Responses of the ecological characteristics and antioxidant enzyme activities in *Rotaria rotatoria* to UV-B radiation

Lingyun Zhu · Rong Huang · Libin Zhou · Yilong Xi · Xianling Xiang

Received: 13 February 2021 / Revised: 16 June 2021 / Accepted: 16 July 2021 / Published online: 27 July 2021

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract UV-B radiation is an increasing threat to aquatic organisms and also a potential driving force for zooplankton population dynamics. To explore the ecological effects of UVR on rotifers and the responses of antioxidant system against UVR, the acute lethal effects, the life history strategies, population growth, and antioxidant enzyme activities were assessed in the Bdelloid *Rotaria rotatoria* after exposure to UV-B radiation. The results indicated that the persistence of tolerance in rotifer to stress was playing a more vital role than the radiation dose in survival. The larger the culture volume, the weaker the lethal effect. Rotifers prolonged their first reproductive time and shortened their reproductive period and longevity with the increasing of radiation dose, and the fecundity was significant inhibited by UV-B radiation. These responses can be taken as energy trade-off to retard their mortality. The population density of the rotifers increased at the lowest dose of radiation and then descended with the increasing of UVR dose, and this pattern was also corroborated by detecting the content of SOD and CAT, which suggested that hormesis also applies to *R. rotatoria* under UV-B radiation stress. The enzyme SOD has higher level of content and more sensitive to low UVR than CAT.

Handling editor: Bernadette Pinel-Alloul

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10750-021-04671-1.

L. Zhu · R. Huang · Y. Xi · X. Xiang
School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
e-mail: xlxiang@ahnu.edu.cn

L. Zhou
Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, People’s Republic of China

L. Zhou · X. Xiang
Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands

Y. Xi · X. Xiang
Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, People’s Republic of China
Keywords UV-B radiation · Life history · Population growth · Antioxidant enzyme · Rotifer

Introduction

Ultraviolet radiation is an important case of exogenous factor that is ecologically relevant for small-bodied invertebrates (Heine et al., 2019). Over the past few decades, it has been well demonstrated that nature ultraviolet-B (UV-B) radiation increased significantly with the continuing depletion of stratospheric ozone, which has becoming one of the grave concerns and most striking global changes (Robinson & Erickson, 2015; Peng et al., 2017). There is growing evidence that adverse biological effects of ambient ultraviolet radiation exposure occur in not only marine but also freshwater ecosystem at different trophic levels (Häder et al., 2007; Peng et al., 2017), involving algae (Sun et al., 2020), rotifers (Luijckx et al., 2018; Colangeli et al., 2019), copepods (Puthumana et al., 2017; Laspmoumaderes et al., 2019), cladocerans (Fernández & Rejas, 2017), shrimps (Harbi et al., 2018; Marcoval et al., 2018), and fishes (Lawrence et al., 2020). In all cases, UVR was found to harm the organisms in question by damaging DNA directly at the molecular level and affect fitness at the individual and population levels (Grad et al., 2001). In terms of the former case, excessive UVR may cause oxidative stress by generating reactive oxygen species (ROS) that are highly reactive molecules and can directly damage DNA, lipids, and proteins, resulting in the elevated antioxidant enzymatic activity and linking to modulation of the expression of DNA repair-related genes as an efficient defense mechanism (Kim et al., 2015). For the latter, UV radiation acts as a stressor for several physiological processes that lead to reduced survival and limited reproduction capacity, associating with detrimental effects on life-cycle parameters and population growth of small-sized organisms (Malloy et al., 1997; Wong et al., 2015; Han et al., 2016).

Taking into account the sensitivity of zooplankton to ambient ultraviolet radiation, an increasing number of works have been focusing on the negative effects of increased UV-B radiation on zooplankton (Grad et al., 2001; Rautio & Tartarotti, 2010; Peng et al., 2017). The bdelloid rotifer, a kind of ancient asexually invertebrate, is the largest metazoan group that reproduces only through parthenogenesis, simultaneously notorious for the features of anhydrobiotic capability and horizontal gene transfer (Mark Welch & Meselson, 2000; Barracough et al., 2007; Hespeels et al., 2020). These features are considered to be responsible for their success in adapting to most types of habitats (moss, lichens, temporary pools, soil, and water), stress tolerance, and having persisted asexually for millions of years (Ricci, 1983; Flot et al., 2013). The radio resistance in bdelloid rotifers has been reported with a 137Cs source, which indicated that reproduction of the bdelloids Adineta vaga (Davis, 1873) and Philodina roseola (Ehrenberg, 1830) is much more resistant to ionizing radiation (IR) than that of monogononta rotifer (Gladyshev & Meselson, 2008), and Krisko et al. (2012) found that A. vaga is far more resistant to IR-induced protein carbonylation than the much more radiosensitive nematode Caenorhabditis elegans (Maupas, 1900). In another study, the survival of A. vaga was reduced under IR stress, what could be mediated by endogenously generated oxidative stress induced by reproduction (Latta et al., 2019). When exposing P. roseola to UV-B radiation, it appeared to shield itself from DNA damage through uncharacterized UV-absorbing compounds, but it was largely impossible to repair UV-B-induced damage. Fischer et al. (2013) reported that UV-irradiation had a significant negative impact on the reproductive output of P. roseola but was shown to have no significant effects on monogononta rotifer Brachionus rubens (Ehrenberg, 1838). The above incongruous founding could be attributed to the type of radiation and the intensity and dose they were exposed to. Therefore, further investigations are needed with the respects of the effects of exposure to incident UV-B on the reproduction, survival, and defense system in bdelloid rotifers.

