Evolution of “The Guideline Advantage”
Lessons Learned From the Front Lines of Outpatient Performance Measurement

Vincent Bufalino, MD; Mary Ann Bauman, MD; Jay H. Shubbrook, DO; Alan J. Balch, PhD; Christopher Boone, MHA; Katy Vennum, MPH; Sarah Bradley; Richard C. Wender, MD; Regan Minners; Donna Arnett, PhD; on behalf of the American Cancer Society, American Diabetes Association, and American Heart Association

Heart disease, cancer, stroke, and diabetes mellitus collectively account for >1.37 million US deaths each year.1 Compounding the tragedy is the knowledge that many of those deaths could be avoided through better application of clinical guidelines related to primary and secondary prevention or disease management. The combined control of blood pressure, lipids, and glucose has been shown to substantially reduce mortality and cardiovascular events.2,3 Screening for colon, cervical, breast, and lung cancer has been proven to reduce age-adjusted mortality from these diseases.4 In recognition of the common risk factors across these disease areas, the chief executive officers of the American Cancer Society, American Diabetes Association, and American Heart Association formed the Preventive Health Partnership in 2004. The 3 organizations have been working closely ever since to increase public awareness about healthy lifestyles, support policies that increase funding for and access to prevention programs and research, and increase the focus on prevention among health care providers.

The American Cancer Society, American Diabetes Association, and American Heart Association have long developed scientific statements and evidence-based guidelines that promote public health services and clinical interventions of known efficacy for improving patient outcomes. Thus, maximizing adherence to quality-of-care guidelines is a high priority for each organization, because this will save lives and improve quality of life. This common purpose has served as a focal point for much of the collaborative work undertaken by the 3 organizations, including The Guideline Advantage (TGA).

Launched in 2011, TGA is a jointly operated program designed to promote consistent use of evidence-based practice guidelines through existing health care technology in the outpatient setting. The ultimate goal of this undertaking is to improve patient care through quality improvement programs that provide feedback to clinicians and their practices on performance across various quality measures. The data gathered through TGA will provide a platform for longitudinal research on the impact of preventive care while also allowing practices to compare themselves with others across the country through benchmarking capabilities. The program’s research strategy is focused on identifying patient-, provider-, and practice-level factors associated with guideline adherence and assessing the effectiveness of quality improvement interventions in increasing guideline adherence. The program’s recognition component will publicly acknowledge achievements in providing consistent guidelines-based care. The present report reviews the origins and intent of TGA, explores recent changes in the health information technology landscape, and provides a set of key recommendations for outpatient performance measurement programs.

Get With the Guidelines

TGA evolved from the American Heart Association’s Get With The Guidelines (GWTG) program suite that provides 2000 hospitals with quality improvement tools to meet secondary prevention guidelines related to cardiovascular disease. GWTG facilitates the sharing of best

Corresponding author: Vincent Bufalino, MD, Advocate Medical Group-Cardiology, 801 South Washington St, Naperville, IL 60566-7226; vincent.bufalino@advocatehealth.com

The American Cancer Society, the American Diabetes Association, and the American Heart Association make every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.

This document was approved by the American Cancer Society, the American Diabetes Association, and the American Heart Association Science Advisory and Coordinating Committee.

This article has been copublished in Circulation Outcomes and Diabetes Care.

Copies: This document is available on the World Wide Web sites of the American Cancer Society (cancer.org), the American Diabetes Association (diabetes.org), and the American Heart Association (my.americanheart.org).

©2014 by the American Cancer Society, American Diabetes Association, and the American Heart Association, Inc. doi: 10.3322/caac.21233. Available online at cacancerjournal.com
practices across many hospitals via webinars and dissemination of point-of-care tools.5 Staff at participating hospitals manually enter patient data using an Internet-based tool. The data are then used to calculate performance measure scores. The program has produced >200 scientific publications that have demonstrated a number of positive results since its inception in 2001, including increased adherence to all stroke performance measures and standardized procedures for the treatment of myocardial infarction.6 Furthermore, hospitals participating in GWTG-Heart Failure have shown improved and equitable care for heart failure patients in all racial/ethnic groups.7

Overview of TGA

In 2009, the American Heart Association adapted its inpatient program for the outpatient setting. Initially designed as an outpatient cardiovascular care quality measurement module, a decision was soon made to broaden the program’s scope by working with the American Cancer Society and American Diabetes Association. These 3 organizations share a common interest in promoting guideline adherence in the primary care setting, in which practices are usually concerned with multiple risk factors and chronic conditions. A steering committee made up of volunteers and staff from all 3 organizations was charged with remodeling the program to ensure the ongoing relevancy and accuracy of performance measures of the 3 major chronic disease areas. The steering committee is a multidisciplinary group of clinical and nonclinical professionals who provide long-term oversight to the program strategy.

