Los efectos del aprendizaje en línea autorregulado en la ineficacia del aprendizaje en el contexto de la COVID 19

Wei He, Li Zhao, Yu-Sheng Su

Effects of Online Self-Regulated Learning on Learning Ineffectiveness in the Context of COVID-19
Resumen

Durante la pandemia de la/el COVID y la nueva normalidad, el aprendizaje en línea se ha convertido en una de las principales opciones para aprender. Estudios previos sobre el aprendizaje autorregulado demuestran que es un mejor indicador de la eficacia del aprendizaje en línea; no obstante, esta discusión no se ha extendido a la pandemia de la COVID-19. Para acortar la brecha, este estudio pretende explorar la relación entre las tres fases del aprendizaje autorregulado (AAR) y la eficacia del aprendizaje. Se recolectaron datos de 370 estudiantes de bachillerato durante el periodo de la pandemia por COVID-19. Se usaron modelos de ecuaciones estructurales en los datos para llevar a cabo el análisis factorial confirmatorio. Los resultados demuestran que la fase de planificación estaba relacionada positivamente con las fases de ejecución y autorreflexión; y que la fase de ejecución estaba relacionada positivamente con la fase de autorreflexión; por otra parte, las fases de ejecución y autorreflexión estaban relacionadas negativamente con la ineficacia del aprendizaje. Además, la fase de planificación no tuvo una relación directa con la ineficacia del aprendizaje, pero la fase de planificación estaba correlacionada con la ineficacia del aprendizaje, mediada por las fases de ejecución y autorreflexión. Estos resultados sugieren que un mejor desempeño en las tres fases del aprendizaje autorregulado disminuye la ineficacia del aprendizaje en línea percibida por los estudiantes. Este conocimiento puede tener implicaciones en la educación global.

Palabras clave: aprendizaje en línea; aprendizaje autorregulado; ineficacia del aprendizaje; COVID-19

Abstract

Within the COVID-19 pandemic and the new normal period, online learning has become one of the main options for learning. Previous studies on self-regulated learning have shown that it was a better predictor of online learning effectiveness. However, this discussion has not been extended to the situation of the COVID-19 pandemic. To address this gap, this study aims to explore the relationship between the three stages of self-regulated learning (SRL) and learning ineffectiveness (LI). Data of 370 high school students were collected during the period of COVID-19. Structural equation modeling was used to perform confirmatory factor analysis on the data. Findings show that the preparatory stage was positively related to the stages of performance and appraisal, and the performance stage was positively related to the appraisal stage; on the other hand, the stages of performance and appraisal were negatively related to learning ineffectiveness. In addition, the preparatory stage had no direct relation to learning ineffectiveness, but the preparatory stage was correlated with learning ineffectiveness, mediated by the stages of performance and appraisal. These results suggest that better performance in the three stages of self-regulated learning decrease learners perceived online learning ineffectiveness. This understanding can have implications for global education.

Keywords: online learning; self-regulated learning; learning ineffectiveness; COVID-19
Introducción

La COVID-19 ha tenido un tenido un impacto destructivo en la sociedad, cultura, religión, economía y educación en todo el mundo (Mustajab et al., 2020). Las actividades de enseñanza offline se han suspendido o reemplazado con la educación en línea (Zhang et al., 2020). En comparación con la educación escolar tradicional, el aprendizaje en línea se basa en el aprendizaje abierto y repartido, sin las limitaciones del espacio, tiempo y materiales físicos. El aprendizaje abierto y repartido les proporciona a los estudiantes más autonomía en su aprendizaje en línea autorregulado. Samruayruen et al. (2013) han demostrado que el aprendizaje autorregulado fue más exitoso en entorno educativo abierto y repartido. El AAR es un proceso que inician los estudiantes para controlar su aprendizaje (Tuti et al., 2021); sin embargo, los estudiantes rara vez interactúan con los instructores o reciben guía y supervisión (Broadbent & Poon, 2015; Su & Wu, 2021), lo que puede resultar en que los estudiantes lidien con la regulación de sus procesos de aprendizaje (Jansen et al., 2019). Por consiguiente, es importante estudiar el AAR en línea de los estudiantes durante el periodo de la COVID-19 (Zhu et al., 2020).

Hong et al. (2021) han dividido el AAR en 6 subconstructos: estrategia de tarea, ajuste del estado de ánimo, autoevaluación, estructura ambiental, manejo del tiempo y búsqueda de ayuda. Existen varios modelos del AAR con componentes y procesos similares (Chen & Bonner, 2020). Adam et al. (2017), concluyen en su revisión que modelos del AAR previos se comprenden de tres fases: planificación, ejecución y autorreflexión. Muchos investigadores han discutido los efectos de los componentes múltiples del AAR o de una sola fase en otros factores. Por ejemplo, las relaciones entre entornos educativos, las creencias del estudiante, y múltiples dimensiones del AAR han sido explorados por Maison y Syamsurizal (2019). Cosnefroy et al. (2018) analizaron la correlación entre la fase de premeditación del AAR y el fracaso de la autorregulación; no obstante, Zeidner y Stoeger (2019) indican que pocos estudios han considerado todas las fases del AAR simultáneamente. Sin embargo, Liu et al. (2021) discutieron la diferencia de género en cada una de las tres fases del AAR en línea. Los resultados arrojaron que, en cada una de las tres fases del AAR, las estudiantes tuvieron un mejor desempeño que los estudiantes hombres. Hong et al. (2021) examinaron el impacto de la procrastinación académica en cada una de los seis subconstructos del AAR y en cada uno de los seis subconstructos del AAR y la ineficacia del aprendizaje. Por ende, este estudio pretende explorar el impacto de las tres fases del AAR: planificación, ejecución y autorreflexión; no en los seis subconstructos del AAR y la IA. De acuerdo con los efectos de las tres fases del AAR en la eficacia o ineficacia del aprendizaje, los instructores pueden proporcionar ayuda específica y eficiente para los aprendices.

La eficacia del aprendizaje en línea de los estudiantes ha mejorado como consecuencia de beneficiarse de la flexibilidad y repartición del aprendizaje en línea.

Por ejemplo, Zhao, Liu, y Su (2021) han demostrado que los estudiantes mostraron un mejor desempeño en el aprendizaje con educación abierta y repartida que en el aprendizaje presencial. Se encontró que los aprendices con una mejor habilidad para autorregular su aprendizaje en línea tienen niveles de eficacia percibida significativamente más altos que aquellos con menos habilidad en esta área (Charo et al., 2020). Cuando toman parte en el aprendizaje en línea, si el aprendiz carece de las habilidades para el AAR, tal no sean capaces de completar las tareas de aprendizaje asignadas en sus cursos en línea (Barnard et al., 2009). Los estudios arriba mencionados muestran que el AAR de los estudiantes reduce su nivel de ineficacia del
aprendizaje; no obstante, en el contexto de la COVID-19, todo el aprendizaje presencial repentinamente cambió a ser 100% en línea. Este estudio busca explorar si el AAR de los estudiantes fue efectivo y cómo las diferentes fases del AAR afectaron la eficacia del aprendizaje de los estudiantes durante esta transformación. Cuando los estudiantes aprenden en línea, es necesario y significativo comprender sus percepciones sobre la eficacia o ineficacia del aprendizaje en línea (Hong et al., 2021). En este estudio, se aplicó la ineficacia del aprendizaje en estudiantes de bachillerato para autoevaluar la percepción de su desempeño de aprendizaje. Por esto, el presente estudio explora cómo las tres fases del AAR se relacionan con la ineficacia del aprendizaje mientras los estudiantes de bachillerato aprendían en línea. Los resultados de las relaciones entre el AAR y la ineficacia del aprendizaje en línea pueden proporcionar nuevas perspectivas sobre la educación a distancia y proveer referentes relevantes para lidiar con la futura investigación del aprendizaje en línea en la normalización de la pandemia.

