Physical Health of Autistic Girls and Women: A Scoping Review

Caroline Kassee 1^, Stephanie Babinski 2^, Ami Tint 1,3, Yona Lunsky 3,4, Hilary Brown 5,6, Stephanie H. Ameis 1,3,4,7, Peter Szatmari 1,4,7, Meng-Chuan Lai 1,3,4,7,8,9,10,#,* and Gillian Einstein 6,8,11,12,#

1 The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, Canada
2 Department of Sociology, University of Toronto, Toronto, Canada
3 Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Canada
4 Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
5 Interdisciplinary Centre for Health & Society, University of Toronto Scarborough, Toronto, Canada
6 Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
7 Department of Psychiatry, The Hospital for Sick Children, Toronto, Canada
8 Department of Psychology, University of Toronto, Toronto, Canada
9 Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
10 Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
11 Tema Genus, Linköping University, Linköping, Sweden
12 Rotman Research Institute, Baycrest Hospital, Toronto, Canada

^ Equal contribution joint first authors
Equal contribution joint senior authors

* Corresponding author: Meng-Chuan Lai, MD, PhD; Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON M6J 1H4, Canada. Email: mengchuan.lai@utoronto.ca
Abstract

Background: There is a growing recognition of sex and gender influences in autism. Increasingly, studies include comparisons between sexes or genders, but few have focused on clarifying the characteristics of autistic girls’ and women’s physical health.

Methods: A scoping review was conducted to determine what is currently known about the physical health of autistic girls and women. We screened 1,112 unique articles, with 40 studies meeting the inclusion criteria. We used a convergent iterative process to synthesize this content into broad thematic areas.

Results: Overall, autistic girls and women experience more physical health challenges compared to non-autistic girls and women, and to autistic boys and men. Preliminary evidence suggests increased neurological conditions (e.g., epilepsy) in autistic girls and women compared to autistic boys and men. As well, the literature suggests increased endocrine/reproductive conditions in autistic girls and women compared to non-autistic girls and women.

Limitations: The literature has substantial heterogeneity in how physical health conditions were assessed and reported. Further, our explicit focus on physical health may have constrained the ability to examine potential interactions between mental and physical health. In addition, the widely differing research aims and methodologies make it difficult to reach definitive conclusions. Nevertheless, in keeping with the goals of a scoping review, we were able to identify key themes to guide future research.

Conclusions: Emerging themes in the literature suggest that autistic girls and women have heightened rates of physical health challenges compared to autistic boys and men, and non-autistic girls and women. Clinicians should seek to provide holistic care for this population that includes a focus on physical health and recognizes that autistic girls and women have co-occurring conditions that differ from those of autistic boys and men.

Key Words: autism, physical health, sex differences, gender, girls, women, scoping review
Background

Autism spectrum disorder (hereafter autism) is a neurodevelopmental condition characterized by early-onset social-communication difficulties and repetitive, stereotyped behaviours. The estimated prevalence rate of autism is approximately 1% worldwide [1], more prevalent in males than females [2,3]. The widely reported male-to-female ratio for autism prevalence is 4-5:1, but large-scale population-based epidemiological studies suggest that the ratio is in fact lower at 3-4:1 [4], reflecting sex and gender differences in the likelihood of developing autism, which may be further accentuated by biases in clinical assessment and diagnoses [5].

Autism is highly associated with co-occurring health conditions [6]. It is hypothesized that this likely reflects complex epigenetic and pleiotropic gene-environment interactions and behavioural mechanisms [3,7], which are important to understand because they complicate the clinical presentation of autism. Co-occurring conditions are also associated with varied developmental trajectories [8,9] and unique social and psychological challenges that an individual experiences over the course of their lifetime [3]. Given the growing recognition of autism in girls and women, and that sex and gender differences in autism are important to study [10], it is critical to better understand the characteristics of co-occurring conditions in autistic girls and women.

Most research on co-occurring conditions in autistic girls/women relative to boys/men has focused on psychiatric conditions, suggesting increased internalizing psychopathology in autistic girls/women than in boys/men [11–13]. The latest meta-analysis on co-occurring psychiatric diagnoses in autistic people also shows that studies with a higher proportion of girls/women tend to find higher rates of depression [14]. However, less attention has been paid to sex and gender differences in autism outside the domain of mental health, especially regarding physical health\(^1\). Accurate and in-depth information in this domain, especially concerning autistic girls/women, is essential to the provision of comprehensive and sex- and gender-sensitive health care, and important for elucidating clinically useful sub-groups within the autism spectrum. In view of this, we conducted a scoping review of the literature, focused on the extent and range of research

\(^1\) We define *physical health* in this context to encompass non-mental health conditions within the broad category of medical disorders or problems.
pertaining to physical health in autistic girls/women. Our research questions guiding the review were twofold: (1) what do we know about the physical health of autistic girls/women; and (2) how specific are these physical health concerns to autistic girls/women, as compared to autistic boys/men, as well as non-autistic girls/women?

Methods

We conducted a scoping review of the literature following the methodological framework outlined by Arksey and O’Malley [15] and recent Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards for scoping reviews [16]. Scoping reviews allow a broad survey of the literature in a particular area, to determine existing themes and areas of inquiry that are under-researched. Scoping reviews typically do not conduct an assessment of bias in the research or with appraising or generating effect sizes [15]. We considered a scoping review to be the most appropriate approach for examining emerging evidence concerning the physical health of autistic girls/women, since it was unclear what specific questions should be posed in this area given the limitation of current literature. Therefore, our purposes were to summarize the extent and range of research pertaining to physical health in autistic girls/women and to identify evidence gaps. In this way, we surveyed all of the literature with respect to physical health in autistic girls/women, without exclusions based on specific samples or comparisons being made in the literature. Furthermore, as this literature often—unfortunately—conflates gender and sex, it is difficult to tease apart their respective effects. Hence, in interpreting the findings, references to “girls/women” were assumed to refer to biological (cis-gender) females and references to “gender” were read very carefully to determine whether they referred to biological sex, gender identity, or socially determined norms.

We systematically searched the following databases according to PRISMA standards [17]: CINAHL, PubMed, EMBASE, PsycINFO, Scopus, and Web of Science (see Appendix 1: Search Strategy). As this was a scoping review aimed at assessing general themes in the published literature, rather than analyzing specific types of data, gray literature was not included in the searches. Autism and co-occurring physical health conditions were defined using a combination of keywords and controlled vocabulary applicable to each database (see Appendix 1: Search Strategy). We purposely kept the definition of “physical health” as broad as possible, in order to gather a wide range of studies and gain a thorough coverage of the published
literature with respect to non-mental health related conditions. There was no publication type or date restriction at this stage, but the search results were limited to human studies and journal articles written in English. The final database search was performed on December 5th, 2019 and references were managed using Mendeley (https://www.mendeley.com/).

A systematic selection process was used to determine the final articles included in this review. After duplicates were removed, two authors (CK and SB) screened titles and abstracts with support from senior authors (M-CL and GE), using broad criteria to allow for the inclusion of any potentially relevant study for further evaluation. Full-text articles were evaluated for inclusion by CK and SB. The pool of studies identified based on screening titles, abstracts, and consultations with senior authors determined the inclusion and exclusion criteria. At this stage, articles were included if they: (1) reported on co-occurring physical health conditions in people with a diagnosis of autism as defined by the DSM-IV, DSM-5 or ICD-10 criteria, or had direct relevance to physical health of autistic girls/women; (2) included a clearly articulated sex-specific or gender-specific description or analysis of these conditions; (3) studied biological females only, or if the total female autism sample size was ≥15 and with at least one-eighth (12.5%) of the total autism sample being biologically female (while seemingly arbitrary, these criteria ensured that included studies had a sufficient number of girls/women to derive sex-specific or gender-specific information); (4) reported original, English-language research articles or reviews published in peer-reviewed scientific journals; and (5) in the case of review articles, used systematic search methods and included sex-specific or gender-specific analyses and interpretation. Exclusion criteria included: (1) review articles using non-systematic search methodology; (2) opinion pieces; (3) editorials; (4) case reports; or (5) conference papers. Final decisions on which articles to include were made via discussion within the research team. Articles were grouped by main topic area and study design for organizational clarity. Data were extracted as shown in Tables 1 and 2, with relevant findings summarized in Results. We used a convergent iterative process involving multi-stage revisions among all authors to synthesize included studies into a series of thematic areas that broadly summarize the literature.

Results

Search Results

We screened a total of 1,112 unique citations, and reviewed the full-text of 201 articles,
with 40 studies ultimately meeting the inclusion criteria (Figure 1). The majority of the studies were from North America and Europe, cross-sectional, and about general prevalence rates for health conditions in autism (Table 1). The papers studied autistic individuals of all ages and functional levels (Table 2), with comparisons of autistic girls/women to (1) autistic boys/men, (2) non-autistic girls/women, (3) girls/women with other neurodevelopmental or psychiatric conditions, or (4) descriptive studies of autistic girls/women only (Table 2).

