Development of microsatellite markers for an endangered fern in the Ryukyus, *Plagiogyria koidzumii* (Plagiogyriaceae)

Kazuki Kurita¹, Daisuke Kyogoku¹,², Atsushi Abe³, Masatsugu Yokota⁴ and Yuji Isagi¹*

¹Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyō-ku, Kyoto, Kyoto 606-8502, Japan
²Present affiliation: Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai, Miyagi 980-8578, Japan
³Botanical Laboratory, Okinawa Churashima Research Center, 888 Ishikawa, Motobu, Okinawa 905-0206, Japan
⁴Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan

(Received 28 November 2018, accepted 5 February 2019; J-STAGE Advance published date: 10 April 2019)

We developed 10 microsatellite markers for *Plagiogyria koidzumii*, a critically endangered fern species found on Iriomotejima Island in the Ryukyu Archipelago, Japan and in Taiwan. These markers showed polymorphism among 65 wild individuals from Iriomotejima Island; the number of alleles per locus was 2–14, and mean observed and expected heterozygosity in the largest population were 0.276 and 0.277, respectively. A genetic structure analysis using these markers indicated clear genetic differentiation even within the narrow geographic range (ca. 10 × 8 km) on Iriomotejima Island. These microsatellite markers should be valuable for measuring genetic diversity and comparing genetic structure within and between populations.

Key words: genetic structure, Iriomotejima Island, management unit, national endangered species, Ryukyu Archipelago

Plagiogyria koidzumii Tagawa is an evergreen fern species of Plagiogyriaceae, which was originally described from Iriomotejima Island in the Ryukyu Archipelago, Japan (Tagawa, 1933) and is now recorded also from Taiwan (DeVol, 1972). Owing to its restricted habitats and scarcity in Japan, this species is now classified as endangered in the Red List of Japan (https://www.env.go.jp/press/files/jp/109278.pdf) and prescribed as a National Endangered Species by the Act on Conservation of Endangered Species of Wild Fauna and Flora (https://www.env.go.jp/nature/kisho/domestic/list.html). The situation of *P. koidzumii* is also serious in Taiwan, where it is listed as critically endangered in the Red List of Taiwan Plants, 2017.

Within Iriomotejima Island (289 km²), several populations of *P. koidzumii* occur in separate locations. The critical situation for this species indicates the need to assess its genetic diversity and population structure in order to establish management units under an appropriate and efficient conservation strategy. However, there are currently no useful genetic markers to obtain fine-scale genetic information on this species. Therefore, we here developed and characterized 10 polymorphic microsatellite primers for *P. koidzumii*, and further assessed the population structure within Iriomotejima Island using samples from representative localities.

We used leaf tissue of an individual from Iriomotejima Island. Genomic DNA was extracted by a modified version of the CTAB method of Milligan (1992). A DNA fragment library was constructed using the Ion Xpress Plus Fragment Library Kit (Thermo Fisher Scientific, Waltham, MA, USA), amplified using the Ion PGM Template OT2 400 Kit (Thermo Fisher Scientific), and then sequenced using the Ion PGM Sequencing 400 Kit (Thermo Fisher Scientific) with an Ion 318 Chip v2 (Thermo Fisher Scientific) and an Ion Torrent PGM System (Thermo Fisher Scientific).

We identified microsatellite loci including more than eight dinucleotide or seven trinucleotide repeats from sequence data obtained, using MSATCOMMANDER 0.8.2 (Faircloth, 2008). Non-redundant target sequences

Edited by Yoshihiko Tsumura
* Corresponding author. E-mail: isagiy@gmail.com
DOI: http://doi.org/10.1266/ggs.18-00056
were selected by a tree-based clustering method using ClustalX 2.1 (Larkin et al., 2007) and TreeExplorer 2.12 (provided by K. Tamura), and primers for PCR amplification were designed using Primer3 4.0.0 with the default settings (Rozen and Skaletsky, 2000). We identified a total of 626 microsatellite loci and designed 40 primer sets.

