Quantized Dispersion of Two-Dimensional Magnetoplasmons Detected by Photoconductivity Spectroscopy

S. Holland, Ch. Heyn, D. Heitmann, E. Batke, R. Hey, K. J. Friedland, and C. -M. Hu

Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstraße 11, 20355 Hamburg, Germany

Physikalisches Institut der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Paul-Drude-Institut für Festkörperphysik, Hausvogteiplatz 5-7, D-10117 Berlin, Germany

(Dated: September 9, 2018)

We find that the long-wavelength magnetoplasmon, resistively detected by photoconductivity spectroscopy in high-mobility two-dimensional electron systems, deviates from its well-known semiclassical nature as uncovered in conventional absorption experiments. A clear filling-factor dependent plateau-type dispersion is observed that reveals a so far unknown relation between the magnetoplasmon and the quantum Hall effect.

PACS numbers: 73.43.-f, 73.43.Lp, 73.50.Pz

By combining eq. (1) and (2) it is straightforward to define a renormalized magnetoplasmon frequency Ω_{mp} and find

$$\Omega_{mp} \equiv \frac{\omega_{mp}^2(B) - \omega_c^2}{\omega_c} = \frac{\hbar \cdot q_{TF} \cdot q}{2m^*} \nu,$$

where we define $q_{TF} = m^*e^2/2\pi\varepsilon_0\varepsilon_0^2$ as the effective Thomas-Fermi wave vector depending on $\varepsilon(q)$. The monotonous linear dependence of Ω_{mp} on the filling factor $\nu = hN_s/eB$ emphasizes the semiclassical nature of the magnetoplasmon, because Eq. (2) was obtained by analyzing the self-consistent response of the 2DES to a longitudinal electric field in the semiclassical limit, in which the quantum oscillatory part of the polarizability tensor was disregarded. The main result we will present in this paper is an astonishing deviation of Ω_{mp} from Eq. (3) for resistively detected magnetoplasmons in high-mobility 2DESs, where we find a quantized dispersion with plateaus forming around even filling factors. It reveals a previously unknown relation between the magnetoplasmon and the integer quantum Hall effect (QHE) which is intriguing for investigating the nature of both.

To explore a wide range of filling factors we choose a high mobility 2DES with high density confined in a GaAs quantum well, cf. the sample M1218 in Table 1, and we compare it with 2DESs with different mobilities either formed at the interface (HH1295) or in a quantum well (M1266). Extremely long 2DES Hall bars with the length L of about 0.1 m and the channel width W of about 40 μm were defined by chemical wet etching. Ohmic contacts were made by depositing AuGe alloy followed by annealing. A gold grating coupler with a period of $a = 1 $ μm was fabricated on top of the meandering Hall bar perpendicular to the current path, which allows us to couple the 2D plasmon at the wave vectors $q = 2\pi \cdot n/a (n = 1, 2, ...) $ with THz radiation. In this frequency regime, the excitations measured by far-infrared photoconductivity (FIR-PC) and absorption spectroscopy can be directly compared. All data presented in this paper were measured at 1.8 K in the Faraday geometry. Details of our experimental set up have been published elsewhere.
TABLE I: Parameters of the samples. The two \(q_{TF} \) values for sample HH1295 are obtained for the \(n=1 \) \((n=2)\) plasmon mode, respectively.

Sample	\(\mu \)	\(N_s \)	\(m^* \)	\(q_{TF} \)
M1218	1.3	5.58	0.0726	1.83
HH1295	0.5	1.93	0.0695	1.55 (1.86)
M1266	0.3	7.18	0.0730	1.94

In Fig. 1 we plot and compare FIR-PC (solid curves) and absorption spectra (dotted curves) measured on sample M1218 around \(\nu = 4 \) and 6. The dominant resonance at the lower energy is the CR, while the weak resonance at the higher energy side is the magnetoplasmon at \(q = 2\pi/a = 6.28 \times 10^4 \text{ cm}^{-1} \). In contrast to the absorption spectroscopy which probes the high-frequency conductivity of the 2DES so that the resonant strength is determined by the transition matrix element and the electron density, the sensitivity for FIR-PC depends strongly on the filling factor \[q_{TF} \]. For better comparison of the excitation energy, which is the focus of this paper, we normalize the CR and magnetoplasmon in the FIR-PC spectra in Fig. 1 so that they are displayed at the same level of that in the absorption spectra. At the even integer filling factors \(\nu = 4 \) and 6, no deviation of the magnetoplasmon energy is found. By increasing (decreasing) the \(B \) field, the resistively detected magnetoplasmon shifts to higher (lower) energy compared to that in the absorption spectra. No such changes in the CR energy are found, except that the CR line shape shows slight deviations in the higher-energy side.

