DETECTION OF PHYTOCHEMICAL CONSTITUENT IN FLOWERS OF VIOLA ODORATA BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY

SHAIMAA FAKHRI JASIM, NOOR NIHAD BAQER*, ESAM ABD ALRAHEEM

Ministry of Science and Technology, Directorate of Water and Environment. *Email: noornihadbaqer@gmail.com

Received: 15 December 2017, Revised and Accepted: 30 January 2018

ABSTRACT

Objective: Viola odorata has a characteristic as antifungal, antibacterial, anticancer, antioxidant, antiasthmatic, anti-inflammatory, anti-HIV, and antipyretic agents. The aim of this study was detected about bioactive compounds in the methanolic extract of V. odorata.

Methods: The methanolic extract was analyzed through gas chromatography-mass spectrometry (GC-MS) for the identification of different compounds.

Results: The current study investigated about phytochemicals in flowers of V. odorata. GC-MS analysis of the methanol extract of flowers showed 84 compounds. The highest concentration was for components which include ethanol, 2-(9,12-octadecadienyl oxy) - (Z,Z)- pentadecanoic acid; 1-pentacosanol; 1-pentacosanol; 2-furan carboxaldehyde, 5-(hydroxymethyl)-; 1,2 benzenedicarboxylic acid, ditriosteryl ester; and docosane, 11-butyl- and gamma-sitosterol. The peak area and retention time for each components, respectively, were (15.709, 25.51%), (14.015, 19.51%), (29.914, 4.69%), (27.292, 3.95%), (5.707, 4.05%), (20.357, 3.91%), (18.289, 2.48%), and (30.431, 2.37%). While the others components ranged the peak area from 2.03% to 0.05%.

Conclusions: These results indicate that the flowers of V. odorata contain the numerous components which have medical importance and this study was one of the first studies to detect phytochemicals in V. odorata.

Keywords: Viola odorata, Gas chromatography-mass spectrometry analysis, Phytochemicals, Pentadecanoic acid, Gamma-sitosterol.

INTRODUCTION

The medicinal herbs obtained much importance in recent years due to extensive applications of its bioactive molecules. The different strategies have been advanced for the selection of specific herbs for the study. The herbs selected were screened for the active phytoconstituents. The specific component present in the herbs was active subjected to isolation with different analytical techniques. The analogs of isolated molecules are characterized, and structural modification has been done to enhance the desired activity and minimize the unfavorable side effects [1]. The Violaceae is a family which contains about 900 species belonging to 22 genera; this family is a medium-sized of perennial or rarely annual herbs or shrubs, including the violets or pansies. It is cosmopolitan, but more typical of the temperate regions and tends to be restricted to higher mountainous areas. The Viola L. is the largest genus of the family and has about 400 species in the world [2].

Viola odorata perennial herb, rhizome short, thick leaves are heart-shaped, slightly downy, especially beneath, on stalks rising alternately from a creeping rhizome or underground stem. The flowers are generally deep purple, giving their name to the color which was called from a creeping rhizome or underground stem. The flowers are full of honey and are constructed for these tints may sometimes be discovered in different plants growing on the same land. The flowers are full of honey and are constructed for bee visitors, but bloom before it is really bee time, so that it is rare that they are restricted to higher mountainous areas. The Viola L. is the largest genus of the family and has about 400 species in the world [2].

Secondary metabolites, namely, flavonoids, alkaloids, terpenoids, saponins, and carotenoid in rue extract, it has a property antimicrobial agents in drugs development of infectious disease. This study aimed to detect about bioactive compounds in the methanolic extract of V. odorata.

METHODS

Plant material

V. odorata L plant which authenticated by the National Herbarium of Iraq Botany Directorate at Abu-Ghrab was collected in April and July. The flowers dried at room temperature 25°C in the shade for (10) days then it was crushed into powder by electric Grinder and weighted.

