Endocytosis Is Required for the Growth of Vacuolar H\(^+\)-ATPase-defective Yeast: Identification of Six New END Genes

Alan L. Munn and Howard Riezman
Department of Biochemistry, Biozentrum of the University of Basel, Basel, CH-4056, Switzerland

Abstract. Yeast mutants that are defective in acidification of the lysosome-like vacuole are able to grow at pH 5.5, but not at pH 7. Here, we present evidence that endocytosis is required for this low pH-dependent growth and use this observation to develop a screen for mutants defective in endocytosis. By isolating mutants that cannot grow when they lack the 60-kD vacuolar ATPase subunit (encoded by the VAT2 gene), we isolated a number of vat2-synthetic lethal (Vsl-) mutant strains. Seven of the Vsl- mutants are defective in endocytosis. Four of these mutant strains (end8-1, end9-1, end10-1, and end11-1) show altered uptake of the endocytosed ligand, α-factor, and three (end12-1, end12-2, and end13-1) are probably defective in transfer of internalized material to the vacuole. Most of the mutations also confer a strong Ts- growth defect. The mutants defective in uptake of α-factor sort newly synthesized vacuolar proteins correctly, while those which may be defective in subsequent transport steps secrete at least a fraction of the newly synthesized soluble vacuolar proteins. The mutations that result in a defect in α-factor uptake are not allelic to any of the genes previously shown to encode endocytic functions.

Endocytosis is a general mechanism that allows eukaryotic cells to internalize both plasma membrane and extracellular material. Experiments with cultured mammalian cells (where endocytosis has been well-characterized at a morphological level) have demonstrated that fluid-phase markers such as horseradish peroxidase or colloidal gold particles are internalized and can be visualized in cell sections by electron microscopy (Hopkins and Trowbridge, 1983; Steinman et al., 1983). After short periods of internalization, the markers are seen in invaginations of the plasma membrane known as coated pits (Anderson et al., 1977; Hopkins and Trowbridge, 1983). These pits bear a coat composed of polymerized clathrin on their cytoplasmic face which has been implicated in the rapid internalization of most, but not all, endocytic markers (Pierce and Robinson, 1990; Hansen et al., 1993). After longer incubation times, the markers label peripheral early endosomes which have a tubuloreticular profile in cell sections and subsequently perinuclear, late endosomes which have a multi-vesicular structure and which contain mannose 6-phosphate receptors (Helenius et al., 1983; Hopkins and Trowbridge, 1983; Griffiths et al., 1988).

The mechanism of transport of markers from early to late endosomes is unclear. Transport may occur via budding and fusion of transport vesicles or by a maturation process (Griffits and Gruenberg, 1991; Murphy, 1991). In any event, after prolonged internalization, the bulk of the non-specific markers are localized in lysosomes, which are the major degradative compartments in the cell and are the site where all fluid-phase markers eventually accumulate (Kornfeld and Mellman, 1989). The rate of endocytosis of fluid as estimated using lucifer yellow-carbohydrazide (LY) may vary between cell types, but in murine peritoneal macrophages an estimate is 250 nl/mg of cellular protein/hour (Swanson et al., 1985).

Endocytosis of extracellular fluid by S. cerevisiae has been demonstrated using LY. Uptake of LY leads to its accumulation in the vacuole (the yeast equivalent of the mammalian lysosome) and is time-, energy-, and temperature-dependent, consistent with an endocytic mechanism (Riezman, 1985). The rate of endocytosis has been estimated as 27 nl/mg of cellular protein/hour at 30°C (Riezman, 1985). The mating pheromone α-factor is a marker for receptor-mediated endocytosis in yeast and is internalized while bound to...
a specific cell-surface receptor, the STE2 gene product (Chvatchko et al., 1986; Jenness and Spatrick, 1986; Dulić et al., 1991). Internalized α-factor is transported through two intermediate compartments en route to the vacuole where it is degraded by resident vacuolar proteases (Singer and Riezman, 1990; Singer-Kriiger et al., 1993).

Recently, two mutants, end3-1 and end4-1, that are defective for both fluid-phase and receptor-mediated endocytosis, but have no defect in vacuolar protein biogenesis have been isolated and characterized (Raths et al., 1993). Mutations in END3 or END4 lead to defects in the internalization step of endocytosis. This step also requires actin and the actin filament-bundling protein, fimbrin (ACT1 and SAC6 gene products) (Kübler and Riezman, 1993). Tan et al. (1993) have shown that clathrin heavy chain (CHC1 gene product) also plays an important role in the internalization step of endocytosis in yeast.

Fewer mutants exist that specifically affect later stages of endocytosis in yeast. Mutations in the YPT51/VPS21 (Singer-Kriiger et al., 1994; Horazdovsky et al., 1994) and YPT7 (Wichmann et al., 1992; Schimmöller and Riezman, 1993) genes, which encode putative small GTPases of the rab family, specifically affect delivery of internalized material to the vacuole, but also affect vacuole biogenesis. Another mutant, renl/vps2, may also affect a late step in the endocytic pathway (Davis et al., 1993).

The vacuolar system of the yeast cell, and possibly other organelles, are acidified by the action of a membrane-associated H+−ATPase which in yeast comprises at least 10 subunits of sizes 102, 95, 69, 60, 54, 42, 36, 32, 27, and 17 kD (Ho et al., 1993; Manolson et al., 1994). The 60-kD subunit is encoded by the VAT2 gene (Nelson et al., 1989; Yamashiro et al., 1990). In strains bearing a disruption mutation of VAT2(var2Δ), the ATPase does not assemble on the vacuolar membrane and consequently the lumen of the vacuole fails to become acidified (Yamashiro et al., 1990). vat2Δ strains can grow if the external medium is between pH 5 and pH 6, but are unable to grow if the medium is buffered at pH 7 or above (Nelson and Nelson, 1990; Yamashiro et al., 1990). Nelson and Nelson (1990) have proposed that in the absence of vacuolar ATPase activity, fluid-phase endocytosis may be sufficient to acidify endocytic compartments when the external medium is acidic. This is illustrated in Fig. 1 (see Results). When the external medium is of low pH, the vacuolar system may be acidified either by ATPase-driven H+ pumping or by endocytosis.

Here we provide experimental evidence that endocytosis is indeed required for growth of vat2Δ mutant strains on acidic medium and we have exploited this observation to isolate new end mutants that are defective in specific steps of transport from the external environment to the vacuole.

