A critical review on Nepal Dock (*Rumex nepalensis*): A tropical herb with immense medicinal importance

Samrin Shaikh¹, Varsha Shriram², Amrita Srivastav¹, Pranoti Barve¹, Vinay Kumar¹,³

¹Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India
²Department of Botany, Prof. Ramkrishna More College (Savitribai Phule Pune University), Akurdi, Pune 411044, India
³Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India

ARTICLE INFO

ABSTRACT

Rumex nepalensis Spreng. (Polygonaceae) commonly known as Nepal Dock has wide-spectrum therapeutic potencies and is extensively used for centuries in traditional medicine systems. The leaves of this plant are edible and a rich source of natural antioxidants. They act as a possible food supplement and are largely used in pharmaceutical industry. Extracts and metabolites from this plant exhibit pharmacological activities including anti-inflammatory, antioxidant, antibacterial, antifungal, antiviral, insecticidal, purgative, analgesic, anti-pyretic, anti-algal, central nervous system depressant, genotoxic, wound healing and skeletal muscle relaxant activity. Due to its remarkable biological activities, it has the potential to act as a rich source of drug against life threatening diseases. However, more studies are needed to scientifically validate the traditional uses of this plant, beside isolating and identifying their active principles and characterizing the mechanisms of action. We present herein a critical account of its botany, ecology, traditional uses, phytoconstituent profile and major pharmacological activities reported in recent years and therefore will provide a source of information on this plant for further studies.

1. **Introduction**

Medicinal plants are nature’s gift for answering a limitless range of fatal diseases among human beings, therefore medicinal plants are getting more consideration currently than ever, especially in the line of medicine and pharmacology. The bioactive phytochemical constituents of the plant are being explored worldwide for their broad-spectrum medicinal potencies. Medicinal plants are explored as a source to isolate pure active principles or in the form of phytocomplex, where there is a synergistic combination of active ingredients and other substances like enzymes, resins, essential oils tannins to facilitate their actions. The health-promoting properties of medicinal plants are usually derived from the interaction of all the substances naturally present in the phytocomplex. However, the emphasis on the use of total herbs as medicines and food supplements is gradually replacing the techniques to isolate the biologically active novel compounds and molecules as leading drug molecules.

The genus *Rumex* consists of about 250 species of herbs[1]. *Rumex nepalensis* Spreng. (*R. nepalensis*) belongs to family Polygonaceae...
and is a perennial, ascending herb [2], commonly known by the name ‘Nepal dock’, and vernacular names are given in Table 1. Though *R. nepalensis* is an agricultural weed but this “wild plant” is not really “unwanted” in the arena of traditional herbal medicines [12,19,20]. Several studies have confirmed striking medicinal benefits of this plant. The juvenile leaves of this plant are cooked as vegetables which gives an acidic-lemon flavor to dishes [21]. The young shoot is also locally eaten as a cooked vegetable [22]. This plant is also used as a colouring agent (dye) [23]. Green colour from the leaves of plants is often used in sweet preparations [16].

Table 1

Language	Vernacular name	Reference
English	Sheep sorrel, Nepal dock	[3,4]
Hindi	Amilya, Jangli palak, Amlora, Bhilmora	[5,6]
Malori		
Pangwali	Ubhal	[7]
Bengali	Pahari palang	[8]
Sanskrit	Amlavetasa	[3]
Pakistani	Shalkhay, Hoola	[9,10]
Nepali	Halhale sag, Ban haldi, Halya, Halye	[3,4,11]
Kashmiri	Aliphiri	[12]
Ethiopian	Girshu, Gorengoch, Bacharu, Timbilki, Lut	[13-15]
Uttarakhandi	Kathura	[16]
Bhangali	Albar	[17]
Manipuri	Torongkhongchak	[18]
Tamil	Sukkankeerai	[18]

Phytochemical screening shows that the *R. nepalensis* (jangli palak) contains various constituents *viz.*, triterpenoids, stilbene glycosides, tannic acid, saponins, resveratrol, sterols, amino acids, quercetin, alkaloid, phenolic components, flavonoids, anthraquinone glycosides, anthraquinones [2], vitamin C [21], some cardiac glycoside, naphthalenes, and many more [24]. The foundations of modern drugs are based on these natural compounds. In North Western Himalaya, *R. nepalensis* is a high value medicinal herb due to its high anthraquinone content [25]. *R. nepalensis* has shown purgative, antioxidant, antifungal, antibacterial [5], antihistaminic, anticholinergic, antiarhythmicin, antiprostaglandin [26], antipyretic, antiinflammatory, antialgal, insecticidal [2,6], analgesic and CNS depressant properties. The plant is also reported to possess skeletal muscle relaxant activity [27].

We are presenting this review with an aim to critically assess the available literature for its phytochemical profiles, its traditional medicinal usages, validation of these claims as well as other potent properties and uses of this highly medicinal herb, to provide the scientific community a source of information on this plant and future perspectives.

2. Classification and distribution of *Rumex nepalensis*

The genus *Rumex* is ubiquitous in habit thus distributing worldwide and belonging to family Polygonaceae [1]. *R. nepalensis* grows in parts of China, Afghanistan, India, Indonesia, Japan, Myanmar, Nigeria, Nepal, Pakistan, Tajikistan, Vietnam, South-west Asia, Turkey, Bhutan and South Africa [28]. It grows abundantly in many parts of India. It is widely distributed throughout Himalayas from Bhutan to Kashmir. It is a fairly common plant of higher altitudes and grows between 900-4 000 m on moist as well as dry slopes, under shades, and even in plains [2]. Western Ghats, Nilgiri, Pulney hills, Nainital hills and Palni hills at altitudes between 1 200-4 300 m [27, 29]. *R. nepalensis* shows flowering from April to May; fruiting from June to July [28].

