Non-Steroidal Anti-Inflammatory Drug (NSAID)-Induced Small Intestinal Injury

Akihiro Tajima*
Department of Gastroenterology, Dokkyo Medical University, Japan

Abstract

Non-steroidal anti-inflammatory drug (NSAID), including aspirin, induced small intestinal injuries are frequently seen in clinical field. Capsule endoscopy and double balloon endoscopy are major diagnostic methods. Small intestinal injury includes bleeding, erosion, and ulceration. Unfortunately, accurate mechanism(s) of NSAID-induced small intestinal injuries are remained to be determined so far. In terms of therapy, there are currently no therapies specifically designed or approved for the prevention of NSAID-induced enteropathy, although many medications are prescribed. Further clinical and basic researches are waiting.

Introduction

Nonsteroidal anti-inflammatory drugs (NSAIDs), including low-dose aspirin, are among the most widely prescribed medications, with approximately 30 million patients worldwide ingesting NSAID [1]. NSAID could cause small intestinal injury. It became clear from the studies of post-mortem samples by Bjarnason and colleagues (1993) that NSAID use is also associated with significant damage to the more distal region sof the small intestine (i.e. distal to the ligament of Treitz) [2]. Small intestinal injury includes bleeding, erosion, and ulceration [3,4]. Serious complications can include massive bleeding, perforation and strictures, sometimes leading to death [5]. PubMed with key words “NSAID and enteropathy” was used in 1994 through 2013 for selecting articles. The aim of this short review is to summarize our current understanding of NSAID induced small intestinal injury.

Diagnosis of Non-Steroidal Anti-Inflammatory Drug (NSAID)-Induced Small Intestinal Injury (Table 1)

NSAID can affect the jejunum and ileum [6]. Capsule endoscopy (CE) and double-balloon endoscopy (DBE) are diagnostic methods for visualizing small intestinal lesions [4]. In the DBE group, out of 61 patients, ulcers or erosions were observed in the ileum in six patients and in the jejunum in one patient, respectively [4]. In the cases indicated for enteroscopy, NSAID enteropathy occurred in half of the patients taking NSAIDs [7]. Sixteen patients used NSAID showed ulcerative lesions, and the remaining 2 patients showed diaphragm diseases. For localized lesions, 12 patients evidenced lesions in the ileum, 5 patients had lesions in the duodenum and/or jejunum, and 1 had lesions in both intestines [8]. Using CE, several studies have been reported. Post-low-dose aspirin CE detected 10 cases (50%) with mucosal damage not apparent in baseline studies (6 cases had petechiae, 3 had erosions, and 1 had bleeding stigmata in 2 ulcers) [9]. After 2 weeks of low-dose aspirin, the percentages of subjects with small bowel pathology were 80% in the aspirin group compared with 20% in the control group (p=0.023) [10]. CE demonstrates evidence of macroscopic injury to the small intestine, in up to 68% of volunteers, resulting from 2 weeks ingestion of slow-release diclofenac [11]. CE found intestinal lesions in 75% (12/16) of patients in the chronic therapy with NSAIDs and in 11.76% (2/17) of controls (p<0.01) [6]. Small bowel injury compatible with NSAID-induced enteropathy was observed in 7/8 animals [12]. 80% patients who took aspirin or NSAID had positive results, including the presence of erosions (n=5), ulceration (n=2), and ulcers with early strictureing (n=1, diagnosed with Crohn’s disease). 13.6% took NSAIDs or aspirin, but most did not declare using these medications. Medical history would be important for the diagnosis of NSAID induced small intestinal injury [13]. Post-treatment CE identified 636 lesions in 32 of 53 subjects (60%); including 115 denuded areas in 16 subjects, 498 erosions in 22 subjects and 23 ulcers in 8 subjects [14]. Capsule

Table 1: Diagnosis of Non-steroidal anti-inflammatory drug (NSAID)-induced small intestinal injury.

