Production Performance of Sangkuriang Catfish (*Clarias gariepinus* Burchell-1822) N-2 (Nursery-2) Cultured on Recirculation System with Different Filter Media

Sri Nurhidayah Muhtaliefa, Titik Susilowati, Tristiana Yuniarti, Dicky Harwanto, and Fajar Basuki*

Aquaculture Department, Faculty of Fisheries and Marine Science, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang – 50275
Corresponding author: fajar.basuki@live.undip.ac.id

Abstract. Sangkuriang catfish (*Clarias gariepinus* Burchell-1822) is one type of freshwater fish that has been widely cultivated in the community. This study was to investigate the production performance of sangkuriang catfish N-2 (nursery-2) cultured on recirculation system with different filter media. The test fish used were 17 days old with a density of 7,000/2 m³ each with a 20-day maintenance time. This research was conducted using an experimental method and a complete randomized design consisting of 3 treatments and 3 replications. The treatments are P1 (*Kaldnes* 100%), P2 (*Kaldnes* 50% and Bioball 50%) and P3 (*Bioball* 100%). The data observed included growth (SGR, %/day) survival rate (SR, %), production (fish), Feed Conversion Ratio (FCR), and water quality. Growth performance was carried out by linear regression test. The results showed that the performance of SGR, SR and production were the highest in P1. With the respective values as follows; The regression test results in absolute weight were $Y_1 = 0.060 + (-0.121)x$ and the value of $r^2 = 0.921$ with a weight of 1.29 ± 0.02 gram, while at absolute length were $Y_1 = 0.176 + 1.480x$ and $r^2 = 0.988$ with length 3.87 ± 0.15 cm, SGR of 15.86 ± 0.55 %/day, SR of 97.85 ± 0.74 % and seed production of 6849 ± 51.73 fish. The result of Volumetric TAN removal rate (g/m³/day) at P1 is higher with a value of 1.19 ± 0.39, compared to P2 and P3 which have a lower value of 1.11 ± 0.19 and 0.81 ± 0.16 g/m³/day.

1. Introduction
The *C. gariepinus* is an important commercial fish that is in great demand by the public. Hence, it is not surprising that the demand is increasing from year to year. One of the efforts to increase the production of *C. gariepinus* can be done through intensive scale cultivation, with high stocking density [1]. However, increased stocking density will add to the problem of water quality, since amount of ammonia loading rate will also increase significantly [2]. Weaknesses in intensive scale cultivation of *C. gariepinus* seeds are leftover feed and fish feces which will become one with maintenance water, resulting in decreased water quality and high mortality in the seeds of *C. gariepinus*. Conventional water quality management can be periodic water changes, but this is not effective because it requires expensive costs and less effective time spent. Therefore, there is a need for technological innovations in cultivation containers to overcome water quality problems, one of which is using biofilter [3]. Based on previous studies [4][5], *Kaldnes* media is a biofilter that can improve the survival rates of...
fish, because it can reduce ammonia in the waters. While, Bioball media is a breeding ground for various types of bacteria needed to process ammonia in water [6].

2. Research Methods
The fish used in this study was the seed of *C. gariepinus* from the Industry Faculty of Fisheries and Marine Science, Diponegoro University, Semarang. Catfish Seeds 17 days old with weighed of 0.06 ± 0.01 (grams) and length of 1.7 ± 0.1 (cm) [7]. Fish density as treatment 7,000 fish/pond with water height as high as 30 cm, so that the volume was 2 m³. The seeds were first adapted in a tarpaulin pond for 1-3 days, the seeds were expected to be able to adjust the conditions to their new environment. The seeds were measured in total length using millimeters block and weight measurements were carried out with a sampling of 10 fish using electric scales (accuracy of 0.001 g) before and after the maintenance period. Seed maintained period was 20 days.

