Detection of *Bacillus anthracis* and *Bacillus anthracis*-like spores in soil from state of Rio de Janeiro, Brazil

Jacqueline RS Salgado1,*, Leon Rabinovitch2, Maria de Fátima dos S Gomes3, Regina Celia da SB Alli4, Marcelo Martins Werneck5, Rafael B Rodrigues6, Renata C Picão4, Fernanda Baptista de Oliveira Luiz2, Adriana M Vivoni2

1Exército Brasileiro, Instituto de Defesa Química, Biológica, Radiológica e Nuclear, Laboratório de Defesa Biológica, Rio de Janeiro, RJ, Brasil
2Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Fisiologia Bacteriana/Laboratório de Referência Nacional para Carbúnculo, Rio de Janeiro, RJ, Brasil
3Universidade Federal do Rio de Janeiro, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Laboratório de Instrumentação e Fotônica, Rio de Janeiro, RJ, Brasil
4Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Gões, Rio de Janeiro, RJ, Brasil

BACKGROUND *Bacillus anthracis* is the aetiologic agent of anthrax, a re-emerging, septicaemic, haemorrhagic and lethal disease that affects humans, domestic ruminants and wildlife. Plasmids pXO1 and pXO2 are attributes that confer pathogenicity to *B. anthracis* strains. This bacterium was used as biological weapon in the World Wars and in the biological attack in the United States of America at 2001. *B. anthracis* is classified as a Tier 1 bioterrorism agent by the Centers for Diseases Control and Prevention. Anthrax is recognised as a re-emerging disease. Several studies concerning the dynamics of *B. anthracis* cycle in soil revealed that nonpathogenic *B. anthracis* strains due to lack of pXO2 plasmid are commonly found in some types of soil.

OBJECTIVES This study aimed isolation and identification of *B. anthracis* spores in soil samples of the state of Rio de Janeiro, Brazil.

METHODS Phenotypic and genotypic approaches were used to identify isolates including MALDI-TOF/MS, motility test, susceptibility to gamma phage and penicillin, survey for pag and cap genes as surrogates of pXO1 and pXO2 plasmids, respectively, and sequencing of 16SrRNA-encoding gene. Physicochemical analysis of the soil samples were carried out to describe soil characteristics.

FINDINGS We observed the presence of one *B. anthracis* pXO1+ and pXO2- isolated from clay loam soil; one *B. anthracis*-like strain pXO1+ and pXO2-isolated from loamy sand; and 10 *Bacillus* spp. strains sensitive to phage-gamma that need better characterisation to define which their species were recovered from loamy sand.

MAIN CONCLUSIONS This work showed promising results and it was the first study to report results from an active surveillance for *B. anthracis* in Brazil.

Key words: spores – *Bacillus anthracis*– *Bacillus anthracis*-like – anthrax and soil

Bacillus anthracis is a non-motile, non-haemolytic, aerobic Gram-positive endospore-forming rod. It belongs to the *B. cereus* group, which comprises at least eight closely related species: *B. anthracis*, *B. cereus*, *B. thuringiensis*, *B. mycoides*, *B. pseudomycoides*, *B. weihenstephanensis*, *B. cytotoxicus* and *B. Toynemis*.(1) *B. anthracis* pathogenicity is mainly due to its ability to produce toxins and capsule, which are encoded by pXO1 and pXO2 plasmids, respectively. It is the aetiologic agent of anthrax, a zoonotic, septic, haemorrhagic and lethal disease that affects mostly domestic and wild ruminants.(2) *B. anthracis* is ubiquitous in nature and the spores are resistant to drying, radiation and disinfectants.

B. anthracis was used in bioweapon programs of many countries, such as Germany during World War I, Japan in World War II, the former Union of Soviet Socialist Republics (USSR) (1928-1992), United States of America (USA) (1941-1969), Iraq (1970-1991) and others. In addition, it was used in bioterrorist attacks perpetrated by Aum Shinrikyo (1995, Japan, no fatalities) and the Amerithrax (2001, USA, five people killed and 22 infected). It is classified by the Centers for Disease Control and Prevention (CDC) as a Tier 1 biological agent.(3,4) It can be isolated from environmental sources such as soil and water, and from food products. *B. anthracis* spores can remain viable for years in soils with pH between 6 and 8.5, especially at the deeper layers. Changes such as plowing or drainage, however, carry them to the surface. Outbreaks of anthrax are frequent in tropical and subtropical countries with high annual rainfalls and are common after major changes in weather, such as heavy rains after a long period of drought, or a dry summer after heavy rains, always in temperatures above 15°C. Soil conditions such as pH, salts, organic matter, temperature, humidity and microbial burden vary according climatic seasons.(5) Regardless of how *B. anthracis* spores reach the ground, it is generally accepted that

doi: 10.1590/0074-02760200370

Financial support: IDQBRN, COPPE/UFPR, LFBIO/IOC/FIOCRUZ, IMPC/UFPR. All institutions had the material to carry out this research.

* Corresponding author: capjrsoares@gmail.com

https://orcid.org/0000-0002-4664-9222

Received 12 July 2020

Accepted 14 October 2020
some soils are more likely to harbour spores than others. *B. anthracis* is most frequently found in clayey soils rich in organic matter and Ca\(^2+\), with pH above 6.0 and temperatures above 15.5°C.(6,7)

According to Schild et al.,\(^8\) the disease occurs all over South America where Brazil share borders (total length of 16,885.7 km) with 10 out of 12 countries. From 2006 until July 2019, Argentina (borders with Rio Grande do Sul, Santa Catarina e Paraná states) reported 144 anthrax outbreaks, Uruguay (borders with Rio Grande do Sul state) 63 outbreaks, Paraguay (borders with Paraná e Mato Grosso do Sul states) 54 outbreaks, Peru (borders with Acre e Amazonas states) 18 outbreaks, Bolivia (borders with Mato Grosso e Rondônia states) 38 outbreaks and Colombia (border with Amazonas state) 11 outbreaks.\(^9\) Brazil’s vast border extension can make it vulnerable to the clandestine entry of contaminated animals.

