CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation

Nataly Manjarrez-Orduño1,2, Emiliano Marasco1, Sharon A Chung3, Matthew S Katz2, Jenna F Kiridly2, Kim R Simpfendorfer2, Jan Freudenberg2, David H Ballard2, Emil Nashi1,10, Thomas J Hopkins2, Deborah S Cunningham Graham4, Annette T Lee2, Marieke J H Coenen5, Barbara Franke5, Dorine W Swinkels6, Robert R Graham7, Robert P Kimberly8, Patrick M Gaffney9, Timothy J Vyse4, Timothy W Behrens7, Lindsey A Criswell3, Betty Diamond1,11 & Peter K Gregersen2,11

The c-Src tyrosine kinase, Csk, physically interacts with the intracellular phosphatase Lyp (encoded by *PTPN22*) and can modify the activation state of downstream Src kinases, such as Lyn, in lymphocytes. We identified an association of CSK with systemic lupus erythematosus (SLE) and refined its location to the intronic polymorphism rs34933034 (odds ratio (OR) = 1.32; \(P = 1.04 \times 10^{-8} \)). The risk allele at this SNP is associated with increased CSK expression and augments inhibitory phosphorylation of Lyn. In carriers of the risk allele, there is increased B-cell receptor (BCR)-mediated activation of mature B cells, as well as higher concentrations of plasma immunoglobulin M (IgM), relative to individuals with the non-risk haplotype. Moreover, the fraction of transitional B cells is doubled in the cord blood of carriers of the risk allele, due to an expansion of late transitional cells in a stage targeted by selection mechanisms. This suggests that the Lyp-Csk complex increases susceptibility to lupus at multiple maturation and activation points in B cells.

Genome-wide association studies (GWAS) have identified hundreds of common risk variants that implicate multiple signaling pathways in the development of autoimmune diseases1. Many of these risk variants may act through lineage- or maturation-specific mechanisms that depend on threshold effects on signaling responses2. Several genome-wide associations in systemic lupus have been described in molecules that participate in the BCR signaling pathway3,4. Yet, there is scant and often conflicting information on how these variants modify normal lymphocyte signaling and predispose to autoimmunity.

In lymphocytes, one of the early consequences of engagement of either the T-cell or B-cell antigen receptor is activation of members of the Src family of tyrosine kinases (SFKs). Activation of SFKs is regulated by the Lyp-Csk complex. Lyn (the product of the *PTPN22* gene) destabilizes the kinase domains of SFKs through tyrosine dephosphorylation, while Csk phosphorylates C-terminal tyrosines in SFKs, leading to a closed, inactive conformation5. The Lyp variant R620W disrupts the interaction between Lyp and the SH3 domain of Csk and has been strongly associated with many autoimmune disorders6. Consequently, we searched for evidence of association with SLE at the CSK locus in a previous GWAS of SLE in subjects of European ancestry1. We observed that several SNPs that tag a CSK haplotype (designated here the B haplotype) had a nominal association with SLE in this previously published data set, with associations well below genome-wide levels of statistical significance (OR \(\approx 1.15 \); uncorrected \(P \) values = 0.004–0.007; 1,311 subjects with SLE and 3,340 controls)1. We therefore sequenced the CSK exons and five highly conserved intronic regions in a discovery cohort of 24 SLE-affected subjects of European ancestry who are homozygous for the B haplotype (Fig. 1e). Of the 4 polymorphisms present in the discovery data set (*Supplementary Table 1*), the minor allele rs34933034[A] of an intronic variant was present in 34 of the 48 chromosomes bearing the B haplotype and was therefore of particular interest.

To assess the relationship of the variant rs34933034[A] allele to the B haplotype and explore its association with risk for SLE, we genotyped 3,769 subjects with SLE and 3,404 controls of European ancestry derived from 11 cohorts and analyzed the data in 3 groups (*Table 1*, Online Methods and *Supplementary Table 2*). The results provide...
convincing evidence for association of the variant rs34933034[A] allele with SLE (allelic OR = 1.32; \(P = 1.04 \times 10^{-9} \)). Linkage disequilibrium analysis showed that the rs34933034[A] allele nearly exclusively exists on the B haplotype \((D' = 0.95)\) and has a relatively low overall correlation \((r^2 < 0.5)\) with the other SNPs that define this haplotype (Fig. 1). Two SNPs that are present in the CSK B haplotype have recently been associated with several autoimmune diseases\(^7^8\). Therefore, we imputed SNPs, using data from the 1000 Genomes Project (Supplementary Table 3), and performed conditional analysis for rs34933034, showing that the associations seen for variants that tag the B haplotype are secondary to the association with the rs34933034[A] allele. For example, the rs8033381 marker tagging the common B haplotype shows an association \((P = 9 \times 10^{-8})\) that is eliminated after conditioning on rs34933034 \((P = 0.19)\) (Fig. 1, arrowhead). In contrast, conditioning on rs8033381 shows an association at rs34933034 \((P = 2.49 \times 10^{-4})\). Notably, we did not observe evidence of genetic interaction between rs34933034 and rs2476601 (encoding the PTPN22 R620W variant).

