Barium in coal and coal combustion products: Distribution, enrichment and migration

Huidi Hao¹, Minmin Zhang¹,², Jinxi Wang¹,³, Zhiheng Fu¹, Panchal Balaji¹,⁴ and Shuting Jiang¹

Abstract
Coal triggering pollution caused by the emission of harmful substances in the process of coal combustion has been paid more and more attention. Barium is a ubiquitous heavy metal element in coal. During coal combustion, Ba in coal has been released into the environment in different forms, and coal-fired products with high Ba content can cause harm to the environment, human health and even pose a serious threat to life. By reviewing the literature, distribution, modes of occurrence, mobility of Ba in coal seams were summarized and studied in this paper. It is expected to provide information for controlling emission of Ba. The content characteristics of Ba in coal in some countries are introduced, and the content gradient of Ba in coal of Chinese different provinces is introduced in detail. And coal with Ba content greater than or equal to 5 times of the world average Ba content, namely, coal containing 750 μg/g Ba is called high Ba coal. Many studies have shown that Ba was extremely enriched in coal in some areas (up to 5,000 μg/g), particularly in the Jurassic coal seams of the Huanglong coalfield in China. There were various types of occurrences of Ba in coal, including witherite, barite, crandallite and other minerals. Meanwhile, Ba can combine with organic matter as well. According to existing studies, the enrichment mechanism of Ba in coal is mainly derived from soil, sediment and seawater erosion, with the later causal minerals Ba carbonate and strontium rhodochrosite being the main carriers of Ba. The migration and transformation pathways of Ba in coal and its combustion products are described. As a medium volatile element, Ba is prone to concentrate in products

¹Key Laboratory of Resource Exploration Research of Hebei Province, Hebei University of Engineering, Handan, China
²College of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan, China
³School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China
⁴Nurture earth R and D, MIT Beed bypass road (MS), Aurangabad, India

Corresponding author:
Jinxi Wang. Key Laboratory of Resource Exploration Research of Hebei Province, Hebei University of Engineering, Handan, China.
Email: wangjinxi@hebeu.edu.cn

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
of coal combustion, particularly those small-grainsize particles in fly ash, which may induce more serious contamination.

Keywords
High Ba coal, coal combustion products, elemental enrichment, mobility, biotoxicity

Introduction
As an environmentally sensitive element, Ba is classified as a class D toxic element by the US Resource Conservation and Recovery Act (RCRA) and the US Geochemical Commission listed Ba as the third category of harmful elements (Wang and Qin, 2011). Barium is a common trace element in coal, but its content varies greatly. Scholars have reported the content of Ba in different grades of coal (Dai et al., 2012; Munir et al., 2018; Wang et al., 2018; Zhao et al., 2014). The average content of Ba in world coal and Chinese coal is 150 and 159 μg/g, respectively (Dai et al., 2012; Ketris and Yudovich, 2009). The content of Ba in some coalfields (mining areas) in China is high. The average content of Ba in the coal investigated in the Huangling Mine, Ordos Basin, northern China is 5,728 μg/g, with a maximum value of 26,423 μg/g (Zhao et al., 2014). Tian et al. (2014) found that the content of Ba in coal in Huolinhe coalfield, Inner Mongolia in China is 1,027.3 μg/g. Barium is an alkaline earth metal element with active chemical properties, and the occurrence state of Ba in coal is quite different. Most of Ba in coal is isomorphic with potassium, so it is mostly distributed in clay minerals in the form of minerals such as witherite (BaCO₃), barite (BaSO₄), boehmite (CaAl₃(OH)₆(HPO₄)(PO₄)), and some of them are organically bound in coal (Zhao et al., 2014).

As a medium volatile element, a small part of Ba is volatile during combustion, and most of it remains in ash, but the content and distribution are quite different. For example, the content of Ba in fly ash in Europe reached 745–7,000 μg/g (Block and Dams, 1976), the United States reached 200–2,000 μg/g (Suloway et al., 1983), New South Wales in Australia reached 250–300 μg/g (Swaine, 1981) and South Africa reached 800–2,920 μg/g (Willis, 1987). According to the distribution behavior of coal combustion, some scholars thought that Ba accounted for a large proportion in bottom ash (Vejahati et al., 2010; Yan et al., 2001), however some scholars found that the content of Ba in fly ash from power plants was 1.5–1.9 times that of bottom ash (Wang et al., 1996; Yang et al., 1983), and tended to be enriched in fine-grained fly ash (Wang et al., 2019). Huang and Tang (2002) studied the distribution of Ba content after coal burning in Xiaolongtan Power Plant, and found that the content of Ba in fly ash was 5.1 times that of bottom ash.

During coal combustion, Ba entering the environment through different ways can damage human health, and even threaten life in severe cases. Some soluble Ba salts, such as BaCl₂, Ba(NO₃)₂, BaS, BaO and Ba(OH)₂, are extremely toxic. An adult can be poisoned by accidental ingestion of 0.2–0.5 g of BaCl₂, and more than 0.8 g can be life-threatening. In recent years, many incidents of Ba poisoning have occurred in China, such as Ba carbonate poisoning in Liaocheng City and Huichuan District, northern Guizhou (Guo et al., 2018; Xu et al., 2014). Huang et al. (2016) searched the published literatures in China from 1975 to 2015 and found 105 cases of occupational Ba compound poisoning. In order to deal with serious harmful trace element pollution, in February 2011, the State Council approved the “Twelfth Five-Year Plan
for the Comprehensive Prevention and Control of Heavy Metal Pollution” (2011), which stipulated Ba as a metal element harmful to human health.

Therefore, it is of great significance for the clean and comprehensive utilization of coal to explore the enrichment and occurrence characteristic of Ba in raw coal and the transformation and diffusion mechanism of Ba in coal combustion. However, there are few papers on systematically and comprehensively studying distribution and enrichment of Ba in coal and coal ash. This paper investigated the determination, enrichment, occurrence state and sources of Ba in coal and the migration characteristics of Ba during coal combustion. Finally, the shortcomings of existing study and the development direction in the future were discussed.

Analysis technique of Ba in coal and coal ash

The most commonly used methods for determining Ba content in coal and coal ash include: (1) Instrument Neutron Activation Analysis (INAA); (2) Inductively Coupled Plasma Mass Spectrometry (ICP-MS); (3) Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) (Qin, 2019). The advantages and disadvantages of the most commonly used methods are summarized in Table 1. The determination of Ba in coal or coal combustion products by ICP-MS is disturbed by double charge of Ba. On the one hand, double charge interference can reduce the ionic strength of Ba to be measured. And the ionic strength of Ba can also be increased by the double-charged ions formed by other elements, both of which will greatly affect the accuracy of the test results. Compared with ICP-MS, ICP-AES is more suitable for the determination of Ba content (Yang et al., 2014).

