Determination of accurate rest frequencies and hyperfine structure parameters of cyanobutadiyne, HC$_5$N

Thomas F. Giesen a,1, Michael E. Harding b,c,*, Jürgen Gauss b, Jens-Uwe Grabow d, Holger S.P. Müller a,*

a I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
b Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
c Institut für Physikalische Chemie und Elektrochemie, Lehrgebiet A, Leibniz Universität Hannover, Callinstr. 3-3A, 30167 Hannover, Germany
d Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany

ARTICLE INFO

Article info
Received 31 January 2020
In revised form 30 March 2020
Accepted 16 May 2020
Available online 28 May 2020

Keywords:
Microwave spectroscopy
Interstellar molecule
Cyanopolyynes
Hyperfine structure
Quantum Chemical calculation

ABSTRACT

Very accurate transition frequencies of HC$_5$N were determined between 5.3 and 21.4 GHz with a Fourier transform microwave spectrometer. The molecules were generated by passing a mixture of HC$_5$N and C$_2$H$_2$ highly diluted in neon through a discharge valve followed by supersonic expansion into the Fabry-Perot cavity of the spectrometer. The accuracies of the data permitted us to improve the experimental 14N nuclear quadrupole coupling parameter considerably and the first experimental determination of the 15N nuclear spin-rotation parameter. The transition frequencies are also well suited to determine in astronomical observations the local speed of rest velocities in molecular clouds with high fidelity. The same setup was used to study HC$_7$N, albeit with modest improvement of the experimental 14N nuclear quadrupole coupling parameter. Quantum chemical calculations were carried out to determine 14N nuclear quadrupole and spin-rotation coupling parameters of HC$_5$N, HC$_7$N, and related molecules. These calculations included evaluation of vibrational and relativistic corrections to the non-relativistic equilibrium quadrupole coupling parameters; their considerations improved the agreement between calculated and experimental values substantially.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Cyanopolyynes H(C=C)$_n$CN occur abundantly in space, in particular the shorter members. Molecules up to cyanoctatetrayne, HC$_8$N (n = 4), were detected [1]. The next longer member, HC$_7$N, has not yet been found in space [2]. Isotopic species with D or with one 13C were detected up to HC$_7$N [3], 15N isotopologs up to HC$_5$N [4], even all three isotopomers of HC$_5$N with two 13C were observed astronomically [5]. Measurements of the HC$_5$N species and the isotopomers with one 13C were frequently used to determine 13C/12C ratios in various objects, such as the protoplanetary nebula CRL618 [6,7] or in starless cores, where differences in the 12C/13C ratios were found [8].

Cyanobutadiyne, HC$_5$N, also known as cyanodiacetylene or pentadiynenitrile, was detected as early as 1976 toward the high-mass star-forming region Sagittarius B2 close to the Galactic center [9]. It was found soon thereafter in the dark and dense core Heile's Cloud 2 [10], nowadays better known as Taurus Molecular Cloud 1 or short as TMC-1 [11]. Cyanohexatriyne, HC$_6$N, also known as cyano-triacylene or heptatriynenitrile, was discovered in that source [12]. Both molecules were also found early in the circumstellar envelope of the famous carbon rich asymptotic giant branch star CW Leonis, also referred to as IRC + 10216 [13].

Molecules up to HC$_7$N (n = 8) were investigated by rotational spectroscopy [14]. Alexander et al. were the first to investigate the rotational spectrum of HC$_5$N [15]. They assigned ground state rotational spectra of eight isotopic species in the microwave (MW) region from which they determined structural parameters. They also determined the 14N nuclear quadrupole coupling parameter eQq(N) and the dipole moment of the main isotopic species. Winnewisser et al. improved eQq(N) [16] and expanded the assignments into the millimeter wave (mmW) region [17]. Bizzocchi et al. recorded the spectra of HC$_5$N and DC$_5$N in the mmW and sub-mmW regions [18]. Assignments for these two isotopologs were extended to 460 GHz. They also analyzed spectra of singly substituted isotopic variants of both isotopologs containing one 13C or 15N, and derived from the rotational parameters a semi-experimental equilibrium structure.
Kirby et al. analyzed the ground state rotational spectrum of HC$_5$N in the MW region [19]. McCarthy et al. subjected the main isotopic species as well as all singly substituted ones to a Fourier transform (FT) MW spectroscopic study and determined $eQq(N)$ for all of them [20]. Similar studies were carried out for HC$_6$N and HC$_7$N, and ground state effective structural parameters determined for all three molecules. Soon thereafter, Bizzocchi et al. extended the assignments of the main isotopic species in its ground and several low-lying vibrational states into the mmW region [21].

