Models of care for osteoporosis: A systematic scoping review of efficacy and implementation characteristics

Alicia R Jonesa,b, Madhuni Herathb,c, Peter R Ebelingb,d, Helena Teedea,b, Amanda J Vincenta,b,*

a Monash Centre for Health Research and Implementation, Monash University, Locked Bag 29, Clayton, Vic 3168, Australia
b Department of Endocrinology, Monash Health, Melbourne, Australia
c Hudson Institute of Medical Research, Melbourne, Australia
d Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia

\section*{ARTICLE INFO}

Article History:
Received 21 May 2021
Revised 21 June 2021
Accepted 25 June 2021
Available online xxx

\section*{ABSTRACT}

\textbf{Background:} Osteoporosis affects over half of adults over 50 years worldwide. With an ageing population, osteoporosis, fractures and their associated costs are increasing. Unfortunately, despite effective therapies, many with osteoporosis remain undiagnosed and untreated. Models of care (MoC) to improve outcomes include fracture liaison services, screening, education, and exercise programs, however efficacy for these is mixed. The aim of this study is to summarise MoC in osteoporosis and describe implementation characteristics and evidence for improving outcomes.

\textbf{Methods:} This systematic scoping review identified articles via Ovid Medline and Embase, published in English between 01/01/2009 and 15/06/2021, describing MoC for adults aged [21]18 years with, or at risk of, osteoporosis and / or health professionals caring for this group. All included at least one of clinical, consumer or clinician outcomes, with fractures and bone mineral density (BMD) change the primary clinical outcomes. Exclusion criteria were studies assessing pharmaceuticals or procedures without other interventions, or insufficient operational details. All study designs were included, with no comparator necessary. Title and abstract were reviewed by two reviewers. Full text review and data extraction was performed by these reviewers for 20\% of article and, thereafter by a single author. As the review was predominantly descriptive, no comparator statistics were used.

\textbf{Findings:} 314 articles were identified describing 289 MoC with fracture liaison services (\(n=89\)) and education programs (\(n=86\)) predominating. The population had prior fragility fracture in 77 studies, the median (IQR) patient number was 210 (87, 667) and the median (IQR) follow-up duration for outcome assessment was 12 (6, 12) months. Fracture reduction was reported by 65 studies, with 16 (37\%) graded as high quality, and 19 / 47 studies with a comparator group found a reduction in fractures. BMD change was reported by 73 studies, with 41 finding improved BMD. Implementation characteristics including reach, fidelity and loss to follow-up were under-reported, and consumer and clinician perspectives rare.

\textbf{Interpretation:} This comprehensive review of MoC for osteoporosis demonstrated inconsistent evidence for improving outcomes despite similar types of models. Future studies should include implementation outcomes, consumer and clinician perspectives, and fracture or BMD outcomes with sufficient duration of follow-up. Authors should consider pragmatic trial designs and co-design with clinicians and consumers.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

\section*{1. Introduction}

Osteoporosis and low bone mass (osteopenia) is estimated to effect more than 50\% of adults aged over 50 years [1,2]. Osteoporosis causes minimal symptoms prior to a fracture, and, in older adults, most fractures are the result of osteoporosis [3,4]. In 2000, 9 million osteoporotic fractures occurred worldwide; the lifetime risk of hip fracture for adults aged 50 years is equivalent to the risk of stroke, and the risk of any major osteoporotic fracture is similar to the risk of cardiovascular disease [5,6]. Morbidity and mortality following fracture is substantial, and recent evidence suggests the burden from osteoporotic fractures is greater than many other non-communicable diseases, including chronic obstructive pulmonary disease and stroke [5]. The cost to the healthcare system for fractures is large; among six European countries, expenditure on osteoporotic fractures was €37.5 billion in 2017, or up to 6.4\% of healthcare expenditure [5].
With an ageing population worldwide, the prevalence of osteoporosis, low bone mass, and osteoporotic fractures is predicted to increase, and by 2040 it is expected that over 300 million people will be at high risk for osteoporotic fracture [7]. Therefore, it is critical that measures are taken to prevent fractures, and ensure that people who suffer a fracture receive appropriate care to prevent recurrent fractures. Unfortunately, a treatment gap exists in osteoporosis, with low screening and treatment rates, and poor adherence to treatment [5,8–10]. Models of care (MoC) can be defined as operationalising how specific care should be delivered to a group of people at a disease, service or systems level [11]. MoC for primary fracture prevention include screening, education initiatives for clinicians and / or consumers, and exercise programs [12–14]. The efficacy of these initiatives is unclear, and may be related to differences in program characteristics, the population studied, and control group used [13,15,16]. The gold standard MoC for secondary prevention of osteoporotic fractures is a fracture liaison service (FLS). An FLS employs a dedicated coordinator to identify, inform and assess all patients with an osteoporotic fracture within a health system. Different FLS have been classified as Type A (identify patients, investigate for secondary causes of osteoporosis and initiate appropriate treatment), Type B (identify and investigate, but refer to primary care physician for treatment), Type C (identify and inform patient and their primary care physician) and Type D (identify and inform the patient only) [17]. Reviews of FLS have shown an improvement in dual energy X-ray absorptiometry (DXA) screening and treatment rates, which vary by the type of FLS model, being highest for the Type A FLS model [16–19]. Whilst increased treatment may be presumed to lead to a reduction in fractures due to the known benefits of antiresorptive therapy, adherence to treatment started in an FLS is variable, ranging between 34 and 95% [17]. Indeed, evidence for fracture reduction using an FLS is unclear, limited by study size, an appropriate control group and duration of follow-up [17]. Recently, changes in bone mineral density (BMD) has been proposed as a surrogate marker for fractures for therapeutic trials in osteoporosis, and this may also prove useful for more complex interventions such as FLS [20].

A limitation of published research on osteoporosis MoC is failure to include delivery and implementation characteristics. Operational characteristics for delivery include the frequency, duration and method of contact, the setting, and whether participants are seen individually or in a group. Implementation characteristics include factors such as acceptability, uptake, fidelity, cost and sustainability [21]. Studies of osteoporosis MoC can be viewed as hybrid effectiveness-implementation trials, as they use a targeted implementation strategy (such as education or coordination of care) to try to change behaviour (such as medication initiation, DXA screening) and ultimately improve bone health (reduce fractures or increase BMD). Guidelines exist on designing and reporting on implementation trials, and frameworks such as RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) can be used to assess and compare implementation characteristics in real-world interventions [22–24]. Differences in implementation characteristics may contribute to variable outcomes between similar MoC, and impact the ability to scale up MoC to other settings.

Despite advances in screening and treatment for osteoporosis, a global increase in fractures in the coming years due to populations ageing is predicted, and so implementing effective models of care is essential [5,25,26]. The aims of this review are to: (i) summarise MoC for people with or at risk of osteoporosis; (ii) outline and compare the implementation characteristics of different MoC; and (iii) compare whether different MoC improve a variety of outcomes including reductions in fractures and increases in BMD. We hope this will assist those people planning, implementing and reporting on osteoporosis interventions in the future.

2. Methods

2.1. Search strategy and selection criteria

A scoping review methodology was chosen to enable a broad overview of MoC that have been trialled in osteoporosis, and to describe the evidence for each of these. The scoping review protocol adhered to the Joanna Briggs Institute guidelines for scoping reviews [27]. Inclusion criteria were English language publications, published between 01/01/2009 and 15/06/2021. This date range was chosen to include the most contemporary MoC using currently available technology and therapeutics. All study designs were included. The population was defined as either (i) adults aged ≥18 years with, or at risk of, low bone mineral density with or without fracture; and / or (ii) any health professional, including allied health. The intervention comprised any MoC for osteoporosis. No comparator was necessary for inclusion. Outcomes needed to include at least one of clinical, consumer or clinician outcomes. The primary clinical outcome was fractures; the secondary clinical outcome was increase in BMD. Other outcomes included consumer (medication use and adherence, calcium supplement use / calcium intake, vitamin D supplement use, DXA rates, osteoporosis knowledge, osteoporosis self-efficacy, osteoporosis health beliefs), clinician (prescribing rates for medications and vitamin D, screening rates for DXA, osteoporosis knowledge), health service satisfaction, implementation characteristics and cost. Implementation characteristics were broadly based on the RE-AIM framework [24]-Reach (the proportion of people who participated in the MoC, of those eligible), Effectiveness (outcomes as mentioned), Adoption (where applicable, the proportion of settings / institutions who participated in the MoC, of those invited), Implementation (fidelity to the intervention) and Maintenance (the longest time point reported was included in results). Exclusion criteria were studies assessing individual or combination pharmaceuticals or procedures...
without other interventions, or insufficient detail provided to specify operational characteristics of the MoC.

