Spitzer IMAGING AND SPECTRAL MAPPING OF THE OXYGEN-RICH SUPERNOVA REMNANT G292.0+1.8

Parviz Ghavamian1, Knox S. Long2, William P. Blair3, Sangwook Park4, Robert Fesen5, B. M. Gaensler6, John P. Hughes7, Jeonghee Rho8, and P. Frank Winkler9

1 Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252, USA
2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
3 Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
4 Department of Physics, Box 19059, University of Texas at Arlington, Arlington, TX 76019, USA
5 Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755, USA
6 Sydney Institute for Astronomy, School of Physics A29, The University of Sydney, NSW 2006, Australia
7 Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854, USA
8 NASA Ames Research Center, Moffett Field, CA 94035, USA
9 Department of Physics, Middlebury College, McCardell Bicentennial Hall 526, Middlebury, VT 05753, USA

Received 2011 September 30; accepted 2012 February 23; published 2012 April 13

ABSTRACT

We present mid-infrared continuum and emission line images of the Galactic oxygen-rich supernova remnant (SNR) G292.0+1.8, acquired using the MIPS and IRS instruments on the Spitzer Space Telescope. The MIPS 24 \(\mu \text{m} \) and 70 \(\mu \text{m} \) images of G292.0+1.8 are dominated by continuum emission from a network of filaments encircling the SNR. The morphology of the SNR, as seen in the mid-infrared, resembles that seen in X-rays with the Chandra X-Ray Observatory. Most of the mid-infrared emission in the MIPS images is produced by circumstellar dust heated in the non-radiative shocks around G292.0+1.8, confirming the results of earlier mid-IR observations with AKARI. In addition to emission from hot dust, we have also mapped atomic line emission between 14 \(\mu \text{m} \) and 36 \(\mu \text{m} \) using IRS spectral maps. The line emission is primarily associated with the bright oxygen-rich optical knots, but is also detected from fast-moving knots of ejecta. We confirm our earlier detection of 15–25 \(\mu \text{m} \) emission characteristic of magnesium silicate dust in spectra of the radiatively shocked ejecta. We do not detect silicon line emission from any of the radiatively shocked ejecta in the southeast of the SNR, possibly because the reverse shock has not yet penetrated most of the Si-rich ejecta in that region. This may indicate that G292.0+1.8 is less evolved in the southeast than the rest of the SNR, and may be further evidence in favor of an asymmetric SN explosion as proposed in recent X-ray studies of G292.0+1.8.

Key words: ISM: individual objects (G292.0+1.8) – ISM: kinematics and dynamics – ISM: supernova remnants – plasmas – shock waves

Online-only material: color figures

1. INTRODUCTION

Oxygen-rich supernova remnants (SNRs) are objects whose optical spectra are dominated by oxygen forbidden line emission (i.e., [O I], [O II], and [O III]). This emission arises in radiative shocks in the oxygen-rich ejecta expelled from the core-collapse supernova (SN) explosion. G292.0+1.8, which is the result of an unrecorded SN that took place about 3000 years ago (Ghavamian et al. 2005; Winkler & Long 2006), is one of only seven such O-rich SNRs known today. In [O III] \(\lambda 5007 \) optical images G292.0+1.8 is dominated by a distinct, crescent-shaped structure approximately 1\prime in size (hereafter the “Spur”) located on the eastern side of the SNR (Goss et al. 1979). A collection of localized clumps (fast-moving knots, FMKs, similar to those seen in Cas A) have also been found in the interior of G292.0+1.8 (Ghavamian et al. 2005; Winkler & Long 2006). This contrasts with the appearance of the SNR at X-ray (Clark et al. 1980; Park et al. 2002, 2004, 2007; Gonzalez & Safi-Harb 2003) and radio (Gaensler & Wallace 2003) wavelengths, where the remnant appears as a slightly elliptical shell approximately 8\prime across.

The X-ray emission from O-rich SNRs, including G292.0+1.8, tends to arise from faster, non-radiative shocks in lower density ejecta and interstellar gas. G292.0+1.8 has a complex X-ray morphology, with widespread shocked circumstellar material superposed on a network of shocked ejecta knots. The SNR also features a filament (or filaments) stretching east–west across the middle of the SNR (commonly called the “equatorial belt” in earlier papers). Analyses of Chandra data indicate the equatorial belt is of normal composition, suggesting shocks propagating in circumstellar material (Park et al. 2002, 2004; Gonzalez & Safi-Harb 2003; Lee et al. 2010).

G292.0+1.8 also hosts a pulsar (PSR J1156-5916) with a spin-down age of 2900 years (Camilo et al. 2002). The pulsar has been detected over much of the electromagnetic spectrum (see Camilo et al. 2002 for radio observations; Hughes et al. 2003 for X-rays), including 4.5 and 8.0 \(\mu \text{m} \) with the IRAC imager on Spitzer (Zyuzin et al. 2009). The pulsar wind nebula of PSR J1156-5916 has also been detected in the radio (Gaensler & Wallace 2003), IR (IRAC imagery at 4.5 \(\mu \text{m} \) and 8.0 \(\mu \text{m} \); Zyuzin et al. 2009), and X-rays (Hughes et al. 2001). With all these properties, and as the second youngest O-rich SNR known in the Galaxy, G292.0+1.8 is an important object for understanding how core-collapse SNRs evolve.

Here, we report on a set of imaging observations of G292.0+1.8 obtained with the MIPS and IRS instruments on Spitzer. The MIPS 24 \(\mu \text{m} \) and 70 \(\mu \text{m} \) images trace mostly emission from warm dust heated by shocks in the shocked circumstellar medium (CSM). Our observations also included IRAC imagery at 4.5 and 8.0 \(\mu \text{m} \), though no discernible emission from G292.0+1.8 was detected in these two wavebands (consistent with non-detection at similar wavelengths in the AKARI observations; Lee et al. 2009). Narrow band images constructed from our IRS spectral maps trace emission from the strongest mid-IR
emission lines and provide clues to the location of ejecta within the SNR.

The observations reported here are part of a follow-up to our earlier IRS observations of two positions in G292.0+1.8 (Ghavamian et al. 2009). The spectra obtained earlier showed emission lines from [Ne II] λ12.8, [Ne III] $\lambda\lambda$15.5,36.0, [Ne V] λ24.3, and [O IV] λ25.9, but no clear evidence of emission from heavier elements. This contrasts with Cas A, where in addition to these lines, IRS spectra showed significant [Ar II] λ7.99, [Fe II] $\lambda\lambda$17.9, and [Si III] $\lambda\lambda$18.7, 33.5 emission (Rho et al. 2008; Smith et al. 2009). Our goal here is to provide a more general description of the SNR as a whole in the mid-IR.

