Root diameter predicts the extramatrical hyphal exploration distance of the ectomycorrhizal fungal community

WEILE CHEN,1,2,4 DAVID M. EISSENSTAT,1,2 AND ROGER T. KOIDE1,3,†

1Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
2Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
3Department of Biology, Brigham Young University, Provo, Utah 84602 USA

Citation: Chen, W., D. M. Eissenstat, and R. T. Koide. 2018. Root diameter predicts the extramatrical hyphal exploration distance of the ectomycorrhizal fungal community. Ecosphere 9(4):e02202. 10.1002/ecs2.2202

Abstract. Locally coexisting tree species of temperate forests often vary widely in the diameter of their absorptive roots, resulting in contrasting strategies of root foraging within soil nutrient hot spots. We hypothesized that root diameter would also influence the extramatrical hyphal exploration distance of the mycorrhizal fungal community due to coevolution of the plant and fungal partners leading to functional complementarity. We collected absorptive roots from mature trees of nine ectomycorrhizal tree species in replicated monoculture plots of a plantation where the soil is relatively homogeneous. The identities of ectomycorrhizal fungal taxa and their relative abundances were determined by DNA sequencing. The hyphal exploration type (i.e., contact, short-distance, medium-distance or long-distance) was assigned to each taxon, allowing us to calculate an index of the abundance-weighted mean extramatrical hyphal exploration distance of the fungal community. Overall, there was a significant, positive correlation between root diameter and our index of hyphal exploration distance such that tree species with the thicker roots were associated with fungi with the longer hyphal exploration distance. Moreover, we found that root diameter negatively correlated with the proportion of contact ectomycorrhizal fungal taxa and positively correlated with the proportion of medium-distance ectomycorrhizal fungal taxa. Our results suggest that among temperate ectomycorrhizal tree species, root diameter selects for communities of mycorrhizal fungi of specific exploration distance in a way that is consistent with root-fungal functional complementarity in nutrient foraging.

Key words: ectomycorrhizas; hyphal exploration type; Illumina sequencing; root diameter; root functional traits; root length density; tree species diversity.

Received 22 March 2018; accepted 23 March 2018. Corresponding Editor: Michael Allen.
Copyright: © 2018 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
4 Present address: Department of Integrative Biology, University of Texas, Austin, Texas 78712 USA.
† E-mail: rogerkoide@byu.edu

INTRODUCTION

Plant species have evolved a wide range of root functional traits and strategies in order to absorb nutrients (Grime 2001, Chen et al. 2013, Bardgett et al. 2014, Ma et al. 2018). Among these, the diameter of absorptive roots strongly correlates with other root traits that influence nutrient absorption, such as branching intensity. Generally, thin roots branch more in response to nutrient hot spots in the soil than thick roots (Comas and Eissenstat 2009, Eissenstat et al. 2015). Therefore, root diameter can be used to predict a plant’s capacity to exploit spatial nutrient heterogeneity (Eissenstat et al. 2015, Liu et al. 2015, Chen et al. 2016, 2017, 2018, Cheng et al. 2016). Root diameter also largely determines root construction efficiency and contributes to the
overall root economics strategy of a plant species as indicated by root turnover rate (Eissenstat 1992, McCormack et al. 2012, Mommer and Weemstra 2012).

