Cost-Effectiveness of Aspirin Use Among Persons With Newly Diagnosed Type 2 Diabetes

PING ZHANG, PHD1
RUI LI, PHD1
THOMAS J. HOERGER, PHD2

OBJECTIVE — To assess the long-term cost-effectiveness of aspirin use among adults aged ≥40 years with newly diagnosed type 2 diabetes.

RESEARCH DESIGN AND METHODS — We used a validated cost-effectiveness model of type 2 diabetes to assess the lifetime health and cost consequences of use or nonuse of aspirin. The model simulates the progression of diabetes and accompanying complications for a cohort of subjects with type 2 diabetes. The model predicts the outcomes of type 2 diabetes along five disease paths (nephropathy, neuropathy, retinopathy, coronary heart disease, and stroke) from the time of diagnosis until age 94 years or until death.

RESULTS — Over a lifetime, aspirin users gained 0.31 life-years (LY) or 0.19 quality-adjusted LYs (QALYs) over nonaspirin users, at an incremental cost of $1,700; the incremental cost-effectiveness ratio (ICER) of aspirin use was $5,428 per LY gained or $8,801 per QALY gained. In probabilistic sensitivity analyses, the ICER was <$30,000 per QALY in all of 2,000 realizations in two scenarios.

CONCLUSIONS — Regular use of aspirin among people with newly diagnosed diabetes is cost-effective.
level was assumed to be 6.8% based on UKPDS (9,10).

Baseline analysis

We modeled daily use of 80 mg of aspirin among a cohort of U.S. residents aged 40–94 years who, in 2006, were newly diagnosed with diabetes. We defined standard care for subjects with diabetes: all patients received intensive glucose control with a treatment intensity similar to that of the intensive arm of the UKPDS (A1C 7%); and hypertensive patients were treated to meet the target diastolic blood pressure of 80 mmHg, the target blood pressure rate in the UKPDS intensive arm. We assessed the cost-effectiveness of aspirin use plus standard care compared with standard care alone. We assumed that aspirin was effective for everyone who took it. We also assumed 100% compliance. Table 1 shows the main analytic parameters' values and the sources of these parameters.

Cost of aspirin use and type 2 diabetes

Parameter (reference number)	Base-case estimates
Relative risk of primary prevention	RR (95% CI)
Major coronary events (14)	0.82 (0.75–0.90)
Overall stroke (14)	0.95 (0.85–1.06)
Hemorrhagic (14)	1.32 (1.00–1.75)
Ischemic (14)	0.86 (0.74–1.00)
Relative risk of secondary prevention	% (95% CI)
Major coronary events (14)	0.80 (0.73–0.88)
Annual risk for side effects	0.0003 (0.0002–0.0005)
Gastrointestinal bleeding (14)	0.0001 (0.000001–0.0001)
Annual cost*	0.001 (0.001–0.01)
Aspirin†	24
MI (15)	7,765
Year 1	7,765
Ongoing annual cost after year 1	2,006
Stroke (15)	67,347
Year 1	67,347
Ongoing annual cost after year 1	26,553
Gastrointestinal bleeding (18)	7,842
Nonfatal	7,842
Fatal	7,842
Utility score (17)	0.689
Diabetes without complications	0.637
MI	0.617
Stroke	0.970
Gastrointestinal bleeding	0.970

Data are point estimate (95% CI) unless otherwise indicated. *Per person with newly diagnosed type 2 diabetes †Averaging the price of Bayer low-dose aspirin (i.e., baby aspirin) at several large chain pharmacies and gastrointestinal costs of aspirin from Web sites of the large chain pharmacies and gastrointestinal costs of aspirin from the literature and added them to the total costs of treatment for diabetes complications, described later. Aspirin use also increases the risk of gastrointestinal bleeding. For major gastrointestinal bleeding, the RR associated with aspirin use was 1.54. We assumed no gastrointestinal bleeding for patients not using aspirin. We modeled ischemic and hemorrhagic strokes separately in the sensitivity analyses, described later. Aspirin use also increased the risk of gastrointestinal bleeding. For major gastrointestinal bleeding, the RR associated with aspirin use was 1.54. We assumed no gastrointestinal bleeding for patients not using aspirin. We estimated that the gastrointestinal bleeding occurred in patients in the aspirin group at a rate of 0.03 per 100 (14). We assumed that patients who experienced aspirin side effects would stop taking aspirin.