Ref number	Authors Year published	Methods	NSAID	Controls
4	Hayashi Y (2005)	DBE	11.5% (ileum/85.7%, jejunum/14.3%)	-
7	Matsumoto T (2008)	DBE	51%	5%
8	Hayashi Y (2009)	DBE	100% (ileum/55.6%, duodenum and/or jejunum/27.8%, both/5.6%)	-
9	Smecoul E (2009)	CE	50%	-
10	Endo H (2009)	CE	80%	20%
11	Maiden L (2009)	CE	68%	-
6	Caunedo-Alvarez A (2010)	CE	75%	11.76%
12	Tacheci I (2010)	CE	87.50%	-
13	Sidhu R (2010)	CE	80%	-
14	Fujimori S, 2010	CE	80% (denuded areas were predominantly located in the proximal part erosions throughout the small intestine and all ulcers in the distal part)	-
3	Lim YJ, 2012	CE	55-70%	-

Abbreviations
CE: capsule endoscopy
DBE: double-balloon endoscopy

*Corresponding author: Akihiro Tajima, Department of Gastroenterology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga Tochigi, 321-0293, Japan, Tel: 81-282-87-2147; Fax: 81-282-86-7761; E-mail: atajima@dokkyomed.ac.jp

Received December 09, 2013; Accepted January 13, 2014; Published January 15, 2014

Citation: Tajima A (2014) Non-Steroidal Anti-Inflammatory Drug (NSAID)-Induced Small Intestinal Injury. Pharm Anal Acta 5: 282. doi: 10.4172/2153-2435.1000282

Copyright: © 2014 Tajima A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
endoscopy studies have demonstrated that NSAIDs use in healthy volunteers raised the incidence (55% to 75%) of intestinal damage [3]. When we prescribe NSAID, we have to speculate the small intestinal lesions. Because the incidence ratio of the lesions are high (11.5-87.3%).

Probable Mechanisms of Non-Steroidal Anti-Inflammatory Drug (NSAID)-Induced Small Intestinal Injury (Table 2)

In the stomach, inhibition of COX-1 activity leads to a rapid, compensatory increase in expression of COX-2, and suppression of both enzymes leads to exacerbation of tissue injury [2]. However, the mechanisms of NSAID-induced injury in small intestine remains to be determined so far. Many possible mechanisms have been reported. Enterobacterial translocation in the mucosa is the first step required for activation of various factors such as iNOS/NO and neutrophils, all involved in the pathogenesis of indomethacin-induced intestinal lesions [2,15]. PPI can significantly worsen NSAID-induced damage in the small intestine [5,16]. Intestinal damage occurs when both COX-1 and COX-2 are inhibited, especially COX-2 [17,18]. Nitric oxide derived by iNOS plays a key pathogenic role in the ulcerogenic process [19-21]. Oxidative metabolites that induce severe endoplasmic reticulum stress or mitochondrial stress and lead to cell death [22,23]. NSAIDs that were absorbed into the enterocytes inhibit the mitochondrial oxidative phosphorylation [24]. Insoluble dietary fibre, intestinal hypermotility, leukotrienes and cholinergic pathways are implicated in the pathogenesis of small intestinal ulcers induced by NSAIDs [25]. TNF-alpha plays an early pro-inflammatory role in indomethacin-induced jejunitis [26]. Combination of low-dose aspirin therapy and thienopyridine may exacerbate small bowel injury [27]. Other candidate mediators of NSAID-induced small intestinal injury are JNK pathway [28], Reg I (Regenerating gene I) [29], MMP-9 (matrix metalloproteinase-9) [30], urocortin 1 (a nonselective CRF receptor agonist)[31], IL-17A [32], enhanced platelets-bearing neutrophil migration [33], HMGB1 (High mobility group box 1) [34], serotonin (5-HT) 3 receptors [35], and hemopexin [36]. If the contribution of any of these candidates to NSAID-induced injury of are high, they would be also candidates for treatment.

Prevention and Therapy of Non-Steroidal Anti-Inflammatory Drug (NSAID)-Induced Small Intestinal Injury (Table 3)

