DENDRIFORM ALGEBRAS AND NONCOMMUTATIVE PROBABILITY FOR PAIRS OF FACES

JOSCHA DIEHL1, MALTE GERHOLD1,2, NICOLAS GILLIERS1

1Universität Greifswald, Institut für Mathematik und Informatik, Walther-Rathenau-Str. 47, 17489 Greifswald, Germany.

2Norwegian University of Science and Technology (NTNU), Department of Mathematical Sciences, 7491 Trondheim, Norway.

Abstract. One can build an operatorial model for freeness by considering either the right-handed or the left-handed representation of algebras of operators acting on the free product of the underlying pointed Hilbert spaces. Considering both at the same time, that is computing distributions of operators in the algebra generated by the left- and right-handed representations led Voiculescu in 2013 to define and study bifreeness and, in the sequel, triggered the development of an extension of noncommutative probability now frequently referred to as multi-faced (two-faced in the example given above). Many examples of two-faced independences emerged these past years. Of great interest to us are biBoolean, bifree and Type I bimonotone independences. In this paper, we extend the preLie calculus pertaining to free, Boolean, and monotone moment-cumulant relations initiated by K. Ebrahimi-Fard and F. Patras to their above-mentioned two-faced equivalents.

Contents

1. Introduction ... 2
 1.1 Background and motivation 2
 1.2 Outline ... 3
 1.3 Conventions .. 3
 Acknowledgements ... 4

2. Combinatorics of two-faced independences 4
 2.1 Sets of bipartitions ... 4
 2.2 Cumulants ... 6

3. A Möbius category of (translucent) words 8
 3.1 The category of translucent words 8
 3.2 Incidence category with coefficient in Set 11
 3.3 Incidence category with coefficients in Vect 12
 3.4 Horizontal semigroupal product 14
 3.5 Freely generated horizontal semigroups 19
 3.6 Monoids of bipartitions and noncrossing bipartitions 20

4. Words on a two-faced family of random variables 24
 4.1 Collection of incomplete words on random variables 24

M.G. is supported by the German Research Foundation (DFG) grant no. 397960675. J.D. and N.G. are supported by the trilateral (DFG/ANR/JST) grant “EnhanceD Data stream Analysis with the Signature Method”. N.G is supported by ANR “STARS”.

arXiv:2201.11747v2 [math.OA] 30 Mar 2022
1. Introduction

1.1. Background and motivation

In [Voi14], Voiculescu introduced an extension of free probability whose motivation is the study of the joint distributions of left and right operators acting on the reduced free product of Hilbert spaces. These operators prototype bifree independence (introduced in [Voi14], see also [CNS15a]) between pairs of random variables, in the same way that left (or right) operators on their own prototype free independence. The functional side of bifreeness is supplemented by a combinatorial one [CNS15a], to which the poset of noncrossing bipartitions and Möbius inversion are central, extending the now well-developed combinatorial approach to freeness established by Speicher [NS06]. Since its inception, bifreeness has transformed into a theory of noncommutative probability for pairs of random variables, also called two-faced (left is one face, right is the other) random variables.

Ben Ghorbal and Schürmann [BGS02] established a set of axioms defining the concept of independence in noncommutative probability, and Muraki proved that there are only five such independences, namely free, monotone, anti-monotone, boolean and tensor independence [Mur03]. The axiomatic framework has been adapted to the two-faced (and more generally multi-faced-multi-state) case by Manzel and Schürmann [MS17].

With the works of Skoufranis, Gu, Hasebe, Gerhold, Liu, [GS17, GS19, GHS20, Ger17, Liu19], several more instances of two-faced independences besides bifreeness emerged, mixing one type of independence (free, monotone, anti-monotone, boolean, or tensor) for left-sided random variables with another one for right-sided random variables (in [GHU21], Gerhold, Hasebe and Ulrich even establish continuous families of two-faced independences). For most of these independences, cumulants have been defined by exhibiting a certain poset of bipartitions and applying the usual machinery. Note that neither does fixing the independence for the left and the right variables alone determine the two-faced independence, nor do we know whether mixings for all combinations of single-faced independences exist.

There are intimate relations between free, Boolean, and monotone cumulants. The work of Ebrahimi-Fard and Patras [EFP15] shed new light on the interrelation of those three independences by showing that their corresponding additive convolution products originate from a certain splitting into two compatible parts of a coproduct on words on random variables (which was originally defined in the deformation theory of algebras). Dualization of this coproduct and its splitting gives rise to three different possibly nonassociative products satisfying to relations constitutive of a dendriform algebra1. Subordination products, Bercovici-Pata bijection, and formulas relating the various families

1For historical and conceptual reasons detailed in [EFP15], Ebrahimi-Fard and Patras prefer the classical terminology (noncommutative) shuffle algebra instead of dendriform algebra.
of cumulants can be cast in the dendriform (and the accompanying preLie) algebraic realm [EFP19]. It was recognized later that the discussed coDendriform structure is the restriction of a coDendriform structure on (polynomials on) noncrossing partitions, drawing a tight connection with the theory of operads, see [EFFKP20]. The present work elaborates on the construction described in [Gil20] designed to extend the work [EFP15] to operator-valued probability spaces which was itself inspired by [EFFKP20]. In particular, we use notions originating from higher category theory, duoidal categories namely.

Of particular interest in this article are biBoolean independence, type I bimonotone independence, and bifree independence. In those three cases, combinatorics of the moment-cumulant relations is guided by partitions that are noncrossing after action of a specific permutation related to the two-faced structure.

In this work, we propose to study the compositional structure of noncrossing bipartitions, in order to exhibit a preLie algebra connecting bifree, biBoolean and bimonotone independence. This connection is similar to the single-faced case. We build a Hopf monoid which is supported by words on random variables and placeholders of two types (left, right). (Recall that in the single-faced setting, the coDendriform Hopf algebra is supported by words on words on random variables, which can be interpreted as incomplete words on random variables with placeholders, in our terminology, of only one type.) The coproduct of this monoid splits into two coDendriform parts yielding the structure of a dendriform algebra formed by linear functionals. We reveal a similar picture as for the single-faced setting: biBoolean moment-cumulant relations correspond to right-dendriform exponentiation, bifree moment-cumulant relations correspond to left-dendriform exponentiation, and type I bimonotone to full dendriform exponentiation.

One shortcoming of the established coDendriform algebra approach in the single-faced case is the failure to encompass also classical moment-cumulant relations. To those corresponds another (commutative coDendriform) Hopf algebra whose relation to the previous one is unclear. We hope that the techniques we develop in this article to treat bifreeness in a coDendriform setting will also help to shed some light on the relationship between the different coDendriform algebras in the single-faced case in the future.

1.2. Outline

- In Section 2 we give a brief overview of noncommutative probability for pairs of faces. We recall the definitions of the three posets of partitions at stake: interval, noncrossing, and monotone bipartitions.
- In Section 3 we introduce a certain category \(T \) which we use to index bipartitions and words on two-faced random variables in order to formalize their respective compositions. To that end, the incidence category \(\text{Vect}^{T} \) of \(T \)-indexed collections of vector spaces is equipped with a monoidal structure, the vertical composition \(/ \). Additionally, we show that \(T \)-\(\text{Vect} \) can be equipped with a (horizontal) semigroupal product \(\ominus \) satisfying a certain exchange relation with the aforementioned monoidal structure.
- In Section 4, we arrive at the \(T \)-indexed collection of incomplete words supporting the coDendriform Hopf monoidal structure we are interested in and we give our main result, Theorem 4.20.
- In Section 5 we compute the three exponentials (the proper (shuffle) exponential and two dendriform exponentials), thereby recovering type I bimonotone, biBoolean, and bifree moment-cumulant relations.

1.3. Conventions

(1) We write \(A \subset B \) if \(A \) is a, not necessarily strict, subset of \(B \).
(2) For an positive integer \(n \), \([n]:={1,\ldots,n}\).
Acknowledgements

The authors would like to thank Kurusch Ebrahimi-Fard, Michael Schürmann, and Philipp Varšo for many discussions on moment-cumulant relations and related algebraic questions.

2. Combinatorics of two-faced independences

Two-faced independence is, roughly speaking, an independence relation for pairs of noncommutative random variables. The axiomatization of the concept of independence in noncommutative probability based on universal products (suitable replacements for the product measure in classical probability) has been initiated by Ben Ghorbal and Schürmann in [BGS02]. The different independences focused on in the article at hand – bifree, bimonotone, and biBoolean independence – are covered by a multivariate extension of the theory of universal products which was spelled out explicitly by Manzel and Schürmann in [MS17], see also [Ger21, Section 3]. Those three independences can be derived from Gu and Skoufranis’ c-bifree independence [GS17] much like free, monotone and boolean independence are derived from Speicher and Bożejko’s c-free independence [BS91]. We will not give details on the definitions as we are only interested in the associated moment-cumulant relations. Those have been established in [GS19] for biBoolean independence, in [GHS20] for the bimonotone independence and in [MN15] for bifree independence, by relating the independences to specific sets of bipartitions.

2.1. Sets of bipartitions

A partition of a set X is a set π of subsets of X, called blocks of π, such that

- $V \neq \emptyset$ for all blocks $V \in \pi$,
- $V_1 \cap V_2 = \emptyset$ for all all distinct blocks $V_1, V_2 \in \pi$
- $\bigcup_{V \in \pi} V = X$

A partition π is uniquely determined by its associated equivalence relation \sim_π on X defined by $i \sim_\pi j$, $i, j \in X$ if and only if i and j are in the same block of π.

An ordered partition is a partition together with a total order on the blocks, identified as an injective labeling of the blocks with integers in $\{1, 2, \ldots, |\pi|\}$.

From now on, we will only consider (ordered) partitions of totally ordered sets X, the order on the base space X is fundamental to defining the following classes of partitions.

2.1. Definition. Let $(X, \langle \rangle)$ be a totally ordered set.

- A partition π of X is noncrossing if for all $a < b < c < d \in X$ such that $a \sim_\pi c$ and $b \sim_\pi d$ it follows that $a \sim_\pi b$, i.e. if the blocks of π do not cross when drawn as an arc diagram.
- A partition π of X is an interval partition if for all $a < b < c \in X$ such that $a \sim_\pi c$ it follows that $a \sim_\pi b$, i.e. if all blocks of π are intervals of X.
- An ordered partition π of X is a monotone partition if it is noncrossing and for all $a < b < c \in X$ such that $a \sim_\pi c$ it follows that the blocks $V \ni a, c$ and $W \ni b$ fulfill $V \leq W$, i.e. inner blocks are higher than outer blocks.

See examples in Fig. 1.

2.2. Notation. The sets of all noncrossing, interval, and monotone partitions of $(X, \langle \rangle)$ are denoted by $\text{NC}(X, \langle \rangle)$, $\text{I}(X, \langle \rangle)$, and $\text{M}(X, \langle \rangle)$, respectively (or simply $\text{NC}(X)$, $\text{I}(X)$, and $\text{M}(X)$ if there is no risk of confusion).

A biset is a set X together with a map $\alpha : X \to \{L, R\}$ that we call left-right structure on X. The elements of $X_L := \alpha^{-1}(L)$ are called left, the elements of $X_R := \alpha^{-1}(R)$ are called right. A biset (X, α) with a total order on X is called ordered biset. We depict ordered bisets by diagrams as in Figure 2: starting from the top, we put in increasing order left elements on a left string and right
elements on a right string. Given an ordered biset, we refer to its given total order \(<\) on \(X\) as the **natural order**. We define the **standard order** \(\leq_{uni}\) in the following way:

- for \(x, y \in X_L\), \(x \leq_{uni} y \iff x < y\), i.e. the order for left elements remains unchanged,
- for \(x, y \in X_R\), \(x \leq_{uni} y \iff x > y\), i.e. the order for right elements is reversed,
- for \(x \in X_L\) and \(y \in X_R\), \(x \leq_{uni} y\), i.e. all left elements are smaller than all right elements.

![Figure 2](image-url) The ordered biset \(X = \{1 < 2 < 3 < 4 < 5\}\) with left-right structure \(\alpha(1) = R, \alpha(2) = L, \alpha(3) = R, \alpha(4) = R, \alpha(5) = L\) and standard order \(2 \leq_{uni} 5 \leq_{uni} 4 \leq_{uni} 3 \leq_{uni} 1\).

2.3. Notation. Given an ordered biset \((X, <)\), we introduce two elements \(-\infty_{uni}\) and \(+\infty_{uni}\) and extend the order \(<\) to \(X \cup \{-\infty_{uni}, +\infty_{uni}\}\) by

\[-\infty_{uni} < x < +\infty_{uni}, \ x \in X.\]

The standard order can easily be read from the corresponding diagram. Having another look at Figure 2, we connected the vertical strings at the bottom with a horizontal link. The standard order is the order in which the elements of \(X\) appear when moving along the dotted line of Fig. 2, starting from the top left.

2.4. Remark. Ordered bisets form a category \(\text{BiSet}\) with morphisms the injective set maps which respect the natural orders and the left-right structures. As a consequence, morphisms preserve also the standard orders.

To emphasize the dependence of the standard order \(<\) on the left-right structure \(\alpha\), we use at times a subscript and write \(\leq_{\alpha}\).

2.5. Definition. A partition of a biset is also called **bipartition**. Let \(X\) be an ordered biset. An (ordered) bipartition is called **noncrossing bipartition**, **interval bipartition**, or **monotone bipartition** if it is a noncrossing partition, an interval partition, or a monotone partition of \((X, <)\), respectively.

The sets of all noncrossing, interval, and monotone bipartitions of \(X\) are denoted by \(\text{NC}(X)\), \(\text{I}(X)\), and \(\text{M}(X)\) respectively.

2.6. Remark. We will almost exclusively deal with finite ordered bisets. These can be easily described by words in \(\{L, R\}^*\). Indeed, let \(\alpha = \alpha(1) \ldots \alpha(n) \in \{L, R\}^*\) be a word (note that we do not distinguish between a word \(\alpha\) of length \(n\) and the corresponding map \(k \mapsto \alpha(k) : [n] \to \{L, R\}\)). Then \([n]\) becomes an ordered biset with the natural order induced from \(\mathbb{N}\) and the left-right structures given by \(\alpha\). We write \(X_{\alpha}\) for the ordered biset \(([n], \alpha)\).

Let us say that two ordered bisets are isomorphic if there is a bijection respecting the natural orders and the left-right structures. Then the prescription \(\alpha \mapsto X_{\alpha}\) yields a bijection between words in \(\{L, R\}^*\) and isomorphism classes of finite ordered bisets.
We will usually identify α with X_α in the following.

2.7. **Notation.** Given $\alpha \in \{L, R\}^*$, we use the notations NC(α), I(α), and M(α) for the associated sets of noncrossing, interval, and monotone bipartitions. A partition π of a finite ordered biset X_α will usually be denoted by the pair (π, α).

2.8. **Remark.** For a finite ordered biset $w \in \{L, R\}^*$, Definition 2.5 of a noncrossing bipartition is equivalent to the definition given in [CNS15a]; indeed, while they apply a permutation to the partition, we apply the inverse permutation to the partitioned set.

Figure 3. Example (from left to right) of a noncrossing bipartition, interval bipartition and a monotone bipartition.

2.2. **Cumulants**

Let us start with a brief historical account of classical and noncommutative cumulants and the dendriform perspective on their relation to moments. As mentioned in Hald’s review article [Hal00] on the early history of cumulants, classical cumulants of a random variable were first introduced by Thorvald N. Thiele in 1889 via an inductive formula computing the coefficients in a Gram-Charlier expansion of a density under the name of halfinvariants. Only 10 years later, Thiele recognized them as the coefficients of the logarithm of the generating function of the moments of the random variable. Almost a century later, Speed [Spe83] proved a combinatorial formula for computing cumulants in terms of the moments: they are obtained by Möbius inversion on the lattice of set-partitions of the partitioned moments of the random variable. Around the same period of time, Voiculescu laid the foundations of the theory of free probability by introducing the notions of free independence and free additive convolution [Voi85, Voi86].

In 1993, Speicher introduced the counterpart of Thiele’s cumulants in free probability theory, that is, a set of multilinear functionals linearizing free independence [Spe94]. The observation that moments of words on free random variables that are arranged according to a noncrossing partition factorize (but not all moments) hints at the definition for free cumulants: replace the lattice of set-partitions by the lattice of noncrossing partitions in Speed’s combinatorial formula.

Together with the emergence of new independences (Boolean, monotone, antimonotone) came the corresponding sets of cumulants, see [SW97] for the Boolean and [HS11] for the (anti-)monotone case. Lehner established a very general approach to noncommutative cumulants via so-called exchangeability systems [Leh04]. To include the monotone case, Lehner and Hasebe generalized the approach by weakening exchangeability to spreadability [HL17]. A unified framework for cumulants with respect to universal product independences is given by Manzel and Schürmann [MS17]. In this case, the moment-cumulant relations can always be expressed via a Hopf-algebraic exponential and logarithm, see also [Ger21]. Formulas relating different sets of noncommutative cumulants of a random variable were proved in [AHLV15] and are still subject of great attention. Using dendriform algebras, Ebrahimi-Fard and Patras established a single unified Hopf algebraic setting which relates free, monotone, and boolean cumulants [EFP15] as well as the corresponding additive convolution products in a group-theoretic sense [EFP19].

We quickly recall the moment-cumulant relations which determine the free cumulants κ_n, the monotone cumulants K_n and the boolean cumulants B_n. (The exponential character of the formulas...
is most visible in the monotone case because monotone partitions are ordered partitions. In the other cases, the division by a factorial is hidden by the use of non-ordered partitions; there are \(|\pi|!\) ordered partitions corresponding to the same partition \(\pi\).

Let \((A, \varphi)\) be an algebraic probability space, i.e., \(A\) is a unital algebra and \(\varphi : A \to \mathbb{C}\) a unital linear functional. For a tuple \((a_1, \ldots, a_n)\) and a subset \(I = \{i_1 < \cdots < i_k\}\), we write \((a_{i_1}, \ldots, a_{i_k})\) as \(\langle a_{i_1}, \ldots, a_{i_k} \rangle\). Then \(\kappa_n, K_n, B_n : A^n \to \mathbb{C}\) are the unique sequences of multilinear maps such that

\[
\varphi(a_1 \cdots a_n) = \sum_{\pi \in \mathcal{L}(n)} \prod_{V \in \pi} B_V(\langle a_1, \ldots, a_n \rangle)_V
\]

\[
\varphi(a_1 \cdots a_n) = \sum_{\pi \in \mathcal{N}(n)} \prod_{V \in \pi} \kappa_V(\langle a_1, \ldots, a_n \rangle)_V
\]

\[
\varphi(a_1 \cdots a_n) = \sum_{\pi \in \mathcal{M}(n)} \frac{1}{|\pi|!} \prod_{V \in \pi} K_V(\langle a_1, \ldots, a_n \rangle)_V
\]

holds for all \(a_1, \ldots, a_n \in A\) (with the convention that the empty product is 1; note that for \(n = 0\) the empty partition then yields one summand 1 in all three cases).

The two-faced extensions of those moment-cumulant relations have also been established (see [GS19, GHS20, MN15, CNS15b] for the specific cases or [MS17] for the general definition of cumulants with respect to a universal product). Let \((A, \varphi)\) be an algebraic probability space and fix subalgebras \(A^L, A^R\) of left and right random variables (a pair of faces). For a word \(\alpha = (a_1, \ldots, a_n) \in \{L, R\}^*\) we set \(A^\alpha := A^{\alpha_1} \times \cdots \times A^{\alpha_n}\). We also extend the restriction notation to words (which are also tuples, just with entries from \(\{L, R\}\) instead of \(A\)) in the obvious way, \((a_1, \ldots, a_n)\) \(\langle i_1 < \cdots < i_k \rangle\) := \((a_{i_1}, \ldots, a_{i_k})\).

Then the bifree, biBoolean and bimonomotone cumulants \(\kappa_\alpha, K_\alpha, B_\alpha : A^\alpha \to \mathbb{C}\) (\(\alpha \in \{L, R\}^*\)) are the unique families of multilinear maps such that

\[
\varphi(a_1 \cdots a_n) = \sum_{\pi \in \mathcal{L}(\alpha)} \prod_{V \in \pi} B_{\alpha_V}(\langle a_1, \ldots, a_n \rangle)_V \quad [\text{GS19}]
\]

\[
\varphi(a_1 \cdots a_n) = \sum_{\pi \in \mathcal{N}(\alpha)} \prod_{V \in \pi} \kappa_{\alpha_V}(\langle a_1, \ldots, a_n \rangle)_V \quad [\text{MN15, CNS15b}]
\]

\[
\varphi(a_1 \cdots a_n) = \sum_{\pi \in \mathcal{M}(\alpha)} \frac{1}{|\pi|!} \prod_{V \in \pi} K_{\alpha_V}(\langle a_1, \ldots, a_n \rangle)_V \quad [\text{GHS20}]
\]

holds for all \((a_1, \ldots, a_n) \in A^\alpha\).