Health benefits of regular aspirin usage

A recently published meta-analysis estimated the effect of aspirin use in primary prevention of CVD in patients with diabetes. The conclusion was that the effect of aspirin use in patients with diabetes remains unproved (13). We are aware of no data that suggest that the effect of aspirin on primary prevention of CVD in the diabetic population differs from that in the general population. Accordingly, we used the effects that were derived from a new meta-analyses of clinical trials for the general population in the base-case scenario. In the base-case analysis, for primary prevention, aspirin use reduced annual risk of coronary events by 18% and stroke by 5%; for secondary prevention, aspirin reduced the risk of major coronary events by 20% (14).

In our base-case scenario, we assumed that CVD-free patients with newly diagnosed diabetes received aspirin for primary CVD prevention. Those with a history of MI (13%) at the time of diagnosis of diabetes received aspirin for secondary CVD prevention. In addition, we assumed that the effects of aspirin use on primary or secondary prevention in the trial lasted throughout the lifetime.

Side effects of aspirin use

Aspirin use increases risk of hemorrhagic stroke and reduces risk of ischemic stroke (14). However, we did not have reliable cost data for hemorrhagic stroke. Thus, we used the overall risk ratio (RR) of 0.95 for all stroke events, whether ischemic or hemorrhagic, in the base-case analysis. We modeled ischemic and hemorrhagic strokes separately in the sensitivity analyses, described later. Aspirin use also increases the risk of gastrointestinal bleeding. For major gastrointestinal bleeding, the RR associated with aspirin use was 1.54. We estimated that the gastrointestinal bleeding occurred in patients in the aspirin group at a rate of 0.03 per 100 (14). We assumed that patients who experienced aspirin side effects would stop taking aspirin.

Costs

Our analysis, conducted from a health system perspective, includes only direct medical costs. We considered the following: cost of aspirin treatment, costs of the standard care (intensive glycemic control for all patients and intensive hypertension control for patients with hypertension), costs of treating diabetes complications, and costs of treating aspirin side effects. Costs for standard care and diabetes complications were estimated using a multiplicative cost function. This cost function was based on data from adults with diabetes under different treatment regimes and with different complications and comorbidities (15,16). We obtained the costs of aspirin from Web sites of the large chain pharmacies and gastrointestinal bleeding from the literature and added them to the total costs of treatment for diabetes and its complications (Table 1) (5). We also assumed that gastrointestinal bleeding occurs only once and incurs costs only in the first year after occurrence. All costs were converted to 2006 U.S. dollars by using the Consumer Price Index for medical services.

Outcomes

Measures of primary outcomes for our analysis were the number of life-years (LYs) and the number of quality-adjusted
Lys (QALYs), measured from time of clinical diagnosis of diabetes until the cohort reaches 94 years of age or death. We used an additive model for the utility measures (17). In this model, patients with characteristics (e.g., demographic characteristics, risk factors, complications, and BMI) differing from the baseline characteristics had those characteristics’ disutility coefficients added to the intercept (17). For example, for a male subject with BMI <30 kg/m² and without major complications, the state of having diabetes had a utility value of 0.689. If this subject had a cardiac arrest/MI, his utility score was reduced from the baseline score by 0.052. We also assumed no disutility for taking aspirin and a disutility of 0.030 for gastrointestinal bleeding (18). Costs and QALYs were discounted at 3% annually.

Sensitivity analyses

We conducted both one-way and probabilistic sensitivity analyses. For the former, we considered multiple scenarios. We examined the effectiveness and cost-effectiveness for several age-groups and both sexes. We used the upper and lower 95% confidence bounds of the main parameters and the parameters in diabetes subgroups reported by De Berardis et al. (13). Because the average follow-up times in the primary and secondary prevention trials for aspirin use were 3 and 3 years, respectively, we modeled interventions with benefits limited to the trial follow-up time. We also varied the cost of gastrointestinal bleeding and compliance rate and modeled cost-effectiveness of aspirin use for secondary prevention of CVD only.

