Process variables data from the lean vapour compressor campaign at Technology Centre Mongstad

Fosbøl, Philip; Neerup, Randi; Almeida, Susana; Rezazadeh, Amirali; Gaspar, Jozsef; Knarvik, Anette; Flo, Nina

Published in:
Data in Brief

Link to article, DOI:
10.1016/j.dib.2019.104483

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Fosbøl, P., Neerup, R., Almeida, S., Rezazadeh, A., Gaspar, J., Knarvik, A., & Flo, N. (2019). Process variables data from the lean vapour compressor campaign at Technology Centre Mongstad. Data in Brief, 26, [104483]. https://doi.org/10.1016/j.dib.2019.104483
The lean vapor compressor (LVC) unit at Technology Centre Mongstad (TCM), Norway has been tested. The aim of this research has been to create knowledge on the process performance of LVC on the CO₂ capture efficiency and energy profile of the TCM plant.

The dataset gives unique information on the LVC campaign in which 16 cases have been tested with various campaign process parameters such as LVC pressure, solvent flow, inlet flue gas CO₂ concentration, and stripper pressure. Absorber and stripper process conditions were recorded during these tests and are presented.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The data presented in this article is providing the supplementary information from the lean vapor compression (LVC) campaign at Technology Centre Mongstad, Norway. A detailed description of the LVC campaign is presented in the work by Fosbøl et al. [1]. The LVC campaign was performed in June 2018. The campaign was divided into two main phases a base case and a LVC test phase. Cases from 1A to 1F represent the base cases and the cases ranging from 2A to 2F are the LVC test phase. The process variables from the pilot campaign are shown in Table 1. The standard deviations given in the table are based on averaged raw data given over 5 min intervals. The table gives information such as the inlet conditions to absorber and stripper. It also provides details on temperatures around the main heat exchanger.

The absorber temperature profiles for the base cases are given in Tables 2 and 3. The stripper temperature profiles for the base and the LVC cases are listed in Tables 4 and 5 respectively.

1. Data

The data presented in this article is providing the supplementary information from the lean vapor compression (LVC) campaign at Technology Centre Mongstad, Norway. A detailed description of the LVC campaign is presented in the work by Fosbøl et al. [1]. The LVC campaign was performed in June 2018. The campaign was divided into two main phases a base case and a LVC test phase. Cases from 1A to 1F represent the base cases and the cases ranging from 2A to 2F are the LVC test phase. The process variables from the pilot campaign are shown in Table 1. The standard deviations given in the table are based on averaged raw data given over 5 min intervals. The table gives information such as the inlet conditions to absorber and stripper. It also provides details on temperatures around the main heat exchanger.

The absorber temperature profiles for the base cases are given in Tables 2 and 3. The stripper temperature profiles for the base and the LVC cases are listed in Tables 4 and 5 respectively.

2. Experimental design, materials, and methods

A lean vapor compressor (LVC) campaign was performed at Technology Centre Mongstad using 30 wt% aqueous monoethanolamine (MEA) and flue gas, with a CO₂ content of 3.5% supplied by the combined heat and power (CHP) plant at the nearby Equinor refinery.

The amine plant was designed and constructed by Aker Solutions and Kværner. The LVC compressor (Pinnacle LF2140 single stage) was manufactured by Sundyne Compressors. The packing height of absorber and stripper were 18 m and 8 m respectively. Both columns were packed with structured Flexipac 2X.

