Photosynthetic Induction Under Fluctuating Light Is Affected by Leaf Nitrogen Content in Tomato

Hu Sun1,2, Yu-Qi Zhang3, Shi-Bao Zhang1 and Wei Huang1*

1 Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China, 2 University of Chinese Academy of Sciences, Beijing, China, 3 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China

The response of photosynthetic CO₂ assimilation to changes of illumination affects plant growth and crop productivity under natural fluctuating light conditions. However, the effects of nitrogen (N) supply on photosynthetic physiology after transition from low to high light are seldom studied. To elucidate this, we measured gas exchange and chlorophyll fluorescence under fluctuating light in tomato (Solanum lycopersicum) seedlings grown with different N conditions. After transition from low to high light, the induction speeds of net CO₂ assimilation \((A_N) \), stomatal conductance \((g_s) \), and mesophyll conductance \((g_m) \) delayed with the decline in leaf N content. The time to reach 90% of maximum \(A_N \), \(g_s \) and \(g_m \) was negatively correlated with leaf N content. This delayed photosynthetic induction in plants grown under low N concentration was mainly caused by the slow induction response of \(g_m \) rather than that of \(g_s \). Furthermore, the photosynthetic induction upon transfer from low to high light was hardly limited by photosynthetic electron flow. These results indicate that decreased leaf N content declines carbon gain under fluctuating light in tomato. Increasing the induction kinetics of \(g_m \) has the potential to enhance the carbon gain of field crops grown in infertile soil.

Keywords: fluctuating light, nitrogen, photosynthesis, mesophyll conductance, photosynthetic limitation

INTRODUCTION

Plants capture light energy to produce chemical energy ATP and NADPH, which are used to drive nitrogen assimilation and the conversion of CO₂ to sugar. Enhancing net CO₂ assimilation rate \((A_N) \) is thought to be one of the most important targets for improving plant growth and crop productivity (Kromdijk et al., 2016; Yamori et al., 2016a; South et al., 2019; Ferroni et al., 2020). Many previous studies indicated that increasing \(A_N \) under constant high light can boost plant biomass (Kebeish et al., 2007; Timm et al., 2012, 2015). Recently, some studies reported that the response of \(A_N \) to the increases of illumination significantly affects the carbon gain and thus influences plant growth (Slattery et al., 2018; Adachi et al., 2019; Kimura et al., 2020; Yamori et al., 2020; Zhang et al., 2020). Therefore, altering the photosynthetic performance under dynamic illumination is a promising way to improve photosynthesis under natural fluctuating light (FL) conditions.

Plants grown under high nitrogen (N) concentration usually have higher biomass than plants grown under low N concentration (Makino, 2011). An important explanation for this is that leaf photosynthetic capacity is related to the leaf N content in many higher plants (Yamori et al., 2011; Fan et al., 2020; Li et al., 2020), since stromal enzymes and thylakoid proteins account for
the majority of leaf N (Makino and Osmond, 1991; Sudo et al., 2003; Takashima et al., 2004). Furthermore, stomatal conductance (\(g_s\)) and mesophyll conductance (\(g_m\)) under constant high light are also increased in plants grown under high N concentration, which speeds up CO\(_2\) diffusion from atmosphere to chloroplast carboxylation sites and thus favors the operation of \(A_N\) under constant high light (Yamori et al., 2011). However, few is known about the effects of leaf N content on non-steady-state photosynthetic performances under FL.

Under natural field conditions, light intensity exposed on leaf surface dynamically changes on timescales from milliseconds to hours (Pearcy, 1990; Slattery et al., 2018). Furthermore, FL and N deficiency usually occurs concomitantly, but how FL and N deficiency interacts to influence photosynthetic physiology in crop plants is poorly understood. After a sudden transitioning from low to high light, the gradual increase of \(A_N\) after a sudden transition from low to high light. Gas exchange and chlorophyll fluorescence were measured in tomato plants grown under contrasting N concentrations. The dynamic limitations of \(g_s\), \(g_m\), and biochemical factors imposed on \(A_N\) were analyzed based on the biochemical model for C3 photosynthesis (Farquhar et al., 1980). The effects of leaf N content on photosynthetic performances during photosynthetic induction were revealed.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

Tomato (Solanum lycopersicum cv. Hupishizi) plants were grown in a greenhouse with the light condition of 40% full sunlight. The day or night air temperatures were approximately 30 or 20°C, the relative air humidity was approximately 60–70%, and the maximum light intensity exposed to leaves was approximately 800 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\). Plants were grown in 19-cm plastic pots with humus soil, and the initial soil N content was 2.1 mg/g.

Plants were fertilized with Peters professional water solution (N:P:K = 15:4.8:24, quality ratio) or water as follows: high nitrogen (HN, 0.15 g N/plant every 2 days), middle nitrogen (MN, 0.05 g N/plant once a week), and low nitrogen (LN, 0 mM N/plant). The fertilizer was dissolved in 0.3% water solution and subsequently was used for fertilization, and the nitrogen sources were 24% (NH\(_4\)\(_2\))\(SO_4\), 65% KNO\(_3\), and 9.5% CH\(_2\)N\(_2\)O. To prevent any water stress, these plants were watered every day. After cultivation for 1 month, youngest fully developed leaves were used for measurements. For each N treatment, five leaves form five independent plants were used for gas exchange and chlorophyll fluorescence measurements.