Substantial proportions of diabetic patients do not receive intensive glycemic or hypertension control (19). Aspirin use might be more effective in these patients because of their increased CVD risk. We modeled the aspirin cost-effectiveness in patients with less intensive glucose or blood pressure control as the UKPDS control arms.

We also modeled ischemic and hemorrhagic strokes separately. We assumed that all strokes in the nonaspirin group were ischemic and modeled the change in costs and effectiveness of aspirin use as a result of increased risk for hemorrhagic stroke and decreased risk for ischemic stroke. We assumed an excess annual risk of hemorrhagic stroke and decreased risk of ischemic stroke as reported in the Antithrombotic Trialists’ (ATT) Study (14). The multiplicative cost model did not provide costs for hemorrhagic stroke. Accordingly, we calculated that cost by adjusting the cost of ischemic stroke, using the ratios of the first year and ongoing costs between hemorrhagic stroke and ischemic stroke reported by Pignone et al. (5), respectively. This is equivalent to assuming that the cost ratios between hemorrhagic and ischemic strokes are constant as reported in the study by Pignone et al.

For our probabilistic sensitivity analysis, we randomly varied the following parameters in the model simultaneously based on distributions of their estimates: relative risk of aspirin use for primary and secondary prevention of CHD, stroke, and gastrointestinal bleeding; utilities for all health states; and cost of MI, stroke, and gastrointestinal bleeding. We assumed that efficacy and the rate of side effects followed a log-normal distribution. We assumed a log-normal distribution for MI and stroke cost, a triangular distribution for the cost of gastrointestinal bleeding, and a normal distribution for utility data with reported means and SDs. Running simulations for all age-groups was computationally prohibitive. However, the baseline effectiveness, cost, and cost-effectiveness ratios for the 55–64 years age-group were similar to those for the entire population. Accordingly, we ran 1,000 realizations using parameters on the efficacy of aspirin use reported in the ATT study (14) and the study by De Berardis et al. (13), limited to the 55–64 years age-group, and reported the results as our probabilistic sensitivity analysis.

Results for base-case analysis

Over the lifetime of people with newly diagnosed diabetes, aspirin use reduced the cumulative incidence of CHD events by 3.91% and the CHD mortality rate by 4.65%; however, aspirin increased the cumulative incidence of stroke by 0.51% and the stroke mortality rate by 0.28%. Overall, a person in the aspirin group gained 0.31 LYs and 0.19 QALYs (discounted at 3% annually) compared with a person who did not take aspirin, at an incremental cost of $1,700. The Incremental cost-effectiveness ratio (ICER) was $5,428 per LY gained or $8,801 per QALY gained (Table 2).

Results for sensitivity analyses

The one-way sensitivity analysis showed that the ICERs of aspirin use changed moderately if the extreme values for the effect of aspirin on primary prevention of CHD, different sex, aspirin effect on secondary prevention, and modeling different types of strokes separately hold. The ICERS did not change substantially for other variables (Table 3). Using the upper 95% of confidence limits of the effect of aspirin in primary pre-

Table 2—Effectiveness and costs of aspirin treatment

Outcome*	Aspirin group	Nonaspirin group	Difference
Cumulative risk of history of cardiac arrest/MI (%)	33.15	36.15	−3.00
Cumulative risk of angina (%)	10.93	12.46	−1.53
Cumulative risk of CHD (%)	42.12	46.03	−3.91
Cumulative risk of stroke (%)	16.96	16.45	0.51
Cumulative risk of gastrointestinal bleeding (%)	0.44	0 (only inputs excess risk of gastrointestinal bleeding in the model)	0.44
Mortality rate due to CHD (%)	31.15	35.80	−4.65
Mortality rate due to stroke (%)	6.93	6.65	0.28
Remaining life years (LYs)	8.67	8.98	0.31
Remaining QALYs	7.34	7.15	0.19
Costs†			
Cost of aspirin treatment	278	0	278
Cost for intensive diabetes and hypertension treatment	39,809	38,398	1,411
Cost for treating complications	31,021	31,010	−10
Total costs	71,108	69,407	1,700

