Peak Work Rate during Exercise Could Detect Frailty Status in Elderly Patients with Stable Heart Failure

Kazuhiro Kawashima,1 MD, Akihiro Hirashiki,1,2 MD, Kenichiro Nomoto,1 MD, Manabu Kokubo,1 MD, Atsuya Shimizu,1 MD, Takashi Sakurai,1 MD, Izumi Kondo,1 MD, Yukihiro Washimi,1 MD, Hidenori Arai,1 MD, Kenji Toba,1 MD and Toyoaki Murohara,2 MD

Summary
The Kihon Checklist (KCL) is a reliable tool for determining frailty status in the elderly. However, there is no information in the literature about the relationship between frailty status and exercise capacity. Here, we examined the associations between cardiopulmonary exercise testing parameters and frailty status in elderly patients with stable heart failure (HF).

Ninety-two elderly patients with stable HF were evaluated using cardiopulmonary exercise testing and the KCL. A KCL score of 0-3 was classified as robust, 4-7 as pre-frail, and ≥8 as frail.

Mean age, peak VO₂, and KCL score were 81.7 years, 13.2 mL/kg/minute, and 10.7, respectively. KCL score was significantly correlated with peak VO₂ (r = −0.527, P < 0.001) and peak work rate (r = −0.632, P < 0.001). In patients with frailty (n = 63), the peak work rate (WR) was significantly lower than it was in patients without frailty (n = 29; 39.9 versus 69.5 W, respectively; P < 0.001). Multivariate analysis revealed that peak WR and peak systolic blood pressure were significant, independent predictors of frailty (β = −0.108 and −0.045, respectively). In a diagnostic performance plot analysis, a cutoff value for peak WR of 51.9 W was the best predictor of frailty.

Frailty status was significantly associated with peak WR and peak systolic blood pressure in elderly patients with stable HF. Therefore, cardiopulmonary exercise testing may be useful for assessing frailty status in this patient population.

Key words: Cardiopulmonary exercise testing, Peak systolic blood pressure

Frailty is a syndrome associated with aging that produces subclinical dysfunction across multiple organ systems, leading to increased risk of mortality.1 It has been reported that 25-50% of patients with cardiovascular disease are frail.2 The Kihon Checklist (KCL) was developed by the Japanese Ministry of Health, Labour and Welfare to identify older persons with frailty in need of care; it is a reliable tool for predicting general frailty in the elderly.3

Cardiopulmonary exercise testing (CPX) is an established assessment tool in heart failure (HF) populations.4 A major advantage of CPX is that it provides an accurate measurement of exercise capacity; the degree to which ventilation is abnormally heightened during exercise is directly related to HF severity and a strong marker of prognosis.5 In addition, CPX can be performed with adjunctive imaging modalities for diagnostic assessment,6,7 and it has already proven useful for diagnosing HF.8

Given the emerging importance of detecting frailty and sarcopenia in an increasing elderly HF population,9,10 and the already established role of CPX in the HF setting, determining the suitability of using CPX to identify patients with frailty is an important research endeavor. However, to date, there are no studies in the literature examining the associations between CPX parameters and frailty in HF patients.

Here, we evaluated using CPX parameters to detect frailty in elderly patients with stable HF.

Methods

Study population: Ninety-two patients over age 65, who were hospitalized for worsening HF at the Department of Cardiology at the National Center for Geriatrics and Gerontology, Obu, Japan, between August 2016 and July 2018, were enrolled in the study. Worsening HF was defined as pulmonary venous congestion or edema on chest X-ray plus any symptoms (e.g. breathlessness, ankle swel-

From the Department of Cardiology, National Center for Geriatrics and Gerontology, Obu, Japan and Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan. This study was supported by the 2016-2018 Ministry of Health, Labour and Welfare geriatrics and gerontology sponsored-research funds.

