On the Complexity of Recognizing Integrality and Total Dual
Integrality of the \(\{0, 1/2\}\)-Closure

Matthias Brugger∗ Andreas S. Schulz∗

Abstract

The \(\{0, 1/2\}\)-closure of a rational polyhedron \(\{x: Ax \leq b\}\) is obtained by adding all
Gomory-Chvátal cuts that can be derived from the linear system \(Ax \leq b\) using multipliers
in \(\{0, 1/2\}\). We show that deciding whether the \(\{0, 1/2\}\)-closure coincides with the integer hull
is strongly NP-hard. A direct consequence of our proof is that, testing whether the linear
description of the \(\{0, 1/2\}\)-closure derived from \(Ax \leq b\) is totally dual integral, is strongly
NP-hard.

1 Introduction

Let \(P = \{x \in \mathbb{R}^n : Ax \leq b\}\) with \(A \in \mathbb{Z}^{m \times n}\) and \(b \in \mathbb{Z}^m\) be a rational polyhedron. The integer
hull of \(P\) is denoted by \(P_I = \text{conv}(P \cap \mathbb{Z}^n)\). Any inequality of the form \(u^T Ax \leq \lfloor u^T b \rfloor\)
where \(u \in \mathbb{R}_{\geq 0}^m\) and \(u^T A \in \mathbb{Z}^n\) is valid for \(P_I\). Inequalities of this kind are called Gomory-Chvátal
cuts [5, 16]. The intersection of all halfspaces corresponding to Gomory-Chvátal cuts yields the Gomory-Chvátal closure \(P'\) of \(P\). In fact, \([0, 1)\]-valued multipliers \(u\) suffice (see, e.g., [7]), i.e.,

\[
P' = \{x \in P : u^T Ax \leq \lfloor u^T b \rfloor, u \in [0, 1)^m, u^T A \in \mathbb{Z}^n\}.
\]

Caprara and Fischetti [4] introduced the family of Gomory-Chvátal cuts with multipliers
\(u \in \{0, 1/2\}^m\). We refer to them as \(\{0, 1/2\}\)-cuts. The \(\{0, 1/2\}\)-closure of \(P\) is defined as

\[
P_{1/2}(A, b) := \{x \in P : u^T Ax \leq \lfloor u^T b \rfloor, u \in \{0, 1/2\}^m, u^T A \in \mathbb{Z}^n\}.
\]

Note that \(P_{1/2}(A, b)\) depends on the system \(Ax \leq b\) defining the polyhedron \(P\). From the
definition, it follows that \(P_I \subseteq P' \subseteq P_{1/2}(A, b) \subseteq P\).

\(\{0, 1/2\}\)-cuts are prominent in polyhedral combinatorics; examples of classes of inequalities
that can be derived as \(\{0, 1/2\}\)-cuts include the blossom inequalities for the matching polytope [5,11] and the odd-cycle inequalities for the stable set polytope [14]. Both classes of inequalities
can be separated in polynomial time [14,20]. In general, though, separation (and, thus, optimization) over the \(\{0, 1/2\}\)-closure of polyhedra is NP-hard: Caprara and Fischetti [4] show that the following membership problem for the \(\{0, 1/2\}\)-closure is strongly coNP-complete (see also [13, Theorem 2]).

Given \(A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m\) and \(\hat{x} \in \mathbb{Q}^n\) such that \(\hat{x} \in P := \{x \in \mathbb{R}^n : Ax \leq b\}\),
decide whether \(\hat{x} \in P_{1/2}(A, b)\).

∗Operations Research, Department of Mathematics, Technische Universität München, Germany.
E-mail: \{matthias.brugger, andreas.s.schulz\}@tum.de
Supported by the Alexander von Humboldt Foundation with funds from the German Federal Ministry of
Education and Research (BMBF).
The membership problem remains strongly coNP-complete even when $Ax \leq b$ defines a polytope in the 0/1 cube, as shown by Letchford, Pokutta and Schulz [19]. It is, however, well known that testing membership in the Gomory-Chvátal closure belongs to NP \cap coNP if restricted to polyhedra P with $P' = P_I$ (see, e.g., [1]), which naturally includes all polyhedra P whose $\{0, \frac{1}{2}\}$-closure coincides with P_I. For instance, the relaxation of the matching polytope given by nonnegativity and degree constraints has this property: If we add the blossom inequalities, the resulting linear system is sufficient to describe the integer hull [11], and it is even totally dual integral (TDI) [10]. This motivates the following research questions that are the subject of this paper: What is the computational complexity of recognizing rational polyhedra whose $\{0, \frac{1}{2}\}$-closure coincides with the integer hull, and of deciding whether adding all $\{0, \frac{1}{2}\}$-cuts produces a TDI system?

