Data Article

Data of vertical and horizontal handover on video transmission in Proxy Mobile IPv6

Md Mahedi Hassan a, *, Ian K.T. Tan b, Timothy Tzen Vun Yap a

a Multimedia University, 63100, Cyberjaya, Selangor, Malaysia
b Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia

ARTICLE INFO

Article history:
Received 2 September 2019
Received in revised form 29 October 2019
Accepted 29 October 2019
Available online 4 November 2019

Keywords:
Horizontal handover
Vertical handover
Video transmission
Wireless mobility
Seamless
Performance metrics
Data

ABSTRACT

The Internet Engineering Task Force provides a network-based mobility management solution to execute handover in heterogeneous networks on network-side called Proxy Mobile IPv6 (PMIPv6). In this data article, data are presented during the horizontal and vertical handover on video communication in PMIPv6 mobility protocols. The handover data are gathered using several measurement factors, which are latency, jitter, cumulative measured, and peak signal noise ratio under network simulation software, for both horizontal and vertical handovers [8].

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

Wireless networks and multimedia technologies have experienced significant growth in the last two decades. The use of handheld devices and obtaining services offered by the Internet has now become essential in our daily lives. Therefore, the availability of wireless networks and network quality of service (QoS) offered have become vital for mobile users. When a mobile host (MH) changes its point...
of attachment (access point, base station) to the same network or a new network, the availability of the wireless network becomes an essential consideration. The changing point of attachments will involve two types of shifting process; these are the horizontal handover and vertical handover [1]. When a MH
shift from one access point (AP) to another, such as Wi-Fi → Wi-Fi or UMTS → UMTS, the shifting process will perform a horizontal handover [1–3]. Vertical handover is performed when a MH moves from one base station (BS) to an AP or another BS technology such as UMTS → Wi-Fi, LTE → Wi-Fi [1–3]. During the process of handover, the wireless connection will be lost if a MH takes a longer time to attach the new attachment point. As a result, the performance of multimedia streaming such as video transmission, voice over IP, or file downloads will degrade [2–4,6].

This data article presents the video transmission data on horizontal and vertical handover in Proxy Mobile IPv6 (PMIPv6) [2–6]. The data are measured using average performance metrics, which are the packet latency, frame latency, cumulative jitter, cumulative measured, and peak signal noise ratio (PSNR) [7]. The data are provided with two types of handover scenarios, one involving just one MH and the other involving three MHs.

1.1. Horizontal handover data

Average performance analysis of the horizontal handover data on video transmission along the three mobility protocols of the PMIPv6 is presented in Table 1. The three mobility protocols of the PMIPv6 are PMIPv6-Prediction [8], PMIPv6-MIH [9] and IEEE802.21-enabled-PMIPv6 [10]. Fig. 1 depicts the performance metrics of average handover latency, Fig. 2 depicts the cumulative jitter, Fig. 3 depicts the cumulative measured, and Fig. 4 depicts the PSNR of a video frame during the horizontal handover of video transmissions for the three mobility protocols of the PMIPv6.

Average handover delay of the video frame determines the period after an MH sends packets from its present position to a new position. These can be from AP to AP, or from BS to AP, or from one network to another network, as long as the updated frame allows access to the respective networks.

1.2. Vertical handover data

Table 2 represents the average performance data for the vertical handover of video transmission with the three PMIPv6 mobility protocols. Fig. 5, Fig. 6, Fig. 7, and Fig. 8 show the performance metrics

Table 1
Average data of performance metrics during horizontal handover in PMIPv6.
Average Performance Metrics During Horizontal Handover
Frame Handover Latency (ms)
Frame Cumulative Jitter (ms)
Cumulative Measured (kB/s)
Peak Signal Noise Ratio (dB)
of average handover latency, cumulative jitter, cumulative measured and PSNR of video frame during vertical handover on video transmission in PMIPv6 mobility protocols. During the vertical handover on video transmission, the mobility protocols of PMIPv6-MIH and IEEE802.21-enabled-PMIPv6 have increased latency and jitter, therefore causing a degradation of video transmission performance. This is because these protocols are not designed to decide on the necessary handover conversion as they lack the essential information in the protocols.