The aim of the present work is twofold. The first target was the improvement of the hyperfine structure (HFS) parameters of HC$_5$N and potentially of HC$_7$N, and secondly, we wanted to investigate how accurately HFS parameters can be evaluated by high-level quantum-chemical calculations, and in particular trends among related molecules. An earlier study of isotopic species associated with DC$_3$N showed that very good agreement can be achieved for the nuclear quadrupole parameters in high-accuracy coupled-cluster calculations by employing large basis sets together with vibrational corrections [22].

2. Experimental details

Spectra between 5 and 22 GHz were recorded at the Leibniz Universität in Hannover employing a supersonic-jet Fourier transform microwave (FTMW) spectrometer [23] in the coaxially oriented beam-resonator arrangement (COBRA) [24] which combines a very sensitive setup with an electric discharge nozzle [25]. Cyanobutadiyne was generated by passing a mixture of equal amounts of 1% HC$_5$N in neon and 1% C$_2$H$_2$ in neon at a pressure of \sim100 kPa through the discharge nozzle and expanding the products into the cavity of the spectrometer. Cyanohexatriyne was obtained initially by the same procedure and subsequently by modifying the ratio of diluted HC$_5$N and C$_2$H$_2$ from 1 : 1 to 1 : 2. Uncertainties of frequencies of 0.3 kHz and below can be achieved under favorable conditions [26,27].

3. Observed spectra and determination of spectroscopic parameters

Prediction of the microwave spectra of HC$_5$N and HC$_7$N were very reliable based on earlier data [16,18,20,21], Pickert’s SPCAT and SPPFIT programs [28] were used for prediction and fitting of the spectra, respectively. Each rotational level of HC$_5$N and HC$_7$N with $J > 0$ is split by spin coupling caused by the 14N nucleus ($I = 1$) into three HFS components. The rotational and spin angular momenta are coupled sequentially: $J + I(^{14}$N) = F. At higher values of j, the strong HFS components are the ones conserving the spin orientation, i.e. those with $\Delta F = \pm j$. The very narrow linewidths of a few kilohertz for an isolated line permits the corresponding HFS components to be resolved for all investigated transitions of HC$_5$N and HC$_7$N. However, the high sensitivity of the present HC$_5$N data allowed us to observe the weaker spin-reorienting HFS components with $\Delta F = 0$ for all transitions and the even weaker ones with $\Delta F = \pm j$ for the lowest two transitions ($J = 2 – 1$ and $3 – 2$). The transition frequencies obtained in the present investigation are summarized in Table 1 together with their quantum number assignments, uncertainties, and differences between experimental frequencies and those calculated from the global fit. The signal-to-noise ratios of S/N of the spectral recordings of HC$_5$N were very high such that almost all lines were accurate to 0.2 kHz (1σ), see also Refs [26,27].

The very high quality of the HC$_5$N data prompted us to try to improve the data situation also for HC$_7$N. We recorded first data for the $J = 12 – 11$ and $6 – 5$ transitions which had been studied earlier [20]. The S/N were considerably lower than in the case of HC$_5$N, as was expected. Therefore, only $\Delta F = \pm j$ HFS components were detected with reasonable S/N even after long integration. In addition to remeasure transition frequencies of these two transitions, we recorded the $J = 5 – 4$ transition at 5640 MHz, which was the lowest in frequency available at that time. The HC$_5$N transition frequencies obtained in the present study are given with additional information in Table 2. The accuracies were 1 kHz (1σ) in all instances.

