Introduction

The structure of polyelectrolyte amphiphilic amphotericin B (AmB) comprises two rigid fragments, a macrolide ring and a mycosamine sugar moiety, which are linked by a β-glycosidic bond. The so-called “polar head” of the molecule contains carboxyl and amino groups. For over forty years, the AmB has been one of the most important agents used to combat systemic fungal infections. In spite of side effects such as nephrotoxicity, anemia, and cardiac arrhythmia [1–2], AmB remains the drug of choice for treatment of immunosuppressed patients, such as cancer patients in intensive chemotherapy, solid organ transplant recipients, and AIDS patients. Pharmaceutical technologies provide innovative formulations, which aim to reduce the concentration of the free AmB in the patient serum without harming its therapeutic efficacy.

Sensitive target organisms lose their cellular integrity due to AmB-induced pore formation in their membranes. The exact molecular architecture of the AmB channel is under debate; different models for the formation and structure of the AmB channel have been proposed. The most popular is the sterol-dependent double-pore model: the two-sided effect of polyene-sterol complexes might also contribute to the activity of single amphotericin B pores. It has been shown that the channel dwell time increases with increasing sterol concentration, and it is higher for cholesterol-containing membranes than for bilayers including ergosterol, 6-ketocholestanol, 7-ketocholestanol or 5α-androstan-3β-ol. These findings suggest that the processes of association/dissociation of channel forming molecules depend on the membrane fluidity.

Sterol-dependent membrane activity of AmB suggests that the observed therapeutic efficacy of AmB might be related to a differential preference between sterols found in cell membranes. In mammalian cells, cholesterol (Chol) is the major membrane sterol, whereas in fungi it is ergosterol (Erg) [7]. It is not still clear whether the therapeutic effect of AmB is caused by the preferential formation and stability of a complex of polyene and ergosterol over cholesterol [8–11] or the observed effects result from the different influences of both sterols on structural and dynamical properties of the membrane [12–14].

Sterols are responsible for the membrane fluidity. The main feature of the phosphatidylcholine:cholesterol membrane phase diagram is the presence of an ordered phase at bilayer concentrations of more than 25 mol% cholesterol [15]. Biological membranes contain substantial amounts of cholesterol or equivalent sterols and the phase segregation is expected for many biological membranes. AmB molecules exhibit higher affinity toward the sterol-containing lipid-ordered phase (rafts) and, therefore, might be cumulated in rafts [14]. AmB causes an increase in the internal order of membranes formed with saturated lipids and Chol, while AmB brings about fluidization in the centre of the bilayers with the same amount of Erg [14,16,17].

Czub and Baginski [14] showed that in a membrane, the negatively charged carboxyl group (COO⁻) of AmB is shifted slightly toward the aqueous phase as compared to the protonated amino group (NH₃⁺). The authors suggested that the AmB head...
dipoles may influence on the membrane dipole potential (ϕ_d) drop. The dipole potential of the membrane originates from the specific orientation of dipole moments of the lipid molecules and the adjacent water dipoles in the interfacial region. Depending on the structure of lipids, its magnitude can vary from 100 to 400 mV, with positive values in the membrane interior [18–20]. It is known that sterols modulate the properties of a bilayer not only in its fluidity but also in the membrane dipole potential [21]. Thus, if the membrane dipole potential can ensure a significant contribution to the regulation of AmB channel activity, membrane dipole modifiers might be useful for chemotherapeutical investigations to design less toxic preparations with enhanced therapeutic effectiveness.

The present study is an attempt to examine the effects of dipole modifiers and their structural analogs including various sterols, flavonoids, and styryl dyes on the single AmB channel properties. The roles of the membrane dipole potential, membrane fluidity and specific interactions between dipole modifiers and polyene-sterol complexes in the single dipole state of AmB are discussed.

