Fast cubature of volume potentials over rectangular domains

F. Lanzara1, V. Maz’ya2, G. Schmidt3

1Department of Mathematics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy \texttt{lanzara@mat.uniroma1.it}

2Department of Mathematics, University of Linköping, 581 83 Linköping, Sweden; Department of Mathematical Sciences, M&O Building, University of Liverpool, Liverpool L69 3BX, UK; \texttt{vlmaz@mai.liu.se}

3Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany \texttt{schmidt@wias-berlin.de}

\textbf{Abstract}

In the present paper we study high-order cubature formulas for the computation of advection-diffusion potentials over boxes. By using the basis functions introduced in the theory of approximate approximations, the cubature of a potential is reduced to the quadrature of one dimensional integrals. For densities with separated approximation, we derive a tensor product representation of the integral operator which admits efficient cubature procedures in very high dimensions. Numerical tests show that these formulas are accurate and provide approximation of order $O(h^8)$ up to dimension 10^8.

\textbf{Keywords.} Multi-dimensional convolution; Advection-diffusion potential; Tensor product representation; Higher dimensions

\textbf{Mathematics Subject Classification (2000).} 65D32; 65-05; 41A30; 41A63.

\section{Introduction}

High-dimensional volume potentials arise in many mathematical models in the field of physics, chemistry, biology, financial mathematics and many others. In recent years, tensor product approximation has been recognized as a successful tool to overcome the "curse of dimensionality" and treat high-dimensional integral operators as described, for example, in \cite{3, 4, 6, 2}.

In the present paper we propose to combine high-order semi-analytic cubature formulas, obtained by using the method of approximate approximations (see \cite{11} and the reference therein), with tensor product approximations.

Cubature formulas based on approximate approximations for volume potentials over \mathbb{R}^n and over bounded domains have been considered in \cite{10} and \cite{9}, respectively (see also \cite{11}). The
cubature of high-dimensional volume potentials over the full space and over half-spaces has been studied in [7] and [8]. Now we consider the volume potential

$$K_{\lambda} f(x) = \int_{[P,Q]} \kappa_{\lambda}(x - y)f(y)dy,$$ (1.1)

with the fundamental solution

$$\kappa_{\lambda}(x) = \frac{1}{(2\pi)^{n/2}} \frac{1}{|x|^{1-n/2}} K_{n/2-1}(\lambda |x|), \lambda \in \mathbb{C} \setminus (-\infty, 0],$$

over rectangular domains $[P, Q] = \prod_{j=1}^n [P_j, Q_j] \subset \mathbb{R}^n$. Here K_{ν} is the modified Bessel function of the second kind (see [1, 9.6, p.374]).

The function $u = K f$ provides a solution of the modified Helmholtz equation

$$(-\Delta + \lambda^2)u = \begin{cases} f(x) & x \in [P, Q] \\ 0 & otherwise. \end{cases}$$

For $\lambda = 0$, then

$$\kappa_0(x) = \begin{cases} \frac{1}{2\pi} \log \frac{1}{|x|}, & n = 2, \\ \frac{1}{\Gamma\left(\frac{n}{2} - 1\right)} \frac{1}{4\pi^{n/2}} \frac{1}{|x|^{n-2}}, & n \geq 3 \end{cases}$$

is the fundamental solution of the Laplacian.

The theory of approximate approximations proposes semi-analytic cubature formulas for volume potentials by using quasi-interpolation of the density f by functions for which the integral operator can be taken analytically. Approximate quasi-interpolant has the form

$$M_{h,D} f(x) = D^{-n/2} \sum_{m \in \mathbb{Z}^n} f(h m) \eta \left(\frac{x - hm}{h \sqrt{D}} \right)$$

where h and D are positive parameters and η is a smooth and rapidly decaying function which satisfies the moment conditions of order N

$$\int_{\mathbb{R}^n} \eta(x) x^\alpha dx = \delta_{0,\alpha}, \quad 0 \leq |\alpha| < N.$$ (1.2)

If $f \in C_0^N(\mathbb{R}^n)$, it is known ([11]) that

$$|f(x) - M_{h,D} f(x)| \leq c(\sqrt{D}h)^N \|\nabla^N f\|_{L^\infty} + \sum_{k=0}^{N-1} \varepsilon_k(\sqrt{D}h)^k |\nabla^k f(x)|$$

with

$$\varepsilon_k \leq \sum_{m \in \mathbb{Z}^n \setminus \{0\}} |\nabla^k \eta(\sqrt{D}m)|, \quad \lim_{D \to \infty} \sum_{m \in \mathbb{Z}^n \setminus \{0\}} |\nabla^k \eta(\sqrt{D}m)| = 0.$$
If we replace f in (1.1) by the quasi-interpolant
\[D^{-n/2} \sum_{h \cdot m \in [P,Q]} f(hm) \eta \left(\frac{x - hm}{h \sqrt{D}} \right) \] (1.3)
we don’t obtain good approximations because (1.3) approximates f only in a subdomain of $[P,Q]$ with positive distance from the boundary. To avoid this difficulty we extend f with preserved smoothness in a larger domain. Obviously the quasi-interpolant of the continuation \tilde{f} approximates f in $[P,Q]$. Assume that there exists $C > 0$ such that
\[||\tilde{f}||_{W^N_\infty} \leq C ||f||_{W^N_\infty([P,Q])}. \]
Since η is a smooth and rapidly decaying function, for any error $\epsilon > 0$ one can fix $r > 0$ and the parameter $D > 0$ such that the quasi-interpolant with nodes in a neighborhood of $[P, Q]$
\[M_{h,D}^r \tilde{f}(x) = D^{-n/2} \sum_{d(hm,[P,Q]) \leq r h \sqrt{D}} \tilde{f}(hm) \eta \left(\frac{x - hm}{h \sqrt{D}} \right) \]
approximates f with
\[|f(x) - M_{h,D}^r \tilde{f}(x)| = O((\sqrt{D} h)^N + \epsilon) ||f||_{W^N_\infty} \] (1.4)
for all $x \in [P, Q]$.

Then the integral
\[K_{\lambda,h} \tilde{f}(x) = K_{\lambda}(M_{h,D}^r \tilde{f})(x) = D^{-n/2} \sum_{d(hm,[P,Q]) \leq r h \sqrt{D}} \tilde{f}(hm) \int_{[P,Q]} \kappa_\lambda(x - y) \eta \left(\frac{y - hm}{h \sqrt{D}} \right) dy \]
gives a cubature of (1.1).

