The critical state line of nonplastic tailings

L.A. Torres-Cruz and J.C. Santamarina

Abstract: The probability of failure of tailing dams and associated risks demand improvements in engineering practice. The critical state line provides a robust framework for the characterization of mine tailings. New experimental data for nonplastic platinum tailings and a large database for tailings and nonplastic soils (grain size between 2 and 300 μm) show that the critical state parameters for nonplastic tailings follow the same trends as nonplastic soils as a function of particle-scale characteristics and extreme void ratios. Critical state lines determined for extreme tailings gradations underestimate the range of critical state parameters that may be encountered in a tailings dam; in fact, mixtures with intermediate fines content exhibit the densest granular packing at critical state. The minimum void ratio e_min captures the underlying role of particle shape and grain size distribution on granular packing and emerges as a valuable index property to inform sampling strategies for the assessment of spatial variability. Mineralogy does not significantly affect the intercept I_e0, but it does affect the slope λ. The friction coefficients M of tailings are similar to those of other nonplastic soils; while mineralogy does not have a significant effect on friction, more angular grains lead to higher friction coefficients.

Key words: tailings, critical state line, minimum void ratio, nonplastic soils.

Introduction

The historical failure rate of tailing dams and the associated risks demand improvements in material characterization, the design of the containment structure, construction practices, and monitoring technology (Santamarina et al. 2019). The critical state line (CSL) provides a robust frame of reference for the assessment of mine tailings (Carrera et al. 2011; Castro et al. 1982; Fourie and Papageorgiou 2001; Jefferies and Been 2015; Li et al. 2018; Vermeulen 2001). The CSL swings through the confinement–shear–volume space (p′−q−e) and generates two projections. The q−p′ projection is the linear Coulomb strength model

\[q = M p' \]

where the M factor captures the frictional strength. The e−p′ projection (Fig. 1) follows a semi-logarithmic trend

\[e = I_e - \lambda \log[p'/p^*] \]

where e is the void ratio, λ is an arbitrary reference stress, and the intercept \(I_e \) is the void ratio when \(p' = p^* \). This study adopts \(p^* = 100 \text{ kPa} \) to anchor the linear approximation in eq. 2 around stress levels that are relevant to field conditions. Although the reference stress \(p^* \) does not affect the critical state line (CSL) in itself, it does affect the strength of the correlations between \(I_e \) and other parameters (Torres-Cruz 2019). This manuscript adopts the classical definitions of the mean effective stress \(p' = (\sigma'_{1} + \sigma'_{2} + \sigma'_{3})/3 \) and deviator stress \(q = \sigma'_{1} - \sigma'_{3} \).

There is strong lateral and vertical variability in grain size distribution within tailings dams (Carrera et al. 2011; Fourie and Papageorgiou 2001; Li 2017). Therefore, the proper selection of tailings samples is crucial to critical state characterization. One approach is to test the extreme, coarsest and finest, gradations in the deposit (Jefferies and Been 2015). However, this approach may be misleading as illustrated by multiple critical state studies of sand–silt mixtures (Papadopoulou and Tika 2008; Rahman and Lo 2008; Thevanayagam et al. 2002; Yang et al. 2006; Zlatovic and Ishihara 1995); the critical state line (CSL) shifts downwards (a
Li and Coop 2019; this work trends between critical state parameters (nonplastic tailings and 132 nonplastic soils), and seeks to identify (CSL) of nonplastic platinum tailings, analyzes results in the con-

iron tailings can exhibit considerable plasticity). The scatter in the trends between critical state parameters and

ebetween the slope λ and the gap between extreme void ratios ($e_{\text{max}} - e_{\text{min}}$), i.e., the volumetric compression potential (Cho et al. 2006; Cubrinovski and Ishihara 2000), and (ii) between λ and e_{min}, i.e., e_{min} alone can provide some information on volumetric compressibility (Torres-Cruz 2019). Overall, these trends capture the underlying role of particle shape and grain size distribution on granular packing and extreme void ratios e_{max} and e_{min} (Cho et al. 2006; Torres-Cruz 2019). Traditionally, extreme void ratios are used to characterize coarse-grained soils, i.e., retained on sieve #200. However, they can be equally useful to characterize the behavior of nonplastic silts (Lade et al. 1998; Carrera et al. 2011; Park and Santamarina 2017; Li and Coop 2019; Torres-Cruz 2019).