Address for correspondence: Akihiro Hirashiki, MD, Department of Cardiology, National Center for Geriatrics and Gerontology, 7-430, Morisaka-cho, Obu, Aichi 474-8511, Japan. E-mail: hirasiki@ncgg.go.jp

Received for publication March 6, 2019. Revised and accepted May 29, 2019.

Released in advance online on J-STAGE November 15, 2019.

doi: 10.1536/ihj.19-120

All rights reserved by the International Heart Journal Association.
Figure 1. Study flow for the present analysis. Of the 342 patients admitted to the cardiology department of our hospital, 92 were included in the present study. CPX indicates cardiopulmonary exercise testing.
Results

Patient characteristics: The patients’ baseline clinical characteristics and a comparison between the non-frail and frail patients are shown in Table I. This study enrolled 92 consecutive elderly patients with HF (54 men (59%); mean age ± SD, 81.7 ± 6.6 years). At the time of enrollment, all patients were stable and on optimal pharmacological therapy according to current HF treatment guidelines.11) The mean (25th, 75th percentile) plasma brain natriuretic peptide (BNP) level was 182 (42, 272) pg/mL, and the mean left ventricular ejection fraction was 57.8% ± 14.3%. Based on the KCL, 68.4% of the patients had frailty (mean KCL score for all patients, 10.7 ± 5.7).

Subjects were allocated to one of two groups based on the absence (n = 29) or presence (n = 63) of frailty. Although there were no significant differences in underlying disease and medication use between the two groups, age was significantly higher in the frail group than in the non-frail group (P = 0.019). Similarly, plasma BNP level was significantly higher in the frail group than in the non-frail group (P = 0.038); however, estimated glomerular filtration rate was comparable in both groups.

Peak VO₂, peak VO₂/HR ratio, peak WR, and ΔVO₂/ΔWR were significantly lower in the frail group than in the non-frail group (P = 0.006, 0.002, < 0.001, < 0.001, respectively). VE/VCO₂ slope was significantly higher in the frail group than in the non-frail group (P = 0.003). Although resting heart rate and resting SBP were comparable in both groups, peak HR and peak SBP during exercise were significantly lower in the frail group than in the non-frail group (P = 0.021 and 0.044, respectively).

CPX parameters for detecting frailty: All CPX parameters during exercise, both at anabolic threshold and peak, were significantly correlated with KCL score (Table II). Of these variables, peak WR, peak VO₂, VE/VCO₂ slope, ΔVO₂/ΔWR, and peak SBP were included in a multivariate analysis to determine their association with KCL score. Ultimately, peak WR and peak SBP were found to be significant independent predictors of frailty (β = −0.108, 95% CI: −0.144 to −0.072, P < 0.001; β = −0.045, 95% CI, −0.074 to −0.016, P = 0.003, respectively) (Table III).

Finally, we performed a diagnostic performance plot analysis to determine the peak WR cutoff value for predicting frailty (KCL score ≥ 8; Figure 2); a peak WR cutoff value of 51.9 W was found to be the best predictor of frailty (accuracy, 0.706; positive predictive value, 0.821; negative predictive value, 0.557).

Discussion

Here, we report, for the first time, that reduced peak WR and peak SBP were strongly associated with KCL frailty status in elderly patients with HF. Other CPX variables, including peak VO₂, VE/VCO₂ slope, and ΔVO₂/ΔWR, were also associated with frailty status. These results indicate that CPX variables, especially peak WR and peak systolic BP, could be important for diagnosing frailty in elderly patients with HF.

Several measurement tools have been developed to assess and measure frailty; however, there remains no internationally agreed upon standard tool. The KCL consists of simple questions and does not involve any special examinations, such as muscle strength or CPX. KCL scores have been shown to correlate significantly with Fried’s frailty phenotype values.12) Satake, et al. compared the diagnosis of frailty severity, based on the KCL criteria and the Cardiovascular Health Study (CHS) criteria, and reported sensitivities and specificities of 70.3% and 78.3% for pre-frail individuals and 89.5% and 80.7% for frail individuals, respectively.13) In the present study, the KCL score and the Japanese version of the CHS (J-CHS) had a concordance rate of 77%. We chose the KCL score to assess frailty severity. However, since associations between the KCL score and physical function in HF patients have not been examined, it remains unclear whether the KCL is also useful for assessing elderly patients with HF. Therefore, in the present study, we focused on evaluating CPX parameters’ clinical usefulness for detecting frailty in elderly patients with stable HF.