We identified five key themes with mixed findings emerging. Among these, three had relatively more consistent findings, including (1) Autistic girls/women may experience more overall physical health conditions than autistic boys/men and non-autistic girls/women; (2) Neurological conditions, especially epilepsy, are more prevalent in autistic girls/women compared to autistic boys/men; and (3) Autistic girls/women may experience more menstruation-related complications, and female-specific endocrine and reproductive conditions, compared to non-autistic girls/women. The rest two themes showed (4) inconsistent evidence for gastrointestinal and related conditions in autistic girls/women as compared to autistic boys/men, and (5) possible evidence for differences in immune profiles for autistic girls/women compared to autistic boys/men.

Summary of Key Themes

1. **Autistic girls/women may experience more overall physical health conditions than autistic boys/men and non-autistic girls/women**

 a. **Comparing autistic girls/women to autistic boys/men**

 The majority of studies described prevalence rates for a wide range of physical health conditions in autistic people (Table 1). Out of these, several studies reported prevalence of physical health conditions in autism by sex, comparing autistic girls/women directly to autistic boys/men [18–21]. Autistic girls/women have higher odds than autistic boys/men for six disorder categories derived from census data, including three relevant to physical health: deafness, blindness, and physical disability [19,20]. These results were reported in two population-based studies focusing on n=25,063 autistic children and youth aged 0-24 years (Odds Ratio, OR autistic girls/women compared to autistic boys/men: deafness 2.07 [95% CI 2.04-2.10], blindness 2.51 [2.12-2.97], and physical disability 2.60 [2.50-2.71]) [20]; and for n=6,649 autistic adults (deafness 1.169 [95% CI 1.001-1.365], blindness 1.232 [1.051-1.443], and physical disability...
In a follow-up study [18] on the same adult cohort in [19], census questions on general health were used to identify physical health conditions among autistic adults. The study found that among young adults (25-34 years), autistic women were more likely to have poorer health compared to autistic men (43.9% autistic women vs. 35.7% autistic men reporting “poor general health”; $\chi^2 =13.2$, df=1, p<0.001) [18]. This men-women difference was not statistically significant in other age ranges. Supporting this, a study of 913 autistic children (weighted mean age 9.9 years) by Stacey et al. from a registry sample on nine conditions, two about physical health (epilepsy and hearing problems), found no differences between autistic girls and boys [21].

Other studies examined the associations between physical health indicators and sex/gender [22–25]. Mason et al. analysed sex (which was referred to as gender) as a predictor of quality of life in n=370 autistic adults (17-80 years) from a research registry cohort, finding statistically significant interactions between gender and the physical subscale of the World Health Organization Quality of Life assessment, indicating lower physical-related quality of life in autistic women ($M=45.98$ [SD=19.57]) than in autistic men ($M=52.98$ [SD=17.32], p=0.019) [22]. Fortuna et al. surveyed overall health and functional status in n=255 autistic adults (18-71 years) and found that female sex (referred to as gender) was associated with lower odds of good or excellent overall health (OR for autistic women 0.5 [95% CI 0.2-1.0] with autistic men as a reference group) [23]. Jones et al. found increased medical comorbidity associated with female sex (referred to as gender) (autistic women median 16 conditions vs. 10 for autistic men, p=0.01) in n=92 autistic adults (23-50 years) in a community sample [24]. In contrast, Rubenstein et al. examined co-occurring conditions in n=6,379 eight year-old autistic children across eight US treatment sites over 2002-2010 to estimate the percentage of autistic children with co-occurring conditions in four broad categories, including neurological conditions [25]. Rates of change for neurological conditions in autistic children over 2002-2010 were the same for autistic boys and autistic girls.

Studies comparing autistic girls/women to autistic boys/men also examined physical health conditions and symptoms to quantify differences [26–29]. Moseley et al. conducted a meta-analysis including n=254 autistic adults (weighted mean age 36.4 years) to determine sex differences in self-reported autistic characteristics, including sensorimotor symptoms (some of which related to physical health, such as sensitivity to pain) [26]. Results revealed significantly
more severe sensorimotor symptoms in autistic women than in autistic men \(t[252]=4.346, p<0.001\). Supekar et al. compared prevalence rates in \(n=4,790\) autistic people and \(n=1,842,575\) non-autistic individuals of all ages from large medical registry cohorts, for a range of co-occurring conditions including physical health, such as epilepsy, inflammatory bowel disease, bowel disorder, and muscular dystrophy [27]. They found higher prevalence for epilepsy in autistic girls/women (18.54%) than in autistic boys/men (15.14%, \(p<0.05\)); however, this finding was modulated by age, such that epilepsy was female-predominant in 0-18 years and 18-35 years, but male-predominant in >35 years of age. Also, while bowel disorders exhibited higher male prevalence in autism overall, there was statistically significant higher female prevalence in >35 years of age (23.08% female vs. 10.00% males, \(p<0.05\)). In a small community-based sample of \(n=91\) children (6-14 years), Memari et al. found that autistic girls had higher prevalence of neurological conditions than autistic boys (~46% in girls vs. ~19% [extracted from graph, exact numbers not given in the report] in boys, \(p=0.02\)) [28]. Davignon et al. described the prevalence of co-occurring conditions in \(n=4,123\) autistic youth (14-25 years) from a California-based clinical registry, noting that most physical health conditions were more common in autistic girls/women than in autistic boys/men, although no statistical comparison was done [29].

Finally, two reviews surveyed physical health in autistic girls/women compared to autistic boys/men [30,31]. Cashin et al. conducted a scoping review on the physical health status of \(n=3,896\) autistic adults from 6 relevant studies, noting only 3 included sex-specific analyses, with inconsistent results [30]. Rubenstein et al. reviewed sex differences in developmental, medical and psychiatric conditions for autistic people of all ages, with samples ranging from \(n=28\) to \(n=337,000\) from 69 studies, with 20 studies reporting specifically on the physical health domain [31]. They outlined insufficient research (hence evidence) on sex differences in autism for most conditions.

b. Comparing autistic girls/women to non-autistic girls/women

Three studies computed ORs for autistic girls/women relative to non-autistic girls/women, and contrasted these to ORs for autistic boys/men relative to non-autistic boys/men in the general population [32–34]. Cawthorpe et al. [32] and Croen et al. [33] reported ORs for autistic females and males compared to same-sex general population controls, using the International Classification of Diseases Ninth Edition (ICD-9) diagnostic codes for medical disorders, in
registry-based autism samples (all age ranges) of \(n=2,040 \) autistic individuals (referencing to \(n=763,499 \) general population controls) [32] and \(n=1,507 \) autistic adults (referencing to \(n=15,070 \) general population controls) [33]. Both studies found that autistic girls/women had increased odds for most conditions compared to non-autistic girls/women [32,33]. There were also potential sex-differential patterns in the physical conditions that were elevated compared to same-sex non-autistic individuals. For example, complications during mothers’ pregnancy/childbirth (autistic male OR 1.52 [95% CI 1.07-2.15], autistic female OR 0.55 [0.44-0.68]) and genitourinary system diseases (autistic male 1.2 [1.08-1.33], autistic female 0.99 [0.81-1.20]) [32], autoimmune diseases (autistic male 1.30 [1.01-1.68], autistic female 1.12 [0.78-1.60]) and gastrointestinal disorders (autistic male 1.50 [1.25-1.79], autistic female 1.05 [0.80-1.39]) [33] were only elevated in autistic boys/men. In contrast, other conditions were elevated only in autistic girls/women, including blood and blood-forming organ disorders (autistic female OR 1.35 [1.11-1.65], autistic male OR 1.14 [0.96-1.35]) and endocrine, nutritional, metabolic diseases and immunity disorders (autistic female 1.47 [1.25-1.73], autistic male 0.63 [0.56-0.71]) [32], and stroke (autistic female 4.97 [1.46-16.86], autistic male 1.48 [0.59-3.70]) [33]. Finally, Hand et al. examined prevalence of physical health conditions in \(n=4,685 \) older autistic adults (\(\geq 65 \) years) enrolled in US-based Medicare, compared to \(n=46,850 \) general population controls [34]. They found increased odds for most conditions for autistic women compared to same-sex general population controls, and there were no conditions elevated only in one sex but not the other. The three physical health conditions with the largest ORs in autistic women were epilepsy (20.8 [17.7-24.4]), Parkinson’s disease (8.2 [6.2-10.7]), and other gastrointestinal conditions (4.6 [4.1-5.1]).

