Correspondence

Comments on ‘Association of FcRIβ polymorphisms with risk of asthma and allergic rhinitis: evidence based on 29 case–control studies’

Haijun Yang1,*, Lan Zheng2,3,*, Yanmei Zhang1, Min Yang1 and Sha Wei1

1Department of Preventive Medicine, College of Basic Medical Sciences, Hubei University of Chinese Medicine, Hongshan District, Wuhan 430065, P.R. China; 2Department of Internal Medicine, the First School of Clinical Medicine, Hubei University of Chinese Medicine, Wuchang District, Wuhan 430060, P.R. China; 3Section of Respiratory Medicine, Department of Internal Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuchang District, Wuhan 430061, P.R. China

Correspondence: Haijun Yang (haijyang@hbtcm.edu.cn)

Guo et al. (Bioscience Reports (2018) 38, BSR20180177) published a meta-analysis concerning the association between five single nucleotide polymorphisms (SNPs) in the high-affinity IgE receptor β chain (FcεRIβ) gene, namely E237G, -109 C/T, Rsal_in2, Rsal_ex7, and I181L, and risk of asthma and allergic rhinitis based on available 29 case–control studies. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of association of SNPs in FcεRIβ gene with allergic diseases risk. They found that FcεRIβ E237G (237G vs. 237E: OR = 1.28, 95% CI = 1.06–1.53) and -109 C/T (TT vs. CT+CC: OR = 1.58, 95% CI = 1.26–1.98) were risk factors for allergic diseases. Guo et al.’s findings are interesting, but we found that several issues should be clarified after carefully reading the paper. Here, we intended to comment on these data clarifications.

Dear editor,

We researched the relevant studies about the association between the high-affinity IgE receptor β chain (FcεRIβ) polymorphisms and allergic diseases risk in Medline, Embase, Web of Science, Chinese National Knowledge Infrastructure, and Wanfang databases. No limit of start year and month was set, and the updated time was August 2019. The terms, search strategies, and inclusion/exclusion criteria were the same as reported by Guo et al. [1]. Comparing our retrieved studies with the ones in Table 1 of Guo et al.’s paper [1], it seems that some errors or mistakes should be corrected.

First, several relevant studies that met the inclusion criteria were missed in Guo et al.’s paper [2–15]. Of the 14 missed studies, 5 articles were published before January 2000 [2–6], which was the start time of published paper restricted in Guo et al.’s literature searching strategy [1]; 3 reports were from Japan [2,6,11], 4 studies were from China [9,13–15], 1 each was from South Africa [3], Switzerland [4], Australia [5], India [7], South Korea [8], the U.S.A. [11], and Hungary [12], respectively. In Green et al.’s study, black and white populations were recruited, respectively [3]. In Undarmaa et al.’s report, children and adult populations were recruited, respectively [10].

Second, several studies published by the same research group were included in Guo et al.’s report [1]. According to the inclusion and exclusion criteria, when more than two studies were reported by the same research group, only the paper with the largest sample size was included in the analysis. We think Cui et al.’s study [16], published in 2004, with 106 adult asthmatics and 106 controls, were incorporated into their another paper, published in 2003, with 216 (number including adults and children) cases and 198 controls [17]. Similarly, the study populations in Hua et al.’s papers [18,19] and the Chinese Han case/control populations in Ramphul et al.’s article [20], were recruited by the same research group, the two smaller sample-size studies should be excluded from the analysis [18,20].
Table 1 Main characteristics of eligible studies