The scatter in the trends between critical state parameters and extreme void ratios may be too high for reliable predictions of I_{100} and λ. However, these correlations suggest the possibility that an easily measured index property could assist in assessing the potential spatial variability of critical state parameters in nonplastic tailings, such as those that result from the extraction of gold, platinum, copper, and iron (Bedin et al. 2012; Li et al. 2018; Li 2017; Li and Coop 2019; this work — Note: kimberlite and some types of iron tailings can exhibit considerable plasticity).

This study explores the determination of the critical state line (CSL) of nonplastic platinum tailings, analyzes results in the context of a large database of CSLs compiled from the literature (25 nonplastic tailings and 132 nonplastic soils), and seeks to identify trends between critical state parameters (I_{100}, λ, and M) and index properties that can be used to readily assess spatial variability in tailings dams.

Triaxial testing program

Materials and methods: platinum tailings

Platinum tailings were sourced from the upstream beach of an upstream spigotted tailings dam located in the North West Province of South Africa. The tailings are nonplastic, angular-shaped (Fig. 2), and have a complex mineralogy dominated by enstatite (27%), bytontite (27%), chromite (21%), and hornblende (8%), with traces (<5%) of diopside, epidote, talc, and biotite, among other minerals (Amponsah-Dacosta 2017).

The laboratory investigation centers around six mixtures prepared with pre-sieved tailings fractions. The mixtures have a fines content (FC) that ranges from 10% to 98% (Fig. 3 and Table 1 —

Fig. 1. Typical critical state line (CSL) and its idealization in $e - \log_{10}(p^*)$ space. The choice of I_{100} avoids extrapolation effects. [Colour online.]

reduction in I_{ρ} as the silt content increases from 0% to ~30%, but it shifts upwards (an increase in I_{ρ}) as the silt content exceeds 30%. Therefore, analyses based on the two extreme gradations underestimate the range of critical states present at a nonplastic tailings dam.

Previous studies report a correlation between the intercept I_{100} and the minimum void ratio e_{min} for nonplastic soils (Cho et al. 2006; Torres-Cruz 2019). In addition, there is some correlation (i) between the slope λ and the gap between extreme void ratios ($e_{\text{max}} - e_{\text{min}}$), i.e., the volumetric compression potential (Cho et al. 2006; Cubrinovski and Ishihara 2000), and (ii) between λ and e_{min}, i.e., e_{min} alone can provide some information on volumetric compressibility (Torres-Cruz 2019). Overall, these trends capture the underlying role of particle shape and grain size distribution on granular packing and extreme void ratios e_{max} and e_{min} (Cho et al. 2006; Torres-Cruz 2019). Traditionally, extreme void ratios are used to characterize coarse-grained soils, i.e., retained on sieve #200. However, they can be equally useful to characterize the behavior of nonplastic silts (Lade et al. 1998; Carrera et al. 2011; Park and Santamarina 2017; Li and Coop 2019; Torres-Cruz 2019).

The scatter in the trends between critical state parameters and extreme void ratios may be too high for reliable predictions of I_{100} and λ. However, these correlations suggest the possibility that an easily measured index property could assist in assessing the potential spatial variability of critical state parameters in nonplastic tailings, such as those that result from the extraction of gold, platinum, copper, and iron (Bedin et al. 2012; Li et al. 2018; Li 2017; Li and Coop 2019; this work — Note: kimberlite and some types of iron tailings can exhibit considerable plasticity).

This study explores the determination of the critical state line (CSL) of nonplastic platinum tailings, analyzes results in the context of a large database of CSLs compiled from the literature (25 nonplastic tailings and 132 nonplastic soils), and seeks to identify trends between critical state parameters (I_{100}, λ, and M) and index properties that can be used to readily assess spatial variability in tailings dams.

Triaxial testing program

Materials and methods: platinum tailings

Platinum tailings were sourced from the upper beach of an upstream spigotted tailings dam located in the North West Province of South Africa. The tailings are nonplastic, angular-shaped (Fig. 2), and have a complex mineralogy dominated by enstatite (27%), bytontite (27%), chromite (21%), and hornblende (8%), with traces (<5%) of diopside, epidote, talc, and biotite, among other minerals (Amponsah-Dacosta 2017).