A systematic search, based on the selection criteria and combining MeSH terms and text words, was developed for Ovid Medline and translated to Embase (Supplement 1). Hand searching of included articles’ reference lists was also performed. Authors were contacted directly where full-text article could not be retrieved, or to clarify study details. Covidence (www.covidence.org) was used to manage search results, and for abstract and full text review. Two reviewers (AJ, MH) independently reviewed the titles, abstracts and keywords of every article retrieved by the search strategy according to the selection criteria. Full text of the articles were retrieved for further assessment if the information given suggests that the study meets the selection criteria or if there is any doubt regarding eligibility of the article based on the information given in the title and abstract.

Full text review and data extraction was performed independently by two reviewers for 20% of articles, to achieve 100% agreement, thereafter performed by a single author (AJ). The study protocol was registered with Joanna Briggs Scoping reviews on 13/11/2019 (Supplement 2), and reporting adhered to the PRISMA-scoping review extension checklist.

2.2. Data analysis

Data extraction was performed in Microsoft Excel 2016. We adapted our data extraction table from the Cochrane Effective Practice and Organisation of Care (EPOC) framework for describing interventions, and a previously published scoping review on low-cost MoC [28, 29]. Information collected included general details (title, authors, country, year of publication), participants and number, the MoC implemented, delivery characteristics [28] (contact method, frequency, setting, individual vs group care) and clinical outcomes as mentioned. MoC were categorized according to the Cochrane EPOC taxonomy of delivery arrangements and implementation strategies for health system interventions [30]. We also classified MoC by the primary type of activity, such as fracture liaison services (further classified into Types A to D as per Ganda [17], education, exercise, screening, orthogeriatric services (OGS), or specialist review. Where models were multi-component, the primary activity was listed, followed by the other types. Where a single model, with the same participants, was described by different papers (Eg. different time points or outcomes), results were summarised together. The longest follow up time point reported was included in result tables. Where studies included a comparison group, p values for between groups, was included in results tables. Due to the number of studies included in our review, risk of bias assessment using the SIGN proforma [31], was performed for papers reporting fractures, our primary clinical outcome, only.

Given the primary aim of this review was descriptive, no comparative statistics were used. Categorical data are described as number (percentage, %). Continuous data are described as mean (standard deviation) where normally distributed, and median (interquartile range, IQR) when non-parametric. Studies were summarised (i) overall, and then by outcomes of (ii) fractures and (iii) BMD change.

2.3. Role of the funding source

This study received no direct funding. All authors had full access to the data in the study and accept responsibility to submit for publication.

3. Results

3.1. Overall

Fig. 1 and Supplement 3 summarises our search strategy, which resulted in 314 articles included which reported on 289 models of care (25 articles were additional follow-up of the same model and participants). The majority of excluded studies at the title and abstract stage reported only on pharmaceuticals / surgical procedures, and at the full text review stage because they were an abstract only or reported the wrong outcomes.

Summary data for included studies are shown in Table 1, with complete study details shown in Table S1 and implementation characteristics are in Table 2.
3.2. MoC classification

The majority of studies used the EPOC delivery arrangement ‘coordination of care and management of care processes’ (n=177, 61.2%, Table 2), 15 studies compared different delivery arrangements and four studies included more than one subcategory. The most common EPOC implementation strategy was ‘interventions targeted at specific types of practice, conditions or settings’, observed in 198 studies (68.5%), all of which targeted specific conditions, eight studies compared different implementation strategies, and 25 included more than one subcategory. Classifying MoC by activity, the most common MoC was FLS (n=89, 30.8%), of which the majority (n=54) were classified as a Type A (Table 1). The second most common activity was education (n=86, 29.8%), of these 52 targeted patients with eight also sending written communication to a clinician, 24 targeted clinicians only, and 27 targeted both patients and clinicians. In addition, 17 studies included an educational component within another MoC. 32 studies were multi-component (included more than one type of MoC), most commonly screening with education (n=8, 2.8%).

3.3. Study characteristics (Tables 1 and S1)

Most studies were from North America (n=123, 42.6%) or Europe (n=77, 26.6%) (Table S1). Study designs varied with randomised trials predominating (Table 1), however 30 of these did not report the randomisation method used. All studies targeted a patient population. The median (IQR) number of participants was 210 (87, 667), ranging from 13 to 650,000. While 42 studies targeted clinicians, only 14 (33.3%) of studies reported the number of clinicians involved. The median (IQR) number of clinicians involved was 12 (6, 12.5) months, and 130 (45%) of studies had follow-up of ≤6 months.

3.4. Implementation characteristics (Table 2)

The majority of studies delivered the MoC in a face-to-face format (n=212, 74.4%), in a medical setting (n=163, 61.7%), with 130 (44.8%) of studies using >one method of delivering care and 34 (11.7%) using >one setting for delivery. Program reach was reported by 120
(41.4%) studies, fidelity by 77 (26.6%) studies, and loss to follow-up was reported by 155 (53.6%) studies (Table 2). Frequency of care contact varied between models and within the same model (Table S1). Of primary exercise studies, 62 studies included at least weekly (48 ≥ 3 times weekly) contacts, and five were daily. Exercise duration was reported for 64 studies, with a mean (SD) of 53.9 (24.1) min. Education study contact frequency varied with 34 once only, 13 more than once but less than three-monthly, six less than weekly up to monthly, 18 weekly and one daily. The duration of each education session was reported for 30 studies, with a median (IQR) of 52.5 (26.3, 80) min.

3.5. Study outcomes (Table S1)

Overall, 156 (52.2%) of studies reported a significant improvement in one or more of their outcomes (Table S1). The most common outcomes were specific osteoporosis treatment rates (anti-sorptive / anabolic agents, n=113, 39.1%), followed by DXA rates (n=87, 30.1%). Provider outcomes, including prescribing and investigation ordering, were assessed in only 58 (20.1%) studies, of which 18/48 (37.5%) studies reported a significant increase in prescribing rates. Of the MoC reporting treatment rates, the majority used the EPOC delivery arrangement ‘coordination of care’ (n=80, 70.8%), followed by ‘who provides care’ (n=30, 26.5%), with the most common subcategory being ‘packages of care’ (n=47, 41.6%) (Table S1). The most common implementation strategy was ‘targeted at healthcare workers’ (n=59, 52.2%), followed by ‘targeted at a disease’ (n=57, 50.4%). Only 45 (33.6%) studies found a significant increase in rates of treatment, including 30 studies classified as ‘coordination of care’, and using the implementation strategy of ‘targeting a disease’ in 20 and ‘targeting healthcare workers’ in 19. Of the MoC reporting DXA rates, most were classified as ‘coordination of care’ (n=63, 72.4%), followed by ‘who provides care’ (n=25, 28.7%), with the most common subcategory of ‘packages of care’ (n=40, 46%). The most common implementation strategy was ‘targeted at a specific disease’ (n=49, 56.3%), followed by ‘targeted at healthcare workers’ (n=41, 47.1%).

Table 2.
Summary implementation characteristics of included studies.

