A DNA Damage Response Gene Panel for Different Histologic Types of Epithelial Ovarian Carcinomas and Their Outcomes

Ying-Cheng Chiang 1,2,*, Po-Han Lin 3,4, Tzu-Pin Lu 5, Kuan-Ting Kuo 6, Yi-Jou Tai 2,7,*, Heng-Cheng Hsu 7,8,*, Chia-Ying Wu 2,7, Chia-Yi Lee 7,8,*, Hung Shen 7,8, Chi-An Chen 1,2,6,*,† and Wen-Fang Cheng 1,2,7,8,9,*,†

1 Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 100226, Taiwan; yching@ntu.edu.tw
2 Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan; stitlaby@gmail.com (Y.-J.T.); ascheetah@msn.com (C.-Y.W.)
3 Department of Medical Genetics, National Taiwan University Hospital, Taipei 100226, Taiwan; pohanlin01@gmail.com
4 Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100025, Taiwan
5 Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei 100025, Taiwan; tbenlu@gmail.com
6 Department of Pathology, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; pathologykimo@gmail.com
7 Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; bl101092037@gmail.com (H.-C.H.); plzfixthecar@gmail.com (C.-Y.L.); shkt0802@gmail.com (H.S.)
8 Department of Obstetrics and Gynecology, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan
9 Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100025, Taiwan
* Correspondence: chianchen@ntu.edu.tw (C.-A.C.); wenfangcheng@yahoo.com (W.-F.C.);
Tel.: +886-2-2312-3456 (ext. 71964) (W.-F.C.)
† Equal contribution.

Abstract: DNA damage response (DDR) is important for maintaining genomic integrity of the cell. Aberrant DDR pathways lead to accumulation of DNA damage, genomic instability and malignant transformations. Gene mutations have been proven to be associated with epithelial ovarian cancer, and the majority of the literature has focused on BRCA. In this study, we investigated the somatic mutation of DNA damage response genes in epithelial ovarian cancer patients using a multiple-gene panel with next-generation sequencing. In all, 69 serous, 39 endometrioid and 64 clear cell carcinoma patients were enrolled. Serous carcinoma patients (69.6%) had higher percentages of DDR gene mutations compared with patients with endometrioid (33.3%) and clear cell carcinoma (26.6%) (p < 0.001, chi-squared test). The percentages of DDR gene mutations in patients with recurrence (53.9 vs. 32.9% p = 0.006, chi-squared test) or cancer-related death (59.2 vs. 34.4% p = 0.001, chi-squared test) were higher than those without recurrence or living patients. In endometrioid carcinoma, patients with ≥2 DDR gene mutations had shorter PFS (p = 0.0035, log-rank test) and OS (p = 0.015, log-rank test) than those with one mutation or none. In clear cell carcinoma, patients with ≥2 DDR gene mutations had significantly shorter PFS (p = 0.0056, log-rank test) and OS (p = 0.0046, log-rank test) than those with 1 DDR mutation or none. In the EOC patients, somatic DDR gene mutations were associated with advanced-stage tumor recurrence and tumor-related death. Type I EOC patients with DDR mutations had an unfavorable prognosis, especially for clear cell carcinoma.

Keywords: epithelial ovarian cancer; DNA damage response; somatic mutation; clear cell carcinoma

1. Introduction

Epithelial ovarian carcinoma (EOC) is a major cause of death in women worldwide, and patients are usually diagnosed at an advanced stage with a 5-year survival of less than 50% [1–4]. Clinical prognostic factors include cancer stage, histological subtypes,
tumor grade, residual tumor size after debulking surgery and response to chemotherapy. Despite an initial good response to primary treatments of debulking surgery and adjuvant platinum-based chemotherapy, the majority of patients experience a cancer relapse that is resistant to salvage treatments and eventually die of the disease [4,5].

Precision medicine is the current direction for cancer management depending on the specific genetic or molecular features of cancer. There are several subtypes of EOC—high-grade serous, clear cell, endometrioid, mucinous and low-grade serous—that could be viewed as distinct diseases for their differences in clinical course and pathological features [6,7]. To date, the most promising target therapies for EOC are anti-angiogenesis agents and poly ADP-ribose polymerase inhibitors (PARPi). Bevacizumab in combination with chemotherapy has demonstrated improved progression-free survival, and an overall survival benefit in high-risk patients [8–10]. Maintenance therapy with PARPi has revised the management of EOC in newly diagnosed and recurrent diseases. The identification of BRCA mutations or homologous recombination deficiency (HRD) status is critical for selecting potential patients, but both positive and negative patients as defined by current HRD assays benefited from PARPi [11–15].

DNA damage response (DDR) is important for maintaining a cell’s genomic integrity, and the DDR pathway is composed of various molecules that detect DNA damage, activate cell-cycle checkpoints, trigger apoptosis, and coordinate DNA repair [16–18]. Several exogenous or endogenous sources (e.g., oxidative damage, radiation, ultraviolet light, cytotoxic materials, replication errors) may result in DNA damage that may eventually lead to genomic instability and cell death [19]. DDR consists of several pathways, including base excision (BER), mismatch (MMR) and nucleotide excision repair (NER); translesion synthesis (TLS) for single-strand break repair; homologous recombination (HR) and nonhomologous DNA end joining (NHEJ) for double-strand break repair; and cell cycle regulation (CCR) (27, 28). Homologous recombination is an error-proof repair pathway to restore the original sequence at the double-strand DNA break. BRCA 1/2 genes participating in HR and maintaining PARPi therapy for BRCA-mutated EOC is a good example of synthetic lethality [20]. Several other DDR genes have been identified as potential targets for novel cancer therapy under clinical investigation [16,17]. Understanding the complex DDR pathways is helpful for exploring the feasibility of novel DDR inhibitors in clinical practice. In the study, we investigated the somatic mutations of DDR genes in 172 EOC patients using a targeted DDR gene panel using a next-generation sequencing method. The correlation of the somatic DDR gene mutations, clinical parameters and outcomes was analysed.

2. Materials and Methods

2.1. Patients and Specimens

The study protocol was approved by the National Taiwan University Hospital Research Ethics Committee (201509042RINA, approved on 24 November 2015 and 201608025RINA, approved on 07 October 2016). Informed consent from all participants was obtained and the methods were performed in accordance with the guidelines and regulations. From December 2015 to October 2018, 172 women diagnosed with epithelial ovarian cancer who had received debulking surgery and adjuvant chemotherapy were enrolled. The cancerous tissue specimens collected during debulking surgery were immediately frozen in liquid nitrogen and stored at -70°C. A portion of the tissue specimens were sent for pathological examinations to confirm the diagnosis and ensure tumorous tissue sufficient for the following experiments. Clinical data were obtained from medical records, including age, cancer stage, the findings during debulking surgery, treatment course and recurrence. Optimal debulking surgery was defined as a maximal residual tumor size <1 cm following surgery. The tumor grade based on International Union Against Cancer criteria, and cancer stage was based on International Federation of Gynecology and Obstetrics (FIGO) criteria [21]. All patients received platinum-based adjuvant chemotherapy and regular follow-ups after primary treatments. Recurrence was defined as abnormal results from imaging studies (including computerized tomography or magnetic resonance imaging).
elevated CA-125 (more than twice the upper normal limit) for two consecutive tests in 2-week intervals, or a biopsy-proven disease. Progression-free survival (PFS) was defined as the time from the date of primary treatment completion to the date of confirmed recurrence, disease progression or last follow-up. Overall survival (OS) was defined as the period from surgery to the date of death related to EOC or the date of last follow-up.

2.2. The Panel of DNA Damage Repair Genes

We selected 60 genes involved in DNA damage response (DDR) for the gene panel (Table 1), including genes of homologous recombination (HR), nonhomologous DNA end joining (NHEJ), base excision repair (BER), mismatch repair (MMR), nucleotide excision repair (NER), translesion synthesis (TLS) and cell cycle regulation (CCR) [16,17].

Gene DDR Pathway	Gene DDR Pathway
ATM CCR	ku70/XRCC6 NHEJ
BARD1 HR	ku80/XRCC5 NHEJ
BRCA1 HR	MDM4 CCR
BRCA2/FANCD1 HR	MLH1 MMR
BRIP1/FANCJ HR	MLH3 MMR
CHEK2 CCR	MRE11 HR
DDB1 NER	MSH2 MMR
DDB2 NER	MSH3 MMR
ERCC1 NER	MSH6 MMR
ERCC2/XPD NER	MUTYH BER
ERCC3/XPB NER	NBN HR
ERCC4 NER	NBS1 HR
ERCC5/BIVM NER	OGG1 BER
ERCC6/CSB NER	PMS1 MMR
ERCC8/CSA NER	PMS2 MMR
FANCA HR	POLD1 TLS
FANCB HR	POLE TLS
FANCC HR	POLB TLS
FANCD1/BRCA2 HR	POLH TLS
FANCD2 HR	POLK TLS
FANCE HR	RAD50 HR
FANCF HR	RAD51 HR
FANCG/XRCC HR	RAD51C/FANCO HR
FANCI HR	RAD51D HR
FANCI/BRIP1 HR	TP53 CCR
FANCL/PHF9 HR	XPA NER
FANCM HR	XPC NER
FANCN/PALB2 HR	XRCC2 NHEJ
FANCO/RAD51C HR	XRCC3 NHEJ
FANCP/SLX4 HR	XRCC4 NHEJ

Note: BER: base excision repair; CCR: cell cycle regulation; DDR: DNA damage repair; HR: homologous recombination; MMR: mismatch repair; NER: nucleotide excision repair; NHEJ: nonhomologous DNA end joining; TLS: translesion synthesis.

