Anti-Inflammatory Activity of Sanjie Zhentong Capsule Assessed By Network Pharmacology Analysis of Adenomyosis Treatment

Li Du1
De-Hui Du2
Biao Chen2
Yue Ding3
Tong Zhang1,4
Wei Xiao1

1Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China; 2Shanghai Key Laboratory of Trustworthy Computing and Software Engineering Institute, East China Normal University, Shanghai, People's Republic of China; 3Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China; 4Jiangsu Kanion Pharmaceutical Co., Ltd, Jiangsu, People's Republic of China

Background: Sanjie Zhentong capsule (SZC) offers excellent effect in treating adenomyosis (AM), which is a common and difficult gynecological disease in the clinic. However, the systematic analysis of its mechanism has not been carried out yet and further studies are needed to reveal the role of SZC.

Methods: A systematic network pharmacology analysis was conducted by integrating construction of SZC compound database and AM target database, prediction of potential active compounds and targets by molecular docking combined with compound-target prediction graph (CTPG), protein-protein interaction (PPI) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Then, the anti-inflammation experiments in vitro were performed by investigating SZC and the representative compounds regulating nitric oxide (NO), interleukin-6 (IL-6), and interleukin-10 (IL-10).

Results: Our findings show that SZC mainly treated AM by stimulating 28 core targets through 30 key potential active compounds, and affecting 4 crucial pathways. The treatment was associated with inflammation reaction, hormone regulation, cell adhesion, proliferation, and angiogenesis. Additionally, SZC achieved the anti-inflammatory activity by the cooperation of the compounds through inhibiting NO and IL-6, both promoting and inhibiting IL-10.

Conclusion: This study investigated the anti-inflammatory activity of SZC based on a systematic analysis of SZC remedying AM, which was revealed to be one of the essential mechanisms. These findings will provide valuable guidance for further research of the SZC treatment of AM, and help improve the comprehension of SZC pharmacological basis as well as AM pathogenesis.

Keywords: Sanjie Zhentong capsule, adenomyosis, network pharmacology, molecular docking, compound-target prediction graph, anti-inflammation

Introduction
Adenomyosis (AM), a common difficult gynecological disease, occurs in 6–10% women of childbearing age, the rate increases to 60% in infertile women. With the discriminative pathological characteristics of benign infiltration and growth of the endometrium into the myometrium, the ectopic endometrium of the AM patients changes the menstrual cycle (includes bleeding, shedding, and invasion) and results in the proliferation of muscle cells, a thickened myometrium, and enlarged uterine volume. Although the pathogenesis is still unclear, uterus basement membrane invagination caused by endometrial tissue damage and repair, and embryonic stem cell residue and differentiation, are the two existing theories of AM at present. The
former considered that AM is mainly associated with high hormone levels,3 tissue damage, and repair,4 the latter believed that AM is caused by an embryonic remnant or adult stem cell differentiation.5 It has also been revealed that once AM is formed, the critical factors for its evolution and development are invasion and migration.6 On the other hand, from the perspective of traditional Chinese medicine (TCM), AM belongs to the same category as “dysmenorrhea” and “various syndromes before and after menstruation”, with lesions in the uterus and Chong ren, stagnant blood, qi, and body fluid, and dampness accumulated by phlegm as the pathogenesis.7 Since hormones and nonsteroidal anti-inflammatory drugs are generally applied in the treatment of AM, which put a heavy load on patients due to the high cost, high recurrence rate, and severe side effects, the application of TCM is gradually showing its unique advantages. Definitive curative effects have been achieved through TCM therapies, for instance, patients with AM treated with Xuanyu Tongjing decoction achieved a recovery rate of 90.9\%, the treatment improving dysmenorrhea symptoms, relieving pain, and causing few adverse reactions.8 The total effective rate reached 96.8\% when the patients had been treated with Jiawei Siwu decoction, and this treatment exhibiting a significant efficacy difference compared with that provided by a chemical medicine group.9

Sanjie Zhentong capsule (SZC) is a traditionally prescribed as Chinese medicine that is made by the original powder of four natural drugs: Longxuejie, Sanqi, Zhebeimu, and Yiyiren. It has been used for secondary dysmenorrhea, irregular menstruation, pelvic mass and infertility caused by endometriosis (phlegm and blood stasis mixed with qi stagnation syndrome) in the clinic. SZC is beneficial in treating ovarian cysts,10 reducing the development of endometriosis11 and achieving superior inhibition of the focused growth of endometriosis in rats.12 In addition, SZC has also been used in the clinical application of AM. Researchers have found that SZC could dramatically reduce the operation rate of AM by improving the pregnancy rate and clinical symptoms in AM patients who experience infertility,13 and by treating dysmenorrhea caused by AM.14 It has also been presented that SZC treatment of AM might be related to the significant decrease of CA125, TNF-α, and PGF-2α in the serum.15 Nevertheless, the complex pathogenesis of AM, as well as the multiplex mechanism of SZC remain unclear, the principles and mechanisms by which SZC is effective for treating AM are needed to be uncovered.

In recent years, increasing attention has been paid on the holistic philosophy of TCM, the mode of drug discovery design has shifted from single-target to network-target and multiple-component-therapeutics with a systematic view.16 With the updates of bioinformatics and computer technology, network pharmacology has been developed rapidly to become a credible modern approach for predicting the potential active compounds of TCM and available targets of disease, and exploring mechanisms. For example, Shi has proposed a systematic network pharmacology approach, identified 29 compounds acting on 16 pathways (regulated by 32 targets), and revealed the blood enriching mechanism of Danggui buxue decoction.17 Yang applied network pharmacology to investigate the anti-metastasis mechanism of Oldenlandia Diffusa in breast cancer and found that 12 compounds and 85 targets were associated with the treatment.18 However, the systematic analysis of SZC treatment of AM has not yet been carried out. Herein, we conducted a network pharmacological analysis of SZC treatment of AM by proposing an integrated approach. Furthermore, experiments in vitro were performed to observe the anti-inflammation activity of SZC. The workflow is shown in Supplementary Figure S1.

Materials and Methods

SZC Compound Database Construction

We applied Web crawler technology to automatically pick up compound information from the TCMSP database (http://lsp.nwu.edu.cn/tcmspsearch.php), and then stored it in the SZC compound database. Longxuejie is not in the TCM databases, wide-scale text mining of PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) and CNKI (http://www.cnki.net/) databases was performed. The 3D structure files with SDF format of the compounds were crawled and downloaded from the NCBI compound database according to their retrieved names and PubChem identifiers from the database of chemicals (https://pubchem.ncbi.nlm.nih.gov/). Besides, we used the selenium crawler framework, an automated testing framework that is ideal for crawling dynamic web pages, making it easy to crawl data quickly and precisely on objective sites. Throughout the process, we adopted python language to design crawlers which help realize automatically acquiring and recognizing information of compound data.
Target Database Construction of AM
To prepare the protein information for molecular docking, we acquired information of targets from the NCBI gene database by searching the name of disease “adenomyosis” and stored it into the AM target database. Then, corresponding protein information was searched from UniProt (https://www.uniprot.org/) and stored in the AM target database using the web crawler technology earlier described. Notably, when performing protein screening in UniProt, proteins of homo species with a lower resolution were selected.