3. Botanical description

R. nepalensis is an erect plant with long tap roots, erect stems (50-100 cm tall) which are branched, glabrous, grooved, green or pale brown in color. Basal leaves, petiole 4-10 cm, leaf blade broadly ovate (10-15 cm long and 4-8 cm wide), both the surfaces of leaf are glabrous or abaxially minutely papillate along veins, base cordate, margin entire, apex acute; cauleine leaves show minute petiolate, ovate-lanceolate; ocrea fugacious, membranous, inflorescence paniculate with bisexual pedicellate flowers. Outer tepals elliptic, ca. 1.5 mm; inner tepals enlarged in fruit; valves broadly ovate, 5-6 mm, valves all or 1 or 2 with tubercles, base truncate, each margin with 7 or 8 teeth, apex acute; teeth 1.5-3 mm, apex hooked or straight. Achenes brown, shiny, ovoid, sharply trigonous, ca. 3 mm, base truncate, apex acute [1,28]. Part of this plant which is used in its propagation is seed. Vashistha et al. [30] studied the phenological observations of this plant and found that the growth initiation occurs in May, senescence occurs in October, wherein flowering (reddish) occurs in between June and July flower, and fruiting takes place from August to September [30,31].

4. Discussion

4.1. Leaf

In leaves epidermis is single layered. Irregular epidermal cells with undulating walls are restricted to abaxial surface. Thick and pitted walls have been noted only along with the presence of crystalliferous cells in epidermis [32]. The cells are spherical. Mesophyll is elongated. Collenchyma and sclerenchyma is absent. Endodermis is single layered. Pericycle is ovular and single layered. Xylem is ovular and phloem is spherical, whereas pith is absent [33].

4.2. Roots

Epidermis in roots is single layered. Polygonal shape parenchyma is compactly packed. Collenchyma and sclerenchyma is absent. Endodermis is single layered. The cells of endodermis are elongated. Pericycle is single layered having spherical shape. Xylem is ovular
shaped, phloem and pith is spherical. Stone cells are absent[33].

4.3. Stem

Epidermis in stem of R. nepalensis is single layered and shape is oval. Collenchyma is present which is spherical in shape. Sclerenchyma is absent. Single layered endosperm is present. The cells are oval. Pericycle is single layered and spherical in shape. Xylem is oval shaped, phloem and pith is spherical. Mean length and width of the cell in R. nepalensis is 52.1 μm and 16.9 μm, respectively. Stone cell is absent in stem[33].

4.4. Petiole

Epidermis is single layered. The cells are oval in shape. Parenchyma is compactly packed. It is spherical. Collenchyma is present and is spherical in shape. Mean length and width of the cell 50.1 μm and 23.9 μm. Sclerenchyma is absent. Endodermis is single layered. The cells are oval in shape. Pericycle is single layered and spherical. Xylem is oval in shape. Phloem is spherical. Pith is spherical in shape in R. nepalensis[33].

4.5. Stomata

Stomata are distributed on both leaf surfaces[32]. Stomata in the upper epidermis of this plant are paracytic and anisocytic, and in the lower epidermis are anisocytic. The percentage of the open and close stomata in the upper epidermis of R. nepalensis is 42 and 58, and that of the lower epidermis is 30 and 70[34].

4.6. Trichomes

Glandular trichomes could be considered facultative salt glands and they may be part of apparatus of dispersion of extreme radiation. Non-glandular trichomes are totally absent, while glandular trichomes are peltate and 1-4 celled centrally[32].

4.7. Pollen

Pollen grains usually tricolpate and tetracolpate, circular in shape. The size of pollen grain (polar axis × equatorial diameter) reported is (24 × 22) μm. The pollen is radially symmetrical and isopolar. Under scanning electron microscope, tectum can be seen as perforate-punctate in R. nepalensis[35].

5. Plant growth and plasticity

R. nepalensis is herb that grows in fertile areas that is rich in nitrogen. The plant is palatable to cattle and is high in fibre and nutrition[36]. Reports revealed that enzymatic activities of this plant related to carbon metabolism such as aspartate aminotransferase (EC 2.6.1.1), ribulose-1,5-bisphosphate carboxylase / oxygenase (EC 4.1.1.39), phosphoenolpyruvate carboxylase (EC 4.1.1.31) and glutamine synthetase (EC 6.3.1.2) increased with altitude viz. 1 300, 2 250, and 3 250 m. The elevated oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase in R. nepalensis supports its role in protection against photooxidative damage. These enzymatic alterations also provide adaptive advantage to plant in order to conserve carbon and nitrogen at high elevation[37]. When R. nepalensis is exposed to CO₂ to assess its effect on their growth, it is found that elevated CO₂ (EC) has been reported to enhance vegetative growth and biomass accumulation through enhanced photosynthetic activity in annual C3 plants. Therefore, elevated CO₂ significantly stimulates the growth and biomass through increased plant height, leaf number and area[38].