Gas Exchange and Chlorophyll Fluorescence Measurements

An open gas exchange system (LI-6400XT; Li-Cor Biosciences, Lincoln, NE, United States) was used to simultaneously measure gas exchange and chlorophyll fluorescence. Measurements were taken at a leaf temperature of approximately 25°C, leaf-to-air vapor pressure deficit of 1.2–1.4 kpa, and flow rate of air through the system of 300 mmol min\(^{-1}\). To measure photosynthetic induction after a short-term shadefleck, leaves were first adapted to a light intensity of 1,500 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\) and air CO\(_2\) concentration of 400 \(\mu\)mol mol\(^{-1}\) for > 20 min until \(A_N\) and \(g_s\) reached steady state. Then, leaves were subjected to 5 min of low light (50 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\)) followed by 30 min of high light (1,500 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\)), and gas exchange and chlorophyll fluorescence were logged every minute. iWUE was calculated as iWUE = \(A_N/g_s\). The relative \(A_N\), \(g_s\), and \(g_m\) curves were obtained from the standardization against the maximum values after 30 min photosynthetic induction at high light. The time required to reach 90% of the maximum \(A_N\), \(g_s\), and \(g_m\) was estimated by the first time at which the relative values were higher than 90%. After photosynthetic induction measurement, the response of CO\(_2\) assimilation rate to incident intercellular CO\(_2\) concentration (A/C\(_i\)) curves was measured by decreasing...
the CO₂ concentration to a lower limit of 50 µmol mol⁻¹ and then increasing stepwise to an upper limit of 1,500 µmol mol⁻¹. For each CO₂ concentration, photosynthetic measurement was completed in 3 min. Using the A/Ci curves, the maximum rates of RuBP regeneration (I_{max}) and carboxylation (V_{max}) were calculated (Long and Bernacchi, 2003).

The quantum yield of PSII photochemistry was calculated as $\Phi_{PSII} = (F_{m}' - F_{i})/F_{m}'$ (Genty et al., 1989), where F_{m}' and F_{i} represent the maximum and steady-state fluorescence after light adaptation, respectively (Baker, 2004). The total electron transport rate (ETR) through PSII (J_{PSII}) was calculated as follows (Krall and Edwards, 1992):

$$J_{PSII} = \Phi_{PSII} \times PPFD \times L_{abs} \times 0.5$$

where PPFD is the photosynthetic photon flux density, and leaf absorbance (L_{abs}) is assumed to be 0.84. We applied the constant of 0.5 based on the assumption that photons were equally distributed between PSI and PSII.

Estimation of Mesophyll Conductance and Chloroplast CO₂ Concentration

Mesophyll conductance was calculated according to the following equation (Harley et al., 1992):

$$g_m = \frac{A_N}{C_i - \Gamma^*(I_{PSII} + 8(A_N + R_d))/(I_{PSII} - 4(A_N + R_d))}$$

where A_N represents the net rate of CO₂ assimilation; C_i is the intercellular CO₂ concentration; Γ^* is the CO₂ compensation point in the absence of daytime respiration (Yamori et al., 2010b; von Caemmerer and Evans, 2015). We used a typical value of 40 µmol mol⁻¹ in our current study (Xiong et al., 2018). Respiration rate in the dark (R_d) was considered to be half of the dark-adapted mitochondrial respiration rate as measured after 10 min of dark adaptation (Carriquí et al., 2015).

Based on the estimated g_m, the chloroplast CO₂ concentration (C_c) was calculated according to the following equation (Long and Bernacchi, 2003; Warren and Dreyer, 2006):

$$C_c = C_i - \frac{A_N}{g_m}$$

Quantitative Limitation Analysis of A_N

Relative photosynthetic limitations were assessed as follows (Grassi and Magnani, 2005):

$$L_a = \frac{g_{tot}/g_s \times A_N/C_c}{g_{tot} + A_N/C_c}$$

$$L_{mc} = \frac{g_{tot}/g_m \times A_N/C_c}{g_{tot} + A_N/C_c}$$

$$L_b = \frac{g_{tot}}{g_{tot} + A_N/C_c}$$

where L_a, L_{mc}, and L_b represent the relative limitations of stomatal conductance, mesophyll conductance, and biochemical capacity, respectively, in setting the observed value of A_N. g_{tot} is the total conductance of CO₂ between the leaf surface and sites of RuBP carboxylation (calculated as $1/g_{tot} = 1/g_s + 1/g_m$).

