Self-activation of Vyγ9Vδ2 T cells by exogenous phosphoantigens involves TCR and butyrophilins

Chloé Laplagne1,2,3, Laetitia Ligat1,2,3, Juliet Foote1,2,3, Frederic Lopez1,2,3, Jean-Jacques Fournié1,2,3, Camille Laurent1,2,3,4, Salvatore Valitutti1,2,3 and Mary Poupot1,2,3✉

© The Author(s), under exclusive licence to CSI and USTC 2021

The high cytotoxic activity of Vyγ9Vδ2 T lymphocytes against tumor cells makes them useful candidates in anticancer therapies. However, the molecular mechanism of their activation by phosphoantigens (PAgs) is not completely known. Many studies have depicted the mechanism of Vyγ9Vδ2 T-cell activation by PAg-sensed accessory cells, such as immune presenting cells or tumor cells. In this study, we demonstrated that pure resting Vyγ9Vδ2 T lymphocytes can self-activate through exogenous PAgs, involving their TCR and the butyrophilins BTN3A1 and BTN2A1. This is the first time that these three molecules, concurrently expressed at the plasma membrane of Vyγ9Vδ2 T cells, have been shown to be involved together on the same and unique T cell during PAg activation. Moreover, the use of probucol to stimulate the inhibition of this self-activation prompted us to propose that ABCA-1 could be implicated in the transfer of exogenous PAgs inside Vyγ9Vδ2 T cells before activating them through membrane clusters formed by γ9TCR, BTN3A1 and BTN2A1. The self-activation of Vyγ9Vδ2 T cells, which leads to self-killing, can therefore participate in the failure of γδ T cell-based therapies with exogenous PAgs and should be taken into account.

Keywords: Vyγ9Vδ2 T cells; Phosphoantigen; Butyrophilins; T-cell receptor

Cellular & Molecular Immunology (2021) 18:1861–1870; https://doi.org/10.1038/s41423-021-00720-w

INTRODUCTION

The mediation of cytotoxicity against tumor cells by Vyγ9Vδ2 T lymphocytes [1, 2] has been considered as an interesting candidate cancer immunotherapy for several years. Even if these cells represent only 1–3% of blood mononuclear cells, they can proliferate in vitro and in vivo upon activation and infiltrate the tumor site [2–4]. However, their effects have not been consistent across different studies and different types of malignancies, and their use has resulted in both good [5, 6] and bad prognoses [7, 8]. In addition, no substantial antitumoral activity was detected in clinical trials with Vyγ9Vδ2 T lymphocyte-based immunotherapies, although weak tumor regression associated with significant amplification of these lymphocytes in the blood was found in a few cases [all reviewed in ref. [9]]. These failures can be attributed to the resistance of tumor cells to Vyγ9Vδ2 T-cell killing and/or the limited understanding of Vyγ9Vδ2 T-cell receptor (TCR) diversity and the mode of action of receptor-ligand interactions.

Vyγ9Vδ2 T cells are activated by nonpeptide phosphoantigens (PAgs), which are metabolites of the methyl erythritol phosphate pathway in microbial pathogens [10] and the eukaryotic mevalonate (MVA) pathway in tumor cells [11, 12]. This PAg activation was clearly shown to be TCR-dependent and possibly modulated by immune checkpoint inhibitors and natural killer (NK) receptors also expressed by Vyγ9Vδ2 T cells [13–17]. Moreover, the upregulation of endogenous biosynthesis of PAgs in tumor cells with inhibitors of the MVA pathway, such as aminobisphosphonate (ABP), can exacerbate antitumor Vyγ9Vδ2 T-cell functions. Even if novel pathways to potentiate the clinical effects of Vyγ9Vδ2 T cells were proposed [9], the clarification of some gray areas of PAg activation of these cells remains essential. Although the details of tumor cell recognition can be controversial, members of the butyrophilin A (BTNA) family, BTN3A1 and BTN2A1, were shown to be essential for this recognition, as have the ABCA1 transporter and the intracellular RHOB and periplakin molecules [18–24].

However, direct PAg activation in Vyγ9Vδ2 T cells, i.e., without an accessory cell and without any cell contact, has never been described. A few years ago, some researchers proposed direct activation of Vyγ9Vδ2 T cells by exogenous PAg, while others argued that the small size of these molecules precludes direct activation of the TCR [25, 26], but experimental evidence was missing to explain the exact mechanism. In this study, we have shown that pure resting Vyγ9Vδ2 T cells from the blood can be directly activated by exogenous PAg but not by ABP in a cell contact-independent manner with a mechanism involving γ9TCR, BTN2A1, and BTN3A1.