Materials and Methods

Media, Yeast Strains, and Reagents

All the yeast strains described in this report are listed in Table I with their respective genotypes. YPUAD was as described previously (Dulić et al., 1991).
Mutagenesis and Coletality Screen

1991) except it was supplemented with 40 μg/ml adenine and uracil. For growth of vac2Δ mutant strains the pH of the YPUD was adjusted with HCl. Minimal medium for plasmid selection was SD (Dülی et al., 1991). Where specified, additional nutrients were added to the SD medium to give a 40 μg/ml final concentration. SD contained one or several of the following seven nutrient supplements when required: adenine, uracil, tryptophan, histidine, lysine, leucine, and tyrosine. The pH of our SD medium was 5.3–5.5.

SD media containing 5%tsyroactic acid (5FOA) (1 mg/ml final concentration) (SD/5FOA) was used to select for cells which had been cured of URA3 plasmids (Boeke et al., 1984). 5FOA (PCR Inc., Gainsville, FL) was added to SD medium to 1 mg/ml final concentration and uracil was added to 50 μg/ml final concentration. Additional supplements were added where required for growth and the pH was adjusted to 5.3–5.5 by addition of 10 M NaOH. The pH of SD/5FOA plates was the same as the SD plates. Where growth on SD/5FOA and SD was directly compared, e.g., during the mutant screen, the SD plates contained 50 μg/ml uracil in addition to the nutrients needed for growth. All solid media contained 2% Bactoagar (Difco, Detroit, MI). SD (low sulfate) and SD (no sulfate) have been described (Raths et al., 1993).α-Factor internalizations were performed using metabolically labeled [35S]α-factor purified essentially as described by Dülі et al., 1991. The procedure for biosynthetic labeling of α-factor was modified slightly; a 30-min preincubation in SD (no sulfate) was included before the addition of the Na235SO4 label and labeling was for only 8 h, since this increased the yield of radiolabeled α-factor considerably. The Na235SO4 (40 mCi/ml) used for metabolic labeling was obtained from Amersham PLC (Amer-

Yeast Genetic Techniques

Mating of yeast cells, sporulation of diploid strains, tetrad dissection, and scoring of genetic markers was performed as described by Sherman et al. (1974). Transformation of yeast cells was accomplished by the lithium acetate method of Ito et al. (1983). Testing for temperature-sensitive growth was done by streaking yeast cells for single colonies on two YPUD plates and incubating one plate for 3 d at 24°C and one plate for 3 d at 37°C.

Mutagenesis and Coletality Screen

The strain RH1937, which has the chromosomal copy of the VAT2 gene disrupted on LEU2 and carries aUCP50-based plasmid (pCY36, Yamashiro et al., 1990) containing both the URA3 and the VAT2 genes, was used for isolation of vau2-synthetic lethal (Val) mutants (Table I). The rationale for the screen is shown in Fig. 3. RH1937 cells were mutagenized and mutants that were unable to lose the pCY36 plasmid (thereby uncovering the vau2 chromosomal mutation) were identified by their inability to grow on SD/5FOA. SD/5FOA selects for cells which do not have a wild-type URA3 gene; in this case cells that have lost the pCY36 plasmid.

The method used for mutagenizing yeast cells with ethyl methanesulfonic acid (EMS) (Sigma Chem. Co.) was described in Munn et al. (1991). A treatment with EMS which resulted in 30% cell viability was used for the mutagen screen. Approximately 7000 colonies derived from RH1937 cells mutagenized in this way and selected for plasmid retention on SD plates lacking uracil (~200 colonies per plate) were subjected to screening by replica plating onto SD and SD/5FOA selection plates containing uracil. Colonies which grew on SD, but not on SD/5FOA after replica plating were restreaked on both media and incubated at 24°C and 30°C. Those isolates which grew on SD, but gave few or no colonies on SD/5FOA at both temperatures were retained. In this way we isolated 18 mutants.

LY Accumulation Assays

These were performed as described by Dülі et al. (1991). All incubations were at 24°C for 1 h and the cells were vigorously aerated before incubation. The cells were washed in 1 ml of ice-cold 50 mM sodium phosphate/10 mM sodium acetate/10 mM sodium fluoride pH 7.5 (SPAFL) four times after incubation with LY. The cells were then resuspended in 30 μl of SPAF and viewed by fluorescence microscopy as described by Dülі et al. (1991).

α-Factor Uptake Assays

[35S]α-factor uptake assays were performed on mid-log phase cells (106 cells/ml) using the continuous presence protocol as described by Dülі et al. (1991). The assays were carried out at 24°C and at 37°C with a 15-min preshift before α-factor addition. Internalization was calculated by dividing the internalized counts (pH 1-resistant) by the total cell-associated counts (pH 6-resistant) for each time point, except in the case of the end1-1 mutant. For the end1-1 mutant, internalized α-factor was calculated by dividing pH 1-resistant counts at each time point by the pH 6-resistant counts at 5 min. The cell-associated counts decreased very rapidly in this mutant at 37°C, probably due to dissociation of uninternalized α-factor from the receptor.

α-Factor Degradation Assays

[35S]α-factor degradation assays were performed on mid-log phase cells (106 cells/ml) using the pulse-chase ([35S]α-factor prebinding for 50 min on ice) protocol as described by Dülі et al. (1991). All assays were performed at 30°C, which is the optimal temperature for α-factor degradation.

Filter Immunoblot for Detection of Secreted CPY

The secretion of CPY from yeast cells during growth was analyzed using the method described by Roberts et al. (1991). Yeast cells were grown on YPUD plates in contact with a 0.45-μm nitrocellulose filter (Schleicher and Schuell, Dassel, Germany) (overlaid after inoculation of the plate) at 24°C. After incubation in contact with the filter for ~40–48 h, the filter was removed from the plate and the adherent yeast cells were eluted with water. The filter was then blocked with PBS containing 0.1% Tween 20 (Merck) and 2% milk powder (PBSTM) for 2 h at room temperature. The filter was then incubated for 3 h with a polyclonal rabbit antiserum against CPY at 1:1,000 dilution in PBSTM. After washing three times in PBSTM, the filter was probed for 1 h with goat anti-rabbit IgG coupled to horseradish peroxidase (Sigma Immunochromics) at 1:5,000 dilution in PBSTM. Immunoreactive protein bound to the filter was detected by enhanced chemiluminescence (ECL) using the Amersham system and exposure to Kodak XAR X-ray film.

