Research Article

A Model for Shear Strength of FRP Bar Reinforced Concrete Beams without Stirrups

Danying Gao¹,² and Changhui Zhang¹,³

¹School of Water Conservancy Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
²Henan University of Engineering, No. 1 Xianghe Road, Xinzheng, Henan 451191, China
³North China University of Water Resources and Electric Power, No. 36 Beihuan Road, Zhengzhou, Henan 450046, China

Correspondence should be addressed to Changhui Zhang; changhuizhang@foxmail.com

Received 18 April 2020; Revised 11 October 2020; Accepted 14 October 2020; Published 29 October 2020

Academic Editor: Hui Yao

Copyright © 2020 Danying Gao and Changhui Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The shear failure of a reinforced concrete beam generally occurs when the principal tensile stress near the neutral axis is equal to or greater than the tension strength of concrete. In order to set up a model for shear strength for FRP bar reinforced concrete beams without stirrups by the mechanical method, this paper equivalently transformed the FRP bar reinforced concrete rectangular beam with cracks as one composed of ideal elastic material to facilitate the analysis and proposed a new and more reasonable model of shear strength for FRP bar reinforced concrete beams without stirrups. Then, an experimental database including 235 FRP bar reinforced beams without stirrups was compiled to verify the validity of the proposed model. It was found that the values from the proposed model are in better agreement with the experimental results of shear strength of FRP bar reinforced concrete beams without stirrups in comparison with the models in codes.

1. Introduction

Fiber-reinforced polymer (FRP) bars have been considered as an advantageous alternative to replace steel bars for reinforced concrete structures due to the high-tension strength, durability, and good fatigue properties [1]. Since the modulus of elasticity, surface characteristics, tensile strength of FRP bars, and the bonding properties between FRP bars and concrete are different from those of steel bars, the use of FRP bars as reinforcement may cause different properties of FRP bar reinforced concrete members compared with the steel bar reinforced concrete members. It has been proved by several experimental investigations [2–4] that the shear capacity of FRP bar reinforced concrete beams without stirrups is different from that of steel bar reinforced members. Hence, the shear strength prediction models for steel bar reinforced concrete beams without stirrups cannot be directly applied to those for FRP bar reinforced members.

The shear design equations for shear strength of FRP bar reinforced concrete beams without stirrups were provided by many design codes or guidelines, including ACI 440.1R-15 [5], JSCE-97 [6], CAN/CSA S806-12 [7], GB50608 [8], and BISE-99 [9], as summarized in Table 1. It can be easily found that the calculation models are mainly based upon the empirical or semiempirical method or obtained from the modification of the existing design equations for concrete members reinforced with steel bars. Some of the models are expressed as a function of the square roots of concrete cylinder compression strength ($\sqrt{f_c'}$) [5,8], whilst the others are functions of the cubic roots of concrete cylinder compression strength ($\sqrt[3]{f_c'}$) [6, 7, 9], but none of them is a function of the cubic roots of the square of concrete cylinder compression strength ($\sqrt{f_c'^2}$). The shear strength calculation models provided by ACI 440.1R-15, JSCE-97, GB50608, and BISE-99 were reported to be conservative for the FRP bar reinforced concrete slender beams without stirrups, whilst the CAN/CSA S806-12 model did not well consider the effects of ρ_f nor E_f [10], and thus led to excessive
Table 1: Shear strength calculating models in codes.

Code	Calculating model
ACI440.1R-15	$V_{c,\text{ACI}} = 0.4\sqrt{f_c b (k d), k = \sqrt{2\rho f_n + (\rho f_t)^2} - \rho f_n, n_f = (E_f/E_c)}$
JSCE-97	$V_{c,\text{JSCE}} = \beta_d f_{\text{vcd}} b d, \beta_d = (1000/d)^{1/4} \leq 1.5$
CAN/CSA S806-12	$V_{c,\text{CAN/CSA S806}} = 0.11\sqrt{f_c b d \leq V_{c,\text{S806}} = 0.05 k_m k_s k_a \sqrt{f_c b d < 0.22\sqrt{f_c b d}}$
GB50608-10	$V_{c,\text{GB}} = 0.86 f_c b (k d), k = \sqrt{2\rho f_n + (\rho f_t)^2} - \rho f_n, n_f = (E_f/E_c)}$
BISE-99	$V_{c,\text{BISE}} = 0.79 (100\rho f_c b d)^{1/3} (400/d)^{1/4} (f_{\text{cd}}/25)^{1/3} b d$

reinforcement and also increasing the overall cost of construction [11].

