Multipliers and embedding operators with application to abstract differential equations
Veli B. Shakhmurov
Okan University, Department of Mechanical engineering, Akfirat, Tuzla 34959
Istanbul, Turkey,
E-mail: veli.sahmurov@okan.edu.tr

ABSTRACT

In this paper, Mikhlin and Marcinkiewicz–Lizorkin type operator-valued multiplier theorems in weighted Lebesgue-Bochner spaces are studied. Using these results one derives embedding theorems in E_0-valued weighted Sobolev-Lions type spaces $W^{l}_{p,\gamma}(\Omega;E_0,E)$, where E_0, E are two Banach spaces, E_0 is continuously and densely embedded into E. One proves that, there exists a smoothest interpolation space E_α, between E_0 and E, such that the differential operator D^α acts as a bounded linear operator from $W^{l}_{p,\gamma}(\Omega;E_0,E)$ to $L^p_{\gamma}(\Omega;E_\alpha)$. By using these results the L^p_{γ}-separability properties of elliptic operators and regularity properties of appropriate degenerate differential operators are studied. In particular, we prove that the associated differential operator is positive and also is a generator of an analytic semigroup. Moreover, the maximal L^p_{γ}-regularity properties of Cauchy problem for abstract parabolic equation and system of infinity many parabolic equations is obtained.

AMS:
47Axx, 46E35, 47A50, 42B37, 42B15

Key Words: Banach space-valued functions; Operator-valued multipliers; embedding of Sobolev-Lions spaces; Differential-operator equations; Interpolation of Banach spaces;

1. Introduction

Fourier multipliers in vector-valued function spaces have been studied e.g. in [4], [18], [31]. Operator-valued Fourier multipliers have been investigated in [5], [8 – 11] and [29]. Mikhlin type Fourier multipliers in scalar weighted spaces have been studied e.g. in [13], [28]. Moreover, operator-valued Fourier multipliers in weighted abstract L_p spaces were investigated e.g. in [2] and [16]. In [6, 12, 13] singular integral operators with operator-valued kernel were studied in weighted L_p-spaces. Embedding theorems in vector-valued function spaces are studied e.g. in [14, 15], [20-26]. Regularity properties of differential-operator equations (DOEs) have been studied e.g. in [1], [2], [7, 8], [22 – 25],
operator equation

$$\|D^\alpha u\|_{L_{p,\gamma}(\Omega; E(A))} \leq C_{\mu} \left[h^\mu \|u\|_{W_{p,\gamma}^l(\Omega; E(A), E)} + h^{- (1-\mu)} \|u\|_{L_{p,\gamma}(\Omega; E)} \right]$$

for $u \in W_{p,\gamma}^l(\Omega; E(A), E)$, where A is a positive operator in E and

$$l = (l_1, l_2, ..., l_n), \quad \alpha = (\alpha_1, \alpha_2, ..., \alpha_n), \quad |\alpha : l| = \sum_{k=1}^{n} \frac{\alpha_k}{l_k},$$

$$0 < h \leq h_0 < \infty, \quad 0 < \mu < 1 - |\alpha : l|.$$

This fact generalizes and improves the results [3, § 9, 27, § 1.7] for scalar Sobolev space, the result [14] for one dimensional Sobolev-Lions spaces and the results [15], [22] for Hilbert-space valued class. Finally, we consider the differential-equation equation

$$Lu = \sum_{|\alpha| = 2l} a_\alpha D^\alpha u + Au + \sum_{|\alpha| < 2l} A_\alpha(x) D^\alpha u + \lambda u = f, \quad (1.1)$$

where a_α are complex numbers, A, $A_\alpha(x)$ are linear operators in a Banach space E and λ is a complex parameter.

We say that the problem (1.1) is $L_{p,\gamma}(R^n; E)$-separable if there exists a unique solution $u \in W_{p,\gamma}^2(R^n; E(A), E)$ of (1.1) for all $f \in L_{p,\gamma}(R^n; E)$ and there exists a positive constant C depend only on p and γ such that the following coercive uniform estimate holds

$$\sum_{|\alpha| \leq 2l} |\lambda|^{1-\frac{|\alpha|}{2l}} \|D^\alpha u\|_{L_{p,\gamma}(R^n; E)} + \|Au\|_{L_{p,\gamma}(R^n; E)} \leq C \|f\|_{L_{p,\gamma}(R^n; E)}. \quad (1.2)$$

Estimate (1.2) implies that if $f \in L_{p,\gamma}(R^n; E)$ and u is a solution of (1.1) then all terms of equation (1.1) belong to $L_{p,\gamma}(R^n; E)$ (i.e. all terms are separable in $L_{p,\gamma}(R^n; E)$). The above estimate implies that the inverse of the differential operator generated by (1.1) is bounded from $L_{p,\gamma}(R^n; E)$ to $W_{p,\gamma}^2(R^n; E(A), E)$.

By using the separability properties of (1.1) we show that the Cauchy problem for the parabolic equation

$$\partial_t u + \sum_{|\alpha| = 2l} a_\alpha D^\alpha u + Au = f(t, x), \quad t \in (0, \infty), \quad x \in R^n, \quad (1.3)$$

[29 – 30]. A comprehensive introduction to DOEs and historical references may be found in [1] and [30].
\[u(0, x) = 0, \quad x \in \mathbb{R}^n \]

is well-posed in weighted spaces \(L_{p, \gamma}(\mathbb{R}^n; E) \) with mixed norm, where \(p = (p, p_1) \).

The paper is organized as follows. In Section 2, the necessary tools from Banach space theory and some background materials are given. In sections 3, the multiplier theorems in vector-valued weighted Lebesgue spaces are proved. In Section 4, by using these multiplier theorems, embedding theorems in \(E \)-valued weighted Sobolev type spaces are shown. Finally, in sections 5-8 the separability properties of (1.1), (1.3) and also regularity properties of appropriate degenerate differential operators are established.

2. Notations and background

Let \(E \) be a Banach space and let \(\gamma = \gamma(x), x = (x_1, x_2, ..., x_n) \) be a positive measurable function on the measurable subset \(\Omega \subset \mathbb{R}^n \). Let \(L_{p, \gamma}(\Omega; E) \) denote the weighted Lebesgue-Bochner space, i.e. the space of all strongly measurable \(E \)-valued functions that are defined on \(\Omega \) with the norm

\[
\| f \|_{L_{p, \gamma}} = \left(\int \| f(x) \|^p_E \gamma(x) \, dx \right)^{\frac{1}{p}}, \quad 1 \leq p < \infty,
\]

\[
\| f \|_{L_{\infty, \gamma}} = \sup_{x \in \Omega} \| f(x) \|_E \gamma(x) \quad \text{for} \quad p = \infty.
\]

For \(p(x) \equiv 1 \), the space \(L_{p, \gamma}(\Omega; E) \) will be denoted by \(L_p = L_p(\Omega; E) \).

The weight \(\gamma \) is said to be satisfy an \(A_p \) condition, i.e. \(\gamma \in A_p, 1 < p < \infty \), if there is a positive constant \(C \) such that

\[
\sup_Q \left(\frac{1}{|Q|} \int_Q \gamma(x) \, dx \right) \left(\frac{1}{|Q|} \int_Q \gamma^{-\frac{1}{p-1}}(x) \, dx \right)^{p-1} \leq C
\]

for all for all cubes \(Q \subset \mathbb{R}^n \).

The Banach space \(E \) is called a UMD-space and written as \(E \in \text{UMD} \) if only if the Hilbert operator

\[
(Hf)(x) = \lim_{\varepsilon \to 0} \int_{|x-y|>\varepsilon} \frac{f(y)}{x-y} \, dy
\]

is bounded in the space \(L_p(R, E), p \in (1, \infty) \) (see e.g. [8]). UMD spaces include \(L_p, l_p \) spaces, Lorentz spaces \(L_{pq}, p, q \in (1, \infty) \) and Morrey spaces (see e.g. [20]).

A Banach space \(E \) has a property \((\alpha) \) (see e.g. [19]) if there exists a constant \(\alpha \) such that

\[
\left\| \sum_{i,j=1}^N \alpha_{ij} \varepsilon_i \varepsilon_j x_{ij} \right\|_{L_2(\Omega \times \Omega; E)} \| dx \leq \alpha \left\| \sum_{i,j=1}^N \varepsilon_i \varepsilon_j x_{ij} \right\|_{L_2(\Omega \times \Omega; E)}
\]
for all \(N \in \mathbb{N} \), \(x_{i,j} \in E \), \(\alpha_{ij} \in \{0, 1\} \), \(i, j = 1, 2, ..., N \), and all choices of independent, symmetric, \(\{-1, 1\} \)-valued random variables \(\varepsilon_1, \varepsilon_2, ..., \varepsilon_N, \varepsilon'_1, \varepsilon'_2, ..., \varepsilon'_N \) on probability spaces \(\Omega, \Omega' \). For example the spaces \(L_p(\Omega), 1 \leq p < \infty \) has the property \((\alpha)\).

Let \(C \) be the set of complex numbers and
\[
S_\varphi = \{ \xi; \; \xi \in C, \; |\arg \xi| \leq \varphi \} \cup \{0\}, \; 0 \leq \varphi < \pi.
\]
Let \(E_1 \) and \(E_2 \) be two Banach spaces. \(B(E_1, E_2) \) denotes the space of bounded linear operators from \(E_1 \) to \(E_2 \). For \(E_1 = E_2 = E \) it will be denote by \(B(E) \).

A linear operator \(A \) is said to be positive in a Banach space \(E \), with bound \(M \), if \(D(A) \) is dense in \(E \) and
\[
\left\| (A + \xi I)^{-1} \right\|_{B(E)} \leq M (1 + |\xi|)^{-1}
\]
with \(\xi \in S_\varphi, \varphi \in [0, \pi] \), where \(M \) is a positive constant and \(I \) is an identity operator in \(E \). Sometimes instead of \(A + \xi I \), we will write \(A + \xi \) or \(A\xi \). It is known \([27, \S 1.15.1]\) there exist fractional powers \(A^\theta \) of the positive operator \(A \).

Definition 2.1. A positive operator \(A \) is said to be \(R \)-positive in the Banach space \(E \) if there exists \(\varphi \in [0, \pi) \) such that the set
\[
\left\{ \xi (A + \xi I)^{-1} : \xi \in S_\varphi \right\}
\]
is \(R \)-bounded (see e.g. \([29]\]).

Let \(E(A^\theta) \) denote the space \(D(A^\theta) \) with graphical norm defined as
\[
\left\| u \right\|_{E(A^\theta)} = \left(\left\| u \right\|^p + \left\| A^\theta u \right\|^p \right)^{\frac{1}{p}}, \; 1 \leq p < \infty, \; -\infty < \theta < \infty.
\]
Let \((E_1, E_2)_{\theta, \varphi} \) denote the interpolation space obtained from \(\{E_1, E_2\} \) by the \(K \)-method \([27, \S 1.3.1]\), where \(\theta \in (0, 1), \; p \in [1, \infty) \).

