Anomalous absorption in 202-111 transition of methanimine

N Kumar1,2*, S Chandra3, N Kant1, M K Sharma3 and M Sharma4

1Department of Physics, Lovely Professional University, Phagwara 144411, India; 2Department of Physics, DAV College, Abohar 152116, India 3Amity Centre for Astronomy & Astrophysics, Amity Institute of Applied Sciences, Amity University, Sector 125, Noida 201313, India 4School of Studies in Physics, Jiwaji University, Gwalior 474011, India
*E-mail: neerajbatra86@gmail.com

Abstract: The methanimine molecule is of great interest for astronomers and astrophysicists. It is considered as a prebiotic molecule as it is a potential precursor of Glycine, the simplest amino acid. The reaction of CH2NH with HCN in interstellar medium makes aminoacetonitrile (NH2CH2CN) which further reacts with H2O to make glycine (NH2CH2COOH). The amino-acids like Glycine are building blocks of proteins that are essential for life to occur. Earlier, we have calculated the radiative lifetimes and Einstein A-coefficients for transitions between 69 lowest rotational energy levels of methanimine. In the present study, we have obtained the anomalous absorption in 202 – 111 transition of methanimine at 33.705893 GHz. We have solved the statistical equilibrium equations coupled with the equations of radiative transfer. The brightness temperature is found to be minimum around the hydrogen molecular density of 10^{4.5} cm^{-3} and it rises on both sides of this density.

1. Introduction

The methanimine(CH2NH) molecule was firstly detected in the molecular cloud Sgr B2 towards the Galactic center [1] by using microwave spectroscopy. It was predicted in the interstellar medium because similar molecules like formaldehyde [2] and thioformaldehyde [3] were already observed there. The presence of CH2NH in the molecular cloud Sgr B2 was further confirmed in subsequent studies [4–10]. A number of transitions of CH2NH were detected in molecular clouds Orion KL, W51, W49, Ori 3N (Orion Ridge), TMC-1, L134N and G34.3+0.15 [11], in dark molecular cloud L183 [12], Orion-KL [13], Arp220 galaxy [14], in molecular cloud G19.61-0.23 [15] and in circumstellar envelope of IRC+10216 [16].

2. Methanimine: A Prebiotic Molecule

The CH2NH molecule is a planar asymmetric top type having components of dipole moment along a and b axis as μa = 1.340 Debye and μb = 1.446 Debye [17]. The laboratory spectrum of CH2NH in the gas phase was first obtained by Johnson & Lovas [18] in the range of 60 GHz to 123 GHz. Further, its laboratory spectrum was obtained in various frequency ranges [19–23].

The methanimine is considered as a prebiotic molecule as it is a potential precursor of aminoacetonitrile (NH2CH2CN) [24,25] which is a key molecule in the formation of glycine (NH2CH2COOH), the simplest amino acid [26,27]. The amino-acids make proteins, which are necessary for life to occur. The methanimine (CH2NH) molecule is a precursor of aminoacetonitrile formed by the reaction CH2NH + HCN → NH2CH2CN.

The aminoacetonitrile (NH2CH2CN) participates in Strecker type synthesis to form glycine by the reaction NH2CH2CN + 2H2O → NH2CH2COOH + NH3. The presence of glycine is given by Kuan...
et al. [28] but is not confirmed in a subsequent study [29]. The aminoacetonitrile has also been detected by Belloche et al. [27] in Sgr B2.

3. Computational Details

For rotational energy levels of Methanimine, both the collisional and radiative transitions are possible. The radiative transitions obey selection rules but the collisional transitions do not obey such rules. The first step is to optimize the co-ordinates of CH$_2$NH which is done with the help of software GAUSSIAN (2003) [30].

