Mechanisms of catalytic reduction of CO₂ with heme and nonheme metal complexes

Shunichi Fukuzumi, Yong-Min Lee, Hyun S. Ahn and Wonwoo Nam

The catalytic conversion of CO₂ into valuable chemicals and fuels has attracted increasing attention, providing a promising route for mitigating the greenhouse effect of CO₂ and also meeting the global energy demand. Among many homogeneous and heterogeneous catalysts for CO₂ reduction, this mini-review is focused on heme and nonheme metal complexes that act as effective catalysts for the electrocatalytic and photocatalytic reduction of CO₂. Because metalloporphyrinoids show strong absorption in the visible region, which is sensitive to the oxidation states of the metals and ligands, they are suited for the detection of reactive intermediates in the catalytic CO₂ reduction cycle by electronic absorption spectroscopy. The first part of this review deals with the catalytic mechanism for the one-electron reduction of CO₂ to oxalic acid with heme and nonheme metal complexes, with an emphasis on how the formation of highly energetic CO₂⁺ is avoided. Then, the catalytic mechanism of two-electron reduction of CO₂ to produce CO and H₂O is compared with that to produce HCOOH. The effect of metals and ligands of the heme and nonheme complexes on the CO or HCOOH product selectivity is also discussed. The catalytic mechanisms of multi-electron reduction of CO₂ to methanol (six-electron reduced product) and methane (eight-electron reduced product) are also discussed for both electrocatalytic and photocatalytic systems.

Shunichi Fukuzumi earned a bachelor's degree and a Ph.D. degree in applied chemistry from the Tokyo Institute of Technology in 1973 and 1978, respectively. After working as a postdoctoral fellow from 1978 to 1981 at Indiana University in USA, he became an Assistant Professor in 1981 at Osaka University where he was promoted to a Full Professor in 1994. His research has been focused on electron transfer chemistry, particularly artificial photosynthesis. He is currently a Distinguished Professor at Ewha Womans University, a Designated Professor at Meijo University, and a Professor Emeritus at Osaka University.

Yong-Min Lee received his M.S. and Ph.D. degrees in Inorganic Chemistry from Pusan National University, Republic of Korea, under the supervision of Professor Sung-Nak Choi in 1999. After he worked at the Magnetic Resonance Centre (CERM) at the University of Florence, Italy, as a Postdoctoral fellow and Researcher under the direction of Professors Ivano Bertini and Claudio Lucchini from 1999 to 2005, he joined the Centre for Biomimetic Systems at Ewha Womans University, as a Research Professor in 2006. He is currently a Special Appointment Professor at Ewha Womans University since 2009.
1 Introduction

Solar-driven reduction of CO$_2$ has merited increasing attention due to the hike in the world-wide consumption of fossil fuels and the consequential escalation in the atmospheric CO$_2$ level. There have so far been extensive studies on solar-driven reduction of CO$_2$ (refs. 7–21) as well as electrocatalytic reduction$^{22–26}$ and catalytic hydrogenation of CO$_2$ in aprotic solvents and also in water.$^{27–34}$ Carbon dioxide can be reduced by one electron and one proton to produce a half equivalent of oxalic acid (H$_2$C$_2$O$_4$) with a standard reduction potential of -0.50 V vs. SHE [eqn (1)].$^{22–26}$ The two-electron reduction of CO$_2$ with two protons affords formic acid (HCOOH) [eqn (2)] or CO and H$_2$O [eqn (3)] with the standard reduction potentials of -0.25 and -0.11 V, respectively.34 Carbon dioxide can be further reduced by four, six, and eight electrons with four, six, and eight protons to produce formaldehyde [HCHO: eqn (4)], methanol [CH$_3$OH: eqn (5)] or ethylene [C$_2$H$_4$: eqn (6)], and methane [CH$_4$: eqn (7)] with the standard reduction potentials of -0.07, +0.02 or +0.06 V, and +0.17 vs. SHE, respectively.34 Therefore, the standard reduction potential is anodically shifted with an increased number of electrons and protons for CO$_2$ reduction, indicating that the involvement of a higher number of electrons and protons favours the CO$_2$ reduction thermodynamically. However, because the kinetic barrier generally increases with an additional number of electrons and protons involved in the reaction, appropriate catalysts are required to facilitate turnovers.

$$\text{CO}_2 + e^- + H^+ \rightarrow (1/2)\text{H}_2\text{C}_2\text{O}_4, \quad E^0 = -0.50 \text{ V vs. SHE} \tag{1}$$

$$\text{CO}_2 + 2e^- + 2H^+ \rightarrow \text{HCOOH}, \quad E^0 = -0.25 \text{ V vs. SHE} \tag{2}$$

$$\text{CO}_2 + 2e^- + 2H^+ \rightarrow \text{CO} + \text{H}_2\text{O}, \quad E^0 = -0.11 \text{ V vs. SHE} \tag{3}$$

$$\text{CO}_2 + 4e^- + 4H^+ \rightarrow \text{HCHO} + \text{H}_2\text{O}, \quad E^0 = -0.07 \text{ V vs. SHE} \tag{4}$$

$$\text{CO}_2 + 6e^- + 6H^+ \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O}, \quad E^0 = +0.02 \text{ V vs. SHE} \tag{5}$$

$$\text{CO}_2 + 6e^- + 6H^+ \rightarrow (1/2)\text{C}_2\text{H}_4 + 4\text{H}_2\text{O}, \quad E^0 = +0.06 \text{ V vs. SHE} \tag{6}$$

$$\text{CO}_2 + 8e^- + 8H^+ \rightarrow \text{CH}_4 + 2\text{H}_2\text{O}, \quad E^0 = +0.17 \text{ V vs. SHE} \tag{7}$$

CO$_2$ can also be reduced further by 10 electrons with 10 protons to produce methanol.

Among many catalysts for CO$_2$ reduction, metalloporphyrinoid complexes are suitable for mechanistic studies, because metalloporphyrinoids such as heme have intense absorption bands, which are sensitive to the oxidation states of metals and porphyrinoid ligands.$^{35–58}$ Not only heme but also nonheme metal complexes have merited significant interest as bioinspired catalysts, which are studied in many redox reactions.$^{26,38–73}$ This review is intended to focus on the mechanisms of both electrocatalytic and photocatalytic reduction of CO$_2$ with heme and nonheme metal complexes. The catalytic mechanisms are discussed not only for the one-electron/to-proton and two-electron/to-two-proton reductions of CO$_2$ [eqn (1) and (3)] but also for multi-electron/multi-proton pathways [eqn (4)–(7)]. The electrocatalytic and photocatalytic efficiencies are discussed based on the overpotentials and quantum yields, respectively.

2 Catalytic one-electron reduction of CO$_2$ to oxalic acid

The standard one electron reduction potential of CO$_2$ to CO$_2^-$ is as negative as -2.21 V vs. SCE ($[-1.97 \text{ V vs. SHE}]$ in N,N-dimethylformamide (DMF)) and -1.90 V vs. SHE in water.75 The dimerization of CO$_2^-$ affords oxalate dianions (C$_2$O$_4^{2-}$).76 Therefore, catalysts are required to avoid the formation of highly energetic CO$_2^-$ and secure a low energy pathway en route to oxalic acid.

AgII and PdII complexes of both 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) and 5,10,15,20-tetraphenylporphyrin (TPP) were reported to act as catalysts for one-electron reduction of CO$_2$ to produce oxalic acid in CH$_3$Cl$_2$ containing 0.10 M tetra-butylammonium fluoride (TBAF) at an applied potential of -1.65 and -1.80 V vs. SCE, respectively.77 In comparison with

Hyun S. Ahn earned his undergraduate degrees in chemistry and chemical engineering from the University of Washington in Seattle (2008). He then pursued his Ph.D. studies at the University of California at Berkeley, in the field of inorganic chemistry under the supervision of Prof. T. Don Tilley. Upon conferral of his Ph.D. in 2013, Hyun continued his research as a postdoctoral scholar at the University of Texas at Austin with Prof. Allen J. Bard. He is currently an assistant professor of chemistry at Yonsei University. Hyun’s research interest spans across the fields of catalysis, photoelectrochemistry, bio-electrochemistry, and energy conversion technologies.

