Investigating Chemical Composition and Indications of Hydrosol Soft Drinks (Aromatic Waters) Used in Persian Folk Medicine for Women’s Hormonal and Reproductive Health Conditions

Azadeh Hamedi, PhD1, 2, Mehdi Afifi, PharmD3, and Hamed Etemadfar, MPhil1

Abstract
Hydrosol soft drinks in Persian nutrition culture are produced as side products of the essential oil industry to be used as safe remedies for treatment of some ailments. This study investigated hydrosols for women’s hormonal health conditions. Detailed information was gathered by questionnaires. Chemical constituents of these mono- or poly-herbal hydrosols were identified after liquid/liquid extraction and gas chromatography–mass spectrometry. Hierarchical cluster and K-means analysis (SPSS software) were used to find their relevance. A literature survey was also performed. In most cases, thymol, carvacrol, and carvone were the major constituents except for dill, white horehound, willow, Moderr, and yarrow hydrosols, whose major components were dill ether, menthol, phenethyl alcohol, linalool, or camphor. Based on clustering methods, some similarities could be found in their constituents with some exceptions. None of them have been studied scientifically before. These investigations may lead to the development of some functional drinks or even new lead components.

Keywords
essential oil, women’s reproductive disorder, distillate, aromatic waters, Aragh

Received January 23, 2016. Received revised August 19, 2016. Accepted for publication January 22, 2017.

Different ethnomedicinal herbal formulations have long been used by women to treat hormonal and reproductive health conditions such as premenstrual syndrome, menopausal symptoms, hormonal imbalance, infertility, or as contraceptives.1, 2 In many communities, because of economic or cultural issues, herbal remedies are the most—or even the only—available therapeutics. Despite the necessity of evaluating their purity, safety, efficacy, and authenticity, herbal formulations are not currently subjected to the same regulations as conventional drugs, which is due to a lack of knowledge about their constituents.3 Another problem arises from misadministration and lack of knowledge about the side effects. For example, many herbal formulations—which may be used for other therapeutic properties or even ingested as daily food or drinks—may cause unwanted side effects for a pregnant woman or her fetus.4 Scientific investigation of safety and efficacy of herbal remedies, food, and beverages with potential effects on hormonal condition may prevent a notable number of unwanted infertility cases, abortions, or fetal abnormalities. It also can lead researchers to reach new active components as well as functional food or beverages for use as contraceptives or fertility therapeutics or supplements.5, 6

In Iranian nutrition culture as well as Persian ethnomedicine aromatic waters, or Araghjat or Araghiat (plural of Aragh in Persian), are consumed as delicious daily drinks or as functional beverages. They are usually sweeten with natural sugars

1 Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
2 Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
3 Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

Corresponding Author:
Azadeh Hamedi, Medicinal Plants Processing Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
Email: hamediaz@sums.ac.ir

License: Creative Commons Attribution-NonCommercial 4.0 (http://creativecommons.org/licenses/by-nc/4.0/)
such as sucrose or honey. Some prepared syrup of aromatic waters can also be found in food markets containing some additives such as colors, flavoring agent, and sweeteners to improve the organoleptic properties.

Aromatic waters, which are also called floral water, distillate water, or hydrosols, are the side products of the volatile oil industry. During industrial hydrossitillation water is evaporated simultaneously with the essential oil of the plants. After condensation of the vapors in contact with cold vessels or tubes, the liquefied components are separated into 2 phases inside a collecting vessel, an oily phase and the aromatic water saturated with different amounts of the volatile components of the plant, which are partly or completely soluble in water. These 2 phases are then collected; the oily phase (essential oil) is usually sold to the pharmaceutical or cosmetic industry while the aromatic water, depending on its taste, potency, and biological properties, is diluted 1:8 or 1:12 with water. For marketing purposes, the aromatic waters might be distributed in big containers (250-1000 liters) for retail shops or in small sealed polyethylene terephthalate or glass containers (1-5 liters). Some are pasteurized before marketing. In traditional and folk Persian medicine, aromatic water drinks are used also for medicinal purposes to treat different conditions. Despite some adverse effects in improper applications, they are considered as safe beverages. They are mostly mono-herbal but some polyherbal hydrosol (Aragh) can be found in the food market. Depending on the plants used to prepare each of the aromatic waters, an overall nature is considered including, hot, cold, wet, dry, or moderate. Pure essential oils are very potent or even harsh in presenting their medicinal activities and are not usually safe in oral administration. But these hydrosols have their unique aroma and composition, which is considerably different from the pure essential oil they co-distilled with. They are usually moderated and balanced by the water and their water-soluble volatile components. On the other hand, aromatic waters have additional properties not possessed by the essential oils alone.

Over 50 different types of hydrosol beverages are manufactured and marketed in Persian nutrition culture, but as far as we know, chemical composition and biological activities of many of them have not been investigated scientifically. This study was designed to investigate the chemical composition of aromatic waters and hydrosol beverages used in Persian folk medicine for women’s hormonal and reproductive health conditions. A wide range of plants are used in Persian folk medicine for these conditions, but only those plants were investigated that are used to prepare hydrosol beverages.

Materials and Methods
An Overview of Geographical Profile and Climate Variation of Field Study
Fars Province with the highest production rate for aromatic waters was selected as the field of study. Fars, or known in Old Persian as Parsa, is the original homeland of the ancient Persians.

The province, with area of 122,400 km² and a population of 4.59 million people, is located in the south of Iran. There are 3 different climates in the Fars province: the highland area with moderate cold winters and mild summers; the central regions, with relatively rainy mild winter and hot dry summers; and the south to southeast region, which has cold winters with hot summers. The average temperature of Shiraz as the province administrative center is 16.8°C (ranging from 4.7°C to 29.2°C).

The geographical and climatic variation enriches the province with varieties of plants that have a huge influence on agricultural and herbal industries. Over 84 manufactories in Fars province produce different aroma water beverages with full industrial techniques (19 manufactories) or traditional (65 manufactories) equipment. These manufactories are mostly located in Meymand and Darab cities, and their products are distributed in retail markets all over the country.

Information and Sample Collection
To gather information about different aromatic beverages used in Persian folk medicine for women’s hormonal and reproductive health conditions, a field study was conducted from June 2013 to June 2014 under the supervision of a local researcher as a native guide in all visits. A suitable questionnaire was filled according to the information gathered in all visits to local manufactories or their shops. However, most popular aromatic waters with indications for women’s hormonal and reproductive system health conditions were purchased for further analysis (Table 1).

Phytochemical Analysis
Volatile components of each beverage sample (500 mL) were extracted with 500 mL of petroleum ether using a glass liquid/liquid extractor system during 150 minutes. Chloroform was used for liquid/liquid extraction of ginger hydrosol. In this technique, the solvent vapor was transferred to the bottom of beverage container. The liquefied vapor in the beverage traveled to the top of the beverage container due to its lower density. Meanwhile, volatile components of the sample were transferred from the aqueous phase to the petroleum ether phase. In order to increase the concentration of volatile components in the organic phase, after 150 minutes the used beverage was replaced with fresh beverage and then extracted for another 150 minutes. The volume of each extracts was decreased to approximately 10 mL at 40°C and 60 rpm using a basic rotary evaporator.

Gas Chromatography–Mass Spectrometry
The concentrated and dehydrated extract of each ample beverage was injected to a gas chromatography–mass spectrometer for the analysis of respective volatile components. Agilent Technologies 7890 gas chromatograph with a mass detector (Agilent Technologies model 5975 C) was used in this study. The gas chromatograph was equipped with a HP-5MS capillary column (phenyl-methylsiloxan, 30 m, 0.25 mm id; Agilent Technologies 19091S-433 [60°C to 325/350°C]) and a mass spectrometer (Agilent Technologies 5975 C), which was operating in El mode at 70 eV. The interface temperature was 280°C, and the mass range was 30 to 600 m/z. The oven was heated at a rate of 5°C/min from 60°C to 220°C and then it was held for 10 minutes at 220°C. Helium was used as the carrier gas with a flow rate of 1 mL/min. The components were identified by comparing the mass spectra and retention times with those of reference compounds, or with mass spectra in NIST or Willey libraries or in literature.
Results and Discussion

Hydrosols and Their Phytochemicals

The aromatic waters soft drinks that are used for women’s hormonal and reproductive health conditions are listed in Table 1. The data were prepared according to the information gathered via questionnaires (Tables 1 and 2).

