Extremum statistics in scale-free network models

André Auto Moreira,1,2† José S. Andrade Jr.,2† and Luís A. Nunes Amaral1‡

1 Center for Polymer Studies and Dept. of Physics, Boston University, Boston, MA 02215
2 Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil

We investigate the statistics of the most connected nodes in scale-free networks. For a scale-free network model with homogeneous nodes, we show by means of extensive simulations that the exponential truncation due to the finite size of the network of the degree distribution governs the scaling of the extreme values. We also find that the distribution of maxima obeys scaling and follows the Gumbel statistics. For a scale-free network model with heterogeneous nodes, we show that scaling no longer holds and that the truncation of the degree distribution no longer controls the maximum distribution. Moreover, we find that neither the Gumbel nor the Frechet statistics describe the data.

PACS numbers:

The statistics of extrema is a classical subject of great interest in mathematics and physics [1]. In physics, extreme events have been studied in a number of fields, including self-organized fluctuations and critical phenomena [2], material fracture [3], disordered systems at low temperatures [4], and turbulence [5]. Knowledge of extreme event statistics is also of fundamental importance to predict and estimate risk in a variety of natural and man-made phenomena such as earthquakes, changes in climate conditions, floods [6], and large movements in financial markets [7]. A new field where extreme statistics is of interest is complex networks [8]. For one particular class of complex networks [9]—it is well known that the most connected nodes strongly influence the dynamics of the system, playing a fundamental role in many different phenomena such as Internet response to attacks [10], spreading of epidemics [11], or propagation of email viruses [12]. Surprisingly, so far there has been no attempt to characterize the distribution of extreme connectivities in scale-free networks.

An important result in extreme statistics is that the distributions of maxima for independent identically-distributed (iid) random variables fall onto a small number of universality classes [13]. Let $C \equiv \{k_1, k_2, \ldots, k_S\}$ be a set of iid variables drawn with probability density function $p(k)$. The distribution $\rho(K)$ of the maximum K in the set C is dictated by the asymptotic behavior of the tail of $p(k)$ [14]. Specifically, $\rho(K)$ converges to the Gumbel distribution,

$$\rho(K) = a \exp(-u - e^{-u}),$$

where $u = a(K-b)$, when $p(k)$ decays faster than a power law; and to the Frechet distribution,

$$\rho(K) = aK^{-(\alpha+1)} \exp(-K^{-\alpha}),$$

when $p(k)$ decays as $k^{-(\alpha+1)}$ [13, 14].

Unlike the case of iid random variables, little is known when correlations are present among the variables k_i [15, 16]. Even though the universality classes of uncorrelated and correlated variables may not necessarily be the same, correlated systems have been generally studied under the framework of iid extreme statistics [17]. In the case of scale-free networks, which we consider in this Letter, correlations are present in the degrees k_i (i.e. the number of links) of the nodes [18].

To investigate the extreme statistics in scale-free networks, we consider here the fitness model of Ref [19]. This model is a generalization of the scale-free model of Ref. [10], in which nodes have heterogeneous fitnesses $\{\eta_i; i = 1, \ldots, S\}$. The fitness η_i models an inherent quality of the node i that “weighs” its attractiveness to new links. In this model, the network starts with s_0 nodes, each with $s_0 - 1$ links. At time t, a new node is added to the network and establishes $s_0 - 1$ new links. A new link is established with a node i, from the set of the $t - 1 + s_0$ existing nodes, with a probability proportional to the node degree k_i and fitness η_i

$$\Pi_i = \frac{k_i \eta_i}{\sum_k k_j \eta_j}.$$

This mechanism, typically denoted “preferential attachment,” drives the network to a degree distribution that decays in the tail as a power law [19, 20]. In the homogeneous case, $\eta_i = 1$ for all i, one recovers the original model of Ref. [10], and generates a network with cumulative degree distribution that decays as $P(k) \sim k^{-2}$ [19, 20]. In the other case we study here, the fitnesses η_i are drawn from a uniform distribution $\eta_i \in [0, 1]$. This case generates a network with a cumulative degree distribution of the form $P(k) \sim k^{-\alpha}/\log(k)$, with $\alpha = 1.225$ [20].