For FRP bar reinforced concrete beams without stirrups and shear span-to-depth ratio of more than 2.7, a number of studies have shown that several parameters have the impacts on the shear strength (V_c) [12–15], such as concrete cylinder compression strength (f_{ct}), beam width (b), effective depth (d), reinforcement ratio (ρ), and modulus of elasticity (E_f) of the longitudinal FRP bar. The effect of the concrete compression strength on the shear strength of FRP bar reinforced concrete beams has been studied by many researchers. Experimental results [2, 16] indicated that the shear strength of FRP bar reinforced concrete beams increases with the increase of the concrete compression strength. It has been known that, in a beam without the external axial forces, the principal tensile stress arises from the interaction of normal and shear stresses. When the principal tensile stress from this interaction exceeds the tensile strength of concrete, the crack occurs and the beam is finally damaged [17]. Thus, the shear strength V_c of FRP bar reinforced concrete beams is a function of f_{ct}. The concrete tension strength can be evaluated through the $\sqrt{f_{\text{ct}}^2}$ in Eurocode 2 [18]; therefore, V_c can be expressed as a function of $\sqrt{f_{\text{ct}}^2}$ to show the significant effect of f_{ct} on V_c.

In this paper, the primary objective is to propose a new and more accurate shear strength model expressed as a function of $\sqrt{f_{\text{ct}}^2}$ for FRP bar reinforced concrete beams without stirrups by the theoretical method. A database of 235 FRP bar reinforced concrete beams without stirrups was collected to verify the validity of the proposed model. The efficiency of the proposed model and the ACI 440.1R-15, CAN/CSA S806-12, GB50608-2010, JSCE-97, and BISE-99 models were evaluated by comparing the predictions with experimental results in the database.

2. Proposed Model

According to the mechanics theory, the shear failure of a reinforced concrete beam generally occurs when the principal tensile stress near the neutral axis is equal to or greater than the tension strength of concrete. For FRP bar reinforced concrete beams without stirrups, the shear strength in shear bending section of the beam is mainly provided by the uncracked concrete and the aggregate interlock of the cracked concrete. Based on the reasoning similar to the original model by Tureyen and Frosch [17], an actual FRP bar reinforced concrete rectangular beam with cracks shown in Figure 1(a) can be equivalently transmitted to that shown in Figure 1(b), which is composed of an ideal elastic material to facilitate the analysis and modeling of the shear strength. In the ideal elastic material beam, the elastic modulus and tension strength of the ideal elastic material are equal to E_c and f_{ct} of concrete. The effect of the longitudinal FRP bars and the aggregate interlock of the cracked concrete on the shear strength can be considered by the tension zone of the equivalent rectangular beam with the ideal elastic material, and the depth of concrete tension zone is equal to that of concrete compression zone c, as shown in Figure 2.

The depth of the compression zone of ideal elastic material beam can be calculated, as follows, according to ACI 440.1R-15 [5]:

$$c = k d,$$

where $k = \sqrt{2\rho f_n + (\rho f_t)^2} - \rho f_n, n_f = E_f/E_c$. For a rectangular section beam, as shown in Figure 2, the maximum shear stress occurs at the neutral axis and can be calculated by the material mechanics as follows:

$$\tau_{\text{max}} = \frac{3V}{2b(2c)}.$$

The normal stress at the neutral axis is

$$\sigma = 0.$$

The principal stress shown in Figure 3 can be determined by the normal stress and shear stress as follows:

$$\sigma_1 = \sigma + \sqrt{\frac{\sigma^2}{2} + \tau^2}.$$
Figure 1: Transition of the FRP bar reinforced concrete beam to the ideal elastic material beam. (a) FRP reinforced beam. (b) Equal ideal elastic material beam.

Figure 2: Stress distribution in the equivalent rectangular beam composed with ideal elastic material.

