A Distinct and Divergent Lineage of Genomic Island-Associated Type IV Secretion Systems in Legionella

Bryan A. Wee1, Megan Woolfit2, Scott A. Beatson1, Nicola K. Petty1,3

1 Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia, 2 School of Biological Sciences, Monash University, Melbourne, Victoria, Australia, 3 The ithree institute, University of Technology Sydney, Ultimo, New South Wales, Australia

Abstract

Legionella encodes multiple classes of Type IV Secretion Systems (T4SSs), including the Dot/Icm protein secretion system that is essential for intracellular multiplication in amoebal and human hosts. Other T4SSs not essential for virulence are thought to facilitate the acquisition of niche-specific adaptation genes including the numerous effector genes that are a hallmark of this genus. Previously, we identified two novel gene clusters in the draft genome of Legionella pneumophila strain 130b that encode homologues of a subtype of T4SS, the genomic island-associated T4SS (GI-T4SS), usually associated with integrative and conjugative elements (ICE). In this study, we performed genomic analyses of 14 homologous GI-T4SS clusters found in eight publicly available Legionella genomes and show that this cluster is unusually well conserved in a region of high plasticity. Phylogenetic analyses show that Legionella GI-T4SSs are substantially divergent from other members of this subtype of T4SS and represent a novel clade of GI-T4SSs only found in this genus. The GI-T4SS was found to be under purifying selection, suggesting it is functional and may play an important role in the evolution and adaptation of Legionella. Like other GI-T4SSs, the Legionella clusters are also associated with ICEs, but lack the typical integration and replication modules of related ICEs. The absence of complete replication and DNA pre-processing modules, together with the presence of Legionella-specific regulatory elements, suggest the Legionella GI-T4SS-associated ICE is unique and may employ novel mechanisms of regulation, maintenance and excision. The Legionella GI-T4SS cluster was found to be associated with several cargo genes, including numerous antibiotic resistance and virulence factors, which may confer a fitness benefit to the organism. The in-silico characterisation of this new T4SS furthers our understanding of the diversity of secretion systems involved in the frequent horizontal gene transfers that allow Legionella to adapt to and exploit diverse environmental niches.

Introduction

Type IV secretion systems (T4SSs) are a highly diverse family of complex macromolecular structures involved in a variety of functions, including conjugation, protein translocation and DNA uptake and release (for a review, see [1]). Attempts to classify T4SSs into subtypes have been based on function and the type of substrate (DNA or protein) translocated, or phylogenetic relationships between shared representative genes [1,2]. However, these classification schemes are hampered by the diversity of functions and structures of the T4SS family as well as the mosaic nature of the genomic loci that encode them, which have evolved through extensive recombination and modular exchange. Nevertheless, the different subtypes of T4SSs share common mechanisms, alongside specialised properties unique to certain subtypes or bacteria [1].

Based mainly on sequence similarity and gene organisation, T4SSs in Proteobacteria have been categorized into three main types: type IVA, type IVB, and genomic island-associated (GI) T4SSs. Members of the type IVA (T4ASS) are related to the archetypal Agrobacterium tumefaciens VirB/D4 system, and further divided into subtypes F and P according to their similarity to representative plasmid conjugation systems of the incompatibility groups IncF and IncP [2–4]. Type IVB secretion systems (T4BSS), also known as type I based on similarity to conjugative IncI plasmids, are divergent from the T4ASSs and related to the archetypal Dot/Icm (Defective in organelle trafficking/Intracellular multiplication) protein translocation system of Legionella pneumophila and Coxiella burnetti [3,5]. A third distinct class of T4SSs was found to be associated exclusively with genomic islands and called GI type or genomic island-associated T4SS (GI-T4SS) [6].

GI-T4SSs were initially identified as associated with a group of related genomic islands including the pKLC102 and PAPI elements in Pseudomonas aeruginosa, the ctc element in Pseudomonas knackmussii B13, the ICEHin1056 element in Haemophilus influenzae and the SPI-7 island of Salmonella enterica serovar Typhi [6–10]. These islands have all now been classified as integrative and conjugative elements (ICEs), a family of self-transmissible genomic elements [11,12]. Usually found integrated at specific sites in the host chromosome, ICEs are a class of mobile genetic element
Species	Strain	Accession number and status	Ref.	LGI	Locus tags – LGI	Insertion site (attL)	Size* (Kb)	Direct repeats$^\circ$ (attR)	Locus tags – LGI-T4SS
L. pneumophila	Alcoy	CP001828 (Complete)	[20]	LpaGI-1	lpa_01465 - lpa_01688	tRNAThr (lpa_05026)	51	43 (6M), 40 (10M)	lpa_01534 - lpa_01501
	Corby	CP000675 (Complete)	[23]	LpcGI-1	LPC_2314 - LPC_2170	tRNAThr (LPC_2315)	45	43 (7M), 37 (9M)	LPC_2273 - LPC_2296
					LpcGI-2	LPC_1833 - LPC_1888,	22	45 (OM), 48 (2M)	LPC_1857 - LPC_1880
						LPC_2136 - LPC_2121			
					LpcGI-2	LPC_1832			
						LPC_1857 - LPC_1880			
						LPC_1857 - LPC_1880			
						LPC_1857 - LPC_1880			
L. longbeachae	NSW150	FN650140 (Complete)	[29]	None	-	-	-	-	-
L. drancourtii	D-4968	ACZG000000000 (Draft, 13 contigs)	[33]	LbGI	LLB_1155 - LLB_1201	tRNAPro (LLB_1202)	>45	-	LLB_1169 - LLB_1191
	LLAP12	ACUL000000000 (Draft, 263 contigs)	[32]	LdGI-a	LDG_0891 - LDG_0943	tRNAAmp (LDG_3797)	>46	-	LDG_0920 - LDG_0896
						LDG_0891 - LDG_0943			
					LdGI-b	LDG_2365 - LDG_2398	>30	-	LDG_2375 - LDG_2397
						LDG_2365 - LDG_2398			
					LdGI-c	LDG_2949 - LDG_3002	>44	-	LDG_2995 - LDG_2965
						LDG_2949 - LDG_3002			
					LdGI-d	LDG_3725 - LDG_3784	>58	-	LDG_3747 - LDG_3747
						LDG_3725 - LDG_3784			

*Size from attL to last attR.

$^\circ$Number of base pairs in direct repeat of attl: attR1 (no. mismatches), attR2 (no. mismatches).

doi:10.1371/journal.pone.0082221.t001
capable of self-encoded excision, circularization, replication, conjugal transfer and integration into recipient bacterial chromosomes. ICEs share a common genomic structure, with conserved core modules of genes encoding functions for integration, replication and transfer, interspersed with varying types and numbers of cargo genes, which are not required for the function of the ICE [11–13]. Many of these elements carry cargo genes that confer a fitness advantage to the host, for example SPI-7 encodes a major virulence factor of S. Typhi, the Vi exopolysaccharide capsule [14]. ICEHin0156 carries multiple antibiotic resistance genes [7], and different ICEs have been shown to be directly responsible for the highly virulent phenotypes of several _P. aeruginosa_ strains [15–17].

GI-T4SSs are located in the transfer modules of ICEs and encode the conjugation machinery required for transfer of the associated element. Knockout studies have shown that many of the genes encoded in the GI-T4SS are essential for conjugation of ICEs, while others greatly enhance the frequency of ICE transfer via conjugation to recipient cells [6,11,19]. Additionally, electron microscopy studies have shown that the GI-T4SSs responsible for the production of a single long, thin pilus per cell in _H. influenzae_ [6,19].

