64.3	63.2abc
V3 Zn0	26.3d	26.5	26.8	55.3	53.6	56.2cd
V4 Zn0	27.4b	27.9	27.9	64.5	60.4	59.8bcd
V5 Zn0	26.2d	26.2	26.6	52.6	55.5	53.7d
V6 Zn0	27.2bc	27.7	28.3	56.8	59.5	54.7d
V1 Zn1	26.6cd	26.6	26.4	57.6	58.4	55.9cd
V2 Zn1	27.6d	28.0	27.2	65.4	63.9	58.4bcd
V3 Zn1	26.1d	26.4	26.3	61.2	65.3	63.5abc
V4 Zn1	27.4b	28.1	27.8	68.4	71.4	68.2a
V5 Zn1	27.3b	27.7	27.4	64.5	68.5	65.8ab
V6 Zn1	28.5a	28.9	29.0	70.2	73.6	69.9a
CV (%)	0.99	1.60	4.43	3.33	3.58	7.71
LSD (0.05)	0.48	ns	ns	ns	ns	8.29

In a column, the values having common letter do not differ significantly (P≤0.05)

Note: V1 = BARI Masur-2, V2 = BARI Masur-3, V3 = BARI Masur-4, V4 = BARI Masur-5, V5 = BARI Masur-6, and V6 = BARI Masur-7
4. Discussion

Pulses crops are generally grown in Bangladesh under rain-fed condition without proper nutrient management particularly zinc (Zn) micronutrient [26]. For increasing the productivity of lentil appropriate variety need to be chosen and timely application of Zn micronutrient including other nutrients for plant growth and better performance of yield attributes, quality and high seed yield. Zinc application resulted to enhance the performance of growth, grain yield and quality [27]. Hafeez et al. [28] and Alloway [29] documented that zinc involved in many physiological functions of plant and its inadequate supply will be reduced crop yields. Experimental calcareous soil and other soil with high phosphorus are predictable to be Zn deficient which can be affected plant by growth stunting, decreasing number of pods, chlorosis and smaller leaves, sterility and inferior quality of harvested products. Hence, we compared the response of different lentil varieties to zinc fertilization in terrace and calcareous soils. Genetic variability responded to applied Zn has been noticed among different cultivars of pulses [27]. In the study, growth, yield attributes, quality and yield are influenced by different lentil varieties. Among the performance of varieties, BARI Masur-7 exhibited better followed by BARI Masur-6 over the other lentil varieties. Uddin et al. [26] corroborated that BARI Masur-6 and BARI masur-7 can be grown and better performed in medium and high medium topography areas of Jessore, Chaudanga, Magura, meherpur, Kustia, Rajshahi, Gazipur districts of Bangladesh. In case of harvest index, two varieties BARI Masur-6 and BARI Masur-7 had reasonable plant height with better biomass production ability and improved harvest index and increased yield. Mondal et al. [30] reported that among the five promising lentil mutants, two mutants (LM-507 and LM-1018) showed improved HI, thereby increased yield.

Fertilization of grain legumes with Zn can affect both marketable yield and Zn content of the grain, which is important in human nutrition [31]. In the experiment, Zn fertilization significantly contributed to achieve higher yield and found improved growth, quality and yield contributing characters of lentil. Farooq et al. [32] reported that Zn played an important role in growth and development of crop yield. Seed yield of lentil increased in terrace and calcareous soils of all locations about 14 to 20% increment in Zn fertilization plot over Zn control plot. Grain yield can increase with Zn applications, which enhances plant growth due to the effects of Zn on photosynthesis and enzyme activation [33]. Quddus et al. [34] corroborated in field pea that application of different levels of Zn contributed 11.3% to 29.2% yield increment over Zn control. Zinc might be activated of several enzymes, involved in metabolic activities, assist node formation, protein synthesis resulting better pod formation which ultimately increase the seed yield. The results are in agreement with the findings of Mevada et al. [35]; Klug and Rhodes [36]. We observed that improved harvest index documented in Zn fertilization plot in all the experimental locations. This improved HI might be due to higher biomass accumulation. Harvest index showed statistically significant, some of them were showed non-significant across the treatments. Some researchers have outlined that the harvest index positively affected by Zn applications. Usman et al. [37] stated that the highest harvest index for green gram (Vigna radiata L.) obtained by the application of 20 kg ha⁻¹ zinc sulfate. Furthermore, Purushottam and Saren [38] emphasized that Zn fertilizer had a significant effect on the harvest index. Azad et al. [39] and Gangwar and Singh [40] found that applications of Zn increased the harvest index. But, some research report expressed that the application of Zn had no effect on the harvest index [41, 42].