Figure 3: Principal stress.
Substituting the values of τ and σ in equations (2)–(3) into equation (4), the principal tensile stress σ_1 at the neutral axis can be rewritten as follows:

$$\sigma_1 = \frac{3V}{2b(2c)}$$

(5)

It is assumed that the shear failure occurs when the principal tensile stress σ_1 is equal to or greater than the tension strength of concrete:

$$\sigma_1 \leq f_t.$$

(6)

From equations (5) and (6), the shear strength of the FRP bar reinforced concrete beam without stirrups can be predicted as follows:

$$V_c = \frac{4}{3}f_c bc.$$

(7)

The concrete tension strength can be evaluated by Eurocode 2 [18] as follows:

$$f_t = 0.3\sqrt{f_c^2}.$$

(8)

Then, the equation for predicting the shear strength of the FRP bar reinforced concrete beam without stirrups can be changed as follows:

$$V_c^{prop} = 0.4\sqrt{f_c^2 bc}.$$

(9)

3. Experimental Verification and Comparison

To demonstrate the validity of the proposed model, a database of 235 FRP bar reinforced concrete beams without stirrups was collected based on the following criteria: the specimens had rectangular cross-sections, simply supported, tested under one- or two-point loading, statically loaded, failed in shear, and the shear span-to-depth ratio (a/d) of specimens was greater than 2.7.

The parameters in this study included the concrete cylinder compression strength (f_c'), beam width (b), effective depth (d), reinforcement ratio (ρ_f), and modulus of elasticity (E_f) of the longitudinal FRP bars. The changing ranges of each parameter and the corresponding shear strengths of beams are given in Table 2, which are identical to the original data collected from the literatures.

3.1. Effect of Longitudinal FRP Bars. Based on the collected experimental data of 235 beams reinforced with FRP bar without stirrups in Table 1, the relation of the normalized shear strength $(V_c^{exp}/\sqrt{f_c'2bd})$ with $\rho_f n_f$ ($n_f = (E_f/E_c)$) is shown in Figure 4(a). It obviously indicates that $(V_c^{exp}/\sqrt{f_c'2bd})$ increases as $\rho_f n_f$ increases like the trendline, which illustrates that the shear strength of FRP bar reinforced concrete beams without stirrups is highly dependent on the reinforcement ratio (ρ_f) and modulus of elasticity (E_f) of the longitudinal FRP bars.

The relation between normalized shear strength ($V_c^{exp}/\sqrt{f_c'2bd}$) and k is also shown in Figure 4(b). It can be clearly seen that $(V_c^{exp}/\sqrt{f_c'2bd})$ increases as k increases. Through the regression of the experimental data, the relation between normalized shear strength ($V_c^{exp}/\sqrt{f_c'2bd}$) and k was obtained as follows:

$$\frac{V_c^{exp}}{\sqrt{f_c'2bd}} = 0.4k.$$

(10)

From the comparison of equation (10) with equation (9), it confirms that the effect of longitudinal FRP bars on the shear strength of FRP bar reinforced concrete beams without stirrups can be involved in equation (9) through the depth of the compression zone of the beam.

3.2. Effect of Concrete Compression Strength. The relation between normalized shear strength ($V_c^{exp}/0.4bf_c(kd)$) and f_c' is shown in Figure 5. It can be observed that the normalized shear strength ($V_c^{exp}/0.4bf_c(kd)$) increases as the concrete compression strength increases, and the trendline between $V_c^{exp}/0.4bf_c(kd)$ and $\sqrt{f_c'}$ is in better agreement with the experimental data than that between ($V_c^{exp}/0.4bf_c(kd)$) and $\sqrt{f_c'}$. It proves that it is suitable by using $\sqrt{f_c'^2}$ in equation (9) to express the effect of f_c' on the shear strength of FRP bar reinforced concrete beams without stirrups.

3.3. Comparison and Verification. To verify the efficiency that equation (9) captures the effects of the concrete compression strength and the longitudinal FRP bars on shear strength of the FRP bar reinforced concrete beams without stirrups, the values (V_c^{exp}/V_c^{pred}), which are the ratios of the experimental shear strength to prediction values according to the proposed model, and models recommended by ACI-440.1R-15, JSCE-97, CAN/CSA S806-12, GB50608-2010, and BISE-99 are shown in Figures 6 and 7 with f_c' and $\rho_f E_f/E_c$, respectively. It is apparent that the values of (V_c^{exp}/V_c^{pred}), (V_c^{exp}/V_c^{ACI}), (V_c^{exp}/V_c^{JSCE}), (V_c^{exp}/V_c^{S806}), (V_c^{exp}/V_c^{GB}), and (V_c^{exp}/V_c^{BISE}) scatter in a range of 0.46–3.11, 0.82–5.54, 0.44–3.41, 0.24–3.13, 0.81–5.48, and 0.74–7.53, respectively, as the changing of f_c' and $\rho_f E_f/E_c$. It can be seen that the most values of (V_c^{exp}/V_c^{pred}) are scattered around the line of $(V_c^{exp}/V_c^{pred}) = 1$. Additionally, there is a declining trend of (V_c^{exp}/V_c^{BISE}) with the increasing of (f_c') and an increasing trend of (V_c^{exp}/V_c^{S806}) with the increasing of $\rho_f n_f$, which illustrates that the BISE-99 model does not well capture the influence of concrete compression strength, and the CAN/CSA S806-12 model does not well capture the effect of FRP bars.