A simplified process flow diagram illustrating the TCM amine plant configuration with CCGT based CHP flue gas feed, CO₂ recycle, and the large stripper designed for high CO₂ content flue gas is exemplified in Fig. 1. This set-up was utilized in the LVC test campaign.
Description	Unit	Case 1A-1	Case 1B	Case 1C	Case 1D	Case 1E	Case 1F	Case 2A	Case 2B	Case 2C-1	Case 2C-2	Case 2C-3	Case 2D-1	Case 2D-2	Case 2E	Case 2F
CHP Flue gas flow rate	Sm3/h	mean 34985	34983	34996	34997	34985	34984	34995	34986	34888	34898	34995	35001	34991	34996	34991
	stdev 60	45	50	51	61	63	60	63	60	61	42	53	65	47	60	47
CO$_2$ concentration into absorber	vol%, dry	mean 13.5	13.7	13.6	13.5	13.7	13.5	11.0	13.9	13.7	13.7	13.8	13.9	13.7	13.6	11.2
	stdev 0.04	0.06	0.04	0.05	0.03	0.09	0.02	0.03	0.02	0.03	0.04	0.03	0.02	0.03	0.04	0.04
Flue gas temperature	°C	mean 30.2	30.1	30.0	30.1	30.0	30.1	30.1	30.1	30.1	29.9	30.9	30.9	30.0	30.0	30.0
	stdev 0.25	0.04	0.04	0.04	0.05	0.04	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.04	0.05
Flue gas into absorber in temperature	°C	mean 54	54.0	54.0	52.5	54.0	54.0	50.8	54.0	54.0	54.0	54.0	54.0	54.0	54.0	54.0
Lean solvent density	kg/m3	mean 1047	1058	1060	1067	1060	1067	1064	1059	1059	1065	1063	1062	1070	1069	1063
Lean solvent out of absorber	°C	mean 31.4	30.7	30.7	34.0	31.4	32.1	31.6	31.6	30.8	31.5	31.4	32.3	33.7	30.9	31.6
Rich amine T out from absorber	°C	mean 43.4	47.6	51.3	43	49.8	51.2	41.7	43.2	48.1	50.9	51.4	49.6	48.7	51.4	51.8
Rich amine liquid going to HE	°C	mean 127.3	168.0	208.0	128.0	207.5	207.5	128.0	173.0	208.0	208.0	208.0	208.0	208.0	208.0	208.0
Rich amine density to kg/m3		mean 1107	1109	1103	1104	1097	1096	1096	1107	1099	1095	1109	1099	1106	1097	1092
Lean amine out from HE	°C	mean 109.3	108.9	108.3	110.3	106.6	106.8	106.1	95.1	93.9	93.3	96.1	92.1	91.9	94.8	93.1
Lean amine to HE	°C	mean 120.6	119.1	118.3	120.4	116.7	116.5	117.8	103.2	101.8	101	104.3	99.5	99.8	103.1	100.7
Lean amine to sea water cooler	°C	mean 51.9	57.3	60.9	52.5	59.3	60.6	61.2	50.8	55.4	58.3	58.6	58.3	56.9	57.4	58.6
P in stripper bottom	barg	mean 0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Temperature in stripper bottom	°C	mean 120.9	119.4	118.5	120.9	116.9	116.7	118.2	120.8	118.6	117.1	117.5	117.6	115	115.2	116.7
Top stripper outlet pressure	°C	mean 96.9	97.5	98.7	98.1	96.7	97.2	99.9	88.8	88.7	89.1	91.1	88.5	87.2	89.3	89.2
Lean amine outlet from HE	°C	mean 94.5	95.9	95.9	95.9	95.4	95.4	95.4	95.4	95.4	95.4	95.4	95.4	95.4	95.4	95.4

