Abstract—Graphs are the dominant formalism for modeling multi-agent systems. The algebraic connectivity of a graph is particularly important because it provides the convergence rates of consensus algorithms that underlie many multi-agent control and optimization techniques. However, sharing the value of algebraic connectivity can inadvertently reveal sensitive information about the topology of a graph, such as connections in social networks. Therefore, in this work we present a method to release a graph’s algebraic connectivity under a graph-theoretic form of differential privacy, called edge differential privacy. Edge differential privacy obfuscates differences among graphs’ edge sets and thus conceals the absence or presence of sensitive connections therein. We provide privacy with bounded Laplace noise, which improves accuracy relative to conventional unbounded noise. The private algebraic connectivity values are analytically shown to provide accurate estimates of consensus convergence rates, as well as accurate bounds on the diameter of a graph and the mean distance between its nodes. Simulation results confirm the utility of private algebraic connectivity in these contexts.

I. INTRODUCTION

Graphs are used to model a wide range of interconnected systems, including multi-agent control systems [1], social networks [2], and others [3]. Various properties of these graphs have been used to analyze controllers and dynamical processes over them, such as reaching a consensus [4], the spread of a virus [5], robustness to connection failures [6], and others. Graphs in these applications may contain sensitive information, e.g., one’s close friendships in the case of a social network, and it is essential that these analyses do not inadvertently leak any such information.

Unfortunately, it is well-established that even graph-level analysis may inadvertently reveal sensitive information about graphs, such as the absence or presence of individual nodes in a graph [7] and the absence or presence of specific edges between them [8]. This privacy threat has received attention in the data science community, where graphs represent datasets and the goal is to enable data analysis while safeguarding the data of individuals in those datasets.

Differential privacy is one well-studied tool for doing so. Differential privacy is a statistical notion of privacy that has several desirable properties: (i) it is robust to side information, in that learning additional information about data-producing entities does not weaken privacy by much [9], and (ii) it is immune to post-processing, in that arbitrary post-hoc computations on private data do not weaken privacy [10].

There exist numerous differential privacy implementations for graph properties, including counts of subgraphs [8], degree distributions [11], and other frequent patterns in graphs [12]. These privacy mechanisms generally follow the pattern of computing the quantity of interest, adding carefully calibrated noise to it, and releasing its noisy form. Although simple, this approach strongly protects data with a suite of guarantees provided by differential privacy [10].

In this paper, we develop an edge differential privacy mechanism to protect the algebraic connectivity of graphs. A graph’s algebraic connectivity (also called its Fiedler value) is equal to the second-smallest eigenvalue of its Laplacian. This value plays a central role in the study of multi-agent systems because it sets the convergence rates of consensus algorithms [13], which appear directly or in modified form in formation control [14], connectivity control [15], and many distributed optimization algorithms [16].

As with existing graph analyses, even the scalar-valued algebraic connectivity poses a significant privacy threat. We illustrate this point with two concrete privacy attacks that enable inferences about the presence of certain edges in a graph. These edges can represent, e.g., social connections between individuals, and such applications require privacy protections when a graph’s algebraic connectivity is shared.

We therefore protect a graph’s algebraic connectivity using edge differential privacy, which obfuscates the absence and/or presence of a pre-specified number of edges. Our implementation uses the recent bounded Laplace mechanism [17], which ensures that private scalars lie in a specified interval. The algebraic connectivity of a graph is bounded below by zero and above by the number of nodes in a graph, and we confine private outputs to this interval.

We provide closed-form values for the sensitivity and other constants needed to define a privacy mechanism for algebraic connectivity, and this is the first contribution of this paper. The second contribution is bounding the error that privacy induces in the convergence rates of consensus. Differential privacy has made inroads in control applications ranging from LQ control [18], state estimation [19], formation control [20], Markov decision processes [21] and others, due in part to the high performance one can maintain even with privacy implemented. We show that this is the case for the consensus setting as well. Our third contribution is the use of the private values of algebraic connectivity to bound other graph properties, namely the diameter of graphs and the mean distance between their nodes.

We note that [22] has developed a different approach to privacy for the eigendecomposition of a graph’s adjacency matrix. Given our motivation by multi-agent systems, we
focus on a graph’s Laplacian, and we derive simpler forms for the distribution of noise required, as well as a privacy mechanism that does not require any post-processing.

The rest of the paper is organized as follows. Section II provides background, examples of privacy attacks, and problem statements. Section III develops the differential privacy mechanism for algebraic connectivity. Next, Section IV uses this mechanism to privately compute consensus convergence rates, and Section V applies it to bounding other graph properties. Then, Section VI provides simulation results and Section VII provides concluding remarks.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we briefly review background on graph theory and differential privacy, followed by formal problem statements.

A. Background on Graph Theory

We consider an undirected, unweighted graph $G = (V, E)$ defined over a set of nodes $V = \{1, \ldots, n\}$ with edge set $E \subseteq V \times V$. The pair (i, j) belongs to E if nodes i and j share an edge, and $(i, j) \notin E$ otherwise. Let G_n denote the set of all graphs on n nodes. We let $d_i = |\{j \in V \mid (i, j) \in E\}|$ denote the degree of node $i \in V$. The degree matrix $D(G) \in \mathbb{R}^{n \times n}$ is the diagonal matrix $D(G) = \text{diag} \left(d_1, \ldots, d_n \right)$. The adjacency of G is

$$(H(G))_{ij} = \begin{cases} 1 & (i, j) \in E \\ 0 & \text{otherwise} \end{cases}.$$

We denote the Laplacian of graph G by $L(G) = D(G) - H(G)$, which we simply refer to by L when the associated graph is clear from context.

Let the eigenvalues of L be ordered according to $\lambda_1(L) \leq \lambda_2(L) \leq \cdots \leq \lambda_n(L)$. The matrix L is symmetric and positive semidefinite, and thus $\lambda_i(L) \geq 0$ for all i. All graphs G have $\lambda_1(L) = 0$, and a seminal result shows that $\lambda_2(L) > 0$ if and only if G is connected [23]. Thus, λ_2 is often called the algebraic connectivity of a graph. Throughout this paper, we consider connected graphs.