2.9. Remark. In the literature, the moment-cumulant relations are often given for arbitrary \(a_1, \ldots, a_n\) in some algebraic probability space \((B, \Phi)\). Given \(a_1, \ldots, a_n \in B\) and \(\alpha \in \{L, R\}^n\), the given formulas extend as follows. One can construct the algebraic probability space \((A, \varphi) := (A^L, \Phi \circ \mu)\) (\(\mu = \text{id}_{\{L\}} \cup \text{id}_{\{R\}} : A \to A\) the canonical homomorphism), which clearly contains two copies of \(A\) as subalgebras, denoted \(A^L\) and \(A^R\), respectively. When interpreting \(a_1 \cdots a_n\) as an element of \(A^\alpha\), the given formulas apply.

BiBoolean and bifree independence of a family of two-faced random variables are characterized by the vanishing of mixed cumulants. Concretely, two-faced random variables \((a_1^L, a_1^R)\) and \((a_2^L, a_2^R)\) are bifree (resp. biBoolean) independent if and only if

\[
\kappa_\alpha(a_1^{\alpha(1)}, \ldots, a_1^{\alpha(n)}) = 0, \quad \text{resp.} \quad B_\alpha(a_1^{\alpha(1)}, \ldots, a_1^{\alpha(n)}) = 0
\]

whenever \(\varepsilon \in \{1, 2\}^n\) is not constant (with \(A^L, A^R\) the algebras generated by the \(a_k^L\) and \(a_k^R\), respectively). For (bi-)monotone independence the situation is more involved because those are nonsymmetric independences, see [MS17] and [HL17] for details on this problem.

In [EFP15], Ebrahimi-Fard and Patras present a unified geometric approach to monotone, Boolean and free cumulants, expressing the three moment-cumulant relations as logarithmic-exponential correspondences on the dual of a dendriform algebra (popularized by Loday [Lod01]). In their work, cumulants correspond to a certain direction in a (pre)Lie algebra \(g\) and moments of a random
variable to a point in the corresponding group \(G \). The two dendriform products, \(\langle \) and \(\rangle \), yield two exponential maps besides the one corresponding to the associative (convolution) product. These exponentials \(\exp : g \to G \) and \(\exp : g \to G \) are solutions to the following fixed points equations,

\[
\exp(k) = \varepsilon + k \langle \exp(k) \rangle \quad \exp(b) = \varepsilon + \exp(b) > b,
\]

where \(k, b \in g \). The above equations can be shown to be equivalent to the inductive formula computing moments from free cumulants for the first one and moments from Boolean cumulants for the second one, see [EFP19]. The three following sections aim at developing this algebraic interpretation for the two-faced moment–cumulant relations (\(\text{MC}_{\text{im}} \)), (\(\text{MC}_{\text{bB}} \)) and (\(\text{MC}_{\text{bf}} \)).

3. A Möbius category of (translucent) words

In this section, we introduce the categorical setting underlying the rest of the paper. This categorical underpinning is reminiscent of the one underlying operads, but it differs in the fact that the collections are indexed by words in \(\{L, R\}^* \). This is necessary for formalizing the composition of bipartitions and words on random variables in a two-faced probability space. In the single-faced case, integers are sufficient to address the operad’s inputs, but here we additionally have to take the left-right structure into account.

When trying to define a composition of noncrossing bipartitions, drawing their diagrams hints at a suitable set of inputs: given a noncrossing bipartition \((\pi, \alpha)\), each segment connecting two consecutive points for the standard order \(\alpha \) can be thought of as an input into which one can insert a certain type of noncrossing bipartition. For example, into a segment bounded by two left points, one can certainly insert a noncrossing partition of a set all of whose points are also on the left, in order to obtain a new noncrossing bipartition. However, there is a certain ambiguity in composing two noncrossing bipartitions this way that is demonstrated in Figure 4. In order to address the ambiguity in this example, one has to choose the relative positions of the newly inserted points and the right-sided points that sit between the two boundary points of the input segment (with respect to the natural order). Such an ordering will be picked by adding placeholders to the inserted bipartitions, whose sole purpose is to settle the aforementioned ambiguities in composing bipartitions.

In Subsection 3.1 we introduce translucent words which form the morphisms of a category \(\mathcal{TW} \). Collections of sets indexed by translucent words form a monoidal category introduced in Subsection 3.2. The same holds for collections of vector spaces indexed by translucent words, which are discussed in Subsection 3.3.

3.1. The category of translucent words

3.1. Definition (Translucent words). A translucent word (over the alphabet \(\{L, R\} \)) is a pair \(t = (\alpha, b) \) where \(\alpha \in \{L, R\}^* \) is a word in the letters \(L, R \) and \(b \in \{0, 1\}^* \) is a “Boolean word” of equal length. We denote by \(t(i) \) the pair \((\alpha(i), b(i))\). A translucent word can thus also be interpreted as a
DENDRIFORM ALGEBRAS AND NONCOMMUTATIVE PROBABILITY FOR PAIRS OF FACES

word in \((\{L,R\} \times \{0,1\})^* \), in particular, \(|t| = |\alpha| = |b|\). Given a translucent word \(t = (\alpha, b) \), we call its word component \(\alpha_t := \alpha \) the left-right structure of \(t \) and its Boolean component \(b_t := b \) the translucent-opaque structure.

We denote by \(\mathcal{T}W \) the set of all translucent words (including the empty translucent word \(\emptyset := (\emptyset, \emptyset) \)).

Given a translucent word \(t \), we interpret \(\alpha_t \) as a finite ordered biset as in Remark 2.6, while \(b_t \) marks the positions tagged 0 “translucent” and the positions tagged 1 “opaque” (the terminology will become clearer below).

In the sequel, we denote by \(0_n \) the Boolean word of length \(n \) filled with 0’s and by \(1_n \) the Boolean word with only 1’s. Usually, the length is clear from the context, so we will also omit the index \(n \).

In particular, we write \((\alpha, 1) \) for the translucent word with left-right structure \(\alpha \) and all positions opaque.

3.2. Definition. We call a set \(X \) together with a translucent-opaque structure (i.e. a map \(X \to \{0,1\} \)) a translucent set and consequently an ordered biset with a translucent-opaque structure is called translucent ordered biset.

In the corresponding diagrams, white dots stand for translucent points and black dots stand for opaque points. The finite ordered translucent set associated with a translucent word \(t \) is sometimes denoted \(X_t \), but usually, we do not distinguish between \(t \) and \(X_t \).

3.3. Example. \((LLRLRLRR, 01100101)\) is a translucent word. It is visualized in Figure 5.

Further below we make use of a few items of notation and terminology that we introduce now. Let \(t = (\alpha, b) \in \mathcal{T}W \).

1. For a word \(w \in A^* \) over any alphabet and a letter \(a \in A \), we write

\[
[w]_a := \{ j \in [w] : w(j) = a \}.
\]

We extend the notation to translucent words: for \(t = (\alpha, b) \in \mathcal{T}W \), we set \([t]_0 := [b]_0, [t]_L := \alpha^{-1}(\{L\}) \) etc.

2. For a nonempty subset \(I = \{i_1 < \cdots < i_p\} \) of \([|t|]\), the restriction of \(t \) to \(I \), denoted \(t\upharpoonright_I = (\alpha\upharpoonright_I, b\upharpoonright_I) \), is the pair of subwords

\[
\alpha\upharpoonright_I := \alpha(i_1) \cdots \alpha(i_p), \quad b\upharpoonright_I := b(i_1) \cdots b(i_p).
\]

3. For a subset \(I \) as before, one can also define the translucidation of \(t \) at \(I \), denoted \(t_{I \to 0} = (\alpha_{I \to 0}, b_{I \to 0}) \), by turning all positions in \(I \) translucid, i.e.

\[
\alpha_{I \to 0} := \alpha, \quad b_{I \to 0}(i) = \begin{cases} 0, & i \in I, \\ b(i), & i \notin I. \end{cases}
\]

\text{Figure 5. Graphical representation of the translucent word \((LLRLRLRR, 01100101)\).}
A translucent word \(t = (\alpha, b) \) defines a morphism
\[
\iota_t : X_{\alpha[\{t\}_0]} = ([t]_0, \alpha_{[\{t\}_0]} \to X_\alpha = ([\alpha], \alpha)
\]
in the category BiSet,
\[
\iota_t(k) := i_k, \quad [t]_0 = \{i_1 < \cdots < i_n\}.
\]

3.4. Proposition. The correspondence between translucent words and morphisms between finite ordered bisets of the form \(X_\alpha \) is one to one.

Proof. The morphism \(\iota_t \) defined above is clearly strictly increasing and also preserves the left-right structure because \(\alpha_{[\{t\}_0]}(k) = \alpha(i_k) = \alpha(\iota_t(k)) \) for all \(k \in 1, \ldots, n = [[t]_0] \). Conversely, if \(\iota : X_\beta \to X_\alpha \) is a morphism of ordered bisets, then it is easy to see that \(\iota = \iota_t \) for \(t = (\alpha, b) \) where
\[
b(k) = \begin{cases} 0 & \text{if } k \in \iota([\beta]) \\ 1 & \text{otherwise.} \end{cases}
\]

\[\square\]

Instead of working directly with the category of finite ordered bisets, we prefer to concretely define a composition of translucent words, thereby turning them into the morphism class of a (countable) category which is equivalent to the opposite of the category of finite bisets.

Given a translucent word \(t = (\alpha, b) \), define its source to be the word \(\text{source} t := \alpha \in \{L, R\}^* \) and its target to be the word \(\text{target} t := \alpha_{[\{t\}_0]} \in \{L, R\}^* \). We say that two translucent words \(s, t \) are composable if \(\text{source} s = \text{target} t \), i.e. if the left-right pattern of \(s \) matches the left-right pattern of the translucent points of \(t \); in this case we define their composition \(s \circ t := r \) where \(r \) is the unique translucent word with \(r_{[\{t\}_1]} = t_{[\{t\}_1]} \) and \(r_{[\{t\}_0]} = s \), i.e. opaque points of \(t \) stay opaque in the composition while translucent points of \(t \) are coloured according to \(s \). Roughly speaking, the Boolean word \(b_s \) overwrites the zeroes of \(b_t \) to produce \(b_r \), see Figure 6.

![Figure 6](image)

Figure 6. Composition of \(s = (\text{LLRR}, 1011) \) and \(t = (\text{LLRLRLRR}, 01100101) \) in \(\Sigma W \). Each arrow stands for the translucent word whose left-right pattern is given by its source and whose translucent-opaque pattern is the one written above.

The composition of translucent words corresponds to the superimposition of the two diagrams representing the translucent words: if an opaque point covers a translucent point, the resulting point is opaque, see Figure 7. The diagrams make apparent that this is just the opposite of the composition of corresponding inclusion maps of ordered bisets (the translucent word \(t \) corresponds to the unique strictly increasing, left-right structure-preserving map \(\alpha_t_{[\{t\}_0]} \to \alpha_t \)).

![Figure 7](image)

Figure 7. Graphical representation of composition of the two translucent words. On the left \(s = (\text{LLRR}, 1011) \), in the middle \(t = (\text{LLRLRLRR}, 01100101) \) and on the right \(s \circ t = (\text{LLRLRLRR}, 11011111) \).
3.5. **Proposition.** In terms of the morphisms of finite ordered bisets defined in Subsection 3.1, it holds that

\[t_s \circ t_s = t_{so} \]

for all composable translucent words \(s, t \). In particular, composition of translucent words is associative.

Proof. Both maps, \(t_s \circ t_s \) and \(t_r \), are strictly increasing maps from \([|s|]_0 = [|r|]_0\) to \(|t|\). A strictly increasing map between finite totally ordered sets is uniquely determined by its image. Let \([t]_0 = \{i_1 < \cdots < i_n\} < [|t|]\) and \([s]_0 = \{j_1 < \cdots < j_m\} < [|s|] = [m]\), so that \(t_s(k) = i_k \) and \(t_s(t) = j_k \). Then

\[t_{so}([m]) = [s \circ t]_0 = \{i_k : b_s(k) = 0, k = 1, \ldots, m\} = t_k([s])_0 = t_k(t_s([m])) \]

because by definition of the composition \(b_{so}(i) = 0 \) if and only if \(b_s(i) = 0 \) and \(b_s(k) = 0 \) for the unique \(k \) with \(i = i_k \). \(\square \)

With this composition, translucent words form the morphisms of a category, also denoted \(\mathcal{I}W \), whose objects are words in \(\{L, R\}^* \). The empty word is a (the) terminal object, denoted \(1 \), with the unique morphism \((\alpha, 1) : \alpha \to 1 \). In the category \(\mathcal{I}W \), the identity morphism of a word \(\alpha \) corresponds to the translucent word \((\alpha, 0) \), where \(0 \) denotes the Boolean vector with the same length as \(\alpha \) and only zeros as entries.

3.6. **Remark.** Be aware that \(t \in \mathcal{I}W \) always means that \(t \) is a translucent word, i.e. \(t \in \text{Mor}(\mathcal{I}W) \). This is in contrast to the convention we use for most other categories; for another category \(\mathcal{C} \), we write \(c \in \mathcal{C} \) if \(c \in \text{Obj}(\mathcal{C}) \).

![Figure 8](image)

Figure 8. Objects and arrows in the category \(\mathcal{I}W \). The two inner-faces are commutative. While \(\mathcal{I}W \) can be drawn as a directed fat-graph, is it is not equivalent to the free category generated by this graph.

Following the terminology introduced in [CLL80] (see also [D86, Lei12]), the category \(\mathcal{I}W \) is a Möbius category, which means that any arrow \(f \) of \(\mathcal{I}W \) is finitely decomposable in the sense that

\[|\{(f', f'') : f'' \circ f' = f, f'\}| < +\infty. \]

This type of category is the proper algebraic framework for Möbius inversion, see [CLL80].

3.2. **Incidence category with coefficient in Set**

3.7. **Definition.** The category \(\text{Set}^{\mathcal{I}W} \), whose

- objects are the \(\mathcal{I}W \)-indexed collections \(\mathcal{X} = (\mathcal{X}(t))_{t \in \mathcal{I}W}, \ \mathcal{X}(t) \in \text{Set} \).
- morphisms from \(\mathcal{X} \) to \(\mathcal{Y} \) are the families of maps (Set morphisms)
 \[f_t : \mathcal{X}(t) \to \mathcal{Y}(t), \ t \in \mathcal{I}W, \]

is called incidence category of \(\mathcal{I}W \) with coefficients in Set.

3.8. **Remark.** The terminology incidence category we use in this paper is not to be confused with occurrences in the literature with a different meaning, see [Szc11].
Recall that the category \(\text{Set} \) is endowed with a monoidal structure given by the Cartesian product. As unit object we fix a one-point set \(\{\circ\} \). \(\text{Set} \) is also endowed with a categorical coproduct, the disjoint union of sets, denoted \(\sqcup \) in what follows.

3.9. Definition (Monoidal composition of \(\Sigma W \)-indexed collections)

For two \(\Sigma W \)-indexed collections of sets \(X \) and \(Y \), their composition is defined as the \(\Sigma W \)-indexed collection \(X \circ Y \), defined as

\[
(X \circ Y)(t) := \bigcup_{r,s \in \Sigma W, t = rs} X(r) \times Y(s), \quad t \in \Sigma W.
\]

Define the \(\Sigma W \)-indexed collection \(E^\circ \) by setting for any \(t \in \Sigma W \),

\[
E^\circ(t) = \begin{cases} \emptyset & \text{if } b_t \neq 0, \\ \{\circ\} & \text{if } b_t = 0. \end{cases}
\]

The collection \(E^\circ \) acts as left and right unit for the composition \(\circ \), which means that for any \(t \in \Sigma W \),

\[
(X \circ E^\circ)(t) = \bigcup_{s \in \Sigma W, t = so(\alpha, 0_{\alpha \ast})} X(s) \times \{\circ\} = X(t) \times \{\circ\}.
\]

\[
(E^\circ \circ X)(t) = \bigcup_{s \in \Sigma W, t = (\alpha t_1, 0_{(\alpha t_1) \ast})} \{\circ\} \times X(s) = \{\circ\} \times X(t).
\]

Associativity for \(\circ \) follows from the associativity of the monoidal product \(\times \) on \(\text{Set} \), the coproduct \(\sqcup \) on \(\text{Set} \) and the associativity of composition of morphisms in the category \(\Sigma W \). The composition \(\circ \) hence yields a monoidal structure on \(\text{Set}^{\Sigma W} \).

3.3. Incidence category with coefficients in \(\text{Vect} \)

We now shift to the linear setting. The category of (complex) vector spaces is denoted \(\text{Vect} \) or \(\text{Vect}_C \) if we want to emphasize the field of scalars. A \(\Sigma W \)-indexed collection \(V = V(t)_{t \in \Sigma W} \) of vector spaces \(V(t) \in \text{Vect} \) is also called linear \(\Sigma W \)-indexed **collection**.

3.10. Definition

The category \(\text{Vect}^{\Sigma W} \), whose

- objects are the \(\Sigma W \)-indexed collections of \(\mathbb{C} \)-vector spaces \((V(t))_{t \in \Sigma W} \), \(V(t) \in \text{Vect} \).
- morphisms from \(V \) to \(W \) are the families of linear maps (\(\text{Vect} \)-morphisms)

\[
f_t : V(t) \to W(t), \quad t \in \Sigma W,
\]

is called **incidence category of \(\Sigma W \) with coefficients in \(\text{Vect} \)**.

3.11. Remark

It is sometimes opportune to identify a collection \(V \in \text{Vect}^{\Sigma W} \) with the \(\Sigma W \)-graded vector space \(\bigoplus_{t \in \Sigma W} V(t) \) and a morphism \(f : V \to W \) with the grade-preserving map \(f(v) := f_t(v) \) for \(v \in V(t) \).

All linear \(\Sigma W \)-collections in this work are spanned by explicitly given \(\Sigma W \)-indexed collection of sets. For a set \(X \), we denote by

\[
\mathbb{C}X = \bigoplus_{x \in X} \mathbb{C}x
\]

the vector space formally spanned by \(X \). For a \(\Sigma W \)-collection \(X \) of sets, we denote by \(\mathbb{C}X \) the linear \(\Sigma W \)-indexed collection spanned by \(X \),

\[
(\mathbb{C}X)(t) := \mathbb{C}(X(t)) = \bigoplus_{x \in X(t)} \mathbb{C}x, \quad t \in \Sigma W.
\]

The **dual collection** of \(\mathbb{C}X \) is the linear \(\Sigma W \)-indexed collection \(\mathbb{C}X^* \) defined by

\[
\mathbb{C}X^*(t) := (\mathbb{C}X(t))^*, \quad t \in \Sigma W.
\]

There is a natural choice for a monoidal structure on the category of such linear collections. In the following definition, we denote by \(\otimes_C \) the tensor product on the category of complex vector spaces.
3.12. Definition ("Vertical" composition of linear ΣW-indexed collections). For two linear ΣW-indexed collections V and W define the vertical composition $V \circ W$ as the ΣW-indexed collection given by

$$(\mathcal{V} \circ \mathcal{W})(t) := \bigoplus_{r+s=t} \mathcal{V}(r) \otimes \mathcal{W}(s), \quad t \in \Sigma W.$$

Again, it follows from a straightforward verification that \circ is monoidal, with unit \mathcal{E}^\oplus defined by

$$(\mathcal{E}^\oplus(t) = \begin{cases} \mathcal{C} \{ \mathcal{G} \} & \text{if } b_t = 0, \\ \{0\} & \text{if } b_t \neq 0. \end{cases}$$

Note that $\mathcal{E}^\oplus(1) = \mathcal{C} \{ \mathcal{G} \}$ (1 the empty translucent word). Also, note that we use the same symbol for the unit in the linear and non-linear setting.

3.13. Notation. We may write $x \circ y$ instead of $x \otimes y$ if $x \in \mathcal{V}(r)$ and $y \in \mathcal{W}(s)$ for composable translucent words r and s.

