Main Goals

1. It’s easy to implement and use!

2. Many possible loss functions
 What’s best for MT?
(Alternative) Discriminative Training

• Many new methods
 – 5 at this conference alone
 (Cherry & Foster, Gimpel & Smith, Bazrafshan et al., Watanabe, Chung & Galley)

• Margin-based learning consistently effective
 – Not yet widespread
 • Complicated
 • Complex
 • Don’t know what to implement
Let’s Bridge the Gap

• Disconnect between machine learning and MT
 – Latent variables
 – Surrogate references
 • Gimpel & Smith, McAllester et al.

• Different methods in practice
 – k-best constraints (Watanabe)
 – Cutting plane (Chiang)
 • Require QP solver
Passive-Aggressive Update

• Crammer presents simple PA update instead
 – Performing dual coordinate descent

• Similar to stochastic subgradient descent
MIRA Training

require: Training set $T = (x_i, y_i)_{i=1}^T$, w, C

1: for $j \leftarrow 1$ to N do
2: for $i \leftarrow 1$ to T do
3: $\mathcal{Y}(x_i) \leftarrow \text{Decode}(x_i, w)$
4: $y^+ \leftarrow \text{FindOracle}(\mathcal{Y}(x_i))$
5: $y^- \leftarrow \text{FindPrediction}(\mathcal{Y}(x_i))$
6: margin $\leftarrow w^\top f(x_i, y^-) - w^\top f(x_i, y^+)$
7: cost \leftarrow BLEU$(y_i, y^+) -$ BLEU(y_i, y^-)
8: loss \leftarrow margin + cost
9: if loss > 0 then
10: $\delta \leftarrow \min \left(C, \frac{\text{loss}}{\|f(x_i, y^+) - f(x_i, y^-)\|^2} \right)$
11: $w \leftarrow w + \delta (f(x_i, y^+) - f(x_i, y^-))$
12: end if
13: end for
14: end for
15: return w
MIRA Training

Require: : Training set $T = (x_i, y_i)_{i=1}^T$, w, C

1: for $j \leftarrow 1$ to N do
2: for $i \leftarrow 1$ to T do
3: \[\mathcal{Y}(x_i) \leftarrow \text{Decode}(x_i, w) \]
4: \[y^+ \leftarrow \text{FindOracle}(\mathcal{Y}(x_i)) \]
5: \[y^- \leftarrow \text{FindPrediction}(\mathcal{Y}(x_i)) \]
6: margin $\leftarrow w^\top f(x_i, y^-) - w^\top f(x_i, y^+)$
7: cost $\leftarrow \text{BLEU}(y_i, y^+) - \text{BLEU}(y_i, y^-)$
8: loss \leftarrow margin + cost
9: if loss > 0 then
10: \[\delta \leftarrow \min \left(C, \frac{\text{loss}}{\| f(x_i, y^+) - f(x_i, y^-) \|^2} \right) \]
11: \[w \leftarrow w + \delta (f(x_i, y^+) - f(x_i, y^-)) \]
12: end if
13: end for
14: end for
15: return w
MIRA Training

Require: : Training set $T = (x_i, y_i)_{i=1}^T$, w, C

1: for $j \leftarrow 1$ to N do
2: for $i \leftarrow 1$ to T do
3: $\mathcal{V}(x_i) \leftarrow \text{Decode}(x_i, w)$
4: $y^+ \leftarrow \text{FindOracle}(\mathcal{V}(x_i))$
5: $y^- \leftarrow \text{FindPrediction}(\mathcal{V}(x_i))$
6: margin $\leftarrow w^T f(x_i, y^-) - w^T f(x_i, y^+)$
7: cost $\leftarrow \text{BLEU}(y_i, y^+) - \text{BLEU}(y_i, y^-)$
8: loss $= \text{margin} + \text{cost}$
9: if loss > 0 then
10: $\delta \leftarrow \min \left(C, \frac{\text{loss}}{\|f(x_i, y^+) - f(x_i, y^-)\|^2}\right)$
11: $w \leftarrow w + \delta (f(x_i, y^+) - f(x_i, y^-))$
12: end if
13: end for
14: end for
15: return w
MIRA Training

Require: \(\text{Training set } T = \{(x_i, y_i)\}_{i=1}^T, w, C \)