There are currently no therapies specifically designed or approved for the prevention of NSAID-induced enteropathy [2]. Many candidate medications are summarized in Table 3. Rebamipide has not only the healing effect for NSAIDs-induced enteropathy compared with placebo [37-40]. Misoprostol have a preventive effect for NSAID-induced small intestinal mucosal injuries [40,41]. Endogenous PGE2 (2) promotes the healing of small intestinal lesions [42,43]. Lansoprazole prevents indomethacin-induced small intestinal ulceration [44,45]. However opposite results have been reported later on. Omeprazole and pantoprazole cannot protect the small intestine from the damage induced by diclofenac [46,47]. Leflunomide (histamine H(2) receptor antagonist with a mucosal protective action) protects the small intestine againstloxoprolen-induced lesions [48,49]. Satoh et al. [50] reported inhibition of acid secretion by antisecretory drugs may exacerbate NSAID-induced intestinal lesions. In terms of PPI and H2 receptor antagonist, the efficacy might be still controversial. Agents such as probiotics, able to modify the gut ecology, might theoretically be be useful in preventing small intestinal damage induced by NSAIDs [51]. Soluble dietary fibers protect the small intestine against NSAID-induced damage [52,53]. Zinc was effective in protecting against indomethacin-induced small intestinal damage [54,53]. Since endogenous NO plays a role in healing of intestinal lesions [56], NO-releasing NSAID may represent a novel class of drugs with markedly reduced intestinal toxicity [57]. Selective COX-2 inhibitors showed controversial results for small intestinal injury [3,58]. TNF-alpha could become a new therapeutic target for NSAID-induced small intestinal damage [59]. Highly selective pharmacologic targeting of luminal bacterial β-D-glucuronidase by a novel class of small-molecule inhibitors protects against diclofenac-induced enteropathy [60]. Mitochondrial cyclophilin D plays a key role in NSAID-induced enteropathy, lending itself as a potentially new therapeutic target for cytoprotective intervention [61]. Activation of α7 nicotinic acetylcholine receptors ameliorates indomethacin-induced small intestinal ulceration [62]. Other possible medications are geranylgeranyllactone [63,64], cilostazol (specific phosphodiesterase (PDE)-3 inhibitor) [33], sildenafil (inhibitor of phosphodiesterase
Table 3: Prevention and therapy of Non-steroidal anti-inflammatory drug (NSAID)-induced small intestinal injury.

Ref number	Authors Year published	Candidates medications	Report style
38	Fujimori S (2011)	Rebamipide	CS
39	Mizukami K (2011)	Rebamipide	CS
37	Kurokawa S (2013)	Rebamipide	CS
40	Fujimori S (2010)	Rebamipide and misoprostol	CS
41	Watanabe T (2008)	misoprostol	CS
42	Takeuchi K (2010)	Endogenous PGE(2)	A
43	Arakawa T (2012)	prostaglandin derivatives, mucoprotective drugs, probiotics, and mitochondrial protective drugs	A
44	Higuchi K (2009)	Lansoprazole	A
45	Yoda Y (2010)	Lansoprazole	A
46	Lim YJ (2012)	PPIs: no small bowel protective effect	A
47	Zhang S (2013)	Omeprazole and pantoprazole cannot protect the small intestine from the damage induced by diclofenac	A
48	Amagase K (2010)	Lutfudiline (histamine H(2) receptor antagonist with a mucosal protective action)	A
49	Umegaki E (2010)	Roxatidine (H(2) receptor antagonist)	A
50	Satoh H (2012)	Inhibition of acid secretion by antiseptic drugs may exacerbate NSAID-induced intestinal lesions	A
51	Guslandi M (2012)	probiotics	CS
52	Satoh H (2010)	Soluble dietary fibers	A
53	Satoh H (2010)	Insoluble dietary fiber and soluble dietary fiber	A
54	Sivalingam N (2011)	Zinc	A
55	Rodriguez de la Sema A (1994)	Zinc acexamate	CS
56	Wallace JL (1994)	NO-releasing NSAID	A
57	Takeuchi K (2007)	Endogenous NO	A
58	Lim YJ (2012)	Selective COX-2 inhibitors (coxibs)	A
59	Maehata Y (2012)	Selective COX-2 inhibitors are not completely safe for the small bowel	CS
60	Fukumoto K (2011)	TNF-α	A
61	LoGuidice A (2012)	bacterial β-D-glucuronidase	A
62	LoGuidice A (2010)	Mitochondrial cyclophilin D	A
63	Kawahara R (2011)	q7 nicotinic acetylcholine receptors	A
64	Shirato A (2010)	geranylergynylacetone	CS
65	Isai T (2011)	Geranylergynylacetone	A
66	Higashiyama M (2012)	cilostazol (specific phosphodiesterase (PDE)-3 inhibitor)	A
67	Kato N (2009)	cilostazol (specific phosphodiesterase subtype 5)	A
68	Yasuda M (2011)	Dopamine D2-receptor antagonists	A
69	Yanaka A (2013)	Sulforaphane	CL
70	Menozzi A (2010)	K(ATP) channel opener diazoxide	A
71	Marchbank T (2008)	Natural bioactive products (nutriceuticals), such as fish hydrolysates	CS
72	Amagase K (2012)	Monosodium glutamate	A
73	Chao G (2012)	Muscovite (natural clay consisting of an insoluble double silicate of aluminum and magnesium) diazoxen	A
74	Davies NM (1997)	Tempo (nitrooxide stable free radical scavenger) and metronidazole	A