For the case of nodes with homogeneous fitness—i.e., all η_i are equal—we find that the distribution of maxima obeys Gumbel statistics. This is a surprising result for two reasons: (i) the degrees k_i are not iid variables and are not equally distributed—hence, there is not an a priori justification to expect that one of the two universality classes (1) or (2) will hold—and (ii) the distribution $p(k)$
decays as a power law—hence, one would more likely expect to find Frechet statistics. For the case of nodes with heterogeneous fitness, we find (i) absence of scaling, i.e., the shape of the distribution changes with the network size, and (ii) that the distribution of maximum, for finite network sizes, is not consistent with either of the universality classes represented by Eqs. (1) and (2). However, our results are consistent with the possibility that the distribution of maximum may converge to the Frechet distribution in the thermodynamic limit. We show that the absence of scaling for the heterogeneous fitness case is due to the progressive entry in the system of nodes with larger fitness that eventually become the new maxima.

First we consider the case $\eta_i = 1$ for all i. The distribution of the maximum degree K is non trivial because (i) the degrees k_i display a constraint on the total number of links, and (ii) the variables k_i are not identically distributed. Indeed, recent studies have shown that each node has a different probability distribution for its degree $p_i(k_i)$ obeying an exponential form with a characteristic scale that depends on the square root of the node index i.

Figure 1(a) shows the cumulative degree distribution, $P(k) = \sum_{k_i > k} p(k_i)$, for different network sizes S for the homogeneous case, $\eta_i = 1$. The curves where obtained from 10^5 network realizations for each size S and confirm that the results are indistinguishable from those obtained for 10^4 network realizations. In all simulations the initial size is $s_0 = 2$. We plot the distribution functions of the scaled maximum $K' \equiv S^{-1}K$, with $\gamma = 0.50 \pm 0.03$. As expected, the distribution of maxima displays the same scaling as the truncation of the degree distribution i.e., $\gamma \approx \theta$. Also shown is the fittings of the data to the Gumbel with $u = -2.1(K' - 1.6)$, and Frechet distributions with $\alpha = 2$. The maximum statistics agrees well with the Gumbel distribution for $K' < 5$.

FIG. 1: (a) Cumulative degree distribution for the case $\eta_i = 1$, corresponding to the scale-free model of Ref. [10]. The cumulative distribution decays as a power-law with exponent $\alpha = 2$, followed by an exponential truncation. The inset shows the data collapse obtained by the rescaling $S^{\alpha}P \propto (k/S^\theta)^{-\alpha}$, where $\theta = 1/\alpha = 0.50 \pm 0.03$ is the exponent controlling the onset of the exponential truncation [22, 23]. (b) Distribution of the maximum degree. We generate 10^5 network realizations for each size S and confirm that the results are indistinguishable from those obtained for 10^4 network realizations. In all simulations the initial size is $s_0 = 2$. We plot the distribution functions of the scaled maximum $K' \equiv S^{-1}K$, with $\gamma = 0.50 \pm 0.03$. As expected, the distribution of maxima displays the same scaling as the truncation of the degree distribution i.e., $\gamma \approx \theta$. Also shown is the fittings of the data to the Gumbel with $u = -2.1(K' - 1.6)$, and Frechet distributions with $\alpha = 2$. The maximum statistics agrees well with the Gumbel distribution for $K' < 5$.

FIG. 2: (a) Cumulative degree distribution for the model of Ref. [20] with uniform fitness distribution. In this case, the distributions decay with an exponent $\alpha = 1.255$ with logarithmic corrections [21]. Note that this result is different from the results of Fig. 2a of [20] which shows a plateau instead of an exponential truncation. The inset shows the curves rescaled in the same way as in Fig. 1(a), but with an exponent $\theta = 0.76 \pm 0.05$. (b) Data collapse for the maximum degree distribution, obtained from 10^5 network realizations for each size. We use the rescaling relation $K' \equiv S^{-\gamma}K$, with $\gamma = 0.7 \pm 0.1$ to collapse the data. The thin dotted and dashed lines are the fitting of the data for the Gumbel with $u = -2.5(K' - 0.75)$, and Frechet with $\alpha = 1.255$. For this case the curves do not collapse well. On the contrary, the distributions become broader as the network grows, appearing to converge to the Frechet distribution as S increases.
iid variables and are not equally distributed. Hence, our Gumbel statistics even though do not affect the maximum statistics. Second, we find results appear to indicate that in this case these facts