The feed that used in this research was commercial pellet, food size made based on the mouth opening of seeds. *Tubifex* sp also used as food. The pellets that are given are light brown in color and are 0.5 mm - 0.7 mm in size. Nutrient content in these feeds is as: protein min 39-41%; 5% min lipid; crude fiber max 4%; Ash max 11% and max water content 10%. The content of *Tubifex* sp. were protein (57%), lipid (13.3%), crude fiber (2.04%), and ash content (3.6%) [8]. Feed was given with the at satiation method, the feed was given little by little up to 80% until fish did not response to the feed (Hastuti and Subandiyo, 2014). The amount of feed in each given was weighed so that it can be known the amount of feed given for each time and the total amount of feed given during the maintenance period. The frequency of feeding twice a day, i.e. morning (08.00) and afternoon (15.00).

This research was conducted using an experimental method and a complete randomized design consisting of 3 treatments and 3 replications.

Treatment P1: *Kaldnes* 100%
Treatment P2: *Kaldnes* 50% and *Bioball* 50%
Treatment P3: *Bioball* 100%

2.1. Filters design
Filters use plastic baskets, and waring is adjusted to the shape of the basket container. Installation of dacron with a size of 1 meter is adjusted to the basket, after that the pump is installed into a container that already contains dacron. The next step, filter 1 filled with *Kaldnes* media with a volume of 17 liters, filter 2 (*Kaldnes* 8.5 liters and *Bioball* 8.5 liters) and filter 3 filled with a 17-liter *Bioball*. The filter media design is presented in Figures 1 and 2.

![Figure 1. Design Kaldnes Media](image-url)
2.2. Collecting data
Data collected in this study included absolute length growth, absolute weight growth, specific growth rate (SGR), survival rate (SR), Production, Feed Conversion Ratio (FCR), and water quality.

a. Absolute weight growth (WG)
The Absolute weight growth is calculated using this formula [9]:
\[\text{WG} = W_t - W_o \] \hspace{1cm} (1)
Where \(W_t \) and \(W_o \) are initial and final body weight (g/fish)

b. Absolute length growth (L)
The Absolute length growth was calculated using this formula [9]:
\[L = L_t - L_o \] \hspace{1cm} (2)
Where \(L_t \) and \(L_o \) are initial and final body length (cm/fish)

c. Specific growth rate (SGR)
Specific growth rate was calculated using this formula [10]:
\[\text{SGR} = \left(\frac{\ln L_f - \ln L_i}{T} \right) \times 100\% \] \hspace{1cm} (3)
Where \(L_i \) and \(L_f \) are initial and final body weight (g/fish)
\(T \) is the maintenance period

d. Production
The number of seeds stocked produces the number of seeds harvested during the 20-day maintenance period. Size of pond 3 m\(^3\) with 2000 L water volume.

e. Feed Conversion Ratio (FCR)
The FCR is calculated using this formula [11]:
\[\text{FCR} = \frac{F}{B_f - B_i} \] \hspace{1cm} (4)
\(F \) is the feed consumption per period (g),
\(B_f \) is the final biomass (g), and
\(B_i \) is the initial biomass (g) over a period.

f. Survival rate (SR)
The SR was calculated using this formula [12]:

Figure 2. Design Bioball Media
SR = Total fish end of research \times \frac{100\%}{\text{Initial total fish}} \tag{5}

Nt is the total fish end of research, No is the initial total fish.

g. Volumetric TAN removal rates (VTR)
The efficiencies of the biofilters were calculated using the following equations [13]:

\[
VTR = \frac{1.11114 \times (\text{TAN}_{\text{in}} - \text{TAN}_{\text{out}}) \times Q}{V}
\]

Where TAN\text{in} is the concentration (mg/L) of total ammonia nitrogen in the biofilter inlet, TAN\text{out} is the concentration (mg/L) of total ammonia nitrogen in the biofilter outlet, Q is total water flow (m³/day) through the filter, V is the volume (m³) of the filter bed, and 1.44 is a conversion factor.

h. Water quality
Water quality checks on the research media included several parameters including temperature, dissolved oxygen (DO), power of hydrogen (pH), and ammonia (NH₃) content. Observation of water quality consisting of ammonia (NH₃) content is carried out every 5 days at the inlet and outlet, measuring pH, temperature and DO is carried out every day.