The Gram-negative pathogen _Legionella pneumophila_ encodes several different T4SSs, which are thought to have contributed to the large number of horizontally acquired non-essential genes found in the genome of this species [20,21]. While the effector-translocating Dot/Icm T4BSS is known to be essential for the parasitic lifestyle of _L. pneumophila_, several GI-T4SSs, of either F or P subtypes, or both, have also been identified in the genome of each strain sequenced [22–24]. The _Legionella_ F-type T4SSs, known as the Lvh and Tra regions, have both been found either as extrachromosomal, plasmid-like elements, or integrated into the chromosome in some strains [22,25]. In other strains, there are multiple copies of the same element, for example, two Lvh-regions are integrated into the chromosome of strain 130b [24]. These chromosome-integrated T4SSs are associated with factors usually found encoded on mobile genetic elements such as integrase genes, regulatory genes and flanking repeats, which suggests they could also be mobilised and may be activated during certain stages of the organism’s life cycle [22]. There is evidence that components of the T4A and T4BSSs, which are encoded in different locations on the genome, are able to interact with one another, as the Lvh-region has been demonstrated to restore some functions of the Dot/Icm system in deficient mutants [26,27]. This, together with the fact that multiple T4SSs have been found per _Legionella_ genome, suggests that all these secretion systems play an important role in the biology and evolution of this organism.

In addition to these T4A and T4BSSs, we recently identified two new putative T4SSs in _L. pneumophila_ genomes with similarity to GI-T4SSs, which were collectively named _Legionella GI-T4SS 1_ and _Legionella GI-T4SS 2_ [24]. A recent study showed that the two GI-T4SSs in _L. pneumophila_ strain Corby are associated with genomic islands (LpcGI-1 and LpcGF-2) capable of excising from the chromosome and circularising. The authors also provide experimental evidence that LpcGI-2 is a functional ICE [20]. Here, we investigate the distribution and conservation of GI-T4SS genes in publicly available _Legionella_ genomes and describe the features of the genomic loci in which they are found. We show that the _Legionella_ GI-T4SSs are well conserved in almost all members of this genus, and belong to a distinct lineage that is divergent from other GI-T4SS.

Materials and Methods

Bacterial genomes

The complete genome sequences of _Legionella pneumophila_ serogroup 1 strains Alcoy, Corby, Philadelphia 1 (Phila), Paris and Lens, together with _L. longbeachae_ strain NSW150 were used in this study [20,23,29–31]. Three draft genome sequences, of _L. pneumophila_ serogroup 1 strain 130b, _L. longbeachae_ D-4968 and _L. donovani_ LLAP12, were also included in the analyses [24,32,33] (Table 1).

Annotation and comparative genomics

Predicted coding sequences (CDSs) within and surrounding the LGI regions in the annotated genomes were further investigated by searching against the Uniprot protein sequence database using FASTA [34]. Conserved domains and protein families were identified using Interpro Scan and CD-Search [35,36]. Transmembrane helices, signal peptides and protein localization signals were classified using TMHMM v2.0, SignalP v3.0 and PSORT programs [37–39]. Manual curation of the annotation was facilitated using Artemis [40]. Repeated sequences delineating the putative genomic islands were identified using a self-against-self BLASTN [41] nucleotide similarity search with a seed length of seven and an _e_-value cutoff of 10, to allow detection of short repeats of at least 7 bps.

Whole genome alignments generated by BLASTN were visualized using the Artemis Comparison Tool [42]. Pairwise average nucleotide identities (ANI) were calculated from BLASTN matches as implemented in jSpecies v.1.2.1 [43] with default settings. To find elements closely related to the LGIs, TBLASTX and Position-Specific Iterative (PSI)-BLAST (until the results converged or a maximum of 5 iterations was reached) searches of the NCBI nucleotide (nt) and non-redundant (nr) protein databases respectively were performed. Hits were searched for matches to the well-characterised T4SS genes of the _E. coli_ F-plasmid and the _A. tumefaciens_ VirB/D4 system and pairwise comparisons of the LGIs were visualised using Easyfig [44]. All comparative genomic figures were prepared using Easyfig.

Phylogenetic analyses

To examine the phylogeny of the LGI-T4SS clusters, nucleotide sequences of 15 _lg_ genes (lgA, lgB, lgC, lgD, lgE, lgF, lgG, lgH, lgI, lgj, lgL, lgO, lgP, lgQ and lgT) from 14 _LGI-T4SS_ clusters were aligned using clustalW2 [45]. Five _lg_ genes were not used because they were either not as well conserved and resulted in poor alignments (lgM, lgR, lgS), or had disrupted CDSs (pseudogenes) in some strains (lgN and lgK). A maximum likelihood (ML) tree was constructed for each gene alignment using the General Time Reversible (GTR) model with an estimated gamma distribution with 4 rate categories and an estimated proportion of invariable sites, using PhyML [46]. These 15 trees were visualised as a Consensus Network using SplitsTree (v 4.10) [47].

To determine the evolutionary relationship between the LGI-T4SS and other T4SSs, the amino acid sequences of VirB4/Trac/LgiN homologues were taken from 13 LGIs (all except LdrGI-a), as well as from representatives of the major T4SS types, namely _A. tumefaciens_ plasmid Ti (NC_002377), _E. coli_ F plasmid (NC_002483), IncP-alpha plasmid (NC_001621), Plasmid R64 (ABA027308), _H. influenzae_ plasmid ICEHin1056 (NC_011409), _P. aeruginosa_ PAP1-1 (AY273869), _P. aeruginosa_ strain C plasmid pKLC102 (AY257538), and _S. bongori_ ICEs51 (FN298494). Sequences were aligned using ClustalW2 and a ML tree was constructed with the WAG amino-acid substitution.
model using FastTree 2.1.4 [48]. 1000 bootstrap replicates were made to evaluate support for each clade.

Recombination

The RDP package (v4.22) [49] was used to identify recombination in the LGI-T4SSs from the concatenated sequences of the 15 conserved lgi genes (lgiA, lgiB, lgiC, lgiD, lgiE, lgiF, lgiG, lgiH, lgiI, lgiJ, lgiL, lgiO, lgiP, lgiQ, and lgiT) that were also used to build the LGI-T4SS phylogeny, as described above. Analyses were performed on the concatenated sequences to allow us to detect recombination events that involved multiple contiguous genes. Recombination events were deemed significant only if they were detected by at least two out of the six methods (RDP, GENECONV, BootScan, MaxChi, Chimera, Siscan). Default settings for each method were used, including a P-value cutoff of 0.05 with the Bonferroni method to correct for multiple testing.

Selection analysis

Alignments of each of the 15 representative lgi genes (listed above) from each of 12 LGI-T4SS clusters (LdrGI-c and LdrGI-d were excluded from this analysis as they were too divergent to compare selection signals reliably) were made at the codon level using ClustalW2 as implemented in MEGA [50]. Stop codons were removed from the ends of each sequence and a Neighbour-Joining tree constructed for each gene alignment using ClustalW2 [45].

The ratio of non-synonymous substitutions per non-synonymous site and synonymous substitutions per synonymous site (dN/dS) was estimated using branch models implemented by CODEML in the Phylogenetic Analysis by Maximum Likelihood (PAML) v4.4 package [51]. Model = 0 (one dN/dS ratio for all branches) and model = 2 (branches are assigned to one of two dN/dS ratio classes) were used to estimate dN/dS values, and maximum likelihood values were calculated for each model. A likelihood ratio test (LRT), comparing twice the difference in log maximum likelihood values were calculated for each model. A likelihood ratio test (LRT) was then performed for each pair of nested models in order to test a number of hypotheses, as described below.

Results and Discussion

The Legionella GI-T4SS is a conserved cluster of genes associated with conjugation

The Legionella GI-T4SS (LGI-T4SS) gene cluster was found to be present in eight of the nine Legionella spp. genome sequences that were publically available at the commencement of this study (see Table 1). Although no LGI-T4SS cluster was identified in the genome sequence of L. longbeachae NSW150, the other eight genomes were each found to encode between one and four distinct LGI-T4SSs. In total, 14 loci were investigated and assigned unique designations (Table S1) [24]. The LGI-T4SS cluster consists of 24 genes, designated lgiRABC and lgiA-T (Figure 1 and Table S1) [24].

