Inhibiting Sperm Pyruvate Dehydrogenase Complex and Its E3 Subunit, Dihydrolipoamide Dehydrogenase Affects Fertilization in Syrian Hamsters

Archana B. Siva*, Subbarayalu Panneerdoss*, Purnima Sailasree, Durgesh K. Singh, Duvurri B. Kameshwari, Sisinthy Shivaji*

Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India

Abstract

Background/Aims: The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium.

Methodology and Principal Findings: Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalining spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization.

Conclusions: This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the observations made in the IVF studies in hamsters suggest that capacitation failures could be a plausible cause of unsuccessful fertilization encountered during human assisted reproductive technologies, like IVF and ICSI. Our studies indicate a role of sperm capacitation in the post-penetration events during fertilization.

Introduction

Fertilization is a complex biological process, for which many of the prerequisites are still poorly understood. Fertilization success or failure depends on several sperm and egg factors [1]. Sperm capacitation too is an obligatory phenomenon for successful fertilization in mammals [2,3]. Idiopathic fertilization failure in nature as well as during assisted reproductive practices such as conventional in vitro fertilization (IVF) has been attributed to problems of sperm capacitation [4,5]; warranting molecular studies on the contribution of sperm capacitation to fertilization success.

Capacitation has been defined as the collection of biophysical and biochemical transformations, involving sperm metabolism, intracellular pH, intracellular cAMP, intracellular calcium concentration, intracellular ion concentrations, plasma membrane fluidity, membrane reorganization and reactive oxygen species [6–8]. The role of sperm metabolism in capacitation and eventually in fertilization has been an area of interest for over two decades [9,10]. Recently, our laboratory, too has implicated pyruvate/lactate metabolism and the post-pyruvate metabolic enzymes, Pyruvate dehydrogenase complex (PDHc) and its E3 subunit dihydrolipoamide dehydrogenase (DLD) in the process of capacitation and acrosome reaction via the regulation of sperm...
intracellular lactate, intracellular pH (pH) and intracellular calcium ([Ca²⁺]), [11–13]. Inhibition of PDHc/DLD was achieved by the use of the DLD-specific inhibitor, 5-methoxynitro-2-carboxylic acid (MICA). Downregulation of the PDHc/DLD activity in these MICA-treated (MT) hamster spermatozoa inhibited capacitation and acrosome reaction, with no significant effects on hyperactivation and tyrosine phosphorylation [11]. The mechanism of inhibition of capacitation and acrosome reaction in the MT-spermatozoa was worked out in the laboratory [13]. It was demonstrated that MT-spermatozoa showed lactate accumulation (due to PDHc/DLD inhibition and thus, pyruvate non-consumption), which resulted in lowering of initially, the intracellular pH and eventually, the intracellular calcium in these cells, causing blocked capacitation and acrosome reaction. Deviation in this regulation resulting in sperm capacitation failure; is likely to affect the fertilization-competence of these spermatozoa. To validate this premise and understand the mechanism involved, we performed in vitro fertilization studies with spermatozoa; in which PDHc/DLD was inhibited by the use of the specific DLD inhibitor, 5-methoxynitro-2-carboxylic acid (MICA). These MICA-treated (MT-), non-capacitated spermatozoa, as anticipated, failed to fertilize the oocytes, thus, supporting the importance of sperm capacitation for successful fertilization. The results also substantiated the role of pyruvate/lactate metabolism in fertilization, in addition to establishing the requirement of a functional sperm PDHc/DLD in hamster fertilization.

Materials and Methods

Spermatozoa collection, in vitro capacitation and assessment of sperm hyperactivation

Male golden hamsters (Mesocricetus auratus) aged 6 months were used for the in vitro capacitation studies that involved modified TALP-PVA medium (Tyrode's medium with albumin, lactate, pyruvate and polyvinyl alcohol) as described earlier [13]. Briefly, the caudae epididymidum were dissected out from anesthetized animals, rinsed in the medium, pierced with a fine needle and the released contents containing the spermatozoa was collected in the modified Tyrode's medium. After a few minutes of incubation at 37°C, 5% CO₂, a uniform suspension of spermatozoa was obtained which was then taken for a sperm count in a Makler chamber and a HTM-CEROS (Hamilton Thorne, Beverly, MA) computer assisted sperm analyzer (CASA). For in vitro fertilization (IVF) experiments; spermatozoa were collected after 3 h of capacitation in TALP-PVA medium and then used for inseminating the oocytes. MICA, the specific inhibitor of DLD, was dissolved in the TALP-PVA media as described earlier [11] and all the experiments were done with a 5 mM final concentration. The acrosome reaction was always assessed for MT- spermatozoa, to ensure that the inhibitor was working [13]. The present study was approved by the Institutional Animal Ethics Committee of the Centre for Cellular and Molecular Biology, Hyderabad, India.