2.3. Data analysis
Data analysis was carried out on the data of absolute weight growth value (WG), absolute length growth (L), specific growth rate (SGR), survival rate (SR), production, Feed Conversion Ratio (FCR). Data before analyzing the variance were first tested for normality, homogeneity test and additivity test to ensure that the data spread normally. Homogeneous and additive. Then the data continued with analysis of variance (ANOVA) with a 95% confidence interval to see the effect of treatment. After the analysis, if the treatment was found to be significantly different (P < 0.05) the Duncan test was conducted to find out the difference in the middle values between treatments. Data analysis was performed using SPSS version 20.0 and Ms Excel 2013. Water quality such as ammonia was carried out by analysis of variance (ANOVA) with 95% confidence interval and Duncan test. Water quality such as temperature, Do and pH were analyzed descriptively to see the feasibility of supporting the growth of sangkuriang catfish (C. gariepinus).

3. Result and Discussion
Based on the results of maintenance of C. gariepinus for 20 days, we obtained data on (WG), (L), (SGR), (FCR), (SR) and the production of C. gariepinus seeds. Summary of the calculation results of H, Pm, SGR, FCR, SR and production are presented in Table 1.

Table 1. The average value of growth weight (H), Absolute length (Pm), specific growth rate (SGR), survival rate (SR), feed conversion ratio (FCR), and production on the seeds of C. gariepinus during the study

Variabel Data	Perlakuan			
	P1	P2	P3	
Growth weight (H) (g/fish)(±SD)	1.29±0.02	1.09±0.05	0.96±0.07	
Absolute length (Pm)	3.87±0.15	3.60±0.10	3.30±0.10	
Variabel Data	Perlakuan	P1	P2	P3
---------------	-----------	----	----	----
(cm/fish)(±SD)				
Spesific growth rate (SGR) (%)	15.87±0.55^a	15.11±0.07^b	14.40±0.17^c	
Survival rate (SR) (%) (±SD)	97.85±0.74^a	94.23±1.06^b	86.59±2.28^c	
Production (initial total fish) (±SD)	6.849±51.73^a	6.596±74.08^b	6.061±159.63^c	
Feed Conversion Ratio (FCR) (±SD)	0.79±0.02^a	0.83±0.05^a	0.94±0.13^a	

Values (mean of duplicates ± SD) in same row with different letters are significant different ($P < 0.05$).

Regression test results in absolute weight are $Y_1 = 0.060 + (-0.121)x$ and the value of $r^2 = 0.921$ with a weight of $1.29 ± 0.02$ gram, the regression test results at absolute length are $Y_1 = 0.176 + 1.480x$ and $r^2 = 0.988$ with length $3.87 ± 0.15$ cm. With the pattern of growth in weight and length presented in Figures 3 and 4.

![Figure 3. Weight growth pattern of C. Gariepinus](image_url)
Table 2. Total Ammonia Nitrogen (TAN) in C. gariepinus cultured Using Different Biofilter

Water quality parameters	P1	P2	P3	Note
Inlet TAN concentration (mg/liter)	0.31±0.02*	0.47±0.08*	0.60±0.14b	*<1mg/liter
Outlet TAN concentration (mg/liter)	0.22±0.05*	0.39±0.06b	0.53±0.15b	**<1mg/liter
Volumetric removal rate of TAN	1.19±0.39	1.11±0.19	0.81±0.16	

* [14]; ** [15]; Values (mean of duplicates ± SD) in same row with different letters are significant different (P < 0.05)

The results of measurements of water quality parameters for Inlet and Outlet, i.e temperature, pH, and DO were 25.1-27.0°C; 7.01-8.03 and 3.00-3.89 mg/l, respectively. Those values still within the range feasible for the cultivation of C. gariepinus [7][14].