2.3. Genomic DNA Extraction

Genomic DNA was isolated using a QIAGEN Genomic DNA extraction kit according to the manufacturer’s instructions (Qiagen Inc., Valencia, CA, US). The purity and concentration of the genomic DNA were checked by agarose gel electrophoresis and the OD$_{260/280}$ ratio.

2.4. Library Preparation, Next-Generation Sequencing, and Sequence Mapping

The genomic DNA was fragmented with Covaris fragmentation protocol (Covaris, Inc., Woburn, MA, US). The size of the fragmented genomic DNA was checked by Agilent Bioanalyzer 2100 (Agilent Technologies, Inc., Santa Clara, CA, US) and NanoDrop
Biomedicines 2021, 9, 1384

spectrophotometer (Thermo Fisher Scientific, Inc., Wilmington, DE, US). The target gene library was generated with NimblGen capture kits (Roche NimblGen, Inc. Hacienda Dr Pleasanton, CA, US). The samples were sequenced by Illumina MiSeq with paired-end reads of 300 nucleotides.

The analysis algorithm was conducted according to our previous protocol [22]. Briefly, the raw sequencing data were aligned with the reference human genome (Feb. 2009, GRCh37/hg19) with Burrows–Wheeler Aligner software (version 0.5.9) [23]. SAM tools (version 0.1.18) was used for data conversion, sorting, and indexing [24]. For single nucleotide polymorphisms (SNPs) and small insertion/deletions (indels), Genome Analysis Toolkit (GATK; version 2.7) was used for variant calling with Base/indel-calibrator and HaplotypeCaller. Pindel or Breakdancer software were used for structural variants larger than 100 bp which cannot be identified by GATK, such as large deletions, insertions and duplications [25]. After variant calling, ANNOVAR was used for annotation of the genetic variants [26,27]. The dbSNP, Exome sequencing Project 6500 (ESP6500) and the 1000 Genomes variant dataset were used to filter common variants of sequencing results.

2.5. Variant Classification

The sequence variants were classified according to the IARC variant classification [28]. The pathogenic mutations were defined as large-scale deletion, frame-shift mutation, nonsense mutation, genetic variants associated with uncorrected splicing and mutations affecting protein function demonstrated by functional analyses. The pathogenic and likely pathogenic mutations were used as deleterious mutations in our study. An allele frequency greater than 0.01 in the general population in the 1000 Genomes variant dataset or ESP6500 database were considered benign or likely benign genetic variants. Silent and intronic variants that did not affect splicing were also considered benign or likely benign. Other variants, mainly missense mutations without known functional data, were considered as variants of uncertain significance (VUSs). To reduce their number, bioinformatics analyses, including PolyPhen2 and SIFT, were used to evaluate potential pathogenicity [29–31]. The VUSs were suspected of being deleterious mutations if they met two criteria: (1) a population frequency of less than 0.01 in the 1000 Genomes and ESP6500 databases and (2) a bioinformatics analysis result with a SIFT score less than 0.05 and a polyphen2 score greater than 0.95.

2.6. Statistical Analysis

All statistical analyses were performed using the Statistical Package for Social Sciences software package (IBM SPSS Statistics for Windows, Version 22.0. IBM Corp. Armonk, NY, US) and R (version 3.1.2, The R Foundation for Statistical Computing, Institute for Statistics and Mathematics, Wirtschaftsuniversität Wien, Welsdihandelsplatz Vienna, Austria). One-way ANOVA was used to compare continuous variables and a chi-squared test was used for categorical variables. Survival curves were generated using the Kaplan–Meier method, and differences were calculated using the log-rank test. A multivariate Cox’s regression model was used to evaluate the prognostic factors for progression-free survival (PFS) and overall survival (OS). Statistical significance was set as a p value of less than 0.05.

3. Results

3.1. Clinical Characteristics of the Patients

There were 172 EOC patients enrolled: 69 serous, 39 endometrioid and 64 clear cell carcinomas (Table 2). There were 68 high-grade serous carcinomas (type II tumor) and 104 type I tumors. The median age was 52, and the median pre-treatment CA125 value was 400 U/mL; 59.9% were diagnosed at an advanced cancer stage, and 65.1% had undergone optimal debulking surgery; 59.3% had disease recurrence, and 44.2% died of EOC. All patients received adjuvant platinum and paclitaxel chemotherapy.
Table 2. Characteristics of the epithelial ovarian cancer patients.

Patient Numbers	172
Median Age (years old)	52 (29–85)
Median CA 125 (U/mL)	400 (12–7265)
Histology	
Serous carcinoma	69 (40.1%)
Endometrioid carcinoma	39 (22.7%)
Clear cell carcinoma	64 (37.2%)
FIGO stage	
Early	69 (40.1%)
Advanced	103 (59.9%)
Grade	
Low	29 (16.9%)
High	143 (83.1%)
Debulking surgery	
Optimal	112 (65.1%)
Suboptimal	60 (34.9%)
Recurrence	
Yes	102 (59.3%)
No	70 (40.7%)
Death	
Yes	76 (44.2%)
No	96 (55.8%)

3.2. Deleterious DDR Gene Mutations

As shown in Table 3, 114 deleterious somatic mutations were identified from 26 genes of our 60-gene DDR panel in 78 EOC patients: 27 nonsense mutations in 23 patients, 28 frameshift mutations in 20, 28 missense mutations in 26 patients and 31 mutations involving uncorrected splicing in 29 patients. There were single-gene mutations in 57 patients, and multiple-gene mutations in 21: 2 mutations in 14 patients, 3 mutations in 2, 4 mutations in 3, 5 mutations in 1 and 6 mutations in 1 patient (Figure 1). We also identified 109 missense mutations classified as variants of uncertain significance (VUSs) with the potential of being deleterious mutations after searching the database (http://www.ncbi.nlm.nih.gov/snp, accessed on 28 September 2021) and bioinformatic analyses (Table S1 and Figure S1).

The pattern of prevalent mutated DDR genes was different among the histological subtypes (Figure 1). The proportion of wild type DDR genes was 54.7% in all EOC patients; 30.4% in serous carcinoma, 66.7% in endometrioid carcinoma and 73.4% in clear cell carcinoma. The top three prevalent mutated DDR genes were TP53 (27.9%), MUTYH (6.4%) and BRCA2 (5.8%) for all patients. Serous carcinoma—TP53 (56.5%), BRCA2 (5.8%) and RAD51C (5.8%); endometrioid carcinoma—TP53 (15.4%), ATM (12.8%) and MSH2 (7.7%); clear cell carcinoma—MUTYH (9.4%), TP53 (4.7%), BRCA2 (3.1%) and ERCC8 (3.1%). The top three prevalent mutated subgroups of DDR genes were CCR (30.8%), HR (10.5%) and BER (7.0%) for all patients. Serous carcinoma—CCR (58.05%), HR (15.9%) and BER (5.8%); endometrioid carcinoma—CCR (23.1%), MMR (15.4%) and HR (7.7%); clear cell carcinoma—BER (9.4%), CCR (6.3%) and HR (6.3%). For detailed information, please refer to Table S2 and Figure S2.
Table 3. The deleterious DDR gene mutations in the patients.