Hamster sperm hyperactivation and the related motility kinematic parameters namely curvilinear velocity (VCL), linearity (LIN), amplitude of lateral head displacement (ALH) were assessed using CASA, according to the criteria described earlier [11]. The set up values of the CASA were as follows: frames acquired, 50; frame rate (Hz), 60; minimum contrast, 25; minimum cell size (pixels), 3; low average path velocity cut off (μm/sec), 7.5; medium average path velocity cut off (μm/sec), 12.5; low straight line velocity cut off (μm/sec), 5; static head intensity limits, 0.2–1.47; static head-size limits, 0.12–7.37; static elongation limits, 1–98; magnification, 1.43 (X4); video frequency (Hz), 60; bright field, off; slide temperature, 37°C; field selection mode, manual [11]. Based on these kinematic parameters, the non-hyperactivated spermatozoa (exhibiting planar motility pattern) could be differentiated from the hyperactivated spermatozoa (exhibiting either circular or helical motility patterns) using the SORT facility of the CASA. Spermatozoa with data points ≥15, VCL>300 μm/sec, LIN<15; ALH>12 μm were sorted as hyperactivated (those exhibiting either circular or helical motility pattern) and spermatozoa with data points ≥15, VCL<300 μm/sec, LIN>40% and ALH<12 μm were sorted as non-hyperactivated spermatozoa (exhibiting planar motility pattern). A total of ~100 individual spermatozoa were sorted at each time point to establish whether the spermatozoa were hyperactivated or not.

Superovulation and oocyte collection

Three-month-old cyclic female hamsters were used in this investigation. On day 1 of the estrous cycle (confirmed by postovulatory discharge), before 10 a.m., ovarian hyperstimulation was induced by subcutaneous injection of 10 IU equine chorionic gonadotrophin (eCG -Folligon; Intervet, Boxmeer, The Netherlands) and ovulation was induced by 10 IU human chorionic gonadotrophin (hCG-Chorulon; Intervet, Boxmeer, The Netherlands) injected between 48–56 h after eCG injection [14]. Animals were anesthetized at 17±1 h after hCG injection. Oviducts were collected in a 35 mm dish (Nunc, Roskilde, Denmark) containing 1 ml TALP-PVA medium. The cumulus–oocyte complexes (COCs) were collected by gently teasing the ampulla region of the oviducts, and the COG mass was digested using hyaluronidase (1 mg/ml) and the cumulus-free zona intact oocytes were washed three times in TALP-PVA medium and incubated at 37°C in 5% CO₂, under mineral oil (embryo-tested, Sigma., St. Louis, MO, USA), until being used for IVF.

In vitro fertilization

Freshly collected oocytes (metaphase II-arrested, 10 oocytes per drop) were placed in a 100 μl fertilization drop of TALP-PVA medium under mineral oil and an aliquot of spermatozoa (final concentration of 10,000 – 20,000 spermatozoa, 2.5 μl) previously capacitated for 3 h (different capacitation conditions were used, as described under separate section) was added [14]. Co-incubation was carried out for at least 3 h at 37°C in 5% CO₂ under mineral oil to prevent evaporation and pH changes. In all IVF experiments, spermatozoa were capacitated for 3 h under various conditions as indicated and then used for IVF, since in preliminary experiments it was established that in hamster spermatozoa, capacitation (as judged by the occurrence of acrosome reaction) begins at 3 h and reaches a peak by 5 h (Figure. 1).

After 3 h of co-incubation, the oocytes were washed in TALP-PVA medium to remove the excess bound spermatozoa, stained with Hoechst 33342 (30 μg/ml, Sigma, St. Louis, MO, USA) and their fertilization status was confirmed in the Axiovert microscope (Carl Zeiss Inc, Germany), 40x objective. The various cellular events monitored included meiotic plate reorganization, second polar body release and formation of both pronuclei. Only those oocytes that showed both 2nd polar body release and pronuclei formation were scored as ‘properly fertilized’. Thirty to 50 oocytes from at least 4–7 different females were used for each determination. All experiments were repeated at least 4 times with spermatozoa from different males. All experiments were carried out with proper (solvent) control.

Irrespective of the media conditions for sperm capacitation, IVF was always done in the TALP-PVA medium. For alkalization experiments, MT- spermatozoa were treated with 15 mM ammonium chloride (NH₄Cl) from 0 h itself during capacitation
Statistical analysis

ANOVA test with Tukey-Kramer multiple comparisons was performed to analyze the results statistically using the software Graph Pad, Prism, version 3.02. P values <0.05 were considered significant.

