Sexual pheromone modulates the frequency of cytosolic Ca\(^{2+}\) bursts in *Saccharomyces cerevisiae*

Natalia Carbó\(^{a+}\), Nahuel Tarkowski\(^{b, c, *}\), Emiliano Perez Ipiña\(^{c}\), Silvina Ponce Dawson\(^{c}\), and Pablo S. Aguilar\(^{a, b, *}\)

\(^{a}\)Laboratorio de Biología Celular de Membranas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
\(^{b}\)Laboratorio de Biología Celular de Membranas, Instituto de Investigaciones Biotecnológicas, Universidad de San Martín, San Martín 1650CPZ, Argentina;
\(^{c}\)Departamento de Física and IFIBA, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina

ABSTRACT Transient and highly regulated elevations of cytosolic Ca\(^{2+}\) control a variety of cellular processes. Bulk measurements using radioactive Ca\(^{2+}\) and the luminescent sensor aequorin have shown that in response to pheromone, budding yeast cells undergo a rise of cytosolic Ca\(^{2+}\) that is mediated by two import systems composed of the Mid1-Cch1-Ecm7 protein complex and the Fig1 protein. Although this response has been widely studied, there is no treatment of Ca\(^{2+}\) dynamics at the single-cell level. Here, using protein calcium indicators, we show that both vegetative and pheromone-treated yeast cells exhibit discrete and asynchronous Ca\(^{2+}\) bursts. Most bursts reach maximal amplitude in 1–10 s, range between 7 and 30 s, and decay in a way that fits a single-exponential model. In vegetative cells, bursts are scarce but preferentially occur when cells are transitioning G1 and S phases. On pheromone presence, Ca\(^{2+}\) burst occurrence increases dramatically, persisting during cell growth polarization. Pheromone concentration modulates burst frequency in a mechanism that depends on Mid1, Fig1, and a third, unidentified, import system. We also show that the calcineurin-responsive transcription factor Crz1 undergoes nuclear localization bursts during the pheromone response.

INTRODUCTION

Calcium (Ca\(^{2+}\)) signals are pervasive in eukaryotic cells, where this divalent cation acts as a messenger that rapidly modifies protein electrostatic charge, shape, and function. Fast and transient elevations of free cytosolic Ca\(^{2+}\) levels control a wide variety of cellular processes and adaptive responses. The versatility of Ca\(^{2+}\) signaling systems is reflected in the very different spatial and temporal distributions that the Ca\(^{2+}\) concentration can display. Some cellular processes, such as Ca\(^{2+}\)-triggered exocytosis, are executed in milliseconds within a very localized subcellular environment. Other processes, such as developmental programs and gene transcription control, require longer Ca\(^{2+}\) transients (minutes to hours) that, in multicellular organisms, might even be propagated throughout an entire tissue. This diversity can be captured by live imaging of Ca\(^{2+}\) dynamics, enabling systematic analysis of cell and tissue behavior in response to a changing environment.

In *Saccharomyces cerevisiae*, cytosolic Ca\(^{2+}\) signals are implicated in the response to several environmental challenges, including osmotic imbalance (Batiza et al., 1996; Denis and Cyert, 2002), the presence of mating pheromone (Ohsumi and Anraku, 1985; Iida et al., 1990), protein misfolding (Bonilla et al., 2002), high pH (Viladevall et al., 2004), and glucose addition under starvation (Nakajima-Shimada et al., 1991). There is a vast body of knowledge on the transporters, sensors, and effectors implicated in *S. cerevisiae* Ca\(^{2+}\) homeostasis (for recent reviews, see Cunningham, 2011; Cyert and Philpott, 2013). Of note, our understanding of Ca\(^{2+}\) dynamics in yeast relies on bulk monitoring of cellular Ca\(^{2+}\) levels using either radioactive \(^{45}\)Ca\(^{2+}\) or the bioluminescent sensor aequorin. Unlike research on mammalian cells, single-cell monitoring of Ca\(^{2+}\) signals is almost unreported in *S. cerevisiae* (Cunningham, 2011). Here we address this issue by adapting a fluorescent protein Ca\(^{2+}\)
sensor to budding yeast and exploring single-cell Ca2+ dynamics during the pheromone response.

S. cerevisiae has two sexes or mating types, MATa and MATe. Haploid cells secrete a mating type–specific pheromone that is sensed by cells of the complementary mating type. Pheromone binding to its cognate receptor triggers a canonical mitogen-activated protein (MAP) kinase signaling cascade that leads to cell cycle arrest, transcriptional reprogramming, and polarized growth toward the mating partner. Pioneering work using 45Ca2+ showed that haploid yeast cells treated with mating pheromone take up extracellular Ca2+ in a dose-dependent manner (Ohsumi and Anraku, 1985). The 45Ca2+ uptake begins 30–40 min after pheromone addition and is sustained over an additional 60–80 min, being coincident with active polarized growth and formation of a cell shape called shmoo (Ohsumi and Anraku, 1985). Bulk Ca2+ monitoring using the bioluminescent sensor aequorin showed a similar timing in cytosolic Ca2+ level changes during the pheromone response (Nakajima-Shimada et al., 1991; Muller et al., 2003). Pheromone-induced Ca2+ uptake depends on at least two plasma membrane transporting systems, the high- and low-affinity calcium import systems (HACS and LACS, respectively). HACS depends on the simultaneous presence of three plasma membrane proteins: Cch1, a homologue of the catalytic \(\alpha\)-subunit of voltage-gated Ca2+ channels (Fischer et al., 1997; Paidhungat and Garrett, 1997; Muller et al., 2001); Mid1, an integral membrane glycoprotein that physically interacts with Cch1 (Iida et al., 1994; Locke et al., 2000); and Ecm7, a predicted tetraspanning membrane protein with similarity to the catalytic \(\gamma\)-subunit of voltage-gated Ca2+ channels (Martin et al., 2011). Cch1, Mid1, and Ecm72+ proteins are constitutively expressed, but HACS activity is very low in vegetative growing cells, presumably due to negative feedback regulation mediated by the Ca2+-calmodulin-activated phosphatase calcineurin (CN; Locke et al., 2000; Muller et al., 2001). LACS requires the presence of Fig1, a pheromone-induced plasma membrane protein. Like Ecm7, Fig1 has four predicted transmembrane domains with structural resemblance to the transmembrane domains of claudins and the \(\gamma\)-subunit of voltage-gated Ca2+ channels (Muller et al., 2003). Here we show that the increase of cytosolic Ca2+ during response to the pheromone is not continuous but is composed of a series of discrete Ca2+ bursts that are more frequent as pheromone concentration increases. This pheromone-dependent increase of Ca2+ burst frequency depends on HACS, LACS, and a third, unidentified Ca2+ transport system. In parallel with the cytosolic Ca2+ bursts, the CN-responsive transcription factor Crz1 undergoes nuclear localization bursts in response to pheromone.

