Data Article

Whole genome shotgun sequences of Streptococcus pyogenes causing acute pharyngitis from India

Dhanya Dharmapalan a, Francis Yesurajan Inbanathan b, Suhas Kharche c, Asmita Patil c, Shrikrishna Joshi d, Vijay Yewale a, Jones Lionel Kumar Daniel b, Kamini Walia e, Balaji Veeraraghavan b,*

a Apollo Hospitals, Navi Mumbai, Maharashtra, India
b Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
c Dr. Yewale Multispeciality Hospital for Children, Navi Mumbai, Maharashtra, India
d Joshi’s Laboratory, Navi Mumbai, Maharashtra, India
e Indian Council of Medical Research, Ansari Nagar, New Delhi, India

Article info

Article history:
Received 3 March 2018
Received in revised form 16 March 2018
Accepted 27 March 2018
Available online 1 April 2018

Abstract

Streptococcus pyogenes, belonging to group A streptococcus (GAS), causes over 600 million infections annually being a predominant human pathogen. Lack of genomic data on GAS from India is one limitation to understand its virulence and antimicrobial resistance determinants. The genome of GAS isolates from clinical samples collected at Navi Mumbai, India was sequenced and annotated. Sequencing was performed on Ion Torrent PGM platform. The size of annotated S. pyogenes genomes ranged from ~1.69 to ~1.85 Mb with coverage of 38× to 189×. Most of the isolates had msr(D) and mef(A), and four isolates had erm(B) gene for macrolide resistance. The genome harboured multiple virulence factors including exotoxins in addition to phage elements in all GAS genomes. Four isolates belonged to sequence type ST28, 7 were identified as ST36 and 1 as ST55.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

*Corresponding author.
E-mail address: vbalaji@cmcvellore.ac.in (B. Veeraraghavan).

https://doi.org/10.1016/j.dib.2018.03.129
2352-3409 © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications table

Subject area	Biology
More specific subject area	Microbial genome
Type of data	Whole genome shotgun sequences
How data was acquired	Ion Torrent PGM
Data format	Analyzed genome sequence
Experimental factors	S. pyogenes strains were cultured on blood agar medium. Genomic DNA from cultures were isolated using QIAamp DNA mini kit (Qiagen, Germany).
Experimental features	Sequencing was performed according to Ion Torrent PGM specific protocols for library preparation and DNA-seq.
Data source location	Mumbai, India, 19.0760°N, 72.8777°E
Data accessibility	Genome data are available at GenBank under the accession numbers NGQI00000000, NGQK00000000, NGQL00000000, NGQN00000000, NIYX00000000, NJPV00000000, NIYZ00000000, NGQM00000000, NGQJ00000000, NGQK00000000, NGQP00000000, NIYY00000000. https://www.ncbi.nlm.nih.gov/nuccore/NGQI00000000, https://www.ncbi.nlm.nih.gov/nuccore/NGQK00000000, https://www.ncbi.nlm.nih.gov/nuccore/NGQL00000000, https://www.ncbi.nlm.nih.gov/nuccore/NGQN00000000, https://www.ncbi.nlm.nih.gov/nuccore/NIYX00000000, https://www.ncbi.nlm.nih.gov/nuccore/NJPV00000000, https://www.ncbi.nlm.nih.gov/nuccore/NIYZ00000000, https://www.ncbi.nlm.nih.gov/nuccore/NGQM00000000, https://www.ncbi.nlm.nih.gov/nuccore/NGQJ00000000, https://www.ncbi.nlm.nih.gov/nuccore/NGQP00000000, https://www.ncbi.nlm.nih.gov/nuccore/NIYY00000000.

Value of the data

- Group A streptococcus (GAS) causes over 600 million throat infections annually being a predominant human pathogen with high genomic plasticity due to the prophage integration and horizontal gene transfer.
- This is the first genome report of S. pyogenes from India available in public database.
- The GAS genomic data will serve as a base for further research focusing on the genomic attributes of virulence, antimicrobial resistance and clonal association by Whole genome shotgun sequencing.