Gene	Mutation	Transcript	gDNA/cDNA	Amino Acid	Reported/Novel
ATM	frameshift deletion	NM_000051	c.1402_1403del	p.K468fs	rs587781347
ATM	frameshift deletion	NM_000051	c.8426delA	p.Q2809fs	rs587782558
ATM	frameshift insertion	NM_000051	c.4736delA	p.Q1579fs	rs864622164
ATM	missense mutation	NM_000051	c.6200A	p.A2067D	rs397514577
ATM	nonsense mutation	NM_000051	c.5188T	p.R1730X	rs764389018
ATM	nonsense mutation	NM_000051	c.850T	p.Q294X	rs57782702
BARF1	frameshift insertion	NM_000465	c.70_71insGT	p.P24fs	NA
BRCA1	nonsense mutation	NM_002794	c.3531dupT	p.S1178_K1179delinsX	NA
BRCA1	nonsense mutation	NM_002794	c.G2635T	p.E879X	rs80357251
BRCA2	frameshift deletion	NM_000059	c.1585delT	p.F529s	NA
BRCA2	frameshift insertion	NM_000059	c.7407dupT	p.T2469fs	rs397507916
BRCA2	nonsense mutation	NM_000059	c.4965delC	p.Y1655X	rs80359475
BRCA2	nonsense mutation	NM_000059	c.5623T	p.K1875X	NA
BRCA2	nonsense mutation	NM_000059	c.C950T	p.Q864X	rs1060502414
BRCA2	nonsense mutation	NM_000059	c.C6952T	p.R2318X	rs80358920
BRCA2	nonsense mutation	NM_000059	c.C9922T	p.E1308X	rs80358638
BRIP1	frameshift insertion	NM_032043	c.394dupA	p.T132fs	rs587781416
CHEK2	splicing	NM_007194	g.29130716 C>G	NA	NA
ERCC8	frameshift deletion	NM_000082	c.191_195del	p.S64fs	NA
ERCC8	splicing	NM_000082	c.1123-2>T	NA	NA
ERCC8	splicing	NM_000082	c.1123-2>T	NA	NA
ERCC8	splicing	NM_000082	c.1123-2>T	NA	NA
FANCC	nonsense mutation	NM_000136	c.G1225T	p.E409X	NA
FANCG	splicing	NM_004269	c.511-2>C	NA	NA
FANCI	splicing	NM_001113378	c.3187-2A>G	NA	NA
FANCM	frameshift deletion	NM_002037	c.3998delA	p.Q1333fs	rs746983128
MLH1	frameshift deletion	NM_000249	c.1771delG	p.D591fs	NA
MLH1	splicing	NM_000249	c.2104-2A>G	NA	NA
MLH1	splicing	NM_000249	c.790+2T>C	NA	NA
MLH3	missense mutation	NM_00104108	c.G2221T	p.V741F	rs28756990
MLH3	missense mutation	NM_00104108	c.G2221T	p.V741F	rs28756990
MLH3	missense mutation	NM_00104108	c.G2221T	p.V741F	rs28756990
MLH3	missense mutation	NM_00104108	c.G2221T	p.V741F	rs28756990
MRE11	frameshift insertion	NM_005590	c.1222dupA	p.T408fs	rs774440500
MSH2	nonsense mutation	NM_000251	c.C226T	p.Q76X	rs63750042
MSH2	nonsense mutation	NM_000251	c.G1738T	p.E580X	rs63751411
MSH2	splicing	NM_000251	c.943-1G>C	NA	rs12476364
MSH2	frameshift deletion	NM_002439	c.1141delA	p.K381fs	rs887776701
MSH6	frameshift insertion	NM_001281492	c.2916dupT	p.T972fs	NA
MSH6	nonsense mutation	NM_001281492	c.G726A	p.W242X	NA
MSH6	splicing	NM_001281492	g.48033792 .. 48033795	NA	NA
MUTHY	missense mutation	NM_001128425	c.G1187A	p.G396D	rs36053993
MUTHY	nonsense mutation	NM_001128425	c.G467A	p.W156X	rs762307622
POLD1	splicing	NM_001128425	c.576+1G>C	NA	NA
RAD50	frameshift deletion	NM_0005732	c.2157delA	p.L719fs	NA
RAD50	frameshift deletion	NM_0005732	c.536delT	p.L719fs	NA
Gene	Mutation	Transcript	gDNA/cDNA	Amino Acid	Reported/Novel
------------	----------------	-----------------	-------------	-------------	----------------
RAD50	frameshift insertion	NM_005732	exon13:c.2157dupA	p.L719fs	rs397507178
RAD51C	frameshift insertion	NM_058216	c.390dupA	p.G130fs	rs730881940
RAD51C	nonsense mutation	NM_058216	c.T839G	p.L278X	NA
RAD51C	splicing	NM_058216	c.905-2A>C	NA	NA
RAD51C	splicing	NM_058216	c.905-2A>C	NA	NA
RAD51D	splicing	NM_002878	c.480+1G>A	NA	NA
TP53	frameshift deletion	NM_000546	c.102delC	p.P34fs	NA
TP53	frameshift deletion	NM_000546	c.121delG	p.D41fs	NA
TP53	frameshift deletion	NM_000546	c.216delC	p.P72fs	NA
TP53	frameshift deletion	NM_000546	c.257_272del	p.A86fs	NA
TP53	frameshift deletion	NM_000546	c.501delG	p.Q167fs	NA
TP53	frameshift deletion	NM_000546	c.539_549del	p.E180fs	NA
TP53	frameshift insertion	NM_000546	c.102dupC	p.L34fs	NA
TP53	frameshift insertion	NM_000546	c.102dupC	p.L34fs	NA
TP53	frameshift mutation	NM_000546	c.102dupC	p.L34fs	NA
TP53	frameshift mutation	NM_000546	c.102dupC	p.L34fs	NA
TP53	frameshift deletion	NM_000546	c.394delC	p.D41fs	NA
TP53	frameshift deletion	NM_000546	c.501delG	p.Q167fs	NA
TP53	frameshift deletion	NM_000546	c.539_549del	p.E180fs	NA
TP53	frameshift deletion	NM_000546	c.501delG	p.Q167fs	NA
TP53	frameshift deletion	NM_000546	c.539_549del	p.E180fs	NA
TP53	frameshift deletion	NM_000546	c.501delG	p.Q167fs	NA
TP53	frameshift deletion	NM_000546	c.539_549del	p.E180fs	NA
TP53	frameshift deletion	NM_000546	c.539_549del	p.E180fs	NA
TP53	frameshift deletion	NM_000546	c.539_549del	p.E180fs	NA
TP53	frameshift deletion	NM_000546	c.548_589insTGA	p.L197delinsX	NA
TP53	frameshift deletion	NM_000546	c.912dupT	p.K305_R306delinsX	NA
TP53	frameshift deletion	NM_000546	c.912dupT	p.K305_R306delinsX	NA
TP53	frameshift deletion	NM_000546	c.912dupT	p.K305_R306delinsX	NA
TP53	frameshift deletion	NM_000546	c.912dupT	p.K305_R306delinsX	NA
TP53	frameshift deletion	NM_000546	c.912dupT	p.K305_R306delinsX	NA
TP53	frameshift deletion	NM_000546	c.912dupT	p.K305_R306delinsX	NA
TP53	frameshift deletion	NM_000546	c.912dupT	p.K305_R306delinsX	NA
TP53	frameshift deletion	NM_000546	c.912dupT	p.K305_R306delinsX	NA
TP53	frameshift deletion	NM_000546	c.912dupT	p.K305_R306delinsX	NA
TP53	frameshift deletion	NM_000546	c.912dupT	p.K305_R306delinsX	NA
TP53	frameshift deletion	NM_000546	c.912dupT	p.K305_R306delinsX	NA
XRCC4	frameshift deletion	NM_003401	c.810delA	p.R270fs	NA
XRCC6	splicing	NM_001469	c.589+1G>T	NA	NA
Deleterious DNA damage response (DDR) gene mutations in 172 epithelial ovarian carcinoma (EOC) patients were classified by different pathways in different histologic subtypes. Figure 1. The pattern of DDR mutations of different histologic subtypes. A) The pattern of DDR mutations of different histologic subtypes. B) The percentages of DDR mutations in all 172 EOC patients. C) The percentages of DDR mutations in different histologic subtypes. D) The percentages of DDR mutations classified by different pathways in different histologic subtypes.

3.3. Correlation of DDR Gene Mutations with Clinical Outcomes of the EOC Patients

We evaluated the correlations between the mutation of DDR genes, the clinicopathologic parameters and outcome of the EOC patients. As shown in Table 4, type II tumors had a higher percentage of HR gene mutations than type I tumors (16.18 vs. 6.73%, \(p = 0.048 \), chi-squared test). Endometrioid carcinoma (15.38%) had a higher percentage of MMR mutations than those of serous carcinoma (2.90%) and clear cell carcinoma (4.69%) \((p = 0.03, \chi^2\text{-test}) \). Low-grade tumors had a higher percentage of MMR mutations compared with high-grade tumors (17.24 vs. 4.20%, \(p = 0.009 \), chi-squared test). Type II tumors had a higher percentage of DSBR mutations than type I tumors (17.65 vs. 6.73%, \(p = 0.026 \), chi-squared test). Serous carcinoma (57.97%) had a higher percentage of CCR mutations than those of endometrioid carcinoma (23.08%) and clear cell carcinoma (6.25%) \((p < 0.001, \chi^2\text{-test}) \). Type II tumors had higher percentage of CCR mutations than those of type I tumors (58.82 vs. 12.50%, \(p < 0.001, \chi^2\text{-test}) \). The advanced-stage patients had a higher percentage of CCR mutations than the early-stage patients (42.72 vs. 13.04%, \(p < 0.001, \chi^2\text{-test}) \). The recurrent patients had a higher percentage of CCR mutations than those without recurrence (39.22% vs. 18.57%, \(p = 0.004, \chi^2\text{-test}) \). Patients who died of EOC had higher percentages of CCR mutations than living patients (40.79 vs. 22.92%, \(p = 0.012, \chi^2\text{-test}) \). Serous carcinoma (69.57%) had higher percentage of DDR mutations than those of endometrioid carcinoma (33.33%) and clear cell carcinoma (26.56%) \((p < 0.001, \chi^2\text{-test}) \). Type II tumors had a higher percentage of DDR mutations than type I tumors (70.59 vs. 28.85%, \(p < 0.001, \chi^2\text{-test}) \). The advanced
stage patients had higher percentage of DDR mutations than the early-stage patients (57.28 vs. 27.54%, \(p < 0.001 \), chi-squared test). Recurring patients had a higher percentage of DDR mutations than those without recurrence (53.92 vs. 32.86%, \(p = 0.006 \), chi-squared test). Patients who died of EOC had a higher percentage of DDR mutations than living patients (59.21 vs. 34.38%, \(p = 0.001 \), chi-squared test).

