Note on fast division algorithm for polynomials using Newton iteration

Zhengjun Cao∗, Hanyue Cao
Department of Mathematics, Shanghai University, Shanghai, China.
∗ caozhj@shu.edu.cn

Abstract

The classical division algorithm for polynomials requires \(O(n^2) \) operations for inputs of size \(n \). Using reversal technique and Newton iteration, it can be improved to \(O(M(n)) \), where \(M \) is a multiplication time. But the method requires that the degree of the modulo, \(x^l \), should be the power of 2. If \(l \) is not a power of 2 and \(f(0) = 1 \), Gathen and Gerhard suggest to compute the inverse, \(f^{-1} \), modulo \(x^\lceil l/2 \rceil, x^\lceil l/2 - 1 \rceil, \ldots, x^{l/2}, x^l \), separately. But they did not specify the iterative step. In this note, we show that the original Newton iteration formula can be directly used to compute \(f^{-1} \bmod x^l \) without any additional cost, when \(l \) is not a power of 2.

Keywords: Newton iteration, revisal, multiplication time

1 Introduction

Polynomials over a field form a Euclidean domain. This means that for all \(a, b \) with \(b \neq 0 \) there exist unique \(q, r \) such that \(a = qb + r \) where \(\deg r < \deg b \). The division problem is then to find \(q, r \), given \(a, b \). The classical division algorithm for polynomials requires \(O(n^2) \) operations for inputs of size \(n \). Using reversal technique and Newton iteration, it can be improved to \(O(M(n)) \), where \(M \) is a multiplication time. But the method requires that the degree of \(x^l \) should be the power of 2. If \(l \) is not a power of 2 and \(f(0) = 1 \), Gathen and Gerhard [1] suggest to compute the inverse, \(f^{-1} \), modulo \(x^\lceil l/2 \rceil, x^\lceil l/2 - 1 \rceil, \ldots, x^{l/2}, x^l \), separately. But they did not specify the iterative step. In this note, we show that the original Newton iteration formula can be directly used to compute \(f^{-1} \bmod x^l \) without any additional cost, when \(l \) is not a power of 2. We also correct an error in the cost analysis [1].

2 Division algorithm for polynomials using Newton iteration

The description comes from Ref.[1].
Let D be a ring (commutative, with 1) and $a, b \in D[x]$ two polynomials of degree n and m, respectively. We assume that $m \leq n$ and that b is monic. We wish to find polynomials q and r in $D[x]$ satisfying $a = qb + r$ with $\deg r < \deg b$ (where, as usual, we assume that the zero polynomial has degree $-\infty$). Since b is monic, such q, r exist uniquely.

Substituting $1/x$ for the variable x and multiplying by x^n, we obtain

$$x^n a \left(\frac{1}{x} \right) = \left(x^{n-m} q \left(\frac{1}{x} \right) \right) \cdot \left(x^m b \left(\frac{1}{x} \right) \right) + x^{n-m+1} \left(x^{m-1} r \left(\frac{1}{x} \right) \right) \quad (1)$$

We define the reversal of a as $\text{rev}_k(a) = x^k a(1/x)$. When $k = n$, this is the polynomial with the coefficients of a reversed, that is, if $a = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, then

$$\text{rev}(a) = \text{rev}_n(a) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_0$$

Equation (1) now reads

$$\text{rev}_n(a) = \text{rev}_{n-m}(q) \cdot \text{rev}_m(b) + x^{n-m+1} \text{rev}_{m-1}(r),$$

and therefore,

$$\text{rev}_n(a) \equiv \text{rev}_{n-m}(q) \cdot \text{rev}_m(b) \mod x^{n-m+1}.$$ Notice that $\text{rev}_m(b)$ has constant coefficient 1 and thus is invertible modulo x^{n-m+1}. Hence we find

$$\text{rev}_{n-m}(q) \equiv \text{rev}_n(a) \cdot \text{rev}_m(b)^{-1} \mod x^{n-m+1},$$

and obtain $q = \text{rev}_{n-m}(\text{rev}_{n-m}(q))$ and $r = a - qb$.

So now we have to solve the problem of finding, from a given $f \in D[x]$ and $l \in N$ with $f(0) = 1$, a $g \in D[x]$ satisfying $fg \equiv 1 \mod x^l$. If l is a power of 2, then we can easily obtain the inversion by the following iteration step

$$g_{i+1} = 2g_i - fg_i^2$$

In fact, if $fg_i \equiv 1 \mod x^{2^i}$, then $x^{2^i} \mid 1 - fg_i$, $x^{2^{i+1}} \mid (1 - fg_i)^2$. Hence, $x^{2^{i+1}} \mid 1 - f(2g_i - fg_i^2)$. Using the above iteration method, we have the following result:

Theorem 1. Let D be a ring (commutative, with 1), $f, g_0, g_1, \ldots \in D[x]$, with $f(0) = 1$, $g_0 = 1$, and $g_{i+1} \equiv 2g_i - fg_i^2 \mod x^{2^{i+1}}$, for all i. Then $fg_i \equiv 1 \mod x^{2^i}$ for all $i \geq 0$.