Wonwoo Nam earned his B.S. (Honours) degree in Chemistry from California State University, Los Angeles, and his Ph.D. degree in Inorganic Chemistry from the University of California, Los Angeles (UCLA) under the supervision of Professor Joan S. Valentine in 1990. After working as a postdoctoral fellow at UCLA for one year, he became an Assistant Professor at Hong Ik University in 1991. In 1994, he moved to Ewha Womans University, where he is currently a Distinguished Professor. His current research has been focused on the dioxygen activation, water oxidation, and important roles of metal ions in bioinorganic chemistry.
AgII(TPP) and PdII(TPP), neither CuII(TPP) nor NiII(TPP) showed catalytic activity for the electrochemical CO\textsubscript{2} reduction.77

In contrast to CuII(TPP), a dinuclear nonheme copper(II) complex ([4]4+) can catalyse the one-electron reduction of CO\textsubscript{2} in acetonitrile (MeCN) in the presence of LiClO\textsubscript{4} to produce lithium oxalate at an applied potential of −0.03 V vs. NHE.78 The electrochemical reduction of [4]4+ at a cathodic peak potential (\(E_{pc}\)) of +0.06 V vs. NHE (−0.06 V vs. SHE) produced a dinuclear copper(i) complex ([1]2+) that is oxidized in air selectively by CO\textsubscript{2} (rather than O\textsubscript{2}) to yield a tetranuclear copper(II) complex containing two bridging CO\textsubscript{2}-derived oxalate groups ([2]4+) as shown in Scheme 1.78 The treatment of the copper(II) oxalate complex in MeCN with a soluble lithium salt results in the quantitative precipitation of lithium oxalate.78 DFT calculations suggest the catalytic mechanism (Scheme 2) in which one CO\textsubscript{2} molecule is first reduced cooperatively by two Cu(i) metals to give a fully delocalized mixed-valence Cui/CuII(CO\textsubscript{2}) radical anion intermediate, followed by further partial reduction of the metal-ligated CO\textsubscript{2} molecule and (metal-mediated) nucleophilic-like attack on the carbon atom of an incoming second CO\textsubscript{2} molecule to afford the dinuclear Cu[n]-oxalate product ([2]4+).79

A binuclear metallacyclic copper complex was reported to be capable of selectively capturing CO\textsubscript{2} from air and reduce CO\textsubscript{2} to oxalate, in the form of an oxalate-bridged complex. The oxalate-bridged complex releases oxalic acid when it is treated with dilute mineral acid to regenerate the original copper complex.80

It has also been reported that the one-electron reduction of chalcogen-bridged tricopper cyclophanates (Cu\textsubscript{3}EL: L \(=\) tris(β-diketiminate; E \(=\) S, Se) (the one-electron reduction potential: \(E_{red} = −0.89\) and −1.04 V vs. SCE, respectively) by CoCp\textsubscript{2} (one-electron oxidation potential: \(E_{ox} = −1.94\) V vs. Fei/Fe0), FeCp\textsubscript{2}(C\textsubscript{6}Me\textsubscript{6}) (\(E_{ox} = −2.07\) V vs. Fei/Fe0), or KC\textsubscript{8} (\(E_{ox} < −3.7\) V vs. Fei/Fe0) in the presence of KPF\textsubscript{6} in DMF afforded [Cu\textsubscript{3}EL]2-, which reacts with CO\textsubscript{2} to yield exclusively C\textsubscript{2}O\textsubscript{4}2- (95% yield, TON = 24) and regenerate Cu\textsubscript{3}EL.81 Catalysis is observed employing KC\textsubscript{8} and FeCp(C\textsubscript{6}Me\textsubscript{6}) as reductants, but only in the presence of KPF\textsubscript{6}.

3 Electrocatalytic reduction of CO\textsubscript{2} to CO with metalloporphyrins

Iron tetraphenylporphyrin [Fe(TPP)] (Fig. 1) was reported to catalyse the electrochemical reduction of CO\textsubscript{2} at the Fei/Fe0 redox potential (−1.64 V vs. SCE) in DMF.82 However, the catalytic efficiency was very low and the catalytic activity of Fe(TPP) was rapidly lost during preparative-scale electrolysis.83 The addition of Mg2+ ions to the solution resulted in improved catalytic efficiency, resulting in a CO faradaic yield of ca. 60–70% and the rest in formate.84 The presence of Lewis acids, such as Li+, Na+, Ba2+, and Al3+ ions, also improved the catalytic efficiency. The addition of CF\textsubscript{3}CH\textsubscript{2}OH (1.47 M) resulted in a large increase of the Fei/Fe0 current to reach an \(i_{p}/i_{p}^{0}\) value of 131.82 The \(i_{p}/i_{p}^{0}\) value is given by eqn (8),

\[
i_{p}/i_{p}^{0} = 2.24(k_{app}[CO_{2}]RT/Fv)^{1/2}
\]

Fig. 1 Iron tetraphenylporphyrin derivatives used for electrocatalytic reduction of CO\textsubscript{2} to CO. Reprinted with permission from ref. 86. Copyright 2012. The American Association for the Advancement of Science.
The electrocatalytic efficiency of CO₂ reduction to CO was improved by the introduction of phenolic groups in all ortho and ortho’ positions of the phenyl groups of iron tetraphenylporphyrin. The electrocatalytic reduction of CO₂ with iron 5,10,15,20-tetrakis(2-hydroxyphenyl)porphyrin (FeTDHPP) in Fig. 1) in the presence of 2 M H₂O in CO₂-saturated DMF ([CO₂] = 0.23 M) afforded a CO faradaic yield of 94% with a turnover number (TON) of 5.0 × 10⁴ for 4 hours of electrolysis at −1.16 V vs. SHE, which is the most efficient among other CO₂ reduction catalysts. When the hydroxy groups in FeTDHPP were replaced by methoxy groups (FeTDMPP in Fig. 1), the catalytic activity of FeTDMPP was decreased by a factor of around 1 billion as compared to that of FeTDHPP with hydroxyl groups. Therefore, the enhanced catalytic activity of FeTDHPP was attributed to the high local concentration of protons associated with the phenolic hydroxy substituents.

The introduction of four positively charged trimethylammonium groups on the phenyl groups of iron tetraphenylporphyrin resulted in further improvement of the electrocatalytic activity of CO₂ reduction by means of coulombic stabilization of the initial Fe⁰-CO₂ adduct. When four positively charged trimethylammonium groups were introduced at the ortho positions of the TPP groups (Fe-o-TMA in Fig. 2), the maximum TOF was as high as 10⁶ s⁻¹ at a low overpotential of 0.220 V. The catalyst standard potential (E°ₐ₄) of Fe-o-TMA was determined to be −0.944 V vs. SHE, which is the most positive ever reported for an iron porphyrin CO₂-reduction catalyst. The para-substituted analogue (Fe-p-TMA in Fig. 2) exhibited an E°ₐ₄ value of −1.263 V vs. SHE, which is much more negative than that of Fe-o-TMA, due to smaller coulombic stabilization of the initial Fe³⁺-CO₂ adduct. The importance of the coulombic stabilization for the electrocatalytic activity of CO₂ reduction was further demonstrated by the introduction of four negatively charged sulfonate groups on the phenyl groups of iron tetraphenylporphyrin (Fe-p-PSULF in Fig. 2), which resulted in a more negative E°ₐ₄ value (−1.428 V vs. SHE).

In contrast to the electrocatalytic reduction of CO₂ in nonaqueous aprotic solvents such as DMF (vide supra), the electrocatalytic reduction of CO₂ in water always competes with the reduction of aqueous protons to hydrogen (H₂). The TOF of the electrocatalytic CO₂ reduction in an aqueous solution was reported to be much smaller compared to that in DMF solution because of the lower solubility of CO₂ in water. A successful example of selective electrocatalytic reduction of CO₂ to CO over proton reduction was reported by employing Fe-p-TMA (Fig. 2) as a catalyst. This preparative-scale electrolysis was performed in water at pH 6.7 (adjusted by KOH addition) with an applied potential of −0.97 V vs. NHE for 4 h. The average faradaic yields were CO (90%), H₂ (7%), acetate (1.4%), formate (0.7%) and oxalate (0.5%). When pH was adjusted to 3.7 by the addition of 0.1 M formic acid buffer, the electrolysis with Fe-p-TMA resulted in the exclusive proton reduction to produce H₂ over the CO₂ reduction.

The selective electrocatalytic reduction of CO₂ to CO (over proton reduction) under acidic conditions was made possible with a cobalt(u) chlorin complex, Co⁷⁺(Ch), adsorbed on multiwalled carbon nanotubes (MWCNTs) as a catalyst (Fig. 3).
The electrolysis of a CO$_2$-saturated aqueous solution (pH = 4.6 with Na$_2$SO$_4$) employing a glassy carbon working electrode modified with CoII(Ch)@MWCNT (0.01 μmol) afforded mainly CO with a maximum TON of 1500 and TOF of 100 h$^{-1}$ and little H$_2$ at −1.1 V vs. NHE (＝ −1.34 V vs. SCE). The faradaic yield of CO for the initial 2 h was determined to be as high as 89%, whereas that for H$_2$ production was only 11% at pH 4.6. The high selectivity for CO was maintained at pH 3.6, although H$_2$ became the main product at pH 2.0.