Rotaria rotatoria (Pallas, 1766) is a conventional bdelloid rotifer species, which offers an advantageous model for investigating the ecological consequences of enhanced UV-B. Given the strong tolerance of bdelloid rotifer to environmental stressors, such as IR radiation (Gladyshev & Meselson, 2008; Krisko et al., 2012), we hypothesized that R. rotatoria could also hold the ability to tolerate significant UV radiation, and this capacity may be associated with the trade-off strategies among life historic components. In aquatic ecosystems, the tolerance and resistance of rotifer to
ultraviolet radiation could be varied depending on the culture volume, radiation intensity, and duration. With this study, we examined the radiation lethality of UV-B (280 to 400 nm) under different culture systems, the responses of population growth, and fecundity of the *R. rotatoria* to the incident UVR, and measure the levels of superoxide dismutase (SOD) and catalase (CAT) of *R. rotatoria* under adverse conditions. We aimed to (1) detect the acute lethal effects of UVR to bdelloid rotifer; (2) estimate the ecological effects of harmful UVR on bdelloid rotifers; and (3) explore the responses of antioxidant system in bdelloid rotifers against UV radiation toxicity.

Materials and methods

Rotifer collection and culture

The *R. rotatoria* was sampled at a pond near Jing village (31° 73′ 67″ N, 118° 33′ 72″ E) in Hexian County, Anhui Province, China. Then the rotifers were isolated individually under microscope and cultured in the 28°C constant temperature incubator. The EPA medium, used to maintain rotifers, was freshly prepared by dissolving 96 mg NaHCO₃, 60 mg CaSO₄, 60 mg MgSO₄, and 4 mg KCl in 1 L of distilled water (pH 7.4–7.8) (Peltier & Weber, 1985). The algae *Scenedesmus obliquus* (Turpin) Kützing 1833, purchased from Freshwater Algae Culture Collection at the Institute of Hydrobiology (FACHB-collection), were semi-continuously cultured in HB-4 medium (Li et al., 1959) with the 16:8 light:dark photoperiod of 3000lx fluorescent light and 28°C illumination incubator. The algae were stored at 4°C for using as rotifer foodstuff after centrifuging in exponential growth. We estimated the density of the algal concentrate by a hemocytometer, and the eventually density of the algal fed by rotifers is 1.0 × 10⁶ cells/mL.

UV-B radiation settings

The ultraviolet radiation was supplied with UV-B lamps as the sole light source, which simulates the ultraviolet rays of the sun with the wavelength range of 280 to 312 nm and the main peak of 308 nm (UVB-308NM 8W, Shengzheng Guanya Optoelectronic Technology Co., Ltd.). The intensity of UVR was measured by a UV-B radiometer manufactured by Beijing Normal University. In order to ensure that rotifers were under the same UVR intensity, they were placed on the low-speed rotating platform directly below UV-B lamps. Furthermore, to obtain the stable intensity of UV light source, the lamp was turned on 30 min before the experiment began. For the following specific assay (mortality test, life history, population growth, and determination of antioxidant), the animals will be treated with different doses of UVR by exposing them under UV-B radiation for different times.

Mortality test

Before starting the experiments, the rotifer population was precultured at 28°C for at least one month to minimize maternal effects. To obtain the value for 50% of the lethal dose (semi-lethal dose, LD₅₀) upon UV-B radiation in three culture volumes of 0.5 ml, 6 ml, and 30 ml, we introduced 10 neonates (less than 6 h old) into different culture vessels (1-ml 24-well culture plate, 8-ml glass jars, and 50-ml beakers, respectively, resulting in the maximum water depth of 0.5, 1.6, and 2.3 cm, respectively.) which contained EPA medium with 1.0 × 10⁶ cells/ml of *S. obliquus* and exposed them to constantly UV-B radiation at the intensity of 0.01, 0.02, 0.03, 0.04, and 0.05 mW/cm². Under five radiation intensities (from 0.01 to 0.05 mW/cm²), the UV-B source was maintained at a fixed distance of 45, 32, 24, 19, and 16 cm, respectively. In total, 540 neonates were tested (10 neonates/treatment × 3 replicates × 3 volumes × 5 UVR intensities, and one control group). The culture vessels were shaded with a quartz cover to allow UV-B transparency and to prevent evaporation during UV-B exposure. Thereafter, the survival of rotifers was checked every half hour under a stereomicroscope until each individual of every cohort died. The standard for evaluating the death of rotifers in the experiment is the stop of cilia movement and visceral peristalsis. Then the LD₅₀ values were, respectively, derived following the probit method (Finney, 1971).

Life history experiment

According to the lethal effect assay, to ensure that the rotifer can complete the whole life history, the radiation intensity was set as 0.01 mW/cm², so the
radiation dose in this experiment was 0, 0.012, 0.024, 0.036, 0.048, 0.060, 0.072, and 0.084 kJ/m² (0, 2, 4, 6, 8, 10, 12, and 14 min radiation duration, respectively, each day). After preculture of one month at 28 °C, the neonates (less than 6 h old) were separated indiscriminately and transferred into each well of 1-ml 24-well culture plate (working volume, 0.5 ml EPA with 1.0 × 10⁶ cells/ml of S. obliquus). The 24 individuals were inspected for each radiation dose, so 384 neonates in total were prepared and then exposed to UV-B radiation. After UVR treatment, we checked the rotifers every 12 h during the first two days, followed by observation every 6 h until each infant grow into an adult and produced the first offspring. Then they were examined every 12 h until the end of experiment. Meanwhile, the time and number of the offspring produced and the death time of female adult were recorded. During the life table experiment, the surviving mature females were exposed to UV-B radiation at the same time every day, observed and transferred to clean culture plates with fresh food and medium, and the counted neonates were removed.