The Encyclopedia of DNA Elements (ENCODE) database reports the presence of DNase-sensitive sites around rs34933034, suggesting that this variant lies within an intronic regulatory region of CSK. Likewise, it has been reported that CSK expression is highest in cells of the immune system, particularly in B-cell subsets\(^8\). This was confirmed by evaluation of the pattern of CSK expression in different subsets of peripheral blood mononuclear cells (PBMCs) from healthy individuals, including the transitional, naïve and memory subsets of B cells (all subpopulations were recovered in at least five subjects), as well as CD4\(^+\) and CD8\(^+\) T cells and monocytes in three subjects (Fig. 2a). As previously reported, CSK expression was highest in B cells (Fig. 2b) and was inversely correlated with B-cell maturity \((n = 5; P = 0.03)\). Thus, transitional B cells that had recently emerged from the bone marrow had higher CSK expression than mature naïve B cells, which in turn had higher expression than memory B cells. We sorted naïve B cells from 29 healthy donors with either genotype at rs34933034, all of whom were homozygous for the B haplotype. Higher levels of CSK transcripts in naïve B cells were significantly associated with the presence of the rs34933034[A] allele (Fig. 2c).

Next, we examined whether increased CSK expression affects B-cell function. It has been reported that, in resting mouse T cells, Csk-mediated C-terminal phosphorylation of SFKs maintains them in an inactive conformation\(^9\). In B cells, Lyn is the most abundant SFK; therefore, we hypothesized that greater amounts of Csk would increase basal phosphorylation at the C-terminal tyrosine of Lyn in B cells. We analyzed Tyr508 phosphorylation by flow cytometry in resting naïve B cells (CD20\(^+\)CD27\(^-\)) from 27 healthy adults (Fig. 3a).

Table 1 Frequencies of the rs34933034 CSK risk allele in cases and controls of European ancestry

Genotype frequency	Analytic group\(^a\)	N	Cases	Controls	Cases	Controls	Cases	Controls	OR\(^c\) (95% CI)	P (additive) \(^d\)	P (additive) \(^f\)				
AA	1	1,378	919	0.04	0.02	0.28	0.23	0.68	0.75	18.17	13.54	1.42 (1.20–1.67)	3.2 \times 10^{-5}	4.3 \times 10^{-5}	9.2 \times 10^{-5}
AG	2	1,368	1,228	0.03	0.03	0.29	0.24	0.68	0.73	17.50	14.78	1.22 (1.05–1.42)	7.8 \times 10^{-3}	8.6 \times 10^{-3}	9.8 \times 10^{-3}
GG	3	1,023	1,257	0.02	0.02	0.31	0.24	0.67	0.74	17.74	13.76	1.35 (1.15–1.59)	2.3 \times 10^{-4}	1.9 \times 10^{-4}	4.1 \times 10^{-4}
Total	6	3,769	3,404	0.03	0.02	0.29	0.24	0.68	0.74	17.81	14.07	1.32 (1.20–1.44)	1.0 \times 10^{-9}	1.35 \times 10^{-9}	3.35 \times 10^{-8}

\(^a\)A total of 12 data sets were used in 3 stages of genotyping and testing. Details of the data sets used are provided in Supplementary Table 2.

