Molecular markers for detection of species from the soil microbiota of the brazilian cerrado

Marcadores moleculares para detecção de espécies da microbiota do solo do cerrado brasileiro

DOI:10.34117/bjdv6n12-546

Robert Da mâ Melo Alves
Environmental specialist
Federal Institute of Science and Technology of Mato Grosso, Campus Cuiabá Bela Vista.
Avenue Vereador Juliano da Costa Marques, s / nº - Bela Vista, Cuiabá - MT, 78050-560
Dnabeta@hotmail.com

Giovanna Camolezi
Undergraduate in Biological Sciences
Federal University of Mato Grosso, Biosciences Institute. Fernando Corrêa da Costa Avenue, Boa Esperança, Cuiabá-MT, 78060- 900
giovannacamolezi@gmail.com

Aline Bernardes
Chemical PhD
Federal Institute of Science and Technology of Mato Grosso, Campus Cuiabá Bela Vista.
Avenue Vereador Juliano da Costa Marques, s / nº - Bela Vista, Cuiabá - MT, 78050-560
Aline.bernardes@blv.ifmt.edu.br

Sandra Mariotto
Gentic and Evolution PhD
Federal Institute of Science and Technology of Mato Grosso, Campus Cuiabá Bela Vista.
Avenue Vereador Juliano da Costa Marques, s / nº - Bela Vista, Cuiabá - MT, 78050-560
Sandra.mariotto@blv.ifmt.edu.br

ABSTRACT
Native microbiota in the Cerrado biome is still underexplored and may prove applicable to biotechnology. Given the Cerrado’s current devastation status, knowing its native microbiota is of paramount importance and may contribute to the existing knowledge gaps. Molecular markers are specific or sensitive elements designed to characterize the microbiota and detect species as they anneal and initiate DNA amplification in specific gene regions. One of the difficulties in developing new biomarkers is the low amount of species-specific genomic sequences available in the databases. Thus, this study aimed to design and test four primer sequences to assist in the rapid identification of soil microorganisms in four parks of Cuiabá. The primers were designed from sequences specific to the bacterial species and those available in the database and were tested for the following soil microorganism species: Acinetobacter soli, Pseudomonas species (sp.), Lysinibacillus varians, and Rhodanobacter thiooxydans. Our results showed that these molecular biomarkers were efficient, with 91.66% positive PCR detection for Acinetobacter soli and Pseudomonas sp. In conclusion, these
designed molecular biomarkers will be suitable for a rapid and precise characterization of these species in environmental samples. Furthermore, our designed markers may help determine species in regions that are under ecological threat.

Keywords: Bacteria, Applied Biotechnology, Oligonucleotides, Genes.

RESUMO
A microbiota nativa no bioma Cerrado ainda é subexplorada e pode se mostrar aplicável à biotecnologia. Dada a atual situação de devastação do Cerrado, conhecer sua microbiota nativa é de suma importância e pode contribuir para as lacunas de conhecimento existentes. Os marcadores moleculares são elementos específicos ou sensíveis projetados para caracterizar a microbiota e detectar espécies à medida que se recozem e iniciam a amplificação do DNA em regiões genéticas específicas. Uma das dificuldades no desenvolvimento de novos biomarcadores é a baixa quantidade de sequências genômicas específicas de espécies disponíveis nos bancos de dados. Assim, este estudo objetivou projetar e testar quatro seqüências primer para auxiliar na rápida identificação de microorganismos do solo em quatro parques de Cuiabá. Os primers foram desenhados a partir de sequências específicas para as espécies bacterianas e aquelas disponíveis no banco de dados e foram testados para as seguintes espécies de microorganismos do solo: Acinetobacter soli, Pseudomonas species (sp.), Lysinibacillus varians, e Rhodanobacter thiooxydans. Nossos resultados mostraram que estes biomarcadores moleculares foram eficientes, com 91,66% de PCR positivos para Acinetobacter soli e Pseudomonas sp. Em conclusão, estes biomarcadores moleculares projetados serão adequados para uma caracterização rápida e precisa destas espécies em amostras ambientais. Além disso, nossos marcadores projetados podem ajudar a determinar espécies em regiões que estão sob ameaça ecológica.

