Cave bear occupation in Schwabenreith Cave, Austria, during the early last glacial: constraints from 230Th/U-dated speleothems

CHRISTOPH SPÖTL,1,4*DENIS SCHOLZ,2 GERNOT RABEDER3 and PAULA J. REIMER4
1Institute of Geology, University of Innsbruck, Innsbruck, Austria
2Institute of Geosciences, Johannes Gutenberg University Mainz, Mainz, Germany
3Institute of Palaeontology, University of Vienna, Vienna, Austria
4Centre for Climate, the Environment and Chronology (14CHRONO), School of Natural and Built Environment, Queen’s University Belfast, Belfast, UK

Received 1 February 2019; Revised 31 March 2019; Accepted 14 April 2019

KEYWORDS: cave bear; early last glacial; Eastern Alps; speleothem; 230Th/U dating.

ABSTRACT: The cave bear was a prominent member of the Upper Pleistocene fauna in Eurasia. While breakthroughs were recently achieved with respect to its phylogeny using ancient DNA techniques, it is still challenging to date cave bear fossils beyond the radiocarbon age range. Without an accurate and precise chronological framework, however, key questions regarding the palaeoecology cannot be addressed, such as the extent to which large climate swings during the last glacial affected the habitat and possibly even conditioned the final extinction of this mammal. Key to constraining the age of cave bear fossils older than the lower limit of radiocarbon dating is to date interlayered speleothems using 230Th/U. Here we report new results from one such site in the Eastern European Alps (Schwabenreith Cave), which yielded the highest density of bones of cave bear ($Ursus spelaeus eremus$). Although dating of the flowstones overlying this fossiliferous succession was partly compromised by diagenetic alteration, the 230Th/U dates indicate that the bear hibernated in this cave after about 113 ka and before about 109 ka. This time interval coincides with the equivalent of Greenland Stadial 25, suggesting possible climate control on the cave bear’s habitat and behaviour.

© 2019 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd

Introduction

The cave bear ($Ursus spelaeus$) was a prominent member of the Late Pleistocene megafauna. Sediments of numerous caves in western and eastern Eurasia preserve bones and teeth of this mammal, which became extinct in mid-Europe 28–24 ka BP (Pacher and Stuart, 2009; Baca et al., 2016; Mackiewicz et al., 2017; Terlato et al., 2019). Three main ‘types’ of Late Pleistocene cave bears have been identified based on palaeogenetic and morphological analyses: U. spelaeus sensu stricto (sensu lato), U. ingressus and U. kudarensis (Hofreiter et al., 2004a; Knapp, 2019), the latter only found in the Caucasus and further east. Based on morphological features, some studies split U. spelaeus (sensu lato) into the subspecies U. s. spelaeus, U. s. eremus and U. s. ladinicus (Rabeder et al., 2004; Rabeder and Hofreiter, 2004). This classification is partially supported by palaeogenetic analyses (Hofreiter et al., 2002, 2004a; Dabney et al., 2013; Stiller et al., 2014), but the discussion is not yet fully resolved (Knapp et al., 2009; Knapp, 2019).

An area of high density of cave bear fossils are the Alps, and in particular the Northern Calcareous Alps, where about 45 caves are known in which this animal hibernated and died (Fig. 1). Thanks to several decades of palaeontological research including numerous excavations, several of these sites are well documented (e.g. Döppes and Rabeder, 1997; Rabeder and Frischau, 2016). A fascinating aspect of this research is that U. s. eremus and U. ingressus coexisted in mountain caves only about 10 km apart for about 15 000 years during Marine Isotope Stage (MIS) 3, without hybridization and interactions (Hofreiter et al., 2004b). These and other findings hinge on accurate and precise chronological data which have traditionally been almost exclusively based on radiocarbon. Recent dating campaigns have shown, however, that some of the earlier published radiocarbon data of Alpine cave bear remains were too young (e.g. Spötl et al., 2014, 2018). In addition, there is a serious lack of reliable geochronological data of cave bear fossils before the lower limit of radiocarbon dating, i.e. older than about 45–50k BP. This is unfortunate because several Alpine sites revealed bones, whose radiocarbon analyses yielded infinite ages (Pacher and Stuart, 2009; Spötl et al., 2018; Döppes et al., 2019).