\(^b\)MAF, minor allele frequency. \(^c\)OR calculated for an allelic model. The samples were matched for European ancestry. \(^d\)P value. \(^e\)Armitage \(P\) value. \(^f\)After correction for European substructure by principal components in each group, \(P\) values were calculated using the sample size–based meta-analysis strategy\(^9\).
Naive B cells from subjects carrying the CSK risk allele showed higher Lyn phosphorylation at Tyr508 than B cells from carriers of the non-risk allele (Fig. 3b and Supplementary Fig. 1). Notably and in contrast to the activating role of Lck in T cells, Lyn has been reported to mediate negative regulation of BCR signaling. Therefore, we measured calcium mobilization in naive B cells from 11 donors homozygous for the B haplotype after BCR cross-linking. As expected, naive B cells homozygous for the rs34933034[A] allele showed enhanced calcium mobilization triggered by BCR cross-linking (Fig. 3c,d) (no differences in calcium mobilization related to CSK genotype were observed upon stimulation with ionomycin; data not shown). This result is consistent with reports that Lyn has negative regulatory effects on B-cell activation. Moreover, healthy subjects (n = 44) who carried the CSK risk allele also had higher plasma concentrations of IgM (Fig. 3e) compared to subjects with the non-risk allele, consistent with enhanced activation of mature B cells.

Given that CSK expression is highest in transitional B cells, we investigated how the risk allele at CSK would affect early B-cell differentiation. To study B-cell maturation in the most pristine situation possible, we analyzed B-cell subpopulations in 27 samples of umbilical cord blood and found that newborn subjects homozygous for the CSK risk allele had double the frequency of transitional (CD38hiCD10hi) cells than were observed in subjects homozygous for the non-risk allele (Fig. 4a,b). Further dissection of this B-cell compartment showed that individuals with the risk allele had more ‘late’ transitional cells than their counterparts with the non-risk allele; these cells were also characterized by high surface expression of CD21 and had acquired surface immunoglobulin D (IgD), while still retaining high expression of CD38 and CD10 (Fig. 4c) and Supplementary Fig. 2).

Our results clearly support the hypothesis that CSK expression levels can modify normal B-cell biology. We have shown that CSK expression is highest at the earliest stages of B-cell maturation (in transitional B cells) and that normal individuals who carry the risk allele have expansion of the late transitional B-cell population. This expansion might reflect impairment of a tolerance checkpoint or enhanced positive selection of late transitional B cells. Either model leads to the prediction that there would be increased numbers of autoreactive B cells in the peripheral repertoire of healthy carriers of the CSK risk allele, consistent with increased likelihood of autoantibody production.

The Lyp–CsK complex acts by setting thresholds for BCR signaling, but the specific effects may vary according to the B-cell developmental stage and the particular SFKs that are functional at that stage. In B cells that carry the PTPN22 risk allele, both reduced12 and augmented13,14 responses to BCR cross-linking have been reported, and higher autoreactivity in the early B-cell repertoire of healthy subjects carrying the risk allele has been observed15. The results reported
here show that Csk levels differ at different stages of development as the signaling apparatus undergoes maturation. We note that the expression and activity of Lyn (PTPN22) in human transitional B cells have not yet been studied in detail. Our results clearly indicate that any investigation of the effects of PTPN22 on signaling thresholds in transitional B cells must account for the Csk genotype, as we have done here for PTPN22. Moreover, two SFKs, LYN and BLK, have been associated with risk for SLE.15,16 Research from our group suggests that the BLK risk allele also predominantly influences expression differences in the early stages of B-cell development17, although the functional consequences of differences in Blk expression have not yet been determined. This finding emphasizes the need for further exploration of the role of signaling molecules in immune cells at different stages of development in order to understand the mechanisms that lead to autoimmune disease and to thereby inform the rational development of targeted approaches to therapy.

URLs. The GaP registry, http://www.gapregistry.org/; UCSC Genome Browser, http://genome.ucsc.edu/.

METHODS

Methods and any associated references are available in the online version of the paper.

ACKNOWLEDGMENTS

The authors thank the volunteers who participated in this study; the Genotype and Phenotype (GaP) registry; M. Keogh, M. DeFranco, C. Mason, C. Metz and the Biorepository at the Feinstein Institute for Medical Research (FIMR) for recruiting subjects and collecting samples; H. Borreto for technical assistance; and the Bio-statistics Unit of the FIMR and M. Akerman for assistance. This work was supported by US National Institutes of Health (NIH) grant R01AR059092; The Alliance for Lupus Research, a Kirkland Scholar Award and NIH/National Center for Research Resources (NCRR) grant 5 M01 RR-00079 (L.A.C.); P01 AR49904 and UL1 TR000165 (R.P.K.); and NIH/National Center for Advancing Translational Sciences grant KL2TR000143 and an American College of Rheumatology Physician Scientist Development Award (S.A.C.). The principal investigators of the Nijmegen Biomedical Study are L.A.M. Klimeney, M. den Heijer, A.L.M. Verbeek, D.W. Swankels and B. Franke. We thank the Lupus Family Registry and Repository (LFRR) investigators, J.R. Harley, K.L. Moser Sidiva, M.H. Weisman and D.J. Wallace, funded by N01AR62277 (K.L.M.S. and J.B.H.).