SPAD Index and Nitrogen Content Measurements

A handy chlorophyll meter (SPAD-502 Plus; Minolta, Tokyo, Japan) was used to nondestructively measure the SPAD index (relative content of chlorophyll per unit leaf area) of leaves used for photosynthetic measurements. Thereafter, leaf area was measured using a LI-3000A portable leaf area meter (Li-Cor, Lincoln, NE, United States). After leaf material was dried at 80°C for 48 h, dry weight was measured and leaf N content was determined with a Vario MICRO Cube Elemental Analyzer (Elementar Analysensysteme GmbH, Langenselbold, Germany) (Sakowska et al., 2018).

Statistical Analysis

For each N treatment, five leaves form five independent plants were used for gas exchange and chlorophyll fluorescence measurements. One-way ANOVA and t-tests were used to determine whether significant differences existed between different treatments ($\alpha = 0.05$). The software SigmaPlot 10.0 was used for graphing and fitting.

RESULTS

Effect of Leaf N Content on Steady-State Physiological Characteristics Under High Light

The leaf N content in LN-, MN-, and HN-plants was 0.42 ± 0.03, 0.71 ± 0.3, and 1.2 ± 0.07 g m⁻², respectively (Table 1). The HN-plants displayed the highest relative chlorophyll content, measured by SPAD value, followed by MN- and LN-plants. After 30 min light adaptation at 1,500 µmol photons m⁻² s⁻¹ and 400 µmol mol⁻¹ CO₂ concentration, HN-plants had the highest net CO₂ assimilation rate (A_N), stomatal conductance (g_s), mesophyll conductance (g_m), and ETR. Therefore, the steady-state photosynthetic capacities were significantly affected by leaf N content. Furthermore, LN-, MN-, and LN-plants showed slight difference in g_s but significant difference in g_m, which indicates that g_m is more responsive to leaf N content than g_s in tomato.

Effects of Leaf N Content on Photosynthetic Induction Upon Transfer From Low to High Light

During this photosynthetic induction after 5 min of shadefleck, HN-plants showed the highest induction speeds of A_N, g_s, and g_m, followed by MN- and LN-plants (Figure 1). The time required to reach 90% of the maximum A_N ($I_{90\%}A_N$) significantly increased with the decrease in leaf N content (Figure 1G). The time required to reach 90% of the maximum g_s and g_m ($I_{90\%}g_s$ and $I_{90\%}g_m$, respectively) was significantly shorter in HN-plants than MN- and LN-plants, whereas $I_{90\%}g_s$ and $I_{90\%}g_m$ did
not differ significantly between MN- and LN-plants (Figure 1G). Interestingly, \(t_{90gm} \) was lower than \(t_{90gts} \) in all plants. The higher \(t_{90gts} \) and \(t_{90AN} \) in MN- and LN-plants were partially related to the relatively lower initial \(g_{s} \) prior to light change (Supplementary Figure 1). Within the first 15 min after transition from low to high light, all plants showed similar intrinsic water use efficiency (iWUE) (Supplementary Figure 2). However, during prolonged photosynthetic induction, HN-plants displayed much higher iWUE than MN- and LN-plants (Supplementary Figure 2). Further analysis found that leaf N content was negatively correlated with \(t_{90AN} \), \(t_{90gts} \), and \(t_{90gm} \) (Figure 2). Therefore, leaf N content plays a crucial role in affecting the induction responses of \(AN \), \(g_{s} \), and \(g_{m} \) after transition from low to high light. The comparative extent of the reductions of \(t_{90AN} \) was more correlated to \(t_{90gm} \) than \(t_{90gts} \) (Figure 3A). Furthermore, the change in \(AN \) during photosynthetic induction was more related to \(g_{m} \) than \(g_{s} \) (Figures 3B,C). These results suggest that, upon transfer from low to high light, \(g_{m} \) plays a more important role in determining the induction response of \(AN \) than \(g_{s} \).

Effects of Leaf N Content on Intercellular and Chloroplast CO2 Concentrations Upon Transfer From Low to High Light

We calculated the response kinetics of intercellular (\(C_{i} \)) and chloroplast CO\(_{2} \) concentration (\(C_{c} \)) using \(AN \), \(g_{s} \), and \(g_{m} \). After transitioning from low to high light, \(C_{i} \) and \(C_{c} \) gradually increased in all plants (Figure 4). HN-plants had the lowest values of \(C_{i} \) and \(C_{c} \) after photosynthetic sufficient photosynthetic induction. The change in \(AN \) during photosynthetic induction was tightly and positively correlated with \(C_{c} \) in all plants, which suggests the importance of \(C_{c} \) in determining \(AN \). Because \(C_{c} \) can be affected by \(g_{s} \) and \(g_{m} \), we analyzed the relationships between \(C_{c} \), \(g_{s} \), and \(g_{m} \). Compared with \(g_{s} \), a smaller change in \(g_{m} \) could result in a larger change in \(C_{c} \) (Figure 5), which suggests that the change of \(C_{c} \) upon transfer from low to high light was more determined by \(g_{m} \) than \(g_{s} \).