Dating bones and teeth using techniques other than radiocarbon is challenging given the open-system behaviour of bones with respect to U-series isotopes, precluding routine 230Th/U dating of bone material (Pike et al., 2002; Sambridge et al., 2012). Likewise, luminescence dating of clastic sediments, in which these fossils are commonly embedded, is associated with fundamental issues, including incomplete bleaching and possible reworking (e.g. Munroe et al., 2016), unless deposited near the cave entrance (e.g. Henschel et al., 2011).

An alternative geochronological approach involves 230Th/U dating of speleothems stratigraphically intercalated with fossils and/or fossiliferous clastic sediments. This technique is both accurate and precise and is not limited to the last 50 ka. The key requirements are that the carbonate samples are
sufficiently clean (i.e., low detrital 232Th) and have not undergone post-depositional alteration. 230Th/U dating of speleothems has been successfully applied to constrain the age of a variety of cave fossils (e.g., Lari et al., 2015; Stinnesbeck et al., 2017) as well as prehistoric cave art (e.g., Hoffmann et al., 2016; Dublyansky et al., 2018). Unfortunately, speleothems interbedded with cave bear remains are rare in Alpine caves, partly probably due to the cool and dry climate of the last glacial period during which cave bears took shelter in these sites. One cave, however, Schwabenreith Cave in eastern Austria, stands out in this respect. This site not only revealed the highest density of well-preserved cave bear bones in the Alps (Döppes and Rabeder, 1997), but also excavations have shown that parts of this cave preserve sediment successions, where the fissile-bearing sediments are both under- and overlain by speleothems. This renders Schwabenreith Cave a special location, and the aim of the present study was to use state-of-the-art 230Th/U dating to tightly constrain the timing of cave bear occupation at this site.

Study site

Schwabenreith Cave (Austrian cave register no. 1823/32) is located in Lunz am See in the north-western part of Lower Austria. This single-entrance cave opens at 959 m a.s.l., consists of two near-horizontal passages and has a total length of 134 m (Fig. 2; Hartmann and Hartmann, 1985).

Excavations were conducted at two locations within the cave between 1990 and 1996 (Fleiderer, 1992) and in 2015. Of particular interest is excavation site 2, which revealed the following general stratigraphy (from top to bottom; Pacher, 2000; Fig. 2):

- A couple of subhorizontal flowstone layers, each up to a several centimetres thick, partly interbedded with loam.
- Loam (about 1 m thick) containing abundant cave bear fossils as well as angular bedrock fragments, but lacking an internal stratigraphy.
- Light grey, unfossiliferous and partly laminated sandy loam in which large bedrock blocks are embedded.
- An older speleothem generation consisting of a few stalagmites, including a 50-cm-tall specimen, resting on bedrock.

Detailed studies of the taphonomy were conducted on 18525 bones and 1796 teeth of cave bear. In total, 16011 of these bones were found at excavation site 2 (Pacher, 2000), where bones of adult bears (65.2%) outnumber those of juvenile (31.4%) and newly born individuals (3.4%). The bear fossils, which belong solely to *U. s. eremus* (Rabeder et al., 2008), generally lack bite marks. No other animals known from other bear caves in the Northern Calcareous Alps (e.g., cave lion) were found in this cave. The skeletons are complete, and there is no evidence of significant post-mortem re-deposition (Pacher, 2000), nor of the presence of humans inside the cave during prehistoric times.

