RESEARCH ARTICLE

Projecting contact matrices in 177 geographical regions: An update and comparison with empirical data for the COVID-19 era

Kiesha Prem1,2, Kevin van Zandvoort1, Petra Klepac1, Rosalind M. Eggo1, Nicholas G. Davies1, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group5, Alex R. Cook1, Mark Jit1*

1 Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom, 2 Saw Swee Hock School of Public Health, National University of Singapore, Singapore

¶ Membership of the Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group is listed in the Acknowledgments.
* mark.jit@lshtm.ac.uk

Abstract

Mathematical models have played a key role in understanding the spread of directly-transmissible infectious diseases such as Coronavirus Disease 2019 (COVID-19), as well as the effectiveness of public health responses. As the risk of contracting directly-transmitted infections depends on who interacts with whom, mathematical models often use contact matrices to characterise the spread of infectious pathogens. These contact matrices are usually generated from diary-based contact surveys. However, the majority of places in the world do not have representative empirical contact studies, so synthetic contact matrices have been constructed using more widely available setting-specific survey data on household, school, classroom, and workplace composition combined with empirical data on contact patterns in Europe. In 2017, the largest set of synthetic contact matrices to date were published for 152 geographical locations. In this study, we update these matrices for populations up to age 80 with the most recent data and extend our analysis to 177 geographical locations. Due to the observed geographic differences within countries, we also quantify contact patterns in rural and urban settings where data is available. Further, we compare both the 2017 and 2020 synthetic matrices to out-of-sample empirically-constructed contact matrices, and explore the effects of using both the empirical and synthetic contact matrices when modelling physical distancing interventions for the COVID-19 pandemic. We found that the synthetic contact matrices show qualitative similarities to the contact patterns in the empirically-constructed contact matrices. Models parameterised with the empirical and synthetic matrices generated similar findings with few differences observed in age groups where the empirical matrices have missing or aggregated age groups. This finding means that synthetic contact matrices may be used in modelling outbreaks in settings for which empirical studies have yet to be conducted.
The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) responsible for causing Coronavirus Disease 2019 (COVID-19) has affected the lives of billions worldwide [1]. SARS-CoV-2 is predominantly transmitted between people via respiratory droplets and, as such, the transmission dynamics are strongly influenced by the number and type of close contacts between infectious and susceptible individuals [2–7].

Mathematical models have played a key role in understanding both the spread of directly-transmissible infectious diseases such as COVID-19 [8–10] and the effectiveness of public health responses [11–16]. Since transmission events can rarely be directly observed and measured, most transmission models are based on the social contact hypothesis [17] which implies the risk of transmission between a susceptible and an infected individual be proportional to the rate of contact between them [18]. Rates of contact are known to differ according to characteristics such as the age, of both individuals, and the setting in which the contact takes place, such as the home, school or workplace; they are also commonly assortative, and infection may be concentrated in demographic segments as a result [17,19,20].

Age-structured models often define the rate of mixing between age groups through a mixing matrix where the elements represent the frequency of contact between two individuals from subgroups (such as age groups) represented by the columns and rows. Mixing matrices can be generated from surveys that record the number and type of contacts between people, such as the respondent-completed diaries used in the landmark POLYMOD contact pattern study, which measured social contact patterns in eight European countries [20]. However, the majority of countries around the world lack data from contact surveys that can be used to inform the mixing matrix. This problem is particularly acute in low- and lower-middle-income countries (LMICs), where only 4 studies are available, compared to 54 in high-income countries [21]. Our previous work [22] used country-specific data on household size, school, and workplace composition plus empirical contact data from the POLYMOD survey to generate age-
The authors have declared that no competing interests exist.

Materials and methods

Updating country-specific demography and setting parameters

As in Prem et al. [22], we employed a Bayesian hierarchical modelling framework to estimate the age- and location-specific contact rates in each of the POLYMOD countries (Belgium, Germany, Finland, United Kingdom, Italy, Luxembourg, the Netherlands, Poland), accounting for repeat measurements of contacts made in different locations by the same individual. We model the number of contacts documented by individual i at a particular location L with an individual in age group α, as $X_{i,a} \sim \text{Po}(\mu_{i,a})$ where the mean parameter varies for each individual i, by i’s age, a, and by location, i.e. $\mu_{i,a} = \alpha L_{i,a}$. The α parameter characterises differences in social activity levels between individuals i.e., the random effect belonging to individual i. The $L_{i,a}$ parameter denotes the frequency of contact between individuals (or contact rate per day) from two age groups, a and α, at location L and it is the key estimand. Because the number of contacts should be comparable for individuals of similar ages, we imposed smoothness between successive age groups for the $L_{i,a}$ parameter as described in section A.8 in S1 Text. Noninformative prior distributions were assumed for all parameters in the model, as detailed in [22].