Revisión bibliográfica

El aprendizaje en línea autorregulado

Antes de la pandemia por COVID-19, la mayoría de los estudiantes estudiaban en clases presenciales y no habían experimentado el aprendizaje 100% en línea. Se han realizado estudios previos sobre el AAR en contextos de aprendizaje en línea y fuera de línea, pero se ha hecho muy poca investigación durante la pandemia por COVID-19. Los aprendices se enfrentaron repentinamente con la muy difícil tarea de autorregular sus actividades de aprendizaje en casa, en medio de la influencia de la pandemia (Zhang et al., 2021). El cambio de clases fuera de línea a clases en línea durante la COVID-19 ha provocado que los aprendices carezcan de la guía de sus instructores, lo que hace que requieran tener una mayor habilidad para regularse a sí mismos en su aprendizaje (Lee et al., 2020). Durante el periodo específico de la pandemia por COVID-19, muchos factores pueden tener efectos negativos múltiples en los procesos del AAR de los estudiantes (Cai et al., 2020). El AAR es una habilidad importante para participar en la construcción e interpretación de conocimiento en un entorno de aprendizaje enfocado en el estudiante (Alsancak Sirakaya & Özdemir, 2018). “SRL is an active and constructive process in which learners set their own learning goals and then attempt to regulate, plan and control their motivation, cognition, and behavior” [El AAR es un proceso activo y constructivo en el que los estudiantes establecen sus propias metas de aprendizaje y luego intentan regular, planear y controlar sus motivaciones, condiciones y conductas] (Pintrich, 2000, p.453). Las tareas de aprendizaje deben tener inicios, intermedios y finales claros (Cleary et al., 2012). En los cursos de aprendizaje en línea, hay un proceso de aprendizaje claro para antes, durante y después de las clases.

Se han propuesto varios modelos del AAR que presentan diferentes fases y subprocesos. Por ejemplo, basado en la teoría sociocognitiva, Zimmerman (2000) describió un modelo del AAR que comprende de las fases de: premeditación, ejecución y autorreflexión. Hadwin et al. (2018) han desarrollado y, dividido en tres componentes, un modelo de autorregulación: negociación y conciencia de la tarea, estrategia de participación en la tarea y adaptación. Adam et al. (2017) propusieron que el AAR se compone de las fases: preparatoria, de ejecución y de evaluación.
Por esto, el presente estudio seleccionó las tres fases que corresponden a las conductas antes, durante y después de las clases en línea, como procesos cíclicos durante la pandemia por COVID-19. Durante cada fase, los estudiantes usan diferentes estrategias para monitorear y controlar su aprendizaje (Zimmerman, 2000).

En la fase preparatoria, Hong et al. (2021) han destacado el entorno de aprendizaje (por ejemplo, conexión estable a internet) y las características individuales (por ejemplo, el estado de ánimo) como componentes esenciales. Por esto, este estudio especificó las conductas preparatorias antes de participar en clases en línea, enfocándose en el ajuste del estado de ánimo y la estructuración de los entornos. Además, Adam et al. (2017) declararon que la fase de ejecución del AAR es cuando se está llevando a cabo la tarea mientras se monitorea y controla el proceso de la ejecución. En la fase de ejecución, los aprendices usan estrategias cognitivas y específicas (por ejemplo, estrategias de tareas) y procesos de monitoreo metacognitivos (por ejemplo, manejo del tiempo) para concluir con las tareas (Ridgley et al., 2020; Zhang et al., 2021). Por consiguiente, este estudio especificó las conductas de ejecución durante las clases en línea desde dos aspectos: el manejo del tiempo y la estrategia de tarea. Cuando los aprendices concluyen sus tareas de aprendizaje, entran a la fase de evaluación, durante la cual monitorean sus progresos de aprendizaje, diseñan un plan para la búsqueda de apoyo (Zimmerman, 2000), y evalúan la eficacia del aprendizaje (Cleary et al., 2012; Zimmerman, 1990). Al considerar esto, el presente estudio especificó las conductas de evaluación después de participar en las clases en línea desde dos aspectos: búsqueda de apoyo y autoevaluación.

Muchos estudios del aprendizaje en línea han demostrado una relación entre el logro del aprendizaje y las subescalas del AAR, tales como la búsqueda de ayuda (Won et al., 2021), y los entornos de aprendizaje (Maison & Syamsurizal, 2019). No obstante, la mayoría de los estudios no emplearon todas las fases del modelo del AAR (Zeidner & Stoeger, 2019). Para mejorar las habilidades de aprendizaje y del AAR de los estudiantes, los académicos y docentes deben aplicar efectos diferenciales en los modelos y teorías del AAR (Ernesto, 2017). Por consiguiente, este estudio se enfoca en las tres fases del AAR durante la pandemia por COVID-19.

Ineficacia del aprendizaje en el contexto de la COVID-19

Con la ayuda de la educación a distancia y el apoyo de la tecnología, los estudiantes tienen acceso fácil y conveniente al aprendizaje en línea. La eficacia del aprendizaje en línea puede verse reflejada en la evaluación de los aprendices en las áreas cognitiva, afectiva y psicomotriz (Zhao, He, & Su, 2021). El aprendizaje en línea llevado a cabo durante la pandemia por COVID-19 ha sido efectivo (Bahasoan et al., 2020). Pese a que los estudiantes pueden aprender y beneficiarse del aprendizaje en línea, la eficacia del aprendizaje de este en comparación con el aprendizaje tradicional todavía se considera un tema debatible. Por ejemplo, Zhao, Liu, y Su (2021) demuestran que, comparado con el aprendizaje tradicional, el aula invertida apoyada por MOOCs resulta en un mejor logro del aprendizaje; sin embargo, Carrol y Burke (2010) sostienen que el aprendizaje tradicional es mejor que el aprendizaje en línea. Para asegurar un aprendizaje en línea eficaz, los docentes y diseñadores de los cursos deben entender las percepciones de la eficacia o ineficacia del aprendizaje en línea de los estudiantes (Hong et al., 2021).
Los efectos del aprendizaje en línea autorregulado en la ineficacia del aprendizaje en el contexto de la COVID 19

Hipótesis de investigación

Se ha investigado extensivamente el impacto del AAR en el aprendizaje de los aprendices y el éxito académico (Jansen et al., 2019). Estudios previos han encontrado que el AAR era un buen indicador del éxito académico (por ej., Moghadari-Koosha et al., 2020). Seis de los subconstructos influyeron la ineficacia del aprendizaje (Hong et al., 2021). En los cursos de aprendizaje en línea, hay un proceso claro de aprendizaje antes, durante y después de las clases. Estos tres pasos en el proceso de aprendizaje corresponden con las tres fases del proceso en el modelo del AAR (Adam et al., 2017). El presente estudio profundiza el estudio previo para explorar la relación entre las fases del AAR y la ineficacia del aprendizaje en el contexto del aprendizaje en línea. Por eso, basándose en el modelo del AAR propuesto por Adam et al. (2017), se desarrolló para este estudio el mapa conceptual que se muestra en la Figura 1. Este modelo presenta la relación entre las conductas del ARR de los aprendices durante varias fases de este y sus respectivas influencias en la ineficacia del aprendizaje.