A key objective was to design a program that had limited interference with the practice’s workflow. The initial selection of measures was based on review of nationally accepted ambulatory care measures that aligned most closely with each organization’s clinical guidelines. Instead of a manual data entry model, data were culled from practices’ electronic data systems and sent to the data warehouse for aggregation. Participating sites received quarterly practice-level reports that provided performance feedback and comparative benchmarking information based on the program’s measure set. Feedback reports were intended to help identify and focus on specific areas for improvement. The program included a recognition component to publicly acknowledge early program adopters and performance achievements by participating practices.

Changes in the Health Information Technology Landscape

During the time frame in which TGA was developed and initially subjected to pilot testing from 2009 to 2011, the primary care market evolved rapidly in response to the government funding of health information technology provided in the American Recovery and Reinvestment Act. Incentives for “meaningful use” of electronic health records (EHRs) were authorized under the Health Information Technology for Economic and Clinical Health (HITECH) Act, a part of the American Recovery and Reinvestment Act (for more information, see the Office of the National Coordinator for Health Information Technology: HITECH ACT [healthit.hhs.gov/portal/server.pt/community/healthit_hhs_gov__learn_about_hitech/1233]).

The HITECH Act not only provides incentives to practices for the adoption and use of EHRs but also requires that they show significant improvement in health care processes and outcomes through the use of EHRs. Although “significant improvement” has yet to be defined in either stage 1 or stage 2 of the meaningful use final rules, the concept offers important opportunities for quality improvement programs to help clinicians improve performance in advance of a definition.

The incentive program outlined in the HITECH Act has supported rapid and significant adoption of EHRs. When TGA was being developed in 2008, a national physician survey found that only 17% of physicians were using any form of EHR.8 Presently, >85% of practices with ≥11 physicians and >60% in groups of 2 to 11 physicians have electronic records.9 In 2011, a report from the Office of Inspector General at the US Department of Health and Human Services found 57% of physicians participating in Medicare used an EHR system.10 A recent report by the Centers for Disease Control and Prevention’s National Center for Health Statistics found that 72% of all office-based physicians used EHR or electronic medical record systems in 2012.11

Despite the rapid increase in the adoption of EHRs, research has shown mixed results for EHR effects on quality improvement.12-15 EHRs are largely transactional platforms designed to capture patient data at the time of care, with alerts and reminders triggered around the visit.16 Although they can serve as rich data sources for billing and documentation needs, they often are not designed for data aggregation and analysis at the patient or population level needed for clinical management.16 To maximize the potential for EHR data to impact primary and secondary prevention and disease management, particularly for quality improvement and reporting programs, the data should be used to identify groups of patients who truly need care and to monitor changes in response to improvement activities.16,17

Thus, there has been a move to integrate quality improvement programs and population management platforms in server- or cloud-based models to improve the value of EHR data. Such efforts typically offer an enhanced ability to provide information regarding groups of patients with user-friendly data visualization and enable performance benchmarking within the practice.18
The Physician Quality Reporting System (PQRS) (The 2006 Tax Relief and Health Care Act required the establishment of a physician quality reporting system, incentivizing payment to health care professionals who report quality measure data on Medicare patients. The Centers for Medicare & Medicaid Services created the PQRS, which promotes reporting of quality data by combining incentive payments and payment adjustments. [The program was renamed from the Physician Quality Reporting Initiative in 2011,] and Meaningful Use incentives are based on practices’ ability to report data monitoring and quality reporting to government agencies. Yet, convincing practices to change their daily work flow for the potential future allure of improving their quality of care has been challenging. In addition, physicians are busy responding to both federal mandates and new commercial insurer payment models. Despite these challenges, the rapid adoption of EHRs and the growing focus on meaningful use and quality improvement offer unprecedented opportunities for programs to support clinicians in these efforts. The evolving definition of meaningful use will require quality improvement programs to remain highly nimble.

The Evolution of TGA

Although the program captured hundreds of thousands of records within a few months of its 2011 launch, TGA was not growing as quickly as needed to serve as a robust clinical registry for performance benchmarking. Moreover, the variation in the quantity and quality of data being submitted was significant. Without the capacity to analyze data down to the physician and patient level, providers were neither able to validate the data nor identify quality gaps in their own patient population.