1.3. Vertical handover data with 3 concurrent videos

Fig. 9, Fig. 10, and Fig. 11 illustrate the performance metric of average packet latency of each packet (Packet ID) during the vertical handover on video transmission in PMIPv6 mobility protocols. Table 3 represents the data for the average packet latency during the vertical handover of three video nodes in PMIPv6 mobility protocols.

2. Experimental design, materials, and methods

Experiments are conducted on video transmissions during the handover in PMIPv6 mobility protocols using network simulation software [11]. The data provided here are from two types of mobility simulation scenarios, which are horizontal and vertical handover. The simulation scenarios that resulted in the data are presented in Tables 1–3 and are illustrated in figures published by Hassan et al. [8].

The EvalVid video simulation package is utilized for the video transmission simulation, where the MPEG-coded video stream is defined as a source model for MPEG4 traffic [12,13]. The video size used is Common Intermediate Format (CIF) or H.261 which has a resolution of 352 × 288 [14]. In this simulation, a video clip is converted to the CIF format from the movie “Avengers: Age of Ultron” [8].

Three video nodes are set up with two different videos with two frame sizes, which are 640 × 360 and 512 × 288 [8]. In this simulation, three different video clips are converted to the MPEG4 format which are video node-1, video node-2 and video node-3. The videos are from “The Baby Boss”, “Transformers: Age of Extinction” and “Minions” respectively [8]. Video node-1 (MH1) is set up with 640 × 360 frame size and video node-2 and video node-3 are set up with 512 × 288 frame size. The video packet size is set up for 1024 bytes whereas the distance between consecutive packets is set at 0.001 seconds.

The process of data collection is shown in Fig. 12. The videos data are converted into YUV format to produce the packetized data for the sender. These packetized data are installed in the PMIPv6
Fig. 2. Average frame cumulative jitter during horizontal handover (Avengers-2 video clip).

Fig. 3. Average frame cumulative measured during horizontal handover (Avengers-2 video clip).

Fig. 4. Average peak signal noise ratio during horizontal handover (Avengers-2 video clip).
simulation scenarios to collect packetized data at the receiver side. Upon receiving the packetized data, handover data are collected and converted into YUV format for receiver video output.

Tables 4—6 represent the average total value of performance metrics during horizontal and vertical handovers in PMIPv6 mobility protocols. The handover performances are presented in the total value of the average frame and packet metrics (in millisecond). The metrics are handover latency and cumulative jitter. The quality of performances is presented in the total value of the average frame in kilobytes per second and decibel, for the cumulatively measures and PSNR respectively.
Fig. 6. Average frame cumulative jitter during vertical handover (Avengers-2 video clip).

Fig. 7. Average frame cumulative measured during vertical handover (Avengers-2 video clip).

Fig. 8. Average peak signal noise ratio during vertical handover (Avengers-2 video clip).
Fig. 9. Average video Node-1 packet latency during vertical handover (baby boss video clip).

Fig. 10. Average video Node-2 packet latency during vertical handover (Transformers-4 video clip).

Fig. 11. Average video Node-3 packet latency during vertical handover (minions video clip).
Table 3
Average data of three video nodes performance metrics during vertical handover in PMIPv6.

Average Performance Metrics During Vertical Handover	Mobility Protocols of Proxy Mobile IPv6	PMIPv6-Prediction	PMIPv6-MIH	IEEE802.21-enabled-PMIPv6
Packet Handover Latency (ms)		512.101	1012.1	1012.1
Video Node-1		551.112	1107.11	1299.11
Baby Boss Video Clip		447.718	1130.07	1424.19
Video Size: 640 × 360		432.528	1117.53	1363.53
		322.31	1094.59	1353
		252.749	1065.34	1283.12
Packet Handover Latency (ms)		126.123	126.123	126.123
Video Node-2		404.414	504.414	504.414
Transformers-4 Video Clip		539.984	726.949	826.949
Video Size: 512 × 288		281.932	717.923	816.923
		260.544	831.578	1156.38
		177.101	874.879	1405.51
Packet Handover Latency (ms)		413.108	413.108	413.108
Video Node-3		796.869	796.869	796.869
Minions Video Clip		957.29	1057.29	1257.29
Video Size: 510 × 288		982.36	1060.36	1260.36
		1170.03	1285.71	1416.34
		476.078	1070.69	1448.11