Our present HC$_5$N and HC$_7$N data were fit together with previous data. Since the number of spectroscopic parameters is small with respect to the total number of lines of each molecule, the quality of the reproduction of the lines of each source is a good indication for the accuracies of the lines. These were 10 kHz for the hyperfine free MW center frequencies from Alexander et al. [15] and 7 kHz for the mmW data from Winnewisser et al. [17] and for the mmW and sub-mmW data from Bizzocchi et al. [18] in the case of HC$_5$N. The accuracies were 1 kHz for the MW transition frequencies with HFS splitting from McCarthy et al. [20] and 10 kHz for those without HFS splitting in the MW region from Kirby et al. [19] and those in the mmW region from Bizzocchi et al. [21] for the HC$_7$N molecule. The resulting spectroscopic parameters of HC$_5$N and HC$_7$N are given in Table 3 together with the most recent previous data.

The line lists and spectroscopic parameters are available as supplementary material to this article; the line, parameter, and fit files along with additional files are deposited in the data section of the Cologne Database for Molecular Spectroscopy [29].

The large body of very accurate HC$_5$N transition frequencies from the present study not only led to an improvement in $eQq(N)$ by more than two orders of magnitude but also resulted in a very well determined value for the nuclear magnetic spin-rotation coupling parameter C, the coefficient of \mathbf{IJ}. In addition, the uncertainties of B and D got reduced; the correlation of these parameters with H is likely responsible for the improvement in the accuracy of H. The differences in the uncertainties of $eQq(N)$ for HC$_5$N between present and previous data are modest; and we should point out that part of the improvement is caused by assigning an uncertainty of 1 kHz to the earlier FTMW data [20] whereas 2 kHz were reported initially. The nuclear spin-rotation parameter C could not be determined for HC$_5$N, therefore, it was kept fixed to the value determined in a quantum chemical calculation. This treatment led to a change in $eQq(N)$ from -4.299 ± 0.050 MHz to -4.275 ± 0.050 MHz. The smaller uncertainty in the earlier B value [21] is caused by the fact that in that work unsplit (i.e. HFS free) transition frequencies were derived for the FTMW data [20] to which much smaller effective uncertainties were assigned. A more detailed discussion of the HFS parameters is presented in Section 6.

4. Application in astronomical observations

Emission lines of HC$_5$N may be prominent in dense cold molecular clouds such as TMC-1 [30]. Therefore, the very accurate rest frequencies from this and previous studies may be used to determine the local speed of rest in such a cloud with great accuracy, even more so as transitions occur with a spacing of \approx2660 MHz and because the 14N HFS splitting is usually resolved at low values of J. Table 4 lists some molecules which are often abundant in dense molecular clouds and have an at least moderately dense rotational spectrum and rest frequencies known very accurately at least in part. HC$_5$N in its ground vibrational and low-lying vibrational states [31] or its isotopomers with one 13C [32] or with D...
observed transition frequencies and those calculated from the global fit.

Rotational transitions of HC₇N with quantum numbers

and those calculated from the global fit.

Rotational transitions of HC₅N with quantum numbers

Table 1

J − J'	F' − F''	Frequency	Unc.	O–C
2 − 1	2 − 2	5324.04642	0.20	0.05
1 − 0	5324.26054	0.20	−0.06	
2 − 1	5325.32957	0.20	−0.24	
3 − 2	5325.42182	0.20	0.03	
1 − 2	5326.18468	0.20	0.20	
1 − 1	5327.46808	0.20	0.16	
3 − 3	7986.61752	0.20	0.03	
2 − 1	7987.77870	0.20	0.02	
3 − 2	7987.99286	0.20	−0.05	
4 − 3	7988.04414	0.20	0.00	
2 − 3	7988.54163	0.20	0.27	
2 − 2	7989.16889	0.20	0.11	
4 − 4	10649.22745	0.20	0.27	
3 − 2	10650.56191	0.20	0.06	
4 − 3	10650.65418	0.20	0.34	
5 − 4	10650.68565	0.20	0.04	
3 − 3	10652.48570	0.20	−0.02	
5 − 5	13311.85257	0.20	0.06	
4 − 4	13311.26074	0.20	0.11	
5 − 4	13313.12084	0.20	0.21	
6 − 5	13313.33461	0.20	0.00	
4 − 4	13315.09264	0.20	0.11	
6 − 6	15974.48392	0.20	−0.29	
5 − 5	15975.93351	0.20	−0.08	
6 − 6	15975.96655	0.20	0.25	
7 − 6	15975.98302	0.20	−0.03	
5 − 5	15977.71410	0.20	0.15	
7 − 6	18637.11750	0.20	−0.05	
6 − 6	18638.39378	0.20	0.12	
7 − 6	18638.61629	0.20	−0.10	
8 − 7	18638.62933	0.20	0.06	
6 − 6	18640.34150	0.20	−0.11	
7 − 6	21299.74993	0.50	0.23	
8 − 7	21301.24497	0.20	0.30	
9 − 8	21301.26134	0.20	−0.08	
7 − 7	21302.96959	0.20	−0.30	

