Prevalence of musculoskeletal symptoms in hospital nurse technicians and licensed practical nurses: associations with demographic factors

Roberta F. C. Moreira, Tatiana O. Sato, Fabiana A. Foltran, Luciana C. C. B. Silva, Hellenice J. C. G. Coury

ABSTRACT | Objective: This cross-sectional study aimed at analyzing: 1. the main musculoskeletal symptoms (MSS) presented by hospital nursing workers and; 2. personal, occupational, and health factors related to MSS among them.

Method: Two questionnaires were filled in by 245 nurse technicians (NTs) and licensed practical nurses (LPNs) (response rate 95%) associated with direct patient care sectors from a hospital. These questionnaires were: the standardized version of the Nordic Musculoskeletal Questionnaire (NMQ) and one including questions on 15 demographic independent variables potentially related to outcomes from the NMQ. Univariate analyses and binary logistic regression analyses were performed to identify which variables would explain the occurrence of MSS in different body regions.

Results: The low back (57%), shoulder (52%), and neck (48%) were identified as the most affected regions. The logistic regression analysis showed that low back symptoms in the last 12 months were significantly associated with LPN activities (OR=2.36; CI=1.24-4.5) and previous sick leave due to MSS (OR=5.97; CI=1.2-29.1). Smoking was significantly associated with symptoms in the low back (OR=2.77; CI=1.13-6.8) and thoracic spine (OR=2.37; CI=1.04-5.40). Physical exercise showed a protective effect on the cervical spine (OR=0.42; CI=0.23-0.77). Previous sick leave was significantly associated with pain in the knees (OR=4.24; CI=1.33-13.5) and in the upper limbs (OR=5.36; CI=1.07-26.7).

Conclusions: The nursing workers who were evaluated presented a high prevalence of MSS. Previous history of sick leave was strongly associated with the presence of symptoms in various body regions. These results indicate the need for preventive programs in the hospital environment in order to control more severe MSS in nursing professionals.

Keywords: occupational health; epidemiology; exercise; physical therapy.

Introduction

Work-related musculoskeletal disorders (WRMDs) are responsible for early exit from the labor market and represent the most common cause of absenteeism among workers. In this context, physical therapy plays an important role as an intervention which can reduce the need for more costly or invasive procedures, thus preventing diseases and promoting health.

WRMDs are highly prevalent among nursing professionals and the most frequent complaints are low back pain, with a prevalence rate of 30 to 60%, followed by the neck and shoulder symptoms, with prevalence rates of 30 to 48% and 43 to 53%, respectively.

Various epidemiological studies have reported an association between work overload and musculoskeletal disorders. In addition to ergonomic factors, psychosocial risk factors such as high demand, low job control, and lack of social support have also been recognized as contributing factors to the development of musculoskeletal disorders among nursing professionals. This multifactorial nature of the disorders shows the need for risk factor evaluations that consider a high number of potential contributing factors simultaneously.

However, due to the multifactorial origin of these disorders, the relationship between demographic characteristics (gender, age, height, weight, job, work sector, time in current sector, smoking, physical exercise, etc.) and the presence of musculoskeletal disorders has not yet been clarified.

Considering the importance of broadening epidemiological knowledge related to MSS among nursing professionals and the need to evaluate these factors, the present study aimed to analyze the main musculoskeletal symptoms in hospital nursing workers and relate them to personal, occupational, and health factors.
symptoms in a broader context for future preventive and therapeutic programs, the objectives of this study were to investigate: 1) the main symptoms presented by nurse technicians (NTs) and licensed practical nurses (LPNs) and 2) the simultaneous relationship between personal, occupational, and health factors possibly related to the presence of symptoms in different body regions.

Method

The present epidemiological study followed the STROBE methodology23 of conducting observational epidemiology studies.

Study design

A cross-sectional epidemiological study was carried out to evaluate the prevalence of MSS among NTs and LPNs from a Brazilian hospital and to identify the potentially related factors.

Location of the study

The study was carried out in a hospital in the state of São Paulo, Brazil. The questionnaires were distributed during the work shifts in sectors involving direct patient care. The participants incurred no expense and received no compensation.

Participants and inclusion criteria

Brazilian nursing teams are basically comprised of three occupational groups: nurse technicians, licensed practical nurses, and registered nurses. In Brazil, NTs and LPNs represent most of the nursing workforce. These workers are mainly responsible for activities that involve direct contact with patients and, for this reason, are quite exposed to physical risk factors. Thus, the present study evaluated NTs and LPNs only.

Federal Law 7498/8624 regulates the activities performed by these professionals and states that NTs and LPNs are responsible for most of the direct care of patients. However, activities carried out by NTs require a lower level of decision-making than the ones performed by LPNs and involve mid-level tasks of a repetitive nature.

All of the NTs and LPNs associated with direct patient care at the hospital were invited to participate in the study (n=292); they worked regularly in either day shifts (7:00 am to 7:00 pm) or night shifts (7:00 pm to 7:00 am). The adopted inclusion criteria were: to be registered as an NT or LPN; work in the department responsible for direct patient care, and to be employed for at least 12 months. All participants signed the informed consent form and the research procedures were approved by the Human Research Ethics Committee of Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil (CAAE: 1080.0.00.135-10).

