On partition polynomials and partition functions

Mouloud Goubi

Abstract. In this paper we revisit the work of E.T. Bell concerning partition polynomials in order to introduce the reciprocal partition polynomials. We give their explicit formulas and apply the result to compute closed formulae for some well-known partition functions.

1. Introduction

Many known and new arithmetical functions are included as special cases of partition polynomials. In this work we consider partition polynomials $P_n(z)$ introduced and studied by E. T. Bell in the work [2]. We introduce and study the reciprocal polynomials $W_n(z)$ which are a generalization of partition function $p(n)$ and restricted partition functions $W(n,d^s)$. Formal calculus allow us to compute $W_n(z)$ and deduce explicit formula for $W(n,d^s)$ and $p(n)$. We end the work by the generalized partition polynomials $WP_n(z)$ including $P_n(n)$ and $W_n(z)$. The result conducts to explicit formula of a large family of partition functions.

2. Partition polynomials and properties

We reproduce here the family of polynomials constructed by E.T. Bell in the work [2]. Let $n > 0$ be an integer and C_j denote a set of distinct integers > 0. C_j may contain any finite or infinite number of elements. The polynomial $\psi^{(j)}_n(z_j)$ for a given z_j and C_j is defined by

$$\psi^{(j)}_n(z_j) = \sum_{d \in C_j \atop d|n} dz_j^{n/d}.$$

We consider now $j = 1, 2, \cdots, s$ and a_j are integers not all zero. Let $z = (z_1, \cdots, z_s)$, the polynomial $\Psi_n(z)$ is defined by

$$\Psi_n (z) = -\sum_{j=1}^{s} a_j \psi^{(j)}_n(z_j).$$

2010 Mathematics Subject Classification. 05A17, 11P81.
Key words and phrases. Partition polynomial; partition; number of partitions.
The partition polynomial $P_n(z, C, a) = P_n(z)$ of rank n, argument z, set $C = \{C_1, C_2, \cdots, C_s\}$ and index $a = (a_1, a_2, \cdots, a_s)$ is given by

$$
(2.3) \quad P_n(z) = \sum_{\pi(n)} \prod_{j=1}^{n} \left[\frac{1}{k_j!} \left(\frac{\Psi_j(z)}{g} \right)^{k_j} \right],
$$

where $\pi(n) = \{(k_1, \cdots, k_n) \in \mathbb{N} \setminus k_1 + 2k_2 + \cdots + nk_n = n\}$. Some recursive formulæ for $P_n(z)$ are

$$
(2.4) \quad P_n(z, C, a + b) = \sum_{j=0}^{n} P_j(z, C, a) P_{n-j}(z, C, b),
$$

$$
(2.5) \quad P_n(z, A + B, a + b) = \sum_{j=0}^{n} P_j(z, A, a) P_{n-j}(z, B, b).
$$

We say that $f(t)$ is a generating function for the sequence $(c_n)_{n \in \mathbb{N}}$ of numbers or polynomials if $f(t)$ is written as a power series, then

$$
(2.6) \quad f(t) = \sum_{n \geq 0} c_n t^n.
$$

We do not have to concern ourselves with questions of convergence of the series (2.6), since we are interested in the coefficients c_n. We consider such series as formal power series in t; for more information about this theory we refer to account given by Ivan Niven [14]. In the same sense the generating function of polynomials $P_n(z)$ is

$$
(2.7) \quad f(t) = f(t, z, C, a) = \prod_{j=1}^{s} (1 - z_j t^{n_j})^{a_j} \prod_{k=2}^{n_2} (1 - z_2 t^{n_2})^{a_2} \cdots \prod_{s} (1 - z_s t^{n_s})^{a_s},
$$

where \prod_j denotes a product with respect to all n_j such that $n_j \in S_j$. E.T. Bell gave the croquet of the proof by considering $f(t) = \exp \log f(t)$ and indicates to use Maclaurin’s theorem to get corresponding series expansion. Here we revisit the proof by using Fià di Bruno formula (see [6]). If $h(t)$ and $g(t)$ are functions for which all the necessary derivatives are defined, then