Category	Sub-category	n(%) of studies
EPOC Delivery arrangement n(%)		
How and when care delivered	Group vs individual care	10 (3.4)
Where care is provided	Outreach services	11 (3.9)
	Site of service delivery	23 (7.9)
Who provides care	Role expansion or task shifting	21 (7.6)
	Self-management	48 (16.6)
Coordination of care	Care pathways	17 (5.9)
	Case management	2 (0.7)
	Communication between providers	20 (6.2)
	Disease management	27 (9.3)
	Integration	1 (0.3)
	Packages of care	110 (37.9)
	Teams	4 (1.4)
	Health information systems	5 (1.7)
Information and communication technology		
	The use of information and communication technology	10 (3.4)
	Telemedicine	1 (0.3)
EPOC implementation strategy n(%)		
Targeted at healthcare workers	Audit and feedback	8 (2.8)
	Educational materials	15 (5.2)
	Educational meetings	8 (2.8)
	Educational outreach visits, or academic detailing	5 (1.7)
	Clinical Practice Guidelines	5 (1.7)
	Inter-professional education	4 (1.4)
	Local consensus processes	14 (4.8)
	Local opinion leaders	1 (0.3)
	Patient-mediated interventions	46 (15.9)
	Reminders	23 (8.0)
	Tailored interventions	1 (0.3)
Targeted at specific types of practice, conditions or settings	Health conditions	198 (68.5)
Delivery characteristics n(%)		
Contact method (n=285)	Face to face	212 (74.4)
	Written	37 (13)
	Telephone	16 (5.6)
	Electronic	15 (5.3)
	Other	5 (1.8)
Frequency of contact (n=227)	Once	78 (34.4)
	More than once but less than 3 monthly	42 (18.5)
	2-3 monthly	11 (4.8)
	< weekly to monthly	8 (3.5)
	Weekly	82 (36.1)
	daily	6 (2.6)
Contact location (n=264)	Medical practice / hospital	163 (61.7)
	University / research facility	12 (4.5)
	Community facility	30 (11.4)
	Home	59 (22.3)
	Individual	195 (75)
	Group	29 (11.2)
	Both	36 (13.8)
Implementation summary statistics	Reach (n=12), mean (SD)	62.8±(23)
	Fidelity (n=77), mean (SD)	75% (19.2)
	Drop-out (n=155), median (IQR)	15.4% (8.2, 27)

Footnote: EPOC: Effective practice and organisation of care; *n=289 and percentages add to >100% as studies may have more than one classification.
Most studies [45 (51.7%)] found a significant increase in DXA completion rates, including 30 studies classified as ‘coordination of care’, and using the implementation strategy of ‘targeting healthcare workers’ in 25 and ‘targeting a disease’ in 21 (Table S1).

3.6. Fracture outcomes (Tables 3, S2, S4)

Fracture outcomes were reported for 66 (22.8%) MoC, for 31 (47.7%) of these fracture was the primary outcome (Tables 3 and S2). Risk of bias assessment was performed for 43 studies (controlled trials, cohort studies and controlled before and after studies), with only 17 (38.6%) graded as high quality.

47 (72.3%) studies had a comparator group for fracture outcomes, of these, 19 (40.4%) found a significant reduction in fractures (Tables 3 and S4). The majority of studies that found a significant fracture reduction had this as a primary outcome (n=16, 84.2%), however only four (21.1%) studies were graded as high quality. Studies that found a significant fracture reduction had median (IQR) follow-up duration of 24 (15, 36-9) months, median (IQR) patient number of 403 (157, 1830), median (IQR) reach of 41.5% (25.5, 61-4) and median (IQR) loss to follow-up of 27.8% (15.8, 30.7). Of the 28 studies which did not find a significant reduction in fractures, 13 (46.4%) were graded as high quality. These studies had a shorter median (IQR) follow-up duration of 12 (12, 25-8) months, median (IQR) patient number of 724 (305, 4326), median (IQR) reach of 67.7% (40.4, 78-3) and median (IQR) loss to follow-up of 14.4% (5.4, 25).

3.7. BMD outcomes

73 (25.3%) MoC reported BMD outcomes, for 66 (90.4 %) of these BMD was the primary outcome (Tables 4 and S3). The majority of these were exercise MoC (n=65, 89.0%), 41 (56.2%) studies found a significant improvement in BMD with the MoC. This significant improvement in BMD was seen in the lumbar spine in 27 studies, femoral neck in 18 studies and total hip in 17 studies. 21 studies found an improvement in BMD at > one region of interest. Studies that found a significant improvement in BMD had median (IQR) follow-up duration of 12 (6, 18) months, median (IQR) patient number of 70 (39, 140), median (IQR) reach of 80.7% (52.6, 89.1) and median (IQR) loss to follow-up of 13.7% (6.2, 22.1). The setting for delivering care was mostly in the community (n=10, 24.4%), medical centre (n=8, 19.5%) or research facility (n=7, 17.1%). Studies that did not find a significant improvement in BMD had median (IQR) follow-up duration of 12 (5, 9, 12) months, median (IQR) patient number of 84 (41, 146), median (IQR) reach of 55.8% (50.4, 70.3) and median (IQR) loss to follow-up of 13% (9.1, 26.2). The setting for delivering care for these studies was mostly in the community (n=12, 37.5%) or home (n=9, 28.1%).

3.8. Gaps in reporting

Only 20 (6.9%) studies reported on consumer satisfaction, seven (2.4%) reported on clinician satisfaction, and 17 (5.9%) reported on cost. Adverse outcomes were reported by 37 (12.8%) of studies and 29 of these were exercise studies. Of these, 17 studies reported musculoskeletal adverse effects, and 16 reported no adverse effects.

4. Discussion

To our knowledge, this is the largest comprehensive review of both primary and secondary MoC for osteoporosis. The most common MoC for osteoporosis were classified as ‘coordination of care’, with the subcategory of ‘packages of care’, and used the implementation strategy of ‘targeting a specific disease’. The most common activities are FLS and education. Few studies report on implementation characteristics of the model, such as reach, fidelity, and loss to follow-up, which may limit the ability for the MoC to be adapted to other settings and affect the rigour of the results. The majority of models showed an improvement in their primary outcome, although within each outcome, there were mixed results for similar types of models.

It is critical to recognise that implementation characteristics of MoC can influence outcomes [32]. Yet no previous reviews have assessed delivery and implementation characteristics of MoC for osteoporosis, and studies often omit these key details from publications. For example, a FLS may involve face-to-face, telephone or written contact, and may occur on the hospital ward, in a designated clinic or remotely, and each of these approaches may lead to different results. Furthermore, the ability of staff to screen all eligible patients, uptake of FLS by invited patients, fidelity to standardised investigations, and dropout rates, will influence the efficacy of the program. Less than half of included studies reported the reach of the MoC or fidelity to the program, and only half reported loss to follow-up. Where studies have high dropout rates or low reach or fidelity, consumer and clinician feedback may help to explain reasons for this, including the acceptability of the MoC, burden or perceived lack of efficacy, however this was rarely reported by studies. Co-design is now considered standard practice for developing MoC, and consumer and clinician perspectives should be included routinely when reporting MoC [33,34].

We are not the first group to attempt to summarise clinical outcomes of MoC for osteoporosis. Three recent systematic reviews analysed DXA and treatment rates among adults at risk of, or with prior, fragility fracture [15,16,35]. Two included only randomised controlled trials, while one also included quasi-experimental studies with a control group. All used different classification systems for MoC, with one classifying by activities (such as screening, education, feedback) [15]; one broadly grouping MoC (FLS, case management, orthopaedic / fracture clinic) [16], and one classifying as structural, healthcare provider- or patient-focussed care. Results were mixed. While one study found a significant increase in treatment and DXA rates in a pooled analysis of all types of models [15], another found this benefit for structural and patient-focussed interventions [35], and another only found evidence for benefit in the population who had a prior fracture [16]. In a sub-analysis of studies including only people without prior fracture, the only intervention with benefit was self-scheduling of DXA with education, which increased DXA rates [16]. Several previous reviews have also focussed only on secondary prevention after a fracture [17–19]. One review included only RCTs, while others included additional study types. Again, different classification systems were used to group MoC, with one study not grouping models at all, one classifying models of care as FLS Types A-D, and the other classifying models based on the presence or absence of dedicated personnel, whether BMD was ordered or treatment initiated within model, and whether the model was “intensive” (both of the former criteria) [17–19]. These reviews suggested improvement in treatment rates overall, with a trend towards increased efficacy for more intensive MoC, while results for increased DXA rates were mixed. These mixed results between reviews may relate to inclusion criteria, differences in classifying models of care or implementation characteristics not reported in these reviews. We have attempted to use a validated system for classifying models of care, that can be replicated by other studies, and to include detail on implementation characteristics which may explain differences between trial results.

Although treatment rates are an important outcome for MoC for osteoporosis, it is important to understand that not all patients in primary prevention studies require treatment. The proportion who require treatment will depend on the population and risk of re-fracture, and the success of this treatment depends on patient adherene [36]. Fracture outcomes have been included in two previous reviews, one focussed on secondary prevention after fracture, and the other including both primary and secondary prevention [15,17]. One study including only RCTs performed a meta-analysis of 10 studies, which
Table 3.
Summary of studies reporting significant reduction in fractures.