Variation among plant species in root function may be compensated for by significant variation in function among species of mycorrhizal fungi (Koide 2000). Studies have revealed large variation among ectomycorrhizal (EM) fungal taxa in many functional traits (Coleman et al. 1989, Fernandez and Koide 2014, Koide et al. 2014, Clemensen et al. 2015, Trocha et al. 2016), including hyphal exploration type (Agerer 2001, Tedersoo and Smith 2013), which is related to the distance hyphae extend from the root and thus the spatial scale at which they are able to forage. Therefore, mycorrhizal hyphal exploration type may determine the degree to which the fungi can substitute for roots when foraging for nutrients in spatially heterogeneous soils. By exploring large volumes of soil, EM fungal species with a long-distance exploration strategy may be able to compensate for the relative inability of slow-growing, large-diameter roots to exploit nutrient hot spots (Chen et al. 2017). For example, *Suillus*, a genus that frequently produces rhizomorphic hyphae that explore large volumes of soil at great distances from the roots (Agerer 2001, Tedersoo and Smith 2013), is largely restricted to host species in the Pinaceae (Bruns et al. 2002), which often possess comparatively large-diameter absorptive roots (Chen et al. 2016). In contrast, for plant species with relatively small diameter roots (e.g., species in the Fagaceae) that are capable of rapidly exploiting nutrient hot spots by root proliferation (Chen et al. 2017), it may be beneficial to associate with fungi possessing a short-distance exploration strategy, requiring smaller amounts of resources for construction and maintenance (Ekblad et al. 2013). Therefore, there may be selection for plant–fungus specialization that reduces the probability of forming less beneficial combinations (Kiers et al. 2011, Hortal et al. 2017) of root diameter and hyphal exploration type.

In this study, we investigated the relationship between root diameter and EM hyphal exploration type. We hypothesized that tree species with thicker absorptive roots associate with communities of EM fungi providing longer hyphal exploration distances. Root diameter is often negatively correlated with short-term root growth rate (Eissenstat 1991, Eissenstat et al. 2015), leading to an effect on root length density. Because root length density may independently influence hyphal exploration type (Peay et al. 2011), we also examined this relationship to determine whether it confounded the relationship between root diameter and hyphal exploration distance.

Methods

Site description and root collection

We collected root samples from mature trees in a common garden plantation located in central Pennsylvania, USA (40°42’ N, 77°57’ W). There are 16 different tree species in the plantation, nine of which are EM and seven of which are arbuscular mycorrhizal. Six trees of a given species are planted within each of eight replicate plots, arranged in a randomized, complete block design. Each plot was isolated from neighboring plots by a distance of 5 m, and a plastic sheet barrier was installed vertically in the soil between plots to a depth of 1 m in order to minimize root growth from plot to plot. Details of plot design were previously described (McCormack et al. 2012, Chen et al. 2016). Because the reference database of arbuscular mycorrhizal fungal hyphal exploration distance is extremely limited, we selected only EM tree species for this study (Table 1). The relatively homogeneous soil in the plantation provided an ideal opportunity

Species Abbreviations	Diameter (mm)	RLD (cm/cm³)	
Carya glabra	Cagl	0.19 ± 0.02	0.81 ± 0.08
Quercus alba	Qual	0.19 ± 0.01	0.80 ± 0.10
Quercus rubra	Quru	0.21 ± 0.01	1.27 ± 0.11
Betula alleghaniensis	Beal	0.24 ± 0.01	0.40 ± 0.09
Populus tremuloides	Potr	0.24 ± 0.01	1.54 ± 0.16
Betula lenta	Bele	0.29 ± 0.01	0.19 ± 0.05
Picea rubens	Piru	0.45 ± 0.03	0.68 ± 0.13
Pinus virginiana	Pivi	0.46 ± 0.02	0.24 ± 0.03
Pinus strobus	Pist	0.64 ± 0.05	0.85 ± 0.07

Note: Abbreviations for each species are also given.
to study the effects of host plant functional traits in the absence of large environmental variation.

In late July 2014, four intact root branches (15–20 cm long) were sampled from the 0–10 cm soil layer, each from a different random location within each plot. Because seasonality may influence some of the root characters and the associated mycorrhizal fungal community (Voříšková et al. 2014, Zadworny et al. 2015), we collected all samples at the same time. A subset of approximately ten short root branches (consisting of the first three root orders, sensu McCormack et al. 2015) from each plot was selected for scanning on a desktop scanner, and images were processed with WinRHIZO (Regent Instruments) to determine average root diameter (Table 1). In order to verify the potential bias in diameter determined by scanning and WinRHIZO, we randomly select 3–5 root branches of each tree species and measured the diameter of first-, second-, and third-order roots under a microscope. Root length densities (0–10 cm depth) were also determined within the plots of each species in the summer of 2014 by root coring, scanning, and length determination by WinRHIZO (Table 1).