Content, distribution and enrichment of Ba in coal

Barium content in coal

Barium is a common trace element in coal and widely distributed in the world. The average content of Ba in the world coal is 150 μg/g (Ketris and Yudovich, 2009). Dai et al. (2012) reported Ba content of 159 μg/g in common coal in China based on the data of 1,205 samples. Coal with trace element content 5 times higher than the world average is called abnormal enrichment

Analysis technique	Advantage	Disadvantage	References
INAA	It is suitable for the direct determination of coal solid sample, simultaneous determination of multi-element and low base effect.	Neutron reactor required: long analysis period.	Shao et al. (2015)
ICP-MS	High selectivity, high sensitivity, low detection limit, can realize simultaneous detection of multiple elements.	Only liquid samples can be analyzed, and solid samples need to be dissolved.	Wei et al. (2020)
ICP-AES	It has high detection limit and wide linear analysis range.	The precision of analysis is relatively low and belongs to semi quantitative analysis.	Wang et al. (2018)
classification scheme (Dai et al., 2012). In this study, coal with Ba content greater than or equal to the world average Ba content (150 μg/g) is called high Ba coal. And coal with Ba content greater than or equal to 5 times of the world average Ba content, namely, coal containing 750 μg/g Ba is called super high Ba coal. The content of Ba in coal seams of some coalfields (mining areas) in China was very high, mainly distributed in Jurassic coal seams with low metamorphic degree. The average content of Ba in Huangling mining area of Ordos Basin was 5,728 μg/g, and the maximum value was 26,423 μg/g, the average content in this area was about 36 times that of Chinese coal (Zhao et al., 2014). The average ash yield of coal was 13.74%, and the content of Ba in ash was more abundant (about 4.2%). The content of Ba in Yan’an Formation coal, Hengshan mining area of Northern Shanxi was 23–2,712 μg/g, with an average of 709 μg/g, which was 3.5 times of the average value of Chinese coal, the proportion of coal samples exceeding the background value of Ba in Chinese coal accounted for more than 75% of the total analysis coal samples, and some mining areas belonged to high Ba coal (Wang et al., 2017). Tang (2004) recorded the trace elements in Chinese coal that the maximum Ba content was 5,151 μg/g in Liuhuanggou mine, Zhunnan coalfield, Xinjiang, with an average of 1,841 μg/g. Kong et al. (2001) studied 29 samples from Beipiao area and found that the average content of Ba in the mining area can reach 735.67 μg/g. Chu (2014) mentioned that the average Ba content in Yuxian coalfield reached 763.8 μg/g. Liu et al. (2012) discovered the statistics and analysis on 6,406 samples in Inner Mongolia, found that the average content of Ba in Inner Mongolia was slightly higher than that in China. The Ba content of coal seams in Pansan Coal Mine of Huainan mining area was higher than that of other coal seams (Wang et al., 2018). Table 2 counts the content of Ba in coal from different countries in the world. Different grades are divided to clearly express the content of Ba in coal of each country (Figure 1). Among them, the content of Ba in Russia, China, Romania and Bulgaria is the highest, above 300 μg/g. Barium content in coal from different regions and coalfields of China is shown in Table 3. Coalfields with Ba content above 750 μg/g are mainly distributed in Shanxi Province (Figure 2).

Occurrence state and enrichment of Ba in coal

Elemental Ba is not found in nature, but Ba dispersed in rock forming minerals and found in alkaline nature. Ba is a lithophile element with various modes of occurrence in coal (Ketris and...
Yudovich, 2009). The main modes of occurrence are as follows: (1) Replacement of K element in clay minerals by isomorphism (Xu, 1999) (2) Ba element in the form of organic matter (3) It exists in the form of witherite (BaCO₃), barite (BaSO₄) and crandallite (CaAl₃(OH)₆(HPO₄)(PO₄)) (Sun and Jervis, 1987). According to literature reports, it was found that the content of Ba in the bituminous coal rich in calcium carbonate was very high (more than 3,000 μg/g), while the study of American bituminous coal showed that Ba was highly correlated with Ca (Zhang et al., 1999).

Gürdal (2008) found that the correlation coefficient between Ba content and ash yield was very low (<0.50), and Ba had affinity with organic matter. However, the statistical analysis of Dai et al. (2005) showed that Ba was mainly related to the inorganic matter of coal. Spears et al. (2007) studied the distribution of Ba in minerals and macerals of polished coal samples from Yorkshire coalfield in Malaysia analyzed by using laser ablation ICP-MS, and found that 13% and 87% Ba were distributed in organic matter and clay components, respectively. Sia and Abdullah (2011) measured the concentration and occurrence modes of Ba in Mukah coal in Malaysia, and found that Ba was mainly inorganic associated (clay mineral), and only a small amount of Ba existed in organic matter. Zhao (1997) found in the study of distribution and occurrence mechanism of harmful trace elements in coal and leaching experiment of coal combustion products, it was found that Ba content in low metamorphic coal was higher than that in high metamorphic coal because it contained high clay minerals, and Ba entered mineral lattice more by isomorphism instead of K element. Ward (2002) reported that Australia Hunter Valley coal contained witherite and hexacelsian (BaCa(CO₃)₂), Kortenski and Sotirov (2004) identified Ba carbonate (BaCO₃) in Neogene Lignite from Bulgaria by XRD, but the content of BaCO₃ in these coals was very low.