Population growth

In order to enable the rotifer population to grow smoothly, the radiation intensity was set to 0.02 mW/cm², and the UVR dose was 0 (control), 0.012, 0.024, 0.048, 0.096, 0.192, and 0.384 kJ/m² (0, 1, 2, 4, 8, 16, and 32 min radiation duration, respectively, each day). Before the formal experiment, the rotifer population was precultured at 28 °C for one month. After that, 252 alive neonates (less than 6 h old) were collected and placed equally into 21 8-ml glass jars (7 treatments × 3 replicates) containing 6 ml of EPA medium with 1.0 × 10⁶ cells/ml of algae food. These organisms were exposed to UV-B radiation at the same time every day until the end of experiment. To avoid the disadvantageous effects of UVR on algae cells, S. obliquus at the density of 1.0 × 10⁶ cells/ml was fed to rotifers after the radiation treatment once a day. The rotifers were maintained in a 28 °C incubator without light and counted once every day before the radiation treatment in the first few days, while sampling counted when the population is large.

Determination of catalase and superoxide dismutase activity

The radiation dose was designed to be 0 (control), 0.36, 0.72, 1.44, and 2.16 kJ/m² at the intensity of 0.02 mW/cm². To meet the demand for detecting the enzyme activity, adequate numbers of rotifer were necessary, and 90 50-ml beakers (≈ 3000 individuals in 30-ml culture volume) were dealt with in total (6 beakers/treatment × 5 treatments × 3 replicates). After preculture as stated above and starvation for one day, rotifers were exposed to the UVR (0, 0.5, 1, 2, and 3 h radiation duration, respectively). Then the rotifers were sampling counted and filtered rapidly using a plankton net (mesh size, 20 μm), washed several times with double distilled water, centrifuged, and immediately froze at – 80 °C for use within 10 days. The rotifers on ice thawed gradually in a temperature gradient were homogenized by ultrasonication and centrifuged at 10,000 × g for 10 min at 4 °C. The supernatant containing the enzyme was collected for the enzymatic assay according to the protocols (SOD by WST-1 method: Cat. No. A001-3; CAT by visible spectrometry method: Cat. No. A007-1; both manufactured by Nanjing Jiancheng Bioengineering Institute, China). The SOD and CAT activities were then measured at the absorbance of 450 nm and 405 nm using an enzyme-labeled meter at 25 °C. The soluble protein content in R. rotatoria was measured using Pierce™ BCA Protein Assay Kit (Cat. No. 23227, Thermo Fisher Scientific) according to the protocol direction.

Data analysis

Statistical analysis was performed using SPSS19.0 software. All data were tested for normality using the one-sample Kolmogorov–Smirnov procedure. The homogeneity of variances was checked using Levene’s test. One-way analysis of variance (ANOVA) and residual analysis were conducted to identify the significant effects of UVR on the lethal effects, life history parameters in rotifer, and multiple comparisons were conducted using Student–Newman–Keuls (SNK) to identify which groups were significantly different among different radiation doses, and the significance level was corrected by the formula $a' = a/m$, of which $a = 0.05$ and m is the number of simultaneously tested hypotheses according to the
Bonferroni adjustments (Morgan, 2007; Chen et al., 2017). Consequently, regression analysis was performed on the relationships of the dose–response.

The durations of juvenile period (JP, the time between a neonate and that producing the first offspring), reproductive period (RP, the time between an adult producing the first offspring and the last offspring), longevity, and offspring of rotifers grown at different doses of UV-B radiation were calculated depended on the recorded data. In the population growth experiment, the population growth rate was calculated using the formula,

\[r = \ln N_t - \ln N_0/t, \]

where \(N_0 \) is the initial population density (2 ind./ml), and \(N_t \) is the population density at time \(t \) in days (Krebs, 1985).

Results

Under different intensities of UV-B radiation, all treatments caused lethal effects on \textit{R. rotatoria}, and the time for the rotifers to die as well as all the rotifers have died moved in advance with the increasing of radiation intensity. The multiple comparisons showed that the radiation duration at the half death of rotifers (semi-lethal exposure time, LT \(_{50}\)) decreased significantly with the enhancing of radiation intensity at the same culture volumes, which indicated that the rotifers are more sensitive to the high intensity of UVR. While comparing the LD \(_{50}\) in terms of dose, the regularity in lethal effects was not obvious. The highest and lowest LD \(_{50}\) of rotifers were 2.5603 and 1.8021 kJ/m \(^2\) in the culture volume 0.5 ml, respectively, while they were 3.2774 and 2.2321 kJ/m \(^2\) for 6 ml. For these two culture volume, both of the highest LD \(_{50}\) occurred under the weakest radiation intensity (0.01 mW/cm \(^2\)).

With regard to the age-specific fecundities (\(m_x \)), the reproduction peak of the rotifers was 1.63 at 4th day for the control group, while the other peaks were 1.42, 1.21, 0.92, 0.78, 0.45, 0.44 and 0.29 at 4th, 4th, 5th, 6th, 6th, 7th, and 8th day, respectively, which indicated the occurrence of these peaks delayed gradually and the peaks decreased with the strengthening of UV-B radiation (Fig. 3).