Materials and Methods

All chemicals were of reagent grade. Synthetic 1,2-diphtyanoyl-sn-glycero-3-phosphocholine (PC), cholesterol (Chol), ergosterol (Erg), and 5α-androstan-3β-ol were obtained from Avanti Polar Lipids, Inc. (Pelham, AL). Phloretin (3-(4-hydroxyphenyl)-1-2,4,6-trihydroxy-phenyl)-1-propanone), phloridzin [1-2β-D-Glucopyranosyl]-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)-1-propanone), genistein (5,7-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one), gen- inst (Genistein-7-O-β-D-glucopyranoside), 2',4',6'-trihydroxy-ace- tophenone monohydrate, quercetin (2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one), 6-ketocholestan, 7-ketocho- lestanol (5-cholstan-3β-ol-7-one) were purchased from Sigma Chemical (St. Louis, MO), RH 421 (N-(4-sulfobutyl)-4-(4-(4-dipentylamino)phenyl)butadienyl)pyridinium, inner salt), RH 237 (X-(4-sulfobutyl)-4-(6-(4-(dibutylamino)phenyl)hexatrienyl)pyridinium, inner salt), and RH 160 (X-(4-sulfobutyl)-4-(4-(4-dibutylamino)phenyl)butadienylpyridinium, inner salt) from Molecular Probes (Eugene, OR). Water was distilled twice and deionized. 2 M KCl solutions were buffered with 5 mM Hepes, pH 7.0. Amphotericin B was purchased from Sigma Chemical (St. Louis, MO).

Virtually solvent-free planar lipid bilayers were prepared according to a monolayer-opposition technique [22] on a 50-μm-diameter aperture in the 10-μm thick Teflon film separating two (cis and trans) compartments of the Teflon chamber. The aperture was pretreated with hexadecane. Lipid bilayers were made from PC and sterol (Chol, Erg, 5α-androstan-3β-ol, 6-ketocholestanol, or 7-ketocholestanol) in different molar ratios. After the membrane was completely formed, AmB from a stock solution (0.1 mg/ml DMSO) was added to both compartments to obtain a final concentration that ranged from 10–10 to 10–6 M. Ag/AgCl electrodes with agarose/2 M KCl bridges were used to apply the transmembrane voltage (V_{trans}) and measure the transmembrane current. “Positive voltage” refers to the case in which the cis-side compartment is positive with respect to the trans-side. All experiments were performed at room temperature. Final concentration of DMSO in the chamber did not exceed 10–4 mg/ml.

The two-side addition of phloretin, phloridzin, genistein, genin, 2',4',6'-trihydroxy-ace-to phenone, quercitin, RH 421, RH 237, or RH 160 from stock mM solutions in ethanol or DMSO to the membrane-bathing solution yielding final concentrations of 20 μM for different flavonoids and 5 μM for various RH dyes was used to modulate AmB activity. Noticed concentrations of ethanol and DMSO in the bilayer bathing solutions did not affect membrane properties (resistance, capacity and stability).

Current measurements were carried out using an Axopatch 200B amplifier (Axon Instruments) in the voltage clamp mode. Data were digitized by Digidata 1440A and analyzed using pClamp 10 (Axon Instruments) and Origin 7.0 (Origin Lab). Current tracks were filtered by 8-pole Bessel 100 kHz. The total number of measurements used for histogram construction ranged from 150 to 7000. The value of mean channel lifetime, τ, was defined as a parameter of the exponential function approximating the obtained distribution. The distribution hypothesis was verified using χ^2 ($P<0.05$).

Since a sterol concentration and a phase separation in the membrane (the presence of lipid rafts, which are able to cumulate sterols and AmB), may affect the parameters of AmB-channels, we compared the conductance-voltage characteristics of single pores at different concentrations of cholesterol or ergosterol in the membrane forming solutions: 5 mol%, 33 mol% and 67 mol%. It was found that the conductance-voltage characteristics are the same for these cases. Therefore, for experiments with dipole modifiers, a 33 mol% sterol concentration was chosen, because it is close to the amount of sterols in biological membranes and thus allows to simulate the cellular situation.