In Fig. 2(a) and (b) we plot the \(B \)-field dispersions of the charge excitations determined from the absorption and FIR-PC spectra, respectively. In both cases the CR can be well fitted (dashed line) using the linear relation \(\omega = eB/m^* \) with \(m^* = 0.0726 m_e \). Knowing the effective mass, we fit (solid curve) in Fig. 2(a) the dispersion of magnetoplasmon measured by absorption spectroscopy using the eqs. (1) and (2), and determine \(q_{TF} = 1.83 \times 10^6 \text{ cm}^{-1} \). Similar fitting procedures are performed for other samples and the obtained values for \(m^* \) and \(q_{TF} \) are summarized in the Table 1. Eqs. (1) and (2) capture well the general feature of the magnetoplasmon dispersion except for the nonlocal effect \[\xi \], which is responsible for the anticrossing of the magnetoplasmon with the harmonics of CR (the Bernstein modes) and an increase of the magnetoplasmon energy at the low \(B \) fields. Using the hydrodynamical model \[\xi \] taking into account the nonlocal effect and with the same parameters of \(m^* \) and \(q_{TF} \), the calculated magnetoplasmon dispersions (dotted curves) agree well with that measured by absorption spectroscopy in the whole \(B \)-field range, in accordance to previous studies \[\xi \]. In contrast, compared to the theoretical curves and the absorption experiment, the magnetoplasmon dispersion measured by FIR-PC spectroscopy shows obvious deviations in Fig. 2(b). Plotted in this scale that covers the entire CR frequency range, the deviation looks small. In fact, it is well beyond the experimental accuracy. However, before we demonstrate it more clearly in Fig. 3 by plotting the renormalized magnetoplasmon frequency \(\Omega_{mp} \) in which the CR frequency is subtracted, let us first check how important the problem is for deviation of the magnetoplasmon energy by studying two questions: why does the semiclassical magnetoplasmon dispersion describe the absorption data so well? And what differs in the FIR-PC experiment?

The answer to the first question lies in the long wavelength of the magnetoplasmons we investigate, for which \(ql << 1 \) at large \(B \) fields. Here \(l = \sqrt{\hbar/eB} \) is the magnetic length. Under this condition influences of quantum \[\xi \] and correlation effects \[\xi \] on the magnetoplasmon are small. Therefore, deviations of the magnetoplasmon dispersion from the semiclassical prediction as shown in the Fig. 2(b) are unexpected and bring us to the second question.

In the absorption spectroscopy, one detects the elementary excitations by measuring the transmitted radiation, assuming that absorption of photons does not change the properties of the electronic system. On the
FIG. 2: (color online). B-field dispersion of the CR and magnetoplasmons measured in sample M1218 by (a) absorption and (b) FIR-PC spectroscopy. In (a) the CR frequency is fitted by the relation $\omega_c = eB/m^*$ (dashed line), and the magnetoplasmon frequency is fitted either by Eq. (2) (solid curve) or by the hydrodynamical model (dotted curve). Theoretical curves in (b) are identical to that plotted in (a).

FIG. 3: (color online). Filling-factor dependence of the renormalized frequency Ω_{mp} for the resistively-detected magnetoplasmons measured in three different samples. The solid lines are the semiclassical predictions calculated using Eq. (3), which fit exactly the dispersions measured by the absorption experiments.

contrary in the PC experiments, elementary excitations are detected by measuring the photo-induced change of the resistance, which monitors exactly the change of the electronic system caused by absorption of photons. Only if the excited electronic system can reach a steady state characterized by a slightly raised temperature, which is known as the bolometric effect [12], the same elementary excitation will be detected in the PC experiments as by the absorption spectroscopy. The bolometric model breaks down if intense radiation drives the electronic system far beyond equilibrium (as in the microwave PC experiments [1, 2, 9]), or if the energy relaxation is either spatially inhomogeneous as in the QHE regime [13] or is spin-dependent as for the spin-polarized electronic system [14]. All provide us chances for exploring unique natures of elementary excitations unable to be investigated by conventional absorption spectroscopy.