Preparation of extracts

100 g of crushed powder (flowers) of V. odorata L. Plant was macerated for 36 h with shaking at room temperature 25°C in 1 L methanol, and the resulting extract was filtered. The residue was re-extracted twice for complete exhaustion. The obtained filtrates were combined and concentrated using a rotary evaporator to get the dry extract. The dried extract was dissolved in methanol and stored at 4°C in a refrigerator [9].

GC-MS analysis

The methanolic extract was analyzed through GC-MS for the identification of different compounds.

Instruments and chromatographic conditions GC Program

Column: Elite-5MS (5% diphenyl/95% dimethyl polysiloxane), 30 × 0.25 mm × 0.25 m df. Equipment: GC Shimadzu ap 2010 pks. Carrier gas: 3 ml/min, Split: 10:1. Detector: Mass detector Quader mass gold-Perkin Elmer.

Software: Turbomass 5.2. Sample injected: 2 µL.
Oven temperature program
- 80°C - 2 min hold. Up to 300°C 120 min at the rate of 10°C/min.
- Injector temperature 280°C. Total GC is running time 30 min.

MS program
- Library used NIST 10 Version-year 2010. Inlet line temperature 280°C.
- Source temperature 200°C. Electron energy: 70 eV. Mass scan (m/z): 40–600.
- Solvent delay: 0–2 min. Total MS running time: 30 min.
- The extract was dissolved in methanol and filtered with Elite-5MS column and analyzed in GC-MS for different constituents. The phytoconstituents obtained as a result was interpreted on mass spectrum GCMC using NIST (2010).

RESULT
GC-MS of the methanol extract of *V. odorata* flowers showed 84 peaks. The constituents were shown in Fig. 1 and Table 1 with their retention time (RT), molecular formula, molecular weight, concentration (peak area %), and chemical structures. GC-MS analysis showed 84 compounds the highest concentration was for components which include ethanol, 2-(9,12-octadecadienyloxy)-, (Z,Z)-; pentadecanoic acid; 1-pentacosanol; 1-pentacosanol; 2-furancarboxaldehyde, 5-(hydroxymethyl)-; 1,2-benzenedicarboxylic acid, disooyctyl ester; docosane, and 11-butyl- and gamma-sitosterol. The RT and peak area for each components, respectively, were (15.709, 25.51%), (14.015, 19.51%), (29.914, 4.69%), (27.292, 3.95%), (5.707, 4.05%), (20.357, 3.91%), (18.289, 2.48%), and (30.431, 2.37%). While the remain of the components ranged the peak area from 2.03% to 0.05%.

Table 1: The compounds identified from methanol extract of *V. odorata* flowers by gas chromatography-mass spectrometry

NO	RT	Compound	Molecular formula	MW	Peak area	Chemical structure
1	2.593	3-Buten-2-one, 4-(dimethylamino)-4-(1-piperidinyl)	C₆H₁₀N₂O	196	0.05	![Chemical structure](image1)
2	2.820	Propanoic acid, 2-(aminoxy)-	C₅H₇NO₂	105	0.13	![Chemical structure](image2)
3	2.930	Glycerin	C₃H₈O₂	92	0.06	![Chemical structure](image3)
4	3.347	1-Decyne	C₁₀H₁₇	138	1.23	![Chemical structure](image4)
5	3.624	Benzene acetaldehyde	C₉H₁₄O	120	0.11	![Chemical structure](image5)