Changes in K+ -nonactin steady-state conductance were measured to estimate the changes of the membrane dipole potential after the addition of quercetin or methyl-β-cyclodextrin into a bilayer bathing solution (0.1 M KCl, 5 mM Hapes, pH 7.4). The corresponding calculations were performed assuming that the membrane conductance is related to the bilayer dipole potential by the Boltzmann distribution [23]:

$$G_m = \frac{G_m^0}{1 + \exp\left(\frac{-q_e \Delta \phi_d}{kT}\right)},$$

where G_m^0 and G_m are the steady-state membrane conductance induced by K+ -nonactin in the presence and in the absence of quercetin or methyl-β-cyclodextrin, respectively, $\Delta \phi_d$ are the changes of the membrane dipole potential after the addition of quercetin or methyl-β-cyclodextrin into a bilayer bathing solution; q_e, k, T have their usual meanings.

Results and Discussion

Figure 1 illustrates the effect of different membrane dipole modifiers on single AmB-channels in lipid bilayers formed from PC:Chol (67:33 mol. %) and bathed in a 2 M KCl pH 7.0 solution. Upper panel of Fig. 1 presents current fluctuations in the presence of 20 μM phloretin (A), no dipole modifiers (B), and 5 μM RH 421 (C). The addition to the membrane bathing solution of phloretin, which is known to decrease the membrane dipole potential [23,24], produced a significant decrease of the channel conductance (by factor of 3), while the pore conductance increased by ~1.5 in the presence of RH 421, known to increase ϕ_d [25]. For preferentially anion-conductive AmB-channels [26] one could expect that a decrease of ϕ_d would produce a decrease of the pore conductance [23,27]. We have previously observed similar effects of these dipole modifiers on predominantly anion-selective syringomycin E channels [28]. The opposite effect (increase of the channel conductance with decreasing ϕ_d was
observed for cation-selective channels produced by gramicidin A, alamethicin, and surfactin [29–33].

We applied different analogs of phloretin, phloridzin, genistein, genistin, 2',4',6'-trihydroxy-acetophenone monohydrate, and quercetin. It was observed that phloridzin does not affect the AmB-channel conductance (data not shown). This finding is in agreement with the fact that phloridzin is several orders of magnitude less effective on the K⁺-nonactin conductance of lecithin:cholesterol (20:80 mol%) membranes than phloretin [23]. Compounds which have the exiguous effect on the membrane dipole potential, genistein, genistin, and 2',4',6'-trihydroxy-acetophenone [30,34], did not practically influence the AmB-channel amplitude (data not shown). The addition of up to 20 μM of quercetin to the membrane bathing solution led to a significant reduction of AmB-pore current amplitude (Fig. 1D). One can assume that the introduction of quercetin leads to some reduction of ϕd similar to phloretin. Indeed, we found that the addition of quercetin in the solution bathing PC:Chol-membrane led to significant increase of K⁺-nonactin steady-state conductance. Increase in the cation conductance means a reduction of the membrane dipole potential. Introduction of 20 μM quercetin corresponds to ϕd reduction on 100±10 mV (Δϕd = −100 ± 10 mV) (see Materials and methods).

We also used analogs of RH 421, RH 237 and RH 160. Malkov and Sokolov [35] have shown that among these dyes RH 421 has the strongest effect on increasing dipole potential of PC-membranes. RH 237 has an intermediate effect and RH 160 has the smallest. The observed increase of the AmB-pore conductance correlates with the dipole potential changes induced by these RH molecules (compare Fig. 1C, F, E).

Thus, the obtained results show that the membrane dipole potential reduction is followed by decreasing AmB channel conductance. It should be noted that Asandei and Luchian [36] attributed the pH-induced changes of the single-molecule ionic conductance of AmB-channels to variations of the dipole membrane potential.