(continued on next page)
Description	Unit	Case 1A-1	Case 1B	Case 1C	Case 1A-2	Case 1D	Case 1E	Case 1F	Case 2A	Case 2B	Case 2C-1	Case 2C-2	Case 2D-1	Case 2D-2	Case 2E	Case 2F	
Top stripper outlet flow	kg/h	mean 8623	8655	8971	8842	7474	9511	7543	7357	7084	6979	7431	7159	5935	6404	7728	5997
	stdev	40	77	35	55	26	66	41	36	33	49	64	34	52	32	40	43
CO2 Outlet overhead system pressure	barg	mean 0.90	0.90	0.90	0.90	0.90	0.75	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Temperature out of reboiler (HE)	°C	mean 123.3	122.7	122.5	123	119.7	118.4	120.1	122.6	121.8	119.6	119.6	119.6	119.6	119.6	119.6	119.3
	stdev	0.09	0.04	0.03	0.03	0.11	0.05	0.02	0.02	0.03	0.04	0.05	0.02	0.03	0.02	0.02	0.03
Pressure out of reboiler (HE)	barg	mean 0.95	0.96	0.96	0.96	0.96	0.83	0.97	0.96	0.97	0.97	0.97	0.97	0.83	0.97	0.83	0.97
Pressure into reboiler (HE)	barg	mean 1.1	1.2	1.2	1.2	1.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Temperature into reboiler (HE)	°C	mean 120.8	119.1	118.2	120.6	116.7	116.6	117.9	120.5	118.3	116.8	117.2	117.4	114.7	114.9	115.5	116.5
Pressure of steam into reboiler	barg	mean 3.3	2.8	2.9	2.7	2.3	2.5	2.4	2.3	2.3	2.1	2.3	2.2	1.9	2.0	2.0	2.0
Flow of steam into reboiler	kg/h	mean 12088	12629	13282	12141	11527	12628	11649	9652	9770	9960	11011	10147	9089	7923	10656	8898
Temperature of steam upstream	°C	mean 156.7	150.6	168.2	153.0	159.3	170.4	163.2	160.8	161.1	161.8	154.5	157.6	156.9	155.6	155.4	155.8
Reboiler outlet	°C	mean 122.7	120.9	119.8	122.0	117.9	117.3	118.8	122.5	120.5	118.1	118.1	118.5	116.1	116.1	116.2	117.6
Condenser bottom flow	kg/h	mean 2878	2977	3254	3123	2484	3415	2893	1746	1689	1708	1999	1706	1413	1619	1991	1600
Condenser bottom temperature, hot side	°C	mean 16.7	16.6	16.4	16.1	16.4	16.3	15.7	16.7	16.7	16.4	16.4	16.1	16.1	16.7	16.7	15.7
Flow of seawater to condenser inlet	kg/h	mean 92278	98716	104193	105040	81885	128612	90363	55781	47816	49786	54966	51890	34865	40070	59047	43988
Temperature of seawater to condenser inlet	°C	mean 7.7	7.6	7.6	7.7	8.6	8.4	8.4	7.7	7.7	7.7	7.7	7.6	7.7	7.7	7.8	8.0
Temperature of seawater to condenser outlet	°C	mean 28.3	27.4	28.0	27.2	28.4	25.7	29	28.7	31.0	30.1	30.3	29.1	33.6	32.5	29.6	31.2
Flow of CO2 out of condenser drum	kg/h	mean 7553	7468	7404	7443	6589	7408	6038	7726	7473	7290	7419	7539	6627	6627	7409	6114
	barg mean	barg stdev	°C mean	°C stdev													
--------------------------------	-----------	------------	---------	----------	---------	----------	---------	----------	---------	----------	---------	----------	---------	----------			
Amine flash vessel pressure	1.0	0.001	1.0	0.001	1.0	0.001	1.0	0.001	1.0	0.001	1.0	0.001	1.0	0.001			
Flash vessel inlet temperature	112.0	0.07	108.5	0.06	101.7	0.06	100.8	0.05	100.3	0.06	103.8	0.03	99.1	0.06			
Lean amine temperature to	120.8	0.05	118.4	0.03	116.8	0.06	116.6	0.03	117.9	0.05	102.3	0.04	101.4	0.04			
antisurge HE																	
Lean amine flow to	114.9	0.05	152.6	0.3	190.3	0.1	116.0	0.6	188.5	0.3	190.6	0.4	190.0	0.5			
vessel																	
Inlet pressure to	0.95	0.005	0.94	0.006	0.94	0.001	0.90	0.004	0.94	0.001	0.90	0.001	0.90	0.001			
compressor																	
Inlet temperature to	35.6	0.74	44.5	0.52	42.7	0.60	60.4	0.25	42.3	0.58	100.4	0.73	98.9	0.04			
compressor																	
Outlet pressure from	0.92	0.06	0.86	0.01	0.86	0.01	0.70	0.02	0.87	0.03	1.05	0.04	1.06	0.01			
compressor																	
Outlet temperature	25.0	0.86	17.8	0.17	18.9	0.16	29.3	1.0	22.0	1.0	192.2	0.33	190.7	0.06			
from compressor																	
Lean loading	0.215	0.507	0.290	0.507	0.290	0.507	0.290	0.507	0.290	0.507	0.290	0.507	0.290	0.507			
mol/mol																	
Rich loading	0.483	0.360	0.577	0.483	0.577	0.483	0.577	0.483	0.577	0.483	0.577	0.483	0.577	0.483			
mol/mol																	
CO2 capture %	90.1	0.64	89.7	0.5	88.9	0.2	88.7	0.3	89.8	0.2	89.5	0.3	89.4	0.2			
QSRD	3.60	0.06	4.00	0.04	3.66	0.02	3.90	0.03	3.83	0.03	4.34	0.02	2.99	0.02			
(Mj/kg CO2)																	
QLVC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
(Gj electric/ton CO2)																	
Antisurge cooler inlet	121.9	0.05	119.1	0.03	118.3	0.03	116.7	0.05	116.5	0.05	117.8	0.05	103.2	0.05			
cold side temperature																	
Antisurge cooler outlet	120.6	0.03	119.1	0.03	120.4	0.03	116.7	0.03	116.5	0.03	103.2	0.03	101.8	0.03			
cold side temperature																	
Antisurge cooler outlet	117.6	0.06	161.7	0.26	201.52	0.27	122.7	0.13	199.4	0.16	200.6	0.09	195.5	0.09			
cold side temperature																	
Seawater flow to antisuage	33294	72	33218	32	33218	32	33242	32	33243	32	33208	32	33253	32			
kg/h																	
Temp. of seawater out of	7.8	0.009	7.7	0.003	7.6	0.005	8.6	0.015	8.4	0.015	8.9	0.009	8.8	0.015			
antisuage																	
Temp. of seawater to	7.7	0.002	7.6	0.006	7.7	0.002	8.6	0.017	8.4	0.017	7.7	0.002	7.7	0.002			
antisuage inlet																	

a Uncertainty on the lean- and rich loading determination of 4%.