At the 5’ end of the cluster, the first four genes (lgiRABC) form a regulatory module unique to Legionella. The gene lgiR encodes domains that are homologous to those involved in the regulation of SOS-response genes in Escherichia coli [32] while lgiC encodes a protein containing a putative carbon storage regulator domain (CsrA) shown to play a role in the regulation of gene expression during certain growth stages of the organism [22,53]. These Legionella Vir Region (lgi) genes are so named because they were first found flanking the Legionella vir homologue (lvh), a Legionella T4ASS homologous to the Vir system in Agrobacterium tumefaciens. Copies of the lgi genes were also identified upstream of other T4ASSs, both P- and F-type, in Legionella [22,24]. The association of the lgiRABC genes with multiple T4SSs in Legionella suggests a role in coordinating the expression of the T4SS, and these genes were recently shown to regulate the excision of the genomic island encoding the T4ASS Trib-1 in strain Corby [20].

A continuous stretch of 20 genes (lgiA-T) is well conserved across all 14 LGI-T4SSs clusters (Figure 1 and Table S1). Thirteen of these genes are homologous to genes found in other previously characterised GI-T4SS such as those in Haemophilus influenzae (ICEHinI056), Pseudomonas aeruginosa (PAPI-1) and Salmonella bongori (ICESh1), as described in Table 2, and the gene order is largely conserved (Figure 2). The sequence similarity between the different GI-T4SSs is detectable only at the amino acid level, suggesting that these systems are separated by long evolutionary distances, as is shown from the translated nucleotide BLAST comparison in Figure 2. All thirteen genes were shown to be essential for conjugation of the associated mobile element in at least one of these other organisms [6,11,10]. Additionally, lgiP (psip) was recently shown to be necessary for the conjugation of the associated genomic island in L. pneumophila strain Corby [20]. The remaining seven lgi genes (lgiB, lgiC, lgiD, lgiE, lgiO, lgiP, lgiQ, and lgiT) did not have any significant similarity to other sequences in the public databases.

The 13 lgi genes that were homologous to those in other GI-T4SS, only nine (lgiA, lgiC, lgiD, lgiE, lgiN, lgiO, lgiP, lgiQ, and lgiT) shared some sequence similarity with genes encoding well-characterised T4SS subunits, namely PilE, TraG, TraW, TraB, PilC, TraU, PilT, TraG and TraD, respectively [6,11]. These nine subunits play important roles in the formation and stabilisation of the conjugal plasmids, as well as providing an energy source, via ATPases, for the assembly of the T4SS complex (Table 2). Only one subunit, VirB4/TraC, is ubiquitous in all T4SSs found to date [1,34].

LGI-T4SS clusters are conserved across multiple loci within hypervariable genomic islands

The LGI-T4SSs are all located on genomic islands, which we refer to henceforth as Legionella Genomic Islands (LGI). Flanking the LGI-T4SS clusters within each of the LGIs are variable genic regions that indicate multiple insertion, deletion and translocation events, typical of genomic islands and other mobile genetic elements (Figures S1 and S2). The LGIs are all found within hypervariable regions of the genome, adjacent to tRNA genes, which are typical recognition sites for site-specific recombinases such as integrases and transposases [55], suggesting that these regions are hotspots for the acquisition of horizontally acquired DNA. Indeed there are several direct repeats flanking the LGIs, which correspond to the last 37 to 48 bp at the 3’ end of the tRNA genes adjacent to the LGIs (Table 1, Figures S1 and S2). These repeats indicate that there have been multiple insertion events in these regions, as such repeats occur when a mobile element is inserted via site-specific recombination into a conserved chromosomal sequence (attB) that is also present on the mobile element (attP). The resulting insertion is bounded by hybrid insertion sequences attL and attR that appear as direct repeats of attB [56]. The direct repeats flanking the LGI were recently shown to correspond to attL (tRNA 3’ end) and attR (5’ end direct repeats) sites in strain Corby (see Figures S1 and S2), with each attR associated with separate mobile elements, each capable of excision and circularisation [20].

The members of LGI-1 are all found adjacent to a tRNA1Thr gene in a syntenic genomic location in all six L. pneumophila genomes studied (Table 1 and Figure S1). The GI-T4SSs on each of the six LGI-1s share 89–100% pairwise Average Nucleotide Identity (ANI) with each other, which is comparable to the 96–
99% ANI shared between the whole genomes of these strains (Tables S2 and S3).

In addition to LGI-1, the genomes of \textit{L. pneumophila} strains Paris, Corby and 130b also encode a second LGI (LGI-2) elsewhere in their genomes. LGI-2 in Paris (LppGI-2) and Corby (LpcGI-2) are found in syntenic positions, adjacent to the same tRNAMet gene, and their GI-T4SSs share 97% ANI. LGI-2 in strain 130b (LpwGI-2), is found in a different genomic location, adjacent to a tRNAArg gene, and its T4SS has only 85% ANI to those of LppGI-2 and LpcGI-2 (Table 1). LGI-2 in strain 130b (LpwGI-2), is found in a different genomic location, adjacent to a tRNAArg gene, and its T4SS has only 85% ANI to those of LppGI-2 and LpcGI-2 (Table 1). LpwGI-2 (Table S2). LpwGI-1 and LpwGI-2 are each located within scaffolds, with paired 454 reads confirming their genomic locations, in the draft genome of 130b.

Although we did not identify any LGI-T4SS clusters in the genome sequence of \textit{L. longbeachae} strain NSW150, the draft genome of \textit{L. longbeachae} D-4968 contains a single cluster, LlbGI, located on one of two main contigs that cover more than 60% of the genome. In addition, \textit{L. drancourtii} LLAP12 encodes four distinct clusters: LdrGI-a, LdrGI-b, LdrGI-c and LdrGI-d (Table 1). These four \textit{L. drancourtii} LGI-T4SS clusters are found on separate contigs that are between 43 and 59 kb in length [32].

The maximum ANI between any two of the \textit{L. drancourtii} clusters is...
below 80% (Table S2) and the sequences flanking the clusters were highly divergent, indicating that they are unlikely to have been misassembled. However, due to the fragmented nature of the *L. drancourtii* LLAP12 draft genome coupled with the high frequency of genomic shuffling evident in *Legionella* genomes, the exact genomic positions of the four *L. drancourtii* clusters is uncertain, Table 2.

Table 2. ICE core genes in ICE*Hin*1056, ICESb1 and PAPI-1 and corresponding LGI homologues.

LGI	ICE*Hin*1056 [19]	ICESb1 [11]	PAPI-1 [18]	Gene name	Putative function/Description
Replication					
p1056.01	Sb0003**	PA14_58910**	sso/parA	ATPase. Chromosome partitioning	
p1056.02	Sb0004**	PA14_58990**	dnaB	Helicase	
p1056.03	Sb0005**	PA14_59070**	parB	Nuclease	
p1056.04	Sb0009**	PA14_59090**			
p1056.05	Sb0011**	PA14_59100**			
p1056.06	Sb0012**	PA14_59130**			
p1056.07	-	PA14_59140**			
α	p1056.08	Sb0016	PA14_59150	ssb	Single-stranded DNA binding
β	p1056.11	Sb0013*	PA14_59180	topB	Topoisomerase
	p1056.12	Sb0014*	PA14_59400		
	p1056.14	-	-	radC	DNA repair
Conjugation (GI-T4SS)					
lgiA	p1056.31**	Sb0018**	PA14_59240**	pilL	Membrane bound lipoprotein
lgiC	p1056.32	Sb0040**	PA14_59650**	traG	
-	p1056.33*	Sb0041**	PA14_59660**	tral	
lgiD	p1056.34	Sb0042**	PA14_59670**	traW	
lgiT	p1056.35**	Sb0044**	PA14_59690**	traD/VirD4	ATPase. Coupling protein
lgiE	p1056.37	Sb0045**	PA14_59700**		
	p1056.38	Sb0046**	PA14_59870**		
		Sb0047**	PA14_59880**		
		Sb0048**	PA14_59890**		
lgiU	p1056.40	Sb0049**	PA14_59890**	dnas	
lgiK	p1056.41**	Sb0050**	PA14_59900**		
lgiL	p1056.42	Sb0051**	PA14_59910**		
lgiM	p1056.43**	Sb0052**	PA14_59920**	traB/virB10	Part of T4SS pore complex
lgiN	p1056.44	Sb0053**	PA14_59930**		
lgiQ	p1056.45**	Sb0054**	PA14_59940**	traC/virB4	ATPase. Energy for T4SS assembly
lgiO	p1056.46	Sb0055**	PA14_60020**	traG	Mating pore stabilization
lgiP	p1056.47	Sb0056	PA14_60010**	-	
lgiI	p1056.48	Sb0061**	PA14_60010**	pilT	
lgiT	p1056.49	Sb0062**	PA14_60020**	pilT	
lgiO	p1056.51**	Sb0059	PA14_60000**	pilT	
lgiP	p1056.52**	Sb0058**	PA14_59990**	traU	Mating pore stabilization
lgiI	p1056.53*	Sb0057**	PA14_59980**		
Integration					
p1056.62	Sb0117**	PA14_60130**	traL	Relaxase	
χ	p1056.63	Sb0118**	PA14_60140**	int	Integrase