In Brazil, anthrax is on the list of diseases that requires animal health protection measures since 1934, requiring the sacrifice of affected animals and mandatory notification. According to the Ministry of Agriculture, Livestock and Supply, the last reported animal case occurred in 2016, in the state of Rio de Janeiro.\(^10\) Regarding to human disease, nine cases of cutaneous anthrax were reported, between 1930-1932, all due to contact with contaminated animals.\(^11\)

Since 1928, anthrax in cattle and goats mostly occurs in three distinct areas of Brazil: south and west region of Rio Grande do Sul, where some places were called “cursed fields”; Paraíba river valley in São Paulo and Minas Gerais states; and in the northeast region. Among 72 outbreaks of sudden death in cattle that occurred between 2000 and 2014 in Rio Grande do Sul, seven were identified as caused by *B. anthracis*.\(^12\) Ten outbreaks of anthrax were confirmed from January 1978 to March 2006 in Brazil occurred in cattle, most non-vaccinated, in the southeastern and southern region of Rio Grande do Sul, in municipalities on the Uruguay border. Lack of vaccination may have been an adjuvant for the occurrence of the disease after exposure to a primary source, such as soil from an old anthrax grave.\(^9\)

Several studies on the dynamics of *B. anthracis* cycle in soil have been carried out.\(^13\) However, there is no data available about the occurrence of *B. anthracis* in soil in Brazil and very little information about Brazilian strains. The aim of this research was to survey *B. anthracis* in soil samples from Brazil, correlated or not with anthrax cases.

MATERIALS AND METHODS

Soil samples – Soil samples were collected at two different geographical sites in Rio de Janeiro state: in Barra de Guaratiba [three soil samples, two from Fazenda Modelo and one from Army Technology Center (CTEx)], sites not correlated with anthrax cases and in Barra do Piraí, location of the last case of anthrax reported in Brazil, in 2016, a cattle burier site. Table I shows geographical coordinates of sampling.

Soil samples (20 g) were collected with sterile stainless-steel spatulas at 2 to 5 cm depth. Sampling areas with 50 m\(^2\) were delimited and subsamples were collected at the angles (A, B, C and D) and at the central point (E), totalling 100 g in each collection site (Figure). These samples were stored at 4°C until processing.

Physicochemical analysis of soil samples – Physicochemical characterisation of soil samples was performed at the Analytical Centre Laboratory of the Federal Rural University of Rio de Janeiro (UFRRJ). The main features for *B. anthracis* spore persistence in soil, such as granulometry, Ca\(^2+\) concentration, pH and organic matter content were analysed. Values suggested by the Brazilian Agricultural Research Corporation (EMBRAPA) and the Commission of Soil Fertility of Minas Gerais State (CFSEMG) were used for comparison.\(^14\,15\) The definition of soils textural class was based on the Triangle Diagram from the United States Department of Agriculture (USDA).\(^16\)

Soil processing – All samples were submitted to heat treatment at 70°C for 15 min in water bath. Serial dilutions were performed in SATAMP up to 10\(^{-7}\). From each serial dilution, 100 µL were transferred and plated with Digralski loops in the culture media and incubated at 33°C for 24 h. Culture media used in this study were: nutrient agar (NA) (Difco\(^\text{TM}\)), NA with 0.25 M sodium acetate (NA+) (Difco\(^\text{TM}\)), Columbia agar base (Difco\(^\text{TM}\)) with 5% of sheep blood (CBA), CBA with 0.25 M sodium acetate (CBA+), CBA with 0.5% sodium bicarbonate (CBA++) and PLET agar (Sigma-Aldrich – 15 g/L agar, 30,000 U/L polymyxin b, 300,000 U/L lysozyme, 300 mg/L EDTA and 40 mg/L thallium acetate). Samples

Code\(^a\)	Location	Geographic coordinates (latitude/longitude)\(^b\)
BP1	Barra do Piraí	22.41433/43.56128
BP2	Barra do Piraí	22.4129/43.56114
BP3	Barra do Piraí	22.41440/43.56129
CT	Barra de Guaratiba	23.030097/43.575808
CA	Barra de Guaratiba	22.993756/44.590284
CB	Barra de Guaratiba	22.994050/43.592963

\(^a\)BP1 – cattle burier site; \(^b\)coordinates obtained from Google Maps\(^8\). BP2: site of death of a contaminated bovine (24 h); BP3: grass covered soil; CA: corral A soil; CB: corral B soil; CT: Army Technology Center (CTEx) soil.
were homogenised with manual rotational motion for 30 min. Subsequently, 1 g of soil was transferred to 100 mL of sterile buffered saline (0.2 M potassium hydrogen phosphate – SATAMP – pH 7.2) and homogenised at 33°C for 30 min at 150 rpm (Shaker Innova 4080, New Brunswick Scientific Co., USA).

Colonies presenting characteristic *B. anthracis* morphology were selected and submitted to microscopic examination using Gram staining. Gram-positive bacteria presented suggestive characteristics of *B. anthracis* (“box-shaped” cells with 1-1.5 μm width and 4-10 μm length and subterminal, cylindrical and non-deforming spores) were further characterised as described below.

Identification of isolates suspected of *B. anthracis* – Isolates presenting *B. anthracis* characteristic colonies and cell morphology were further evaluated for gamma phage and penicillin susceptibility, motility and presence of *pag* and *cap* genes by specific PCR and MALDI-TOF/MS (Microflex LT mass spectrometer, Bruker, USA) as described below.

B. anthracis (CCGB 1861) was used as positive control and *B. cereus* (CCGB 0406 LFB-Fiocruz 406) as negative control. Both strains were provided by Collection of Genus Bacillus and Related Genera-CCGB-Fiocruz.

The strains received a numerial code for identification (Table II). The results of the 52 isolates are shown in Table II.

Motility test – To evaluate motility a 1 µL bacterial loop of each isolate was inoculated in 5 mL of nutrient broth with 0.5% of D- (+)-glucose and incubated in anaerobic conditions at 33°C for 20 h. Motility was observed on a fresh exam of broth culture by optical microscopy (x1000) (NiKon, Japan).