Prediction of Potentially Active Compounds and Targets
To predict the potential active compounds and targets, we adopted molecular docking which has been widely used to describe the strength of binding interactions between molecules. The prediction process consists of two phases. First, System Dock Web Site (http://systemsdock.unit.oist.jp/iddp/home), which is a very popular web server in network pharmacology-based prediction, was linked to perform the molecular docking process with the help of automatic link docking algorithms. We have implemented the algorithms to implement the prediction. Generally, compound-target pairs with the score ≥ 4.25 are considered to have particular binding activity. The score ≥ 5.0 indicates a greater binding activity and score ≥ 7.0 indicates a stronger binding interaction between compound and target. Second, a Compound-Target Prediction Graph (CTPG) is proposed to model the predicting of the potential active compounds. The targets was built based on a directed graph with weighted edges, which manifests the cohesion of the network and illustrates the cohesion degree of the elements with the clustering coefficient. In $CTPG = (V, E, W)$, V denotes a finite set of vertexes, which represents the compounds or targets. E denotes the directed edge including the output edge and the input edge between compounds and targets. W denotes the total score of a particular compound or target. After calculating the W value and the number of targets linked to a compound as well as the number of compounds linked to a target, we selected the compound or target with superior W value and a bigger linked number as the potentially active one. Therefore, the CTPG was effective to explain the degree of strength that they contribute to the mechanism by analyzing the distribution of compounds and targets. The details of adopting CTPG can be found in our experiments.

Protein-Protein Interaction (PPI) Analysis
The interaction among proteins of the potential active targets was analyzed furtherly. STRING database (https://STRING-db.org/) was adopted to analyze the PPI. The protein data of potential targets was imported into STRING, the organism was set as homo sapiens, and then the result of PPI was visualized with Cytoscape v3.7.1.

Go and KEGG Enrichment Analysis
To understand the enrichment of the acquired potential target proteins and differential genes in biological functions and pathological pathways, cellular localization, GO annotation analysis and the KEGG pathway enrichment analysis of the achieved targets were performed. The terms with P-value < 0.05 were screened for the main functional annotation and significant pathways clustering. The less correlated ones were removed. ClueGO and CluePedia plugins of Cytoscape v3.7.1 were utilized in the GO enrichment analysis and KEGG pathway enrichment analysis.

Network Construction and Analysis
To intuitively understand the mechanisms of SZC treatment on AM, both the compound-target network and target-pathway network were constructed. The graphs of the networks were generated and visualized using Cytoscape v3.7.1. The formation of the compound-target network was based on the potential active compounds and the corresponding targets, obtained by docking and CTPG analysis. The target-pathway network was built by connecting targets to the signaling pathways. In the network graphs, nodes represent compounds, targets, or signaling pathways, and edges indicate the interactions of compound-target or target-pathway. The degree of a node was determined by the number of edges connected with it.

Anti-Inflammatory Activity of SZC in vitro
Reagents
Ginsenoside Rg1 (HPLC ≥ 98%), ginsenoside Rb1 (HPLC ≥ 98%), notoginsenoside R1 (HPLC ≥ 98%), ginsenoside Rd (HPLC ≥ 98%), resveratrol (HPLC ≥ 98%), pterostilbene (HPLC ≥ 98%), 7,4′-dihydroxyflavone (HPLC ≥ 98%), loureirin A (HPLC ≥ 98%), loureirin B (HPLC ≥ 98%) and peiminine (HPLC ≥ 98%) were obtained from the Standardization Research Center of TCM (Shanghai,
China). The concentration of DMSO was < 0.1% in this study. SZC was obtained from Kanion Pharmaceutical Co., Ltd. (Jiangsu, China). The compounds were stable under the conditions used in the study. All chemical structures are shown in Supplementary Figure S2. Cell Counting Kit-8 (CCK-8) was obtained from Beyotime (Shanghai, China), fetal bovine serum (FBS), dulbecco’s modified Eagle’s medium (DMEM) and penicillin/streptomycin were obtained from Gibco Life Technologies (Waltham, MA, USA), lipopolysaccharide (LPS), sulfanilamide and N-1-naphthyl ethylenediamine hydrochloride were obtained from Sigma-Aldrich LLC (Darmstadt, Germany).

Cell Culture
RAW264.7 cells (purchased from the Chinese Academy of Sciences, Shanghai, China) were cultured in DMEM containing 10% FBS and 1% penicillin/streptomycin at 37°C in the cell incubator with a humid atmosphere containing 5% CO₂.

Cell Viability Assay
Cell viability test was taken using CCK-8 assay after treatment with the compounds of SZC. In brief, RAW264.7 cells in a logarithmic phase were seeded in a 96-well plate at a density of 1 × 10⁴ cells in the absence or presence of 24 h. After aspirating the medium, the cells were incubated with 10% CCK-8 for 1 h and ELISA (MD, USA) was applied to read OD value at 450 nm.

Measurement of Nitric Oxide
Cells were seeded in a 96-well plate at a density of 5 × 10⁴ cells and incubated as above for 24 h, 0.01 μg/mL LPS was added after the cells were incubated with a gradient concentration of SZC for 30 min. To determine the concentration of nitrite in the culture media after 24 h, Griess reagent (1% sulfanilamide, 0.1% N-1-naphthyl ethylenediamine hydrochloride) and supernatant at each treatment condition were mixed with the same volume and OD value was read using ELISA reader at 540 nm.

Cytokine Beads Array Assay
Cells were seeded and treated with SZC and LPS according to the same procedure described above. Supernatant was collected and stored at −80°C until analyzed. Cytokines were measured using the Cytometric Bead Array (CBA) kit (BD Biosciences, CA) according to the manufacturer’s protocol. Samples were incubated with capture beads and phycoerythrin detection reagent for 2 h, including standard and test ones, washed with wash buffer and then analyzed using the FACSCalibur flow cytometer with BD CBA software.

Statistical Analysis
All results were expressed as means (± SD). Statistical analysis was performed by Graphpad Prism 7.0, using the one-way analysis of variance (ANOVA) test, followed by Dunnett’s multiple comparison post hoc test. P < 0.05 was considered to be statistically significant.

Results
Potential Active Compounds and Targets of SZC
With the help of selenium and python, the automatic data mining and docking platform linking were realized; combined docking with the compound-target prediction graph (CTPG), active compounds and targets were identified and classified according to their different binding activities. As a result, 224 compounds and 106 targets were stored in the SZC database and target database, respectively. After docking, 105 candidate molecules with docking score above 4.25 (in which, 95 molecules had a docking score above 5 and 38 molecules had a docking score above 7) were screened as compounds with binding activity. We display four compound-protein pairs with a docking score above 7 in Figure 1. The CTPG exhibited the contribution degree of the compounds and targets with a docking score above 4.25 for SZC treating AM. As there was a sharp decline when the total weighted scores came down to 200, 78 compounds with docking scores above 4.25 and total weighted scores above 200 that displayed a concentrated distribution were taken for the potential active components of SZC in treating AM. We show the distribution of active compounds in Figure 2A. Additionally, 42 proteins with docking scores above 4.25 and a total weighted score above 400 were screened as the potential targets of AM treated by SZC. We show the distribution of potential targets in Figure 2B. The data of docking and distribution are listed in Supplementary Table S1–S2, respectively.