Several scholars believed that the enrichment of Ba in Beipiao Coal was related to basement lithology (Kong et al., 2001). Based on the R-type cluster analysis of trace elements, Ba, P, Mn and Sr were found to be a cluster combination of lithophile elements, which may be derived from soil,
Region	Coalfield	Mine	Age	Number	Max	Min	Ave	Reference
Shandong (Huangxian Basin)	E	9	773	143	358			Ma (2019)
Sichuan	Baoding	T	27	957.17	43.47			Guo (2018)
Yunnan	Xiaolongtan	4	314	60.1	228			Tian et al. (2014)
Inner Mongolia				6,406	1,959	41.2	190.1	Liu et al. (2012)
Inner Mongolia	Huolinhe	4	1,581	213	1,027.3			Tian et al. (2014)
Liaoning	Beipiao			29	735.67			Kong et al. (2001)
Anhui	Huainan	C-P	9	637	88.2			Wang et al. (2018)
Anhui	Huainan	Zhuji C-P	47	2,203	30	211		Sun et al. (2010)
Anhui	Huabei	C-P	15	484	45			Zheng et al. (2005)
Guizhou	Liupanshi	Songhe P	93	1,000	300	461.02		Jin et al. (2017)
Hebei	Yuxian	J	33	1,670.3	209.74		763.8	Chi (2014)
Hebei	Hanxing	Fengfeng C-P	32	842	80	186.4		Wei et al. (2020)
Shanxi	Huanglong	J	12	8,773	23		5,728	Zhao et al. (2014)
Shanxi	Huanglong	Caojiayu J	22	1,034	188	484		Zhao et al. (2014)
Shanxi	Huanglong	Ruineng J	15	4,065	77	923		Zhao et al. (2014)
Shanxi	Hengshan	Changtaigou J	6	341	23	167.3		Wang et al. (2017)
Shanxi	Hengshan	Fanjiahe J	5	2,594	29	893.4		Wang et al. (2017)
Shanxi	Hengshan	Zhangjiala J	4	1,140	394	828.5		Wang et al. (2017)
Shanxi	Hengshan	Shimawa J	3	1,109	380	694.3		Wang et al. (2017)
Shanxi	Hengshan	Gaoxingzhuang J	6	2,712	309	958.5		Wang et al. (2017)
Shanxi	Qinshui			4	434	44.6	194.9	Tian et al. (2014)
Xinjiang	Zhunnan	J	5	5,151	55.2	1,841		Tang (2004)
Xinjiang	Zhundong	Dajing J	27	208	90	150		Zhuang et al. (2013)
Xinjiang	Zhundong	Xiheishan J	31	10,605	41	552		Zhuang et al. (2013)
Xinjiang	Zhundong	Jijiuxi J	26	699	70	285		Zhuang et al. (2013)
Qinghai	Muli	J	16	1,705	35.6		381.52	Dai et al. (2015)
sediment and seawater erosion (Liu et al., 2012). Zhao et al. (2014) discovered BaCO₃ particles when studying high Ba coal in Huangling, Shanxi Province, and considered that epigenetic minerals BaCO₃ and strontium siderite were the main carriers carrying Ba, and it was speculated that the high content of Ba in Huangling No.2 coal may come from the southern Qinling witherite deposit belt. Wang et al. (2017) found the enrichment of Sr and Ba in most coal samples of Hengshan mining area in Northern Shanxi, and considered that Sr and Ba mainly occurred in the form of inorganic minerals, and celestite, barite, calcite, Ba carbonate, strontium siderite and aragonite were the main inorganic mineral carriers of Sr and Ba.

Mobility, transformation and influencing factors of Ba in coal combustion

Distribution of Ba in coal combustion products

After coal combustion, Ba is further enriched in coal combustion products. The combustion products after coal combustion mainly include fly ash and bottom ash. Several scholars have done a study on the content of Ba in coal products of ordinary coal. The content of Ba in bottom and fly ash of coal combustion in different regions are shown in Table 4. According to the distribution...
behavior of coal combustion process, many researchers believed that Ba accounted for a large proportion of bottom ash (Vejahati et al., 2010; Yan et al., 2001). The fly ash content in coal-fired power plants in different continents and countries was as follows: 745–7,000 μg/g in Europe (Block and Dams, 1976), 800–2,929 μg/g in South Africa (Willis, 1987), 200–2,000 μg/g in the

Region	Power Plant	Bottom ash	Fly ash	Reference
World		980		Jabłońska et al. (2016)
Europe		1,302		Moreno et al. (2005)
Europe		385.2	398.1	Querol et al. (1995)
South Africa		800–2,920		Willis (1987)
Britain		50–656		Spears and Martinez-Tarrazona (2004)
Poland		1,852		Jabłońska et al. (2016)
Nigeria		339		Sonibare et al. (2013)
America		200–2,000		Suloway et al. (1983)
Australia New South Wales		250–300		Swaine (1981)
Australia Queensland		250–400		Swaine (1981)
China	Seyitomer Power Plant	148		Yilmaz (2015)
China	Yatagan Power Plant	237		Yilmaz (2015)
China	Soma B Power Plant	195		Yilmaz (2015)
China	Shangdu Power Plant	1,541		Zhao et al. (2020)
China	Laibin A Power Plant	560		Zhao et al. (2020)
China	Laibin B Power Plant	411		Zhao et al. (2020)
China	Nangning Power Plant	476		Zhao et al. (2020)
China	Weixin Power Plant	321		Zhao et al. (2020)
China	thermal Power Plant	520	980	Yang et al. (1983)
China Inner Mongolia	Jungar Power Plant	72.58	213.15	Bai (2014)
China Chongqing	Luohuang Power Plant	4.13	1,167.5	Liu (2015)
China Heilongjiang	Jixi power plant	1,167.5	1,142.4	Xu et al. (1990)
China Henan	Jiaozuo Power Plant	617	425	Xu et al. (1990)
China Liaoning	Fuxin Power Plant	628	416	Xu et al. (1990)
China Xinjiang	Weihuliang Power Plant	1,183		Li et al. (2012)
China Xinjiang	Hongyanchi Power Plant	1,475		Li et al. (2012)
China Shanxi	Jinbei xxx Power Plant	250	280	Wang et al. (2003)
China Shanxi	Shuozhoushentou power plant	2,086	1,871	Zhao (1997)
China Shanxi	Datong Power Plant	731.6	1,131.9	Xu et al. (1990)
China Hebei	Handan power plant	358.91		Yang (2019)
China Anhui	Huainan Tianji power plant	437.4		Zhang (2009)
China Anhui	Huainan Tianjiaan power plant	471.1		Zhang (2009)
China Anhui	Huainan Pingwei Power Plant	538.8		Zhang (2009)
United States (Suloway et al., 1983), 250–300 μg/g in New South Wales, Australia (Swaine, 1981) and 50–656 μg/g in British (Smith, 1958). Yang et al. (1983) analyzed the change of Ba content in coal combustion products of Tianjin No.1 Power Plant, and found that the content of Ba in fly ash was 1.9 times of that in bottom ash. Xu et al. (1990) and Zhao (1997) compared and analyzed the harmful elements in the coal and coal ash of some power plants in China, and found that Ba was further enriched in the coal combustion products, and the Ba content in the coal ash was 4–10 times of that in the feed coal.

In the process of CFB combustion, most elements (such as Ba) existed in the bottom ash and fly ash. Duan et al. (2016) and found that Ba mainly existed in coal and coal ash in reduced state. At the same time, the emission characteristics and transformation mechanism of harmful trace elements in thermal power plants were studied. It is considered that the enrichment degree of Ba in bottom ash and fly ash was equal, and the relative enrichment index (REI) value was greater than 1, indicating that Ba was difficult to volatilize (Zhao et al., 2018a). Czech et al. (2020) studied the distribution law of heavy metals in fly ash of different types of coal combustion at different stages. In continuous electric field of electrostatic precipitator, the concentration of Ba in small particles less than 1 μm was higher than that in large particles greater than 1 μm.

