Impact of Orexin-A Treatment on Food Intake, Energy Metabolism and Body Weight in Mice

Anne Blais1*, Gaëtan Drouin1, Catherine Chaumontet1, Thierry Voisin2, Anne Couvelard2, Patrick Christian Even1, Alain Couvineau2

1 UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, Paris, France, 2 INSERM U1149/ Inflammation Research Center (CRI), Paris-Diderot University, DHU UNITY, Faculté de Médecine Site Bichat, 16, rue H. Huchard, Paris, France

* blais@agroparistech.fr

Abstract

Orexin-A and -B are hypothalamic neuropeptides of 33 and 28-amino acids, which regulate many homeostatic systems including sleep/wakefulness states, energy balance, energy homeostasis, reward seeking and drug addiction. Orexin-A treatment was also shown to reduce tumor development in xenografted nude mice and is thus a potential treatment for carcinogenesis. The aim of this work was to explore in healthy mice the consequences on energy expenditure components of an orexin-A treatment at a dose previously shown to be efficient to reduce tumor development. Physiological approaches were used to evaluate the effect of orexin-A on food intake pattern, energy metabolism body weight and body adiposity. Modulation of the expression of brain neuropeptides and receptors including NPY, POMC, AgRP, cocaine- and amphetamine related transcript (CART), corticotropin-releasing hormone (CRH) and prepro-orexin (HCRT), and Y2 and Y5 neuropeptide Y, MC4 (melanocortin), OX1 and OX2 orexin receptors (Y2R, Y5R, MC4R, OX1R and OX2R, respectively) was also explored. Our results show that orexin-A treatment does not significantly affect the components of energy expenditure, and glucose metabolism but reduces intraperitoneal fat deposit, adiposity and the expression of several brain neuropeptide receptors suggesting that peripheral orexin-A was able to reach the central nervous system. These findings establish that orexin-A treatment which is known for its activity as an inducer of tumor cell death, do have minor parallel consequence on energy homeostasis control.

Introduction

Orexin-A and -B (also known as hypocretins 1 and 2) are hypothalamic neuropeptides of 33 and 28-amino acids, respectively, which are produced from the common 131-residue precursor, prepro-orexin [1]. Orexins are synthesized in the central nervous system mostly by the neurons of the lateral hypothalamus [2]. Both isoforms have been shown to be involved in multiple physiological processes including regulation of sleep/wakefulness states, energy balance, energy homeostasis, reward seeking and drug addiction [3, 4, 5]. Orexin-A regulates appetite, energy expenditure and metabolism [6]. Intra-cerebroventricular (i.c.v.) injections of orexin-A was shown to increase food intake in rats, while orexin-B was less effective [7].
Orexin system has a crucial role on sleep/wakefulness since orexin deficiency leads to narcolepsy and cataplexy in human and animals [8]. Recently, the U.S. Food & Drug Administration (FDA) approved the use of a reversible dual orexin receptor antagonist, Suvorexant, for insomnia [9]. Orexins and their functions have been mainly described in the central nervous system but orexins and their receptors are also detected in various organs including the intestine, pancreas, adrenal glands, kidney, adipose tissue and reproductive tract. However, their roles remain unclear [10, 11]. In peripheral tissues, orexins could affect insulin release, intestinal mobility, hormone secretion and blood pressure regulation [10]. Orexins trigger their central and peripheral effects by interacting with 2 members of the class A G-protein coupled receptors (GPCRs) family, i.e., orexin receptor-1 (OX₁R) and orexin receptor-2 (OX₂R) [1]. Basically, activation of these receptors by orexins induces intracellular calcium transients through G₁q-dependent and -independent pathways [12, 13, 3, 14, 15]. OX₁R is more sensitive to orexin-A, whereas, the OX₂R binds both orexin-A and orexin-B with the same affinity [16]. Moreover orexin-A, but not orexin-B is able to enter brain from blood by simple diffusion [17]. They provide strong output to the arcuate nucleus of the hypothalamus where they stimulate orexigenic neuropeptide Y/Agouti-related peptide (NPY/AgRP) [18] and the anorexigenic pro-opiomelanocortin (POMC) [19].

Apart from their effects on various physiological parameters, orexin-A and orexin-B can induce massive apoptosis in various colonic cancer cell lines, including HT-29, LoVo, Caco-2 and others cultivated in standard condition [20]. Moreover, in vivo, orexin-A injections can induce a strong inhibition of tumor growth in nude mice xenografted with these cell lines [20]. Orexin-A has also been reported to enhance SGC-7901 gastric cancer cells proliferation. However, the physiological significance of this result can be questioned because these cells were grown in serum free condition [21].