Figura 1. Modelo de investigación. [De izquierda a derecha- Fase preparatoria, Fase de ejecución. (Ineficacia del aprendizaje, H4, Fase de evaluación)]

De acuerdo con Zimmerman (2015), el AAR es un proceso cíclico mediante el cual los aprendices se ven envueltos en tres fases distintas. Boom et al. (2004) presentaron el mapa de competencias del aprendizaje autorregulado, lo que demostró que el proceso de aprendizaje incluye el inicio, la ejecución y la conclusión. La fase de inicio dirige la fase de ejecución, y la fase de ejecución dirige la fase de conclusión. La estrategia de la regulación del estado de ánimo se asocia con estrategias adaptativas como la evaluación (Aldao et al., 2010). El ajuste del estado de ánimo se considera un componente esencial de la fase preparatoria. Por consiguiente, se propusieron las siguientes hipótesis:

H1: La fase preparatoria se relaciona positivamente con la fase de ejecución en el aprendizaje en línea.

H2: La fase de ejecución se relaciona positivamente con la fase de evaluación en el aprendizaje en línea.
Los efectos del aprendizaje en línea autorregulado en la ineficacia del aprendizaje en el contexto de la COVID 19

H3: La fase preparatoria se relaciona positivamente con la fase de evaluación.

El éxito académico tiene relaciones significativas con las conductas de las fases preparatoria (por ejemplo, Lehmann et al., 2014), de ejecución (por ejemplo, Alghamdi et al., 2020) y de evaluación (por ejemplo, Colthorpe et al., 2019). De acuerdo con el modelo del proceso en el AAR de Adam et al (2017), el presente estudio dividió los seis constructos del AAR de Hong et al. (2021) en preparatoria, de ejecución y de evaluación. Hong et al. (2021) encontraron que todos los seis subconstructos del AAR estaban relacionados negativamente con la ineficacia del aprendizaje. Por esto, se plantearon las siguientes hipótesis sobre los efectos de la interacción entre las tres fases del AAR y la ineficacia del aprendizaje:

H4: La fase de evaluación se relaciona negativamente con la ineficacia del aprendizaje en línea de los aprendices.

H5: La fase preparatoria se relaciona negativamente con la ineficacia del aprendizaje en línea de los aprendices.

H6: La fase de ejecución se relaciona negativamente con la ineficacia del aprendizaje en línea de los aprendices.

Metodología

Participantes y procedimiento

Los aprendices de bachillerato tienen que presentar el examen de admisión a la universidad, lo cual es una preocupación para los estudiantes en todo el mundo, especialmente en China. En comparación con otros niveles de educación, el bachillerato es más demandante y el aprendizaje en línea de los aprendices de bachillerato ha recibido una atención considerable por la sociedad durante la pandemia por COVID-19. Por lo tanto, se escogieron estudiantes de bachillerato de diferentes niveles en la provincia de Jiangsu, China como participantes para este estudio. Para adaptar el muestreo intencional, se les invitó a los profesores que dieron cursos en línea a repartir el cuestionario entre sus aprendices entre el 10 y 20 de abril, 2020. Se les informó a todos los participantes que el cuestionario en línea se usaría solo para el presente estudio y que se protegería su privacidad. Un total de 395 aprendices de bachillerato contestaron la encuesta voluntaria y anónimamente. Si los cuestionarios carecen de parámetros necesarios para el análisis de datos, serán descartados, lo que deja 370 muestras para el análisis.

Los participantes de los grados 1 al 3 (M = 2.14, SD = 1.140) incluyeron a 75 varones (20.3%) y 295 mujeres (79.7%), cuyas edades eran entre 15 y 21 años (M = 16.85, SD = 1.156). Además, todos los participantes han tomado clases en línea. De todos los participantes, el promedio de horas de estudio por día fue de 2.40 (SD = 0.847), y el número de cursos en línea ese semestre fue entre dos y nueve (M = 4.72, SD = 1.190). De todos los participantes, el 96% estudió cursos en línea el 50% del tiempo durante ese semestre.
Instrumentos

Los elementos del cuestionario se adaptaron de estudios previos y fueron traducidos al chino por expertos. Se les invitó a tres aprendices de bachillerato a revisar el cuestionario completo y a comentar sobre los elementos para asegurar la legibilidad de los elementos de medición. Cada uno de los elementos se evaluó con la escala de 5 puntos de Likert, desde el 1 para totalmente en desacuerdo hasta el 5 para totalmente de acuerdo, donde el 3 representa neutro. Finalmente, se comprobó la confiabilidad de los constructos.

La medición del AAR en línea

De acuerdo con el instrumento del AAR de Hong et al. (2021), se diseñó la escala del instrumento con 22 elementos que consisten en 6 subconstructos con buena fiabilidad y validez, y que cubren las tres fases. La fase preparatoria incluye ajuste del estado de ánimo y estructuración del entorno; la fase de ejecución incluye la adaptación del manejo del tiempo y estrategias de tareas; y la fase de evaluación incluye la búsqueda de apoyo y la autoevaluación. La fase preparatoria contiene 8 elementos, tales como: “Antes de estudiar en línea, acostumbro terminar el trabajo del curso para evitar distracciones durante la clase en línea”. La fase de ejecución contiende 7 elementos, tales como: “Durante el aprendizaje en línea, adaptaré mi estilo de aprendizaje de acuerdo con el aprendizaje actual”. La fase de evaluación contiene 7 elementos, por ejemplo: “Después de aprender en línea, pongo a prueba y hago un resumen de lo que aprendí”.

La ineficacia del aprendizaje de la medición del aprendizaje en línea

Una buena medición de la eficacia del aprendizaje debe capturar los cambios en el desarrollo afectivo y cognitivo de los estudiantes, que resultan de sus experiencias de aprendizaje. Estudios previos consideraron la ineficacia en vez de la eficacia para evaluar el desempeño de los estudiantes durante el aprendizaje en línea. Por ejemplo, se desarrolló la escala de la ineficacia del aprendizaje en un contexto en línea para medir la ineficacia del aprendizaje de aprendices de universidad en el contexto de la COVID-19 (Hong et al., 2021). Por esto, en este estudio se diseñaron 8 elementos para medir la ineficacia del aprendizaje en línea de aprendices de bachillerato, por ejemplo: “Desde que aprendo en línea, mi confianza para aprender ha disminuido”.