The Interaction of Proteins
The 42 potential targets of AM related to SZC obtained above were introduced into the STRING database, as shown in Figure 3. The network involved a total of 42 nodes and 259 edges, in which, neurogenic locus notch homolog protein 1 (NOTCH1), cyclin-D1 (CCND1), estrogen receptor (ESR1), C-C motif chemokine ligand 2
(CCL2), prostaglandin G/H synthase 2 (PTGS2) and matrix metalloproteinase 2/9 (MMP2/9) displayed the biggest size and the darkest color, which interacted with the other targets strongly and predominated the remedy for AM.

GO Annotation and KEGG Enrichment Analysis

The results of the gene ontology biological process (GOBP) annotation analysis revealed that the potential targets we acquired are closely involved in diverse
biological functions and process concentrated on inflammation, hormones, adhesion, proliferation, and angiogenesis, which are intensely related to the pathogenesis of AM. The top 20 that significantly enriched GOBP terms (P < 0.05) are listed in Figure 4.

Network Construction and Analysis
Compound-Target Network Construction and Analysis
After the CTPG prediction, 30 key potential compounds and 28 targets were screened, showing strong binding activity and major contribution in the group with the docking score above 7, the compound total weighted score above 200 and the target total weighted score above 400. The network of key compounds with targets that play the most contributory role in SZC for treating AM is displayed in Figure 5, there were 12 compounds completely from Sanqi; 7 compounds completely from Zhebeimu; 6 compounds completely from Yiyiren; 3 compounds completely from Longxuejie, while, 1 compound from both Sanqi and Yiyiren; 1 compound from Longxuejie, Zhebeimu, and Yiyiren. Besides, ginsenoside Rh2 (from Sanqi), peiminine (from Zhebeimu), trans-feruloylcampesterol (from Yiyiren) and dracaenogenins A (from Longxuejie), interacted with 27, 27, 23 and 17 targets, respectively; for targets, estrogen receptor (ESR) interacted with 52 compounds, progesterone receptor (PGR) with 28 compounds, PTGS2 with 26 compounds and Nitric oxide synthase 3 (NOS3) with 25 compounds. It significantly indicated the multi-component and multi-target characteristic of SZC in the treatment of AM. Detailed information on the key potential compounds and targets is listed in Tables 1 and 2.

Target-Pathway Network Construction and Analysis
Pathways of AM treated by SZC were enriched in KEGG, excluding the less relevant ones, 41 pathways (P < 0.05) directly related to AM were obtained, and classified into five main regulation modules, including inflammation reaction, hormone regulation, cell adhesion, proliferation,
and angiogenesis. The target-pathway network graph is presented in Figure 6 including 81 nodes (5 modules, 35 targets, 41 pathways) and 367 edges. We further emphasized on the most representative pathways (endocrine resistance, the PI3K-Akt signaling pathway, focal adhesion, and the NF-κB signaling pathway) and merged them into a confluence map that the PI3K-Akt signaling pathway and the NF-κB signaling pathway intersected at TLR4; endocrine resistance, the PI3K-Akt signaling pathway, and focal adhesion crossed at mTOR; and CCND1 is the common target protein in the four pathways, as shown in Figure 7. The data of Go terms, pathways and function modules is listed in Supplementary Table S3-S4.

Anti-Inflammatory Activity of SZC in vitro

Since the inflammatory regulation of SZC was identified to be one of the essential regulation modules in treating AM, we examined the anti–inflammatory activity of SZC as well as ten active compounds of SZC with less cytotoxicity that had been quantified in the previous study. The cytotoxicity test showed that resveratrol, pterostilbene and 7,4′-dihydroxyflavone were cytotoxic to LPS-treated RAW264.7 cells at a concentration exceeding 20 μM, while other compounds were safe at concentration even higher than 100 μM. Then, we set the concentration of pterostilbene and 7,4′-dihydroxyflavone at 20 μM, lourerin A, lourerin B, notoginsenoside R1, ginsenoside Rg1, ginsenoside Rb1, ginsenoside Rd, peiminine at 50 μM, dexamethasone (DXM) at 1 μM, and SZC at 50 μg/mL as the test concentrations for the next experiments.

After being treated by the selected compounds at certain concentrations, the cell viability was not inhibited compared with the untreated group, which indicated that the compounds at the concentrations were all noncytotoxic to the LPS-treated RAW264.7 cells. The result of the cell viability is presented in Figure 8A.

The NO Synthesis Inhibition of SZC

As shown in Figure 8B, pterostilbene and SZC exhibited significantly stronger inhibition of NO than DXM (P < 0.001); resveratrol and ginsenoside Rd inhibited NO with no significant difference versus DXM, lourerin A and lourerin B exhibited weaker inhibition of NO with a significant difference versus DXM (P < 0.05); while 7,4′-dihydroxyflavone, notoginsenoside R1, ginsenoside Rg1, ginsenoside Rb1, and peiminine exhibited significantly
weaker inhibition of NO than DXM (P < 0.001), of which, notoginsenoside R1 got the lowest inhibition rate.

The Cytokine Regulation of SZC
The results shown in Figure 9A suggested that SZC inhibited IL-6 with no significant difference versus DXM and the compounds exhibited different strength, pterostilbene, 7,4’-dihydroxyflavone, and ginsenoside Rd inhibited IL-6 significantly stronger than DXM (P < 0.01), of which, pterostilbene exhibited the strongest inhibition; notoginsenoside R1, ginsenoside Rg1, and ginsenoside Rb1 exhibited a significantly weaker inhibition than DXM (P < 0.05) but were still more effective than resveratrol, loureirin A, loureirin B, and peiminine.

SZC promoted the production of IL-10, but the compounds regulated IL-10 in two opposite directions. As shown in Figure 9B, resveratrol, pterostilbene, 7,4’-dihydroxyflavone, loureirin A, loureirin B, and peiminine promoted the production of IL-10, while notoginsenoside R1, ginsenoside Rg1, ginsenoside Rb1, and ginsenoside Rd
discouraged the production of IL-10. SZC exhibited the most extremely significant promotion of IL-10 versus LPS (P < 0.001), followed by resveratrol, peiminine, and pterostilbene; nevertheless, notoginsenoside R1, ginsenoside Rg1, and ginsenoside Rd inhibited IL-10 with no significant difference from DXM. The raw array data of cell viability, NO, IL-6 and IL-10 is listed in Supplementary Table S5.