We conducted amplification tests for primers designed using fluorescently labeled M13 tag sequences (FAM [5'-CACGACGTTGTAACACGAC-3'], NED [5'-CTATAGGGCAAGCTGTTG-3'], PET [5'-CGGAGAGC-GAGAGGTTG-3']; Boutin-Ganache et al., 2001) with the Multiplex PCR Kit (Qiagen, Hilden, Germany). PCR was carried out in a 5-μl reaction volume containing 5–20 ng of extracted DNA, 2.5 μl of Multiplex PCR Master Mix, 0.01 μM forward tailed primer, 0.2 μM reverse primer, and 0.1 μM fluorescently labeled M13 primer. The PCR conditions were as follows: 15 min at 95 °C; 35 cycles of 94 °C for 30 s, 57 °C for 90 s, and 72 °C for 90 s; followed by 10 min at 72 °C. Fragment sizes were determined using an ABI Prism 3130 Genetic Analyzer and GeneMapper software (Applied Biosystems, Foster City, CA, USA). Finally, we genotyped 65 individuals from seven locations following the protocol described above.

Observed (H₀) and expected (Hₑ) heterozygosity and inbreeding coefficient (Fᵢₑ) were calculated using GenAlEx 6.503 (Peakall and Smouse, 2006, 2012), and deviation from Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) were tested using Genepop 4.7.0 (Rousset, 2008).

We used STRUCTURE 2.3.4 (Pritchard et al., 2000) to infer the number of genetically subdivided clusters (K) without predefined populations and to assign individuals to such clusters. We assumed an admixture model with correlated allele frequencies and performed 10 independent runs for each value of K (ranging from 1 to 10) with 5 × 10⁵ Markov chain Monte Carlo iterations after a burn-in period of 1 × 10⁴ iterations. The value of K with the highest average “log probability of data” was accepted and that of the membership coefficients for each individual (Q) was selected with the highest “log probability of data” of 10 runs in the accepted K value. The results of the STRUCTURE analysis were visualized using DISTRUCT (Rosenberg, 2004) after aligning the cluster membership coefficients using CLUMPP (Jakobsson and Rosenberg, 2007).

Of the 40 primer sets tested, 10 sets showed successful amplification and polymorphism for 65 P. koidzumii

Locus (Accession no.)	Primer sequence (5′–3′)	Repeat motif	Fluorescent label	Size range (bp)	A	Population 6 (n = 33)		
						H₀	Hₑ	Fᵢₑ
Pko003 (LC433746)	F: AAAGCCCGTATAGAGGTCG (TG)₁₂	FAM	199–201	2	0.000	0.000	NA	
	R: GGGGTATACAGTTTTGGGC	(AT)₉	FAM	218–228	4	0.455	0.471	0.034
Pko004 (LC433747)	F: GATGCGTCTCTGATGACG	(AG)₁₂	FAM	218–234	0.845	0.443	−0.094	
	R: GCAAGGCTTGGTAACACCGACCA	(GA)₉	FAM	247–253	3	0.000	0.000	NA
Pko008 (LC433749)	F: CTGTGGACGGATGACAGGAACCAG	(AC)₁₇	FAM	288–316	11	0.394	0.374	−0.053
	R: GCGACATGTCGTGCTGAGT	(AC)₃	FAM	247–253	3	0.000	0.000	NA
Pko022 (LC433750)	F: CAAGGTACGCTGTCTGTC	(GA)₉	NED	212–214	2	0.091	0.087	−0.048
	R: GAATTGACGATGCATGTCCA	(GA)₉	NED	265–296	14	0.606	0.729	0.169
Pko025 (LC433752)	F: CTGTGGTGGTCCATATTTGGGC	(TG)₁₉	NED	265–296	14	0.606	0.729	0.169
	R: GCAACCATCGATGAGAAGT	(CA)₉	PET	188–194	4	0.000	0.000	NA
Pko030 (LC433753)	F: CCACTTCGTTGGGTTTATAC	(CTT)₉	NED	175–187	0.976	0.638	−0.093	
	R: GTGCAGACTCTCTTGTGGT	(CTT)₉	NED	175–187	0.976	0.638	−0.093	
Pko035 (LC433754)	F: AGCGAGTCGCGAACATCCAGCG	(CA)₉	PET	188–194	4	0.000	0.000	NA
	R: CATCTTGTAGCTCAGCTGGTGA	(GA)₁₈	PET	227–255	0.030	0.030	−0.015	
Pko040 (LC433755)	F: TCCATTGGATGACAGGCCAAGATC	(GA)₁₈	PET	227–255	0.030	0.030	−0.015	
	R: GCACCTTCGAGTCTAGCTAGAAGA	(GA)₁₈	PET	227–255	0.030	0.030	−0.015	