![Fig. 12. Handover data collection of simulation scenario of PMIPv6-Prediction, PMIPv6-MIH, IEEE802.21-enabled-PMIPv6.](image)

Table 4
Average of total performance metrics during horizontal handover in PMIPv6.

Average of Total Value of Performance Metrics During Horizontal Handover	Mobility Protocols of Proxy Mobile IPv6	PMIPv6-Prediction	PMIPv6-MIH	IEEE802.21-enabled-PMIPv6
Frame Handover Latency (ms)		14.77	16.47	17.13
Frame Cumulative Jitter (ms)		108.66	751.35	1102.57
Cumulative Measured (kB/s)		45.21	41.95	35.77
Peak Signal Noise Ratio (dB)		27.68	19.15	16.25
Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] S. Ferretti, G. Vittorio, P. Fabio, A survey on handover management in mobility architectures, Comput. Network. 94 (2016) 390–413.
[2] Z. Lei, Y.C. Tian, An enhanced fast handover triggering mechanism for Fast Proxy Mobile IPv6, Wirel. Netw. 24 (2) (2018) 513–522.
[3] A.J. Jabir, S. Shamala, Z. Zuriati, N. Hamid, A comprehensive survey of the current trends and extensions for the proxy mobile IPv6 protocol, IEEE Syst. J. 12 (1) (2015) 1065–1081.
[4] T. Gao, X. Deng, N. Guo, X. Wang, An anonymous authentication scheme based on PMIPv6 for VANETs, IEEE Access 6 (2018) 14686–14698.
[5] M. Munjal, N.P. Singh, QoS and cost-aware protocol selection for next generation wireless network, J. Netw. Syst. Manag. 27 (2) (2019) 327–350.
[6] M.M. Hassan, B. Selvaretnam, K.H. Poo, Handover performance assessment in mobility management protocols under video streaming network, J. Commun. 12 (3) (2017) 164–172.
[7] Peak Signal Noise Ratio (PSNR). http://www.dii.unimore.it/~merani/esercitazioni_comunicazioni_multimediali/laboratorio2_evalvid.pdf. (Accessed 27 February 2017).
[8] M.M. Hassan, I.K.T. Tan, B. Selvaretnam, K.H. Poo, SINR-based conversion and prediction approach for handover performance evaluation of video communication in Proxy Mobile IPv6, Comput. Electr. Eng. 74 (2019) 164–183.
[9] D. Pandey, F. Bashir, G.Y. Kee, J.Y. Pyun, Performance evaluation of vertical handover for IEEE 802.21 enabled Proxy mobile IPv6, in: 2013 International Conference on Computing, Management and Telecommunications (ComManTel), IEEE, 2013, pp. 27–31.
[10] G.B. Satrya, T. Brotoharsono, S. Wiranandi, Performance analysis of IEEE 802.21 MIH as a function of vertical handover using PMIPv6 and F-HMIPv6, in: Proceedings of the 17th International Conference on Electronic Commerce, ACM, 2015, p. 3.
[11] Network simulator-2 (ns-2). http://www.isi.edu/nsnam/ns. (Accessed 14 September 2016).
[12] J. Klaue, B. Rathke, A. Wolisz, Evalvid—A framework for video transmission and quality evaluation, in: International Conference on Modelling Techniques and Tools for Computer Performance Evaluation, Springer, Berlin, Heidelberg, 2003, pp. 255–272.
[13] MPEG Video Compression. http://www0.cs.ucl.ac.uk/teaching/GZ05/09-mpeg.pdf. (Accessed 16 March 2017).
[14] YUV CIF. http://www2.tkn.tu-berlin.de/research/evalvid/cif.html. (Accessed 8 March 2017).