Molecular methods

Twenty root segments, usually <1 cm in length and including the first two root orders, were dissected from each sampled root branch, since the first two orders of roots comprised the majority of the mycorrhizal roots (Guo et al. 2008). All root segments from a given plot were combined prior to DNA extraction, resulting in 80 root segments per sample. DNA was extracted using MoBio Power Soil DNA extraction kits (MoBio Laboratories, Carlsbad, California, USA), following the manufacturer’s recommendations.

Following DNA extraction, the ITS1 region was amplified using primers of ITS1F and ITS2 (CTTGGTCTTTAGAGGAACTTAA/GCGTTCTT CATGATGC, White et al. 1990). Forward primers were linked to an Illumina adapter with the sequence 5′-ACACTCTTTCCCTACACGAC GCTCTTCCGATCT. Reverse primers were linked to an adapter with the sequence 5′-TGACTGGAGTTCAGACGTGTGCTCTTCCGAT C. The PCR products were sent to the DNA Sequencing Facility at the University of Wisconsin-Madison where a library was prepared by adding an index sequence in a second PCR step to each sample. The library was sequenced on the MiSeq platform with 2 × 300 bp pair-end reading.

Pair-end reads were first merged using PAN-DAsq assembler (Masella et al. 2012) and then quality-filtered and processed using QIIME v1.8.0 (Caporaso et al. 2012). Sequences were clustered into operational taxonomic units (OTUs) using an open reference-based (i.e., reference-based + de novo) approach with the UCLUST algorithm (Edgar 2010) and a 97% similarity threshold. The number of reads of an OTU was used to represent its initial relative abundance within the root tips. The UNITE (Abarenkov et al. 2010) database was used as the reference database for taxonomy assignment via the RDP classifier (Wang et al. 2007) using a 0.7 confidence threshold. Because the primer pair ITS1F-ITS2 amplified all fungal DNA, we checked the trophic status (EM, non-EM, unknown) of the assigned genus by referencing online databases such as UNITE (http://unite.ut.ee/), DEEMY (http://www.deemy.de/), and other literature (Tedersoo and Smith 2013, Trocha et al. 2016) to include only EM OTUs in subsequent analyses. We assumed that EM status is conserved within a fungal genus.

By combining into a single sample the 80 root tips from any particular plot, we were unable to determine the effect of diameter of individual root segment on the functional composition of the EM fungal community. Instead, we determined the effect of species-specific root diameter, with the understanding that root diameter may vary widely within plant species. We are also aware that the use of read number may be a biased metric for characterizing EM fungal community structure because DNA of some fungal species may be easier to extract and amplify than others, and because species may differ in the amount of DNA they contain for a given degree of colonization.

The EM fungal OTU tables were rarefied to remove the influence of sequencing depth variation among samples. In each sample, sequencing reads were rarefied to 1000. Hyphal exploration types were assigned to genus based on the DEEMY database and references in Tedersoo and Smith (2013). We assumed that hyphal exploration types are conserved within a genus, although clearly some genera (Russula, Tomentella,
and *Lactarius*) have multiple exploration types (Tedersoo and Smith 2013). In such cases, we assigned exploration types based on Peay et al. (2011) because his site and ours are North American at similar latitude and with a shared host genus (*Pinus*). As reported in Peay et al. (2011), the dominant *Russula* in our study (*R. amoenolens*, Appendix S1: Table S1) has a short-distance hyphal exploration type, while *Lactarius luculentus* and all six species of *Tomentella* possess a medium-distance exploration type. We understand that exploration type may vary among sites with different environments, but it is currently impossible to find reference database of exploration type for all relevant fungal species in one particular site. For some OTUs, there was insufficient information based on genus-level resolution to assign hyphal exploration type and these taxa were left out of subsequent analyses (~0.25% of all OTU abundance). The data of relative abundance of each exploration type across plots of all tree species are accessible in Figshare (https://doi.org/10.6084/m9.figshare.6030776).