2. Neurological conditions, especially epilepsy, tend to be more prevalent in autistic girls/women compared to autistic boys/men

In addition to studies reporting on general health condition prevalence rates including epilepsy mentioned in Theme 1 [27,34], several studies focused specifically on neurological conditions reported a higher prevalence of epilepsy in autistic girls/women compared to autistic boys/men [35–37]. Amiet et al. conducted a systematic review and meta-analysis on sex differences in epilepsy and autism, including 14 studies with \(n=1,530 \) autistic individuals (across all ages) to assess the pooled risk ratio (RR) for epilepsy by sex, with findings showing lower
rates of epilepsy in autistic boys compared to autistic girls (RR 0.55 [95% CI 0.45-0.66], p<0.001; 34.5% in autistic girls/women vs. 18.5% in autistic boys/men) [35]. Two other studies reporting medical conditions in autism found elevated rates of epilepsy in autistic women compared to non-autistic women. Ingudomnukul et al. reported epilepsy prevalence at 7.4% in n=54 autistic women (mean age 38.2 years) vs. 1.1% in n=183 age-matched non-autistic women (p<0.05) [38]; Pohl et al. found 4.1% epilepsy prevalence in n=415 autistic women (mean age 36.37 years) vs. 1.4% in n=415 age-matched non-autistic women (p=0.016) [39].

Two studies further characterized epilepsy in autism [36,37]. Ewen et al. explored associations between epilepsy and autism severity in two cohorts from a US-based research registry, totalling n=6,975 autistic children (6-18 years) [36]. They found a higher risk for epilepsy in autistic girls compared to autistic boys in one cohort, with n=4,801 autistic individuals (RR 1.32 [1.14-1.52], p<0.05) but no statistically significant findings in the other, smaller cohort (n=1,736 autistic individuals). They also found independent positive associations between epilepsy and severity indicators such as intellectual disability, language impairment, core autism symptom, and motor dysfunction. Viscidi et al. explored the links between autism and epilepsy by examining prevalence and clinical characteristics of n=5,815 autistic individuals (all ages, ~75% of the sample between 4-12 years) from four research registry cohorts [37]. In addition to finding that epilepsy co-occurring with autism was associated with older age, lower cognitive ability, poor adaptive language functioning, developmental regression, and more severe autism symptoms, they found that epilepsy was more prevalent in autistic girls/women than in autistic boys/men (7.0% in autistic girls/women vs. 3.9% in autistic boys/men, p<0.001).

Another three studies characterized other neurological conditions with respect to sex [40–42]. Mouridsen et al. examined prevalence of cerebral palsy in a nation-wide cohort of n=4,180 autistic individuals with ICD-10 Asperger’s syndrome (4-31 years) [40]. They found increased cerebral palsy in Asperger’s syndrome (0.65%) than in the general population (0.17%), but no significant difference between autistic girls/women and boys/men (0.80% in autistic girls/women vs. 0.61% in autistic boys/men, p=0.56). Ben-Itzchak et al. studied specific neurologic phenotypes in autism in n=663 autistic children (1-15 years) from community samples, and reported no sex differences in autism severity, cognitive ability or adaptive functioning [41]. Neurological anomalies were more prevalent in autistic girls than in autistic boys, including microcephaly (15.1% vs. 4.5%, χ²=15.0, df=1, p<0.001) and minor neurological-musculoskeletal
deficits (73.8% vs. 57.1%, $\chi^2=8.0$, df=1, p<0.001), but no significant sex differences were found for seizures or macrocephaly. Finally, Bowers et al. characterized the phenotypes of n=883 autistic children (0-18 years) born preterm and at term, to examine comorbidities including seizure disorders; these were more frequent among autistic boys born preterm vs. those born term (17.0% vs. 8.5%, p=0.01), whereas no such preterm-term differences were found in autistic girls [42].

3. Autistic girls/women may experience more menstruation-related complications, and female-specific endocrine and reproductive conditions, compared to non-autistic girls/women

Eight studies examined female-specific endocrine or reproductive conditions in autism [38,39,43–48]. Three studies specifically examined menstruation in women with autism [43–45]. Two of these administered web-based surveys to understand menstruation experiences of autistic girls/women [45] and compare these experiences with those of non-autistic women [43,44]. They identified menstruation-related complications and notable differences in menstruation experiences between autistic and non-autistic girls/women. Hamilton et al. surveyed n=124 autistic girls/women (10-25 years) online by parent-report and self-report questionnaires, and found that girls/women commonly experienced symptoms of dysmenorrhea (91%) and pre-menstrual syndrome (96%), and 33% endorsed autism-associated difficulties during the menstrual cycle (increased irritability/aggression before menses), worsening of autistic behaviours, and increased repetitive movements and obsessive behaviours [45]. Steward et al. surveyed n=123 autistic women (16-60+ years) and compared their responses to n=114 age-matched non-autistic women using qualitative synthesis of written survey responses [44]. Although there were many overlaps in menstrual cycle issues between autistic and non-autistic women, autistic women highlighted autism-specific issues, including a cyclical amplification of autism-related challenges, sensory differences and emotional regulation challenges, which had significant negative impact on their lives. Bitsika and Sharpley investigated the effects of menarche on the sensory features of autism, in n=53 autistic girls (6-17 years), using clinical questionnaires completed by their mothers [43]. Autistic girls who had reached menarche had lower sensation seeking (less sensory interests) ($F_{(25,27)}=2.113$, p=0.030) and multisensory processing ($F_{(7,45)}=3.187$, p=0.008) compared to those who had not yet reached menarche.

Additionally, two studies focused on female-specific endocrine and reproductive health
conditions. There was a higher prevalence of irregular menstruation (57.4% vs. 28.6%, p<0.001) and painful periods (44.4% vs. 28.0%, p<0.05) in autistic women compared to non-autistic women (n=54 autistic women, n=183 non-autistic women) [38]. Unusually painful periods (39.3% vs. 26.3%, p=0.00004) and pre-menstrual syndrome (in contraceptive pill users) (24.0% vs. 13.8%, p=0.001) were also more common in autistic women (n=415 autistic women, n=415 non-autistic women) [39].

Along with menstruation cycle complications, five studies explored female-specific endocrine conditions or physical health conditions in relation to reproductive health in autism, and reported a range of autism-specific findings [38,39,46–48]. Ingudomnukul et al. reported on testosterone-related conditions in n=54 autistic women (19-63 years), compared to n=74 mothers of autistic children, and n=183 age-matched, non-autistic women using a self-reported clinical questionnaire administered online [38]. Autistic women, compared to non-autistic women, had higher rates of polycystic ovary syndrome (PCOS, 11.3% vs. 2.7%, p<0.05), delayed puberty (7.4% vs. 0.5%, p<0.01), and hirsutism (29.6% vs. 4.4%, p<0.001). Similarly, using a self-reported clinical questionnaire, Pohl et al. examined reproductive and sexuality-related characteristics and conditions in n=415 autistic women (mean age 36.37 years) compared to n=415 age-matched non-autistic women [39]. Based on response patterns, two groups (named by the authors as “typical” and “steroidopathic”) were identified, with the prevalence of the “steroidopathic group” significantly increased in the autism compared to control groups (ΔG =15, df=1, p=0.0001). In particular, there were higher frequencies of reproductive and steroid-linked conditions in autistic women, including irregular menstrual cycle (46.3% vs. 34.0%, p=0.0002), severe acne in non-contraceptive pill users (21.3% vs. 5.9%, p=0.002), precocious puberty (3.1% vs. 0.5%, p=0.003), and early growth spurt (20.2% vs. 12.8%, p=0.002) [39]. Cherskov et al. conducted three interrelated studies on the associations between autism and PCOS using nation-wide electronic health records. One examined the risk for PCOS in n=971 autistic women (mean age 30.3 years) vs. n=4,855 non-autistic women [46]. The prevalence of PCOS in autistic women was higher than in non-autistic women (2.3% vs. 1.1%, p<0.01; OR 2.01 [1.22-3.30]). Sundelin et al. reported on pregnancy outcomes in n=2,198 births to n=1,382 autistic women of child-bearing age, compared to n=877,742 births in n=503,846 women from the general population using data from a nation-wide registry [47]. They found autistic women were at increased risk for pre-eclampsia (OR 1.34 [1.08-1.66]); for outcomes of
pregnancy and the fetus, autistic women were at increased risk of giving birth preterm (OR 1.30 [1.10-1.54]), medically indicated preterm birth (OR 1.41 [1.08-1.82]), and elective caesarean delivery (OR 1.44 [1.25-1.66]). Finally, Chiang et al. investigated risk of cancer in n=8,438 autistic children, youth and young adults (0-25+ years) compared to n=76,332 general population controls, from nation-wide registries [48]. They found higher standardized incidence ratios (SIR) for ovarian cancer in autistic women compared to the general population (SIR 9.21 [95% CI 1.12-33.29]).

4. Inconsistent evidence for differences in gastrointestinal, metabolic, and nutritional conditions between autistic girls/women and autistic boys/men

Six studies compared gastrointestinal, metabolic, nutritional and related conditions between autistic girls/women and boys/men [49–54]. Yang et al. examined the prevalence of gastrointestinal problems in n=169 autistic children (mean age 5.23 years) and reported that autistic girls had greater likelihood of gastrointestinal problems than autistic boys (OR 3.88 [1.33-11.35], p=0.013); further, more gastrointestinal symptoms were correlated with more severe core autistic symptoms [53].