Results

Pyruvate/lactate alone in capacitating medium are sufficient to support fertilization

All the oocytes fertilized with hamster spermatozoa capacitated in TALP-PVA medium showed proper fertilization (Control), with both the polar bodies (PBs) and the pronuclei (PN) visible (Figure 2A-D, Table 1). Hamster spermatozoa incubated in TALP medium devoid of glucose (PL medium) successfully fertilized all the oocytes (Control-PL), 100%, Table 1), indicating that the presence of pyruvate/lactate alone during capacitation is sufficient for hamster fertilization.

Inhibiting pyruvate/lactate metabolism in spermatozoa affects fertilization: MICA-treated spermatozoa are unable to fertilize oocytes properly

Inhibiting PDHc/DLD affects pyruvate/lactate metabolism [13], since PDHc metabolizes pyruvate to acetyl CoA. Aberrant pyruvate/lactate metabolism during capacitation in these MT-spermatozoa resulted in only 6.2±4.6% oocytes showing proper fertilization (Table 1). The majority of these oocytes (~90%) showed only meiotic plate reorganization (MPR, asterisk, Figure 2E-H). These oocytes were also observed after 8 and 18 h and they maintained the same condition of MPR (data not shown). All oocytes inseminated with control spermatozoa (Control) showed 100% fertilization (Table 1).

Reducing lactate load on the MICA-treated spermatozoa improves their fertilization ability

To ascertain if lactate accumulation in MT- spermatozoa [13] was responsible for the reduced fertilization, IVF was performed with MT- spermatozoa capacitated in G medium (MT-G). Reduced lactate load on these spermatozoa improved their fertilizing potential. The IVF results indicated that 35±6.7% oocytes were fertilized with MT-G spermatozoa (Table 2) in contrast to 6±4.2 % oocytes fertilized by MT spermatozoa.

Alkalization of the MICA-treated spermatozoa improves their fertilization potential

Increased lactate load decreases the pH$_i$ of the MT spermatozoa [13] and thus, alkalizing these spermatozoa was expected to improve the fertilization outcomes. Alkalization of the male gamete resulted in 75.5±3.3 % of the oocytes showing proper fertilization, in contrast to 6±4.2% fertilization seen with untreated MT spermatozoa (Table 2). IVF done with MT-G spermatozoa alkalized with only 5 mM NH$_4$Cl (MT-G - 5NH$_4$Cl) revealed fertilization success (73±2%) similar to MT-15NH$_4$Cl (75.5±3.3 %) (Table 2).

Control spermatozoa capacitated in TALP-PVA media with low pH or high lactate have compromised fertilizing ability

In order to assess if the accumulation of lactate and subsequent lower pH$_i$ in the spermatozoa during capacitation [13] in general had detrimental effects on the outcome of hamster IVF (similar to that seen with MT spermatozoa), we carried out IVF with control spermatozoa capacitated in TALP-PVA medium supplemented with 19 mM lactate (normally TALP has 12.8 mM lactate) or with lower pH of 6.8 and 7.0. IVF with MT-spermatozoa was also done in parallel as a control for defective fertilization. IVF results indicated that all the above sperm treatments resulted in low success rate (49±5.1% oocytes for TL19; 38±6.9% for pH 6.8 and 44±8% for pH 7.0 spermatozoa) [Table 3].
Increasing [Ca^{2+}]_i in MICA-treated spermatozoa during capacitation improves their fertilizing ability

Since [Ca^{2+}]_i level in MT-spermatozoa was low [13], we envisaged that increasing calcium level in the MT spermatozoa would overcome the defective fertilization observed by these spermatozoa. Therefore, MT spermatozoa were treated at 2.55 h briefly (for 5 min) with 0.2 μM calcium ionophore, A23187 (MT-PreCa) before IVF. It was observed that oocytes fertilized with MT-PreCa spermatozoa showed 38±9.6% success as opposed to 6±4.6% in MT spermatozoa (Table 4). Acrosome reaction induction was also seen with this concentration of A23187 in MT-spermatozoa at all the 3 time points assessed (Figure 1). A correlation (Spearman correlation coefficient, r = 0.8503, p < 0.05) was seen between the sperm intracellular calcium levels [13] in the different treatments and the fertilization rates seen in this study (Figure 3).

In another set of experiments with calcium ionophore, oocytes showing defective fertilization were treated with 40 nM A23187 for 10 minutes. It was seen that calcium ionophore treatment resulted in 42.1±3.7% of oocytes showing both, PB release and pronuclei formation, as compared to 6% fertilization seen in untreated MT-fertilized oocytes (Table 4).

