Data Article

Dataset for multidimensional assessment to incentivise decentralised energy investments in Sub-Saharan Africa

A. Bendera,b, M. Moner-Gironac,*, W. Beckerc, K. Bódisd, S. Szabóc,e, A.G. Kararachf, L.D. Anadona

a University of Cambridge, Centre for Environment, Energy and Natural Resource Governance, Cambridge, United Kingdom
b Victoria University of Wellington, Geography, Environment and Earth Sciences, New Zealand
c European Commission, Joint Research Centre (JRC), Ispra, Italy
d Institute of Advanced Studies (iASK), Kószeg, Hungary
e European Institute of Innovation and Technology, Budapest, Hungary
f African Development Bank Group, South Africa

\textbf{A R T I C L E I N F O}

Article history:
Received 10 June 2021
Revised 18 June 2021
Accepted 12 July 2021
Available online 14 July 2021

Keywords:
Africa
Photovoltaic
Energy access
Mini-grid
Multidimensional approach
Energy development policy
Energy investments
Spatial analysis
Composite indicator

\textbf{A B S T R A C T}

In this data article, we present datasets from the construction of a composite indicator, the Photovoltaic Decentralised Energy Investment (PV-DEI) index, presented in detail in [1]. This article consists of a comprehensive energy-related data collected in practice from several sources, and from the outputs of the methodology described in [1]. The PV-DEI was designed and developed to measure the multidimensional factors that currently direct decentralised renewable energy investments. The PV-DEI index includes 52 indicators and was constructed because factors stimulating investment cannot be captured by a single indicator, e.g. competitiveness, affordability, or governance [1]. The PV-DEI index was built in alignment with a theoretical framework guided by an extensive review of the literature surrounding investment in decentralised Photovoltaic (PV), which led to the selection of its indicators. The structure of the PV-DEI was evaluated for its soundness using correlational assessments and principal
Specifications Table

Subject	Energy: Renewable Energy, Sustainability and the Environment
Specific subject area	Table
Type of data	Figure
	Spreadsheet
How data were acquired	Queried from Open Data portals, systematically joined and cleaned.
Data format	Compiled based on a comprehensive horizon-scanning of data sources that are processed for a composite indicator
Parameters for data collection	The rationale for collecting the variables was to select indicators related to the economic, energy, environmental, financial and institutional frameworks of Sub-Saharan African countries.
Description of data collection	Data is collected by systematic queries. Compiled and formatted data compilations are utilized for data processing and analyses in the context of the research work.
Data source location	Secondary data in supplementary material
	Primary data sources:
	Joint Research Centre (European Commission), PVGIS
	JRC-European Commission. PVGIS 2020.
	http://re.jrc.ec.europa.eu/pvgis (accessed February 2, 2020)
	[2]
	Huld T, Moner-Girona M, Kriston A. Geospatial Analysis of Photovoltaic Mini-Grid System Performance. Energies 2017;10:218.
	https://doi.org/10.3390/en10020218.
	University of Denmark (DTU), The World Bank Group. Global Wind Atlas 2017. https://globalwindatlas.info (accessed July 20, 2019) [3]
	Renewable Fuel Association. Fuel Ethanol Trade Measurements and Conversions 2015 [4]
	Szabo et al. https://doi.org/10.1088/1748-9326/6/3/034002 [5], NASA Earth Observatory. Earth at Night 2019.
	https://earthobservatory.nasa.gov/ (accessed May 7, 2019) [6],
	European Commission Joint Research Centre (JRC). Global Human Settlement Layer (2019). Ghs_pop2019 @ghslJrcEcEuropaEu n.d.
	https://ghsl.jrc.ec.europa.eu/ghs_pop2019.php (accessed July 7, 2019) [7]
	The World Bank Group. World Bank Indicators 2019. https://data.worldbank.org/ (accessed June 6, 2019) [8]
	World Economic Forum. The Global Human Capital Report 2017. Geneva, Switzerland: 2017 [9]
	The World Bank Group, The International Finance Corporation (IFC). Lighting Africa 2019. https://www.lightingafrica.org/ (accessed June 6, 2019) [10]
	The World Health Organization (WHO). Global Ambient Air Quality Database 2018. https://www.who.int/airpollution/data/en/ (accessed June 6, 2019) [11]

(continued on next page)
Value of the Data

- The data is suitable for constructing a composite indicator for directing/informing decentralised renewable energy investments in Sub-Saharan Africa.
- The datasets integrate technological, environmental, social, political and financial indicators for decision support.
- The raw data is made publicly available, and is a unique resource which allows stakeholders to examine the specific situations of countries, and make comparisons in detail.
- Different weights can be applied to the raw data to enable stakeholders to change the importance they place on certain indicators depending on their own specifications (such as from a NGO, private sector, international institutions or other perspective).

1. Data Description

This article contains the data compilations for design and development of the PV-Decentralised Energy Investment (PV-DEI) Index for Sub-Sahara African countries. The PV-DEI Index is built in 4 main dimensions (Environmental, Social, Political and Financial), 18 pillars,
Fig. 1. Break down of the PV-DEI index for Congo (last ranking) under a private sector approach: 4 main dimensions (Environmental, Social, Political and Financial), 18 pillars, 43 sub-pillars and 52 indicators. The size of the coloured squares represents the overall weights of the dimension and the size of each square the weights of the individual indicator.