References

1. Abimolesh SF, Tran CD, Howarth GS (2013) Emu oil reduces small intestinal inflammation in the absence of clinical improvement in a rat model of indomethacin-induced enteropathy. Evid Based Complement Altern Med 2013: 429706.
2. Wallace JL (2012) NSAID gastropathy and enteropathy: distinct pathogenesis likely necessitates distinct prevention strategies. Br J Pharmacol 165: 67-74.
3. Lim YJ, Yang CH (2012) Non-steroidal anti-inflammatory drug-induced enteropathy. Clin Endosc 45: 138-144.
4. Hayashi Y, Yamamoto H, Kita H, Sunada K, Sato H, et al. (2005) Non-steroidal anti-inflammatory drug-induced small bowel injuries identified by double-balloon endoscopy. World J Gastroenterol 11: 4861-4864.
5. Wallace JL (2013) Mechanisms, prevention and clinical implications of nonsteroidal anti-inflammatory drug-enteropathy. World J Gastroenterol 19: 1861-1876.
6. Caunedo-Alvarez A, Gómez-Rodríguez BJ, Romero-Vázquez J, Argüelles-Arias F, Romero-Castro R, et al. (2010) Macroscopic small bowel mucosal injury caused by chronic nonsteroidal anti-inflammatory drugs (NSAID) use as assessed by capsule endoscopy. Rev Esp Enferm Dig 102: 80-85.
7. Matsumoto T, Kudo T, Esaki M, Yano T, Yamamoto H, et al. (2008) Prevalence of non-steroidal anti-inflammatory drug-enteropathy determined by double-balloon endoscopy: a Japanese multicenter study. Scand J Gastroenterol 43: 490-496.
8. Hayashi Y, Yamamoto H, Taguchi H, Sunada K, Miyata T, et al. (2009) Nonsteroidal anti-inflammatory drug-induced small-bowel lesions identified by double-balloon endoscopy: endoscopic features of the lesions and endoscopic treatments for diaphragm disease. J Gastroenterol 44: 57-63.
9. Smecuol E, Pinto Sanchez MI, Suarez A, Argonz JE, Sugai E, et al. (2009) Low-dose aspirin affects the small bowel mucosa: results of a pilot study with a multidimensional assessment. Clin Gastroenterol Hepatol 7: 524-529.
10. Endo H, Hosono K, Inamori M, Kato S, Nozaki Y, et al. (2009) Incidence of small bowel injury induced by low-dose aspirin: a crossover study using capsule endoscopy in healthy volunteers. Digestion 79: 44-51.
11. Maiden L (2009) Capsule endoscopic diagnosis of nonsteroidal anti-inflammatory drug-enteropathy. J Gastroenterol 44: 64-71.
12. Tachechi I, Kvetina J, Bures J, Oestericher J, Kunes M, et al. (2010) Wireless capsule endoscopy in enteropathy induced by nonsteroidal anti-inflammatory drugs in pigs. Dig Dis Sci 55: 2471-2477.
13. Sidhu R, Brunt LZ, Morley SR, Sanders DS, McLaindon ME (2010) Undisclosed use of nonsteroidal anti-inflammatory drugs may underlie small-bowel injury observed by capsule endoscopy. Clin Gastroenterol Hepatol 8: 992-995.
14. Fujiimori S, Gudis K, Takahashi Y, Seo T, Yamada Y, et al. (2010) Distribution of small intestinal mucosal injuries as a result of NSAID administration. Eur J Clin Invest 40: 504-510.
15. Konaka A, Kato S, Tanaka A, Kunikata T, Korilkevicsz R, et al. (1999) Roles in induced small intestinal injury.