The laboratory investigation centers around six mixtures prepared with pre-sieved tailings fractions. The mixtures have a fines content (FC) that ranges from 10% to 98% (Fig. 3 and Table 1 —

Note: fines are <75 μm). This range of FC covers field observations (from 33% to 95%; Torres-Cruz 2016). This study follows two methods to measure e_{min}: the standard ASTM D1557 (ASTM 2002a) and a nonstandard method that benefits from a small sample size (similar to that proposed by Lade et al. 1998, as described in Torres-Cruz 2016). Although not applicable to FC > 15%, this study involved the ASTM D4254 (ASTM 2000) to measure e_{max} due to a lack of a standardized alternative. Figure 4 presents e_{max} and e_{min} values for the six mixtures and shows similar trends for e_{min} values gathered with the two methods. Clearly, the extreme specimens (FC = 10% and 98%) exhibit the highest e_{max} and e_{min}. Conversely, the lowest values correspond to mixtures with 30% ≤ FC ≤ 47%, in agreement with other studies of sand–silt mixtures (Papadopoulou and Tika 2008; Rahman and Lo 2008; Thevanayagam et al. 2002; Yang et al. 2006; Zlatović and Ishihara 1995; Park and Santamarina 2017).

Based on these results, critical state testing focused on three mixtures with distinctly different e_{min} values: FC = 10%, 30%, and 81%. The preparation of triaxial test specimens (70 mm diameter, 141 mm height) involved moist tamping to achieve loose contractive specimens (Ishihara 1993) to minimize strain localization (Jefferies and Been 2015 — Note: ends were not lubricated as non-uniform radial strains may remain; refer to Rees 2010). Air-CO₂ replacement prior to water injection and back-pressure produced high degrees of saturation; in fact, all specimens exhibited a Skempton’s parameter $B ≥ 0.96$. The stress path consisted of isotropic consolidation applied in a single stage followed by monotonous shearing, either under drained (CD) or undrained (CU) conditions. The displacement-controlled loading frame applied the deviatoric stress at constant cell pressure. Water content measurements at the end of the test enabled void ratio determinations (refer to Verdugo and Ishihara 1996). Table 2 presents a summary of the testing program (additional experimental details in Torres-Cruz 2016).

Results

Figure 5 illustrates typical response curves obtained for platinum tailings specimens subjected to drained and undrained loading in terms of deviatoric stress q, pore pressure u, and void ratio e vs. vertical strain u. The hyperbolic model fitted to the pre-peak portion of the deviatoric stress vs. axial strain curve q-e, corrected early seating and misalignment effects and identified the true start of loading (Bishop and Henkel 1957).

On the other end of the response curves, most specimens do not reach stable pore pressure u (CU tests) or void ratio e (CD tests) within the strain level attainable in triaxial tests (Fig. 5). Several authors have suggested extrapolation procedures that allow for improved estimates of critical state conditions (Li 2017; Murthy et al. 2007). The following criteria were implemented in this study (Fig. 6 — refer to Carrera et al. 2011): (Fig. 6a) extrapolate q/p' to $\delta u/\delta e = 0$ for undrained tests, (Fig. 6b) extrapolate q-p' trends to asymptotic M, and (Fig. 6c) extrapolate void ratio to the critical state condition of zero dilatancy $\delta u/\delta e = 0$ for drained tests. Table 2 summarizes the critical state values determined for all tests.

Figure 7 shows the critical states for all CD and CU tests for the three selected mixtures. The CSLs on the e-p' projection follow the semi-log linearization and are distinctly different for the three mixtures (Fig. 7a). More importantly, the intercept I_{100} is lowest for the mixture with fines content (FC) ≤ 30%, in agreement with extreme void ratio trends (Fig. 4). Figure 7b shows the q-p' projections of the CSLs; the computed M values for the three mixtures fall within a narrow range of $M = 1.27 ± 0.02$. This is consistent with previous results that show that M is largely independent of grain size distribution (Bandini and Coop 2011; Carrera et al. 2011; Li et al. 2015). Table 1 lists the values of I_{100}, λ, and M for each mixture. Distinctly different e-p' projections but indistinguishable q-p' projections imply that the dilative tendency of a speci-
men at an initial e_0 and p'_0 will depend on its gradation; yet, gradation will not affect the stress ratio the specimen will reach at critical state.

