Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions:

- Year 2018 (Volume 58): 380 €
- Previous volumes (2010-2016): 250 € / year (4 issues)

Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
SCHIZOTETRANYCHUS-LIKE SPIDER MITES (ACARI, PROSTIGMATA, TETRANYCHIDAE) — REVISITED, NEW COMBINATIONS AND A KEY TO GROUPS OF SCHIZOTETRANYCHUS BASED ON FEMALES

Carlos H.W. Flechtmann

(Received 24 November 2011; accepted 13 February 2012; published online 30 March 2012)

CNPq-Brasil researcher, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Entomologia e Acarologia, 13418-900 Piracicaba, São Paulo, Brasil. chwflech@esalq.usp.br

ABSTRACT — An overview of Schizotetranychus-like acarina is presented, with a key to the major groups of Schizotetranychus of the world, based on females. A probable remnant of the dorsal parts of the podal segments III and IV in Stigmaeopsis species is discussed. New combinations are proposed.

KEYWORDS — Neonidulus; Schizotetranychus; Stigmaeopsis; Tribolonychus; Yezonychus; Yunonymchus; Tetranychidae

INTRODUCTION

The genus Schizotetranychus is one with the largest number of species, 115 (Migeon and Dorkeld, 2006-2011) of the family Tetranychidae. The identification of species in this genus has conventionally been based primarily on characters of the male aedeagus. Similarly as has been proposed for the species in the genus Tetranychus by Flechtmann and Knihinicki (2002) for cases where male specimens are not available or traditional characters such as the aedeagus shape are not reliable, an arbitrary key, based only on females, to the major groups of Schizotetranychus could help complement existing keys.

Key to genera, (from Trägårdh, 1915)

1. Empodium shaped as a single claw 2
 – Empodium divided into two or more prongs ... 3

2. Claw without any projection at the base...
 Neotetranychus nov. gen.
 – Empodium with projection near the base, bearing 4-6 fine hairs Paratetranychus Zacher

3. Claw bipartite Schizotetranychus nov. gen.
The remaining species, with the characters mentioned in the first paragraph and presenting nine pairs of dorsal hysterosomal setae (c 1-2-3, d 1-2, e 1-2 and f 1-2) were left in the genus *Schizotetranychus* Trägårdh, 1915, type species *Tetranychus schizopus* Zacher, 1913. McGregor (1950) synonymized *Stigmaeopsis* Banks, 1917 (type species *S. celarius* Banks, 1917) under *Schizotetranychus*. *Saito* et al. (2004) reinstituted the genus *Stigmaeopsis* Banks based on the presence of only six setiform structures on the palp tarsus of females and males (2 simple setae, 3 eupathidia and one solenidion), while there are seven of these structures (three simple setae + ...) in *Schizotetranychus*. The seven species now recognized as *Stigmaeopsis*, *S. celarius* Banks, *S. longus* (Saito, 1990), *S. miscanthi* (Saito, 1990), *S. nanjingensis* (Ma and Yuan, 1980), *S. tenuinidus* (Zhang and Zhang, 2000), *S. saharai* Saito and Mori, 2004 and *S. takahashi* Saito and Mori, 2004 are also characterized by the position of the dorsocentral hysterosomal setae: the bases of the pairs of setae c1, d1 and c1 are progressively wider apart than the bases of f1 setae, that is, hypothetical lines connecting their bases form a V shaped pattern (these lines are parallel in the other Tetranychini, including *Schizotetranychus*), as pointed out by Saito et al. (2004). Another striking feature exhibited by the *Stigmaeopsis* species is the dorsal integumental trapezoidal area between the pairs of setae c1, d1 and c1. Anteriorly this area is well set off from the propodosoma dorsum by the sejugal furrow; laterally there seems to be no well pronounced furrows or deep markings and posteriorly, at least in *S. celarius*, *S. saharai*, *S. takahashi* there seems to occur another, although short, transverse furrow. The exact nature of these lateral and posterior limits should be examined in specimens not flattened by the weight of the coverslip. This trapezoidal area is clearly longitudinally striated, the striae restricted to this area, while the lateral adjacent areas, bearing the dorsohysterosomal setae, although mainly longitudinally striated, their striae bend anteriorly outwards and posteriorly around the central trapezoidal area. Could this trapezoidal area represent a remnant of the dorsal part of the podal segments of legs III and IV?

