Research Article

Nonlinear Matrix Ferroelectric Composites on Construction Quality and Safety Measures

Danping Hu, Gongxing Yan, and Hongquan Sun

School of Intelligent Construction, Luzhou Vocational and Technical College, Luzhou 646000, Sichuan, China

Correspondence should be addressed to Gongxing Yan; yaaangx@126.com

Received 17 May 2022; Revised 7 July 2022; Accepted 13 July 2022; Published 22 August 2022

Academic Editor: Haichang Zhang

Copyright © 2022 Danping Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the continuous emergence of concrete construction projects such as long-span bridges, high-rise buildings, nuclear power plants, and offshore platforms, researchers at home and abroad have made great progress in construction quality and safety measures in recent years. Construction quality is the main factor affecting the appearance and function of the building. Compared with traditional building construction materials, it has indeed made great improvements in organization and performance. For example, for nonlinear matrix ferroelectric composites, this functional material can better solve the problem of poor compatibility between general composites and concrete structural materials. It is not sensitive to humidity and can work in a concrete environment for a long time. These materials are indeed popular in building construction, various materials complement each other in performance and produce a synergistic effect so that the comprehensive performance of composite materials is better than the original composition materials and meets various high-quality requirements. But some properties are still not very clear. Therefore, this study mainly studies the influence laws of viscoelasticity, elastic viscoplasticity, and macro mechanical behavior of nonlinear matrix ferroelectric composites. Through theoretical analysis and experiments, it is concluded that the change of effective stress relaxation stiffness of nonlinear matrix ferroelectric composites tends to be stable with the increase of time, and the effective stress relaxation stiffness of composites increases with the increase of age volume fraction at $t = 0 \text{ s}$.

1. Introduction

1.1. Background. With the adjustment and support of national macro policies, China's construction projects have increased rapidly, and its role is fully reflected in the following points: (1) In the national GDP, the annual output value of the construction industry accounts for a large proportion, which plays an important role in the country's economic development; (2) Construction products directly or indirectly solve the basic living problems of people's clothing, food, and housing, and provide a great convenience for the daily needs of people's life; (3) The construction industry and its upstream and downstream industries have solved a large number of labor problems. With the vigorous development of the construction industry, the building materials used are also of great concern. Now the new materials used in building construction are mainly composite materials.