Palavras-chave: Bactérias, Biotecnologia Aplicada, Oligonucleotídeos, Genes.

1 INTRODUCTION

Soil life is substantially represented by existing organisms and the activities they perform. Preserving this microbial resource is essential to maintain human quality of life through ecosystem services that ensure sustainable soil health (Wall *et al*., 2019).

The morphological identification of bacteria is significant, but the molecular characterization of strains provides precision and aids in discovering potential biotechnological enzymes (Reddy *et al*., 2018). These enzymes may present the potential to be used in soil bioremediation by endophytic bacteria (Santos *et al*., 2018).

The development of molecular approaches to characterize soil bacteria brings a new perspective in the characterization of the vast diversity of microbial communities (Kowalska *et al*., 2019). Isolating and identifying microorganisms in soil fragments is critical for obtaining genetically stable strains (Adnan and Tan, 2007). Many natural products with added economic value are derived from soil microorganisms of economic, social, and environmental importance (Daniel 2004). Furthermore, metagenomic studies of microorganisms can identify their vast diversity, facilitating comparisons between
microbiomes, and providing knowledge that may be applied to several fields of the industry and research (Fierer, 2017).

A study conducted in Central Park, USA, showed that microbial biodiversity in a single urban fragment resembles several fragments worldwide (Ramírez et al., 2014). This finding highlights the importance of the analysis of soil preservation and health to maintain the balance in microbial communities.

The Cerrado biome is a biodiversity hotspot and the second largest biome in South America (Myers et al., 2000). Several reports show the importance of maintaining the native vegetation Cerrado. The diversity of microorganisms found in native forest soils can be up to ten times greater than species richness in pasture soils (Quirino et al., 2009). The microbiome diversity is justified by the wide variety of animals and plants (Ferreira et al., 2017), despite anthropic activities, which cause constant disturbance to the ecosystem and reduce biodiversity (Gainsbury and Colli, 2019).

The study of the Cerrado microorganism diversity may unravel the effect of disturbance on the ecosystem (Shade et al., 2012) and contribute to understanding the soil microbial community (Schenberg, 2010). The analysis of physical, chemical, and microbial attributes can determine which changes occur in soil properties (Bulluck et al., 2002). In addition, microbial abundance is a critical factor in attesting the health of urban fragments and can be related directly to the degree of ecosystem disturbance (Bao et al., 2019).

The bottleneck in soil microbiology studies is the discrepancy between the existing population of cultivable and non-cultivable bacteria (Fierer 2017). This discrepancy is clarified by meta-genomic studies, which link soil genetics with function-related microorganism processes (Jansson and Hofmockel, 2018).

The multifunctionality of terrestrial microorganisms (i.e., different communities performing different functions) makes them biochemically versatile (Delgado et al., 2016). However, the microorganism variety involved in the decomposition process allows different species to break complex biochemical structures (Coleman et al., 2004).

Molecular biomarkers are complex elements employed in a polymerase chain reaction (PCR) test to characterize the molecular features of non-cultivable soil bacteria (Pereira et al., 2006). These markers have been relevant due to their high specificity and sensitivity, are essential and can help protective in to environment (Saiki et al., 2006; SILVA et al., 2020). These markers are capable of accurate and reliable results, as long as their design contains a minimum of 20 primer-dimers and possess an ideal annealing temperature for the developed oligonucleotide sequence (Kowalska et al., 2019; Bustin and Huggett 2017).
Analysis using species-specific primers can optimize time, especially for pathogens requiring immediate characterization (Pastro et al., 2018). Therefore, in this study, four species-specific primers were designed and tested to assist in the Cerrado soil microbiome's rapid characterization.

2 MATERIAL AND METHODOLOGY

The soil microbiome studies were conducted in four urban parks of Cuiabá, Mato Grosso (Figure 1): (a) Tia Nair Park, (b) Water Park (Parque das Águas), (c) Mãe Bonifácia State Park, and (d) Massairo Okamura Park, in accordance to license and scientific research permits 200/2017, 285640/2017, and 396175/2017, granted by the state and municipal agencies (SEMA-MT and Cuiabá City Hall, respectively).