Hospital department characteristics

A hospital’s emergency department is accessible to the general population and is designed to assist patients with or without risk of death who require immediate health care25. Patient referral is carried out according to the complexity of the cases treated. Simple cases are dealt with at the emergency care units and more complex cases are sent to other units of the hospital. Hospital wards are departments for patients who do not need constant observation. One companion is allowed to stay with each patient all the time. Intensive Care Units (ICUs) are departments in which high level technology equipment is used for the care of critically ill patients. ICU patients need constant observation, as well as continuous medical and nursing care25. In these departments the circulation of both staff and visitors is restricted and controlled. It is important to emphasize that the physical and mental demands of each department vary due to the different levels of assistance, complexity, technology, and nurse-patient relationship of each department.

Evaluated variables and data sources

Two questionnaires were applied: the standardized Nordic Musculoskeletal Questionnaire (NMQ) and a questionnaire specifically designed for the present study that included 15 independent variables potentially related to the response variables of the NMQ26. In the customized questionnaire, personal, occupational, and health factors were included based on relevant, previously published epidemiological studies about risk factors10,27,28 and on the authors’ own experience29-31. The questions were structured as direct queries. Pilot tests were run before the questionnaires were applied to evaluate the clarity of the content and time taken to respond to the questions.

The following information was covered by the questionnaire: 1) occupational aspects - work department (emergency room, hospital wards or intensive care), shift (day or night), job position (NT or LPN), time in this position (years), other paid activity (yes or no); 2) personal characteristics - gender (male or female), age (in years), body mass index classification (normal, overweight, obese), marital status (married or single), children (yes or no), routine housework (yes or no);
Musculoskeletal symptoms and demographical factors in nursing workers

3) health condition: regular physical activity (yes or no), smoking (yes or no), and history of sick leave of more than 15 days due to musculoskeletal disorders (yes or no).

The Brazilian version of the NMQ32 was used to identify the presence of symptoms in the previous 7 days and previous 12 months in different regions of the body, the impairment these symptoms caused in daily life activities (DLAs) and whether or not medical assistance was sought for the symptom. The questionnaires were answered by the workers during their work shift. It should be mentioned that there was no interference from superiors or compensation for the workers.

Independent and dependent variables

The discrete independent variables: age, time in the current job position, and time at the institution were categorized according to quartiles (Table 1). The BMI values were categorized as: 1) normal (≤25), 2) overweight (>25 and <30), and 3) obese (>30)33.

All dependent variables were dichotomous (presence or absence). Variables related to neck, thoracic spine, and lumbar spine symptoms were grouped under the term “spine segment”. Variables related to shoulder, elbow, wrist, and hand symptoms were grouped as “upper limb (UL) segment”. Variables related to hip, thigh, knee, ankle, and foot symptoms were grouped as “lower limb segment”. The dependent variable “symptoms in any body region” corresponded to the nine body regions evaluated by the NMQ.

Controlling sources of bias

Initial clarification was given to all participants to prevent misunderstandings in their responses. If asked, additional information was provided individually, avoiding interpretations or any other form of inducement toward particular responses.

Sample size

All NTs and LPNs who were present (i.e. not on leave, vacation or day off) when the evaluation took place (n=292) were evaluated. The final sample consisted of 245 workers who matched the study’s inclusion criteria.

Statistical methods

The data were descriptively analyzed by calculating the frequencies, quartiles, means, and standard deviation. A univariate analysis was carried out with the chi-square association test (χ2). The independent variables significantly associated (P ≤0.25) with the dependent variables were included in a logistic regression model34. The objective of the logistic regression analysis was to identify which variables explain the occurrence of musculoskeletal symptoms in different body regions. The data were analyzed in SPSS 11.5.

Results

Subjects

Out of the 292 LPN and NT active workers in the direct patient care sectors, 258 matched the study inclusion criteria. Thirteen workers did not participate because on the day of data collection they either had the day off (n=8), were absent from work (n=4) or they were unavailable to answer the questionnaire (n=1). Therefore, the sample included 245 individuals, representing 95% of the eligible subjects. There were 226 women and 19 men; the mean age was 35.5 years old (±10.7; min. 19 and max. 68). The mean time that the participants had been employed in their current position was 8.6 years (±8.5; min. 1 and max. 47) and the mean time at the institution was 6.8 years (±7.3; min. 1 and max. 47). The demographic characteristics of the sample (n=245) regarding occupational, personal, and health aspects are presented in Table 2.

The evaluated population consisted predominantly of women (92.2%) who did not exercise regularly in their free time (70.6%) and were exposed to double work shifts due to housework (91.8%). Most subjects (55.2%) were in the overweight or obese categories

Categories	Age (years)	Time employed in the current position (years)	Time employed at the institution (years)
Category 1 (≤25th)	≤26	≤2	≤1.5
Category 2 (>25th and ≤50th)	>26 ≤34	>2 ≤5	>1.5 ≤4
Category 3 (>50th and ≤75th)	>34 ≤42.5	>5 ≤14	>4 ≤10
Category 4 (>75th)	>42.5	>14	>10
Table 2. Demographic characteristics of the sample regarding occupational, personal, and health aspects.