1.2. Significance. For building construction engineering, the reliability of material structure is very important for the economic benefits of materials and the safety of buildings. Improving material properties can effectively prevent safety accidents. For composite materials, its mesostructure is complex and closely related to the processing process, resulting in large dispersion of structural properties and difficult to accurately control, therefore, a large safety factor is mostly used in the current ferroelectric composite structure design to ensure the safety of the structure. High-performance ferroelectric materials are a promising class of functional materials for a wide range of applications. The reliability evaluation and reliability optimization design of the ferroelectric composite structure is the key to the application of low redundancy and high-reliability composite structure, which has important research value and significance for the improvement of construction quality.
1.3. Related Work. Ferroelectric composites have always been the popular materials used in construction engineering. Delshad successfully prepared a new multiferroic composite with KNn-LT as ferroelectric matrix and 20 vol % Ni$_{0.2}$Zn$_{0.3}$Co$_{0.5}$Fe$_{2}$O$_{4}$ (NZCFO) as ferromagnetic reinforcement by the conventional sintering process. In the X-ray spectrum, the characteristic peaks of ferroelectric kNN-LT and impurity-free ferromagnetic NZCFO phase are clearly visible. The orthogonal symmetry of KNN-based piezoelectric ceramics was detected in both pure ferroelectric and composite samples. In FESEM images, the characteristic cubic morphology of knn-Lt phase and the regular polygonal grains of nzcfo ferrite indicate the successful sintering process of multiferroic composites. The simultaneous ferroelectric (based on P-E ring) and ferromagnetic (according to M-H curve) behaviors of knn-Lt/nzcfo confirm that the composite can be called a new lead-free multiferroic composite. For this magnetoelectric composite, a material similar to 9 μC/cm² Ps and Ms similar to 14 emu/g have excellent values, but the initial investment cost is too high [1]. Under the conditions of discharge effect and covalent effect of piezoelectric phase cations, the phase electronegativity controlled by composite crystallization has a great influence on the formation mechanism of the stable electret effect. Kurbanov et al. proposed a physical model of electret composites, which considers the effects of the same charge and different charges formed in the composites through the dispersion of composites and piezoelectric ceramic particles with various structures (rhombic, tetragonal, and heterostructure), but it has not been specifically applied [2]. According to the target customers’ survey on the impact of service quality on customer satisfaction during the construction of independent houses in Australia, the expectations of target customers focus on “price and product” rather than “service quality”. The purpose of Forsythe’s study is to observe whether service quality will affect customer satisfaction during construction, despite obvious expectation conflict. Using a detailed single case study method, taking the above customers as the measurement unit, using a longitudinal design and a survey tool adapted from the consumer research literature, he measured the “gap score” of customer satisfaction and service quality in four stages during the construction period. This is combined with qualitative interview data encoded into a set of definable service events. It is found that customer satisfaction is closely related to the perception of service quality during on-site construction, whether there is price and product-oriented pre-purchase expectation or not, but the research results are not practical [3]. Material procurement accounts for a large part of the total cost of construction projects. Understanding the factors affecting quality costs in the procurement process helps to identify opportunities to reduce quality costs without affecting quality. So Sawan et al. discussed these issues. He developed a COQ model for the procurement process of building materials using the traditional preventive assessment failure (PAF) method. COQ is the cost of quality, the costs incurred to ensure and guarantee satisfactory quality to the customer, and the losses incurred to achieve satisfactory quality. Using the data of a $4 billion aluminum smelter construction project, the author simulates the COQ model to evaluate various quality assurance policies. The research shows that increasing the prevention cost will reduce the failure cost and COQ of the research project. Although the author cannot provide comprehensive recommendations because the results are from a single project case study, it does show that the construction material procurement process will benefit from higher prevention expenditure, but it is not practical [4]. Two key factors that the site manager must control during construction are safety and quality. Shohet et al. envisaged that the emergence of information and communication technology (ICT) systems plays a significant role in effectively promoting safety and quality and taking advantage of the synergy between the two disciplines. The purpose of the Shohet et al. study is to investigate the relationship between safety and quality through the application of ICT. In order to evaluate the potential benefits, the key safety and quality performance index system are prepared. The results observed in the pilot study showed that during the implementation phase, the quality was improved by 30%, and unsafe activities were reduced by 90%. Students’ t-test was used to test these differences, and it was found that they were statistically significant at the level of 0.99. Comprehensive safety and quality leading indicators help to improve safety and quality. The potential improvement rates of construction quality and construction safety are as high as 90% and 30%, respectively. This study helps to understand the high potential of comprehensive quality and safety leading indicators in the construction industry, but the operation process is a little complex [5]. With the rapid economic growth and the development of new construction technology, construction projects become more and more complex and large-scale. In addition, people’s interest and requirements for building quality standards are also further improved. This trend requires a more systematic and higher level of construction quality management. Although the government has strengthened the provisions of quality assurance, many quality problems occur frequently due to the lack of understanding of quality management and quality control system. To solve this problem, Jung analyzed 3443 non-conformities found in 393 construction site inspections from March 2012 to October 2014 and put forward quality management improvement plans. The quality management improvement scheme proposed in this study is expected to prevent quality problems and defects and improve construction performance, which is important enlightenment for the research of this study [6]. These studies provide a detailed analysis of ferroelectric composites and construction quality. It is undeniable that these studies have greatly contributed to the development of the corresponding fields. We can learn a lot from the methodology and data analysis. However, relatively few studies based on the analysis of construction quality and safety measures of engineering buildings based on nonlinear-based ferroelectric composites are not thorough enough, and it is necessary to fully apply these techniques to the research in this field.
1.4. Innovation. In this study, the solution of viscoelastic and elastic viscoplastic problems of composites is transformed into a function of seeking extreme value problems. Combined with the classical integral method, the effective properties and mechanical behavior of materials are better predicted, which provides a new idea for the traditional research of viscoelasticity, and elastic viscoplasticity of composites.

2. Methods of Nonlinear Matrix Ferroelectric Composites on Engineering Construction Quality and Safety Measures

2.1. Construction Quality. However, with the development of the construction industry, the problem of safety production in construction gradually appears. Many factors in construction production activities have become the direct or indirect fuse causing safety accidents, such as the increasing difficulty of construction projects; Immature new materials and technologies for construction; Unreasonable rush of construction project participants; China pursues the construction development speed too fast and the supervision is insufficient [7]; These are the reasons for the frequent occurrence of construction safety problems. In recent years, the continuous occurrence of safety production accidents has made government departments at all levels pay more attention to construction safety production. The relevant law enforcement departments of China’s construction industry have also strengthened the management and supervision of construction enterprises. At the same time, The Ministry of construction and other legislative departments have also continuously improved the safety regulations and safety production technology standard system for construction projects. The safety production capacity of construction enterprises has been improved to a certain extent, and the number of safety production accidents has begun to decrease slowly. According to statistics, statistics on casualties of construction projects in my country from 2014 to 2020 are shown in Table 1 [8]:

It can be seen from the above that the number of accidents and deaths per year is high, and the number of deaths reached 1193 in 2014. From 2014 to 2020, the probability of accidents has decreased, but the situation is still not optimistic. Solving the problem of safe production is of great significance to the good development of the construction industry.