b Lean and rich loading not measured for case 1A-2.

c SRD is thermal energy consumption.

d LVC is electrical energy consumption.
| h (m) | Position of temperature probe | Case 1A-1 | | Case 1A-2 | | Case 1B | | Case 1C | | Case 1D | | Case 1E | | Case 1F |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | Below lower packing | 48 0.12 | 48 0.37 | 54 0.36 | 58 0.3 | 56 0.2 | 59 0.22 | 59 0.27 |
| 0.5 | a | 48 0.14 | 47 0.38 | 53 0.34 | 57 0.18 | 55 0.18 | 57 0.23 | 57 0.21 |
| | b | 39 0.14 | 39 0.29 | 45 0.09 | 48 0.05 | 47 0.06 | 47 0.11 | 49 0.06 |
| | c | 36 0.19 | 36 0.15 | 42 0.09 | 46 0.06 | 45 0.05 | 46 0.12 | 47 0.07 |
| | d | 36 0.18 | 36 0.1 | 40 0.07 | 44 0.09 | 44 0.1 | 44 0.1 | 45 0.07 |
| 1.5 | a | 48 0.13 | 48 0.41 | 54 0.17 | 58 0.1 | 56 0.12 | 57 0.13 | 59 0.11 |
| | b | 38 0.13 | 39 0.27 | 45 0.08 | 49 0.05 | 48 0.06 | 48 0.11 | 50 0.04 |
| | c | 47 0.11 | 47 0.24 | 57 0.22 | 64 0.08 | 60 0.11 | 64 0.19 | 66 0.05 |
| | d | 38 0.13 | 38 0.14 | 45 0.1 | 50 0.08 | 49 0.07 | 50 0.14 | 51 0.05 |
| 2.5 | a | 57 0.18 | 56 0.53 | 64 0.26 | 67 0.09 | 64 0.15 | 66 0.16 | 67 0.08 |
| | b | 41 0.1 | 41 0.34 | 49 0.1 | 53 0.06 | 52 0.07 | 53 0.12 | 54 0.05 |
| | c | 48 0.11 | 48 0.47 | 55 0.15 | 58 0.08 | 57 0.13 | 58 0.11 | 59 0.06 |
| | d | 46 0.1 | 46 0.36 | 55 0.13 | 59 0.1 | 57 0.1 | 59 0.15 | 61 0.04 |
| 3.5 | a | 55 0.17 | 55 0.55 | 62 0.22 | 66 0.08 | 63 0.14 | 65 0.13 | 66 0.06 |
| | b | 46 0.1 | 46 0.45 | 54 0.13 | 58 0.07 | 56 0.07 | 58 0.14 | 59 0.05 |
| | c | 43 0.09 | 43 0.26 | 52 0.14 | 57 0.07 | 56 0.07 | 57 0.17 | 59 0.04 |
| | d | 46 0.1 | 46 0.23 | 55 0.18 | 62 0.1 | 59 0.09 | 61 0.22 | 63 0.05 |
| 4.5 | a | 62 0.24 | 61 0.61 | 68 0.27 | 71 0.08 | 68 0.13 | 71 0.14 | 71 0.05 |
| | b | 52 0.15 | 52 0.56 | 61 0.2 | 64 0.08 | 62 0.1 | 64 0.16 | 65 0.06 |
| | c | 44 0.09 | 44 0.2 | 53 0.14 | 60 0.11 | 57 0.09 | 59 0.2 | 61 0.05 |
| | d | 48 0.11 | 48 0.34 | 59 0.22 | 66 0.08 | 62 0.08 | 65 0.2 | 67 0.07 |
| 5.5 | a | 63 0.27 | 62 0.63 | 69 0.29 | 72 0.08 | 69 0.13 | 72 0.14 | 72 0.05 |
| | b | 52 0.16 | 51 0.55 | 61 0.2 | 65 0.08 | 62 0.09 | 65 0.16 | 66 0.08 |
| | c | 49 0.13 | 49 0.25 | 59 0.21 | 66 0.09 | 63 0.12 | 65 0.22 | 67 0.08 |
| | d | 47 0.1 | 46 0.23 | 56 0.19 | 63 0.1 | 60 0.09 | 63 0.22 | 65 0.09 |
| 6.5 | a | 64 0.28 | 63 0.64 | 70 0.28 | 73 0.06 | 70 0.13 | 73 0.13 | 73 0.06 |
| | b | 55 0.18 | 54 0.62 | 64 0.23 | 68 0.07 | 65 0.1 | 68 0.17 | 69 0.06 |
| | c | 49 0.12 | 48 0.25 | 58 0.44 | 65 0.1 | 62 0.13 | 65 0.34 | 67 0.08 |
| | d | 51 0.13 | 51 0.37 | 63 0.25 | 69 0.08 | 65 0.09 | 68 0.22 | 69 0.04 |
| 7.5 | a | 68.8 0.28 | 67.3 0.63 | 73.8 0.26 | 76 0.06 | 72.5 0.12 | 75.8 0.12 | 74.8 0.03 |
| | b | 57.3 0.22 | 56.7 0.66 | 66.8 0.22 | 70.5 0.08 | 66.8 0.12 | 70 0.15 | 70.6 0.05 |
| | c | 55 0.18 | 54.4 0.56 | 66.1 0.28 | 70.6 0.07 | 66.9 0.1 | 70.3 0.19 | 70.7 0.03 |
| | d | 54.7 0.16 | 54 0.37 | 65.1 0.26 | 71 0.09 | 67.1 0.11 | 70.5 0.18 | 71.2 0.04 |
| 8.5 | a | 70.4 0.31 | 68.8 0.66 | 74.9 0.25 | 76.8 0.05 | 73.5 0.11 | 76.6 0.11 | 75.3 0.03 |
| | b | 64.2 0.3 | 63 0.73 | 71.4 0.24 | 74.1 0.06 | 70.4 0.12 | 73.7 0.14 | 73.3 0.04 |
| | c | 57.1 0.21 | 56.3 0.57 | 68 0.25 | 72.4 0.06 | 68.6 0.11 | 72 0.16 | 72 0.04 |
| | d | 57.1 0.21 | 56.6 0.38 | 67.4 0.25 | 72.7 0.09 | 68.9 0.1 | 72.5 0.15 | 72.4 0.04 |
| 9.5 | a | 70.5 0.28 | 69 0.65 | 74.9 0.22 | 76.7 0.05 | 73.4 0.11 | 76.5 0.11 | 75 0.03 |
b	62.1	0.26	N/A	N/A	70.6	0.22	N/A	N/A	N/A	N/A	N/A	N/A
c	61.3	0.28	60	0.4	70.1	0.29	75.1	0.06	71.2	0.1	74.8	0.15
d	61.7	0.23	60.6	0.54	71.1	0.22	74.8	0.05	71.3	0.11	74.6	0.13