The Spitzer observations in this paper complement the existing AKARI study of G292.0+1.8 by Lee et al. (2009) where mid-IR imagery was acquired of the SNR in 10 bands centered at wavelengths ranging from 2.7 μm to 180 μm (including 24 μm band with similar sensitivity and spatial resolution to the MIPS 24 μm images presented here). In addition to the imagery, AKARI spectra were obtained from a section of the belt exhibiting the brightest X-ray emission, as well as the lower portion of the O-rich Spur seen in the [O III] imagery of G292.0+1.8. Our new IRS spectral maps cover the entire SNR over the 5 μm–36 μm range, providing access to emission lines not covered in the AKARI observations such as [O IV]+[Fe II] λ25.9, [Ne III] λ15.5 μm (which falls in a gap in AKARI spectral coverage between 13 μm and 18 μm), and [Si II] λ34.8. In addition, unlike Lee et al. (2009) who focused on properties of the integrated IR emission from the entire SNR, our analysis includes analysis of shocked CSM in localized regions within G292.0+1.8.

The remainder of this paper is organized as follows. In Section 2, we describe the observations and the techniques used to reduce the data, including the creation of narrow band images from the IRS data. In Section 3, we describe the broad band images and compare them to X-ray and optical images of the SNR. In Section 4, we discuss the emission line images, and discuss these primarily in the context of ejecta from the SNR.

2. OBSERVATIONS AND REDUCTIONS

Observations of G292.0+1.8 described here were performed during Cycle 4 of Spitzer (PID 40583; P. Ghavamian, PI) and utilized the MIPS (24 μm and 70 μm) and IRS instruments (Long-Low module only) in mapping mode. The MIPS data were obtained on 2008 March 13 (70 μm) and 2008 April 15 (24 μm), while the IRS data were taken on 2008 August 13. The MIPS raster maps at 24 μm and 70 μm covered the entire SNR (8.3 across, or 14 pc at an assumed distance of 6 kpc, Gaensler & Wallace 2003), as well as a sizeable swath of the surrounding sky. The MIPS 24 μm observations were performed in a one-cycle raster map, with an exposure time of 10 s per pixel and a total integration time of 500 s. The 70 μm observations were also obtained in a one-cycle raster map, with an exposure time of 10 s per pixel and a total integration time of 380 s. The 1σ extended source sensitivity of the MIPS observations was approximately 0.2 MJy sr$^{-1}$ at 24 μm and 4 MJy sr$^{-1}$ at 70 μm. The MIPS images of G292.0+1.8 are shown in Figure 1.

The IRS spectral maps utilized one cycle of five pointings parallel to the LL slit, separated by 120', along with 112 pointings taken in 6' steps perpendicular to the slit. Both LL1 (1st order, 19.5–38.0 μm) and LL2 (2nd order, 14.0–21.3 μm) were active during the mapping scans, with an exposure time of 32 s per pixel (560 individual spectra). The IRS mapping footprint for these observations is shown overlaid onto the MIPS 24 μm image in Figure 2.

2.1. Post-processing of MIPS Data

Our MIPS data were processed using calibration pipeline version S18.12.0. MIPS delivers diffraction limited images, so that the relative spatial resolution of any two MIPS channels differs by the ratio of their central wavelengths. To compare the surface brightnesses of features between images, we first degraded the spatial resolution of the 24 μm image to that of the 70 μm image by convolving the former with a point-spread function (PSF) kernel using the IDL-based Convolution Kernels software CONVIMAGE (Gordon et al. 2008). We used a PSF kernel appropriate for a 50 K blackbody source. While we do not expect the continuum emission to follow a simple blackbody shape, this temperature is approximately midway between the temperature of the cold (~30 K) and warm (~70 K) CSM dust components fit to the IRS staring mode spectra of G292.0+1.8 by Ghavamian et al. (2009). After the convolution we used the AIPS (Astronomical Image Processing System)10 task HGEOM to resample the convolved 24 μm image (2'55 pixel$^{-1}$) onto a grid matching that of the 70 μm image (5'3 pixel$^{-1}$). To extract surface brightness values from selected regions around G292.0+1.8, we utilized the FUNTOOLS package of SAO (https://www.cfa.harvard.edu/~john/funtools/).

To compare localized variations in the 70/24 flux ratios with the corresponding X-ray emission in G292.0+1.8, we estimated the X-ray brightnesses using the deep 510 ks Chandra image of G292.0+1.8 (Park et al. 2007). We started with the Chandra level one event file from that observation, processed in the manner described in Park et al. (2007) and filtered over the 0.3–8.0 keV range. Before extracting the X-ray fluxes we blurred the filtered Chandra image to the same resolution as the MIPS 24 μm image. The pixel scale of IRAC images is 0.6 pixel$^{-1}$, which is close to the 0.5 pixel$^{-1}$ pixel scale of the Chandra images. Therefore, we convolved the X-ray image using the CONVIMAGE kernels appropriate for blurring an IRAC 3.6 μm image to MIPS 24 μm resolution. We again used the convolution kernel appropriate for a 50 K blackbody. Finally, we extracted the X-ray counts from individual regions (18 regions were selected, described later in Section 4) in the convolved X-ray image using the FUNCTS application. We utilized an annular region surrounding G292.0+1.8 in the Chandra image to estimate the underlying background level (marked in Figure 3). Although the background region includes a number of faint point sources, their total contribution to the background counts is negligible (\lesssim2%), so their contribution was not removed before scaling and subtracting the background from each extraction region. After background subtraction, we converted the resulting net counts to count rates by dividing by the exposure time (510 ks). We then converted the count rates to surface brightness using the PIMMS tool from Chandra X-ray Observatory. Note that the X-ray fluxes are estimated without actual spectral modeling, resulting in less accurate flux estimates than would be obtained with spectral models. However, we only seek crude flux estimates for the purpose of identifying systematic trends in the ratios of IR to X-ray emission. Since the fluxes are extracted from CSM shocks, we assumed abundances 0.2 times solar, while taking N$_{H} = 6 \times 10^{21}$ cm$^{-2}$ and

10 AIPS is produced and supported by the National Radio Astronomy Observatory, operated by Associated Universities, Inc., under contract with the National Science Foundation.
Ghavamian et al.

