Post-marathon decline in right ventricular radial motion component among amateur sportsmen

Z. Lewicka-Potocka1, A. Dabrowska-Kugacka1, E. Lewicka1, A.M. Kaleta-Duss1, L. Danilowicz-Szmymanowicz1, M. Kubik1, A. Faran1, P. Szymeczko2, R. Galaska3, M. Fijalkowski3, G. Raczek1
1Medical University of Gdansk, Department of Cardiology and Electrotherapy, Gdansk, Poland; 2Medical University of Gdansk, Gdansk, Poland; 3Medical University of Gdansk, First Department of Cardiology, Gdansk, Poland

Funding Acknowledgement: Type of funding sources: Public grant(s) – EU funding. Main funding source(s): The study was supported by the project POWR.03.05.00-00-z082/18 co-financed by the European Union through the European Social Fund under the Operational Programme Knowledge Education Development 2014–2020

Introduction: Running the marathon may be followed by post-exercise “cardiac fatigue” manifesting as transient right ventricular (RV) systolic and diastolic impairment. It is the thin-walled RV that is predominantly affected by the exercise-induced overload, with little if any, impact on the left ventricle (LV) [1]. The 2-D echocardiographic (ECHO) assessment of RV is challenging and may be incomplete since conventional measures reflect only the longitudinal motion (displacement of tricuspid annulus towards the apex) [2]. The mechanics of RV can be separated into two more components, anteroposterior (stretching RV wall by contracting septum) and radial (internal relocation of the RV free wall) [2]. The significance and relative contribution of motion components to global RV function may not be equal, and their interplay can vary depending on concomitant diseases [3].

Purpose: We aimed to analyse the pathophysiology of RV exhaustion as-sociated with a marathon run with 3-D ECHO, which allows precise estimation of all RV motion components and their contribution to RV global function.

Methods: The study included 34 healthy males (mean age of 40±8 years), amateurs, who finished the marathon in northern Poland. The 3-D ECHO was performed 2 weeks before (stage I), at the marathon finish line (stage II) and 2 weeks after the competition (stage III). According to the ReVISION method (Right ventricular separate wall motion quantification) the global RV function was decomposed to longitudinal (L_), anteroposterior (AP_) and radial (R_) [3]. By dividing componental ejection fractions (EF) with global RV EF, L_EF, AP_EF, and R_EF ratios were obtained.

Results: When comparing results from stage I and III there were no significant differences (Table 1). The analysis revealed post-run decline in RV EF with no changes in LV EF. The quantification of the RV motion components showed reduction in R_EF after the marathon with no changes in AP_EF or L_EF. The relative contribution of componental EF to global RV function were permanent and was not influenced by the competition.

Conclusions: Marathon run resulted in transient RV dysfunction arising from decline in radial shortening. Noteworthy, the componental interplay between wall motion compartments was preserved in pre- and post-run assessment. The ReVISION method enables the comprehensive analysis of the competing RV.

Table 1. 3-D ECHO parameters obtained in amateur marathon runners

Parameter	Stage I (mean ± SD)	Stage II (mean ± SD)	Stage III (mean ± SD)	ANOVA p-Value	Post Hoc p-Value
LV EF [%]	56.4 ± 3.5	55.0 ± 4.5	56.4 ± 3.4	> 0.05	-
RV EF [%]	51.3 ± 3.3	45.8 ± 4.0	50.6 ± 4.3	< 0.05	< 0.05
R_EF [%]	23.0 ± 4.5	19.3 ± 2.2	21.2 ± 4.5	< 0.05	< 0.05
AP_EF [%]	17.3 ± 3.5	16.4 ± 4.2	17.3 ± 3.5	> 0.05	-
L_EF [%]	22.9 ± 3.2	20.4 ± 3.8	22.2 ± 3.7	> 0.05	-
R_EFi	0.46 ± 0.06	0.42 ± 0.08	0.44 ± 0.07	> 0.05	-
AP_EFi	0.35 ± 0.06	0.36 ± 0.07	0.36 ± 0.06	> 0.05	-
L_EFi	0.46 ± 0.05	0.45 ± 0.08	0.46 ± 0.07	> 0.05	-