Occupational aspects		
Job	**N**	(%)
Nurse technician	168	(68.6%)
Licensed practical nurse	77	(31.4%)
Work shift	**N**	(%)
Day	134	(54.9%)
Night	111	(45.1%)
Job sector	**N**	(%)
Emergency room	21	(8.6%)
Hospital wards	161	(65.7%)
ICUs	63	(25.7%)
Time in this position (years)	**N**	(%)
up to 2	79	(32.2%)
+2 to 5	50	(20.4%)
+5 to 14	60	(24.5%)
+14	56	(22.9%)
Time at the institution (years)	**N**	(%)
Up to 1.5	65	(26.5%)
+1.5 to 4	65	(26.5%)
+4 to 10	60	(24.5%)
+10	55	(22.5%)
Other paid activity	**N**	(%)
Yes	61	(25.2%)
No	184	(74.8%)

Personal aspects		
Gender	**N**	(%)
Female	226	(92.2%)
Male	19	(7.8%)
Age (years)	**N**	(%)
Up to 26	62	(25.3%)
+26 to 34	58	(23.7%)
+34 to 42.5	56	(22.8%)
+42.5	59	(24.2%)
Body mass index	**N**	(%)
Normal	91	(44.8%)
Overweight	63	(31%)
Obese	49	(24.2%)
Marital status	**N**	(%)
Single	122	(50%)
Married	122	(50%)
Children	**N**	(%)
Without	93	(38.4%)
With	149	(61.6%)
Housework	**N**	(%)
Performs	224	(91.8%)
Does not perform	20	(8.2%)

Health aspects		
Regular physical exercise	**N**	(%)
Yes	72	(29.4%)
No	173	(70.6%)
Smoker	**N**	(%)
Yes	34	(13.9%)
No	210	(86.1%)
Previous sick leave due to musculoskeletal symptoms	**N**	(%)
Yes	14	(5.8%)
No	226	(94.2%)
and approximately 53% had been nurses for less than 5 years.

The number and percentage of symptomatic workers evaluated by the NMQ, as well as for the categories: ‘spine’, ‘UL’, ‘lower limb’, and ‘at least one body region’ are presented in Table 3.

Table 3 shows the high prevalence of MSS in at least one body region among the evaluated nursing professionals, both in the last 12-month and seven-day periods. The symptoms led the worker to seek medical assistance and impaired the performance of DLAs in approximately 1/3 of the individuals affected.

Analysis of the symptoms according to the body region showed that during the previous 12 months the spine was the most affected part in 3 out of 4 individuals evaluated, followed by the lower limbs and the ULs. Considering the regions individually, the lumbar spine, shoulder and cervical spine were the regions with the highest prevalence of symptoms in the previous 12 months, followed by the thoracic spine and the ankle and foot regions.

Regarding the effects of symptoms on the performance of DLAs, more than ¼ of the individuals experienced some impairment. The lumbar region was the most critical, followed by the cervical spine, thoracic spine, ankle, and foot. Among the professionals evaluated, the spine was identified as the part that most affected the DLAs. Symptoms in at least one body region led more than 1/3 of the participants to seek medical assistance, and symptoms in the lumbar region were the most prevalent.

The logistic regression showed the variables associated with the presence of MSS in the evaluated population. The results of this analysis are presented in Table 4.

The logistic regression analysis (Table 4) showed that spinal pain in the last 12 months, particularly in the lumbar region, was significantly associated with job position, i.e. LPNs presented with more symptoms. Despite the differences in work demand between departments, there was no relationship between job sector and musculoskeletal symptoms. Smoking was significantly associated with thoracic spine symptoms; physical exercise had a protective effect on the cervical spine. Pain in the lower limbs, particularly in the knees, was significantly associated with the presence of previous sick leave; and UL symptoms were significantly more frequent in women.

DLA impairment due to symptoms in different body regions, particularly the lumbar spine followed by the spine in general, shoulders, and thoracic spine, were significantly associated with a history of previous sick leave due to musculoskeletal problems (Table 4). DLA impairment due to UL symptoms was also significantly associated with housework.

Seeking medical assistance was associated with previous sick leave due to MSS in general, particularly in the cervical spine and ULs (Table 4). Having another paid occupation also led workers who experienced pain in the thoracic spine and shoulders to seek medical assistance. Job position as an LPN was associated with seeking medical assistance for lumbar pain.

Table 3. Proportion of symptomatic subjects for the body regions evaluated by NMQ (n=245).

Body region	Symptoms in the last 12 months (%)	Impairment in DLAs (%)	Seeing a physician due to symptoms (%)	Symptoms in the last 7 days (%)
At least one region	229 (93.5)	68 (27.8)	95 (38.8)	157 (64.1)
Cervical spine	117 (47.8)	22 (9)	17 (7)	55 (22.4)
Thoracic spine	120 (50.8)	19 (7.8)	26 (10.7)	62 (25.3)
Lumbar spine	140 (57.1)	29 (11.8)	35 (14.3)	83 (33.9)
Spine	187 (76.3)	44 (18)	56 (22.9)	121 (49.4)
Shoulder	127 (52)	16 (6.5)	26 (10.7)	58 (23.8)
Elbow	19 (7.8)	3 (1.2)	6 (2.4)	6 (2.4)
Wrist and hand	78 (31.8)	10 (4.1)	16 (6.5)	32 (13.1)
Upper limb	152 (62)	23 (9.4)	40 (16.3)	76 (31)
Hip and thigh	80 (32.7)	9 (3.7)	16 (6.5)	35 (14.3)
Knee	78 (31.8)	16 (6.5)	15 (6.1)	30 (12.2)
Ankle and foot	99 (40.4)	19 (7.8)	23 (9.4)	52 (21.2)
Lower limb	160 (65.3)	31 (12.7)	43 (17.6)	85 (34.7)
Table 4. Factors associated with the presence of musculoskeletal symptoms based on analysis of the binary logistic regression.

