Contents

REVIEW

268
Emerging molecular targets and therapy for cholangiocarcinoma
Kayhanian H, Smyth EC, Braconi C

281
Evolving treatment landscape for early and advanced pancreatic cancer
Lau SC, Cheung WY

MINIREVIEWS

293
Clinical significance of tumor-infiltrating lymphocytes for gastric cancer in the era of immunology
Kang BW, Kim JG, Lee IH, Bae HI, Seo AN

ORIGINAL ARTICLE

Retrospective Cohort Study

300
Prognostic efficacy of inflammation-based markers in patients with curative colorectal cancer resection
Akgül Ö, Çetinkaya E, Yalaza M, Özden S, Tez M

CASE REPORT

308
Goblet cell carcinoid of the appendix and mixed adenoneuroendocrine carcinoma: Report of three cases
Karaman H, Şenel F, Gürel M, Ekinci T, Topuz Ö
ABOUT COVER
Editorial Board Member of World Journal of Gastrointestinal Oncology, William Small, MD, Professor, Department of Radiation Oncology, Northwestern Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, United States.

AIM AND SCOPE
World Journal of Gastrointestinal Oncology (World J Gastroint Oncol, WJGO, online ISSN 1948-5204, DOI: 10.4251) is a peer-reviewed open access academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians.

If WJGO covers topics concerning carcinogenesis, tumorogenesis, metastasis, diagnosis, prevention, prognosis, clinical manifestations, nutritional support, molecular mechanisms, and therapy of benign and malignant tumors of the digestive tract. The current columns of WJGO include editorial, frontier, diagnostic advances, therapeutics advances, field of vision, mini-reviews, review, topic highlight, medical ethics, original articles, case report, clinical case conference (Clinicopathological conference), and autobiography. Priority publication will be given to articles concerning diagnosis and treatment of gastrointestinal oncology diseases. The following aspects are covered: Clinical diagnosis, laboratory diagnosis, differential diagnosis, imaging tests, pathological diagnosis, molecular biological diagnosis, immunological diagnosis, genetic diagnosis, functional diagnostics, and physical diagnosis; and comprehensive therapy, drug therapy, surgical therapy, interventional treatment, minimally invasive therapy, and robot-assisted therapy.

We encourage authors to submit their manuscripts to WJGO. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great clinical significance.

INDEXING/ABSTRACTING
World Journal of Gastrointestinal Oncology is now indexed in Science Citation Index Expanded (also known as SciSearch®), PubMed, and PubMed Central.

FLYLEAF
I-IV
Editorial Board

EDITORS FOR THIS ISSUE
Responsible Assistant Editor: Xiang Li
Responsible Science Editor: Fang-Fang Ji
Responsible Electronic Editor: Huan-Liang Wu
Proofing Editor-in-Chief: Lian-Sheng Ma

NAME OF JOURNAL
World Journal of Gastrointestinal Oncology
ISSN
ISSN 1948-5204 (online)
LAUNCH DATE
February 15, 2009
FREQUENCY
Monthly
EDITORS-IN-CHIEF
Hsin-Chen Lee, PhD, Professor, Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
Dimitrios H Roukos, MD, PhD, Professor, Personalized Cancer Genomic Medicine, Human Cancer Biobank Center, Ioannina University, Metaxi 229, Ioannina, TK 45110, Greece
EDITORIAL BOARD MEMBERS
All editorial board members resources online at http://www.wjgnet.com/1948-5204/editorialboard.htm

EDITORIAL OFFICE
Xiu-Nia Song, Director
World Journal of Gastrointestinal Oncology
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editorialoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLISHER
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLICATION DATE
July 15, 2017

COPYRIGHT
© 2017 Baishideng Publishing Group Inc. Articles published by this Open-Access journal are distributed under the terms of the Creative Commons Attribution-Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non-commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT
All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS
http://www.wjgnet.com/bpg/geminfo/204

ONLINE SUBMISSION
http://www.f6publishing.com
Evolving treatment landscape for early and advanced pancreatic cancer

Sally C Lau, Winson Y Cheung

Pancreatic ductal adenocarcinoma is an infrequent cancer with a high disease related mortality rate, even in the context of early stage disease. Until recently, the rate of death from pancreatic cancer has remained largely similar whereby gemcitabine monotherapy was the mainstay of systemic treatment for most stages of disease. With the discovery of active multi-agent chemotherapy regimens, namely FOLFIRINOX and gemcitabine plus nab-paclitaxel, the treatment landscape of pancreatic cancer is slowly evolving. FOLFIRINOX and gemcitabine plus nab-paclitaxel are now considered standard first line treatment options in metastatic pancreatic cancer. Studies are ongoing to investigate the utility of these same regimens in the adjuvant setting. The potential of these treatments to downstage disease is also being actively examined in the locally advanced context since neoadjuvant approaches may improve resection rates and surgical outcomes. As more emerging data become available, the management of pancreatic cancer is anticipated to change significantly in the coming years.

Key words: Cancer; Neoplasm; Pancreas; Adjuvant treatment; Systemic treatment; Gemcitabine; FOLFIRINOX; Nab-paclitaxel

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Pancreatic ductal adenocarcinoma is an infrequent cancer with high disease mortality. The focus on management of the disease has been mainly palliation for the past decade. Recently, the discovery of active multi-agent chemotherapies such as FOLFIRINOX and gemcitabine plus nab-paclitaxel has changed the management of the disease. In our current review, we will highlight some of the advances, particularly with respect to systemic therapy options, in the management of different stages of pancreatic cancer.
and advanced pancreatic cancer. World J Gastrointest Oncol 2017; 9(7): 281-292 Available from: URL: http://www.wjgnet. com/1948-5204/full/v9/i7/281.htm DOI: http://dx.doi.org/10.4251/ wjgo.v9.i7.281

INTRODUCTION
Pancreatic cancer is an uncommon cancer with 85% of cases being adenocarcinomas arising from the ductal epithelium and the remainder originating from endocrine islet cells. The estimated incidence of pancreatic cancer is 53,070 cases per year in the United States[1]. The incidence has been increasing slowly, at an average of 0.6% per year over the past decade[1,2]. Mortality from pancreatic cancer is high, with a 5-year survival rate of only 8% in all patients, irrespective of stage[1,2]. Pancreatic cancer is more common in the Western world. Globally, it is the seventh leading cause of death[3]. Until 2004, mortality from pancreatic cancer has remained unchanged, indicating a significant need for novel advances in both detection and treatment of this disease.