The value of λ_2 encodes a great deal of information about G: its value is non-decreasing in the number of edges in G, and algebraic connectivity is closely related to graph diameter and various other algebraic properties of graphs [24]. The value of λ_2 also characterizes the performance of consensus algorithms. Specifically, disagreement in a consensus protocol decays proportionally to $e^{-\lambda_2 t}$ [25].

B. Background on Differential Privacy

Differential privacy is enforced by a mechanism, which is a randomized map. Given “similar” inputs, a differential privacy mechanism produces outputs that are approximately indistinguishable from each other. Formally, a mechanism must obfuscate differences between inputs that are adjacent.

The word “adjacency” appears in two forms in this paper: for the adjacency matrix H above, and for the adjacency relation used by differential privacy. The adjacency matrix appears only in this section and only to defined the graph Laplacian, and all subsequent uses of “adjacent” and “adjacency” pertain to differential privacy (not the adjacency matrix).

Definition 1. Let $A \in \mathbb{N}$ be given, and fix a number of nodes $n \in \mathbb{N}$. Two graphs on n nodes, G and G', are adjacent if they differ by A edges. We express this mathematically via

$$\text{Adj}_A(G, G') = \begin{cases} 1 & |E(G) \Delta E(G')| \leq A \\ 0 & \text{otherwise} \end{cases},$$

where $S_1 \Delta S_2 = (S_1 \setminus S_2) \cup (S_2 \setminus S_1)$ is the symmetric difference of two sets and $|\cdot|$ denotes cardinality.

Thus, A is the number of edges whose absence or presence must be concealed by privacy. In other words, differential privacy for λ_2 must make any graph approximately indistinguishable from any graph within A edges of it.

Next, we briefly review differential privacy; see [10] for a complete exposition. A privacy mechanism \mathcal{M} for a function f is obtained by first computing the function f on a given input x, and then adding noise to the output. The distribution of noise depends on the sensitivity of the function f to changes in its input, described below. It is the role of a mechanism to approximate functions of sensitive data with private responses, and we next state this formally.

Definition 2 (Differential privacy; [10]). Let $\epsilon > 0$ and $\delta \in (0, 1]$ be given and fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then a mechanism $\mathcal{M} : \Omega \times G_n \rightarrow \mathbb{R}$ is (ϵ, δ)-differentially private if, for all adjacent graphs $G, G' \in G_n$,

$$\mathbb{P} [\mathcal{M}(G) \in S] \leq \exp(\epsilon) \cdot \mathbb{P} [\mathcal{M}(G') \in S] + \delta$$

for all sets S in the Borel σ-algebra over \mathbb{R}.

The value of ϵ controls the amount of information shared, and typical values range from 0.1 to $\log 3$ [10]. The value of δ can be regarded as the probability that more information is shared than ϵ should allow, and typical values range from 0 to 0.05. Smaller values of both imply stronger privacy. Given ϵ and δ, a privacy mechanism must enforce Definition 2 for all graphs adjacent in the sense of Definition 1.

We next define the sensitivity of λ_2, which will be used later to calibrate the variance of privacy noise. With a slight abuse of notation, we treat λ_2 as a function $\lambda_2 : G_n \rightarrow \mathbb{R}$.

Definition 3. The sensitivity of λ_2 is the greatest difference between its values on Laplacians of adjacent graphs. Formally, given A,

$$\Delta \lambda_2 = \max_{G, G' \in G_n, \text{Adj}_A(G, G') = 1} |\lambda_2(L) - \lambda_2(L')|,$$

where L and L' are the Laplacians of G and G'.

We next state the problems that we will solve.

Problem 1. Given the adjacency relation in Definition 2, develop a mechanism to provide (ϵ, δ)-differentially privacy for the algebraic connectivity of a graph G.

Problem 2. Given a differentially private algebraic connectivity, quantify the accuracy of consensus protocol convergence rate estimates that use it.

Problem 3. Given a private algebraic connectivity, develop bounds on the expectation of other graph properties.
C. Example Graph Privacy Attacks

We close this section with two specific privacy attacks to highlight the importance of privacy for the algebraic connectivity of graphs. In each one, a single node combines knowledge of its neighborhood set with knowledge of \(\lambda_2 \) to make inferences about a graph’s topology. There exist many possibilities for more sophisticated attacks by considering collusion among nodes to make inferences, and these examples illustrate only two basic possibilities.

Example 1. Consider Figure 1 where node 1 wishes to infer node 4’s neighbors using its own neighborhood set, i.e., \(\mathcal{N}_1 = \{2, 3\} \), and the fact that there are \(n = 4 \) nodes.

![Fig. 1. Node 1 knows there are \(n = 4 \) nodes in the graph, and it can use the value of \(\lambda_2 \) to infer the connections of node 4. The dashed edges indicate edges that are present but unknown to agent 1.](image)

The release of the value of \(\lambda_2 \) provides node 1 with knowledge that \(\lambda_2 = 2 \). Let \(d_{\min} \) denote the minimum degree of the graph. Then, with the inequality [24]

\[
\lambda_2 \leq \frac{nd_{\min}}{n - 1} - 1
\]

where \(n \) is the number of nodes, node 1 can infer that

\[
d_{\min} \geq \frac{(n - 1)\lambda_2}{n} = \frac{3}{2}
\]

Because \(d_{\min} \) is integer-valued, we see that \(d_{\min} \geq 2 \). Then node 4 must have at least two neighbors; because node 4 does not share an edge with node 1, node 1 can infer, with certainty, that \(\mathcal{N}_4 = \{2, 3\} \).

Example 2. Consider Figure 2 and suppose that node 1 wishes to determine as much as possible with its neighborhood set, \(\mathcal{N}_1 = \{2, 3\} \), and the knowledge that \(\lambda_2 = 1 \).