Effects of Leaf N Content on Relative Limitations of Photosynthesis Upon Transfer From Low to High Light

After transition from low to high light, the limitations of photosynthesis by \(g_{s} \) (\(L_{g} \)), \(g_{m} \) (\(L_{gm} \)), and biochemical factors (\(L_{b} \)) changed slightly in HN-plants (Figure 6). In MN- and LN-plants, \(L_{g} \) gradually decreased over time. Within the first 15 min, \(L_{g} \) was lower in HN-plants than MN- and LN-plants. However, the LN-plants had the lowest \(L_{g} \) after sufficient photosynthetic induction. \(L_{gm} \) was also maintained stable during whole photosynthetic induction in MN- and LN-plants, but \(L_{g} \) gradually increased from 0.3 to 0.5 in them. Therefore, leaf N content could affect the kinetics of relative limitations of photosynthesis during photosynthetic induction after transfer from low to high light. To explore whether the induction of \(AN \) is limited by photosynthetic electron transport, we estimated the dynamic change in ETR. Upon a sudden increase in illumination, ETR rapidly increased and the ETR/(\(AN + R_{d} \)) ratio first increased and then gradually decreased in all plants (Figure 7). These results indicated that the activation speed of ETR was much faster than that of \(AN \). Therefore, during photosynthetic induction, the limitation of ETR imposed to \(AN \) was negligible in all samples.

DISCUSSION

Leaf N content plays an important role in determining photosynthesis, plant growth, and crop productivity (Makino, 2011). Under natural field conditions, FL and N deficiency usually occurs concomitantly. However, it is unknown how FL and N deficiency interacts to influence photosynthetic physiology in crop plants. In this study, we here for the first time examined the effects of leaf N content on photosynthetic induction after transition from low to high light in tomato. We found that leaf N content significantly affected the induction responses of \(g_{s} \), and \(g_{m} \) and thus affected induction kinetics of \(AN \). However, the activation speed of photosynthetic electron flow was not influenced by leaf N content. Therefore, the effect of leaf N content on photosynthetic induction was more attributed to the induction kinetics of diffusional conductance rather than the activation speed of electron transport.

In addition to steady-state photosynthetic capacity under high light, the photosynthetic responses to the changes in illumination significantly affect the carbon gain and plant biomass (Adachi et al., 2019; Kimura et al., 2020; Zhang et al., 2020). Many previous studies have documented that leaf N content influences the steady-state photosynthetic performances under high light (Evans and Terashima, 1988; Makino and Osmond, 1991), but few is known about the influence of leaf N content on photosynthetic induction under FL conditions. Similar to previous studies, the maximum steady-state \(AN \) under high light

Table 1: Physiological characteristics of leaves from plants grown under three different nutrient concentrations (low, medium and high nitrogen).

	Low N	Medium N	High N
Leaf N content (g m\(^{-2}\))	0.42 ± 0.03a	0.71 ± 0.3b	1.2 ± 0.07c
SPAD value	29.2 ± 1.2a	40.2 ± 1.7b	50.1 ± 1.7c
\(AN \) (\(\mu \text{mol} m^{-2} s^{-1} \))	5.9 ± 0.3a	10.2 ± 0.29b	19.1 ± 0.67c
\(g_{s} \) (\(\text{mol} m^{-2} s^{-1} \))	0.22 ± 0.02a	0.25 ± 0.01a	0.31 ± 0.01b
\(g_{m} \) (\(\text{mol} m^{-2} s^{-1} \))	0.045 ± 0.002a	0.09 ± 0.007b	0.19 ± 0.01c
ETR (\(\text{mol} m^{-2} s^{-1} \))	44 ± 2.7c	80 ± 2.0b	156 ± 3.9a

All parameters were measured at 1,500 \(\mu \text{mol} \) photons \(m^{-2} s^{-1} \) and 400 \(\mu \text{mol} m^{-1} \) \(\text{CO}_2 \) concentration. Values are means ± SE (\(n = 5 \)). Different letters indicate significant differences among different treatments.
light significantly declined with the decrease in leaf N content (Table 1). Moreover, we here found that, after transition from low to high light, the HN-plants showed much faster induction response of A_N than MN- and LN-plants (Figure 1). The time required to reach 90% of the steady state of photosynthesis (t_{90AN}) was negatively correlated to leaf N content (Figure 2).

Therefore, leaf N content significantly affects the photosynthetic induction after transition from low to high light in tomato. This finding is similar to the photosynthetic induction of dark-adapted leaves among canola genotypes (Brassica napus L.) (Liu et al., 2021), but was inconsistent with the phenomenon in soybean (Li et al., 2020) and Panax notoginseng (Chen et al., 2014). In