Two studies examined nutritional deficiencies in autism. In a systematic review and meta-analysis of peripheral iron levels and iron deficiency in autistic children (25 articles on peripheral ferritin, hair iron and, food iron intake in n=1,603 children (0-18 years)), Tseng et al. found no significant associations between sex and iron levels in the autism group [49]. Guo et al. assessed vitamin A and vitamin D deficiencies in n=332 autistic children (mean age 4.87 years), compared to n=197 age-matched controls from community samples [50]. They reported that autistic girls had significantly lower serum 25-OH vitamin D than autistic boys (p<0.05).

Rossignol and Frye performed a systematic review to determine the prevalence and characteristics of mitochondrial disease in autistic children, identifying 65 studies for qualitative synthesis, with 18 publications totalling n=536 autistic children and youth, and n=112 with autism and mitochondrial disease (0-20 years) [51]. Rates for specific clinical features, including female sex, were found to be elevated in the autism-mitochondrial disease group compared to the autism-only group (39% female in autism-mitochondrial disease group vs. 19% female in autism-only group, $\chi^2=18.7$, p<0.0001).

Finally, two studies examined obesity. Broder-Fingert et al. compared n=2,976 autistic
children and youth (2-20 years) to n=3,696 age-matched controls on sex- and age-adjusted body mass index (BMI), calculating odds for being overweight and obese compared to controls [52]. Autistic girls were less likely to be obese compared to autistic boys (OR 0.71 [0.55-0.93]), but this did not hold for overweight (OR 1.06 [0.81-1.39]). Garcia-Paster et al. compared obesity and physical activity status in n=44 autistic children and adolescents (7-18 years) and n=34 autistic adults (19-48 years), finding that overweight and obesity were significantly more prevalent in autistic men vs. autistic boys (p<0.001) and autistic men than in autistic women (p=0.035) [54].

5. Possible differences in immune profiles for autistic girls/women compared to autistic boys-men

Three studies reported on sex-specific immunological conditions or immune factors in autism. Masi et al. measured the levels of 27 cytokines using multiplex assay in n=144 autistic children and adolescents (2-18 years) from a registry-based sample [55]. They reported that in autistic girls reduced levels of IL-1β, IL-8, MIP-1β, PDGF-BB and VEGF were associated with increased autism symptoms, while in autistic boys this was the case only of reduced PDGF-BB. The authors concluded that cytokine expression in autism was moderated by sex. Hu et al. measured plasma levels of 11 cytokines in n=87 autistic children (1-6 years), compared to n=41 age-matched non-autistic children, to characterize immune profiles and their association with autistic symptoms [56]. They found overall, autistic children had higher plasma levels of Eotaxin, TGF-β1, and TNF-α than non-autistic children. In autistic girls, only the increase in Eotaxin was statistically significant, whereas in autistic boys, the most consistent increase was in TGF-β1. Finally, Saghazadeh et al. conducted a meta-analysis on circulating concentrations of pro-inflammatory cytokines in n=1,393 autistic individuals (of all ages) compared to n=1,074 non-autistic controls, extracted from 38 studies [57]. Findings indicated higher concentrations of pro-inflammatory cytokines IFN-γ, IL-1β, IL-6, and TNF-α in autistic individuals than in controls; meta-regression revealed a correlation with sex as well as differences in mean serum levels of certain pro-inflammatory cytokines in autism, including IL-1β and TNF-α.

Discussion

The purpose of this scoping review was to explore what is known about co-occurring physical health conditions in autistic girls and women. Out of the 201 articles reviewed full-text,
only 40 met our inclusion criteria, mainly due to the paucity in reporting on sex or gender differences among populations with autism and the low percentages of autistic girls/women included in the current literature. This highlights a male-biased lens and relative ignorance of women’s health and female experiences in the scientific and clinical knowledge about physical health and autism so far. There is a pressing need for more research that includes large numbers of autistic girls/women in order to better understand their physical health. This should be prioritized in order to advance the best clinical care for autistic individuals [10].

Some emerging patterns of co-occurring physical health conditions are worth further examination and replication. With respect to Theme 1, the current literature suggests that autistic girls/women overall tend to have more physical health challenges and lower overall health and quality of life than do autistic boys/men [18–20,22,23,32–34]. However, with the exception of neurological conditions (especially epilepsy) it is still unclear which specific conditions are more prevalent in autistic girls/women compared to autistic boys/men or to non-autistic girls/women. Such inconsistency could be related to the substantial heterogeneity in the autism population even within each sex [58] or could be related to confounding factors (e.g., genetic mutation load or other neurodevelopmental disabilities). Based on Theme 2, epilepsy is the most studied condition, found to be more prevalent in autistic girls/women than in autistic boys/men in most included studies [23,27,28,31,33,35]. However, the complexity underlying this association remains, with studies highlighting potential confounding factors such as heightened autism symptom, language impairment, motor dysfunction, intellectual disability in autistic girls/women [36,37], or multifactorial etiology and shared neurological abnormalities [59]. On the other hand, barriers experienced by girls/women to receive an autism diagnosis [2,4,10] may result in autistic girls/women without evident developmental disabilities being under-represented in the current literature. Therefore, potential differences between autistic boys/men and autistic girls/women suggested by the current literature may be influenced by increased phenotypic complexity and severity among diagnosed autistic girls/women compared to autistic boys/men. It remains unclear if the same male-female differences hold in autistic individuals who are so far under-recognized and un-diagnosed.

There is some evidence indicating increased female-specific endocrine or reproductive health concerns in autistic girls/women (e.g., sensory, menstruation-related, hormonal conditions, and ovarian cancer), and potentially sex-specific immune profiles, as highlighted in
Theme 3 and Theme 5. Nevertheless, these findings should be viewed as preliminary owing to the moderate sample sizes (Table 2) [43–45] and the reliance on self-report questionnaires to characterize female-specific endocrine conditions rather than direct clinical assessments [38,39,43–45]. Interestingly though, both themes can be hypothesis-generating and have implications for plausible biological mechanisms underlying autism, endocrine, and immune alternations to be investigated in future research.

For Theme 3, some have speculated that endocrine dysregulation in autistic girls/women is partly indicative of altered prenatal sex-steroid exposure [60,61], which may contribute to both endocrine dysregulation and autism-related neurodevelopmental and behavioural characteristics [62–64], with some emerging empirical support published recently [65–69]. How such prenatal endocrine factors contribute to the mechanisms leading to autism and concurrent physical health disorders in a sex-differential manner remains unclear, and is an area requiring more in-depth mechanistic investigation. Equally, there is growing evidence supporting the role of multidirectional interactions between prenatal immune activation, epigenetic regulation in key brain regions, and postnatal environments, in producing a range of distinct but related autistic phenotypes [70,71]. It is possible that there are shared mechanisms underlying autism and co-occurring endocrine and immune alterations, with sex-differential mechanisms involved.

As well, findings regarding gastrointestinal, metabolic, and nutritional conditions (Theme 4) require much more research to elucidate. There are preliminary indications that gastrointestinal [72] and metabolic/nutritional conditions [73], including obesity and diabetes [74], are of particular relevance to autistic people, especially girls/women. These conditions could involve shared etiological mechanisms with autism as well as with life experiences living with autism.

Clinical Implications

The finding that autistic girls/women having more physical health challenges than non-autistic girls/women and autistic boys/men is of crucial clinical relevance. Improving physical health is integral to the care of all autistic individuals [75,76]. Frontline and primary care clinicians should regularly attend to and resolve unmet health care needs for autistic people, for children, youth and adults alike [77,78] and more specifically for autistic girls/women [79], particularly regarding (but not restricted to) neurological, endocrine/reproductive, immune and
metabolic conditions. Incorporating existing knowledge on women’s health to the autism population is essential and will significantly enrich sex- and gender-informed health care for autistic people. Conversely, improved attention to physical health in girls/women who also experience difficulties in social-communication, restricted/stereotyped behaviours and sensory issues might facilitate the identification of later-recognized autism in girls/women [80]. As with other women and men, sex and gender strategies need to be applied to their health across the lifespan.

Another key consideration is the interplay between physical and mental health. Autistic people are prone to experience mental health challenges (which we did not review here) [14]. However, many psychiatric medications for such challenges have side effects that are more commonly experienced in autistic than non-autistic individuals [75,81–83] contributing to heightened risk to physical health (e.g., weight gain and endocrine problems related to psychotropic medications). These findings have not yet been sufficiently studied in a sex-specific manner. Meanwhile, physical health challenges (e.g., epilepsy, hormonal dysregulation) can have detrimental impact on mental health and affect mood and behaviour. Such complexity and interplay may result in the high clinical needs and multiple service use that are common in the autism population, particularly girls/women [84–86]. Many of these physical health challenges are treatable with the proviso that clinical trials need to disaggregate their data by sex, which is unfortunately still insufficiently done for clinical trials involving autistic people. Timely diagnosis and treatment will enhance wellbeing associated with both physical and mental health of autistic individuals across the lifespan. This review has revealed that autistic girls/women are a unique population with unique needs from autistic boys/men and non-autistic girls/women. Therefore, it behooves us to develop comprehensive services that integrate developmental, mental and physical health for autistic girls/women.