![Fig. 2. Node 1 knows there are \(n = 4 \) nodes in the graph, and it can use the value of \(\lambda_2 \) to essentially infer the entire graph. The dashed edges indicate edges that are present but unknown to agent 1.](image)

From node 1’s perspective, the possible edges are \(E_{\text{poss}} = \{(2, 3), (2, 4), (3, 4)\} \), and node 1 wishes to determine which ones are present and absent. Thus, there are 8 topologies to consider. Node 1 can rule out the case in which all edges in \(E_{\text{poss}} \) are in the graph; if they were, then the graph would have a ring graph as a sub-graph and hence have \(\lambda_2 \geq 2 \). If none of the edges in \(E_{\text{poss}} \) were present, then the graph would be disconnected, and it would have \(\lambda_2 = 0 \). Then either one or two edges from \(E_{\text{poss}} \) are present.

From \(E_{\text{poss}} \), if only \((2, 3) \) were in the graph, then it would also be disconnected, and thus node 1 can rule that case out. If either \((2, 4) \) or \((3, 4) \) were in the graph (with the others in \(E_{\text{poss}} \) absent), then it would have a line topology, but this would give \(\lambda_2 = 2 - \sqrt{2} \).

Then exactly two edges from \(E_{\text{poss}} \) must be in the graph. If both \((2, 4) \) and \((3, 4) \) were present and \((2, 3) \) were absent, then the graph would have a ring topology, but then it would have \(\lambda_2 = 2 \). Thus, the possibilities are either that the edges \((2, 3) \) and \((3, 4) \) are in the graph, or that the edges \((2, 3) \) and \((2, 4) \) are in the graph.

Then node 1 can conclude with certainty that the edge \((2, 3) \) is in the graph. It can also conclude with certainty that either \((2, 4) \) is in the graph or \((3, 4) \) is in the graph, but not both; the graphs produced by having one of these edges are isomorphic and hence cannot be distinguished here. Thus, node 1 has inferred the topology and narrowed the graph down to two possibilities for node labels in that topology. ▲

We stress that these examples are only a small, representative sample of the kinds of privacy attacks one can enact with knowledge of \(\lambda_2 \). Broadly speaking, these are reconstruction attacks, in that they combine released information, namely \(\lambda_2 \), with other knowledge to infer sensitive information, which in this case is the underlying graph and/or its characteristics. There are many possibilities for other knowledge of graph properties that can be combined with \(\lambda_2 \), and, given the extensive suite of relationships between \(\lambda_2 \) and other graph properties [24], many attacks are possible.

Related graph privacy threats have been observed in the data science community for other scalar-valued graph properties, such as counts of subgraphs and triangles [26], degree sequences [27], and numerous others [28]. These threats have been addressed by developing new mechanisms to provide differential privacy to the graph properties of interest. Given the privacy threats associated with releasing \(\lambda_2 \) and the wide use of \(\lambda_2 \) in analyzing multi-agent systems, we develop techniques to protect \(\lambda_2 \) with differential privacy.

III. Privacy Mechanism for \(\lambda_2 \)

In this section we develop the privacy mechanism that enforces edge differential privacy. We first start by providing a bound on the sensitivity in Definition 5.

Lemma 1. Fix an adjacency parameter \(A \in \mathbb{N} \). Then, with respect to the adjacency relation in Definition 1, the sensitivity of \(\lambda_2 \) satisfies \(\Delta \lambda_2 \leq 2A \).

Proof: See Appendix A. □

Noise is added by a mechanism, which is a randomized map used to implement differential privacy. The Laplace mechanism is widely used, and it adds noise from a Laplace distribution to sensitive data (or functions thereof). The standard Laplace mechanism has support on all of \(\mathbb{R} \), though
for graphs on \(n \) nodes, \(\lambda_2 \) is known to lie in the interval \([0, n]\). One can add Laplace noise and then project the result onto \([0, n]\) (which is differentially private because the projection is merely post-processing), though similar approaches have been shown to produce highly inaccurate private data [29]. Instead, we use the bounded Laplace mechanism in [17]; though bounded Laplace noise appeared earlier in the privacy literature, to the best of our knowledge [17] is the first work to rigorously analyze its privacy properties. We state it in a form amenable to use with edge [17] is the first work to rigorously analyze its privacy.

Definition 4. Let \(b > 0 \) and let \(D = [0, n] \). Then the bounded Laplace mechanism \(W_{\lambda_2} : \Omega \rightarrow D \), for each \(\lambda_2 \in D \), is given by its probability density function \(f_{W_{\lambda_2}} \) as

\[
f_{W_{\lambda_2}}(x) = \begin{cases} \frac{1}{C_{\lambda_2}(b)} \frac{1}{2} e^{-\frac{|x - \lambda_2|}{b}} & \text{if } x \notin D, \\ \frac{1}{C_{\lambda_2}(b)} \frac{1}{2} e^{-\frac{|x - \lambda_2|}{b}} & \text{if } x \in D, \end{cases}
\]

where \(C_{\lambda_2}(b) = \frac{1}{b} \int_0^b 2 e^{-\frac{|x - \lambda_2|}{b}} dx \) is a normalizing term.

Next, we establish an algebraic relation for \(b \) which lets the bounded Laplace mechanism satisfy the theoretical guarantees of \((\epsilon, \delta)\)-differential privacy in Definition 2.

Theorem 1 (Privacy mechanism for \(\lambda_2 \): Solution to Problem 2). Let \(\epsilon > 0 \) and \(\delta \in (0, 1) \) be given. Then for the bounded Laplace mechanism \(W_{\lambda_2} \) in Definition 2 choosing \(b \) according to

\[
b \geq \frac{2A}{\epsilon - \log \left(\frac{1 - \frac{2}{b} e^{-\frac{\epsilon \lambda_2}{b}}}{1 - \frac{\epsilon}{b} (1 + e^{-\frac{\epsilon}{b}})}\right) - \log(1 - \delta) - a}
\]

satisfies \((\epsilon, \delta)\)-differential privacy.

Proof: See Appendix B.

Note that \(b \) appears on both sides of (1), in [17], the authors provide an algorithm to solve for \(b \) using the bisection method, and we use this in the remainder of the paper.