Metabolic Labeling of CPY

Metabolic labeling of cells with Na235SO4, preparation of spheroplasts, lysis of the spheroplasts, and immunoprecipitation of the labeled CPY from the lysates were all carried out as previously described (Raths et al., 1993) with two modifications. First, the labeling was performed on cells which had been preshifted to 37°C for 15 min. Second, a protease inhibitor cocktail was added to each fraction before addition of SDS and heating of the samples to 90°C. The final concentrations of protease inhibitors were: 0.5 mM PMPS (Sigma Chem. Co.), 1 μg/ml pepstatin (Boehringer-Mannheim Biochemicals, Mannheim, Germany), 1 μg/ml leupeptin (Boehringer-Mannheim). Immunoprecipitates were electrophoresed on 7.5% polyacrylamide/SDS gels and analyzed by fluorography using Kodak XAR X-ray film. The end1-1 mutant was labeled with [35S]methionine and cysteine (ICN Biochemicals, Irvine, CA) using the method described by Munn et al. (1991), since it was found to label poorly with Na235SO4 at 37°C.

Results

Yeast Mutants Defective in Both Vacuolar Acidification and Endocytosis Are Invisible

It has been postulated that (a) yeast mutants which have a defective vacuolar H+-ATPase may be able to acidify their vacuoles by fluid phase endocytosis if they are grown in acidified medium and (b) that acidification of the vacuole either by H+-pumping or by fluid-phase endocytosis of acid-
Yeast cells that carry a vat2Δ mutation are inviable at pH 5, and the haploid spores were allowed to form colonies at 24°C (see Materials and Methods). The growth of haploid colonies from spores derived from the end3Δ × vat2Δ diploid is shown in Fig. 2. Similar results were obtained from dissection of tetrads from a end4Δ × vat2Δ diploid (data not shown). The tetrads derived from both strains were of three classes. Approximately 25% of the tetrads contained four viable spores, 50% of the tetrads contained three viable spores, and 25% of the tetrads contained only two viable spores (Table II, A and B), suggesting that two mutations segregated independently in each cross and that the combination of the two mutations was lethal. The total number of spores of each genotype obtained from the end3Δ × vat2Δ dissection are shown in Table II C. No viable vat2Δ endΔ double mutants were recovered. Presumptive vat2Δ endΔ spores did germinate in most cases, but gave microcolonies of less than 200 cells in the case of end3Δ × vat2Δ and less than 20 cells in the case of end4Δ × vat2Δ (data not shown).

Isolation of Mutants Synthetically Lethal with vat2Δ

The observation that both end3 and end4 mutations are colethal with a vat2 mutation at pH 5 indicated that it might be possible to isolate additional end mutations by screening for vat2-synthetic lethal mutants (Vsl-), and then testing the Vsl- mutants for defects in endocytosis. We started with a strain which contains a chromosomal disruption of VAT2 and a centromere plasmid carrying both URA3 and the wild-type VAT2 gene (Table I). This strain is also MATα and bar1 so that it is possible to directly assay the mutants obtained from this strain for defects in α-factor internalization. A screen was conducted (Fig. 3) and retesting of growth on SD and SD/5FOA at both 24 and 30°C indicated that 18 isolates were most strongly affected for growth on SD/5FOA at both temperatures. Mutants having defects at both 24 and 30°C were thought to be more likely to bear nonconditional mutations and therefore to affect nonessential genes. This rationale was predicted to favor isolation of mutants distinct from previously isolated mutants such as act1-1, end2-1, and the sec mutants which have End+ phenotypes but possess temperature-conditional mutations in essential genes (Noyick and Botstein, 1985; Riezman, 1985; Chvatchko et al., 1986). The growth of various Vsl- mutants on SD and SD/5FOA at 24°C is shown in Fig. 4. Some of the mutants (e.g., 10, 121) gave rise to a few colonies which grew well on SD/5FOA and these presumably arose by mutation at suppressor loci or gene conversion of vat2Δ by the plasmid copy of the gene before plasmid loss. The number of these colonies varied from one experiment to another, but most of the cells that lost the plasmid gave microcolonies on SD/5FOA. Cells that are URA3 (e.g., cells which have not lost the plasmid) do not even form microcolonies on SD/5FOA (data not shown). The inability of the Vsl- mutants to grow on SD/5FOA was not due to integration of pCY36 into the chromosome or gene conversion of the chromosomal ura3 mutation, because when mated to the wild-type ura3 MATα strain RH449, all the resulting diploids were able to grow on SD/5FOA.

The Journal of Cell Biology, Volume 127, 1994 376
Figure 3. The vat2-synthetic lethality (Vsl-) mutant screen. The starting strain was RH1937, which has a chromosomal deletion of the VAT2 gene (vat2A) marked with LEU2 and a centromere plasmid (pCY36) carrying the wild-type VAT2 and URA3 genes. After mutagenesis, some of the cells will gain a new mutation which prevents growth without a wild-type copy of VAT2 (Vsl-). SD/5FOA is used to select for those cells in each colony of mutagenized RH1937 which have lost the pCY36 plasmid during growth and become Ura-. None of the cells in the Vsl- mutant colonies will be able to grow on SD/5FOA, since they cannot grow without the VAT2 gene. On the other hand, cells in the Vsl+ colonies can lose the pCY36 plasmid. Those Vsl+ cells which do become Ura+ will grow on SD/5FOA.

The results of complementation analysis performed after the first backcross suggested that mutants 38 and 43 are in one complementation group and the other five End- Vsl- mutants are in distinct complementation groups. The definition of six complementation groups was confirmed in the complementation analysis based on temperature-sensitivity described later.

Many of the Vsl- Mutants Are Defective for Lucifer Yellow Accumulation in the Vacuole

We examined the ability of the Vsl- mutants to carry out fluid-phase endocytosis by assaying the accumulation of the fluid-phase marker LY in the vacuole (Materials and Methods). One of the Vsl- mutants (113) had no visible vacuole when viewed by Nomarski optics and therefore could not be tested for LY accumulation (data not shown). Each of the other mutants had either a few small vacuoles or one large vacuole (Fig. 5, B–G) similar to the wild-type strain (Fig. 5 A). Mutants 10, 19, 38, 43, 62, 73, and 82 (7 of 18 total) were defective for accumulation of LY in the vacuole at 24°C (Fig. 5, B–G’) compared to the wild-type strain (Fig. 5 A), while most of the other mutants showed approximately wild-type levels of LY accumulation in the vacuole at 24°C (data not shown). The mutant 82 showed a unique staining pattern with LY. In certain cells it was possible to see a faint reticular staining surrounding the vacuole, suggesting that perhaps this mutant took up some LY but did not deliver it to the vacuole. This staining was very faint and is not obvious in Fig. 5.