RESULTS AND DISCUSSION

Extracellular Ca2+ stress evokes rapid changes in fluorescence of GCaMP in yeast

To monitor cytosolic Ca2+ ([Ca2+]\textsubscript{cyt}) signals in *S. cerevisiae,* we adapted different versions of the green fluorescent protein (GFP)–calmodulin fusion protein (GCaMP) Ca2+ indicators originally developed to follow neuronal activity. We built strains bearing Ca2+ indicator genes GCaMP3 (Tian et al., 2009) and GCaMP6f (Chen et al., 2013) stably inserted in a single copy in the URA3 locus (Materials and Methods). Growth rate measurements in different conditions indicated that neither GCaMP3 nor GCaMP6f interfered with *S. cerevisiae* cell growth in standard culture conditions (Materials and Methods). In vivo responses for both Ca2+ reporters were evaluated by live fluorescence microscopy monitoring of cells subjected to calcium stress. Inspection of short (10–13 min) time-lapse movies revealed that cells growing in standard synthetic medium show low levels of cytosolic fluorescence and sporadically exhibit transient increases of fluorescence. These observations are consistent with previously reported bulk measurements of [Ca2+]\textsubscript{cyt} levels showing that mid logarithmic–growing cells incubated in standard medium keep low [Ca2+]\textsubscript{cyt} and low CN activity and do not actively accumulate extracellular calcium (Ohsumi and Anraku, 1985; Stathopoulos and Cyert, 1997; Muller et al., 2003). However, soon after the addition of calcium, numerous cells showed high cytosolic fluorescence levels, strongly suggesting that both indicators are functional in *S. cerevisiae* (Figure 1A). Cell segmentation of time-lapse images and quantitation of normalized fluorescence levels (AF/F0; see Materials and Methods) confirmed that both GCaMP3 and GCaMP6f are responsive to Ca2+ stress in *S. cerevisiae,* as suspected (Figure 1B). Single-cell ΔAF/F0 traces were then used to compare the performance of both GCaMP variants in terms of registered maximum amplitudes and signal-to-noise ratios (SNRs; Figure 1, C and D). In contrast with tests in cultured neurons and animal models, in which GCaMP6f clearly outperformed GCaMP3 (Chen et al., 2013), the two indicators exhibited similar performances in budding yeast. Both GCaMP3 and GCaMP6f outperformed yellow Cameleon YC2.12, a Förster resonance energy transfer–based calcium sensor that exhibited very low SNR in *S. cerevisiae* cells (Cai et al., 2008). Unlike the calcium dye fura-2, which, after loading rapidly, accumulates in yeast vacuoles (Ida et al., 1990), GCaMP3 and GCaMP6f are stable cytosolic proteins enabling long-term monitoring of [Ca2+]\textsubscript{cyt} dynamics. Given that GCaMP3 and GCaMP6f behaved similarly, we decided to use GCaMP6f for the experiments because it has been further optimized for fast Ca2+ imaging (Chen et al., 2013).

High-speed monitoring of [Ca2+]\textsubscript{cyt} in single cells responding to \(\alpha\)-factor

Having successfully adapted two GCaMP indicators to *S. cerevisiae,* we proceeded to characterize single-cell [Ca2+]\textsubscript{cyt} dynamics during the pheromone response. Aequorin luminescence monitoring of [Ca2+]\textsubscript{cyt} indicated that, after a lag of 40 min, pheromone-treated cells experienced a slow increase of [Ca2+]\textsubscript{cyt} that peaked after 30 min and then needed an additional ~60 min to decline to basal levels (Muller et al., 2003). Because calcium-stress results indicated that [Ca2+]\textsubscript{cyt} fluctuations were on the order of seconds to minutes (Figure 1), we first imaged pheromone-treated cells at high speeds (e.g., 5 frames/s). MATa GCaMP6f cells were grown to mid log phase and treated with \(\alpha\)-factor, and then, at different time points (10–80 min after pheromone addition), cells were registered over 10-min periods. Again, we observed that control cells had very low fluorescence and that a few cells exhibited transient increases in the fluorescence signal. We also observed that those cells that were imaged within the first 30 min of \(\alpha\)-factor treatment exhibited low fluorescence levels, which was consistent with the previously reported 40-min lag before [Ca2+]\textsubscript{cyt} increase. In contrast, movies taken after 30 min of \(\alpha\)-factor treatment revealed very active [Ca2+]\textsubscript{cyt} dynamics: yeast cells underwent fast and transient increases, or bursts, of [Ca2+]\textsubscript{cyt} (Figure 2A). Data analysis showed that pheromone-induced [Ca2+]\textsubscript{cyt} bursts are heterogeneous and sometimes overlapping and have different morphologies and lifespans (Figure 2, A and B). Most bursts have lifespans <30 s (70% of 90 registered bursts) and exhibit abrupt increase, reaching maximum levels in ~4 s (Figure 2, B and C). We also observed that the majority of [Ca2+]\textsubscript{cyt} bursts (70% of 225 registered bursts) exhibit a decay behavior that fits with a single-exponential function (Supplemental Figure S1). Because the decay times derived from these fits are more than one order of magnitude larger than the reported unbinding time of Ca2+ from GcaMP6f (Chen et al., 2013), we propose that the observed fluorescence...
Materials and Methods

See values registered in 151 and 206 cells with GCaMP3 and GCaMP6f, respectively; bin size, 0.4.