IV. APPLICATIONS TO CONSENSUS

In this section, we solve Problem 2 and bound the error in consensus convergence rates when they are computed using private values of \(\lambda_2 \). As discussed in the introduction, consensus protocols underlie a number of multi-agent control and optimization algorithms, e.g., [13]–[16]. Consider a network of \(n \) agents running a consensus protocol with communication topology modeled by an undirected, unweighted graph \(G \). To protect the connections in this graph, a differentially private version of \(\lambda_2 \) is used for analysis.

In continuous time, a consensus protocol takes the form \(\dot{x} = -L(G)x \), where \(L(G) \) is the graph Laplacian. This protocol converges to the average of agents’ initial state values with error bound at time \(t \) proportional to \(e^{-\lambda_2 t} \) [25]. Let \(r(t) = e^{-\lambda_2 t} \) be the true convergence rate for the network \(G \). Let \(\lambda_2 \) be the output of the bounded Laplace mechanism with privacy parameters \(\epsilon \) and \(\delta \). Let \(\tilde{r}(t) = e^{-\lambda_2 t} \) be the convergence rate estimate. To compare the estimated convergence rate under privacy to the true convergence rate, we analyze \(|\tilde{r}(t) - r(t)| \).

Note that as \(t \rightarrow \infty \), both \(\tilde{r}(t) \rightarrow 0 \) and \(r(t) \rightarrow 0 \), which implies that \(|\tilde{r}(t) - r(t)| \rightarrow 0 \) as well. Although the error in the convergence rate estimate goes to 0 asymptotically, we are interested in analyzing the error at all values of \(t \). To accomplish this, we give a concentration bound that bounds the probability \(P(|\tilde{r}(t) - r(t)| \geq a) \) in terms of \(t \), the true algebraic connectivity \(\lambda_2 \), and the level of the privacy encoded in \(b \) that is determined using \(\epsilon \) and \(\delta \).

Theorem 2 (Convergence rate concentration bound: Solution to Problem 2). Let \(C_{\lambda_2}(b) = 1 - \frac{1}{2} \left(e^{-\frac{\lambda_2 b}{2}} + e^{-\frac{\lambda_2 b}{2} + \frac{\lambda_2 n}{b}} \right) \). Then, for \(t > 0 \) and a fixed \(\lambda_2 \) and \(b \),

\[
P(|\tilde{r}(t) - r(t)| \geq a) \leq \frac{1}{C_{\lambda_2}(b)} \frac{1}{2a} (\rho_1(t) + \rho_2(t) - \rho_3(t)),
\]

where

\[
\rho_1(t) = \frac{bt}{bt - 1}, \quad \rho_2(t) = e^{-\lambda_2 t} \left(1 - e^{-\frac{\lambda_2 b}{2}} \right), \quad \rho_3(t) = e^{-\lambda_2 t} - e^{-\frac{\lambda_2 b}{2}} - \frac{bt + 1}{bt - 1}.
\]

Proof: See Appendix C.

Taking limits of the bound presented in Theorem 2 shows that as \(t \rightarrow \infty \), \(P(|\tilde{r}(t) - r(t)| \geq a) \rightarrow 0 \) for all \(a \), and thus this bound has the expected asymptotic behavior.

We can use Theorem 2 to further characterize the transient response of error in the estimated consensus convergence rate. Specifically, we can bound the time required for the error in the convergence rate estimate to be larger than some threshold \(a \) only with probability smaller than \(\eta \). Formally, given a threshold \(a > 0 \) and probability \(\eta > 0 \), we bound the times \(t \) for which \(P(|\tilde{r}(t) - r(t)| \geq a) \leq \eta \).

Theorem 3. Fix \(a > 0 \) and \(\eta \in (0, 1) \). Let \(\epsilon > 0 \) and \(\delta \in (0, 1) \) be given and compute the scale parameter \(b > 0 \). Consider a graph on \(n \) nodes with algebraic connectivity \(\lambda_2 \). If \(\lambda_2 \leq \frac{a}{2} \), then we have \(P(|\tilde{r}(t) - r(t)| \geq a) \leq \eta \) for

\[
t \geq \frac{\left(e^{-\lambda_2 n} - e^{-\frac{\lambda_2 n}{b}} \right) b}{2cC_{\lambda_2}(b) \eta b + 2acC_{\lambda_2}(b) \eta + 1}.
\]

If \(\lambda_2 > \frac{a}{2} \), then the desired bound holds for \(t \geq \frac{2acC_{\lambda_2}(b) \eta + 1}{2acC_{\lambda_2}(b) \eta b} \).

Proof: See Appendix D.

We note that the statistics of the differential privacy mechanism can be released without harming privacy. Therefore, the values of \(C_{\lambda_2}(b) \) and \(b \) can be publicly released. A network analyst can compute these bounds for any choices of \(a \) and \(\eta \) of interest. Because the exact value of \(\lambda_2 \) is unknown, they can compute the maximum value of these two times to find a time after which the desired error bound always holds.

Notice that the two conditions on \(t \) in Theorem 3 only vary by a factor of \(\left(e^{-\lambda_2 n} - e^{-\frac{\lambda_2 n}{b}} \right) b \) in the numerator, and when \(\lambda_2 \) is large this term is negative. This means that if \(\lambda_2 \) is large, the required time for \(P(|\tilde{r}(t) - r(t)| \geq a) \leq \eta \)
is smaller than if λ_2 was small. In Section [VI] we provide simulation results and further commentary for Theorem 1.

Beyond the consensus protocol, the value of λ_2 is related to many other graph properties [24], and we next show how the private value of λ_2 can still be used to accurately bound two other properties of interest.

V. BOUNDING OTHER GRAPH PROPERTIES

There exist numerous inequalities relating λ_2 to other quantitative graph properties [24], [25], and one can therefore expect that the private λ_2 will be used to estimate other quantitative characteristics of graphs. To illustrate the utility of doing so, in this section we bound the graph diameter d and mean distance ρ in terms of the private value λ_2.

Both d and ρ measure graph size and provide insight into how easily information can be transferred across a network [30]. We estimate each one in terms of the private λ_2 and bound the error induced in these estimates by privacy. These bounds represent Similar bounds can be simply derived, e.g., on minimal/maximal degree, edge connectivity, etc., because their bounds are proportional to λ_2 [31].

