Hirai, Hiroshi; Iwamasa, Yuni
A combinatorial algorithm for computing the rank of a generic partitioned matrix with 2×2 submatrices. (English) Zbl 07606011 Math. Program. 195, No. 1-2 (A), 1-37 (2022)

Summary: In this paper, we consider the problem of computing the rank of a block-structured symbolic matrix (a generic partitioned matrix) $A = (A_{\alpha \beta} x_{\alpha \beta})$, where $A_{\alpha \beta}$ is a 2×2 matrix over a field F and $x_{\alpha \beta}$ is an indeterminate for $\alpha = 1, 2, \ldots, \mu$ and $\beta = 1, 2, \ldots, \nu$. This problem can be viewed as an algebraic generalization of the bipartite matching problem and was considered by Iwata and Murota (SIAM J Matrix Anal Appl 16(3):719-734, 1995). Recent interests in this problem lie in the connection with non-commutative Edmonds’ problem by Ivanyos et al. (Comput Complex 27:561-593, 2018) and Garg et al. (Found. Comput. Math. 20:223-290, 2020), where a result by Iwata and Murota implicitly states that the rank and non-commutative rank (nc-rank) are the same for this class of symbolic matrices. The main result of this paper is a simple and combinatorial $O((\mu \nu)^2 \min(\mu, \nu))$-time algorithm for computing the symbolic rank of a (2×2)-type generic partitioned matrix of size $2\mu \times 2\nu$. Our algorithm is inspired by the Wong sequence algorithm by Ivanyos et al. for the nc-rank of a general symbolic matrix, and requires no blow-up operation, no field extension, and no additional care for bounding the bit-size. Moreover it naturally provides a maximum rank completion of A for an arbitrary field F.

MSC:
90Cxx Mathematical programming

Keywords:
generic partitioned matrix; Edmonds’ problem; non-commutative Edmonds’ problem; maximum rank completion problem

Full Text: DOI

References:
[1] Buss, JF; Frandsen, GS; Shallit, JO, The computational complexity of some problems of linear algebra, J. Comput. Syst. Sci., 58, 572-596 (1999) · Zbl 0941.68059 · doi:10.1006/jcss.1998.1608
[2] Edmonds, J., Systems of distinct representatives and linear algebra, J. Res. Natl. Bur. Stand., 71B, 4, 241-245 (1967) · Zbl 0178.03002 · doi:10.6028/jres.071B.033
[3] Fortin, M.; Reutenauer, C., Commutative/noncommutative rank of linear matrices and subspaces of matrices of low rank, Sém. Lothar. Comb., 52, B52f (2004) · Zbl 1069.15011
[4] Fujishige, S., Király, T., Makino, K., Takazawa, K., Tanigawa, S.: Minimizing submodular functions on diamonds via generalized fractional matroid matchings. EGRES Technical Reports, TR-2014-14, (2014)
[5] Garg, A.; Gurvits, L.; Oliveira, R., Operator scaling: theory and applications, Found. Comput. Math., 20, 223-290 (2020) · Zbl 1432.68617 · doi:10.1007/s10208-019-09417-z
[6] Hamada, M., Hirai, H.: Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix. arXiv:1705.02060 (2017)
[7] Hamada, M., Hirai, H.: Computing the nc-rank via discrete convex optimization on CAT(0) spaces. SIAM J. Appl. Geom. Algebra (to appear)
[8] Hirai, H., Computing the degree of determinants via discrete convex optimization on Euclidean buildings. SIAM J. Appl. Geom. Algebra, 3, 3, 523-557 (2019) · Zbl 1446.90135 · doi:10.1137/17M190823
[9] Ishikawa, T.: Max-rank matrix completion via Wong sequence. Bachelor thesis, The University of Tokyo (2018) (in Japanese)
[10] Ito, H.; Iwata, S.; Murota, K., Block-triangularizations of partitioned matrices under similarity/equivalence transformations, SIAM J. Matrix Anal. Appl., 15, 4, 1226-1255 (1994) · Zbl 0811.15008 · doi:10.1137/S0895479892235599
[11] Ivanyos, G.; Karpinski, M.; Qiao, Y.; Santha, M., Generalized Wong sequences and their applications to Edmonds’ problems, J. Comput. Syst. Sci., 81, 1373-1386 (2015) · Zbl 1320.94102 · doi:10.1016/j.jcss.2015.04.006
[12] Ivanyos, G.; Qiao, Y.; Subrahmanyan, KV, Non-commutative Edmonds’ problem and matrix semi-invariants, Comput. Complex., 26, 717-763 (2017) · Zbl 1421.13002 · doi:10.1007/s00037-016-0143-x
[13] Ivanyos, G.; Qiao, Y.; Subrahmanyan, KV, Constructive non-commutative rank computation is in deterministic polynomial
time, Comput. Complex., 27, 561-593 (2018) · Zbl 1402.68197 · doi:10.1007/s00037-018-0165-7

[14] Iwata, S.; Murota, K., A minimax theorem and a Dulmage-Mendelsohn type decomposition for a class of generic partitioned matrices, SIAM J. Matrix Anal. Appl., 16, 3, 719-734 (1995) · Zbl 0829.15008 · doi:10.1137/S0895479893255901

[15] Kabanets, V.; Impagliazzo, R., Derandomizing polynomial identity tests means proving circuit lower bounds, Comput. Complex., 13, 1-46 (2004) · Zbl 1089.68042 · doi:10.1007/s00037-004-0182-6

[16] Kuivinen, F., On the complexity of submodular function minimisation on diamonds, Discrete Optim., 8, 459-477 (2011) · Zbl 1261.90047 · doi:10.1016/j.disopt.2011.04.001

[17] Lovász, L.: On determinants, matchings, and random algorithms. In: International Symposium on Fundamentals of Computation Theory (FCT’79) (1979)

[18] Lovász, L., Singular spaces of matrices and their application in combinatorics, Bol. Soc. Bras. Mat., 20, 1, 87-99 (1989) · Zbl 0757.05035 · doi:10.1007/BF02585470

[19] Oki, T.: On solving (non)commutative weighted Edmonds’ problem. In: Proceedings of the 47th International Colloquium on Automata, Languages and Programming (ICALP’20), Leibniz International Proceedings in Informatics (LIPIcs), vol. 168, pp. 89:1-89:14 (2020)

[20] Schwartz, JT, Fast probabilistic algorithms for verification of polynomial identities, J. ACM, 27, 4, 701-717 (1980) · Zbl 0452.68050 · doi:10.1145/322217.322225

[21] Tutte, WT, The factorization of linear graphs, J. Lond. Math. Soc., 22, 2, 107-111 (1947) · Zbl 0029.23301 · doi:10.1112/jlms/s1-22.2.107

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.