This study was designed to investigate the aromatic waters that are used in Persian folk medicine, but some of these aromatic waters and their applications listed in this article have been mentioned also in some traditional Persian manuscript such as "Qarabadin-e-salehi"18 and "Qarabadin-e-kabir."11 Although most current ethnopharmacological knowledge in Iran has been derived from historical Persian manuscripts,19 it seems that some also have been arisen and accepted in recent years. This might be due to impact of new research on medicinal plants extracts on the knowledge of traditional healers as well as the companies that produce such products, although as far as we know there are not much research studies to provide evidence based data on the effects of aromatic waters or to elucidate their constituents.

In ethnomedical surveys, frequency of citation can reflect a kind of cultural importance of species, which may result in

No.	Aromatic Water Beverage Name	Aromatic Water Name in Persian	Scientific Name	Family	Plant Parts
1	Chamomile	Aragh-e-Babooneh	Matricaria chamomilla L.	Asteraceae	Flowers
2	Dill	Aragh-e-Shevid	Anethum graveolens L.	Apiaceae	Leaf
3	Fennel	Aragh-e-Raziyaneh	Foeniculum vulgare Mill.	Apiaceae	Seeds
4	Ginger	Aragh-e-Zanjebi	Zingiber officinal Roscoe	Zingiberaceae	Rhizome
5	Lemon balm	Aragh-e-Badanjanbooye	Melissa officinalis L.	Lamiaceae	Leaf
6	Parsley	Aragh-e-Jafari	Petroselinum crispum Mill.	Apiaceae	Leaf
7	Persian cumin	Aragh-e-Zireh	Carum cari L.	Apiaceae	Seeds
8	Persian leek	Aragh-e-Tareh	Allium ampeloprasum ssp. persicum	Amaryllidaceae	Leaf
9	Polygermander	Aragh-e-Kalpooreh	Teucrium polium L.	Lamiaceae	Aerial parts
10	Persian hogweed	Aragh-e-Golpar	Heracleum persicum Desf. ex Fisch.	Apiaceae	Fruits
11	Stinging nettle	Aragh-e-Gazaneh	Urtica dioica	Urticaceae	Aerial parts
12	Valerian	Aragh-e-Sonbolottib	Valeriana officinalis L.	Caprifoliaceae	Aerial parts
13	Willow	Aragh-e-Beedemeshik	Salix spp L.	Salicaceae	Catkins
14	White horehound	Aragh-e-Farasiyon	Marrubium vulgare L.	Lamiaceae	Aerial parts
15	Yarrow	Aragh-e-Boomadaran	Achillea millefolium L.	Asteraceae	Aerial parts
16	Chehelgeyah (polyherbal)	Aragh-e-Chehelgeyah	A mixture of:	Apiaceae	Seeds
			Carum cari L.	Apiaceae	Seeds
			Carum copicum L.	Apiaceae	Seeds
			Citrus aurantium L.	Rutaceae	Fruits peel
			Glycyrrhiza glabra L.	Leguminosae	Root
			Lavandula angustifolia Mill.	Lamiaceae	Aerial parts
			Matricaria chamomilla L.	Asteraceae	Flowers
			Mentha longifolia (L) L.	Lamiaceae	Leaf
			Satureja hortensis L.	Lamiaceae	Aerial parts
			Valeriana officinalis L.	Caprifoliaceae	Aerial parts
			Zataria multiflora Boiss.	Lamiaceae	Aerial parts
17	Moderr (polyherbal)	Aragh-e-Moderr	A mixture of:	Leguminosae	Aerial parts
			Alhagi maurorum Medik.	Leguminosae	Aerial parts
			Cerasus avium (L) Moench	Rosaceae	Stalks
			Cichorium intybus L.	Asteraeae	Aerial parts
			Fumaria parviflora Lam.	Papaveraceae	Aerial parts
			Marrubium vulgare	Lamiaceae	Aerial parts
			Salix spp L.	Salicaceae	Leaf
			Tribulus terrestris L.	Zygophyllaceae	Fruits
			Zea mays L.	Poaceae	Silk
18	Taadol (poly herbal)	Aragh-e-Taadol	Apium graveolens var. dulce	Apiaceae	Aerial parts
			Juglans regia L.	Juglandaceae	Leaf
			Olea europaea L.	Oleaceae	Leaf
			Urtica dioica L.	Urticaceae	Aerial parts
			Zataria multiflora Boiss.	Lamiaceae	Aerial parts
Table 2. Aromatic Waters’ Indications for Women’s Hormonal and Reproductive Health Conditions as Well as Their Other Indications.

Aromatic Water Beverage Name	Nature	Indications for Women’s Hormonal and Reproductive Health Condition	Other Indications	Dosing
Monoherbal aromatic waters				
Chamomile	Hot	Regulating menstrual cycle	Energizer	100 mL TID, before meal
		Treatment of dysmenorrhea (chronic ingestion is contraindicated for pregnant women)	Treatment of painful infections	
			Treatment of phlegmatic fever	
			Vermicide	
Caraway (Persian cumin)	Hot	Treatment of dysmenorrhea Galactogogue	Energizer	100 mL TID, after meal
			Nerve tonic	
			Cholesterol lowering	
			Digestant	
			Gastrointestinal tonic	
			For body slimming	
			Antihypertension	
			Cholesterol lowering	
			Gastrointestinal tonic	
			Relieve hiccups	
			Antiasthma	
Dill	Hot	Galactogogue Menstrual inducer	To treat urinary tract pain	150 mL TID, after meal
			Carminative	
			Treatment of colic	
			To remove phlegm	
			Diuretic	
			Treatment of gall stone	
			Treatment of kidney inflammation	
Fennel	Hot	Galactogogue Menstrual inducer (there is a belief that ingestion during pregnancy may help newborn to have more beautiful eyes)	To treat urinary tract pain	100 mL TID, after meal
			Carminative	
			Treatment of colic	
			To remove phlegm	
			Diuretic	
			Treatment of gall stone	
			Treatment of kidney inflammation	
Ginger	Hot	Treatment of morning sickness	Nerve tonic	100 mL TID, after meal
			Cholesterol lowering effect	
			Digestant	
			Gastrointestinal tonic	
			For body slimming	
			Expectorant	
Lemon balm	Hot	Treatment of morning sickness in pregnant women Treatment of dysmenorrhea	Nerve tonic, antiseizure	100 mL TID, after meal
			Antidepressant	
			Cardiotonic, for heart failure	
			Hypertensive	
			Treatment of insects	
			Bits (topical applications)	
Parsley	Cold	Galactogogue Menstrual inducer Aphrodisiac	Anti-arthritis	100 mL TID before meal
			Antihypertension	
			Anti-anemia	
			Diuretic	
			Blood cleansing	
			Gastrointestinal tonic	
			Antipyretic	
Persian hogweed	Hot	Menstrual inducer	Appetizer	100 mL TID, after meal
			Digestant	
			Carminative	
			Diuretic	
			Strengthening memory	
			Relieve hiccups	
			Antimicrobial	
			Treatment of numbness	
Persian leek	Hot	Uterus and reproductive system cleansing Thinning vaginal discharge Prevention of abortion	Aphrodisiac	100 mL TID, after meal
			Expectorant, antitussive	
			For laryngitis and pharyngitis	
			Digestant	
			Antihemorrhoid	
			Skin lightening	