Figure 8 presents the correlations among the experimental shear strength V_c^{exp} of all 235 specimens and V_c^{ACI}, V_c^{JSCE}, V_c^{S806}, V_c^{GB}, V_c^{BISE}, and V_c^{pred} predicted by ACI 440.1R-15, JSCE-97, CAN/CSA S806-12, GB50608-2010, and BISE-99 models and the proposed model. A line with tolerance of 0% has been represented in the graph, which indicates that...
Table 2: Beam specimen details and shear strengths.

Investigators	Quantity of specimens	\(a/d\)	\(f'c\) (MPa)	\(b\) (mm)	\(d\) (mm)	\(E_f\) (GPa)	\(\rho_f\) (%)	\(V_c\) (kN)
Ashour et al. [19, 20]	14	2.7–5.9	23–50.2	150–200	163–371	32–142	0.12–1.39	9–36.1
Yost et al. [4, 21, 22]	42	4.1–6.5	36.3–81.4	65–279	141–225	41–139	0.33–2.56	8.8–51
El-Sayed et al. [16, 23, 24]	18	3.1–6.5	40–63	250–1000	155–326	39–135	0.39–2.63	60–190
Razagpur et al. [25]	2	3.6–4.2	40.5	200	225	145	0.5	38.5–49.7
Tariq and Newhook [26]	12	2.8–3.7	34.1–43.2	130–160	310–346	42–120	0.72–1.54	42.7–63.7
Tureyen and Frosch [27]	6	3.4	39.7–42.6	457	360	38–47	0.96–1.92	94.7–177
Deitz et al. [28]	5	4.5–5.8	27–30.8	305	158	40	0.73	26.8–29.2
Duranovic [29]	3	3.7	32.9–38.1	150	210	45–130	1.31–1.36	26.2–62.2
Swamy [30]	2	3.2–4.1	38–39	154–305	192–222	34–42	0.36–1.55	19.5–26.7
Suzuki et al. [31]	3	3	34.3	150	250	105	1.51–3.02	40.5–46
Alam and Hussein [32]	2	3.5	34.3–39.8	250	305–310	47–144	0.42–0.86	43.7–58.9
Nakamura and Higai [33]	2	3	22.7–27.8	300	150	29	1.3–1.8	33–36
Bentz et al. [34]	6	3.3–4.1	35–46	450	188–937	37	0.51–2.54	54.5–232
Ražan and Yu [35]	1	3.1	40	450	970	40	0.46	136
Wakui and Tottori [36]	4	3.2	46.6–46.9	200	325	58–192	0.7–0.9	87–118
Nagaoka et al. [37]	2	3.1	22.9–34.1	250	265	56	1.9	83–113
Issa et al. [38]	6	5.7–7	35.9	300	165–170	48–53	0.8–4.12	29.3–51.5
Tomlinson and Fam [39]	3	4.1–4.5	56.5–60	150	245–270	70	0.39–0.85	20.9–29.2
Guadagnini et al. [40]	1	3.3	42.8	150	223	45	1.28	27.2
Kim and Jang [41]	22	3.1–4.5	30–40.3	150–200	214–216	40–148	0.33–0.79	16.6–28.9
Olivito and Zuccarello [42]	20	5.6	20.4–27.2	150	180	115	0.87–1.45	16.6–29.9
Matta et al. [43]	12	3.1	29.5–59.7	114–457	146–883	41–49	0.12–0.28	17.9–220.7
Weggian and Abdalla [44]	6	6.5–9.5	32.5	1000	105–155	42–147	0.23–0.96	23.5–127
El Refai and Abed [45]	5	3.5	49	152	195–215	50	0.31–1.53	16.9–29.9
Chang and Seo [46]	14	5.8–8	30	1200	130–182	44–50	0.24–1.22	26.3–159
Abdul-Salam et al. [47]	16	5.7–6.3	41.3–6.2	1000	134–150	41–148	0.51–3.78	94–213
Ali et al. [48]	6	3	13–33.5	130	200	52	0.3–0.91	12.7–23.6
Total	235	2.7–9.5	13–86.2	65–1200	105–970	29–192	0.12–4.12	8.8–232

Note 1: If the concrete cylinder compression strength \(f'c\) and modulus of elasticity of concrete \(E_f\) are not provided by the investigator while the concrete cube compression strength \(f'c\) is only measured, it is assumed that \(f'c = 0.8f'c\) and \(E_f = 4735\sqrt{f'c}\). Note 2: if the data are provided for BS by the investigator, they are converted as follows: 1 ksi = 6.895 MPa, 1 in = 25.4 mm, and 1 kip = 4.448 kN.