Figure 1: Mapping of sampled points four urban parks of Cuiabá, Mato Grosso. Parque Tia Nair (a), Parque das Águas (b), Parque Mãe Bonifácia (c) and Parque Massairo Okamura (d). Source: Search Results. Observed at the collect point: Exotic plants(vegetation) were more than native plants, both and more native than exotic plants.

Two soil samples were collected from three locations per park during the dry season in early September 2017 and the rainy season in late October 2017. The total DNA extraction was conducted by modifying pre-established protocols for the specific sample type (Aljanabi and Martinez, 1997; Junqueira and Silveira, 2010; Sambrook et al., 1989). The 16S ribosomal DNA (rDNA) amplification gene fragments utilized 968 Forward 5’-AAC GCG AAG AAC CTT AC-3’ and 1401 Reverse 5’-CGG TGT GTA CAA GAC CC-3’ primer oligonucleotides (Nubel et al., 1996). The PCR mix consisted of 12.5µl OneTaq hot start 2x Master Mix with Standard Buffer (Biolabs), 10µl of MilliQ Water, 0.5µl of each primer, 1µl BSA (Bovine Serum Albumin), and 1.5µl of sample DNA to make up 25µl of the
final volume. The amplification cycles occurred at temperatures of 95°C for 5'; 95°C for 45'; 55°C for 45'', 72°C for 1'; 72°C for 7'; and 4°C.

The most common organisms identified for the primer design, based on both the 16S rDNA sequencing analysis and comparing available GenBank database sequences (https://www.ncbi.nlm.nih.gov/genbank/), are shown in Table 1. After designing the primer, these sequences were edited and subjected to structural analysis using the software OligoAnalyzer 3.1. The primers were aligned with the sequences using the BLAST tool in NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Species	Type	Sequences (5' – 3')a	Base pairs (pb)	Orientation	GeneBank Access
Acinetobacter soli	AciF	GACGATCTGTAGCGGGTCTG	318	Forward	KJ806489
	AciR	AAGAGCCTCCTCCTCGITTA		Reverse	
Pseudomonas species (sp.)	PsedF	ATTAAGTTGACCGGCTGGGG	910	Forward	JQ861800
	PsedR	ATCACACCCTGGTAACCCTC		Reverse	
Lysinibacillus varians	LyvaF	AGGCAACGATGCGTAACCC	229	Forward	JQ861800
	LyvaR	CTGGCAGGATGTTAGCGGTG		Reverse	
Rhodanobacter thiooxydans	RhotF	ATCGAGACCGAGACGATGC	1049	Forward	AB741464.1
	RhotR	TCCAATCGGTCGTTCCAG		Reverse	

Biomarkers were tested and evaluated through PCR for their amplification specificity. Amplifications using species-specific primers followed the same steps as described for 16S rDNA primers. Post amplification, the products were tested on 1.5% electrophoresis gel, stained with 1 µl Blue Juice (10x), and 1 µl GelRed® (Biotium), and compared to a 100 kb DNA ladder (KASVI). The dendrogram was developed using an online MEGA 7 program with a p-distance analysis.

3 RESULTS AND DISCUSSION

A total of 24 sequenced 16S rDNA gene samples had satisfactory results in obtaining the main species of occurrence in the analyzed soils. These species belong to the Gammaproteobacteria class, except Lysinibacillus varians, which belong to the Firmicutes class, and both species are related phylogenetically (Figure 2). The genera and bacterial species with the highest genetic identity degree were Acinetobacter soli, Pseudomonas species (sp.), Lysinibacillus varians, and Rhodanobacter thiooxydans.
Figure 2: Dendrogram of species through 16S gene analysis. These species belong to the Gammaproteobacteria class, except Lysinibacillus varians, which belong to the Firmicutes class and are phylogenetically related as evidenced in the dendrogram.

The annealing of primers *Pseudomonas* sp. and *Acinetobacter soli* was satisfactory for 91.66% of the samples. Primers for *Lysinibacillus varians* and *Rhodanobacter thiooxydans* species did not anneal despite multiple tests and protocol modifications. Additionally, the genus *Pseudomonas* sp. were tested with control PCR using a pure *P. aeruginosa* strain (CBAM 0679).

According to previous studies (Kowalska et al., 2019 and Fierer 2017), with the advent of molecular biology, rapid identification of large populations of bacteria is now possible. Four bacterial primers were designed for species in urban park soils. These designed molecular markers allowed the rapid identification of bacterial species in the Cerrado soils.