1. Data

Streptococcus pyogenes, belonging to group A streptococcus (GAS), causes over 600 million infections annually being a predominant human pathogen. GAS throat infections are common in children between 4 and 7 years and pose several clinical and public health challenges [1]. Prevalence of Pharyngitis caused by *S. pyogenes* is difficult to determine as it is a throat colonizer, but some studies report as 10–15% [2]. The GAS pharyngitis is usually undetermined due to its self-limiting nature and major cases being of viral etiology [3]. M proteins, pili, leukocidins, streptolysins (O,S), complement inhibiting proteins, immunoglobulin-degrading enzymes, and superantigens are genome-encoded virulence factors that have been well characterized in *S. pyogenes*, [4,5], where efflux pumps and leukocyte evasion strategies stays as an integral factors. High genomic plasticity is seen in *S. pyogenes* due to the prophage integration and horizontal gene transfer. [6].
Isolate ID	Age in years/Gender	Resistance	Fever defervescence	Compliance to total duration antibiotic	Recurrence	Sequence Types	emm Type	Total size (bp)	Coverage	CDS	Contigs	AMR genes	Plasmids	Accession
MUMCMC2276	7.6/F	No	Yes	Yes	Yes	2	emm12.0 (emm-cluster A-C4)	1727473	184	1754	50		–	NGQI000000000
MUMCMC661	6.5/M	No	No	Yes	NA	NA	emm12.4 (emm-cluster A-C4)	1852181	174	1967	62		–	NGKQ000000000
MUMCMC650	2.4/F	No	Yes	NA	NA	NA	emm12.0 (emm-cluster A-C4)	1691843	164	1725	49		–	–
MUMCMC317	5/F	No	No	Yes	No	4	emm12.0 (emm-cluster A-C4)	1750987	189	1776	62		–	NGQNO000000000
MUMCMC1953	3.5/F	No	No	No	2	Yes	emm12.0 (emm-cluster A-C4)	1840495	115	1886	49		–	NIXO000000000
MUMCMC2034	2.5/M	No	Yes	No	4	Yes	emm12.0 (emm-cluster A-C4)	1747918	136	1762	43		–	NJPV000000000
MUMCMC261	2/M	No	No	Yes	No	2	emm12.0 (emm-cluster A-C4)	1732451	129	1752	53		–	NIZO000000000
Sample Code	Gender	Age	Treatment	Duration	Isolate	Genus	Species	Genotype	Drug Resistance	Genbank Accession	Notes			
-------------	--------	-----	-----------	----------	----------	-------	---------	-----------	-----------------	------------------	-------			
MUMCMC616	6/M	No	No	Yes	2	Yes	No	28	aph(3')-III, ant (6)-Ia, erm(B), tet(M)	NGQM000000000				
MUMCMC662	5/M	No	No	No	1	Yes	No	28	aph(3')-III, ant (6)-Ia, erm(B), tet(M)	NGQJ000000000				
MUMCMC51	5/M	No	No	Yes	1	Yes	No	28	aph(3')-III, ant (6)-Ia, erm(B), tet(M)	NGQO000000000				
MUMCMC13	6/F	No	No	Yes	2	Partial (7 days)	28	aph(3')-III, ant (6)-Ia, erm(B), tet(M)	NGQPO000000000					
MUMCMC433	5.5/F	No	No	No	2	No antibiotic prescribed	55	emm2.0 (emm-cluster E4)	NYY000000000					

*NA- not available (patient couldn’t be followed).
Table 2
Description of the presence virulence traits in GAS genomes of the study.