Initial attempts to constrain the age of these cave bear sediments included radiocarbon and 230Th/U dating. An uncalibrated accelerator mass spectrometry (AMS) radiocarbon analysis of a cave bear bone from excavation site 3, located at the end of the eastern gallery of the cave, yielded an age of 52.5 \pm 1.9/2.5 k14C a BP (VERA 0061 – Pacher, 2000). In a later review, Pacher and Stuart (2009: table 3) excluded this date from their compilation. Recently, Döppes et al. (2016, 2018) reported seven AMS radiocarbon analyses. Five of them ranged from as young as 34.0 \pm 0.2 to 48.3 \pm 0.9 k14C a BP and two were reported as $>$49 k14C a BP. Previous 230Th/U analyses of calcite speleothems were performed by alpha-spectrometry. Two samples from the older speleothem generation underlying the bone-bearing sediments from excavation site 2 yielded ages of 112 \pm 5 and 116 \pm 5 ka, while a flowstone sample above the bone-bearing sediments (whose precise location, however, is unclear – Pacher, 2000) gave 78 \pm 30/23 ka (Döppes and Rabeder, 1997; note that the uncertainties of these alpha spectrometric 230Th/U analyses are reported at the 1 sigma level).
Samples and methods

All samples of this study were obtained from excavation site 2 (Fig. 2). These include cave bear bones and speleothems. All bones as well as flowstones SCHW1 to SCHW3 were obtained from the H7 side of the excavation pit (see Pacher, 2000: fig. 2, for details). One flowstone specimen was obtained from the opposite side of this pit (F4/5), and a 50-cm-tall stalagmite had already been recovered from the older speleothem generation during the main excavation at this site.

Five cave bear bones (Table 1) from the fine-grained fossiliferous layer were pre-screened for their whole bone N content. Elemental analysis of scrapes from the bone surface yielded values between 0.35 and 1.35% N. Collagen was extracted from cleaned, crushed bone samples with an acid-base-acid treatment followed by gelatinization and ultrafiltration (Brock et al., 2010) using the Vivaspin filter cleaning method introduced by Bronk Ramsey et al. (2004). The collagen was then freeze-dried. The dried samples were weighed into pre-combusted quartz tubes with an excess of copper oxide (CuO), sealed under vacuum and combusted to carbon dioxide (CO2). The CO2 was converted to graphite on an iron catalyst using the zinc reduction method (Slota et al., 1987). 14C/12C and 13C/12C ratios were measured by AMS at 14CHRONO, Queen’s University Belfast. The sample 14C/12C ratio was background-corrected using measurements on collagen extracted from the Latton mammoth bone (Lewis et al., 2006) and normalized to the HOXII standard (SRM 4990 C; National Institute of Standards and Technology). The 14C/12C ratios were corrected for isotope fractionation using

Figure 2. Plan view of Schwabenreith Cave and location of excavation site 2 (after Hartmann and Hartmann, 1985). The lower panel shows the stratigraphic overview section of excavation site 2 (simplified after Döppes and Rabeder, 1997). Speleothems are shown in orange. The approximate position of the profiles sampled for this study are shown by yellow rectangles. [Color figure can be viewed at wileyonlinelibrary.com].

© 2019 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd J. Quaternary Sci., Vol. 34(6) 424–432 (2019)
Table 1. Radiocarbon dates and isotopic analysis of bones from Schwabenreith Cave as well as collagen quality control indicators (G/Na, %C and % collagen yield). %N was measured on bone scrapes before collagen extraction. All analysed bones are from excavation site 2 of Pacher (2000, including the quadrant numbers). Samples SW2146 and SW2146_2 as well as SW2147 and SW2147_CS are two aliquots of the same bone each.

Sample id	Element	Excavation quadrant	%N	Lab. code	14C age yr	δ13CVPDB (%o)	δ15NAR (%o)	C/N	%C	Collagen yield (%)
SW2145	Bone	F4/5	1.35	UBA-30488	>46 113	-22.2	9.1	3.7	17.6	2.5
SW2146	Humerus	H7	1.31	UBA-30489	>45 923	-22.5	9.1	3.7	29.3	9.3
SW2146_2	Humerus	H7	0.66	UBA-30723	>44 013	-22.4	0.7	3.0	48.6	8.7
SW2147	Tibia	H7	0.35	UBA-29256	Failed					
SW2147_CS	Tibia	H7	0.87	UBA-29257	Failed					

Table 2. 230Th/238U dating results of speleothems from Schwabenreith Cave.