Body Region	Factor	β	SE	Wald	p	OR	CI (OR)	R²	χ² (df)
Symptoms in the last 12 months									
Cervical spine	Physical exercise	−0.862	0.930	7.848	0.005	0.422	0.231-0.772	0.010	17.63 (7)*
	Smoking	0.863	0.420	4.213	0.04	2.369	1.04-5.398	0.084	15.13 (6)*
Lumbar spine	Job position	1.021	0.458	4.973	0.026	2.775	1.132-6.807		
	Job position	1.21	0.49	2.76	0.031	2.97	1.06-8.155	0.25	8.17 (6)*
	Smoking	0.872	0.34	5.38	0.01	5.851	1.329-13.542	0.074	11.9 (4)*
Vertebral column	Job position	0.924	0.394	5.487	0.019	2.519	1.163-5.457	0.150	25.09 (4)*
	Physical exercise	−0.981	0.334	8.609	0.003	0.375	0.195-0.722		
	Smoking	0.176	0.759	5.398	0.02	5.826	1.317-25.765		
Wrist and hand	Sick leave	1.641	0.594	7.638	0.006	5.159	1.612-16.514	0.090	15.84 (5)*
Upper limbs	Gender	−1.328	0.053	6.254	0.012	0.265	0.094-0.75	0.073	12.64 (3)*
	Sick leave	1.679	0.82	4.195	0.041	5.358	1.07-26.71		
Knee	Sick leave	1.445	0.592	5.957	0.015	4.243	1.329-13.542	0.074	11.9 (4)*
Lower limbs	Sick leave	1.723	0.804	4.598	0.032	5.603	1.16-27.1	0.090	14.25 (6)*

Impairment in DLAs due to symptoms
Any region
Thoracic spine
Lumbar spine
Vertebral column
Shoulder
Upper limbs

Symptoms for which medical assistance was sought
Any region
Cervical spine
Thoracic spine
Lumbar spine
Vertebral column
Shoulder
Upper limbs

β - logistic regression coefficient; SE - standard error; Wald - logistic regression coefficient divided by the square SE; P - significance level of the Wald statistics; OR - odds ratio; CI(OR) - confidence interval of the 95% odds ratio; df - degrees of freedom; *P<0.05.

Discussion

The most prevalent body regions for symptoms in the previous 12 months were the lumbar spine, shoulders, and neck, followed by the thoracic spine and the ankle and foot region. Similar results were found in studies that used the NMQ to evaluate LPNs and NTs in Brazil11-13, as well as in studies from other countries with nursing assistants7,9,18,19,35,36. A mean of 92.1% of the participants of these studies reported symptoms in at least one body region.
compared to 93.5% in the present study, indicating a very high and similar prevalence (Table 5). The percentages per region were also high and similar between the other studies and the present one: 65.8 and 57% for the lumbar spine, 50.3 and 52% for the shoulder, and 49.3 and 48% for the neck, respectively. Most of the studies in Table 5 also identified the lumbar spine, neck, and shoulder as the most prevalent regions for MSS among nursing professionals.

A high prevalence of MSS in the lumbar spine, shoulder, and neck regions was reported by nursing professionals\(^{28,37}\). The activities performed in direct patient care usually involve upper limb force, trunk flexion, and extension movements causing an impact on the musculoskeletal system, particularly for the spine and shoulder regions\(^{17,35,38}\). Along these lines, Tullar et al.\(^{39}\) recognized the role of patient transfer and lifting activities on the presence of musculoskeletal disorders among healthcare workers. The main risk factors for the development of musculoskeletal disorders among these workers are: pushing occupied beds, lateral patient transfers, repositioning patients in bed, making occupied beds, as well as lifting and carrying heavy equipment over long distances\(^{40}\).

Even though the results presented in Table 5 were from different countries and involve different cultures and availability of equipment, the MSS prevalence was high in all of them. Several aspects seem to contribute to this in different ways, such as mean worker age, time in job position, patient impairments, and technology available for facilitating patient transportation\(^{39,41}\). The results of the logistic regression showed that previous sick leave due to musculoskeletal pain was strongly associated with seeking medical assistance due to MSS. Similar results were found among general workers evaluated by Haahr et al.\(^{42}\).

Even though sick leave policies vary according to each country’s legislation, in general, these benefits are given only after medical confirmation of the seriousness of the injury and degree of functional impairment\(^{43}\). Therefore, an association between sick leave, severe symptoms, the search for medical assistance, and DLA impairment is not surprising. Another aggravating factor is poor recovery after musculoskeletal injury. According to Rosenman et al.\(^{44}\), this is often due to the workers’ lack of access to qualified rehabilitation services.

Job position was a major factor for spine-related outcomes; LPNs had a greater chance of presenting symptoms and seeking medical assistance than NTs. This subject still seems to be controversial in the literature. In a number of countries, the education level of nursing assistants is lower than registered nurses and they are acknowledged to have a greater predisposition to low back pain than registered nurses\(^{18,35,38}\). Considering that the names used to classify nursing professionals vary from country to country according to the work organization and the workers’ educational level, direct comparisons between groups should be avoided. Despite this, as previously described, both NTs and LPNs perform highly demanding physical tasks. Nevertheless, LPNs are exposed to a higher cognitive overload due to accumulated activities and the greater complexity of their tasks, which could explain the present results for these two job positions.

Housework was associated with symptoms. However, this result must be interpreted with caution, since the negative value found for the β coefficient

Table 5. Comparison of the prevalence of musculoskeletal symptoms among studies carried out with nursing assistants.