Fig. 1: Gas chromatography-mass spectrometry chromatogram of methanol extract of *Viola odorata*
NO	RT	Compound	Molecular formula	MW	Peak area
6	3.938	Benzaldehyde, 3-phenoxy-, (4,6-dimethyl-1,3,5-triazin-2-yl) hydrazone	C_{16}H_{15}N_{7}O_{3}	321	0.51
7	4.784	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-	C_{6}H_{8}O_{4}	144	1.83
8	5.707	2-Furancarboxaldehyde, 5-(hydroxymethyl)-	C_{6}H_{6}O_{3}	126	4.05
9	6.258	Nonanoic acid	C_{9}H_{18}O_{2}	158	1.75
10	6.522	8-Nonynoic acid	C_{9}H_{14}O_{2}	154	0.90
11	6.703	Salicylic acid	C_{7}H_{6}O_{3}	138	0.14
12	6.829	Methyl 2,3-anhydro-β-D-ribofuranoside	C_{6}H_{10}O_{4}	146	0.11
13	6.890	2-Methoxy-4-vinylphenol	C_{9}H_{10}O_{2}	150	0.13
14	7.425	Eugenol	C_{10}H_{12}O_{2}	164	0.22
15	7.703	8-Methyl-6-nonenoic acid	C_{10}H_{16}O_{2}	170	0.19
16	7.933	Decane, 2-methyl-	C_{11}H_{24}	156	0.19
17	8.181	Benzeneethanol, 4-hydroxy-	C_{10}H_{22}O_{2}	138	0.15

(Contd...)
NO	RT	Compound	Molecular formula	MW	Peak area
18	8.399	Benzaldehyde, 2-hydroxy-6-methyl-	C₆H₇O₂	136	0.22
19	8.873	Suberic acid monomethyl ester	C₁₀H₁₄O₂	188	0.33
20	8.979	4-(2-Methoxyethyl)-2-methylphenol	C₂₄H₂₄O₂	166	0.07
21	9.129	Octane, 2,3,3-trimethyl-	C₁₁H₂₄	156	0.14
22	9.317	Cyclooctane	C₈H₁₆	122	0.16
23	9.467	Octanedioic acid	C₁₀H₁₈O₄	174	0.11
24	9.789	3-Hydroxy-4-methoxybenzoic acid	C₈H₈O₄	168	0.11
25	10.184	Didodecyl phthalate	C₂₂H₂₄O₄	502	0.06
26	10.273	Dodecane, 2,6,11-trimethyl-	C₁₂H₂₂	212	0.17
27	10.561	Azelaic acid	C₁₄H₂₀O₄	188	0.05
28	11.019	3,3-Dimethylacryloyl chloride	C₅H₇ClO	118	0.03
29	11.188	Epi-inositol	C₆H₁₁O₆	180	0.12
30	11.365	2-Bromo dodecane	C₁₂H₂₄Br	248	0.15

(Contd...)
NO	RT	Compound	Molecular formula	MW	Peak area	Chemical structure
31	11.445	2-Benzoyl-3,4-acetone-d-galactosan	C_{16}H_{18}O_{6}	306	0.02	
32	11.595	dl-Serine	C_{4}H_{7}NO_{3}	105	0.05	
33	11.758	2,5-Dihydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one	C_{21}H_{18}O_{5}	180	0.03	
34	11.958	Tetradecanoic acid	C_{14}H_{24}O_{2}	228	0.48	
35	12.334	Undecyl trifluoroacetate	C_{12}H_{22}F_{2}O	268	0.09	
36	12.407	2-Bromo dodecane	C_{12}H_{24}Br	248	0.09	
37	12.540	3-Hydroxy-4,5-dimethoxybenzoic acid	C_{11}H_{16}O_{5}	198	0.49	
38	12.581	2-Pentadecanone, 6,10,14-trimethyl-	C_{16}H_{28}O	268	0.16	
39	12.973	Pentadecanoic acid	C_{15}H_{26}O_{3}	242	0.10	
40	13.403	Undecane, 3,8-dimethyl-	C_{13}H_{28}	184	0.13	
41	13.626	Hexadecanoic acid, methyl ester	C_{16}H_{30}O_{2}	270	2.00	
42	13.776	2-Tridecenal, (E)-	C_{13}H_{24}O	196	0.26	
43	14.015	Pentadecanoic acid	C_{15}H_{28}O_{2}	242	19.51	
44	14.352	Card-20 (22)-enolide, 3-[(2,6-dideoxy-4-O-...	C_{36}H_{54}O_{14}	710	0.07	
		beta-D-glucopyranosyl-3-O-methyl-				
		beta-D-ribo-hexopyranosyl oxy]-5,14-dihydroxy-19-oxo				
45	14.637	7-Methyl-Z-tetradec-1-ol acetate	C_{16}H_{30}O_{2}	268	0.31	
46	14.889	Eicosanoic acid	C_{20}H_{42}O_{3}	312	0.14	
47	15.011	Oxacycloheptadec-8-en-2-one	C_{16}H_{30}O_{2}	252	0.62	
48	15.213	9,12-Octadecadienoic acid (Z, Z)-, methyl ester	C_{18}H_{32}O_{2}	294	1.12	
49	15.274	9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropyl ester, (Z, Z)-	C_{21}H_{34}O_{4}	352	1.11	
50	15.414	Phytol	C_{20}H_{40}O	296	0.32	