Análisis de datos

De acuerdo con la recomendación de Thompson (2000), el número de muestras debe ser entre 10:1 y 15:1 para el número de variables observadas. El radio del tamaño de la muestra (N = 370) a las variables observadas (30 elementos) es razonable. Se empleó el paquete estadístico SPSS para analizar los datos de todos los 370 aprendices de bachillerato. Después, se usó el SPSS 24 para obtener las estadísticas descriptivas sobre la información de la población y el análisis de correlación. Luego, se
llevó a cabo un análisis factorial confirmatorio para evaluar si el cuestionario satisfacia la fiabilidad y validez por medio de Amos (versión 22.0). Finalmente, se condujo un modelado de ecuaciones estructurales para evaluar el modelo estructural hipotético.

Resultados

Análisis de fiabilidad y validez

Primero, se eliminaron los elementos con un valor de cargas factoriales menores que .50 (Hair et al., 2011). Durante este proceso, se eliminaron elementos con cargas factoriales menores que .50: tres elementos en la fase preparatoria, uno en la fase de ejecución y dos en la fase de evaluación. Después de conducir el análisis factorial confirmatorio, se eliminaron elementos con los valores residuales más altos (Hair et al., 2019): dos en la fase preparatoria y dos en la fase de ejecución. Para cumplir con los criterios, algunos elementos de cada constructo tuvieron que ser removidos: uno en la fase de evaluación y tres en la fase de ineficacia del aprendizaje. El modelo de medición finalmente demostró cumplir con los criterios, con el chi cuadrado dividido por los grados de libertad ($\chi^2/df$) = 2.482, el índice de bondad de ajuste (GFI) = .925, índice de ajuste normado (NFI) = .959, índice de ajuste comparativo (CF I) = .975, error cuadrático medio (RMSEA) =.063. El resto de los 16 elementos, que contienen: 3 elementos de la fase preparatoria, 4 de la fase de ejecución, 4 de la fase de evaluación y 5 de la ineficacia del aprendizaje; se reservaron para un mayor análisis.

En segundo lugar, la confiabilidad compuesta (CR) y el alfa de Cronbach ($\alpha$) se consideraron en conjunto para evaluar la consistencia del modelo interno. Hair et al. (2019) sugieren que la CR debe exceder .70. DeVellis (2012) recomienda que un valor aceptable debe ser superior que .70. Por esto, se considera que un constructor ha conseguido consistencia interna cuando la CR como la $\alpha$ exceden .70. La tabla 1 muestra que la CR de todos los constructos oscilan entre .862 y .939, y $\alpha$ oscila entre .721 y .900. Por consiguiente, los resultados sugieren que la medición de cada variable del constructo en el cuestionario tuvo una confiabilidad y consistencia interna aceptables.

Tercero, se calculó la varianza media extraída del constructo y el factor de la condición de medición variable para comprobar la validez convergente. Cuando la eficacia convergente del constructor es suficiente, el valor de la varianza media extraída debe exceder 50 (Fornell & Larcker, 1981). Además, se satisface el requisito de la validez convergente si el factor de medición del constructo es mayor que .50 (Hair et al., 2019). La tabla 1 indica que la varianza media extraída de todos los constructos excedió a .50 (oscilando entre), y la carga factorial estandarizado de cada elemento también excedió a .50 (oscilando entre .696 y .937). Por consiguiente, el cuestionario tiene una validez convergente aceptable.
### Tabla 1. Análisis de confiabilidad y validez

| Variable latente                  | Elemento de medición | Carga factorial estandarizada | Confiabilidad compuesta (CR) | Varianza media extraída | α de Cronbach |
|----------------------------------|----------------------|--------------------------------|------------------------------|--------------------------|---------------|
| Fase preparatoria (FaP)          | FaP1                 | .748                           |                              |                          |               |
|                                  | FaP2                 | .888                           |                              |                          |               |
|                                  | FaP3                 | .826                           |                              |                          |               |
| Fase de ejecución (FaE)          | FaE1                 | .897                           |                              |                          |               |
|                                  | FaE2                 | .921                           |                              |                          |               |
|                                  | FaE3                 | .922                           |                              |                          |               |
|                                  | FaE4                 | .696                           |                              |                          |               |
| Fase de evaluación (FaEv)        | FaEv1                | .781                           |                              |                          |               |
|                                  | FaEv2                | .803                           |                              |                          |               |
|                                  | FaEv3                | .907                           |                              |                          |               |
|                                  | FaEv4                | .906                           |                              |                          |               |
| Ineficacia del aprendizaje (InA) | InA1                 | .743                           |                              |                          |               |
|                                  | InA2                 | .903                           |                              |                          |               |
|                                  | InA3                 | .921                           |                              |                          |               |
|                                  | InA4                 | .937                           |                              |                          |               |
|                                  | InA5                 | .828                           |                              |                          |               |

Nota: las abreviaciones de las fases del AAR y la ineficacia del aprendizaje no son oficiales, sólo para fines de análisis de los datos del presente estudio.
Análisis de ajuste del modelo

Se examinaron el ajuste del modelo y la importancia estadística de las trayectorias hipotéticas entre las cuatro variables potenciales para probar la estructura del modelo. Kline (2011) sugiere que los valores del índice de bondad de ajuste (GFI), índice de ajuste normado (NFI) e índice de ajuste comparativo (CFI) que excedan a .90; un valor $\chi^2/df$ menor que 3 y un valor de error cuadrático medio (RMSEA) menor que .08 pueden ser considerados generalmente como representantes de un buen ajuste. Los resultados muestran que los datos ($\chi^2/df = 2.466$, GFI = .902, NFI = .904, CFI = .940, RMSEA = .077) tuvieron ajuste aceptable del modelo hipotético. Esto indica que el modelo de hipótesis propuesto en este estudio tiene un buen ajuste.

Análisis de ruta

Los coeficientes de ruta estandarizados ($\beta$) del modelo de este estudio se representan en la figura 2 y en la tabla 2. Los resultados comprueban las hipótesis 1,2,3,4 y 6. La fase preparatoria se relaciona positivamente con la fase de ejecución y de evaluación ($\beta = .808$, $t = 15.695$; y $\beta = .325$, $t = 5.357$, respectivamente). La fase de ejecución se relaciona positivamente con la fase de evaluación ($\beta = .636$, $t = 9.936$). Además, la fase preparatoria no se relaciona significativamente con la ineficacia del aprendizaje ($\beta = -.453$, $t = -4.865$; and $\beta = -.365$, $t = -3.495$, respectivamente). Sin embargo, la fase preparatoria no se relacionó significativamente con la ineficiencia del aprendizaje ($\beta = -.077$, $t = -1.062$). Estos resultados indican que no se comprobó la H5.

| Hipótesis | Ruta       | $\beta$ | SE  | $T$       | Comprobada |
|----------|------------|---------|-----|-----------|------------|
| H1       | FaP→FaE    | .808    | .060| 15.695*   | Sí         |
| H2       | FaE→FaEv   | .636    | .062| 9.936*    | Sí         |
| H3       | FaP→FaEv   | .325    | .068| 5.357*    | Sí         |
| H4       | FaEv→InA   | -.365   | .096| -3.495*   | Sí         |
| H5       | FaP→InA    | -.077   | .075| -1.062    | No         |
| H6       | FaE→InA    | -.453   | .082| -4.865*   | Sí         |

Tabla 2. Coeficientes del modelo hipotético

Nota. $\beta$ = coeficiente estandarizado; H = hipótesis; FaP = fase preparatoria; FaE = fase de ejecución; FaEv = fase de evaluación; Ineficacia del aprendizaje = InA.