A, number of alleles for all populations; H₀, observed heterozygosity; Hₑ, expected heterozygosity, Fᵢₑ, inbreeding coefficient; NA, not available due to monomorphic locus.
Microsatellite markers for *Plagiogyria koidzumii*

individuals (Table 1). The number of alleles varied from two (Pko003 and Pko022) to 14 (Pko025) for all individuals. The mean H_0 and H_E in the largest population (i.e., population 6; $n = 33$) were 0.276 and 0.277, respectively, and F_{IS} values ranged from -0.094 (Pko007) to 0.169 (Pko025). Three loci showed significant deviation from HWE: Pko003, Pko007 and Pko022 ($P < 0.05$ after sequential Bonferroni correction; Rice, 1989). Significant LD was observed at 18 pairs of loci: Pko004 vs. Pko008, Pko009, Pko030 and Pko035; Pko007 vs. Pko008, Pko025 vs. Pko022.

![Fig. 1](image-url)

Fig. 1. Results of STRUCTURE analysis ($K = 6$) for the genetic structure of *Plagiogyria koidzumii* on Iriomotejima Island. (A) Plot of mean likelihood $L(K)$ and variance per K value from STRUCTURE HARVESTER (Earl and vonHoldt, 2012). (B) Bar plot showing each individual from the seven locations and clusters by a single vertical line and a different color, respectively. Numbers below the bar plot refer to location codes and the numbers of samples are in parentheses. (C) Relative location within the island with pie charts showing the proportions of cluster assignment from the STRUCTURE results. Numbers and colors correspond to those in (B). Detailed geographic information is not shown to prevent illegal digging. (D) Neighbor-joining tree showing divergence among clusters based on the net nucleotide distances along with its scale bar. The numbers near the colored circles show the mean values of F_{ST}, indicating the degree of divergence by genetic drift from the ancestral population.
and Pko040; Pko008 vs. Pko009 and Pko035; Pko009 vs. Pko030, Pko035 and Pko040; Pko030 vs. Pko035 and Pko040; and Pko035 vs. Pko040 (P < 0.05 after sequential Bonferroni correction). These results are probably due to remarkable population subdivision (see below), because no significant deviation from HWE or significant LD was detected in population 6 at all loci (6 loci and 21 pairs of loci, respectively) that could be tested.

The STRUCTURE analysis showed that the most likely number of clusters was six (Fig. 1A). Each cluster was represented by a single or several nearby populations with little admixture (Fig. 1B, 1C). The mean values of F_{ST} for each cluster ranged from 0.13 to 0.56, indicating relatively large divergence from the ancestral population (Fig. 1D). These results suggest that *P. koidzumii* is genetically differentiated even within its restricted distribution range (ca. 10 × 8 km) on Iriomotejima Island and individual conservation efforts for each cluster are recommended. Further investigation of *P. koidzumii* from the entire distribution range including Taiwan will be required to assess the total genetic diversity maintained within the species, genetic differentiation between regions, and appropriate management units.

We would like to thank M. Kashima for sampling on Iriomotejima Island and M. Yamasaki for graphical drawing. This research was supported by the Environment Research and Technology Development Fund (4-1605) of the Environmental Restoration and Conservation Agency of Japan.

REFERENCES

Boutin-Ganache, I., Raposo, M., Raymond, M., and Doschepper, C. F. (2001) M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. BioTechniques 31, 24–26.

DeVol, C. E. (1972) The Plagiogyria of Taiwan. Taiwania 17, 277–292.

Earl, D. A., and vonHoldt, B. M. (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361.

Editorial Committee of the Red List of Taiwan Plants (2017) The Red List of Vascular Plants of Taiwan, 2017. Endemic Species Research Institute, Forestry Bureau, Council of Agriculture, Executive Yuan and Taiwan Society of Plant Systematics, Nantou, Taiwan.

Faircloth, B. C. (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 8, 92–94.

Jakobsson, M., and Rosenberg, N. A. (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806.

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.

Milligan, B. (1992) Plant DNA isolation. In: Molecular Genetic Analysis of Populations: a Practical Approach. (ed.: Hoelzel, A. R.), pp. 59–88. IRL Press, Oxford, UK.

Peakall, R., and Smouse, P. E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295.

Peakall, R., and Smouse, P. E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539.

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

Rice, W. R. (1989) Analyzing tables of statistical tests. Evolution 43, 223–225.

Rosenberg, N. A. (2004) DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138.

Rousset, F. (2008) GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106.

Rozen, S., and Skaletsky, H. (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.

Tagawa, M. (1933) Spicilegium pteridographiae Asiae orientalis V. Acta Phytotax. Geobot. 2, 189–205.