When MWCNTs were replaced by reduced graphene oxide (rGO), which is a planar π-system, as a support material of CoII(Ch), the CO yield became significantly smaller (TON = 350 for CO and 250 for H$_2$ at 20 h) (Fig. 4b) compared to that with MWCNTs (Fig. 4a). Thus, the three dimensional assembly of MWCNTs with CoII(Ch) (Fig. 3b) on the electrode surface is essential for the selective electrocatalytic reduction of CO$_2$ to CO. The π–π interaction between MWCNTs and CoII(Ch) is presumed to provide a suitable hydrophobic environment for more selective binding of CO$_2$ over protons compared to the system with two-dimensional rGO as a support material.

FeTDHPP (Fig. 1), a known CO$_2$ reduction catalyst in DMF, also exhibits electrocatalysis in a CO$_2$-saturated aqueous solution (pH 7.3, NaHCO$_3$ 0.5 M) at an applied potential of −1.03 V vs. NHE (η = 480 mV), selectively producing CO over H$_2$. A surface immobilisation tactic was implemented for the FeTDHPP catalyst on carbon surfaces by removing one phenyl group and appending a pyrene unit through a short linker. This immobilisation boosted both selectivity (96 : 4 CO : H$_2$ ratio) and overall conversion (97% total faradaic yield).

The cobalt phthalocyanine (CoPc) complex when adsorbed on MWCNTs was demonstrated to be an electrocatalyst for CO$_2$ reduction to CO at −0.63 V vs. RHE, with a remarkable TON of 9.7 × 104 and a faradaic yield exceeding 90%. Compared to CoPc/MWCNT (2.5%), CoPc/rGO (2.2%) and CoPc/CB (3.3%) (CB: carbon black) exhibited less than one-third of the current density at −0.59 V vs. RHE with a 10% lower faradaic yield of CO and inferior stability. The higher graphic nature of CNTs compared to those of either rGO or CB allows stronger π–π interactions with CoPc and higher electron conduction, resulting in superior electrocatalysis.

The covalent grafting of an Fe porphyrin on MWCNTs also led to efficient electrocatalytic reduction of CO$_2$ to CO selectively in water (pH 7.3) at an overpotential of 0.5 V.

Remarkably, the redox silent zinc(II) complex of 5,10,15,20-tetramesitylporphyrin (ZnTPP) was also reported as an effective electrocatalyst that afforded faradaic efficiencies as high as 95% for CO$_2$ reduction to CO at −1.7 V vs. SHE in DMF/H$_2$O (9 : 1 v/v). The covalent grafting of an Fe porphyrin on MWCNTs also led to efficient electrocatalytic reduction of CO$_2$ to CO selectively in water (pH 7.3) at an overpotential of 0.5 V.

4 Electrocatalytic reduction of CO$_2$ to CO with nonheme metal complexes

A nonheme cobalt complex with a macrocyclic aminopyridine (I in Scheme 5) can also catalyse the electrochemical reduction of CO$_2$ to CO with a faradaic efficiency of 98 ± 2% and 1.22(1)
of the secondary amine is crucial for catalysis. The potential of the CoI/0 couple, resulting in a decrease in the presence of NH groups leads to a positive shift in the overpotential for CO2 reduction. Complex I, indicating that the presence of the pendant NH moiety of the secondary amine is crucial for catalysis. Moreover, the presence of NH groups leads to a positive shift in the reduction potential of the Co0 couple, resulting in a decrease in the overpotential for CO2 reduction. Complex I is reduced by one electron to generate the Co1 complex, which is further reduced to the Co0 form. CO2 binds to the Co0 complex to produce the CO2 adduct ([Co(CO2)]0, III in Scheme 5), which is stabilised by intramolecular H-bonds of the pendant secondary amines.

The successive protonation of the CO2 complex affords CO and H2O to regenerate complex I.

The [CoII(qpy)(H2O)2]2+ (qpy = 2,2’:6,2’’:6’,2’’’-quaterpyridine) complex also efficiently catalyses the electrochemical CO2-to-CO conversion in an MeCN solution in the presence of weak Brønsted acids. Controlled potential electrolysis (CPE) was performed at −1.1 V vs. SCE in the presence of 3 M PhOH, corresponding to 140 mV overpotential. CO was produced with 96% catalytic selectivity (a small amount of H2 (4%) was obtained as the only byproduct) and 94% faradaic efficiency. The [CoII(qpy)(H2O)2]2+ complex is an excellent catalyst, at a very low overpotential, better than active Mn complexes (vide infra), being only surpassed by the Fe tetraphenylporphyrin bearing four trimethylammonium groups in the ortho position of each phenyl (complex a in Fig. 6).

Rhenium bipyridine complexes (Re(bpy)(CO)3Cl and its derivatives) and manganese complexes (Mn(bpy)(CO)Br and its derivatives) are known to act as catalysts for electrocatalytic reduction of CO2 to CO. The catalytic mechanisms have been investigated extensively using various spectroscopic methods including UV/Vis absorption and pulsed-EPR techniques (2P-ESEEM and HYSCORE) combined with DFT calculations. A key intermediate in the catalytic cycle of CO2 reduction is demonstrated to be a low spin MnII-hydroxycarbonyl complex after the oxidative addition of CO2 and H+ to a Mn0 carbonyl dimer (Scheme 6).

The catalytic activity of a manganese complex fac-[MnBr(4,4’-bis(phosphonic acid)-2,2’-bipyridine)[CO3]] (MnP) for CO production was improved when immobilized on a mesoporous TiO2 electrode (TiO2/MnP). Controlled potential electrolysis of TiO2/MnP at Eapp = −1.7 V vs. Fe3+/Fe2+ (n = 0.42 V) under CO2 in MeCN/H2O (19/1) for 2 h passed an average charge of 1.10 ± 0.25 Coulombs with a faradaic efficiency of 67 ± 5% and a TON of 112 ± 17 for CO. The faradaic yield of H2 for this system was 12.4 ± 1.4% and formate was not detected by ion chromatography.
Minireview

Chemical Science

Reprinted with permission from ref. 98. Copyright 2018, American Chemical Society.

Mineralogical and Carbon Dioxide Reduction: Catalysts and Selectivity Tuning

The high activity and low overpotential of TiO2/MnP are suggested to result from temporary desorption of the catalyst, followed by dimerization and re-anchoring within mesoporous TiO2, because phosphonic acid modified molecules, such as MnP, display some lability when bound to TiO2.115 The high local concentration of MnP may also place the metal centres in an environment where they are predisposed to dimerization upon reduction.114

The lowest overpotential for the electrocatalytic reduction of CO2 to CO was achieved by using a manganese complex, [Mn{4,4′-di[1H-pyrrol-3-yl]carbonate}-2,2′-bipyridine}(CO)3(MeCN)][PF6]− loaded onto conductive MWNTs ([Mn(MeCN)]/MWNT), which exhibited catalysis at −0.21 V vs. SHE (overpotential of about 100 mV for CO production).116 The MWNTs together with surface adsorbed K+ ions provided an environment to stabilize CO2 adjacent to the Mn complex and significantly lowered the overpotential for CO2 reduction in an aqueous solution.116

A case of selectivity tuning was observed as a function of ligand type when Ni(II) complexes in Fig. 7 were employed as catalysts for CO2 reduction.127 Controlled potential electrolyses were carried out with each member of the catalyst series (Fig. 7) in CO2-saturated MeCN solutions containing 2% H2O.117 The 15-membered macrocyclic complex [3-Ni] gave high selectivity for CO2 reduction to CO with a faradaic efficiency of 87%, the remaining 11% faradaic yield resulted in H2 generation at an applied potential of 2.44 V vs. Fc/Fc+.116 On the other hand, 1-Ni supported by a non-macrocyclic ligand gave a faradaic efficiency of 93% for H2 and only 5% for CO, whereas the less rigid 16-membered macrocyclic complex (2-Ni) exhibited moderate selectivity for both CO (56%) and H2 (43%) evolution in the presence of CO2 and H2O.117 Thus, increased rigidity of the redox-active macrocycle leads to enhanced selectivity for CO2 reduction to CO over the competing hydrogen evolution reaction.117

The first electron reduction of 1-Ni is calculated to be that of the metal center and the second electron reduction is calculated to be ligand-based to produce the [Ni(II)]− species. The [Ni(II)]− complex reacts with H+ to form a metal hydride, from which H2 is produced through a reaction with another H+.117 In contrast, the first and second reductions of 3-Ni are calculated to be both ligand-centered, and the resulting [Ni(II)(L2)]− complex is not capable of metal hydride generation, and therefore leads to no H2 production. The two-electron reduced species of 2-Ni is best described by resonance forms [Ni(II)(L2)]− ↔ [Ni(II)2], which are capable of producing both CO and H2.117

A nickel complex supported by a pincer-type carbene–pyridine–carbene ligand also exhibited high selectivity for the electrocatalytic reduction of CO2 to CO over proton reduction.119 A series of NiII macrocycle complexes structurally similar to [Ni(cyclam)2]2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) also act as selective electrocatalysts for CO production over H2 at a mercury pool working electrode in an aqueous solution.119-123 At pH 5, with an applied potential of −0.96 V vs. NHE (overpotential of −0.55 V), the Ni complexes are efficient, having high faradaic efficiencies for the selective reduction of CO2 to CO.119 Hg provides favorable noncovalent dispersive interactions with the cyclam ligand to destabilise the poisoned CO-bound form of the catalyst, leading to enhanced catalytic reactivity.122 The binding of CO2 to Ni(II) complexes has been

Fig. 6 Comparison of the metal catalysts (a, b,98 c,99 d,99 e,100 f,101 g,102 and h103) for the CO2-to-CO electrochemical conversion in DMF or MeCN by means of their catalytic Tafel plots (log TOF as a function of the overpotential (η = E/(CO2/CO) − E)). d′ dotted lines: data for complex d in the presence of 0.1 M Mg2+. Reprinted with permission from ref. 98. Copyright 2018, American Chemical Society.