Since K_λ is a bounded mapping between suitable function spaces, the differences $K_{\lambda,h} \tilde{f}(x) - K_\lambda f(x)$ behave like estimate (1.4). Therefore, to construct high order cubature formulas for (1.1), it remains to compute the integrals
\[\int_{[P,Q]} \kappa_\lambda \left(\frac{x - hm}{h \sqrt{D}} - y \right) \eta(y) dy \]
for nodes with $d(hm,[P,Q]) \leq r h \sqrt{D}$. This is performed by using one-dimensional integral representations. As basis functions we take the tensor products of univariate basis functions
\[\bar{\eta}(x) = \prod_{j=1}^{2M} \bar{\eta}_{2M}(x_j); \quad \bar{\eta}_{2M}(x_j) = \pi^{-1/2}L_{M-1}^{(1/2)}(x_j^2) e^{-x_j^2} \] (1.5)
which satisfies the moment condition (1.2) of order $N = 2M$ (cf. [11]), where $L_{k}^{(\gamma)}$ are the generalized Laguerre polynomials
\[L_{k}^{(\gamma)}(y) = \frac{e^y y^{-\gamma}}{k!} \left(\frac{d}{dy} \right)^k \left(e^{-y} y^{k+\gamma} \right), \quad \gamma > -1. \]
Using the representation with a tensor product integrand

\[
\int_{[P,Q]} K_\lambda(x - y)e^{-|y|^2}dy =
\]

\[
\frac{1}{4} \int_0^\infty e^{-\lambda^2t/4} \prod_{j=1}^n \frac{e^{-x_j^2/(1+t)}}{2\sqrt{\pi}} \left(\text{erf} \left(\frac{1 + t}{t} (P_j - x_j) \right) - \text{erf} \left(\frac{1 + t}{t} (Q_j - x_j) \right) \right) dt
\]

(1.6)

we derive a tensor product representation of the integral operator which admits efficient cubature procedures for densities with separated approximation (Section 2). We will consider quasi-interpolants (2.1) on anisotropic grids which use different step size \(h_j > 0, j = 1, ..., n\) along different space dimensions. If \(h_j = \tau h, 0 < \tau \leq 1\) the error of the quasi-interpolant (2.1) is always \(O(h^N)\). In Section 3 we provide numerical tests, showing that these formulas are accurate and provide approximation of order \(O(h^6)\) up to dimension 10^8.

2 Higher order cubature formula based on (1.6)

In this section we describe a high order cubature of \(K_\lambda f\) in the case of rectangular domain in \(\mathbb{R}^n\). Let

\[
[P, Q] = \{x = (x_1, \ldots, x_n) : P_j \leq x_j \leq Q_j, j = 1, \ldots, n\} = \prod_{j=1}^n [P_j, Q_j].
\]

As basis functions we use (1.5).

In order to apply also quasi-interpolants on rectangular grids \((h_1m_1, \ldots, h_nm_n), h_j > 0\), shortly denoted by \(\{hm\}\),

\[
\mathcal{M}_{h,D} f(x) = D^{-n/2} \sum_{m \in \mathbb{Z}^n} \tilde{f}(hm) \prod_{j=1}^n \tilde{\eta}_{2M} \left(\frac{x_j - h_jm_j}{h_j\sqrt{D}} \right), \quad (2.1)
\]

we define the basis function \(\eta(x) = \prod \tilde{\eta}_{2M}(a_jx_j), a_j > 0\), and look for integral representations of the solution of

\[
(-\Delta + \lambda^2) u = \prod_{j=1}^n \chi_{(p_j,q_j)}(x_j) \tilde{\eta}_{2M}(a_jx_j).
\]

(2.2)

Here \(\chi_{(p_j,q_j)}\) is the characteristic function of the interval \((p_j,q_j)\) with \(-\infty \leq p_j < q_j \leq +\infty, j = 1, \ldots, n\).

Theorem 2.1. Let \(\text{Re} \lambda^2 \geq 0\) and \(n \geq 3\). The solution of equation (2.2) in \(\mathbb{R}^n\) can be expressed by the one-dimensional integral

\[
u(x) = \frac{1}{4} \int_0^\infty e^{-\lambda^2t/4} \prod_{j=1}^n \left(\Phi_M(a_jx_j, a_j^2t, a_jp_j) - \Phi_M(a_jx_j, a_j^2t, a_jq_j) \right) dt
\]

(2.3)

where the function \(\Phi_M\) is given by

\[
\Phi_M(x, t, p) = \frac{e^{-x^2/(1+t)}}{2\sqrt{\pi}} \left(\text{erf} \left(F(t, x, p) \right) \mathcal{P}_M(t, x) - \frac{e^{-F^2(t,x,p)}}{\sqrt{\pi}} \mathcal{Q}_M(t, x) \right)
\]
with the function

\[F(t, x, y) = \sqrt{\frac{1 + t}{t}} (y - \frac{x}{1 + t}) , \]

and \(\mathcal{P}_M, \mathcal{Q}_M \) are polynomials in \(x \) of degree \(2M - 2 \) and \(2M - 3 \), respectively:

\[
\mathcal{P}_M(t, x) = \sum_{k=0}^{M-1} \frac{1}{(1 + t)^{k+1/2}} F_k^{(-1/2)} \left(\frac{x^2}{1 + t} \right),
\]

\[
\mathcal{Q}_M(t, x, y) = 2 \sum_{k=1}^{M-1} \frac{(-1)^k}{k! 4^k} \sum_{\ell=1}^{2k} \left(\frac{(-1)^\ell}{t^{\ell/2}} \left(H_{2k-\ell}(y) H_{\ell-1} \left(\frac{y - x}{\sqrt{t}} \right) \right. \right.
\]

\[
- \left. \left(\frac{2k}{\ell} \right) H_{2k-\ell} \left(\frac{x}{\sqrt{1 + t}} \right) \left(\frac{H_{\ell-1} \left(F(t, x, y) \right)}{(1 + t)^{k+1/2}} \right) \right).
\]

If \(\text{Re} \lambda^2 > 0 \), then the representation (2.3) is valid for all \(n \geq 1 \).

