Swapping algebra, Virasoro algebra and discrete integrable system

Zhe Sun

ABSTRACT

Swapping algebra, introduced by François Labourie, is a commutative Poisson algebra generated by pairs of points of a cyclically ordered set P. In this paper, we induce a Poisson structure on the configuration space $M_{N,1}$ of N twisted polygons in $\mathbb{R}P^1$ by the swapping bracket. Then we relate asymptotically the dual of this Poisson structure to the Virasoro algebra. At last, we compare this Poisson structure with another Poisson structure on $M_{N,1}$ induced from the affine $SL(2,\mathbb{R})$ Poisson-Lie group structure, as a result, the two Poisson structure on $M_{N,1}$ are compatible.

1. Introduction

Discrete integrable system of the configuration space $M_{N,n}$ of N-twisted polygons in $\mathbb{R}P^n$ is considered by L. Faddeev, A. Yu. Volkov [FV93] for $n=1$, R. Schwartz, V. Ovsienko and S. Tabachnikov [SOT10] for $n=2$, B. Khsein, F. Soloviev [KS13] for n in general and many others. The configuration space $M_{N,n}$ is viewed as the discrete version of the space L_{n+1} of monic $(n+1)$-th order differential operators on the circle. There are two compatible first and second (Lie-Poisson) Adler-Gelfand–Dickey Poisson structures on L_{n+1} induced from Drinfeld-Sokolov [DS85] Hamiltonian reduction of the dual of the affine Lie algebra $\hat{L}gl_{n+1}$. For the discrete version when $n=2$, in [SOT10], they give a cross ratio coordinate system of $M_{N,2}$ and a natural Poisson structure which corresponds to the second Adler-Gelfand-Dickey Poisson structures on L_3, they conjecture that there is another Poisson structure on $M_{N,2}$ which corresponds to the first Adler-Gelfand-Dickey Poisson structures on L_3, which is compatible with the natural Poisson structure that they defined.

In this paper, we give an answer to the above conjecture when $n=1$. There is a natural cross-ratio coordinate system for $M_{N,1}$ and a natural Poisson structure $\{\cdot,\cdot\}_{S2}$ corresponding to the second Adler-Gelfand-Dickey Poisson structures on L_2, we define another Poisson structure $\{\cdot,\cdot\}_{B2}$ on $M_{N,1}$ via the rank 2 swapping algebra [Su14]. By studying the asymptotic behavior of the two Poisson structures, our two main results are the followings.

Theorem 1.1 (Theorem 3.17) We relate asymptotically the dual of the Poisson structure $\{\cdot,\cdot\}_{B2}$ to the Virasoro algebra on $M_{N,1}$.

Theorem 1.2 (Theorem 4.2) We relate asymptotically the dual of the Poisson structure $\{\cdot,\cdot\}_{S2}$ to the Virasoro algebra on $M_{N,1}$.

2010 Mathematics Subject Classification 53D30, 05E99 (primary).

Keywords: Swapping algebra, configuration space of N twisted polygons, Virasoro algebra, Poisson-Lie group, compatible.

The research leading to these results has received funding from the European Research Council under the European Community’s seventh Framework Programme (FP7/2007-2013)/ERC grant agreement.
We compare these two Poisson structures.

Theorem 1.3 The Poisson structures \(\{\cdot, \cdot\}_{B_2} \) and \(\{\cdot, \cdot\}_{S_2} \) are compatible on \(M_{N,1} \).

We show that \(\{\cdot, \cdot\}_{B_2} \) and \(\{\cdot, \cdot\}_{S_2} \) are not only asymptotically related to the Poisson-Lie group structure, but also compatible. The relation between the two integration schemes—bihamiltonian one and Poisson-Lie group one is long standing problem in integrable systems theory. We hope this observation will result in a better understanding of integrable systems theory.

We find another compatible Poisson structure on \(M_{N,1} \) via rank 2 swapping algebra. We hope this paper helps to shed light on solving the original conjecture, or even more on the general cases.

2. Rank 2 swapping algebra on the configuration space of \(N \)-twisted polygons in \(\mathbb{RP}^1 \)

2.1 The configuration space of \(N \)-twisted polygons in \(\mathbb{RP}^n \)

Definition 2.1 [Configuration space of \(N \)-twisted polygons in \(\mathbb{RP}^n \)] A \(N \)-twisted polygon in \(\mathbb{RP}^n \) is a map \(f \) from \(\mathbb{Z} \) to \(\mathbb{RP}^n \) such that for any \(k \in \mathbb{Z} \), we have \(f(k+N) = M_f \cdot f(k) \) where \(M_f \) belongs to \(\text{PSL}_{n+1}(R) \). We call \(M_f \) the monodromy of the \(N \)-twisted polygon in \(\mathbb{RP}^n \). We say that \(f \) is in general position if for any \(k \in \mathbb{N} \), the points \(\{f(k+i-1)\}_{i=1}^{n+1} \) are in general position in \(\mathbb{RP}^n \).

The configuration space of \(N \)-twisted polygons in \(\mathbb{RP}^n \), denoted by \(M_{N,n} \), is the space of the \(N \)-twisted polygons in general position in \(\mathbb{RP}^n \) up to projective transformations.

Later on, we only consider the case \(n = 1 \).

It is easy to find a coordinate system of \(M_{N,1} \) by cross ratios.

Definition 2.2 [A coordinate system of \(M_{N,1} \)] Let \(f(k) := [f_k : 1] \), let
\[
[a, b, c, d] := \frac{a - c}{a - d} \cdot \frac{b - d}{b - c},
\]
then
\[
B_k = [f_{k-1}, f_{k+2}, f_{k+1}, f_k].
\]
We have \(\{B_k\}_{k=1}^N \) is a coordinate system of \(M_{N,1} \).

2.2 Swapping algebra

In this section, we recall briefly some definitions about the swapping algebra introduced by F. Labourie. Our definitions here are based on Section 2 of [L12].

Definition 2.3 [Linking number] Let \((r, x, s, y) \) be a quadruple of 4 different points in the interval \([0, 1] \). Let \(\sigma(\Delta) = -1, 0, 1 \) whenever \(\Delta < 0, \Delta = 0, \Delta > 0 \) respectively. We call \(J(r, x, s, y) \) the linking number of \((r, x, s, y) \), where
\[
J(r, x, s, y) = \frac{1}{2} \cdot (\sigma(r - x) \cdot \sigma(r - y) \cdot \sigma(y - x) - \sigma(r - x) \cdot \sigma(r - s) \cdot \sigma(s - x)).
\]

If \((r, x, s, y) \) is a quadruple of 4 points in the oriented circle \(S^1 \), the linking number of 4 points in the interval \(S^1 \setminus o \) for \(o \notin \{r, x, s, y\} \) does not depend on the choice of \(o \). So, \(J(r, x, s, y) \) is defined to be the linking number of 4 points in the circle \(S^1 \). We describe four cases in Figure [1].
Let \mathcal{P} be a finite subset of the circle S^1 provided with cyclic order. \mathbb{K} is a field (\mathbb{C} or \mathbb{R}). We represent an ordered pair (r, x) of \mathcal{P} by the expression rx.

Definition 2.4 [Swapping ring of \mathcal{P}] The swapping ring of \mathcal{P} is the ring

$$\mathcal{Z}(\mathcal{P}) := \mathbb{K}[\{xy\}_{x, y \in \mathcal{P}}]/\{xx \mid \forall x \in \mathcal{P}\}$$

over \mathbb{K}, where $\{xy\}_{x, y \in \mathcal{P}}$ are variables with values in \mathbb{K}.

Notably, $rx = 0$ if $r = x$ in $\mathcal{Z}(\mathcal{P})$. Then we equip $\mathcal{Z}(\mathcal{P})$ with a Poisson bracket defined by F. Labourie in Section 2 of [L12].

Definition 2.5 [Swapping bracket] The swapping bracket over $\mathcal{Z}(\mathcal{P})$ is defined by extending the following formula to $\mathcal{Z}(\mathcal{P})$ by using Leibniz's rule and additive rule:

$$\{rx, sy\} = J(r, x, s, y) \cdot ry \cdot sx.$$ \hspace{1cm} (4)

(Here is the case for $\alpha = 0$ in Section 2 of [L12].)