Virulence trait	MUMCMC 2276	MUMCMC 661	MUMCMC 650	MUMCMC 317	MUMCMC 1953	MUMCMC 2034	MUMCMC 261	MUMCMC 616	MUMCMC 662	MUMCMC 51	MUMCMC 13	MUMCMC 433	Gene(s) with potential for conferring virulence traits
Antiphagocytic M protein	+	+	+	+	+	+	+	+	+	+	+	+	emm, ennX, fbp, igzR, ska
Streptokinase	+	+	+	+	+	+	+	+	+	+	+	+	cfa, slo
CAMP factor	+	+	+	+	+	+	+	+	+	+	+	+	sagB, C, D, E, F, H, I, asn-ORF, ABC transporter
Streptolysin O	+	+	+	+	+	+	+	+	+	+	+	+	hasA, Scarlet fever
Streptolysin S	+	+	+	+	+	+	+	+	+	+	+	+	speA
Putative peptidoglycan hydrolase	+	+	+	+	+	+	+	+	+	+	+	+	GbpB/SagA/ PcsB, hyl
Hyaluronate lyase precursor	+	+	+	+	+	+	+	+	+	+	+	+	hasA
Hyaluronan synthase	–	+	+	+	+	+	+	–	–	–	–	–	Scarlet fever
Exotoxin*	+	+	+	+	+	+	+	–	–	–	–	–	speA
Streptococcal pyrogenic exotoxin A*	–	–	–	–	–	–	–	+	+	+	+	+	
Cysteine Protease B*	+	+	+	+	+	+	+	+	+	+	+	+	speB
Streptococcal pyrogenic exotoxin C*	+	+	+	+	+	+	+	+	+	+	+	+	speC
Streptococcal pyrogenic exotoxin G	+	+	+	+	+	+	+	+	+	+	+	+	speG
Streptococcal pyrogenic exotoxin H*	–	+	–	–	–	–	–	–	–	–	–	–	speH
Streptococcal pyrogenic exotoxin I*	–	+	–	–	–	–	–	–	–	–	–	–	speI

D. Dharmapalan et al. / Data in Brief 18 (2018) 1340-1349
	speK	speL	speM	smeZ	scpA	ndoS	sic	spd1, 2, 3, 4, sda	ideS	sclA, B
Streptococcal pyrogenic	–	–	–	+						
exotoxin J										
Streptococcal pyrogenic	–	–	–	+						
exotoxin K*										
Streptococcal pyrogenic	–	–	–	+						
exotoxin L*										
Streptococcal pyrogenic	–	–	–	+						
exotoxin M*										
Streptococcal mitogenic	+	+	+	+	+	+	+			
exotoxin Z										
C5a peptidase	+	+	+	+	+	+	+			
Secreted endo-beta-	+	+	+	+	+	+	+	scpA		
N-acetylglucosaminidase								ndoS		
Streptococcal inhibitor of	–	–	–	–	–	–	+			
complement										
Exotoxin nucleases	–	–	–	–	–	–	–			
Immunoglobulin-binding	+	+	+	+	+	+	+		ideS	
protease										
Collagen-like surface	+	+	+	+	+	+	+			
proteins										
The post Streptococcal sequelae following GAS pharyngitis are the non-suppurative manifestation of rheumatic fever followed by Rheumatic heart disease. In India, the overall prevalence is estimated at 1.5–2/1000 in all age groups, (total population about 1.3 billion) being suggestive of 2.0 to 2.5 million patients of RHD in the country [4]. Due to the high burden of the GAS infections in India, preventive strategies like vaccination turn to be the need of the hour.

Furthermore, lack of genomic data on GAS from India is one limitation to understand its virulence and antimicrobial resistance determinants. This study reports the whole genome sequence data of \textit{S. pyogenes} for the first time from India. The GAS genomic data will serve as a base for further research focusing on the genomic attributes of virulence, antimicrobial resistance and clonal association by Whole genome shotgun sequencing.

2. Experimental design, materials and methods

2.1. Study isolates

During the months of March–May 2017, children up to 18 years with acute pharyngitis were screened for GAS infections at Dr. Yewale Multispeciality Hospital for Children, Navi Mumbai using the cutoff score of 3 of the Modified Centor criteria.

2.2. DNA extraction and genome sequencing

A total of 12 culture confirmed \textit{S. pyogenes} were subjected to total DNA extraction using QiAamp DNA mini Kit (Qiagen, Germany). Whole genome shotgun sequencing was performed using IonTorrent PGM platform (Life Technologies) with 400 bp chemistry.

