Signature-Based Searches for New Physics Involving Photons at the Tevatron

R. E. Blair
Argonne National Laboratory
Motivation

- As rare phenomenon are observed theorists get ever more creative in devising new possibilities for why
 - why limit ourselves to the current crop of TOE
 - review the exotic signatures and see if anything sticks out
- Photons are a good candidate since they don't add a big mass burden to the event and are reasonably rare
- Cautionary note
 - looking for rare phenomenon sometimes succeeds in finding fluctuations
 - one such fluctuation is the ee\gamma\gamma missing E_T event described in the 1995 PP workshop at FNAL
 - we've been looking for another for 15 years
- Perhaps because of the above event this has been a popular CDF sport
- D0 has a dark photon & GMSB search but nothing that fits this description so all the results here are from CDF
Where might you look?

- Searches described here include
 - $\gamma\gamma$ plus
 - τ
 - e
 - μ
 - Missing E_T
 - $\gamma+jet+b+missing\ E_T$
 - $\gamma+b+missing\ E_T+lepton\ (e\ or\ \mu)$
 - this one is of particular interest because it includes $t\bar{t}\gamma$ events
- Numerous as yet unconfirmed theories lead to such signatures
 - SUSY, Technicolor, associated Higgs production...
Diphoton + X searches

Two triggered photons
- 2 photon candidates
 - both isolated with $E_T > 12$ GeV
 - no isolation requirement but both with $E_T > 18$ GeV

Candidate events have:
- 2 candidates with $E_T > 13$ GeV & $0.05 < |\eta| < 1.05$
 - shower maximum lateral profile consistent with single shower
 - no high P_T tracks pointing at the candidate
 - isolation (track and calorimeter) in a cone of $\Delta \eta, \Delta \phi$ with $R < 0.4$
 - calorimeter $0.1 X E_T$ for $E_T < 20$ GeV or 2.0 GeV $+ 0.02 X (E_T - 20$ GeV) above 20 GeV
 - track:: 2.0 GeV $+ 0.005 X E_T$

Sample of $\gamma \gamma$ from 2.0 ± 0.1 fb$^{-1}$
- 31,116 candidates (~30% true diphotons)
- 42,708 control events with at least one failed γ
γγ plus τ results

- τ reconstruction using calorimeter and shower max. for π⁰ plus tracking
 - Mass <1.8 GeV/c²
 - Reconstruction in cone with size dependent on E_T
 - θ<0.17 for 30 GeV
 - θ<0.05 for 100 GeV
 - Isolation annulus with outer radius of 0.52
 - Track P_T<1.0GeV
 - π⁰E_T<0.6GeV
- 34 events observed in 2.0±0.1 fb⁻¹
 - Expect 46±10
$\gamma\gamma$ plus τ results

- Fake τ dominates the background (44 out of 46 events)
$\gamma \gamma$ plus lepton results

- $1.1 \pm 0.1 \text{ fb}^{-1}$
- $E_T > 20 \text{ GeV}$
- SM sources estimated using Madgraph+Pythia for $Z/W\gamma \gamma$ K factor of 1.4 for LO->NLO
- Background estimates come from event sample plus rates of jet or e to fake gamma
- Table includes a cut on silicon hits pointing at γ (events plotted don't have this cut which adds 2 such events)

Source	electron	muon
$Z\gamma\gamma$	0.82 ± 0.08	0.50 ± 0.05
$W\gamma\gamma$	0.15 ± 0.02	0.08 ± 0.01
$l\gamma+e\rightarrow\gamma$	2.26 ± 0.46	0.004 ± 0.004
$l\gamma+jet\rightarrow\gamma$	0.44 ± 0.26	0.12 ± 0.08
Fake $l+\gamma\gamma$	0.12 ± 0.05	0.004 ± 0.004
Total	**3.79 ± 0.54**	**0.71 ± 0.10**
Observed	**1**	**0**
γγ plus electron results
Expected muon distributions
\(\gamma \gamma \) plus \(E_T \)

- Missing \(E_T \) modeled using detailed understanding of jet resolution and underlying event contribution
 - Significance constructed to estimate log likelihood of a given event missing \(E_T \)

- Several other sources estimated
 - Incorrect vertex
 - Other vertices considered and if one produces less missing \(E_T \) it is used instead
 - Leaves cases where other vertex is not reconstructed (this contribution is estimated)
 - Three gamma events with a missing gamma (this is estimated from the data)
 - Non collision events (cosmic rays) TDC's used to estimate this
\(\gamma\gamma \) plus missing \(E_T \)
$\gamma\gamma$ plus missing E_T

	signif.>3	signif.>4	signif.>5
EWK	35.4 ± 2.2	29.9 ± 2.0	25.9 ± 1.9
Total exp.	71.7 ± 7.5	39.0 ± 3.1	30.4 ± 2.4
Observed	82	31	23
\(\gamma+\text{jet}+b+\text{missing } E_T\)