Author (year)	Study design	Type of MoC	Population and sample size (n)	Follow-up months	Delivery of MoC	EPOC taxonomy	Clinical outcomes	Program reach and loss to follow-up	Risk of Bias		
FLS	Cohort study	FLS type A	>50 yr inpatient with MTF 75	12	More than once, but less than monthly	Face to face	Hospital Home	Packages of care	Targeted at specific health conditions	0 (0%) MTF vs 36 (30%) in prior cohort, p = 0.001	+
Bachour (2017)[38]	Cohort study	FLS type A	>50 yr ED patient with MTF 250	24	Not reported	Face to face	Hospital Ind	Packages of care	Targeted at specific health conditions	8 (8.2%) total fractures vs 18 (18%) in prior cohort, p = 0.004	+
Davidson (2017)[39]	Cohort study	FLS type C	>45 yr inpatient with MTF 140	36	Once	Not reported	Not reported	Individual Packages of care	Targeted at specific health conditions	34 (19.5%) MTF vs 25 (19.3%) in prior cohort, p = 0.05	+
Huntjens (2011)[40]	Cohort study	FLS type A	≥50 yr outpatient or ED patient with non-VF 325	26	More than once, but less than monthly	Face to face	Hospital Ind	Packages of care	Targeted at specific health conditions	80 (6.7%) total fractures vs 193 (9.9%) in prior cohort, p = 0.001	+
Indeojeet (2018)[41]	Cohort study	FLS type A	≥50 yr ED patient with MTF 339	12	Not reported	Face to face	Hospital Ind	Packages of care	Targeted at specific health conditions	17 (8.1%) MTF vs 17 (8.7%) in prior cohort and 8 (17.3%) in usual care, p = 0.05 vs prior cohort only	+
Lib (2011)[42]	Cohort study	FLS type A	≥45 yr outpatient with non-VF 401	48	More than once, but less than monthly	Face to face	Hospital Ind	Packages of care	Targeted at specific health conditions	50 (8.3%) MTF vs 31 (19.7%) in usual care, p = 0.01	0
Nakayama (2016)[43]	Cohort study	FLS type A	≥50 yr ED patient with MTF 931	36	Not reported	Face to face	Hospital Ind	Packages of care	Targeted at specific health conditions	63 (12.2%) total fractures vs 70 (16.8%) in usual care, p = 0.025	+
van der Kallen (2014)[44]	Cohort study	FLS type A	≥50 yr ED patient with MTF 434	12	More than once, but less than monthly	Face to phone	Hospital Ind	Packages of care	Targeted at specific health conditions	11 (8.5%) total fractures vs 36 (18.6%) in usual care, p = 0.001	+
Wade (2019)[45]	Cohort study	FLS type A	≥50yr outpatient with VF treated surgically 365	26	2-3 monthly	Face to face	Hospital Ind	Packages of care	Targeted at specific health conditions	78 (7%) total fractures vs 84 (9%) in prior cohort, p = 0.01	Not reported

(continued on next page)
Table 3. (Continued)

Author (year)	Study design	Type of MoC	Population and sample size (n)	Follow-up months	Frequency of contact	Delivery of MoC	Delivery arrangement	Implementation strategy	EpOC taxonomy	Clinical outcomes	Program reach and loss to follow-up	Risk of Bias		
Soffi (2010)[49]	Cohort study	Education - clinician	Orthopedic surgeons: 60 yr or older with MTF Clinicians: 30 Patients: 515	24	15 min 2x per wk for 13 wk	Face to face	Hospital	Group	Disease management	Educational materials	Treatment	Fractures vs 20 (2.5%) in usual care, p<0.039	0	Not reported 0
Screening Harness (2012)[50]	Cohort study	Screening – DXA	≥65 yr female; ≥70 yr male, or ≥50 yr at risk of OP	72	Not reported	Face to face	Written	GP practice	Individual	Disease management	Targeted at specific health conditions	Fracture	2955 (1) DX fractures vs 6063 (1.7%) in usual care, p≪0.05	Reach: 95.6% Loss to follow-up: Intervention 14.4%; Control 14.8%
Parsons (2010)[51], Shepstone (2018)[52], United Kingdom	RCT	Screening – DXA, FRAX	70–85 yr women	60	Once	Written	GP practice	Individual	Disease management	Targeted at specific health conditions	Fracture	111 (1.7%) hip fractures vs 646 (1.2%) in usual care, p<0.002	Reach: 8.8% Loss to follow-up: Intervention 14.4%; Control 14.8%	
Zhumk-hawala (2017)[53], United States	Cohort	Screening – DXA	≥50 yr males with prostate cancer on hormone therapy	36	Once	Face to face	Written	GP practice	Individual	Disease management	Patient-mediated interventions Reminders	Fracture	18 (1.6%) hip fractures vs 17 (1.4%) in usual care, p=0.001	Not reported +
Exercise Kemmler (2012, 2014, 2015, 2016, 2017)[54-56], Germany	Controlled before and after study	Exercise	Post-menopausal women with osteopenia	192	40 min 4x per wk for 800 wk	Face to face	Written	Home Other not reported	Both	Self-management	Targeted at specific health conditions	Fracture	17 (28.8%) total fractures vs 28 (60.9%) in usual care, p=0.03	Reach: 53.3% Loss to follow-up: Intervention 31.4%; Control 10.9%
Korpe-Lainen (2010)[57], Finland	RCT	Exercise	70–73 yr women with low BMD	160	25 min daily	Face to face	Home Other not specified	Both	Group vs individual care	RMD	Reach: 25.5% Loss to follow-up: Intervention 34.5%; Control 40.8%			
OCS Choung (2018)[58], Hong Kong	Cohort	OCS Specialist review Education – patient Education Patient support	≤65 yr w hip fracture	18	Exercise: 60 min weekly Vibration: 20 min 3x per wk Education 3-monthly	Face to face	Community Hospital	Both	Disease management	Targeted at specific health conditions	Fracture	1 (2.5%) total fractures vs 8 (10.4%) in usual care, p=0.034	Reach: not reported Loss to follow-up: Intervention 28.3%; Control 25.2%	
Specialist review Gomes (2019)[59], Australia	Pre-test post-test review	Specialist review	≤65 yr referred to falls and fracture clinic	6	Once	Face to face	Hospital	Individual	Disease management	Targeted at specific health conditions	Fracture	8.6% total fractures, p=0.001 vs baseline	Reach: not reported Loss to follow-up: 10.5%	

Footnote: p values are between groups unless otherwise specified. Risk of bias: ++ (high quality), + (acceptable), - (low quality), 0 (unacceptable). MoC: model of care; EpOC: effective practice and organisation of care; FLS: fracture liaison service; yr: year; MTF: minimal trauma fracture; ED: emergency department; VF: vertebral fracture; min: minutes; wk: week; DXA: dual energy X-ray absorptiometry; OP: osteoporosis; GP: general practitioner; DR: distal radius; RCT: randomised controlled trial; BMD: bone mineral density; OCS: orthogeriatric service.
Table 4. Summary of studies reporting significant improvement in BMD.