Susceptibility to gamma phage and penicillin – For the gamma phage susceptibility assay, 1 µL of 7.9 × 10^6 PFU/mL gamma phage suspension [provided by Public Health Agency (HPA), Porton Down, England] was used. For the penicillin susceptibility test, 10 U.I. Sensibioscidic (CECON, Brazil) were used. Samples grown in CBA were inoculated in nutrient broth and incubated at 33°C for 24 h. Bacterial suspensions were inoculated into CBA plates using sterile swab. After the inoculation, penicillin disks and a 10-µL drop of gamma phage suspension were placed on the surface and plates were incubated at 37°C for 24 h in aerobic conditions. Absence of bacterial growth as lysis plates and inhibition zones around the penicillin disk of any size were considered as positive results.

Microbial identification by MALDI-TOF/MS – Mass spectra were acquired using a Microflex LT mass spectrometer and results were analysed using Biotype software version 3.1 (Bruker Daltonics, USA) containing a bioterrorism biological agent library, including 23 viruses, 116 bacterial species, 191 eukaryotes and 685 ribosomal proteins as reference. Spectra were processed by Biotyper software in standard operating mode, which performs the research in its reference library in order to get the best match for the sample. Results were scored ranging from 0 to 3.0. Scores below 1.7 were considered unreliable, those between 1.7 and 2.0 were considered possible indicator of genus, those between 2.0 and 2.3 were considered reliable for genus and possible for species identification and those above 2.3 were considered reliable for identification at the species level.

Evaluation of *pag* and *cap* genes in isolates suspected of *B. anthracis* – To survey the presence of *pag* and *cap* genes, a multiplex PCR was performed using Beyer 8 (TCC-TAA-CAC-TAA-CGA-AGT-CG), Beyer 5 (GAG-GTA-GAA-GGA-TAT-ACG-GT), 1234 (CTG-AGC-CAT-TAA-TGC-ATA-TG) and 1301 (TCC-CAC-TTA-CGT-AAT-CTG-AG) primers.(13,13)

DNA extraction was carried out using Instogene matrix kit (Bio-Rad, USA) according to the manufacturer’s instructions. PCR reactions were performed as previously described.(17,18) Briefly, multiplex PCR reactions for *pag* and *cap* were performed in 25 µL reaction volume containing 2.5 µL of template DNA, 2.5 µL of 10 × PCR Buffer, 0.5 µL of DNTP, 1.25 µL of a 10 µM solution of each primer, 14.38 µL of DNAse free water (Thermo Fisher Scientific, USA) and 0.0125 µL of Taq. For amplification, the following parameters were used: an initial denaturation step of 95°C for 5 min; 30 cycles of 95°C for 1 min; 55°C for 30 sec; 72°C for 30 sec; and a final extension step at 72°C for 5 min.19,20

PCR products were observed after 1% agarose gel electrophoresis containing ethidium bromide under ultraviolet light.

PCR amplicon sequencing – Isolates positive for *pag* genes were submitted to simplex PCR, as described above, with the *pag* primers. PCR products were purified using Exosap-IT Express (Thermo Fisher Scientific, USA), according to the manufacture instructions. Amplicons were sequenced in an ABI3730XL automated sequencer (Applied Biosystems). Forward and reverse sequences were aligned and edited using Seqman program (DNastar, Larsegene, version 7.0) and the data compared to the sequences deposited in GenBank with nBLAST.

16S rRNA gene sequencing – Isolates positive for *pag* genes and those susceptible to gamma phage were subjected to amplification and sequencing of the gene encoding the 16S rRNA, according to Watts et al.,11 with universal primers pA (5′-AGA-GTT-TGA-TCC-TGG-CTC-AG) and pB (5′-AAG-GAG-GTG-ATC-CAG-CCG-CA), 1831 (5′-GAG-GAA-CAC-CGA-TGG-CTG-AGG-C) and 1832 (5′-GCC-CCC-GTC-AAT-TCC-TAT-TTT-GAG-CA) primers.
Products were purified using Exosap-IT Express (Thermo Fisher Scientific, USA), according to the manufacture instructions and sequenced at the DNA Capillary sequencing Facility – SANGER (Fiocruz, Brazil) in an ABI3730XL automated sequencer (Applied Biosystems). Forward and reverse sequences were aligned and edited using BioEdit 7.2 software and data were compared to the sequences in GenBank using nBLAST. The sequences were submitted at GenBank.

RESULTS

Physicochemical characteristics of soil samples – The textural class of all samples was identified after particle size analysis. Samples BP1 and BP2 were classified as Loam: BP3 as Sandy Clay Loam, CA as Clay loam; CB and CT as Sandy Loam (Table III).

Regarding pH analysis, BP1 presented weak acidity while the other samples presented medium acidity.