5. Quantum chemical calculations

Calculations for the equilibrium structure as well as the ¹⁴N nuclear quadrupole and spin-rotation coupling parameters were performed at the coupled-cluster (CC) level [47] using the coupled-cluster singles and doubles (CCSD) approach augmented by a perturbative treatment of triple excitations (CCSD(T)) [48–51] together with correlation consistent core-polarized valence (cc-pCVXZ, X = T, Q, 5, 6) [52–54] basis sets. In the calculations of the spin-rotation tensors, perturbation-dependent basis functions, as described in Ref. [55,56], were used to ensure fast basis-set convergence.

Molecular equilibrium structures were obtained at the CCSD(T)/cc-pCVQZ level of theory, which was shown to yield molecular equilibrium structural parameters of very high quality for molecules carrying first-row atoms [57], which applies as well for the HCN [57] and HC₅N [22] systems studied here. Following the extensive basis set study presented in Ref. [22] for the equilibrium structure and the nuclear quadrupole as well as spin-rotation coupling parameters of HCN₂ and DC₃N₂ we apply a similar procedure here. The ¹⁴N nuclear quadrupole coupling parameters of HCN, HCN₂, DC₃N, HCN₃, and HC₅N were determined at the CCSD(T)/cc-pCVQZ level augmented by relativistic corrections computed at the CCSD(T)/cc-pCVQZ level via second-order direct perturbation theory (DPT) [58] and vibrational corrections evaluated using a perturbational approach (VPT2) [59] as described in Ref. [60] for shieldings. Force fields at the MP2/cc-pVTZ level and nuclear quadrupole coupling parameters at the CCSD(T)/cc-pCVTZ level were

[22] have larger rotational spacings, but may be used over much wider frequency and rotational temperature ranges. The same applies to propyne [33] and methyl cyanide [34–36]. Carbonyl sulfide [37,38] can be quite abundant in dense parts of molecular clouds. Sulfur dioxide is more suited for spectra of hot cores and hot corinos, the warm and dense parts of high- and low-mass star-forming regions, respectively. Its rotational spectrum [39–42] was also employed to calibrate rotational spectra of, e.g., H₂CS [43,44]. Methanol is very abundant in many different types of molecular clouds, but most reported transitions frequencies have accuracies in the range of 50 kHz to 200 kHz; only limited data are available with better accuracies [40,45,46].
used for some of the calculations\[63\]. All results of calculations were based on the many-body code MRCC\[67\] interfaced to CFOUR.\[67\] The parallel version of CFOUR was used for correlating all electrons. A value of 20.44(3) mb was used for the 14N nuclear quadrupole moment\[61\].

The resulting quantum chemically calculated 14N nuclear quadrupole coupling parameters of HCN to HC5N are summarized in Table 5 together with experimental values. The calculated and experimental 14N nuclear spin-rotation parameters are given in Table 6.