Author (year)	Study design	Type of MoC	Population and sample size (n)	Follow-up months	Delivery of MoC	EPOC taxonomy	Clinical outcomes	Program reach and loss to follow-up						
FLS Chandran (2013)[62] Singapore	Case study	FLS type A	≥50 yr inpatient, outpatient or ED patient with MTF: 287	24	More than once, but less than monthly	Face to face	Hospital	Individual	Packages of care	Targeted at specific health conditions	Treatment	LS: +4% vs baseline	Not reported	
Erkman (2014)[63] Netherlands	Case study	FLS type A	≥50 yr ED patient with MTF: 1116	12	2-3 monthly	Face to face	Telephone	Hospital	Individual	Packages of care	Targeted at specific health conditions	Reasons for not attending FLS and adherence	LS: +3% vs baseline	Reach: 50.6% Loss to follow-up: 74.9%
Education Him (2009)[64] Vietnam	Non-rando-mised trial	Education – patient	Postmenopausal women with low calcium intake: 140	18	Daily	Face to face	Written	Video	Community	Both	Packages of care	Targeted at specific health condition	Calcium intake	Reach not reported Loss to follow-up: Intervention 18-65; Control 11.7% Reach: not reported Loss to follow-up: Intervention 6-41; Control 13.8%
Wang (2015)[65] China	RCT	Education – patient	Known OP: 456	48	Monthly	Face to face	Written	Video	Community	Both	Packages of care	Targeted at specific health condition	Multiple outcomes including BMD	Females: LS: +10.4% vs control +21.9% p < 0.01 FN: +14.1% vs control +2.7% p < 0.01 Males: LS: +10.5% vs control +1.06% p < 0.01 FN: +11.1% vs control +11.14% p < 0.01
Exercise Abouraage (2018)[66] Brazil	RCT	Exercise	Postmenopausal women: 25	6	30 min 3x per wk for 24 wk	Not reported	Community	Not reported	Site of service delivery	Targeted at specific health condition	BMD	LS: +3.7% vs control +0.88% p < 0.01 TF: +6.5% vs control -1.38% p < 0.01 Reach: not reported Loss to follow-up: Group 1 16%; Group 2 12%; Group 3 12%; Control 20%		
Alayat (2018)[67] Saudi Arabia	RCT	Exercise Laser	Group 1: Laser	12	20 min exercise ≥ 18 min laser 3x per wk for 24 wk	Face to face	Not reported	Not reported	Packages of care	Targeted at specific health condition	BMD	LS: +2.5% vs control +0.2% p < 0.01 TH: +1.7% vs baseline, p < 0.048 LS: +6% vs control -3.3% p < 0.001 Reach: not reported Loss to follow-up: 23.1% Reach: not reported Loss to follow-up: not reported Reach: not reported Loss to follow-up: 23.1%		
Almstedt (2016)[68] United States	Pre-test post-test	Exercise	Female cancer survivors: 26	7	60 min 3x per wk for 26 wk	Face to face	University	Not reported	Packages of care	Targeted at specific health condition	BMD	LS: +4.7% vs baseline, p < 0.05 TH: +7% vs baseline, p < 0.05 FN: -4% vs baseline, p = 0.05		
Argin (2015)[69] Turkey	RCT	Exercise	Post-menopausal women with low BMD: 44	6	60 min 3x per wk for 24 wk	Face to face	Not reported	Group	Group vs individual care	Targeted at specific health condition	BMD			
Autonino (2013)[70] United States	Pre-test post-test	Exercise	Spinal cord injury: 26	13	150 min 2x per wk for 26 wk	Face to face	Rehab centre	Individual	Packages of care	Targeted at specific health condition	BMD			

(continued on next page)
Author (year)	Study design	Type of MoC	Population and sample size (n)	Follow-up months	Delivery of MoC	EPOC taxonomy	Clinical outcomes	Program reach and how to follow-up					
Base (2013) [71]	RCT	Exercise Group 1: strength exercise Group 2: high-intensity exercise	Postmenopausal women with low BMD 42	6	60 min 3× per wk for 26 wk	Face to face	Hospital	Not reported	Packages of care	Targeted at specific health condition	BMD	LS: Group 1 +0.3% Group 2 +0.5% vs control -1.5% p < 0.05; Group 1 vs control p < 0.05 Group 1 vs Group 2 p = 0.05; PN: Group 2 +0.6% vs control -1% p < 0.05; Group 2 vs Group 3 p = 0.47; TH: Group 1 +1% vs Group 2 -0.3% vs control -1.4% p < 0.05	Reach: not reported; Loss to follow-up: Group 1 21%; Group 2 14%; Control 14%
Beavers (2013) [72]	RCT	Exercise Education - patient Group 1: Diet plan Group 2: Exercise Group 3: Diet plan & exercise	≥55 yr; BMI 27–40 and non-osteoporosis fractures 352	18	Exercise: 60 min 3× per wk; education: 1–2 weekly	Face to face	Community	Both	Packages of care	Targeted at specific health condition	BMD	LS: Group 1 +0.3% Group 2 +0.3% vs Group 3 -0.1%; p > 0.05; PN: Group 1 -2.5% vs Group 2 -0.2% vs control -0.5%; p = 0.01; Group 1 vs Group 1 p = 0.01; Group 2 vs Group 3 p = 0.01; Group 3 vs control 0.001	Reach: 93.3% Loss to follow-up: Group 1 31%; Group 2 26%; Group 3 25%
Bergstrom (2012) [73]	RCT	Exercise	Postmenopausal women with low BMD and a DXA fracture 112	12	40 min 3–4× wk for 52 wk	Face to face	Community	Not reported	Site of service delivery	Targeted at specific health condition	BMD	LS: -0.1% vs control -0.1% p < 0.05; PN: -0.05% vs control 0.001 p < 0.05	Reach: not reported; Loss to follow-up: Intervention 20%; Control 15.4%
Boccalini (2009) [74]	RCT	Exercise	Postmenopausal women 35	6	60 min weekly for 24 wk	Face to face	Community	Not reported	Site of service delivery	Targeted at specific health condition	BMD	LS: -0.3% vs control -0.9% p < 0.05; PN: -0.1% vs control -0.6% p < 0.05	Reach: not reported; Loss to follow-up: Intervention 13%; Control 16.7%; Reach: 34.5% Loss to follow-up: Intervention 0%; Control 30%
Bolton (2012) [75]	RCT	Exercise	Postmenopausal women with low BMD 39	12	60 min 3× per wk for 52 wk	Face to face	Community	Not reported	Site of service delivery	Targeted at specific health condition	BMD	LS: -0.3% vs control -0.9% p < 0.05; PN: -0.5% vs control -0.6% p < 0.05	Reach: 96.83% Loss to follow-up: Group 1 0%; Group 2 20%; Group 3 30% Reach: 100% Loss to follow-up: Group 1 0%; Group 2 20%; Group 3 30% Reach: 100% Loss to follow-up: Group 1 0%; Group 2 20%; Group 3 30% Reach: 100% Loss to follow-up: Group 1 0%; Group 2 20%; Group 3 30%
Borba Pinheiro (2016) [76]	RCT	Exercise Group 1: 3× per wk Group 2: 2× per wk	Postmenopausal women with low BMD 60	13	60 min for 50 wk	Face to face	Not reported	Not reported	Packages of care	Targeted at specific health condition	BMD	Absolute change not reported. p < 0.05 Group 1 vs control for TH, PN p < 0.05 Group 1 vs Groups for LS, TH and PN	Reach: not reported; Loss to follow-up: Group 1 0%; Group 2 30%; Group 3 50% Reach: not reported; Loss to follow-up: Group 1 0%; Group 2 30%; Group 3 50% Reach: not reported; Loss to follow-up: Group 1 0%; Group 2 30%; Group 3 50% Reach: not reported; Loss to follow-up: Group 1 0%; Group 2 30%; Group 3 50%
Chun (2009) [77]	RCT	Exercise Antioxidants Group 1: antioxidants Group 2: exercise Group 3: antioxidants & exercise	Postmenopausal women 34	6	Exercise: 60 min 3× per wk for 26 wk	Face to face	Not reported	Not reported	Packages of care	Targeted at specific health condition	BMD	LS: Group 0.1% Group 2 0% Group 3 0% vs control -1% p < 0.05 all groups vs control PN: Group 1 0.9%; Group 2 0%; Group 2 1-EVs control +0% p = 0.05; LS: +1.4% vs control 0.6% p < 0.05	Reach: not reported; Loss to follow-up: not reported