1: \textbf{for } j \leftarrow 1 \text{ to } N \textbf{ do}
2: \hspace{1em} \textbf{for } i \leftarrow 1 \text{ to } T \textbf{ do}
3: \hspace{2em} \mathcal{Y}(x_i) \leftarrow \text{Decode}(x_i, w)
4: \hspace{2em} y^+ \leftarrow \text{FindOracle}(\mathcal{Y}(x_i))
5: \hspace{2em} y^- \leftarrow \text{FindPrediction}(\mathcal{Y}(x_i))
6: \hspace{2em} \text{margin} \leftarrow w^\top f(x_i, y^-) - w^\top f(x_i, y^+)
7: \hspace{2em} \text{cost} \leftarrow \text{BLEU}(y_i, y^+) - \text{BLEU}(y_i, y^-)
8: \hspace{2em} \text{loss} = \text{margin} + \text{cost}
9: \hspace{2em} \textbf{if } \text{loss} > 0 \textbf{ then}
10: \hspace{3em} \delta \leftarrow \min \left(C, \frac{\text{loss}}{\|f(x_i, y^+) - f(x_i, y^-)\|^2} \right)
11: \hspace{3em} w \leftarrow w + \delta (f(x_i, y^+) - f(x_i, y^-))
12: \hspace{2em} \textbf{end if}
13: \hspace{1em} \textbf{end for}
14: \textbf{end for}
15: \textbf{return } w
MIRA Training

Require: Training set $T = (x_i, y_i)_{i=1}^{T}$, w, C

1: **for** $j \leftarrow 1$ to N **do**

2: **for** $i \leftarrow 1$ to T **do**

3: $Y(x_i) \leftarrow$Decode(x_i, w)

4: $y^+ \leftarrow$FindOracle($Y(x_i)$)

5: $y^- \leftarrow$FindPrediction($Y(x_i)$)

6: margin $\leftarrow w^T f(x_i, y^-) - w^T f(x_i, y^+)$

7: cost \leftarrow BLEU(y_i, y^+) $-$ BLEU(y_i, y^-)

8: loss = margin + cost

9: **if** loss $>$ 0 **then**

10: $\delta \leftarrow \min \left(C, \frac{\text{loss}}{\|f(x_i, y^+) - f(x_i, y^-)\|^2} \right)$

11: $w \leftarrow w + \delta (f(x_i, y^+) - f(x_i, y^-))$

12: **end if**

13: **end for**

14: **end for**

15: **return** w
MIRA Training

Require: Training set $T = (x_i, y_i)_{i=1}^T$, w, C

1: for $j \leftarrow 1$ to N do
2: for $i \leftarrow 1$ to T do
3: $\mathcal{Y}(x_i) \leftarrow$Decode($x_i, w$)
4: $y^+ \leftarrow$ FindOracle($\mathcal{Y}(x_i)$)
5: $y^- \leftarrow$ FindPrediction($\mathcal{Y}(x_i)$)
6: margin $\leftarrow w^\top f(x_i, y^-) - w^\top f(x_i, y^+)$
7: cost \leftarrow BLEU(y_i, y^+) $-$ BLEU(y_i, y^-)
8: loss $= \text{margin} + \text{cost}$
9: if loss > 0 then
10: $\delta \leftarrow \min \left(C, \frac{\text{loss}}{\|f(x_i, y^+) - f(x_i, y^-)\|^2} \right)$
11: $w \leftarrow w + \delta (f(x_i, y^+) - f(x_i, y^-))$
12: end if
13: end for
14: end for
15: return w
MIRA Training

Require: Training set \(T = (x_i, y_i)_{i=1}^{T}, w, C \)

1: for \(j \leftarrow 1 \) to \(N \) do
2: for \(i \leftarrow 1 \) to \(T \) do
3: \(\mathcal{Y}(x_i) \leftarrow \text{Decode}(x_i, w) \)
4: \(y^+ \leftarrow \text{FindOracle}(\mathcal{Y}(x_i)) \)
5: \(y^- \leftarrow \text{FindPrediction}(\mathcal{Y}(x_i)) \)
6: margin \leftarrow w^\top f(x_i, y^-) - w^\top f(x_i, y^+) \)
7: cost \leftarrow \text{BLEU}(y_i, y^+) - \text{BLEU}(y_i, y^-) \)
8: loss = margin + cost
9: if loss > 0 then
10: \(\delta \leftarrow \min \left(C, \frac{\text{loss}}{\| f(x_i, y^+) - f(x_i, y^-) \|^2} \right) \)
11: \(w \leftarrow w + \delta (f(x_i, y^+) - f(x_i, y^-)) \)
12: end if
13: end for
14: end for
15: return \(w \)
Hypothesis Selection

-cost

score
Oracle Hypothesis Selection

$$\hat{y} = \arg\max_{y \in \mathcal{Y}} (x_i) - \text{cost}(y_i, y)$$

max-BLEU

-cost

score
Oracle Hypothesis Selection

\[y^+ \leftarrow \arg\max_{y \in \mathcal{Y}(x_i)} -\text{cost}(y_i, y) \]
Oracle Hypothesis Selection

\[y^+ \leftarrow \arg \max_{y \in \mathcal{Y}(x_i)} -\text{cost}(y_i, y) \]

\[y^+ \leftarrow \arg \max_{y \in \mathcal{Y}(x_i)} w^T f(x_i, y) - \text{cost}(y_i, y) \]