By \(H_k \) we denote the Hermite polynomials

\[H_k(x) = (-1)^k e^{x^2} \frac{d^k}{dx^k} e^{-x^2} . \] (2.4)

Proof. The solution of (2.2) can be obtained explicitly by using the parabolic equation

\[\partial_t w - \Delta w + \lambda^2 w = 0, \quad t \geq 0 , \] (2.5)

with the initial condition

\[w(x, 0) = \prod_{j=1}^{n} \chi_{(p_j,q_j)}(x_j) \eta_2M(a_jx_j) . \]

Integrating (2.5) in \(t \) we derive

\[w(x, T) - w(x, 0) - (\Delta - \lambda^2) \int_0^T w(x, t) dt = 0 , \]

hence the solution of (2.2) is expressed as the one-dimensional integral

\[u(x) = \int_0^\infty w(x, t) dt \]

provided it exists. Obviously, if \(w \) solves (2.5), then \(z = w e^{\lambda^2 t} \) is the solution of the initial value problem for the heat equation

\[\partial_t z - \Delta z = 0, \quad z(x, 0) = \prod_{j=1}^{n} \chi_{(p_j,q_j)}(x_j) \eta_2M(a_jx_j) , \]
which has, by Poisson’s formula, the solution

\[z(x, t) = \frac{1}{(4\pi t)^{n/2}} \int_\prod(p_j, q_j) e^{-|x-y|^2/(4t)} \prod_{j=1}^n \eta_{2M}(a_j y_j) \, dy \]

\[= \prod_{j=1}^n \frac{1}{\pi^{1/2}(4a_j^2 t)^{1/2}} \int_{a_j p_j} e^{-(a_j x_j - y_j)^2/(4a_j^2 t)} \eta_{2M}(y_j) \, dy_j \]

where \(\prod(p_j, q_j) \) is the Cartesian product of the intervals \((p_j, q_j) \). Denoting

\[\Phi_M(x, t, p) = \frac{1}{\sqrt{\pi t}} \int_\prod e^{-(x-y)^2/t} \eta_{2M}(y) \, dy \]

we get the one-dimensional integral representation (2.3) of the solution of (2.2), provided this integral exists. Denoting

\[\varphi_k(x, t, p) = \int_\prod e^{-(x-y)^2/t} \frac{d^{2k}}{dy^{2k}} e^{-y^2} \, dy \]

and using the general representation [11, p.55]

\[\eta_{2M}(x) = \pi^{-n/2} \sum_{j=0}^{M-1} (-1)^j \frac{1}{j! 4^j} \Delta^j e^{-|x|^2}, \]

we have

\[\Phi_M(x, t, p) = \frac{1}{\pi \sqrt{t}} \sum_{k=0}^{M-1} (-1)^k \frac{1}{k! 4^k} \varphi_k(x, t, p). \]

From

\[\varphi_0(x, t, p) = \int_\prod e^{-(x-y)^2/t} e^{-y^2} \, dy = \frac{\sqrt{\pi}}{2} \sqrt{\frac{t}{1+t}} e^{-x^2/(1+t)} \text{erfc} \left(F(t, x, p) \right), \]

for \(k \geq 1 \), integration by parts leads to

\[\varphi_k(x, t, p) = \frac{\partial^{2k}}{\partial x^{2k}} \varphi_0(x, t, p) - \sum_{\ell=0}^{2k-1} (-1)^\ell \frac{\partial^\ell}{\partial y^\ell} e^{-(x-y)^2/t} \frac{d^{2k-\ell-1}}{dy^{2k-\ell-1}} e^{-y^2} \bigg|_{y=p} \]

and the definition (2.4) gives

\[\frac{d^{2k-\ell-1}}{dy^{2k-\ell-1}} e^{-y^2} = (-1)^{2k-\ell-1} e^{-y^2} H_{2k-\ell-1}(y), \]

\[\frac{\partial^\ell}{\partial y^\ell} e^{-(x-y)^2/t} = \frac{(-1)^\ell e^{-(x-y)^2/t}}{t^{\ell/2}} H_{\ell} \left(\frac{y-x}{\sqrt{t}} \right). \]

6
In view of
\[
\frac{d^\ell}{dx^\ell} \text{erfc}(x) = \frac{2}{\sqrt{\pi}}(-1)^\ell e^{-x^2} H_{\ell-1}(x), \quad \ell \geq 1,
\]
one gets for \(\ell < 2k\)
\[
\frac{\partial^{2k-\ell}}{\partial x^{2k-\ell}} \text{erfc}(F(t, x, p)) = \frac{(-1)^{2k-\ell}}{(t(1+t))^{k-\ell/2}} \left[\frac{d^{2k-\ell}}{dz^{2k-\ell}} \text{erfc}(z) \right]_{z=F(t,x,p)} = - \frac{2e^{-F^2(t,x,p)}}{\sqrt{\pi}(t(1+t))^{k-\ell/2}} H_{2k-\ell-1}(F(t, x, p)).
\]

Therefore, since
\[
\frac{d^\ell}{dx^{\ell}} e^{-x^2/(1+t)} = \frac{(-1)^\ell e^{-x^2/(1+t)}}{(1+t)^{\ell/2}} H_\ell\left(\frac{x}{\sqrt{1+t}}\right),
\]
we obtain
\[
\frac{\partial^{2k}}{\partial x^{2k}} \varphi_0(x, t, p) = \frac{\sqrt{\pi} t}{2} \frac{e^{-x^2/(1+t)}}{(1+t)^{k+1/2}} H_{2k}\left(\frac{x}{\sqrt{1+t}}\right) \text{erfc}(F(t, x, p))
\]
\[
- \sqrt{t} e^{-x^2/(1+t)} e^{-F^2(t,x,p)} \frac{2k-1}{(1+t)^{k+1/2}} \sum_{\ell=0}^{2k-1} \left(\frac{2k}{\ell}\right)^{\ell\ell} (-1)^\ell H_\ell\left(\frac{x}{\sqrt{1+t}}\right) H_{2k-\ell-1}(F(t, x, p)).
\]

Thus simple transformations give
\[
\varphi_k(x, t, p) = e^{-x^2/(1+t)} \left(\text{erfc}(F(t, x, p)) H_{2k}\left(\frac{x}{\sqrt{1+t}}\right) \frac{\sqrt{\pi} t}{2(1+t)^{k+1/2}}
\right.
\]
\[
+ e^{-F^2(t,x,p)} \sum_{\ell=1}^{2k} \frac{(-1)^\ell}{\ell(\ell-1)/2}
\]
\[
\times \left(\left(\frac{2k}{\ell}\right) H_{2k-\ell}\left(\frac{x}{\sqrt{1+t}}\right) H_{\ell-1}(F(t, x, p)) \right)
\]
\[
\left. - H_{\ell-1}\left(\frac{p-x}{\sqrt{t}}\right) H_{2k-\ell-1}(p) \right) \right).
\]