Those Vsl- mutants which had defects in endocytosis were designated end mutants. Thus mutants 10, 19, 38/43, 62, 73, and 82 define END13, END8, END12, END9, END10, and END11, respectively.
end9-1 mutant. α-Factor uptake by the end11-I mutant (Fig. 6 D) was defective at both temperatures, although the initial rate of uptake (first 5 min) was nearly like that in the wild-type strain. After 15 min at 37°C, the end11-I mutant stopped accumulating internalized α-factor as there was no further increase in internal counts. At this time point only ∼50–60% of the bound pheromone was resistant to an acid wash. The defect in α-factor uptake shown by the end10-I mutant (Fig. 6 C) was similar to that exhibited by the end11-I mutant, except that in the former mutant the noninternalized α-factor dissociated rapidly from the cells.

The end12-1, end12-2, and end13-I Mutants Are Defective in Degradation of Internalized α-Factor

To measure later steps of endocytosis, we tested those end mutants which were defective for LY accumulation but were not defective for α-factor uptake, for α-factor degradation at 30°C (Materials and Methods). We chose 30°C because pheromone delivery to the vacuole is optimal at this temperature. The results of these experiments are shown in Fig. 7. The end13-1 mutant showed a strong delay in degradation of internalized α-factor at 30°C compared to the wild-type strain and the end12-1 (and end12-2) mutants show almost no degradation of the internalized α-factor even at late time points (90'). The end11-I mutant also showed very little degradation of the small amount of internalized α-factor (data not shown).

The end12-1 and end13-I Mutants Missort Newly Synthesized Vacuolar Hydrolases

In yeast, soluble vacuolar proteins transit through endosomal compartments on their way to the lysosome or vacuole (Schimmoller and Riezman, 1993; Raymond et al., 1992; Vida et al., 1993; Davis et al., 1993). It is therefore possible that certain mutations that block or delay transport between endosomal compartments or from endosomal compartments to the vacuole might cause a defect in the correct sorting and maturation of soluble vacuolar hydrolases. We therefore screened the new end mutants for secretion of carboxypeptidase Y (CPY), a soluble glycoprotein of the yeast vacuole. The end mutants were grown on a nitrocellulose filter at

The Journal of Cell Biology, Volume 127, 1994

Table II A. Synthetic Lethality of vat2Δ::LEU2 and end3Δ::URA3 Mutations

Tetrad class	PD	T	NPD	Total
Phenotypes of spores	2 Leu+ Ura-	1 Leu+ Ura-	2 Leu+ Ura-	2 Leu+ Ura-
Genotype of spores	2 vat2Δ END3	1 vat2Δ END3	2 vat2Δ END3	

The diploid strain RH1931 (vat2Δ::LEU2/VAT2 end3Δ::URA3/END3 ura3/ura3 leu2/leu2) was sporulated, and the tetrads obtained were dissected onto YPUAD (pH 5) medium. Colonies were allowed to form at 24°C. The nutritional requirements of the haploid segregants arising from the spores, and the deduced genotypes of the haploid segregants with respect to END3 and VAT2 were determined. Tetrad ratios for RH1931 (PD, T, NPD) are shown. PD, parental ditype; T, tetratype; NPD, nonparental ditype.

Table II B. Synthetic Lethality of vat2Δ::LEU2 and end4Δ::LEU2 Mutations

Tetrad class	PD	T	NPD	Total
Phenotypes of spores	4 Leu+	2 Leu+	2 Leu+	
Genotype of spores	2 vat2Δ END4	1 vat2Δ END4	2 vat2Δ END4	

The diploid strain RH2464 (vat2Δ::LEU2/VAT2 end4Δ::LEU2/END4 leu2/leu2) was sporulated, and the tetrads obtained were dissected onto YPUAD (pH 5) medium. Colonies were allowed to form at 24°C. The nutritional requirements of the haploid segregants arising from the spores, and the deduced genotypes of the haploid segregants with respect to END4 and VAT2 were determined. Tetrad ratios for RH2464 (PD, T, NPD) are shown. Incubated in the total are two tetrads which did not fall into PD, T, or NPD classes due to insufficient viable spores recovered or to gene conversion events leading to aberrant marker segregation ratios. PD, parental ditype; T, tetratype; NPD, nonparental ditype.

end8-1, end9-1, end10-1, and end11-I Mutants Exhibit Defects in Uptake of α-Factor Pheromone

Using LY as a marker, it is possible to determine if cells have a defect in endocytosis, but is not possible to show whether the defect lies in uptake at the plasma membrane or in subsequent delivery to the vacuole. To determine where the endocytic defect lies, we assayed each of the new end mutants for internalization of α-factor at 24 and 37°C (Materials and Methods). Uptake of α-factor exhibited nearly wild-type kinetics at 37°C in the wild-type strain (Fig. 6 E and F, data for end12-2 not shown), but was clearly defective in the end8-1, end9-1, end10-1, and end11-I mutants (Fig. 6, A–D). Interestingly, uptake of α-factor exhibited wild-type kinetics at 24°C in the end8-1 mutant (Fig. 6 A), and was significantly faster at 24°C than at 37°C in the
Table II. Synthetic Lethality of vat2Δ::LEU2 and end3Δ::URA3 Mutations

Phenotype Genotype	Ura⁺ Leu⁻	Ura⁻ Leu⁺	Ura⁻ Leu⁻	Ura⁺ Leu⁻
	END3 V4T2	end3Δ V4T2	end3Δ vat2Δ	end3Δ vat2Δ
Number observed	36	41	0	39
Number Case 1	39	39	39	39
Number Case 2	39	39	39	39
Total	117	156	0	117

The total number of spores of each genotype obtained by dissection of 39 tetrads of RH1931 are shown. The data is from the experiment described in Table II A. The number expected if end3Δ and vat2Δ are unlinked and show synthetic lethality (Case 1), and if end3Δ and vat2Δ are unlinked and do not show synthetic lethality (Case 2) are also shown.

24°C and CPY secreted by the cells was detected using a specific polyclonal antiserum (Materials and Methods). The result is shown in Fig. 8. The end12-1 and end13-1 mutants were positive for the presence of CPY on the filter and the end8-1, end9-1, and end11-1 mutants were negative as was the wild-type strain. The results obtained with the end10-1 mutant were intermediate and probably reflect some cell lysis (see below).

To further analyze delivery of CPY to the vacuole, we performed a pulse-chase radiolabeling of newly synthesized CPY in each end mutant. CPY is synthesized as a precursor (prepro-CPY) with an NH₂-terminal signal sequence and is translocated into the lumen of the ER. In the ER, CPY receives four core oligosaccharides to yield a protein of 67 kD known as p1 CPY. CPY is then transported to the Golgi where it receives outer chain mannose residues and increases in size to 69 kD (p2 form). From the Golgi, the CPY is transported to the vacuole where it is cleaved to a 61-kD form which is the mature, active species. The formation of 61 kD CPY is indicative of correct vacuolar delivery of CPY (for review see Rothman et al., 1989; Klionsky et al., 1990).

