Fast DNA Serotyping and Antimicrobial Resistance Gene Determination of *Salmonella enterica* with an Oligonucleotide Microarray-Based Assay

Sascha D. Braun¹*, Albrecht Ziegler¹, Ulrich Methner², Peter Slickers¹, Silke Keiling², Stefan Monecke¹, Stefan Monecke¹, Ralf Ehrlich³

1 Alere Technologies GmbH, Jena, Germany, 2 Institute of Bacterial Infections and Zoonoses at the Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Jena, Germany, 3 Institute for Medical Microbiology and Hygiene, Technical University of Dresden, Dresden, Germany

Abstract

Salmonellosis caused by *Salmonella* (S.) belongs to the most prevalent food-borne zoonotic diseases throughout the world. Therefore, serotype identification for all culture-confirmed cases of *Salmonella* infection is important for epidemiological purposes. As a standard, the traditional culture method (ISO 6579:2002) is used to identify *Salmonella*. Classical serotyping takes 4–5 days to be completed, it is labor-intensive, expensive and more than 250 non-standardized sera are necessary to characterize more than 2,500 *Salmonella* serovars currently known. These technical difficulties could be overcome with modern molecular methods. We developed a microarray based serogenotyping assay for the most prevalent *Salmonella* serovars in Europe and North America. The current assay version could theoretically discriminate 28 O-antigens and 86 H-antigens. Additionally, we included 77 targets analyzing antimicrobial resistance genes. The *Salmonella* assay was evaluated with a set of 168 reference strains representing 132 serovars previously serotyped by conventional agglutination through various reference centers. 117 of 132 (81%) tested serovars showed an unique microarray pattern. 15 of 132 serovars generated a pattern which was shared by multiple serovars (e.g., S. ser. Enteritidis and S. ser. Nitra). These shared patterns mainly resulted from the high similarity of the genotypes of serogroup A and D1. Using patterns of the known reference strains, a database was build which represents the basis of a new PatternMatch software that can serotype unknown *Salmonella* isolates automatically. After assay verification, the *Salmonella* serogenotyping assay was used to identify a field panel of 105 *Salmonella* isolates. All were identified as *Salmonella* and 93 of 105 isolates (88.6%) were typed in full concordance with conventional serotyping. This microarray based assay is a powerful tool for serogenotyping.

Citation: Braun SD, Ziegler A, Methner U, Slickers P, Keiling S, et al. (2012) Fast DNA Serotyping and Antimicrobial Resistance Gene Determination of *Salmonella enterica* with an Oligonucleotide Microarray-Based Assay. PLoS ONE 7(10): e46489. doi:10.1371/journal.pone.0046489

Editor: Axel Cloeckaert, Institut National de la Recherche Agronomique, France

Received June 12, 2012; Accepted September 4, 2012; Published October 4, 2012

Copyright: © 2012 Braun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding was provided by Alere Technologies GmbH (http://alere-technologies.com/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors received funding from a commercial source (Alere Technologies GmbH). Some of the authors have an affiliation to the commercial funders of this research (Alere Technologies GmbH). This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials. There are no further patents, products in development or marketed products to declare.

* E-mail: sascha.braun@clondiag.com

Introduction

Salmonellosis caused by salmonellae belongs to the most prevalent food-borne zoonotic diseases throughout the world [1]. Therefore, serotype identification for all culture-confirmed cases of *Salmonella* infection is important for epidemiological purposes. The genus *Salmonella* includes two species: *Salmonella* (S.) enterica and *Salmonella* bongori. The species *Salmonella enterica* is divided into the following six subspecies: S. enterica subsp. enterica (I), S. enterica subsp. salamae (II), S. enterica subsp. arizonae (IIIa), S. enterica subsp. dublinense (IIIb), S. enterica subsp. houtenae (IV) and S. enterica subsp. indica (VI) [2]. The subspecies *Salmonella enterica* subsp. *enterica* (I) includes the most relevant zoonotic pathogens with a global occurrence. A serotyping scheme, proposed by Kauffmann 1934 [3], divides all subspecies into serovars by immunologic analyses of two surface structures, O-polysacharide (O-antigen) and flagellin protein (H-antigen). The Kauffmann-White scheme was expanded from 44 serovars in 1934 to 2,587 serovars currently known [2].

Genes required for the biosynthesis of the O-antigen are organized in the *rfb* cluster [4,5]. Within this cluster, sequences of the sugar transferases are relatively conserved and two genes are responsible for most of the genotypic and phenotypic differences of the 46 *Salmonella* O-serogroups described in the Kauffmann-White scheme. The genes of the O-antigen flippase (*wzx*) and polymerase (*wzy*) are highly variable and specific for their respective serogroup [5,6]. The H-antigen used for serotyping is encoded by two flagellar structure genes; *flIC* (phase 1 flagellin) and *flfB* (phase 2 flagellin). Both genes are highly conserved at their 5' and 3' ends and variable in their central region [7,8]. Most *Salmonella* serovars are diphasic where *flIC* or *flfB* is expressed alternately. Serovars with only one H-phase are considered to be monophasic. Monophasic *Salmonella* could theoretically originate in two different ways. They either might represent ancestral forms which lack the second flagellar antigen and did not yet evolve the necessary switching mechanism. Alternatively, they could be deletion mutants of biphasic salmonellae that have lost either the switching mechanism or the ability to express the second flagellar...
antigen [9]. The genetic switching between these two phases is regulated by the hin gene, coding for a DNA-invertase [10]. This approximately 900-base pair (bp) DNA fragment adjacent to fljB, which specifies the synthesis of the H2 flagellar antigen, can exist in either orientation with respect to fljB. The orientation of the inversion region controls the expression of fljB, i.e., in one orientation the adjacent fljB is expressed and in the opposite orientation fljB is not expressed [11].

As a gold standard, the traditional culture method is used to detect *Salmonella* and, since 2002, ISO 6579 represents a legislative norm for the detection of *Salmonella* [12]. This method includes the non-selective pre-enrichment in buffered peptone water followed by selective enrichment and plating on two solid selective media. Colonies of interest are confirmed biochemically and serologically by agglutination with specific sera. However, the procedure according to ISO 6579:2002 takes 4–5 days to be completed. Additionally, classical serotyping is labor-intensive, expensive, requires highly experienced laboratory staff and more than 250 reagents [13] that are necessary to characterize more than 2,500 *Salmonella* serovars currently listed. Besides, commercially available sera are not standardized and their availability is often limited due to a lack of resources and funding. In contrast, genotyping methods use DNA sequence information for identification. Such sequence information is unique and techniques can easily be reproduced and standardized between different laboratories. For this reason, there is an increasing need for a simple genotyping method that does not require a stock of different sera, but can be performed automatically in high throughput and for which reagents are available worldwide. Different molecular typing systems have been developed to meet this demand, such as multiplex real time PCR [14,15], primer extension [16], microarrays [13,17], DNA sequence approaches [18], bead-based suspension arrays [19,20] and ligation based microarrays [21]. Some recent molecular techniques have the disadvantage that only a small subset of serotypes can be typed whereas other approaches do not provide an antigenic formula compatible with the Kauffmann-White scheme. Some techniques are too expensive and/or labor intensive to be implemented in public health or diagnostic laboratories.

Ballmer et al. (2007) proposed a genotyping microarray for *Escherichia (E.)* *coli* [6]. Using a comparable system we aim to develop a high throughput, economical, array-based system to serotype *Salmonella* via its genotype. The microarray includes 255 different targets to analyze O- and H-phases and assign the genotype to the serovar. The microarray includes 255 different serotyping probes were designed by analyzing all available annotated GenBank sequences (NCBI, http://www.ncbi.nlm.nih.gov/) related to the genes *wzy* and *wzz* as well as *fljC* and *fljB*. Additionally, the genes *manC* (O7, O11, O18, O40, O41), *wbhI* (O41, O62), *wbuR* (O66), and *fljB* (O4) were used to discriminate O-serotypes (Table 2). The probes immobilized on the current array version can discriminate 28 O-antigens: A (O2), B (O4), C1 (O7), C2–C3 (O8), D1 (O9), D2 (O9,46), E1/E4 (O3,10/O1,3,19), F (O11), G (O13), H (O6,14), I (O16), J (O17), K (O18), M (O28), N (O30), O (O35), P (O38), Q (O39), R (O40), S (O41), U (O43), W (O45), Z (O50), O55, O56, O58, O62 and O66. From this set, 19 serogroups (A, B, C1, C2–C3, D1, D2, E1, E4, F, G, H, I, K, M, N, O, P, T, U) were selected on the microarray using the 132 reference serovars (Table 1). Due to the high similarity between the serogroups A and D1, additional probes were designed to discriminate S. *ser. Nitrat* and S. *ser. Enteritidis*. For this purpose, specific probes located in the genes *lygA*, *lygD*, *fljA*, *sefA*, *sefB* and *sefC* were designed to specifically identify *S. ser. Enteritidis* (Table 2). In order to identify S. *ser. Paratyphi* A, probes were designed to target the integron region SSPI, a genomic island next to *cpA* [22]. For the discrimination of S. *ser. Dublin* from S. *ser. Dublin*, the genes *SeD_A1100*, *SeD_A1101* and *SeD_A1102* were used as they code for a conserved putative protein being specific for serovar *Dublin* [23].