Leibniz's rule:

$$\{rx \cdot sy, tz\} = rx\{sy, tz\} + sy\{rx, tz\}$$ \hspace{1cm} (5)

for any rx, xy, tz in \mathcal{P}.

Additive rule:

$$\{a + b, c\} = \{a, c\} + \{b, c\}$$ \hspace{1cm} (6)

For any $a, b, c \in \mathcal{Z}(\mathcal{P})$.

Theorem 2.6 [F. Labourie [L12]] The swapping bracket as above verifies the Jacobi identity. So the swapping bracket defines a Poisson structure on $\mathcal{Z}(\mathcal{P})$.

Definition 2.7 [Swapping algebra of \mathcal{P}] The swapping algebra of \mathcal{P} is $\mathcal{Z}(\mathcal{P})$ equipped with the swapping bracket.

Definition 2.8 [Swapping fraction algebra of \mathcal{P}] The swapping fraction algebra of \mathcal{P} is $\mathcal{Q}(\mathcal{P})$ equipped with the induced swapping bracket.
Zhe Sun

Definition 2.9 [Cross fraction] Let \(x, y, z, t \) belong to \(\mathcal{P} \) so that \(x \neq t \) and \(y \neq z \). The cross fraction determined by \((x, y, z, t)\) is the element of \(\mathbb{Q}(\mathcal{P}) \):

\[
[x, y, z, t] := \frac{xz}{xt} \cdot \frac{yt}{yz}. \tag{7}
\]

Let \(\mathcal{C} \mathcal{R}(\mathcal{P}) = \{[x, y, z, t] \in \mathbb{Q}(\mathcal{P}) \mid \forall x, y, z, t \in \mathcal{P}, x \neq t, y \neq z \} \) be the set of all the cross-fractions in \(\mathbb{Q}(\mathcal{P}) \).

Definition 2.10 [Swapping Multifraction Algebra of \(\mathcal{P} \)] Let \(\mathcal{B}(\mathcal{P}) \) be the subring of \(\mathbb{Q}(\mathcal{P}) \) generated by \(\mathcal{C} \mathcal{R}(\mathcal{P}) \). The swapping multifraction algebra of \(\mathcal{P} \) is \(\mathcal{B}(\mathcal{P}) \) equipped with the swapping bracket.

2.3 Rank \(n \) Swapping Algebra

We recall some definitions in [Su14].

Definition 2.11 [The Rank \(n \) Swapping Ring \(\mathcal{Z}_n(\mathcal{P}) \)] For \(n \geq 2 \), let \(\mathcal{R}_n(\mathcal{P}) \) be the subring of \(\mathcal{Z}(\mathcal{P}) \) generated by

\[
\left\{ D \in \mathcal{Z}_n(\mathcal{P}) \mid D = \det \begin{pmatrix} x_1 y_1 & \cdots & x_1 y_{n+1} \\ \vdots & \ddots & \vdots \\ x_{n+1} y_1 & \cdots & x_{n+1} y_{n+1} \end{pmatrix}, \forall x_1, \ldots, x_{n+1}, y_1, \ldots, y_{n+1} \in \mathcal{P} \right\}.
\]

Let \(\mathcal{Z}_n(\mathcal{P}) \) be the quotient ring \(\mathcal{Z}(\mathcal{P})/\mathcal{R}_n(\mathcal{P}) \).

Definition 2.12 [Rank \(n \) Swapping Algebra of \(\mathcal{P} \)] The rank \(n \) swapping algebra of \(\mathcal{P} \) is the ring \(\mathcal{Z}_n(\mathcal{P}) \) equipped with the swapping bracket.

Definition 2.13 [Rank \(n \) Swapping Fraction Algebra of \(\mathcal{P} \)] The rank \(n \) swapping fraction algebra of \(\mathcal{P} \) is the total fraction ring \(\mathcal{Q}_n(\mathcal{P}) \) of \(\mathcal{Z}_n(\mathcal{P}) \) equipped with the swapping bracket.

Definition 2.14 [Rank \(n \) Multifraction Algebra of \(\mathcal{P} \)] Let \(x, y, z, t \) belong to \(\mathcal{P} \) so that \(x \neq t \) and \(y \neq z \). The cross fraction determined by \((x, y, z, t)\) is the element of \(\mathcal{Q}_n(\mathcal{P}) \):

\[
[x, y, z, t] := \frac{xz}{xt} \cdot \frac{yt}{yz}. \tag{8}
\]

Let \(\mathcal{C} \mathcal{R}_n(\mathcal{P}) = \{[x, y, z, t] \in \mathcal{Q}_n(\mathcal{P}) \mid \forall x, y, z, t \in \mathcal{P}, x \neq t, y \neq z \} \) be the set of all the cross-fractions in \(\mathcal{Q}_n(\mathcal{P}) \). Let \(\mathcal{B}_n(\mathcal{P}) \) be the subring of \(\mathcal{Q}_n(\mathcal{P}) \) generated by \(\mathcal{C} \mathcal{R}_n(\mathcal{P}) \).

Then, the rank \(n \) multifraction algebra of \(\mathcal{P} \) is the ring \(\mathcal{B}_n(\mathcal{P}) \) equipped with the swapping bracket.

2.4 Rank 2 Swapping Poisson Structure on \(\mathcal{M}_{N,1} \)

From now on, let \(N > 3 \).

Definition 2.15 Let us consider a cyclically ordered set in \(S^1 \)

\[
\mathcal{P} := \{r_k, 1 \leq k \leq N \mid r_1 < r_2 \cdots \cdots r_N < r_1\ldots\}
\]

and its rank 2 multifraction algebra \(\mathcal{B}_2(\mathcal{P}) \).

Recall that \(\mathcal{B}_k = [f_{k-1}, f_{k+2}, f_{k+1}, f_k] \). Let \(\theta' \) be a map from \(\{B_1, \ldots, B_N\} \) to \(\mathcal{B}_2(\mathcal{P}) \) such that:

\[
\theta'(B_k) := \frac{r_k-1r_{k+1}}{r_k-1r_k} \cdot \frac{r_{k+2}r_k}{r_{k+2}r_{k+1}}
\]

for \(k = 1, \ldots, N \) with the convention \(r_k = r_{k+N} \).
Since \(\{B_k\}_{k=1}^N \) is a coordinate system, \(B_1, \ldots, B_N \) are algebraically independent from each other, let \(\mathbb{R}(B_1, \ldots, B_N) \) be the free fraction ring generated by \(\{B_1, \ldots, B_N\} \), we have the following proposition.

Proposition 2.16 The map \(\theta' \) extends to a ring homomorphism
\[
\theta : \mathbb{R}(B_1, \ldots, B_N) \to B_2(\mathcal{P})
\]

Proposition 2.17 Let us consider the finite family of elements of \(B_2(\mathcal{P}) \)
\[
C := \left\{ \frac{r_{k-1}r_{k+1} + r_k}{r_{k-1}r_{k+1} + 1}, \frac{r_{k+2}r_{k+1} + r_k}{r_{k+2}r_{k+1} + 1}, \frac{r_{k+3}r_{k+1} + r_k}{r_{k+3}r_{k+1} + 1} \right\}_{k=1}^N
\]
with the convention \(r_k = r_{k+N} \). Let \(\langle C \rangle \) be the subring of \(B_2(\mathcal{P}) \) generated by \(C \). Then for any \(i, j = 1, \ldots, N \), we have \(\frac{\theta(B_i)\theta(B_j)}{\theta(B_i)\theta(B_j)} \) belongs to \(\langle C \rangle \).

