Mass Spectra and Regge Trajectories of Δ Baryons

Chandni Menapara*, Chetan Lodha and Ajay Kumar Rai

Department of Physics, Sardar Vallabhbhai National Institute of Technology, Surat-395007, Gujarat, India

*Email: chandni.menapara@gmail.com

Abstract

In contrast to past studies, the current paper is focused on baryons, and all four isospin states have been independently generated using u and d quarks with various constituent masses. The hypercentral Constituent Quark Model (hCQM) serves as the theoretical foundation for computing the resonance masses. The spin-dependent and first order correction terms are added to the confining potential, which is assumed to be in linear form. The resulting results have been contrasted with a wide range of methodologies and experimentally practicable states. Regge trajectories for (n, M^2) and (J, M^2) have also been displayed in addition to mass spectra.

Keywords

Baryon spectroscopy, CQM, Regge trajectory

1. Introduction

The hadrons, not just composite of valence quarks but their internal interaction leading to color confinement, gluons pose many questions to be addressed to reveal the degree of freedom responsible for the observed behaviour. Hadron spectroscopy has been aimed to obtain resonance masses of hadrons and explored through various approaches. the hadrons made by light quark flavours play an essential role in the interpretation of many reactions like in production processes of heavy quarks, heavy-ion collisions, etc. It is also of great interest to understand astrophysical systems like neutron stars. Also, this work is motivated in an attempt to understand all the light baryon properties particularly Δ baryon which comprises of four isospin partners formed with u and d quarks [1]. The experiments at Jefferson Lab, MAMI, ELSA, GRAAL, HADES-GSI [2] have been striving through the years to collect as much information about excited state of hadrons as possible. The upcoming facilities PANDA at FAIR-GSI shall be dedicated to light, strange baryons [3,4]. Light baryon has been summarized in some recent reviews [5,6].
Here, a non-relativistic quark model has been employed to obtain the mass spectra of all four isospin states of Δ by differentiating between u and d constituent quark mass. This is expected to aid in experiments as a large number of resonances are studied which can later be looked for through various decay channels. In addition, the Regge trajectories have been plotted to check for linear nature which shall be helpful in assigning the spin-parity to a given state.

2. Theoretical Framework: hCQM

As valence quarks dressed with gluons, quark-antiquark pairs, and all other interactions resulting in the total baryon mass, these constituent quarks are referred to as constituents. In this case, a non-relativistic, hypercentral constituent quark model (hCQM) has been used. The constituent quark mass for u and d quarks was assumed to be similar in our earlier work [7-10]. However, in the present work, the u and d constituent quarks masses have been modified respectively as $m_u = 290 \text{ MeV}$ and $m_d = 300 \text{ MeV}$ which allowed us to segregate the four isospin states of Δ baryon. The three-body interaction of quarks inside a baryon is described in the form of Jacobi coordinates ρ and λ which are obtained based on inter-quark distance r_i.

$$\rho = \frac{1}{\sqrt{2}} (r_1 - r_2) ; \quad \lambda = \frac{1}{\sqrt{6}} (r_1 + r_2 - 2r_3) \quad (1)$$

The hypercentral Constituent Quark Model (hCQM) is reached through hyperradius x and hyperangle ξ.

$$x = \sqrt{\rho^2 + \lambda^2} ; \quad \xi = \arctan(\frac{\rho}{\lambda}) \quad (2)$$

The potential to account for confinement and asymptotic freedom of quarks within a baryon is taken to be Coulomb-like part and a linear term as a confining part. As the model itself suggests, the potential is solely depended on the hyperradius x. It is noteworthy here that x indirectly is being contributed with the three-body interaction.

$$V(x) = -\frac{x}{x} + \alpha x \quad (3)$$

To take into account the possible angular momentum quantum number J, spin-dependent terms are also added to the earlier potential terms.

$$V_{\text{SD}}(x) = V_{SS}(x)(S_p \cdot S_h) + V_{PS}(x)(\gamma \cdot S) + V_{F} \times [S^2 - \frac{3(S \cdot x)(S \cdot x)}{x^2}] \quad (4)$$

Here, $V_{SS}(x)$, $V_{PS}(x)$ and $V_{F}(x)$ are spin-spin, spin-orbit and tensor terms respectively.
In addition to above terms, a first order correction term with $\frac{1}{m}$ dependence has also been incorporated.

$$V^1(x) = -C_F C_A \frac{a^2}{4x^2}$$

(5)

where C_F and C_A are Casimir elements of fundamental and adjoint representation. The final Hamiltonian is as follows:

$$H = \frac{p^2}{2m} + V(x) + V_{SD}(x) + V^1(x)$$

(6)

The Schrodinger equation with the hyper-radial part is numerically solved for calculating the excited state masses.

3. Results and Discussion

3.1 Mass Spectra

Using the above potential model, the masses are computed for 1S-5S, 1P-3P, 1D-2D, 1F states including few states from 1G, 1H and 1I which were not obtained earlier. The excited states are recalculated for all these isospin states of Δ baryon and compared with various results as shown in the table [1]. As the present work has attempted to separate the isospin states of all four Δ baryons, the ground state masses nearly vary by 2 MeV for each one but within the PDG range. A similar trend is observed in higher radial excited states of S-wave. The 2S mass predicted is very much near to the algebraic model.