Flagellar probes were designed using distinctive antigenic sequences within phase 1 (*fljC*) and phase 2 (*fljB*) genes (Table 2). The following flagellar antigens can be identified on the array: a, b; c, d; e, h; c,n,x,z15; f,g,m,n,t; fgs; h; l,g,F; l; g, s, t; g, m, p; s; g, m, t; g, m, q; g, m, s; g, m, t, s; g, m, p, t; g, m, s, t; g, m, p, t, u; m, f, r, l, n; y, l; z, m, z, z10; z19; z23; z36; z36,38; z38; z39; z4,23; z4,23,25,32; z4,24; z4,24; z4,24; z4,32; z4; z44; z47; z52; z56; z6; z65; z69; z81; z91; 1.11 (AY353292); 1.16 (AY353263); 1.2; 1.4; 1.7; 1.8; 1.9; 1.5; 1.5, 1.5, 1.5, 1.5, 1.7; 1.7; 1.7; 1.7; 1.7; 1.7; c,n,x,z15, c,n,x,z15; k, l; l;z,13,23; z10; z33; z39; z41; z50 and z6. Additionally, probes specifying *inv1* [24], *galf* (this study) and *manC* (this study) that were introduced to confirm the identity of *Salmonella* and to serve as controls. These controls were always positive.
Species	Serovar	Strain	Results of classical Serotyping	Results of microarray based Serotyping	Unique Pattern	Pattern similar to Serovars				
S.e. enterica	Paratyphi A	CDC1	A (O:2) 1,2,12:a[1,5]	A (O:2)	+/+	Yes				
S.e. enterica	Nitra	CDC1280	A (O:2) 2,12g,m,-	A (O:2)	+/+	No				
S.e. enterica	Kiel	CDC09-1879; CDC674	A (O:2) 1,2,12,g,p,-	A (O:2)	+/+	No Dublin, Naestved, Moscow				
S.e. enterica	Koessen	CDC2417	A (O:2) 2,12,l,v:1,5	A (O:2)	+/+	No Panama				
S.e. enterica	Abony	CDC102; DSM4224	B (O:4) 1,4,[5],12,27,b:e,n,x	B (O:4)	+/+	Yes				
S.e. enterica	Paratyphi B	CDC3	B (O:4) 1,4,[5],12,b:1,2	B (O:4)	+/+	Yes				
S.e. enterica	Wien	SGSC2528	B (O:4) 1,4,12,27,b,l,w	B (O:4)	+/+	Yes				
S.e. enterica	Jericho	CDC621	B (O:4) 1,4,12,27,c:e,n,z15	B (O:4)	+/+	Yes				
S.e. enterica	Duisburg	SGSC2472	B (O:4) 1,4,12,27,d,e,n,z15	B (O:4)	+/+	Yes				
S.e. enterica	Schwarzengrund	CDC1629; SGSC2514	B (O:4) 1,4,12,27,d:1,7	B (O:4)	+/+	Yes				
S.e. enterica	Stanley	CDC000477; SGSC2517	B (O:4) 1,4,[5],12,27,d:1,2	B (O:4)	+/+	Yes				
S.e. enterica	Chester	CDC17	B (O:4) 1,4,[5],12, e,h,e,n,x	B (O:4)	+/+	Yes				
S.e. enterica	Reading	CDC19; SGSC2510	B (O:4) 1,4,[5],12, e,h:1,5	B (O:4)	+/+	Yes				
S.e. enterica	Saintpaul	CDC108	B (O:4) 1,4,[5],12, e,h:1,2	B (O:4)	+/+	Yes				
S.e. enterica	Sandiego	CDC18	B (O:4) 1,4,[5],12, e,h,e,n,z15	B (O:4)	+/+	Yes				
S.e. enterica	Derby	CDC20	B (O:4) 1,4,[5],12, f,g:1,2	B (O:4)	+/+	Yes				
S.e. enterica	Agona	CDC1636	B (O:4) 1,4,[5],12, f,g,s:1,2	B (O:4)	+/+	Yes				
S.e. enterica	California	CDC1109	B (O:4) 4,12, g,m,t:z67	B (O:4)	+/+	Yes				
S.e. enterica	Budapest	CDC23	B (O:4) 1,4,12,27,g,-	B (O:4)	+/+	Yes				
S.e. enterica	Travis	CDC990318	B (O:4) 4,12, g,z51:1,7	B (O:4)	+/+	Yes				
S.e. enterica	1,4,[5],12:z-	CDCQA126; NRL688; NRL813	B (O:4) 1,4,[5],12:z-	B (O:4)	+/+	Yes				
S.e. enterica	Agama	CDC513	B (O:4) 4,12:z:1,6	B (O:4)	+/+	Yes				
S.e. enterica	Gloucester	CDC443	B (O:4) 1,4,12,27:z,l,w	B (O:4)	+/+	Yes				
S.e. enterica	Typhimurium	CDC14; DSM10506; DSM17058; DSM17058; DSM19387; DSM354; LT2	B (O:4) 1,4,[5],12:z:1,2	B (O:4)	+/+	Yes				
S.e. enterica	Brandenburg	CDC2519; SGSC2460	B (O:4) 4,12, z:1,2, v:e,n,z15	B (O:4)	+/+	Yes				
S.e. enterica	Bredeney	CDC112	B (O:4) 1,4,12,27:l,v:1,7	B (O:4)	+/+	Yes				
Species	Serovar	Strain	Results of classical Serotyping	Results of microarray based Serotyping	Unique Pattern	Pattern similar to Serovars				
-------------	-------------	----------------	-------------------------------	--	---------------	-----------------------------				
			Serogroup	Antigenic Formula	Serogroup	invA/alg/limC				
S.e. enterica	Heidelberg	CDC 16; DSM9379	B (O:4)	1,4,[5],12:r;1,2	B (O:4)	+/+/+	Yes			
S.e. enterica	Indiana	CDC 377; SGGC 482	B (O:4)	1,4,12:r;1,7	B (O:4)	+/+/+	No	Yes	Kiambu	Indiana
S.e. enterica	Kiambu	CDC 399	B (O:4)	1,4,12:r;1,7	B (O:4)	+/+/+	No			
S.e. enterica	Haifa	SGGC 479	B (O:4)	1,4,[5],12:r;1,2	B (O:4)	+/+/+	Yes			
S.e. enterica	Stanleyville	CDC 223; SGGC 2518	B (O:4)	1,4,[5],12;[7];1223[1,2]	B (O:4)	+/+/+	Yes			
S.e. enterica	Maska	CDC 349	B (O:4)	1,4,12;7;24,1,7;2515	B (O:4)	+/+/+	Yes			
S.e. enterica	Ohio	CDC 710	C1 (O:7)	6,7,14:b,1,l,w	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Choleraesuis	CDC 34; DSM 14846	C1 (O:7)	6,7:c,1,5	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Paratyphi C	CDC 33; SGGSC 392	C1 (O:7)	6,7,14:6,1;5	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Typhimurium	SGGC 2527	C1 (O:7)	6,7,c,1,5	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Kambale	CDC 1863	C1 (O:7)	6,7:d;1,2,1,7	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Livingston	NNR 720	C1 (O:7)	6,7,14/d;1,l,w	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Baenderup	CDC 49	C1 (O:7)	6,7,14,e,1,7	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Nola	CDC 2026	C1 (O:7)	6,7,e,h:1,7	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Rissen	CDC 955	C1 (O:7)	6,7,14,f,g,	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Montevideo	CDC 1904	C1 (O:7)	6,7,14,g,m,l;1,2,7	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Singapore	CDC 010011	C1 (O:7)	6,7,k,e,nx	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Thompson	CDC 00342	C1 (O:7)	6,7,14,k,1,5	C1 (O:7)	+/+/+	Yes			
S.e. dianense	Bonn	CDC 344	C1 (O:7)	6,7,14,v,e,nx	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Potsdam	CDC 876	C1 (O:7)	6,7,14,14,v,e,n,1,5	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Kenya	CDC 497	C1 (O:7)	6,7,14,13,e,n,x	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Haelingborg	CDC 586	C1 (O:7)	6,7,14,p,1,13	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Oranienburg	CDC 1271	C1 (O:7)	6,7,14,m,l;1,57	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Infantis	CDC 1428	C1 (O:7)	6,7,14,r,1,5	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Virchow	CDC 2688	C1 (O:7)	6,7,14,r,1,2	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Bareilly	NNR 608	C1 (O:7)	6,7,14,r,1,5	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Mbundaka	CDC 1906	C1 (O:7)	6,7,14,12,10,e,n,1,5	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Tennessee	CDC 155	C1 (O:7)	6,7,14,22,1,2,7	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Tienba	CDC 2425	C1 (O:7)	6,7,23,5,1,6	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Lille	CDC 354	C1 (O:7)	6,7,14,23,8	C1 (O:7)	+/+/+	Yes			
S.e. enterica	Manhattan	CDC 122	C2–C3 (O:8)	6,8,1,5	C2–C3 (O:8)	+/+/+	Yes			
S.e. enterica	Muenchen	CDC 54; SGGC 243	C2–C3 (O:8)	6,8,1,5	C2–C3 (O:8)	+/+/+	Yes			
Species	Serovar	Strain	Results of classical Serotyping	Results of microarray based Serotyping						
------------	---------	-----------------------------	-------------------------------	---------------------------------------						
			Serogroup Antigenic Formula	Serogroup invAgalRimanC Unique Pattern Pattern similar to Serovars						
S. enterica	Virginia	CDC189	C2–C3 (O:8) 8:d:1,2	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Kottbus	CDC52	C2–C3 (O:8) 6,8:h:1,5	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Newport	CDC2343	C2–C3 (O:8) 6,8:20:e,h:1,2	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Emek	SGSC2477	C2–C3 (O:8) 8:20:g,m:1	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Kentucky	CDC2590; Eng196b	C2–C3 (O:8) 8:20:i:z6	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Lindenburg	CDC334	C2–C3 (O:8) 6:8:1:2	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Blockley	CDC448; Eng23b; Eng24b	C2–C3 (O:8) 6:8:k:1,5	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Litchfield	CDC000462	C2–C3 (O:8) 8:6:1:2	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Manchester	Eng205b	C2–C3 (O:8) 8:6:1:7	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Breukelen	CDC1699	C2–C3 (O:8) 6:8:13:20:8:α,ν,τ:15	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Goldcoast	NRI852	C2–C3 (O:8) 6:8:1:α,w	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Bovismorbificans	CDC2201	C2–C3 (O:8) 6:8:20:α,β:1,5	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Hidalgo	CDC2359	C2–C3 (O:8) 6:8:20:α,ν,τ:15	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Hadar	CDC347;	C2–C3 (O:8) 6:8:20:α,ν,x	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Istanbul	CDC1466	C2–C3 (O:8) 8:20:1:α,ν,x	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Uno	CDC1697	C2–C3 (O:8) 6:8:20:2:α,ν,τ:15	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Corvalis	CDC1770	C2–C3 (O:8) 8:20:2:23:26	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Düsseldorf	CDC130	C2–C3 (O:8) 6:8:2:24	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Tallahassee	CDC196	C2–C3 (O:8) 6:8:2:23:24	C2–C3 (O:8) +/+/+ Yes						
S. enterica	Gallinarum	CDC74; DSM13674	D1 (O:9) 1:9,1:2:α	D1 (O:9) +/+/+ Yes						
S. enterica	Berta	CDC69	D1 (O:9) 1:9,1:2:α,γ,δ:1:5:α	D1 (O:9) +/+/+ Yes						
S. enterica	Miami	CDC198; SGSC248	D1 (O:9) 1:9,1:2:α,γ:1:5:1:5	D1 (O:9) +/+/+ Yes						
S. enterica	Goteborg	CDC696	D1 (O:9) 9:12:1:5	D1 (O:9) +/+/+ Yes						
S. enterica	Typhi	No. 1C	D1 (O:9) 9:12:1:γ:1:5	D1 (O:9) +/+/+ Yes						
S. enterica	Enteritidis	CDC64; DSM14221; DSM14720	D1 (O:9) 1:9,12:γ,μ:1:5:α	D1 (O:9) +/+/+ No Nitra, Blegdam						
S. enterica	Blegdam	CDC90361; CDC68	D1 (O:9) 9:12:γ,μ,τ:1:5:α	D1 (O:9) +/+/+ No Nitra, Enteritidis						
S. enterica	Dublin	CDC10-0635; CDC65	D1 (O:9) 1:9,12:1:5:1:5:α:1:5	D1 (O:9) +/+/+ No Kiel, Naestved, Moscow						
S. enterica	Naestved	CDC559; SGSC3612	D1 (O:9) 1:9,12:γ,ρ,τ:1:5:α	D1 (O:9) +/+/+ No Kiel, Dublin, Moscow						
S. enterica	Moscow	CDC67	D1 (O:9) 1:9,12:γ:1:5	D1 (O:9) +/+/+ No Kiel, Dublin, Naestved						
Species	Serovar	Strain	Results of classical Serotyping	Results of microarray based Serotyping						
------------------	---------	----------	---------------------------------	---------------------------------------						
S. enterica	Panama	CDC73;	D1 (O:9) 1,9,12l,v:1,5	D1 (O:9) +/+ +						
		SGSC2496								
	salamae	DSM9220	D1 (O:9) 9l,w,e,n,x							
	Javiana	CDC146	D1 (O:9) 1,9,12l:28:1,5							
	Ottawa	CDC1934	D1 (O:9) 1,9,12z41:1,5							
	Franken	CDC2570	D1 (O:9) 9,12:z6:z67							
	Fresno	CDC1412	D1 (O:9,46) 9,46:z38:-							
	Anatum	CDC78	E1 (O:3,10) 3,10(15,15,34):e,h:1,6	E1 (O:3,10) +/+ +						
	Meleagris	NRL737	E1 (O:3,10) 3,10(15,15,34):e,h:l,w	E1 (O:3,10) +/+ +						
	Muengster	CDC79	E1 (O:3,10) 3,10(15,15,34):e,h:1,5	E1 (O:3,10) +/+ +						
	Amsterdam	CDC07056	E1 (O:3,10) 3,10(15,15,34):g,m,s:-	E1 (O:3,10) +/+ +						
	Westhampton	CDC326	E1 (O:3,10) 3,10(15,15,34):g,s,t:-	E1 (O:3,10) +/+ +						
	Westhampton	CDC326	E1 (O:3,10) 3,10(15,15,34):g,s,t:-	E1 (O:3,10) +/+ +						
	Senftenberg	CDC87; DSM10062	E1 (O:1,3,19) 1,3,19g,s,t:-	E1 (O:1,3,19) +/+ +						
	Westerstede	CDC607	E1 (O:1,3,19) 1,3,19l,z13:1,2	E1 (O:1,3,19) +/+ +						
	Missouri	CDC2039	F (O:11) 11g,s,t:-	F (O:11) +/+ +						
	Conneccticut	CDC2392	F (O:11) 11l.12z3,28:1,5	F (O:11) +/+ +						
	Rubislaw	CDC102; SGSC2511	F (O:11) 11r:e,n,x	F (O:11) +/+ +						
	Mississippi	CDC154	G (O:13) 1,13,23:b:1,5	G (O:13) +/+ +						
	Havana	NRL607	G (O:13) 1,13,23g,s,t:-	G (O:13) +/+ +						
	Idikan	CDC1690	G (O:13) 1,13,23:z:1,5	G (O:13) +/+ +						
	Kedougou	CDC1523	G (O:13) 1,13,23:z:1,6	G (O:13) +/+ +						
	Poona	CDC1243	G (O:13) 1,13,23:z:1,6	G (O:13) +/+ +						
	Cubanua	CDC207	G (O:13) 1,13,23:z:29:-	G (O:13) +/+ +						
	Ajibo	CDC527	G (O:13) 1,13,23:z:23:-	G (O:13) +/+ +						
	Indica	DSM14848	G (O:13) 6,14:z:6:z:1,5	G (O:13) +/+ +						
	Blijdorp	CDC765	H (O:6,14) 1,6,14:25c:1,5	H (O:6,14) +/+ +						
	Carrau	CDC93	H (O:6,14) 6,14:24:y:1,7	H (O:6,14) +/+ +						
	Granicanaria	CDC2506	I (O:16) 16z:39:1,6	I (O:16) +/+ +						
Species	Serovar	Strain	Results of classical Serotyping	Results of microarray based Serotyping						
---------	---------	--------	-------------------------------	--------------------------------------						
			Serogroup Antigenic Formula	Serogroup invA galF manC Unique Pattern						
S.e. enterica	Cerro	CDC90087	K (O:18) 6,14,18,82,23 (1,5)	K (O:18) +/+/+ Yes						
S.e. enterica	Pomona	CDC2473A	M (O:28) 28y:1.7	M (O:28) +/+/+ Yes						
S.e. enterica	Morocco	CDC694	N (O:30) 30;1,3z,28e,n;2,15	N (O:30) +/+/+ Yes						
S.e. enterica	Ealing	CDC745	O (O:35) 35g,m,s,-	O (O:35) +/+/+ Yes						
S.e. enterica	Alachua	CDC352	O (O:35) 35z,4z,23,-	O (O:35) +/+/+ Yes						
S.e. enterica	Kasenyi	NRL878	P (O:38) 38e,h;1.5	P (O:38) +/+/+ Yes						
S.e. enterica	Lansing	CDC634	P (O:38) 38i;1.5	P (O:38) +/+/+ Yes						
S.e. enterica	Inverness	CDC171	P (O:38) 38k;1.6	P (O:38) +/+/+ Yes						
S.e. enterica	Gera	CDC1316	T (O:42) 1,42-z,4,23,1,6	T (O:42) +/+/+ Yes						
S.e. enterica	Niederodernitz	CDC2579	U (O:43) 43,b,-	U (O:43) +/+/+ Yes						
S. bongori	66z41;	DSM13774	O:66 66z41;	O:66 +/+/+ Yes						

*invA, galF and manC are species marker for Salmonella.
*generous gift of Paul Barrow, University of Nottingham Sutton Bonington Campus, UK.
*only genomic DNA of Salmonella Typhi, generous gift of Rene S. Hendrickson, DTU Food, Denmark.
Strains were classically serotyped by the CDC, Centers of Disease Control and Prevention, Atlanta, USA, DSMZ (German Collection of Microorganism and Cell Cultures, Brunswick, Germany), SGSC (Salmonella Genetic Stock Center, Calgary, Canada) and FLI (National Reference Laboratory for Salmonellosis in cattle at the Friedrich-Loeffler-Institute, Jena, Germany).
doi:10.1371/journal.pone.0046489.t001
Table 2. Summary of the potential function(s) on the basis of classical serotyping of each probe immobilized on the microarray.