Figure 4: Effect of longitudinal reinforcement on \((V_{exp}/0.4(kd))\).

Figure 5: Effect of concrete compression strength on \((V_{exp}/0.4b(kd))\).
Figure 6: Comparison of \(\frac{V_{\text{exp}}}{V_{\text{pred}}} \) with the change of \(f'_c \).

Figure 7: Comparison of \(\frac{V_{\text{exp}}}{V_{\text{pred}}} \) with the change of \(\rho_f E_f/E_c \).
the exact prediction \((V_{exp}^c/V_{pred}^c) = 1\) of the shear strength. It can be seen that the ACI 440.1R-15, JSCE-97, CAN/CSA S806-12, GB50608-2010, and BISE-99 models provide the conservative predictions for the shear strength of the most FRP bar reinforced concrete beams without stirrups compared with the experimental results. Moreover, the larger the shear strength of beam, the greater the conservative degree of predictions. The ACI 440.1R-15, GB50608-2010, and BISE-99 models provide the most conservative predictions. The values calculated by the proposed model in this study are more consistent with the experimental results.

To further demonstrate the efficiency of the proposed model and compare it with the ACI 440.1R-15, CAN/CSA S806-12, GB50608-2010, JSCE-97, and BISE-99 models for shear strength prediction of FRP bar reinforced concrete beams without stirrups, the mean, standard deviation (SD), and coefficient of variation (COV) of \((V_{exp}^c/V_{pred}^c)\) for all of the beams in the database are shown in Table 3. The mean values of \((V_{exp}^c/V_{pred}^c)\) are closer to 1 than that of \((V_{exp}^c/V_{ACI}^c)\), \((V_{exp}^c/V_{SCE}^c)\), \((V_{exp}^c/V_{S806}^c)\), \((V_{exp}^c/V_{GB}^c)\), and \((V_{exp}^c/V_{BISE}^c)\), while the SD values of \((V_{exp}^c/V_{pred}^c)\) are smaller than that of \((V_{exp}^c/V_{ACI}^c)\), \((V_{exp}^c/V_{SCE}^c)\), \((V_{exp}^c/V_{S806}^c)\), \((V_{exp}^c/V_{GB}^c)\), and \((V_{exp}^c/V_{BISE}^c)\). It confirms that the proposed model provides more accurate predictions for the shear strength of the FRP bar reinforced concrete beams than ACI 440.1R-15, CAN/CSA S806-12, GB50608-2010, JSCE-97, or BISE-99 models.

Table 3: Mean, SD, and COV for ratio of \((V_{exp}^c/V_{pred}^c)\).

Checks	\((V_{exp}^c/V_{ACI}^c)\)	\((V_{exp}^c/V_{SCE}^c)\)	\((V_{exp}^c/V_{S806}^c)\)	\((V_{exp}^c/V_{BISE}^c)\)	\((V_{exp}^c/V_{GB}^c)\)	\((V_{exp}^c/V_{Prop}^c)\)
Mean	1.96	1.36	1.23	2.28	1.92	1.07
SD	0.65	0.43	0.47	0.96	0.64	0.37
COV	0.33	0.31	0.38	0.42	0.33	0.34

4. Summary and Conclusions

This paper focused on the modeling of the shear strength prediction of FRP bar reinforced concrete beams without stirrups statically loaded. A simple and more accurate shear strength prediction model expressed as a function of \(\sqrt{f_c'}\) was proposed by theoretical analysis. An experimental database of 235 FRP bar reinforced concrete beams without stirrups was established to evaluate the efficiency of the proposed model by comparing the calculated shear strengths with the experimental results and with that of ACI 440.1R-15, CAN/CSA S806-12, GB50608-2010, JSCE-97, and BISE-99 models. The main conclusions of this research are summarized as follows:

1. An actual FRP bar reinforced concrete beam with cracks can be equivalently transmitted to a rectangular beam which composes of an ideal elastic material to propose the model of shear strength.
2. The effect of longitudinal FRP bars on the shear strength of FRP bar reinforced concrete beams without stirrups can be involved in the new model through the depth of the concrete compression zone.
3. It is more reasonable to be expressed as a function of \(\sqrt{f_c'}\) for considering the effect of concrete strength on the shear strength of FRP bar reinforced concrete beams without stirrups than that of \(\sqrt{f_c'}\) or \(\sqrt{f_c'}\).
(4) The calculating values by the proposed model are in better agreement with the experimental results of shear strength of FRP bar reinforced concrete beams without stirrups, comparing with the models in codes.