Surgical resection is the only potentially curative treatment for pancreatic cancer. However, only about 20% of patients present at a point in time when the disease is still considered resectable. Advances in imaging techniques such as endoscopic ultrasound, magnetic resonance imaging and positron emission tomography can better help identify patients who can be managed possibly with surgery. Improvements in surgical techniques as well as a trend for centralization of care to highly specialized surgical centers have also increased the scope of what is defined as surgically resectable[4]. Unfortunately, the 5-year survival rate even among patients with an R0 resection remains poor at about 20%. In the past several years, the discovery of new active systemic therapeutic agents against pancreatic cancer has changed the outlook and paradigm of pancreatic cancer management. While the focus of treatment in the past has been mainly palliation and symptom control, new approaches may now offer survival benefits for patients with either early or advanced pancreatic cancer. In the current review article, we will highlight some of these advances, particularly with respect to systemic therapy options, in the management of pancreatic ductal adenocarcinoma.

EARLY STAGE PANCREATIC CANCER
Early stage pancreatic cancer with disease localized to the primary site is uncommon at diagnosis (Figure 1)[5]. The difficulty in early detection is due in part to the challenges associated with identifying high risk groups and a lack of effective screening strategies. Pancreatic cancer is only weakly associated with risk factors such as chronic pancreatitis[6-8], diabetes mellitus[9-11], obesity[12,13], smoking[14,15] and specific genetic syndromes[16,17].

ADJUVANT SYSTEMIC THERAPY
For patients who present sufficiently early to be candidates for surgery, several large randomised trials have demonstrated that adjuvant chemotherapy significantly improves survival outcomes after macroscopic resection of pancreatic cancer. A recent meta-analysis that included ten different studies concluded that adjuvant chemotherapy with 5-fluorouracil (5-FU)/leucovorin (LV) or gemcitabine after resection of pancreatic cancer reduces mortality[18].

Fluopyrimidine-based regimens were among the first to show activity in the adjuvant setting. In 1993, the combination of 5-FU plus doxorubicin plus mitomycin C in patients with resected pancreatic or ampullary cancers were observed to improve median overall survival (OS) but not 5-year survival rates[19]. In the ESPAC-1 study, LV modulated 5-FU adjuvant treatment improved the median overall survival from 14.0 to 19.7 mo (Table 1)[20]. The 5-year survival benefit persisted in the chemotherapy group in an updated follow up analysis[20,21]. It is important to note that the benefit of chemotherapy in the ESPAC-1 trial may be underestimated since a proportion of patients also received chemoradiation, which has since been shown to pose a detrimental effect on outcomes in this particular trial. As such, a combined analysis of the ESPAC-1 and ESPAC-3 studies was conducted on patients receiving adjuvant 5-FU/LV alone compared to observation[20-23]. The results confirmed a statistically significant benefit from receiving 5-FU/LV, with a pooled HR of 0.70[20-23].

Gemcitabine is another agent that improves overall survival in early pancreatic cancer. In the CONKO-001 trial conducted in Germany and Austria, 6 cycles of gemcitabine given weekly compared to observation alone resulted in an improvement in disease free survival (DFS) from 6.9 to 13.4 mo[24]. An updated analysis of the CONKO-001 study confirmed that the improvement persisted at 5 and 10-years (20.7% vs 10.4% and 12.2% vs 7.7% respectively)[25]. The JASP-02 study was performed around the same time. Unlike the CONKO-001, investigators examined three cycles of adjuvant gemcitabine compared to observation in a Japanese population with resected pancreatic
Table 1 Summary of adjuvant studies for early stage pancreatic cancer

Adjuvant systemic therapy	Treatment group	Control group
5-FU based treatments		
ESPAC-1 vs observation vs		
Gemcitabine vs observation		
5-FU-LV vs observation vs		
Gemcitabine vs observation		
Gemcitabine vs 5-FU-LV vs		
Gemcitabine vs observation		
Gemcitabine vs 5-FU-LV in patients receiving CRT		
Gemcitabine plus capecitabine vs Gemcitabine		
Gemcitabine plus capecitabine vs Gemcitabine		
Gemcitabine plus capecitabine vs Gemcitabine		

5-FU: 5-fluourouracil; LV: Leucovorin; DFS: Disease free survival; OS: Overall survival.

Because adjuvant chemotherapy offers benefits to some patients, there have been efforts to determine if intensification of the regimens can increase their effectiveness. The recently published ESPAC-4 study compared a combination of gemcitabine plus capecitabine over gemcitabine alone[29]. A larger number of patients included in this study had evidence of nodal disease or locally advanced disease that was deemed upfront resectable. The primary endpoint of OS was significantly improved in the combination group with a median OS of 28.0 mo compared to 25.5 mo in the monotherapy group. Interestingly, there was no difference in the relapse free survival between the two groups. Grade 3-4 adverse events of diarrhea, neutropenia and hand foot syndrome were more common in the gemcitabine plus capecitabine group. However, overall quality of life measures were similar between the two groups. Given the tolerability of gemcitabine plus capecitabine and the demonstrated benefits in survival, combination adjuvant therapy is now considered the standard in clinical settings. Clinical studies are currently underway to examine if there are additional benefits to further treatment intensification. Marsh et al[30] published preliminary findings of a pilot study where twenty-one patients with early stage pancreatic cancer were given four cycles of modified FOLFIRINOX before and after surgery and found a median OS of 33.4 mo. To this end, regimens such a gemcitabine plus nanoparticle albumin bound paclitaxel (nab-paclitaxel) and a combination of 5-FU, irinotecan and oxaliplatin (FOLFIRINOX) are actively being evaluated in the adjuvant setting.

The ESPAC-4 study also highlights some the challenges with adjuvant systemic treatment in pancreatic cancer patients. Despite most patients having a good performance status at the time of randomization, only 54% and 65% of patients were able to complete all planned cycles of treatment in the gemcitabine plus capecitabine and gemcitabine groups respectively. A neoadjuvant approach with chemotherapy delivered...
prior to patients undergoing a major operation may improve rates of systemic treatment completion. Some groups also believe that earlier chemotherapy is important to eradicate micrometastatic disease. The SWOG group is currently recruiting patients with resectable disease to six cycles of neoadjuvant FOLFIRINOX or nine cycles of gemcitabine plus nab-paclitaxel followed by surgical resection[31].