We found that 40% of mitotically active cells and also monitored the number of bursts per cell over 100 min.

Basic features of $[\text{Ca}^{2+}]_{\text{cyt}}$ without losing signal detection capacity. We quantified two calcium–removing systems.

Because we did not detect $[\text{Ca}^{2+}]_{\text{cyt}}$ bursts during the cell cycle. These observed bursts might be implicated in fine-tuning of different cell cycle regulators that are CN effectors, such as Hcm1 (Arsenault et al., 2015), Elm1 (Goldman et al., 2014), and Rga2 (Ly and Cyert, 2017).

Mating pheromone concentration modulates the frequency of $[\text{Ca}^{2+}]_{\text{cyt}}$ bursts

In pheromone-treated cells, we observed that an α-factor concentration as low as 1 nM triggers a small but noticeable increase in $[\text{Ca}^{2+}]_{\text{cyt}}$ burst frequency, whereas an intermediate dose (5 nM), near the α-factor receptor Ste2 dissociation constant, is sufficient to produce a fivefold increase in the average number of burst occurrences (Figure 3C). High pheromone concentrations (10, 100 nM) elicit a maximum response in which 88% of the cells undergo between 5 and 15 bursts. Within the registered time frame (100 min), we did not find a periodic occurrence of bursts, but we did observe a lag phase (see later discussion). Unlike this clear increase in frequency, $[\text{Ca}^{2+}]_{\text{cyt}}$ burst morphologies suffered minor changes all over the dose–response curve. Burst amplitude distributions moved toward higher values with α-factor addition. For example, 23% of bursts in nontreated cells had $\Delta F/F_0 > 1$, whereas this percentage increased to 40% in 100 nM α-factor-treated cells (Supplemental Figure S3). Similarly, α-factor addition triggered the appearance of more bursts with longer lifespans: whereas 26% of bursts in nontreated cells lasted >20 s, in 100 nM α-factor-treated cells, this proportion rose to 45% (Supplemental Figure S3). However, for both parameters, we did not observe a clear dose–response behavior as we did for burst frequencies (compare insets in Figure 3C and Supplemental Figure S3).

Mating pheromone concentration modulates the frequency of $[\text{Ca}^{2+}]_{\text{cyt}}$ bursts

In pheromone-treated cells, we observed that an α-factor concentration as low as 1 nM triggers a small but noticeable increase in $[\text{Ca}^{2+}]_{\text{cyt}}$ burst frequency, whereas an intermediate dose (5 nM), near the α-factor receptor Ste2 dissociation constant, is sufficient to produce a fivefold increase in the average number of burst occurrences (Figure 3C). High pheromone concentrations (10, 100 nM) elicit a maximum response in which 88% of the cells undergo between 5 and 15 bursts. Within the registered time frame (100 min), we did not find a periodic occurrence of bursts, but we did observe a lag phase (see later discussion). Unlike this clear increase in frequency, $[\text{Ca}^{2+}]_{\text{cyt}}$ burst morphologies suffered minor changes all over the dose–response curve. Burst amplitude distributions moved toward higher values with α-factor addition. For example, 23% of bursts in nontreated cells had $\Delta F/F_0 > 1$, whereas this percentage increased to 40% in 100 nM α-factor-treated cells (Supplemental Figure S3). Similarly, α-factor addition triggered the appearance of more bursts with longer lifespans: whereas 26% of bursts in nontreated cells lasted >20 s, in 100 nM α-factor-treated cells, this proportion rose to 45% (Supplemental Figure S3). However, for both parameters, we did not observe a clear dose–response behavior as we did for burst frequencies (compare insets in Figure 3C and Supplemental Figure S3).

FIGURE 1: GCaMP sensor performance during yeast response to calcium stress. (A) GCaMP6f-expressing yeast cells were cultured up to mid log phase, attached to glass-bottom dishes, and then treated with 200 mM CaCl$_2$. Bar, 5 μm. (B) Normalized fluorescence ($\Delta F/F_0$) traces of single cells before (top) and after (bottom) addition of 200 mM CaCl$_2$. Each cell is represented by a different color; 185 (top) and 208 (bottom) cell traces for each condition. (C) Comparison of SNR of response of both GCaMP indicators in calcium-stressed cells. SNR was computed as the ratio between the maximal fluorescence response amplitude ($\Delta F/F_0$) and the SD of the baseline fluorescence trace of nonstressed cells. (D) Normalized distributions of maximum $\Delta F/F_0$ for 151 and 206 cells with GCaMP3 and GCaMP6f, respectively; bin size, 0.4. See Materials and Methods for image analysis and $\Delta F/F_0$ signal quantification.
The expression constant over a wide dynamic range of stressor input concentration modulates the frequency of Crz1 nuclear localization bursts (Cai et al., 2013; Lin et al., 2008). Extracellular Ca\(^{2+}\) bursts from 90 different pheromone-responding cells registered in four independent experiments. Bin sizes are 4 and 1 s for B and C, respectively.

Frequency modulation (FM) of Ca\(^{2+}\) bursts is widely used by mammalian cells to encode different input signals, which are then decoded by signaling molecules and transcription factors to execute appropriate cellular responses (Dolmetsch et al., 1998; Kupzig et al., 2005; Thurley et al., 2014). The α-factor–burst frequency dose–response curve (Figure 3C, inset) matches the equilibrium binding curve of α-factor to Ste2 and the α-factor–transcriptional induction dose–response curve, indicative of the phenomenon known as dose–response alignment, common to many other signaling systems (Yi et al., 2003; Colman-Lerner et al., 2005). FM of intracellular signals has been reported in budding yeast, in which different stresses modulate the frequency of nuclear translocation of transcription factors Msn2 (Jacquet et al., 2003; Petrenko et al., 2013; Lin et al., 2015), Mig1 (Lin et al., 2015), and CN-responsive Crz1 (Cai et al., 2008). Remarkably, we observed that during the pheromone response, Crz1 exhibits bursts of nuclear localization (Supplemental Figure S3). We do not know whether these observed Crz1 bursts correlate with [Ca\(^{2+}\)]\(_{cyt}\) bursts.