*Outcomes on effectiveness of aspirin were rounded to the nearest 100th. †Unit for cost was 2006 US dollars. Data are point estimates.
Table 3—Cost-effectiveness of aspirin use in the one-way sensitivity analyses (2006 U.S. dollars)*

Sensitivity analysis scenario†	Life year gained (LYG)‡	QALY gained‡	Incremental costs	Cost/LYG ($)	Cost/QALY ($)				
Base-case analysis	0.31	0.19	1,700	5,428	8,801				
Age-group when diagnosed with diabetes (years)									
35–44	0.37	0.22	1,999	5,415	8,943				
45–54	0.38	0.24	2,033	5,283	8,619				
55–64	0.35	0.21	1,837	5,311	8,557				
65–74	0.26	0.16	1,490	5,762	9,201				
≥75	0.13	0.08	785	6,201	9,890				
Sex									
Male§	0.36	0.23	1,329	3,685	5,752				
Female§	0.27	0.16	2,237	8,239	13,833				
Effectiveness of aspirin									
Primary on CHD (RR 0.82)									
+95% CI (0.90)	0.25	0.15	1,700	6,894	11,289				
−95% CI (0.75)	0.37	0.23	1,703	4,555	7,342				
Secondary on CHD (RR 0.80)									
+95% CI (0.88)	0.37	0.23	2,243	5,998	9,796				
−95% CI (0.73)	0.25	0.16	1,128	4,526	7,258				
Side effect									
Total stroke (RR 0.95)									
+95% CI (0.85)	0.31	0.19	1,734	5,590	9,088				
−95% CI (1.06)	0.30	0.18	1,821	6,032	9,882				
Gastrointestinal bleeding (excess risk 0.03%)									
+95% CI (0.05%)	0.31	0.19	1,714	5,481	8,890				
−95% CI (0.02%)	0.31	0.19	1,694	5,402	8,757				
Diabetes subgroup									
Men with diabetes									
Women with diabetes									
Secondary prevention only	0.16	0.10	1,754	10,841	18,348				
Cost of gastrointestinal bleeding ($)	7,800	4,500	10,200	3.1	0.19	1,690	5,394	8,746	8,840
5% and blood pressure control goals									
Intensive glycemic control + intensive hypertension control									
Standard glycemic control + intensive hypertension control	0.33	0.20	1,661	5,005	8,240				
Intensive glycemic control + standard hypertension control	0.31	0.19	1,750	5,630	9,203				
Standard glycemic control + standard hypertension control	0.33	0.20	1,718	5,220	8,685				
Effectiveness limited in the trial period (aspirin treatment lifetime)	0.09	0.06	621	6,703	10,669				
Effectiveness limited to the trial period (aspirin use for 5 years)	0.09	0.06	451	4,867	7,746				
Compliance rate (%)									
100									
78	0.24	0.15	1,314	5,420	8,787				
56	0.17	0.11	935	5,412	8,773				
Modeling ischemic and hemorrhagic stroke separately	0.29	0.18	2,921	9,973	16,484				

*Costs, LYGs, and QALYs are discounted at 3% annually; †the bolded text and numbers showed the base-case scenario; €rounding to the nearest hundredth; §parameters are from ATT study, RRs: Men: primary prevention of CHD 0.77, ischemic stroke 1.01, secondary prevention of CHD 0.81; women: primary prevention of CHD 0.95, ischemic stroke 0.77, secondary prevention of CHD 0.73. ||parameters are from the study by De Berardis et al. RRs: overall: primary prevention of CHD 0.90, stroke 0.83, secondary prevention of CHD 0.80, gastrointestinal bleeding (excess risk: 0.03%); men: primary prevention of CHD 0.57, stroke 1.11, secondary prevention of CHD 0.8; women: primary prevention of CHD 1.08, stroke 0.75, secondary prevention of CHD 0.8.
vention of CHD increased the ICER from $8,801/QALY at baseline to $11,289/QALY. When men and women were modeled separately using parameters in the ATT study (14) and De Berardis et al. (13) study, women always had higher CERs than men: $13,833/QALY vs. $5,752/QALY using parameters in ATT study and $22,259/QALY vs. $3,633/QALY using parameters in De Berardis et al. study. Only considering aspirin effect in secondary prevention of CVD has an ICER of $18,348/QALY. Modeling hemorrhagic stroke and ischemic stroke separately yielded an ICER of $16,484/QALY, which doubled the baseline results.