Sample	238U (µg g⁻¹)	±	235Th (ng g⁻¹)	±	234U/238U	±	Age uncorr. (ka)	±	Age corr. (ka)	±			
SCHW1-1	0.351	0.002	15.9	0.2	1.0614	0.0022	0.7036	0.0052	118.1	1.5	116.9	1.6	
SCHW1-2	0.369	0.002	29.1	0.5	1.0641	0.0022	0.5491	0.0077	80.6	1.3	78.5	1.6	
SCHW1-3	0.343	0.002	7.1	0.1	1.0598	0.0013	0.5905	0.0053	88.6	1.2	88.1	1.2	
SCHW1-3A	0.322	0.002	7.08	0.08	1.0582	0.0022	0.6536	0.0046	104.3	1.2	103.7	1.3	
SCHW1-4	0.271	0.002	58.7	0.7	1.0657	0.0028	0.8109	0.0080	158.1	2.4	152.3	3.3	
SCHW1-5	0.268	0.002	6.86	0.07	1.0577	0.0017	0.6787	0.0035	111.2	1.0	110.6	1.0	
SCHW1-6	0.247	0.002	47.2	0.5	1.0589	0.0024	0.7961	0.0076	154.0	2.2	148.8	3.1	
SCHW3-1	0.279	0.002	7.0	0.4	1.0597	0.0022	0.629	0.0040	97.8	+10.1	97.2	+10.0	94.4
SCHW3-1A	0.262	0.002	14.7	0.2	1.0588	0.0023	0.6722	0.0060	110.1	1.6	108.6	1.7	
SCHW3-2	0.276	0.002	5.9	0.1	1.0601	0.0017	0.551	0.006	79.9	1.2	79.3	1.2	
SCHW3-3	0.238	0.0034	17.23	0.42	1.0662	0.012	0.658	0.014	105.8	4.2	104.2	4.3	
SCHW3-4	0.2725	0.0036	10.64	0.12	1.065	0.013	0.6503	0.0091	102.7	3.2	101.7	3.1	
SCHW4-1	0.214	0.001	18.8	0.2	1.0673	0.0023	0.5020	0.0066	71.15	0.58	68.8	1.3	
SCHW4-2	0.198	0.001	6.0	0.2	1.0585	0.0013	0.3713	0.0073	47.8	1.1	47.0	1.1	
SCHW4-3	0.206	0.001	6.7	0.2	1.0951	0.0015	0.3182	0.0088	38.1	1.1	37.3	1.2	
SCHW4-4	0.1984	0.0025	14.57	0.16	1.076	0.012	0.4891	0.0082	67.6	1.6	65.7	1.9	
SCHW5-1	0.377	0.002	4.01	0.04	1.1124	0.0019	0.7451	0.0042	118.0	1.2	117.7	1.2	
SCHW5-2	0.317	0.002	1.48	0.05	1.0991	0.0017	0.653	0.013	96.7	3.1	96.6	3.1	
SCHW5-3	0.349	0.002	6.02	0.06	1.051	0.0023	0.7647	0.0040	125.4	1.3	125.0	1.3	
SCHW5-4	0.250	0.002	33.4	0.4	1.1527	0.0034	0.8283	0.0066	135.7	1.8	132.5	2.1	
SCHW5-5	0.243	0.002	15.1	0.2	1.0953	0.0020	0.7201	0.0058	115.9	1.5	114.4	1.7	
SCHW5-6	0.3275	0.0053	2.033	0.022	1.104	0.017	0.721	0.011	113.1	4.6	112.9	4.5	
SCHW5-7	0.3585	0.0021	7.98	0.11	1.0967	0.0017	0.7293	0.0052	117.2	1.5	116.6	1.5	

CAVE BEAR OCCUPATION IN SCHWABENREITH CAVE (AUSTRIA) 427
it comprises about 10 cm of layered calcite deposited directly on a cave bear bone (Fig. 3). Seven subsamples were obtained from this piece of flowstone. Two subsamples from the interior yielded 108.6 ± 1.7 and 104.2 ± 4.3 ka, consistent with a third lateral sample whose precision, however, is poor (97 ± 10 ka – Fig. 5C). A subsample closer to the lower boundary of the flowstone gave a slightly younger age (101.7 ± 3.1 ka), and a subsample taken 5 mm below the top gave 79.3 ± 1.2 ka (Fig. 5C).