(continued)
Aromatic Water Beverage Name	Nature	Indications for Women’s Hormonal and Reproductive Health Condition	Other Indications	Dosing
Poleygermander	Hot nature	Facilitate delivery (start treatment 1 month before delivery due date) Treatment of infertility (start treatment 3 month before pregnancy intention)	Energetic Appetizer Liver tonic Anti-emetic Anti-asthma Antihypertension Antidiabetic Blood cleansing	100 mL TID, after meal
Stinging nettle	Hot nature	Menstrual inducer Galactogogue Antihypertension Anti-atherosclerosis	Anti-diabetic Expectorant, anti-asthma Energizer, anti-anemia Treatment of tonsillitis and for strengthening the gums (by gargling) Treatment of prostatic hypertrophy Diuretic Hair tonic	100 mL TID, before meal
Valerian	Hot nature	Treatment of dysmenorrhea	Nerve tonic, anti-anxiety Treatment of headache	100 mL QID, before meal and bedtime
White horehound	Hot nature	Treatment of ovarian and uterine cysts Treatment of breast cysts Uterus and reproductive system cleansing Thinning vaginal discharge Regulating menstrual cycle Treatment of dysmenorrhea Facilitate delivery Treatment of infertility Treatment of fibroma Prevention and treatment of lipoma mass	Liver tonic Treatment of fatty liver Astringent Anti-catarrh in brain	150 mL TID, after meal (contraindicated during pregnancy and menstruation)
Willow	Cold nature	Treatment of dysmenorrhea	Gastrointestinal tonic Anti-epilepsy Treatment of headache Cardio-tonic Anti-pyretic Anti-dandruff (topical)	150 mL TID, before meal
Yarrow	Hot nature	Regulating menstrual cycle Treatment of dysmenorrhea	Blood cleansing Nerve tonic, anti-epileptic Cardio tonic Anti-hemorrhoid Antipyretic To treat muscle cramps To treat gastrointestinal inflammations	100 mL TID, after meal
Polyherbal aromatic waters		Treatment of dysmenorrhea	Digestant Gastrointestinal tonic Antidiarrhea Treatment of colic	100 mL TID, after meal
Chehelgeyah		Treatment of dysmenorrhea		
Moderr		To facilitate delivery Treatment of uterus cyst	Antihypertension Anti-atherosclerosis Antidiabetic Blood thinning Lipid lowering	100 mL TID, after meal
Taadol	Hot nature	Treatment of dysmenorrhea		
more accurate and more informants’ data obtained from questionnaires. The frequency of citations of each hormonal and reproductive application for these beverages in all gathered questionnaires is shown in Figure 1. The higher frequency of citation can show the higher importance of an application for any of these aromatic waters. As seen in Figure 1, in all of the questionnaires (100%), fennel aromatic water was suggested to start menstruation, yarrow aromatic water to regulate menstruation, and Chehelgeyah aromatic water to treat dysmenorrhea. On the other hand, only a few informants believed that valerian aromatic water can regulate menstruation. As seen in Figure 1, most of introduced aromatic waters were believed to have indication to start menstruation. The second frequent cited application was regulation of menstruation.

Figure 1. Frequency of citations in questionnaires for women’s hormonal and reproductive health conditions.

Figure 2. Ranking (1-18) of annual production level of aromatic waters in different manufactories over the past 3 years. Data are represented as mean ± SD.
Table 3: Aromatic Water Constituents Resulting From Gas Chromatography–Mass Spectrometry Analysis.

Polyherbal	Monoherbal	5.93	0.53	0.94	0.752	0.35	12.47	7.32	1.37	0.18	0.79	0.049	1.28	7.32	1.08
Chamomile	Chamomile	18.63	9.08	3.21	4.84	1.93	3.81	0.92	0.75	1.13	0.76	0.48	4.84	7.32	1.08
Dill	Dill	9.08	3.21	1.93	0.48	0.92	0.75	1.13	0.76	0.48	4.84	7.32	1.08		
Lemon	Lemon	0.75	1.37	0.18	0.79	0.049	1.28	7.32	1.08						
Persian	Persian	0.94	0.752	0.35	12.47	7.32	1.37	0.18	0.79	0.049	1.28	7.32	1.08		
Valerian	Valerian	0.94	0.752	0.35	12.47	7.32	1.37	0.18	0.79	0.049	1.28	7.32	1.08		
White	White	0.94	0.752	0.35	12.47	7.32	1.37	0.18	0.79	0.049	1.28	7.32	1.08		
Willow	Willow	0.94	0.752	0.35	12.47	7.32	1.37	0.18	0.79	0.049	1.28	7.32	1.08		
Yarrow	Yarrow	0.94	0.752	0.35	12.47	7.32	1.37	0.18	0.79	0.049	1.28	7.32	1.08		
Chehelgeyah	Chehelgeyah	0.94	0.752	0.35	12.47	7.32	1.37	0.18	0.79	0.049	1.28	7.32	1.08		
Modern	Modern	0.94	0.752	0.35	12.47	7.32	1.37	0.18	0.79	0.049	1.28	7.32	1.08		
Taadol	Taadol	0.94	0.752	0.35	12.47	7.32	1.37	0.18	0.79	0.049	1.28	7.32	1.08		

(continued)
	Chamomile	Dill	Fennel	Ginger	Lemon balm	Parsley	Persian leek	Stinging nettle	Valerian	Willow	White horehound	Yarrow	Chehelgeyah	Moderr	Taadol
cis-Linalool oxide (furanoid)	—	—	—	—	—	—	—	4.61	—	—	—	—	—	—	—
trans-Linalool oxide (furanoid)	—	—	—	—	—	—	—	4.17	—	—	—	—	—	—	—
Menthol	—	3.8	0.839	—	—	—	—	—	36.27	—	1.79	—	—	—	—
Menthone	—	2.41	—	—	0.67	—	—	—	16.16	—	—	—	—	—	—
Iso-Menthone	—	0.82	—	—	—	—	—	—	6.06	—	—	—	—	—	—
Methyl eugenol	—	—	—	—	—	—	—	—	1.2	—	1.13	—	—	—	—
Methyl hexadecanoate	—	—	—	—	4.58	—	—	4.33	—	—	1	—	—	—	—
Methyl jasmonate	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Methyl octadecanoate	—	—	—	—	0.57	3.23	—	—	—	—	—	—	—	—	—
Myristicin	—	—	—	—	34	—	—	3.54	—	—	—	—	—	—	—
Nerol	—	—	—	2.955	—	—	—	—	—	—	—	—	—	—	—
Phenethyl alcohol	—	—	—	—	—	—	—	55.78	—	—	—	—	—	—	—
Pinocarvone	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Piperitenone	5.74	0.81	—	—	—	—	—	—	—	—	—	—	—	—	0.76
Piperitenone oxide	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Piperitone	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Pulegone	3.1	0.57	4.77	2.209	2.56	0.99	1.93	1.07	0.48	—	—	—	—	—	6.13
Sabina ketone	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
γ-Terpinene	—	—	—	—	—	—	—	1.16	—	—	—	—	—	—	—
Terpinen-4-ol	—	0.56	0.45	0.58	0.89	—	—	0.838	2.02	0.85	—	0.49	—	—	—
α-Terpineol	0.36	—	1.675	1.11	—	—	—	—	—	—	—	—	—	—	—
Terpinolene	—	1.15	—	—	—	—	—	—	—	0.47	—	—	—	—	—
β-Thujone	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
trans-Thujone	—	—	—	—	—	—	—	3.16	—	—	—	—	—	—	—
Thymol	34.35	19.49	42.2	41.455	46.97	56.6	56.944	27.28	8.45	0.63	14.55	52.0	64.74	8.25	44.98
Thymol ethanoate	—	—	—	—	—	—	—	—	—	—	—	—	—	—	13.8
Toluene, 2,3-dimethoxy	—	—	—	—	—	—	—	1.043	—	—	—	—	—	—	—
Verbenone	—	—	—	—	—	—	—	1.97	—	—	—	—	—	—	—
m-Xylene	0.44	—	—	—	—	—	—	1.16	—	0.93	—	—	—	—	—
o-Xylene	—	—	—	—	—	—	—	5.53	0.482	5.95	—	—	—	—	—
p-Xylene	—	—	—	—	—	—	—	5.53	0.482	5.95	—	—	—	—	—
Yomogi alcohol	—	—	—	—	—	—	—	19.36	—	—	—	—	—	—	—
In order to roughly investigate the popularity of these beverages, manufactories also were asked to rank them from 1 to 18 according to their mean of annual production over the past 3 years. Since these data were confidential for these manufactories, a ranking system was applied. The aromatic water with the lowest level of production was ranked 1. The manufactories ranking data represented as mean ± SD are shown in Figure 2. Among the aromatic waters that have indication for women’s hormonal and reproductive health conditions, yarrow, white horehound, Chehelgeyah, and fennel aromatic waters had higher annual production level during the past 3 years. This popularity might be because of their efficacy, the aromatic waters’ organoleptic properties such as taste and aroma, or even possible side effects during longer periods of consumptions. This might be also, due to their other applications rather than their effects on the reproductive system.

The plants that are used to prepare these aromatic waters belong to 17 families. Apiaceae, Lamiaceae, and Asteraceae had a greater portion than others (Table 1).

Most of these aromatic waters are prepared from aerial parts of the plants. Different effects on women’s reproductive conditions including aphrodisiac, galactagogue, induction or regulation of menstruation, thinning vaginal discharge, cleansing reproductive system tracts, prevention of abortion, delivery induction, antitumor, treating infertility, and treating morning sickness were mentioned for these aromatic waters. Most of these beverages were believed to have hot nature.