For the problem of construction safety accidents, the main influencing factors in terms of materials are: first, the unqualified construction materials. On the one hand, in housing construction projects, there are a wide variety of materials used, so it is impossible to inspect all materials one by one. If sampling inspection is adopted, it cannot ensure that all materials meet the requirements, which increases the hidden danger of unsafe factors; On the other hand, the successful construction unit unilaterally pursues economic interests. In order to save costs, it not only uses unqualified materials but also has the situation that the technical level cannot meet the construction requirements, which increases the probability of safety accidents in engineering construction; In addition, improper storage of construction materials, that is, the storage conditions cannot meet the requirements of material storage, which may lead to physical or chemical deterioration of construction materials. If used in construction, it may lead to construction safety accidents [9]. The mixed proportion of construction materials does not meet the requirements of specifications and standards. Second, in housing construction projects, construction materials need to be used together. If the mix proportion does not meet the requirements of specifications or standards, it may not meet the strength or some requirements, resulting in low construction quality and safety accidents.

2.2. Introduction of Ferroelectric Composites. Ferroelectric materials refer to materials with spontaneous polarization without an external electric field. A polarization state that is not caused by an external electric field but by the internal structure of the crystal is called spontaneous polarization. Spontaneous polarization is an important feature that distinguishes ferroelectric materials from other materials. All ferroelectric materials have both ferroelectricity and piezoelectricity. Ferroelectricity comes from spontaneous polarization, but only materials with spontaneous polarization are pyroelectrics, and reversible spontaneous polarization is the symbolic feature of ferroelectrics [10]. When spontaneous polarization overturns under the action of the external field, it will be accompanied by the changes in dielectric constant, strain and other properties, so as to realize the regulation of the external field on properties. For example, dielectric tuning is realized by using the change of dielectric constant of the ferroelectric film under the action of the electric field; The use of the ferroelectric electro strain effect to regulate the magnetism of magnetic materials and realize magnetoelectric coupling provides a new idea for the development of new physical devices. According to the origin of ferroelectricity, ferroelectric materials can be divided into displacement type and ordered disorder type [11]. Curie-Weiss law describes the functional relationship between the susceptibility of ferromagnetic materials and temperature when ferromagnetic materials are in the paramagnetic region above Curie temperature. The generation of spontaneous polarization of displacement ferroelectric materials is related to the overall displacement of some ions in the crystal relative to the crystal lattice. This kind of ferroelectric materials included oxides with oxygen octahedral structures such as BaTiO$_3$ and KNbO$_3$. Their characteristic is that the Curie–Weiss constant is high, about the order of 10^5. The generation of spontaneous polarization of ordered disordered ferroelectric materials is related to the ordering of

Particular year	2014	2015	2016	2017	2018	2019	2020
Number of accidents	1123	1062	965	856	620	530	400
Death toll	1193	621	235	562	233	255	520
Number of serious injuries	252	221	256	231	256	654	232
Number of minor injuries	362	256	663	333	20	123	63
some ions. These materials often contain hydrogen bonds, such as potassium dihydrogen phosphate, and their Curie–Weiss constant is usually in the order of 10^3 [12].

Composite materials are increasingly widely used in the field of building construction. Stiffened plates, frame beams, and other forms are often used in structural design to improve the strength and stiffness of ferroelectric thin plate structures. Generally, nonlinear analysis can meet the design requirements in structural design, and whether the structure is safe can be judged by the Cai Wu criterion or strain method [13]. Non-linearity is generally used for structural ultimate bearing capacity analysis or residual strength analysis after structural damage. It is mainly theoretical research. In engineering design, nonlinearity is rarely used because of the large amount of calculation and many design parameters. In the pressure analysis of composite stiffened panel, the linear calculation cannot be completely consistent with the test, and the strength and stiffness results of theoretical calculation and test are quite different. If the damage evolution analysis of composites is carried out, the calculation amount is relatively large, the nonlinear section of composites is short, and the test data is imperfect, the calculation accuracy will be worse. Based on the linear bearing characteristics of composites, the influence of material nonlinearity can be ignored in the analysis, and the influence of geometric deformation nonlinearity on structural deformation and bearing is mainly analyzed. The calculation results are still evaluated by the Cai Wu criterion or strain method, which can not only meet the requirements of calculation accuracy but also improve the calculation efficiency.

