Automated Shape Adjustment of Interlocking Joints for Structurally Informed Design of Masonry Block Assemblages

Elham Mousavian, Claudia Casapulla

DIST - Department of Structures for Engineering and Architecture
University of Naples Federico II

(Grant No. 791235)
H2020-MSCA-IF-2017 (Marie Skłodowska-Curie Individual Fellowship)
SiDMACIB

Structurally informed Design of Masonry Assemblages Composed of Interlocking Blocks

(Grant No. 791235)
H2020-MSCA-IF-2017 (Marie Skłodowska-Curie Individual Fellowship)
lock geometric properties \quad \leftrightarrow \quad Interface sliding resistance

Orthotropic sliding resistance

lock shear friction
Automatic lock orientation adjustment → Remove the sliding infeasibility
1. Static problem for corrugated interfaces

2. Sliding infeasibility measurement

3. Lock-orientation optimization
1. Static problem for corrugated interfaces

2. Sliding infeasibility measurement

3. Lock-orientation optimization
1. Static problem for corrugated interfaces

Stacked bond pattern

Running bond pattern
1. Static problem for corrugated interfaces
A single block with a horizontal rigid joint

Rigid joint (rj)
Peripheral joint (pj)

Two interlocking blocks

\[
\begin{align*}
\vec{r}_{pj,n} &\leq 0 & \text{compression constraint} \\
|\vec{r}_{pj,t1}| &\leq \mu |\vec{r}_{pj,n}| & \text{friction constraint} \\
|\vec{r}_{pj,t2}| &\leq 0.33 T_0 & \text{shear constraint}
\end{align*}
\]
1. Static problem for corrugated interfaces

\[C_{eq,\theta} \cdot \vec{r} + \vec{E} = 0 \]

subjected to:

\[r_{pj,n} \leq 0 \] \hspace{1cm} \text{compression constraint}

\[|r_{pj,t1}| \leq \mu |r_{pj,n}| \] \hspace{1cm} \text{friction constraint}

\[|r_{pj,t2}| \leq 0.33 T_0 \] \hspace{1cm} \text{shear constraint}

Equilibrium equation
1. Static problem for corrugated interfaces

2. Sliding infeasibility measurement

3. Lock-orientation optimization
1. Static problem for corrugated interfaces

\[C_{eq,\theta} \cdot \vec{r} + \vec{E} = 0 \]

subjected to:

\[r_{pj,n} \leq 0 \]

Equilibrium equation

\[r_{pj,t1} \leq \mu r_{pj,n} \]

Compression constraint

\[r_{pj,t2} \leq 0.33 T_0 \]

Friction constraint

\[r_{pj,t3} \leq 0 \]

Shear constraint
2. Sliding infeasibility measurement

\[SIM = f (r_{1}^{pj,t2}) + f (r_{4}^{pj,t2}) \]

Equilibrium equation

\[c_{eq, \theta} \cdot \bar{r} + \bar{E} = 0 \]

subjected to:

Compression constraint
\(\bar{r}^{pj,n} \leq 0 \)

Friction constraint
\(\bar{r}^{pi,t1} \leq \mu \bar{r}^{pi,n} \)

Shear constraint
\(\bar{r}^{pj,t2} \leq 0.33 T_0 \)
2. Sliding infeasibility measurement
2. Sliding infeasibility measurement

Constrained
2. Sliding infeasibility measurement

Unconstrained
2. Sliding infeasibility measurement

\[SIM_\theta = \min \sum_{\eta=1}^{L} \left[\left(r_{\eta}^{pj,t1b} \right)^2 + \left(r_{\eta}^{pj,t2b} \right)^2 \right] \]

Objective function
2. Sliding infeasibility measurement

\[
SIM_\theta = \min \sum_{\eta=1}^{L} \left[\left(r_{\eta}^{pjt1b} \right)^2 + \left(r_{\eta}^{pjt2b} \right)^2 \right]
\]

subjected to:

\[
C_{eq,\theta} \cdot \vec{r} + \vec{E} = 0
\]

\[
\frac{r_{pj,n}}{r_{pj,n}} \leq 0
\]

\[
|\frac{r_{pj,t1a}}{r_{pj,t1a}}| \leq \mu |\frac{r_{pj,n}}{r_{pj,n}}|
\]

\[
|\frac{r_{pj,t2a}}{r_{pj,t2a}}| \leq 0.33 T_0
\]

Objective function

Equilibrium equation

compression constraint

friction constraint

shear constraint
2. Sliding infeasibility measurement

Feasible model: $SIM = 0$

Infeasible model: $SIM > 0$
1. Static problem for corrugated interfaces

2. Sliding infeasibility measurement

3. Lock-orientation optimization
3. Lock-orientation optimization
3. Lock-orientation optimization

- Lock orientation
- Geometric properties
- Material properties

SIA Function

SIM
3. Lock-orientation optimization

- Lock orientation θ
- Geometric properties
- Material properties

SIA (θ)

SIM
3. Lock-orientation optimization

Min SIA (θ)
3. Lock-orientation optimization

![Diagram showing lock orientation optimization](image)

- **SIM (N^2)**
- **Lock orientation (rad)**

[Graph illustrating the relationship between SIM and lock orientation]
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 791235.

Thank you!

DIST - Dipartimento di Strutture per l’Ingegneria e l’Architettura
Università di Napoli “Federico II”