ADJUVANT CHEMORADIOThERAPY

While the benefits of adjuvant chemotherapy are widely accepted and broadly used in clinical practice, the role of adjuvant chemoradiotherapy is more controversial. Prospective evidence regarding the value of chemoradiotherapy is frequently older and underpowered. The GITSG study published in 1985 was one of the first large studies to suggest a benefit of adding radiation to chemotherapy[32]. Forty-nine patients were randomized to observation alone or split course radiotherapy to a total of 40 Gy plus concurrent 5-FU. Although median OS was reported to be longer in the chemoradiotherapy group (20 mo vs 11 mo), this study was closed early due to poor accrual and was considered underpowered[32]. An updated analysis which included an additional 30 randomized patients revealed similar results[33]. The authors concluded that there was a significant survival advantage with the use of adjuvant chemoradiotherapy. As there were some smaller studies with conflicting results published at the same time, the EORTC GI cooperative group pursued another trial with a similar design as the GITSG trial across multiple centers in Europe. Patients were randomized to observation or to the same split course radiotherapy plus infusional 5-FU[34]. However, the benefit of chemoradiotherapy seen in this later study was much smaller and only borderline significant[34].

In contrast, these authors concluded that there was insufficient evidence to recommend the routine use of chemoradiation after resection of pancreatic cancer[34]. Long term follow up of these patients did not identify any differences in outcomes over time[35].

The ESPAC-1 study examined the effect of chemoradiation compared to chemotherapy alone vs observation and concluded that the chemoradiation group had a trend towards worse OS[36,37]. A meta-analysis performed by Liao et al[18] supported the observation that chemoradiation is less effective than chemotherapy alone. However, the results of this meta-analysis were likely driven by the patients in the ESPAC-1 study. Flaws in the study design of the ESPAC-1 trial, including a pooled analysis of its three different sub-studies, continue to be a major source of controversy. In clinical practice, the patterns of use of chemoradiotherapy differ significantly among clinicians and across cancer centers.

The uncertainty regarding the utility of adjuvant chemoradiotherapy is ongoing. Several contemporary retrospective studies suggest that there is a survival benefit[36-39]. Rutter et al[40] reviewed the national cancer database in the United States and identified 6165 patients from 1998 to 2009 who were treated with adjuvant chemotherapy or chemoradiotherapy. The mean radiotherapy dose received was 50.4 Gy, which was higher than the doses used in older prospective studies. They found that chemoradiotherapy was associated with an improved overall survival over chemotherapy alone with an adjusted hazard ratio of 0.89. Although retrospective analyses have their limitations, it is difficult to discount several large population-based studies that suggest a possible survival improvement with chemoradiotherapy. Changes in surgical and modern radiotherapy planning techniques may account for differences in survival over time.

New prospective randomized studies that incorporate the use of modern radiation techniques and current chemotherapy regimens are still needed to determine whether adjuvant chemoradiotherapy is actually beneficial.

LOCALLY ADVANCED PANCREATIC CANCER

About 30% of patients present with non-metastatic locally advanced disease[40]. This cohort represents a heterogeneous group of patients whose management differs depending on surgical resectability. Prior to the advent of active systemic therapies, locally advanced tumors were most commonly managed akin to advanced metastatic disease. Gemcitabine, an agent that has been considered the standard of care in distant advanced disease for years, is also used for locally advanced pancreatic cancer[41]. One phase II study performed among locally advanced patients reported a median OS of 15 mo[42]. Use of multigent chemotherapy, such as FOLFIRINOX or gemcitabine in combination with other cytotoxic agents, is increasingly common in the first line setting for locally advanced disease albeit there is little prospective evidence. A recent small phase II study along with other observational studies indicate that FOLFIRINOX has a survival benefit in locally advanced disease when compared to historical controls[43,44]. A systematic review of studies involving first line FOLFIRINOX in locally pancreatic cancer reported a median overall survival of 24.2 mo[45].

The use of more active systemic treatments has also created the potential that some tumors may be sufficiently downstaged to become resectable. The definitions of locally advanced unresectable disease or borderline resectable disease continue to be vague and highly dependent on surgical expertise and discretion. There is generally a lack of prospective randomized data in this area. Induction chemotherapy is occasionally used in clinical practice and recommended by some consensus-driven guidelines[47,48]. There are several
options for systemic therapy with no single regimen being considered the standard. Use of FOLFIRINOX as neoadjuvant therapy is of particular interest given its response rate of 32% in advanced disease[49]. Multiple observational analyses on neoadjuvant FOLFIRINOX have been published with encouraging results that show FOLFIRINOX improves R0 resection rates to up to 70% in some studies[50-52]. At the current time, there are few published studies examining the use of gemcitabine doublets as neoadjuvant therapy for locally advanced disease. A number of small studies focusing on the neoadjuvant combination of gemcitabine plus oxaliplatin showed that the regimen is feasible, with reports that up to 40%-60% of patients eventually proceed onto surgery[53,54]. Gemcitabine in combination with capecitabine or docetaxel have also been described as feasible and potentially effective as neoadjuvant therapy for locally advanced disease[55,56]. There is interest in investigating the combination of gemcitabine plus nab-paclitaxel as neoadjuvant treatment given its efficacy in metastatic disease. Early results from observational cohorts suggest a favorable response rate when gemcitabine and nab-paclitaxel was used as induction treatment[57,58].

In contrast to neoadjuvant chemotherapy, the use of concurrent chemoradiotherapy has not been shown to improve survival. The LAP-07 study randomized patients with locally advanced disease to gemcitabine with or without erlotinib for four cycles followed by a second randomization to further chemotherapy or chemoradiation[59]. Unfortunately, the study was stopped early due to futility. Concurrent chemoradiotherapy did not show any survival benefits over chemotherapy alone. It is still unclear whether the addition of radiotherapy improves surgical outcomes. Thus, there is continued interest in studying whether radiotherapy after multi-agent induction chemotherapy would improve the rates of R0 resection[60-62]. Katz et al[60] investigated the combination of modified FOLFIRINOX for 4 cycles followed by concurrent chemoradiation with capecitabine in 22 patients with borderline resectable disease and reported that 60% of patients received a surgical resection with 93% of those achieving an R0 resection.

ADVANCED PANCREATIC CANCER

More than 50% of patients present with advanced stage disease and experience a dismal prognosis. Patients with locally advanced unresectable disease and distant metastatic disease are frequently treated in a similar fashion. Until recently, single agent chemotherapy was the mainstay of treatment offering only a very modest benefit in survival. Newer approaches with combination chemotherapy have finally shown an improvement in survival when compared to monotherapy.

Before the introduction of combination treatment, gemcitabine monotherapy was the cornerstone of treatment. At present, it remains the standard first line option for patients with poor performance status who are unable to tolerate combination chemotherapy. In 1997, a phase III trial was published which compared gemcitabine to 5-FU, the latter of which was the standard therapy based on studies in the 1950-1960s with highly variable results (Table 2)[41]. The primary endpoint of the trial was clinical benefit, defined as a sustained improvement in symptoms related to pancreatic cancer, which was significantly better in the gemcitabine arm. Secondary endpoints of survival were also improved with median OS of 5.7 mo in the gemcitabine group compared to 4.4 mo in the 5-FU group. Based on results of this trial, gemcitabine became the standard of care for advanced disease for the subsequent 20 years.