3.14. Remark. Clearly, we have for all $X, Y \in \mathbf{Set}^{\Sigma W}$ a canonical isomorphism

$$\mathcal{C}(X \circ Y) \cong \mathcal{C}X \otimes \mathcal{C}Y,$$

which will be used to identify the two.

3.15. Definition. A (linear) ΣW-monoid is a monoid in the monoidal category $(\Sigma W, \circ, \mathcal{E}^\oplus)$ (or $(\mathcal{C} \Sigma W, \circ, \mathcal{E}^\oplus)$), i.e. a triple $(\mathcal{V}, m^\circ, \eta^\circ)$ where \mathcal{V} is a (linear) ΣW-indexed collection, $m^\circ: \mathcal{V} \circ \mathcal{V} \rightarrow \mathcal{V}$ and $\eta^\circ: \mathcal{E}^\oplus \rightarrow \mathcal{V}$ are morphisms in $\mathbf{Set}^{\Sigma W}$ (or $\mathbf{Vect}^{\Sigma W}$) satisfying the unitality and associativity constraints:

$$(m^\circ)(\eta^\circ \circ \mathrm{id}) = m^\circ(\mathrm{id} \circ \eta^\circ) = \mathrm{id}, \quad m^\circ(m^\circ \circ \mathrm{id}) = m^\circ(\mathrm{id} \circ m^\circ).$$

3.16. Remark. Let $(X, m^\circ_X, \eta^\circ_X)$ be a ΣW-monoid. By Remark 3.14 it is clear that the \mathbf{Set}-monoidal product $m^\circ_X: X \circ X \rightarrow X$ extends to a morphism of linear ΣW-indexed collections,

$$m^\circ_X: \mathcal{C}X \circ \mathcal{C}X \rightarrow \mathcal{C}X,$$

thus turning $\mathcal{C}X$ into a linear ΣW-monoid with unit η°_X the linear extension of η°_X.

3.17. Definition. A linear ΣW-comonoid is a triple $(F, \Delta^\circ, \varepsilon^\circ)$ where F is a linear ΣW-indexed collection, $\Delta^\circ: F \rightarrow F \circ F$ and $\varepsilon^\circ: F \rightarrow \mathcal{E}^\oplus$ satisfy the unitality and coassociativity constraints:

$$(\varepsilon^\circ \circ \mathrm{id})\Delta^\circ = (\mathrm{id} \circ \varepsilon^\circ)\Delta^\circ = \mathrm{id}, \quad (\Delta^\circ \circ \mathrm{id})\Delta^\circ = (\mathrm{id} \circ \Delta^\circ)\Delta^\circ.$$

3.18. Remark. We only define linear ΣW-comonoids, since we are interested in comonoids with a coDendriform splitting of the coproduct Δ°, which is a meaningless notion in \mathbf{Set}.

Of interest to us will be two linear monoids, which by the following recipe yield two linear ΣW-comonoids. Assume for the rest of this section that X is a ΣW-monoid in which each set $X(t)$ is finite, $t \in \Sigma W$. Thanks to this finiteness assumption, first,

$$(\mathcal{C}X \circ \mathcal{C}X)^* \cong \mathcal{C}X^* \circ \mathcal{C}X^*.$$

Second, the basis X yields an isomorphism between the collection $\mathcal{C}X$ and its dual $\mathcal{C}X^*$ by sending X to its dual basis. The algebraic dual of m°,

$$(m^\circ)^*: \mathcal{C}X^* \rightarrow (\mathcal{C}X \circ \mathcal{C}X)^* \cong \mathcal{C}X^* \circ \mathcal{C}X^*$$

yields the structure of a comonoid on $\mathcal{C}X^* \cong \mathcal{C}X$. More concretely, under the named isomorphism, $(m^\circ)^*$ and η^* correspond to the structural morphisms $\Delta^\circ: \mathcal{C}X \rightarrow \mathcal{C}X \circ \mathcal{C}X$ and $\varepsilon: \mathcal{C}X \rightarrow \mathcal{E}^\oplus$ defined by

$$\Delta^\circ(x) = \sum_{y \in X(t)} \sum_{z \in X(t)} y \circ z, \quad \varepsilon(x) = \begin{cases} \mathcal{C} \{ \mathcal{G} \} & \text{if } b_t = 0, \\ \{0\} & \text{if } b_t \neq 0 \end{cases}$$

for any $x \in X(t)$.

3.4. Horizontal semigroupal product

We introduce in this subsection a second (non-unital) tensor product on the incidence category \(\mathbf{Vect}^{\Sigma W} \), which we name horizontal tensor product. The horizontal tensor product turns out to be compatible with the previously introduced vertical tensor product \(\otimes \) in a way reminiscent of \(2 \)-monoidal categories or duoidal categories. The reader is directed to the monograph [AM10] for a detailed account of this notion from higher category theory.

In our case, however, the horizontal tensor product lacks existence of a unit (we use the terminology semigroupal in the sequel), we, therefore, refrain from defining \(2 \)-monoidal categories here. Nevertheless, we will show the existence of a functor, called four-points exchange relation or interchange relations satisfying the natural associativity constraints. This implies a rather rich structure on the category of horizontal semigroups (objects equipped with a binary associative multiplication morphism) that we leverage in the forthcoming sections.

The horizontal semigroupal product is built on splitting a translucent word \(t \) at a translucent point. More precisely, for \(i \in [t]_0 \) we denote the restrictions of \(t \) to the \(\prec \)-intervals of positions before or after \(i \) by

\[
\begin{align*}
t^{\prec i} := t\upharpoonright_{\{j: j \prec i\}}, & \quad t^{\succ i} := t\upharpoonright_{\{j: j \succ i\}}.
\end{align*}
\]

Recall that the unique endomorphism of the empty word \(\emptyset \in \{L, R\}^* \) is the empty translucent word, denoted \(1 \).

3.19. Example.

\[
\begin{align*}
\alpha &= \text{LRLL}, \quad b = 0101 \\
\alpha^{\prec 1} &= 1, \quad w^{\succ 1} = \text{RL}, \quad \alpha^{\preceq 3} = \text{L}, \quad \alpha^{\succ 3} = \text{RL}
\end{align*}
\]

3.20. Definition ("Horizontal" composition of linear \(\Sigma W \)-indexed collections). For two \(\Sigma W \)-indexed collections \(V \) and \(W \), we define the horizontal composition \(V \otimes W \) as the \(\Sigma W \)-indexed collection

\[
(\forall \otimes W)(t) = \bigoplus_{i \in [t]_0} V(t^{\prec i}) \otimes W(t^{\succ i}).
\]

Analogously, for \(\Sigma W \)-indexed collections of sets,

\[
(\bigcup \otimes W)(t) = \bigcup_{i \in [t]_0} \bigcup^{t^{\prec i}, t^{\succ i}}
\]

so that \(C(\bigcup \otimes W) = C \bigcup \otimes C \).

It is straightforward to verify the associativity constraint for \(\otimes \) for the (trivial) associator

\[
\alpha_{U,V,W}^{\otimes}: (U \otimes V) \otimes W \rightarrow U \otimes (V \otimes W), (u \otimes v) \otimes w \mapsto u \otimes (v \otimes w)
\]

where \(u \in U(t^{\prec i}), v \in V(t^{\succ i}, t^{\preceq j}) \) and \(w \in W(t^{\preceq j}) \) with \(t^{\preceq i}, t^{\succ j} \) the translucent word \(t \) restricted to the interval \(\ll i,j \ll \). Here we use in a crucial way that this operation of cutting a translucent word \(t \) at a certain position \(i \) and forgetting about \(t(i) \) is associative.

In fact, one has (omitting the associator \(\alpha \))

\[
U \otimes V \otimes W(t) = \bigoplus_{i,j \in [t]_0, i \prec j} U(t^{\prec i}) \otimes V(t^{\succ i}, t^{\preceq j}) \otimes W(t^{\preceq j})
\]

The bifunctor \(\otimes: \mathbf{Vect}^{\Sigma W} \times \mathbf{Vect}^{\Sigma W} \rightarrow \mathbf{Vect}^{\Sigma W} \) does not yield a monoidal product, since it cannot be endowed with a unit, as we see below.\(^2\) Therefore, we call it a semigroupal product (a “monoidal product without unit”). Correspondingly, the equivalent of a monoid in such a category will be called a semigroup.

3.21. Remark. If \([t]_0 = \emptyset \), then the sum on the right side of eq. (8) is empty, thus equal to \(\{0\} \). In particular, \((V \otimes W)(\alpha, 1_{[t]} = \{0\} \) for any word \(\alpha \in \{L, R\}^* \). This also yields that \(\otimes \) has no unit.

\(^2\)Being monoidal is a property, not a structure, compare [EGNO15, Remark 2.2.9].
3.22. Remark. It is possible to design a horizontal tensor product \otimes' with unit by
\[
(\forall \mathcal{E}' \mathcal{W})(t) = \sum_{i \in [b]_0} \mathcal{V}(t^{ei}) \otimes \mathcal{W}(t^{pi})
\]
where t^{ei} is the restriction of t to $\{x : x \geq i\}$. This tensor product, while unital, seems less natural than \otimes because of the choice on which side to include i.

Figure 9. Four point exchange relation. The top left translucent word t is deconcatenated at the position marked by the arrow, yielding two diagrams t^{ei} and t^{pi} shown in the bottom left. In the top right, we see two translucent words r and s with $t = r \circ s$ (of course, those are not uniquely determined by t, the diagram only shows one possible decomposition of t). The bottom right can be either obtained by decomposing the bottom left or splitting the top right diagrams, exemplifying that splitting and decomposition commute.

We introduce now a natural transformation
\[
R : \otimes \circ (\otimes \times \otimes) \rightarrow \otimes \circ (\otimes \times \otimes) \circ \tau_{2,3}
\]
where $\tau_{2,3} : (\text{Vect}^t) \times 4 \rightarrow (\text{Vect}^t) \times 4$, $(\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3, \mathcal{V}_4) \mapsto (\mathcal{V}_1 \oplus \mathcal{V}_3, \mathcal{V}_2 \oplus \mathcal{V}_4)$.

Pick $\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3, \mathcal{V}_4 \in \text{Vect}^t$ and define
\[
R_{\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3, \mathcal{V}_4} : (\mathcal{V}_1 \oplus \mathcal{V}_2) \oplus (\mathcal{V}_3 \oplus \mathcal{V}_4) \rightarrow (\mathcal{V}_1 \oplus \mathcal{V}_3) \oplus (\mathcal{V}_2 \oplus \mathcal{V}_4)
\]
as follows.

3.23. Construction. Pick a translucent word $t \in \mathcal{W}$. Pick an integer $i \in [t]_0$. Consider two pairs of composable translucent words r_-, s_- and r_+, s_+ such that
\[
r_- \circ s_- = t^{ei}, \quad r_+ \circ s_+ = t^{pi}.
\]
Note that r_-, r_+ are determined by the choice of s_-, s_+.

We define the translucent word $s \in \mathcal{T}^t$ as the unique translucent word of length $|t|$ fulfilling
\[
s|_{l_-} = s_-, \quad s|_{l_+} = s_+ \quad \text{and} \quad s(i) = t(i).
\]
and the translucent word $r \in \mathcal{T}$ as $r := t|_{[s]_0}$. Let us remark that by identifying the set $[s]_0$ with $[[s]_0]$ by enumeration of its elements for the natural order, one has
\[
r|_{l_+} \cap [s]_0 = r_{\text{inc}} \cap [s]_0 = r_+ \quad \text{and} \quad r(i) = t(i).
\]
See Figure 9 for a graphical example. For further use, the outputs s, r of this construction will be denoted
\[
s = s(s_-, s_+, t, i), \quad r = r(s_-, s_+, t, i)
\]
(we do not recall the dependence on \(r_+, r_-\)). Note that by definition \(s^{ni} = s_-\) and \(s^{pi} = s_+\). Also, since \(i \in [s]_0\), one has \(r^{ni} = r_-\) and \(r^{pi} = r_+\) for \(i' = \{|x \in [s]_0 : x < i\}\).

3.24. **Observation.** The two translucent words \(r\) and \(s\) are composable.

Pick elements
\[
R_- \in \mathcal{V}_1(r_-), \ S_- \in \mathcal{V}_2(s_-), \ R_+ \in \mathcal{V}_3(r_+), \ S_+ \in \mathcal{V}_4(s_+),
\]
so that
\[
(R_- \oplus S_-) \in (\mathcal{V}_1 \oplus \mathcal{V}_2)(t^{ni}), \quad (R_+ \oplus S_+) \in (\mathcal{V}_3 \oplus \mathcal{V}_4)(t^{pi})
\]
and set, with the notations introduced so far,
\[
R_{\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3, \mathcal{V}_4}((R_- \oplus S_-) \ominus (R_+ \oplus S_+)) := (R_- \ominus R_+), \ominus (S_- \ominus S_+)_s
\]
where
\[
(R_- \ominus R_+), \ominus (\mathcal{V}_1 \ominus \mathcal{V}_3)(r), (S_- \ominus S_+)_s \in (\mathcal{V}_2 \ominus \mathcal{V}_4)(s).
\]
We now prove the main proposition of this section.

3.25. **Proposition.** The morphisms \(R_{\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3, \mathcal{V}_4}, \mathcal{V}_i \in \mathbf{Vect}^{T_W}\) yield a natural transformation
\[
R : \ominus \circ (\oplus \times \ominus) \rightarrow \ominus \circ (\ominus \times \ominus) \circ \tau_{2,3}
\]
satisfying the associativity constraints:

\[
\begin{align*}
\left((A \oplus B) \ominus (C \oplus D)\right) \ominus (E \ominus F) & \xrightarrow{\alpha} (A \oplus B) \ominus ((C \oplus D) \ominus (E \ominus F)) \\
\downarrow_{R \circ \text{id}} & \quad \quad \quad \quad \quad \quad \downarrow_{\text{id} \circ R} \\
\left((A \ominus C) \oplus (B \ominus D)\right) \ominus (E \ominus F) & \xrightarrow{\alpha} (A \oplus B) \ominus ((C \ominus E) \oplus (D \ominus F)) \\
\downarrow_{R} & \quad \quad \quad \quad \quad \quad \downarrow_{R} \\
\left((A \ominus C) \ominus E\right) \ominus ((B \ominus D) \ominus F) & \xrightarrow{\alpha \ominus \circ \alpha} (A \ominus (C \ominus E)) \circ (B \ominus (D \ominus F))
\end{align*}
\]

Figure 10. First associativity constraint

\[
\begin{align*}
\left((A \oplus B) \ominus C\right) \ominus ((D \oplus E) \ominus F) & \xrightarrow{\alpha \ominus \circ \alpha} (A \oplus (B \ominus C)) \ominus (D \ominus (E \ominus F)) \\
\downarrow_{R} & \quad \quad \quad \quad \quad \quad \downarrow_{R} \\
\left((A \ominus B) \ominus (D \ominus E)\right) \ominus (C \ominus F) & \xrightarrow{\alpha} (A \ominus D) \ominus ((B \ominus C) \ominus (E \ominus F)) \\
\downarrow_{R \circ \text{id}} & \quad \quad \quad \quad \quad \quad \downarrow_{\text{id} \circ R} \\
\left((A \ominus D) \ominus (B \ominus E)\right) \ominus (C \ominus F) & \xrightarrow{\alpha} (A \ominus D) \ominus ((B \ominus E) \ominus (C \ominus F))
\end{align*}
\]

Figure 11. Second associativity constraint

One can depict the above commutative diagrams using horizontal and vertical bars to indicate which of the horizontal product or vertical tensor product takes precedence. Omitting the (necessary) bracketing, one obtains Figure 12.

Proof. Let \(t\) be a translucent word. Pick two integers \(i < j\). The notation \(t^{ni, nj} = t^{ni}_{|i,j|}\) has been introduced at the beginning of the section. We pick three pairs of composable translucent words
\[
(r_-, s_-), \ (r_0, s_0), \ (r_+, s_+)
\]
such that
\[
r_- \circ s_- = t^{ni}, \ r_0 \circ s_0 = t^{pi, nj}, \text{ and } r_+ \circ s_+ = t^{pj}.
\]
We obtain a pair of translucent words $t^{\xi j}$ and obtain two words $s_{-,0}$, $r_{-,0}$. With i_0 the integer in $[\lceil t^{\xi j} \rceil]$ such that $t^{\xi i} s^{i_0} = t^{\xi i}$ and $t^{\xi j} s^{i_0} = t^{\xi i}$, one has by definition,

(11) \[s_{-,0}(i_0) = s_{-}, \quad s_{+(i_0)} = s_{+} \quad \text{and} \quad s_{-,0}(i_0) = t^{\xi j}(i_0). \]

and $r_{-,0} \circ s_{-,0} = t^{\xi j}$. We apply a second time the above construction to t and to the pairs $(r_{-,0}, s_{-,0})$ and $(r_{+} \circ s_{+})$

\[r_{-,0} \circ s_{-,0} = t^{\xi j}, \quad r_{+} \circ s_{+} = t^{\xi j}. \]

We obtain a pair of translucent words r, s characterized by the relations

(12) \[s_{+}(j) = s_{+}, \quad s_{+}(j) = s_{+}, \quad s(j) = t(j). \]

and $t = r \circ s$. Now, combining equations (11) and (12), we may conclude that s and r are the unique translucent words fulfilling

\[s_{+}(x^{\xi i}) = s_{+}, \quad s_{+}(x^{\xi j}) = s_{+}, \quad s_{+}(x^{\xi i}) = s_{+}. \]

and $t = s \circ r$. This is also the pair of translucent words obtained by following the procedure exposed in the lines above but starting with the pairs of translucent words (r_0, s_0) and (r_{+}, s_{+}). This statement is equivalent to the commutativity of the diagram in Fig. 10. Pick now two composable triples

\[t^{\xi i} = q_{-} \circ r_{-} \circ s_{-} \quad \text{and} \quad t^{\xi j} = q_{+} \circ r_{+} \circ s_{+}. \]

Set also

\[r s_{-} = r_{-} \circ s_{-}, \quad r s_{+} = r_{+} \circ s_{+}, \quad q r_{-} := q_{-} \circ r_{-}, \quad q r_{+} = q_{+} \circ r_{+} \]

so that

\[t^{\xi i} = q r_{-} \circ s_{-}, \quad t^{\xi j} = q r_{+} \circ s_{+} \]

and

\[t^{\xi i} = q_{-} \circ r s_{-}, \quad t^{\xi j} = q_{+} \circ r s_{+}. \]

We apply Construction 3.23 to obtain

\[s(r s_{-}, r s_{+}, t, i) \quad \text{and} \quad q := r(r s_{-}, r s_{+}, t, i) \]

Now, one has further

\[s(r s_{-}, r s_{+}, t, i)^{\xi i} = r s_{-} = r_{-} \circ s_{-}, \quad s(r s_{-}, r s_{+}, t, i)^{\xi j} = r s_{+} = r_{+} \circ s_{+} \]

so that we can apply again Construction 3.23 to the pairs $(r_{-,0}, s_{-})$, (r_{+}, s_{+}) and $s(r s_{-}, r s_{+}, t, i)$ and i, to obtain

\[r := r(s_{-}, s_{+}, s(r s_{-}, r s_{+}, t, i), i), \quad s := s(s_{-}, s_{+}, s(r s_{-}, r s_{+}, t, i), i). \]

The three translucent words we obtain are composable and $t = q \circ r \circ s$. Next, we show that

\[s = s(s_{-}, s_{+}, t, i) \]

which would then implies that $q \circ r = r(s_{-}, s_{+}, t, i)$. By definition, s is the translucent word with length $|t|$ such that

\[s_{i} = s_{-,0}, \quad s_{i} = s_{+} \quad \text{and} \quad s(i) = t(i). \]
Hence, again by definition, \(s = s(s_-, s_+, t, i) \). We have further that
\[
 r(s_-, s_+, t, i)^{\alpha'\beta'} = (q \circ r)^{\alpha'\beta'} = q_- \circ r_-
\]
\[
 r(s_-, s_+, t, i)^{\alpha'\beta'} = (q \circ r)^{\alpha'\beta'} = q_+ \circ r_+.
\]
The above equalities imply
\[
 q = r(r_-, r_+, r(s_-, s_+, t, i), i'), \ r = s(r_-, r_+, r(s_-, s_+, t, i), i'),
\]
To sum up,
\[
 s(s_-, s_+, t, i) = s(s_-, s_+, s(rs_-, rs_+, t, i), i) \tag{13}
\]
\[
 r(r_-, r_+, r(s_-, s_+, t, i), i') = r(rs_-, rs_+, t, i) \tag{14}
\]
\[
 s(r_-, r_+, r(s_-, s_+, t, i), i') = r(s_-, s_+, s(rs_-, rs_+, t, i), i) \tag{15}
\]
where \(i' = [s(s_-, s_+, t, i)]_0 \). The above relation are equivalent to second associativity constraints in Fig 11. \(\square \)

Existence of such a four-points exchange relation has major consequences for the categories of horizontal semigroups and vertical comonoids, as stated in the next proposition. For the proof, we refer the reader to [AM10, Chapter 4].