Fig. 7 Nickel(II) catalysts supported by non-macrocyclic and macrocyclic bipyridyl-NHC ligands. Reprinted with permission from ref. 117. Copyright 2018, Royal Society of Chemistry.

Scheme 6 The catalytic cycle for two-electron reduction of CO2 to CO with [Mn(bpy)(CO)]3+. Reprinted with permission from ref. 113. Copyright 2014, WILEY-VCH Verlag GmbH.
exensively studied by pulse radiolysis measurements to demonstrate that the formation of the Ni(i)-CO2 adduct is in equilibrium between the Ni(i) complex and free CO2,123,124

5 Electrochemical reduction of CO2 to HCOO with heme and nonheme metal complexes

The two-electron/two-proton reduction of CO2 also affords formate (HCOO\(^-\)) as well as CO.125 The reduced metal complex (M\(^-\)) may react directly with CO2 to produce the M–CO2\(^-\) adduct that is further reduced with H\(^+\) to evolve CO and H2O (Scheme 7) as in the case of the iron porphyrin in Scheme 3.125 Alternatively M\(^-\) can react with H\(^+\) to generate the hydride complex (MH) capable of direct reaction with a proton to produce H2 or alternatively couple with CO2 to produce HCOO\(^-\) (Scheme 7).125 Whether the catalytic two-electron/two-proton reduction of CO2 affords CO or HCOO\(^-\) depends on the interplay of metals and ligands of the implemented catalyst.126

A series of metalloprotoporphyrins (MPPs in Fig. 8) were employed as catalysts for the electrochemical reduction of CO2 in an aqueous solution. Formic acid was not obtained when CrPP, MnPP, CoPP and FePP were used as catalysts. In the case of CoPP, CO was produced selectively at pH 3 with high faradaic efficiency.126 Exercising the reaction with InPP, CrPP, SnPP and GaPP as catalysts, no gaseous products other than H2 were observed. When SnPP, InPP and RhPP were employed as catalysts, however, significant amounts of formic acid were produced depending on the pH as shown in Fig. 9, where the faradaic efficiency of HCOO\(^-\) with InPP at pH 9.6 was optimal, reaching a value close to 70%.126 At very low pHs, hydrogen evolution dominated, resulting in little or no HCOOH production.126 At very alkaline pHs, the H2 production also seemed to be dominant, leading to poor selectivity towards HCOO\(^-\).126 The catalytic mechanisms for HCOO\(^-\) production with InPP, SnPP and RhPP have not yet been clarified.

In contrast to iron porphyrins that catalyse the two-electron reduction of CO2 to CO (Scheme 1), a nonheme iron(n) chloride complex bearing a 6,6'-di(3,5-di-tert-butyl-2-hydroxybenzene)-2,2'-bipyridine (\(^{66}\)dbhbpy) ligand, Fe\(^{66}\)dbhbpyCl, catalyses the electrochemical two-electron reduction of CO2 to formate in the presence of phenol (0.50 M) as a proton source in DMF with a faradaic efficiency of 68 ± 4% together with H2 as a minor product (30 ± 10% faradaic efficiency) and minimal CO (1.1 ± 0.3% faradaic efficiency) at −2.5 V vs. Fe/Fe\(^+\).127 The first one-electron reduction of Fe\(^{66}\)dbhbpyCl [Fe\(^{66}\)Cl/Fe\(^{66}\)Cl\(^-\); \(E^0 = −0.89\) V vs. Fe/Fe\(^+\)] exhibited a Nernstian PHOH-dependent electrochemical response, which suggests that the reduction is coupled with protonation of a bound phenolate moiety of the ligand framework by a PhOH proton donor as shown in Scheme 8.127 At the second reduction potential [\(E^0 = −2.09\) V vs. Fe/Fe\(^+\)], a second protonation event occurs at the metal centre to produce the iron(III)-hydride complex. At the third reduction potential (\(E^0 = −2.65\) V vs. Fe/Fe\(^+\)), the catalytic activity was observed in the presence of PhOH as a sacrificial proton donor when the Fe(n)-hydride complex reacts with CO2 to produce the formate complex from which formate is released to regenerate the Fe(n) complex (Scheme 8).127 A kinetic isotope effect (KIE) of 4.8 ± 0.9 was observed when PhOD is used instead of PhOH, indicating that the insertion of CO2 into the Fe(n)-hydride complex is the rate-determining step.127 Fe(n)-hydride complexes were reported to hydrogenate CO2 to produce formate.128-130 An iron cluster hydride [HFe\(_6\)N(CO)\(_{12}\)]\(^-\) is also reported as an effective catalyst for the electrochemical reduction of CO2 to formate under mild conditions of pH 7 buffered aqueous solution and an applied potential of −1.2 V vs. SCE.133,134

![Scheme 7](image)

Scheme 7 The reaction pathway of two-electron reduction of CO2 with a metal complex (M) to produce HCOO\(^-\) or CO. Reprinted with permission from ref. 125. Copyright 2017, American Chemical Society.

![Fig. 8](image)

Fig. 8 Chemical structure of metalloprotoporphyrins (MPP). Reprinted with permission from ref. 126. Copyright 2017, Elsevier.

![Fig. 9](image)

Fig. 9 Faradaic efficiencies for the electrocatalytic reduction of CO2 to HCOOH or HCOO\(^-\) with RhPP, InPP and SnPP, determined at \(t = 10\) min, at \(E = −1.5\) V vs. RHE as function of pH. Reprinted with permission from ref. 126. Copyright 2017, Elsevier.
Cobalt complexes ([CpCo(PR₂NR₂I⁺)] containing diphosphine ligands (PR₂NR₂) with two pendant amine residues catalyse the production of formic acid in DMF/water mixtures with a faradaic efficiency of 90 ± 10% at 500–700 mV overpotentials. ¹³³ The [CpCo(P₂NR₂)]⁺ complex with R = cyclohexyl and R' = benzyl exhibited the best catalytic activity with a TON for HCOOH of 23 and 15 in the presence of 1.1 and 0.56 M water, respectively, after electrolyses at −2.25 V vs. Fe/Fe⁺ for 1 h. ¹³³ The electrocatalytic mechanism for CO₂ reduction to formate is proposed as shown in Scheme 9, where a CoII–hydride intermediate hydrogenates CO₂ to produce formate. After two successive electron transfers, a Co¹ species (complex III in Scheme 9) is generated. This is then protonated and further reduced to form a cobalt(ii)–hydride (Co⁰–H) complex (complex V in Scheme 9). ¹³³ DFT calculations indicated that the protonation of the pendant amine in either the CoII or Co¹ states allows two other pathways via intermediates III' and IV, respectively, through intramolecular proton transfer to the cobalt centre with the reduction of the metal center. ¹³³ The Co⁰–H species V then reacts with CO₂, generating complex VI. Internal hydride transfer from cobalt to CO₂ then yields complex VII. ¹³³ The release of formic acid from complex VII regenerates the CoII species (complex II in Scheme 9) and completes the catalytic cycle. ¹³³

The product selectivity of electrocatalytic reduction of CO₂ to CO vs. HCOOH with the [CpCo(P₂NR₂)]⁺ complex containing diphosphine ligands (P₂NR₂) with two pendant amine residues is enhanced to enhance the production of formate (Scheme 10). ¹³⁴ The Mn–CNT hybrid catalyst exhibited much higher activity for electrocatalytic reduction of aqueous CO₂ with TONs of up to 1790 ± 290 for CO (η = 550 mV) and up to 3920 ± 230 for formate (η = 590 mV), ¹³⁴ compared to electrolyses in the absence of carbon nanotubes. ¹³³–¹³⁷

When a Ni(bis-dithiolene) complex with a quinoxaline-pyran-fused dithiolene ligand (qpdt²⁻) (see the X-ray crystal structure in Fig. 10) was employed as a CO₂ reduction catalyst using a Hg/Au amalgam electrode, formate as the major product together with minor amounts of CO and H₂ was observed at reasonable overpotentials with good faradaic yield and notable stability. ¹³⁸ The onset potential of the catalytic wave with...
[Ni(qpdt)2]− was observed at approximately −1.7 V vs. Ag/AgCl (−1.5 V vs. SHE), with a halfwave potential at −1.80 V and a peak at −2 V. The overpotential was determined to be ∼340 mV by comparing the experimental onset potential to the standard potential of the CO2/HCOOH couple in MeCN in the presence of trifluoroethanol as a proton source. During the electrolysis, a complete reduction of the ligand occurred, followed by the subsequent pyran ring opening to produce the real catalyst ([NiII(L)2]3−; L is a pyran ring-opened ligand produced from qpdt2− by electrolysis) as shown in Scheme 11. A Ni-hydride intermediate [NiIII(H)(L)2]2− was proposed to be a catalytically relevant species for CO2 reduction to formate, which was produced by one-electron reduction of [NiIII(L)2]3−, followed by the reaction of [NiHI(L)2]Cl with H+. The [NiIII(H)(L)2]2− species reacts with CO2, followed by a release of HCOO− and regeneration of [NiII(L)2]2− upon the one-electron reduction at −0.51 V vs. Ag/AgCl.