AUTHOR CONTRIBUTIONS

N.M.-O., B.D. and P.K.G. designed the study. N.M.-O., S.A.C., D.S.C.G., J.F., D.H.B., T.J.V., L.A.C. and A.T.L. performed genetic analysis. N.M.-O., E.M., J.F.K., M.S.K., K.R.S. and T.J.H. performed experiments and analyzed the initial dataset into Csk. M.J.H.C., B.E., D.W.S., R.R.G., R.P.K., T.J.V., T.W.B., P.M.G. and L.A.C. provided samples. N.M.-O., B.D. and P.K.G. analyzed and interpreted the data and prepared the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare competing financial interests: details are available in the online version of the paper.

Published online at http://www.nature.com/doifinder/10.1038/ng.2439. Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Cho, J.H. & Gregersen, P.K. Genomics and the multifactorial nature of human autoimmune disease. N. Engl. J. Med. 365, 1612–1623 (2011).
2. Liston, A., Lesage, S., Gray, D.H.D., Boyd, R.L. & Goodnow, C.C. Genetic lesions in T cell tolerance and thresholds for autoimmunity. Immunol. Rev. 204, 87–101 (2005).
3. Hom, G. et al. Association of systemic lupus erythematosus with Cblr1.9-BLK and ITGAM/ITGAX. N. Engl. J. Med. 358, 900–909 (2008).
4. Nath, S.K. et al. A nonsynonymous functional variant in integrin-αδ (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat. Genet. 40, 152–154 (2008).
5. Levinson, N.M., Seeliger, M.A., Cole, P.A. & Kuriyan, J. Structural basis for the recognition of c-Src by its inactivator Csk. Cell 134, 124–134 (2008).
6. Gregersen, P.K., Lee, H.-S., Batliwalla, F. & Begovich, A.B. PTPN22: setting thresholds for autoimmunity. Semin. Immunol. 18, 214–223 (2006).
7. Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).
8. Martin, J.-E. et al. Identification of Csk as a systemic sclerosis genetic risk factor through Genome Wide Association Study follow-up. Hum. Mol. Genet. 21, 2825–2835 (2012).
9. Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcripts. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).
10. Zikherman, J. et al. CD45-Csk phosphatase-kinase titration uncouples basal and inducible T cell receptor signaling during thymic development. Immunity 23, 342–354 (2010).
11. Levinson, N.M. et al. A CD19-dependent signaling pathway regulates autoimmunity in Lyn-deficient mice. J. Immunol. 167, 2469–2478 (2001).
12. Arockia, A.F. et al. Cutting edge: the PTPN22 allelic variant associated with autoimmunity impairs B cell signaling. J. Immunol. 182, 3343–3347 (2009).
13. Zikherman, J. et al. PTPN22 deficiency cooperates with the CD45 E613R allele to break tolerance on a non-autoimmune background. J. Immunol. 182, 4093–4106 (2009).
14. Zhang, J. et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat. Genet. 43, 902–907 (2011).
15. Menard, L. et al. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoactive B cells in humans. J. Clin. Invest. 121, 3635–3644 (2011).
16. Lu, R. et al. Genetic associations of Lyn with systemic lupus erythematosus. Genes Immun. 10, 397–401 (2009).
17. Simpfordorfer, K.R. et al. The autoimmunity-associated BLK haplotype exhibits cis-regulatory effects on mRNA and protein expression that are prominently observed in B cells early in development. Hum. Mol. Genet. 21, 3918–3925 (2012).
18. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
ONLINE METHODS

Research subjects and specimens. DNA from cohorts of SLE-affected subjects was obtained from the University of California, San Francisco, Lupus Genetics Project19, the Multiple Autoimmune Diseases Genetics Consortium (MADGC)20, the University of Minnesota21, the UK SLE Study22. The Autoimmune Biomarkers Collaborative Network (ABCnN)23, the University of Alabama4 and the Oklahoma Medical Research Foundation (OMRF)4 as previously reported. Control DNA samples were taken from the New York Cancer Project collection23,24, the Nijmegen Biomedical study (NBS; a population-based cohort of self-reported, randomly selected inhabitants of Nijmegen, The Netherlands)25 and the Genotype and Phenotype Registry at The Feinstein Institute for Medical Research (FIMR) and the University of Alabama. All subjects gave written informed consent, and institutional review boards (IRBs) reviewed the protocols at their host institutions. Diagnosis with SLE was established according to American College of Rheumatology (ACR) guidelines3,4,19–22. A detailed explanation of the number of samples per data set is given in Supplementary Table 2.