3.26. Proposition. Pick \((\mathcal{V}, m^0)\) and \((\mathcal{W}, m^0)\) two \(\ominus\)-semigroups, then \(\mathcal{V} \oplus \mathcal{W}\) is a \(\ominus\)-semigroup if equipped with the product \(m^0_{\mathcal{V} \oplus \mathcal{W}}\) defined by
\[
 m^0_{\mathcal{V} \oplus \mathcal{W}} := (m^0_{\mathcal{V}} \oplus m^0_{\mathcal{W}}) \circ R_{\mathcal{V}, \mathcal{W}, \mathcal{V}, \mathcal{W}}. \tag{16}
\]

Pick two \(\Sigma\mathcal{W}\)-comonoids \((\mathcal{V}, \Delta^0)\) and \((\mathcal{W}, \Delta^0)\) then \(\mathcal{V} \otimes \mathcal{W}\) is a \(\Sigma\mathcal{W}\)-comonoid if equipped with the vertical coproduct
\[
 \Delta^0_{\mathcal{V} \otimes \mathcal{W}} = R_{\mathcal{V}, \mathcal{W}, \mathcal{V}, \mathcal{W}} \circ (\Delta^0_{\mathcal{V}} \otimes \Delta^0_{\mathcal{W}}) \tag{17}
\]

This proposition implies that the category \(\Gamma(\ominus)\) is monoidal for the vertical tensor product, in fact \(\mathcal{E}^\oplus\) is a unit, since it can be equipped with a horizontal product
\[
 m^\oplus_{\mathcal{E}^\oplus} : \mathcal{E}^\ominus \otimes \mathcal{E}^\ominus \to \mathcal{E}^\ominus
\]
defined by, for any \(w^- \ominus w^+ \in \mathcal{E}^\ominus \otimes \mathcal{E}^\ominus(\alpha, 1_{\alpha}), \ w = z \cdot \{\mathbb{G}\}, \ w' = z' \cdot \{\mathbb{G}\}\)
\[
 m^\ominus_{\mathcal{E}^\oplus}(w^- \ominus w^+) = zz' \cdot \{\mathbb{G}\}.
\]

Likewise, the category of \(\ominus\)-comonoids is a semigroup category if equipped with the horizontal semigroupal product \(\ominus\).

As mentioned previously, all linear \(\Sigma\mathcal{W}\)-indexed collections considered in this work come equipped with preferred finite bases; they are all of the form \(\mathcal{C}\mathcal{X}\) with \(\mathcal{X}\) an \(\Sigma\mathcal{W}\)-indexed collections of finite sets. Additionally, they are (vertically) augmented, i.e. they come with a morphism of linear \(\Sigma\mathcal{W}\)-indexed collections
\[
 \eta : \mathcal{E}^\ominus \to \mathcal{C}\mathcal{X},
\]
called the augmentation morphism, which induces an isomorphism for each translucent word \(t\) with \(b_t = 0_{|t|}\); more concretely one has
\[
 \mathcal{C}\mathcal{X}(\alpha, \{0\}) \approx_{\eta_{\alpha, \{0\}}} \{\mathbb{G}\} \tag{18}
\]
for all \(\alpha \in \{L, R\}^*\). In the sequel, we use the notation \(\mathcal{C}\mathcal{X}^+\) for the linear \(\Sigma\mathcal{W}\)-indexed collection with
\[
 \mathcal{C}\mathcal{X}^+(t) := \begin{cases} \mathcal{C}\mathcal{X}(t), & \text{if } b_t \neq 0, \\ \{0\}, & \text{if } b_t = 0. \end{cases} \tag{19}
\]
Furthermore, when considering ΣW-comonoid structures on such collections, we will always assume nilpotency for the coproduct Δ°, which means that for every $c \in \mathcal{X}(t), \ t \in \Sigma W$, $b_t \neq 0$,

\[
\Delta^\circ_t(c) = c \otimes c \cdot \eta_{(\alpha, 0)}(\mathcal{S}) + \eta_{t[1]}(\mathcal{S}) \otimes c + \tilde{\Delta}^\circ(c), \\
\Delta^\circ_{(\alpha, 0)}(\eta(\mathcal{S})) = \eta_{(\alpha, 0)}(\mathcal{S}) \otimes \eta_{(\alpha, 0)}(\mathcal{S}),
\]

with $\tilde{\Delta}^\circ$ the reduced coproduct

\[
(20) \quad \tilde{\Delta}^\circ : CX^+ \to CX^+ \otimes CX^+
\]

and $\tilde{\Delta}^n(c) = 0$ for a certain integer n depending on c where $\tilde{\Delta}^\circ^n = (\tilde{\Delta}^\circ \otimes \text{id}) \circ \tilde{\Delta}^\circ^{n-1}$, $\tilde{\Delta}^\circ^1 = \tilde{\Delta}^\circ$.

3.5. Freely generated horizontal semigroups

3.27. Definition (Opaque collection). For each linear ΣW-indexed collection \mathcal{V} we define its opaque part as \mathcal{V}_1 as

\[
\mathcal{V}_1(t) = \begin{cases}
\mathcal{V}(t) & \text{if } b_t = 1, \\
\{0\} & \text{else}.
\end{cases}
\]

We call a linear ΣW-indexed collection \mathcal{V} opaque if $\mathcal{V} = \mathcal{V}_1$. The full sub-category of $\text{Vect}_1^{\Sigma W}$ of all opaque ΣW-indexed collections is denoted $\text{Vect}^\oplus_{1 \Sigma W}$.

Analogously, a ΣW-indexed collections of sets \mathcal{X} is opaque if it coincides with \mathcal{X}_1 defined as

\[
\mathcal{X}_1(t) = \begin{cases}
\mathcal{X}(t) & \text{if } b_t = 1, \\
\emptyset & \text{else}
\end{cases}
\]

and $\text{Set}_{1 \Sigma W}^\oplus$ is the full sub-category of $\text{Set}_{1 \Sigma W}$ consisting of all opaque collections.

3.28. Remark. Opaque collections \mathcal{V} correspond 1:1 to collections of vector spaces indexed by words in $\{L, R\}^*$. We consider a functor $U : \Gamma(\oplus) \to \text{Vect}_1^{\Sigma W}$, from the category of \oplus-semigroups to the category of all linear opaque ΣW-indexed collections defined by

\[
U(\mathcal{V}, m^\oplus)(t) = \begin{cases}
\mathcal{V}(t) & t = (\alpha, 1) \\
\{0\} & \text{otherwise}
\end{cases}
\]

3.29. Remark. The functor U is not a forgetful functor in the sense that it simply “forgets” about the horizontal product m^\oplus; it does also set certain components of \mathcal{V} to $\{0\}$.

Note that $U(\mathcal{V})(t)$ is a subspace of $\mathcal{V}(t)$ for all $t \in \Sigma W$; either the two are the same or $U(\mathcal{V})(t)$ is trivial. This means that $U(\mathcal{V})$, seen as a graded vector space, is a graded subspace of \mathcal{V}. This will play an important role in the next proof.

A left-adjoint for U is a functor $F : \text{Vect}_1^{\Sigma W} \to \Gamma(\oplus)$ satisfying

\[
\text{Hom}_{\text{Vect}_1^{\Sigma W}}(\mathcal{V}, U(W)) \cong \text{Hom}_{\Gamma(\oplus)}(F(\mathcal{V}), W), \ \forall \mathcal{V} \in \text{Vect}_1^{\Sigma W}, \ W \in \Gamma(\oplus)
\]

where we have used the notation

\[
\text{Hom}_{\Gamma(\oplus)}(\mathcal{V}, W) := \{ f \in \text{Hom}_{\text{Vect}^{\Sigma W}}(\mathcal{V}, W) : m_{W}^\oplus \circ (f \otimes f) = f \circ m_{\mathcal{V}}^\oplus \}
\]

3.30. Proposition. Define the functor $F : \text{Vect}_1^{\Sigma W} \to \Gamma(\oplus)$, for any opaque collection $\mathcal{V} \in \text{Vect}_1^{\Sigma W}$, as

\[
F(\mathcal{V}) = \bigoplus_{n \geq 1} \mathcal{V}^{\oplus n} = \mathcal{V} \oplus \mathcal{V}^{\oplus 2} \oplus \mathcal{V}^{\oplus 3} \oplus \cdots, \quad F(f) = \bigoplus_{p \geq 1} f^{\oplus p}
\]

equipped with its canonical horizontal semigroupal product $m_{F(\mathcal{V})}^\oplus$. Then F is a left-adjoint for U.

Proof. For the sake of the proof, we extend the functor \(F \) by the same formula to the incidence category \(\text{Vect}^{\Sigma W} \). Let \(V \in \text{Vect}^{\Sigma W}_1 \) be an opaque collection and \(W \in \Gamma(\emptyset) \) a \(\emptyset \)-semigroup. Note that the product \(m_W^{\emptyset} \) yields (thanks to associativity) a morphism of \(\Sigma W \)-collections
\[
m_W^{\emptyset} : W^{\emptyset} \to W
\]
Altogether, the morphisms \(m_W^{\emptyset} \), \(p \geq 1 \) yield a morphism of \(\Sigma W \)-collections
\[
m_W^{\emptyset} : F(W) \to W,
\]
which restricts to a morphism of \(\Sigma W \)-collections, also denoted \(m_W^{\emptyset} \), from \(F(U(W)) \) to \(W \) (we interpret \(F(U(W)) \) as a graded subspace of \(F(W) \) as in Remark 3.29). Pick a morphism of opaque collections \(f : V \to U(W) \) and define
\[
f^{\emptyset} : F(V) \to W, f^{\emptyset} := m_W^{\emptyset} \circ F(f).
\]
Then \(f^{\emptyset} \) is a morphism of \(\emptyset \)-semigroups. This stems from the fact that
\[
F(f) \circ m_{F(V)}^{\emptyset} = m_{F(W)}^{\emptyset} \circ (F(f) \circ F(f))
\]
and (from associativity of \(m_W^{\emptyset} \))
\[
m_W^{\emptyset} \circ m_{F(V)}^{\emptyset} = m_{F(W)}^{\emptyset} \circ m_{F(W)}^{\emptyset} \circ m_{F(W)}^{\emptyset}.
\]
Pick a morphism of horizontal semigroups \(g : F(V) \to W \), then \(g \) is a morphism of \(\Sigma W \)-collections, hence
\[
g(\Sigma \alpha, 1)) \in W(\alpha, 1)
\]
(when considering \(V \in F(V) \)). This implies that \(g \) yields a morphism between the opaque collections \(V \) and \(U(W) \)). This ends the proof. \(\square \)

Of course, the analogous statement for \(\text{Set}^{\Sigma W}_1 \) with
\[
F(X) := \bigsqcup_{p \geq 1} X^{\emptyset p}, \quad U(X, m_X^{\emptyset})(t) = \begin{cases} \emptyset & t = (\alpha, 1) \\ X(t) & \text{otherwise} \end{cases}
\]
holds likewise.

3.31. Remark. In the following, we say that a horizontal semigroup \(V \) is freely generated by its opaque part if it is isomorphic as a horizontal semigroup to \(F(U(V)) \). This means that to every element \(v \in V(t) \) corresponds a unique sequence \(v_1, \ldots, v_p \) where \(p = \left\lfloor t \right\rfloor \) and \(v_1 \in U(V) \) such that
\[
v = m_{\emptyset}^{\emptyset}(v_1 \emptyset \cdots \emptyset v_p)
\]

3.6. Monoids of bipartitions and noncrossing bipartitions

We exploit the results proved in this section in the proofs of our main Theorems in Section 5. Let \(X \) be a set. An incomplete partition of \(X \) is a partition of a subset of \([X]_1 \subseteq X \). An incomplete partition \(\pi \) of \(X \) becomes a partition \(\overline{\pi} \) of \(X \) by adding the block \([X]_0 := X \setminus [X]_1\), \(\overline{\pi} = \pi \cup \{[X]_0\} \). We refer to the blocks of \(\pi \) as opaque blocks and to the block \([X]_0 \) of \(\overline{\pi} \) as the translucent block of \(\pi \) (although it is not formally an element of \(\pi \) as a set). An incomplete partition defines a translucent-opaque structure on \(X \), points contained in opaque blocks are opaque and points contained in the translucent block are translucent. If \(X \) is a translucent set from the beginning, we modify the concept of partition so that it fits with the above observations.

3.32. Definition. A partition of a translucent set \(X \) is a partition \(\pi \) of the set of opaque points \([X]_1 \). We refer to the set of translucent points as the translucent block of \(\pi \) although it is not formally an element of \(\pi \) regarded as the set of its blocks.

3.33. Remark. In diagrams, the translucent block is colored red, see for example Figure 14.
A partition of a translucent set is an incomplete partition of the underlying set which is compatible with the translucent-opaque structure. The same applies to finite translucent ordered bisets and therefore to translucent words. Because of the importance of the concept, we spell it out concretely.

3.34. Definition. A bipartition of a translucent word \(t \) is a partition of \([t]_1\), i.e. a bipartition of the associated finite translucent ordered biset \(X_t = ([t], \alpha_t, b_t) \). The set of all bipartitions of a translucent word \(t \) is denoted \(\mathcal{P}(t) \). The collection \(\mathcal{P} = (\mathcal{P}(t))_{t \in \mathcal{TW}} \) is called the \(\mathcal{TW} \)-indexed collection of incomplete bipartitions.

3.35. Remark. In the remainder of this article, if we speak of an incomplete bipartition, we always mean a bipartition of some translucent word in the sense of the previous definition.

We will need to extend the notion of restriction to partitions. Let \(\pi \) be a bipartition of a translucent word \(t \) and \(I = \{i_1 < \ldots < i_p\} \) a subset of \([|t|]\). Then \(\pi|_I \) is the unique bipartition of \(t|_I \) such that \(i, j \in [|p|] \) are in the same block of \(\pi|_I \) if and only if \(i_k, i_\ell \) are in the same block of \(\pi \). It is straightforward to check that the translucent block of \(\pi|_I \) is \(\{k : i_k \in [|t|]_0\} = [|t|]_0 \), so that \(\pi|_I \) is indeed a partition of the translucent word \(t|_I \).

With these notions at hand, we are now ready to define the composition of incomplete bipartitions.

3.36. Definition. Let \(r \) and \(s \) be composable translucent words, \(\rho \in \mathcal{P}(r), \sigma \in \mathcal{P}(s) \). The composition \(\rho \circ \sigma \) is the unique bipartition \(\pi \) of \(t := r \circ s \) such with \(\pi|_{[s]_0} = \rho \) and \(\pi|_{[s]_1} = \sigma|_{[s]_1} \). Roughly speaking, the translucent block of \(\sigma \) is substituted by the bipartition \(\rho \). See Fig. 13 for an example.

Henceforth, we adopt the same notation \(\circ \) for the vertical monoidal product \(\circ \) on \(\mathcal{TW} \)-collections of sets and on \(\mathcal{TW} \)-collections of vector spaces.

![Figure 13](image.png)

Figure 13. Two examples of compositions between bipartitions and noncrossing bipartitions (with the notations in use afterward, the partition \(\sigma \) is the rightmost on each line and the partition is \(\rho \) is at the center on each line).

3.37. Observation. The collection \(\mathcal{P} \) is a \(\mathcal{TW} \)-monoid with the product

\[
\mathfrak{m}_P^\circ : \mathcal{P} \oplus \mathcal{P} \to \mathcal{P}, \quad \mathfrak{m}_P^\circ(\rho, \sigma) := \rho \circ \sigma.
\]

The unit for the vertical product \(\mathfrak{m}_P^\circ \) is the morphism

\[
\eta_P : \mathcal{E}^\circ \to \mathcal{P}
\]

sending \(\mathcal{G} \in \mathcal{P}(\alpha, 0) \) to the unique incomplete bipartition in \(\mathcal{P}(\alpha, 0) \), the empty partition.

For applications in noncommutative probability, noncrossing partitions are most important.

3.38. Definition. An incomplete bipartition \(\pi \in \mathcal{P}(t) \) is called noncrossing if the extended bipartition \(\pi \cup \{|t|_0\} \) is a noncrossing bipartition of \(\alpha_t \in (L, R)^* \). The set of all noncrossing bipartitions of \(t \) is denoted \(\mathcal{NC}(t) \). The collection of all incomplete noncrossing bipartitions is denoted \(\mathcal{NC} := (\mathcal{NC}(t))_{t \in \mathcal{TW}} \).
Figure 14. On the left an incomplete bipartition and on the right an incomplete noncrossing bipartition. The underlying translucent word is $$(\text{LLRLRLRR, } 01101101)$$ in both examples.

It is obvious that the composition of noncrossing incomplete bipartitions is again an incomplete noncrossing bipartition. Therefore, we document for further reference:

3.39. Observation. The collection NC (and consequently its linearization CNC) is a ΣW-monoid with the product

$$m_{\text{NC}}^\triangledown: \text{NC} \oplus \text{NC} \to \text{NC}, \; m_{\text{NC}}^\triangledown(\rho \oplus \sigma) := \rho \circ \sigma$$

(or the linearization thereof).

Neither the collection CP nor CNC are in the image of the functor \mathcal{F} of Proposition 3.30. Indeed, $A = \mathcal{F}(B)$ implies $A_1 = \mathcal{F}(B)_1 = B_1$. Now consider the noncrossing bipartition $\pi \in \text{NC}(\text{LRLRLR, 110111}) \subset \mathcal{P}(\text{LRLRLR, 110111})$ from Fig. 15. Then $\pi \notin \mathcal{F}(\mathcal{P}_1)(\text{LRLRLR, 110111}) = \mathcal{P}_1^\oplus(\text{LRLRLR, 110111}) \cap \mathcal{N}_1^\oplus(\text{LRLRLR, 110111})$ where by definition the blocks have to be contained in the \prec-intervals $]-\infty, 3[\prec$ and $]3, \infty[\prec$. Below, we define a subcollection of incomplete bipartitions (following [CNS15b] we call them shaded bipartitions) freely generated by the opaque collection of noncrossing bipartitions.

Figure 15. Example of an incomplete bipartition. The collection NC is not in the image of the functor \mathcal{F}.

We solve this problem by introducing a subset of the set of all incomplete noncrossing bipartitions. Recall that given a partition π of $[n]$, $n \geq 1$, we write \sim_π for the equivalence relation induced by π on $[n]$.

3.40. Definition (Shaded noncrossing bipartition). Pick a translucent word $t \in \Sigma W$ and an incomplete noncrossing bipartition $\pi \in \text{NC}(t)$ (recall that π is a partition of $[t]_1$). We say that π is a shaded noncrossing bipartition of type t if for all integers $1 \leq k < \min[t]_0$ with $\alpha(k) = \alpha(\min[t]_0)$ we have

$$j \sim_\pi k \implies j < \min[t]_0 \text{ and } \alpha(j) = \alpha(\min[t]_0).$$

See Figure 16 for examples and counterexamples. Of course, any shaded noncrossing bipartition is an incomplete noncrossing bipartition.

We denote by $\text{NC}_1 \subset \text{NC}$ the ΣW-collection comprising all shaded noncrossing bipartitions.
3.41. Observation. A fundamental observation is the following: shaded noncrossing bipartitions can be restricted, which is not the case for general incomplete noncrossing bipartitions. More precisely, given a translucent word t, again denote with

$$I_1^s(t) \prec \cdots \prec I_{k(t)}^s(t)$$

the maximal intervals for the order \prec contained in $[t]_1$. Then each block of π is contained in one of the intervals $I_j^s(t)$, $1 \leq j \leq k(t)$. Thus,

$$\mathcal{N}C_1(t) \ni \pi \mapsto (I_1^s \cap \ldots \cap I_{k(t)}^s) \in \mathcal{N}C_1(t_{I_1^s}) \times \cdots \times \mathcal{N}C_1(t_{I_{k(t)}^s})$$

is well defined and a bijection.