Figure 1. MIPS images of G292.0+1.8, shown alongside the optical [O\textsc{iii}] image (Winkler & Long 2006) and the 510 ks Chandra X-ray image (Park et al. 2007). The outermost X-ray contour from the Chandra image is marked on the [O\textsc{iii}] image. Each image is 12.7′ × 13.4′ across, with east located at the left and north at the top. The emission in the 24 μm and 70 μm images is predominantly produced by shock-heated circumstellar dust. The O-rich “Spur” is the bright, crescent-shaped feature to the left of center in the [O\textsc{iii}] image. The “Streamers” are the fainter fingers of emission stretching southward from the Spur. The fast-moving knots (FMKs) are the small knots of emission seen above and below the center of the [O\textsc{iii}] image. A faint elongated feature (named “the Narrow Tail” in Lee et al. 2009) in the south of G292.0+1.8 can be seen near the bottom of the two MIPS images. The Narrow Tail has no counterpart in the [O\textsc{iii}] or X-ray images.

\begin{equation}
kT = 0.75\text{ keV.}\end{equation}

These parameters reflect average values for these parameters measured around the rim of G292.0+1.8 by Lee et al. (2010).

2.2. Post-processing of IRS Data

We performed our IRS spectral mapping analysis using data processed with Spitzer calibration pipeline version S18.7.0. Using the IDL CUBISM software (Smith et al. 2007), we assembled the 560 Basic Calibrated Data files (BCDs) into two datacubes, one for LL1 and one for LL2. The BCDs are heavily affected by hot pixels (especially beyond 35 μm), which results in vertical columns of elevated pixels in the assembled datacube. To mitigate the effects of these hot pixels, we median smoothed the BCDs prior to creating the datacubes by using the \texttt{FILTER_IMAGE} routine from the IDL Astronomy User’s library. The smoothing replaces the value of each pixel with the median of the surrounding three pixels in a moving box. While this reduces the spatial resolution of the data in the BCDs somewhat, it significantly mitigates the hot pixel columns in the resulting datacube.

The background emission around G292.0+1.8 varies noticeably across the face of the SNR in both MIPS images. At 24 μm, the background is about 17.6 MJy sr\(^{-1}\) in the northeastern corner of the image in the region used for estimating the background emission in the datacubes. The background rises to a maximum of 18 MJy sr\(^{-1}\) in the southwestern corner of the image. The corresponding background surface brightnesses in the 70 μm image are 32 MJy sr\(^{-1}\) and 35 MJy sr\(^{-1}\), respectively. This emission gradient can be seen in Figure 1. The variability is due in part to the presence of an H\textsc{ii} region along the line of sight just south of G292.0+1.8. It appears as patchy diffuse emission in the narrowband H\textalpha, [S\textsc{ii}], and [O\textsc{iii}] images of the SNR (Winkler & Long 2006).

In the IRS datacubes, the H\textsc{ii} region along the line of sight to G292.0+1.8 contributes [Ne\textsc{iii}] \(\lambda\lambda\)15.5, 35.0, [S\textsc{ii}] \(\lambda\lambda\)18.7, 35.0, and [Si\textsc{ii}] \(\lambda\lambda\)34.8 line emission, as well as a photoexcited dust continuum starting near 15 μm and slowly rising beyond
the edge of the IRS bandpass at 40 μm. The sky spectrum also shows a cluster of faint, closely spaced emission features between 15 μm and 20 μm. These features are characteristic of polycyclic aromatic hydrocarbon (PAH) emission from the intervening photodissociation regions at 16.4 and 17.0 μm, as well as H$_2$ S(1) 17.1 μm emission. At longer wavelengths, faint H$_2$ 28.2 μm emission is also detected in the sky spectrum. The excess contribution from this diffuse component, after subtraction of background from the northeastern corner of the datacube, results in residual emission in the datacube when extracting emission line images.

3. ANALYSIS

3.1. MIPS Imagery

In Figure 1, we present the 24 μm and 70 μm MIPS images of G292.0+1.8. The SNR appears in both bands as an elliptical shell with a banded structure running E-W across its middle, similar to what is observed in the Chandra images (Park et al. 2002, 2004, 2007; Lee et al. 2010). For the most part, the morphology and brightness variations of the shell match those seen in the X-rays, with the main difference being the lack of prominent IR emission from X-ray emitting O-rich and Ne-rich ejecta. These results are consistent with continuum emission from circumstellar dust heated by the non-radiative forward shock in G292.0+1.8. Lee et al. (2009) reached the same conclusion based on their AKARI imagery of G292.0+1.8.

Both the Spur and the FMKs can be seen in the 24 μm image, tracing the [O IV] λ25.9 produced by radiative ejecta shocks. The [O IV] emission from these shocks closely follows the distribution of [O III] λ5007 emission observed in narrowband optical imagery (Tuohy et al. 1982; Winkler & Long 2006) and optical imaging spectrometry (Ghavamian et al. 2005). In addition, both the Spur (and as we show in Section 3.2.2, the southernmost FMK) exhibit emission from a spectral bump between 15 and 25 μm in our IRS spectral maps. This bump (likely a signature of ejecta dust heated in the radiative shocks) also contributes emission to the MIPS 24 μm image of G292.0+1.8.

The flux ratio between IR images at two different wavelengths is sensitive to such parameters as the dust temperature, gas density and dust-to-gas ratio (Dwek 1987). To investigate the global 70/24 flux ratio in G292.0+1.8, we used the FUNCTNS application from FUNTOOLS to integrate the 24 μm and 70 μm emission across the face of G292.0+1.8 (avoiding bright stars within the remnant periphery). We then estimated the total flux and luminosity of the SNR in these bands. We subtracted the sky contribution in each band using an annular region encircling G292.0+1.8 (marked in Figure 3; the same background annulus was used for both the 24 μm and 70 μm images). Similar to the X-ray data, the background annuli in our 24 μm images contain point sources (none are present in the 70 μm images). These point sources contribute ≲3% to the total counts in the background regions. After scaling and subtracting the background, the resulting fluxes are 9.8 Jy at 24 μm and 26.4 Jy at 70 μm, respectively. The globally averaged 70/24 ratio is 2.7, an intermediate value between the local minimum of 1.4 and local maximum of 5.5 reported in Table 1. These fluxes are in good agreement with the two-temperature modified blackbody spectral energy distribution (a mixture of graphite and silicon) calculated by Lee et al. (2009) for a 3000 year old SNR with pre-shock density of 0.5 cm$^{-3}$. Assuming a distance of 6 kpc to G292.0+1.8 (Gaensler & Wallace 2003), the corresponding luminosities in the MIPS bands are $L_{24} = 1.9 \times 10^{36}$ erg s$^{-1}$ and $L_{70} = 1.4 \times 10^{36}$ erg s$^{-1}$ (note that the luminosity at 24 μm includes the contribution of [O IV] + [Fe II] line emission near 25.9 μm).