(Contd...)
NO	RT	Compound	Molecular formula	MW	Peak area	Chemical structure
51	15.513	Octadecanoic acid, methyl ester	C₁₉H₃₈O₂	298	0.14	
52	15.709	Ethanol, 2-(9,12-octadecadienyloxy)-, (Z,Z)-	C₂₀H₃₈O₂	310	25.51	
53	15.896	Octadecanoic acid	C₁₈H₃₆O₂	284	2.05	
54	16.829	Oleyl alcohol, trifluoroacetate	C₂₀H₃₅F₃O₂	364	0.15	
55	17.436	Eicosane	C₂₀H₃₈	282	0.88	
56	17.734	Cyclopentaneundecanoic acid, methyl ester	C₁₉H₃₈O₂	268	0.12	
57	18.119	Deoxyspergualin	C₁₈H₃₇N₇O₃	387	1.28	
58	18.289	Docosane, 11-butyl-	C₂₂H₄₄	366	2.48	
59	18.604	Sulfurous acid, 2-propyl tridecyl ester	C₁₆H₃₄O₅S	306	0.12	
60	19.244	1,2-Propanediol, 3-benzyloxy-1,2-diacetyl-	C₁₀H₁₆O₅	266	0.48	
61	19.360	Tetratetracontane	C₄₄H₹₀	618	0.50	
62	19.804	Undecane, 2-methyl-	C₁₃H₂₆	170	0.36	
63	20.357	1,2-Benzenedicarboxylic acid, diisooctyl ester	C₂₈H₅₄O₄	390	3.91	
64	20.564	(2,3-Diphenylcyclopropyl) methyl phenyl sulfoxide, trans-	C₂₅H₂₆OS	332	1.26	
65	20.635	(2,3-Diphenylcyclopropyl) methyl phenyl sulfoxide, trans-	C₂₇H₂₈OS	332	0.09	
66	20.704	Pentacosane, 13-undecyl-	C₃₆H₇₄	506	0.23	
67	21.325	Acetic acid n-octadeyl ester	C₁₀H₂₀O₂	312	0.74	
68	22.281	Benzene, (3-ethyl-5,5-dimethylhexyl)-	C₂₄H₂₄	216	0.09	