* $p < .001$. 

Revista Mexicana de Bachillerato a Distancia, 28(14), agosto, 2022
El coeficiente de determinación ($R^2$) representa la capacidad predictiva del modelo (Fornell & Larcker, 1981), y se considera que valores del $R^2$ mayores que 6 indican un efecto de alto impacto (Sanchez, 2013). El poder explicativo de la fase preparatoria a la fase de ejecución fue de 65.3%, el poder explicativo de la fase preparatoria y la fase ejecución a la fase de evaluación fue de 84.4%, y el poder explicativo de la fase de ejecución y de evaluación a la ineficacia del aprendizaje fue de 74.4%. Por consiguiente, todas las variables tuvieron una buena capacidad predictiva (Hair et al., 2012).

Además, se considera que los valores $f^2$ mayores que .8 tienen un tamaño del efecto alto, un tamaño medio entre .2 y .8; y menos que .2, pequeño (Cohen, 1988). Como se muestra en la figura 2, el $f^2$ osciló entre 1.749 y 5.410, lo que indica que el tamaño del efecto fue bueno. Por esto, se verificaron correctamente las rutas entre las variables del presente estudio (Hair et al., 2019).

Finalmente, se hicieron 5,000 remuestreos Bootstrap para proporcionar evidencia adicional relacionada con la importancia de los efectos indirectos. El 95% del intervalo de confianza (IC) del Bootstrap de los límites superiores e inferiores de los efectos indirectos no incluyó cero, lo que indica que las rutas fueron significativas (Preacher et al., 2007). Fue significativo para el efecto mediado del modelo de estudio ($\beta = -.672$) con 95% de IC desde −.798 hasta −.565, lo que indica que las fases preparatoria y de evaluación del AAR no tenían un efecto mediado en la correlación negativa entre la fase preparatoria y la ineficacia del aprendizaje en línea.
Discusión

El brote de COVID-19 ha provocado que un creciente número de aprendices adopten el aprendizaje en línea, pero la eficacia de este es un tema controvertido. La investigación sobre el AAR ha sido en su mayoría desde una perspectiva macro, por ejemplo, la conducta de aprendizaje, habilidad de aprendizaje y el desempeño académico. Sin embargo, hay una carencia de perspectivas micro sobre el mecanismo de interacción entre las diversas fases del AAR y no es claro cuál fase de la conducta tiene el efecto más fuerte sobre la eficacia del aprendizaje. Al adoptar una perspectiva micro, este estudio se enfocó en explorar de qué manera las fases del AAR de los estudiantes afectan sus percepciones sobre la ineficacia del aprendizaje. Los resultados muestran que las conductas del AAR en la fase preparatoria tuvieron un efecto positivo en las fases de ejecución y evaluación, y la fase de ejecución tuvo una influencia positiva en la fase de evaluación. También se encontró que la fase preparatoria del AAR afecta la ineficacia del aprendizaje al mediar el efecto de las fases de ejecución y de evaluación.

Estudios previos indican que cada proceso en la fase preparatoria comienza las acciones en las que el aprendiz participa cuando llevan a cabo la tarea (Ridgley et al., 2020). Por ejemplo, el estado de ánimo activa la premeditación en el AAR (Lehmann et al., 2014), lo cual comienza las acciones de la fase de ejecución. En este estudio, las conductas en la fase preparatoria tienen un impacto positivo directo en la fase de ejecución, lo que indica que, si la preparación durante la fase preparatoria es suficiente, el proceso de la fase de ejecución será más fácil. Por esto, la H1 fue comprobada positivamente.

El uso de la estrategia y del monitoreo metacognitivo en la fase de ejecución consecuentemente influencia la fase de evaluación, la reflexiona y evalúa su progreso y el logro de objetivos (Ridgley et al., 2020). Por ejemplo, el manejo del tiempo se relaciona con la evaluación, reflexión y reacción (Wolters & Brady, 2020). Los resultados muestran que las conductas en la fase de ejecución tuvieron un efecto positivo sobre la fase de evaluación, lo que indica que los aprendices tendrían un mejor desempeño en la fase de evaluación, de acuerdo con las estrategias de tarea aplicadas y el monitorear activamente la duración en la fase de ejecución, lo que comprueba positivamente la H2.

Los aprendices necesitan controlar factores del entorno tales como el tener acceso a una computadora en casa antes de estudiar (Cai et al., 2020). Se correlacionó la regulación del ánimo con la reevaluación (Aldao et al., 2010). Pekrun et al. (2011) han propuesto que las emociones positivas pueden ser beneficiosas en la mayoría de los casos. Esto puede indicar que los aprendices tendrán un mejor desempeño en la fase de evaluación de acuerdo con el ajuste del estado de ánimo y la estructuración del entorno durante la fase preparatoria. Los resultados de la presente investigación verifican que la fase preparatoria se relaciona positivamente con la fase de evaluación, lo que comprueba la H3.

Tzeng y Nieh (2015) establecen que, en la fase de evaluación, las autoevaluaciones y autorreflexiones conducen a que los aprendices sientan que su aprendizaje fue eficaz y los motive para trabajar con diligencia porque creen que pueden progresar más. Aunado a esto, Zhu et al. (2011) encontraron que los estudiantes que desarrollaron esquemas de búsqueda de apoyo, tales como buscar apoyo en internet, eran más propensos a tener un buen desempeño académico. Al invertir más energía en la autoevaluación y en la búsqueda de apoyo después de los cursos en línea, los aprendices aumentaron su eficacia del aprendizaje. Los resultados de la presente investigación certifican que la fase de evaluación puede predecir negativamente la ineficacia del aprendizaje percibida, comprobando negativamente la H4.
Cosnefroy et al. (2018), al construir un modelo de falla en el aprendizaje autorregulado, muestran que los procesos de planificación afectan el desempeño académico al afectar la fase de ejecución. La situación actual (por ejemplo, ruido) y las características individuales (por ejemplo, el estado de ánimo) influyen en los resultados del aprendizaje (Lehmann et al., 2014). Basada en los estudios mencionados, esta investigación consideró que el AAR más alto, cuando se regula el estado de ánimo y se prepara el entorno para aprender en línea, puede promover la conducta de los aprendices dentro de las fases de ejecución y evaluación; y reduce la ineficacia del aprendizaje. Pese a que en este estudio la fase preparatoria no mostró una influencia directa sobre la ineficacia del aprendizaje, la fase preparatoria se correlacionó con la ineficacia del aprendizaje al mediar el efecto de las otras dos fases. Por consiguiente, no se comprobó la H5.