Conclusion

NSAID-induced small intestinal injuries are frequently seen in clinical field. CE and DBE are major diagnostic tools. Accurate mechanism(s) of NSAID-induced small intestinal injuries are remained to be determined so far. In terms of therapy, there are currently no therapies specifically designed or approved for the prevention of NSAID-induced enteropathy, although many medications are prescribed. Further clinical and basic researches are waiting.
of enterobacteria, nitric oxide and neutrophil in pathogenesis of indomethacin-induced small intestinal lesions in rats. Pharmacol Res 40: 517-524.

16. Wallace JL, Syer S, Denou E, de Palma G, Yong L, et al. (2011) Proton pump inhibitors exacerbate NSAID-induced small intestinal injury by inducing dysbiosis. Gastroenterology 141: 1314-1322.

17. Takeuchi K, Tanaka A, Kato S, Amagase K, Satoh H (2010) Roles of COX inhibition in pathogenesis of NSAID-induced small intestinal damage. Clin Chim Acta 411: 459-466.

18. Hotz-Bohnsilts C, Simpson RJ, Walley M, Bjarnason IT (2010) Role of COX-2 in nonsteroidal anti-inflammatory drug enteropathy in rodents. Scand J Gastroenterol 45: 822-827.

19. Tanaka A, Kunikata T, Mizoguchi H, Kato S, Takeuchi K (1999) Dual action of nitric oxide in pathogenesis of indomethacin-induced small intestinal ulceration in rats. J Pharmacol Pharmacol 50: 405-417.

20. Parasher G, Frenklakh L, Goodman, Siddiqui T, Nandi J, et al. (2001) Nitric oxide inhibitors ameliorate indomethacin-induced enteropathy in rats. Dig Dis Sci 46: 2536-2541.

21. Xue B, Hausmann M, Müller MH, Pesch T, Karpitschka M, et al. (2009) Affenter nerve sensitivity is decreased by an iNOS-dependent mechanism during indomethacin-induced inflammation in the murine jejunum in vitro. Neurogastroenterol Motil 21: 322-334.

22. Boelsterli UA, Redinbo MR, Saalfa KS (2013) Multiple NSAID-induced hits inhibit the small intestine: underlying mechanisms and novel strategies. Toxicol Sci 131: 654-667.

23. Omatu T, Naito Y, Handa O, Hayashi N, Mizushima K, et al. (2009) Involvement of reactive oxygen species in indomethacin-induced apoptosis of small intestinal epithelial cells. J Gastroenterol 44 Suppl: 19-30.

24. Matsui H, Shimokawa O, Kaneko T, Nagano Y, Rai K, et al. (2011) The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine. J Clin Biochem Nutr 48: 107-111.

25. Satoh H, Shiotani S, Otsuka N, Hatao K, Nishimura S (2009) Role of dietary fibres, intestinal hypermotility and leukotrienes in the pathogenesis of NSAID-induced small intestinal ulcers in cats. Gut 58: 1590-1596.

26. Nandi J, Saud B, Zinkievich JM, Yang ZJ, Levine RA (2010) TNF-alpha modulates iNOS expression in an experimental rat model of indomethacin-induced jejunoileitis. Mol Cell Biochem 336: 17-24.

27. Shiotani A, Honda K, Murao T, Ishii M, Fujita M, et al. (2011) Combination of low-dose aspirin and thienopyridine exacerbates small bowel injury. Scand J Gastroenterol 46: 281-286.

28. Ramirez-Alcantara V, LoGuadice A, Boelsterli UA (2009) Protection from diclofenac-induced small intestinal injury by the JNK inhibitor SP600125 in a mouse model of NSAID-associated enteropathy. Am J Physiol Gastrointest Liver Physiol 297: G990-G998.

29. Imazoka H, Ishihara S, Kazumori H, Kadowaki Y, Aziz MM, et al. (2010) Exacerbation of indomethacin-induced small intestinal injuries in Reg I-knockout mice. Am J Physiol Gastrointest Liver Physiol 299: G311-G319.

30. Kakimoto K, Takai S, Murano M, Ishida K, Yoda Y, et al. (2010) Significance of chymase-dependent matrix metalloproteinase-9 activation on indomethacin-induced small intestinal damage in rats. J Pharmacol Exp Ther 332: 684-689.