Schizotetranychus malkovskii (Wainstein, 1956) and *S. meghalensis* Gupta and Gupta, 1994 also exhibit the aforementioned characters (six setiform structures on palp tarsus and the trapezoidal dorsal hysterosomal area), therefore, the new combinations

- *Stigmaeopsis malkovskii* (Wainstein, 1956) **n. comb.**, and
- *Stigmaeopsis meghalensis* (Gupta and Gupta, 1994) **n. comb.**

are proposed.
Keys to groups of species in the genus Schizotetranychus, based on females

The key to the major groups of *Schizotetranychus* is based on females only. Since the character length of dorsocentral setae may be somewhat variable, not to say, not absolutely reliable when in the presence of only one specimen, several individuals should be examined. This should not pose a serious problem, since these mites are generally found in groups of specimens under the webbing. Seventeen groups are proposed, but these do not necessarily have phylogenetic significance.

1. Idiosoma elongate – body length (not including rostrum): width = or > 2 2
 - Idiosoma orbicular or more or less oval: length : width < 2 .. 5

2. Dorsocentral hysterosomal setae (*c*1, *d*1, *e*1) shorter than longitudinal distances between consecutive setae .. 3
 - Dorsocentral hysterosomal setae (*c*1, *d*1, *e*1) equal to or longer than longitudinal distance to seta next behind .. group 1

3. Peritremes straight, ending in a bulb (expanded distally) .. group 2
 - Peritremes ending in a hook or in a loop 4

4. Peritremes ending in a hook group 3
 - Peritremes looped distally *S. nugax*

5. Female idiosoma orbicular, approximately as wide as long group 4
 - Female idiosoma more or less oval, longer than wide ... 6

6. Dorsal integument reticulated in females (striated in males) group 5
 - Females and males with dorsal integument striate ... 7

7. Length of dorsohysterosomal setae (*c*1, *d*1, *e*1) shorter or approximately equal (rarely slightly longer) to longitudinal distance to bases of consecutive pair of setae (In *S. graminicola* Goux *d*1 is the only dorsohysterosomal seta longer than distance to consecutive seta) 8
 - Dorsohysterosomal setae (at least *d*1 and *e*1) longer than longitudinal distance to basis of consecutive seta .. 13

8. Dorsohysterosomal setae shorter than interval to base of seta next behind 9
 - Dorsohysterosomal setae about as long as longitudinal interval to base of seta next behind .. 10

9. Dorsal hysterosomal setae (most of them) awl shaped, acutely tapering from the widened proximal (basal) portion .. group 6
 - Dorsal hysterosomal setae setose group 7

10. Tibia of leg I of female with 7 tactile and 1 sensory setae .. group 8
 - Tibia of leg I of female with 8 - 10 tactile plus one sensory setae 11

11. Tibia of leg I of female with 8 tactile plus one sensory setae group 9
 - Tibia of leg I of female with 9 - 10 tactile plus one sensory setae 12

12. Tibia of leg I of female with 9 tactile plus one sensory setae group 10
 - Tibia of leg I of female with 10 tactile plus one sensory setae 11

13. Dorsocentral hysterosomal setae *d*1 and *e*1 longer and *c*1 shorter or about equal in length than interval to base of next seta behind 12
 - Dorsohysterosomal setae *c*1, *d*1 and *e*1 longer than interval to base of seta next behind ..14

