Cervicothoracic junction disc herniation: Our experience, technical remarks, and outcome

ABSTRACT
Background: C7-D1 disc herniation is rare in comparison with other cervical levels. The incidence rates have been reported between 3.5% and 8%.[1-8] Typically, it is demonstrated clinically by C8 radiculalgia. The latter births in the neck and radiates in the little finger. There is also a referred pain in the scapular region. Sensory loss is in the medial forearm and the sensation of pinky and ring finger is affected too. The muscles particularly affected include abductor pollicis brevis (pulmar abduction of the thumb), first dorsal interossei (abduction of the index), and abductor digit minimi (abduction of the little finger).[9-13] The cervicothoracic junction can be approached posteriorly or anteriorly. While the anterior approach to cervical spine is very familiar to spine surgeons, but C7-T1 anterior cervical discectomy can be challenging because of the difficulty of access resulted from the manubrium in particular among patients with the short and deep neck. The posterior approach can be challenging in particular in medial disc herniation because of difficulty to access to hernia and inability to reflect the spinal cord. Concerning C7-T1 cervical discectomy, few data are available in the literature. In this article, we aim to present our experience with cervicothoracic junction disc herniation (C7-T1) surgery, describe our approaches.

Materials and Methods: Between January 2008 and December 2017, 21 patients have been operated for solitary C7-T1 disc herniation. We operated 12 male patients and 9 female patients. Eight patients have been operated by the anterior approach, and 13 patients underwent surgery by the posterior approach. The mean symptoms duration was 11.4 months.

Results: All patients had C8 cervicobrachial neuralgia. Other clinical presentations were numbness, tingling sensation, and weakness. All patients improved after surgery. We had no significant complication.

Conclusion: We did not find a great difference between the clinical features of cervicothoracic herniated disc and other cervical levels. The anterior approach seems more difficult to carry out in particularly in large patients with the short neck. The posterior approach can be used for all types of patients except in the case of medial disc herniation.

Keywords: Anterior cervical approach, cervicothoracic spine, disc herniation, posterior cervical approach

INTRODUCTION
C7-D1 disc herniation is rare in comparison with other cervical levels. The incidence rates have been reported between 3.5% and 8%.[1-8] Typically, it is demonstrated clinically by C8 radiculalgia. The latter births in the neck and radiates in the little finger. There is also a referred pain in the scapular region. Sensory loss is in the medial forearm and the sensation of pinky and ring finger is affected too. The muscles particularly affected include abductor pollicis brevis (pulmar abduction of the thumb), first dorsal interossei (abduction of the index), and abductor digit minimi (abduction of the little finger).[9-13] The cervicothoracic junction can be approached posteriorly or anteriorly. While the anterior approach to cervical spine is very familiar to spine surgeons, but C7-T1 anterior cervical discectomy can be challenging because of the difficulty of access resulted from the manubrium in particular among patients with the short and deep neck. The posterior approach can also be challenging in particular in medial disc herniation because of difficulty to access to hernia and inability to reflect the spinal cord. Concerning C7-T1 cervical discectomy, few data are available in the literature. In this article, we aim to present our experience with cervicothoracic junction disc herniation (C7-T1) surgery, describe our approaches,

KEYVAN MOSTOFI, MORAD PEYRAVI1, BABAK GHARAEI MOGHADAM2
Department of Neurosurgery, Centre Clinical, Chirurgie De Rachis, Soyaux, France, 1Department of Neurosurgery, Carl-Thiem-Klinikum, Academic Teaching Hospital of Charity Medical University of Berlin, Berlin, Germany, 2Department of Neurosurgery, Neurosurgical Clinic of Dr Gharaei Tehran, Iran

Address for correspondence: Dr. Keyvan Mostofi, Department of Neurosurgery, Centre Clinical, Chirurgie De Rachis, Soyaux, France.
E-mail: keyvan.mostofi@yahoo.fr

Submitted: 03-Nov-19 Accepted: 25-Feb-20
Published: 04-Apr-20

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Mostofi K, Peyravi M, Moghadam BG. Cervicothoracic junction disc herniation: Our experience, technical remarks, and outcome. J Craniovertebr Jun Spine 2020;11:22-5.
the reason of each approach, and propose some surgical
remarks.