All of the genotype-matched blood samples from healthy controls were obtained from volunteers belonging to the GaP registry; carriers of the PTPN22 risk allele (rs2476601[T]) were excluded from the functional studies. Deidentified cord blood samples deemed not suitable for banking and leukocyte units were obtained from the Long Island Blood Bank. The FIMR IRB reviewed and approved all of the protocols; consent was waived for deidentified cord blood and leukocyte units.

Genotyping. CSK sequencing for the 24 SLE samples in the discovery cohort was performed by Polymerorphic DNA Technologies. Genotyping of the data sets was performed sequentially in three analytic groups. European ancestry was determined by the analysis of ancestry-informative markers within each analytic group. Each of the three groups of data sets are described in Supplementary Table 2. CSK genotyping for groups 1 and 2 was performed by pyrosequencing (Supplementary Table 4). Genotyping of rs49393034 in CSK for analytic group 3 of samples from the NBS and OMRF was performed by qPCR with the TaqMan assay C_60143137_10 in a Viia7 machine (Applied Biosciences).

Data for SNPs informative for continental origin and European population diversity were obtained from genome-wide typing for each of the cohorts and were used to limit the study to subjects of European ancestry. Matching of cases and controls by principal-component analysis26, as well as association analysis for both allelic and additive genetic models, was performed using the SNP and Variation Suite (Golden Helix). The meta-analysis P value for the additive genetic model with correction for principal-component analysis was calculated using the sample size-based analytical strategy reported previously18.

Imputation and conditional analysis. For each group of data sets, we obtained genotype information on markers situated within 300 kb of either edge of CSK. We used 1000 Genomes Project data (Phase 1, version 3, March 2012) as a reference to impute variants across a fragment of 120 kb (chr 15: 75,024,425–75,145,539, hg19), with CSK in the center. Imputation was performed using IMPUTE2.2 (ref. 27). Only imputed polymorphisms with probabilities above 90% were used in subsequent analyses, and variants that were not called in more than 90% of the samples per data set were not used (Supplementary Table 3). Conditional analysis of the variants that passed quality control was performed with SNPTEST2 (ref. 27) using an additive model of association.

Sample processing, flow cytometry and cell sorting. Mononuclear cells from peripheral blood were recovered by layering over Ficoll-Paque (GE Healthcare). For cell sorting, the cells were stained for 10 min with an antibody mix containing one of the following antibody cocktails: CD8 (FITC, 551347), CD20 (PE, 556263), CD4 (PerCP, 340671), CD3 (APC, 340440) or CD14 (Pacific Blue, 558121), all from BD Biosciences, for sorting of monocytes and T-cell subpopulations (three samples). For B cells, we used antibodies to IgG (FITC, 555778), CD3 (Pacific blue, 558124), CD14 and CD16 (Pacific blue, 558112) and CD19 (APC-Cy7, 557791), all from BD Biosciences; CD27 (PE, MHCD2704) and CD38 (PE-TR, MHCD3817) from Invitrogen; and CD10 (PE-Cy7, 312214) from Biologend. Cells were sorted on a FACSArray instrument (BD Biosciences), and, after exclusion of doublets by forward and side scatter area and width parameters, gates were set for monocytes (CD3−CD20−CD14+) and CD4+ and CD8+ cells (after gating for CD20−CD3+ cells). B cells were defined as CD19+CD3−CD14+CD16− and were subsequently gated for B-cell subpopulations, including memory (CD19+CD27+) and pre-immune (IgD−CD27−) cells. To divide the pre-immune B-cell populations, the upper limit of CD10 fluorescence in T cells (which lack CD10 expression) was used to define the lower limits of CD10 positivity for transitional B cells (CD38hiCD10+) and naive cells (CD38dimCD10+). Thirteen of the cord blood samples were stained with PE-conjugated antibody to CD21 to confirm the gates for early and late transitional B cells, as defined previously28. Statistical analyses of B-cell subpopulations were performed using the Kruskal-Wallis one-way analysis of variance.