Early in 2012, the program’s volunteer steering committee adopted a new strategic plan that highlighted the need for a more functional data aggregation and analytics platform. In addition, the plan called for better alignment with primary care practices and a strong emphasis on federally qualified health centers. This latter approach was intended to complement existing health equity initiatives across each organization by positioning the program for use as a quality improvement tool for practices that serve some of the United States’ most vulnerable populations. Based on the experiences with the initial program design, combined with feedback from steering committee members, a set of key features or capabilities were identified for any outpatient performance measurement effort designed to drive changes at the practice level. Many of these characteristics align with recommendations published in 2012 as part of a report commissioned by the Agency for Healthcare Research and Quality regarding the design, dissemination, and use of private feedback reports on physician performance.18

1. The clinical data must be entered in the EHR as discrete data, including clinical events that happened in the past, such as a colonoscopy performed years earlier. This capability requires links with laboratories and imaging facilities, as well as data entry from the clinical interactions.
2. These discrete EHR data points must seamlessly populate the quality-reporting tool in a way that does not require additional data entry requirements. Clinicians must be able to use their usual methods of entering and recording clinical data through their EHR.
3. Performance measurement and benchmarking should expand beyond the individual practitioner to allow benchmarking on specific quality measures between practitioners across the entire clinical practice or network of practices, as well as against regional or national norms. Because many physicians are motivated by comparative information, expansion of the scope and scale of peer comparisons helps to change physician behavior.18
4. Performance measurement tools should enable practice-level population management by identifying patients who are not up-to-date or at goal for specific measures and generating care-gap lists for all quality measures.17,18
5. The performance measurement tool must be accessible at the point of care and use intuitive graphic displays to tell a clear story about the status of the individual patient relative to quality goals.18 This permits the use of clinical alerts to prompt action.
6. Regular data updates, on at least a monthly or quarterly basis, are needed to support the ability to track performance measures over time with monitoring tools such as run charts.18

Using these criteria as a guide, a new technology vendor, Forward Health Group (Madison, WI), was selected for the revised program model. This model provides a software platform that is compatible with most EHR vendors that support patient-population and quality-measures data analytics, including Epic (Verona, WI), eClinicalWorks (Westborough, MA), and NextGen (Horsham, PA). The platform turns fragmented clinical and administrative healthcare data into actionable information that can be used to drive population health improvement.

Moreover, the platform can display data at the aggregate or individual level and has extensive drill-down capabilities for clinicians via a Web-based portal. This functionality enables clinic staff to identify the patients who constitute the numerator and denominator lists for a particular measure, which allows for continuous data validation and stewardship. Physicians can also review and correct erroneous patient-level data, a critical feature because it not only provides a feedback mechanism for addressing data quality but can also generate clinician trust in the reporting.
The program’s quality measures were modified in 2012 to align with the Uniform Data System managed by the Health Resources and Services Administration’s Health Center Program and the Million Hearts initiative managed by the US Department of Health and Human Services. In addition, the program now offers 2 quality reporting measure sets: a reporting measure set and a TGA common measure set. The former will be calculated with strict adherence to the PQRS definitions, whereas the latter is intended to provide quality improvement feedback based on a simplified version of established measures using more inclusive data constructs less likely to be missing from EHRs of typical practices than the “as defined” PQRS measure. Data are required to be updated at least quarterly, although more frequent updates are encouraged. Having access to timely data is critical to clinical management, performance tracking, and monitoring progress toward quality objectives.\(^{18}\)

Table 1 contains the reporting measure set supported by the program and its alignment with national initiatives, including the Uniform Data System, PQRS, and Million Hearts. TGA captures many of the meaningful use stage 1 core clinical quality measures directly related to conditions and risk factors of interest to the American Cancer Society, American Diabetes Association, and American Heart Association. The program will maintain alignment with future meaningful use requirements and other federal mandates for quality improvement. The program has a yearly measure review and update process to ensure measure sets remain relevant and reflect the most current science.