6 Further electrocatalytic reduction of CO to fuels with metalloporphyrins

The electrochemical reduction of CO2 to CO and its further reduction to methane were made possible by using a simple Co protoporphyrin molecular catalyst immobilized onto a pyrolytic graphite (PG) electrode (CoPP-PG). In an aqueous solution with a pH value of 1, the faradaic efficiency for methane production is larger than that for CO, but the dominant product is H2. At pH = 3, CO became a major product, especially at less cathodic potentials, where the faradaic efficiency for CO was 40%. The efficiency towards CO can be further increased by performing the experiment at higher CO2 pressure (10 atm), which leads to a faradaic efficiency of 60% at a potential of −0.6 V (Fig. 11).

The mechanism of catalytic CO2 reduction to CO by CoPP may be similar to that of iron porphyrins in Scheme 1. The reduction of CoIIHCOOH to [CoIIPP]− is coupled with CO2 binding to afford the CO adduct that reacts with water to produce the CoIIHP–C(O)OH adduct, which is further reduced to produce the CoIIIP–HCHO adduct as shown in Scheme 12. The two-electron-two-proton reduction of the CoIIHP–CO adduct affords the CoIIIP–HCHO adduct that is further reduced by four electrons with four protons to finally yield methane and water, accompanied by the regeneration of CoIIHP (Scheme 12). The formation of CO is more favoured than H2 at higher pHs. However, further reduction of CO is more favoured at a low pH. Thus, the faradaic yield of methane was higher than that of CO at pH 1, while H2 remained the major product.

Crystallized copper phthalocyanine supported on carbon black (CuPc/CB) was reported to exhibit high selectivity for C2H4 with a maximum faradaic efficiency of 25% under atmospheric pressure at −1.6 V vs. Ag/AgCl (−1.4 V vs. SHE), while CH4 and CO were also generated as minor products (Fig. 12). In contrast to the crystalline form of CuPc/CB, the noncrystalline CuPc/CB catalyst showed a much lower selectivity and reactivity for C2H4 production. When noncrystalline CuPc was treated with MilliQ water and chloroform to completely restore its crystallinity, the restored crystalline CuPc/CB catalyst afforded faradaic efficiency and partial current density values as high as those of the original crystalline CuPc/CB catalyst. These results indicate that catalyst crystallinity is crucial for the selective conversion of CO2 to C2H4, because the C–C bond forming step to produce C2H4 from CO is likely mediated by two metal centers.
Heterobimetallic cavities formed by the face-to-face coordination of thiol-terminated iron porphyrins on copper electrodes via self-assembly of supramolecular cages (M = Fe in Fig. 13) have made it possible to convert CO to C₂ products via C–C bond formation in aqueous electrochemical CO reduction with high faradaic efficiency (83% total with 57% to ethanol) and current density (1.34 mA cm⁻² / C₀²) at a potential of −0.40 V vs. RHE.¹⁴⁹ The cage-functionalized electrodes afforded an order of magnitude improvement in both selectivity and activity for electrocatalytic CO reduction compared to their parent copper surfaces.¹⁴⁹ Control analogues that lack thiol binding groups as well as positional isomers favouring edge-on binding or direct van der Waals stacking exhibited reduced surface access and negligible CO over water reduction selectivity, suggesting the critical role of the three-dimensional pockets in catalysis, where the Fe centre can aid in the cooperative reduction of potential acetaldehyde intermediates.¹⁴⁹

7 Photocatalytic reduction of CO₂ with heme and nonheme metal complexes

The electrocatalytic reduction of CO₂ can be replaced by photocatalytic reduction using photocatalysts instead of electrocatalysts. For example, the selective electrocatalytic reduction of CO₂ to CO with a glassy carbon electrode modified with a cobalt(ii) chlorin complex (CoII(Ch)) adsorbed on MWCNTs
(Co\(^{III}\)(Ch)/MWCNTs; see Fig. 3 for the schematic image) is replaced by the photocatalytic reduction of CO\(_2\) with trimethylamine (TEA) using Co\(^{III}\)(Ch)/MWCNTs as a CO\(_2\) reduction catalyst and [Ru\(^{III}\)(Me\(_2\)phen)]\(^{2+}\) (Me\(_2\)phen = 4,7-dimethyl-1,10-phenanthroline) as a sensitizer.\(^{198}\) The photocatalytic mechanism of the CO\(_2\) reduction is shown in Scheme 13, where electron transfer from TEA to the excited state of [Ru\(^{III}\)(Me\(_2\)phen)]\(^{2+}\) ([Ru\(^{III}\)(Me\(_2\)phen)]\(^{2+}\)* denotes the excited state) occurs to produce TEA radical cations and [Ru\(^{II}\)(Me\(_2\)phen)]\(^{2+}\) that reduces Co\(^{III}\)(Ch) to [Co\(^{II}\)(Ch)] \(^{-}\).\(^{198}\) [Co\(^{II}\)(Ch)] reacts with CO\(_2\) to produce the [Ch][Co\(^{III}\)(CO)] complex that is protonated to produce Co\(^{II}\)(Ch)COOH, from which water is released by the protonation to produce the [Co\(^{III}\)(Ch)CO] complex.\(^{198}\) After the CO release from the Co(μ)CO complex, the Co(μ) complex is reduced by TEA to regenerate Co\(^{II}\)(Ch). Hydrogen evolution simultaneously occurs as a side reaction, much like in the electrocatalytic case, because [Co\(^{II}\)(Ch)] can also react with H\(^+\) to produce the hydride complex ([Co\(^{II}\)(Ch)(H)])\(^{-}\), which then can couple to a H\(^+\) to produce H\(_2\).\(^{151}\) The TON of the photocatalytic reduction was determined to be 710 with the ratio of CO/ H\(_2\) of 2.4 : 1 in 20 h when 5.0 μg of Co\(^{II}\)(Ch) and 1.0 mg of MWCNTs were used.\(^{156}\) The π–π interaction between MWCNTs and Co\(^{II}\)(Ch) provides a suitable hydrophobic environment for the selective binding of CO\(_2\) over protons, because the binding of CO\(_2\) to the Co(μ) complex is required for the formation of CO\(^{II}\)(Ch).\(^{150}\)

An iron tetraphenylporphyrin complex functionalized with trimethylaminilium groups (Fe-p-TMA in Fig. 2), which is an efficient and selective molecular electrocatalyst for converting CO\(_2\) to CO\(_4\) can also act as an efficient catalyst in photocatalytic reduction of CO\(_2\) to methane using Ir(ppy) (ppy = phenylpyridine) as a dye under visible light irradiation at ambient temperature and pressure.\(^{152,153}\) The cytis system, which was evaluated in an acetonitrile solution containing a photosensitizer (Ir(ppy)), sacrificial electron donor (TEA) and proton source (trifluoroethanol), operates stably under irradiation over several days to produce CO, CH\(_4\), and H\(_2\) with turnover numbers (and selectivities) of 367 (78%), 79 (17%) and 26 (5%), respectively in 107 h.\(^{152}\) These values correspond to a methane production rate of 763 μmol per hour per gram of catalyst (μmol h\(^{-1}\) g\(^{-1}\)), which is larger than those obtained using other catalysts\(^{154–159}\) that generate methane from CO\(_2\). Trifluoroethanol facilitates the C–O bond cleavage step as observed in the electrocatalytic reduction of CO\(_2\) (Scheme 3).\(^{14}\) No other gaseous product, methanol, formaldehyde or formate was produced.\(^{152}\) Photocatalytic labelling experiments conducted under a \(^{12}\)CO\(_2\) or a \(^{13}\)CO\(_2\) atmosphere confirmed that methane was produced from CO\(_2\). A two-step procedure, that first reduces CO\(_2\) to CO and then reduces CO to further reduced species of CO, generates methane with a selectivity of up to 82% and a quantum yield (light-to-product efficiency) of 0.18%.\(^{152}\)