$$
(2.8) \quad (h \circ g)^{(n)}(t) = \sum_{k_1 + \cdots + k_n = n} \frac{n!}{k_1! \cdots k_n!} h^{(k)}(g(t)) \prod_{i=1}^{n} \left(\frac{g^{(i)}(t)}{i!} \right)^{k_i},
$$

where $f^{(n)}(t) = \frac{d^n f}{dt^n}$. A detailed proof is given by Steven Roman [16] by using the umbral calculus. Then the coefficients $[t^n]h \circ g(t)$ of the series expansion of $h \circ g(t)$ take the form $[t^0]h \circ g(t) = h(g(0))$ and for $n \geq 1$;

$$
(2.9) \quad [t^n]h \circ g(t) = \sum_{k_1 + 2k_2 + \cdots + nk_n = n} \frac{h^{(k)}(g(0))}{k_1! \cdots k_n!} \prod_{i=1}^{n} \left(\frac{g^{(i)}(0)}{i!} \right)^{k_i}.
$$
We know that
\[f(t) = \exp \left(\sum_{j=1}^{s} \sum_{n_j \in S_j} a_j \log (1 - z_j t^{n_j}) \right), \]
but we have \(\log (1 - t) = -\sum_{n \geq 1} t^{n} \). Then
\[f(t) = \exp \left(-\sum_{k \geq 1} \frac{1}{k} \sum_{j=1}^{s} \sum_{n_j \in S_j} a_j z_j^{k n_j} \right). \]
For computing the formal power series of \(f \) let
\[g(t) = -\sum_{k \geq 1} \frac{1}{k} \sum_{j=1}^{s} \sum_{n_j \in S_j} a_j z_j^{k n_j}, \]
then \(f(t) = e^{g(t)} \). Furthermore for \(n \geq 1 \) we have
\[[t^{n}] f(t) = \sum_{k=1}^{n} \frac{n!}{k! \cdots n!} \prod_{i=1}^{n} \left(-\sum_{j=1}^{s} \sum_{n_j \in S_j} a_j z_j^{i/n_j} \right)^{k_i}. \]
Since
\[\sum_{j=1}^{s} \sum_{n_j \in S_j} a_j z_j^{i/n_j} = \sum_{j=1}^{s} a_j \Psi_i(z_j) = \Psi_i(z), \]
then
\[(2.10) \quad P_n(z) = \sum_{k=1}^{n} \sum_{k_1 + \cdots + k_n = k} \prod_{j=1}^{n} \left[\frac{1}{k_j} \left(\frac{\Psi_j(z)}{j} \right)^{k_j} \right], \]
identical to the expression (2.3) below.

3. Explicit formula of reciprocal partition polynomials

Let us introducing the family \(W_n(z) = W_n(z, C, a) \) of partition polynomials, where \(W_n(z) \) is generated by the function \(1/f(t) \). The Cauchy product of generating functions of \(P_n(z) \) and \(W_n(z) \) equal 1. Hence \(W_0(z) = 1 \) and others are obtained from the recursive formula
\[(3.1) \quad W_n(z) = -\sum_{k=0}^{n-1} W_k(z) P_{n-k}(z). \]
For the prove we refer to [8]. From the definition of \(W_n(z) \), we can write \(W_n(z) = P_n(z, C, -a) \) with \(-a = (-a_1, \cdots, -a_s) \). According to the relation \(1/f(t) = \exp(-\log f(t)) \), the following theorem is immediate.
\textbf{Theorem 3.1.}

\begin{equation}
W_n(z) = \sum_{r(n)} (-1)^{\Sigma k_j} \prod_{j=1}^{n} \left[\frac{1}{k_j!} \left(\Psi_j(z) \right)^{k_j} \right].
\end{equation}

We can prove the identity (3.2) with another method; which is based on exponential partial Bell polynomials. To learn more about this technique we refer to recent works [7, 9, 10].