EOC patients without DDR gene mutation had longer progression-free survival (PFS) (\(p = 0.0072 \), log-rank test, Figure 2A) and overall survival (OS) (\(p = 0.022 \), log-rank test, Figure 2B) than those with 1 DDR or \(\geq 2 \) DDR mutations. In serous carcinoma, patients with or without DDR mutations had similar PFS (\(p = 0.56 \), log-rank test, Figure 2C). Patients with \(\geq 2 \) DDR mutations had a trend of better OS than those with 1 mutation or none, but it was not statistically significant (\(p = 0.47 \), log-rank test, Figure 2D). In endometrioid carcinoma, patients with \(\geq 2 \) DDR gene mutations had shorter PFS (\(p = 0.0035 \), log-rank test, Figure 2E) and OS (\(p = 0.015 \), log-rank test, Figure 2F) than those with 1 mutation or none. In clear cell carcinoma, patients with \(\geq 2 \) DDR gene mutations had significantly shorter PFS (\(p = 0.0056 \), log-rank test, Figure 2G) and OS (\(p = 0.0046 \), log-rank test, Figure 2H) than those with 1 DDR mutation or none.

Tumor recurrence with CCR gene mutation (HR: 1.68 (1.12–2.50), \(p = 0.011 \), 1 DDR gene mutation (HR: 1.71 (1.12–2.60), \(p = 0.013 \), endometrioid carcinoma (HR: 0.17 (0.08–0.37), \(p < 0.001 \), type II tumor (HR: 2.69 (1.81–4.00), \(p < 0.001 \), advanced-stage carcinoma (HR: 5.29 (3.16–8.85), \(p < 0.001 \), high-grade tumor (HR: 5.57 (2.26–13.70), \(p < 0.001 \) and optimal debulking surgery (HR: 0.28 (0.18–0.41), \(p < 0.001 \) were significant in the univariate Cox regression model (Table 5). Advanced-stage carcinoma (HR: 3.08 (1.63–5.80), \(p = 0.001 \) and optimal debulking surgery (HR: 0.51 (0.32–0.80), \(p = 0.004 \) were important prognostic factors in the multivariate analysis. Cancer-related death with TLS gene mutation (HR: 33.76 (3.95–289.00), \(p = 0.001 \), 1 DDR gene mutation (HR: 1.96 (1.20–3.20), \(p = 0.007 \), endometrioid carcinoma (HR: 0.12 (0.04–0.38), \(p < 0.001 \), type II tumor (HR: 1.88 (1.19–2.96), \(p = 0.007 \), advanced-stage carcinoma (HR: 6.84 (3.28–14.25), \(p < 0.001 \), high-grade tumor (HR: 17.97 (2.50–129.29), \(p = 0.004 \) and optimal debulking surgery (HR: 0.26 (0.16–0.41), \(p < 0.001 \) were significant in the univariate Cox regression model. Type II tumor (HR: 0.35 (0.20–0.60), \(p < 0.001 \), TLS gene mutation (HR: 9.57 (1.08–84.83), \(p = 0.042 \), advanced-stage carcinoma (HR: 4.62 (2.09–11.09), \(p < 0.001 \) and optimal debulking surgery (HR: 0.38 (0.22–0.64), \(p < 0.001 \) were important prognostic factors in the multivariate analysis.
Table 4. The correlation of DDR gene mutations with clinical parameters in the epithelial ovarian cancer patients.

Genes	Histology	Type	FIGO Stage	Tumor Grade	Recurrence	Death								
	OSA	OEA	OCCA	I	II	Early	Advanced	Low	High	No	Yes	No	Yes	
Total	172	69	39	64	104	68	69	103	29	143	70	102	96	76
HR														
Wild type	154	58	36	60	97	57	64	90	26	128	64	90	89	65
Mutation	18	11	3	4	7	11	5	13	3	15	6	12	7	11
p value *	0.154	0.048	0.259	0.981	0.502									0.126
NHEJ														
Wild type	170	68	39	63	103	67	69	101	29	141	70	100	96	74
Mutation	2	1	0	1	1	1	0	2	0	2	0	2	0	
p value *	0.742	0.761	0.244	0.522	0.239									0.11
MMR														
Wild type	161	67	33	61	95	66	65	96	24	137	66	95	91	70
Mutation	11	2	6	3	9	2	4	7	5	6	4	7	5	6
p value *	0.03	0.134	0.793	0.009	0.762									0.475
BER														
Wild type	160	65	37	58	96	64	65	95	27	133	66	94	91	69
Mutation	12	4	2	6	8	4	4	8	2	10	4	8	5	7
p value *	0.631	0.649	0.619	0.985	0.59									0.306
Table 4. Cont.

Genes	Histology Type	FIGO Stage	Tumor Grade	Recurrence	Death										
		OSA	OEA	OCCA	I	II	Early	Advanced	Low	High	No	Yes	No	Yes	
NER	Wild type	167	66	39	62	102	65	67	100	29	138	67	100	93	74
	97.09%	95.65%	100.00%	96.88%	98.08%	95.59%	97.10%	97.09%	100.00%	96.50%	95.71%	98.04%	96.88%	97.37%	
	Mutation	5	3	0	2	2	3	2	3	0	5	3	2	3	2
	2.91%	4.35%	0.00%	3.13%	1.92%	4.41%	2.90%	2.91%	0.00%	3.50%	4.29%	1.96%	3.13%	2.63%	
	p value *	0.43	0.342	0.996	0.307	0.373	0.848								
TLS	Wild type	171	69	39	63	103	68	69	102	29	142	70	101	96	75
	99.42%	100.00%	100.00%	98.44%	99.04%	100.00%	100.00%	99.03%	100.00%	99.30%	100.00%	99.02%	100.00%	98.68%	
	Mutation	1	0	0	1	0	0	1	0	0	1	0	1	0	1
	0.58%	0.00%	0.00%	1.56%	0.96%	0.00%	0.00%	0.97%	0.00%	0.70%	0.00%	0.98%	0.00%	1.32%	
	p value *	0.428	0.417	0.412	0.652	0.406	0.26								
DSBR	Wild type	153	57	36	60	97	56	64	89	26	127	64	89	89	64
	88.95%	82.61%	92.31%	93.75%	93.27%	82.35%	92.75%	86.41%	89.66%	88.81%	91.43%	87.25%	92.71%	84.21%	
	Mutation	19	12	3	4	7	12	5	14	3	16	6	13	7	12
	11.05%	17.39%	7.69%	6.25%	6.73%	17.65%	7.25%	13.59%	10.34%	11.19%	8.57%	12.75%	7.29%	15.79%	
	p value *	0.092	0.026	0.193	0.895	0.391	0.077								
SSBR	Wild type	145	60	31	54	86	59	59	86	22	123	59	86	83	62
	84.30%	86.96%	79.49%	84.38%	82.69%	86.76%	85.51%	83.50%	75.86%	86.01%	84.29%	84.31%	86.46%	81.58%	
	Mutation	27	9	8	10	18	9	10	17	7	20	11	16	13	14
	15.70%	13.04%	20.51%	15.63%	17.31%	13.24%	14.49%	16.50%	24.14%	13.99%	15.71%	15.69%	13.54%	18.42%	
	p value *	0.591	0.473	0.722	0.171	0.996	0.382								
CCR	Wild type	119	29	30	60	91	28	60	59	24	95	57	62	74	45
	69.19%	42.03%	76.92%	93.75%	87.50%	41.18%	86.96%	57.28%	82.76%	66.43%	81.43%	60.78%	77.08%	59.21%	
	Mutation	53	40	9	4	13	40	9	44	5	48	13	40	22	31
	30.81%	57.97%	23.08%	6.25%	12.50%	58.82%	13.04%	42.72%	17.24%	33.57%	18.57%	39.22%	22.92%	40.79%	
	p value *	<0.001	<0.001	<0.001	0.083	0.004	0.012								
Table 4. Cont.