(continued on next page)
Author(s) (year)	Study design	Type of MoC	Population and sample size (n)	Follow-up months	Delivering of MoC	EPOC taxonomy	Clinical outcomes	Primary outcome?	Program which and loss to follow-up	
Daly (2019)[31] Gia-	RCT Exercise	Postmenopausal women with low BMD &1	12	Written	BMD	Loss to follow-up: Intervention 11% vs Control 12% Reach: not reported Loss to follow-up: Intervention 4% vs Control 12% Reach: not reported Loss to follow-up: Intervention 1% vs Control 0% Reach: not reported Loss to follow-up: 0%	Reach: not reported Loss to follow-up: 0%			
modulus (2014)[79]										
Australia										
de Matur (2009)[80] Portugal	Non-randomised trial	Exercise	Postmenopausal women, sedentary 10	3	Face to face	Hospital	Reported Change from baseline: LS -11% vs control -2% p = 0.002 Reach: not reported Loss to follow-up: 0%	Reach: not reported Loss to follow-up: 0%		
El-Kader (2005)[81] Saudi Arabia	RCT Exercise	COPD on inhaled glucocorticoids 60	6	Not reported	Not reported	Packages of care	Targeted at specific health condition	BMD	Reach: not reported Loss to follow-up: 0%	
El-bisi (2015)[82] Egypt	RCT Exercise	Exercise Group 1: exercise Group 2: electromagnetic field	10	Not reported	Not reported	Packages of care	Targeted at specific health condition	BMD	Reach: not reported Loss to follow-up: 0%	
Garcia-Gomariz (2018)[83] Spain	RCT Exercise	Postmenopausal women 36	24	Face to face	Hospital	Not reported	Packages of care	Targeted at specific health condition	BMD	Reach: not reported Loss to follow-up: 0%
Hogan (2013, 2013)[84] RCT	Exercise	Exercise Phase 1: control vs exercise Phase 2: aerobic exercise Phase 3: resistance exercise	41	Written	Home	Individual	Self-management	Targeted at specific health condition	BMD	Reach: not reported Loss to follow-up: 0%
Kemmner (2013)[86] Germany	RCT Exercise	Postmenopausal women 85	12	Face to face	Not reported	Group vs individual care	Targeted at specific health condition	BMD	Reach: 81% Loss to follow-up: Intervention 16% vs Control 28% Reach: 51% Loss to follow-up: Intervention 11% vs Control 10% Reach: 98% Loss to follow-up: Group 1	
Kemmner (2012, 2014, 2015, 2016, 2017)[83-84] Germany	Controlled before and after study	Exercise	Postmenopausal women with osteo-penia 137	102	Face to face	Written	Group vs individual care	Targeted at specific health condition	BMD	Reach: 81% Loss to follow-up: Intervention 16% vs Control 28% Reach: 51% Loss to follow-up: Intervention 11% vs Control 10% Reach: 98% Loss to follow-up: Group 1
Kakulina (2009, 2011)[87] [88] Australia	RCT Exercise	Postmenopausal Group 1: Older males 180	18	Face to face	Community	Group vs individual care	Targeted at specific health condition	BMD	Reach: 81% Loss to follow-up: Intervention 16% vs Control 28% Reach: 51% Loss to follow-up: Intervention 11% vs Control 10% Reach: 98% Loss to follow-up: Group 1	

(continued on next page)
Table 4. (Continued)

Author (year)	Study design	Type of MoC	Population and sample size (n)	Follow-up months	Delivery of MoC	EPOC taxonomy	Clinical outcomes	Program reach and loss to follow-up				
LeBarc, (2013)[99]	Controlled before and after study	Exercise	United States	12	150 min 6x per wk for 24 wk	Face to face	Home	Individual	Packages of care	Targeted at specific health condition	BMD	Absolute change not reported
Liu (2015)[91]	RCT	Exercise	China	12	3 min daily for 52 wk	Not reported	Not reported	Not reported	Packages of care	Targeted at specific health condition	BMD	Absolute change not reported
Marchesi (2012)[92]	RCT	Exercise	Italy	6	60 min 3x per wk for 24 wk	Face to face	Not reported	Group	Groups vs individual care	Targeted at specific health condition	BMD	All groups improved vs control
Marques (2011)[93]	RCT	Exercise	Portugal	8	60 min 3x per wk for 32 wk	Face to face	University campus	Group	Groups vs individual care	Targeted at specific health condition	BMD	All groups improved vs control
Morse (2019)[94]	RCT	Exercise	United States	12	30 min 3x per wk for 52 wk	Face to face	Not reported	Not reported	Packages of care	Targeted at specific health condition	HRQCT	Tbia C1 Group 1 +0.04% vs Group 2 -0.96%, p<0.01
Munu (2019)[95]	RCT	Exercise	Brazil	6	75 min 3x per wk for 26 wk	Face to face	Hospital	Individual	Packages of care	Targeted at specific health condition	BMD	All groups increased vs control
Musteazam (2014)[96]	RCT	Exercise	Kosovo	10	35-55 min 3x per wk for 43 wk	Face to face	Not reported	Not reported	Packages of care	Targeted at specific health condition	BMD	All groups increased vs control

(continued on next page)
Author (year)	Study design	Type of MoC	Population and sample size (n)	Follow-up months	Delivery of MoC	EPOC taxonomy	Clinical outcomes	Program reach and loss to follow-up									
Nicholson (2015) [97] Australia	RCT	Aquatic exercise	Postmenopausal women (57)	6	50 min 2x per wk for 26 wk	Face to face	Community	Group vs individual care	Site of service delivery	Targeted at specific health condition	BMD	LS: +1% vs control; -2% vs control at x time; TH: -0.1% vs control; -0.9%; p = 0.05	FN: -3% vs control; +0.7%; p > 0.05; control -1.5% vs control 5.5%; p = 0.05	Postmenopausal subgroup	LS: -1% vs control; -2% vs control; p = 0.05	FN: +1.4% vs control; p = 0.01	
Saarto (2012) [98] Finland	RCT	Exercise	Women with breast cancer (57)	12	60 min 3x per wk for 52 wk	Face to face	Home	Both	Site of service delivery	Targeted at specific health condition	BMD	LS: -1% vs control; -2% vs control; p < 0.05	FN: +1% vs control; p < 0.05	Postmenopausal subgroup	LS: -1% vs control; +0.09% vs control; -2% vs control; p = 0.05	FN: -1% vs control; p > 0.05	
Sen (2010) [99] Turkey	RCT	Exercise	Vibration Group 1: High intensity exercise; Group 2: Exercise & vibration	40-65 yr postmenopausal women (49)	6	60 min 3x per wk for 24 wk	Face to face	Research facility	Not reported	Packages of care	Targeted at specific health condition	BMD	LS: -0.6% vs control; p = 0.05	FN: +1% vs control; p = 0.05	Postmenopausal subgroup	LS: -1.6% vs control; -2% vs control; p = 0.05	FN: -1% vs control; p > 0.05
Silverman (2009) [100] United States	Non-randomized trial	Exercise	Postmenopausal women with BMI 25-40, sedentary (86)	6	52 min 3x per wk for 24 wk	Face to face	Community	Individual	Packages of care	Targeted at specific health condition	BMD	LS: +0.2% vs control; p = 0.05	FN: +1% vs control; p = 0.05	Postmenopausal subgroup	LS: +0.2% vs control; p = 0.05	FN: +1% vs control; p = 0.05	
Villanud (2007) [101] United States	RCT	Exercise	Spine loss at 6 month review Group 1: Diet & aerobic exercise; Group 2: Diet & resistance exercise; Group 3: Diet & combined exercise	≤65 yr BMI = 22% sedentary (100)	6	Exercise: 60 min 4x per wk for 26 wk	Face to face	University campus	Both	Packages of care	Targeted at specific health condition	BMD	LS: +0.1% vs control; p = 0.05	FN: +0.05% vs control; p = 0.05	Postmenopausal subgroup	LS: +0.1% vs control; p = 0.05	FN: +0.05% vs control; p = 0.05
von Stengel (2011) [102] Germany	RCT	Exercise	Vibration Group 1: Exercise; Group 2: Exercise & vibration	Postmenopausal women (151)	18	40 min 4x per wk for 78 wk	Face to face	University	Both	Packages of care	Targeted at specific health condition	BMD	LS: +0.05% vs control; Group 1 +0.05%; Group 2 +0.06% vs control; p = 0.05	FN: +0.05% vs control; p = 0.05	Postmenopausal subgroup	LS: +0.05% vs control; Group 1 +0.05%; Group 2 +0.06% vs control; Group 3 +0.06% vs control; p = 0.05	FN: +0.05% vs control; p = 0.05
Watson (2015) [103] [104] Australia	RCT	Exercise	Postmenopausal women (108)	8	30 min 2x per wk for 35 wk	Face to face	University campus	Group vs individual care	Targeted at specific health condition	BMD	LS: +0.05% vs control; p = 0.05	FN: +0.05% vs control; -1.8% vs control; p < 0.001	Postmenopausal subgroup	LS: +0.05% vs control; Group 1 +0.05%; Group 2 +0.06% vs control; Group 3 +0.06% vs control; p = 0.05	FN: +0.05% vs control; p = 0.05		

(continued on next page)
Author (year)	Study design	Type of MoC	Population and sample size (n)	Follow-up months	Delivery of MoC	EPOC taxonomy	Clinical outcomes	Primary outcome?	Program reach and loss to follow up				
Winters-Stone (2011)	RCT	Exercise	≥50yrs postmenopausal women with breast cancer (106)	12	60 min 3x per wk for 52 wk	Face to face	Written	University	Both	Group vs individual care	Targeted at specific health condition	BMD	Reach: not reported
Specialist Review	Post-test	Specialist	Men with prostate cancer on ADT (113)	24	2-3 monthly	Face to face	Hospital	Individual	Packages of care	Clinical practice guidelines	BMD	Reach: not reported	

Footnote: *p* values are between groups unless otherwise specified. MoC: model of care; EPOC: effective practice and organisation of care; BMD: bone mineral density; FLS: fracture liaison service; yr: year; ID: emergency department; MTF: minimal trauma fracture; LS: lumbar spine; TH: total hip; US: ultrasound; RCT: randomised controlled trial; OP: osteoporosis; FN: femoral neck; min: minutes; wk: week; TF: total femur; BMI: body mass index; DR: distal radius; COPD: chronic obstructive pulmonary disease; HRQCT: high resolution quantitative computer tomography; CTI: cortical thickness index; CBV: cortical bone volume.