Barium mobility during coal combustion

At present, there is no special research reports on the mobility and transformation of Ba in coal combustion process. Figure 3 illustrates the Ba cycle and depicts both natural and anthropological mobilization of Ba. Barium-bearing coal is extracted from coal mines and transported to coal-fired power plants. After combustion, a part of Ba exists in fly ash, and the rest escapes into the atmosphere with flue gas. At the same time, Ba in coal gangue waste after coal mining and fly ash deposit of power plant also enters the soil and surface water system through the leaching action of rainwater, then enters the underground water system and enters plants, animals or humans through the food chain (Choudhury et al., 2001). Barium has been shown to take up and accumulate in

![Figure 3. Schematic diagram of Ba migration and transformation.](image-url)
mushrooms, legumes, grain stalks, forage plants and other plants (Aruguete et al., 1998). Barium has been found in dairy products and eggs (Gormican, 1970), indicating that Ba uptake occurs in animals. During the coal mining process, changes in environmental chemical conditions lead to the exposure of sulphides from reduction reactions to air or surface water, resulting in the oxidative decomposition of large quantities of acidic wastewater. Because of its strong acidity, the wastewater has strong leaching ability, which can bring harmful trace elements in coal into the surface ecological environment such as soil and water, thus causing serious environmental pollution. Moreover, under acid conditions, some of the water-insoluble Ba-containing compounds (e.g. the water-insoluble Ba-sulfate) may become soluble and move into groundwater (US EPA, 1984). Barium is released to the atmosphere during the burning of fossil fuels and waste, and also discharged in wastewater from metallurgical and industrial processes (Choudhury et al., 2001). Barium escaping into the atmosphere and wastewater enter the soil and water body through the atmospheric migration and water circulation system. Most of the Ba in the surface water ultimately reaches the ocean. Once the freshwater source is discharged into seawater, barium sulfate is formed by Ba and sulfate ions existing in salt water. This estimate is supported by evidence that marine concentrations of Ba generally increase with depth, which indicates that a part of Ba may be absorbed by organisms in the euphotic zone and subsequently sedimented and enriched in deeper waters (IPCS, 1990). In addition, Ba participates in sediments through the activity and degradation of organisms. Therefore, the distribution of Ba in the environment is affected by various physical, chemical and biological processes.

Many scholars have discussed Ba when studying the harmful element emissions from coal combustion (Yilmaz, 2015). In the 1990s, the research achievements on the mobility and transformation of trace elements in coal combustion process were remarkable. According to the enrichment characteristics of elements in coal combustion process, trace elements can be divided into three categories: (i) nonvolatile, (ii) medium volatile, (iii) volatile. Ba belongs to the second category of medium volatile element, which produces differentiation and volatilization during coal combustion. When the temperature drops, most of them were deposited on the surface of fly ash particles (Clarke and Sloss, 1992). Rizeq et al. (1994) concluded that Ba in coal was basically nonvolatile at 800°C. According to REI, Vejahati et al. (2010) summarized the distribution of trace elements in different coal combustion products during the coal combustion process of power plants. It was found that Ba mainly occurred in clay minerals and feldspars. The enrichment coefficient of Ba in the bottom ash was less than 0.7, the fly ash was about 1, and the fine particle fly ash which was not captured by the dust removal device was greater than 1.3.

The research on the mobility and transformation of harmful elements in coal is relatively late in China, but the achievements are considerable. The distribution, occurrence characteristics, leaching and mobility of harmful elements in coal combustion products have been studied (Wang et al., 2015). It provides a basis for controlling the emission of harmful elements. With the innovation of modern experimental instruments and equipment and the improvement of testing technology, remarkable achievements have been made in the research on the content, enrichment and mobility characteristics of trace elements in coal combustion products. In the process of coal combustion, the matrix formed by fly and bottom ash is those elements with weak volatility and difficult to volatilize, while the morphology and distribution characteristics of volatile and semi-volatile elements would change during flue gas cooling (Zhao et al., 2018b). When discussing the volatilization characteristics of trace elements in coal combustion process, Liu et al. (2003) found that the higher the combustion temperature, the more volatile elements were volatilized. Wang et al. (1996) studied the distribution law of elements in fly and bottom ash, which was the product of coal combustion, and found that Ba tended to accumulate in fine-grained coal ash, and most of the relatively weak volatile
elements in coal remained in the bottom and fly ash, while the elements with strong volatility were easy to escape into the atmosphere. Zhang (2009) found that the content of trace elements was closely related to boiler capacity and load when studying the mobility law of trace elements in coal and coal combustion products of Huainan power plant. Xu (2004) systematically collected raw coal, dust collector ash and fly ash with various size of particles from large coal-fired power plants in North China, and studied the distribution characteristics of harmful elements. Compared with the fly ash of dust collector, Ba was more enriched in fly ash, and the content of Ba increased with the decrease of fly ash particle sizes. Xu (1999) carried out a small scale circulating fluidized bed combustion experiment on Shenbei lignite. It was found that Ba was relatively enriched in flue dust and circulating fluidized bed ash behind the dust collector, and the content of Ba increased with the decrease of particle sizes of circulating fluidized bed ash.

Biototoxicity of Ba

Barium is commonly recognized as non-essential trace element that not preforms basic and indispensable function to most organisms. On contrary, Ba-containing compounds can induce intoxication at certain concentration level which poses a considerable risk to human health and ecosystem. In modern manufacturing, Ba-containing compounds are widely used as raw materials or intermediates, such as paper, pesticide, firework, glass, luminous paint, and rubber manufacturing, which are all potential source of Ba contamination in local environment. Additionally, coal and coal combustion products with high Ba concentration, as mentioned above, could result in Ba contamination in environmental media (plant, soil, water and air) in vicinity, and ultimately impact local residents through food chain.

In terms of threat of Ba on human health, both acute and chronic exposure can cause serious symptoms of poisoning. Schorn et al. (1991) reported a suicidal case of ingesting Ba carbonate dissolved in hydrochloric acid. Symptoms of Ba intoxication included respiratory failure, life-threatening arrhythmias, ventricular fibrillation, decline of muscle strength, abdominal pain, hyper-salivation and severe hypokalemia. Those are classical symptoms of Ba intoxication occurred in numerous case reports (e.g. Ananda et al., 2013; Koch et al., 2003; Morton, 1945; Omole et al., 2019; Rhyee and Heard, 2009; Roza and Berman, 1971). There are also some uncommon symptoms found in patients. For examples, a collective poisoning case of ingestion of flour contaminated by Ba carbonate reported by Ghose et al. (2009) showed that the patients also had paraesthesia, carpopedal spasm, hypoglycaemia and vomiting with elevation of creatine kinase. Johnson and VanTassell (1991) firstly reported rhabdomyolysis occurring in one family poisoning case of Ba carbonate. Konduru et al. (2014) found that nanoparticulate Ba sulfate can cause lung injury and inflammation based on inhalation dose. Hypophosphatemia once occurred in Ba poisoning (Gould et al., 1973), although the relationship between them was unclear. The main mechanism of acute Ba intoxication is that Ba inhibits the normal K\(^+\) transportation through K\(^+\) inward rectifier channels (IRCs) (Bhoelan et al., 2014). Barium mainly targets the IRCs of the KCNJx gene family. When high concentration Ba is injected, the transfer function of IRCs that K\(^+\) outflows through IRCs is restrained while the Na\(^+\)-K\(^+\) transporter is still active. It can induce rapid decline of K\(^+\) concentration in plasma (i.e. hypokalemia) as well as various syndromes.