Limitations

There are several limitations to our review. First, it is possible that we were unable to identify all studies relevant to our guiding question due to the heterogeneity in how physical health conditions are assessed and reported in the literature. Nevertheless, based on the principles of a scoping review, we have identified potential areas in the literature that warrant future investigation and areas with insufficient information as yet to make firm conclusions (as outlined
earlier in Discussion). Second, the decision to focus on physical health thus excluding studies only focusing on psychiatric co-occurring conditions meant that we could not explore how mental and physical health are intertwined in autistic people, particularly in girls/women. Finally, our scoping review results demonstrate that our understanding in the physical health of autistic girls/women is still emerging. The limited number of studies in each thematic area, varying quality and research methodologies make it difficult to reach definitive conclusions.

However, several lessons can be learned from our review. There is a lack of consistent, basic epidemiological information on the prevalence and incidence for co-occurring health conditions in the autism population by sex and in particular by gender. Additionally, there is insufficient longitudinal studies to chart the emergence of co-occurring conditions, randomized control trials to address these conditions, and a lack of biological studies to elucidate mechanisms implicated in the development of physical health challenges in autism, by sex and by gender. Further, there is a significant under-representation of autistic girls/women in most studies, and only a small minority of studies formally examine and report sex/gender-differential effects in their primary analyses. Finally, it is extremely rare in the current empirical literature that sex (biological attributes) and gender (psychological, social and cultural attributes) are defined and examined separately in valid ways. These gaps need to be addressed in future research, alongside clarification of sources of demographic, clinical and etiological heterogeneity such as age, pubertal stage, developmental trajectories, intellectual functioning, and genetic background. Such clarification is fundamental for future studies to generate etiological and mechanistic insights by studying co-occurring physical conditions in autism, with sex- and gender-informed lenses.

Conclusions

To our knowledge, this is the first scoping review on physical health in autistic girls/women. Emerging themes suggest that autistic girls/women may have heightened rates of co-occurring physical health challenges compared to autistic boys/men and non-autistic girls/women. Therefore, clinicians should provide holistic care that integrates not only developmental and mental health, but also physical health. Future studies need to include sufficient numbers of autistic girls/women to achieve adequate power, attend to physical health and the intertwined nature of developmental, mental and physical health, and use sex- and
gender-informed lenses.

List of Abbreviations

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

ICD: International Classification of Diseases

DSM: Diagnostic and Statistical Manual

OR: Odds Ratio

SIR: Standardized Incidence Ratio

RR: Risk Ratio

SD: Standard Deviation
Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Availability of data and materials
The articles included in this scoping review are available from the corresponding author.

Funding
M-CL is supported by a Canadian Institutes of Health Research (CIHR) Sex and Gender Science Chair, Women’s Xchange, the Innovation Fund of the Alternative Funding Plan for the Academic Health Sciences Centres of Ontario, and the Ontario Brain Institute via the Province of Ontario Neurodevelopmental Disorders (POND) Network. M-CL and SHA are both supported by the O’Brien Scholars Program within the Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health and The Hospital for Sick Children, Toronto, the Academic Scholars Award from the Department of Psychiatry, University of Toronto, and the Slaight Family Child and Youth Mental Health Innovation Fund via the Centre for Addiction and Mental Health Foundation. SHA is supported by funding from the National Institutes of Mental Health, CIHR, and the Cundill Centre for Child and Youth Depression at the Centre for Addiction and Mental Health. AT is supported by the CIHR Post-doctoral Fellowship and the Azrieli Adult Neurodevelopmental Centre Fellowship. HKB is supported by a Tier 2 Canada Research Chair in Disability & Reproductive Health, CIHR, and the National Institutes of Health. SB is supported by the Ontario Graduate Scholarship and the Department of Sociology, University of Toronto. GE is supported by the Wilfred and Joyce Posluns Chair in Women’s Brain Health and Aging, CIHR, Ontario Brain Institute, Alzheimer’s Society Canada, and Women’s Brain Health Initiative. The funders have no role in the design of the study, the collection, analysis, and interpretation of data, and writing of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
M-CL, GE and SB conceived and planned the study. CK and SB carried out the literature search, screening, extraction and summary of data. M-CL and GE supervised the study and contributed to literature screening and summary of findings. CK, SB, M-CL and GE drafted the manuscript. AT, YL, HB, SHA and PS contributed to the interpretation of findings and writing of the manuscript. M-CL and SHA obtained funding support for the study. CK and SB contributed equally as first authors. M-CL and GE contributed equally as senior authors.

Acknowledgements
Not applicable
References

1. Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK, et al. The Changing Epidemiology of Autism Spectrum Disorders. Annu Rev Public Health. 2017;38:81–102.

2. Lai MC, Lombardo M V., Auyeung B, Chakrabarti B, Baron-Cohen S. Sex/Gender Differences and Autism: Setting the Scene for Future Research. J Am Acad Child Adolesc Psychiatry. 2015;54(1):11–24.

3. Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896–910.

4. Loomes R, Hull L, Mandy WPL. What Is the Male-to-Female Ratio in Autism Spectrum Disorder? A Systematic Review and Meta-Analysis. J Am Acad Child Adolesc Psychiatry. 2017;56(6):466–74.

5. Lai MC, Szatmari P. Sex and gender impacts on the behavioural presentation and recognition of autism. Curr Opin Psychiatry. 2020;33(2):117–23.

6. Muskens JB, Velders FP, Staal WG. Medical comorbidities in children and adolescents with autism spectrum disorders and attention deficit hyperactivity disorders: A systematic review. Eur Child Adolesc Psychiatry. 2017;26(9):1093–103.

7. Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JJ, Hallmayer JF. Autism genetics: Opportunities and challenges for clinical translation. Nat Rev Genet. 2017;18(6):362–78.

8. Szatmari P, Georgiades S, Duku E, Bennett TA, Bryson S, Fombonne E, et al. Developmental trajectories of symptom severity and adaptive functioning in an inception cohort of preschool children with autism spectrum disorder. JAMA Psychiatry. 2015;72(3):276–83.

9. Lord C, Bishop S, Anderson D. Developmental trajectories as autism phenotypes. Am J Med Genet. 2015;169(2):198–208.

10. Mandy W, Lai M-C. Towards sex/gender informed autism research. Autism. 2017;21(6):643–5.

11. Holtmann M, Bolte S, Poustka F. Autism spectrum disorders: Sex differences in autistic behaviour domains and coexisting psychopathology. Dev Med Child Neurol. 2007;49(5):361–6.

12. Tsakanikos E, Underwood L, Kravariti E, Bouras N, McCarthy J. Gender differences in co-morbid psychopathology and clinical management in adults with autism spectrum disorders. Res Autism Spectr Disord. 2011;5(2):803–8.

13. Kreiser NL, White SW. ASD traits and co-occurring psychopathology: The moderating role of gender. J Autism Dev Disord. 2015;45(12):3932–8.

14. Lai MC, Kassee C, Besney R, Bonato S, Hull L, Mandy W, et al. Prevalence of co- occurring mental health diagnoses in the autism population: a systematic review and meta- analysis. The Lancet Psychiatry. 2019;6(10):819–29.

15. Arksey H, O’Malley L. Scoping studies: Towards a methodological framework. Int J Soc Res Methodol Theory Pract. 2005;8(1):19–32.

16. Tricco A, Lillie E, Zarin W, O’Brien K, Colquhoun H, Levac D, et al. PRISMA extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;167(7):467–73.

17. Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann Intern Med. 2009;151(4):264–9.

