DISTAL FEMUR FRACTURES FIXATION BY LOCKING COMPRESSION PLATE - ASSESSMENT OF OUTCOME BY RASMUSSEN'S FUNCTIONAL KNEE SCORE

Dr. Manjeet Singh¹, Dr. Yogesh Malik², Dr. Dhritobroto Bhattacherjee³, Dr. Dhruv Gautam³, Dr. Srikant Maheshkumar Pandya³ and Dr. Rijuta De⁴

¹. Professor and Head of the Department.
². Senior Resident.
³. 3rd year Resident.
⁴. 2nd year Resident, General Surgery.

Abstract

Background: The choice of distal femur locking plate in distal femur fractures has been a topic of debate. This study was performed to evaluate the results of distal femur locking plate in distal femur fractures.

Material and Methods: A prospective randomized study of 30 patients with distal femur fracture was conducted at Department of Orthopaedics, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana (Ambala), Haryana from January 2020 to July 2021 and followed up from 6 months to 18 months for a minimum of 6 months duration.

Implants used: The distal femur locking compression plate. Classification system: AO Classification.

Results & Observations: Clinical and functional outcomes were assessed using Rasmussen's functional knee score. Complications of fractures and operative treatment were assessed. The results of entire study group showed 18 excellent, 10 good, 1 fair and 1 poor.

Conclusion: We observed and recommend that the distal femur LCP is an optimal tool of good fixation for fractures of distal femur.

Introduction:

The distal end of femur traditionally encompasses the lower third of bone (varying from distal 7.6 cm to distal 15 cm of the femur). A fracture of the distal femur is a grave injury that for years represented an unsolved problem and was considered to result almost always in varying degrees of permanent disabilities. Incident is bimodal with 1 peak in young age 18-30 years age group (high energy trauma) with second peak in elderly women >60 years of age (low energy trauma). Distal femur fractures have been reported to account for between 4%-7% of all femoral fractures. Fractures in supracondylar area characteristically deform with femoral shortening, posterior angulation and displacement of distal fragment. In the past, closed procedures consisting principally of traction and splinting were almost always used. Significant drawbacks like malunion, knee stiffness, prolonged immobilization and hospitalization leads to development of operative fixation like blade plate, dynamic condylar screw (DCS) and retrograde intramedullary nailing. Recent advances lead to development of the locking compression plate, a single
beam construct. Further when applied via minimally invasive technique it lowers rate of infection and favours biological fixation.

Aims and Objectives:
1. To assess the effectiveness of locking compression plating in patients having distal femur fractures.
2. To evaluate the results of distal femur locking compression plate.
3. To evaluate complications related to distal femur locking compression plate.

Material and Methods:
A prospective randomized study of 30 patients with fractures of distal femur (distal 15 cm of femur including supra and intercondylar) were studied. All the cases treated at Department of Orthopaedics, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana (Ambala), Haryana between January 2020 to July 2021 and followed for a minimum of 6 months. The duration of follow up range from 6 months to 18 months. All the fractures in this series were post traumatic. No pathological fractures was included in this study.

Inclusion Criteria
1. Distal femur fractures.
2. 16 or more years of age.
3. Regardless of gender.
4. Duration of injury <7 days.

Exclusion Criteria
1. Pathological fractures.
2. Open fractures (Gustilo-Anderson type 3B, 3C).
3. Inability or refusal of giving consent.
4. Any other co-morbid illness.

Implants used
The distal femur LCP based on the locking compression plating system.

Surgical Technique
Patient was given pre-operative antibiotics. All patients were given proper (spinal/epidural) anaesthesia and before proceeding adequate anaesthesia of the limb was assured. Patient was laid supine on OT table, a tourniquet was applied to the fractured limb, sterile draping was done.

Approach
The condyles were temporarily held reduced and fixed with K wires in severely displaced intercondylar fractures. All wounds with type 2 (Gustilo-Anderson) fractures were closed either primarily or secondarily over a drain. The standard lateral para-patellar approach was used.
Assessment of complication

Major complications
1. Flexion deformity
2. Active ROM less than 90 degree
3. Non union
4. Mal union
5. Deep infections

Minor complications
1. Delayed union
2. Superficial infection

Follow up
The follow up of minimum 6 months was done. The duration of followup ranged from 6 months to 18 months. Follow up X-rays were taken to assess any failure of reduction, failure of fixation and fracture union. Patients were examined for complications. Clinical and functional outcome of all patients were analyzed by Rasmussen's functional knee score on the basis of subjective complaints and clinical signs.

Results:
Overall 30 patients were included in study population. The age ranged from 18 to 79 years. The mean age was 45.96 years. The maximum incidence was in 2 peaks one 18-30 years and other at >60 years. Out of 30 patients, 22 (73.33%) were men and 8 (26.66%) were women. Road traffic accident was the most common mechanism of injury with 23 (76.66%) patients and trivial trauma was found in 7 (23.33%) patients. There were 14 (46.66%) type A and 16 (53.33%) type C fractures. The subdivision showed A2-7, A3-7, C2-12 and C3-4 fractures.