Statistical analyses

The composition of the EM fungal community based on hyphal exploration type as opposed to taxon was visualized using non-metric multidimensional scaling (NMDS) ordination based on Bray-Curtis distances (1000 iterations; Bray and Curtis 1957, Oksanen et al. 2015). We tested for significant differences in the distribution of hyphal exploration types among tree species, using PERMANOVA with Bray-Curtis distances matrices (Anderson 2001, Oksanen et al. 2015). To quantitatively examine the relationship between root diameter and hyphal exploration type, we conducted simple regression on the proportion of each hyphal exploration type with root diameter across tree species. Moreover, because exploration type is not a quantitative concept, we assigned an arbitrary coefficient for each exploration type but following the order of presumed hyphal length (i.e., contact < short-distance < medium-distance < long-distance; Agerer 2001). We assigned the type with the shortest distance exploration type as opposed to contact type EM fungi and significantly and positively correlated with the proportion of medium-distance type EM fungi, but
the proportions of short-distance and long-distance types were not significantly correlated with root diameter (Fig. 2). Overall, root diameter was significantly and positively correlated with the index of community extramatrical hyphal exploration distance (Dis) at the plant species level ($r^2 = 0.58$, $P = 0.017$, Fig. 3). There was also a positive correlation between root diameter and Dis at the plot level, but much less variation in Dis was explained by root diameter, and the relationship was only marginally significant ($r^2 = 0.04$, $P = 0.10$; Appendix S1: Fig. S1). Root length density did not correlate with Dis across tree species ($P = 0.95$, Fig. 4). In addition, Dis did not differ significantly between angiosperm hosts and gymnosperm hosts (Appendix S1: Fig. S2).

Discussion

Despite the critical role of mycorrhizal fungal functional traits in a variety of ecosystem functions and processes (Read and Perez-Moreno 2003, Teste et al. 2010, Clemmensen et al. 2013, 2015, Koide et al. 2014, Treseder and Lennon 2015, Fernandez and Kennedy 2016), their linkage to commonly measured root functional traits has rarely been studied. Root traits are far more easily documented than are functional traits of mycorrhizal fungi (Iversen et al. 2017). Therefore, such linkages would simplify our ability to predict certain ecosystem functions and ecosystem responses to, for example, environmental change. We found that root diameter was positively correlated with the hyphal exploration distance of the EM fungal community. This is consistent with our hypothesis that for trees with thicker absorptive roots, there is selection for associating with EM fungi with longer exploration hyphae, allowing such tree species to indirectly exploit nutrient hot spots.

The linkage between root diameter and extramatrical hyphal exploration distance provides a potential pathway to predict mycorrhizal-mediated ecosystem functions because hyphal exploration distance may correlate with other EM fungal traits, such as hydrophobicity and the rate of hyphal turnover (Hobbie and Agerer 2010, Ekblad et al. 2013). The EM fungi that explore and transfer nutrients over relatively large distances often produce rhizomorphs (Agerer 2001) that can persist for several months or even years (Pritchard et al. 2008). However, fungal species with the long-distance hyphal exploration type were relatively rare (~5\% on average), preventing a test of the response of rhizomorph abundance to root diameter. In this study, the larger Dis was primarily due to greater relative frequency of the medium-distance exploration type and lower relative frequency of the contact exploration type (Fig. 2).

The distribution of EM functional traits, such as hyphal exploration type, may be influenced by factors other than root diameter. For example, hyphal exploration distance was negatively correlated with root length density in *Pinus miricata* stands (Peay et al. 2011), although this was not true in *Quercus ilex* stands (Shahin et al. 2013). Therefore, we determined whether the significant root diameter effect on hyphal exploration distance as seen in our study was confounded by a root length density effect on hyphal exploration distance. There was not a significant correlation...
between root length density and hyphal exploration distance (Fig. 4), suggesting that the relationship between hyphal exploration distance and root diameter was not confounded by differences in root length density. In addition, we did not observe a significant difference in hyphal exploration distance between conifers and angiosperms, suggesting that our results are not confounded by phylogeny (Appendix S1: Fig. S2). Nevertheless, because of the relatively modest number of tree species studied, caution is needed in extrapolating our results.