Taken together these results suggest that orexins may be helpful in cancer treatment. However, as orexins also stimulate feeding and orexin neurons respond to signals of metabolic status [22], the determination of the impact of chronic treatment by exogenous orexin-A peptide represent an important topic before considering the possibility of chronic orexin treatments. Therefore, the aim of the present work was to explore in healthy mice the consequences of orexin-A treatment at a dose similar to the one shown to be efficient to reduce tumor development in xenografted nude mice [20]. Physiological approaches were used to evaluate the effect of orexin-A on food intake pattern, energy metabolism body weight and body adiposity. Modulation of the expression of brain neuropeptides and receptors including NPY, POMC, AgRP, cocaine- and amphetamine related transcript (CART), corticotropin-releasing hormone (CRH) and prepro-orexin (HCRT), and Y₂ and Y₅ neuropeptide Y, MC₄ (melanocortin), and OX₁ and OX₂ receptors (Y₂R, Y₅R, MC₄R, OX₁R and OX₂R, respectively) was also explored. Our results, show that orexin-A treatment does not affect the energy expenditure components, and glucose metabolism but reduces intraperitoneal fat deposit and the expression of several brain neuropeptide receptors. These findings suggest that chronic treatment with orexin-A is sensed by the hypothalamus but has minor consequences on the control of energy homeostasis.

Materials and Methods

Animals

Sixteen, 8-week-old female Balb/C mice (Envigo, France) were housed at 22±1°C under a 12/12h reversed light/dark cycle (Lights on at 20:00) at four animals per cage. The mice were fed a standard AIN-93M diet containing by energy 20% of total energy as soy protein, 10% as fat and 70% as carbohydrate. The design of this study, conformed to the European legislation, was
approved by the Animal Ethics Committee of INRA Jouy-en-Josas (Authorization number 13/012).

At ten weeks old, the mice were divided into 2 groups of eight mice. The control group received phosphate buffered saline (CT) and the second group received orexin-A (OxA) for 6 weeks. For treatment with orexin-A (GL Biochem, Shanghai, China), the peptide was diluted in phosphate buffer saline and 1 μmol/kg of body weight was administrated daily (at 09:00) by intraperitoneal (i.p.) injection in accordance with the result of a previous experiment in which it was shown that orexin-A was efficient to reduce tumor growth at a concentration as low as 0.1 μmol/kg and reached the greatest effect at 1 μmol/kg [20]. After 6 weeks, the mice were anesthetized with isoflurane, blood was drawn by cardiac puncture and the mice were immediately decapitated to ensure death. To avoid RNA degradation, the hypothalamus was immediately extracted from the fresh brain by making an incision medial to the piriform lobes caudal to the optic chiasma and anterior to the cerebral crus to a depth of 2–3 mm and was put directly in TRIzol reagent (Invitrogen, Breda, Netherlands), frozen in liquid nitrogen and stored at -80˚C. Body composition was determined by dissection: liver, uterus, spleen, kidneys and pancreas, four white adipose tissue (WAT) pads (periovarian, retroperitoneal, mesenteric and total subcutaneous), interscapular brown adipose tissue (BAT) and the carcass (muscle and bone) were removed and weighed.

Calorimetry and feeding patterns
The goal was to obtain for each mouse measures of food intake (FI) pattern, spontaneous physical activity (SPA), total and resting energy expenditure (TEE and REE) and respiratory quotient (RQ). Groups of 4 mice were housed at 18:00 in individual metabolic cages standing on an activity platform, bedded with wood litter and equipped with a weighed food cup. For gas analysis, the cages were multiplexed–all connected to the same gas analyzers. Thus oxygen consumption (VO₂) and carbon dioxide production (VCO₂) were measured on each cage during 2min every 10min (2min for each cage, plus 2min on room air to correct values for room %O₂ and %CO₂). To reduce expenditure for thermoregulation (non-shivering thermogenesis), temperature in the room was maintained at 26–27˚C in order to maintain in the metabolic cage a temperature of 27–28˚C close to mouse thermoneutrality. Mice were housed during 3 days. Day 1 in the metabolic device was used for habituation. VO₂–VCO₂, FI and SPA were measured during day 2 and 3 and mean values were used for data analysis. For each cage FI and SPA were measured in 5s time bins. For analysis, data were pooled into 10min bins and combined with the VO₂–VCO₂ data. TEE was computed from VO₂ and VCO₂ according to the Weir formula [23, 24]. According to the fact that TEE = REE + SPA*(Cost of activity (Cost)), REE and Cost were computed by regression analysis between TEE and SPA, REE being the origin and Cost the slope of the regression (for details see [25]).

mRNA extraction in the hypothalamus and Q-PCR experiments
The hypothalamus keep at -80˚C were unfrozen just before mRNA extraction. Total RNA were extracted using TRIzol reagent, after homogenization using a Tissuelyser (Qiagen, Courtaboeuf, France), RNA concentrations in samples were measured on a NanoDrop ND-1000 UV-Vis spectrophotometer. RNA integrity was checked by ethidium bromide staining. 0.4 μg of total RNA in a final volume of 10 μl was reverse transcribed using a high-capacity cDNA archive kit protocol (Life technology, Courtaboeuf, France). Real-time PCR was performed to measure RNA expression using an ABI 7300 (Biosystems Life technology, Courtaboeuf, France) using Power SYBR Green PCR Master Mix, as previously described [26]. Reactions were performed as follows: denaturation for 10min at 95˚C, 40 cycles at 95˚C for 15s, followed...
by 1min at 60˚C (amplification). Negative controls (reactions without reverse transcriptase or RNA) were used to monitor for contamination. The efficiency was estimated using a series of five-fold dilutions of the sample and checked for each run. A melting curve was performed to check for the absence of contamination. The primer sequences of target genes are given Table 1. Gene expression was calculated as $2^{-\Delta CT}$. 18S and RPL13A were used as the housekeeping gene.