* ssb is only present near LGI-1 clusters in *L. pneumophila* strains and LdrGI-c.
β topB is only present near LdrGI-c and LdrGI-d.
| x All LGIs have integrases unrelated to those in ICE*Hin*1056, ICESb1 and PAPI-1.
**Essential for conjugation.
* Non-essential but deficiency significantly reduces conjugation.
' Not required for conjugation.
doi:10.1371/journal.pone.0082221.t002
although we could ascertain that LdrGI-a, like LpwGI-2, is adjacent to a tRNA*Arg gene, and LdrGI-b and LlbGI are both associated with tRNA*Pro genes.

The LGI-T4SSs are largely conserved in gene order and composition between the different Legionella strains, however the GI-T4SS of L. longbeachae and two of the L. drancourtii LGI-T4SSs are missing parts of the usual lerABC regulatory operon at the 5'9 end of clusters (Figure 1). LlbGI is missing lerR, and although the other three genes, lerABC, were present, no other gene with a regulatory domain was found associated with this LGI-T4SS cluster. Instead of the lerABC operon, LdrGI-c and LdrGI-d both have two genes that share low sequence identity to lerA and lerC together with a gene homologous to the F-plasmid entry exclusion gene traT (Figure 1). At the 3'9 end of the GI-T4SSs on both LdrGI-c and LdrGI-d is a gene encoding topoisomerase (topB) and two copies of lerE, a gene that is also found 3' of the lsv T4ASS in L. pneumophila [24,30,31]. This peculiar arrangement of ler genes suggests that the T4SSs in LbgI, LdrGI-c and LdrGI-d may be regulated differently from the other LGI-T4SS clusters.

In addition to the ler gene rearrangements, lgi genes in two LGI-T4SS clusters were found to be disrupted and presumed to be pseudogenes (Figure 1). The lgiK gene in LpaGI-1 is truncated by a premature stop codon, and the lgiN gene in LdrGI-a contains a frameshift mutation, however this is within a homopolymeric tract and thus may have been caused by a pyrosequencing error based on the technology used to sequence this genome.

The 14 LGI-T4SSs form three distinct phylogenetic clades

To determine the relationships between the 14 LGI-T4SSs, a phylogenetic analysis was carried out using alignments of 15 genes that were conserved in all 14 clusters (lgiA, lgiB, lgiC, lgiD, lgiE, lgiF, lgiG, lgiH, lgiI, lgiJ, lgiL, lgiO, lgiP, lgiQ, lgiT). The four ler genes and five lgi genes not included in this analysis were genes that in some clusters were missing, disrupted, shorter than 400 bp, or less conserved (see Figure 1), resulting in poor alignments. A consensus network was constructed from the 15 individual maximum likelihood phylogenetic trees generated, which confirmed that the syntenic LGI-1 T4SS clusters form a very closely related group (Figure 3). Thirteen of the 15 genes supported the groupings of the LGI-T4SS clusters into three main clades, with the LGI-1s in the first, LdrGI-c and LdrGI-d in the second and the rest in the third clade (Figure 3). The most striking feature in this network representation is the high level of phylogenetic incongruence within the LGI-1 clade, which indicates that extensive recombination events have occurred between the LGI-1 T4SSs.

There is substantially less phylogenetic incongruence in clade three, with only two genes, lgiD and lgiT, showing evidence of disagreement about the placement of LbgI and LdrGIb. Despite the generally consistent phylogenetic signal of the genes in these clusters, however, the disparate genomic locations of the clusters suggests that this group of LGI-T4SSs have undergone transpositions, duplications, and/or undetected recombination events. Thus, the numbering system used in this study for the non-LGI-1 clusters is solely based on the number of clusters in each genome and does not denote orthology.
To investigate the underlying causes of the ambiguities in the phylogeny of the LGI-T4SS clusters, we performed recombination analyses on the concatenated 15 gene alignment used to build the phylogenetic network. Using a combination of six methods implemented in the RDP software package, we identified several recombination events that were likely to have occurred, based on agreement of at least two out of the six methods used. All of the large recombination events, larger than 500 bp in size, occurred only within the LGI-1 clade (Table S4, Figure S3), which explains the ambiguous topology of that clade in the phylogenetic network (Figure 3). Higher levels of recombination were found between more closely related LGI clusters, most likely due to the higher chances of homologous recombination occurring. Recombination between the major clades was not detected. *Legionella* has an exceptionally high level of genome flux which results in a *L. pneumophila* species tree that is notoriously difficult to resolve beyond the established close relationships between strains Lens and 130b, and that between Alcoy and Corby [20,24]. Nevertheless, these results suggest that the LGI-1 elements were present in the last common *L. pneumophila* ancestor and that the major LGI-T4SS clades are likely to have diverged before the last common ancestor of the *Legionella* strains in this study.

LdrGI-c and LdrGI-d form a lineage that is clearly divergent from the other LGI-T4SS clusters. These two divergent clusters in *L. drancourtii* shared only a maximum of 67% ANI with any of the other 12 clusters and were similarly divergent from each other (Table S2). This level of divergence is close to the whole genome divergence between *L. dracourtii*, *L. pneumophila* and *L. longbeachae* (72%–75% ANI, Table S3) suggesting that these two clusters may have diverged before the last common ancestor of these three *Legionella* species.

The LGI-T4SS represents a distinct and novel lineage of GI-T4SS

To determine the evolutionary relationship between the LGI-T4SS clusters and other T4SSs, a phylogenetic analysis was performed on VirB4/TraC, the only protein encoded in all lineages of T4SSs. Sequences of TraC (F plasmid), TrbE (IncP), VirB4 (*A. tumefaciens*) and TrbU (R64) were included in the analysis to represent the three main T4SS subgroups. GI-T4SS was represented by the VirB4/TraC homologue from ICE-*Hin*1056, PAPI-1, ICE*Sb*1, and pKLC102. Complete LGIN sequences from 13 LGI-T4SS clusters (all except LdrGI-a which had a truncated *lgIN* gene) were used as the VirB4/TraC homologue to represent the LGI-T4SSs.

The resulting phylogenetic tree (Figure 4) supports the previous grouping of the GI-T4SS clade as separate from the T4A and T4B systems [57]. Within the GI-T4SS clade, the LGI-T4SSs form a monophyletic group divergent from other GI-T4SSs. This separation of clades is supported by more than 99% of the bootstrap tests and was also replicated in extended phylogenies of GI-T4SS homologues across alpha, beta and gamma-Proteobacterium genomes (data not shown). This phylogenetic signal is consistent with the other observations presented in this study suggesting that the LGI-T4SS is indeed a novel and divergent lineage of the GI-T4SS.