Related questions for the Gomory-Chvátal closure have been studied by Cornuéjols and Li [9]. They prove that, given a rational polyhedron P with $P_I = \emptyset$, deciding whether $P' = \emptyset$ is weakly NP-complete. This immediately implies weak NP-hardness of verifying $P' = P_I$. Cornuéjols, Lee and Li [8] extend these hardness results to the case when P is contained in the 0/1 cube. Moreover, they show that deciding whether a constant number of Gomory-Chvátal inequalities is sufficient to obtain the integer hull is weakly NP-hard, even for polytopes in the 0/1 cube. In this paper, we establish analogous hardness results for the $\{0, \frac{1}{2}\}$-closure. Our main result is the following theorem, where $\mathbb{1}$ denotes the all-one vector.

Theorem 1. Given $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$ with $P := \{x \in \mathbb{R}^n : Ax \leq b\} \subseteq [0, 1]^n$, deciding whether $P_1(A, b) = P_I$ is strongly NP-hard, even when the inequalities $-x \leq 0$ and $x \leq 1$ are part of the system $Ax \leq b$.

We give a proof of this theorem in the next section. Our proof implies several further hardness results, which we explain in Section 3. In particular, deciding whether adding all $\{0, \frac{1}{2}\}$-cuts to a given linear system $Ax \leq b$ produces a TDI system, is strongly NP-hard. We also establish strong NP-hardness of the following problems: deciding whether the $\{0, \frac{1}{2}\}$-closure coincides with the Gomory-Chvátal closure; deciding whether a constant number of $\{0, \frac{1}{2}\}$-cuts suffices to obtain the integer hull. Finally, we give a hardness result for the membership problem for the $\{0, \frac{1}{2}\}$-closure, which is slightly stronger than the one of Letchford, Pokutta and Schulz [19].

2 **Proof of Theorem 1**

Proof of Theorem 1. We reduce from **STABLE SET**:

Let $G = (V, E)$ be a graph and $k \in \mathbb{N}, k \geq 2$. Does G have a stable set of size at least k?

It is well known that **STABLE SET** is strongly NP-hard [18]. Note that the problem remains strongly NP-hard if restricted to graphs with minimum degree at least 2: Given an instance of **STABLE SET** specified by G and k, we construct a new graph G' by adding two dummy nodes to G as well as all edges with at least one endpoint being a dummy node. Every node in G' has degree at least 2, and every stable set in G' of size $k \geq 2$ is a stable set in G of the same size.

Consider an instance of **STABLE SET** given by $G = (V, E)$ and $k \geq 2$. By the above observation, we may assume that every node in V has degree at least 2. Note that $|V| = n \geq 3$ and $|E| = m \geq 3$ in this case. Let $A := 2 \cdot \mathbb{1}^T - M^T$ where $M \in \{0, 1\}^{m \times n}$ denotes the edge-node incidence matrix of G and $\mathbb{1}$ is the all-one vector of appropriate dimension. We
define a polytope $P \subseteq \mathbb{R}^m$ by the following system of inequalities:

\[0 \leq x \leq 1 \quad (1) \]
\[Ax \leq 2 \cdot 1 \quad (2) \]
\[(2k - 3)1^T x \geq 2k - 3 \quad (3) \]

Claim 1. $P_I = \{ x \in P : 1^T x = 1 \}$.