Author	Year	Country	Ethnicity	Atopy	Sample size (n)	Genotype frequency (n)	HWE (P)	
					Case Control EE	Case Control EG		
					Case Control GG	Case Control GG		
FcεRIβ gene E237G polymorphism								
Shirakawa	1996	Japan	Asian	asthma	300 100	256 44 0	94 6 0	1.000
Green	1998	South Africa	African	asthma	41 42	27 12 2	25 17 0	0.172
Green	1998	South Africa	Caucasian	asthma	46 51	35 11 0	47 4 0	1.000
Rohrbach	1998	Switzerland	Caucasian	asthma	224 159	207 17 0	151 8 0	1.000
Ishizawa	1999	Japan	Asian	asthma	90 102	70 19 1	81 21 0	0.593
Chen	2000	China	Asian	asthma	101 47	59 39 3	30 16 1	1.000
Soriano	2000	Spain	Caucasian	asthma	145 47	134 11 0	43 4 0	1.000
Takabayashi	2000	Japan	Asian	asthma	100 100	69 27 4	65 33 2	1.000
Green	1998	South Africa	Caucasian	asthma	36 51	24 35 2	41 16 1	0.001
Green	2000	China	African	asthma	101 47	59 39 3	30 16 1	1.000
Soriano	2000	Spain	Caucasian	asthma	145 47	134 11 0	43 4 0	1.000
Zeng	2001	China	Asian	asthma	219 198	125 80 11	148 46 4	0.766
Korzycka	2004	Poland	Caucasian	asthma	98 87	92 6 0	83 4 0	1.000
Rigoli	2004	Italy	Caucasian	asthma	100 103	79 16 5	102 1 0	1.000
Shahra	2004	India	Asian	asthma	329 266	300 29 0	250 16 0	1.000
Zhang (Chinese)	2004	Singapore	Asian	asthma	141 157	81 57 3	108 42 7	1.194
Zhang (Indian)	2004	Singapore	Asian	asthma	82 98	71 10 1	80 18 0	1.000
Zhang (Malay)	2004	Singapore	Asian	asthma	68 100	49 19 0	77 23 0	0.353
Zhao	2004	China	Asian	asthma	151 105	126 23 2	92 13 0	1.000
Kim	2006	Korea	Asian	asthma	307 264	235 64 8	177 81 6	0.353
Li	2006	China	Asian	asthma	50 40	43 7 0	40 0 0	1.000
Liu	2006	China	Asian	asthma	60 50	45 14 1	39 10 1	0.527
Kim	2009	Korea	Asian	asthma	347 303	244 99 4	217 81 5	0.409
Wang	2009	China	Asian	asthma	446 506	309 121 16	314 165 27	0.396
Undarmaa	2010	Japan	Asian	asthma	367 630	256 102 9	440 165 25	0.061
Undarmaa	2010	Japan	Asian	asthma	322 336	243 70 9	242 85 9	0.642
Murk	2011	U.S.A. mixed	asthma	asthma	100 486	91 9 0	452 33 1	0.470
Dmitrieva	2012	Russia	Caucasian	asthma	224 172	217 7 0	170 2 0	1.000
Ungvari	2012	Hungary	Caucasian	asthma	436 785	418 17 1	723 38 4	0.004
Zheng	2012	China	Asian	asthma	198 110	126 61 11	76 29 5	0.325
Chen	2014	China	Asian	asthma	46 52	38 6 2	38 6 8	<0.001
Lan	2014	China	Asian	asthma	58 50	41 16 1	47 3 0	1.000
Ramphul	2014	India	Asian	asthma	192 188	170 21 1	163 24 1	0.605
Amo	2016	Spain	Caucasian	rhinitis	366 526	330 36 0	487 39 0	1.000
Amo	2016	Spain	Caucasian	asthma	149 526	146 3 0	487 39 0	1.000
Hua	2016	China	Asian	asthma	1000 1000	659 276 65	688 289 23	0.252
Yang	2017	China	Asian	asthma	74 110	38 31 5	77 30 3	1.000

FcεRIβ gene C-109T polymorphism

Author	Year	Country	Ethnicity	Atopy	Sample size (n)	Genotype frequency (n)	HWE (P)				
case control					CC	CT	TT	CC	CT	TT	

Dickson 1999 Australia Caucasian asthma 44 26 11 17 16 6 15 5 0.428

Cui 2003 China Asian asthma 216 198 23 106 87 19 103 76 0.059

Gan 2004 China Asian asthma 45 45 10 12 23 12 14 19 0.015

Zhao 2004 China Asian asthma 126 87 11 69 46 9 38 40 0.996

Hizawa 2006 Japan Asian asthma 374 374 39 178 157 49 169 156 0.762

Continued over
Table 1 Main characteristics of eligible studies (Continued)

Author	Year	Country	Ethnicity	Atopy	Sample size (n)	Genotype frequency (n)							
					case control	CC	CT	TT	CC	CT	TT	HWE (P)	
Kim	2006	Korea	Asian	asthma	302	264	17	139	146	23	128	113	0.114
Potaczek	2007	Poland	Caucasian	asthma	154	154	25	72	57	27	70	57	0.495
Kim	2009	Korea	Asian	asthma	346	303	20	167	159	28	135	140	0.576
Sharma	2009	India	Asian	asthma	237	221	89	108	40	34	118	69	0.156
Tikhonova	2010	Russia	Caucasian	asthma	140	136	18	69	57	27	70	48	0.339
Ramphul	2014	India	Asian	asthma	189	188	55	99	35	28	66	35	0.505
Wan	2014	China	Asian	asthma	58	50	2	25	31	1	16	33	1.000
Amo	2016	Spain	Caucasian	rhinitis	366	526	78	188	100	105	277	144	0.176
Amo	2016	Spain	Caucasian	rhinitis	149	526	35	67	47	105	277	144	0.176
Hua	2016	China	Asian	asthma	1000	1000	148	436	416	124	470	406	0.502

Abbreviation: HWE, Hardy–Weinberg equilibrium.