Discussion

This study confirms the importance of sperm capacitation for fertilization, in general and of sperm pyruvate/lactate metabolism in fertilization, in particular [10,17]. Pyruvate/lactate are sufficient to support fertilization in hamsters, as demonstrated by IVF studies with spermatozoa capacitated in TALP medium devoid of glucose (Table 1). However, there is an optimum level of lactate/pyruvate required by the spermatozoon for it to remain fertile, since increase in the lactate load on the spermatozoa reduces its fertilizing potential (Table 3). Inhibiting pyruvate/lactate metabolism with PDHc/DLD inhibitor, MICA affected fertilization (Table 1). Since DLD mutant is embryonically lethal [18] making

Table 1. Fertilization outcome with MICA-treated spermatozoa.

Sperm Treatment	Fertilization (%)
Control	100±0 a
Control-PL	100±0 b
MT	6.2±4.6 a,b

Control: Control spermatozoa capacitated in TALP-PVA medium; Control-PL: spermatozoa capacitated in PL medium; MT: MICA-treated spermatozoa in TALP-PVA medium.

Values represent mean±SD.

Values with the same superscript differ significantly, p<0.05.

Figure 2. In vitro fertilization results with control (A-D) and MT- spermatozoa (E-H). Oocytes fertilized using control spermatozoa showed proper fertilization (PF) as judged by the presence of both polar bodies (PBs) and both pronuclei (PN) (A-D). Oocytes fertilized with MT-spermatozoa showed defective fertilization. In these spermatozoa, only meiotic spindle reorganization was visible (asterisk, E-H) and the 2nd polar body extrusion had failed (red arrow in E-H). Oocytes were stained with Hoechst 33342 to visualize the polar bodies and pronuclei and the images presented are a merge of both brightfield and fluorescence. Magnification used was 400 x. Scale bars indicate 5 μm.

doi:10.1371/journal.pone.0097916.g002
Intracellular pH or calcium with NH4Cl [Table 2] and calcium [Table 2, 3]. Improvement in the fertilization rate after increasing fertilizing potential of the spermatozoa, as seen in this study capacitation and acrosome reaction [13], and eventually the study by Johnson (i.e. either DLD inhibition in our study or PDHA1 knockout in the active of the cell type (spermatozoon or oocyte) or the approach used [8,20–25]. This high lactate, and low sperm pHi and [Ca2+]i contributes to the knowledge available on the importance of sperm pHi and [Ca2+]i in mammalian fertilization [26–32]. A correlation (spearman correlation coefficient, r = 0.7683, p < 0.05) was seen between the sperm pHi [13] and the fertilization rate under the various experimental conditions studied, where low sperm pHi resulted in lower fertilization rates (Figure 4). Alkalinized MT and MT-G spermatozoa, showed a deviation in this trend (Figure 4, encircled), suggesting a likely post-fertilization effect of the added NH4Cl to the fertilized oocyte. In fact, it was also seen that treatment of defectively fertilized oocytes with 2.5 mM NH4Cl post-fertilization resulted in 71 ± 3% fertilization (Table S2) when compared to 6.2 ± 4.6 % fertilization with untreated MT-spermatozoa.

One another sperm characteristic, sperm hyperactivation (HA) is considered very important for mammalian fertilization [33,34]. To assess if the various conditions used in this study affected sperm HA, which ultimately would have a bearing on the fertilization outcome, we assessed sperm HA during capacitation for the various conditions used (Figure 5). It was seen that the effect was evident until 2 h of incubation in VCL (Figure 5A and B), ALH (Figure 5C and D) and LIN (Figure 5E and F) parameters, after which the spermatozoa recovered. This trend with MICA has been shown earlier from our laboratory by Mitra and Shivaji [11]. Since the spermatozoa were picked up at 3 h of capacitation for which the spermatozoa recovered. This trend with MICA has been shown earlier from our laboratory by Mitra and Shivaji [11].

The oocyte resumes meiosis and becomes competent to begin embryonic development upon activation. The mammalian oocyte is activated in a fertilization-dependent manner. Oocyte activation

Table 2. Fertilization with MICA-treated spermatozoa capacitated in G medium (MICA-treated-G) with or without ammonium chloride [NH4Cl].

Sperm Treatment	Fertilization (%)
Control	100 ± 0
Control-G	100 ± 0
MT-G	35 ± 6.2
MT-15NH4Cl	75.5 ± 3.3
MT- G - 5NH4Cl	73 ± 0.8
MT- 5NH4Cl	1 ± 0.2

Control: Control spermatozoa in TALP-PVA medium; Control-G: control spermatozoa in G medium; MT-: MICA-treated spermatozoa; MT-G: MT spermatozoa in G medium; MT-15NH4Cl: MT spermatozoa in TALP-PVA medium alkalinized with 15 mM ammonium chloride; MT-G-5NH4Cl: MT-G spermatozoa alkalinized with 5 mM ammonium chloride; MT-5NH4Cl: MT spermatozoa alkalinized with 5 mM ammonium chloride.