Country	NA Population	Lumbar (%)	Shoulder (%)	Neck (%)	At least one region	Study
Brazil	100%	57	52	48	93.5	Present study
Brazil	70%	73	62	67	96.3	Magnago et al.\(^{13}\)
Brazil	100%	68	54	56	96	Barbosa et al.\(^{12}\)
Brazil	100%	59	40	28	93	Gurgueira et al.\(^{11}\)
Taiwan	100%	66	----	----	----	Feng et al.\(^{36}\)
Turkey	75%	69	46	54	90	Tezel \(^{35}\)
Greece	40%	75	37	47	85	Alexopoulos et al.\(^{20}\)
Japan	5%	54	43	31	----	Ando et al.\(^{7}\)
Sweden	100%	64	60	53	----	Josephson et al.\(^{18}\)
Sweden	40%	65	60	59	----	Lagerström et al.\(^{9}\)

NA: Nursing Assistant.
could suggest that performing housework would reduce the probability of DLA impairment by 0.194 due to UL symptoms. In fact, this association might be interpreted as an antalgic, rather than a protective factor.

Women had a 30% greater chance of developing UL symptoms than men. A review study45 reinforces this finding, demonstrating that women have a greater tendency to present upper MSS than men. Among several other factors, an association between housework, gender, and UL symptoms is recurrent in several studies. Nordander et al.46 hypothesize that the dedication of free time to housework reduces the recovery period required by the muscle groups involved at work and increases the risk of injury, particularly for physically demanding jobs, as is the case of the evaluated workers.

Regarding personal risks, smoking was identified as an important factor for symptoms in the thoracic region, lumbar region, and spine in general. Power et al.47 and Bejia et al.48 also found a positive association between lumbar pain and smoking for individuals who performed physically demanding activities. Nevertheless, Lagerström et al.9 found no such association in a study conducted with NTs.

It has been acknowledged that nicotine causes vasoconstriction which reduces the amount of oxygen and nutrients available to muscles, ligaments, and intervertebral discs, increasing chances for degenerative processes in the intervertebral discs8,49 and injuries50. Furthermore, continued smoking affects lung clearance, causing an accumulation of secretion and increasing coughing reflexes51, which overloads intercostal muscles and increases intra-abdominal pressure. The main biological mechanisms triggered by smoking that could explain spinal symptoms are linked to: 1) coughing reflexes; 2) increased fibrin deposition which leads to chronic inflammation; and 3) reduced blood flow and oxygenation of the tissues, which affect the metabolic balance of the discs and accelerate degenerative processes leaving the spine more susceptible to mechanical deformations and injuries52.

It is important to consider that, even though several epidemiological studies have reported an association between smoking and lumbar pain, factors such as the variety of definitions of lumbar pain, the multiple causes of the symptoms, and the variations in evaluation approaches and results make it difficult to come to a conclusive understanding of the literature53 and limit comparison of the results.

Among the personal aspects investigated here, some attenuating factors were identified, such as the protective effect of physical exercise against neck symptoms. This subject still seems to be controversial in the literature. Lagerström et al.9 identified that a poor physical condition increases the chance of cervical symptoms by 1.43, which supports the possibility that exercise has a protective effect against neck symptoms. However, other studies have reported that the incidence of neck pain in workers who exercise regularly in their free time is similar to that of those who do not54,55. This controversy may be related to the definition of physical exercise because when the control of this variable (exercise) is increased, its protective effect becomes more consistent.

Systematic reviews about the effects of exercise on musculoskeletal pain in active workers29,31 found a protective effect in the occupational environment against lumbar and cervical pain in workers with heavy and sedentary activities, respectively. Martins and Marzialle56 also identified benefits of therapeutic exercises for nursing workers with shoulder pain.

Additionally, a cohort study57 with 1,742 symptomatic and asymptomatic workers demonstrated that regular involvement in sports for at least 10 months per year reduced the risk of symptoms in the neck and shoulder regions (OR: 0.82). Thus, in the case of exercise carried out regularly in an occupational environment, as well as the regular practice of sports, there was a protective effect of physical activity on musculoskeletal pain in active workers.

Limitations and final considerations

The cross-sectional design of the present study does not allow for causal relations to be established between the symptoms and exposure to the tasks performed by NTs and LPNs. According to Punnett and Wegman58, another limitation associated with cross-sectional studies carried out in work environments is the selection bias due to the exclusive evaluation of active workers, which can underestimate the symptoms of the full staff as it does not include data from individuals on leave.

A positive aspect of this study was the evaluation of personal factors and their participation in work-related disorders, which has not been clearly established so far. Considering the high prevalence of MSS among the evaluated professionals and the impairments that these symptoms might cause, public policy should encourage their prevention to reduce sick leave. Stimulating physical exercise, organizing anti-smoking campaigns, controlling risk factors through ergonomic intervention, ensuring proper...
training and breaks are some of the measures that should also be undertaken.

● Conclusion

The LPNs and NTs evaluated in this study showed a high prevalence of musculoskeletal disorders, and the most affected regions were the lumbar spine, shoulder, and neck. The spinal symptoms caused the greatest DLA impairment and were the most frequent reason for seeking medical assistance, which suggests that disorders in this region were severe.

Previous history of sick leave due to MSS was the strongest variable associated with the presence of symptoms in several body regions. This result shows the importance of preventive programs designed for hospital work environments in order to control more severe musculoskeletal consequences among nursing professionals such as those identified in the present study.

● Acknowledgements

To the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasilia, DF, Brazil (Processes 147025/2010-9; 301.772/2010-0; 147025/2010-8). Científico e Tecnológico (CNPq), Brasília, DF, Brazil (Processes 147025/2010-9; 301.772/2010-0; 147025/2010-8). Presented at the 12th International Conference on Occupational Health and Safety, Curtin University, Australia, 2009.