Using the relation \(H_{2k}(x) = (-1)^k 4^k k! L_k^{-2}(x^2)\) we find therefore
\[
\Phi_M(t, x, p) = \frac{e^{-x^2/(1+t)} \text{erfc}(F(t, x, p))}{2\sqrt{\pi}} \sum_{k=0}^{M-1} \frac{1}{(1+t)^{k+1/2}} L_k^{-1/2}(x^2) \left(\frac{x^2}{1+t}\right)
\]
\[
+ \frac{e^{-x^2/(1+t)} e^{-F^2(t,x,p)}}{\pi} \sum_{k=0}^{M-1} \frac{(-1)^k}{k! 4^k} \sum_{\ell=1}^{2k} \frac{(-1)^\ell}{\ell^{\ell/2}}
\]
\[
\times \left(\left(\frac{2k}{\ell}\right) H_{2k-\ell}\left(\frac{x}{\sqrt{1+t}}\right) H_{\ell-1}(F(t, x, p)) \right)
\]
\[
\left. - H_{\ell-1}\left(\frac{p-x}{\sqrt{t}}\right) H_{2k-\ell-1}(p) \right) \right)
\]
\[
= \frac{e^{-x^2/(1+t)}}{2\sqrt{\pi}} \left(\text{erfc}(F(t, x, p)) \mathcal{P}_M(t, x) - \frac{e^{-F^2(t,x,p)}}{\sqrt{\pi}} \mathcal{Q}_M(t, x, p) \right).
\]

\(\square\)
The polynomials $P_M(t,x)$ and $Q_M(t,x,p)$ for $M = 1, 2, 3$ are given by

$$P_1(t,x) = \frac{1}{(1+t)^{1/2}}, \quad P_2(t,x) = P_1(t,x) + \frac{1}{2(1+t)^{3/2}} - \frac{x^2}{(1+t)^{5/2}},$$

$$P_3(t,x) = P_2(t,x) + \frac{3}{8(1+t)^{5/2}} - \frac{3x^2}{2(1+t)^{7/2}} + \frac{x^4}{2(1+t)^{9/2}},$$

$$Q_1(t,x,p) = 0, \quad Q_2(t,x,p) = \sqrt{\pi} \left(\frac{x}{1+t} + p \right),$$

$$Q_3(t,x,p) = -\frac{\sqrt{\pi}}{4(1+t)} \left(\frac{2x^3}{(1+t)^3} + \frac{2px^2 - 5x}{(1+t)^2} + \frac{(2p^2 - 5)x - 3p}{1+t} + p(2p^2 - 7) \right).$$

Remark 2.1. Since for positive r

$$0 < \text{erfc}(r) \leq e^{-r^2} \quad \text{and} \quad 2 - e^{-r^2} < \text{erfc}(-r) < 2$$

from the relation

$$F^2(t,x,p) = p^2 + \frac{(x-p)^2}{t} - \frac{x^2}{1+t}$$

we get

$$|e^{-x^2/(1+t)} \text{erfc}(F(t,x,p))| \leq e^{-p^2} \quad \text{if} \quad p > 0$$

and

$$|e^{-x^2/(1+t)} \text{erfc}(F(t,x,p)) - 2e^{-x^2/(1+t)}| < e^{-p^2} \quad \text{if} \quad p < 0.$$

Thus for sufficiently large $|p|

$$\Phi_M(x,t,p) = \begin{cases}
\pi^{-1/2} e^{-x^2/(1+t)} P_M(t,x) + O(e^{-p^2}) & \text{if } p < 0, \\
O(e^{-p^2}) & \text{if } p > 0,
\end{cases}$$

and therefore, for sufficiently large r one can use the approximation

$$\Phi_M(x,t,p) - \Phi_M(x,t,q) \approx \begin{cases}
0, & p,q \geq r \text{ or } p,q \leq -r, \\
\pi^{-1/2} e^{-x^2/(1+t)} P_M(t,x), & p \leq -r \text{ and } q \geq r,
\end{cases}$$

with the error $O(e^{-r^2})$. Similarly, if $q - p \geq 2r$, then

$$\Phi_M(x,t,p) - \Phi_M(x,t,q) \approx \begin{cases}
\Phi_M(x,t,p), & -r < p < r, \\
\pi^{-1/2} e^{-x^2/(1+t)} P_M(t,x) - \Phi_M(x,t,q), & -r < q < r.
\end{cases}$$

3 Implementation and numerical results

We compute the cubature formula

$$K_{\lambda,h} \tilde{f}(x) = D^{-n/2} \sum_{hm \in \Omega_h} \tilde{f}(hm) \int_{[P,Q]} \kappa_\lambda(x-y) \prod_{j=1}^{n} \tilde{\eta}_{2M} \left(\frac{y_j - h_j m_j}{h_j \sqrt{D}} \right) dy$$
where \(\Omega_h = \prod_{j=1}^n(P_j - rh_j \sqrt{D}, Q_j + rh_j \sqrt{D}) \), using the tensor product representation of Theorem 2.1. At the grid points \(\mathbf{hk} = (h_1k_1, \ldots, h_nk_n) \) we obtain

\[
\int_{[P,Q]} \kappa_\lambda(\mathbf{hk} - \mathbf{y}) \prod_{j=1}^n \mathcal{Q}_M \left(\frac{y_j - h_jm_j}{h_j \sqrt{D}} \right) dy = \frac{1}{4} \int_0^\infty e^{-\lambda^2 t/4} \times \prod_{j=1}^n \left(\Phi_M(\frac{k_j - m_j}{\sqrt{D}}, \frac{t}{h_j^2 D}, \frac{P_j - h_jm_j}{h_j \sqrt{D}}) - \Phi_M(\frac{k_j - m_j}{\sqrt{D}}, \frac{t}{h_j^2 D}, \frac{Q_j - h_jm_j}{h_j \sqrt{D}}) \right) dt
\]

and therefore

\[
\kappa_\lambda \bar{f}(\mathbf{x}) = \sum_{\mathbf{hm} \in \Omega_h} \bar{f}(\mathbf{hm}) b^{(M)}_{k,m},
\]

where we introduce the one-dimensional integral

\[
b^{(M)}_{k,m} = \frac{1}{4D^{n/2}} \int_0^\infty e^{-\lambda^2 t/4} \prod_{j=1}^n \left(b^{i}_{k_j,m_j}(P_j) - b^{i}_{k_j,m_j}(Q_j) \right) dt
\]

and use the abbreviation

\[
b^{i}_{k,m}(P) = \pi^{-1/2} e^{-(k-m)^2/(\mathcal{D}(1+t))} \text{erf} \left(\frac{t}{h_j^2 D}, \frac{k-m}{h_j \sqrt{D}} \right) \mathcal{P}_M \left(\frac{t}{h_j^2 D}, \frac{k-m}{h_j \sqrt{D}} \right)
\]

\[-\pi^{-1/2} \exp \left(- F^2(\frac{t}{h_j^2 D}, \frac{k-m}{h_j \sqrt{D}}) \right) Q_\mathcal{M} \left(\frac{t}{h_j^2 D}, \frac{k-m}{h_j \sqrt{D}} \right) \right) / (2\sqrt{\pi}).
\]