The cases regarding to Ba intoxication caused by chronic exposure are relatively less. A study conducted by Ohgami et al. (2016) presented that level of Ba concentration in urine, toenail and hair had positive correlation with hearing loss of residents in Bangladesh, India. Blaurock-Busch et al. (2014) found that breast cancer patients in Punjab, India had the maximum concentrations of several heavy metals including Ba compared with the control group. Elevated concentrations of
heavy metals in local water and soil could be the basic inducement. The researchers also found high Ba level in both hair and urine specimens in child patients with autistic spectrum disorder in Jeddah, Saudi Arabia (Blaurock-Busch et al., 2014). Residents in Illinois, USA suffered from high level of exposure to Ba in drinking water, which led to high mortality rates of arteriosclerosis and cardiovascular diseases in local communities (Brenniman et al., 1979, 1981). In addition, high concentration of Ba in drinking water was considered as a potential cause of an endemic (namely “Pabing” disease) in Sichuan Province, China of which symptoms included osteomalacia and paralysis (Lin, 1991). Barium in drinking water and rice in Zhongxiang, Hubei Province, China exhibited negative influence on longevity of local residents (Lv et al., 2011).

In terms of the plants, Ba toxicity mainly manifests in suppression of growth at high concentration level. Bivalent Ba cation is easily absorbed by plants on account of its similarity to Ca\(^{2+}\) and Mg\(^{2+}\) (Kabata-Pendias, 2010). Wang (1988) researched potential influence of Ba on aquatic life in Illinois, USA. The result suggested that high concentration of Ba in water may inhibit 50% growth of duckweed. Similarly, high concentration Ba in soil can seriously inhibit growth of soybean (Melo et al., 2011). With the superfluous uptake of Ba, leaf photosynthetic activity is evidently decreased and stomata of leaf is also shut down, together with the decline of K\(^{+}\) absorption ability of soybean root (Suwa et al., 2008). Another study showed that activity of nitrate reductase in Amaranthus caudatus L. can be impaired by Ba in soil (Kalingan et al., 2015). Zhang et al. (2012) researched a contaminated area near a Ba salt plant in Guizhou Province, China. The result showed that sweet potato, Chinese cabbage and chili had high concentration of Ba, especially sweet potato with extreme concentration of 2,858.7 mg/kg. It seems that Ba can not only inhibit regular growth of plants but also accumulate in plants including edible part. Through food chain, Ba would be ingested in human body ultimately, and induce various symptoms if its concentration reaches at a certain level. Considering the role of contaminating environment of coal and coal combustion products, high concentration of Ba in them can definitely threaten the health of local residents. Adequate concern and necessary measures, therefore, should be taken in the future planning and governance.

Some key questions on Ba in coal and coal combustion products

To sum up, the occurrence and enrichment mechanism of Ba in different coals are different. The modes of occurrence of Ba in coal determines the difficulty and toxicity of Ba released in the process of coal processing and utilization. It is of great geochemical significance to accurately evaluate the diffusion performance, environmental impact and possibility of Ba as a by-product.

Previous studies have different understanding of the distribution pattern of Ba in coal combustion products. In particular, these studies are from coal with normal Ba content (called “low Ba coal” in this paper), not high Ba coal. There are differences between the combustion products of high Ba coal and low Ba coal. The differentiation law and influencing factors of Ba in coal combustion products need to be further explored.

Although previous studies have been conducted on the emission of harmful trace elements in coal, there is no consensus on the mechanism of transformation and diffusion of Ba during coal combustion. In particular, the volatilization of Ba from high Ba coal in the process of coal combustion, the degree of Ba volatilization, the occurrence and sedimentation of Ba in coal-fired flue gas need to be further discussed.

In the future research, the distribution law and occurrence state of Ba in coal and coal-fired products should be comprehensively compared and analyzed, and the relative enrichment coefficient should be used to study the dissipation of Ba in high Ba coal combustion, the geochemical behavior
model of Ba migration and transformation in coal-ash-flue gas-dust fall should be established to reveal the transformation and diffusion mechanism of Ba in high Ba coal combustion.

Conclusions

Barium is an alkaline earth metal element widely existing in nature. Barium has never been found in nature because of its active chemical properties. The most common minerals of Ba in nature are barite (Ba sulfate) and witherite (Ba carbonate), both of which are insoluble in water. Barium is considered as a toxic metal element, and any Ba compound soluble in water or dilute hydrochloric acid is toxic. Although Ba is a dispersed trace element in coal, many basic geochemical studies show that Ba is extremely enriched in coal (up to 5,000 \(\mu \text{g/g} \)) in some areas, and large-scale enriched briquettes have been found, especially in China. Ba content in Jurassic coal seams of Huanglong Coalfield and Hengshan Coalfield exceeded the standard of super high Ba coal (750 \(\mu \text{g/g} \)). For reference, this paper summarizes the distribution of Ba -enriched areas in China. From the literature reviewed, ICP-MS and ICP-AES were identified as the preferred and most reliable methods for determining Ba contents in coal and coal combustion byproducts, albeit INAA is also suitable for use.

The occurrence mode and genesis of Ba in coal affect its release difficulty. Barium in coal usually exists in the form of minerals such as witherite (\(\text{BaCO}_3 \)) and barite (\(\text{BaSO}_4 \)). It can also replace potassium into mineral lattice by isomorphic form. There are few reports that Ba in coal exists in coal as a combination of organic matter. There is little analysis on the source of Ba in coal, so it is necessary to investigate and study the data of different coalfields and different geological periods in order to have a more comprehensive understanding of the geochemistry of Ba in coal. According to the existing research, the enrichment mechanism of Ba in coal mainly comes from the erosion of soil, sediment and seawater, and the post-generation minerals Ba carbonate and strontianite are the main carriers carrying Ba. Similarly, the combustion of coal will cause the migration and transformation of Ba in the coal, and it is necessary to conduct a more in-depth study on the content, distribution and morphological behavior of Ba during coal combustion or gasification. At present, it can be confirmed that Ba is difficult to volatilize during coal combustion, and is highly enriched in fine fly ash, and Ba in coal combustion products is mainly affected by residue state.

As a big consumer of coal, the coal source pollution of China is serious, which has become an important factor restricting the sustainable development of economy and society. The content of Ba in coal seams of some coal fields (mining areas) in China is extremely high, which is called as high Ba coal. Its combustion and utilization will cause the release of Ba in coal to the environment and cause environmental pollution. Therefore, the transformation and migration mechanism of Ba in the combustion of high Ba coal is a key scientific problem that needs to be solved urgently, but so far there has been no research on Ba in the products of high Ba coal combustion, and it has become one of the heavy metal elements that have been neglected in coal sources. The occurrence state of Ba in coal is quite different, especially the enrichment and occurrence of Ba in high Ba coal has unique geochemical mechanism. The occurrence state of Ba in coal determines the difficulty and toxicity of its release in the process of coal processing and utilization. The change of the occurrence state of Ba in the combustion of high Ba coal has become a bottleneck problem in controlling heavy metal Ba pollution emission during coal combustion. In the future, the study of Ba in coal should be strengthened, the environmental geochemical behavior of Ba in coal should be understood, and the migration and transformation mechanism of Ba should be discovered, which will provide theoretical basis for restraining the emission of the harmful element Ba.
Highlights

The content standard of “super high Ba coal” is defined as 750 µg/g.