MATERIALS AND METHODS

Vyγ9Vδ2 T cells

Untouched fresh γδ T cells were obtained from fresh PBMCs from healthy donors using the TCRγδ+ T-Cell Isolation Kit, a MidiMACS™ Separator, and an LS Column, according to the manufacturer’s instructions (Miltenyi Biotec, Germany).

1Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France. 2Université Toulouse III Paul-Sabatier, Toulouse, France. 3ERL 5294 CNRS, Toulouse, France. 4IUCT-O, Toulouse, France. 5email: mary.poupot@inserm.fr

Received: 30 March 2021 Accepted: 4 June 2021

Published online: 28 June 2021
Immunofluorescence microscopy and colocalization analysis

Microscope slides were coated with poly-D-lysine (10 μg/mL, Sigma-Aldrich). Fresh purified γδ T cells were previously stained with anti-γ9TCR antibody (FITC, clone B3, BD Biosciences) and anti-BTN3A1 (BV41, clone 232-5, BD Biosciences) for 20 min at 4 °C. Next, freshly purified γδ T cells were untreated or treated with BrHPP (200 nM) for 3, 10, or 45 min or ionomycin (10 min at 10 μg/mL under optimal culture conditions (37 °C and 5% CO2). Then, the cells were dropped on slides and fixed with 4% PFA for 10 min (room temperature). After a blocking incubation of 30 min (PBS 10% SVF, room temperature), γδ T cells were stained overnight at 4 °C with an anti-BTN2A1 (5 μg/mL, Biorbyt) primary antibody. After three washes, goat anti-rabbit (AF568) secondary antibody was added at 1 μg/mL for 1 h at room temperature. Finally, slides were mounted with Fluoromount-G mounting medium and analyzed on a Zeiss LSM 780 and 880 FAST Airyscan confocal microscope.

Quantitative colocalization analysis between BTN2A1, BTN3A1, and γ9TCR on the surface of freshly purified γδ T cells was achieved on the plot profile with the RGB profile in ImageJ. For colocalization analysis, we determined Manders’ coefficient [27] on median optical sections using ImageJ and the JACoP plug-in.

Statistics

Data are expressed as the mean ± SEM. For comparison of two series of normally distributed variables, we used paired and one-tailed Student’s t tests with α = 0.05 for statistical significance. Statistical analysis was performed with Prism 7.0 software (GraphPad Inc.).

RESULTS

PAG-activated γν9Υδ2 T cells are not sufficient for the activation of autologous resting γν9Υδ2 T cells

The goal of this study was to determine how purified resting γν9Υδ2 T cells can be activated by soluble PAGs such as BrHPP. Classically, target cells such as tumor cells activate γν9Υδ2 T cells through their butyrophilins, which are primarily activated by endogenous PAGs. However, even if the susceptibility of resting and activated γν9Υδ2 T cells to activation-induced cell death by TCR crosslinking is known [28], there is little research concerning the dialog between γν9Υδ2 T cells under PAG stimulation in the absence of an accessory cell. Thus, we wondered whether γν9Υδ2 T cells are also able to kill each other under PAG activation and whether the γν9Υδ2 killer needs PAG activation or if PAG sensing of the γν9Υδ2 target cell alone was sufficient.

Purified γν9Υδ2 T cells from the same donor were divided into two groups. One group was stained for the intracellular marker CMTMR, and the other was stained for the lipophilic membrane marker PKH67 (Fig. 1A). We considered CMTMR+ γν9Υδ2 T cells (γν R) as effector cells and PKH67+ γν9Υδ2 T cells (γν G) as target cells. Daudi cells, from a cell line originating from a patient with Burkitt’s lymphoma, were also used as a target cell control. γν T cells were prestimulated or not with BrHPP (γν G, γν R, γν R). We next wanted to determine whether γν T cells needed to be prestimulated with BrHPP to express CD107α. For that, we analyzed CD107α expression by γν R or γν R cocultured with γν G by flow cytometry and showed that γν R expressed CD107α after a coculture for 4 h but not γν R. In the same cocultures, γν G expressed CD107α in the two conditions: coculture with γν R or with γν R. The expression of CD107α by γν9Υδ2 T cells in contact with autologous γν9Υδ2 T cells requires BrHPP prestimulation. However, this prestimulation with PAG is not necessary for γν9Υδ2 T cells cultivated with Daudi cells, which are known to express endogenous PAGs [29] (Fig. 1B, C). CD107α is expressed following the establishment of the immunological synapse (IS), during which membrane patches are exchanged between the two partners involved in this IS, a phenomenon called trogocytosis [30]. Acquisition of membrane PKH67 fluorescence by the CMTMR+ group after 4 h of contact therefore reflects a stable IS, which is essential for the activation of lymphocytes [30]. We analyzed PKH67 fluorescence acquisition by γν R or γν R after...
5 min or 4 h in coculture with γδ GBr. γδ RBr cells acquired PKH67 fluorescence after 4 h of contact with γδ GBr but not γδ R, although the same γδ R cells were able to acquire PKH67 fluorescence after contact with PKH67+ Daudi cells (Fig. 1D, E). Thus, autologous trogocytosis between two Vγ9Vδ2 T cells requires BrHPP prestimulation of the two partners.