According to Remark 2.1, for appropriately chosen \(r > 0 \) we can set within a given accuracy

\[
b^{i}_{k,m}(P) = a^{i}_{k-m} = \pi^{-1/2} e^{-(k-m)^2/(\mathcal{D}(1+t))} \mathcal{P}_M \left(\frac{t}{h_j^2 D}, \frac{k-m}{h_j \sqrt{D}} \right) \quad \text{if } P - h_jm \leq -rh_j \sqrt{D},
\]

\[
b^{i}_{k,m}(P) = 0 \quad \text{if } P - h_jm \geq rh_j \sqrt{D},
\]

which speeds up the computation of (3.2). In particular, we can split (3.1) into

\[
\kappa_{\lambda} \bar{f}(\mathbf{x}) = \sum_{\mathbf{hm} \in \Omega_h} f(\mathbf{hm}) a^{(M)}_{k-m} + \sum_{\mathbf{hm} \in \Omega_h \setminus \Omega_r} \bar{f}(\mathbf{hm}) b^{(M)}_{k,m},
\]

where \(\Omega_r = \prod_{j=1}^n(P_j + rh_j \sqrt{D}, Q_j - rh_j \sqrt{D}) \), and the coefficients in the convolutional sum are given by

\[
a^{(M)}_{k} = \frac{1}{4D^{n/2}} \int_0^\infty e^{-\lambda^2 t/4} \prod_{j=1}^n a^{i}_{k_j} dt
\]

\[
= \frac{1}{4(\pi D)^{n/2}} \int_0^\infty e^{-\lambda^2 t/4} e^{-|k|^2/(\mathcal{D}(1+t))} \prod_{j=1}^n \mathcal{P}_M \left(\frac{t}{h_j^2 D}, \frac{k_j}{h_j \sqrt{D}} \right) dt.
\]
Following [12] the one-dimensional integrals of $a^{(M)}_k$ and $b^{(M)}_{k,m}$ are transformed to integrals over \mathbb{R} with integrands decaying doubly exponentially by making the substitutions

$$t = e^\xi, \quad \xi = \alpha(\sigma + e^\sigma), \quad \sigma = \beta(u - e^{-u}) \quad (3.4)$$

with certain positive constants α, β, and the computation is based on the classical trapezoidal rule. Then the tensor product structure of the integrands allows the efficient computation of the coefficients $b^{(M)}_{k,m}$ and $a^{(M)}_k$. Moreover, the computation of the convolutional sum is very efficient for integrands, which allow a separated representation, i.e., for given accuracy ϵ they can be represented as a sum of products of vectors in dimension 1

$$f(h_1m_1, \ldots, h_nm_n) = \sum_{p=1}^R r_p \prod_{j=1}^n f^{(p)}_j(h_jm_j) + O(\epsilon).$$

In [7] we have described this approach to the fast computation of high dimensional volume potentials for compactly supported integrands. To compute the convolutional sum

$$\sum_{hm \in \Omega_{rh}} a^{(M)}_{k-m} f(hm)$$

we get after the substitutions

$$a^{(M)}_k = \frac{1}{4(\pi D)^{n/2}} \int_{-\infty}^{\infty} e^{-\lambda^2 \Phi(u)/4} e^{-|k|^2/(D(1 + \Phi(u)))} \prod_{j=1}^n P_M\left(\frac{\Phi(u)}{h_j^2 D}, \frac{k_j}{\sqrt{D}}\right) \Phi'(u) \, du,$$

where we set

$$\Phi(u) = \exp(\alpha\beta(u - \exp(-u)) + \alpha \exp(\beta(u - \exp(-u))),
\Phi'(u) = \Phi(u)\alpha\beta(1 + e^{-u})(1 + \exp(\beta(u - \exp(-u))))).$$

The quadrature with the trapezoidal rule with step size τ

$$a^{(M)}_k \approx \frac{\tau}{4(\pi D)^{n/2}} \sum_{s=-N_0}^{N_1} e^{-\lambda^2 \Phi(s\tau)/4} e^{-|k|^2/(D(1 + \Phi(s\tau)))} \prod_{j=1}^n P_M\left(\frac{\Phi(s\tau)}{h_j^2 D}, \frac{k_j}{\sqrt{D}}\right) \Phi'(s\tau)$$

provides the approximation via one-dimensional discrete convolutions

$$\sum_{hm \in \Omega_{rh}} a^{(M)}_{k-m} f(hm) \approx \frac{\tau}{4(\pi D)^{n/2}} \sum_{p=1}^R r_p \sum_{s=-N_0}^{N_1} e^{-\lambda^2 \Phi(s\tau)/4} \Phi'(s\tau)$$

$$\times \prod_{j=1}^n \sum_{m_j} e^{-(k_j-m_j)^2/(D(1 + \Phi(s\tau)))} P_M\left(\frac{\Phi(s\tau)}{h_j^2 D}, \frac{k_j-m_j}{\sqrt{D}}\right) f^{(p)}_j(h_jm_j).$$

We provide some numerical tests to the approximation of the potential $K_\lambda f$ over the cube $[-1,1]^n$, $n \geq 3$, with the density

$$f(x) = (-\Delta + \lambda^2) \prod_{j=1}^n u(x_j) = \sum_{p=1}^n \prod_{j=1}^n f^{(p)}_j(x_j), \quad x = (x_1, \ldots, x_n) \in [-1,1]^n; \quad (3.5)$$
\[f_j^{(p)}(x) = u(x) \quad \text{if} \quad j \neq p; \quad f_j^{(p)}(x) = -u''(x) + \frac{\lambda^2}{n} u(x) \quad \text{if} \quad j = p. \]

Let \(\tilde{f}_j^{(p)} \) be an extension of \(f_j^{(p)} \) outside the interval \([-1, 1]\) with preserved smoothness and

\[
\tilde{f}(x) = \sum_{p=1}^{n} \prod_{j=1}^{n} \tilde{f}_j^{(p)}(x_j), \quad x \in \mathbb{R}^n.
\]

By using Hestenes reflection principle ([5]) we construct an extension of \(f_j^{(p)} \) outside the interval \([-1, 1]\) as

\[
\tilde{f}_j^{(p)}(x) = \begin{cases}
\sum_{s=1}^{N+1} c_s f_j^{(p)}(-a_s (x + 1) - 1), & x < -1 \\
 f_j^{(p)}(x), & -1 \leq x < 1 \\
\sum_{s=1}^{N+1} c_s f_j^{(p)}(-a_s (x - 1) + 1), & x > 1
\end{cases}
\]

where \(a_1, ..., a_{N+1} \) are different positive constants and the coefficients \(c_N = \{c_1, ..., c_{N+1}\} \) are the unique solution of the \((N + 1) \times (N + 1)\) system of linear equations

\[
\sum_{s=1}^{N+1} c_s (-a_s)^k = 1, \quad k = 0, ..., N.
\]

We provide results for \(\tilde{f}_j^{(p)} = f_j^{(p)} \) and three different Hestenes extensions corresponding to \(a_s = 2^{-s} \) (Extension 1), \(a_s = s^{-1} \) (Extension 2), \(a_s = s \) (Extension 3).