We updated the synthetic contact matrices [22] with more recent data on population age structure, household age structure of 43 countries with recent Demographic Household Surveys (DHS) [31] and socio-demographic factors for 177 geographical regions, including countries and some subnational regions such as the Hong Kong and Macau Special Administrative Regions (SARs) of the People’s Republic of China. We include 14 country characteristics from the World Bank and United Nations Educational, Scientific and Cultural Organization...
Institute for Statistics (UIS) databases: gross domestic product per capita, total fertility rate and adolescent fertility rate, population density, population growth rate, internet penetration rate, secondary school education attainment levels, as proxies of development, and under-five mortality rate, the life expectancy of males and females, mortality rates of males, risk of maternal death, mortality from road traffic injury, and the incidence of tuberculosis, as proxies for overall health in the country. The DHS provides nationally-representative household surveys with the largest dataset, from India, containing information on ~3 million individuals from about 600,000 households (see Table A in S1 Text). To project the household age structure for a geographical location with no available household data, we use a weighted mean of the population-adjusted household age structures of the POLYMOD and DHS countries as described in the S1 Text. Because the household age structures vary across countries in different stages of development and with different demographics, we use the updated 14 indicators, all standardized by z-scoring, to quantify the similarities between countries with and without household data to derive these weights. We internally validated the household age matrices using leave-one-out validation to verify these matrices describing household structure could be reverse-engineered for countries (POLYMOD and DHS) for which empirical household age matrices were available, as described in Prem et al. [22] and in S1 Text.

By accounting for the demographic structure, household structure (where known), and a variety of metrics including workforce participation and school enrolment, we then estimated contact patterns at home, work, school and other locations for non-POLYMOD countries. Specifically, the population age compositions for 177 geographical regions were obtained from the United Nations Population Division [32]. To derive the working population matrices for each geographical location \(c \), we use the labour force participation rate by sex and 5-year age groups, \(w^c_w \), for the 177 geographical regions from the International Labour Organization (ILO) [33].

When constructing the school-going population matrices, we use the country-specific pupil-to-teacher ratio in schools at various level of education (i.e., pre-primary, primary, secondary and tertiary), enrolment rates of students at various level of education, starting ages and number of years of schooling at various level of education from UIS [34] and the distribution of teachers by age from the Organisation for Economic Co-operation and Development (OECD) [35]. Using the country-specific data, we first estimate the number of students in each age group by education level. Together with the country-specific pupil-to-teacher ratio at each education level, distribution of teachers and workforce by age, we then project the number of teachers in each age group. Both students and teachers form the school-going population. The steps to construct both the working and school-going populations are detailed in S1 Text.

After projecting populations at home, work and school for the 177 geographical regions, we infer the synthetic age- and location-specific contact matrices (S1 Text). For contacts in other locations (not home, work or school), we adjusted the POLYMOD contact matrices with the country-specific population. We also compare the proportion of contacts at other locations measured from the empirical contact studies.

Stratifying contacts by rural and urban areas

We stratified the age- and location-specific contact matrices according to rural and urban areas by the rural and urban population age compositions for all geographical regions of the world from the United Nations Population Division [36] (see [37] for urban and rural classification). The nationally-representative DHS household surveys additionally provide data for rural and urban areas [31], allowing us to derive rural-urban household age matrices. We compare the population age compositions and household age matrices in rural and urban settings of countries with stratified household data (S1 Text and S2 Text).
We assessed the age-specific labour force participation rates by rural and urban regions from ILO [38]. Using the differences in rural and urban schools’ pupil-to-teacher ratio from OECD [39], we construct rural and urban school population matrices. These differences were available for 36 countries, and we assumed the OECD average for the regions without data. We also compare the mean total number of contacts among children (0–9-year-olds) and older adults (60–69-year-olds), as well as the basic reproduction number in rural and urban settings.

Comparing synthetic matrices to empirical contact matrices

We extracted data from all contact surveys listed in the Zenodo social contact database [40] and directly from the published studies [41], and used them to construct empirical contact matrices using the socialmixr R package [42]. Data were available for 11 geographical locations: Shanghai and Hong Kong SAR, China [43,44], France [45], Kenya [46], Peru [47], the Russian Federation [48], South Africa [29,49], Vietnam [50], Zambia [29] and Zimbabwe [30]. We then compared each element of the empirical matrices with our synthetic matrices. We also compared the proportion of contacts in “Other” locations, since this was the only setting not directly informed by local data (other than population age structure) in the synthetic matrices. To understand potential sources of differences between the empirical and synthetic matrices as well as between empirical matrices between different regions, we extracted details of how each survey was conducted from the original publications.