14. Dorsohysterosomal setae (at least *c*1 and *d*1) very long, reaching past second seta caudal, or, when about equal to this length then these setae are longer than the remaining hysterosomal setae except *c*3 .. group 13
 - Dorsohysterosomal setae reaching past first seta behind but not reaching second seta be-
| Group 1 | Group 2 | Group 3 |
|--------|--------|--------|
| S. elongatus Wang and Cui, 1991 | S. boutelouae Tuttle and Baker, 1968 | S. fluvialis McGregor, 1928 |
| S. imperatae Wang, 1983 | S. lycurus Tuttle and Baker, 1964 | S. freitezi Ochoa, Gray and von Lindeman, 1990 |
| S. kochummeni Ehara, 1988 | S. rhodanus Baker and Pritchard, 1960 | S. oryzae Rossi de Simons, 1966 |
| S. minutus Wang and Zhang, 1985 | | S. vermiculatus Ehara and Wongsiri, 1975 |
| S. paezi Alvarado and Freitez, 1976 | | |
| S. taquarae Paschoal, 1971 | | |

Group 4
- S. brevisetosus Ehara, 1989
- S. kaspari Manson, 1967
- S. sayedi Attiah, 1967

Group 5
- S. luculentus Tseng, 1990
- S. reticulatus Baker and Pritchard, 1960

Group 6
- S. baltazarae Rimando, 1962
- S. gausus Baker and Pritchard, 1960
- S. hidayahae Yusof and Zhang, 2003
- S. sacrales Baker and Pritchard, 1960
- S. sagatus Davis, 1969
- S. spiculus Baker and Pritchard, 1960
- S. spireafolia Garman, 1940

Group 7
- S. agropyron Tuttle and Baker, 1976
- S. asparagi (Oudemans, 1928)
- S. avetjanae Bagdasarian, 1954
- S. celtidis Tuttle and Baker, 1968
- S. denmarki Baker and Tuttle, 1994
- S. echinulatus Mitrofanov, 1978
- S. floridensis (McGregor, 1930)
- S. gilvus Ehara and Ohashi, 2005
- S. guatemalae-novae (Stoll, 1886)
- S. hindustanicus (Hirst, 1924)
- S. montanae Tuttle and Baker, 1968
- S. pennamontanus Meyer, 1987
- S. pomeranzevi Reck, 1956
- S. prosopis Tuttle, Baker and Abbatiello, 1976 *
- S. protectus Meyer, 1965
– *S. pseudolycurus* Ochoa, Gray and von Linde-
man, 1990
– *S. saba-sulchani* Reck, 1956
– *S. shii* (Ehara, 1965)
– *S. umtaliensis* Meyer, 1974

* S. *prosopis* is, so far, the only *Schizotetrany-
chus* species with the distal ending of the peritremes
anastomosing.

Group 8
– *S. andropogoni* (Hirst, 1926)
– *S. camur* Pritchard and Baker, 1955
– *S. paraelymus* Feres and Flechtmann, 1995
– *S. undulatus* (Beer and Lang, 1958)
– *S. youngi* Tseng, 1975

Group 9
– *S. dalbergiae* Meyer, 1974
– *S. yoshimeki* Ehara and Wongsiri, 1975

Group 10
– *S. australis* Gutierrez, 1968
– *S. colocasiae* Ehara, 1988
– *S. fauveli* Gutierrez, 1978
– *S. leguminosus* Ehara, 1973 *
– *S. lespedezae* Beglyarov and Mitrofanov, 1973
– *S. lushanensis* Wang, 1994

S. leguminosus is probably a junior synonym of *S.
lespedezae.*

Group 11
– *S. garmani* Pritchard and Baker, 1955
– *S. levinensis* Manson, 1967

Group 12
– *S. cremophilus* McGregor, 1950
– *S. russeus* Davis, 1969

Group 13
– *S. gahniae* Davis, 1969
– *S. laevidorsatus* Ehara, 1988
– *S. longirostris* Feres and Flechtmann, 1995
– *S. parasemus* Pritchard and Baker, 1955
– *S. sacharum* Flechtmann and Baker, 1975
– *S. saitoi* Ehara, 1988

Group 14
– *S. approximatus* Ehara, 1988
– *S. papillatus* Flechtmann, 1995
– *S. triquetrus* Meyer, 1987
– *S. indicus* Gupta and Gupta, 1994 *

* The authors inform that the tibia of leg I of
female has 6 tactile plus 3 sensory setae; however,
their drawing suggests 8 tactile + 1 sensory setae.

