Anthropometric measures and epithelial ovarian cancer risk among Chinese women: results from the Shanghai Women’s Health Study

X Ma1,2, A Beeghly-Fadiel*,1, X-O Shu1, H Li3, G Yang1, Y-T Gao3 and W Zheng1

1Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; 2Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China and 3Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China

Background: Studies of anthropometric measures and ovarian cancer risk have predominantly included women of European descent with mixed findings.

Methods: Data from the prospective Shanghai Women’s Health Study (SWHS) were used to evaluate associations between anthropometric measures and risk of epithelial ovarian cancer (EOC). Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated by Cox proportional hazards regression.

Results: A total of 152 EOC cases occurred among 70,258 women. Increasing quartiles of weight, hip circumference, and weight gain during adulthood were associated with significantly increased EOC risks. Body mass index (BMI) was also associated; overweight (25 ≤ BMI < 29.99) and obese women (BMI ≥ 30.0) had significantly increased risks (HR: 1.49, 95% CI: 1.05, 2.13, and HR: 2.42, 95% CI: 1.37, 4.28, respectively). No significant associations were observed for height, waist circumference, waist-to-hip ratio (WHR), and waist-to-height ratio (WHAR).

Conclusion: Results from this large prospective study of Chinese women support the hypothesis that general adiposity contributes to the aetiology of ovarian cancer.

Anthropometric measures include markers of general adiposity, such as weight and body mass index (BMI) and markers of central adiposity, such as hip or waist circumference. Associations between these measures and ovarian cancer risk have been inconsistent. Except for two case–control studies conducted among Chinese women (Zhang et al., 2005; Su et al., 2012) and three small cohort studies of Japanese women (Kuriyama et al., 2005; Niwa et al., 2005; Weiderpass et al., 2012), the majority of investigations conducted to date have predominantly included women of European descent. For example, a recent large pooled analysis from the Ovarian Cancer Association Consortium (OCAC) found that high BMI was associated with increased risks of less-common ovarian cancers (Olson et al., 2013); however, only 3% of the study population was Asian.

Associations of anthropometric measures with ovarian cancer risk may differ by ethnicity. One large study conducted meta-analyses for cancer risks associated with 5 unit increases in BMI; the risk of ovarian cancer seemed to be higher among Asian women than among European or North American women (Renehan et al., 2008). Another large collaborative project included data from 47 studies and found that increasing height and BMI were both associated with increased risks of ovarian cancer; however, in analyses among non-Caucasian women, associations were imprecise and non-significant (Collaborative Group on Epidemiological Studies of Ovarian Cancer, 2012). Notably, both of these two large collaborative efforts included only two studies each that were conducted among Asian women. Given that
Caucasian and Asian women may differ in many regards, including reproductive characteristics, dietary habits, and genetic architecture, and that the relationship between anthropometric measures and ovarian cancer risk among Asian women is not well defined; this study was undertaken in order to evaluate associations between anthropometric measures and ovarian cancer risk among a large prospective study of Chinese women.

MATERIALS AND METHODS

Study participants. The SWHS is a prospective cohort study of 74,942 adult women from Shanghai, China. Enrolment occurred from 1996 to 2000, and included women aged 40–70. Study methods and rationale have been previously reported (Zheng et al., 2005). Briefly, all included participants completed baseline surveys and their anthropometric measurements were recorded. Follow-up was conducted by in-person interviews, coupled to annual linkage to the Shanghai Cancer and Vital Statistics Registries. In this analysis, outcome data were censored on 31 December 2009. Cancer diagnoses were verified via medical chart review. Epithelial ovarian cancer was also considered. Lowest categories or quartiles of anthropometric measurements were used as reference groups, except when evidence of a J-shaped curve was present. Exploratory analyses included stratification by histologic subtype of ovarian cancer, dichotomized as serous or non-serous EOC. All statistical tests were two-sided and significance was defined by a *P*-value ≤ 0.05. Analyses were conducted using SAS, v9.2 (SAS Institute, Cary, NC, USA).