18. Rydzewska E, Hughes-McCormack LA, Gillberg C, Henderson A, MacIntyre C, Rintoul
J, et al. General health of adults with autism spectrum disorders – A whole country population cross-sectional study. Res Autism Spectr Disord. 2019;60:59–66.
19. Rydzewska E, Hughes-McCormack LA, Gillberg C, Henderson A, MacIntyre C, Rintoul J, et al. Prevalence of long-term health conditions in adults with autism: Observational study of a whole country population. BMJ Open. 2018;8:e023945.
20. Rydzewska E, Hughes-McCormack LA, Gillberg C, Henderson A, MacIntyre C, Rintoul J, et al. Prevalence of sensory impairments, physical and intellectual disabilities, and mental health in children and young people with self/proxy-reported autism: Observational study of a whole country population. Autism. 2019;23(5):1201–9.
21. Stacy ME, Zablotsky B, Yarger HA, Zimmerman A, Makia B, Lee L-C. Sex differences in co-occurring conditions of children with autism spectrum disorders. Autism. 2014;18(8):965–74.
22. Mason D, McConachie H, Garland D, Petrou A, Rodgers J, Parr JR. Predictors of quality of life for autistic adults. Autism Res. 2018;11:1138–47.
23. Fortuna R., Robinson L, Smith T., Meccarello J, Bullen B, Nobis K, et al. Health Conditions and Functional Status in Adults with Autism: A Cross-Sectional Evaluation. J Gen Intern Med. 2016;31(1):77–84.
24. Jones KB, Cottle K, Bakian A, Farley M, Bilder D, Coon H, et al. A description of medical conditions in adults with autism spectrum disorder: A follow-up of the 1980s Utah/UCLA Autism Epidemiologic Study. Autism. 2016;20(5):551–61.
25. Rubenstein E, Schieve L, Wiggins L, Rice C, Van Naarden Braun K, Christensen D, et al. Trends in documented co-occurring conditions in children with autism spectrum disorder, 2002-2010. Res Dev Disabil. 2018;83:168–78.
26. Moseley RL, Hitchiner R, Kirkby JA. Self-reported sex differences in high-functioning adults with autism: A meta-analysis. Mol Autism. 2018;9(1):33–45.
27. Supekar K, Iyer T, Menon V. The influence of sex and age on prevalence rates of comorbid conditions in autism. Autism Res. 2017;10(5):778–89.
28. Memari AH, Ziaee V, Mirfazeli FS, Kordi R. Investigation of autism comorbidities and associations in a school-based community sample. J Child Adolesc Psychiatr Nurs. 2012;25(2):84–90.
29. Davignon MN, Qian Y, Massolo M, Croen LA. Psychiatric and medical conditions in transition-aged individuals with ASD. Pediatrics. 2018;141(Suppl 4):S335–45.
30. Cashin A, Buckley T, Trollor JN, Lennox N. A scoping review of what is known of the physical health of adults with autism spectrum disorder. J Intellect Disabil. 2018;22(1):96–108.
31. Rubenstein E, Wiggins LD, Lee L-C. A review of the differences in developmental, psychiatric, and medical endophenotypes between males and females with autism spectrum disorder. J Multihandicap Pers. 2015;27(1):119–39.
32. Cawthorpe D. Comprehensive Description of Comorbidity for Autism Spectrum Disorder in a General Population. Perm J. 2017;21(16–088):86–90.
33. Croen LA, Zerbo O, Qian Y, Massolo ML, Rich S, Sidney S, et al. The health status of adults on the autism spectrum. Autism. 2015;19(7):814–23.
34. Hand B., Angell A., Harris L, Carpenter LA. Prevalence of physical and mental health conditions in Medicare-enrolled, autistic older adults. Autism. 2019;1–10.
35. Amiet C, Gourfinkein I, Bouzamondo A, Tordjman S, Baulac M, Lechat P, et al. Epilepsy in autism is associated with intellectual disability and gender: Evidence from a meta-
36. Ewen JB, Marvin AR, Law K, Lipkin PH. Epilepsy and Autism Severity: A Study of 6,975 Children. Autism Res. 2019;00:1–9.
37. Viscidi EW, Triche EW, Pescosolido MF, McLean RL, Joseph RM, Spence SJ, et al. Clinical characteristics of children with autism spectrum disorder and co-occurring epilepsy. PLoS One. 2013;8(7):e7797.
38. Ingudomnukul E, Baron-Cohen S, Wheelwright S, Knickmeyer R. Elevated rates of testosterone-related disorders in women with autism spectrum conditions. Horm Behav. 2007;51:597–604.
39. Pohl A, Cassidy S, Auyeung B, Baron-Cohen S. Uncovering steroidopathy in women with autism: A latent class analysis. Mol Autism. 2014;5(27).
40. Mouridsen SE, Rich B, Isager T. Cerebral palsy in individuals with a history of Asperger’s syndrome: A Danish nationwide register study based on hospital diagnoses. J Pediatr Neurol. 2013;11(1):29–34.
41. Ben-Itzchak E, Ben-Shachar S, Zachor DA. Specific neurological phenotypes in autism spectrum disorders are associated with sex representation. Autism Res. 2013;6:594–604.
42. Bowers K, Wink LK, Pottenger A, McDougle CJ, Erickson C. Phenotypic differences in individuals with autism spectrum disorder born preterm and at term gestation. Autism. 2015;19(6):758–63.
43. Bitsika V, Sharpley CF. The Effects of Menarche upon the Sensory Features of Girls with Autism Spectrum Disorder. J Dev Phys Disabil. 2018;30:755–9.
44. Steward R, Crane L, Mairi Roy E, Remington A, Pellicano E. “Life is Much More Difficult to Manage During Periods”: Autistic Experiences of Menstruation. J Autism Dev Disord. 2018 Dec;48(12):4287–92.
45. Hamilton A, Marshal MP, Murray PJ. Autism spectrum disorders and menstruation. J Adolesc Heal. 2011;49:443–5.
46. Cherskov A, Pohl A, Allison C, Zhang H, Payne RA, Baron-Cohen S. Polycystic ovary syndrome and autism: A test of the prenatal sex steroid theory. Transl Psychiatry. 2018;8(136).
47. Sundelin HEK, Stephansson O, Hultman CM, Ludvigsson JF. Pregnancy outcomes in women with autism: A nationwide population-based cohort study. Clin Epidemiol. 2018;10:1817–26.
48. Chiang HL, Liu CJ, Hu YW, Chen SC, Hu LY, Shen CC, et al. Risk of cancer in children, adolescents, and young adults with autistic disorder. J Pediatr. 2015;166(2):418–23.
49. Tseng P, Cheng Y, Chen Y, Stubbs B, Whiteley P, Carvalho A, et al. Peripheral iron levels in children with autism spectrum disorders vs controls: a systematic review and meta-analysis. Nutr Res. 2018;50:44–52.
50. Guo M, Zhu J, Yang T, Lai X, Lei Y, Chen J, et al. Vitamin A and vitamin D deficiencies exacerbate symptoms in children with autism spectrum disorders. Nutr Neurosci. 2018;22(9):637–47.
51. Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012 Mar;17(3):290–314.
52. Broder-Fingert S, Brazaukas K, Lindgren K, Iannuzzi D, Van Cleave J. Prevalence of overweight and obesity in a large clinical sample of children with autism. Acad Pediatr. 2014;14(4):408–14.
53. Yang XL, Liang S, Zou MY, Sun CH, Han PP, Jiang XT, et al. Are gastrointestinal and
sleep problems associated with behavioral symptoms of autism spectrum disorder? Psychiatry Res. 2018;259:229–35.

54. Garcia-Pastor T, Salinero JJ, Theirs CI, Ruiz-Vicente D. Obesity Status and Physical Activity Level in Children and Adults with Autism Spectrum Disorders: A Pilot Study. J Autism Dev Disord. 2019;49:165–72.

55. Masi A, Breen EJ, Alvares GA, Glozier N, Hickie IB, Hunt A, et al. Cytokine levels and associations with symptom severity in male and female children with autism spectrum disorder. Mol Autism. 2017;8(63).

56. Hu CC, Xu X, Xiong GL, Xu Q, Zhou BR, Li CY, et al. Alterations in plasma cytokine levels in Chinese children with autism spectrum disorder. Autism Res. 2018;11:989–99.

57. Saghazadeh A, Ataeinia B, Keynejad K, Abdolalizadeh A, Hirbod-Mobarakhe A, Rezaei B. A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. Abdallah Agah, Ahmad, Al-Ayadhi, Alfa waz, Asadabadi, Ashaat, Ashwood, Ashwood, Ashwood, Ashwood, Bakkaloglu, Ballendine, Barbosa, Be gg, Bhandari, Bhandari, Bodnar, Bryn, Bryn, Businaro, Careaga, Carpentier, Chez, Croonenberghs, Croonenberghs, De A, editor. J Psychiatr Res. 2019;115:90–102.

58. Lombardo MV, Lai MC, Baron-Cohen S. Big data approaches to decomposing heterogeneity across the autism spectrum. Mol Psychiatry. 2019;24(10):1435–50.

59. Veliskova J, Silverman J., Benson M, Lenck-Santini P. Autistic traits in epilepsy models: Why, when and how? Epilepsy Res. 2018;144:62–70.

60. Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37:467–520.

61. Barrett ES, Swan SH. Stress and androgen activity during fetal development. Endocrinology. 2015;156:3435–41.

62. Gore AC, Martien KM, Gagnidze K, Pfaff D. Implications of prenatal steroid perturbations for neurodevelopment, behavior, and autism. Endocr Rev. 2014;35:961–91.

63. Auyeung B, Lombardo MV, Baron-Cohen S. Prenatal and postnatal hormone effects on the human brain and cognition. Pflugers Arch Eur J Physiol. 2013;465:557–71.

64. Baron-Cohen S, Lombardo MV, Auyeung BB., Ashwin E, Chakrabarti B, Knickmeyer R. Why are autism spectrum conditions more prevalent in males? PLoS Biol. 2011;9:e1001081.

65. Baron-Cohen S, Tsompanidis A, Auyeung B, Nørgaard-Pedersen B, Hougaard DM, Abdallah M, et al. Foetal oestrogens and autism. Mol Psychiatry. 2019;

66. Baron-Cohen S, Auyeung B, Nørgaard-Pedersen B, Hougaard DM, Abdallah MW, Melgaard L, et al. Elevated fetal steroidogenic activity in autism. Mol Psychiatry. 2015;20(3):369–76.