Table II

Results of 52 isolates

Collect location	Culture media	Codes	Arrangement chains	Predominant sporangium	Predominant spore	Mobility test	MALDI-TOF^a	Susceptibility to penicillin	Susceptibility to gamma phage	Susceptibility to Haemolysis	PCR pXO1	PCR pXO2	
8	Short	St, Nd, Ci	Ws	-	1.636 Ni	R	S	A	-	-			
CBA	32 Long, isolated cells and in pairs	St, d, Ci	Ci	-	1.959 Ba	R	S	A	-	-			
40	Long	St, Nd, Ci	Ci	-	1.988 Ba	S	R	A	-	-			
CBA++	2 Short	Ws	Ci	-	1.949 Ba	R	S	A	-	-			
CT	3 Long	St, Nd, Ci	Ci	-	2.016 Ba	R	S	A	-	-			
CBA+	5 Long and short	St, Nd, Ci	Ws	-	2.078 Ba	R	R	A	-	-			
10	Long, isolated cells and in pairs	St, Nd, Ci	Ws	-	1.424 Ni	S	R	Beta	-	-			
NA	4 Long	St, Nd, Ci	Ci	-	2.065 Ba	R	S	A	-	-			
33	Short	St, Nd, Ci	Ws	-	1.948 Ba	S	R	Beta	-	-			
9	Long	St, Nd, Ci	Ci	-	2.000 Ba	R	R	A	-	-			
NA+	41 Long	St, Nd, Ci	Ci	+	1.856 Ba	R	R	Beta	+	-			
20	Long	Ws	Ws	-	1.891 Ba	S	R	Beta	-	-			
21	Long	St, Nd, Ci	Ws	-	1.906 Ba	R	R	A	-	-			
CT	22 Short	St, Nd, E	Ws	-	1.861 Ba	R	R	Alfa	-	-			
24	Short	St, Nd, Ci	Ws	-	1.922 Ba	S	R	A	-	-			
34	Short	St, Nd, Ci	Ci	-	1.608 Ni	S	R	A	-	-			
PLET	36 Short	St, Nd, Ci	Ws	-	1.817 Ba	R	S	A	-	-			
37	Isolated cells and in pairs	St, Nd, Ci	Ws	-	1.672 Ni	R	S	A	-	-			
31	Long in curve, isolated cells and in pairs	St, Nd, Ci	Ci	-	2.006 Ba	S	R	A	-	-			
39	Short	St, Nd, Ci	Ws	+	1.969 Ba	R	R	Alfa	-	-			
42	Short	St, Nd, Ci	Ci	-	1.700 Ba	S	R	A	-	-			
Collect location	Culture media	Codes	Arrangement chains	Predominant sporangium	Predominant sporule	Motility test	MALDI-TOF[®]	Susceptibility to penicillin	Susceptibility to gamma phage	Haemolysis	PCR pXO1	PCR pXO2	
-----------------	---------------	-------	--------------------	------------------------	---------------------	-------------	----------------	-----------------------------	-----------------------------	-----------	--------	--------	
CB	NA+	18	Long	St, Nd, E	Ws	+	2.068 Ba	S	R	A	-	-	
			6	Long, isolated cells and in pairs	St, Nd, Ci	Ws	-	1.832 Ba	R	S	A	-	-
			11	Long	St, Nd, Ci	Ci	+	1.435 NI	S	R	A	-	-
			17	Long, isolated cells and in pair	St, Nd, Ci	Ci	-	1.761 Ba	S	R	A	-	-
			38	Long and short	St, Nd, Ci	Ws	-	2.045 Ba	S	R	A	-	-
CA			7	Short, isolated cells in pairs, suggesting poles with right angles	St, Nd, Ci	Ci	-	1.941 Ba	R	S	A	-	-
			23	Long	St, Nd, Ci	Ci	-	1.365 NI	R	R	Alfa-	-	-
			25	Curved shorts, isolated cells and in pairs	St, Nd, Ci	Ws	-	1.903 Ba	S	R	A	-	-
			26	Curved shorts, isolated cells and in pair	St, Nd, Ci	Ci	-	1.729 Bp	S	R	A	-	-
			28	Shorts, isolated cells and in pair	St, Ld, Ci	Ci	-	1.988 Ba	S	R	A	-	-
			29	Short, isolated cells in pairs, suggesting a right-angle pole	St, Nd, Ci	Ci	-	2.315 Ba	S	S	A	+	-
			30	Short, isolated cells in pairs, suggesting a right-angle pole	St, Nd, Ci	Ws	-	1.944 Ba	R	S	A	-	-
CBA		51	Long	St, Nd, Ci	Ci	-	2.043 Bm	S	R	A	-	-	
		55	Long	St, Nd, Ci	E	-	1.73 Ba	S	R	Beta	-	-	
CBA+		66	Long, isolated cells in pairs, suggesting poles with right angles	St, Nd, Ci	Ci	+	1.518 NI	R	R	A	-	-	
		84	Long, isolated cells in pairs	St, Nd, Ci	Ci	-	1.634 NI	R	R	A	-	-	
		69	Short	St, Nd, Ci	Ws	-	1.417 NI	R	R	A	-	-	
		72	Short	St, Nd, Ci	Ws	+	2.022 Ba	R	R	Beta	-	-	
		73	Short, cells in pairs	St, Nd, E	Ws	-	1.563 NI	R	R	A	-	-	
BP1		81	Short, isolated cells and in pairs	St, Nd, Ci	E	+	2.212 Bi	R	R	A	-	-	
		82	Short, isolated cells and in pairs	St, Nd, Ci	Ci	-	1.619 NI	R	R	A	-	-	
		90	Short, isolated cells and in pairs	St, Nd, E	Ws	+	1.308 NI	R	R	A	-	-	
		93	Short, isolated cells and in pairs	St, Nd, Ci	Ws	+	1.204 NI	R	R	Beta	-	-	
		97	Short, isolated cells	St, Nd, Ci	Ci	+	1.428 NI	S	R	A	-	-	
Results for Ca\(^{2+}\) analysis showed that, according to the parameters suggested by EMBRAPA, BP1, CA and CB presented high Ca\(^{2+}\) content (> 3 cmol/dm\(^3\)), CT, medium Ca\(^{2+}\) content (1-3 cmol/dm\(^3\)) and BP2 and BP3 presented low Ca\(^{2+}\) content (< 1 cmol/dm\(^3\)).

Regarding organic matter content, samples BP1, CB and CT presented high levels (> 3.0 dag/kg or > 30.0 g/dm\(^3\)), while, BP2, BP3 and CA presented average levels (1.5-3.0 dag/kg or 15-30 g/dm\(^3\)), according to EMBRAPA.\(^{(15)}\)

Isolation and identification of B. anthracis suspected bacteria – Bacterial growth was observed after incubation in aerobiosis. After observation of macroscopic characteristics, 369 colonies were Gram stained and 52 isolates were selected based on morphological and staining characteristics, as shown in Table IV.