The approximation values are computed by the cubature formula (3.3) for \(h_j = h, j = 1, ..., n \). To have the saturation error comparable with the double precision rounding errors, we have chosen the parameter \(D = 4 \).

In Tables 1, 2 and 3 we report on the absolute error and the approximation rate for the three-dimensional potential \(K_{\lambda} f \), when \(u(x) = \cos^2(\pi x/2) \) (Table 1), \(u(x) = (x^2 - 1)^3 \) (Table 2) and \(u(x) = (x^2 - 1)^2 \) (Table 3), in the case \(\lambda^2 = 1 \) and \(\lambda^2 = 1+i \). We have chosen the parameters \(\alpha = 2, \beta = 2 \) in the transformations (3.4) and \(\tau = 0.005, N_1 = -N_0 = 300 \) in the quadrature formula. The numerical results confirm the \(h^2 -, h^4 - \) and, respectively, \(h^6 - \) convergence of the cubature formulas (3.3) when \(M = 1, 2, 3 \). For extensions 1, 2 and 3 the numerical results are similar with those if using \(\tilde{f}_j^{(p)} = f_j^{(p)} \). In Table 3 we see that the error of the approximate quasi-interpolant of order 6 has reached the saturation bound. This is a feature of the method that approximate quasi-interpolant of order \(N \) reproduces polynomials of degree \(< N \) up to the saturation error.

To check the effectiveness of the method for very high dimension \(n \) we computed the potential over \([-1, 1]^n\) of the density (3.5) with \(u(x) = 1 - \sin(\pi x^2/2) \) (Table 4) and \(u(x) = e^x(1 - x^2)^2 \) (Table 5) in dimension \(n = 10^i, i = 1, ..., 8 \) and different extensions. We have chosen \(a = 6, b = 5, \tau = 0.003, N_0 = -40, N_1 = 200 \). The results show that \(K_{\lambda,h}^{(3)} \) approximates with the predicted approximation rate 6, also for very large \(n \) and the error scales linearly in the space dimension.
References

[1] M. Abramowitz, I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964.

[2] C. Bertoglio, B.N. Khoromskij, Low-rank quadrature-based tensor approximation of the Galerkin projected Newton/Yukawa kernels, Comput. Phys. Commun. 183 (2012) 904–912.

[3] W. Hackbusch, B.N. Khoromskij, Tensor-product approximation to operators and functions in high dimensions, J. Complexity 23 (2007) 697–714.

[4] W. Hackbusch, B.N. Khoromskij, Tensor-product approximation to multidimensional integral operators and Green’s functions, SIAM J. Matrix Anal. Appl. 30 (2008) 1233–1253.

[5] M.R. Hestenes, Extension of the range of a differentiable function, Duke Math. J. 8 (1941) 183–192.

[6] B.N. Khoromskij, Fast and accurate tensor approximation of a multivariate convolution with linear scaling in dimension, J. Comput. Appl. Math. 234 (2010) 3122–3139.

[7] F. Lanzara, V. Maz’ya, G. Schmidt, On the fast computation of high dimensional volume potentials, Math. Comp. 80 (2011a) 887–904.

[8] F. Lanzara, V.G. Maz’ya, G. Schmidt, Accurate cubature of volume potentials over high-dimensional half-spaces, J. Math. Sci. (N. Y.) 173 (2011b) 683–700. Problems in mathematical analysis. No. 55.

[9] F. Lanzara, V.G. Maz’ya, G. Schmidt, Computation of volume potentials over bounded domains via approximate approximations, J. Math. Sci. (N. Y.) 187 (2013) to appear.

[10] V. Maz’ya, G. Schmidt, “Approximate approximations” and the cubature of potentials, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6 (1995) 161–184.

[11] V. Maz’ya, G. Schmidt, Approximate approximations, volume 141 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007.

[12] J. Waldvogel, Towards a general error theory of the trapezoidal rule, in: Approximation and computation, volume 42 of Springer Optim. Appl., Springer, New York, 2011, pp. 267–282.
\(\lambda^2 = 1: \)

\(f(x)\)	\(h^{-1}\)	\(M = 1\)	\(M = 2\)	\(M = 3\)
\(10\)	\(0.822E-01\)	\(0.414E-02\)	\(0.135E-03\)	
\(20\)	\(0.219E-01\)	\(0.272E-03\)	\(3.9267\)	
\(40\)	\(0.557E-02\)	\(0.172E-04\)	\(3.9821\)	
\(80\)	\(0.140E-02\)	\(0.108E-05\)	\(3.9955\)	
\(160\)	\(0.350E-03\)	\(0.675E-07\)	\(3.9989\)	
\(320\)	\(0.875E-04\)	\(0.422E-08\)	\(3.9997\)	

\[\lambda^2 = 1 + i: \]

\(f(x)\)	\(h^{-1}\)	\(M = 1\)	\(M = 2\)	\(M = 3\)
\(10\)	\(0.821E-01\)	\(0.413E-02\)	\(0.135E-03\)	
\(20\)	\(0.219E-01\)	\(0.272E-03\)	\(3.9265\)	
\(40\)	\(0.557E-02\)	\(0.172E-04\)	\(3.9820\)	
\(80\)	\(0.140E-02\)	\(0.108E-05\)	\(3.9955\)	
\(160\)	\(0.350E-03\)	\(0.675E-07\)	\(3.9989\)	
\(320\)	\(0.875E-04\)	\(0.422E-08\)	\(3.9997\)	

\(\lambda^2 = 1 + i:\)