Proof of Claim 1. If we add all inequalities in (2), we obtain the valid inequality $2(n-1)1^T x \leq 2n$. Every integral point x in P therefore satisfies $1^T x = 1$. Since $A \in \{1, 2\}^{n \times m}$, it is easy to check that every unit vector is indeed contained in P. We conclude that

\[
P_I = \{ x \in [0,1]^m : 1^T x = 1 \} \supseteq \{ x \in P : 1^T x = 1 \} \supseteq P_I.
\]

The $\{0, \frac{1}{2}\}$-cuts that can be derived from (1)–(3) are all the inequalities of the following two types with $u \in \{0, \frac{1}{2}\}^n$ and $v \in \{0, \frac{1}{2}\}^m$:

\[
\sum_{i=1}^m (2u^T 1 + [v_i - (Mu)_i]) x_i \leq 2u^T 1 + [v^T 1] \quad (4)
\]
\[
\sum_{i=1}^m (2u^T 1 - (k - 1) + [\frac{1}{2} + v_i - (Mu)_i]) x_i \leq 2u^T 1 - (k - 1) + [\frac{1}{2} + v^T 1] \quad (5)
\]

The first type (4) defines all cuts that are derived only from (1) and (2), whereas the second type (5) also uses inequality (3). The vector u is the vector of multipliers for inequalities (2) while v collects the multipliers for the upper bounds in (1).

In what follows, $P_{\frac{1}{2}}$ denotes the $(0, \frac{1}{2})$-closure of P defined by (1)–(3) together with (4) and (5) for all $u \in \{0, \frac{1}{2}\}^n$ and $v \in \{0, \frac{1}{2}\}^m$.

Claim 2. $P_{\frac{1}{2}} = P_I$ if and only if there is a $\{0, \frac{1}{2}\}$-cut equivalent to $1^T x \leq 1$.

Proof of Claim 2. If there is such a cut, then $P_{\frac{1}{2}} \subseteq \{ x \in P : 1^T x \leq 1 \} = P_I$ by Claim 1. To see the “only if” part, consider the vector $y = (\frac{n}{m} + \varepsilon)1$ for some small $\varepsilon > 0$. Clearly, $y \notin P_I$ since $1^T y > 1$. We claim that there is a choice for ε such that $y \in P$ and y satisfies all $\{0, \frac{1}{2}\}$-cuts except those that are equivalent to $1^T x \leq 1$. First observe that every cut (of either type (4) or (5)) as well as every inequality in (2) and (3) may be written as $a^T x \leq \alpha$ for some $a \in \mathbb{Z}^m, \alpha \in \mathbb{Z}$ where $a_i \leq \alpha$ for all $i \in [m]$ and $\alpha \leq m + n$. If $\alpha \leq 0$, we clearly have $a^T y \leq \alpha$ since $y \geq \frac{1}{m}$. If $\alpha > 0$ and $a^T x \leq \alpha$ is not equivalent to $1^T x \leq 1$, then $a_i < \alpha$ for at least one $i \in [m]$. It follows that $a^T y \leq \alpha - \frac{1}{m} + \varepsilon (m \alpha - \alpha - 1)$. For instance, taking $\varepsilon := \frac{2}{m^2 (m + n)}$ yields $a^T y \leq \alpha$ as desired.

In particular, the proof of Claim 2 shows that the inequality $1^T x \leq 1$ is not valid for P.

Claim 3. No cut of type (4) is equivalent to $1^T x \leq 1$.

Proof of Claim 3. Let $u \in \{0, \frac{1}{2}\}^n$ and $v \in \{0, \frac{1}{2}\}^m$. If $u = 0$, (4) is dominated by the sum of the inequalities $[v_i - (Mu)_i] x_i \leq 0$ for all $i \in [m]$. Note that these are valid for P since $[v_i - (Mu)_i] \leq 0$ for all $i \in [m]$. If $v = 0$, the cut (4) is a trivial cut which is only derived from inequalities in the description of P with even right-hand sides. Hence, we may assume that both $u \neq 0$ and $v \neq 0$. It suffices to show that $[v_i - (Mu)_i] < [v^T 1]$ for at least one $i \in [m]$. If $v^T 1 \geq 1$, there is nothing to show. Now let $v^T 1 = \frac{1}{2}$ and suppose for the sake of contradiction that $[v_i - (Mu)_i] \geq 0$ for all $i \in [m]$. It follows that $Mu \leq v$. Since every column of M has at least two nonzero entries by assumption, we obtain $u = 0$, a contradiction.

\[
\diamond
\]
Claim 4. A cut of type \([5]\) induced by \(u \in \{0, \frac{1}{2}\}^n\) and \(v \in \{0, \frac{1}{2}\}^m\) is equivalent to \(1^T x \leq 1\) if and only if \(v = 0, 2Mu \leq 1,\) and \(2u^T 1 \geq k\).