During the first 4 days of the experiment, there was no significant difference in population density between the treatment and control groups. However, with the extension of the irradiation duration, the population densities exposed to the radiation dose of 0.048 kJ/m \(^2\) and 0.096 kJ/m \(^2\) were much lower than that of the control group, and from the 16th day, the population density of the rotifers in the 0.012 kJ/m \(^2\) UVR treatment was higher than that of the control group. When the experiment was carried out on the 40th day, the entire population of the 0.096 kJ/m \(^2\) treatment group was extinct. Since the treatment groups at the highest radiation dose (0.192 kJ/m \(^2\) and 0.384 kJ/m \(^2\)) did not increase and all died on the 11th
day, the processing of the experimental data did not include the two groups (Fig. 4).

In addition, the UV-B radiation had a significant effect on the maximum population density of the rotifers \((P < 0.001)\). The maximum population density of rotifers in the 0.012 kJ/m\(^2\) treatment group was the highest, reaching 1176 ind./ml. Compared with the control group, there was no significant difference in the maximum population density of the rotifers in the 0.024 kJ/m\(^2\) treatment group, and the maximum population densities of the two groups with the higher radiation dose (0.048 kJ/m\(^2\) and 0.096 kJ/m\(^2\)) were much lower than the control group (Fig. 5a). As the radiation dose increased, the population growth rates of the treatment groups gradually decreased and were smaller than the control group (Fig. 5b).

After treatment with different doses of UV-B radiation, the superoxide dismutase activity in rotifers was significantly higher than that of the control group \((P < 0.05)\). With the increase of radiation dose, the activity of SOD enzyme increased first and then decreased. When the radiation dose was 0.72 kJ/m\(^2\),

Table 1 The one-way ANOVAs results of UV-B radiation on life history parameters of *R. rotatoria*

Parameter and source	SS	df	MS	F	p
JP					
Among	281,263.146	7	40,180.449	8.404	< 0.001
Within	879,734.167	184	4781.164		
RP					
Among	1,119,991.333	7	159,998.762	18.881	< 0.001
Within	1,559,239.333	184	8474.127		
Longevity					
Among	3,943,313.583	7	563,330.512	19.499	< 0.001
Within	5,315,812.333	184	28,890.284		
Offspring					
Among	2432.411	7	347.487	52.593	< 0.001
Within	1215.708	184	6.607		

JP the durations of juvenile period, *RP* the durations of reproductive period, *SS* sum of square, *df* degrees of freedom, *MS* mean square, *F* ratio of mean squares, *p* *p* values
the SOD activity was the highest, and the peak was 66.35 U/mgprot, and it was significantly different from other experimental groups \((P < 0.05)\) (Fig. 6a).

After treatments with low doses of UV-B radiation \((0.36 \text{ kJ/m}^2 \text{ and } 0.72 \text{ kJ/m}^2)\), there was no significant difference in catalase activity between the treatments and the control group \((P > 0.05)\). However, with the further increase in radiation dose, higher doses of UV-B radiation \((1.44 \text{ kJ/m}^2 \text{ and } 2.16 \text{ kJ/m}^2)\) significantly weakened the activity of the CAT enzyme. When the radiation dose was 0.72 kJ/m², the CAT activity was the highest with a peak of 10.44 U/mgprot (Fig. 6b).

Discussion

UV-B radiation is an environmental stressor for almost all aquatic trophic levels, from primary producers, zooplankton, crustaceans, amphibians, corals, to fishes (Day & Neale, 2002; Hansson & Hylander, 2009; Kim et al., 2011; Vitt et al., 2020). The effects of UV-B may not only act at the micro-level like inducing DNA mutation and altering enzyme activity, but also at the phenotypic attributes including affecting organismal survival, growth, motility, photosynthesis, and reproduction (Häder, 2000; Dahms & Lee, 2010). Therefore, UV radiation is a potential driving force for zooplankton community structure and population
dynamics in ecosystem (Häder et al., 2007). In the present study, a coincident conclusion showed that the survivorship of *R. rotatoria* was adversely affected by the UV-B radiation. The highest value of 24 h-LD$_{50}$ measured by the acute toxicity test was 4.5305 kJ/m2 with the radiation intensity of 0.03 mW/cm2 in the 30-ml test volume. The 24 h-LD$_{50}$ value of UV-B has been reported for a variety of studies. For example, similar to our findings, Feng et al. (2006) found that the 24 h-LD$_{50}$ value of *B. plicatilis* (Muller, 1786) and *B. urceus* (Linnaeus, 1758) was 4.393 kJ/m2 and 5.856 kJ/m2, respectively, in the radiation intensity of 0.05 mW/cm2. Li et al. (2006) also evaluated the 24-LD$_{50}$ value of adult males of *Schmacheria inopinus* (Burckhardt, 1913) was 5.77 kJ/m2, as well as the 48 h-LD$_{50}$ value of adult females was 5.04 kJ/m2. The maximum population density (a) and population growth rate (b) of *R. rotatoria* under the five UV-B radiation treatments (Mean ± SE). Note SNK-q multiple comparison; Letters (a, b, c, and d) represent the significance of differences among treatment levels, respectively; Treatments with the same letter are not significantly different, whereas treatments with different letters are significantly different.
However, a much higher 24 h-LD$_{50}$ was reported for B. koreanus (Hwang, Dahms, Park & Lee, 2013), with a value as high as 24.6 kJ/m2 in 4-ml working volume (no radiation intensity displayed) (Kim et al., 2011). Such differences may further attribute to the species specificity, individual ages and physiological status, and other processes which could regulate the responses of antioxidant system and repair mechanisms to UVR injuries (Hecox-Lea & Mark Welch, 2018).

