THERMAL EXPANSION AND MAGNETOSTRICTION STUDIES OF A KONDO LATTICE COMPOUND: CeAgSb$_2$

D.T. Adroja1, P.C. Riedi2, J.G.M. Armitage2 and D. Fort3

1ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, Ox11 0QX, UK.
2J.F. Allen Research Laboratories, School of Physics and Astronomy, University of St. Andrews, KY16 9SS, Scotland, UK
3School of Metallurgy and Materials, University of Birmingham, B15 2TT, UK

We have investigated a single crystal of CeAgSb$_2$ using low field ac-susceptibility, thermal expansion and magnetostriction measurements. The thermal expansion coefficient α, exhibits highly anisotropic behaviour between 3K and 80K: α (for $\Delta L/L)$ $\perp c$ exhibits a sharp peak at T_N followed by a broad maximum at 20K, while a sharp negative peak at T_N followed by a minimum at 20K has been observed for ($\Delta L/L\parallel c$) the c direction. The observed maximum and minimum in $\alpha(T)$ at 20K have been attributed to the crystalline field effect (CEF). The magnetostriction (MS) also exhibits anisotropic behaviour with a large MS along the c-axis.

PACS numbers: 75.30.M, 65.40.D, 75.80 Abstract Ref: HF002PO

Recent studies on RAgSb$_2$ (R=rare earth) compounds have shown that these compounds crystallize in the tetragonal ZrCuSi$_2$ type structure [1-6]. Among these compounds, CeAgSb$_2$ is the most interesting. The resistivity and thermoelectric power of CeAgSb$_2$ show a typical Kondo lattice behaviour [1]. The magnetization exhibits strongly anisotropic behaviour with the easy c-axis of magnetization in the magnetic ordered state (probably a complex antiferromagnetic (AFM) state with a FM component) below 10K, while in the paramagnetic state there is an easy ab-plane [1,5]. The magnetization isotherm at 2K shows that the easy magnetization direction changes from the c-axis to the ab-plane above 1T field with the saturated moment $\mu^{sat}=1.1\mu_B$/Ce-ion for $B\perp c$ and $0.37\mu_B$/Ce-ion for $B\parallel c$ at 5.5T field. The neutron diffraction measurements at 2K show the presence of only a single magnetic Bragg peak, (1 0 1), with moment of $0.33\mu_B$/Ce-ion [5]. The zero-field μSR study shows well-defined frequency oscillations
with an anomalously low internal field of 53mT at the muon site, which is in agreement with the extremely low frequency (0.25MG) observed in a Shubnikov-de Haas study [4, 6].

In the present work we have investigated a single crystal of CeAgSb$_2$ using ac-susceptibility (χ_{ac}), thermal expansion, and magnetostriction measurements with the aim of throwing more light on the complex electronic and magnetic ground state. The single crystal of CeAgSb$_2$ was grown in an evacuated BN-crucible at 1350°C by the Bridgemann method. The inductive component, $\chi'_{ac}(T)$ of the ac-susceptibility of CeAgSb$_2$ single crystal with $B_{ac}(5G) \parallel c$, exhibits a sharp peak at 9.7K which is due to the magnetic ordering of the Ce-moments (inset of Fig.1). $\chi'_{ac}(T)$ for $B_{ac} \perp c$ also exhibits a similar peak, but the peak height is only 27% of $B_{ac} || c$. The c-axis is therefore the easy magnetization direction at low temperature, which is in agreement with the dc magnetization study [4]. It would be interesting to compare the $\chi'_{ac}(T)$ signal of CeAgSb$_2$ with that from the ferromagnetic CePdSb [7]. Well below T_N (or T_C) $\chi'_{ac}(T)$ of CeAgSb$_2$ is very small, while that of CePdSb retains about 92% of its peak value. This again implies that the magnetic ground state of CeAgSb$_2$ is more complicated than that of a simple AFM or FM.

Fig.1 shows the linear thermal expansion ($\text{TE} = \Delta L/L$) as a function of temperature for CeAgSb$_2$ single crystal parallel to c-axis ($\text{TE} || c$) and perpendicular to c-axis ($\text{TE} \perp c$) along with the isostructural nonmagnetic reference polycrystalline LaAgSb$_2$. $\Delta L/L$ of LaAgSb$_2$ exhibits a typical behaviour expected for the thermally excited phonons. On the other hand, $\Delta L/L$ of CeAgSb$_2$ shows highly anisotropic behaviour, positive for $\text{TE} \perp c$ and negative for $\text{TE} || c$, with a sudden change at T_N in both the directions. The magnetic contribution to the thermal expansion coefficient, $\alpha_M(T)$ of CeAgSb$_2$ along both the directions was estimated by subtracting $\alpha(T)$ of LaAgSb$_2$. $\alpha_M(T)$ exhibits a sharp peak and a broad peak at T_N and 20K, positive for $\text{TE} \perp c$ and negative for $\text{TE} || c$, respectively. It should be noted that the $\alpha_M(T)$ of polycrystalline CeAgSb$_2$ also shows a broad peak at 18K, but no clear peak at T_N [3]. The absence of the peak at T_N in the polycrystalline sample might be due to the cancellation of positive (for $\text{TE} \perp c$) and negative (for $\text{TE} || c$) contributions observed in the single crystal. The sharp peak at T_N in CeAgSb$_2$ single crystal arises due to the development of anisotropic spin-spin correlations because of the magnetic ordering of Ce-moments. On the other hand the broad peak (maximum and minimum) at 20K in both the directions has been attributed to the CEF effect on the $J=5/2$ state of the Ce$^{3+}$ ion. This is consistent with our recent high resolution inelastic neutron scattering measurements on CeAgSb$_2$, which show two well defined crystal field excitations, at 5.1meV and 12.4meV, as expected for the tetragonal point symmetry of the Ce ion [8]. It is interesting
to note that the observed anisotropic behaviour of \(\alpha_M(T) \) of CeAgSb\(_2\) is very similar to that observed for CeRhIn\(_5\) single crystal, which also has the tetragonal crystal structure [9]. The calculated \(\alpha_M(T) \) for CeRhIn\(_5\) on the basis of the CEF model exhibits a maximum and minimum around 25K for [100] and [001] directions, respectively [9]. In order to investigate the effect of magnetic field on the \(\alpha_M(T) \) of CeAgSb\(_2\), we have measured \(\alpha_M(T) \) in an applied magnetic field of 8T (Fig.2). The observed sharp peak at \(T_N \) in zero field was almost suppressed in 8T field for both the directions.