Collect location	Culture media	Codes	Arrangement status	Predominant sporangium	Predominant spore	Morotility test	MALDI-TOF \(^{a}\)	Susceptibility to penicillin	Susceptibility to gamma phage	Haemolysis	PCR pXO1	PCR pXO2
BP2	PLET	49	Short	St, Nd, Ci	Ci	-	2.073 Ba	R	R	Beta	-	-
		53	Short, isolated cells and in pairs	St, Nd, Ci	E	-	1.853 Ba	R	R	Beta	-	-
		59	Short	St, Nd, Ci	E	+	1.335 NI	R	R	Beta	-	-
		78	Short, cells in pairs	St, Nd, Ci	Ci	+	2.053 Ba	R	R	Beta	-	-
CBA+		52	Long and short	St, Nd, Ci	Ci	+	1.624 NI	R	R	Beta	-	-
BP3	PLET	85	Short, isolated cells and in pairs	St, Nd, Ci	Wa	+	1.591 NI	S	R	A	-	-
		95	Short, isolated cells	St, Nd, Ci	Ci	-	1.853 Pt	R	R	A	-	-
Vaccine	CBA	PC	Short, isolated cells suggesting a right-angle pole	St, Nd, Ci	Ci	+	2.4 Ba	S	S	A	+	-
BC	CBA	NC	Long	C, Nd, Ci	Ci	+	2.301 BC	R	R	Beta	-	-

\(^{a}\): higher score obtained when comparing the mass spectrum of the sample with the microbial species presented. A: absence; Ba: Bacillus anthracis; Bc: B. cereus; Bl: B. licheniformis; Bm: B. marisflavi; BP1: sample from where bovine was buried; BP2: sample from the place where the bovine was left after death (24 h); BP3: grass sample; Bs: B simplex; C: central; CA: (corral A’ soil ; CB: (corral B’ soil); CBA: Columbia agar base added 5% defibrinated ram blood; CBA+: Columbia agar base added 5% defibrinated sheep blood (0.25 M sodium acetate); CBA++: Columbia agar base added % sheep defibrinated blood with 0.5% sodium bicarbonate; Ci: cylindrical; CT: [Army Technology Center (CTEx) soil]; E: elliptical; Long: have more than six cells; NA: nutrient agar medium without containing NaCl; NA+: nutrient agar medium without containing NaCl and 0.25 M sodium acetate; NC: negative control; Nd: no deformans; PC: positive control; PLET: agar (Sigma-Aldrich – 15 g/L agar, 30,000 U/L polymyxin b, 300,000 U/L lysozyme, 300 mg/L EDTA and 40 mg/L thallium acetate); Pt: Paenibacillus thiaminolyticus; R: resistant; S: susceptibility; SD: slightly deforming; Se: without sporangia; Short: have up to sex cells; St: subterminal; Ws: without spore.

Results for Ca\(^{2+}\) analysis showed that, according to the parameters suggested by EMBRAPA,\(^{(15)}\) BP1, CA and CB presented high Ca\(^{2+}\) content (> 3 cmol/dm\(^3\)), CT, medium Ca\(^{2+}\) content (1-3 cmol/dm\(^3\)) and BP2 and BP3 presented low Ca\(^{2+}\) content (< 1 cmol/dm\(^3\)).

Phenotypic and genomic identification of B. anthracis suspect isolates – From 52 isolates, 16 were negative for motility test, one strain showed susceptibility for gamma phage and penicillin and 10 were gamma phage-susceptible and penicillin-resistant. MADLI-TOF/MS identified one isolate as B. anthracis (score above 2.3) and 11 isolates as belonging to the genus Bacillus. Two strains, 29 and 41, showed amplification of pag gene, pag amplicons from isolates 29 and 41 showed 100% and 99.6% identity to pXO1, respectively.

Isolate 29 was identified as B. anthracis (not motile, PCR positive for pag, non-haemolytic, gamma phage/penicillin-susceptible and MADLI-TOF score 2.315) and isolate 41 was not identified as B. anthracis, but was placed in B. cereus group (motile, PCR positive for pag, haemolytic, gamma phage and penicillin-resistant and...
TABLE III

Physicochemical characteristics of soil samples

Properties	BP1a	BP2a	BP3a	CAa	CBa	CTa
Granulometry g/kg	Sand 459 g, Silt 297 g, Clay 244 g	Sand 506 g, Silt 301 g, Clay 193 g	Sand 470 g, Silt 229 g, Clay 301g	Sand 390 g, Silt 235 g, Clay 375 g	Sand 637 g, Silt 196 g, Clay 167g	Sand 778 g, Silt 156 g, Clay 66 g
pH	6.8	5.2	5.1	5.7	5.8	5.9
	weak acidity	average acidity				
Ca²⁺ cmol/dm³	6.7	0.7	0.3	4.7	8.8	2.8
	high content	low content	low content	high content	high content	high content
Organic matter g/dm³	68.3	25.2	25.0	25.5	30.3	34.3
	high content	average content	average content	high content	average content	
Textural class	Loam	Loam	Sandy clay loam	Clay loam	Sandy loam	Loamy sand

: BP1 – cattle burier site. BP2: site where the bovine was left after death for 24 h; BP3: grass sample; CA: corral A soil sample; CB: corral B soil sample; CT: Army Technology Center (CTEx) soil sample.

TABLE IV

Number of colonies selected according to macroscopic and microscopic characteristics and in each culture media

Samples	NA Mac	NA Mic	CBA Mac	CBA Mic	CBA+ Mac	CBA+ Mic	CBA++ Mac	CBA++ Mic	PLET Mac	PLET Mic	Total
BP1 soil	12	0	10	0	12	1	9	3	9	9	61
BP2 soil	13	0	12	0	10	0	8	0	9	0	4
BP3 soil	10	0	10	0	12	0	9	1	8	0	10
CT soil	14	4	10	2	13	3	11	3	10	1	12
CA soil	13	4	12	0	10	0	12	0	10	0	10
CB soil	11	0	9	1	13	0	10	0	9	0	4
Total	73	8	63	3	70	4	59	7	55	1	49
NA: nutrient agar without NaCl; NA+: nutrient agar with 0.25 M sodium acetate; CBA: Columbia agar base added 5% defibrinated sheep blood; CBA+: Columbia agar base added 5% defibrinated sheep blood with 0.25 M sodium acetate; CBA+++: Columbia base agar added 5% sheep defibrinated blood with 0.5% sodium bicarbonate; PLET: agar polymyxin B, lysozyme, EDTA and thallium acetate; Mac: macroscopic; Mic: microscopic.											