6. Discussion of hyperfine parameters

The nuclear quadrupole coupling parameters are usually interpreted in terms of bonding of the respective atom\[58,69\]. It is not surprising that the 14N value of HCN is considerably different from that of HC5N and DC5N, as shown in Table 5. Unsurprisingly, the difference is small between HC5N and HC7N, and very close to zero between HC3N and HC5N. The calculated non-relativistic equilibrium values differ slightly from the experimental ground state val-

Table 3

Ground state spectroscopic parameters\(^a\) (MHz) of HC5N and HC7N in comparison to the most recent previous data.

Parameter	Present	Previous\(^b\)	Present	Previous\(^c\)
B	1331.332691 (4)	1331.332687 (20)	564.0011226 (75)	564.0011225 (44)
D × 10\(^6\)	30.1059 (8)	30.1050 (15)	4.04117 (55)	4.04108 (54)
H × 10\(^{12}\)	1.642 (19)	1.635 (29)	0.163 (10)	0.163 (10)
eQq(N)	–4.27680 (14)	–4.242 (30)	–4.275 (50)	–4.22 (16)
C × 10\(^{3}\)	0.2896 (123)			

\(^a\) Numbers in parentheses are one standard deviation in units of the least significant figures. The parameter C of HC5N was kept fixed to the value of a quantum chemical calculation.

\(^b\) B, D, H from Ref. \[18\]; eQq(N) from Ref. \[16\].

Table 4

Molecular species with a rich rotational spectrum suitable to determine the local speed of rest with high precision, approximate upper frequency v (GHz) for a certain accuracy, approximate accuracy Acc. (kHz) and references Ref. and comments.

Molecule	v	Acc.	Ref. and comments
HC5N	22	0.2	This work.
HC5N	500	7	\[18\] and references therein.
HC5N	120	1.0	\[31\].
HC5N	900	10	\[31\] and references therein; including several excited states.
HC5N	620	10–20	\[32\]; isotopic species with 13C.
CH3CCH	720	0.5	\[33\]; K < 12.
CH3CN	800	1.0	\[34\]; K < 12.
CH3CN	1500	20–30	\[35\]; v2 < K and l < 12.
CH3CN	12000	20–50	\[36\]; isotopic species with 13C, K < 9.
OCS	520	1.0	\[37,38\]; better than 0.1 kHz for several lines.
SO2	120	2.0	\[39–41\]; v2 ≤ 1; also, v2 > 0 of O15O2, many lines.
SO2	2000	10–30	\[42\]; v2 ≤ 1; several lines; many better than 50 kHz.
CH3OH	120	1–10	\[40,45,46\] and references therein; selected lines, possibly up to 200 GHz.

Table 5

Quantum chemically calculated non-relativistic equilibrium nuclear electric quadrupole parameters eQq(N)\(^e\) (kHz) of HCN, HC5N, DC5N, HCN5, and HC5N; relativistic (Rel.) and vibrational (Vib.) corrections, and their sum (kHz) in comparison to experimental ground state parameters and difference O–C (kHz) between experimental and calculated values.

Molecule	eQq(N)\(^b\)	Rel.\(^c\)	Vib.\(^d\)	Sum	Exp.\(^f\)	O–C
HCN	–4668.9	1.8	–32.2	–4694.9	–4707.83 (6)\(^g\)	–8.4
HCN\(^h\)	–4344.5	3.5	21.0	–4320.0	–4319.24 (1)\(^h\)	0.8
DC5N	–4344.5	3.5	22.6	–4318.3	–4318.03 (30)\(^h\)	0.3
HC5N	–4326.0	3.6	41.7	–4280.7	–4276.80 (14)\(^h\)	3.9
HC5N\(^h\)	–4326.2	3.6	52.3	–4270.3	–4275.50\(^h\)	0.7

\(^a\) All quantum chemical results from this work; CCSD(T)/cc-pCVQZ structural parameters were used; see also Section 5 for further details. Sources of experimental data are given separately. Numbers in parentheses of experimental data are one standard deviation in units of the least significant figures.

\(^b\) Calculated at the CCSD(T)/cc-pCVQZ level.

\(^c\) Calculated at the CCSD(T)/cc-pCVQZ level using second-order direct perturbation theory.

\(^d\) Calculating employing MP2/cc-pVTZ for the required force field and CCSD(T)/cc-pVTZ for the nuclear electric quadrupole parameters.