10.5 a

b	73.1	0.26	71.7	0.58	76.5	0.18	77.8	0.04	75	0.09	77.7	0.09
c	68.3	0.26	67	0.71	74.2	0.17	76.1	0.04	73.2	0.09	75.9	0.09
d	65.1	0.26	63.9	0.45	72.6	0.24	76.3	0.05	72.9	0.08	76.1	0.12

11.5 a

b	72.1	0.24	70.9	0.53	75.7	0.15	77.2	0.03	74.8	0.07	77.2	0.09
c	71	0.22	69.7	0.52	75	0.14	76.9	0.03	74.4	0.07	76.8	0.08
d	67.7	0.27	66.3	0.46	73.9	0.19	76.6	0.04	73.8	0.07	76.5	0.09

12 Below middle packing

b	69	0.29	68.7	0.44	74.7	0.23	77.3	0.04	74.1	0.09	77.2	0.09
c	73.7	0.19	72.6	0.38	76.4	0.1	77.7	0.03	75.5	0.06	77.5	0.08
d	67.5	0.2	71.5	0.43	75.8	0.12	77.4	0.03	75.2	0.06	77.4	0.09

12.5 a

b	72.6	0.2	71.5	0.43	75.8	0.12	77.4	0.03	75.2	0.06	77.5	0.08
c	69.8	0.27	68.5	0.47	74.6	0.2	77.4	0.04	74.6	0.08	77.3	0.09
d	71.9	0.21	70.7	0.42	75.3	0.14	77.5	0.03	75.2	0.06	77.5	0.09

13.5 a

b	75.2	0.13	74.4	0.29	77.2	0.07	78.1	0.03	76.5	0.05	78.1	0.08
c	74.3	0.15	73.4	0.34	76.6	0.08	77.7	0.03	75.9	0.05	77.7	0.08
d	71.6	0.27	70.3	0.46	75.5	0.16	77.7	0.03	75.2	0.07	77.6	0.08

14.5 a

b	75.3	0.14	74.6	0.26	77.2	0.06	78.1	0.03	76.6	0.04	78.2	0.08
c	73	0.23	71.9	0.38	76	0.13	77.7	0.03	75.6	0.07	77.6	0.08
d	74.7	0.16	73.8	0.28	76.8	0.08	78.1	0.03	76.4	0.04	78.1	0.08