\section{Expression of restricted partition function $W(n,d^s)$.}

Special case, namely, restricted partition function $W(n,d^s) = W(n, \{d_1, d_2, \ldots, d_s\})$ is completely studied, but the given formulas still so much big. $W(n,d^s)$ is a number of partitions of n into positive integers d_1, d_2, \ldots, d_s each not greater than s. The corresponding generating function has the form

\begin{equation}
\prod_{i=1}^{s} \frac{1}{1 - x^{d_i}} = \sum_{n \geq 0} W(n,d^s) x^n.
\end{equation}

$W(n,d^s)$ satisfies the basic recursive relation

\begin{equation}
W(n,d^s) - W(n-d_s,d^s) = W(n,d^{s-1}).
\end{equation}

Sylvester ([20, 21]) showed that the restricted partition function may be presented as a sum of Sylvester waves

\begin{equation}
W(n,d^s) = \sum_j W_j(n,d^s),
\end{equation}

where the sum \sum_j is over all distinct factors of the elements in the set d^s. B.Y. Rubinstein and L.G. Fel (see [17]) proved that

\begin{equation}
W_j(n,d^s) = \frac{1}{(\omega_j - 1)! \pi_{\omega_j}} \sum_{\rho_j} \rho_j^{-n} \prod_{i=1}^{\omega_j} \left(1 - \rho_j^{d_i} \right) \times
\end{equation}

\begin{equation}
\sum_{k=0}^{\omega_j-1} B_k^{(w_j)} (n + n_{w_j} | d^{w_j}) H_{w_j-1-k}^{(s-w_j)} (n_{w_j} - n_{w_j}, \rho_j | d^{s-w_j}),
\end{equation}

where

\begin{equation}
\frac{e^{st} \prod_{i=1}^{m} (1 - \rho_i^{d_i})}{\prod_{i=1}^{m} e^{dt} - \rho_i^{d_i}} = \sum_{n \geq 0} H_n^{(m)} (\rho | d_n) \frac{t^n}{n!}, \rho_i^{d_i} \neq 1.
\end{equation}

and

\begin{equation}
\frac{e^{st} \prod_{i=1}^{m} d_i}{\prod_{i=1}^{m} (e^{dt} - 1)} = \sum_{n \geq 0} B_n^{(m)} (s | d_n) \frac{t^n}{n!}.
\end{equation}
$W(n, d^s)$ corresponds to $W_n(z)$ in the case $z = a = 1 = (1, 1, ..., 1)$ and $C_i = \{d_i\}$ for all $i = (1, 2, \cdots, s)$. According to these conditions we have for all $j = 1, \cdots, s$:

$$\Psi_n(1) = - \sum_{j < k \leq s} d_j.$$

We define the restricted divisor function to S; $d_S(j) = \sum_{d | j} d_i$, then a simple formula of $W(n, d^s)$ is given by the following theorem.

Theorem 3.2.

(3.7) $$W(n, d^s) = \sum_{\pi(n)} \prod_{j=1}^{n} \left[\frac{1}{k_j!} \left(\frac{d_S(j)}{j} \right)^{k_j} \right].$$

3.2. Generating functions of partitions.

Let a set $S \subset \mathbb{N}$ and $p(n|S)$ the number of partitions of n into elements of S. Then the generating function of $p(n|S)$ is

(3.8) $$\prod_{k \in S} \frac{1}{1 - t^k} = \sum_{n \geq 0} p(n|S)t^n.$$

If $p_m(n|S)$ is the number of partitions with exactly m-part in S, then the generating function is

(3.9) $$\prod_{k \in S} \frac{1}{1 - xt^k} = \sum_{m,n \geq 0} p_m(n|S)x^mt^n.$$

In fact we have

$$\prod_{k \in S} \frac{1}{1 - t^k} = \prod_{k \in S} \sum_{m, n \geq 0} t^{km} = \sum_{m \geq 0} t^{\sum_{k \in S} mk}.$$