Proof of Claim 4. Suppose first that \(v \neq 0\). Then, for every \(i \in [m]\), we have \(\left[\frac{1}{2} + v_i - (Mu)_i\right] \leq 1 \leq \left[\frac{1}{2} + v^T 1\right].\) This holds with equality for all \(i \in [m]\) simultaneously only if \(v_i = \frac{1}{2}\) and \(v^T 1 \leq 1\), contradicting \(m \geq 3\). Thus, no inequality of the form \([5]\) with \(v \neq 0\) has identical coefficients that coincide with the right-hand side. We may therefore assume that \(v = 0\).

If \(2u^T 1 \leq k - 1\), inequality \([5]\) is redundant: It is the sum of the inequalities \((2u^T 1 - (k - 1))1^T x \leq 2u^T 1 - (k - 1)\) and \(\left[\frac{1}{2} - (Mu)_i\right] x_i \leq 0\) for all \(i \in [m]\), all of which are valid for \(P\). Assuming that \(2u^T 1 \geq k\), inequality \([5]\) is equivalent to \(1^T x \leq 1\) if and only if \((Mu)_i \leq \frac{1}{2}\) for all \(i \in [m]\).

Putting together Claims 2 to 4, we conclude that \(P_{1/2} = P_1\) if and only if there exists some \(u \in \{0, \frac{1}{2}\}^n\) such that \(2u\) is the incidence vector of a stable set in \(G\) of size at least \(k\). □

3 Further hardness results

A careful analysis of the proof of Theorem 1 shows that, if the polytopes \(P\) constructed in the reduction satisfy \(P_{1/2} = P_1\), there is a single \(\{0, \frac{1}{2}\}\)-cut that certifies this (see Claim 2). This observation immediately implies the following corollary.

Corollary 1. Let \(k \in \mathbb{N}\) be a fixed constant. Given \(A \in \mathbb{Z}^{m \times n}\) and \(b \in \mathbb{Z}^m\) with \(P := \{x \in \mathbb{R}^n : Ax \leq b\} \subseteq [0, 1]^n\), deciding whether one can obtain \(P_1\) by adding at most \(k\) \(\{0, \frac{1}{2}\}\)-cuts is strongly NP-hard, even when \(k = 1\), and \(-x \leq 0\) and \(x \leq 1\) are part of the system \(Ax \leq b\).

Moreover, let us remark that \(P' = P_1\) for the polytopes \(P\) arising from the reduction. This follows from the fact that for \(n \geq 3\), the inequality \(1^T x \leq \lfloor 2n/2(n-1) \rfloor = 1\) is a Gomory-Chvátal cut for \(P\), see the proof of Claim 4.

Corollary 2. Given \(A \in \mathbb{Z}^{m \times n}\) and \(b \in \mathbb{Z}^m\) with \(P := \{x \in \mathbb{R}^n : Ax \leq b\} \subseteq [0, 1]^n\), deciding whether \(P_{1/2}(A, b) = P'\) is strongly NP-hard, even when \(-x \leq 0\) and \(x \leq 1\) are part of the system \(Ax \leq b\).

The linear systems arising from our reduction have another interesting property. The inequality description \([1]–[5]\) of \(P_{1/2}\) in the proof of Theorem 1 is a TDI system if and only if \(P_{1/2} = P_1\). This can be seen as follows. Since any polyhedron defined by a TDI system with integer right-hand sides is integral \([12]\), it suffices to show the “if” part. Suppose that \(P_{1/2} = P_1\).