For the transitions occurring between rotational energy levels of CH$_2$NH, we can write a set of equations of statistical equilibrium coupled with the equations of radiative transfer [31], as given below:

\[
n_i = \sum_{j=1}^{N} n_i P_{ij} = \sum_{j=1}^{N} n_j P_{ij}
\]

where the level $i = 1,2,3, \ldots, N$ and n_i is the population density of ith energy level. Also, P_{ij} is defined as

(i) For radiatively allowed transitions:

\[
P_{ij} = \begin{cases}
(A_{ij} + B_{ij}I_{\nu bg}) \beta_{ij} + n_{H_2} C_{ij} & i > j \\
B_{ij} I_{\nu bg} \beta_{ij} + n_{H_2} C_{ij} & i < j
\end{cases}
\]

(ii) For collisional only (radiatively forbidden) transitions

\[
P_{ij} = n_{H_2} C_{ij}
\]

Here, A_{ij} and B_{ij} represent Einstein coefficients (for radiative transitions) whereas C_{ij} is the collisional rate coefficients. Also, n_{H_2} is the molecular hydrogen density and the escape probability β is related to optical thickness τ_{ν} as

\[
\beta_{ij} = \beta_{ji} = \frac{1 - e^{-\tau_{\nu}}}{\tau_{\nu}}
\]

and the optical thickness is expressed as

\[
\tau_{\nu} = \frac{hv}{4\pi(dv/dr)}(B_{ij} n_i - B_{ji} n_j)
\]

Here, (dv/dr) represents the velocity gradient in the molecular cloud (Cosmic object). For the molecular cloud under consideration, we have considered the cosmic microwave background (CMB) behind it. So the external radiations falling on the cloud are cosmic microwave background which is at a temperature (T_{bg}) of 2.73 K.

For the lowest 69 levels, with energies up to 141 cm$^{-1}$, the energies and radiative lifetimes are calculated using software ASROT [32] and are reported in our previous work [33]. Hence, the set of statistical equilibrium equations are solved using the radiative and collisional transition probabilities. Also, the thermal populations are taken as initial populations here.

In interstellar medium, the intensity of a spectral line produced with homogeneous excitation condition is given by
\[I_\nu - I_{\nu, bg} = (S_\nu - I_{\nu, bg})(1 - e^{-\tau_\nu}) \]

For optically thin \((\tau_\nu \approx 0)\) case, \(T_B = T_{bg}\) where \(T_{bg} = 2.73\) Kelvin. In the R-J limit \([\nu(\text{GHz}) \ll 21 T(\text{Kelvin})]\), we will have

\[T_B = T_{ex} + (T_{bg} - T_{ex})e^{-\tau_\nu} \]

For anomalous absorption \((I_\nu < I_{\nu, bg} ; T_B < T_{bg})\) with \(\tau_\nu > 0\), we have positive value of \(T_{ex}\) but still less than \(T_{bg}\), i.e. \((0 < T_{ex} < T_{bg})\) and thus \(T_B > T_{ex}\).

Hence, for anomalous absorption in a transition, we have

\[0 < T_{ex} < T_B < T_{bg}. \]

4. Transitions between rotational levels in Methanimine

For radiative transitions, in addition to the selection rule \(\Delta J = \pm 1\), the transitions are classified into 4 groups which are exclusive from each other. For a-type transitions, we have

- \(k_a, k_c\) : Group I: odd, even ↔ odd, odd
- Group II: even, even ↔ even, odd

The two groups behave as independent entities so no radiative or collisional transition occurs between these groups. Also, for the b-type transitions, the selection rules are

- \(k_a, k_c\) : Group III: odd, even ↔ even, odd
- Group IV: even, even ↔ odd, odd

Here, also there are no radiative or collisional transitions between the levels of group III and IV. Based on the above discussion, the first 15 rotational energy levels are classified into four groups which are exclusive of each other.

Group I: \((1_{11}, 1_{10}, 2_{12}, 2_{11}, 3_{13}, 3_{12}, 4_{14}, 4_{13})\)

Group II: \((0_{00}, 0_{01}, 2_{02}, 3_{03}, 4_{04}, 2_{21}, 2_{20})\)

Group III: \((1_{01}, 1_{10}, 2_{12}, 3_{03}, 3_{12}, 4_{14}, 2_{21})\)

Group IV: \((0_{00}, 2_{02}, 1_{11}, 2_{11}, 3_{13}, 4_{04}, 4_{13}, 2_{20})\)

The radiative, as well as collisional transitions, are individually confined within each group. The transitions due to collisions do not obey selection rules unlike radiative transitions, but they are still confined within a group, individually.