Exercise testing remains a remarkably versatile tool that provides valuable diagnostic and prognostic information of patients with cardiovascular or pulmonary disease.4) Although there are several assessment tools for detecting exercise capacity, CPX is one of the most valuable because taxing the mechanisms responsible for external and internal respiration by exercise can frequently reveal abnormalities not apparent at rest.4) Although the mechanisms underlying the development of frailty in the elderly HF population remain unclear, it is easy to imagine over-
lapping pathophysiology between frailty and HF.

In the present study, the average age of the subjects was 81.7 years, 68.5% were classified as frail (KCL score ≥ 8), and the average plasma BNP was 182 pg/mL once they had been stabilized after admission. We consider that these values are standard level of the elderly population who is admitted to hospital due to worsening HF in Japan nowadays. Frail patients had a significantly higher age and significantly lower body mass index than non-frail patients, which is consistent with the general frailty concept. Echocardiogram parameters, such as left ventricular ejection fraction and left arterial dimension, did not differ between patients with and without frailty. In the case of left ventricular ejection fraction, this finding is not surprising given that approximately half of all patients with HF have preserved ejection fraction. Among the biomarkers examined, BNP, suggested to be a strong, independent predictor of cardiac events, was significantly greater in frail patients than in non-frail patients, suggesting that frailty may worsen HF independent of systolic blood pressure.

| Table 1. Baseline Characteristics and Comparison between Non-Frail and Frail Patients |
|-----------------------------------|------------------|------------------|------------------|-----------|
| | All (n = 92) | Non-frail group (KCL score < 8, n = 29) | Frail group (KCL score ≥ 8, n = 63) | P |
| Age (years) | 81.7 ± 6.6 | 79.1 ± 7.6 | 83.1 ± 6.1 | 0.019 |
| Gender (male/female) | 54/38 | 21/8 | 33/30 | 0.124 |
| BMI (kg/m²) | 22.1 ± 4.1 | 24.1 ± 3.6 | 21 ± 3.3 | 0.001 |
| Atrial fibrillation (%) | 33 | 35 | 32 | 0.842 |
| KCL score | 10.7 ± 5.7 | 4.2 ± 2.2 | 13.3 ± 4.0 | <0.001 |
| Robust/Pre-frail (n) | 6/62 | | | |
| J-CHS | 3/44 | | | |
| Cardiomyopathy (%) | 12 | 8 | 14 | 0.377 |
| Ischemic heart disease (%) | 27 | 38 | 23 | 0.259 |
| Hypertension (%) | 9 | 4 | 11 | 0.213 |
| Tachycardia-induced (%) | 17 | 23 | 15 | 0.192 |
| Valve (%) | 11 | 4 | 14 | 0.113 |
| Pacemaker (%) | 11 | 4 | 14 | 0.113 |
| Other (%) | 13 | 19 | 9 | 0.127 |
| Medication | | | | |
| Diuretic (%) | 55 | 39 | 64 | 0.073 |
| Tolvaptan (%) | 22 | 22 | 23 | 0.876 |
| ACE-I/ARB (%) | 52 | 52 | 51 | 0.854 |
| β blocker (%) | 31 | 22 | 32 | 0.412 |
| Spironolactone (%) | 24 | 22 | 23 | 0.876 |
| Anticoagulant (%) | 38 | 39 | 38 | 0.951 |
| Clinical data | | | | |
| LVEF (%) | 57.8 ± 14.3 | 62.1 ± 9.4 | 55.7 ± 15.9 | 0.082 |
| E/e' | 16.0 ± 7.7 | 15.1 ± 7.2 | 16.1 ± 6.7 | 0.534 |
| LAD (mm) | 39.3 ± 6.6 | 40.7 ± 8.3 | 39.1 ± 6.1 | 0.402 |
| WBC (/mm³) | 5718 ± 1923 | 5732 ± 1631 | 5940 ± 2232 | 0.741 |
| HB (g/dL) | 12.1 ± 2.0 | 13.3 ± 1.9 | 11.5 ± 1.9 | 0.001 |
| TP (g/dL) | 6.9 ± 0.6 | 7.2 ± 0.5 | 6.7 ± 0.6 | 0.547 |
| Alb (g/dL) | 3.8 ± 0.5 | 4 ± 0.3 | 3.6 ± 0.6 | <0.001 |
| T. chol (mg/dL) | 175 ± 36 | 186 ± 32 | 173 ± 37 | 0.164 |
| TG (mg/dL) | 111 ± 54 | 120 ± 59 | 107 ± 68 | 0.637 |
| HbA1c (%) | 6.1 ± 0.7 | 6.1 ± 0.4 | 6.2 ± 0.8 | 0.602 |
| BNP (pg/mL) | 173 ± 178 | 123 ± 144 | 222 ± 195 | 0.038 |
| eGFR (mL/minute/1.73 m²) | 50 ± 19 | 56 ± 14 | 48 ± 23 | 0.101 |
| CPX data | | | | |
| RER | 1.09 ± 0.07 | 1.09 ± 0.05 | 1.09 ± 0.08 | 0.599 |
| Peak VO₂ (mL/kg/min) | 13.2 ± 3.8 | 15.1 ± 4.5 | 12.1 ± 2.9 | 0.006 |
| Resting HR (bpm) | 72 ± 12 | 74 ± 10 | 71 ± 13 | 0.429 |
| Peak HR (bpm) | 109 ± 19 | 117 ± 21 | 105 ± 17 | 0.021 |
| Resting SBP (mmHg) | 136 ± 22 | 143 ± 18.9 | 132 ± 25 | 0.078 |
| Peak SBP (mmHg) | 180 ± 34 | 192 ± 38 | 174 ± 32 | 0.044 |