We first recall bounds from the literature.

Lemma 2 (Diameter and Mean Distance Bounds [32]). For an undirected, unweighted graph G of order n, define

$$d(\lambda_2, \alpha) = \left(2 \sqrt{\frac{\lambda_n}{\lambda_2}} \sqrt{\frac{\alpha^2 - 1}{4\alpha} + 2} \right) \left(\log_{\alpha} \frac{n}{2}\right)$$

$$\rho(\lambda_2, \alpha) = \left(\frac{\lambda_n}{\lambda_2} \sqrt{\frac{\alpha^2 - 1}{4\alpha} + 1}\right) \left(\frac{n}{n - 1}\right) \left(\frac{1}{2} + \log_{\alpha} \frac{n}{2}\right).$$

Then for any fixed $\lambda_2 > 0$ and any $\alpha > 1$, the diameter d and mean distance ρ of the graph G are bounded by

$$d(\lambda_2) = \frac{4}{n\lambda_2} \leq d \leq \overline{d}(\lambda_2, \alpha)$$

$$\rho(\lambda_2) = \frac{2}{(n - 1)\lambda_2} + \frac{n - 2}{2(n - 1)} \leq \overline{\rho}(\lambda_2, \alpha).$$

The least upper bounds can be derived by using α_d and α_r which minimize $\overline{d}(\lambda_2, \alpha)$ and $\overline{\rho}(\lambda_2, \alpha)$ respectively.

A list of α_d and α_r can be found in Table 1 in [32]. To quantify the impacts of using the private λ_2 in these bounds, we next bound the expectations of d and ρ. These bounds use the upper incomplete gamma function $\Gamma(\cdot, \cdot)$ and the imaginary error function $\text{erfi}(\cdot)$, defined as

$$\Gamma(s, x) = \int_x^{\infty} t^{s-1} e^{-t} dt$$

$$\text{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} dt.$$

Using the private λ_2, expectation bounds are as follows.

Theorem 4 (Expectation bounds for d and ρ; Solution to Problem 3). For any $\lambda_2 > 0$, denote its private value by $\tilde{\lambda}_2$. Then, when bounded using $\tilde{\lambda}_2$, the expectations of the diameter, $E[d]$, and mean distance, $E[\rho]$, obey

$$\frac{4}{nE[\tilde{\lambda}_2]} \leq E[d] \leq E[\overline{d}(\lambda_2, \alpha_d)]$$

$$\frac{2}{(n - 1)E[\tilde{\lambda}_2]} + \frac{n - 2}{2(n - 1)} \leq E[\rho] \leq E[\overline{\rho}(\lambda_2, \alpha_r)],$$

where

$$E[\overline{d}(\lambda_2, \alpha_d)] = \left[2 \sqrt{\frac{\lambda_n}{\lambda_2}} \left(\frac{1}{2} + \log_{\alpha} \frac{n}{2}\right)\right] + 2\left[\log_{\alpha} \frac{n}{2}\right]$$

$$E[\overline{\rho}(\lambda_2, \alpha_r)] = \left[\frac{2}{\sqrt{\lambda_2}}\right] + 1 \left[\frac{1}{2} + \log_{\alpha_r} \frac{n}{2}\right].$$

We can compute the expectation terms with $\tilde{\lambda}_2$ via

$$E\left[\frac{1}{\sqrt{\lambda_2}}\right] = \frac{1}{C_{\lambda_2}(b)} \frac{1}{2b} \left(\sqrt{\pi} \sqrt{b} e^{-\frac{\lambda_2^2}{b}} \text{erfi}\left(\sqrt{\lambda_2} b\right)\right) + \sqrt{b} e^{-\frac{\lambda_2}{b}} \left(\Gamma\left(\frac{1}{2} \frac{n}{b}\right) - \Gamma\left(\frac{1}{2} \frac{\lambda_2 b}{b}\right)\right)$$

$$E[\tilde{\lambda}_2] = \frac{1}{2C_{\lambda_2}(b)} \left(2\lambda_2 + be^{-\frac{\lambda_2}{b}} - be^{-\frac{n-\lambda_2}{b}} - ne^{-\frac{n-\lambda_2}{b}}\right).$$

Proof: See Appendix E.

Remark 1. A larger ϵ indicates weaker privacy, and it results in a smaller value of b and a distribution of privacy noise that is more tightly concentrated about its mean. Thus, a larger ϵ implies that the expected value $E[\tilde{\lambda}_2]$ is closer to the exact, non-private λ_2, which leads to smaller disagreements in the bounds on the exact and expected values of d and ρ.

VI. SIMULATIONS

In this section, we present consensus simulation results and numerical results for the bounds on graph measurements when using the private λ_2 in graph analysis.

Consider a network of $n = 10$ agents with $\lambda_2 = 1$ and a true convergence rate of $r(t) = e^{-\lambda_2 t} = e^{-t}$. The network operator wishes to privatize λ_2 using the bounded Laplace mechanism with $\epsilon = 0.4$, $\delta = 0.05$, and $A = 1$. Solving for b with the algorithm in [17] yields $b \geq 7.39$, and selecting $b = 7.39$ ensures $(0.4, 0.05)$-differential privacy. Let $\tilde{\lambda}_2$ be the private output of the bounded Laplace mechanism. Then, for a recipient of $\tilde{\lambda}_2$, the estimated consensus convergence rate is $\tilde{r}(t) = e^{-\tilde{\lambda}_2 t}$. Let $P(|\tilde{r}(t) - r(t)| \leq a)$ be the the probability of the error of the convergence rate estimate being less than a at time t. Intuitively, $P(|\tilde{r}(t) - r(t)| \leq a)$ should be close to 1 as t grows.

We can lower bound $P(|\tilde{r}(t) - r(t)| \leq a)$ by noting that

$$P(|\tilde{r}(t) - r(t)| \leq a) = 1 - P(|\tilde{r}(t) - r(t)| \geq a),$$

which we can use Theorem 2 to bound. To that end, Figure 3 shows how $P(|\tilde{r}(t) - r(t)| \leq a)$ changes with time for $a = 0.2$ and shows 500 sample convergence rate estimates for values of λ_2 privatized with the parameters from above.