To determine whether Vγ9Vδ2 T cells died following autologous trogocytosis, we quantified 7-AAD and DAPI staining of γδR or γδ
RBr cocultured with γδ GBr. We showed that only γδ RBr cells were stained with 7-AAD and DAPI when cocultured with γδ GBr cells (Fig. 1F, G). Therefore, a Vy9V62 T cell needs to be stimulated by PAgS to kill another Vy9V62 T cell only if this cell is also activated by PAgS.

Vy9V62 T cells can self-activate through BrHPP in a TCR- and butyrophilin-dependent manner

The above results led us to ask how purified γδ T lymphocytes can be activated by exogenous PAgS without any target cell and without cell contact. Thus, we monitored the calcium flux of individual Vy9V62 T cells by video microscopy under stimulation with exogenous PAgS (BrHPP, cHDMAP, or IPP) or with ionomycin, a calcium ionophore, as a positive control. Fresh γδ T cells sorted from blood samples of healthy donors were loaded with the calcium probe Fluo-8 AM-tagged and then coated on a microslide at a limited cell concentration to avoid cell contact. The stimulator was added with care to the well under the microscope 2 min after starting the video to detect the green fluorescence of the calcium flux (Fig. 2A).

Stimulation with ionomycin led to a rapid increase in Fluo-8 AM fluorescence followed by stabilization (Fig. 2B). The Fluo-8 AM profile obtained with BrHPP stimulation was different, with several peaks of calcium flux in the same isolated Vy9V62 T cell (Fig. 2C, Supplementary Fig. 1 for the video). These profiles were reproduced for several isolated Vy9V62 T cells from different donors by measuring the ratio (Fluo-8 AM intensity mean/cell area) before and during stimulation with ionomycin or BrHPP (Fig. 2D). A significant increase in fluorescence in isolated γδ T cells was observed with ionomycin activation and BrHPP stimulation. This self-activation was shown with other PAgS, such as cHDMAP and IPP (Supplementary Fig. 2).

The expression of IFN-γ, CD107a and CD69 measured by flow cytometry confirmed that Vy9V62 T cells can be activated by the exogenous PAgS BrHPP, cHDMAPP and IPP without a target or accessory cell. The same results were reproduced with anti-CD3/CD28 beads as a positive control (Supplementary Fig. 3).

Interestingly, Vy9V62 T cells were not activated by an ABP such as zoledronic after incubation for 4 h, overnight or 4 days, whereas Vy9V62 T cells could be amplified in cultures of PBMCs as with BrHPP in the presence of IL2 and zoledronic (Supplementary Fig. 4).

All these results show that Vy9V62 T cells can self-activate with exogenous PAgS without cell contact.

Next, we asked whether this PAg self-activation involved the same actors depicted for Vy9V62 T-cell activation in the context of contact with tumor cells. First, we checked that resting Vy9V62 T cells expressed BTN2A1 and BTN3A1 on their cell surface (Supplementary Fig. 5A) and that fresh Vy9V62 T cells could be activated by the BTN3A1 agonist (Supplementary Fig. 5B). Then, we analyzed the calcium flux in a single cell in the presence of blocking antibodies by video microscopy during BrHPP stimulation. Blocking antibodies against TCR and the two butyrophilins decreased in succeeding calcium flux when added to cells stimulated by BrHPP (Fig. 2E, F and Supplementary Fig. 6 for the videos). Furthermore, the expression of IFN-γ, CD107a, and CD69 was measured by flow cytometry in purified resting Vy9V62 T cells stimulated with BrHPP in the presence or absence of blocking antibodies against TCR, BTN3A1, or BTN2A1. A clear decrease in the expression of the three markers was obtained for Vy9V62 T cells stimulated by BrHPP in the presence of each blocking antibody but not for Vy9V62 T cells stimulated with anti-CD3/CD28 beads (Supplementary Fig. 5C, D).