Flowstone SCHW4 was obtained from the opposite side of the excavation pit, about 15 cm above the uppermost cave bear bones (Fig. 4). Four subsamples yielded stratigraphically consistent 230Th/U ages between 68.8 ± 1.3 and 37.3 ± 1.2 ka (Fig. 5D).

Stalagmite SCHW5 is composed of micritic calcite, unlike the coarser crystalline fabric of the flowstones, and was characterized by seven 230Th/U dates (Fig. 5E). Its growth commenced shortly before 132.5 ± 2.1 ka. The outermost layers are only partly preserved and yielded ages between 114.4 ± 1.7 and 112.9 ± 4.5 ka (ignoring an outlier of 96.6 ± 3.1 ka, which was taken from the same layer dated to 112.9 ± 4.5 ka at a lateral position).

Discussion
Assessment of age data
Cave bear bones from excavation site 2 yielded moderate to low N values suggesting variably low collagen preservation. Radiocarbon data of three samples with relatively high N values indicate that they are probably older than about 50k cal a BP (Cheng et al., 2018). 230Th/U analyses do not date the bones directly, but allow to narrow down the time interval of cave bear occupation. Stalagmite SCHW5 beneath the unfossiliferous fine-clastic sediments formed during the Last Interglacial and Greenland Interstadial (GI)-25 (Fig. 6). The age of its outermost layers indicates that this speleothem generation was buried by fine-grained clastic sediments after about ~113 ka. This represents the maximum age (*post quem* age) of cave bear occupation at this site, but because the unfossiliferous clastic sediments are sandwiched between this older speleothem generation and the fossiliferous sediments, the latter are definitely younger than ~113 ka.

The flowstone layers capping the fossiliferous unit mark the end of clastic sedimentation and the recurrence of calcite deposition. The ages of this younger speleothem generation scatter and are not entirely internally consistent. However, they indicate that calcite deposition resumed at ~109 ka, i.e. during GI-24 and continued, probably discontinuously, until GI-23.1 (Fig. 6).

Given that there are about 10–15 cm of flowstone and loam between the uppermost cave bear bones, ~109 ka provides a minimum age estimate (*ante quem* age) for the stratigraphically highest cave bear bones.

Flowstone SCHW4 from the opposite excavation face is separated from the uppermost bone fossils by about 15 cm of brown loam and its basal 230Th/U age of 68.8 ± 1.3 ka therefore provides a less stringent age constraint for the bones, but nevertheless demonstrates that the latter were deposited well before about 69 ka.

Although stratigraphically ideally situated, i.e. directly attached to a cave bear bone, flowstone SCHW1 yielded unreliable data. The unsystematic scatter of the dates suggests strongly that the calcite layers in this flowstone have not remained a closed system with respect to U and/or Th nuclides since the time of deposition. It is well known that bones show open-system behaviour (Pike et al., 2002; Sambridge et al., 2012) and these processes of bone diagenesis probably affected the calcite surrounding these bones (Millard and Hedges, 1996; Stinnesbeck et al., 2017). There is no systematic pattern, e.g. of decreasing 230Th/U ages with decreasing distance from the bone. Rather, the current data suggest that the calcite layers of SCHW1 were diagenetically affected in a complex manner, probably reflecting different degrees of permeability on a millimetre scale. The other flowstone specimens, which were not directly adjacent to bone fragments, do not show evidence of open-system behaviour.

Constraining the time of cave bear occupation
Based on our data the most likely time window when the cave bear used the interior of Schwabenreith Cave to hibernate was between ~113 and ~109 ka. These results

Figure 3. Exposure at excavation face 7 H showing a flowstone layer overlying the bone-bearing cave loam succession. Speleothem sampling locations are marked. [Color figure can be viewed at wileyonlinelibrary.com].