6. Uses in traditional medicine

For thousands of years, R. nepalensis has served as the basis of traditional medicine systems in Nigeria, India, China and Indonesia. R. nepalensis is used for various therapeutic purposes and is well known in Indian traditional medicine. The leaves of this plant are diuretic, astringent and demulcent. It also soothes the irritation caused by Urtica dioica L.[10]. This plant is used for treatment of scurvy as it is rich in vitamin C[39] and also for treatment of rheumatism[27]. Infusion of leaves is purgative[1], the juice of the leaves is applied externally to relieve headache and also used for its astringent qualities[40]. Its leaf extract has antiseptic properties and is used to stop bleeding. It is also used against allergy caused by leaves of Acacia nilotica (L.) Wild ex Delile[41] and also for the treatment of syphilitic and colic ulcers[2]. Leaf extract is applied to cure skin sores. Aqueous extract is used as wash for reducing body pain. Leaf powder mixed with butter is used to treat scabies[15,17]. Infusion of leave is used in dysmenorrhoea and stomach ache[42,43]. Crushed leaf extract is applied externally on cuts, boils, blisters and wounds as an anti-allergic[7,17,44]. This plant is also used to treat skin infections in Jimma[45]. R. nepalensis acts as a favourite source of fodder for cows, horses and sheep[12, 46]. Leaf is also used to treat ear infection [13]. Leaves are crushed, and solution is made and used as pesticide to kill pests. Also leaves are crushed and paste is made with milk, churned curd, or with the urine of cow, and applied on the area around the snake bite on the body[7]. The fresh young leaves of R. nepalensis are rubbed over the affected areas after injury from stinging nettles[47].
Root juice of *R. nepalensis* is orally given on empty stomach as an effective cure for jaundice [48, 49]. The roots of plant are traditionally used for the treatment of pain, inflammation[4], bleeding, constipation and tinea in Chinese folk medicine [2]. The pounded root is given to animals in case of diarrhoea[42] and dysentery [15,17]. The root of *R. nepalensis* is also used as an astringent[10], purgative[6,8] and is used as a substitute for rhubarb (*Rheum* species)[50]. A decoction is applied to dislocated bones and to reduce body pain. A paste of the root is applied to swollen gums, pimples and ringworm [4,40,51], and applied externally to relieve headache[2,52,53]. Methanolic root extract is applied in joint pain, paralysis and significantly possesses hypotensive effect and also shows property of muscle relaxant and tranquilizer activity[3]. Traditional medicine practitioners of Bale used *R. nepalensis* to treat diarrhoea, blackleg and swelling. In Ethiopia this plant is used to treat colic in livestock and as an antidote for poisoning as well as a laxative[54]. The roots of the plant have been used in folklore medicine to relieve mental tension and disturbance[47]. Root is crushed and the juice is applied on the scalp to prevent hair loss[7]. Half spoon of the grounded floral parts and root extract is used to cure joint pain. It also cures bony ache. Roots grounded powder is applied on burned body part to avoid infection and for immediate healing[55]. The roots of plant are also used in traditional Chinese medicine for the treatment of hemostasis[56]. Crushed fresh root and leaf with water is taken orally to treat tonsillitis[57].

7. Phytochemical constituents

R. nepalensis has been reported to contain pytochemicals like phenols, flavonoids, anthraquinones, naphthalenes[2], saponins, cardiac glycosides, stilbene glycosides, tripterpenoids, anthraquinone glycosides, tannin acid and sterols[6], tannins[43], steroids, reducing sugar, saponin[58] and sitosterols[3].

Further, two new naphthalene acylglucosides, *R. neposides* A and *R. neposides* B, along with other compounds in chrysophanol (1,8-Dihydroxy-3-methyl-9,10-anthraquinone), chrysophanol-8-O-β-D-glucopyranoside, chrysophanol-8-O-β-(6′′-O-acetyl)-glucopyranoside,[59] emodin-8-O-β-D-glucopyranoside, emodin (6-methyl-1,3,8-trihydroxyanthraquinone), citreorosein, resveratrol, nepodin-8-β-D-glucopyranoside, torachrysone-8-β-D-glucopyranoside, physcion and torachrysone[6] are reported from this plant[3,6,10,56,58]. It is reported that anthraquinones have several pharmacological properties like antifungal, anti-inflammatory, antioxidant and anticancer, whereas naphthalene derivatives possess anti-inflammatory and antioxidant activities[58]. The summarized phyto-constituent components are listed in Table 2.

Table 2. Phytoconstituent components reported from *R. nepalensis*.

Phytoconstituent compounds	Extraction	Plant part	Technique	Country	Reference	
Anthraquinones						
(1)Emodin glycoside	Soxhlet extraction with methanol	Roots	HPLC	India	[2]	
(2)Emodin						
(3)Chrysophanol glycoside						
(4)Chrysophanol						
Nepodolide A	Ethanol with reflux	Roots	NMR	NMR	China	[10]
Nepodolide B	Ethanol with reflux	Roots	NMR	NMR	China	[10]
Chrysophanein Pulmatin	n-butanol with reflux	Roots	HPLC	Hungary	[47]	
(1)Chrysophanol-8-O-β-D-glucopyranoside	Ethyl acetate with ultra-sonication	Roots	HPLC	China	[47]	
(2)Chrysophanol-8-O-β-D-glucopyranoside	Ethyl acetate with ultra-sonication	Roots	HPLC	China	[47]	
(5)Aloeins						
(6)Lyconorol-3′-O-β-D-glucopyranoside	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
(7)1-(6′-O-β-D-glucopyranosylvinyl)benzene	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
Benzoazetinic acid	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
Indole	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
1′-Isoflavone/Tridecane	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
p-Terphenyl	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
1-Octadecene	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
Pentadecanoic acid	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
Bis(2-methylpropion)ester	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
1,2-Benzenedicarboxylic acid	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
1,2′,4,5-benzenetetracarboxylic acid	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
1-Octadecene-4-one	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
1-(1-iodo)Tridecane	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
1-Isocoumarin	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
1-Iodo-2-isopropenbenzene	Ethyl acetate	Roots	GC-MS	Nepal	[61]	
Glycosides						
(1)Chrysophanol-8-O-β-D-glucopyranoside	By Methanol with reflux method followed by ultracentrifugation	Roots	HPLC	India	[62]	
(2)Nepodin-8-O-β-D-glucopyranoside	By Methanol with reflux method followed by ultracentrifugation	Roots	HPLC	India	[63]	
(3)Emodin-8-O-β-D-glucopyranoside	By Methanol with reflux method followed by ultracentrifugation	Roots	HPLC	India	[63]	

8. Nutritional and elemental compositions

8.1. Elemental analysis

In *R. nepalensis*, elements like O, Si, C and K are reported from all plant organs, whereas, Na in stems and leaves, Mg in petioles and
flowers, Si in stems, Cl in stems, leaves, petioles and flowers, Ca in roots, petioles and flowers, Fe in petioles and Al is found in all plant organs except in roots and flowers[52]. Hameed et al.[65] reported 19.1% fats and oils in flowers whereas stem contains 18.69%. Further, authors reported the plant as highly fibrous as fruits 50.83% fibers while flowers contain 48.43% fibers[65].