Oral glucose tolerance test

Oral glucose tolerance tests (OGTT) were performed after 6 weeks of treatment on 6 hours fasted mice. Andrikopoulos et al. previously shown that an OGTT test using a 2 g/kg glucose administered orally following 6 h of fasting is the best protocol to assess glucose tolerance in mice. [27]. At 8:00 food was removed and the orexin injections were done. At 14:00 the OGTT was performed. A bolus of glucose (2g/kg) was delivered in the stomach by a gavage needle. Blood samples were taken from the tail. 25 μl of blood was collected before gavage (t0), then 15, 30, 60 and 120 min after gavage for glucose and insulin determination. Blood glucose was measured immediately using an One Touch Vita (LifeScan, Issy-les-Moulineaux, France). The remaining blood was centrifuged (3000g, 15 min. 4˚C) and plasma stored at -80˚C until assayed for insulin using a Mercodia Mouse Insulin Elisa kit (Mercodia AB, Sweden).

Immunohistochemical procedures

Pancreatic tissues were fixed overnight in 10% neutral buffered formalin, paraffin-embedded, and sectioned at 5 μm. The sections were stained with hematoxylin and eosin. For immunohistochemistry, after dewaxing, rehydrating tissue paraffin sections, and antigen retrieval by pretreatment with high temperature at pH 9, the sections were immunolabelled using an automated immunohistochemical stainer according to the manufacturer’s guidelines (Bond-Max slide stainer, Menarini, Leica Microsystems). For OX₁R assessment, 3μm pancreatic tissue sections were incubated for 30 minutes with a polyclonal anti-OX₁R antibody (Life technologies, Saint Aubin, France; polyclonal rabbit 1/100, PAS-33837), rinsed, and then incubated with a biotinylated secondary donkey anti-rabbit antibody diluted at 1:200. Sections were rinsed and incubated with Streptavidin (TrekAvidin-HRP; Biocare Medical) and diaminobenzidine ultra-view detection kit (Bond Polymer Refine detection; DS9800; Leica Microsystems). Substitution of the primary antibody with PBS was used as a negative control.

Statistics

Data are expressed as means ± SEM. Data were analyzed using the GLM procedure of SAS (version 9.1 SAS, Cary, NC). Post-hoc Tukey tests for comparisons between the two groups were performed. Significance was set at $P<0.05$. The P value is indicated when the difference was or tended ($P<0.1$) to be significant.

Results

Effect of orexin-A on food intake, body weight gain and, body composition

Orexin-A injection did not affect body weight gain (Fig 1). This absence of effect was explained by the similar total caloric intake in control and orexin-A injected mice (Fig 2A). Moreover, meal number (Fig 2B) and meal size (Fig 2C) were similar in both groups. The only parameter significantly modulated by orexin-A treatment was the ingestion speed. Indeed, orexin-A mice ingested their food more quickly than control ones (Fig 2D).
Orexin-A injection did not affect body weight, but increased lean body mass (LBM) and reduce the fat mass and the adiposity (Fat/LBM) (Fig 3). Detailed analysis of the fat mass (Fig 3) showed a decrease in periovarian and mesenteric fat masses while subcutaneous fat mass was not affected. The main element of body composition are presented in Table 2. Orexin-A treatment did not modulate organ weight however we observe a small but not significant increase of the carcass weight (CT 6.98 ± 0.29 vs. OxA 7.35 ± 0.44 g, P = 0.052) (Table 2) (S1 Fig). These results suggest that adipose tissue was sensitive to i.p. orexin-A administration in a site-specific manner. Consequently, orexin-A injection significantly reduced adiposity (fat/LBM).

Effect of orexin-A on the components of energy expenditure

Orexin-A treatment did not affect total energy expenditure (TEE), resting energy expenditure (REE), spontaneous motor activity (Activity), energy cost of spontaneous activity (Act-Cost) and energy expenditure spent in response to activity (EE-Act) (Fig 4). Therefore, since food intake was also not significantly different, the decreased fat deposition in OxA mice resulted from changes in energy balance that were too small to be revealed by these measurements. Accordingly, the 0.24 g deficit in fat mass (4.67KJ) in orexin-A-treated mice along the 6 weeks of the study represent a daily deficit of 0.111 kJ, ie ~ 0.2% of the ~55 kJ daily energy expenditure, which is far below the sensitivity of food intake and calorimetry measurements (~5%).

Table 1. Primer sequence use for brain mRNA Analysis.

Genes	Forward 5’	Reverse 5’
POMC	CTCCCTGCTTCAGACCTCCATAGAT	GGATGCAAGCCAGCAAGTT
CART	CCGGACCCTGGACATCTACCT	AATACTAGACCCAGCTTCATG
AgRP	GTTCCAGAGTTCAGGTCTCAA	TTTGCTGCTGCTGCTGCTAA
NPY	CCTGCGCAACTACATCAATCCTCA	GTGTCGAGGGGTGAGCTTT
CRH	CAACTCAGGCGGTTGGA	CCCAGGCGGAGGGAGTA
MC4R	TAGGCTGCTGCTGGAGAT	CGATGAGTCCGACAGATT
Y2R	CCGCTCCGCTTTCTGACCTC	ACCAAAGGTCGAGCTTT
Y5R	AACTCTGGCTACGATTCG	CAGAGGGGCAATGCTCAACA
OX1R	AGGTTGGCGGACACTG	CCGCTAAGGCTGCTCAC
OX2R	TGGAAAGACCCAGAAGTCAACCA	CAGATCCGAGCCGAGGAA
HECT	TGGGACTGACTGAGAAGGA	GGGGACCCAGGAAGACG
18S	CAGGGACCTTTGAGAGGAAAA	GGGACCTGAGAAACGCC
RPL13A	GGATCCTGCCACCTGAGACA	CTGGTACCTCCACCACCCCTC