Group 15
– *S. arcuatus* Meyer, 1974
– *S. cajani* Gupta, 1976
– *S. filifolius* Mweyer, 1974
– *S. recki* Ehara, 1957
– *S. rhynosperus* Flechtmann and Baker, 1970
– *S. schizopus* (Zacher, 1913) *

* There is a report by Ehara (1957) of *S. schizopus*
with 8 and 9 tactile setae on tibia I of female.
Group 16
- *S. cynodonis* McGregor, 1950
- *S. elymus* McGregor, 1950
- *S. hilariae* Tuttle and Baker, 1968
- *S. lanyuensis* Tseng, 1975
- *S. mansoni* Gupta, 1980
- *S. miyatahus* Meyer, 1974
- *S. nesbitti* Meyer, 1965
- *S. tbilisiensis* Reck, 1959
- *S. tumidus* Wang, 1981
- *S. tuttleii* Zaher, Gomaa and El-Enany, 1982

* There is a discrepancy between the text, informing 8 + 1 setae and the drawing, showing 6 + 1 setae on tibia of leg I of female.

Group 17
- *S. alni* Beglyarov and Mitrofanov, 1973
- *S. bambusae* Reck, 1941
- *S. beckeri* Wainstein, 1958
- *S. bhandhufalcki* Ehara and Wongsiri, 1975
- *S. brachypodii* Livshitz and Mitrofanov, 1968
- *S. cercidiphilly* Ehara, 1973
- *S. chiangmaiensis* Ehara and Wongsiri, 1975
- *S. euphorbiae* Livshitz and Mitrofanov, 1968
- *S. floresi* Rimando, 1962
- *S. halimodendri* Wainstein, 1958
- *S. lechrius* Rimando, 1962
- *S. malayanus* Ehara, 1988 *
- *S. smirnovi* Wainstein, 1954
- *S. tephrosiae* Gutierrez, 1968
- *S. textor* Wainstein, 1954
- *S. tuminicus* Ma and Yuan, 1982
- *S. ugarovi* Wainstein, 1960
- *S. zhangi* Wang and Cui, 1992
- *S. zhongdianensis* Wang and Cui, 1992

* There is a report by Ehara, 2004 on *S. malayanus* females with 9 tactile plus 3 and 4 sensory setae on tibia of leg I. In *S. kreiteri* the tibia of leg I of female has 9 tactile plus 3 sensory setae.

Due to insufficient data provided in their descriptions the following species could not be affiliated to any of the above groups:
- *S. setariae* Meyer, 1987 — only known from the male.
- *S. eneensis* Wang, 1983 female has nine tactile and two sensory setae on tibia of leg I; otherwise it would fit into group 17.
- *S. tuberculatus* (Ugarov and Nikolski, 1937) — is the only species where the dorsal setae are set on tubercles.
- *S. jachontovi* Reck, 1953 belongs to one of the groups in between 14 and 17; no information on the number of tibial setae is given in its description.
- The descriptions of *S. glabrisetus* Ugarov and Nikolski, 1937 and *S. oudemansi* Reck, 1948 were not seen.

ACKNOWLEDGEMENTS

Heartiest thanks to three anonymous referees who, in carefully reading through the text, corrected a few of my mistakes and especially to Alain Migeon for rearranging the introduction, rendering it more reader friendly and better stressing the aim of this paper.
REFERENCES

Alvarado D.G., Freítez R. F. 1976 — *Schizotetranychus paezi* sp.n. y *S. oryzae* (Acarina: Tetranychidae) atacando arroz em Venezuela — Agronomia Tropical, 26(2): 159-165.