Figure 1—Results of the probabilistic sensitivity analyses for the cost-effectiveness of aspirin use in newly diagnosed type 2 diabetes. A: Using parameters for general population in the ATT study. B: Using parameters for diabetes subgroup in the meta-analysis by De Berardis et al. (13). Plot of incremental cost versus incremental QALYs for aspirin use versus no aspirin use. Each dot on the graph represents one ICER from one of the 1,000 iterations. Solid line represents ICER = $50,000/QALY; dotted line represents ICER = $20,000/QALY. Dots on the right of the lines mean that the ICERS are less than the ICER the line represents. Dots in quadrant 1 show that the intervention is more effective and less costly; dots in quadrant 4 show that the intervention is cost saving.
Cost of aspirin use and type 2 diabetes

First, aspirin’s effect on gastrointestinal bleeding increased the total medical costs of the group taking aspirin. Second, the aspirin treatment group lived longer and required additional resources for treatment of diabetes and hypertension. Our study results showed that the treatment cost for glycemic and hypertension control was $1,411 higher in the group taking aspirin than the group not taking aspirin (Table 2). Third, aspirin treatment affects diabetes macrovascular complications but not microvascular ones. Those receiving aspirin therapy live longer due to reduced risk of CHD and therefore are more likely to develop diabetic microvascular complications later in life. We found that the cumulative incidence of other diabetes complications (i.e., end-stage renal disease, nephropathy, blindness, and lower-extremity amputations) at year 10 were similar in both the aspirin and non-aspirin groups. However, the lifetime cumulative incidence of these complications was higher in the aspirin group, indicating a total excess risk of 0.87% in men and 0.66% in women. However, our results are consistent with results previously reported by Gaspoz et al. (21) and Kahn et al. (22) on the cost-effectiveness of aspirin use in secondary prevention of CVD.

Our study has several limitations. First, the effectiveness of aspirin use for people with diabetes needs to be further demonstrated by large clinical trials. The difference in the effects of aspirin used as primary prevention of CVD in people with and without diabetes is debated (23). The recently published Prevention of Progression of Arterial Disease and Diabetes Trial in the U.K. and the Japanese Primary Prevention of Atherosclerosis With Aspirin for Diabetes trials (24,25) reported that aspirin did not reduce the risk of cardiovascular events. However, questions about aspirin effectiveness remain, and two additional trials are underway to address the issue of aspirin use for CVD prevention in people with diabetes (14). Our cost-effectiveness analysis of the aspirin therapy is subject to change, pending results from ongoing clinical trials. Second, although our cost-effectiveness model was validated against clinical trials, it, like all models, is based on simplifying assumptions. However, we have tried to make our assumptions transparent and performed sensitivity analyses to show the impact of our assumptions.

Our study shows that regular aspirin use appears to be very cost-effective in people aged ≥40 years with newly diagnosed type 2 diabetes. However, use of aspirin in primary prevention is still controversial. Future clinical trials are needed to better understand if aspirin is efficacious for people with type 2 diabetes. Additional cost-effectiveness analyses, accounting for these studies, might be needed.

Acknowledgments — No potential conflicts of interest relevant to this article were reported.