Discussion
Active Compounds of SZC in Treating AM
SZC is known to be composed of four TCMs, each medicine contains numerous compounds while the resin medicine Longxuejie could not be searched from any of the existing TCM databases, the information of absorption, distribution, metabolism, and excretion (ADME) is insufficient, therefore 3D molecular structure docking was applied to completely screening of active compounds from the SZC compound database. It is worth noting that our finding of potentially active compounds were following the previous results, for instance, ginsenoside Rh2 has been proved to be active in preventing the growth of human ovarian cancer cells in vitro, inhibiting the proliferation of MCF-7 cells through down-regulation of the expression level of cyclin D, and inhibiting angiogenesis in prostate cancer cells by decreasing VEGF and CNNM1. Elsewhere, peiminine has been reported to be a potential component that exhibited the ability of anti-inflammation. Further study has identified that

Table 1 The 30 Key Potential Active Compounds of SZC in Treating AM

PubChem CID	Compound	Drug
3083151	Ziebeimine	Zhebeimu
131900	Verticine	Zhebeimu
443023	Syringaresinol	Zhebeimu
65727	Solatubin	Zhebeimu
222284	Sitosterol	Zhebeimu/ Yiyiren/ Sanqi
161294	Peimisine	Zhebeimu
167691	Peimine	Zhebeimu
6918328	OSI-2040	Zhebeimu
13786591	Trans-feruloylcampesterol	Yiyiren
5280794	Stigmasterol	Yiyiren/Sanqi
9548595	Sitosterol α1	Yiyiren
12305182	Isoarborinol	Yiyiren
91472	Friedelin	Yiyiren
444679	Ergosterol	Yiyiren
173183	Campesterol	Yiyiren
5742590	Sitogluide	Sanqi
5280804	Quercetin	Sanqi
11213350	Protopanoxadiol	Sanqi
93484	Panaxytriol	Sanqi
5283280	Panaxdol	Sanqi
73599	Panaxatriol	Sanqi
10494	Oleanolic acid	Sanqi
119307	Ginsenoside Rh2	Sanqi
9852086	Ginsenoside F2	Sanqi
9809542	Ginsenoside F1	Sanqi
9852086	Ginsenoside CK	Sanqi
395120	Diop	Sanqi
101389811	Dracaenogenins A	Longxuejie
44259661	4'-methoxy -3',7-dihydroxyflavone	Longxuejie
637579	Glycosides	Longxuejie

Table 2 Information of 28 Core Potential Targets in SZC Treatment of AM

UniProt CID	Protein Name	Gene Name
P06401	Progesterone receptor	PGR
P46531	Neurogenic locus notch homolog protein 1	NOTCH1
Q92731	Estrogen receptor β	ESR2
P37231	Peroxisome proliferator-activated receptor gamma	PPARG
P04798	Cytochrome P450 1A1	CYP1A1
O00622	Protein CYR61	CYR61
P35354	Prostaglandin G/H synthase 2	PTGS2
Q13464	Rho-associated protein kinase 1	ROCK1
P29474	Nitric oxide synthase, endothelial	NOS3
P05093	Steroid 17α-hydroxylase/17,20	CYP17A1
P42345	Serine/threonine-protein kinase mTOR	mTOR
P04629	High-affinity nerve growth factor receptor	NTRK1
P21964	Catechol O-methyltransferase	COMT
P09488	Glutathione S-transferase Mu 1	GSTM1
P14780	Matrix metalloproteinase-9	MMP9
O05863	Zinc finger protein SNAI1	SNAI1
P03372	Estrogen receptor	ESR1
P24385	G1/S-specific cyclin-D1	CCND1
P08254	Stromelysin-1	MMP3
P08253	72 kDa type IV collagenase	MMP2
P09237	Matrix	MMP7
P09356	Interstitial collagenase	MMP1
O15392	Baculoviral IAP repeat-containing protein 5	BIRC5
P06400	Retinoblastoma-associated protein	RB1
O96013	Serine/threonine-protein kinase PAK 4	PAK4
O95256	Interleukin-18 receptor accessory protein	IL1RAP
P08138	Tumor necrosis factor receptor	NGFR
O00206	Toll-like receptor 4	TLR4
peiminine regulated AKT/NF-κB p65, ERK1/2, and p38 signaling pathways in treating inflammatory mastitis induced by LPS in mice. It has also been found that peiminine inhibited the proliferation of colorectal cancer cells by regulating the PI3K/Akt/mTOR pathway and oxidative stress. Besides, estrogenic activities of 7,4'-dihydroxyflavone were discovered to be related to the properties of its structure. Stigmasterol can be found in three herbs of SZC exhibited diverse bioactivities in estrogenic effect, inflammation, anti-proliferation, and angiogenesis. For instance, oxidation products of stigmasterol interfered with the female sex hormone 17β-estradiol in human breast and endometrium cells. Stigmasterol itself decreased inflammation by modulating the MAPK/NF-κB ROCK1 pathway, combined stigmasterols achieved more obvious anti-proliferation in Caco-2 cells than a single stigmasterol, and reduced TNF-α and VEGF-2 signaling by affecting phosphorylated Src, Akt, PCL, and FAK. It can be inferred that our approach is reliable and the screened active compounds act synergistically in the treatment of AM.

Potential Targets in SZC Treatment of AM
The multi-target therapeutic characteristics of TCM have become increasingly valued in revealing its mechanism, this could be expected to highlight the synergistic effects of TCM with the help of network techniques. From the enrichment of potential targets, it can be concluded that SZC mainly achieved the therapeutic efficacy to AM through regulating hormone regulation (ESR and PGR), inflammation reaction (PTGS2, NOS3, TLR4, and IL6R) and cell adhesion (Rho-associated coiled-coil containing protein kinase 1 [ROCK1], MMP), affecting cell proliferation (NOTCH1, peroxisome-proliferator activated receptor gamma [PPARG], snail family transcriptional repressor 1 [SNAL1]), and angiogenesis (cysteine-rich angiogenic inducer 61 [CYR61]).

Specifically, PTGS2 (COX-2) plays a multifunctional role and has a close connection with various diseases involving inflammation, immunization, cancer, and reproduction. For AM, it was explained that NF-κB mediated PTGS2 and VEGF expression in endometrial stromal cells derived from the tissue of AM patients. Further study of gene polymorphism revealed that those who carried two A alleles were more likely suffer from AM, Samodelkin has explained it to be a genetic variation of G to A at the −1195 locus in the promoter region of the PTGS2 gene that increases the risk of AM. ROCK1 was demonstrated to play a major role in the progression of various types of cancer. Most significantly, the expression level was positively correlated with MMP9, which was associated with invasion and...
metastasis, and had become the key point of adhesion. Also, the overexpression of ROCK1 was proved to take part in dysmenorrhea and menstrual process in AM. As one of the single-pass transmembrane receptor protein family members, NOTCH1 was thought to play a critical role in the epithelial-mesenchymal transition affecting the proliferation of endometrial cells in the pathogenesis of AM for a higher expression of NOTCH1 in the proliferative phase. CYR61 has been identified to be one of the targets of the anti-angiogenic histone deacetylase 5 and was associated with a broad range of pathological processes such as impaired angiogenesis, fibrosis, and cancer on account of its ability to bind different combinations of co-receptors. The higher expression of CYR61 in ectopic endometrium than in eutopic endometrium might be involved in the pathogenesis of AM.