Attiah H.H. 1967 — Two new species of mites on figs, from Egypt. (Acarina) — Bull. Soc. Entomol. Egypte, 51(1): 1-5.

Bagdasarian A.T. 1954 — New species of tetranychid mites from Armenia (in Russian) — Dokl. Akad. Nauk. Arm. S.S.R., 18(2): 51-56.

Baker E.W., Pritchard A.E. 1960 — The Tetranychoid mites of Africa — Hilgardia, 29(11): 455-574.

Baker E.W., Tuttle D.M. 1994 — A guide to the spider mites (Tetranychidae) of the United States — Indira Publishing House, Michigan, 347 p.

Banks N. 1917 — New mites, mostly economic. (Arachn., Acar.) — Entomological News, 28: 193-199.

Beard J., Walter D.E. 2010 — New spider mite genus (Prostigmata: Tetranychidae) from Australia and New Zealand, with a discussion of *Yezonychus* Ebara — Zootaxa, 2578: 1-24.

Beer R.E., Lang D.S. 1958 — The Tetranychidae of Mexico (Acarina) — The University of Kansas Science Bulletin, 38 Pt. II (15): 1231-1259.

Beglyarov G.A., Mitrofanov V.I. 1973 - Nouvelles espèces du genre *Schizotetranychus* de la région de Vladivostok. (in Russian) — Biol. Rev., 6: 16-22.

Davis J.J. 1969 — A new species of *Schizotetranychus* (Acarina: Tetranychidae) from Queensland — J. Australian Entomol. Soc., 8: 107-109. doi:10.1111/j.1440-6055.1969.tb00737.x

Ehara S. 2004 — A collection of spider mites (Arachnida: Acari: Tetranychidae) from Sumatra — Species Diversity, 9(1): 67-76.

Ehara S., Ohashi K. 2005 — A new spider mite species of *Schizotetranychus* (Acari: Prostigmata: Tetranychidae) from *Quercus glauca* in Japan — Zootaxa, 884: 1-5.

Ehara S., Tho Y.P. 1988 — Spider mites of the Malay Peninsula (Acarina: Tetranychidae) — The Journal of the Faculty of Education, Tottori University, Natural Science, 37(1): 1-24.

Ehara S., Wongseri T. 1975 — The spider mites of Thailand (Acarina: Tetranychidae) — Mushu, Fukuoka Entomological Society, 48(13): 149-185.

Feres R.J.F., Flechtmann C.H.W. 1995 — Mites (Acari) associated with bamboo (*Bambusa* sp., Poaceae) in a woody area from northwestern São Paulo State, Brazil — Revista Brasileira de Zoologia, 12(3): 533-546. doi:10.1590/S0101-81751995000300008

Flechtmann, C.H.W. 1995 — On the mite fauna of bamboo leaves in the Parque Nacional do Itatiaia, Rio de Janeiro, Brazil — Internat. J. Acarol., 21(4): 243-252. doi:10.1080/01647959508684067

Flechtmann C.H.W., Baker E.W. 1970 — A preliminary report on the Tetranychidae (Acarina) of Brazil — Ann. Entomol. Soc. America, 63(1): 156-63.

Flechtmann C.H.W., Baker E.W. 1975 — A report on the Tetranychidae (Acari) of Brazil — Revista Brasileira de Entomologia, 19 (3): 111-122.

Flechtmann C.H.W., Knihinicki D.K. 2002 — New species and new records of *Tetranychus* Dufour from Australia, with a key to the major groups in this genus based on females (Acari: Prostigmata: Tetranychidae) — Australian J. Entomol., 41: 118-127. doi:10.1046/j.1440-6055.2002.00289.x

Flechtmann C.H.W., Kreiter S., Etienne J., de Moraes G.J. 1999 — Plant mites (Acari) of the French Antilles. I. Tetranychoidea (Prostigmata) — Acarologia, 40(2): 137-144.