BMI indicates body mass index; KCL, Kihon checklist; J-CHS, the Japanese version of the Cardiovascular Health Study; HR, heart rate; ACE-I, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; LVEF, left ventricular ejection fraction; E/e’, ratio of early transmural flow velocity to early diastolic mitral annular velo-
city; LAD, left atrium dimension; WBC, white blood cell; Hb, hemoglobin; TP, total protein; Alb, albumin; T. Chol, total cholesterol; TG, triglyceride; HbA1c, glycated hemoglobin; BNP, brain natriuretic peptide; eGFR, estimated glom-
erular filtration rate; RER, respiratory exchange ratio; WR, work rate; CPX, cardiopulmonary exercise testing; and SBP, systolic blood pressure.
In the present study, all the CPX parameters during exercise were significantly correlated with KCL score (Tables II, III). In addition, the CPX parameters had generally stronger correlations with KCL score compared with the resting biomarkers and echocardiogram parameters. Of the CPX parameters examined, peak WR was superior to peak VO2 as a diagnostic marker of increased KCL score. Ultimately, we found that peak WR and peak SBP were significant independent predictors of frailty (Table III) and that a peak WR less than around 50 W could indicate the presence of frailty in elderly patients with stable HF.

Peak WR is one of the most powerful prognostic predictors used in HF management.20) Peak WR is a combined measure of muscular strength and endurance. Subjective symptoms in daily activity, particularly dyspnea on exertion, are due to a lack of muscular endurance in patients with chronic HF.18) Muscular strength and endurance, combined with quadriceps muscle area, are also major predictors of peak WR in patients with chronic HF.17) Frailty likely affects muscle activity rather than cardiac output; suggesting that peak WR is more useful than other CPX variables, including peak VO2, for assessing frailty status in elderly patients with HF.