Thus, we showed that all the actors involved in the PAg-induced activation of Vy9V62 T cells in a cell contact context with tumor cells are also engaged in PAg self-activation.

Preexisting clustering of γ9TCR with BTN2A1 and BTN3A1 in resting Vy9V62 T cells

The next step was to understand the configuration of the involvement of γ9TCR, BTN2A1 and BTN3A1 at the surface of Vy9V62 T cells under BrHPP stimulation. To depict in detail Vy9V62 T-cell self-activation, we performed immunofluorescence staining of these three molecules on resting purified Vy9V62 T cells during activation with BrHPP (200 nM for 3, 10, or 45 min) or ionomycin (10 μM for 10 min) (Fig. 3A). As expected, we showed that γ9TCR expression (green fluorescence) was evenly distributed on the surface of fresh purified resting Vy9V62 T cells. γ9TCR, BTN2A1, and BTN3A1 were colocalized in several parts of the membrane before or after BrHPP stimulation, as shown in the profiles in the right panel of Fig. 3A. However, the colocalizations between the three structures were not equivalent. γ9TCR was more colocalized with BTN2A1 than with BTN3A1, with Manders’ coefficients of 0.86 vs. 0.56 (Fig. 3B). Then, we asked whether these colocalizations could be modulated upon BrHPP or ionomycin stimulation. The coefficient of colocalization of γ9TCR with BTN3A1 or BTN2A1 was not significantly modified, nor was that of BTN3A1/BTN2A1 colocalization (Fig. 3B).

To analyze the dynamics of these membrane proteins during stimulation with exogenous BrHPP, we quantified their fluorescence intensity according to the duration of the stimulation (Fig. 3C). The intensity of fluorescence was normalized to that of the untreated cells. A fluctuation of the fluorescence for γ9TCR was shown with a quick decrease after 3 min of stimulation with BrHPP and then an increase after 10 min to again decrease after a longer stimulation time (45 min). However, the fluorescence for γ9TCR observed after 10 min of stimulation with ionomycin was not modified compared to the unstimulated condition. Similar to γ9TCR fluorescence, BTN2A1 fluorescence decreased rapidly after 3 min of BrHPP stimulation to return to a similar intensity to the unstimulated control after 10 min. In contrast, the mean intensity of fluorescence for BTN3A1 increased but not in the first minutes, only from 10 min, and remained stable, while ionomycin stimulation did not change the fluorescence of BTN3A1.

Thus, all these results show that freshly purified Vy9V62 T cells transitorily modulate their early expression of BTN2A1 and γ9TCR and later BTN3A1 expression under BrHPP activation.

Finally, we wondered whether exogenous BrHPP needs to enter Vy9V62 T cells to activate them through the membrane cluster γ9TCR/BTN2A1/BTN3A1. As the Massimo Massaia group has shown that the ABCA1 transporter could be involved in IPP trafficking across the membrane [24], we investigated whether this transporter could be used for the transport of exogenous BrHPP inside Vy9V62 T cells. Using probucol, a specific inhibitor of ABCA1 that is not toxic to Vy9V62 T cells (Supplementary Fig. 7), we showed a total abrogation of calcium flux in Vy9V62 T cells activated by BrHPP in the presence of probucol (Fig. 4A), with a significant decrease in Fluo-8 AM intensity in Vy9V62 T cells treated with probucol before BrHPP stimulation (Fig. 4B). The involvement of ABCA1 in BrHPP stimulation was confirmed by a significant decrease in the expression of IFN-γ, CD107a and CD69 by purified resting Vy9V62 T cells stimulated by BrHPP, while stimulation with anti-CD3/CD28 beads was not affected (Fig. 4C (representative experiment) and Fig. 4D (pool of independent experiments)).

These results indicate that ABCA1 could be used by exogenous BrHPP to penetrate Vy9V62 T cells before self-activation.