We denote by \(D(R^n; E) \) the space of \(E \)-valued \(C_\infty \) function with compact support, equipped with the usual inductive limit topology and \(S(E) = S(R^n; E) \) denote the \(E \)-valued Schwartz space of rapidly decreasing smooth functions. For \(E = \mathbb{C} \) we simply write \(D(R^n) \) and \(S = S(R^n) \), respectively. Let \(D'(R^n; E) = B(D(R^n), E) \) denote the space of \(E \)-valued distributions and let \(S'(E) = S'(R^n; E) \) denote a space of linear continuous mapping from \(S(R^n) \) into \(E \). The Fourier transform for \(u \in S'(R^n; E) \) is defined by
\[
F(u)(\varphi) = u(F(\varphi)), \; \varphi \in S(R^n).
\]
Let \(\gamma \) be such that \(S(R^n; E_1) \) is dense in \(L_{p,\gamma}(R^n; E_1) \). A function
\[
\Psi \in C(1)(R^n; B(E_1, E_2))
\]
is called a multiplier from \(L_{p,\gamma}(R^n; E_1) \) to \(L_{q,\gamma}(R^n; E_2) \) if there exists a positive constant \(C \) such that
\[
\left\| F^{-1} \Psi(\xi) Fu \right\|_{L_{q,\gamma}(R^n; E_2)} \leq C \left\| u \right\|_{L_{p,\gamma}(R^n; E_1)}
\]
for all $u \in S(R^n; E_1)$.

We denote the set of all multipliers from $L_{p,\gamma}(R^n; E_1)$ to $L_{q,\gamma}(R^n; E_2)$ by $M^{q,\gamma}_{p,\gamma}(E_1, E_2)$.

A set $K \subset B(E_1, E_2)$ is called R-bounded (see e.g. [9, § 3.1]) if there is a constant $C > 0$ such that for all $T_1, T_2, ..., T_m \in K$ and $u_1, u_2, ..., u_m \in E_1$, $m \in \mathbb{N}$

$$\int_0^1 \left\| \sum_{j=1}^m r_j(y)T_j u_j \right\|_{E_2} dy \leq C \int_0^1 \left\| \sum_{j=1}^m r_j(y)u_j \right\|_{E_1} dy,$$

where \{r_j\} is a sequence of independent symmetric $\{-1;1\}$-valued random variables on $[0,1]$. The smallest C for which the above estimate holds is called the R-bound of K and denoted by $R(K)$.

Definition 2.2. The Banach space E satisfies the multiplier condition with respect to $p \in (1, \infty)$ and to the weighted function γ if for all $\Psi \in C^{(\alpha)}(R^n; B(E))$ the inequality

$$R \left\{ \left\| D_x^\alpha \Psi (\xi) : \xi \in R^n \setminus \{0\}, \right\| : \alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \right\} \leq K_\alpha < \infty \quad (2.1)$$

for $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n), \alpha_i \in (0,1)$ implies that $\Psi \in M_{p,\gamma}^{q,\gamma}(E)$.

Note that, if E_1 and E_2 are UMD spaces and $\gamma(x) \equiv 1$, then by virtue of operator valued multiplier theorems (see e.g. [9 - 12], [30]) we obtain that Ψ is a Fourier multiplier in $L_p(R^n; E)$.

Let Ω be a domain on R^n and let $l = (l_1, l_2, ..., l_n) \in \mathbb{N}^n$. Assume E_0 is continuously and densely belongs to E. Here, $W_{p,\gamma}^l(\Omega; E_0, E)$ denotes the anisotropic weighted Sobolev-Lions type space of functions $u \in L_{p,\gamma}(\Omega; E_0)$ which have generalized derivatives $\partial^k_{x_k} \in L_{p,\gamma}(\Omega; E)$ with norm

$$\left\| u \right\|_{W_{p,\gamma}^m(\Omega; E_0, E)} = \left\| u \right\|_{L_{p,\gamma}(\Omega; E_0)} + \sum_{k=1}^n \left\| \partial^k_{x_k} u \right\|_{L_{p,\gamma}(\Omega; E)} < \infty.$$

For $l_1 = l_2 = ... = l_n = m$ we denote $W_{p,\gamma}^l(\Omega; E_0, E)$ by $W_{p,\gamma}^m(\Omega; E_0, E)$ as an isotropic weighted Sobolev-Lions space.

3. Operator-valued multiplier results in weighted Lebesgue spaces

Let E_1, E_2 be Banach spaces. We put

$$X = L_{p,\gamma}(R^n; E_1) \text{ and } Y = L_{p,\gamma}(R^n; E_2).$$

By following Theorems 3. 6 and 3.7 of [9] we will show the following multiplier theorems:
Theorem 3.1. Let $\gamma \in A_p$, $p \in (1, \infty)$. Assume E_1, E_2 are UMD spaces with property (α) and let

$$M \in C^{(n)}(R^n \setminus \{0\} ; B(E_1, E_2)).$$

If

$$R \left\{ \xi^\beta D^\beta_M(\xi) : \xi \in R^n \setminus \{0\} \right\} \leq C_\beta < \infty$$

for all $\beta = (\beta_1, \beta_2, ..., \beta_n), \beta_i \in \{0, 1\}$, then M is a multiplier from X to Y with

$$\|M\|_{B(X,Y)} \leq \sum_{\beta_i \in \{0, 1\}} C_\beta.$$

If $n = 1$ the result remains true without E_1 having property (α).

Theorem 3.2. Let $\gamma \in A_p$, $p \in (1, \infty)$. Let E_1, E_2 be UMD spaces and let $M \in C^{(n)}(R^n \setminus \{0\} ; B(E_1, E_2))$.

If

$$R \left\{ |\xi|^{\beta} D^\beta_M(\xi) : \xi \in R^n \setminus \{0\} \right\} \leq C_\beta < \infty$$

for all $\beta = (\beta_1, \beta_2, ..., \beta_n), \beta_i \in \{0, 1\}$, then M is a multiplier from X to Y with

$$\|M\|_{B(X,Y)} \leq \sum_{\beta_i \in \{0, 1\}} C_\beta.$$

To prove Theorem 3.1 we need the following result:

The following Propositions A$_1$ and A$_2$ are due to Clément, de Pagter, Sukochev and Witvliet, see [5].

Proposition A$_1$. Let $\Delta_{E_1}^{E_1}$ and $\Delta_{E_2}^{E_2}$ be unconditional Schauder decompositions of the Banach spaces E_1 and E_2 respectively, with unconditional constants C_{E_1} and C_{E_2}. Further let $\{T_j : j \in \mathbb{Z}^n\}$ be an R-bounded family in $B(E_1, E_2)$ with $T_j \Delta_{E_1}^{E_1} = \Delta_{E_2}^{E_2} T_j \Delta_{E_1}^{E_1}$ for all $j \in \mathbb{N}$. Then the series

$$Tu = \sum_{j=1}^{\infty} T_j \Delta_{E_1}^{E_1} u$$

converges for every $u \in E_1$ and defines a bounded operator $T : E_1 \to E_2$ with

$$\|T\| \leq C_{E_1} C_{E_2} R(\{T_j : j \in \mathbb{Z}^n\}).$$

Proposition A$_2$. Assume E is a Banach space that has property(α), $\Delta = \{\Delta_k\}_{k=1}^{\infty}$ is an unconditional Schauder decomposition and $Q \subset B(E)$ is an R-bounded collection of operators. Then the set

$$S := \left\{ \sum_{k=0}^{\infty} T_k \Delta_k : T_k \in Q \text{ such that } T_k \Delta_k = \Delta_k T_k \text{ for all } k \in \mathbb{N} \right\}$$

is R-bounded in E.

6
Let $Ω \subset R^n$. By using the same reasoning as used in [5, Lemma 3.17] we have:

Lemma 3.1. Let $γ \in A_p, p \in (1, \infty)$. Assume E is a Banach spaces. For $φ \in L_∞(Ω)$ we denote by $M_φ = M_φ^X$ the associated multiplication operator in $X = L_{p,γ}(Ω; E)$. Then the collection

$$\{M_φ : φ \in L_∞(Ω), \|φ\|_∞ ≤ 1\}$$

is R–bounded in X.

From Lemma 3.1 we obtain

Corollary 3.1. Let $γ \in A_p, p \in (1, \infty)$. Assume E_1 and E_2 are Banach spaces. For $φ \in L_∞(Ω)$ we denote by $M_φ^X$ and $M_φ^Y$ the associated multiplication operators in $X = L_{p,γ}(Ω; E_1)$ and $Y = L_{p,γ}(Ω; E_2)$ respectively. If the set $K \subset B(X, Y)$ is R–bounded, then the family

$$\{M_φ^X TM_φ^Y : φ, ψ \in L_∞(R^n), \|φ\|_∞, \|ψ\|_∞ ≤ 1, T \in K\}$$

is R–bounded as well.

For $k = nr + j, r \in Z, j \in \{1, 2, ..., n\}$ let

$$\mathbb{D}_k = \{ξ = (ξ_1, ξ_2, ..., ξ_n) \in R^n, |ξ_i| < 2^{r+1} \text{ for } i \in \{1, 2, ..., j-1\}, 2^r ≤ |ξ_j| < 2^{r+1}, |ξ_i| < 2^r \text{ for } i \in \{j+1, ..., n\}\}.$$

For $ν = (ν_1, ν_2, ..., ν_n) \in Z^n$ let

$$\mathbb{D}_ν = \{ξ \in R^n \setminus \{0\}, 2^{ν_i-1} ≤ |ξ_j| < 2^{ν_i} \text{ for } i \in \{1, 2, ..., n\}\}.$$

From [2, Proposition A_4] we have:

Lemma 3.2. Let $γ \in A_p, p \in (1, \infty)$ and let E be a UMD space (respectively, UMD space with property $(α)$). Then for any choice of signs $ε_k, k \in Z$ (respectively, $ε_k, k \in Z^n$) the function $ψ : R^n \to C$ with $ψ(ξ) = ε_k$ for $ξ \in \mathbb{D}_k$ (respectively, $ψ(ξ) = ε_ν$ for $ξ \in \mathbb{D}_ν, ν \in Ω$) is a $M_{p,γ}^∞(E)$ multiplier.

Let E be a Banach space. The $(n–\text{dimensional})$ Riesz projection operator R is defined by

$$RF = F^{-1}_\chi(0,∞)N Ff, \ f \in S(R^n; E),$$

where $\chi(Ω)$ denotes the characteristic function of $Ω \subset R^n$.

Let

$$R_jf = F^{-1}_j(0,∞)F_jf \text{ for } f \in S(R^n; E), j = 1, 2, ..., n,$$

where F_j denote the one-dimensional Fourier transform with respect to variable x_j and χ_j denotes the characteristic function of the halfspace

$$R^n_j = \{x = (x_1, x_2, ..., x_n) \in R^n, x_j > 0\}.$$

Lemma 3.3. Assume $γ \in A_p$ for $p \in (1, \infty)$ and E is a UMD space. Then R defines a bounded operator in $L_{p,γ}(R^n; E)$.

7
Proof. Since $\gamma \in A_p$, then by [12, Corollary 2.10] (or [6, Theorem 4]) the Hilbert operator is bounded in $L_{p,\gamma}(R; E)$. It is known that $R_1 = \frac{1}{2\pi i} (i\pi I - H)$, where I is the identity operator. By using this relation we obtain that Riesz projection operator R_1 is bounded in $L_{p,\gamma}(R; E)$. Hence, one-dimensional Riesz projection R_j also are defined bounded operators in $L_{p,\gamma}(R; E)$. It is not hard to see that

$$R = \prod_{j=1}^{n} R_j,$$

i.e. R is bounded operator in $L_{p,\gamma}(R; E)$.