43 sub-pillars and 52 indicators. In Fig. 1 the size of the coloured square represents the overall weight of a dimension, and the size of each square represents the weight of an individual indicator. The description of the data sets are provided in the data tables for the main indicators of each dimension in this article, while raw data are provided in table in the Supplementary Information. The original research article [1] describes the analysis and methodology used to create the PV-DEI Index.

Tables SI.1-SI.4 Show the methodology employed to gather the raw data used to compose the PV-DEI Index for the four dimensions: Environmental (Tables SI.1), Social (Tables SI.2), Political (Tables SI.3), and Financial (Tables SI.4).

Table SI.5 shows the weights used for the private sector approach.

Table SI.6 contains the original data used as inputs in the COIN tool [24] without data treatment.

Table SI.7 contains the data after winzorization.

Table SI.8 Contains the results of COIN tool after calculating the correlations between indicators (Pearson coefficients r) taking into account the direction of effects.

Figure SI.9 and SI.10 contains the datasets after MICE and FOREST imputation respectively.

Table 1 summarises the classification, source, year and description of the 52 indicators that build the PV-DEI Index.

Table 2 gathers for each country: the market size for decentralised energy options (potential new costumers, total investment costs needs, average levelised cost of electricity and total avoided CO2 emissions.
Table 1
Composite Indicators for the PV-DEI Index.

Dimension	Pillar	Indicator Name	Data Source	Year	Description:	Indicator direction
Environmental	si.01	Resources	PV output-Country Average	2019	The PV output (kWh/kW_p) represents the theoretical average electricity production per year per kW_p installed. Its importance is evidenced by its universal inclusion in modelling papers. PV output directly impacts the amount of energy that can be produced and the levelised cost of electricity (LCOE). Thus, like proximity to the current-grid it represents a hard limit to the economic competitiveness of decentralised solar-PV.	Positive
si.02		spatial variability	PV output-Spatial variability	2019	Spatial Standard Deviation in PV output (kWh/kW_p) The greater the deviation in solar potential throughout the country territory, once the system is optimised by the best location in terms of PV output the more intermittent the reliable power supply becomes along the territory. Standard deviation in PV output across months of the year In the evaluation by Huld et al. [2,25], seasonality was the main determinant of the battery size required for decentralised solar-PV systems. The greater the deviation in solar potential throughout the year the less reliable the power supply becomes year round, this leads to greater reliance on expensive battery storage and/or a larger PV system to deliver the same amount of electricity.	Negative
si.03		Seasonality Indicator		2019		
si.04		Wind resource Endowment	DTU [3], IRENA [22]	2014	Wind resource Endowment (TWh per year) for each country, [3,22]. Rather than competing with solar, wind resources can be used in conjunction with solar PV to increase the reliability of power supply by utilising two rather than one intermittent supplies.	Positive

(continued on next page)
Table 1 (continued)

Dimension	Pillar	Indicator Name	Data Source	Year	Description:	Indicator direction
	p.02	Existing Infra-structure				
	ind.06	Grid Penetration	Szabo et al. [5], NASA [6], JRC-GHSL [26]	2019	In the model used to calculate grid penetration [5] decentralised Solar-PV was unable to compete with grid-connected incumbents in areas proximate to the current grid due to infilling and cost-competitive extension of the existing infrastructure. Thus, this exclusion zone represented a hard limit where renewable technologies were unlikely to be economically competitive. The extent of the current grid also indicates an established reliance on incumbent technologies, which may be challenging to displace for sociocultural reasons. Grid penetration is aggregated at the country level and is the percentage of a country population living close to the existing electricity grid (inside 5 km inclusion zone) or/and zones where there is already light. Calculated using the GIS model of the electricity grid within SSA countries and establishing 5Km buffer zones around where the grid exists and/or where nightlight data indicates that the grid exists (methods section). The calculating the number of people residing inside this exclusion zone and dividing by the total population in the country. This is negatively weighted as the more people inside the existing grid zone the less relevant decentralised technologies are compared to expanding last mile grid coverage, and fewer rural populations need decentralised technologies	Negative
		Biomass resource potential	IRENA [22], RFA [4]	2014	The biomass resource potential IRENA [22] was calculated by converting data on the Million litres of ethanol from sugar cane (Total land area, no restrictions, rain fed, > 2 tonnes per hectare) present in a country into GWh per year using the following steps: 1. Converts ethanol energy into equivalent oil barrels [4]. 2. Converts oil barrels into GWh. It can be used to augment solar power supply by providing power to back up generators etc…. that can be used seasonably when solar is not available	Positive