There were multiple attempts to combine gemcitabine with other agents to improve survival. Studies involving gemcitabine plus 5-FU, capecitabine, and S1 uniformly failed to demonstrate benefit over gemcitabine alone[63-65]. Results of gemcitabine in combination with newer agents targeting the EGFR or VEGF pathway were also disappointing. A phase III study combining gemcitabine plus erlotinib did show a modest improvement in survival by 2 wk[66]. However, this regimen has not been widely accepted into clinical practice because the magnitude of benefit was marginal. Furthermore, a study using a combination of gemcitabine and cetuximab, a monoclonal antibody against EGFR, failed to demonstrate any benefit over gemcitabine alone[67]. Likewise, gemcitabine plus bevacizumab in a phase III study also failed to show a survival benefit over gemcitabine alone[68].

Because treatment results from initial gemcitabine doublets were generally disappointing, investigations into other active agents were made. Agents such as 5-FU, irinotecan and oxaliplatin have shown activity in pancreatic cancer and a combination of these three were shown to be safe in phase I studies[69]. As such, a phase II/III trial was conducted to study the effects of FOLFIRINOX compared to standard gemcitabine monotherapy[49]. Surprisingly, the results demonstrated a significant overall survival advantage of 11.0 mo compared to 8.6 mo in the gemcitabine group. Quality of life measured at 6 mo was also significantly better in the FOLFIRINOX group, likely secondary to better disease control. However, toxicity is greater in the FOLFIRINOX group and patients included in the study were required to have a baseline ECOG performance of 0-1. FOLFIRINOX is now considered the standard first line option for patients with poor performance or advanced pancreatic cancer with a good performance status.

In contrast to other gemcitabine doublets, a recent study demonstrated a clinically significant antitumor effect when gemcitabine was combined with nab-paclitaxel. Molecular profiling of pancreatic cancer show that the tumor often overexpresses an albumin-binding protein suggesting that this formulation may increase...
the intratumoral concentrations of gemcitabine70. The phase III data published in 2013 described that the combination of nab-paclitaxel plus gemcitabine was superior to gemcitabine alone with a median OS of 8.5 mo vs 6.7 mo71. The superiority in survival persisted with long term follow up at 3 years72. The combination of gemcitabine plus nab-paclitaxel has also been recently approved for first line treatment of advanced pancreatic cancer.

There are currently no studies that directly compare the activity of FOLFIRINOX to gemcitabine plus nab-paclitaxel and both are approved for use in the first line setting. In clinical practice, the choice of regimen is often dependent on the toxicity profiles. FOLFIRINOX has more toxicities and is usually reserved for patients with good performance status. Gemcitabine plus nab-paclitaxel has been studied in patients with a KPS ≥ 70, which approximates ECOG 2. Population based studies revealed that few real world patients actually meet the eligibility criteria used in the clinical trials with only about 25% of patients able to receive FOLFIRINOX and 45% able to receive gemcitabine plus nab-paclitaxel73,74. In patients with borderline performance who may not be able to tolerate combination cytotoxic therapy, gemcitabine monotherapy remains an option. Unfortunately, there are limited data from large prospective randomized data investigating second line therapies upon progression. With the use of more active first line treatments, patients are now faring better to the degree that warrants consideration of second line therapy. Nonetheless, second line treatment represents an area of clinical unmet need. Systemic therapy is still often used for patients with good performance status who wishes to receive treatment. Agents that are considered active in pancreatic cancer such as 5-FU, oxaliplatin, irinotecan and gemcitabine are reasonable to be used in the second line setting with no single regimen that can be currently considered as the standard of care. Retrospective studies suggest that use of second line therapies is feasible with a potential survival benefit75. Patients enrolled into the MPACT study were followed prospectively and results were published on the outcomes of second line therapy76. The authors reported a significant benefit to receiving any second line therapy with an adjusted hazard ratio of 0.4776. However, the total number of patients was small and results may be confounded. The combination of 5-FU/LV and oxaliplatin has been studied in two phase III trials with conflicting results. The German CONKO study group conducted a trial comparing FF (weekly infusional 5-FU and folic acid) to OFF (oxaliplatin 85 mg/m2 on days 8 and 22 plus FF followed by a 2 wk break) in patients who progressed after first line gemcitabine monotherapy77,78. A significant benefit was seen in the OFF group with a median OS of 5.9 mo compared to 3.3 mo77,78. The PANCREOX study performed by the Canadian group compared second line biweekly bolus plus infusional 5-FU/LV to mFOLFOX6 (biweekly bolus plus infusional 5-FU/LV plus oxaliplatin 85 mg/m2). Contrary to the findings in the German study, patients receiving mFOLFOX6 suffered an inferior survival with more toxicity compared to 5-FU/LV alone (6.1 mo vs 9.9 mo)79. Conflicting results of the two studies may be explained by differences in the inclusion criteria and treatment regimens. The NAPOLI-1 study is a phase III trial investigating the use of nanoposomal irinotecan with or without 5-FU/ LV compared to 5-FU/LV alone in heavily pretreated patients80. The study demonstrated a median OS of 6.1 mo in patients who received nanoposomal irinotecan plus 5-FU/LV compared to 4.2 mo in patients receiving 5-FU/LV alone. This combination may become the

Table 2 Summary of first line studies for advanced pancreatic cancer

Study41,49,63-67,71, 2007	Treatment	Treatment group	Control group						
	ORR	PFS (mo)	OS (mo)	1 yr Survival	ORR	PFS (mo)	OS (mo)	1 yr Survival	
Standard of care									
Burris et al43, 1997	Gemcitabine vs 5-FU/LV	-	9 wk	5.65	18.0%	-	4	4.01	2.0%
Conroy et al44, 2011	FOLFIRINOX vs Gemcitabine	31.6%	6.4	11.1	48.4%	9.4%	3.3	6.8	20.6%
Von Hoff et al45, 2013	Nab-paclitaxel plus gemcitabine vs gemcitabine	23.0%	5.5	8.5	35.0%	7.0%	3.7	6.7	22.0%
Gemcitabine doublets									
Berlin et al46, 2002	Gemcitabine plus 5-FU vs gemcitabine	6.9%	3.4	6.7	-	5.6%	2.2	5.4	-
Herrmann et al47, 2007	Gemcitabine plus capcitabine vs gemcitabine	10.0%	4.3	8.4	32.0%	7.8%	3.9	7.2	30.0%
Moore et al48, 2007	Gemcitabine plus erlotinib vs gemcitabine	8.6%	3.8	6.2	23.0%	8.0%	3.6	5.9	17.0%
Philip et al49, 2010	Gemcitabine plus cetuximab vs gemcitabine	12.0%	3.4	6.3	-	14.0%	3.0	5.9	-
Ueno et al50, 2013	Gemcitabine plus S1 vs gemcitabine	29.3%	5.7	10.1	40.7%	13.3%	4.1	8.8	35.4%

5-FU: 5-flurouracil; LV: Leucovorin; DFS: Disease free survival; OS: Overall survival; ORR: Overall response rate.
standard second line treatment in the future.