Notations

- f'_c: Cylinder compression strength of concrete, MPa
- f_{cu}: Cube compression strength of concrete, MPa
- f_t: Tension strength of concrete, MPa
- σ: Normal stress, MPa
- τ: Shear stress, MPa
- σ_t: Principal tensile stress, MPa
- a: Shear span, mm
- b: Beam width, mm
- c: Distance from the extreme compression fiber to the neutral axis, mm
- d: Effective depth, mm
- a/d: Shear span-to-depth ratio
- ρ: Reinforcement ratio
- A_f: Area of longitudinal tension reinforcement, mm2
- E: Modulus of elasticity of the FRP bars, GPa
- E_s: Modulus of elasticity of steel bars, GPa
- E_c: Modulus of elasticity of concrete, GPa
- V: Shear force on the cross-section, N
- V_c: Shear strength of the FRP bar reinforced concrete beams, N
- $V_{c,\text{exp}}$: Experimental shear strength, N
- $V_{c,\text{ACI}}$: Predicted shear strength by ACI440.1R-15 model, N
- $V_{c,\text{JSCE}}$: Predicted shear strength by JSCE-97 model, N
- $V_{c,\text{S806}}$: Predicted shear strength by CSA S806-12 model, N
- $V_{c,\text{BISE}}$: Predicted shear strength by BISE-99 model, N
- $V_{c,\text{GB50608}}$: Predicted shear strength by GB50608-2010 model, N
- $V_{c,\text{Prop}}$: Predicted shear strength by proposed model, N
- $V_{c,\text{pred}}$: Predicted shear strength, N.

Data Availability

All data included in this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Grant no. U1704254).

References

[1] L. C. Hollaway, "A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties," *Construction and Building Materials*, vol. 24, no. 12, pp. 2419–2445, 2010.

[2] F. Abed, H. El-Chabib, and M. AlHamaydeh, "Shear characteristics of GFRP-reinforced concrete deep beams without web reinforcement," *Journal of Reinforced Plastics and Composites*, vol. 31, no. 16, pp. 1063–1073, 2012.

[3] Z. Omeman, M. Nehdi, and H. El-Chabib, "Experimental study on shear behavior of carbon-fiber-reinforced polymer reinforced concrete short beams without web reinforcement," *Canadian Journal of Civil Engineering*, vol. 35, no. 1, pp. 1–10, 2008.

[4] J. R. Yost, S. P. Gross, and D. W. Dinehart, "Shear strength of normal strength concrete beams reinforced with deformed GFRP bars," *Journal of Composites for Construction*, vol. 5, no. 4, pp. 268–275, 2001.

[5] ACI Committee 440, Guide for the Design and Construction of Concrete Reinforced with Fiber Reinforced Polymers (FRP) Bars, ACI 440.1R-15, Farmington Hills, MI, USA, 2015.

[6] Japan Society Of Civil Engineers, Recommendation for Design and Construction of Concrete Structures using Continuous fiber Reinforcing Materials, JSCE-1997, Tokyo, Japan, 1997.

[7] Canadian Standards Association, Design and Construction of Building Structures with Fiber-Reinforced Polymers, CSA-S806-12, Mississauga, Canada, 2012.

[8] China Metallurgical Construction Association, Technical Code for Infrastructure Application of FRP Composites, GB50608-2010, Peiking, China, 2010.

[9] British Institution of Structural Engineers, Interim Guidance on the Design of Reinforced Concrete Structures using Fiber Composite Reinforcement, BISE-1999, London, UK, 1999.

[10] D. Gao and C. Zhang, "Shear strength prediction model of FRP bar-reinforced concrete beams without stirrups," *Mathematical Problems in Engineering*, vol. 2020, pp. 1–11, 2020.

[11] M. S. M. Shahnewaz, R. M. R. Machial, M. A. M. S. Alam, and A. R. A. Retil, "Optimized shear design equation for slender concrete beams reinforced with FRP bars and stirrups using genetic algorithm and reliability analysis," *Engineering Structures*, vol. 107, pp. 151–165, 2016.