Los resultados demuestran que la fase de ejecución del AAR tiene un alto efecto indirecto sobre la ineficacia del aprendizaje. Si consideran una variedad de factores tales como estrategia de la tarea y el manejo del tiempo durante los cursos en línea, los aprendices pueden reducir su ineficacia del aprendizaje; algunos estudios previos (por ejemplo, Alghamdi et al., 2020; Wolters & Brady, 2020) reportan resultados similares. Esta investigación demuestra que la estrategia de la tarea y el manejo del tiempo puede tener efectos positivos sobre el desempeño académico y el logro, respectivamente. Por ende, la H6 se comprobó negativamente.

**Conclusiones**

Durante el brote de la COVID-19, el aprendizaje en línea se aplicó extensivamente en la educación. Las maneras para promover la eficacia del aprendizaje en línea en el contexto de la pandemia por COVID-19 es un tema importante. El aprendizaje en línea requiere de la autorregulación y de un enfoque en el aprendiz. El aprendizaje autorregulado juega un papel crucial en el aprendizaje en línea. El presente estudio dividió el AAR en tres fases y exploró la relación del AAR de los estudiantes de bachillerato desde las tres fases y la ineficacia del aprendizaje. Los resultados indican que el AAR tienen un efecto predictivo sobre la eficacia del aprendizaje y altos niveles de AAR pueden reducir la ineficacia del aprendizaje en línea.

**Implicaciones**

La pandemia por COVID-19 ha provocado el cierre de las escuelas en todo el mundo, y el aprendizaje en línea ha sido reemplazado con el aprendizaje a distancia. Este estudio tiene algunas implicaciones para el aprendizaje en línea y la educación a distancia. La prevención y el tratamiento contra la epidemia dirigen al mundo hacia la normalidad. El aprendizaje en la era postpandemia debe integrar el aprendizaje en línea y fuera de línea y maximizar el aprendizaje de los estudiantes (Mei, 2020), resaltando la importancia del aprendizaje en línea y el AAR. La exploración del AAR en línea de los aprendices es propicio para entender la situación actual de este y los puntos para mejorarlo más. Este estudio tiene cierto valor referencial para lidiar con el aprendizaje en línea a futuro y para enfrentar estas emergencias, que pueden suceder en cualquier parte del mundo.
Los efectos del aprendizaje en línea autorregulado en la ineficacia del aprendizaje en el contexto de la COVID-19

La importancia teórica de la presente investigación es la de aclarar los impactos del AAR sobre la ineficacia del aprendizaje durante la pandemia por COVID-19. Este estudio también es para proveer de una contribución práctica, ya que los resultados muestran que la fase preparatoria del AAR afecta la ineficacia del aprendizaje en línea de los aprendices, por medio de las fases de ejecución y evaluación. Las intervenciones del AAR mejoraron eficazmente el desempeño el AAR, el desempeño y el logo académico de los estudiantes (e.g., Jansen et al., 2019). Los docentes de bachillerato pueden aplicar los resultados de este estudio para mejorar la adaptabilidad de los estudiantes en situaciones del AAR, al implementar diferentes intervenciones antes, durante y después de las clases.

Limitaciones e investigación a futuro

Deben señalarse varias limitaciones en este estudio. Primero, el tamaño de la muestra fue pequeño y todos los participantes son de la provincia de Jiangsu, así que es difícil asegurarse de que la muestra representa a las instituciones de bachillerato en todos los niveles. Por esto, la muestra no representa a todos los aprendices chinos de bachillerato. Estudios futuros necesitan recolectar muestras más grandes y representativas para mejorar las conclusiones del estudio.

En segundo lugar, el 80% de la población del presente estudio fueron mujeres, lo cual pudo conducir a un sesgo en la distribución de los resultados. La diferencia de género es un factor potencialmente importante que afecta el AAR y el desempeño de aprendizaje (Bezzina, 2010). Estudios futuros pueden explorar el papel del género, las tres fases del AAR y la ineficacia del aprendizaje.

Además, es cada vez más importante explorar los indicadores del éxito del aprendizaje en línea, a medida que cursos en línea se están volviendo más flexibles y accesibles (Broadbent & Poon, 2015; Su, Ding, & Chen, 2021). Otros factores que no se examinaron en este estudio, tales como la autoeficacia, autodirección, motivación del aprendizaje y satisfacción del aprendizaje, también pueden afectar la ineficacia del aprendizaje en línea percibida por los aprendices. Los investigadores pueden considerar incluir otros factores que puedan afectar la ineficacia del aprendizaje en línea en estudios futuros.

Agradecimientos

El presente estudio fue apoyado en parte por un subsidio de la National Social Science Foundation of China (No. BCA200093) y de la AcademPriority Academic Program Development of Jiangsu Higher Education Institutions en China. Además, este estudio fue apoyado por el Ministry of Science and Technology de Taiwán, bajo el subsidio MOST 109-2511-H-019-004-MY2 y MOST 109-2511-H-019-001.
Referencias

Adam, N. L., Alzahri, F. B., Soh, S. C., Bakar, N. A., & Kamal, N. (2017). Self-regulated learning and online learning: A systematic review. In H. Badioze Zaman, P. Robinson, A. F. Smeaton, T. K. Shih, S. Velastin, T. Terutoshi, A. Jaafar, & N. Mohamad Ali (Eds.), Advances in visual informatics: 5th International Visual Informatics Conference, IVIC 2017, Bangi, Malaysia, November 28–30, 2017, Proceedings (pp. 143–154). https://doi.org/10.1007/978-3-319-70010-6_14

Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review-science direct. Clinical Psychology Review, 30(2), 217–237. https://doi.org/10.1016/j.cpr.2009.11.004

Alghamdi, A., Karpinski, A. C., Lepp, A., & Barkley, J. (2020). Online and face-to-face classroom multitasking and academic performance: Moderated mediation with self-efficacy for self-regulated learning and gender. Computers in Human Behavior, 102, 214–222. https://doi.org/10.1016/j.chb.2019.08.018

Alsancak Sirakaya, D., & Ozdemir, S. (2018). The effect of a flipped classroom model on academic achievement, self-directed learning readiness, motivation and retention. Malaysian Online Journal of Educational Technology, 6(1), 76–91. https://files.eric.ed.gov/fulltext/EJ1165484.pdf

Bahasoan, A. N., Ayuandiani, W., Mukhram, M., & Rahmat, A. (2020). Effectiveness of online learning in pandemic COVID-19. International Journal of Science, Technology & Management, 1(2), 100–106. https://doi.org/10.46729/ijsmt.v1i2.30

Barnard, L., Lan, W. Y., To, Y. M., Paton, V. O., & Lai, S. L. (2009). Measuring self-regulation in online and blended learning environments. The Internet & Higher Education, 12(1), 1–6. https://doi.org/10.1016/j.iheduc.2008.10.005

Bezzina, F. H. (2010). Investigating gender differences in mathematics performance and in self-regulated learning: An empirical study from Malta. Equality, Diversity and Inclusion, 29(7), 669–693. https://doi.org/10.1108/02610151011074407