As a consequence, the collection of shaded noncrossing bipartitions is identified as the free Θ-semigroup over the collection of noncrossing partitions, i.e.

$$\mathcal{N}C_1 = \mathcal{F}(\mathcal{N}C_1).$$

Indeed,

$$\mathcal{F}(\mathcal{N}C_1)(t) = \mathcal{N}C_1 \oplus^{k(t)}(1) = \mathcal{N}C_1(t_{I_1^s}) \times \cdots \times \mathcal{N}C_1(t_{I_{k(t)}^s}) = \mathcal{N}C_1(t)$$

because the opaque parts of $\mathcal{N}C_1$ and $\mathcal{N}C$ agree.

3.42. Remark. An alternative description of a partition $\pi \in \mathcal{N}C_1(t)$ is as follows. The spines-and-ribs diagram of $\pi \cup [t]_0$ to which a straight vertical chord emerging from the top of the diagram and connected to the translucent block $[t]_0$ has no crossings. In other words, the translucent block is an outer block of the associated noncrossing partition of $[[t]]$ with respect to standard order. As such, shaded noncrossing bipartitions are shaded diagrams [CNS15b] with one top chord. In the following Figures, we choose to color the translucent block red.

3.43. Remark. We compare the restriction of the product $m^{\oplus}_{\mathcal{N}C}$ to (one-sided) noncrossing partitions and the gap-insertion operad introduced in [EFFKP20]. First, the monoidal product $m^{\oplus}_{\mathcal{N}C}$ restricts to the sub-ΣW-collection of $\mathcal{N}C_1$ comprising all shaded noncrossing partitions; the shaded noncrossing bipartitions with type (L^n, b), $n \geq 1$ and b a Boolean word with length n.

Pick a shaded noncrossing bipartition π with type $t = (L^n, b)$ and denote by I_0, \ldots, I_p the connected components (i.e. maximal \prec-intervals) of $[t]_1$. The shaded noncrossing partition π yields noncrossing partitions π_0, \ldots, π_p, obtained as the restrictions of π to the intervals I_0, \ldots, I_p. Pick a noncrossing partition π' with type $(L^p, 1)$. Denote by ρ the gap-insertion operadic product introduced in [EFFKP20]. Then

$$\rho(\pi', \pi_0, \ldots, \pi_p) = m^{\oplus}_{\mathcal{N}C}(\pi' \oplus \pi).$$

![Figure 16](image)

Two partitions on the left are shaded noncrossing bipartitions, the one on the right is not shaded noncrossing bipartition.

Finally, we can of course linearize our monoids to obtain monoids in $\text{Vect}^{\Sigma W}$.

3.44. Observation. The linear extensions of $m^{\oplus}_{\mathcal{P}}$ and $m^{\oplus}_{\mathcal{N}C}$ turn the linear collections $\mathcal{C}P$ and $\mathcal{C}NC$ into linear ΣW-monoids.

Later we will also need incomplete versions of interval and monotone partitions, which we define now (which do not give rise to Φ-monoids).
3.45. **Definition** (Incomplete interval bipartitions). An *interval bipartition* of type t is an incomplete bipartition $\pi \in \mathcal{P}(t)$ such that each block of π is an interval for the restriction of the order \prec to $[t]_1$; note that $[t]_0$ is not considered a block of π and therefore is not necessarily a \prec-interval.

Given a translucent word t, we denote by $\mathcal{I}(t)$ the set of incomplete interval bipartitions.

![Diagram of an incomplete interval bipartition.](image)

Figure 17. Example of an incomplete interval bipartition.

3.46. **Definition** (Incomplete monotone bipartitions). An *monotone bipartition* of type t is a noncrossing bipartition $\pi \in \mathcal{NC}(t)$ equipped with a total order (represented by an injective labeling $\lambda:\pi \to [\pi]$) such that, when the order is extended to $\{[t]_0\} \cup \pi$ by declaring $[t]_0$ the minimum block (represented by $\lambda([t]_0) = 0$), the resulting partition is a monotone bipartition of αt (i.e. a monotone partition of $[\alpha t]$ with respect to standard order). In the sequel we denote monotone partitions as pairs (π, λ) to make the labeling explicit. We use the term incomplete monotone partition to refer to any monotone partition of type t for some translucent word t.

Given a translucent word $t \in \mathcal{T}_W$, we denote by $\mathcal{M}(t)$ the set of all monotone bipartitions of type t.

3.47. **Remark.** One could define the set \mathcal{M}_i of shaded monotone bipartitions of type t similar to the noncrossing case, but it amounts to the same thing; indeed, since the block $[t]_0$ is the minimal block, it must be an outer block and can always be extended to the top. In diagrams of incomplete monotone partitions, we still draw the red extension in order to make the comparison with the noncrossing case easier.

Similarly, an incomplete interval bipartition is automatically shaded in the obvious sense.

4. Words on a Two-Faced Family of Random Variables

Recall that the letters L and R shall act as placeholders, meant to be substituted by left or right random variables. In this section, we formalize this through the introduction of a vertical monoid in the category $\text{Vect}_{\mathcal{T}_W}$ (depending on a choice of a finite set of left and right variables). This monoid should be thought of a two-faced analogon of double bar construction of an algebra from which the dendriform point-of-view on moment-cumulant relations is derived [EFP15]. It is supported by a \mathcal{T}_W-collection of incomplete words on random variables. Some of the entries of these incomplete words are drawn from the set of random variables we fixed and the others are drawn from the placeholders L, R.

Finally, we define *concatenation* of two incomplete words as a horizontal product, yielding the structure of a \ominus-semigroup. Besides, this semigroup is freely generated by words on random variables (the opaque part of the collection of incomplete words, see Remark 3.31.)

With the aforementioned vertical composition, this second product on incomplete words yields (almost) a dimonoid on incomplete words (to be precise, it is not quite a dimonoid because one of the operations only forms a semigroup, not a monoid).
4.1. Collection of incomplete words on random variables

Let \((A, \phi)\) be an algebraic probability space and \((A^L, A^R)\) a pair of faces, i.e. a pair of subalgebras of \(A\). The unital linear functional \(\phi\) will not play a role and can be forgotten about while reading this section, but of course, it will be important later on when we discuss moment-cumulant relations.

Pick two \textit{finite} subsets \(\hat{S}^L \subset A^L\), \(\hat{S}^R \subset A^R\) of random variables in this probability space and define
\[
\hat{S} = \hat{S}^L \cup \hat{S}^R
\]
as their disjoint union. We introduce more notation.

1. Put \(S^L := \hat{S}^L \cup \{L\}\), \(S^R := \hat{S}^R \cup \{R\}\) and \(S := S^L \cup S^R = \hat{S} \cup \{L, R\}\).
2. As for any alphabet, we denote \(S^*, \hat{S}^*, \text{etc.}\) the sets of words with letters (or entries) from the set, including the empty word \(\emptyset\).
3. Words in \(\hat{S}^*\) are referred to as \textit{words on random variables} or \textit{complete words} for short. Words in \(S^*\) are referred to as \textit{incomplete words on random variables} or \textit{incomplete words}, for short.
4. We put
\[
S^{(L,0)} := \{L\}, \quad S^{(R,0)} := \{R\},
\]
and, for a translucent word \(t\) of length \(n\),
\[
W(t) := S^{(1)} \times S^{(2)} \times \ldots \times S^{(n)} \subset S^*;
\]
recall the convention \(t(k) = (\alpha_t(k), b_t(k))\).
5. We use the decomposition
\[
S^* = \bigsqcup_{t \in \mathcal{W}} W(t)
\]
to define the \textit{type} of a word in \(S^*\) as the translucent word \(\text{type}(w)\), or shortly \(t_w\), if \(w \in W(t_w)\).

For example, if \(a^L \in \hat{S}^L\) and \(a^R \in \hat{S}^R\), then \(\text{type}(a^L a^R L a^R R) = (L L R L, 11010)\)
6. For an incomplete word \(w\), we write \([w]_1 := [\text{type}(w)]_1\) for the set of \textit{opaque positions} and \([w]_0 := [\text{type}(w)]_0\) for the set of \textit{translucent positions}.
7. For a word in \(w \in W(t)\), we define \(\text{source} w := \text{source} t = \alpha_t\) and \(\text{target} w := \text{target} t = \alpha_t | [t]_0\).

4.1. Example. Let \(\hat{S}^L = \left\{a^L, b^L\right\}\), \(\hat{S}^R = \left\{a^R\right\}\). Then
\[
S = \{L, R, a^L, b^L, a^R\}.
\]
And then, for example,
\[
W(LRL, 011) = \{La^R a^L, La^R b^L\}.
\]

4.2. Remark. Again, we will mostly work with the linear \(\mathcal{W}\)-indexed collection \(\mathcal{C} \mathcal{W}\) instead.

4.2. Monoid and comonoid of incomplete words

Given two words \(w \in W(s), w' \in W(t)\) with source \(s = \text{target} t\), we define their \textit{composition} as the unique word \(w \circ w' \in W(s \circ t)\) with
\[
(w \circ w') | [t]_1 = w' | [t]_1 \quad \text{and} \quad (w \circ w') | [t]_0 = w.
\]
To put it another way, the word \(w\) overwrites the placeholders in \(w'\).

4.3. Example. Continuing the example from Figures 6 and 7, let
\[
w = a^L x^L R x^R y^R \in W(L L R L, 1011), \quad w' = La^L a^R L R b^L \in W(L L R L, 01100101).
\]
Then
\[
w \circ w' = x^L a^L a^R L x^R b^L y^R b^L \in W(L L R L R L, 1101111).
\]
4.4. Observation. It is not difficult to see that the composition of words defined above is associative. With
\[
m^o : W \circ W \rightarrow W, (w, w') \mapsto w \circ w'
\]
and the unit η^o : E^o \rightarrow W defined by
\[
η^o_{(a, b)}(\ell) = a,
\]
W becomes a ∗-monoid. By linearly extending m^o and η^o, we obtain a linear ⊗-monoid structure on CW with
\[
m_W^o : CW \otimes CW \rightarrow CW, \quad m_W^o(w \otimes w') = w \circ w'.
\]
(Recall Notation 3.13, i.e. we write w ⊗ w' instead of w \otimes w' if the types of w and w', and therefore w and w' themselves, are composable.

We consider now the coproduct Δ_W^O dual to the composition product m_W^o:
\[
Δ_W^o : CW \rightarrow CW \otimes CW, \quad Δ_W^o(w) = \sum_{w = w' \otimes w''} w'.
\]
On the right-hand side of the formula, we again used Notation 3.13.

We will now give a more concrete formula for Δ_W^o by using the operations of restriction and translucidation, extended to incomplete words.

Let w be an incomplete word and an subset I = \{i_1 < \ldots < i_p\} \subset \|w\|. The restriction of w to I is already defined for words over arbitrary alphabets, in this case we get
\[
w_I := w(i_1) \ldots w(i_p).
\]
However, translucidation has only been defined for translucent words. We define the translucidation of w at I as the word w_{I \rightarrow 0} with letters
\[
w_{I \rightarrow 0}(k) = \begin{cases} L & \text{if } k \in I \text{ and } w(k) \in S^L, \\ R & \text{if } k \in I \text{ and } w(k) \in S^R, \\ w(k) & \text{if } k \notin I. \end{cases}
\]
Note that \text{type}(w_I^r) = \text{type}(w)\rceil_I and \text{type}(w_{I \rightarrow 0}) = \text{type}(w)\rceil_{I \rightarrow 0}. If I \supset \|w\|, then the translucent words type(w_I^r) and type(w_{I \rightarrow 0}) are composable and
\[
w = w_I^r \circ w_{I \rightarrow 0}.
\]
Furthermore, any factorization of w is of the form (22) for a unique subset \|w\| \subset I \subset \|w\|. This yields the following concrete description of the coproduct Δ_W^o:

4.5. Observation. For any incomplete word w,
\[
Δ_W^o(w) = \sum_{\ell \subseteq \|w\|, L \supset \|w\|} w_\ell \oplus w_{L \rightarrow 0}.
\]

An admissible cut of a word w is a pair (ℓ, u) of incomplete words, with
\[
\ell = w_\ell, \quad u = w_{L \rightarrow 0}
\]
and \|w\| \subset I \subset \|w\|. We denote by Adm(w) the set of all admissible cuts of a word w. With these notations,
\[
Δ_W^o(w) = \sum_{(\ell, u) \in \text{Adm}(w)} \ell \oplus u.
\]

4.6. Example.
\[
Δ_W^o(a_1^L L R a_2^R a_3^R) = LR \otimes a_1^L L R a_2^R a_3^R + a_1^L L R a_2^R a_3^R \otimes LLRRR
+ a_1^L L R a_2^R \otimes LL R a_3^R + a_1^L L R a_2^R \otimes L R a_3^R \otimes a_1^L L R a_2^R R
+ a_1^L L R a_2^R \otimes LL R a_3^R + a_1^L L R a_3^R \otimes LL R a_3^R R + L R a_2^R a_3^R \otimes a_1^L L R a_2^R RR
\]
4.3. Double monoid of words on random variables

As for translucent words, we also write \(w^{ei} := w^i_{\{x \in e_i\}} \) and \(w^{bi} := w^i_{\{x \in e_i\}} \) for an incomplete word \(w \) and an integer \(i \in [[|w|]] \).

4.7. Definition (Horizontal semigroup). We define the structure of a \(\ominus \)-semigroup on \(W \),

\[
m^{\ominus}_W : CW \ominus CW \to CW,
\]
as follows. Pick a translucent word \(t \in \Sigma W \) with \([t]_0 \neq \varnothing \), an integer \(i \in [t]_0 \) and

\[
w^- \ominus w^+ \in (CW \ominus CW)(t)
\]
such that \(w \in W(t^{ei}) \), \(w' \in W(t^{bi}) \). Then, \(m^{\ominus}_W(w^- \ominus w^+) \) is the unique incomplete word in \(W(t) \) satisfying

\[
m^{\ominus}_W(w^− \ominus w^+)^{ei} = w, \quad m^{\ominus}_W(w^- \ominus w^+)(i) = \alpha_t(i), \quad m^{\ominus}_W(w^- \ominus w^+)^{bi} = w'.
\]

Further below, we prove associativity of \(m^{\ominus}_W \). The above definition looks cumbersome, but it is not difficult to grasp, see Example 4.10.

4.8. Remark. For a tensor \(w^- \ominus w^+ \in W \ominus W \), we replace the symbol \(\ominus \) by \(\ominus \) to emphasize the belonging to \(W \ominus W \).

Be aware that given two incomplete words \(w^- \) and \(w^+ \) computing the horizontal product \(m^{\ominus}_W(w^- \ominus w^+) \) between those two words is, in general, meaningless. In fact, a pair of incomplete words \(w, w' \) does not (in general) yield an element of the tensor product \(CW \ominus CW \). For this to be true, the types \(t_w \) and \(t_w \) of \(w \) and \(w' \) respectively should be compatible, in the sense that if \(\alpha_{t_w} \) contains a letter \(R \) then \(\alpha_{t_{w'}}(k) = R \) for all \(k \in [[|w'|]] \), i.e. \(\alpha_{t_{w'}} \) is a word on just the letter \(R \) (note that this is equivalent to the symmetric condition \(\alpha_{t_{w'}}(j) = L \implies \alpha_{t_{w}} \in \{L\}^+ \)).

Even in the case where the words are in fact compatible, one needs to specify the translucent word \(t \) such that \(w^- \ominus w^+ \in (W \ominus W)(t) \). For example, take \(w^- = La^L \) and \(w^+ = b^R R \). The two words \(w^- \) and \(w^+ \) are compatible. Then \(w^- \ominus w^+ \) can be either interpreted as an element in \((W \ominus W)(L) \) or in \((W \ominus W)(LLRR) \). In the following, we will always be specific about which component of the collection \(W \ominus W \) an element \(w^- \ominus w^+ \) should be considered as part of.

4.9. Remark. In Definition 4.7, suppose, for example, that \(i = 1 \), which implies \(t^{ei} = \varnothing \) and \(w^- \) is the empty word. Then, \(m^{\ominus}_W(w^- \ominus w^+) = \alpha_t(1)w^- \).

4.10. Example. Pick two words \(w^- = LRa^L a^R \), \(w^+ = b^R R \). The words \(w^- \) and \(w^+ \) are compatible. We consider

\[
w^- \ominus w^+ \in (CW \ominus CW)(t), \quad t = (RLRRRLR, 10000011).
\]

For computing the product between \(w^- \) and \(w^+ \), we draw a table. On the first line, we put the word \(\alpha_t \). We add signs + and − under each letter of \(\alpha \) according to the following rule. The \(i \)-th letter (in our case \(i = 5 \)) so that receives no sign.

If \(\alpha_t(i) = L \) then all letters \(L \) to the left of the \(i \)-th letter are affected with a − and letters \(L \) to the right are affected with a +. The letters \(R \) are affected with a + sign.

If \(\alpha_t(i) = R \) then all letters \(R \) to the right of the \(i \)-th letter are affected with a + sign and letters \(R \) to the left are affected with a −. The letters \(L \) are affected with a − sign.

\[
\begin{array}{cccccccc}
\alpha_t & L & R & R & R & L & R \\
\hline
w^-(1) & w^-(1) & w^+(2) & w^+(3) & w^- (2) & w^-(3) & w^-(4) \\
\hline
\emptyset & L & R & R & R & a^L & a^R
\end{array}
\]

On the second line of the array, we have substituted to \(L \) or \(R \) a letter of \(w^- \) if the cell is tagged with − and a letter of \(w^+ \) if the cell is tagged +. On the third we read off the word \(m^{\ominus}_W(w^- \ominus w^+) = b^R LRRLRRLR a^L a^R \).
Owing to Propositions 3.25 and 3.26, the vertical composition \(W \circ W \) is endowed with a horizontal semigroup product:

\[
m^\oplus_{W \circ W} : (CW \circ CW) \oplus (CW \circ CW) \to CW \circ CW
\]

4.11. **Example.** Consider the words \(w_1^\ominus = LRa^L \), \(w_2^\ominus = LRLa^R \). Then \(w_1^\ominus \) and \(w_2^\ominus \) are composable, \(w_1^\ominus \circ w_2^\ominus = LRa^L a^R \). Likewise for the following words, \(w_1^\circ = b^R R \), \(w_2^\circ = RRb^R \), \(w_1^\circ \circ w_2^\circ = b^R Rb^R \). Since \(b^R Rb^R \) and \(LRa^L a^R \) are compatible words, the above four words yield an element in

\[
((CW \circ CW) \oplus (CW \circ CW))(t)
\]

with \(t = (RLRRRLR, 10000011) \). Then

\[
m^\oplus_{W \circ W}(w_1^\ominus \circ w_2^\ominus) \in (CW \circ CW)(t)
\]

and

\[
w_1^\ominus \circ w_2^\ominus \in (CW \circ CW)(t^{\circ5}), \quad w_1^\circ \circ w_2^\circ \in (CW \circ CW)(t^{\circ5}).
\]

For visualization, we draw a table as in the previous example (in this case \(i = 5 \) also).

\[
\begin{array}{cccccccc}
R & L & R & R & R & R & L & R \\
R & L & R & R & R & R & R & L \\
\hline
w_2^\ominus(1) & w_2^\ominus(1) & w_2^\ominus(2) & w_2^\ominus(3) & R & w_2^\ominus(4) & w_2^\ominus(2) & w_2^\ominus(3) \\
w_1^\ominus(1) & w_1^\ominus(2) & w_1^\ominus(1) & R & w_1^\ominus(3) & w_1^\ominus(4) \\
\hline
R & L & R & b^R & R & L & R & a^R \\
b^R & L & R & R & R & R & a^L & a^R \\
\end{array}
\]

We can now read off the result

\[
m^\oplus_{W \circ W}(w_1^\ominus \circ w_2^\ominus) = b^R LRRRa^L \oplus RLRb^R RRLa^R.
\]

4.12. **Proposition.** The horizontal semigroup of incomplete words is freely generated by its opaque part, that is

\[
W \simeq \mathcal{F}(U(W))
\]

with the adjoint functors \(\mathcal{F} \) and \(U \) as defined in Subsection 3.5.