We also found that *Acinetobacter soli* had full amplification in the 24 samples among the Aci primer sequences (GenBank: BBNM0100001.1). This molecular biomarker was the most efficient among those developed with a 100% amplification at all of the four urban parks of Cuiabá-MT. The presence of *Acinetobacter soli* bacteria in these soils is an indicator of environmental balance, as this genus usually develops in forest soils. This genus may also have critical biotechnological applications for the degradation of petroleum and its derivatives (Kim et al., 2008). They found that bacteria capable of degrading ammonia in native forest soils are more genetically diverse than the soil microbiota disturbed by conventional planting (Peixoto et al., 2006). Some bacterial strains use new biochemical strategies to degrade one of the most commercialized and environmentally harmful synthetic polymers: polyethylene. This polymer is resistant to microbiota attacks due to its chemical composition (Peixoto et al., 2017).

The strains of *Pseudomonas* sp. (GenBank: Y927414.1) are useful for sulfide gas bio-oxidation, even at high concentrations (Xu et al., 2016). Its strains can metabolize through oxidation and hydrolysis, the endosulfan compound, a highly toxic and environmentally persistent organochlorine pesticide (Zaffar et al., 2018). The oligonucleotide for this species obtained an effectiveness of 83.33% of amplification, indicating that its usefulness for being easily detected in soil samples.

The primer Lyva (*Lysinibacillus varians*, GenBank: KX011876.1) was not effective for amplification despite multiple bioinformatic program tests and PCR analysis. However, this marker
would identify biodegrading bacteria from persistent environmental contaminants such as Bromate Diphenyl Ether (BDE), which has low volatility and solubility in aqueous media (Zhu et al., 2014). The toxicity of this compound class has been related to immunological, hepatotoxic, neurotoxic, and even endocrine changes (Annunciação et al., 2018). The large-scale genomic sequencing may guarantee the availability of new oligonucleotide sequences.

The oligonucleotides designed for Rhot (Rhodanobacter thiooxydans, GenBank: QBUW01000007.1) did not amplify in any of the PCR analysis. Importantly, these species can metabolize thiosulfate, which is common in the drug industry and in the industry for paper bleaching (Bui et al., 2010).

The absence of the Rhot and Lyva primer annealing via PCR for the tested and analyzed gene regions may be attributed to the sequence designs being to China. They may present distinct nucleotide alterations, because of evolution, for the Cerrado microbiome. There are several reasons for non-nucleotide binding in the primer annealing, such as a mismatch in complementary bases and positional base pairing (Long et al., 2013). Furthermore, the sequence for amplification in Rhodanobacter thiooxydans is extensive, which may also have been a reason for the absence of positive results for this species.

We did not find pure strains for the remaining species in other microorganism databases. Therefore, we were unable to test controls for all samples. However, a 30% positive amplification of random sample sequences confirmed the effectiveness of primers for Acinetobacter soli and Pseudomonas sp.

In addition to optimizing research time, PCR-based detection methods are more productive and effective and contribute to the knowledge of microorganism diversity in ecosystems (Zhang et al., 2019). In conclusion, given the Cerrado soil microbiome’s significance, it is essential to encourage pure strains selection and novel primer designs. Rapid and reliable detection of these microorganisms is still a challenge due to their scarce genomic data.

ACKNOWLEDGMENT

We thank the Federal Institute of Mato Grosso and the Foundation for Research Support in the State of Mato Grosso (FAPEMAT), which provided partial financial support for the study. The authors would also like to acknowledge Fiocruz/CEBAM for providing the pure strain of Pseudomonas sp.
REFERENCES

ADNAN, A. F. M; TAN, I. K. P. 2007. Isolation of lactid acid bacteria from Malaysian foods and assessment of the isolates for insturial potencial. Bioresource Technology, essex,v. 98, n 7, p. 1380-1385, may.

ALJANABI, S.M.; MARTINEZ, I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, v.25, p.4692-4693.

