Demonstrating BrainScaleS-2 Inter-Chip Pulse Communication using EXTOLL

Tobias Thommes, Sven Bordukat, Andreas Grübl, Vitali Karasenko, Eric Müller, and Johannes Schemmel
Kirchhoff-Institute for Physics, Heidelberg University

Lightning Talk by Tobias Thommes at NICE2022
The BrainScaleS Architecture

• Emulating biological neuron dynamics in analog electronic circuits
• Spike events are digitised and communicated between neuron circuits
• Accelerated model dynamics (compared to biology)
• BSS-1 ASIC:
 • Acceleration factor: 10^5
• BSS-2 ASIC:
 • Acceleration factor: 10^4
 • 2 embedded SIMD processors
Scaling BrainScaleS

• Connection of Chips / Wafer Modules:
 • Send neural events over packet-based network

• Network requirements (due to speedup)
 • Low latency \((O(\text{ms}) \text{ bio} \rightarrow O(\mu\text{s}) \text{ hw}) \)
 • High message rate \((O(\text{Hz}) \text{ bio} \rightarrow O(\text{kHz}) \text{ hw}) \)
 • small packets (one event \(\approx 4 \) Byte)
 • High bandwidth (\(\geq 8 \text{ Gbps} \))

• Ethernet
 • high protocol- / header-overhead
 (packet \(\geq 64 \) Bytes for 8 Bytes payload)

• Infiniband
 • Proprietary hardware / IP with limited access
EXTOLL Network

- EXTOLL Company is spin-off from Heidelberg University
- Developed by Computer Architecture Group at ZITI Institute
- Bandwidth:
 - General: 100.8 Gbps
 - We can use: 16 Gbps
- Latency:
 - General: 70ns per hop (@630MHz clk)
 - We can use: 150ns per hop (@300MHz clk)
- Smallest packet:
 - Overall: 40 Byte
 - Payload: 8 Byte
- Topology freedom
 - 7 links
 → 3D-Torus with concentrator-nodes
Pulse Event Communication

- Buckets aggregate events into larger packets at source
 - mitigate header-overhead
 - limit message rate
 - one destination per bucket

- Event-streams need to be merged at destination
 - event packets can arrive from different sources
 - streams are pre-sorted by timestamp
Experiment Setup

- Using simplified FPGA implementation
- Experiment: one source-chip sends events to one destination-chip
- merge-sort not needed yet
- Latency measured Neuron-Neuron: $(1.6 - 2.3)\mu s$
- Latency range due to interleaving of event traffic with host traffic at network interface
Live Demonstration
Summary:

• We are now able to basically support multi-chip experiments
• First experiments yield latencies of (1.6 – 2.3)μs from neuron to neuron on two chips
• Network size is horizontally scalable

Next Steps:

• Synchronisation of experiment-execution across FPGAs
• Full support for multi-chip experiments in higher software layers
• Scaling up experiments for more than two chips