2.3. De novo assembly and annotation

Assembly of the raw reads were performed using AssemblerSPAdes v.5.0.0.0 embedded in Torrent suite server v.5.0.5. Annotation of the genome were done using the PATRIC database (the bacterial bioinformatics database and analysis resource) (http://www.patricbrc.org), [7] and the NCBI Prokaryotic Genome Automatic Annotation Pipeline (PGAAP) (http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html). Further genome analysis was performed with the genomic tools available at the Center for Genomic Epidemiology (CGE) server (http://www.cbs.dtu.dk/services), and PATRIC database. The size of annotated \textit{S. pyogenes} genomes ranged from ~1.69 to ~1.85 Mb with coverage of 38X to 189X.
The number of Coding DNA sequences (CDS) per genome ranged between 1725 and 2042.
The draft genome sequences have been deposited in DDBJ/ENA/GenBank under the accession numbers provided in Table 1. The version described in this manuscript is version 1.

Antimicrobial resistance (AMR) genes and plasmids were screened with ResFinder 2.1 and PlasmidFinder 1.3 tools [8,9]. Most of the isolates had msr(D) and mef(A), and four isolates had erm(B)

Table 4
Identity of putative phages and phage elements detected in GAS genomes.

Isolate	Phage Name	Size	GC %	CDS
MUMCMC2276	PHAGE_Strept_315.2_NC_004585	24.3Kb	37.65	15
	PHAGE_Clostr_phIC453B_NC_029004	49.8Kb	39.51	47
MUMCMC661	PHAGE_Strept_315.2_NC_004585	38Kb	37.69	47
	PHAGE_Lactoc_PLgT_1_NC_031016	63.1Kb	39.14	66
	PHAGE_Strept_P9_NC_009819	33.2Kb	39.73	42
	PHAGE_Strept_pHAR10131_2_NC_031941	26.2Kb	38.91	36
MUMCMC650	PHAGE_Strept_315.2_NC_004585	21.7Kb	36.94	16
MUMCMC317	PHAGE_Clostr_phIC453A_NC_028991	39.2Kb	40.66	45
	PHAGE_Strept_315.2_NC_004585	21.2Kb	37.01	16
	PHAGE_Strept_P9_NC_009819	16Kb	39.11	24
MUMCMC1953	PHAGE_Strept_pHAR10462_1_NC_031942/6	25.1Kb	37.29	25
	PHAGE_Clostr_phIC453A_NC_028991/12	39.2Kb	40.66	45
	PHAGE_Strept_P9_NC_009819/30	32.6Kb	39.84	41
	PHAGE_Strept_pHAR10131_1_NC_031941/8	29Kb	38.73	40
	PHAGE_Strept_315.2_NC_004585/17	11.7Kb	37.58	21
MUMCMC2034	PHAGE_Strept_ClostrphaCT453A_NC_028991	39.2Kb	40.66	45