Surgical anatomy of the cervicothoracic junction
The cervicothoracic junction is formed by the manubrium
anteriorly, the first ribs laterally, and the vertebral body of
T1 posteriorly. The sternocleidomastoid (SCM) muscle inserts
the sternum. The latter is covered by the platysma muscle.
The sternohyoid and sternothyroid muscles attach to sternum
too and are deeper compared to the SCM. Vascular structures
of the region contain a terminal portion of the subclavian
vein, right brachiocephalic, left subclavian, and left internal
arteries. Nervous structures include the internal jugular vein,
the common carotid artery, the vague nerve, the phrenic
nerve, recurrent laryngeal nerve, and stellate ganglia. The
internal organs passing through the cervicothoracic junction
include the thoracic duct, trachea, and esophagus.8–10,16–19

MATERIALS AND METHODS

Between January 2008 and December 2017, 21 patients
have been operated for solitary C7-T1 disc herniation. We
operated 12 male patients and 9 female patients (female/
male ratio = 1/1.33). The mean symptoms duration
was 11.4 months. All patients had cervicobrachial
neuralgia (radiculalgia and cervical pain). Patients with
cervical myelopathy were excluded from the study. Eight
patients have been operated by the anterior approach and
13 patients underwent surgery by the posterior approach.
The posterior approach involved simple discectomy and
anterior approach consisted of total discectomy and fusion
by the intersomatic cage. The average length of stay in
hospitals was 2 days. Four patients were discharged the day
after surgery, and one patient stayed 3 days in the hospital
for family-related reasons. Table 1 demonstrates the patients’
baseline and characteristics.

Patients wore cervical collar a few days after surgery used
for reducing pain and avoiding too much cervical movement.
Patients operated by the anterior approach underwent X-ray
imaging (anteroposterior and lateral cervical spine) of the
cervical spine on the day after surgery, week 6, months 6,
year 1, and year 2 postoperatively. Patients operated by
the posterior approach had X-ray imaging one and 2 years
after surgery. All patients were examined clinically at 6 and
12 weeks, 6 months, 1 year, and 2 years postoperatively
and evaluated with a Visual Analog Scale (VAS) ranging from
0 (no pain) to 10 (worst pain imaginable) and with the Neck
Disability Index (NDI), which ranges from 0 to 50 (0%–100%).
The mean duration of follow-up was 3.7 years.

RESULTS

The results were evaluated for pain with VAS, for ability, and
to manage in everyday life by NDI. Table 2 demonstrates the
pre- and postoperative evaluation of patients by VAS and NDI.

DISCUSSION

The indication of the posterior or anterior approach for
the treatment of upper cervical radiculopathy is well
reported in the medical literature.2,18,19 Classically, the
posterior approach is indicated for the treatment of
lateral disc herniation or foraminal stenosis. The anterior
approach is used for the treatment of central osteophytes
or disc herniation. Some authors consider that anterior
approach and fusion by intersomatic cage can provide
improvement in the cervical lordosis angle.20–23 However,
this notion is insufficiently clear and probably implausible
in cervicothoracic junction because of reduced mobility
of the region and because of the existence of sternum. On
the other hand, the existence of recurrent laryngeal nerve,
stellate ganglia, and the thoracic duct, etc., make this specific
anatomical site hard to access and obscure the surgical field.
We did not find a significant change in cervical lordosis in
patients operated by the anterior or posterior approach
in cervicothoracic junction. The danger of the anterior
approach in this region is injury to the subclavian vein, the
recurrent laryngeal nerve, and the thoracic duct and great
vessel.2,18 For the cervicothoracic posterior approach, the
same complications associated with any type of cervical
surgery (cord and root injury). We operated 9 females and
12 males, resulting in a final ratio of 1.33/1 versus 2/1 in the
literature for cervical disc herniation.24,25 The mean age of
our patients was 52.34. This is in close agreement with the
results from the medical literature that gives an average age of
around 50 years.26,27 We operated eight patients by anterior
and 13 patients with the posterior approach. For the anterior
approach, we used a transverse incision except for one
patient that we performed an oblique longitudinal incision
because of his expansive corpulence and his very short neck.
No sternotomy was performed in any patient operated by
the anterior approach. For the posterior approach, a 3- or
4-cm paramedian skin incision is made centered over the
involved segment. Needless to say, while it is recommended
to preserve facet joint,28,29 we think that the preservation
of the facet joint is not indispensable unlike other cervical
levels because the maintaining of stability is easier given the

Table 1: Patients’ baseline and characteristics

Patients	Age	Female	Male	AA	PA
21	41-67 (52.34)	9	12	8	13

AA - Anterior approach; PA - Posterior approach
Mostofi, et al.: Cervicothoracic junction disc herniation