The effects of UV-B on organisms may be affected by the difference in experimental conditions, such as UV-B wavelengths, ultraviolet intensities, and culture system volume. The semi-lethal time (LT$_{50}$) of the copepod Calanus sinicus (Brodsky, 1965) was 30.47 h, 2.86 h, and 1.96 h at the radiation intensity of 0.2mW/cm2, 0.3mW/cm2, and 0.5mW/cm2, separately (Tao, 2005). Consistent with these results, the radiation duration within which approaching to the half death of R. rotatoria decreased significantly with the increasing of radiation intensity at the same culture volumes in this study, which indicated that the rotifers are more sensitive to the high intensity of UVR. In addition, the persistence of tolerance (evaluating by LT$_{50}$) in rotifer to stress was playing a more vital role than the radiation dose (LD$_{50}$) in survival. As the culture volume increases, the lethal effect of UVR on rotifers was weakened, which could due to the variety of UV radiation transmission for different working volumes.

During the last few decades, a growing cognition considering the organism as an adapted complex has increased awareness of adaptive evolution not only at the biochemical, physiological, and morphological level but also at the life history level (Wilbur et al., 1974). Life history trait, like all other phenotypic attributes, represents a suite of plastic components in a specific environment and can be seen as compromises to various investments in growth, reproduction, and survivorship. With the tactics of trade-off between growth and reproduction, and quantity and quality of offspring, organisms may maximize the benefits by allocating limited resources and energy towards growth, maintenance, reproduction, raising offspring to independence and avoiding death, even under good conditions (Norgan et al., 2012). So these trade-offs are keys to understanding the diversity of life histories, the pattern of population dynamics, the ecological strategies, and evolutionary adaptation of living beings to changing environments in the field (Bedenkoff, 2010; Martin & Bize, 2018).

The present study was carried out to explore the effects of UV-B radiation on the life history of the rotifer and further inspect whether there are trade-off strategies among life historic components. From the results, the fecundity and survivorship of rotifers were negative affected remarkably by UVR treatment. Compared with the control group, the fecundity of rotifers exposed to UV-B radiation was significantly decreased, which was validated by the cumulated number of offspring and the age-specific fecundities (m_x). The greater the radiation dose, the more obvious the inhibitory effects. Our results are consistent with some previous studies which indicated exposure to UV radiation had a significant effect on the abundance and/or reproduction of four rotifers, two cladocerans,
and one copepod (Persaud & Williamson, 2005), and UV-B effectively inhibited B. calyciflorus (Pallas, 1766) reproduction and reduced ingestion by up to 90% (Preston et al., 1999). Possibly, the reproductive system of rotifers could be destroyed by the high dose of UV-B radiation. Alternatively, animals may have to invest more energy to maintain basal living processes to ensure survivorship, which in turn comes at the cost of reductions in reproduction. In addition, the rotifers in this study prolonged their first reproductive time (JP) and shortened the longevity with the increasing of radiation dose, which also could be the key factor causing the decrease of reproduction. In the experiments about the effects of the thiophanate-methyl on the reproduction and survival in B. calyciflorus, as well as the studies for impacts of the deltamethrin on experimental population dynamics of B. calyciflorus (Xi & Hu, 2003; Xu et al., 2005), the extension of juvenile period was regarded as the major cause resulted in lower m_x. This is in line with Pourriot (1986), who considered that the m_x more depended on the duration of juvenile period and embryonic development during the period of parthenogenetic reproduction in rotifers, rather than R_0. As the strategy of trade-off, the rotifers have to prolong their reproductive duration at the low dose of radiation (0.012 kJ/m²) as a response to reduced reproduction, while shorten their reproductive period (RP) with increasing of radiation dose, which resulted in the phenomenon that the end time of reproduction increased firstly and then decreased.

In the population growth experiment, the rotifers all died at the highest radiation dose (0.192 kJ/m² and 0.384 kJ/m²), which suggested high UV radiation has significant lethal effect, by probably causing the DNA damage and cell degradation (Feng et al., 2006; Kim et al., 2011). On the 16th day, the population density under the low UVR dose of 0.012 kJ/m² began to be higher than that of control group, and similarly, the maximum population density in R. rotatoria was highest at 0.012 kJ/m² and then decreased significantly with increasing UV-B radiation dose, which suggested that low doses of UV-B radiation can stimulate the reproduction of rotifers to some degree. However, high doses of radiation have different levels of inhibition on rotifers. The stimulation effects that were explained as hormesis are also occurred in zooplankton under the other stress (Fang, 2013; Sha, 2015). Low dose of toxic chemicals below the damage threshold can stimulate the growth of organisms and triggers physiological regulation to enter metabolic stasis in response to severe environmental stress. Further studies are needed about the specific biological mechanisms (Stebbing, 1982; Ricci & Perletti, 2006).

