Review of the Technical Metrological Regulation for flow computers and volume converters

R O Almeida¹, E A Aguiar Júnior¹, R P B Costa-Felix¹

¹ National Institute of Metrology, Quality and Technology (Inmetro), Av. Nossa Sra. das Graças 50, Duque de Caxias, RJ, Brazil, ZIP 25250-020

E-mail: roalmeida@inmetro.gov.br

Abstract. With the publication of Inmetro’s regulation nº 373/2014, Inmetro presented the proposal to review the regulation of flow computers and volume converters, whose scope now includes fiscal measurement, ownership, custody transfer, among others, of hydrocarbons liquids and natural gas. This new proposal provides improvements to the legal metrological control of these instruments in Brazil, while also broaden the scope from the previous regulation, the Inmetro’s regulation nº 64/2003. The purpose of this paper is to present these changes from a metrological point of view, and also clarify the transitional rules for the process.

1. Introduction

Flow computers are calculating devices used within fluid measurement systems. They functionality is to perform volume conversion, as well as total value summation. Temperature and pressure typically varies in a pipeline flow in many different situations, such as exploitation, transportation and storage. The use of flow computers allow a proper mathematical assessment of the actual volume, regardless of the atmospheric condition the fluid is at a moment. The assessment is based on the law, in the case Brazilian, item 3.8 of the Joint Resolution ANP / Inmetro No. 01/2013 [1]. The legal atmospheric conditions are temperature of 20 °C and pressure of 0.101325 MPa. The standard measurement condition may vary according to a specific trade contract, and in this case a flow computer plays a key role as well. Therefore, flow computers are electronic devices similar to cash registers for oil and gas trade [2]. Figure 1 illustrates a typical setup of such equipment at a measuring point.

Figura 1. Typical flow computer connection to a pipeline and a flow measurement system.

Source: drawn by the author.
As illustrated, flow computers are fed with pressure and temperature transduced signals, and compile that information with the flow measurement input. A chromatographer (in the case of gas flow) or even a densimeter (for petroleum flow, for instance) could be included in the measurement system.

2. Legal Metrological Control

According to the International Vocabulary on Legal Metrology (VIML, [3]), the legal metrological control comprises a pool of activities aiming to assure the metrology quality of a device or service.

Presently in Brazil, the legal metrological control of flow computers is based on the rules established in Inmetro’s normative no 64 [4]. The mains metrological tests to be performed are the following:

- Pulse totalizing; dissimilar and pre-defined waveform are inserted into the flow computer, and the correctness of their computation is evaluated;
- Temperature and pressure input signals; analogic waveform type 4 (@ 20 mA) and type 1 (@ 5 V) are used to generate sensors output, and its performance and reliability is evaluated afterward;
- Simulation of a complete measurement arrangement, using standardized equations according to [5][6].

3. Regulatory Review

As aforementioned, flow computers are regulated with regard to its metrological aspects according to [4]. The legal reference to that normative was the Joint Normative Inmetro/ANP no /2000 [7]. The scope of the regulation was proposed to cover the main technical aspects of such kind of devices and related measurement systems.

A further step toward the technical enhancement of the mandatory regulation was settled within the Join Resolution ANP/Inmetro no 01/2013 [8]. That revised regulation defines many mandatory activities to Inmetro, which includes the necessity to renew the flow measurements metrological regulation. The importance of such revision is that flow computers, and flow measurement system as a whole, are fundamental for custody transference for the industry of oil and gas.

Aiming to adapt to the new legislation [8], Inmetro started a technical discussion with the goal to revise the Technical Metrological Regulation (RTM, acronym in Portuguese) for flow computers and volume correction devices. The Inmetro’s normative no 373/2014 was issued in August 13th [1]. It includes a RTM draft, which represents the result of the hard work developed within the Technical Commission on Legal Metrology (TC/LM) for flow computers. That TC/LM was organized by Inmetro, and their members were many important stakeholders from oil and gas industry. That normative will supersede the presently valid regulation ([4]) according to a scheduled discussed further in this paper. Inmetro’s normative no 373 diverges in its scope from the former as it covers exclusively flow computers and volume correction devices for measuring oil and gas. Previously [4], the scope embraces all measurement devices applied to petroleum and their liquid products, as well as anhydrous and hydrated alcohols used as fuel.

Other paragraphs are indented (BodytextIndented style).

3.1. Main Technical Changes

Metrological requirements present in [1] were not significantly changed as compared to what was previously determined in [4]. The maximum admissible errors remain the same. However, inspecting the new RTM in deep, one can observe that the testing structure changed in such level that it cannot be considered similar to what is presented in the International Organization for Legal Metrology (OIML), as disclosed in OIML R117-9 [9]. That international document was formerly used as the technical base for Inmetro’s normative no 64/2003 [4].

