Comment on “e^+e^- annihilation into $J/\psi + J/\psi$”

K. Abe10, K. Abe43, R. Abe30, T. Abe44, I. Adachi10, Byoung Sup Ahn17, H. Aihara45, M. Akatsu23, Y. Asano50, T. Aso49, V. Aulchenko2, T. Aushev14, A. M. Bakich40, Y. Ban34, E. Banas28, W. Bartel6, A. Bay20, P. K. Behera51, A. Bondar2, A. Bozek28, M. Bračko21,15, J. Brodzicka28, T. E. Browder9, B. C. K. Casey9, P. Chang27, Y. Chao27, B. G. Cheon39, R. Chistov14, S.-K. Choi8, Y. Choi39, M. Danilov14, L. Y. Dong12, J. Dragic22, A. Drutskoy14, S. Eidem12, V. Eiges14, Y. Enari23, C. Fukunaga47, N. Gabyshev10, A. Garmash2,10, T. Gershon10, A. Gordon22, R. Guo25, F. Handa44, T. Hara32, Y. Harada30, N. C. Hastings22, H. Hayashii24, M. Hazumi10, E. M. Heenan22, I. Higuchi44, T. Higuchi45, T. Hojo32, T. Hokuue23, Y. Hoshi43, K. Hoshina48, S. R. Hou27, W.-S. Hou27, H.-C. Huang27, T. Iijima23, K. Inami23, A. Ishikawa23, R. Itoh10, M. Iwamoto3, H. Iwasaki10, Y. Iwasaki10, H. K. Jang38, J. Kaneko46, J. H. Kang54, J. S. Kang17, P. Kapusta28, N. Katayama10, H. Kawai3, Y. Kawakami23, N. Kawamura1, T. Kawasaki14, R.-S. Lu27, J. MacNaughton13, G. Majumder41, F. Mandl13, S. Matsumoto4, T. Matsumoto23,47, H. Miyake32, H. Miyata30, G. R. Moloney22, T. Mori4, T. Nagamine44, Y. Nagasaka11, E. Nakano31, M. Nakao10, J. W. Nam39, Z. Natkaniec28, K. Neichi43, S. Nishida18, O. Nitoh46, S. Noguchi24, T. Nozaki10, S. Ogawa42, F. Ohno46, T. Ohshima23, T. Okabe23, S. Okuno16, S. L. Olsen9, Y. Onuki30, W. Ostrowicz28, H. Ozaki10, P. Pakhlov14, H. Palka28, C. W. Park17, H. Park19, K. S. Park39, L. S. Peak40,
J.-P. Perroud20, M. Peters9, L. E. Piilonen52, N. Root2, H. Sagawa10, S. Saitoh10, Y. Sakai10, M. Satapathy51, A. Satpathy10,5, O. Schneider20, S. Schrenk5, C. Schwanda10,13, S. Semenov14, K. Senyo23, R. Seuster9, M. E. Sevior22, H. Shibuya42, V. Sidorov2, J. B. Singh33, S. Stanić50,†, M. Starić15, A. Sugi23, A. Sugiyama23, K. Sumisawa10, T. Sumiyoshi10,47, K. Suzuki10, S. Suzuki53, S. K. Swain9, T. Takahashi31, F. Takasaki10, K. Tamai10, N. Tamura30, M. Tanaka10, G. N. Taylor22, Y. Teramoto31, S. Tokuda23, T. Tomura45, S. N. Tovey22, W. Trischuk35,*, T. Tsuboyama10, T. Tsukamoto10, S. Uehara10, K. Ueno27, Y. Unno3, S. Uno10, S. E. Vahsen35, G. Varner9, K. E. Varvell40, C. C. Wang27, C. H. Wang26, J. G. Wang52, M.-Z. Wang27, Y. Watanabe46, E. Won17, B. D. Yabsley52, Y. Yamada10, A. Yamaguchi44, Y. Yamashita29, M. Yamauchi10, H. Yanai30, J. Yashima10, Y. Yuan12, Y. Yusa44, Z. P. Zhang37, V. Zhilich2, and D. Žontar50

