Rajdeep (IET 17713): A New Rainfed Lowland High Yielding Rice Variety for Semideep Situation

Indrani Dana¹, Sitesh Chatterjee
Rice Research Station, Government of West Bengal, Department of Agriculture, Hooghly, Chinsurah-712 102, West Bengal, India.

Received: May 2021
Accepted: June 2021

ABSTRACT
In eastern India, more than 13.0 million ha of rice lands are affected by excess water and periodically suffer from flash floods and complete submergence. Most of the traditional and adapted rice varieties of this situation are low yielders. To overcome these problems the high yielding rice variety (HYV), Rajdeep (IET 17713) has been developed by Rice Research Station, Government of West Bengal, Chinsurah, Hooghly as high yielding rice variety for semideep water situation. Field experiment was conducted to evaluate the performance of promising semideep water rice (Oryza sativa L.) genotypes under lowland situation during wet season of 2002-2013. Performance of Rajdeep, semideep water rice was better and therefore it was released. It is tolerant to sheath blight, sheath rot diseases and stem borer, leaf folder insect-pests. The high yielding semideep rice variety, Rajdeep exhibited superiority over national check (Sabita), regional check (Purnendu) and local check tested in different locations under All India Coordinated Rice Improvement Project (AICRIP) trials during kharif, 2002-2003 conducted by ICAR-Indian Institute of Rice Research, Hyderabad, India. This variety was also tested in multi-locational yield trials (2003-2013) along with check variety Swarna-Sub 1/ Bhudeb at different locations of West Bengal. After testing at national level as well as at state level, based on yield performance of the variety, the HYV semideep rice variety Rajdeep was released and notified by Government of India in the Gazette of India vide Notification No. S.O. 1007(E) on 30th March, 2017.

Key words: HYV, IET 17713, Rainfed lowland rice, Rajdeep, Semideep rice.

INTRODUCTION
In recent years, a field planted or sown with semideep or deepwater rice variety may face a more favourable situation of intermediate or shallow lowland (Rautaray, 2006). Thus, there is a need to screen the semideep or deepwater rice lines for their better performance in favourable situation to develop a high yielding rice under this situation. Earlier works (Datta and Bannerjee, 1980) on this aspect revealed that traditional deepwater rice varieties exhibited better growth habit and yield attributes under deepwater than under normal conditions. However, information is meager regarding the performance of newly developed semideep or deepwater rice genotypes under favourable situation of intermediate lowland.

Rainfed lowland rice accounting for nearly 40% of the rice area in India (Khush et al., 1998). During the wet season (kharif), 30% of the rice-growing area comes under the purview of rainfed lowlands (Dana and Chatterjee, 2012). In eastern India, 13 million ha (approx.) of rice lands are unfavourably affected by excess water and periodically suffer from flash floods and complete submergence. The average yield of rice in the semideep water ecosystem (41-75 cm) is less than 2 tonnes ha⁻¹ compared with 4 tonnes ha⁻¹ observed in the irrigated ecosystem (Mallik et al., 2003). In eastern India, ~13 million ha of rice lands are unfavourably affected by excess water and periodically suffer from flash-floods and complete submergence. Improvement of germplasm is likely the best option to withstand submergence and stabilize productivity in these environments (Sarkar et al., 2006). Most of the traditional and adapted rice varieties of that situation are low yielders. To mitigate the above problems the high yielding rice variety, Rajdeep has been developed for semideep situation.

MATERIALS AND METHODS
Rajdeep, IET 17713 was developed through hybridization between widely adapted variety for semideep situation, Sabita and IR 57540-8 (developed by IRRI) followed by pedigree method of selection. Sabita is a selection from landrace Boyen. This variety can tolerate stagnant flooding up to 40-70 cm of water depth. IR 57540-8 is a high yielding line of IRRI germplasm, whose parentage is IR 5-114-3-1-2//IR 38699-49-3-1-2//IR 41389-20-1-5. The variety was developed at Rice Research Station (at 22°52´N latitude and 88°24´E longitude and at an altitude of 8.6 m.), Government of West Bengal, Chinsurah, Hooghly, West Bengal.

The variety Rajdeep was first nominated to National Semi Deep Water Screening Nursery (NSDWSN) trial during 2002 under All India Co-ordinated Rice Improvement Project

*Corresponding author’s Email: sitesh.chatt@gmail.com
¹Pulses and Oilseeds Research Station, Government of West Bengal, Murshidabad-742 101, India.
Yield performance and morphological indices of Rajdeep (IET 17713) in different locations of India in kharif, 2002.