On the other hand, RTM’s scope and metrological control for outdoor measurement were remarkably changed with the new regulation. The former document comprises petroleum measurement, what was preserved in the new document. However, metrological control shall now cover measurement system for gas flow in particular productive arrangements. Those productive arrangements are exploitation and production of gas and oil according to what is defined in [8]. It is worth mentioning that this document
(8]) does not cover natural gas, thus flow computers do not demand type evaluation as defined by OIML and Inmetro.

Finally, the new RTM establishes a mandatory the type (pattern) evaluation, i.e., conformity assessment procedure on one or more specimens of an identified type (pattern) of measuring instruments which results in an evaluation report and / or an evaluation certificate [10]. An initial verification is also mandatory, and it shall be undertaken by state institutes delegated by Inmetro (IPEM) for every device prior to its commercialization. However, subsequent verifications were not defined as mandatory to the governmental metrological system (Inmetro and IPEM). The final user, or the instrument owner, is in charge with the periodic verification. In that sense, the legal metrology control is finished after the device has been sold.

3.2. Transitional Rules
In order to minimize the impact due the new regulation in the industrial sector of oil and gas, Inmetro has introduced transitional rules in the normative itself. Measurement systems which type approval had already been issued will have their certificate valid for additional 12 months, as soon as the new normative is issued. Further on, their certificates will be withdrawn.

Due this systematic, dealers, manufacturers or commercial representatives are legally authorized to sell the measurement system with a previously issued certification. Meanwhile, a new type approval for their devices shall be demanded to Inmetro. No infraction is due to any final user that had bought a measurement system with a type approval issued during the transitional schedule. The validation of data is assured within the normative.

4. Conclusions
With the technical revision of the RTM related to the Joint Normative ANP/Inmetro no 1/2000 [7], the regulation regarding flow measurement system was changed. It affects mainly flow computers and volume converters.

Within the present paper, the main technical aspects, which concern the subject, were disclosed. Summarizing:

- Now the regulation explicitly defines the demand for type approval of flow computers, differently from what was formerly the case; just complete flow measurement system were under the metrological control;
- The scope of fluids possible to be measured was expanded, once natural gas had been included;
- Presently, the metrological control is restricted to type (pattern) evaluation and an initial verification, whilst the subsequent verification is of responsibility of the final user.

It is an intrinsic objective with the new RTM issue to let the metrological control, as realized in Brazil, updated. That document is coherent with the vision of minimum interference on industrial and trade affairs, but still acting close to the main technical and metrological aspects of a certification and type approval of measurement systems.

References
[1] Brasil. Portaria INMETRO, nº 373, de 13/08/2014. Aprovar o Regulamento Técnico Metrológico estabelecendo os requisitos técnicos e metrológicos aplicáveis aos computadores de vazão e conversores de volume, utilizados na medição de petróleo e gás natural
[2] Lazari R F, Aguiar Júnior E A de, Almeida R O de, Hartmann V N. Flow computers regulation in Brazil: state of the art and next steps. In: CONGRESSO BRASILEIRO DE METROLOGIA, 2011, Natal
[3] Brasil. Portaria INMETRO, nº 163 de 06/09/2005. Adota, no Brasil, o Vocabulário Internacional de Termos de Metrologia Legal, em anexo, baseado no documento elaborado pela Organização Internacional de Metrologia Legal, com a devida adaptação ao nosso idioma, às reais condições existentes no País e às já consagradas pelo uso
[4] Brasil. Portaria INMETRO, nº 64, de 11/04/2003. Aprovar o Regulamento Técnico Metrológico,
que com esta baixa, estabelecendo os requisitos técnicos e metrológicos aplicáveis aos
sistemas de medição equipados com medidores de fluido, utilizados na medição de petróleo,
seus derivados líquidos, álcool anidro e álcool hidratado carburante

[5] American Gas Association. Compressibility Factors of Natural Gas and Other Related
Hydrocarbon Gases: AGA 8. Estados Unidos, 2003. Terceira Edição

[6] American Petroleum Institute. Manual of Petroleum Measurement Standards Chapter 11-Physical
Properties Data Section 1-Temperature and Pressure Volume Correction Factors for
Generalized Crude Oils, Refined Products, and Lubricating Oils: API 11.1. Estados Unidos,
2004. Primeira Edição

[7] Brasil. Portaria Conjunta ANP/INMETRO, nº 1, de 19/06/2000. Estabelece as condições e
requisitos mínimos que os sistemas de medição de petróleo e gás natural devem observar, com
vistas a garantir resultados acurados e completos

[8] Brasil. Resolução Conjunta ANP/INMETRO, nº 1, de 10/06/2013. Estabelece as condições e os
requisitos técnicos, construtivos e metrológicos mínimos que os sistemas de medição de
petróleo e gás natural deverão observar, com vistas a garantir a credibilidade dos resultados de
medição

[9] Organização Internacional de Metrologia Legal. R117-en: Measuring systems for liquids other
than water. Disponível em: <https://www.oiml.org/en/files/pdf_r/r117-e95.pdf>, 27/07/2015

[10] OIML, International Vocabulary on Legal Metrology on-line, http://viml.oiml.info/en/index.html. Accessed on Sep 11th, 2015