By Theorem 1, we now obtain the following algorithm to compute the inverse of $f \mod x^l$. We denote by \log the binary logarithm.
Algorithm 1: Inversion using Newton iteration

Input: \(f \in D[x] \) with \(f(0) = 1 \), and \(l \in N \).

Output: \(g \in D[x] \) satisfying \(fg \equiv 1 \mod x^l \).

1. \(g_0 \leftarrow 1 \), \(r \leftarrow \lceil \log l \rceil \)
2. for \(i = 1, \ldots, r \) do \(g_i \leftarrow (2g_{i-1} - fg_{2i-1}) \rem x^{2i} \)
3. Return \(g_r \)

From the algorithm 1, one can easily obtain the following.

Algorithm 2: Fast division with remainder

Input: \(a, b \in D[x] \), where \(D \) is a ring (commutative, with 1) and \(b \neq 0 \) is monic.

Output: \(q, r \in D[x] \) such that \(a = qb + r \) and \(\deg r < \deg b \).

1. if \(\deg a < \deg b \) then return \(q = 0 \) and \(r = a \)
2. \(m \leftarrow \deg a - \deg b \)
 call Algorithm 1 to compute the inverse of \(\rev_{\deg b}(b) \in D[x] \) modulo \(x^{m+1} \)
3. \(q^* \leftarrow \rev_{\deg a}(a) \cdot \rev_{\deg b}(b)^{-1} \rem x^{m+1} \)
4. return \(q = \rev_m(q^*) \) and \(r = a - bq \)

3 On the form of \(l \)

The authors [1] stress that “if \(l \) is not a power of 2, then the above algorithm computes too many coefficients of the inverse.” They suggest to compute the inverse modulo \(x^{\lceil l/2 \rceil}, x^{\lceil l/2 - 1 \rceil}, \ldots, x^{\lceil l/2 \rceil}, x^{l} \). For example, suppose \(l = 11 \), then \(x^{\lceil 11/2 \rceil} = x \), \(x^{\lceil 11/2 - 1 \rceil} = x^2 \), \(x^{\lceil 11/2 - 2 \rceil} = x^3 \), \(x^{\lceil 11/2 - 3 \rceil} = x^6 \). In such case, one has to compute \(f^{-1} \) modulo \(x, x^2, x^3, x^6, x^{11} \). It should be stressed that the authors did not specify the iterative step. More serious, the sequence 1, 2, 3, 6, 11 does not form an addition chain [2]. Given a chain \(\{a_i\} \) and \(f \), we can define the following iterative step

\[g_{a_k} = g_{a_i} + g_{a_j} - fg_{a_i}g_{a_j} \mod x^{a_k}, \text{ if } a_k = a_i + a_j \]

In fact, the suggestion is somewhat misleading. If \(l \) is not a power of 2, the original algorithm 1 can be used to compute the inverse modulo \(x^l \) without any additional cost. It suffices to observe the following fact.

Fact 1. If \(0 < l \leq t \) and \(x^l | 1 - fg \), then \(x^l | 1 - fg \).

The above fact is directly based on the divisibility characteristic. Based on the fact, we obtain the following algorithm.
Algorithm 3: Inversion using divisibility characteristic

| Input: | $f \in D[x]$ with $f(0) = 1$, and $l \in \mathbb{N}$.
| Output: | $g \in D[x]$ satisfying $fg \equiv 1 \mod x^l$. |

1. $g_0 \leftarrow 1, r \leftarrow \lceil \log l \rceil$
2. for $i = 1, \cdots, r - 1$ do $g_i \leftarrow g_{i-1} \cdot (2 - f \cdot g_{i-1}) \text{ rem } x^{2^i}$
3. $g_r \leftarrow g_{r-1} \cdot (2 - f \cdot g_{r-1}) \text{ rem } x^l$
4. Return g_r

Correctness. It suffices to observe that $l \leq 2^r$ where $r = \lceil \log l \rceil$. Hence $x^l \mid x^{2^r}$. Since $x^{2^r} \mid 1 - f(2g_{r-1} - fg_{r-1}^2)$, we have $x^l \mid 1 - f(2g_{r-1} - fg_{r-1}^2)$. That means g_r is the inverse of f modulo x^l, too.