(continued on next page)
Dimension	Pillar	Indicator Name	Data Source	Year	Description:	Indicator direction
		Distance from population settlements to the grid	Szabo et al. [5], NASA [6], JRC-GHSL [26]	2019	Distance from population centres to the grid. The locations of population centres JRC-GHSL [26] without access to electricity were established using the population out of the grid buffer and without nightlight. Weighted positively: The further population centres are from the grid the more expensive it will be for grid electrification to reach them and the more important decentralised solar-PV options will be.	Positive
	ind.08	Power Outages in firms in a Typical Month	World Bank [8]		The less reliable the incumbent energy solution is the more important decentralised solutions that can provide reliable power will be (e.g. solar- PV with battery storage)	Positive
	ind.09	Value lost due to electrical outages	World Bank [8]		The less reliable the incumbent energy solution is the more important decentralised solutions that can provide reliable power will be (e.g. solar- PV with battery storage)	Positive
	p.03	Avoided Emissions	JRC model	2019	CO₂ emissions avoided by the PV mini-grid directly related to kwh produced CO₂ emissions avoided per year by the PV-mini grid instead of diesel mini-grid; data taken from model indicator per pixel (tCO₂)	Positive
Social	si.2	Accessibility	World Bank [8]	2017	Rural population as a percentage of the total population. The larger the rural population within a country the greater the potential for decentralised solar PV solution to help a significant number of people (even if electrified current rural electricity solutions tend to be expensive, sometimes dangerous and often unreliable)	Positive
Dimension	Pillar	Indicator Name	Data Source	Year	Description:	Indicator direction
-----------	--------	---	----------------------	------	---	---------------------
		Rural Access to Electricity	World Bank [8]	2017	Rural Access to electricity as a percentage of the rural population. This indicator captures the sub-section of the rural population who already have access to some electricity and are therefore there is less market potential for decentralised energy solutions	Negative
		Perceived availability of Skilled	Human Capital Index	2017	Reflects the human capital endemic in a country, which is beneficial both for establishing a business and enabling novel technologies to diffuse deeper and windier within communities The indicator was calculated by the WEF using an executive opinion survey [9].	Positive
		Employees	World Economic Forum (WEF) [9]			
		Consumer Knowledge - Lighting Africa	Lighting Africa [10]	2019	Calculated using categorical data. Data available on the ‘Lighting Africa Consumer Awareness Campaign’. If there was an ‘Established Consumer Awareness Campaign by Lighting Africa’ the country scored 3 points, if there was a ‘Recently Initiated/Imminent Consumer Awareness Campaign by Lighting Africa’ the country scored 2 points and if there had been ‘Lighting Africa Involvement in ECOWAS Regional off-grid electrification project’ the country scored 1 point. The aim of this indicator was to capture existing knowledge about decentralised solar PV energy provision, as this reflect the likelihood of successful integration, utilisation and diffusion of the technology into communities.	Positive
		Life Expectancy at Birth	World Bank [8]	2017	Life expectancy at Birth, country average data. This indicator was measuring the anticipated health impact of bringing power through decentralised solar-PV, therefore the worse the life expectancy the higher is the impact of bringing electricity.	Negative
		Respiratory Disease Incidence	WHO [11]	2018	Respiratory disease incidence per 100,000 population. The higher the incidence of respiratory disease the more beneficial decentralised renewable energy solutions may be, both in terms of electrifying health centres that target respiratory disease and in terms of replacing dirty fuels known to cause respiratory disease	Positive

(continued on next page)
Dimension	Pillar	Indicator Name	Data Source	Year	Description:	Indicator direction
ind.17		Education Attainment - Harmonized Test scores	World Bank [8]	2017	Education Attainment measured using average harmonized test scores within countries. This indicator was measuring the anticipated educational impact of bringing electricity to communities; therefore, the impact of bringing electricity will be higher in communities where the educational is low.	Negative
ind.18		Primary Completion Rate	World Bank [8]	(***)	Primary Completion rate weighted negatively for the same reasons as above. Used in conjunction with the indicator above - in case high test scores were mediated by a decline in participation of less able students due to lower completion.	Negative
ind.19		Gender. Unemployment Rate - Female to Male Ratio	UNDP Human development Indicators [14]	2017	Ratio of the percentage of the female labour force population ages 15 and older, which is not in paid employment or self-employed but, is available for work and is actively seeking paid employment or self-employment to the percentage of the male labour force population ages 15 and older in the same status. A higher score reflects greater female emancipation within the labour market, and thus a lower potential impact of electricity provision for improving female liberty.	Negative
ind.20		Estimated number of jobs created	JRC-GHSL [26], OECD [ref.]	2019	Estimated potential number of jobs created directly related to the deployment of PV mini-grids: The greater the percentage of people within a country who can gain employment from solar-PV establishment the better for the local economy (growth hypothesis). This was calculated using data on the total MWh of electricity output anticipated if the total number of potential mini-grids were established within each country and the employment factors come from OECD [ref].	Positive

(*continued on next page*)
Dimension	Pillar	Indicator Name	Data Source	Year	Description:	Indicator direction
Political si.3	p.06	Political Stability and Absence of Violence	World Bank Worldwide Governance Indicators [17]	2018	Stability and Absence of Violence/Terrorism measures perceptions of the likelihood of political instability and/or politically motivated violence, including terrorism.	Positive
		Ind.23 Control of Corruption	World Bank Worldwide Governance Indicators [17]	2018	Corruption defined as the risk that individuals/companies will face bribery or other corrupt practices to carry out business, from securing major contracts to being allowed to import/export a small product or obtain everyday paperwork. This threatens a company’s ability to operate in a country, or opens it up to legal or regulatory penalties and reputational damage.	Positive
		Ind.24 Publicised Laws	World Justice Project [18]	2019	Publicised laws, data was taken directly from the World Justice Project [18]: Open Governance indicator category, from the sub-indicator titled ‘Publicized Laws and Government Data’. This measured: ‘Whether basic laws and information on legal rights are publicly available, presented in plain language, and made accessible in all languages. It also measures the quality and accessibility of information published by the government in print or online, and whether administrative regulations, drafts of legislation, and high court decisions are made accessible to the public in a timely manner’.	Positive