(Belle Collaboration)

1Aomori University, Aomori
2Budker Institute of Nuclear Physics, Novosibirsk
3Chiba University, Chiba
4Chuo University, Tokyo
5University of Cincinnati, Cincinnati OH
6Deutsches Elektronen–Synchrotron, Hamburg
7University of Frankfurt, Frankfurt
8Gyeongsang National University, Chinju
9University of Hawaii, Honolulu HI
10High Energy Accelerator Research Organization (KEK), Tsukuba
11Hiroshima Institute of Technology, Hiroshima
12Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
13Institute of High Energy Physics, Vienna
14Institute for Theoretical and Experimental Physics, Moscow
15J. Stefan Institute, Ljubljana
16Kanagawa University, Yokohama
17Korea University, Seoul
18Kyoto University, Kyoto
19Kyungpook National University, Taegu
20Institut de Physique des Hautes Énergies, Université de Lausanne, Lausanne
21University of Maribor, Maribor
22University of Melbourne, Victoria
23Nagoya University, Nagoya
24Nara Women’s University, Nara
25National Kaohsiung Normal University, Kaohsiung
26National Lien-Ho Institute of Technology, Miao Li
27National Taiwan University, Taipei
28H. Niewodniczanski Institute of Nuclear Physics, Krakow
29 Nihon Dental College, Niigata
30 Niigata University, Niigata
31 Osaka City University, Osaka
32 Osaka University, Osaka
33 Panjab University, Chandigarh
34 Peking University, Beijing
35 Princeton University, Princeton NJ
36 RIKEN BNL Research Center, Brookhaven NY
37 University of Science and Technology of China, Hefei
38 Seoul National University, Seoul
39 Sungkyunkwan University, Suwon
40 University of Sydney, Sydney NSW
41 Tata Institute of Fundamental Research, Bombay
42 Toho University, Funabashi
43 Tohoku Gakuin University, Tagajo
44 Tohoku University, Sendai
45 University of Tokyo, Tokyo
46 Tokyo Institute of Technology, Tokyo
47 Tokyo Metropolitan University, Tokyo
48 Tokyo University of Agriculture and Technology, Tokyo
49 Toyama National College of Maritime Technology, Toyama
50 University of Tsukuba, Tsukuba
51 Utkal University, Bhubaneswar
52 Virginia Polytechnic Institute and State University, Blacksburg VA
53 Yokkaichi University, Yokkaichi
54 Yonsei University, Seoul

* on leave from University of Toronto, Toronto ON
† on leave from Nova Gorica Polytechnic, Slovenia
The first observations of annihilation processes of the type $e^+e^- \rightarrow J/\psi \eta_c$ and $J/\psi (c\bar{c})_{\text{non-res}}$ were recently reported by Belle [1]. The measured cross-sections for both processes are an order-of-magnitude larger than theoretical predictions based on non-relativistic QCD (NRQCD) [2, 3]. In an attempt to explain at least part of this discrepancy, the authors of Ref. [4] suggest that processes proceeding via two virtual photons may be important. In particular, if the two-photon-mediated process $e^+e^- \rightarrow J/\psi J/\psi$ has a significant cross-section, the observed $e^+e^- \rightarrow J/\psi \eta_c$ signal, which is inferred from the η_c peak in the recoil mass spectrum for the reconstructed J/ψ in inclusive $e^+e^- \rightarrow J/\psi X$ events, might also include double J/ψ events and, thus, produce an inflated cross-section measurement.

e^+e^- annihilation to $J/\psi J/\psi$ via a single virtual photon is forbidden by charge conjugation symmetry and was ignored in our published analysis. Here, using a data sample of 101.8 fb$^{-1}$ collected by the Belle detector and the analysis procedure described in Ref. [1], we evaluate this possibility.

Since the η_c and J/ψ have similar masses ($M_{J/\psi} - M_{\eta_c} \simeq 116$ MeV/c2), it is important to check for any momentum scale bias that may shift the recoil mass values. We use $e^+e^- \rightarrow \psi(2S)\gamma$, $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$ events to calibrate and verify the recoil mass scale. We find that any shift in the recoil mass is less than 3 MeV/c2.