[12] H. Naderpour, O. Poursaeidi, and M. Ahmadi, "Shear resistance prediction of concrete beams reinforced by FRP bars using artificial neural networks," *Measurement*, vol. 126, pp. 299–308, 2018.

[13] M. K. Dhahir and W. Nadir, "A compression field based model to assess the shear strength of concrete beams reinforced with longitudinal FRP bars," *Construction and Building Materials*, vol. 191, pp. 736–751, 2018.

[14] J. Thomas and S. Ramadas, "Parametric study of shear strength of concrete beams reinforced with FRP bars," *Journal of The Institution of Engineers (India): Series A*, vol. 97, no. 3, pp. 273–284, 2016.

[15] W. Nadir, M. K. Dhahir, and F. H. Naser, "A compression field based model to assess the shear strength of concrete slender beams without web reinforcement," *Case Studies in Construction Materials*, vol. 9, p. e210, 2018.

[16] A. K. El-Sayed, E. F. El-Salakawy, and B. Benmokrane, "Shear capacity of high-strength concrete beams reinforced with FRP bars," *ACI Structural Journal*, vol. 103, no. 3, pp. 383–389, 2006.

[17] A. K. Tureyen and R. J. Frosh, "Concrete shear strength: another perspective," *ACI Structural Journal*, vol. 100, no. 5, pp. 609–615, 2003.

[18] Technical Committee CEN/TC250, *Design of Concrete Structures: Part 1: General Rules and Rules for Buildings*, Eurocode 2, Brussels, Belgium, 2002.

[19] A. F. Ashour, "Flexural and shear capacities of concrete beams reinforced with GFRP bars," *Construction and Building Materials*, vol. 20, no. 10, pp. 1005–1015, 2006.
[20] A. F. Ashour and I. F. Kara, “Size effect on shear strength of FRP reinforced concrete beams,” Composites Part B: Engineering, vol. 60, pp. 612–620, 2014.

[21] J. R. Yost, S. P. Gross, and D. W. Dinehart, “Effective moment of inertia for glass fiber-reinforced polymer reinforced concrete beams,” ACI Structural Journal, vol. 100, no. 6, pp. 732–739, 2003.

[22] S. P. Gross, J. R. Yost, D. W. Dinehart, E. Svensen, and N. Liu, “Shear strength of normal and high strength concrete beams reinforced with GFRP bars,” in Proceedings of the International Conference On High Performance Materials In Bridges, pp. 268–275, Kailua-Kona, HI, USA, August 2001.

[23] A. K. El-Sayed, E. F. El-Salakawy, and B. Benmokrane, “Shear strength of FRP reinforced concrete beams without transverse reinforcement,” ACI Structural Journal, vol. 103, no. 2, pp. 235–243, 2006.

[24] A. El-Sayed, E. F. El-Salakawy, and B. Benmokrane, “Shear strength of one-way concrete slabs reinforced with fiber-reinforced polymer composite bars,” Journal of Composites for Construction, vol. 9, no. 2, pp. 147–157, 2005.

[25] A. G. Razagpur, B. O. Isgor, S. Greenaway, and A. Selley, “Concrete contribution to the shear resistance of fiber reinforced polymer reinforced concrete members,” Journal of Composites for Construction, vol. 8, no. 5, pp. 452–460, 2004.

[26] M. Tariq and J. P. Newhook, “Shear testing of FRP reinforced concrete without transverse reinforcement,” in Proceedings of the Annual Conference of the Canadian Society For Civil Engineering, Moncton, Canada, June 2003.

[27] A. K. Tureyen and R. J. Frosch, “Shear tests of FRP-reinforced concrete beams without stirrups,” ACI Structural Journal, vol. 99, no. 4, pp. 427–434, 2002.

[28] D. H. Deitz, I. E. Harik, and H. Gesund, “One-way slabs reinforced with glass fiber reinforced polymer reinforcing bars,” in Proceedings Of the 4th International Symposium, Fiber Reinforced Polymer Reinforcement for Reinforced Concrete structures, pp. 279–286, Porto, Portugal, September 1999.

[29] P. K. W. P. Duranovic N. “Tests on concrete beams reinforced with glass fiber reinforced plastic bars,” in Proceedings of the Third International Symposium on Non-metallc (FRP) Reinforcement for Concrete structures(FRPSCS-3), pp. 479–486, Japan Concrete Institute, Sapporo, Japan, October 1997.