The content characteristics of Ba in coal in some countries are introduced, and the content gradient of Ba in coal of Chinese different provinces is introduced in detail.

The migration and transformation pathways of Ba in coal and its combustion products are described.

Acknowledgements

The authors would like to express appreciation for the support by the National Natural Science Foundation of China (41807305), and Hebei Provincial Natural Science Foundation (E2020209074, D2021402022).

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Natural Science Foundation of China, Natural Science Foundation of Hebei Province (grant number 41807305, D2021402022, E2020209074).

ORCID iD

Jinxi Wang https://orcid.org/0000-0003-4236-7292

References

Aftabi A, Shojaei SV and Nezhad RK (2015) Geochemical and environmental baseline of major and trace elements in Zarand coals, southeastern Iran. Environmental Earth Sciences 73(11): 7457–7476.

Ananda S, Shaohua Z and Liang L (2013) Fatal barium chloride poisoning: Four cases report and literature review. The American Journal of Forensic Medicine and Pathology 34(2): 115–118.

Aruguete DM, Aldstadt JH and Mueller GM (1998) Accumulation of several heavy metals and lanthanides in mushrooms (Agaricales) from the Chicago region. The Science of the Total Environment 224: 43–56.

Bai HJ (2014) The trace elements migratory regularity during combustion process of coal of Junger Power Plant. Master Thesis, Hebei University of Engineering, Handan. (in Chinese with English abstract).

Bhoelan BS, Stevering CH, Van Der Boog ATJ, et al. (2014) Barium toxicity and the role of the potassium inward rectifier current. Clinical Toxicology 52(6): 584–593.

Blaurock-Busch E, Busch Y M, Friedle A, et al. (2014) Comparing the metal concentration in the hair of cancer patients and healthy people living in the Malwa region of Punjab, India. Clinical Medicine Insights: Oncology 8: 1–13.

Block C and Dams R (1976) Study of fly ash emission during combustion of coal. Environmental Science & Technology 10(10): 1011–1017.

Brenniman GR, Namekata T, Kojola WH, et al. (1979) Cardiovascular disease death rates in communities with elevated levels of barium in drinking water. Environmental Research 20(2): 318–324.

Brenniman GR, Kojola WH, Levy PS, et al. (1981) High barium levels in public drinking water and its association with elevated blood pressure. Archives of Environmental Health: An International Journal 36(1): 28–32.

Choudhury H and Cary R and World Health Organization (2001) Barium and Barium Compounds. Geneva: World Health Organization.
Chu YJ (2014) *Trace elements of the main coal seams (Jurassic) in Yuxian Coalfield*. Master Thesis, Hebei University of Engineering, Handan. (in Chinese with English abstract).

Clarke LB and Sloss LL (1992) Trace elements emissions from coal combustion and gasification.

Czech T, Marchewicz A, Sobczyk A, et al. (2020) Heavy metals partitioning in fly ashes between various stages of electrostatic precipitator after combustion of different types of coal. *Process Safety and Environmental Protection* 133: 18–31.

Dai SF, Ren DY, Tang YG, et al. (2005) Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. *International Journal of Coal Geology* 61(1–2): 119–137.

Dai SF, Ren DY, Chou CL, et al. (2012) Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. *International Journal of Coal Geology* 94: 3–21.

Dai SF, Hower JC, Ward CR, et al. (2015) Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. *International Journal of Coal Geology* 144: 23–47.

Duan LB, Sun HC, Jiang Y, et al. (2016) Partitioning of trace elements, As, Ba, Cd, Cr, Cu, Mn and Pb, in a 2.5 MWth pilot-scale circulating fluidised bed combustor burning an anthracite and a bituminous coal. *Fuel Processing Technology* 146: 1–8.

Duliu O, Culicov O, Rădulescu I, et al. (2005) Major, trace, and natural radioactive elements in bituminous coal from Australia, Romania, Russia, South Africa and Ukraine: A comparative study. *Journal of Radioanalytical and Nuclear Chemistry* 264(3): 525–534.

Eskenazy GM (2009) Trace elements geochemistry of the Dobrudza coal basin, Bulgaria. *International Journal of Coal Geology* 78(3): 192–200.

Ghose A, Sayeed AA, Hossain A, et al. (2009) Mass barium carbonate poisoning with fatal outcome, lessons learned: A case series. *Cases Journal* 2(1): 1–4.

Gormican A (1970) Inorganic elements in foods used in hospital menus. *Journal of the American Dietetic Association* 56: 397–403.

Gould DB, Sorrell MR and Lupariello AD (1973) Barium sulfide poisoning: Some factors contributing to survival. *Archives of Internal Medicine* 132(6): 891–894.

Guo JF (2018) *Geochemical characteristics and geological significance of trace elements in coals from the Taiping coal mine in Panzhihua, Sichuan Province*. Doctor Thesis, Anhui University of Science and Technology, Huainan. (in Chinese with English abstract).

Guo TM, Wang J, Zhang Z, et al. (2018) An investigation and analysis of food poisoning caused by barium carbonate. *Chinese Journal of Health Laboratory Technology* 28(24): 3036–3039. (in Chinese with English abstract).

Gürdal G (2008) Geochemistry of trace elements in Çan coal (Miocene), Çanakkale, Turkey. *International Journal of Coal Geology* 74(1): 28–40.

Hu J, Zheng B, Finkelman RB, et al. (2006) Concentration and distribution of sixty-one elements in coals from DPR Korea. *Fuel* 85(5–6): 679–688.

Huang JS, Yan R, Xuan DD, et al. (2016) Clinical analysis of 105 cases of occupational barium compound poisoning. *Chinese Journal of Industrial Medicine* 29(3): 233–236. (in Chinese).

Huang WH and Tang XY (2002) Mobility and concentration of trace elements during coal combustion. *Coal Geology of China* 1: 76–88. (in Chinese with English abstract).

IPCS (1990) *Barium*. Geneva: World Health Organization, International Program on Chemical Safety (Environmental Health Criteria 107).

Jabłońska M, Kramarczyk M, Smiejka-Król B, et al. (2016) Barium concentration in cast roe deer antlers related to air pollution caused by burning of barium-enriched coals in southern Poland. *Environmental Science and Pollution Research* 23(6): 5978–5982.

Jin J, Gao W, Sun J, et al. (2017) Geochemistry characteristics and coal formation environmental significances of elements in coal from Songhe Mining Area in western Guizhou. *Coal Science and Technology* 45(12): 166–173+204. (in Chinese with English abstract).
Johnson CH and VanTassell VJ (1991) Acute barium poisoning with respiratory failure and rhabdomyolysis. *Annals of Emergency Medicine* 20(10): 1138–1142.