Proof. Since we have the convention \(r_k = r_{k+N} \), the index of \(B_k \) have the convention \(k = k+N \). By direct calculation, we obtain that

(i) For \(i = k, j = k+1 \), we have
\[
\frac{\theta(B_k)\theta(B_{k+1})}{\theta(B_k)\theta(B_{k+1})} = -1 + \frac{r_{k-1}r_{k+2} + r_k}{r_{k-1}r_{k+2} + 1} + \frac{r_{k+2}r_{k+1} + r_k}{r_{k+2}r_{k+1} + 1} + \frac{r_{k+3}r_{k+1} + r_k}{r_{k+3}r_{k+1} + 1},
\]

(ii) For \(i = k, j = k+1 \), we have
\[
\frac{\theta(B_{k+1})\theta(B_k)}{\theta(B_{k+1})\theta(B_k)} = 1 - \frac{r_{k-1}r_{k+2} + r_k}{r_{k-1}r_{k+2} + 1} + \frac{r_{k+2}r_{k+1} + r_k}{r_{k+2}r_{k+1} + 1} - \frac{r_{k+3}r_{k+1} + r_k}{r_{k+3}r_{k+1} + 1}.
\]

(iii) For \(i = k, j = k+2 \), we have
\[
\frac{\theta(B_k)\theta(B_{k+2})}{\theta(B_k)\theta(B_{k+2})} = \left\{ \frac{r_{k-1}r_{k+1}}{r_{k-1}r_{k+1}}, \frac{r_{k+2}r_{k+1}}{r_{k+2}r_{k+1}}, \frac{r_{k+3}r_{k+1}}{r_{k+3}r_{k+1}} \right\} = -\frac{r_{k+2}r_{k+1} + r_k}{r_{k+2}r_{k+1} + 1} + \frac{r_{k+3}r_{k+1} + r_k}{r_{k+3}r_{k+1} + 1}.
\]

(iv) For \(i = k+2, j = k \), we have
\[
\frac{\theta(B_{k+2})\theta(B_k)}{\theta(B_{k+2})\theta(B_k)} = \frac{r_{k+2}r_{k+1} + r_k}{r_{k+2}r_{k+1} + 1}.
\]

(v) For all the other cases, we have
\[
\frac{\theta(B_i)\theta(B_j)}{\theta(B_i)\theta(B_j)} = 0.
\]

We conclude that \(\frac{\theta(B_i)\theta(B_j)}{\theta(B_i)\theta(B_j)} \) belongs to \(\langle C \rangle \).

Definition 2.18 Let \(\mathcal{D} = \mathcal{C} \cup \left\{ \frac{r_{k-1}r_{k+1}}{r_{k-1}r_{k+1}}, \frac{r_{k+2}r_{k+1}}{r_{k+2}r_{k+1}} \right\}_{k=1}^N \) with the convention \(r_k = r_{k+N} \). Of course, we have
\[
\theta(\mathbb{R}(B_1, \ldots, B_N)) \subset \langle \mathcal{D} \rangle.
\]
We define a map $\eta' : D \to \mathbb{R}(B_1, \ldots, B_N)$ by:

$$\eta'(r_{k-1}r_{k+1} \quad r_{k+2} \quad r_{k+2}r_{k+1}) = B_k,$$

(14)

$$\eta'(r_{k-1}r_{k+2} \cdot r_kr_{k+1} \quad r_{k-1}r_{k+1} \cdot r_kr_{k+2}) = 1 - \frac{1}{B_k},$$

(15)

$$\eta'(r_{k+2}r_{k+1} \cdot r_{k+3} \quad r_{k+2} \quad r_{k+3} \quad r_{k+1}r_{k+3}) = 1 - \frac{1}{B_{k+1}},$$

(16)

$$\eta'(r_{k+2}r_{k+3} \cdot r_{k+1} \quad r_{k+2} \quad r_{k+1}r_{k+3}) = \frac{1}{B_{k+1}},$$

(17)

for $k = 1, \ldots, N$ with the convention $r_k = r_{k+N}$.

By case by case verification, we have the following proposition.

Proposition 2.19 We have $\theta \circ \eta' = Id_D$.

Remark 2.20 The rank 2 swapping algebra condition is used here.

Thus, we have

Proposition 2.21 The map η' extends to a well defined ring homomorphism

$$\eta : \langle D \rangle \to \mathbb{R}(B_1, \ldots, B_N).$$

Corollary 2.22 We have $\theta \circ \eta = Id_{\langle D \rangle}$.

Then, we define a bracket on $\mathbb{R}(B_1, \ldots, B_N)$ via the rank 2 swapping algebra.

Definition 2.23 [B2-bracket] We define the B2-bracket $\{ \cdot, \cdot \}_{B2}$ on $\mathbb{R}(B_1, \ldots, B_N)$ by:

$$\{P, Q\}_{B2} := \eta(\{\theta(P), \theta(Q)\})$$

(18)

for any $P, Q \in \mathbb{R}(B_1, \ldots, B_N)$.

Proposition 2.24 The B2-bracket $\{ \cdot, \cdot \}_{B2}$ on $\mathbb{R}(B_1, \ldots, B_N)$ is Poisson.

Proof. We only need to verify the Jacobi identity on three generators P, Q, R. Since $\{\theta(P), \theta(Q)\} \in \langle D \rangle$. By Corollary 2.22, we have

$$\{\{P, Q\}_{B2}, R\}_{B2} = \eta(\{\theta \circ \eta(\{\theta(P), \theta(Q)\}), \theta(R)\})$$

$$= \eta(\{\{\theta(P), \theta(Q)\}, \theta(R)\}).$$

(19)

By Theorem 2.6, the swapping bracket verifies the Jacobi identity. Hence, by the above formula, $\{ \cdot, \cdot \}_{B2}$ verifies Jacobi identity. We conclude that $\{ \cdot, \cdot \}_{B2}$ is Poisson.

Proposition 2.25 [Formulas] We have

$$\{B_k, B_{k+1}\}_{B2} = \left(1 - \frac{1}{B_k} - \frac{1}{B_{k+1}}\right) B_k \cdot B_{k+1},$$

(20)

$$\{B_k, B_{k-1}\}_{B2} = -\left(1 - \frac{1}{B_k} - \frac{1}{B_{k-1}}\right) B_k \cdot B_{k-1},$$

(21)
Swapping algebra, Virasoro algebra and discrete integrable system

\[
\{B_k, B_{k+2}\}_{B2} = -\frac{1}{B_{k+1}} \cdot B_k \cdot B_{k+2},
\]
(22)

\[
\{B_k, B_{k-2}\}_{B2} = \frac{1}{B_{k-1}} \cdot B_k \cdot B_{k-2},
\]
(23)

for the other cases

\[
\{B_i, B_j\}_{B2} = 0.
\]
(24)

with the convention \(k + N = k\), for \(k = 1, \ldots, N\).

Proof. The results follow from Proposition 2.17 and Definition 2.23.

\[\square\]

3. Large N asymptotic relation between the swapping algebra and the Virasoro algebra

3.1 Virasoro algebra and Hill’s operators

This subsection is not original, all the results can be found in Book [KW09]. It serves for the further usages, self-containedness, especially the comparison with its discrete version.

We recall some definitions and propositions related to Virasoro algebra and Hill’s operators. For more informations about this subject, we refer to [Se91] [KW09].

We denote \(\frac{\partial}{\partial \theta}\) by \(\partial_\theta\).

Definition 3.1 [Lie algebra \(Vect(S^1)\)] Let \(Vect(S^1)\) be the space of all the smooth vector fields on \(S^1\). After fixing a coordinate \(\theta\) on the circle \(S^1\), any smooth vector field on \(S^1\) can be written as \(f(\theta)\partial_\theta\), where \(f\) is a smooth function on \(S^1\). Under this identification, the Lie bracket of two elements \(f(\theta)\partial_\theta, g(\theta)\partial_\theta\) in \(Vect(S^1)\) is given by

\[
[f(\theta)\partial_\theta, g(\theta)\partial_\theta] = (f'(\theta)g(\theta) - g'(\theta)f(\theta))\partial_\theta.
\]
(25)

where \(f'(\theta)\) denotes the derivative in \(\theta\) of the function \(f(\theta)\). The Lie algebra \(Vect(S^1)\) is the vector space \(Vect(S^1)\) equipped with the Lie bracket defined above.

Since \(f(\theta)\) is smooth in \(S^1\), we have the Fourier coefficient decomposition

\[
f(\theta) = \sum_{k=-\infty}^{\infty} f_k e^{ik\theta},
\]

where \(f_j \in \mathbb{C}\).

Definition 3.2 [Witt algebra] Let \(L_k := ie^{ik\theta}\partial_\theta\). The Witt algebra \(\text{Witt}\) is the Lie subalgebra of \(Vect(S^1) \otimes \mathbb{C}\) generated by \(\{L_k\}_{k=-\infty}^{\infty}\). The restriction of the Lie bracket is the Witt bracket given by

\[
[L_m, L_n] = (m - n)L_{m+n}.
\]
(26)

for any \(m, n \in \mathbb{Z}\).