TGA MEASURE DESCRIPTION	NOF-ENDORSED MEASURE NUMBER	PQRS MEASURE NUMBER	MEANINGFUL USE STAGE 2 FOR ELIGIBLE PROFESSIONALS	MILLION HEARTS	UDS
Hypertension: controlling high blood pressure	0018	236	Recommended adult core	X	X
Ischemic vascular disease: use of aspirin or another antithrombotic	0068	204	X	X	X
Ischemic vascular disease: complete lipid panel and LDL-C control	0075	241	X	X	N/A
Coronary artery disease: drug therapy for lowering LDL-C	0074	197	N/A	N/A	X
Screening mammography	0031	112	X	N/A	N/A
Colorectal cancer screening	0034	113	X	N/A	X
Cervical cancer screening	0032	309	X	N/A	X
HbA1c poor control in diabetes mellitus	0059	1	X	N/A	X
Diabetes mellitus: HbA1c control (<8%)	0575	313	N/A	N/A	X
LDL-C control in diabetes mellitus	0064	2	X	X	N/A
Asthma: pharmacological therapy	0047	53	N/A	N/A	X
Body mass index screening and follow-up	0421	128	Recommended adult core	N/A	X
Tobacco use: screening and cessation intervention	0028	226	Recommended adult core	X	X
Cholesterol: fasting LDL test performed and risk-stratified fasting LDL	N/A	316	N/A	X	N/A
Screening for high blood pressure	N/A	317	N/A	X	N/A

\(^{18}\)The program’s quality measures were modified in 2012 to align with the Uniform Data System managed by the Health Resources and Services Administration’s Health Center Program and the Million Hearts initiative managed by the US Department of Health and Human Services. In addition, the program now offers 2 quality reporting measure sets: a reporting measure set and a TGA common measure set. The former will be calculated with strict adherence to the PQRS definitions, whereas the latter is intended to provide quality improvement feedback based on a simplified version of established measures using more inclusive data constructs less likely to be missing from EHRs of typical practices than the “as defined” PQRS measure. Data are required to be updated at least quarterly, although more frequent updates are encouraged. Having access to timely data is critical to clinical management, performance tracking, and monitoring progress toward quality objectives.\(^{18}\)

Table 1 contains the reporting measure set supported by the program and its alignment with national initiatives, including the Uniform Data System, PQRS, and Million Hearts. TGA captures many of the meaningful use stage 1 core clinical quality measures directly related to conditions and risk factors of interest to the American Cancer Society, American Diabetes Association, and American Heart Association. The program will maintain alignment with future meaningful use requirements and other federal mandates for quality improvement. The program has a yearly measure review and update process to ensure measure sets remain relevant and reflect the most current science.

HbA1c indicates hemoglobin A1c; **LDL**; low-density lipoprotein; **LDL-C**, low-density lipoprotein cholesterol; **N/A**, not available; **NOF**, National Quality Forum; **PQRS**, Physician Quality Reporting System; **TGA**, The Guideline Advantage; and **UDS**, Uniform Data System.
Future Strategies for Optimizing Quality

As of January 2014, the new program includes > 56 clinic delivery sites with > 370,000 patients and > 4 million medical records and continues to expand. The GE Foundation recently awarded a 2-year grant to TGA to fund program implementation in federally qualified health centers and improve the quality of care and health outcomes for the most vulnerable populations. The inclusion of federally qualified health centers offers a unique opportunity to better understand health disparities in the risk factors that affect the major causes of chronic diseases in the United States, namely, cancer, diabetes mellitus, and heart disease.

Other key program elements will be developed for online use as the program evolves over time. The program is being designed to serve as a future platform for participating groups to collaborate and share best practices that result in the most significant improvements. According to a recent report commissioned by the Agency for Healthcare Research and Quality, “The most successful interventions for changing practitioner behavior appear to involve interactive approaches allowing clinicians to meet and discuss improvement opportunities and challenges with their peers.”

TGA Webcasts and other educational resources continue to provide a means of information sharing. Research is another key area of future growth for the program. The GWTG program has generated > 200 scientific papers analyzing the data submitted by participating institutions (For a complete list of GWTG scientific publications and program results, please visit heart.org/HEARTORG/HealthcareResearch/GetWithTheGuidelinesHFStrokeResus/Get-With-The-Guidelines-Scientific-Publications-and-Program-Results_UCM_306758_Article.jsp). Collectively, these papers have not only shown the utility of adherence to guidelines for outcomes improvement in patients with myocardial infarction, heart failure, and stroke, but they also have demonstrated that adherence to guidelines can substantially reduce (and even eliminate) health disparities. Similarly, TGA will serve as a vehicle for original research that identifies and shares interventions that improve quality in the outpatient setting.

In conclusion, maximizing adherence to quality-of-care guidelines is a high priority for the prevention and optimal clinical management of cancer, coronary artery disease, diabetes mellitus, and related complications. The nation is rapidly moving in the direction of technology platforms that support data aggregation and analytics tied to quality improvement at the patient-population level while facilitating various payment models (eg, accountable care organizations, pay for performance). The lessons learned from the implementation and evolution of TGA can inform this growing field in meaningful and immediate ways. In addition, there is a broader need to support the development of clinician competencies in quality improvement, clinical informatics, and population management. Enhancement of the ability of providers and researchers to leverage the wealth of data now being collected in the outpatient setting for quality improvement and population management will ultimately improve the health of patients across the country.