Insights from the database

Data sources

The following analyses take into consideration the critical state lines (CSLs) of the three platinum mixtures described above, 25 tailings reported in the literature (Table 3), and 132 nonplastic soils collected from published studies (including natural soils and material from rock crushers; Torres-Cruz 2019). Figure 8 illustrates the range in particle size distributions — between 2 and 500 μm — for tailings in the database.

Uncertainty in T_{100} and λ

The least squares solution identifies model parameters by minimizing the sum of squared errors $SSE = \sum (e_m - e_p)^2$ between mea-
For personal use only.

Table 1. Properties of mixtures of platinum tailings.

FC (%)	d50 (μm)	C_u	C_c	e_min	e_max	G_s	G_c	ρ_m/cm³	qmin	qmax	G_s/cm³	qmin	G_s/cm³	qmax	M
10	106	1.3	3.59	0.70	1.08	1.05	0.90	0.59	0.90	0.90	0.59	0.90	0.90	0.59	0.90
20	188	3.4	3.48	0.52	0.58	0.93	0.81	0.58	0.81	0.81	0.58	0.81	0.81	0.58	0.81
47	81	3.7	3.48	0.52	0.58	0.93	0.81	0.58	0.81	0.81	0.58	0.81	0.81	0.58	0.81
64	62	3.0	3.54	0.59	0.61	0.93	0.81	0.58	0.81	0.81	0.58	0.81	0.81	0.58	0.81
81	52	2.8	3.59	0.63	0.66	1.12	0.92	0.66	0.92	0.92	0.66	0.92	0.92	0.66	0.92
98	45	2.6	3.61	0.65	0.68	1.18	0.92	0.68	0.92	0.92	0.68	0.92	0.92	0.68	0.92

Notes:
- Coefficient of uniformity (d50/d10).
- Specific gravity, ASTM D854 (ASTM 2002a).
- Nonstandard procedure.
- ASTM D1557 (ASTM 2002a).
- ASTM D4254 (ASTM 2000).

Table 2. Critical state values and end of test conditions of triaxial tests on platinum tailings.

FC (e_min)	Test ID	Test type	e	p' (kPa)	q	M	End of test conditiona
Low 10% (0.70)	10-1	CU	1.020	177	216	1.22	Critical state
	10-2	CU	1.040	145	174	1.20	Critical state
	10-3b	CD	1.018	328	384	1.17	Critical state
	10-4	CU	1.040	105	131	1.25	Critical state
	10-5	CD	0.992	469	612	1.30	Critical state
	10-6b	CU	1.056	95	117	1.23	Critical state
Medium 30% (0.53)	30-1	CU	0.755	540	701	1.30	Critical state
	30-2	CU	0.813	90	118	1.31	Critical state
	30-3	CU	0.806	138	178	1.29	Critical state
	30-4	CU	0.812	144	187	1.29	Critical state
	30-5	CU	0.808	77	101	1.30	Critical state
	30-6b	CD	0.802	285	368	1.29	Critical state
	30-7b	CD	0.773	502	648	1.29	Critical state
High 81% (0.63)	81-1b	CU	0.885	326	408	1.25	Critical state
	81-2b	CU	0.889	335	419	1.25	Critical state
	81-3b	CU	0.891	333	415	1.24	Critical state
	81-4	CU	0.916	119	146	1.23	Critical state
	81-5	CD	0.879	448	568	1.27	Critical state
	81-6b	CU	0.914	175	215	1.23	Critical state
	81-7	CD	0.892	239	303	1.27	Critical state

Notes:
- A Sign convention: positive for contraction and negative for dilation.
- Extrapolation scheme applied.
- Average M value of other tests done on the same mixture.

Fig. 4. Extreme void ratios vs. fines content of platinum tailings.

![Graph showing extreme void ratios vs. fines content](https://www.nrcresearchpress.com/kb/48950.png)

where N is the number of data points, and subindices stand for m = measured and avg = average (Navidi 2015). The normalizations NSE_m = SE_m/Range(λ) and NSE_f_m = SE_f_m/Range(Γ_100) facilitate the analysis. Figure 10 compares the normalized standard errors NSE_m and NSE_f_m computed for 91 CSLs with known e-p' data points. The normalized error of the slope NSE_e is 3 to 12 times...
levels of interest, typically that do not exhibit cementation or crushing at effective stress tailings and nonplastic soils. The database is dominated by soils.