Definition 3.3 [Virasoro algebra] The map \(\omega_{GF} : \text{Witt} \times \text{Witt} \to \mathbb{R}\) given by

\[
\omega(f(\theta)\partial_\theta, g(\theta)\partial_\theta) = \int_{S^1} f'(\theta)g''(\theta)\,d\theta
\]
(27)

is a nontrivial 2-cocycle on \(\text{Witt}\), called the Gelfand–Fuchs cocycle. The corresponding central extension of \(\text{Witt}\) is called the Virasoro algebra and is denoted by \(\text{vir}\).
Proposition 3.4 [Chapter 2 Proposition 2.3 in [KW09]] Let ω be a 2-cocycle of \mathfrak{m}.t. Let $\delta_{a,b} = 1$ if $a = b$, $\delta_{a,b} = 0$ if $a \neq b$. Then there are two constants c_1, c_2 such that

$$\omega(L_n, L_m) = (c_1 \cdot n^3 + c_2 \cdot n) \cdot \delta_{n,-m}. \quad (28)$$

When $c_1 = 0$, ω is a 2-coboundary.

Definition 3.5 [Hill’s operator and Hill’s equation] Let $a \in \mathbb{R}$. Let $H(t) \in C^2(\mathbb{R}, \mathbb{R})$ with $H(s) = H(s + 1)$ for any $s \in \mathbb{R}$. Then the Hill’s operator defined by $(H(s), a)$ is a map $a \frac{d^2}{ds^2} + H(s)$ from $C^2(\mathbb{R}, \mathbb{R})$ to $C^0(\mathbb{R}, \mathbb{R})$. When

$$a \cdot \frac{d^2 X(s)}{ds^2} + H(s) \cdot X(s) = 0$$

for any $s \in \mathbb{R}$, we say $X(s) \in C^2(\mathbb{R}, \mathbb{R})$ is a solution of the Hill’s equation $a \frac{d^2 X(s)}{ds^2} + H(s) \cdot X(s) = 0$.

We can also consider H as a function belongs to $C^2(S^1, \mathbb{R})$. By definition, the dual space of $\text{Vect}(S^1)$ is the space of the quadratic differential

$$\Omega^{\otimes 2} := \{H(\theta) (d\theta)^2 \mid H(\theta) \in C^2(S^1, \mathbb{R})\}.$$

The dual space of vir is

$$\text{vir}^* := \{(H(\theta) (d\theta)^2, a) \mid H(\theta) \in C^2(S^1, \mathbb{R}), a \in \mathbb{R}\}.$$

We identify vir^* with the space of Hill’s operators

$$\left\{a \frac{d^2}{d\theta^2} + H(\theta) \mid H(\theta) \in C^2(S^1, \mathbb{R}), a \in \mathbb{R}\right\}.$$

Later on, we consider the hyperplane $\left\{-\frac{d^2}{d\theta^2} + H(\theta) \mid H(\theta) \in C^2(S^1, \mathbb{R})\right\}$.

Definition 3.6 [Schwarzian derivative] Let $u \in C^2(\mathbb{R}, \mathbb{R})$. Then the Schwarzian derivative of u is

$$S(u) := \frac{u'u'' - \frac{3}{2} (u'')^2}{(u')^2} \quad (29)$$

Proposition 3.7 [Chapter 1 Section 1.2 in [OT05]] Let us fix $x, x_1, x_2, x_3, x_4 \in \mathbb{R}$. Let $[a : b : c : d] := \frac{a-c}{2} : \frac{b-d}{2}$. The Schwarzian derivative $S(u)(x)$ satisfies for all small ϵ

$$[u(x + x_1 \epsilon) : u(x + x_2 \epsilon) : u(x + x_3 \epsilon) : u(x + x_4 \epsilon)] = [x_1 : x_2 : x_3 : x_4] - 2 S(u)(x) \epsilon^2 + O(\epsilon^3). \quad (30)$$

There is a well known result which relates the Hill’s operator to the Schwarzian derivative.

Proposition 3.8 [Chapter 2 Proposition 2.9 in [KW09]] If f, g are two linear independent solutions of the Hill’s equation for $(H(s), -1)$. Let $u = \frac{f}{g}$. Let $S(u)$ be the Schwarzian derivative of u. Then, we have

$$H(t) = -\frac{1}{2} \cdot S(u)(t) \quad (31)$$
3.2 The discrete Hill’s operator and the cross-ratios

Definition 3.9 [Discrete Hill’s equation] Let $N \geq 1$ be an integer. Given a periodic sequence $\{H_k\}_{k=-\infty}^{\infty}$ in \mathbb{R} where $H_{N+k} = H_k$ for any $k \in \mathbb{Z}$. The discrete Hill’s equation is the difference equation in $\{C_k\}_{k=-\infty}^{\infty}$:

$$
\frac{C_{k+2} - C_{k+1}}{N} - \frac{C_{k+1} - C_k}{N} = H_k \cdot C_k,
$$

or equivalently

$$
C_{k+1} = \left(\frac{H_k}{N^2 + 2} \right) C_k - C_{k-1},
$$
for any k belongs to \mathbb{Z}.

We define $\{H_k\}_{k=-\infty}^{\infty}$ to be a discrete Hill’s operator, and $\{C_k\}_{k=-\infty}^{\infty}$ as in Equation (33) is the solution to the discrete Hill’s equation.

Given a discrete Hill’s operator, given two initial values C_0, C_1, by Equation (33) we have the series $\{C_k\}_{k=-\infty}^{\infty}$, since the difference equation is homogeneous, so up to scalar and PSL(2,\mathbb{R}) projective transformation, there are exactly two linear independent solutions of a discrete Hill’s operator, which are corresponding to one generic point of $\mathcal{M}_{N,1}$.

Moreover, when N is odd, there is a one to one correspondence between Hill’s operator and one generic point of $\mathcal{M}_{N,1}$. By similar argument of Proposition 4.1 of [SOT10]. We have

Proposition 3.10 [SOT10] Let $N > 3$ be odd, let $f \in \mathcal{M}_{N,1}$, there exists a unique discrete Hill’s equation such that $\{X_i\}_{i=-\infty}^{\infty}$ and $\{Y_i\}_{i=-\infty}^{\infty}$ are two linear independent solutions of $\{C_k\}$ and $[X_i : Y_i] = [f_i : 1]$.

Notation 3.11 Let $b_k = \frac{H_k}{N^2} + 2$.

Let $c_1, ..., c_n \in \mathbb{R}$, the continued fraction

$$
[c_1 ; c_2, ..., c_n] := c_1 + \frac{1}{c_2 + \frac{1}{\ddots + \frac{1}{c_n}}},
$$

Corollary 3.12 Let $N > 3$ be odd, $\{b_k\}_{k=1}^{N}$ and $\{H_k\}_{k=1}^{N}$ are two coordinate systems of $\mathcal{M}_{N,1}$.

The following proposition explains the relation between the discrete Hill's operator and cross ratio coordinate $\{B_k\}_{k=1}^{N}$.

Proposition 3.13 Let $N > 3$ be odd, $\{X_i\}_{i=-\infty}^{\infty}$ and $\{Y_i\}_{i=-\infty}^{\infty}$ are two linear independent solutions of $\{C_k\}$ and $[X_i : Y_i] = [f_i : 1]$ with the initial condition $X_0 = 0, X_1 = 1, Y_0 = 1, Y_1 = 0$.