*Values represent mean ± SD.

Values with the same superscript differ significantly at p < 0.05.

Table 3. Fertilization with spermatozoa capacitated in TALP-PVA medium with high lactate and low pH (6.8 and 7.0).

Sperm Treatment	Fertilization (%)
Control	100 ± 0
TL19	49 ± 5.1
pH 6.8	38 ± 6.9
pH 7.0	44 ± 8.0

Control: Control spermatozoa in TALP-PVA medium with pH 7.5 and 12.8 mM lactate; TL19: spermatozoa in TALP-PVA medium having 19 mM lactate; pH 6.8: spermatozoa in TALP-PVA medium having pH 6.8; pH 7.0: spermatozoa in TALP-PVA medium having pH 7.0.

*Values represent mean ± SD.

Values with the same superscript differ significantly at p < 0.05.
is characterized by many events including changes in membrane to prevent polyspermy, release of the second meiotic arrest and completion of meiosis, posttranscriptional modifications of maternal mRNAs, and cytoskeletal rearrangements [35]. In this context, a careful observation of the oocytes fertilized with MT-spermatozoa revealed that the defective oocytes were arrested at the meiotic resumption step during oocyte activation. Subsequent to sperm penetration, initial occurrence of meiotic plate reorganization was observed; but the subsequent release of 2nd polar body and pronuclei formation were not seen. Post-fertilization treatment of defectively-fertilized oocyte with calcium ionophore (Table 4) and NH4Cl (Table S2) resulted in 2nd polar body release and pronuclei formation (both male and female), confirming sperm-penetration and ruling out the possibility of parthenogenetic activation. Oocytes activated parthenogenetically using ethanol showed 2 polar bodies and a single pronucleus (data not shown). Asch et al [36] report such observations of fertilization arrest in human IVF and in this context our study supports the hypothesis that such arrests could arise owing to defects in the spermatozoa and sperm capacitation, in particular. Although our study is in rodents [fertilization was inhibited in mouse species as well (unpublished results)], these results would help in understanding the clinical dilemma faced in unsuccessful human assisted reproductive technologies (ARTs).

Although sperm capacitation is an indispensable part of sperm fertility and is being studied for more than 60 years now, it is still accepted that “this process is not clearly understood”. The definition of capacitation has evolved over time (summarized by Ruffenach, 2009) [37] and in 1984, Chang [38] suggested that all processes leading up to the acrosome reaction should be referred to as the first part of sperm capacitation or in his original words “definition of capacitation should include all the events that lead to the development of the capacity of mammalian spermatozoa to ‘penetrate’ eggs.” It now seems essential to re-discuss the process of capacitation in the light of the interesting findings from this study.

We observe sperm penetration but not fertilization, (i.e. the subsequent events of activation, pronucleus formation, 2nd polar body extrusion, etc.) in the case of MICA- treated/low pH spermatozoa. This reveals that these spermatozoa with improper capacitation have compromised fertility, in the post-penetration window. This is interesting because this highlights the importance of capacitation beyond penetration; thus, strengthening the hypothesis that fertilization failures can be due to paternal effects.

Table 4. Fertilization with MT-spermatozoa pretreated with calcium ionophore, A23187.

Sperm Treatment	Fertilization (%)
Control	100±0 a
MT-	6±4.6 b c
MT-PreCa	38±9.6 b
Post-fertilization	42.1±3.9 c

Control: Control spermatozoa in TALP-PVA medium; MT-: MICA treated spermatozoa; MT-PreCa: MT-spermatozoa pretreated with 0.2 µM calcium ionophore A23187; Post-fertilization: treatment of defective oocytes with 40 nM A23187, post-fertilization.

Values represent mean±SD.

Values with the same superscript differ significantly at p<0.05.

doi:10.1371/journal.pone.0097916.t004
as highlighted in literature [39–42]. These studies point out that the failure to complete the fertilization process, syngamy or early cleavage could be the result of an early paternal effect. To validate and resolve this further in the context of humans, research on understanding the functional role of the male gamete beyond penetration, and unraveling the underlying causes of sperm pathology need to be carried out extensively [43,44].