31. Kubo Y, Kumano A, Kamei K, Amagase K, Abe N, et al. (2010) Uroctordin prevents indomethacin-induced small intestinal lesions in rats through activation of CRF2 receptors. Dig Dis Sci 55: 1570-1580.

32. Yamada S, Naito Y, Takagi T, Mizushima K, Hira Y, et al. (2011) Reduced small intestinal injury induced by indomethacin in interleukin-17A-deficient mice. J Gastroenterol Hepatol 26: 398-404.

33. Higashiyama M, Hoki R, Kurihara C, Ueda T, Watanabe C, et al. (2012) Indomethacin-induced small intestinal injury is ameliorated by cistolast, a specific PDE-3 inhibitor. Scand J Gastroenterol 47: 993-1002.

34. Nadatani Y, Watanabe T, Tanigawa T, Machida H, Okazaki H, et al. (2012) High mobility group box 1 promotes small intestinal damage induced by nonsteroidal anti-inflammatory drugs through Toll-like receptor 4. Am J Pathol 180: 98-110.

35. Kato S, Matsuura N, Matsumoto K, Wada M, Onimaru N, et al. (2012) Dual role of serotonin in the pathogenesis of indomethacin-induced small intestinal ulceration: pro-ulcerogenic action via 5-HT3 receptors and anti-ulcerogenic action via 5-HT4 receptors. Pharmacol Res 66: 226-234.
56. Takeuchi K, Hatazawa R, Tanigami M, Tanaka A, Ohno R, et al. (2007) Role of endogenous nitric oxide (NO) and NO synthases in healing of indomethacin-induced intestinal ulcers in rats. Life Sci 80: 329-336.

57. Wallace JL, Reuter BK, Cirino G (1994) Nitric oxide-releasing non-steroidal anti-inflammatory drugs: a novel approach for reducing gastrointestinal toxicity. J Gastroenterol Hepatol 9: S40-S44.

58. Maehata Y, Esaki M, Morishita T, Kochi S, Endo S, et al (2012) Small bowel injury induced by selective cyclooxygenase-2 inhibitors: a prospective, double-blind, randomized clinical trial comparing celecoxib and meloxicam. J Gastroenterol 47: 387-393.

59. Fukumoto K, Naito Y, Takagi T, Yamada S, Horie R, et al. (2011) Role of tumor necrosis factor-α in the pathogenesis of indomethacin-induced small intestinal injury in mice. Int J Mol Med 27: 353-359.

60. LoGuidice A, Wallace BD, Bendel L, Redinbo MR, Boelsterli UA (2012) Pharmacologic targeting of bacterial β-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice. J Pharmacol Exp Ther 341: 447-454.

61. LoGuidice A, Ramirez-Alcantara V, Proll A, Gavillet B, Boelsterli UA (2010) Pharmacologic targeting or genetic deletion of mitochondrial cyclophilin D protects from NSAID-induced small intestinal ulceration in mice. Toxicol Sci 118: 276-285.

62. Kawahara R, Yasuda M, Hashimura H, Amagase K, Kato S, et al. (2011) Activation of α7 nicotinic acetylcholine receptors ameliorates indomethacin-induced small intestinal ulceration in mice. Eur J Pharmacol 652: 411-417.

63. Iwai T, Ichikawa T, Kida M, Goso Y, Kurihara M, et al. (2011) Protective effect of geranylgeranylaceotide against laxoprofen sodium-induced small intestinal lesions in rats. Eur J Pharmacol 652: 121-125.

64. Kato N, Mashita Y, Kato S, Mitsufuji S, Yoshikawa T, et al. (2009) Sildenafil, an inhibitor of phosphodiesterase subtype 5, prevents indomethacin-induced small-intestinal ulceration in rats via a NO/cGMP-dependent mechanism. Dig Dis Sci 54: 2346-2356.

65. Yasuda M, Kawahara R, Hashimura H, Yamanaka N, limori M, et al (2011) Dopamine D2-receptor antagonists ameliorate indomethacin-induced small intestinal ulceration in mice by activating α7 nicotinic acetylcholine receptors. J Pharmacol Sci 116: 274-282.

66. Iwai T, Ichikawa T, Kida M, Goso Y, Kurihara M, et al. (2011) Protective effect of geranylgeranylaceotide against laxoprofen sodium-induced small intestinal lesions in rats. Eur J Pharmacol 652: 121-125.