	PHAGE_Strept_315.2_NC_004585/7	21Kb	36.96	16
MUMCMC261	PHAGE_Clostr_phIC453A_NC_028991/12	39.2Kb	40.66	45
	PHAGE_Strept_315.2_NC_004585/7	21Kb	36.96	16
MUMCMC616	PHAGE_Strept_T12	28.2Kb	38.55	45
	PHAGE_Lactoc_28201_NC_031013	21.8Kb	37.58	25
	PHAGE_Strept_315.3_NC_004586	15.9Kb	36.07	31
	PHAGE_Pseudo_phi3_NC_030940	20.7Kb	35.75	26
	PHAGE_Strept_315.3_NC_004586	20.9Kb	38.56	35
	PHAGE_Strept_T12_NC_028700	20Kb	35.94	29
	PHAGE_Strept_315.2_NC_004585	21.1Kb	39.64	25
MUMCMC662	PHAGE_Strept_T12_NC_028700	28.2Kb	38.55	46
	PHAGE_Lactoc_28201_NC_031013	30Kb	37.60	27
	PHAGE_Strept_315.2_NC_004585	21.1Kb	39.64	26
	PHAGE_Strept_315.3_NC_004586	15.8Kb	36.07	32
	PHAGE_Pseudo_phi3_NC_030940	20.7Kb	35.76	26
	PHAGE_Strept_315.3_NC_004586	20.9Kb	38.58	32
	PHAGE_Strept_T12_NC_028700	20Kb	35.94	29
MUMCMC51	PHAGE_Strept_315.2_NC_004585	20.9Kb	39.68	27
	PHAGE_Strept_T12_NC_028700	28.4Kb	38.54	43
	PHAGE_Lactoc_28201_NC_031013	30Kb	37.60	26
	PHAGE_Strept_315.3_NC_004586	15.6Kb	36.09	31
	PHAGE_Pseudo_phi3_NC_030940	20.6Kb	35.77	26
	PHAGE_Strept_315.3_NC_004586	20.7Kb	38.61	31
	PHAGE_Strept_T12_NC_028700	19.7Kb	35.97	27
MUMCMC13	PHAGE_Strept_T12_NC_028700	28.1Kb	38.56	43
	PHAGE_Lactoc_28201_NC_031013	30Kb	37.60	26
	PHAGE_Pseudo_phi3_NC_030940	22.1Kb	35.81	26
	PHAGE_Strept_315.3_NC_004586	15.9Kb	36.07	32
	PHAGE_Strept_315.3_NC_004586	20.8Kb	38.58	33
	PHAGE_Strept_T12_NC_028700	20Kb	35.95	28
	PHAGE_Strept_315.2_NC_004585	21Kb	39.64	26
MUMCMC433	PHAGE_Strept_T12_NC_028700/23	22.4Kb	38.89	34
	PHAGE_Clostr_phIC453B_NC_029004/11	49.8Kb	39.51	47
	PHAGE_Strept_315.4_NC_004587/17	22.3Kb	37.81	21
gene for macrolide resistance. Isolates MUMCMC616, MUMCMC662, MUMCMC51 and MUMCMC13 had \textit{aph}(3’)-III, \textit{ant}(6)-Ia, and \textit{tet}(M) genes for aminoglycoside and tetracycline resistance respectively (Table 1). Also, PATRIC analysis revealed ABC transporter membrane-spanning permease, multidrug resistance efflux pump \textit{pmrA} and multi antimicrobial extrusion (MATE) family transporter genes responsible for macrolide and multi-drug resistance in all isolates.