MALDI-F score 1.849) and was considered as B. anthracis-like bacterium. 16S rRNA gene sequencing identified isolate 29 as belonging to B. cereus group showing 100% of identity and query cover with B. anthracis ATCC141576 (GenBank accession MT994366), while isolate 41 presented 100% identity and 94% query cover with eight species belonging to the B. cereus group (GenBank accession MT994363 – Bacillus cereus strain IAM 12605, B. pacificus strain MCCC 1A06182, B. parantheses scabies strain MCCC 1A00395, B. cereus strain CCM 2010, B. cereus strain NBCR 15305, B. cereus ATCC 14579 (165 RNA mA), Bacillus cereus ATCC 14579 and B. cereus strain JCM 2152). In addition, isolates 2, 3, 4, 6, 7, 8, 30, 36 and 37 (all gamma phage-susceptible and penicillin resistant, pXO1- and pXO2-) were identified as belonging to the B. cereus group (GenBank accessions: MT994549, MT993863, MT994256, MT993936, MT993895, MT994361, MT994451, MT994163 and MT993931, respectively) (Table II and Table V).

DISCUSSION

In this study, one B. anthracis strain (harbouring pXO1, but not pXO2), one strain of B. cereus group harboured a pXO1-like plasmid (99.6% similarity with pag) and 10 Bacillus strains were isolated (Table V) from different soils of Brazil. These 10 isolates might be B. anthracis strains lacking virulence plasmids, which is in agreement with the findings of Kolton et al.\(^{(22)}\) The probability of positive results for B. anthracis species cannot be ruled out, as there are reports of such occur-
TABLE V

Results of phenotypic and molecular identification tests of 52 isolates

Tests of isolates	Number of isolates in each test	
	Non-motile	36
	Motile	16
Motility test	Score above 2.3	1 identified as *Bacillus anthracis*
	Score values between 2.0-2.3	11 confirmed as *Bacillus* sp.
	Score values between 1.7-2.0	22 identified as probable *Bacillus* sp.
	Score values lower than 1.7	18 were not identified
MALDI-TOF	Susceptible to gamma phage and penicillin	1
	Susceptible to gamma phage and resistant to penicillin	10
	Resistant to gamma phage and penicillin	13
	Resistant to gamma phage and susceptible to penicillin	28
Susceptibility to gamma phage and penicillin	pXO1+/pXO2-	02
	pXO1-/pXO2-	50
PCR	Identity to pag (surrogate of pXO1)	Isolate 29 (100% identity)
	Isolate 41 (99.6% identity)	Isolate 41 (100% identity and 94% query cover to eight species belonging to the *B. cereus* group)
Amplicon sequencing	Identified as strain belonging to *B. cereus* group	Isolates 2, 3, 4, 6, 7, 8, 30, 36 and 37 (match to several species belonging to the *B. cereus* group)
16sRNA	Identified as strain belonging to *B. cereus* group	

rence in the literature. These isolates were recovered from six different culture media. From PLET cultures, a pXO1+ *B. anthracis* was isolated, from NA, a pXO1+ *B. anthracis*-like was isolated. These data corroborated what is described in literature, which suggest PLET is the most selective medium for *B. anthracis* isolation.

This study is the first on this subject performed in Brazil. It showed the importance of active surveillance in soil and the correct identification of the isolates for better understanding *B. anthracis* distribution in nature and for the elucidation of possible outbreaks in Brazil.

Several methods for isolation and identification *B. anthracis* in soil have been reported, although there is no consensus among the respective studies. A direct method was chosen, because it is a simple and economical protocol for survey *B. anthracis* in soil samples. Among the soils analysed in this study, the sample presenting characteristics that would favour the prevalence of *B. anthracis* spores was BP1, in according to Shadowy et al. Interestingly, neither *B. anthracis* nor *B. anthracis*-like strains were isolated from this sample. In the USA, the bacterium was isolated from soils with neutral to alkaline pH and high concentrations of nitrogen, while in Germany, there was no correlation with the type of soil. These differences indicate that the occurrence depends not only on the type of soil, but also on environmental conditions, the pathogen’s life cycle, persistence, ecolog-
typic and genotypic traits, pathogenicity, host preference and ecological niche. Phenotypic tests are essential for *B. anthracis* identification. However, those considered to be classic phenotypic characteristics may not be present in all *B. anthracis* strains. Therefore, Kovac et al. proposed phylogenetic classification based on the complete genome sequencing for bacteria belonging to the *B. cereus* group. The isolation of 10 strains presenting all the phenotypic characteristics of the species, but not harbouring pXO1 neither pXO2 corroborated what were described in the literature.

Molecular assay in MALDI-TOF MS analysis, the only strain with a score above 2.3, which confirms species identification, was the one isolated from CA soil (strain 29). This isolate was confirmed as *B. anthracis* by other methods applied in this study. Among the isolates analysed, several were identified only at genus level, while others were identified as non-*Bacillus*, although the results of physiological tests had identified them as *Bacillus* spp.

Due to the inherent difficulty in differentiating between species with such a genomic similarity, it is necessary to enlarge the number of spectra in MALDI-TOF library in order to achieve better results for *B. anthracis* and *B. anthracis*-like bacteria identification. Although PCR has the potential to infer the presence pXO1 and pXO2 plasmids, the method does not inform the species and the lineage unequivocally. Total genome sequencing has been shown to be the best methodology to study geographical distribution of strains during natural outbreaks or events suspected of bioterrorism. 16sRNA sequencing showed that it is difficult to differentiate strains that belong to the *B. cereus* group. These results are due to the remarkable 99.6% identity percentage what makes them indistinguishable from each other when 16sRNA gene subunit sequencing was made. These results showed the importance of whole genome sequencing for identification of bacteria belonging to the *B. cereus* group.

To date, the literature describes that virulent strains of *B. anthracis* necessarily harbour both plasmids. However, strains of *B. cereus* harbouring plasmid-like may cause fatal inhalation infection similar to inhalation anthrax, and cases in humans have already been described. Due to Brazil’s continental dimensions, a large diversity of soils and climates can be found. The samples analysed represent only a fraction of this diversity. Nevertheless, it is important to highlight that this work showed promising results and it was the first study to report results from an active surveillance for *B. anthracis* in Brazil.