67. Kosidou K, Dalman C, Widman L, Arver S, Lee BK, Magnusson C, et al. Maternal polycystic ovary syndrome and the risk of autism spectrum disorders in the offspring: A population-based nationwide study in Sweden. Mol Psychiatry. 2016;21(10):1441–8.

68. Lee BK, Arver S, Widman L, Gardner RM, Magnusson C, Dalman C, et al. Maternal hirsutism and autism spectrum disorders in offspring. Autism Res. 2017;10(9):1544–6.

69. Rotem RS, Chodick G, Davidovitch M, Hauser R, Coull BA, Weisskopf MG. Congenital Abnormalities of the Male Reproductive System and Risk of Autism Spectrum Disorders. Am J Epidemiol. 2018;187(4):656–63.

70. Meltzer A, Van De Water J. The Role of the Immune System in Autism Spectrum
Disorder. Neuropsychopharmacology. 2017;42:284–92.
71. Nardone S, Elliott E. The interaction between the immune system and epigenetics in the etiology of autism spectrum disorders. Front Neurosci. 2016;10:329.
72. Coury D., Ashwood P, Fasano A, Fuchs G, Geraghty M, Kaul A, et al. Gastrointestinal conditions in children with autism spectrum disorder: Developing a research agenda. Pediatrics. 2012;130(SUPPL. 2):S160–8.
73. Ranjan S, Nasser JA. Nutritional status of individuals with autism spectrum disorders: do we know enough? Adv Nutr. 2015 Jul;6(4):397–407.
74. Shedlock K, Susi A, Gorman GH, Hisle-Gorman E, Erdie-Lalena CR, Nylund CM. Autism Spectrum Disorders and Metabolic Complications of Obesity. J Pediatr. 2016;178:183–7.
75. Lai MC, Anagnostou E, Wiznitzer M, Allison C, Baron-Cohen S. Evidence-based support for autistic people across the lifespan: maximising potential, minimising barriers, and optimising the person–environment fit. Lancet Neurol. 2020;S1474-4422.
76. Nicolaides C, Raymaker D, McDonald K, Kapp S, Weiner M, Ashkenazy E, et al. The Development and Evaluation of an Online Healthcare Toolkit for Autistic Adults and their Primary Care Providers. J Gen Intern Med. 2016;31(10):1180–9.
77. Karpur A, Lello A, Frazier T, Dixon PJ, Shih AJ. Health Disparities among Children with Autism Spectrum Disorders: Analysis of the National Survey of Children’s Health 2016. J Autism Dev Disord. 2019;49(4):1652–64.
78. Mason D, Ingham B, Urbanowicz A, Michael C, Birtles H, Woodbury-Smith M, et al. A Systematic Review of What Barriers and Facilitators Prevent and Enable Physical Healthcare Services Access for Autistic Adults. J Autism Dev Disord. 2019;49(8):3387–400.
79. Tint A, Hamdani Y, Sawyer A, Desarkar P, Ameis SH, Bardikoff N, et al. Wellness Efforts for Autistic Women. Curr Dev Disord Reports. 2018;5(4):207–16.
80. Lai MC, Baron-Cohen S. Identifying the lost generation of adults with autism spectrum conditions. The Lancet Psychiatry. 2015;2(11):1013–27.
81. Dove D, Warren Z, McPheeters ML, Taylor JL, Sathe NA, Veenstra-VanderWeele J. Medications for Adolescents and Young Adults With Autism Spectrum Disorders: A Systematic Review. Pediatrics. 2012;130(4):717-726.
82. Ameis SH, Kassee C, Corbett-Dick P, Cole L, Dadhwal S, Lai MC, et al. Systematic review and guide to management of core and psychiatric symptoms in youth with autism. Acta Psychiatr Scand. 2018;138(5):379–400.
83. Mannion A, Leader G. Epilepsy in autism spectrum disorder. Res Autism Spectr Disord. 2014;8(4):354–61.
84. Tint A, Weiss JA, Lunsy Y. Identifying the clinical needs and patterns of health service use of adolescent girls and women with autism spectrum disorder. Autism Res. 2017;10(9):1558–66.
85. Tint A, Weiss JA. A qualitative study of the service experiences of women with autism spectrum disorder. Autism. 2018;22(8):928–37.
86. Bargiela S, Steward R, Mandy W. The Experiences of Late-diagnosed Women with Autism Spectrum Conditions: An Investigation of the Female Autism Phenotype. J Autism Dev Disord. 2016;46(10):3281-3294.
TABLES AND FIGURES

Figure 1. PRISMA Flow Diagram for Study Selection

Records identified through database searching
(n=2,543)

Additional records identified through other sources
(n=0)

Records after duplicates removed
(n=1,112)

Records screened
(n=1,112)

Full-text articles assessed for eligibility
(n=201)

Studies included in qualitative synthesis
(n=40)

Records excluded
(n=911)
- No primary diagnosis of autism
- No sex-specific or gender-specific analyses
- No physical health conditions
- Not English language
- Not peer-reviewed
- Duplicates not previously removed

Full-text articles excluded, with reasons
(n=161)
- No direct relevance to physical health conditions
- Autism sample n<50 and less than 12.5% female
- Review articles without systematic search methods
- Case reports, editorials, conference papers, opinions pieces
Table 1. Overview of included studies (n=40)

Year of Publication Range	Country of Origin	Main Topic of Study	Study Design						
2007-2019	North America = 16	Prevalence rates for overall physical health conditions = 18	Systematic reviews/meta-analyses = 5						
	Europe = 13	Neurological conditions = 4	Reviews with systematic search methods = 2						
	Asia = 5	Female-specific endocrine or reproductive conditions = 7	Cross-sectional studies, with population/registry samples = 23						
	Middle East = 3	Gastrointestinal, metabolic, nutritional conditions = 6	Cross-sectional studies, with clinical/community samples = 10						
	Australia = 3	Immunological conditions, immune factors = 3							
	Africa = 0	Physical health review = 2							
	South America = 0								
Author Year	Country	Study Design	Topic Area	Main Focus	Sample Size	Age (autism sample)	% Female (autism sample by sex)	% ID (autism sample)	Comparison Groups (against autistic females)
-------------	---------	--------------	------------	------------	-------------	---------------------	--------------------------------	---------------------	---
Amiet et al. 2008 [35]	France	Systematic review and meta-meta-analysis	Neurological condition – epilepsy	Relative risk for epilepsy in autism, and associations with ID	N=1,530 with autism in sex/gender analyses from 14 studies	All ages	22.2% in sex/gender-related analyses (1,191 males, 339 females)	Not reported	Autistic males
Bitsika & Sharpley 2018 [43]	Australia	Cross-sectional community sample	Female-specific endocrine conditions	Effects of menarche on sensory features of autism	N=53 with autism	6 to 17 years	100% (53 females)	Not reported	None
Ben-Itzchak et al. 2013 [41]	Israel	Cross-sectional clinic/community sample	Neurological conditions – phenotypes	Sex differences in neurological phenotypes in autism	N=663 with autism	1 to 15 years	13.0% (577 males, 86 females)	35.0%*	Autistic males
Bowers et al. 2015 [42]	USA	Cross-sectional clinic/community sample	Neurological conditions – phenotypes	Phenotypes in autism in preterm vs. term births	N=883 with autism	0 to 18 years	17.4% (728 males, 155 females)	N=853 with data, 34.5%	Autistic males
Broder-Fingert et al. 2014 [52]	USA	Cross-sectional registry sample	Gastrointestinal, metabolic, nutrition – obesity	Overweight and obesity prevalence in autism	N=2,359 with autism, N=3,696 controls	2 to 20 years	20.7% (2,359 males, 617 females)	Not reported	Autistic males
Cashin et al. 2018 [26]	Australia	Review with systematic methodology	Scoping review	Physical health in adults with autism	N=3,882 with autism, from 6 studies	18+ years	Not reported	Not reported	Autistic males
Cawthorpe et al. 2017 [32]	Canada	Cross-sectional registry sample	Prevalence rates	Medical comorbidities in autism	N=2,040, compared to N=763,499 in registry	All ages	28.6% (1,457 males, 583 females)	Not reported	Same-sex general population controls
Cherskov et al. 2018 [39]	USA	Cross-sectional registry sample	Female-specific endocrine conditions – PCOS	Polycystic ovary syndrome (PCOS)	N=971 with autism, compared to N=4,855	Mean age 30.30 years (SD 9.1)	100%	Not reported	General population women
Authors	Study Type	Sample Description	Study Population	Prevalence (%)	Controls	Study Population	Results		
------------------	--------------------------	---	------------------	-------------------------------------	---------------------------	------------------	------------------------------		
Chiang et al. 2015 [48] Taiwan	Cross-sectional registry sample	Female-specific endocrine conditions – ovarian cancer	N=8,438 with autism, N=76,332 controls	All ages	17.9% (6,931 males, 1,507 females)	Not reported	General population women		
Croen et al. 2015 [33] USA	Cross-sectional registry sample	Prevalence rates Medical and psychiatric conditions in autism	N=1,507 with autism, compared to N=15,070 general population controls	Adults (mean age 29.0 years (SD 12.2))	26.9% (1,102 males, 405 females)	19.2%	Same-sex general population controls		
Davignon et al. 2018 [29] USA	Cross-sectional registry sample	Prevalence rates Medical and psychiatric conditions in youth	N=4,123 with autism, N=20,615 with ADHD, N=2,156 with diabetes, N=20,615 general population controls	14 to 25 years	19.3% (3,326 males, 797 females)	13%	Autistic males and females		
Ewen et al. 2019 [36] USA	Cross-sectional registry sample	Prevalence rates Neurological conditions – epilepsy	N=6,975 with autism, in two cohorts (N=4,801 and N=1,736)	6 to 18 years	18.7% (5,671 males, 1,304 females)	20.8%	Autistic males		
Fortuna et al. 2016 [23] USA	Cross-sectional clinical sample	Prevalence rates Health conditions	N=255 with autism; no control	18 to 71 years	24.7% (192 males, 63 females)	N=141 with data; 91% with ID	Autistic males		
Garcia-Paster et al. 2018 [54] USA	Cross-sectional clinical sample	Gastrointestinal, metabolic, nutritional conditions Obesity and physical activity in autistic children and adults	N=78 with autism	7 to 48 years	28.2% (56 males, 22 females)	Not reported	Autistic males, autistic children and adults		
Guo et al. 2019 [50] China	Cross-sectional clinical sample	Gastrointestinal, metabolic, nutritional conditions Vitamin A and D deficiencies in autism	N=332 with autism, N=197 controls	Mean 4.87 years (SD 1.53)	13.8% (286 males, 46 females)	Not reported	Autistic males		
Hamilton et al. 2011 [45]	Cross-sectional community	Prevalence rates Female-specific endocrine	N=124 with autism	10 to 25 years	100%	Not reported	None		
Country	Source	Study Type	Sample	Conditions	Prevalence Rates	Age Range	Same-Sex General Population Controls		
---------	--------	------------	--------	------------	-----------------	-----------	-------------------------------------		
USA	Hand et al., 2019 [34]	Cross-sectional registry sample	Prevalence rates	Physical health in older adults with autism	N=4,685 with autism, N=46,850 controls	65 years and older	32.3% (3,175 males, 1,510 females)		
USA	Hu et al. 2019 [56]	Cross-sectional registry sample	Immunological conditions	Plasma levels of cytokines in autism	N=87 with autism, N=41 controls	1 to 6 years	Not reported		
China	Ingudomnukul et al. 2007 [38]	Cross-sectional clinic/community sample	Female-specific endocrine conditions	Testosterone-related medical conditions in autism	N=54 with autism, N=74 mothers of autistic girls, and N=183 general population women (controls)	19 to 63 years	Not reported		
UK	Jones et al. 2016 [24]	Cross-sectional clinical sample	Prevalence rates	Medical conditions in autism	N=92 with autism, no controls	23.5 to 50.5 years	N=82 with data; 70% with ID		
USA	Masi et al. 2017 [55]	Cross-sectional clinical sample	Immunological conditions and/or factors	Cytokine levels and severity of autism and other clinical traits	N=144 with autism	2 to 18 years	Not reported		
Australia	Mason et al. 2018 [22]	Cross-sectional registry sample	Prevalence rates	Predictors of quality of life in autism	N=370 with autism, no controls	17 to 80 years	Not reported		
UK	Memari et al. 2012 [28]	Cross-sectional community sample	Prevalence rates	Comorbidities in school children	N=91 with autism	6 to 14 years	Not reported		
Iran	Moseley et al. 2018 [26]	Systematic review and meta-analysis	Prevalence rates	Sex differences in autistic symptoms	N=254 with autism, N=707 general population controls	Weighted mean 36.37 years (females 37.4 (SD 14), males	53.5% (118 males, 136 females)		
UK						0%	Autistic males		