Table 2 Summary ORs for the association between FcεRIβ C-109T polymorphism and allergic diseases risk

Comparisons	Sample size	Number of studies	Hypothesis tests	Heterogeneity tests	Publication bias test (P)					
	Case/control	OR (95% CI)	z	P	χ^2 (df)	P	I² (%)	Begg’s test	Egger’s test	
Overall	7492/7144	14	1.024 (0.900–1.164)	0.36	0.722	37.83 (13)	<0.001	65.6	0.784	0.958
C vs. T	1994/1862	14	1.007 (0.759–1.335)	0.05	0.963	36.77 (13)	<0.001	64.6	0.870	0.582
CC vs. CT	2333/2231	14	1.028 (0.807–1.311)	0.22	0.823	30.59 (13)	0.004	57.5	0.702	0.419
CT vs. TT	3165/3051	14	0.984 (0.890–1.089)	0.31	0.758	14.33 (13)	0.351	9.3	0.547	0.538
CC+CT vs. TT	3746/3572	14	1.01 (0.909–1.102)	0.01	0.989	21.72 (13)	0.060	40.1	0.784	0.670
CC vs. CT+TT	3746/3572	14	1.015 (0.788–1.307)	0.11	0.911	37.20 (13)	<0.001	65.1	0.956	0.446

Stratification by ethnicity

	Sample size	Number of studies	Hypothesis tests	Heterogeneity tests	Publication bias test (P)					
	Case/control	OR (95% CI)	z	P	χ^2 (df)	P	I² (%)	Begg’s test	Egger’s test	
Asians	5786/5460	10	1.052 (0.883–1.254)	0.57	0.567	36.51 (9)	<0.001	75.3	0.655	0.802
CC+CT vs. TT	2893/2730	10	1.070 (0.895–1.280)	0.74	0.458	18.97 (9)	0.025	52.6	0.325	0.304
CC vs. CT+TT	2893/2730	10	0.998 (0.895–1.434)	0.01	0.992	36.70 (9)	<0.001	75.5	0.788	0.537
Caucasians	1706/1684	4	0.984 (0.858–1.127)	0.24	0.813	0.89 (3)	0.828	<0.1	0.042	0.036
CC+CT vs. TT	853/842	4	0.919 (0.747–1.130)	0.80	0.422	1.99 (3)	0.576	<0.1	0.174	0.201
CC vs. CT+TT	853/842	4	1.067 (0.836–1.362)	0.52	0.601	0.48 (3)	0.924	<0.1	1.000	0.412

Stratification by atopic disease categories

	Sample size	Number of studies	Hypothesis tests	Heterogeneity tests	Publication bias test (P)					
	Case/control	OR (95% CI)	z	P	χ^2 (df)	P	I² (%)	Begg’s test	Egger’s test	
Asthma	6462/6092	13	1.024 (0.885–1.185)	0.32	0.750	37.83 (12)	<0.001	68.3	0.903	0.950
CC+CT vs. TT	3231/3048	13	1.032 (0.883–1.207)	0.40	0.691	21.52 (12)	0.043	44.2	1.000	0.712
CC vs. CT+TT	3231/3048	13	0.997 (0.744–1.338)	0.02	0.983	37.13 (12)	<0.001	67.7	0.542	0.472

Stratification by HWE

	Sample size	Number of studies	Hypothesis tests	Heterogeneity tests	Publication bias test (P)					
	Case/control	OR (95% CI)	z	P	χ^2 (df)	P	I² (%)	Begg’s test	Egger’s test	
C vs. T	7402/7054	13	1.035 (0.907–1.180)	0.51	0.613	36.83 (12)	<0.001	67.4	1.000	0.861
CC+CT vs. TT	3701/3527	13	1.006 (0.913–1.108)	0.11	0.911	21.00 (12)	0.050	42.9	0.272	0.483
CC vs. CT+TT	3701/3527	13	1.026 (0.789–1.335)	0.19	0.848	36.76 (12)	<0.001	67.4	0.807	0.516

Abbreviation: df, degree of freedom.
Figure 1. Forest plots for the association of FcεRIβ E237G polymorphism with allergic diseases risk (subgroup analysis by HWE)

Third, one study reported by Laprise et al. [21], with atopic/non-atopic contrast groups, not all the subjects in atopic group met with the diagnosis criteria of asthma, should be excluded from the analysis.