Probe	Potential Function	Probe	Potential Function	Probe	Potential Function
hp-3001-FL-e,n,x	e,n,x; e,n,x,z15; z6	hp-3117-FL-l+z39+z52	z39	hp-3219-wzx_O35	O35
hp-3003-FL-e,n,x	1,5; 1,6; e,n,x; e,n,x,z15; z6	hp-3118-FL-l+z39+z52	z52	hp-3220-wzx_O4	O4
hp-3004-FL-e,n,x	1,11,16; 1,2; 1,2,7; 1,5; 1,5,7; 1,6; 1,7; z	hp-3120-FL-g,z51	g,z51	hp-3221-wzx_O4	O4
hp-3005-FL-e,n,x	1,11,16; 1,2; 1,2,7; 1,5; 1,5,7; 1,6; 1,7; z	hp-3121-FL-g,z51	g,z51	hp-3222-wzx_O4	O4
hp-3006-FL-e,n,x	1,11,16; 1,2; 1,2,7; 1,5; 1,5,7; 1,6; 1,7; z	hp-3124-FL-e,n,x	e,n,x; e,n,x,z15	hp-3223-wzx_O4,1+62	O4,1; O62
hp-3007-FL-e,n,x	1,5; 1,6	hp-3125-FL-b	b; z91	hp-3224-wzx_O4,1+62	O4,1; O62
hp-3008-FL-e,n,x	1,5; 1,6	hp-3126-FL-b	b; z91	hp-3225-wzx_O50	O50
hp-3009-FL-e,n,x	1,5; 1,6	hp-3127-FL-g,z51	g,z51	hp-3226-wzx_O50	O50
hp-3012-FL-e,n,x	1,11,16; 1,2; 1,2,7; 1,5; 1,5,7; 1,6; 1,7; e,n,x; e,n,x,z15; z6	hp-3129-FL-b	b; z91	hp-3227-wzx_O55	O55
hp-3013-FL-e,n,x	1,11,16; 1,2; 1,2,7; 1,5; 1,5,7; 1,6; 1,7; e,n,x; e,n,x,z15; z6	hp-3130-FL-b	b; z91	hp-3228-wzx_O55	O55
hp-3014-FL-e,n,x	1,11,16; 1,2; 1,2,7; 1,5; 1,5,7; 1,6; 1,7; e,n,x; e,n,x,z15; z6	hp-3134-FL-z	z6	hp-3229-wzx_O56	O56
hp-3015-FL-e,n,x	1,11,16; 1,2; 1,2,7; 1,5; 1,5,7; 1,6; 1,7; e,n,x; e,n,x,z15; z6	hp-3135-FL-z	z6	hp-3230-wzx_O56	O56
hp-3016-FL-c	c	hp-3136-FL-z	z69	hp-3231-wzx_O58	O58
hp-3017-FL-c	c	hp-3138-FL-z	z	hp-3232-wzx_O58	O58
hp-3018-FL-d+j	d	hp-3139-FL-z	z	hp-3233-wzx_O6,14	O6,14
hp-3019-FL-d+j	d	hp-3140-FL-z	z	hp-3234-wzx_O6,14	O6,14
hp-3020-FL-d+j	d	hp-3141-FL-z	z50	hp-3235-wzx_O66	O66
hp-3021-FL-d+j	d; j	hp-3142-FL-z	z; z35	hp-3236-wzx_O66	O66
hp-3022-FL-d+j	d	hp-3144-FL-z	z50	hp-3237-wzx_O7	O7
hp-3023-FL-d+j	d; j	hp-3145-FL-z	z	hp-3238-wzx_O7	O7
hp-3024-FL-e,h	e,h	hp-3146-FL-z	z	hp-3239-wzx_O7	O7
hp-3025-FL-e,h	e,h	hp-3149-FL-l+z39+z52	z39	hp-3240-wzx_O8	O8
hp-3026-FL-e,n,x	e,n,x,z15	hp-3150-FL-z	z	hp-3241-wzx_O8	O8
hp-3027-FL-e,n,x	e,n,x; e,n,x,z15	hp-3152-FL-i	i	hp-3242-wzy_O13	O13
hp-3029-FL-g,z51	g,z51	hp-3153-FL-I+z39+z52	z; z; z35; z39; z65	hp-3243-wzy_O18,28_Dakar	O13,28
hp-3032-FL-i+r	i	hp-3154-FL-k+z	z10	hp-3244-wzy_O16	O16
hp-3033-FL-i+r	i	hp-3155-FL-z4	z4,223; z4,224; z4,232	hp-3245-wzy_O16	O16
hp-3034-FL-i+r	i	hp-3157-FL-1-e,n,x	1,11,16; 1,12; 1,2; 1,2,7; 1,5; 1,5,7; 1,5,7; 1,6; 1,7; e,n,x; e,n,x,z15; z6	hp-3246-wzy_O17	O17
hp-3035-FL-i+r	r	hp-3158-FL-1-e,n,x	1,11,16; 1,12; 1,2; 1,2,7; 1,5; 1,5,7; 1,6; 1,7; e,n,x; e,n,x,z15; z6	hp-3247-wzy_O17	O17
hp-3036-FL-i+r	r	hp-3161-FL-1-e,n,x	1,5; 1,6	hp-3248-wzy_O18	O18
hp-3038-FL-k+z	k; z44; z58	hp-3163-FL-1-e,n,x	1,11,16; 1,12; 1,2; 1,2,7; 1,5; 1,5,7; 1,6; 1,7; z	hp-3250-wzy_O28_Dakar	O28 serovar Dakar
hp-3039-FL-k+z	l,v; z10; z35; z39; z65	hp-3165-manC	species marker	hp-3251-wzy_O28_Dakar	O28 serovar Dakar
hp-3040-FL-k+z	z35	hp-3166-wbyJ	O41	hp-3252-wzy_O28_Pomona	O28 serovar Pomona
hp-3041-FL-k+z	k	hp-3167-wbyJ	O41	hp-3253-wzy_O28_Pomona	O28 serovar Pomona
hp-3042-FL-k+z	k; z41	hp-3168-manC-O16+39	O16; O39	hp-3254-wzy_O3,10+9,46	O3,10,9,46
hp-3043-FL-k+z	(k)	hp-3169-manC-O16+39	O16; O39	hp-3255-wzy_O3,10+9,46	O3,10,9,46
Probe	Potential Function	Probe	Potential Function	Probe	Potential function
---------	--------------------	---------	--------------------	---------	--------------------
hp-3044-FL-z	z41	hp-3170-manC-O7	O7	hp-3256-wzy, O3,10+9,46	O3,10; O9,46
hp-3045-FL-k-z	z10	hp-3171-manC-O7	O7	hp-3257-wzy, O30	O30
hp-3046-FL-k-z	z10	hp-3172-manC-O11	O11	hp-3258-wzy, O30	O30
hp-3047-FL-k-z	z10	hp-3173-manC-O11	O11	hp-3259-wzy, O35	O35
hp-3048-FL-k-z	a,z10	hp-3174-manC-O18	O18	hp-3260-wzy, O35	O35
hp-3049-FL-k-z	z10	hp-3175-manC-O18	O18	hp-3261-wzy, O38	O38
hp-3050-FL-k-z	k, z10	hp-3176-manC-O41	O41	hp-3262-wzy, O38	O38
hp-3051-FL-k-z	e, z10	hp-3177-manC-O41	O41	hp-3263-wzy, O41+62	O41; O62
hp-3052-FL-z	z41	hp-3178-manC-O41	O41	hp-3264-wzy, O41+62	O41; O62
hp-3053-FL-k-z	z10	hp-3179-manC-O13+O30+O43+O45+O50	O13; O30; O43; O45; O50	hp-3265-wzy, O50	O50
hp-3054-FL-k-z	z35	hp-3180-manC-O13+O30+O43+O45+O50	O13; O30; O43; O45; O50	hp-3266-wzy, O50	O50
hp-3055-FL-k-z	z10	hp-3181-manC-O13+O30+O43+O45+O50	O13; O30; O43; O45; O50	hp-3267-wzy, O55	O55
hp-3056-FL-k-z	z35	hp-3182-manC-O13+O30+O43+O45+O50	O13; O30; O43; O45; O50	hp-3268-wzy, O55	O55
hp-3057-FL-k-z	(k)	hp-3183-manC-O13+O30+O43+O45+O50	O13; O30; O43; O45; O50	hp-3269-wzy, O56	O56
hp-3058-FL-k-z	z10	hp-3184-manC-O13+O30+O43+O45+O50	O13; O30; O43; O45; O50	hp-3270-wzy, O56	O56
hp-3060-FL-k-z	k, z41	hp-3185-manC-O13+O30+O43+O45+O50	O13; O30; O43; O45; O50	hp-3271-wzy, O58	O58
hp-3061-FL-k-z	(k)	hp-3186-manC-O13+O30+O43+O45+O50	O13; O30; O43; O45; O50	hp-3272-wzy, O58	O58
hp-3062-FL-l+	z39	hp-3187-manC-O13+O30+O43+O45+O50	O13; O30; O43; O45; O50	hp-3273-wzy, O6,14	O6,14
hp-3063-FL-l+	z39	hp-3188-manC-O2+4+9+3,10	O2; O4; O9; O3,10	hp-3274-wzy, O6,14	O6,14
hp-3064-FL-l+	z39	hp-3189-manC-O2+4+9+3,10	O2; O4; O9; O3,10	hp-3275-wzy, O7	O7
hp-3066-FL-y	y	hp-3190-manC-O40	O40	hp-3276-wzy, O7	O7
hp-3067-FL-y	y	hp-3191-manC-O40	O40	hp-3277-wzy, O8	O8
hp-3068-FL-y	y	hp-3192-rfbV-O2+9+9,46	O2; O9; O9,46	hp-3278-wzy, O8	O8
hp-3069-FL-z29	z29	hp-3193-rfbV-O2+9+9,46	O2; O9; O9,46	hp-3279-wzy, O18	O18
hp-3070-FL-z29	z29	hp-3194-rfbV-O4	O4	hp-3280-SSPAI Paratyphi A	
hp-3071-FL-z	z38	hp-3195-rfbV-O4	O4	hp-3281-SSPAI Paratyphi A	
hp-3072-FL-z	z36; z38	hp-3196-wpuH-O41+62	O41; O62	hp-3282-Q8ZK10 Typhimurum	
hp-3073-FL-z	z36; z38	hp-3197-wpuH-O41+62	O41; O62	hp-3287-lygA Enteritidis	
hp-3074-FL-z	z36; z38	hp-3198-weib-O66	O66	hp-3288-lygD Enteritidis	
hp-3075-FL-z	z36; z38, z38	hp-3199-weib-O66	O66	hp-3289-Q8ZK15 Typhimurium	
hp-3076-FL-z4	z4,22; z4,22,23,32; z4,22,4; z4,23,2	hp-3200-wzy, O13	O13	hp-3290-tviA plasmid Vi	
hp-3077-FL-z4	z4,22	hp-3201-wzy, O13	O13	hp-3292-tviA plasmid Vi	
hp-3078-FL-z4	z4,22,3,22	hp-3202-wzy, O16	O16	hp-3293-stgA Typhi	
hp-3080-FL-z65	z65	hp-3203-wzy, O16	O16	hp-3294-stgA Typhi	
hp-3085-FL-g	f,g,t; f,g,t; g,m,p,q; g,m,t; g,z2	hp-3204-wzy, O17	O17	hp-3297-sefB Enteritidis	
hp-3086-FL-g	f,g,t; f,g,t; g,m,p,q; g,m,s; g,m,t; g,t; g,z2	hp-3205-wzy, O17	O17	hp-3298-sefA Enteritidis	
if *Salmonella* isolates were tested (Table 1). Further, two probes for the Vi capsular antigen (Table 2) were included and were partly positive for *S. ser.* Paratyphi C and always positive for *S. ser.* Typhi. All tested *S. ser.* Dublin strains were negative for the Vi capsular antigen.