Recently, it has been proposed that oxidative stress is the mediator of trade-offs between survival and reproduction. Under normal environmental conditions, oxidative stress can be induced endogenously by reproduction, resulting in reduced survival as a cost. Alternatively, exogenous oxidative stress generated under adverse conditions will decreased the reproduction for having to invest more resources into somatic maintenance, such as the protection and repair of biomolecules damaged by overproduced ROS derived from oxidative attack, which should enhance survival and longevity, but at the expense of reduced fecundity and population growth (Latta et al., 2019). With the long-term evolving, organisms have developed a set of integrated protection system, that is, the enzymatic antioxidant defense system. SOD and CAT are the key members involved in this mechanism, which can be used to detoxify and remove excessively intracorporeal ROS against oxidative stress (Vega & Pizarro, 2000; Barata et al., 2005; Rautio & Tartarotti, 2010; Snell et al., 2012; Köhler et al., 2017). Theoretically, for counteracting the oxidative nature of peroxides and other radicals in response to diverse environmental stressors, organisms most certainly up-regulate various antioxidant enzymes to decrease the possible damage caused by adversity (Borgeraas & Hessen, 2000; Rautio & Tartarotti, 2010).

In the present study, the two enzymes in the R. rotatoria have the coincident response to UVR stress with a pattern of rising first and then falling. The enzyme SOD has higher level of content and more sensitive to low UVR than CAT. The similar results also present in the phytoplankton under the UVR stresses (Abo-Shady et al., 2008). So, it follows that the antioxidant system plays a very important role when exposed to adverse stress, and the repairing effects occur as the positive response to low dose of UVR, while the enzyme activities decline with the increasing of radiation dose, which could be attributed to the damage of enzymes to varying levels. Rautio & Tartarotti (2010) also found a negative relationship between CAT and solar radiation which indicated this enzyme was inhibited or inactivated by UVR. The
fluctuating patterns of antioxidant enzyme activity can reveal the ability of various organisms to cope with environmental stress to a certain extent.

In summary, there were significant responses of the survival, fecundity, duration of development, and the antioxidant enzyme system in *R. rotatoria* to UV-B radiation in different intensities and doses. The lethal effects of UV-B radiation to organisms depend not only on the conditions they exposed to, like as intensity and time of exposure, but also combination of factors namely, the type and effectiveness of the strategy they employ to cope with the changed environment. The species specificity, individual ages, and physiological responses also could be the regulating factors under the UV-B stresses, and also in this case, we proposed that the strategy of energy trade-off between reproduction and survival in rotifers might play a vital role. At low dose of UVR, rotifers defend against the radiation stress by increasing the antioxidant enzyme activities, while high doses of radiation have significant inhibition effects on rotifers.

Acknowledgements We are grateful to Dr. Diego Fontaneto and Bernadette Pinel-Alloul for valuable suggestions, and three anonymous referees for their constructive comments, which have greatly improved the manuscript. This research was funded by Natural Science Foundation of China (31872208), the Grant of the China Scholarship Council (CSC) to Xianling Xiang, the University Synergy Innovation Program of Anhui Province (GXXT-2020-075), and the Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province.

Data availability The data that support the findings of this study are available at Research Square.

Declarations

Conflict of interest The authors declare they have no conflict of interests in relation to this work.

Informed consent All authors reviewed the manuscript and agreed with its contents.

References

Abo-Shady, A. M., A. El-Naggar, M. El-Sheekh & A. E. Abo-mohra, 2008. Impact of UV-B radiation on antioxidant enzymes and protein electrophoretic pattern of the green alga *Chlorococcum* sp. Annals of Microbiology 58: 195-201.

Barata, C., I. Varo, J. C. Navarro, S. Arun & C. Porte, 2005. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran *Daphnia magna* exposed to redox cycling compounds. Comparative Biochemistry and Physiology, Part C 140: 175-186.

Barraclough, T. G., D. Fontaneto, C. Ricci & E. A. Herniou, 2007. Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Molecular Biology and Evolution 24: 1952-1962.

Bednekoff, P. A., 2010. Predation Risk and Life Histories. In Breed, M. D. & J. Moore (eds), Encyclopedia of Animal Behavior. Academic Press, Oxford, UK.

Borgeraas, J. & D. O. Hessen, 2000. UV-B induced mortality and antioxidant enzyme activities in *Daphnia magna* at different oxygen concentrations and temperatures. Journal of Plankton Research 22: 1167-1183.

Chen, S. Y., Z. Feng & X. Yi, 2017. A general introduction to adjustment for multiple comparisons. Journal of Thoracic Disease 9(6): 1725-1729.

Colangeli, P., U. E. Schlägel, U. Obertegger, J. S. Petermann, R. Tiedemann & G. Weithoff, 2019. Negative phototactic response to UVR in three cosmopolitan rotifers: a video analysis approach. Hydrobiologia 844: 43-54.

Dahms, H. U. & J. S. Lee, 2010. UV radiation in marine ectotherms: Molecular effects and responses. Aquatic Toxicology 97: 3-14.

Day, T. A. & P. J. Neale, 2002. Effects of UV-B radiation on terrestrial and aquatic primary producers. Annual Review of Ecology and Systematics 33: 371-396.

Fang, K., 2013. The effects of BDE-47, BDE-209 on the feeding behavior with *Brachionus plicatilis* and the mechanism based in the changes of digestive enzyme activity. Master Thesis, Ocean University of China.

Feng, L., H. Xiao, R. J. Wang, X. X. Tang & Y. Q. Li, 2006. Comparison between two species of marine rotifers for the sensitivity to UV-B radiation. Marine Environmental Science 25: 25-28.