Variety	Grain yield (kg ha⁻¹) (Mean of 8 locations in India)	Yield increase % over check varieties	Days to 50% flowering (Mean of 8 locations in India)	Panicles sq m⁻¹ (Mean of 3 locations in India)	Plant height (cm) (Mean of 7 locations in India)
Rajdeep	3531	-	125	214	109
Sabita (NC)	3207	10.10	123	221	146
Purnendu (RC)	3117	13.28	132	173	143
Local check (LC)	3111	13.52	128	149	132

NC: National check; RC: Regional check.

(Source: DRR Annual Progress Report, 2002, Varietal Improvement Vol. 1, pp. 1.78-1.81).
(Table 5). It had high head rice recovery (HRR) with 66.1% with medium slender grains (Table 5). It had stiff culm and does not lodge at maturity. The plants of the said variety had erect flag leaf standing over panicle so that birds could not damage the matured grains.

Grain quality characteristics
The test weight of awn less grain of Rajdeep was 20.0-20.5 g (Table 6). The cooking quality of the parboiled rice was also tested amongst the farmers and the results showed that the taste, colour, softness and non-stickiness characters of the variety were very much preferred by the farming community. This variety was preferred by the farmers because it did not lodge and shatter at maturity. The most conspicuous feature was that the plants of Rajdeep stayed green up to the maturity.

Table 2: Yield performance of Rajdeep (IET 17713) through multi-locational yield trial in West Bengal during kharif 2003 – 2013.

Testing year	Tested locations in West Bengal	Yield of Rajdeep over the locations (kg ha⁻¹)	Check variety (Swarna-Sub 1/ Bhudeb) yield (kg ha⁻¹)	% yield increase over check variety (Swarna-Sub 1/ Bhudeb)
2003	2	4537	4274	6.15
2004	4	4431	4088	8.41
2005	3	4460	4257	4.77
2006	4	5280	4755	11.04
2007	1	6400	5400	18.52
2008	3	3731	3398	9.80
2009	4	5033	3482	44.54
2010	4	5791	5236	10.60
2011	4	3917	3646	7.43
2012	6	5115	4797	6.63
2013	4	5646	5189	8.81
Mean		4823	4303	12.52

Table 3: Reaction to major diseases in terms of severity index (SI) of Rajdeep along with check varieties in kharif, 2002.

Tested variety	Leaf blast (tested in 15 locations in India)	Neck blast (tested in 2 locations in India)	Brown spot (tested in 8 locations in India)	Sheath blight (tested in 10 locations in India)	Sheath rot (tested in 6 locations in India)	Bacterial leaf blight (tested in 18 locations in India)	Rice tungro (tested in 3 locations in India)
Rajdeep	4.38	2.00	4.75	5.40	5.17	6.33	4.33
Sabita (NC)	3.47	4.00	6.00	4.90	2.67	7.28	1.50
Purnendu (RC)	4.20	3.00	5.12	5.40	1.67	6.78	2.00
Dinesh (LC)	4.40	2.50	5.12	4.70	1.60	7.00	2.00
Savithri (LC)	4.27	0.00	4.75	4.60	1.60	6.00	2.50

NC: National check; RC : Regional check; LC : Local check.
(Source: DRR Screening Nurseries 2003 - Plant Pathology, National Screening Nurseries 2, pp. 118-152).

Table 4: Field reaction to major insect-pests in standard evaluation system scale (SES 0-9) of Rajdeep along with check varieties in kharif, 2002.

Tested variety	BPH (tested in 2 locations in India)	WBPH (tested in 2 locations in India)	PH (tested in 1 location in India)	GLH (tested in 1 location in India)	Stem borer (tested in 2 locations in India)	LF (tested in 2 locations in India)	WM (tested in 1 location in India)
Rajdeep	7	7	3	5	1	5	5
Sabita (NC)	7	5	7	5	3	7	7
Purnendu (RC)	5	7	5	5	3	7	3
Dinesh (LC)	5	7	5	9	1	5	5
Savithri (LC)	5	5	7	5	3	7	5

NC: National check; RC : Regional check; LC : Local check.
BPH : Brown plant hopper; WBPH : White backed plant hopper, PH : Plant hopper, GLH : Green leaf hopper; WM : Whorl maggot.
(Source: DRR Screening Nurseries 2003 - Entomology, National Screening Nurseries 2, pp. 61-76).
Table 5: Grain quality characteristics of Rajdeep.

Variety	Hull%	Mill%	HRR	KL	KB	L/B	Grain type	Grain chalk	ASV	AC	GC
Rajdeep	78.8	69.8	66.1	6.02	2.02	3.00	MS	VOC	4.0	25	44
Sabita (NC)	80.3	73.1	71.6	6.94	2.15	3.22	LS	VOC	4.0	22.3	22
Purnendu (RC)	78.0	66.0	61.6	5.03	2.24	2.21	SB	VOC	4.0	23.7	54

NC: National check; RC : Regional check.
HRR: Head rice recovery, KL: Kernel length, L/B : Length breadth ratio, MS : Medium slender, LS : Long slender, SB : Short bold, ASV: Alkali spreading value, VOC : Very occasionally present, AC : Amylose content (%), GC : Gel consistency.