\(^e\) Ref. \[70\].

\(^f\) Ref. \[71\].

\(^g\) Ref. \[22\].

\(^h\) This work.
ues. The calculated vibrational corrections are modest, on the order of one percent. Relativistic corrections are even smaller, as may be expected for a molecule containing only light atoms, but are not negligible at the level with which most of the experimental values have been determined. The agreement between calculated and experimental ground state values is excellent for HCN and DCN and very good for all others. The agreement in the case of HC$_3$N needs to be taken with some caution as the uncertainty of the experimental value is one order of magnitude larger than the deviation. Nevertheless, the value of -4275 kHz, determined with keeping the nuclear spin–rotation parameter fixed at the value calculated by quantum chemical means, fits the trend better than the value -4299 kHz without this parameter in the fit, even though both values are compatible within the experimental uncertainties.

The agreement between calculated equilibrium nuclear spin–rotation parameters and the experimental ground state values in Table 6 is very good. The very small deviations for HCN and HC$_3$N may well be caused by the neglect of vibrational contributions; their determination could not be carried out with the programs at our disposal.

While the differences between calculated and experimental nuclear quadrupole coupling parameters are relatively small, we note that this is most likely due to error compensation. The computed 14N nuclear electric quadrupole parameters are found to depend sensitively on the equilibrium structure used. Moreover, they show very slow convergence with respect to basis set size and correlation treatment, which will be discussed in the following.

Although structures obtained at the CCSD(T)/cc-pCVQZ level are quite close to equilibrium structures derived from experiment [57], a shift in the 14N value of HCN by -5.0 kHz is obtained at the CCSD(T)/cc-pCV5Z level upon going from the CCSD(T)/cc-pCVQZ equilibrium structure (r_e(CH) = 106.576 pm, and r_e(CN) = 115.394 pm) to the equilibrium structures derived from experiment (r_e(CH) = 106.501(8) pm, and r_e(CN) = 115.324(2) pm) [72]. It is assumed that similar deviations would be found if more accurate equilibrium structures would be available for HC$_3$N, HC$_5$N, and HC$_7$N. We would like to emphasize here that these corrections are rather small in relative terms, though not negligible in comparison with experimental accuracy, which is important to realize for the discussion that follows. Furthermore, the uncertainty of the value of the 14N quadrupole moment (20.44 mb) is $±0.03$ mb, which translates roughly to 0.15% or values between $±6.9$ and $±6.3$ kHz for the molecules under study.

In the cases of HCN and HC$_3$N, it was possible to evaluate the equilibrium 14N values with an even larger basis. Separating the total 14N value into contributions from Hartree–Fock (HF) and CCSD(T) reveals on the one hand that the HF contribution still changes by -12.7 kHz and -12.0 kHz when increasing the basis set quality from cc-pCVQZ to cc-pCV6Z for HCN and HC$_3$N, respectively. On the other hand, the correlation contribution at this level changes from cc-pCVQZ to cc-pCV6Z by less than 1 kHz in the same direction. An equal shift of -12.0 kHz was found for HC$_5$N at the HF level by increasing the basis set level from cc-pCVQZ to cc-pCV6Z.

Considering higher-level correlation effects beyond CCSD(T) by employing fc-CCSDT/cc-pVTZ and fc-CCSDTQ/cc-pVDZ computations shows corrections that differ in sign but also in magnitude. The difference between fc-CCSDT/cc-pVTZ and fc-CCSDTQ/cc-pVTZ is found to be -10.7 and -13.1 kHz for HCN and HC$_3$N, respectively. However, the corresponding differences between fc-CCSDTQ/cc-pVDZ and fc-CCSDT/cc-pVDZ are found to be about twice as large and positive with values of $+20.5$ kHz for HCN and $+24.3$ kHz for HC$_3$N.

Although the relativistic corrections obtained at the CCSD(T) level via second-order direct perturbation theory are relatively small, they are overestimated for all molecules but HCN by about 40% if they are evaluated employing the smaller cc-pCVTZ basis set. In the case of HCN, they are overestimated by about 70% if the smaller basis is employed. However, for HCN the change when going from cc-pCVQZ to cc-pCV5Z is only -0.2 kHz (about 10%).