The new end mutants were pulse-labeled with Na²⁵SO₄ or ^{[35}S]methionine and cysteine, chased with cold sulfate, methionine, and cysteine, and separated into intracellular and extracellular (including perplasmic) fractions. Labeled newly synthesized CPY was immunoprecipitated at various time points after initiation of the chase from both fractions and displayed on SDS-PAGE gels (Fig. 9). The end8-1, end9-1, end10-1, end11-1, and end13-1 mutants exhibited wild-type kinetics of CPY maturation in the intracellular fractions whereas the end12-1 mutant was severely defective for maturation of CPY. Although the end13-1 mutant matured intracellular CPY with wild-type kinetics, a small amount of the newly synthesized CPY was secreted as p2 CPY into the extracellular fraction. Thus, the pulse-chase labeling data agrees with the filter immunooassay data, and shows that only end12-1 (and end12-2) and end13-1 have defects in delivery of CPY to the vacuole. Since these mutants were also defective in degradation of internalized α-factor, this result is consistent with the idea that delivery of newly synthesized CPY to the vacuole and late steps in endocytosis require common gene products. Further work will be needed to establish that the α-factor degradation phenotypes of these mutants are really due to transport blocks and are not due to a lowered ability of the vacuoles in these mutants to degrade α-factor.

All of the New end Mutants Affect Nuclear Genes and Display Defective Growth at Elevated Temperatures

All of the new end mutants (with the exception of end12-2, which is allelic to end12-1) were outcrossed to the congenic wild-type strains RH449 (once) and RH977 or RH978 (twice). The defect in uptake of LY segregated 2:2 in every tetrad examined, indicating that the End⁺ phenotype is caused by a lesion in a nuclear-encoded gene. In addition, an unselected defect in growth at elevated temperature segregated with each endocytic defect. The end8-1, end9-1, end10-1, and end12-1 (and end12-2) mutants caused a tight block in growth at 37°C, whereas the end11-1 strain grew poorly at all temperatures tested at 24°C and 37°C, and the end13-1 strain was only completely defective for growth at 39°C (the wild-type strain grew slowly at this temperature). The Ts⁻ in each end mutant was complemented in heterozygous diploids. Hence the Ts⁻ phenotype which cosegregates with each end mutation is recessive.

Other mutants have been isolated in our laboratory and in other laboratories that affect the internalization step of endocytosis. Among these are chcl-521 (clathrin heavy chain) (Payne et al., 1988; Tan et al., 1993), cie1Δ (clathrin light chain) (Silveira et al., 1990), act1-1 (actin) (Novick and Botstein, 1985; Kübler and Riezman, 1993), sac6A (fimbrin) (Adams et al., 1991; Kübler and Riezman, 1993), cmd1-1 (calmodulin) (Davis, 1992; Kübler, E., E Schimmtller, and E. Stein, 1985; Kübler and Riezman, 1993), end4-1 (Raths et al., 1993), end4-1 (Raths et al., 1993), end5-1, end6-1, and end7-1 (Munn, A. L., and H. Riezman, unpublished data). All of these mutants, like the new end mutants, exhibit temperature-sensitive growth. We tested each of the new end mutants for complementation with these mutants. All pairwise combinations exhibited complementation. All the mutations were recessive to the wild-type allele in heterozygous diploids (data not shown). Hence, the new end mutants isolated in the Vsl⁻ screen are defective in the internalization step identify a new set of genes required for fluid-phase and receptor-mediated endocytosis in yeast.

The end2 and end3 mutants, which show a vacuolar protein sorting (vps) phenotype, were tested by complementation analysis with the vps mutant collection (Raymond et al., 1992). end2 did not complement vps34, and end3 did not complement vps4. Therefore, the new screening procedure also identifies a subset of vps mutants that affect the endocytic pathway (see Discussion).

Discussion

In previous work, two yeast mutants blocked in the first step of endocytosis were isolated. These mutants carried lesions in distinct genes, END3 and END4 (Raths et al., 1993). In this study, we have shown that the combination of end3Δ or end4Δ mutations with a var2Δ mutation resulted in spores
Figure 5. Some Val+ mutants are defective for accumulation of LY in the vacuole (End+). The wild-type strain RH144-3D (END) (A) and the three time outcrossed mutants 10 (endl3-1) (RH2604) (B), 19 (end8-1) (RH2607) (C), 38 (endl2-1) (RH2611) (D), 62 (end9-1) (RH2615) (E), 73 (endl0-1) (RH2618) (F), and 82 (endl1-1) (RH2622) (G) were assayed for accumulation of LY in the vacuole at 24°C as described in Materials and Methods. The upper panel in each pair (A–G) shows a field of cells viewed with Nomarski optics, and the lower panel in each pair (A’–G’) shows the same field of cells viewed with FITC-fluorescence optics. The vacuoles in each cell are visible as indentations when observed with Nomarski filters. If the vacuoles have accumulated LY, then they are also visible with fluorescence optics. All the mutants shown have vacuoles which are clearly visible in the Nomarski photographs, but which are unstained or stained poorly with LY compared to the wild-type strain in the fluorescence photographs. The original mutants RH1972 (endl3-1), RH1973 (endl8-1), RH1974 (endl2-1), RH1975 (endl2-2), RH1976 (endl9-1), RH1977 (endl0-1), and RH1978 (endl1-1) have similar defects in LY accumulation.

that germinated but did not give rise to colonies. Therefore, it seems that in the absence of the normal mechanism for acidification of the vacuolar system, endocytosis of acidic, external fluid can allow vat2Δ mutant cells to grow. When these cells are also unable to endocytose, the vacuolar system cannot be acidified and this leads to lack of growth consistent with the hypothesis put forward by Nelson and Nelson (1990). It is quite possible that the rate at which the vat2Δ cells acidify their vacuolar system by endocytosis is limiting for growth and is responsible for their slow generation time.
The experiments described in this report suggest the possibility that an organelle(s) of the vacuolar or secretory system must be acidified to allow growth. Further work will be needed to determine whether or not this is true. If a compartment is being acidified via endocytosis, however, several observations may be useful clues to the identity of this compartment. First, not all mutations that affect accumulation of LY in the vacuole are synthetically lethal with \(vau2 \) mutations. In particular, the \(ypt7 \) mutation, which delays endocytic traffic from late endosomes to vacuoles, is not synthetically lethal with \(vau2 \) (Schimmöller and Riezman, 1993; Schimmöller, F., unpublished observations). On the other hand, some mutants that affect postinternalization stages of endocytosis, e.g., the \(endl2-1, endl2-2, \) and \(endl3-1 \) mutants described here, are synthetically lethal with \(vau2 \). This suggests that if uptake of the acidic medium is important for growth, uptake alone is not sufficient and its delivery to some internal compartment(s) of the endocytic or perhaps secretory pathway is also required. In any event, it is unlikely that the vacuole must be acidified, because it is known that some yeast mutants remain viable without functional vacuoles (Dulic and Riezman, 1990). Further experiments will be required to determine if there is an organelle whose acidification is essential and, if so, the identity of this organelle.