These simulations show that for a sufficiently large t, $P(|\tilde{r}(t) - r(t)| \leq a)$ is close to 1 and that the times t for which this occurs are often small. This occurs because the bounded Laplace mechanism outputs $\tilde{\lambda}_2 \in [0, n]$, and thus $\tilde{r}(t) \to 0$ as $t \to \infty$ for any $\tilde{\lambda}_2$, while the true convergence rate $r(t)$ also converges to 0. These results also show that Theorem 1 is consistent with intuition as...
Fig. 3. The top plot shows 500 sample convergence rate estimates $\bar{r}_i(t) = e^{-\lambda_2 t}$, where λ_2 is the output of the ith trial of the bounded Laplace mechanism with $\epsilon = 0.4$, $\delta = 0.05$, and $A = 1$ for a network of $n = 10$ agents with $\lambda_2 = 1$. The set $S(t)$ shown on these plots is defined as $S(t) = \{\bar{r}_i(t) : \bar{r}_i(t) = e^{-\lambda_2 t} \text{ and } |\bar{r}_i(t) - e^{-\lambda_2 t}| \leq a\}$ with $a = 0.2$. The bottom plot shows the lower bound on $P(\bar{r}_i(t) \in S)$ obtained by using Theorem 1 in [2]. This lower bound approaches 1 relatively quickly and is consistent with the sample convergence rates shown in the top plot.

Fig. 4. The top plot shows the distance between the exact and expected upper bounds for d. The bottom one shows the distance between the corresponding lower bounds.

highlighted in Figure 3, namely that as t grows the error in any estimated convergence rate using the output of the bounded Laplace mechanism converges to 0 eventually.

We next present simulation results for using the private value of λ_2 to estimate d and ρ. We consider networks of $n = 30$ agents with different edge sets and hence different values of λ_2. We let $\lambda_n = n$ and therefore the upper bounds on d and ρ in Theorem 4 can reach their worst-case values. We apply the bounded Laplace mechanism with $\lambda_2 = 6, 10, 19, 28$. This distance is shown in the upper plot in Figure 4 and the lower plot shows the analogous distance for the diameter lower bounds. Figure 5 shows the corresponding upper- and lower-bound distances for ρ.

In all plots, there is a general decrease in the distance between the exact and private bounds as ϵ grows. Recalling that larger ϵ implies weaker privacy, these simulations confirm that weaker privacy guarantees result in smaller differences between the exact and expected bounds for d and ρ, as predicted in Remark 1.

VII. CONCLUSIONS

This paper presented a differential privacy mechanism for the algebraic connectivity of undirected, unweighted graphs. Bounded noise was used to provide private values that are still accurate, and the private values of algebraic connectivity were shown to give accurate estimates of consensus protocol convergence rates, and the diameter and mean distance of a graph. Future work includes the development of new privacy mechanisms for other algebraic graph properties.

REFERENCES

[1] Wei Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems in multi-agent coordination,” in Proceedings of the 2005, American Control Conference, 2005.

[2] J. Scott, “Social network analysis,” Sociology, vol. 22, no. 1, pp. 109–127, 1988.

[3] M. D. Shirley and S. P. Rushton, “The impacts of network topology on disease spread,” Eco. Complexity, vol. 2, no. 3, pp. 287–299, 2005.

[4] Y. Zheng, L. Wang, and Y. Zhu, “Consensus of heterogeneous multi-agent systems,” vol. 5, no. 16, pp. 1881–1888.

[5] P. Van Mieghem, J. Oomic, and R. Kooij, “Virus spread in networks,” IEEE/ACM Transactions on Networking, vol. 17, no. 1, pp. 1–14, 2009.

[6] S. Freitas and D. H. Chau, “Evaluating graph vulnerability and robustness using tiger,” 2020.

[7] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith, “Analyzing graphs with node differential privacy,” in Proceedings of the 10th Theory of Cryptography Conference on Theory of Cryptography. Springer-Verlag, 2013, p. 457–476.

[8] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev, “Private analysis of graph structure,” ACM Trans. Database Syst., vol. 39, no. 3, 2014.

[9] S. P. Kasiviswanathan and A. Smith, “On the ‘semantics’ of differential privacy: A bayesian formulation,” Journal of Privacy and Confidentiality, vol. 6, no. 1, Jun. 2014.

[10] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” vol. 9, no. 3, pp. 211–240.

[11] W.-Y. Day, N. Li, and M. Lyu, “Publishing graph degree distribution with node differential privacy,” in Proceedings of the 2016 International Conference on Management of Data, 2016, p. 123–138.

[12] E. Shen and T. Yu, “Mining frequent graph patterns with differential privacy,” in Proceedings of the 19th ACM International Conference on Knowledge Discovery and Data Mining, 2013, p. 545–553.

[13] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[14] W. Ren and E. Atkins, “Distributed multi-vehicle coordinated control via local information exchange,” International Journal of Robust and Nonlinear Control, vol. 17, pp. 1002–1033, 2007.
[15] M. C. De Gennaro and A. Jadababaie, “Decentralized control of connectivity for multi-agent systems,” in Proceedings of the 45th IEEE Conference on Decision and Control, 2006, pp. 3628–3633.

[16] A. Nedić, A. Olshovsky, and W. Shi, Decentralized Consensus Optimization and Resource Allocation, 2018, pp. 247–287.

[17] N. Holohan, S. Antonatos, S. Braghin, and P. Mac Aonghusa, “The bounded laplace mechanism in differential privacy,” arXiv preprint arXiv:1808.10410, 2018.

[18] K. Yazdani, A. Jones, K. Leahy, and M. Hale, “Differentially private lp control,” arXiv preprint arXiv:1807.05082, 2018.

[19] K. Yazdani and M. Hale, “Error bounds and guidelines for privacy calibration in differentially private kalman filtering,” in 2020 American Control Conference (ACC), 2020, pp. 4423–4428.