The vibrational correction obtained using VPT2 at the MP2/cc-pVTZ level for the required force field and at the CCSD(T)/cc-pCVTZ level for the nuclear quadrupole coupling parameters could be improved for HCN to CCSD(T)/cc-pCVQZ for the force field and CCSD(T)/cc-pCV5Z for the nuclear quadrupole coupling, which resulted in a modest change of -0.6 kHz. For HC$_3$N/DC$_3$N, improved VPT2 computations at the CCSD(T)/cc-pCVQZ level yielded vibrational corrections that are 5.3/5.1 kHz smaller than those reported in Table 5.

Summarizing all the previously mentioned improvements for HCN, a total correction of -9.6 kHz is obtained, which would reduce the difference between observed and calculated from -8.4 kHz to $+1.2$ kHz. For HC$_3$N/DC$_3$N total corrections of -6.9–-6.7 kHz would be obtained, while the correction due to the uncertainty in the equilibrium structure remains unknown.

Since the discussed corrections can currently not be applied consistently to all molecules under study, it has to be assumed that similar compensation effects hold for the 14N nuclear quadrupole coupling parameters of HC$_3$N and HC$_5$N, which is supported by the too good agreement with experiment observed.

With respect to the 14N spin–rotation parameters, only little variations of the CCSD(T) results are found when increasing the basis set size. When going from cc-pCVQZ to cc-pCV5Z, changes of -0.028 and 0.004 kHz are found for HCN and HC$_3$N, respectively. Employing again fc-CCSDT/cc-pVTZ and fc-CCSDTQ/cc-pVDZ computations to estimate the higher-level correlation effects in HCN, which has the largest spin–rotation parameter value, changes of $+0.022$ and -0.029 kHz are found for CCSDT and CCSDTQ, respectively, which almost cancel each other. However, comparing the resulting corrected values of 10.001 kHz (HCN) and 0.990 kHz (HC$_3$N) with experiment, only an improvement for the value of HCN is observed, cf. Table 6.

7. Conclusions

Accurate transition frequencies of HCN and HC$_3$N were determined employing Fourier transform microwave spectroscopy. These data led to improvements of the spectroscopic parameters. In particular, we improved the accuracy of the 14N nuclear quadrupole coupling parameter of HCN considerably and that of HC$_3$N slightly. In addition, we determined for the first time an experimental value of the nuclear 14N nuclear spin–rotation parameter of HCN. Our quantum chemical calculations were able to reproduce the 14N hyperfine parameter of HCN to HC$_3$N very well. Vibrational corrections to nuclear quadrupole coupling parameters were crucial and relativistic corrections were important to reach nearly the accuracies with which these parameters were determined experimentally. Inclusion of a calculated, very small nuclear spin–rotation value of HCN had a remarkable effect on the value of the nuclear quadrupole coupling parameter. Finally, we pointed out that the HC$_5$N rest frequencies may be useful for determining the local speed of rest in dense molecular clouds if these lines are sufficiently strong. Other examples of molecular species with comparatively rich rotational spectra have been mentioned in addition.
CRediT authorship contribution statement

Thomas F. Giesen: Investigation, Methodology, Writing - review & editing. Michael E. Harding: Investigation, Methodology, Writing - original draft, Writing - review & editing. Jürgen Gauss: Resources, Writing - review & editing. Jens-Uwe Grabow: Resources, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We are grateful to Peter Förster for initial measurements on HCN, to Holger Spahn for participation during the final experiments, and to Prof. Axel Klein and his group for preparing the isotopologues, and to Prof. Peter Förster for initial measurements on HCN, to Holger Spahn for participation during the final experiments, and to Prof. Axel Klein and his group for preparing the isotopologues. Additional funding was allocated by the Labouratoire Européen Associé de Spectroscopie Moléculaire 'LEA-HiRes' for financial support. Additional funding was allocated by the Deutsche Forschungsgemeinschaft (DFG), in Cologne also within the Sonderforschungsbereich (SFB) 494. Further support was provided by the Länder Nordrhein-Westfalen, Niedersachsen, and Hessen. The work in Mainz was supported by the DFG via grant GA 370/6-2 within the priority program SPP 1573. Our research was provided by the Länder Nordrhein-Westfalen, Niedersachsen, and Hessen. The work in Mainz was supported by the DFG via grant GA 370/6-2 within the priority program SPP 1573. Our research was provided by the Länder Nordrhein-Westfalen, Niedersachsen, and Hessen. The work in Mainz was supported by the DFG via grant GA 370/6-2 within the priority program SPP 1573. Our research was provided by the Länder Nordrhein-Westfalen, Niedersachsen, and Hessen.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jms.2020.111303.