By the proof of Theorem 1, there exist vectors \(u', u'' \in \{0, \frac{1}{2}\}^n\) such that \(2Mu' \leq 1, 2Mu'' \leq 1, \) \(2(u')^T 1 = k\), and \(2(u'')^T 1 = k - 2 \geq 0\) (see Claim 4). The cuts of type \([3]\) derived with \(u'\) and \(u''\) (where we take \(v = 0\)) are the inequalities \(1^T x \leq 1\) and \(-1^T x \leq -1\), respectively. The system defined by these two inequalities and \(x \geq 0\) is a subsystem of \([1]–[5]\) that is sufficient to describe \(P_{1/2}\) (see Claim 1) and that is readily seen to be TDI: Let \(c \in \mathbb{Z}^m\). We can assume w.l.o.g. that \(c_1\) is the largest coefficient of \(c\). It follows that \(\max\{c^T x : x \in P_{1/2}\} = c_1\). It suffices to show that the inequality \(c^T x \leq c_1\) is a nonnegative integer linear combination of the selected subsystem. Indeed, it is the sum of \(c_1 1^T x \leq c_1\) (which is a nonnegative integer multiple of \(1^T x \leq 1\) or \(-1^T x \leq -1\)) and \(-(c_1 - c_i)x_i \leq 0\) for all \(i \in [m]\). The above argument shows the following result.

Corollary 3. Let \(A \in \mathbb{Z}^{m \times n}\) and \(b \in \mathbb{Z}^m\). Deciding whether the system given by \(Ax \leq b\) and all \(\{0, \frac{1}{2}\}\)-cuts derived from it is TDI, is strongly NP-hard, even when \(-x \leq 0\) and \(x \leq 1\) are part of the system \(Ax \leq b\).
Further note that the presence of the constraints \(x \leq 1 \) in (1) is not essential for our reduction in the proof of Theorem 1. In fact, the upper bounds are redundant: For every \(i \in [m] \), consider a row of \(A \) such that the entry in column \(i \) is equal to 2. Such a row exists because \(n \geq 3 \). The corresponding inequality in (2) together with the nonnegativity constraints \(-x_j \leq 0 \) (possibly twice) for all \(j \neq i \) yields \(2x_i \leq 2 \) for all \(x \in P \). As the only relevant cuts among (4) and (5) are those with \(v = 0 \), we conclude that all of the above results still hold true when the upper bounds \(x \leq 1 \) are not part of the input.

Another byproduct of our proof of Theorem 1 is that the membership problem for the \{0, \frac{1}{2}\}-closure of polytopes in the 0/1 cube is strongly coNP-complete. This has already been shown by Letchford, Pokutta and Schulz [19]. However, neither of the two different reductions given in [19] constructs linear systems that include both nonnegativity constraints and upper bounds on every variable. When these constraints are required to be part of the input, membership testing remains strongly coNP-complete, as the following result shows.

Corollary 4. The membership problem for the \{0, \frac{1}{2}\}-closure of polytopes contained in the 0/1 cube is strongly coNP-complete, even when the inequalities \(-x \leq 0 \) and \(x \leq 1 \) are part of the input.

Proof. The problem clearly belongs to coNP. To show hardness, we use the same reduction from Stable Set as in the proof of Theorem 1. The vector \(y \) defined in the proof of Claim 2 satisfies \(y \notin P_{\frac{1}{2}} \) if and only if the instance of Stable Set is a “yes” instance. The encoding length of \(y \) is polynomial in \(m \) and \(n \) if we choose \(\varepsilon \) as in Claim 2.

4 Concluding remarks

It is worth pointing out that the problem of recognizing integrality of the \{0, \frac{1}{2}\}-closure is in coNP when the membership problem for the \{0, \frac{1}{2}\}-closure can be solved in polynomial time: If \(P = \{ x : Ax \leq b \} \) is a rational polyhedron with \(P_{\frac{1}{2}}(A,b) \neq P_I \), it suffices to exhibit a fractional vertex \(\hat{x} \) of \(P_{\frac{1}{2}}(A,b) \) along with a corresponding basis. Then one can verify in polynomial time that \(\hat{x} \in P_{\frac{1}{2}}(A,b) \) and that \(\hat{x} \) is indeed a vertex. This observation can be found in [17, Chapter 9] where it is stated in the context of recognizing t-perfect graphs. These are the graphs whose stable set polytope is determined by nonnegativity and edge constraints together with the odd-cycle inequalities [6]. In fact, the odd-cycle inequalities can be derived as \{0, \frac{1}{2}\}-cuts from the other two classes of inequalities [14]. This means that a graph is t-perfect if and only if the \{0, \frac{1}{2}\}-closure of the relaxation of its stable set polytope given by nonnegativity and edge constraints is integral. Since a separating odd-cycle inequality can be found in polynomial time [14], recognizing t-perfection is in coNP. Whether this problem is in NP or in P is not known (see [17, Chapter 9]). However, some classes of t-perfect graphs are known to be polynomial-time recognizable, including claw-free t-perfect graphs [2] and bad-K\(_4 \)-free graphs [15]. Interestingly, for these two classes of graphs, the linear system in [6] that determines the stable set polytope is TDI [3, 21]. It is not known whether this holds true for t-perfect graphs in general (see [22]).