DISCUSSION

Recent years have seen renewed interest in Vy9V62 T-cell therapies and new strategies using Vy9V62 T cells (reviewed in [9]). Despite increased knowledge of many components involved in the Vy9V62 T-cell activation process, the mechanism is still
Fig. 2 Self-activation of resting purified Vγ9Vδ2 T cells by exogenous BrHPP is dependent on TCR, BTN3A1, and BTN2A1. A Sequence of actions for calcium flux detection by video in an individual Vγ9Vδ2 T cell. B–E Time lapse of the Fluo-8 AM intensity representing the calcium flux in one Vγ9Vδ2 T-cell stimulated by ionomycin (B) or exogenous BrHPP (C). Three images were extracted from the time lapses at three different time points of the stimulation. D Mean Fluo-8 AM intensity per γδ T cell area (difference 5% max–5% min). E Time lapse of the Fluo-8 AM intensity representing the calcium flux in one Vγ9Vδ2 T-cell stimulated by BrHPP in the presence or absence of blocking antibodies against γ9TCR, BTN3A1, or BTN2A1. Asterisk (*) indicates p < 0.05, Student’s paired t test; ns not significant.
Fig. 3 Preexisting clusters of γ9TCR, BTN2A1 and BTN3A1 at the surface of resting VγVδ2 T cells and their modulation during BrHPP stimulation. A Immunofluorescence of γ9TCR, BTN2A1 and BTN3A1 on freshly purified isolated VγVδ2 T cells during BrHPP stimulation (representative images, γ9TCR: green fluorescence, BTN2A1: red fluorescence and BTN3A1: blue fluorescence and the merge) and colocalization profiles for each condition corresponding to the arrow. B Comparison of the colocalization of γ9TCR, BTN2A1 and BTN3A1 on freshly purified isolated VγVδ2 T cells during BrHPP or ionomycin stimulation quantified by Manders’ coefficient in ImageJ software. C Mean/area intensity of γ9TCR, BTN2A1, and BTN3A1 on freshly purified isolated VγVδ2 T cells during BrHPP or ionomycin stimulation. Asterisk (*) indicates $p < 0.05$, Student’s paired t test; ns not significant.
Fig. 4 Inhibition of ABCA-1 by probucol impairs BrHPP self-activation of resting purified Vγ9Vδ2 T cells. A Time lapse of the Fluo-8 AM intensity representing the calcium flux in one Vγ9Vδ2 T-cell stimulated by BrHPP and previously treated with Probucol (10 µM, overnight). B Mean Fluo-8 AM intensity per γδ T-cell area (difference 5% max–5% min). C, D Flow cytometry analysis of the expression of CD69 and CD107a and IFN-γ production by fresh purified Vγ9Vδ2 T cells activated by BrHPP or anti-CD3/CD28 beads previously treated with Probucol (10 µM, overnight). (C A representative experiment; D Four independent experiments; black: Vγ9Vδ2 T cells activated by BrHPP; white: Vγ9Vδ2 T cells activated by anti-CD3/CD28 beads). Asterisk (*) indicates p < 0.05, Student’s paired t test; ns not significant
elusive, and it must be known fully to understand the potential reasons for the failure of therapeutic strategies involving Vγ9Vδ2 T cells [31]. Among these components, butyrophilins, such as BTN3A1 and, more recently, BTN2A1, were shown to be key costimulatory molecules during Vγ9Vδ2 T-cell activation by PAg-sensing targets [18, 20, 21]. Several studies have demonstrated that BTN3A1 acts as a PAg sensor thanks to the interaction of its intracellular domain B30.2 with PAg [31–33] and to the cooperation of three BTN3 isoforms necessary for complete activation [19]. Although BTN3A1 was not shown to be directly linked to γ9TCR during PAg activation with a target cell, the interaction between BTN2A1 and TCR was shown to be essential in this process, as was the interaction between BTN2A1 and BTN3A1 [20, 21]. The interaction of BTN3A1 and γ9TCR is still an open question, as well as the possibility that BTN3A1 might serve as a chaperone molecule that brings another ligand to the cell surface, also not excluding the direct binding of BTN3A1 with γ9TCR [18].

All these discoveries were found in Vγ9Vδ2 T-cell activation in the presence of an accessory or a target cell, i.e., tumor cells naturally or pharmacologically overexpressing PAg or that were pretreated with exogenous PAg. Some early studies reported that Vγ9Vδ2 T cells could be activated directly by nonpeptide mycobacterial ligands or by synthetic BrHPP, but there was no evidence of direct interaction of these PAgs and the TCR or other membrane molecules on Vγ9Vδ2 T cells [34, 35]. Based on these studies and others showing proliferation and production of IFN-γ by resting pure Vγ9Vδ2 T cells or δ2TCR T-cell clones treated with exogenous PAg and IL-2 [36–38], it seemed important to depict the mechanism of this direct activation.