(i) for $n \geq 2$, we have

$$
f_n = [-b_1; b_2, -b_3, ..., (-1)^{n-1}b_{n-1}];
$$

(ii) for $k \geq 2$, we have

$$
b_{2k+1} = (f_3 - f_2) \cdot \frac{f_3 - f_2}{f_3 - f_4} \cdot \frac{f_4 - f_5}{f_4 - f_3} \cdots \frac{f_{2k-1} - f_{2k+1}}{f_{2k} - f_{2k-1}} \cdot \frac{f_{2k+2} - f_{2k}}{f_{2k+2} - f_{2k+1}};
$$

(iii) without the initial condition $X_0 = 0, X_1 = 1, Y_0 = 1, Y_1 = 0$, for any $k \geq 1$, we have

$$
b_k \cdot b_{k+1} = [f_{k-1}, f_{k+2}, f_{k+1}, f_k] = B_k.
$$
Proof. (i) We prove Formula \((33)\) by induction on \(n\). By Formula \((33)\) we have

\[X_{k+1} = b_k X_k - X_{k-1} \]

and

\[Y_{k+1} = b_k Y_k - Y_{k-1} \]

for any \(k \in \mathbb{Z}\). Since \(X_0 = 0, X_1 = 1, Y_0 = 1, Y_1 = 0\), we have

\[X_2 = b_1, \ X_3 = b_1 b_2 + 1, \ X_4 = b_1 b_2 b_3 - b_1 - b_3, \ Y_2 = -1, \ Y_3 = -b_2, \ Y_4 = -b_2 b_3 + 1. \]

Thus, we obtain that

\[f_2 = -b_1, \ f_3 = -b_1 + \frac{1}{b_2}, \ f_4 = [-b_1; b_2, -b_3, b_4]. \]

So Formula \((34)\) is true for \(n = 2, 3, 4\). Suppose that for \(n = k\), the formula is true, then

\[f_k = \frac{X_k}{Y_k} = \frac{b_k X_k - X_{k-1}}{b_k Y_k - Y_{k-1}} = \frac{b_k X_k - X_{k-1} - \frac{X_{k-1}}{b_k}}{b_k Y_k - Y_{k-1} - \frac{Y_{k-1}}{b_k}} \]

\[= \frac{(b_k - 1) X_{k-1} - X_{k-2}}{(b_k - 1) Y_{k-1} - Y_{k-2}}. \] (38)

By substitute \(b_{k-1} - \frac{1}{b_k}\) for \(b_{k-1}\) in the continued fraction \(f_k\), we have

\[f_{k+1} = [-b_1; b_2, -b_3, \ldots, (-1)^{k-2} b_{k-2}, (-1)^{k-1} (b_{k-1} - \frac{1}{b_k})] \]

\[= [-b_1; b_2, -b_3, \ldots, (-1)^{k-1} b_{k-1}, (-1)^k b_k]. \] (39)

We conclude that the formula \(f_n = [-b_1; b_2, -b_3, \ldots, (-1)^{n-1} b_{n-1}]\) for \(n \geq 2\).

(ii) For any \(k \geq 1\), we have

\[X_{k+1} Y_k - X_k Y_{k+1} = (b_k X_k - X_{k-1}) \cdot Y_k - X_k \cdot (b_k Y_k - Y_{k-1}) = X_k Y_{k-1} - X_{k-1} Y_k \]

\[= \ldots = X_1 Y_0 - X_0 Y_1 = 1, \]

\[f_{k+1} - f_k = \frac{X_{k+1} Y_k - X_k Y_{k+1}}{Y_{k+1} Y_k} = \frac{1}{Y_k Y_{k+1}}, \] (40)

\[f_{k+2} - f_k = \frac{X_{k+2} Y_k - X_k Y_{k+2}}{Y_{k+2} Y_k} = \frac{X_{k+2} Y_k - X_k Y_{k+2}}{Y_k Y_{k+2}} \]

\[= \frac{(b_{k+1} X_{k+1} - X_k) \cdot Y_k - X_k \cdot (b_{k+1} Y_{k+1} - Y_k)}{Y_k Y_{k+2}} = \frac{b_{k+1}}{Y_k Y_{k+1}}. \] (42)
By the above formulas, we conclude that for any \(k \geq 2 \), we have

\[
\begin{align*}
(f_3 - f_2) \cdot f_3 - f_2 \cdot f_4 - f_5 \cdots f_{2k} - f_{2k+1} \cdot f_{2k+2} - f_{2k+1} &= \frac{1}{Y_2 Y_3} \cdot \frac{1}{Y_4 Y_5} \cdots \frac{1}{Y_{2k+1} Y_{2k+2}} \cdot \frac{1}{Y_{2k+2} Y_{2k+1}} \\
&= b_{2k+1} Y_2 = b_{2k+1}.
\end{align*}
\]

(iii) Let

\[
h := X_1 Y_0 - X_0 Y_1 \neq 0.
\]

For any \(k \geq 0 \), we have

\[
X_{k+1} Y_k - X_k Y_{k+1} = (b_k X_k - X_{k-1}) \cdot Y_k - X_k \cdot (b_k Y_k - Y_{k-1}) = X_k Y_{k-1} - X_{k-1} Y_k = \ldots = X_1 Y_0 - X_0 Y_1 = h,
\]

\[
f_{k+1} - f_k = \frac{X_{k+1} - X_k}{Y_{k+1} Y_k} = \frac{h}{Y_k Y_{k+1}},
\]

\[
f_{k+2} - f_k = \frac{X_{k+2} - X_k}{Y_{k+2} Y_k} = \frac{h b_{k+1}}{Y_k Y_{k+1}}.
\]

For any \(k \geq 1 \), we have

\[
\frac{f_{k-1} - f_{k+1}}{f_{k-1} - f_k} \cdot \frac{f_{k+2} - f_k}{f_{k+2} - f_{k+1}} = \frac{-h b_k}{h} \frac{h b_{k+1}}{h} = b_k b_{k+1}.
\]

We conclude that \(B_k = b_k \cdot b_{k+1} \).

\[
\text{\[\Box\]}
\]

We give another proof of Proposition 3.8.

Proof. Let \(H(t) \in C^2(\mathbb{R}, \mathbb{R}) \) with \(H(s) = H(s+1) \) for any \(s \in \mathbb{R} \) be a Hill's operator, let \(X(t) \), \(Y(t) \) be two linear independent solutions of \(H(t) \).

Let \(N > 3 \) be odd, let \(H_k = H(k/N) \), let \(X_k, Y_k \) be two linear independent solutions of \(H_k \), \([X_k : Y_k] = [f_k : 1] \). Suppose that

\[
\frac{X_1}{X_0} \neq \frac{Y_1}{Y_0}.
\]

by Proposition 3.8, we have

\[
[f_{k-1} : f_{k+2} : f_{k+1} : f_k] = b_k b_{k+1}
\]

\[
= (2 + H_{k+1}/N^2)(2 + H_k/N^2)
\]

\[
= [k - 1 : k + 2 : k + 1 : k] + \frac{2(H_k + H_{k+1})}{N^2} + \frac{H_k H_{k+1}}{N^4}.
\]

When \(N \) converge to infinity, since \(H(t) \) is continuous, we have

\[
H_{k+1} = H_k + o\left(\frac{1}{N}\right).
\]

11
Comparing with the Schwarzian derivative in Proposition 3.7, we have

$$4H_k = -2 \cdot S\left(\frac{X}{Y} \left(\frac{k}{N}\right)\right) + o\left(\frac{1}{N}\right).$$

We conclude that

$$H_k = -\frac{1}{2} \cdot S\left(\frac{X}{Y} \left(\frac{k}{N}\right)\right) + o\left(\frac{1}{N}\right).$$

\[\square\]

3.3 Main result

By comparing with Proposition 3.4, we define a discrete version of Virasoro algebra.

Definition 3.14 \((t_1, t_2, N)\)-Virasoro bracket] Let \(t_1, t_2 \in \mathbb{R}\) and \(N \in \mathbb{N}\), the \((t_1, t_2, N)\)-Virasoro bracket on \(\{I_k\}_{k=-N}^{N}\) is defined to be:

For \(p, q = -\left[\frac{N-1}{2}\right], \ldots, \left[\frac{N}{2}\right]\),

(i) when \(p \neq -q\), we have

\[\{I_p, I_q\}_{N,t_1,t_2} = (p - q) \cdot I_{p+q}\]

with the convention \(I_{k+N} = I_k\);

(ii) when \(p = -q\), we have

\[\{I_p, I_{-p}\}_{N,t_1,t_2} = 2p \cdot I_0 + t_1 \cdot p^3 + t_2 \cdot p.\]

Remark 3.15 Notice that \((t_1, t_2, N)\)-Virasoro bracket is asymptotic to the Poisson bracket associated to the 2-cocycle with \(c_1 = t_1, c_2 = t_2\) as in Proposition 3.4 when \(N\) converges to infinite, but it is not a Poisson bracket.