3.1. Growth Performance

Absolute weight growth results on C. gariepinus showed that the use of different filter media had a significant effect (P <0.05). Kaldnes 100% media use (P1) resulted in the highest absolute weight growth (1.29± 0.02 gr), Kaldnes 50% and Bioball 50% that was 1.09± 0.05 g) and Bioball 100% was 0.97±0.08 grams. This is presumably because the water quality conditions in the Kaldnes media maintenance pond were in good condition, so that the appetite for seeds will increase. The results of previous study [16] mentioned that the Bioball media for Barramundi fish farming (Lates calcarifer) requires a long time for the growth process which is 180 days with a density of 30-40 kg/m and the ammonia is <0.1 mg/l. Kaldnes media is able to maintain water quality in tilapia cultivation with high density (168 kg/m) [17].

The results of research on C. gariepinus showed that the highest absolute length growth value at P1 (Kaldnes) was 3.87± 0.12cm and the lowest was at P3 (Bioball) of 3.30 ± 0.06cm. Based on these results, it can be concluded that the use of Kaldnes is able to increase the length of growth of 0.57cm. The results of the use of Kaldnes media can improve the growth results of fish Red Seabream (Pagrus major) which is 29.7± 0.61 gram to 41.0± 0.73grams with a TAN value of 0.73 ± 0.02 [18].
shows an increase in growth by using Kaldnes media for 9 days. The results of previous research that used of Bioball media for the growth of Red Rainbow fish (Glossolepis incisus Weber) is less effective, with a growth value of 1.85± 0.58 grams with a maintenance time of 6 months [19].

The high value of the specific growth rate at P1 (Kaldnes) was 15.87 ± 0.55% and the lowest in P3 (Bioball) was 14.40 ± 0.17% allegedly because of the different role of biofilter media, Kaldnes role in maintaining water quality more effective compared to Bioball. Water quality in good conditions will increase fish appetite. According to that Kaldnes media is able to maintain the condition of aquaculture water quality and is able to remove ammonia by 50 g/m³/day, so that fish can grow well [20].

3.2. Survival rate (SR)
Based on the results obtained that the use of different filter media on C. gariepinus has a significant effect on survival rates. The highest value is the use of Kaldnes media 100% (97.85%) and the lowest value on the media of Bioball 100% (86.59%). Based on these results it can be concluded that the use of Kaldnes can reduce mortality by 11.26%. This is presumably because of the recirculation system with the help of biofilter giving a real influence. Based on water quality such as temperature, pH and DO, it is still within the range that is feasible for the cultivation process of C. gariepinus. Kaldnes media is able to maintain water quality conditions in this case (TAN), so that with high density, fish can survive with the help of biofilter media. Based on the results of research from the recirculation system with Kaldnes media for Turbot fish cultivation was able to reduce the mortality rate to 15-20%.[21].

The Kaldnes type K1 media has a Specific Surface Area (SSA) of 500 m²/m³, with the total surface area of the media the bacteria will grow well [22]. The Bioball that media has a SSA of 378 m²/m³ [23]. This shows that the Kaldnes media has more space than the Bioball media for bacterial life.

3.3. Production
Production results obtained in treatment P1, P2 and P3 were 9247.23 ± 169.82, 7,563.04 ± 361.32 and 6,343.43 ± 187.50 fish, respectively. The recirculation system were able to maintain water quality in the maintenance pond of C. gariepinus. This can be seen from the results of survival, the use of Kaldnes 100% media (P1) showed higher results compared to P2 and P3. The growth of weight and length in Kaldnes 100% media (P1) showed higher results compared to other treatments, presumably because the TAN average values on P2 and P3 were higher. The TAN will increase due to the presence of food and feces that settle under the pond and the biofilter used is less effective in reducing TAN, which will cause the mortality and decrease of fish appetite of the fish [2]. The TAN accumulation in cultivation media is one of the causes of water quality degradation which can result in the growth of cultured fish, so that the failure of cultivation production will occur.

