A Ressonância Nuclear Magnética já é um Método Adequado para Avaliação dos Resultados da Ablação de FA?

Is Magnetic Resonance Imaging Already an Appropriate Method for Evaluating Patients after Atrial Fibrillation Catheter Ablation?

Cristiano F. Pisani* e Mauricio Scanavacca

Unidade Clínica de Arritmia do Instituto do Coração (InCor) do Hospital das Clínicas da FM USP (HC-FMUSP), São Paulo, SP - Brasil

Minieditorial referente ao artigo: A Extensão das Lesões de Ablação no Âtrio Esquerdo e a Recorrência de Fibrilação Atrial após Ablação por Cateter – Uma Revisão Sistemática e Metanálise

O desconhecimento da fisiopatologia da fibrilação atrial (FA) limitou por muito tempo o desenvolvimento de técnicas intervencionistas para o seu tratamento. As demonstrações de que a FA paroxística era deflagrada por extrassístoles e taquicardias oriundas principalmente do interior das veias pulmonares iniciou uma nova era no tratamento da FA. Desde então, o isolamento elétrico das veias pulmonares tornou-se o procedimento padrão na ablação da FA.¹

A obtenção do isolamento elétrico durável das veias pulmonares tem sido o principal desafio técnico entre os especialistas, vencido paulatinamente ao longo dos últimos anos com a implementação de novas tecnologias para ablação mais efetiva, pois a principal causa das recorrências observadas nesses pacientes são as reconexões das veias previamente isoladas.²

O desafio tem sido maior nos pacientes com FA persistente devido a sua fisiopatologia mais complexa que envolve mecanismos adicionais pouco conhecidos, além dos focos venosos pulmonares. Admite-se que as alterações metabólicas induzidas pelo trabalho excessivo atrial durante os episódios repetitivos de FA induzam, inicialmente, o remodelamento elétrico atrial, caracterizado por alterações funcionais e transitórias dos canais iônicos das membranas celulares que modulam a atividade elétrica atrial facilitando o aparecimento transitórios dos canais iônicos das membranas celulares que modulam a atividade elétrica atrial facilitando o aparecimento transitórios do apêndice atrial, além de criação de linhas de bloqueio atrial para evitar taquicardias macrorreentrantes; tentativas de homogeneização de áreas de tecido atrial doente e a modulação do sistema nervoso autônomo atrial também tem sido implementadas.³ Todas essas estratégias acabam criando cicatrizes que se não forem homogêneas criam potenciais substratos para o surgimento de novas taquicardias.⁴

Assim como na avaliação do isolamento das veias pulmonares, a principal limitação para avaliação da efetividade desses procedimentos tem sido a ausência de métodos não invasivos efetivos para avaliar a qualidade das lesões realizadas no procedimento de ablação. Até o momento, o estudo eletrofisiológico invasivo tem sido o único método capaz de demonstrar que o tecido submetido a ablação se transformou em tecido elétricamente inativo (cicatriz) eficaz no isolamento ou bloqueio da condução elétrica da área de interesse.

A ressonância magnética (RNM) do átrio esquerdo (AE) com infusão de Gadolinio e análise das áreas de fibrose pelo realce tardio tem sido considerado o método não invasivo mais promissor para avaliação da carga de cicatriz atrial dos pacientes antes da ablação, ao identificar pacientes com átrios normais e com maior probabilidade de terem procedimentos efetivos, em relação aqueles que já apresentam maior carga de fibrose e com alta probabilidade de recorrência de taquicardias atriais após o procedimento.⁵ Outro ponto interessante é que pacientes que apresentam maior extensão de fibrose atrial apresentam maior risco de eventos embólicos.⁶

Já quando a RNM é utilizada após a ablação, tem a capacidade para avaliar se as lesões têrmicas promovidas pela ablação resultaram em cicatrizes definitivas e também pode identificar as falhas na formação da cicatriz (gaps), principais responsáveis pelas recorrências após ablação.⁷

Nessa edição dos ABC Correia et al.¹² apresentam uma revisão sistemática e metanálise dos estudos que avaliaram a extensão da fibrose atrial pela RNM após a ablação por cateter de pacientes com FA. A revisão sistemática incluiu oito estudos observacionais (seis com energia de radiofrequência e dois com pacientes submetidos também à crioablação por balão). Desses, seis mostraram...
associação da extensão de cicatrização do AE a menor recorrência de FA após a ablação; e a metanálise que incluiu quatro estudos com 319 pacientes também confirmou que a maior extensão de fibrose atrial após a ablação, associa-se a menor taxa de recorrência de arritmias atriais (diferença média padrão = 0,52; IC 95% 0,27 – 0,76; p < 0,0001).