The photocatalytic mechanism for CO\(_2\) reduction to methane is proposed as shown in Scheme 14, where the starting Fe\(^{III}\) porphyrin is reduced with three electrons by Ir(ppy)* to the catalytically active Fe\(^{0}\) species.\(^{152}\) The Fe\(^{0}\) species reduces CO\(_2\) to CO through a two-step protonation of the Fe\(^{0}\) species by CH\(_3\)OH with dehydration (right-hand iron cycle) as in the case of the electrocatalytic reduction of CO\(_2\) to CO in Scheme 3, where AH = trifluoroethanol.\(^{151}\) The CO production binds to Fe\(^{II}\) and is further reduced by a total of six electrons by electron transfer from Ir(ppy)* and six protons to generate CH\(_4\) (and H\(_2\)) through a postulated Fe\(^{II}\)-formyl (Fe\(^{II}\)CHO) intermediate (left-hand iron cycle).\(^{152}\)

Not all photocatalytic systems employ separately a catalyst and a photosensitizer. Fe-p-TMA can also catalyse the photocatalytic reduction of CO\(_2\) to CO with 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]-imidazole (BIH) selectively under visible light irradiation without the assistance of an additional photosensitizer.\(^{160}\) BIH was reported to enhance the photocatalytic formation of CO from CO\(_2\)^{161,162} due to its high reductive ability (E\(_{\text{ox}}\) = +0.33 V vs. SCE) and its fast deprotonation to BI\(^{-}\) once oxidized and its overall two-electron donation capacity (BI\(^{-}\) could be in turn easily oxidized to BI\(^{2-}\)). BIH was also used as a sacrificial reductant together with triethanolamine (TEOA) for visible-light driven CO\(_2\) reduction in MeCN using [Ru(bpy)]\(^{3+}\) (bpy = 2,2′-bipyridine) as a photosensitizer and a Cu\(^{II}\) complex bearing 2,2′-6,2′-6,2′-quaterpyridine (qpy) ([Cu(qpy)]\(^{2+}\)) as a selective reduction catalyst.\(^{163}\) The photocatalytic reaction is greatly enhanced by the presence of H\(_2\)O (1–4% v/v), and a TON of >12 400 for CO

Scheme 13 Photocatalytic cycle for two-electron reduction of CO\(_2\) to CO with a cobalt(II) chlorin complex (Co\(^{II}\)(Ch)) adsorbed on multi-walled carbon nanotubes (Co\(^{III}\)(Ch)/MWCNTs). Reprinted with permission from ref. 150. Copyright 2016, Royal Society of Chemistry.

Scheme 14 Photocatalytic cycles for two-electron reduction of CO\(_2\) to CO and further reduction to CH\(_4\) with Fe-p-TMA and Ir(ppy). Reprinted with permission from ref. 152. Copyright 2017, Macmillan Publishers Limited, part of Springer Nature.
production has been achieved with 97% selectivity, which is among the highest of molecular 3d-metal CO\textsubscript{2} reduction catalysts.164 It was confirmed that the photocatalyst remains homogeneous based on results from Hg poisoning and dynamic light scattering experiments.164

BIP alone acts as an electron donor in the photocatalytic reduction of CO\textsubscript{2} to CO with a Ni(II) complex bearing an S\textsubscript{2}N\textsubscript{2}-type tetradeptate ligand, [NiII(bpet)]\textsubscript{2+} (bpet = bis(2-pyridinylmethyl)-1,2-ethanediithiol), as a CO\textsubscript{2} reduction catalyst and [Ru(bpy)]\textsubscript{3+} as a photosensitizer in a DMA/\textsubscript{2}H\textsubscript{2}O solution mixture (9 : 1 v/v) under a CO\textsubscript{2} atmosphere at 298 K.165 In this photocatalytic system, the [NiII(bpet)]\textsubscript{2+} complex showed a high quantum yield of 1.42%.

Composite electrodes formed by a combination of an organic-semiconductor with a metal-porphyrinoid catalyst were also evaluated as photocatalysts for CO\textsubscript{2} reduction. Graphite carbon nitride (g-C\textsubscript{3}N\textsubscript{4}), which has frequently been used as an organic semiconductor photocatalyst,166-168 was modified with a carboxyl group of tetra(4-carboxyphenyl)porphyrin iron(II) chloride (FeTCPP) to prepare a g-C\textsubscript{3}N\textsubscript{4} nanosheets/FeTCPP (g-C\textsubscript{3}N\textsubscript{4}/FeTCPP) heterogeneous catalyst. The material was then implemented for the photoreduction of CO\textsubscript{2} to CO with TEOA under visible light illumination in MeCN : H\textsubscript{2}O : TEOA (3 : 1 : 1) (Scheme 15).170 Similar to the case shown in Scheme 13, FeIIITCPP was reduced by the photo-induced electrons produced in g-C\textsubscript{3}N\textsubscript{4} nanosheets up to FeIITCPP that reduced CO\textsubscript{2} to CO coupled with proton transfer, whereas the holes left in g-C\textsubscript{3}N\textsubscript{4} nanosheets were reduced by TEOA.170 A maximum rate of 6.52 mmol g-1 in 6 h and a selectivity up to 98% for CO production have been achieved using the g-C\textsubscript{3}N\textsubscript{4}/FeTCPP heterogeneous catalyst.170

To further improve the catalytic performance of composite electrodes, rutile TiO\textsubscript{2} nanoparticles were employed as modifiers to enhance interfacial charge transfer between semiconducting carbon nitride nanosheets (NS-C\textsubscript{3}N\textsubscript{4}) and a catalyst (supramolecular Ru(n)-Re(i) binuclear complex (RuRe)).171 The RuRe/TiO\textsubscript{2}/NS-C\textsubscript{3}N\textsubscript{4} hybrid photocatalyzed CO\textsubscript{2} reduction to CO with high selectivity under visible light (λ > 400 nm) irradiation, exhibiting higher catalytic activity compared to an analogue without TiO\textsubscript{2} by a factor of 4, in terms of both the CO formation rate and the TON.171 The enhanced photocatalytic activity was attributed mainly to the prolonged lifetime of free and/or shallowly trapped electrons generated in TiO\textsubscript{2}/NS-C\textsubscript{3}N\textsubscript{4} under visible-light irradiation, as revealed by transient absorption spectroscopy.171

A case of metal porphyrinoid catalysis was reported in conjunction with an inorganic semiconductor photoanode, completing a full photoelectrochemical cell. The photoelectrochemical reduction of CO\textsubscript{2} was performed in a two-compartment cell composed of an FeO(OH)/BiVO\textsubscript{4}/FTO photoanode and a CoII(Ch)/MWCNT cathode, which are connected with conducting wire as an external circuit and separated by a Nafion membrane (Fig. 14).172 A photo-driven oxidation reaction (of water) occurs at the photoanode, and the generated electrons are transported through the external circuit, being supplied as reducing equivalents to the CoII(Ch)/MWCNT catalyst at the cathode. The photocatalytic controlled potential electrolysis of a CO\textsubscript{2}-saturated aqueous solution (pH 4.6) using a photoelectrochemical cell in Fig. 14 at an applied bias voltage of −1.3 V at the cathode versus the photoanode resulted in the formation of CO and H\textsubscript{2} as shown in Fig. 15a, where the CO yield is significantly higher than the H\textsubscript{2} yield.172 The maximum current efficiency for CO production for the initial 2 h was 83% at pH 4.6.172 The amount of O\textsubscript{2} produced in the photoelectrochemical oxidation of water is one-half of the amounts of the sum of CO and H\textsubscript{2} produced in the electrochemical reduction of CO\textsubscript{2} and H\textsubscript{2}O on the cathode (Fig. 15b).172

Scheme 15 Photocatalytic reduction of CO\textsubscript{2} to CO with TEOA using g-C\textsubscript{3}N\textsubscript{4} nanosheets/FeTCPP (g-C\textsubscript{3}N\textsubscript{4}/FeTCPP). Reprinted with permission from ref. 170. Copyright 2018, Elsevier.

Fig. 14 Schematic illustration of a photoelectrochemical cell composed of an FeO(OH)/BiVO\textsubscript{4}/FTO photoanode for the photocatalytic oxidation of water to O\textsubscript{2} and a CoII(Ch)/MWCNT cathode for the catalytic reduction of CO\textsubscript{2} to CO. Cathode and anode compartments are separated by a Nafion membrane. Reprinted with permission from ref. 172. Copyright 2017, American Chemical Society.