Critical state parameters and index properties

Previous studies showed that particle-scale characteristics such as shape and grain size distribution affect index properties and critical state parameters (Torres-Cruz 2019; Cho et al. 2006; Cubrinovski and Ishihara 2000). This section explores the correlation between index properties and critical state parameters for tailings and nonplastic soils. The database is dominated by soils that do not exhibit cementation or crushing at effective stress levels of interest, typically $\alpha' < 1$ MPa (see Jung et al. 2012 for the effect of cementation on critical state).

Figure 11 shows that tailings fall along the same Γ_{100} vs. ϵ_{min} and Γ_{100} vs. ϵ_{max} trends of other nonplastic soils. There is no clear clustering when the data are discriminated by mineralogy (not shown here). Furthermore, the intercept Γ_{100} is

- higher than the minimum void ratio for 96% of the database; the overall trend is $\Gamma_{100} \approx 1.4 \epsilon_{\text{min}}$; thus, the spatial variability of ϵ_{min} is a good indicator of potential spatial variability of Γ_{100} in nonplastic tailings
- lower than the maximum void ratio for 94% of the database; typically $\Gamma_{100} \approx 0.8 \epsilon_{\text{max}}$.

Note that the spread in ϵ_{max} is much higher than that in ϵ_{min} ($1.2 \leq \epsilon_{\text{max}}/\epsilon_{\text{min}} \leq 2.2$, for 90% of the database). This hinders correlations that involve $(\epsilon_{\text{max}} - \epsilon_{\text{min}})$. Figure 12a shows that tailings populate the same area as other nonplastic soils in the λ vs. ϵ_{min} space. The range of possible slope values λ increases with ϵ_{min}. In other words, the potential contractiveness at critical state decreases for soils with low ϵ_{min}; in fact $\lambda < (\epsilon_{\text{min}}/3)$ for 95% of the database. High hardness soils (e.g., quartz and silica) exhibit lower slopes (λ), mostly in the range of $\lambda < 0.10$ (Fig. 12b). Therefore, hardness affects contractiveness at critical state even though most of the data corresponds to intermediate stress levels where marked crushing is unlikely (all but one of the CSLs are defined for $p' < 4$ MPa). The scatter in Fig. 12 reflects the complex interactions among grain size distribution, particle shape, and mineralogy. The scatter also reflects the limited invertibility of the slope (refer to Figs. 9 and 10). There is no trend or clustering in plots of λ versus void ratio gap $(\epsilon_{\text{max}} - \epsilon_{\text{min}})$; however, note that the contraction in one log cycle λ is smaller than $(\epsilon_{\text{max}} - \epsilon_{\text{min}})$ for the entire database.

The relative contractiveness R_c shows the position of the CSL between two extreme density conditions (Verdugo and Ishihara 1996):

$$ R_c = \frac{(\epsilon_{\text{max}})_{100} - \Gamma_{100}}{(\epsilon_{\text{max}})_{100} - (\epsilon_{\text{min}})_{100}} $$

where $(\epsilon_{\text{max}})_{100}$ and $(\epsilon_{\text{min}})_{100}$ are the void ratios attained by isotropically compressing the soil to 100 kPa from its lowest ϵ_{max} and densest ϵ_{min} conditions. The values of $(\epsilon_{\text{max}})_{100}$ and $(\epsilon_{\text{min}})_{100}$ are unknown for most soils; therefore, the estimate of R_c uses ϵ_{max} and ϵ_{min}. The computed relative contractiveness values for the database spans the full $R_c = 0$ to 1 range (not shown here). Tailings cannot be distinguished from other nonplastic soils. There is a slight tendency for rounded soils to exhibit lower R_c than angular soils, and there is a weak inverse trend between R_c and median particle size D_{50}.

The database allows us to explore correlations with particle size. In particular:

- The maximum void ratio ϵ_{max} is independent of particle size while $D_{50} > 100 \mu$m, but it increases for finer particles, probably due to electrostatic interactions (Fig. 13a).
- The minimum void ratio ϵ_{min} and the intercept Γ_{100} are independent of particle size for all entries in the database (10μm < D_{50} < 2000 μm; Figs. 13b and 13c); indeed, the effect of electrostatic interactions diminishes for the high energy conditions that prevail in ϵ_{min} testing and under $p' = 100$ kPa (Santamarina 2003).