(Contd...)
NO	RT	Compound	Molecular formula	MW	Peak area	Chemical structure
69	22.939	Oxalic acid, allyl tetradecyl ester	C_{19}H_{34}O_{4}	326	0.49	
70	23.799	1-Octacosanol	C_{28}H_{58}O_{4}	410	1.69	
71	25.931	Ethanol, 2-(3,3-dimethylbicyclo[2.2.1]hept-2-ylidine)-	C_{11}H_{18}O_{16}	166	0.19	
72	26.193	Imidazole, 4-fluoro-5-aminocarbonyl	C_{11}H_{18}FN_{4}Si	409	0.05	
73	26.353	1,7-Dimethyl-4-(1-methylethyl) cyclodecane	C_{21}H_{30}	210	0.50	
74	27.078	Heptacosyl heptafluorobutyrate	C_{21}H_{36}F_{7}O_{2}	592	2.03	
75	27.292	1-Pentacosanol	C_{25}H_{52}O_{4}	368	3.95	
76	28.530	1-Heptatriacocanol	C_{25}H_{52}O_{4}	536	0.15	
77	29.154	Silane, dimethyl (2-nitrophenoxy) tetracycloxy-	C_{22}H_{39}NO_{4}Si	409	0.05	
78	29.339	3-Eicosene, (E)-	C_{20}H_{40}O_{4}	280	0.69	
79	29.730	22,23-Dibromostigmasterol acetate	C_{25}H_{52}Br_{6}O_{4}	612	0.26	
80	29.914	Triacetyl pentafluoropropionate	C_{23}H_{39}FO_{4}	584	4.69	
81	30.431	Gamma-Sitosterol	C_{29}H_{50}O_{4}	414	2.37	
82	30.871	Cholest-5-en-3-ol, 24-propylidene- (3.beta.)-	C_{29}H_{50}O_{4}	426	0.63	
83	31.348	3-Hydroxyxistrost-8-en-11-one	C_{28}H_{50}O_{4}	428	0.15	
84	31.883	Ergost-5,8(14)-dien-3-ol	C_{28}H_{50}O_{4}	398	0.28	

DISCUSSION

GC analysis was not detected for the flower of *V. odorata* previously, while Hammami et al. [10] showed of the active components in volatile oils in Viola odorata by using GC, it revealed of the presence of 63 identified volatile constituents, the main components were including: 1-phenyl butanone (22.43%), linalool (7.33%), benzyl alcohol (5.65%), α-cadinol (4.91%), globulol (4.32%) and viridiflorol (3.51%). Pulegone (3.33%), epi-α-cadinol (3.05%), terpinen-4-ol (2.31%), germacrene A (1.99%) and paramethyl anisole (1.09%) were found to be the main compounds [11] showed in GC analysis of *Hybanthus enneaspermus* which belongs to the family Violaceae, it contains the major phytoconstituents were (5E,13E)-5,13-Docosadienoic acid (20.90%) and Cedran-diol, 8S, 14- (13.02). The results shown that the flower *V. odorata* contains active compounds that have medical importance such as eugenol has the characteristic as anti-tumor necrosis factor, antioxidant, antiprostaglandin, antipyretic, antiradicular, anti-salmonella, antiseptic, fungicide, antiestrogenic, antigenotoxic and antiviral [12], and anti-tumor [13]. While gamma-sitosterol used as anti-diabetic, anti-angiogenic, anticancer, antimicrobial, anti-inflammatory, anti-diarrheal, and antiviral [14]. Phytol has the property as antimicrobial, anti-inflammatory, antioxidant, diuretic, antimicrobial, anticancer, anti-inflammatory, anti-diuretic, immunostimulatory and anti-diabetic, and antimycobacterial activity [15]. While tetradecanoic acid used as antioxidant, lubricant, hypercholesterolemic, cancer-preventive, and cosmetic. Whereas hexadecanoic acid, methyl ester has the
ability as antioxidant, flavor, antifibrinolytic, hypocholesterolemic, anti-androgenic, lubricant, hemolytic, 5-alpha reductase inhibitor, nematicide, and anti-alopecic [16]. As for the compound octacosanol used as anticancer, cholesterol-lowering effect, anticoagulant, increase stamina and improve strength and reaction time for athletes [17]. Octadecanoic acid, methyl ester has the property as antioxidant, antibacterial, antifungal, anti-inflammatory, antiarthritic, antihistimic, anti-coronary, hypocholesterolemic, anticancer, hepatoprotective action, soap, lumbricant, and cosmetics [18].

CONCLUSION

This study showed through the GC analysis, the flowers of V. odorata contains many active compounds which have the medical importance and bioactivity. These compounds can be isolated and tested for the cellular toxicity to determine the safety of their usage in the treatment of diseases.

CONFLICTS OF INTEREST

The authors have not declared any conflict of interest. But have a contribution to some research in Ministry of science and technology Directorate of Water and Environment Iraq.