For $j = (j_1, j_2, \ldots, j_n) \in \mathbb{Z}^n$ let D_j be the dyadic interval associated with j, i.e.

$$D_j = \prod_{k=1}^{n} [2^{j_k}, 2^{j_k+1})$$

and

$$Q = Q_{a,b} = \prod_{k=1}^{n} (a_k, b_k),$$

where $a = (a_1, a_2, \ldots, a_n)$ and $b = (b_1, b_2, \ldots, b_n) \in R^n$.

Consider the operator

$$\Phi_{a,b} f = F^{-1} \chi \left(Q_{a,b} \right) F f \quad \text{for} \quad f \in S(R^n; E).$$

Lemma 3.4. Assume $\gamma \in A_p$ for $p \in (1, \infty)$ and E is a UMD space. Then for each $a, b \in R^n$ the operator $f \rightarrow \Phi_{a,b} f$ is bounded in $L_{p,\gamma}(R^n; E)$. Moreover, the set $\{ \Phi_{a,b} : a, b \in R^n \}$ is an R–bounded family in $B(L_{p,\gamma}(R^n; E))$.

Proof. We first look at characteristic functions of sets of the form

$$C_a = \prod_{k=1}^{n} [a_k, \infty).$$

We can $F^{-1} \chi_{C_a} F f$ expressed as:

$$\Phi_{a} f = F^{-1} \chi_{C_a} F f = e^{i\alpha_1 \tau_1} R_1 e^{-i\alpha_1 \tau_1} \cdots e^{i\alpha_n \tau_n} R_1 e^{-i\alpha_n \tau_n} f(\tau_1, \ldots, \tau_n)$$

for

$$\tau_1, \ldots, \tau_n \in R^n.$$

We see that the set $\{ \Phi_{a} : a \in R^n \}$ is R–bounded in view of Proposition 3.1.

Setting $C_b = \prod_{k=1}^{n} [-\infty, b_k]$ we analogously get that the set $\{ \Phi_{b} : b \in R^n \}$ is R–bounded as well, where

$$\Phi_{b} f = F^{-1} \chi_{C_b} F f \quad \text{for} \quad f \in S(R^n; E).$$

Since $\Phi_{a,b} = \Phi_{a} \Phi_{b}$, the result follows because the pointwise product of R–bounded sets is again R–bounded.
Assume E_1 and E_2 are UMD spaces. We put
\[X_1 = R \left(L_{p,\gamma}(R^n; E_1) \right), \quad Y_1 = R \left(L_{p,\gamma}(R^n; E_2) \right). \]

Let $\{A_j : j \in \mathbb{Z}^n\}$ be a decomposition of $(0, \infty)^n$ in intervals such that for each compact $K \subset (0,\infty)^n$ the set $\{A_j \cap K : j \in \mathbb{Z}^n\}$ is finite. Assume further that the families $\{\Delta_{j,1}^X : j \in \mathbb{Z}^n\}$ and $\{\Delta_{j,1}^Y : j \in \mathbb{Z}^n\}$ of the corresponding Fourier multipliers, i.e.
\[\Delta_{j,1}^X = F_{E_1}\chi_{A_j}F_{E_1}^{-1}, \quad \Delta_{j,1}^Y = F_{E_2}\chi_{A_j}F_{E_2}^{-1} \]
are unconditional Schauder decompositions of X and Y respectively, where F_E and F_E^{-1} denote the Fourier and inverse Fourier transforms. For $k \in \mathbb{N}$ we now cut each interval A_j in 2^{kn} smaller ones by decomposing it in each coordinate direction into 2^k pieces. These new smaller intervals are denoted by $A^k_{j,l}$, where $j \in \mathbb{Z}^n$ and $l \in \{0,1,\ldots,2^k-1\}^n$.

Let M be a function on R^n with values in a Banach space $B(E_1, E_2)$. Assume that M is constant operator on the intervals $A^k_{j,l}$, and denote by $M^k_{j,l}$, the corresponding value of M. Next we show that an operator-valued function which is constant on the $A^k_{j,l}$’s is a Fourier multiplier from X to Y if it satisfies a certain inequality involving R–bounds.

Proposition 3.1. Assume $\gamma \in \Lambda_p$ for $p \in (1, \infty)$ and E_1, E_2 are UMD spaces. Further let $M : R^n \rightarrow B(E_1, E_2)$ be a function which is constant on each $A^k_{j,l}$ and zero on $R^n \setminus (0, \infty)^n$. Assume that
\[\sum_{r=\alpha}^{\beta(2^k-1)} R \left(\left\{ \sum_{\nu \in (0,1)^n, \nu \leq \beta} (-1)^{|\nu|} M^k_{j,\beta(-\nu)} : j \in \mathbb{Z}^n \right\} \right) = C_{\beta,k} < \infty \]
for every multiindex $\beta \in (0,1)^n$ and $k \in \mathbb{Z}$. Then M is a Fourier multiplier from X into Y. The norm of $T = F_{E_2}^{-1}MF_{E_1}$ may be estimated by
\[||T|| \leq C_XC_YC_Q \sum_{\beta \in (0,1)^n} C_{\beta,k} \]
where C_X and C_Y are the unconditional constants and C_Q is the R–bound found in Lemma 3.4.

Proof. By Lemma 3.4, each $\chi_{A^k_{j,l}}$ is a Fourier multiplier in X. We denote the operators $F_{E_1}\chi_{A^k_{j,l}}F_{E_1}^{-1}$ by $\Delta_{j,l}$. For $f \in S(R^n; E_1)$ we get
\[Tf = F_{E_2}^{-1}MF_{E_1}f = F_{E_2}^{-1} \sum_{j=-\infty}^{\infty} M_{\chi_{A_j}}F_{E_1}f. \]

Then by using the same reasoning as used in [9, Theorem 3.3] we obtain
\[Tf = \sum_{j=-\infty}^{\infty} T_j \Delta_{j}^X f, \]
where T_j are operators defined by

$$T_j = \sum_{\beta \in (0,1)^n} \sum_{\nu = 0}^{\beta \cdot (2^k - 1)} \sum_{\nu \in (0,1)^n, \nu \leq \beta} (-1)^{[\nu]} \sum_{l=\nu}^{2^k - 1} M_{j,\beta(\nu-\nu)}^k \Delta_{j,l}^k.$$

Since $M_{j,l}^k \Delta_{j,l} = M_{j,l}^k \Delta_{j,l}$ and $\Delta_{j,l} \Delta_{j,l}^k = \Delta_{j,l}^k \Delta_{j,l}^k$, we have $\Delta_{j,l}^k \Delta_{j,l}^k = T_j \Delta_{j,l}^k$. Moreover, since $\{\Delta_{j,l}^k : j \in \mathbb{Z}^n\}$ and $\{\Delta_{j,l}^k : j \in \mathbb{Z}^n\}$ are unconditional Schauder decompositions of the spaces X, Y respectively and $S (R^n; E_1)$ is dense in X, it remains to prove that the family $\{T_j : j \in \mathbb{Z}^n\}$ is R-bounded. This step is derived as in [9, Theorem 3.3], i.e. we show that

$$R((T_j : j \in \mathbb{Z}^n)) \leq C Q \sum_{\beta \in (0,1)^n} C_{\beta,k}.$$

Then in view of Proposition A1 we have $T \in B (X; Y)$ with

$$\|T\| \leq C X C E R((\{T_j : j \in \mathbb{Z}^n\})) \leq C X C E Q \sum_{\beta \in (0,1)^n} C_{\beta,k}.$$

In a similar way as [9, Proposition 3.4] it can be shown the following proposition. It will be used to prove the Mikhlin theorem by approximating the given function $\Psi : R^n \rightarrow B(X, Y)$ by piecewise constant multipliers and is a generalization of the same result from [7] for unweighted spaces $L_p (R^n; E)$.

Proposition 3.2. Assume $\gamma \in A_p$ for $p \in (1, \infty)$ and E_1, E_2 are Banach spaces. Let $M, M_N \in L^{loc}_1 (R^n, B (E_1, E_2))$ be Fourier multipliers from X to Y such that $M_N \rightarrow M$ in $L^{loc}_1 (R^n, B (E_1, E_2))$. If E_2 reflexive and the sequence

$$\{T_N\} = \{F^{-1} M_N F, N \in \mathbb{N}\}$$

is uniformly bounded in $B (X, Y)$, then the operator $T := F_{E_2}^{-1} M F_{E_1}$ is a bounded operator from X to Y with

$$\|T\| \leq \lim_{N \rightarrow \infty} \inf \|T_N\|.$$

The next lemma states that the family of dyadic intervals in R^n can be used to build up an unconditional Schauder decomposition of $R (X)$ provided E is a UMD space with property (α).

Lemma 3.5. Assume $\gamma \in A_p$ for $p \in (1, \infty)$ and E is a UMD space. For $j = (j_1, j_2, \ldots, j_n) \in \mathbb{Z}^n$ let D_j be the dyadic interval defined by (3.1) and $\Delta_j := F^{-1} \chi_{D_j} F$. Then:

(a) If $n = 1$, then the family $\{\Delta_j : j \in \mathbb{Z}^n\}$ is an unconditional Schauder decomposition of $X_1 = R (L_p, (R^n; E))$;

(b) If E has property (α), then the assertion of part (a) is true for arbitrary n.

10
Proof. (a) It is clear that the \(\Delta_j \)'s are projections in \(L_{p,\gamma}(R^n; E) \) and that \(\Delta_j \Delta_{j'} = \delta_{j,j'} \Delta_j \). Let \(1, 2, ... \) be any enumeration of \(\mathbb{Z} \). We have to prove that

\[
T_N f := \sum_{k=1}^{N} \Delta_k f \rightarrow f \text{ in } X_1 \text{ as } N \rightarrow \infty.
\]

This convergence is clear for \(f \in S(0, \infty; E) \). In view of a \(3\varepsilon \)-argument it remains to show that the set \(\{T_N : N \in \mathbb{N}\} \) is uniformly bounded. To this aim we define the function \(m_N : \mathbb{R} \rightarrow \mathbb{R} \) by

\[
m_N (x) = \begin{cases}
1 & \text{when } x \in \bigcup_{k=1}^{N} D_k, \\
-1 & \text{when } x \text{ is elsewhere and } N \in \mathbb{N}.
\end{cases}
\]

By Proposition A$_{4}$ of [2] we get that each \(m_N (x) \) is a Fourier multiplier in \(L_{p,\gamma}(R^n; E) \). Moreover, the proof the Proposition A$_{4}$ in [2] shows that the family \(\{F^{-1}m_N F\} \) is uniformly bounded. Hence, we get

\[
\|T_N\| = \left\| \sum_{k=1}^{N} F^{-1}\chi_{D_k} F \right\| = \left\| \sum_{k=1}^{N} F^{-1}\chi_{\bigcup_{k=1}^{N} D_k} F \right\| = \\
\frac{1}{2} \left\| \sum_{k=1}^{N} F^{-1} \left(\chi_{(0,\infty)} + m_N \right) F \right\| \leq \frac{1}{2} \left(\|R\| + \sup_{N \in \mathbb{N}} \|F^{-1}m_N F\| \right) < \infty.
\]

This gives the assertion (a). By Proposition A$_{2}$ we get that the collection \(\left\{ \sum_{k \in G} \Delta_k : G \subset \mathbb{Z} \right\} \) is \(R \)-bounded which in view of Proposition A$_{1}$ yields that the product of two unconditional Schauder decompositions is again an unconditional Schauder decomposition. The general case now follows by induction.