Table 1 summarises the changes between the construction of the 2017 and 2020 synthetic matrices. Analyses were done in R version 3.6.2 [51], and the codes are deposited in https://doi.org/10.5281/zenodo.8383778.

| Table 1. Summary of the changes between the 2017 and 2020 synthetic matrices. |
|---|---|
| Overall coverage | 177 geographical locations covering 97.2% of the world’s population, including rural and urban settings |
| Population age composition data | 152 geographical locations covering 95.9% of the world’s population |
| Urban and rural population age composition data | 2020 UN Population Division population demographic data for 177 geographical regions |
| Country-specific household data | 51 countries: 34 additional low- and lower-middle-income countries |
| Country-specific urban and rural household data | Stratified household data by urban and rural settings (for 43 DHS countries) |
| Country-specific labour force participation rate data by age | 177 geographical locations and stratified by urban and rural settings |
| Country-specific school data | School data were curated at various levels of education: pre-primary, primary, secondary and tertiary. The updated school data included enrolment rates, average starting ages of schooling, number of years of schooling, pupil-to-teacher ratio at each education level from UNESCO Institute for Statistics for 177 geographical regions. |
| Country-specific urban and rural school data | School data were curated at various levels of education: pre-primary, primary, secondary and tertiary. The country-specific school data included enrolment rates, pupil-to-teacher ratio at each education level from UNESCO Institute for Statistics for 152 geographical regions. |
| Comparison between the synthetic matrices and out-of-sample empirically-constructed contact matrices | Not considered |
| Comparison of mean contacts by age, full contact matrices, the proportion of contacts at other locations, and reduction in cases and age-specific infection attack rate using an age-stratified compartmental model of COVID-19 Social contact data from contact surveys were extracted from the Zenodo social contact database and directly from the published studies for 10 geographical locations. | Comparison of mean contacts by age Contact matrices were assessed directly from the published studies in 5 geographical locations: Kenya (digitised image), Peru (digitised image), Russia, South Africa, and Vietnam. |

https://doi.org/10.1371/journal.pcbi.1009098.t001
Impact on modelling of interventions

We compare the difference in reduction of COVID-19 cases between using the empirical and synthetic matrices in models of COVID-19 epidemics in ten geographical regions—China, France, Hong Kong SAR, Kenya, Peru, the Russian Federation, South Africa, Uganda, Vietnam and Zimbabwe—using an age-stratified compartmental model [13,25]. We model an unmitigated epidemic and three intervention scenarios: 20% physical distancing, 50% physical distancing, and national lockdown. In all intervention scenarios, we assume a 50% reduction in transmission from individuals with clinical symptoms through self-isolation. In addition, we assume the following: (i) 20% physical distancing: 20% reduction in transmission outside of the household, (ii) 50% physical distancing: 50% reduction in transmission outside of the household, (iii) national lockdown: where we applied the pooled mean reduction in setting-specific contacts (i.e. at home, school, work, and other places) as observed in lockdowns implemented in several countries during the COVID-19 pandemic [53–57].

We considered six contact matrices when modelling the interventions to the COVID-19 pandemic: the empirically-constructed contact matrices at the study-year and adjusted for the 2020 population, the 2017 synthetic matrices, and the updated synthetic matrices at the national, rural, or urban settings. Synthetic matrices were implemented by assuming that the contacts made by the 75–80 years old age group were representative for those made by the 75+ years old age group in the model. More details of the model can be found in sections A.7 of S1 Text.

Results

Twenty-five geographical regions were added to this study compared to the 2017 study. We also updated the population demographic data used for all countries including Namibia, Syrian Arab Republic, Republic of South Sudan, Kuwait, and Vanuatu where the proportion of individuals aged > 70 years was previously not recorded.

There were varied methods adopted in 11 contact surveys conducted to generate the empirical contact matrices covering 11 geographical locations (Table 2). The surveys differed substantially from each other and the original POLYMOD survey in sampling frames and survey methodology. Dodd et al. [29] measured social contacts among adults in South Africa and Zambia. Three surveys were conducted in exclusively rural regions [41,47,49], (including one in a remote highlands region [47]), three other surveys were conducted only in urban regions [43,44,48], and the remaining five surveys were conducted in a variety of urban and rural settings [29,30,45,46,50]. Although most studies adopted random or stratified sampling to recruit their respondents, a handful included convenience [43,47,48] and quota [44,45] sampling methods in their recruitment. In most contact diary approaches, contacts are categorised as physical contacts (e.g., skin-to-skin contacts) and nonphysical contacts (e.g. two-way conversations with three or more words in the physical presence of another person) [20]. They were equally split between studies that asked respondents to fill in surveys retrospectively [29,41,44,47,50] and prospectively [30,43,45,46,48,49].

The estimated proportions of contacts in other locations from POLYMOD contact survey largely match analogous figures in empirical contact studies from five geographical locations which report this—Shanghai and Hong Kong SAR, China; the Russian Federation; Peru; and Zimbabwe—but are higher than those from France for most ages (Fig 1). It is slightly higher in the synthetic matrices in adults (i.e., 20–40-year-olds) in Shanghai, Hong Kong and the Russian Federation, and slightly lower in older individuals (i.e., >60-year-olds) in Peru, but all other ages match closely.

The pronounced diagonals observed in all contact matrices are matched in the synthetic matrices (Figs 2 and 3, S3 Text), as are the secondary diagonals indicating the occurrence of
intergenerational mixing. The updated synthetic contact matrices show close similarities to empirical matrices (median correlation between normalised synthetic and empirical matrices 0.84, interquartile range 0.76–0.88). In most geographical regions, both matrices are similar in terms of symmetry. However, there are a few places such as Zimbabwe and China (Shanghai) where the synthetic matrix is more symmetrical than the empirical matrix, as the latter shows more weight above the diagonal (young people report more contacts with old people than vice versa). The degree of symmetry of both synthetic and empirical matrices in each region is compared in Table E in S4 Text.