In conclusion, since livestock is one of the main economic activities in Brazil, large-scale studies involving *B. anthracis* active surveillance in soil in Brazil should be performed to reduce and/or prevent economic losses, and a complete characterisation of the isolates should be carried out in order to provide accurate information about Brazilian strains. In this work, we isolated *B. anthracis* (pXO1 and pXO2-) and *B. anthracis*-like in soil samples, being the first description of this type in Brazil. This data increases the need to carry out surveillance of these species in the soil. The correct identification of these species is of paramount importance for the knowledge of the pathogen distribution in nature and elucidation of possible outbreaks.

ACKNOWLEDGEMENTS

To Col Marcos Barcellos, Director of IQDBRN/EB, Dr Marcelo M Werneck, of the laboratory of LIF/COPPE/UFRJ, Dr Leonardo Rusak, of the laboratory of LFB/Fiocruz, DVM Paula Amorim and DVM Luis Armando Calvão Brust, of DSA-RJ/MAPA, and Dr Bassam Hallis, of the laboratory of HPA/PHE, for had supported this study. The authors have declared no conflicts of interest.

AUTHOR’S CONTRIBUTION

AMV and LR developed the research methodology. JRSS performed all collections and laboratory analyses, in addition to writing the work together with AMV and LR. MFS, RC-SBA, MMW, RBR, RCP and FBOL contributed to the implementation of the research, to the analysis of the results and to the writing of the manuscript.

REFERENCES

1. Ehling-Schulz M, Lereclus D, Koehler TM. The *Bacillus cereus* group: *Bacillus* species with pathogenic potential. Microbiol Spectr. 2019;7(3):1-60. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC65092/
2. Moayeri M, Leppla SH, Vrentas C, Pomerantsev AP, Liu S. Anthrax pathogenesis. Annu Rev Microbiol. 2015;69(1):185-208. Available from: https://www.researchgate.net/publication/280241634_Anthrax_Pathogenesis
3. Swejs T, Sinning P, Bontje E, Frattina C, Frattina D, Abdalla M. The increasing threat of biological weapons handle with sufficient and proportionate care. HCSS. 2016:1-38. Available from: https://hcss.nl/sites/default/files/files/reports/Threat%20and%20Care%20of%20Bioweapons%20v2.pdf
4. Nuclear Threat Initiative. Russia: Biological. 2015. Available from: https://www.nti.org/learn/countries/russia/biological/
5. Ravenel MP. Anthrax in man and animals. Am J Public Heal Nations Heal. 2008;30(3):299-300. Available from: https://www.who.int/csr/resources/publications/anthrax_web.pdf
6. Silvestri E, Griffin DW. Processing protocol for soil samples potentially contaminated with *Bacillus anthracis* spores. EPA. 2017(2):1-28. Available from: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHSRC&dirEntryId=335822
7. Carlson CJ, Getz WM, Kausrud KL, Cizauskas CA, Blackburn JK, Carrillo FAB, et al. Spores and soil from six sides: interdisciplinary and the environmental biology of anthrax (*Bacillus anthracis*). Biol Rev. 2018;93(4):1813-31.
8. Schild AL, Sallis ES V, Soares MP, Ladeira SR-L, Schramm R, Pribe AP, et al. Anthrax in cattle in southern Brazil: 1978-2006. Pesqui Vet Bras. 2006;26(4):243-8. Available from: https://www.scielo.br/pdf/pvb/v26n4/a09v26n4.pdf
9. World Organisation for Animal Health. WAHIS Interface. Zoonotic diseases in Humans. Available from: www.oie.int/wahis_2/public/wahid.php?country=Countries/publication?int/csr/resources/publications/anthrax_webs.pdf
10. Ministério da Agricultura, Pecuária e Abastecimento (BR). Coordenar Informação e Epidemiologia – Saúde Animal. Available from: http://indicadores.agricultura.gov.br/saudeanima/
11. Priebe AP, et al. Anthrax in cattle in southern Brazil: 1978-2006. Pesqui Vet Bras. 2006;26(4):243-8. Available from: https://www.scielo.br/pdf/pvb/v26n4/a09v26n4.pdf
12. Ravenel MP. Anthrax in man and animals. Am J Public Heal Nations Heal. 2008;30(3):299-300. Available from: https://www.who.int/csr/resources/publications/anthrax_web.pdf
13. Silvestri E, Griffin DW. Processing protocol for soil samples potentially contaminated with *Bacillus anthracis* spores. EPA. 2017(2):1-28. Available from: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHSRC&dirEntryId=335822
14. Carlson CJ, Getz WM, Kausrud KL, Cizauskas CA, Blackburn JK, Carrillo FAB, et al. Spores and soil from six sides: interdisciplinary and the environmental biology of anthrax (*Bacillus anthracis*). Biol Rev. 2018;93(4):1813-31.
15. Schild AL, Sallis ES V, Soares MP, Ladeira SR-L, Schramm R, Pribe AP, et al. Anthrax in cattle in southern Brazil: 1978-2006. Pesqui Vet Bras. 2006;26(4):243-8. Available from: https://www.scielo.br/pdf/pvb/v26n4/a09v26n4.pdf
16. World Organisation for Animal Health. WAHIS Interface. Zoonotic diseases in Humans. Available from: www.oie.int/wahis_2/public/wahid.php?country=Countries/publication?int/csr/resources/publications/anthrax_webs.pdf
17. Ministério da Agricultura, Pecuária e Abastecimento (BR). Coordenação de Informação e Epidemiologia – Saúde Animal. Available from: http://indicadores.agricultura.gov.br/saudeanimal/index.htm
18. Prímio R. Noes casos de carbúnculo hemático. Arq Rio Gd Med. 1932:452-470. Available from: http://webcache.googleusercontent.com/search?q=cache:Yq0ixwr1UBEJ:seer.ufmg.br/riograndemed/article/download/32005/20010+&cd=1&hl=en&ct=clnk&gl=br&client=firefox-b-d
19. World Organisation for Animal Health. WAHIS Interface. Zoonotic diseases in Humans. Available from: www.oie.int/wahis_2/public/wahid.php?country=Countries/publication?int/csr/resources/publications/anthrax_webs.pdf
20. Ministério da Agricultura, Pecuária e Abastecimento (BR). Coordenação de Informação e Epidemiologia – Saúde Animal. Available from: http://indicadores.agricultura.gov.br/saudeanimal/index.htm
21. Prímio R. Noes casos de carbúnculo hemático. Arq Rio Gd Med. 1932:452-470. Available from: http://webcache.googleusercontent.com/search?q=cache:Yq0ixwr1UBEJ:seer.ufmg.br/riograndemed/article/download/32005/20010+&cd=1&hl=en&ct=clnk&gl=br&client=firefox-b-d
12. Estima-Silva P, Molarinho KR, Marcolongo-Pereira C, Ladeira SRL, Schramm R, Pribe AP, et al. Morte súbita em bovinos no sul do Rio Grande do Sul: epidemiologia e diagnóstico. Pesqui Vet Bras. 2016;36(1):19-23. Available from: https://www.scielo.br/pdf/pvbr/v36n1/a09v36n1.pdf