Proof. Pick a translucent word \(t \in \Sigma W \) and a non-empty incomplete word on random variables \(w \in W(t) \). Let \([t]_0 = \{i_1 < \cdots < i_p\} \). Denote by \(w_j \) the restriction of \(w \) to \(\bar{j}i_j \bar{i}_j \), for \(1 \leq j \leq p+1 \), with the convention that \(i_0 = -\infty \), \(i_{p+1} = +\infty \) (see 2.3) and set

\[
\Phi(w) := w_0 \ominus \cdots \ominus w_{p+1} \in \mathcal{F}(U(W))(t)
\]

Then \(\Phi \) yields in injective morphism \(\Phi : W \to \mathcal{F}(U(W)) \) of linear \(\Sigma W \)-collections. The inverse morphism \(\Phi^{-1} \) satisfies

\[
\Phi^{-1}(w_1 \ominus \cdots \ominus w_p) = m^\oplus_W(w_1 \ominus \cdots \ominus w_p)
\]

where \(w_1 \ominus \cdots \ominus w_p \in \mathcal{F}(U(W))(t) \). \(\square \)

In the following, we use the shorter notation

\[
\mathcal{R} : = (m^\oplus_W \circ m^\oplus_W) \circ R_{W,W,W,W}
\]

4.13. **Observation.** Pick \(w^\ominus \ominus w^\circ \in (W \ominus W)(t) \) and set \(w = m^\ominus_W(w^\ominus \ominus w^\circ) \). The map \(\mathcal{R} \) yields a bijection between the set of admissible cuts of \(w \) and pairs of an admissible cut of \(w^\ominus \) and an admissible cut of \(w^\circ \).
4.14. **Example.** Take \(t = (RLRRRL, 1001001) \), \(i = 5 \), \(w = b^iLRb^iRRa^L \), \(w^- = LRa^L \), \(w^+ = b^iRR^R \). In the following table, we listed cuts of \(w \) and pairs of a cut of \(w^- \) and \(w^+ \) that correspond through \(R \).

\(\text{Adm}(w) \)	\(\text{LR}b^iRRa^L, b^iLRRRRL \)	\(\text{b}^i\text{LRR}Ra^L, \text{RR}b^i\text{RRL} \)	\(\text{b}^i\text{LR}b^i\text{RR}, \text{RRL}RRa^L \)
\(\text{Adm}(w^-) \)	\(\text{LR}b^i, b^i\text{LRL} \)	\(\text{LR}a^L, \text{LRL} \)	\(\text{LR}, \text{LRL} \)

4.15. **Proposition.**

\[
\Delta^\oplus_W \circ m^\oplus_W = m^\oplus_W \circ (\Delta^\oplus_W \oplus \Delta^\oplus_W).
\]

Proof. Pick compatible words with \(w^- \oplus w^+ \in (W \oplus W)(t) \) and set \(w = m^\oplus_W (w^- \oplus w^+) \). Then one has

\[
\Delta^\oplus_W (w) = \sum_{(\ell, u) \in \text{Adm}(w)} \ell \otimes u = \sum_{(\ell^-, u^-) \in \text{Adm}(w^-)} \sum_{(\ell^+, u^+) \in \text{Adm}(w^+)} m^\oplus_W ((\ell^- \otimes u^-) \oplus (\ell^+ \otimes u^+))
\]

\[= m^\oplus_W (\Delta^\oplus_W (w^-) \oplus \Delta^\oplus_W (w^+))\]

as needed. \(\Box \)

4.4. **coDendriform structure**

We now come to the core of the present article: we show that \(\Delta^\oplus_W \) introduced in the Subsection 4.2 splits into two parts \(\Delta^\oplus_L \) and \(\Delta^\oplus_R \) satisfying the co-dendriform relations.

We start with a short account of dendriform algebras and related structures. The abstract notion of a dendriform product and its decomposition into two nonassociative products goes back to the work of Eilenberg, MacLane, and Schützenberger in the 1950’s. For introductory materials on dendriform algebras, we refer the reader to [Lod01, Section 5]. To avoid confusion, we use \(\otimes_C \) for the tensor product over the category of vector spaces.

4.16. **Definition.** A **co-unital coDendriform co-algebra** is a coaugmented coassociative coalgebra \(C = \mathcal{C} \oplus \mathcal{C} \) with coproduct

\[
\Delta(c) := 1 \otimes_C c + c \otimes_C 1 + \bar{\Delta}(c)
\]

such that the **reduced coproduct** on \(\bar{C} \) splits, \(\bar{\Delta} = \Delta_L + \Delta_R \) with

\[
(\Delta_L \otimes_C \text{id}) \circ \bar{\Delta} = (\text{id} \otimes_C \bar{\Delta}) \circ \Delta_L
\]

\[
(\Delta_R \otimes_C \text{id}) \circ \bar{\Delta} = (\text{id} \otimes_C \Delta_R) \circ \Delta_L
\]

The maps \(\Delta_L \) and \(\Delta_R \) are called respectively the left and right coDendriform co-products.

4.17. **Definition.** A **unital dendriform algebra** \(A \) is an augmented algebra, which means

\[
A = \mathcal{C} \oplus \bar{A}
\]

where \(\bar{A} \) is a two-sideal ideal of \(A \) equipped with an algebra product \(\cdot \), which splits into two (nonassociative) bilinear products \(< \text{ and } > \) on \(\bar{A} \),

\[
a \cdot b = a < b + a > b, \ a, b \in \bar{A},
\]

satisfying the relations, with \(a, b, c \in A \),

\[
(a < b) < c = a < (b, c), \ a > (b > c) = (a, b) > c
\]

\[
(a > b) < c = a > (b < c)
\]
Definition 4.16 undergoes in the following paragraphs a very light “internalization” procedure yielding the definition of a coaugmented conilpotent coDendriform coalgebra but in the category of linear ΣW-collections. To keep the presentation contained and because the study of coDendriform algebras in the category of ΣW-indexed collections in full generality is not the core of the present work, we refrain from giving a general definition of such an object (but we give an example of), the reader will, without much effort, be able to extract it from Theorem 4.20.

We now turn to the definition of the coDendriform structure on incomplete words on random variables.

Recall that we denote by W^+ the ΣW-indexed collection with $W^+(t) = W(t)$ if $b_t \neq 0$ and $W^+(t) = \emptyset$ if $b_t = 0$.

4.18. Definition. We define two ΣW-collection morphisms

$$\Delta^\phi, \Delta^\psi : CW^+ \to CW^+ \oplus CW^+$$

by, for $w \in W^+$,

$$\Delta^\phi(w) = \sum_{I \subseteq \{w\} \mid w I \otimes w I \to 0} w I \otimes w I \to 0, \quad \Delta^\psi(w) = \sum_{I \subseteq \{w\} \mid w I \otimes w I \to 0} w I \otimes w I \to 0.$$

4.19. Example. $S = \{a^{L}, b^{L}\} \cup \{a^{R}, b^{R}\}$, then, for example,

$$\Delta^\phi(a^{L}Lb^{L}b^{R}) = a^{L}L \otimes LLb^{L}b^{R} + a^{L}Lb^{L} \otimes LLb^{R} + a^{L}Lb^{R} \otimes LLb^{L}$$

$$\Delta^\psi(a^{L}Lb^{L}b^{R}) = Lb^{R} \otimes a^{L}L + b^{L} \otimes a^{L}Lb^{R} + Lb^{R} \otimes a^{L}Lb^{L}.$$

where, for legibility, we highlight the letter at position $\Delta[w]_1$.

4.20. Theorem. The linear ΣW-indexed collection CW equipped with the coproduct Δ^ϕ_W is a coDendriform conilpotent coaugmented comonoid, which means first that the coproduct Δ^ϕ_W splits as

$$\Delta^\phi_W(w) = w \oplus \overline{\Delta} + \Delta \oplus w + \overline{\Delta}^\psi(w)$$

for any word w in W^+.

Besides, there exist two ΣW-indexed collection morphisms $\varepsilon : W \to E^\otimes$ and $\eta : E^\otimes \to W$, named co-unit and co-augmentation map, defined by

$$\varepsilon_{(\alpha, 0)}(\alpha) = \overline{\Delta} \oplus \alpha, \quad \varepsilon_t = 0 \text{ for } t \neq (\alpha, 0)$$

and satisfying

$$\varepsilon \circ \Delta = \varepsilon \circ \Delta = \text{id}, \quad \varepsilon \circ \Delta = \text{id},$$

In addition, $\overline{\Delta} = \Delta^\phi + \Delta^\psi$ and the coDendriform relations are satisfied,

$$(\Delta^\phi \oplus \text{id}) \circ \Delta^\phi = (\text{id} \oplus \overline{\Delta}) \circ \Delta^\phi, \quad (\text{id} \oplus \Delta) \circ \Delta^\phi = (\text{id} \oplus \Delta) \circ \Delta^\phi.$$

Proof. The only statements for which proofs are needed are the coDendriform relations.

Pick w an incomplete word. Pick a pair of subsets $[w]_0 \subset X_1 \subset X_2 \subset \{w\}$. We denote by $k \mapsto \overline{k} : X_1 \to \{X_1\}$ the unique strictly increasing bijection (i.e. the inverse of the map $k \mapsto i_k$ for $X_1 = \{i_1 \prec \ldots \prec i_p\}$). Then,

$$(w_{X_2 \to 0} \downarrow X_1) = (w \downarrow X_1)_{X_2 \to 0}.$$
We prove likewise the remaining two identities. If we define their convolution product
\[w \odot X_2 \otimes (w\,\downarrow X_2\downarrow) \downarrow X_1 \otimes w\,\downarrow X_1\downarrow = \sum_{[w]_0 \subset X_2 \subset X_1} (w\,\downarrow X_1) \odot (w\,\downarrow X_1) \downarrow X_2\downarrow \otimes w\,\downarrow X_1\downarrow. \]

This implies the following chain of equalities:
\[(\Delta_{\odot} \odot \text{id}) \circ \Delta_{\odot}(w) = \sum_{[w]_0 \subset X_2 \subset X_1 \atop \Lambda[w\,\downarrow X_1] \in X_2} (w\,\downarrow X_1) \odot (w\,\downarrow X_1) \downarrow X_2\downarrow \otimes w\,\downarrow X_1\downarrow \]
\[= \sum_{[w]_0 \subset X_2 \subset X_1 \atop \Lambda[w\,\downarrow X_1] \in X_2} w\,\downarrow X_2 \otimes (w\,\downarrow X_1\downarrow) \downarrow X_1 \otimes w\,\downarrow X_1\downarrow \]
\[= (\text{id} \odot \Delta_W) \circ \Delta_W(w). \]

We prove likewise the remaining two identities. If \(\Lambda[w\,\downarrow X_1] \in X_2 \), then \(\Lambda[w\,\downarrow X_1\downarrow] = \Lambda[w\,\downarrow X_1] \). This alone implies
\[(\text{id} \odot \Delta_W) \circ \Delta_W(w) = \sum_{[w]_0 \subset X_2 \subset X_1 \atop \Lambda[w\,\downarrow X_1] \in X_2} w\,\downarrow X_2 \otimes (w\,\downarrow X_1\downarrow) \downarrow X_1 \otimes w\,\downarrow X_1\downarrow \]
\[= \sum_{[w]_0 \subset X_2 \subset X_1 \atop \Lambda[w\,\downarrow X_1] \in X_2} (w\,\downarrow X_1) \odot (w\,\downarrow X_1) \downarrow X_2\downarrow \otimes w\,\downarrow X_1\downarrow \]
\[= (\Delta_{\odot} \odot \text{id}) \circ \Delta_{\odot}(w), \]

Finally, if \(\Lambda[w\,\downarrow X_1] \in X_1 \), since \(\Lambda[w\,\downarrow X_1\downarrow] \in [\, [X_1]\, \ \setminus \ \overline{X_2} \) is equivalent to \(\Lambda[w\,\downarrow X_1] \in X_1 \setminus X_2 \), one gets
\[(\Delta_{\odot} \odot \text{id}) \circ \Delta_{\odot}(w) = \sum_{[w]_0 \subset X_2 \subset X_1 \atop \Lambda[w\,\downarrow X_1\downarrow] \in [\, [X_1]\, \ \setminus \ \overline{X_2} \] \[w\,\downarrow X_2 \otimes (w\,\downarrow X_1\downarrow) \downarrow X_1 \otimes w\,\downarrow X_1\downarrow \]
\[= (\text{id} \odot \Delta_{\odot}) \circ \Delta_{\odot}(w). \]

This ends the proof. \(\Box \)

4.21. Proposition. One has
\[\Delta_{\odot,\downarrow} \circ m_{\odot} = m_{\odot}\circ (\Delta_{\odot,\downarrow} \odot \Delta_{\odot}). \]

Proof. The proof follows the same line of arguments as in Proposition 4.15 \(\Box \)

Given two linear functionals
\[\ell_1, \ell_2 : \bigoplus_{t \in Y_W} CW(t) \to \mathbb{C} \]
we define their convolution product \(\ell_1 * \ell_2 \) by
\[\ell_1 * \ell_2 = m_{\odot} \circ (\ell_1 \odot \ell_2) \circ \Delta_{\odot} W. \]
where m_C is the product of complex numbers. Then \ast is a monoidal product on $(CW^\ast)^\ast$ with identity the counit ε. Since the reduced coproduct Δ° splits into two parts, the bilinear product \ast splits as well into two nonassociative products.

4.22. Theorem. For two linear functionals $\ell_1, \ell_2 \in (CW^\ast)^\ast$ $(\ell_i \circ \eta = 0, \ i \in \{1, 2\})$, we define

$$\ell_1 < \ell_2 := m_C \circ (\ell_1 \circ \ell_2) \circ \Delta^\circ, \quad \ell_1 > \ell_2 := m_C \circ (\ell_1 \circ \ell_2) \circ \Delta^\circ$$

then $\ell_1 < \ell_2$ and $\ell_1 > \ell_2$ belong to $(CW^\ast)^\ast$ and the two products $<$ and $>$ satisfy the dendrimorphic relations,

$$\begin{align*}
(\ell_1 < \ell_2) < \ell_3 &= \ell_1 < (\ell_2 \ast \ell_3), \\
(\ell_1 > (\ell_2 > \ell_3) &= (\ell_1 \ast \ell_2) > \ell_3
\end{align*}$$

The two products $<$ and $>$ are partially extended to the space of linear functionals in $(CW^\ast)^\ast$, constant on the coaugmentation part of CW. This among to ascribe meaning to $\ell < \varepsilon$ and $\varepsilon > \ell$ with $\ell \in (CW^\ast)^\ast$ by setting $\ell < \varepsilon = \ell, \ \varepsilon > \ell = \ell$.

and $\varepsilon < \ell = 0 = \ell > \varepsilon$. Notice that the expressions $\varepsilon < \varepsilon$ and $\varepsilon > \varepsilon$ are not defined. The reader is directed to [Man11] for a short introduction on preLie algebras.

4.23. Proposition. Denote by G the set of linear functionals on CW equal to one on the coaugmentation part of CW,

$$G = \{\ell: CW \to C, \ \ell \circ \eta = \varepsilon\}.$$

Then, G is a group if equipped with the convolution product \ast. Besides, the set

$$g = \{\ell: CW \to C, \ \ell \circ \eta = 0\}$$

is a preLie algebra for the preLie product

$$\ell_1 < \ell_2 := \ell_1 < \ell_2 - \ell_2 > \ell_1, \ \ell_1, \ell_2 \in g.$$

In the next two and final sections, we exhibit the two sub preLie algebras of g relevant to our work. We end this section with the definition of the two “time-ordered” exponentials or half dendriform exponentials

$$\exp_<(k) := \varepsilon + \sum_{n=1}^\infty k^{<n}, \quad \exp_>(k) := \varepsilon + \sum_{n=1}^\infty k^{>n}$$

where $k^{<1} = k, k^{<(n+1)} = k < k^{<n}$ and $k^{>1} = k, k^{>(n+1)} = k^{>n} > k$.

5. Lie Theory of Two-faced Independences

In this section, we exhibit to sub-preLie algebra of the preLie algebra g introduced in the previous section. We need a few additional items of notation. Pick an incomplete word w with length n. Given a subset $I \subset [w]$, we write $\bar{I} := I \cup [w]_0 \subset [n]$. Pick two linear forms $f, g \in g$, then

$$(f \ast g)(w) = (f < g - g \ast f)(w) = \sum_{I, \Delta(w) \in \bar{I}} f(w^I)g(w_{\bar{I}}) - \sum_{I, \Delta(w) \in I} g(w^I)f(w_{\bar{I}}).$$

Besides translucidation and restrictions of translucent words and incomplete words on random variables, it will be convenient to consider the same operations on incomplete bipartitions. Pick an incomplete bipartition and a subset P of blocks of $\pi \cup \{[w]_0\}$, then $\pi|_P$ is the restriction of π to P (this includes re-indexing) and $\pi_{P \to 0}$ is the incomplete bipartition obtained from π by turning translucent all blocks in $\pi \setminus P$. One has

$$\pi|_P \in \mathcal{P}(t_{\text{supp}(P)}), \pi_{P \to 0} \in \mathcal{P}(t_{\text{supp}(P) \to 0}),$$

where $\text{supp}(P) = \bigcup_{w \in P} W$.

5.1. preLie algebra I

For a translucent word \(t \in \mathcal{W} \) an incomplete word, we let \(\text{int}(t) \) be the set of all connected components of \([t]_1 \subset [t]_1\) for the standard order \(<\),
\[
(31) \quad \text{int}(t) = \{I^g_{\{s\}}(t) < \cdots < I^g_{\{t\}}(t)\}
\]
For \(w \in \mathcal{W} \) we write \(I^g_{\{s\}}(w) = I^g_{\{t\}}(w) \) and \(\text{int}(w) = \text{int}(t_w) \).

5.1. Example. Consider \(t = (LRLLLR, 011101) \), then
\[
I^g_{\{3\}}(t) = \{3,4\}, \quad I^g_{\{2\}}(t) = \{2,6\},
\]
For \(w = L_0a^lb^1L_0b^R \in \mathcal{W}(t) \),
\[
w^g_{\{1\}} = aLb^1, \quad w^g_{\{2\}} = aRb^R.
\]

5.2. Remark. This sequence of intervals \(I^g_{\{j\}}(t), 1 \leq j \leq k(t) \) has been introduced in the proof of Proposition 4.12 in a slightly different way to include empty intervals separating consecutive integers in \([t]_0\).

5.3. Definition. We introduce the following subsets of linear functionals (the index \(l \) stands for interval):
- Define \(M_l \) to be the set of all linear forms on \(\mathcal{C}^\mathcal{W} \) that are multiplicative in the following sense,
\[
(32) \quad f \in M_l \iff f(w) = \prod_{J \in \text{int}(w)} f(w^\uparrow J), \quad w \in \mathcal{W}.
\]
- Define \(m_l \) to be the set of all linear forms \(f \) on \(\mathcal{C}^\mathcal{W} \) such that
 - The support of \(f \) is contained in the set of words whose \([t]_1 \) has only one connected component, i.e.
\[
(33) \quad \forall w \in \mathcal{W} : (|\text{int}(w)| \neq 1 \Rightarrow f(w) = 0),
\]
 - For words \(w \in \mathcal{W}(t) \) with \(|\text{int}(w)| = 1 \), the value \(f(w) \) only depends upon the restriction \(w^\uparrow [t]_1 \) of \(w \) to the places tagged \(1 \):
\[
(34) \quad f(w) = f(w^\uparrow [t]_1).
\]

5.4. Remark. Notice that for a linear form \(f \in M_l \) the above formula implies \(f(w) = 1 \) if \(w \) is a word in \(\{L,R\}^\ast \) since in that case the product on the right hand side of (32) is empty (thus conventionally equal to 1). Hence, Definition 5.3 is equivalent to
\[
M_l = \{\alpha \in \text{Hom}_{\mathcal{G}^\mathcal{W}}((\mathcal{W}, m^0_\mathcal{W}), \mathcal{C}^\mathcal{G}) : \alpha(u) = 1, u \in \{L,R\}^\ast\}
\]
where \(\mathcal{C}^\mathcal{G} \) is the linear \(\mathcal{G}^\mathcal{W} \)-indexed collection with \(\mathcal{C}^\mathcal{G}(t) = \mathbb{C} \), \(t \in \mathcal{G}^\mathcal{W} \).

We denote by \(\mathcal{W}_l \subset \mathcal{W} \) the set of all translucent words \(t \) with \(|\text{int}(t)| = 1 \), i.e. \([t]_1 \) a \(< \) interval. We also use the notation \(\mathcal{W}_l \) for the set of all incomplete words with \(|\text{int}(w)| = 1 \), i.e. those words whose translucent type lies in \(\mathcal{W}_l \). At times we call words in \(\mathcal{W}_l \) interval words.