We reconstructed the empirical household age structures for the POLYMOD and DHS countries with high fidelity (median correlation between the observed and modelled household age matrix (HAM) 0.96, with an interquartile range 0.94–0.97) (See S1 Text section A.2.2 and S2 Text section B.1 for details sections A.2.2 and B.1 for details). The differences in the population and households age composition by rural and urban settings are presented in section B.2 in S2 Text.

In most countries, urban settings had a larger mean number of contacts among children (i.e., 0–9-years-old) (Fig 4). However, little difference was observed in the mean number of contacts among older adults (i.e. 60–69 years old) in rural and urban settings. The basic reproduction number in rural and urban settings are positively correlated (highest in high-income countries: $r = 0.90$, 95% confidence interval: 0.82–0.94) and higher in urban settings.
Fig 1. Comparison of the estimated proportion of contacts at other locations for the empirical contact studies from six geographical regions and POLYMOD survey. The estimated age-specific proportion of all contacts at other locations—transport, leisure, other locations—matrices from contact surveys at the country or geographical region (in black) are compared against that observed in the POLYMOD countries (in grey).

https://doi.org/10.1371/journal.pcbi.1009098.g001
Projecting contact matrices in 177 geographical regions
The choice of using synthetic or empirical matrices did not make a large difference to the infection attack rate for an unmitigated epidemic (Fig D in S4 Text), or to the overall number of severe COVID-19 cases predicted in a mathematical model of SARS-CoV-2 transmission and disease across the three physical distancing interventions (Fig 5 and Fig E in S4 Text). Where there were discrepancies, the relative magnitude of this discrepancy differed between countries. Differences were more marked in specific age groups (e.g. older people in Hong Kong SAR, Peru, Uganda, Vietnam and Zimbabwe; 10–20 year olds in China; 20–24 year olds in Russia). The largest age-related differences could potentially be attributed to particular features of empirical survey design such as missing (Peru, Russia) or aggregated (South Africa, Uganda, Vietnam) age groups, mode of questionnaire chosen by participants (Hong Kong SAR) and survey administration during school holidays (Zimbabwe) (See Table D in S4 Text for details).

Discussion

Social mixing patterns have not been directly measured in most countries or regions within countries, particularly in low- and lower-middle-income settings. Synthetic contact matrices provide alternative age- and location-specific social mixing patterns for countries in different stages of sociodemographic and economic development [22]. The synthetic contact matrices presented here were derived by the amalgamation of several data sources and methods: (i) integration into a Bayesian hierarchical framework of age- and location-specific contact rates from eight European countries from the POLYMOD contact study; (ii) construction of age-structured populations at home, work, and school in many non-POLYMOD countries by combining household age-structure data from the POLYMOD study and DHS (which include mostly data from lower-income countries), socio-demographic factors from the UN Population Division and various international indicators; and (iii) projection of age-structured populations at home, work, and school and age- and location-specific contact matrices to other non-POLYMOD and non-DHS countries. Both empirical and synthetic contact matrices capture age-assortativity in mixing patterns; the pronounced primary diagonal highlights that individuals interact with others of similar age. Both also show secondary diagonals, approximately one generation apart, indicating parent-child interactions.

This paper provides a substantial update and improvement to previous synthetic matrices published in 2017 (Table 1). Improvements in the availability of demographic data globally have enabled us to provide validated approximations to age- and location-specific contact rates for 177 geographical regions covering 97.2% of the world’s population, compared to 152 geographical regions covering 95.9% previously. Household data from 34 additional LMICs were included in the revision. We have also used the most recent data to build the working and school-going populations. We have extended the method to project contact patterns in rural and urban settings using country-specific urban and rural data. We find a higher positive correlation in mean contact rates and basic reproduction number in rural and urban settings of high-income countries, owing to the smaller rural-urban differences in these countries. Moreover, when assessing the consistency of results under different mixing assumptions
(empirical and synthetic), we observed small differences in the modelled reduction in number of cases across the three physical distancing interventions for the COVID-19 pandemic. The synthetic matrices provide consistency for inter-country comparisons since they are based on common datasets. This is challenging to achieve through empirical data collection (see Table 2). For such studies, surveying across the whole population poses several challenges. Establishing a sampling frame and obtaining a sample representative of an entire country’s population is expensive and in some regions logistically challenging, so researchers often restrict studies to a particular subpopulation. For instance, many recent empirical contact studies only represent certain subregions of countries rather than entire countries. Sometimes surveys rely on nonprobability sampling techniques [43–45,47,48], e.g., convenience and quota sampling, when probability sampling techniques are not feasible. Paper or online self-reported contact diaries are largely used in social contact surveys. Compared to less common face-to-face interviews, respondent-filled contact diaries have a less demanding data collection procedure but may report a lower response rate [21,58]. Zhang et al. [43] found significantly higher contacts documented by telephone interview than by self-reporting in Shanghai, China. In addition, contact diaries can be administered prospectively or retrospectively (Table 2). In Hong Kong, prospective surveys have been shown to be less prone to recall bias compared to their retrospective counterpart [44], but it is often more challenging to find willing participants for prospective surveys. However, a study in Belgium [59] found no appreciable effect between retrospective and prospective surveying. Other methods, e.g., proximity sensors and phone-based GPS trackers or Bluetooth scanners, have also been employed to measure mixing patterns between individuals [60–63] and are forming part of many countries’ contact tracing efforts during the COVID-19 pandemic [64], though most have been implemented to protect users’ privacy by storing data with the user rather than centrally. When we compared our synthetic matrices with empirical contact matrices from 11 studies using contact diaries, we found broad consistencies between findings from the two approaches. However, there were also differences which might reflect the heterogeneity in methods used to collect empirical data.