[20] C. Hawkins and M. Hale, “Differentially private formation control,” in 2020 59th IEEE Conference on Decision and Control (CDC), 2020.

[21] P. Gohari, M. Hale, and U. Topcu, “Privacy-preserving policy synthesis in markov decision processes,” in 2020 59th IEEE Conference on Decision and Control (CDC), 2020.

[22] Y. Wang, X. Wu, and L. Wu, “Differential privacy preserving spectral graph analysis,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2013, pp. 329–340.

[23] M. Fiedler, “A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory,” Czechoslovak Mathematical Journal, vol. 25, no. 4, pp. 619–633, 1975.

[24] N. M. de Abreu, “Old and new results on algebraic connectivity of graphs,” Linear Algebra and its Applications, vol. 423, no. 1, pp. 53–73, 2007.

[25] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks, 2010.

[26] X. Ding, X. Zhang, Z. Bao, and H. Jin, “Privacy-preserving triangle counting in large graphs,” in Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Association for Computing Machinery, 2018, p. 1283–1292.

[27] M. Hay, C. Li, G. Miklau, and D. Jensen, “Accurate estimation of the degree distribution of private networks,” in 2009 Ninth IEEE International Conference on Data Mining, 2009, pp. 169–178.

[28] C. Task and C. Cliffon, “A guide to differential privacy in social network analysis,” in International Conference on Advances in Social Networks Analysis and Mining, 2012, pp. 411–417.

[29] P. Gohari, B. Wu, C. Hawkins, M. Hale, and U. Topcu, “Differential privacy on the unit simplex via the dirichlet mechanism,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 2326–2340, 2021.

[30] M. J. Paldino, W. Zhang, Z. D. Chu, and F. Golriz, “Metrics of brain network architecture capture the impact of disease in children with epilepsy,” Neuroimage: Clinical, vol. 13, pp. 201–208, 2017.

[31] M. Fiedler, “Algebraic connectivity of graphs,” vol. 23.

[32] B. Mohar, “Eigenvalues, diameter, and mean distance in graphs,” in Matrix mathematics: theory, facts, and formulas, Princeton university press, 2009.

APPENDIX

A. Proof of Lemma 7

Consider two graphs $G, G' \in \mathcal{G}_n$ such that $\text{Adj}_A(G, G') = 1$. Denote their corresponding graph Laplacians by L and L', and define the matrix P such that $L' = L + P$. Then, we write

$$\Delta \lambda_2 = \max_{G, G' \in \mathcal{G}_n} |\lambda_2 (L') - \lambda_2 (L)|.$$

Applying [33, Theorem 8.4.11] to split up $\lambda_2 (L + P)$, we obtain

$$\Delta \lambda_2 \leq \lambda_2 (L) + \lambda_n (P) - \lambda_2 (L) = \lambda_n (P).$$

The matrix P encodes the differences between L and L' as follows. For any i, if the diagonal entry $P_{ii} = 1$, then node i has one more edge in G' than it does in G. If $P_{ii} = -1$, then node i has one fewer edge in G' than it does in G. Other values of P_{ii} indicate the addition or removal of more edges. Given A, we have $-A \leq P_{ii} \leq A$.

For off-diagonal entries, $P_{ij} = 1$ indicates that G' contains the edge (i, j) in G and does not; the converse holds if $P_{ij} = -1$. Then, for any row of P, the diagonal entry has absolute value at most A, and the absolute sum of the off-diagonal entries is at most A. By Geršgorin’s circle theorem [33, Fact 4.10.16.], we have $\lambda_n (P) \leq 2A$.

B. Proof of Theorem 7

By [17, Theorem 3.5], the bounded Laplacian mechanism satisfies differential privacy if

$$b \geq \frac{\Delta \lambda_2}{\epsilon - \log \Delta C(b) - \log (1 - \delta)},$$

where, given that $\lambda_2 \in [0, n]$, $\Delta C(b)$ is defined as

$$\Delta C(b) = \frac{C_{\lambda_2} (b)}{C_0 (b)}.$$ (3)

Next, we compute the normalizing constant in Definition 4 as

$$C_{\lambda_2} (b) = 1 - \frac{1}{\epsilon} \left(e^{-\frac{\lambda_2}{b}} + e^{-\frac{\lambda_2}{b}} \right).$$ (4)

Using (4) in (3) gives

$$\Delta C(b) = 1 - \frac{1}{\epsilon} \left(e^{-\frac{\lambda_2}{b}} + e^{-\frac{\lambda_2}{b}} \right).$$

Using the sensitivity bound in Lemma 7 we put $\Delta \lambda_2 = 2A$, which completes the proof.

C. Proof of Theorem 2

Let λ_2 be the output of the bounded Laplace mechanism with scale parameter b. We begin by computing the expected value of $g(\lambda_2) = |r(t) - r'(t)|$ with respect to the randomness induced by the bounded Laplace mechanism. Again using $D = [0, n]$, we have

$$E[g(\lambda_2)] = \int_{-\infty}^{\infty} g(x) f_{W_{\lambda_2}} (x) dx = \int_D g(x) \frac{1}{C_{\lambda_2} (b)} \frac{e^{-\frac{|x - \lambda_2|}{b}}}{2b} dx = \frac{1}{C_{\lambda_2} (b)} \frac{1}{2b} \int_0^{\lambda_2} |e^{-xt} - e^{-\lambda_2 t}| e^{-\frac{|x - \lambda_2|}{b}} dx.$$ (5)

Then, note that

$$|e^{-xt} - e^{-\lambda_2 t}| e^{-\frac{|x - \lambda_2|}{b}} = \begin{cases} (e^{-xt} - e^{-\lambda_2 t}) e^{\frac{\lambda_2}{b}} & x \leq \lambda_2 \\ (e^{-\lambda_2 t} - e^{-xt}) e^{\frac{\lambda_2 - x}{b}} & x > \lambda_2. \end{cases}$$

Then we eliminate the absolute value to find

$$E[g(\lambda_2)] = \frac{1}{C_{\lambda_2} (b)} \frac{1}{2b} \int_0^{\lambda_2} (e^{-xt} - e^{-\lambda_2 t}) e^{\frac{\lambda_2}{b}} dx + \frac{1}{C_{\lambda_2} (b)} \frac{1}{2b} \int_{\lambda_2}^{n} (e^{-\lambda_2 t} - e^{-xt}) e^{\frac{\lambda_2 - x}{b}} dx,$$

and thus $E[g(\lambda_2)] = \frac{1}{C_{\lambda_2} (b)} \frac{1}{2b} \left(r_1 (t) + r_2 (t) - r_3 (t) \right)$.