8.2. Fatty acids profile

R. nepalensis is used as a fodder to feed animals. Khan et al.[66] studied the fatty acid content in *R. nepalensis* and also studied the effect of harvest maturity on fatty acid profile. Authors reported that linolenic acid, palmitic acid and linoleic acid are the main fatty acids FAs contributing the major part of the total fatty acid content. The content of palmitic acid, linoleic acid and linolenic acid decreased with maturity[66].

9. Pharmacological properties

Researchers reported the different pharmacological activities of *R. nepalensis*, which are presented in Figure 1 and discussed in the following sections.

![Figure 1. Various pharmacological activities reported from R. nepalensis.](image)

9.1. Anti-inflammatory activities

We can associate inflammation with several acute and chronic diseases which have been a matter of concern for mankind. In the western Nepal, *R. nepalensis* is used ethno-medicinally for the relief from pain and several inflammatory conditions. The ethanolic root extract of *R. nepalensis* showed activity against carrageenan induced rat paw edema, comparative to the standard anti-inflammatory drug diclofenac[62]. Anti-inflammatory activity of chloroform and ethyl acetate root extracts against ear edema was evaluated in a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced acute inflammation mouse model[58] and found significant reduction in ear edema[58]. HPLC analysis of root revealed the presence of nepedin and chrysophanol[63] which showed significant cyclooxygenase inhibitory activity. Thus, the anti-inflammatory effect of root of this plant is assumed to be mediated through cyclooxygenase inhibition by naphthalene and anthraquinone derivative[69]. Aqueous and alcoholic leaf extract was reported to reduce size of the wheel produced by bradykinin, histamine, carbachol and acetylcholine, which indicate that this plant has antibradykinin, antihistaminic and anticholinergic activity[13].

9.2. Antioxidant activities

Several studies showed the antioxidant activity of *R. nepalensis*. Water, ethyl acetate, ethanol, methanol, acetone extracts of this plant has been shown to have antioxidant properties. *In vitro* assays such as 2,2′-azino-bis(3-ethylbenothiazoline-6-sulphonic acid (ABTS+), 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide, hydroxyl and nitric oxide radical scavenging were employed to evaluate free radical scavenging and antioxidant potential of methanol, water and acetone extracts[67]. Plant also showed metal ion chelating capacity. Highly reactive metalions like ferrous ions play crucial role in induction of lipid oxidation. Ferrozine assay was used to estimate chelation of ferrous ion by the plant extracts. Ferrozine assay is a colorimetric sensitive, cheap, and reliable method for the quantitation of intracellular iron and for the investigation of iron accumulation in cultured cells. These extracts contain significant amount of flavonoids, phenolics, vitamin C and tannin which showed inhibitory ability against the free radicals, thus aging related diseases will be prevented by these vegetables[67]. The components of ethanolic, chloroform and ethyl acetate extracts are inhibitors of DPPH radical[61], and also are reported to scavenge the NO radical, inhibit the lipid-peroxidation and also chelate the metal ions[62]. Gautam et al.[58] isolated six anthraquinones and two naphthalene derivatives from ethyl acetate extract of *R. nepalensis*, and out of the isolated compounds, emodin (6-methyl-1,3,8-trihydroxyanthraquinone) and nepedin (1-(1,8-dihydroxy-3-methyl-2-naphthyl)-ethanone were identified as a potent cyclooxygenase inhibitors along with significant anti-inflammatory activities in mice. Interestingly, nepedin showed better radical scavenging activities than Trolox and ascorbic acid. This may be because of well-characterized strong antioxidant potentials of naphthalene derivatives[58]. Further, Bhattacharya et al.[88] evaluated antioxidant potentials of *in vitro* propagated plants of *R. nepalensis*, with highest activities in plants obtained through indirect shoot organogenesis.

9.3. Antiproliferative activities against cancerous cells
A cytotoxic test of compounds from *R. nepalensis* was conducted against SKBR3, H522, MCF-10A, MCF-7, and A549 cancerous cell lines, chrysophanol-8-0-β-D-glucopyranoside: IC$_{50}$=9.6 μM (MCF-10A); resveratrol: IC$_{50}$=29.4 μM (MCF-7), 12.3 μM (MCF-10A) and 27.8 μM (A549); orientaloside: IC$_{50}$=29.0 μM (A549), 38.7 μM (H522), 7.6 μM (MCF-10A) and 19.9 μM (SKBR3); and *rumex neposide A*: IC$_{50}$=31.0 μM (A549), 22.8 μM (MCF-10A), 15.7 μM (H522), 21.8 μM (MCF-7) and 20.7 μM (SKBR3).[10]

9.5. Antibacterial activities

R. nepalensis has been extensively used to cure bacterial infections.[70] In an investigation, methanolic leaf extract of *R. nepalensis* showed potential activity against pathogenic bacterial strains such as *Escherichia coli* (*E. coli*), *Bacillus subtilis*, *Pseudomonas aeruginosa* and *Bacillus cereus*. Antibacterial activities of methanolic root extracts of this plant against *Pseudomonas aeruginosa, Salmonella typhi, Enterobacter aerogenes, Citrobacter freundii* were studied by Hussain et al.[71]. Highest activity was observed against *E. coli* and *Staphylococcus aureus* (*S. aureus*).[71] The leaves stem and root extracts were also investigated for their activity against *Proteus vulgaris, Salmonella* sp. (MTCC), *Rhodococci sp., Bacillus stearothermophilus*,[40], *Streptococcus mutans*,[17], *Streptococcus pyogenes*,[45] and *S. aureus*.[61]. The compounds isolated from *R. nepalensis* is also investigated against *Mycobacterium tuberculosis*; among them, torachrysone, nepodin-8-0-β-D-glucopyranoside, chrysophanol-8-0-β-D-(6-O-acetyl)glucopyranoside aloeisin, torachrysone-8-0-β-D-glucopyranoside, (-)-epicatechin-3-O-gallate and rumexneposide A exhibited potent inhibitory activity.[10]. Ghosh et al.[60] reported antibacterial property of methanol extract against *Bacillus subtilis*, *S. aureus*, *Vibrio cholerae, E. coli* and *Shigella dysenteriae*. Aloe-emodin is reported to possess antibacterial activity.[60].