We estimated the value of \(dT_N/dP = -0.088 \) (K/kbar), using the Ehrenfest relation and the heat capacity data from Ref.[2], which is in good agreement with the experimentally measured value of -0.095 (K/kbar) on the polycrystalline CeAgSb\(_2\) [3]. The negative sign of \(dT_N/dP \) indicates that CeAgSb\(_2\) is on the right-hand side of the Doniach phase diagram [3].

Fig.3 shows the magnetostriction (MS) isotherms measured at various temperatures for \((\Delta L/L)_c \) and \((\Delta L/L)_{\perp c} \) with applied fields \(B||c \) and \(B\perp c \) directions. MS exhibits highly anisotropic behaviour with the largest length change for \((\Delta L/L)_c \). Between 14K and 20K MS exhibits a quadratic behaviour, for all measured directions (Figs.3a-d), that could be understood on the basis of the free energy of the system in an applied field. An interesting behaviour of MS is observed for \((\Delta L/L)_{\perp c} \) and \(B\perp c \) geometry at low temperatures (Fig.3d). At 3K MS exhibits a peak at 3.3T, which is consistent with the observed peak in the magnetoresistance measurements and has been attributed to the field induced transition to the easy ab-plane of magnetization [4]. Furthermore, with increasing temperature from 3K, the position of the peak moves to a lower field, which indicates that the smaller critical field for the field induce transition. A small hysteresis in MS was observed at 3K suggesting the presence of a FM component. This result along with the absence of the domain walls contribution at low fields in MS of CeAgSb\(_2\) indicates that the magnetic ground state is not a simple FM, but a complex AFM.

In conclusion, thermal expansion and magnetostriction measurements of CeAgSb\(_2\) single crystal exhibit highly anisotropic behaviour. These results indicate that the anisotropic magnetic exchange and CEF-anisotropy are playing an important role.

[1] M. Houshiar et al, J. Magn. Magn. Mater, 140-144, 1232 (1995)
[2] Y. Muro et al, J. Alloys and Comp., 257, 23 (1997)
[3] M.J. Thornton et al, J. Phys. Cond. Matter, 10, 9485 (1998)
[4] K.D. Myers et al, J. Magn. Magn. Meter, 205, 27 (1999); K.D. Mayers et al, Phys. Rev. B60, 13371, (1999)
[5] G. Andre et el, Physica B292, 176 (2000)
[6] J.A. Dann et al, Physica B, 289-290, 38 (2000)
Figure captions

Fig 1. Linear thermal expansion ($\Delta L/L$) versus temperature of CeAgSb$_2$ single crystal and LaAgSb$_2$ polycrystal. The inset shows temperature dependence of inductive, $\chi_{ac}'(T)$ component of the ac-susceptibility for $B_{ac}||c$.

Fig.2 The magnetic contribution to the linear thermal expansion coefficient, $\alpha_M(T)$ of CeAgSb$_2$ single crystal in zero field and 8T field, (a) TE$\perp c$ and, (b) TE$||c$.

Fig.3 The magnetostriction isotherms at various temperatures of CeAgSb$_2$ single crystal, (a) and (b) ($\Delta L/L$)$||c$ and, (c) and (d) ($\Delta L/L$)$\perp c$, for both B $||c$ and B$\perp c$.

[7] D.T. Adroja et al, Phys. Reb. B61, 1232 (2000)
[8] D.T. Adroja et al, unpublished
[9] T. Takeuchi et al, J. Phys. Soci. Japan, 70, 877 (2001).
\(\chi_{ac} \) (arb. units)

\(T(K) \)

\(B_{ac} \parallel c \)

\(B_{ac} = 5G \)

\(\Delta L/L \times 10^{-4} \)

Temperatures (K)

CeAgSb\(_2\)

TE \(\perp c \)

LaAgSb\(_2\)

Polycrystal

CeAgSb\(_2\)

TE \(\parallel c \)

\(T_N \)