The application performance of early ferroelectric composites is poor and cannot meet the requirements of system development. With the progress of science and technology, the application properties of ferroelectric composites have changed qualitatively in a period of time. Thanks to the design of fiber-reinforced matrix composites and new multifunctional composites, the performance of materials has been improved and the production level has been improved. Ferroelectric composites have a special position in production and modern life. Their mesocomponents provide good performance requirements for quality, machinery (strength, hardness), and Physics (light track, heat transfer, insulation, corrosion, and corrosion), which makes them very important to human beings. It has many applications in civil engineering and other fields, as shown in Figure 1. Another important feature of composites is their rugged design. After the design optimization process, you can obtain applications that meet specific requirements. This phenomenon is more obvious for polymer-based hybrid materials. Therefore, viscoelasticity and viscosity have high research value [14].

Generally speaking, common composite materials are mainly composed of reinforcement materials and matrix materials, with a variety of types. For example, Figure 2 is composite materials classified according to reinforcement materials, and Figure 3 is composite materials classified according to matrix materials [15].

The mechanical characteristics are non-uniformity, anisotropy, and randomness. Although the traditional single material is regarded as homogeneous on the macro scale, it is heterogeneous on the micro-scale. Similarly, the mechanical properties of composites are also uneven due to the existence of many factors, such as the non-uniformity of component materials and interface.

Ferroelectric materials can undergo ferroelectric phase transition under the action of the external electric field, resulting in great changes in their dielectric constant. Ferroelectric materials have been widely used in electric field modulation devices because of their dielectric tunability when applying an external electric field. However, its poor mechanical properties determine its short service life and inconvenient processing, which limits its application in special shape electric field modulation devices. Therefore, in order to improve the strength and plasticity of electric field modulation devices, people have carried out research on polymer-based electric field modulation devices in recent years [16].

2.3. Properties of Composite Materials

2.3.1. Viscoelasticity of Composites. The main mechanical behaviors of viscoelastic materials such as polymer materials under service conditions include stress relaxation, strain creep, hysteresis, mechanical loss, etc., which are mainly related to time and temperature [17]. The creep phenomenon is generally understood as that the stress remains unchanged and the strain increases continuously with time, as shown in Figure 4(a). The normal operation of structural members will be affected by the creep of their constituent materials. When the material deformation is too large, it may prevent the operation of parts [18]. Stress relaxation is understood as the phenomenon that the stress decreases continuously with time on the premise that the strain remains unchanged, as shown in Figure 4(b) [19]. For general stress relaxation, the change law is mainly that the stress decreases rapidly at the beginning, and then the change gradually stabilizes and tends to a fixed value. According to the rheological theory, the stress of viscous flow will decrease to zero after a period of time. Therefore, it can be inferred that under the premise of maintaining a certain strain, the stress of viscoelastic fluid will quickly reduce to zero. The viscoelastic solid conforms to the change law of stress relaxation, and the stress decreases to a stable value after a period of time [20].

2.3.2. Elastoviscoplasticity of Composites. The properties of metal matrix composites will show elastoviscoplasticity under certain external influences. In order to consider the nonlinearity of materials, time-dependent reliability, and rhythm-dependent results, it is difficult to predict the mechanical results of applications [21]. Therefore, it is necessary to further study and analyze the mechanical behavior of viscoplastic composites. Most building materials are composite materials. The arbitrary iron conductivity studied in this work consists of many single chain materials in a single process and one direction (referring to the direction of each chain). The method of forming a nonlinear matrix Ferroelectric Composite Plate with a single-layer composite material is shown in Figure 5 [22]. We need to create an X–Y coordinate system. At this time, the included angle between the long axis direction of each layer and the x-y coordinate is $\theta_p \ (p = 1, 2, \ldots, n)$.
The stress-strain relationship of each layer is converted to the coordinate system x-y, which can be expressed as

\[\mathbf{\sigma} = [A]_k \mathbf{\varepsilon} \quad (k = 1, 2, \ldots, n). \] (1)

In the formula, \([A]_k\) is actually equivalent to the stiffness matrix of the k-th layer; \(\mathbf{\sigma}\) and \(\mathbf{\varepsilon}\) are equivalent to the stress vector and strain vector of the k-th layer.

The strain vector \(\mathbf{\varepsilon}\) can be expressed as follows [23]:

\[\mathbf{\varepsilon} = \mathbf{\varepsilon}^0 + z\mathbf{\omega}, \] (2)

where

\[\mathbf{\varepsilon}^0 = \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \kappa_{xy}^0 \end{bmatrix}, \]

\[\mathbf{\omega} = \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_{xy} \end{bmatrix}. \] (3)

In the formula, \(\mathbf{\varepsilon}^0\) is the strain vector on the middle plane \((z = 0)\), and \(\mathbf{\omega}\) is the curvature change vector on the middle plane [24].