Other indications rather than women’s hormonal and reproductive health were also mentioned for these beverages, which are summarized in Table 2. As mentioned in the introduction, aromatic waters’ aroma and compositions are considerably irrelevant to the pure volatile oil they were co-distilled with. As far as we know, the chemical constituents of most of these aromatic waters have not been investigated scientifically. This study determined constituents of these aromatic waters by gas chromatography–mass spectrometry after liquid-liquid extraction. As seen in Table 3, which shows the results of gas chromatography–mass spectrometry analysis, thymol is major or second major component except for dill, white horehound, willow, Moderr, and yarrow aromatic waters, whose major constituents are dill ether, menthol, phenethyl alcohol, linalool, or camphor. Carvacrol was also detected in all of these aromatic waters except for Taadol.

According to both hierarchical cluster analysis and K-means, all the aromatic waters that contain thymol as the major constituent make a cluster that includes some subcultures (Figure 3, Table 4). Lemon balm, Persian leek, Chehelgeyah, and ginger aromatic waters make a distinct subcluster. The reason behind the observed similarities between these aromatic waters based on clustering analysis was the presence of comparable amounts of thymol (41.45% to 64.74%) and carvacrol (26.2% to 30.49%) in these aromatic waters. The certain similarity of fennel, Taadol, and chamomile was also seen by hierarchical cluster analysis, which might be due to the presence of comparable amounts of thymol as the major constituent (42.2%, 44.98%, and 34.35%), carvone (14.53%, 15.84%, and 8.12%), and carvacrol (6.71%, 4.12%, and 4.65%) in these 3 aromatic waters.

In contrast to other aromatic waters, thymol was found in zero or trace amount in willow and yarrow aromatic waters. Their major constituents are also completely different from others, and they were clustered at distinct groups.

Based on clustering methods applied in this study, although some similarities could be found, composition of white horehound, Moderr, willow, and yarrow aromatic waters revealed more differences than others. The main components of these aromatic waters were menthol (36.27%, white horehound), linalool (26.69%, Moderr), camphor (41.88, yarrow), and phenethyl alcohol (55.73%, willow).

Literature Survey

We could not find any reports on chemical constituents of aromatic waters of the mentioned plants in Table 1. Thus, it was not possible to compare the results, but the major components of the reported essential oils are summarized in Table 5. For most of these aromatic waters including lemon balm, stinging nettle, valerian, fennel, Persian leek, ginger, and white horehound, the major components in the aromatic waters and
essential oils are completely different. Different allyl sulfides were reported as the major components of the Persian leek essential oils, but none of these components were detected in the aromatic waters in the present study. In the case of dill essential oil, the major components were reported to be phellandrene, limonene, myristicin, followed by dill ether. In the present study, the major compound in dill aromatic water was dill ether (40.9%), followed by thymol and carvacrol. On the other hand,

Plant Name	Profile of Essential Oils Reported in Literature for Plants Used to Prepare Aromatic Waters	References
Chamomile	Bisabolol oxide A and B, bisabolon oxide A, (E)-farnesene, α-bisabolol, chamazulene	References
Dill	Carvone, trans-dihydrocarvone, dill ether, α-phellandrene, limonene	References
Fennel	Limonene, β-pinene, myrcene, fenchone	References
Ginger	Geranial, α-zingiberene, (E,E)-farnesene, neral, α-curcumene	References
Lemon balm	Citronellal, citral, germacrene, beta-caryophyllene, beta-caryophyllene, citronellal,	References
Parsley	Myrcene, myristicin, α-pinene, β-phellandrene, p-menthaquinine, dillapiole, camphor	References
Persian cumin	Thymol, α-cymene, γ-terpinene, trimethylene dichloride, β-pinene, 1-(1-cyclohexenyl)	References
Persian leek	Carvacrol, carvone, α-pinene, limonene, γ-terpinene, linalool, carvenone, p-cymene	References
Persian hogweed	Dpropyl disulfide, dipropyl trisulfide, methyl propyl disulfide, dimethyl disulfide,	References
Stinging nettle	Neophytadiene, butyl tetradecyl ester, bis(2-ethyl hexyl) maleate, 1,2-benzenedichloroxyc acid	References
Valerian	Patchouliol, α-pinene, β-humulene	References
White horehound	4,8,12,16-Tetramethyl heptadecan-4-ol, Germacrene D-4-ol and α-pinene, eudesmol,	References
Willow	Salix aegyptiaca leaf: 1,4-Dimethoxybenzene, phenylethyl alcohol, carvone	References
Yarrow	Sabine, 1,8-cineole, borneol, bornyl acetate, α-pinene, β-pinene, terpinine-4-ol	References

Plant Name	Profile of Essential Oils Reported in Literature for Plants Used to Prepare Polyherbal Aromatic Waters	References
Chehelgeyah	Persian cumin Mentioned above	References
Ajowan caraway	Thymol, α-cymene, γ-terpinene	References
Bigarade orange	Limonene, Myrcene, Octane	References
Licorice	2-Ethoxy-1-propanol, 4-terpineol, hexanal	References
Lavender	Linalool, linyl acetate, 1,8-cineole, ocimene, terpinen-4-ol, camphor	References
Chamomile	Mentioned above	References
Mint	Piperitene oxide, menthone, isomenthone	References
Summer savory	γ-Terpinene, carvacrol, thymol, ε-methyl	References
Valerian	Mentioned above	References
Saatar	Thymol, carvacrol, linalool	References
Moderr	Caltrop Whole plant: α-Amlyn, n-hexadecanoic acid, 9,12,15-octadecanoic acid	References
Camelthorn	Leaf oil: drimenol, 9-octylheptadecane, 4-hexyl-2,5-dihydro-2,5-dioxo-3-furanocatic acid	References
Cherry stalk	Profile of volatile components was not found in literatures	References
Chicory	Octane, n-nonadecane, n-hexadecane, pentadecanone	References
Corn silk	cis-Terpinol, acor-4-ene, 1,6,11-oxido, citronellol	References
Willow	Mentioned above	References
Taadol	Celery Leaf: 4-Chloro-4,4-dimethyl-3-(1-imidazolyl)-valerophenone, 1-dodecanol, 9-octadec-12-ynoic acid	References
Olive	Leaf: 2-hexenal, α-farnesene, linalool	References
Stinging nettle	Profile of volatile components was not found in literatures	References
Saatar	Mentioned above	References
Walnut	Husks: (E)-4,8-dimethyl-1,3,7-nonatriene, pinocarvone, pinocarveol, myrtanol, myrtenol, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatriene, caryophyllene epoxide, verbdenol	References
the major components of parsley leaf (myristicin) and willow (phenylethyl alcohol) were similar in aromatic waters and reported essentials but their amount as well as nonmajor constituents were different (Tables 3 and 5). As was expected, comparing the results of this study on chemical composition of the aromatic waters (Table 3) with the previous reports on the