Then

$$[n! \prod_{k \in S} 1 - t^k] = \sum_{m \geq 0} 1.$$

For the second, we have

$$\prod_{k \in S} \frac{1}{1 - xt^k} = \prod_{k \in S} \sum_{m \geq 0} x^m t^{mk} = \sum_{m \geq 0} x^{\sum_{k \in S} mk} t^{\sum_{k \in S} km_k}.$$

Then

$$[x^m t^n] \prod_{k \in S} \frac{1}{1 - xt^k} = \sum_{\sum_{k \in S} mk = m, \sum_{k \in S} km_k = n} 1.$$

When $S = \mathbb{N}$, the corresponding generating functions may be displayed, respectively, as

(3.10) $$\prod_{k=1}^{\infty} \frac{1}{1 - t^k} = \sum_{n \geq 0} p(n)t^n.$$
The elementary aspects of the theory of partitions are given in detail in [11, Chap. 19]. A partition of a positive integer \(n \) may be thought as an unordered representation of \(n \) as a sum of other positive integers. Thus \(3 + 2, 2 + 3 \) represent the same partition of 5. Euler gave the first recurrent formula (see [5]) of the arithmetical function \(p(n) \):

\[
p(n) = \sum_{k=1}^{n} (-1)^{k+1} \left[p \left(n - \frac{1}{2}k(3k - 1) \right) + p \left(n - \frac{1}{2}(3k + 1) \right) \right].
\]

Andrews after proving this formula (see [1]), he says No one has ever found a more efficient algorithm for computing \(p(n) \). It computes a full table of values of \(p(n) \) for \(n > 5 \), in time \(O(n^{3/2}) \). In 1917 Hardy and Ramanujan (see [12]) applied on (3.10) the theory of functions of complex variables and developed a method which yields an asymptotic formula for \(p(n) \):

\[
p(n) = \frac{1}{2\pi \sqrt{2}} \sum_{k \leq \alpha \sqrt{n}} A_k(n) \frac{d}{dn} \left(\frac{\exp \left(C \sqrt{n-1/24} \right)}{\sqrt{n-1/24}} \right) + O(n^{-1/4}),
\]

with \(\alpha \) as an arbitrary constant, and

\[
A_k(n) = \sum_{\substack{h \mod k \\&\&\&\& h \neq 0}} \omega_{h,k} e^{-2\pi i n/k}, C = \pi \sqrt{2/3}.
\]

Rademacher (see [15]) replaced the asymptotic formula (3.13) by the equality

\[
p(n) = \frac{1}{2\pi \sqrt{2}} \sum_{k \geq 1} A_k(n) \frac{d}{dn} \left(\frac{\exp \left(C \sqrt{n-1/24} \right)}{\sqrt{n-1/24}} \right),
\]

in which the series is absolutely convergent. Recently; Aleksa Srdanov (see [19]) investigated the arithmetical function \(p(n) \). First he defines numbers \(p(n,m) \) the number of all possible partitions of the number \(n \) having exactly \(m \) parts, \((1 \leq m \leq n)\). Then \(p(n) = \sum_{k=1}^{n} p(n,k) \). Finally he computed in different way the expression of numbers \(p(n,k) \); for more details, we refer to Theorems 1, 2, 3 and 4 in the work [19].

For \(S = \mathbb{N} \), we have

\[
d_S(j) = \sigma(j) = \sum_{i|j} i
\]

and the following theorem is immediate
Theorem 3.3. We have \(p(0) = 1 \) and for \(n \geq 1 \);

\[
p(n) = \sum_{\pi(n)} \prod_{j=1}^{n} \left[\frac{1}{k_j} \left(\frac{\sigma(j)}{j} \right)^{k_j} \right].
\]

If there is some difficulties for computing \(\sigma(n) \), we purpose the following formula:

\[
\sigma(n) = \prod_{j=1}^{m} \left[\left\lfloor \frac{b_j}{2} \right\rfloor \sum_{k=0}^{\left\lfloor \frac{b_j}{2} \right\rfloor} (-1)^k \left(\begin{array}{c} b_j - k \\ k \end{array} \right) \left(p_j \right)^k (1 + p_j)^{b_j - 2k} \right],
\]

when we know the decomposition of \(n \) on prime factors; \(n = p_1^{b_1} \cdot \ldots \cdot p_m^{b_m} \).