...Figure 1(b) shows the distribution of maximum degree. As expected, the node with the maximum degree for different network sizes \(K \approx 1000 \) and the maximum statistics \([22, 23]\). Hence, for scale-

...\(S \text{ variables from a given distribution. Specifically, if one draws ten samples of size 1000, this is no different from drawing a single sample of size 10,000. In contrast, in the case of a scale-free network, there is a limit for the maximum degree possible \([25]\) that is controlled by the exponent \(\theta \); i.e., \(K \sim S^\theta \) \([24, 23]\). Hence, for scale-

...networks, generating ten networks of size 1000 leads to a statistically different set of \(k_i \)'s than generating one network of size 10,000. In the former case \(K \sim 1000^{0.5} \approx 30 \), while in the latter \(K \sim 10000^{0.5} \approx 100 \). Because for scale-free networks there is an exponential truncation due to finite network size of \(p(k) \), it is natural that we find Gumbel statistics of the maxima and that \(\theta = \gamma \).

We next consider the case with uniform distribution of fitnesses. As before, we study the degree distribution and the maximum statistics \([26]\). As shown in Fig 3(a), the cumulative degree distributions follow the expected scaling and display, as in the previous case, an exponential truncation that scales as \(S^\theta \) with \(\theta = 0.76 \pm 0.05 \). In Fig. 3(b) we show the rescaled distributions of maximum degree for different network sizes \(K' = S^{-\gamma} K \) with \(\gamma = 0.7 \pm 0.1 \). Although the data collapse is not perfect, the estimates for the exponents \(\theta \) and \(\gamma \) are within statistical uncertainties and in agreement with the conjectured value \(\theta = 1/\alpha = 1/1.255 \approx 0.786 \) \([23, 23]\).

In Fig. 3(b) we also show the best fitting to the data of the Gumbel and Frechet distributions. The results do not follow any of the two classical distributions, but the curves appear to converge to the Frechet distribution as \(S \) increases.

In order to understand the effect of fitness in the growth model, we compute the fitness distribution of...
the most connected node. Figure 8 shows that, as the network grows, nodes with increasing fitness become the ones with maximum degree. This is to be expected since the growth of the degree of a node increases over time as a power law with an exponent proportional to its fitness [20]. Indeed, as the network grows, the distribution converges logarithmically to a delta function at $\eta = 1$. Based on this fact, we may then suppose that the failure to collapse the data in Fig. 8(b) may be a consequence of the slow progressive entry into the system of nodes with larger fitnesses which eventually overcome older nodes that had the largest degree.

In order to test this hypothesis, we consider an additional case of heterogeneous nodes where the two first sites of the growing network ($i = 1$ and 2) are set to have fitness one, while all other nodes have fitnesses drawn from a uniform distribution. This case implies that one of the two first sites will become the node with maximum degree and that the distribution of η_{max} is a delta function at one.

We calculate the cumulative degree distribution for this case and find that the distribution displays a power law decay followed by a short plateau just before the exponential truncation; cf. Fig 4(a). We find that the distributions obtained for the different network sizes can be collapsed according to Eq. (4) with the exponents $\alpha = 1.27 \pm 0.05$ and $\theta \approx 0.78 \pm 0.04$ [27]. We also calculate the distribution of maxima and find that the distributions for different S can be collapsed upon the rescaling $K' = S^{-\gamma}K$ with $\gamma \approx 0.78$. The distributions are consistent with the Gumbel statistics in the region around the most probable maxima. Moreover, our estimate of γ is in agreement with the value we obtain for the truncation of the power law regime of the cumulative degree distribution, $\theta \approx 0.78 \pm 0.04$. These results support our conjecture that the absence of good scaling in the distribution of maxima for the scale-free model of Ref. [20] is due to the progressive entry of nodes with larger fitness.