Figure 13d presents the friction parameter M vs. the median grain size D_{50}. The M value varies widely for tailings from $M = 1.1$ to 1.8, in a similar range to nonplastic soils. The associated variation in critical state friction angle is from $\phi_c = 27.7^\circ$ to 43.8$^\circ$ (for reference, $M = 0.9$ or $\phi_c = 23^\circ$ for glass beads). Previous studies have shown that mineralogy and particle angularity largely define the value of M (Cho et al. 2006; Sadrekarimi and Olson 2011; Li et al. 2012).
However, the database shows substantial overlap; the M value of angular soils is 14% larger than that for rounded soils (Fig. 13d), and the data do not reveal any distinct effect of mineralogy on M.

Figures 11, 12, and 13 are based on published data produced by a large number of laboratories around the world. Therefore, there are potential differences in test protocols and data interpretation, including inconsistent assessment of particle shape and mineralogy. Then, apparent discrepancies between these results and previously reported observations from focused studies highlight the need for consistent assessment and reporting of soil properties.

Conclusions

This study explored critical state parameters for South African platinum tailings, identified critical state data for 25 other tailings, and considered additional data for 132 nonplastic soils previously reported in the literature. Inherent limitations in the strain levels attainable in triaxial tests hindered the determination of critical state; therefore, robust extrapolation strategies helped define consistent critical states for both drained and undrained tests.

The complete dataset allows the comparison of tailings with other nonplastic soils and the identification of trends between critical state parameters and index properties. Salient conclusions follow:
1. Data of void ratio vs. confinement $e-p'$ at critical state extracted from triaxial test data allow the estimation of the intercept Γ_{100} at $p' = 100$ kPa with better accuracy than the estimation of the slope λ.

2. The critical state parameters for nonplastic tailings fall on the same trends as data for a wide range of nonplastic soils. This suggests that inferences about soil behavior made from nonplastic soils (nontailings) can be reasonably adopted for nonplastic tailings provided that these inferences account for potential differences in particle shape, grain size distribution, and mineralogy.
Table 3. Properties of tailings compiled from published studies.