In the absence of stress, Crz1 locates in the cytosol, but high extracellular Ca\(^{2+}\) stress triggers a series of unsynchronized Crz1 nuclear localization bursts (Cai et al., 2008). Extracellular Ca\(^{2+}\) concentration modulates the frequency of Crz1 nuclear localization bursts, which, in turn, promote transcriptional bursts of Crz1-dependent downstream genes. FM of Crz1 nuclear localization enables coordinated control of multiple target genes, keeping their relative expression constant over a wide dynamic range of stressor input (Cai et al., 2008). A similar scenario is proposed for stress-induced Msn2 nuclear localization bursts, for which FM elicits a more robust transcriptional response than does amplitude modulation (Hao and O’Shea, 2012; Petrenko et al., 2013). It is assumed that during mating, the strength of pheromone signaling increases up to the culminating point of cell–cell fusion (Brizzio et al., 1996). Thus, as mating progresses, frequency-modulated regulation of Ca\(^{2+}\) bursts might result in coordinated control of Ca\(^{2+}\) effectors in both partners. Yeast cells down-regulate the pheromone signal over time, resuming mitotic growth when a partner is not found, even in the presence of pheromone (Moore, 1984). Multiple negative feedback mechanisms prevent sustained pheromone activation because it causes cell death (Zhang et al., 2006). The Ca\(^{2+}\)/CN signaling down-regulates the pheromone response by inhibiting Ste12-dependent gene expression and promoting internalization of the α-factor receptor Ste2 (Cyert et al., 1991; Alvaro et al., 2014; Goldman et al., 2014). Ly and Cyert (2017) found that at high pheromone concentrations, CN dephosphorylates Rga2, leading to Cdc42 signaling reduction and pheromone response down-regulation. Thus pheromone-induced modification of Ca\(^{2+}\) burst frequencies might help yeast cells to evaluate and decide whether to quit or pursue the mating program.

Both HACS and LACS are involved in frequency modulation of pheromone-induced [Ca\(^{2+}\)]\(_{cyt}\) bursts

We next asked how the known calcium import systems HACS and LACS affect amplitude, duration, and frequency of pheromone-induced [Ca\(^{2+}\)]\(_{cyt}\) bursts. We observed that in the absence of extracellular calcium, pheromone treatment is unable to induce an increase in [Ca\(^{2+}\)]\(_{cyt}\) burst frequency (Supplemental Figure S3), indicating that this response is mainly caused by extracellular calcium import and not by release from intracellular stores. To address this question, we monitored MATa mutant cells impaired for HACS (mid1Δ), LACS (fig1Δ), or both (mid1Δ fig1Δ). [Ca\(^{2+}\)]\(_{cyt}\) traces of mitotically active
mutant cells exhibited no differences from those of wild type growing in the same conditions: most cells remained with low basal levels of GCaMP6f fluorescence and exhibited few low-amplitude bursts (Figure 4, Supplemental Figure S4, and Supplemental Table S5). On α-factor treatment, however, the three mutants exhibited a statistically significant increase in [Ca\(^{2+}\)]\(_{cyt}\) burst frequency (Figure 4, A–C, and Supplemental Table S5) but a very limited one compared with wild-type cells (Figure 4D). These results indicate that in response to pheromone, both influx systems are active. Moreover, analyzing the cumulative distributions of [Ca\(^{2+}\)]\(_{cyt}\) burst frequencies, we found no differences between single and double mutants, suggesting that in our tested conditions, HACS and LACS function nonadditively (Figure 4D and Supplemental Table S5). The fact that the mid1Δ fig1Δ double mutant is able to increase [Ca\(^{2+}\)]\(_{cyt}\) burst frequency also suggests that either there is a third import system, like the proposed glucose-induced calcium flux system (Groppi et al., 2011), or there is a compensatory release from internal calcium stores. How does pheromone response trigger [Ca\(^{2+}\)]\(_{cyt}\) bursts? Although the mechanisms of HACS or LACS activation have not been defined, it has been suggested that Cch1 is a mechanosensitive channel (Kanzaki et al., 1999). Thus cell growth polarization and subsequent plasma membrane stretch may activate Cch1.

Statistical analysis of the cumulative distributions of [Ca\(^{2+}\)]\(_{cyt}\) burst amplitudes and lifespans showed that in both tested conditions, mid1Δ cells underwent bursts with higher amplitudes than did wild-type, fig1Δ, and fig1Δmid1Δ cells (Figure 5, A and B, and Supplemental Table S5). In contrast, lower amplitudes characterized fig1Δ cell bursts in the absence of pheromone (Figure S5B). Like mid1Δ cells, fig1Δ mid1Δ double mutants showed bursts but with higher amplitudes in response to pheromone (Figure S5A). Although burst lifespans seem to be different for vegetative growing fig1Δ and mid1Δ cells (Figure S5D), the Kolmogorov–Smirnov (KS) test does not reject the hypothesis that lifespans of all strains belong to the same distribution (Supplemental Table S5). On pheromone treatment, mid1Δ cells showed bursts with higher lifespans, whereas no differences were detected for the other three strains according to the KS test (Figure S5C and Supplemental Table S5).

In short, these results indicated that HACS-impaired cells (mid1Δ) experienced bursts with higher amplitudes and lifespans in response to α-factor. Of interest, whereas Fig1 localizes at the shmoo tip during growth polarization, Cch1 is broadly distributed throughout the plasma membrane and is excluded from the shmoo tip (Yoshimura et al., 2004; Aguilar et al., 2007). Therefore it is expected that LACS- and HACS-mediated Ca\(^{2+}\) entries are spatially segregated, perhaps reflecting signaling over different subsets of Ca\(^{2+}\) effectors.