3.4. Feed conversion ratio (FCR)
The value FCR from each treatment of C. gariepinus did not have a significant effect on growth. The FCR values at P1, P2 and P3 were 0.79, 0.83 and 0.94. The use of Kaldnes 100% media (P1) produces a good FCR value compared to other treatments. This is presumably due to the condition of water quality in P1 (Kaldnes 100%) in safer conditions, so that the appetite of the fish increases and the feed given will be used for the growth process. The protein content in the feed given will also affect the growth of the fish, the seeds of C. gariepinus are fed with Tubifex sp. and pellets. Factors that influence the value of FCR height and amount or the amount of feed consumed by fish, namely environmental conditions, such as water quality (temperature, DO, pH and TAN), and quantity of feed, and the condition of the fish growth process. Tubifex sp. have a high nutrient content [8]. This is consistent with the other research results that the treatment using feed 75% Tubifex sp. and 25%
pellets were weighed before giving to fish, and had the most efficient feed conversion value of 0.69 in *C. Gariepinus* [24].

3.5. Filters Effectiveness

Based on the measurement data of TAN concentration in treatment P1, P2 and P3 were increased. The highest TAN concentration occurred in P3 (Bioball). Intensive system cultivation needs to be additional technology to be able to maintain water quality (ammonia) in a range that is feasible for cultivation [1]. The TAN comes from excess feed and feces of organisms that are considered as major contaminants in cultivation [3][25].

Based on the results of Table 2, volumetric removal rate of TAN in Kaldnes (1.19 ± 0.39 g/m³/day) showed good performance compared to Bioball filter media and mixed media (Kaldnes and Bioball). It can be concluded that the Kaldnes media is able to eliminate TAN per day as much 1.19 g/m³/day. In contrast to the Bioball media, it only removed TAN by 0.81 g/m³ day. This is related to the characteristics of filter media. With high (SSA), the media will work effectively and bacteria will grow more. The media can eliminate TAN higher, presumably because the total water flow through the filter is higher and the TAN value is higher [18]. The specific surface area (SSA) of the media can be used to determine the TAN reducing performance that passes through the filter [4]. Study results of tilapia culture using Kaldnes media produced a VTR value of 267 ± 123 g TAN removed/m³ [26]. The study of recirculation system using Bioball which was inoculated with bacteria and Bioball without bacterial inoculation gave an effect on the VTR yield of 6.40 mg/l per day to 7.81 mg/l per day [27].

The Kaldnes media has a Specific Surface Area (SSA) of 500 m²/m³, with the SSA area the bacteria are able to grow well [22]. The Bioball media has a Specific Surface Area (SSA) of 378 m²/m³ [23]. The maximum TAN total removal in Kaldnes type K1 media is 0.30 gr NH₄-N (m³/d) [28]. The specific area (SSA) of the media will determine TAN removal performance [4][18].

The Kaldnes and Bioball media used were discolored. The entire Kaldnes media used was discolored. However, not all colors change in the Bioball media this is thought to be due to the greater gravity of the Bioball, so that the Bioball will coincide with each other and cause the performance of Bioball to be less effective. Kaldnes is made to have an active surface area for bacterial living media. Kaldnes which have been overgrown with bacteria will turn brown. Kaldnes media has a specific gravity value of 0.660 and the Bioball media has a specific gravity value of 0.851 [29]. Based on the gravity value of each media that Kaldnes has a lower or lighter value compared to Bioball, so the performance of Kaldnes is better than Bioball.

4. Conclusion

The conclusion that can be drawn based on the results of research that has been done that the performance of growth, survival and production is the highest in treatment P1. With the respective values as follows; Regression test results in absolute weight are Y1 = 0.060 + (- 0.121) x and the value of r² = 0.921 with a weight of 1.29 ± 0.02 gram, the regression test results at absolute length are Y1 = 0.176 + 1.480x and r² = 0.988 with length 3.87 ± 0.15 cm, SGR of 15.86 ± 0.55%/day, SR of 97.85 ± 0.74% and seed production of 6849 ± 51.73 fish. The result of Volumetric removal rate of TAN (g/m³/day) at P1 is higher with a value of 1.19 ± 0.39, compared to P2 and P3 which have lower values of 1.11 ± 0.19 and 0, 81 ± 0.16.