Boom, G., Paas, F., Merrienboer, J. J. G. V., & Gog, T. V. (2004). Reflection prompts and tutor feedback in a Web-based learning environment: Effects on students’ self-regulated learning competence. Computers in Human Behavior, 20(4), 551–567. https://doi.org/10.1016/j.chb.2003.10.001

Broadbent, J., & Poon, W. L. (2015). Self-regulated learning strategies & academic achievement in online higher education learning environments: A systematic review. The Internet and Higher Education, 27, 1–13. http://doi.org/10.1016/j.iheduc.2015.04.007

Cai, R., Wang, Q., Xu, J. & Zhou, L. (2020). Effectiveness of students’ self-regulated learning during the COVID-19 pandemic. Social Science Electronic Publishing, 34(1), 175–182. https://ssrn.com/abstract=3622569

Carrol, N., & Burke, M. (2010). Learning effectiveness using different teaching modalities. Journal of Business & Economics Research, 8(12), 65–72. http://doi.org/10.19030/ajbe.v3i12.966
Los efectos del aprendizaje en línea autorregulado en la ineficacia del aprendizaje en el contexto de la COVID 19

Charo, R., Maite, A. S., & Guillermo, M. (2020). Self-regulation of learning and MOOC retention. Computers in Human Behavior, 111, Article 106423. https://doi.org/10.1016/j.chb.2020.106423

Chen, P., & Bonner, S. (2020). A framework for classroom assessment, learning, and self-regulation. Assessment in Education Principles Policy and Practice, 27(4), 373–393. https://doi.org/10.1080/0969594X.2019.1619515

Cleary, T. J., Callan, G. L., & Zimmerman, B. J. (2012). Assessing self-regulation as a cyclical, context-specific phenomenon: An overview and analysis of SRL microanalysis protocols. Education Research International, 2012, 1–19. https://doi.org/10.1155/2012/428639

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates. http://www.utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf

Colthorpe, K., Ogiji, J., Ainscough, L., Zimbardi, K., & Anderson, S. (2019). Effect of metacognitive prompts on undergraduate pharmacy students’ self-regulated learning behavior. American Journal of Pharmaceutical Education, 83, Article 6646. https://doi.org/10.5688/ajpe6646

Cosnefroy, L., Fe Nouillet, F., Corinne Mazé, & Bonnefoy, B. (2018). On the relationship between the forethought phase of self-regulated learning and self-regulation failure. Issues in Educational Research, 28(2), 329–348. http://www.iier.org.au/iier28/cosnefroy.pdf

DeVellis, R. F., (2012). Scale development: Theory and applications (3rd ed.). Sage Publications.

Ernesto, P. (2017). A review of self-regulated learning: Six models and four directions for research. Frontiers in Psychology, 8, Article 422. https://doi.org/10.3389/fpsyg.2017.00422

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.1177/002224378101800104

Hadwin, A. F., Järvelä, S., and Miller, M. (2018). Self-regulation, co-regulation and shared regulation in collaborative learning environments. In D. H. Schunk & J. A. Greene (Eds.), Handbook of self-regulation of learning and performance (pp. 83–106). Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9781315697048-6/self-regulation-co-regulation-shared-regulation-collaborative-learning-environments-allyson-hadwin-sanna-%C3%A4vel%C3%A4-mariel-miller

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage. https://www.cengage.co.uk/books/9781473756540/

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP1069-6679190202
Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. *Journal of the Academy of Marketing Science, 40*(3), 414–433. [https://doi.org/10.1007/s11747-011-0261-6](https://doi.org/10.1007/s11747-011-0261-6)

Hong, J. C., Lee, Y. F., & Ye, J. H. (2021). Procrastination predicts online self-regulated learning and online learning ineffectiveness during the coronavirus lockdown. *Personality and Individual Differences, 174*(7), Article 110673. [https://doi.org/10.1016/j.paid.2021.110673](https://doi.org/10.1016/j.paid.2021.110673)

Jansen, R. S., van Leeuwen, A., Janssen, J., Conijn, R., & Kester, L. (2019). Supporting learners’ self-regulated learning in massive open online courses. *Computers & Education, 146*, Article 103771. [https://doi.org/10.1016/j.compedu.2019.103771](https://doi.org/10.1016/j.compedu.2019.103771)

Kline, R. B. (2011). *Principles and practice of structural equation modeling*. The Guilford Press. [https://www.guilford.com/books/Principles-and-Practice-of-Structural-Equation-Modeling/Rex-Kline/9781462523344](https://www.guilford.com/books/Principles-and-Practice-of-Structural-Equation-Modeling/Rex-Kline/9781462523344)

Lee, D., Watson, S. L., & Watson, W. R. (2020). The relationships between self-efficacy, task value, and self-regulated learning strategies in massive open online courses. *International Review of Research in Open and Distance Learning, 21*(1), 23–39. [https://doi.org/10.19173/irrodl.v2015.4389](https://doi.org/10.19173/irrodl.v2015.4389)

Lehmann, T., Haehnlein, I., & Ilfenthaler, D. (2014). Cognitive, metacognitive and motivational perspectives on preflection in self-regulated online learning. *Computers in Human Behavior, 32*, 313–323. [https://doi.org/10.1016/j.chb.2013.07.051](https://doi.org/10.1016/j.chb.2013.07.051)

Liu, X., He, W., Zhao, L., & Hong, J. C. (2021). Gender differences in self-regulated online learning during the COVID-19 lockdown. *Frontiers in Psychology, 12*, Article 752131. [https://doi.org/10.3389/fpsyg.2021.752131](https://doi.org/10.3389/fpsyg.2021.752131)

Maison, S., & Syamsurizal, T. (2019). Learning environment, students’ beliefs, and self-regulation in learning physics: Structural equation modeling. *Journal of Baltic Science Education, 18*(3), 389–403. [https://doi.org/10.33225/jbse/19.18.389](https://doi.org/10.33225/jbse/19.18.389)

Mei, D. (2020, January). Research on multi-integrated online and offline teaching model in the post-epidemic era: Taking numerical analysis course as an example. In *Proceedings of the 2020 5th International Conference on Modern Management and Education Technology (MMET 2020)* (pp. 356–359). Atlantis Press. [https://doi.org/10.2991/assehr.k.201023.072](https://doi.org/10.2991/assehr.k.201023.072)

Moghadari-Koosha, M., Moghadasi-Amiri, M., Cheraghi, F., Mozafari, H., & Zandieh, M. (2020). Self-efficacy, self-regulated learning, and motivation as factors influencing academic achievement among paramedical students: A correlation study. *Journal of Allied Health, 49*(3), e145–e152. [https://pubmed.ncbi.nlm.nih.gov/32877483/](https://pubmed.ncbi.nlm.nih.gov/32877483/)

Mustajab, M., Baharun, H., & Fawa’ledah, Z. (2020). Adapting to teaching and learning during COVID-19: A case of Islamic school’s initiative of self-regulated learning. *Nadwa, 14*(2), 241–264. [https://doi.org/10.21580/nw.2020.14.2.6515](https://doi.org/10.21580/nw.2020.14.2.6515)
Los efectos del aprendizaje en línea autorregulado en la ineficacia del aprendizaje en el contexto de la COVID-19

Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring emotions in students’ learning and performance: The achievement emotions questionnaire (AEQ). *Contemporary Educational Psychology, 36*(1), 36–48. https://doi.org/10.1016/j.cedpsych.2010.10.002

Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M. Boekaerts, P. Pintrich, & M. Zeidner (Eds.), *Handbook of self-regulation: Theory, research, and applications* (pp. 451–502). Academic Press. https://doi.org/10.1016/B978-012109890-2/50043-3

Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. *Multivariate Behavioral Research, 42*(1), 185–227. https://doi.org/10.1080/00273170701341316

Rabin, E., Henderikx, M., Kalman, Y. M., & Kalz, M. (2020). What are the barriers to learners’ satisfaction in MOOCs and what predicts them? The role of age, intention, self-regulation, self-efficacy and motivation. *Australasian Journal of Educational Technology, 36*(3), 119–131. https://doi.org/10.14742/ajet.5919

Ridgley, L. M., Rubenstein, D., & Callan, G. L. (2020). Gifted underachievement within a self-regulated learning framework: Proposing a task-dependent model to guide early identification and intervention. *Psychology in the Schools, 57*(3), 1365–1384. https://doi.org/10.1002/pits.22408

Ruhland, S. K., & Brewer, J. A. (2001). Implementing an assessment plan to document student learning in a two-year technical college. *Journal of Vocational Education Research, 26*, 141–171. https://doi.org/10.5328/JVER26.2.141

Samruayruen, B., Enriquez, J., Natakuatoong, O., & Samruayruen, K. (2013). Self-regulated learning: A key of a successful learner in online learning environments in Thailand. *Journal of Educational Computing Research, 48*(1), 45–69. https://doi.org/10.2190/EC.48.1.c

Sanchez, G. (2013). *PLS path modeling with R*. Trowchez Editions. https://www.gastonsanchez.com/PLS_Path_Modeling_with_R.pdf

Su, Y. S., Ding, T. J., & Chen, M. Y. (2021). Deep learning methods in internet of medical things for valvular heart disease screening system. *IEEE Internet of Things Journal, 8*(23), 16921–16932. https://doi.org/10.1109/JIOT.2021.3053420

Su, Y. S., & Wu, S. Y. (2021). Applying data mining techniques to explore users behaviors and viewing video patterns in converged it environments. *Journal of Ambient Intelligence and Humanized Computing*. https://doi.org/10.1007/s12652-020-02712-6

Thompson, B. (2000). Ten commandments of structural equation modeling. In L. G. Grimm & P. R. Yarnold (Eds.), *Reading and understanding more multivariate statistics* (pp. 261–283). American Psychological Association.

Tuti, T., Paton, C., & Winters, N. (2021). The counterintuitive self-regulated learning behaviours of healthcare providers from low-income settings. *Computers & Education, 168*(1), Article 104136. https://doi.org/10.1016/j.compedu.2021.104136

Revista Mexicana de Bachillerato a Distancia, 28(14), agosto, 2022
Los efectos del aprendizaje en línea autorregulado en la ineficacia del aprendizaje en el contexto de la COVID 19

Tzeng, S., & Nieh, H. (2015, September). How self-concept, self-efficacy and self-evaluation relate to relate to achievement outcomes: New technology-based learning models for science and technology universities students. In Proceedings of 2015 International Conference on Interactive Collaborative Learning (ICL), 20–24 September 2015, Firenze, Italy (pp. 863–870). https://doi.org/10.1109/ICL.2015.7318141

van Herk, H., Poortinga, Y. H., & Verhallen, T. M. M. (2004). Response styles in rating scales: Evidence of method bias in data from six EU countries. Journal of Cross-Cultural Psychology, 35, 346–360. https://doi.org/10.1177/0022022104264126

Wolters, C. A., & Brady, A. C. (2020). College students’ time management: A self-regulated learning perspective. Educational Psychology Review. Advance online publication. https://doi.org/10.1007/s10648-020-09519-z

Won, S., Hensley, L. C., & Wolters, C. A. (2021). Brief research report: Sense of belonging and academic help-seeking as self-regulated learning. The Journal of Experimental Education, 89(1), 1–13. https://doi.org/10.1080/00220973.2019.1703095

Zeidner, M., & Stoeger, H. (2019). Self-regulated learning (SRL): A guide for the perplexed. High Ability Studies, 30(1–2), 9–51. https://doi.org/10.1080/13598139.2019.1589369

Zhang, T., Taub, M., & Chen, Z. (2021, April). Measuring the impact of COVID-19 induced campus closure on student self-regulated learning in physics online learning modules. In LAK21: 11th International Learning Analytics and Knowledge Conference (pp. 110–120). Association for Computing Machinery. https://doi.org/10.1145/3448139.3448150

Zhang, W., Wang, Y., Yang, L., & Wang, C. (2020). Suspending classes without stopping learning: China’s education emergency management policy in the COVID-19 outbreak. Journal of Risk and Financial Management, 13(3), Article 55. https://doi.org/10.3390/jrfm13030055

Zhao, L., He, W., & Su, Y. S. (2021). Innovative pedagogy and design-based research on flipped learning in higher education. Frontiers in Psychology, 12, Article 230. https://doi.org/10.3389/fpsyg.2021.577002

Zhao, L., Liu, X., & Su, Y. S. (2021). The differentiate effect of self-efficacy, motivation, and satisfaction on pre-service teacher students’ learning achievement in a flipped classroom: A case of a modern educational technology course. Sustainability, 13, Article 2888. https://doi.org/10.3390/su13052888

Zhu, Y. Q., Chen, L. Y., Chen, H. G., Chern, C. C. (2011). How does Internet information seeking help academic performance? The moderating and mediating roles of academic self-efficacy. Computers & Education, 57(4), 2476–2484. https://doi.org/10.1016/j.compedu.2011.07.006

Zhu, Y., Zhang, J. H., Au, W., & Yates, G. (2020). University students’ online learning attitudes and continuous intention to undertake online courses: A self-regulated learning perspective.
Los efectos del aprendizaje en línea autorregulado en la ineficacia del aprendizaje en el contexto de la COVID-19

Educational Technology Research and Development, 68, 1485–1519. https://doi.org/10.1007/s11423-020-09753-w

Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An overview. Educational Psychologist, 25(1), 3–17. https://doi.org/10.1207/s15326985ep2501_2

Zimmerman, B. J. (2000). Attaining self-regulation: a social cognitive perspective. In M. Boekaerts, P. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 13–39). Academic Press. https://doi.org/10.1016/B978-012109890-2/50031-7

Zimmerman, B. J. (2015). Self-regulated learning: Theories, measures, and outcomes. In J. D. Wright (Ed.), International encyclopedia of the social & behavioral sciences (2nd ed, pp. 541–546). https://doi.org/10.1016/B978-0-08-097086-8.26060-1

Wei He
Nanjing Normal University
ORCID: 0000-0002-5054-3797

Li Zhao
Nanjing Normal University
ORCID: 0000-0003-1000-1296

Yu-Sheng Su
National Taiwan Ocean University
ORCID: 0000-0002-1531-3363

Traducción: Fernanda Guadalupe Castillo Caballero