Fig. 15 Time profiles of (a) the formation of CO (red circles) and H\textsubscript{2} (black circles) and (b) the formation of O\textsubscript{2} (blue circles) and CO plus H\textsubscript{2} (red circles) in the photo-assisted CPE with the CoII(Ch)-modified cathode at an applied bias voltage of −1.3 V at the cathode versus the FeO(OH)/BiVO\textsubscript{4}/FTO photoanode in a CO\textsubscript{2}-saturated aqueous solution containing Na\textsubscript{2}SO\textsubscript{4} (5.0 mM) at pH 4.6 under simulated 1 sun (AM 1.5G) illumination at 298 K. Reprinted with permission from ref. 172. Copyright 2017, American Chemical Society.
A direct covalent linkage between a photosensitizer and a catalyst is a popular strategy due to the ease of electron transfer induced by proximity, and also one that is well suited for metal porphyrinoid catalysts owing to their synthetic versatility and flexibility. Such a case is shown in Scheme 16, where a Ru-based dye and a Re-based catalyst pair is synthesised and immobilised on a semiconductor surface. The photoelectrochemical reduction of CO₂ to CO was performed by using a RuRe/CuGaO₂ electrode under irradiation (λ > 460 nm), which can be selectively absorbed by the Ru photosensitizer unit of RuRe, in an aqueous solution containing NaHCO₃ (50 mM) saturated with CO₂ as shown in Scheme 16.¹⁷³ The difference in the observed current between the irradiation and dark conditions indicated that the cathodic photosresponse of the RuRe/CuGaO₂ electrode started at +0.30 V vs. Ag/AgCl (═ +0.50 V vs. SHE), which was approximately 0.4 V more positive (due to the photovoltage supplied by the underlying semiconductor) than that of RuRe/NiO (ca. −0.1 V vs. Ag/AgCl = +0.1 V vs. SHE).¹⁷³ The TON for the formation of CO was 125 based on the RuRe loading, and the total faradaic efficiency for the production of CO plus H₂ was 81%.¹⁷³ The wavelength dependence of the incident-photon-to-current efficiencies of the RuRe/CuGaO₂ electrode agreed well with the absorption spectrum of the electrode, whereas the CuGaO₂ electrode alone (without the dye and catalyst) exhibited almost no photosresponse under irradiation (λ > 460 nm).¹⁷³ The photocurrent was generated by the injection of the electrons from the CuGaO₂ electrode into the excited Ru photosensitizer unit of RuRe, as shown in Scheme 16, because the flat band potential of the CuGaO₂ electrode in the reaction solution (+0.47 V vs. Ag/AgCl = +0.67 V vs. SHE) is less positive than the one-electron reduction potential of the excited state of RuRe (E_red = +0.49 V vs. Ag/AgCl = +0.69 V vs. SHE).¹⁷³

8 Conclusions

The one-electron reduction of CO₂ to oxalic acid is catalysed not only by metalloporphyrins such as Ag²⁺(TPP) and Pd²⁺(TPP) but also by nonheme dicopper and tricopper complexes. Iron porphyrins act as efficient catalysts for both the electrocatalytic and photocatalytic reduction of CO₂ to CO in competition with the proton reduction to H₂. When four positively charged trimethylanilinium groups were introduced at the ortho positions of the TPP phenyls of an iron tetrakis(porphyrin) (Fe₄-TMA in Fig. 2), the lowest overpotential of 0.220 V for CO₂ reduction to CO was achieved with a maximum TOF of 10⁶ s⁻¹. A variety of metal complexes such as cobalt and nickel complexes also act as effective catalysts for two-electron reduction of CO₂ to CO. When indium protoporphyrin was employed as an electrocatalyst, formate (HCOO⁻) was the main product instead of CO and the faradaic efficiency of HCOO⁻ at pH 9.6 was close to 70%. Whether CO or HCOOH is produced depends on the metals and ligands of metalloporphyrins.

Further reduction of CO to methane has been made possible by using a Co porphyrin molecular catalyst immobilized onto a pyrolytic graphite (PG) electrode (CoPP-PG) in a purely aqueous electrolyte solution. The reduction of CO to CH₄ was also made possible by using crystallized copper phthalocyanine supported on carbon black (CuPc/CB) with a maximum faradaic efficiency of 25% under atmospheric pressure at −1.4 V vs. SHE, while CH₄ and CO were produced as minor products. The photocatalytic reduction of CO₂ to CO occurs in competition with the proton reduction to H₂ using triethylamine as a reductant, Co⁶⁺(Ch)/MWCNTs as a CO₂ reduction catalyst, and [Ru⁴⁺(Me₂phen)]²⁺ as a photosensitizer. When Fe₄-TMA with four positively charged trimethylanilinium groups introduced at the para positions of the TPP phenyls was employed as a catalyst, the photocatalytic reduction of CO using triethylamine as a reductant and Ir(ppy) as a catalyst, the photocatalytic reduction of CO using triethylamine as a reductant and Ir(ppy) afforded methane with a selectivity of up to 82% and a quantum yield of 0.18% under visible light irradiation at ambient temperature and pressure. Water can be used as an electron and proton source for the photocatalytic reduction of CO₂ to CO using a two-compartment cell composed of an FeO(OH)/BiVO₄/FTO photoanode and a Co⁶⁺(Ch)/MWCNT cathode. There are many reports on the photocatalytic reduction of CO₂ with water as an electron and proton source to produce CO, HCOOH and CH₄ using heterogeneous catalysts.¹⁷⁴–¹⁸⁰ It is highly desired to develop photocatalytic systems of CO₂ reduction to fuels such as ethylene, methanol and methane using water as an electron and proton source using homogeneous molecular catalysts as well.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors gratefully acknowledge the contributions of their collaborators and coworkers cited in the listed references, and support through a SENTAN project (to S. F.) from the Japan Science and Technology Agency (JST), JSPS KAKENHI (No. 16H02268 to S. F.), the NRF of Korea through CRI (NRF-2012R1A3A2048842 to W. N.), GRL (NRF-2010-00353 to W. N.), and the Basic Science Research Program.
Notes and references