\(f(x)\)	\(h^{-1}\)	\(M = 1\)	\(M = 2\)	\(M = 3\)
\(10\)	\(0.815E-01\)	\(0.410E-02\)	\(0.134E-03\)	
\(20\)	\(0.217E-01\)	\(0.270E-03\)	\(3.9265\)	
\(40\)	\(0.557E-02\)	\(0.172E-04\)	\(3.9821\)	
\(80\)	\(0.140E-02\)	\(0.108E-05\)	\(3.9955\)	
\(160\)	\(0.350E-03\)	\(0.675E-07\)	\(3.9989\)	
\(320\)	\(0.875E-04\)	\(0.422E-08\)	\(3.9997\)	

\(\lambda^2 = 1 + i: \)

\(f(x)\)	\(h^{-1}\)	\(M = 1\)	\(M = 2\)	\(M = 3\)
\(10\)	\(0.814E-01\)	\(0.410E-02\)	\(0.134E-03\)	
\(20\)	\(0.217E-01\)	\(0.270E-03\)	\(3.9265\)	
\(40\)	\(0.557E-02\)	\(0.172E-04\)	\(3.9821\)	
\(80\)	\(0.140E-02\)	\(0.108E-05\)	\(3.9955\)	
\(160\)	\(0.350E-03\)	\(0.675E-07\)	\(3.9989\)	
\(320\)	\(0.875E-04\)	\(0.422E-08\)	\(3.9997\)	

Table 1: Absolute errors and approximation rates for \(K_{\lambda} f(0.3, 0.3, 0)\) using \(K_{\lambda,h}^{(M)} f(0.3, 0.3, 0)\) with the density \(f\) given in (3.5) with \(u(x) = \cos^2(\pi x/2)\) and different extensions, \(M = 1, 2, 3, \lambda^2 = 1\) and \(\lambda^2 = 1 + i\).
\[\lambda^2 = 1: \]

\(f(x) \)	\(h^{-1} \)	\(M = 1 \)	\(M = 2 \)	\(M = 3 \)	
10	0.673E-01	0.626E-02	0.427E-04		
20	0.159E-01	2.0819	3.9965	0.668E-06	5.9997
40	0.439E-01	2.0238	3.9970	0.804E-07	6.0000
80	0.973E-03	2.0062	3.9991	0.136E-09	6.0000
160	0.243E-03	2.0186	3.9907	0.255E-11	6.0000
320	0.607E-04	2.0004	3.9999	0.407E-13	6.0000

\[\tilde{f}(x) \]

\(h^{-1} \)	\(M = 1 \)	\(M = 2 \)	\(M = 3 \)		
10	0.637E-01	0.634E-02	0.427E-04		
20	0.157E-01	2.0254	3.9999	0.804E-07	6.0000
40	0.391E-02	2.0075	3.9970	0.104E-07	6.0000
80	0.972E-03	2.0005	3.9991	0.156E-09	6.0000
160	0.243E-03	2.0001	3.9998	0.255E-11	6.0000
320	0.607E-04	2.0000	3.9999	0.407E-13	6.0000

\[\lambda^2 = 1 + i: \]

\(f(x) \)	\(h^{-1} \)	\(M = 1 \)	\(M = 2 \)	\(M = 3 \)	
10	0.604E-01	0.572E-02	0.441E-04		
20	0.142E-01	2.0834	3.9999	0.690E-06	5.9997
40	0.350E-02	2.0242	3.9969	0.108E-07	6.0000
80	0.872E-03	2.0062	3.9991	0.168E-09	6.0000
160	0.218E-03	2.0016	3.9998	0.263E-11	6.0000
320	0.544E-04	2.0001	3.9999	0.410E-13	6.0000

\[\tilde{f}(x) \]

\(h^{-1} \)	\(M = 1 \)	\(M = 2 \)	\(M = 3 \)		
10	0.603E-01	0.579E-02	0.441E-04		
20	0.140E-01	2.0271	3.9999	0.690E-06	5.9997
40	0.349E-02	2.0080	3.9904	0.108E-07	6.0000
80	0.871E-03	2.0021	3.9991	0.163E-09	6.0000
160	0.218E-03	2.0001	3.9998	0.240E-11	6.0000
320	0.544E-04	2.0001	3.9999	0.410E-13	6.0000

Table 2: Absolute errors and approximation rates for \(K_\lambda f(0.5, 0.5, 0.5) \) using \(K_{\lambda f}^{(M)} (0.5, 0.5, 0.5) \) with the density \(f \) given in (3.5) with \(u(x) = (x^2 - 1)^3 \) and different extensions, \(M = 1, 2, 3, \lambda^2 = 1 \) and \(\lambda^2 = 1 + i. \)
\[\lambda^2 = 1: \]

\(f(x) \)	\(h^{-1} \)	\(M = 1 \)	\(M = 2 \)	\(M = 3 \)
\(\sim \)				
\(\lambda^2 = 1: \)				
\(f(x) \)	10	0.935E-01	0.166E-02	0.222E-15
ext 1	20	0.241E-01	1.956E-03	3.9984
&	40	0.607E-02	1.988E-05	3.9999
&	80	0.152E-02	1.997E-06	4.0000
&	160	0.380E-03	1.9995	2.53E-07
&	320	0.951E-04	1.9998	1.58E-08
ext 2	10	0.941E-01	0.166E-02	0.779E-10
&	20	0.241E-01	1.963E-03	3.9984
&	40	0.607E-02	1.990E-05	2.22E-10
&	80	0.152E-02	1.997E-06	4.0000
&	160	0.380E-03	1.9995	2.53E-07
&	320	0.951E-04	1.9998	1.58E-08
ext 3	10	0.941E-01	0.166E-02	0.779E-10
&	20	0.241E-01	1.963E-03	3.9984
&	40	0.607E-02	1.990E-05	2.22E-10
&	80	0.152E-02	1.997E-06	4.0000
&	160	0.380E-03	1.9995	2.53E-07
&	320	0.951E-04	1.9998	1.58E-08

\[\lambda^2 = 1 + i: \]

\(f(x) \)	\(h^{-1} \)	\(M = 1 \)	\(M = 2 \)	\(M = 3 \)
\(\sim \)				
\(\lambda^2 = 1 + i: \)				
\(f(x) \)	10	0.569E-01	0.168E-02	0.222E-15
ext 1	20	0.224E-01	1.954E-03	3.9984
&	40	0.565E-02	1.987E-05	3.9999
&	80	0.142E-02	1.999E-06	4.0000
&	160	0.354E-03	1.9995	2.53E-07
&	320	0.886E-04	1.9998	1.58E-08
ext 2	10	0.586E-01	0.168E-02	0.695E-10
&	20	0.224E-01	1.961E-03	3.9984
&	40	0.565E-02	1.989E-05	3.9999
&	80	0.142E-02	1.999E-06	4.0000
&	160	0.354E-03	1.9995	2.53E-07
&	320	0.886E-04	1.9998	1.58E-08
ext 3	10	0.586E-01	0.168E-02	0.695E-10
&	20	0.224E-01	1.961E-03	3.9984
&	40	0.565E-02	1.989E-05	3.9999
&	80	0.142E-02	1.999E-06	4.0000
&	160	0.354E-03	1.9995	2.53E-07
&	320	0.886E-04	1.9998	1.58E-08