Fourth, the reported genotype frequency for the C-109T or E+237G polymorphisms of FcεRIβ gene in two studies of Guo et al.'s paper [1] were not in agreement with the ones in their original papers [22,23]. In Sharma and Ghosh's study, the CC, CT, and TT genotype frequency for C-109T polymorphism in case/control groups were (89, 108, and 40)/(34, 118, and 69), respectively [22], which were wrongly counted as (87, 113, and 37)/(39, 108, and 74), respectively, in Guo et al.'s paper [1]. In Amo et al.'s published article, the EE, EG, and GG genotype frequency in control group for E+237G polymorphism were 487, 39, and 0, respectively [23], which were wrongly counted as 144, 277, and 105, respectively [1].

Considering the above-listed mistakes or errors in Guo et al.'s published paper, it seems that the findings and conclusions of Guo et al.'s study were not entirely reliable [1]. To overcome the limitations, we performed an updated meta-analysis to re-assess the associations of C-109T and E+237G polymorphisms in the FcεRIβ gene with allergic
Figure 2. Forest plot for the association of FcεRIβ E237G polymorphism with allergic diseases risk (subgroup analysis by ethnicity)

disease (asthma and allergic rhinitis) risk. The statistical analysis methods and software used in this comment were the same as reported by Guo et al., unless otherwise indicated [1].

The main characteristics of the eligible studies [2–17,19,20,22–42], including the first author, publication year, country where individual study was conducted, ethnicity of study population, atopic disease category, sample size of case/control groups, the detailed genotype frequency, and the P-values for Hardy–Weinberg Equilibrium (HWE) test, were shown in Table 1. There were 36 case–control studies about the association between E+237G variant and allergic diseases risk [2–4,6–15,17,19,20,23–28,30–33,36,38,39,41,42], and 15 were about the correlation of C-109T polymorphism with allergic diseases risk [5,8,12,14,17,19,22,23,29,34,35,37,38,40]. Of the 15 case–control studies about C-109T polymorphism and allergic disease risk (14 ones according to ethnicity or HWE classification), 10
Figure 3. Forest plot for the association of FcεRIβ E237G polymorphism with allergic diseases risk (subgroup analysis by allergy category)

were performed in Asians [8,14,17,19,20,22,29,34,35,38] and 4 were conducted in Caucasians [5,23,37,40], respectively; 13 studies were about asthma risk [5,8,17,19,20,22,29,34,37,38,40], 1 was about allergic rhinitis risk [23], and 1 about asthma and rhinitis risk [23], respectively; genotype frequency distribution in control groups of 13 studies were in agreement with HWE [5,8,17,19,20,22,29,34,35,37,38,40] and 1 was not [29], respectively. Of the 36 case–control studies about E+237G variant with allergic diseases risk (35 ones according to ethnicity or HWE classification), 25 were carried out in Asians [2,6–10,13–15,17,19,20,24–26,28,29,31–33,36,38,39,42], 8 were performed in Caucasians [3,4,12,23,30,31,41], 1 in Africans [3] and 1 in mixed populations [11], respectively; 31 studies were about asthma risk [2–4,6–15,17,19,20,24–26,28,29,31–33,36,38,39,41,42], 2 were on rhinitis risk [23,27], and 3 were concerned with asthma/rhinitis risk [23,30,31], respectively; genotype frequency distribution in control groups of 32 studies were in line with HWE [2–4,6–11,13–15,17,19,20,23–26,28–33,36,38,39,41,42] and 3 were not [12,13,27], respectively.
Figure 4. Forest plot of cumulative meta-analysis for the association of FcεRIβ E237G polymorphism with allergic diseases risk.

Table 2 listed the summary odds ratios (ORs) of the association of FcεRIβ C-109T polymorphism with allergic diseases risk. Overall, no significant associations between C-109T polymorphism and allergic diseases risk were observed (OR = 1.001, 95% confidence interval (CI): 0.909–1.102 for CC+CT vs. TT and OR = 1.015, 95% CI: 0.788–1.307 for CC vs. CT+TT, respectively). When subgroup analyses by ethnicity (Asian and Caucasian), allergic disease classification (asthma, rhinitis, and both) and HWE (in and not) were performed, we did not find any statistically significant associations of C-108T polymorphism with allergic diseases risk (Table 2). No any publication and other small study related biases were observed in overall and subgroup analyses (Table 2).