● References

1. David G, Woods V, Li G, Buckle P. The development of the Quick Exposure Check (QEC) for assessing exposure to risk factors for work-related musculoskeletal disorders. Appl Ergon. 2008;39(1):57-69. PMid:17512492. http://dx.doi.org/10.1016/j.apergo.2007.03.002
2. Bevan S, Quadrello T, McGee R, Mahlon D, Vovrovska A, Barham L. Fit for work - musculoskeletal disorders in the European workforce. The Work Foundation; 2009. Ref type: report.
3. Nyman T, Grooten WJ, Wiktorin C, Liwing J, Hagberg M, Hjelm EW. Occupational and individual factors related to musculoskeletal symptoms in five body regions among Swedish nursing personnel. Int Arch Occup Environ Health. 1995;68(1):27-35. PMid:8847110. http://dx.doi.org/10.1007/BF01831630
4. Pompeii LA, Lipscomb JA, Geiger-Brown J, Storr CL, Brady BA. Perceived Physical Demands and Reported Musculoskeletal Problems in Registered Nurses. Am J Prev Med. 2003;24(3):270-5. http://dx.doi.org/10.1016/S0749-3797(02)00639-6
5. Lagerström M, Wenemark M, Hagberg M, Hjelm EW. Occupational and individual factors related to musculoskeletal symptoms among hospital nurses in the city of Gothenburg, Sweden. Eur Spine J. 2002;11(3):288-95. PMid:12035449. http://dx.doi.org/10.1046/j.1019-9697.2002.00449.x
6. Engels J, Van der Gulden J, Senden T, Van’t Hof B. Work-related risk factors for musculoskeletal complaints in the nursing profession: results of a questionnaire survey. J Occup Environ Med. 1995;37(6):596-604. PMid:7603961. http://dx.doi.org/10.1097/00042331-199506000-00008
7. Ando S, Ono Y, Shimaoka M, Hiruta S, Hattori Y, Hori F, et al. Associations of self-estimated workloads with musculoskeletal symptoms among hospital nurses. Occup Environ Med. 2000;57(3):211-6. PMid:10810105 PMCID:PMC1739924. http://dx.doi.org/10.1136/oem.57.3.211
8. Lorusso A, Bruno S, L’Abbate N. A review of low back pain and musculoskeletal disorders among Italian nursing personnel. Ind Health. 2007;45(5):637-44. PMid:18057806. http://dx.doi.org/10.2486/indhealth.45.637
9. Lagerström M, Wenemark M, Hagberg M, Hjelm EW. Occupational and individual factors related to musculoskeletal disorders in five body regions among Swedish nursing personnel. Int Arch Occup Environ Health. 1995;68(1):27-35. PMid:8847110. http://dx.doi.org/10.1007/BF01831630
10. Trinkoff AM, Lipscomb JA, Geiger-Brown J, Storr CL, Brady BA. Perceived Physical Demands and Reported Musculoskeletal Problems in Registered Nurses. Am J Prev Med. 2003;24(3):270-5. http://dx.doi.org/10.1016/S0749-3797(02)00639-6
11. Gurgueira GP, Alexandre NMC, Correa HR Fo. Prevalência de sintomas musculosqueléticos em trabalhadores de enfermagem. Rev Latino-Am Enferm. 2003;11(5):608-13. http://dx.doi.org/10.1590/S0104-11692003000500007
12. Barbosa AA, Santos AMC, Gonçalves RV, Viana SO, Sampaio RF. Prevalência de dor osteomuscular na equipe de enfermagem no hospital da policia militar de Minas Gerais. Fisioter Mov. 2006;19(3):55-63.
13. Magnago TSBS, Lisboa MTL, Griep RH, Kirchhof ALC, Guido LA. Psychosocial Aspects of Work and Musculoskeletal Disorders in Nursing Workers. Rev Latino-Am Enferm. 2010;18(3):429-35. http://dx.doi.org/10.1590/S0104-11692010000500019
14. Bos E, Krol B, Van der Star L, Groothoff JW, Lagerström M, Wenemark M, Hagberg M, Hjelm EW. Occupational and individual factors related to musculoskeletal symptoms among hospital nurses. J Occup Environ Med. 2002;44(6):538-48. PMid:12077579. http://dx.doi.org/10.1097/00042331-200206000-00013
15. Bernard BP, editor. Musculoskeletal disorders and workplace factors - a critical review of epidemiologic evidence for work-related musculoskeletal disorders of the neck, upper extremity and low back. 2nd ed. Cincinnati: National Institute for Occupational Safety and Health, Centers for Disease Control, Department of Health and Human Services; 1997. p. 1-14.
16. Burdorf A, Sorock G. Positive and negative evidence of risk factors for back disorders. Scand J Work Environ Health. 1997; 23(4):243-56. http://dx.doi.org/10.5271/sjweh.217
17. Hoogendoorn WE, Van Poppel MN, Bongers PM, Koes BW, Bouter LM. Physical load during work and leisure

Braz J Phys Ther. 2014 July-Aug; 18(4):323-333
time as risk factors for back pain. Scand J Work Environ Health. 1999;25(5):387-403. PMid:10569458. http://dx.doi.org/10.5271/sjweh.451

18. Josephson M, Lagerström M, Hagberg M, Wigaeus Hjelm E. Musculoskeletal symptoms and job strain among nursing personnel: a study over a three year period. Occup Environ Med. 1997;54(9):681-5. PMid:9423583 PMCID:PMC1128844. http://dx.doi.org/10.1136/eenm.54.9.681

19. Augusto VG, Sampaio RF, Tirado MGA, Mancini MC, Parreira VF. A look into Repetitive Strain Injury/ Work-Related Musculoskeletal Disorders within physical therapists’ clinical context. Rev Bras Fisioter. 2008;12(1):49-56. http://dx.doi.org/10.1590/S1413-35552008000100010

20. Alexopoulos EC, Burdorf A, Kalokerinou A. Risk factors for musculoskeletal disorders among nursing personnel in Greek hospitals. Int Arch Occup Environ Health. 2003;76(4):289-94. PMid:12739172.