Genes	Histology	Type	FIGO Stage	Tumor Grade	Recurrence	Death									
	OSA	OEA	OCCA	I	II	Early	Advanced	Low	High	No	Yes	No	Yes		
DDR	Wild type	54.65%	30.43%	66.67%	73.44%	71.15%	29.41%	72.46%	42.72%	68.97%	51.75%	67.14%	46.08%	65.63%	40.79%
	1 gene mutation	33.14%	50.72%	17.95%	23.44%	21.15%	51.47%	20.29%	41.75%	17.24%	36.36%	22.86%	40.20%	25.00%	43.42%
	2 gene mutations	8.72%	17.39%	5.13%	1.56%	2.88%	17.65%	2.90%	12.62%	0.00%	10.49%	5.71%	10.78%	6.25%	11.84%
	3 gene mutations	1.16%	1.45%	2.56%	0.00%	0.96%	1.47%	1.45%	0.97%	3.45%	0.70%	1.43%	0.98%	1.04%	1.32%
	4 gene mutations	1.16%	0.00%	5.13%	0.00%	1.92%	0.00%	2.90%	0.00%	6.90%	0.00%	2.86%	0.00%	2.08%	0.00%
	5 gene mutations	0.58%	0.00%	2.56%	0.00%	0.96%	0.00%	0.00%	0.97%	3.45%	0.00%	0.00%	0.98%	0.00%	1.32%
	6 gene mutations	0.58%	0.00%	0.00%	1.56%	0.96%	0.00%	0.00%	0.97%	0.00%	0.70%	0.00%	0.98%	0.00%	1.32%
	Total mutations	45.35%	69.57%	33.33%	26.56%	28.85%	70.59%	27.54%	57.28%	31.03%	48.25%	32.86%	53.92%	34.38%	59.21%

Note: BER: base excision repair; CCR: cell cycle regulation; DDR: DNA damage response; DSBR: double-strand break repair; HR: homologous recombination; MMR: mismatch repair; NER: nucleotide excision repair; NHEJ: nonhomologous DNA end joining; OSA: ovarian serous carcinoma; OEA: ovarian endometrioid carcinoma; OCCA: ovarian clear cell carcinoma; SSBR: single-strand break repair; TLS: translesion synthesis. * Pearson’s chi-squared test
Figure 2. Kaplan–Meier analysis of progression-free survival (PFS) and overall survival (OS) in 172 epithelial ovarian carcinoma (EOC) patients. (A) PFS of 172 EOC patients. Note: EOC patients with DDR gene mutation(s) had shorter PFS ($p = 0.0072$, log-rank test). (B) OS of 172 EOC patients. Note: EOC patients with DDR gene mutation(s) had shorter OS ($p = 0.022$, log-rank test). (C) PFS of 69 serous carcinoma patients. Note: Serous carcinoma patients with ≥ 2 DDR gene mutations had a trend of better PFS although no statistical significance. (D) OS of 69 serous carcinoma patients. Note: Serous carcinoma patients with ≥ 2 DDR gene mutations had a trend of better OS although no statistical significance. (E) PFS of 39 endometrioid carcinoma patients. Note: Endometrioid carcinoma patients with ≥ 2 DDR gene mutations had poor PFS ($p = 0.0035$, log-rank test). (F) OS of 39 endometrioid carcinoma patients. Note: Endometrioid carcinoma patients with ≥ 2 DDR gene mutations had poor OS ($p = 0.014$, log-rank test). (G) PFS of 64 clear cell carcinoma patients. Note: Clear cell carcinoma patients with ≥ 2 DDR gene mutations had significantly shorter PFS ($p = 0.0056$, log-rank test). (H) OS of 64 clear cell carcinoma patients. Note: Clear cell carcinoma patients with ≥ 2 DDR gene mutations had significantly shorter OS ($p = 0.0046$, log-rank test).
Table 5. Cox regression model for the risk factors for recurrence and death in all patients (n = 172).

Factors	Recurrence			Death					
	n	Univariate	Multivariate	Univariate	Multivariate				
		Hazard Ratio	p	Hazard Ratio	p				
		(95% CI)		(95% CI)					
Histology									
OSA	69	1 (reference)	1 (reference)	1 (reference)	1 (reference)				
OEA	39	0.17 (0.08–0.37)	<0.001	0.42 (0.16–1.12)	0.082	0.12 (0.04–0.38)	<0.001	0.45 (0.13–1.55)	0.205
OCCA	64	0.96 (0.64–1.44)	0.835	1.37 (0.86–2.18)	0.188	0.45 (0.13–1.55)	0.205		
Type									
I	104	1 (reference)	<0.001	0.77 (0.46–1.28)	0.311	1.88 (1.19–2.96)	0.007	0.35 (0.20–0.60)	<0.001
II	68	2.69 (1.81–4.00)	<0.001	1.37 (0.86–2.18)	0.188	0.45 (0.13–1.55)	0.205		
FIGO stage									
Early	69	1 (reference)	<0.001	1.37 (0.86–2.18)	0.188	0.45 (0.13–1.55)	0.205		
Advanced	103	5.29 (3.16–8.85)	<0.001	3.08 (1.63–5.80)	0.001	6.84 (3.28–14.25)	<0.001	4.52 (2.09–11.09)	<0.001
Tumor grade									
Low	29	1 (reference)	<0.001	1.68 (0.55–5.15)	0.366	17.97 (2.50–129.29)	0.004	7.38 (0.93–58.28)	0.058
High	143	5.57 (2.26–13.70)	<0.001	1.68 (0.55–5.15)	0.366	17.97 (2.50–129.29)	0.004	7.38 (0.93–58.28)	0.058
Debulking surgery									
Suboptimal	60	1 (reference)	<0.001	0.51 (0.32–0.80)	0.004	0.26 (0.16–0.41)	<0.001	0.38 (0.22–0.64)	<0.001
Optimal	112	0.28 (0.18–0.41)	<0.001	1.22 (0.67–2.23)	0.516	1.15 (0.59–2.25)	0.674		
HR									
Wild type	154	1 (reference)	<0.001	1.22 (0.67–2.23)	0.516	1.15 (0.59–2.25)	0.674		
Mutation	18	1.22 (0.67–2.23)	0.516	1.15 (0.59–2.25)	0.674				
NHEJ									
Wild type	170	1 (reference)	<0.001	1 (reference)	1 (reference)				
Mutation	2	2.04 (0.50–8.28)	0.319	1 (reference)	1 (reference)				
MMR									
Wild type	161	1 (reference)	<0.001	1.31 (0.61–2.83)	0.487	1.88 (0.81–4.33)	0.139		
Mutation	11	1.31 (0.61–2.83)	0.487	1.88 (0.81–4.33)	0.139				
Table 5. Cont.

Factors	Univariate	Recurrence	Multivariate	Univariate	Death	Multivariate			
	n	Hazard Ratio (95% CI)	p	Hazard Ratio (95% CI)	p	Hazard Ratio (95% CI)	p		
BER	Wild type	160	1 (reference)	1 (reference)	1.32 (0.64–2.71)	0.454	1 (reference)	1.70 (0.78–3.72)	0.185
	Mutation	12	0.58 (0.14–2.36)	0.449	0.58 (0.14–2.36)	0.449	0.71 (0.18–2.91)	0.639	
NER	Wild type	167	1 (reference)	1 (reference)	5.19 (0.71–37.89)	0.104	1 (reference)	33.76 (3.95–289.00)	0.01
	Mutation	5	1.23 (0.69–2.20)	0.488	1.23 (0.69–2.20)	0.488	1.20 (0.63–2.27)	0.584	
TLS	Wild type	171	1 (reference)	1 (reference)	1.10 (0.64–1.87)	0.736	1 (reference)	1.10 (0.64–1.87)	0.736
	Mutation	1	1.68 (1.12–2.50)	0.011	1.68 (1.12–2.50)	0.011	1.46 (0.82–2.61)	0.202	
DSBR	Wild type	153	1 (reference)	1 (reference)	1.23 (0.69–2.20)	0.488	1 (reference)	1.23 (0.69–2.20)	0.488
	Mutation	19	1.68 (1.12–2.50)	0.011	1.68 (1.12–2.50)	0.011	1.46 (0.82–2.61)	0.202	
SSBR	Wild type	145	1 (reference)	1 (reference)	1.10 (0.64–1.87)	0.736	1 (reference)	1.10 (0.64–1.87)	0.736
	Mutation	27	1.68 (1.12–2.50)	0.011	1.68 (1.12–2.50)	0.011	1.46 (0.82–2.61)	0.202	
CCR	Wild type	119	1 (reference)	1 (reference)	1.68 (1.12–2.50)	0.011	1 (reference)	1.68 (1.12–2.50)	0.011
	Mutation	53	1.68 (1.12–2.50)	0.011	1.68 (1.12–2.50)	0.011	1.46 (0.82–2.61)	0.202	
DDR	Wild type	94	1 (reference)	1 (reference)	1.68 (1.12–2.50)	0.011	1 (reference)	1.68 (1.12–2.50)	0.011
	1 gene mutation	57	1.71 (1.12–2.60)	0.013	1.71 (1.12–2.60)	0.013	1.96 (1.20–3.20)	0.007	
	≥2 gene mutations	21	1.52 (0.84–2.76)	0.171	1.52 (0.84–2.76)	0.171	1.56 (0.78–3.11)	0.207	

Note: BER: base excision repair; CCR: cell cycle regulation; DDR: DNA damage response; DSBR: double-strand break repair; HR: homologous recombination; MMR: mismatch repair; NER: nucleotide excision repair; NHEJ: nonhomologous DNA end joining; OSA: ovarian serous carcinoma; OEA: ovarian endometrioid carcinoma; OCCA: ovarian clear cell carcinoma; SSBR: single-strand break repair; TLS: translesion synthesis.
4. Discussion