Esses dados são compatíveis com a expectativa de que os pacientes com maior taxa de isolamento das áreas de interesse, apresentem maior extensão de fibrose após a ablação. Entretanto, o estudo não deixa claro se o efeito benéfico foi devido a menor ocorrência de gaps nas lesões criadas ou se foi devido a maior extensão da ablação, por exemplo, para outras áreas como a parede posterior do AE ou septo atrial. Evidências atuais mostram que lesões extensas e controladas utilizando as novas tecnologias que produzem lesões mais efetivas e duradouras, com menos reconexões, seja com radiofreqüência ou criação de gaps, estão atualmente melhorando os resultados da ablação de FA.

Portanto, esses resultados devem ser interpretados com cautela, pois a criação de lesões atriais extensas, não homogêneas podem inclusive promover maior recorrência de arritmias atriais, especialmente as taquicardias atriais cicatriciais que em algumas situações podem até ser mais sintomáticas e de maneira mais complexo que a própria FA.

Um complicador adicional é a falta de estudos demonstrando a reprodutibilidade das análises das áreas de fibrose atrial quando utilizados diferentes métodos de avaliação das imagens seja com softwares dedicados para processamento automático das imagens ou não. Nesse sentido, existem poucos estudos comparando as observações obtidas com a RNM com os mapas eletroanatômicos que efetivamente dirigem as ablações de FA no procedimento inicial e nas recorrências, inclusive com alguns casos sem boa concordância dos mapas com a cicatriz na RNM.

Concluindo, a despeito do grande potencial que as imagens obtidas pela RNM com realce tardio com gadolínio, estudos adicionais são necessários para comprovar sua reprodutibilidade e efetividade na identificação da presença e no reconhecimento das características da fibrose atrial na seleção de pacientes que serão submetidos a ablação de FA e naqueles que já a realizaram.

Referências

1. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659-66.

2. Ouyang F, Bansch D, Ernst S, Schaumann A, Hachiya H, Chen M, et al. Complete isolation of left atrium surrounding the pulmonary veins: new insights from the double-Lasso technique in paroxysmal atrial fibrillation. Circulation. 2004;110(15):2090-6.

3. Nattel S. Paroxysmal atrial fibrillation and pulmonary veins: relationships between clinical forms and automatic versus re-entrant mechanisms. Can J Cardiol. 2013;29(10):1147-9.

4. Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51(8):802-9.

5. Nattel S, Dobrev D. The multidimensional role of calcium in atrial fibrillation pathophysiology: mechanistic insights and therapeutic opportunities. Eur Heart J. 2012;33(15):1870-7.

6. Guichard JB, Nattel S. Atrial Cardiomyopathy: A Useful Notion in Cardiac Disease Management or a Passing Fad? J Am Coll Cardiol. 2017;70(11):1311-21.

7. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter ablation of atrial fibrillation: the DECAAF study. JAMA. 2014;311(5):498-506.

8. King JB, Azadani PN, Suksaranjit P, Bress AP, Witt DM, Han FT, et al. Left Atrial Fibrosis and Risk of Cerebrovascular and Cardiovascular Events in Patients With Atrial Fibrillation. J Am Coll Cardiol. 2017;70(11):1311-21.

9. Marrouche NF, Wilber D, Hindricks G, Jais P, Akoum N, Marchlinski F, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014;311(5):498-506.

10. King JB, Azadani PN, Suksaranjit P, Bress AP, Witt DM, Han FT, et al. Left Atrial Fibrosis and Risk of Cerebrovascular and Cardiovascular Events in Patients With Atrial Fibrillation. J Am Coll Cardiol. 2017;70(11):1311-21.

11. Bisbal F, Guix E, Cabanas-Grandio P, Berruezo A, Prat-Gonzalez S, Vidal B, et al. CMR-guided approach to localize and ablate gaps in repeat AF ablation procedure. JACC Cardiovasc Imaging. 2014;7(7):653-63.

12. Correia ETO, Barbetta L, Mesquita ET. Extent of Left Atrial Ablation Lesions and Atrial Fibrillation Recurrence after Catheter Ablation - A Systematic Review and Meta-Analysis. Arq Bras Cardiol. 2020;114(4):627-635.

13. Philipps T, Taghi P, El Haddad M, Wolf M, Knecht S, Vankerekhove Y, et al. Improving procedural and one-year outcome after contact force-guided pulmonary vein isolation: the role of interlesion distance, ablation index, and contact force variability in the ‘CLOSE’-protocol. Europace. 2018;20(1):e1-e160.

14. Kuck KH, Furnkranz A, Chun KR, Metzner A, Ouyang F, Schluter M, et al. Cryoballoon or radiofrequency ablation for symptomatic paroxysmal atrial fibrillation: reintervention, rehospitalization, and quality-of-life outcomes in the FIRE AND ICE trial. Eur Heart J. 2016;37(38):2838-65.