Adverse paternal effects on fertilization and embryo development could be due to centrosomal dysfunction, deficiency of oocyte-activating factors, failure of sperm head decondensation/damaged chromatin packaging, etc. [45–47]. These altered steps arising due to capacitation anomalies, cannot be ruled out. In the case of PDHe inhibition, sperm have reduced pH, and elevated ROS [13,48], which are likely to have a role in these altered sperm events, especially sperm chromatin packaging [49] and eventually fertilization. Besides these capacitation-associated anomalies, direct effects of ‘sperm acidification’ on oocyte activation/zygote development cannot be ruled out, although this hypothesis would require additional study.

Defectively fertilized oocytes showed completion of oocyte activation after treatment with calcium ionophore A23187, revealing that low [Ca2+] is responsible for the arrest seen and the MT- spermatozoa presumably fail to induce the calcium influx required for successful oocyte activation. Calcium signaling is crucial for fertilization [50] and it has been shown recently that calcium influx across the plasma membrane is mandatory for completion of meiosis; especially the extrusion of polar body in the metaphase II arrested oocytes [51] which are in accordance with our observations. It is evident that the molecular changes occurring during sperm capacitation pertinent for calcium influx and eventual oocyte-activation is compromised in the MT-spermatozoa, which are not capacitated properly. The mechanism, however, by which this happens, is not clear yet, but could be manifold as suggested by Barrosso et al [52], such as an improper localization of the oocyte activating factor PLC zeta due to improper capacitation [53]; untimely entry of spermatozoa into the oocyte due to delayed hyperactivation and penetration [54], compromised centriolar function, etc. Experiments to investigate these possibilities in the human and hamster spermatozoa are essential to understand how failed sperm capacitation due to low pH, and [Ca2+], causes low calcium levels in fertilized oocytes and oocyte activation/fertilization failure.

In conclusion, this study has been an attempt to understand metabolic activities that regulate pH, and calcium in sperm and
modulate the capacitation-associated changes required for fertility. It highlights the role of the capacitation-associated, sperm metabolic proteins, PDH/DLD in fertilization. Inhibition of sperm PDH/DLD results in a “lactic acidosis-like condition” in the spermatozoon, where lactate, a common energy source turns unfavorable, upon exceeding its optimal limits and also affects sperm intracellular pH and calcium; thereby also highlighting the importance of pyruvate metabolism and lactate-pyruvate equilibrium during capacitation in the maintenance of sperm pHi, calcium and fertility. To the best of our knowledge, this appears to be for the first time that essentiality of sperm capacitation in the phenomenon of fertilization/oocyte activation via pyruvate/lactate metabolism has been suggested. This observation would help in understanding the fertilization failure in human ARTs.