Pathways in SZC Treatment of AM
Close connection and intricate crosstalk were revealed by mapping the four pathways. It can be found that the PI3K-Akt signaling pathway might be the major pathway as it involves the most predicted targets and the other three pathways. The PI3K-Akt signaling pathway is well known to play crucial roles in various cellular processes including proliferation, invasion, metastasis, angiogenesis, and apoptosis which are associated with inflammation regulation. Activation of the PI3K-Akt-eNOS signaling pathway helps to regulate angiogenesis through mediating cell proliferation and migration and leads to NO level and

Figure 7 Confluence map of representative pathways. The white rectangles represent targets on the AM pathway, the orange rectangles represent overlapping targets of active compounds between pathways, and the blue rectangles represent targets of active compounds in SZC.
eNOS activity regulation.42 It has been demonstrated that PI3K-Akt is essential in decreasing inflammatory cytokines induced with LPS (IL-6, TNF-\(\alpha\), and IL-10),43,44 accompanied by a decrease in cell proliferation and migration.45 Additionally, the PI3K-Akt-mTOR (mammalian target of rapamycin) signaling pathway regulates cellular processes through the co-regulated targets with different functions. For example, cytoskeletal changes are associated with PI3K-AKT-mTOR signaling mediated alterations in focal adhesion kinase (FAK). Activated mTORC1 initiates pro-metastatic actin cytoskeleton remodeling by activating ROCK.46 Moreover, it has been validated that the expression of phosphorylated mTOR was significantly higher in the ectopic endometrial

Figure 8 (A) Viability of LPS stimulated RAW264.7 cells after being treated by active compounds of SZC and (B) inhibition of synthesis of nitric oxide by active compounds of SZC at concentrations of 20 \(\mu\)M (resveratrol, pterostilbene, 7.4-dihydroxyflavone), 50 \(\mu\)M (loureirin A, loureirin B, notoginsenoside R1, ginsenoside Rg1, ginsenoside Rb1, ginsenoside Rd, and peimine), 50 \(\mu\)g/mL (SZC), and 1 \(\mu\)M (DXM) as positive control. Data were obtained from triplicate independent experiments and are presented as means (\(\pm\) SD). *\(P<0.05\), **\(P<0.01\), ***\(P<0.001\).

Figure 9 (A) Inhibition of releasing IL-6 by active compounds of SZC and (B) production of IL-10 after being treated by active compounds of SZC at concentrations of 20 \(\mu\)M (resveratrol, pterostilbene, 7.4-dihydroxyflavone), 50 \(\mu\)M (loureirin A, loureirin B, notoginsenoside R1, ginsenoside Rg1, ginsenoside Rb1, ginsenoside Rd, and peimine), 50 \(\mu\)g/mL (SZC), and 1 \(\mu\)M (DXM) as positive control. Data were obtained from triplicate independent experiments and presented as means (\(\pm\) SD). *\(P<0.05\), **\(P<0.01\), ***\(P<0.001\) versus DXM, #\(P<0.05\), ##\(P<0.01\), ###\(P<0.001\) versus LPS.
that in the eutopic endometria of AM patients, indicated that modulating the PI3K-Akt-mTOR signaling pathway to regulate inflammation might provide a promising therapeutic approach for AM.47

As for the NF-\(\kappa\)B signaling pathway, it is the canonical pathway broadly involved in regulating various physiological activities including immunity, inflammation, cell survival, and cell proliferation. The NF-\(\kappa\)B protein can be stimulated by a variety of agents like cytokines, chemokines, microbial and viral products, and DNA damage. The genes regulated by NF-\(\kappa\)B are highly associated with many other signaling pathways, and the outcome of NF-\(\kappa\)B followed the diverse inductions of cells and special regulations of its target genes.48 For example, NF-\(\kappa\)B signaling can be deregulated by microbial products and genetic alterations in NF-\(\kappa\)B and other signaling pathway components in many human diseases, including cancers and chronic inflammation.49 In inflammatory responses, NF-\(\kappa\)B plays an essential role in modulating the expression of pro-inflammatory cytokines. It was reported that the TLR4-mediated inflammatory response induced by LPS could be suppressed through the inhibition of iNOS and COX-2 expression and the decrease of NO and pro-inflammatory cytokines (including IL-1\(\beta\) and IL-6) by inhibiting the Akt-NF-\(\kappa\)B pathway.50 Besides, the NF-\(\kappa\)B signaling pathway was examined to explain how the anti-inflammatory effect was processed by reducing the production of NO, the expression of iNOS and COX-2, and pro-inflammatory cytokines (including TNF-\(\alpha\), IL-1\(\beta\), IL-6, and MCP-1).51 It was also revealed that the anti-inflammatory activity could be exerted through the NF-\(\kappa\)B and PI3K/Akt pathways by influencing IL-10, IL-6, and TNF-\(\alpha\) release, regulating iNOS, COX-2, NF-\(\kappa\)B, Akt, and p-Akt expression.52 Most of all, NF-\(\kappa\)B plays a crucial role in the NF-\(\kappa\)B signaling pathway, which was strongly suggested to be the potential target in the treatment of AM, at least in terms of relieving dysmenorrhea and menorrhagia. Not only does it regulate COX-2 but also the genes and their receptors encoding pro-inflammatory cytokines and chemokines, the expression of which has been reported to be related to inflammation in AM.53-55

Focal adhesion refers to the specialized structures formed at the cell-extracellular level, which are mediated by membrane receptors, actin-cytoskeleton, protein kinases, and phosphatases, playing an essential role in important biological processes including cell motility and proliferation. It was found focal adhesion took part in epithelial-mesenchymal transition associated with the pathogenesis of AM by regulating FAK, and in a laboratory investigation, results suggested the process might be associated with the PI3K-Akt pathway.56

Besides, the research revealed that secreted phosphoprotein 1 (SPP1) was the key protein expressed in specific phenotypes with different levels.57 Furthermore, the abnormal expression of SPP1 might cause infertility in some patients with AM.58

Endocrine resistance is regarded as pathogenesis of hormone-dependent diseases. This pathway can be activated by an estrogen signaling pathway to express ER and is closely related to the expression of growth factors, especially the growth factors on the PI3K-Akt-mTOR pathway. It has been proved that upregulating growth factor receptor pathways might help cells escape estrogen or ER dependence through an alternative mechanism.59 Furthermore, experiments on the inhibition of the apoptotic effects of estrogen stimulation on ER\(^{+}\) cells suggested that a combined blockade of ER and PI3K might be the most effective.60 On the other hand, MMP-2 and MMP-9 mediated by EGFR are crucial for modulating invasion and metastasis because the regulation occurs through promoting PI3K.61 Additionally, Miller has discussed that activation of the Cyclin D-associated pathway could promote endocrine resistance, and treatment with the inhibitors could abrogate the proliferation of endocrine-resistant cells.62

The Anti-Inflammatory Activity of SZC in vitro

SZC exhibited the anti-inflammatory activity by the cooperation of multi-compound through inhibiting the release of NO and IL-6, and promoting the release of IL-10 in vitro. The compounds contributed differently to the SZC anti-inflammatory activity of SZC, for instance, the flavonoids (resveratrol, pterostilbene, 7,4'-dihydroxyflavone, loureirin A, loureirin B) and the alkaloid (peiminine) exhibited the same trend in regulating NO, IL-6 and IL-10 regulation with SZC. While the saponins (notoginsenoside R1, ginsenoside Rg1, ginsenoside Rb1, ginsenoside Rd) exhibited the same trend in regulating NO, IL-6 and IL-10 regulation with SZC. The saponins (notoginsenoside R1, ginsenoside Rg1, ginsenoside Rb1, ginsenoside Rd) exhibited the same trend in NO, IL-6, but the opposite trend with IL-10 versus SZC, eventually the IL-10 release promotion of flavonoids outweighed the inhibition of the saponins. As the anti-inflammatory cytokine, the production of IL-10 counteracts the expression of IL-6, which is the pro-inflammatory cytokine during inflammation.53 Besides, the mechanism of the inflammatory response caused by overactivation of macrophages involves phenotypic changes of M1/M2-type macrophages, the pro-inflammatory cytokines such as IL-6, TNF-\(\alpha\), MCP-1, iNOS are produced by M1-type macrophages, and
the anti–inflammatory cytokine including IL-4, IL-10, TGF-β1 are produced by M2-type macrophages. Our results revealed that both SZC and compounds could inhibit IL-6 production, while the flavonoids, alkaloid, and SZC promoted IL-10 production. It can be inferred that SZC performed the anti–inflammatory activity by inducing the M1 pro-inflammatory phenotype to polarize to the M2 anti–inflammatory phenotype, and that might be contributed by the flavonoids and alkaloid of SZC. However, the M2 activation might be restrained by saponins downregulating the expression of M2 markers, such as CD206, IL-10, and YM-1 during the inflammation. As the saponins of SZC was found to reduce IL-10 production in our study, we deduced that the activation of macrophages toward M1 and M2 phenotype might coexist during the anti–inflammatory activity of SZC, more M1/M2 subtypes should be examined extensively in further studies.