The stress vector can be expressed by strain vector and curvature change vector as follows:

\[\mathbf{\sigma} = [A]_k \mathbf{\varepsilon}^0 + [\mathbf{A}]_k |k|z. \] (4)

The internal force \(\mathbf{F}\) and internal moment \(\mathbf{M}\) per unit width on the composite section is defined as follows:

\[\mathbf{F} = \left[\begin{array}{c} F_x \\ F_y \\ F_{xy} \end{array} \right] = \int_{-c/2}^{c/2} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_{xy} \end{bmatrix} dz = \sum_{k=1}^{n} \int_{z_{k-1}}^{z_k} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_{xy} \end{bmatrix} dz, \]

\[\mathbf{M} = \left[\begin{array}{c} M_x \\ M_y \\ M_{xy} \end{array} \right] = \int_{-c/2}^{c/2} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_{xy} \end{bmatrix} z dz = \sum_{k=1}^{n} \int_{z_{k-1}}^{z_k} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_{xy} \end{bmatrix} z dz. \] (5)

In the above formula, \(C\) is the total thickness of the nonlinear matrix ferroelectric composite plate, and \(z = 0\) is taken on the middle surface of the nonlinear matrix ferroelectric composite plate.

In addition, the composite material has good fatigue resistance, excellent high-temperature performance, and good vibration damping.

2.4. Variational Asymptotic Method. Due to its complex characteristics, the average size of ferroelectric composites is very chaotic. When analyzing the macro response of an application, it is assumed that the intermediate system will be adjusted regularly, and one of the representative volume units (cells) is taken as the basic unit that truly reflects the material properties. Typical volume applications should have two main characteristics, that is, the improved state of typical volume distribution is the average application, and the machine life of composites such as pressure, stress, strength, and hardness is related to characteristic volume elements. The theory appeared in the 1980s, mainly by transferring the cells used to analyze synthetic composites...
Figure 3: Composites by matrix material.

Figure 4: Creep and stress relaxation curves of composites.
and using the combination of effective characteristics as the basis for the analysis of macroeconomic results [25].

The asymptotic differential method is a new simple solution developed on the basis of the differential method and asymptotic analysis method. It combines the advantages of the two methods, each with its own characteristics. The basic idea of the asymptotic differential method is to transform the actual problem of the mechanical device into the problem of function extreme value by the mathematical model, and directly analyze the asymptotic behavior of function change on this basis. Effective research shows that this method reduces the difficulty of the solution, and the results asymptotically converge to the actual solution. Different processes can be expressed in many ways. There are two main forms of polar function decision-making; one is the direct method, which immediately analyzes the problems. The second is an indirect method, which transforms the problem into the determination of the variance equation [26]. If the Lagrange multiplier is used, the position fluctuation problem can be transformed into an infinite difference problem, and the corresponding difference basis can be used as the basis of the general difference. The partitioning process is the basis of complete separation. The differential process with some restrictions is an incomplete differential process. The essence of the differential principle is to divide the first-order variation of functional into zero [27].

Compared with the traditional asymptotic method, the advantages of the asymptotic differential method are as follows: the asymptotic method is simpler than the traditional asymptotic method, that is, a lower order of magnitude in the work may represent very small abnormal different rules of a series; Judgment is simple and easy to correct. However, the traditional asymptotic method cannot be realized, so the variational asymptotic method can be widely used in simulation technology. The detailed statistical steps using the asymptotic differential method are shown in Figure 6 [28]. Using the dielectric mechanics model developed by the asymptotic variational technique, the VAM

Figure 5: Sectional view of laminated composite.

Figure 6: Functional solving process.
system can be used to predict the effective stress relaxation stiffness of nonlinear matrix ferroelectric composites to determine the optimal properties of nonlinear matrix ferroelectric composites.

Nonlinear matrix ferroelectric composites are isotropic and linear viscoelastic materials. Let its elastic relaxation stiffness be expressed as Prony series:

\[a(t) = a_0 \left[1 - \sum_{k=1}^{n} h_k (1 - e^{-t/\tau_k}) \right], \quad (6) \]

where \(a_0 \) is the instantaneous Young’s modulus; \(h_k \) is the dimensionless modulus and \(\tau_k \) is the relaxation coefficient of the material with time. In particular, \(n = 1, \) \(g_1 = 0.5, \) \(\tau_1 = 30, \) then the above formula can be simplified to

\[a(t) = 0.5 a_0 \left(1 + e^{-t/\tau_1} \right) = 0.5 a_0 + 0.5 a_0 e^{-t/\tau_1}, \quad (7) \]

where \(a_0 = 8000 \text{MPa} \) and Poisson’s ratio of matrix is \(\nu = 0.4. \)