Proof of Theorem 3.1. Without loss of generality we assume \(M (\xi) = 0 \) for \(\xi \notin (0, \infty)^n \). To apply Propositions 3.1 and 3.2 we use the decomposition of Lemma 3.5 to approximate \(M \). Now, we cut each \(D_j \) into \(2^{nk} \) pieces and define

\[
M_{j,r}^k := M \left(2^{n} r^{i} + r^{i-k}, ..., 2^{n} r^{j} + r^{j-k} \right), \quad k \in \mathbb{Z}, \ r, \ j \in \mathbb{Z}^n,
\]

where

\[
0 \leq r_i \leq 2^k - 1.
\]

In view of Proposition 3.1 we have to estimate the \(R \)-bounds

\[
\beta, (2^k - 1) \sum_{r=\alpha} R \left(\left\{ \sum_{\nu \in (0,1)^n, \nu \leq \beta} (-1)^{[\nu]} M_{j,\beta(r-\nu)} : j \in \mathbb{Z}^n \right\} \right)
\]

for all \(\beta \in (0,1)^n \) independently of \(k \). For \(\beta = (0,0,...,0) \) this expression is trivially bounded by \(R(\{M(\xi), \ \xi \neq 0\}) \). For \(\beta \neq 0 \) let \(i \) be the smallest index with \(\beta_i = 1 \). Every \(\nu \) with \(\nu_i = 0 \) and \(\nu \leq \beta \) has a term \(\nu \) with \(\nu_m = \nu_m \) for
m \neq i \text{ and } \tilde{\nu}_i = 1. \text{ Now, by using the same reasoning as used in the proof of Theorem 3.6 of [9] by Corollary 3.1 we get the desired estimate}

\[\sum_{r=\alpha}^{\beta} R \left(\left\{ \sum_{\nu \in (0,1)^n, \nu \leq \beta} (-1)^{|\nu|} M_{j,\beta(r-\nu)}^{k,j} : j \in \mathbb{Z}_n \right\} \right) \leq CR \left(\left\{ \xi^\beta D^\beta M : \xi \in (0,\infty)^n \right\} \right) \leq C.C \beta \]

which completes the proof.

Remark 3.1. If E_1 does not have property (α), we can use another decomposition of R^n to get an unconditional Schauder decomposition of $L_{p,\gamma}(R^n; E_1)$. But without property (α) we have to impose stronger conditions on M to get $L_{p,\gamma}$ boundedness of the corresponding multiplier operator.

Proof of Theorem 3.2. For $j \in \mathbb{Z}$, let $s(j) \in \mathbb{Z}$ and $t(t) \in \{1, 2, ... n\}$ be the unique numbers satisfying $j = ns + t$. Set

\[D_j = (0, 2^s - 1) \times (2^s, 2^{s+1}) \times (0, 2^s)^{n-s} \]

and define $\Delta_j = F^{-1} \chi_{D_j} F$. Let $j = ns + t$ be the unique representation of j. For $k \in \mathbb{Z}$, $r \in \mathbb{Z}^n$ with $0 \leq r_i \leq 2^k - 1$ define the operator $M_{j,r}^k$ by

\[M_{j,r}^k = M(y_1, y_2, ..., y_n), \]

where

\[y_i = r_i 2^{s+1-k} \text{ for } i \in \{1, 2, ..., t-1\} \]
\[y_t = 2^s + r_t 2^{s-k}, \]
\[y_i = r_i 2^{s-k}, \text{ for } i \in \{t+1, t+2, ..., n\}. \]

Then, by reasoning as the proof of Theorem 3.7 in [9] we get the assertion.

4. Embeding theorems in Sobolev-Lions type spaces

The embedding of Sobolev-Lions spaces play important role in the regularity theory of PDE with operator coefficients. In this section, we show continuity of embedding operators in anisotropic Sobolev-Lions spaces.

Let

\[X = L_{p,\gamma}(R^n; E), \quad Y = W^{l,\gamma}_{p,\gamma}(R^n; E(A), E), \]

\[l = (l_1, l_2, ..., l_n), \quad \alpha = (\alpha_1, \alpha_2, ..., \alpha_n), \quad \kappa = |\alpha| : l = \sum_{k=1}^{n} \frac{\alpha_k}{l_k}, \]

\[\xi = (\xi_1, \xi_2, ..., \xi_n) \in R^n, \quad |\xi|^\alpha = \prod_{k=1}^{n} |\xi_k|^\alpha_k. \]

From [22, Lemma 3.1] we have
Lemma 4.1. Assume A is a φ– positive linear operator on a Banach space E. Then for any $h > 0$ and $0 \leq \mu \leq 1 - \varsigma$ the operator-function

$$
\Psi (\xi) = \Psi_h (\xi) = |\xi|^\alpha A^{1-\varsigma-\mu}h^{-\mu} \left[A + \sum_{k=1}^{n} |\xi_k|^{|k| + h^{-1}} \right]^{-1}
$$

is bounded in E uniformly with respect to $\xi \in \mathbb{R}^n$ and $h > 0$ i.e. there exists a constant C_μ such that

$$
\|\Psi_h (\xi)\|_{B(E)} \leq C_\mu
$$

for all $\xi \in \mathbb{R}^n$ and $h > 0$.

One of main result of this section is the following:

Theorem 4.1. Let $\gamma \in A_\mu$ for $p \in (1, \infty)$. Assume E is an UMD space and A is a φ– positive operator in E. Then for $0 \leq \mu \leq 1 - \varsigma$ the embedding

$$
D^\alpha Y \subset L_{p, \gamma} (\mathbb{R}^n; E (A^{1-\varsigma-\mu}))
$$

is a continuous and there exists a constant $C_\mu > 0$ depending only on μ, p, γ such that

$$
\|D^\alpha u\|_{L_{p, \gamma}(\mathbb{R}^n; E(A^{1-\varsigma-\mu}))} \leq C_\mu \left[h^\mu \|u\|_Y + h^{-(1-\mu)} \|u\|_X \right]
$$

for $u \in Y$ and $0 < h \leq h_0 < \infty$.

Proof. It is clear to see that

$$
A^{1-\alpha-\mu}D^\alpha u = F^{-1}F A^{1-\varsigma-\mu} D^\alpha u = F^{-1}A^{1-\varsigma-\mu} F D^\alpha u
$$

$$
F^{-1}A^{1-\varsigma-\mu} (i\xi)^\alpha F u = F^{-1} (i\xi)^\alpha A^{1-\varsigma-\mu} F u.
$$

Hence, denoting Fu by \hat{u}, we get from (4.3) the following estimate

$$
C_2 \|F^{-1} (i\xi)^\alpha A^{1-\varsigma-\mu} \hat{u}\|_X \leq \|D^\alpha u\|_{L_{p, \gamma}(\mathbb{R}^n; E(A^{1-\varsigma-\mu}))} \leq C_1 \|F^{-1} (i\xi)^\alpha A^{1-\varsigma-\mu} \hat{u}\|_X,
$$

where C_1, C_2 are positive constants depending only of p and γ. Similarly, there exist positive constants M_1 and M_2 such that for $u \in Y$ we have

$$
M_1 \|u\|_Y \leq \|F^{-1} \hat{u}\|_X + \sum_{k=1}^{n} \|F^{-1} [(i\xi_k)^{l_k} \hat{u}]\|_X \leq M_2 \|u\|_Y.
$$

Therefore, for proving the inequality (4.2) it suffices to show

$$
\|F^{-1} (i\xi)^\alpha A^{1-\varsigma-\mu} \hat{u}\|_X \leq
$$

$$
C_\mu (h^\mu \|F^{-1} \hat{u}\|_X + \sum_{k=1}^{n} \|F^{-1} [(i\xi_k)^{l_k} \hat{u}]\|_X + h^{-(1-\mu)} \|F^{-1} \hat{u}\|_X).
$$

(4.4)
Therefore, the inequality (4.2) will follow if we prove the following estimate
\[
\| F^{-1} \left[\xi^n A^{1-\alpha} \hat{u} \right] \|_X \leq C_\mu \| F^{-1} G(\xi) \hat{u} \|_X .
\] (4.5)
for \(u \in Y \), where
\[
G(\xi) = h^\mu \left[A + \sum_{k=1}^n |\xi_k|^{l_k} + h^{-(1-\mu)} \right].
\]
Due to positivity of \(A \), the operator function \(G(\xi) \) has a bounded inverse in \(E \) for all \(\xi \in \mathbb{R}^n \) and \(h > 0 \). So, we can set
\[
F^{-1} \xi^n A^{1-\alpha} \hat{u} = F^{-1} \xi^n A^{1-\alpha} G^{-1}(\xi) \left[h^\mu \left(A + \sum_{k=1}^n |\xi_k|^{l_k} \right) + h^{-(1-\mu)} \right] \hat{u}.
\] (4.6)
The inequality (4.5) will follow immediately from (4.6) if we can prove that the operator-function \(\Psi_h = \xi^n A^{1-\alpha} G^{-1}(\xi) \) is a multiplier in \(M_{\mu,\gamma}^* (E) \) uniformly with respect to \(h \). So, by Theorem 3.1 it suffices to show that the set
\[
B(\xi, h) = \left\{ \xi^j D^\beta \Psi_h(\xi) ; \ \xi \in \mathbb{R}^n \setminus \{0\}, \ \beta_j \in \{0,1\} \right\}
\]
is \(R \)-bounded uniformly in \(h \), i.e.
\[
\sup_h R \{ B(\xi, h) \} \leq M. \tag{4.7}
\]
By Lemma 4.1 there exists a constant \(C_\mu > 0 \) such that the following uniform estimate holds
\[
\| \Psi_h(\xi) \|_{B(E)} \leq C_\mu. \tag{4.8}
\]
Let first, \(\beta = (\beta_1, \ldots, \beta_n) \) where \(\beta_k = 1 \) and \(\beta = 0 \) for \(j \neq k \). Then, by using the resolvent properties of \(A \) we obtain
\[
\left| \frac{\partial}{\partial \xi_k} \Psi_h(\xi) \right| \leq \prod_{k=1}^n (i)_{|\alpha_k|} \alpha_k |\xi_{\alpha_1} \cdots \xi_{\alpha_{k-1}} \xi_{\alpha_k}^{-1} \cdots \xi_{\alpha_n|^|}|
\]
\[
\left\| A^{1-\alpha-\mu} \left[h^\mu \left(A + \sum_{k=1}^n |\xi_k|^{l_k} \right) + h^{-(1-\mu)} \right] \right\| +
\]
\[
|\xi|^\alpha \left\| A^{1-\alpha-\mu} \left[h^\mu \left(A + \sum_{k=1}^n |\xi_k|^{l_k} \right) + h^{-(1-\mu)} \right] \right\| h \left| \xi_k \right|^{l_k-1} \leq C_\mu \left| \xi_k \right|^{-1}, \ k = 1, 2 \ldots n.
\]
Repeating the above process, we obtain that there exists a constant \(C_\mu > 0 \) depending only \(\mu \) such that
\[
\left| \xi^\beta \right| \left\| D^\beta \Psi_h(\xi) \right\|_{B(E)} \leq C_\mu
\]
14
for $\beta = (\beta_1, ..., \beta_n)$, $\beta_k \in \{0, 1\}$ and for all $\xi \in \mathbb{R}^n$, $\xi \neq 0$. Due to R-positivity of A and by (4.9) we obtain that the set

$$B_0(\xi) = \{AG^{-1}(\xi, h); \xi \in \mathbb{R}^n \setminus \{0\}, \beta_j \in \{0, 1\}\}$$

is R bounded uniformly in h. Then, by virtue of Kahane’s contraction principle [8, Lemma 3.5] and by (4.9) we obtain that the set

$$B_0(\xi, h) = \{AD^{-2}(\xi, h); \xi \in \mathbb{R}^n \setminus \{0\}, \beta_j \in \{0, 1\}\}$$

is uniformly R-bounded. Moreover, by using the inequalities of moment for positive operators and Young’s we get that

$$\|\Psi_h(\xi)u\| \leq C\mu\left(\|Au\| + \sum_{k=1}^{n} |\xi_k|^{-1} \|u\|\right),$$