(continued on next page)
Dimension	Pillar	Indicator Name	Data Source	Year	Description:	Indicator direction
Ind.25		Complaint redress mechanisms	World Justice Project [18]	2019	Complaint Redress Mechanism, data was taken directly from the World Justice Project: Open Governance indicator category, from the sub-indicator titled ‘Complaint Mechanism’. This measured ‘whether people are able to bring specific complaints to the government about the provision of public services or the performance of government officers in carrying out their legal duties in practice, and how government officials respond to such complaints’.	Positive
Ind.26		Government regulation effectively enforced	World Justice Project [18]	2019	Government regulation effectively enforced, data was taken directly from the World Justice Project: Regulatory Enforcement indicator category, from the sub-indicator with the same title. This measured: ‘whether government regulations, such as labour, environmental, public health, commercial, and consumer protection regulations are effectively enforced’.	Positive
Ind.27		Due Process is respected	World Justice Project [18]	2019	Due Process is respected, data was taken directly from the World Justice Project: Regulatory Enforcement indicator category, from the sub-indicator with the title ‘Due process is respected in administrative proceedings. This measured ‘whether the due process of law is respected in administrative proceedings conducted by national and local authorities in issue areas such as the environment, taxes, and labour.	Positive
Ind.28		Property Rights: No unlawful expropriation without adequate compensation	World Justice Project [18]	2019	Property Rights: No unlawful expropriation without adequate compensation, data was taken directly from the World Justice Project: Regulatory Enforcement indicator, from the sub-indicator titled: ‘The government does not expropriate without lawful process & adequate compensation.’ This measured ‘whether the government respects the property rights of people and corporations, refrains from the illegal seizure of private property, and provides adequate compensation when property is legally expropriated.’	Positive

(continued on next page)
Dimension	Pillar	Indicator Name	Data Source	Year	Description:	Indicator direction
ind.29	Business Regulatory Environment	Ibrahim Index of African Governance IIAG [19]	2017	Business Regulatory Environment, data was taken directly from the Ibrahim Index of African Governance [19] within the ‘Business Environment’ category. The 2018 IIAG is calculated using data from 35 independent African and global data sources.	Positive	
ind.30	Project Development Barriers	ClimateScope [20]	2018	Categorical data. Project development Barriers, this data was taken directly from ClimateScope [20] within their ‘Fundamentals’ category. This indicator ‘rewards countries where developing renewables projects is frictionless. ‘	Negative	
ind.31	Absence of Restrictions on Foreign Investment	Ibrahim Index of African Governance IIAG [19]	2017	Absence of Restrictions on Foreign Investment, data was taken directly from Ibrahim Index of African Governance IIAG [19] within the ‘Business Environment’ category.	Positive	
ind.32	Robustness of Banks	WEF Global Competitiveness Report [21]	2018	Robustness of Banks, this data was taken directly from the World Economic Forum’s Global Competitiveness Report 2018 [21] from the 9th pillar ‘Financial System’ from the indicator titled: Soundness of Banks. This was calculated using ‘responses to the survey question, “In your country, how do you assess the soundness of banks?”’ [1 = extremely low banks may require recapitalization; 7 = extremely high banks are generally healthy with sound balance sheets]	Positive	