Table 6: Varietal characteristics of Rajdeep.

Plant characters	Measurement
Plant height	109 cm
Plant type	Semi tall
No. of tillers/plant	8-10
No. of panicles/sq m	214
Flowering duration (50% flowering)	125
Panicle length	24 cm
Panicle type	Semi-erect
Panicle weight	2.62 g
Filled grain/panicle	133
Panicle exertion	Fully exerted
Awning	Awnless
Apiculus colour	White
Basal leaf sheath colour	Green
1000 grain weight	20.0-20.5 gm
Grain length	8.90 mm
Grain breadth	2.37 mm
Grain thickness	1.89
L/B ratio of grain	3.7
Grain type	MS
Kernel length	6.02 mm
Kernel breadth	2.02 mm
Kernel thickness	1.62
L/B ratio of kernel	2.9-3.0
Kernel appearance	Translucent

CONCLUSION

Rajdeep was a stable performing variety of semideep lowland ecosystem. Since 2002 to 2013, the variety was tested along with check varieties at different farmers’ field of West Bengal and it showed consistent yield advantage over Sabita (NC) as well as Bhudeb and Swarna-Sub 1 (LC). Rajdeep may be a good alternative as high yielding with diseases and insect-pests tolerant rice to Sabita, a renowned National Check for semideep lowland ecosystem over the country since last fifteen years (Dana et al., 2013). It was moderately resistant to sheath blight, sheath rot diseases and stem borer, leaf folder insect-pests. Finally the variety Rajdeep was notified by Ministry of Agriculture and Farmers Welfare (Department of Agriculture, Co-operation and Farmers Welfare), Government of India in Gazette of India vide Notification No. S.O. 1007(E) on 30th March, 2017.

REFERENCES

Ahamed, M.S. (1979). Photoperiod sensitivity in rainfed lowland rice. In: Rainfed Lowland Rice: Selected Papers from the 1978 International Rice Research Conference. International Rice Research Institute, Manila, Philippines. pp 135-138.

Chatterjee, S., Halder, P., Gangopadhyay, C., Dana, I., Halder, A. (2019). Field screening of few popularly grown and some newly developed rice varieties against different insect-pests in wet season, International Journal of Research Culture Society. 3(7): 45-50.

Chatterjee, S., Ghose, M., Gangopadhyay, C. (2016). Field screening of different rice entries against different insect-pests of rice during kharif season; International Journal of Agriculture, Environment and Biotechnology. 9(4): 667-671.

Dana, I., Chatterjee, S. (2012) Swarna-Sub1: a boon to the farmers of West Bengal. STRASA News, IRRI, Philippines. 5(2): 5.

Dana, I., Chatterjee, S. and Kundu, C. (2013). Twenty years of achievements of the EIRLSBN at the Rice Research Station, Chinsurah, Ed. by Collard B.C.Y., Ismail A.M. and Hardy B, IRRI, Philippines. Chap. 4: 53-64.

Datta, S.K. and Banerjee, B. (1980). Studies on rice in relation to the low-lying problem areas of West Bengal. In: Rice Research Station in West Bengal Vol. II. Govt. of West Bengal. 67-72 pp.

Khush, G.S. and Baenziger, P.S. (1998). In Crop Productivity and Sustainability - Shaping the Future (Eds Chopra, V.L., Singh, R.B. and Varma, A.), Oxford and IBH, New Delhi. 113-125.

Malik, S., Kundu, C., Mandal, B.K., Chatterjee, S.D., Sen, S.N., Maiti, P.K. and Bose, S. (2003) Bhudeb, a new variety for the rainfed lowland ecosystem in eastern India, IRRN. 28(1): 154-157.

Rautaray, S.K. (2006). Performance of promising semideep and deepwater rice (Oryza sativa L.) genotypes under intermediate lowland situation. Indian Journal of Crop Science. 1(1-2): 154-157.

Ravindra Babu, V., Padmavathi, Ch., Neeraja, C.N., Krishnaveni, D., Subba, Rao, L.V., Raghuviree Rao P., Prasad, G.S.V., Katti, G., Ram, T., Subrahmanyam, D., Kumar, R.M., Hari Prasad, A.S., Surekha K., Prasad, M.S., Chaitanya, U. (2016). 50 Years of AICRIP. way forward. Technical Bulletin No. 92/2016. ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad-500 030, Telangana State, India, pp. 292.

Sarkar, R.K., Reddy, J.N., Sharma, S.G. Ismail Abdulbagi, M. (2006). Physiological basis of submergence tolerance in rice and implications for crop improvement. Current Science. 91 (7): 899-906.