Our study showed that nearly half of the epithelial ovarian cancer (EOC) patients had DNA damage response (DDR) gene mutations with varied proportions of histological subtypes. Two-thirds of serous adenocarcinoma patients, one-third of endometrioid adenocarcinoma patients and one-fourth of clear cell carcinoma patients had DDR gene mutations. Our DDR gene panel consisted of the genes involved in single-strand break repair, double-strand break repair and cell cycle regulation, including the genes recommended by National Comprehensive Cancer Network (NCCN) guidelines as cost-effective tools for assessing the lifetime risk of EOC, such as ATM, BRCA1/2, BRIP1, MLH1, MSH2, MSH6, PALB2, RAD51C and RAD51D [32]. The major components of DDR gene mutations were CCR in serous, CCR and SSBR in endometrioid and SSBR in clear cell carcinomas; CCR and DSBR in type II tumors (high-grade serous carcinoma in the cohort); and SSBR in type I tumors. A multiple DDR gene panel increased the detection rate of somatic mutation of genes involved in DNA damage repair pathway in comparison with a BRCA test alone. The percentage of BRCA 1/2 somatic mutation in serous carcinoma was 7.2, which was compatible with the 6–7% in previous studies [33–37]. The non-BRCA HR somatic mutation of our study was more than 10% in serous and endometrioid carcinomas, and the MMR somatic mutation was around 15% in endometrioid carcinomas, which was compatible with the previous study [38].

Our study showed that ovarian clear cell carcinoma patients with DDR gene mutations had an unfavorable survival prognosis. Those who had somatic DDR mutations were significantly associated with advanced-stage carcinomas, tumor recurrence and tumor-related death. The trend was different in histological subtypes as serous carcinomas or type II tumors with DDR mutation showed a better survival trend. Non-serous or type I EOC patients with DDR mutations had a poor prognosis, especially in clear cell carcinoma. Ovarian clear cell carcinoma is an aggressive drug-resistant subtype of EOC in association with endometriosis and glycogen accumulation. It accounts for about 5–13% of all EOCs in Western populations, but up to 20–25% in East Asia, including Taiwan [2,3]. Previous studies showed that the somatic mutations of ovarian clear cell carcinoma (mainly in ARID1A, PIK3CA, KRAS and PPP2R1A) might be related to chromatin remodeling, cell proliferation, cell cycle checkpointing and cytoskeletal organization [39–49]. However, the frequent mutations of ARID1A, PIK3CA, PPP2R1A or TP53 in ovarian clear cell carcinoma did not correlate well with the prognosis [45]. Other infrequent gene mutations of clear cell carcinoma included ARID1B, ARID3A, CREBBP, CSM3, CTNNB1, LPHN3, LRP1B, MAGEE1, MLH1, MLL3, MUC4, PIK3R1, PTEN and TP53 [41,43,46,48,49]. DDR gene mutations in ovarian clear cell carcinoma was unclear in the literature, and our finding of an unfavorable prognosis in clear cell carcinoma patients with DDR gene mutations could provide useful information.

Our DDR gene panel could provide a scientific rationale for patient selection in future clinical trials that target DNA damage repair response pathways, especially in clear cell carcinoma. BRCA gene tests or companion HRD assays are currently suggested for PARPi, but there are unmet problems that need to be resolved [11–15,20]. The most important one is that the HRD assays cannot consistently identify patients who do not benefit from PARPi therapy. The consensus for the cut-off value was indeterminate because the thresholds of HRD assays were developed from retrospective exploratory analyses [11,50,51]. Generally, advance-stage, high-grade serous carcinoma patients with tumor BRCA (tBRCA) mutations, including germline (gBRCA) or somatic (sBRCA), derived the greatest benefit from PARPi maintenance therapy [11–15]. Approximately 11–18% of patients had a gBRCA mutation, and another 6–7% patients had an sBRCA mutation with a negative gBRCA test [33–37]. However, about 5% of gBRCA mutated patients tested negative for tBRCA [52–54]. The non-BRCA HR gene mutations were usually pooled together to interpret the association with clinical outcomes in previous studies because of their relatively low prevalence [35,55–57]. Twenty-one platinum-sensitive recurrent patients with non-BRCA somatic mutations (BRIP1, CDK12, RAD54L and RAD51B) derived benefit from
olaparib in study 19 [58]. In ARIEL2, there were 20 patients with non-BRCA HR gene mutations (ATM, BRIP1, CHEK2, FANCA, FANCI, FANCM, NBN, RAD51B, RAD51C and RAD54L), but the sensitivity in discriminating a rucaparib response was only 11% [59]. However, BRCA wild type EOC patients still benefitted from PARPi, which indicated that a BRCA test by itself was inadequate for selecting EOC patients for PARPi [13–15]. It needs to be determined which individual or panel of non-BRCA HR genes could be used to predict a PARPi response, especially in non-serous EOC patients.

There were limitations to our study. First, germline gene mutations were not investigated. These not only inform the patients but also identify family members of the possible risk of malignancy [52–54]. The NCCN suggested germline gene tests of ATM, BRCA1/2, BRIP1, MLH1, MSH2, MSH6, PALB2, RAD51C, RAD51D and STK11 to assess the lifetime risk of EOC [32], but how many genes should be included in the panel is inconclusive. Second, the numerous variants of uncertain significance (VUSs) identified by multiple gene panels would cause controversy in risk assessment and management [60–62]. The biological functions and clinical impacts of most individual mutations in the genomic loci have not been well characterized, especially for VUSs [63]. Even in the well-studied BRCA gene, there is a difference among laboratories in the VUS reporting rate (3–50%), detection protocols and management strategies [64]. Further sharing and integration of gene sequencing data in an open database might decrease VUSs. Third, the cohort sample was not large enough; only the trends of clinical prognosis that correlated with each DDR pathway were found. Further large-scale investigations are needed.

5. Conclusions

Our study found that nearly half of the EOC patients had DDR gene mutations of varying proportions in the histological subtypes. Patients with somatic DDR mutations were significantly associated with advanced-stage carcinoma, tumor recurrence and tumor-related death. Type I EOC patients with DDR mutations had an unfavorable prognosis, especially for clear cell carcinoma. A broad multiple-gene DDR panel would provide not only comprehensive information of gene mutations but also a rationale for a future study of a novel therapy target for DNA damage response pathways.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/biomedicines9101384/s1, Figure S1: Variants of uncertain significance (VUS) with the potential of being deleterious mutations, Figure S2: The distribution of all 114 deleterious DDR gene mutations, Table S1: Variants of uncertain significance (VUSs) with the potential of being deleterious mutations in the cohort, Table S2: The percentages of DDR gene mutations in all patients.

Author Contributions: Conceptualization, Y.-C.C., P.-H.L. and C.-A.C.; methodology, Y.-C. and P.-H.L.; software, P.-H.L. and T.-P.L.; validation, Y.-C.C., P.-H.L. and T.-P.L.; formal analysis, Y.-C.C., P.-H.L. and T.-P.L.; investigation, Y.-C.C., Y.-T., H.-C.H., C.-Y.W., C.-Y.L., H.S.; resources, Y.-C.C., K.-T.K., Y.-J.T., H.-C.H., C.-Y.W., C.-Y.L., H.S., C.-A.C. and W.-F.C.; data curation, Y.-C.C., P.-H.L. and T.-P.L.; writing—original draft preparation, Y.-C.C. and P.-H.L.; writing—review and editing, C.-A.C. and W.-F.C.; visualization, Y.-C.C. and P.-H.L.; supervision, C.-A.C. and W.-F.C.; funding acquisition, Y.-C.C., C.-A.C. and W.-F.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by research grants from the National Taiwan University Hospital (NTUH. 105-N02, UN105-059, 108-S4230 and 109-S4570).