RESULTS

Among 70,258 Chinese women with a total of 761,389 person-years of follow-up (average 10.84, s.d.: 1.85), 152 EOC cases were diagnosed (Table 1). Women who did and did not develop EOC were found to significantly differ with regards to age at natural menopause:

Table 1. Characteristics of participants in the Shanghai Women’s Health Study (SWHS), by epithelial ovarian cancer (EOC) status

Characteristics	EOC cases	Non-EOC cases	P-value
Participants (N)	152	70,106	—
Person-years	891.45	760,497.86	—
Age at interview	52.91 ± 8.75	52.46 ± 9.07	0.547
Age at menarche	14.91 ± 1.71	14.94 ± 1.74	0.834
Postmenopausal	78 (51.32%)	33,431 (47.70%)	0.372
Age at menopause	50.22 ± 3.21	49.23 ± 3.71	0.022
Hormone replacement therapy	2 (1.32%)	1,153 (1.64%)	0.750
Parous	145 (95.39%)	67,885 (96.83%)	0.313
Total years of menstruation	30.28 ± 4.76	29.43 ± 4.95	0.036
Ever oral contraceptive use	31 (20.39%)	14,327 (20.44%)	0.990
Irregular ovulatory cycles	4 (2.63%)	4,692 (6.69%)	0.045
Education (college and above)	17 (11.18%)	9,319 (13.30%)	0.444
Ever drank regularly	5 (3.29%)	1,585 (2.26%)	0.394
Ever smoked regularly	9 (5.92%)	1,943 (2.77%)	0.018
Passive smoke exposure	126 (82.89%)	56,417 (80.47%)	0.452
Ever drank tea	47 (30.92%)	20,947 (29.88%)	0.779
Family history of any cancer	46 (30.26%)	18,452 (26.32%)	0.270
Family history of breast or ovarian cancer	3 (1.97%)	1472 (2.10%)	0.914
History of fibroadenomas	4 (2.63%)	2,307 (3.29%)	0.649
Occupation (manual workers)	77 (50.66%)	35,539 (50.69%)	0.993
Family income (high)	50 (32.89%)	23,379 (33.35%)	0.906
Regular physical activity	55 (36.18%)	24,390 (34.79%)	0.719
Physical activity units	1.76 ± 1.71	1.94 ± 2.10	0.520
Energy intake	1,700.20 ± 386.10	1,675.90 ± 405.80	0.461

Abbreviation: EOC = epithelial ovarian cancer.

aContinuous EOC cases diagnosed during follow-up.
bMissing values for: age at natural menopause; for women with non-serous, non-surgical or non-ovarian Cancer registries; *P*-value ≤ 0.05. Analyses were conducted using SAS, v9.2 (SAS Institute, Cary, NC, USA).

cUnits of physical activity defined as MET-h day^{−1} year^{−1}; only available for participants with regular physical activity.
Anthropometric measures and ovarian cancer risk

BRITISH JOURNAL OF CANCER

Table 2. Anthropometric measures by epithelial ovarian cancer (EOC) status, the SWHS

Measures	EOC cases (N = 152)*	Non-EOC cases (N = 70 106)	P-valueb						
	Mean ± s.d.	25th	Median	75th	Mean ± s.d.	25th	Median	75th	
Weight	61.40 ± 9.71	55.25	61	67.25	59.56 ± 8.89	53.5	59	65	0.011
Height	157.95 ± 5.67	154.5	158	162	157.53 ± 5.55	154	158	161	0.352
BMI	24.62 ± 3.76	22.17	24.6	26.47	24.00 ± 3.41	21.63	23.71	26.06	0.027
Waist circumference	79.50 ± 9.23	73	79	85	77.83 ± 8.79	72	77	83	0.019
Hip circumference	97.23 ± 8.49	92	97	102	95.91 ± 7.60	90	95	100	0.033
Waist-to-hip ratio	0.82 ± 0.06	0.78	0.82	0.85	0.81 ± 0.05	0.77	0.81	0.84	0.173
Waist-to-height ratio	0.50 ± 0.06	0.46	0.49	0.54	0.49 ± 0.06	0.45	0.49	0.53	0.057
Weight at age 20c	49.74 ± 6.64	45	50	55	49.57 ± 6.59	45	49	54	0.764
BMI at age 20d	19.59 ± 2.48	17.65	19.4	21.19	19.60 ± 2.45	17.8	19.33	21.11	0.957
Weight gain from age 20*	12.03 ± 9.57	6	11	17	9.94 ± 9.14	4	10	15.5	0.008