... (continued on next page)
Dimension	Pillar	Indicator Name	Data Source	Year	Description:	Indicator direction	
Ind.35	Rural Electrification Programme	Ind.35 Rural Electrification Programme	ClimateScope [20]	2018	Categorical data. Rural electrification program, this data was taken directly from ClimateScope2018, from within their ‘Opportunities’ category. This indicator ‘rewards countries where a detailed rural electrification program is in place.’	Positive	
Ind.36	Pay As You Go (PAYG) availability	Ind.36 Pay As You Go (PAYG) availability	ClimateScope [20]	2018	Categorical data. PAYG availability, this data was taken directly from ClimateScope2018, from within their ‘Fundamentals’ category. This indicator ‘rewards countries where pay-as-you-go solar technology is available.’	Positive	
Ind.37	Transparent Grid Extension Plan	Ind.37 Transparent Grid Extension Plan	ClimateScope [20]	2018	Categorical data. Data from ‘Fundamentals’ in ClimateScope2018 [20]. This indicator ‘awards points to countries where electricity grid transmission plans can be accessed by energy sector stakeholders.’	Positive	
Ind.38	Mini-grids concessions	Ind.38 Mini-grids concessions	ClimateScope [20]	2018	Categorical data. Data from Fundamentals’ category in ClimateScope2018 [20]. This indicator ‘rewards countries where the regulator awards developers off-grid electrification concessions in which they can operate as a monopoly.’	Positive	
Ind.39	Off-grid energy access target	Ind.39 Off-grid energy access target	ClimateScope [20]	2018	Categorical data. Off-grid energy access target, data from ClimateScope2018 [20], ‘Fundamentals’ category. This indicator ‘rewards countries for having an energy access target that recognizes the role off-grid technologies can play in improving electrification levels.’	Positive	
Ind.40	Tariff deregulation	Ind.40 Tariff deregulation	ClimateScope [20]	2018	Categorical data. Tariff deregulation, this data was taken directly from ClimateScope2018, from within their ‘Fundamentals’ category. This indicator ‘rewards countries where off-grid developers can structure the tariffs they charge for their electricity themselves.’	Positive	
Ind.41	Tax/ Duty Reductions	Ind.41 Tax/ Duty Reductions	ClimateScope [20], IRENA	2018	Categorical data. Tax / duty reductions data from ClimateScope2018, from within their ‘Opportunities’ category. This indicator ‘rewards countries where renewables benefit of reductions in tax and duties.’	Positive	
Financial Risk	p.08	Financial Risk	Weighted Average Cost of Capital (WACC)	Ondraczek et al. [27]	2014	In Ondraczek et al. [27] results that in high financing costs were a critical barrier to investment in LEDC’s. High financing cost were associated with lower likelihood of investment in solar-PV projects.	Negative
Dimension	Pillar	Indicator Name	Data Source	Year	Description:	Indicator direction	
-----------	--------	----------------	-------------	------	--------------	---------------------	
Ind.43	Inflation	IMF [12]	2015–2017	Inflation, data from the World Bank indicator: 'Inflation, consumer prices (annual%)' from the 'International Monetary Fund, International Financial Statistics and data files'.			
Ind.44	Exchange Rate Risk	World Bank [8]	2013–2018	Exchange Rate Risk measured the volatility in the exchange rate within each country and therefore the risk that currency could change in value prior to conversion. This was achieved by measuring the Standard Deviation in Exchange rate between 2013 and 2018 using data from the World Bank indicator: 'Official exchange rate (LCU per US$, period average)'.			
Ind.45	Cost of fuel incumbents: Diesel	World Bank [8]	2016	Data from the 'Pump price for diesel fuel (US$ per litre)' World Bank indicator. The more expensive the incumbent the more competitive solar-PV power provision would be.			
Ind.46	Current electricity generation from coal, oil and gas	The Shift Project [13]	2014	Indicator intended to measure the entrenched reliance on fossil fuels already established within a country. Data from the 'Shift Project' dataset: 'Breakdown of Electricity Generation by Energy Source.' From this, the datasets of the 3 major fossil fuel energy sources: Coal, Oil and Gas, were combined. The more entrenched the fossil fuel system the more impenetrable the market for renewable energy technologies's, and the more likely grid-expansion is to be the lower cost option/ subsided option			
p.09	Market Size	Ind.47	Electricity Expenditure Per Day	World Bank [8], JRC	2019	Data from ongoing JRC research. The higher the current expenditure the more likely solar-PV is to be competitive/ provide a lower cost alternative	

(continued on next page)
Dimension	Pillar	Indicator Name	Data Source	Year	Description:	Indicator direction
		Ind.48 10 year electricity demand growth projections	ClimateScope [20]	2018	Data from ‘Opportunities’ category [20]. This indicator rewards countries where Bloomberg NEF projected electricity demand growth is the highest.	Positive
		Ind.49 Growth Rate of Peak demand 5 year rolling average	ClimateScope [20]	2018	Data from ‘Opportunities’ category [20]. This indicator ‘rewards countries where historic peak electricity demand growth (5 year rolling average) is the highest.’	Positive
		Ind.50 Future consumption	Moner-Girona et al. [1]	2019	Future consumption based on model estimated potential (see section methods [1])	Positive
p.10	Experience in the sector	Ind.51 Clean energy Investment $	ClimateScope [20]	2018	Data from ‘Experience’ category [20]. This indicator rewards countries where historic clean energy investment is the highest (levelized against GDP).	Positive
		Ind.52 Foreign investment in Clean energy	ClimateScope [20]	2018	Data from ‘Experience’ category [20]. This indicator rewards countries where the share of foreign investment in renewables asset finance is the highest.	Positive

* i.e. total number at country level - Country Score - Country Average Value -% of land/population - per capita.

** Most recent reported figure since 2010.
Table 2
Market size for decentralised options, total investment costs needs, average levelised cost of electricity (LCOE) and total avoided CO₂ emissions. The market size represents the amount of population living in areas favourable to decentralised energy options (more than 5 km distant of the existing grid and no lighting). The market size is split for the two main options: PV mini-grids (higher density of population) and stand-alone systems (more dispersed population). The total investment costs (NPV) are calculated aggregating the total cost of decentralised energy options taking into account the optimised size of the system for each location and specific load consumption per decentralised system zone (aggregation of cells), the density of population and the economy of scales (lower upfront cost for larger systems). The LCOE is calculated as an average of the LCOE values per country taking only the areas covered by decentralised options. The avoided CO₂ emissions are calculated comparing with emissions of diesel generators. The table is sorted by mini-grid market size, with the colours in the left column indicating the overall ranking group in the PV-DEI index (from green most favourable to red least favourable).