The major finding of this study is that the distribution of maxima for scale-free models has non trivial properties. For the case of homogeneous nodes—i.e., nodes with identical fitness—we find that the distribution of maxima follows Gumbel statistics with parameters related to the exponent α characterizing the degree distribution. We explain this finding by the exponential truncation of $p(k)$ due to finite network size. In contrast, for scale-free models with heterogeneous nodes having fitnesses drawn from an uniform distribution, we find no scaling of the distribution of maxima. We explain this lack of scaling in terms of the progressive entry of nodes with larger fitness which over time will establish more links than nodes with lower fitness that entered the system earlier. Surprisingly, our results for this case of heterogeneous nodes are not inconsistent with the possibility that the asymptotic distribution of maxima follows the Frechet statistics even though $p(k)$ is exponentially-truncated due to finite network size.

We thank S. Mossa, and H. E. Stanley for stimulating discussions and helpful suggestions. A.A.M. and J.S.A. thank the Brazilian Agencies CNPq and FUNCAP for support. L.A.N.A. thanks NIH/NCRR (P41 RR13622) and NSF for support.

[1] E. J. Gumbel, *Statistics of Extremes* (Columbia University Press, New York, 1958); J. Galambos, *The Asymptotic Theory of Extreme Order Statistics*, 2nd ed. (Robert Krieger, Malabar, 1987); R. A. Fisher and L. H. C. Tippett, Proc. Camb. Phil. Soc., 24, 180 (1928).
[2] S. T. Bramwell, P. C. W. Holdsworth, and J.-F. Pinton, Nature 396, 378 (1998).
[3] M. Sahimi and S. Arbabi, Phys. Rev. B 47, 713 (1993).
[4] J.-P. Bouchaud and M. Mézard, J. Phys. A 10, 7997 (1997).
[5] V. S. L’vov, A. Pomyalov, and I. Procaccia, Phys Rev. E 63, 056118 (2001).
[6] T. N. Palmer and J. Raisanen, Nature 415, 514 (2002); R. Schnur, Nature 415, 483 (2002); P. C. D. Milly, R. T. Wetherald, and K. A. Dunne, T. L. Delworth, Nature 415, 514 (2002).
[7] P. Jefferies, D. Lamper, and N. F. Johnson, arXiv:cond-mat/0201540 (2002).
[8] S. H. Strogatz, Nature 410, 268 (2001).
[9] L. A. N. Amaral, A. Scala, M. Barthélemy, and H. E. Stanley, Proc. Nat. Acad. Sci. USA 97, 11149 (2000).
[10] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[11] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 49 (2002); S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. (in press).
[12] R. Albert, H. Jeong, and A.-L. Barabási, Nature 406, 378 (2000).
[13] F. Liljeros et al., Nature 411, 907 (2001).
[14] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001); Phys. Rev. E. 63, 066117 (2001).
[15] A third case, known as Weibull distribution, occurs when the distribution follows a positive power law. In this case the variables have to be bounded.
[16] In a recent study, these universality classes have been confirmed by means of the replica symmetry breaking method.
[17] D. S. Dean and S. N. Majumdar, Phys. Rev. E 64, 046121 (2001).
[18] M. Z. Bazant, Phys. Rev. E 62, 1660 (2000).
[19] The total number of links is constrained to the size of the network $\sum k_i = 2S$.
[20] G. Bianconi and A.-L. Barabási, Europhys. Lett. 54, 436 (2001).
[21] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000).
[22] P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000).
[23] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin,
Phys. Rev. E 63, 2101 (2000).

[24] Our results are consistent with the possibility that, as S increases, there is a very slow convergence to the Gumbel distribution even for $K' > 5$.

[25] To test this fact, we consider the maximum statistics of a small sub-set of the nodes for a network of a given size $S = 2^{18}$ and as expected find Frechet statistics for the maximum degree of the sub-set.

[26] In order to calculate the cumulative degree distribution in this model, we discretize the distribution of fitness in the range [0, 1] to $n = 100$ equally spaced possible values. We then iterate consistently the rate equation through this sequence and sum over the fitness values. We obtain identical results both for a more fine discretization ($n = 1000$) and also for Monte-Carlo simulations.

[27] The exponent α was numerically calculated as the average rate at which the quantity $\sum \eta_j k_j$ grows with S [20].