Plant name	Observed effects	Plant preparation	Study type	Reference
Chamomile	Relieving the intensity of mastalgia associated with premenstrual syndrome	Capsule 100 mg	Clinical trial	61
	Treatment of menopausal symptoms	Chewable tablets	Clinical trial	62
	Improving the symptoms of vaginitis	Chamomile douche	Clinical trial	63
	Treatment of polycystic ovary syndrome (PCOS)	Alcoholic extract	In vivo	64, 65
	Pain relief effect with and without physiological doses of sex hormones	Hydroalcoholic extract	In vivo	66
	Decrease in the serum level of estrogen	Hydroalcoholic extract	In vivo	67
	Decline in the mean number of primary and graafian follicles	Aqueous extract	In vitro	68
Dill	Treatment of premenstrual syndrome and dysmenorrheal	Aqueous extract or tea	Clinical trial	61, 69-71
	Reducing the pain severity in primary dysmenorrhea	Dill powder	Clinical trial	72
	Facilitating delivery, prevention of post term pregnancy	Seed infusion	Clinical trial	73-75
	Regulating menstrual cycle, increasing the duration of the estrous cycle	Aqueous extract	In vivo	76
	Contraceptive effects on myometer, enhanced releasing of oxytocin	Seed extracts	In vivo	77, 78
	Infertility induction	Seed fractions	In vivo	79-81
	Estrogenic activities	Ethanolic extracts	In vitro	82
Fennel	Treatment of primary dysmenorrhea	Seed extracts	Clinical trial	69, 83-87
	Reducing the severity of dysmenorrhea	Essential oil (oral drop)	Clinical trial	88, 89
	Inhibitory effect on the response of uterine to oxytocin and PGE2	Essential oil	In vivo	90
	Inducing folliculogenesis	Alcoholic extract	In vivo	91
	Effects on blood sex hormones and reproductive tissues	Alcoholic extract	In vivo	89, 92, 93
	Effects on uterine contraction	Essential oil	In vivo	90
	Effects on fertility	Alcoholic extract	In vivo	91
Ginger	Treatment of morning sickness during pregnancy	Extract or plant powder	Clinical trial	27, 95-102
	Treatment of postoperative nausea and vomiting after gynecological surgery	Extract or plant powder	Clinical trial	103, 104
	Treatment of primary dysmenorrhea	Extract or plant powder	Clinical trial	105-110
	Effects on uterus muscles	Hydroalcoholic extract	In vivo	111, 112
	Effects on sexual behavior and fertility	Hydroalcoholic extract	In vivo	113-115
	Effects on the fetal development	Hydroalcoholic extract	In vivo	116, 117
Lemon balm	Emmenagogue (stimulate menstruation)	Aqueous extract	In vivo	118, 119
Persian hogweed	Inhibitory effects on folliculogenesis and cause infertility in females	Hydroalcoholic extract	In vivo	120
Persian leek	Testosterone level	Hydroalcoholic extract	In vivo	121
Stinging nettle	Antimicrobial and antifungal effects (possibly useful for vaginosis)	Hydroalcoholic extract	In vitro	122, 123
Valerian	Improves the quality of sleep in women with menopause	Hydroalcoholic extract	In vitro	124
	Treatment for dysmenorrhea	Hydroalcoholic extract	In vitro	125
	Destructive effect on the ovarian tissue	Aqueous extract	Clinical trial	126
	Anti proliferative activities against breast cancer cell lines (MCF-7)	Aqueous extract	Case report	127
	Positive effect on luteinizing hormone or testosterone level	Hydroalcoholic extract	In vivo	128-130
	Positive effects on spermatozoa sperm parameters	Hydroalcoholic extract	In vivo	131
	Follicular development and induction of estrus	Hydroalcoholic extract	In vivo	132
White horehound	Estrogen like activity	Alcoholic extract	In vivo	137
Yarrow	Reducing fetal weight and increasing placental weight (unsafe during pregnancy)	Hydroalcoholic extract	In vivo	139
	Estrogenic/antiestrogenic activity	Aqueous extract	In vivo	140
	Estrogenic activity	Aqueous extract from leaves	In vitro	141, 142
plants' essential oils (Table 5) shows that there is a significant difference between aromatic waters and essential oil components. This difference may arise from different water solubility of the volatile components. It is possible that some of these volatile components were not entered in water during the preparation procedure of aromatic waters. Also, it can be concluded that it is essential to consider different pharmacological and biological properties of the aromatic waters due to different chemical compositions compared with the pure co-distilled essential oils.

Different biological activities of the plants used to prepare the identified aromatic waters on the reproductive system or sexual hormone conditions were investigated in the literature and summarized in Table 6. We could not find any report on hormonal activity or effects on reproductive system conditions for any of the aromatic waters. But, for some of these plants including fennel, dill, chamomile, and ginger, some clinical trial have been reported on their essential oils or different extracts. Of course, we cannot compare the observed effects of the essential oils or other extracts of these plants with their aromatic waters due to differences in constituents as well as their concentrations but these reports might strengthen the hypothesis of the beneficial effects for these aromatic waters on women’s reproductive and hormonal health conditions.

For some of these plants mentioned in Table 6, different aqueous, ethanol, and methanol extracts or plant powders were investigated and it is not clear that if the volatile components had a role in the observed effects. On the other hand, for some others listed in Table 6, the medicinal parts that were used in these studies are different from those that are used to prepare the aromatic waters in Persian ethnomedicine. For oriental plane we could not find any related report. The present investigation was not intended to evaluate the efficacy of these aromatic waters, but high consumption of these aromatic waters in Persian folk medicine and nutrition culture might be related to their efficacy.

Conclusion

This article introduced some aromatic waters that are used for women’s reproductive and hormonal health conditions in Persian folk medicine with different popularity and market values. Almost in all investigated aromatic waters the chemical composition was remarkably different from the essential oils of the plants that were used for their preparations. Clustering these aromatic waters using SPSS software revealed that despite the differences in the plants genus, family, and the medicinal parts of the plants that are used to prepare them, some similarity can be identified in their chemical compositions. In most cases thymol, carvacrol, and carvone were the major constituents and may have a role in their biological activities.

Scientific investigation of these aromatic waters may lead to the development of some functional beverages and soft drinks as a safe way of administration of essential oils or even new lead components or therapeutic agents.

Authors’ Note

This study was part of the PharmD thesis project of Mehdi Afifi.

Acknowledgments

The authors want to thank Nahal Shamaeezadeh (PharmD student at Shiraz University of Medical Sciences) for assistance in some parts of the extracting procedures.

Author Contributions

AH wrote the draft and contributed in guidance, data collection, and revisions of the final version of the article. HE and MA contributed to data collection, analyzing data, and revising the final version of the article.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was funded by Shiraz University of Medical Sciences (Grant No. 92-01-70-7067).

Ethical Approval

This study was an experimental and laboratorial work and did not require ethical approval.