21. Hagberg M, Silverstein B, Wells R, Smith MJ, Hendrick HW, Carayon P, et al. Work Related Musculoskeletal Disorders (WMSDs): A Reference Book for Prevention. London: Taylor & Francis; 1997.

22. Eriksen W. The prevalence of musculoskeletal pain in Norwegian nurses’ aides. Int Arch Occup Environ Health. 2003;76(8):625-30. PMid:14520578. http://dx.doi.org/10.1007/s00420-003-0453-6

23. Von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Lan太阳城 JC; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344-9. PMid:18313558. http://dx.doi.org/10.1016/j.jclinepi.2007.11.008

24. Brasil. Lei nº 7.498/86, de 25 de junho de 1986. Dispõe sobre a regulamentação do exercício da Enfermagem e dá outras providências. Diário Oficial da República Federativa do Brasil; Brasília; 26 jun. 1986.

25. Brasil. Ministério da Saúde. Grupo de Trabalho – Unidade de Sistema de Desenvolvimento de Serviços de Saúde. Terminologia básica em saúde. Brasília: Centro de Documentação do Ministério da Saúde; 1985. p. 1-49.

26. Kuorinka I, Jonsson B, Kilbom A, Vinterberg H, Biering-Sørensen F, Andersson G, et al. Standardized Nordic questionnaire for the analysis of musculoskeletal symptoms. Appl Ergon. 1987;18(3):233-7. http://dx.doi.org/10.1016/0003-6870(87)90010-X

27. Krantz G, Ostergren PO. Double exposure. The combined impact of domestic responsibilities and job strain on common symptoms in employed Swedish women. Eur J Public Health. 2001;11(4):413-9. http://dx.doi.org/10.1093/eurpub/11.4.413

28. Smith DR, Wei N, Zhao L, Wang RS. Musculoskeletal complaints and psychosocial risk factors among Chinese hospital nurses. Occup Med (Lond). 2004;54(8):579-82. PMid:15576874. http://dx.doi.org/10.1093/ocsmed/kqh117

29. Coury HJCG, Moreira RFC, Dias NBD. Evaluation of workplace exercise effectiveness on neck, shoulder and low back pain control: a systematic review. Rev Bras Fisioter. 2009;13:461-479. http://dx.doi.org/10.1590/S1413-35552009000600002

30. Sato TO, Coury HJCG. Evaluation of musculoskeletal health outcomes in the context of job rotation and multifunctional jobs. Appl Ergon. 2009;40(4):707-12. PMid:18675951. http://dx.doi.org/10.1016/j.apergo.2008.06.005

31. Moreira RFC, Foltran FA, Albuquerque-Sendin F, Mancini MC, Coury HJCG. Comparison of randomized and nonrandomized controlled trials evidence regarding the effectiveness of workplace exercise on musculoskeletal pain control. Work. 2012;41:4782-4789. PMid:22317457.

32. Barros ENC, Alexandre NMC. Cross-cultural adaptation of the Nordic musculoskeletal questionnaire. Int Nurs Rev. 2003;50(2):101-8. http://dx.doi.org/10.1046/j.1466-7657.2003.00188.x

33. Rahman M, Berenson AB. Accuracy of current body mass index obesity classification for white, black, and Hispanic reproductive-age women. Obstet Gynecol. 2010 May;115(5):982-8. PMid:20410772 PMCID:PMC2288659. http://dx.doi.org/10.1097/AOG.b013e3181da9423

34. Hosmer DW, Lemeshow S. Model-Building strategies and methods for logistic regression. In: Hosmer DW, Lemeshow S. Applied Logistic Regression. New York: John Wiley & Sons; 1989. p. 82-134.

35. Tezel A, Musculoskeletal complaints among a group of Turkish nurses. Int J Neurosci. 2005;115(6):871-80. PMid:16019580. http://dx.doi.org/10.1007/1471-2474-8-52

36. Smedley J, Inskip H, Trevelyan F, Buckle P, Cooper C, Coggon D. Risk factors for incident neck and shoulder pain in female nursing aides in Taiwanese nursing homes. BMC Musculoskeletal Disorder. 2007;8:52. PMid:17593305 PMCID:PMC1920507. http://dx.doi.org/10.1186/1471-2474-8-52

37. Mancini MC, Parreira VF. A look into Repetitive Strain Injury/ Work-Related Musculoskeletal Disorders in critical care. Crit Care Nurs Clin North Am. 2007;19(2):131-43. PMid:17512469. http://dx.doi.org/10.1016/j.ccell.2007.02.008

38. Waters TR, Nelson A, Proctor C. Patient handling tasks with high risk for musculoskeletal disorders in critical care. Crit Care Nurs Clin North Am. 2007;19(2):131-43. PMid:17512469. http://dx.doi.org/10.1016/j.ccell.2007.02.008

39. Tullar JM, Brewer S, Amick BC 3rd, Irvin E, Mahood Q, Pompeii LA, et al. Occupational safety and health interventions to reduce musculoskeletal symptoms in the health care sector. J Occup Rehabil. 2010;20(2):199-219. PMid:20221676. http://dx.doi.org/10.1007/s10926-010-9231-y

40. Waters T, Collins J, Galinsky T, Caruso C. NIOSH research efforts to prevent musculoskeletal disorders in the healthcare industry. Orthop Nurs. 2006;25(6):380-9. PMid:17130760. http://dx.doi.org/10.1097/00006416-200611000-00007