By screening for mutations that are coletal with \(vau2\Delta \)
The Journal of Cell Biology, Volume 127, 1994 382
Figure 7. The End- mutants which are wild-type for α-factor uptake (10/end13-1 and 38/end12-1) are defective for α-factor degradation. The three time outcrossed mutants 10 (end13-1) (RH2604) (L3) and 38 (end12-1) (RH2611) (L2) and the wild-type strain (RH144-3D) (WT) were assayed for α-factor degradation using a pulse-chase protocol as described in Materials and Methods. Mutant 10 (end13-1) degrades the α-factor with slow kinetics, while mutant 38 (end12-1) is nearly completely blocked in α-factor degradation. Quantification of the intact α-factor remaining at different time points by laser densitometry (using the fluorograms shown) indicates that in RH144-3D only 34% of the internalized α-factor is intact at 30 min, while in RH2604 and RH2611, 70% and 93% of the internalized α-factor is intact at 30 min, respectively. By 90 min, only 7% of the internalized α-factor is intact in RH144-3D, while at the same time 16% and 64% of the internalized α-factor is intact in RH2604 and RH2611, respectively.

Figure 6. Some of the End- mutants are defective in α-factor internalization. Continuous presence α-factor uptake assays were performed at 24°C and at 37°C as described in Materials and Methods on the wild-type strain RH144-3D (END) (shown in each graph A-F) and the three time outcrossed mutants 19 (end8-1) (RH2607) (A), 62 (end9-1) (RH2615) (B), 73 (end10-1) (RH2618) (C), 82 (end11-1) (RH2622) (D), 38 (end12-1) (RH2611) (E), and 10 (end13-1) (RH2604) (F). Mutants 19 (end8-1) and 62 (end9-1) (A and B) are defective in internalization even at early time points at 37°C, but uptake is less defective (or not defective) at 24°C. Mutants 73 (end10-1) and 82 (end11-1) (C and D) internalize α-factor like wild-type initially, but then uptake slows down when ~40-50% of the α-factor is internal, i.e., after 10-15 min. Mutants 10 (end13-1) and 38 (end12-1) (E and F) internalize α-factor like wild-type at 24°C and 37°C. Data shown is the average of at least four independent assays.
Figure 8. The End− mutants which are defective for α-factor degradation secrete soluble vacuolar proteases. Three time outcrossed mutants 10 (endl3-1) (RH2604), 19 (end8-1) (RH2607), 38 (endl2-1) (RH2611), 62 (end9-1) (RH2615), 73 (endl0-1) (RH2618), and 82 (endll-1) (RH2622) as well as the wild-type strain RH144-3D (END) and the vps1 strain as a positive control were grown on a nitrocellulose filter at 24°C. After two days of growth, the cells were washed from the filter and the filter was probed with antiserum raised against carboxypeptidase Y (CPY) to visualize CPY which had been secreted during growth (see Materials and Methods). The endl2-1 and endl3-1 mutants are strongly positive, as is the vps1 strain. The endl0-1 mutant is faintly positive. The endS-1, end9-1, and endl1-1 mutants are negative like the wild-type strain RH144-3D.

screen is significant. The vps4 mutants are of the class E type as described by Raymond et al. (1992). They have vacuoles of wild-type morphology, however soluble vacuolar proteins such as CPY accumulate in a compartment adjacent to, but distinct from, the vacuole. This "class E compartment" is acidified and the vacuolar H+-ATPase is associated with it. Raymond et al. (1992) have suggested that it may be an endosomal/prevacuolar intermediate lying between the Golgi complex and the vacuole. It is notable also that the renl mutant isolated by Davis et al. (1993), which exhibits a delay in uptake and/or transport of the α-factor receptor (Ste3p) is allelic to vps2, another class E vps mutant.

In contrast to vps4, vps34 mutants have vacuoles that are often larger than those seen in wild-type cells (Raymond et al., 1992). Nevertheless, class D mutants have stronger defects in growth at elevated temperature, growth in high osmolarity medium, and in vacuolar protein sorting compared to class E vps mutants. The vacuole is not strongly acidified in these mutants and the vacuoles are not able to segregate efficiently into daughter cells during mitosis (Banta et al., 1988; Raymond et al., 1992).

A better understanding of the role of the VPS34 gene product in vacuolar protein sorting has been gained by the discovery that it possesses a phosphatidylinositol 3-kinase (PI3-kinase) activity and has amino acid homology to the catalytic subunit (p10) of mammalian PI3-kinase (Hiles et al., 1992; Herman et al., 1992). In mammalian cells, PI3-kinase is a-
associated with growth factor receptors which have tyrosine kinase activity and it has been suggested that PI3-kinase may be required both for signal transduction from these receptors and perhaps for their internalization (Panayotou and Waterfield, 1992). In this respect it is interesting that we see no defect in internalization of α-factor in the end1-1 and end2-2 mutants. The defect in endocytosis lies at a later step in the pathway.

There are four possible explanations for the defects in the vps34 mutant. (1) It is possible that Vps34p is required for budding or transport of vesicles from an endosome/prevacuolar compartment to the vacuole. This step is probably required for both vacuolar hydrolase delivery and for delivery of endocytosed material to the vacuole. (2) Vps34p may principally be involved in targeting of proteins from the Golgi apparatus to endosomes. In this case, a protein that is essential for transport of endocytic material from endosomes towards the vacuole would not be delivered to its site of action, and an indirect block of endocytosis would ensue. (3) Vps34p could be directly required for the recycling of essential Golgi components from endosomes back to the Golgi. This could cause a depletion of the vacuolar protein sorting machinery in the Golgi, and an accumulation of this machinery in endosomes, thus possibly impairing endosomal function. (4) Vps34p could be working independently in the two pathways, controlling the sorting of vacuolar hydrolases in the Golgi, and the sorting of proteins in endosomes for traffic to different destinations including the plasma membrane, Golgi, and the vacuole. Experiments using a vps34 mutant that is temperature-sensitive for function may be valuable in distinguishing between these possibilities.