Abbreviations: BMI = body mass index; EOC = epithelial ovarian cancer.
*Incident EOC cases diagnosed during follow-up.
bP-value from t-tests; bold values denote significance at <0.05.
cSelf-reported weight at age 20 was unavailable for 7296 participants (including 17 cases).
dData for BMI at age 20 was unavailable for 10 418 participants (including 20 cases).
*Weight gain from age 20 to SWHS enrolment.

menopause, total years of menstruation, irregular ovulatory cycles, and smoking history. In regards to anthropometric measurements, women with EOC had significantly higher distributions for weight, BMI, waist circumference, hip circumference, and weight gain from age 20 to cohort enrolment (Table 2). Among women who developed ovarian cancer, histologic subtypes included serous (90% of cases), endometrioid (12.5%), clear cell (9.9%), mucinous (9.2%), and unspecified (21.7%). As >90% of ovarian tumours arise from the surface epithelium, unspecified cases were included as ovarian cancers of other epithelial histologic types.

Cox proportional hazards regression was used to evaluate associations with EOC risk (Table 3). Significant trends were found for increasing quartiles of weight, hip circumference, weight gain from age 20, and BMI categories as defined by the WHO. Women in the highest quartiles or categories of these anthropometric measures had significantly increased EOC risks; the smallest was for weight (HR: 1.71, 95% CI: 1.08–2.71), and the largest was for BMI (HR: 2.42, 95% CI: 1.37–4.28). Only two women had a BMI of ≥25 at age 20 and so risk estimates for this measurement were unstable and not shown. All regression models included adjustment for age and education; weight at age 20 was also included for weight gain from age 20 to cohort enrolment. Additional adjustment for a variety of factors was considered; none resulted in altered risk estimates (≥10%) when included. In mutually adjusted models, no anthropometric measures remained significantly associated with ovarian cancer risk after adjustment for BMI. The significance of the association for BMI was attenuated when waist circumference, hip circumference, or WHR was included in the regression model.

The robustness of these findings was evaluated by sensitivity analyses. When women diagnosed with EOC within the first year of follow-up (N = 14) were excluded, the results were materially unaltered. When ovarian cancer cases of unspecified type (N = 22) were excluded, significance was attenuated for weight (P-value = 0.070) and hip circumference (P-value = 0.052). When smokers (N = 1952) were excluded, significance was attenuated for hip circumference (P-value = 0.089).

Exploratory analyses were conducted to evaluate if associations between anthropometric characteristics and EOC risk differed by histologic subtype of ovarian cancer (data not shown); owing to our sample size, histologic type was classified as either serous or non-serous subtypes. Weight, BMI, hip circumference, and weight gain from age 20 to cohort enrolment were all significantly associated with an increased risk of non-serous ovarian cancers. No associations with anthropometric characteristics were evident for serous ovarian cancer risk, possibly due to the limited sample size (N = 50).

DISCUSSION

In this large, population-based prospective cohort study of 70 258 Chinese women, during which 152 incident cases of EOC occurred, weight, BMI, hip circumference, and weight gain from age 20 to cohort enrolment were found to be significantly associated with increased EOC risk. Height, waist circumference, WHR, WHER, and weight at age 20 were not significantly associated with EOC risk. To the best of our knowledge, this is the first prospective study of anthropometric measures and ovarian cancer risk among Asian women, and the largest such study conducted among Asian women.