Figure 4. Exposure at excavation face F4/5 showing flowstone layers capping the bone-bearing cave loam succession. The speleothem sampling location is marked. [Color figure can be viewed at wileyonlinelibrary.com].
narrow down the previously reported age range substantially, in particular the previous, very imprecise age of the upper speleothem layer (78 ± 30/−23 ka – Döppes and Rabeder, 1997; note again that these are 1 sigma uncertainties).

The older speleothem generation is not directly overlain by the cave bear-bearing sediments, but by sterile and partly laminated light grey sandy silts and clays. Although no direct age constraints of this sediment layer are available, its thickness of about 1 m suggests that some time had passed between the deposition of the speleothems beneath and that of the fossiliferous sediments above, not considering possible hiatuses. The top age of stalagmite
SCHW5 (~113 ka) therefore probably overestimates the maximum age of the fossil-bearing layer.

Palaeoclimatic considerations

The time window indicated by the new \(^{230}\text{Th}/\text{U}\) dates falls into the early part of the last glacial period. Oxygen isotope data of precisely dated stalagmites from caves in the Western and Eastern Alps (Boch et al., 2011) mimic the high-magnitude changes in oxygen isotopes recorded in the ice of Greenland (North Greenland Ice Core Project Members, 2004) and demonstrate rapid large swings between stadial and interstadial climate states in the Alps. These changes had a major impact on the regional vegetation with boreal forests during major interstadials (e.g. GI-23.1) and only sparse tree stands during the intervening stadials in the foothills of the northern Alps, i.e. close to the studied cave (e.g. Drescher-Schneider, 2000; Oeggl and Unterfrauner, 2000).

Calcite deposition at Schwabenreith Cave occurred during the preceding Last Interglacial and continued, possibly interrupted by hiatuses, until the first interstadial (GI-25) at ~113 ka (Fig. 6). Chemical sedimentation gave way to fine-grained clastics. Their light-grey colour, their lack of fossils and lack of interbedded speleothems imply a cold and hostile climate and episodes of cave flooding giving rise to partly laminated silts and clays. The light colour indicates a reduced influx of soil-derived organic matter into this cave gallery, reflecting reduced (open?) vegetation above the cave. Low temperatures inside the cave gave rise to frost shattering and explain the presence of large angular bedrock blocks embedded in this basal sediment, which probably represent breakdown from the ceiling (Fladerer, 1992). Given the \(^{230}\text{Th}/\text{U}\) age constraints, these sterile fine-grained sediments were probably deposited during the early part of GS-25, which was a prominent stadial lasting for about 2 ka (Fig. 6). The onset of the younger speleothem generation records a significant improvement in the soil and vegetation conditions above the cave, probably due to a warmer and more humid climate. This coincided with the start of interstadial GI-24 and continued into GI-23.1, which was the most pronounced (forested) interstadial in the Alps during the last glacial period (Drescher-Schneider, 2000).

Given these age constraints, the most likely time window when *U. s. eremus* occupied the cave is the equivalent of GS-25, which lasted from 111.6 to 108.3 ka according the NALPS dataset (Boch et al., 2011), consistent within error with the NGRIPmodelext ice core chronology (Wolff et al., 2010).

Despite some scatter, this new age assignment is – to our knowledge – the chronologically best constrained one for a local cave bear population in the early last glacial period, not only in the greater Alpine realm, but probably also elsewhere in Europe. Interestingly, the speleothem ages in conjunction with the sediment characteristics (in particular the abundance of angular bedrock fragments in the fossiliferous sediments, probably derived from frost-shattering of the cave ceiling – Fig. 2) show that the cave bear used this shelter during a stadial. This suggests a direct or indirect climate control on the cave bear’s habitat and behaviour. However, chronologically better constrained studies of other cave sites are required to firmly address this ecological aspect.