Live monitoring of [Ca\(^{2+}\)]\(_{cyt}\) in fungi at the single-cell level has been hampered by the lack of sensitive, stable, and high-SNR sensors. Our results indicate that GCaMP sensors can be used to obtain detailed information on Ca\(^{2+}\) dynamics in S. cerevisiae. GCaMP sensors are being used in filamentous fungi (Nick Read, personal communication), where it is well established that Ca\(^{2+}\) signaling is required for hyphal growth and pathogenicity.
mechanism that requires Cch1, Cdc42, and its guanine exchange factor, Cdc24 (Brand et al., 2014). Monitoring Ca²⁺ dynamics in single cells might reveal the presence of cytosolic Ca²⁺ gradients in different fungi species and their relevance for normal and pathogenic physiology.

MATERIALS AND METHODS

GCaMP expression vector construction

GPD1 promoter was obtained from PYM-N14 (Janke et al., 2004) and amplified by PCR using primers BamH1GPDp-F (CGT AGG ATC CGA GCT CAG TTT ATC ATT) and Xho1GPDp-R (GTC ACT CGA GTC TAG AAT CCG TCG AAA) adding BamHI and Xhol sites and cloned into plasmid pRS306N from the EUROSCARF collection (Taxis and Knop, 2006). This plasmid was digested with SacI, and the 988–base pair fragment containing GPD1-promoter followed by ADH1-terminator was ligated into SacI-digested pRS306K, an integrative S. cerevisiae plasmid, at URA3 loci with the dominant marker kanMX4 (Taxis and Knop, 2006). The resulting vector was called pRS306K-GPD1p-ADH1t-a.

GCaMP3 and GCaMP6f coding sequences

To generate the final vector, pCMV-GCaMP3 and pCMV-GCaMP6f mammalian expression vectors obtained from AddGene (Cambridge MA) were used as templates to perform RFcloning reactions (van den Ent and Lowe, 2006) designed to precisely insert GCaMP3 or GCaMP6f open reading frames in GPD1p-ADH1t in the yeast integrative vector pRS306K-GPD1p-ADH1t-a. These final vectors were verified by sequencing and subsequently linearized for yeast transformation. The Crz1-GFP tagging strain was generated by PCR and homologous recombination using the plasmid pFA6a-link-yEGFP-CaURA3 (Sheff and Thorn, 2004).

Yeast strains and growth conditions

A complete list of strains used in each experiment is given in Supplemental Table S5. All strains were in the W303 background (leu2-3, 112 trp1-1 can1-100 ura3-1 ade2-1 his3-11, 15). Cells were grown in either rich medium YPD (1% yeast extract, 2% Bactopeptone, and 2% glucose) or synthetic defined medium (SD) containing 0.67% yeast nitrogen base without amino acids (YNB; Difco), 2% glucose, and the appropriate drop-out mixture of amino acids according to supplier’s instructions (CSM; Sunrise Science Products, San Diego, CA). Synthetic growth media lacking calcium were prepared similarly using calcium-free yeast nitrogen base reagents (YNB-CaCl₂; Sunrise Science Products). In general, yeast strains were grown in 10 ml of

FIGURE 4: Both HACS- and LACS-impaired cells are still able to increase α-factor–dependent [Ca²⁺] cyt burst frequencies. Normalized distributions of the number of bursts in mid1∆ (A), fig1∆ (B), and fig1∆ mid1∆ (C) cells with and without α-factor. (D) Corresponding cumulative distributions of burst occurrences in α-factor–treated cells. Normalized distributions were obtained from plots of at least 200 different cells (per strain and condition) in three independent experiments.

FIGURE 5: [Ca²⁺] cyt bursts in mid1∆ cells have greater amplitudes and life spans. Cumulative distributions of burst amplitudes (A, B) and lifespans (C, D) in wild-type, mid1∆, fig1∆, and mid1∆ fig1∆ strain cells in the presence (A, C) or absence (B, D) of α-factor. Density distributions were obtained from traces of at least 200 different cells (per strain and condition) in three independent experiments.

(Munoz et al., 2015). In Candida albicans, Ca²⁺ uptake is required for tropic growth of hyphae (Brand et al., 2007). It has been suggested that localized Ca²⁺ uptake may provide positional information needed to define the site for polarized growth via a
rich medium YPD to an OD₆₀₀ = 0.8–1. For all microscopy experiments, yeast cells were cultured for a minimum of 18 h in SD and supplemented with 80 ng/ml adenine (Sigma-Aldrich, St. Louis, MO) at 30°C to OD = 0.2–0.4. For imaging, 200 µl of cell culture was incubated in concanavalin-A (Sigma-Aldrich)–coated chambers for 10 min (#1.5 glass; MatTek, Ashland, MA). Finally, SD medium was replaced by a fresh one, and cells were imaged. For calcium-free treatments, cells were grown overnight in SD and then transferred to chambers and washed three times with SD-Ca²⁺ before use. The α-factor mating pheromone was obtained from Sigma-Aldrich.

Microscopy setting

Time-lapse imaging was performed on a Leica DMI6000, TCS-SP5 with a resonant scanner (8000-Hz scanning frequency) using an HCX PL APO 63/1.4-060 CS oil objective and equipped with an automatically programmable XY stage (Mark & Find; Leica) in an environment chamber preequilibrated to 30°C. Images were acquired using an argon ion laser at wavelength of 488 nm with 30% laser power, a pinhole set to 3 airy units, photomultiplier tube range of 495–589 nm, 784 gain, and –0.2 offset. Image formats of 512 × 512 and 282 × 282-nm pixel size were used for all acquired movies. For calcium stress, the sampling rate was 1 frame/10 s. For high-speed imaging of pheromone-treated cells, it was 5 frames/s, and for long-term monitoring, it was 0.4 frames/s. Measurements of mitotic cell growth and cell growth polarization during the pheromone response indicated that all defined imaging conditions were innocuous for both processes (unpublished data).