Fernández, C. E. & D. Rejas, 2017. Effects of UVB radiation on grazing of two cladocerans from high-altitude Andean lakes. PLoS One 12: e0174334.

Finney, D. J., 1971. Probit Analysis. Cambridge University Press, London.

Fischer, C., W. H. Ahlrichs, A. G. J. Buma, W. H. van de Poll & O. R. P. Biminda-Emonds, 2013. How does the ‘ancient’ asexual *Philodina roseola* (Rotifer: Bdelloidea) handle potential UVB-induced mutations? The Journal of Experimental Biology 216: 3090-3095.

Flot, J. F., B. Hespeels, X. Li, B. Noel, I. Arkhipova, E. G. J. Danchin, … & K. V. Doninck, 2013. Genomic evidence for amiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500: 453-457.

Gladyshev, E. A. & M. Meselson, 2008. Extreme resistance of bdelloid rotifers to ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America 105: 5139-5144.

Grad, G., C. E. Williamson & D. M. Karapelou, 2001. Zooplankton survival and reproduction responses to damaging UV radiation: A test of reciprocity and photoenzymatic repair. Limnology and Oceanography 46: 584-591.

Häder, D. P., 2000. Effects of solar UV-B radiation on aquatic ecosystems. Advances in Space Research 26: 2029-2040.

Häder, D. P., H. D. Kumar, R. C. Smith & R. C. Worrest, 2007. Effects of solar UV radiation on aquatic ecosystems and...
interactions with climate change. Photochemical & Photobiological Sciences 6: 267-285.
Han, J., J. Puthuman, M. C. Lee, S. Kim & J. S. Lee, 2016. Different susceptibilities of the Antarctic and temperate copepods Tigriopus kingsejongensis and T. japonicus to ultraviolet (UV) radiation. Marine Ecology Progress Series 561: 99-107.
Hansson, L. & S. Hylander, 2009. Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochemical and Photobiological Sciences 8: 1266-1275.
Harbi, M. A., S. Chithambaran & A. Salama, 2018. Effect of UV-B solar radiation on plankton community and B-carotene of pacific white shrimp, Litopenaeus vannamei. Journal of King Abdulaziz University-Science 21: 35-42.
Hein, S. C. Bopp, V. L. Tucker & W. R. Hood, 2019. Ultraviolet irradiation increases size of the first clutch but decreases longevity in a marine copepod. Ecology and Evolution 9: 9759-9767.
Hespeels, B., S. Penninckx, V. Cornel, L. Bruneau, C. Bopp, V. Baumnê, ... & S. Lucas, 2020. Iron ladies–how desiccated asexual rotifer Adineta vaga deal with X-rays and heavy ions?. Frontiers in Microbiology 11: 1792
Kim, B. M., J. S. Rhee, K. W. Lee, M. J. Kim, K. H. Shin, S. J. Lee, Y. M. Lee & J. S. Lee, 2015. UV-B radiation-induced oxidative stress and p38 signaling pathway involvement in the benthic copepod Tigriopus japonicus. Comparative Biochemistry and Physiology 167: 15-23.
Kim, R. O., J. S. Rhee, E. J. Won, K. W. Lee, C. M. Kang, Y. M. Lee & J. S. Lee, 2011. Ultraviolet-B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer, Brachionus sp. Aquatic Toxicology 101: 529-39.
Köhler, H., R. A. Contreras, M. Pizarro, R. Cortés-Antúquera & G. E. Zúñiga, 2017. Antioxidant responses induced by UVB radiation in Deschampsia antarctica Desv. Frontiers in Plant Science 8: 921.
Krebs, C. J., 1985. Ecology: the experimental analysis of distribution and abundance. Harper and Row, New York.
Kriso, A., M. Leroy, M. Radman & M. Meselson, 2012. Extreme anti-oxidant protection against radiation in bdelloid rotifers. Proceedings of the National Academy of Sciences of the United States of America 109: 2354-2357.
Laspmundares, C., M. B. Navarro, M. S. Souza, B. Modenutti & E. Balseiro, 2019. Effect of ultraviolet radiation on clearance rate of planktonic copepods with different photoprotective strategies. International Review of Hydrobiologia 104: 34-44.
Latta, L. C., K. N. Tucker & R. A. Haney, 2019. The relationship between oxidative stress, reproduction, and survival in a bdelloid rotifer. BMC Ecology 19: 7.
Lawrence, K. P., A. R. Young, B. L. Diffey & M. Norval, 2020. The impact of solar ultraviolet radiation on fish: Immunomodulation and photoprotective strategies. Fish and Fisheries 21: 104-119.
Li, S. H., H. Zhu, Y. J. Xia, M. J. Yu, K. E. Lin, K. S. Liu, Z. C. Yue & Y. X. Chen, 1959. The mass culture of unicellular green algae. Acta Hydrobiologica Sinica 4: 462-472.
Li, Y., X. X. Tang, J. Yu & L. Feng, 2006. Effects of UV-B radiation on the mortality and ingestion of Schmacheria inopinus. Periodical of Ocean University of China 36(Sup.1): 109-113.
Luijckx, P., E. K. H. Ho, A. Stanić & A. F. Agrawal, 2018. Mutation accumulation in populations of varying size: large effect mutations cause most mutational decline in the rotifer Brachionus calyciflorus under UV-C radiation. Journal of Evolutionary Biology 31: 924-932.
Malloy, K. D., M. A. Holman, D. Mitchell & H. W. III. Detrich, 1997. Solar UVB-induced DNA damage and photoenzymatic DNA repair in Antarctic zooplankton. Proceedings of the National Academy of Sciences of the United States of America 94: 1258-1263.
Marcoval, M. A., J. Pan, A. C. Díaz, L. Espino, N. S. Arzoz, & J. L. Fenucci, 2018. Dietary photoprotective compounds ameliorate UV tolerance in shrimp (Pleoticus muelleri) through induction of antioxidant activity. Journal of the World Aquaculture Society 49: 933-942.
Mark Welch, D. B. & M. Meselson, 2000. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211-1215.
Martin, J. G. A. & P. Bize, 2018. Life History. In Vonk, J. & T. K. Shackelford (eds), Encyclopedia of Animal Cognition and Behavior. Springer, New York.
Morgan, J. F., 2007. P value fetishism and use of the Bonferroni adjustment. Evidence-Based Mental Health 10: 34-35.
Norgaard, N. B. Bogin & N. Cameron, 2012. Nutrition and Growth. Chapter 6. In Cameron, N. & B. Bogin (eds), Human Growth and Development (2nd Ed.). Academic Press, Boston.
Peltier, W. H. & C. I. Weber, 1985. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. EPA/600/4-85/013. United States Environmental Protection Agency, Cincinnati, OH.
Peng, S. J., H. X. Liao, T. Zhou & S. L. Peng, 2017. Effects of UVB radiation on freshwater biota: a meta-analysis. Global Ecology and Biogeography 26: 500-510.
Persaud, A. D. & C. E. Williamson, 2005. Ultraviolet and temperature effects on planktonic rotifers and crustaceans in northern temperate lakes. Freshwater Biology 50: 467-476.
Pourriot, R., 1986. Les rotiferés-biologie. In Barnabé, G. (ed.), Aquaculture. Tec & Doc Lavoisier, Paris.
Puthuman, J., M. C. Lee, J. C. Park, H. S. Kim, D. S. Hwang, J. Han & J. S. Lee, 2017. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus. Aquatic Toxicology 184: 116-122.
Preston, B. L., T. W. Snell & R. Kneisel, 1999. UV-B exposure increases acute toxicity of pentachlorophenol and mercury to the rotifer Brachionus calyciflorus. Environmental Pollution 106(1): 23-31.
Rautio, M. & B. Tartarotti, 2010. UV radiation and freshwater zooplankton: damage, protection and recovery. Freshwater Review 3: 105-131.
Ricci, C., 1983. Life histories of some species of Rotifera Bdelloidea. Hydrobiologia 104: 175-180.
Ricci, C. & F. Perletti, 2006. Starve and survive: stress tolerance and life-history traits of a bdelloid rotifer. Functional Ecology 20: 340-346.