PRD 80, 052003 (2009)

- Photon candidate with \(E_T > 25\) GeV and \(|\eta|<1.1\)
- Two jets with \(E_T > 15\) GeV and \(|\eta|<2.0\)
- \(\Delta R > 0.4\) for all of the above (\(\gamma\) and jets)
- Missing \(E_T > 25\) GeV
- \(\Delta \phi(\text{jet and met}) > 0.3\)
- 1 SECondary VerTeX (SECVTX) b tag
 - 617 events satisfy above
 - Expect \(607 \pm 74\) (stat.) \(\pm 86\) (syst.)
 - This includes \(115 \pm 49 \pm 54\) fake \(\gamma\) and \(141 \pm 6 \pm 30\) true \(\gamma\) fake b
 - \(\gamma\) b \((341 \pm 18 \pm 91)\) dominates
- Veto events with track (\(P_T > 20\) GeV) carrying \(> 90\%\) track \(\Sigma P_T\) in \(\Delta R < 0.4\)
 - 17 events eliminated by this cut
- 600 events satisfy all cuts in 2.0 fb\(^{-1}\) sample
\(\gamma + \text{jet} + b + \text{missing } E_T \)
$\gamma + b + \text{missing } E_T + \text{lepton (e or } \mu \text{)}$

PRD 80, 011102(R) (2009)

- $\gamma + b + \text{missing } E_T + \text{lepton (e or } \mu \text{)}$ 1.9 fb$^{-1}$ (trigger on high P$_T$ lepton)
 - Central photon with E$_T>10$ GeV
 - B tagged jet with E$_T>15$ GeV
 - Missing E$_T>20$ GeV
 - e or μ with E$_T>20$ GeV

- 28 events observed
 - Expect 31.0(+4.1-3.9)
 - Dominated by jets faking γ and mistagged b jets (7.58\pm3.11 & 7.65\pm0.70 respectively)
 - Top plus gamma come in next (semileptonic: 3.58\pm0.65 & dilepton: 2.32\pm0.41)

- subsample rich in $t\bar{t}\gamma$
 - require $H_T>200$ GeV
 - require $N_{\text{jets}} \geq 3$
\(\gamma + b + \text{missing } E_T + \text{lepton (e or } \mu) \)

SM Source	\(e\gamma bE_T \)	\(\mu\gamma bE_T \)	\((e+\mu)\gamma bE_T\)
\(tt\gamma \) semileptonic	2.06 ± 0.38	1.52 ± 0.28	3.58 ± 0.65
\(tt\gamma \) dileptonic	1.30 ± 0.23	1.02 ± 0.18	2.32 ± 0.41
\(W^\pm c\gamma \)	0.75 ± 0.16	0.72 ± 0.15	1.47 ± 0.26
\(W^\pm c\gamma \)	0.08 ± 0.04	0.22 ± 0.06	0.30 ± 0.08
\(W^\pm b\gamma \)	0.62 ± 0.11	0.42 ± 0.08	1.04 ± 0.17
\(Z(\tau\tau)\gamma \)	0.13 ± 0.09	0.11 ± 0.08	0.24 ± 0.12
\(WZ \)	0.08 ± 0.04	0.01 ± 0.01	0.09 ± 0.04
\(\tau \to \gamma \) fake	0.12 ± 0.01	0.10 ± 0.01	0.22 ± 0.01
Jet faking \(\gamma \)	4.56 ± 1.92	3.02 ± 1.19	7.58 ± 3.11
Mistags	4.11 ± 0.41	3.54 ± 0.37	7.65 ± 0.70
QCD	1.49 ± 0.77	0^{+1}_{-0}	1.49^{+1.30}_{-0.77}
\(eeE_T b, e \to \gamma \)	1.50 ± 0.28	-	1.50 ± 0.28
\(\mu eE_T b, e \to \gamma \)	-	0.45 ± 0.10	0.45 ± 0.10

Predicted | 16.8 ± 2.2\((\text{tot})\) | 11.1^{+1.7}_{-1.4}\((\text{tot})\) | 27.9^{+3.6}_{-3.5}\((\text{tot})\) |

Observed | 16 | 12 | 28 |
$\gamma + b + \text{missing } E_T + \text{lepton (e or } \mu \text{)}$
Require $H_T > 200$ GeV and $N_{jets} > 2$

16 events with ~ 4 expected top plus gamma (11.2+2.3-2.1 expected total)
$\gamma + b + \text{missing } E_T + \text{lepton (e or } \mu\text{)}$

- Subtracting non-top sources yields $0.15 \pm 0.08\text{pb for } t\bar{t}\gamma$
Conclusion

- No surprises so far.
- Tevatron physics is going strong!
 - Sensitive to processes that are two orders of magnitude rarer than top production
 - Lots more data to come