Recommendation

Kaldnes and Bioball media are able to maintain water quality below the threshold. For the best research, Kaldnes Media use is recommended on the production scale. further testing is needed on bacteria kind that grow on biofilter media.
References

[1] Basuki F, Yuniarti T, Harwanto D and Susilowati T 2018 Analysis of Growth Performance and Benefits a High Density Catfish Clarias gariepinus Burchell Culture in Biofloc System. IOP Conf. Series: Earth and Enviromental Science 137.

[2] Harwanto D, Oh SY, Kim CK, Gultom VDN and Jo JY 2010 Effects of temperature and stocking density on the ammonia excretion rate of red seabream, Pagrus major, Ocean and Polar Research, 32 (1) 63-71.

[3] Harwanto D and Jo JY 2010 The Need of Biofilter for Ammonia Removal in Recirculating Aquaculture System. Journal of Marine Bioscience and Biotechnology 4 (1) : 1-5.

[4] Pfeiffer TJ and Wills PS 2011 Evaluation of three Types of Structured Floating Plastic Media in Moving Bed Biofilter for Total Ammonia Nitrogen Removal in a low Salinity Hatchery Recirculating Aquaculture System. Aquacult.Eng. 1 – 9.

[5] Summerflet ST, Davidson J and Helwig N 2006 Evaluation of a full-scale Cyclobio Fluidzed-sand Biofilter in a Coldwater Recirculation System. In : Proceedings of the 5th International Conference on Recirculating Aquaculture. July 22 – 24 pp. 227-237.

[6] Harbawi ME, Azwana ABT, Sabidi, Ezza BT, Kamarudin, Hamid AB, Harun SB, Nazlan AB and Yi CX 2010 Design of a Portable Dual Purposes Water Filter System. Journal of Enginnering Science and Technology 5 (2) : 165 – 175.

[7] Standar Nasional Indonesia 2000 Produksi induk ikan lele dumbo Clarias gariepinus x C. fuscus kelas induk pokok (parent stock) [Production of parent dumbo catfish Clarias gariepinus x C. fuscus main parent class (parent stock)]. Jakarta: Badan Standarisasi Nasional.

[8] Bintaryanto BW and Taufikurohmah T 2013 Pemanfaatan Campuran Limbah Padat (Sludge) Pabrik Kertas dan Kompos sebagai Media Budidaya Cacing Sutera (Tubifex sp.) [Utilization of Paper Mill and Compost Solid Waste (Sludge) as a Media for Silkworm Cultivation (Tubifex sp)]. J. Universitas Negeri Surabaya. 2 (1) : 7.

[9] Zonneveld N, Huisman EA and Boon JH 1991 Prinisp-Prinisp Budidaya Ikan [Principles of Fish Culture]. PT Gramedia Pustaka Utama. Jakarta. 318 p.

[10] Akinwole, AO and Faturoti EO 2007 Biological performance of African catfish (Clarias gariepinus) cultures in recirculating system in Ibadan. Aquacultural Engineering, 36, 18-23.

[11] Sammouth S, d’Orbcastel ER, Gasset E, Lemarié G, Breuil G, Marino G, Coeurdacier JL, Fivelstad S and Blancheton JP 2009 The effect of density on sea bass (Dicentrarchus labrax) performance in a tank-based recirculating system. Aquac Eng 40, 72-78.

[12] Islam MZ, Sarder Md RI and Akhand Md RI 2015 Growth performance of genetically male tilapia derived from YY male sex reversed male tilapia and mixed sex tilapia of Oreochromis niloticus in earthen pond aquaculture system in Bangladesh. ISSN: 2 347-5129 IJFAS 2015; 2(3): 186-191© 2015 IJFAS.

[13] Peng L 2003 Design, management and performance of a laboratory scale seawater recirculating system for Korean rockfish Sebastes schlegeli culture. Thesis, Pukyong National University, Busan, KR.

[14] Stickney RR 1994 Principles of Aquaculture. John Wiley and Sons, New York, US.

[15] Wheaton FW, Hochheimer JN, Kaiser GE, Malone RF, Krones MJ, Libey GS and Easter CC 1994 Nitrification filter design methods. In: Aquaculture Water Reuse Systems: Engineering Design and Management. Timmons MB and Losordo TM, eds. Development in Aquaculture and Fisheries Science, Vol. 27. Elsevier, Amsterdam, pp. 127-171.