Robinson, S. A. & D. J. Erickson, 2015. Not just about sunburn—the ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems. Global Change Biology 21: 515-527.

Sha, J. J., 2015. The toxic effects of two kinds of polybrominated diphenyl ethers (BDE-47, BDE-209) on the Brachionus plicatilis. PhD Thesis, Ocean University of China.

Snell, T. W., A. M. Fields & R. K. Johnston, 2012. Antioxidants can extend lifespan of Brachionus manjavacas (Rotifera), but only in a few combinations. Biogerontology 13: 261-275.

Stebbing, A. R. D., 1982. Hormesis—the stimulation of growth by low levels of inhibitors. Science of the Total Environment 22: 213-234.

Sun, Y., X. Zhang, L. Zhang, Y. Huang, Z. Yang & D. Montagnes, 2020. UVB radiation suppresses antigrazer morphological defense in Scenedesmus obliquus by inhibiting algal growth and carbohydrate-regulated gene expression. Environmental Science & Technology 54: 4495-4503.

Tao, Z. C., 2005. Studies on the wave-specific influence of visible and ultraviolet light on activities of Calanus sinicus. Master Thesis, Institute of Oceanology of the Chinese Academy of Sciences.

Vega, M. P. & R. A. Pizarro, 2000. Oxidative stress and defense mechanisms of the freshwater cladoceran Daphnia longispina exposed to UV radiation. Journal of Photochemistry and Photobiology B-Biology 54: 121-125.

Vitt, S., T. Bakker & I. Rick, 2020. Differential investment in pre- and post-mating male sexual traits in response to prolonged exposure to ambient UVB radiation in a fish. Science of the Total Environment 712: 136341.

Wilbur, H. M., D. W. Tinkle & J. P. Collins, 1974. Environmental certainty, trophic level, and resource availability in life history evolution. American Naturalist 108: 805-817.

Wong, C. Y., M. L. Teoh, S. M. Phang, P. E. Lim & J. Beardall, 2015. Interactive effects of temperature and UV radiation on photosynthesis of Chlorella strains from polar, temperate and tropical environments: differential impacts on damage and repair. PLoS One 10: e0139469.

Xi, Y. L. & H. Y. Hu, 2003. Effect of thiophanate-methyl on the reproduction and survival of the freshwater rotifer Brachionus calyciflorus, Pallas. Bulletin of Environmental Contamination and Toxicology 71: 722-728.

Xu, X. P., Y. L. Xi, Z. X. Chu & F. Chen, 2005. Effect of deltamethrin on experimental population dynamics of freshwater rotifers Brachionus calyciflorus. Acta Zoologica Sinica 51: 251-256.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.