Another consideration affecting both synthetic and empirical matrices is that they change over time. Estimating synthetic matrices relies on the POLYMOD contact survey administered more than a decade ago. Another larger contact survey, BBC Pandemic [60,65] conducted in the UK used mobile phone-based GPS tracking instead of diary-based surveys, reported a decrease in contacts among adolescents compared to POLYMOD, which may reflect substitution of face-to-face contacts with electronic communication in this age group. Moreover, in addition to the rural-urban environment, age- and location-specific contact patterns could vary by socioeconomic conditions within countries. More differences are expected as countries implement physical distancing measures to mitigate the COVID-19 pandemic. The COVID-19 pandemic has affected contact patterns, whether through non-pharmaceutical interventions or reactive behavioural changes, in particular, how we come into contact with one another. Baseline, expected contact rates, as those inferred here, are critical for determining the amount of change in contact rates in response to the pandemic. Understanding the impact of the COVID-19 pandemic on contact patterns requires a detailed analysis of contact surveys.
conducted during the pandemic, taking into account baseline contacts and non-pharmaceutical interventions intensity. Future studies are also needed to quantify the possible long-term behavioural changes.
Fig 5. Reduction in cases due to interventions in models of COVID-19 epidemics under three intervention scenarios in ten geographical regions using the empirical and synthetic matrices. The reduction in cases in each of the three intervention scenario—20% physical distancing, 50% physical distancing, and lockdown.
Both synthetic and empirical matrices have complementary strengths and limitations. Empirical contact patterns are dependent on the study design and study population, and when the survey is administered. The synthetic contact matrices are constructed using proxies of contacts such as population and household age structures and country characteristics. However, the datasets used to develop these proxy measures (notably population age structure and DHS data) are generally much larger and more nationally representative than most empirical contact studies. To assess the robustness or consistency of the results under different mixing patterns, modellers should consider using multiple contact matrices constructed using different methods for sensitivity analyses.

Conclusion

In this study, we provide synthetic contact matrices for 177 geographical regions by updating our previous matrices with larger and more recent datasets on population age structure, household, school and workplace composition. The synthetic contact matrices reproduce the main features of the contact patterns in the out-of-sample empirically collected contact matrices.

Supporting information

S1 Text. Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era: Supplementary Material: Methods.

(SDOCX)

S2 Text. Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era: Supplementary Material: results of the household age matrices.

(SDOCX)

S3 Text. Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era: Supplementary Material: results of the country-specific age- and location-specific contact matrices.

(SDOCX)

S4 Text. Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era: Supplementary Material results of the comparisons with other contact matrices.

(SDOCX)

Acknowledgments

We thank Patrick Walker, Oliver Watson and Azra Ghani from Imperial College London, as well as other modellers from around the world, who provided feedback on the 2017 synthetic contact matrices.

The following authors were part of the Centre for Mathematical Modelling of Infectious Disease COVID-19 working group. Each contributed in processing, cleaning and interpretation of data, interpreted findings, contributed to the manuscript, and approved the work for publication: Christopher I Jarvis, Quentin J Leclerc, Jon C Emery, Gwenan M Knight, Amy
Gimma, Simon R Procter, Kathleen O’Reilly, Sophie R Meakin, Charlie Diamond, Stefan Flasche, Billy J Quilty, Anna M Foss, Thibaut Jombart, Katherine E. Atkins, Georgia R Gore-Langton, Adam J Kucharski, James W Rudge, Matthew Quaife, Arminder K Deol, Carl A B Pearson, C Julian Villabona-Arenas, Graham Medley, Alicia Rosello, Hamish P Gibbs, Samuel Clifford, Rein M G J Houben, David Simons, James D Munday, Megan Auzenbergs, Rachel Lowe, Joel Hellewell, Sam Abbott, Damien C Tully, Stéphane Huet, W John Edmunds, Yang Liu, Fiona Yueqian Sun, Oliver Brady, Sebastian Funk, Nikos I Bosse, Akira Endo, Timothy W Russell, Emily S Nightingale.

Author Contributions

Conceptualization: Kiesha Prem, Alex R. Cook, Mark Jit.

Data curation: Kiesha Prem, Kevin van Zandvoort.

Formal analysis: Kiesha Prem, Kevin van Zandvoort.

Funding acquisition: Mark Jit.