Assuming that the nonlinear matrix ferroelectric composite is transversely isotropic, its effective stiffness matrix has symmetry. Assuming that the three principal axes of the material are coordinate axes 1, 2, and 3, where axis 3 is the fiber length direction and plane 1–2 is the isotropic plane of the material, the stress-strain relationship of the composite can be expressed as follows [29]:

\[
\begin{bmatrix}
\pi_{11} \\
\pi_{22} \\
\pi_{33} \\
\pi_{12} \\
\pi_{13} \\
\pi_{23}
\end{bmatrix} =
\begin{bmatrix}
B'_{11}(t) & B'_{12}(t) & B'_{13}(t) & 0 & 0 & 0 \\
0 & B'_{22}(t) & B'_{23}(t) & 0 & 0 & 0 \\
0 & 0 & B'_{33}(t) & 0 & 0 & 0 \\
0 & 0 & 0 & B'_{44}(t) & 0 & 0 \\
0 & 0 & 0 & B'_{45}(t) & B'_{55}(t) & 0 \\
0 & 0 & 0 & B'_{45}(t) & B'_{55}(t) & B'_{66}(t)
\end{bmatrix}.
\quad (8)
\]

Due to the complex mesostructure of fiber-reinforced composites, the analysis scale spans macro, meso, and micro, and the failure mechanism of fiber-reinforced composites under longitudinal compressive load is also very complex. At present, there are three main methods to study the compression behavior of composites: the analytical method (also known as the numerical method), the simulation method, and the experimental method. The research idea of the analytical method is: Taking the fiber and matrix as the research object, integrating the factors such as fiber deflection angle and fiber matrix material properties, and using the relevant theories of theoretical mechanics and material mechanics, the analytical formula for predicting the compressive failure strength of composites is derived. The research idea of the simulation method is to establish the macro or microstructure model of fiber-reinforced composites by using the finite element analysis software, study the compression behavior characteristics of composites by assigning different material properties and various defect states to the model, and can intuitively see the stress-strain distribution cloud map in the model from the calculation results. The research idea of the experimental method is to carry out compression experiments on fiber-reinforced composite specimens, analyze the distribution law of compression failure strength data, observe the internal failure of the composite with scanning electron microscope and other instruments, and then improve the failure theory and simulation model according to the observation results.

3. Experiment of Construction Quality and Safety Measures of Nonlinear Matrix Ferroelectric Composites

In this study, based on this asymptotic homogenization variational dielectric mechanical model, the effective stress relaxation stiffness of nonlinear matrix ferroelectric composites is predicted by the VAM program. Figure 7 shows the fiber arrangement of nonlinear matrix ferroelectric composites. It is worth noting that according to the characteristics of transversely isotropic materials, we can determine that the above formula (8) satisfies \(B_{11} = B_{22}, B_{13} = B_{23}, B_{33} = B_{55} = B_{66}. \) By substituting the properties of the above two components into VAM, the effective stress relaxation stiffness matrix of the composite can be directly obtained. At this time, the load and boundary conditions do not need to be considered, and the composites with fiber fractions of 10%, 30%, and 50% are selected at the same time.

Due to the addition of the aggregate phase, the stiffness coefficient of its composites decreases greatly, so it can match the materials applied in some special environments, and expand the application range of nonlinear ferroelectric composites.

Mesh the above established geometric model. The finer the mesh, the higher the calculation accuracy and the lower the calculation speed. The size of mesh generation should be determined by comprehensively considering the required accuracy and computer computing speed. First, the base is selected for meshing, then the piezoelectric column is selected for meshing, then the epoxy resin is meshed, and finally, the damping block is meshed.

4. Experimental Analysis of Nonlinear Matrix Ferroelectric Composites on Construction Quality and Safety Measures

The viscoelasticity of nonlinear matrix ferroelectric composites is time-dependent, and the variation law of effective stress relaxation stiffness is shown in Figure 8.

The variation law of effective stress relaxation stiffness of composites with fiber volume fractions of 10%, 30%, 50%, and 70% at \(t = 0 \text{s} \) is shown in Figure 9.

It can be seen from Figure 9 that the effective stress relaxation stiffness of nonlinear matrix ferroelectric composites increases with the increase of material volume fraction; With the extension of time, the effective stress relaxation stiffness of nonlinear matrix ferroelectric composites tends to be stable, that is, the stiffness changes stably after \(t = 150 \text{s} \). The material has the advantage of geometric flexibility, can obtain the complete effective coefficient in one analysis, and can be applied to nonlinear matrix ferroelectric composites with arbitrary shape reinforcing phase. Therefore, the effective stress relaxation stiffness and corresponding stress-strain behavior
Figure 7: Fiber arrangement of nonlinear matrix ferroelectric composites.