Although it is generally accepted that measurements of general adiposity, such as weight and BMI, are associated with increased risks of many cancers (Calle and Kaaks, 2004), such measures have had inconsistent associations with ovarian cancer risk in prior epidemiologic studies. Only five studies have been conducted among Asian women (Kuriyama et al., 2005; Niwa et al., 2005; Zhang et al., 2005; Su et al., 2012; Weiderpass et al., 2012). In two hospital-based case–control studies of Chinese women, weight and BMI were associated with increased ovarian cancer risk (Zhang et al., 2005; Su et al., 2012). A small cohort study of Japanese women also found a positive association between BMI and ovarian cancer risk (Niwa et al., 2005), whereas two others found no association (Kuriyama et al., 2005; Weiderpass et al., 2012). In the current study, EOC risk increased linearly with weight, whereas a J-shaped
Anthropometric measures and ovarian cancer risk, the SWHS

Anthropometric measures	EOC Risk^a
Weight (kg, quartiles)	
<53.50	Referent
53.50–58.99	3.22 (2.04, 5.17)
59.00–64.99	3.13 (2.04, 5.17)
≥65.00	1.71 (1.08, 2.71)
Height (cm, quartiles)	
<154.00	1.13 (0.69, 1.85)
154.00–157.99	1.55 (0.95, 2.54)
158.00–160.99	1.43 (0.87, 2.35)
BMI (kg m⁻², WHO categories)	
<18.50	1.73 (0.80, 3.75)
18.50–24.99	Referent
25.00–29.99	1.49 (1.05, 2.13)
≥30.00	2.42 (1.37, 4.28)
Waist circumference (cm, quartiles)	
<72.00	1.57 (0.92, 2.69)
72.00–76.99	Referent
77.00–82.99	1.50 (0.92, 2.46)
≥83.00	1.61 (0.98, 2.64)
Hip circumference (cm, quartiles)	
<90.50	1.57 (0.92, 2.69)
90.50–94.99	Referent
95.00–99.99	2.14 (1.33, 3.45)
≥100.00	
WHR (cm/cm, quartiles)	
<0.77	1.13 (0.69, 1.87)
0.77–0.81	1.28 (0.76, 2.16)
0.81–0.84	1.25 (0.76, 2.07)
≥0.84	
WHER (cm/cm, quartiles)	
<0.45	1.20 (0.74, 1.94)
0.45–0.49	1.22 (0.75, 1.99)
0.49–0.53	1.49 (0.90, 2.47)
≥0.53	
Weight at age 20 (kg, quartiles)^b	
<45.00	1.24 (0.74, 2.08)
45.00–48.99	Referent
49.00–53.99	1.19 (0.73, 1.94)
≥54.00	1.39 (0.86, 2.23)
Weight gain from age 20 (quartiles)^c	
<4.00	1.83 (1.05, 3.21)
4.00–9.99	1.97 (1.12, 3.46)
≥10.00–15.99	2.33 (1.33, 4.06)
≥16.00	

Abbreviations: BMI = body mass index; WHER = waist-to-height ratio; WHR = waist-to-hip ratio.

^aCox proportional hazards regression among 70,258 SWHS participants, adjusted for age (continuous) and education (high vs low). P-values from tests for trends, bold values denote significance at p<0.05.

^bData for weight at age 20 was unavailable for 7,298 participants (including 17 cases).

^cWeight gain from age 20 to SWHS enrolment; adjusted for weight at age 20, age and education.

Prior epidemiologic studies that evaluated measures of central adiposity in relation to ovarian cancer risk have also included mixed findings; positive (Dal Maso et al, 2002; Hoyos et al, 2005; Delort et al, 2009; Canchola et al, 2010; Lahmann et al, 2010) and null associations (Anderson et al, 2004; Chionh et al, 2010) have been reported. No studies of central adiposity have been previously conducted among Asian women. In the current study, the highest quartile of hip circumference was significantly associated with increased EOC risk. Neither waist circumference, WHR, nor WHER, a suggested better indicator of central adiposity (Ashwell et al, 1996), were significantly associated with EOC risk in the current study.

Only one prior study has evaluated height in relation to ovarian cancer risk among Asian women; no association was found (Weiderpass et al, 2012). A pooled analysis of primary data from 12 prospective cohort studies among Caucasian women found a significant association between increasing height and ovarian cancer risk (Schouten et al, 2008). A recent meta-analysis of 47 studies also found a significant increase in ovarian cancer risk associated with each 5-cm increase in height (Collaborative Group on Epidemiological Studies of Ovarian Cancer, 2012). Height has been proposed to influence ovarian cancer risk mostly through increased levels of circulating growth factors (Collaborative Group on Epidemiological Studies of Ovarian Cancer, 2012). In the current analysis, although there was a trend towards increasing risk as a factor of height, this association was not statistically significant.