The relation between the QHE and the resistively-detected magnetoplasmon is clearly revealed in Fig. 4 in which we summarize the filling-factor dependence of Ω_{mp} resistively measured on all our samples. For comparison, semiclassical predictions for Ω_{mp} calculated by Eq. (3) using the parameters of m^* and q_{TF} listed in Table 1 are plotted with solid lines. In Fig. 4(a) Ω_{mp} measured on sample M1218 with the highest mobility deviates clearly from the semiclassical prediction. Very interestingly, the data shows plateaus forming around even filling factors of $\nu = 4, 6$ and 8. In Fig. 4(b) we plot Ω_{mp} obtained on the sample HH1295 with a smaller density. The grating coupler of this sample has a higher efficiency which allows us to measure the magnetoplasmon modes at $q = 2\pi \cdot n/a$ with $n = 1$ and 2. Both show plateaus in the dispersion around the even filling factors of $\nu = 2$ and 4. The oscillatory behavior is less obvious in the Fig. 4(c) for the sample M1266 which has the lowest mobility.

The results shown in Fig. 4 are astonishingly reminiscent of the celebrated QHE measured by DC magnetotransport [15], where the Hall conductivity equals to its semiclassical prediction $\sigma_H = (e^2/h) \cdot \nu$ at even filling factors (if the spin degeneracy is not lifted), with plateaus forming around them. Decades after its discovery, consensus for QHE has been established for the coexistence of the compressible and incompressible strips with spatially varying and constant electron density, respectively, which is the consequence of the edge depletion and the
strongly nonlinear screening properties of the 2DES. But confusion or controversy remains existing regarding where the current flows in a Hall bar. Dynamic properties are very helpful for understanding the physics of QHE, however, investigations have so far been focused on the edge magnetoplasmon mode that has the one-dimensional character with energy much smaller than the cyclotron energy. Deviations of the long-wavelength high-energy magnetoplasmon mode exhibiting quantized features in the QHE regime have neither been predicted nor been measured. Here we would follow the most recent theoretical model of Givens and Gerhardts which is improved by Siddiki and Gerhardts (GGSG) to give a tentative explanation of the quantized dispersion observed in Fig. 3.

On the basis of a quasi-local transport model including non-linear screening effects on the conductivity, GGSG study the current and charge distribution in the 2DES in the QHE regime. Their model reproduces both longitudinal and Hall resistances with exactly quantized plateaus for high-mobility 2DESs in the QHE regime, which we interpret as effects of the dynamic response of the incompressible strips. The unique effect provides a new basis for developing a microscopic theory that could bring insight into the dynamic properties of QHE as well as the nature of the resistively-detected charge excitations in the photoconductivity experiments, both are currently of great interest.

This work is supported by the EU 6th-Framework Programme through project BMR-505282-1, the DFG through SFB 508 and BMBF through project 01BM0905. We thank R.R. Gerhardts, W. Hansen and S.A. Mikhailov for helpful discussions and RRG for making ref. [16] available to us before publication.