Image analysis. I. Obtaining a reporter of changes in [Ca²⁺]* that can be compared across cells

For short-term (10–13 min) movies, cells were manually segmented. For long-term (100 min) movies, single cells were automatically segmented from transmitted light images using CellStat (Kvarnstrom et al., 2008). For mitotically active cell analysis, cells were randomly selected using CellStat, and only those cells that were segmented throughout the whole time lapse were kept for further analysis. Because we used asynchronous cultures, for α-factor treatment experiments, after CellStat segmentation, we selected cells that at t = 0 were morphologically compatible with G1 phase (un budded cells). In all cases, we excluded from further analysis selected cells that evidenced loss of integrity upon movie inspection.

Connected regions on the image A_{ij} corresponding to single cells (each one identified by the subscript l) were determined as a function of time t_i using segmented images.

We computed the normalized calcium signal for each cell l at time t_i as

\[F_l(t_i) = \frac{1}{N_p(A_l(t_i))} \sum (x, y, t_i) g(x, y, t_i) \]

where \(g(x, y, t_i) \) is the registered fluorescence at time \(t_i \) from the pixels located at \(x, y \) and \(N_p(A_l(t_i)) \) is the number of pixels in the region \(A_l(t_i) \) of the image associated with the lth cell at time \(t_i \). We computed the background noise for each cell \(B(t_i) \) as

\[B(t_i) = \frac{1}{N_p(A_l'(t_i))} \sum (x, y, t_i) g(x, y, t_i) \]

where \(A_l'(t_i) \) is an empty region contiguous to the analyzed cell. The number of pixels \(N_p(A_l'(t_i)) \) is similar to the number of pixels of \(N_p(A_l(t_i)) \). We then subtracted the background noise \(B(t_i) \) from the normalized fluorescence to define

\[h_l(t_i) = F_l(t_i) - B(t_i) \]

To correct for photobleaching, we took the sequence for each cell \(\{h_l(t_i)\}_{i=0}^T \), with \(T \) the duration of the experiment, and extracted from it the values \(h(t_i) \) associated with easily recognizable fluorescence bursts. We then fitted this pruned sequence \(\{h_l(t_i)\}_{i=0}^T \) by an exponential:

\[f_{ij}(t_i) = C_i e^{-\lambda t_i} \]

Finally, we defined a corrected expression for photobleaching-normalized fluorescence as

\[f_l(t_i) = \frac{h_l(t_i)}{f_{ij}(t_i)} \]

To account for differences in GCaMP expression or cell size between cells, which result in different fluorescence basal levels, we computed the basal level associated with each cell as

\[f_{0i} = \frac{1}{N_i} \sum_{t_i} h_l(t_i) \]

where \(N_i \) is the total number of \(t_i \) times of the sequence without easily recognizable fluorescence bursts. We finally computed the increase in the corrected-for-photobleaching normalized fluorescence for each cell as a function of time as

\[\frac{\Delta F}{F_{0i}}(t_i) = \frac{f_l(t_i) - f_{0i}}{f_{0i}} \]

We assumed that this quantity was a good reporter of the changes in cytoplasmic Ca²⁺ and can be compared between cells despite their differences in dye load or size. It is thus the quantity that we used for the analysis.

Image analysis. II. Identification of Ca²⁺ bursts

To set a criterion that distinguishes Ca²⁺ bursts from spurious (random) changes in basal fluorescence, we applied the following iterative procedure. The procedure first takes, for each cell l, the pruned sequence \(\Delta F / F_{0i} \) with the times \(t_i^* \) as defined before. It then computes for each time \(t_i^* \) of the sequence the mean \(\mu_{ij} \) and SD \(\sigma_{ij} \) of \(\Delta F / F_{0i} \) over the 250 times \(t_i^* \) preceding \(t_i^* \):

\[\mu_{ij} = \frac{1}{250} \sum_{t_i \leq t_i^*} \frac{\Delta F}{F_{0i}}(t_i) \]

\[\sigma_{ij} = \frac{1}{250} \sum_{t_i \leq t_i^*} \left(\frac{\Delta F}{F_{0i}}(t_i) - \mu_{ij} \right)^2 \]

From the element 251 to \(t_i^* \), the protocol sweeps over the 250 elements of the sequence before \(t_i^* \) and computes \(\Delta F / F_{0i} - \mu_{ij} / \sigma_{ij} \). If this ratio is >3 for some \(t_i^* \), the corresponding element \(\Delta F / F_{0i} \) is excluded from the pruned sequence. The newly excluded time is included in a new set \(t_{\text{burst}} \). The procedure is repeated, iteratively sweeping back and forth (using the 250 times that follow \(t_i^* \)) in time until no more elements departing from the mean by >3 SDs are found. The procedure is applied subsequently to all the times \(t_i^* \) in the latest pruned sequence. Finally, we look for sets of at least three consecutive times \(t_i^* \) in \(t_{\text{burst}} \) and associate the corresponding elements \(\Delta F / F_{0i} \) with a Ca²⁺ burst.
Computation of probabilities of cell cycle burst occurrence

Because newly born cells spend more time in G1 phase than mother cells and because complete registration of cell cycles of mother cells was more frequent in our 100-min time-lapse movies, we restricted this analysis to mother cells (114 cells over three independent experiments) that experienced one or more Ca^{2+} bursts. To check how meaningful it was to pool the data from the three experiments together, we compared the distributions of phase duration obtained for each experiment. A KS test did not reject the hypothesis that the data from any two of the experiments were drawn from the same distribution (confidence level of 0.05). Therefore we decided to pool the data coming from the 114 cells together. In principle, calcium bursts can occur at any time along each cell phase. Thus, to distinguish situations with different numbers of bursts during the time course of one cycle, we calculated probability densities per unit time. To this end, we coarse-grained the data set using the time duration dt of the longest typical Ca^{2+} burst (~22 s). This duration was much smaller than the mean times ~500, 1750, and 2000 s that each cell invests in each of the three phases that we considered for the analysis—G1, S, and G2/M, respectively; it was also much smaller than the mean interburst time (~2050 s). We then looked at the time course of the fluorescence, $\Delta F/F_0(t)$, of each selected cell and assigned a 1 or a 0, respectively, to each time interval of duration dt if $\Delta F/F_0(t)$ either showed or did not show a burst in the corresponding time interval. Given the relationship between dt and the mean interburst time, we expected each interval of size dt to contain at most one burst. It may occur that a burst starts during a particular interval and ends during the following one. If the burst was equally distributed between the two consecutive intervals, we assigned the 1 to either one of them at random. In this way, we digitized the data set, and the computation of the probability of burst occurrence was simply done by counting bursts (i.e., differences in burst duration) if $\Delta F/F_0(t)$, given that at that time interval the cell displays a burst, as