Of the 30 patients, 22 (73.33%) were closed and 8 (26.66%) were open. Of the 30, 9 (30%) patients had associated bony injuries. The duration between day of injury and day of fixation in open fractures ranged from within 3 days, 3-7 days. 21 patients (70%) were operated within 3 days and rest 9 patients (30%) were operated within 7 days.

The average time for union was 16.13 weeks. Radiological union in<16 weeks was seen in 10 (33.33%) patients, in 16-18 weeks in 17 (56.66%) patients, 19-20 weeks in 2 (6.67%) patients and delayed union in 1 (3.33%) patient. No non-union was seen. The results of entire study group showed 18 excellent, 10 good, 1 fair and 1 poor.

The results AO type A fractures had 10 excellent and 4 good. The results of AO type C fractures had 8 excellent, 6 good, 1 fair and 1 poor results. Results of open fractures showed 3 excellent, 3 good, 1 fair and 1 poor. Results of closed fractures showed 15 excellent and 7 good. We saw that 3 of 8 (37.50%) open fractures had excellent results whereas 15 out of 22 (68.18%) closed fractures had excellent results. The 14 of 14 type A fractures had excellent or good results whereas 14 of 16 (40%) type C fractures had excellent or good results.

The closed fractures united early as compared to open fractures. Of 30 patients that were included in the study 18(60%) had range of motion greater than 120 degrees. The type A fractures had a better range of motion as compared to type C fractures.

Discussion:
Fractures of distal femur are serious injuries that have been difficult to treat and frequently results in varying degrees of permanent disability. The literature review shows various different implants and techniques in the management of these fractures. The use of these devices requires a certain amount of bone stock present, which limits their use in some fractures.

The LCP is a single beam (fixed angle) construct where strength of its fixation is equal to the sum of all screw-bone interfaces rather than asingle screw's axial stiffness and pull-out resistance as in unlocked plates. It acts as an internal fixator and functions by splinting the fracture rather than compression and hence allows a flexible stabilization, avoidance of stress shielding and induction of callus formation.

In this study outcome of distal femur fractures which were fixed using distal femoral LCP has been assessed.
The present study of 30 cases indicates age group 18-79 years with mean age of 45.96 years. Most patients were in age group 21-45 years indicating this is a fracture of young people who are involved in more activities. This was the most common age group in similar studies EJ Yeap and Deepak (Mean age 44 years, range 15-85), Kregor et al (mean age 49 years, range 18-85), M Nayak and MR Koichade (mean age 42 years, range 21-65), Mark Miller et al (Mean age 51 years, range 21-80).

The present study of 30 cases indicates RTA as predominant cause of (23.33%). Other studies also documented most common mode of injury in distal femur fractures are high energy RTA and falls. [Epidemiology of distal femur fractures- Marti A, J. Cordey, Mize et al (1982) reported 64% cases due to road traffic accident and 36% due to fall].

Majority of the patients were male (73%) in active age who are more exposed to risks such as vehicular accidents because they are more involved in outdoor activities. Others authors have also noted similar trends [Ravi M Nayak and MR Koichade (male 70%), Yeap & Deepak (male 67%)].

Muller's comprehensive classification system was used to classify fractures. The most common fractures in our study was C2 (12) followed by A2 (7), A3 (7) and C3 (4) respectively.

The study by Mark Weight and Cory Collinge in a level II trauma centre also had a similar pattern. They had 12 C2, 4 A2, 3 A3 and 3 C3 fractures.

The mean time to radiological union in our study was 16.13 weeks compared with other studies mean time to union was 15 weeks (Ravi Nayak et al, 13 weeks (Mark Weight et al), 14 weeks (Schandelmaier et al.), 12 weeks (Werner Kolb et al).

The ROM of the affected knee was calculated at the end of the followup period. The average ROM of the affected knee was >1200 in 60% of our cases.

The mean ROM in our study was 115.63. The ROM in our study is comparable to studies by other authors 0-1040 (Schandelmaier et al), 0-1250 (Ravi Nayak et al), 0-1200 (Werner Kolb et al), 5-1140 (Mark Weight et al), 0-1070 (Schutz et al), 0-1090 (Zlowodzki et al).

The Rasmussen's functional knee score calculated at the end of followup period were excellent in 60% of our cases and good in 33.33% in our cases. There were 18 excellent, 10 good, 1 fair and 1 poor result.

Comparison of present study with the study by Yeap et al and by Wesley P et al, total 11 patients with 4 excellent, 4 good, 2 fair and 1 failure.

The mean Rasmussen's functional knee score in our study was 25.13. The pain score was assessed during the evaluation of Rasmussen's functional knee score. It showed that 76% of the patients had mild or no pain at all or occasional ache and bad weather pain. The above parameters indicates that our study had a fairly good outcome.