[16] Areerachakul N 2018 Biofilters in Recirculation Aquaculture System. Faulty of Industrial Technology, Suansunandha Rajhabhat University, Bangkok, Thailand. 1-4.

[17] Greiner AD and Timmons MB 1998 Evaluation of the nitrification rates of microbead and trickling filters in an intensive recirculating tilapia production facility. Aquac Eng 18, 189-200.
[18] Harwanto D, Oh SY and Jo JY 2011 *Comparison of the Nitrification Efficiencies of Three Biofilter Media in a Freshwater System*. Fisheries and Aquatic Sciences 14 (4) : 363-369.

[19] Nurhidayat 2009 *Efektifitas Kinerja Media Biofilter Dalam Sistem Resirkulasi Terhadap Kualitas Air, Pertumbuhan Dan Kelangsungan Hidup Ikan Red Rainbow [Effectiveness of Biofilter Media Performance in the Recirculation System to Water Quality, Growth and Survival of Red Rainbow Fish]*, Thesis, Post Graduate, Pertanian Bogor Agriculture Institute, p 54

[20] Harwanto D, SY Oh SY, Park HS and Jo JY 2011 *Performance of Three Different Biofilter Media in Laborator-Scale Recirculation System for Red Seabream Pagrus major Culture*. Fisheries and Aquatic Sciences. 14(4) : 371-378.

[21] Stanley C, Lau K, Thiagarajan V, Cheung SCK and Qian PY 2005 *Roles of bacterial community composition in biofilms as a mediator for larval settlement of three marine invertebrates*. Aquat Microb. Ecol. 38:41-51

[22] Rusten B, Eikebrokk B, Ulgenes Y and Lygren E 2006 *Design and Operations of the Kaldnes Moving Bed Biofilm Reactors*. Aquacultural Engineering. 34. 322-331

[23] Maslon. A. and J.A. Tomaszek. 2015. *A Study in the use f the Bioball as a Biofilm Carrier in a Sequencing Batch Reactor*. Bioresource Technology. ScienceDirect. 196. 577-585.

[24] Prihatini ES and Bahrudin 2017 *Pemanfaatan Cacing Sutra (Tubifex sp) Untuk Kelangsungan Benih Ikan Lele Sangkuriang (Clarias gariepinus var sangkuriang) [Utilization of Silkworms (Tubifex sp) for Survival of Sangkuriang Catfish Seeds (Clarias gariepinus var Sangkuriang)]* Jurnal Ilmiah Perikanan pp 1-9

[25] Chen. S, Ling J and Blancheton JP 2006 *Nitrification kinetics of biofilm as affected by water quality factors*. Aquaculture Engineering 34: 179-197.

[26] Guerdal TC, Losordo TM, deLong DP, Classen JJ and Osborne JA. A large scale evaluation of commercially available biological filters for recirculating aquaculture systems. Aquacult Eng 2010; 42(1):38-49.

[27] Suantika G, Pratiwi MI, Situmorang ML., Djohan YA, Muhammad H and Astuti DI 2016 *Ammonium Removal by Nitrifying Bacteria Bifilm on Limestone and Bioball Substrate Established in Freshwater Tricking Biofilter Wildlife Sciences 4 (2) : 1-6.*

[28] Ulgenes Y and Lundin U 2003 *Valsjöbyn Fiskodling— Dokumentasjon av BIOFISH-anlegg for produksjon av settefisk*. SINTEF Report STF66 A03105, Trondheim, Norway

[29] Elliott O, Gray S, McClay M, Nassief B, Nunnelley A, Vogt E, Ekong J, Kardel K, Khoshkhoo A, Proano G, Blersch DM and Carrano AL 2017 *Design and Manufacturing of High Surface Area 3D-Printed Media for Moving Bed Bioreactors for Wastewater Treatment*. Journal of Contermprary Water Research and Education 160.144-156