ANNUNCIACAO A DANIEL L,R, ALMEIDAA FERNANDA V., HARAB EMERSON L. Y., GRASSIB MARCO T. E SODREA FERNANDO F. 2018. Éteres difenílicos polibromados (pbde) como contaminantes persistentes: ocorrência, comportamento no ambiente e estratégias analíticas. Química Nova, [s.l.], p.782-79. Sociedade Brasileira de Quimica (SBQ). Http://dx.doi.org/10.21577/0100-4042.20170218.

BAO TIANLI, ZHAO YUNGE, YANG XUEQIN, WEIN RE, WANG SHANSHAN.2019. Effects of disturbance on soil microbial abundance in biological soil crusts on the Loess Plateau, China. Journal Of Arid Environments, [s.l.], v. 163, p.59-67, abr. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.jaridenv.2019.01.003.

BO ZHANG, DE NA ZHAO, YANGYANG LIU, LEI JIA, YAN FU, XIAOXU ELE, KEFENG LIU, ZIJING XU, BAOLONG BAO. 2019. Novel molecular markers for high-throughput sex characterization of Cynoglossus semilaevis. Aquaculture, [s.l.], v. 513, p.734331-734331, nov. Elsevier BV. http://dx.doi.org/10.1016/j.aquaculture.2019.734331.

BUI, NAM E KIM, YEON-JU E KIM, HOBIN E YANG, DEOK-CHUN. 2010. Rhodanobacter soli sp. nov., isolated from soil of a ginseng field. International journal of systematic and evolutionary microbiology. 60. 2935-9. 10.1099/ijs.0.019422-0.

BULLUCK L.R, BROSUIS M, EVANYLO G.K, RISTAINO J. B. 2002. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology, [s.l.], v. 19, n. 2, p.147-160, fev. Elsevier BV. http://dx.doi.org/10.1016/s0929-1393(01)00187-1.

BUSTIN STEPHEN, HUGGETT JIM. 2017. QPCR primer design revisited. Biomolecular Detection And Quantification, [s.l.], v. 14, p.19-28, dez. Elsevier BV. http://dx.doi.org/10.1016/j.bdq.2017.11.001.

COLEMAN DAVID C, CROSSLEY D.A, HENDRIX PAUL F. 2004. Future Developments in Soil Ecology. Fundamentals Of Soil Ecology, [s.l.], p.271-298. Elsevier. http://dx.doi.org/10.1016/b978-012179726-3/50009-5.

DANIEL, ROLF. 2004. The soil metagenome – a rich resource for the discovery of novel natural products. Current Opinion In Biotechnology, [s.l.], v. 15, n. 3, p.199-204, jun. Elsevier BV. http://dx.doi.org/10.1016/j.copbio.2004.04.005.

DELGADO BAQUERIZO, MANUEL MAESTRE, FERNANDO REICH, PETER JEFFRIES, THOMAS GAJTAN, JUAN ENCINAR, DANIEL BERDUGO, MIGUEL CAMPBELL, COLIN SINGH, BRAJESH. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications. 7. 10.1038/ncomms10541.
DUWOON KIM, KEUN SIK BAIK, MI SUN KIM, SEONG CHAN PARK, SEON SUK KIM, MOON SOO RHEE, YOUNG SE KWAK, CHI NAM SEONG. 2008. Acinetobacter soli sp. nov. isolated from forest soil. The Journal Of Microbiology, [s.l.], v. 46, n. 4, p.396-401, ago. Springer Nature. http://dx.doi.org/10.1007/s12275-008-0118-y.

FERREIRA, FERNANDA GOMES; MACHADO, EVANDRO LUIZ MENDONÇA; SILVA-NETO, CARLOS DE MELO E; SILVA JÚNIOR, MANOEL CLÁUDIO; MEDEIROS, MARIANA MARTINS; GONZAGA, ANNE PRISCILA DIAS; SOLOŘZANO, ALEXANDRO; VENTUROLI, FÁBIO; FAGG, JEANINE MARIA FELFILI. Diversity and indicator species in the cerrado biome, Brazil. Australian Journal Of Crop Science, [S.L.], v. 11, n. 08, p. 1042-1050, 20 ago. 2017. Southern Cross Publishing. http://dx.doi.org/10.21475/ajcs.17.11.08.pne615.

FIERER NOAH. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews microbiology, v.15, p579-590, agosto. https://www.nature.com/articles/nrmicro.2017.87.