References

1. Kashy J, Hendrycks B, Jones C, De Sutter P, Parrington J, et al. (2010) Oocyte activation, phospholipase C zeta and human infertility. Hum Reprod Update 16: 690–703.
2. Austin CR (1951) Observations on the penetration of the sperm into the mammalian egg. Aust J Biol Sci 4: 581–596.
3. Chang MC (1951) Fertilizing capacity of spermatozoa deposited into fallopian tubes. Nature 160: 697–698.
4. Tucker MJ, Leong MKHC, Leung KM, Wong CJJ, Chan HHY (1987) Is delayed capacitation a complicating factor in the treatment of idiopathic infertility by intrauterine insemination? J Assist Reprod Genet 4: 245–247.
5. Ambrosini A, Zolese AG, Wozniak M, Genga D, Boscaro M, et al. (2003) Idiopathic infertility: susceptibility of spermatozoa to in-vitro capacitation, in the presence and the absence of palmitylthanolamide (a homologue of anandamide), is strongly correlated with membrane polarity studied by Laurdan fluorescence. Mol Hum Reprod 9: 301–305.
6. de Lamirande E, Leclerc P, Gagnon C (1997) Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod 3: 175–194.
7. Jha KN, Kameshwari DB, Shivaji S (2003) Role of signaling pathways in regulating the capacitation of mammalian spermatozoa. Cytol Mol Biol (Noisy-le-grand: 49: 329–340.
8. Visconti PE, Westbrook VA, Cherruthin O, Dernarco I, Sleight S, et al. (2002) Novel signaling pathways involved in sperm acquisition of fertilizing capacity. J Reprod Immunol 56: 133–156.
9. Fraser LR, Ahuja KK (1988) Metabolic and surface events in fertilization. Proc Natl Acad Sci USA 94: 14512–14517.
10. Hereng TH, Elgstøen KBP, Cederkvist FH, Eide L, Jahnsen T, et al. (2011) Inhibition of ovulation by intrauterine insemination lethality. Proc Natl Acad Sci USA 104:7688–7692.
11. Mitra K, Shivaji S (2004) Novel tyrosine-phosphorylated post-pyruvate metabolic enzyme dihydrolipoamide dehydrogenase in spermatozoa: correlation of its expression with spermatozoa. Hum Reprod 26: 2349–2363.
12. Mitra K, Vedavle J, Sarode B, Suryawanshi P, Suryawanshi S, et al. (2005) Role of spermatozoa specific Na+/H+ exchanger required for sperm motility and fertility. Nature 413: 603–609.
13. Panneerdoss S, Siva AB, Kameshwari DB, Rangaraj N, Shivaji S (2012) Association of Lactate, Intracellular pH and Intracellular Calcium During Capacitation and Acrosome Reaction: Contribution of Hamster Sperm to Human Reproduction. J Biol Chem 280: 25743–25753.
14. Panneerdoss S, Siva AB, Kameshwari DB, Rangaraj N, Shivaji S (2012) Evidence of egg activation of hyperactivated motility in sperm. J Androl 33:699–710.
15. Bax NM, Oosterhuis JG (2001) The stages at which capacitation and egg activation occur. J Androl 22: 376–380.
16. Liu DY, Baker HWG (1998) Calcium ionophore-induced acrosome reaction correlates with fertilization rates in vitro in patients with teratozoospermia. Hum Reprod 13: 905–910.
17. Odet F, Duaa C, Willis ND, Goulding EH Kung, A, et al. (2008) Expression of the gene for mouse Lactate Dehydrogenase C (Ldhc) is required for male fertility. Biol Reprod 79: 26–34.
18. Johnson MT, Yang HS, Magnuson T, Patel MS (1997) Targeted disruption of the murine dihydrolipoamide dehydrogenase gene (Dld) results in perinatual lethality. Proc Natl Acad Sci USA 94: 14512–14517.
19. Johnson MT, Freeman EA, Gardner DK, Hunt PA (2007) Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes. In: Boi Reprod 77: 2–8.
20. Working PK, Meizel S (1993) Correlation of increased intracellular pH with the hamster sperm acrosome reaction. J Exp Zool 267: 97–107.
21. Acott TS, Carr DW (1994) Inhibition of bovine spermatozoa by caudal epididymal fluid. II. Interaction of pH and a quiescence factor. Biol Reprod 50: 926–935.
22. Yanagimachi R (1994) Mammalian fertilization. In: Knobil, E, Neill JD, editors, The Physiology of Reproduction. 2nd edn. New York: Raven Press Ltd; pp. 109–137.
23. Vreedenhuizen-Wilberg WL, Parrish JJ (1995) Intracellular pH of bovine sperm increases during capacitation. Mol Reprod Dev 40: 490–502.
24. Harrison RAP, Garland BM (2005) Bicarbonate-induced membrane processing in sperm capacitation. Theriogenology 63: 342–351.
25. Pone-Rejaf H, Bailey JL, Leclerc P (2009) Modulation of bovine sperm signalling pathways: correlation between intracellular parameters and sperm capacitation and acrosome exocytosis. Reprod Fertil Dev 21: 511–524.
26. Rov D, Navarro B, Perez G, Jackson AC, Hsu S, et al. (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413: 603–609.
27. Wang D, King SM, Quill TA, Doolittle LK, Garbers DL (2003) A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nature Cell Biol 5: 1117–1122.
28. Kirichok Y, Navarro B, Clapham DE (2006) Whole-cell patch-clamp measurements of sperm capacitation reveal an alkaline-activated Ca2+ channel. Nature 439: 737–740.
29. Navarro B, Kirichok Y, Clapham DE (2007) KSper, a pH-sensitive K+ current that controls sperm membrane potential. Proc Natl Acad Sci USA 104:7688–7692.
30. Liu T, Huang JC, Zuo WL, Lu CL, Chen M, Zhang XS, et al. (2010) A novel testis-specific Na+/H+ exchanger is involved in sperm motility and fertility. Front Biosci (Elite Ed) 2: 566–561.
31. Ren D, Xia J (2010) Calcium Signaling Through CatSper Channels in Mammalian Fertilization. Physiology 25: 165–173.
32. Santi CM, Santos T, Hernandez-Cruz A, Darszon C (1998) Properties of a novel pH-independent Ca2+ permeation pathway present in male germ cells with possible roles in spermatogenesis and mature sperm function. J Gen Physiol 112: 33–53.
33. Suarez SS, Katz DF, Owen DH, Andrew JB, Powell RL, (1991). Evidence for the function of hyperactivated motility in sperm. Biol Reprod 44: 373–381.
34. McPartlin LA, Suarez SS, Gazzey A, Hirshkowitz J, Bedford-Guaus SJ (2009) Hyperactivation of stallion sperm is required for successful in vitro fertilization of equine oocytes. Biol Reprod 81:199–206.
35. Horner VL, Wollner MF (2008) Transitioning from egg to embryo: Triggers and mechanisms of egg activation. Dev Dynamics 323–53.
36. Asch R, Simerly C, Ord T, Ord VA, Schatten G (1995) The stages at which human fertilization arrests: microtubule and chromosome configurations in inactivated eggs which failed to complete fertilization and development in humans. Hum Reprod 10: 1897–1906.
37. Ruffleach S (2009) "Sperm Capacitation". Embryo Project Encyclopedia (2009-07-07). ISSN: 1940-5030. http://embryo.asu.edu/handle/10776/1938.
38. Chang MC (1984) The Meaning of Sperm Capacitation. J Androl 5:45–50.
39. Tesarik J, Greco E, Mendoza C (2004) Late, but not early, paternal effect on early bovine embryos. Reprod. Fertil. Dev http://dx.doi.org/10.1071/RF031285
40. Demyda-Peyra´s S, Dorado J, Hidalgo M, Moreno-Millán M (2013) Influence of sperm fertilising concentration, sperm selection method and sperm capacitation procedure on the incidence of numerical chromosomal abnormalities in IVF early bovine embryos. Reprod. Fertil. Dev. http://dx.doi.org/10.1071/RF13285