Expression analysis. Analysis of CSK expression in peripheral blood cells was performed on sorted cells. RNA was extracted using the Micro RNeasy isolation kit (Qiagen). DNA was synthesized by linear reverse transcription with iScript (Bio-Rad) and was subsequently used for qPCR of CSK (Hs01062585_m1, Applied Biosystems) and POLR2A (Hs01108291_m1, Applied Biosystems) in a Lightcycler 480 II (Roche). Normalized expression was calculated according to the modified Livak ΔCT method of 2−∆∆CT (ref. 29). All expression assays were performed in duplicate. The analysis of CSK expression across B-cell subpopulations was performed by Kruskal-Wallis test; the analysis of CSK expression across genotypes was performed using one-way ANOVA.

Cell signaling. Cell signaling assays were performed in PBMCs from healthy subjects homozygous for the B haplotype. Cells were washed with PBS and allowed to rest for 1 h at 37 °C in RPMI containing 2% FCS (both from Life Technologies). For phosphorylation of Lyn, cells were fixed, washed and surface stained with CD20, CD24, CD38, CD27 and CD3. After a permeabilization step with BD Perm (BD Biosciences), cells were stained with antibody to phosphorylated Lck (Tyr505; BD Phospho, 557879), which cross-reacts with phosphorylated Lyn. Median fluorescence intensity (MFI) in naive B cells was determined by analyzing the data with FlowJo software. No differences were observed between data analyzed solely on the basis of MFI and data analyzed on the basis of the MFI of phosphorylated Lyn minus the MFI of the isotype control. Data were normalized to the mean MFI for each experiment. With correction for multiple testing, pairwise comparisons were considered significant at P < 0.0166.

For calcium flux, after resting for 1 h, the cells were loaded with Indo-1 (Life Technologies) and were subsequently labeled with antibodies to CD2, CD14, CD16, CD20, CD27, CD38 and CD10. Data were collected in a BD LSRII machine as the ratio of Ca2+-bound Indo (405 nm) to free Indo (450 nm) during a 1-min interval. Cells were then stimulated with 10 μg/ml F(ab)2 goat antibody to human IgM (Southern Biotech), and data were recorded for a further 5 min. All samples were subsequently activated with ionomycin as a control. Data were analyzed with FlowJo software to calculate the area under the activation curve for the first 90 s and 4 min.

SAS version 9.2 was used to perform hierarchical linear mixed-model (HLM) analysis to assess the value of the area under the curve. To adjust for day-to-day variation in experimental conditions, subjects were considered nested within each day. Furthermore, the day of the experiment was considered a random effect. A result was considered statistically significant at P < 0.05.

ELISAs. We precoated 96-well plates with 10 μg/ml antibody to human IgM (Southern Biotech) and blocked with PBS (containing 1% BSA). Samples were plated, and, after 1 hour of incubation, wells were washed and incubated with alkaline phosphatase–conjugated antibody to human IgM. Wells were later developed by the addition of p-nitrophenyl disodium (Sigma) in carbonate buffer. Optical density at 405 nm was measured. Samples were run in duplicate, and IgM was quantified using an IgM standard curve (Sigma-Aldrich).

19. Thorburn, C. M. et al. Association of PDCD1 genetic variation with risk and clinical manifestations of systemic lupus erythematosus in a multiethnic cohort. Genes Immun. 8, 279–287 (2007).
20. Criswell, L.A. et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. *Am. J. Hum. Genet.* **76**, 561–571 (2005).

21. Graham, R.R. et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. *Nat. Genet.* **38**, 550–555 (2006).

22. Cunningham Page, D.S. et al. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. *PLoS Genet.* **7**, e1002341 (2011).

23. Plenge, R.M. et al. TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study. *N. Engl. J. Med.* **357**, 1199–1209 (2007).

24. Gregersen, P.K. et al. REL, encoding a member of the NF-κB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. *Nat. Genet.* **41**, 820–823 (2009).

25. Wetzels, J.F.M., Kiemenej, L.A.L.M., Swinkels, D.W., Willems, H.L. & Heijer, M.d. Age- and gender-specific reference values of estimated GFR in Caucasians: The Nijmegen Biomedical Study. *Kidney Int.* **72**, 632–637 (2007).

26. Tian, C. et al. European population genetic substructure: further definition of ancestry informative markers for distinguishing among diverse European ethnic groups. *Mol. Med.* **15**, 371–383 (2009).

27. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. *Nat. Genet.* **39**, 906–913 (2007).

28. Suryani, S. et al. Differential expression of CD21 identifies developmentally and functionally distinct subsets of human transitional B cells. *Blood* **115**, 519–529 (2010).

29. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. *Methods* **25**, 402–408 (2001).