References

1. Hardy ML. Herbs of special interest to women. *J Am Pharm Assoc (Wash).* 1999;40:234-242.
2. Tesch BJ. Herbs commonly used by women: an evidence-based review. *Am J Obstet Gynecol.* 2003;188:S44-S55.
3. Nordeng H, Havnen GC. Use of herbal drugs in pregnancy: a survey among 400 Norwegian women. *Pharmacoepidemiol Drug Saf.* 2004;13:371-380.
4. Ernst E. Herbal medicinal products during pregnancy: are they safe? *BJOG.* 2002;109:227-235.
5. Adams J, Sibbritt D, Lui CW. The use of complementary and alternative medicine during pregnancy: a longitudinal study of Australian women. *Birth.* 2011;38:200-206.
6. Hamedi A, Abbasi F, Khoshnoud M, et al. Reproductive toxicity of *Cassia absus* seeds in female rats: possible progesteronic properties of chaksine and b sitosterol. *Pharm Chem J.* 2015;49:220-226.
7. Sağdıç O. Sensitivity of four pathogenic bacteria to Turkish thyme and oregano hydrosols. *LWT Food Sci Technol.* 2003;36:467-473.
8. Aazza S, Lyoussi B, Miguel MG. Antioxidant activity of eight hydrosols from Morocco. *Asian J Plant Sci.* 2012;11(3):137-142.
9. Schorr S. Bioresonance and phytotherapeutic hydrosols in healing. http://www.bioponic.com/pdfs/Bioresonance.pdf. Accessed June 16, 2017.
10. Hamedi A, Moheimani SM, Sakhteman A, Etemardfard H, Moein M. An overview on indications and chemical composition of aromatic waters (hydrosols) as functional beverages in Persian nutrition culture and folk medicine for hyperlipidemia and cardiovascular conditions. *J Evid Based Complementary Altern Med.* 2017;22(4):544-561. doi:10.1177/215658721686460
11. Aghili Shirazi S. Qarabadin-e-Kabir (in Persian). Tehran, Iran: Ostad Allah Qoli Khan Qajar; 1772/1855.
12. Catty S. Hydrosoles: The Next Aromatherapy. Rochester, VT: Inner Traditions/Bear; 2001.
13. Price L, Price S. Understanding Hydrolates: The Specific Hydrosoles for Aromatherapy: A Guide for Health Professionals. London, England: Churchill Livingstone; 2004.
14. Sedaghatzadeh Z, Tashkorrian V, Mobasher M, et al. Province of Fars (in Persian). Tehran, Iran: Shahab; 2014.
15. Moein M, Zarshenas MM, Delnavaz S. Chemical composition analysis of rose water samples from Iran. Pharm Biol. 2014;52:1358-1361.
16. Hamedi A, Mohagheghzadeh A, Rivaz S. Preliminary pharmacognostic evaluation and volatile constituent analysis of spathe of Phoenix dactylifera L. (Taroneh). Pharmacogn J. 2013;5(2):83-86.
17. Mojab F, Hamedi A, Nickavar B, et al. Hydrodistilled volatile constituents of the leaves of Daucus carota L. subsp. sativus (Hoffman.) Arcang. (Apiaceae) from Iran. J Essent Oil Bearing Plants. 2008;11:271-277.
18. Heravi MG. Qarabadin-e-Salehi. Tehran, Iran: Dar-o-khalafeh (Litograph in Persian). 1765.
19. Hamedi A, Zarshenas MM, Sohrabpour M, Zargaran A. Herbal medicinal oils in traditional Persian medicine. Pharm Biol. 2013; 51:1208-1218.
20. Heinrich M, Edwards S, Moerman DE, Leonti M. Ethnopharmacological field studies: a critical assessment of their conceptual basis and methods. J Ethnopharmacol. 2009;124:1-17.
21. Mnayer D, Fabiano-Tixier AS, Petitcolas E, et al. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules. 2014;19:20034-20053.
22. Sharopov FS, Wink M, Gulmurodov IS, Isupov SJ, Zhang HJ, Setzer WN. Composition and bioactivity of the essential oil of Anethum graveolens L. from Tajikistan. Int J Med Aromatic Plants. 2013;3:125-130.
23. Amiri S, Sharafzadeh S. Essential oil components of German chamomile cultivated in Firoozabad, Iran. Orient J Chem. 2014;30:365-367.
24. Srivastava JK, Shankar E, Gupta S. Chamomile: a herbal medicine of the past with a bright future. Mol Med Rep. 2010;3:895-901.
25. El Ouatriachi E, Lahiti N, Bouyander A, et al. Chemical composition and antioxidant activity of essential oils and solvent extracts of Foeniculum vulgare Mill. from Morocco. J Chem Pharm Res. 2014;6:743-748.
26. Singh G, Kapoor IP, Singh P, de Heluani CS, de Lampasona MP, Catalan CA. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food Chem Toxicol. 2008;46:3295-3302.
27. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol. 2008;46:409-20.
28. Geiger JL. The essential oil of ginger, Zingiber officinale, and anaesthesia. Int J Aromatherapy. 2005;15:7-14.
29. Bağdat RB, Cosge B. The essential oil of lemon balm (Melissa officinalis L.), its components and using fields. J Fac Agric OMU. 2006;21:116-121.
30. Nawol O, Ahmed H. Phytochemical analysis and antimicrobial bioactivity of the Algerian parsley essential oil (Petroselinum crispum). Afr J Microbiol Res. 2014;8:1157-1169.
31. Begum J, Bhuiyan MNI, Chowdhury JU, et al. Antimicrobial activity of essential oil from seeds of Carum carvi and its composition. Bangladesh J Microbiol. 2008;25(2):85-89.
32. Johri R. Cuminum cyminum and Carum carvi: an update. Pharmacogn Rev. 2011;5(9):63.
33. Sefidkon F, Dabiri M, Mohammad N. Analysis of the oil of Heracleum persicum L. (seeds and stems). J Essent Oil Res. 2004;16: 296-298.
34. Lahigi SH, Amini K, Moradi P, et al. Investigating the chemical composition of different parts extract of bipod nettle Urtica dioica L. in Tonekabon region. Physiology. 2011;2:337-340.
35. Wang J, Zhao J, Liu H, et al. Chemical analysis and biological activity of the essential oils of two valerianaceous species from China: Nardostachys chinensis and Valeriana officinalis. Molecules. 2010;15:6411-6422.
36. Safaralie F, Fatemi S, Sefidkon F. Essential oil composition of Valeriana officinalis L. roots cultivated in Iran: comparative analysis between supercritical CO2 extraction and hydrodistillation. J Chromatogr A. 2008;1180:159-164.
37. Abadi A, Hassan A. Essential oil composition and antioxidant activity of Marrubium vulgare L. growing wild in Eastern Algeria. Int Lett Chem Phys Astronom. 2013;9:17-24.
38. Karimi I, Hayatgheybi H, Kamalak A, et al. Chemical composition and effect of an essential oil of Salix aegyptiaca L., Salicae (musk willow), in hypercholesterolemic rabbit model. Rev Bras Farmacogn. 2011;21:407-414.
39. Nadim M, Malik AA, Ahmad J, et al. The essential oil composition of Achillea millefolium L. cultivated under tropical condition in India. World J Agric Sci. 2011;7:561-565.
40. Oroojalian F, Kasra-Kermanshahi R, Azizi M, et al. Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chem. 2010;120:765-770.
41. Kavoosi G, Tafkry A, Ebdam AA, et al. Evaluation of antioxidant and antimicrobial activities of essential oils from Carum corymbus and Ferula assafoetida latex. J Food Sci. 2013;78: T356-T361.
42. Moraes TM, Kushima H, Moleiro FC, et al. Effects of limonene and essential oil from Citrus aurantium on gastric mucosa: role of prostaglandins and gastric mucus secretion. Chem Biol Interact. 2009;180:499-505.
43. Goyal P, Saha S, Lahiri S, et al. Effect of γ-irradiation on the volatile compounds of licorice (Glycyrrhiza uralensis Fischer). Eur Food Res Technol. 2008;226:577-582.
44. Farag MA, Wessjohann LA. Volatiles profiling in medicinal licorice roots using steam distillation and solid-phase microextraction (SPME) coupled to chemo metrics. J Food Sci. 2012;77: C1179-C1184.
46. Gulluce M, Sahin F, Sokmen M, et al. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem. 2007;103:1449-1456.

47. Nikšić H, Bešović EK, Makarević E, et al. Chemical composition, antimicrobial and antioxidant properties of Mentha longifolia (L.) Huds. essential oil. J Health Sci. 2012;2:192-200.

48. Khajeh M. Optimization of process variables for essential oil components from Satureja hortensis by supercritical fluid extraction using Box–Behnken experimental design. J Supercrit Fluids. 2011;55:944-948.

49. Gursoy UK, Gursoy M, Gursoy OV, et al. Anti-biofilm properties of Satureja hortensis L. essential oil against periodontal pathogens. Anaerobe. 2009;15:164-167.

50. Saei-Dehkordi SS, Tajik H, Argand M, et al. Chemical composition and antioxidant activity and larvicidal effects of essential oil from leaves and nonvolatile extracts of Egyptian corn silk (Zea mays L.). J Agric Food Chem. 2007;55:9124-9127.

51. Abirami P, Rajendran A. GC-MS analysis of Angelica sinensis and Matricaria chamomila L. essential oil. J Res Med Sci. 2010;15:164-167.

52. Niksíč H, Besvíček EK, Makarevič E, et al. Chemical composition, antiinflammatory and analgesic activity of essential oil of Alhagi maurorum. Vet Med Nauki. 2012;67:205-209.

53. Farag MA. Headspace analysis of volatile compounds in leaves of Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food Chem Toxicol. 2010;48:1562-1567.

54. El-Ghorab A, El-Massy KF, Shimamoto T. Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). J Agric Food Chem. 2007;55:9124-9127.

55. Flath RA, Forrey RR, John JO, et al. Volatile components of corn silk (Zea mays L.): possible Heliotis zeas (Boodie) attractants. J Agric Food Chem. 1978;26:1290-1293.

56. Kadri A, Zaraï Z, Bekir A, et al. Chemical composition and antioxidant activity of Marrubium vulgare L. essential oil from Tunisia. Afr J Biotechnol. 2013;10:3908-3914.

57. Nagella P, Ahmad A, Kim SJ, et al. Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharm Immunol. 2012;34:205-209.

58. Flamini G, Cioni PL, Morelli I. Volatiles from leaves, fruits, and virgin oil from Olea europaea Cv. Olibrastra Seggianese from Italy. J Agric Food Chem. 2003;51:1382-1386.

59. Buttery RG, Light DM, Nam Y, et al. Volatile components of green walnut husks. J Agric Food Chem. 2000;48:2858-2861.

60. Farag MA. Headspace analysis of volatile compounds in leaves from the Juglandaceae (walnut) family. J Essent Oil Res. 2008;20:323-327.

61. Sharifi F, Simbar M, Mojab F, Majd HA. Comparison of the effects of Matricaria chamomila (Chamomile) extract and mefenamic acid on the intensity of mastalgia associated with premenstrual syndrome. Womens Health Bull. 2014;12:120042.

62. Kupfersztain C, Rotem C, Fagot R, et al. The immediate effect of natural plant extract, Angelica sinensis and Matricaria chamomilla (Chimex) for the treatment of hot flushes during menopause. A preliminary report. Clin Exp Obstet Gynecol. 2002;30:203-206.

63. Benetti C, Manganelli F. Clinical experiences in the pharmacological treatment of vaginitis with a camomile-extract vaginal douche. Minerva Ginecol. 1985;37:799-801.

64. Farideh ZZ, Bagher M, Ashraf A, Akram A, Kazem M. Effects of chamomile extract on biochemical and clinical parameters in a rat model of polycystic ovary syndrome. J Reprod Infertil. 2010;11:169-174.

65. Sarmast S, Zafari Z, Minaei B, et al. Female infertility: efficacy of camomile extracts on polycystic ovary syndrome in rat. Int J Fertil Steril. 2010;4:80.

66. Kesmati M, Barfinejad N, Moghadam HF. Effect of Matricaria recutita on acute pain in the presence and absence of sex hormones. J Res Med Sci. 2007;12:190-197.