Very specific values of \(t_1\) and \(t_2\) correspond to Virasoro algebra. When \(t_1\) is fixed, \(t_2\) varies, they correspond to same element in cohomology group \(H^2(\text{Vect}(S^1), \mathbb{R})\). Different \(t_1\) corresponds to different element in \(H^2(\text{Vect}(S^1), \mathbb{R})\). Virasoro algebra generates all the possible central extension by Proposition 3.4.

Definition 3.16 [Discrete Fourier transformation] Let \(\{B_k\}_{k=1}^{N}\) be the cross ratio coordinates of \(\mathcal{M}_{N,1}\). Let \(\mathbb{B} = \{B_1, \ldots, B_N\}\). The discrete Fourier transformation \(\mathcal{F}\) of \(\mathbb{B}\) is defined to be

\[\mathcal{F}_{p}\mathbb{B} = \sum_{k=1}^{N} B_k e^{-2\pi i \frac{pk}{N}}.\]

Our main result of this section is

Theorem 3.17 [Main result] Let \(N > 3\) be odd. For \(k = -\left[\frac{N-1}{2}\right], \ldots, \left[\frac{N}{2}\right]\), let

\[V_k = \frac{\mathcal{F}_{k}\mathbb{B} \cdot N}{8\pi i}.\]

We have

\[\{V_p, V_q\}_{B_2} = \{V_p, V_q\}_{N,\frac{2\pi}{N}, 8N} + o\left(\frac{1}{N^2}\right).\]
Proof. For $p, q = -\left[\frac{N-1}{2}\right], \ldots, \left[\frac{N}{2}\right]$, we have

$$\{F_p, F_q\}_B = 2 \sum_{k=1}^{N} \left(e^{-\frac{2qk\pi i}{N}} \cdot e^{-\frac{2qh(k+1)\pi i}{N}} - e^{-\frac{2q(k+1)\pi i}{N}} \cdot e^{-\frac{2qh\pi i}{N}} \right) \cdot (B_k B_{k+1} - B_k - B_{k+1})$$

$$- \left(e^{-\frac{2qk\pi i}{N}} \cdot e^{-\frac{2q(h+2k)\pi i}{N}} - e^{-\frac{2q\pi i}{N}} \cdot e^{-\frac{2qecessary(k+2)\pi i}{N}} \right) \cdot \frac{B_k B_{k+2}}{B_{k+1}}$$

By

$$B_k = b_k b_{k+1} = 4 + \frac{2(H_k + H_{k+1})}{N^2} + \frac{H_k H_{k+1}}{N^4},$$

we have

$$B_k = 4 + \frac{4H_k}{N^2} + o \left(\frac{1}{N^2} \right).$$

We have the above formula equals to

$$\sum_{k=1}^{N} e^{-\frac{2(q+p)k\pi i}{N}} \cdot \left[\left(1 + \frac{2q\pi i}{N} + \frac{2\pi^2 q^2}{N^2} + \frac{4\pi^3 q^3 i}{3N^3} + o \left(\frac{1}{N^3} \right) \right) - \left(1 + \frac{2p\pi i}{N} + \frac{2\pi^2 p^2}{N^2} + \frac{4\pi^3 p^3 i}{3N^3} + o \left(\frac{1}{N^3} \right) \right) \right]$$

$$- \left(1 + \frac{-4p\pi i}{N} + \frac{-8\pi^2 p^2}{N^2} + \frac{32\pi^3 p^3 i}{3N^3} + o \left(\frac{1}{N^3} \right) \right) \cdot \left(4 + \frac{4H_k}{N^2} + o \left(\frac{1}{N^2} \right) \right) \right]$$

$$= \sum_{k=1}^{N} e^{-\frac{2(q+p)k\pi i}{N}} \left[\frac{32H_k(p-q)\pi i}{N^3} - \frac{16\pi^2 (p^2 - q^2)}{N^2} + \frac{32\pi^3 (p^3 - q^3) i}{N^3} + o \left(\frac{1}{N^3} \right) \right].$$

When $p \neq -q$, since $\sum_{k=1}^{N} e^{-\frac{2(q+p)k\pi i}{N}} = 0$, by $B_k = 4 + \frac{4H_k}{N^2} + o(\frac{1}{N^2})$, the above formula equals to

$$\sum_{k=1}^{N} e^{-\frac{2(q+p)k\pi i}{N}} \cdot \frac{8B_k(p-q)\pi i}{N} = \frac{8(p-q)\pi i}{N} \cdot F_{p+q} + o \left(\frac{1}{N^3} \right);$$

When $p = -q$, the above formula equals to

$$\frac{64p\pi i}{N^3} \sum_{k=1}^{N} H_k + \frac{64p^3\pi^3 i}{N^2} + o \left(\frac{1}{N^3} \right)$$

$$= \frac{16p\pi i}{N} \sum_{k=1}^{N} (B_k - 4) + \frac{64p^3\pi^3 i}{N^2} + o \left(\frac{1}{N^3} \right)$$

$$= \frac{16p\pi i}{N} F_0 \cdot B - \frac{64p^3\pi^3 i}{N^2} + o \left(\frac{1}{N^3} \right).$$

Replacing F_k by

$$V_k = \frac{F_k B \cdot N}{8\pi i},$$

we obtain that:

for $p \neq -q$,

$$\{V_p, V_q\}_B = (p-q) \cdot V_{p+q} + o \left(\frac{1}{N^2} \right);$$

for $p = -q$,

$$\{V_p, V_q\}_B = (2p-q) \cdot V_{p+q} + o \left(\frac{1}{N^2} \right).$$
for $p = -q$
\[\{ V_p, V_{-q} \}_{B_2} = 2p \cdot V_0 + \left(\frac{8\pi^2}{N} \right) \cdot p^3 - 8N \cdot p + o \left(\frac{1}{N^2} \right). \]

We conclude that
\[\{ V_p, V_q \}_{B_2} = \{ V_p, V_q \}_{N, \frac{8\pi^2}{N}, 8N} + o \left(\frac{1}{N^2} \right). \quad (55) \]

4. Schwartz algebra on $\mathbb{R}(B_1, \ldots, B_N)$ and its relation with swapping algebra

We plan to construct a Poisson structure on coordinates defined by weak cross ratios on $\mathcal{M}_{N,n}$ through the swapping algebra. Then compare this swapping Poisson structure with the Poisson structure considered by R. Schwartz, V. Ovsienko and S. Tabachnikov [SOT10] for $n = 2$ to show that they are compatible, where their continuous limit are the natural Lie-Poisson structure and the freezing structure [SOT10]. This plan is to reply the conjecture mentioned in [SOT10]. But we do not success in finding such a nice swapping Poisson structure. We have only result for $n = 1$ as shown in this section. More general case will be considered later on.

4.1 Schwartz algebra and its asymptotic phenomenon

The Schwartz algebra appears in [SOT10] as a Poisson algebra on the cross ratio coordinate system of $\mathcal{M}_{N,2}$ which is a discrete version of the second Gelfand–Dickey Poisson structure. Here, we consider the case for $\mathbb{R}P^1$ where the bracket is referring to [FV93].

Definition 4.1 [Schwartz bracket on $\mathbb{R}(B_1, \ldots, B_N)$] The Schwartz bracket $\{ \cdot, \cdot \}_1$ on $\mathbb{R}(B_1, \ldots, B_N)$ is defined by extending the following formula on generators to the whole ring:
\[\{ B_i, B_{i+1} \}_{S_2} = \pm B_i \cdot B_{i+1} \quad (56) \]
For the other cases
\[\{ B_i, B_j \}_{S_2} = 0 \quad (57) \]

We have similar result as Theorem 3.17 for the Schwartz algebra on $\mathbb{R}(B_1, \ldots, B_N)$.