Orexin-A and Metabolism

PLOS ONE | DOI:10.1371/journal.pone.0169908 January 13, 2017 5 / 14
Taken together, these results indicate that chronic orexin-A treatment induced very tiny changes in daily energy balance resulting in a slight decrease in body fat over the long-term.

Fig 1. Effect of orexin-A injection on body weight evolution. Data are shown as mean ± SEM, n = 8. A two-factor repeated measures anova was performed to compare both groups and no significant difference was reported.

doi:10.1371/journal.pone.0169908.g001

Fig 2. Components of caloric intake: total caloric intake (A), meal number (B) meal size (C) and Ingestion speed (D). Data are presented as box and whiskers, n = 8. Significant differences are indicated: * P<0.05 (t-test).

doi:10.1371/journal.pone.0169908.g002
Effects of orexin-A on the glucose and insulin responses to OGTT

As acute orexin injection has been shown to decrease blood glucose [28], an oral glucose tolerance test (OGTT) was performed. Our results show that long term i.p. orexin-A injections at

![Graphs showing effects of orexin-A injection on body composition evaluated immediately after sacrifice.](image)

Fig 3. Effect of orexin-A injection on body composition evaluated immediately after sacrifice. Data are presented as box and whiskers, n = 8. Significant differences are indicated *P<0.05, **P<0.01, ***P<0.001 (Student-t test).

doi:10.1371/journal.pone.0169908.g003

Table 2. Body composition of the control and orexin-A-treated mice (values are in g).

	CT (Mean±SEM)	OxA(Mean±SEM)
Initial weight	19.04 ± 0.24	19.06 ± 0.26
Final weight	21.6 ± 0.76	21.93 ± 0.68
Delta weight	2.54 ± 0.20	2.58 ± 0.39
Carcass	6.98 ± 0.29	7.35 ± 0.44
Skin	2.13 ± 0.17	2.40 ± 0.19
Uterus	0.094 ± 0.011	0.092 ± 0.013
Liver	0.914 ± 0.045	0.901 ± 0.087
Spleen	0.103 ± 0.010	0.120 ± 0.022
Intestine	1.187 ± 0.121	1.108 ± 0.113
kidney	0.243 ± 0.013	0.252 ± 0.011

Values are means ± SEM, n = 8.

doi:10.1371/journal.pone.0169908.t002
1 µmol/kg of weight did not significantly modify blood glucose response nor insulin secretion (Fig 5), indicating that chronic treatment with orexin-A did not affect insulin sensitivity and blood glucose regulation.

OX₁R expression in pancreas

Previous report revealed the presence of OX₁R immunoreactivity in pancreatic islets [19]. We investigated the effect of orexin-A chronic treatment on the histological aspect of pancreas. As shown in Fig 6A and Fig 6B, no differences were observed between control and orexin-A-treated pancreas. Indeed, we observed a normal aspect of the different cell types including acinar, duct, islet and endothelial cells in pancreas of both control and orexin-A-treated mice.

![Graph - Components of energy expenditure](image)

Fig 4. Components of energy expenditure: energy expenditure. TEE: total energy expenditure, REE: resting energy expenditure, EE-Act: energy expenditure spent in response to spontaneous motor activity, Activity: spontaneous motor activity, Act-Cost: energy cost of spontaneous activity. Data are presented as box and whiskers, n = 8. A t-test was performed and no significant differences are reported.

doi:10.1371/journal.pone.0169908.g004

![Graph - OGTT, insulin, AUC insulin](image)

Fig 5. Blood glucose (A) and insulin (B) concentrations during the oral glucose tolerance test in control or orexin-A injected mice. Data are shown as mean ± SD, n = 8. A t-test was performed to compare both groups and no significant difference was reported. Insulin AUC were calculated using the trapezoidal rule (C). Data are presented as box and whiskers, n = 8. A t-test was performed and no significant differences are reported.

doi:10.1371/journal.pone.0169908.g005
Furthermore, the islet number per pancreas (19 ± 2 islets and 21 ± 3 islets) was not significantly different (P<0.617, n = 8) in control and orexin-A treated mice. Similarly, the size of islets per pancreas determined as the percentage of islet surface versus the total surface of pancreas (0.60 ± 0.13% and 0.71 ± 0.11%) was not significantly different (P<0.529, n = 8) in control and orexin-A treated mice. Immunohistochemical staining indicated that OX₁R was restricted to islets and not detected in acinar, duct or endothelial cells in control mice (Fig 6C) and treated mice (Fig 6D). Fig 6C and Fig 6D also show that chronic treatment by orexin-A had no impact on the immuno-detection of OX₁R.