![Figure 1. Current fluctuations corresponding opening and closing of the single AmB-channels in the planar lipid bilayers.](image)

The membranes were made from the PC:Chol (67:33 mol%) and bathed in 2 M KCl 5 mM Hepes pH 7.0. V = 200 mV. Bilayer bathing solutions contain: (A) – 20 μM phloretin, (B) – no dipole modifiers, (C) – 5 μM RH 421, (D) – 20 μM quercetin, (E) – 5 μM RH 160, (F) – 5 μM RH 237.

doi:10.1371/journal.pone.0030261.g001

![Figure 2. Conductance-voltage curves of the single AmB-channels.](image)

The membranes were made from PC:Chol (67:33 mol%) (A) and PC:Erg (67:33 mol%) (B), and bathed in 2.0 M KCl 5 mM Hepes pH 7.0. Bilayer bathing solutions contain: (■) – no dipole modifiers, (○) – 20 μM phloretin, (▲) – 20 μM quercetin, (△) – 5 μM RH 421, (▲) – 5 μM RH 237, (●) – 5 μM RH 160.

doi:10.1371/journal.pone.0030261.g002
The sterol-dependent membrane activity of AmB forced us to investigate AmB-channels in bilayers containing different sterols, especially ergosterol. Figure 2 shows conductance-voltage curves in the absence and in the presence of phloretin, quercetin, and various RH dyes in the solutions bathing PC:Chol (67:33 mol. %) (A) and PC:Erg (67:33 mol%)-bilayers (B). The data show that the AmB-pore conductance is the same for Erg- and Chol-containing bilayers in the absence of any other agents (channel conductance at zero transmembrane voltage, $G_0 < 7 \text{ pS}$). For Erg- and Chol-containing bilayers the effect of phloretin is also the same ($G_0 < 2.5 \text{ pS}$). RH 421 is more effective in Erg-containing bilayers ($G_0 < 15 \text{ pS}$) than in Chol-containing membranes ($G_0 = 10 \text{ pS}$), while the pore conductance in the presence of RH 237 and RH 160 is practically the same for Erg- and Chol-containing bilayers. It should be noted that, as well as in Chol-containing membranes, genistein, genistin, and 2',4',6'-trihydroxy-acetophenone, do not affect the AmB-channel conductance in Erg-containing bilayers (data not shown). In contrast to Chol-containing bilayers, quercetin does not affect the AmB-channel conductance in Erg-containing membranes. Different effects of RH 421 and quercetin on the bilayers containing these sterols are likely to be attributed to interactions between these modifiers and amphotericin-sterol complexes. Recently, the specific interaction of 5- and 4'-hydroxylated flavonoids (for example, phloretin and genistein) with the voltage sensor of alpha-hemolysin pore was demonstrated [37].

Figure 3 presents the dependences of the conductance at zero transmembrane voltage and mean dwell time of AmB-channels as functions of the Chol- or Erg-concentration in the membrane-forming solution. One can see that the pore conductance does not depend on the sterol concentration. In both cases, channel dwell time increased with increasing sterol concentration in the membranes. As the cholesterol-induced change in the membrane dipole potential is biphasic (cholesterol increases φ_d in the concentration range from 0 to 35 mol%, a maximum was observed at 35–45 mol%, after which φ_d starts to decrease) (see Fig. 3 in [38]), the observed monotonic increase of the channel dwell time with increasing sterol concentration can hardly be discussed in terms of membrane dipole potential changes. This fact may be rationalized in terms of membrane fluidity, assuming that an increase in the sterol concentration leads to a condensation effect in the bilayer [39,40], which in turn hinders dissociation of two half-pores. It can also be noticed that the pore life time is higher for Chol-containing membranes than for Erg-containing bilayers. These data are also in agreement with the fact that AmB increases the internal order of bilayers containing Chol, while it has no effect on the order of the bilayer with Erg [14].

Table 1. Dependence of AmB single channels characteristics (conductance at zero transmembrane voltage, G_0, and mean dwell time, τ) on sterol concentration in the membrane forming PC-solution.