Localized variations in the 70/24 flux ratio can be observed both along the shell and throughout the interior of G292.0+1.8. The 24 μm and 70 μm surface brightnesses are shown in Table 1 for a selection of individual regions, along with the corresponding 70/24 ratios. A trend seen in these ratios is that they tend to be largest (i.e., implying coldest dust) along the elliptical outer blast wave of G292.0+1.8. The hottest CSM dust

Table 1

Region Number	F(24) (MJy sr$^{-1}$)	F(70) (MJy sr$^{-1}$)	F(70)/F(24)
1	0.74 ± 0.36	3.79 ± 0.83	5.14 ± 2.73
2	1.68 ± 0.25	6.68 ± 0.57	3.98 ± 0.68
3	3.91 ± 0.36	10.4 ± 0.84	2.65 ± 0.32
4	1.93 ± 0.28	6.77 ± 0.65	3.50 ± 0.61
5	3.03 ± 0.39	10.5 ± 0.91	3.48 ± 0.54
6	6.47 ± 0.84	14.4 ± 1.85	2.23 ± 0.41
7	8.40 ± 0.97	17.4 ± 2.15	2.07 ± 0.35
8	2.79 ± 0.59	8.20 ± 1.38	2.94 ± 0.79
9	6.13 ± 0.64	16.4 ± 1.87	2.68 ± 0.38
10	5.62 ± 0.64	14.2 ± 1.47	2.52 ± 0.39
11	2.35 ± 0.24	7.62 ± 0.57	3.24 ± 0.41
12	2.12 ± 0.38	6.91 ± 0.87	3.26 ± 0.72
13	5.05 ± 0.72	11.1 ± 1.62	2.20 ± 0.45
14	5.05 ± 0.64	9.24 ± 1.33	1.83 ± 0.35
15	7.58 ± 0.53	12.2 ± 1.20	1.61 ± 0.19
16	5.80 ± 0.34	10.7 ± 0.76	1.84 ± 0.17
17	6.38 ± 0.44	8.79 ± 0.96	1.38 ± 0.18
18	3.18 ± 0.54	4.88 ± 1.19	1.54 ± 0.46
19	0.39 ± 0.19	1.67 ± 0.44	4.24 ± 2.34
tends to be found along the equatorial belt, though some of the clumpy belt material also extends toward the southwest of the SNR.

A conspicuous difference between the IR and X-ray appearance of G292.0+1.8 is the presence of strong IR emission in parts of the shell lacking X-ray emission. These differences can be seen in Figure 3, where the individual regions have been marked on the MIPS 24 μm and Chandra 0.3–8.0 keV images. Regions 6–10 in the southwestern portion of G292.0+1.8 mark clumps where the IR emission in both MIPS images is particularly strong compared to the X-ray emission. The spectral properties of these clumps are clearly different from those of the circumstellar belt (numbered 13–18 in Figure 3) and most of the shell (Regions 1–4 and 11–12). In contrast, sections of the circumstellar belt (Regions 13–18) are prominent both in the MIPS and Chandra images. These suggest significant differences between physical conditions in the southwest and those in the rest of the shell and circumstellar belt. X-ray spectra of Regions 13–18 extracted from the 510 ks Chandra observation (Park et al. 2007) exhibit no evidence of ejecta (enhanced metal) abundances, and in fact appear fully consistent with cosmic (subsolar) abundances. In addition, the southwestern clumps are not detected in either the [O iii] image of G292.0+1.8 (Winkler & Long 2006), nor in [O iv]+[Fe ii], [Ne iii], or [Si ii] in our IRS maps of G292.0+1.8, an indication that their emission arises in non-radiative shocks.

3.2. Narrowband Maps

3.2.1. Emission Line Images

In addition to the IR continuum generated by the shock heated dust in G292.0+1.8, the SNR is also detected in IR forbidden line emission from shocked ejecta. The detected lines were described by Ghavamian et al. (2009), who reported strong O and Ne emission (as well as possible weak S line emission) from the Spur. Clear variations can be seen in the relative fluxes of the ejecta lines in the IRS spectral maps, reflecting variations in physical conditions in the ejecta. To map these variations, we first used CUBISM to extract emission line images from the IRS spectral map.

Due to the presence of an underlying dust continuum throughout most of the LL2 and all of the LL1 bandpass, isolating the emission line component required estimation of the continuum level under each line, then the subtraction of this continuum at each position in the datacube. To perform this subtraction, we first used CUBISM to isolate the continuum emission over a narrow sub-band on either side of the [Ne iii] λ15.6 and [O iv]+[Fe ii] λ25.9 lines. The corresponding sub-bands used for the [Si ii] image were both chosen from continuum on the blue side of 34.8 μm to minimize the impact of hot pixels on the continuum-subtracted [Si ii] image.

Collapsing the emission in each of the two bands, we generated two “off-band” images of G292.0+1.8 near each spectral line. We then averaged the two images to approximate an image of the continuum underlying each of the emission lines. We scaled and subtracted this averaged image from that formed by integrating emission from the G292.0+1.8 datacube over each of the O, Ne, and Si lines. The scaling factor applied to each background image before subtraction was (1.05, 1.0, 1.10) for [Ne iii], [O iv]+[Fe ii], and [Si ii], respectively. The wavelength ranges integrated for estimating the underlying [Ne iii] λ15.5 continuum in the datacube were 15.0–15.2 μm and 15.9–16.1 μm, while those for [O iv]+[Fe ii] λ25.9 were 23.4–23.9 μm and 26.9–27.4 μm. The corresponding ranges for [Si ii] λ34.8 μm were 31.4–32.5 μm and 32.0–32.7 μm. The [Ne v] λ24.3 emission detected in G292.0+1.8 (Ghavamian et al. 2009) was not strong enough to allow for the creation of useful maps once the nearby continuum was subtracted.

Despite the presence of strong [S iii] λλ18.7, 33.5 emission in the datacube, nearly all of this component consisted of unrelated foreground emission (likely from the H ii region along the line of sight) as well as photoionized ISM surrounding G292.0+1.8. None of the ejecta in our IRS maps showed significant [S iii] emission, although the partially radiative CSM shocks in the equatorial belt of G292.0+1.8 show weak [S iii] λ18.7 emission (Figure 6). The presence of weak [S iii] from the equatorial...
The [Ne\textsc{iii}] and [O\textsc{iv}] emission line maps are shown in Figure 4. The pixel scales of the images are 5\arcsec\,pixel\(^{-1}\), with each image 11.2 \times 11.2 square. They bear a strong resemblance to the [O\textsc{iii}] optical image (Winkler & Long 2006), indicating that the oxygen and neon originate from the same nucleosynthetic layers within the progenitor. The most prominent O-rich structure, the Spur, is clearly detected in both line maps, while the FMKs seen near the northern and southern edges of G292.0+1.8 in the [O\textsc{iii}] images have faint counterparts in [Ne\textsc{iii}] and [O\textsc{iv}].