Figure 8: Effective stiffness of composites with fiber volume fraction of 10% and 30% at $t = 0$ s ($\times 10^4$ MPa).
predicted in the time domain has changed the concept of relying on the traditional correspondence principle of elasticity and linear viscoelasticity. At the same time, the material can be widely extended to predict the nonlinear viscoelastic behavior of nonlinear matrix ferroelectric composites.

5. Conclusion

With the development of China’s construction enterprises, the large-scale development of prefabricated buildings is an inevitable trend, and material safety in the construction process must also be the focus of attention. Quality is the life of an enterprise. To attach importance to the quality of the project is to establish a quality management system and formulate a quality management system. Based on the variational asymptotic homogenization method, a micro-mechanical model is established to fully study its influence on the effective properties and macro mechanical behavior of composites. This provides a research direction for the continuous development of safety and quality comprehensive evaluation of construction projects and also lays a good foundation for further research of construction materials. However, due to the influence of subjective and objective conditions such as time constraints and the lack of statistical data, it still needs a lot of work to establish a more perfect application effect evaluation index system of influencing factors of prefabricated building construction materials. The influencing factors of material safety in construction engineering are complex, and some important indexes lack relevant data, Therefore, the effective properties of building engineering materials explored in this study are not comprehensive.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest in this study.

Acknowledgments

This work was supported by Sichuan Province Luzhou City of Science and Technology Planning Project(2021-jyj-95).

References

[1] C. M. Delshad, S. M. Maleki, and K. Mahdi, “Multiferroic properties of novel lead-free KNN-LT/20NZCFO magneto-electric composites,” Materials Letters, vol. 233, no. 15, pp. 188–190, 2018.

[2] M. A. Kurbanov, I. S. Ramazanova, Z. A. Dadashev et al., “On the electret effect in polymer–ferroelectric piezoceramic composites with various values of the electronegativity of the polymer matrix and piezophase cations,” Semiconductors, vol. 52, no. 1, pp. 64–70, 2018.

[3] P. J. Forsythe, “Construction service quality and satisfaction for a targeted housing customer,” Engineering Construction and Architectural Management, vol. 23, no. 3, pp. 323–348, 2016.

[4] R. Sawan, J. F. Low, and A Schifferauerova, “Quality cost of material procurement in construction projects,” Engineering Construction and Architectural Management, vol. 25, no. 8, pp. 974–988, 2018.

[5] I. M. Shohet, H. H. Wei, M. J. Skibniewski et al., “Integrated communication, control, and command of construction safety and quality,” Journal of Construction Engineering and Management, vol. 145, no. 9, pp. 1–14, Article ID 04019051, 2019.

[6] A. Prakash and M. Phadtare, “Service quality for architects: scale development and validation,” Engineering Construction and Architectural Management, vol. 25, no. 5, pp. 670–686, 2018.
[7] S. Jung, J. Park, Y. Cha, S. Han, and C Hyun, “Improvement of construction quality management through analyzing construction work’s quality inspection results,” Korean Journal of Construction Engineering and Management, vol. 17, no. 1, pp. 110–118, 2016.

[8] H. Y. Ong, C. Wang, and N. Zainon, “Developing a quality-embedded EVM tool to facilitate the iron triangle in architectural, construction, and engineering practices],” Journal of Construction Engineering and Management, vol. 144, no. 9, p. 1, Article ID 04018079, 2018.

[9] F. Bryan, “Total construction management: lean quality in construction project delivery,” Engineering Construction & Environment, vol. 25, no. 2, pp. 295–296, 2018.

[10] A. Spetz, R. Denzer, E. Tudisco, and O Dahlblom, “A modified phase-field fracture model for simulation of mixed mode brittle fractures and compressive cracks in porous rock,” Rock Mechanics and Rock Engineering, vol. 54, no. 10, pp. 5375–5388, 2021.

[11] L. Zhang, H. Wen, J. Lu, D. Lei, and S Li, “Comparing the time-varying topology-based dynamics between large-scale bus transit and urban rail transit networks from a mesoscopic perspective,” Nonlinear Dynamics, vol. 106, no. 1, pp. 657–680, 2021.

[12] L. H. Wang, “Rational thinking on the theory and practice of ecological civilization in the new period of China,” Ecological Economy: English Edition, pp. 102–109, 2015.

[13] A. Alizadeh, F. Mosalanezhad, A. Afrozeh, E. Akbari, and Z Buntat, “Support vector regression and neural networks analytical models for gas sensor based on molybdenum disulfide,” Microsystem Technologies, vol. 25, no. 1, pp. 115–119, 2019.