[1] R.G. Mani, J.H. Smet, K. von Klitzing, V. Narayanamurti, W.B. Johnson, and V. Umansky, Nature 420, 646 (2002); M.A. Zudov, R.R. Du, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 90, 046807 (2003).
[2] I.V. Kukushkin, V.U. Akimov, J.H. Smet, S.A. Mikhailov, K. von Klitzing, I.L. Aleiner, and V.I. Falko, Phys. Rev. Lett. 92, 236803 (2004).
[3] S.A. Mikhailov, cond-mat/0405136.
[4] M.A. Zudov, Phys. Rev. B 69, 041304(R) (2004); R.G. Mani, J.H. Smet, K. von Klitzing, V. Narayanamurti, W.B. Johnson, and V. Umansky, Phys. Rev. Lett. 92, 146801 (2004).
[5] Frank Stern, Phys. Rev. Lett. 18, 546 (1967).
[6] K.W. Chiu and J.J. Quinn, Phys. Rev. B 9, 4724 (1974).
[7] E. Batke, D. Heitmann, J.P. Kotthaus, and K.Ploog, Phys. Rev. Lett. 54, 2367 (1985); E. Batke, D. Heitmann, and C.W. Tu, Phys. Rev. B 34, 6951 (1986); I.V. Kukushkin, J.H. Smet, S.A. Mikhailov, D.V. Kulakovskii, K. von Klitzing, and W. Wegscheider, Phys. Rev. Lett. 90, 156801 (2003), and references therein.
[8] K.-J. Friedland, R. Hey, H. Kostial, R. Klann, and K. Ploog, Phys. Rev. Lett. 77, 4616 (1996).
[9] C.-M. Hu, C. Zehnder, Ch. Heyn, and D. Heitmann, Phys. Rev. B 67, 201302(R) (2003); K. Bittkau, Ch. Menk, Ch. Heyn, D. Heitmann, and C.-M. Hu, Phys. Rev. B, 195303 (2003); C.-M. Hu, MR Proceedings Volume 825E, G4.4 (2004).
[10] A.V. Chaplik and D. Heitmann, J. Phys. C: Solid State Phys. 18, 3357 (1985).
[11] C. Kallin and B.I. Halperin, Phys. Rev. B 30, 5655 (1984); A.H. MacDonald, H.C.A. Oji, and S.M. Girvin, Phys. Rev. Lett. 55, 2208 (1985).
[12] F. Neppl, J.P. Kotthaus, and J.F. Koch, Phys. Rev. B 19, 5240 (1979).
[13] Y. Kawano and S. Komiyama, Phys. Rev. B 68, 085328 (2003).
[14] C. Zehnder, A. Wirthmann, Ch. Heyn, D. Heitmann, and C.-M. Hu, Europhys. Lett., 63, 576 (2003).
[15] T. Chakraborty and P. Pietiläinen, The Quantum Hall Effects: Fractional and Integral (Springer, Berlin, MA,
[16] K. Güven and R.R. Gerhardts, Phys. Rev. B 67, 115327 (2003); A. Siddiki and R.R. Gerhardts, unpublished.

[17] M. Wassermeier, J. Oshinowo, J.P. Kotthaus, A.H. MacDonald, C.T. Foxon, and J.J. Harris, Phys. Rev. B 41, 10287 (1990); I. Grodnensky, D. Heitmann, and K. von Klitzing, Phys. Rev. Lett. 67, 1019 (1991); U. Zülicke, and A.H. MacDonald, Phys. Rev. B 54, 16813 (1996); M. Franco, and L. Brey, Phys. Rev. Lett. 77, 1358 (1996); M.A. Mikhailov, in Edge Excitations of Low-Dimensional Charged Systems, edited by O. Kirichek (Nova Science Publishers, Inc., NY, 2000), chap. 1, pp. 1-47.

[18] R. Merz, F. Keilmann, R.J. Haug, and K. Ploog, Phys. Rev. Lett. 70, 651 (1993); A. Lorke, J.P. Kotthaus, J.H. English, and A.C. Gossard, Phys. Rev. B 53, 1054 (1996); K. Hirakawa, K. Yamanaka, Y. Kawaguchi, M. Endo, M. Saeki, and S. Komiyama, Phys. Rev. B 63, 085320 (2001); B.G.L. Jager, S. Wimmer, A. Lorke, J.P. Kotthaus, W. Wegscheider, and M. Bichler, Phys. Rev. B 63, 045315 (2001).

[19] Via private communications, Mikhailov suggests that a "mixed" photoconductivity response of the 2DEG under simultaneous action of dc and ac electric field may leads to shifts of the resistively-detected resonances due to the influence of the Landau quantization on the dc conductivity in the QHE regime. It is an interesting theoretical task to check whether such a special property of a non-linear photoconductivity response for semiclassical plasmons may result in the quantized plateaus we observed.