9.6. Antifungal activities

It is reported that the methanolic leaf extract showed potential activity against pathogenic fungi such as *Candida albicans*,[29], *Aspergillus niger*, *Aspergillus flavus*. Methanolic root extract showed higher activity against *Aspergillus niger* and moderate activity against *Aspergillus flavus and Alternaria solani*. It is also reported that the ethanolic extracts of root of *R. nepalensis* were significantly active against the fungal pathogens such as *Aspergillus fumigatus, Aspergillus versicolor*, *Fusarium moniliforme, Fusarium semitectum, Fusarium solani, Pythium sp.*, *Rhizopus sp.*, *Sporotrichum sp.*, *Thermomyces sp.*.[43], Anthraquinones possessed antifungal activity.[63].

9.7. Antiviral activities

Methanol root extract of *R. nepalensis* exhibited inhibitory action against RNA polymerase of hepatitis C virus. Extracts inhibited HCV-RdRp by 77.9% at a concentration of 50 μg/mL, and extract contained a high percentage of tannin.[72] Leaves showed anti-HIV activity.[73].

9.8. Anti-algal activity

Yi et al. 2012 screened root extract of *R. nepalensis* for antialgal activity against the cyanobacterium *Microcystis aeruginosa*. Coexistence culture system assay reported that remarkable inhibition of the algae with inhibitory rate of 24.4%.[3] This data suggest that
9.9. Insecticidal activity

The methanolic root extracts of *R. nepalensis* show significant insecticidal activity against *Sitophilus oryzae*. *R. nepalensis* methanolic extract also showed high mortality rate against *Rhyzopertha dominica*, *Callosbruchus analis* and *Trogoderma granarium*.[71]

9.10. Wound healing activity

Leaf extract of *R. nepalensis* was mixed with vaseline or butter and applied to the wounds. Antibacterial and antipyretic activity of *R. nepalensis* further justifies its use in traditional medicine to cure wounds.[7,9,14,45].

9.11. Purgative activities

Reports suggested that the methanol extract of roots of *R. nepalensis* possess a purgative activity by increasing gastro-intestinal motility and intestinal peristalsis. Anthraquinones are reported to possess purgative activity.[8]. Giday *et al.*[74] estimated fidelity level values to evaluate the curing potentials of *R. nepalensis* against human ailment (gastrointestinal complaints) which recorded the highest fidelity level values that is 100%[74].

9.12. Skeletal muscle relaxant activities

Methanol extract of roots of *R. nepalensis* showed muscle relaxant activity. By rotarod test, it was reported that the methanolic extract produced remarkable motor discoordination and skeletal muscle relaxant activity in animals.[75]. Report suggested that the presence of tannins, steroids, anthraquinone, saponins, and reducing sugars in the plant extract. Thus, the credit for skeletal muscle relaxant properties may goes to these phytochemicals[15].

9.13. Central nervous system (CNS) depressant property

Effects of plant methanolic extract of root were investigated on central nervous system for exploratory behavioural pattern. Noticeable drop of exploratory behavioural pattern was seen in animal treated with extract. Like in case of mice treated with *R. nepalensis* extract exhibited noticeable drop in head dip responses as compared to diazepam[75].

9.14. Toxicity studies

Ghosh *et al.*[75] determined LD$_{50}$ with extract in animal. On the basis of toxicity study, it was found that the methanolic extract (3.2 g/kg) of *R. nepalensis* root was not toxic to animal.

9.15. Cytotoxic and phytotoxic activities

A recent study on cytotoxicity of methanolic root extracts of *R. nepalensis* against *Artemia salina* has been reported. It was reported that 1 000 μg/mL concentration of methanolic root extracts showed significant cytotoxic activity against *Artemia salina* and the phytotoxicity activity against *Lemna minor*[53].

10. Phytoremediation abilities of Rumex nepalensis

R. nepalensis possess ability to accumulate heavy metals. Nazir *et al.*[77] reported Cd accumulation in roots (1.5 mg/kg) and in shoots (1.9 mg/kg). Biological transfer coefficient value for Cd was more than one hence possessed the characteristic of hyperaccumulator[76]. Bahnika and Baruah[77] demonstrated that the plant can grow at contaminated places and they can fascinate the removal of Zn, Cu and Pb. Plant showed considerable accumulation of Pb, Cu and Zn (165.72 mg/kg, 23.38 mg/kg and 55.93 mg/kg respectively)[77]. Ni accumulation by plant growing along drains carrying effluents was also observed along with Ni accumulation in roots, stems and leaves at 417.36 mg/kg, 308.74 mg/kg and 634.47 mg/kg concentrations, respectively. Plant showed feasibility for the phytoextraction of Ni metal. The calculated bioconcentration factor is 8.32 and translocation factor is 1.12[78]. These studies indicate the abilities of this plant to accumulate and tolerate metals, which can be explored for phytoremediation means.

11. Conclusion and future perspectives

The aim of this review was to enlighten the valuable application of this unique and valuable plant species. It carries high nutritional and medicinal values for humans and animals. The literature was analyzed to congregate the phytochemical and pharmacological information on *R. nepalensis*, which reaffirmed that this plant is a good source of phytocomplexes and medicinally important pure compounds for treatment of various diseases. *R. nepalensis* demonstrated various medicinal, pharmacological and phytoremediation activities which gives immense importance to this herb. However, further clinical trials should be performed to verify efficacy and any side effects or toxicity of purified plant extracts. It is essential to conduct in-depth and comprehensive
pharmacological studies at molecular level to investigate unexploited potential of this plant. For these reasons, wide pharmacological and chemical studies, together with human metabolism, might be the focus of future studies. Besides, the isolation of pure compounds with pharmacological activities and deciphering the underlying mechanisms holds significance in contemporary and future research. Recently, the plant extract was also being used by the researchers to produce nanoparticles, but again more studies are required to use its potential via nanotechnologies[79]. This plant could also be improved, through the use of conventional breeding techniques, and genetic engineering approaches for metal tolerance, or the metabolism of organic chemicals. Therefore, there is huge room for research in these directions.