[14] S. Maniprakash, R. Jayendiran, A. Menzel, and A Rrockiarajan, “Experimental investigation, modelling and simulation of rate-dependent response of 1–3 ferroelectric composites,” Mechanics of Materials, vol. 94, no. mar, pp. 91–105, 2016.

[15] Y. Zhang, P. Fan, H. Fan et al., “Tailoring the strain performance of lead-free relaxor/ferroelectric-layered composites[],” Journal of Electroceramics, vol. 44, no. 951, pp. i–9, 2020.

[16] K. Wadhwani, S. Mathur, and S. Srivastava, “Room temperature magnetic and electrical studies of ferrimagnetic and ferroelectric composites (x)NiFe$_2$O$_4$ + (1–x)BaTi$_{0.9}$Zr$_{0.1}$O$_3$,” Advanced Science, Engineering and Medicine, vol. 11, no. 1, pp. 100–103, 2019.

[17] V. S. Bystrnov, I. K. Bdikin, M. V. Silibin et al., “Pyroelectric properties of ferroelectric composites based on polyvinylidene fluoride (PVDF) with graphene and graphene oxide,” Ferroelectrics, vol. 541, no. 1, pp. 17–24, 2019.

[18] A. Somvanshi, S. Husain, S. Manzoor et al., “Tuning of magnetic properties and multiferroic nature: case study of cobalt-doped NdFeO3,” Applied Physics A, vol. 127, no. 3, pp. 174–218, 2021.

[19] W Jing, S Bowen, Z Kongjun, and Q Linhao, “Effects of the buffer layer on piezoelectric and ferroelectric properties of PMN-PT film-on-Ni foil composites,” Journal of Materials Science: Materials in Electronics, vol. 31, no. 1, pp. 677–683, 2020.

[20] A. Aan, B. Vyt, A. Mit, and A.N Isaeva, “Longitudinal piezoelectric effect and hydrostatic response in novel laminar composites based on ferroelectric ceramics,” Ceramics International, vol. 45, no. 17, pp. 22241–22248, 2019.

[21] M. A. Kurbanov, I. S. Ramazanova, Z. A. Dadashov et al., “Relaxation, thermal, and interphase effects in polymer–ferroelectric-piezoelectric ceramic composites of different structures,” Semiconductors, vol. 53, no. 8, pp. 1092–1098, 2019.

[22] A. V. Petrov, J. Macutkevic, J. Banys et al., “Synthesis and dielectric properties of ferroelectric-ferrimagnetic PZT-SFMO composites,” Modern Electronic Materials, vol. 3, no. 1, pp. 26–31, 2017.

[23] S. Shankar, M. Kumar, V. Tuli, O. P. Thakur, and M Jayasimhadhi, “Energy storage and magnetoelectric coupling in ferroelectric–ferrite composites,” Journal of Materials Science: Materials in Electronics, vol. 29, no. 21, pp. 18352–18357, 2018.

[24] A.S.Dunuzovi, M. Vjatovic-Petrovic, and N. I. Ili, “Magnetoelectric properties of ferrites and ferrite/ferroelectric multiferroic composites,” Processing and Application of Ceramics, vol. 13, no. 1, pp. 104–113, 2019.

[25] N. R. Nadar, M. Krishna, A. V. Suresh, and H.N Narasimha Murthy, “Effect of MWCNTs on piezoelectric and ferroelectric properties of KNN composites,” Materials Science and Engineering, vol. 231, no. MAY, pp. 40–56, 2018.

[26] N. M. Burange, R. K. Pinjari, and B. A. Aldar, “Frequency dependent dielectric properties of Ni-Zn-Co ferrite and barium titinate ferroelectric ME composites,” Journal of Electrical and Electronics Engineering, vol. 9, no. 5, pp. 10–13, 2019.

[27] G. M. Kuz’micheva, O. I. Timaeva, V. B. Rybakov, I. A. Kaurova, A. V. Kosinova, and V. V. Grebenev, “Growth, structure peculiarities, and dielectric properties of ferroelectric KDP/TiO2 single crystals,” Journal of Materials Science, vol. 51, no. 6, pp. 3045–3055, 2016.

[28] G. Yan and W. Xia, “Modification of hydrophobicity of concrete with nanometer composite particles,” Ferroelectrics, vol. 579, no. 1, pp. 176–188, 2021.

[29] A. V. Kalgin, “Direct magnetoelectric effect in bilayered ceramic composites based on Mn$_{0.4}$Zn$_{0.6}$Fe$_2$O$_4$ ferrimagnet and PbZr$_{0.53}$Ti$_{0.47}$O$_3$ ferroelectric,” Physics of the Solid State, vol. 63, no. 7, pp. 992–997, 2021.