41. Videman T, Ojajärvi A, Riihimäki H, Troup JD. Low back pain among nurses: a follow-up beginning at entry to the nursing school. Spine (Phila Pa 1976). 2005;30(20):2334-41. http://dx.doi.org/10.1097/01.brs.0000182107.14355.ca
42. Haahr JP, Frost P, Andersen JH. Predictors of health related job loss: a two-year follow-up study in a general working population. J Occup Rehabil. 2007;17(4):581-92. PMid:17957450. http://dx.doi.org/10.1007/s10926-007-9106-z

43. Kivimaki M, Head J, Ferrie JE, Shipley MJ, Vahtera J, Marmot MG. Sickness absence as a global measure of health: evidence from mortality in the Whitehall II prospective cohort study. BMJ. 2003;327:364 PMid:12919985 PMCid:PMC175810. http://dx.doi.org/10.1136/bmj.327.7411.364

44. Rosenman KD, Gardiner JC, Wang J, Biddle J, Hogan A, Reilly MJ, et al. Why most workers with occupational repetitive trauma do not file for workers’ compensation. J Occup Environ Med. 2000;42(1):25-34. PMid:10652685. http://dx.doi.org/10.1097/00043764-200001000-00008

45. Treaster DE, Burr D. Gender differences in prevalence of upper extremity musculoskeletal disorders. Ergonomics. 2004;47(5):495-526.

46. Nordander C, Ohlsson K, Balogh I, Hansson GA, Axmon A, Persson R, et al. Gender differences in workers with identical repetitive industrial tasks: exposure and musculoskeletal disorders. Int Arch Occup Environ Health. 2008;81(8):939-47. PMid:18066574. http://dx.doi.org/10.1007/s00420-007-0286-9

47. Power C, Frank J, Hertzman C, Li L. Predictors of low back pain onset in a prospective British study. Am J Public Health. 2001;91(10):1671-8. PMid:11574334 PMCid:PMC1446853. http://dx.doi.org/10.2105/AJPH.91.10.1671

48. Bejia I, Younes M, Jamila HB, Khalfallah T, Ben Salem K, Touzi M, et al. Prevalence and factors associated to low back pain among hospital staff. Joint Bone Spine. 2005;72(3):254-9. PMid:15850998. http://dx.doi.org/10.1016/j.jbspin.2004.06.001

49. Akmal M, Kesani A, Anand B, Singh A, Wiseman M, Goodship A. Effect of nicotine on spinal disc cells: a cellular mechanism for disc degeneration. Spine (Phila Pa 1976). 2004;29(5):568-575. http://dx.doi.org/10.1097/01.BRS.0000101422.36419.D8

50. Uematsu Y, Matuzaki H, Iwahashi M. Effects of nicotine on the intervertebral disc: an experimental study in rabbits. J Orthop Sci. 2001;6(2):177-182. PMid:11484105. http://dx.doi.org/10.1007/s007760100067

51. Bennett WD, Chapman WF, Gentry TR. Ineffectiveness of cough for enhancing mucus clearance in asymptomatic smokers. Chest. 1992;102(2):412-6. PMid:1643924. http://dx.doi.org/10.1378/chest.102.2.412

52. Goldberg MS, Scott SC, Mayo NE. A review of the association between cigarette smoking and the development of nonspecific back pain and related outcomes. Spine (Phila Pa 1976). 2000;25(8):995-1014. http://dx.doi.org/10.1097/00007632-200004150-00016

53. Buchanan AV, Weiss KM, Fullerton SM. Dissecting complex disease: the quest for the Philosopher’s Stone? Int J Epidemiol. 2006;35(5):562-71. PMid:16540539. http://dx.doi.org/10.1093/ije/dyl001

54. Eriksen W, Natvig B, Knardahl S, Bruusgaard D. Job characteristics as predictors of neck pain. A 4-year prospective study. J Occup Environ Med. 1999;41(10):893-902. PMid:10529945. http://dx.doi.org/10.1097/00043764-199910000-00013

55. Luime JJ, Koes BW, Miedem HS, Verhaar JA, Burdorf A. High incidence and recurrence of shoulder and neck pain in nursing home employees was demonstrated during a 2-year follow-up. J Clin Epidemiol. 2005;58(4):407-13. PMid:15862727. http://dx.doi.org/10.1016/j.jclinepi.2004.01.022

56. Martins LV, Marziale MH. Assessment of proprioceptive exercises in the treatment of rotator cuff disorders in nursing professionals: a randomized controlled clinical trial. Rev Bras Fisioter. 2012;16(6):502-9. PMid:23117648. http://dx.doi.org/10.1590/S1413-35522012005000057

57. Van den Heuvel SG, Heinrich J, Jans MP, Van der Beek AJ, Bongers PM. The effect of physical activity in leisure time on neck and upper limb symptoms. Prev Med. 2005;41(1):260-7. PMid:15917020. http://dx.doi.org/10.1016/j.ypmed.2004.11.006

58. Punnett L, Wegman DH. Work-related musculoskeletal disorders: the epidemiological evidence and the debate. J Electromyogr Kinesiol. 2004;14(1):13-23. PMid:14759746. http://dx.doi.org/10.1016/j.jelekin.2003.09.015

Correspondence

Helenice Jane Cote Gil Coury
Universidade Federal de São Carlos
Departamento de Fisioterapia
Rodovia Washington Luís, Km 235
CEP 13565-905, São Carlos, SP, Brasil
e-mail: helenice@ufscar.br