(4.10)

where

$$u = G^{-1}(\xi, h)f, f \in E.$$

Then thanks to R-boundedness of $B_i(\xi, \lambda)$ we have

$$\int_0^1 \left\| \sum_{j=1}^{m} r_j(y) B_i(\eta_j, h) u_j \right\|_E dy \leq C \int_0^1 \left\| \sum_{j=1}^{m} r_j(y) u_j \right\|_E dy,$$

(4.11)

for all $\xi_1, \xi_2, ..., \xi_m \in \mathbb{R}^n$, $\eta_j = (\xi_{j1}, \xi_{j2}, ..., \xi_{jn}) \in \mathbb{R}^n$, $u_1, u_2, ..., u_m \in E$, $m \in \mathbb{N}$, where \(\{r_j\}\) is a sequence of independent symmetric $\{-1, 1\}$-valued random variables on $[0, 1]$. Thus, in view of Kahane’s contraction principle, additional and product properties of R-bounded operators and (4.10), (4.11) we obtain

$$\int_0^1 \left\| \sum_{j=1}^{m} r_j(y) \Psi(\eta_j, h) u_j \right\|_E dy \leq C \int_0^1 \left\| \sum_{j=1}^{m} B_i(\eta_j, h) r_j(y) u_j \right\|_E dy \leq$$

(4.12)

$$C \int_0^1 \left\| \sum_{j=1}^{m} r_j(y) u_j \right\|_E dy.$$

The estimate (4.12) implies R-boundedness of the set $B(\xi, h)$, which implies the assertion.

It is possible to state Theorem 4.1 in a more general setting. For this aim, we use the concept of extension operator.

Condition 4.1. Let $\gamma \in A_p$ for $p \in (1, \infty)$. Let A be a positive operator in UMD space E. Assume a region $\Omega \subset \mathbb{R}^n$ such that there exists bounded linear extension operator B from $W^{1, \gamma}_p(\Omega, E; A)$ to Y for $1 < p < \infty$.

Remark 4.1. If $\Omega \subset \mathbb{R}^n$ is a region satisfying the strong l-horn condition (see [3], p.117 for $E = C$, $A = I$ and $\gamma(x) \equiv 1$) then for $1 < p < \infty$ there
exists a bounded linear extension operator from $W^1_p(\Omega) = W^1_p(\Omega; \mathbb{C}, \mathbb{C})$ to $W^1_p(R^n) = W^1_p(R^n; \mathbb{C}, \mathbb{C})$.

Theorem 4.2. Assume conditions of Theorem 4.1 and Condition 4.1 are satisfied. Then for $0 \leq \mu \leq 1 - \kappa$ the embedding

$$D^\alpha W^1_{p,\gamma}(\Omega; E(A), E) \subset L_{p,\gamma}(\Omega; E(A^{1-\kappa-\mu}))$$

is continuous and there exists a constant C_μ depending only of μ, p, γ such that

$$\|D^\alpha u\|_{L_{p,\gamma}(\Omega; E(A^{1-\kappa-\mu}))} \leq C_\mu \left[h^\mu \|u\|_{W^1_{p,\gamma}(\Omega; E(A), E)} + h^{-(1-\mu)} \|u\|_{L_{p,\gamma}(\Omega; E)} \right].$$

Proof. It is suffices to prove the estimate (4.10). Let B be a bounded linear extension operator from $W^1_{p,\gamma}(\Omega; E(A), E)$ to $W^1_{p,\gamma}(R^n; E(A), E)$ and let B_Ω be the restriction operator from R^n to Ω. Then for any $u \in W^1_{p,\gamma}(\Omega; E(A), E)$ we have

$$\|D^\alpha u\|_{L_{p,\gamma}(\Omega; E(A^{1-\kappa-\mu}))} = \|D^\alpha B_\Omega Bu\|_{L_{p,\gamma}(\Omega; E(A^{1-\kappa-\mu}))} \leq C_\mu \left[h^\mu \|Bu\|_{W^1_{p,\gamma}(R^n; E(A), E)} + h^{-(1-\mu)} \|Bu\|_{L_{p,\gamma}(R^n; E)} \right].$$

Result 4.1. Assume the conditions of Theorem 4.2 are satisfied. Then for $u \in W^1_{p,\gamma}(\Omega; E(A), E)$ we have the following multiplicative estimate

$$\|D^\alpha u\|_{L_{p,\gamma}(\Omega; E(A^{1-\kappa-\mu}))} \leq C_\mu \|u\|_{W^1_{p,\gamma}(\Omega; E(A), E)}^{1-\mu} \|u\|_{L_{p,\gamma}(\Omega; E)}^\mu. \quad (4.11)$$

Indeed, setting

$$h = \|u\|_{L_{p,\gamma}(\Omega; E)} \cdot \|u\|_{W^1_{p,\gamma}(\Omega; E(A), E)}^{-1}$$

in (4.10) we obtain (4.11).

Theorem 4.3. Suppose conditions of Theorem 4.1 are hold. Then for $0 < \mu < 1 - \kappa$ the embedding

$$D^\alpha Y \subset L_{p,\gamma}(R^n; (E(A), E))_{\kappa+\mu,p}$$

is continuous and there exists a constant C_μ depending only of μ, p, γ such that

$$\|D^\alpha u\|_{L_{p,\gamma}(R^n; (E(A), E))_{\kappa+\mu,p}} \leq h^\mu \|u\|_{Y} + h^{-(1-\mu)} \|u\|_{X} \quad (4.12)$$

for $u \in Y$ and $0 < h \leq h_0 < \infty$.

Proof. It is sufficient to prove the estimate (4.12) for $u \in Y$. By definition of interpolation spaces $(E(A), E)_{\kappa+\mu,p}$ (see [27, §1.14.5]) the estimate (4.12) is equivalent to the inequality
\[
\left\| F^{-1} y^{1-\kappa-\mu} \left[A^{\kappa+\mu} (A + y)^{-1} \right] \xi \tilde{u} \right\|_{L_{p,\gamma}(R^{n+1};E)} \leq C_{\mu} \left\| F^{-1} \left[h^{\mu} \left(A + \sum_{k=1}^{n} \xi k^{l_k} + h^{-(1-\mu)} \right) \right] \tilde{u} \right\|_{L_{p,\gamma}(R^n;E)}.
\]

By multiplier properties, the inequality (4.13) will follow immediately if we will prove that the operator-function

\[
\Psi = (i\xi)^{\alpha} y^{1-\kappa-\mu} \frac{1}{A^{\kappa+\mu}} (A + y)^{-1} \left[h^{\mu} \left(A + \sum_{k=1}^{n} \xi k^{l_k} \right) + h^{-(1-\mu)} \right]^{-1}
\]
is a multiplier from \(X \) to \(L_{p,\gamma}(R^n;L_p(\cdot;E)) \). This fact is proved by the same manner as Theorem 4.1. Therefore, we get the estimate (4.12).

In a similar way, as the Theorem 4.2 we obtain

Theorem 4.4. Suppose conditions of Theorem 4.2 are hold. Then for \(0 < \mu < 1 - \kappa \) the embedding

\[
D^{\alpha} W^{l}_{p,\gamma}(\Omega; E(A), E) \subset L_{p,\gamma}\left(\Omega; (E(A), E)_{\kappa+\mu,p}\right)
\]
is continuous and there exists a constant \(C_{\mu} \) depending only of \(\mu, p, \gamma \) such that

\[
\| D^{\alpha} u \|_{L_{p,\gamma}(\Omega,(E(A), E)_{\kappa+\mu,p})} \leq C_{\mu} \left(h^{\mu} \| u \|_{W^{l}_{p,\gamma}(\Omega; E(A), E)} + h^{-(1-\mu)} \| u \|_{L_{p,\gamma}(\Omega; E)} \right)
\]

for \(u \in W^{l}_{p,\gamma}(\Omega; E(A), E) \) and \(0 < h \leq h_0 < \infty \).

Result 4.2. Suppose the conditions of Theorem 4.2 are hold. Then for \(u \in W^{l}_{p,\gamma}(\Omega; E(A), E) \) we have the following multiplicative estimate

\[
\| D^{\alpha} u \|_{L_{p,\gamma}(\Omega; (E(A), E)_{\kappa+\mu,p})} \leq C_{\mu} \left(\| u \|_{W^{l}_{p,\gamma}(\Omega; (E(A), E))}^{1-\mu} + \| u \|_{L_{p,\gamma}(\Omega; E)}^{\mu} \right).
\]

Indeed setting \(h = \| u \|_{L_{p,\gamma}(\Omega; E)} \cdot \| u \|_{W^{l}_{p,\gamma}(\Omega; (E(A), E))}^{-1} \) in (4.14) we obtain (4.15).

From Theorem 4.2 we obtain

Result 4.3. Assume the conditions of Theorem 4.2 are satisfied for \(l_1 = l_2 = \ldots = l_n = m \). Then for \(0 \leq \mu \leq 1 - \kappa \) the embedding

\[
D^{\alpha} W^{m}_{p,\gamma}(\Omega; E(A), E) \subset L_{p,\gamma}\left(\Omega; (E(A^{1-\kappa-\mu}))\right)
\]
is continuous and there exists a constant \(C_{\mu} \) depending only of \(\mu, p, \gamma \) such that

\[
\| D^{\alpha} u \|_{L_{p,\gamma}(\Omega; (E(A^{1-\kappa-\mu}))} \leq C_{\mu} \left(h^{\mu} \| u \|_{W^{m}_{p,\gamma}(\Omega; E(A), E)} + h^{-(1-\mu)} \| u \|_{L_{p,\gamma}(\Omega; E)} \right)
\]

for \(u \in W^{m}_{p,\gamma}(\Omega; E(A), E) \) and \(0 < h \leq h_0 < \infty \) where

\[
\kappa = \frac{\alpha}{m}.
\]
Result 4.3. If $E = H$, where H is a Hilbert space and $p_k = q_k = 2$, $\Omega = (0, T), \lambda = l_2 = \ldots = l_m = m$, $A = A^\times \geq c^2 I$, $\gamma(x) \equiv 1$ then we obtain the well known Lions-Peetre [14] result. Moreover, the result of Lions-Peetre is improving even in the one dimensional case and for non selfadjoint positive operators A.

From Theorems 4.2 we obtain

Result 4.4. Suppose the conditions of Theorem 4.2 are satisfied for $\gamma(x) \equiv 1$. Then for $0 \leq \mu \leq 1 - \infty$ the embedding

$$D^\alpha W^I_p (\Omega; E(A), E) \subset L_p (\Omega; E(A^{1-\infty-\mu}))$$

is continuous and there exists a constant $C_\mu > 0$ depending only of μ, p, γ such that

$$\|D^\alpha u\|_{L_p (\Omega; E(A^{1-\infty-\mu}))} \leq C_\mu \left[h^\mu \|u\|_{W^I_p (\Omega; E(A), E)} + h^{-1-\mu} \|u\|_{L_p (\Omega; E(A))} \right]$$

for $u \in W^I_p (\Omega; E(A), E)$ and $0 < h \leq h_0 < \infty$.