[30] A. M. Swamy, “Structural implications of using GFRP bars as concrete reinforcement,” in Proceedings of the Third International Symposium on Non-metallic (FRP) Reinforcement for Concrete structures(FRPSCS-3), pp. 503–510, Japan Concrete Institute, Sapporo, Japan, October 1997.

[31] W. Z. K. M. Suzuki, “Shear behavior of concrete beams reinforced by FRP rods as longitudinal and shear reinforcement,” in Proceedings of the Second International Rilem Symposium on Non-metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-2), pp. 352–459, Ghent, Belgium, August 1995.

[32] M. S. Alam and A. Hussein, “Unified shear design equation for concrete members reinforced with fiber-reinforced polymer without stirrups,” Journal of Composites for Construction, vol. 17, no. 5, pp. 575–583, 2013.

[33] H. Nakamura and T. Higai, “Evaluation of shear strength of concrete beams reinforced with FRP,” Proceedings of the Japan Society of Civil Engineers, vol. 26, pp. 111–123, 1995.

[34] E. C. Bentz, L. Massam, and M. P. Collins, “Shear strength of large concrete members with FRP reinforcement,” Journal of Composites for Construction, vol. 14, no. 6, pp. 637–646, 2010.

[35] Z. P. Bažant and Q. Yu, “Safe shear design of large, wide beams,” Concrete International, vol. 26, no. 8, pp. 14–17, 2004.

[36] H. Wakui and S. Tottori, “Shear capacity of RC and PC beams using FRP reinforcement,” ACI Special Publication, vol. 138, no. 27, pp. 615–632, 1993.

[37] T. Nagasaki, H. Fukuyama, and M. Tanigaki, “Shear performance of concrete beams reinforced with FRP stirrups,” ACI Special Publication, vol. 138, pp. 789–811, 1993.

[38] M. A. Issa, T. Ovittigala, and M. Ibrahim, “Shear behavior of basalt fiber reinforced concrete beams with and without basalt FRP stirrups,” Journal of Composites for Construction, vol. 20, no. 4, 2016.

[39] D. Tomlinson and A. Fam, “Performance of concrete beams reinforced with basalt FRP for flexure and shear,” Journal of Composites for Construction, vol. 19, no. 2, 2015.

[40] M. Guadagnini, K. Pilakoutas, and P. Waldron, “Shear resistance of FRP RC beams: experimental study,” Journal of Composites for Construction, vol. 10, no. 6, pp. 464–473, 2006.

[41] C. H. Kim and H. S. Jang, “Concrete shear strength of normal and lightweight concrete beams reinforced with FRP bars,” Journal of Composites for Construction, vol. 18, no. 2, pp. 1090–1268, 2014.

[42] R. S. Olivito and F. A. Zuccarello, “On the shear behaviour of concrete beams reinforced by carbon fibre-reinforced polymer bars: an experimental investigation by means of acoustic emission technique,” Strain, vol. 46, no. 5, pp. 470–481, 2010.

[43] F. Matta, A. K. El-Sayed, A. Nanni, and B. Benmokrane, “Size effect on concrete shear strength in beams reinforced with fiber-reinforced polymer bars,” ACI Structural Journal, vol. 110, no. 4, pp. 617–628, 2013.

[44] F. M. Wegian and H. A. Abdalla, “Shear capacity of concrete beams reinforced with fiber reinforced polymers,” Composite Structures, vol. 71, no. 1, pp. 130–138, 2004.

[45] A. El Refai and F. Abed, “Concrete contribution to shear strength of beams reinforced with basalt fiber-reinforced bars,” Journal of Composites for Construction, vol. 20, no. 4, pp. 1–13, 2016.

[46] K. Chang and D. Seo, “Behavior of one-way concrete slabs reinforced with GFRP bars,” Journal of Asian Architecture and Building Engineering, vol. 11, no. 2, pp. 351–358, 2012.

[47] B. Abdul-Salam, A. S. Farghaly, and B. Benmokrane, “Mechanisms of shear resistance of one-way concrete slabs reinforced with FRP bars,” Construction and Building Materials, vol. 127, pp. 959–970, 2016.

[48] I. Ali, R. Thamrin, A. A. A. Samad, and N. Mohamad, “Diagonal shear cracks and size effect in concrete beams reinforced with glass fiber reinforced polymer (GFRP) bars,” Applied Mechanics and Materials, vol. 621, pp. 113–119, 2014.