Supporting Information

Table S1: A: Control IVF experiments set up with various additives. B: Control experiments done to study parthenogenetic activation of oocytes. (DOCX)

Table S2: Fertilization outcome on alkalinization of MT-fertilized oocytes with NH4Cl post-fertilization. (DOCX)

Author Contributions

Conceived and designed the experiments: SPD ABS DKS DBK SS PS. Performed the experiments: SPD ABS DKS DBK SS PS. Analyzed the data: SPD ABS DKS SS PS. Contributed reagents/materials/analysis tools: SPD ABS DKS DBK SS. Wrote the paper: SPD ABS DKS SS.

Sperm Capacitation and Successful Fertilization

PLOS ONE | www.plosone.org 8 May 2014 | Volume 9 | Issue 5 | e97916
41. Paternal Influences on Human Reproductive Success (2013) Edited by Douglas T. Carrell Andrology and IVF Laboratories, University of Utah School of Medicine Publisher: Cambridge University Press.
42. Kumar M, Kumar K, Jain S, Hasan T, Dada R (2013) Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics (Sao Paulo). 68: 5-14.
43. Oehninger S (2011) Clinical management of male infertility in assisted reproduction: ICSI and beyond. Int J Androl 34: e319.
44. Mehta A1, Sigan M. Identification and preparation of sperm for ART. Urol Clin North Am. 2014 41:169–180.
45. Fisore RA, Reis MM, Palermo GD (1999) Isolation of the Ca$^{2+}$ releasing component(s) of mammalian sperm extracts: the search continues. Mol. Hum. Reprod. 3, 189–192.
46. Tesarik J, Mendoza C, Greco E (2002) Paternal effects acting during the first cell cycle of human preimplantation development after ICSI. Hum Reprod 17: 184–189.
47. Gawacka JE, Marh J, Ortega M, Yamauchi Y, Ward MA, et al. (2013) Mouse Zygotes Respond to Severe Sperm DNA Damage by Delaying Paternal DNA Replication and Embryonic Development. PLoS ONE 8: e56385.
48. Kumar V, Kota V, Shivaji S (2008) Hamster sperm capacitation: role of pyruvate dehydrogenase A and dihydrolipoamide dehydrogenase. Biol Reprod. 79:190–199.
49. Irvine DS, Twigg JP, Gordon EL, Fulton N, Main PA, Aitken RJ (2000) DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 21:33–44.
50. Wakai T, Vanderheyden V, Fisore RA (2011) Ca$^{2+}$ signaling during mammalian fertilization: requirements, players, and adaptations. Cold Spring Harb Perspect Biol. 3: pii: a006767.
51. Miao Y-L, Stein P, Jefferson WN, Padilla-Banks E, Williams CJ (2012) Calcium influx-mediated signaling is required for complete mouse egg activation. PNAS 109: 4169–4174.
52. Barroso G, Valdespin C, Vega E, Kershenovich R, Avila R, et al. (2009) Developmental sperm contributions: fertilization and beyond. Fertil Steril 92: 835–846.
53. Young C, Grass P, Costard K, Davis LC, Parrington J (2009) Phospholipase C zeta undergoes dynamic changes in its pattern of localization in sperm during capacitation and the acrosome reaction. Fertil Steril 91: 2230–2242.
54. Quill TA, Sugden SA, Rossi KL, Doolittle LK, Hammer RE, et al. (2003) Hyperactivated Sperm Motility Driven by CatSper2 Is Required for Fertilization. Proc Natl Acad Sci USA 100: 14869–14874.