GAINSBURY, ALISON MELISSA, COLLI, GUARINO RINALDI. 2019. Phylogenetic community structure as an ecological indicator of anthropogenic disturbance for endemic lizards in a biodiversity hotspot. Ecological Indicators, [s.l.], v. 103, p.766-773, ago. Elsevier BV. http://dx.doi.org/10.1016/j.ecolind.2019.03.008.

JANSSON, JANET K; HOFMOCKEL, KIRSTEN S. 2018. The soil microbiome — from metagenomics to metaphenomics. Current Opinion In Microbiology, [s.l.], v. 43, p.162-168, jun. Elsevier BV. http://dx.doi.org/10.1016/j.mib.2018.01.013.

JUNQUEIRA, L. C.; CARNEIRO, J. Histology & its methods of study. In: JUNQUEIRA, L. C.; CARNEIRO, J. Basic histology. 11. ed. New York: McGraw-Hill, 2010. p. 1-18. E-book.

KOWALSKA, ZUZANNA; PNIEWSKI, FILIP; LATAŁA, ADAM. 2019. DNA barcoding – A new device in phycologist's toolbox. Ecohydrology & Hydrobiology, [s.l.], p.0-0, fev. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.ecohyd.2019.01.002.

LEDEKER, BRETT M.; LONG, SUSAN K. DE. 2013. The effect of multiple primer–template mismatches on quantitative PCR accuracy and development of a multi-primer set assay for accurate quantification of pcrA gene sequence variants. Journal Of Microbiological Methods, [s.l.], v. 94, n. 3, p.224-231, set. Elsevier BV. http://dx.doi.org/10.1016/j.mimet.2013.06.013.

MYERS N, RA MITTERMEIER, CG MITTERMEIER, GAB DA FONSECA, J. KENT. 2000. Biodiversidade hotspots para prioridades de conservação Nature, 403 , pínas 853 – 858.

NUBEL, U. ENGELEN, B .; FELSKE, A .; SNAIDR, J; WIESHUBER, A .; AMANN, RI; LUDWIG, W .; BACKHAUS, H. Heterogeneidades de seqüência de genes codificadores de 16S rRNAs em Paenibacillus polymyxa detectados por eletroforese em gel de gradiente de temperatura. Journal of Bacteriology, v.178, p.5636-5643, 1996.

PASTRO, D.C; MARIOTTO, S.; CERQUEIRA SANTOS, E.; FERREIRA, D.C.; CHITARRA, G.S. 2018. Use of molecular techniques for the analysis of the microbiological quality of fish marketed in the municipality of Cuiabá, Mato Grosso, Brazil. Food Science and Technology.

PEIXOTO R.S,COUTINHO H.LC, B. MADARI, MACHADO P.LOA, RUMJANEK N.G., VAN ELSAS J., SEDLIN L., A.S. ROSADO.2006. Soil aggregation and bacterial community structure as affected by tillage and cover cropping in the Brazilian Cerrados. Soil And Tillage Research. [s.l.], v. 90, n. 1-2, p.16-28, nov. 2006. Elsevier BV. http://dx.doi.org/10.1016/j.still.2005.08.001.
PEIXOTO, JULIANNA; SILVA, LUCIANO P.; KRÜGER, RICARDO H. 2017. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. Journal Of Hazardous Materials, [s.l.], v. 324, p.634-644, fev. Elsevier BV. http://dx.doi.org/10.1016/j.jhazmat.2016.11.037.

PEREIRA R. M , SILVEIRA É. L. , CÉSAR SCAQUITTO D. , NASCIMBÉM PEDRINHO E. A. , POMPÉIA VAL-MORAES S. , WICKERT É. , CARARETO-ALVES L. M. , MACEDO L. E. 2006.. Molecular characterization of bacterial populations of different soils. Brazilian Journal Of Microbiology. [s.l.], v. 37, n. 4, p.439-447, dez. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1517-83822006000400007.

QUIRINO B. F, PAPPAS G. J, TAGLIAFERRO A. C, COLLEVATTI R. G, EDUARDO LEONARDECZ E. N , SILVA SS M. R, BUSTAMANTE M. MC, KRÜGER R. H. 2009. Molecular phylogenetic diversity of bacteria associated with soil of the savanna-like Cerrado vegetation. Microbiological Research. [s.l.], v. 164, n. 1, p.59-70, jan. Elsevier BV. http://dx.doi.org/10.1016/j.micres.2006.12.001.