Table 2: Pre- and postoperative Visual Analog Scale and Neck Disability Index

	Preoperative	Postoperative 6 weeks	Postoperative 6 months	Postoperative 1 year	Postoperative 2 years							
	VAS	NDI										
PA												
	7.69	71.22	3.99	42.44	1.95	31.05	2.01	29.76	1.89	24.34		
AA												
	8.01	74.12	4.01	39.34	3.19	32.83	1.89	19.97	1.96	21.32		

VAS - Visual Analog Scale; NDI - Neck Disability Index; PA - Posterior approach; AA - Anterior approach

Table 2: Comparison of clinical outcomes in anterior cervical discectomy versus posterior cervical foraminotomy at C5–C6: the biomechanical changes after percutaneous full-endoscopic anterior cervical Discectomy versus posterior cervical foraminotomy at C5-C6: A finite element-based study. World Neurosurg 2019;128:e905-e911.

CONCLUSION

Following our experience of 21 surgeries for C7-T1 disc herniation, we believe that there is no great difference between the clinical features of cervicothoracic herniated disc and other cervical levels. The anterior approach seems more difficult to carry out in particular in large patients with the short neck. The posterior approach can be used for all types of patients except in the case of medial disc herniation.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Post NH, Cooper PR, Frempong-Boadu AK, Costa ME. Unique features of herniated discs at the cervicothoracic junction: Clinical presentation, imaging, operative management, and outcome after anterior decompressive operation in 10 patients. Neurosurgery 2006;58:497-501.
2. Lee JG, Kim HS, Ju CI, Kim SW. Clinical features of herniated disc at cervicothoracic junction level treated by anterior approach. Neurosurgery 2006;58:497-501.
3. Bucciero A, Vizioli L, Cerillo A. Soft cervical disc herniation. An analysis of 187 cases. J Neurosurg Sci 1998;42:125-30.
4. Adamson TE. Microendoscopic posterior cervical laminoforaminotomy for unilateral radiculopathy: Results of a new technique in 100 cases. J Neurosurg 1998;89:125-30.
5. Falavigna M, Righesso O, Betemps A, Vela de los Rios PF, Guimarães R, Ziegler M, et al. Surgical planning and neurological outcome after anterior approach to remove a disc herniation at the C7-T1 level in 19 patients. Spine (Phil 1976) 2014;39:E219-25.
6. Pacciani E, Salsano ML, Donnetti L, Urso S. Clinico-radiologic correlations in common neck pain. Radiol Med 1996;91:570-6.
7. Ryu DS, Paik HK, Ahn SS, Kim KH, Chin DK, Kim KS, et al. Herniated Discs at the Cervicothoracic Junction. World Neurosurg 2018;118:e651-8.
8. Matsuo M, Honma S, Sonomura T, Yamazaki M. Clinical anatomy of the cephalic vein for safe performance of venipuncture. JA Clin Rep 2017;3:50.
9. Sager B, Gates S, Collett G, Chhabra A, Khazzam M. Innervation of the subcapsularis: An anatomic study. JSES Open Access 2019;3:65-9.
10. Georgakopoulos B, Lasrado S. Anatomy, Head and Neck, Inter-scalene Triangle. StatPearls. Treasure Island (FL): StatPearls Publishing; 2019.
11. Darvishi M, Moayeri A. Anatomical variations of the musculocutaneous and median nerves: A case report. Folia Med (Plovidiv) 2019;61:327-31.
12. Chen CY, McGee CW, Rich TL, Prudente CN, Gillick BT. Reference values of intrinsic muscle strength of the hand of adolescents and young adults. J Hand Ther 2018;31:348-56.
13. Sahinen FM, Kennedy WR. Distribution of muscle spindles in the human first dorsal interosseus. Anat Rec 1972;173:151-5.
14. Milner-Brown HS, Stein RB. The relation between the surface electromyogram and muscular force. J Physiol 1975;246:549-69.
15. Liu Y, Varela M, Oswald R. The correspondence between some motor points and acupuncture loci. J Med Med Surg (Paris) 1975;3:347-58.
16. Barakat M, Hussein Y. Anatomical study of the cervical nerve roots for posterior foraminotomy: Cadaveric study. Eur Spine J 2012;21:1383-8.
17. Kamina P. Anatomie Clinique. Tome 3. 2nd ed. Paris: Maloine; 2011. p. 3-17.
18. Kamina P. Anatomie Clinique. Tome 2. 3rd ed. Paris: Maloine; 2011.
19. Herkowitz HN. A comparison of anterior cervical fusion, cervical laminectomy, and cervical laminoplasty for the surgical management of multiple level spondylotic radiculopathy. Spine (Phil 1976) 1988;13:774-80.
20. Davis RA. A long-term outcome study of 170 surgically treated patients with compressive cervical radiculopathy. Surg Neurol 1996;46:523-30.
21. Tundo F, Avila MJ, Willard L, Fanous S, Curri C, Hussain I, et al. Spinal alignment, surgery, and outcomes in cervical deformity: A practical guide to aid the spine surgeon. Clin Neurol Neurosurg 2019;185:105496.
22. Sahai N, Changoor S, Dunn CJ, Sinha K, Hwang KS, Faloon M, et al. Minimally invasive posterior cervical foraminotomy as an alternative to anterior cervical discectomy and fusion for unilateral cervical radiculopathy: A systematic review and meta-analysis. Spine (Phil 1976) 2019;44:1731-9.
23. Bourgonjon B, Duerinck J, Moens M, D'Haens J. Comparison of the effectiveness of anterior cervical foraminotomy versus cervical laminectomy and cervical laminoplasty for the surgical management of cervical spondylotic myelopathy: A clinical outcome. Acta Neurol Belg 2019;119:585-93.
24. Yuchi CX, Sun G, Chen C, Liu G, Zhao D, Yang H, et al. Comparison of the biomechanical changes after percutaneous full-endoscopic anterior cervical Discectomy versus posterior cervical foraminotomy at C5-C6: A finite element-based study. World Neurosurg 2019;128:e905-e911.
25. Foster MT, Carleton-Bland NF, Lee MK, Jackson R, Clark SR, Wilby MJ. Comparison of clinical outcomes in anterior cervical discectomy versus foraminotomy for brachialgia. Br J Neurosurg 2019;33:3-7.
cervical discectomy through lamina-hole approach for cervical intervertebral disc herniation. Int J Neurosci 2019;129:627-34.