Strengths of the current study include its prospective design, long duration of follow-up time, large sample size, and measured anthropometric characteristics from cohort enrollment (except for measures at age 20 which were self-reported). Collecting anthropometric measurements as well as self-reported data prior to disease occurrence minimized the possibility of associations being inflamed by recall or information bias. One limitation of our study is that only 152 ovarian cancer cases were included, because of the low incidence rate of ovarian cancer among Chinese women. Another limitation is that this study lacked power for analyses stratified by histologic type. However, exploratory analyses were conducted by dichotomizing our cases into serous or non-serous histologic types; all associations from our main findings were present for non-serous but not for serous ovarian cancer risk; this is in agreement with a recent large pooled project that found significant associations for BMI with endometrioid and mucinous ovarian cancers but not with serous ovarian cancers among a primarily Caucasian study population (Olsen et al, 2013).

In summary, results from this large prospective study support associations between increasing weight, BMI, hip circumference, and weight gain during adulthood and increased EOC risk among Chinese women. The effects of these anthropometric measures on EOC risk could not be fully disentangled using models with mutual adjustment; however, our data indicate that general adiposity may have a larger role than central adiposity in ovarian cancer risk among Chinese women. Our data also suggest that these associations may be specific to non-serous ovarian cancer types, but further research is needed in order to investigate possible...
Anthropometric measures and ovarian cancer risk