Country	Rank	Mini-grid market size (people)	Stand-alone systems market size (people)	NPV (million EUR)	LCOE (EUR/kWh)	Avoided CO₂ emissions (kt CO₂)
Ethiopia	1	64.2	1.6	892.5	0.22	1490
Nigeria	9	55.4	4.2	1406.8	0.21	1238
DR Congo	38	48.0	5.1	1637.2	0.23	1043
Tanzania	14	25.3	6.4	804.5	0.22	686
Kenya	2	19.3	5.5	553.4	0.21	589
Sudan	27	20.0	1.1	282.0	0.19	391
Madagascar	32	15.1	4.9	323.5	0.21	415
Mozambique	16	13.6	1.1	375.4	0.22	366
Chad	20	10.6	0.5	133.1	0.21	144
Mali	10	8.8	1.9	228.6	0.20	195
Niger	21	9.5	0.8	167.4	0.19	133
Malawi	24	6.7	2.6	361.6	0.22	200
Ivory Coast	28	7.1	1.9	409.1	0.23	176
Zimbabwe	25	7.7	1.2	316.7	0.23	224
South Sudan	37	8.3	0.1	84.8	0.22	148
Angola	33	7.7	0.4	480.5	0.21	419
Somalia	18	6.3	1.5	173.3	0.18	135
Burkina Faso	13	6.6	0.9	291.0	0.20	138
Guinea	26	5.4	1.9	145.3	0.22	87
Cameroon	15	6.1	1.0	249.8	0.23	146
Ghana	36	6.1	0.8	295.0	0.23	195
South Africa	3	4.2	2.1	525.0	0.28	184
Zambia	19	5.5	0.8	167.6	0.21	125
Burundi	23	5.1	0.1	114.9	0.23	123
Uganda	4	4.6	0.5	100.5	0.22	103
Rwanda	5	4.9	0.1	104.9	0.23	119
Eritrea	30	3.8	0.2	65.9	0.20	68
Benin	8	3.6	0.4	110.8	0.23	77
CAR	31	3.5	0.4	125.8	0.23	83
Sierra Leone	34	2.9	1.0	150.4	0.23	72
Togo	12	2.0	0.2	65.7	0.22	47
Liberia	22	1.5	0.7	84.4	0.24	45
Senegal	6	1.7	0.4	33.6	0.20	22
Congo	35	1.4	0.4	49.3	0.25	32
Mauritania	29	1.2	0.3	24.4	0.18	19
Lesotho	11	0.8	0.2	66.9	0.27	22
Botswana	7	0.5	0.1	44.2	0.23	17
Namibia	17	0.2	0.3	12.7	0.21	11

Fig. 1 displays the breakdown of the PV-DEI index for Congo as an example of the weight of each dimension and indicators.

Fig. 2 shows the PV-DEI index variability under three different perspectives private sector, civil society, and international donors: The baseline scenario is determined by the Principle Component Analysis.

Fig. 3 depicts the overall investment costs (NPV), are the total amount of investment in PV decentralised option per country.
2. Experimental Design, Materials and Methods

The PV-DEI index composite indicator was built in accordance with the ‘best practice’ for composite indicator design outlined by the European Commission’s guidance on composite indicators [24]. The structure of the Index was empirically tested, and improved in terms of accuracy and robustness whenever possible [1,24]. Fig. 4 illustrates the conceptual and analytical framework.
Fig. 3. Cumulative investments (EUR million) per country for 20 years on PV decentralised options (dark blue for higher total amount of investments). B-The pie charts indicate the cumulative share of market size (new potential customers) for each African region.

The quality of any composite indicator is determined by the quality of the base data used to populate the index, and the validity of the processes used in the construction of the index. Consequently, data selection was critical in determining the overall quality of the PV-DEI composite indicator. To ensure data sets used to construct the indicator were not selected based on convenience, and thus allowed to modify the structure of the PV-DEI index in a post hoc fashion.
based on observed data availability, the structure of the PV-DEI index was determined prior to data selection. This was done through an extensive review of the existing literature on the factors important for the direction of decentralised solar-PV investment. Data was then selected in accordance with the *a priori* specified structure PV-DEI index structure.

The search for relevant data proceeded through online search engine enquiries, in addition to more specific searches using resources provided by the World Bank [8,10,17], World Health Organisation [11], and the United Nations Development Programme [14]. The quality of the indicator data was assessed using a combination of criteria outlined by the OECD and the European Commission in the 'Handbook on Constructing Composite Indicators'[24]. Thus, data-sets were relevant to the overall purpose of the PV-DEI index, measured within an appropriate timeframe for the phenomenon of interest, appropriately sensitive to slight changes in this phenomenon, interpretable and complete with clear definitions of the items and/or populations studied, coherent across SSA countries, accurate and reliable (Table 1).

Overview:

The steps completed to ensure data was appropriate for use in the final composite indicator were as follows:

1. The indicator datasets were initially grouped according to the pre-defined conceptual framework.
2. The datasets were intensified to ensure they were comparable across countries. For example, by dividing by a country’s population or other indicator-appropriate metric.
3. The indicators were checked for skew and kurtosis. In the COIN tool used for data processing data sets were considered skewed when skew was greater 2 and kurtosis was considered high if it was greater than 3.5 [24]
4. Data sets were winsorized when skew was greater than 2 and kurtosis was greater than 3.5
5. Countries missing more then 65% of data across the indicators were removed
6. Structural assessments (principal component assessments and cor relational assessments) were conducted to investigate the underlying structure of the index.
7. Missing data was imputed using the MissForest package in R.
8. Structural assessments were re-run to ensure data-imputation had not significantly altered the underlying structure of the index.
9. Indicator data sets were normalised using the min-max method of normalisation.
10. In the DV-PEI index indicators were aggregated according to the weighting system devised in [1]. Using the raw data provided in this publication it is hoped stakeholders will be able to apply their own weights based on the importance they place on particular indicators.

INITIAL PROCESSING
Once the indicator data had been compiled, data sets were initially intensified following the recommendations of the COIN tool for composite indicator design provided by the European Commission [24]. Data intensification ensured data sets were comparable across countries with diverse population sizes, land areas, and natural resources. Data sets were also winsorized, again following the recommendations of the COIN tool for best practice in composite indicator design. This removed the negative impacts of potentially spurious outliers within data sets. Countries missing more than 65% of data across the indicators were removed from the analysis using the COIN tool.