Moreover, if Ω is a bounded domain in R^n and A^{-1} is a compact operator in E, then for $0 < \mu \leq 1 - \infty$ the embedding

$$D^\alpha W^I_p (\Omega; E(A), E) \subset L_p (\Omega; E(A^{1-\infty-\mu}))$$

is compact.

If $E = C$, $A = I$, $\gamma(x) \equiv 1$ we get the embedding $D^\alpha W^I_p (\Omega) \subset L_p (\Omega)$ proved in [3] for Sobolev spaces $W^I_p (\Omega)$.

Let $s > 0$. Consider the following sequence space (see e.g. [27, § 1.18])

$$l^s_q = \{u = \{u_i\}; i = 1, 2, \ldots, \infty, u_i \in \mathbb{C}\}$$

with the norm

$$\|u\|_{l^s_q} = \left(\sum_{i=1}^{\infty} 2^{i\nu} |u_i|^p \right)^{\frac{1}{p}} < \infty, \quad \nu \in (1, \infty).$$

Note that, $l^0_q = l_q$. Let A be infinite matrix defined in l_q such that $D(A) = l^s_q$, $A = [\delta_{ij} 2^n]$, where $\delta_{ij} = 0$, when $i \neq j$, $\delta_{ij} = 1$, when $i = j = 1, 2, \ldots, \infty$.

It is clear to see that the operator A is positive in l_q. From Theorem 4.2 we obtain the following results:

Result 4.5. Suppose the conditions of Theorem 4.2 are satisfied for $E = C$. Then for $0 \leq \mu \leq 1 - \infty, 1 < p < \infty$ the embedding

$$D^\alpha W^I_p (\Omega, l^s_q; l_q) \subset L_p (\Omega, l^s_q; l_q)$$

is continuous and there exists a constant $C_\mu > 0$ depending only of μ, p, q, γ such that

$$\|D^\alpha u\|_{L_p (\Omega, l^s_q; l_q)} \leq C_\mu \left[h^\mu \|u\|_{W^I_p (\Omega; l^s_q; l_q)} + h^{-1-\mu} \|u\|_{L_p (\Omega; l^s_q; l_q)} \right]$$
for \(u \in W^{l}_{p,\gamma}(\Omega, t_{q}^{s}, t_{q}^{l}) \) and \(0 < h \leq h_{0} < \infty \).

Result 4.6. Suppose the conditions of Theorem 4.2 are hold for \(E = \mathbb{C} \). Then for \(0 < \mu \leq 1 - \varkappa \), \(1 < p < \infty \) the embedding

\[
D^{\alpha}W^{l}_{p,\gamma}(\Omega, t_{q}^{s}, t_{q}^{l}) \subset L^{p,\gamma}(\Omega, t_{q}^{(1-\varkappa-\mu)})
\]

is compact.

Result 4.7. For \(0 \leq \mu \leq 1 - \varkappa \), \(1 < p < \infty \) the embedding

\[
D^{\alpha}W^{l}_{p}(\Omega, t_{q}^{s}, t_{q}^{l}) \subset L^{p}(\Omega, t_{q}^{(1-\varkappa-\mu)})
\]

is a continuous and there exists a constant \(C_{\mu} > 0 \), depending only of \(\mu, p, q, \gamma \) such that

\[
\|D^{\alpha}u\|_{L^{p}(\Omega, t_{q}^{(1-\varkappa-\mu)})} \leq C_{\mu} \left[h^{\mu}\|u\|_{W^{l}_{p}(\Omega, t_{q}^{s})} + h^{-1-\mu}\|u\|_{L^{p}(\Omega, t_{q})} \right]
\]

for \(u \in W^{l}_{p}(\Omega, t_{q}^{s}, t_{q}^{l}) \) and \(0 < h \leq h_{0} < \infty \).

Note that, these results haven’t been obtained with classical method until now.

5. Separable differential operators in weighted Lebesque spaces

Firstly, consider the leading part of the equation (1.1), i.e. consider the following equation

\[
L_{0}u = \sum_{|\alpha|=2l} a_{\alpha}D^{\alpha}u + Au + \lambda u = f,
\]

where \(a_{\alpha} \) are complex numbers, \(l \in \mathbb{N} \), \(A \) is a linear operator in a Banach space \(E \) and \(\lambda \) is a complex parameter.

Let

\[
X = L^{p,\gamma}(R^{n}; E), \quad Y = W^{2l}_{p,\gamma}(R^{n}; E(A), E).
\]

Condition 5.1. Let

(a) \(K(\xi) = \sum_{|\alpha|=2l} a_{\alpha} (i\xi_{1})^{\alpha_{1}} (i\xi_{2})^{\alpha_{2}} \cdots (i\xi_{n})^{\alpha_{n}} \in S(\varphi_{1}) \)

for \(0 \leq \varphi_{1} < \pi \);

(b) There exists the positive constat \(M_{0} \) so that

\[
|K(\xi)| \geq M_{0} \sum_{k=1}^{n} \xi_{k}^{2l} \quad \text{for all } \xi \in R^{n}, \xi \neq 0.
\]

In this section we prove the following result
Theorem 5.1. Suppose the following conditions hold:
(1) Condition 5.1 is hold;
(2) $\gamma \in A_p$ for $p \in [1, \infty]$;
(3) A is a R–positive operator in UMD space E for $0 \leq \varphi < \pi - \varphi_1$.

Then for all $f \in X$ and $\lambda \in S(\varphi_1)$ equation (6.1) has an unique solution u that belongs to space Y and the coercive uniform estimate holds
\[
\sum_{|\alpha| \leq 2l} |\lambda|^{1 - \frac{|\alpha|}{2l}} ||D^\alpha u||_X + ||Au||_X \leq C ||f||_X.
\] (5.2)

Proof. By applying the Fourier transform to the equation (5.1) we get
\[
[K (\xi) + A + \lambda] \hat{u} (\xi) = f \hat{\cdot} (\xi),
\] (5.3)
where
\[
K (\xi) = \sum_{|\alpha| = 2l} a_\alpha (i\xi_1)^{\alpha_1} (i\xi_2)^{\alpha_2} ... (i\xi_n)^{\alpha_n}.
\]
Since $K (\xi) \in S(\varphi_1)$ for all $\xi \in R^n$, the operator $A + K (\xi)$ is invertible in E. So, we obtain that the solution of the equation (5.3) can be represented in the form
\[
u (x) = F^{-1} [A + K (\xi) + \lambda]^{-1} f \hat{\cdot}.
\] (5.4)

By using (5.4) we have
\[
||Au||_X = \left\| F^{-1} A [A + K (\xi) + \lambda]^{-1} f \hat{\cdot} \right\|_X,
\]
\[
||D^\alpha u||_X = \left\| F^{-1} (i\xi_1)^{\alpha_1} (i\xi_2)^{\alpha_2} ... (i\xi_n)^{\alpha_n} [A + K (\xi) + \lambda]^{-1} f \hat{\cdot} \right\|_X.
\]

Hence, it is suffices to show that the operator-functions
\[
\sigma_{1, \lambda} (\xi) = A [A + K (\xi) + \lambda]^{-1},
\]
\[
\sigma_{2, \lambda} (\xi) = \sum_{|\alpha| \leq 2l} \xi_1^{\alpha_1} \xi_2^{\alpha_2} ... \xi_n^{\alpha_n} |\lambda|^{1 - \frac{|\alpha|}{2l}} [A + K (\xi) + \lambda]^{-1}
\]
are multipliers in X. To see this, it is suffices to show that the following collections
\[
\left\{ \xi^\beta D^\beta \sigma_{1, \lambda} (\xi) : \xi \in R^n \setminus \{0\}, \beta \in U_n \right\}, \left\{ \xi^\beta D^\beta \sigma_{2, \lambda} (\xi) : \xi \in R^n \setminus \{0\}, \beta \in U_n \right\}
\]
are R–bounded in E uniformly in λ, where
\[
U = \left\{ \beta = (\beta_1, ..., \beta_n), \beta_i \in \{0, 1\} \right\}.
\]

Due to R–positivity of A, the set
\[
\left\{ \sigma_{1, \lambda} (\xi) : \xi \in R^n \setminus \{0\}, \beta \in U_n \right\}
\]
is R-bounded. Moreover, by using the same reasoning as used in the proof of Theorem 4.1 and in view of (3) condition we obtain that the set

$$\{\sigma_{2, \lambda} (\xi) : \xi \in \mathbb{R}^n \setminus \{0\}, \beta \in U_n\}$$

is R-bounded uniformly in $\lambda \in S(\varphi_1)$. Then by virtue of Kahane’s contraction principle, by product properties of the collection of R-bounded operators (see e.g. Lemma 3.5., Proposition 3.4. in [8]) and due to R-positivity of operator A we obtain

$$\sup_{\lambda \in S(\varphi_1)} R \left\{ \xi^\beta D^\beta \sigma_{1, \lambda} (\xi) : \xi \in \mathbb{R}^n \setminus \{0\}, \beta \in U_n \right\} \leq C, \quad (5.4)$$

$$\sup_{\lambda \in S(\varphi_1)} R \left\{ \xi^\beta D^\beta \sigma_{2, \lambda} (\xi) : \xi \in \mathbb{R}^n \setminus \{0\}, \beta \in U_n \right\} \leq C.$$

The estimates (5.4) by Theorem 3.1 imply that the operator functions $\sigma_{1, \lambda} (\xi)$ and $\sigma_{2, \lambda} (\xi)$ are $L_{p, \gamma}$($\mathbb{R}^n; E$) multipliers.