The findings in our study have been briefly summarized as follows:

PARAMETERS	RESULTS
Time for union	16.13 Weeks
ROM of affected knee	>120 degree in 60.00%
Rasmussen functional Knee Score	25.13 (Mean)
Pain	Mild or none in 76%
Malunion	None
Delayed union	One (3.33%)
Superficial Infection	Three (10%)

One of the most common complication of distal femoral fracture is knee stiffness. 1 case has delayed union, another complication was superficial infection.
There were 3 cases (10%) which had superficial infection. Other studies also document similar findings. Schandelmaier et al had 1.9%, Werner Kolb et al had 3%, Schutz et al had 6.25%, Zlowodzki et al had 3% of their patients with infection following internal fixation.

Clinical Pictures
Figures showing AP & Lateral views of fracture fixation with time duration and range of movement after union.
Full flexion

Full extension

Full range of motion

Conclusion:
Thus, LCP is an optimal tool of good fixation system for fractures of distal femur. It provides rigid fixation in the region of distal femur, where a widening canal, thin cortices and frequently poor bone stock make fixation difficult. Surgical exposure for plate placement requires significantly less periosteal stripping and soft tissue exposure than that of normal plates. Therefore the distal femoral LCP provides a stable fixation in distal femur fractures.

In conclusion, the LCP represents an evolutionary approach to the surgical management of distal femur fracture. LCP is an important armamentarium in treatment of fracture of distal end femur, especially when fracture is severely comminuted and in situations of osteoporosis.

References:
1. Kiran kumar GN, Sharma G, Farooque K, Sharma V. Locking compression plate in distal femoral intra articular fractures: our experience. International scholarly research.
2. Hoffmann MF, Jones CB, Sietsema DL. Clinical outcomes of locked plating of distal femoral fractures in a retrospective cohort. Journal of orthopedic surgery and research.
3. Yeap EJ, Deepak AS. Distal Femoral Locking Compression Plate Fixation in Distal.
4. Femoral Fractures, Early Results Malaysian Orthopaedic Journal. Parker DA, Lautenschlager EP, Caravelli ML, Flanigan DC, Merk BR. A Biomechanical Comparison of Distal Femoral Fracture Fixation: The Dynamic Condylar Screw, Distal Femoral Nail, Locking Condylar Plate, and Less Invasive Stabilization System. OTA.
5. Krettek C, Muller M, Miclau T. Evolution of Minimally Invasive Plate Osteosynthesis (MIPO) in the femur. Injury. 2001; 3:14-23.
6. Krettek C, Schandelmaier P, Miclau T. Minimally invasive percutaneous plate osteosynthesis (MIPPO) using the DCS in proximal and distal femoral fractures. Injury.
10. 1997; 28:20-30.
11. Kubiak EN, Fulkerson E, Strauss E, Egol KA. Evolution of Locked Plates. The Journal of Bone and Joint Surgery. 2006; 88:189-200.
12. Giles JB, Delee JC, Heckman JD. Supracondylar-intercondylar fractures of the femur treated with a supracondylar plate and lag screw. J Bone Joint Surg Am. 1982; 64:864-70.
13. Brown A, D’Arcy JC. Internal fixation for supracondylar fractures of the femur in the elderly patient. J Bone Joint Surg Br. 1971; 53:420-4.
14. Ahmad M, Nanda R, Bajwa AS, Candal-Couto J, Green S, Hui AC. Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability? Injury. 2007; 38(3):358-64.
15. Parker DA, Lautenschlager EP, Caravelli ML, Flanigan DC, Merk BR. A Biomechanical Comparison of Distal Femoral Fracture Fixation: The Dynamic Condylar Screw, Distal Femoral Nail, Locking Condylar Plate, and Less Invasive Stabilization System. OTA. 2005.
16. Egol KA, Kubiak EN, Fulkerson E, Kummer FJ, Koval KJ. Biomechanics of locked plates and screws. J Orthop Trauma. 2004; 18(8):488-93.
17. Bell KM, Johnstone AJ, Court Brown CM, Hughes SP. J Bone Joint Surg Br. 1992; 74:400-02.
18. Healy WL, Siliski JM, Incavo SJ. Operative treatment of distal femoral fractures n proximal to total knee replacements. J Bone Joint Surg Am. 1993; 75:27-34.
19. Seinsheimer F. Fractures of the distal femur. Clin Orthop Relat Res. 1980; 153:169-79.
20. Neer CS, Grantham SA, Shelton ML. Supracondylar fracture of the adult femur. J Bone Joint Surg Am. 1967; 49:591-613.
21. Siliski JM, Mahring M, Hofer HP. Supracondylar-Intercondylar fractures of femur. JBJS. 1989; 71A:95-104.
22. Phipatanakul WP, Mayo KA, Mast JW, Bolhofner BR. Reconstruction of the Distal Femur with Use of a New Device: The Locking Condylar Plate. OTA. 2001. 20.