This research was supported by the US National Institutes of Health USPHS (WZ; R37 CA070867). Xiangyu Ma (from the Third Military Medical University in China) was supported by the China Scholarship Council while visiting the Vanderbilt Epidemiology Center in the United States.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Anderson JP, Ross JA, Folsom AR (2004) Anthropometric variables, physical activity, and incidence of ovarian cancer: the Iowa Women’s Health Study. Cancer 100(7): 1515–1521.
Ashwell M, Lejeune S, McPherson K (1996) Ratio of waist circumference to height may be better indicator of need for weight management. BMJ 312(7027): 377.
Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4: 579–591.
Collaborative Group on Epidemiological Studies of Ovarian Cancer (2012) Ovarian cancer and body size: individual participant meta-analysis including 25 157 women with ovarian cancer from 47 epidemiological studies. PLoS Med 9(4): e1001200.
Canchola AJ, Chang ET, Bernstein L, Largent JA, Reynolds P, Deapen D, Henderson KD, Ursin G, Horn-Ross PL (2010) Body size and the risk of ovarian cancer by hormone therapy use in the California Teachers Study cohort. Cancer Causes Control 21(12): 2183–2194.
Chionh F, Baglietto L, Krishnan K, English DR, Macninis RJ, Gertig DM, Hopper JL, Giles GG (2010) Physical activity, body size and composition, and risk of ovarian cancer. Cancer Causes Control 21(12): 2183–2194.
Dal Maso L, Franceschi S, Negri E, Conti E, Montella M, Vaccarella S, Canzianeri V, Parazzini F, La Vecchia C (2002) Body size indices at different ages and epithelial ovarian cancer risk. Eur J Cancer 38(13): 1769–1774.
Delort L, Kwiatkowski F, Chalabi N, Satish S, Bigonou YJ, Bernard-Gallon DJ (2009) Central adiposity as a major risk factor of ovarian cancer. Anticancer Res 29(12): 5229–5234.
Hoyo C, Berchuck A, Halabi S, Bentley RC, Moorman P, Calingaert B, Schildkraut JM (2005) Anthropometric measurements and epithelial ovarian cancer risk in African-American and white women. Cancer Causes Control 16(8): 955–963.
Kuriyama S, Tsunobo Y, Hozawa A, Shimazu T, Suzuki Y, Koizumi Y, Ohmori K, Nishino Y, Tsuji I (2005) Obesity and risk of cancer in Japan. Int J Cancer 113(1): 148–157.
Lahmann PH, Cust AE, Friedenreich CM, Schulz M, Lukanova A, Kaaks R, Lundin E, Tjonneland A, Halkjaer J, Severinsen MT, Overvad K, Fournier A, Chabbert-Buffet N, Clavel-Chapelon F, Dossus L, Pischon T, Boeing H, Trichopoulou A, Lagiou P, Naska A, Palli D, Grioni S, Mattiello A, Tumino R, Sacerdote C, Redondo ML, Jakobsen S, Sanchez MJ, Tormo MJ, Ardanaz E, Arriola L, Manjer J, Jirström K, Bueno-de-Mesquita HB, May AM, Peeters PH, Onland-Moret NC, Bingham S, Khaw KT, Allen NE, Spencer E, Rinaldi S, Slimani N, Chajes V, Michaud D, Norat T, Riboli E (2010) Anthropometric measures and epithelial ovarian cancer risk in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 126(10): 2404–2415.
Niwa Y, Yatsuha H, Tamakoshi K, Nishio K, Kondo T, Lin Y, Suzuki S, Wakai K, Tokudome S, Yamamoto A, Hamajima N, Toyoshima H, Tamakoshi A (2005) Relationship between body mass index and the risk of ovarian cancer in the Japanese population: findings from the Japanese Collaborate Cohort (JACC) study. J Obstet Gynaecol Res 31(5): 452–458.
Olsen CM, Nagle CM, Whiteman DC, Ness R, Pearce CL, Pike MC, Rossing MA, Terry KL, Wu AH. Australian Cancer Study (Ovarian Cancer). Australian Ovarian Cancer Study Group; Risch HA, Yu H, Doherty JA, Chang-Clague J, Hein R, Nickels S, Wang-Gohrke S, Goodman MT, Carney ME, Matsuo RK, Lurie G, Moysich K, Kjaer SK, Jensen A, Hodgall E, Goode EL, Fridley BL, Vierkant RA, Larson MC, Schildkraut J, Hoyo C, Moorman P, Weber RP, Cramer DW, Vitaro FSN, Bandera EV, Olson SH, Rodriguez-Rodriguez L, King M, Brinton LA, Yang H, Garcia-Closas M, Lissowska J, Anton-Culver H, Ziegals A, Gayther SA, Ramus SJ, Menon U, Gentry-Maharaj A, Webb PM (2013) Obesity and risk of ovarian cancer subtypes: evidence from the Ovarian Cancer Association Consortium. Endocr Relat Cancer 20(2): 251–262.
Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371: 569–578.
Schouten LJ, Rivera C, Hunter DJ, Spiegelman D, Adami HO, Arslan A, Beeson WL, van den Brandt PA, Buring JE, Folsom AR, Fraser GE, Freudenberg JL, Goldbohm RA, Hankinson SE, Lacey Jr. JV, Leitzmann M, Lukanova A, Marshall JR, Miller AB, Patel AV, Rodriguez C, Roahan TE, Ross JA, Wool A, Zhang SM, Smith-Warner SA (2008) Height, body mass index, and ovarian cancer: a pooled analysis of 12 cohort studies. Cancer Epidemiol Biomarkers Prev 17(4): 902–912.
Su D, Pasalich M, Binns CW, Lee AH (2012) Is body size associated with ovarian cancer in southern Chinese women? Cancer Causes Control 23(12): 1977–1984.
Weiderpass E, Sandin S, Inoue M, Shimazu T, Iwaseki M, Sasazuki S, Sawada N, Yamaji T, Tsugane S (2012) Risk factors for epithelial ovarian cancer in Japan - results from the. Int J Oncol 40(1): 21–30.
Zheng W, Xie X, Holman CD (2005) Body weight and body mass index and ovarian cancer risk: a case-control study in China. Gynecol Oncol 98(2): 228–234.
Zheng W, Chow WH, Yang G, Jin F, Rothman N, Blair A, Li HL, Wen W, Ji BT, Li Q, Shu XO, Gao YT (2005) The Shanghai Women’s Health Study: rationale, study design, and baseline characteristics. Am J Epidemiol 162(11): 1123–1131.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.