FIGURE 1 | Induction response of net CO$_2$ assimilation rate (A_N) (A,B), stomatal conductance (g_s) (C,D) and mesophyll conductance (g_m) (E,F), and the time required to reach 90% of the maximum values of A_N, g_s, and g_m (t_{90AN}, t_{90gs}, t_{90gm}) (G) after transition from 50 to 1,500 µmol photons m$^{-2}$ s$^{-1}$. A_N, g_s, and g_m were measured every 1 min. Values are means ± SE ($n = 5$). Different letters indicate significant differences among different treatments. The relative A_N, g_s, and g_m curves were obtained from the standardization against the maximum values after 30 min photosynthetic induction at high light. HN, MN, and LN represent tomato plants grown under high, medium, and low N concentrations, respectively.
soybean, the induction rate of A_N under high light after shading for 5 min was very fast (Pearcy et al., 1996; Li et al., 2020). Furthermore, this fast photosynthetic induction in soybean was not affected by leaf N content (Li et al., 2020). In the shade-establishing plant *Panax notoginseng*, the higher leaf N content in shade leaves was accompanied with slower photosynthetic induction rate than sun leaves (Chen et al., 2014). Therefore, the effect of leaf N content on fast photosynthetic induction following shade fleck depends on the species and on growth conditions. In MN- and LN-plants of tomato, the delayed induction of A_N caused a larger loss of carbon gain under FL. This finding provides insight into why plants grown under low N concentrations display reduction in plant biomass under natural field FL conditions.

After transition from low to high light, the time to reach the maximum C_c was less in HN-plants than MN- and LN-plants (*Figure 4*). Furthermore, tight and positive relationships were found between C_c and A_N in all plants (*Figure 4*). These
results suggested that the induction response of A_N was largely determined by the change of CO$_2$ concentration in the site of RuBP carboxylation. The value of C_c in a given leaf is largely affected by CO$_2$ diffusional conductance, which includes g_s and g_m (Sagardoy et al., 2010; Carriquí et al., 2015; Yang Z.-H. et al., 2018). However, it is unclear whether the photosynthetic induction of A_N upon transfer from low to high light is more determined by the induction response of g_s or g_m. We found that the induction responses of g_s and g_m were largely delayed in MN- and LN-plants than HN-plants (Figure 1), and the induction rates of g_s and g_m were negatively correlated with leaf N content (Figure 2). Furthermore, the change of C_c during photosynthetic induction was more related to g_m rather than g_s (Figure 5), which pointing out the important role of g_m response in determining C_c upon transfer from low to high light. Therefore, the delayed photosynthetic induction of A_N in plants grown under low N concentrations was more attributed to the slower induction response of g_m than g_s.

FIGURE 4 | (A,B) Response of intercellular CO$_2$ concentration (C_i) and chloroplast CO$_2$ concentration (C_c) after transition from 50 to 1,500 µmol photons m$^{-2}$ s$^{-1}$. (C) Relationship between C_c and A_N after transition from 50 to 1,500 µmol photons m$^{-2}$ s$^{-1}$. Values are means ± SE ($n=5$). HN, MN, and LN represent tomato plants grown under high, medium, and low N concentrations, respectively.

FIGURE 5 | Relationships between g_s, g_m, and C_c after transition from 50 to 1,500 µmol photons m$^{-2}$ s$^{-1}$ in HN-plants (A), MN-plants (B), and LN-plants (C). Values are means ± SE ($n=5$). HN, MN, and LN represent tomato plants grown under high, medium, and low N concentrations, respectively.
FIGURE 6 | Quantitative analysis of the relative limitations of \(g_s \) (A), \(g_m \) (B), and biochemical factors (C) imposed to photosynthesis after transition from 50 to 1,500 \(\mu \text{mol photons m}^{-2} \text{s}^{-1} \). Values are means ± SE (\(n = 5 \)). HN, MN, and LN represent tomato plants grown under high, medium, and low N concentrations, respectively.

In HN-plants of tomato, photosynthetic limitations by \(g_s \), \(g_m \), and biochemical factors changed slightly upon transfer from low to high light. Meanwhile, \(g_s \) imposed to the smallest limitation to \(A_N \), owing to the high levels of \(g_s \) (Figure 6). Therefore, improving the induction response of \(g_s \) might have a minor factor for improving photosynthesis under FL in HN-plants of tomato under optimal conditions (Kaiser et al., 2020). By comparison, increased \(g_s \) has a significant effect on photosynthetic CO\(_2\) assimilation under FL in Arabidopsis thaliana and rice (Kimura et al., 2020; Yamori et al., 2020). These results indicate that the effects of altered \(g_s \) kinetics on photosynthesis under FL are species-dependent. In MN- and LN-plants, the relatively slower kinetics of \(g_s \) led to a higher \(L_{gs} \) of \(A_N \) during the initial 15 min after transition from low to high light (Figure 6). Therefore, altered \(g_s \) kinetics would have more significant effects on photosynthetic carbon gain in crop plants grown under low N concentrations.

FIGURE 7 | Response of ETR (A) and the ratio of ETR to \((A_N + R_d)\) (B) after transition from 50 to 1,500 \(\mu \text{mol photons m}^{-2} \text{s}^{-1} \). Values are means ± SE (\(n = 5 \)). HN, MN, and LN represent tomato plants grown under high, medium, and low N concentrations, respectively.