15.5 a

b	76.7	0.06	76.2	0.14	77.8	0.04	78.1	0.03	77.1	0.03	78.1	0.08
c	76.1	0.08	75.6	0.18	77.5	0.04	78.2	0.03	77	0.04	78	0.08
d	69.3	2.4	73.4	0.3	76.7	0.09	78	0.03	76.6	0.38	77.9	0.08
16.5 a	75.6	0.1	74.9	0.19	77	0.05	78	0.03	76.7	0.03	78	0.08

17.5 a

b	73	0.19	72.2	0.41	70.5	0.29	67.1	0.28	66.5	0.37	67.4	0.41
c	75	0.12	74	0.22	73.3	0.12	70.8	0.16	70.3	0.12	71.3	0.18
d	73.1	0.12	72.3	0.18	72.7	0.19	70.4	0.18	69	0.12	70.4	0.17

18 Below upper packing

| b | 72.2 | 0.08 | 71.2 | 0.23 | 71.9 | 0.04 | 70.3 | 0.03 | 68.9 | 0.03 | 70.1 | 0.08 |

a There are four parallel temperature sensors, where the legends A, B, C, and D refer to the temperature sensor close to the column wall and inside the packing at horizontal 1 m distance from each other. N/A: Data not available
Table 3
Absorber temperature profiles for LVC cases.

h (m)	Position of temperature probe	Case 2A	Case 2B	Case 2C-1	Case 2C-2	Case 2C-3	Case 2D-1	Case 2D-2	Case 2E	Case 2F	
		T (°C) Std. Dev.									
0	Below lower packing										
0.5	a	48	0.13	54	0.15	56	0.22	57	0.23	58	0.12
	b	39	0.07	45	0.08	48	0.11	48	0.07	48	0.06
	c	36	0.05	43	0.07	46	0.14	46	0.08	46	0.06
	d	36	0.04	41	0.08	44	0.15	44	0.09	44	0.08
1.5	a	48	0.09	55	0.11	57	0.12	57	0.14	58	0.09
	b	38	0.07	46	0.08	49	0.12	49	0.06	48	0.05
	c	47	0.06	58	0.15	63	0.2	63	0.25	64	0.08
	d	38	0.04	46	0.07	50	0.18	50	0.14	50	0.09
2.5	a	57	0.15	64	0.14	66	0.12	66	0.22	67	0.16
	b	41	0.08	50	0.08	53	0.13	53	0.09	53	0.05
	c	48	0.09	56	0.12	58	0.13	58	0.09	59	0.06
	d	46	0.07	55	0.13	59	0.13	59	0.23	59	0.17
3.5	a	55	0.12	63	0.12	65	0.15	65	0.18	66	0.16
	b	45	0.1	55	0.1	58	0.14	58	0.13	58	0.11
	c	42	0.06	53	0.08	57	0.18	57	0.13	57	0.07
	d	45	0.06	56	0.11	61	0.19	61	0.23	62	0.1
4.5	a	62	0.2	69	0.15	70	0.12	70	0.23	71	0.06
	b	52	0.13	61	0.14	64	0.13	64	0.2	64	0.06
	c	44	0.04	54	0.08	59	0.21	59	0.2	60	0.07
	d	48	0.09	61	0.14	65	0.19	65	0.21	66	0.08
5.5	a	63	0.21	70	0.16	72	0.11	72	0.21	72	0.05
	b	51	0.13	62	0.14	64	0.14	64	0.21	65	0.06
	c	49	0.07	60	0.15	65	0.2	65	0.26	66	0.09
	d	46	0.08	58	0.11	63	0.22	63	0.26	63	0.09
6.5	a	64	0.21	71	0.16	73	0.11	73	0.2	73	0.05
	b	55	0.15	65	0.17	67	0.14	67	0.24	68	0.06
	c	48	0.06	59	0.13	65	0.24	64	0.38	66	0.13
	d	51	0.12	64	0.15	68	0.18	68	0.24	69	0.07
7.5	a	68	0.26	74	0.15	75	0.08	75	0.18	76	0.04
	b	57	0.17	67	0.17	70	0.13	70	0.24	71	0.06
	c	55	0.17	67	0.16	70	0.16	70	0.22	71	0.07
	d	54	0.1	66	0.14	70	0.16	70	0.26	71	0.08
8.5	a	70	0.24	75	0.14	76	0.07	76	0.16	77	0.03
	b	64	0.22	72	0.16	73	0.1	73	0.21	74	0.04
	c	57	0.17	69	0.15	72	0.14	72	0.21	72	0.06
	d	57	0.12	68	0.17	72	0.15	72	0.22	73	0.06
Packing Level	Temperature Sensor Location										
---------------	-----------------------------										
9.5	A 70, B 75, C 76, D 77										
10.5	A 73, B 67, C 68, D 64										
11.5	A 73, B 72, C 74, D 75										
12 Below middle packing	A 68, B 72, C 74, D 76										
12.5	A 74, B 72, C 69, D 71										
13.5	A 75, B 74, C 71, D 74										
14 Below middle packing	A 74, B 75, C 73, D 74										
14.5	A 76, B 75, C 73, D 74										
15 Below middle packing	A 74, B 76, C 76, D 77										
15.5	A 77, B 76, C 76, D 77										
16 Below middle packing	A 77, B 77, C 76, D 77										
16.5	A 77, B 77, C 76, D 77										
17 Below middle packing	A 77, B 77, C 76, D 77										
17.5	A 72, B 75, C 73, D 73										