Probes and primers for AMR genotyping of *Salmonella* serovars were derived from a genotyping microarray for *E. coli* that was previously developed, validated and described ([25], http://alere-technologies.com/fileadmin/Media/Paper/Ecoli/Supplement_Geue__layout_E_coli.xlsx).

Table 2. Cont.

Probe	Potential Function	Probe	Potential Function	Probe	Potential Function
hp-3087-fb-flg	g: t; g: t; g: m: p: q;	hp-3026-wzx_018	O18	hp-3299-sefC	Entertidis
	g: m: t; g: t; g: t; g:				
hp-3089-flg	g: t; g: t; g: m: p: q;	hp-3027-wzx_018	O18	hp-3300-galF	species marker
	g: m: t; g: m: t; g: t;				
hp-3090-flg	g: t; g: t; g: m: p: q;	hp-3028-wzx_029	O2; O9	hp-3304-B5G7V7	Dublin
	g: m: t; g: m: t; g: t;				
hp-3091-flg	g: t; g: t; g: m: p: q;	hp-3029-wzx_029	O2; O9	hp-3302-B5R5L5	
	g: m: t; g: m: t; g: t;				
hp-3092-flg	g: t; g: t; g: m: p: q;	hp-3100-wzx_028	O28 serovar Dakar	hp-3306-B5R7B6	Gallinarum,
	g: m: t; g: m: t; g: t;				Weltevreden
hp-3103-flg	g: t; g: t; g: m: p: q;	hp-3111-wzx_028	O28 serovar Dakar	hp-3307-B5R7C1	
	g: m: t; g: m: t; g: t;				
hp-3104-flg	g: t; g: t; g: m: p: q;	hp-3121-wzx_028	O28 serovar Pomona	hp-3308-ISR1	Infantis
	g: m: t; g: m: t; g: t;				
hp-3105-flg	g: t; g: t; g: m: p: q;	hp-3131-wzx_028	O28 serovar Pomona	hp-3310-ISR1	Infantis
	g: m: t; g: m: t; g: t;				
hp-3106-flg	g: t; g: t; g: m: p: q;	hp-3134-wzx_0310	O3; O10	hp-3311-Q57Q4	Choleraeus
	g: m: t; g: m: t; g: t;				
hp-3107-flg	m: t	hp-3125-wzx_0310	O3; O10	hp-3312-Q57Q4	Choleraeus
hp-3108-flg	m: t	hp-3126-wzx_0300	O30	hp-3314-invA	species marker
hp-3109-flg	m: t	hp-3127-wzx_0300	O30	hp-3315-invA	species marker
hp-3113-flg+	z39	hp-3128-wzx_0350	O35	hp-3316-invA	species marker
hp-3113-flg+	z39+z52				

doi:10.1371/journal.pone.0046489.t002

Multiplex linear DNA amplification and labeling for hybridization to prepared ArrayStrips

For multiplex linear DNA amplification, a set of 292 primers (220 serotyping primer and 72 AMR primer, synthesized by Metabion, Martinsried, Germany) was used. These primers are located on the complementary strand, downstream of the sequence of the covalently immobilized oligonucleotide detection probes (the number of probes and primers do not need to be identical, a primer can target a consensus region, while probes might bind to more variable parts close by, which allows discerning different alleles of one gene). The labeling of the genomic DNA was accomplished during the linear amplification step by using dUTP linked biotin as a marker, thereby allowing site-specific internal labeling of the corresponding target region (Fig. 1a). Using the HybPlus Kit (Alere Technologies, Germany), at least 0.5 μg genomic DNA were labeled according to the manufacturer’s instructions. The linear amplification steps included 5 min of initial denaturation at 96 °C, followed by 50 cycles with 20 s of annealing at 50 °C, 40 s of elongation at 72 °C, and 60 s of denaturation at 96 °C. This reaction results in a multitude of specifically amplified, single-stranded, biotin-labeled DNA molecules for subsequent hybridization to the corresponding DNA microarray.

Hybridization of the ArrayStrips

For the hybridization procedures, the HybPlus Kit (Alere Technologies, Germany) was used according to the manufacturer’s instructions with an adapted protocol. This included hybridization buffer C1, washing buffer C2, peroxidase-streptavidin conjugate C3, conjugation buffer C4, washing buffer C5 and peroxidase substrate D1.
First, ArrayStrips were placed in a thermomixer (Quantifoil Instruments, Jena, Germany) and subsequently washed with 200 ml of de-ionized water for 5 min at 55°C/550 rpm and with 100 ml hybridization buffer C1 for 5 min at 55°C/550 rpm. All liquids were always completely removed with a soft plastic pipette to avoid scratching of the chip surface. In a separate tube, 10 ml of the labeled, single-stranded DNA were dissolved in 90 ml hybridization buffer C1. The hybridization was carried out at 55°C, shaking at 550 rpm for 1 h. After hybridization, the ArrayStrips were washed two times for 5 min with 200 ml washing buffer C2 at 45°C, shaking at 550 rpm. Peroxidase-streptavidin conjugate C3 was diluted 1:100 in buffer C4. A total of 100 ml of this mixture were added to each slot of the ArrayStrip, and subsequently incubated for 10 min at 30°C and 550 rpm. Afterwards, washing was carried out two times at 550 rpm with 200 µl C5 washing buffer at 30°C, with each step performed for 5 min. The visualization was achieved by adding 100 µl of peroxidase substrate D1 to the ArrayStrips, and signals were detected with the ArrayMate device (Alere Technologies, Jena, Germany) (Fig. 1b–c).

The described, final protocol was achieved by optimizing hybridization conditions (45°C–58°C) and washing temperatures (45°C–58°C) whereas the concentration of substances and incubation periods for each step were always constant. For this procedure, only strains were used for which published genome sequences (NCBI genome database) allowed to theoretically

Table 3. Summary of probes detecting antibiotic resistance genes and virulence factors.

Probe	Potential Function	Probe	Potential function
hp_armA_611	aminoglycoside resistance	hp_ble_611	bleomycin resistance
prob_aac3la_1	aminoglycoside resistance	prob_catA1_11	chloramphenicol resistance
hp_aac3_611	aminoglycoside resistance	prob_catB3_11	chloramphenicol resistance
prob_aac6b_1	aminoglycoside resistance	prob_catB8_12	chloramphenicol resistance
prob_aadA1_1	aminoglycoside resistance	prob_cmlA1_11	chloramphenicol resistance
prob_aadA2_1	aminoglycoside resistance	prob_floR_11	florfenicol and chloramphenicol resistance
prob_aadA4_1	aminoglycoside resistance	hp_mphA_611	erthymycin and roxythromycin resistance
prob_ant2la_1	aminoglycoside resistance	hp_ereA_611	erthymycin resistance
hp_aac6_612	aminoglycoside resistance	prob_qnrB_12	fluoroquinolone resistance
hp_aac6_615	aminoglycoside resistance	hp_kpc4_611	imipenem resistance
hp_aac6_618	aminoglycoside resistance	hp_qnrD_611	quinolone resistance
hp_aadB_611	aminoglycoside resistance	prob_qnr_12	quinolone resistance
hp_aadB_2_611	aminoglycoside resistance	prob_qnrS_11	quinolone resistance
hp_spH_611	aminoglycoside resistance	prob_sul1_11	sulfonamide resistance
prob_strA_611	aminoglycoside resistance	prob_sul2_11	sulfonamide resistance
prob_strB_611	aminoglycoside resistance	prob_sul3_11	sulfonamide resistance
hp_aac3_614	aminoglycoside resistance	prob_tetA_1	tetracycline resistance
hp_apHA_611	aminoglycoside resistance	prob_tetB_1	tetracycline resistance
hp_blaCMY_611	beta-lactam resistance	prob_tetC_1	tetracycline resistance
hp_per2_611	beta-lactam resistance	prob_tetD_1	tetracycline resistance
prob_acc1_11	beta-lactam resistance	prob_tetG_1	tetracycline resistance
prob_acc2_11	beta-lactam resistance	prob_dfr12_1	trimethoprim resistance
prob_cmy_11	beta-lactam resistance	prob_dfr13_1	trimethoprim resistance
prob_ctxM1_11	beta-lactam resistance	prob_dfrA1_21	trimethoprim resistance
prob_ctxM2_11	beta-lactam resistance	prob_dfrA1_22	trimethoprim resistance
prob_ctxM26_11	beta-lactam resistance	prob_dfrA14_21	trimethoprim resistance
prob_ctxM9_11	beta-lactam resistance	prob_dfrA15_1	trimethoprim resistance
prob_dha1_1	beta-lactam resistance	prob_dfrA17_1	trimethoprim resistance
prob_oxa1_21	beta-lactam resistance	prob_dfrA19_1	trimethoprim resistance
prob_oxa2_11	beta-lactam resistance	prob_dfrA7_1	trimethoprim resistance
prob_oxa7_11	beta-lactam resistance	prob_dfrA7_12	trimethoprim resistance
prob_per2_1	beta-lactam resistance	prob_dfrV_21	trimethoprim resistance
prob_pse1_1pm	beta-lactam resistance	prob_intl1_1	integrases
prob_shv1_11	beta-lactam resistance	prob_intl2_11	integrases
prob_tem1_1	beta-lactam resistance		

Table: Table 3. Summary of probes detecting antibiotic resistance genes and virulence factors.

DOI: 10.1371/journal.pone.0046489.t003
predict hybridization patterns (see Result part). These were strains \(\text{S. ser. Agona (SL483), S. ser. Choleraesuis (SGSA50, SC-B67), S. ser. Dublin (SD3246, CT02021853), S. ser. Enteritis (P125109), S. ser. Gallinarum (287/91, SG9), S. ser. Heidelberg (SL476), S. ser. Infectis (SIN), S. ser. Newport (SL254), S. ser. Paratyphi A (AKU12601, ATCC9150), S. ser. Paratyphi B (SPB7), S. ser. Paratyphi C (RKS4594), S. ser. Schwarzengrund (CV19633), S. ser. Typhii (CT18, Ty2), S. ser. Typhihimurium (1402S8, 27120, D23580, SL1344, T000240, UK-1, LT2) and S. ser. Weltevreden (2007-60-3289-1). These predictions were subsequently compared with the results of real hybridization experiments. The absence and presence of signals at different hybridization temperatures were monitored and the final protocol as described above based on the experiments in which the best accordance between predictions and real hybridizations was observed.

Processing data using PatternMatch algorithm

Hybridization signals were processed using the IconoClust software, version 3.2r1 (Fig. 1d). All spots were normalized automatically by the software according to the quotation

\[NI = 1 - \left(\frac{M}{BG} \right) \]

where \(NI \) is the normalized intensity, \(M \) the average intensity of the automatically recognized spot, and \(BG \) the intensity of the local background. The output range of the signals were between 0 and 1 with 0 being negative and 1 being the maximal possible signal value. A probe-matching matrix was used to construct the theoretical hybridization pattern of the fully sequenced strains listed in NCBI database (Table S1). The definition of the theoretical signal intensity was 0.9 for perfect match, 0.6 for 1 mismatch, 0.3 for 2 mismatches, 0.1 and below for 3 mismatches and no signal for more mismatches. For each of these sequenced strains, at least one reference strain was used to assign the expected pattern with the pattern of the real hybridization experiments. For this operation, the PatternMatch algorithm was used [29]. The final numerical output was given as the matching score (MS), which represents the overall sum of all differences between corresponding signal intensities of theoretical and real hybridization experiments. Thus, the MS value is a measure of overall similarity/dissimilarity between two hybridization patterns. An ideal match of two patterns based on the same set of oligonucleotide probes will yield MS = 0, whereas values above MS = 6.5 require critical scrutiny because they may indicate a poor match. The Delta MS value, defined as the arithmetic difference between best and second best match, served as measure for the accuracy of species identification. A Delta MS higher than 1.5 was considered to be sufficient for an unambiguous distinction between two patterns.

Calculation of similarities was carried out by comparing signals for all 255 probes between theoretical predictions and real experiments. Signals with intensities higher than 0.3, were considered positive and set as "1". Signals lower than 0.3, were regarded negative and set as "0". The number of probe differences was summarized and the percentage was calculated. In order to assess the reproducibility, eight experiments were performed under identical conditions. All experiments were compared to each other using the PatternMatch algorithm and the mean, maximum and minimum MS were calculated.