Figure 3. Phylogenetic relationship between LGI-T4SS clusters. A consensus network tree showing the relationship between the 14 *Legionella* GI-T4SS clusters, constructed from the individual maximum likelihood trees of 15 conserved *lgI* genes. Branch labels indicate the number of trees that support each branch. Branch lengths show the number of substitutions per site, as indicated by the scale bar, and are averaged across the trees that contain that branch.

doi:10.1371/journal.pone.0082221.g003
The LGI-T4SS is under purifying selection pressure

The selection pressure acting on a horizontally acquired DNA fragment is determined by how it contributes to the fitness of the organism, or element, that acquires it. If the genes encoded by this DNA are beneficial, amino acid-changing mutations may accumulate in them more slowly than if they provide no selective advantage. Ultimately, dispensable genes may either be degraded or entirely deleted from the genome due to the effect of a deletional bias present in bacterial genomes [58]. The conservation of the LGI-T4SS cluster as a predominantly intact stretch of at least 20 genes would suggest that it is actively playing an important role in Legionella. To further confirm that these genes are being maintained by selection, rather than evolving neutrally, we ran selection analyses on alignments of the 15 conserved LGI-T4SS genes (described above), estimating the ratio of the rate of non-synonymous substitutions per non-synonymous site (dN) to the rate of synonymous substitutions per synonymous site (dS) for each gene. Genes that are evolving neutrally, suggesting that they are not beneficial to Legionella and may be degraded, are expected to have a dN/dS ratio of one or close to one and genes that are evolving under purifying selection, suggesting they are beneficial, should have a dN/dS ratio of significantly less than one [59].

Selection analyses were carried out despite the recombination events detected in the LGI-1 clade, as the presence of recombination may artefactually increase the dN/dS ratio making it less likely to reject the null hypothesis of neutral evolution, thus making the test more conservative [60].

First, we tested whether the dN/dS values for these genes were significantly different between the LGI-1 clade and the other LGI-T4SSs. It is reasonable to assume that the more closely related LGI-1 GI-T4SSs are orthologous, and they may thus all play a similar biological role, while the other LGI-T4SSs are paralogous and may have evolved a different function [61]. Therefore, we tested whether the T4SS genes are under stronger purifying selection in LGI-1 than in other LGIs. For each gene, the dN/dS values for the LGI-1 clade and the other LGI-T4SSs (LppGI-2, LpcGI-2, LpwGI-1, LppGI-1, LpaGI-1, LdrGI-d, LdrGI-c, LpgGI-1, LpcGI-1, LplGI-1, LpwGI-1, LppGI-1, LpaGI-1, LdrGI-d, LdrGI-c, LpgGI-1, LpcGI-1, LplGI-1, LpwGI-1, LppGI-1, LpaGI-1, LdrGI-d, LdrGI-c) were compared. LdrGI-c and LdrGI-d were not included in this analysis because they do not obviously cluster with either of the main clades and may be evolving under different constraints from both of them. For nine of the genes (lgiABCDEFGHI), dN/dS values were not significantly different between T4SSs from LGI-1 and non-LGI-1 clades. The remaining genes (lgiJLOPQR), however, had significantly lower dN/dS values in LGI-1 than in the other clades.

Figure 4. Phylogeny of GI-T4SS across representative Proteobacterial genomes. Maximum likelihood tree of LgiN/VirB4/TraC homologues showing the divergent Legionella GI-T4SS clade (red). Representatives from the SPI-7 family of ICE are highlighted in blue, with representatives of the T4ASS (A. tumefaciens plasmid Ti, E. coli F plasmid and IncP-alpha plasmid) and T4BSS (Plasmid R64) in black. Asterisks indicate branches with percentage support from 1000 bootstrap replicates above 80% (** >90%, * >80%).

doi:10.1371/journal.pone.0082221.g004
LGI-T4SSs \((p<0.01) \). The lower dN/dS of \(\text{lg} \text{gLOPQR} \) in LGI-1 may be indicative of stronger purifying selection acting on LGI-1 T4SSs. Alternatively, it could also mean that the more diverse non-LGI-1 clade has a larger range of dN/dS caused by weaker purifying selection acting on some of them. The absence of significant difference in dN/dS for \(\text{lg} \text{gABCEFGHI} \) may be due to gene length, as these genes are all shorter than 300 bp, while the \(\text{lg} \text{gLOPQR} \) genes, which show significant differences, are all longer. More sites in these longer genes give us more power to reject the hypothesis of a single dN/dS value between the two clades being tested. Nevertheless, all 15 genes in both clades have a dN/dS that is significantly less than 1 \((p<0.01) \) (Table S3).

Secondly, we tested specifically whether the presence of two LGI-T4SS clusters in a genome affected the selection acting on each version. In those genomes in which a second cluster (on LGI-2) was present in addition to the LGI-1 T4SS, we might expect the T4SS in either LGI-1 or LGI-2 to be under purifying selection and the other to be evolving neutrally if only one was required. To test this, we compared the dN/dS of LGI-1 T4SS genes to the dN/dS values of the second LGI-T4SSs in each genome (those in LpcGI-2, LppGI-2 and LpwGI-2). LGI-T4SSs from \(L. \) \text{drancourtii} LLAP12 were not tested as there were four clusters in total and only one cluster in \(L. \) \text{longbeachae} D-4968. We found that the T4SSs from LGI-1 and LGI-2 clades were evolving under similar purifying selection pressures, as the differences in dN/dS values between these two clades were not significant for 13 of the 15 genes tested; all 15 genes had dN/dS values that were significantly less than 1 \((p<0.01) \) (Table S3). These results suggest that all LGI-T4SS clusters in the genome play important roles, rather than being redundant.

The dN/dS values of all tested LGI-T4SS genes are significantly less than one, indicating that these genes are under purifying selection pressure. These values are close to those found in a previous study that measured the dN/dS of several core \(\text{Legionella} \) genes as well as a number of genes that were predicted to be of eukaryotic origin and thus important to the parasitic lifestyle of \(\text{Legionella} \) [62].

The LGI is not a typical ICE

Characterised GI-T4SSs have so far been exclusively associated with a family of ICEs that comprises a conserved, modular core sequence interspersed by highly variable cargo genes [57]. The conserved core sequence is made up of three distinct modules encoding replication, transfer and integration genes [6]. The transfer region in well-characterised ICEs is homologous to the LGI-T4SS cluster and encodes a GI-T4SS that represents the conjugative component of this mobile element. To investigate if the replication and integration modules were also found associated with the LGIs, we compared the LGIs to three well-characterised SPI-7 family ICEs, ICE\text{His}1056 (\(H. \) \text{influenzae}), PAPI-1 (\(P. \) \text{aeruginosa}) and ICE\text{Sh}1 (\(S. \) \text{bongori}) [6,11,18] which were found to encode similar GI-T4SSs (Figure 2). The integrases of the other characterised ICEs in this family share limited but significant sequence similarity to one another (25–30% amino acid identity) even though they recognise and integrate into different rRNA genes [ICE\text{Sh}1: \text{rRNA}_{16S}, PAPI-1: \text{rRNA}_{16S}, ICE\text{His}1056: \text{rRNA}_{16S}] [11,63,64]. Our analyses showed clearly that the replication and integration modules found in these well-characterised ICEs do not have homologues in the LGIs (Table 2).

Although the genes on the LGIs lack any similarity to the relaxase (\(\text{traD} \)) or integrase (\(\text{int} \)) which comprise the integration module in the characterised ICEs [11,65], we were able to identify unrelated putative integrase genes based on the presence of conserved integrase domains in CDSs adjacent to the insertion site of each of the LGIs, but no substitute for a relaxase could be identified, apart from a 174 bp fragment, present only in LppGI-2, matching the first 50 amino acids of the relaxase \(\text{TraA} \) found in the \(Lv \text{h} \) \text{island} of \(L. \) pneumophila Philadelphia 1.