a There are four parallel temperature sensors, where the legends A, B, C, and D refer to the temperature sensor close to the column wall and inside the packing at horizontal 1 m distance from each other. N/A: Data not available.
h (m)	Position of temperature probe\(^a\)	Case 1A-1	Case 1A-2	Case 1B	Case 1C	Case 1D	Case 1E	Case 1F
		T (°C)	T (°C)	T (°C)	T (°C)	T (°C)	T (°C)	T (°C)
		Std. Dev. (°C)						
0		121.03	121.02	119.03	118.02	117.05	117.04	118.03
0.5	a	120.35	118.08	117.41	115.11	112.02	114.37	110.13
	b	120.05	120.03	119.01	118.06	114.39	115.01	114.11
	c	119.04	118.07	113.32	113.17	103.01	107.37	111.18
	d	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1.5	a	118.06	117.15	114.07	110.19	105.02	111.6	107.01
	b	119.06	119.03	118.21	115.12	111.63	114.13	110.17
	c	117.08	117.09	107.41	108.23	102.03	103.21	107.16
	d	117.11	119.07	110.24	109.17	102.04	107.27	106.11
2.5	a	118.05	118.01	117.53	112.26	107.27	113.14	107.17
	b	118.07	119.05	111.29	109.18	102.04	107.28	106.09
	c	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	d	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3.5	a	116.12	115.23	113.11	106.2	103.1	110.29	105.07
	b	114.17	117.01	104.23	105.07	102.03	103.13	105.05
	c	113.23	107.04	105.55	0.05	102.03	103.03	105.06
	d	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4.5	a	117.38	115.43	113.52	107.22	105.09	109.31	107.13
	b	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	c	113.26	106.44	104.46	104.04	102.03	103.24	105.05
	d	N/A	N/A	N/A	N/A	N/A	N/A	N/A
5.5	a	110.29	109.6	107.19	104.06	102.03	104.22	105.06
	b	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	c	108.32	103.19	103.15	104.04	102.03	102.11	105.05
6.5	a	106.34	103.19	103.12	104.04	102.03	102.09	105.05
	b	113.03	112.49	112.57	111.06	110.03	110.14	113.07
	c	110.31	117.42	104.13	104.12	113.79	103.15	106.39
	d	N/A	N/A	N/A	N/A	N/A	N/A	N/A
7	Above stripper packing	108.12	110.12	109.21	110.09	109.04	109.08	112.09
8	Top stripper outlet	97.12	98.11	97.15	99.05	97.07	97.11	100.07

\(^a\) There are four parallel temperature sensor, where the legends A, B, C, and D refer to the temperature sensor close to the column wall and inside the packing at horizontal 1 m distance from each other. N/A: Data not available.
Table 5
Stripper temperature profiles for LVC cases.