Garman P. 1940 — Tetranychidae of Connecticut — Connecticut Agricultural Experiment Station, Bulletin, 431: 67-87.

Goux L., 1949 — Etude d’un *Schizotetranychus* nouveau de la région Lyonnaise (Acar. Tetranychidae) — Bull. Soc. Linn. Lyon, 18(6): 100-104.

Gupta S.K. 1976 — Contribution to our knowledge of tetranychid mites (Acarina) with descriptions of three new species from India — Oriental Insects, 10(3): 327-351.

Gupta S.K., Gupta Y.N. 1994 — A taxonomic review of Indian Tetranychidae (Acari: Prostigmata) with descriptions of new species, re-descriptions of known species
and keys to genera and species. Genus 17. *Schizotetranychus* Trägårdh — Mem. Zool. Survey of India, 18(1): 86-99.

Gupta Y.N. 1980 — Some spider mites (Acarina: Tetranychidae) from Andaman and Nicobar Islands with descriptions of three new species — Rec. Zool. Survey of India, 77: 111-117.

Gutierrrez J. 1968 — Tetanychidae nouveaux de Madagascar (Quatrième note) — Acarologia, 10(1): 13-28.

Gutierrrez J. 1978 — Cinq nouvelles espèces de Tetranychidae (Acariens) de Nouvelle-Calédonie — Acarologia, 20(3): 351-364.

Hirst S. 1924 — On some new species of red spider — Annals and Magazine of Natural History, Ser. 9, 14: 522-527 + 2 pl.

Hirst S. 1926 — Descriptions of new mites, including four new species of "red spider" — Proc. Zool. Soc. London, 1926, Part 3: 825-841.

Livshitz I.Z., Mitrofanov V.I. 1968 - New species of red and false spider mites (Acarina, Tetranychidae) from the Crimea. (in Russian) — Rev. Entomol URSS, 47(3):671-682.

Ma E.-P., Gao J.-R. 1985 — A new genus and species of Tetranychidae from China — Acta Entomol. Sinica, 28(2): 201-203.

Ma E.-P., Yuan Y.L. 1980 — New species and new records of Tetranychid mites from China — Acta Zootaxonomica Sinica, 5(1): 42-45.

Ma E.-P., Yuan Y.L. 1982 — A new genus and five new species of Tetranychidae from China (Acar: Tetranychidae) — Entomotaxonomia, 4(1-2): 109-114.

Manson D.C.M. 1967 — The spider mite family Tetranychidae in New Zealand. III. The genus *Schizotetranychus* — Acarologia, 9(4): 823-840.

McGregor A.E. 1928 — Descriptions of two new species of spinning mites — Proc. Ent. Soc. Wash., 30(1): 11-15.

McGregor A.E. 1930 — A new spinning mite attacking *Asparagus plumosus* in Florida — Proc. Ent. Soc. Wash., 32(9): 161-163.

McGregor A.E. 1950 — Mites of the family Tetranychidae — The American Midland Naturalist, 44(2): 257-420. doi:10.2307/2421963

Meyer M.K.P. 1965 — South African Acarina I. Nine species of the sub-family Tetranychinae collected on wild plants — Koedoe, 8: 82-94 + 6 pl.

Meyer M.K.P. 1974 — A revision of the Tetranychidae of Africa (Acar) with a key to the genera of the world — Republic of South Africa Department of Agricultural Technical Services, Plant Protection Research Institute, Pretoria, Entomology Memoir No. 36, 291 p.

Meyer M.K.P. 1987 — African Tetranychidae (Acari: Prostigmata), with reference to the world genera — Republic of South Africa Department of Agriculture and Water Supply, Entomology Memoir No. 69, 175 p.