Let L_0 denote the differential operator in X that generated by problem (5.1) for $\lambda = 0$, that is

$$D (L_0) = Y, \quad L_0 u = \sum_{|\alpha| = 2l} a_\alpha D^\alpha u + Au.$$

The estimate (5.2) implies that the operator L_0 has a bounded inverse from X into Y. We denote by L differential operator in X that generated by problem (1.1), i.e.

$$D (L) = Y, \quad L u = L_0 u + L_1 u, \quad L_1 u = \sum_{|\alpha| \leq 2l} A_\alpha (x) D^\alpha u.$$

Theorem 5.2. Suppose all conditions of Theorem 5.1 are hold and

$$A_\alpha (x) A^{-\left(1 - \frac{|\alpha|}{2l} - \mu \right)} \in L_\infty (\mathbb{R}^n; B (E)) \quad \text{for } 0 < \mu < 1 - \frac{|\alpha|}{2l}.$$

Then for all $f \in X$ and $\lambda \in S(\varphi_1)$ with sufficiently large $|\lambda|$ equation (1.1) has an unique solution u that belongs to space Y and the uniform coercive estimate holds

$$\sum_{|\alpha| \leq 2l} |\lambda|^{-1 - \frac{|\alpha|}{2l}} \|D^\alpha u\|_X + \|Au\|_X \leq C \|f\|_X. \quad (5.5)$$

Proof. In view of condition on $A_\alpha (x)$ and by virtue of Theorem 4.1 there is $h > 0$ such that

$$\|L_1 u\|_X \leq \sum_{|\alpha| < 2l} \|A_\alpha (x) D^\alpha u\|_X \leq C \sum_{|\alpha| < 2l} \left\| A^{1 - \frac{|\alpha|}{2l} - \mu} D^\alpha u \right\|_X \leq \quad (5.6)$$
\[h^\mu \left(\sum_{|\alpha| = 2l} \| D^\alpha u \|_X + \|(A + \lambda) u\|_X \right) + h^{-(1-\mu)} \| u \|_X \]

for \(u \in Y \). Then from estimates (5.2) and (5.6) for \(u \in Y \) we have
\[
\| L_1 u \|_X \leq C \left[h^\mu \|(L_0 + \lambda) u\|_X + h^{-(1-\mu)} \| u \|_X \right]. \tag{5.7}
\]

Since \(\| u \|_X = \frac{1}{h} \|(L_0 + \lambda) u - L_0u\|_X \) for \(u \in Y \) we get
\[
\| u \|_X \leq \frac{1}{h} \|(L_0 + \lambda) u\|_X + \| L_0 u \|_X \leq 1 \tag{5.8}
\]
\[
\frac{1}{\lambda} \|(L_0 + \lambda) u\|_X + \frac{M}{\lambda} \left(\sum_{|\alpha| = 2l} \| D^\alpha u \|_X + \| A u \|_X \right).
\]

From estimates (5.7) and (5.8) for \(u \in Y \) we obtain
\[
\| L_1 u \|_X \leq Ch^\mu \|(L_0 + \lambda) u\|_X + CM\lambda^{-1}h^{-(1-\mu)} \|(L_0 + \lambda) u\|_X. \tag{5.9}
\]

Then choosing \(h \) and \(\lambda \) such that \(Ch^\mu < 1, CMh^{-(1-\mu)} < \lambda \), from (5.9) for sufficiently large \(\lambda \) we have
\[
\left\| L_1 (L_0 + \lambda)^{-1} \right\|_{B(X)} < 1. \tag{5.10}
\]

Since we have the relation
\[
(L + \lambda)^{-1} = (L_0 + \lambda)^{-1} \left[I + L_1 (L_0 + \lambda)^{-1} \right]^{-1}
\]
so by using the estimates (5.5), (5.10) and the perturbation theory of linear operators we obtain the assertion.

From Theorem 5.2 we obtain the following results:

Result 5.1. Assume the conditions of Theorem 5.2 are satisfied. Then there exists a constant \(C_1 \) and \(C_2 \) depending only on \(p, \gamma \) such that
\[
C_1 \| u \|_Y \leq \|(L + d) u\|_X \leq C_2 \| u \|_Y
\]
for all \(u \in Y \) and for sufficiently large \(d > 0 \).

Result 5.2. Assume the conditions of Theorem 5.2 are satisfied. Then the resolvent operator \((L + \lambda)^{-1} \) satisfies the following coercive sharp estimate holds
\[
\sum_{|\alpha| \leq 2l} |\lambda|^{1-|\alpha|} \left\| D^\alpha (L + \lambda)^{-1} \right\|_{B(X)} + \left\| A (L + \lambda)^{-1} \right\|_{B(X)} \leq C
\]
for \(\lambda \in S(\varphi_1) \).

The Result 5.2 implies that operator \(L \) is positive operator in \(X \). Then by virtue of [27, §1.14.5] the operator \(L \) is a generator of an analytic semigroup in \(X \) for \(\varphi \in \left(\frac{2}{2}, \pi \right) \).

22
6. The Cauchy problem for abstract parabolic equation

Consider now, the Cauchy problem (1.3). In this section we obtain the existence and uniqueness of the maximal regular solution of problem (1.3). First of all we show

Theorem 6.1. Assume the conditions of Theorem 5.1 are satisfied. Then the operator L_0 is R-positive in X.

Proof. Theorem 5.1 implies that the operator L_0 is positive in X. We have to prove the R-boundedness of the set

$$\sigma(\lambda) = \{\lambda (L_0 + \lambda)^{-1} : \lambda \in S_\varphi\}.$$

From Theorem 5.1 we have

$$\lambda (L_0 + \lambda)^{-1} f = F^{-1} \Phi (\xi, \lambda) f,$$

for $f \in X$, where

$$\Phi (\xi, \lambda) = \lambda (A + L_0 (\xi) + \lambda)^{-1}, \quad L_0 (\xi) = \sum_{|\alpha|=2l} a_\alpha \xi^\alpha.$$

By definition of R-boundedness, it is sufficient to show that the operator function $\Phi (\xi, \lambda)$ (depended on variable λ and parameters ξ, ε) is uniformly bounded multiplier in X. In a similar manner one can easily show that $\Phi (\xi, \lambda)$ is multiplier in X. Then, by definition of R-boundedness we have

$$\int_0^1 \left\| \sum_{j=1}^m r_j (y) \lambda_j (L_0 + \lambda_j)^{-1} f_j \right\|_X \, dy = \int_0^1 \left\| \sum_{j=1}^m r_j (y) F^{-1} \Phi (\xi, \lambda_j) f_j \right\|_X \, dy =

\int_0^1 \left\| F^{-1} \sum_{j=1}^m r_j (y) \Phi (\xi, \lambda_j) f_j \right\|_X \, dy \leq C \int_0^1 \left\| \sum_{j=1}^m r_j (y) f_j \right\|_X \, dy$$

for all $\xi_1, \xi_2, \ldots, \xi_m \in R^n, \lambda_1, \lambda_2, \ldots, \lambda_m \in S_\varphi, f_1, f_2, \ldots, f_m \in X, m \in \mathbb{N}$, where $\{r_j\}$ is a sequence of independent symmetric $\{-1, 1\}$-valued random variables on $[0, 1]$. Hence, the set $\sigma(\lambda)$ is R-bounded.

For $p = (p, p_1), R^{n+1}_+ = R_+ \times R^n, F = L_{p, \gamma} (R^{n+1}_+; E)$ will be denoted the space of all E-valued p-summable weighted functions with mixed norm, i.e. the space of all measurable functions f defined on R^{n+1}_+ for which

$$\|f\|_{L_{p, \gamma}(R^{n+1}_+; E)} = \left(\int_{R_+} \left(\int_{R^n} \|f(x)\|^p \gamma(x) \, dx \right)^{\frac{p_1}{p}} \, dt \right)^{\frac{1}{p}} < \infty.$$
Analogously, $F_0 = W^{1,2l}_{p,\gamma} (R^{n+1}_+, E(A), E)$ denotes the Sobolev-Lions space with corresponding mixed norm, i.e.

$$F_0 = \{ u: u \in F, \frac{\partial u}{\partial t} \in F, D^\alpha u \in F, |\alpha| = 2l, \}$$

$$\|u\|_Y = \| \frac{\partial u}{\partial t} \|_F + \sum_{|\alpha| = 2l} \| D^\alpha u \|_F + \| Au \|_F < \infty.$$

The main result of this section is the following:

Theorem 6.2. Assume all conditions of Theorem 5.1 hold for $\varphi \in (\frac{\pi}{2}, \pi)$ and $p_1 \in (1, \infty)$. Then for $f \in F$ problem (1.3) has a unique solution $u \in F_0$ satisfying

$$\|\partial_t u\|_F + \sum_{|\alpha| = 2l} \| D^\alpha u \|_F + \| Au \|_F \leq C \| f \|_F.$$

Proof. So, the problem (1.3) can be expressed as

$$\frac{du}{dt} + L_0 u(t) = f(t), \quad u(0) = 0, \quad t \in (0, \infty).$$

By the Result 5.2 the operator L_0 is positive in X. The Theorem 6.1 implies that L_0 is R-positivity in X for $\varphi \in (\frac{\pi}{2}, \pi)$. Then by virtue of [29, Th. 4.10] we obtain that, for $f \in L_{p_1}(R_+; X)$ the Cauchy problem (6.2) has a unique solution $u \in F_0$ satisfying

$$\|D_t u\|_{L_{p_1}(R_+; X)} + \|L_0 u\|_{L_{p_1}(R_+; X)} \leq C \| f \|_{L_{p_1}(R_+; X)}.$$

In view of Result 5.1 the operator L_0 is separable in X, i.e, the estimate (6.3) implies (6.1).

7. Degenerate abstract differential equations

Let us consider the problem

$$Lu = \sum_{|\alpha| = 2l} a_\alpha D^{[\alpha]} u + Au + \sum_{|\alpha| < 2l} A_\alpha (x) D^{[\alpha]} u + \lambda u = f,$$

(7.1)

where A, A_α are linear operators in a Banach space E and λ is a complex parameter, where

$$D^{[\alpha]}_k = \left(\gamma_k (x_k) \frac{\partial}{\partial x_k} \right)^{\alpha_k}, \quad D^{[\alpha]} = D^{[\alpha_1]}_1 D^{[\alpha_2]}_2 ... D^{[\alpha_n]}_n,$$

here $\gamma_k (x)$ are positive measurable functions on R^n.

Let

$$W^{[l]}_{p,\gamma} (\Omega, E_0, E) = \left\{ u \in L_p (\Omega; E_0), \ D^{[l_k]}_k u \in L_p (\Omega; E) \right\},$$

24
∥u∥_{W^{[2]}_{p,γ}(Ω;E_0,E)} = ∥u∥_{L^p(Ω;E_0)} + \sum_{k=1}^{n} ∥D_k^{[1]} u∥_{L^p(Ω;E)} < ∞.

Here,

\begin{align*}
X &= L^p(R^n;E), \quad Y = W^{[2]}_{p,γ}(R^n;E(A),E).
\end{align*}

Let

\begin{align*}
\int_0^{x_k} \gamma_k^{-1} (y) \, dy < \infty, \quad k = 1, 2, ..., n. \tag{7.2}
\end{align*}

Remark 7.1. Under the substitution

\begin{align*}
\tau_k &= \int_0^{x_k} \gamma_k^{-1} (y) \, dy \tag{7.3}
\end{align*}

the spaces \(X\) and \(Y\) are mapped isomorphically onto the weighted spaces \(L^p,\tilde{γ}(R^n;E)\), \(W^{[2]}_{p,\tilde{γ}}(R^n;E(A),E)\) where

\begin{align*}
\tilde{γ} = \tilde{γ} (\tau) = \prod_{k=1}^{n} \gamma_k (x_k (τ_k)), \quad τ = (τ_1, τ_2, ..., τ_n).
\end{align*}

Moreover, under the transformation (7.3) the problem (7.1) is mapped to

the undegenerate problem (1.1) considered in the weighted space \(L^p,\tilde{γ}(R^n;E)\).

Condition 7.1. Assume (7.1) holds and \(γ_k (x_k (τ_k)) \in A_p\) for \(k = 1, 2, ..., n\) and \(p \in (1, ∞)\).

From Theorem 5.2 and Remark 7.1 we obtain the following results:

Result 7.1. Assume the conditions of Theorem 5.2 are satisfied. Then for all \(f \in X\) and \(λ \in S(φ_1)\) with sufficiently large \(|λ|\) equation (1.1) has an unique solution \(u\) that belongs to \(Y\) and the uniform coercive estimate holds

\begin{align*}
\sum_{|α| \leq 2l} |λ|^{-\frac{|α|}{2p}} \left\| D^{[α]} u \right\|_X + ∥Au∥_X \leq C ∥f∥_X .
\end{align*}

Let \(G\) denote the operator in \(X\) generated by the problem (7.1).