h (m)	Position of temperature probe^a	Case 2A	Case 2B	Case 2C-1	Case 2C-2	Case 2C-3	Case 2D-1	Case 2D-2	Case 2E	Case 2F
	T (°C)	Std. Dev.								
0	121 0.01	119 0.04	117 0.05	117 0.11	118 0.02	115 0.05	115 0.05	116 0.05	118 0.03	
0.5	120 0.05	116 0.1	112 0.43	113 0.41	114 0.09	102 0.24	103 0.26	111 0.11	110 0.13	
	120 0.02	118 0.05	115 0.14	115 0.21	116 0.07	110 0.27	111 0.35	114 0.07	114 0.11	
	119 0.02	115 0.14	109 0.27	111 0.45	112 0.19	98 0.2	100 0.25	111 0.13	111 0.18	
	N/A									
1.5	118 0.03	112 0.2	103 0.41	105 0.83	107 0.27	94 0.08	97 0.1	107 0.31	107 0.1	
	N/A									
2.5	118 0.04	113 0.19	103 0.45	106 0.89	107 0.27	94 0.12	97 0.12	108 0.27	107 0.17	
	N/A									
3.5	119 0.06	101 0.36	98 0.11	100 0.3	99 0.11	96 0.04	98 0.05	100 0.25	108 0.07	
	N/A									
4.5	115 0.16	97 0.35	98 0.09	99 0.18	99 0.04	95 0.03	97 0.07	97 0.09	107 0.13	
	N/A									
5.5	110 0.35	95 0.09	95 0.08	97 0.14	95 0.03	93 0.04	95 0.05	95 0.08	105 0.05	
	N/A									
6.5	109 0.32	94 0.08	95 0.09	97 0.13	95 0.03	93 0.05	95 0.05	95 0.07	105 0.06	
	N/A									
7	101 0.39	94 0.06	95 0.08	97 0.13	95 0.03	93 0.05	95 0.05	95 0.07	105 0.05	
	N/A									
8	105 0.38	95 0.96	131 26.54	97 0.12	95 0.04	93 0.03	97 0.18	95 0.06	106 0.34	
	N/A									
	99 0.09	99 0.08	100 0.07	102 0.1	99 0.04	98 0.08	100 0.13	100 0.06	112 0.09	
	89 0.09	89 0.05	89 0.08	91 0.11	89 0.04	87 0.08	89 0.16	89 0.06	100 0.07	

^a There are four parallel temperature sensor, where the legends A, B, C, and D refer to the temperature sensor close to the column wall and inside the packing at horizontal 1 m distance from each other. N/A: Data not available.
The CHP flue gas is conditioned in a direct contact cooler (DCC) after being enriched with CO₂ from the CO₂ product recycle stream. The conditioned flue gas is contacted counter-currently with amine solvent in the absorber. CO₂ is absorbed, yielding a solvent rich in CO₂ and a depleted flue gas with low CO₂ content. The depleted flue gas is released to the atmosphere after being conditioned in the water wash sections. The rich solvent loaded with CO₂ is pre-heated in the lean/rich cross heat exchanger before entering the stripper column. Additional heat is supplied by steam to the stripper reboiler in

Fig. 1. Simplified process flow diagram of the TCM amine plant.

Fig. 2. Simplified process flow diagram of the LVC.
order to desorb CO₂ and regenerate the solvent. The product CO₂ gas is released to the atmosphere, while the regenerated lean solvent is pumped back to the absorber via the lean/rich cross heat exchanger and the lean cooler. The amine plant is described in detail elsewhere. The large stripper section designed for high CO₂ content flue gas is also equipped with an optional lean vapor compressor system, as illustrated in Fig. 1. In the LVC system (see Fig. 2), hot lean amine exiting the stripper bottom is throttled to a lower pressure and fed to a flash drum generating vapor. The vapor is compressed and returned to the stripper bottom, while the lean amine is circulated back to the lean amine solvent loop. The LVC has for safety reasons a built-in anti-surge option which is used when flow to the compressor is below design flow. The control of the LVC automatically recycles gas in order to maintain correct compressor operation.

The superheated steam provides additional energy for regeneration of solvent in the stripper, which has the potential of reducing consumption of low pressure steam in the stripper reboiler.

Table 6 gives an overview of the adjustable process parameters applied in the LVC campaign at TCM. The LVC campaign was operated in a way that only one parameter was adjusted at a time allowing the plant to reach steady state faster. The campaign was performed with case durations between 3 and 24 hours out of which 1–8 hours were used for calculation of average steady state conditions.

Acknowledgments

The authors gratefully acknowledge the staff of TCM DA, Gassnova, Equinor, Shell and Total for their contribution and work at the TCM DA facility. The authors also gratefully acknowledge Gassnova, Equinor, Shell and Total as the owners of TCM DA for the financial support and contribution.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] P.L. Fosbøl, et al., Results of the fourth technology centre mongstad campaign: LVC testing, Int. J. Greenh. Gas Control 89 (2019) 52–64.
[2] D. Thimsen, et al., Results from MEA testing at the CO₂ technology centre mongstad. Part I: post-combustion CO₂ capture testing methodology, Energy Procedia 63 (2014) 5938–5958.
[3] E. Gjernes, et al., Results from 30 wt% MEA performance testing at the CO₂ technology centre mongstad, Energy Procedia 114 (2017) 1146–1157.
[4] O.M. Bade, J.N. Knudsen, O. Gorset, I. Askestad, Controlling amine mist formation in CO₂ capture from residual catalytic cracker (RCC) flue gas, Energy Procedia 63 (2014) 884–892.