67. Johari H, Sharifi E, Mardan M, et al. The effects of a hydroalcoholic extract of Matricaria chamomilla flower on the pituitary-gonadal axis and ovaries of rats. Int J Endocrinol Metab. 2011;9:330-334.

68. Shipchliev T. Uterotonic action of extracts from a group of medicinal plants. Vet Med Nauki. 1980;18(4):94-98.

69. Yazdani M, Shahrami M, Hamedi B. Comparison of fennel and chamomile extract and placebo in treatment of premenstrual syndrome and dysmenorrhea. Bimonth J Hormozgan Univ Med Sci. 2004;8(1):57-61.

70. Sharifi F, Simbar M, Mojab F, et al. Comparison of the effects of Matricaria chamomila (chamomile) extract and mefenamic acid on the intensity of premenstrual syndrome. Complement Ther Clin Pract. 2014;20(1):81-88.

71. Jenabi E, Ebrahimzadeh S. Chamomile tea for relief of primary dysmenorrhea. Iran J Obstet Gynecol Infertil. 2010;3(1):39-42.

72. Heidarifar R, Mehran N, Heidari A, Tehran HA, Koohbor M. Effect of dill (Anethum graveolens) on the severity of primary dysmenorrhea in compared with mfenamic acid: a randomized, double-blind trial. J Res Med Sci. 2014;19:326-330.

73. Zagami SE, Golmakan N, Gabirian M, et al. Effect of dill (Anethum graveolens Linn.) seed on uterus contractions pattern in active phase of labor. Indian J Tradit Knowedge. 2012;11:602-606.

74. Mirmolaee ST, Hekmatzadeh SF, Kazemnazhad A, et al. Evaluating the effects of dill (Anethum graveolens) seed on the duration of active phase and intensity of labour pain. J Herb Med. 2015;5:26-29.

75. Hekmatzadeh SF, Bazarganipour F, Malekzadeh J, et al. A randomized clinical trial of the efficacy of applying a simple protocol of boiled Anethum graveolens seeds on pain intensity and duration of labor stages. Complement Ther Med. 2014;22:970-976.

76. Monsefi M, Ghasemi M, Bahaoddini A. The effects of Anethum graveolens L. on female reproductive system. Phytother Res. 2006;20:865-868.

77. Al-Snafi A. The pharmacological importance of Anethum graveolens—a review. Int J Pharm Pharm Sci. 2014;6(4):11-13.

78. Gharib AM, Mard S, Farboud Y. Effect of Anethum graveolens fruit extract on rat uterus contractions. Iran J Basic Med Sci. 2005;8:263-270.

79. Malihezaman M, Mojaba M, Elham H, et al. Anti-fertility effects of different fractions of Anethum graveolens L. extracts on female rats. Afr J Tradit Complement Alternat Med. 2012;9:336-341.
80. Monsefi M, Zahmati M, Masoudi M, Javidnia K. Effects of *Anethum graveolens* L. on fertility in male rats. *Eur J Contracept Reprod Health Care*. 2011;16:488-497.

81. Monsefi M, Lohrasbi P, Abpaizar K, Bakhtiar S. Anti-implantation and anti-fertility potentials of *Anethum graveolens* L. extracts in rats [published online April 20, 2015]. *Toxicol Environ Chem*. doi:10.1080/02772248.2015.1027204.

82. Saeed IA, Ali L, Jabeen A, Khasawneh M, Rizvi TA, Ashraf SS. Estrogenic activities of ten medicinal herbs from the Middle East. *J Chromatogr Sci*. 2013;51:33-39.

83. Moslemi L, Bekhradi R, Galini Moghaddam T, et al. Comparative effect of fennel extract on the intensity of primary dysmenorrhea. *Afr J Pharm Pharmacol*. 2012;6:1770-1773.

84. Delaran M, Jafari F. The effect of fennel on the pre-menstrual syndrome. *Knowledge Health*. 2011;6(1):1-6.

85. Moslemi L, Aghamohammadi A, Bekhradi R, et al. Comparison of vitamin E and fennel extract on duration of pain in primary dysmenorrhea. *Knowledge Health*. 2012;7(2):61-64.

86. Asti P, Delfan B, Masudi M, et al. Ibuprofen versus fennel for the relief of postpartum pain: a randomized controlled trial. *J Fam Plann Reprod Health Care*. 2011;15:221-226.

87. Delaram M, Kheiri S, Hodjati MR. Comparing the effects of echinophora- platyloba, fennel and placebo on pre-menstrual syndrome. *J Reprod Infertil*. 2011;12:221-226.

88. Bokaie M, Farajkhoda T, Enjezab B, et al. Oral fennel (*Foeniculum vulgare*) drop effect on primary dysmenorrhea: effectiveness of herbal drug. *Iran J Nurs Midwifery Res*. 2013;18(2):128.

89. Mirabolghasemi G, Alizadeh F. The effect of hydroalcoholic extract of fennel (*Foeniculum vulgare*) seed on serum levels of sexual hormones in female Wistar rats with polycystic ovarian syndrome (PCOS). *AMUJ*. 2014;17(5):70-78.

90. Ostad S, Soodi M, Sharifzadeh M, et al. The effect of fennel essential oil on uterine contraction as a model for dysmenorrhea, pharmacology and toxicology study. *J Ethnopharmacol*. 2001;76:299-304.

91. Khazaee M, Montaseri A, Khazaee MR, Khanahmadi M. Study of *Foeniculum vulgare* effect on folliculogenesis in female mice. *Int J Fertil Steril*. 2011;5:122-127.

92. Dehghani F, Panjeshahin M, Mirzaee Z, et al. Effect of *Foeniculum vulgare* organic extract on blood sex hormones and reproductive tissues of male rats. *J Appl Anim Res*. 2005;27(1):17-20.

93. Sadeghpour N, Khaki AA, Najafpour A, et al. Study of *Foeniculum vulgare* (fennel) seed extract effects on serum level of estrogen, progesterone and prolactin in mouse. *Crescent J Med Biol Sci*. 2015;2(1):23-27.

94. Fallah H, Kianbakht S. Study on effects of chicory (*Cichorium intybus* L.), fennel (*Foeniculum vulgare* Mill.) and dill (*Anethum graveolens* L.) on fertility and neonatal gender in rats. *J Med Plant*. 2012;11(9):192-196.

95. Ernst E, Pittler M. Efficacy of ginger for nausea and vomiting: a systematic review of randomized clinical trials. *Br J Anaesth*. 2000;84:367-371.

96. Keating A, Chez RA. Ginger syrup as an antiemetic in early pregnancy. *Altern Ther Health Med*. 2002;8(5):89-91.

97. Vutyavanich T, Kraisarin T, Ruangsr I. Ginger for nausea and vomiting in pregnancy: randomized, double-masked, placebo-controlled trial. *Obstet Gynecol*. 2001;97:577-582.

98. Smith C, Crowther C, Willson K, Hotham N, McMillan V. A randomized controlled trial of ginger to treat treat vomiting in pregnancy. *Obstet Gynecol*. 2004;103:639-645.

99. Borrelli F, Capasso R, Aviello G, et al. Effectiveness and safety of ginger in the treatment of pregnancy-induced nausea and vomiting. *Obstet Gynecol*. 2005;105:849-856.

100. Breyer E. A literature review of the effectiveness of ginger in alleviating mild-to-moderate nausea and vomiting of pregnancy. *J Midwifery Womens Health*. 2005;50(1):e1-e3.

101. Pangrojpaw D, Somprasit C, Chanthasenanont A. A randomized comparison of ginger and dimenhydrinate in the treatment of nausea and vomiting in pregnancy. *J Med Assoc Thai*. 2007;90:1703-1709.

102. Choi J, Han J, Ahn H, et al. Assessment of fetal and neonatal outcomes in the offspring of women who had been treated with dried ginger (*Zingiberis rhizoma* siccus) for a variety of illnesses during pregnancy. *J Obstet Gynecol*. 2015;35:125-130.

103. Bone M, Wilkinson D, Young J, et al. Ginger root—a new antiemetic. The effect of ginger root on postoperative nausea and vomiting after major gynaecological surgery. *Anaesthesia*. 1990;45:669-671.

104. Kalava A, Darji SJ, Kalstein A, et al. Efficacy of ginger on intraoperative and postoperative nausea and vomiting in elective cesarean section patients. *Eur J Obstet Gynecol Reprod Biol*. 2013;169:184-188.

105. Ozgoli G, Goli M, Moattar F. Comparison of effects of ginger, mefenamic acid, and ibuprofen on pain in women with primary dysmenorrhea. *J Altern Complement Med*. 2009;15:129-132.