Investigation: Kiesha Prem, Kevin van Zandvoort, Petra Klepac, Rosalind M. Eggo, Nicholas G. Davies, Alex R. Cook, Mark Jit.

Methodology: Kiesha Prem, Kevin van Zandvoort, Petra Klepac, Rosalind M. Eggo, Nicholas G. Davies, Alex R. Cook, Mark Jit.

Project administration: Mark Jit.

Resources: Mark Jit.

Software: Kiesha Prem, Petra Klepac, Rosalind M. Eggo, Nicholas G. Davies.

Supervision: Petra Klepac, Alex R. Cook, Mark Jit.

Validation: Kiesha Prem, Kevin van Zandvoort.

Visualization: Kiesha Prem, Kevin van Zandvoort.

Writing – original draft: Kiesha Prem, Alex R. Cook, Mark Jit.

Writing – review & editing: Kiesha Prem, Kevin van Zandvoort, Petra Klepac, Rosalind M. Eggo, Nicholas G. Davies, Alex R. Cook, Mark Jit.

References

1. World Health Organization. Coronavirus Disease (COVID-19) Situation Reports. Available: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
2. Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020; 25. https://doi.org/10.2807/1560-7917.ES.2020.25.4.2000058 PMID: 32019669
3. Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020; 395: 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9 PMID: 31986261
4. WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19), 2020. Available: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
5. World Health Organization. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. Available: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations
6. Liu J, Liao X, Qian S, Yuan J, Wang F, Liu Y, et al. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, Shenzhen, China, 2020. Emerg Infect Dis. 2020; 26. https://doi.org/10.3201/eid2606.200239 PMID: 32125269
7. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2001316 PMID: 31995857

8. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020;0. https://doi.org/10.1016/S1473-3099(20)30144-4 PMID: 32171059

9. Abbott S, Hellewell J, Thompson R, al. et. Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts. Wellcome Open Research. 2020.

10. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020; 395: 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 PMID: 32014114

11. Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Heal. 2020; 8: e488–e496. https://doi.org/10.1016/S2214-109X(20)30074-7 PMID: 32119825

12. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Heal. 2020;0. https://doi.org/10.1016/S2468-2667(20)30073-6 PMID: 32220655

13. Davies NG, Kucharski AJ, Eggo RM, Gimma A, Edmunds WJ, Jombart T, et al. Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study. Lancet Public Heal. 2020;0. https://doi.org/10.1016/s2468-2667(20)30133-x PMID: 32502389

14. Clark A, Jit M, Warren-Gash C, Guthrie B, Wang HHX, Mercer SW, et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study. Lancet Glob Heal. 2020; 8: e1003–e1017. https://doi.org/10.1016/S2214-109X(20)30264-3 PMID: 32553130

15. Peak CM, Kahn R, Grad YH, Childs LM, Li R, Lipsitch M, et al. Individual quarantine versus active monitoring of contacts for the mitigation of COVID-19: a modelling study. Lancet Infect Dis. 2020. https://doi.org/10.1016/S1473-3099(20)30361-3 PMID: 32445710

16. Cowling BJ, Ali ST, Ng TWY, Tsang TK, Li JCM, Fong MW, et al. Impact assessment of non-pharmaceutical interventions against COVID-19 and influenza in Hong Kong: an observational study. medRxiv. 2020; 2020.03.12.20034660. https://doi.org/10.1101/2020.03.12.20034660

17. Wallinga J, Teunis P, Kretzschmar M. Using Data on Social Contacts to Estimate Age-specific Transmission Parameters for Respiratory-spread Infectious Agents. Am J Epidemiol. 2006; 164: 936–944. https://doi.org/10.1093/aje/kwj317 PMID: 16968663

18. Read JM, Edmunds WJ, Riley S, Lessler J, Cummings DAT. Close encounters of the infectious kind: Methods to measure social mixing behaviour. Epidemiology and Infection. 2012. pp. 2117–2130. https://doi.org/10.1017/S0950268812000842 PMID: 22687447

19. Wallinga J, Edmunds WJJ, Kretzschmar M. Perspective: human contact patterns and the spread of airborne infectious diseases. Trends Microbiol. 1999; 7: 372–377. https://doi.org/10.s0966-842x(99)01546-2 PMID: 10470046

20. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. Riley S, editor. PLoS Med. 2008; 5: e74. https://doi.org/10.1371/journal.pmed.0050074 PMID: 18366252

21. Hoang T, Coletti P, Melegaro A, Wallinga J, Grijalva CG, Edmunds JW, et al. A Systematic Review of Social Contact Surveys to Inform Transmission Models of Close-contact Infections. Epidemiology, Lipincott Williams and Wilkins; 2019. pp. 723–736. https://doi.org/10.1097/EDE.0000000000001047 PMID: 31274572

22. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput Biol. 2017; 13: e1005697. https://doi.org/10.1371/journal.pcbi.1005697 PMID: 28998249

23. Davies NG, Klepac P, Liu Y, Prem K, Jit M, CMMID COVID-19 working group, et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med. 2020; 26(8):1205–1211. https://doi.org/10.1038/s41591-020-0962-9 PMID: 32548624