Conflicting interest statement

Authors declare that they have no conflict of interest.

Acknowledgements

The financial support in the VK’s lab from Savitribai Phule Pune University in the form of Research Grant (No.: OSD/BCUD/392/132) is gratefully acknowledged.

References

[1] Rao KN, Sunitha C, David B, Sandhya S, Mahesh V. A study on the nutraceuticals from the genus Rumex. Hygeia J D Med 2011; 3(1): 76-88.

[2] Farooq U, Pandith SA, Saggoo ML, Lattoo SK. Altitudinal variability in anthraquinone constituents from novel cytotypes of Rumex nepalensis Spreng. a high value medicinal herb of North Western Himalayas. Ind Crops Prod 2013; 50(10): 112-117.

[3] Kunwar RM, Burlakoti C, Chowdhary CL, Bussmann RW. Medicinal plants in farwest Nepal: Indigenous uses and pharmacological validity. Med Aromat Plant Sci Biotechnol 2010; 4(1): 28-42.

[4] Gaire BP, Subedi L. Medicinal plant diversity and their pharmacological aspects of Nepal Himalayas. Phcog J 2011; 3(25): 6-17.

[5] Kumar SU, Joseph L, George MA, Bharti VL. Antimicrobial activity of methanolic extracts of Rumex nepalensis leaves. Int J Pharm Pharm Sci 2011; 3(4): 240-242.

[6] Solanki R, Dalsania S. Evaluation of CNS action of Rumex nepalensis Spreng. (Polygonaceae) using mice as experimental animal. Int J Res Pharm Biomed Sci 2012; 3: 1750-1752.

[7] Rana PK, Kumar P, Singhal VK, Rana JC. Uses of local plant biodiversity among the tribal communities of Pangi Valley of district Chamba in cold desert Himalaya, India. Scientific World J 2014; 753289: 1-15.

[8] Ghosh L, Gayen JR, Murugesan T, Sinha S, Pal M, Saha BP. Evaluation of purgative activity of roots of Rumex nepalensis. Fitoterapia 2003; 74(4): 372-374.

[9] Begum S, AbdEIslam NM, Adnan M, Tarig A, Yasmin A, Hameed R. Ethnomedicines of highly utilized plants in the temperate Himalayan region. Afr J Tradit Complement Med 2014; 11(3): 132-142.

[10] Iqbal I, Hamayun M. Studies on the traditional uses of plants of Malam Jabba valley, District Swat, Pakistan. Ethnobot Leaflets 2004; 1:15.

[11] Rokaya MB, Münzbergová Z, Timsina B. Ethnobotanical study of medicinal plants from the Humla district of western Nepal. J Ethnopharmacol 2010; 130(3): 485-504.

[12] Ahmad KS, Kayani WK, Hameed M, Ahmad F, Nawaz T. Floristic diversity and ethnombotany of Senhsa, District Kotli, Azad Jammu & Kashmir (Pakistan). Pak J Bot 2012; 44: 195-201.

[13] Giday M, Asfaw Z, Woldu Z. Ethnomedicinal study of plants used by Sheko ethnic group of Ethiopia. J Ethnopharmacol 2010; 132(1): 75-85.

[14] Giday M, Teklehaymanot T, Animut A, Mekonnen Y. Medicinal plants of the Shinusha, Agew-awi and Amhara peoples in northwest Ethiopia. J Ethnopharmacol 2007; 110(3): 516-525.

[15] Tauchen J, Doskoci I, Caffi C, Lulekal E, Marsik P, Havlik J, Van Damme P, Kokoska L. In vitro antioxidant and anti-proliferative activity of Ethiopian medicinal plant extracts. Ind Crops Prod 2015; 74: 671-679.

[16] Gaur RD. Traditional dye yielding plants of Uttarakhand, India. Nat Prod Radiance 2008; 7(2): 154-165.

[17] Uniyal SK, Singh KN, Jamwal P, Lal B. Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J Ethnobiol Ethnomed 2011; 7(2): 129.

[18] Flowers of India. [Online] Available from: http://www.flowersofindia.net/catalog/slides/Nepal%20Dock.html. [Accessed on 10th January 2018].

[19] Yi YL, Lei Y, Yin YB, Zhang HY, Wang GX. The antialgal activity of Microcystis aeruginosa. J Appl Phycol 2012; 24(4): 847-856.

[20] Ankita J, Jain A. Tridax procumbens (L.): A weed with immense medicinal importance: A review. Int J Pharma Bio Sci 2012; 3(1): 544-552.

[21] Anusuya NA, Gomathi RA, Manian SE, Sivaram VE, Menon
AN. Evaluation of Basella rubra L., Rumex nepalensis Spreng and Commelina benghalensis L. for antioxidant activity. Int J Pharm Pharmaceut Sci 2012; 4(3): 714-720.

[22] Kensa M. Floristic study in a Vembanur wetland, Kanyakumari District, Tamilnadu, South India. Plant Sci Feed 2011; 1: 194-199.

[23] Farooquee NA, Majila BS, Kala CP. Indigenous knowledge systems and sustainable management of natural resources in a high altitude society in Kumaun Himalaya, India. J Hum Ecol 2004; 16(1): 33-42.

[24] Liang HX, Dai HQ, Fu HA, Dong XP, Adebayo AH, Zhang LX, et al. Bioactive compounds from Rumex plants. Phytochem Lett 2010; 3(4): 181-184.

[25] Wahid SF, Osman CP, Ismail NH. Distinguishing isomeric anthraquinone by LC-MS. J Chem Pharm Res 2011; 3(1): 83-89.