Hypothalamus mRNA expression of neuropeptides and receptors involved in food intake

As circulating orexin-A has been shown to reach the brain we evaluated the expression of few neuropeptides and receptor involved in food intake control in the hypothalamus, one of the critical area of the brain that regulates this behavior. Orexin-A injection for 6 weeks did not affect the expression of mRNA encoding for preproorexin mRNA (HPRT), OX₁R and Y₅R and for NPY/AgRP and POMC/CART that are primarily involved in the control of food intake. However, CRH, Y₂R and OX₂R expressions were significantly decreased by i.p. orexin-A injections (Table 3) (S2 Fig). Similar results were obtained with RPL13A as housekeeping gene data are provided in a table provided as supplemental electronic attachments.

Discussion

Even if the half live of orexin-A is short 27 min [29], as the orexin-A concentration used was far larger than the physiological level measured in human blood (50 to 100 ng/ml) [30] or in
mice brain (3 to 6 pmol/g wet weight) [16], it was thus important to explore the consequences of long-term orexin-A treatment on the components of energy balance in healthy mice. The present study strongly suggests that daily i.p. injections of orexin-A at 1 μmol/kg, the most efficient concentration to reduce tumor growth in mice [20], despite the fact that it modulated the expression of few brain neuropeptide receptors in the hypothalamus, did not induce major effects on the various components of energy expenditure and on long-term body weight evolution. However, we report that orexin-A-treated mice ingested their food more quickly than control ones. This result is in accordance with a recent study showing that intranasal administration of orexin-A to rats was able to increase food intake during the first 4 hours just after the administration but as we shown, the total amount of food consumption over 24 hours was not increased [31]. A small but significant decrease in visceral fat masses was observed at the end of the 6 weeks treatment. These findings establish that orexin-A treatments at a dose that can induce death of tumor cells, do have minor consequence on the control of energy homeostasis.

Several studies have shown that G protein-coupled receptors (GPCRs) represent new promising targets for the therapeutic treatment of various cancers [32]. It has been shown in colon cancers which ectopically expressed OX₁R, that orexins induced a robust mitochondrial apoptosis [33]. This pro-apoptotic effect was also shown in other cancer cell lines derived from human neuroblastoma (SK-N-MC cell line) [33]. Voisin et al. [20] previously showed that OX₁R are also expressed in all resected primary colorectal tumors and liver metastases tested, but OX₁R were not present in normal colon tissues. These results suggested that the orexin-A/OX₁R system might depict a new promising target in colon cancer therapy, and probably in other cancers including prostate cancer [34]. It appears therefore important to test the long-term effects of chronic orexin-A treatment on caloric intake, energy expenditure and energy balance to assess the safety of long-term treatments which are well known target of orexins.

Our results show that orexin-A injection increased ingestion speed but did not significantly affect daily food intake, meal size and meal frequency. Moreover, we report no abnormality of spontaneous physical activity and glucose homeostasis and no changes in any of the components of total energy expenditure. This absence of modulation is observed despite a slight

Neuropeptide	CT (Mean±SEM)	OxA (Mean±SEM)
POMC	6.78±2.28	4.63±1.21
CART	1.40±0.30	1.31±0.22
AgRP	6.89±1.05	5.95±1.18
NPY	2.39±0.62	1.91±0.71
CRH	2.86±0.54	1.83±0.46**
MC₄R	2.39±0.30	2.15±0.42
Y₂R	6.10±0.40	4.13±1.00**
Y₅R	10.50±1.26	9.29±1.29
OX₁R	4.68±0.98	4.82±0.98
OX₂R	3.55±0.74	2.06±0.42**
HRCT	6.20±0.39	5.57±1.10

mRNA expression (expression arbitrary units) of neuropeptides in the hypothalamus (expression relative to 18S). CRH, Y₅R and OX₂R were significantly reduced by orexin-A injections. Values are mean±SEM, n = 8. A t-test was performed and significant differences are indicated *P<0.05, **P<0.01.

doi:10.1371/journal.pone.0169908.t003
modification of the expression of neuropeptides and receptors in the mice hypothalamus, one
of the critical area of the brain involved in the regulation of energy balance. Thus, we observed
in the hypothalamus a decrease of CHR, Y₂R and OX₂R (but not OX₁R) mRNA expression,
suggesting that, as previously shown [17], a small fraction of peripheral orexin-A was able to
cross the blood-brain barrier. The lower CRH mRNA expression observed in orexin-A-treated
mice also confirms the role of orexins in the control of CRH neurons [35].

After 6 weeks, the weight of orexin-A injected mice was not significantly different from the
weight of control mice, which is in agreement with previous studies showing that chronic i.c.v.
injections do not result in body weight gain [36]. However, we observed a small but significant
reduction of visceral fat mass and adiposity but we did not observe any decrease of the subcu-
taneous fat, suggesting a lesser sensitivity of these fat pads to orexin-A. These results are sup-
ported by previous works who showed that in human adipocytes isolated from subcutaneous
compared to intra-abdominal adipose tissue, orexin-A had different actions on expression of
key genes involved in adipogenesis and on adipocyte metabolism which can explain why orex-
ins are able to reduce adipogenesis in intra-abdominal but not in subcutaneous adipocytes
[37]. However, we cannot definitely discard a possible local effect due to the fact that orexin-A
was i.p. injected. Taken together these results support the potential antiobesity effects of orex-
ins reported in animals overexpressing orexin or its receptors [38]. Moreover, studies using
 genetic models also showed that higher orexinergic signaling provides resistance to the devel-
 opment of obesity supporting the view that the orexin system can control the energy system
and obesity [39, 40, 41, 42].