In our study the effective nodulation was found highest in all the experimental locations in Zn fertilization plot of all varieties and lowest was in Zn control plot. The increasing rate of nodulation among the locations was about 14 to 25%. Patel et al. [43] noted that Zn is involved in N-fixation through nodule formation. The protein percentage in lentil affected significantly by the application of Zn including other (N, P, K, S and B) nutrients. In the experiment, the highest protein content was achieved in Zn fertilization plot in all the locations and lowest was in Zn control plot. Mali et al. [44] found that use of proper doses of zinc might be enhanced the synthesis of carbohydrates and protein and their transport to the site of seed formation. Oktem [45] reported that different levels of zinc fertilization increased protein content in seed of lentil varied from 24.9 to 29.8%. Zinc is a vital micro element in protein synthesis [46, 47]. Pandey and Gautam [48] reported that the protein content of seeds significantly increased with the application of Zn in lentils. Application of Zn fertilizer generally increased the grain Zn concentration. Maqsood et al. [31] reported that low containing organic matter soils increase of 20% in Zn concentration in seed over control was observed when 5 kg Zn ha⁻¹ was added to a loamy textured soil. In the experiment, the Zn concentration augmented 6.3 to 12% among the locations over Zn control treatment. Some researchers have reported that the application of Zn to the soil had a significant positive effect on seed Zn content [49, 50]. Comparison among three locations, the productivity and performance of lentil varieties found comparatively better in calcareous soil than that of terrace soil. These improved variation might be due to soil fertility of calcareous soils was better over terrace soils.

The above results and explanations advocated advance to the appropriate requirement of zinc dose for the targeted soil fertility in order to monitor the different Zn rates to achieve maximum lentil production.

5. Conclusion

Experimental results indicated that Zn fertilization increased the seed yield taken per unit area. Among the varieties, BARI Masur-7 followed by BARI Masur-6 produced the highest seed yield in most of the cases by the application of 2 kg Zn ha⁻¹. Growth and yield contributing
characters responded positively to Zn application in the zinc deficient soils. Protein and Zn content in lentil seed also improved by the application of Zn fertilizer. The result, suggest that 2 kg Zn ha\(^{-1}\) could be applied in any lentil variety for quality improvement and yield maximization in terrace and calcareous soils of Bangladesh. Recommendation has been made from the current study, another experiment should be carried out to monitor and determine the appropriate Zn dose and dynamic for lentil production through different zinc levels in Zn- deficient soils.

References

[1] Das, S. and Kabir W. (2016). Pulses production in Bangladesh: status and drivers for enhancement. Published by Bangladesh Agricultural Research Council (BARC), Dhaka, Bangladesh.

[2] Erskine, W. and Sarker A. (2004). Lentil. In: Corke H, Walker CE (ed) Encyclopedia of grain sciences. Elsevier, London, UK, 2004, 142-150.

[3] Agriculture and Agri-Food Canada (AAFC). 2010. Market outlook report. Lentils: Situation and outlook. Available at www.agr.gc.ca/gaod-dco (verified 4 Oct. 2014).

[4] Ali, A., Ahmad B., Hussain I., Ali A. and Ali Shah F. (2017). Effect of phosphorus and zinc on yield of lentil. Pure and Applied Biology, 6 (4): 1397-1402.

[5] Jahiruddin, M. (2015). Zinc and boron deficiency in crops and their management in Bangladesh. Department of Soil Science, Bangladesh Agricultural University, Mymensingh, pp 1-27.

[6] Hossain, M. A. (2007). Requirement of boron for Mustard-Mungbean-Rice pattern and zinc for Maize-Mungbean-Rice pattern in calcareous soil. PhD Thesis, Department of Soil Science, BAU, Mymensingh. Pp 1-2.

[7] Rashid, M. M. (2001). Agroecological characteristics of Bangladesh. In: M. A. Wadud Mian, F. M. Maniruzzaman, M. A. Sattar, M. A. Aziz Miah, S. K. Paul and K. R. Haque (eds.) Agricultural Research in Bangladesh in the 20th Century. Bangladesh Agricultural Research Council & Bangladesh Academy of Agriculture, Dhaka. Pp. 37-42.

[8] FRG. (2012). Fertilizer Recommendation Guide. Published by Bangladesh Agricultural Research Council, Dhaka, Bangladesh.

[9] BBS, (2016). Yearbook of Agricultural Statistics of Bangladesh-2015. Bangladesh Bureau of statistics. Statistics and informatics Division. Ministry of planning. Government of the people’s republic of Bangladesh. Dhaka. p. 138.