Theorem 4.2 [Main result] Let $N > 3$ be odd. For $k = -\left[\frac{N-1}{2} \right], \ldots, \left[\frac{N}{2} \right]$, let
\[W_k = \frac{F_k B \cdot N}{16\pi i}. \]
We have
\[\{ W_p, W_q \}_{S_2} = \{ W_p, W_q \}_{N, \frac{8\pi^2}{N}, 8N} + o \left(\frac{1}{N^2} \right). \quad (58) \]

Proof. For $p, q = -\left[\frac{N-1}{2} \right], \ldots, \left[\frac{N}{2} \right]$, we have
\[\{ F_p B, F_q B \}_{S_2} = \sum_{k=1}^{N} \left(e^{-\frac{2\pi k}{N}} \cdot e^{-\frac{2\pi (k+1)}{N}} - e^{-\frac{2\pi (k+1)}{N}} \cdot e^{-\frac{2\pi k}{N}} \right) \cdot (B_k B_{k+1}) \quad (59) \]
By
\[B_k = a_k a_{k+1} = 4 + \frac{2(H_k + H_{k+1})}{N^2} + \frac{H_k H_{k+1}}{N^4}, \]

Zhe Sun
we have
\[B_k = 4 + \frac{4H_k}{N^2} + o\left(\frac{1}{N^2}\right). \]

We have the above formula equals to
\[
\sum_{k=1}^{N} e^{-2(p+q)k\pi i N} \cdot \left(\left(1 + \frac{-2q\pi i}{N} + \frac{-2\pi^2 q^2}{N^2} + \frac{4\pi^3 q^3 i}{3N^3} + o\left(\frac{1}{N^3}\right) \right) - \left(1 + \frac{-2p\pi i}{N} + \frac{-2\pi^2 p^2}{N^2} \right) \right) \\
\frac{4\pi^3 p^3 i}{3N^3} + o\left(\frac{1}{N^3}\right) \right) \\
= \sum_{k=1}^{N} e^{-2(p+q)k\pi i N} \cdot \left[\frac{32\pi i(p-q)}{N} + \frac{32\pi^2(p^2 - q^2)}{N^2} - \frac{64\pi^3(p^3 - q^3)i}{3N^3} + \frac{64H_k(p-q)\pi i}{N^3} + o\left(\frac{1}{N^3}\right) \right].
\]

When \(p \neq -q \), since \(\sum_{k=1}^{N} e^{-2(p+q)k\pi i N} = 0 \), by \(B_k = 4 + \frac{4H_k}{N^2} + o\left(\frac{1}{N^2}\right) \), the above formula equals to
\[
\sum_{k=1}^{N} e^{-2(p+q)k\pi i N} \cdot \frac{16B_k(p-q)\pi i}{N} = \frac{16(p-q)\pi i}{N} \cdot F_{p+q} B + o\left(\frac{1}{N^3}\right); \tag{60}
\]

When \(p = -q \), since \(\sum_{k=1}^{N} B_k = 0 \), the above formula equals to
\[
\frac{64p\pi i}{N} + \frac{128p\pi i}{N^3} \sum_{k=1}^{N} H_k - \frac{128p^3\pi^3 i}{3N^2} + o\left(\frac{1}{N^3}\right) \\
= \frac{64p\pi i}{N} + \frac{32p\pi i}{N} \sum_{k=1}^{N} (B_k - 4) - \frac{128p^3\pi^3 i}{3N^2} + o\left(\frac{1}{N^3}\right) \tag{62}
\]
\[
= \frac{64p\pi i}{N} + \frac{32p\pi i}{N} F_0 B - 128p\pi i - \frac{128p^3\pi^3 i}{3N^2} + o\left(\frac{1}{N^3}\right).
\]

Thus we have:

(i) for \(p \neq -q \)
\[\{W_p, W_q\}_S^2 = (p-q) \cdot W_{p+q} + o\left(\frac{1}{N^2}\right); \]

(ii) for \(p = -q \)
\[\{W_p, W_{-p}\}_S^2 = 2p \cdot W_0 + (4-8N) \cdot p - \frac{8\pi^2}{3N} \cdot p^3 + o\left(\frac{1}{N^2}\right). \]

We conclude that
\[\{W_p, W_q\}_S^2 = \{W_p, W_q\}_{N, \frac{8\pi^2}{3N}, 4-8N} + o\left(\frac{1}{N^2}\right). \tag{63} \]

\[\square \]

4.2 Two Poisson structures are compatible

Let us recall the traditional definition of the bihamiltonian system.

Definition 4.3 Two Poisson structures \(\{\cdot, \cdot\}_a \) and \(\{\cdot, \cdot\}_b \) on a manifold \(M \) are said to be compatible if and only if for any \(\lambda \), \(\{\cdot, \cdot\}_a + \lambda \{\cdot, \cdot\}_b \) is Poisson on \(M \).
A dynamic system \(\frac{d}{dt} m = \xi(m) \) over \(M \) is bihamiltonian if its vector field \(\xi \) is Hamiltonian with respect to these two Poisson structures \(\{\cdot,\cdot\}_a \) and \(\{\cdot,\cdot\}_b \).

Then we define the compatibility on a ring \(R \) with two Poisson structures.

Definition 4.4 Two Poisson brackets \(\{\cdot,\cdot\}_a \) and \(\{\cdot,\cdot\}_b \) on a ring \(R \) are said to be compatible if and only if for any \(\lambda, \{\cdot,\cdot\}_a + \lambda\{\cdot,\cdot\}_b \) is Poisson on \(R \).

Proposition 4.5 \(\{\cdot,\cdot\}_a \) and \(\{\cdot,\cdot\}_b \) are compatible if and only if for any \(x, y, z \in R \), we have
\[
\{\{x, y\}_a, z\}_b + \{\{y, z\}_a, x\}_b + \{\{z, x\}_a, y\}_b + \{\{x, y\}_b, z\}_a + \{\{y, z\}_b, x\}_a + \{\{z, x\}_b, y\}_a = 0
\]

Proof. Let the bracket
\[
\{\cdot,\cdot\}_a \lambda b := \{\cdot,\cdot\}_a + \lambda\{\cdot,\cdot\}_b.
\]
The bracket \(\{\cdot,\cdot\}_a \lambda b \) is Poisson if and only if \(\{\cdot,\cdot\}_a \lambda b \) satisfies the Jacobi identity. For any \(x, y, z \in R \), Let \(\sum \) runs over the triplets \((x, y, z), (y, z, x), (z, x, y)\), the Jacobi identity of \(\{\cdot,\cdot\}_a \lambda b \) equals
\[
\sum\{(x, y)_{a \lambda b}, z\}_{a \lambda b}
\]
\[
= \sum\{\{x, y\}_a + \lambda\{x, y\}_b, z\}_{a \lambda b}
\]
\[
= \lambda \sum\{(x, y)_a, z\}_a + \{x, y\}_a, z\}_b + \lambda^2\{x, y\}_b, z\}_b)
\]
\[
= \lambda \sum\{(x, y)_b, z\}_a + \{x, y\}_a, z\}_b
\]
The last equation uses the fact that \(\{\cdot,\cdot\}_a \) and \(\{\cdot,\cdot\}_b \) are Poisson. We conclude that \(\{\cdot,\cdot\}_a \) and \(\{\cdot,\cdot\}_b \) are compatible if and only if
\[
\sum\{(x, y)_b, z\}_a + \{x, y\}_a, z\}_b = 0.
\]

By case by case verification, we have our main result of this subsection.

Theorem 4.6 [Main Result] For \(N \geq 5 \), \(\{\cdot,\cdot\}_B_2 \) and \(\{\cdot,\cdot\}_S_2 \) are compatible on \(\mathbb{R}(B_1, ..., B_N) \).