STRUCTURAL ASSESSMENTS
Structural assessments were then undertaken to assess the underlying structure of the PV-DEI index. Correlational assessments were conducted using the COIN tool to ensure no two indicators within the same sub-pillar were highly correlated (high positive correlation: +0.5), rendering the use of one of them redundant. This was repeated to additionally ensure no indicators were negatively correlated with other indicators in their subpillar (high negative correlation: −0.5), which would have suggested an inconsistency between the indicators and what was being measured. The COIN tool operates through excel and no coding was required for the correlational assessments.

Principal component assessments were also conducted using the R function prcomp(), to ensure that indicator groupings were consistent with the structure of the underlying data. This resulted in the relocation of Indicator 48 which measured the removal of taxes and tariffs from the financial dimension, to the political pillar that focuses on the creation of a decentralised energy market. This remained in keeping with the conceptual framework of the political dimension. After the completion of the structural assessments the PV-DEI index went from 55 to 52 indicators, and indicator 48 was relocated to a different pillar.

Imputation of missing data
The imputation of missing data was conducted using two different popular methodologies for data imputation, each requiring a different package in R:

1. Implementation using a random forest algorithm (MissForest)
2. Multiple Imputation via Chained equations (MICE)

In both cases datasets had been intensified and winsorized, and countries missing greater than 65% of data across indicators had been removed. Categorical indicators had been removed and missing data for these was imputed separately using the mode of the region of Africa in which the country missing data was located. The MissForest() function in R was used first to generate the imputed datasets. The maximum number of iterations to be performed if the stopping criteria had not been met was set at 10. The number of trees to grow in each forest was set to 300. The final datasets were normalised using the min-max method and used to calculate PV-DEI index scores for comparison with the Mice () output in a sensitivity assessment documented in Fig. 6.

Following imputation using MissForest(), the MICE() function was used to generate 5 imputed data sets. Thus, the number of multiple imputations was set at 5, the method selected was a predictive mean matching model (PMM), the maximum number of iterations was set at 50. For each of the 5 data sets structural assessments were conducted (Fig. 5.C). The 5 datasets
were normalised independently using the min-max method and used to calculate 5 separate composite indicator scores. The results of these were then finally pooled to create an average PV-DEI index score to enable a sensitivity assessment to be conducted comparing the MICE() and MissForest() methods of imputation (Fig. 6).

Comparison of MICE and MissForest – Re-running the Structural Assessments

When comparing the imputed data sets with the original data using the COIN tool, it was apparent that the MissForest method of imputation preserved the original relationships between the indicators to a greater extent than the MICE method of imputation (Fig. 5). Thus, the
MissForest package in R was used to impute the missing data. The result of our sensitivity assessment comparing MICE and MissForest imputation methods was in alignment with findings elsewhere that random forest techniques are more appropriate for imputing data in complex data sets as compared to multiple imputation using chained equations [1].

Comparison of MICE and MissForest – PV-DEI index scores

An additional sensitivity assessment was conducted to investigate how the ranking of countries within the PV-DEI index would alter if data was imputed using Mice() as compared to the MissForest() method. As demonstrated in Fig. 6 the ranking of countries within the PV-DEI was reasonably robust to the imputation method selected. With the exceptions of Cameroon, Somalia and the Democratic Republic of the Congo (DRC) – which all performed markedly better under Mice() imputation, most countries preserved their relative position between the two methods. Following the evidence provided by the structural assessments documented above, and relying on expert knowledge of the relative attractiveness of Cameroon, Somalia and the DRC for investment, PV-DEI scores obtained following the MissForest() method of imputation were used in the final index.

Normalisation

Following the imputation of missing data, the completed data sets were normalised using the min-max method of normalisation. This is the technique recommended as best practice within
the COIN tool as it is able to preserve the shape of the data distribution for each indicator, and does not unduly rewards or punish exceptional indicator values. To investigate whether using an alternative popular normalisation technique, the Z-score transformation, would have significantly altered results on the PV-DEI index, sensitivity assessments were conducted comparing index results after normalisation using both min-max and Z-score normalisation techniques. The differences in scores were found to be slight as visualised in Fig. SI.6.

Aggregation
In the DV-PEI index indicators were aggregated according to the weighting system devised in ([11]). This was based on both expert knowledge obtained from an expert elicitation survey, and principal component assessments conducted at the level of the sub-pillars, see Fig. SI.7. However, the raw data provided in this publication is hoped to enable stakeholders to apply their own weights and thus create their own PV-DEI indices appropriate for their requirements.

Sensitivity Assessments
In addition to the sensitivity assessments documented here, additional sensitivity assessments were conducted to investigate the impact of data winsorization (Fig. SI.3) on PV-DEI scores.

CRediT Author Statement

Bender, A: Conceptualization, Methodology, Validation, Investigation, Writing, Review & Editing; Moner-Girona, M: Conceptualization, Methodology, Investigation, Visualization, Writing, Review & Editing; Becker, W: Methodology, Investigation, Writing, Review & Editing; Bódis, K: Data processing, Geospatial modelling and analysis, Visualization; Szabó, S: Investigation, Writing, Review & Editing; Kararach, A. G.: Writing, Review & Editing. Anadon, L. D, Conceptualization, Writing, Review & Editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

Disclaimer: The views expressed are purely those of the authors and may not in any circumstances be regarded as stating an official position of the European Commission.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2021.107265.