Figure 1. Multiplex linear DNA amplification, labeling and hybridization of the ArrayStrips. (a) Linear Multiplex Amplification starting from clonal RNA free genomic DNA, extracted DNA is internally labeled with biotin (Label [L]) and amplified in a linear multiplex PCR reaction; (b) Hybridization: the biotin labeled, single-stranded DNA product hybridizes specifically under stringent conditions to the corresponding probes. The resulting duplex is detected using a horse-radish peroxidase (Enzyme [E]) – streptavidin conjugate, which converts the substrate (Serumun green [S]) into a colored local precipitate. (c) Detection: the ArrayMate™ Reader (or ArrayTube™ Reader ATR 03) enables the visualization and subsequent automated analysis of the array image. The presence of a dark precipitated spot indicates successful hybridization; (d) Analysis: the assay specific software analysis script, supplied with the ArrayMate™ Reader (or ArrayTube™ Reader ATR 03), measures the signal intensity of each probe and determines with an assay specific algorithm which genes/alleles are present in the sample. (e) Genotype analysis: the PatternMatching software supplied with the ArrayMate™ Reader (or ArrayTube™ Reader ATR 03) is comparing the resulting pattern with a local database including 132 reference serovars previously sero- and genotyped, finally a report is given to which serovar the sample strain belongs with regard to the Kauffman-White Scheme.

doi:10.1371/journal.pone.0046489.g001
Antimicrobial resistance

All isolates in which AMR genes were detected, a total of 34 Salmonella isolates belonging to 18 serovars, were tested for their phenotypic antimicrobial resistance. This was carried out using the VITEK 2 system with the AST-N111 test panel (bioMerieux Deutschland GmbH, Nürtingen, Germany). Additionally, chloramphenicol (30 μg), kanamycin (30 μg) and streptomycin (10 μg) were tested by disk diffusion assay. This assay was performed using CLSI.

Verification of the assay and database building for PatternMatch

A set of 168 Salmonella strains representing 132 different serovars were used to evaluate the probes printed on the array, the primers in the labeling mixture, and to build a database for identification of the globally most prominent Salmonella serovars. Comparison of predicted and real hybridization results was performed for strains with fully sequenced genomes (see Materials and Methods and Table 4). The similarity between the predicted and real hybridization results of the serogenotyping array was more than 99 percent (Table 4). Because both, the full sequence information of the genome and the antigenic formula of S. ser. Typhimurium strain LT2, were available, an exact comparison of predicted and actual experimental hybridization pattern was possible (Fig. 2). It showed a 100% identity when regarding just positive and negative signals. A more detailed analysis, also considering signal intensities, showed a high degree of similarity between theoretical predictions and actual experiments with exceptions at probe hp-3221-wzx_O4 (signal intensity increased about 42% as predicted by the theoretical experiment) and hp-3292-Q8ZK10 (signal intensity decreased about 43% as predicted by the theoretical experiment). The highest discrepancy was found for S. ser. Paratyphi A and S. ser. Paratyphi B. Analysis of the results of S. ser. Paratyphi B showed that two probes were negative in actual hybridizations compared to the theoretical predictions (Fig. 2). However, the missing probes were redundant for one target gene (e.g., S. ser. Paratyphi B fliC-H1:b), so that this issue did not influence the identification. Because of the high correlation between theoretical predictions and actual experiments, as well as the high similarity of Tm of all 255 serotyping probes, it is assumed that the detection efficiency with other Salmonella serovars will also be comparably precise under the same conditions. Furthermore, the results of these theoretical experiments were used to find an optimal protocol (data not shown) for the hybridization of the Salmonella array so that an optimal, stringent hybridization and washing temperature could be defined (see Methods part).

Using this optimized protocol (as described in Materials and Methods), strains of all 132 Salmonella serovars were analyzed. Each serovar was tested at least three times using the Salmonella array to ensure consistent results and the identification of the unique and reproducible serovar-specific probe patterns. These unique patterns were used to build a PatternMatch database consisting of data from real experiments instead of theoretical experiments from defined strains. A manual serotyping using the probe-function table (Table 2) was restricted by the resolution of probes identify the H2-phase. This phase was mainly a combination of different probes, e.g. H2:1,5 of different serovars was always a combination of different “FL-1+e,n,x” probes (Table 2). Nevertheless it was possible to estimate the Salmonella serotype at least for the serogroup and in most cases for the phase H1. In the end the probe-function table served as a control for classical serotyped Salmonella before they were used in the PatterMatch database.
Table 4. Comparison of theoretical predictions and real hybridization patterns for the *Salmonella* array and previously typed strains (CDC, DSMZ).

Serovar	Strain	Accession No.	Serogroup	Antigenic Formula	Correct Antigenic Formula Designation	Serovar	Reference Strain	Correct Serovar Designation	Number of Probe Differences between Virtual and Real Hybridization	Similarity in %
Agona	SL483	NC_011149.1	B (O:4)	1,4,[5],12,g,gs:{1,2}	YES	Agona	CDC1636	YES	0/255	100.0
Choleraesuis	SGSA30	CM001062.1	C1 (O:7)	6,7,c:1,5	YES	Choleraesuis	DSM14846	YES	0/255	100.0
Choleraesuis	SC-867	NC_006905.1	C1 (O:7)	6,7,c:1,5	YES	Choleraesuis	DSM14846	YES	0/255	100.0
Dublin	SD3246	CM001151.1	D1 (O:9)	1,9,12[v]:g,p:-	YES	Dublin	CDC10-0635	YES	1/255	99.6
Dublin	CT02021853	NC_011205.1	D1 (O:9)	1,9,12[v]:g,p:-	YES	Dublin	CDC10-0636	YES	1/255	99.6
Enteritidis	P125109	NC_011294.1	D1 (O:9)	1,9,12,g,m:-	YES	Enteritidis	DSM17420	YES	0/255	100.0
Gallinarum	287/91	NC_011274.1	D1 (O:9)	1,9,12:-:-	YES	Gallinarum	CDC74	YES	1/255	99.6
Gallinarum	SG9	CM001153.1	D1 (O:9)	1,9,12:-:-	YES	Gallinarum	CDC74	YES	1/255	99.6
Heidelberg	SL476	NC_011083.1	B (O:4)	1,4,[5],12,r:1,2	YES	Heidelberg	CDC16	YES	0/255	100.0
Infantis	SIN	sanger.ac.ukb	C1 (O:7)	6,7,14,r:1,5	YES	Infantis	CDC1428	YES	0/255	100.0
Newport	SL254	NC_011080.1	C2–C3 (O:8)	6,8,20,e,h:1,12	YES	Newport	CDC2434	YES	0/255	100.0
Paratyphi A	AKU_12601	NC_011147.1	A (O:2)	1,2,12:a:[1,5]	YES	Paratyphi A	CDC1	YES	2/255	99.2
Paratyphi A	ATC C9150	NC_006511.1	A (O:2)	1,2,12:a:[1,5]	YES	Paratyphi A	CDC1	YES	2/255	99.2
Paratyphi B	SP87	NC_010102.1	B (O:4)	1,4,[5],12,b:1,2	YES	Paratyphi B	CDC3	YES	2/255	99.2
Paratyphi C	RKO4594	NC_012125.1	C1 (O:7)	6,7,[V]:c,1,5	YES	Paratyphi C	CDC3	YES	0/255	100.0
Schwarzengrund	CVM19633	NC_011094.1	B (O:4)	1,4,12,27:d,[1,7]	YES	Schwarzengrund	CDC1629	YES	1/255	99.6
Typhi	CT18	NC_003198.1	D1 (O:9)	9,12,[v]:d:-	YES	Typhi	No. 1c	YES	0/255	100.0
Typhi	Ty2	NC_004631.1	D1 (O:9)	9,12,[v]:d:-	YES	Typhi	No. 1c	YES	0/255	100.0
Typhimurium	I40285	NC_016856.1	B (O:4)	1,4,[5],12,r:1,2	YES	Typhimurium	CDC14	YES	0/255	100.0
Typhimurium	Z7120	NC_016857.1	B (O:4)	1,4,[5],12,r:1,2	YES	Typhimurium	CDC14	YES	0/255	100.0
Typhimurium	D23580	FN424405.1	B (O:4)	1,4,[5],12,r:1,2	YES	Typhimurium	CDC14	YES	0/255	100.0
Typhimurium	LT2	NC_003197.1	B (O:4)	1,4,[5],12,r:1,2	YES	Typhimurium	LT2	YES	0/255	100.0
Typhimurium	SL1344	NC_016810.1	B (O:4)	1,4,[5],12,r:1,2	YES	Typhimurium	CDC14	YES	0/255	100.0
Typhimurium	T0002-40	NC_016860.1	B (O:4)	1,4,[5],12,r:1,2	YES	Typhimurium	CDC14	YES	0/255	100.0
Typhimurium	UK-1	NC_016863.1	B (O:4)	1,4,[5],12,r:1,2	YES	Typhimurium	CDC14	YES	0/255	100.0
Weltevreden	2007–60–3289-1	FR75255.1	E1 (O:3,10)	3,(10,15):r:z:6	YES	Weltevreden	CDC147	YES	0/255	100.0

a maximal difference of serogenotyping probes at a signal threshold of 0.3.

b ftp://ftp.sanger.ac.uk/pub/pathogens/Salmonella/SG.dbs.

*only genomic DNA of *Salmonella* Typhi, courtesy of Rene S. Hendriksen, DTU Food, Denmark.

Calculation of similarities was carried out by comparing predictions to measured signals for all 255 probes. Signals with intensities higher than 0.3 were considered positive and set as “1”. Signals lower than 0.3 were regarded negative and set as “0”. The number of probes which differ was summarized and the percentage was calculated.

doi:10.1371/journal.pone.0046489.t004
Detection software

Using the described PatternMatch module, a software package was developed to analyze Salmonella serovars directly at the ArrayMate device directly after scanning and calculating signals of the stained arrays (IconoClust Software version 3.2r1) (Fig. 1e). The detection software used the same database comprising 168 reference Salmonella strains (representing 132 Salmonella serovars) which were classically serotyped. Patterns of unknown Salmonella were compared to the whole database and the two best hits were given in a result sheet (Fig. 3). Prior to PatternMatching, all calculated signals were normalized within a range of 0 and 1. Briefly, the mean of valid signals was calculated and subsequently, the formula

\[S_n = \frac{(S_m - \text{min})}{(\text{max} - \text{min})} \]

\[S_n = \text{normalized signal, } S_m = \text{mean of signal, } \text{min = Minimum of all signals, max = maximum of all signals} \]

was used to normalize the mean of valid values. Due to the normalization procedure, experiments with very low signal intensity could also be analyzed and subsequently compared with the database. This method guaranteed a correct assignment to the reference pattern within the provided database. Furthermore, different parameters were requested by the software: a) two biotin marker spots as positive staining controls, b) spotting buffer as a negative control and c) marker for detection of Salmonella. These results were included in the result sheet (Fig. 3). Additionally, the report contains the genotyping results of all AMR genes. The software tool was evaluated using all reference strains included in the database. All 168 reference strains were perfectly identified even if the experiment showed weak signals (data not presented here). A multiple PatternMatch analysis of eight identical hybridization experiments with the same genomic DNA isolated from S. ser. Typhimurium DSM5569 showed a mean matching score (MS) of 2.12±0.65 with a maximum MS of 3.32 and a minimum MS of 1.15. The mean and maximum MS were significantly (t-test, p<0.05) lower than the MS value for poor matches (MS> 6.5). These results showed the high reproducibility of this assay described in this study.

Antibiotic resistance

In a panel of 34 Salmonella strains 26 different AMR genes were detected and subsequently compared with the AMR phenotype of these strains (Table 5, detailed view in Table S2). A high correlation was observed for all detected genes relating to the AMR phenotype.

An extended-spectrum beta-lactamase (ESBL) gene, ctxM1, was detected once, in an isolate of S. ser. Anatum AMR07. This strain was resistant against ceftazidime and cefpodoxime, both members of third generation beta lactams.

AMR phenotypes for which no corresponding AMR genotype were detected included streptomycin resistance in two isolates (S. ser. Saintpaul and S. ser. 1,4,[5],12:i:-) and ampicillin resistance in one S. ser. Bredeney isolate. The latter isolate yielded a positive signal in a nitrocefin assay (BBL DrySlide Nitrocefin, Becton Dickinson).

No assessment was possible for resistance genes sul1 and sul2 that should cause isolated resistance to sulfonamides because
Table 5. Comparison of antimicrobial resistance (AMR) genotype and AMR phenotype.