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

References

1. Cull CA, Neil HAW, Holman RR. Changing aspirin use in patients with type 2 diabetes in the UKPDS. Diabet Med 2004;21:1368–1371
2. Antithrombotic Trialists Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. Br J Med 2002;324:71–86
3. U.S. Preventive Services Task Force. Aspirin for the primary prevention of cardiovascular events: recommendation and rationale. Ann Intern Med 2002;136:137–160
4. American Diabetes Association. Aspirin therapy in diabetes. Diabetes Care 2000; 23(Suppl 1):S61–S62
5. Pignone M, Earnshaw S, Tice JA, Pletcher MJ. Aspirin, statins, or both drugs for the primary prevention of coronary heart disease events in men: a cost-utility analysis. Ann Intern Med 2006;144:326–336
6. Pignone M, Earnshaw S, Pletcher MJ, Tice JA. Aspirin for the primary prevention of cardiovascular disease in women, a cost-utility analysis. Arch Intern Med 2007;167:290–295
7. CDC. Diabetes Cost-effectiveness Group. Cost-effectiveness of intensive glycemic control, intensified hypertension control, and serum cholesterol level reduction for type 2 diabetes. JAMA 2002;287:2542–2551
8. Hoerger TJ, Harris R, Hicks KA, Donahue K, Sorensen S, Engelgau M. Screening for type 2 diabetes mellitus: a cost-effectiveness analysis. Ann Intern Med 2004;140:689–699 [see comment]
9. Eastman RC, Javitt JC, Herman WH, Dasbach EJ, Abrozek AS, Dong F, Manninen D, Garfield SA, Copley-Merriman C, Maer W, Eastman JF, Kotsanos J, Cowie CC, Harris M. Model of complications for NIDDM, I: model construction and assumptions. Diabetes Care 1997;20:725–734
10. Eastman RC, Javitt JC, Herman WH, Das-bach E J, Zbrozek AS, Dong F, Manninen D, Garfield SA, Copley-Merriman C, Mauer W, Eastman JF, Kotsanos J, Cowie CC, Harris M. Model of complications of NIDDM: II. model construction and assumptions. Diabetes Care 1997;20:735–744

11. Weinstein MC, Coxson PG, Williams LW, Pass TM, Stason WB, Goldman L. Forecasting coronary heart disease incidence, mortality, and cost: the coronary heart disease policy model. Am J Public Health 1987;77:1417–1426

12. American Diabetes Association Consensus Panel: Guidelines for computer modeling of diabetes and its complications. Diabetes Care 2004;27:2262–2265

13. De Berardis G, Sacco M, Strippoli GFM, Pellegrini F, Graziano G, Tognoni G, Nicolaucci A. Aspirin for primary prevention of cardiovascular events in people with diabetes: meta-analysis of randomised controlled trials. Br J Med 2010;339:b4531

14. Antithrombotic Trialists (ATT) Collaboration. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009;373:1849–1860

15. Brandle MI, Zhou H, Smith BR, Marriott D, Burke R, Tabaei BP, Brown MB, Herman WH. The direct medical cost of type 2 diabetes. Diabetes Care 2003;26:2300–2304

16. Hoerger TJ. Using costs in cost-effectiveness models for chronic diseases. Med Care 2009;47(Suppl. 1):S21–S27

17. Coffey JT, Zhou H, Burke MR, Tabaei BP, Engelgau MM, Kaplan RM, Herman WH. Valuing health-related quality of life in diabetes. Diabetes Care 2002;25:2238–2243

18. Augustovski FA, Cantor SB, Thach CT, Spann SJ. Aspirin for primary prevention of cardiovascular events. J Gen Intern Med 1998;13:824–835

19. Saaddine JB, Cadwell B, Gregg EW, Engelgau MM, Vinicor F, Imperatore G, Narayan KM. Improvements in diabetes processes of care and intermediate outcomes: United States, 1988–2002. Ann Intern Med 2006;144:465–474

20. Laupacis A, Deeny D, Detsky AS, Tugwell PX. How attractive does a new technology have to be to warrant adoption and utilization? Tentative guidelines for using clinical and economic evaluations. Can Med Assoc J 1992;146:473–481

21. Gaspoz J-M, Goxson PG, Goldman PA, Williams LW, Kuntz KM, Hunink M. Cost effectiveness of aspirin, clopidogrel, or both for secondary prevention of coronary heart disease. N Engl J Med 2002;346:1800–1806

22. Kahn R, Robertson RM, Smith R, Eddy D. The impact of prevention on reducing the burden of cardiovascular disease. Circulation 2008;118

23. Woods RL, Tonkin AM, Nelson MR, Britt HC, Reid CM. Should aspirin be used for the primary prevention of cardiovascular disease in people with diabetes? Med J Australia 2009;190:614–615

24. Belch J, MacCuish A, Campbell I. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. Br J Med 2008;337:a1840

25. Ogawa H, Nakayama M, Marimato T, Uemura S, Kanatuchi M, Doi N, Jinnonchi H, Sugiyama S, Satyo Y. Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: a randomized controlled trial. JAMA 2008;300:2134–2141