An integrase gene was identified close to the putative insertion sites of each LGI-2 (Figures S2, Table S6) and it is possible that these integrase genes form at least part of an integration module. Supporting this hypothesis, this integrase gene in LpcGI-2 (LPC-1053) was recently shown to be required for the excision of LpcGI-2 in Corby [28]. Moreover, this integrase is also associated with six to seven other predicted genes conserved only in LGI-2s (Figure S2). This cluster includes genes that putatively encode two acetyl-transferases, a transcriptional regulator and a proline transport protein (Table S6). Among the LGI-1 islands, another unrelated putative integrase gene is also conserved adjacent to the \(\text{attR} \) (first repeat, see Figure S1). This integrase is also conserved alongside seven genes, which putatively code for two transcription regulators, a peptide deformylase and a proline transport protein (Table S6). This LGI-1 specific region is not found in any of the other LGIs. Finally, a tandem pair of putative integrases was also found between 1 to 17 Kb downstream from 13 of the 14 LGI clusters (Figures S1 and S2). The deletion of one of these integrases in strain Corby was shown to significantly increase the presence of the episomal form of the island [28]. However, the reason for this observation is as yet unknown.

Relaxase genes, also known as mobilisation genes (\(\text{moh} \)), are believed to be essential for the processing of the DNA fragment prior to and after conjugation. Relaxases nick the excised, circular, double-stranded DNA fragment at the origin of transfer (\(\text{oriT} \)) and then bind to it. The entire relaxase-DNA complex is then coupled to the T4SS by the coupling protein (\(\text{VirD4}/\text{TraD} \)) and is subsequently transferred into the recipient cell. Once in the recipient cell, the newly acquired DNA fragment is ligated by the relaxase [66]. Given the apparent absence of both an \(\text{oriT} \) and conserved relaxase associated with the LGIs, it is perhaps surprising that conjugation of the genomic island encoding LpcGI-2 was recently demonstrated in strain Corby [28]. However, it is possible that there are yet unidentified interactions between the LGI and relaxases and replication genes encoded elsewhere in the genome, as it has previously been shown that different T4SS encoded on the same genome are able to ‘share’ missing subunits [1,26,27]. Indeed, in \(V. \) \text{vulgatus}, an unrelated family of ICEs, the SXT/R391 family, was shown to mobilise and mediate conjugation of other genomic islands located elsewhere in the genome. Utilising the relaxase and conjugation machinery encoded by an SXT element, \(V. \) \text{vulgatus} genomic islands lacking their own native relaxase and conjugation system could excise and transfer conjugatively, but required a conserved relaxase recognition site (\(\text{oriT} \)) to be present [67]. However, these mobilised \(V. \) \text{vulgatus} genomic islands, unlike the LGIs, did not encode their own T4SS.

The replication module in the SPI-7 ICE family is made up of at least seven genes with some variation in gene content between different elements. Six of these highly conserved genes are similar to plasmid replication and maintenance genes (\(\text{para}, \text{dnn}, \text{parB}, \text{ssb}, \text{topB} \) and \(\text{radC} \)) while others are conserved hypothetical genes [7]. In ICE\text{Sh}1, the deletion of eight genes found within the replication module resulted in a significant reduction of conjugation frequencies (Table 2) [11]. In the LGIs, the only genes with any similarity to those found in the replication module were the genes encoding topoisomerase (\(\text{topB} \)) and the single stranded binding protein (\(\text{ssb} \)). The \(\text{ssb} \) genes were only found on LGI-1 in the \(L. \) pneumophila strains and LdrGI-c in \(L. \) \text{drancourtii}, while \(\text{topB} \) was only found on LdrGI-c and LdrGI-d. These two genes were not essential for the conjugation of this element in ICE\text{Sh}1 [11].
and their lack of conservation in all LGI clusters makes ssb and topB unlikely to be part of the missing replication module.

Manual annotation of the LGIs in the complete genomes identified a number of genes involved in DNA replication that were scattered across the region (Table S6). Two genes located between the tRNA gene and the LGI-1 T4SS cluster (lpa_01039 and lpp1040, lpl1004 and lpl1005, LPW_10611 and LPW_10621, lpa_01469 and lpa_01470), putatively encode UmuD and UmuC which together form the DNA polymerase V holoenzyme that is implicated in DNA replication during an SOS response as result of DNA damage [68]. The SOS response is known to induce the excision of other unrelated ICEs [69,70]. During this process DNA polymerase V also interacts with the single-stranded binding protein, which is putatively encoded by the ssb gene located 3.5 Kb downstream [71]. These two genes, umuD and umuC, however, were only present in four of the six LGI-1 regions. We also identified several putative helicases (lpl1068, lpl1073, lpa_01670, lpa_01676, LPC_2195, lpg1077, LDG_0893) and excisionases (lpa_01673, LPC_2192, lpg1081) although again, these are not consistently conserved across all LGIs.

Despite the apparent absence of a universally conserved replication module, the ability of LpcGII-2 to excise from the genome and transfer conjugatively suggests that this module is not required in Legionella, especially as no replication-associated genes were identified in LpcGII-2 (Table S6). The specific role that the replication region plays in GI-T4SS associated ICEs is still largely unknown, although multiple genes encoded in the replication module were shown to be essential for conjugative transfer of the element in ICE.Rs1 and ICE.Hin1056 [11,72]. In addition, unrelated ICEs such as ICE.Bs1 in Bacillus subtilis have been shown to use either self-encoded or bacterial host helicases for unwinding of the excised extrachromosomal DNA prior to both autonomous replication and conjugation [73,74].

Several putative cargo genes are encoded on the LGIs

BLAST analyses of the CDSs within the LGIs against the NCBI non-redundant sequence database indicated diverse origins of the genes encoded in the hypervariable regions flanking the LGI-T4SSs. Some CDSs had their closest match in the Uniprot database to genes from other phyla of bacteria including cyanobacteria and firmicutes. Other CDSs were related to those found in alpha and beta-proteobacteria but were not found in other gamma-proteobacteria. This observation is typical of horizontally acquired regions which are modular and mosaic as they are often derived from different mobile genetic elements [75]. Putative integrases and transposases are scattered throughout the LGIs (Figures S1 and S2) supporting the hypothesis that the genomic loci flanking the LGI-T4SS are the result of multiple insertion and deletion events, as is commonly found in ICEs [12]. Variable cargo regions, in some cases of considerable length, are usually found interspersed between the core transfer, replication and integration modules in ICEs, and they often encode factors that increase the fitness or virulence of the host bacterium e.g. the Vi-encoding operon in SPI-7 [11]. Therefore it is likely that the hypervariable regions in the LGIs represent the ICE cargo regions. Indeed there are a number of antibiotic resistance and virulence genes encoded within these genomic islands including five Dot/Icm effectors (LPC_2130, LPC_2128, lpp2417, lpp2418 and lpw_21901), as well as several genes encoding beta lactamase and aminoglycoside resistance (Table S6). Of note are a number of putative P-type ATPases and resistance/nodulation/division (RND) efflux systems, with up to five versions of each per LGI (Figures S1 and S2, Table S6). This was first identified as an ‘efflux island’ in the Philadelphia genome [31]. A great deal of divergence is seen between the different versions of the ATPase genes and RND operons (Figures S1 and S2), which suggests there may be distinct functions or target substrates for each of these transport systems. One of the efflux systems encoded on LpgGI-1 (lpg1024) has previously been shown to confer copper resistance, although substrates have not been identified for the others, and due to the absence of a signal sequence, it is difficult to determine the exact cation or substrate that could be translocated by the others [76]. RND efflux systems in Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae have been shown to be involved in antibiotic resistance and pathogenicity [77–79], and strong simultaneous up-regulation of these efflux genes during L. pneumophila infection has previously been reported [80]. Although a study found that the RND systems were not essential for the survival of L. pneumophila Philadelphia in amoeba and human macrophages [76], only four of the RND operons found near LppGI-1 were knocked out, leaving intact additional RND-type systems encoded elsewhere in the Philadelphia genome. Therefore the role of these putative efflux systems in L. pneumophila remains to be determined, but it is possible that they confer a fitness advantage to Legionella during infection.