Table 3 showed the summary ORs for the association between FcεRIβ E237G variant and allergic diseases risk. Overall, we observed FcεRIβ 237G allele was associated with increased risk of allergic diseases in total population (OR = 1.178, 95% CI: 1.022–1.357 for G vs. E and OR = 1.207, 95% CI: 1.031–1.411 for GG+EG vs. EE, respectively) (Table 3 and Figure 1). When restricted the analysis to the studies with control groups’ genotype frequency distribution were met with HWE, we observed an elevated risk of allergic diseases among subjects carrying EG or GG genotypes, in comparison with EE genotype carriers (OR = 1.225, 95% CI: 1.041–1.442) (Table 3 and Figure 1). When stratified analyses were conducted by ethnicity, we found an increased risk of allergic diseases in subjects carrying EG or GG genotypes.
Figure 5. Sensitivity analysis for the association between $F_{c}:RI\beta$ E237G polymorphism and allergic diseases risk

Figure 6. Egger's funnel plots for the association between $F_{c}:RI\beta$ E237G polymorphism and allergic diseases risk

(A) G allele vs. E allele; (B) EG/GG genotypes vs. EE genotype.
Table 3 Summary ORs for the association between FcεRIβ E273G polymorphism and allergic diseases risk

Comparisons	Sample size	Number of studies	Hypothesis tests	Heterogeneity tests	Publication bias test (P)						
			OR (95% CI)	Z	P	χ² (df)	P	I² (%)	Begg’s test	Egger’s test	
Overall											
G vs. E	14552/14956	35	1.178 (1.022–1.357)	2.25	0.024	84.83 (34)	<0.001	59.9	0.028	0.025	
GG+GE vs. EE	7276/7478	35	1.207 (1.031–1.411)	2.35	0.019	82.95 (34)	<0.001	59.0	0.024	0.008	
Stratification by ethnicity											
Asians											
G vs. E	10694/10080	25	1.158 (0.994–1.350)	1.88	0.060	65.83 (24)	<0.001	63.5	0.176	0.122	
GG+GE vs. EE	5347/5040	25	1.189 (1.001–1.412)	1.98	0.048	64.41 (24)	<0.001	62.7	0.148	0.046	
Caucasians											
G vs. E	3576/3820	8	1.544 (0.884–2.697)	1.53	0.126	19.63 (7)	0.006	64.3	0.026	0.028	
GG+GE vs. EE	1788/1910	8	1.547 (0.895–2.673)	1.56	0.118	18.02 (7)	0.012	61.1	0.026	0.028	
Stratification by atopic disease categories											
Asthma											
G vs. E	12660/13324	31	1.148 (0.994–1.326)	1.88	0.060	72.22 (30)	<0.001	58.5	0.051	0.081	
GG+GE vs. EE	6330/6662	31	1.164 (0.994–1.364)	1.89	0.059	69.11 (30)	<0.001	56.6	0.047	0.031	
Allergic rhinitis											
G vs. E	764/1252	2	0.680 (0.124–3.737)	0.44	0.657	7.30 (1)	0.007	86.3	0.317	-	
GG+GE vs. EE	382/626	2	0.740 (0.103–5.324)	0.30	0.765	9.20 (1)	0.002	89.1	0.317	-	
Asthma and/or allergic rhinitis											
G vs. E	1128/1432	3	2.955 (0.616–14.181)	1.35	0.176	10.60 (2)	0.005	81.1	0.117	0.449	
GG+GE vs. EE	564/716	3	2.796 (0.646–12.109)	1.37	0.169	9.01 (2)	0.011	77.8	0.117	0.451	
Stratification by HWE											
Yes											
G vs. E	13122/13122	32	1.211 (1.046–1.403)	2.55	0.011	76.29 (31)	<0.001	59.4	0.009	0.008	
GG+GE vs. EE	6561/6581	32	1.225 (1.041–1.442)	2.44	0.015	75.76 (31)	<0.001	59.1	0.011	0.004	

Abbreviation: df, degree of freedom.
cumulative meta-analysis also indicated that there was high heterogeneity of the results of the included individual studies.

Sensitivity analysis was performed by sequentially omitting each individual study in the order of publication year and the pooled ORs were estimated repeatedly, which was used to evaluate the stability of the results of present meta-analysis. The sensitivity analysis showed that the association of EG and GG genotypes with increased risk of allergic diseases maintained statistically significant when removing any each individual study (Figure 5). Egger’s regression test and Begg’s rank correlation test were used to evaluate the small-study effects and potential publication bias in current meta-analysis. Both tests indicated that the significant association of G allele or EG+GG genotypes with elevated risk of allergic diseases might strongly influenced by small-study effect or publication bias (Table 3). The Egger’s funnel plots for the association between E237G polymorphism and allergic diseases risk also showed that the OR distributions for both G allele vs. E allele (Figure 6A) and EG+GG vs.EE (Figure 6B) were obviously asymmetrical.

There are some inherent limitations of meta-analysis which should be taken into consideration when using the results of this comment. First, there was high heterogeneity in this meta-analysis, especially in the case of association of E237G variant with allergic diseases risk. Although, subgroup analyses were performed on the basis of ethnicity, allergic disease category and HWE, heterogeneity among the included studies still be statistically significant in all subgroups. Second, publication bias tests indicated that the probable existence of publication bias, i.e. some unpublished negative results studies thus could not be included in this analyses might result in an over-estimated association of E237G with allergic disease risk.