In this study, we confirmed that Vγ9Vδ2 T cells could be directly activated by exogenous PAgs, i.e., BrHPP. We detected calcium flux in isolated pure resting cells very quickly after contact with exogenous PAg. The increase in intracellular calcium concentration was clearly shown to reflect TCR engagement and T-cell activation. Indeed, this calcium modulation is necessary for cytoskeletal remodeling during TCR signaling and the establishment of T-cell responses (reviewed in ref. [39]). Flow cytometry detection of the expression of CD107a, IFN-γ and CD69 and the fratricide of Vγ9Vδ2 T cells following BrHPP stimulation was consistent with self-activation. This phenomenon was also confirmed by the impossibility of Vγ9Vδ2 T cells to play the role of presenting cells for autologous resting Vγ9Vδ2 T cells. Furthermore, we showed that a Vγ9Vδ2 T cell needs to be stimulated by PAg to kill another Vγ9Vδ2 T cell after trogocytosis. CD107a expression and dead cells were not observed for Vγ9Vδ2 T cells not prestimulated by exogenous PAg in coculture with Vγ9Vδ2 T cells pretreated with exogenous PAg and IL-2 [36–38], as shown in Fig. 1. A Vγ9Vδ2 T cell, therefore, cannot activate the TCR of another Vγ9Vδ2 T cell by its PAg-sensed butyrophilins.

Interestingly, we did not detect any increase in intracellular calcium concentration or expression of CD107a, IFN-γ and CD69 in Vγ9Vδ2 T cells treated with zoledronate for 4, 18, or 4 days. Aminobisphosphonate (ABP) treatments have been shown to activate Vγ9Vδ2 T cells but always in the context of contact between Vγ9Vδ2 T cells and accessory cells such as macrophages or dendritic cells in PBMCs or tumor cells. Indeed, accessory cells are generally pretreated with an ABP, such as zoledronate, to activate the production of endogenous PAg that can bind to the intracellular part of BTN [40–45]. The mechanism of action of zoledronate on Vγ9Vδ2 T cells remains unsolved: are Vγ9Vδ2 T cells unable to accumulate endogenous PAg, or are they unable to be activated by endogenous PAg?

PAg self-activation raised the question of the factors involved in this process. We showed here that γ9TCR, BTN3A1 and BTN2A1 were involved in BrHPP self-activation, as the application of blocking antibodies clearly decreased the calcium flux and expression of CD107a, IFN-γ, and CD69 on Vγ9Vδ2 T cells. Vγ9Vδ2 T-cell activation by anti-CD3/CD28 beads was, however, not impacted by blocking antibodies, therefore supporting the specific contribution of the three partners to BrHPP self-activation. Vγ9Vδ2 T cells are consequently able to respond to exogenous PAg through γ9TCR, BTN3A1 and BTN2A1, which are expressed at their surface. The modulation of the membrane expression of each of these membrane proteins also supports the PAg self-activation of Vγ9Vδ2 T cells. We have indeed shown that γ9TCR can be very quickly downregulated, similar to BTN2A1, while BTN3A1 was upregulated later. This is consistent with previous results showing the downregulation of the TCR following contact with PAg-sensing targets [46, 47] and the modulation of the expression of butyrophilins [19]. Modifications of the conformation of the butyrophilins in the presence of PAgs could also favor a weaker accessibility of antibodies to detect these proteins at the membrane surface [20, 21]. Moreover, very recent work has suggested that γ9TCR directly interacts with BTN2A1 at the target surface and not with BTN3A1, while the latter was shown to interact with BTN2A1 [20]. This could be accompanied by an upregulation in expression or a change in conformation later than for BTN2A1, as shown in Fig. 3C. The very rapid modulation of γ9TCR and BTN2A1 membrane expression in the first minutes after stimulation reflects the rapid modification of calcium flux observed under PAg stimulation. TCR engagement induces the modulation of calcium flux, which is mandatory for cytoskeletal remodeling, allowing calcium signaling as well as NKGD2 costimulation, which leads to T-cell responses [39, 48]. Early modulation of γ9TCR and BTN2A1 expression and modulation of BTN3A1 are thus consistent with all of these observations.

Furthermore, the preexisting colocalization of γ9TCR, BTN3A1, and BTN2A1, which form several clusters at the surface of Vγ9Vδ2 T cells, was not modified in response to PAg treatment, which is consistent with the successive activation of isolated Vγ9Vδ2 T cells reflected by an irregular calcium flux profile compared to the uniform profile under ionomycin stimulation.