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of National Taiwan University Hospital (201509042RINA, approved on 24 November 2015 and 201608025RINA, approved on 07 October 2016).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.
Data Availability Statement: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Acknowledgments: The authors thank the A1 laboratory of the National Taiwan University Hospital for the Illumina Miseq NGS platform, the National Applied Research Laboratories for providing access of high-performance computer to analyze NGS data, and the 7th Core Laboratory Facility of the Department of Medical Research of National Taiwan University Hospital for supporting the work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. *CA Cancer J. Clin* 2021, 71, 7–33. [CrossRef]
2. Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. *CA Cancer J. Clin.* 2018, 68, 284–296. [CrossRef]
3. Chiang, Y.C.; Chen, C.A.; Chiang, C.J.; Hsu, T.H.; Lin, M.C.; You, S.L.; Cheng, W.F.; Lai, M.S. Trends in incidence and survival outcome of epithelial ovarian cancer: 30-year national population-based registry in Taiwan. *J. Gynecol. Oncol.* 2013, 24, 342–351. [CrossRef]
4. Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. *Lancet* 2014, 384, 1376–1388. [CrossRef]
5. Coleman, R.L.; Monk, B.J.; Sood, A.K.; Herzog, T.J. Latest research and treatment of advanced-stage epithelial ovarian cancer. *Rev. Clin. Oncol.* 2013, 10, 211–224. [CrossRef] [PubMed]
6. Gurung, A.; Hung, T.; Morin, J.; Gilks, C.B. Molecular abnormalities in ovarian carcinoma: Clinical, morphological and therapeutic correlates. *Histopathology* 2013, 62, 59–70. [CrossRef] [PubMed]
7. Colombo, P.E.; Fabbro, M.; Theillet, C.; Bibeau, F.; Rouanet, P.; Ray-Coquard, I. Sensitivity and resistance to treatment in the primary management of epithelial ovarian cancer. *Crit. Rev. Oncol./Hematol.* 2014, 89, 207–216. [CrossRef]
8. Perren, T.J.; Swart, A.M.; Pfisterer, J.; Ledermann, J.A.; Pujade-Lauraine, E.; Kristensen, G.; Carey, M.S.; Beale, P.; Cervantes, A.; Kurzeder, C.; et al. A phase 3 trial of bevacizumab in ovarian cancer. *N. Engl. J. Med.* 2011, 365, 2484–2496. [CrossRef]
9. Oza, A.M.; Cook, A.D.; Pfisterer, J.; Embleton, D.; Ledermann, J.A.; Pujade-Lauraine, E.; Kristensen, G.; Carey, M.S.; Beale, P.; Cervantes, A.; et al. Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): Overall survival results of a phase 3 randomised trial. *Lancet Oncol.* 2015, 16, 928–936. [CrossRef]
10. Burger, R.A.; Brady, M.F.; Bookman, M.A.; Fleming, G.F.; Monk, B.J.; Huang, H.; Mannel, R.S.; Homesley, H.D.; Fowler, J.; Greer, B.E.; et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. *N. Engl. J. Med.* 2011, 365, 2473–2483. [CrossRef]
11. González-Martín, A.; Pothuri, B.; Vergote, I.; DePont Christensen, R.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. *N. Engl. J. Med.* 2019, 381, 2391–2402. [CrossRef] [PubMed]
12. Moore, K.; Colombo, N.; Scambia, G.; Kim, B.G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. *N. Engl. J. Med.* 2018, 379, 2495–2505. [CrossRef] [PubMed]
13. Mirza, M.R.; Monk, B.J.; Herrstedt, J.; Oza, A.M.; Mahner, S.; Redondo, A.; Fabbro, M.; Ledermann, J.A.; Lorusso, D.; Vergote, I.; et al. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. *N. Engl. J. Med.* 2016, 375, 2154–2164. [CrossRef] [PubMed]
14. Coleman, R.L.; Oza, A.M.; Lorusso, D.; Aghajanian, C.; Oaknin, A.; Dean, A.; Colombo, N.; Weberpals, J.I.; Clamp, A.; Scambia, G.; et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): A randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet* 2017, 380, 1949–1961. [CrossRef]
15. Pujade-Lauraine, E.; Ledermann, J.A.; Selle, F.; Gebski, V.; Benson, R.T.; Oza, A.M.; Korach, J.; Huzarski, T.; Poveda, A.; Pignata, S.; et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A double-blind, randomised, placebo-controlled, phase 3 trial. *Lancet Oncol.* 2017, 18, 1274–1284. [CrossRef]
16. Brown, J.S.; O’Carrigan, B.; Jackson, S.P.; Yap, T.A. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. *Cancer Discov.* 2017, 7, 20–37. [CrossRef]
17. Pearl, L.H.; Schierz, A.C.; Ward, S.E.; Al-Lazikani, B.; Pearl, F.M. Therapeutic opportunities within the DNA damage response. *Nat. Rev. Cancer* 2015, 15, 166–180. [CrossRef]
18. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. *Cell* 2011, 144, 646–674. [CrossRef]
19. Vilenchik, M.M.; Krudson, A.G. Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer. *Proc. Natl. Acad. Sci. USA* 2003, 100, 12871–12876. [CrossRef]
20. Miller, R.E.; Leary, A.; Scott, C.L.; Serra, V.; Lord, C.J.; Bowtell, D.; Chang, D.K.; Garsed, D.W.; Jonkers, J.; Ledermann, J.A.; et al. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. *Ann. Oncol.* 2020, 31, 1606–1622. [CrossRef]
21. Prat, J. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. *Int. J. Gynaecol. Obstet.* 2014, 124, 1–5. [CrossRef] [PubMed]

22. Lin, P.H.; Kuo, W.H.; Huang, A.C.; Lu, Y.S.; Lin, C.H.; Kuo, S.H.; Wang, M.Y.; Liu, C.Y.; Cheng, F.T.; Yeh, M.H.; et al. Multiple gene sequencing for risk assessment in patients with early-onset familial breast cancer. *Oncotarget* 2016. [CrossRef] [PubMed]

23. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 2009, 25, 1754–1760. [CrossRef]

24. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 2009, 25, 2078–2097. [CrossRef]

25. Mimori, T.; Nariai, N.; Kojima, K.; Takahashi, M.; Ono, A.; Sato, Y.; Yamaguchi-Kabata, Y.; Nagasaki, M. iSVP: An integrated structural variant calling pipeline from high-throughput sequencing data. *BMC Syst. Biol.* 2013, 7 (Suppl. S6), S8. [CrossRef] [PubMed]

26. McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 2010, 20, 1297–1303. [CrossRef]

27. Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of variant hints from high-throughput sequencing data. *Nucleic Acids Res.* 2010, 38, e164. [CrossRef]

28. Plon, S.E.; Eccles, D.M.; Easton, D.; Foulkes, W.D.; Genuardi, M.; Greenblatt, M.S.; Hogervorst, F.B.; Hoogerbrugge, N.; Spurde, A.B.; Tavtigian, S.V. Sequence variant classification and reporting: Recommendations for improving the interpretation of cancer susceptibility genetic test results. *Hum. Mutat.* 2008, 29, 1282–1291. [CrossRef]

29. Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerassimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. *Nat. Methods* 2010, 7, 248–249. [CrossRef]

30. Kumar, P.; Henikoff, S.; Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nat. Protoc.* 2009, 4, 1073–1081. [CrossRef]

31. Mathe, E.; Olivier, M.; Kato, S.; Ishioka, C.; Hainaut, P.; Tavtigian, S.V. Computational approaches for predicting the biological effect of p53 missense mutations: A comparison of three sequence analysis based methods. *Nucleic Acids Res.* 2006, 34, 1317–1325. [CrossRef] [PubMed]

32. Daly, M.B.; Pal, T.; Berry, M.P.; Buys, S.S.; Dickson, P.; Domchek, S.M.; Elkhanany, A.; Friedman, S.; Goggins, M.; Hutton, M.L.; et al. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. *J. Natl. Compr. Canc. Netw.* 2021, 19, 77–102. [CrossRef] [PubMed]

33. Hennessey, B.T.; Timms, K.M.; Carey, M.S.; Gutin, A.; Meyer, L.A.; Flake, D.D.; 2nd, Abkevich, V.; Potter, J.; Pruss, D.; Glenn, P.; et al. Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer. *J. Clin. Oncol.* 2010, 28, 3570–3576. [CrossRef] [PubMed]

34. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. *Nature* 2011, 474, 609–615. [CrossRef] [PubMed]

35. Pennington, K.P.; Walsh, T.; Harrell, M.I.; Lee, M.K.; Pennil, C.C.; Rendi, M.H.; Thornton, A.; Norquist, B.M.; Casadei, S.; Nord, A.S.; et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. *Clin. Cancer Res.* 2014, 20, 764–775. [CrossRef]

36. Walsh, T.; Casadei, S.; Lee, M.K.; Pennil, C.C.; Nord, A.S.; Thornton, A.M.; Roeb, W.; Agnew, K.J.; Stray, S.M.; Wickramanayake, A.; et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinomas. *Proc. Natl. Acad. Sci. USA* 2011, 108, 18032–18037. [CrossRef]

37. Alsop, K.; Kereday, S.; Meldrum, C.; deFazio, A.; Emmanuel, C.; George, J.; Dobbrioc, A.; Birrer, M.J.; Webb, P.M.; Stewart, C.; et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: A report from the Australian Ovarian Cancer Study Group. *J. Clin. Oncol.* 2012, 30, 2654–2663. [CrossRef]

38. Leskela, S.; Romero, I.; Cristobal, E.; Perez-Mies, B.; Rosa-Rosa, J.M.; Gutierrez-Pecharrroman, A.; Caniego-Casas, T.; Santon, A.; Ojeda, B.; Lopez-Reig, R.; et al. Mismatch Repair Deficiency in Ovarian Cancers: Frequency, Causes, and Consequences. *Am. J. Surg. Pathol.* 2020, 44, 649–656. [CrossRef]

39. Tan, D.S.; Miller, R.E.; Kaye, S.B. New perspectives on molecular targeted therapy in ovarian clear cell carcinoma. *Br. J. Cancer* 2013, 108, 1553–1559. [CrossRef]