Conclusions

Our results show that the LGI-T4SS is well conserved throughout the Legionella genus and belongs to a distinct and divergent lineage within the GI-T4SS clade, exhibiting features that are not consistent with this lineage such as the association with Legionella-specific regulatory genes. The presence of more than one LGI-T4SS in a single genome, each under purifying selection, indicates that these clusters play an active and important role in this organism. Therefore, despite the association with highly variable LGI regions and the significant level of divergence from known ICE, the LGI-T4SS clusters are likely to be functional and involved in horizontal gene transfer via conjugation. The LGI-T4SSs are each encoded on different genomic islands, which were likely acquired horizontally and integrated into the adjacent tRNA genes. The structure of the LGIs show significant similarity to characterised ICEs, including direct flanking repeats, a conjugation (GI-T4SS) module, putative integration module and highly variable cargo regions. Investigation of additional Legionella genomes that have been published recently, those of Legionella pneumophila strains LPE509, HL06041053, Lorraine, 570-CO-H, and Thunder Bay [22,81–83], concur with these results, as one or two LGI-T4SSs were identified per genome, each encoded on an ICE-like LGI (Table S7).

Our findings correspond with the fact that all GI-T4SSs characterised to date are associated with ICEs. However, no replication module or conserved replication genes were identified on the LGIs, and there was no significant sequence similarity with the integration modules usually closely associated with other GI-T4SS, supporting the atypical arrangement of the LGIs.

Despite the absence of these typical ICE modules, LpcGII-2 was recently experimentally demonstrated to be a functional ICE [28]. The similarity of the putative integration and conjugation modules between the different LGIs, together with the flanking repeats that represent potential attL and attR sites, indicate that the other LGIs may also be functional ICEs. Concordant with this, excision of LpgGI-1 was recently demonstrated, with increased copper resistance on excision [84]. The absence of typical ICE modules involved in the processing of DNA prior to conjugation suggests that there could be an atypical mechanism of preprocessing involved with the mobilisation and conjugation of the LGIs.
The LGI-T4SSs are likely to contribute to horizontal transmission in *Legionella*, including transfer of the many cargo genes carried on the LGIs, which include several antibiotic resistance and virulence genes, and as such are key players in the evolution of *Legionella*. Therefore, future investigations of virulence and the roles of the many T4SSs encoded in this opportunistic pathogen should take into account this unusual member of the GI-T4SS family.

Supporting Information

Figure S1 Comparison of LGI-1 genomic islands. Pairwise comparisons of the genomic regions encoding the LGI-1 clusters from the genomes of *L. pneumophila* strains Philadelphia, Corby, Alcoy, 130b, Lens and Paris (from top to bottom). The grey bars indicate BLASTn hits between two adjacent sequences, shaded according to the percentage nucleotide sequence identity, as shown in the key. CDSs are represented as arrows coloured according to putative functional category as defined in the key. The scale bar represents 10 Kb.

Figure S2 Comparison of the LGI-2 genomic islands. Pairwise comparisons of the second LGIs from the genomes of *L. pneumophila* strains Corby (LpcGI-2), Paris (LppGI-2), and 130b (LpwGI-2), and *L. drancourti* (LdrGI-a). The grey bars indicate BLASTn hits between two adjacent sequences, shaded according to the percentage nucleotide sequence identity, as shown in the key. CDSs are represented as arrows coloured according to putative functional category as defined in the key. The scale bar represents 10 Kb.

Figure S3 Graphical representation of recombination events in LGI-T4SSs. Recombination events, detected using RDP, in the concatenated sequence of 15 conserved lgi genes. The position of each gene in the alignment is displayed above and below the figure with letters corresponding to lgi gene names. The total alignment length is 12 Kb.

Table S1 Annotation of LGI-T4SS genes.

Table S2 Average nucleotide identity (ANI) between LGI-T4SS clusters (%).

Table S3 Whole Genome ANI (%) between the nine *Legionella* genomes analysed in this study.

Table S4 Recombination events detected by the RDP package supported by at least two methods and larger than 500 bp.

Table S5 Comparisons of estimated dN/dS values for different sets of LGI-T4SS clusters.

Table S6 Annotation of genes encoded within ten LGIs (as shown in Figures S1 and S2).

Table S7 Distribution of GI-T4SSs and associated LGIs in new *Legionella* genomes published since commencement of this study.

Author Contributions

Conceived and designed the experiments: BAW MW SAB NKP. Performed the experiments: BAW MW NKP. Analyzed the data: BAW MW SAB NKP. Wrote the paper: BAW MW NKP.

References

1. Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73: 775–805.
2. Juhas M, Crook DW, Hood DW (2008) Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 10: 2377–2386.
3. Christie PJ, Attakuri K, Krishnamoorthy V, Jakubowski S, Cascades E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59: 451–485.
4. Lawley TD, Klimke WA, Gubbins MJ, Frost LS (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224: 1–15.
5. Nagai H, Kubori T (2011) Type IVB secretion systems of *Salmonella* and other gram-negative bacteria. From Microbiol 2: 136.
6. Juhas M, Crook DW, Dimopoulou ID, Lunter G, Harding RM, et al. (2007) Novel type IV secretion system involved in propagation of genomic islands. J Bacteriol 189: 761–771.
7. Mohol-Zain Z, Turner SL, Ceredo-Tarraga AM, Lilley AK, Inzana TJ, et al. (2004) Transferable antibiotic resistance elements in *Haemophilus influenzae* share a common evolutionary origin with a diverse family of syntenic genomic islands. J Bacteriol 186: 8114–8122.
8. Baker S, Pickard D, Whitehead S, Farrar J, Douglas G (2000) Mobilization of the *IncQ* plasmid R390B with a chromosomal conjugation system in *Salmonella enterica serovar Typhimurium*. J Bacteriol 182: 4084–4087.
9. Gaillard M, Valleys T, Vorholter FJ, Minna M, Werlen C, et al. (2006) The *clc* element of *Pseudomonas* sp. strain B13, a genomic island with various catabolic properties. J Bacteriol 188: 1999–2013.
10. Klockgether J, Wurlemann D, Reva O, Tummler B (2007) Diversity of the abundant pKLC102/PAGI-2 family of genomic islands in *Pseudomonas aeruginosa*. J Bacteriol 189: 2443–2459.
11. Seth-Smith HM, Fookes MC, Okoro CK, Baker S, Harris SR, et al. (2012) The SPI-7 family of integrative and conjugative elements within Enterobacteriaceae: structure, diversity and mobility. J Bacteriol 193: 1494–1504.
12. Wozniak RA, Waldor MK (2010) Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8: 552–563.
13. Burre L, Pavlović D, Decaris B, Gueden G (2002) Conjugative transposons: the tip of the iceberg. Mol Microbiol 46: 601–610.
14. Pickard D, Wain J, Baker S, Line A, Chohan S, et al. (2003) Composition, acquisition, and distribution of the V1 exopolysaccharide-encoding *Salmonella enterica* pathogenicity island SPI-2. J Bacteriol 185: 5055–5065.
15. Klockgether J, Reva O, Larbik Q, Tummler B (2004) Sequence analysis of the mobile genome island pKLC1102 of *Pseudomonas aeruginosa*. C. J Bacteriol 186: 510–514.
16. Battle SE, Meyer F, Rello J, Kung VL, Hausser AR (2008) Hybrid pathogenicity island PAGI-3 contributes to the highly virulent phenotype of *Pseudomonas aeruginosa* isolate in mammals. J Bacteriol 190: 7130–7140.
17. Harrison EM, Carter ME, Luck S, Ou HY, He X, et al. (2010) Pathogenicity islands PAPI-1 and PAPI-2 contribute individually and synergistically to the virulence of *Pseudomonas aeruginosa* strain PA14. Infect Immun 78: 1437–1446.
18. Carter MQ, Chen J, Lory S (2010) The *Pseudomonas aeruginosa* pathogenicity island PAPI-1 is transferred via a novel type IV pilus. J Bacteriol 192: 3249–3258.
19. Juhas M, Power PM, Harding RM, Ferguson DJ, Dimopoulou ID, et al. (2007) Sequence and functional analyses of *Haemophilus* spp. genomic islands. Genome Biol 8: R237.
20. D’Auria G, Jimenez-Hernandez N, Perio-Bondia F, Moyar A, Latorre A (2010) *Legionella pneumophila* pangenome reveals strain-specific virulence factors. BMC Genomics 11: 181.
21. O’Connor TJ, Adepoju Y, Boyd D, Iserberg RR (2011) Minimization of the *Legionella pneumophila* genome reveals chromosomal regions involved in host range expansion. Proc Natl Acad Sci U S A 108: 14733–14740.
22. Gomez-Valero L, Rusniok C, Jarraud S, Vacherie B, Rouy Z, et al. (2011) Extensive recombination events and horizontal gene transfer shaped the *Legionella pneumophila* genome. BMC Genomics 12: 536.
23. Glockner G, Albert-Weissenberger G, Weinmann F, Jacob S, Schmieder E, et al. (2008) Identification and characterization of a new conjugation/type IV secretion system (h/vb/40) of *Legionella pneumophila* Corby localized on two mobile genomic islands. Int J Med Microbiol 298: 411–429.
24. Schroeder GN, Petry NK, Moumier A, Harding CR, Vogrin AJ, et al. (2010) *Legionella pneumophila* strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Tcm secretion system effector proteins. J Bacteriol 192: 6001–6016.
25. Donea-Joerger A, Akiem M, Ginevra C, Cazalet C, Kay E, et al. (2006)
 Growth-phase-dependent mobility of the bba-encoding region in Legionella
 pneumophila strain Paris. Microbiology 152: 3561–3568.