24. Vervy R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020; 20: 669–677. https://doi.org/10.1016/S1473-3099(20)30243-7 PMID: 32240634

25. van Zandvoort K, Jarvis CI, Pearson CAB, Davies NG; CMMID COVID-19 working group, Ratnayake R, et al. Response strategies for COVID-19 epidemics in African settings: a mathematical modelling study. BMC Med. 2020; 18(1):324. https://doi.org/10.1186/s12916-020-01789-2 PMID: 33050951
26. Huang C, Wang Y, Li X, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 PMID: 31986264

27. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020; 323: 2052. https://doi.org/10.1001/jama.2020.6775 PMID: 32320003

28. Read JM, Lessler J, Riley S, Wang S, Tan LJ, Kwok KO, et al. Social mixing patterns in rural and urban areas of southern China. Proc R Soc B Biol Sci. 2014; 281: 20140268. https://doi.org/10.1098/rspb.2014.0268 PMID: 24789897

29. Dodd PJ, Looker C, Plumb ID, Bond V, Schaap A, Shanaube K, et al. Age- and Sex-Specific Social Contact Patterns and Incidence of Mycobacterium tuberculosis Infection. Am J Epidemiol. 2016;183. https://doi.org/10.1093/aje/kwv139 PMID: 26803665

30. Melegaro A, Fava E Del, Poletti P, Merler S, Nyamukapa C, Williams J, et al. Social Contact Structures and Time Use Patterns in the Manicaland Province of Zimbabwe. PLoS One. 2017; 12: e0170459. https://doi.org/10.1371/journal.pone.0170459 PMID: 28099479

31. Demographic and Health Surveys. The DHS Program—Demographic and Health Survey (DHS). Available: https://dhsprogram.com/What-We-Do-Survey-Types/DHS.cfm

32. United Nations Department of Economic and Social Affairs Population Division. World Population Prospects. 2019. Available: https://population.un.org/wpp/

33. International Labour Organization. Labour force by sex and age. Available: https://www.ilo.org/shinyapps/bulkexplorer45/?lang=en&segment=indicator&id=EAP_2EAP_SEX_AGE_NB_A

34. UNESCO Institute for Statistics. UIS Statistics. Available: http://data.un.org/

35. OECD. Teachers by age (indicator). 2020. https://doi.org/10.1787/93a1f9d-en

36. United Nations Department of Economic and Social Affairs Population Division. Urban and Rural Population by Age and Sex, 1980–2015. Available: https://www.un.org/en/development/desa/population/publications/dataset/urban/urbanAndRuralPopulationByAgeAndSex.asp

37. United Nations Statistics Division. United Nations Statistics Division—Demographic and Social Statistics. [cited 21 Jul 2020]. Available: https://unstats.un.org/unsd/demographic/sconcerns/densurb/densurbmethods.htm#D

38. International Labour Organization. Labour force participation rate by sex, age and rural / urban areas. Available: https://www.ilo.org/shinyapps/bulkexplorer11/?lang=en&segment=indicator&id=EAP_2WAP_SEX_AGE_GEO_RT_A

39. OECD. Differences in rural and urban schools”; student-teacher ratio and class size, 2015. OECD Publishing; 2018.

40. Social contact data | Zenodo. Available: https://zenodo.org/communities/social_contact_data/search?page=1&size=20

41. le Polain de Waroux O, Cohuet S, Ndazima D, Kucharski AJ, Juan-Giner A, Flasche S, et al. Characteristics of human encounters and social mixing patterns relevant to infectious diseases spread by close contact: A survey in Southwest Uganda. BMC Infect Dis. 2018; 18: 172. https://doi.org/10.1186/s12879-018-3073-1 PMID: 29642869

42. Funk S. socialmixr: Social Mixing Matrices for Infectious Disease Modelling. The Comprehensive R Archive Network. Available: https://cran.r-project.org/web/packages/socialmixr/index.html

43. Zhang J, Klepac P, Read JM, Rosello A, Wang X, Lai S, et al. Patterns of human social contact and contact with animals in Shanghai, China. Sci Rep. 2019; 9: 1–11. https://doi.org/10.1038/s41598-018-37186-2 PMID: 30626917

44. Leung K, Jit M, Lau EHY, Wu JT. Social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong. Sci Rep. 2017; 7: 1–12. https://doi.org/10.1038/s41598-016-0028-x PMID: 28127051

45. Béraud G, Kazmercziaik S, Beutels P, Levy-Bruhl D, Lenne X, Mielcarek N, et al. The French Connection: The First Large Population-Based Contact Survey in France Relevant for the Spread of Infectious Diseases. Chuang J-H, editor. PLoS One. 2015; 10: e0133203. https://doi.org/10.1371/journal.pone.0133203 PMID: 26176549

46. Kitu MC, Kinyanjui TM, Koech DC, Munywoki PK, Medley GF, Nokes DJ. Quantifying Age-Related Rates of Social Contact Using Diaries in a Rural Coastal Population of Kenya. Bornmann S, editor. PLoS One. 2014; 9: e104786. https://doi.org/10.1371/journal.pone.0104786 PMID: 25127257

