MEDICINAL Schizophyllum Communa Fr. THE FIRST REPORT OF THE FUNGUS WHICH IS DISTRIBUTED IN THE TERRITORY OF UZBEKISTAN

Erkin Eshonkulov
Teacher, The chair of Microbiology and biotechnology, Karshi State University, Republic of Uzbekistan, Karshi

Dilmurod Murodullayev
Teacher, The chair of Microbiology and biotechnology, Karshi State University, Republic of Uzbekistan, Karshi
E-mail: dilmurodmurodullayev@gmail.com

Navbakhor Keldiyorova
Student, Samarkand State Medical University, Republic of Uzbekistan, Samarkand

ЛЕКАРСТВЕННЫЙ Schizophyllum Communa Fr. ПЕРВОЕ СООБЩЕНИЕ О ГРИБЕ, РАСПРОСТРАНЕННОМ НА ТЕРРИТОРИИ УЗБЕКИСТАНА

Эшонкулов Эркин Юлчиевич
преподаватель, Кафедра микробиологии и биотехнологии, Каршинского государственного университета, Республика Узбекистан, г. Карши

Муродуллаев Дилмурод Дилшодович
преподаватель, Кафедра микробиологии и биотехнологии, Каршинского государственного университета, Республика Узбекистан, г. Карши

Келдиёрова Навбахор Нуриддин кизи
студент, Самаркандинский Государственный Медицинский Университет, Республика Узбекистан, г. Самарканд

DOI – 10.32743/UniChem.2022.101.11.14465

URL: https://7universum.com/ru/nature/archive/item/14465
ABSTRACT

In this article, Schizophyllum sommunas Fr. It is reported that it was found in Prunus domestica L. and Populus alba L. plant species in the territory of Uzbekistan. This mushroom has a great innovative potential, information is given on the possibility of using it as a producer of biologically active food additive and creating a production technology in the conditions of Uzbekistan.

Most species of macromycetes usually grow in soil and tree trunks and are widely distributed in nature and have been used as food in many countries to meet their protein needs. According to information, it has been found that Schizophyllum commune mushroom is rich in vitamins A, V, C, D (Alam et al., 2007) [1], and contains more protein than food products (Qin, 1989).

In China, Schizophyllum commune Fr. the fungus has been used as a «functional food» for healthy nutrition and in the treatment of human diseases (Chang, 1999).

In the Arctic, Schizophyllum commune Fr. fungus is considered to be a fungus that increases immunity against diseases. It is also used to treat breast cancer and various gynecological diseases (Wasser S.P., 2011. Perevedentseva L.G., 2015)

Currently, about 400 species of macromycetes grow in Uzbekistan. Among them, medicinal, wood-destroying, poisonous and valuable edible species are widely used by the population. A small number of studies on the study of macromycetes have been conducted in the republic (Panfilova T.S., et al. 1963., Khalikova M.M. 1989, Iminova M.M. 2009). These studies are mainly devoted to studying the floristic composition and ecological characteristics of macromycetes in the studied areas. Until now, in Uzbekistan, not enough attention has been paid to the study of the practical value of medicinal mushrooms.

Materials and methods. The material for this article was herbarium specimens collected during mycological research from different regions of the republic. Route and photographic research methods were used in the work process. The collected samples were prepared by air drying. To identify this fungus, B-382PHiALC DC6V1000 mA digital microscope was used. Identification of species was carried out with the help of modern identifiers and monographs [3], (Panfilova T.S., 1963). The name of the fungus was implemented based on the database of international modern nomenclature http://www.indexfungorum.org. The location map of this fungus was created using ArcGIS.

It is noted that the fungus occurred in March and May. Fruiting bodies have been found to occur singly, scattered, or overlapping on decaying hardwoods. Under the fruit cap of the mushroom there are gill folds. Fungal mycelium develops in wood tissue. The surface of the fruit body is hairy, kidney-shaped, pointed, thin, elastic body. It is attached to the substrate with its side. The length of its caps is 1-3.5 cm, located individually or in groups (Fig. 1). Spores are colorless, cylindrical 4-8 x 1.5-2.5 µm (Fig. 2).
Currently, anti-tumor, anti-inflammatory, antibacterial, anti-oxidant, immune system strengthening drugs are being produced from *Schizophyllum commune* fungus. In Japan, Sonifilan (sonifilan), Schizofilan (schizofilan) and SPG drugs are obtained from the culture fluid of this mushroom, which are used in the treatment of various oncological diseases (Bisko N.A et al., 2017).

The location of this mushroom in Uzbekistan is in Shahrikihan city, Andijan region, N40.72420501, E72.04545897; Jizzakh region, Nurota ridge, Nurota reserve, N40.51787, E66.75070; Zomin National Nature Park, N39.738386, E68.434676; Kashkadarya region, Yakkabog district, N38.887642, E66.784704 and Kashkadarya region, Shahrisabz city, Sinabog neighborhood N39.090476 E66.819278 (Fig. 3).

For the first time in Uzbekistan, *Schizophyllum commune* Fr. The fungus was found in the growing stem of *Prunus domestica* L. And in the dried trunk of *Populus alba* L.

Thus, it should be noted that *Schizophyllum* is more common in the territory of the republic. This mushroom has great innovative potential, it is possible to use it as a producer of biologically active food additive and to create production technology in the conditions of Uzbekistan.
References:
1. Alam N., Khan, A., Hossian M.S., Amin, S.M.R., Khan, L.A. 2007 Nutritional analysis of dietary mushroom Pleurotus florida Yegger and Pleurotus sajor-caju (Fr) Singer. Bangladesh J Mushroom 1(2):1-7.
2. Bisko N.A., Lomovitskaya V.M., Mitropolskaya N.Yu. The yeffect of yelevated temperatures on the viability of mycelium strains of medicinal basidial fungus Schizophyllum sommune Fr. Advances in Biology & Yearth Sciences Vol.2, N.1, 2017, pp.112-116
3. Qin, S.X., 1989. Yeffect of different cultivation materials on nutritive composition of Pleurotus fruiting bodies. Yedible fungi of China, 3:12-13.
4. Chang, S. (1999) World Production of Cultivated Yedible and Medicinal Mushrooms in 1997 with Yemphasis on Lentinus yedodes (Berk.) Sing, in China. International Journal of Medicinal Mushrooms, 1, 291-300.
5. Вассер С.П. Биологические особенности лекарственных макромицетов в культуре: Сборник научных трудов в двух томах. Т. 1– Киев: Альтерпрес, 2011. – 212 стр.
6. Переведенцева Л.Г. Определитель грибов (агарикоидные базидиомицеты): Учебное пособие. Москва: Товарищество научных изданий КМК. 2015 – 119 с.
7. Панфилова Т.С., Гапоненко Н.И. Микофлора бассейна реки Ангрен. – Ташкент, 1963. – 207 с.
8. Халикова М.М. Макромицеты Ташкентской области (анализ микофлоры, экология, практическое использование).: Автореф: дис. ... канд.биол.наук. – Ташкент, 1989. – 20 с.
9. Иминова М.М. Макромицеты Ферганской долины (в пределах Республики Узбекистан).: Автореф. дис. ... канд. бiol. наук. – Ташкент, 2009. – 20 с.