[10] Fageria, N. K., Baligar V. C. and Clark R. B. (2002). Micronutrients in Crop Production. Advances in Agronomy; 77: 185-268.

[11] Loneragan, J. F. and Webb, M. J. (1993). Interactions between zinc and other nutrients affecting the growth of plants. In: Zinc in soils and plants (Robson A. D., ed) Kluwer Academic Publishers, Dordrecht, The Netherlands. pp. 45-57.

[12] Khan, H. R., McDonald, G. K., and Rengel, Z. (2004). Zinc fertilization and water stress affects plant water relations, stomatal conductance and osmotic adjustment in chickpea (Cicer arietinum). Plant Soil, 267: 271-284.

[13] Valenciano, J. B., Bato J. A., and Marcelo, V. (2010). Response of chickpea (Cicer arietinum L.) yield to Zinc, boron and molybdenum application under pot conditions. Spanish Journal of Agricultural Research, 8, 797-807.

[14] Sommer, Anna L., and Lipman, C. B. (1926). Evidence on the indispensable nature of zinc and boron for higher green plants. Plant Physiology, 1: 231-249.

[15] Obata, H., Kawamura, Senoo K. and Tanaka A. (1999). Changes in the level of protein and activity of Cu/Zn superoxide dismutase in zinc deficient rice plant, Oryza sativa L. Soil Sci. Plant Nutr. 45: 891-896.

[16] Page, A. L., Miller R. H. and Keeney D. R. (Eds.). (1982). Agronomy Series 9 ASA, SSSA. Methods of Soil Analysis (Part 2, 2nd ed., pp. 403-427). American Society of Agronomy, Madison, USA.

[17] Brenner, J. M. and Mulvany, C. S. (1982). Total nitrogen. In A. L. Page, R. H. Miller, D. R. Keeney (Eds.), Methods of Soil Analysis (Part 2, 2nd ed., pp. 599-622). American Society of Agronomy, Madison, USA.

[18] Bray R. H. and Kurtz L. T. (1945). Determination of total, organic and available forms of phosphorus in soils. Ibid. 59: 39-45.

[19] Jackson, M. L. (1973). Soil Chemical Analysis (p. 498). Prentice Hall of India Private Limited, New Delhi.

[20] Gupta, P. K. (2004). Soil, Plant, Water and Fertilizer Analysis. Department of Agricultural Chemistry and Soil Science, Maharana Pratap University of Agriculture & Technology, Rajasthan, India, Pp 168-170.

[21] Fox, R. L.; Olsen, R. A.; Rhoades, H. F. (1964). Evaluating the sulphur status of soil by plant and soil test. Soil Science Society of America Proc., 28, 243-246.

[22] Lindsay, W. L. and Norvell, W. A. (1978). Development of DTPA soil test for zinc, iron, manganese and copper. Soil science Society of American Journal, 42: 421-8.

[23] Piper, C. S. (1964). Soil and Plant Analysis. Adelaide University Press, Australia.

[24] Hiller, A., J. Plazin and D. D. Van Slyke. (1948). A study of conditions of Kjeldhal determination of nitrogen in proteins. Journal of Biological Chemistry, 176 (3): 1401-1420.

[25] Statix 10. (1985). An Analytical Software, Po Box 12185, Tallahassee, FL 32317, Copy right © 1985-2013.

[26] Uddin, J., Sarker A., Poddar R., Afzal A., Rashid H. and Siddique K. H. M. (2014). Development of new lentil varieties in Bangladesh. http://www.regional.org.au/au/asa/2008/poster-focussed-research/5654

[27] Singh, K. K., Praharaj, C. S., Choudhary A. K., Narendra Kumar and Venkatesh M. S. (2015). Zinc Response in Pulses. Indian Journal of Fertilizers, 7 (10): 118-126.

[28] Hafeez, B., Khanif Y. M. and Saleem M. (2013). Role of zinc in plant nutrition- A Review. American Journal of Experimental Agriculture, 3 (2): 374-391.

[29] Alloway, B. J. (2008). Zinc in Soils and Crop Nutrition. Second edition, published by IZA and IFA Brussels, Belgium and Paris, France, 2008.
[30] Mondal, M. M. M., Puteh A. B., Malek M. A., Roy S. and Yusop M. R. (2013). Contribution of morpho-physiological traits on yield of lentil (Lens culinaris Medik). Australian Journal of Crop Science, 7980: 1167-1172.