References

[1] M. Moner-Girona, A. Bender, W. Becker, K. Bódis, S. Szabó, A.G. Kararach, et al., A multidimensional high-resolution assessment approach to boost decentralised energy investments in Sub-Saharan Africa, Renew. Sustain. Energy Rev. 148 (2021) 111282, doi:10.1016/j.rser.2021.111282.
[2] Joint Resarch Centre (European Commission), PVGIS JRC-European Commission. PVGIS 2015. http://re.jrc.ec.europa.eu/pvgis/. Accessed February 2, 2019.
[3] University of Denmark (DTU), The World Bank Group. Global Wind Atlas 2017. https://globalwindatlas.info/. Accessed July 20, 2019.
[4] Renewable Fuel Association. Fuel ethanol trade measurements and conversions 2015:1.
[5] S. Szabó, K. Bódis, T. Huld, M Moner-Girona, Energy solutions in rural Africa: mapping electrification costs of distributed solar and diesel generation versus grid extension, Environ. Res. Lett. 6 (2011) 034002, doi:10.1088/1748-9326/6/3/034002.
[6] NASA Earth Observatory. Earth at Night 2019. https://earthobservatory.nasa.gov/. Accessed May 7, 2019.
European Commission Joint Research Centre (JRC). Global Human Settlement Layer 2019. Ghs_pop2019 @ghslrce-EuropaEu n.d. https://ghs.jrc.ec.europa.eu/ghs_pop2019.php. Accessed July 7, 2019.

The World Bank Group. World Bank Indicators 2019. https://data.worldbank.org/. Accessed June 6, 2019.

World Economic Forum The Global Human Capital Report 2017, 2017 Geneva, Switzerland.

The World Bank Group The International Finance Corporation (IFC), 2019 Lighting Africa https://www.lightingafrica.org/ (accessed June 6, 2019).

The World Health Organization (WHO). Global Ambient Air Quality Database 2018. https://www.who.int/airpollution/data/en/. Accessed June 6, 2019.

International Monetary Fund. International Financial Statistics and Data 2019. https://www.imf.org/en/Data.

The Shift Project. The Shift Project (2019). https://theshiftdataportal.org/ Accessed June 6, 2019.

United Nations Development Programme Human Development Report 2016: Human Development for Everyone, 2016 doi: eISBN: 978-92-1-060036-1.

International Energy Agency World Energy Outlook 2017, OECD/IEA, Paris, France, 2017 http://www.iea.org/publications/freepublications/publication/WEB_WorldEnergyOutlook2015ExecutiveSummaryEnglishFinal.pdf.

IFPRI (WHH) W. Worldwide CGlobal Hunger Index Data 2016, 2016, doi: 10.7910/DVN/LU8KRU.

World Bank Development Research Group, Institution NRGI (NRGI) and B. Worldwide Governance Indicators 2018. https://info.worldbank.org/governance/wgi/. Accessed June 6, 2019.

World Justice Project Rule of Law Index, 2018 Washington, US, doi: 10.4135/9781483381503.n1030.

Mo Ibrahim Foundation Ibrahim Index of African Governance, Mo Ibrahim Foundation, London, UK, 2015.

Bloomberg New Energy Finance. Climatescope 2018. Clim 2018, 2019. http://global-climatescope.org/. Accessed June 6, 2019.

Schwab K. (Ed.) The Global Competitiveness Report 2017-2018, World Economic Forum, Geneva, Switzerland, 2017.

IRENA. Global Atlas for Renewable Energy (2020), https://www.irena.org/globalatlas. Accessed January 1, 2020.

S. Szabó, I. Pinedo Pascua, D. Puig, M. Moner-Girona, M. Negre, T. Huld, et al., Mapping of affordability levels for photovoltaic-based electricity generation in the solar belt of sub-Saharan Africa, East Asia and South Asia, Nat. Sci. Rep. 11 (2021), doi: 10.1038/s41598-021-82638-x.

W. Becker, D. Benavente, M. Dominguez Torreiro, C. Moura, A. Neves, M. Saisana, et al., COIN Tool User Guide, EUR 29899 EN, Publications Office of the European Union, 2019, doi: 10.2760/523877.

T. Huld, M. Moner-Girona, A Kriston, Geospatial analysis of photovoltaic mini-grid system performance, Energies 10 (2017) 218, doi: 10.3390/en10020218.

M. Paresi, M. Melchiorri, A. Siragusa, T Kemper, Atlas of the Human Planet. Mapping Human Presence on Earth with the Global Human Settlement Layer, Publications Office of the European Union, Luxembourg, 2017, doi: 10.2788/889483.

J. Ondracek, N. Komendantova, A Patt, WACC the dog: the effect of financing costs on the levelized cost of solar PV power, Renew. Energy 75 (2015) 888–898.

M.G Morgan, Use (and abuse) of expert elicitation in support of decision making for public policy, Proc. Natl Acad. Sci. (2014) 201319946.

M. Saisana, B. D’Hombres, A Saltelli, Ricketi numbers: volatility of university rankings and policy implications, Res. Policy (2011), doi: 10.1016/j.respol.2010.09.003.