4. Generalized partition polynomials

Let \(w = (w_1, \ldots, w_l) \in \mathbb{C}^l \), \(b = (b_1, \ldots, b_l) \in \mathbb{N}^l \) and \(S = (S_1, \ldots, S_l) \); where \(S_j \) contains finite or infinite number of elements. We introduce the generalized partition polynomials \(WP_n(w, z) \) including polynomials \(P_n(z) \) and \(W_n(z) \) by the generating function:

\[
\sum_{n=0}^{\infty} WP_n(w, z) t^n = f(t, w, S, b).
\]

The following corollary is immediate

Corollary 4.1.

\[
WP_n(w, z) = \sum_{m=0}^{n} P_m(z) W_{n-m}(w).
\]

4.1. Application to some partition functions. In the literature finitely many partition functions are studied. We focus our interest in partition functions \(a(n) \), \(\bar{a}(n) \), \(\psi^\star(n) \) and \(\varphi^\star(n) \). The arithmetical function \(a(n) \) counts the number of partitions of weight \(n \) such that the even parts can appear in two colors (see [3, 18]). So, for example, \(a(3) = 4 \) where the colored partitions in question are

\[
3, 2_1 + 1, 2_2 + 1 \quad \text{and} \quad 1 + 1 + 1.
\]

Its generating function takes the form

\[
\prod_{n=1}^{\infty} (1 - t^n) \prod_{n=1}^{\infty} (1 - t^{2n}) = \sum_{n\geq 0} a(n) t^n.
\]

Chan (see [3]) proved that

\[
3 \prod_{n=1}^{\infty} (1 - t^{3n}) \prod_{n=1}^{\infty} (1 - t^{6n}) = \sum_{n\geq 0} a(3n + 2) t^n.
\]
Byungchan Kim (see [13]) introduced the overcubic partition function \(\bar{a}(n) \), which counts all of the overlined versions of the cubic partitions counted by \(a(n) \). Its generating function takes the form

\[
\prod_{n=1}^\infty \frac{1 - t^{4n}}{(1 - t^n)^2} = \sum_{n \geq 0} \bar{a}(n)t^n.
\]

Kim provided that

\[
6 \prod_{n=1}^\infty \frac{1 - t^{3n}}{(1 - t^n)^3} = \sum_{n \geq 0} \bar{a}(3n + 2)t^n.
\]

The Ramanujan’s \(\psi \) and \(\phi \) functions are defined as

\[
\psi(t) := \sum_{n \geq 0} t^{(n+1)/2}
\]

and

\[
\phi(t) = 1 + 2 \sum_{n \geq 1} t^{n^2}.
\]

These functions admit the following reformulations

\[
\psi(t) = \prod_{n=1}^\infty \frac{1 - t^{2n}}{(1 - t^n)^2}
\]

and

\[
\phi(t) = \prod_{n=1}^\infty \frac{1 - t^{2n}}{(1 - t^n)^2} \prod_{n=1}^\infty \frac{1 - t^{4n}}{(1 - t^2n)^2}.
\]

\(\psi^*(n) \) and \(\phi^*(n) \) the partition functions generated respectively by \(\psi \) and \(\phi \). The generating functions of these partition functions are special case of the function

\[
F(t) = \prod_{n=1}^\infty \frac{(1 - t^{r_1n})^{\alpha_1} (1 - t^{r_2n})^{\alpha_2}}{(1 - t^{s_1n})^{\beta_1} (1 - t^{s_2n})^{\beta_2}}
\]