Despite the existence of the significant correlation between root diameter and hyphal exploration distance, there was significant variation in hyphal exploration distance within an individual tree species (Fig. 1; Appendix S1: Fig. S1), suggesting that selection for complementarity in nutrient foraging was not an overriding consideration in this study. This could result from bet-hedging (Lekberg and Koide 2014) in which selection may occur simultaneously for potentially opposite fungal traits. For example, the traits of fungi selected for root pathogen protection (Sikes et al. 2009, Wehner et al. 2010) may be at odds with those selected for nutrient foraging from heterogeneous soils. Also, the consequences of selection may be drastically reduced if the realized fungal community structure is

Fig. 2. Relationship between species-specific root diameter and the relative proportion of each ectomycorrhizal hyphal exploration type. Only significant linear regression was shown.

Fig. 3. Relationship between species-specific root diameter and the index of averaged exploration distance at the community level (Dis). Root diameter and Dis were averaged for each tree species. Significant linear regression was shown ($Y = 2.02 + 2.38X$, $r^2 = 0.59$, $P = 0.017$).
constrained by priority effects (Kennedy et al. 2009).

Our experimental system was a plantation in which the soil may be more homogeneous than in most natural forests. While this homogeneity may have been helpful in reducing the required number of replicates (Kranabetter et al. 2009, Shahin et al. 2013, Ostonen et al. 2017, Pena et al. 2017), it may also have reduced the need for and expression of functional complementarity between fungi and plants in terms of nutrient foraging. Nevertheless, our results do suggest that root diameter is one of many possible factors that influence the traits of EM fungal communities.

Root diameter was determined by scanning, and the length-weighted average diameter was calculated in WinRHIZO. Determination of root diameter by scanning may differ from microscopic determination, but scanning is simpler and widely used for a broad range of tree species (Comas and Eissenstat 2009, Gu et al. 2014, Chen et al. 2016, Cheng et al. 2016). Moreover, we have shown that for the nine EM tree species of this study, average diameters of the first three root orders determined by scanning were within the range of root diameters determined by microscopy and were highly correlated with diameters of first-, second-, and third-order roots determined by microscopy (Appendix S1: Fig. S3).

It is possible that the thickness of EM mantles introduces error in the determination of root diameter, and we made no attempt to subtract the mantle thickness to obtain the true root diameter. But EM colonization of fine roots is very frequent in the nine tree species of this study, and colonization frequently results in a number of changes in root anatomy and morphology, notably an increase in diameter (Smith and Read 1997), so it is not clear what true root diameter means. We argue that because the natural condition of fine roots of these species is mycorrhizal, the diameter of the mycorrhiza (the composite organ) is the relevant diameter, and it is the diameter that all other researchers have measured when establishing relationships between diameter and other root system traits.

ACKNOWLEDGMENTS

We thank Dr. Thomas Adams for collecting data of root length density and for his assistance in maintaining the common garden plantation. We also thank the Genomics Core Facility of Pennsylvania State University and the UWBC DNA Sequencing Facility for the assistance in Illumina sequencing. This project was supported by the U.S. National Science Foundation (IOS 1120482), the Pennsylvania State University J. Lloyd Huck Dissertation Research Grant, the USDA National Institute of Food and Agriculture Federal Appropriations under Project PEN04591 and Accession number 1006803, and by funding from Brigham Young University.

LITERATURE CITED

Abarenkov, K., et al. 2010. The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytologist 186:281–285.
Agerer, R. 2001. Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114.
Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32–46.
Bardgett, R. D., L. Mommer, and F. T. De Vries. 2014. Going underground: root traits as drivers of ecosystem processes. Trends in Ecology and Evolution 29:692–699.
Bray, R. J., and J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27:325–349.
Bruns, T. D., M. I. Bidartondo, and D. L. Taylor. 2002. Host specificity in ectomycorrhizal communities: What do the exceptions tell us? Integrative and Comparative Biology 42:352–359.
Caporaso, J. G., et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal 6:1621–1624.