106. Rahnama P, Montazeri A, Huseini HF, et al. Effect of *Zingiber officinale* R. rhizomes (ginger) on pain relief in primary dysmenorrhea: a placebo randomized trial. *BMC Complement Altern Med*. 2012;12:92.

107. Kashefi F, Khajehi M, Tabatabaieiehr M, et al. Comparison of the effect of ginger and zinc sulfate on primary dysmenorrhea: a placebo-controlled randomized trial. *Pain Manag Nurs*. 2014;15:826-833.

108. Kashefi F, Khajehi M, Alavinia M, et al. Effect of ginger (*Zingiber officinale*) on heavy menstrual bleeding: a placebo-controlled, randomized clinical trial. *Phytother Res*. 2015;29:114-119.

109. Daily JW, Zhang X, Kim DS, et al. Efficacy of ginger for alleviating the symptoms of primary dysmenorrhea: a systematic review and meta-analysis of randomized clinical trials. *Pain Med*. 2015;16:2243-2255.

110. Shirvani MA, Motahari-Tabari N, Alipour A. The effect of mefenamic acid and ginger on pain relief in primary dysmenorrhea: a randomized clinical trial. *Arch Gynecol Obstet*. 2015;291:1277-1281.

111. Ghayur MN, Gilani AH. Inhibitory activity of ginger rhizome on airway and uterine smooth muscle preparations. *Eur Food Res Technol*. 2007;224:477-481.

112. Buddhakala N, Talubmook C, Srijotha P, et al. Inhibitory effects of ginger oil on spontaneous and PGF2alpha-induced contraction of rat myometrium. *Planta Med*. 2008;74:385-391.

113. Khaki A, Farnam A, Badie AD, et al. Treatment effects of onion (*Allium cepa*) and ginger (*Zingiber officinale*) on sexual behavior of rat after inducing an antiepileptic drug (lamotrigine). *Balkan Med J*. 2012;29:236-242.
114. Shalaby M, Hamowieh A. Safety and efficacy of Zingiber officinale roots on fertility of male diabetic rats. *Food Chem Toxicol*. 2010;48:2920-2924.

115. Rezk R, Ibrahim M, Darwish M. Efficacy of ginger in alleviating the severe radiation-induced biochemical, histological and embryological impactions pregnant female albino rats. *Isotope Radiat Res*. 2005;37:625-645.

116. Wilkinson JM. Effect of ginger tea on the fetal development of Sprague-Dawley rats. *Reprod Toxicol*. 2000;14:507-512.

117. Shanoon A. Effects of *Zingiber officinale* powder on semen characteristic and blood serum sex hormones concentration in broilers breeder male. *Int J Poult Sci*. 2011;10:863-866.

118. Gardiner P. Lemon balm (*Melissa officinalis*): The Longwood Herbal Task Force; 2000 [updated June 24, 2003; cited 2017]. Available from: http://www.mcp.edu/herbal/default.htm.

119. Weidner MS, Sigwart K. Investigation of the teratogenic potential of a *Zingiber officinale* extract in the rat. *Reprod Toxicol*. 2000;15:75-80.

120. Hemati A, Azarnia M, Nabiuni M, et al. Effect of the hydroalcoholic extract of *Urtica dioica* (Golpar) on folliculogenesis in female Wistar Rats. *Cell J (Yakhteh)*. 2012;14(1):47.

121. Firouzabadi FB, Mirhosseini M. Effect of Persian hogweed (*Heracleum persicum*) on the morphological changes in mice testes and the level of hormone testosterone. *Razi J Med Sci*. 2012;19(99):18-24.

122. Hughes BG, Lawson LD. Antimicrobial effects of *Allium sativum* L. (garlic), *Allium ampeloprasum* L. (elephant garlic), and *Allium cepa* L. (onion), garlic compounds and commercial garlic supplement products. *Phytother Res*. 1991;5:154-158.

123. Sadeghi M, Zolfaghari B, Senateiro M, et al. Antifungal cinnamic acid derivatives from Persian leek (*Allium ampeloprasum* subsp. *persicum*). *Phytochem Lett*. 2013;6:360-363.

124. Najafipour F, Rahimi AO, Mobaseri M, et al. Therapeutic effects of stinging nettle (*Urtica dioica*) in women with hyperandrogenism. *Int J Curr Res Acad Rev*. 2014;2(7):153-160.

125. Souriijii A. Comparison of the effect of mefenamic acid and the hydroalcoholic extract of *Urtica dioica* on the volume of heavy menstrual bleeding in students at Azad University of Babol (2011-2012). *AMUJ*. 2013;16(4):27-36.

126. Sahin M, Yilmaz H, Gursoy A, Demirel AN, Tutuncu NB, Guvenner ND. Gynaecomastia in a man and hyperoestrogenism in a woman due to ingestion of nettle (*Urtica dioica*). *N Z Med J*. 2007;120(1265):U2803.

127. Fattahi S, Ardekani AM, Zabihi E, et al. Antioxidant and apoptotic effects of an aqueous extract of *Urtica dioica* on the MCF-7 human breast cancer cell line. *Asian Pac J Cancer Prev*. 2013;14:5317-5323.

128. Pourrahmadi M, Bagheri M, Karimi Jashi H, et al. The effect of hydroalcoholic extract *Urtica dioica* on concentrations of sex hormones in adult male rats. *PARS J Med Sci*. 2013;10(4):29-34.

129. Morovvat H, Najafzadehvarzi H, Rashidi K. Effect of *Urtica dioica* extract on histological and histometrical changes of testis of hamster after testosterone administration. *Zahedan J Res Med Sci*. 2013;15(11):4-8.

130. Ghafari S, Balajadeh BK, Golalipour M. Effect of *Urtica dioica* L. (*Urticaceae*) on testicular tissue in STZ-induced diabetic rats. *Pak J Biol Sci*. 2011;14:798-804.

131. Jalili C, Salahshoor MR, Nasiri A. Protective effect of *Urtica dioica* L against nicotine-induced damage on sperm parameters, testosterone and testis tissue in mice. *Iran J Reprod Med*. 2014;12:401-408.

132. Mehrota S, Hoque M, Agarwal S. Follicular development and induction of estrus in anestrous goats by medicinal plants. *Indian Vet J*. 2009;86:527-528.

133. Taavoni S, Ekbatani N, Kashaniyan M, et al. Effect of valerian on sleep quality in postmenopausal women: a randomized placebo-controlled clinical trial. *Menopause*. 2011;18:951-955.

134. Mirabi P, Dolutian M, Mojab F, et al. Effects of valerian on the severity and systemic manifestations of dysmenorrhea. *Int J Gynecol Obstet*. 2011;115:285-288.

135. Gholamzade N, Kargar H, Ghassemi F. Hydro-alcoholic extract of *Valeriana officinalis* on histologic change of ovary in rats. *Int J Pharm Allied Sci*. 2013;2:308-313.

136. Mahmoudian A, Rajaei Z, Haghir H, et al. Effects of valerian consumption during pregnancy on cortical volume and the levels of zinc and copper in the brain tissue of mouse fetus. *J Chin Integr Med*. 2012;10:424-429.

137. Mokhtari M, Ebrahimpoor MR, Harfsheno S. The effects of alcoholic extract of *Marrubium vulgare* on hormonal parameters in female rat model of polycystic ovarian syndrome. *Med Sci J Islamic Azad Univ Tehran Medical Branch*. 2014;24(2):74-80.

138. Ulbricht C, Basch E, Weissner W, et al. An evidence-based systematic review of herb and supplement interactions by the Natural Standard Research Collaboration. *Expert Opinion on Drug Safety*. 2006;5(5):719-728.

139. Boswell-Ruys CL, Ritchie HE, Brown-Woodman PD. Preliminary screening study of reproductive outcomes after exposure to yarrow in the pregnant rat. *Birth Defects Res B Dev Reprod Toxicol*. 2003;68:416-420.

140. Dalsenter PR, Cavalcanti AM, Andrade AJ, et al. Reproductive evaluation of aqueous crude extract of *Achillea millefolium* L. (*Asteraceae*) in Wistar rats. *Reprod Toxicol.* 2004;18:819-823.

141. Innocenti G, Vegeto E, Dall’Acqua S, et al. In vitro estrogenic activity of *Achillea millefolium* L. *Phytomedicine*. 2007;14:147-152.

142. Mazandarani M, Osia N, Ghafourian M. Antioxidant activity and phytochemical characteristics of *Urtica dioica* L. (*Urticaceae*) in human breast cancer cell line (MCF-7). *Iran J Reprod Med*. 2010;48:2920-2924.