We also found that peak SBP was an independent predictor of frailty. It has been reported that reduced exercise duration and peak SBP are independent predictors of all-cause mortality in ambulatory patients with chronic HF.18) Similarly, exercise cardiac power (a non-invasive surrogate for cardiac power output), which is the product of peak VO2 and peak SBP,19) has been reported to be predictive of prognosis in HF.19) These findings imply the importance of assessing cardiac pumping capability during exercise in patients with HF. In contrast to peak SBP, we found no correlation between resting SBP and KCL score; therefore, the relationships among resting and peak SBP and frailty status remain unclear, and further prospective studies are warranted.

Table II. Correlations between CPX Parameter and KCL Score

CPX parameter	r	P
RER	−0.07	0.571
WR at AT (W)	−0.557	< 0.001
Peak WR (W)	−0.632	< 0.001
VO2 at AT (mL/minute/kg)	−0.291	0.019
Peak VO2 (mL/minute/kg)	−0.527	< 0.001
VE/VO2 slope	0.435	< 0.001
ΔVO2/ΔWR	−0.621	< 0.001
Resting SBP (mmHg)	−0.165	0.182
Peak SBP (mmHg)	−0.37	0.002

AT indicates anaerobic threshold; and VE, minutes of ventilation. Other abbreviations are as in Table I.

Table III. Results of the Multivariate Analysis with KCL Score

$β$	95% CI	P	
Peak WR	−0.108	−0.144 to −0.072	< 0.001
Peak SBP	−0.045	−0.074 to −0.016	0.003

After adjusting WR at AT, VO2 at AT, peak VO2, VE/VO2 slope, and ΔVO2/ΔWR. Abbreviations are as in Tables I and II.
The recognition of frailty within the medical community has created the need for diagnostic tests to determine when a patient’s physical ability has deteriorated. CPX is a non-invasive diagnostic tool that can be used to detect changes in exercise capacity over time. We found that using CPX to assess peak WR, rather than assessing resting echocardiography parameters or biomarkers, could be useful for detecting frailty in elderly patients with stable HF. To our knowledge, this is the first study to examine the use of CPX variables to assess frailty status. The primary goals of HF therapy are to improve quality of life, reduce exacerbation frequency, and extend survival. Currently, there is no specific therapy for HF patients with frailty. Although we considered the frail patients in the present study to be optimally medicated, based on current HF guidelines,21 they were often receiving polypharmacy, which is problematic because age-related changes in absorption and metabolism alter most drugs’ pharmacokinetics.20 Using CPX to detect frailty could not only lead to early therapeutic intervention but also provide safe, effective exercise training based on an exercise prescription. This was a single-center study with a small sample size. Moreover, we did not assess repeated measures over time or investigate the incidence of cardiac events in enrolled patients. We also did not assess changes in the trajectory of exercise capacity or frailty due to medical intervention or cardiac rehabilitation. Cardiac rehabilitation is a comprehensive, secondary prevention program designed to optimize physical activity and health in the context of known disease; as such, it provides important opportunities to address the idiosyncratic needs of elderly patients with HF.20,26 Of note, not all elderly HF patients can undertake CPX because a certain amount of physical ability is required.

Conclusion

The present study showed that peak WR and peak SBP during exercise were strongly associated with frailty status in elderly patients with stable HF. Peak VO\textsubscript{2}, VE/ VCO\textsubscript{2} slope, and ΔVO\textsubscript{2}/ΔWR were also associated with frailty status in this population. Thus, CPX variables could be useful for diagnosing frailty in elderly patients with stable HF.

Acknowledgments

The authors are indebted to the staff members of the National Center for Geriatrics and Gerontology, Obu, Japan, particularly Kimiko Hori (physiological technician) and Naoki Ito, Kenji Sato, and Kakeru Hashimoto (physical therapists), and Ikue Ueda (occupational therapist).

Disclosure

Conflicts of interest: There are no conflicts of interest to declare.