Migeon A. And Dorfeld F. 2006-2011 — Spider Mites Web: a comprehensive database for the Tetranychidae — http://www.montpellier.inra.fr/BCGP/spmweb

Mitrofanov V.I. 1978 — New species of *Schizotetranychus* mites (Acarina, Tetranychidae) from the Crimea — Nauch. Dokl. Vyssh. Shk. Biol. Nauki, 6: 44-47.

Ochoa R., Gray B., von Lindeman G. 1990 — El género *Schizotetranychus* Trägårdh (Acar: Tetranychidae) en Costa Rica y Panamá — Turrialba, 40(2): 210-216.

Oudemans A.C. 1928 — Acarologische Aanteekeningen LXXIX — Entomologische Berichte, 7(159): 285-293.

Paschoal A.D. 1971 — A new *Schizotetranychus* from the Brazilian fauna (Acarina: Tetranychidae) — Revista Peruana de Entomologia, Annales del Primer Congreso Latinoamericano de Entomologia, Cusco, Peru (12-18 Abril 1971), 14(1): 172-173.

Pritchard A.E., Baker E.W. 1955 — A revision of the spider mite family Tetranychidae — Pacific Coast Entomological Society, Memoir Series Vol. 2, 472 p.

Reck, H. [sic] 1941 — Eine neue *Schizotetranychus*-Art (Tetranychida, Acari) — Soobsh. Akad. Nauk Gruz. S.S.R., 2(5): 449-452.

Reck G.F. 1947 — New species of spider mites from Gruzii. [in Russian] — Soobsh. Akad. Nauk Gruz. S.S.R., 8(7): 471-475.

Reck G.F. 1948 — Rod *Schizotetranychus* (Tetranychidae, Acari) po materialam iz Gruzi — Sobosh. Akad. Nauk Gruz. S.S.R., 9(6): 369-376.

Reck G.F. 1953 — Research investigation on the fauna of the Tetranychidae in Georgia [in Russian] — Tr. Inst. Zool. Akad. Nauk Gruz S.S.R., 11: 161-181.

Reck G.F. 1956 — Novye vidy tetranihovyh klescej iz Vostochnoj Gruzii — Sobosh. Akad. Nauk Gruz S.S.R., 15: 5-28.

Reck G.F. 1959 — A key to the tetranychoid mites — Fauna Trans Caucasia Akad. Nauk. Gruz. S.S.R., 1: 1-152. (not seen)

Rimando L.C. 1962 — Four new species of spider mites of the genera *Eotetranychus* and *Schizotetranychus* (Tetranychidae, Acarina) — The Philippine Agriculturist, 14(10): 535-544.

Rimando L.C. 1962 — The Tetranychoid mites of the Philippines — The University of the Philippines, College of Agriculture, Technical Bulletin 11, 52 p.

Riess de Simons N.H. 1966 — Descripción de *Schizotetranychus oryzae* sp. n. (Acari — Tetranychidae) — Revista de Investigaciones Agropecuarias, INTA, Buenos Aires, Ser. 5, Patologia Vegetal, 3(1): 1-10.
Saito Y. 1990 — Two new spider mite species of the Schizotetranychus celarius complex (Acari: Tetranychidae) — Appl. Ent. Zool., 25(3): 389-396.

Saito Y., Mori K., Sakagami T., Lin J. 2004 — Reinstatement of the genus Stigmaeopsis Banks, with descriptions of two new species (Acari, Tetranychidae) — Ann. Entomol. Soc. America, 97(4): 635-646. doi:10.1603/0013-8746(2004)097[0635:ROTGB]2.0.CO;2

Stoll O. 1886 — Biologia Centrali-Americana. Arachnida Acaridea. 53 p, 21 pl.

Trägårdh I. 1915 — Bidrag till Kännedomen om Spinnkvalstren (Tetranychus Duf.). Meddelande Nr. 109 från Centralanstalten för försöksväsendet på Jordbruksområdet — Entomologiska avdelningen, 20: 1-59.