5.5. Proposition. The preLie product \(\prec \) restricts to linear space \(m_l \). Furthermore, for a word \(w \in \mathcal{W}(t), |\text{int}(w)| = 1 \) the following formula holds for all \(f, g \in m_l \),
\[
(35) \quad (f \prec g)(w) = \sum_{I_1,I_2,j \subseteq [t]_1, \quad I_1 \prec I_2 \prec \text{-interval}, \quad I_1 \cup I_2 = [t]_1} f(w^\uparrow I_1 \cup I_2)g(w^\uparrow j)
\]

5.6. Example. Take \(t = (LRLL, 10111) \). Then \([t]_1 \) is a \(< \) interval. Then, for example, \(w = a^rb^Rb^L \in \mathcal{W}(t) \) and for \(f, g \in m_l \), one has
\[
(f \prec g)(w) = f(a^r b^R)(b^L) + f(a^r b^R)g(b^L) + f(a^r b^R)(g(b^L))
\]
Proof of Proposition 5.5. Let $f, g \in m_1$ be linear functionals. We will show first that $f \circ g(w) = 0$ whenever $|\text{int}(w)| \neq 1$.

- $|\text{int}(w)| = 0$ means that $w \in \{L, R\}^* \text{ is a word containing only placeholders. Then } \Delta^0_x(w), \Delta^0_y(w)$ are zero and, therefore, $(f \circ g)(w) = 0$.
- If $|\text{int}(w)| > 2$, then it is immediate to see that, in every term $w' \oplus w''$ occurring in the sum expressing $\Delta^0_x(w), \Delta^0_y(w)$, one has $|\text{int}(w')| \geq 2$ or $|\text{int}(w'')| \geq 2$ (or both), so that $f(w') = 0$ or $g(w'') = 0$. Consequently, $f \circ g(w) = 0$.
- Similarly, if $\text{int}(w) = \{I_1 \subset I_2\}$, there are exactly two ways to write $w = w' \circ w''$ with interval words w', w'', namely

$$w = w|_{I_1 \cup [w]_0} \circ w_{I_1-0} = w|_{I_2 \cup [w]_0} \circ w_{I_2-0},$$

and, clearly, $\Delta_{[w]} \in I_1$. By (33), all other summands in the sums expressing $\Delta^0_x(w), \Delta^0_y(w)$ do not contribute when calculating $f \circ g(w)$. By (34), $f(w|_{I_1 \cup [w]_0}) = f(w|_{I_1})$ and $g(w_{I_1-0}) = g(w|_{I_2})$, therefore $f \circ g(w) = f(w|_{I_1})g(w|_{I_2})$. Analogously, $g \circ f(w) = g(w|_{I_2})f(w|_{I_1})$. Therefore, $f \circ g(w) = 0$.

This proves that (33) holds for $f \circ g$.

It is easy to see that (35) implies that (34) holds for $f \circ g$. Therefore, showing (35) will conclude the proof of the proposition.

We start the second half of the proof with some general observations. If w is an interval word and $\emptyset \neq I \subset [w]_1$, then

- $w|_I$ is always an interval word;
- $w|_{I-0}$ is an interval word if and only if one of the following situations applies: either I is a $<$-interval containing exactly one of the $<$-endpoints of the $<$-interval $\overline{[w]_1}, \underleftarrow{[w]_1}$, or $I = I_1 \cup I_2$ is the union of two $<$-intervals each containing one $<$-endpoint, $\overline{[w]_1} \in I_1, \underleftarrow{[w]_1} \in I_2$.

Let $w \in \sum W$, $|\text{int}(w)| = 1$. Using (34), we can write

$$(g \circ f)(w) = \sum_{[w]_0 \in X} \sum_{J \subset [w]_1} g(w|_J) f(w|_-J) = \sum_{J \subset [w]_1} f(w|_-J) g(w|_J).$$

The summands on the right hand side vanish except when $w|_J$ and $w|_{J-0}$ are both interval words. By the previous observations, $w|_J$ is automatically an interval word. On the other hand, $w|_{J-0}$ is
We will prove later on (Corollary 5.13 of Theorem 5.12) that

\[(g > f)(w) = \sum_{f \in I \subseteq \text{intervals}, \text{summands corresponding to both } I, J \subseteq [w], w \neq \emptyset} f(w_I)g(w_J). \]

For the second half product, we find

\[(f < g)(w) = \sum_{[w] \in \mathcal{X}} f(w_\mathcal{X})g(w_{\mathcal{X}^c}) = \sum_{I \subseteq [w], \text{summands corresponding to both } I, J \subseteq [w], w \neq \emptyset} f(w_I)g(w_{J^c}). \]

If \(I \) is a \(\preceq \)-interval, we get exactly the same terms as in the calculation of \((f > g)(w) \). However, for \(J := [w_1] \setminus I \) to be a \(\preceq \)-interval, it is enough that \(I = I_1 \cup I_2 \) is the union of two \(\preceq \)-intervals \(I_1 \preceq I_2 \) with \(\text{sums } I_1, \text{sums } I_2, \text{giving additional summands corresponding to both } I_1 \text{ and } I_2 \text{ nonempty.} \)

By taking the difference between \((f < g)(w) \) and \((g > f)(w) \), we finally find (35).

\[\square \]

5.7. Proposition. The set \(M_1 \) is a monoid for the convolution product \(\ast \).

Proof. The proof exploits the compatibility between the monoidal product \(\otimes \) and the semi-groupal product \(\oplus \) displayed in Subsection 4.3. Following Definition 5.3, we note that \(M_1 \) is a set of morphisms of \(\ominus \)-semigroups,

\[f \in M_1 \iff f(m_\ominus^\wedge(w \ominus w')) = f(w)f(w') \text{ and } f(u) = 1 \text{ for all } w \ominus w' \in W \ominus W, u \in \{L, R\}^*. \]

From this viewpoint, \(f \in M_1(S) \) is considered valued in the linear \(\Sigma \)-W-indexed collection \(C^\ominus \) introduced in Remark 5.4. The \(\Sigma \)-indexed collection \(C^\ominus \) supports a vertical product \(m_\ominus^\wedge : C^\ominus \otimes C^\ominus \to C^\ominus \) (this product already appears, in disguise, in the definition of the convolution product \(\ast \))

\[(m_\ominus^\wedge(z \ominus z')) = zz', \quad z \ominus z' \in W \oplus W \]

and another product \(m_\ominus^\wedge : C^\ominus \ominus C^\ominus \to C^\ominus \),

\[(m_\ominus^\wedge(z \ominus z')) = zz', \quad z \ominus z' \in W \ominus W. \]

Of course, \((m_\ominus^\wedge(m_\ominus^\wedge \ominus m_\ominus^\wedge)) \ominus R_{\ominus, \ominus, \ominus, \ominus}\), which is equivalent to saying that \(m_\ominus^\wedge \) is a morphism of \(\ominus \)-semigroups. Then (36) is equivalent to

\[f \in M_1 \iff f \circ m_\ominus^\wedge = m_\ominus^\wedge \circ (f \ominus f), \quad f(u) = 1, u \in \{L, R\}^*. \]

Pick two linear functionals \(f, g \in M_1 \) and \(w \ominus w' \in S \ominus S \). Then,

\[(f * g)(m_\ominus^\wedge(w \ominus w')) = (m_\ominus^\wedge \circ (f \ominus g) \ominus \Delta^\ominus \ominus m)(w \ominus w') \]

\[= (m_\ominus^\wedge \circ (f \ominus g) \circ m_\ominus^\wedge \circ \Delta^\ominus \ominus m)(w \ominus w') \]

\[= (m_\ominus^\wedge \circ (f \ominus g)(\Delta^\ominus \ominus m) \circ R_{\ominus, \ominus, \ominus, \ominus}(\Delta^\ominus \ominus m))(w \ominus w') \]

\[= (m_\ominus^\wedge \circ (f \ominus g) \circ (f \ominus g)) \ominus R_{\ominus, \ominus, \ominus, \ominus}(\Delta^\ominus \ominus m))(w \ominus w') \]

\[= (m_\ominus^\wedge ((f * g)(w) \ominus (f * g)(w'))), \]

which shows that \(f * g \in M_1 \). At this point, we have shown that \(M_1 \) is a semigroup. Every element of \(M_1 \) is invertible, what is left to prove is that this inverse is also in \(M_1 \). We postpone the proof of this point after Theorem 5.12.

\[\square \]

We will prove later on (Corollary 5.13 of Theorem 5.12) that \(M_1 \) is not only a monoid but a group. The convolution product on \(M_1 \) is defined as the dual of the vertical coproduct \(\Delta^\wedge \), while elements in \(M_1 \) are compatible with respect to a horizontal product. In that respect, \(M_1 \) does not fit in the classical theory of \textit{pro-algebraic groups}. To emphasize the differences, we briefly recall what a \textit{pro-algebraic group} is. Such a group \(GB(A) \) can be represented as the convolution group of algebra
morphisms of a (plain, classical) graded connected augmented co-nilpotent bialgebra (in the category Vect) \((\mathcal{B} = \mathbb{C} : 1_B \oplus B, \Delta, m, \varepsilon)\) with values in a commutative unital algebra \(A\),

\[G_B(A) = \text{Hom}_{\text{Alg}}(B, A). \]

An infinitesimal morphism \(\kappa : B \to A\) is a map such that \(\kappa(1) = 0\) and \(\kappa(ab) = \varepsilon(a)\kappa(b) + \kappa(a)\varepsilon(b)\). The space \(g_B(A)\) of infinitesimal morphisms is a Lie algebra for the bracket \([f, g] = f \ast_B g - g \ast_B f\). The two sets \(G_B(A)\) and \(g_B(A)\) are in bijection through the exponentials and its inverse the logarithm map:

\[\exp_B(\alpha) := 1_B + \sum_{n \geq 1} \frac{1}{n!} \alpha^n, \quad \ln_B(1_B + \alpha) := -\sum_{n \geq 1} \frac{(-1)^{n-1}}{n} \alpha^n \]

with \(\alpha\) an infinitesimal morphism. We state first an equivalent result in our setting and continue the discussion then. The following theorem follows from Theorem 5.12 and conilpotency of \((\mathcal{W}, \mathfrak{m}_W^\emptyset)\).

5.8. **Theorem.** The Lie algebra \(\mathfrak{m}_I\) and the group \(\mathbf{M}_I\) are in bijection through

\[\exp(\varepsilon + m) = \exp(\varepsilon_m + \varepsilon) - \sum_{n \geq 1} \frac{(-1)^{n-1}}{n} m^n. \]

5.9. **Remark.** A double monoid in the category \(\Sigma \mathcal{W}\) is a tuple \((O, \mathfrak{m}_O^\emptyset, \mathfrak{m}_O^\emptyset, \eta_O^\emptyset)\) with \(O\) an \(\Sigma\mathcal{W}\)-collection and

\[\mathfrak{m}_O^\emptyset : O \circlearrowleft O \to O, \quad \mathfrak{m}_O^\emptyset : O \circlearrowright O \to O, \quad \eta_O^\emptyset : \emptyset \to O \]

such that \((O, \mathfrak{m}_O^\emptyset, \eta_O^\emptyset)\) is a monoid in \((\Sigma \mathcal{W}, \circlearrowleft, \emptyset)\) and \((O, \mathfrak{m}_O^\emptyset)\) is a horizontal semi-group. Additionally, we require that \(\mathfrak{m}_O^\emptyset\) is a morphism of \(\Theta\)-semigroups \((O \circlearrowleft O \to O)\) equipped with the product \(\mathfrak{m}_O^\circ = (\mathfrak{m}_O^\circ \oplus \mathfrak{m}_O^\circ) \circ R_{O, O, O, O}\). Then, the proof of Proposition 5.7 generalizes to this context, and the convolution product

\[f \ast g := \mathfrak{m}_O^\circ \circ (f \circlearrowleft g) \circ \Delta^\emptyset, \quad f, g \in \text{Hom}_{\text{Vect}^{\Sigma \mathcal{W}}}(\mathcal{W}, O) \]

restricts to a group product on the set \(\text{Hom}_{\text{Semigroup}(\Theta)}(\mathcal{W}, O)\) of \(\Theta\)-semigroupal morphisms \(f : \mathcal{W} \to O\) with \(f \circ \eta = \eta_O^\emptyset\). Besides, Theorem 5.8 has a straightforward generalization in this setting.

In the remaining part of this section, we compute the two dendriform exponents \(\exp_{<\to}\) and the (shuffle) exponential \(\exp_s\) by using the defining fixed-point equations:

\[\exp_s(k) = \varepsilon + k \ast \exp_s(k), \quad \exp_s(b) = \varepsilon + \exp_s(b) \ast b \]

We are now ready to state our main theorem.

5.10. **Theorem** (Left-dendriform fixed point equation). Pick a linear form \(k\) in the Lie algebra \(\mathfrak{m}_I\). The solution \(M\) of the following left-dendriform fixed point equation

\[(38) \quad M = \varepsilon + k \ast M \]

is in \(\mathbf{M}_I\) and satisfies the formula

\[(39) \quad M(w) = \sum_{\pi \in \mathcal{N}(t)} \prod_{V \in \pi} k(w_{|V}), \quad w \in \mathcal{W}(t). \]

Proof. We prove first using induction on the number of on-letters \(|[t]|_1|\) that

\[(40) \quad M(w) = \prod_{t \in \mathcal{W}} M(w_{|t}), \quad w \in \mathcal{W}(t), \quad t \in \Sigma \mathcal{W}. \]

First, if \(w \in \mathcal{W}(t)\) and \(|[t]|_1| = 0\), eq. (40) is trivial.

Pick \(N \geq 1\) and assume that (40) holds for any word \(w \in \mathcal{W}(t)\), with \(t \in \Sigma \mathcal{W}\) a translucent word with at most \(N\) “ON” positions; \(|[t]|_1| \leq N\). Since \(k \in \mathfrak{m}_I\), for every subset \(I \subset [t]\) with \(A([t]) \in I\) and \(I \cap I_j^s(t) \neq \emptyset\) for some \(j \geq 2\), one has \(k(w_{|t}) = 0\) (recall the notation \(I = I \cup [t]_0\)). We
thus obtain (and recalling that for any incomplete word v by v_i^* its restriction to the i’th interval in $\text{int}(v)$),

$$M(w) = \sum_{I \subseteq I_i^0 \atop \Lambda[\{t\}], \pi \in \Pi} k(w|_I) M(w|_{I \setminus \{t\}})$$

where we have used the inductive hypothesis applied on the word $w|_{I \setminus \{t\}}$ to obtain the last equality since $[[t_{I \setminus \{t\}}]] \leq [[t]] - 1$. Since in the last equality the sum ranges over $I \subset I_i^0(w)$,

$$w_{I \setminus \{t\}}^* = w_{I \setminus \{t\}}^* M \left(\begin{array}{c} w_{I \setminus \{t\}}^* \\ w_{I \setminus \{t\}}^* \\ \vdots \\ w_{I \setminus \{t\}}^* \end{array} \right),$$

from which we deduce:

$$M(w) = \sum_{I \subseteq I_i^0 \atop \Lambda[\{t\}], \pi \in \Pi} k(w|_I) M(w|_{I \setminus \{t\}}) M(w^*_2) \cdots M(w^*_j)$$

We prove next the formula (39). Define $G : \mathbb{C}W \to \mathbb{C}$ by

$$G(w) = \sum_{\pi \in \mathcal{NC}_1(t) \cap V \cap \pi} k(w|_V), \quad w \in \mathcal{W}(t), t \in \mathcal{T}W.$$

We prove now that G is the solution to the fixed point equation, $G = \varepsilon + k < G$.

First, owing to Observation 3.41, it is straightforward to check that G is a multiplicative function in M_1. It will thus be sufficient to prove that for any word $w \in \mathcal{W}(w, 1_n)$, $w \in \{L, R\}^*$, one has

$$G(w) = (k < G)(w).$$

Pick such a word $w \in \mathcal{W}(t)$. Then it holds that

$$(k < G)(w) = \sum_{I \subseteq I_1 \atop \Lambda[\{t\}], \pi \in \Pi} k(w|_I) M(w|_{I \setminus \{t\}}) \sum_{I \subseteq I_1 \atop \Lambda[\{t\}], \pi \in \Pi} k(w|_I) \sum_{\pi \in \mathcal{NC}_1(t_{I \setminus \{t\}}) \cap V \cap \pi} k(w|_V).$$

Pick a noncrossing bipartition π in $\mathcal{NC}(t)$ and call π^* the block that contains $\Lambda[\{t\}]$. First, the transduction $\pi_{\pi_{\sim \{t\}}}$ of π yields a shaded noncrossing bipartition in $\mathcal{NC}(t_{\pi_{\sim \{t\}}})$.

Secondly,

$$\mathcal{NC}(t) \ni \pi \mapsto (\pi^*, \pi_{\pi_{\sim \{t\}}})$$

is a bijection onto the set of pairs (I, π) with $\Lambda[\{t\}] \subset \pi \subset \mathcal{NC}(t_{I \setminus \{t\}})$. One concludes the proof with the following equality

$$\sum_{\pi \in \mathcal{NC}(t) \cap V \cap \pi} k(w|_V) = \sum_{I \subseteq I_1 \atop \Lambda[\{t\}], \pi \in \Pi} k(w|_I) \sum_{\pi \in \mathcal{NC}(t_{I \setminus \{t\}}) \cap V \cap \pi} k(w|_V).$$

\[\square \]

5.11. Example. Pick $w = a^R a^L$, then

$$M(w) = k(a^L)M(a^R) + k(a^R a^L) = k(a^L)k(a^R) + k(a^R a^L)$$
Pick \(w = a^R a^L a^R a^L \),
\[
M(w) = k(a^l)M(a^R)M(a^R a^L) + k(a^l a^L)M(a^R a^L) + k(a^l a^R)M(a^L) + k(a^l a^L)M(a^R)M(a^R)
+ k(a^R a^L a^R)M(a^L) + k(a^R a^L a^L)M(a^R) + k(a^R a^R a^L)M(a^L)
\]
\[
= k(a^l)k(a^R)(k(a^l)k(a^R) + k(a^R a^L)) + k(a^R a^L)(k(a^l)k(a^R) + k(a^R a^L))
+ k(a^R a^R a^L)k(a^L) + k(a^R a^R a^L)k(a^R) + k(a^R a^R a^L)k(a^R)
+ k(a^R a^L a^R)k(a^L)
\]

Figure 19. Example of an incomplete monotone bipartitions.

5.12. Theorem (Dendriform exponential).

Pick a linear function \(m \) in the Lie algebra \(\mathfrak{m}_1 \). Then, for any word \(w \in W(t) \), one has
\[
\exp_\ast (m)(w) = \sum_{(\pi, \lambda) \in \mathcal{M}(t)} \prod_{w \in \pi} m(w)_{\mid W}
\]

Proof. Pick \(m \in \mathfrak{m}_1 \). We let \(\mathcal{M}^\ell(t) \) denotes the set of monotone bipartitions of type \(t \) with \(\ell \) blocks (the block \([t]_0\) is not counted). We prove by induction on \(\ell \geq 1 \) that for any word \(w \) in \(W(t) \),
\[
m^{\otimes \ell} \circ (\Delta^\otimes)^\ell = \sum_{(\pi, \lambda) \in \mathcal{M}^\ell(t)} \prod_{w \in \pi} m(w)_{\mid W}
\]
where \((\Delta^\otimes)^\ell = ((\Delta^\otimes)^{\ell-1} \otimes \text{id}) \circ \Delta^\otimes\), \((\Delta^\otimes)^0 = \text{id}\).

The formula (42) holds if \(\ell = 1 \). Pick an integer \(N \geq 1 \) and suppose that equation (42) holds for every integer \(\ell \leq N \).