Table 3: Absolute errors and approximation rates for \(K_\lambda f(0.4, 0.5, 0) \) using \(K_{\lambda,h}^{(M)} f(0.4, 0.5, 0) \) with the density \(f \) given in (3.5) with \(u(x) = (1 - x^2)^2 \) and different extensions, with \(M = 1, 2, 3 \), \(\lambda^2 = 1 \) and \(\lambda^2 = 1 + i \).
h^{-1}	n	$f(x)$	error rate					
10	0.33E-03	0.459E-02	0.487E-01	0.70E+00				
20	0.60E-05	5.8020	0.35E+00	6.0282	0.75E+00	6.5491		
40	0.97E-07	5.9541	0.11E+00	5.9999	0.11E+01	6.0070		
80	0.15E-08	5.9087	0.12E-06	5.9999	0.12E-06	6.0000		
160	0.24E-10	5.9971	0.28E-08	6.0000	0.28E-07	5.9999		
320	0.37E-12	5.9982	0.53E-11	5.7677	0.44E-10	6.0005	0.44E-09	5.9985

$f(x)$	n	h^{-1}	10^3	10^2	10^3	10^4	10^5	10^6	10^7	10^8
20	0.79E-01	0.145E+01	0.129E+00	0.34E+01						
40	0.11E-02	6.0852	0.11E+00	6.9443	0.75E+00	6.5491				
80	0.18E-04	6.0012	0.12E-02	6.1364	0.18E-01	6.0000				
160	0.28E-06	5.9992	0.12E-04	5.9999	0.28E-07	5.9999				
320	0.45E-08	5.9982	0.47E-07	5.9999	0.51E-06	5.8096	0.51E-05	5.7889		

$f(x)$	n	h^{-1}	10^3	10^2	10^3	10^4	10^5	10^6	10^7	10^8
20	0.45E-03	0.459E-02	0.487E-01	0.70E+00						
40	0.60E-05	5.8020	0.35E+00	6.0282	0.75E+00	6.5491				
80	0.97E-07	5.9541	0.11E+00	5.9999	0.11E+01	6.0070				
160	0.15E-08	5.9087	0.12E-06	5.9999	0.12E-06	6.0000				
320	0.24E-10	5.9971	0.28E-08	6.0000	0.28E-07	5.9999				

$f(x)$	n	h^{-1}	10^3	10^2	10^3	10^4	10^5	10^6	10^7	10^8
20	0.35E-03	0.459E-02	0.487E-01	0.70E+00						
40	0.60E-05	5.8020	0.35E+00	6.0282	0.75E+00	6.5491				
80	0.97E-07	5.9541	0.11E+00	5.9999	0.11E+01	6.0070				
160	0.15E-08	5.9087	0.12E-06	5.9999	0.12E-06	6.0000				
320	0.24E-10	5.9971	0.28E-08	6.0000	0.28E-07	5.9999				

Table 4: Absolute errors and approximation rates for $K_\lambda f(0.5, 0, ..., 0)$ using $K_\lambda^{(3)} f(0.5, 0, ..., 0)$ with the density f given in (3.5) with $u(x) = 1 - \sin(\pi x^2/2)$ and different extensions, $n = 10^i$, $i = 1, ..., 8$, $\lambda^2 = 1$.
Table 5: Absolute errors and approximation rates for $K_\lambda f(0.4, 0.4, 0, ..., 0)$ using $K_{\lambda, h}^{(3)} f(0.4, 0.4, 0, ..., 0)$ with the density f given in (3.5) with $u(x) = e^x(1 - x^2)^2$ and different extensions, $n = 10^i$, $i = 1, ..., 8$, $\lambda^2 = 1$.

$f(x)$	n	10	10^2	10^3	10^4				
	h^{-1}	error	rate						
$f(x)$	10	0.699E-03	0.596E-02	0.595E-01	0.759E-00				
	20	0.106E-04	6.0400	0.902E-04	6.0453	0.880E-03	6.0792	0.881E-02	6.4288
	40	0.165E-06	6.0100	0.140E-05	6.0105	0.136E-04	6.0111	0.136E-03	6.0162
	80	0.257E-08	6.0026	0.218E-07	6.0026	0.213E-06	6.0026	0.212E-05	6.0027
	160	0.402E-10	6.0005	0.341E-09	6.0017	0.332E-08	6.0006	0.332E-07	6.0005
	320	0.632E-12	5.9990	0.491E-11	6.1156	0.585E-10	5.9998	0.519E-09	5.9973
$f(x)$	10^2	error	rate						
	20	0.913E-01	0.134E+01	0.134E-01	0.134E+01	0.145E-00	0.145E+00	0.267E+01	
	40	0.165E-02	6.0671	0.137E-01	6.6101	0.145E-00	6.0906	0.214E-01	6.9639
	80	0.212E-04	6.0035	0.212E-03	6.0113	0.212E-02	6.0906	0.214E-01	6.9639
	160	0.332E-06	5.9994	0.332E-05	5.9966	0.333E-04	5.9966	0.333E-03	6.0087
	320	0.526E-08	5.9779	0.572E-07	5.8504	0.632E-06	5.7186	0.646E-05	5.6865
$f(x)$	10^3	error	rate						
	20	0.913E-01	0.134E+01	0.134E-01	0.134E+01	0.145E-00	0.145E+00	0.267E+01	
	40	0.165E-02	6.0671	0.137E-01	6.6101	0.145E-00	6.0906	0.214E-01	6.9639
	80	0.212E-04	6.0035	0.212E-03	6.0113	0.212E-02	6.0906	0.214E-01	6.9639
	160	0.332E-06	5.9994	0.332E-05	5.9966	0.333E-04	5.9966	0.333E-03	6.0087
	320	0.526E-08	5.9779	0.572E-07	5.8504	0.632E-06	5.7186	0.646E-05	5.6865

Table 5: Absolute errors and approximation rates for $K_\lambda f(0.4, 0.4, 0, ..., 0)$ using $K_{\lambda, h}^{(3)} f(0.4, 0.4, 0, ..., 0)$ with the density f given in (3.5) with $u(x) = e^x(1 - x^2)^2$ and different extensions, $n = 10^i$, $i = 1, ..., 8$, $\lambda^2 = 1$.

17