47. Grijalva CG, Goeyvaerts N, Verastegui H, Edwards KM, Gil AI, Lanata CF, et al. A Household-Based Study of Contact Networks Relevant for the Spread of Infectious Diseases in the Highlands of Peru.
48. Ajelli M, Litvinova M. Estimating contact patterns relevant to the spread of infectious diseases in Russia. J Theor Biol. 2017; 419: 1–7. https://doi.org/10.1016/j.jtbi.2017.01.041 PMID: 28161415

49. Johnstone-Robertson SP, Mark D, Morrow C, Middelkoop K, Chiswell M, Aquino LDH, et al. Social Mixing Patterns Within a South African Township Community: Implications for Respiratory Disease Transmission and Control. Am J Epidemiol. 2011; 174: 1246–1255. https://doi.org/10.1093/aje/kwr251 PMID: 22071585

50. Horby P, Thai PQ, Hens N, Yen NTT, Mai LQ, Thoang DD, et al. Social Contact Patterns in Vietnam and Implications for the Control of Infectious Diseases. Munayco C, editor. PLoS One. 2011; 6: e16965. https://doi.org/10.1371/journal.pone.0016965 PMID: 21347264

51. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2018. Available: https://www.r-project.org/

52. Prem K, van Zandvoort K, Klepac P, Eggo RM, Davies NG, CMMID COVID-19 Working Group, et al. Analysis data and code for “Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era.” Zenodo; 2021. https://doi.org/10.5281/zenodo.4889500

53. Liu CY, Berlin J, Kiti MC, Fava E Del, Grow A, Zagheni E, et al. Rapid review of social contact patterns during the COVID-19 pandemic. medRxiv. 2021; 2021.03.12.21253410. https://doi.org/10.1101/2021.03.12.21253410

54. Jarvis CI, Van Zandvoort K, Gimma A, Prem K, Klepac P, Rubin GJ, et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 2020; 18: 124. https://doi.org/10.1186/s12916-020-01597-8 PMID: 32350060

55. Latsuzbaia A, Herold M, Berteremes J-P, Mossong J. Evolving social contact patterns during the COVID-19 crisis in Luxembourg. Shanman J, editor. PLoS One. 2020; 15: e0237128. https://doi.org/10.1371/journal.pone.0237128 PMID: 32760114

56. Zhang J, Litvinova M, Liang Y, Wang Y, Wang W, Zhao S, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science (80-). 2020; 368: 1481–1486. https://doi.org/10.1126/science.abb8001 PMID: 16707031

57. Coletti P, Wambua J, Gimma A, Willem L, Vercruysse S, Vanhoutte B, et al. CoMix: comparing mixing patterns in the Belgian population during and after lockdown. Sci Rep. 2020; 10: 21885. https://doi.org/10.1038/s41598-020-78540-7 PMID: 33318521

58. Kelley K, Clark B, Brown V, Sitzia J. Good practice in the conduct and reporting of survey research. International Journal for Quality in Health Care. 2003. pp. 261–266. https://doi.org/10.1093/intqhc/mzg031 PMID: 12803354

59. Beutels P, Shkedy Z, Aerts M, Van Damme P. Social mixing patterns for transmission models of close contact infections: Exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiol Infect. 2006; 134: 1158–1166. https://doi.org/10.1017/S0950268806006418 PMID: 16707031

60. Klepac P, Kissler S, Gog J. Contagion! The BBC Four Pandemic–The model behind the documentary. Epidemics. 2018; 24: 49–59. https://doi.org/10.1016/j.epidem.2018.03.003 PMID: 29576516

61. Smieszek T, Castell S, Barratt A, Cattuto C, White PJ, Krause G. Contact diaries versus wearable proximity sensors in measuring contact patterns at a conference: method comparison and participants’ attitudes. BMC Infect Dis. 2016; 16: 341. https://doi.org/10.1186/s12879-016-1676-y PMID: 27449511

62. Oszella L, Gesualdo F, Tizzoni M, Rizzo C, Pandolfi E, Campagna I, et al. Close encounters between infants and household members measured through wearable proximity sensors. PLoS One. 2018; 13: e0198733. https://doi.org/10.1371/journal.pone.0198733 PMID: 29879196

63. Cattuto C, den Broeck W, Barratt A, Colizza V, Pinton J-F, Vespiagnani A. Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks. Neylon C, editor. PLoS One. 2010; 5: e11596. https://doi.org/10.1371/journal.pone.0011596 PMID: 20657651

64. Ferretti L, Wyant C, Kendall M, Zhao L, Nurtay A, Abelero-Dürer L, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science (80-). 2020;368. https://doi.org/10.1126/science.abb6936 PMID: 32234805

65. Klepac P, Kucharski AJ, Conlan AJ, Kissler S, Tang M, Fry H, et al. Contacts in context: large-scale setting-specific social mixing matrices from the BBC Pandemic project. medRxiv. 2020; 2020.02.16.20023754. https://doi.org/10.1101/2020.02.16.20023754