Many previous studies have indicated that \(g_m \) act as a major limitation for steady-state \(A_N \) under high light in many angiosperms (Peguero-Pina et al., 2017; Théroux-Rancourt and Gilbert, 2017; Yang Y.-J. et al., 2018; Huang et al., 2019). Increasing \(g_m \) has been thought to be a potential target for improving crop productivity and water use efficiency under constant high light (Flexas et al., 2013; Gago et al., 2016). However, the limitation of \(g_m \) imposed to \(A_N \) under FL is poorly understood. Upon transition from dark to light, the induction response of \(g_m \) was much faster than that of \(g_s \), which leads to the smallest limitation of \(g_m \) imposed to \(A_N \) in Arabidopsis thaliana and tobacco (Sakoda et al., 2021). Consequently, one concluded that altering \(g_m \) kinetics would have less impact on \(A_N \) under FL. However, we found that, after transfer from low to high light, \(L_{gm} \) was higher than \(L_{gs} \) in tomato plants (Figure 6). Furthermore, the time to reach 90% of \(A_N \) was closer to that of \(g_m \) rather than that of \(g_s \) (Figure 3). Therefore, altering \(g_m \) kinetics would significantly influence \(A_N \) upon transfer from low
to high light, at least in tomato. These results suggested that the photosynthetic induction upon transfer from low to high light was largely different from the photosynthetic induction during illumination of dark-adapted leaves. Improving the induction rate of gs has a potential to enhance carbon gain and plant biomass under natural FL conditions.

A recent study reported that, if RuBP regeneration limitation was assumed, electron transport imposed the greatest limitation to AN during illumination of dark-adapted leaves (Sakoda et al., 2021). Based on this result, it is hypothesized that increased activation of electron transport has the potential to enhance carbon gain under naturally FL environments. Controversially, this study indicated that electron transport was rapidly activated upon transfer from low to high light. After transition from low to high light, the ETR/(AN + Rd) value rapidly increased to the peak within 1–2 min and then gradually decreased over time (Figure 7). These results indicated that, upon transfer from low to high light, the induction response of electron transport was much faster than that of AN, which was consistent with the photosynthetic performance in rice (Yamori et al., 2016b). Therefore, induction response of AN after transition from low to high light was hardly limited by electron transport in tomato. The effect of electron transport on AN upon transition from low to high light is largely different from that upon transition from dark to light. Therefore, to improve photosynthesis under FL in tomato, more attention should be focused on the induction kinetics of CO2 diffusional conductance rather than the activation of electron transport.

CONCLUSION

We studied the effects of leaf N content on photosynthetic induction after transfer from low to high light in tomato. The induction speeds of AN, gs, and gm significantly decreased with the decrease in leaf N content. Such delayed photosynthetic induction in plants grown under low N concentration caused a larger loss of carbon gain under FL conditions, which further explained why N deficiency reduced plant biomass under natural FL environments. After transition from low to high light, increasing the induction responses of gs and gm has the potential to improve AN in tomato, especially when plants are grown under low N concentration, whereas photosynthetic induction of AN was hardly limited by electron transport. Therefore, altering induction kinetics of CO2 diffusional conductance is likely the most effective target for improving photosynthesis under FL conditions in tomato.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

WH and S-BZ designed the study. HS performed the photosynthetic measurements. HS, Y-QZ, and WH performed the data analysis. WH wrote the first draft of the manuscript, which was extensively edited by all authors.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.835571/full#supplementary-material

REFERENCES

Adachi, S., Tanaka, Y., Miyagi, A., Kashima, M., Tezuka, A., Toyoda, Y., et al. (2019). High-yielding rice Takanari has superior photosynthetic response to a commercial rice Koshihikari under fluctuating light. J. Exp. Bot. 70, 5287–5297. doi: 10.1093/jxb/erz304

Baker, N. R. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55, 1607–1621. doi: 10.1093/jxb/erh196

Carriqui, M., Cabrera, H. M., Conesa, M., Coopman, R. E., Douthe, C., Gago, J., et al. (2015). Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. Plant Cell Environ. 38, 448–460. doi: 10.1111/pce.12402

Chen, J.-W., Kuang, S.-B., Long, G.-Q., Meng, Z.-G., Li, L.-G., Chen, Z.-J., et al. (2014). Steady-state and dynamic photosynthetic performance and nitrogen partitioning in the shade-demanding plant Panax notoginseng under different levels of growth irradiance. Acta Physiol. Plant. 36, 2409–2420. doi: 10.1007/s11738-014-1614-9

De Souza, A. P., Wang, Y., Orr, D. J., Carmo–Silva, E., and Long, S. P. (2020). Photosynthesis across African cassava germplasm is limited by Rubisco and mesophyll conductance at steady state, but by stomatal conductance in fluctuating light. New Phytol. 225, 2498–2512. doi: 10.1111/nph.16142

Evans, J. R., and Terashima, I. (1988). Photosynthetic characteristics of spinach to enhance carbon gain and plant biomass under naturally FL conditions in tomato. The