The collisional rate coefficients are required to solve the set of equations of statistical equilibrium equations coupled with the radiative transfer equations. But unlike radiative transitions, the collisional transitions are not governed by any selection rules. If the colliding partner has sufficient energy, the transition can occur between all the levels in a particular group of energy levels. The collisional coefficients of CH$_2$NH colliding with H$_2$ calculated by Faure et al. [34] are used here. Also, for the cold interstellar medium, the calculations are limited to para H$_2$.

5. Results and Discussion
We have optimized the co-ordinates of methanimine molecule using the software GAUSSIAN (2003) [30]. Table 1 shows the obtained optimized co-ordinates of CH$_2$NH. In these calculations, the Becke 3-parameter hybrid functional in conjunction with the Lee-Yang-Perr non-local correlation functional (B3LYP) [35,36] is used along with basis sets aug-cc-pVDZ and aug-c-pVTZ. The obtained values of rotation and centrifugal constants are shown in table 2.

Table 1. The optimized space co-ordinates of CH$_2$NH.

Atom	X	Y	z
C	0.062372	0.778497	0.000000
H	-0.982293	1.102381	0.000000
H	0.926145	-1.015310	0.000000
N	0.062372	-0.523198	0.000000
H	-0.754690	-1.095667	0.000000

Table 2. The rotational and centrifugal distortion constants for CH$_2$NH.

Constant	aug-cc-pVDZ	aug-cc-pVTZ
$A \times 10^5$	2.085912975	2.115576292
$B \times 10^4$	3.41547219	3.45064373
$C \times 10^4$	2.93491023	2.96674771
$D_J \times 10^3$	60.866127	62.932642
$D_{JK} \times 10^3$	732.047923	741.932689
D_K	5.839960126	6.09387395
$d_1 \times 10^3$	-9.531309	-9.792946
$d_2 \times 10^3$	-1.773163	-1.789099
$H_J \times 10^6$	-0.02763731158	-0.03026010471
$H_{JK} \times 10^6$	8.449668321	8.352378839
$H_{KL} \times 10^6$	680.6931766	730.4186343
$H_K \times 10^6$	4.933638227	4.950073983
$h_1 \times 10^8$	21.18656635	21.85239675
$h_2 \times 10^8$	30.03815910	30.50159818
$h_3 \times 10^8$	6.960776290	7.059300501

The Einstein A-coefficients and collisional rate coefficients are input parameters for solution of the set of statistical equilibrium equations. These non-linear equations are solved for a given value of γ and hydrogen molecular density. The parameter γ is given by $\gamma = n_{\text{mol}} / (dv_r/dr)$, where (dv$_r$/dr) gives the velocity gradient in an object and n_{mol} represents the density of CH$_2$NH.

For the transition 2$_{02}$ - 1$_{11}$ between rotational energy levels in CH$_2$NH molecule, a plot of brightness temperature (T$_B$) with molecular hydrogen density (n$_{H_2}$) is obtained as shown in figure 1. The calculations are done for a variety of parameters so that the maximum number of cosmic objects are included that may contain CH$_2$NH. The variation is studied at kinetic temperatures 10K, 15K, 20K, 25K and 30K, which is the expected temperature in cold objects. Also, n$_{H_2}$ is varied in the range 10^2 cm$^{-3}$ and 10^6 cm$^{-3}$ so that log(n$_{H_2}$) varies from 2 to 6. Here, solid line is drawn for $\gamma = 10^{-5}$ cm$^{-3}$(km/s)$^{-1}$ pc and the dashed line for $\gamma = 10^{-6}$ cm$^{-3}$(km/s)$^{-1}$ pc.

For the transition 2$_{02}$-1$_{11}$, T$_B$ is found to be less than T$_{bg}$ indicating absorption feature. The brightness temperature is minimum around the density n$_{H_2} = 10^{4.5}$ cm$^{-3}$ and it rises on both sides of this density. Also, the minima shift towards low-density region when γ is increased by an order of magnitude. Thus,
anomalous absorption is predicted in $2_{02}-1_{11}$ transition. Also, the contribution of collisional rate coefficients is found to be very small as compared to radiative rate coefficients.