It should be noted that chronic treatment of mice with orexin-A seems to have no impact
on the cellular structure of pancreas. We also did not report any modification of insulin secre-
tion and glucose homeostasis. As OGTT was performed 6 hours after the daily i.p. injection,
our study cannot exclude an acute effect of orexin-A injection on blood glucose as previously
reported [28]. However, our results support that if orexin-A can have an acute effect, the long-
term treatment has no significant consequence on blood glucose regulation and insulin sensi-
tivity. Many in vivo studies tried to evaluate the effect of orexins on the pancreas but conflict-
 ing results have been reported depending on the conditions, and significant modulation of
insulin or glucose plasma were not always observed [29, 43, 44, 45, 46]. Our results thus sup-
port previous in vivo data showing that orexin-A does not appear to be involved in the regula-
tion of glucose metabolism.

In conclusion, the present study suggests that increased peripheral orexin-A induced by
daily i.p. injections were sensed by the hypothalamus and affected the expression of several
receptors and neurotransmitters but did not result in any important effects on energy intake
and energy expenditure possibly as a result of its short (30 min) half-life in the plasma. Since
this same treatment as been reported to have strong anti-tumoral properties, our data support
further development for the use of this compound in human anti-cancer therapy. In this con-
 text, the development of orexin analogs with stronger stability would be a valuable challenge
[47].

Supporting Information

S1 Fig. Effect of orexin-A on body composition. Data are presentredas box and whiskers,
n = 8. A t-test was performed and significant differences are indicated *P<0.05, **P<0.01
(TIF).

S2 Fig. Hypothalamus mRNA expression of neuropeptides involved in food intake. mRNA
(expression arbitrary units) expression of neuropeptides in the hypothalamus(relative to 18S).
CRH, Y2R and OX2R were significantly reduced by orexin-A injections. Data are presented as box and whiskers. A t-test was performed and significant differences are indicated *P<0.05, **P<0.01 (TIF).

S1 Table. Effect of orexin-A on weight evolution, caloric intake, energy expenditure, glucose and insulin values, OX1R expression in pancreas and hypothalamus gene expression of neuropeptides and receptors involved in food intake. n = 8. A t-test was performed and significant differences are indicated *P<0.05, **P<0.01 (data orexin A dec 6.xlsx).

Author Contributions

Conceptualization: AB TV PCE A. Couvineau.

Formal analysis: AB CC TV A. Couvelard PCE A. Couvineau.

Funding acquisition: TV A. Couvineau.

Investigation: AB GD CC TV A. Couvelard PCE A. Couvineau.

Methodology: AB GD CC A. Couvelard PCE A. Couvineau.

Project administration: AB GD CC A. Couvelard PCE A. Couvineau.

Resources: AB GD CC A. Couvelard PCE A. Couvineau.

Software: AB GD CC A. Couvelard PCE A. Couvineau.

Supervision: AB.

Validation: AB GD CC A. Couvelard PCE A. Couvineau.

Visualization: AB CC TV A. Couvelard PCE A. Couvineau.

Writing – original draft: AB CC TV A. Couvelard PCE A. Couvineau.

Writing – review & editing: AB GD CC TV A. Couvelard PCE A. Couvineau.

References

1. Laburthe M, Voisin T (2012). The orexin receptor OX(1)R in colon cancer: a promising therapeutic target and a new paradigm in G protein-coupled receptor signaling through ITIMs. Br J Pharmacol. 165:1678–87. doi: 10.1111/j.1476-5381.2011.01510.x PMID: 21627633

2. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, et al. (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 435:6–25. PMID: 11370008

3. Laburthe M, Voisin T, El Firar A (2010). Orexins/hypocretins and orexin receptors in apoptosis: a mini-review. Acta Physiol (Oxf). 198:393–402.

4. Nixon JP, Kotz CM, Novak CM, Billington CJ, Teske JA. (2012) Neuropeptides controlling energy balance: orexins and neuropeptides. Handb Exp Pharmacol. 209:77–109.

5. Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. (2014) Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev. 20:63–73. doi: 10.1016/j.arr.2014.11.001 PMID: 25462194

6. Flores A, Maldonado R, Berrendero F (2013). Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far. Front Neurosci, 2013 Dec 20; 7:256. doi: 10.3389/fnins.2013.00256 PMID: 24391536

7. Yamada H, Okumura T, Motomura W, Kobayashi Y, Kohgo Y. (2000) Inhibition of food intake by central injection of anti-orexin antibody in fasted rats. Biochem Biophys Res Commun. 267:527–31. doi: 10.1006/bbrc.1999.1998 PMID: 10631095
8. Tsunematsu T, Yamanaka A. (2012) The role of orexin/hypocretin in the central nervous system and peripheral tissues. Vitam Horm. 89:19–33. doi: 10.1016/B978-0-12-394623-2.00002-0 PMID: 22640606

9. Rhyne DN, Anderson SL. (2015) Suvorexant in insomnia: efficacy, safety and place in therapy. Ther Adv Drug Saf. 6:189–95. doi: 10.1177/2042098615595359 PMID: 26478806

10. Heinonen MV, Purhonen AK, Mäkelä KA, Herzig KH. (2008) Functions of orexins in peripheral tissues. Acta Physiol (Oxf). 192:471–85.