The negative parity states have states ranging from 4 to 1 star status by PDG. It is observed from the table that with increase in J value, the predicted masses are under-predicted. However, not many models have different masses for every spin-parity state. In case of F-wave, $J = \frac{7}{2}$ state is the only known by PDG. The present masses are nearly 100 MeV below the range and hardly any comparison is obtained. Even with the small difference in the isospin state masses, this study is expected to aid in the decay channel studies as in the decay of heavy baryons, the final products are the light baryons. In addition, the light strange baryons play important role in other areas including astrophysics to understand the composition of celestial bodies. With these obtained masses, we have attempted to study the Regge trajectories as well as magnetic moments of Δ baryon. Here, a few models considered for comparison include: Bethe-Ansatz in U(7) model [11], relativistic interacting quark diquark model [12], semi-relativistic model [13], mass formula classification [15,16] and chiral quark model [17].
Table 1: Mass Spectra of all four isospin states of Δ in comparison with other models (in MeV).

State	J^P	Δ^+	Δ^0	Δ^-	[5]	PDG	Status	[11]	[12]	[13]	[14]	[15]	[16]	[17]	
1S $\frac{3}{2}^-$	$\frac{3}{2}^-$	1228	1230	1232	1235	1232	1230-1234	****	1245	1247	1231	1232	1232	1232	1232
2S $\frac{3}{2}^-$	$\frac{3}{2}^-$	1603	1606	1610	1615	1611	1500-1640	****	1609	1689	1658	1727	1625	1600	1659.1
3S $\frac{3}{2}^-$	$\frac{3}{2}^-$	1922	1926	1932	1941	1934	1870-1970	***	2042	1914	1921	1935	1920	2090.2	
4S $\frac{3}{2}^-$	$\frac{3}{2}^-$	2241	2248	2257	2270	2256									
5S $\frac{3}{2}^-$	$\frac{3}{2}^-$	2559	2570	2584	2602	2579									
1P $\frac{1}{2}^+$	$\frac{1}{2}^+$	1618	1625	1630	1634	1625	1590-1630	****	1711	1830	1737	1573	1645	1667.2	
3P $\frac{3}{2}^+$	$\frac{3}{2}^+$	1585	1591	1596	1603	1593	1690-1730	****	1709	1830	1737	1573	1720	1667.2	
5P $\frac{5}{2}^+$	$\frac{5}{2}^+$	1542	1546	1552	1561	1550									
2P $\frac{1}{2}^+$	$\frac{1}{2}^+$	1943	1944	1955	1965	1956	1840-1920	***	1910	1910	1900				
3P $\frac{3}{2}^+$	$\frac{3}{2}^+$	1907	1911	1921	1903	1919	1940-2060	**	1910	1940					
5P $\frac{5}{2}^+$	$\frac{5}{2}^+$	859	1868	1874	1885	1871	1900-2000	***	1910	1908	1945				
3D $\frac{1}{2}^+$	$\frac{1}{2}^+$	2262	2271	2280	2295	2280	-	-							
3D $\frac{3}{2}^+$	$\frac{3}{2}^+$	2226	2235	2246	2260	2242	-	-							
5D $\frac{5}{2}^+$	$\frac{5}{2}^+$	2179	2188	2199	2213	2193									
1D $\frac{1}{2}^+$	$\frac{1}{2}^+$	1898	1898	1911	1919	1905	1850-1950	****	1851	1827	1891	1953	1895	1910	1873.5
3D $\frac{3}{2}^+$	$\frac{3}{2}^+$	1860	1862	1873	1882	1868	1870-1970	***	1936	2042	1914	1921	1935	1920	2090.2
5D $\frac{5}{2}^+$	$\frac{5}{2}^+$	1808	1814	1823	1832	1818	1855-1910	****	1934	2042	1891	1901	1895	1905	1873.5
7D $\frac{7}{2}^+$	$\frac{7}{2}^+$	1744	1753	1760	1771	1756	1915-1950	****	1932	2042	1891	1955	1950	1950	1873.5
2D $\frac{1}{2}^+$	$\frac{1}{2}^+$	2218	2221	2234	2247	2227									
3D $\frac{3}{2}^+$	$\frac{3}{2}^+$	2179	2184	2196	2210	2190									
5D $\frac{5}{2}^+$	$\frac{5}{2}^+$	2127	2135	2146	2160	2140	2015	**	2200						
7D $\frac{7}{2}^+$	$\frac{7}{2}^+$	2062	2073	2084	2098	2078									
1F $\frac{3}{2}^+$	$\frac{3}{2}^+$	2146	2153	2160	2181	2165									
5F $\frac{5}{2}^+$	$\frac{5}{2}^+$	2092	2099	2108	2126	2108									
7F $\frac{7}{2}^+$	$\frac{7}{2}^+$	2024	2033	2043	2058	2037	2150-2250	***							
9F $\frac{9}{2}^+$	$\frac{9}{2}^+$	1942	1953	1966	1975	1952									
1G $\frac{11}{2}^+$	$\frac{11}{2}^+$	2132	2145	2162	2178	2300-2500	****								
1H $\frac{13}{2}^+$	$\frac{13}{2}^+$	2326	2339	2362	2379	2794	**								
2I $\frac{15}{2}^+$	$\frac{15}{2}^+$	2512	2529	2554	2581	2990	**								
3.2 Regge Trajectory