40. Jones, S.; Wang, T.L.; Shih Ie, M.; Mao, T.L.; Nakayama, K.; Roden, R.; Glas, R.; Slamont, D.; Diaz, L.A., Jr.; Vogelstein, B.; et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. *Science* 2010, 330, 228–231. [CrossRef]

41. Yang, Q.; Zhang, C.; Ren, Y.; Yi, H.; Luo, T.; Xing, F.; Bai, X.; Cui, L.; Zhu, L.; Ouyang, J.; et al. Genomic characterization of Chinese ovarian clear cell carcinoma identifies driver genes by whole exome sequencing. *Neoplasia* 2020, 22, 399–430. [CrossRef]

42. Kim, S.J.; Lee, J.W.; Lee, M.; Kim, H.S.; Chung, H.H.; Kim, J.W.; Park, N.H.; Song, Y.S.; Seo, J.S. Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing. *Gynecol. Oncol.* 2018, 148, 375–382. [CrossRef]

43. Murakami, R.; Matsumura, N.; Brown, J.B.; Higasa, K.; Tsutsumi, T.; Kamada, M.; Abou-Taleb, H.; Hosoe, Y.; Kitamura, S.; Yamaguchi, K.; et al. Exome Sequencing Landscape Analysis in Ovarian Clear Cell Carcinoma Shed Light on Key Chromosomal Regions and Mutation Gene Networks. *Am. J. Pathol.* 2017, 187, 2246–2258. [CrossRef]

44. Gounaris, I.; Brenton, J.D. Molecular pathogenesis of ovarian clear cell carcinoma. *Future Oncol. (Lond. Engl.)* 2015, 11, 1389–1405. [CrossRef] [PubMed]
45. Takenaka, M.; Köbel, M.; Garsed, D.W.; Fereday, S.; Pandey, A.; Etemadmoghadam, D.; Hendley, J.; Kawabata, A.; Noguchi, D.; Yanaihara, N.; et al. Survival Following Chemotherapy in Ovarian Clear Cell Carcinoma Is Not Associated with Pathological Missclassification of Tumor Histotype. *Clin. Cancer Res.* 2019, 25, 3962–3973. [CrossRef] [PubMed]

46. Su, Y.F.; Tsai, E.M.; Chen, C.C.; Wu, C.C.; Er, T.K. Targeted sequencing of a specific gene panel detects a high frequency of ARID1A and PIK3CA mutations in ovarian clear cell carcinoma. *Clin. Chim. Acta Int. J. Clin. Chem.* 2019, 494, 1–7. [CrossRef] [PubMed]

47. Shibuya, Y.; Tokunaga, H.; Saito, S.; Shimokawa, K.; Katsuoka, F.; Bin, L.; Kojima, K.; Nagasaki, M.; Yamamoto, M.; Yaegashi, N.; et al. Identification of somatic genetic alterations in ovarian clear cell carcinoma with next generation sequencing. *Genes Chromosomes Cancer* 2018, 57, 51–60. [CrossRef] [PubMed]

48. Maru, Y.; Tanaka, N.; Ohira, M.; Itami, M.; Hippo, Y.; Nagase, H. Identification of novel mutations in Japanese ovarian clear cell carcinoma patients using optimized targeted NGS for clinical diagnosis. *Gynecol. Oncol.* 2017, 144, 377–383. [CrossRef]

49. Friedlander, M.L.; Russell, K.; Millis, S.; Gatalica, Z.; Bender, R.; Voss, A. Molecular Profiling of Clear Cell Ovarian Cancers: Identifying Potential Treatment Targets for BRCA1/2 Mutant Ovarian Cancer. *J. J. Gynecol. Cancer* 2016, 26, 648–654. [CrossRef]

50. Coleman, R.L.; Fleming, G.F.; Brady, M.F.; Swisher, E.M.; Steffensen, K.D.; Friedlander, M.; Okamoto, A.; Moore, K.N.; Efrat Ben-Baruch, N.; Werner, T.L.; et al. Veliparib with First-Line Chemotherapy and as Maintenance Therapy in Ovarian Cancer. *N Engl. J. Med.* 2019, 381, 2403–2415. [CrossRef]

51. Ray-Coquard, I.; Pautier, P.; Pignata, S.; Pérol, D.; González-Martín, A.; Berger, R.; Fujiwara, K.; Vergote, I.; Colombo, N.; Mäenpää, J.; et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. *N. Engl. J. Med.* 2019, 381, 2416–2428. [CrossRef] [PubMed]

52. Konstantinopoulos, P.A.; Norquist, B.; Lacchetti, C.; Armstrong, D.; Grisham, P.; Kohn, E.C.; Levine, D.A.; Liu, J.F.; Lu, K.H.; et al. Germline and Somatic Tumor Testing in Epithelial Ovarian Cancer: ASCO Guideline. *J. Clin. Oncol.* 2020, 38, 1222–1245. [CrossRef]

53. Vergote, I.; Banerjee, S.; Gerdes, A.M.; van Asperen, C.; Marth, C.; Vaz, F.; Ray-Coquard, I.; Stoppa-Lyonnet, D.; Gonzalez-Martin, A.; Sehouli, J.; et al. Current perspectives on recommendations for BRCA genetic testing in ovarian cancer patients. *Eur. J. Cancer* 2016, 69, 127–134. [CrossRef]

54. Lancaster, J.M.; Powell, C.B.; Chen, L.M.; Richardson, D.L. Society of Gynecologic Oncology statement on risk assessment for inherited gynecologic cancer predispositions. *Gynecol. Oncol.* 2015, 136, 3–7. [CrossRef]

55. Norquist, B.M.; Brady, M.F.; Harrell, M.I.; Walsh, T.; Lee, M.K.; Gulsuner, S.; Bernards, S.S.; Casadei, S.; Burger, R.A.; Tewari, K.S.; et al. Mutations in Homologous Recombination Genes and Outcomes in Ovarian Carcinoma Patients in GOG 218: An NRG Oncology/Gynecologic Oncology Group Study. *Clin. Cancer Res.* 2018, 24, 777–783. [CrossRef]

56. Loveday, C.; Turner, N.C.; Lord, C.J.; Kluzek, K.; Bialkowska, A.; Sehouli, J.; et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibitors in ovarian cancer. *Cancer Res.* 2006, 66, 8109–8115. [CrossRef]

57. McCabe, N.; Turner, N.C.; Lord, C.J.; Kluzek, K.; Bialkowska, A.; Swift, S.; Giavara, S.; O’Connor, M.J.; Tutt, A.N.; Zdzienicka, M.Z.; et al. Current perspectives on recommendations for BRCA genetic testing in ovarian cancer patients. *Eur. J. Cancer* 2019, 119, 1401–1409. [CrossRef]

58. Hodgson, D.R.; Dougherty, B.A.; Lai, Z.; Fielding, A.; Grinstead, L.; Spencer, S.; O’Connor, M.J.; Ho, T.W.; Robertson, J.D.; Lanchbury, J.S.; et al. Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes. *Br. J. Cancer* 2018, 119, 1401–1409. [CrossRef]

59. Swisher, E.M.; Lin, K.K.; Oza, A.M.; Scott, C.L.; Giordano, H.; Sun, J.; Konecny, G.E.; Coleman, R.L.; Tinker, A.V.; O’Malley, D.M.; et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): An international, multicentre, open-label, phase 2 trial. *Lancet Oncol.* 2017, 18, 75–87. [CrossRef]

60. Bonnet, C.; Krieger, S.; Vezain, M.; Rousselin, A.; Tournier, I.; Martins, A.; Berthet, P.; Chevrier, A.; Dugast, C.; Layet, V.; et al. Screening BRCA1 and BRCA2 unclassified variants for splicing mutations using reverse transcription PCR on patient RNA and an ex vivo assay based on a splicing reporter minigene. *J. Med. Genet.* 2008, 45, 438–446. [CrossRef]

61. Cartegni, L.; Chew, S.L.; Krainer, A.R. Listening to silence and understanding nonsense: Exonic mutations that affect splicing. *Nat. Rev. Genet.* 2002, 3, 285–298. [CrossRef]

62. Li, H.; LaDuca, H.; Pesaran, T.; Chao, E.C.; Dolinsky, J.S.; Parsons, M.; Spurde, A.B.; Polley, E.C.; Shimelis, H.; Hart, S.N.; et al. Classification of variants of uncertain significance in BRCA1 and BRCA2 using personal and family history of cancer from individuals in a large hereditary cancer multigene panel testing cohort. *Genet. Med.* 2020, 22, 701–708. [CrossRef]

63. Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Tian Ng, A.W.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.; Bergstrom, E.N.; et al. The repertoire of mutational signatures in human cancer. *Nature* 2020, 578, 94–101. [CrossRef]

64. Tolan, A.E.; Forman, A.; Couch, F.J.; Culver, J.O.; Eccles, D.M.; Foulkes, W.D.; Hogervorst, F.B.L.; Houdayer, C.; Levy-Lahad, E.; Monteiro, A.N.; et al. Clinical testing of BRCA1 and BRCA2: A worldwide snapshot of technological practices. *NPJ Genom. Med.* 2018, 3, 7. [CrossRef]