Cost-diminished
Candidate Hypothesis Selection

\[y^+ \leftarrow \arg \max_{y \in Y(x_i)} -\text{cost}(y_i, y) \]

\[y^+ \leftarrow \arg \max_{y \in Y(x_i)} w^T f(x_i, y) - \\text{cost}(y_i, y) \]

\[y^- \leftarrow \arg \max_{y \in Y(x_i)} \text{cost}(y_i, y) \]

min-BLEU
Candidate Hypothesis Selection

\[y^+ \leftarrow \arg\max_{y \in Y(x_i)} -\text{cost}(y_i, y) \]

\[y^+ \leftarrow \arg\max_{y \in Y(x_i)} w^T f(x_i, y) - \text{cost}(y_i, y) \]

\[y^- \leftarrow \arg\max_{y \in Y(x_i)} w^T f(x_i, y) + \text{cost}(y_i, y) \]
Candidate Hypothesis Selection

\[y^+ \leftarrow \arg \max_{y \in \mathcal{Y}(x_i)} -\text{cost}(y_i, y) \]

\[y^+ \leftarrow \arg \max_{y \in \mathcal{Y}(x_i)} w^T f(x_i, y) - \text{cost}(y_i, y) \]

\[y^- \leftarrow \arg \max_{y \in \mathcal{Y}(x_i)} w^T f(x_i, y) \]

\[y^- \leftarrow \arg \max_{y \in \mathcal{Y}(x_i)} w^T f(x_i, y) + \text{cost}(y_i, y) \]

Prediction-based
Ramp Losses

- Parameterized by γ and β

\[
\ell_r = - \max_{y^+ \in \mathcal{Y}(x_i)} \left(\gamma^+ w^\top f(x_i, y^+) - \beta^+ \text{cost}(y_i, y^+) \right) \\
+ \max_{y^- \in \mathcal{Y}(x_i)} \left(\gamma^- w^\top f(x_i, y^-) + \beta^- \text{cost}(y_i, y^-) \right)
\]
Experimental Setup

• Fr-En and Cs-En Translation
 – NT08 tune, NT09 and NT10 test
• Using Constrained data
• Hierarchical PBMT in cdec
• Everything constant except choice of oracle and candidate
Cs-En Results

	C	M-C
NT09	16.4	18.3

	C	M-C
NT10	17	19.3
Cs-En Results

	C	M-C
NT09	16.4	18.3
NT10	17	19.3
Cs-En Results

- C: NT09
 - 16.4

- M-C: NT09
 - 18.3

- C: NT10
 - 17

- M-C: NT10
 - 19.3
Cs-En Results

C
16.4
M-C
18.3
NT09

C
17
M-C
19.3
NT10
Cs-En Results

	C	M-C
NT09	16.4	18.3

	C	M-C
NT10	17	19.3
Cs-En Results

	NT09	NT10
C	16.4	17
M-C	18.3	19.3

- C: Control
- M-C: Modified Contrast
Cs-En Results

C
M-C
NT09

16.4
18.3

C
M-C
NT10

17
19.3
Cs-En Results

	C	M-C		C	M-C
NT09	16.4	18.5	NT10	17	19.1
	18.3	16		19.3	17.5
Cs-En Results

	NT09	NT10
C	16.4	17
M-C	18.5	19.1
M+C	18.3	18.4
	18.7	19.3
	16	17.5
	18.7	19.6

Legend:
- M
- C
- M+C
Fr-En Results

Min/Max Cost

VS.

M±C
(Hope/Fear)
Sparse Lexical Feature Set

• Word Pair
 – \((e_i, f_j)\)

• Insertion for unaligned target word
 – \((e_i, f_j), (e_i, f_{j+1}), \ldots\)

• Target Bigram
 – \((e_i, e_{i+1})\)

• 650k features for cs-en

• 1.1M features for fr-en
Expanded Feature Results

- NT09
- NT10

Fr-En

Base C/C
C/C

Cs-En

- NT09
- NT10
Expanded Feature Results

![Bar Chart Image]

- NT09
- NT10
- Fr-En
- NT09
- Cs-En
- NT10

Legend:
- Base C/C
- Based M±C
- C/C
- M±C
Cs-En Learning Curve

BLEU

Iteration
Cs-En Learning Curve
Cs-En Learning Curve

M-C Oracle (Hope) Min Cost Oracle
Fr-En Learning Curve
Fr-En Learning Curve
Fr-En Learning Curve
Conclusion

• Presented simple margin-based training algorithm
 – Easy to implement
 – Good performance

• Explored family of loss functions for MT
 – M±C and C/C have comparable performance
 – M±C loss is more stable

• Available in a decoder near you
Thank You!