Kumar N, Vats SK, Kumar S, Ahuja PS. Altitude-related changes in activities of carbon metabolism enzymes in Rumex nepalensis. Photosynthetica 2008; 46(4): 611-614.

[28] Chaturvedi AK, Prasad P, Nautiyal MC. Impact of elevated CO2 on growth, morphology and dry matter partitioning in alpine growth forms of north western Himalayas. Indian J Plant Physiol 2013; 18(2): 118-124.

[29] Kala CP, Farooquee NA, Dhar U. Prioritization of medicinal plants on the basis of available knowledge, existing practices and use value status in Uttarakhand, India. Biodivers Conserv 2004; 13(2): 453-469.

[30] Vashistha RK, Rawat N, Chaturvedi AK, Nautiyal BP, Prasad P, Nautiyal MC. An exploration on the phenology of different growth forms of an alpine expanse of north-west Himalayas. Indian J Nat Prod Resour 2011; 2(1): 65-69.

[31] Shrestha D. Indigenous vegetables of Nepal for biodiversity and food security. Int J Biodivers Consers 2013; 5(3): 98-108.

[32] Basella rubra L., Rumex nepalensis Spreng and Commelina benghalensis L. for antioxidant activity. Int J Pharm Pharmaceut Sci 2012; 4(3): 714-720.

[33] Venkatesh S, Reddy BM, Suresh B, Swamy MM, Mullangi R. Nutritional and elemental analyses of Indigenous vegetables of Nepal for biodiversity and food security. Int J Phar 2010; 3(3): 611-614.

[34] Balavali AS, Mistry KM, Rathi MS, Rajya L. Ethnobotanical study on the occurrence of medicinal plants in the state of Almora, Kumaun Hills, Nepal. J Ethnapharmacol 2004; 99(2): 121-130.

[35] Yadav S, Kumar S, Jain P, Pundir RK, Jadon S, Sharma A, et al. Antimicrobial activity of different extracts of roots of Rumex nepalensis Spreng. Indian J Nat Prod Resour 2011; 2(1): 65-69.

[36] Shrestha D. Indigenous vegetables of Nepal for biodiversity and food security. Int J Biodivers Consers 2013; 5(3): 98-108.

[37] Vasas A, Orbán-Gyapai O, Hohmann J. The Genus Rumex: Review of traditional uses, phytochemistry and pharmacology. J Ethnapharmacol 2015; 175: 198-228.

[38] Rajan S, Sethuraman M, Baburaj DS. Plants from the traditional medical system of the Nilgiri tribes. Ancient Sci Life 1997; 16(4): 360.

[39] Kothai S, Befirdu G. Ethnobotany and antimicrobial activities of medicinal plants used for skin infections in Jimma, Ethiopia. Discur Pharm 2012; 2: 5-11.

[40] Cheng S. Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res 2003; 10(3): 192-198.

[41] Sharma RS, Mishra V, Singh R, Seth N, Babu CR. Antifungal activity of some Himalayan medicinal plants and cultivated ornamental species. Fitoterapia 2008; 79(7): 589-591.

[42] Weckerle CS, Huber FK, Yongping Y, Weibang S. Plant knowledge of the Shuhi in the Hengduan Mountains, southwest China. Econ Bot 2006; 60(1): 3-23.

[43] Vashistha RK, Rawat N, Chaturvedi AK, Nautiyal BP, Prasad P, Nautiyal MC. An exploration on the phenology of different growth forms of an alpine expanse of north-west Himalayas. Indian J Nat Prod Resour 2011; 2(1): 65-69.

[44] Joshi AR, Joshi K. Documentation of wetland plant diversity with indigenous uses in Nepal: A case study of some wetlands of two Valleys (Kathmandu and Pokhara). Ethnobot 2009; 21: 11-17.

[45] Kothai S, Befirdu G. Ethno botany and antimicrobial activities of medicinal plants used for skin infections in Jimma, Ethiopia. Discur Pharm 2012; 2: 5-11.

[46] Vashistha RK, Rawat N, Chaturvedi AK, Nautiyal BP, Prasad P, Nautiyal MC. An exploration on the phenology of different growth forms of an alpine expanse of north-west Himalayas. Indian J Nat Prod Resour 2011; 2(1): 65-69.

[47] Vasas A, Orbán-Gyapai O, Hohmann J. The Genus Rumex: Review of traditional uses, phytochemistry and pharmacology. J Ethnapharmacol 2015; 175: 198-228.

[48] Rajan S, Sethuraman M, Baburaj DS. Plants from the traditional medical system of the Nilgiri tribes. Ancient Sci Life 1997; 16(4): 360.

[49] Sharma P, Rani S, Ojha SN, Sood SK, Rana JC. Indian herbal medicine as hepatoprotective and hepatocurative: a review of scientific evidence. Life Sci J 2014; 49: 61-115.

[50] Venkatesh S, Reddy BM, Suresh B, Swamy MM, Mullangi R. Pharmacognostical identification of Rumex nepalensis Spreng (Polygonaceae) an adulterant for Indian Rhubarb. Der Pharma Chemica 2010; 2: 453-469.

[51] Venkatesh S, Reddy BM, Suresh B, Swamy MM, Mullangi R. Pharmacognostical identification of Rumex nepalensis Spreng (Polygonaceae) an adulterant for Indian Rhubarb. Der Pharma Chemica 2010; 2: 453-469.
of some selected medicinal plants of the family Polygonaceae. Pak J Biol 2008; 40(6): 2493-2502.

[53] Hussain F, Hameed I, Dastagir G, Khan I, Ahmad B. Cytotoxicity and phytotoxicity of some selected medicinal plants of the family Polygonaceae. Afr J Biotechnol 2010; 9(5): 770-774.

[54] Yineger H, Kelbessa E, Bekele T, Lulekal E. Ethnoveterinary medicinal plants at bale mountains national park. Ethiopia. J Ethnapharmacol 2007; 112(1): 55-70.