4 On the cost analysis

To make a sound cost analysis, we need the following definition of multiplication time and its properties.

Definition 1. Let R be a ring (commutative, with 1). We call a function $M : \mathbb{N}_{>0} \rightarrow R_{>0}$ a multiplication time for $R[x]$ if polynomials in $R[x]$ of degree less than n can be multiplied using at most $M(n)$ operations in R. Similarly, a function M as above is called a multiplication time for \mathbb{Z} if two integers of length n can be multiplied using at most $M(n)$ word operations.

For convenience, we will assume that the multiplication time satisfies

$$M(n)/n \geq M(m)/m \text{ if } n \geq m, \quad M(mn) \leq m^2 M(n),$$

for all $n, m \in \mathbb{N}_{>0}$. The first inequality yields the superlinearity properties

$$M(mn) \geq mM(n), \quad M(m + n) \geq M(n) + M(m), \text{ and } M(n) \geq n$$

for all $n, m \in \mathbb{N}_{>0}$.

By the above definition and properties, the authors obtained the following result [1].

Theorem 2. Algorithm 1 correctly computes the inverse of f modulo x^l. If $l = 2^r$ is a power of 2, then it uses at most $3M(l) + l \in O(M(l))$ arithmetic operations in D.

Proof. In step 2, all powers of x up to 2^l can be dropped, and since

$$g_i \equiv g_{i-1}(2 - fg_i) \equiv g_{i-1} \mod x^{2^{i-1}}, \quad (2)$$

also the powers of x less than 2^{i-1}. The cost for one iteration of step 2 is $M(2^{i-1})$ for the computation of g_{i-1}^2, $M(2^i)$ for the product $fg_{i-1}^2 \mod x^{2^i}$, and then the negative of the
upper half of fg_i^{2i-1} modulo x^{2i} is the upper half of g_i, taking 2^{i-1} operations. Thus we have $M(2^i) + M(2^{i-1}) + 2^{i-1} \leq \frac{3}{2}M(2^i) + 2^{i-1}$ in step 2, and the total running time is

$$\sum_{1 \leq i \leq r} \left(\frac{3}{2}M(2^i) + 2^{i-1} \right) \leq \left(\frac{3}{2}M(2^r) + 2^{r-1} \right) \sum_{1 \leq i \leq r} 2^{i-r} < 3M(2^r) + 2^r = 3M(l) + l,$$

where we have used $2M(n) \leq M(2n)$ for all $n \in \mathbb{N}$.

There is a typo and an error in the above proof and theorem.

- In the above argument there is a typo (see Eq.(2)).
- The cost for one iteration of step 2 is $M(2^i)$ for the computation of g_i^{2i-1} instead of the original $M(2^{i-1})$, because it is computed under the module x^{2i}, not x^{2i-1}. Since the upper half of $f(g_i^{2i-1})$ modulo x^{2i} is the same as g_i and the lower half of g_i is the same as g_{i-1}, the cost for the computation of $f(g_i^{2i})$ modulo x^{2i} only needs $M(2^{i-1})$. Therefore, according to the original argument the bound should be

$$\sum_{1 \leq i \leq r} \left(\frac{3}{2}M(2^i) + 2^{i-1} \right) \leq \left(\frac{3}{2}M(2^r) + 2^{r-1} \right) \sum_{1 \leq i \leq r} 2^{i-r} < 3M(2^r) + 2^r \leq 12M(l) + 2l,$$

The last estimation comes from $l \leq 2^r \leq 2l$.

Now, we make a formal cost analysis of algorithm 3.

Theorem 3. Algorithm 3 correctly computes the inverse of f modulo x^l. It uses at most $5M(l) + l \in O(M(l))$ arithmetic operations in D.

Proof. The cost for step 2 is $3M(2^{r-1}) + 2^{r-1}$ (see the above cost analysis). The cost for step 3 is bounded by $2M(l)$. Since $2^{r-1} \leq l \leq 2^r$, the total cost is $5M(l) + l$.

5 Conclusion

In this note, we revisit the fast division algorithm using Newton iteration. We show that the original Newton iterative step can still be used for any arbitrary exponent l without the restriction that l should be the power of 2. We also make a formal cost analysis of the method. We think the new presentation is helpful to grasp the method entirely and deeply.

Acknowledgements We thank the National Natural Science Foundation of China (Project 60873227), and the Key Disciplines of Shanghai Municipality (S30104).

References

[1] J. Gathen, J. Gerhard: Modern computer Algebra (3 edition), Cambridge University Press, 2003
[2] D. Knuth: The Art of Computer programming, Vol. 2 (3 edition), Addison-Wesley, 1997