AMR Genes	Genbank No.	AMR Family	Antibiotics Tested to AMR Phenotype	Gene detected	Resistance detected	Sensitivity detected	Correlation (%)
aac6II	AY123251.1	Aminoglycoside	Gentamicin, Tobramycin	1	1	0	100
aadA1	AB126599.1	Aminoglycoside	Streptomycin	14	14	0	100
aadA2	AB126602.1	Aminoglycoside	Streptomycin	5	5	0	100
aphA1	AB366440.1	Aminoglycoside	Kanamycin	5	5	0	100
sph	AB366441.1	Aminoglycoside	Streptomycin	1	1	0	100
strA	AB366442.1	Aminoglycoside	Streptomycin	10	10	0	100
strB	AB366440.1	Aminoglycoside	Streptomycin	14	14	0	100
catA1	AB366440.1	Chloramphenicol	Chloramphenicol	5	5	0	100
cmlA	AJ487033.2	Chloramphenicol	Chloramphenicol	4	4	0	100
floR	AF181870.1	Chloramphenicol	Chloramphenicol	2	2	0	100
sul1	AF261825.2	Sulfonamide/Trimethoprim	Co-trimoxazol (Sulfamethoxazol/Trimethoprim)	8	1	7	-^a
sul2	AB366440.1	Sulfonamide/Trimethoprim	Co-trimoxazol (Sulfamethoxazol/Trimethoprim)	3	2	1	-^a
sul1, sul2	AF261825.2, AB366440.1	Sulfonamide/Trimethoprim	Co-trimoxazol (Sulfamethoxazol/Trimethoprim)	1	0	1	-^a
sul1, dA1	AF261825.2, AF203818.1	Sulfonamide/Trimethoprim	Co-trimoxazol (Sulfamethoxazol/Trimethoprim)	1	1	0	100
sul1, dA15	AF261825.2, AF203818.1, AJ867237.1	Sulfonamide/Trimethoprim	Co-trimoxazol (Sulfamethoxazol/Trimethoprim)	1	1	0	100
sul1, dA12	AF261825.2, AB366440.1	Sulfonamide/Trimethoprim	Co-trimoxazol (Sulfamethoxazol/Trimethoprim)	1	1	0	100
sul1, dA13	AF261825.2, AM932669.1	Sulfonamide/Trimethoprim	Co-trimoxazol (Sulfamethoxazol/Trimethoprim)	1	1	0	100
sul1, d8V	AF261825.2, DQ133140.1	Sulfonamide/Trimethoprim	Co-trimoxazol (Sulfamethoxazol/Trimethoprim)	1	1	0	100
sul1, sul2, dA1	AF261825.2, AB366440.1, AF203818.1	Sulfonamide/Trimethoprim	Co-trimoxazol (Sulfamethoxazol/Trimethoprim)	2	2	0	100
sul1, sul2, dA12	AF261825.2, AB366440.1, AB366440.1	Sulfonamide/Trimethoprim	Co-trimoxazol (Sulfamethoxazol/Trimethoprim)	1	1	0	100
sul2, dA14	AB366440.1, DQ388123.1	Sulfonamide/Trimethoprim	Co-trimoxazol (Sulfamethoxazol/Trimethoprim)	1	1	0	100
sul3, dA1	AY162033.1, AF203818.1	Sulfonamide/Trimethoprim	Co-trimoxazol (Sulfamethoxazol/Trimethoprim)	1	1	0	100
sul3, dA12	AY162033.1, AB366440.1	Sulfonamide/Trimethoprim	Co-trimoxazol (Sulfamethoxazol/Trimethoprim)	3	3	0	100
testing was performed only for co-trimoxazole only.). A gene mphpA mediating erythromycin resistance was found in S. ser. Anatum strain AMR05 (Table S2), but erythromycin susceptibility was not tested using a panel for gram-negatives on the VITEK 2 system.

Field study

After assay verification, the *Salmonella* serogenotyping assay was used to identify a field panel of 105 *Salmonella* isolates (Table 6) sampled and serotyped by the National Reference Laboratory for Salmonellosis in Cattle at the Friedrich-Loeffler-Institute (FLI, Jena, Germany). All tested isolates were identified as *Salmonella* and, out of 105 isolates, 93 were typed correctly (88.6%, Table 6). The limitation of the actual assay was that certain strains yielded identical patterns on the current array thus prohibiting further differentiation (Table 6). Such limitations occurred for S. ser. Enteritidis, which actually cannot be discriminated from S. ser. Nitra and S. ser. Bledgdam. Furthermore, the pattern of S. ser. Dublin was identical to S. serovars Naestved, Moscow and Kiel. A discrimination of S. ser. Dublin and S. ser. Kiel was impossible as probes representing the genes SeD_A1100, SeD_A1101 and SeD_A1102 were positive for both serovars. Similar limitations were also observed for S. ser. Panama (identical pattern as S. ser. Koessen), S. ser. Indiana (identical pattern as S. ser. Klambu) and S. ser. Senftenberg (identical pattern as S. ser. Westhampton). A monophasic S. ser. Typhimurium isolate (1,4,[5],12:i:-) was identified correctly. *Salmonella* ser. Typhimurium var. Copenhagen (1,4,12:i:1,2) was assigned to S. ser. Typhimurium (1,4,[5],12:i:1,2) and a rough form of S. ser. Infantis was assigned to non-rough S. ser. Infantis. These limitations were evaluated as minor mistakes and subsequently regarded as correct hits.

Discussion

The microarray for *Salmonella* serogenotyping was validated against the gold standard and was evaluated as an economical, fast, accurate and easy-to-use diagnostic tool with a high potential for standardization and automated high throughput use. For identification of *Salmonella* using serogenotyping assays, several studies have already been published [13,19,20,21]. The results of these publications showed high correlation of genotypic and phenotypic characterizations for genus *Salmonella*. Similar studies serogenotyping *Esherichia coli* [6,30,31] or *Chlamydia* [29,32] also found a direct correlation of geno- and phenotype.

For *Salmonella*, at least four genes seem to be significant for specification of the genotype; *wzx* and *wzy* specify the O-serogroup, and the genes *fbC* and *fbB* specify the H antigens. To improve the correlation of geno-and phenotype, we analyzed fully sequenced *Salmonella* strains (Table 4) using theoretical hybridization with all probes on the microarray. The result was a similarity of over 99% between the phenotype represented by the antigenic formula and the genotype represented by the microarray based assay. Within the panel of theoretical reference experiments, strain S. ser. Typhimurium LT2 was the only one which was both fully sequenced and classically serotyped. Therefore, it was possible to compare the genotype represented through the NCBI database entry (NC_003197.1) with our theoretical experiments and subsequently with the real experiments using the same strain, S. ser. Typhimurium LT2. Theoretical and real experiments had a concordance of 100%. Even a deeper view of the signal-mismatch prediction from theoretical experiments resulted in a good correlation to the real experiment (Fig. 2). Only two probes showed signal strengths that differed from the results predicted by the theoretical experiment. Such discrepancies may occur due to secondary structure of the amplicon which decreases the binding

Antibiotics Tested to AMR Phenotype	Genbank No.	AMR Genes	AMR Family	AMR Genes Genbank No.	Sensitivity detected	Correlation (%)	
AMR Phenotype	Gene detected	Resistance detected	AMR Family	Genbank No.	AMR Genes Genbank No.	Sensitivity detected	Correlation (%)
----------------	----------------	-------------------	------------	------------	----------------	-------------------	-----------------
Ampicillin	ctxM1	110	1	0	0	0	100
Ceftazidime	oxa1	2	2	0	100		
Ampicillin	ctxM1	15	15	0	100		
Aerobactin	tetA	10	10	0	100		
Tetacycline	tetB	13	13	0	100		
Tetracycline	tetG	1	1	0	100		

Table 5.

AMR Genes Genbank No.	Sensitivity detected	Correlation (%)			
AMR Genes Genbank No.	Sensitivity detected	Correlation (%)			
-----------------------	-----------------------	-----------------------	-----------------------	---------------------	-----------------
AMR Genes Genbank No.	Sensitivity detected	Correlation (%)			
-----------------------	-----------------------	-----------------------	-----------------------	---------------------	-----------------
AMR Genes Genbank No.	Sensitivity detected	Correlation (%)			
-----------------------	-----------------------	-----------------------	-----------------------	---------------------	-----------------
AMR Genes Genbank No.	Sensitivity detected	Correlation (%)			
-----------------------	-----------------------	-----------------------	-----------------------	---------------------	-----------------
AMR Genes Genbank No.	Sensitivity detected	Correlation (%)			
-----------------------	-----------------------	-----------------------	-----------------------	---------------------	-----------------
AMR Genes Genbank No.	Sensitivity detected	Correlation (%)			
-----------------------	-----------------------	-----------------------	-----------------------	---------------------	-----------------
AMR Genes Genbank No.	Sensitivity detected	Correlation (%)			
-----------------------	-----------------------	-----------------------	-----------------------	---------------------	-----------------
Table 6. Field study with a blind panel of 105 isolates using the Salmonella serogenotyping assay.