The faint bands of [O\textsc{iii}] emission stretching southward from the Spur (the “Streamers”) and westward toward the middle of G292.0+1.8 are also detected in the IR. However, there are also some differences between the [Ne\textsc{iii}] and [O\textsc{iv}] images. The shape of the Spur differs slightly in the two images, with the [O\textsc{iv}] emission having a somewhat clumpier morphology than the [Ne\textsc{iii}] emission. In addition, the FMKs near the southern edge of G292.0+1.8 are more prominent in the [Ne\textsc{iii}] images. In particular, the southernmost FMK (an ejecta knot with one of the highest proper motions in G292.0+1.8 (Winkler et al. 2009) and which we name “Runaway FMK”) is prominent in the [Ne\textsc{iii}] image, but barely detected in [O\textsc{iv}]. This may be due in part to differences in the continuum subtraction between the two images. Both the sky and SNR continuum just begin to turn on near 15 \mu m, and increase steadily past 26 \mu m. Subtraction of this continuum adds more noise to the resulting [O\textsc{iv}] image than to the [Ne\textsc{iii}] image in Figure 4, making it more difficult to detect intrinsically faint features such as the FMKs in [O\textsc{iv}].

Summing the emission over all the radiatively shocked ejecta in G292.0+1.8, we find that \(L_{\text{[Ne\textsc{iii}]}} \approx 8.2 \times 10^{33} \text{ erg s}^{-1}\) and \(L_{\text{[O\textsc{iv}]+[Fe\textsc{ii}]}} \approx 2.6 \times 10^{34} \text{ erg s}^{-1}\), assuming a distance of 6 kpc. The [O\textsc{iv}]+[Fe\textsc{ii}] luminosity of G292.0+1.8 (which should be close to the intrinsic value due to the minimal impact of interstellar reddening at 25 \mu m) is approximately six times lower than the unreddened [O\textsc{iii}] luminosity (1.6 \times 10^{35} d_6^2 \text{ erg s}^{-1}\) reported by Winkler & Long (2006). On the other hand, the [Si\textsc{ii}] \(\lambda 34.8 \text{ emission map shows no emission from the Spur. Save for the belt of O-rich material running westward from the Spur (not to be mistaken with the circumstellar belt seen in X-rays), none of the radiatively shocked O-rich ejecta produce significant [Si\textsc{ii}] emission. The only feature clearly visible in the [Si\textsc{ii}] image in Figure 4 is a blob of emission located just interior
to the Spur. Although the [Si ii] image is considerably noisier than the [Ne iii] and [O iv] images and suffers from fixed pattern residuals leftover from the hot pixel interpolation, it is evident that there is no substantial [Si ii] emission from the radiatively shocked, optically bright ejecta in G292.0+1.8.

3.2.2. 15–25 μm Continuum Emission

The ability to generate images of G292.0+1.8 in isolated spectral ranges from our IRS maps allows us to isolate regions of pure continuum emission to search for emission from shock-heated ejecta dust. In our earlier spectroscopic study of G292.0+1.8 (Ghavamian et al. 2009), we identified a broad bump of emission arising from the lower section of the O-rich Spur and centered near 18 μm and extending from 15 μm to 25 μm. Aside from this prominent bump, the only other observed spectral features from the Spur were emission lines. The spectral bump is a possible signature of protosilicate dust emission from Mg₃SiO₄ or MgSiO₃, and has been detected in Spitzer IRS maps of 1E0102−72.3 (Sandstrom et al. 2009; Rho et al. 2009) and Cas A (Rho et al. 2008; Smith et al. 2009). Detection of the 15–25 μm bump in G292.0+1.8 could be evidence that dust formed in the SN ejecta, and that this dust is currently being heated in the radiative ejecta shocks. However, given the complicated mixture of the shocked and photoionized CSM (as well as unrelated foreground emission from the nearby H ii region) overlaying the Spur in G292.0+1.8, we sought to confirm the spatial coincidence of the emission bump with the supernova ejecta.

To this end, we used CUBISM to subtract the line-of-sight background from the datacube using emission off the eastern edge of G292.0+1.8 (we used sky in this region because it is closest to the Spur). We then integrated the emission between 15 μm and 25 μm from our IRS LL2 datacube of G292.0+1.8, while excluding the [Ne iii] λ 15.5 line emission from the ejecta in this bandpass. Although there is no evidence of significant [S ii] λ 18.7 emission from the ejecta, we excluded this emission line as well during the integration. This sky-subtracted continuum image of G292.0+1.8 in the 15–25 μm range is shown in the lower right panel of Figure 4.

The 15–25 μm map shows extensive continuum emission from G292.0+1.8, arising almost entirely from shock-heated CSM dust. The equatorial belt and southwestern regions (e.g., Regions 13–16 and 6–10) are especially prominent, while the lower density filaments along the elliptical shell (e.g., Regions 1, 2, 11, and 12 from Figure 3) are fainter. These trends are consistent with the dust temperature variations reflected in the 70/24 flux ratio. The continuum from most of the CSM shocks begins near 15 μm, then rises steadily past the red end of the IRS bandpass at 36 μm. Remarkably, however, some of the radiatively shocked O-rich ejecta (such as the Spur) are also detected in the 15–25 μm map. The Runaway FMK (marked by a red arrow at the bottom of each panel in Figure 4), which has been shown clear of most of the shocked CSM in the interior of G292.0+1.8, can also be seen. The knot is located in a region of lower, less complicated background emission, allowing the emission from this knot to stand out more easily than for the other FMKs lying in the projected interior. The detection of 15–25 μm IR continuum from both the Spur and the Runaway FMK is strong evidence that whether the emission arises from a 15–25 μm “bump” or some other type of emission feature, dust grains most likely formed in the O-rich ejecta and are currently being heated by radiative shocks.

4. DISCUSSION

4.1. MIPS 70/24 Ratios

The effective temperatures of heated interstellar dust grains in SNRs are largely dependent on the post-shock gas density (Dwek 1987; Dwek et al. 1996), and hence, by extension, on the pre-shock gas density. At the high gas temperatures encountered in young non-radiative SNRs, the impact of electrons from the hot post-shock plasma is the primary source of dust heating. On the other hand, dust sputtering in these shocks is primarily caused by proton impacts. At these high temperatures, the amount of energy deposited per electron impact into the dust grains is approximately constant, so that the equilibrium dust temperature (and hence IR emissivity) of the dust depends mainly on the electron (and hence gas) density (e.g., Figure 6(b) from Dwek 1987 and Figure 8 from Dwek et al. 1996). Assuming similar gas temperatures, compositions and column densities in the CSM shocks (consistent with the X-ray spectral fits of Lee et al. 2010), regions with bright X-ray emission should broadly correlate with regions of high gas density, which in turn correlate with regions having bright IR emission and high dust temperatures. The brightest X-ray emission should then correspond to IR emission with the smallest 70/24 flux ratios.