The sequence proposed by different studies, i.e., sensing of the intracellular domain of BTN3A1, conformational modification of BTN3A1, interaction with BTN2A1 and then interaction of BTN2A1 with γ9TCR [21, 44] could therefore be applied during PAg self-activation on a single γδ T cell. However, to date, nothing has been shown regarding the possible interaction of BrHPP and the B30.2 intracellular part of BTN3A1, as has been demonstrated for other PAgs, such as (E)-1-hydroxy-2-methyl-but-2-ene 4-diphosphate (HMIPP) [32]. If BrHPP were able to interact with the B30.2 part of BTN3A1, the question is how this molecule can penetrate inside Vγ9Vδ2 T cells. ABCA1 was shown to physically associate with BTN3A1 on zoledronate-treated dendritic cells as a function of extracellular IPP release [24]. ABCA1, as another (ATP)-binding cassette (ABC) transporter, is a ubiquitous molecule expressed at the plasma membrane with bifunctional action, hydrolyzing ATP to ADP, and inorganic phosphate and exporting molecules such as cholesterol or calpains [49, 50]. ABCA1 can bind the extracellular domain of apolipoprotein A-I (apoA-I), which is required for the assembly of nascent high-density lipoprotein (HDL) mediating cholesterol transport [51]. Moreover, apoA-1 can bind F1-ATPase, which was shown to be an important molecule involved in Vγ9Vδ2 T-cell activation [52, 53]. These ABC transporters, which can also form complexes with other proteins to act as channels for export and import [49], can be inhibited by probucol. Indeed, several studies have shown that probucol was also shown to block ion channels, especially potassium channels, in cardiac cells [56, 57]. Using probucol, we showed in our study a clear decrease in Vγ9Vδ2 T-cell self-activation by exogenous BrHPP, with a total inhibition of calcium flux and CD107a and IFN-γ expression, while stimulation with anti-CD3/CD28 beads was not impaired by pretreatment with probucol. These results strongly suggested that exogenous BrHPP...
can penetrate inside Vγ9Vδ2 T cells through transporters inhibited by this prodrug. This can be extended to the BrHPP sensing of tumor cells thanks to the penetration of BrHPP through the same transporters, including ABCA1. Indeed, pretreatment with BrHPP in some lung cancer cell lines induced activation of Vγ9Vδ2 T cells [58].

Even though Vγ9Vδ2 T cells are now widely considered highly potent tumor effectors, γδ T cell-based therapies with exogenous PAg are lacking in efficacy. Self-activation with exogenous PAg such as BrHPP leading to the autologous killing of Vγ9Vδ2 T cells could therefore contribute to this failure, in addition to their possible exhaustion and/or anergy.