FUTURE DIRECTIONS

The outcomes of pancreatic cancer remain poor despite recent advances. Therefore, research into novel and different ways of targeting this tumor is still ongoing.

One of the reasons why pancreatic cancer is so difficult to treat with conventional cytotoxic therapy is thought to be related to the desmoplastic response in tumor stroma, which promotes tumor growth and compromises chemotherapy delivery\(^{81-83}\). The JAK/STAT signalling transduction pathway mediates the tumor and host inflammatory response. Ruxolitinib, a JAK inhibitor, in combination with capcitabine has demonstrated efficacy in patients who progressed after gemcitabine in a phase II study\(^{84}\). The intense stromal reaction is also often associated with tissue hypoxia. Evofosfamide, a prodrug activated under hypoxic conditions could increase drug delivery to the tumor. Unfortunately, the phase III results did not show a survival benefit\(^{85}\). Pancreatic cancer stroma has also been shown to accumulate hyaluronan and a novel approach using a recombinant human hyaluronidase together with gemcitabine and nab-paclitaxel has shown promising preliminary results, specifically improving response rates and progression free survival in the phase II setting\(^{86}\). Ibrutinib, an agent commonly used in the treatment of chronic lymphocytic leukemia is thought to inhibit mast cell degranulation in the stroma and subsequent angiogenesis and collagen deposition. This agent is also being investigated\(^{87}\).

Molecular profiling may further help us gain a better understanding of the molecular pathways in pancreatic cancer\(^{88,89}\). While mutations in KRAS, TP53 and CDKN2A are common in pancreatic cancer, they have proven to be challenging to target. However, there is mounting evidence of genomic alterations in TGF-\(\beta\) signaling and studies investigating the utility of TGF-\(\beta\) inhibitors are actively underway\(^{90}\).

The identification of specific subtypes of pancreatic cancers or special patient populations based on molecular profiles is a significant area of interest. For example, the presence of microsatellite instability may predict response to immunotherapy even though it has not been shown to be a very active type of treatment in an unselected population of pancreatic cancer. A special group of patients are those with mutations in BRCA-1/2. Emerging data from other cancer sites associated with BRCA mutations such as breast and ovarian cancer suggest hypersensitivity to platinum agents\(^{91-95}\). Oxaliplatin has already demonstrated activity in pancreatic cancer\(^{49}\), but it is unknown if BRCA mutated patients will demonstrate a superior response compared to an unselected population. PARP inhibitors have been shown to improve treatments outcomes in BRCA mutated ovarian cancer. A germline mutation in BRCA-2 is known to be correlated with the development of pancreatic cancer, but the prevalence is unknown. It has been reported that up to 5%-9% of pancreatic cancer patients harbor the mutation\(^{96,97}\). Studies of PARP inhibitors in BRCA mutated pancreatic cancer patients are in development with some early data indicating promising efficacy\(^{97,98}\).

CONCLUSION

Pancreatic cancer is a systemic disease since even the majority of patients with early disease eventually develop metastases. While gemcitabine poses some anti-tumor activity and improves survival in the adjuvant setting, the focus of management for most patients with pancreatic cancer has, to date, been palliative. The discovery of active multi-agent chemotherapy regimens such as FOLFIRINOX and gemcitabine plus nab-paclitaxel has changed the recent landscape in the management of this disease in many aspects. In early stage disease, multi-agent chemotherapies are being investigated for their potential benefit in overall survival. The PRODIGE and APACT studies are ongoing and hopefully will provide us with new data in the next several years. The potential for multi-agent chemotherapy to downstage locally advanced disease to improve resection rates is a significant area of interest. In fit patients with metastatic disease who can tolerate combination treatment, FOLFIRINOX as well as gemcitabine plus nab-paclitaxel are considered standards of care. Advances in molecular profiling and gene sequencing will likely help us better understand the biology of pancreatic cancer. Novel targets for drug development as well as new methods of drug delivery are areas of active clinical research. Finally, identification of specific subgroups of patients such as BRCA mutation carriers may also allow clinicians to better individualize care for future patients.

REFERENCES

1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5-29 [PMID: 25559415 DOI: 10.3322/caac.21254]
2 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66: 7-30 [PMID: 26742998 DOI: 10.3322/caac.21332]
3 American Cancer Society. Global Cancer Facts & Figures. 3rd ed. Atlanta: American Cancer Society, 2015
4 Gooskier GA, van Gijn W, Wouters MW, Post PN, van de Velde CJ, Tollenaar RA. Systematic review and meta-analysis of the volume-outcome relationship in pancreatic surgery. Br J Surg 2011; 98: 485-494 [PMID: 21500187 DOI: 10.1002/bjs.7413]
5 National Cancer Institute. Cancer stat facts: cancer of the pancreas. Surveillance, Epidemiology, and End Results Program, 2017
6 Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, Andersen JR, Dimagno EP, Andrén-Sandberg A, Domellöf L. Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med 1993; 328: 1433-1437 [PMID: 8479461 DOI: 10.1056/NEJM19930520228001]
7 Ekhoum A, McLaughlin JK, Karlsson BM, Nyren O, Gridley G, Adami HO, Fraumeni JF. Pancreatitis and pancreatic cancer: a population-based study. J Natl Cancer Inst 1994; 86: 625-627 [PMID: 8145277]
8 DueLL EJ, Lucenteforte E, Olson SH, Bracci PM, Li D, Risch HA, Silverman DT, Ji BT, Gallinger S, Holly EA, Fontham EH,
Adjuvant treatments for resected pancreatic adenocarcinoma: a systematic review and network meta-analysis. *Lancet Oncol* 2013; 14: 1095-1103 [PMID: 24035532 DOI: 10.1016/S1470-2045(13)70388-7]

19 Bakkevold KE, Arnesjo B, Dahl O, Kambestad B. Adjuvant combination chemotherapy followed by radiotherapy and gemcitabine: a single-arm, phase II study. *Eur J Cancer* 2013; 49: 698-703 [PMID: 2471327]

20 Neoptolemos JP, Dunn JA, Stocken DD, Almond J, Link K, Beger H, Bassi C, Falcioni M, Pederzoli P, Dervensis C, Fernandez-Cruz L, Lacaie F, Pap A, Spooner D, Kerr DJ, Fries H, Bührcher MW. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. *Lancet* 2001; 358: 1576-1585 [PMID: 11716884]