In clinical research, Li has validated that IL-6 and IL-8 were over-expressed in the eutopic and ectopic endometrium of patients with AM. On the other hand, the expression of IL-10 was decreased in uteri of AM patients, that was supposed to be associated with impaired endometrium receptivity in AM patients. It also has been reported that NO, IL-10, IL-17A, IL-7, and MCP-1 were all found to possibly contribute to the pathogenesis of AM. As mentioned above, the NO level and inflammatory cytokines including IL-6, and IL-10 were closely related to the anti–inflammatory activity, might be decreased by suppressing the PI3K-Akt signaling pathway and NF-κB signaling pathway. Therefore, it can be concluded that the anti–inflammatory activity of SZC is achieved by the synergetic action of the active compounds inhibiting the NO synthesis, IL-6 expression and the regulation of IL-10 expression through influencing the PI3K-Akt signaling pathway and NF-κB signaling pathway.

Conclusion

In this study, a systematic network pharmacology analysis approach for exploring the mechanism of SZC in the treatment of AM was established and the anti–inflammatory activity of SZC was observed in vitro. The integrated approach automatically acquired the information and linked the docking platform, identified the potential active compounds and targets based on molecular docking combining with CTPG prediction, then implemented the PPI analysis, network construction and KEGG analysis, which provide insights into the biological activity of SZC. The results were as follows. First, 30 major compounds and 28 core targets were identified from the potential active ones. Second, five main therapeutic modules involving inflammation reaction, hormone regulation, cell adhesion, proliferation, and angiogenesis were collected. Third, four crucial intersected pathways including PI3K-Akt signaling pathway, NF-κB signaling pathway, focal adhesion, and endocrine resistance were mapped, among them, the PI3K-Akt signaling pathway and NF-κB signaling pathway were mainly related to the inflammation reaction module. Four, the anti–inflammation activity of SZC was the act by the cooperation of its multiple components regulating NO, IL-6, and IL-10, which was consistent with the analysis result. Overall, our findings indicated that SZC achieved the treatment of AM by influencing inflammation reaction, hormone regulation, cell adhesion, proliferation, and angiogenesis, furthermore, its anti–inflammatory activity was conducted by the multi-compound through inhibiting NO and IL-6, both inhibiting and promoting IL-10, which will provide rich clues for the further research on SZC in the treatment of AM. However, the ADME information and the content of compounds in SZC should be investigated in future research.

Acknowledgments

The authors would like to acknowledge the technical supports from De-Hui Du, Shanghai Key Laboratory of Trustworthy Computing and Software Engineering Institute, East China Normal University, Shanghai, China, and the phase data provided from JiaChun Li, Jiangsu Kanion Pharmaceutical Co., Ltd, Jiangsu, China.

Author Contributions

All authors contributed to data analysis, drafting and revising the article, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Funding

This work was supported by programs of the National Natural Science Foundation of China [grant numbers 81872981]; Technological Major Special Project of China (Grant number 2018ZX09201008-002); Program of Shanghai Academic/Technology Research Leader [grant number 18XD1403700]; Project of the Shanghai Municipal Commission of Health and Family Planning [grant number 2017YQ072 and 201740152]; Xinglin Young Talent Program (2017.10-2020.09) and the projects sponsored by the development fund for Shanghai talents [grant number 2018105].
Disclosure
Wei Xiao is employed by Jiangsu Kanion Pharmaceutical Co., Ltd, The authors report no other conflicts of interest in this work.