FUNDING

This work was supported by the National Natural Science Foundation of China (grant nos. 31971412 and 32171505) and the Project for Innovation Team of Yunnan Province (202105AE160012).
pepper (Capsicum annuum L.). Environ. Exp. Bot. 179:104203. doi: 10.1016/j.
envexpbot.2020.104203
Farquhar, G. D., von Caemmerer, S., and Berry, J. A. (1980). A biochemical model
of photosynthetic CO2 assimilation in leaves of C3 species. Plant. 149, 78–90.
doi: 10.1016/S0304-4165(89)80016-9
Ferroni, L., Brestić, M., Živček, M., Cantelli, R., and Pancaldi, S. (2021). Increased
photosynthesis from a deep-shade to high-light regime occurs by enhanced
CO2 diffusion into the leaf of Selaginella martensii. Plant. Physiol. Biochem.
160, 143–154. doi: 10.1016/j.plaphy.2021.01.012
Ferroni, L., Živček, M., Sytar, O., Koval, M., Watanabe, N., Pancaldi, S., et al.
(2020). Chlorophyll-depleted wheat mutants are disturbed in photosynthetic
electron flow regulation but can retain an acclimation ability to a fluctuating
light regime. Environ. Exp. Bot. 178:104156. doi: 10.1016/j.envexpbot.2020.10
4156
Flexas, J., Niinemets, U., Gallá, A., Barbour, M. M., Centritto, M., Díaz-Expejo,
A., et al. (2013). Diffusional conductances to CO2 as a target for increasing
photosynthesis and photosynthetic water-use efficiency. Photosynth. Res.
117, 45–59. doi: 10.1007/s11120-013-9844-z
Gago, J., Daloso, D. M., Carriquí, M., Nadal, M., Morales, M., Araujo, W. L.,
et al. (2020). The photosynthesis game is in the “inter-play”: mechanisms
underlying CO2 diffusion in leaves. Environ. Exp. Bot. 178:104174. doi: 10.1016/
j.envexpbot.2020.104174
Gago, J., Daloso, D., de, M., Figueroa, C. M., Flexas, J., Fernie, A. R., et al. (2016).
Relationships of Leaf Net photosynthesis, stomatal conductance, and mesophyll
conductance to primary metabolism: a multispecies meta-analysis approach.
Plant. Physiol. 171, 263–279. doi: 10.1095/tpsp.2015.016600
Genty, B., Briantais, J.-M., and Baker, N. R. (1989). The relationship between
the quantum yield of photosynthetic electron transport and quenching of
chlorophyll fluorescence. Biochim. Biophys. Acta Gen. Subj. 990, 87–92. doi: 10.1016/S0304-4165(89)80016-9
Grassi, G., and Magnani, F. (2005). Stomatal, mesophyll conductance and
biochemical limitations to photosynthesis as affected by drought and leaf
ontogeny in ash and oak trees. Plant Cell Environ. 28, 834–849. doi: 10.1111/j.
1365-3040.2005.01333.x
Harley, P. C., Loreto, F., Di Marco, G., and Sharkey, T. D. (1992). Photosynthesis,
grain yield, and nitrogen utilization in rice and wheat. Plant. Physiol.
155, 125–129. doi: 10.1104/pp.155.1.065076
Makino, A., and Osmond, B. (1991). Effects of nitrogen nutrition on nitrogen
partitioning between chloroplasts and mitochondria in pea and wheat. Plant
Physiol. 96, 355–362. doi: 10.1104/pp.96.2.335
Peary, R. W. (1990). Sunflecks and photosynthesis in plant canopies. Annu. Rev.
Plant Physiol. Plant Mol. Biol. 41, 421–453. doi: 10.1146/annurev.pp.41.060190.
002225
Peary, R. W., Krall, J. P., and Sassenrath-Cole, G. F. (1996). “Photosynthesis in
fluctuating light environments,” in Photosynthesis and the Environment, ed.
N. R. Baker (Dordrecht: Kluwer Academic Publishers), 321–346. doi: 10.1007/
0-306-48135-9_13
Peguero-Pina, J. I., Sisó, S., Flexas, J., Galmés, J., García-Nogales, A., Niinemets,
Ü, et al. (2017). Cell-level anatomical characteristics explain high mesophyll
conductance and photosynthetic capacity in sclerophyllous Mediterranean
oaks. New Phytol. 214, 585–596. doi: 10.1111/nph.14406
Sagardy, R., Vázquez, S., Florez-Sarasas, I. D., Albacete, A., Ribas-Carbó, M.,
Flexas, J., et al. (2010). Stomatal and mesophyll conductances to CO2 are the
main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown
with excess nitrogen. New Phytol. 187, 145–158. doi: 10.1111/j.1469-8137.2010.
03241.x
Sakoda, K., Yamori, W., Groszmann, M., and Evans, J. R. (2021). Stomatal,
mesophyll conductance, and biochemical limitations to photosynthesis during
induction. Plant Physiol. 185, 146–160. doi: 10.1093/phlo/myaa011
Sakoda, K., Yamori, W., Shimada, T., Sugano, S. S., Hará-Nishimura, I., and, Tanaka,
Y. (2020). Higher stomatal density improves photosynthetic induction and
biomass production in Arabidopsis under fluctuating light. Front. Plant. Sci.
11:1308. doi: 10.3389/fpls.2020.589603
Sakowska, K., Albert, G., Genesio, L., Peressotti, A., Delle Vedove, G., Gianelli, D.,
et al. (2018). Leaf and canopy photosynthesis of a chlorophyll deficient soybean
mutant. Plant Cell. Environ. 41, 1427–1437. doi: 10.1111/pce.13180
Slattery, R. A., Walker, B. J., Weber, A. P. M., and, Ort, D. R. (2018). The impacts
of fluctuating light on crop performance. Plant Physiol. 176, 990–1003. doi: 10.1104/
ppl.17.01234
South, P. F., Cavanagh, A. P., Liu, H. W., and, Ort, D. R. (2019). Synthetic glycolate
metabolism pathways stimulate crop growth and productivity in the field.
Science 363, eaat9077. doi: 10.1126/science.aat9077
Sudo, E., Makino, A., and, Mae, T. (2003). Differences between rice and wheat
in ribulose-1,5-bisphosphate regeneration capacity per unit of leaf-N content.
Plant Cell Environ. 26, 255–263. doi: 10.1046/j.1365-3040.2003.00955.x
Takashima, T., Hikosaka, K., and Hirose, T. (2004). Photosynthesis or persistence:
nitrogen allocation in leaves of evergreen and deciduous Quercus species.
Plant Cell Environ. 27, 1047–1054. doi: 10.1111/j.1365-3040.2004.01209.x
Tazeo, Y., Von Caemmerer, S., Badger, M. R., and Evans, J. R. (2009). Light and
CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves.
J. Exp. Bot. 60, 2291–2301. doi: 10.1093/jxb/erp035
Théroux-Rancourt, G., and, Gilbert, M. E. (2017). The light response of mesophyll
conductance is controlled by structure across leaf profiles. Plant Cell Environ.
40, 726–740. doi: 10.1111/pce.12890
Timm, S., Florian, A., Arrivault, S., Stitt, M., Fernie, A. R., and, Bauwe, H. (2012).
Glycine decarboxylase controls photosynthesis and plant growth. FEBS Lett.
586, 3692–3697. doi: 10.1016/j.febslet.2012.08.027
Timm, S., Wittmiß, M., Gamlien, S., Ewald, R., Florian, A., Frank, M., et al. (2015).
Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis
and respiration of Arabidopsis thaliana. Plant Cell 27, 1968–1984. doi: 10.
1105/tpec.15.01005
von Caemmerer, S., and Evans, J. R. (2015). Temperature responses of mesophyll
conductance differ greatly between species. Plant Cell Environ. 38, 629–637.
doi: 10.1111/pce.12449
Warren, C. R., and Dreyer, E. (2006). Temperature response of photosynthesis and
internal conductance to CO2: results from two independent approaches. J. Exp.
Bot. 57, 3057–3067. doi: 10.1093/jxb/erl067
Xiong, D., Douthe, C., and Flexas, J. (2018). Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. *Plant. Cell Environ.* 41, 436–450. doi: 10.1111/pce.13111

