Selection of herbaceous plant assortment for park ground cover using plants of natural phytocoenosis

Svetlana N. Shlapakova3*, Irina V. Beriozkina1, Olga E. Hanbabayeva1, Vladimir N. Sorokopudov2, and Yevgeniy S. Lukashov3

1Russian State Agricultural University – Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
2All-Russian Horticultural Institute for Plant-Breeding, Agrotechnology and Nursery, 115598 Moscow, Russia
3Bryansk State Engineering Technological University, 241037 Bryansk, Russia

Abstract. The modern direction of landscape architecture to creation of ecological and naturalistic plant communities of perennial herbaceous species for the design of park walking routes in the style of “naturgarten” is highlighted in this paper. The principles of selection of herbaceous perennials developed by Russian scientists for planting in urban environments, as well as the principles of creating combinatorial plantings are given. The range of perennial herbaceous plants proposed to create a ground cover along the park walking route with an indication of their environmental requirements is presented in the Tables. The type and storey of plantings where these plants can be used, the flowering period and in the note the additional features of a particular species are indicated. This material can be further used in the design of structural modules of the ground cover according to the type of natural phytocoenoses for park areas with different environmental conditions.

1 Introduction

There is a tendency to create ecological gardens and parks in which biodiversity is maintained and expanded. A sustainable landscape is created in an urbanized environment and the use of water, energy resources and labor costs for agrotechnical care of such plantations are rationalized. All this is clearly seen at the present stage of development of the world landscape architecture.

In this regard, the study of decorative and ecological features of plants of the natural phytocoenosis is relevant at the present stage.

2 Research purpose

The substantiation of the range of herbaceous plants to create a park ground cover on the basis of the plants of the natural phytocoenosis.

3 Research tasks

1. Study of ecological requirements (relation to illumination, humidity, pH and soil fertility) of the plants of the natural phytocoenosis.
2. Evaluation of the flowering period and other decorative features of the plants of the natural phytocoenosis.

Scientific novelty lies in the analysis of ecological requirements and ornamental qualities of the plants of the natural phytocoenosis to justify the range of herbaceous plants with the aim of designing green ground cover in the style of Naturgarten preserving the decorativeness during the whole season.

4 Results

The study of ecological requirements and decorative features of the plants of the natural phytocoenosis allows to design a ground cover for open, closed and semi-open park spaces. As a result, the artistic value of the spaces adjacent to the walking route significantly increases.

Historically, in Russia, in urban landscaping, the flower beds were usually designed from annual flowering and decorative deciduous plants (with a very limited range) on a lawn background. Ornamental grasses and herbaceous perennials were not commonly used in the urban flower beds.

Modern ecological – naturalistic vision of the park flower beds and ground cover promotes the expansion of the range of herbaceous plants with the involvement of ornamental perennials and grasses close in their image to the plants of natural plant communities as well as the plants of the natural phytocoenosis that can grow together in the same area under the same environmental conditions.

* Corresponding author: shla-svetlana@yandex.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
Table 1. The range of plants for greenbelt setting of open spaces (meadow phytocoenosis)

№	Latin name	Family	Planting type	Storey of planting**	Ecological conditions	Flowering period	Notes	
Calamagrostis acutiflora	Grasses (Poaceae)	Mono plantings, matrix, mixed	Upper, 150–200 cm	Sun	Drainage	Any soils	VII	The leaves are golden – yellow in autumn. Aggressive
Phalaris arundinacea	Grasses (Poaceae)	Mono plantings, matrix, mixed	Upper, 100–150 cm	Sun	Excessive but the plant is drought resistant	Any soils, pH: 6.0–8.1	VI	Aggressive
Glyceria maxima	Grasses (Poaceae)	Mono plantings, matrix, mixed	Medium, 50–60 cm	Sun, semishade	Excessive	Light loam and peat soils, pH: 6.0–6.5	VI–VIII	Leaves in autumn turn a reddish tone
Miscanthus sinensis	Grasses (Poaceae)	Mono plantings, matrix, mixed, single	Upper, 20–250 cm	Sun, semishade	Sufficient	Light loam and peat soil, pH: 6.1–7.8	VII–VIII	Leaves in autumn turn yellow
Deschampsia cespitosa	Grasses (Poaceae)	Mono plantings, matrix, mixed	Medium and upper, 30–100 cm	Sun, semishade	Sufficient	Any soils, pH: 3.7–8.0	V–VII	–
Carex hirta	Sedge family (Cyperaceae)	Mono plantings, matrix, mixed, blocks	Bottom and medium, 10–60 cm	Sun, semishade	Sufficient	From wet clay to dry, sandy	IV–VI	Aggressive
Carex acuta	Sedge family – Cyperaceae	Mono plantings, matrix, mixed, blocks	Medium, 40–100 cm	Sun, semishade	Excessive, Riparian plant	Any soils, but better muddy	VI	Aggressive
Primula veris	Primrose (Primulaceae)	Mixed, blocks	Bottom, 30 cm	Semishade	Sufficient	Light soil	V–VI	Yellow color
Ranunculus ficaria	Crowfoot family (Ranunculaceae)	Mixed, blocks	Bottom, 5–30 cm	Sun	Sufficient	Loam, pH: 6.5	IV–V	Yellow color
Anemone nemorosa	Crowfoot family – (Ranunculaceae)	Mixed, block	Bottom, 25 cm	Semishade, shade	Sufficient	Light loam, pH: 6.5	IV–V	White color
Alchemilla vulgaris	Rose family – Rosaceae	Mono plantings, mixed, blocks	Bottom, 30 cm	Sun, semishade	Sufficient	Loam, pH: 6.0	V–IX	Green and yellow color
Pulmonaria obscura	Borage family – Boraginaceae	Mixed, block	Bottom, 30 cm	Semishade, shade	Sufficient	Light loam, pH: 6.1–7.8	IV–V	Red-lilac-blue color
Polygonum bistorta	Buckwheat family – Polygonaceae	Mono plantings, blocks	Upper, 100 cm	Sun	Excess-sive	Any soil, but better fertile, peaty	V–VII	Pale pink color
Thalictrum aquilegifolium	Crowfoot family – Ranunculaceae	Matriz, mixed	Upper, 150 cm	Sun, semishade	Sufficient	Light loam, pH: 6.5	VI–VII	White, purple color
In this article, the criterion for plants selection was their natural appearance and high winter hardness. Such plants can be used to create a ground cover in the walking area of the park in accordance with the natural light conditions [3].