Chen, W., R. T. Koide, T. S. Adams, J. L. Deforest, L. Cheng, and D. M. Eissenstat. 2016. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences USA 113:8741–8746.

Chen, W., R. T. Koide, and D. M. Eissenstat. 2017. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. Journal of Ecology 106:148–156.

Chen, W., R. T. Koide, and D. M. Eissenstat. 2018. Nutrient foraging by mycorrhizas: from species functional traits to ecosystem processes. Functional Ecology. https://doi.org/10.1111/1365-2435.13041

Chen, W., H. Zeng, D. M. Eissenstat, and D. Guo. 2013. Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology and Biogeography 22:846–856.

Cheng, L., W. Chen, T. S. Adams, X. Wei, L. Li, M. L. McCormack, J. L. DeForest, R. T. Koide, and D. M. Eissenstat. 2016. Mycorrhizal fungal and roots are complementary in foraging within nutrient patches. Ecology 97:2815–2823.

Clemmensen, K. E., A. Bahr, O. Ovaskainen, A. Dahlberg, A. Ekblad, H. Wallander, J. Stenlid, R. D. Finlay, D. A. Wardle, and B. D. Lindahl. 2013. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. Science 339:1615–1618.

Clemmensen, K. E., R. D. Finlay, A. Dahlberg, J. Stenlid, D. A. Wardle, and B. D. Lindahl. 2015. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytologist 205:1525–1536.

Coleman, M. D., C. S. Bledsoe, and W. Lopushinsky. 1989. Pure culture response of ectomycorrhizal fungi to imposed water-stress. Canadian Journal of Botany 67:29–39.

Comas, L. H., and D. M. Eissenstat. 2009. Patterns in root trait variation among 25 co-existing North American forest species. New Phytologist 182:919–928.

Edgar, R. C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.

Eissenstat, D. M. 1991. On the relationship between specific root length and the rate of root proliferation—a field study using citrus rootstocks. New Phytologist 118:63–68.

Eissenstat, D. M. 1992. Costs and benefits of constructing roots of small diameter. Journal of Plant Nutrition 15:763–782.

Eissenstat, D. M., J. M. Kucharski, M. Zadworny, T. S. Adams, and R. T. Koide. 2015. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist 208:114–124.

Ekblad, A., et al. 2013. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant and Soil 366:1–27.

Fernandez, C. W., and P. G. Kennedy. 2016. Revisiting the “Gadgil effect”: Do interguild fungal interactions control carbon cycling in forest soils? New Phytologist 209:1382–1394.

Fernandez, C. W., and R. T. Koide. 2014. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biology and Biochemistry 77:150–157.

Grime, J. P. 2001. Plant strategies, vegetation processes, and ecosystem properties. Second edition. Wiley, New York, New York, USA.

Gu, J., Y. Xu, X. Dong, H. Wang, and Z. Wang. 2014. Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiology 34:415–425.

Guo, D., M. Xia, X. Wei, W. Chang, Y. Liu, and Z. Wang. 2008. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist 180:673–683.

Hobbie, E. A., and R. Agerer. 2010. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant and Soil 327:71–83.

Hortal, S., K. L. Plett, J. M. Plett, T. Cresswell, M. Johansen, E. Pendall, and I. C. Anderson. 2017. Role of plant–fungus nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME Journal 11:2666–2676.

Iversen, C. M., et al. 2017. A globalFine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytologist 215:15–26.

Kennedy, P. G., K. G. Peay, and T. D. Bruns. 2009. Root tip competition among ectomycorrhizal fungi: Are priority effects a rule or an exception? Ecology 90:2098–2107.

Kiers, E. T., et al. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882.

Koide, R. T. 2000. Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytologist 147:233–235.
Koide, R. T., C. W. Fernandez, and G. Malcolm. 2014. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. New Phytologist 201:433–439.

Kranabetter, J. M., D. M. Durall, and W. H. MacKenzie. 2009. Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest. Mycorrhiza 19:99–111.