In conclusion, the results of Guo et al.’s study [1] should be interpreted with caution. To make an asserted conclusion, well-designed studies with large number of homogeneous population are required. We do hope that this comment will be helpful to clarify the results presented by Guo et al. [1].

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This work was supported by the Key Program of Science and Technology Research Project from the Department of Education of Hubei Province [grant number D20192001].

Author Contribution
H.Y.: designed the study, performed the statistical analysis and edited the manuscript. L.Z.: conducted literature search and extracted data from individual studies. Y.Z. and M.Y.: prepared and reviewed the manuscript. S.W.: conducted literature search and data checking. All authors approved the final manuscript.

Abbreviations
CI, confidence interval; FcεRIβ, high-affinity IgE receptor β chain; HWE, Hardy–Weinberg equilibrium; OR, odds ratio.

References
1 Guo, H., Peng, T., Luo, P., Li, H., Huang, S., Li, S. et al. (2018) Association of FcɛRIβ polymorphisms with risk of asthma and allergic rhinitis: evidence based on 29 case-control studies. Biosci. Rep. 38, 1–16, https://doi.org/10.1042/BSR20180177
2 Shirakawa, T., Mao, X.Q., Sasaki, S., Enomoto, T., Kawai, M., Morimoto, K. et al. (1996) Association between atopic asthma and a coding variant of Fc epsilon RI beta in a Japanese population. Hum. Mol. Genet. 5, 1129–1130, https://doi.org/10.1093/hmg/5.8.1129
3 Green, S.L., Gaillard, M.C., Song, E., Dewar, J.B. and Halkas, A. (1998) Polymorphisms of the beta chain of the high-affinity immunoglobulin E receptor (FcɛRIbeta) in South African black and white asthmatic and nonasthmatic individuals. Am. J. Respir. Crit. Care Med. 158, 1487–1492, https://doi.org/10.1164/ajrccm.158.5.9707099
4 Rohrbach, M., Kraemer, R. and Liechti-Gallati, S. (1998) Screening of the Fc epsilon RI-beta-gene in a Swiss population of asthmatic children: no association with E237G and identification of new sequence variations. Dis. Markers 14, 177–186, https://doi.org/10.1155/1998/940356
5 Dickson, P.W., Wong, Z.Y., Harrap, S.B., Abramson, M.J. and Walters, E.H. (1999) Mutational analysis of the high affinity immunoglobulin E receptor beta subunit gene in asthma. Thorax 54, 409–412, https://doi.org/10.1136/thx.54.5.409
6 Ishizawa, M., Shibasaki, M., Yokouchi, Y., Noguchi, E., Arinami, T., Yamakawa-Kobayashi, K. et al. (1999) No association between atopic asthma and a coding variant of Fc epsilon R1 beta in a Japanese population. J. Hum. Genet. 44, 308–311, https://doi.org/10.1007/s100380050166
7 Sharma, S., Nagarkatti, R., B-Rao, C., Niphadkar, P.V., Vijayan, V., Sharma, S.K. et al. (2004) A16_C haplotype in the FcɛRIbeta gene confers a higher risk for atopic asthma in the Indian population. Clin. Genet. 66, 417–425, https://doi.org/10.1111/j.1399-0004.2004.00333.x
8 Kim, S.H., Bae, J.S., Holloway, J.W., Lee, J.T., Suh, C.H., Nahm, D.H. et al. (2006) A polymorphism of MS4A2 (-109T>C) encoding the beta-chain of the high-affinity immunoglobulin E receptor (FcεRIβ) is associated with a susceptibility to aspirin-intolerant asthma. *Clin. Exp. Allergy* **36**, 877–883

9 Li, M., Du, Q., Li, L., Song, L. and Li, B. (2006) Gene mutation of high affinity immunoglobulin E receptor beta-chain in children with asthma. *Zhongguo Dang Dai Er Ke Za Zhi*** **8**, 453–456

10 Undarmaa, S., Mashimo, Y., Hattori, S., Shimojo, N., Fujita, K., Miyatake, A. et al. (2010) Replication of genetic association studies in asthma and related phenotypes. *J. Hum. Genet.* **55**, 342–349, https://doi.org/10.1038/jhg.2010.32

11 Murk, W., Walsh, K., Hsu, L.I., Zhao, L., Bracken, M.B. and Dewan, A.T. (2011) Attempted replication of 50 reported asthma genes identifies a SNP in RAD50 as associated with childhood atopic asthma. *Hum. Hered.* **71**, 97–105, https://doi.org/10.1159/000319536