21 Neoptolemos JP, Stocken DD, Fries H, Bassi C, Dunn JA, Hickey H, Beger H, Fernandez-Cruz L, Dervensis C, Lacaie F, Falcioni M, Pederzoli P, Pap A, Spooner D, Kerr DJ, Bührcher MW. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. *N Engl J Med* 2004; 350: 1200-1210 [PMID: 15028824 DOI: 10.1056/NEJMoa032295]

22 Neoptolemos JP, Stocken DD, Smith C, Bassi C, Ghanem P, Owen E, Moore M, Padbury R, Doi R, Smith D, Bührcher MW. Adjuvant 5-fluorouracil and folinic acid vs observation for pancreatic cancer: composite data from the ESPAC-1 and -3 (v1) trials. *Br J Cancer* 2009; 100: 246-250 [PMID: 19127260 DOI: 10.1038/sj.bjc.6604838]

23 Neoptolemos JP, Stocken DD, Bassi C, Ghanem P, Cunningham D, Goldstein D, Padbury R, Moore MJ, Gallinger S, Mariette C, Wente MN, Lishiki JR, Fries H, Lerch MM, Dervensis C, Olah A, Butturini G, Doi R, Lind PA, Smith D, Vale JW, Palmer DH, Buckels JA, Thompson J, McKay CJ, Rawcliffe CL, Bührcher MW. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. *JAMA* 2010; 304: 1073-1081 [PMID: 20823433 DOI: 10.1001/jama.2010.12737]

24 Oettle H, Post S, Neuhaus P, Gellert K, Langrehr J, Ridwelski K, Schramm H, Fahlke J, Zuecue C, Burkart C, Gutberlet K, Kettner E, Schmahlenberg H, Weigang-Kohler K, Bechstein WO, Niedergethmann M, Schmidt-Wolf I, Roll L, Doerken B, Riess H. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. *JAMA* 2007; 297: 267-277 [PMID: 17227978 DOI: 10.1001/jama.297.3.267]

25 Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, Niedergethmann M, Zülke C, Fahlke J, Arning MB, Sinn M, Hinke A, Riess H. Adjuvant gemcitabine chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. *JAMA* 2013; 310: 1473-1481 [PMID: 24014372 DOI: 10.1001/jama.2013.279201]

26 Ueno H, Kosuge T, Matsuyama Y, Yamamoto J, Nakao A, Egawa S, Doi R, Monden M, Hatori T, Tanaka M, Shimada M, Kanemitsu K. A randomised phase III trial comparing gemcitabine with surgery-only in patients with resected pancreatic cancer: Japanese Study Group of Adjuvant Therapy for Pancreatic Cancer. *Br J Cancer* 2009; 101: 908-915 [PMID: 19690548 DOI: 10.1038/sj.bjc.6605256]

27 Regine WF, Winters KA, Abrams RA, Safran H, Hoffman JP, Konski A, Benson AB, Macdonald JS, Kudrimoti MR, Fromm ML, Haddock MG, Schafer P, Willett CG, Rick TA. Fluorouracil vs gemcitabine chemotherapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma: a randomized controlled trial. *JAMA* 2008; 299: 1019-1026 [PMID: 18319412 DOI: 10.1001/jama.299.9.1019]

28 Yu Z, Zhong W, Tan ZM, Wang LY, Yuan YH. Gemcitabine Adjuvant Therapy for Resected Pancreatic Cancer: A Meta-analysis. *Am J Clin Oncol* 2015; 38: 322-325 [PMID: 23934134 DOI: 10.1097/COC.0000313812a46782]

29 Neoptolemos JP, Palmer DH, Ghanem P, Pascarelli EE, Valle JW, Halloran CM, Faluoi O, O'Reilly DA, Cunningham D, Wadsley J, Darby S, Meyer T, Gillmore R, Anthony A, Lind P, Glimelius B,
Further evidence of effective adjuvant combined radiation and chemotherapy following curative resection. *Arch Surg* 1985; 120: 899-903 [PMID: 4015380]

Further evidence of effective adjuvant combined radiation and chemotherapy following curative resection of pancreatic cancer. *Gastrointestinal Tumor Study Group. Cancer* 1987; 59: 2006-2010 [PMID: 3567862]

Klinkenbijl JH, Jeekel J, Sahmoud T, van Pel R, Couverre ML, Veenhof CH, Arnaud JP, Gonzalez DG, de Wit LT, Hennipman A, Wils J. Adjuvant radiotherapy and 5-fluorouracil curative resection of cancer of the pancreas and peripancreatic region: phase III trial of the EORTC gastrointestinal tract cancer cooperative group. *Ann Surg 1999; 230: 776-782; discussion 782-784* [PMID: 10615932]

Smeenk HG, van Eijck CH, Hop WC, Erdmann J, Tran KC, Debois M, van Cutsem E, van Dekken H, Klinkenbijl JH, Jeekel J. Long-term survival and metastatic pattern of pancreatic and peripancreatic cancer after adjuvant chemoradiation or observation: long-term results of EORTC trial 80891. *Ann Surg 2007; 246: 734-740* [PMID: 17968165 DOI: 10.1097/SLA.0b013e31815fe0f5]

Rutter CE, Park HS, Corso CD, Lester-Coll NH, Mancini BR, Yeboah DN, Jhung KL. Addition of radiotherapy to adjuvant chemotherapy is associated with improved overall survival in resected pancreatic adenocarcinoma: An analysis of the National Cancer Data Base. *Cancer 2015; 121: 4141-4149* [PMID: 26280559 DOI: 10.1002/cncr.29652]

Sugawara A, Kunieda E. Effect of adjuvant radiotherapy on survival in resected pancreatic cancer: a propensity score surveillance, epidemiology, and end results database analysis. *J Surg Oncol 2014; 110: 960-966* [PMID: 25146251 DOI: 10.1002/jso.23752]

Kooby DA, Gillespie TW, Liu Y, Byrd-Sellers J, Landry J, Bian J, Lipinscomb J. Impact of adjuvant radiotherapy on survival after pancreatic cancer resection: an appraisal of data from the national cancer data base. *Ann Surg Oncol 2013; 20: 3634-3642* [PMID: 23771249 DOI: 10.1245/s10434-013-3047-x]

Hsu CC, Herman JM, Corsini MM, Winter JM, Callister MD, Haddock MG, Cameron JL, Pawlik TM, Schulick RD, Wolfgang CL, Laheru DA, Farrell MB, Swartz MJ, Guderson LL, Miller RC. Adjuvant chemoradiation for pancreatic adenocarcinoma: the Johns Hopkins Hospital-Mayo Clinic collaborative study. *Ann Surg Oncol 2010; 17: 981-990* [PMID: 20087786 DOI: 10.1245/s10434-009-0743-7]