The spectrum of recoil masses against the J/ψ is presented in Fig. 1: a clear peak is observed around the η_c nominal mass, and a smaller peak is seen around the χ_{c0} nominal mass; the large peak at ~ 3.63 GeV/c2 is interpreted as the $\eta_c(2S)$. We performed a fit to this spectrum that includes all of the known narrow charmonium states. In this fit, the mass positions for the η_c, χ_{c0} and $\eta_c(2S)$ are treated as free parameters; those for the J/ψ, χ_{c1}, χ_{c2} and $\psi(2S)$ are fixed at their nominal values. The expected line-shapes for these peaks are determined from a Monte Carlo simulation as described in our previous paper [1], the background is parametrized by a second order polynomial function, and only the region below the open charm threshold ($M_{\text{recoil}} < 3.7$ GeV/c2) is included in the fit. The fit results, listed in Table I, give negative yields for the J/ψ, χ_{c1}, χ_{c2} and $\psi(2S)$; the solid line in Fig. 1 is the result of a fit with all these contributions fixed at zero. The dotted line in the figure corresponds to the case where the contributions of the J/ψ, χ_{c1}, χ_{c2} and $\psi(2S)$ are set at their 90% confidence level upper limit values. The dashed line is the background function. To set a conservative upper limit for $e^+e^- \rightarrow J/\psi J/\psi$, we use assumptions for the production and helicity angle distributions that correspond to the lowest detection efficiency.

In summary, using a larger data set we confirm our published observation of $e^+e^- \rightarrow J/\psi \eta_c$ and find no evidence for the process $e^+e^- \rightarrow J/\psi J/\psi$. We set an upper limit for $\sigma(e^+e^- \rightarrow J/\psi J/\psi) \times B(J/\psi \rightarrow > 2 \text{ charged})$ of less than 0.008 pb at the 90% CL.

Although the limit presented here is not inconsistent with the prediction for the $J/\psi J/\psi$ production rate given in Ref. [4], the suggestion that a significant fraction of the inferred $J/\psi \eta_c$ signal is actually $J/\psi J/\psi$ is ruled out. Therefore, the discrepancy between the Belle result and the NRQCD prediction remains.
Fig. 1: Distribution of masses recoiling against the reconstructed J/ψ in inclusive $e^+e^- \rightarrow J/\psi X$ events. The curves are explained in the text.

Table I: Summary of the signal yields, charmonium masses and significances for $e^+e^- \rightarrow J/\psi (c\bar{c})_{\text{res}}$.

$(c\bar{c})_{\text{res}}$ state	N	M [GeV/c2]	σ
η_c	175 ± 23	2.972 ± 0.007	9.9
J/ψ	-9 ± 17	fixed	—
χ_{c0}	61 ± 21	3.409 ± 0.010	2.9
$\chi_{c1} + \chi_{c2}$	-15 ± 19	fixed	—
$\eta_c(2S)$	107 ± 24	3.630 ± 0.008	4.4
$\psi(2S)$	-38 ± 21	fixed	—

[1] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 89, 142001 (2002).
[2] E. Braaten and J. Lee, Phys. Rev. D 67, 054007 (2003); K.-Y. Liu, Z.-G. He, and K.-T. Chao, Phys. Lett. B 557, 45–54 (2003); K. Hagiwara, E. Kou, and C.-F. Qiao, hep-ph/0305102.
[3] P. Cho and A. K. Leibovich, Phys. Rev. D 53, 150 (1996); 53, 6203 (1996); S. Baek, J. Lee, H. S. Song, and P. Ko, J. Kor. Phys. Soc. 33, 97 (1998); F. Yuan, C.-F. Qiao, and K.-T. Chao, Phys. Rev. D 56, 321 (1997); V. V. Kiselev, A. K. Likhoded, and M. V. Shevlyagin, Phys. Lett. B 332, 411 (1994).
[4] G.T. Bodwin, J. Lee, and E. Braaten, Phys. Rev. Lett. 90, 162001 (2003).