Declaration of Competing Interest

AJ is supported by a National Health and Medical Research Council postgraduate research scholarship (Grant No. 1169192) and has received a travel grant from the Australian and New Zealand Bone and Mineral Society. MJ is supported by a National Health and Medical Research Council postgraduate research scholarship (Grant No. 2002671).

Data sharing statement

Data dictionary, data collection table, list of excluded studies provided on request to AJ, at alicia.jones@monash.edu.

Funding

None.
PE has received institutional grants or contracts from Amgen, the National Health and Medical Research Council, Alexion and Eli-Lilly; payments to institution from Amgen, is a participant on Celltrion Data Safety Monitoring Board or Advisory Board, and has a leadership or fiduciary role on the American Society for Bone and Mineral Research executive, International Osteoporosis Foundation board and Healthy Bones Australia board. HT is the recipient of a National Health and Medical Research Council Fellowship Grant. AV reports no conflicts of interest.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.eclinm.2021.101022.

References

[1] Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femur neck or lumbar spine. J Bone Miner Res 2011;26(11):2500–15.

[2] Watts JJ, Abhiamani-Ochom J, Sanders KM. Osteoporosis costing all Australians a new burden of disease analysis 2012 to 2022. Melbourne, Vic: Osteoporosis Australia, 2013.

[3] Wainner AH, Patkar NM, Curtis JR, et al. Which fractures are most attributable to osteoporosis? Clin Epidemiol 2011;54(1):46–53.

[4] Annin S, Achenbach SJ, Atkinson EJ, Khosla S, Melton 3rd. LJ. Trends in fracture incidence: a population-based study over 20 years. J Bone Miner Res 2014;29(3):581–9.

[5] Borgstrom F, Karlsson L, Ortsater G, et al. Fragility fractures in Europe: burden, management and opportunities. Arch Osteoporos 2020;15(1):59.

[6] Johnell O, Kanis JA. An estimate of the worldwide prevalence and visability associated with osteoporotic fractures. Osteoporos Int 2006;17(12):1726–33.

[7] Odén A, McCloskey EV, Kanis JA, Harvey NC, Johansson H. Burden of high fracture probability worldwide: secular increases 2010–2040. Osteoporos Int 2015;26(9):2243–8.

[8] Cehic M, Lerner RG, Achten J, Griffin JA, Grif

[9] Martijn J, Viprey M, Castagne B, et al. Interventions to improve osteoporosis care: a systematic review and meta-analysis. Osteoporos Int 2020;31(3):429–46.

[10] Eisman JA, Bogoch ER, Dell R, et al. Making the first fracture the last fracture: ASBMR task force report on secondary fracture prevention. J Bone Miner Res 2012;27(10):2099–46.

[11] Anfinsen T, Stikricht T, Dunmrongwanch P. Evaluation of police general hospital’s fracture liaison service (PGH’s FLS): the first study of a fracture liaison service in Thailand. Osteoporos Sarcompenia 2016;2(4):238–43.

[12] Bachur R, Rizkallah M, Sebaaly A, et al. Fracture liaison service: report on the first successful experience from the Middle East. Arch Osteoporos 2017;12(1):79.

[13] Davidson E, Seal A, Doyle Z, Fielding K, McGirr J. Prevention of osteoporotic fractures in regional Australia. J Rural Health 2017;35(2):362–8.

[14] Huntgens KMB, van Geel TCM, Geusens P, et al. Impact of guideline implementation by a fracture nurse on subsequent fractures and mortality in patients presenting with non-vertebral fractures. Injury 2011;42(Suppl 4):S39–43 0226040.

[15] Inderjeeth CA, Raymond WD, Briggs AG, Geelhoed E, Oldham D, Mountain D. Implementation of the Western Australian osteoporosis model of care: a fracture liaison service utilising emergency department information systems to identify patients with fragility fracture to improve current practice and reduce re-fracture rates: a 12-month analysis. Osteoporos Int 2018;29(8):1759–70.

[16] Li H, Nandapplan H, Kim M, et al. Targeted intervention reduces refracture rate in patients with incident non-vertebral osteoporotic fractures: a 4-year prospective controlled study. Osteoporos Int 2011;22(3):849–58.

[17] Nakayama A, Major G, Holliday E, Atta J, Bogduk N. Effectiveness of a fracture liaison service to reduce the re-fracture rate. Osteoporos Int 2016;27(3):873–9.

[18] van der Kallen J, Gales M, Cooper K, et al. A fracture prevention service reduces further fractures two years after incident minimal trauma fracture. Int J Rheum Dis 2014;17(2):195–203.

[19] Wmtil E, Jackson A, Brown C, Galovska S, McCullough JR, Burgess JA. Does a fracture liaison service program minimize recurrent fragility fractures in the elderly with osteoporotic vertebral compression fractures? Am J Surg 2019;217(3):557–60.

[20] Becker C, Cameron ID, Klenk J, et al. Reduction of femoral fractures in long-term care facilities: the Bavarian fracture prevention study. PLoS One 2011;6(8):e24311.

[21] Heinrich S, Rapp K, Stuhlreiner N, Rissmann U, Becker C, Konig HH. Cost-effectiveness of a multifactorial fall prevention program in nursing homes. Osteo-

[22] Pekkaniren T, Loptyniemi E, Valimaki M. Hip fracture prevention with a multifactorial educational program in elderly community-dwelling Finnish women. Osteoporos Int 2013;24(4):1251–23.

[23] Sorbi R, Aghamirsalim E, Eslami V, Karimi Dasjerdi MH, Seraj SM. Effect of an educational intervention for surgeons on osteoporosis management at
2-year follow-up in patients with fragility fracture. J Clin Rheumatol 2016;22(4):231–2.

Hanns C, Funahashi T, Del R, et al. Distal radius fracture risk reduction with a comprehensive osteoporosis management program. J Hand Surg Am 2012;37(9):1668–75.

Parsons CM, Harvey N, Shephard L, et al. Systematic screening using FRAX leads to increased use of, and adherence to, anti-osteoporosis medications: an analysis of a UK SCOST trial. Oxford, United Kingdom (in Cooper) NIHR Oxford Biomedical Research Centre, University of Oxford; 2019 Osteoporosis Int.

Zhukhavskaya AA, Gleason JM, Cheatham TC, et al. Osteoporosis management program decreases incidence of hip fracture in patients with prostate cancer receiving androgen deprivation therapy. Urology 2013;81(5):1010–5.

Kemmler W, Bebenek M, Kohl M, von Stengel S. Exercise and fractures in postmenopausal women. Final results of the controlled erlangen fitness and osteoporosis prevention study (EFPoS). Osteoporos Int 2015;26(10):2491–9.

Kemmler W, Engelke K, von Stengel S. Long-term exercise and bone mineral density changes in postmenopausal women—are there periods of reduced effectiveness? J Bone Miner Res 2016;31(1):215–22.

Kemmler W, Kohl M, von Stengel S. Long-term effects of exercise in postmenopausal women: 16-year results of the erlangen fitness and osteoporosis prevention study (EFPoS). Menopause 2017;24(4):45–51.

Kemmler W, von Stengel S. Dose-response effect of exercise frequency on bone mineral density in post-menopausal, osteoporotic women. Scand J Med Sci Sport 2014;24(3):526–34.

Kemmler W, von Stengel S, Bebenek M, Engelke K, Hentschke C, Kalender WA. Exercise and fractures in postmenopausal women: 12-year results of the erlangen fitness and osteoporosis prevention study (EFPoS). Osteoporos Int 2012;23(4):1267–76.