Kabata-Pendias A (2010) *Trace Elements in Soils and Plants*, 4th ed. Boca Raton: CRC press.

Kalingan M, Muthaiah D, Rajagopal S, et al. (2015) Estimation of Barium Toxicity Mitigating Efficacy of *Amaranthus caudatus* L. *Universal Journal of Environmental Research & Technology* 5(6): 295–305.

Karayigit A, Gayer R, Querol X, et al. (2000) Contents of major and trace elements in feed coals from Turkish coal-fired power plants. *International Journal of Coal Geology* 44(2): 169–184.

Ketris MP and Yudovich YE (2009) Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. *International Journal of Coal Geology* 78(2): 135–148.

Koch M, Appoloni O, Haufroid V, et al. (2003) Acute barium intoxication and hemofiltration. *Journal of Toxicology: Clinical Toxicology* 41(4): 363–367.

Konduru N, Keller J, Ma-Hock L, et al. (2014) Biokinetics and effects of barium sulfate nanoparticles. *Particle and Fibre Toxicology* 11(1): 1–15.

Kong HL, Zeng RS, Zhuang XG, et al. (2001) Study of trace elements of coal in Beipiao District Liaoning Province. *Geoscience* 4: 415–420. (in Chinese with English abstract).

Kortenski J and Sotirov A (2004) Petrography of the Neogene lignite from the Sofia basin, Bulgaria. *International Journal of Coal Geology* 57(2): 117–126.

Li J, Zhuang XG, Querol X, et al. (2012) Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province, Northwest China. *Fuel* 95: 446–456.

Lin NF (1991) *Medical Environmental Geochemistry*. Changchun: Jilin Science&Technology Press. (in Chinese).

Liu GJ, Yang PY, Yu MG, et al. (2003) Relationship between volatilization of hazardous trace elements and their occurrences and combustion temperatures during coal combustion. *Journal of Combustion Science and Technology* 1: 6–10. (in Chinese with English abstract).

Liu H, Xie LZ, Li J, et al. (2012) Distribution characteristics of trace elements in coal in inner Mongolia. *Inner Mongolia Science Technology & Economy* 18: 24–26+30. (in Chinese with English abstract).

Liu HD (2015) Composition of the coal combustion and utilization of the fly ash generated from two major coal-fired power plants in Chongqing city, southwest China. Doctor Thesis, China University of Mining and Technology (Beijing), Beijing. (in Chinese with English abstract).

Lv J, Wang W, Krafft T, et al. (2011) Effects of several environmental factors on longevity and health of the human population of Zhongxiang, Hubei, China. *Biological Trace Element Research* 143(2): 702–716.

Ma XM (2019) Geochemistry characteristics and sedimentary environment indicating significances of elements in paleogene coal from Huangxian basin. *Science Technology and Engineering* 19(24): 46–55. (in Chinese with English abstract).

Melo LCA, Alleoni LRF, Carvalho G, et al. (2011) Cadmium-and barium-toxicity effects on growth and antioxidant capacity of soybean (*Glycine max* L.) plants, grown in two soil types with different physicochemical properties. *Journal of Plant Nutrition and Soil Science* 174(5): 847–859.

Moreno N, Querol X, Andrés J, et al. (2005) Physico-Chemical characteristics of European pulverized coal combustion fly ashes. *Fuel* 84(11): 1351–1363.

Morton W (1945) Poisoning by barium carbonate. *Lancet* (London, England) 246(6380): 738–739.

Munir MAM, Liu G, Yousa B, et al. (2018) Enrichment and distribution of trace elements in Padhrar, Thar and Kotli coals from Pakistan: Comparison to coals from China with an emphasis on the elements distribution. *Journal of Geochemical Exploration* 185: 153–169.

Oghami N, Mitsumatsu Y, Ahsan N, et al. (2016) Epidemiological analysis of the association between hearing and barium in humans. *Journal of Exposure Science & Environmental Epidemiology* 26(5): 488–493.

Oliveira ML, Ward CR, French D, et al. (2012) Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. *International Journal of Coal Geology* 94: 314–325.

Omole JG, Alabi OK, Aturamu A, et al. (2019) Barium chloride dose-dependently induced heart and lung injury in Wistar rats. *Environmental Toxicology* 34(12): 1303–1312.

Orem WH and Finkelman RB (2003) Coal formation and geochemistry. *Treatise Geochemistry* 7: 191–222.
Qin KM (2019) Occurrence characteristics of hazardous trace elements in coal and their environmental effects in Datong Mining Area. Master Thesis, China University of Mining and Technology (Xuzhou), Xuzhou. (in Chinese with English abstract).

Querol X, Fernández-Turiel J and López-Soler A (1995) Trace elements in coal and their behavior during combustion in a large power station. Fuel 74(3): 331–343.

Rhyee SH and Heard K (2009) Acute barium toxicity from ingestion of “snake” fireworks. Journal of Medical Toxicology 5(4): 209–213.

Rizeq RG, Hansell DW and Seeker WR (1994) Predictions of metals emissions and partitioning in coal-fired combustion systems. Fuel Processing Technology 39(1–3): 219–236.

Roza O and Berman LB (1971) The pathophysiology of barium: Hypokalemic and cardiovascular effects. Journal of Pharmacology and Experimental Therapeutics 177(2): 433–439.

Schorn TF, Olbricht C, Schüler A, et al. (1991) Barium carbonate intoxication. Intensive Care Medicine 17(1): 60–62.

Shao P, Wang AK and Song Y (2015) Occurrences and environmental effects of trace elements in Mengzhuang coal mine in Huaibei Coal field. Coal Technology 34(7): 108–110. (in Chinese with English abstract).

Sia SG and Abdullah WH (2011) Concentration and association of minor and trace elements in Mukah coal from Sarawak, Malaysia, with emphasis on the potentially hazardous trace elements. International Journal of Coal Geology 88(4): 179–193.

Smith AC (1958) The determination of trace elements in pulverized-fuel ash. Journal of Applied Chemistry 8(10): 636–645.

Sonibare OO, Jacob DE and Foley SF (2013) Quantitative estimation of major and trace elements in coals of the Benue Trough, Nigeria. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35(8): 753–761.

Spears DA and Martinez-Tarrazona MR (2004) Trace elements in combustion residues from a UK power station. Fuel 83(17–18): 2265–2270.

Spears DA, Borrego AG, Cox A, et al. (2007) Use of laser ablation ICP-MS to determine trace element distributions in coals, with special reference to V, Ge and Al. International Journal of Coal Geology 72(3–4): 165–176.

Suwa R, Jayachandran K, Nguyen N T, et al. (2008) Barium toxicity effects in soybean plants. Archives of Environmental Contamination and Toxicology 55(3): 397–403.

Swaine DJ (1981) Fly-ash for use-not waste. In: Proc 1st Int Waste Recycling Symp., Clean Japan Cent, Tokyo, pp.405–417.