Multiple virulence determinants in the GAS genomes were identified using the annotated data from PATRIC (Table 2). Of which, all the genomes harboured streptolysins O & S, and Streptococcal pyrogenic exotoxins C and G. Clusters of regularly interspaced short palindromic repeats (CRISPR) and spacer sequences in the genome were identified using CRISPR finder (http://crispr.u-psud.fr/Server/) [10]. All isolates carried 1,2,3,4,5d CRISPR type with varied repeat, spacer and array regions (Table 3).

Multi-locus sequence typing (MLST) of the GAS isolates were interpreted with the standard references available at the MLST 1.8 database (https://cge.cbs.dtu.dk/services/MLST/). Four isolates belonged to ST28, 7 were identified as ST36 and 1 as ST55. M protein typing was done using the Blast 2.0 server provided by National Centers for Disease Control, Biotechnology Core Facility Computing Laboratory and \textit{emm} types were assigned. Isolates with ST28 corresponds to \textit{emm}1.0 (\textit{emm} cluster A-C3), ST36 to \textit{emm}12.0 (\textit{emm}-cluster A-C4) and ST55 to \textit{emm}2.0 (\textit{emm}-cluster E4) (Table 1).

The phages and phage associated elements in the genome of GAS were identified using PHAge Search Tool Enhanced Release (PHASTER) [11] (Table 4). Strept 315.2 phage was associated to all ST36 isolates with Clostr phiCT453B, Strept P9, Strept phiARI0131, Lactoc_PLgT, Strept phiARI0462, were the other phages seen. ST28 harboured PHAGE_Strept_T12, PHAGE Lactoc 28201, PHAGE Strept 315.3, PHAGE Pseudo phi3, PHAGE Strept 315.2 and PHAGE Strept T12 consistently among all isolates. PHAGE Strept 315.4, PHAGE Strept T12 and Clostr_phiCT453B were seen in ST55 isolate.

\section*{Acknowledgement}

Paediatricians in Navi Mumbai for referring their patients to the study centre: Dr. P. Moralwar, Dr. Ranpise, Dr. P. Weekay, Dr. S. Shahane, Dr. C. Kulkarni, Dr. Shrikant, Dr. P. Gaikwad, Dr. U. Shrivastav, Dr. M. Shirodkar.

\section*{Transparency document. Supporting information}

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.dib.2018.03.129.

\section*{References}

[1] B. Twisselmann, Epidemiology, treatment, and control of infection with Streptococcus pyogenes in Germany, Eur. Surveill. 4 (2000) (pii = 1490).

[2] A.S. Sanyahumbi, S. Colquhoun, R. Wyber, J.R. Carapetis, Global Disease Burden of Group A Streptococcus, 2016 Feb 10, in: J. J. Ferretti, D.L. Stevens, V.A. Fischetti (Eds.), Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet], University of Oklahoma Health Sciences Center, Oklahoma City (OK), 2016 (https://www.ncbi.nlm.nih.gov/books/NBK333415/).

[3] N.K. Brahmadathan, Molecular biology of Group A Streptococcus and its implications in vaccine strategies, Indian J. Med. Microbiol. 35 (2017) 176–183.

[4] M.W. Cunningham MW, Pathogenesis of group A streptococcal infections, Clin. Microbiol. Rev. 13 (2000) 470–511.

[5] M.J. Walker, T.C. Barnett, J.D. McArthur, J.N. Cole, C.M. Gillen, A. Henningham, K.S. Srirprakash, M.L. Sanderson-Smith, V. Nizet, Disease manifestations and pathogenic mechanisms of Group A Streptococcus, Clin. Microbiol. Rev. 27 (2014) 264–301.

[6] S. Wong, K.Y. Yuen, Streptococcus pyogenes and reemergence of scarlet fever as a public health concern, Emerg. Microbes Infect. 1 (2012) e2.

[7] A.R. Wattam, D. Abraham, O. Dalay, T.L. Disz, T. Driscoll, J.L. Gabbard, J.J. Gillespie, R. Gough, D. Hix, R. Kenyon, D. Machi, C. Mao, E.K. Nordberg, R. Olson, R. Overbeek, G.D. Pusch, M. Shukla, J. Schulman, R.L. Stevens, D.E. Sullivan, V. Vonstein, A. Warren, R. Will, M.J. Wilson, H.S. Yoo, C. Zhang, Y. Zhang, B.W. Sobral, PATRIC, the bacterial bioinformatics database and analysis resource, Nucleic Acids Res. 42 (2014) DS81–DS91.
[8] E. Zankari, H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen, O. Lund, F.M. Aarestrup, M.V. Larsen, Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother. (2012), http://dx.doi.org/10.1093/jac/dks261.

[9] A. Carattoli, E. Zankari, A. Garcia-Fernandez, M. Voldby Larsen, O. Lund, L. Villa, F. Møller Aarestrup, H. Hasman, PlasmidFinder and pMLST: in silico detection and typing of plasmids, Antimicrob. Agents Chemother. 58 (2014) 3895–3903.

[10] I. Grissa, G. Vergnaud, C. Pourcel, CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats, Nucleic Acids Res. 35 (2007) W52–W57.

[11] D. Arndt, J. Grant, A. Marcu, T. Sajed, A. Pon, Y. Liang, D.S. Wishart, PHASTER: a better, faster version of the PHAST phage search tool, Nucleic Acids Res. 44 (2016) W16–W21.