Lekberg, Y., and R. T. Koide. 2014. Integrating physiological, community, and evolutionary perspectives on the arbuscular mycorrhizal symbiosis. Canadian Journal of Botany 251:241–251.

Liu, B., H. Li, B. Zhu, R. T. Koide, D. M. Eissenstat, and D. Guo. 2015. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist 208:125–136.

Ma, Z., D. Guo, X. Xu, M. Lu, R. D. Bardgett, D. M. Eissenstat, M. L. McCormack, and L. O. Hedin. 2018. Evolutionary history resolves global organization of root functional traits. Nature 555:94–97.

Masella, A. P., A. K. Bartram, J. M. Truszkowski, D. G. Brown, and J. D. Neufeld. 2012. PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinformatics 13:31.

McCormack, M. L., T. S. Adams, E. A. H. Smithwick, and D. M. Eissenstat. 2012. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist 195:823–831.

McCormack, M. L., et al. 2015. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist 207:505–518.

Mommer, L., and M. Weemstra. 2012. The role of roots in the resource economics spectrum. New Phytologist 195:725–727.

Oksanen, J., et al. 2015. vegan: community ecology package. R package version 2.3-1. http://cran.r-project.org/web/packages/vegan/index.html

Ostonen, , et al. 2017. Fine root foraging strategies in Norway spruce forests across a European climate gradient. Global Change Biology 17:3620–3632.

Peay, K. G., P. G. Kennedy, and T. D. Bruns. 2011. Rethinking ectomycorrhizal succession: Are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecology 4:233–240.

Pena, R., C. Land, G. Lohaus, S. Boch, P. Schall, I. Schoning, C. Ammer, M. Fischer, and A. Polle. 2017. Phylogenetic and functional traits of ectomycorrhizal assemblages in top soil from different biogeographic regions and forest types. Mycorrhiza 27:233–245.

Pritchard, S. G., A. E. Strand, M. L. McCormack, M. A. Davis, and R. Oren. 2008. Mycorrhizal and rhizomorph dynamics in a loblolly pine forest during 5 years of free-air-CO2-enrichment. Global Change Biology 14:1252–1264.

R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org

Read, D. J., and J. Perez-Moreno. 2003. Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytologist 157:475–492.

Shahin, O., N. Martin-St Paul, S. Rambal, R. Joffre, and F. Richard. 2013. Ectomycorrhizal fungal diversity in Quercus ilex Mediterranean woodlands: variation among sites and over soil depth profiles in hyphal exploration types, species richness and community composition. Symbiosis 61:1–12.

Sikes, B. A., K. Cottenie, and J. N. Klironomos. 2009. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. Journal of Ecology 97:1274–1280.

Smith, S. E., and D. J. Read. 1997. Mycorrhizal symbiosis. Second edition. Academic Press, San Diego, California, USA.

Tedessoo, L., and M. E. Smith. 2013. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biology Reviews 27:83–99.

Tegeder, K. K., and J. T. Lerman. 2015. Fungal traits that drive ecosystem dynamics on Land. Microbiology and Molecular Biology Reviews 79:243–262.

Trocha, L. K., E. Rudy, W. Chen, M. Dabert, and D. M. Eissenstat. 2016. Linking the respiration of fungal sporocarps with their nitrogen concentration: variation among species, tissues and guilds. Functional Ecology 30:1756–1768.

Vorišková, J., V. Brabcová, T. Cajthaml, and P. Baldrian. 2014. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist 201:269–278.

Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73:5261–5267.

Wehner, J., P. M. Antunes, J. R. Powell, J. Mazukatow, and M. C. Rillig. 2010. Plant pathogen protection
by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia 53:197–201.
White, T. J., T. D. Bruns, S. B. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315–322 in M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, editors. PCR protocols—a guide to methods and applications. Academic Press, New York, New York, USA.
Zadworny, M., M. L. McCormack, K. Rawlik, and A. M. Jagodziński. 2015. Seasonal variation in chemistry, but not morphology, in roots of Quercus robur growing in different soil types. Tree Physiology 35:644–652.

Supporting Information

Additional Supporting Information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/ecs2.2202/full