National Cancer Institute. Cancer of the Pancreas - Cancer Stat Facts. Surveillance, Epidemiology, and End Results Program, 2015

Burriss HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreatic cancer: a randomized trial. *J Clin Oncol 1997; 15: 2403-2413* [PMID: 9196156 DOI: 10.1200/JCO.1997.15.6.2403]

Ishii H, Furuse J, Boku N, Okusaka T, Ikeda M, Okhawa S, Fukutomi A, Hamamoto Y, Nakamura K, Fukuda H. Phase II study of gemcitabine chemotherapy alone for locally advanced pancreatic carcinoma: JCOG0506. *Jpn J Clin Oncol 2010; 40: 573-579* [PMID: 20185458 DOI: 10.1093/jjco/hyp011]

Stein SM, James ES, Deng Y, Cong X, Kortmansky JS, Li J, Staugaard C, Indukula D, Boustani AM, Patel V, Cha CH, Salem RR, Chang B, Hochster HS, Lacy J. Final analysis of a phase II study of modified FOLFIRINOX in locally advanced and metastatic pancreatic cancer. *Br J Cancer 2016; 114: 737-743* [PMID: 27022826 DOI: 10.1038/bjc.2016.45]

Marthey L, Sa-Cunha A, Blanc JF, Gauthier M, Couef F, Francois E, Trouilloud I, Maika D, Bacht JB, Coriat R, Terrebonne E, De La Fouchardière C, Manfredi S, Solub D, Lécaille C, Thirot Bidault A, Carbonnel F, Taieb J. FOLFIRINOX for locally advanced pancreatic adenocarcinoma: results of an AGEO multicenter prospective observational cohort. *Ann Surg Oncol 2015; 22: 295-301* [PMID: 25037971 DOI: 10.1245/s10434-014-3898-9]

Peddi P, Lubner S, McWilliams R, Tan BR, Picus J, Sorscher SM, Suresh R, Lockhart AC, Wang J, Menias C, Gao F, Linehan D, Wang-Gillam A. Multi-institutional experience with FOLFIRINOX in pancreatic adenocarcinoma. *JOP 2012; 13: 497-501* [PMID: 22964956 DOI: 10.6092/1590-8577/913]

Suker M, Beumer BR, Sadoth E, Marthey L, Faris E, Mellon EA, El-Rayes BF, Wang-Gillam A, Lacy J, Hosein PJ, Moorcroft SY, Conroy T, Hohla F, Allen P, Taieb J, Hong TS, Shridhar R, Chau I, van Eijck CH, Groot Koorckamb F. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. *Ann Oncol 2016; 17: 801-810* [PMID: 27160474 DOI: 10.1016/S1470-2045(16)00172-8]

Balaban EP, Mangu PB, Khourana AA, Shah MA, Mukherjee S, Crane CH, Javle MM, Eads JR, Allen P, Ko AH, Englbretson A, Herman JM, Strickler JH, Benson AB, Urba S, Yee NS. Locally Advanced, Unresectable Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. *J Clin Oncol 2016; 34: 2654-2668* [PMID: 27247216 DOI: 10.1200/JCO.2016.67.5561]

Sceuffler T, Bacht JB, Van Cutsem E, Rougier P. Pancreatic adenocarcinoma: ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol 2012; 23 Suppl 7: vii33-vi40* [PMID: 22997452 DOI: 10.1093/annonc/mds224]

Conroy T, Delahunt ER, Ychou M, Bouché O, Guimard R, Bécourt Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de La Fouchardière C, Bennouna J, Bacht JB, Khemiss-Koudou F, Pérégér D, Delbalco C, Assenat E, Chauffert B, Michel P, Montoto-Grillot C, Ducreu M. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. *N Engl J Med 2011; 364: 1817-1825* [PMID: 21561347 DOI: 10.1056/NEJMoa1101923]

Sadot E, Doussot A, O'Reilly EM, Lowery MA, Goodman KA, Do RK, Tang LH, Gönen M, D'Angelica MI, DeMatteo RP, Kingham TP, Jarnagin WR, Allen PJ. FOLFIRINOX Induction Therapy for Stage 3 Pancreatic Adenocarcinoma. *Ann Surg Oncol 2015; 22: 3512-3521* [PMID: 26065868 DOI: 10.1245/s10434-015-4647-4]

Rombouts S, Walma M, Vogel JA, Rijsen L, Wilmink J, Mohammad NH, Santvoort HV, Molenaar IQ, Besselink MG. Systematic review of resection rates and clinical outcomes after FOLFIRINOX-based treatment in patients with locally advanced pancreatic cancer. *American Society of Clinical Oncology Annual Meeting, 2016; 34: suppl: abstr 4115* [DOI: 10.1245/s10434-016-5373-2]

Portales F, Gagnadé B, Thezenez S, Samelin A, Assenat E, Alline M, Colombo P, Rouanet P, Carrere S, Quenet F, Riou O, Llacer C, Mazard T, Ychou M. Feasibility and impact on resectability of FOLFIRINOX in locally-advanced and borderline pancreatic cancer. American Society of Clinical Oncology Annual Meeting, 2016; 34: suppl: abstr e15708
Kim EJ, Ben-Josef E, Herman JM, Bekaii-Saab T, Dawson LA, Griffith KA, Francis IR, Greenson JK, Simeone DM, Lawrence TS, Laheru D, Wolfgang CL, William T, Bloomston M, Moore MJ, Wei A, Zapkus MM. A multi-institutional phase 2 study of neoadjuvant gemcitabine and oxaliplatin with radiation therapy in patients with pancreatic cancer. *Cancer* 2013; 119: 2692-2700 [PMID: 23720019 DOI: 10.1002/cncr.28117]

Sahora K, Kuehner I, Eisenhut A, Akan B, Kohlbunger C, Goetzinger P, Teleyk B, Jakesz R, Peck-Radosavljevic M, Ba’ssalamah A, Zielinski C, Grant M. NeogemOx: Gemcitabine and oxaliplatin as neoadjuvant treatment for locally advanced, nonmetastasized pancreatic cancer. *Surgery* 2011; 149: 311-320 [PMID: 20817204 DOI: 10.1016/j.surg.2010.07.048]

Lee JL, Kim SC, Kim JH, Lee SS, Kim TW, Park DH, Seo DW, Lee SK, Kim MH, Kim JK, Park JH, Shin SH, Han DJ. Prospective efficacy and safety study of neoadjuvant gemcitabine with capecitabine combination chemotherapy for borderline-resectable or unresectable locally advanced pancreatic adenocarcinoma. *Surgery* 2012; 152: 851-862 [PMID: 22682078 DOI: 10.1016/j.surg.2012.02.050]