Conclusions

Speleothems offer a promising approach to significantly improve the chronological framework of cave bear sites. Here we used...
References
North Greenland Ice Core Project Members. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431: 147–151.
Baca M, Popovic D, Stefaniak K, et al. 2016. Retreat and extinction of the Late Pleistocene cave bear (Ursus spelaeus sensu lato). The Science of Nature 103: 92.
Boch R, Cheng H, Spötl C, et al. 2011. NALPS: a precisely dated European climate record 120–60 ka. Climate of the Past 7: 1247–1259.
Brock F, Higham T, Ditchfield P, et al. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52: 101–112.
Brock Ramsey C, Higham T, Bowles A, et al. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46: 155–163.
Cheng H, Edwards RL, Southon J, et al. 2018. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science 362: 1293–1297.
Dabney J, Knapp M, Glocke I, et al. 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences of the United States of America 110: 15758–15763.
Döppes D, Pacher M, Rabeder G, et al. 2016. Unexpected! New AMS dating from Austrian cave bear sites. Cramian 33: 26–30.
Döppes D, Rabeder G. 1997. Pflözkäme und pleistozäne Faunen Österreichs. Mitteilungen der Kommission für Quartärforschung der sterreichischen Akademie der Wissenschaften 10: 1–411.
Döppes D, Rabeder G, Frischau A, et al. 2019. Extinction pattern of Alpine cave bears – new data and climatological interpretation. Historical Biology 31: 422–428.
Drescher-Schneider R. 2000. Die Vegetations- und Klimaentwicklung im Riß/Würm-Interzisal und im Früh- und Mittelwürm in der Umgebung von Mondsee. Ergebnisse der pollenanalytischen Untersuchungen. Mitteilungen der Kommission für Quartärforschung der Österreichischen Akademie der Wissenschaften 12: 39–92.
Dublyansky Y, Moseley GE, Lyakhnitsky Y, et al. 2018. Late Paleolithic cave art and permafrost in the Southern Ural. Scientific Reports 8: 12080.
Fallerer FA. 1992. Erste Grabungsergebnisse von der Schwabenreithöhle bei Lunz am See (Niederösterreich). Die Höhle 43: 84–92.
Gilbert G, Scott GR, Scholz D, et al. 2016. Chronology for the Cueva Victoria fossil site (SE Spain): evidence for Early Pleistocene Alpine dispersals. Journal of Human Evolution 90: 183–197.
Hartmann H, Hartmann W. 1985. Die Höhlen Niederösterreichs. Vol. 3, Wiss. Beihefte Die Höhle 30: Vienna (Verb. Österreich. Höhlenforsch.)
Henshilwood CS, d’Errico F, van Niekerk KL, et al. 2011. A 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa. Science 334: 219–222.
Hofmann DL, Pike AWG, García-Diez M, et al. 2016. Methods for U-series dating of CaCO3 crusts associated with Palaeolithic cave art and application to Iberian sites. Quaternary Geochronology 36: 104–119.
Hofreiter M, Capelli C, Krigs M, et al. 2002. Ancient DNA analyses reveal high mitochondrial DNA sequence diversity and parallel morphological evolution of Late Pleistocene cave bears. Molecular Biology and Evolution 19: 1244–1250.
Hofreiter M, Rabeder G, Jaenick-Després V, et al. 2004b. Evidence for reproductive isolation between cave bear populations. Current Biology 14: 40–43.
Hofreiter M, Serre D, Rohland N, et al. 2004a. Lack of phylogeography in European mammals before the last glaciation. Proceedings of the National Academy of Sciences of the United States of America 101: 12963–12968.
Knapp M. 2019. From a molecules’ perspective – contributions of ancient DNA research to understanding cave bear biology. Historical Biology 31: 442–447.
Knapp M, Rohland N, Weinstock J, et al. 2009. First DNA sequences from Asian cave bear fossils reveal deep diversities and complex phylogeographic patterns. Molecular Ecology 18: 1225–1238.
Lari M, Di Vincenzo F, Borsato A, et al. 2015. The Neanderthal in the karst: first dating, morphometric, and paleogenetic data on the fossil skeleton from Altamura (Italy). Journal of Human Evolution 82: 88–94.
Mackiewicz P, Baca M, Popovic D, et al. 2017. Estimating the extinction time of two cave bears, Ursus spelaeus and U. ingressus. Acta Zoologica Academiae Scientiarum Hungariae 63: 1–14.
Lewis SG, Maddy D, Buckingham C, et al. 2006. Pleistocene fluvial sediments, palaeontology and archaeology of the upper River Thames at Latton, Wiltshire, England. Journal of Quaternary Science 21: 181–205.
Millard AR, Hedges REM. 1996. A diffusion-adsorption model of uranium uptake by archaeological bone. Geochimica et Cosmochimica Acta 60: 2139–2152.
Murnoe JS, Perzan ZM, Amidon WH. 2016. Cave sediments constrain the latest Pleistocene advance of the Laurentide Ice Sheet in the Champlain Valley, Vermont, USA. Journal of Quaternary Science 31: 893–904.
Obert JC, Scholz D, Felis T, et al. 2016. 230Th/234U dating of Last Interglacial brain corals from Bonaire (southern Caribbean) using bulk and theca wall material. Geochimica et Cosmochimica Acta 178: 20–40.
Oegema K, Unterfrauner H. 2000. Die Pflanzenreste des Riss/Würm-Interglazials und des Würmglazials von Mondsee. Mitteilungen der Kommission für Quartärforschung der Österreichischen Akademie der Wissenschaften 12: 93–121.
Pacher M. 2000. Taphonomische Untersuchungen der Höhlenbären in Österreich. Taphonomische Untersuchungen der Höhlenbären. Boreas 38: 189–206.
Pike AWG, Hedges REM, van Calsteren P. 2016. Cave sediments constrain the Late Pleistocene cave bear (Ursus spelaeus group) to high-alpine habitats. Höhle 55: 58–77.
Rabeder G, Hofreiter M, Nagel D, et al. 2004. New taxa of alpine cave bears (Ursidae, Carnivora). Cahiers scientifiques 2: 49–67.
Sambridge M, Grün R, Eggins S. 2012. U-series dating of bone in an open system: the diffusion-adsorption-decay model. Quaternary Geochronology 9: 42–53.