References

[1] N.W. Broten, T. Oka, L.W. Avery, J.M. MacLeod, H.W. Kroto, The detection of HCN in interstellar space, Astrophys. J. Lett. 223 (1978) L105–L107, https://doi.org/10.1086/182739.
[2] R.A. Loomis, C.N. Shingledecker, G. Langston, B.A. McGuire, N.M. Dillhomph, A.M. Burkhardt, J. Corby, S.T. Booth, P.B. Carroll, B. Turner, A.J. Remijan, HCN detection of HCN towards TMC-1: constraining the chemistry of large carbon-chain molecules, Mon. Not. R. Astron. Soc. 463 (2016) 4175–4183, https://doi.org/10.1093/mnras/stw2302. arXiv:1609.02570.
[3] A.M. Burkhardt, E. Herbst, S.V. Kalesnik, M.C. McCarthy, A.J. Remijan, B.A. McGuire, Detection of HCN and HCN isotopologues in TMC-1 with the Green Bank Telescope, Mon. Not. R. Astron. Soc. 474 (2018) 5068–5075, https://doi.org/10.1093/mnras/stx2972. arXiv:1711.07405.
[4] K. Tanimichi, M. Saito, First detection of HCN 18N in the interstellar medium, Publ. Astron. Soc. Jpn. 69 (2017) L7, https://doi.org/10.1093/pasj/psx065. arXiv:1706.08662.
[5] D.R. Schmidt, L.M. Ziurys, Exotic carbon chemistry in a planetary nebula: The unusual case of K4–47, Astrophys. J. Lett. 881 (2) (2019) L38. https://doi.org/10.3847/2041-8213/ab6361.
[6] F. Wyrowski, P. Schilke, S. Thorwirth, K.M. Menten, G. Winnewisser, Physical conditions in the proto-planetary nebula CRL 618 derived from observations of vibrationally excited HCN, Astrophys. J. 586 (1) (2003) 344–355, https://doi.org/10.1086/376763. arXiv:astro-ph/021157.
[7] J.R. Pardo, J. Cernicharo, Molecular abundances in CRL 618, Astrophys. J. 654 (2) (2007) 978–987. https://doi.org/10.1086/509568.
[8] K. Taniguchi, H. Ozeki, M. Saito, 13C isotopic fractionation of HCN in two starless cores: L1521B and L134N (L183), Astrophys. J. 846 (1) (2017) 46. https://doi.org/10.3847/1538-4357/aa8a2b. arXiv:1707.08267.
[9] L.W. Avery, N.W. Broten, J.M. MacLeod, T. Oka, H.W. Kroto, Detection of the heavy interstellar molecule cyanodiacetylene, Astrophys. J. Lett. 205 (1976) L173–L175, https://doi.org/10.1086/182117.
[10] L.T. Little, P.W. Riley, D.N. Matheson, Detection of the J = 9–8 transition of interstellar cyanodiacetylene, Mon. Not. R. Astron. Soc. 181 (1977) 339–353. arXiv:10.1093/mnras/181.1.33P.
[11] E. Churchwell, G. Winnewisser, C.M. Walmsley, Molecular observations of a possible proto-solar nebula in a dark cloud in Taurus, Astron. Astrophys. 67 (1978) 139–147.

T.F. Giesen et al. / Journal of Molecular Spectroscopy 371 (2020) 111303