Sterol concentration	Characteristic	6-ketocholestanol	7-ketocholestanol	5α-Androstan-3β-ol
33 mol%	G_0, pS	7.0±0.5	8.0±1.0	11.5±1.0
	τ, ms	23±3	15±2	15±3
67 mol%	G_0, pS	7.0±1.0	4.0±0.8	18.0±1.0
	τ, ms	38±5	37±5	37±3

The bilayers were bathed in 2.0 M KCl 5 mM Hepes pH 7.0.

doi:10.1371/journal.pone.0030261.t001
We probed the AmB-channel activity with other sterols. Table 1 presents the effect of 6-ketocholestanol, 7-ketocholestanol and 5α-androstan-3β-ol. 6-ketocholestanol and 7-ketocholestanol are known to increase and decrease G_0, respectively (see Fig. 3 in [38]). AmB-channel conductance G^* does not depend on the 6-ketocholestanol concentration in the membrane forming solution and is equal to approximately 7 pS. In case of 67 mol% of 7-ketocholestanol concentration in the membrane forming solution (Table 1). Furthermore, in bilayers containing these sterols, the pore life time was smaller than in Chol-containing membranes. The data are in agreement with the findings of Smolodyrev and Berkowitz [42] that the presence of the keto-group decreases membrane order and condensation due to a sterol shift towards the polar region closer to the interface. One can predict the same mechanism for 5α-androstan-3β-ol taking into account the absence of a hydrophobic tail in its molecule.

It has been shown that the interaction of certain drugs with cell membranes may depend on ϕ_a [43–45]. Because the therapeutic and toxic effects of polyenes are due to their channel-forming activity in cell membranes, identifying opportunities for its regulation by the membrane dipole modifiers in the model systems (artificial planar bilayers) might be important for further inquiry on cell systems to achieve therapeutic effectiveness.

Acknowledgments

We are grateful to Prof. Valery V. Malev and Dr. Philip A. Garnier for fruitful discussions and to Dr. Valery S. Sokolov for the generous gift of RH 160 and RH 237.

Author Contributions

Conceived and designed the experiments: OSO. Performed the experiments: SSE. Analyzed the data: OSO SSE. Wrote the paper: OSO. Supervised the project and gave conceptual advice: LVS.
13. Venegas B, González-Damian J, Celis H, Ortega-Blake I (2003) Amphotericin B in cholesterol- and ergosterol-containing lipid bilayers: a molecular dynamics study. J Phys Chem B 113: 15875–15885.

14. Czub J, Baginski M (2006) Modulation of amphotericin B membrane interaction by cholesterol and ergosterol: a molecular dynamics study. J Phys Chem B 110: 16745–16753.

15. Thewalt JL, Bloom M (1992) Phosphatidylcholine: cholesterol phase diagrams. Biophys J 63: 1176–1181.

16. Paquet MJ, Fournier I, Barwicz J, Tancrède P, Auger M (2002) The effects of amphotericin B on pure and ergosterol- or cholesterol-containing dipalmitoylphosphatidylcholine bilayers as viewed by 2H NMR. Chem Phys Lipids 119: 1–11.

17. Gabrielska J, Gągus M, Gubernator J, Gruszecki WI (2006) Binding of antibiotic amphotericin B to lipid membranes: a 1H NMR study. FEBS Lett 580: 2677–2685.

18. Gavrisch K, Rustom D, Zimmerberg J, Parsegian VA, Rand RP, et al. (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J 63: 1213–1223.

19. Zheng C, Vanderkooi G (1992) Molecular origin of the internal dipole potential in lipid bilayers: calculation of the electrostatic potential. Biophys J 63: 935–941.

20. Brockman H (1994) Dipole potential of lipid membranes. Chem Phys Lipids 73: 57–79.

21. Buzín V, Cladera J (2006) Effect of cholesterol on the interaction of the HIV GP14 fusion peptide with model membranes. Importance of the membrane dipole potential. Biochim Biophys Acta 1735: 1576–1577.

22. Montal M, Müller P (1972) Formation of bimolecular membranes from lipid monolayers and study of their electrical properties. Proc Nat Acad Sci USA 65: 3561–3566.

23. Andersen OS, Finkenstein A, Katz I, Cass A (1976) Effect of phloroacetophenone on the permeability of thin lipid membranes. J Gen Physiol 67: 749–771.

24. Cosh R, Hetzer M, Wolf K, Kraus J, Bringmann G, et al. (2000) Interaction of phlorizin with membranes: on the mode of action of phlorizin at the water-lipid interface. Eur Biophys J 29: 172–183.