The end12/vps34 mutations have much stronger effects on maturation of vacuolar hydrolases than the end3-1 mutation, and it may be that the effect of end3-1 on delivery of vacuolar hydrolases is not direct. For example, the end3-1 mutation may not affect the compartments through which vacuolar hydrolases pass, but a communicating compartment. A defect in the latter compartment may then have a delayed effect on the function of the former compartments and lead to mis-sorting of vacuolar hydrolases.

The uptake-defective end mutants can be divided into two classes. One class contains end8-1, end9-1, end3, and end4. This class is affected in initial and subsequent uptake kinetics. A second class of mutant contains the end10-1 and end11-1 mutants. These are affected in uptake of receptor-ligand complexes also, but the defect does not occur immediately after addition of ligand. These mutants show nearly normal initial α-factor uptake kinetics, but uptake apparently reaches a plateau after 5-10 min of internalization. The first class of mutant is probably directly affected in uptake of α-factor. Several explanations could account for the phenotype of the second class of mutant. (a) A component necessary for uptake of α-factor could become depleted shortly after internalization commences. This explanation is unlikely, since fluid-phase endocytosis is also affected in these mutants and it occurs constitutively. (b) A block in endocytic transport to the vacuole from certain intermediate organelles (e.g., transfer from early to late endosomes) might lead to recycling of receptor-ligand complexes from these intermediates back to the surface, thus producing a new equilibrium with approximately equal uptake and recycling rates. In support of this proposal, the small amount of internalized α-factor appears not to be degraded with wild-type kinetics in the end1-1 mutant (data not shown). Further experiments are currently underway to directly address this question.

Interestingly, all but one of the mutations isolated on the basis of their Vgl- phenotype segregated in crosses with a tightly linked temperature-sensitive growth phenotype. This Ts- phenotype was most pronounced in end8-1, end9-1, end10-1, end12-1, and end12-2, and the cells were unable to grow at all at 37°C. The growth of end3-1 cells was partially impaired at 37°C, and was completely blocked at 39°C. This result extends our previous observation that end3 and end4 mutants were Ts- for growth and supports our speculation that at least one step of the endocytic pathway is essential for growth at elevated temperature. Of the new mutants, only end11-1 was not strongly defective in growth at high temperature. It remains to be determined whether the defect in end11-1 is partial, or whether END11 is not essential for growth at elevated temperatures. The ypr7 mutant is not Ts- for growth, even though it has a strong defect in endocytosis (Wichmann et al., 1992; Schimmöller and Riezman, 1993). This protein seems to act at one of the latest stages of the endocytic pathway: transport out of the late endosome. It could be that late steps are not required for growth at elevated temperature or that the function required for growth at high temperature is provided by another protein in ypr7 mutant strains.

The Ts- growth defect exhibited by the new end mutants will allow rapid cloning of the wild-type genes by complementation. Further characterization of the mutants described here and a molecular analysis of the corresponding genes will lead to a greater understanding of the cellular activities and structures required for endocytosis in yeast.

We would like to thank members of the Riezman lab for stimulating discussions and K. Hannavy, F. Schimmöller, B. Stevenson, L. Hicke, C. Suzuki, and S. Rospert in particular for critically reading the manuscript. We are grateful also to T. Stevens for sending us the vma2 mutant strain, the yps collection, and the pCY36 plasmid; G. Payne for sending chi1 and cicc1 mutant strains; D. Botstein and D. Drubin for sending the act1-1 and sord6A::URA3 mutant strains; T. Davis for sending the end1-1 mutant strain; and N. Nelson, T. Stevens, S. Emr, G. Payne, and L. Weissman for discussions. F. Crausaz and T. Aust are acknowledged for excellent technical assistance.

This work was funded by the canton of Basel Stadt and by a grant to H. Riezman from the Swiss National Science Foundation.

Received for publication 27 May 1994 and in revised form 14 July 1994.

References

Adams, A. E. M., D. Botstein, and D. G. Drubin. 1991. Requirement of yeast fimbrin for actin organization and morphogenesis in vivo. *Nature (Lond.)*: 354:404-408.

Anderson, R. G. W., M. S. Brown, and J. L. Goldstein. 1977. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. *Cell.* 10:351-364.

Banta, L. M., J. S. Robinson, D. J. Klionsky, and S. D. Emr. 1988. Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. *J. Cell Biol.* 107:1369-1383.

Boeke, J. D., F. Lacroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. *Mol. Gen. Genet.* 197:345-346.

Chvatchko, Y., I. Howald, and H. Riezman. 1986. Two yeast mutants defective in endocytosis are defective in pheromone response. *Cell.* 46:355-364.

Davis, N. G., J. L. Horvitz, and G. F. Sprague. 1993. Cis- and trans-acting functions required for endocytosis of the yeast pheromone receptors. *J. Cell Biol.* 122:53-65.

Davis, T. N. 1992. A temperature-sensitive calmodulin mutant loses viability
during mitosis. J. Cell Biol. 118:607-617.

Dulic, V., and H. Riezman. 1990. Saccharomyces cerevisiae mutants lacking a functional vacuole are defective for aspects of the pheromone response. J. Cell Sci. 97:517-525.

Dulic, V., M. Egerton, I. Elguindi, S. Rath, B. Singer, and H. Riezman. 1991. Yeast endocytosis assays. Methods Enzymol. 194:697-710.

Griffiths, G., and J. Grunenberg. 1991. The arguments for pre-existing early and late endosomes. Trends Cell Biol. 1:5-9.

Griffiths, G., B. Hoflaack, K. Simons, and S. Kornfeld. 1988. The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell. 52:329-341.

Hansen, S. H., K. Sandvig, and B. van Deurs. 1993. Molecules internalized by clathrin-independent endocytosis are delivered to endosomes containing transferrin receptors. J. Cell Biol. 123:89-97.

Helenius, A., I. Mellman, D. Wall, and A. Hubbard. 1983. Endosomes. Trends Biochem. Sci. 8:245-250.

Herman, P. K., J. H. Stack, and S. D. Emr. 1992. An essential role for a protein and lipid kinase complex in secretory protein sorting. Trends Cell Biol. 2:363-368.

Hiles, I. D., M. Otsu, S. Volinia, M. J. Fry, I. Gout, R. Dhand, G. Panayotou, F. Ruiz-Larrea, A. Thompson, and N. F. Totty, et al. 1992. Phosphatidylinositol 3-kinase: structure and expression of the 110 kDa catalytic subunit. Cell. 70:419-429.