RAMIREZ, K. S. et al., 2014.Biogeographic patterns in below-ground diversity in New York City's Central Park are similar to those observed globally. Proceedings Of The Royal Society B: Biological Sciences, [s.l.], v. 281, n. 1795, p.20141988-20141988, 1 out. The Royal Society. http://dx.doi.org/10.1098/rspb.2014.1988.

REDDY, KONDAKINDI VENKATESWAR, VIJAYALASHMI, TATIPARTI, RANJIT, PABBATI E RAJU, MADDELA NAGA. (2017). Caracterização de algumas bactérias produtoras de celulase eficientes isoladas de solo contaminado com esfuele de fábrica de papel e celulose. Arquivos Brasileiros de Biologia e Tecnologia, 60, e17160226. Epub 08 de janeiro de 2018. https://doi.org/10.1590/1678-4324-2017160226.

SAIKI RK, GELFAND DH, STOFFEL S, SCHARF SJ, HIGUCHI R, HORN GT, MULLIS KB, ERLICH HA. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, [s.l.], v. 239, n. 4839, p.487-491, 29 jan. American Association for the Advancement of Science (AAAS). http://dx.doi.org/10.1126/science.2448875.

SAM BROOK J., FRITSCHE E. F. E MANIATIS T. 1989. Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

SANTOS, MIRIAM LANGNER DOS, BERLITZ, DIOUNEIA LISIANE, WIEST, SHANA LETICIA FELICE, SCHÜNEMANN, ROGERIO, KNAAK, NEIVA, & FIUZA, LIDIA MARIANA. (2018). Benefits Associated with the Interaction of Endophytic Bacteria and Plants. Brazilian Archives of Biology and Technology, 61, e18160431. Epub November 08, 2018.https://doi.org/10.1590/1678-4324-2018160431.

SCHENBERG, A. C. G. 2010. Biotecnologia e desenvolvimento sustentável. Estudos Avançados, [s.l.], v. 24, n. 70, p.07-17. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0103-40142010000300002.

SHADE ASHLEY et al., Fundamentals of Microbial Community Resistance and Resilience. Frontiers In Microbiology. [s.l.], v. 3, p.417-417, 2012. Frontiers Media SA. http://dx.doi.org/10.3389/fmicb.2012.00417.
SILVA, M. R. F. et al. Biomarkers as a tool to monitor environmental impact on aquatic ecosystems. Brazilian Journal of Development, v. 6, n. 10, p. 75702-75720, 2020.

WALL L. G., GABBARINI L. A., FERRARI A. E., FRENE J. P., COVELLI J., REYNA D., BELÉNROBLEDO N. 2019. Changes of paradigms in agriculture soil microbiology and new challenges in microbial ecology. Acta Oecologica, [s.l.], v. 95, p.68-73, fev. Elsevier BV. http://dx.doi.org/10.1016/j.actao.2019.02.001.

XI-JUN XU , CHUAN CHEN, HONG-LIANG GUO, AI-JIE WANG, NAN-QI REN, DUU-JONG LEE. 2016. Characterization of a newly isolated strain Pseudomonas sp. C27 for sulfide oxidation: Reaction kinetics and stoichiometry. Scientific Reports, [s.l.], v. 6, n. 1, p.1-10, 11 fev. Springer Nature. http://dx.doi.org/10.1038/srep21032.

ZAFFAR H., AHMAD R., PERVEZ A., ALAMNAQVI T. 2018. A newly isolated Pseudomonas sp. can degrade endosulfan via hydrolytic pathway. Pesticide Biochemistry And Physiology, [s.l.], v. 152, p.69-75, nov. Elsevier BV. http://dx.doi.org/10.1016/j.pestbp.2018.09.002.

ZHU C, SUN G , CHEN X, GUO J, XU M. 2014. Lysinibacillusvarians sp. nov., uma bactéria formadora de endósporos com um ciclo celular de filamento a bastonete. Int J Syst Evol Microbiol 64: 3644- 3649.