Proof. Let
\[
K(B_i, B_j, B_k) := \{\{B_i, B_j\}_B_2, B_k\}_{S_2} + \{\{B_j, B_k\}_B_2, B_i\}_{S_2} + \{\{B_k, B_i\}_B_2, B_j\}_{S_2} + \{\{B_i, B_j\}_S_2, B_k\}_B_2 + \{\{B_j, B_k\}_S_2, B_i\}_B_2 + \{\{B_k, B_i\}_S_2, B_j\}_B_2.
\]
By definition, we have to check that
\[
K(B_i, B_j, B_k) = 0
\]
for any \(i, j, k = 1, ..., N \). Since
\[
K(B_i, B_j, B_k) = -K(B_j, B_i, B_k),
\]
when some indexes coincide, for example \(i = j \), we have
\[
K(B_i, B_i, B_k) = 0.
\]
Let σ_s be the permutation of the N indexes such that $\sigma(l) = l + s$. The permutation σ_s induce a ring automorphism χ_s of $\mathbb{R}(B_1, ..., B_N)$ such that

$$\chi_s(B_l) = B_{l+s}$$

for $l = 1, ..., N$. Moreover, we have

$$\{\chi_s(B_i), \chi_s(B_j)\}_{S^2} = \chi_s(\{B_i, B_j\}_{S^2})$$

and

$$\{\chi_s(B_i), \chi_s(B_j)\}_{B^2} = \chi_s(\{B_i, B_j\}_{B^2}).$$

Let τ be the permutation of the N indexes such that

$$\tau(l) = N + 1 - l$$

for $l = 1, ..., N$. The permutation τ induce a ring automorphism ν of $\mathbb{R}(B_1, ..., B_N)$ such that

$$\nu(B_l) = B_{N+1-l}.$$

Moreover, we have

$$\{\nu(B_i), \nu(B_j)\}_{S^2} = -\nu(\{B_i, B_j\}_{S^2}),$$

$$\{\nu(B_i), \nu(B_j)\}_{B^2} = -\nu(\{B_i, B_j\}_{B^2}).$$

By the above symmetry, we suppose that

$$i = 1$$

and

$$1 < j < k \leq N.$$

Let

$$l := \min\{|j-i|, |j-i-N|, |k-j|, |k-j-N|, |i-k|, |i-k-N|\}.$$

We suppose that $l = |j-1|$, we have to verify the following cases:

(i) When $1 < j - 1 < k - 2 < N - 1$, we have

$$K(B_1, B_i, B_k)$$

$$K(B_1, B_i, B_k) = \{\{B_1, B_j\}_{B^2}, B_k\}_{S^2} + \{\{B_j, B_k\}_{B^2}, B_1\}_{S^2} + \{\{B_k, B_1\}_{B^2}, B_j\}_{S^2} + \{\{B_1, B_j\}_{B^2}, B_k\}_{B^2} + \{\{B_j, B_k\}_{S^2}, B_1\}_{B^2} + \{\{B_k, B_1\}_{S^2}, B_j\}_{B^2} + \{\{B_1, B_j\}_{B^2}, B_k\}_{S^2} + \{\{B_j, B_k\}_{S^2}, B_1\}_{B^2} + \{\{B_k, B_1\}_{S^2}, B_j\}_{B^2} + \{\{B_1, B_j\}_{B^2}, B_k\}_{S^2} + \{\{B_j, B_k\}_{B^2}, B_1\}_{S^2} + \{\{B_k, B_1\}_{B^2}, B_j\}_{S^2}.$$

Since

$$\{B_1, B_j\}_{B^2}$$

is a polynomial of $B_1, ..., B_j$, we have

$$\{\{B_1, B_j\}_{B^2}, B_k\}_{S^2} = 0.$$

Similarly, we have

$$\{\{B_j, B_k\}_{B^2}, B_1\}_{S^2} = 0$$

and

$$\{\{B_k, B_1\}_{B^2}, B_j\}_{S^2} = 0.$$

We conclude that

$$K(B_1, B_i, B_k) = 0.$$

(ii) When $j = 2$, $k = 3$, we have

$$
K(B_1, B_2, B_3) \\
= \{\{B_1, B_2\}_B, B_3\}_S + \{\{B_2, B_3\}_B, B_1\}_S + \{\{B_3, B_1\}_B, B_2\}_S \\
+ \{\{B_1, B_2\}_S, B_3\}_B + \{\{B_2, B_3\}_S, B_1\}_B + \{\{B_3, B_1\}_S, B_2\}_B \\
= \{B_1B_2 - B_1 - B_2, B_3\}_S + \{B_2B_3 - B_2 - B_3, B_1\}_S + \left(\frac{B_3B_1}{B_2}\right)_S B_2 \\
+ \{B_1B_2, B_3\}_B + \{B_2B_3, B_1\}_B \\
= (B_1 - 1)B_2B_3 - (B_3 - 1)B_1B_2 + B_1(B_2B_3 - B_2 - B_3) \\
- \frac{B_1B_3}{B_2}B_2 - (B_1B_2 - B_1 - B_2)B_3 + \frac{B_3B_1}{B_2}B_2 \\
= 0. \\
(67)
$$

(iii) When $j = 2$, $k = 4$ and $N > 5$, we have

$$
K(B_1, B_2, B_4) \\
= \{\{B_1, B_2\}_B, B_4\}_S + \{\{B_2, B_4\}_B, B_1\}_S + \{\{B_4, B_1\}_B, B_2\}_S \\
+ \{\{B_1, B_2\}_S, B_4\}_B + \{\{B_2, B_4\}_S, B_1\}_B + \{\{B_4, B_1\}_S, B_2\}_B \\
= \{B_1B_2 - B_1 - B_2, B_4\}_S + \left(\frac{-B_2B_1}{B_3}\right)_S B_1 + \{B_1B_2, B_4\}_B \\
= \frac{B_1B_2B_4}{B_3} - \frac{B_1B_2B_1}{B_3} \\
= 0. \\
(68)
$$

(iv) When $j = 2$, $k = 4$ and $N = 5$, we have

$$
K(B_1, B_2, B_4) \\
= \{\{B_1, B_2\}_B, B_4\}_S + \{\{B_2, B_4\}_B, B_1\}_S + \{\{B_4, B_1\}_B, B_2\}_S \\
+ \{\{B_1, B_2\}_S, B_4\}_B + \{\{B_2, B_4\}_S, B_1\}_B + \{\{B_4, B_1\}_S, B_2\}_B \\
= \{B_1B_2 - B_1 - B_2, B_4\}_S + \left(\frac{-B_2B_1}{B_3}\right)_S B_1 + \left(\frac{-B_4B_1}{B_5}\right)_S B_2 \\
+ \{B_1B_2, B_4\}_B \\
= \frac{B_1B_2B_4}{B_3} - \frac{B_1B_1B_2}{B_5} - \frac{B_1B_2B_4}{B_3} + \frac{B_1B_4B_2}{B_5} \\
= 0. \\
(69)
$$

We conclude that for $N \geq 5$, $\{\cdot, \cdot\}_B$ and $\{\cdot, \cdot\}_S$ are compatible on $\mathbb{R}(B_1, ..., B_N)$. \hfill \Box

Acknowledgements

The author is very grateful to François Labourie for suggesting the subject and for the guidance. He thanks Vladimir Fock for very interesting conversations and useful comments on this work. He is grateful to his home institute University of Paris-Sud and to Max Planck Institute for Mathematics for its hospitality.
Swapping algebra, Virasoro algebra and discrete integrable system

References

DS85 V. G. Drinfel’d, V. V. Sokolov Equations of Korteweg-de Vries type and simple Lie algebras, Journal of Soviet Mathematics July 1985, Volume 30, Issue 2, pp 1975-2036.

L12 François Labourie, Goldman algebra, opers and the swapping algebra, available in arXiv:1212.5015.

FV93 L. Faddeev, A. Yu. Volkov, Abelian Current Algebra and the Virasoro Algebra on the Lattice, Physics Letters B, Volume 315, Issue 3-4, p. 311-318.

H92 Nigel. J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), no. 3, 449-473.

KS13 B. Khsein, F. Soloviev, Integrability of higher pentagram maps, Mathematische Annalen November 2013, Volume 357, Issue 3, pp 1005-1047.

KW09 B. Khsein, R. Wendt, The Geometry of Infinite-Dimensional Groups, A Series of Modern Surveys in Mathematics, Vol. 51 (2009).

OT05 V. Ovsienko, S. Tabachnikov, Projective differential geometry old and new: from Schwarzian derivative to cohomology of diffeomorphism groups, Cambridge Univ. Press, 2005.

Su14 Zhe Sun, Rank n swapping algebra, available in arXiv 1411.2796.

Se91 R. C. Graeme Segal, The geometry of the kdv equation, Internat. J. Modern Phys. A 6 (1991), no. 16, 2859-2869.

SOT10 Richard Schwartz, Valentin Ovsienko and Sergei Tabachnikov, The Pentagram map: A discrete integrable system, Communications in Mathematical Physics (2010), arxiv:0810.5605.

Zhe Sun sunzhe1985@gmail.com
Max Planck Institute for Mathematics, Bonn, 53111, Germany