References
1. Hiniker SM, Donaldson SS. Recent advances in understanding and managing rhambdomyosarcoma. F1000Prime Rep. 2014;7:59.
2. Garcia-Solares J, Donnez J, Donnez O, Dolmans MM. Pathogenesis of uterine adenomyosis: invagination or metastasis? Fertil Steril. 2018;109(3):371–379. doi:10.1016/j.fertnstert.2017.12.030
3. TL. R. The important roles of steroid sulfatase and sulfotransferases in gynecological diseases. Front Pharmacol. 2016;7(5 Pt 1):30. doi:10.3389/fphar.2016.00323
4. Leyendecker G, Wildt L. A new concept of endometriosis and adenomyosis: tissue injury and repair (TIAR). Horm Mol Biol Clin Investig. 2011;5(2):125–142. doi:10.1515/HMBCI.2011.002
5. Vannuccini S, Tosti C, Carmona F, et al. Pathogenesis of adenomyosis: an update on molecular mechanisms. Reprod Biomed Online. 2017;35(5):S147264317032961. doi:10.1684/rb.2017.0616
6. Shen MH, Liu XS, Zhang HQ, Guo SW. Transforming growth factor β1 signaling coincides with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis in mice. Hum Reprod. 2016;31(2):355–369. doi:10.1093/humrep/dev314
7. Chen XF, He XR, Liao XP. Clinical observation on 30 cases of adenomyosis dysmenorrhea treated with Chaihong Xiaozheng decoction. J Qiqihar Med Coll. 2017;28(27):2792–2794.
8. Wang S, Luo MY, Yuan Y, et al. Effect of Xuanyu Tongjing Decoction in the treatment of dysmenorrhea of uterine adenomyosis. Contemp Chin Med. 2019;26(1):190–192.
9. Dan LQ. The clinical effect of Jiawei Siwu decoction in the treatment of adenomyosis. Electron J Clin Med Lit. 2018;5(96):135–138.
10. Wang HY, Bao XH, Dai JF. Treatment of ovarian cyst after ovulation-induction with Sanjie Zhentong capsule. Chin J Integr Trad Chin Med. 2008;28(28):1026–1028.
11. Zou J, Guan Z, Zhang WY, Xiao W, Li YL. Beneﬁcial effects of the Chinese herbal medicine Sanjie Zhentong capsule on experimental endometriosis in rats. Chin J Nat Med. 2013;11(6):666–672. doi:10.16661/S1875-5364(13)60077-1
12. Zou J, Guan Z, Zhang WY. Comparison of the effects of Sanjie Zhentong capsule and danazol on the endometriosis rats. Chin J Trad Integr Med. 2012;32(8):1112–1116.
13. Chai HJ. Clinical observation of Sanjie Zhentong capsule in treating adenomyosis and infertility. North Pharm. 2017;14(9):69–88.
14. Shen XY, Yu LG. Therapeutic effect of Sanjie Zhentong capsule on dysmenorrhea caused by adenomyosis. J Clin Ration Drug Use. 2013;6(12):74.
15. Li SY, Li HY. Effects of Sanjie Zhentong capsule combined with indometh suppository on serum CA125, TNF-α, PGF2α in patients with adenomyosis. J Integr Trad Chin Med. 2015;24(35):3954–3955+3980.
16. Zhang R, Zhu X, Bai H, Ning K. Network pharmacology databases for traditional Chinese medicine: review and assessment. Front Pharmacol. 2019;10:1–14. doi:10.3389/fphar.2019.00001
17. Shi QX, Yue SJ, Tang YP, et al. A network pharmacology approach to investigate the blood enriching mechanism of Dansgii buxue Decoction. J Ethnopharmacol. 2019;235:227–242. doi:10.1016/j.jep.2019.01.027
18. Yang B, Wang N, Wang S, et al. Network-pharmacology-based identification of cavelolin-1 as a key target of Oldenlandia diffusa to suppress breast cancer metastasis. Biomed Pharmacother. 2019;112:1–14. doi:10.1016/j.biopha.2019.108607
19. Hsin K-Y, Matsuku Y, Asai Y, et al. systemsDock: a web server for network pharmacology-based prediction and analysis. Nucleic Acids Res. 2016;44:507–513. doi:10.1093/nar/gkw353
20. Clemente GP, Grassi R. Directed clustering in weighted networks: a new perspective. Chaos Solitons Fractals. 2017;107:26–38. doi:10.1016/j.chaos.2017.12.007
21. Guo SZ, Lu ZM, Zhe C, Hao L. Strength-strength and strength-degree correlation measures for directed weighted complex network analysis. IEEE Trans Inf Syst. 2011;94(11):2284–2287. doi:10.1109/TIFS.2012.22284
22. Zhang GR, Yun WU, Sha WU, Xiao W. Simultaneous determination of five compounds in Sanjie Zhentong capsules by high-performance liquid chromatography coupled with ultraviolet and evaporative light scattering detectors. Chin J Exp Trad Med Formulae. 2015;21(5):65–68.
23. Li J, Li D, Pan Y, et al. Simultaneous determination of ten bioactive constituents of Sanjie Zhentong capsule in rat plasma by ultra-high-performance liquid chromatography tandem mass spectrometry and its application to a pharmacokinetic study. J Chromatogr B. 2017;1054:20–26. doi:10.1016/j.jchromb.2017.03.001
24. Nakata H, Kikuchi Y, Tode T, et al. Inhibitory effects of ginsenoside Rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Cancer Sci. 2010;91(7):733–740.
25. Oh M, Choi YH, Choi S, et al. Anti-proliferating effects of ginsenoside Rh2 on MCF-7 human breast cancer cells. Int J Oncol. 1999;14(5):869–875. doi:10.3892/ijo.14.5.869
26. Huang YQ, Huang HX, Han ZD, et al. Ginsenoside Rh2 inhibits angiogenesis in prostate cancer by targeting CNN1. J Nanosci Nanotechnol. 2019;19(4):1942–1950. doi:10.1166/jnn.2019.16404
27. Li Y, Qian G, Wenjin G, et al. Farnesol relieve lipopolysaccharide (LPS)-induced mastitis by inhibiting AKT/ NF-κB p65, ERK1/2 and P38 signaling pathway. Int J Mol Sci. 2018;19(6):1770. doi:10.3390/ijms19061770
28. Zheng Z, Xu L, Zhang S, et al. Peimimine inhibits colorectal cancer cell proliferation by inducing apoptosis and autophagy and modulating key metabolic pathways. Oncotarget. 2017;8(29):47619–47631. doi:10.18632/oncotarget.17411
29. Young CS, Tae Youl H, Yun AJ, et al. Estrogenic activities of isolavones and flavones and their structure-activity relationships. Planta Med. 2008;74(1):25–32. doi:10.1055/s-2007-993760
30. Newill H, Loske R, Wagner J, et al. Oxidation products of stigmasterol and stigmasterol in the urine of patients receiving plant sterols at colonic concentrations on Caco-2 cells. J Funct Foods. 2017;12(12):e0189628. doi:10.1002/jff.2017.12.006
31. Lee S, Youn K, Jun M. Major compounds of red ginseng oil attenuate antiestrogenic activity of tamoxifen in breast cancer cells. Food Funct. 2018;9(4):4122–4134. doi:10.1039/C8FO00795K
32. Lopez-Garcia G, Cilla A, Barbera R, Alegria A. Antiproliferative effect of plant sterols at colonic concentrations on Caco-2 cells. J Funct Foods. 2017;9(8):4122–4134. doi:10.1016/j.jff.2017.08.006
33. Kangsamaksin T, Chaithongyot S, Wootthichairangsan C, et al. Luteolin and stigmastanol suppress tumor angiogenesis and inhibit cholangiocarcinoma growth in mice via downregulation of tumor necrosis factor-α. PLoS One. 2017;12(12):e0189628. doi:10.1371/journal.pone.0189628
34. Wang Y, Fan X, Qu H, Gao X, Cheng Y. Strategies and techniques for multi-component drug design from medicinal herbs and traditional Chinese medicine. Curr Top Med Chem. 2012;12(12):1356–1362. doi:10.2174/156802612801319034
35. Li B, Chen M, Liu X, Guo SW. Constitutive and tumor necrosis factor-α-induced activation of nuclear factor-xB in adenomyosis and its inhibition by andrographolide. Fertil Steril. 2013;100(2):568–577. doi:10.1016/j.fertnstert.2013.04.028
36. Wang Y, Qu Y, Song W. Genetic variation in COX-2-1195 and the risk of endometriosis and adenomyosis. Clin Exp Obstetr Gynecol. 2015;42(2):168–172.

37. Samodelkin EI, Mercuecheva NG, Kosareva PV, Nesterova LY. The role of prostaglandins and Cyclooxygenase in pathogenesis of chronic endometritis. Patol Fiziol Eksp Ter. 2017;61(2):98–100.

38. Luo D, Chen H, Li X, et al. Activation of the ROCK1/MMP-9 pathway is associated with the invasion and poor prognosis in papillary thyroid carcinoma. Int J Oncol. 2015;47(4):1209–1218. doi:10.3892/ijo.2017.4100

39. Jiang C, Gong W, Chen J, et al. RhoA/ROCK1/ARHGAP26 signaling in the eutopic and ectopic endometrium is involved in clinical characteristics of adenomyosis. J Int Med Res. 2018;46(12):5019–5029. doi:10.1177/0300060518809338

40. Qi S, Zhao X, Li M, et al. Aberrant expression of Notch1/numb/snail signaling, an epithelial mesenchymal transition related pathway, in adenomyosis. Reprod Biol Endocrinol. 2015;13(1):1–10. doi:10.1186/s12958-015-0084-2

41. Zhang D, Xia W, Li C, et al. Correlation between Cyt61 expression and clinicopathologic parameters in adenomyosis. J Reprod Immunol. 2016;118:42–49. doi:10.1016/j.jri.2016.08.004