12 Ungvari, I., Hullam, G., Antal, P., Kiszel, P.S., Gezsi, A., Hadadi, E. et al. (2012) Evaluation of a partial genome screening of two asthma susceptibility regions using bayesian network based bayesian multilevel analysis of relevance. *PLoS ONE*** **7**, e33573, https://doi.org/10.1371/journal.pone.0033573

13 Chen, X.Z. (2014) Value of asthma-susceptibility genes non-invasive detection in early diagnosis of children with asthma. *Shi Yong Lin Chuan Yi Yao Za Zhi*** **18**, 94–96

14 Wang, L.S., Wen, P.D., Li, J.X., Ma, D.L., Cui, D. and Wang, S. (2014) The highaffinity receptor for Immunoglobulin E MS4A gene single-nucleotide polymorphism analysis of q deficiency asthma patients. *Zhongguo You Sheng Yu Chuan Za Zhi*** **22**, 21–22

15 Yang, Y.H., Li, Y. and Lu, Y.Q. (2017) Association of ADRB2 and MS4A2 gene polymorphisms with asthma. *Zhongguo Fu You Biao Jian*** **32**, 1254–1255

16 Cui, T.P., Jiang, W.C., Wang, L., Xie, J.G. and Wu, J.M. (2004) Association analysis of FcεRI-β gene with allergic asthma in Chinese. *Zhongguo Bing Li Sheng Li Za Zhi*** **20**, 2049–2052

17 Cui, T., Wang, L., Wu, J. and Xie, J. (2003) The association analysis of FcεRIβ with asthma. *Chin. Med. J. (Engl.)*** **116**, 1875–1878

18 Hua, L., Dong, X.Y., Liu, Q.H., Lv, J. and Bao, Y.X. (2009) Single-nucleotide polymorphisms in genes predisposing to asthma in Chinese Han nationality. *Allergol. Immunopathol.* **37**, 391–395, http://www.jiamao.com/journal/vol19-issues5-num515

19 Hua, L., Zuo, X.B., Bao, Y.X., Liu, H.O., Li, J.Y., Lv, J. et al. (2016) Four-locus gene interaction between IL13, IL4, FCER1B, and ADRB2 for asthma in Chinese Han children. *Pediatr. Pulmonol.* **51**, 364–371, https://doi.org/10.1002/ppul.23322

20 Ramphul, K., Lv, J., Hua, L., Liu, O.H., Fang, D.Z., Ji, R.X. et al. (2014) Single nucleotide polymorphisms predisposing to asthma in children of Malaysian and Chinese Han ethnicity. *Braz. J. Med. Biol. Res.* **47**, 394–397, https://doi.org/10.1590/1519-443X20143751

21 Laprise, C., Boulet, L.P., Morissette, J., Winstall, E. and Raymond, V. (2000) Evidence for association and linkage between atopy, airway hyper-responsiveness, and the beta subunit Glu237Gly variant of the high-affinity receptor for immunoglobulin E in the French-Canadian population. *Immunogenetics* **51**, 695–702, https://doi.org/10.1007/s002510000185

22 Sharma, S. and Ghosh, B. (2009) Promoter polymorphism in the MS4A2 gene and asthma in the Indian population. *Int. Arch. Allergy Immunol.* **149**, 208–218, https://doi.org/10.1159/000199716

23 Ano, G., García-Menaya, J., Campo, P., Cordobés, C., Plaza Serón, M.C., Ayuso, P. et al. (2016) A nonsynonymous FCER1B SNP is associated with risk of developing allergic rhinitis and with IgE levels. *Sci. Rep.* **6**, 19724, https://doi.org/10.1038/srep19724

24 Chen, H., Chen, Y. and Hu, L. (2000) Study on the FcεRI-beta polymorphism and susceptibility of asthma in a Chinese population. *Zhonghua Yi Xue Za Zhi*** **80**, 664–667

25 Soriano, J.S., de Gid, R., Estivill, X., Anto, J.M., Sunyer, J., Otero, D. et al. (2000) Association study of proposed candidate genes_regions in a population of Spanish asthmatics. *Eur. J. Epidemiol.* **16**, 745–750, https://doi.org/10.1023/A:1020758319621

26 Takabayashi, A., Ihara, K., Sasaki, Y., Suzuki, Y., Nishima, S., Izuhara, K. et al. (2000) Childhood atopic asthma: positive association with a polymorphism of IL-4 receptor alpha gene but not with that of IL-4 promoter or Fc epsilon receptor I beta gene. *Exp. Clin. Immunogenet.* **17**, 63–70, https://doi.org/10.1159/000019125

27 Nagata, H., Mutoh, H., Kumahara, K., Arimoto, Y., Tomemori, T., Sakurai, D. et al. (2001) Association between nasal allergy and a coding variant of the Fc epsilon RI beta gene Glu237Gly in a Japanese population. *Hum. Genet.* **109**, 262–266, https://doi.org/10.1007/s004390100561