Xiong, D., Liu, X., Liu, L., Douthe, C., Li, Y., Peng, S., et al. (2015). Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. *Plant Cell Environ.* 38, 2541–2550. doi: 10.1111/pce.12558

Yamori, W., Evans, J. R., and Von Caemmerer, S. (2010a). Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leaves. *Plant Cell Environ.* 33, 332–343. doi: 10.1111/j.1365-3040.2009.02067.x

Yamori, W., Noguchi, K., Hikosaka, K., and Terashima, I. (2010b). Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. *Plant Physiol.* 152, 388–399. doi: 10.1104/pp.109.145862

Yamori, W., Kondo, E., Sugiura, D., Terashima, I., Suzuki, Y., and Makino, A. (2016a). Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice with variable Rieske FeS protein content in the cytochrome b6/f complex. *Plant Cell Environ.* 39, 80–87. doi: 10.1111/pce.12594

Yamori, W., Makino, A., and Shikanai, T. (2016b). A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. *Sci. Rep.* 6:21047. doi: 10.1038/srep21047

Yang, Y.-J., Hu, H., and Huang, W. (2020). The light dependence of mesophyll conductance and relative limitations on photosynthesis in evergreen Sclerophyllous Rhododendron species. *Plants* 9:1536. doi: 10.3390/plants9111536

Xiong, Y.-J., Tong, Y.-G., Yu, G.-Y., Zhang, S.-B., and Huang, W. (2018). Photosynthetic characteristics explain the high growth rate for Eucalyptus camaldulensis: implications for breeding strategy. *Ind. Crops Prod.* 124, 186–191. doi: 10.1016/j.indcrop.2018.07.071

Zivcak, M., Brestic, M., Balatova, Z., Drevenakova, P., Olsovska, K., Kalaji, H. M., et al. (2013). Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. *Photosynth. Res.* 136, 315–328. doi: 10.1007/s11120-013-0466-8

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Sun, Zhang, Zhang and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.