The linear relation of total angular momentum quantum number J as well as principal quantum number n with the square of resonance mass M^2 is at the base. The plotting of all the natural and unnatural parity states allows us to locate if a given state is in accordance with the assigned J^P value.

\[
J = aM^2 + a_0 \quad (7)
\]
\[
n = bM^2 + b_0 \quad (8)
\]

So, here figures 1 to 6 depicts the Regge trajectories for the isospin partners. It is noteworthy that all the calculated points fit well on the linear curve and are non-intersecting.

Fig 1: Regge trajectory $J \rightarrow M^2$ for Δ^{++}

Fig 2: Regge trajectory $J \rightarrow M^2$ for Δ^+

Fig 3: Regge trajectory $J \rightarrow M^2$ for Δ^-

Fig 4: Regge trajectory $n \rightarrow M^2$ for Δ^{++}
Fig 5: Regge trajectory $n \rightarrow M^2$ for Δ^+

Fig 6: Regge trajectory $n \rightarrow M^2$ for Δ^-

4. Conclusion

The idea of separately exploring the isospin states of Δ baryon has been implemented in the present work which is a modification to earlier calculated masses. The constituent quark masses for u and d quarks have been treated differently to obtain the radial and orbital excited state masses using the non-relativistic hypercentral Constituent Quark Model (hCQM). The potential incorporated consists of linear confining term, spin-dependent terms and first order correction terms.

The results have been compared with those of Particle Data Group (PDG) and with other approaches discussed above. The comparison has shown that low-lying states are well in accordance with experimental range. However, the higher J^P value states for a given principal quantum number under-predicts as compared to PDG. The results are expected to aid in future experiments to determine missing resonances and in various decay channels.

The Regge trajectories have been plotted for (n,M^2) and (J,M^2) which are following the linear nature. This allows us to identify a given state for its spin-parity assignment on the Regge line. Differentiating the isospin resonance masses shall be important to study strong, weak and electromagnetic decay channels. This work is expected to support the upcoming experimental facilities at PANDA.

5. Acknowledgements

The authors are thankful to the organizers of NATIONAL CONFERENCE ON ADVANCES IN PHYSICAL SCIENCES FOR SUSTAINABLE DEVELOPMENT (NCAPSSD–2022), IITE
Gandhinagar for providing with an opportunity to present our work. Also, Ms. Chandni Menapara would like to acknowledge the support from the Department of Science and Technology (DST) under INSPIRE-FELLOWSHIP scheme for pursuing this work.

6. References

1) R. L. Workman et al. [Particle Data Group] (2022), Prog. Theor. Exp. Phys. **2022**, 083C01; Zyla P A et al (2020) Prog. Theor. Exp. Phys. **2020** 083C01
2) Adamczewski-Musch J et al [HADES Collaboration] (2017) Phys. Rev. C **95**, 065205
3) Barruca G et al [PANDA Collaboration] (2021) Eur. Phys. J. A **57**, 184
4) Singh B et al [PANDA Collaboration] (2019) J. Phys. G: Nucl. Part. Phys. **46**, 045001; 2016 Nucl. Phys. A **954**, 323-340
5) Eichmann G (2022) Few Body Syst. **63**, 57
6) Thiel A, Afzal F and Wunderlich Y (2022) Light Baryon Spectroscopy, arXiv:2202.05055 [nucl-ex]
7) Menapara C, Shah Z and Rai A K (2021) Chin. Phys. C **45**, 023102; AIP Conf. Proc. **2220**, 140014
8) Shah Z, Gandhi K and Rai A K (2019) Chin. Phys. C **43**, 034102
9) Gandhi K, Z Shah and Rai A K (2018) Eur. Phys. J. Plus **133** (12), 1-9
10) Shah Z and Rai A K (2018) Few-Body Syst **59**, 112
11) Amiri N, Ghapanvari M and Jafarizadeh M A (2021) Eur. Phys. J. Plus **141**, 136
12) Santopinto E and Ferretti J (2015) Phys. Rev. C **92**, 025202
13) Aslanzadeh M and Rajabi A A (2017) Int. J. Mod. Phys. E **26**, 1750042
14) Giannini M M and Santopinto E and Vassallo A (2001) Eur. Phys. J. A **12**, 447-452
15) Klempt E (2002) Phys. Rev. C **66**, 058201
16) Chen Y and Ma B Q (2008) Chin. Phys. Lett. **25**, 3920
17) Ghalenovi Z and Moazzen M (2017) Eur. Phys. J. Plus **132**, 354