Since $g(\lambda_2)$ is a non-negative random variable, we can use Markov’s inequality to arrive at the theorem statement. It can be shown that $r_1 (t), r_2 (t), r_3 (t) \geq 0$ for all t.
D. Proof of Theorem 2

To derive a sufficient condition, we fix a and upper bound the probability \(\frac{1}{C_{\lambda_2}(b)} \mathbb{E} [\rho_1(t) + \rho_2(t) - \rho_3(t)] \) from Theorem 2. Then we find times \(t \) for which this upper bound is bounded above by \(\eta \).

First, since \(\rho_3(t) \geq 0 \) for all \(t \),
\[
\frac{1}{2aC_{\lambda_2}(b)} \left(\rho_1(t) + \rho_2(t) - \rho_3(t) \right) \leq \frac{\rho_1(t) + \rho_2(t)}{2aC_{\lambda_2}(b)} - \frac{e^{-\lambda_2 t}}{2aC_{\lambda_2}(b)} \left(e^{-\lambda_2 t} - e^{\lambda_2 t} \right) \frac{b}{t + 1}.
\]

By upper bounding again, we can eliminate the \(-1\) and \(e^{-\lambda_2 t} \)

Next, we maximize the left-hand side over \(\lambda \), and solve for \(t \) and the non-negativity of the parenthetical term. Doing so and expanding gives

Next, we solve for \(t \)

and solving for \(t \) gives
\[
t = \left(e^{-\lambda_2 t} - e^{\lambda_2 t} \right) \frac{b}{\lambda_2} + 2aC_{\lambda_2}(b) \eta + 1
\]

Thus when \(\lambda_2 < \frac{n}{2} \), we have \(\mathbb{P} (|\bar{r}(t) - r(t)| \geq \eta) \leq \eta \) for
\[
t \geq \frac{2aC_{\lambda_2}(b) \eta}{2aC_{\lambda_2}(b) \eta + 1}.
\]

Now we analyze the case where \(\lambda_2 > \frac{n}{2} \). This causes \(e^{-\lambda_2 t} - e^{\lambda_2 t} \) \(\leq 0 \), and the left-hand side of (5) is negative for all \(t > 0 \). Therefore, we can ensure that (5) holds when the right-hand side is positive, i.e., when

Solving gives \(t \geq \frac{2aC_{\lambda_2}(b) \eta + 1}{2aC_{\lambda_2}(b) \eta + 1} \).

E. Proof of Theorem 4

Since both lower bounds are convex functions with respect to \(\lambda_2 > 0 \), we can use Jensen’s inequality and we have
\[
\mathbb{E}[\bar{d}] \geq \mathbb{E}[d(\lambda_2)] = \mathbb{E} \left[\frac{4}{n\lambda_2} \right] \geq \frac{4}{nE[\lambda_2]}
\]
\[
\mathbb{E}[\bar{\rho}] \geq \mathbb{E}[\rho(\lambda_2)] = \mathbb{E} \left[\frac{2}{(n-1)\lambda_2} + \frac{n-2}{2(n-1)} \right] \geq \frac{2}{(n-1)E[\lambda_2]} + \frac{n-2}{2(n-1)}.
\]

The value of \(\mathbb{E}[\lambda_2] \) can be computed as
\[
\mathbb{E}[\lambda_2] = \frac{1}{C_{\lambda_2}(b)} \frac{1}{2b} \int_0^n x e^{-\frac{x-\lambda_2}{b}} dx
\]
\[
= \frac{1}{C_{\lambda_2}(b)} \frac{1}{2b} \left(\int_0^{\lambda_2} x e^{-\frac{x}{b}} dx + \int_{\lambda_2}^n x e^{-\frac{x-\lambda_2}{b}} dx \right)
\]
\[
= \frac{1}{2C_{\lambda_2}(b)} \left(2\lambda_2 + be^{-\frac{\lambda_2}{b}} - be^{-\frac{n-\lambda_2}{b}} - ne^{-\frac{n-\lambda_2}{b}} \right).
\]

We next compute the expectation term \(\mathbb{E} \left[\frac{1}{\sqrt{\lambda_2}} \right] \) as
\[
\mathbb{E} \left[\frac{1}{\sqrt{\lambda_2}} \right] = \frac{1}{C_{\lambda_2}(b)} \frac{1}{2b} \int_0^n \frac{1}{\sqrt{x}} e^{-\frac{x-\lambda_2}{b}} dx
\]
\[
= \frac{1}{C_{\lambda_2}(b)} \frac{1}{2b} \left(\int_0^{\lambda_2} \frac{1}{\sqrt{x}} e^{-\frac{x}{b}} dx + \int_{\lambda_2}^n \frac{1}{\sqrt{x}} e^{-\frac{x-\lambda_2}{b}} dx \right)
\]
\[
= \frac{1}{C_{\lambda_2}(b)} \frac{1}{2b} \left(\frac{\lambda_2}{\sqrt{\pi} b} e^{-\frac{\lambda_2}{b}} \left(\text{erfi} \left(\sqrt{\frac{\lambda_2}{b}} \right) \right) \right.
\]
\[
+ \frac{\lambda_2}{\sqrt{\pi} b} \left(\frac{1}{2} \sqrt{\frac{\lambda_2}{b}} - \frac{1}{2} \text{erfi} \left(\sqrt{\frac{\lambda_2}{b}} \right) \right) \right).
\]

Then we can find the desired upper bounds by applying the linearity of expectation. \(\blacksquare \)