REFERENCES

1. Patil SJ, Venkatesh S, Vishwanatha T, Banagur SR, Banaga RJ, Patil SB. GCMS analysis of bioactive constituents from the petroleum ether extract of Citrus medica Seeds. World J Pharm Pharm Sci 2014;3:1239-49.
2. Bağcı Y, Dinç M, Öztürk M. Morphological, anatomical and ecological study on turkish endemic viola yıldırımlii m. dinç & y. bağcı. Int J Nat Eng Sci 2008;2:1-5.
3. Alwash BM. Phytochemical and Cytotoxic Studies of Viola odorata L. Cultivated in Iraq. Ministry of Higher Education, Scientific Research, University of Baghdad, Collage Science for Women. Thesis; 2006.
4. Barekat T, Otroschy M, Zadeh BS, Sadr-arhami A, Mohkati A. A novel approach for breaking seed dormancy and germination in Viola odorata (A medicinal plant). J Novel Appl Sci 2013;2:513-6.
5. Amiri MS, Joharchi MR, Yazdi ME. Ethno-medical plants used to cure jaundice by traditional healers of mashhad, Iran. Iran J Pharm Res 2014;13:157-62.
6. Alvazri S, Siganooedi FK, Charkhiyian MM, Mojab F, Mozaffarian V, Zakeri H. Introduction of medicinal plants species with the most traditional usage in alamut region. Iran J Pharm Res 2012;11:185-94.
7. Shafi S, Tabassum N. Phytochemical screening and renal effects of Ethanolic extract of Eriobotrya japonica fruits and seed in alloxan induced diabetic rats. Int J Curr Pharm Res 2018;10:3-7.
8. Gullar H, Work A, Sahabjada, Jafri A, Arshad MD, Malik T. The phytochemical investigation, GC-MS profile and antimicrobial activity of a medicinal plant Ruta graveolens L. from Ethiopia. Int J Pharm Pharm Sci 2017;9:29-34.
9. Mittal S. Thin layer chromatography and high pressure liquid chromatography profiling of plant extracts of Viola odorata L. flowers. Arch Appl Sci Res 2011;3:44-51.
10. Hammami I, Kamoun N, Rebai A. Biocontrol of Botryis cinerea with essential oil and methanal extract of Viola odorata L. flowers. Arch Appl Sci Res 2011;3:44-51.
11. Anand T, Gokulakrishnan K. Phytochemical analysis of Hybanthus enneaster using UV, FTIR and GC- MS. IOSR J Pharm 2012;2:520-4.
12. Duke JA. Handbook of Phytochemical Constituents of GRAS Herbs and other Economic Plants. Boca Raton, FL: CRC Press; 1992.
13. Zheng GQ, Kenney PM, Lam LK. Sesquiterpenes from clove (Eugenia caryophyllata) as potential anticarcinogenic agents. J Nat Prod 1992;55:999-1003.
14. Karthikeyan M, Balasubramanian T, Kumar P. Phytochemical screening of ethanolic extract of Premna coriacea through an integrative GC-MS and LC-MS. Asian J Pharm Educ Res 2017;6:44-55.
15. Rajesh KD, Vasantha S, PanneerSelvam A, Rajesh NV, Jeyathilakan N. Phytochemical analysis, In vitro antioxidant potential and Gas Chromatography-mass spectrometry studies of Dicranopteris linearis. Asian J Pharm Clin Res 2016;9:220-5.
16. Markkas N, Govindharaju M. Determination of phytocomponents in the methanolic of Mollugo cerviana by GC-MS analysis. Int J Res Biol Sci 2015;5:26-9.
17. Raman BV, Samul LA, Saradhi MP, Rao BN, Vansi Krishna AN, Sudhakar M, Radhakrishnan TM. Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum. Asian J Pharm Clin Res 2012;5:99-106.
18. Elangovan M, Dharanarajan MS, Elangovan I. Determination of bioactivitiv compounds from the petroleum ether extract of Moringa oleifera and Phyllanthus emblica using GC-MS analysis. World J Pharm Res 2015;4:1284-98.