42. Zheng ZZ, Liu ZX. Activation of the phosphatidylinositol 3-kinase/ protein kinase Akt pathway mediates CD151-induced endothelial cell proliferation and cell migration. Int J Biochem Cell Biol. 2007;39(2):340–348. doi:10.1016/j.biocel.2006.09.001

43. Cianciulli A, Calvello R, Porro C, Trotta T, Salvatore R, Panaro MA. PI3K/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. Int Immunopharmacol. 2016;36:282–290. doi:10.1016/j.intimp.2016.05.007

44. Pengal RA, Ganesan LP, Wei G, Fang H, Ostrowski MC, Triandapani S. Lipopolysaccharide-induced production of interleukin-10 is promoted by the serine/threonine kinase Akt. Mol Immunol. 2006;43(10):1557–1564. doi:10.1016/j.molimm.2005.09.022

45. Qiu L, Xu C, Jiang H, Li W, Tong S, Xia H. Cantharidin attenuates the proliferation and migration of vascular smooth muscle cells through inhibiting inflammatory response. Biol Pharm Bull. 2018;42(1):34–42. doi:10.1248/bpb.h18-00462

46. Erasahin T, Tuncbag N, Cetin-Atalay R. The PI3K/AKT/mTOR inter-active pathway. Mol Biosyst. 2015;11(7):1946–1954. doi:10.1039/C5MB00101C

47. Guo JB, Gao JM, Yu XH. Expression of DJ-1 and mTOR in eutopic and ectopic endometria of patients with endometriosis and adenomyosis. Gynecol Obstet Invest. 2015;79(3):195–200. doi:10.1159/000365569

48. Perkins ND. Integrating cell-signalling pathways with NF-
κB and JNK pathways. Nat Rev Cancer. 2005;5(1):49–62. doi:10.1038/nrc1385. doi:10.1142/9789813048734_0004

49. Wong ET, Tergaonkar V. Roles of NF-κB in health and disease: mechanisms and therapeutic potential. Clin Sci. 2009;116(6):451. doi:10.1042/CS20090805

50. Lee YH, Jeon SJ, Kim SH, et al. A new synthetic chalcone derivative, 2-hydroxy-3, 5, 5′-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibiting the Akt/NF-κB pathway in BV2 microglial cells. Exp Mol Med. 2012;44(6):369–377. doi:10.3858/emm.2012.44.6.042

51. Kim JK, Jung DH, Kim SC, et al. Anti-inflammatory effect of Hemispetula lyrata Bunge (Bunge) on LPS- induced inflammation in RAW 264.7 cells. J Herbal Formula Sci. 2019;27(1):1–7.

52. Dai C, Zheng CQ, Meng FJ, Zhou Z, Jiang M. VSL#3 probiotics exerts the anti-inflammatory activity via PI3K/Akt and NF-κ B pathway in rat model of DSS-induced colitis. Mol Cell Biochem. 2013;374(1–2):1–11. doi:10.1007/s10110-012-1488-3

53. Nie J, Lu YX. Immunoreactivity of progesterone receptor isoform B, nuclear factor kB, and IκBAlphal in adenomyosis. Fertil Steril. 2009;92(3):886–889. doi:10.1016/j.fertnstert.2009.01.084

54. Wang F, Li H, Du X, Cui M, Wen Z. Expression of interleukin-10 in patients with adenomyosis. Fertil Steril. 2009;91(5):1681–1685. doi:10.1016/j.fertnstert.2008.02.164

55. Natalia S, Ioulia A, Anna M. Cytokine network of eutopic and ectopic endometrium in women with adenomyosis. Am J Reprod Immunol. 2015;74(47):251–255.

56. Zheng DX, Duan H, Xu Q, Gan L, Dong QJ. FAK regulates epithelial-mesenchymal transition in adenomyosis. Mol Med Rep. 2018;18(6):5461–5472. doi:10.3892/mmr.2018.9600

57. Streuli I, Santulli P, Zhouxenous X, Chapron C, Batteux F. Serum osteopontin levels are decreased in focal adenomyosis. Reprod Sci. 2016;24(5):773–782. doi:10.1177/193371911669054

58. Xiao Y, Li YC, XIA YL, Sun X, Zhou YF. Expression of integrin β3 and osteopontin in the eutopic endometrium of adenomyosis during the implantation window. Eur J Obstet Gynecol Reprod Biol. 2013;170(2):419–422. doi:10.1016/j.ejogrb.2013.05.007

59. Shira Peleg H, Tami R, Larysa R, Ido W. Endocrine resistance in breast cancer: focus on the phosphatidylinositol 3-kinase/akt/mammalian target of rapamycin signaling pathway. Breast Care. 2013;8(4):248–255. doi:10.1159/000354757

60. Crowder RJ, Chunpeng P, Yu T, et al. PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. Cancer Res. 2009;69(9):3955. doi:10.1158/0008-5472.CAN-08-4450

61. Majumder A, Ray S, Banerji A. Epidermal growth factor receptor-mediated regulation of matrix metalloproteinase-2 and matrix metalloproteinase-9 in MCF-7 breast cancer cells. Mol Cell Biochem. 2018;452:1–11.

62. Miller TW. Endocrine resistance: what do we know?. Am Soc Clin Oncol Educ Book. 2013;2013:e37–e42.

63. Pranweerapiboon K, Apisawatkan S, Nohsathian S, et al. An ethyl-acetate fraction of Holothuria scabra modulates inflammation in vitro through inhibiting the production of nitric oxide and pro-inflammatory cytokines via NF-κB and JNK pathways. Inflammopharmacology. 2019. doi:10.1007/s10707-019-00677-3

64. Chiunetti-Bigaudgi G, Colin S, Staels B. Macrophage subsets in atherosclerosis. Nat Rev Cardiol. 2015;12:10–17. doi:10.1038/nrcardio.2014.173

65. Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ. Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol. 2010;10(10):453–460. doi:10.1038/nri2784

66. Kim B, Kim E, Lee E, et al. Panax notoginseng inhibits tumor growth through activating macrophage to M1 polarization. Am J Chin Med (Gard City N Y). 2018;46(6):1369–1384. doi:10.1128/A0192415X18500726

67. Li C, Chen R, Jiang C, Chen L, Cheng Z. Correlation of LOX-5 and IL-10 expression in uterine junctional zone of patients with adenomyosis during the implantation window after ovarian stimulation. Reprod Sci. 2016;23(1):124–133. doi:10.1177/1933719115597761

68. Zhihong N, Yun F, Pingzi G, et al. Cytokine profiling in the eutopic endometrium of adenomyosis during the implantation window after ovarian stimulation. Reprod Sci. 2016;23(1):124–133. doi:10.1177/1933719115597761
71. Liu D, Cao G, Han L, Ye Y, Sima Y, Ge W. Flavonoids from radix Tetrastigmae inhibit TLR4/MD-2 mediated JNK and NF-κB pathway with anti-inflammatory properties. Cytokine. 2016;84:29–36. doi:10.1016/j.cyto.2015.08.003

72. Li JB, Wang HY, Yao Y, et al. Overexpression of microRNA-138 alleviates human coronary artery endothelial cell injury and inflammatory response by inhibiting the PI3K/Akt/eNOS pathway. J Cell Mol Med. 2017;21(8):1482–1491. doi:10.1111/jcmm.13074