Table 1. Ending

Plant Name	Family	Floral habit	Height (cm)	Light requirement	pH	Flower Color	Notes
Campanula latifolia	Campanulaceae	temporary plantings	70–150	Sun, semishade	6.5–7.0	White	VI–VII
Leucanthemum vulgare	Asteraceae	temporary plantings	45	Sun	Any	White color	VI
Tanacetum vulgare	Asteraceae	temporary plantings	80–120	Sun	Any	VII–X Yellow color	Undemanding
Geranium pratense	Geraniaceae	temporary plantings	60	Light loam	VI–IX	Pink color	Undemanding
Lythrum salicaria	Lythraceae	temporary plantings	80–120	Sun, semishade	Any	Volatile oil plant	Tolerates stagnant over-wetting
Salvia pratensis	Lamiaceae	temporary plantings	50–70	Sun, semishade	Any	Pink blue-violet color	Volatile oil
Veronica spicata	Scrophulariaceae	temporary plantings	70	Light loam	6.5–7.0	VI bright blue, blue color	Biennial plant, environmentally plastic, high reproduction rate
Verbascum phlomoides	Scrophulariaceae	temporary plantings	80–200	Light soils	VI–X	Yellow color	Pruning of withered blossoms to encourage reflowering
Nepeta × faassenii	Lamiaceae	temporary plantings	30–60	Light loam	6.1–7.8	VI–X lavender color	Eugenia – leaves are dying by mid-summer
Tulipa acuminata	Liliaceae	temporary plantings	40	Sabulous clay and light loam	V	Yellow with red stripes	Ephemeral – leaves are dying by mid-summer

Notes: Planting type: mono plantings, matrix, temporary plantings, blocks, mixed, single. ** Planting storey: bottom (10–30 cm), medium (30–70 cm), upper (70–140 cm) *** Illumination: shade, semi-shade, sun **** Humidity: insufficient, sufficient, excessive

Tulipa acuminata, which is not typical for the natural phytocoenosis of the Non-Chernozem zone, was introduced into the proposed range to give more colorfulness to plantings in spring, especially since its appearance does not stand out from the general context.

One of the main tasks of a landscape designer working on the creation of park sceneries is the development of the original exclusive design providing the change of impressions. One of the possibilities to achieve this effect when creating pictures and landscapes in the style of "naturgarten" for different functional areas of the object (parade, walking, quiet recreation area), is to create compositions based on natural or more cultivated and even exquisite image of the same species of plants, but obtained as a result of selection [1, 2].