Kemmler W, von Stengel S, Kohl M. Exercise frequency and bone mineral density development in exercising postmenopausal osteoporotic women. Is there a critical dose of exercise for affecting bone? Results of the erlangen fitness and osteoporosis prevention study. Bone 2016;89:41–8.

Korpelainen R, Keinanen-Kiukaanniemi S, Nieminen P, Heikkinen J, Vaananen K, Korpelainen J. Long-term outcomes of exercise: follow-up of a randomized trial in older women with osteoporosis. Arch Intern Med 2010;170(17):1548–56.

Cheung WH, Shen WH, Ong A, et al. Evaluation of a multidisciplinary rehabilitation programme for elderly patients with hip fracture: a prospective cohort study. J Rehabil Med 2018;50(3):285–91.

Gomez F, Curcio CL, Brennan-Olsen SL, et al. Effects of the falls and fractures prevention program followed by a 6-month research practice transition on bone mineral density, trabecular microarchitecture, and physical function in older adults: a randomized controlled trial. J Bone Miner Res 2020;35(7):419–29 (Hill) School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia.

Gianoudis J, Bailey CA, Ebeling PR, et al. Effects of a targeted multimodal exercise program incorporating high-speed power training on falls and fracture risk factors in older adults: a community-based randomized controlled trial. J Bone Miner Res 2014;29(1):182–91.

de Matos O, Lopes da Silva DJ, Martinez de Oliveira J, Castelo-Branco C. Effect of specific exercise training on bone mineral density in women with postmenopausal osteoporosis or osteoporosis. Gynecol Endocrinol 2009;25(9):616–20.

Korpelainen J. Long-term outcomes of exercise: follow-up of a randomized trial in older women with osteoporosis: 16-year results of the controlled erlangen fitness and osteoporosis prevention study (EFPoS). Menopause 2013;20(4):76.

Chuin A, Labonte M, Tessier D, et al. Effect of antioxidants combined to resistance training on bone mineral density and bone turnover in persons with spinal cord injury. Eur J Appl Physiol 2016;116(5):1471–80.

Murai IH, Roschel H, Dantas WS, et al. Exercise mitigates bone loss in women. Final results of the controlled eighth section of eight randomised controlled trial. J Clin Endocrinol Metab 2016;101(3):1013–16.

Marchese D, D’Andrea M, Ventura V, et al. Effects of a weight-bearing exercise program on bone mineral density and physical activity on bone strength and body composition in breast cancer premenopausal women during endocrine therapy. Eur J Phys Rehau Med 2013;49(3):331–46.

Kukuljan S, Nowson CA, Sanders KM, et al. Independent and combined effects of calcium-vitamin D3 and exercise on bone structure and strength in older men: a 18-month factorial randomized controlled trial. J Clin Endocrinol Metab 2011;96(4):955–63.

LeBlanc A, Matsumoto T, Jones J, et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int 2013;24(7):2105–14.

Sibonga J, Matsumoto T, Jones J, et al. Resitive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Bio. Bone 2019:128.11032.

Liu BX, Chen SP, Li YD, et al. The effect of the modified eighth section of eight-section brocade on osteoporosis in postmenopausal women: a prospective randomized trial. Medicine 2015;94(25):e991.

Marchese D, D’Andrea M, Ventura V, et al. Effects of a weight-bearing exercise training on bone mineral density and neuromuscular function of osteoporotic women. Eur J Inflammm 2012;10(3):427–35.

Marques E, Wanderley F, Machado L, et al. Effects of resistance and aerobic exercise on physical function, bone mineral density, OPG and RANKL in older women. Exp Gerontol 2011;46(7):524–32.

Morse LR, Troy KL, Fang Y, et al. Combination therapy with zoledronic acid and FES-row training mitigates bone loss in paralyzed legs: results of a randomized comparative clinical trial. JMRB Physiol 2019;5:11067.

Murai H, Roschel H, Dantas WS, et al. Exercise mitigates bone loss in women with severe obesity after roux-en-y gastric bypass: a randomized controlled trial. J Clin Endocrinol Metab 2019;104(10):4639–50.

Murayza A, Newtiz A, Ilmari Z, Silametsu S, Meks VS, Abazi N. The effect of land versus aquatic exercise program on bone mineral density and physical function in postmenopausal women with osteoporosis: a randomized controlled trial. J Orthop Trauma Rehabil 2019;12(3):319–25.

Nicholson VP, McKeen MR, Slater CJ, Kerr A, Burket BJ. Low-load very-high-repetition resistance training attenuates bone loss at the lumbar spine in active postmenopausal women. Calcif Tissue Int 2015;96(6):490–9.

Saarto T, Sevanen H, Kellokumpu-Lehtinen P, et al. Effect of supervised and home exercise training on bone mineral density among breast cancer patients. A 12-month randomised controlled trial. Osteoporos Int 2012;23(5):1601–12.

Bolton KL, Egerton T, Water J, et al. Effects of exercise on bone density and falls risk factors in post-menopausal women with osteopenia: a randomised controlled trial. J Clin Med Sci 2012;15(2):102–9.

Borba-Pinheiro CJ, Dantas EHM, Vale RGDS, et al. Resistance training programs on bone related variables and functional independence of postmenopausal women in pharmacological treatment: a randomized controlled trial. Arch Gerontol Geriatr 2016;65:36–44 8214378, 74x.

Chun A, Labonte M, Tessier D, et al. Effect of antioxidants combined to resistance training on BMD in elderly women: a pilot study. Osteoporos Int 2009;20(7):1253–8.

Daly RM, Gianoudis J, Kersh M, et al. Effects of a 12-month supervised, community-based, multimodal exercise program on bone mineral density, falls risk and bone turnover in community-dwelling older women. Osteoporos Int 2020;31(7):1601–12.

Kukuljan S, Nowson CA, Sanders KM, et al. Independent and combined effects of calcium-vitamin D3 and exercise on bone structure and strength in older men: a 18-month factorial randomized controlled trial. J Clin Endocrinol Metab 2011;96(4):955–63.

Carrico CL, Brennan-Olsen SL, et al. Effects of the falls and fractures prevention program followed by a 6-month research practice transition on bone mineral density, trabecular microarchitecture, and physical function in older adults: a randomized controlled trial. J Bone Miner Res 2020;35(7):419–29 (Hill) School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia.

Gianoudis J, Bailey CA, Ebeling PR, et al. Effects of a targeted multimodal exercise program incorporating high-speed power training on falls and fracture risk factors in older adults: a community-based randomized controlled trial. J Bone Miner Res 2014;29(1):182–91.
Sen EI, Esmaeilzadeh S, Eskiyurt N. Effects of whole-body vibration and high impact exercises on the bone metabolism and functional mobility in postmenopausal women. J Bone Miner Metab 2020;38(3):392–404.

Silverman NE, Nicklas BJ, Ryan AS. Addition of aerobic exercise to a weight loss program increases BMD, with an associated reduction in inflammation in overweight postmenopausal women. Calcif Tissue Int 2009;84(4):257–65.

Villareal DT, Aguirre L, Gurney AB, et al. Aerobic or resistance exercise, or both, in dieting obese older adults. N Engl J Med 2017;376(20):1943–55.

von Stengel S, Keminier W, Engelke K, Kalender WA. Effects of whole body vibration on bone mineral density and falls: results of the randomized controlled ELVIS study with postmenopausal women. Osteoporos Int 2011;22(1):317–25.

Watson SL, Weeks BK, Weis LJ, Horan SA, Beck BR. Heavy resistance training is safe and improves bone, function, and stature in postmenopausal women with low to very low bone mass: novel early findings from the LIFTMOR trial. Osteoporos Int 2015;26(12):2889–94.

Watson SL, Weeks BK, Weis LJ, Harding AT, Horan SA, Beck BR. High-intensity resistance and impact training improves bone mineral density and physical function in postmenopausal women with osteopenia and osteoporosis: the LIFTMOR randomized controlled trial. J Bone Miner Res 2018;33(2):211–20.

Winters-Stone KM, Dobek J, Nail L, et al. Strength training stops bone loss and builds muscle in postmenopausal breast cancer survivors: a randomized, controlled trial. Breast Cancer Res Treat 2011;127(2):447–56.

Cheung AS, Pattison D, Bretherton I, et al. Cardiovascular risk and bone loss in men undergoing androgen deprivation therapy for non-metastatic prostate cancer: implementation of standardized management guidelines. Andrology 2013;1(4):583–9.