11. Gao XB, Hermes G. (2015) Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals. Front Syst Neurosci. 9:1–14.

12. Voisin T, El Firar A, Rouyer-Fessard C, Gratio V, Laburthe M. (2008) A hallmark of immunoreceptor, the tyrosine-based inhibitory motif ITIM, is present in the G protein-coupled receptor OX1R for orexins and drives apoptosis: a novel mechanism. FASEB J. 22:1993–2002. doi: 10.1096/fj.07-098723 PMID: 18198212

13. Peltonen HM, Magga JM, Bart G, Turunen PM, Antikainen MS, Kukkonen JP, et al. (2009). Involvement of TRPC3 channels in calcium oscillations mediated by OX1 orexin receptor. Biochem Biophys Res Commun. 385: 408–412. doi: 10.1016/j.bbrc.2009.05.077 PMID: 19464259

14. El Firar A, Voisin T, Rouyer-Fessard C, Ostuni MA, Couvineau A, Laburthe M (2009). Discovery of a functional immunoreceptor tyrosine-based switch motif in a 7-transmembrane-spanning receptor: role in the orexin receptor OX1R-driven apoptosis. FASEB J. 23:4069–80. doi: 10.1096/fj.09-131367 PMID: 19661287

15. Kukkonen JP, Leonard CS. (2014) Orexin/hypocretin receptor signalling cascades. Br J Pharmacol. 171:314–31. doi: 10.1111/bph.12324 PMID: 23902572

16. Takahashi K, Ohba K, Kaneko K. (2015) Ubiquitous expression and multiple functions of biologically active peptides. Peptides. 72:184–91. doi: 10.1016/j.peptides.2015.04.004 PMID: 25868673

17. Kastin AJ, Akerman V. (1999). Orexin A but not orexin B rapidly enters brain from blood by simple diffusion. J Pharmacol Exp Ther. 289: 219–23. PMID: 10087007

18. van den Top M, Nolan MF, Lee K, Richardson PJ, Buijs RM, Davies CH, et al. (2003) Orexins induce increased excitability and synchronisation of rat sympathetic preganglionic neurones. J Physiol. 549:809–21. doi: 10.1111/j.physiol.2002.033290 PMID: 12702746

19. Acuna-Goycolea C, van den Pol AN. (2009) Neuroendocrine proopiomelanocortin neurons are excited by hypocretin/orexin. J Neurosci. 29:1503–13. doi: 10.1523/JNEUROSCI.5147-08.2009 PMID: 19193897

20. Voisin T, El Firar A, Fasseu M, Rouyer-Fessard C, Descatoire V, Walker F et al. (2011). Aberrant expression of OX1 receptors for orexins in colon cancers and liver metastases: an openable gate to apoptosis. Cancer Res. 71:3341–51. doi: 11.1058/0008-5472.CAN-10-3473 PMID: 21415167

21. Liu Y, Zhao Y, Ju S, Guo L. (2015) Orexin A upregulates the protein expression of OX1R and enhances the proliferation of SGC-7901 gastric cancer cells through the ERK signaling pathway. Int J Mol Med. 35:539–45. Epub 2014 Dec 15. doi: 10.3892/ijmm.2014.2038 PMID: 25515760

22. Karnani MM, Apergis-Schoute J, Adamantidis A, Jensen LT, de Lecea L, Fugger L, et al. (2011) Activation of central orexin/hypocretin neurons by dietary amino acids. J Physiol. 549:809–21. doi: 11.113/j.physiol.2002.033290 PMID: 12702746

23. Ferrannini E. (1988) The theoretical bases of indirect calorimetry: a review. Metabolism. 37:287–300. PMID: 3278194

24. Even PC, Mokhtarian A, Pele A. (1994) Practical aspects of indirect calorimetry in laboratory animals. Neurosci Biobehav Rev. 18:435–47. PMID: 7984361

25. Even PC and Nadkarni NA. (2012) Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am J Physiol Regul Integr Comp Physiol. 303: R459–476. doi: 10.1152/ajpregu.00137.2012 PMID: 22718809

26. Chaumontet C, Even PC, Schwarz J, Simonin-Foucault A, Piedcoq J, Fromentin G, et al. (2015) High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats. Br J Nutr. 114:1132–42. doi: 10.1017/S000711451500238X PMID: 26285832

27. Andrikopoulou S, Blair AR, Deluca N, Fam BC, Proietto J. (2008) Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab. 295:E1323–32. doi: 10.1152/ajpendo.90617.2008 PMID: 18812462

28. Ducroc R, Voisin T, El Firar A, Laburthe M. (2007) Orexins control intestinal glucose transport by distinct neuronal, endocrine, and direct epithelial pathways. Diabetes. 56:2494–500. doi: 10.2337/db07-0614 PMID: 17626888

29. Ehrström M, Nåsklund E, Levin F, Kaur R, Kirchgessner AL, Theodorsson E, et al. https://www.ncbi.nlm.nih.gov/pubmed?term=Hellstr...
1. Pharmacokinetic profile of orexin A and effects on plasma insulin and glucagon in the rat. Regul Pept. 119:209–12. doi: 10.1016/j.regpep.2004.02.004 PMID: 15120482

2. Hao YY, Yuan HW, Fang PH, Zhang Y, Liao YX, Shen C, et al. (2016) Plasma orexin-A level associated with physical activity in obese people. Eat Weight Disord. 1–9.