REFERENCES

1. Choudhary A, Davoadeau F, Moreau A, Peyrat MA, Bonneville M, Jotereau F. Selective lysis of autologous tumor cells by recurrent gamma delta tumor-infiltrating lymphocytes from renal carcinoma. J Immunol. 1999;165:3922–40.
2. Kabelitz D, Wesch D, Pitters E, Zöllner M. Characterization of tumor reactivity of human V gamma 9 delta 2 gamma delta T cells in vitro and in SCID mice in vivo. J Immunol. 2004;173:6767–76.
3. Sicard H, Ingoure S, Luciani B, Serraz C, Fournié J-J, Bonneville M, et al. In vivo immunomanipulation of V gamma 9 gamma delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J Immunol. 2005;175:5471–80.
4. Rei M, Pennington DJ, Silva-Santos B. The emerging Protumor role of BTN3A1, such as ABCA1, could be considered critical for the activation of pure resting V gamma delta T lymphocytes. Front Immunol. 2017;6:133585.
5. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T. Broad tumor-associated expression and recognition by tumor-derived T cells of MICA and MICB. Proc Natl Acad Sci. 1999;96:6879–84.
6. Wang J, Lin C, Li H, Li R, Wu Y, Liu H, et al. Tumor-infiltrating γδ T cells recognize endogenous mevalonate metabolites in tumor cells. J Immunol. 2004;173:6767–76.
7. Herrmann T, Fichtner AS, Karunakaran MM. An Update on the molecular basis of phosphoantigen recognition by Vγ9δ2 T cells. Cells. 2020;9. https://doi.org/10.3390/cells9060143.
8. Yang Y, Li L, Yuan L, Zhou X, Duan J, Xiao H, et al. A structural change in butyrophilin upon phosphoantigen binding underlies phosphoantigen-mediated Vγ9δ2 T cell activation. Immunology. 2019;150:1043–53.e5.
9. Dustin ML, Scoet E, Olive D. An X-ray vision for phosphoantigen recognition. Immunology. 2019;159:1026–8.
10. Lang F, Peyrat MA, Constant P, Davoadeau F, David-Arneline J, Poquet Y, et al. Early activation of human V gamma 9 delta 2 T cell broad cytotoxicity and TNF production by nonpeptide mycobacterial ligands. J Immunol. 1995;154:5986–94.
11. Espinoso E, Belmant C, Point F, Luciani B, Peyrat R, Fournié J-J, et al. Recognition by human V gamma 9 delta 2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science. 1990;250:1269–73.
12. Gertner J, Wiedemann A, Peyrat M, Fournié J-J. Human gammadelta T lymphocytes strip and kill tumor cells simultaneously. Immunol Lett. 2007;110:42–6.
13. Herrmann T, Fichtner AS, Karunakaran MM. An Update on the molecular basis of phosphoantigen recognition by Vγ9δ2 T cells. Cells. 2020. https://doi.org/10.3390/cells9060143.
14. Fisch P, Malkovsky M, Kovats S, Sturm E, Braakman E, Klein BS, et al. Recognition by human V gamma 9/V delta 2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science. 1990;250:1269–73.
15. Dustin ML, Scoet E, Olive D. An X-ray vision for phosphoantigen recognition. Immunology. 2019;159:1026–8.
sensitized, imatinib-sensitive, and imatinib-resistant chronic myelogenous leukemia cells. J Immunol. 2010;184:3260–8.
44. Sandstrom A, Peigné C-M, Léger A, Crooks JE, Konczak F, Gesnel M-C, et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity. 2014;40:490–500.
45. Nguyen K, Li J, Puthenveetil R, Lin X, Poe MM, Hsiao CC, et al. The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region. FASEB J. 2017;31:4697–706.
46. Sireci G, Espinosa E, Di Sano C, Dieli F, Fournié JJ, Salerno A. Differential activation of human gammadelta cells by nonpeptide phosphoantigens. Eur J Immunol. 2001;31:1628–35.
47. Alcover A, Alarcón B. Internalization and intracellular fate of TCR-CD3 complexes. Crit Rev Immunol. 2000;20:325–46.
48. Nedellec S, Sabourin C, Bonneville M, Scotet E. NKG2D costimulates human Vγ9Vδ2 T cell antitumor cytotoxicity through protein kinase C theta-dependent modulation of early TCR-induced calcium and transduction signals. J Immunol. 2010;185:55–63.
49. Efferth T. Adenosine triphosphate-binding cassette transporter genes in ageing and age-related diseases. Ageing Res Rev. 2003;2:325–46.
50. Hafiane A, Genest JHDL. Atherosclerosis, and emerging therapies. Cholesterol. 2013;2013:891403.
51. Scotet E, Martinez LO, Grant E, Barbaras R, Jenó P, Guiraud M, et al. Tumor recognition following Vγ9Vδ2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity. 2005;22:71–80.
52. Van tou rou J, Mookerjee-Basu J, Rolland C, Pont F, Martin H, Davrinche C, et al. Specific requirements for Vγ9Vδ2 T cell stimulation by a natural ade-nylated phosphoantigen. J Immunol. 2009;183:3848–57.
53. Favari E, Zanotti I, Zimetti F, Ronda N, Bemini F, Rusthöft D, Gh. Protubin inhibits ABCA1-mediated cellular lipid efflux. Arterioscler Thromb Vasc Biol. 2004;24:2345–50.
54. Delvecchio C, Bilan P, Nair P, Capone JP. LXR-induced reverse cholesterol transport in human airway smooth muscle is mediated exclusively by ABCA1. Am J Physiol Lung Cell Mol Physiol. 2008;295:L949–57.
55. Cubeddu LX. Drug-induced inhibition and trafficking disruption of ion channels: pathogenesis of QT abnormalities and drug-induced fatal arrhythmias. Curr Cardiol Rev. 2016;12:141–54.
56. Shi Y-Q, Fan P, Zhang G-C, Zhang Y-H, Li M-Z, Wang F, et al. Probucol-induced hERG channel reduction can be rescued by matrine and oxymatrine in vitro. Curr Pharm Des. 2020;25:4606–12.
57. Laplagne C, Mefford S, Figarol S, Michel M, Calvayrac O, Favre G, et al. Vγ9Vδ2 T cells activation through phosphoantigens can be impaired by a RHOB rerouting in lung cancer. Front Immunol. 2020;11:1396.