[55] Singh KN. Traditional knowledge on ethnobotanical uses of plant biodiversity: a detailed study from the Indian western Himalaya. Biodis Res Conserv 2012; 28(1): 63-77.

[56] Mei R, Liang H, Wang J, Zeng L, Lu Q, Cheng Y, et al. Investigation of antioxidant and anti-inflammatory activity of roots and anthraquinone glucosides from Rumex nepalensis. Planta Medica 2009; 75(10): 1162-1164.

[57] Teklehaymanot T. Ethnobotanical study of knowledge and medicinal plants use by the people in Dek Island in Ethiopia. J Ethnapharmacol 2009; 124(1): 69-78.

[58] Ghosh L, Gayen JR, Sinha S, Saha BP, Pal M. Pharmacognostical profile of roots of Rumex nepalensis. Ancient Sci Life 2001; 20(4): 93.

[59] Gautam R, Karkhile KV, Bhutani KK, Jachak SM. Anti-inflammatory, cyclooxygenase (COX)-2, COX-1 inhibitory, and free radical scavenging effects of Rumex nepalensis. Planta Medica 2010; 76(14): 1564-1569.

[60] Ghosh L, Gayen JR, Sinha S, Pal S, Pal M, Saha BP. Antibacterial efficacy of Rumex nepalensis Spreng. roots. Phytother Res 2003; 17(5): 558-559.

[61] Shrestha R, Timilsina N. Antioxidant and antimicrobial activity and GC-MS analysis of extract of Rumex nepalensis Spreng. Pharma Innovation 2017; 6(9): 155-158.

[62] Devkota SR, Paudel KR, Sharma K, Baral A, Chhetri SB, Parajuli P, et al. Investigation of antioxidant and anti-inflammatory activity of roots of Rumex nepalensis. World J Pharma Sci 2015; 4(3): 582-594.

[63] Gautam R, Srivastava A, Jachak SM. Simultaneous determination of naphtalene and anthraquinone derivatives in Rumex nepalensis Spreng. roots by HPLC: comparison of different extraction methods and validation. Phytochem Anal 2011; 22(2): 153-157.

[64] Grover J, Kumar V, Singh V, Bairwa K, Sobhia ME, Jachak SM. Synthesis, biological evaluation, molecular docking and theoretical evaluation of ADMET properties of nepodon and chrysophanol derivatives as potential cyclooxygenase (COX-1, COX-2) inhibitors. Eur J Med Chem 2014; 80(80C): 47-56.

[65] Hameed I, Dastagir G. Nutritional analyses of Rumex hastatus D. Don, Rumex dentatus Linn and Rumex nepalensis Spreng. Afr J Biotechnol 2009; 8(17): 4131-4133.

[66] Khan NA, Farooq MW, Ali M, Suleman M, Ahmad N, Sulaiman SM, et al. Effect of species and harvest maturity on the fatty acids profile of tropical forages. J Anim Plant Sci 2015; 25(3): 739-746.

[67] Mungole AJ, Chaturvedi A. Determination of antioxidant activity of Hithicircus salutarifolia L. and Rumex nepalensis Spreng. Int J Pharm Bio Sci 2011; 2(1): 120-127.

[68] Bhattacharyya P, Kumaria S, Bose B, Paul P, Tandon P. Evaluation of genetic stability and analysis of phytomedicinal potential in micropropagated plants of Rumex nepalensis: A medicinally important source of pharmaceutical biomolecules. J App Res Med Aromatic Plants 2017; 6: 80-91.

[69] Yang Y, Yan YM, Wei W, Luo J, Zhang LS, Zhou XJ, et al. Anthraquinone derivatives from Rumex plants and endophytic Aspergillus fumigatus and their effects on diabetic nephropathy. Bioorg Med Chem Lett 2013; 23(13): 3905-3909.

[70] Kumari P, Misra SK, Sharma N. Herbals as antimicrobials: A review. J Ayu Her Med 2016; 2(1): 31-35.

[71] Hussain F, Ahmad B, Hameed I, Dastagir G, Sanaullah P, Azam S. Antibacterial, antifungal and insecticidal activities of some selected medicinal plants of polygonaceae. Afr J Biotechnol 2010; 9(31): 5032-5036.

[72] Jo M, Nakamura N, Kakiuchi N, Komatsu K, Qui MH, Shimotohno K, et al. Inhibitory effect of Yunnam traditional medicines on hepatitis C viral polymerase. J Nat Med 2006; 60(3): 217-224.

[73] Maroyi A. Alternative medicines for HIV/AIDS in resource-poor settings: Insight from traditional medicines use in Sub-Saharan Africa. Trop J Pharm Res 2014; 13(9): 1527-1536.

[74] Giday M, Asfaw Z, Woldu Z. Medicinal plants of the Meinit ethnic group of Ethiopia: An ethnobotanical study. J Ethnapharmacol 2009; 124(3): 513-521.

[75] Ghosh L, Arunachalam G, Murugesan T, Pal M, Saha BP. Studies on the psychopharmacological activities of Rumex nepalensis Spreng. root extract in rats and mice. Phytotherapy 2002; 9(3): 202-206.

[76] Nazir, A., Malik, R. N., Ajaib, M., Shahin, H. (2013). Accumulation of cadmium in soil and plants in vicinity of Koh-e-Noor textile mills Rawalpindi, Pakistan. Biologia (Pakistan); 59 (2): 197-203.

[77] Bahnika S, Baruah PP. Heavy metal extraction potentiality of some indigenous herbs of Assam, India. J Env Res Dev 2014; 8(3A): 633.

[78] Khan M, Sajjad MA, Khan W M, Ali S, Ali H, Naeem A. Phytoremediation of nickel from the effluents of selected ghee industries of Kh Khyber Pakhtunkhwa, Pakistan. J Bio Env Sci 2015; 6(3): 174-182.

[79] Mittal J, Sharma MM, Batra A. Tinospora cordifolia: A multipurpose medicinal plant- A review. J Med Plant Stud 2014; 2(2):32-47.