In this article, the criterion for plants selection was their natural appearance and high winter hardness. Such plants can be used to create a ground cover in the walking area of the park in accordance with the natural light conditions [3].
No.	Latin name	Family	Planting type*	Storey of planting**	Ecological condition	Flowe-ring period	Notes
1	Molinia caerulea	Poaceae	Mono plantings, matrix, mixed	Medium – 70 cm	Sun, semishade	VIII–IX	Grows early in spring
2	Luzula sylvatica	Juncaceae	Mono plantings, matrix, mixed	Bottom, medium, 20–70 cm	Semishade, shade	V–VI	Grows early in spring
3	Sagina subulata	Caryophyllaceae	Mono plantings	Bottom 5–10 cm	Sun	VI–IX	Looks like moss
4	Poa pratensis	Poaceae	Mono plantings, matrix	Bottom, 20–70 cm	Sun, semishade	VI	Foliage appears like moss
5	Milium effusum	Poaceae	Matrix, mixed	Upper, 100 cm	Shade, semishade	VI–VII	Foliage appears like moss
6	Corydalis solida(4.0)	Fumarioideae	“Excipients”, mixed, blocks	Bottom, 15 cm	Shade, semishade	IV–V Pink color	Foliage appears like moss
7	Hepatica nobilis	Ranunculaceae	“Excipients”, mixed, blocks	Bottom, 15 cm	Shade, semishade	IV–V Pink color	Foliage appears like moss
8	Gera-nium macrorhizum	Geraniun	Mono plantings, matrix	Bottom, 20–25 cm	Sun, semishade	VI	Foliage appears like moss
9	Campanula latifolia	Campanulaceae	Temporary plantings, mixed	Upper, 70–150 cm	Sun, semishade	VI–VII	Foliage appears like moss
10	Polygonatum multiflorum	Liliaceae	Mono plantings, mixed	Medium, 30–90 cm	Shade, semishade	VI–VII	Foliage appears like moss
11	Aster alpinus	Asteraceae	Mono plantings, mixed	Bottom, 25–30 cm	Sun, semishade	V–VI White color	Foliage appears like moss
12	Dryopteris filixmas	Dryopteridaceae	Mono plantings, mixed	Upper, 120 cm	Shade	– Grows well in a spruce forest	
13	Matteuccia struthioteris	Woodsiaceae	Mono plantings, mixed	Upper, 150 cm	Sun, semishade	– Grows well in a spruce forest	
14	Rodgersia ascalifolia	Saxifragaceae	Mono plantings, mixed	Upper, 150 cm	Shade, semishade	VI White color	Foliage appears like moss
15	Podophyllum peltatum	Berberidaceae	Mono plantings, temporary plantings, blocks	Medium, 30–50 cm	Sun, semishade	V–VI White color	Foliage appears like moss
16	Asarum europae	Aristolochiaceae	Mono plantings, mixed	Bottom, 30 cm	Shade, semishade	Winter-green plant	Foliage appears like moss

Notes:
* Planting type: mono plantings, matrix, temporary plantings, blocks, mixed, single plantings.
** Planting storey: bottom (10–30 cm), medium (30–70 cm), upper (70–140 cm)
*** Illumination: shade, semi-shade, sun
**** Humidity: insufficient, sufficient, excessive
In our research, we selected and analyzed the species of the plants of the natural phytocoenosis that could be used to create a ground park cover along the walking route passing through the open, semi-open and closed park spaces. In each case, there is a specific environmental situation in terms of the illumination of the areas, humidity, fertility and acidity of the soil. In addition, we took into account the seasonal changes in the decorativeness of the plants in order to ensure the aesthetic appeal of the surroundings of the route from spring to autumn.

Most often in the Non-Chernozem zone in the open areas, a meadow plant community is formed, which is dominated by perennial herbaceous plants (sedge and grass families), growing in conditions of sufficient or excessive moisture. A soddy type of soil formation is characteristic for meadows. Depending on the conditions of a particular place, the fertility and moisture content of these soils can be quite different.

The list of the plants for decoration of open areas that contribute to the image of meadow phytocoenosis is presented in Table 1 with the indication of their main environmental requirements, decorative period and planting place.

The forest phytocoenosis, which is developed within semi-open and closed park spaces, is a complex plant community consisting of woody, shrubby vegetation and a ground cover.

In comparison with the closed park spaces, semi-open spaces are lit better due to the sunrays penetrating them. A characteristic feature of the forest phytocoenoses is the formation of the forest litter from the leaf or coniferous litter, in which the root system of herbaceous perennials is located.

The selection of perennial herbaceous plants for the ground cover is recommended in accordance with the species composition of trees in the park.

Taking into account all above stated, the range of perennial grassy plants offered for the design of a ground cover of the closed and semi-open park spaces solved in the style of natural phytocenoses (1) is presented in Table 2.

In order to achieve the naturalism, the boundaries of artificially created plant communities should be smoothed. This goal may well be realistically, as most of the selected species of the plants have a pronounced plasticity relative to the environmental conditions of the area.

5 Conclusion

The proposed range of the herbaceous perennial plants can be used in the design of structural modules of the ground cover for park areas with different environmental conditions.

References

1. I.Yu. Bochkova, On the use of perennial flower crops in urban landscaping, Questions of landscape architecture, 69, 24 (FGBOU VPO MGUL, 2014)
2. R.A. Karpisonova, Principles of selection of decorative perennials for urban flower beds, GBS Bull., 197, 132–138 (2011)
3. A.V. Smirnov, Atlas of plants of the Moscow region, Retrieved from: http://floralib.msk.ru/index.html
4. N.K. Borisova, Questions of landscape architecture, in Collection of articles on the mater. of the faculty conf. “Expansion of the practice of application of perennial herbaceous plants in the urban environment”, 378, 93 (2015)
5. T. Rainer, K. Vest, Plantings in the post-natural world, 272 (2018)