Comparing the MIPS and Chandra X-ray images of G292.0+1.8, we find that there does appear to be a correlation between the 24 μm and 70 μm surface brightnessesthe X-ray surface brightness for most of the CSM shocks in G292.0+1.8. Interestingly, however, there are departures from this relationship observed along the southwestern side of G292.0+1.8. Specifically, the surface brightnesses of the southwestern CSM clumps (corresponding to Regions 6–10 in Figure 3) are ~3 times higher than the rest of the shell in both IR bands, yet their X-ray counterparts are either faint or almost non-existent. The lack of bright X-ray emission matching the bright IR clumps in the SW is not due to enhanced local absorption of X-rays, since Lee et al. (2010) did not find a large enough variation in column density (5 × 10^{21} ≲ N_H ≲ 7 × 10^{21}) around the rim to account for the reduced X-ray flux in the SW corner of G292.0+1.8.

To quantify the relationships described above, we plotted the 24 μm and 70 μm surface brightnessesthe X-ray surface brightnesses of those regions in Figure 5 (top panel). The 70/24 ratios (which are plotted against the X-ray surface brightnesses in the lower panel of Figure 5) show a noticeable declining trend with increasing X-ray emission, consistent with our prediction. One caveat to consider when interpreting Figure 5 is that X-ray emission from the ejecta overlies the emission from some of the CSM shocks. Therefore, the X-ray count rates in some of the CSM regions plotted in Figure 5 are overestimated to various degrees (save for Region 4, most of the regions contain little or no discernible emission from ejecta). The ejecta contribution to the region counts is likely to add scatter to the values along the horizontal axis of the plot. However, the plot is still useful for identifying systematic trends between the IR and X-ray properties of G292.0+1.8, and they clearly demonstrate a relationship between emission in the two bands. The 70 μm fluxes show more scatter than the 24 μm fluxes and their distribution appears somewhat flatter than the 24 μm when plotted versus X-ray surface brightness. Dividing the two fluxes results in a more distinct correlation, with the 70/24 ratio declining with X-ray surface brightness.

7
The trend between the 70/24 ratio and the X-ray surface brightness is also consistent with predictions from the shock models of Dwek et al. (1996). Specifically, the lowest ratios (∼1.5–1.8) are found in the denser material of the equatorial belt, while the largest ratios (∼2.5–5) are found in the low density, fainter sections of the outer shell. A more quantitative comparison can be made with the Dwek et al. (1996) predictions by using dust spectra for their 800 km s\(^{-1}\) shock models (this shock speed gives a temperature closest to the average of the temperatures of the different regions measured by Lee et al. (2010)). From Figure 8(c) of Dwek et al. (1996), the dust spectra for pre-shock gas densities of 0.1 cm\(^{-3}\) and 1.0 cm\(^{-3}\) should be most appropriate for modeling the IR emission from the equatorial belt and circumstellar shell in G292.0+1.8, respectively. The dust spectra from Dwek et al. (1996) predict \(v_{\nu_0} F(70)/v_{\nu_2} F(24) ≈ 2.3\) for \(n = 0.1\) cm\(^{-3}\) and \(v_{\nu_0} F(70)/v_{\nu_2} F(24) ≈ 0.7\) for \(n = 1\) cm\(^{-3}\). The predicted flux ratios are then \(F(70)/F(24) ≈ 6.7\) for \(n = 0.1\) cm\(^{-3}\) and \(F(70)/F(24) ≈ 2\) for \(n = 0.1\) cm\(^{-3}\). These compare favorably with the observed ratios for the equatorial belt and outer shell in Table 1, though the observed ratios for the shell are somewhat lower than predicted. This is likely due to the inferred pre-shock density of the shell obtained by Lee et al. (2010): ∼0.3–0.5 cm\(^{-3}\) being slightly larger than that of the \(n = 0.1\) cm\(^{-3}\) model of Dwek et al. (1996).

Overall, the regions with the hottest dust in Figure 5 are (not surprisingly) Regions 15, 17, and 18, corresponding to the brightest clumps in the Chandra image of G292.0+1.8. Park et al. (2002) found that the equatorial belt (Region 15) had a higher density and slightly lower temperature than the outer shell of G292.0+1.8, while Ghavamian et al. (2005) detected faint [O \(\text{iii}\)] \(λ5007\) emission from the belt. This indicates that the elevated density in the equatorial belt in Region 15 has caused the shocks to become partially radiative at that location. The elliptical shell surrounding G292.0+1.8, where the blast wave propagates through the relic red supergiant (RSG) wind (Lee et al. 2010), has the lowest pre-shock gas densities, and hence the coldest shocked CSM dust.

Figure 5 provides an important clue to the origin of the elevated IR to X-ray flux ratios in the southwestern portion of G292.0+1.8. Although the emission in the southwest is bright in both MIPS images, the 70/24 ratios from this part of G292.0+1.8 (as reflected in the 70/24 ratios for the CSM knots in Regions 6–10) are similar to those of the equatorial belt, where emission is bright in both IR and X-rays. This suggests that the dust is just as hot in the southwestern CSM knots as they are in the belt (as reflected in the 70/24 ratios for Regions 13–18). This in turn implies that the gas densities in the southwest and in the equatorial belt are similar. Therefore, the most likely explanation for the anomalously high IR to X-ray ratios of Regions 6, 7, 9, and 10 is that these clumps have higher dust-to-gas ratios than the clumps in the equatorial belt. A localized, elevated dust content in the southwest of G292.0+1.8 may indicate that the dust in this portion of the SNR is not well coupled to the X-ray emitting gas, or it may reflect variations in the dust condensation efficiency in the relic red giant wind of the progenitor. Even allowing for variations in dust content around the rim of G292.0+1.8, the average dust-to-gas ratio inferred by Lee et al. (2009) for this SNR (∼10\(^{-3}\)) is significantly lower than the average Galactic value (Weingartner & Draine 2001).

In Figure 6, we show sample IRS mapping spectra extracted from four of the regions marked in Figure 3 (Regions 4, 7, 15, and 17). The spectra were obtained from a section of the blast wave in the NW (Region 4), a knot of bright IR emission in the SW (Region 7), the brightest section of the equatorial belt (Region 15) and a large clump just above the eastern edge of the equatorial belt. We subtracted the same background emission from all four of the IRS spectra after averaging the emission from two sky regions located just off the eastern and western sides of G292.0+1.8 (marked by the cyan boxes in the left panel of Figure 3).