Name (FC)	Symbol	D_{50} (μm)	C_u	ε_{\min}	ε_{\max}	λ	λ	p' range (kPa)	G_s	λ	C_s	Mineralogy^a	Particle shape^b	Reference	
Brazilian Gold (65)	BAU	65	6.9	0.90	2.00	0.89	2.06	1.33	100–780	3.10	Qtz = 27%, Ab = 25%, Chl = 35%	A-SA	Bedin et al. 2012;		
Brazilian Gold (95)	10	7.7	0.68	1.20	0.89	0.17	1.41	30–900	2.89	—	—	—	—	—	Li et al. 2018
Deixing Copper (95)	DCU	30	5.1	0.62	1.28	0.84	0.126	1.43	25–3700	3.75	Fa = 78%, Mag = 22%	A-SA	Li 2017		
Hilton Mines (2.5)	HMS	200	—	0.62	1.05	0.98	0.17	1.42	50–1000	50	—	—	—	Jefferies and Been 2015	
Lornex Copper (7)	HVC	260	2.7	0.68	1.08	1.00	1.264	1.40	70–1300	2.68	Qtz = 100%	A-SA	Castro et al. 1982; Robertson et al. 2000; Wride et al. 2000		
Highland Valley Copper (8)	200	2.8	0.54	1.06	0.84	0.068	—	1–220	2.66	Qtz = 36%, Mca = 27%, Ill = 15%, Fsp = 11%	A-SA	Li 2017			
Merriespruit Gold (0)	MER	130	1.9	0.74	1.22	1.11	0.061	1.24	2–200	2.7	—	—	A-SA	Fourie and Papageorgiou 2000; Papageorgiou 2004; Tshabalala 2003	
Merriespruit Gold (20)	120	4.7	0.70	1.33	1.10	0.157	1.17	7–80	2.7	—	—	A-SA	Li et al. 2018		
Merriespruit Gold (30)	100	30	0.58	1.33	0.90	0.073	1.12	2–130	2.7	—	—	A-SA	Li et al. 2018		
Merriespruit Gold (60)	60	25	0.66	1.83	0.76	0.024	1.19	10–125	2.7	—	—	A-SA	Li et al. 2018		
Syncrude Oil Sand (3.5)	OIL	207	—	0.54	0.90	0.73	0.065	1.33	10–620	2.64	—	—	A-SA	Jefferies and Been 2015	
Syncrude Mildred Lake Oil Sand (10)	160	2.2	0.52	0.96	0.85	0.035	—	37–200	2.66	Qtz = 90%, Fsp = 5%, Kln = 5%	SA-SR	Robertson et al. 2000; Wride et al. 2000			
Syncrude Oil Sand (12)	170	2.4	0.52	0.96	0.85	0.068	1.19	10–800	2.62	Qtz = 95%	A-SA	Sladen and Hanford 1987			
Panzhihua Iron UB (19)	PFE	220	10	0.50	1.10	0.79	0.252	1.41	180–11 000	3.37	Di = 35%, Lab = 30%, Hbl = 15%	A-SA	Li 2017; Li and Coop 2019		
Panzhihua Iron MB (68)	35	9.0	0.60	1.10	0.81	0.152	1.36	90–1900	3.14	—	—	A-SA	Li et al. 2018		
Panzhihua Iron PO (93)	25	6.7	0.70	1.22	0.76	0.185	1.40	25–2000	3.11	—	—	A-SA	Li et al. 2018		
Mizpah Dam Gold (72)	SAU	30	28	0.48	1.80	0.73	0.136	1.47	20–240	2.73	Qtz = 75%, Ms = 9%	A-SA	Vermeulen 2001		
Pay Dam Gold (77)	25	22	0.64	2.10	0.70	0.176	1.40	30–200	2.74	—	—	A-SA	Vermeulen 2001		
Witwatersrand Gold UB (41)	90	23	0.64	1.24	0.76	0.185	1.40	25–300	2.75	—	—	A-SA	Chang et al. 2011		
Witwatersrand Gold MB (56)	50	11	0.65	0.15	0.78	0.04	1.78	40–210	2.69	—	—	A-SA	Chang et al. 2011		
Witwatersrand Gold PO (99)	5	3	3.00	0.00	1.62	0.185	1.40	130–330	2.75	—	—	A-SA	Chang et al. 2011		
Stava Fluorite (0)	STA	190	2.4	0.71	0.94	0.94	0.180	1.44	60–1100	2.72	Qtz = 78%, Cal = 10%	A-SA	Carrera et al. 2011		
Stava Fluorite (30)	130	9.7	0.69	0.85	0.63	0.138	1.45	45–1350	2.75	—	—	A-SA	Carrera et al. 2011		
Stava Fluorite (50)	75	10	0.48	0.76	0.58	0.061	1.44	15–770	2.78	—	—	A-SA	Carrera et al. 2011		
Stava Fluorite (100)	25	7.8	0.75	0.93	0.71	0.081	1.38	15–1220	2.83	—	—	A-SA	Carrera et al. 2011		

^aAb, albite; Cal, calcite; Chl, chlorite; Di, diopside; Fa, fayalite; Fsp, feldspar; Hbl, hornblende; Ill, illite; Kln, kaolinite; Lab, labradorite; Mag, magnetite; Mca, mica; Ms, muscovite; Prl, pyrophyllite; Qtz, quartz.

^bA, angular; R, rounded; SA, subangular; SR, subrounded.
3. Mineralogy does not significantly affect the intercept I_{100} and related correlations, but it does affect the slope λ even when tests are conducted at intermediate stress levels below crushing. In fact, almost all high hardness soils (quartz and silica) have $\lambda < 0.10$, while soils with other mineralogies and variable hardnesses span the entire range of λ.

4. Published data and new experimental results show that the intercept I_{100} as well as the value of e_{\min} are lowest for mixtures with intermediate fines content (FC), typically FC $= 30\%$. Therefore, the assessment of field conditions based on extreme gradations underestimates the range of critical state parameters in the tailings dam.

5. The spatial variability of e_{\min} within a tailings deposit anticipates spatial variability in I_{100}. Additionally, the range of possible λ values increases with e_{\min}. These observations can be used to inform sampling strategies.

6. The range of the friction coefficient M of tailings is similar to the range of values exhibited by other nonplastic soils. On average, angular soils exhibit greater M than rounded soils, in agreement with previous studies. Mineralogy and median particle size do not appear to significantly influence M.

Acknowledgements
This work was supported by the University of the Witwatersrand and King Abdullah University of Science and Technology (KAUST). G. Abelskamp edited the manuscript.