$$P(b | ph) = \frac{P(ph & b)}{P(ph)} = \frac{\sum_{l} N_{b,ph,l} dt}{\sum_{l} N_{ph,l}}$$

where $N_{b,ph,l}$ is the total number of bursts displayed by the lth cell while being at the phase ph. Clearly, the total number of bursts displayed by the lth cell, $N_{b,l}$, satisfies

$$N_{b,l} = \sum_{ph} N_{b,ph,l}$$

where the sum is performed over the three phases. We computed the conditional probability that a cell is at a given phase ph at a particular time interval of duration dt, given that at that time interval the cell displays a burst, as

$$P(ph | b) = \frac{P(ph & b)}{P(b)} = \frac{\sum_{l} N_{b,ph,l}}{\sum_{l} N_{b,l}}$$

This is the quantity that we compared against P_{ph} in the text. We computed the conditional probability that a cell has a burst during a time interval of duration dt, given that it is at a particular phase ph during that time interval, as

$$P(b | ph) = \frac{P(ph & b)}{P(ph)} = \frac{1}{P(ph)} \sum_{l} \frac{N_{b,ph,l}}{N_{ph,l}} \frac{dt}{\sum_{l} N_{b,ph,l}}$$

Now each cell l spends a total time $t_{ph,l}$ in each phase ph given by

$$t_{ph,l} = N_{ph,l} dt$$

during the time course of the experiment, so that, on average, the cell spends a time

$$t_{ph} = \frac{1}{N_{ph}} \sum_{l} N_{ph,l} dt$$

in phase ph during the experiment. The duration of each of the three performed independent experiments was slightly larger than the mean cell cycle duration λ. Thus we relate the mean phase duration λ_{ph}, with the mean time t_{ph}, a cell spends in phase ph during the time course of the experiment by

$$\lambda_{ph} = \frac{t_{ph}}{N_{ph}} = \frac{1}{N_{ph}} \lambda \sum_{l} N_{ph,l} dt$$

Inserting this expression in Eq. (16), we obtain
\[P(b|ph) = \frac{dt}{TN_c \lambda_{ph}} \sum_{n=1}^{c} N_{b,ph,\lambda} \] (20)

Inserting Eq. (15) in Eq. (20), we obtain

\[P(b|ph) = \frac{N_b P(ph|b) \lambda}{TN_c \lambda_{ph}} \] (21)

from which we compute the probability per unit time that a burst occurs while the cell is at a given phase \(ph \) as

\[R(b|ph) = \frac{N_b P(ph|b) \lambda}{TN_c \lambda_{ph}} \] (22)

These are the rates that are reported in Figure 3A.

We tested whether the observed bias of burst occurrence was compatible with a model in which calcium bursts occur at equal rates regardless of the cell phase. For this, we performed a chi-square goodness-of-fit test, considering the null hypothesis that the mean number of bursts during a phase was solely proportional to the mean phase duration. Pooling the data from three independent experiments (total number of bursts, 168), a comparison with the mean number of bursts per phase observed experimentally gave a chi-square value (8.92) that allows us to reject the null hypothesis at the 0.02 significance level. We then conclude that calcium bursts occur at higher rates when cells are transitioning either the G1 or S phase.

ACKNOWLEDGMENTS

We thank Agustina Oliva-Couto for advice on microscopy, Tabárez de los Campos for help with preliminary image analysis, and Alberto Muñoz and Nick Read for invaluable advice on using GCaMP sensors. We thank Martha Cyert and Nina Ly for helpful discussions and critical reading of the manuscript. This work was supported by an ANII-Caldeyro Barcia Fellowship, Uruguay (PDNAC201217826 to N.C.), the International Centre for Genetic Engineering and Biotechnology (Grant CRP/URU11-01 to P.S.A.), the Fondo de Convergencia Estructural Mercosur (Grant COF 03/11 to the Institut Pasteur for the Investigation Científica y Tecnológica, Argentina (Grants PICT 2013-1301 to S.P.D. and PICT-2014-3034 to P.S.A.). N.T. is a fellow from Consejo Nacional de Investigaciones Científicas y Tecnológicas, Argentina.

REFERENCES

Aguilar FS, Engel A, Walter P (2007). The plasma membrane proteins Prm1 and Fig1 ascertain fidelity of membrane fusion during yeast mating. Mol Biol Cell 18, 547–556.

Alvaro CG, O’Donnell AF, Prosser DC, Augustine AA, Goldman A, Brodsky JL, Cyert MS, Wendland B, Thorner J (2014). Specific alpha-arrestins and Fig1 ascertain fidelity of membrane fusion during yeast mating. Mol Cell Biol 34, 2660–2681.

Arsenault HE, Roy J, Mapa CE, Cyert MS, Benanti JA (2015). Hcm1 integrates signals from Cdc1 and calcineurin to control cell proliferation. Mol Biol Cell 26, 3570–3577.

Batiza AF, Schulz T, Masson PH (1996). Yeast respond to hypotonic shock with a calcium pulse. J Biol Chem 271, 23357–23362.

Bonilla M, Nastase KK, Cunningham KW (2002). Essential role of calcineurin in response to endoplasmic reticulum stress. EMBO J 21, 2343–2353.

Brand A, Shanks S, Duncan VM, Yang M, Mackenzie K, Gow NA (2007). Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr Biol 17, 347–352.