26. Bandopadhayay P, Liu S, Gabbai CB, Venturini Z, Steinman HM (2007)
 Environmental minerals and the Ltv type IV secretion system contribute to
 virulence-related phenotypes of Legionella pneumophila. Infect Immun 75:
 723–735.

27. Segal G, Russo JJ, Shuman HA (1999) Relationships between a new type IV
 secretion system and the sec/ure virus-like system of Legionella pneumophila.
 Mol Microbiol 34: 799–809.

28. Launert M, Schneider E, Herrmann V, Heuner K (2015) Regulation, intein-
 dependent excision, and horizontal transfer of genomic islands in Legionella
 pneumophila. J Bacteriol 197: 1563–1577.

29. Guiraudon V, Gomez-Valero L, Rouxel C, Lomma M, Dervins-Ravallat D, et al.
 (2010) Analysis of the Legionellaceae genome and transcription uncovers
 unique strategies to cause Legionnaires’ disease. PLoS Genet 6: e1000831.

30. Cazalet C, Rouxel C, Bruggemann H, Zideane N, Magninger A, et al. (2004)
 Evidence in the Legionella pneumophila genome for exploitation of host cell
 functions and high genome plasticity. Nat Genet 36: 1163–1173.

31. Chien M, Morozov I, Shi S, Sheng H, Chen J, et al. (2004) The genomic
 sequence of the accidental pathogen Legionella pneumophila. Science 305:
 1966–1972.

32. Gimenez G, Bertelli C, Moliner C, Robert G, Rasoul D, et al. (2011) Insight
 into cross-talk between intra-amoebal pathogens. BMC Genomics 12: 542.

33. Kozak NA, Buss M, Lucas CE, Mace M, Gweid D, et al. (2010) Virulence factors
 encoded by large maps identified on the basis of the genome sequence
 analysis of clinical isolate D-4906. J Bacteriol 192: 1030–1044.

34. Smith TF, Waterman MS (1981) Identification of common molecular
 subsequences. J Mol Biol 147: 195–197.

35. Giralt E, Siltanscheiden V, Pillai S, Harte N, Mulder N, et al. (2005)
 InterProScan: protein domains identifier. Nucleic Acids Res 33: W116–W120.

36. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, et al. (2011)
 CDD: a Conserved Domain Database for the functional annotation of proteins.
 Nucleic Acids Res 39: D225–229.

37. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in
 proteins and predicting their subcellular localization. Trends Biochem Sci 24:
 34–36.

38. Bendtzen JD, Nielsen H, von Heijne G, Brunak S (2006) Improved prediction of
 signal peptides. SignalP 3.0. J Mol Biol 340: 783–795.

39. Song Hansan EL, von Heijne G, Krogh A (1998) A hidden Markov model for
 predicting transmembrane helices in protein sequences. Proc Int Conf Intell
 Syst Mol Biol 6: 175–182.

40. Rutherford K, Parkhill J, Crosk J, Hornsll T, Rice P, et al. (2000) Artennis
 sequence visualization and annotation. Bioinformatics 16: 944–945.

41. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. (2009)
 BLAST+: architecture and applications. BMC Bioinformatics 10: 421.

42. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, et al.
 (2009) The draft genome sequence of the human pathogen Legionella
 pneumophila hfq and the SXT/R391 family trigger the excision and drive the
 mobilization of a new class of Viru genomic islands. Mol Microbiol 78:
 576–588.

43. Rahk JS, Hawser LE, Broning DJ (2011) Echechica coli Y family DNA
 polymerases. Front Biosci (Landmark Ed) 16: 3164–3169.

44. Shida K, Lehman AP, Grossman AD (2005) SOS response promotes horizontal
 dissemination of antibiotic resistance genes. Nature 427: 72–74.

45. Auchtung JM, Lee CA, Monson RE, Lehman AP, Grossman AD (2005)
 Regulation of a Bacillus subtilis mobile genetic element by intercellular
 signaling and the global DNA damage response. Proc Natl Acad Sci U S A 102:
 12559–12564.

46. Guglielmini J, Quintanl L, Garcia-Ramirez MP, de la Cruz F, Roche EP (2011)
 The repertoire of ICE in prokaryotes underscores the unity, diversity, and
 ubiquity of conjugation. PLoS Genet 7: e1002222.

47. Weissmann BA, Prendergast JG, Lozan AH, Loths BJ (2011) Sequencing
 illustrates the transcriptional response of Legionella pneumophila during infection
 and identifies seventy novel small non-coding RNAs. PLoS One 6: e17570.

48. Ma J, He Y, Hu B, Luo ZQ (2013) Genome sequence of an environmental
 isolate of the bacterium Legionella pneumophila. Genome Announcements
 1: e003190.

49. Poole K, Krebes K, McNally C, Neshat S (1993) Multiple antibiotic resistance in
 Haemophilus influenzae. Antimicrob Agents Chemother 37: 1427–1430.

50. Trigui H, Dudyk P, Sum J, Shuman HA, Faucher SP (2013) Analysis of the
 genome of Legionella pneumophila strains that colonize the infant mouse
 small intestine. Infect Immun 81: 4817–4830.

51. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol
 Biol Evol 24: 1586–1591.

52. Achtung JM, Lee CA, Monson RE, Lehman AP, Grossman AD (2005)
 Autonomous plasmid-like replication of a conjugative transposon. Mol Microbiol 75:
 268–279.

53. Oshorn AM, Bolmer D (2002) When phage, plasmids, and transposons collide:
 genomic islands, and conjugative- and mobilizable-transposons as a mosaic
 evolution. Plasmid 48: 202–212.

54. Kim EH, Charpentier X, Torres-Urquidy O, McEvoy MM, Rensing C (2009)
 Identification of another module involved in the horizontal transfer of the
 Haemophilus influenzae genomic island ICR356. Plasmid 70: 277–283.

55. Lu, HJ, Zhu J (2010) Analysis of the 3' ends of rRNA as the cause of insertion
 sites of foreign DNA in Prochlorococcus. J Zhejiang Univ Sci B 11: 708–718.

56. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of
cancer. Curr Microbiol 45: 641–647.