Let the function \(I_i \) such that \(I_i(j) = 1 \) if \(i \mid j \) and zero otherwise. We consider \(WP(n) \) the partition function generated by the function \(F(t) \). According to Theorem we conclude that

\[
WP(n) = \sum \prod_{\pi(n)} \sum_{j=1}^n \left[\frac{1}{k_j^j} \left(\frac{b_1I_{s_1}(j)\sigma(j/s_1) + b_2I_{s_2}(j)\sigma(j/s_2)}{j} \right) \right]
\]

\[
+ \sum m \sum n \prod_{j=1}^m \left[\frac{1}{k_j^j} \left(\frac{-a_1I_{r_1}(j)\sigma(j/r_1) - a_2I_{r_2}(j)\sigma(j/r_2)}{j} \right) \right]
\]

\[
\times \sum \prod_{\pi(n-m)} \left[\frac{1}{k_j^j} \left(\frac{b_1I_{s_1}(j)\sigma(j/s_1) + b_2I_{s_2}(j)\sigma(j/s_2)}{j} \right) \right]
\]
From this identity follow the explicit formula for considered partition functions:

\[(4.13)\quad a(n) = \sum_{\pi(n)} (-1)^{\sum k_j} \prod_{j=1}^{n} \left[\frac{1}{k_j!} \left(\frac{\sigma(j) + I_2(j)\sigma(j/2)}{j} \right)^{k_j} \right],\]

\[(4.14)\quad a(3n+2) = 3 \sum_{\pi(n)} 4^{\sum k_j} \prod_{j=1}^{n} \left[\frac{1}{k_j!} \left(\frac{\sigma(j) + I_2(j)\sigma(j/2)}{j} \right)^{k_j} \right] + 3 \sum_{m=1}^{n} \sum_{\pi(m)} (-3)^{\sum k_j} \prod_{j=1}^{m} \left[\frac{1}{k_j!} \left(\frac{I_3(j)\sigma(j/3) + I_6(j)\sigma(j/6)}{j} \right)^{k_j} \right] \times \sum_{\pi(n-m)} 4^k \prod_{j=1}^{n-m} \left[\frac{1}{k_j!} \left(\frac{\sigma(j) + I_2(j)\sigma(j/2)}{j} \right)^{k_j} \right],\]

\[(4.15)\quad \bar{a}(n) = \sum_{\pi(n)} \prod_{j=1}^{n} \left[\frac{1}{k_j!} \left(\frac{2\sigma(j) + I_2(j)\sigma(j/2)}{j} \right)^{k_j} \right] + \sum_{m=1}^{n} \sum_{\pi(m)} (-1)^{\sum k_j} \prod_{j=1}^{m} \left[\frac{1}{k_j!} \left(\frac{I_4(j)\sigma(j/4)}{j} \right)^{k_j} \right] \times \sum_{\pi(n-m)} \prod_{j=1}^{n-m} \left[\frac{1}{k_j!} \left(\frac{2\sigma(j) + I_2(j)\sigma(j/2)}{j} \right)^{k_j} \right],\]

\[(4.16)\quad \bar{a}(3n+2) = 6 \sum_{\pi(n)} \prod_{j=1}^{n} \left[\frac{1}{k_j!} \left(\frac{8\sigma(j) + 3I_2(j)\sigma(j/2)}{j} \right)^{k_j} \right] + \sum_{m=1}^{n} \sum_{\pi(m)} \prod_{j=1}^{m} \left[\frac{1}{k_j!} \left(\frac{-6I_3(j)\sigma(j/3) - 3I_4(j)\sigma(j/4)}{j} \right)^{k_j} \right] \times \sum_{\pi(n-m)} \prod_{j=1}^{n-m} \left[\frac{1}{k_j!} \left(\frac{8\sigma(j) + 3I_2(j)\sigma(j/2)}{j} \right)^{k_j} \right],\]