The background-subtracted spectra from the four regions described above are dominated by a rising dust continuum.
The blast wave emission from Region 4 shows a slowly rising continuum which starts near 15 μm and rises past the red end of the IRS bandpass. In contrast, the clump in Region 7 shows a brighter, more steeply rising dust continuum which peaks at a shorter wavelength than Region 4 (at approximately 33 μm). This is consistent (based on the discussion in Section 4.1) with a higher overall density in Region 7 than Region 4. Region 15, while showing a prominent dust continuum, also exhibits faint emission lines of [Ne iii] λ15.5, [O iv] +[Fe ii] λ25.9, [S iii] λ18.7, and [Si ii] λ34.8. Region 15 has been detected in [O iii] in the optical (Ghavamian et al. 2005), and was shown by Park et al. (2002) to be both denser and cooler than the blast wave filaments encircling G292.0+1.8. The shocks in the equatorial belt have formed partial cooling zones and hence are partially radiative, giving rise to the observed faint IR (and optical) partial emission. The continuum from Region 17 is similar to that of Region 15, indicating similar dust temperature. The presence of faint [Ne iii] λ15.5 and [O iv] +[Fe ii] λ25.9 in the spectrum of Region 17 indicates that the shocks in this clump have also started to form radiative cooling zones.

4.2. The [Si ii] Emission and the Thermodynamic State of the Ejecta

In their analysis of the 510 ks Chandra image of G292.0+1.8, Park et al. (2007) concluded that the thermodynamic state of the ejecta (as reflected by temperature, density and ionization state) exhibits a significant gradient between the southeastern and northwestern sides of G292.0+1.8. The X-ray hardness ratios they obtained from the Chandra data indicated a substantially lower temperature for the SE (kT ∼ 0.7 keV) than the W and NW (kT ∼ 5 keV). This is consistent with the fact that most of the optical and IR-emitting SN ejecta—the Spur and its associated streamers—are found in the SE of G292.0+1.8. The ejecta shocks in the rest of the SNR, by contrast, are mostly still in the non-radiative phase.

The trends described above can be seen in the narrowband X-ray images of G292.0+1.8 in O He α and Ne He α (Park et al. 2007). These images show a strong spatial correlation with the optical [O iii] and IR [Ne iii] and [O iv] emission in the SE. In contrast, the narrowband X-ray images in Si He α (which traces hotter gas than O Lyα and Ne He α owing to its higher nuclear charge) is almost entirely absent in the SE. The lack of Si emission from the SE in both the X-rays and the IR (save for the isolated [Si ii] ejecta blob in Figure 4) indicates that the reverse shock has not yet encountered most of the Si-rich ejecta in the SE. Park et al. (2007) speculated that the cooler thermodynamic state of the ejecta in the SE of G292.0+1.8 was the result of an asymmetric supernova explosion, where less energy was channeled into that direction than the rest of the SNR. The lack of extensive [Si iii] λ34.8 emission in the SE of G292.0+1.8 may indicate that the SNR is less evolved in that direction, providing further evidence in favor of the asymmetric explosion picture.

4.3. 15–25 μm Bump

As shown in Figure 4, the O-rich Spur and the Runaway FMK in G292.0+1.8 are detected in the 15–25 μm continuum image extracted from the Spitzer IRS datacube of G292.0+1.8. The presence of such a continuum indicates that dust grains exist within the ejecta. To investigate this possibility further, we extracted IRS spectra of the Runaway FMK, using a circular region centered on the knot. We subtracted sky emission using an identically sized region located approximately 10′′ radially inward from the FMK (marked by the small cyan circle in Figure 3). The resulting spectrum is shown in Figure 7. The sky spectrum shows emission features from an intervening photodissociation region (PDR) and H ii regions along the line of sight to G292.0+1.8: PAH emission at 16.4 and 17.0 μm, as well as H2 S(1) 17.1 μm and H2 28.2 μm emission. The raw object and sky spectra have both been shifted by +2.0 units along the Y-axis.

Figure 7. Extracted IRS mapping spectra of two features in G292.0+1.8. Left: combined LL2 and LL1 spectra of the southernmost FMK, showing the raw object spectrum (red), the sky spectrum extracted from a nearby section of sky off the SNR (blue), and the resulting sky-subtracted object spectrum (black). The raw object and sky spectra have both been shifted by -2.0 units along the Y-axis. Right: the LL1 spectrum of the narrow tail of G292.0+1.8, with similar color schemes for the raw, sky and sky-subtracted object spectrum. The sky spectrum shows emission features from intervening PDR and H ii regions along the line of sight to G292.0+1.8: PAH emission at 16.4 and 17.0 μm, as well as H2 S(1) 17.1 μm and H2 28.2 μm emission. The raw object and sky spectra have both been shifted by +2.0 units along the Y-axis.

4.4. The Narrow Tail

The elongated structure extending southward of G292.0+1.8 in the 24 μm and 70 μm images exhibits a very interesting morphology. It was first noted by Lee et al. (2009) in their AKARI observations of G292.0+1.8, who referred to the feature as a “Narrow Tail.” It appears to be connected to the streamers of O-rich ejecta extending south of the Spur (seen in the [O iii] image in Figure 1, and in the 24 μm MIPS image). However,
the Narrow Tail has no X-ray counterpart, and no corresponding optical emission. The 70/24 ratio (Region 19 in Table 1) is 4.2, which indicates cold dust. The background-subtracted IRS spectrum of the Narrow Tail is shown in the right panel of Figure 7. The location used for estimating the background contribution to the Narrow Tail spectrum is marked by the elongated cyan region in Figure 3. The spectrum of the Narrow Tail in Figure 7 is consistent with cold dust—it peaks beyond the IRS bandpass. These colors are similar to IR cirrus, rather than dust heated by UV from the core collapse explosion. Dwek & Arendt (2008) presented an analysis of light echoes near Cas A, and found that the 70/24 ratios of these echoes were significantly smaller than seen in normal IR cirrus, an indication that the dust had been significantly heated. Dwek et al. (1996) found that graphite dust was required to explain the emission, finding that the dust temperature (~175 K) indicated very strong heating from incident UV radiation, rather than optical photons from the SN. In the case of G292.0+1.8, the colors of the elongated structure indicate much colder dust (≤25 K), hence heating by UV emission from the SN that produced G292.0+1.8 is highly unlikely. There is weak [Si ii] λ34.8 emission from the sky-subtracted spectrum of the Narrow Tail, as well as faint [Fe ii]+[O iv] and a hint of H2 S(0,0) at 28.2 μm. This is all consistent with a clump of cold interstellar cloud material (IR cirrus) which has been heated by ambient stellar UV light. We conclude that, despite the very suggestive morphology and alignment of this feature with the streamers of O-rich material emanating from the Spur, it appears to be a chance alignment between an interstellar cloud and the elongation axis of the O-rich streamers.