Species	Serovar	Strain	Results of classical Serotyping	Results of microarray based Serotyping			
			Serogroup	Antigenic Formula	Unique Pattern	Serovar	Alternative Serovar*
S. enterica	1,4,5,12:i:-	NRL688	B (O:4)	1,4,[5],12:i:-	yes	1,4,[5],12:i:-	
S. enterica	1,4,5,12:i:-	NRL749	B (O:4)	1,4,[5],12:i:-	yes	1,4,[5],12:i:-	
S. enterica	1,4,5,12:i:-	NRL813	B (O:4)	1,4,[5],12:i:-	yes	1,4,[5],12:i:-	
S. enterica	1,4,5,12:i:-	NRL982	B (O:4)	1,4,[5],12:i:-	yes	1,4,[5],12:i:-	
S. enterica	1,4,5,12:i:-	NRL1004	B (O:4)	1,4,[5],12:i:-	yes	1,4,[5],12:i:-	
S. enterica	1,4,5,12:i:-	NRL1019	B (O:4)	1,4,[5],12:i:-	yes	1,4,[5],12:i:-	
S. enterica	Abony	NRL794	B (O:4)	1,4,[5],12,27:b:e,n,x	yes	Abony	
S. enterica	Agona	FLI415	B (O:4)	1,4,[5],12,f:gs[1,2]	yes	Agona	
S. enterica	Agona	FLI417	B (O:4)	1,4,[5],12,f:gs[1,2]	yes	Agona	
S. enterica	Agona	FLI1157	B (O:4)	1,4,[5],12,f:gs[1,2]	yes	Agona	
S. enterica	Agona	FLI449	B (O:4)	1,4,[5],12,f:gs[1,2]	yes	Agona	
S. enterica	Agona	FLI709	B (O:4)	1,4,[5],12,f:gs[1,2]	yes	Agona	
S. enterica	Agona	FLI1027	B (O:4)	1,4,[5],12,f:gs[1,2]	yes	Agona	
S. enterica	Anatum	NRL939	E1 (O:3,10)	3,[10],[15],[15,34]:e,h:1,6	yes	Anatum	
S. enterica	Anatum	NRL946	E1 (O:3,10)	3,[10],[15],[15,34]:e,h:1,6	yes	Anatum	
S. enterica	Anatum	FLI452	E1 (O:3,10)	3,[10],[15],[15,34]:e,h:1,6	yes	Anatum	
S. enterica	Anatum	NRL1006	E1 (O:3,10)	3,[10],[15],[15,34]:e,h:1,6	yes	Anatum	
S. enterica	Bareilly	FLI608	C1 (O:7)	6,14,y:1,5	yes	Bareilly	
S. enterica	Bovismorbificans	FLI466	C2–C3 (O:8)	6,8,20,r:1,1,5	yes	Bovismorbificans	
S. enterica	Bovismorbificans	FLI525	C2–C3 (O:8)	6,8,20,r:1,1,5	yes	Bovismorbificans	
S. enterica	Braenderup	FLI544	C1 (O:7)	6,7,14:e,h:e,n,z15	yes	Braenderup	
S. enterica	Brandenburg	NRL796	B (O:4)	4,[5],[12]:e,v:e,n,z15	yes	Brandenburg	
S. enterica	Brandenburg	NRL869	B (O:4)	4,[5],[12]:e,v:e,n,z15	yes	Brandenburg	
S. enterica	Brandenburg	NRL892	B (O:4)	4,[5],[12]:e,v:e,n,z15	yes	Brandenburg	
S. enterica	Brandenburg	FLI419	B (O:4)	4,[5],[12]:e,v:e,n,z15	yes	Brandenburg	
S. enterica	Cerro	NRL721	K (O:18)	6,14,18,24,23:1,5	yes	Cerro	
S. enterica	Choleraesuis	FLI826	C1 (O:7)	6,8,c:1,6	yes	Choleraesuis	
S. enterica	Choleraesuis	FLI987	C1 (O:7)	6,7,c:1,5	yes	Choleraesuis	
S. enterica	Derby	FLI605	B (O:4)	1,4,[5],12,f:gs[1,2]	yes	Derby	
S. enterica	Derby	FLI624	B (O:4)	1,4,[5],12,f:gs[1,2]	yes	Derby	
S. enterica	Derby	NRL723	B (O:4)	1,4,[5],12,f:gs[1,2]	yes	Derby	
S. enterica	Derby	NRL776	B (O:4)	1,4,[5],12,f:gs[1,2]	yes	Derby	
S. enterica	Derby	NRL960	B (O:4)	1,4,[5],12,f:gs[1,2]	yes	Derby	
S. enterica	Derby	FLI529	B (O:4)	1,4,[5],12,f:gs[1,2]	no	Derby	
S. enterica	Derby	FLI624	B (O:4)	1,4,[5],12,f:gs[1,2]	yes	Derby	
S. enterica	Derby	FLI666	B (O:4)	1,4,[5],12,f:gs[1,2]	yes	Derby	
S. enterica	Derby	FLI1111	B (O:4)	1,4,[5],12,f:gs[1,2]	no	Derby	
S. enterica	Dublin	NRL683	D1 (O:9)	1,9,12[V]:g,p:	no	Moscow Naestved	
S. enterica	Dublin	NRL684	D1 (O:9)	1,9,12[V]:g,p:	no	Moscow Naestved	
S. enterica	Dublin	NRL703	D1 (O:9)	1,9,12[V]:g,p:	no	Naestved Dublin	
S. enterica	Dublin	NRL704	D1 (O:9)	1,9,12[V]:g,p:	no	Naestved Dublin	
S. enterica	Dublin	NRL915	D1 (O:9)	1,9,12[V]:g,p:	no	Naestved Dublin	
S. enterica	Dublin (Bovisaloral)	NRL904	D1 (O:9)	1,9,12[V]:g,p:	no	Naestved Dublin	
S. enterica	Dublin (rough)	NRL787	D1 (O:9)	1,9,12[V]:g,p:	no	Naestved Dublin	
S. enterica	Enteritidis	FLI95	D1 (O:9)	1,9,12,g,m:	no	Blegdam Enteritidis	
S. enterica	Enteritidis	NRL685	D1 (O:9)	1,9,12,g,m:	no	Nitra Enteritidis	
S. enterica	Enteritidis	NRL875	D1 (O:9)	1,9,12,g,m:	no	Belgdam Enteritidis	
S. enterica	Gallinarum	FLI151	D1 (O:9)	1,9,12:--:--	yes	Gallinarum	
Species	Serovar	Strain	Results of classical Serotyping	Results of microarray based Serotyping			
------------------	------------------	------------	---------------------------------	--			
			Serogroup	Antigenic Formula	Unique Pattern	Serovar	Alternative Serovar¹
S.e. enterica	Gallinarum	FL155	D1 (O:9)	1,9,12:--	yes	Gallinarum	
S.e. enterica	Gallinarum	FL1969	D1 (O:9)	1,9,12:--	yes	Gallinarum	
S.e. enterica	Goldcoast	NRL852	C2–C3 (O:8)	6,8:r,l,w	yes	Goldcoast	
S.e. enterica	Goldcoast	FL1990	C2–C3 (O:8)	6,8:r,l,w	yes	Goldcoast	
S.e. enterica	Hadar	FL1636	C2–C3 (O:8)	6,8:10:e,n,x	yes	Hadar	
S.e. enterica	Hadar	FL1638	C2–C3 (O:8)	6,8:10:e,n,x	yes	Hadar	
S.e. enterica	Havana	FL1607	G (O:13)	1,13,23:f,g,[l]:-	yes	Havana	
S.e. enterica	Havana	FL1755	G (O:13)	1,13,23:f,g,[l]:-	yes	Havana	
S.e. enterica	Indiana	NRL872	B (O:4)	1,4,12:z,1,7	no	Kiambu	
S.e. enterica	Indiana	NRL1022	G (O:13)	1,13,23:i,l,w	yes	Kiambu	
S.e. enterica	Infantis	NRL718	C1 (O:7)	6,7,14:r,1,5	yes	Infantis	
S.e. enterica	Infantis	NRL822	C1 (O:7)	6,7,14:r,1,5	yes	Infantis	
S.e. enterica	Infantis	FL1630	C1 (O:7)	6,7,14:r,1,5	yes	Infantis	
S.e. enterica	Infantis	FL1761	C1 (O:7)	6,7,14:r,1,5	yes	Infantis	
S.e. enterica	Infantis (R-form)	FL1546	C1 (O:7)	6,7,14:r,1,5	yes	Infantis	
S.e. enterica	Kasesenyi	NRL878	P (O:38)	38:e,h:1,5	yes	Kasesenyi	
S.e. enterica	Kedougou	FL1515	G (O:13)	1,13,23:i,l,w	yes	Kedougou	
S.e. enterica	Kedougou	NRL1022	G (O:13)	1,13,23:i,l,w	yes	Kedougou	
S.e. enterica	Litchfield	FL1218	C2–C3 (O:8)	6,8:1:2	yes	Litchfield	
S.e. enterica	Livingstone	FL1720	C1 (O:7)	6,7,14:d,l,w	yes	Livingstone	
S.e. enterica	London	NRL700	E1 (O:3,10)	3,10(15,35):v:1,6	yes	London	
S.e. enterica	London	NRL849	E1 (O:3,10)	3,10(15,35):v:1,6	yes	London	
S.e. enterica	Manhattan	FL1662	C2–C3 (O:8)	6,8:1,5	yes	Manhattan	
S.e. enterica	Mbandaka	FL1534	C1 (O:7)	6,7,14:10:e,n,z15	yes	Mbandaka	
S.e. enterica	Minnesota	NRL814	L (O:21)	21:bre,n,x	yes	Minnesota	
S.e. enterica	Minnesota	NRL839	L (O:21)	21:bre,n,x	yes	Minnesota	
S.e. enterica	Montevideo	NRL930	C1 (O:7)	6,7,14:10:e,n,z15	yes	Montevideo	
S.e. enterica	Montevideo	FL1552	C1 (O:7)	6,7,14:10:e,n,z15	yes	Montevideo	
S.e. enterica	Muenchen	NRL801	C2–C3 (O:8)	6,8:1,2	yes	Muenchen	
S.e. enterica	Muenster	FL1325	E1 (O:3,10)	3,10(15,35,45):e,h:1,5	yes	Muenster	
S.e. enterica	Ohio	NRL882	C1 (O:7)	6,7,14:b,l,w	yes	Ohio	
S.e. enterica	Oranienburg	FL1429	C1 (O:7)	6,7,14:m,t(257)	yes	Oranienburg	
S.e. enterica	Panama	FL1604	D1 (O:9)	1,9,12:i,v,1,5	no	Koessen	
S.e. enterica	Panama	FL1411	D1 (O:9)	1,9,12:i,v,1,5	no	Panama	
S.e. enterica	Panama	FL1413	D1 (O:9)	1,9,12:i,v,1,5	no	Panama	
S.e. enterica	Paratyphi B	FL1588	B (O:4)	1,4,5,12:b:1,2	yes	Paratyphi B	
S.e. enterica	Paratyphi B	FL1590	B (O:4)	1,4,5,12:b:1,2	yes	Paratyphi B	
S.e. enterica	Pomona	FL1700	M (O:28)	28:y:1,7	yes	Pomona	
S.e. enterica	Saintpaul	FL1344	B (O:4)	1,4,5,12:e,h:1,2	yes	Saintpaul	
S.e. enterica	Saintpaul	FL1423	B (O:4)	1,4,5,12:e,h:1,2	yes	Saintpaul	
S.e. enterica	Sandiego	NRL987	C1 (O:7)	1,4,5,12:e,h,v,15	yes	Sandiego	
S.e. enterica	Senftenberg	NRL682	E4 (O:1,3,19)	1,3,19:g,[s]:-	no	Westhampton	
S.e. enterica	Tennessee	FL1347	C1 (O:7)	6,7,14:229:1,2,7	yes	Tennessee	
S.e. enterica	Tennessee	FL1606	C1 (O:7)	6,7,14:229:1,2,7	yes	Tennessee	
S.e. enterica	Thompson	FL1658	C1 (O:7)	6,7,14:k,1,5	yes	Thompson	
S.e. enterica	Typhimurium	FL1598	B (O:4)	1,4,5,12:i,1,2	yes	Typhimurium	
S.e. enterica	Typhimurium	NRL990	B (O:4)	1,4,5,12:i,1,2	yes	Typhimurium	
A more recent method to identify Salmonella is a system using a microsphere-based liquid array [19,20]. This method uses a set of beads which are coupled with probes for one attribute within the antigenic formula of Salmonella serovars. While the method is highly sensitive and specific, a multitude of different beads is required for every attribute within the antigenic formula (e.g., O-antigen). Therefore, at least three reactions have to be performed before obtaining the antigenic formula. A drawback of the method is the multiplex PCR used to amplify short DNA fragments which are then hybridized to the probes on the beads. Due to the inherent disadvantages of any multiplex PCR [34,35], the options are limited for a further expansion of the assay beyond the serovars it currently recognizes.

The described microarray based serogenotyping assay for Salmonella overcomes most of these bottlenecks. It is easy-to-use, an unlimited expandability and fully automated data analysis, making it an attractive platform for a widespread application. The multiplex primer extension reaction used for labeling is highly specific, but exhibits low sensitivity, due to linear (non-exponential) amplification. However, for typing colony material of a fast growing organism, such as Salmonella, this is no issue. The use of colony material instead of original field samples allows both, to obtain the necessary amount of DNA and to ensure pureness and clonality of cultures to be genotyped. Besides, the limited amplification can prove to be an advantage under routine conditions as the assay becomes less susceptible to contamination. Using a classic multiplex PCR, the sensitivity is very high, but contaminants will also be amplified to a detectable level because of the near-exponential kinetics of a PCR. This fact might cause difficulties in high-throughput routine laboratories.

In our approach, primers and their respective probe binding sites are very close to each other. The probability of secondary structures (e.g., hairpins) forming in short generated fragments is lower than in long fragments and this may increase signal intensity. Additionally, the use of single stranded DNA prevents the competition between probe and antisense strand and increases the probability of the single stranded amplicon binding to the probe. Labeling methods using biotin attached to primers were often used [36], but we assumed that, due to cross hybridizations of biotin labeled primer which are in relatively high concentrations, false positive signals will occur more often. In this study,

Table 6. Cont.

Species	Serovar	Strain	Results of classical Serotyping	Results of microarray based Serotyping			
			Serogroup	Antigenic Formula	Unique Pattern	Serovar	Alternative Serovar*
S. e. enterica	Typhimurium	NRI729	B (O:4)	1,4,[5],12x1,2	yes	Typhimurium	
S. e. enterica	Typhimurium	NRI737	B (O:4)	1,4,[5],12x1,2	yes	Typhimurium	
S. e. enterica	Typhimurium	FLI17	B (O:4)	1,4,[5],12x1,2	yes	Typhimurium	
S. e. enterica	Typhimurium	NRI990	B (O:4)	1,4,[5],12x1,2	yes	Typhimurium	
S. e. enterica	Typhimurium	NRI993	B (O:4)	1,4,[5],12x1,2	yes	Typhimurium	
S. e. enterica	Typhimurium var. Copenhagen	NRI797	B (O:4)	1,4,12x1,2	yes	Typhimurium	
S. e. enterica	Typhimurium var. Copenhagen	NRI912	B (O:4)	1,4,12x1,2	yes	Typhimurium	
S. e. enterica	Typhimurium var. Copenhagen	FLI1033	B (O:4)	1,4,12x1,2	yes	Typhimurium	
S. e. enterica	Virchow	FLI640	C1 (O:7)	6,7,14x1,2	yes	Virchow	
S. e. enterica	Virchow	FLI649	C1 (O:7)	6,7,14x1,2	yes	Virchow	

*tested isolate generated a serogenotyping pattern which is shared by multiple serovars.

Results were analyzed by the PatternMatch software and compared with the results of classical serotyping performed by the National Reference Laboratory for Salmonellosis in cattle at the Friedrich-Loeffler-Institute (NRL, FLI, Jena, Germany).

doi:10.1371/journal.pone.0046489.t006

Salmonella

Serogenotyping of Salmonella
biotin labeled dUTP was used for internal labeling of the multitude of single stranded amplicons. This method prevents false positive signals due to unused primer which bind on empty probes. Another significant advantage of the described serogenotyping method is the economical and ready-to-use availability of all components, even in large scales. For DNA isolation, we used standard DNA isolation kits from Roche or Qiagen. Furthermore, it is conceivable that, after heating at 100 °C and RNase treatment (assay sensitivity may decreases due to single stranded RNA which may trap primer used in the multiplex linear DNA amplification), the crude cell extract could be used directly with this assay. All substances for the linear multiplex PCR and the labeling process are available as HyBio Plus Kit (Alere Technologies, Germany). Due to the standardized availability of all components, this method can immediately be used for routine serogenotyping of Salmonella. Up to 96 samples can be analyzed simultaneously.

So far, the serogenotyping assay shows the limitation of the inability to discriminate between serogroup A (O:2) and serogroup D1 (O:9). This is due to the high sequence similarity within the rfb region between strains of both serogroups. Within the genome of serogroup A strains, the rfb region has been shown to be a minor modification of a serogroup D1 rfb region; it has a frameshift mutation that inactivates tev, a sugar biosynthesis gene required for the biosynthesis of tyvelose [37]. Serogroup D1 strains have tyvelose as their O-antigen side chain sugar, whereas serogroup A strains have paratose, the substrate for tyvelose, as its side chain sugar. Thus, a small genetic change is responsible for a substantial O-antigen difference. Additional probes, including lgyA, lgyD, sefA, sefB and sefC, which were only described for serovar Enteritidis [38,39], also give positive signals for serovar Nitra. Additionally, S. ser. Blegdams (O9:g,m,q-) showed an identical pattern on the microarray, but in this case the antigenic formula is highly similar to S. ser. Enteritidis (O9:g,m-). This result showed how closely related these serovars are to each other. A similar observation between the serogroups A and D1 were made for the serovars Dublin (O9:g:q-) and Kiel (O2:g:p-), where additional probes for SeD_A1100, SeD_A1101 and SeD_A1102 were also positive with serovar Kiel. This observation may indicate a high degree of relationship between these two serovars. Furthermore, we assume a high genome sequence similarity between Panama (O91,1:5) and Koessen (O2:1v:1,5) as the microarray pattern were also identical. Paratyphi A could be unambiguously identified due to the probes of intergenic region SSPAI. With the knowledge about the genotype of these described serovars a question arises: Is there a need to differentiate between serogroup D1 and A or between C and D1? However, all these ambiguous strains are very rare in a clinical environment, each being reported less than 10 times worldwide during the last 10 years ([1], www.cdc.gov/ncezid/dwesd/PDFs/SalmonellaAnnualSummaryTable2009.pdf), and additional probes can easily be introduced should a need arise, or should new sequence information become available.