\[(4.17)\quad \psi^*(n) = \sum_{\pi(n)} \prod_{j=1}^{n} \left[\frac{1}{k_j!} \left(\frac{\sigma(j)}{j} \right)^{k_j} \right] + \sum_{m=1}^{n} \sum_{\pi(m)} (-2)^{\sum k_j} \prod_{j=1}^{m} \left[\frac{1}{k_j!} \left(\frac{I_4(j)\sigma(j/2)}{j} \right)^{k_j} \right] \times \sum_{\pi(n-m)} \prod_{j=1}^{n-m} \left[\frac{1}{k_j!} \left(\frac{\sigma(j)}{j} \right)^{k_j} \right],\]
\[
\varphi^\ast (n) = \sum_{n(n)} 2 \sum_{k_j} \prod_{j=1}^{n} \left(\frac{\sigma(j) + I_4(j)\sigma(j/4)}{j} \right)^{k_j} \\
+ \sum_{m=1}^{n} \sum_{\pi(n)} (-5)^{\sum_{j=1}^{m} \prod_{j=1}^{n-m} \left(\frac{\sigma(j) + I_4(j)\sigma(j/4)}{j} \right)^{k_j}} \times \sum_{\pi(n-m)} 2 \sum_{k_j} \prod_{j=1}^{n-m} \left(\frac{\sigma(j) + I_4(j)\sigma(j/4)}{j} \right)^{k_j}.
\]

(4.19)

References

[1] G.E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, vol. 2, Addison Wesley, (1976).
[2] E. T. Bell, Partitions polynomials, Annals of Mathematics, Second Series, 29(1/4) (1927-1928), 38-46.
[3] H. C. Chan, Ramanujan’s cubic continued fraction and an analog of his most beautiful identity, Int. J. Number Theory 6(3) (2010), 673-680.
[4] L. Comtet, Advanced Combinatorics, Reidel, Boston, 1974.
[5] L. Euler, Evolutio producti infiniti \((1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)(1-x^6)\) etc., Opera Omnia, 1(3), (began in 1911), 472-479.
[6] F. Faà di Bruno, Sullo Sviluppo delle funzioni, Annali di Scienze e Matematiche fisiche, 6 (1855), 479-480.
[7] M. Goubi, A new class of generalized polynomials associated with Hermite-Bernoulli polynomials, J. Appl. Math. and Informatics, 38 (3-4) (2020), 211-220.
[8] M. Goubi, Successive derivatives of Fibonacci type polynomials of higher order in two variables, Filomat, 32(4) (2018), 5149-5159.
[9] M. Goubi, Cesro sequence and exponential partial Bell polynomials International Mathematical Forum 15(4), (2020), 193-206.
[10] M. Goubi, Note on the Hermite-Based Poly-Genocchi Polynomials with a q-parameter, Turkish journal of Analysis and Number Theory (to appear).
[11] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford University Press, Oxford, 1960.
[12] G.H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, (1918) 75-115.
[13] B. Kim, The overcubic partition function mod 3, Ramanujan Rediscovered, Ramanujan Math. Soc. Lect. Notes Ser. 14 (2010), 157–163.
[14] I. Niven, Formal Power Series, Amer. Math. Monthly, 76 (1969) 871-889.
[15] H.A. Rademacher, On the partition function \(p(n)\), Proc. London Math. Soc. 2(43) (1938), 241-254.
[16] S. Roman, The Formula of FAA Di Bruno, Amer. Math. Monthly, 87(10) (1980), 805-809
[17] B.Y. Rubinstein and I.F. Fel, Restricted Partition Function as Bernoulli and Euler Polynomials of Higher Order, Ramanujan Journal.
[18] J. A. Sellers, Elementary proofs of congruences for the cubic and overcubic partition functions, Australasian Journal of Combinatorics 60(2) (2014), 191–197.
[19] A. Sradanov, Universal formulas for the number of partitions Proc. Indian Acad. Sci. (Math. Sci.) (2018) https://doi.org/10.1007/s12044-018-0418-z.
[20] J. J. Sylvester, On the Partition of Numbers, Quarterly Journal of Mathematics 1 (1857), 141–152.
[21] J. J. Sylvester, On Subinvariants, i.e. Semi-invariants to Binary Quantics of an Unlimited Order. With an Excurssus on Rational Fractions and Partitions, American Journal of Mathematics 5 (1882), 79–136.