Tang XY (2004) Trace Elements in Chinese Coal. Beijing: Commercial Press. (in Chinese).

Tian C, Zhang JY, Zhao YC, et al. (2014) Understanding of mineralogy and residence of trace elements in coals via a novel method combining low temperature ashing and float-sink technique. International Journal of Coal Geology 131: 162–171.

Twelfth Five-Year Plan for the Comprehensive Prevention and Control of Heavy Metal Pollution (2011) The State Council. Special Casting and Nonferrous Alloys 5: 417–417. (in Chinese).

US EPA (1984) Health effects assessment for barium. Prepared for the Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC. Cincinnati, OH, US Environmental Protection Agency, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office (EPA 540/1-86-021).

Vejahtai F, Xu Z and Gupta R (2010) Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization-A review. Fuel 89(4): 904–911.
Wagner N and Tlotleng M (2012) Distribution of selected trace elements in density fractionated Waterberg coals from South Africa. *International Journal of Coal Geology* 94: 225–237.

Wang H, Du ML and Zhang GT (2015) Research on the distribution and occurrence mode of toxic trace elements in coals of Gaoxingzhuang mine. *China Coal* 41(11): 27–30. (in Chinese with English abstract).

Wang H, Du ML, Zhang GT, et al. (2017) Distribution and mode of occurrence of Jurassic 3−1 coal from Hengshan. *Coal Geology & Exploration* 45(2): 8–13. (in Chinese with English abstract).

Wang JX, Yang Z, Qin SJ, et al. (2019) Distribution characteristics and migration patterns of hazardous trace elements in coal combustion products of power plants. *Fuel* 258: 116062.

Wang QC, Shao QC, Kang SL, et al. (1996) Distribution of 15 trace elements in the combustion products of coals. *Journal of Fuel Chemistry and Technology* 2: 137–142. (in Chinese with English abstract).

Wang W (1988) Site-specific barium toxicity to common duckweed, Lemma minor. *Aquatic Toxicology* 12(3): 203–212.

Wang WF and Qin Y (2011) *Distribution Law of Harmful Elements and Minerals in Coal Cleaning Process*. Xuzhou: China University of Mining and Technology Press. (in Chinese).

Wang WF, Qin Y and Song DY (2003) Study on the mobility and release of trace elements in coal-fired power-plant. *Acta Scientiae Circumst Antiae* 6: 748–752. (in Chinese with English abstract).

Wang WJ, Chen BY, Ding DS, et al. (2018) Content of Barium, Manganese and Nickel in coal and their hosting state in Panji No. 3 Coalmine, Huainan Coalfield. *Coal Geology of China* 30(4): 5–7+21. (in Chinese with English abstract).

Ward CR (2002) Analysis and significance of mineral matter in coal seams. *International Journal of Coal Geology* 50(1–4): 135–168.

Wei YC, Hua FH, He WB, et al. (2020) Difference of trace elements characteristics of No. 2 coal in Fengfeng Mining Area. *Journal of China Coal Society* 45(4): 1473–1487. (in Chinese with English abstract).

Willis JP (1987) Variations in the composition of South African fly ash, Symp. Ash-a Valuable Resource, Pretoria 3: 1–12.

Xu DE (1999) Distribution and occurrence mechanism of chromium, nickel and other harmful elements in coal of Shenbei coalfield and its environmental impact. Master Thesis, China University of Mining and Technology (Beijing), Beijing. (in Chinese with English abstract).

Xu JT, You MS, Guan XL, et al. (2014) A food poisoning accident caused by barium salt. *Occupational Health and Damage* 29(1): 23–24. (in Chinese with English abstract).

Xu Q, Han DX, Jin KL, et al. (1990) Correlation of coal constituents and coalification degree versus contents 49 kinds of elements in coal of China. *Journal of China University of Mining & Technology* 3: 51–60. (in Chinese with English abstract).

Xu WD (2004) Types, migration and potential environmental impact of main harmful elements in coal combustion of power plants. Doctor Thesis, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing. (in Chinese)

Yan R, Gauthier D and Flamant G (2001) Volatilities and chemistry of trace elements in a coal combustor. *Fuel* 80(15): 2217–2226.

Yang L, Dong XY and Meng DY (2014) The common determination method of the trace elements in coal. *China Mining Magazine* 23(S2): 293–300. (in Chinese with English abstract).

Yang SJ, Qian QF, Jiang Z, et al. (1983) Distribution of elements in products during coal combustion in thermal power plants. *Environmental Chemistry* 2: 32–38. (in Chinese).

Yang Z (2019) Geochemical characteristics and migration patterns of hazardous elements in coal combustion products of Handan Power Plants. Master Thesis, Hebei University of Engineering, Handan. (in Chinese with English abstract).

Yilmaz H (2015) Characterization and comparison of leaching behaviors of fly ash samples from three different power plants in Turkey. *Fuel Processing Technology* 137: 240–249.

Zhang J (2009) Research on transformation and mobility of trace elements during power-generation utili-

zation of Huainan coal. Master Thesis, Anhui University of Science and Technology, Huainan. (in Chinese with English abstract).
Zhang J, Han CL, Xu YQ, et al. (1999) The mode of occurrence of minor elements in coal. *Coal Conversion* 2(2): 6–11. (in Chinese with English abstract).
Zhang Q, Zhang JF, Zhang W, et al. (2012) Distribution of barium in soil around barium salt factory and its enrichment in plants. *Environmental Science & Technology* 18(2): 13–17. (in Chinese).
Zhao CL, Sun YZ, Xiao L, et al. (2014) The occurrence of barium in a Jurassic coal in the Huangling 2 Mine, Ordos Basin, Northern China. *Fuel* 128: 428–432.
Zhao FH (1997) *Study on the mechanism of distributions and occurrences of hazardous minor and trace elements in coals and leaching experiments of coal combustion residues*. Doctor Thesis, China University of Mining and Technology (Beijing), Beijing. (in Chinese with English abstract).
Zhao L, Dai SF, Finkelman RB, et al. (2020) Leaching behavior of trace elements from fly ashes of five Chinese coal power plants. *International Journal of Coal Geology* 219: 103381.
Zhao SL, Duan YF, Li YN, et al. (2018a) Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant. *Fuel* 214: 597–606.
Zhao SL, Duan YF, Lu JC, et al. (2018b) Enrichment characteristics, thermal stability and volatility of hazardous trace elements in fly ash from a coal-fired power plant. *Fuel* 225: 490–498.
Zheng W, Liu GJ and Zheng LG (2005) Characteristics of the distribution and concentration of twelve harmful trace elements in coals from Huaibei Coalfield. *Earth and Environment* 1: 27–32. (in Chinese with English abstract).
Zhuang XG, Wang P, Zhou JB, et al. (2013) The coal geochemical characteristics of the eastern Junggar Coalfield in Junggar Basin, Xinjiang. *Xinjiang Geology* 31(1): 94–98. (in Chinese with English abstract).