Due to the absence of a probe which can determine the genetic loci of the O:5 epitope, the isolate S. ser. Typhimurium var. Copenhagen, which is O:5-negative by serotyping, was identified as S. ser. Typhimurium; this minor mistake was regarded as a correct hit.

Another minor limitation is that R- forms (rough forms) cannot be identified using the current array as observed in one isolate of Infantis. R- forms mainly result from mutations of genes within the lipopolysaccharide core [45]. Mutations within the genes rfa (glycosyltransferase), galE (UDP-galactose epimerase), or galF (UDP-glucose pyrophosphorylase) can cause an interruption of the biosynthesis of the lipopolysaccharides. No probes detecting such mutations were included to the array, and failure to identify R- forms regarded as minor issue.

The described assay for serogenotyping is the basis for a fast method to identify Salmonella serovars. We believe that the usage of this assay in a routine laboratory setting is warranted due to the high correlation between serotype and genotype. An advantage of the genotype as the basis for serovar identification is that phenotypic differences (e.g., R-forms that are difficult to analyze by classical serology) play no role. Furthermore, the serogenotyping assay could be used worldwide, where antisera are not available. In such areas, a Salmonella infection in livestock or

Serogenotyping of Salmonella
Salmonella contamination in food could be identified very quickly. Salmonella outbreaks could consequently be retraced to their origin. This microarray-based assay is a powerful tool for epidemiological studies, as many samples can be analyzed rapidly and in parallel. For such cases, a point-of-care application represents an ideal standard.

During an outbreak situation, this assay could be extremely helpful to identify the outbreak isolate including AMR genotype within hours after they are obtained as clonal serovar. Extremely helpful to identify the outbreak isolate including AMR phenotype of 34 strains.

Supporting information

Table S1 Probe-matching matrix used to construct the theoretical hybridization pattern of the fully sequenced strains listed in NCBI database. (XLSX)

Table S2 Comparison of the AMR-genotype and AMR-phenotype of 34 Salmonella strains. (XLSX)

References

1. Anonymous (1934) The Genus Salmonella. Lignieres, 1900. J Hyg (Lond) 34: 126–127.
2. Aslani MM, Bouzari S (2009) Characterization of virulence genes of non-O157 Escherichia coli strains from culture and clinical samples using an oligonucleotide multiprobe microarray assay. Mol Cell Probes 21: 56–65.
3. Aslani MM, Alikhani MY (2009) Serotypes of enteropathogenic Staphylococcus aureus isolates from children under 5 years of age. Iranian J Publ Health 38: 70–77.
4. Ballmer K, Korczak BM, Kuhnert P, Slickers P, Ehricht R, et al. (2007) Fast molecular identification of Salmonella enterica subsp. enterica serovars. J Clin Microbiol 45: 370–379.
5. Benjamin NJ (1999) Flagellar antigenic analysis of Salmonella enterica serovars. J Bacteriol 175: 1370–1380.
6. Ballmer K, Korczak BM, Kuhnert P, Slickers P, Ehricht R, et al. (2007) Fast DNA serotyping of Escherichia coli by use of an oligonucleotide microarray. J Clin Microbiol 45: 370–379.
7. Masten BJ, Joys TM (1993) Molecular analyses of the flagellar antigen complex. J Bacteriol 175: 1370–1380.
8. Mcquiston JR, Farrenas R, Ortiz-Rivera M, Gheesling L, Brender F, et al. (2004) Sequencing and comparative analysis of flagella genes fljB, fliC, and fliM from Salmonella. J Clin Microbiol 42: 1923–1932.
9. Burnens AP, Stanley J, Sechter I, Nicolet J (1996) Evolutionary origin of a monophasic Salmonella serovar, 9,12:–, revealed by B200 profiles and restriction fragment polymorphisms of the fljB gene. J Clin Microbiol 34: 1641–1645.
10. Silverman M, Zieg J, Hilmen M, Simon M (1979) Phase variation in Salmonella: genetic analysis of a recombinational switch. Proc Natl Acad Sci USA 76: 391–395.
11. Zieg J, Simon M (1980) Analysis of the nucleotide sequence of an invertible controlling element. Proc Natl Acad Sci USA 77: 4196–4200.
12. Anonymous (2007) Microbiological identification of Enterobacteriaceae, 2nd edn. Reference Manual, 2nd edn. Cientifica, A Coruña, Spain. 116 p.
13. Franklin K, Lingbo EJ, Yoshida C, Anjum M, Bedrossy L, et al. (2011) Rapid genoserotyping tool for classification of Salmonella serovars. J Clin Microbiol 49: 2954–2965.
14. Sridhar S, Frye JG, Hu J, Fedorka-Cray PJ, Gautam R, et al. (2006) Multiplex PCR-based method for identification of common clinical serotypes of Salmonella enterica subspp. enterica. J Clin Microbiol 44: 3608–3615.
15. Muñoz N, Díaz-Osorio M, Moreno J, Sánchez-Jiménez M, Cardona-Castro N (2010) Development and evaluation of a multiplex real-time polymerase chain reaction procedure for clinically typical prevalent Salmonella enterica serovars. J Mol Diagn 12: 220–225.
16. Ben-David E, Jury F, De Pinna E, Theresa E, Boltjen FJ, et al. (2010) Development of a multiplex primer extension assay for rapid detection of Salmonella isolates of diverse serotypes. J Clin Microbiol 48: 1055–1060.
17. Malorny B, Bunge C, Guerra B, Priet S, Helmhut R (2007) Molecular characterisation of Salmonella strains by an oligonucleotide multiprobe microarray. Mol Cell Probes 21: 36–45.
18. Sukmanand S, Alcaine S, Warnack LD, Su WL, Hof J, et al. (2003) DNA sequence-based subtyping and evolutionary analysis of selected Salmonella enterica serotypes. J Clin Microbiol 43: 3680–3681.
19. Fitzgerald C, Collins M, van Duynne S, Mikoleit M, Brown T, et al. (2007) Multiplex, bead-based suspension array for molecular determination of common Salmonella serotypes. J Clin Microbiol 45: 3323–3334.
20. Mcquiston JR, Waters RJ, Dinsmore BA, Mikoleit ML, Fields PI (2010) Molecular determination of H antigens of Salmonella by use of a microsphere-based liquid array. J Clin Microbiol 49: 365–373.
21. Wautiez P, Weijers T, Andrioli P, Schäfer C, Vekem HV, et al. (2008) Evaluation of the Premi Test Salmonella, a commercial low-density DNA microarray system intended for routine identification and typing of Salmonella enterica. Int J Food Microbiol 123: 293–298.
22. McClelland M, Sandersen KE, Clifton SW, Latreille P, Korobov S, et al. (2004) Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 36: 1268–1274.
23. Fick WF, Mammel MK, McDermott PF, Tarterra C, White DG, et al. (2011) Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J Bacteriol 193: 3556–3568.
24. Rahn K, De Grandis SA, Clarke RG, McKewen SA, Galan JE, et al. (1992) Amplification of an invc gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6: 271–279.
25. Geue L, Schares S, Mintel B, Gonurath DJ, Muller E, et al. (2010) Rapid microarray-based genotyping of enterohemorrhagic Escherichia coli serotype O157:H7/H::Hus isolates from cattle and clonal relationship analysis. Appl Environ Microbiol 76: 5510–5519.
26. Tosini F, Visca P, Luzzi I, Dionisi AM, Pezzella G, et al. (1998) Class I integron-based multiple-antibiotic resistance carried by IncFI and IncL/M plasmids in Salmonella enterica serotype Typhimurium. Antimicrob Agents Chemother 42: 3053–3058.
27. Mazzucco RL (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4: 680–682.
28. Monteke S, Coulomb G, Shore AG, Coleman DC, Akpaka P, et al. (2011) A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One 6: e17936.
29. Ruetterg A, Feige J, Sickers P, Schubert E, Morre SA, et al. (2011) Genotyping of Chlamydia trachomatis strains from culture and clinical samples using an ompA-based DNA microarray assay. Mol Cell Probes 25: 19–27.
30. Assadi AM, Bouzari S (2009) Characterization of virulence genes of non-O157 Shiga toxin-producing Escherichia coli isolates from two provinces of Iran. Jpn J Infect Dis 62: 16–19.
31. Assadi AM, Akhshani MY (2009) Serotype of enteropathogenic Escherichia coli isolated from children under 5 years of age. Iranian J Publ Health 38: 70–77.
32. Sachse K, Laroucau K, Hotzel H, Schubert E, Ehricht R, et al. (2008) Genotyping of Chlamydia psittaci using a new DNA microarray assay based on sequence analysis of ompA genes. BMC Microbiol 8: 63.
33. Kontic T, Wielahrter A, Rubinio S, Delogu G, Uzzau S, et al. (2007) A microbial diagnostic microarray technique for the sensitive detection and identification of pathogenic bacteria in a background of nonpathogens. Anal Biochem 360: 244–255.
34. Henegarui O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH (1997) Multiplex PCR: critical parameters and step-by-step protocol. BioTechniques 23: 504–511.
35. Markouatas P, Sifakas N, Moncay M (2002) Multiplex polymerase chain reaction: a practical approach. J Clin Lab Anal 16: 47–51.

Acknowledgments

We thank Matthew Mikoleit (CDC, Atlanta, USA) for support with the Salmonella reference strains and proof reading of the manuscript, Rene S. Hendrikse and Christina Aaby Svedenham (DTU Food, Denmark) for the S. ser. Typhi DNA as generous gift, Rob Burris (Alere, Uganda) and Carly Scott for proof reading the manuscript, Gisela Rösler and Ines Engelmann (Alere, Jena, Germany) for excellent technical support, Elke Müller for organizing the Salmonella culture collection, Stefan Schwarz (FLI, Neustadt-Mariensee, Germany), Paul Barrow (University of Nottingham Sutton Bonington Campus, Leicestershire, UK) and Lutz Gene (FLI Wusterhausen, Germany) for different Salmonella reference strains as generous gift, Susann Schubert and Anja Gottwald (Technical University of Dresden, Dresden, Germany) for AMR phenotyping, Christine Braun for continuous support as well as for proof reading of the manuscript, and Eugen Ermantraut (Alere, Jena, Germany) for supporting this work.

Author Contributions

Performed the experiments: SDB SK. Analyzed the data: SDB AZ PS. Contributed reagents/materials/analysis tools: SDB AZ PS. Wrote the paper: SDB SM RE UM.
36. Jarvinen AK, Laakso S, Piparininen P, Aittakorpi A, Lindfors M, et al. (2009) Rapid identification of bacterial pathogens using a PCR- and microarray-based assay. BMC Microbiol 9: 161.

37. Liu D, Verma NK, Romana LK, Reeves PR (1991) Relationships among the rfb regions of Salmonella serovars A, B, and D. J Bacteriol 173: 4814–4819.

38. Clouthier SC, Muller KH, Doran JL, Collinson SK, Kay WW (1993) Characterization of three fimbrial genes, srfABC, of Salmonella enteritis. J Bacteriol 175: 2523–2533.

39. Ogunniyi AD, Kotlarski I, Morona R, Manning PA (1997) Role of SefA subunit protein of SEF14 fimbriae in the pathogenesis of Salmonella enterica serovar Enteritidis. Infect Immun 65: 708–717.

40. Anjum MF, Choudhary S, Morrison V, Snow LC, Mafura M, et al. (2011) Identifying antimicrobial resistance genes of human clinical relevance within Salmonella isolated from food animals in Great Britain. J Antimicrob Chemother 66: 550–559.

41. Szmolka A, Anjum MF, La Ragione RM, Kaczyneeszky EJ, Nagy B (2011) Microarray based comparative genotyping of gentamicin resistant Escherichia coli strains from food animals and humans. Vet Microbiol 156: 110–118.

42. Batchelor M, Hopkins K, Threlfl EJ, Clifton-Hadley FA, Stalbood AD, et al. (2005) bla(CTX-M) genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob Agents Chemother 49: 1319–1322.

43. Uma B, Prablakar K, Rajendran S, Lakshmi Saraya Y (2010) Prevalence of extended spectrum beta lactamases in Salmonella species isolated from patients with acute gastroenteritis. Indian J Gastroenterol 29: 201–204.

44. Chan YY, Tan TM, Ong YM, Chua KL (2004) BpeAB-OprB, a multidrug efflux pump in Burkholderia pseudomallei. Antimicrob Agents Chemother 48: 1128–1135.

45. Lindberg AA, Hellersqvist CG (1980) Rough mutants of Salmonella typhimurium: immunochemical and structural analysis of lipopolysaccharides from sfaH mutants. J Gen Microbiol 116: 25–32.