[31] Maqsood, A. M., Schoenau J. & Vandenberg A. (2016). Zinc fertilization of lentil for grain yield and grain zinc concentration in ten Saskatchewan soils, Journal of Plant Nutrition, 39: 6, 866-874.

[32] Farooq M, Wahid A & Siddique KHM (2012). Micronutrient application through seed treatments: a review. Journal of Soil Science and Plant Nutrition, 12: 125-142.

[33] Hussain, I., and Ahmad B. (2015). Effect of Nitrogen and Zinc Application on Growth, Yield and Seed Recovery of Wheat Crop. Peshawar, Pakistan: KPK Agricultural University.

[34] Quddus, M. A., Hossain M. A., Naser H. M., Anwar B., Akhtar S. and Nazimuddin M. (2018). Effect of zinc and boron application on productivity, quality and nutrient uptake of fieldpea (Pisum sativum L.) grown in calcareous soils. Journal of Agricultural Science and Practice, 3 (6): 132-143.

[35] Mevada, K. D., Patel, J. J., & Patel, K. P. (2005). Effect of micronutrients on yield of urdbean. Indian Journal of Pulses Research, 18, 214-6.

[36] Klug, A. and Rhodes, D. (1987). “Zinc fingers”: A Novel protein motif for nucleic acid recognition. Trends in Biochemical Sciences, 12: 464-469.

[37] Usman M., Tahir M. and Majeed M. A. (2014). Effect of zinc sulphate as soil application and seed treatment on green gram (Vigna radiata L.). Pakistan Journal of Life and Social Sciences, 12: 87-91.

[38] Purushottam AG and Saren BK (2018). Effect of irrigation scheduling and zinc application on yield attributes and yield of chickpea (Cicer arietinum L.). Bioscience Trends 11: 376-378.

[39] Azad AS, Manchada JS, Gill AS, Bains SS (1993). Effect of zinc application on grain yield, yield components and nutrient content of lentil. Lens Newsletter 20: 30-33.

[40] Gangwar KS, Singh NP (1986). Effect of zinc application on yield and quality of lentil (Lens culinaris Medic.) Legume Research, 1: 11-14.

[41] Singh RP, Shukla VK, Yadav RS, Sharma PK, Singh PK, Pandey AC (2011). Biological approach of zinc oxide nanoparticles formation and its characterization. Advanced Materials Letters 2: 313-317.

[42] Singh, A. K. and Bhatt B. P. (2015). Late-sown lentil performance in response to foliar application of zinc. Bangladesh Journal of Botany, 44: 125-128.

[43] Patel, M. M., Patel, I. C., Patel, R. I., & Acharya, S. (2011). Effect of Zinc and Iron on yield and yield attributes of rainfed cowpea (Vigna unguiculata L. Walp). Annals of Arid Zone, 50 (1), 17-19.

[44] Mali, G. C., Sharma, N. N., Acharya, H. K., Gupta, S. K., & Gupta, P. K. (2003). Response of pigeon pea to S and Zn fertilization on vertisols in south-eastern plain of Rajasthan. Advances in Arid Legumes Research, pp. 267-271. Indian Arid Legumes Society, Scientific Publishers (India), Jodhpur.

[45] Oktem, A. G. (2019). Effects of different zinc levels on grain yield and some phenological characteristics of red lentil (Lens culinaris Medic.) under arid conditions. Turkish Journal of Agriculture and Forestry, 43: 360-367.

[46] Esfandiarie, E. and Abdoli M. (2016). Wheat biofortification through zinc foliar application and its effects on wheat quantitative and qualitative yields under zinc deficient stress. Yıldızlı Yılı Üni. Tarım Bilimleri Dergisi, 26: 529-537.

[47] Martinez, M. F., Vicca S., Janssens I. A., Espelta J. M., Penuelas J. (2017). The role of nutrients, productivity and climate in determining tree fruit production in European forests. New Phytol 213: 669-679.

[48] Pandey, S. N. and Gautam S. A. (2009). Effects of zinc supply on its uptake, growth and biochemical constituents in lentil. Indian Journal of Plant Physiology, 14: 67-70.

[49] Kaya, M., Zeliha K. and Albrarh E. (2009). Phytase activity, phytic acid, zinc, phosphorus and protein contents in different chickpea genotypes in relation to nitrogen and zinc fertilization. African Journal of Biotechnology, 8: 4508-4513.

[50] Shivay, Y. S., Prasad R. and Pal M. (2014). Effect of variety and zinc application on yield, profitability, protein content and zinc and nitrogen uptake by chickpea (Cicer arietinum). Indian Journal of Agronomy, 59: 317-321.