Supporting information: Intuitive physical reasoning about objects’ masses transfers to a visuomotor decision task consistent with Newtonian physics

Nils Neupärtl1,2*, Fabian Tatai1,2, Constantin A. Rothkopf1,2,3

1 Centre for Cognitive Science, Technical University of Darmstadt, 64283 Darmstadt, Germany
2 Institute of Psychology, Technical University of Darmstadt, 64283 Darmstadt, Germany
3 Frankfurt Institute for Advanced Studies, Goethe University, 60438 Frankfurt, Germany

* neupaertl@psychologie.tu-darmstadt.de

Puck Motion

From Newtonian physics we know the relationships between a change in momentum Δp by a force F exerted over a time Δt:

$$\Delta p = F \Delta t$$ \hspace{1cm} (1)

The impulse is transferred to a puck of mass m resulting in a change of speed Δv:

$$\Delta p = m \Delta v$$ \hspace{1cm} (2)

As the puck is initially at rest, the release velocity v_0 when shooting the puck can therefore be expressed as:

$$v_0 = \frac{F \Delta t}{m} \propto \Delta t$$ \hspace{1cm} (3)

Therefore, in the simulations the change in momentum Δp increases linearly with press-time Δt and proportionally to force F and thus the initial velocity v_0 also scales linearly with the press-time. Once released, a frictional force F_{fr}, which can be expressed in terms of the gravitational force F_g and the friction coefficient μ:

$$F_{fr} = \mu F_g = \mu mg,$$ \hspace{1cm} (4)

which slows the puck down with an acceleration a_{fr}, which accordingly to Newton’s second law $F = ma$ is:

$$a_{fr} = \mu g$$ \hspace{1cm} (5)

until at rest after some time T:

$$v_T = 0 = v_0 - a_{fr} T$$ \hspace{1cm} (6)

During this time the puck has moved a distance s_T

$$s_T = \frac{1}{2} a_{fr} T^2$$ \hspace{1cm} (7)

Solving eq. (6) for T and substituting into eq. (7), substituting the acceleration a_{fr} from eq. (5) and using the expression for the initial velocity v_0 from eq. (3) allows finding the press-time required for propelling the puck over a distance Δx in manuscript eq. 1.
Position and velocity updates per frame:

We used the difference equations corresponding to the above equations of motion:

\[
x_{t+\delta t} = x_t + v_t \delta t
\]
\[
v_{t+\delta t} = v_t - a_f \delta t.
\]