References

1. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56: M146-56.
2. Afifalo J. Frailty in patients with cardiovascular disease: Why, When, and How to Measure. Curr Cardiovasc Risk Rep 2011; 5: 467-72.
3. Satake S, Shimada H, Yamada M, et al. Prevalence of frailty among community-dwellers and outpatients in Japan as defined by the Japanese version of the Cardiovascular Health Study criteria. Geriatr Gerontol Int 2017; 17: 2629-34.
4. Balady GJ, Arena R, Siessema K, et al. Clinician’s Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 2010; 122: 191-225.
5. Guazzi M, Myers J, Peberdy MA, et al. Echocardiography with Tissue Doppler Imaging and cardiopulmonary exercise testing in patients with heart failure: a correlative and prognostic analysis. Int J Cardiol 2010; 143: 323-9.
6. Yamada T, Hirashiki A, Okumura T, et al. Prognostic impact of combined late gadolinium enhancement on cardiovascular magnetic resonance and peak oxygen consumption in ambulatory patients with nonischemic dilated cardiomyopathy. J Card Fail 2014; 20: 825-32.
7. Takagawa Y, Yagi S, Ise T, et al. Improved exercise capacity after cardiac rehabilitation is associated with reduced visceral fat in patients with chronic heart failure. Int Heart J 2017; 58: 746-51.
8. Arai H, Satake S. English translation of the Kihon Checklist. Geriatr Gerontol Int 2015; 15: 518-9.
9. Satake S, Senda K, Hong YJ, et al. Validity of the Kihon Checklist for assessing frailty status. Geriatr Gerontol Int 2016; 16: 709-15.
10. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 2003; 167: 211-77.
11. Hunt SA. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol 2005; 46: e1-82.
12. Sewo Sampaio PY, Sampaio RA, Yamada M, Arai H. Systematic review of the Kihon Checklist: Is it a reliable assessment of frailty? Geriatr Gerontol Int 2016; 16: 893-902.
13. Hogg K, Swedberg K, McMurray J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis. J Am Coll Cardiol 2004; 43: 317-27.
14. Berger R, Huelmans M, Streeker K, et al. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation 2002; 105: 2392-7.
15. Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J 2008; 29: 2388-442.
16. Suzuki K, Omiya K, Yamada S, et al. Relations between strength and endurance of leg skeletal muscle and cardiopulmonary exercise testing parameters in patients with chronic heart failure. J Cardiol 2004; 43: 59-68.
17. Senden PJ, Sabelis LW, Zonderland ML, et al. Determinants of maximal exercise performance in chronic heart failure. Eur J Cardiovasc Prev Rehabil 2004; 11: 41-7.
18. Williams SG, Jackson M, Ng LL, Barker D, Patwala A, Tan LB. Exercise duration and peak systolic blood pressure are predictive of mortality in ambulatory patients with mild-moderate chronic heart failure. Cardiology 2005; 104: 221-6.
19. Cohen-Solal A, Tabet JY, Logeart D, Bourgoin P, Tokmakova M, Dahan M. A non-invasively determined surrogate of cardiac power (‘circulatory power’) at peak exercise is a powerful prognostic factor in chronic heart failure. Eur Heart J 2002; 23: 806-14.

20. Tan LB, Bain RJ, Littler WA. Assessing cardiac pumping capability by exercise testing and inotropic stimulation. Br Heart J 1989; 62: 20-5.

21. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129-200.

22. Veronese N, Stubbs B, Noale M, et al. Polypharmacy is associated with higher frailty risk in older people: An 8-year longitudinal cohort study. J Am Med Dir Assoc 2017; 18: 624-8.

23. Menezes AR, Lavie CJ, Forman DE, Arena R, Milani RV, Franklin BA. Cardiac rehabilitation in the elderly. Prog Cardiovasc Dis 2014; 57: 152-9.

24. Forman DE, Rich MW, Alexander KP, et al. Cardiac care for older adults. Time for a new paradigm. J Am Coll Cardiol 2011; 57: 1801-10.