References
Ampornsah-Dacosta, M. 2017. Mineralogical characterization of South African mine tailings with aim of evaluating their potential for the purposes of mineral carbonation [online]. M.Sc. thesis, Department of Geological Sciences, University of Cape Town, South Africa. Available from https://open.uct.ac.za/handle/11427/25014.

ASTM. 2000. D4254-00. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM International, West Conshohocken, Pa., USA. doi:10.1520/D4254-00.

ASTM. 2002a. D1557-02. Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 lb-ft/ft3 (2,700 kN-m/m3)). ASTM International, West Conshohocken, Pa., USA.

ASTM. 2002b. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM standard D854. American Society for Testing and Materials, West Conshohocken, Pa., USA. doi:10.1520/D0854-02.

Bandini, V., and Coop, M.R. 2011. The influence of particle breakage on the location of the critical state line of sands. Soils and Foundations, 51(4): 591–600. doi:10.3208/sandf.51.591.

Bedin, J., Schnaid, F., da Fonseca, A.V., and de Costa Filho, L.M. 2012. Gold tailings liquefaction under critical state soil mechanics. Géotechnique, 62(3): 263–267. doi:10.1680/geot.10.P.037.

Bishop, A.W., and Henkel, D.J. 1957. The measurement of soil properties in the triaxial test. Edward Arnold (Publishers) Ltd., London.

Carrera, A., Coop, M., and Lancellotta, R. 2011. Influence of grading on the mechanical behaviour of Stava tailings. Géotechnique, 61(II): 935–946. doi:10.1680/geot.9.P.009.

Castro, G., Enos, J., France, J.W., and Poulos, S. 1982. Liquefaction induced by cyclic loading. National Science Foundation, Washington, D.C.

Chang, N., Heymann, G., and Clayton, C. 2011. The effect of fabric on the behaviour of gold tailings. Géotechnique, 61(3): 187–197. doi:10.1680/geot.9.P.066.

Cho, G.C., Dodds, J., and Santamarina, J.C. 2006. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. Journal of Geotechnical and Geoenvironmental Engineering, 132(5): 591–602. doi:10.1061/(ASCE)1090-0241(2006)132:5(591).

Cubrinovski, M., and Ishihara, K. 2000. Flow potential of sandy soils with different grain compositions. Soils and Foundations, 40(4): 163–119. doi:10.3208/sandf.40.4.103.

Fourie, A.B., and Papageorgiou, G. 2001. Defining an appropriate steady state line for Merriespruit gold tailings. Canadian Geotechnical Journal, 38(4): 695–706. doi:10.1139/cgj-2001-011.

Ishihara, K. 1993. Liquefaction and flow failure during earthquakes. Géotechnique, 43(3): 351–451. doi:10.1680/geot.1993.43.3.351.

Jefferys, M., and Been, K. 2015. Soil liquefaction: a critical state approach. CRC Press, Boca Raton, Fla., USA.

Jung, J.-W., Santamarina, J.C., and Soga, K. 2012. Stress-strain response of hydrate-bearing sands: Numerical study using discrete element method simulations. Journal of Geophysical Research, 117: B04202. doi:10.1029/2011JB009040.

Lade, P., Liggio, C., and Yamamuro, J. 1998. Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal, 21(4): 336–347. doi:10.1061/(ASCE)1090-0241(1998)21:4(336).

Li, G., Liu, Y.-J., Dano, C., and Hicher, P.-Y. 2015. Grading-dependent behavior of granular materials: from discrete to continuous modeling. Journal of Engineering Mechanics, 141(6): 04014172. doi:10.1061/(ASCE)EM.1943-7889.0000866.

Li, W. 2017. The mechanical behaviour of tailings [online]. Ph.D. thesis, Department of Architecture and Civil Engineering, City University of Hong Kong. Available from https://scholars.cityu.edu.hk/epublic/thesi...the-mechanical-behaviour-of-tailings/d3d2338a-6cf2-4e19-993b-a3f67dad274a.html.

Li, W., and Coop, M.R. 2019. The mechanical behaviour of Panzhihua iron tailings. Canadian Geotechnical Journal, 56(3): 420–435. doi:10.1139/cgj-2018-0032.

Li, W., Coop, M.R., Senetakis, K., and Schnaid, F. 2018. The mechanics of a silt-sized gold tailing. Engineering Geology, 241: 97–108. doi:10.1016/j.enggeo.2018.05.014.

Published by NRC Research Press