5. SUMMARY

We have presented MIPS 24 μm and 70 μm imaging and IRS spectral mapping of G292.0+1.8 obtained with Spitzer. These observations complement the existing AKARI study of G292.0+1.8 (Lee et al. 2009). Our results are as follows.

1. The MIPS data show that most of the filaments seen in the X-rays along the periphery of the SNR, as well as the band of equatorial material stretching across its middle, emit dust continuum emission in the mid-IR. The IRS mapping data of the filaments and clumps show broad-band, rising continua between 15 μm and 40 μm, a clear signature of shock-heated dust. The shapes of the dust continua are consistent with a mixture of graphite and silicate dust, as is observed in the non-radiative blast waves of other SNRs (e.g., Williams et al. 2011).

2. The MIPS 70/24 flux ratio varies significantly (1.5 ≤ F70/F24 ≤ 5) between the blast wave, equatorial belt, and the southwestern clumps. These variations primarily reflect differences in dust temperature around G292.0+1.8, and plots of the 70/24 ratio versus X-ray surface brightness are consistent with variations in CSM density inferred from X-ray observations (Lee et al. 2010). The 70/24 μm ratios are also consistent with predictions from dust shock models (Dwek et al. 1996), with shock speeds and pre-shock densities matching those predicted by the X-ray observations of Lee et al. (2010).

3. No mid-IR emission (either lines or continuum) is detected from the non-radiative, X-ray emitting ejecta seen in the Chandra images G292.0+1.8. The radiatively shocked O-rich ejecta are detected in the MIPS 24 μm image, with most of the ejecta emission in that band consisting of [O iv]+[Fe ii] λ25.9 emission. Using an isolated FMK located near the southern edge of G292.0+1.8, we have confirmed the detection of the 15–25 μm emission bump from the radiatively shocked O-rich ejecta (possibly Mg2SiO4 or MgSiO3 dust formed in the ejecta).

4. Continuum-subtracted emission line maps of the [Ne ii] λ15.5 and [O iv]+[Fe ii] λ25.9 emission show a strong spatial correlation between the two, and emission in these lines is detected from both the Spur and the FMKs. However, neither of these two structures is detected in the continuum-subtracted [Si ii] λ34.8 maps of G292.0+1.8. Save for a localized blob of [Si ii] emission near the inner edge of the Spur, no obvious emission from this species is seen elsewhere in the SNR. Since the entire southeastern portion of G292.0+1.8 is also deficient in Si line emission in the X-rays (Park et al. 2007), the lack of both IR and X-ray emission from Si in the Spur indicates that most of the Si is unshocked in the southeastern quadrant of G292.0+1.8 and that, save for the [Si ii]-emitting blob, the reverse shock has not yet penetrated most of the Si-rich ejecta in the southeast. This may indicate that the southeastern portion of G292.0+1.8 is less evolved than the rest of the SNR, and may be further evidence of the asymmetric explosion scenario proposed by Park et al. (2007).

This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for the work of P.G. was supported by NASA through the Spitzer Guest Observer Program, as well as HST grant GO-10916.08. P.F.W. acknowledges support from the NSF through grant AST-0908566.

REFERENCES

Camilo, F., Manchester, R. N., Gaensler, B. M., Lorimer, D. R., & Sarkissian, J. 2002, ApJ, 567, L71
Clark, D., Tuohy, I., & Becker, R. 1980, MNRAS, 193, 129
Dwek, E. 1987, ApJ, 322, 812
Dwek, E., & Arendt, G. R. 2008, ApJ, 685, 976
Dwek, E., Foster, S. M., & Vancura, O. 1996, ApJ, 457, 244
Gaensler, B. M., & Wallace, B. J. 2003, ApJ, 594, 326
Ghavamian, P., Hughes, J. P., & Williams, T. B. 2005, ApJ, 635, 365
Ghavamian, P., Raymond, J. C., Blair, W. P., et al. 2009, ApJ, 696, 1307
Gonzalez, M., & Safi-Harb, S. 2003, ApJ, 583, L91
Gordon, K., Engelbracht, C. W., Rieke, G. H., et al. 2008, ApJ, 682, 336
Goss, W. M., Shaver, P. A., Zealey, W. J., Murdin, P., & Clark, D. H. 1979, MNRAS, 188, 357
Hughes, J. P., Slane, P. O., Burrows, D. N., et al. 2001, ApJ, 559, L153
Hughes, J. P., Slane, P. O., Park, S., Roming, P. W. A., & Burrows, D. N. 2003, ApJ, 591, L139
Lee, H.-G., Koo, B.-C., Moon, D.-S., et al. 2009, ApJ, 706, 441
Lee, J.-J., Park, S., Hughes, J. P., et al. 2010, ApJ, 711, 861
Park, S., Hughes, J. P., Slane, P. O., et al. 2004, ApJ, 602, L33
Park, S., Hughes, J. P., Slane, P. O., et al. 2007, ApJ, 670, L121
Park, S., Roming, P. W. A., Hughes, J. P., et al. 2002, ApJ, 564, L39
Rho, J. H., Kożasa, T., Reach, W. T., et al. 2008, ApJ, 673, 271
Rho, J. H., Reach, W. T., Tappe, A., et al. 2009, ApJ, 700, 579
Sandstrom, K. M., Bolatto, A. D., Stanimirović, S., van Loon, J. Th., & Smith, J. D. T. 2009, ApJ, 696, 2138
Smith, J. D. T., Armus, L., Dale, D. A., et al. 2007, PASP, 119, 1133
Smith, J. D. T., Rudnick, L., DeLaney, T., et al. 2009, ApJ, 693, 713
Tuohy, I. R., Burton, W. M., & Clark, D. H. 1980, ApJ, 240, L65
Weingartner, J., & Draine, B. 2001, ApJ, 546, 296
Williams, B. J., Borkowski, K. J., Reynolds, S. P., et al. 2011, ApJ, 729, 65
Winkler, P. F., & Long, K. S. 2006, AJ, 132, 360
Winkler, P. F., Twelker, K., Reith, C. N., & Long, K. S. 2009, ApJ, 692, 1489
Zyuzin, D. A., Danilenko, A. A., Zharikov, S. V., & Shibanov, Yu. A. 2009, A&A, 508, 855