Sahora K, Kuehner I, Schindl M, Kohlbunger C, Goetzinger P, Grant M. NeogemTax: gemcitabine and docetaxel as neoadjuvant treatment for locally advanced nonmetastasized pancreatic cancer. *World J Surg* 2011; 35: 1580-1589 [PMID: 21523499 DOI: 10.1007/s00268-011-1113-8]

Gupta NK, Singh K, Glass T, Davis C, Lybik M, Leagre C, Lau SC. Pancreatic cancer: Eastern Cooperative Oncology Group Trial E2297. *Clin Oncol* 2002; 20: 3270-3275 [PMID: 12149301 DOI: 10.1012/CO.2002.11.149]

Herrmann R, Bodoky G, Ruhstaller T, Glimelius B, Bajetta E, Schüller J, Saietti F, Bauer J, Figier A, Pestalozzi B, Köhne CH, Mingrone W, Stomper SM, Támas K, Kornecz GV, Koeberle D, Cina S, Bernhard J, Dietrich D, Scheithauer W. Gemcitabine plus capecitabine compared with gemcitabine alone in advanced pancreatic cancer: a randomized, multicenter, phase III trial of the Swiss Group for Clinical Cancer Research and the Central European Cooperative Oncology Group. *Clin Oncol* 2007; 25: 2212-2219 [PMID: 17538165 DOI: 10.1002/1360-1333.COC2007.09.0886]

Ueno H, Ioka T, Ikeda M, Ohkawa S, Yamanigoto H, Boku N, Fukumoto A, Suginori K, Baba H, Yamao K, Shimamura T, Shio M, Kitano M, Cheng AL, Mizumoto K, Chen JS, Furuse J, Funakoshi A, Hatori T, Yamaguchi T, Egawa S, Sato A, Ohashi Y, Okusaka T, Tanaka M. Randomized phase III study of gemcitabine plus S-1, S-1 alone, or gemcitabine alone in patients with locally advanced and metastatic pancreatic cancer in Japan and Taiwan: GEST study. *Clin Oncol* 2013; 31: 1640-1648 [PMID: 23547081 DOI: 10.1016/j.jso.2012.04.3680]

Moore MJ, Goldstein D, Hamon J, Figier A, Hecht IR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos T, Patsynski M, Parulekar W. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. *J Clin Oncol* 2007; 25: 1960-1966 [PMID: 17452677 DOI: 10.1200/JCO.2006.07.9525]

Philip PA, Benedetti J, Corless CL, Wong R, O’Reilly EM, Flynn PJ, Rowland KM, Atkins JN, Mirtsching BC, Rivkin SE, Khorana AA, Goldman B, Fenoglio-Preiser CM, Abbazzezzate JL, Blanke CD. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. *J Clin Oncol* 2010; 28: 3605-3610 [PMID: 20606093 DOI: 10.1200/JCO.2009.25.7550]

Kehrer R, Niedzwiecki D, Hollis D, Sutherland S, Schrag D, Hurwitz H, Innocenti F, Mulcahy MF, O’Reilly E, Wozniak TF, Picus J, Bhargava P, Mayer RJ, Schilsky RL, Goldberg RM. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). *J Clin Oncol* 2010; 28: 3617-3622 [PMID: 20606091 DOI: 10.1200/JCO.2010.28.1386]

Ychou M, Coutry F, Seitz JF, Gourgou S, Hua A, Mery-Mignard K, Kramer A. An open phase I study assessing the feasibility of the triple combination: oxaliplatin plus irinotecan plus 5-fluorouracil every 2 weeks in patients with advanced solid tumors. *Ann Oncol* 2003; 14: 481-489 [PMID: 12598357]

Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE, Korn RL, Desai N, Tricou V, Iglesias JL, Zhang H, Soon-Shiong P, Shi T, Rajeshkumar NV, Maitra A, Hidalgo M. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase III trial. *J Clin Oncol* 2011; 29: 4548-4554 [PMID: 21969517 DOI: 10.1200/JCO.2011.36.5742]

Von Hoff DD, Ervin T, Arena FP, Chioe Kang E, Infante J, Moore M, Seay T, Tijlindan SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru DA, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. *N Engl J Med* 2013; 369: 1691-1703 [PMID: 24131140 DOI: 10.1056/NEJMoa1304369]

Goldstein D, El-Maraghi RH, Hammel P, Heinemann V, Kunzmann V, Sastre J, Scheithauer W, Siena S, Tabernero J, Teixeira L, Tortora G, Van Laethem JL, Young R, Penenberg DN, Lu B, Romano A, Von Hoff DD. Nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. *J Natl Cancer Inst* 2015; 107: pii: dju413 [PMID: 25638248 DOI: 10.1093/jnci/dju413]
July 15, 2017 | Volume 9 | Issue 7

Lau SC et al. Treatment of pancreatic cancer
Lau SC et al. Treatment of pancreatic cancer

2008645 DOI: 10.1200/JCO.2008.20.7019

96 **Aung KL**, Holter S, Borgada A, Connor A, Pintilie M, Dhani NC, Hedley DW, Knox JJ, Gallinger S. Overall survival of patients with pancreatic adenocarcinoma and BRCA1 or BRCA2 germline mutation. American Society of Clinical Oncology Annual Meeting, 2016; 34: suppl: abstr 4123

97 **Golan T**, Oh D, Reni M, Macarulla TM, Tortora G, Hall MJ, Reinacher-Schick A, Borg C, Hochhauser D, Walter T, Hochster HS, Baker N, Locker GY, Kindler HL. POLO: A randomized phase III trial of olaparib maintenance monotherapy in patients (pts) with metastatic pancreatic cancer (mPC) who have a germline BRCA1/2 mutation (gBRCAm). American Society of Clinical Oncology Annual Meeting, 2016; 34: suppl: abstr TPS4152

98 **Domchek SM**, Hendifar AE, McWilliams RR, Geva R, Epelbaum R, Biankin A, Vanderheide RH, Wolff RA, Alberts SR, Giordano H, Goble S, Lin KK, Shroff RT. RUCAPANC: An open-label, phase 2 trial of the PARP inhibitor rucaparib in patients (pts) with pancreatic cancer (PC) and a known deleterious germline or somatic BRCA mutation. American Society of Clinical Oncology Annual Meeting, 2016; 34: suppl: abstr 4110

P- Reviewer: Aglietta M, Li C **S- Editor**: Ji FF **L- Editor**: A **E- Editor**: Wu HL