Using \((\Delta^\otimes)^{N+1} = ((\Delta^\otimes)^N \otimes \text{id}) \circ \Delta^\otimes\) and the inductive hypothesis, one gets
\[
(m^{\otimes (N+1)} \circ (\Delta^\otimes)^{N+1})(w) = \sum_{I \subseteq [t]_1} (m^{\otimes N} \circ (\Delta^\otimes)^N)(w)_{\mid I} m(w)_{\mid [t]_0}
\]
\[
= \sum_{I \subseteq [t]_1} (m^{\otimes N} \circ (\Delta^\otimes)^N)(w)_{\mid I} m(w)_{\mid [t]_0}
\]
\[
= \sum_{I \subseteq [t]_1} \left[\sum_{(\pi', \lambda) \in \mathcal{M}^N(t) \setminus [t]_I} \prod_{w \in \pi'} m(w)_{\mid W} \right] m(w)_{\mid [t]_0}
\]
\[
= \sum_{I \subseteq [t]_1} \left[\sum_{(\pi', \lambda) \in \mathcal{M}^N(t) \setminus [t]_I} \prod_{w \in \pi'} m(w)_{\mid W} \right] m(w)_{\mid [t]_0}
\]

Pick a monotone partition \((\pi', \lambda) \in \mathcal{M}^N(t)\) with \(I \subset [t]_1 \) and \(J := [t]_1 \setminus I \) a \(\epsilon \)-interval. There exists a unique incomplete bipartition \(\hat{\pi} \in \mathcal{P}(t) \) such that \(\hat{\pi} \mid I = \pi' \) and \(\hat{\pi} \mid [t]_0 = \{ [t]_1 \setminus I \} \) an
incomplete one block partition of \(t_{\sim 0} \), namely \(\hat{\pi} = \pi' \circ \{ J \} \). We claim that \(\hat{\pi} \) is an incomplete noncrossing bipartition: this comes from the fact that \(J \) a \(\prec \)-interval and \(\pi' \) is noncrossing.

Besides, \(\hat{\pi} \) is a shaded noncrossing bipartition. The translucent block of \(\hat{\pi} \) is \([t]_0\). Pick an integer \(1 \leq k < \min [t]_0 \) (consequently, \(k \in [t]_1 \)) with \(\alpha_\ell (k) = \alpha_\ell (\min [t]_0) \).

If \(k \in I \), then \(j \sim_\pi \) \(k \) implies \(j \in I \) because \(I \) is the complement of the block \(J \) inside \([t]_1\). Thus, \(j < \min [t]_0 \) and \(\alpha (j) = \alpha (\min [t]_0) \) since \(\hat{\pi} \) is a shaded noncrossing bipartition.

If \(k \) is not in \(I \), since \(J \) is a \(\prec \)-interval, one must have \(\alpha_\ell (k) = \alpha_\ell (j) \) for all \(j \in J \). For example, suppose \(\alpha_\ell (\min [t]_0) = L \) one has \(\alpha_\ell (k) = L \) \(k < \min [t]_0 \). Again, since \(J \) is a \(\prec \)-interval, this last inequality implies that \(j < \min [t]_0 \) and, thus, \(\alpha (j) = L \) for any \(j \in [t]_1 \setminus I \).

The monotone order \(\lambda' \) on \(\pi' \) yields an order \(\hat{\lambda} \) on \(\hat{\pi} \) labelling the block \(J = [t]_1 \setminus I \) by \(|\hat{\pi}| = |\pi'| + 1 \) highest. Because \(J \) is a \(\prec \)-interval, \(\hat{\pi} \) endowed with the order induced by \(\hat{\lambda} \) described above, is a monotone bipartition.

Finally, to any monotone partition \((\pi, \lambda) \) in \(M(t) \) corresponds a unique pair \(((\pi', \lambda'), I) \) with \(I \in [t]_1 \), \([t]_1 \setminus I \) a \(\prec \)-interval and \((\pi', \lambda') \in M(t, t)\) such that \(\pi = \hat{\pi} \) and \(\lambda = \hat{\lambda} \); indeed, \(J = [t]_1 \setminus I \) has to be the highest block of \(\pi \), which is always a \(\prec \)-interval. This concludes the proof. \(\square \)

5.13. **Corollary.** The monoid \(M_t \) is a group with Lie algebra \(m_t \), that is

\[
\exp_\ast (m_t) = M_t.
\]

Proof. First, Theorem 5.12 implies \(\exp_\ast (m_t) \subset M_t \). Pick \(M \in M_t \) and define \(m \in m_t \) inductively on the length of the word \(w \vdash [t]_0 \), for \(w \in W(t) \), with \(|\text{int}(w)| = 1 \)

\[
m(w) := m(w \vdash [t]_0) := M(w \vdash [t]_1) = \sum_{\pi \in M([t]_1)} \frac{1}{|\pi|!} \prod_{V \in \pi} m(w \vdash V)
\]

with initial conditions \(m(s) = M(s), s \in S \). Again, Theorem 5.12 yields \(\exp_\ast (m_t) = M_t \). \(\square \)

We end this section with the computation of the right-dendriform exponential of a direction in \(m_t \).

5.14. **Theorem.** Pick a function \(b \) in the Lie algebra \(m_t \). The solution \(M(t) \) of the following right-dendriform fixed point equation

\[
M = e + M > b
\]

is in \(M_t \) and satisfies the formula

\[
M(w) = \sum_{\pi \in M(t)} \prod_{V \in \pi} b(w \vdash V), \ w \in W(t), \ t \in \Sigma W.
\]

Proof. To prove \(M \in M_t \), the reasoning we used in proving the same property for the solution of the left-dendriform fixed point equation in Theorem 5.10 applies here. We omit the details for brevity and move on to the proof of the second statement, the formula for \(M(t) \) namely.

We use the notation introduced in the proof of Theorem 5.10. We set

\[
G(w) := \sum_{\pi \in M(t)} \prod_{V \in \pi} G(w \vdash V), \ w \in W(t), \ t \in \Sigma W
\]

and show that \(G \) satisfies to the fixed point equation eq. \((43) \). Pick an opaque word \(t \in \Sigma W \), i.e. \(b_t = 1 \), and a word \(w \in W(t) \). Then one gets

\[
(M > b)(w) = \sum_{J \subset [t]_1} M(w \vdash J)b(w_{\sim 0}) = \sum_{J \subset [t]_1} b(w_{\sim 0}) \sum_{\pi \in M(t)} \prod_{V \in \pi} b(w \vdash V)
\]

\[
= \sum_{J \subset [t]_1} b(w \vdash J) \sum_{\pi \in M(t)} \prod_{V \in \pi} b(w \vdash V).
\]

\[
(45)
\]
To any interval bipartition \(\pi' \) in \(\mathcal{I}(t) \), one associates a unique pair \((I, \pi)\) of an interval \(I \in [[t]] \) for the order \(<\) and an interval bipartition \(\pi \in \mathcal{I}(t) \) \(\pi \) is the restriction of \(\pi' \) to \([[[t]] \setminus I\). The association \(\mathcal{I}(t) \ni \pi' \mapsto (I, \pi) \) yields a bijection between the set \(\mathcal{I}(t) \) and the set of pairs \((I, \pi)\) with \(I \) an interval of \([[[t]]\) which contains \(\mathcal{A}[[[t]]\) and \(\pi \in \mathcal{I}(t) \).

The double sum on the right-hand side of equation (45) can thus be rewritten as a sum over interval bipartitions in \(\mathcal{I}(t) \) as follows:

\[
(M > b)(w) = \sum_{I \in \mathcal{I}(t), I \neq [[t]]} b(w \upharpoonright I) \sum_{\pi \in \mathcal{I}([[w]], I)} \prod_{V \in \pi} b(w \upharpoonright V) = \sum_{\pi \in \mathcal{I}(t)} \prod_{V \in \pi} b(w \upharpoonright V).
\]

This concludes the proof. □

5.2. **preLie algebra II**

The purpose of this section is to exhibit a second sub-preLie algebra \(m_P \) of \(g \). The preLie product \(\triangleleft \) restricts to the zero preLie product on \(m_P \). Both preLie algebras, \(m_I \) defined in the previous section and \(m_P \) introduced now, are meaningful to the theory of noncommutative probability; they implement moment-cumulant relations corresponding to certain notions of independence. For the one at stake here, this is classical independence between random variables in \(S \).

5.15. **Definition.** We introduce the following subsets of linear functionals on incomplete words (the index \(P \) stands for partitions):

- We denote by \(M_P \) the set of all linear forms \(f : \mathbb{C} W \to \mathbb{C} \) with

 \[
 f(u) = 1, \quad u \in \mathbb{W}(\alpha, 0), \alpha \in \{L, R\}^* \\
 f(w) = f(w \upharpoonright [t]), \quad w \in \mathbb{W}(t), \ t \in \Sigma W, \ b_t \neq 0.
 \]

- We denote by \(m_P \) the set of all linear forms \(f : \mathbb{C} W \to \mathbb{C} \) such that

 \[
 f(u) = 0, \quad u \in \mathbb{W}(\alpha, 0), \\
 f(w) = f(w \upharpoonright [t]), \quad w \in \mathbb{W}(t), \ t \in \Sigma W, \ b_t \neq 0.
 \]

5.16. **Remark.** As vector spaces, \(m_I \) and \(m_P \) sit in a class of subspaces of \(g \) parametrized by subsets of incomplete bipartitions with one block (besides the translucent block). To an incomplete word on random variables \(w \in \mathbb{W} \), we associate the incomplete bipartition \(\pi_w = \{[[w]], I\} \) with translucent block \([w]_0 \).

Pick a subset \(U \) of one-block incomplete bipartitions. At the moment, we do not assume anything on \(U \). We set

\[
m_U := \{ \ell \in g : \ell(w) = 0 \text{ if } \pi_w \not\subseteq U \text{ and } \ell(w) = \ell(w \upharpoonright [w]) \text{ if } \pi_w \subseteq U \}
\]

for the space \(m_I \), the corresponding set \(U \) is the set \(1 \) of incomplete interval bipartitions with only an opaque block (or, what is the same, shaded noncrossing bipartitions with only one opaque block) while for \(m_P \) the corresponding set is \(P \), the set of all incomplete bipartition with only one opaque block. A natural question would then address the complete classification of preLie algebras arising as \(m_U \) and meaningful to the theory of probability. We leave such general considerations for future work.
5.17. **Proposition.** The restriction of the preLie product \prec to \mathfrak{mp} is trivial,
\[f \prec g = 0, \ f, g \in \mathfrak{mp}. \]

In particular, \mathfrak{mp} is a sub preLie algebra.

Proof. Pick two linear forms $f, g \in \mathfrak{mp}$ and a word $w \in \mathcal{W}(t)$. We have
\[
(f \prec g)(w) = (f \prec (g \succ f))(w) = \sum_{I \subseteq [t]_1, \lambda(I) \in I} f(w_t^I)g(w_{I \setminus 0}) - \sum_{I \subseteq [t]_1, \lambda(I) \in I} g(w_t^I)f(w_{I \setminus 0})
\]

The result is obtained upon changing the summation variable of the second sum to $[t]_1 \setminus I$ in the above equality.

\[\square \]

5.18. **Theorem.** Pick a linear form $k \in \mathfrak{mp}$. For any word $w \in \mathcal{W}(t)$, $t \in \Sigma \mathcal{W}$, the following formula holds:
\[
(46) \quad \exp_{\prec}(k)(w) = \exp_{\prec}(k)(w) = \exp_{\prec}(k)(w) = \sum_{\pi \in \mathcal{P}(t)} \prod_{V \in \pi} k(w_V^I).
\]

Proof. Pick a linear form $k \in \mathfrak{mp}$. The equality between the left, right-dendriform exponentials and the dendriform exponential is a corollary of Proposition 5.17. We prove next the last equality in (46) by using the left-dendriform fixed point equation. To that end, denote by G the linear functional on $\mathcal{C}W$ whose values are prescribed by the rightmost terms in (46). The proof proceeds from the same lines of arguments we used to prove Theorem 5.10 and Theorem 5.12. The result trivially holds for incomplete words w with $[[w]]_1 = 1$. Pick an integer $N \geq 1$ and assume that the result holds for incomplete words w with $[[w]]_1 \leq N$. Pick a translucent word $t \in \Sigma \mathcal{W}$ and a word $w \in \mathcal{W}(t)$ with $[[w]]_1 = N + 1$ then
\[
(47) \quad (k \prec G)(w) = \sum_{I \subseteq [t]_1, \lambda(I) \in I} k(w_t^I)G(w_{I \setminus 0}) = \sum_{I \subseteq [t]_1, \lambda(I) \in I} k(w_t^I) \sum_{\pi \in \mathcal{P}(t_{I \setminus 0})} \prod_{V \in \pi} G(w_{V^I}^I)
\]

where we have used the inductive hypothesis on the word $w_{I \setminus 0}$ to derive the last equality. To a partition $\pi' \in \mathcal{P}(t)$, we associate the pair $(\pi^+, \pi^{+ \circ \cdot})$. As before, $\phi: \pi' \mapsto (V, \pi)$ is injective. Going backward, to a pair (V, π) of a subset $V \subset [t]_1$ and a partition $\pi' \in \mathcal{P}(t_{V^I}^I)$, then $\pi = 1_V \circ \pi'$ where $1_V = \{\{1, \ldots, |V|\}\} \in \mathcal{P}(t_V^I)$ is an antecedent to (V, π) by ϕ (recall that the compostion \circ has been defined in Subsection 3.6). Hence,
\[
(k \prec G)(w) = \sum_{I \subseteq [t]_1, \lambda(I) \in I} k(w_t^I) \sum_{\pi \in \mathcal{P}(t_{I \setminus 0})} \prod_{V \in \pi} G(w_{V^I}^I) = \sum_{\pi \in \mathcal{P}(t)} \prod_{V \in \pi} k(w_V^I) = G(w).
\]

\[\square \]

6. **Conclusion and perspectives**

6.1. **Summary**

In this work, we extended the dendriform-algebraic perspective on the free, boolean, and monotone moment-cumulant relations to bifree, biBoolean, and bimonotone moment-cumulant relations. To achieve this, we leverage an idea latent in [EFFPK20] abridged as follows. There exists a certain coDendriform structure on noncrossing partitions which, when restricted to “sticks” (partitions into singletons) yields the coDendriform coalgebra introduced in [EFP15]. That former coDendriform structure stems from a certain composition rule, formalized using the theory of operads, between noncrossing partitions, the gap insertion operad in which a partition is inserted into another by “placing” blocks in between two consecutive elements of the latter. In the current work, these gap-insertion operations are extended to noncrossing bipartitions and we chose inputs gaps between two consecutive elements for a standard order coming with any bipartition. Formalizing, we were led to introduce:
1. a set of shaded noncrossing bipartitions, following the terminology introduced in [CNS15a], that are bipartitions with one-pointed block acting as a placeholder,
2. a Möbius category $\mathcal{T}W$ whose morphisms (we call them translucent words) index sets of objects (e.g. shaded noncrossing bipartitions and incomplete words) we compose.
3. To formalize compositions and following [CLL80], we defined a certain tensor product \otimes on $\text{Vect}^{\mathcal{T}W}$.
4. Additionally, we showed that this category supports an additional semigroupal product \ominus compatible with \otimes, see Proposition 3.25.
5. We defined a double monoid W in $\text{Vect}^{\mathcal{T}W}$ supported by incomplete words also equipped with a certain coDendriform structure (after internalization to the incidence category of $\mathcal{T}W$ of this notion) compatible with the horizontal composition.
6. We proved finally that inside the convolution monoid of linear functionals on W sit two groups and their corresponding Lie algebras (defined in Section 5) among which a subset of the group of horizontal characters of (W, m^\ominus_W). This latter is equipped with three exponentials encoding the bifree, biBoolean, and bimonotone moment-cumulant relations.

6.2. Outlook

As alluded to in the introductory section, other independences were introduced in the past few years, including operator-valued counterparts of the ones investigated in this work. Going operator-valued should cause no additional problems, since the algebra developed here is closely related to the one expounded in [Gil20]. An interesting challenge would be to “blend” to the dendriform picture developed above also other two-faced independences, such as the boolean-free one [Liu19]. This can be approached in at least two different ways: 1. including boolean-free independence to a triple of independences (loosing perhaps positivity), identifying the appropriate sub-preLie algebra of g to cast boolean-free moment-cumulant relations as dendriform exponential type relations, 2. possibly supplement the dendriform operations $<$ and $>$ with others, compatible in a certain sense, to reach more moment-cumulant relations.

In this direction, as already pointed out in Subsection 4.3, incomplete words on random variables come with two orders, the natural one and the standard one \leq one can track the first letter for each order to define half-coproducts. This yields four of them, among which only two are addressed in this work.

References

[AM10] M. Aguiar and S. Mahajan. Monoidal functors, species and Hopf algebras, volume 29 of CRM Monograph Series. American Mathematical Society, Providence, RI, 2010. With forewords by Kenneth Brown and Stephen Chase and André Joyal. doi:10.1090/crmm/029.

[AHLV15] O. Arizmendi, T. Hasebe, F. Lehner, and C. Vargas. Relations between cumulants in noncommutative probability. Adv. Math., 282:56–92, 2015. doi:10.1016/j.aim.2015.03.029.

[BGS02] A. Ben Ghorbal and M. Schürmann. Non-commutative notions of stochastic independence. Math. Proc. Cambridge Philos. Soc., 133(3):531–561, 2002. doi:10.1017/S0305004102006072.

[BS91] M. Bożejko and R. Speicher. ψ-independent and symmetrized white noises. In Quantum probability & related topics, QP-PQ, VI, pages 219–236. World Sci. Publ., River Edge, NJ, 1991. doi:10.1142/9789814360203_0013.

[CNS15a] I. Charlesworth, B. Nelson, and P. Skoufranis. Combinatorics of bi-freeness with amalgamation. Comm. Math. Phys., 338(2):801–847, 2015. doi:10.1007/s00220-015-2326-8.

[CNS15b] I. Charlesworth, B. Nelson, and P. Skoufranis. On two-faced families of non-commutative random variables. Canad. J. Math., 67(6):1290–1325, 2015. doi:10.4153/CJM-2015-002-6.

[CLL80] M. Content, F. Lemay, and P. Leroux. Catégories de Möbius et fonctionnalités: un cadre général pour l’inversion de Möbius. J. Combin. Theory Ser. A, 28(2):169–190, 1980. doi:10.1016/0097-3165(80)90083-7.

[D68] A. Dür. Möbius functions, incidence algebras and power series representations, volume 1202 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. doi:10.1007/BFb0077472.
D.-V. Voiculescu. Free probability for pairs of faces I. *Comm. Math. Phys.*, 332(3):955–980, 2014. doi:10.1007/s00220-014-2060-7.
Index

\(\mathcal{NC}(t), 21\)
\(W_t, 33\)
\(\Sigma W\)-comonoid, 13
\(\Sigma W\)-indexed collection of incomplete bipartitions, 21
\(\Sigma W\)-indexed collections, 11
\(\Sigma W\)-indexed collections of \(C\)-vector spaces, 12
(linear) \(\Sigma W\)-monoid, 13
admissible cut, 26
\(\alpha_t, 9\)
augmented, 18
bipartition, 5
bipartition of a translucent word, 21
biset, 4
blocks, 4
\(b_t, 9\)
co-unital coDendriform co-algebra, 29
compatible, 27
complete words, 25
composable, 10
composition, 10, 12
decomposition coproduct \(\Delta^\emptyset_W, 26\)
dual collection, 12
empty translucent word, 9
freely generated by its opaque part, 20
\(g, 32\)
horizontal composition, 14
\(\Sigma W_t, 33\)
incidence category of \(\Sigma W\) with coefficients in \(\textbf{Set}, 11\)
incidence category of \(\Sigma W\) with coefficients in \(\textbf{Vect}, 12\)
incomplete bipartition, 21
incomplete partition of \(X, 20\)
incomplete words, 25
incomplete words on random variables, 25
interval bipartition, 5, 24
interval partition, 4
left, 4
left-right structure, 9
linear \(\Sigma W\)-indexed collection, 12
monotone bipartition, 5
monotone bipartition of type \(t, 24\)
monotone partition, 4
natural order, 5
noncrossing, 4, 21
noncrossing bipartition, 5
\(\Theta, 14\)
opaque, 19
opaque part, 19
ordered biset, 4
ordered partition, 4
\(\Phi, 13\)
partition, 4
partition of a translucent set, 20
\(\triangleleft, 32\)
reduced coproduct, 29
restriction of \(t\) to \(I, 9\)
right, 4
semigroup, 14
semigroupal product, 14
shaded noncrossing bipartition, 22
source, 10
\(\text{source}(w), 25\)
standard order, 5
target, 10
target(\(w\), 25
translucent block, 20
translucent ordered biset, 9
translucent set, 9
translucent word, 8
translucent-opaque structure, 9
translucidation of \(t\) at \(I, 9\)
type, 25
unital dendriform algebra, 29
vertical composition, 13
\(W(t), 25\)
words on random variables, 25