Disclosures

WRITING GROUP MEMBER	EMPLOYMENT	RESEARCH GRANT	OTHER RESEARCH SUPPORT	SPEAKERS’ BUREAU/HONORARIA	EXPERT WITNESS	OWNERSHIP INTEREST	CONSULTANT/ADVISORY BOARD	OTHER
Vincent Bufalino	Advocate Health	None	None	None	None	None	None	None
Donna Arnett	University of Alabama at Birmingham	None	None	None	None	None	None	None
Disclosures (Continued)

WRITING GROUP DISCLOSURES
REVIEWER

Alan J. Balch
Mary Ann Bauman
Christopher Boone
Sarah Bradley
Regan Minners
Jay H. Shubrook
Katy Vennum
Richard C. Wender

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

\(^a\)Modest.

REVIEWER DISCLOSURES
REVIEWER

Eric Smith
Richard Snow

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

\(^a\)Modest.

References

1. Murphy SL, Xu JQ, Kochanek KD. Deaths: final data for 2010. National Vital Statistics Report. Vol 61, No 4. Hyattsville, MD: National Center for Health Statistics; 2013.
2. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383-393.
3. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580-591.
4. Smith RA, Brooks D, Cokkinides V, Saslow D, Brawley OW. Cancer screening in the United States, 2013: a review of current American Cancer Society guidelines, current issues in cancer screening, and new guidance on cervical cancer screening and lung cancer screening. CA Cancer J Clin. 2013;63:88-105.
5. Hong Y, LaRresh KA. Overview of the American Heart Association ‘Get With the Guide-lines’ programs: coronary heart disease, stroke, and heart failure. Crit Pathw Cardiol. 2006;5:179-186.
6. Schwamm LH, Fonarow GC, Reeves MJ, et al. Get With the Guidelines Stroke is associated with sustained improvement in care for patients hospitalized with acute stroke or transient ischemic attack. Circulation. 2009;119:107-115.
7. Thomas KL, Hernandez AF, Dai D, et al. Association of race/ethnicity with clinical risk factors, quality of care, and acute outcomes in patients hospitalized with heart failure. Am Heart J. 2011;161:746-754.
8. DesRoches CM, Campbell EG, Rao SR, et al. Electronic health records in ambulatory care: a national survey of physicians. N Engl J Med. 2008;359:50-60.
9. Jamoom E, Beatty P, Bercovitz A, Woodwell D, Palso K, Rechtsteiner E. Physician adoption of electronic health record systems: United States, 2011. *NCHS Data Brief*. 2012;(98):1-8.

10. Wright S. Use of Electronic Health Record Systems in 2011 Among Medicare Physicians Providing Evaluation and Management Services. Report No. OEI-04-10-00184. Washington, DC: Office of Inspector General, US Department of Health and Human Services; 2012.

11. Hsiao C, Hing E. Use and characteristics of electronic health record systems among office-based physician practices: United States 2001–2012. *NCHS Data Brief*. 2012;111:1-8.

12. Friedberg MW, Colitin KL, Gelb Safran D, Dresser M, Zaslavsky AM, Schneider EC. Associations between structural capabilities of primary care practices and performance on selected quality measures. *Ann Intern Med*. 2009;151:456-463.

13. Romano MJ, Stafford RS. Electronic health records and clinical decision support systems: impact on national ambulatory care quality. *Arch Intern Med*. 2011;171:897-903.

14. Zhou L, Soran CS, Jenter CA, et al. The relationship between electronic health record use and quality of care over time. *J Am Med Inform Assoc*. 2009;16:457-464.

15. Chaudhry B, Wang J, Wu S, et al. Systematic review: impact of health information technology on quality, efficiency, and costs of medical care. *Ann Intern Med*. 2006;144:742-752.

16. O’Malley AS, Grossman JM, Cohen GR, Kemper NM, Pham HH. Are electronic medical records helpful for care coordination? Experiences of physician practices. *J Gen Intern Med*. 2010;25:177-185.

17. Persell SD, Kaiser D, Dolan NC, et al. Changes in performance after implementation of a multi-faceted electronic-health-record–based quality improvement system. *Med Care*. 2011;49:117-125.

18. Shaller D, Kanouse D. Private “Performance Feedback” Reporting for Physicians: Guidance for Community Quality Collaboratives. AHRQ Pub. No. 13–0004. Rockville, MD: Agency for Healthcare Research and Quality; 2012.