Tseng Y.-H. 1975 — Systematics and distribution on the phytophagous mites of Taiwan. Part I. A revision of the mites family Tetranychidae, with an illustration key to genera of the world — B.C.I.Q. Ministry of Economic Affairs, Plant Quar. Bull., 10: 1-132. (not seen)

Tseng Y.-H. 1990 — A monograph of the mite family Tetranychidae (Acarina: Trombidiformes) from Taiwan — Taiwan Museum Special Publication Series Number 9, 124 p.

Tuttle D.M., Baker E.W. 1968 — Spider mites of Southwestern United States with a revision of the family Tetranychidae — University of Arizona Press, 143 p.

Tuttle D.M., Baker E.W. 1976 — New records and species of Tetranychidae and Tenuipalpidae (Acarina) from Utah and Idaho — Great Basin Naturalist, 36(1): 57-64.

Tuttle D.M., Baker E.W. 1964 — The spider mites of Arizona (Acarina: Tetranychidae) — U.S. Dep. Agriculture, Agricultural Research Service, Entomology Research Division, Technical Bulletin, 158: 1-41.

Tuttle D.M., Baker E.W., Abbatiello M.J. 1976 — Spider mites of Mexico (Acarina: Tetranychidae) — Internat. J. Acarol., 2(2): 1-102. doi:10.1080/016795760883760

Ugarov A.A., Nikolaev V.V. 1937 — Systematic study of spider mites from Central Asia — Tr. Sredne-Aziat. Stn. Zashch. Rast., 2: 26-64.

Wainstein B.A. 1950 — Tetanychid mites of Kazakhstan (with revision of the family) — Kazakh. Akad. Sel’sk. Nauk. Nauch.-Issled. Inst. Zash. Rast. Trudy, 5: 1-276. (In Russian).

Wang H.-F. 1981 — Schizotetranychus from China with a new species (Acarina: Tetranychidae) — Acta Zootaxonomica Sinica, 6(3): 262-266.

Wang D. 1994 — Schizotetranychus luschanensis, a new pest on camphor trees from east China (Acarina: Tetranychidae) — J. of Shanghai Agricultural College, 12(3): 215-217.

Wang H.-F., Cui Y.-Q. 1991 — Three new species of Tetranychidae from the Hengdun Mountains, China (Acarina: Tetranychidae) — Acta Zootaxonomica Sinica, 16(3): 304-312.

Wang H.-F., Cui Y.-Q. 1992 — Acari: Tetranychidae — Insects of the Hengduan Mountains Region, 2: 1431-1440.

Wang H.-F., Zhang X.-M. 1985 — A preliminary survey of Tetanychid mites in Fujian with description of a new species (Acariformes: Tetranychoida) — Wuyi Science Journal, 5: 89-93.

Yusof O., Zhang Z.-Q. 2003 — Tetranychidae (Acari: Prostigmata) of Malay Peninsula; checklist, key to genera and species and description of three new species — Systematic Appl. Acarol., 8: 149-173.

Zacher F. 1913 — Untersuchungen über Spinnmilben — Mitt. Kaiserlichen Biol. Anstalt für Land- und Forstwirtschaft, 14: 37-41.

Zaher M.A., Gomaa E.A., El-Enany M.A. 1982 — Spider mites of Egypt (Acari: Tetranychidae) — Internat. J Acarol., 8(2): 91-114. doi:10.1080/01679576088683284

Zhang Z.-Q., Martin N.A. 2001 — A review of Schizotetranychus-like mites (Acarina: Tetranychidae) from New Zealand — J. Royal Soc. New Zealand, 31(2): 307-325. doi:10.1080/03014223.2001.9517656

Zhang Z.-Q., Zhang Y., J. Lin J. 2000 — Mites of Schizotetranychus (Acarina: Tetranychidae) from moso bamboo in Fujian, China — Systematic Appl. Acarol. Special Publication, 4: 19-35.

COPYRIGHT

Flechtmann C. H. W. — Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.