Result 7.2. Assume the conditions of Theorem 5.2 and the Condition 7.1 are satisfied. Then the resolvent operator \((L + λ)^{-1}\) satisfies the following sharp estimate

\begin{align*}
\sum_{|α| \leq 2l} |λ|^{-\frac{|α|}{2p}} \left\| D^{[α]} (G + λ)^{-1} \right\|_{B(X)} + ∥A(G + λ)^{-1}∥_{B(X)} \leq C
\end{align*}

for \(λ \in S(φ_1)\).

The Result 5.2 implies that operator \(G\) is positive operator in \(X\). Then by virtue of [27, §1.14.5] the operator \(G\) is a generator of an analytic semigroup in \(X\) for \(φ \in \left(\frac{π}{2}, π\right)\).
Consider the Cauchy problem for degenerate parabolic equation

\[\partial_t u + \sum_{|\alpha|=2l} a_\alpha D^{[\alpha]}u + Au = f(t,x), \quad t \in (0, \infty), \quad x \in \mathbb{R}^n, \]

\[u(0,x) = 0, \quad x \in \mathbb{R}^n, \]

where \(a_\alpha \) are complex numbers and \(A \) is a linear operator in a Banach space \(E \).

For \(p = (p,p_1) \), let \(\Phi = L_p^p(R_+^{n+1} ; E) \) denotes \(L_p^p(R_+^{n+1} ; E) \) for \(\gamma(x) \equiv 1 \).

Analogously, \(\Phi_0 = W^{1,2l}_p(R_+^{n+1}, E(A), E) \) denotes the Sobolev-Lions space with corresponding mixed norm, i.e.

\[\Phi_0 = \{ u : u \in \Phi, \ \frac{\partial u}{\partial t} \in \Phi, \ D^{[\alpha]}u \in \Phi, \ |\alpha| = 2l, \]

\[\|u\|_{\Phi_0} = \left\| \frac{\partial u}{\partial t} \right\|_\Phi + \sum_{|\alpha|=2l} \left\| D^{[\alpha]}u \right\|_\Phi + \|Au\|_\Phi < \infty. \]

From Theorem 6.2 and Remark 7.1 we obtain the following results:

Result 7.3. Assume all conditions of Theorem 5.1 and the Condition 7.1 are satisfied for \(\varphi \in \left(\pi/2, \pi \right) \) and \(p_1 \in (1, \infty) \). Then for all \(f \in \Phi \) problem (7.4) has a unique solution \(u \in \Phi_0 \) satisfying

\[\left\| \frac{\partial u}{\partial t} \right\|_\Phi + \sum_{|\alpha|=2l} \left\| D^{[\alpha]}u \right\|_\Phi + \|Au\|_\Phi \leq C \|f\|_\Phi. \]

8. Maximal regularity properties of infinite many system of parabolic equations

Consider the Cauchy problem for infinite many system of parabolic equations

\[\partial_t u_i(t,x) \sum_{|\alpha|=2l} a_\alpha D^{[\alpha]}u_i(t,x) + \sum_{j=1}^{\infty} a_{ij} u_j(t,x) = f_i(t,x), \quad x \in \mathbb{R}^n, \quad t \in (0, \infty), \]

\[u(0,x) = 0, \quad \text{for a.e.} \ x \in \mathbb{R}^n, \quad i = 1, 2, \ldots, N, \quad N \in \mathbb{N}, \]

where \(a_\alpha \) and \(a_{ij} \) are complex numbers.

Condition 8.1. Let

\[a_{ij} = a_{ji}, \quad \sum_{i,j=1}^{N} a_{ij} \xi_i \xi_j \geq C_0 |\xi|^2, \quad \text{for} \ \xi \neq 0. \]

Let

\[u = \{ u_j \}, \quad Au = \left\{ \sum_{j=1}^{N} a_{ij} u_j \right\}, \quad i, \ j = 1, 2, \ldots N, \]
Since
\[A \]
where \(\lambda \) is easy to see that \(A \) generates a positive operator in \(l_q \).\]

Proof. Let \(E = l_q \), \(A \) be a matrix such that \(A = [a_{ij}] \), \(i, j = 1, 2, ...N \). It is easy to see that

\[B (\lambda) = \lambda (A + \lambda)^{-1} = \frac{\lambda}{D(\lambda)} [A_{ji} (\lambda)], i, j = 1, 2, ...N, \]

where \(D(\lambda) = \det (A - \lambda I) \), \(A_{ji} (\lambda) \) are entries of the corresponding adjoint matrix of \(A - \lambda I \). Since the matrix \(A \) is symmetric and positive definite, it generates a positive operator in \(l_q \) for \(q \in (1, \infty) \). For all \(u_1, u_2, ..., u_\mu \in l_q \), \(\lambda_1, \lambda_2, ..., \lambda_\mu \in \mathbb{C} \) and independent symmetric \(\{-1, 1\} \)-valued random variables \(r_k(y), k = 1, 2, ..., \mu, \mu \in \mathbb{N} \) we have

\[
\int_{\Omega} \left| \sum_{k=1}^{\mu} r_k(y) B(\lambda_k) u_k \right|^q dy \leq C \sum_{j=1}^{N} \left| \sum_{k=1}^{\mu} \frac{\lambda_k}{D(\lambda_k)} A_{ji} (\lambda_k) \right|^q \int_{\Omega} \left| \sum_{k=1}^{\mu} r_k(y) u_{kj} \right|^q dy. \quad (8.4)
\]

Since \(A \) is symmetric and positive definite, we have

\[
sup_{k,i} \sum_{j=1}^{N} \left| \frac{\lambda_k}{D(\lambda_k)} A_{ji} (\lambda_k) \right|^q \leq C. \quad (8.5)
\]

From (8.4) and (8.5) we get

\[
\int_{\Omega} \left| \sum_{k=1}^{\mu} r_k(y) B(\lambda_k) u_k \right|^q dy \leq C \int_{\Omega} \left| \sum_{k=1}^{\mu} r_k(y) u_k \right|^q dy.
\]
i.e., the operator A is R-positive in l_q. Hence, by Theorem 6.2 we obtain the assertion.

Remark 8.1. There are a lot of $R-$positive operators in different concrete Banach spaces. Therefore, putting concrete Banach spaces instead of E, and concrete differential, pseudo differential operators, or finite, infinite matrices instead of A, by virtue of Theorems 5.2 and 6.2 we can obtained the different class of maximal regular partial differential equations or system of equations.

Acknowledgements

The author would like to express a gratitude to Dr. Neil. Course for his useful advice in English in preparing of this paper

References

1. Amann, H., Linear and quasi-linear equations,1, Birkhauser, Basel 1995.
2. Agarwal, R., O’ Regan, D., Shakhmurov V. B., Separable anisotropic differential operators in weighted abstract spaces and applications, J. Math. Anal. Appl. 338(2008), 970-983.
3. Besov, O. V., Ilin, V. P., Nikolskii, S. M., Integral representations of functions and embedding theorems, Nauka, Moscow, 1975.
4. Bourgain, J., Vector–Valued Singular Integrals and the H1–BMO Duality. In: Probability theory and harmonic analysis, pp. 1 – 19, Pure Appl. Math. 98, Marcel Dekker, 1986.
5. Clément Ph., De Pagter B., Sukovec F. A., Witvliet H., Schauder decomposition and multiplier theorems, Studia Math. 138 (2000), 135-163.
6. Chill, R., Fiorenza, A., Singular integral operators with operator-valued kernels, and extrapolation of maximal regularity into rearrangement invariant Banach function spaces, J. Evol. Equ. 14 (2014), 4-5, 795–828.
7. Clément, P., Prüss, J., An operator–valued transference principle and maximal regularity on vector–valued L^p–spaces, Evolution equations and their applications in physical and life sciences, p. 67 – 87, Bad Herrenalb, 1998.
8. Denk, R., Hieber M., Prüss J., $R-$boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 166 (2003), n.788.
9. Haller, R., Heck H., Noll A., Mikhlin’s theorem for operator-valued Fourier multipliers in n variables, Math. Nachr. 244, (2002), 110-130.

10. Girardi, M., Lutz, W., Operator-valued Fourier multiplier theorems on $L_p(X)$ and geometry of Banach spaces, J. Funct. Anal., 204(2), 320–354, 2003.

11. Hytönen, T. P., Anisotropic Fourier multipliers and singular integrals for vector-valued functions, Ann. Mat. Pura Appl. (4) 186 (2007)(3), 455–468.

12. Hänninen, T. S., Hytönen, T. P., The A2 theorem and the local oscillation decomposition for Banach space valued functions, J. Operator Theory, 72 (2014), (1), 193–218.

13. Kurtz, D. G., Whedeen, R. L., Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255(1979), 343–362.

14. Lions, J. L and Peetre J., Sur une classe d’espaces d’interpolation, Inst. Hautes Etudes Sci. Publ. Math., 19(1964), 5-68.

15. Lizorkin, P. I, Shakhmurov, V. B., Embedding theorem for vector-valued functions. 1., Izvestiya Vushkh Uchebnykh Zavedenie Matematika (1)1989, 70-79; 2. (8) 1989, 69-78.

16. Meyries, M., Veraar, M., Pointwise multiplication on vector-valued function spaces with power weights. J. Fourier Anal. Appl. 21 (2015)(1), 95–136.

17. Meyries M. and Veraar, M. C., Sharp embedding results for spaces of smooth functions with power weights, Studia Math., 208(3):257–293, 2012.

18. McConnell Terry R., On Fourier Multiplier Transformations of Banach-Valued Functions, Trans. Amer. Mat. Soc. 285, (2) (1984), 739-757.

19. Pisier, G., Some Results on Banach Spaces without Local Unconditional Structure, Compositio Math. 37 (1978), 3 – 19.

20. Ragusa, M. A., Embeddings for Lorentz-Morrey spaces, J. Optim. Theory Appl., 154(2)(2012), 491-499.

21. Shakhmurov V. B, Abstract capacity of regions and compact embedding with applications, Acta. Math. Scia., (31)1, 2011, 49-67.

22. Shakhmurov, V. B., Imbedding theorems and their applications to degenerate equations, Differential equations, 24 (4), (1988), 475-482.

23. Shakhmurov, V. B., Embedding operators and maximal regular differential-operator equations in Banach-valued function spaces, J. Inequal. Appl., 4(2005), 329-345.

29
24. Shakhmurov, V. B., Coercive boundary value problems for regular degenerate differential-operator equations, J. Math. Anal. Appl., 292 (2), (2004), 605-620.

25. Shakhmurov, V. B., Embedding and maximal regular differential operators in Sobolev-Lions spaces, Acta Mathematica Sinica, 22(5) 2006, 1493-1508.

26. Schmeisser H., Vector-valued Sobolev and Besov spaces, Seminar analysis of the Karl-Weierstra -Institute of Mathematics 1985/86 (Berlin, 1985/86), Teubner, Leipzig, 1987, 4-44.

27. Triebel, H., Interpolation theory. Function spaces. Differential operators, North-Holland, Amsterdam, 1978.

28. Triebel, H., Spaces of distributions with weights. Multipliers in L_p-spaces with weights, Math. Nachr. 78, (1977), 339-356.

29. Weis, L., Operator-valued Fourier multiplier theorems and maximal L_p regularity, Math. Ann. 319, (2001), 735-75.

30. Yakubov, S and Yakubov Ya., Differential-operator equations. Ordinary and Partial Differential equations, Chapman and Hall /CRC, Boca Raton, 2000.

31. Zimmerman, F., On vector-valued Fourier multiplier theorems, Studia Math. 93 (3)(1989), 201-222.