Brand AC, Morrison E, Milne S, Gonia S, Gale CA, Gow NA (2014). Cdc42 GTPase dynamics control directional growth responses. Proc Natl Acad Sci USA 111, 811–816.

Brizzio V, Gammie AE, Nijbroek G, Michaels S, Rose MD (1996). Cell fusion during yeast mating requires high levels of a-factor mating pheromone. J Cell Biol 135, 1727–1739.

Cai L, Dalal CK, Elowitz MB (2008). Frequency-modulated nuclear localization of calcium bursts coordinate gene regulation. Nature 455, 485–490.

Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baehan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 299–300.

Colman-Lerner A, Gordon A, Serra E, Chin T, Resnekov O, Endy D, Pesce CG, Brent R (2005). Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706.

Cunningham KW (2011). Acidic calcium stores of Saccharomyces cerevisiae. Cell Calcium 50, 129–138.

Cyert MS, Kunisawa R, Kaim D, Thorner J (1991). Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. Proc Natl Acad Sci USA 88, 7376–7380.

Cyert MS, Philpott CC (2013). Regulation of cation balance in Saccharomyces cerevisiae. Genetics 193, 677–713.

Denis V, Cyert MS (2002). Internal Ca(2+) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J Cell Biol 156, 29–34.

Dolmenesch RU, Xu K, Lewis RS (1998). Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936.

Fischer M, Schnell N, Chattaway J, Davies P, Dixon G, Sanders D (1997). The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. FEBS Lett 419, 259–262.

Goldman A, Roy J, Bodenmiller B, Wanka S, Landry CR, Aebersold R, Cyert MS (2014). The calcineurin signalling network evolves via conserved kinase-phosphoester modules that transcend substrate identity. Mol Cell 55, 422–435.

Groppi S, Belotti F, Brandao RL, Martegani E, Tisi R (2011). Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin. Cell Calcium 49, 376–386.

Hao N, O’Shea DK (2012). Signal-dependent dynamics of transcription factor translation controls gene expression. Nat Struct Mol Biol 19, 31–39.

Iida H, Nakamura H, Ono T, Okumura MS, Anraku Y (1994). MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol Cell Biol 14, 8259–8271.

Iida H, Tagawa Y, Anraku Y (1990). Essential role for induced Ca2+ influx in mating of Saccharomyces cerevisiae cells with imaging of fura-2. J Biol Chem 265, 13391–13399.

Jacquet M, Renault G, Lallet S, De Mey J, Goldbeter A (2003). Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae. J Cell Biol 161, 497–505.

Janke C, Magiera MM, Rathfelder N, Taxis C, Rebers S, Maenza H, Moreno-Borchart A, Doenges G, Schwob E, Siebels E, Knoop M (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962.

Kawasaki K, Nagasaki M, Kojima I, Sato C, Naruse K, Sokabe M, Iida H (1999). Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285, 882–886.

Kupezi S, Walker SA, Cullen PJ (2005). The frequencies of calcium oscillations are optimized for efficient calcium-mediated activation of Ras and the ERK/MAPK cascade. Proc Natl Acad Sci USA 102, 7577–7582.

Kvamstrom M, Logg K, Diez A, Bodvard K, Kall M (2008). Image analysis algorithms for cell contour recognition in budding yeast. Opt Express 16, 12943–12957.

Lin Y, Sohn CH, Dalal CK, Cai L, Elowitz MB (2015). Combinatorial gene regulation by modulation of relative pulse timing. Nature 527, 54–58.

Locke EG, Bonilla M, Liang L, Takita Y, Cunningham KW (2000). A homolog of voltage-gated Ca(2+) channels stimulated by depletion of secretory Ca(2+) in yeast. Mol Cell Biol 20, 6686–6694.
Ly N, Cyert MS (2017). Calcineurin, the Ca^{2+}-dependent phosphatase, regulates Rga2, a Cdc42 GTPase activating protein, to modulate pheromone signaling. Mol Biol Cell 28 (in press).

Martin DC, Kim H, Mackin NA, Maldonado-Baez L, Evangelista CC Jr, Beaudry VG, Dudgeon DD, Naiman DQ, Erdman SE, Cunningham KW (2011). New regulators of a high affinity Ca^{2+} influx system revealed through a genome-wide screen in yeast. J Biol Chem 286, 10744–10754.

Moore SA (1984). Yeast cells recover from mating pheromone alpha factor-induced division arrest by desensitization in the absence of alpha factor destruction. J Biol Chem 259, 1004–1010.

Muller EM, Locke EG, Cunningham KW (2001). Differential regulation of two Ca^{2+} influx systems by pheromone signaling in Saccharomyces cerevisiae. Genetics 159, 1527–1538.

Muller EM, Mackin NA, Erdman SE, Cunningham KW (2003). Fig1p facilitates Ca^{2+} influx and cell fusion during mating of Saccharomyces cerevisiae. J Biol Chem 278, 38461–38469.

Munoz A, Bertuzzi M, Bettgenhause J, Iakobachvili N, Bignell EM, Read ND (2015). Different stress-induced calcium signatures are reported by aequorin-mediated calcium measurements in living cells of aspergillus fumigatus. PLoS One 10, e0138008.

Nakajima-Shimada J, Iida H, Tsuji F, Anraku Y (1991). Monitoring of intracellular calcium in Saccharomyces cerevisiae with an aequorin cDNA expression system. Proc Natl Acad Sci USA 88, 6878–6882.

Ohsumi Y, Anraku Y (1985). Specific induction of Ca^{2+} transport activity in MATa cells of Saccharomyces cerevisiae by a mating pheromone, alpha factor. J Biol Chem 260, 10482–10486.

Paidhungat M, Garrett S (1997). A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca^{2+} uptake and exacerbates the cdc1(Ts) growth defect. Mol Cell Biol 17, 6339–6347.

Petrenko N, Chereji RV, McLean MN, Morozov AV, Broach JR (2013). Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses. Mol Biol Cell 24, 2045–2057.

Sheff MA, Thorn KS (2004). Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661–670.

Stathopoulos AM, Cyert MS (1997). Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev 11, 3432–3444.