28 Zeng, L.X., Zhou, S.J., Kuang, J.L. and Rao, W.H. (2001) Study of mutation of β chain gene E237G, a high affinity receptor of IgE in asthmatics. *Jiangxi Yi Xue Za Zhi*** **25**, 43–45

29 Gan, X., Kuang, J.L., Zou, X.Q. and Rao, W.H. (2004) Study on the relationship between IgE high affinity receptor beta chain gene polymorphism and serum total IgE in patients with bronchial asthma. *Zhonghua Jie He Hu Xi Za Zhi*** **27**, 704–708

30 Skarzynska-Zaborowska, B., Hopkin, J.M. and Gorski, P. (2004) Genetic variants of FcεRIβ and II-4 and atopy in a Polish population. *Allergol. Immunopathol.* **(Madr.)*** **32**, 53–58

31 Rigoli, L., Di Bella, C., Procopio, V., Barberio, G., Barberi, I., Caminiti, L. et al. (2004) Molecular analysis of sequence variants in the Fc epsilon receptor I beta gene and IL-4 gene promoter in Italian atopic families. *Allergy*** **59**, 213–218, https://doi.org/10.1111/j.1398-9995.2003.00385.x

32 Zhang, X., Zhang, W., Qiu, D., Sandford, A. and Tan, W.C. (2004) The E237G polymorphism of the high-affinity IgE receptor beta chain and asthma. *Ann. Allergy. Asthma. Immunol.* **93**, 499–503

33 Zhao, K.S., Chen, H.J., Qiao, H.M., Zhao, F.X., Sun, M.Y. and Fu, W.Y. (2004) Analysis of gene mutation for high affinity immunoglobulin E receptor chain in asthmatic children. *Lin Chuang Er Ke Za Zhi*** **22**, 794–797

34 Zhao, K.S., Lu, J.R., Wang, Z.H., Guo, Y., Yu, L.Y. and Fu, W.Y. (2004) Association between FcεRI-β gene promoter polymorphism and serum total IgE levels of asthma in children. *Zhongguo Shi Yong Er Ke Za Zhi*** **19**, 744–746

35 Hizawa, N., Maeda, Y., Konno, S., Fukui, Y., Takahashi, D. and Nishimura, M. (2006) Genetic polymorphisms at FCER1B and PAI-1 and asthma susceptibility. *Clin. Exp. Allergy*** **36**, 872–876, https://doi.org/10.1111/j.1365-2222.2006.02413.x

36 Liu, T., Teng, L., Guan, L.X., Wu, L.P. and Sun, K.Y. (2006) Study on the E237G polymorphism of the FcεRIβ gene with asthma. *Zhongguo Shi Yong Nei Ke Za Zhi*** **26**, 1520–1522
37 Potaczek, D.P., Sanak, M. and Szczeklik, A. (2007) Additive association between FCER1A and FCER1B genetic polymorphisms and total serum IgE levels. *Allergy* **62**, 1095–1096, https://doi.org/10.1111/j.1398-9995.2007.01446.x

38 Kim, E.S., Kim, S.H., Kim, K.W., Park, H.S., Shin, E.S., Lee, J.E. et al. (2009) Involvement of Fc(epsilon)R1beta gene polymorphisms in susceptibility to atopy in Korean children with asthma. *Eur. J. Pediatr.* **168**, 1483–1490, https://doi.org/10.1007/s00431-009-0960-x

39 Wang, J.Y., Liou, Y.H., Wu, Y.J., Hsiao, Y.H. and Wu, L.S. (2009) An association study of 13 SNPs from seven candidate genes with pediatric asthma and a preliminary study for genetic testing by multiple variants in Taiwanese population. *J. Clin. Immunol.* **29**, 205–209, https://doi.org/10.1007/s10875-008-9256-6

40 Tikhonova, V., Voitovich, A., Korostovsev, D. and Larionova, V. (2010) The -109C>T polymorphism of the FCER1B gene in children with asthma. *Pediatr. Res.* **68**, 413

41 Dmitrieva-Zdorova, E.V., Voronko, O.E., Latysheva, E.A., Storozhakov, G.I. and Archakov, A.I. (2012) Analysis of polymorphisms in T(H)2-associated genes in Russian patients with atopic bronchial asthma. *J. Investig. Allergol. Clin. Immunol.* **22**, 126–132, http://www.jiaci.org/summary/vol22-issue2-num835

42 Zheng, B.Q., Wang, G.L., Yang, S., Lu, Y.Q., Liu, R.J. and Li, Y. (2012) Study of genetic susceptibility in 198 children with asthma. *Zhongguo Dang Dai Er Ke Za Zhi* **14**, 811–814