Rasmussen SO, Bigler M, Blockley S, et al. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106: 14–28.

Slota PJ Jr, Jull AJT, Linick TW, et al. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29: 303–306.

Spötl C, Reimer PJ, Rabeder G, et al. 2014. Presence of cave bears in western Austria before the onset of the Last Glacial Maximum: new radiocarbon dates and palaeoclimatic considerations. Journal of Quaternary Science 29: 760–766.

Spötl C, Reimer PJ, Rabeder G, et al. 2018. Radiocarbon constraints on the age of the world’s highest-elevation cave-bear population, Conturines Cave (Dolomites, Northern Italy). Radiocarbon 60: 299–307.

Stiller M, Molak M, Prost S, et al. 2014. Mitochondrial DNA diversity and evolution of the Pleistocene cave bear complex. Quaternary International 339-340: 224–231.

Stinnesbeck W, Becker J, Hering F, et al. 2017. The earliest settlers of Mesoamerica date back to the Last Pleistocene. PLoS One 12: e0183345.

Stuiver M, Polach HA. 1977. Reporting of C-14 data – discussion. Radiocarbon 19: 355–363.

Terlato G, Bocherens H, Romandini M, et al. 2019. Chronological and isotopic data support a revision for the timing of cave bear extinction in Mediterranean Europe. Historical Biology 31: 474–484.

Wolff EW, Chappellaz J, Blunier T, et al. 2010. Millennial-scale variability during the last glacial: the ice core record. Quaternary Science Reviews 29: 2828–2838.

Yang Q, Scholz D, Jochum KP, et al. 2015. Lead isotope variability in speleothems – A promising new proxy for hydrological change? First results from a stalagmite from western Germany. Chemical Geology 396: 143–151.