USA = United States of America; CC-BY-NC-ND 4.0 International license It is made available under a Creative Commons CC-BY-NC-ND license.
Study	Design	Sample	Conditions	N	Ages	Prevalence	Gender	Groups	
Mouridsen et al. 2013 [40] Denmark	Cross-sectional registry sample	Prevalence rates	Neurological conditions – cerebral palsy	N=4,180 with Asperger’s syndrome	4 to 31 years	17.9% (3,431 males, 749 females)	0%	Autistic males	
Pohl et al. 2014 [39] UK	Cross-sectional registry sample	Female-specific endocrine conditions	Sex-linked steroid conditions in autism	N=415 with autism; N=415 age-matched controls	Mean age 36.39 years (SD 11.98)	100%	Not reported	General population women	
Rossignol & Frye 2012 [51] USA	Systematic review and meta-analysis	Gastrointestinal, metabolic, nutritional conditions	Mitochondrial disease (MD) in autism	N=112 with autism-MD; N=536 autism only, from 65 studies	0 to 20 years	39% in autism/MD; 19% in autism only (no individual breakdown)	Not reported	Autism and autism-MD groups	
Rubenstein et al. 2015 [31] USA	Review with systematic methodology	Review article	Sex differences in co-occurring conditions in autism	Ranges N=28 to N=337,000, from 69 studies	Not reported	Not reported	Not reported	Autistic males	
Rubenstein et al. 2018 [25] USA	Cross-sectional registry sample	Prevalence rates	Temporal trends in co-occurring disorders in autism	N=6,379 with autism	8 year-olds	18.0% (5,230 males, 1,149 females)	4.3%	Autistic males	
Rydzewska et al. 2019a [20] UK	Cross-sectional registry sample	Prevalence rates	Prevalence rates for comorbid categories	N=25,063 autism; N=1,523,756 controls	0 to 24 years	20.7% (19,880 males, 5,183 females)	14.9%	Autistic males	
Rydzewska et al. 2018 [19] UK	Cross-sectional registry sample	Prevalence rates	Prevalence rates for comorbid categories	N=6,649 with autism; N=3,746,584 controls	25+ years	30.7% (4,610 males, 2,039 females)	29.4%	Autistic males	
Rydzewska et al. 2019b [18] UK	Cross-sectional registry sample	Prevalence rates	General health status in autism	N=6,649 with autism; N=3,746,584 controls	25+ years	30.7% (4,610 males, 2,039 females)	29.4%	Autistic males	
Saghazadeh et al., 2019 [57] Iran	Systematic review and meta-analysis	Immunological conditions and/or factors	Pro-inflammatory cytokines in autism	38 studies with N=1,393 with autism, and N=1,094 controls	All ages	36 out of 38 studies with sex/gender information; 1,584 males and 446 females	Not reported	Autistic males, general population controls	
Authors	Study Type	Sample Description	Prevalence Rates	Differences in Co-occurring Diagnoses	N=913 with Autism	Weighted Mean Age (9.91 years) (females 10.82 (SD 0.61) vs. males 9.71 (SD 0.27))	% of Autistic Females Not Reported	Not Reported	Registry Sample
--------------------	------------------------------	---	------------------	---------------------------------------	-------------------	---	-----------------------------------	--------------	-----------------
Stacy et al. 2014	Cross-sectional registry sample	N=913 with autism	Differences in co-occurring diagnoses in males and females with autism	18.3% (746 males, 167 females)	Not reported	Autistic males			
USA									
Steward et al. 2018	Cross-sectional community sample	N=123 with autism, N=114 controls	Autistic women’s experiences with menstruation	16 to 60+ years	100%	Not reported	General population women		
USA									
Sundelin et al. 2018	Cross-sectional registry sample	N=1,382 women with autism (N=2,198 births), N=503,486 general population controls (N=977,742 births)	Pregnancy in autistic women	Adults of child-bearing ages	100%	Not reported	General population women		
Sweden									
Supekar et al. 2017	Cross-sectional registry sample	N=4,790 with autism	Sex differences on comorbid conditions in autism	All ages	Not reported for overall sample	Not reported	Autistic males		
USA									
Tseng et al. 2018	Systematic review and meta-analysis	N=1,603 with autism across 3 analyses, N=1,507 controls in meta-analyses, from 25 studies	Iron deficiency and autism	0 to 18 years	20.0% (individual breakdown not reported)	Not reported	Autistic males		
Taiwan									
Viscidi et al. 2013	Cross-sectional registry sample	N=5,815 with autism	Neurological conditions – epilepsy	All ages, majority between 4-17.5%	17.5% (4,800 males, 1,015 females)	15.5%	Autistic males		
USA									
USA	China	Cross-sectional clinic/community sample	Gastrointestinal, metabolic, nutritional conditions	GI symptoms in autism, association with sleep	N=169 with autism, N=172 controls	Mean 5.23 years (SD 2.0)	14.2% (145 males, 24 females)	Not reported	Autistic males
---------	------------------------	---	--	---	-----------------------------------	-------------------------	-------------------------------	----------------	----------------

*Calculated using mean and standard deviations from IQ scores, for males and females
SD = standard deviation
SIR = standardized incidence ratio
OR = odds ratio
RR = relative risk ratio
CI = confidence interval
GI = gastrointestinal