27. Rao RD, Gore DR, Tang SJ, Rebolz BJ, Yogandan N, Wang M. Radiographic changes in the cervical spine following anterior arthrodesis: A long-term analysis of 166 patients. J Bone Joint Surg Am 2016;98:1606-13.

28. McAnany SJ, Baird EO, Overley SC, Kim JS, Qureshi SA, Anderson PA. A meta-analysis of the clinical and fusion results following treatment of symptomatic cervical pseudoarthrosis. Global Spine J 2015;5:148-55.

29. Cole T, Veeravagu A, Zhang M, Azad TD, Desai A, Ratliff JK. Anterior versus posterior approach for multilevel degenerative cervical disease: A retrospective propensity score-matched study of the Marketscan database. Spine (Phila Pa 1976) 2015;40:1033-8.

30. Gulsen S. The effect of the PEEK cage on the cervical lordosis in patients undergoing anterior cervical discectomy. Open Access Maced J Med Sci 2015;3:215-23.

31. Muzević D, Splavski B, Boop FA, Arnautović KI. Anterior cervical discectomy with instrumented allograft fusion: lordosis restoration and comparison of functional outcomes among patients of different age groups. World Neurosurg 2018;109:e233-43.

32. Ozer AF, Kaner T, Sasani M, Oktenoglu T, Cosar M. Anterior approach to disc herniation with modified anterior microforaminotomy at C7-T2: Technical note. Spine (Phil Pa 1976) 2009;34:1879-83.

33. Harel R, Nulman M, Cohen ZR, Knoller N. Anterior cervical approach for the treatment of axial or high thoracic levels. Br J Neurosurg 2018;101-B:470-7.

34. Ozer AF, Kaner T, Sasani M, Oktenoglu T, Cosar M. Anterior approach to disc herniation with modified anterior microforaminotomy at C7-T2: Technical note. Spine (Phil Pa 1976) 2009;34:1879-83.

35. Harel R, Nulman M, Cohen ZR, Knoller N. Anterior cervical approach for the treatment of axial or high thoracic levels. Br J Neurosurg 2018;101-B:470-7.

36. Ozer AF, Kaner T, Sasani M, Oktenoglu T, Cosar M. Anterior approach to disc herniation with modified anterior microforaminotomy at C7-T2: Technical note. Spine (Phil Pa 1976) 2009;34:1879-83.