Ho, M. N., R. Hirata, N. Umemoto, Y. Ohyu, A. Takatsuki, T. H. Stevens, and Y. Anraku. 1993. VMA13 encodes a 54-kDa vacuolar H+-ATPase subunit required for activity but not assembly of the enzyme complex in Saccharomyces cerevisiae. J. Biol. Chem. 268: 18286-18292.

Hopkins, C. R., and I. S. Trowbridge. 1983. Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J. Cell Biol. 97:508-521.

Horazdovsky, B. F., G. R. Busch, and S. D. Emr. 1994. Vps21 encodes a Rab-like GTP binding protein that is required for the sorting of yeast vacuolar proteins. EMBO (Eur. Mol. Biol. Organ.) J. 13:1297-1309.

Ito, H., Y. Fukada, K. Murata, and A. Kimura. 1983. Transformation of intact Saccharomyces cerevisiae. J. Biol. Chem. 258:266-292.

Klionsky, D. J., P. K. Herman, and S. D. Emr. 1990. The fungal vacuole: comparison, function, and biogenesis. Microbiol. Rev. 54:266-292.

Kornfeld, S., and I. Mellman. 1989. The biogenesis of lysosomes. Annu. Rev. Cell Biol. 5:483-525.

Kübler, E., and H. Riezman. 1993. Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO (Eur. Mol. Biol. Organ.) J. 12:2855-2862.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.). 227:680-685.

Manolson, M. F., B. Wu, D. Proteau, B. E. Taillon, B. T. Roberts, M. A. Ruiz-Larrea, A. Thompson, and N. F. Totty, et al. 1992. Phosphatidylinositol 3-kinase: structure and expression of the 110 kDa catalytic subunit. Cell. 70:419-429.

Munn, A. L., L. Silveira, M. Elgort, and G. S. Payne. 1991. Viability of yeast vacuolar H+-ATPase causes conditional lethality. Proc. Natl. Acad. Sci. USA. 87:3503-3507.

Murphy, R. F. 1991. Maturation models for endosome and lysosome biogenesis. Trends Cell Biol. 1:77-82.

Nelson, H., and N. Nelson. 1990. Disruption of genes encoding subunits of yeast vacuolar H+ -ATPase causes conditional lethality. Proc. Natl. Acad. Sci. USA. 87:3503-3507.

Nelson, H., S. Mandiyan, and N. Nelson. 1989. A conserved gene encoding the 57-kDa subunit of the yeast vacuolar H+-ATPase. J. Biol. Chem. 264:1775-1778.

Novick, P., and D. Botstein. 1985. Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell. 40:405-416.

Panayotou, G., and M. D. Waterfield. 1992. Phosphatidylinositol 3-kinase: a key enzyme in diverse signalling processes. Trends Cell Biol. 2:358-360.

Payne, G. S., B. D. Baker, E. van Tulen, and R. Schekman. 1988. Protein transport to the vacuole and receptor-mediated endocytosis by clathrin heavy chain-deficient yeast. J. Cell Biol. 106:1453-1461.

Pearse, B. M. F., and M. S. Robinson. 1990. Clathrin, adaptors, and sorting. Annu. Rev. Cell Biol. 6:151-171.

Raths, S., J. Rohrer, F. Crausz, and H. Riezman. 1993. end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae. J. Cell Biol. 120:55-65.

Raymond, C. K., I. Howald-Stevenson, C. A. Vater, and T. H. Stevens. 1992. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol. Biol. Cell. 3:1385-1402.

Riezman, H. 1985. Endocytosis in yeast: several of the yeast secretory mutants are defective in endocytosis. Cell. 40:1001-1009.

Roberts, C. J., C. K. Raymond, C. T. Yamashiro, and T. H. Stevens. 1991. Methods for studying the yeast vacuole. Methods Enzymol. 194:644-661.

Rothman, J. H., C. T. Yamashiro, P. M. Kane, and T. H. Stevens. 1989. Protein targeting to the yeast vacuole. Trends Biochem. Sci. 14:347-350.

Schimmoller, F., and H. Riezman. 1993. Involvement of ypt7p, a small GTPase, in traffic from late endosome to the vacuole in yeast. J. Cell Sci. 106:823-830.

Sherman, F. G., F. Fink, and C. Lawrence. 1974. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Silveira, L. A., D. H. Wong, F. R. Masiarz, and R. Schekman. 1990. Yeast clathrin has a distinctive light chain that is important for cell growth. J. Cell Biol. 111:1439-1449.

Singer, B., and H. Riezman. 1990. Detection of an intermediate compartment involved in transport of α-factor from the plasma membrane to the vacuole in yeast. J. Cell Biol. 110:1911-1922.

Singer-Krüger, B., R. Frank, F. Crausz, and H. Riezman. 1993. Partial purification and characterization of early and late endosomes from yeast: identification of four novel proteins. J. Biol. Chem. 268:14376-14386.

Singer-Krüger, B., H. Stemmark, A. Düsterhöft, P. Philippsen, J.-S. Yoo, D. Gallwitz, and M. Zerial. 1994. Role of three rab-like GTPases, ypt51p, ypt52p, and ypt53p, in the endocytic and vacuolar protein sorting pathways of yeast. J. Cell Biol. 125:283-298.

Steinman, R. M., I. S. Mellman, W. A. Muller, and Z. A. Cohn. 1983. Endocytosis and the recycling of plasma membrane. J. Cell Biol. 96:1-27.

Swanson, J. A., B. D. Yirinec, and S. C. Silverstein. 1985. Phorbol esters and horseradish peroxidase stimulate pinocytosis and redirect the flow of pinocytosed fluid in macrophages. J. Cell Biol. 100:851-859.

Tan, P. K., N. G. Davis, G. F. Sprague, and G. S. Payne. 1995. Clathrin facilitates the internalization of seven transmembrane segment receptors for mating pheromones in yeast. J. Cell Biol. 123:1707-1716.

Vida, T. A., G. Huyer, and S. D. Emr. 1993. Yeast vacuolar proton-enzymes are sorted in the late Golgi complex and transported to the vacuole via prevacuolar endosome-like compartment. J. Cell Biol. 121:1245-1256.

Wischmann, H., L. Hengst, and D. Gallwitz. 1992. Endocytosis in yeast: evidence for the involvement of a small GTP-binding protein (Ypt7p). Cell. 71:1131-1142.

Yamashiro, C. T., P. M. Kane, D. F. Walczak, R. A. Preston, and T. H. Stevens. 1990. Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Mol. Cell. Biol. 10:3737-3749.