![Figure 1](image.png)

Figure 1. The variation of T_B vs. log(n_{H_2}) for the transition $2_{02}-1_{11}$ at kinetic temperatures of 10K, 15K, 20K, 25K and 30K.

6. Conclusion
The anomalous absorption in $2_{02}-1_{11}$ transition is predicted by the investigation of the lowest 15 rotational energy levels of methanimine. The anomalous absorption of $2_{02}-1_{11}$ transition is found to be maximum around the density of $10^{4.5}$ cm$^{-3}$, and it diminishes on both sides of this density. Also, it is observed that the collisional rate coefficients have little significance as compared to radiative coefficients.

7. References
[1] Godfrey P D, Brown R D, Robinson B J and Sinclair M W 1973 Discovery of interstellar methanimine (formaldimine) *Astrophys. Lett.* 13 119
[2] Snyder L E, Buhl D, Zuckerman B and Palmer P 1969 Microwave detection of interstellar formaldehyde *Phys. Rev. Lett.* 22 679–81
[3] Sinclair M, Fourikis N, Ribes J, Robinson B, Brown R and Godfrey P 1973 Detection of interstellar thioformaldehyde *Aust. J. Phys.* 26 85–91
[4] Turner B E 1989 A molecular line survey of Sagittarius B2 and Orion -KL from 70 to 115 GHz. I. The observational data *Astrophys. J. Suppl. Ser.* 70 539–622
[5] Sutton E C, Jaminet P A, Danchi W C and Blake G A 1991 Molecular line survey of Sagittarius B2(M) from 330 to 355 GHz and comparison with Sagittarius B2(N) *Astrophys. J. Suppl. Ser.* 77 255
[6] Nummelin A, Bergman P, Hjalmarson A, Friberg P, Irvine W M, Millar T J, Ohishi M and Saito S 1998 A three-position spectral line survey of Sagittarius B2 between 218 and 263 GHz. I. The
observational data Astrophys. J. Suppl. Ser. 117 427–529

[7] Suzuki T, Ohishi M, Hirota T, Saito M, Majumdar L and Wakelam V 2016 Survey Observations of a Possible Glycine Precursor, Methanimine (CH2NH) Astrophys. J. 825 1–14

[8] Jones P A, Burton M G, Cunningham M R, Menten K M, Schilke P, Belloche A, Leurini S, Ott J and Walsh A J 2008 Spectral imaging of the Sagittarius B2 region in multiple 3-mm molecular lines with the Mopra telescope Mon. Not. R. Astron. Soc. 386 117–37

[9] Jones P A, Burton M G, Tothill N F H and Cunningham M R 2011 Spectral imaging of the Sagittarius B2 region in multiple 7-mm molecular lines Mon. Not. R. Astron. Soc. 411 2293–310

[10] Halfen D T, Ilyushin V V. and Ziurys L M 2013 Insights into surface hydrogenation in the interstellar medium: Observations of methanimine and methyl amine in Sgr B2(N) Astrophys. J. 767 1–11

[11] Dickens J E, Irvine W M, DeVries C H and Ohishi M 1997 Hydrogenation of interstellar molecules: a survey for methylenimine (CH2NH) Astrophys. J. 479 307–12

[12] Turner B E, Terzieva R and Herbst E 1999 The physics and chemistry of small translucent molecular clouds. XII. more complex species explainable by gas-phase processes Astrophys. J. 518 699–732

[13] White G J, Araki M, Greaves J S, Ohishi M and Higginbottom N S 2003 A spectral survey of the orion nebula from 455-507 GHz Astron. Astrophys. 407 589–607

[14] Salter C J, Ghosh T, Catinella B, Lebron M, Lerner M S, Minchin R and Momjian E 2008 The arecibo ARP 220 spectral census. I. discovery of the pre-biotic molecule methanimine and new cm-wavelength transitions of other molecules Astron. J. 136 389–99