3. Dhuria SV, Fine JM, Bingham D, Svitak AL, Burns RB, Baillargeon AM, Panter SS, Kazi AN, Frey WH 2nd, Hanson LR. (2016) Food consumption and activity levels increase in rats following intranasal Hypocretin-1. Neurosci Lett. 627:155–9. doi: 10.1016/j.neulet.2016.05.053 PMID: 27264485

4. Lappano R, Maggioni M (2011). G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov. 10:47–60. doi: 10.1038/nrd3320 PMID: 21193867

5. Rouet-Benzeine P, Rouyer-Fessard C, Jarry A, Avondo V, Pouzet C, Yanagisawa M et al. (2004). Orexins acting at native OX(1) receptor in colon cancer and neuroblastoma cells or at recombinant OX(1) receptor suppress cell growth by inducing apoptosis. J Biol Chem. 279:45875–86. doi: 10.1074/jbc.M404136200 PMID: 15310763

6. Alexandre D, Hautot C, Meho M, Jeandel L, Courel M, Voisin T et al. (2014) The orexin type 1 receptor is overexpressed in advanced prostate cancer with a neuroendocrine differentiation, and mediates apoptosis. Eur J Cancer. 50:2126–33. doi: 10.1016/j.ejca.2014.05.008 PMID: 24910418

7. Sakamoto F, Yamada S, Ueta Y. (2004) Centrally administered orexin-A activates corticotropin-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. Regulatory peptides, 118:183–191 doi: 10.1016/j.regpep.2003.12.014 PMID: 15003835

8. Yamana A, Sakurai T, Katsumoto T, Yanagisawa M, Goto K. (1999) Chronic intra-cerebroventricular administration of orexin-A to rats increases food intake in daytime, but has no effect on body weight. Brain Res. 849:248–52. PMID: 10592311

9. Digby JE, Chen J, Tang JY, Lehner H, Matthews RN, Randeva HS. (2006) Orexin receptor expression in human adipose tissue: effects of orexin-A and orexin-B. J Endocrinol. 191:129–36. doi: 10.1677/joe.1.06886 PMID: 17065396

10. Perez-Leighton CE, Butterick-Peterson TA, Billington CJ, Kotz CM. (2013) Role of orexin receptors in obesity: from cellular to behavioral evidence. Int J Obes(Lond). 37:167–74.

11. Levin BE, Dunn-Meynell AA, Balkan B, Keesey RE. (1997) Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol. 273:R725–30. PMID: 9277561

12. Teske JA, Levine AS, Kuszkowski M, Levine JA, Kotz CM. (2006) Elevated hypothalamic orexin signaling, sensitivity to orexin A, and spontaneous physical activity in obesity-resistant rats. Am J Physiol Regul Integr Comp Physiol. 291:R889–99. doi: 10.1152/ajpregu.00536.2005 PMID: 16763079

13. Hara J, Yanagisawa M, Sakurai T. (2005) Difference in obesity phenotype between orexin-knockout mice and orexin-neuron-deficient mice with same genetic background and environmental conditions. Neurosci Lett. 380:239–42. doi: 10.1016/j.neulet.2005.01.046 PMID: 15862893

14. Fujiji N, Yoshida Y, Zhang S, Sakurai T, Yanagisawa M, Nishino S. (2006) Sex difference in body weight gain and leptin signaling in hypocretin/orexin deficient mouse models. Peptides. 9:2326–31

15. Nowak KW, Strowski MZ, Switonska MM, Kaczmarek P, Singh V, Fabis M, et al. (2005) Evidence that orexins A and B stimulate insulin secretion from rat pancreatic islets via both receptor subtypes. Int J Mol Med. 15:969–72. PMID: 15870901

16. Switonska MM, Kaczmarek P, Malendowicz LK, Nowak KW. (2002) Orexins and adipoinosinal axis function in the rat. Regul Pept. 104:69–73. PMID: 11830279

17. Ehrström M, Gustafsson T, Finn A, Kirchgessner A, Grybäck P, Jacobsson H, et al. (2005a) Inhibitory effect of exogenous orexin A on gastric emptying, plasma leptin, and the distribution of orexin and orexin receptors in the gut and pancreas in man. J Clin Endocrinol Metab. 90:2370–7.

18. Ehrström M, Levin F, Kirchgessner AL, Schmidt PT, Hilsted LM, Grybäck P, et al. (2005b) Stimulatory effect of endogenous orexin A on gastric emptying and acid secretion independent of gastrin. Regul Pept. 132:9–16.

19. Nicoletti P, Couvineau P, Jamin N, Voisin T, Couvineau A. (2015) Crucial role of the orexin-B C-terminus in the induction of OX1 receptor-mediated apoptosis: analysis by alanine scanning, molecular modelling and site-directed mutagenesis. Br J Pharmacol. 172:5211–23. doi: 10.1111/bph.13287 PMID: 26282891