25. Passechnik VI, Sokolov VS (2002) Estimation of electrochrome dyes position in lipid bilayers through the 2nd harmonic of capacitive current. Bioelectrochem 55: 47–51.

26. Borisova MP, Brutyun RA, Ermischkin LN (1986) Mechanism of anion-cation selectivity of amphotericin B channels. J Membr Biol 90: 13–20.

27. Jordan PC (1985) Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential. Biophys J 41: 189–195.

28. Ostromoukhova OS, Kaulin YA, Gurnev PA, Schagina LV (2007) Effect of agents modifying the membrane dipole potential on properties of syringomycin E channels. Langmuir 23: 6819–6822.

29. Busath DD, Thulin CD, Hendershot RW, Phillips LR, Maughan P, et al. (1996) Noninvasive dipole effects on channel permeation. I. Experiments with (SF- indole)Tyr13 gramicidin A channels. Biophys J 75: 2030–2044.

30. Duffin RL, Garrett MP, Flake KR, Durrant JD, Busath DD (2003) Modulation of lipid bilayer interfacial dipole potential by phlorotriindole. Biophys J 82: 967–977.

31. Luchian T, Mereuta L (2006) Phlorizin- and 6-ketocholestanol-mediated antagonistic modulation of alamethicin activity in phospholipid planar membranes. J Membr Biol 222: 1439–1442.

32. Probing Single AmB Pores by Dipole Modifiers

33. Ostromoukhova OS, Malev VV, Elin MG, Schagina LV (2010) SURfacet activity depends on the membrane dipole potential. Langmuir 26: 15092–15097.

34. Reyes J, Greco F, Motais R, Latore R (1983) Phlorotriindole and phlorotriindole analog: mode of action in planar lipid bilayers and monolayers. J Membr Biol 72: 93–103.

35. Markov DV, Sokolov VS (1996) Fluorocent strictly dyes of the RH series affect a potential drop on the membrane/solution boundary. Biochim Biophys Acta 1278: 197–204.

36. Atsalidis A, Luchian T (2008) Ion selectivity, transport properties and dynamics of amphotericin B channels studied over a wide range of acidity changes. Colloids Surf B Biointerfaces 67: 99–106.

37. Ostromoukhova OS, Efimova SS, Schagina LV (2011) 5- and 4-hydroxylated flavonoids affect voltage gating of single alpha-hemolysin pore. Biochim Biophys Acta 1808: 2051–2058.

38. Starke-Peterkovic T, Turner N, Vitha MF, Waller MP, Hibbs DE, et al. (2006) Cholesterol effect on the dipole potential of lipid membranes. Biophys J 90: 4060–4070.

39. Mallik M, Zaman S (1976) Microviscosity parameters and protein mobility in biological membranes. Biochim Biophys Acta 433: 133–149.

40. Rög T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M (2009) Ordering of a bilayer lipid membrane on gramicidin channel dissociation kinetics. Biophys J 97: 1674–1675.

41. Zaman S, Moore AB, Halliwell KA, Maughan P, et al. (2002) Syringomycin E channel: a lipidic pore stabilized by lipopeptide? Biophys J 82: 1985–1994.

42. Smolyarev AM, Berkowitz ML (2001) Effects of oxygenated sterol on phospholipid bilayer properties: a molecular dynamics simulation. Chem Phys Lipids 112: 31–39.

43. Asawakarn T, Cladera J, O’Shea P (2001) Effects of the membrane dipole potential on the interaction of saquinavir with phospholipid membranes and plasma membrane receptors of Caco-2 cells. J Biol Chem 276: 38457–38463.

44. Severina II, Muntvan MS, Lewis K, Skalachev VP (2001) Transfer of cationic antibacterial agents berberine, palmatine, and benzalkonium through bimolecular planar phospholipid film and Staphylococcus aureus membrane. IUBMB Life 52: 321–324.

45. Cladera J, O’Shea P, Harlgraft J, Valenta C (2005) Influence of molecular dipoles on human skin permeability: Use of 6-ketocholestanol to enhance the transdermal delivery of bacitracin. J Pharm Sci 92: 1018–1027.