1. N. S. Lewis, *Energy Environ. Sci.*, 2016, 9, 2172–2176.
2. M. Robert, *ACS Energy Lett.*, 2016, 1, 281–282.
3. Y. Zeng, J. Chen, T. Yu, G. Yang and Y. Li, *ACS Energy Lett.*, 2017, 2, 357–363.
4. J. Su and L. Vayssieres, *ACS Energy Lett.*, 2016, 1, 121–135.
5. J. M. Thomas and K. D. M. Harris, *Energy Environ. Sci.*, 2016, 9, 687–708.
6. N. S. Lewis, *Nat. Nanotechnol.*, 2016, 11, 1010–1019.
7. T. A. Faunce, W. Lubitz, A. W. Rutherford, D. MacFarlane, G. F. Moore, P. Yang, D. G. Nocera, T. A. Moore, D. H. Gregory, S. Fukuzumi, K. B. Yoon, F. A. Armstrong, M. R. Wasielewski and S. Styring, *Energy Environ. Sci.*, 2013, 6, 695–698.
8. S. Fukuzumi, *Joule*, 2017, 1, 689–738.
9. S. Perathoner and G. Centi, *Catal. Today*, 2018, DOI: 10.1016/j.cattod.2018.03.005.
10. K. K. Sakimoto, N. Kornienko and P. Yang, *Acc. Chem. Res.*, 2017, 50, 476–481.
11. P. V. Kamat, *Acc. Chem. Res.*, 2017, 50, 527–531.
12. B. Wang, W. Chen, Y. Song, G. Li, W. Wei, J. Fanga and Y. Sun, *Catal. Today*, 2018, 311, 23–39.
13. K. Maeda, *Prog. Solid State Chem.*, 2018, DOI: 10.1016/j.psscs.2017.11.003.
14. G. Zhao, X. Huang, X. Wang and X. Wang, *J. Mater. Chem.*, 2017, 5, 21625–21649.
15. Y. Zheng, W. Zhang, Y. Li, J. Chen, B. Yu, J. Wang, L. Zhang and J. Zhang, *Nano Energy*, 2017, 40, 512–529.
16. Y. Sohna, W. Huang and F. Taghipour, *Appl. Surf. Sci.*, 2017, 396, 1696–1711.
17. S. R. Lingampalli, M. M. Ayyub and C. N. R. Rao, *ACS Omega*, 2017, 2, 2740–2748.
18. X. Chang, T. Wang and J. Gong, *Energy Environ. Sci.*, 2016, 9, 2177–2196.
19. S. Wang and X. Wang, *Small*, 2015, 11, 3097–3112.
20. W. Kim, E. Edri and H. Frei, *Acc. Chem. Res.*, 2016, 49, 1634–1645.
21. Y. Tamaki and O. Ishitani, *ACS Catal.*, 2017, 7, 3394–3409.
22. J. Bonin, A. Maurin and M. Robert, *Coord. Chem. Rev.*, 2017, 334, 184–198.
23. H. Takeda, C. Cometto, O. Ishitani and M. Robert, *ACS Catal.*, 2017, 7, 70–88.
24. Y. Yang, S. Ajmal, X. Zheng and L. Zhang, *Sustainable Energy Fuels*, 2018, 2, 510–537.
25. C. Genovesi, C. Ampelli, S. Perathoner and G. Centi, *Green Chem.*, 2017, 19, 2406–2415.
26. R. Francke, B. Schille and M. Roemelt, *Chem. Rev.*, 2018, 118, 4631–4701.
27. R. Daiyan, X. Lu, T. H. Ng and R. Amal, *ChemSusChem*, 2017, 10, 4342–4358.
28. B. Khezri, A. C. Fisher and M. Pumera, *J. Mater. Chem. A*, 2017, 5, 8230–8246.
29. Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao and J. Zhang, *Chem. Soc. Rev.*, 2017, 46, 1427–1463.
30. S. Ponnurangam, I. V. Chernyshova and P. Somasundaran, *Adv. Colloid Interface Sci.*, 2017, 244, 184–198.
31. M. K. Brennanman, R. J. Dillon, L. Alibabaei, M. K. Gish, C. J. Dares, D. L. Ashford, R. L. House, G. J. Meyer, J. M. Papanikolas and T. J. Meyer, *J. Am. Chem. Soc.*, 2016, 138, 13085–13102.
32. A. J. Martin, G. O. Larrazábal and J. Pérez-Ramirez, *Green Chem.*, 2015, 17, 5114–5130.
33. C. Costentin, M. Robert and J.-M. Savéant, *Acc. Chem. Res.*, 2015, 48, 2996–3006.
34. K. Mase, S. Aoi, K. Ohkubo and S. Fukuzumi, *J. Porphyrrins Phthalocyanines*, 2016, 20, 935–949.
35. J. Qiao, Y. Liu, F. Hong and J. Zhang, *Chem. Soc. Rev.*, 2014, 43, 631–675.
36. C. Costentin, M. Robert and J.-M. Savéant, *Chem. Soc. Rev.*, 2013, 42, 2423–2436.
37. K. Sordakis, C. Tang, L. K. Vogt, H. Junge, P. J. Dyson, M. Beller and G. Laurenczy, *Chem. Rev.*, 2018, 118, 372–433.
38. N. Onishi, G. Laurenczy, M. Beller and Y. Himeda, *Coord. Chem. Rev.*, 2018, DOI: 10.1016/j.ccr.2017.11.021.
39. A. Álvarez, A. Bansode, A. Urakawa, A. V. Bavykina, T. A. Wezendonk, M. Makkee, J. Gascon and F. Kapteijn, *Chem. Rev.*, 2017, 117, 9804–9838.
40. W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck and E. Fujita, *Chem. Rev.*, 2015, 115, 12936–12973.
41. S. Kattel, P. J. Ramirez, J. G. Chen, J. A. Rodriguez and P. Liu, *Science*, 2017, 355, 1296–1299.
42. S. Kattel, P. Liu and J. G. Chen, *J. Am. Chem. Soc.*, 2017, 139, 9739–9754.
43. J. Klankermayer, S. Wesselbaum, K. Beydoun and W. Leitner, *Angew. Chem., Int. Ed.*, 2016, 55, 7296–7343.
44. D. Mellmann, P. Sponholz, H. Junge and M. Beller, *Chem. Soc. Rev.*, 2016, 45, 3954–3988.
45. A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbeck, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer and G. L. Waldrop, *Chem. Rev.*, 2013, 113, 6621–6658.
46. S. Fukuzumi and T. Suenobu, *Dalton Trans.*, 2013, 42, 18–28.
47. E. Fujita, J. T. Muckerman and Y. Himeda, *Biochim. Biophys. Acta*, 2013, 1827, 1031–1038.
48. Y. Maenaka, T. Suenobu and S. Fukuzumi, *Energy Environ. Sci.*, 2012, 5, 7360–7367.
49. S. Fukuzumi, *Eur. J. Inorg. Chem.*, 2008, 1351–1362.
50. A. J. Bard, R. Parsons and J. Jordan, *Standard potentials in aqueous solutions*, CRC press, 1985.
51. X. Huang and J. T. Groves, *Chem. Rev.*, 2018, 118, 2491–2553.

This journal is © The Royal Society of Chemistry 2018
6032 | Chem. Sci., 2018, 9, 6017–6034

This journal is © The Royal Society of Chemistry 2018

6033

View Article Online

Open Access Article. Published on 02 July 2018. Downloaded on 10/8/2023 9:24:48 PM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
159 H. Wang, Y. Chen, X. Hou, C. Ma and T. Tan, Green Chem., 2016, 18, 3250–3256.
160 H. Rao, J. Bonin and M. Robert, Chem. Commun., 2017, 53, 2830–2833.
161 Y. Tamaki, K. Koike, T. Morimoto and O. Ishitani, J. Catal., 2013, 304, 22–28.
162 Y. Kuramochi and O. Ishitani, Inorg. Chem., 2016, 55, 5702–5709.
163 E. Hasegawa, S. Takizawa, T. Seida, A. Yamaguchi, N. Yamaguchi, N. Chiba, T. Takahashi, H. Ikeda and K. Akiyama, Tetrahedron, 2006, 62, 6581–6588.
164 Z. Guo, F. Yu, Y. Yang, C.-F. Leung, S.-M. Ng, C.-C. Ko, C. Cometto, T.-C. Lau and M. Robert, ChemSusChem, 2017, 10, 4009–4013.
165 D. Hong, Y. Tsukakoshi, H. Kotani, T. Ishizuka and T. Kojima, J. Am. Chem. Soc., 2017, 139, 6538–6541.
166 W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong and S. P. Chai, Chem. Rev., 2016, 116, 7159–7329.
167 L. Wang, R.-J. Xie, T. Suehiro, T. Takeda and N. Hirosaki, Chem. Rev., 2018, 118, 1951–2009.
168 M. Mousavi, A. Habibi-Yangjeh and S. R. Pouran, J. Mater. Sci.: Mater. Electron., 2018, 29, 1719–1747.
169 H. J. Yu, R. Shi, Y. X. Zhao, T. Bian, Y. F. Zhao, C. Zhou, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung and T. R. Zhang, Adv. Mater., 2017, 29, 1605148.
170 L. Lin, C. Hou, X. Zhang, Y. Wang, Y. Chen and T. He, Appl. Catal., B, 2018, 221, 312–319.
171 K. Wada, C. S. K. Ranasinghe, R. Kuriki, A. Yamakata, O. Ishitani and K. Maeda, ACS Appl. Mater. Interfaces, 2017, 9, 23869–23877.
172 S. Aoi, K. Mase, K. Ohkubo, T. Suenobu and S. Fukuzumi, ACS Energy Lett., 2017, 2, 532–536.
173 H. Kumagai, G. Sahara, K. Maeda, M. Higashi, R. Abe and O. Ishitani, Chem. Sci., 2017, 8, 4242–4249.
174 K.-L. Bae, J. Kim, C. K. Lim, K. M. Nam and H. Song, Nat. Commun., 2017, 8, 1156.
175 M. Xing, Y. Zhou, C. Dong, L. Cai, L. Zeng, B. Shen, L. Pan, C. Dong, Y. Chai, J. Zhang and Y. Yin, Nano Lett., 2018, 18, 3384–3390.
176 Y. Zhaoa, Y. Weia, X. Wua, H. Zhenga, Z. Zhao, J. Liu and J. Li, Appl. Catal., B, 2018, 226, 360–372.
177 S. Wanga, Y. Guan, L. Lu, Z. Shi, S. Yan and Z. Zou, Appl. Catal., B, 2018, 224, 10–16.
178 R. Long, Y. Li, Y. Liu, S. Chen, X. Zheng, C. Gao, C. He, N. Chen, Z. Qi, L. Song, J. Jiang, J. Zhu and Y. Xiong, J. Am. Chem. Soc., 2017, 139, 4486–4492.
179 J. K. Stolarczyk, S. Bhattacharyya, L. Polavarapu and J. Feldmann, ACS Catal., 2018, 8, 3602–3635.
180 S. Neaţu, J. A. Maciá-Agulló, P. Concepción and H. Garcia, J. Am. Chem. Soc., 2014, 136, 15969–15976.
181 J.-C. Wang, L. Zhang, W.-X. Fang, J. Ren, Y.-Y. Li, H.-C. Yao, J.-S. Wang and Z.-J. Li, ACS Appl. Mater. Interfaces, 2015, 7, 8631–8639.
182 S. Das, S. Kumar, S. Garai, R. Pochamoni, S. Paul and S. Roy, ACS Appl. Mater. Interfaces, 2017, 9, 35086–35094.
183 T. Arai, S. Sato and T. Morikawa, Energy Environ. Sci., 2015, 8, 1998–2002.
184 A. Iwase, S. Yoshino, T. Takayama, Y. H. Ng, R. Amal and A. Kudo, J. Am. Chem. Soc., 2016, 138, 10260–10264.