References

[1] S. Boyd, W. R. Pulleyblank. Facet generating techniques. In: W. Cook, L. Lovász, J. Vygyn (eds.), *Research Trends in Combinatorial Optimization*, Springer, pp. 33–55 (2009)
[2] H. Bruhn, O. Schaudt. Claw-free t-perfect graphs can be recognized in polynomial time. *SIAM J. Discrete Math.* **30.2**, 832–855 (2016)

[3] H. Bruhn, M. Stein. t-perfection is always strong for claw-free graphs. *SIAM J. Discrete Math.* **24.3**, 770–781 (2010)

[4] A. Caprara, M. Fischetti. \{0, 1/2\}-Chvátal-Gomory cuts. *Math. Prog.* **74**, 221–235 (1996)

[5] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. *Discrete Math.* **4.4**, 305–337 (1973)

[6] V. Chvátal. On certain polytopes associated with graphs. *J. Comb. Theory Ser. B* **18**, 138–154 (1975)

[7] M. Conforti, G. Cornuéjols, G. Zambelli. *Integer Programming*, Springer (2014)

[8] G. Cornuéjols, D. Lee, Y. Li. On the rational polytopes with Chvátal rank 1. *Math. Prog.* **179**, 21–46 (2020)

[9] G. Cornuéjols, Y. Li. When the Gomory-Chvátal closure coincides with the integer hull. *Oper. Res. Lett.* **46.2**, 251–256 (2018)

[10] W. H. Cunningham, A. B. Marsh. A primal algorithm for optimum matching. In: M. L. Balinski, A. J. Hoffman (eds.), *Polyhedral Combinatorics*, Springer, pp. 50–72 (1978)

[11] J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. *J. Res. Natl. Bur. Stand.* **69**, 125–130 (1965)

[12] J. Edmonds, R. Giles. A min-max relation for submodular functions on graphs. *Ann. Discrete Math.* **1**, 185–204 (1977)

[13] F. Eisenbrand. On the membership problem for the elementary closure of a polyhedron. *Combinatorica* **19.2**, 297–300 (1999)

[14] A. M. H. Gerards, A. Schrijver. Matrices with the Edmonds-Johnson property. *Combinatorica* **6.4**, 365–379 (1986)

[15] A. M. H. Gerards, F. B. Shepherd. The graphs with all subgraphs t-perfect. *SIAM J. Discrete Math.* **11.4**, 524–545 (1998)

[16] R. E. Gomory. An algorithm for integer solutions to linear programs. In: R. L. Graves, P. Wolfe (eds.), *Recent Advances in Mathematical Programming*, McGraw-Hill, pp. 269–302 (1963)

[17] M. Grötschel, L. Lovász, A. Schrijver. *Geometric Algorithms and Combinatorial Optimization*, Springer (1988)

[18] R. M. Karp. Reducibility among combinatorial problems. In: R. E. Miller, J. W. Thatcher, J. D. Bohlinger (eds.), *Complexity of Computer Computations*, Springer, pp. 85–103 (1972)

[19] A. N. Letchford, S. Pokutta, A. S. Schulz. On the membership problem for the \{0, 1/2\}-closure. *Oper. Res. Lett.* **39.5**, 301–304 (2011)

[20] M. W. Padberg, M. R. Rao. Odd minimum cut-sets and b-matchings. *Math. Oper. Res.* **7.1**, 67–80 (1982)
[21] A. Schrijver. Strong t-perfection of bad-K_4-free graphs. *SIAM J. Discrete Math.* **15.3**, 403–415 (2002)

[22] A. Schrijver. *Combinatorial Optimization. Polyhedra and Efficiency*, Springer (2003)