[15] Qin S L, Wu Y, Huang M, Zhao G, Li D, Wang J J and Chen S 2010 High-resolution submillimeter multiline observations of G19.61 - 0.23: Small-scale chemistry Astrophys. J. 711 399–416

[16] Tenenbaum E D, Dodd J L, Milam S N, Woolf N J and Ziurys L M 2010 Comparative spectra of oxygen-rich versus carbon-rich circumstellar shells: VY canis majoris and IRC +10216 at 215-285 GHZ Astrophys. J. Lett. 720 102–7

[17] Allegrinia M, Johns J W C and McKellar A R W 1979 Laser Stark spectroscopy of the v4 fundamental band of CH2NH at 6.1 μm J. Chem. Phys. 70 2829–33

[18] Johnson D R and Lovas F J 1972 Microwave detection of the molecular transient methyleneimine (CH2=NH) Chem. Phys. Lett. 15 65–8

[19] Pearson R and Lovas F J 1977 Microwave spectrum and molecular structure of methylenimine (CH2NH) J. Chem. Phys. 66 4149–56

[20] Halonen L and Duxbury G 1985 The Fourier transform infrared spectrum of methylenimine in the 10 μm region J. Chem. Phys. 83 2078–90

[21] Dore L, Bizzocchi L, Degli Esposti C and Gauss J 2010 The magnetic hyperfine structure in the rotational spectrum of H 2CNH J. Mol. Spectrosc. 263 44–50

[22] Dore L, Bizzocchi L and Degli Esposti C 2012 Accurate rotational rest-frequencies of CH2NH at millimetre wavelengths Astron. Astrophys. 544 A19

[23] Motoki Y, Isobe F, Ozeki H and Kobayashi K 2014 Terahertz spectroscopy of methanimine and its isotopologs Astron. Astrophys. 566 A28

[24] Bernstein M P, Dworkin J P, Sandford S A, Cooper G W and Allamandola L J 2002 Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues Nature 416 401–3

[25] Elsila J E, Dworkin J P, Bernstein M P, Martin M P and Sandford S A 2007 Mechanisms of amino acid formation in interstellar ice analogs Astrophys. J. 660 911–8

[26] Danger G, Borget F, Chomat M, Duvernay F, Theulé P, Guillemin J-C, Le Sergeant d’Hendecourt L and Chiavassa T 2011 Experimental investigation of aminoacetonitrile formation through the strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN) Astron. Astrophys. 535 A47

[27] Belloche A, Menten K M, Comito C, Müller H S P, Schilke P, Ott J, Thorwirth S and Hieret C
2008 Detection of amino acetonitrile in Sgr B2(N) *Astron. Astrophys.* 482 179–96

[28] Kuan Y, Charnley S B, Huang H, Tseng W and Kisiel Z 2003 Interstellar glycine *Astrophys. J.* 593 848–67

[29] Snyder L E, Lovas F J, Hollis J M, Friedel D N, Jewell P R, Remijan A, Ilyushin V V., Alekseev E A and Dyubko S F 2005 A rigorous attempt to verify interstellar glycine *Astrophys. J.* 619 914–30

[30] Frisch M J, Trucks G W, Schlegel H B and et al. 2003 Gaussian *Gaussian Inc., Wallingford CT*

[31] Piehler G, Kegel W H and Tsuji T 1991 Optical pumping of circumstellar SiO masers *Astron. Astrophys.* 245 580–6

[32] Kisiel Z 2001 Assignment and analysis of complex rotational spectra *Spectrosc. from Space, Kluwer Acad. Publ. Dordr.* 91–106

[33] Chandra S, Sakshi, Sharma M K and Kumar N 2016 Methanimine in interstellar medium: line intensities *Indian J. Phys.* 90 733–9

[34] Faure A, Lique F and Remijan A J 2018 Collisional excitation and weak maser action of interstellar methanimine *J. Phys. Chem. Lett.* 9 3199–204

[35] Lee C, Yang W and Parr R G 1988 Development of the Colic-Salvetti correlation-energy into a functional of the electron density *Phys. Rev. B* 37 785–9

[36] Becke A D 1993 Density-functional thermochemistry. III. The role of exact exchange *J. Chem. Phys.* 98 5648–52