13. Mari AS, Kamboh AA, Khalid-UR-Rehman B, Sahito IA, Abro SH. Prevalence of Bacillus anthracis spores in soil of district Badin. J Anim Heal Prod. 2017;2(2):1-25. Available from: http://nexusacademicpublishers.com/uploads/files/JAHP_5_2_79-84.pdf

14. Guimarães PTG, Alvarez VH, Ribeiro AC. Recomendações para o uso de corretivos e fertilizantes em Minas Gerais – 5ª Aproximação. Comissão de Fertilidade do Solo do Estado de Minas Gerais (CFSEMG). 1999:369. Available from: http://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1042994/1/Doc206.pdf

15. Sobral LF, Barreto MC V, Silva AJ da, Anjos JL dos. Guia prático para interpretação de resultados de análises de solo. Embrapa Tabuleiros Costeiros – Documentos. INFOTECA-E. 2015:13. Available from: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1042994/1/Doc206.pdf

16. Garcia-Gaines RA, Frankenstein S. USCS and the USDA Soil Classification System. Development of a Mapping Scheme. UPRM ERDC Educ Res Internsh Progr. 2015;(3):1-43. Available from: https://uprm.edu/erdc/wp-content/uploads/2017/10/0857-09.pdf

17. Lasch P, Beyer W, Nattermann H, Stammmler M, Siegbrecht E, Grunow R, et al. Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks. Appl Environ Microbiol. 2009;75(22):7229-42. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786504/pdf/0857-09.pdf

18. Beyer W, Glöckner P, Otto J, Böhm R. A nested PCR method for the detection of Bacillus anthracis in environmental samples collected from former tannery sites. Microbiol Res. 1995;150(2):179-86.

19. World Organisation for Animal Health. Manual of diagnostic tests and vaccines for terrestrial animals – Anthrax. Terrestrial Manual. 2019;8(8):1-1833. Available from: https://www.oie.int/standard-setting/terrestrial-manual

20. Health Protection Agency England. Standard operating procedure: further characterization of PCR positive Bacillus anthracis isolates – SPATH-065:02-15. 2015:1-4.

21. Watts JL, Lowery DE, Teel JF, Ditto C, Horng JS, Rossbach S. Phylogenetic studies on Corynebacterium bovis isolated from bovine mammary glands. J Dairy Sci. 2001;84(11):2419-23. Available from: https://www.journalofdairyscience.org/article/S0022-0302(01)74691-7/pdf

22. Kolton CB, Podnecky NL, Shadomy S V, Gee JE, Hoffmaster AR. Bacillus anthracis gamma phage lysis among soil bacteria: an update on test specificity. BMC Res Notes. 2017;10(1):4-9. Available from: https://bmcresnotes.biomedcentral.com/track/pdf/10.1186/s13104-017-2919-8

23. Liu Y, Lai Q, Göker M, Kolthoff JPM, Wang Meng, Sun Y, et al. Genomic insights into the taxonomic status of the Bacillus cereus group. Sci Rep. 2015;5:1-11. Available from: https://www.nature.com/articles/srep14082.pdf

24. Valseth K, Nesbo CL, Easterday WR, Turner WC, Olsen JS, Stenseth NC, et al. Temporal dynamics in microbial soil communities at anthrax carcass sites. BMC Microbiol. 2017;17(1):1-15. Available from: https://bmcmicrobiol.biomedcentral.com/track/pdf/10.1186/s12866-017-1111-6

25. Food and Agriculture Organization of the United Nations. Anthrax outbreaks: a warning for improved prevention, control and heightened awareness. Empres Watch. 2016;37(9):8. Available from: http://www.fao.org/3/a-i6124e.pdf

26. Mitscherlich E, Marth EH. Microbial survival in the environment: bacteria and Rickettsiae important in human and animal health. New York (NT): Springer Verlag; 1984.

27. Marston CK, Ibrahim H, Lee P, Churchwell G, Gunke M, Stanek D, et al. Anthrax toxin-expressing bacillus cereus isolated from an anthrax-like eschar. PLoS One. 2016;11(6):1-7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892579/pdf/pone.0156987.pdf

28. Hu X, Swiecicka I, Timmery S, Mahillon J. Sympatic soil communities of Bacillus cereus sensu lato: population structure and potential plasmid dynamics of pXO1- and pXO2-like elements. FEMS Microbiol Ecol. 2009;70(3):344-55. Available from: https://academic.oup.com/femsec/article/70/3/344/530754

29. Zwick ME, Joseph SJ, Didelot X, Chen PE, Bishop-Lilly KA, Stewart AC, et al. Genomic characterization of the Bacillus cereus sensu lato species: Backdrop to the evolution of Bacillus anthracis. Genome Res. 2012;22(8):1512-24. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409264/

30. Kovac J, Miller RA, Carroll LM, Kent DJ, Jian J, Beno MS, et al. Production of hemolysin BL by Bacillus cereus group isolates of dairy origin is associated with whole-genome phylogenetic clade. BMC Genomics. 2016;17(1):1-16. Available from: https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-016-2883-z